DATASET VARIABLES:

Variable Label	Description
plurality	Number of children born of the pregnancy
sex	Sex of child (1=Male, 2=Female)
mage	Age of mother (years)
weeks	Completed Weeks of Gestation (weeks)
marital	Marital status (1=married, 2=not married)
racemom	Race of Mother (0=Other Non-white, 1=White, 2=Black 3=American Indian,
	4=Chinese, 5=Japanese, 6=Hawaiian, 7=Filipino, 8=Other Asian or Pacific
	Islander)
hispmom	Mother of Hispanic origin (C=Cuban, M=Mexican, N=Non-Hispanic,
	O=Other and Unknown Hispanic, P=Puerto Rican, S=Central/South American,
	U=Not Classifiable)
gained	Weight gained during pregnancy (pounds)
smoke	0=mother did not smoke during pregnancy
	1=mother did smoke during pregnancy
drink	0=mother did not consume alcohol during pregnancy
	1=mother did consume alcohol during pregnancy
tounces	Weight of child (ounces)
tgrams	Weight of child (grams)
low	0=infant was not low birth weight
	1=infant was low birth weight
Premie	0=infant was not premature
	1=infant was premature
	premature defined at 36 weeks or sooner

QUESTION 1:

1. Please begin the assignment by deleting the items with missing values ("#NULL!") in it and do analysis only on the remained data set (hint: use the code provided in class). Please provide a frequency table for the percentage of low birth weights and a frequency table for the percentage of smokers. Create a summary table (mean, median, standard deviation, minimum, maximum) for the continuous variables of mage, weeks, and tounces.

Figure 1. Initial output of loading data.

Figure 2. Output data after deleting missing values

The FREQ Procedure							
LOW	Frequency	Percent	Cumulative Frequency	Cumulative Percent			
0	1290	91.55	1290	91.55			
1	119	8.45	1409	100.00			

The MEANS Procedure							
Variable	N	Mean	Std Dev	Minimum	Maximum		
MAGE	1409	26.7927608	6.0891510	13.0000000	43.0000000		
WEEKS	1409	38.6493967	2.6541672	22.0000000	45.0000000		
TOUNCES	1409	116.4407381	22.1255345	12.0000000	181.0000000		

SMOKE	Frequency	Percent	Cumulative Frequency	Cumulative Percent
0	1203	85.38	1203	85.38
1	208	14.62	1409	100.00

QUESTION 2:

[A.] Determine if there is sufficient evidence to conclude the mean age of mothers giving birth in North Carolina is over 25 years of age at the 0.05 level of significance.

NULL & ALTERNATIVE HYPOTHESIS:

 $H_0: \mu \le 25$ $H_a: \mu > 25$

The ">" demonstrates that it is a right-tailed test, for a single population mean.

ASSUMPTIONS:

Random Variable: the mean age of mothers giving birth in North Carolina.

TEST:

Using the P-value approach: p-value = 0.0001. The p-value is the area to the right of the sample mean. Test statistics: The critical value for a right-tailed test is $t_c = 1.645$. The rejection region is $R = \{t : t > 1.645\}$

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}} = \frac{26.7928 - 25}{6.0892/\sqrt{1409}} = 11.052$$

Since t = 11.05 is greater than t_c = 1.645, it can be concluded that the null hypothesis is rejected.

INTERPRETATION OF THE P-VALUE:

If H_0 is true, there is a 0.0001 probability that the mean age of mothers in North Carolina is 25 years. Because 0.0001 chance is small, the mean age of 25 years is unlikely to have happened randomly, therefore it is a rare event.

Compare α and the p-value: $\alpha = 0.05$; p-value = 0.0001; $\alpha >$ p-value

DECISION:

Since $\alpha > \text{p-value}$, reject H_0 .

This means that the hypothesis that $\mu = 25$ is rejected.

CONCLUSION:

At the 5% significance level, we conclude that the mean age of mothers in North Carolina is greater than 25 years. The sample data illustrates that there is sufficient evidence that the mean age of mothers in North Carolina is greater than 25 years.

[B.] Determine if there is sufficient evidence to conclude the mean weeks of gestation of mothers giving birth in North Carolina is below 39 weeks.

NULL & ALTERNATIVE HYPOTHESIS

$$H_0: \mu \ge 39$$
 $H_a: \mu < 39$

The "<" demonstrates that it is a left-tailed test, for a single population mean.

ASSUMPTIONS

Random Variable: the mean weeks of gestation of mothers giving birth in North Carolina.

TEST

Using the P-value approach: p-value = 0.0001. The p-value is the area to the right of the sample mean. Test statistics:

The critical value for a left-tailed test is $t_c = 1.645$. The rejection region is $R = \{t : t < -1.645\}$

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}} = \frac{38.6494 - 39}{2.6542/\sqrt{1409}} = -4.9583$$
Obs to 1 -1.64594

Since t =-4.95 is less than t_c = -1.645, it can be concluded that the null hypothesis is rejected.

INTERPRETATION OF THE P-VALUE:

If H_0 is true, there is a 0.0001 probability that the mean weeks of gestation in North Carolina greater than or equal to 39 weeks.

Compare α and the p-value: $\alpha = 0.95$; p-value = 0.0001; $\alpha >$ p-value

DECISION:

Since $\alpha > \text{p-value}$, reject H_0 .

This means that the hypothesis that $\mu \ge 39$ is rejected.

CONCLUSION:

At the 95% confidence interval level, we conclude that the mean weeks of gestation of mothers in North Carolina is less than 39 weeks. The sample data suggest that there is sufficient evidence that the mean weeks of gestation of mothers is less than 39 weeks.

[C]. Determine if there is sufficient evidence to conclude that the mean weight of babies born to mothers in North Carolina is above 7 lbs. (Note that there are 16 ounces in a pound.)

NULL & ALTERNATIVE HYPOTHESIS:

$$H_0: \mu \le 112 \ H_a: \mu > 112$$

The ">" demonstrates that it is a right-tailed test, for a single population mean.

ASSUMPTIONS:

Random Variable: the mean weight of babies born to mothers in North Carolina.

The TTEST Procedure Variable: TOUNCES N Mean Std Err Minimum Std Dev Maximum 1409 116.4 22.1255 0.5894 12.0000 181.0 5% CL Mean Std Dev 5% CL Std Dev 22.1255 116.4 22.1046 22.1570 Pr > t DF t Value <.0001

1.64591

TEST:

Using the P-value approach: p-value = 0.0001. The p-value is the area to the right of the sample mean. Test statistics: The critical value for a right-tailed test is $t_c = 1.645$. The rejection region is $R = \{t : t > 1.645\}$

$$t = \frac{\bar{X} - \mu}{s/\sqrt{n}} = \frac{116.4 - 112}{22.1255/\sqrt{1409}} = 7.465$$

Since t = 7.465 is greater than t_c = 1.645, it can be concluded that the null hypothesis is rejected.

INTERPRETATION OF THE P-VALUE:

If H_0 is true, there is a 0.0001 probability that the mean weight of babies born to mothers in North Carolina is less than or equal to 7 pounds / 112 ounces. Because 0.0001 chance is small, the mean weight of 7 pounds / 112 ounces is unlikely to have happened randomly, therefore it is a rare event. Compare α and the p-value: $\alpha = 0.05$; p-value = 0.0001; $\alpha > p$ -value

DECISION:

Since $\alpha > \text{p-value}$, reject H_0 .

This means that the hypothesis that $\mu \le 112$ is rejected.

CONCLUSION:

At the 95% confidence interval level, we conclude that mean weight of babies born to mothers in North Carolina is greater than 7 pounds / 112 ounces. The sample data illustrates that there is sufficient evidence that the mean weight of babies born to mothers in North Carolina is greater than 7 pounds / 112 ounces.

[D]. Construct a side-by-side boxplot for tounces for smokers and non-smokers. Comment on whether you believe you will reject or fail to reject the null hypothesis. Determine if there is sufficient evidence to conclude the mean tounces of smoking mothers is lower than the mean birth weight for non-smoking mothers.

COMMENT: Observing the box plot, it is seen clearly that the mean for when smoke value is 0, which implies that the mothers did not smoke during pregnancy have a mean weight that is higher than those who smoke during pregnancy. It is also seen that the maximum value of the weight of babies from non-smokers mothers is well above 150 in contrast to smoker mothers that have a maximum value around that 150. Therefore, I believe that we will reject the null hypothesis that mean ounces of smoking mothers is greater than or equal to the mean birth weight for non-smoking mothers.

NULL & ALTERNATIVE HYPOTHESIS:

 $H_0: \mu_{smoking} \ge \mu_{non-smoking}$ $H_a: \mu_{smoking} < \mu_{non-smokina}$

The two means demonstrates that it is a two-tailed test, for population mean.

ASSUMPTIONS:

 $\mu_{smoking}$ represents the population mean birth weight for smoking mothers.

 $\mu_{non-smoking}$ represents the population mean birth weight for non-smoking mothers.

Random Variable: the mean weight of babies born to smoking and non-smoking mothers in North Carolina

							DUNC						
SMOKE	Met	hod		N I	Mean	5	Std De	v	Std E	rr	Minim	um	Maximun
0			120	3	117.7	2	21.970	00	0.633	34	12.00	000	181.0
1			20	6	109.3	2	21.723	31	1.513	35	19.00	000	160.0
Diff (1-2)	Poc	oled		8	3794	2	21.934	2	1.65	39			
Diff (1-2)	Sat	terthwaite		8	3794				1.640	07			
SMOKE	Me	ethod	N	lean	59	6 C	L Mea	ın	Std	Dev	59	6 CL	Std Dev
0			1	17.7	11	7.6	11	7.7	21.6	9700	21.9	480	22.0043
1			1	09.3	10	9.2	10	9.4	21.	7231	21.6	912	21.8261
Diff (1-2)	Po	oled	8.3	3794	8.27	57	8.4	832	21.9	9342	21.9	135	21.9654
Diff (1-2)	Sa	tterthwaite	8.3	3794	8.27	65	8.4	824					
		Method		Vari	ances	,	DI	F	t Valu	e	Pr > t		
		Pooled		Equa	al		140	7	5.0	7	<.0001		
		Satterthwa	Satterthwaite Ur		ite Unequal		281.6	3	5.1	5.11 <.000	<.0001		
				Equ	ality	of V	/arian	ces					
		Method	1	Num [)F	Den	DF	F١	/alue	Pi	> F		
		Folded I	F	120	02		205		1.02	0.8	528		

TEST:

Using the P-value approach: p-value <0.0001. The p-value is the area to both sides of the sample mean. Test statistics:

The critical value for a two-tailed test is $t_c = 1.96$. The rejection region is $R = \{t : t > 1.96\}$ $t \ value = 5.07$

Since t = 5.07 is greater than t_c = 1.96, it can be concluded that the null hypothesis is rejected.

If H_0 is true, there is a 0.0001 probability that the mean weight of babies born to smoking mothers in North Carolina is greater than or equal to the mean weight of babies born to non-smoking mothers. Because 0.0001 chance is small, the equality of the two means is unlikely to have happened randomly, therefore it is a rare event.

Compare α and the p-value: $\alpha = 0.05$; p-value = 0.0001; $\alpha >$ p-value

DECISION:

Since $\alpha > \text{p-value}$, reject H_0 .

This means that the hypothesis that $\mu_{smoking} \ge \mu_{non-smoking}$ is rejected.

CONCLUSION:

At the 5% significance level, we conclude that the mean weight of babies born to smoking mothers in North Carolina is lesser than the mean weight of babies born to non-smoking mothers. The sample data illustrates that there is sufficient evidence that the mean weight of babies born to smoking mothers in North Carolina is greater than or equal to the mean weight of babies born to non-smoking mothers.

[E]. Determine if there is sufficient evidence to conclude the percentage of low birth weight

children in North Carolina is above 6%.

NULL & ALTERNATIVE HYPOTHESIS

 $H_0: p \le 0.06$ $H_a: p > 0.06$

The p demonstrates that it is a z-test for proportion.

ASSUMPTIONS:

Random Variable: p represents the population proportion of low birth weight of babies born to mothers in North Carolina.

Assume a significant level of 0.025.

TEST:

Using the P-value approach: p-value = 0.0001.

Test statistics:

The critical value for a right-tailed test is $z_c = 1.96$. The rejection region is R

 $= \{z: z > 1.96\}$

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.0845 - 0.06}{\sqrt{\frac{0.06(1 - 0.06)}{1409}}} = 3.872$$

Binomial Proportion Cumulative Cumulative LOW Frequency LOW = 1 Proportion 0.0845 1290 91.55 91.55 0.0074 ASE 95% Lower Conf Limit 0.0699 **Binomial Proportion** 95% Upper Conf Limit LOW = 0 **Exact Conf Limits** 0.0074 95% Lower Conf Limit 0.0705 95% Lower Conf Limit 0.9010 95% Upper Conf Limit 0.1002 95% Upper Conf Limit **Exact Conf Limits** 95% Lower Conf Limit 95% Upper Conf Limit 0.9295 One-sided Pr > Z Two-sided Pr > IZI 0.0001 Test of H0: Proportion = 0.06 Sample Size = 1409 135.2252 Sample Size = 1409

Obs	tc
1	1.64591

Since z = 3.872 is greater than $z_c = 1.96 @ 0.025$, it can be concluded that the null hypothesis is rejected.

If H_0 is true, there is a 0.0001 probability that the percentage of low birth weight children in North Carolina is lesser than or equal to 6%.

Compare α and the p-value: $\alpha = 0.025$; p-value = 0.0001; $\alpha >$ p-value

DECISION:

Since $\alpha > \text{p-value}$, reject H_0 .

This means that the hypothesis that $p \le 0.06$ is rejected.

CONCLUSION:

At the 0.025 level of significance level, we conclude that the percentage of low birth weight children in North Carolina is above 6%. The sample proportion illustrates that there is sufficient evidence that the percentage of low birth weight children in North Carolina is above 6%.

[F]. Determine if there is sufficient evidence to conclude the percentage of mothers who smoke in North Carolina is above 10%.

NULL & ALTERNATIVE HYPOTHESIS:

 $H_0: p \le 0.10 \quad H_a: p > 0.10$

The p demonstrates that it is a z-test for proportion.

ASSUMPTIONS:

Random Variable: p represents the population proportion of mothers who smoke in North Carolina.

TEST:

Using the P-value approach: p-value = 0.0001.

Test statistics:

The critical value for a right-tailed test is $z_c = 1.96$. The

rejection region is R = {z: z > 1.96}

$$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.1462 - 0.10}{\sqrt{\frac{0.10(1 - 0.10)}{1409}}} = 5.7806$$

Since z = 5.7806 is greater than z_c = 1.96, it can be concluded that the null hypothesis is rejected.

The FREQ Procedure							
SMOKE	Frequency	Percent	Cumulative Frequency	Cumulative Percent			
0	1203	85.38	1203	85.38			
1	206	14.62	1409	100.00			

SMOKE = 1 SMOKE = 0	0.0094
SE 0.0094 SE 0.0094 ASE 5% Lower Conf Limit 0.1278 5% Upper Conf Limit 0.1847	0.8538
.SE 0.0094 ASE 5% Lower Conf Limit 0.1278 95% Lower Conf Limit 0.1847	0.0094
5% Lower Conf Limit 0.1278 95% Lower Conf Limit 0.1847	
5% Upper Conf Limit 0.1647	
95% Upper Conf Limit	0.8353
33% Opper Com Emile	0.8722
xact Conf Limits Exact Conf Limits	
5% Lower Conf Limit 0.1282 95% Lower Conf Limit	0.8343
5% Upper Conf Limit 0.1657	
95% Upper Conf Limit	0.8718
Test of H0: Proportion = 0.1 Test of H0: Proportion	= 0.1
A SE under H0 0.0080	0.0080
Z 5.7810	
One-sided Pr > Z <.0001	.3167
	.0001
Two-sided Pr > Z < .0001	.0001

INTERPRETATION OF THE P-VALUE:

If H_0 is true, there is a 0.0001 probability that the percentage of mothers who smoke in North Carolina is lesser than or equal to 10%.

Compare α and the p-value: $\alpha = 0.05$; p-value = 0.0001; $\alpha >$ p-value

DECISION:

Since $\alpha > \text{p-value}$, reject H_0 .

This means that the hypothesis that $p \le 0.10$ is rejected.

CONCLUSION:

We conclude that the percentage of mothers who smoke in North Carolina is above 10%. The sample proportion illustrates that there is sufficient evidence that the percentage of mothers who smoke in North Carolina is above 10%.

[G]. Determine if there is sufficient evidence to conclude the percentage of low birth weight for smoking mothers is different than the percentage of low birth weight for non-smoking mothers.

NULL & ALTERNATIVE HYPOTHESIS:

 $H_0: p_{smoking} = p_{non-smoking}$

 $H_a: p_{smoking} \neq p_{non-smoking}$

The p demonstrates that it is a z-test for proportion.

ASSUMPTIONS:

Random Variable:

 $p_{smoking}$ represents the population proportion of low birth weight for smoking mothers.

 $p_{non-smoking}$ represents the population proportion of low birth weight for non-smoking mothers.

If the values do not include zero as a likely value of the population proportion difference, the difference would be significant at 0.05 level.

TEST:

Using the P-value approach:

From the Risk Difference test Table, we get these values. p-value = 0.0197; z-test statistics: -2.3325.

INTERPRETATION OF THE P-VALUE:

If H_0 is true, there is a 0.0197 probability that the percentage of low birth weight for smoking mothers is equal to the percentage of low birth weight for non-smoking mothers.

Compare α and the p-value: $\alpha = 0.05$; p-value = 0.0197; $\alpha >$ p-value

DECISION:

Since $\alpha > \text{p-value}$, reject H_0 .

This means that the hypothesis that $p_{smoking} = p_{non-smoking}$ is rejected.

Column 1 Risk Estimates								
Risk		Risk ASE		% ce Limits	Exact Confiden			
Row 1	0.9227	0.0077	0.9076	0.9378	0.9061	0.9372		
Row 2	0.8738	0.0231	0.8284	0.9191	0.8206	0.9159		
Total	0.9155	0.0074	0.9010	0.9301	0.8998	0.9295		
Difference	0.0489	0.0244	0.0011	0.0967				
	Difference is (Row 1 - Row 2)							

Column 2 Risk Estimates									
	Risk	ASE	95 Confiden		Exact Confiden				
Row 1	0.0773	0.0077	0.0622	0.0924	0.0628	0.0939			
Row 2	0.1262	0.0231	0.0809	0.1716	0.0841	0.1794			
Total	0.0845	0.0074	0.0699	0.0990	0.0705	0.1002			
Difference	-0.0489	0.0244	-0.0967	-0.0011					
	Difference is (Row 1 - Row 2)								

CONCLUSION:

At the 5% significance level, we conclude that the percentage of low birth weight for smoking mothers is different than the percentage of low birth weight for non-smoking mothers. The sample proportion illustrates that there is sufficient evidence percentage of low birth weight for smoking mothers is different than the percentage of low birth weight for non-smoking mothers.

[H]. Determine if there is sufficient evidence to conclude the percentage of low birth weight for smoking mothers is lower than the percentage of low birth weight for non-smoking mothers.

NULL & ALTERNATIVE HYPOTHESIS:

 $H_0: p_{smoking} \geq p_{non-smoking}$ $H_a: p_{smoking} < p_{non-smoking}$

The p demonstrates that it is a z-test for proportion.

Risk Difference Test							
H0: P1 - P2 = 0 Wald Method							
Risk Difference	0.0489						
ASE (H0)	0.0210						
Z	2.3325						
One-sided Pr > Z	0.0098						
Two-sided Pr > Z	0.0197						
Column 1 (LOW	(= 0)						

Column 1 Risk Estimates									
	Risk	ASE	95 Confiden		Exact Confiden				
Row 1	0.9227	0.0077	0.9076	0.9378	0.9061	0.9372			
Row 2	0.8738	0.0231	0.8284	0.9191	0.8206	0.9159			
Total	0.9155	0.0074	0.9010	0.9301	0.8998	0.9295			
Difference	0.0489	0.0244	0.0011	0.0967					

Column 2 Risk Estimates

0.0809

0.0899

-0.0967

Statistics for Table of SMOKE by LOW

Confidence Limits

0.1716

0.0990

-0.0011

Confidence Limits

0.1794

0.1002

0.0841

0.0705

Risk

0.0773

0.1262

0.0845

-0.0489

Row 2

Total

Difference

ASE

0.0231

0.0074

0.0244

ASSUMPTIONS:

Random Variable:

 $p_{smoking}$ represents the population proportion of low birth weight for smoking mothers.

 $p_{non-smoking}$ represents the population proportion of low birth weight for non-smoking mothers.

Assume significance level of 0.025.

TEST:

Using the P-value approach:

From the Risk Difference test Table, we get these values. p-value = 0.0098; z-test statistics: 2.3325

The critical value for a left-tailed test is $Z_C = 1.96$.

Statistic Value Prob 0.0197 Chi-Square 5.4408 1 Likelihood Ratio Chi-Square 4.9015 0.0268 Continuity Adj. Chi-Square 4.8265 0.0280 5.4367 0.0197 Mantel-Haenszel Chi-Square Phi Coefficient 0.0821 Contingency Coefficient 0.0820 Cramer's V 0.0821

Fisher's Exact Tes	s t
Cell (1,1) Frequency (F)	1110
Left-sided Pr <= F	0.9909
Right-sided Pr >= F	0.0172
Table Probability (P)	0.0081
Two-sided Pr <= P	0.0289

INTERPRETATION OF THE P-VALUE:

If H_0 is true, there is a 0.0098 probability that the percentage of low birth weight for smoking mothers is greater than and equal to the percentage of low birth weight for non-smoking mothers.

Compare α and the p-value: $\alpha = 0.05$; p-value = 0.0098; $\alpha >$ p-value

DECISION:

Since obtained $Z > Z_c$, reject H_0 .

This means that the hypothesis $p_{smoking} \ge p_{non-smoking}$ is rejected.

CONCLUSION:

At the 0.025 significance level, we conclude that the percentage of low birth weight for smoking mothers is less than the percentage of low birth weight for non-smoking mothers. The sample proportion illustrates that there is sufficient evidence percentage of low birth weight for smoking mothers is less than the percentage of low birth weight for non-smoking mothers.

[I]. Determine if there is sufficient evidence to conclude the percentage of low birth weight for mothers who did not consume alcohol during pregnancy lower than the percentage of low birth weight for mothers who did consume alcohol during pregnancy.

NULL & ALTERNATIVE HYPOTHESIS:

$$H_0: p_{non-alcohol} \ge p_{alcohol}$$

 $H_a: p_{non-alcohol} < p_{alcohol}$

The p demonstrates that it is a z-test for proportion.

ASSUMPTIONS:

Random Variable:

 $p_{alcohol}$ represents the population proportion of low birth weight for mothers who did consume alcohol. $p_{non-alcohol}$ represents the population proportion of low birth weight for mothers who did not consume alcohol.

Assume significance level of 0.025.

TEST:

Using Z-test.

From the Risk Difference test Table, we get these values: p-value = 0.3396; z-test statistics: 0.4136.

The critical value for a left-tailed test is $z_c = 1.96$.

Risk Difference	Test
H0: P1 - P2 = 0 Wal	d Method
Risk Difference	0.0408
ASE (H0)	0.0986
Z	0.4136
One-sided Pr > Z	0.3396
Two-sided Pr > Z	0.6792
Column 1 (LOW	= 0)
Column 2 Risk Es	timates
95	%

		Column	2 Risk Est	imates		
	Risk	ASE	95 Confiden		Exact Confiden	
Row 1	0.0842	0.0074	0.0697	0.0988	0.0702	0.1000
Row 2	0.1250	0.1169	0.0000	0.3542	0.0032	0.5265
Total	0.0845	0.0074	0.0699	0.0990	0.0705	0.1002
Difference	-0.0408	0.1172	-0.2704	0.1889		
	ı	Difference	e is (Row 1	- Row 2)		

If H_0 is true, there is a 0.3396 probability that the percentage of low birth weight for mothers who did not consume alcohol is greater than and equal to the percentage of low birth weight for mothers did consume alcohol.

Compare α and the p-value: $\alpha = 0.05$; p-value = 0.0098; $\alpha >$ p-value

DECISION:

Since obtained $Z > Z_c$, fail to reject H_0 .

This means that the hypothesis $p_{non-alcohol} \ge p_{alcohol}$ is not rejected.

CONCLUSION:

At the 0.025 significance level, we conclude that the percentage of low birth weight for mothers who did not consume alcohol is less than and equal to the percentage of low birth weight for mothers who did consume alcohol. The sample proportion illustrates that there is sufficient evidence percentage of low birth weight for mothers who did not consume alcohol is less than and equal to the percentage of low birth weight for mothers who did consume alcohol.

[J]. Determine if there is sufficient evidence to conclude the percentage of low birth weight has any relation with the race of mothers?

NULL & ALTERNATIVE HYPOTHESIS:

 H_0 : Percentage of low birth weight is not associated with races of mothers H_a : Percentage of low birth weight is associated with races of mothers

Since we want to check the independence of two variables, it is a Chi-square test for proportion.

ASSUMPTIONS:

There are 9 races of mothers: Other Non-White, White, Black, American Indian, Chinese, Japanese, Hawaiian, Filipino, Other Asian or Pacific Islander.

TEST:

Using Chi-square test.

From the Chi-square test Table, we get these values: p-value = 0.0432, df = 5, critical statistic at 5% = 11.070, chi-square = 11.45

Frequency			Tabl	e of LO	N by RAC	ЕМОМ		
Percent Row Pct		RACEMOM						
Col Pct	LOW	1	2	3	4	7	8	Total
	0	963 68.35 74.65 92.86	283 20.09 21.94 87.08	20 1.42 1.55 90.91	0.14 0.16 100.00	0.07 0.08 100.00	21 1.49 1.63 95.45	1290 91.55
	1	74 5.25 62.18 7.14	42 2.98 35.29 12.92	2 0.14 1.68 9.09	0 0.00 0.00 0.00	0.00 0.00 0.00	1 0.07 0.84 4.55	119 8.45
			005	20	_		22	1409
	Total	1037 73.60	325 23.07	22 1.56	0.14	0.07	22 1.56	
		73.60	23.07	1.56	0.14	0.07 EMOM		
	Sta Statistic Chi-Squa	73.60	23.07 or Table	of LOW	0.14 by RACE Va 5 11.44	0.07 EMOM lue P 478 0.0	1.56 rob	
	Statistic Chi-Squa Likelihoo	73.60 atistics f	23.07 or Table	of LOW	0.14 by RACE Va 5 11.44 5 10.82	0.07 EMOM lue P 178 0.00 225 0.00	1.56 rob 432 550	100.00
	Statistic Chi-Squa Likelihoo Mantel-Ha	73.60 atistics f	23.07 or Table	of LOW	0.14 by RACE F Va 5 11.44 5 10.82 1 0.58	0.07 EMOM lue P 178 0.00 225 0.00 383 0.4	1.56 rob 432 550	
	Statistic Chi-Squa Likelihoo Mantel-H:	73.60 atistics f	23.07 or Table Chi-Squ	of LOW	0.14 F by RACE F Va 5 11.44 5 10.82 1 0.58 0.09	0.07 EMOM lue P 478 0.00 225 0.00 3883 0.44	1.56 rob 432 550	
	Statistic Chi-Squa Likelihoo Mantel-Ha	73.60 atistics f re d Ratio aenszel icient ncy Coe	23.07 or Table Chi-Squ	of LOW	0.14 by RACE F Va 5 11.44 5 10.82 1 0.58	0.07 EMOM lue P 178 0.00 225 0.00 383 0.44 301	1.56 rob 432 550	

If H_0 is true, there is a 0.0432 probability that the percentage of low birth weight is not associated with races of mothers.

Compare α and the p-value: $\alpha = 0.05$; p-value = 0.0432; $\alpha >$ p-value

DECISION:

Since critical statistic < obtained chi-square statistic, reject H_0 .

This means that the hypothesis that percentage of low birth weight is not associated with races of mothers is rejected.

CONCLUSION:

At the 5% significance level, we conclude that the percentage of low birth weight is associated with races of mothers. The sample proportion illustrates that there is sufficient evidence that the percentage of low birth weight is associated with the races of mothers.

SAS PROGRAM SCRIPT

```
/* Load Data*/
FILENAME REFFILE '/home/u63530461/STATS3316MINIPROJ/ncbirth1450.csv';
/* import data*/
PROC IMPORT DATAFILE=REFFILE
    DBMS=CSV /* data extension*/
    OUT-birth; /* a name for you data, you can pick any name you like*/
   GETNAMES=YES;
RUN:
title 'MATH 3316-003 TERM PROJECT';
title2 'TEMITAYO ADEROUNMU - CHANDNI PATEL';
/*Deleting rows with missing values*/
data new birthdata;
    set birth;
    if cmiss(of _all_) then delete;
/*Creating frequency tables for the percentage of low birth weights and smokers*/
PROC FREQ DATA-new birthdata;
   TABLE LOW SMOKE;
RUN:
/*Creating a summary table*/
PROC MEANS DATA-new birthdata;
   VAR MAGE WEEKS TOUNCES;
/*Determine if there is sufficient evidence to conclude the mean age of mothers giving
birth in North Carolina is over 25 years of age at the 0.05 level of significance*/
/* run t-test */
/* alpha: significance level */
/* data: birth */
/* sides: U-right-sided, L-left-sideds, 2-two-sided */
/* h0: mu=25, null hypothesis, h1: mu>25, alternative hypothesis*/
proc ttest alpha=0.05 data=new birthdata sides=U h0=25;
   VAR MAGE:
run; /* run t-test*/
/*critical value in t-test*/
/* 1450 is the number of observations*/
data critical;
tc-tinv(0.95,1408); /* get the critical value at confidence level C-0.95, and the freedom
of t distribution is 1489*/
proc print data-critical; /* print the critical value*/
/*Determine if there is sufficient evidence to conclude the mean weeks of gestation of
mothers giving birth in North Carolina is below 39 weeks.*/
proc ttest alpha=0.95 data=new_birthdata sides=L h0=39;
   VAR WEEKS;
run;
data criticalb;
tc-tinv(0.05,1408); /* get the critical value at confidence level C-0.95, and the freedom
of t distribution is 1409*/
proc print data=criticalb; /* print the critical value*/
```

```
run;
/*Determine if there is sufficient evidence to conclude that the mean weight of babies
born to mothers in North Carolina is above 7 lbs*/
proc ttest alpha=0.05 data=new_birthdata sides=U h0=112;
   var tounces;
run:
/*Construct a side-by-side boxplot for tounces for smokers and non-smokers.*/
proc sgplot data-new birthdata;
    vbox tounces / category = smoke;
   title 'Tounces by smoke';
run:
/*Determine if there is sufficient evidence to conclude the mean tounces of smoking mothers
is lower than the mean birth weight for non-smoking mothers.*/
/* h0: mul>=mu2, null hypothesis, h1: mul<mu2, alternative hypothesis*/
proc ttest alpha-0.95 data-new birthdata sides-2 h0-0;
   CLASS SMOKE;
   VAR tounces;
run;
/*Determine if there is sufficient evidence to conclude the percentage of low birth weight
children in North Carolina is above 6%*/
/* np>=10 and n(1-p)>=10* normality test*/
proc freq data-new_birthdata;
   tables LOW/binomial(p=0.06 level=2);
/*Determine if there is sufficient evidence to conclude the percentage of mothers who
smoke in North Carolina is above 18%.*/
proc freq data-new birthdata;
   tables SMOKE/binomial(p=0.1 level=2);
run;
/*Determine if there is sufficient evidence to conclude the percentage of low birth weight
for smoking mothers is different than the percentage of low birth weight for non-smoking mothers.*/
proc freg data-new birthdata;
   tables SMOKE * LOW / riskdiff(equal var =null column =2);
run:
/*Determine if there is sufficient evidence to conclude the percentage of low birth weight
for smoking mothers is lower than the percentage of low birth weight for non-smoking
proc freq data-new birthdata;
   tables SMOKE * LOW / chisq riskdiff(equal var -null column -2 cl = exact);
run;
PROC FREQ DATA = NEW_BIRTHDATA;
    TABLES SMOKE * LOW / RISKDIFF( EQUAL VAR = NULL );
/* I */
PROC FREQ DATA = NEW_BIRTHDATA;
    TABLES DRINK * LOW / RISKDIFF( EQUAL VAR = NULL );
RUN:
/* J */
PROC FREQ DATA = NEW_BIRTHDATA;
   TABLES LOW * RACEMOM / CHISQ RISKDIFF;
```