

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Fig. 1

Figure 2

Figure 3**a: nucleotide insertions**

C95, C367, T891, G900, T903, G913, T1006, G1074, G1487, A1488, A1489, G2108, G2555, T2560

b: nucleotide deletions

T between G111 and T112, T between T2128 and G2129, T between G2975 and T2976

c: nucleotide exchanges

C1525>G, G2125>A

Figure 4**A**PCR
determination
of hsGC α 1**B**PCR
determination
of hsGC β 1

Figure 5**pVL1393 Baculovirus Transfer Vector**

multiple cloning site (MCS) of pVL1393 with the unique restriction sites

Figure 6**pAcG2T Baculovirus Transfer Vector**

multiple cloning site (MCS) of pAcG2T downstream of glutathione-S-transferase sequence (GST) with the thrombin cleavage site and the unique restriction sites

Figure 7: Cloning of hsGC β in pVL1393

Primer: A 5' AAAA **GGATCC** ATGTACGGATTTGTGAAT 3'
 BamHI (89) (116)

B 3' **CCATGG** GTCCTTAGTGCCTA 5'
 (692) KpnI (711)

Figure 8: Cloning of hsGC α in pVL1393

Primer: C 5' AAAA **GGATCC** ATGTTCTGCACGAAGCTC 3'
 BamHI (524) (541)

D 3' GGAGGGACGAAGGTATTA 5'
 (1232) (1249)

Figure 9

Fig. 10

Fig. 11

Figure 12: Purification of GST-hsGCalpha1/beta1 on GSH-Sepharose 4B

Figure 13

Figure 14

Figure 15: Purification of hsGC $\alpha 1/\beta 1$ in a Coomassie stained SDS polyacrylamide gel

Figure 16: Construction of the hsGC-adenovectors

Figure 17:
Expression of human sGC in
adenovirus-infected EA.hy926
cells

Figure 18

CCCTTATGGC GATTGGGCGG CTGGCAGAGAC CAGGACTCAG TTCCCCTGCC CTAGTCTGAG
 CCTAGTGGGT GGGACTCAGC TCAGAGTCAG TTTTCCAGAA GCAGGTTCA GTGCAGAGTT
 TTCCTACACT TTTCTCGCG TAGAGCAGCG AGCAGCCTGG AACAGACCCA GGCGGAGGAC
 ACCTGTGGGG GAGGGAGCGC CTGGAGGAGC TTAGAGACCC CAGCCGGCG TGATCTCACC
 ATGTGCGGAT TTGCGAGGCG CGCCCTGGAG CTGCTAGAGA TCCGGAAGCA CAGCCCCGAG
 GTGTGCGAAG CCACCAAGAC TGCGGCTCTT GGAGAAAGCG TGAGCAGGGG GCCACCGCGG
 TCTCCCGGCC TGTCTGCACC CTGTCGCTG AGCTGCCTGA CAGTGACAAT GACATCCCAG
 TTACCAAGTGT CCTTGAATTG ATAGTGGCTT CTGTTTGTCA GTCTCATATA AGAACTACAG
 CTCATCAGGA GGAGATCGCA GCAGGGTAAG AGACACCAAC ACCATGTTCT GCACGAAGCT
 CAAGGATCTC AAGATCACAG GAGAGTGTCC TTTCTCCTTA CTGGCACCAG GTCAAGTTCC
 TAACGAGTCT TCAGAGGAGG CAGCAGGAAG CTCAGAGAGC TGCAAAGCAA CCGTGCCAT
 CTGTCAGAC ATTCTTGAGA AGAACATACA AGAAAGTCTT CCTCAAAGAA AAACCAAGTCG
 GAGCCGAGTC TATCTTCACA CTTTGGCAGA GAGTATTGCA AAACGTATTT TCCCAGAGTT
 TGAACGGCTG AATGTTGCAC TTCAAGAGAAC ATTGCCAAAG CACAAAATAA AAGAAAGCAG
 GAAATCTTTG GAAAGAGAAG ACTTTGAAAA AACAAATTGCA GAGCAAGCAG TTGCAGCAGG
 AGTTCCAGTG GAGGTTATCA AAGAATCTCT TGGTGAAGAG GTTTTAAAAA TATGTTACGA
 GGAAGATGAA AACATCCTTG GGGTGGTTGG AGGCACCCCTT AAAGATTTT TAAACAGCTT
 CAGTACCCCTT CTGAAACAGA GCAGCCATTG CCAAGAAGCA GAAAAAAGGG GCAGGCTTGA
 GGACGCCCTCC ATTCTATGCC TGGATAAGGA GGATGATTT CTACATGTTT ACTACTTCTT
 CCCTAAGAGA ACCACCTCCC TGATTCTCC CGGCATCATA AAGGCAGCTG CTCACGTATT
 ATATGAAACG GAAGTGGAAAG TGTGTTAAT GCCTCCCTGC TTCCATAATG ATTGCAGCGA
 GTTTGTGAAT CAGCCCTACT TGTGTTACTC CGTTCACATG AAAAGCACCA AGCCATCCCT
 GTCCCCCAGC AAACCCCACT CCTCGCTGGT GATTCCCACA TCGCTATTCT GCAAGACATT
 TCCATTCCAT TTCATGTTG ACAAAAGATAT GACAATTCTG CAATTGGCA ATGGCATCAG
 AAGGCTGATG AACAGGAGAG ACTTTCAAGG AAAGCCTAAT TTTGAAGAAT ACTTTGAAAT
 TCTGACTCCA AAAATCAACC AGACGTTAG CGGGATCATG ACTATGTTGA ATATGCAAGT
 TGTTGTACGA GTGAGGAGAT GGGACAACTC TGTGAAGAAA TCTTCAGGG TTATGGACCT
 CAAAGGCCAA ATGATCTACA TTGTTGAATC CAGTGAATC TTGTTTTGG GGTCAACCTG
 TGTGGACAGA TTAGAAGATT TTACAGGACG AGGGCTCTAC CTCTCAGACA TCCCAATTCA
 CAATGCACTG AGGGATGTGG TCTTAATAGG GGAACAAGCC CGAGCTCAAG ATGGCCTGAA
 GAAGAGGCTG GGGAAAGCTGA AGGCTACCCCT TGAGCAAGCC CACCAAGCCC TGGAGGAGGA
 GAAGAAAAAG ACAGTAGACC TTCTGTGTC CATATTCCC TGTGAGGTTG CTCAGCAGCT
 GTGGCAAGGG CAAGTTGTGC AACCCAAGAA GTTCAGTAAT GTCACCATGC TCTTCTCAGA
 CATCGTTGGG TTCACTGCCA TCTGCTCCCA GTGCTCACCG CTGCAGGTCA TCACCATGCT
 CAATGCACTG TACACTCGCT TCGACCAGCA GTGTGGAGAG CTGGATGTCT ACAAGGTGGA
 GACCATTGGC GATGCCTATT GTGTAGCTGG GGGATTACAC AAAGAGAGTG ATACTCATGC
 TGTTCAGATA GCGCTGATGG CCCTGAAGAT GATGGAGCTC TCTGATGAAG TTATGTCCTC
 CCATGGAGAA CCTATCAAGA TCGAATTGG ACTGCCTCT GGATCAGTT TTGCTGGCGT
 CGTTGGAGTT AAAATGCCCT GTTACTGTCT TTTTGAAAC AATGTCACTC TGGCTAACAA
 ATTTGAGTCC TGCAGTGTAC CACCAAAAT CAATGTCAGC CCAACAACTT ACAGATTACT
 CAAAGACTGT CCTGGTTTCG TGTTTACCCC TCGATCAAGG GAGGAACCTC CACCAAACCTT
 CCCTAGTGAA ATCCCCGGAA TCTGCCATT TCTGGATGCT TACCAACAAG GAACAAACCTC
 AAAACCATGC TTCCAAAAGA AAGATGTGGA AGATGGCAAT GCAATTGTT TAGGCAAAGC
 ATCAGGAATA GATTAGCAAC CTATATACCT ATTTATAAGT CTTTGGGTT TGACTCATTG
 AAGATGTGTA GAGCCTCTGA AAGCACTTA GGGATTGTAG ATGGCTAACAA AGCAGTATTA
 AAATTCAGG AGCCAAGTCA CAATCTTCT CCTGTTAAC ATGACAAAAT GTACTCACTT
 CAGTAACCTCA GCTCTTCAG AAAAAAAAGA AAACCTTAAAG AAGCTACTT TGTGGGAGTA
 TTTCTATTAT ATAACCAGCA CTTACTACCT GTACTAAAA TTCAGCACCCT TGTACATATA
 TCAGATAATT GTAGTCAATT GTACAAACTG ATGGAGTCAC CTGCAATCTC ATATCCTGGT
 GGAATGCCAT GGTTATTAAGA GTGTGTTGT GATAGTGTGCA TCAAAAAAAA AAAAAAAA
 AAAAAAAA AAAAA

Figure 19

Met Phe Cys Thr Lys Leu Lys Asp Leu Lys Ile Thr Gly Glu Cys Pro
 Phe Ser Leu Leu Ala Pro Gly Gln Val Pro Asn Glu Ser Ser Glu Glu
 Ala Ala Gly Ser Ser Glu Ser Cys Lys Ala Thr Val Pro Ile Cys Gln
 Asp Ile Pro Glu Lys Asn Ile Gln Glu Ser Leu Pro Gln Arg Lys Thr
 Ser Arg Ser Arg Val Tyr Leu His Thr Leu Ala Glu Ser Ile Cys Lys
 Leu Ile Phe Pro Glu Phe Glu Arg Leu Asn Val Ala Leu Gln Arg Thr
 Leu Ala Lys His Lys Ile Lys Glu Ser Arg Lys Ser Leu Glu Arg Glu
 Asp Phe Glu Lys Thr Ile Ala Glu Gln Ala Val Ala Ala Gly Val Pro
 Val Glu Val Ile Lys Glu Ser Leu Gly Glu Glu Val Phe Lys Ile Cys
 Tyr Glu Glu Asp Glu Asn Ile Leu Gly Val Val Gly Gly Thr Leu Lys
 Asp Phe Leu Asn Ser Phe Ser Thr Leu Leu Lys Gln Ser Ser His Cys
 Gln Glu Ala Gly Lys Arg Gly Arg Leu Glu Asp Ala Ser Ile Leu Cys
 Leu Asp Lys Glu Asp Asp Phe Leu His Val Tyr Tyr Phe Phe Pro Lys
 Arg Thr Thr Ser Leu Ile Leu Pro Gly Ile Ile Lys Ala Ala Ala His
 Val Leu Tyr Glu Thr Glu Val Glu Val Ser Leu Met Pro Pro Cys Phe
 His Asn Asp Cys Ser Glu Phe Val Asn Gln Pro Tyr Leu Leu Tyr Ser
 Val His Met Lys Ser Thr Lys Pro Ser Leu Ser Pro Ser Lys Pro Gln
 Ser Ser Leu Val Ile Pro Thr Ser Leu Phe Cys Lys Thr Phe Pro Phe
 His Phe Met Phe Asp Lys Asp Met Thr Ile Leu Gln Phe Gly Asn Gly
 Ile Arg Arg Leu Met Asn Arg Arg Asp Phe Gln Gly Lys Pro Asn Phe
 Glu Glu Tyr Phe Glu Ile Leu Thr Pro Lys Ile Asn Gln Thr Phe Ser
 Gly Ile Met Thr Met Leu Asn Met Gln Phe Val Val Arg Val Arg Arg
 Trp Asp Asn Ser Val Lys Ser Ser Arg Val Met Asp Leu Lys Gly
 Gln Met Ile Tyr Ile Val Glu Ser Ser Ala Ile Leu Phe Leu Gly Ser
 Pro Cys Val Asp Arg Leu Glu Asp Phe Thr Gly Arg Gly Leu Tyr Leu
 Ser Asp Ile Pro Ile His Asn Ala Leu Arg Asp Val Val Leu Ile Gly
 Glu Gln Ala Arg Ala Gln Asp Gly Leu Lys Lys Arg Leu Gly Lys Leu
 Lys Ala Thr Leu Glu Gln Ala His Gln Ala Leu Glu Glu Glu Lys Lys
 Lys Thr Val Asp Leu Leu Cys Ser Ile Phe Pro Cys Glu Val Ala Gln
 Gln Leu Trp Gln Gly Gln Val Val Gln Ala Lys Lys Phe Ser Asn Val
 Thr Met Leu Phe Ser Asp Ile Val Gly Phe Thr Ala Ile Cys Ser Gln
 Cys Ser Pro Leu Gln Val Ile Thr Met Leu Asn Ala Leu Tyr Thr Arg
 Phe Asp Gln Gln Cys Gly Glu Leu Asp Val Tyr Lys Val Glu Thr Ile
 Gly Asp Ala Tyr Cys Val Ala Gly Gly Leu His Lys Glu Ser Asp Thr
 His Ala Val Gln Ile Ala Leu Met Ala Leu Lys Met Met Glu Leu Ser
 Asp Glu Val Met Ser Pro His Gly Glu Pro Ile Lys Met Arg Ile Gly
 Leu His Ser Gly Ser Val Phe Ala Gly Val Val Gly Val Lys Met Pro
 Arg Tyr Cys Leu Phe Gly Asn Asn Val Thr Leu Ala Asn Lys Phe Glu
 Ser Cys Ser Val Pro Arg Lys Ile Asn Val Ser Pro Thr Thr Tyr Arg
 Leu Leu Lys Asp Cys Pro Gly Phe Val Phe Thr Pro Arg Ser Arg Glu
 Glu Leu Pro Pro Asn Phe Pro Ser Glu Ile Pro Gly Ile Cys His Phe
 Leu Asp Ala Tyr Gln Gln Gly Thr Asn Ser Lys Pro Cys Phe Gln Lys
 Lys Asp Val Glu Asp Gly Asn Ala Asn Phe Leu Gly Lys Ala Ser Gly
 Ile Asp End

Figure 20

CCCCCCCCCG CCGCTGCCGC CTCTGCCTGG GTCCCTTCGG CCGTACCTCT GCGTGGGGGC
 TGCCTCCCCG GCTCCCGGTG CAGACACCAT GTACGGATTT GTGAATCACG CCCTGGAGTT
 GCTGGTGATC CGCAATTACG GCCCCGAGGT GTGGGAAGAC ATCAAAAAAG AGGCACAGTT
 AGATGAAGAA GGACAGTTTC TTGTCAGAAT AATATATGAT GACTCCAAA CTTATGATTT
 GGTTGCTGCT GCAAGCAAAG TCCTCAATCT CAATGCTGGA GAAATCCTCC AAATGTTGG
 GAAGATGTT TTCGTCTTT GCCAAGAAC TGGTTATGAT ACAATCTTGC GTGTCTGGG
 CTCTAATGTC AGAGAATTTC TACAGAACCT TGATGCTCTG CACGACCAC TTGCTACCAT
 CTACCCAGGA ATGCGTGCAC CTTCCCTTAG GTGCACTGAT GCAGAAAAGG GCAAAGGACT
 CATTTCGAC TACTACTCAG AGAGAGAAGG ACTTCAGGAT ATTGTCAATTG GAATCATCAA
 AACAGTGGCA CAACAAATCC ATGGCACTGA AATAGACATG AAGGTTATTC AGCAAAGAAA
 TGAAGAATGT GATCATACTC AATTGTTAAT TGAAGAAAAA GAGTCAAAAG AAGAGGATTT
 TTATGAAGAT CTTGACAGAT TTGAAGAAAAA TGGTACCCAG GAATCACGCA TCAGCCCATA
 TACATTCTGC AAAGCTTTTC CTTTCATAT AATATTGAC CGGGACCTAG TGGTCACTCA
 GTGTGGCAAT GCTATATACA GAGTTCTCCC CCAGCTCCAG CCTGGGAATT GCAGCCTTCT
 GTCTGTCTTC TCGCTGGTTC GTCCTCATAT TGATATTAGT TTCCATGGGA TCCTTCTCA
 CATCAAACT GTTTTGTAT TGAGAAGCAA GGAAGGATTG TTGGATGTGG AGAAATTAGA
 ATGTGAGGAT GAACTGACTG GGACTGAGAT CAGCTGCTTA CGTCTCAAGG CTCAAATGAT
 CTACTTACCT GAAGCAGATA GCATACTTT TCTATGTTCA CCAAGTGTCA TGAACCTGG
 CGATTGACA AGGAGAGGGC TGTATCTAAG TGACATCCCT CTGCATGATG CCACGCGCGA
 TCTTGTCTT TTGGGAGAAC AATTAGAGA GGAATACAAA CTCACCCAAG AACTGGAAAT
 CCTCACTGAC AGGCTACAGC TCACGTTAAG AGCCCTGGAA GATGAAAAGA AAAAGACAGA
 CACATTGCTG TATTCTGTCC TTCCCTCCGTC TGTTGCCAAT GAGCTGCGGC ACAAGCGTCC
 AGTGCCTGCC AAAAGATATG ACAATGTGAC CATCCTCTT AGTGGCATTG TGGGCTTCAA
 TGCTTCTGT AGCAAGCATG CATCTGGAGA AGGAGCCATG AAGATCGTCA ACCTCCTCAA
 CGACCTCTAC ACCAGATTTG ACACACTGAC TGATTCGGG AAAAACCAT TTGTTTATAA
 GGTGGAGACT GTTGGTACA AGTATATGAC AGTGAGTGGT TTACCAAGAGC CATGCATTCA
 CCATGCACGA TCCATCTGCC ACCTGGCTT GGACATGATG GAAATTGCTG GCCAGGTTCA
 AGTAGATGGT GAATCTGTT AGATAACAAT AGGGATACAC ACTGGAGAGG TAGTTACAGG
 TGTCACTAGGA CAGCGGATGC CTCGATACTG TCTTTTGGG AATACTGTCA ACCTCACAAG
 CCGAACAGAA ACCACAGGAG AAAAGGGAAA AATAAATGTG TCTGAATATA CATACAGATG
 TCTTATGCT CCAGAAAATT CAGATCCACA ATTCCACTTG GAGCACAGAG GCCCAGTGTG
 CATGAAGGGC AAAAAGAAC CAATGCAAGT TTGGTTCTA TCCAGAAAAA ATACAGGAAC
 AGAGGAAACA AAGCAGGATG ATGACTGAAT CTTGGATTAT GGGGTGAAGA GGAGTACAGA
 CTAGGTTCCA GTTTCTCCT AACACGTGCC AAGCCAGGA CGAGTTCTC CCTATGGATA
 CAGATTTCT TTTGTCCTTG TCCATTACCC CAAGACTTTC TTCTAGATAT ATCTCTCACT
 ATCCGTTATT CAACCTTAGC TCTGCTTCT ATTACTTTT AGGCTTTAGT ATATTATCTA
 AAGTTGGCT TTTGATGTGG ATGATGTGAG CTTCATGTGT CTTAAAATCT ACTACAAGCA
 TTACCTAACCA TGGTGATCTG CAAGTAGTAG GCACCCAAAATA AATATTTGTT GAATTTAGTT
 AAATGAAACT GAACAGTGGT TGGCCATGTG TATATTTATA TCATGTTTAC CAAATCTGTT
 TAGTGTCCA CATATATGTA TATGTATATT TTAATGACTA TAATGTAATA AAGTTTATAT
 CATGTTGGTG TATATCATTAGAATCAT TTTCTAAAGG AGT

Figure 21

Met Tyr Gly Phe Val Asn His Ala Leu Glu Leu Leu Val Ile Arg Asn
 Tyr Gly Pro Glu Val Trp Glu Asp Ile Lys Lys Glu Ala Gln Leu Asp
 Glu Glu Gly Gln Phe Leu Val Arg Ile Ile Tyr Asp Asp Ser Lys Thr
 Tyr Asp Leu Val Ala Ala Ser Lys Val Leu Asn Leu Asn Ala Gly
 Glu Ile Leu Gln Met Phe Gly Lys Met Phe Phe Val Phe Cys Gln Glu
 Ser Gly Tyr Asp Thr Ile Leu Arg Val Leu Gly Ser Asn Val Arg Glu
 Phe Leu Gln Asn Leu Asp Ala Leu His Asp His Leu Ala Thr Ile Tyr
 Pro Gly Met Arg Ala Pro Ser Phe Arg Cys Thr Asp Ala Glu Lys Gly
 Lys Gly Leu Ile Leu His Tyr Tyr Ser Glu Arg Glu Gly Leu Gln Asp
 Ile Val Ile Gly Ile Ile Lys Thr Val Ala Gln Gln Ile His Gly Thr
 Glu Ile Asp Met Lys Val Ile Gln Gln Arg Asn Glu Glu Cys Asp His
 Thr Gln Phe Leu Ile Glu Glu Lys Ser Lys Glu Glu Asp Phe Tyr
 Glu Asp Leu Asp Arg Phe Glu Glu Asn Gly Thr Gln Glu Ser Arg Ile
 Ser Pro Tyr Thr Phe Cys Lys Ala Phe Pro Phe His Ile Ile Phe Asp
 Arg Asp Leu Val Val Thr Gln Cys Gly Asn Ala Ile Tyr Arg Val Leu
 Pro Gln Leu Gln Pro Gly Asn Cys Ser Leu Leu Ser Val Phe Ser Leu
 Val Arg Pro His Ile Asp Ile Ser Phe His Gly Ile Leu Ser His Ile
 Asn Thr Val Phe Val Leu Arg Ser Lys Glu Gly Leu Leu Asp Val Glu
 Lys Leu Glu Cys Glu Asp Glu Leu Thr Gly Thr Glu Ile Ser Cys Leu
 Arg Leu Lys Gly Gln Met Ile Tyr Leu Pro Glu Ala Asp Ser Ile Leu
 Phe Leu Cys Ser Pro Ser Val Met Asn Leu Asp Asp Leu Thr Arg Arg
 Gly Leu Tyr Leu Ser Asp Ile Pro Leu His Asp Ala Thr Arg Asp Leu
 Val Leu Leu Gly Glu Gln Phe Arg Glu Glu Tyr Lys Leu Thr Gln Glu
 Leu Glu Ile Leu Thr Asp Arg Leu Gln Leu Thr Leu Arg Ala Leu Glu
 Asp Glu Lys Lys Thr Asp Thr Leu Leu Tyr Ser Val Leu Pro Pro
 Ser Val Ala Asn Glu Leu Arg His Lys Arg Pro Val Pro Ala Lys Arg
 Tyr Asp Asn Val Thr Ile Leu Phe Ser Gly Ile Val Gly Phe Asn Ala
 Phe Cys Ser Lys His Ala Ser Gly Glu Gly Ala Met Lys Ile Val Asn
 Leu Leu Asn Asp Leu Tyr Thr Arg Phe Asp Thr Leu Thr Asp Ser Arg
 Lys Asn Pro Phe Val Tyr Lys Val Glu Thr Val Gly Asp Lys Tyr Met
 Thr Val Ser Gly Leu Pro Glu Pro Cys Ile His His Ala Arg Ser Ile
 Cys His Leu Ala Leu Asp Met Met Glu Ile Ala Gly Gln Val Gln Val
 Asp Gly Glu Ser Val Gln Ile Thr Ile Gly Ile His Thr Gly Glu Val
 Val Thr Gly Val Ile Gly Gln Arg Met Pro Arg Tyr Cys Leu Phe Gly
 Asn Thr Val Asn Leu Thr Ser Arg Thr Glu Thr Thr Gly Glu Lys Gly
 Lys Ile Asn Val Ser Glu Tyr Thr Tyr Arg Cys Leu Met Ser Pro Glu
 Asn Ser Asp Pro Gln Phe His Leu Glu His Arg Gly Pro Val Ser Met
 Lys Gly Lys Lys Glu Pro Met Gln Val Trp Phe Leu Ser Arg Lys Asn
 Thr Gly Thr Glu Glu Thr Lys Gln Asp Asp Asp end

Figure 22

Phe Thr Pro Arg Ser Arg Glu Glu Leu Pro Pro Asn Phe Pro

Figure 23

Lys Gly Lys Lys Glu Pro Met Gln Val Trp Phe Leu Ser Arg Lys Asn
Thr Gly Thr Glu Glu Thr

Figure 24

upper primer

AAAAGGATCC ATGTTCTGCA CGAAGCTC

lower primer

ATTATGGAAG CAGGGAGG

Figure 25

upper primer

AAAAGGATCC ATGTACGGAT TTGTGAAT

lower primer

ATGCGTGATT CCTGGGTACC