

Workshop 6

COMP20008

Elements of Data Processing Zijie Xu

Agenda

- Data linkage
 - Evaluating performance of matches
 - Blocking
- Theory questions

Data Linkage

- Task: Given two lists of entities/records A & B, we want to match those from A to their equivalent in B
- Problem: Same entity has different representation in different datasets
- Steps
 - Pre-process features
 - Obtain an index tuple (idA, idB) for comparison
 - Score each index tuple with similarity measures
 - Determine matches from the similarity scores

Evaluating performance

- Confusion matrix
- Some metrics:

• Accuracy
$$\frac{TP+TN}{P+N}$$

- Precision $\frac{TP}{TP+FP}$
- Recall $\frac{TP}{TP+FN}$
- Many other metrics available

Total = P+N		Predicted (\widehat{Y})	
		$\hat{Y} = +1$	$\hat{Y} = -1$
Actual (Y)	Y = P	TP	FN
	Y = N	FP	TN

Blocking

- Problem: Exhaustive comparison for matches is not be feasible for large datasets (m records in A, n records in B -> m*n comparisons)
- Task: Develop a strategy to group the records, only records from the same group are compared for matches
- While blocking improves computation efficiency, it may have performance tradeoff

Blocking

- Some performacne metrics for blocking:
 - Pair-completeness (PC)

• PC = Recall =
$$\frac{TP}{TP+FN}$$

Reduction Ratio (RR)

• RR =
$$1 - \frac{TP + FP}{P + N}$$

= $1 - \frac{\# \text{ pairs compared}}{\text{Total } \# \text{ pairs}}$

Total = P+N		Predicted (\widehat{Y})		
		$\hat{Y} = +1$	$\hat{Y} = -1$	
Actual (Y)	Y = P	TP	FN	
	Y = N	FP	TN	

- Suppose you are conducting data linkage between two databases, one with m records and the other with n records (assume $m \le n$). Under a basic (exhaustive) approach, $m \times n$ record comparisons will be needed.
- Assuming that there are no duplicates, what is the maximum number of record matches?
 - m

- Suppose you are conducting data linkage between two databases, one with m records and the other with n records (assume $m \le n$). Under a basic (exhaustive) approach, $m \times n$ record comparisons will be needed.
- Assuming that there are no duplicates, what is the corresponding number of non-matching comparisons required in this circumstance?
 - $n \times m m = m(n-1)$

- Now suppose a blocking method is employed, where each record is assigned to exactly one block. Assume this method results in b number of blocks.
- What is the smallest possible number of comparisons? What is the value of *b* in this scenario?
 - 2 blocks, each dataset maps to a different block
 - No comparison

- Now suppose a blocking method is employed, where each record is assigned to exactly one block. Assume this method results in b number of blocks.
- What is the largest possible number of comparisons? What is the value of *b* in this scenario?
 - 1 single block with all entries
 - $m \times n$ comparison

- Now suppose a blocking method is employed, where each record is assigned to exactly one block. Assume this method results in b number of blocks.
- What is the advantage of large b? What is the advantage of small b?
 - Trade-off between performance and efficiency
 - Large b -> faster comparison but maybe inaccurate
 - Small b -> more accurate result but slower

- In practice, a record is assigned to more than one block and records are not evenly allocated to blocks
- For example, alissa kilmartin is assigned to blocks with surname prefix==kilm and given name prefix==alis
- How would this affect your answer to previous question?
 - The dominant block size imposes bottleneck for efficiency

- In practice, a record is assigned to more than one block and records are not evenly allocated to blocks
- For example, alissa kilmartin is assigned to blocks with surname prefix==kilm and given name prefix==alis
- What is the advantage of records being assigned to multiple blocks?
 - To reduce the chance of matched pairs not allocated to a common block.

- We've seen how accuracy does not truly reflect the performance of a blocking algorithm. Instead, the confusion matrix can be used to evaluate the performance based on TP, TN, FP, FN.
- It is desirable to minimise both FP and FN, but it may be difficult for a blocking algorithm to minimise both simultaneously.
- Give an example application where minimising FP is more important than minimising FN.
 - Fraud detection
- Give an example application where minimising FN is more important than minimising FP.
 - Medical diagnosis

Thank you

More Resources: Canvas

