Coffee Shops Francisco

Looking for meaningful, unconventional and unique experiences

in San

Introduction

- Coffee in the U.S.
 - The average coffee drinker consumes **3.1 cups of coffee daily**
 - There are about **100 million coffee drinkers** in the U.S.
 - American workers spend about \$20 per week on coffee

• Why San Francisco?

"()... you'll find an impressive number of coffee startups in San Francisco, and a new generation of tech-obsessed coffee-drinkers reshaping the city with every blink." (**Drift**, **Volume 7: San Francisco**, **July 15, 2018**)

Which elements define a pleasurable or disappointing experiences?

Acquisition

Wrangling and Pre-processing

Why Bi-grams? We are looking for expressions as: Pour over, latte art, cold brew, best coffee, amazing view, quiet place, seat available, for instance.

A **threshold** is used for avoiding rescue expressions with lower relative frequency.

Initial findings: Analysis of the Dictionary

Initial findings: Sentiment Analysis of reviews

Could we measure how much **positive**, **negative** or **neutral** is the information of customer reviews?

100 0.75 0.50 -0.25 -0.50 -0.75 -1.00 1.0 2.0 3.0 4.0 5.0

How much the **polarity** and **subjectivity** change splitting reviews into sentences?

Initial findings: Period between reviews

How long take to write the next review for a specific coffee shop?

The difference between scores is delta score and the difference in days as the period between reviews

The mean for positive delta score is 5.6 days and for negative is 4.92 days

Period between all possible Delta Score:

SML: How feature vectors are built?

SML: Selecting features and output vectors

Output vectors

Statistical **test chi-squared** with a **confidence level of 5%** (SelectKBest)

ID	SPECS	SCORE	ID	SPECS	SCORE
15	food sentiment	5.413	9	price	1.068
10	place sentiment	3.445	3	barista	1.065
4	coffee sentiment	2.620	2	drinks	0.850
13	breakfast	2.499	5	go	0.815
8	ambient	2.215	14	snacks	0.663
11	baked	1.955	12	lunch	0.562
6	do	1.552	0	beans	0.165
7	out	1.171	1	roast	0.086

SML: Training, tunning and testing models

Model	AUC	Accuracy
XGBoost	83.46%	77.01%
Random Forest	79.71%	71.84%
Logistic Regression Random Forest	78.50%	71.26%
Gradient Boosting	80.22%	75.29%
Logistic Regression Gradient Boosting	82.16%	73.56%

XGBoost	TP Reviews	TN Reviews
PP Review	77	25
NP Review	15	57

UML: Agglomerative Clustering using all features

Bi-dimensional representation (PCA)

How **features** are **determining** these clusters?

UML: Dendrograms splitting features

At distance of 0.25 coffee features divide coffee shops in 6 groups

Cluster F higher roasting and beans sum, followed by B and D. Clusters A and E, is the lowest.

Cluster A, Le Marais, Art's Cafe, some bakeries among others

UML: Dendrograms splitting features

At distance of **0.15** coffee features divide coffee shops in **7 groups**

Cluster B higher Do values (feature about what to do in coffee shops): Matching Half, Red Door, Saint Frank, Sightglass (study, work) Cluster C one of the lowest Do values. Piccolo Petes Urban, Higher Ground Coffee (bar styles, going to share with friends)

Conclusion

- Blogs put more attention in:
 - o Drinks, baked items and decoration in their reviews.

- Features most strongly vinculated with the score of customer reviews:
 - Sentiments associated with drinks, place and food, breakfast, ambient, outside, baked elements, baristas, available of seats, what to do and price.
 - Less relationship: quality and variety of beans, roasting, little snacks and lunch options.

Conclusion

Supervised Learning:

 We evaluated different **Decision Trees** models to predict sentiment patterns in customer reviews. **XGBoost** got the best performance, with an AUC of 83.4% and an accuracy of 77 %.

Unsupervised Learning:

Using **Agglomerative Clustering** and **dendrograms** as visualization tool, we found clusters with coffee shops distinguishing styles, what to do there and how much interested is the people in talking about **beans**, **roasting**, **drinks**, **places** and **food**.

Resources

- Yelp API (FUSION) and web scraping from <u>Yelp</u>
- "28 of San Francisco's Essential Coffee Shops: Hot spots for your morning cup" (Ellen Fort and Caleb Pershan).

 Available here.
- "17 of San Francisco's Most Unique Coffee Shops (Katie Bush). Available here.
- "The Best SF Coffee Shops For Getting Work Done" (Taylor Abrams, Frida Garza, and Will Kamensky). Available here.
- Coffee gives me superpowers (Ryoko Iwata). Published on April 7, 2015
- DRIFT San Francisco (A. Goldberg, Velasco, Lee, E. Goldberg and Spicer). Published on July 15, 2018
- XGBoost: The Excalibur for Everyone (Raghu Raj Rai). Towards Data Science. Available here
- A Beginner's guide to XGBoost (George Seif). Towards Data Science. Available here
- Traditional Methods for Text Data (Dipanjan Sarkar). Towards Data Science. Available here
- Practical Statistics for Data Scientist (Peter Bruce and Andrew Bruce). O'REILLY, 2017.
- Text Classification is Your New Secret Weapon (Adam Geitgey, Medium). Available here
- A Practitioner's Guide to Natural Language Processing (Part I) Processing and Understanding Text (Dipanjan Sarkar). Towards Data Science. Available here