Smallest Enclosing Circle

CS648A
Course Project
Under Prof. **Surender Baswana**

Ritesh Kumar and Paramansh Singh

Motivation

- Facility Location
- Gaming
- Strategy making

Example

Given a set of houses in an isolated village. Can we build a hospital so that an ambulance from the hospital can reach each house within 15 minutes?

Inspiration

- Point p_i lying outside the circle will be a **Defining Point** for the next circle.
- Number of such points will be very **small**.

Definition

• **Defining Point**: It is one of 2 or 3 points lying on the circle which is used to define the circle.

₽

Intuition

Randomized Incremental Construction

Incremental Construction

Add points one by one and maintain the solution so far

Randomization

Use random permutation/order to add points

Overview of Algorithm

Experimental Results

Some outputs obtained from running the algorithm

Statistics 1 NUMBER OF EXPANSIONS

Number of Points	Number of Expansions		
10	3		
100	8		
1000	9		
10000	15		
100000	20		
1000000	24		

Number of Expansions vs. Number of Points

Statistics 2 RUNNING TIME

Number of times run time exceeds average by	100	1000	10000	100000	1000000
10%	11	8	29	34	33
20%	10	7	27	26	30
50%	5	4	5	13	16
100%	5	4	2	4	1

100 and 1000

Number of times Run Time exceeds average by

Special Thanks

Prof. Surender Baswana

This work would not have been possible without the advice and support of our beloved Professor.

Thank you