Calcul différentiel

Dans ce chapitre :

- E, F, G désignent des \mathbb{R} -espaces vectoriels normés de dimension finie non nulle;
- Ω désigne un ouvert non vide de E;
- f désigne une fonction définie de Ω dans E.

I Différentielle

I. A Dérivée selon un vecteur

Définition 1.1

Soit $f: \Omega \longrightarrow F$, $a \in \Omega$ et $v \in E \setminus \{0_E\}$.

On dit que f admet une **dérivée en a selon le vecteur v** lorsque la fonction $t \mapsto f(a+tv)$ est dérivable en 0.

Cette dérivée est notée $D_v f(a)$.

- Remarques 1.2 : Ω étant un ouvert, la fonction $t\mapsto f(a+tv)$ est définie sur un voisinage de 0.
 - Lorsque f est a une dérivée en a selon v, cette dérivée $D_v f(a)$ est un vecteur de F.
- **Exemple 1.3:** $f:(x,y) \mapsto x^2 + y^2$ en a = (1,2) selon le vecteur u = (1,-1).
- **Attention :** Une fonction peut avoir des dérivées en a selon tout vecteur (non nul) sans être continue en a.

Exemple 1.4:

$$f: (x,y) \mapsto \begin{cases} 0 & \text{si } (x,y) = (0,0); \\ \frac{yx^2}{y^2 + x^4} & \text{sinon.} \end{cases}$$

I. B Dérivées partielles

Définition 1.5

Soit $f: \Omega \longrightarrow F$ et $\mathcal{B} = (e_1, \dots, e_p)$ une base de E.

Pour $a \in \Omega$ et $i \in [1; p]$, lorsque f admet une dérivée en a selon le vecteur e_i , on appelle cette dérivée la i-ième dérivée partielle de f dans la base \mathcal{B} .

Cette dérivée est notée : $\partial_i f(a)$ ou $\frac{\partial f}{\partial x_i}(a)$.

Remarque 1.6: Ainsi $\frac{\partial f}{\partial x_i}(a) = D_{e_i}f(a)$.

1) Lorsque $E = \mathbb{R}^p$

Lorsque $E=\mathbb{R}^p$, si rien n'est précisé, on considère les dérivées partielles dans la base canonique. C'est à dire : pour $a=(a_1,\ldots,a_p)\in\Omega$ et $i\in [\![1\,;p]\!]$, on considère la i-ième application partielle de f en a $f_i:t\mapsto f(a_1,\ldots,a_{i-1},a_i+t,a_{i+1},\ldots,a_p)$. La fonction f admet une i-ième dérivée partielle (dans la base canonique) si et seulement si f_i est dérivable en 0 et dans ce cas $\frac{\partial f}{\partial x_i}(a)=f_i'(0)$.

2) Lorsqu'une base \mathcal{B} est fixée

On suppose qu'une base $\mathcal{B} = (e_1, \dots, e_p)$ de E est fixée et $f: \Omega \longrightarrow F$. On sait que $\Phi: x \mapsto \operatorname{Mat}_{\mathcal{B}}(x)$ est un isomorphisme d'espace vectoriel de E dans \mathbb{R}^p (de même dimension finie), donc Φ et Φ^{-1} sont continues sur E et \mathbb{R}^p et $\Phi(\Omega)$ est l'image réciproque de Ω par Φ^{-1} , donc c'est un ouvert de \mathbb{R}^p . On pose $f_{\mathcal{B}} = f \circ \Phi^{-1}: \Phi(A) \longrightarrow F$, c'est à dire:

$$f_{\mathcal{B}}: (x_1, \dots, x_p) \mapsto f\left(\sum_{i=1}^p x_i e_i\right).$$

(Proposition 1.7)

Soit $f: \Omega \longrightarrow F$, $\mathcal{B} = (e_1, \dots, e_p)$ une base de E et $a = \sum_{i=1}^p a_i x_i \in \Omega$.

Pour tout $i \in [1; p]$, la fonction f admet une i-ième dérivée partielle en a dans la base \mathcal{B} si et seulement si $f_{\mathcal{B}}$ admet une i-ième dérivée partielle et dans ce cas :

$$\partial_i f(a) = \partial_i f_{\mathcal{B}}(a_1, \dots, a_p).$$

Remarque 1.8 : Lorsqu'une base de E est fixée, on identifie alors f(x) et $f_{\mathcal{B}}(x_1,\ldots,x_p)$.

I. C Différentielle

Notation : Pour U un voisinage de 0_E dans E et $g:U\longrightarrow F$, on note $g(h)=o\left(h\right)$ lorsqu'il existe $\varepsilon:U\longrightarrow F$ tel que $g(h)=\|h\|\,\varepsilon(h)$ et $\varepsilon(h)\xrightarrow[h\to 0_E]{}0_F$.

Définition 1.9

Soit $f: \Omega \longrightarrow F$ et $a \in \Omega$.

On dit que f est **différentiable** en a lorsqu'il existe $\varphi \in \mathcal{L}(E,F)$ telle que :

$$f(a+h) = f(a) + \varphi(h) + o(h).$$

Remarque 1.10 : La fonction f est différentiable en a lorqu'elle a un développement limité à l'ordre 1 en a.

On peut écrire ce développement limité sous la forme :

$$f(a+h) = f(a) + \varphi(h) + ||h|| \varepsilon(h), \text{ avec } \varepsilon(h) \xrightarrow[h \to 0_F]{} 0_F.$$

Proposition 1.11

Soit $f: \Omega \longrightarrow F$ et $a \in \Omega$.

Si f est différentiable en a, alors f est continue en a.

$oxed{ ext{D\'efinition/Th\'eor\`eme } 1.12}$

Soit $f: \Omega \longrightarrow F$ différentiable en $a \in \Omega$.

Alors il existe une unique application linéaire $\varphi \in \mathcal{L}(E,F)$ telle que :

 $f(a+h) = f(a) + \varphi(h) + o(h)$; on l'appelle **différentielle de f en a** et on la note df(a).

Vocabulaire : La différentielle de f en a est également appelée application linéaire tangente à f en a.

Notation : La valeur en $h \in E$ de la différentielle de f en a est est notée $\mathrm{d} f(a) \cdot h$ plutôt que $\mathrm{d} f(a)(h)$ pour alléger l'écriture.

Le développement limité à l'ordre 1 s'écrit alors :

$$f(a+h) = f(a) + df(a) \cdot h + o(h).$$

Proposition 1.13 (cas des fonctions d'une variable réelle)

Soit Ω est un intervalle ouvert de \mathbb{R} et $f:\Omega\longrightarrow F$.

L'application f est différentiable en $a \in \Omega$ si et seulement si f est dérivable en a et dans ce cas : $df(a) : h \mapsto hf'(a)$ et $f'(a) = df(a) \cdot 1$.

Définition 1.14

Une application $f: \Omega \longrightarrow F$ est **différentiable sur** Ω lorsqu'elle est différentiable en tout $a \in \Omega$.

Dans ce cas, l'application différentielle est :

Proposition 1.15

- Si $f: \Omega \longrightarrow F$ est constante sur Ω , alors f est différentiable sur Ω et : $\forall a \in \Omega, df(a) = 0_{\mathcal{L}(E,F)}$.
- Si $f \in \mathcal{L}(E, F)$, alors f est différentiable Ω et : $\forall a \in \Omega$, df(a) = f.

Exemple 1.16 : Soit E un espace euclidien. Montrer que $f: x \mapsto ||x||^2$ est différentiable sur E.

I. D Lien avec les dérivées selon un vecteur ou partielles

Proposition 1.17

Soit $f: \Omega \longrightarrow F$ différentiable en $a \in \Omega$.

Alors f est dérivable en a selon tout vecteur non nul de E et :

$$\forall v \in E \setminus \{0\}, \quad D_v f(a) = \mathrm{d}f(a) \cdot v.$$

Remarque 1.18: Si f est différentiable en a, sa différentielle est : $v \mapsto D_v f(a)$.

(Méthode 1.19)

On suppose que f est dérivable en a selon tout vecteur non nul, alors f est différentiable en a si et seulement si :

- $v \mapsto D_v f(a)$ est linéaire;
- $f(a+h) = f(a) + D_h f(a) + o(h)$.

Exemple 1.20: L'application

$$g : \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} 0 & \text{si } (x,y) = (0,0); \\ \frac{x^3 + y^3}{x^2 + y^2} & \text{sinon.} \end{cases}$$

est-elle différentible en (0,0)?

Attention : L'existence des dérivées partielles n'implique pas la différentiabilité!

Contre exemple 1.21: Retour à l'exemple 1.4.

(Corollaire 1.22)

Soit $\mathcal{B} = (e_1, \dots, e_p)$ une base de E et $f: \Omega \longrightarrow F$.

Si f est différentiable en $a \in \Omega$, alors

$$\forall i \in [1; p], \partial_i f(a) = \frac{\partial f}{\partial x_i}(a) = df(a) \cdot e_i.$$

Corollaire 1.23

Soit $\mathcal{B} = (e_1, \dots, e_p)$ une base de E et $f: \Omega \longrightarrow F$.

Si f est différentiable en $a \in \Omega$, alors pour $h = \sum_{i=1}^{p} h_i e_i \in E$

$$df(a) \cdot h = \sum_{i=1}^{p} h_i \partial_i f(a) = \sum_{i=1}^{p} h_i \frac{\partial f}{\partial x_i}(a).$$

Méthode 1.24

Pour montrer que f est différentiable en a, on peut :

- 1. montrer que toutes les dérivées partielles de f existent;
- 2. introduire $\varphi: h \mapsto \sum_{i=1}^{p} h_i \partial_i f(a)$;
- 3. montrer que $f(a+h) f(a) \varphi(h) = o(h)$.

Exemple 1.25: L'application

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} 0 & \text{si } (x,y) = (0,0); \\ \frac{x^3}{x^2 + y^4} & \text{sinon.} \end{cases}$$

est-elle différentible en (0,0)?

I. E Matrice jacobienne

Proposition 1.26

Soit Ω un ouvert de \mathbb{R}^p et $f:\Omega \longrightarrow \mathbb{R}^n$.

La fonction f est différentiable en $a\in\Omega$ si et seulement si toutes les fonctions coordonnées le sont.

Notation : Soit Ω un ouvert de \mathbb{R}^p et $f:\Omega \longrightarrow \mathbb{R}^n$ est différentiable en $a\in\Omega$. On note f_1,\ldots,f_n les fonctions coordonnées de f. On appelle matrice jacobienne de f en a la matrice :

$$\left(\frac{\partial f_i}{\partial x_j}(a)\right)_{\substack{1\leqslant i\leqslant n\\1\leqslant j\leqslant p}} = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(a) & \dots & \frac{\partial f_1}{\partial x_p}(a)\\ \vdots & & \vdots\\ \frac{\partial f_n}{\partial x_1}(a) & \dots & \frac{\partial f_n}{\partial x_p}(a) \end{pmatrix}$$

Proposition 1.27

Soit Ω un ouvert de \mathbb{R}^p et $f:\Omega \longrightarrow \mathbb{R}^n$ différentiable en a, alors la matrice de df(a) dans les bases canoniques est la matrice jacobienne de f en a.

Exemple 1.28:

$$\Phi : \mathbb{R}^2 \longrightarrow \mathbb{R}^2 (r, \theta) \longmapsto (r \cos(\theta), r \sin(\theta)).$$

I. F Gradient

Dans cette section E est un espace euclidien et $f:\Omega\longrightarrow\mathbb{R}$.

Rappel : Pour toute forme linéaire $f \in \mathcal{L}(E, \mathbb{R})$, il existe un unique vecteur $y \in E$ tel que :

$$\forall x \in E, f(x) = \langle x, y \rangle$$
.

Définition 1.29

Soit $f: \Omega \longrightarrow \mathbb{R}$ différentiable en $a \in \Omega$.

Le gradient de f en a, noté $\nabla f(a)$, est l'unique vecteur de E tel que :

$$\forall h \in E, \quad df(a) \cdot h = \langle \nabla f(a), h \rangle.$$

(Proposition 1.30)

Soit $\mathcal{B} = (e_1, \dots, e_p)$ une base orthonormée de E. Si $f: \Omega \longrightarrow \mathbb{R}$ est différentiable en $a \in \Omega$, alors:

$$\nabla f(a) = \sum_{i=1}^{p} \partial_i f(a) e_i.$$

Corollaire 1.31

Soit Ω un ouvert de \mathbb{R}^p muni de son produit scalaire canonique et $f:\Omega\longrightarrow\mathbb{R}$ différentiable en $a\in\Omega,$ alors :

$$\nabla f(a) = \begin{pmatrix} \partial_1 f(a) \\ \vdots \\ \partial_p f(a) \end{pmatrix} = (J_f)^\top$$

où J_f est la jacobienne de f en a.

Proposition 1.32

Soit $f: \Omega \longrightarrow \mathbb{R}$ différentiable en $a \in \Omega$ telle que $\nabla f(a) \neq 0$. La restriction à la sphère unité de $h \mapsto D_h f(a)$ admet un maximum qui est atteint en l'unique vecteur unitaire positivement colinéaire à $\nabla f(a)$.

Interprétation géométrique : si $\nabla f(a) \neq 0$, alors $\nabla f(a)$ est positivement colinéaire au vecteur unitaire selon lequel la dérivée de f en a est maximale. Le gradient ainsi la direction de variation maximale.

Interprétation topographique : Supposons que le relief d'une montagne est représenté par le graphe d'une fonction f de deux variables différentiable en tout point. En tout point, le gradient de f indique la direction dans laquelle la pente sera la plus forte.

II Opérations sur les applications différentiables

II. A Combinaison linéaire

Proposition 2.1 (Linéarité)

Soit f et g deux applications de Ω dans F, $\lambda, \mu \in \mathbb{R}$.

• Si f et g sont différentiables en $a \in \Omega$, alors $\lambda f + \mu g$ est différentiable en a et :

$$d(\lambda f + \mu g)(a) = \lambda df(a) + \mu dg(a).$$

• Si f et g sont différentiables sur Ω , alors $\lambda f + \mu g$ est différentiable sur Ω et :

$$d(\lambda f + \mu g) = \lambda df + \mu dg.$$

II. B Différentielle et applications multilinéaires

Proposition 2.2

Soit F_1, \ldots, F_q, G des \mathbb{R} -espaces vectoriels de dimension finie, pour tout $i \in [1;q], f_i : \Omega \longrightarrow F_i$ et $M: F_1 \times \cdots \times F_q \longrightarrow G$ une application multilinéaire.

• Si f_1, \ldots, f_q sont différentiables en $a \in \Omega$, alors $g = M(f_1, \ldots, f_q)$ est différentiable en a et :

$$\forall h \in E, \quad dg(a) \cdot h = \sum_{k=1}^{q} M(f_1(a), \dots, f_{k-1}(a), df_k(a) \cdot h, f_{k+1}(a), \dots, f_q(a)).$$

• Si f_1, \ldots, f_q sont différentiables en sur Ω , alors $g = M(f_1, \ldots, f_q)$ est différentiable sur Ω .

(Corollaire 2.3)

Soit $B: F_1 \times F_2 \longrightarrow G$ bilinéaire et $f_1: \Omega \longrightarrow F_1, f_2: \Omega \longrightarrow F_2$. Si f_1 et f_2 sont différentiables en $a \in \Omega$, alors $g = B(f_1, f_2)$ est différentiable en a et :

$$\forall h \in E, \quad dg(a) \cdot h = B(df_1(a) \cdot h, f_2(a)) + B(f_1(a), df_2(a) \cdot h).$$

Exemple 2.4 : Soit $f: \Omega \longrightarrow \mathbb{R}$ et $g: \Omega \longrightarrow \mathbb{R}$ différentiables en a, alors $f \times g$ est différentiable en a, calculer les dérivées partielles de $f \times g$.

II. C Règle de la chaîne

$(Th\'{e}or\`{e}me\ 2.5)$

Soit Ω' un ouvert de $F, f: \Omega \longrightarrow F$ et $g: \Omega' \longrightarrow G$ telles que $f(\Omega) \subset \Omega'$.

• Si f est différentiable en $a \in \Omega$ et g est différentiable en b = f(a), alors $g \circ f$ est différentiable en a et :

$$d(g \circ f)(a) = dg(b) \circ df(a)$$
$$= dg(f(a)) \circ df(a).$$

• Si f est différentiable sur Ω et g est différentiable sur Ω' , alors $g \circ f$ est différentiable sur Ω .

Exemple 2.6 : retour sur la proposition 1.26 : caractérisation de la différentiabilité de f par ses fonctions coordonnées.

Corollaire 2.7 (Matrice jacobienne d'une composée)

On suppose $E = \mathbb{R}^p$, $F = \mathbb{R}^n$ et $G = \mathbb{R}^m$, f différentiable en $a \in \Omega$ et g différentiable en b = f(a), alors :

$$J_{g \circ f}(a) = J_g(f(a)) \times J_f(a).$$

Proposition 2.8 (Règle de la chaîne)

Soit \mathcal{B} et \mathcal{B}' des bases de E et F respectivement. On suppose f différentiable en $a \in \Omega$ et g différentiable en b = f(a). En notant f_1, \ldots, f_n les fonctions composantes de f dans la base \mathcal{B}' de F. Alors :

$$\forall j \in [1; p], \quad \frac{\partial (g \circ f)}{\partial x_j}(a) = \sum_{i=1}^n \frac{\partial f_i}{\partial x_j}(a) \frac{\partial g}{\partial y_i}(b)$$
$$= \sum_{i=1}^n \frac{\partial f_i}{\partial x_j}(a) \frac{\partial g}{\partial y_i}(f(a)).$$

Remarques 2.9: • $\frac{\partial g}{\partial u_i}(b) \in \underline{\qquad}$ et $\frac{\partial f_i}{\partial x_i}(a) \in \underline{\qquad}$.

• Si g est à valeurs réelles, on peut écrire la formule sous la forme :

$$\forall j \in [1; p], \quad \frac{\partial (g \circ f)}{\partial x_j}(a) = \sum_{i=1}^n \frac{\partial g}{\partial y_i} (f(a)) \frac{\partial f_i}{\partial x_j}(a).$$

Exemples 2.10 : Appliquer la formule dans chaque cas (on suppose les hypothèses vérifiées) :

1.
$$g(u,v) = f(x(u,v),y(u,v))$$
:

$$\frac{\partial g}{\partial u}(u,v) = \underline{\hspace{1cm}}$$

2.
$$g(t) = f(x(t), y(t))$$
:

$$g'(t) =$$

3.
$$g(x,y) = f(\varphi(x,y))$$
:

$$\frac{\partial g}{\partial x}(x,y) = \underline{\hspace{1cm}}$$

Exemple 2.11 : Changement de variable polaire : $g(r, \theta) = f(r\cos(\theta), r\sin(\theta))$ avec $f \in \mathcal{C}^1(\mathbb{R}^2)$. Alors d'après la règle de la chaîne, $g \in \mathcal{C}^1(]-\pi; \pi[\times \mathbb{R}_+^*)$ et :

$$\frac{\partial g}{\partial r}(r,\theta) = \cos(\theta) \times \frac{\partial f}{\partial x} \big(r \cos(\theta), r \sin(\theta) \big) + \sin(\theta) \times \frac{\partial f}{\partial y} \big(r \cos(\theta), r \sin(\theta) \big)$$

$$\frac{\partial g}{\partial \theta}(r,\theta) = -r\sin(\theta) \times \frac{\partial f}{\partial x} \big(r\cos(\theta), r\sin(\theta)\big) + r\cos(\theta) \times \frac{\partial f}{\partial y} \big(r\cos(\theta), r\sin(\theta)\big)$$

II. D Dérivation le long d'un arc

Proposition 2.12

Soit I un intervalle de \mathbb{R} d'intérieur non vide, $\gamma: I \longrightarrow \Omega$ et $f: \Omega \longrightarrow F$. Si γ est dérivable en $t_0 \in I$ et si f est différentiable en $a = \gamma(t_0)$, alors $f \circ \gamma$ est dérivable en t_0 et :

$$(f \circ \gamma)'(t_0) = df(a) \cdot \gamma'(t_0)$$
$$= df(\gamma(t_0)) \cdot \gamma'(t_0).$$

Exemple 2.13 : Cas particulier fondamental : $\gamma(t) = a + tv$ avec $a \in \Omega$ et $v \in E$. Si f est différentiable en x, alors $g: t \mapsto f(a+tv)$ est dérivable en 0 et :

$$g'(0) = df(a) \cdot v.$$

On retrouve la formule liant la dérivée partielle selon le vecteur \boldsymbol{v} est la différentielle.

Corollaire 2.14

On suppose $E=\mathbb{R}^p$ et I est un intervalle d'intérieur non vide.

Si $\gamma: t \mapsto (x_1(t), \dots, x_p(t))$ est une fonction dérivable sur I et à valeurs dans Ω est f différentiable sur Ω , alors $f \circ \gamma$ est dérivable sur I et :

$$\forall t \in I, \quad \frac{\mathrm{d}}{\mathrm{d}t} f(x_1(t), \dots, x_p(t)) = \sum_{i=1}^p x_i'(t) \frac{\partial f}{\partial x_i} (x_1(t), \dots, x_p(t)).$$

III Applications de classe C^1

III. A Définition et caractérisation

Définition 3.1

Une application $f:\Omega\longrightarrow F$ est dite de classe \mathcal{C}^1 sur Ω lorsqu'elle est différentiable sur Ω et que df est continue sur Ω .

Théorème 3.2

Soit $f: \Omega \longrightarrow F$.

L'application f est de classe \mathcal{C}^1 sur Ω si et seulement si les dérivées partielles relativement à une base de E exitent en tout point de Ω et sont continues sur Ω .

Exemple 3.3: Montrer que l'application

$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{si } (x,y) = (0,0) \end{cases}$$

est de classe C^1 sur \mathbb{R}^2 .

III. B Opérations sur les applications de classe C^1

Proposition 3.4 (Linéarité)

Soit f et g deux applications de Ω dans F, $\lambda, \mu \in \mathbb{R}$. Si f et g sont de classe \mathcal{C}^1 sur Ω , alors $\lambda f + \mu g$ est de classe \mathcal{C}^1 sur Ω .

Corollaire 3.5

L'ensemble $\mathcal{C}^1(\Omega, F)$ est un sous-espace vectoriel de $\mathcal{F}(\Omega, F)$.

Proposition 3.6

Soit F_1, \ldots, F_q, G des \mathbb{R} -espaces vectoriels de dimension finie, pour tout $i \in [1;q], f_i: \Omega \longrightarrow F_i$ et $M: F_1 \times \cdots \times F_q \longrightarrow G$ une application multilinéaire. Si f_1, \ldots, f_q sont de classe \mathcal{C}^1 en sur Ω , alors $g = M(f_1, \ldots, f_q)$ est de classe \mathcal{C}^1 sur Ω .

Corollaire 3.7

Les applications polynomiales sur E sont de classe \mathcal{C}^1 sur E.

Exemples 3.8: • L'application $f:(x,y,z) \in \mathbb{R}^3 \mapsto x^2y + xyz$ est polynomiale donc de classe \mathcal{C}^1 sur \mathbb{R}^3 , calculer ses dérivées partielles.

• L'application det : $\mathcal{M}_n(\mathbb{R}) \longrightarrow \mathbb{R}$ est polynomiale donc de classe \mathcal{C}^1 sur $\mathcal{M}_n(\mathbb{R})$.

Proposition 3.9 (Composition)

Soit Ω' un ouvert de F, $f:\Omega \longrightarrow F$ et $g:\Omega' \longrightarrow G$ telles que $f(\Omega) \subset \Omega'$. Si f est de classe C^1 sur Ω et g est de classe C^1 sur Ω' , alors $g \circ f$ est de classe C^1 sur Ω .

Exemple 3.10 : Soit f une fonction de classe \mathcal{C}^1 de $\Omega \longrightarrow \mathbb{R}^*$, montrer que $\frac{1}{f}$ est de classe \mathcal{C}^1 sur Ω et calculer sa différentielle.

Corollaire 3.11

Toute fonction rationnelle définie sur Ω est de classe \mathcal{C}^1 sur Ω .

Exemple 3.12: Montrer que $GL_n(\mathbb{R})$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$, puis que $M \mapsto M^{-1}$ est de classe \mathcal{C}^1 sur $GL_n(\mathbb{R})$.

Exemple 3.13: L'application

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} 0 & \text{si } (x,y) = (0,0); \\ \frac{x^4 + y^2}{x^2 + y^4} & \text{sinon.} \end{cases}$$

est-elle différentible en sur \mathbb{R}^2 ?

III. C Intégration le long d'un chemin

Théorème 3.14

Soit f une application de classe \mathcal{C}^1 de Ω dans F et γ une application de classe \mathcal{C}^1 de [0;1] dans Ω telle que $\gamma(0)=a$ et $\gamma(1)=b$. Alors:

$$f(b) - f(a) = \int_0^1 df(\gamma(t)) \cdot \gamma'(t) dt.$$

Exemple 3.15 : On suppose que le segment [a;b] est inclus dans Ω , on pose v=b-a et $\gamma: t \mapsto a + tv \in \mathcal{C}^1([0;1],\Omega)$. Si f est de classe C^1 sur Ω , alors :

$$f(b) - f(a) = \int_0^1 df(a + tv) \cdot v dt.$$

Théorème 3.16

On suppose Ω connexe par arcs et $f:\Omega\longrightarrow F$. L'application f est constante si et seulement si f est différentiable sur Ω et $\mathrm{d} f=0$.

IV Vecteurs tangents à une partie

IV. A Vecteurs tangents

(Définition 4.1)

Soit X une partie de E et $x \in X$. Un vecteur v de E est appelé **vecteur tangent** à X en x lorsqu'il existe $\varepsilon > 0$ et un arc γ défini sur $]-\varepsilon$; $\varepsilon[$, à valeurs dans X, dérivable en 0 tel que $\gamma(0) = x$ et $\gamma'(0) = v$.

Notation : L'ensemble des vecteurs tangents à X en x est noté : T_xX .

Exemple 4.2 : Graphe d'une fonction numérique définie sur un intervalle I de \mathbb{R} .

Soit $f: I \longrightarrow \mathbb{R}$ dérivable sur I. On considère l'arc $\gamma: x \mapsto (x, f(x))$. L'image de γ est donc le graphe de la fonction f et $\gamma'(x_0) = (1, f'(x_0))$

Remarques 4.3 : • Le vecteur nul est tangent à X en tout point x de X $(\gamma: t \mapsto \underline{\hspace{1cm}}).$

- Si $x \in \mathring{X}$, alors $T_x X =$
- L'ensemble T_xX est un cône de E c'est à dire une partie de E stable par multiplication par un scalaire : si $v \in T_xX$ et $\lambda \in \mathbb{R}$, alors $\lambda v \in T_xX$.

Attention : L'ensemble des vecteurs tangents n'est pas nécessairement un sousespace vectoriel de E.

Contre exemple 4.4:

$$\begin{array}{cccc} \gamma & : & \mathbb{R} & \longrightarrow & \mathbb{R}^2 \\ & t & \longmapsto & (\cos(2t), \sin(3t)) \end{array}$$

et \mathcal{C} l'image de γ .

En particulier pour $t_0 = \frac{\pi}{3}$ et $a = \gamma(t_0) = \left(-\frac{1}{2}, 0\right)$, alors $\gamma'(t_0) = -(\sqrt{3}, 3)$. Donc $\gamma'(t_0)\mathbb{R} \subset T_a\mathcal{C}$, mais $\gamma'(t_0)\mathbb{R} \neq T_a\mathcal{C}$.

IV. B Exemples d'espaces tangents

Exemple 4.5 : Soit X un sous-espace affine de E, on note F la direction de X. Pour tout $x \in H$, $T_xX = F$.

Exemple 4.6 : Soit E un espace euclidien, S la sphère de centre 0 et de rayon r>0 et $a\in S$.

Alors T_aS est l'hyperplan orthogonal au vecteur a.

Exemple 4.7: Soit Ω un ouvert de \mathbb{R}^2 , $f:\Omega \longrightarrow \mathbb{R}$ et

 $G = \{(x, y, f(x, y)); \text{ avec } (x, y) \in \Omega\}$ le graphe de f.

Si f est différentiable en $a=(x_0,y_0)\in\Omega$, alors l'ensemble de vecteurs tangents à G en $M=(x_0,y_0,f(x_0,y_0))$ est le plan vectoriel $\text{Vect}\left(\left(1,0,\frac{\partial f}{\partial x}(a)\right),\left(0,1,\frac{\partial f}{\partial y}(a)\right)\right)$.

IV. C Ensembles définis par une équation

Théorème 4.8

Soit $g: \Omega \longrightarrow \mathbb{R}$ une fonction de classe C^1 sur Ω , $k \in \mathbb{R}$ et $X = \{x \in \Omega \mid g(x) = k\}$. Si $x \in X$ et $dq(x) \neq 0$, alors $T_x X = \text{Ker}(dq(x))$.

Corollaire 4.9

Supposons que E est un espace euclidien, $g \in C^1(\Omega, \mathbb{R})$ et $X = \{x \in \Omega \mid g(x) = k\}$. Si $a \in X$ et $\nabla g(a) \neq 0$, alors $T_a X = (\nabla g(a))^{\perp}$.

Exemple 4.10 : Retour aux l'exemples 4.6 de la sphère euclidienne et 4.7.

V Fonctions de classe C^k

V. A Dérivées partielles d'ordre k

Dans cette partie $E = \mathbb{R}^p$ et $\mathcal{B} = (e_1, \dots, e_p)$ est la base canonique de \mathbb{R}^p .

(Définition 5.1)

Soit $f: \Omega \longrightarrow F$ et $i, j \in [1; p]$. Lorsque f admet une $i^{\text{ième}}$ dérivée partielle $\partial_i f$ sur Ω et que cette fonction dérivée partielle admet une dérivée partielle $\partial_j(\partial_i f)$ sur Ω , on dit que f admet une dérivée partielle d'ordre 2 par rapport aux variables x_i et x_j .

Pour tout $k \in \mathbb{N}^*$ et $i_1, \ldots, i_k \in [1; p]$, lorsque $\partial_{i_k}(\ldots(\partial_{i_2}(\partial_{i_1}f)))$ existe, on dit que f a une dérivée partielle d'ordre k par rapport aux variables x_{i_1}, \ldots, x_{i_k} .

Notation : La dérivée partielle d'ordre k par rapport aux variables x_{i_1}, \ldots, x_{i_k} est notée $\frac{\partial^k f}{\partial x_{i_k} \ldots \partial x_{i_k}}$ ou $\partial_{i_k} \ldots \partial_{i_1} f$ ou $\partial_{i_k, \ldots, i_1} f$.

(Définition 5.2)

Soit $k \in \mathbb{N}^*$, une application $f: \Omega \longrightarrow F$ est dite de classe \mathcal{C}^k sur Ω lorsque toutes ses dérivées partielles d'ordre k existent et sont continues sur Ω .

Une application f est dite de classe \mathcal{C}^{∞} sur Ω lorsqu'elle est de classe \mathcal{C}^k sur Ω pour tout $k \in \mathbb{N}^*$.

Notation : L'ensemble des fonctions de classe C^k de Ω dans F est noté $C^k(\Omega, F)$.

Exemples 5.3: • Les applications constantes sont de classe C^{∞} .

• Les applications linéaires sont de classe \mathcal{C}^{∞} .

V. B Théorème de Schwarz

$\begin{bmatrix} ext{Th\'eor\`eme 5.4 (Schwarz)} \end{bmatrix}$

Soit $f: \Omega \longrightarrow F$ une fonction de classe C^2 sur Ω . Alors:

$$\forall (i,j) \in [[1;p]]^2, \quad \frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}.$$

Exemple 5.5:

$$f : \mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} 0 & \text{si } (x,y) = (0,0) \\ \frac{xy(x^2 - y^2)}{x^2 + y^2} & \text{sinon.} \end{cases}$$

V. C Opérations sur les applications de classe C^k

Soit $k \in \mathbb{N}^* \cup \{+\infty\}$.

Proposition 5.6 (Linéarité)

Soit f et g deux applications de Ω dans F, $\lambda, \mu \in \mathbb{R}$. Si f et g sont de classe C^k sur Ω , alors $\lambda f + \mu g$ est différentiable sur Ω .

Corollaire 5.7

L'ensemble $\mathcal{C}^k(\Omega, F)$ est un sous-espace vectoriel de $\mathcal{F}(\Omega, F)$.

Proposition 5.8

Soit F_1, \ldots, F_q, G des \mathbb{R} -espaces vectoriels de dimension finie, pour tout $i \in [1;q], f_i : \Omega \longrightarrow F_i$ et $M: F_1 \times \cdots \times F_q \longrightarrow G$ une application multilinéaire. Si f_1, \ldots, f_q sont de classe \mathcal{C}^k en sur Ω , alors $g = M(f_1, \ldots, f_q)$ est de classe \mathcal{C}^k sur Ω .

Corollaire 5.9

Les applications polynomiales sur Ω sont de classe \mathcal{C}^{∞} sur Ω .

Proposition 5.10 (Composition)

Soit Ω' un ouvert de F, $f:\Omega \longrightarrow F$ et $g:\Omega' \longrightarrow G$ telles que $f(\Omega) \subset \Omega'$. Si f est de classe C^k sur Ω et g est de classe C^k sur Ω' , alors $g \circ f$ est de classe C^k sur Ω .

V. D Exemples d'équations aux dérivées partielles

1) Exemple fondamental

Exemple 5.11 : Déterminer les fonctions de classe \mathcal{C}^1 de \mathbb{R}^2 dans \mathbb{R} telles que :

$$\frac{\partial f}{\partial x} = 0.$$

2) Un petit peu plus sophistiqué

Exemple 5.12: Déterminer les fonctions de classe C^1 de \mathbb{R}^2 dans \mathbb{R} telles que :

$$\frac{\partial f}{\partial y} = 2yf.$$

3) Avec changement de variables

Exemple 5.13 : Soit $a \in \mathbb{R}$; déterminer les fonctions de classe C^1 de \mathbb{R}^2 dans \mathbb{R} telles que :

$$\frac{\partial f}{\partial x} - \frac{\partial f}{\partial y} = a$$

à l'aide du changement de variable u = x + y, v = x - y.

4) Une équation d'ordre 2 avec conditions au bord

Exemple 5.14: Déterminer les applications de classe C^2 de \mathbb{R}^2 dans \mathbb{R} telles que :

$$\begin{cases} \forall (x,y) \in \mathbb{R}^2, \frac{\partial^2 f}{\partial x \partial y}(x,y) = 2y + e^x; \\ \forall x \in \mathbb{R}, f(x,0) = x^2; \\ \forall y \in \mathbb{R}, f(0,y) = 3y. \end{cases}$$

5) Passage en coordonnées polaires

Exemple 5.15:

$$y\frac{\partial f}{\partial x} - x\frac{\partial f}{\partial y} = 0.$$

On posera $x = r \cos \theta$, $y = r \sin \theta$ après avoir précisé le domaine d'étude.