Нейросетевые подходы в машинном переводе

Элбакян Мовсес

Национальный Исследовательский Университет Высшая Школа Экономики 2018

План

- Метрики в машинном переводе
- Зарождение Neural Machine Translation(NMT)
- seq2seq + attention
- NMT VS SMT
- Проблемы NMT
- Совмещение SMT и NMT

Метрики в машинном переводе

Human evaluation:

- Automatic Language Processing Advisory Committee (ALPAC)
 - Intelligibility (how "understandable" the sentence was)
 - Fidelity (how much information the translated sentence retained)
- Advanced Research Projects Agency (ARPA)
 - Comprehension evaluation (Lang1 ->[H] Lang2 ->[M] Lang1)
 - Quality panel evaluation (Evaluation of professional translators)
 - Evaluation based on adequacy and fluency (Monolingual evaluation)

Automatic evaluation:

- BLEU (bilingual evaluation understudy)
- NIST
- METEOR (Metric for Evaluation of Translation with Explicit ORdering)
- Word error rate
- •

Метрики в машинном переводе (BLEU)

BLEU = min
$$\left(1, \frac{\text{output-length}}{\text{reference-length}}\right) \left(\prod_{i=1}^{4} \text{precision}_i\right)^{\frac{1}{4}}$$

SYSTEM A: Israeli officials responsibility of airport safety
2-GRAM MATCH
1-GRAM MATCH

REFERENCE: Israeli officials are responsible for airport security

SYSTEM B: airport security Israeli officials are responsible

2-GRAM MATCH

4-GRAM MATCH

Metric	System A	System B
precision (1gram)	3/6	6/6
precision (2gram)	1/5	4/5
precision (3gram)	0/4	2/4
precision (4gram)	0/3	1/3
brevity penalty	6/7	6/7
BLEU	0%	52%

Зарождение Neural Machine Translation(NMT)

Recurrent Continuous Translation Models,
Nal Kalchbrenner, Phil Blunsom
2013

Зарождение Neural Machine Translation(NMT)

$$\mathbf{s} = \mathbf{S} \cdot \mathsf{csm}(\mathsf{e})$$
 $h_1 = \sigma(\mathbf{I} \cdot \mathsf{v}(\mathsf{f}_1) + \mathbf{s})$
 $h_{i+1} = \sigma(\mathbf{R} \cdot h_i + \mathbf{I} \cdot \mathsf{v}(\mathsf{f}_{i+1}) + \mathbf{s})$
 $o_{i+1} = \mathbf{O} \cdot h_i$

$$P(f_i = v | f_{1:i-1}) = \frac{\exp(o_{i,v})}{\sum_{v=1}^{V} \exp(o_{i,v})}$$

Recurrent Continuous Translation Models, Nal Kalchbrenner, Phil Blunsom 2013

Зарождение Neural Machine Translation(NMT)

2009	2010	2011	2012
218	213	222	225 181
			197
153	146	135	144
143 86	134 77	140 76	142 77
	218 178 207 153	218 213 178 169 207 200 153 146 143 134	218 213 222 178 169 178 207 200 188 153 146 135 143 134 140

Perplexity results

WMT-NT	2009	2010	2011	2012
RCTM I + WP	19.7	21.1	22.5	21.5
RCTM II + WP	19.8	21.1	22.5	21.7
cdec (12 features)	19.9	21.2	22.6	21.8

BLEU scores

Минусы:

- Проблема взврывающихся/затухающих градиантов
- Не можем запоминать длительные последовательности
- Запоминаем лишнее
- Fixed-vector problem
- RNN плохо учатся

seq2seq

Sutskever et al. and Cho et al., 2014

seq2seq

Sutskever et al. and Cho et al., 2014

seq2seq

Method	test BLEU score (ntst14)
Bahdanau et al. [2]	28.45
Baseline System [29]	33.30
Single forward LSTM, beam size 12	26.17
Single reversed LSTM, beam size 12	30.59
Ensemble of 5 reversed LSTMs, beam size 1	33.00
Ensemble of 2 reversed LSTMs, beam size 12	33.27
Ensemble of 5 reversed LSTMs, beam size 2	34.50
Ensemble of 5 reversed LSTMs, beam size 12	34.81

Минусы:

- Fixed-vector problem
- RNN плохо учатся

Attention

Bahdanau, D., Cho, K., & Bengio, Y. 2014

Attention

$$c_i = \sum_{j=1}^{T_x} \alpha_{ij} h_j.$$

$$\alpha_{ij} = \frac{\exp(e_{ij})}{\sum_{k=1}^{T_x} \exp(e_{ik})}$$

$$e_{ij} = v_a^{\top} \tanh(W_a s_{i-1} + U_a h_j)$$

Bahdanau, D., Cho, K., & Bengio, Y. 2014

Attention

Model	All	No UNK°
RNNencdec-30	13.93	24.19
RNNsearch-30	21.50	31.44
RNNencdec-50	17.82	26.71
RNNsearch-50	26.75	34.16
RNNsearch-50*	28.45	36.15
Moses	33.30	35.63

Минусы:

• RNN плохо учатся

NMT VS SMT

	Neural Machine Translation	Statistical Machine Translation	
Training time	More	Less	
Training data	Less	More	
Translation (decoding) time	More	Less	
CPU usage	More	Less	
Space in disk	Less	More	
	Sentence by sentence	Word by word/ phrase by phrase	
Mechanism	Attentional encoder-decoder networks; optimization	Statistical analysis; probability	
	Train multiple features jointly	Feature engineering required	
Interpretability		மீ	
Long distance reordering	மீ		
Morphology, syntax, and agreement errors	ம்		
Translation style consistency for the same word		மி	
Tolerance to noisy data	ம்		
Multilingual/ multi-domain translation	ம்		
Vocabulary/Rare word Problem		மி	

Проблемы NMT

- 1. Domain mismatch
- 2. Amount of Training Data
- 3. Rare Words
- 4. Long Sentences
- 5. Word Alignment
- 6. Beam Search

Проблемы NMT. Domain mismatch

Проблемы NMT. Domain mismatch

Source	Schaue um dich herum.
Ref.	Look around you.
All	NMT: Look around you.
	SMT: Look around you.
Law	NMT: Sughum gravecorn.
	SMT: In order to implement dich Schaue.
Medical	NMT: EMEA / MB / 049 / 01-EN-Final Work
	progamme for 2002
	SMT: Schaue by dich around.
IT	NMT: Switches to paused.
	SMT: To Schaue by itself . \t \t
Koran	NMT: Take heed of your own souls.
	SMT: And you see.
Subtitles	NMT: Look around you.
	SMT: Look around you .

Philipp Koehn , Rebecca Knowles 2017

Проблемы NMT. Amount of training data

Philipp Koehn , Rebecca Knowles 2017

Проблемы NMT. Rare words

Проблемы NMT. Long Sentences

BLEU Scores with Varying Sentence Length

Sentence Length (source, subword count)

Philipp Koehn , Rebecca Knowles 2017

Проблемы NMT. Word alignment

Philipp Koehn , Rebecca Knowles 2017

Проблемы NMT. Beam Search

Совмещение подходов SMT и NMT

Выводы

- NMT >> SMT
- У NMT все еще много нерешенных проблем
- Метрики, подсчитываемые автоматически неидеальны
- Гибридные подходы очень хорошо себя показывают

Источники

- https://www.aclweb.org/anthology/D13-1176
- https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf
- https://medium.com/@devnag/seq2seq-the-clown-car-of-deep-learning-f88e1204dac3
- https://arxiv.org/pdf/1409.0473.pdf
- http://www.statmt.org/book/slides/08-evaluation.pdf
- https://syncedreview.com/2017/08/17/history-and-frontier-of-the-neural-machine-translation/
- http://www.aclweb.org/anthology/W17-3204