Technical University Braunschweig Institute for Partial Differential Equations

Prof. Dr. D. Langemann, J. Marquardt

Formulas for the exams in Numerical Methods for ordinary and partial differential equations Computational Sciences in Engineering

Numerical Basics —————

Lagrange basis polynomials

$$\operatorname{grad} L_n^N = N, \quad L_n^N(x_i) = \delta_{in}$$

B-Spline recurssion grad $B_{i,k} = k - 1$,

$$B_{i,k}(x) = \frac{x - x_i}{x_{i+k} - x_i} B_{i,k-1}(x) + \frac{x_{i+k+1} - x}{x_{i+k+1} - x_{i+1}} B_{i+1,k-1}(x)$$

Newton polynomial

$$w(x) = \prod_{i=0}^{N} (x - x_i), \quad \operatorname{grad} N + 1$$

Interpolation error

$$r(x) = -\frac{w(x)}{(N+1)!} f^{(N+1)}(\xi(x))$$

Quadrature formula

$$I(f) \approx I(p) = \sum_{n=0}^{N} f(x_n) \int_{a}^{b} L_n^N(x) dx$$

Newton Cotes formulas

$$a = x_0, b = x_N, x_{i+1} - x_i = h$$

$$\label{eq:midpoint} \begin{split} \text{midpoint } N = 0, \text{ trapezoid } N = 1, \\ \text{Kepler } N = 2 \end{split}$$

Gaussian quadrature

$$I(f) = I(p), \forall p : \operatorname{grad} p < 2N + 2$$

Quadrature error

$$|I(f) - I(p)| \le \int_a^b |r(x)| dx$$

Kepler
$$|R(f)| \le \frac{(b-a)^5}{2880} M_4$$

Trapezoid
$$|R(f)| \le \frac{(b-a)^3}{12} M_2$$

Romberg's extrapolation

$$Q_{new} = \frac{2^q Q_{2J}^{old} - Q_J^{old}}{2^q - 1}$$

Difference quotient

$$\frac{f(x+h) - f(x)}{h} \approx f'(x)$$

$$\frac{f(x+h) - 2f(x) + f(x-h)}{h^2} \approx f''(x)$$

Banach fixed-point $\vartheta < 1$

$$||x_k - x^*|| \le \frac{\vartheta^k}{1 - \vartheta} ||x_1 - x_0||$$

$$||x_k - x^*|| \le \frac{\vartheta}{1 - \vartheta} ||x_k - x_{k-1}||$$

Newton-Method etc.

$$x_{k+1} = x_k - \lambda D^{-1} f(x_k)$$

e.g.
$$\lambda = 1$$
, $D = \nabla f(x_k)$

Euler-Heun method

$$y_{i+1} = y_i + \frac{h_i}{2} \left[f(t_i, y_i) + f(t_{i+1}, y_i + h_i f(t_i, y_i)) \right]$$

Improved Euler method

$$y_{i+1} = y_i + h_i f\left(t_i + \frac{h_i}{2}, y_i + \frac{h_i}{2} f(t_i, y_i)\right)$$

Crank-Nicolson method

$$y_{i+1} = y_i + \frac{h_i}{2} [f(t_i, y_i) + f(t_{i+1}, y_{i+1})]$$

classical Runge-Kutta

in general with increment function

$$y_{i+1} = y_i + h_i \Phi(t_i, y_i, h_i)$$

Truncation error

$$\tau = \frac{y(t+h) - y(t)}{h} - \Phi(t, y(t), h)$$

Consistency order q $\tau = \mathcal{O}(h^q)$ for $h \to 0$

Runge-Kutta, s-stages

$$\begin{array}{c|ccccc} c_1 & a_{11} & \cdots & a_{1s} \\ \vdots & \vdots & \ddots & \vdots \\ \hline c_s & a_{s1} & \cdots & a_{ss} \\ \hline & b_1 & \cdots & b_s \end{array}$$

Model problem

$$y' = -ay$$
, $\operatorname{Re} a \ge 0$

Stability region

$$S = \{ \mu \in \mathbb{C} : |p(\mu)| \le 1 \}$$

A-stability

$$\{z: \operatorname{Re} z \leq 0\} \subset S$$

Stiff differential equations: step size for explicit methods "unnecessarily" small

Adams-Bashforth method

$$m = 2$$
:

$$y_{i+1} = y_i + h \left[\frac{3}{2} f(t_i, y_i) - \frac{1}{2} f(t_{i-1}, y_{i-1}) \right]$$

m = 3:

$$y_{i+1} = y_i + h \left[\frac{23}{12} f(t_i, y_i) - \frac{16}{12} f(t_{i-1}, y_{i-1}) + \frac{5}{12} f(t_{i-2}, y_{i-2}) \right]$$

Adams-Moulton method

m = 2:

$$y_{i+1} = y_i + h \left[\frac{5}{12} f(t_{i+1}, y_{i+1}) + \frac{8}{12} f(t_i, y_i) - \frac{1}{12} f(t_{i-1}, y_{i-1}) \right]$$

BDF

$$m = 2$$
: $\frac{3}{2}y_{i+1} - 2y_i + \frac{1}{2}y_{i-1} = hf(t_{i+1}, y_{i+1})$

Partial differential equations

Dirichlet BC

$$u = g$$
 on $\partial \Omega$

Neumann boundary condition

$$\mathbf{I} \cdot \mathbf{n} = p$$
 on $\partial \Omega$

Method of lines $u(t, x_i) \approx u_j(t)$

$$\operatorname{spec} \begin{pmatrix} -2 & 1 \\ 1 & \ddots & \ddots & 1 \\ & \ddots & 1 & -2 \end{pmatrix}$$
$$= \left\{ -2 + 2\cos\frac{k\pi}{n}, \ k = 1, \dots, n-1 \right\}$$

CFL-condition

$$u_{,t} = au_{,xx}$$
 $a\Delta t < \frac{1}{2}\Delta x^2$

Discretization of Δu in \mathbb{R}^2

