1. What is data mining? Discuss the significance of data ## 13. List some evaluation metrics used in Classification. - Simple structure, easy to understand mining? Evaluation metrics for classification: - Optimized for query performance *Data mining* is the process of discovering patterns, 1. *Accuracy*: (TP+TN)/(TP+TN+FP+FN) - May have redundant data in dimensions correlations, and anomalies within large datasets to predict 2. *Precision*: TP/(TP+FP) 2. *Snowflake Schema*: outcomes and extract useful information. It involves 3. *Recall/Sensitivity*: TP/(TP+FN) - Normalized version of star schema techniques from machine learning, statistics, and database 4. *F1-Score: 2(Precision*Recall)/(Precision+Recall) - Dimension tables are normalized into multiple related systems. *Significance of data mining*: ## 20. Define Data Warehouse. Explain its characteristics. - Reduces redundancy but more complex queries - Helps businesses make data-driven decisions *Data Warehouse*: A subject-oriented, integrated, time-3. *Galaxy Schema (Fact Constellation)*: - Enables prediction of future trends and behaviors variant, and non-volatile collection of data in support of - Multiple fact tables sharing dimension tables - Identifies hidden patterns in large datasets management's decision-making process. - Used for complex analysis across multiple business - Improves customer relationship management *Characteristics*: processes - Enhances fraud detection and risk management 1. *Subject-Oriented*: Organized around major subjects (e.g., - Most flexible but most complex - Supports scientific discovery and research customers, products) 4. *Data Vault Modeling*: - Hybrid approach combining 3NF and dimensional - Optimizes marketing campaigns and sales strategies 2. *Integrated*: Consistent naming, encoding, and formatting modeling across sources ## 2. Discuss the steps involved in KDD? 3. *Time-Variant*: Data is stored with a time dimension for - Consists of hubs, links, and satellites *Knowledge Discovery in Databases (KDD)* involves these historical analysis - Designed for flexibility and historical tracking 4. *Non-Volatile*: Data is read-only and not updated or 5. *Dimensional Modeling*: 1. *Data Cleaning*: Remove noise and inconsistent data deleted - Focuses on business processes (facts) and context 2. *Data Integration*: Combine data from multiple sources 5. *Summarized*: Contains aggregated data rather than (dimensions) 3. *Data Selection*: Retrieve relevant data from the database detailed transactions - Uses conformed dimensions for consistency 4. *Data Transformation*: Convert data into appropriate forms 6. *Large Volume*: Typically contains terabytes of historical - Optimized for analytical queries for mining 5. *Data Mining*: Apply intelligent methods to extract 7. *Optimized for Analysis*: Designed for complex queries ## 23. What is OLAP? Explain its characteristics. patterns rather than transactions *OLAP (Online Analytical Processing)*: A category of 6. *Pattern Evaluation*: Identify truly interesting patterns 8. *Diverse Sources*: Integrates data from multiple software tools that provides analysis of data stored in a 7. *Knowledge Presentation*: Present discovered knowledge operational systems database, enabling complex analytical calculations, trend 9. *Decision Support*: Supports business intelligence and analysis, and sophisticated data modeling. to users analytics *Characteristics*: ## 3. Discuss various types of data used in Data Mining? 1. *Multidimensional View*: Data is organized in cubes with ## 21. Describe ETL process in detail. Types of data used in data mining: multiple dimensions 1. *Structured Data*: Organized in tables (e.g., relational *ETL (Extract, Transform, Load)* Process: 2. *Fast Query Performance*: Optimized for complex databases) 1. *Extract*: analytical queries 2. *Unstructured Data*: No predefined format (e.g., text, - Gather data from various source systems (databases, files, 3. *Interactive Analysis*: Users can drill down, roll up, slice APIs) and dice data 3. *Semi-structured Data*: Neither raw nor strictly structured - Handle different data formats (structured, semi-structured, 4. *Aggregated Data*: Works with summarized rather than (e.g., XML, JSON) unstructured) detailed data - May involve full extraction or incremental extraction 4. *Time-series Data*: Data points indexed in time order 5. *Historical Perspective*: Focuses on trends over time 5. *Spatial Data*: Related to geographic locations - Resolve connectivity and access issues 6. *Calculated Metrics*: Supports complex calculations and 6. *Multimedia Data*: Images, audio, video 2. *Transform*: **KPIs** 7. *Stream Data*: Continuous, real-time data flows - *Cleaning*: Handle missing values, correct errors, 7. *What-if Analysis*: Enables scenario modeling and 8. *Graph Data*: Network or web data standardize formats forecasting *Integration*: Resolve naming unify 8. *Consistent Reporting*: Provides single version of truth conflicts. measurement units ## 5. Discuss some of the issues related with Data mining? - *Aggregation*: Summarize data at desired levels ## 24. What is Data Cube? Explain the types of OLAP. Issues in data mining: 1. *Privacy Concerns*: Potential misuse of personal - *Derivation*: Calculate new fields or metrics *Data Cube*: A multidimensional structure that allows data to information - *Filtering*: Select relevant data be modeled and viewed in multiple dimensions (e.g., product, 2. *Data Quality*: Noisy, incomplete, or inconsistent data - *Sorting*: Order data appropriately geography, time). - *Validation*: Ensure data quality and consistency 3. *Scalability*: Handling large datasets efficiently *Types of OLAP*: 4. *Dimensionality*: High-dimensional data challenges 3. *Load*: 1. *MOLAP (Multidimensional OLAP)*: 5. *Overfitting*: Models that fit training data too closely - *Initial Load*: First-time population of data warehouse - Stores data in optimized multidimensional arrays 6. *Interpretability*: Understanding complex patterns *Incremental Load*: Periodic updates with new/changed - Fast query performance - Limited in handling large volumes of data 7. *Security*: Protecting sensitive mined information 8. *Integration*: Combining heterogeneous data sources - *Full Refresh*: Complete reload of data 2. *ROLAP (Relational OLAP)*: 9. *Ethical Issues*: Potential biases in data and algorithms - Index creation for performance - Uses relational database with star/snowflake schema - Constraints and integrity checks - Handles large data volumes ## 10. Why is managing inconsistencies important in data Additional ETL components: - Slower than MOLAP for complex queries - Scheduling and automation 3. *HOLAP (Hybrid OLAP)*: mining? - Error handling and logging - Combines MOLAP and ROLAP approaches Managing inconsistencies is important because: - Stores aggregations in MOLAP, detailed data in ROLAP 1. *Accuracy*: Ensures reliable results and predictions - Metadata management - Balances performance and scalability 2. *Decision Making*: Prevents incorrect business decisions - Data quality monitoring 3. *Model Performance*: Improves quality of mining models - Performance optimization 4. *DOLAP (Desktop OLAP)*: 4. *Data Integration*: Necessary when combining multiple - Client-side OLAP tools ## 22. What is data warehouse design? Discuss some - Works with extracted subsets of data

architecture, components, and structure of a data warehouse to

- Central fact table surrounded by dimension tables

- Good for personal analysis

5. *Efficiency*: Reduces processing time and resources

analyses

quality

insights

modeling types.

Modeling Types:

6. *Reproducibility*: Enables consistent results across *Data Warehouse Design*: The process of defining the

7. *Compliance*: Meets regulatory requirements for data meet business requirements.

8. *Customer Trust*: Maintains confidence in data-driven 1. *Star Schema*: