OpenMP 调度策略小作业 实验报告

管思源 2021012702

测试结果

调度策略	较多且为均匀长度的分段 (ms)	加速比	较少且为随机长度的分段 (ms)	加速比
串行不使用 <mark>OpenMP</mark>	1863.88	1	3806.61	1
static	69.5915	26.78	189.846	20.05
dynamic	88.8019	20.99	167.691	22.70
guided	68.9276	27.04	164.434	23.15

简要分析

对于较多且为均匀长度的分段, static 策略将所有分段平均分块分配给线程,已经实现了负载均衡,同时分配开销很小,因此应当耗时最小; dynamic 和 guided 策略增加的负载平衡优势在此例中无用武之地,但在分配中开销更大,因此耗时应当较大,其中 dynamic 策略的分配单元更小,耗时最长。

对比实验结果,发现基本符合理论分析,但 static 和 guided 耗时区别不大,甚至 guided 更小,推测是因为分段虽然均匀,但由于线程性能和具体数据的不同,排序时长仍有差异,在负载均衡上 static 不够理想。

对于较少且为随机长度的分段, static 策略分配给每个线程的计算量完全随机,负载均衡为最差情况,因此应当耗时最长;相较而言, dynamic 策略实现了完全的负载均衡,同时由于分段数量较少,分配开销不大,因此耗时应当显著减小;在此基础上, guided 策略进一步减少了分配开销,应当耗时最小。

对比实验结果,发现完全符合理论分析。