The R-r- ρ Identity for Rectangles

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe the R-r- ρ identity for rectangles, its applications and the implications when it doesn't hold. The paper ends with "The End"

Introduction

The R-r- ρ identity for rectangles is simple to describe, has varied applications, and implications when the identity doesn't hold. In this paper, I describe the R-r- ρ identity for rectangles.

The R-r- ρ Identity for Rectangles

The rectangle was width w > 0 and height h > 0.

There exists a point at horizontal distance 0 < x < w from the top-left.

There exists a point at vertical distance 0 < y < h from the top-left.

Then

$$wh = xy + x(h - y) + y(w - x) + (w - x)(h - y)$$
(1)

Define

$$R = \frac{x}{w - x} \tag{2}$$

Define

$$r = \frac{y}{h - y} \tag{3}$$

Define

$$\rho = \frac{xy}{wh - xy} \tag{4}$$

Eliminating w and h from 1 2, 3 and 4, yields the R-r- ρ identity

$$(1+R)\rho = r(R-\rho) \tag{5}$$

Applications of the Identity

This identity serves as a check in

- $1. \ \,$ The measurement of areas in economics
- $2. \ \,$ The measurement of global stock market capitalization
 - 3. The measurement of weightage in a portfolio

Implications when the Identity Doesn't Hold

Whenever this identity $\mathbf{doesn't}$ \mathbf{hold} , there are $\mathbf{profound}$ implications for the real world.

The End