통신이론

- 문
 1. 한 개의 정현파 메시지 신호를 FM 변조하여 송신할 때, 복조

 신호의 S/N(signal-to-noise ratio)에 영향을 주지 않는 것은?
 - ① 변조 지수
 - ② 메시지 신호의 진폭
 - ③ 메시지 신호의 초기 위상
 - ④ 메시지 신호의 주파수
- 문 2. 랜덤 변수 X의 확률 밀도 함수(probability density function) $f_X(x)$ 가 다음과 같을 때, 상수 c의 값은?

$$f_X\!(x) = \begin{cases} c(1-x^2), & -1 \leq x \leq 1 \\ 0, & \text{그 외 구간} \end{cases}$$

- $2 \frac{4}{3}$
- $3 \frac{1}{3}$
- 4 1
- 문 3. 소스 심벌(source symbol) s_1 , s_2 , s_3 , s_4 의 발생 확률이 각각 p_1 , p_2 , p_3 , p_4 일 때, 소스 심벌 엔트로피(entropy)의 최댓값[bits/symbol]은? (단, $p_1+p_2+p_3+p_4=1$ 이다)
 - ① 0
 - ② 1
 - 3 2
 - 4
- 문 4. 신호 $4\sin\omega_o t + 8\cos\omega_o t$ 의 푸리에(Fourier) 계수는?
 - ① 3-j6, 3+j6
 - ② 4-j2, 4+j2
 - (3) -j, j
 - 4 1-j, 1+j
- 문 5. 한 심벌 시간이 T_s 인 비동기 2진 FSK 시스템에서 주파수가 f_1 과 f_2 인 두 개의 정현파를 이용하여 변조를 수행한다. 이때, 두 정현파가 직교하기 위한 (f_1-f_2) 의 최솟값[Hz]은? (단, $f_1>f_2$ 이다)
 - ① $\frac{1}{2T_a}$
 - $2\frac{2}{T}$
 - $3 \frac{1}{T_s}$
 - $4 \frac{3}{2T_{\circ}}$

- 문 6. 랜덤 변수(random variable) X와 Y에 대한 설명으로 옳지 않은 것은? (단, 기댓값 E[X]와 E[Y]는 0이 아니고, Cov[X,Y]는 X와 Y의 공분산이다)
 - ① E[XY] = 0일 때. Cov[X, Y] = 0이다.
 - ② X와 Y가 서로 독립일 때, Cov[X, Y] = 0이다.
 - ③ X = Y일 때, Cov[X, Y]는 X의 분산과 같다.
 - ④ 랜덤 변수 Z = X + Y일 때, E[Z] = E[X] + E[Y]이다.
- 문 7. 평균과 분산이 각각 0과 1인 L개의 가우시안(Gaussian) 랜덤 변수 $X_i (i=1,2,...,L)$ 가 서로 통계적으로 독립일 때, 옳지 않은 것은?
 - ① $Z = \sum_{i=1}^{L} X_i$ 는 가우시안 랜덤 변수이다.
 - ② $Z = \sqrt{X_1^2 + X_2^2}$ 는 레일리(Rayleigh) 확률 밀도 함수를 갖는다.
 - ③ X_1 , X_2 의 결합 확률 밀도 함수는 $f_{X_1X_2}(x_1,x_2)=$ $\frac{1}{2\pi} \exp\left\{\frac{-(x_1^2+x_2^2)}{2}\right\}$ 이다.
 - ④ $\sum_{i=1}^{L} X_i$ 의 평균은 0이고 분산은 1이다.
- 문 8. 신호 x(t)와 $y(t)=x(t)\cos\left(\frac{2\pi t}{T}\right)$ 를 지수형 푸리에 급수 (exponential Fourier series)로 전개하였을 때, k번째 고조파 푸리에 계수가 각각 X_k 와 Y_k 이다. X_k 와 Y_k 의 관계로 옳은 것은? (단, x(t)의 주기는 T이다)
 - ① $Y_k = \frac{1}{4}(X_k + X_{k+1})$
 - ② $Y_k = \frac{1}{2} (X_{k-1} + X_{k+1})$
- 문 9. 다음 그림은 주기가 T인 연속 신호 x(t)를 시간 영역에서 표현한 것이다. 신호 x(t)에 대한 설명으로 옳지 않은 것은?

- ① x(t)는 주파수 영역에서 이산(discrete) 스펙트럼으로 나타난다.
- ② τ 가 일정할 때, T가 커질수록 스펙트럼 포락선의 주엽(main lobe) 폭은 좁아진다.
- ③ au가 작을수록 스펙트럼 포락선의 주엽 폭은 넓어진다.
- ④ x(t)를 지수형 푸리에 급수로 전개하면 푸리에 계수는 실수가 된다.

- 문 10. 부호율이 $\frac{4}{7}$ 인 조직적(systematic) 순환(cyclic) 부호기의 생성 다항식(generator polynomial)이 $g(x)=1+x+x^3$ 일 때, 입력 정보 비트 '1010'에 대한 출력 부호어는? (단, 정보 비트 '1010'을 다항식으로 표현하면 $1+x^2$ 이다)
 - ① 1011001
 - ② 0011001
 - ③ 1111001
 - ④ 0011010
- 문 11. 양측파대 억압 반송파(DSB-SC) 변조에서 메시지 신호가 $m(t) = \cos(2000\pi t) + 2\cos(4000\pi t)$ 이고 반송파 신호가 $c(t) = 50\cos(2\pi f_c t)$ 일 때, 변조된 신호의 상측파대(upper sideband) 스펙트럼 신호 성분으로 옳은 것은? (단, $f_c = 1$ MHz이다)
 - ① $25\cos[2\pi(f_c+1000)t]+50\cos[2\pi(f_c+2000)t]$
 - 2 $25\cos[2\pi(f_c-1000)t]+50\cos[2\pi(f_c-2000)t]$
 - 3 $50\cos[2\pi(f_c+1000)t]+100\cos[2\pi(f_c-1000)t]$
 - $4 50\cos[2\pi(f_c-1000)t]+100\cos[2\pi(f_c-2000)t]$
- 문 12. 동시에 32개의 PCM 부호화된 전화 음성 채널을 TDM(time division multiplexing)하여 전송할 때, 모든 채널의 음성을 끊어지지 않고 재생할 수 있는 최소 전송률[Mbps]은? (단, 각 아날로그 음성 신호는 4kHz로 대역 제한되고, 나이퀴스트 주파수로 샘플링 후 샘플당 8비트로 양자화 및 부호화된다)
 - ① 2.048
 - 2 1.544
 - ③ 1.024
 - ④ 0.772
- 문 13. 대역 제한 AWGN(additive white Gaussian noise) 무기억 채널에서 수신 S/N은 31이다. 샤논의 채널 용량(Shannon's channel capacity)이 40 kbps로 계산될 때, 필요한 최소 전송 채널 대역폭[kHz]은?
 - ① 64
 - 2 32
 - 3 16
 - **4** 8

- 문 14. 송신 심벌 X와 수신 심벌 Y의 평균 상호 정보량 I(X;Y)에 대한 설명으로 옳지 않은 것은? (단, H(X)와 H(Y)는 엔트로피, H(X,Y)는 결합 엔트로피, H(Y|X)는 조건부 엔트로피이다)
 - ① I(X; Y) = H(X) + H(Y) H(X, Y)
 - ② I(X;Y) = H(X) H(Y|X)
 - ③ $I(X;Y) \ge 0$
 - ④ 채널 용량은 평균 상호 정보량의 최댓값으로 정의된다.
- 문 15. 그림과 같이 단위 직교 함수 축 I와 Q상에 표현한 16-QAM 변조 방식의 성상도에서 첨두 대 평균 전력비(peak-to-average power ratio)는? (단, 신호점 $(I_1,Q_3)=(1,3)=(\sqrt{E_I},3\sqrt{E_Q})$ 를 의미하고, 단위 직교 함수의 에너지는 $E_I=E_Q=1$ 이다)

- ① 1.8
- 2 1.2
- ③ 0.9
- 4 9
- 문 16. $300\,\mathrm{Hz}$ 와 $10\,\mathrm{kHz}$ 인 정현파 신호를 각각 변조 지수 β_1 과 β_2 로 FM 변조하였을 때, 변조된 신호의 최대 주파수 편이는 $60\,\mathrm{kHz}$ 로 모두 같았다. 이때, $(\beta_1-\beta_2)$ 의 절댓값은?
 - ① 200
 - 2 198
 - 3 196
 - 4 194
- 문 17. 디지털 변복조 방식에 대한 설명으로 옳지 않은 것은?
 - ① 그레이(Gray) 부호를 적용하여 16-QAM 성상도의 각 심벌에 4비트로 구성된 서로 다른 비트열을 할당할 때, 인접한 두 심벌 비트열 간의 해밍 거리는 항상 1이다.
 - ② OQPSK 변조된 신호의 스펙트럼 주엽은 MSK 변조된 신호의 스펙트럼 주엽에 비해 좁다.
 - ③ 2진 신호 전송에서 송신 신호 간의 상관 계수(correlation coefficient) 값은 정합 필터를 이용한 수신기의 수신 오류율에 영향을 주지 않는다.
 - ④ 상승 코사인(raised cosine) 스펙트럼의 롤 오프 율(roll-off factor)이 커질수록 스펙트럼 주엽이 넓어진다.

문 18. 다음의 FM 변조된 신호 s(t)의 대역폭[Hz]은? (단, 카슨의 법칙 (Carson's rule)을 이용한다)

 $s(t) = 10\cos[4000\pi t + 3\sin(200\pi t) - 4\cos(200\pi t)]$

- ① 600
- 2 1,000
- ③ 1,200
- 4 2,200
- 문 19. 컨볼루션 부호(convolutional code)에 대한 설명으로 옳지 않은 것은?
 - ① 부호기의 출력은 이전에 입력된 정보 비트의 영향을 받는다.
 - ② 부호기의 출력은 입력 정보 비트와 잉여 비트로 구분된다.
 - ③ 부호기의 동작을 상태 천이도로 표현할 수 있다.
 - ④ 복호 방식으로 비터비(Viterbi) 알고리즘을 사용할 수 있다.
- 문 20. 이동통신에서 사용하는 다양한 다중 안테나 기술에 대한 설명으로 옳지 않은 것은?
 - ① 수신 안테나 다이버시티(diversity) 기법은 채널 페이딩으로 인한 수신 성능 저하를 완화할 수 있다.
 - ② 기지국에서 빔포밍(beamforming) 기법을 적용하면 특정한 단말기의 수신 신호 세기를 증가시킬 수 있다.
 - ③ 기지국에서 송신 안테나 다이버시티 기법을 적용할 때, 다이버시티 이득은 이웃 안테나 간의 거리에 따른 상호 상관도의 영향을 받는다.
 - ④ 기지국에서 4개의 송신 안테나, 단말기에서 1개의 수신 안테나를 사용하여 공간 다중화(spatial multiplexing) 기법을 적용하면, 다중 안테나 기술을 적용하지 않는 경우에 비해 최대 전송률 (peak data rate)을 4배까지 증가시킬 수 있다.