Домашно 2 – леки задачи

Задача 1. Да се напише програма, която прочита от клавиатурата цяло, положително число, не по-голямо от 3000, и извежда на екрана представянето му в римски цифри. Ако числото е извън границите, да се изведе текстът "Invalid number!". Например:

Вход	Изход
1990	MCMXC
5000	Invalid number!

Задача 2. Броени дни след обявяването на новите карти "FMIvalut" вече всеки знае за тях.

За съжаление на екипа, стоящ зад идеята, обаче на пазара веднага се появяват дубликати - други карти "преструващи се" на оригинала. Някои бледи копия, за които вече се знае, са - "Stani-IT-zaEdnaSedmica-valut", "BestITAcademyValut" и "PishiKodBezDosadnaMatematika-Valut".

Припомняме, че идентификаторът е едно цяло положително 9 цифрено число (например 123456789).

На вас се пада отговорната задача да напишете програма, разпознаваща дали една карта е оригинал или копие, използвайки следните правила за проверка на валидността на идентификатор на карта:

В цифрата, която се намира на мястото на 2-ката от примера е кодирана следната информация - тя представлява число, записано в **осмична** бройна система, съответно числото е съставено от 3 бита. Най-старшият от тях служи за представяне на цвета на очите на притежателя на картата - ако е вдигнат (1) - > тъмни очи, ако е (0) -> светли очи. Средният бит аналогично информира за цвета на косата (1) -> тъмна, (0) - светла.

Най-младшият бит определя пола на собственика (1) - > мъжки, (0) - > женски.

Примери:

7 - > 0111 - > мъж с тъмна коса и очи

4 - > *0*100 - > жена със светла коса и тъмни очи.

Ако засечете нередност в тази цифра (не може да бъде **осмично** число), то веднага съобщете, че картата е "копие" и приключете изпълнението на програмата.

Последната цифра на числото (9 в примера) е най-съществена за засичането дали една карта е истинска или фалшификат - тя е така наречената "check digit".

Нея ще пресмятаме като функция на всички останали цифри по следния алгоритъм:

- 1) Събираме цифрите на четните позиции, тази сума умножаваме по сумата на цифрите на нечетни места.
- 2) На резултата от 1), спрямо информацията за потребителя, прилагаме побитово **или** с някое от следните **шестнайсетични** числа *0x*CAFE, ако потребителят е с тъмна коса и тъмни очи; *0x*BABE ако потребителят е със светла коса и светли очи; *0x*COO1 в останалите случаи.
- 3) На полученото от 2) действаме с побитова операция **изключващо или** (XOR) с втори аргумент маска (но не за лице, ами битова) *0x*FACE, ако собственикът на картата е жена. Ако пък притежателят е мъж, то тогава втория операнд на операцията е *0x*CODE.
- 4) На резултата от операцията взимаме само най-старшите 4-бита, ако числото получено от тях е по-голямо от 10, то взимаме остатъка от делението му по модул 10.

След приложени последователно тези четири стъпки сме получили десетично число в интервала [0; 9]. Сравняваме това едноцифрено число с последната цифра на идентификатора на картата. Ако двете числа съвпадат, то програмата трябва да изведе "Authentic", в противен случай - да отпечата "Imitative".

Вашата програма трябва да прочете от стандартния си вход едно цяло положително 9 цифрено число - идентификатор на картата (Например 987 654 321). Може да разчитате, че входът е винаги коректен.

Спрямо описаните по-горе правила трябва да проверите дали картата е автентична и да изведете на стандартния изход само едната от думите "Authentic" или "Imitative".