Adaptive Weighted Graph Approach to Generate Multimodal Cancelable Biometric Templates

Gurjit Singh Walia*, Gaurav Jain*, Nipun Bansal, Kuldeep Singh IEEE Transactions on Information Forensics & Security, 2019

Importance of Research

- Multibiometric systems fail to cater the security requirements of **adversary attacks**, which include both (1) template protection, and (2) robustness to presentation attacks.
- Template protection through cancelable approach often lack complete non-invertibility.
- Image quality often affects the performance
- Multibiometric systems restrict their applicability to certain biometric characteristics, with particular feature extraction methods.
- We propose to generate cancelable biometric templates by **feature fusion** of fingerprint, face, and iris, using an **adaptive weighted graph based approach**.

Proposed Multibiometric System

Fig. 1 Overview of the proposed multibiometric system. Normalized graphs constructed through key-based feature extraction is subjected to the proposed cross-diffusion to generate fused vectors. These fused vectors attain weights, determined adaptively using image quality, to generate a cancelable template.

Major Contributions

• <u>Key-based feature extraction</u>: is introduced, which not only achieves the generic nature of the proposed features with reduced dimension but also ensures high revocability.

• Adaptive Weighted Graph Fusion (AWGF): is proposed to achieve complete non-invertibility and robustness to presentation attacks.

A. Key-Based Feature Extraction

- Similarity between the input image and all the key images is computed to generate a graph with edge weights equivalent to similarity scores.
- Edge weights are computed using Eq. 2 for fingerprint, Eq. 5 for face, and Eq. 7 for iris.
- This graph is normalised using the anchor based normalisation (Eq. 9) to obtain generic features with reduced dimensions.

Algorithm 1: Key Based Generic Feature Extraction

```
Input: I^{(k)}, K_j^{(k)} \, \forall \, j \in \{1, 2, ..., n\}
Output: \mathbf{Q}^{(k)} \in \{\mathbf{Q}^{(p)}, \mathbf{Q}^{(f)}, \mathbf{Q}^{(i)}\}

1: for k \in \{p, f, i\} do

2: extract raw features for I^{(k)}, denoted as \delta^{(k)}

3: for j = 1 to n do

4: extract raw features for K_j^{(k)}, denoted as \psi_j^{(k)}

5: end for

6: end for

7: for k \in \{p, f, i\} do

8: for j = 1 to n do

9: construct \mathbf{G}_j^{(k)} using Eq. 2, Eq. 5, Eq. 7

10: normalise \mathbf{G}_j^{(k)} to \mathbf{Q}_j^{(k)} using Eq. 9

11: end for

12: end for
```

B. Adaptive Weighted Graph Fusion (AWGF)

- It comprises of:
 - 1. <u>Information Mining</u> Extract characteristic information and suppress outliers.
 - 2. <u>Cross Fusion</u> fuse complementary information in a non-linear fashion to achieve non-invertibility.
 - 3. **Quality Adaptive Unification** incorporate image quality metrics to prevent presentation attacks.

Algorithm 2 Adaptive Weighted Graph Fusion (AWGF)

Input: $\mathbf{Q}^{(k)} \in {\mathbf{Q}^{(p)}, \mathbf{Q}^{(f)}, \mathbf{Q}^{(i)}}, \kappa$ Output: Unified Template Γ

1: **for** $k \in \{p, f, i\}$ **do**

2: construct $\mathbf{S}^{(k)}$ from $\mathbf{Q}^{(k)}$ using Eq. 10 given κ

3: construct $\mathcal{R}^{(k)}$ from $\mathbf{Q}^{(k)}$ using Eq. 11

4: end for

5: **for** $k \in \{p, f, i\}$ **do**

6: compute $\mu^{(k)}$ from $\{\mathbf{S}^{(Z)}\}$, $\mathcal{R}^{(k)}$ using Eq. 12, Eq. 13

7: find $\lambda^{(k)}$ using Eq. 14, Eq. 15

8: end for

9: find Γ using Eq. 16

10: return Γ

Experimental Results & Discussions

- Proposed approach is evaluated over benchmark multimodal databases in Table I.
- Both quantitative and quantitative validation is performed:
 - Performance Validation:
 - Adaptivity Analysis
 - Fusion Method Comparison
 - Time & Space complexity
 - Privacy & Security Analysis:
 - Non-invertibility
 - Unlinkability
 - Revocability
 - Presentation attack analysis
 - etc...

TABLE I
MULTIMODAL DATABASES USED FOR EXPERIMENTATION.

Database	Fingerprint	Face	Iris						
DB-1	SDUMLA-HMT Multimodal Database [36]								
DB-2	MCYT [39]	CAS-PEAL R1 (expression) [40]	IITD PolyU Iris [42]						
DB-3	CASIA-Fingerprint V5 [37]	CASIA-FaceV5 [41]	CASIA Iris V3 (Interval) [43]						
DB-4	FVC 2006 [38]	CAS-PEAL R1 (accessories) [40]	CASIA Iris V3 (lamp) [43]						

Performance Validation

TABLE III

Performance Evaluation and Comparison. Average Decidability Index (DI), EER (%) and Recognition Index (RI) for fused templates using state-of-the-art feature fusion techniques at 95% Significance Level

Performance Metric Method/ Database	Decidability (DI)			EER (%)			Recogniton Index (RI)					
	DB-1	DB-2	DB-3	DB-4	DB-1	DB-2	DB-3	DB-4	DB-1	DB-2	DB-3	DB-4
CCA-FFS I (f + i) [45]	2.21 ± 0.2	2.78 ± 0.8	3.01 ± 0.8	3.11 ± 0.3	6.02 ± 1.1	6.09 ± 1.0	6.00 ± 1.1	5.71 ± 0.6	86.31 ± 2.4	76.31 ± 1.6	91.31 ± 2.3	83.58 ± 1.4
CCA-FFS II $(f + i)$ [45]	2.79 ± 0.1	2.66 ± 0.5	2.98 ± 0.9	2.96 ± 0.4	6.34 ± 0.9	7.00 ± 1.1	7.50 ± 1.6	6.02 ± 0.9	79.58 ± 1.3	84.04 ± 1.6	77.22 ± 1.3	82.58 ± 2.1
CCA-FFS I $(f + p)$ [45]	3.32 ± 0.3	2.60 ± 0.2	2.36 ± 0.8	2.15 ± 0.5	6.04 ± 0.4	6.46 ± 1.0	5.52 ± 1.1	6.49 ± 0.7	77.13 ± 1.6	76.40 ± 1.9	92.84 ± 1.3	88.87 ± 1.1
CCA-FFS II $(f + p)$ [45]	1.99 ± 0.6	2.46 ± 0.4	2.10 ± 0.9	2.25 ± 0.8	7.10 ± 1.0	7.02 ± 1.2	7.00 ± 1.3	6.09 ± 1.2	91.13 ± 1.9	84.13 ± 1.5	79.26 ± 1.5	89.88 ± 2.5
RDM $(f + i)$ [20]	3.37 ± 0.1	2.31 ± 0.8	2.28 ± 0.3	2.34 ± 0.3	4.55 ± 0.6	4.00 ± 0.3	5.83 ± 1.0	4.79 ± 1.1	85.28 ± 1.2	87.49 ± 1.6	90.40 ± 1.2	78.72 ± 2.2
RDM $(f + p)$ [20]	3.91 ± 0.7	2.42 ± 0.4	3.95 ± 0.5	3.19 ± 0.7	3.96 ± 0.4	6.02 ± 0.2	4.21 ± 0.5	4.67 ± 0.7	89.62 ± 1.4	88.84 ± 1.7	92.91 ± 1.8	87.75 ± 1.1
DCT $(f + i)$ [46]	2.43 ± 0.2	2.00 ± 0.4	2.22 ± 0.5	2.08 ± 0.1	5.97 ± 1.1	5.68 ± 0.5	6.22 ± 1.3	7.63 ± 0.7	94.66 ± 1.7	89.35 ± 1.3	92.66 ± 0.9	84.47 ± 0.7
DCT $(f + p)$ [46]	2.03 ± 0.4	2.05 ± 0.9	2.47 ± 0.4	2.90 ± 0.3	7.76 ± 1.5	5.96 ± 0.6	5.51 ± 1.1	6.17 ± 0.4	77.96 ± 1.9	93.31 ± 1.6	87.09 ± 1.4	83.59 ± 1.8
Ours (non-adaptive)	4.68 ± 0.5	5.09 ± 0.5	4.23 ± 0.4	3.97 ± 1.0	3.12 ± 0.3	1.19 ± 0.1	3.05 ± 0.8	3.44 ± 0.4	96.66 ± 2.1	98.09 ± 0.9	95.88 ± 2.0	91.78 ± 1.3
Ours (adaptive)	4.71 ± 0.3	5.38 ± 0.5	$\textbf{4.72} \pm \textbf{0.6}$	4.42 ± 1.1	2.03 ± 0.9	1.00 ± 0.1	1.52 ± 0.5	2.35 ± 0.7	97.98 ± 1.2	99.22 ± 0.5	96.66 ± 0.8	95.57 ± 1.0

The adaptive AWGF outperforms the non-adaptive version over all four datasets

Fig. 3. Detection-Error Tradeoff (DET) Curves, (a) DB-1, (b) DB-2, (c) DB-3, (d) DB-4.

Presentation Attack Analysis

- Experiments are conducted using publicly available benchmark databases.
- Attacks Presentation Classification Error Rate (APCER): ratio of presentation attacks wrongly classified as bona fide or real
- Bona Fide Presentation Classification Error Rate
 (BPCER): ratio of bona fide presentations wrongly
 classified as presentation attacks.

Fig. 9. DET curves for (a) non-adaptive and (b) adaptive AWGF for PAD analysis. $k^* = \text{spoofed}$, k = real, $\forall k \in \{p, f, i\}$

Conclusion & Future Directions

- We proposed a multibiometric system to achieve **high performance along with data protection**.
- Key images based generic feature extraction makes template revocability a facile procedure, with reduced feature dimension.
- AWGF ensures **complete non-invertibility and unlinkability** of generated biometric templates.
- The proposed system performs favorably against various **security and privacy attacks** and hence suitable for security-critical applications.
- In future, the proposed fusion approach can be improved to inherently adapt to varying security requirements through a dynamic thresholding mechanism.

References

- [20] H. Kaur and P. Khanna, "Random distance method for generating unimodal and multimodal cancelable biometric features," IEEE Trans. Inf. Forensics Security, vol. 14, 2019.
- [36] Y. Yin, L. Liu, and X. Sun, "Sdumla-hmt: a multimodal biometric database," in Chinese Conference on Biometric Recognition, 2011.
- [37] "Casia-fingerprintv5," http://biometrics.idealtest.org/.
- [38] R. Cappelli, M. Ferrara, A. Franco, and D. Maltoni, "Fingerprint verification competition 2006," Biometric Technology Today, 2007.
- [39] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez, M. Faundez Zanuy, V. Espinosa, A. Satue, I. Hernaez, J.-J. Igarza, C. Vivaracho et al., "Mcyt baseline corpus: a bimodal biometric database," IEE Proceedings Vision, Image and Signal Processing, vol. 150, no. 6, pp. 395–401, 2003.
- [40] W. Gao, B. Cao, S. Shan, X. Chen, D. Zhou, X. Zhang, and D. Zhao, "The cas-peal large-scale chinese face database and baseline evaluations," IEEE Trans. Syst., Man, Cybern. A, vol. 38, pp. 149–161, 2008.
- [41] "Casia-facev5," http://biometrics.idealtest.org/.
- [42] A. Kumar and A. Passi, "Comparison and combination of iris matchers for reliable personal authentication," Pattern recognition, vol. 43, 2010.
- [43] "Casia iris image database," http://biometrics.idealtest.org/.
- [45] Q.-S. Sun, S.-G. Zeng, Y. Liu, P.-A. Heng, and D.-S. Xia, "A new method of feature fusion and its application in image recognition," Pattern Recognition, vol. 38, no. 12, pp. 2437 2448, 2005.
- [46] M. I. Ahmad, W. L. Woo, and S. Dlay, "Non-stationary feature fusion of face and palmprint multimodal biometrics," Neurocomputing, 2016.