2018-03-08 Priority Queues

Thursday, March 8, 2018 8:54 AM

Hackathon: lumberhacks.org

Binary Heaps

- Rules:
 - o A complete binary tree
 - o All things below a current node are "less important" than that node

Adding an element to a binary heap

- The new item goes to the bottom-right most empty slot
 - o Maintains completeness rule
- Let CurrentNode = this newly inserted node
- Now make 2nd rule true:
 - o WHILE CurrentNode is more important than its parent, swap with parent

Removing (dequeue) from a binary heap

- The item to remove is the top of the tree.
- There is now a hole at the top of the tree. This needs replacing. Replace with bottom-right most element in tree.
 - o Ensures adherence to completeness rule
- Now, the root must "roll down" into a valid place (maintain 2nd binary heap rule)
 - o Let CurrentNode = root
 - o WHILE root is less important than at least one child
 - Let MostImportant = More Important(current->left, current->right)
 - Swap CurrentNode with MostImportant

Algorithmic Efficiency of a Binary Heap

- Idea: maintain a sorted vector, dequeue from the front
 - Enqueue: Find correct place (binary search) + shift (N moves) O(N)
 - o Dequeue: N shifts O(N)
 - o FindTop: O(1)
- Better idea: maintain reverse sorted
 - Enqueue still O(N)
 - o Dequeue O(1)
 - o FindTop: O(1)
- Other idea: use a AVL Tree
 - Enqueue: Log(N)
 - o Dequeue: Log(N)
 - FindTop: Log(N)
- Binary Heap
 - o Enqueue: Log(N)
 - Dequeue: Log(N)
 - o FindTop: O(1)

Representing Binary Heaps using a vector

0

		$\bigcup_{i=1}^{n}$	bas	red	Nea	P		
4	5	10	50	11	11	15	55	51

4

5

6

7

8

60

9

Left child = 2 * i + 1 Right child = 2 * i + 2 Parent = floor((i - 1) / 2)

1

1-based heap

	4	5	10	50	11	11	15	55	51	60
0	1	2	3	4	5	6	7	8	9	10

Left child = 2 * i Right child = 2 * i + 1 Parent = floor(i / 2)

Recap: why use an array over a linked list

- Allows us to quickly find parent
- Allows us to quickly find bottom-right most element for enqueue and dequeue
- Complete trees store very efficiently into an array
 - o LL: 3 units of memory per node in tree

Converting an array into a binary heap

- Naïve: For each item in the array, add to the heap O(N*LogN)
- More clever implementation (build heap)

• Pretend that this is already a heap (but it's actually not)

Binomial Heaps

- Binomial heaps are a forest of trees.
- Each tree in the forest has a unique size
- Sizes based on powers of 2

Heap of size 3

Rules for a binomial heap

- There can only be one tree of a size in a forest
- All items below a given node must be less important
- Enqueue a new value as a tree of size 1
 - o If this causes a conflict, we must merge trees
- Dequeues remove the most important root node in the forest
 - o If this causes a conflict, we must merge trees

7

15

7

7-15

25

7-15

7

10

7 () K 7-15

Dequeue