МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5 по дисциплине «Качество и метрология программного обеспечения» Тема: Опенка параметров належности программ по временным

Тема: Оценка параметров надежности программ по временным моделям обнаружения ошибок

Студент гр. 8304	Воропаев А. О.
Преподаватель	Ефремов М. А.

Цель работы.

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.

Задание.

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение интервала между соседними (i-1) –ой и i –ой ошибками (i=[1,30]), в соответствии с:
 - а. Равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\rm paвh}=10$, СКО $s_{\rm paвh}=20/(2*sqrt(3))=5.8;$
 - b. Экспоненциальным законом распределения, W(y) = b * exp(-b * y), $y \ge 0$, с параметром b = 0.1 и соответственно $m_{\text{эксп}} = s_{\text{эксп}} = 1/b = 10$. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = -ln(t)/b;
 - с. Релеевским законом распределения $W(y) = (y/c^2) * exp(-y^2/(2*c^2)),$ y>=0, с параметром c=8.0 и соответственно $m_{\rm pen}=c*sqrt(\pi/2),$ $s_{\rm pen}=c*sqrt(2-\pi/2).$ Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y=c*sqrt(-2*ln(t)).
- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

- 4. Если B > n, оценить значения средних времен X_j , j = n + 1, n + 2 ..., n + k до обнаружения $k \le 5$ следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Ход работы.

1. Равномерный закон распределения.

100% входных данных

19.991572175102018

Был сгенерирован и отсортирован массив из 30-ти элементов, равномерно распределенных в интервале [0,20] (см. Таблица 1).

Таблица 1 -Равномерное распределение при n = 30

x_i
0.0536
1.3598
1.5842
1.6277
2.2858
2.4581
2.4736
2.8295
3.2928

10	4 1 470
10	4.1479
11	4.2899
12	5.4174
13	6.1530
14	8.1524
15	9.4036
16	9.8194
17	10.4359
18	11.1643
19	12.4986
20	12.5604
21	13.3849
22	13.9824
23	15.6059
24	16.2009
25	16.5191
26	16.7772
27	18.4280
28	18.4660
29	18.8804
30	19.9915
L	

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 20.245 > 15.5$$
 условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-i}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 2).

Таблица 2 - 3начения функций для равномерного распределения при n = 30.

1	ı		T	
m	31	32	33	34

f	3.994	3.027	2.558	2.255
g	3.09406	2.80478	2.56498	2.36295
f-g	0.900932	0.222462	0.00648155	0.107482

Минимум разности достигается при m=33. Первоначальное количество ошибок B=m-1=32. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0091525$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где j=n+1,n+2...,n+k. Результат представлен в таблице 3.

Таблица 3 — Время обнаружения следующих ошибок для равномерного распределения при n=30.

j	31	32
X_j	54.6293	109.259

Было рассчитано время до завершения тестирования $t_k=163.887$ дней. Было рассчитано общее время тестирования $t_{\rm общ}=444.133$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, равномерно распределенных в интервале [0,20](см Таблица 4).

Таблица 4 — Равномерное распределение, n = 24.

i	x_i
1	0.625925
2	3.34381
3	3.79863
4	4.2668
5	5.67606
6	5.98265
7	6.57633
8	7.04886
9	8.05366
10	9.03445
11	9.05348
12	9.78983
13	10.1487
14	10.3148
15	11.2103
16	11.5208
17	13.229
18	15.0569
19	15.5483
20	15.9034
21	16.1615
22	16.8125
23	19.3755
24	19.6379

 $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 15.90366 > 12.5$ – условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 5)

Таблица 5 — Расчёт значений функций для равномерного распределения n = 24.

m	25	26	27	28	29	30
f	3.77596	2.81596	2.35442	2.05812	1.84384	1.67832
g	2.63843	2.3771	2.16288	1.98407	1.83257	1.70257
/f-g/	1.13753	0.438857	0.191543	0.0740509	0.0112636	0.0242501

Минимум разности достигается при m=29. Первоначальное количество ошибок B=m-1=28. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00738$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)},$ где j=n+1,n+2...,n+k. Результат представлен в таблице 6.

Таблица 6 — Расчет времени обнаружения следующих ошибок для равномерного распределения при n = 24.

j	25	26	27	28	
X_j	33.8554	45.1405	67.7108	135.422	

Было рассчитано время до завершения тестирования $t_k = 282.128$ дней.

Было рассчитано общее время тестирования $t_{
m oбщ} = 530.298$ дней.

60% входных данных

Был сгенерирован и отсортирован массив из 18-ти элементов, равномерно распределенных в интервале [0,20](см Таблица 7).

Таблица 7 — Равномерное распределение при n = 18 .

i	x_i
1	1.5636
2	3.6199
3	5.01478
4	6.89844

5	7.6355
6	8.12379
7	9.56554
8	10.1942
9	10.9828
10	13.6566
11	13.6592
12	14.1638
13	14.7562
14	15.3654
15	15.7147
16	16.391
17	17.5409
18	19.2552

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 11.720 > 9.5$$
 условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 8)

Таблица 8 – Значения функций для равномерного распределения при n=18.

m	19	20	21	22	23	24
f	3.49511	2.54774	2.09774	1.81203	1.60748	1.45096
g	2.47277	2.1741	1.9398	1.75109	1.59584	1.46588
f-g	1.02234	0.373643	0.157938	0.0609333	0.0116361	0.0149235

Минимум разности достигается при m=23. Первоначальное количество ошибок B=m-1=22. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0078$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)},$ где $j=n+1,n+2\dots,n+k.$ Результат представлен в таблице 9.

Таблица 9 — Время обнаружения следующих ошибок для равномерного распределения при n=18.

j	19	20	21	22
X_j	31.9739	42.6319	63.9478	127.896

Было рассчитано время до завершения тестирования $t_k = 266.449$ дней.

Было рассчитано общее время тестирования $t_{
m oбщ} = 470.550$ дней.

2. Экспоненциальный закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1. Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = -ln(t)/b (см Таблица 10).

Таблица 10 – Экспоненциальное распределение при n = 30

i	x_i
1	0.440134
2	0.799183
3	1.18096
4	1.66427
5	1.69199
6	1.91145
7	1.94292
8	2.10802
9	2.68551
10	3.39462
11	3.67752
12	3.88152
13	4.08013

14	4.30362
15	4.49327
16	5.21072
17	5.40814
18	5.50719
19	8.84403
20	15.6339
21	18.6935
22	18.9954
23	19.1902
24	21.5438
25	22.3508
26	22.9487
27	25.3333
28	33.2037
29	38.1663
30	47.8581

$$A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i} = 23.691 > 15.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 11).

Таблица 11 — Значения функций для экспоненциального распределения при $\mathbf{n}=30.$

m	31	32
f	3.99499	3.02725
g	4.10462	3.61061
f-g	0.109628	0.583365

Минимум разности достигается при m=31. Первоначальное количество ошибок B=m-1=30. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01182$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \, \text{где} \,\, j = n+1, n+2 \dots, n+k.$

Условие B > n не выполняется

Было рассчитано общее время тестирования $t_{\text{общ}} = 347.142$ дней

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1 (см Таблица 12).

Таблица 12 — Экспоненциальное распределение, n = 24

i	46
	x_i
1	0.105964
2	0.522446
3	2.0286
4	2.7963
5	2.97767
6	3.19724
7	5.67122
8	6.04499
9	6.16343
10	6.39068
11	7.90783
12	8.51862
13	9.39644
14	10.1302
15	10.9846
16	12.55
17	14.7612
18	14.7648
19	15.3162
20	18.4484
21	20.5215
22	22.0178
23	23.4191
24	37.4299
<u> </u>	

$$A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 17.582 > 12.5$$
 — условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см. Таблица 13).

Таблица 13 – Значения функций для экспоненциального распределения при n = 24.

m	25	26	27
f	3.77596	2.81596	2.35442
g	3.23544	2.85108	2.54835
f-g	0.540521	0.0351247	0.193931

Минимум разности достигается при m=26. Первоначальное количество ошибок B=m-1=25. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01087$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)},$ где j=n+1,n+2...,n+k. Результат представлен в таблице 14.

Таблица 14 — Время обнаружения следующих ошибок для экспоненциального распределения при n=24

j	25
X_j	91.9177

Было рассчитано время до завершения тестирования $t_k=91.9177$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=353.982$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, распределенных по экспоненциальному закону с параметром b=0.1 (см Таблица 15).

Таблица 15 — Экспоненциальное распределение при n=18.

i	x_i
1	0.378254
2	2.28499
3	2.94226
4	3.06059

5	4.09783
6	5.86167
7	5.86424
8	6.2887
9	8.30699
10	10.4539
11	11.2149
12	12.6207
13	15.1727
14	16.6785
15	18.3391
16	19.0029
17	29.4911
18	38.6277

$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 13.449 > 9.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 16).

Таблица 16 – Значения функций для экспоненциального распределения при ${\bf n}=18$

m	19	20	21
f	3.49511	2.54774	2.09774
g	3.24306	2.74796	2.38401
/f-g/	0.252048	0.20022	0.286267

Минимум разности достигается при m=20. Первоначальное количество ошибок B=m-1=19. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01304$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \ \text{где} \ j = n+1, n+2 \dots, n+k. \ \text{Результат представлен в таблице 17}.$

Таблица 17 — Время обнаружения следующих ошибок для экспоненциального распределения при $\mathbf{n}=24$

j	19
X_j	76.6704

Было рассчитано время до завершения тестирования $t_k=76.6703$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=287.357$ дней.

3. Релеевский закон распределения.

100% входных данных.

Был сгенерирован и отсортирован массив из 30-ти элементов, распределенных по релеевскому закону с параметром c = 8.0. Значения случайной величины Y с релеевским законом распределения с параметром «с» были получены по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле: Y = c * sqrt(-2 * ln(t)) (см Таблица 18).

Таблица 18 – Релеевское распределение при n = 30.

i	x_i
1	2.96102
2	3.24484
3	3.30917
4	4.66039
5	5.184
6	5.67225
7	6.31474
8	6.39378
9	6.45951
10	6.97472
11	7.64108
12	7.91742
13	8.38393
14	8.58928
15	8.87248
16	9.34612
17	9.52572
18	10.6051
19	10.9365
20	11.1654

21	11.6295
22	11.7468
23	12.5821
24	13.4343
25	14.1418
26	14.5761
27	16.8144
28	18.4660
29	17.0019
30	20.8298

$$A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i} = 19.261 > 15.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 19).

Таблица 19 – Значения функций для релеевского распределения при n = 30.

m	31	32	33	34	35	36	37	38	39
f	3.99499	3.02725	2.5585	2.25546	2.03488	1.86345	1.72456	1.60873	1.51004
g	2.55564	2.35502	2.1836	2.03545	1.90612	1.79225	1.69121	1.60096	1.51985
/f-g/	1.439	0.672	0.374	0.220	0.128	0.0712	0.033	0.00776	0.0098

Минимум разности достигается при m=38. Первоначальное количество ошибок B=m-1=37. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.00552$

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}$, где j=n+1,n+2...,n+k. Результат представлен в таблице 20.

Таблица 20 — Время обнаружения следующих ошибок для релеевского распределения при n=30.

j	31	32	33	34	35	36	37	1
---	----	----	----	----	----	----	----	---

X_j	25.8349	30.1407	36.1688	45.211	60.2813	90.422	180.844

Было рассчитано время до завершения тестирования $t_k = 468.902$ дней.

Было рассчитано общее время тестирования $t_{\text{общ}} = 758.426$ дней.

80% входных данных.

Был сгенерирован и отсортирован массив из 24-ти элементов, распределенных по релеевскому закону с параметром c = 8.0 (см. Таблица 21).

Таблица 21 — Релеевское распределение при n = 24

i	x_i
1	1.52389
2	2.30141
3	3.09547
4	3.76949
5	4.04258
6	4.92058
7	5.74393
8	6.88508
9	7.93201
10	8.35989
11	8.73418
12	10.0159
13	10.4541
14	11.5396
15	11.6393
16	11.7517
17	12.5299
18	12.5763
19	14.8816
20	15.9153

21	16.2184
22	16.2575
23	17.2592
24	20.5394

$$A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i} = 16.055 > 12.5$$
 – условие сходимости выполнено

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 22).

Таблица 22 – Расчёт значений функций для релеевского распределения (80%).

m	25	26	27	28	29	30
f	3.77596	2.81596	2.35442	2.05812	1.84384	1.67832
g	2.68321	2.41339	2.19288	2.00929	1.85407	1.72111
f-g	0.949	0.287	0.067	0.030	0.077	0.0427854

Минимум разности достигается при m=29. Первоначальное количество ошибок B=m-1=28. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.0077$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2 \dots, n+k. \text{ Результат представлен в таблице 23}.$

Таблица 23 — Время обнаружения следующих ошибок для релеевского распределения при n=24

j	25	26	27	28
X_j	32.2112	42.9482	64.4224	128.845

Было рассчитано время до завершения тестирования $t_k = 268.426$ дней.

Было рассчитано общее время тестирования $t_{\text{обш}} = 507.313$ дней.

60% входных данных.

Был сгенерирован и отсортирован массив из 18-ти элементов, распределенных по релеевскому закону с параметром c = 8.0 (см Таблица 24).

Таблица 24 — Релеевское распределение при n = 18

i	x_i
1	1.81029
2	2.46711
3	5.38409
4	5.94551
5	7.30117
6	7.88499
7	7.94177
8	8.39477
9	9.87011
10	10.0895
11	10.1549
12	11.9241
13	12.4217
14	15.3629
15	16.2264
16	16.2395
17	25.3339
18	31.047

$$A = \frac{\sum_{i=1}^n i X_i}{\sum_{i=1}^n X_i} = 12.473 > 9.5$$
 – условие сходимости выполнено.

Были вычислены значения функций $f_n(m) = \sum_{i=1}^n \frac{1}{m-1}$ и $g(m,A) = \frac{n}{m-A}$ (см Таблица 25).

Таблица 25 — Значения функций для релеевского распределения при n=18.

m	19	20	21	22
f	3.49511	2.54774	2.09774	1.81203

g	2.75806	2.3916	2.11111	1.8895
f-g	0.73705	0.156136	0.0133674	0.0774742

Минимум разности достигается при m=21. Первоначальное количество ошибок B=m-1=20. Коэффициент $K=\frac{n}{(B+1)\sum_{i=1}^n X_i-\sum_{i=1}^n iX_i}=0.01025$.

Было рассчитано среднее время обнаружения следующих ошибок $X_j = \frac{1}{K(B-j+1)}, \text{ где } j = n+1, n+2\dots, n+k. \text{ Результат представлен в таблице 26}.$

Таблица 26 — Время обнаружения следующих ошибок для релеевского распределения при n=18

m	19	20
X_j	48.7421	97.4842

Было рассчитано время до завершения тестирования $t_k=146.226$ дней. Было рассчитано общее время тестирования $t_{
m oбщ}=352.026$ дней.

4. Результаты расчетов.

В таблицах 27 и 28 представлены сводные результаты оценки первоначального числа ошибок и полного времени проведения тестирования соответственно.

Таблица 27 – Оценка первоначального числа ошибок.

n	Входные	Распределение		
	данные, %	Равномерное	Экспоненциальное	Релеевское
30	100	32	30	37
24	80	28	25	28
18	60	22	19	20

Таблица 28 – Оценка полного времени проведения тестирования.

n	Входные	Распределение		
	данные, %	Равномерное	Экспоненциальное	Релеевское
30	100	444.133	347.1427	758.426
24	80	530.298	353.982	507.3130
18	60	470.550	287.357	352.0260

Результаты при экспоненциальном распределении ниже, чем при равномерном или релеевском. Релеевское и равномерное распределения показывают примерно одинаковые результаты.

Выводы.

В ходе выполнения работы было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных.