Susceptible-Infected Epidemic in Graphs

Louis Faury
Gallois - Montbrun Grégoire
MICRO506 - Stochastic Methods
April 18, 2017

- 1 Theoretical Approach
 - Population Model
 - Propagation Model
 - Time before complete infection
- 2 Applications
 - Epidemic Propagation
 - Sensor Networks
- 3 Model refinement
 - SIS approach
 - Arbitrary graph topology
 - SIR approach

Theoretical Approach

- 1 Theoretical Approach
 - Population Model
 - Propagation Model
 - Time before complete infection
- 2 Applications
- 3 Model refinement

- Hold the following assumptions for true :
 - ► Each individual in the population is either *susceptible* or *infected*
 - Once infected, an individual can't recover and tries to infect other individuals
 - An individual can affect any other individual in the population (uniform topology)

■ Graph population representation :

$$G = (V, E) \tag{1}$$

with $|V| = n \in \mathbb{N}^*$ Uniform topology \Rightarrow complete graph.

■ Propagation :

- ▶ Each infected node tries to infect one of its neighbor at the times of a Poisson process of intensity $\lambda > 0$.
- ▶ The node's Poisson processes are independent.
- ► An infected node picks one of its neighbor uniformly at random when trying to infect.

- Let X_t the number of infected node at time t > 0.
 - $\to \{X_t\}$ is a Markov Jump Process on \mathbb{R}^+ .

- \blacksquare Markov Jump Process on E:
 - ▶ If, $\forall x, y \in E$:

$$p_{xy}(t) = \mathbb{P}(X_{t+s} = y \mid X_s = x) \tag{2}$$

then

$$\lim_{t \to 0} p_{xx}(t) = 1 \tag{3}$$

- ► The process remains at each stage for a strictly positive time with probability 1.
- ▶ We define the jump process's **infinitesimal generator** as, $\forall x \neq y \in E$

$$q_{xy} = \lim_{h \to 0} \frac{p_{xy}(h)}{h} \tag{4}$$

- It defines the process transitions rates
- Ex : queuing systems !

■ Back to our propagation model :

Since :

$$p_{x,x-i}(t) = 0 \quad \forall i > 0$$

$$p_{x,x+1}(h) \propto h$$

$$p_{x,x+1+i}(h) \propto h^{i} \quad \forall i > 0$$
(5)

- ▶ Only non-zero transition rate is $q_{x,x+1}$
- ▶ If $X_t = x > 0$, the next time before an infection intent is a random variable defined as :

$$au_{\mathsf{x}} = \min_{i=1,\dots,\mathsf{x}} \varepsilon_i \quad \text{where } \varepsilon_i \sim \mathsf{Exp}(\lambda) \text{ (iid)}$$

Therefore

$$\tau_{\mathsf{x}} \sim \mathsf{Exp}(\lambda \mathsf{x})$$
 (7)

- Back to our propagation model :
 - ► The transition succeeds if the node picks a suspectible neighbor, which happens with probability $\frac{n-x}{n-1}$ (uniform)
 - ► Therefore :

$$q_{x,x+1} = \lambda x \frac{n-x}{n-1} \tag{8}$$

Let $X_0 = 1$. The time before m individuals are infected is defined as :

$$T_m = \sum_{x=1}^{m-1} \frac{n-1}{\lambda x (n-x)} \varepsilon_i \tag{9}$$

where

$$\varepsilon_i \stackrel{i.i.d}{\sim} Exp(1)$$
 (10)

■ Time before complete infection : T_n which first moment is given by :

$$\mathbb{E}\left[T_{n}\right] = \sum_{x=1}^{n} \frac{n-1}{\lambda x (n-x)} \tag{11}$$

■ Large population limit :

$$\mathbb{E}\left[T_n\right] = \frac{2}{\lambda} (2\log(n) + 2\gamma + o(1)) \tag{12}$$

scales with log(n)!

■ Fluctuation : if $S_n = \lambda(T_n - \mathbb{E}[T_n])$:

$$\mathbb{P}(S_n \ge t) \le e^{-\theta t} C_{\theta}, \quad \forall \theta \in [0, \frac{1}{2}]$$
 (13)

 \rightarrow exponential control around the mean value!

TODO: simulation explanation & results

Applications

- Theoretical Approach
- 2 Applications
 - Epidemic Propagation
 - Sensor Networks
- 3 Model refinement

- Epidemic Propagation :
 - Modelisation of simple epidemics in population
 - ► Simplistic model :
 - Nodes can't recover from being infected
 - ► A complete graph is not realistic
 - ▶ What happens if we introduce recovering / dying nodes ?
 - How does the topology of the graph impacts the last results?

- Sensor Network Modelisation (All to All propagation) :
 - ► Modelling a network of sensors / agents
 - Each agent tries to pass a bit of information to all others
 - ► Control over the time before every information has been propagated to every agent
 - Previous results still holds : scales as log n

Model refinement

- Theoretical Approach
- 2 Applications
- 3 Model refinement
 - SIS approach
 - Arbitrary graph topology
 - SIR approach

Model refinement

SIR approach