

#### МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

# «Дальневосточный федеральный университет» (ДВФУ)

# ИНСТИТУТ МАТЕМАТИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Кафедра информатики, математического и компьютерного моделирования

### ОТЧЕТ

к лабораторной работе №1 по дисциплине «Вычислительная математика»

Направление подготовки 01.03.02 «Прикладная математика и информатика»

Выполнил студент гр. Б9120-01.03.02  $\frac{\text{Агличеев A.O.}}{(\Phi MO)} \frac{}{(\textit{nodnucb})}$ 

«<u>8</u>» <u>октября</u> 20<u>22</u> г.

## Содержание

| 1 | Задание 1 |                   |  |  |  |  |  |  |  |
|---|-----------|-------------------|--|--|--|--|--|--|--|
|   | 1.1       | Постановка задачи |  |  |  |  |  |  |  |
|   | 1.2       | Решение           |  |  |  |  |  |  |  |
| 2 | Задание 2 |                   |  |  |  |  |  |  |  |
|   | 2.1       | Постановка задачи |  |  |  |  |  |  |  |
|   | 2.2       | Решение           |  |  |  |  |  |  |  |

#### Задание 1 1

#### 1.1 Постановка задачи

Число X = 0.068147, все цифры которого верны в строгом смысле, округлите до трех значащих цифр. Для полученного числа  $X_1 \approx X$  найдите предельную абсолютную и предельную относительную погрешности. В записи числа  $X_1$ укажите количество верных цифр (в узком и широком смысле).

#### 1.2 Решение

Пусть X = 0.068147

Округлим данное число до трёх значащих цифр, получим число:

$$X_1 = 0.0681$$

Вычислим абсолютную погрешность:

$$\Delta X_1 = |X - X_1| = |0.068147 - 0.0681| = 0.000047$$

Определим границы абсолютной погрешности (предельную погрешность), округляя с избытком до одной значащей цифры:

$$\Delta_{X_1} = 0.00005$$

Предельная относительная погрешность составляет: 
$$\delta_{X_1} = \frac{\Delta_{X_1}}{|X_1|} = \frac{0.00005}{0.0681} = 0.0007 = 0.07\%$$

Укажем количество верных цифр в узком и широком смысле в записи числа  $X_1 = 0.0681$ .

Так как  $\Delta_{X_1}=0.00005\leq 0.00005,$  следовательно, в узком смысле верными являются все цифры числа  $X_1$ 

Так как  $\Delta_{X_1}=0.00005\leq 0.0001,$  следовательно, в узком смысле верными являются все цифры числа  $X_1$ 

## 2 Задание 2

## 2.1 Постановка задачи

Вычислите с помощью микрокалькулятора значение величины  $Z=\frac{(b-c)^2}{2a+b}$  при заданных значениях параметров  $a=12.762,\,b=0.453413$  и  $=0,290,\,$  используя «ручные» расчетные таблицы для пошаговой регистрации результатов вычислений, тремя способами:

- 1. по правилам подсчета цифр;
- 2. по методу строгого учета границ абсолютных погрешностей;
- 3. по способу границ.

Сравните полученные результаты между собой, прокомментируйте различие методов вычислений и смысл полученных числовых значений.

## 2.2 Решение

## 1. «Правила подсчёта цифр»

| a     | b     | c    | b-c           | $(b-c)^2$ | 2a    | 2a+b  | $\frac{(b-c)^2}{2a+b}$ |
|-------|-------|------|---------------|-----------|-------|-------|------------------------|
| 1.105 | 6.453 | 3.54 | 2.91 <b>3</b> | 8.49      | 2.210 | 8.663 | 0.980                  |

1.1. 
$$b - c = 6.453 - 3.54 = 2.913 \approx 2.913$$

1.2. 
$$(b-c)^2 = 2.913^2 = 8.485569 \approx 8.49$$

1.3. 
$$2a = 2 \cdot 1.105 = 2.21 \approx 2.210$$

1.4. 
$$2a + b = 2.210 + 6.453 = 8.663 \approx 8.663$$

1.5. 
$$\frac{(b-c)^2}{2a+b} = \frac{8.49}{8.663} = 0.98003001269 \approx 0.980$$

## 2. «Метод строгого учета границ абсолютных погрешностей»

| a         | 1.105         | $\Delta a$      | 0.0005 |
|-----------|---------------|-----------------|--------|
| b         | 6.453         | $\Delta b$      | 0.0005 |
| c         | 3.54          | $\Delta c$      | 0.005  |
| b-c       | 2.91          | $\Delta(b-c)$   | 0.0055 |
| $(b-c)^2$ | 8.47          | $\Delta(b-c)^2$ | 0.032  |
| 2a        | 2.210         | $\Delta(2a)$    | 0.001  |
| 2a+b      | 8.66 <b>3</b> | $\Delta(2a+b)$  | 0.0015 |
| Z         | 0.978         | $\Delta Z$      | 0.0039 |

2.1. 
$$b-c = 6.453 - 3.54 = 2.913 \approx 2.91$$
  
 $\Delta(b-c) = \Delta b + \Delta c = 0.0055$ 

2.2. 
$$(b-c)^2 = 2.91^2 = 8.4681 \approx 8.47$$
  
 $\Delta (b-c)^2 = |2(b-c)| \cdot \Delta (b-c) = 5.82 \cdot 0.0055 = 0.03201 \approx 0.032$ 

2.3. 
$$2a = 2 \cdot 1.105 = 2.21 \approx 2.210$$
  
 $\Delta(2a) = |(2a)'| \cdot \Delta a = 2 \cdot 0.0005 = 0.001$ 

2.4. 
$$2a + b = 2.210 + 6.453 = 8.663 \approx 8.663$$
  
 $\Delta(2a + b) = \Delta(2a) + \Delta(b) = 0.001 + 0.0005 = 0.0015$ 

2.5. 
$$\frac{(b-c)^2}{2a+b} = \frac{8.47}{8.663} = 0.97772134364 \approx 0.978$$
$$\Delta\left(\frac{(b-c)^2}{2a+b}\right) = \frac{(b-c)^2 \cdot \Delta(2a+b) + (2a+b) \cdot \Delta(b-c)^2}{(2a+b)^2} = 0.00386431744 \approx 0.0039$$

$$Z = 0.98 \pm 0.01$$

## 3. «Способ границ»

|           | НΓ             | ВГ             |
|-----------|----------------|----------------|
| a         | 1.1045         | 1.1055         |
| b         | 6.4525         | 6.4535         |
| c         | 3.535          | 3.545          |
| b-c       | 2.907 <b>5</b> | 2.918 <b>5</b> |
| $(b-c)^2$ | 8.453          | 8.518          |
| 2a        | 2.209 <b>0</b> | 2.2110         |
| 2a+b      | 8.661 <b>5</b> | 8.664 <b>5</b> |
| Z         | 0.9755         | 0.9834         |

3.1. 
$$H\Gamma_{b-c} = H\Gamma_b - B\Gamma_c = 6.4525 - 3.545 = 2.9075 \approx 2.9075$$
  
 $B\Gamma_{b-c} = B\Gamma_b - H\Gamma_c = 6.4535 - 3.535 = 2.9185 \approx 2.9185$ 

3.2. 
$$\mathrm{H}\Gamma_{(b-c)^2} = (\mathrm{H}\Gamma_{(b-c)})^2 = 2.907\mathbf{5}^2 = 8.45355625 \approx 8.45\mathbf{3}$$
  
 $\mathrm{B}\Gamma_{(b-c)^2} = (\mathrm{B}\Gamma_{(b-c)})^2 = 2.918\mathbf{5}^2 = 8.51764225 \approx 8.51\mathbf{8}$ 

3.3. 
$$H\Gamma_{2a} = (2H\Gamma_a) = 2 \cdot 1.1045 = 2.209 \approx 2.209\mathbf{0}$$
  
 $B\Gamma_{2a} = (2B\Gamma_a) = 2 \cdot 1.1055 = 2.211 \approx 2.209\mathbf{0}$ 

3.4. 
$$H\Gamma_{2a+b} = H\Gamma_{2a} + H\Gamma_{b} = 2.209\mathbf{0} + 6.4525 = 8.6615 \approx 8.661\mathbf{5}$$
  
 $B\Gamma_{2a+b} = B\Gamma_{2a} + B\Gamma_{b} = 2.211\mathbf{0} + 6.4535 = 8.6645 \approx 8.664\mathbf{5}$ 

3.5. 
$$H\Gamma_Z = \frac{H\Gamma_{(b-c)^2}}{B\Gamma_{(2a+b)}} = \frac{8.453}{8.6645} = 0.97559005135 \approx 0.9755$$
 $B\Gamma_Z = \frac{B\Gamma_{(b-c)^2}}{H\Gamma_{(2a+b)}} = \frac{8.518}{8.6615} = 0.983433243987 \approx 0.9834$ 

Вычисляя значения величины Z тремя разными способами, получили следующие результаты:

- 1.  $Z \approx 0.98$
- 2.  $Z = 0.98 \pm 0.01$
- 3. 0.975 < Z < 0.984