Calcul matriciel

1 Définitions, notations

Définition 1 Une matrice de format (m,n) est un tableau rectangulaire de mn éléments, rangés en m lignes et n colonnes.

On utilise aussi la notation $m \times n$ pour le format. Lorsque m = n, on dit plutôt : **matrice** carrée d'ordre n. Si m = 1, on parle de **matrice-ligne** d'ordre n, et si n = 1, on parle de **matrice-colonne** d'ordre m.

Exemples:
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
, $B = \begin{bmatrix} 2 & -1 \\ -3 & 5 \\ 0 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \end{bmatrix}$, $D = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$, et

 $L = \begin{bmatrix} 1 & 3 & -5 \end{bmatrix}$. A est une matrice carrée d'ordre 3. B est de format (3, 2), C de format (2, 3). D est une matrice-colonne d'ordre 3, et L une matrice-ligne d'ordre 3.

Conventions Chaque matrice est encadrée par des crochets - $[\]$ - ou des parenthèses - $(\)$, parfois par d'autres symboles (accolades, traits doubles, ...) : la seule notation non admise est le trait simple - $|\ |$ - réservé aux déterminants.

Les éléments sont nommés en utilisant deux indices, le premier est l'indice de ligne, le second est l'indice de colonne. On note alors, par exemple : $A = [a_{i,j}]$.

Exemples:
$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix}$$
, $X = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix}$, et $Y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$.

Définition 2 Deux matrices de même format, $[a_{i,j}]$ et $[b_{i,j}]$, sont égales si et seulement $si: a_{i,j} = b_{i,j}$ pour tout couple (i,j).

Définition 3 La diagonale d'une matrice $[a_{i,j}]$ est l'ensemble des éléments $a_{i,i}$.

Exemples:
$$A = \begin{bmatrix} \mathbf{a_{1,1}} & a_{1,2} & a_{1,3} \\ a_{2,1} & \mathbf{a_{2,2}} & a_{2,3} \\ a_{3,1} & a_{3,2} & \mathbf{a_{3,3}} \end{bmatrix}, \quad B = \begin{bmatrix} \mathbf{b_{1,1}} & b_{1,2} & b_{1,3} \\ b_{2,1} & \mathbf{b_{2,2}} & b_{2,3} \end{bmatrix}, \quad \text{et } C = \begin{bmatrix} \mathbf{c_{1,1}} & c_{1,2} \\ c_{2,1} & \mathbf{c_{2,2}} \\ c_{3,1} & c_{3,2} \end{bmatrix}.$$

2 Opérations

2.1 Transposition

Définition 4 La transposée d'une matrice $A = [a_{i,j}]$ est la matrice $A^t = [a_{j,i}]$, obtenue en échangeant les lignes et les colonnes de A.

Ceci revient à effectuer une symétrie par rapport à la diagonale de A.

Exemples: Si
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
, alors: $A^t = \begin{bmatrix} 2 & 1 & 2 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$. Si $C = \begin{bmatrix} 2 \\ -1 \\ 4 \end{bmatrix}$, alors: $C^t = \begin{bmatrix} 2 & -1 & 4 \end{bmatrix}$.

G.A.CESARONI page 1 cesaroni@cnam.fr

Propriétés

Si A est de format (m, n), alors A^t est de format (n, m). En particulier, si A est carrée d'ordre n, alors A^t a le même format. La transposée d'une matrice-colonne est une matrice-ligne, et réciproquement. Enfin, $(A^t)^t = A$ pour toute matrice A.

Définition 5 Une matrice carrée A est dite symétrique si elle vérifie : $A^t = A$.

2.2 Produit par un nombre

Définition 6 Le produit d'une matrice $A = [a_{i,j}]$ par le nombre λ est la matrice : $\lambda A = [\lambda a_{i,j}]$. On dit aussi que λA est le produit de A par le scalaire λ .

Exemples:
$$3\begin{bmatrix} 2 & 0 & -1 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 0 & -3 \\ 3 & 3 & 0 \\ 6 & 0 & 3 \end{bmatrix}$$
, et $(-1)[2 \ -1 \ 4] = [-2 \ 1 \ -4]$.

Définition 7 Pour chaque format (m,n), on note $0_{m,n}$ la matrice nulle, dont tous les éléments sont nuls. Si le format est sous-entendu, on la note simplement 0.

Propriétés

Les matrices A et λA ont toujours le même format. De plus : $\lambda(A^t) = (\lambda A)^t$.

Pour toute matrice A et tous scalaires λ et μ , on a : $\lambda(\mu A) = (\lambda \mu)A$.

Si $\lambda = 1$, on a bien entendu : 1A = A, et si $\lambda = 0$, on obtient la matrice nulle.

Enfin, le produit λA n'est nul que si l'un des facteurs est nul :

 $\lambda A = 0$ si est seulement si $\lambda = 0$ ou A = 0. (ce produit est intègre)

2.3 Somme

Définition 8 La somme de deux matrices de même format est définie par :

$$[a_{i,j}] + [b_{i,j}] = [a_{i,j} + b_{i,j}].$$

Exemple:
$$\begin{bmatrix} 2 & 0 & -1 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \\ 7 & 8 & 9 \end{bmatrix} = \begin{bmatrix} 3 & 2 & 2 \\ 7 & 6 & 4 \\ 9 & 8 & 10 \end{bmatrix}.$$

Propriétés Pour A, B, C de même format, et des scalaires λ, μ :

A + (B + C) = (A + B) + C. (la somme est associative)

A + B = B + A. (la somme est commutative)

A + 0 = 0 + A = A. (la matrice 0 est élément neutre)

Toute matrice admet une opposée, -A = (-1)A.

 $\lambda(A+B) = \lambda A + \lambda B$, et $(\lambda + \mu)A = \lambda A + \mu A$. (le produit par un scalaire est distributif par rapport à la somme des matrices et par rapport à la somme des scalaires)

 $(A+B)^t = A^t + B^t$. (la transposée d'une somme est la somme des transposées)

2.4 Produit

2.4.1 Produit d'une matrice-ligne par une matrice-colonne

Définition 9 Soit $X = [x_i]$ une matrice-ligne, et soit $Y = [y_i]$ une matrice-colonne de même ordre n. Leur produit est le nombre : $XY = x_1y_1 + x_2y_2 + \ldots + x_ny_n$. (comme le résultat est un nombre, ce produit s'appelle aussi produit scalaire de X par Y)

G.A.CESARONI page 2 cesaroni@cnam.fr

Exemples:
$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} = 4 + 10 + 18 = 32$$
 , $\begin{bmatrix} a & b & c \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = b$.

2.4.2 Cas général

Définition 10 Le produit de deux matrices n'est défini que si le nombre de colonnes de la première est égal au nombre de lignes de la seconde. Si A est de format (m, n), et si B est de format (n, p), le produit C = AB est la matrice de format (m, p) définie par : chaque élément $c_{i,j}$ de C est le produit de la ième ligne de A (considérée comme une matrice-ligne) par la jème colonne de B (considérée comme une matrice-colonne). Autrement dit, si $A = [a_{i,j}]$ et $B = [b_{i,j}]$, alors, pour tous (i,j) : $c_{i,j} = a_{i,1}b_{1,j} + a_{i,2}b_{2,j} + \ldots + a_{i,n}b_{n,j}$.

En pratique, on dispose les calculs de la façon suivante :

$$\begin{bmatrix} \text{le "trou"} \\ \text{doit être} \\ \text{carr\'e} \end{bmatrix} \begin{bmatrix} \text{deuxi\`eme} \\ \text{matrice} \end{bmatrix}$$

$$\begin{bmatrix} \text{premi\`ere} \\ \text{matrice} \end{bmatrix} \begin{bmatrix} \text{matrice} \\ \text{produit} \\ \text{(r\'esultat)} \end{bmatrix}$$

Exemples:
$$\begin{bmatrix} 1 & -2 \\ -2 & 4 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \end{bmatrix} = \begin{bmatrix} -11 & -8 & -5 \\ 22 & 16 & 10 \\ -11 & -8 & -5 \end{bmatrix}, \begin{bmatrix} 1 & 2 & 3 \\ 6 & 5 & 4 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ -2 & 4 \\ 1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

Propriétés Pour A, B, C (telles que les produits existent), et des scalaires λ, μ :

A(BC) = (AB)C. (le produit est associatif)

 $AB \neq BA$ en général. (le produit n'est pas commutatif)

A0 = 0 et 0A = 0. (chaque matrice nulle est élément absorbant)

 $\lambda(AB) = (\lambda A)B = A(\lambda B)$. (associativité généralisée)

 $(AB)^t = B^t A^t$. (attention à l'ordre)

A(B+C) = AB + AC et (A+B)C = AC + BC. (le produit est distributif à gauche et à droite par rapport à la somme)

Le produit AB peut être nul avec $A \neq 0$ et $B \neq 0$. (le produit des matrices n'est pas intègre, voir exemple ci-dessus)

En particulier, dans le calcul matriciel, on ne peut pas simplifier :

AC = BC n'implique pas nécessairement A = B (l'hypothèse équivaut à (A - B)C = 0)

3 Matrices carrées

Pour deux matrices carrées de même ordre A et B, la somme A+B et les produits AB et BA existent toujours (on n'a plus à se soucier des conditions d'existence). Toutes les propriétés vues ci-dessus sont encore vraies, et le calcul matriciel ressemble beaucoup au calcul algébrique ordinaire, à deux exceptions près :

- le produit n'est pas commutatif,
- il n'est pas intègre.

Il n'y a donc pas, en général, d'identités remarquables ni de formules donnant les racines d'une équation matricielle. Les propriétés supplémentaires sont liées à l'existence d'un élément neutre pour le produit et d'inverses dans certains cas.

3.1 Matrices identités

Définition 11 Pour chaque ordre n, on appelle matrice identité d'ordre n la matrice notée I_n définie par : $I_n = [\delta_{i,j}]$, avec : $\delta_{i,j} = 0$ si $i \neq j$, $\delta_{i,j} = 1$ si i = j (symbole de KRONECKER).

Autrement dit, I_n n'a que des 1 sur la diagonale et des 0 partout ailleurs. Si l'ordre est implicite, on la note simplement I.

Exemple:
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
.

Propriétés La matrice I_n est élément neutre du produit des matrices carrées d'ordre n: pour toute matrice carrée A d'ordre n, $AI_n = I_n A = A$.

Plus généralement, pour toute matrice A de format (n,p): $I_nA=A$, et, pour toute matrice B de format (m,n): $BI_n=B$.

Exemples:
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \quad \text{et } [a \quad b \quad c] \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = [a \quad b \quad c] \, .$$

3.2 Matrices inverses

Définition 12 On dit qu'une matrice carrée A est inversible si et seulement si il existe une matrice B (de même format) telle que : AB = BA = I. B est alors appelée l'inverse de A, et est notée A^{-1} .

Exemples : Puisque $I^2 = I$, la matrice identité est sa propre inverse : $I^{-1} = I$. Si $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, et si $B = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$, alors : AB = BA = I, et donc $B = A^{-1}$. Si $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, et si $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, alors : $AB = \begin{bmatrix} a+c & b+d \\ 0 & 0 \end{bmatrix}$. Puisque AB n'est jamais égale à I(pour toute matrice B), la matrice A n'est pas inversible.

Propriétés Si AB = I, alors A est inversible et $B = A^{-1}$. (cette importante propriété montre qu'il est inutile, en pratique, de calculer AB et BA) On en déduit que si A est inversible, alors son inverse est **unique**. $(A^{-1})^{-1} = A$, autrement dit, A^{-1} est inversible, d'inverse A. Si A et B sont inversibles, alors AB l'est aussi et : $(AB)^{-1} = B^{-1}A^{-1}$ (attention à l'ordre). Si A est inversible et si $A \neq 0$, alors AA est inversible et AA0. Si A1 est inversible, alors A1 l'est aussi, et : A1 l'est A2 est inversible. (l'inverse de la transposée est la transposée de l'inverse)

Théorème 1 Soit A une matrice carrée d'ordre n, et soient X et B deux matrices-colonnes d'ordre n. Si A est inversible, alors le système AX = B admet une solution unique, donnée par : $X = A^{-1}B$, quelle que soit la matrice-colonne B.

Réciproquement, si le système AX = B n'admet qu'une seule solution, nour une matrice-

Réciproquement, si le système AX = B n'admet qu'une seule solution, pour une matrice-colonne quelconque B, alors A est inversible (et la solution est $X = A^{-1}B$).

On en déduit une méthode pratique pour calculer l'inverse d'une matrice, en résolvant un système d'équations. [voir l'exercice 1]

G.A.CESARONI page 4 cesaroni@cnam.fr

3.3 Matrices triangulaires et diagonales

Définition 13 Une matrice carrée $[a_{i,j}]$ est triangulaire supérieure si tous les éléments au-dessous de la diagonale sont nuls : $a_{i,j} = 0$ pour i > j.

Une matrice carrée $[a_{i,j}]$ est triangulaire inférieure si tous les éléments au-dessus de la diagonale sont nuls : $a_{i,j} = 0$ pour i < j.

Une matrice carrée $[a_{i,j}]$ est diagonale si tous les éléments en dehors de la diagonale sont nuls : $a_{i,j} = 0$ pour $i \neq j$. (elle est donc à la fois triangulaire supérieure et inférieure)

Exemples:
$$A = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 2 & 2 \\ 0 & 0 & -1 \end{bmatrix}$$
 est triangulaire supérieure, $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ est triangulaire inférieure et $C = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ est diagonale.

Propriétés

L'ensemble des matrices triangulaires supérieures d'ordre n est stable par rapport aux opérations : somme, produit par un scalaire et produit matriciel.

De même pour l'ensemble des matrices triangulaires inférieures.

L'ensemble des matrices diagonales d'ordre n est stable par rapport aux opérations : transposition, somme, produit par un scalaire et produit matriciel.

Si
$$A = [a_i]$$
 et $B = [b_i]$ sont diagonales d'ordre n , alors : $AB = BA = [a_ib_i]$.

Une matrice $A = [a_{i,j}]$, triangulaire ou diagonale, est inversible si et seulement si ses éléments diagonaux sont tous non nuls : $A = [a_{i,j}]$ inversible si et seulement si $a_{i,i} \neq 0$ pour tout i. De plus, son inverse est du même type.

G.A.CESARONI page 5 cesaroni@cnam.fr

Exercices résolus 4

Exercice 1 Déterminer l'inverse de la matrice : $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

Posons
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, et $B = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Le système $AX = B$ s'écrit :

Posons
$$X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$
, et $B = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$. Le système $AX = B$ s'écrit :
$$\begin{cases} x + y + z = a \\ y + z = b \end{cases}$$
 La troisième équation donne : $z = c$. En reportant dans la deuxième, on obtient : $y = b - c$.
$$z = c$$

Puis dans la première : x = a - (b - c) - c = a - b. D'où : $A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$

$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

Exercice 2 | On considère les matrices :

$$A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \ et \ N = A - I \ , \ où \ I \ est \ la \ matrice \ identit\'e \ d'ordre \ 3.$$

- 1. Calculer N^2 et N^3 . En déduire N^n pour n entier, n > 3.
- 2. En déduire une formule exprimant A^n en fonction de I, N et N^2 pour n entier naturel.
- 3. Déterminer des nombres a, b et c tels que la matrice $B = aI + bN + cN^2$ vérifie : AB = I. En déduire la matrice A^{-1} (inverse de A) en fonction de I, N et N^2 .
- 4. Calculer A^{-n} pour n entier positif. En déduire A^k pour k entier relatif quelconque.

1. On obtient :
$$N^2 = \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ et } N^3 = 0$$
Si $n \ge 4$, alors : $N^n = N^3 N^{n-3} = 0 N^{n-3} = 0$. Finalement :
$$N^n = 0 \text{ pour } n \ge 3$$
2. Puisque les matrices I et N commutent $(IN = NI)$, on peut développer $A^n = (I + N)^n$

$$N^n = 0$$
 pour $n > 3$

Si $n \ge 4$, alors : $N^n = N^3 N^{n-3} = 0 N^{n-3} = 0$. Finalement : $N^n = 0$ pour $n \ge 3$ 2. Puisque les matrices I et N commutent (IN = NI), on peut développer $A^n = (I + N)^n$ en utilisant la formule du binôme :

Pour $n \geq 2$, $A^n = (I+N)^n = I^n + C_n^1 I^{n-1} N + C_n^2 I^{n-2} N^2$ (les autres termes sont nuls d'après

la question 1). On obtient ainsi:

$$A^{n} = I + nN + \frac{n(n-1)}{2}N^{2}$$

Le calcul précédent n'est valable que pour $n \geq 2$. Mais la formule trouvée est encore vraie pour n=1 et n=0, comme on le vérifie facilement ($A^0=I$ par convention). En remplaçant

les matrices par leurs valeurs, on obtient :

$$A^n = \begin{bmatrix} 1 & -n & n^2 \\ 0 & 1 & -2n \\ 0 & 0 & 1 \end{bmatrix}$$

3. En remplaçant les matrices A et B par leurs valeurs en fonction de I et N, on o

 $AB = (I+N)(aI+bN+cN^{2}) = aI + (a+b)N + (b+c)N^{2}.$

Une solution de AB = I est donc donnée par les égalités : a = 1, a + b = 0, b + c = 0. On en déduit les valeurs : b = -1 et c = 1, et la solution : $B = I - N + N^2$. Ce qui montre

que A est inversible, son inverse étant :

$$A^{-1} = I - N + N^2 = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

L'unicité de l'inverse d'une matrice nous assure de l'unicité de la solution trouvée.

4. Pour calculer $A^{-n} = (A^{-1})^n$, on peut procéder comme pour A^n au début de l'exercice : La matrice A^{-1} est de la forme $A^{-1} = I + M$, avec $M = N^2 - N$. On calcule les puissances $M^2 = (N^2 - N)^2 = N^4 - 2N^3 + N^2 = N^2,$ de M:

$$M^3 = MM^2 = (N^2 - N)N^2 = N^4 - N^3 = 0.$$

Les raisonnements et calculs faits pour N et A sont donc aussi valables pour M et A^{-1} . On

en déduit :
$$A^{-n} = (A^{-1})^n = I + nM + \frac{n(n-1)}{2}M^2$$
 : $A^{-n} = I - nN + \frac{n(n+1)}{2}N^2$

Comme pour A^n , cette formule est vérifiée pour tout entier naturel n. Si on l'écrit

$$A^{-n} = I + (-n)N + \frac{(-n)(-n-1)}{2}N^2$$

 $A^{-n}=I+(-n)N+\frac{(-n)(-n-1)}{2}N^2,$ on constate qu'il s'agit de la formule trouvée à la question 2, avec -n à la place de n.

D'où le résultat :

$$A^k = I + kN + \frac{k(k-1)}{2}N^2$$
, pour tout k entier relatif

Exercice 3 On considère les matrices :
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 1 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix}$$
 et $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

- 1. Calculer A^2 et A^3 .
- 2. Déterminer trois nombres entiers a, b et c tels que : $A^3 + aA^2 + bA + cI = 0$.
- 3. En déduire que A est inversible, et écrire son inverse A^{-1} .
- $A^{2} = \begin{bmatrix} 2 & 0 & -3 \\ 3 & 1 & -1 \\ 6 & 0 & -1 \end{bmatrix} \text{ et } A^{3} = \begin{bmatrix} -2 & 0 & -5 \\ 5 & 1 & -4 \\ 10 & 0 & -7 \end{bmatrix}$ 1. On obtient:
- 2. L'égalité $A^3 + aA^2 + bA + cI = 0$ donne les 7 relations :

$$\begin{array}{rcl}
-2 + 2a + 2b + c & = & 0 \\
-5 - 3a - b & = & 0 \\
5 + 3a + b & = & 0 \\
1 + a + b + c & = & 0 \\
-4 - a & = & 0 \\
10 + 6a + 2b & = & 0 \\
-7 - a + b + c & = & 0
\end{array}$$

La cinquième équation donne : a = -4, la deuxième : b = 7, et la quatrième : c = -4. Les autres équations sont alors aussi vérifiées.

$$A^3 - 4A^2 + 7A - 4I = 0$$

23. La relation précédente peut s'écrire : $A^3 - 4A^2 + 7A - 4I = 0$ ou encore, en divisant par 4 et en mettant A en facteur : $A(\frac{1}{4}A^2 - A + \frac{7}{4}I) = I$.

Étant de la forme AB = I, cette relation donne :

$$A$$
 est inversible et $A^{-1}=B=\frac{1}{4}(A^2-4A+7I).$ D'où :

$$A^{-1} = \frac{1}{4} \begin{bmatrix} 1 & 0 & 1 \\ -1 & 4 & -1 \\ -2 & 0 & 2 \end{bmatrix}$$

5 **Exercices**

Exercice 4 | Soient A et B deux matrices carrées de même ordre vérifiant les deux conditions: $AB \neq 0$, et BA = 0, et soit C = AB.

- 1 Calculer C^2 .
- 2 Est-ce que A et B sont inversibles?
- 3 Si on fixe $A=\begin{bmatrix}1&2\\2&4\end{bmatrix}$, trouver toutes les matrices B vérifiant les deux conditions : $AB\neq 0,$ et BA=0.

Exercice 5 Soit
$$M = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
.

- 1 Calculer M^n pour tout entier $n \ge 1$.
- 2 Montrer que M est inversible, et déterminer M^{-1} .
- 3 Déterminer toutes les matrices A telles que AM = MA.

Exercice 6 Soit
$$A = \begin{bmatrix} 1 & 2 \\ 5 & 3 \end{bmatrix}$$
. Trouver toutes les matrices M telles que $AM = MA$.

Exercice 7 Soit
$$A = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
.

- 1 Calculer A^2 , $/A^3$ et A^4 .
- 2 En déduire A^k pour tout entier $k \ge 1$.
- 3 Montrer que A est inversible et calculer son inverse.
- 4 Calculer A^{-k} pour tout entier k > 1.

Exercice 8 Soit
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
.

- 1 Calculer A^2 , A^3 , puis A^n (par récurrence).
- 2 La matrice A est-elle inversible?

Exercice 9 Soit
$$A = \begin{bmatrix} -1 & -2 & 1 \\ 2 & 3 & -4 \end{bmatrix}$$
.
1 - Peut-on trouver une matrice B de format $(3,2)$ telle que $AB = I_2$?

- 2 Peut-on trouver une matrice C de format (3,2) telle que $CA = I_3$?

Exercice 10 Soit
$$A = \begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}$$
.

- 1 Calculer A^2 , puis $A^2 A$.
- 2 En déduire que A est inversible. Que vaut A^{-1} ?