Algorithm Analysis

Jonathan Windle

University of East Anglia

J.Windle@uea.ac.uk

May 20, 2017

Overview I

- Algorithm Design
 - Intro
 - Developing Algorithms
 - Algorithm Differences
 - Recursion
 - Tail Recursion
- Algorithm Analysis
 - Run-time analysis
 - Characterising t(n)
 - Useful Summations
 - Notations
 - Analysis Example

Intro

- An algorithm is a step by step process for solving a problem. It consits of a finite sequence of instructions that when carried out, always terminates.
- Algorithms manipulate data structures.
- They are developed through a process of refinement, from an informal description to a formal description.
- Formal description is written in pseudocode.

Developing Algorithms

Steps to designing algorithm

- Express in general terms how the algorithm works.
- Give more detailed, but still informal description of the algorithm, identifying subproblems.
- May be necessary to treat subproblems in the same way, known as step-wise refinement.
- Give detailed, unambiguous description in pseudo-code.

Algorithm Differences

- Differences between algorithms can impact dramatically the speed of execution.
 - This is measured by run-time efficiency
- Differences can also mean they have different memory requirements
 - They are said to have different space efficiency
- There is often a trade-off between the two.

Recursion

- A recursive definition is something that is defined in terms of itself.
 (A method calling itself).
- Example is definition of factorial n:

$$1! = 1$$

 $n! = n \times (n-1)!$, for $n > 1$ (1)

- Rules for a recursive algorithm:
 - Must have at least one base case and one recursive case.
 - The recursive case should ensure that the base case is eventually reached.

6 / 14

Tail Recursion

- An algorithm is tail recursive if there is nothing to do after the return (except return its value).
- For example, this return is NOT tail recursive because it has to be multiplied by n before return: return n x factorial(n-1);
- This, however IS tail recursive: return gcd(y,x%y);
- Tail recursive algorithms can easily be turne into iterative algorithms.
- Iterative is usually more efficient to use.

Run-time analysis

- Strategy:
 - Decide on fundamental operation.
 - 2 Decide on the case.
 - Ocunt the number of occurances given case (Usually the worst-case).
 - **9** Form the run-time complexity function t(n) where n is the problem size.
 - Characterise the order.

Characterising t(n)

In order of best to worst:

Constant	t(n) = c
Logarithmic	t(n) = logn
Linear	t(n) = n
Log Linear	t(n) = nlogn
Quadratic	$t(n)=n^2$
Polynomial Degree p	$t(n)=n^p$
Exponential	$t(n)=2^n$

Useful Summations

$$\bullet \sum_{i=1}^{n} (c) = c \times n$$

$$\bullet \sum_{i=1}^{n} (i) = \frac{1}{2}n(n+1)$$

•
$$\sum_{i=1}^{n} (f(i) + g(i)) = \sum_{i=1}^{n} (f(i)) + \sum_{i=1}^{n} (g(i))$$

Notations

- O(f(n)) : BigO
 - For all n sufficiently large, t(n) grows at no greater rate than f(n).
 - This gives the upper-bound for the rate of growth.
 - $\Omega(f(n))$: Omegan
 - This denotes the lower-bound for the rate of growth.
 - When an algorithm is both $\Omega(f(n))$ and O(f(n)) then it is said to be $\Theta(f(n))$.

Analysis Example - Algorithm

A matrix is Upper-triangular if all the elements below the diagonal are
 0.

Algorithm 1 Output true if M is upper-triangular, false otherwise

Require: N/A

```
1: function ISUPPERTRIANGULAR(M, n)
        for i \leftarrow 2ton do
 2:
            for i \leftarrow 1toi - 1 do
 3:
               if M[i,j] \neq 0 then
 4:
                    return false
 5:
               end if
 6:
            end for
 7:
       end for
 8:
 g.
        return true
10: end function
```

Analysis Example - Analysis

- Determine fundamental operation:
 - Comparisoon: $M[i, j] \neq 0$
- Decide on the case (Worst/Best)
 - worst-case, the worst case is that the matrix is upper-triangular.
- 3 Determine run-time complexity function t(n) by counting fundamental operations

$$t(n) = \sum_{i=2}^{n} \sum_{j=1}^{i-1} (1)$$

$$= \sum_{i=2}^{n} (i-1)$$

$$= \sum_{i=2}^{n} (i) - \sum_{i=2}^{n} (1)$$

$$= \sum_{i=1}^{n-1} (i+1) - (n-1)$$

$$= \sum_{i=1}^{n-1} (i) + \sum_{i=1}^{n-1} (1) - (n-1)$$

$$= \frac{1}{2} n(n-1) + (n-1) - (n-1)$$

$$= \frac{1}{2} n(n-1)$$

(2)

Give the order:

The worst case time complexity of this is both $O(n^2)$ and $\Omega(n^2)$ and is therefore $\Theta(n^2)$

Jonathan Windle (UEA)

Algorithm Analysis

May 20, 2017 13 / 14

The End