# "Parts Recognition" CV Model Design Deep-Dive

Mar 5, 2019

Ron

### **Topics**

#### First Part

- Scope, Design Goal
- Object Detection Algorithms
- Algorithm Comparison, Design Choice

#### Second Part

- Revisit Design Goal
- Semantic Segmentation Algorithms

#### Third Part

- Action Plan
- Open Domain Data
- Tools, Frameworks
- Custom Vision

### Scope

- "Parts Recognition"
  - Where? -> recognize key parts in a given image -> we will provide a "base model"
  - What? -> classify (label) parts -> customer will fine-tune (i.e. retrain) the model
- "Parts" examples
  - HP: Toner, Fuser, Drum unit, Roller kit, etc. inside printer
  - AHFR: parts inside HVAC equipment
  - TEL: components inside coater, developer, etching system, etc.
  - Others
    - 1<sup>st</sup> Party data
    - Semiconductor
    - Hospital Instruments
    - HVAC
    - Oil & Gas (e.g. air flight)
    - MFG (manufacturing)

#### output from a pre-trained model



#### output from customer's re-trained model



# Challenges

• Difficult to acquire data from customers at this point

Parts images are NOT commonly accessible.

Need to identify accurate locations of objects (a.k.a. "Parts")

Need to build a common model for D365 customers' various products.

# Object Detection

Object Recognition

• Image Classification + Object Localization

Localization is more important

# Pre-trained model

- No customer data contained
- Object Detection
- Transfer Learning
- Unsupervised Learning (in training)
- Continuous Learning through feedback loop (TBD)
- Performance bar
  - Accuracy
    - Bounding Box IOU (Intersection over Union)
    - Predicted class (optional) customer will fine-tune the model when it is retrained with labels
  - Latency
    - TBD

### Algorithms for Object Detection

|             | Feature                                                          | Disadvantage                                                       | Note |
|-------------|------------------------------------------------------------------|--------------------------------------------------------------------|------|
| CNN         | Image -> multiple regions (tens of thousands) Region -> classes  | High computational cost                                            |      |
| RCNN        | Selective Search -> regions Classify 2k region proposals / image | High computational cost                                            |      |
| Fast RCNN   | Still use Selective Search Image is fed to CNN only once.        | High computational cost                                            |      |
| Faster RCNN | RPN (region proposal network) instead of Selective Search        | RPN is much faster than Selective Search, but it still takes time. |      |
| Yolo v2     | Image -> x * x (grids) * m (bb), m = 5<br>Single network         | Much faster, but struggles with small objects within the image     |      |
| Yolo v3     | m = 3 x 3 scales, aspect ratios                                  |                                                                    |      |
| SSD         | Good balance between speed and accuracy                          |                                                                    | *    |
| RetinaNet   | Exploring                                                        |                                                                    |      |
| CapsNet     | Dynamic routing of object-oriented neurons                       | Research stage                                                     | *    |
| M2Det       | SSD based on multi-level FPN                                     |                                                                    | *    |

#### R-CNN: Regions with CNN features



#### **Fast R-CNN**



#### **Faster R-CNN**





## SSD – Single-Short MultiBox Detector

- Multi-scale sliding window detector
- Feature sharing between classification and localization
- Priorbox decides how local the detector is
  - Different types of priorbox with different scale or aspect ratio
- Data augmentation strategies
  - "zoom in" and "zoom out"
- Post-processing
  - E.g. filter out from 24,564 predictions on SSD512; filter out from 8,732 predictions on SSD300

### SSD Network Architecture vs. Yolo's



### Limitations in CNN

 Neurons don't consider the properties of a feature, like orientation, size, velocity, color, and etc.



Cannot correctly clarify deformed image



Translation Invariance



Max pooling loses location info.

# CapsNet – Capsule Network

- "Capsule", invented by Geoffrey Hinton
  - Group of neurons
  - Object-oriented neuron

- Being equivariant to the spatial setup of each entity inside an image
- Deliver rotational and other invariances



# Revisit Design Goal

Object localization is much more important.

- Customer will fine-tune model
  - Label detected objects
  - Adjust positions

• May focus on object localization without classification, if it improves performance significantly

### **Object Detection**



#### Semantic Segmentation



Segmentation



# Algorithms for Image Segmentation

|                                        | Feature                                                                                                                 | Disadvantage |  |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|--------------|--|
| FCN<br>(Fully Convolutional Network)   |                                                                                                                         |              |  |
| ParseNet                               | (a) Image (b) Truth (c) FCN (d) ParseNet                                                                                |              |  |
| FPN (Feature Pyramid Network)          | exploring                                                                                                               |              |  |
| PSPNet (Pyramid Scene Parsing Network) | (b) Festure Map (c) Pyramid Pooling Module                                                                              |              |  |
| Mask RCNN                              | Instance segmentation (at pixel level) Derived from Faster RCNN Decouple classification and pixel-level mask prediction |              |  |
| DPM (Deformable Parts Model)           | A root filter, multiple part filters, and a spatial model                                                               |              |  |
| DeepLab, DeepLabv3, DeepLabv3+         | exploring                                                                                                               |              |  |
| PANet<br>(Path Aggregation Network)    | Based on Mask RCNN and FPN                                                                                              |              |  |



Mask R-CNN is Faster R-CNN model with image segmentation. (Image source: He et al., 2017)



(From https://arxiv.org/pdf/1810.10327.pdf)

### Actions

### Approach 1

- Collect data, create labels, and build a pretrained model using new algorithm (e.g. SSD, or CapsNet, or M2Det)
- Assist with an unsupervised learning method

### Approach 2

Explore semantic segmentation modeling method

## Image Data (1)

- From open domain images
  - Open Image Dataset Google from Flickr
     <a href="https://storage.googleapis.com/openimages/web/download.html">https://storage.googleapis.com/openimages/web/download.html</a>
  - COCO(Common Objects in Context) CVDF(Common Visual Data Foundation), MS, Facebook, etc.
     <a href="http://cocodataset.org">http://cocodataset.org</a>
  - ImageNet Stanford, Princeton
     <a href="http://image-net.org/download">http://image-net.org/download</a>
  - PASCAL VOC (Pattern Analysis, Statistical Modeling and Computational Learning, Visual Object Classes)
     <a href="http://host.robots.ox.ac.uk/pascal/VOC/">http://host.robots.ox.ac.uk/pascal/VOC/</a>
  - Tiny Images Dataset NYU, MIT
     <a href="http://horatio.cs.nyu.edu/mit/tiny/data/index.html">http://horatio.cs.nyu.edu/mit/tiny/data/index.html</a>
  - The CIFAR-10 dataset Professor Hinton, and co. https://www.cs.toronto.edu/~kriz/cifar.html

## Image Data (2)

From image search engines – need to pay attention to privacy

• Bing

Google on Chrome

• Yahoo, Baidu, ...



- From video data
  - A large-scale database of object videos from YouTube

https://data.vision.ee.ethz.ch/cvl/youtube-objects/

## Training Tools

- Labeling
  - Lableimg
  - VoTT
  - Custom Vision UI
- Format
  - Utility to convert JSON to Xml (PASCAL VOC format)
  - Others
- Frameworks
  - Caffe
  - PyTorch
  - Tensorflow / Keras
  - Darknet / Darkflow

### Performance Factors

- Input image resolutions
- Image preprocessing
- Data Augmentation
- Feature extractors
- IOU threshold
- Localization loss function
- Deep learning platform to be used
- Training parameters
  - e.g. batch size, learning rate, image resize, etc.



# Opportunities in Custom Vision





# Appendix



# Transfer Learning

# Unsupervised Learning