SCIENCES DE L'INGENIEUR

FONCTION ADAPTER – TRANSMETTRE - DOCUMENT RESSOURCE

1. Schéma fonctionnel

Rappel : quelque soit le type de la structure réalisant la fonction « adapter - transmettre » vous devez être capable de répondre aux questions suivantes pour chacune des entrées et des sorties :

Repère ?	
Type d'énergie ?	
Grandeurs physiques associées ?	
Puissance / rendement ?	
Lois entrée / sortie (relations liant les grandeurs physiques) ?	

2. Aspect matériel

Structure		Туре		Domaines d'utilisation	Avantages	Inconvénients	Caractéristiques d'entrée	Caractéristiques de sortie	Caractéristiques internes	Modèle de comportement (MODELICA)	
	nir un § par une	Le	Dialla	- Rotation transformée en translation	La manivelle entraîne la bielle quelle que soit sa position angulaire	Existence de deux points morts qui peuvent bloquer le système.	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P _s (W) Vitesse de translation : V _s (m/s) Effort en sortie : F _s (N)	Longueur de la bielle : L Longueur de la manivelle : R Course : c = 2R Rendement : $\eta = P_s / P_e$	2	
ent	es permettant d'obtenir ent qui est représenté pa fonction périodique	mouvement obtenu est sinusoïdal	Bielle- manivelle	- Translation transformée en rotation	La bielle entraine la manivelle	Dans certaines positions le mouvement n'est possible que grâce à l'inertie des solides en mouvement	Puissanced'entrée: P _e (W) Vitesse de translation : V _e (m/s) Effort en entrée : F _e (N)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en entrée : C_s (N.m)	Longueur de la bielle : L Longueur de la manivelle : R Course : $c = 2R$ Rendement : $\eta = P_s / P_e$		
Avec transformation de mouvement	Sytèmes perm mouvement qui e fonctio	Le mouvement obtenu est autre que sinusoïdal	Composit	- Rotation transformée en translation	La came provoque le mouvement du coulisseau	L'action de contact came / coulisseau doit être correctement positionnée et orientée par rapport au guidage du coulisseau.	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P _s (W) Vitesse de translation : V _s (m/s) Effort en sortie : F _s (N)	Rendement : $\eta = P_s / P_e$ Excentration de la came : e Course : c = 2e		
			Cames et exentriques	- Translation transformée en rotation	L'entrainement de la came par le coulisseau est possible	L'amplitude du mouvement de rotation possible est très faible	Puissanced'entrée: P _e (W) Vitesse de translation : V _e (m/s) Effort en entrée : F _e (N)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en entrée : C_s (N.m)	Rendement : $\eta = P_s / P_e$ Excentration de la came : e Course : c = 2e		
	nettant d'obtenir un mouvement résenté par une fonction non périodique		Vis-écrou	- Rotation transformée en translation	Permet d'obtenir un déplacement rectiligne lent à partir d'un angle d'inclinaison d'hélice α (du filet) de faible valeur	L'angle d'inclinaison d'hélice α doit être inférieur à 90° - ϕ ϕ = angle de frottement	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P _s (W) Vitesse de translation : V _s (m/s) Effort en sortie : F _s (N)	Rapport de transmission : $r = pas/2\pi$ Rendement : $\eta = P_s / P_e$		
		Le mouvement obtenu suit une loi		- Translation transformée en rotation	Il faut que l'angle d'inclinaison d'hélice α (du filet) soit grand (tournevis automatiques)	L'angle d'inclinaison d'hélice α (du filet) doit être supérieur à ϕ (angle de frottement)	Puissance d'entrée: P _e (W) Vitesse de translation : V _e (m/s) Effort en entrée : F _e (N)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m)	Rapport de transmission : $r = 2\pi/pas$ Rendement : $\eta = P_s/P_e$		
		linéaire	Pignon-	- Rotation transformée en translation	La transformation de mouvement se fait indéfféremment dans les 2		Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P _s (W) Vitesse de translation : V _s (m/s) Effort en sortie : F _s (N)	Rapport de transmission Rendement : $\eta = P_s / P_e$	₹ (•) ₽	
			crémaillère	- Translation transformée en rotation	sens pour un même mécanisme . Elle est réversible		Puissance d'entrée : P_e (W) Vitesse de translation : V_e (m/s) Effort en entrée : F_e (N)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m	Rapport de transmission Rendement : $\eta = P_s / P_e$		
	es permet est repré	Le mouvement obtenu suit		- Rotation transformée en translation	La transformation de mouvement se fait indéfféremment dans les 2	En pratique, le débattement angulaire du levier est limité à 30°	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P _s (W) Vitesse de translation : V _s (m/s) Effort en sortie : F _s (N)	Rendement : $\eta = P_s / P_e$ Longueur du levier : L Course : $c = 2L$		
	Sytème qui	une loi non- linéaire	oi Levier- Coulisse	- Translation transformée en rotation	sens pour un même mécanisme . Elle est réversible		Puissanced'entrée: P _e (W) Vitesse de translation : V _e (m/s) Effort en entrée : F _e (N)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en entrée : C_s (N.m)	Rendement : η = P _s / P _e Longueur du levier : L Course : c = 2L		

SCIENCES DE L'INGENIEUR - FONCTION ADAPTER – TRANSMETTRE - DOCUMENT RESSOURCE

tructui	re				Туре		Domaines d'utilisation	Avantages	Inconvénients	Caractéristiques d'entrée	Caractéristiques de sortie	Caractéristiques internes	Modèle de comportement (MODELICA)	
			permanents	Accouplement	Aucun désalignement possible	- à plateaux - à manchon goupillé - à douille biconique	Transmission de puissance entre 2 arbres parfaitement alignés	Homocinétiques	Aucune liberté de mouvement relatif	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m)	Rapport de réduction : $r = \Omega_s / \Omega_e$ Rendement : $\eta = P_s / P_e$		
			ements perm	nents élastiques i flexibles	Non flexible en torsion	- joint d'Oldham - à denture bombée - à soufflet	Transmission entre 2 arbres non parfaitement alignés	Amortissement des couples	Non homocinétiques hormis le joint de oldam	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m)	Rapport de réduction : $r = \Omega_s / \Omega_e$ Rendement : $\eta = P_s / P_e$	• 1 44-1-1-	
:	modification	ment	Accouplements	Accoupleme ou fle	Flexible en torsion	- à ressort - à membrane - à blocs élastiques				Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m)	Rapport de réduction : $r = \Omega_s / \Omega_e$ Rendement : $\eta = P_s / P_e$	- //-	
	s modi	Accouplement		Cardans et assimilés	Désalignement angulaire	- joint de cardan - joint tripode - joint à 4 billes	Pour désalignements durables et partiels	Homocinétique	Usure par fatigue des guidages	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m)	Rapport de réduction : $r = \Omega_s / \Omega_e$ Rendement : $\eta = P_s / P_e$	<u></u>	
Sans	Sans	Ac	temporaires	Embrayages		- à disques - coniques - centrifuges	Permet à l'utilisateur de disposer d'une commande extérieure pour accoupler ou désaccoupler	- Sécurité - Souplesse de la transmission		Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m)	Rapport de réduction : $r = \Omega_s / \Omega_e$ Rendement : $\eta = P_s / P_e$		
מ			Accouplements te	Freins		- à tambour - à disque - à bande	Dissipation de l'énergie cinétique par frottement mécanique	Organe de sécurité disposant d'une commmande extérieure	Nécessite dispositifs de sécurité et de maintenance	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m)	Rapport de réduction : $r = \Omega_s / \Omega_e$ Rendement : $\eta = P_s / P_e$		
Syot mation			Accon	Divers	Divers		- limiteurs de couple - roues libres - coupleurs - convertisseurs	Embrayage sans commande extérieure (organe de sécurité)	Autorégulé, pas de commande extérieure	Pas de maitrise extérieure sur la commande	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m)	Rapport de réduction : $r = \Omega_s / \Omega_e$ Rendement : $\eta = P_s / P_e$	
Sans craisso	Engrenages			Engrenages droits Engrenages coniques Roue et vis sans fin Trains d'engrenages simples Trains d'engrenages epicycloïdaux			- Puissances transmises très élevées - Position des arbres diverses	- Synchronisme - Précision	- Nécessite entr'axe précis - Lubrification nécessaire	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m)	Rapport de réduction : $r = \Omega_s / \Omega_e$ Rendement : $\eta = P_s / P_e$		
	uo		Roues et chaînes				Puissances transmises élevées	- Assez bon synchronisme - Précision	- Bruyante - Lubrification nécessaire	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s) Couple en entrée : C_e (N.m)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m)	Rapport de réduction : $r = \Omega_s / \Omega_e$ Rendement : $\eta = P_s / P_e$		
:	c modification		rroies	Courroies crantées			Puissances transmises assez élevées	- Entretien réduit - Vitesses angulaires constantes	Synchrnisme non parfait					
	Avec		Poulies et courro	Courroies striées			Puissances transmises modérées	- Flexibilité - Silencieuses	Gain économique moindre	Puissance d'entrée : P_e (W) Vitesse de rotation : Ω_e (rad/s)	Puissance de sortie : P_s (W) Vitesse de rotation : Ω_s (rad/s) Couple en sortie : C_s (N.m)	Rapport de réduction : $r = \Omega_s / \Omega_e$ Rendement : $\eta = P_s / P_e$		
				Courroies t	apézoïdales		Puissances transmises élevées	- Economique - Encombrement réduit	Rendement	Couple en entrée : C _e (N.m)				
			ď	Courroies plates		Puissances transmises faibles	- Grandes vitesses - Rendement - Silencieuses	- Faibles couples transmis						