Partial Monitoring

Kartik (CS20S020)

Paper 1: Regret Minimization Under Partial Monitoring

2/31

Full-information setting

In each round $t = 1, 2, \ldots, T$

- **1** Algorithm chooses action $I_t \in \mathcal{X}$
- $oldsymbol{2}$ adversary choose outcome $y_t \in \mathcal{Y}$
- **3** Compute loss $\ell(I_t, y_t)$
- Algorithm receives feedback yt
 - ▶ Also, for each arm i where $\{i : i \neq I_t\}$, we get losses $\ell(i, y_t)$
- Regret

$$\mathbf{R}_{T} = \sum_{t=1}^{T} \ell(I_{t}, y_{t}) - \min_{i=1, 2, ..., N} \sum_{t=1}^{T} \ell(i, y_{t})$$

Hannan consistency

$$rac{{f R}_T}{T}
ightarrow 0$$
 as $T
ightarrow \infty$

Bandit setting

In each round $t = 1, 2, \ldots, T$

- **1** Algorithm chooses action $I_t \in \mathcal{X}$
- $oldsymbol{2}$ adversary choose outcome $y_t \in \mathcal{Y}$
- **3** Compute loss $\ell(I_t, y_t)$
- Algorithm receives feedback y_t
 - ▶ Also, for each arm i where $\{i: i \neq I_t\}$, we get losses $\ell(i, y_t)$
- Regret

$$\mathbf{R}_{T} = \sum_{t=1}^{T} \ell(I_{t}, y_{t}) - \min_{i=1, 2, ..., N} \sum_{t=1}^{T} \ell(i, y_{t})$$

Hannan consistency

$$rac{{f R}_T}{T}
ightarrow 0$$
 as $T
ightarrow \infty$

Partial Information

- In some games, the Algorithm can't see the environment's action.
- AKA., Partial Information
- Examples
 - Dynamic Pricing
 - Apple Tasting
 - Online Stochastic Shortest path
 - Network Routing
- A generalized version of the bandit problem?

Partial Monitoring: Framework

- \rightarrow **Parameters:** number of action N, number of outcomes M loss matrix $\mathbf{L} = [\ell(i,j)]_{N \times M}$ and feedback matrix $\mathbf{H} = [h(i,j)]_{N \times M}$.
- \rightarrow h is a known feedback function that assigns to each action-outcome pair, an element of a finite set $S = \{s_1, \dots, s_m\}$ of signals.

In each round t = 1, 2, ..., T

- **1** Based on probability distribution \mathbf{p}_t over the set of N actions, algorithm chooses draws an action $I_t \in \{1, \dots, N\}$.
- **2** Adversary chooses outcome $y_t \in \{1, \dots, M\}$ without revealing it
- **3** Algorithm incurs loss $\ell(I_t, y_t)$ and each action i incurs loss $\ell(i, y_t)$, where none of these values is revealed to the algorithm.
- Algorithm receives feedback $h(I_t, y_t)$

Example I: Dynamic Pricing

We're selling a stream of identical products such as books, tickets etc.

Assumption: No bargaining

- ullet Asking (or selling) price $I\in\mathcal{X}=[0,1]$
- Customer's price $y \in \mathcal{Y} = [0,1]$
- Feedback $h(I, y) = \mathbb{I}\{I \leq y\}$
- Loss

$$\ell(I, y) = \begin{cases} y - I & \text{if } y \ge I(\text{sell}), \\ c & \text{if } y < I(\text{no sell}) \end{cases}$$

for some c > 0

Example II: MAB

- action $I \in \mathcal{X} = \{1, 2, \dots, K\}$
- adversary's outcome $y \in \mathcal{Y} = [0, 1]^K$
- Loss = Feedback $h(I, y) = \ell(I, y) = y_I$
- ullet We can say: $\mathbf{H} = \mathbf{L}$

Question: Under what conditions on the loss and feedback matrices is it possible to achieve Hannan consistency?

Upper Bounds on the regret (Case 1: $\mathbf{L} = \mathbf{KH}$)

Algorithm:

Parameters: matrix of losses L, feedback matrix H, matrix K such that L = KH, real numbers $0 < \eta, \gamma < 1$.

Initialization: $\mathbf{w}_0 = (1, \dots, 1)$.

For each round $t = 1, 2, \dots$

(1) draw an action $I_t \in \{1, ..., N\}$ according to the distribution

$$p_{i,t} = (1 - \gamma) \frac{w_{i,t-1}}{W_{t-1}} + \frac{\gamma}{N} \qquad i = 1, \dots, N;$$

- (2) get feedback $h_t = h(I_t, Y_t)$ and compute $\tilde{\ell}_{i,t} = k(i, I_t)h_t/p_{I_t,t}$ for all $i = 1, \dots, N$;
- (3) compute $w_{i,t} = w_{i,t-1}e^{-\eta \tilde{\ell}(i,Y_t)}$ for all $i = 1, \dots, N$.

Upper Bounds on the regret (Case 1: $\mathbf{L} = \mathbf{KH}$)

Regret:

$$\mathbf{R}_{T} \leq 3T^{\frac{2}{3}} (k^*N)^{\frac{2}{3}} (\log_e N)^{\frac{1}{3}}$$

→ Loss estimates are unbiased.

$$\mathbb{E}_{t}[\tilde{\ell}(i, y_{t})] = \sum_{k=1}^{N} \frac{k(i, k)h(k, y_{t})}{p_{k, t}} p_{k, t} = \sum_{k=1}^{T} k(i, k)h(k, y_{t}) = \ell(i, y_{t})$$
 where $i = 1, \dots, N$.

ightarrow Upper bound with high probability

►
$$\mathbf{R}_T \leq 13(k^*N)^{\frac{2}{3}}(\log_e N)^{\frac{1}{3}}(n+1)^{\frac{2}{3}}\sqrt{\log_e \frac{1}{\delta}}$$

- \rightarrow Rate of $T^{-1/3}$ is significantly slower than the best rate $T^{-1/2}$ obtained in the "full information" case.
- ightarrow The price paid for having access to only some feedback except for the actual outcomes is the deterioration in the rate of convergence.

<□> <∄> < ½> < ½> ≥ ≪ <

Upper Bounds on the regret (Case 2: $\mathbf{L} \neq \mathbf{KH}$)

- Can we achieve similar Hannan consistent bounds when $L \neq KH$?
- An example:
 - ▶ Let M = N = 3

$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \text{ and } \mathbf{H} = \begin{bmatrix} a & b & c \\ d & d & d \\ e & e & e \end{bmatrix}$$

- Rank of H is at most two.
- An action i is said to be revealing for a feedback matrix H if all entries in the ith row of H are different.

Upper Bounds on the regret (Case 2: $\mathbf{L} \neq \mathbf{KH}$)

Algorithm:

Parameters: $0 \le \varepsilon \le 1$ and $\eta > 0$. Action r is revealing.

Initialization: $\mathbf{w}_0 = (1, \dots, 1)$.

For each round $t = 1, 2, \ldots$

- (1) draw an action J_t from $\{1, \ldots, N\}$ according to the distribution $p_{i,t} = w_{i,t-1}/(w_{1,t-1} + \cdots + w_{N,t-1})$ for $i = 1, \ldots, N$;
- (2) draw a Bernoulli random variable Z_t such that $\mathbb{P}[Z_t = 1] = \varepsilon$;
- (3) if $Z_t = 1$, then play the revealing action, $I_t = r$, observe Y_t , and compute

$$w_{i,t} = w_{i,t-1}e^{-\eta \ell(i,Y_t)/\varepsilon}$$
 for each $i = 1, ..., N$;

(4) otherwise, play $I_t = J_t$ and let $w_{i,t} = w_{i,t-1}$ for each i = 1, ..., N.

Regret:

$$\frac{1}{T} \left(\sum_{t=1}^{T} \tilde{\ell}(I_t, y_t) - \min_{i=1, 2, \dots, N} \sum_{t=1}^{T} \ell(i, y_t) \right) \leq 8T^{\frac{-1}{3}} \left(\log_e \frac{4N}{\delta} \right)^{\frac{1}{3}}$$

Label Efficient prediction: Lower Bounds

- Can rate of convergence be improved?
- ullet Algorithm can query the outcome y_t only a limited number of times.
- Let M = 2 and N = 3.

$$\mathbf{L} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \text{ and } \mathbf{H} = \begin{bmatrix} a & b \\ c & c \\ c & c \end{bmatrix}$$

- For $a \neq b \neq c$, any label-efficient prediction will have an obtained rate of convergence $\mathcal{O}(T^{\frac{-1}{3}})$.
- ullet For any randomized strategy, ${f R}_{T} \geq rac{T^{rac{2}{3}}}{7}$

- ◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q @

Paper2: The On-Line Shortest Path Problem Under Partial Monitoring

SSP

- Consider a finite DAG with a set of edges $E = \{e_1, \dots, e_{|E|}\}$ and a set of vertices V.
- Each edge $e \in E$ is an ordered pair of vertices (v_1, v_2) .
- A path from u to v is a sequence of edges e^1, \ldots, e^k such that $e^1 = (u, v_1), e^j = (v_{j-1}, v_j)$ for all $j = 2, \ldots k 1$, and $e^k = (v_{k-1}, v)$.
- Let $\mathcal{P} = \{i_1, \dots, i_N\}$.
- **Assumption:** Every edge in E is on some path from u to v and every vertex in V is an endpoint of an edge.

Defining regret for SSPs

- We say $e \in i$ if edge $e \in E$ belongs to the path $i \in P$.
- Path loss:

$$\ell(i,t) = \sum_{e \in i} \ell(e,t)$$

Cumulative loss of algorithm:

$$\hat{L}_t = \sum_{s=1}^t \ell(I_s, s) = \sum_{s=1}^t \sum_{e \in I_s} \ell(e, s)$$

- Path I_t is chosen randomly according to some distribution \mathbf{p}_t over all paths from u to v.
- Regret:

$$\mathbf{R}_T = rac{1}{T}(\hat{L}_t - \min_{i \in \mathcal{P}} L_{i,t})$$

◆ロト ◆個ト ◆ 差ト ◆ 差ト を 多くで

MAB setup for SSP

- At each time instance t, the algorithm chooses a path $I_t \in \mathcal{P}$ from u to v.
- The adversary assigns loss $\ell_{e,t} \in [0,1]$ to each edge $e \in E$, and the algorithm suffers loss $\ell_{I_t,t}$
- Algorithm only has access to the losses of the edges of chosen path.
- Auer et al. (2002) algorithm's based on exponential weighting:
 - $\mathbf{R}_T \le 5.5 K \sqrt{\frac{N \log_e \frac{N}{\delta}}{T}} + \frac{K \log_e N}{2T}$
 - ▶ where N is the total number of paths, and K is the length of the longest path.

Bandit algorithm for SSP

Parameters: real numbers $\beta > 0$, $0 < \eta, \gamma < 1$.

Initialization: Set $w_{e,0}=1$ for each $e\in E$, $\overline{w}_{t,0}=1$ for each $i\in \mathcal{P}$, and $\overline{W}_0=N$. For each round $t=1,2,\ldots$

(a) Choose a path I_t at random according to the distribution p_t on P, defined by

$$p_{i,t} = \begin{cases} (1-\gamma)^{\frac{W_{i,t-1}}{\overline{W}_{t-1}}} + \frac{\gamma}{|C|} & \text{if } i \in \mathcal{C} \\ (1-\gamma)^{\frac{W_{i,t-1}}{\overline{W}_{t-1}}} & \text{if } i \notin \mathcal{C}. \end{cases}$$

(b) Compute the probability of choosing each edge e as

$$q_{e,t} = \sum_{i:e \in i} p_{i,t} = (1 - \gamma) \frac{\sum_{i:e \in i} \overline{w}_{i,t-1}}{\overline{W}_{t-1}} + \gamma \frac{|\{i \in \mathcal{C} : e \in i\}|}{|\mathcal{C}|}.$$

(c) Calculate the estimated gains

$$g_{e,t}' = \begin{cases} \frac{g_{e,t} + \beta}{q_{e,t}} & \text{if } e \in I_t \\ \frac{\beta}{q_{e,t}} & \text{otherwise.} \end{cases}$$

(d) Compute the updated weights

$$w_{e,t} = w_{e,t-1}e^{\eta g'_{e,t}}$$

$$\overline{w}_{i,t} = \prod_{e \in i} w_{e,t} = \overline{w}_{i,t-1}e^{\eta g'_{i,t}}$$

where $g'_{i,t} = \sum_{e \in i} g'_{e,t}$, and the sum of the total weights of the paths

$$\overline{W}_t = \sum_{i \in \mathcal{P}} \overline{w}_{i,t}$$
.

Bandit algorithm for SSP

- Gains are estimated for each edge and not for each path.
- Improves upper bound on the performance with the number of edges in place of the number of paths.
- To ensure we visit every edge often, a set C of covering paths where for each edge $e \in E$, there is a path $i \in C$ such that $e \in i$ and $|C| \le |E|$.
- Regret is of the $\mathcal{O}(K\sqrt{|E|\log_e N/n})$ where where |E| is the number of edges of the graph, K is the length of the paths, and N is the total number of paths.

Label-efficient Bandit

- Algorithm only has access to the losses of all the edges of the chosen path for m requests.
- Motivated by cognitive packet network.
- Smart packets explore the network but don't carry any useful data.
- Data packets carry information along their paths
- Goal is to send data packets from source to destination with minimum delay of the chosen path.
- Data packets are α times larger than smart packets ($\alpha >> 1$), and ϵ is the proportion of time instances when smart packets are used, then $\frac{\epsilon}{(\epsilon + \alpha(1 \epsilon))}$ is the proportion of bandwidth sacrificed for well-informed routing decision.

Label-efficient Bandit: Algorithm and Regret Bound

Modified step:

(c') Draw a Bernoulli random variable S_t with $\mathbb{P}(S_t = 1) = \varepsilon$, and compute the estimated gains

$$g'_{e,t} = \begin{cases} \frac{g_{e,t} + \beta}{\epsilon q_{e,t}} S_t & \text{if } e \in I_t \\ \frac{\beta}{\epsilon q_{e,t}} S_t & \text{if } e \notin I_t \end{cases}.$$

Regret:

$$\mathbf{R}_{T} \leq \frac{27K}{2} \sqrt{\frac{|E|\log_{e}\frac{2N}{\delta}}{T\epsilon}}$$

• For
$$\epsilon = \left(m - \sqrt{2m\log_{\mathrm{e}}\frac{1}{\delta}}\right)/T$$
, then $\mathbf{R}_T \leq \mathcal{O}\left(K\sqrt{\frac{|E|\log_{\mathrm{e}}\frac{N}{\delta}}{m}}\right)$

Bandit algorithm for tracking the shortest path

• Goal is to perform as well as the best combination of paths which is allowed to change the path m times during time instance $t = 1, \ldots, T$.

•
$$L(\text{PART}(T, m, \mathbf{t}, \underline{\mathbf{i}})) = \sum_{j=0}^{m} \sum_{t=t_j}^{t_{j+1}-1} \sum_{e \in i_j} \ell_{e,t}$$

• "m-partition" prediction scheme: PART $(T, m, \mathbf{t}, \underline{\mathbf{i}})$ where the sequence of paths is partitioned into m+1 contiguous segments, and on each segment the scheme assigns exactly one of the N paths.

• Regret:

$$\mathbf{R}_{T} = \frac{1}{T} \left(\hat{L}_{T} - \min_{\mathbf{t}, \mathbf{i}} L(PART(T, m, \mathbf{t}, \mathbf{i})) \right)$$

$$\implies \mathbf{R}_{T} \leq \mathcal{O} \left(K \sqrt{\frac{m}{T} |C| \log_{e} N} \right)$$

Restricted MAB

- Algorithm receives access only to $\ell_{I_t,t}$.
- The algorithm alternates between choosing a path from a "basis" B
 to obtain unbiased estimates of the loss, and choosing a path
 according to exponential weighting based on these estimates.
- Path $i \in \mathcal{P}$ is a binary row vector with |E| components.
- Set of edges spans the set of paths.
 - But they aren't observable!
- ullet Alternatively, choose a subset of ${\mathcal P}$ that forms a basis
- Denote by B the $b \times |E|$ matrix whose rows b^1, \ldots, b^b represent basis paths and b is equal to maximum number of LI vector in $\{i : i \in P\}$.

Restricted MAB

- Let ℓ_t^E denote the column vector of edge losses $\{\ell_{e,t}\}_{e\in E}$ at time t.
- Let $\ell_t^B = (\ell_{b^1,t}, \dots, \ell_{b^b,t})^T$ be a b-dimensional column vector whose components are the losses of the paths in the basis B at time t.
- Expressing path $i \in \mathcal{P} : i = \sum_{k=1}^{b} \alpha_{b^k}^{(i,B)} b^k$.
- $\ell_{i,t} = \langle i, \ell_t^E \rangle = \sum_{k=1}^b \alpha_{b^k}^{(i,B)} \ell_{b^k t}$
- We query the loss of a (random) basis vector from time to time, and create unbiased estimates $\hat{\ell}_{b^k,t}$ of the basis paths losses $\ell_{b^k,t}$, which are then transformed into edge-loss estimates.
- Regret:

$$\mathbf{R}_{\mathcal{T}} \leq 9.1 K^2 b \left[K b \log_e \left(\frac{4bN}{\delta} \right) \right]^{\frac{1}{3}} \mathcal{T}^{\frac{-1}{3}}$$

 ←□→←□→←□→←□→←□→←□→←□→
 ★□→←□→←□→←□→□→□→□

 CS6046 Project (Kartik)
 Partial Monitoring
 May 30, 2021
 24/31

Paper3: Regret Bounds and Minimax Policies under Partial Monitoring

Previous results

- Aside: Number of rounds T is denoted as n. Number of arms: K.
- Known regret bounds

	$\inf \sup \overline{R}_n$		$\inf \sup \mathbb{E}R_n$	
	Lower bound	Upper bound	Lower bound	Upper bound
Full information game	$\sqrt{n \log K}$	$\sqrt{n \log K}$	$\sqrt{n \log K}$	$\sqrt{n \log K}$
Label efficient game	$n\sqrt{\frac{\log K}{m}}$	$n\sqrt{\frac{\log K}{m}}$	$n\sqrt{\frac{\log K}{m}}$	$n\sqrt{\frac{\log n}{m}}$
Bandit game	\sqrt{nK}	$\sqrt{nK \log K}$	\sqrt{nK}	$\sqrt{nK\log n}$
Bandit label efficient game	$n\sqrt{\frac{K}{m}}$	$n\sqrt{\frac{K\log K}{m}}$	$n\sqrt{\frac{K}{m}}$	$n\sqrt{\frac{K\log n}{m}}$

- $\sqrt{\log K}$ gap for the mini-max pseudo-regret in the bandit game as well as the label efficient bandit game.
- $\sqrt{\log n}$ gap for the mini-max expected regret in the bandit game as well as the label efficient bandit game.
- $\sqrt{\frac{\log n}{\log K}}$ gap for the mini-max expected regret in the bandit game as well as the label efficient bandit game.

Implicitly Normalized Forecaster (INF)

INF: a unified regret analysis in the four games.

INF (Implicitly Normalized Forecaster):

Parameters:

- the continuously differentiable function $\psi : \mathbb{R}^*_- \to \mathbb{R}^*_+$ satisfying (1)
- the estimates v_{i,t} of g_{i,t} based on the (drawn arms and) observed rewards at time t (and before time t)

Let p_1 be the uniform distribution over $\{1, \dots, K\}$.

For each round $t = 1, 2, \ldots$,

- Draw an arm I_t from the probability distribution p_t.
- (2) Use the observed reward(s) to build the estimate ν_t = (ν_{1,t},...,ν_{K,t}) of (g_{1,t},...,g_{K,t}) and let: V_t = ∑^t_{t=1}ν_t = (V_{1,t},...,V_{K,t}).
- Compute the normalization constant C_t = C(V_t).
- (4) Compute the new probability distribution $p_{t+1} = (p_{1,t+1}, \dots, p_{K,t+1})$ where

$$p_{i,t+1} = \psi(V_{i,t} - C_t).$$

Exponential Weighted Average (EWA) and Poly INF

• For $\Psi(x) = exp(\eta x) + \frac{\gamma}{K}$ and $exp(-\eta C(x)) = \frac{1-\gamma}{\sum_{i=1}^{K} exp(\eta x_i)}$, INF reduces to exponential weighted forecaster:

$$\mathbf{p}_{i,t+1} = (1 - \gamma) \frac{\exp(\eta V_{i,t})}{\sum_{j=1}^{K} \exp(\eta V_{i,t})} + \frac{\gamma}{K}$$

- For $\Psi(x) = \left(\frac{\eta}{-x}\right)^q + \frac{\gamma}{K}$, where q > 1, INF reduces to exponential weighted forecaster.
- Poly INF forecaster generates nicer probability updates than the exponentially weighted average forecasters as, for bandits games (label efficient or not), it allows to remove the extraneous log K factor in the pseudo-regret bounds and some regret bounds.

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Label efficient Games

- Number of queried reward is constrained either strictly or in expectation.
- Constraint on the expected number of queried reward vectors
 - ► EWA and Poly INF has bounds: $\bar{R}_n \le n \sqrt{\frac{\log K}{2m}}$
- Hard constraint on the expected number of queried reward vectors
 - ▶ Use high probability bounds as an intermediate step, we can get the $\mathbb{E}R_n$ for non-oblivious opponents, as such an approach gives stronger bounds than pseudo-regret.

29 / 31

Bandit Game

- Main result: By using the Poly INF, we obtain an upper bound of $\mathcal{O}(\sqrt{nK})$ for \bar{R}_n
 - $\implies \mathcal{O}(\sqrt{nK})$ for $\mathbb{E}\bar{R}_n$ for oblivious adversaries.
- In the general case (non-oblivious opponent), an upper bound of $\mathcal{O}(\sqrt{nK\log K})$ on $\mathbb{E}R_n$.
- Conjecture that this bound cannot be improved because opponent may take advantage of the past to make the algorithm pay a regret with the extra logarithmic factor.
- High probability bound holds for any confidence level.

Label-efficient Bandits and new regret bounds

- Expected number of queried rewards should be less or equal to m
- At each round, we draw a Bernoulli random variable w.p. $\frac{m}{n}$, to decide whether the gain of the chosen arm is revealed or not.

	$\inf \sup \overline{R}_n$	$\inf \sup \mathbb{E} R_n$	High probability
			bound on R_n
Label efficient game		$n\sqrt{\frac{\log K}{m}}$	$n\sqrt{\frac{\log(K\delta^{-1})}{m}}$
Bandit game with fully oblivious adversary	\sqrt{nK}	\sqrt{nK}	$\sqrt{nK}\log(\delta^{-1})$
Bandit game with oblivious adversary	\sqrt{nK}	\sqrt{nK}	$\sqrt{\frac{nK}{\log K}}\log(K\delta^{-1})$
Bandit game with general adversary	\sqrt{nK}	$\sqrt{nK\log K}$	$\sqrt{\frac{nK}{\log K}}\log(K\delta^{-1})$
L.E. bandit with deterministic adversary	$n\sqrt{\frac{K}{m}}$	$n\sqrt{\frac{K}{m}}$	$n\sqrt{\frac{K}{m}}\log(\delta^{-1})$
L.E. bandit with oblivious adversary	$n\sqrt{\frac{K}{m}}$	$n\sqrt{\frac{K}{m}}$	$n\sqrt{\frac{K}{m\log K}}\log(K\delta^{-1})$
L.E. bandit with general adversary	$n\sqrt{\frac{K}{m}}$	$n\sqrt{\frac{K\log K}{m}}$	$n\sqrt{\frac{K}{m\log K}}\log(K\delta^{-1})$