Pertemuan 7:

Teknik Substitusi

(Teknik Integral Fungsi Trigonometri Substitusi Trigonometri)

A. Tujuan Pembelajaran

Mahasiswa mampu memahami dan menggunakan materi dasar turunan dalam memecahkan permasalahan integral tak tentu dan integral tentu fungsi trigonometri menggunakan metode substitusi trigonometri.

B. Uraian Materi

Integral suatu fungsi trigonometri yang penyelesaiannya memerlukan substitusi trigonometri juga, maka kita perlu mengetahui rumus dasar turunan trigonometri. Berikut sekilas mengingat tentang turunan dasar trigonometri:

$$\frac{d}{dx}(\sin x) = (\cos x) \cdot \frac{d(x)}{dx}$$

$$\frac{d}{dx}(\cos x) = (-\sin x) \cdot \frac{d(x)}{dx}$$

Contoh a): $\frac{d}{dx}(\sin 2x)$

Penvelesaian

$$\frac{d}{dx}(\sin 2x) = (\cos 2x) \cdot \frac{d(2x)}{dx}$$
$$\frac{d}{dx}(\sin 2x) = (\cos 2x) \cdot 2$$
$$\frac{d}{dx}(\sin 2x) = 2\cos 2x$$

Jadi, turunan $\sin 2x = 2 \cos 2x$

Contoh b): $\frac{d}{dx}(\cos 2x)$

Penvelesaian

$$\frac{d}{dx}(\cos 2x) = (-\sin 2x) \cdot \frac{d(2x)}{dx}$$
$$\frac{d}{dx}(\cos 2x) = (-\sin 2x) \cdot 2$$
$$\frac{d}{dx}(\cos 2x) = -2\sin 2x$$

Jadi, turunan $\cos 2x = -2 \sin 2x$

Selain itu, kita juga perlu mengetahui identitas atau rumus-rumus fungsi trigonometri itu sendiri. Berikut ini rumus-rumus fungsi trigonometri yang sering digunakan dalam pengubahan integral fungsi trigonometri:

Identitas/Rumus Fungsi Trigonometri	
A. Trigonometri Bukan Sudut Rangkap	B. Trigonometri Sudut Rangkap
$1 - \sin^2 \theta = \cos^2 \theta$	$\sin 2x = 2\sin x \cos x$
$1 + \tan^2 \theta = \sec^2 \theta$	$\cos 2x = 2\cos^2 x - 1$
$1 + \cot^2 x = \csc^2 x$	$\cos 2x = 1 - 2\sin^2 x$
	$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$
$\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]$	
$\cos A \sin B = \frac{1}{2} [\sin(A+B) - \sin(A-B)]$	
$\cos A \cos B = \frac{1}{2} [\cos(A+B) + \cos(A-B)]$	
$\sin A \sin B = -\frac{1}{2} [\cos(A+B) - \cos(A-B)]$	

Contoh 1: Hasil dari $\int \cos^5 3y \cdot \sin 3y \, dy$ adalah

Penyelesaian:

Menyederhanakan $\int \cos^5 3y \cdot \sin 3y \, dy$

*) Catatan: bentuk $\int \cos^5 3y \cdot \sin 3y \, dy = \int (\cos 3y)^5 \cdot \sin 3y \, dy$

Untuk kasus ini bentuknya menyerupai $\int [f(x)]^r f'(x) dx$, sehingga kita perlu menyederhanakannya ke dalam bentuk $\int x^r dx$, jadi dapat diselesaikan sesuai rumus berikut:

$$\int x^{r} dx = \begin{cases} \frac{1}{r+1} x^{r+1} + C ; jika \ r \neq -1 \\ & \text{iiii} \\ \ln|x| + C ; jika \ r = -1 \end{cases}$$

Misal:
$$a = \cos 3y$$
, maka $\frac{da}{dy} = -3 \sin 3y$, sehingga $dy = -\frac{da}{3 \sin 3y}$

Setelah itu, substitusi a dan dy hasil pemisalan tersebut ke dalam $\int (\cos 3y)^5 \cdot \sin 3y \, dy$ (soal), sehingga:

$$\int (\cos 3y)^5 \cdot \sin 3y \, dy = \int (a)^5 \cdot \sin 3y \left(-\frac{da}{3 \sin 3y} \right)$$

$$= -\frac{1}{3} \int a^5 \, da$$

$$= -\frac{1}{3} \left(\frac{1}{5+1} \right) (a)^{5+1} + C$$

$$= -\frac{1}{3} \left(\frac{1}{6} \right) (a)^6 + C$$

$$= -\frac{1}{18} a^6 + C$$

Kemudian substitusi a kembali

$$= -\frac{1}{18}(\cos 3y)^6 + C$$
$$= -\frac{1}{18}\cos^6 3y + C$$

Jadi
$$\int \cos^5 3y \cdot \sin 3y \, dy = -\frac{1}{18} \cos^6 3y + C$$

Contoh 2:Hasil dari $\int \sin^3 y \cdot \cos^2 y \, dy$ adalah

Penyelesaian:

Identitas/Rumus bantu trigonometri berikut diperlukan:

$$\sin^2 y + \cos^2 y = 1 \quad \text{atau} \quad \sin^2 y = 1 - \cos^2 y$$

Kita sederhanakan soal di atas:

$$\int \sin^3 y \cdot \cos^2 y \, dy = \int \sin^2 y \cdot \sin y \cos^2 y \, dy$$

Kemudian kita substitusi rumus bantu trigonometri di atas:

$$= \int (1 - \cos^2 y) \cdot \sin y \cos^2 y \, dy$$
$$= \int \sin y \cdot \cos^2 y - \sin y \cdot \cos^4 y \, dy$$
$$\int \sin y \cdot \cos^2 y \, dy - \int \sin y \cdot \cos^4 y \, dy$$

Kemudian gunakan integral substitusi seperti soal-soal sebelumnya:

Misal:
$$a = \cos y$$
, maka $\frac{da}{dy} = -\sin y$, sehingga $dy = -\frac{da}{\sin y}$

Setelah itu, substitusi a dan dy hasil pemisalan tersebut ke dalam (soal) $\int \sin y \cdot \cos^2 y \, dy - \int \sin y \cdot \cos^4 y \, dy$, sehingga:

$$\int \sin y \cdot \cos^2 y \, dy - \int \sin y \cdot \cos^4 y \, dy$$

$$= \int \sin y \cdot (a)^2 \left(-\frac{da}{\sin y} \right) - \int \sin y \cdot (a)^4 \left(-\frac{da}{\sin y} \right)$$

$$= -\int a^2 \, da + \int a^4 \, da$$

$$= -\left(\frac{1}{2+1} \right) (a)^{2+1} + \left(\frac{1}{4+1} \right) (a)^{4+1} + C$$

$$= -\frac{1}{3} (a)^3 + \frac{1}{5} (a)^5 + C$$

Kemudian substitusi a kembali

$$= -\frac{1}{3}(\cos y)^3 + \frac{1}{5}(\cos y)^5 + C$$
$$= -\frac{1}{3}\cos^3 y + \frac{1}{5}\cos^5 y + C$$

Jadi
$$\int \sin^3 y \cdot \cos^2 y \, dy = -\frac{1}{3} \cos^3 y + \frac{1}{5} \cos^5 y + C$$

C. Latihan Soal/Tugas

Tentukan integral dari:

- 1. $\int \cos^3 3y \cdot \sin 3y \, dy$
- $2. \quad \int \sin^2 5y \cdot \cos 5y \, dy$
- $3. \quad \int_{\pi/4}^0 \sin^2 2x \cos 3x \, dx$

Catatan: $\sin 0^{\circ} = 0$; $\sin 30^{\circ} = \frac{1}{2}$; $\sin 90^{\circ} = 1$

D. Daftar Pustaka

Varberg, D., Purcell, E., & Rigdon, S. (2007). Calculus (9th ed). Prentice-Hall.