Technische Universität Berlin

Fakultät II – Institut für Mathematik Ferus/Grigorieff/Renesse WS 06/07 19. Februar 2007

Februar – Klausur (Rechenteil) Analysis II für Ingenieure

fame: Vorname:						
MatrNr.:	Studi	engang	;:			
Neben einem handbeschriebenen A4 zugelassen.	Blatt r	nit No	tizen s	ind ke	ine Hi	lfsmittel
Die Lösungen sind in Reinschrift au geschriebene Klausuren können nicht				geben.	Mit	Bleistift
Dieser Teil der Klausur umfasst die I vollständigen Rechenweg an.	Rechen	aufgab	en. G	leben S	Sie imr	ner den
Die Bearbeitungszeit beträgt eine Stu	nde.					
Die Gesamtklausur ist mit 40 von 80 beiden Teile der Klausur mindestens 12				•		
Korrektur						
	1	2	3	4	5	Σ

1. Aufgabe

8 Punkte

Gegeben sei die Potenzreihe

$$\sum_{k=1}^{\infty} \frac{3^k x^k}{\sqrt{(3k-2)2^k}}.$$

- a) Bestimmen Sie den Konvergenzradius.
- b) Konvergiert die Potenzreihe am linken Randpunkt des Konvergenzbereichs?

2. Aufgabe

7 Punkte

 $f: \mathbb{R}^2 \to \mathbb{R}$ sei definiert als $f(x,y) = (x+1)^2 + (y+1)^2$.

- a) Skizzieren Sie die Niveaulinien $\{\binom{x}{y}|f(x,y)=c\}$ für $c=0,\,c=2,\,c=4.$
- b) Warum ist f differenzierbar?
- c) Geben Sie den Gradienten von f an.
- d) Begründen Sie, dass

$$\lim_{\left|\binom{x}{y}\right| \to \infty} f(x,y) = \infty$$

gilt.

3. Aufgabe

8 Punkte

Gegeben sei $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = x^2y - 2x^2 - y^2 - 5y.$$

Finden Sie die kritischen Stellen und bestimmen Sie, ob an der Stelle $\begin{pmatrix} 0 \\ -\frac{5}{2} \end{pmatrix}$ ein lokales Minimum oder ein lokales Maximum vorliegt.

4. Aufgabe

10 Punkte

Gegeben sei das auf \mathbb{R}^3 definierte Vektorfeld

$$\vec{F}_{\alpha}(x, y, z) = \begin{pmatrix} \sin(z) \\ \alpha yz \\ x\cos(z) + y^2 \end{pmatrix}$$

mit $\alpha \in \mathbb{R}$. Weiter sei $\vec{\gamma}$ die Kurve im Raum mit folgender Parametrisierung:

$$\varphi \mapsto \begin{pmatrix} \cos(\varphi) \\ \sin(\varphi) \\ \varphi \end{pmatrix}, \varphi \in [0, \frac{3}{2}\pi].$$

- a) Skizzieren Sie $\vec{\gamma}$.
- b) Zeigen Sie, dass \vec{F}_{α} nur für $\alpha=2$ eine Stammfunktion besitzt.
- c) Geben Sie eine Stammfunktion für $\alpha = 2$ an.
- d) Berechnen Sie $\int_{\vec{\gamma}} \vec{F}_2 \cdot \vec{ds}$.
- e) Berechnen Sie $\int_{\vec{\gamma}} \vec{F_0} \cdot \vec{ds}$ (Sie dürfen $\int_0^{\frac{3}{2}\pi} \sin^2(t) dt = \frac{3}{4}\pi$ benutzen).

5. Aufgabe 7 Punkte

Gegeben sei $B = \{ {x \choose y} | y \le 0, x \ge 0, x^2 + y^2 \le 1 \}.$

- a) Skizzieren Sie B.
- b) Berechnen Sie $\iint_B xy\,dxdy,$ indem Sie Polarkoordinaten verwenden.

Berechnen Sie dabei alle auftretenden Integrale.