Control of a Robotic Leg for Walking, Running and Hopping in Irregular Surfaces

Author: Nuno Teixeira nº 75494 Supervisor: Rui Dilão

> Projecto MEFT Instituto Superior Técnico

January 21, 2019

Running and hopping model

Equations

Ground phase

$$\ddot{x} = x\omega^2 \left(\frac{I}{\sqrt{x^2 + y^2}} - 1 \right),\tag{1}$$

$$\ddot{y} = y\omega^2 \left(\frac{I}{\sqrt{x^2 + v^2}} - 1\right) - g,\tag{2}$$

Aerial phase

$$\ddot{x} = 0, \tag{3}$$

$$\ddot{y} = -g. \tag{4}$$

with $\omega = \sqrt{k/m}$, the natural frequency of the spring and I rest length of the spring.

Walking model

Definitions:

- stride Leg crosses the vertical leg orientation
- <u>step</u> -The moment when the system passes from single support to double support.

Equations

Single support

$$\ddot{x} = \frac{F_1}{m} \frac{x - x_{t1}}{l_1} \tag{5}$$

$$\ddot{y} = \frac{F_1}{m} \frac{y - y_{t1}}{l_1} - g \tag{6}$$

(7)

Double support

$$\ddot{x} = \frac{F_1}{m} \frac{x - x_{t1}}{l_1} + \frac{F_2}{m} \frac{x - x_{t2}}{l_2}$$

$$\ddot{y} = \frac{F_1}{m} \frac{y - y_{t1}}{l_1} + \frac{F_2}{m} \frac{y - y_{t2}}{l_2} - g \tag{8}$$

with F_i being the force applied on the mass by the respective leg,

$$F_i = k(I_0 - I_i) \ge 0 \quad i = 1, 2,$$
 (9)

 I_0 is the natural length of the spring, I_i is the respective length,

$$I_i = \sqrt{(x - x_{ti})^2 + (y - y_{ti})^2} \quad i = 1, 2.$$
 (10)

Since the system is energetically conservative we can change the initial velocity by inverting

$$E = \frac{k(l_0 - y_0)^2}{2} + mgy_0 + m\frac{v_0^2}{2}.$$
 (11)

Parameters

A scan is made with 3 parameters, *Energy*, y_0 , α in two strides

- $Energy \in [800, 840]$ with 40 subdivisions.
- $\alpha \in [\pi/2 \pi/5, \pi/2]$ with 30 subdivisions.
- $y_0 \in [l_0 \sin(\alpha), l_0]$ with 25 subdivisions

In all simulations the following parameters remained fixed.

- $\beta = 0$
- m = 80 Kg
- $l_0 = 1m$
- k = 14000 N/m

Total number of configurations= $40 \times 30 \times 25 = 30000$

Survival step configurations

Out of the 30000 configurations in the parameter space, only 8195 were able to complete 2 strides. Of this subset of points, 11 fixed points were found, 5 stable and 6 unstable.

From here a survival test is applied to each of the 8195 configurations that completed 2 strides by incrementing steps instead of strides.

If the simulation fails, the maximum number of steps was assigned to that configuration.

Fixed points and 10 step configurations

Iterating the number of steps where $\Delta t = 0.00075$ so that in maximum it was possible to achieve 10 steps, the configurations that achieve 10 steps can be ilustrated in the figure below along with the fixed points.

Touch down control policy

Defining this time $\psi_n = (y_n, \beta_n)$, and an equilibrium state (ψ^*, θ) with $\psi^* = (y^*, beta^*)$ the desired poincare section, if we find the combination,

$$A(\psi_n, \theta_n) = \psi_{n+1}, \tag{12}$$

$$A(\psi_{n+1}, \theta_{n+1}) = \psi^*. \tag{13}$$

The angle of attack is given by,

$$\theta_n = A^{-1}\Big|_{\psi_n} (\psi_{n+1}) \tag{14}$$

Credit of the image given to: Hamid Reza Vejdani et al. "Touch-down angle control for spring-mass walking", International Conference on Robotics and Automation (ICRA), IEEE (2015), 5101–5106.

Running and hopping model - One knee

Running and hopping model - One knee

Running and hopping model - One knee

No knee models One knee model Summary

	Fev	Mar	April	May	June	July	August	Sept
Refining the stability analysis								
of the two legs walking model								
Development and analysis of the one leg								
two-springs model (walking and running)								
Development and analysis of the two leg								
two-springs model (walking and running)								
Thesis writting								