Course Diagram

3D Transformations

Dead Reckoning

Basic Probability

Bayesian Inference

Extended Kalman/Information Filter

Projective camera geometry

Multi View Geometry

Feature Matching

Bundle Adjustment

VAN, SLAM

Graphical models

Incremental Smoothing and Mapping (iSAM)

Advanced topics (subject to progress in class)

Multi-Robot SLAM & VAN

Belief Space Planning

Objectives of this Lecture

- Learn 3D transformations between different coordinate frames
- Learn different orientation parameterizations
- Use homogenous coordinates and 6 DOF pose/frame

Outline

- 6 DOF Pose
- 3D Transformations
- Orientation Parameterizations
- Navigation State

6 DOF Frame, Pose

- 6 degree of freedom (DOF) frame, pose:
 - Defines a coordinate frame relative to another coordinate reference frame
 - 3D rigid transformation
 - rotation *R*
 - translation t

 Also known as Euclidean transformation (special Euclidean group SE(3))

3D Rigid Transformations

Euclidean transformation

$$v^b = Rv^a + t$$

In detail:

$$v^b = R_a^b v^a + t_{b \to a}^b$$

 R_a^b : rotation from a to b

 $t^b_{b
ightarrow a}$: translation from b to a, expressed in system b (origin of system a relative to system b)

3D Rigid Transformations

Euclidean transformation

$$v^b = Rv^a + t$$

In matrix notation:

$$\begin{pmatrix} v^b \\ 1 \end{pmatrix} = \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} \begin{pmatrix} v^a \\ 1 \end{pmatrix}$$
4x4 matrix

3D Rigid Transformations

- 3D point/vector: $\mathbf{v} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ Augmented coordinates: $\bar{\mathbf{v}} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

$$\left(\begin{array}{c} v^b \\ 1 \end{array}\right) = \left[\begin{array}{cc} R & t \\ 0^T & 1 \end{array}\right] \left(\begin{array}{c} v^a \\ 1 \end{array}\right)$$

$$\bar{v}^b = \left[\begin{array}{cc} R & t \\ 0^T & 1 \end{array} \right] \bar{v}^a$$

3D Rigid (Euclidean) Transformation

- 6 degrees of freedom transformation:
 - translation t (3 DOFs)
 - rotation R (3 DOFs)

$$T = \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Different parameterizations of 3D rotation exist (next slides)

Rotations

Euler's Theorem:

Any two independent orthonormal coordinate frames can be related by a sequence of rotations (not more than three) about coordinate axes, where no two successive rotations may be about the same axis.

Leonard Euler (1707-1783)

Orientation Parameterizations

- Rotation matrix
- Euler angles
- Euler vector
- Quaternion

Rotation Matrix

Orthonormal 3x3 matrix

$$R = \left[\begin{array}{ccc} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{array} \right] \in SO(3)$$

- Columns correspond to coordinate axes
- Disadvantage: over-parameterization (9 parameters for 3 DOFs)
- R_a^b : rotation <u>from</u> system a <u>to</u> system b

$$v^b = R_a^b v^a$$

- Composition: $R_a^c = R_b^c R_a^b$
- Inverse: $R^{-1} \equiv R^T$

Euler Angles

- Orientation is represented by 3 numbers
- Euler Angle Sequence: A sequence of rotations around principle axes
- There are 12 different sequences (without successive rotations about the same axis)
- Order does matter!

XYZ	XZY	XYX	XZX
YXZ	YZX	YXY	YZY
ZXY	ZYX	ZXZ	ZYZ

Euler Angles

- Orientation is represented by 3 numbers
- Euler Angle Sequence: A sequence of rotations around principle axes
- There are 12 different sequences (without successive rotations about the same axis)
- Order does matter!

From Euler Angles to Rotation Matrix

Rotation matrices about principal axes:

$$R_x(\phi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi) & -\sin(\phi) \\ 0 & \sin(\phi) & \cos(\phi) \end{bmatrix}$$

$$R_{y}(\theta) = \begin{bmatrix} \cos(\theta) & 0 & \sin(\theta) \\ 0 & 1 & 0 \\ -\sin(\theta) & 0 & \cos(\theta) \end{bmatrix}$$

$$R_{z}(\psi) = \begin{bmatrix} \cos(\psi) & -\sin(\psi) & 0\\ \sin(\psi) & \cos(\psi) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

 To represent orientation as a matrix, multiply a sequence of rotation matrices

From Euler Angles to Rotation Matrix

- No standard convention
- Common conventions
 - roll-pitch-yaw (rpy)
 - yaw-pitch-roll (ypr)

$$R_{z}\left(\psi\right)R_{y}\left(\theta\right)R_{x}\left(\phi\right)$$

$$R_x\left(\phi\right)R_y\left(\theta\right)R_z\left(\psi\right)$$

Euler Vector

• Euler's rotation theorem: any 3D rotation can be described by a single rotation about some axis \hat{n}

- $\hat{\mathbf{n}}$: axis of rotation, known as Euler axis
- θ : rotation angle

Conversion to rotation matrix via Rodriguez' formula:

$$R(\hat{\mathbf{n}}, \theta) = I + \sin \theta [\hat{\mathbf{n}}]_{\times} + (1 - \cos \theta) [\hat{\mathbf{n}}]_{\times}^{2}$$

Conversion from rotation matrix to Euler vector:

$$\theta = \cos^{-1} \left[\frac{1}{2} \left(\operatorname{trace} (R) - 1 \right) \right] \qquad \hat{\mathbf{n}} = \frac{1}{2 \sin \theta} \begin{pmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{pmatrix}$$

Quaternions

- Invented by W.R. Hamilton in 1843
- A quaternion has 4 components

$$\mathbf{q} = \left[\begin{array}{cccc} q_0 & q_1 & q_2 & q_3 \end{array} \right]$$

- Quaternions are an extension to complex numbers
- Of the four components, one is a "real" scalar number, and the other three form a vector in an imaginary ijk space:

$$\mathbf{q} = q_0 + iq_1 + jq_2 + kq_3$$

with

$$i^{2} = j^{2} = k^{2} = ijk = -1$$

$$i = jk = -kj$$

$$j = ki = -ik$$

$$k = ij = -ji$$

Unit Quaternions as Rotations

Unit quaternion:

$$\mathbf{q} = [q_0 \quad q_1 \quad q_2 \quad q_3]$$

$$\|\mathbf{q}\| = \sqrt{q_0^2 + q_1^2 + q_2^2 + q_3^2} = 1$$

• A unit quaternion can represent a rotation by an angle θ around a unit axis a:

$$\mathbf{q} = \begin{bmatrix} \cos\frac{\theta}{2} & a_x \sin\frac{\theta}{2} & a_y \sin\frac{\theta}{2} & a_z \sin\frac{\theta}{2} \end{bmatrix}$$

Can be transformed to a rotation matrix and vice versa

Back to 6 DOF Pose

- 6 DOF pose represents a 3D rigid transformation
 - Translation
 - Rotation

$$T = \begin{bmatrix} R & t \\ 0^T & 1 \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

We will occasionally use the pose notation:

$$x = \{R, t\}$$

- Next:
 - Pose composition

Pose/Transformation Composition

Intuition

- Pose describes a transformation relative to some reference frame
- Consider two poses: x_1 and x_2
- Composition (notation $x_1 \oplus x_2$):
 - Calculate transformation by first following x_1 and then x_2 (Consider x_2 being expressed relative to x_1)

Pose/Transformation Composition

$$x_1 = \{R_1, t_1\}$$
$$x_2 = \{R_2, t_2\}$$

$$x \doteq x_1 \oplus x_2 = \{R_1 R_2, R_1 t_2 + t_1\}$$

Pose/Transformation Composition

More formally:

$$x_1 = \{R_1, t_1\}$$

$$x_2 = \{R_2, t_2\}$$

$$x \doteq x_1 \oplus x_2 = \{R_1 R_2, R_1 t_2 + t_1\}$$

Explicitly:

$${}_{1}^{G}T \doteq \left[\begin{array}{cc} R_{1}^{G} & t_{G \to 1}^{G} \\ 0^{T} & 1 \end{array} \right]$$

$${}_{2}^{1}T \doteq \left[\begin{array}{cc} R_{2}^{1} & t_{1\rightarrow2}^{1} \\ 0^{T} & 1 \end{array} \right]$$

Diagrams adapted from Blanco14tr

Example

- Relative transformation (between two adjacent frames)
 - rotation around z axis by 30 deg
 - translation along x axis by 1 m

$$i - \frac{1}{i}T \doteq \begin{bmatrix} 0.866 & 0.5 & 0 & 1 \\ -0.5 & 0.866 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Platform/Camera Pose

- A minimal representation of a pose (of the robot, camera etc.)
 is described by 6 parameters:
 - 3D Cartesian coordinates $\mathbf{t} = (x \ y \ z)^T$
 - Three Euler angles ϕ, θ, ψ
- The corresponding state is: $\mathbf{x} = \begin{pmatrix} x & y & z & \phi & \theta & \psi \end{pmatrix}^T \in \mathbb{R}^6$
- A 3D Euclidian transformation representation can be trivially obtained (how?)

$$\left[\begin{array}{cc} R & \mathbf{t} \\ 0^T & 1 \end{array}\right]$$

Navigation State

- In the navigation context, the state typically includes additional parameters:
 - Velocity (in particular, required when using inertial sensors)
 - Calibration parameters of different sensors (e.g. IMU, camera)
- For example typical state with basic IMU calibration parameters:

$$\mathbf{x} = \begin{pmatrix} x & y & z & \phi & \theta & \psi & v_x & v_y & v_z & b_x^a & b_y^a & b_z^a & b_x^g & b_y^g & b_z^g \end{pmatrix}^T \in \mathbb{R}^{15}$$
6 DOF pose (position & orientation) velocity accelerometer bias gyroscope bias

Additional Types of 3D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} I & t\end{array} ight]_{3 imes 4}$	3	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} R & t \end{array} ight]_{3 imes 4}$	6	lengths	\Diamond
similarity	$\left[\begin{array}{c c} s R \mid t\end{array}\right]_{3 imes 4}$	7	angles	\Diamond
affine	$\left[\begin{array}{c} A \end{array} ight]_{3 imes4}$	12	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{4 imes 4}$	15	straight lines	

Projective Transformation (a Glimpse)

- Preserves lines
- ... More details in ~2 weeks

Recap - Lessons Learned

- 6 DOF Pose
- 3D Transformations
 - Euclidean (rotation and translation)
 - More general (e.g. projective transformation)
- Pose composition
- Navigation state

• Next: How to calculate where we are? Most basic - dead reckoning