4D TO 3D REDUCTION OF SEIBERG DUALITY FOR SU(N) SUSY GAUGE THEORIES WITH ADJOINT MATTER: A PARTITION FUNCTION APPROACH

CARLO SANA

29 GIUGNO 2015

Università degli Studi di Milano-Bicocca Scuola di Scienze Dipartimento di Fisica "G. Occhialini"

Dualità strong/weak coupling

Dualità di Seiberg

Riduzione dimensionale 4D ightarrow 3D

Dualità strong/weak coupling

Dualità di Seiberg

Riduzione dimensionale 4D ightarrow 3D

Dualità strong/weak coupling

Dualità di Seiberg

Riduzione dimensionale $4D \rightarrow 3D$

Dualità strong/weak coupling

Dualità di Seiberg

Riduzione dimensionale $4D \rightarrow 3D$

DUALITÀ STRONG/WEAK COUPLING

QFT A STRONG COUPLING

Relatività speciale

+ = Teoria quantistica dei campi (QFT)

Meccanica Quantistica

Metodi **perturbativi** utilizzabili a **weak coupling**: sviluppi in serie nella costante di accoppiamento (e.g. carica elettrica)

Gruppo di rinormalizzazione

Le costanti di accoppiamento variano in funzione della scala di energia: la teoria a bassa energia può fluire a strong coupling (e.g. confinamento in QCD)

Nessuno strumento teorico per studiarne la dinamica. → QCD su reticolo

ESISTE UNO STRUMENTO TEORICO PER TRATTARE

TEORIE A STRONG COUPLING?

Dualità strong/weak coupling

Legame fra le costanti di accoppiamento tra teorie duali:

$$g \sim \frac{1}{\tilde{q}} \longrightarrow \text{strong-weak coupling}$$

Si può calcolare una osservabile nella teoria fortemente accoppiata con tecniche perturbative ben note nella teoria duale.

Dualità strong/weak coupling

Legame fra le costanti di accoppiamento tra teorie duali:

$$g \sim \frac{1}{\tilde{q}} \longrightarrow \text{strong-weak coupling}$$

Si può calcolare una osservabile nella teoria fortemente accoppiata con tecniche perturbative ben note nella teoria duale.

ESEMPI DI DUALITÀ STRONG-WEAK COUPLING

- · Dualità EM di Dirac
- · Dualità di Montonen-Olive
- · Dualità di Seiberg
- \cdot AdS/CFT \rightarrow gauge/gravity duality
- · S-duality in teorie di stringa

Le dualità di Seiberg sono una generalizzazione della dualità di Dirac per teorie di gauge non-abeliane con supersimmetria.

ESEMPI DI DUALITÀ STRONG-WEAK COUPLING

- · Dualità EM di Dirac
- · Dualità di Montonen-Olive
- · Dualità di Seiberg
- AdS/CFT → gauge/gravity duality
- · S-duality in teorie di stringa

Le dualità di Seiberg sono una generalizzazione della dualità di Dirac per teorie di gauge non-abeliane con supersimmetria.

DUALITÀ ELETTRICA-MAGNETICA DI DIRAC

Dualità di Dirac

Aggiungendo sorgenti per il campo magnetico J^{μ}_{mag} ottengo una invarianza \mathbb{Z}_2 delle equazioni di maxwell sotto la trasformazione

$$\left(\textit{E}^{\textit{i}},\textit{B}^{\textit{i}}\right) \longrightarrow \left(\textit{B}^{\textit{i}},-\textit{E}^{\textit{i}}\right) \qquad \left(\textit{J}^{\mu}_{\textit{el}},\textit{J}^{\mu}_{\textit{mag}}\right) \longrightarrow \left(\textit{J}^{\mu}_{\textit{mag}},-\textit{J}^{\mu}_{\textit{el}}\right) \quad \textit{J}^{\mu} = \left(\rho,\textit{J}^{\textit{i}}\right)$$

Unendo la dualità EM alla Meccanica Quantistica si ottiene una condizione di quantizzazione della carica elettrica

$$eg = 2\pi\hbar n$$

Carica elettrica e magnetica sono inversamente proporzionali.

dualità strong/weak coupling

DUALITÀ ELETTRICA-MAGNETICA DI DIRAC

Dualità di Dirac

Aggiungendo sorgenti per il campo magnetico J^μ_{mag} ottengo una invarianza \mathbb{Z}_2 delle equazioni di maxwell sotto la trasformazione

$$\left(\textit{E}^{\textit{i}},\textit{B}^{\textit{i}}\right) \longrightarrow \left(\textit{B}^{\textit{i}},-\textit{E}^{\textit{i}}\right) \qquad \left(\textit{J}^{\mu}_{\textit{el}},\textit{J}^{\mu}_{\textit{mag}}\right) \longrightarrow \left(\textit{J}^{\mu}_{\textit{mag}},-\textit{J}^{\mu}_{\textit{el}}\right) \quad \textit{J}^{\mu} = \left(\rho,\textit{J}^{\textit{i}}\right)$$

Unendo la dualità EM alla Meccanica Quantistica si ottiene una condizione di quantizzazione della carica elettrica

$$eg = 2\pi\hbar n$$

Carica elettrica e magnetica sono inversamente proporzionali.

dualità strong/weak coupling

DUALITÀ DI SEIBERG

CARATTERISTICHE GENERALI DELLA DUALITÀ DI SEIBERG

Dualità di Seiberg e Kutasov-Schwimmer-Seiberg (KSS)

Teoria elettrica \longleftrightarrow Teoria magnetica

Teorie di *Supersymmetric QCD* minimali con gruppo *SU(N)*. Dualità KSS ha un ulteriore campo di materia nell'aggiunta.

Uguali

Funzioni di correlazione Simmetrie Globali (fisiche) Struttura dei vuoti (susy)

Diverse

Particelle (mesoni) Costanti di accoppiamento Dinamica (numero di colori)

Dualità a basse energie, ad alte energie le due teorie sono fisicamente distinguibil

CARATTERISTICHE GENERALI DELLA DUALITÀ DI SEIBERG

Dualità di Seiberg e Kutasov-Schwimmer-Seiberg (KSS)

Teoria elettrica \longleftrightarrow Teoria magnetica

Teorie di *Supersymmetric QCD* minimali con gruppo *SU(N)*. Dualità KSS ha un ulteriore campo di materia nell'aggiunta.

Uguali

Funzioni di correlazione Simmetrie Globali (fisiche) Struttura dei vuoti (susy)

Diverse

Particelle (mesoni) Costanti di accoppiamento Dinamica (numero di colori)

Dualità a basse energie, ad alte energie le due teorie sono fisicamente distinguibili

dualità di seiberg in 3d

Simili a teorie 4D $\mathcal{N}=1$ ma con alcune differenze Differenze delle teorie di campo 3D $\mathcal{N}=2$

- · ulteriori simmetrie: in 4D no simmetria assiale e topologica
- diverso contenuto di materia: in 3D i gluoni hanno anche una partner scalare
- uno spazio dei moduli (vuoti supersimmetrici) con un branch aggiuntivo

RIDUZIONE DIMENSIONALE 4D ightarrow 3D

$4D \longrightarrow 3D$: METODO NÄIVE

Riduzione naturale: $r \rightarrow 0$

Si compattificano le teorie su un cerchio di raggio r:

$$\mathbb{R}^4 \longrightarrow \mathbb{R}^3 \times \mathbb{S}^1$$

Si ignora la dinamica sul cerchio e si manda $r \to 0$. Si ottengono due teorie che non sono duali fra loro

Riduzione corretta: r finito

La finitezza del cerchio modifica la dinamica e impone vincoli tipici della teorie 4D (anomalie), generati dal superpotenziale η .

Si scende a energie $\ll \frac{1}{r}$: la dinamica sul cerchio si disaccoppia.

RIDUZIONE DUALITÀ KSS

Si possono rimuovere questi vincoli con un particolare RG flow. Inoltre, si riesce a generare la simmetria assiale (assente in 4D).

Si è in grado di ridurre la dualità KSS con tecniche standard di QFT solo se si introduce una perturbazione al potenziale.

Per ottenere la dualità 3D standard è necessario assumere che rimuovendo la deformazione si ottenga lo stesso risultato, ma tutt'ora non ci sono argomentazioni teoriche a riguardo.

HO MODO DI VERIFICARE SE QUESTA INTUIZIONE È

CORRETTA?

RIDUZIONE DELLA DUALITÀ SULLA

FUNZIONE DI PARTIZIONE

INDICE SUPERCONFORME IN 4D E FUNZIONI DI PARTIZIONE IN 3D

Si calcola l'indice superconforme I_{el} & I_{mag} : conta i multipletti BPS corti su $\mathbb{R}^3 \times \mathbb{S}^1$.

Esso è una quantità che è uguale per teorie duali.

Inoltre, nel limite $r \to 0$ l'indice si riduce alla funzione di partizione della teoria in 3D con superpotenziale η .

Indice superconf. funzioni gamma ellittiche Γ_e Funz. di partiz. funzioni gamma iperboliche Γ_h

Identità matematiche: $\Gamma_e \stackrel{r \to 0}{\longrightarrow} \Gamma_h$

4D:
$$I_{el} = I_{mag}$$

 $r \rightarrow 0 \qquad \downarrow \qquad \downarrow$
3D: $Z_{el}^{\eta} = Z_{mag}^{\eta}$

INDICI E FUNZIONI DI PARTIZIONE

La dualità in 4D (fisicamente) e identità integrali (matematicamente) dimostrano l'identità fra gli indici in 4D.

Le funzioni di partizione in 3D con superpotenziale η sono uguali grazie all'identità degli indici in 4D

INDICI E FUNZIONI DI PARTIZIONE

La dualità in 4D (fisicamente) e identità integrali (matematicamente) dimostrano l'identità fra gli indici in 4D.

Le funzioni di partizione in 3D con superpotenziale η sono uguali grazie all'identità degli indici in 4D

FLOW VERSO UNA TEORIA SENZA SUPERPOTENZIALE η

Con questo metodo non è necessario introdurre una deformazione , a differenza che in teoria di campo.

Utilizzando una identità matematica fra gamma iperboliche Γ_h si ottengono gli stessi singoletti trovati in teoria di campo con la deformazione.

Il nostro lavoro è una verifica indipendente dei risultati ottenuti in teoria di campo, senza fare assunzioni che non si è in grado di giustificare.

La riduzione attraverso la funzione di partizione non era presente in letteratura per il caso SU(N).

L'identità fra le due funzioni di partizione $Z_{el} = Z_{mag}$ porta a una nuova identità integrale tra funzioni iperboliche Γ_h non ancora dimostrate matematicamente.

Il nostro lavoro è una verifica indipendente dei risultati ottenuti in teoria di campo, senza fare assunzioni che non si è in grado di giustificare.

La riduzione attraverso la funzione di partizione non era presente in letteratura per il caso SU(N).

L'identità fra le due funzioni di partizione $Z_{el} = Z_{mag}$ porta a una nuova identità integrale tra funzioni iperboliche Γ_h non ancora dimostrate matematicamente.

VERIFICA DEL PROCEDIMENTO IN TEORIA DI CAMPO

Il nostro lavoro è una **verifica indipendente** dei risultati ottenuti in teoria di campo, senza fare **assunzioni** che non si è in grado di giustificare.

La riduzione attraverso la funzione di partizione non era presente in letteratura per il caso SU(N).

L'identità fra le due funzioni di partizione $Z_{el}=Z_{mag}$ porta a una nuova identità integrale tra funzioni iperboliche Γ_h non ancora dimostrate matematicamente.

BIBLIOGRAFIA

- N. Seiberg, Electric magnetic duality in supersymmetric non Abelian gauge theories, Nucl. Phys. **B435** (1995) 129–146, [hep-th/9411149].
- D. Kutasov and A. Schwimmer, On duality in supersymmetric Yang-Mills theory, Phys.Lett. **B354** (1995) 315–321, [hep-th/9505004].
- O. Aharony, IR duality in d = 3 N=2 supersymmetric USp(2N(c)) and U(N(c)) gauge theories, Phys.Lett. **B404** (1997) 71–76, [hep-th/9703215].
- P. Agarwal, A. Amariti, A. Mariotti, and M. Siani, BPS states and their reductions, JHEP 1308 (2013) 011, [arXiv:1211.2808].
- H. Kim and J. Park, Aharony Dualities for 3d Theories with Adjoint Matter, JHEP 1306 (2013) 106, [arXiv:1302.3645].
- O. Aharony, S. S. Razamat, N. Seiberg, and B. Willett, 3d dualities from 4d dualities, JHEP 1307 (2013) 149, [arXiv:1305.3924].
- K. Nii, 3d duality with adjoint matter from 4d duality, JHEP **1502** (2015) 024, [arXiv:1409.3230].
- A. Amariti and C. Klare, A journey to 3d: exact relations for adjoint SQCD from dimensional reduction, arXiv:1409.8623.