Capa de Aplicación **Domain Name System**

DC - FCEyN - UBA

Arquitectura en capas

One or more nodes within the network

Motivación

Soluciones?

hosts.txt

- Network Info Center (NIC).
- Se actualiza periodicamente.
- No escala bien, propenso a errores, etc.

Ideas..

- Necesitamos un naming system
- Mappear user friendly names a router friendly names
- Necesitamos descentralizar la información

DNS: Domain Name Service

Domain Name Service

- Objetivo: separar el nombre del host de la dirección del host
- Baja escalabilidad del archivo hosts
- Namespace: Esquema de nombres jerárquico basado en dominios.
- Jerarquía de autoridad: Estructura jerárquica que complementa el la jerarquía de namespaces
- Resolución y registro de nombres: Name servers
- Puerto 53 (UDP)
- RFC 1034 Concepts and Facilities
- RFC 1035 Implementation and Specification

Namespace: Jerarquía de dominios

- Namespace define un conjunto posible de nombres. El mismo puede ser plano (sin divisiones) o jerárquico (tipo unix).
- Se basa en el concepto abstracto de dominio y subdominio.
- Dos nodos hermanos no puede tener el mismo nombre.

Nombres de dominio

Formato: <subdominio . dominio de nivel superior>

Ejemplo: dc.uba.ar

Nombres de dominios absolutos y relativos

- Fully Qualified Domain Name (FQDN) vs Partially Qualified Domain Name (PQDN)
- FQDN
 - Formato. Hostname + Domain
 - Ejemplo de FQDN: mail.dc.fcen.uba.ar.
- PQDN
 - Formato. Hostname
 - Se utiliza mucho para redes locales
 - Si queremos saber el FQDN del dominio, le concatenamos el PQDN del dominio padre
 - Ejemplo de Non-FQDN: mail

Jerarquía de autoridad: Zonas

- Estructura complementaria al namespace
- Se divide por *Zonas* (de autoridad)
- Cada zona corresponde a una autoridad administrativa
- Nodo root: Null (ICANN)

Autoridad administrativa

- Autoridad para el registro de subdominios
- Mantener la unicidad de nombres
- Necesitamos descentralizar la información

DNS: Resolución de Nombres de Dominio

- Una aplicación llama al resolver y le pasa el nombre de dominio que necesita como parámetro. scutil –dns
- 2. El resolver envía un paquete UDP al servidor de DNS local.
- 3. El servidor *busca* el nombre y devuelve la *dirección IP* al resolver
- 4. El *resolver* responde con la *dirección IP* a la aplicación solicitante. El cliente se conecta por TCP a la IP

Componentes de DNS

Name Servers:

- Principales dispositivos para la resolución de nombres, creación del namespace y registro de nombres.
- Complementa la jerarquía de autoridad y de dominios.
- Deben manejar la información de su zona
 - Cada zona tiene uno o más name servers (descentralizado): dig null
 - Los names servers de cada zona se llaman Autoritativos
- Almacenan información de los dominios de su zona en forma de **Registros**
- Entre todos forman la base de datos DNS.
- Servidores primarios y secundarios

Resolvers (servidores no autoritativos):

Dan respuesta a consultas en redes locales.

Registros DNS: ¿Qué son?

Está formado por los siguientes campos:

- nombre de dominio
- TTL (segundos)
- clase (en general es IN de internet)
- tipo
- valor

Type	Meaning	Value	
SOA	Start of Authority	Parameters for this zone	
Α	IP address of a host	32-Bit integer	
MX	Mail exchange	Priority, domain willing to accept e-mail	
NS	Name Server	Name of a server for this domain	
CNAME	Canonical name	Domain name	
PTR	Pointer	Alias for an IP address	
HINFO	Host description	CPU and OS in ASCII	
TXT	Text	Uninterpreted ASCII text	

Ejemplos de registros

nombre de dominio	TTL	clase	tipo	valor
www.dc.uba.ar.	600	IN	CNAME	www-1.dc.uba.ar.
www-1.dc.uba.ar.	600	IN	CNAME	dc.uba.ar.
dc.uba.ar.	600	IN	Α	157.92.27.21
dc.uba.ar.	600	IN	NS	ns2.uba.ar.
dc.uba.ar.	600	IN	NS	ns-1.dc.uba.ar.
dc.uba.ar.	600	IN	NS	ns-2.dc.uba.ar.
dc.uba.ar.	600	IN	NS	ns1.uba.ar.
ns1.uba.ar.	1451	IN	Α	157.92.1.1
ns1.uba.ar.	6847	IN	AAAA	2001:1318:100c:1::1
ns2.uba.ar.	1451	IN	Α	157.92.4.1
ns2.uba.ar.	6847	IN	AAAA	2001:1318:100c:4::1
ns-2.dc.uba.ar.	600	IN	Α	157.92.27.253

Ejercicio

Dados los registros DNS anteriores, qué respuesta llega para las siguientes consultas?

- 1 request dc.uba.ar. A
- 2 request ns1.uba.ar. A
- request www.dc.uba.ar. A
- request www.dc.uba.ar. CNAME
- o request dc.uba.ar. NS
- o request lanacion.dc.uba.ar. A

Registros DNS: Start Of Authority (SOA)

El registro *SOA* indica el comienzo de una zona de autoridad. Cada zona debe tener exactamente un registro SOA.

- Serial: Sirve para versionar los registros de la zona.
- Refresh: Determina cuán seguido se actualiza la zona desde el servidor master.
- Retry: Determina cuánto tiempo esperar para volver intentar en caso que falle el pedido del SOA al master.
- Expire: Indica cuánto tarda en expirar la zona en caso de no obtener respuesta del master.
- TTL: Es el tiempo de expiración mínimo para todos los registros de la zona.

Registros DNS: Ejemplo de SOA

```
dc.uba.ar. IN SOA ns1.dc.uba.ar. admines.dc.uba.ar.(
2014052000 ;serial
4h   ;refresh
1h   ;retry
4w   ;expire
2h   ;tt1
)
```

- ns1.dc.uba.ar : servidor DNS master
- admines.dc.uba.ar : es el mail de contacto con los responsables (notar que no hay @)
- 2014052000 es el serial. Hay que ponerlo con la fecha del día en que hacés una modificación, si no, no se transfieren los cambios de la zona.
- El resto establece parámetros de configuración de tiempo para el traspaso de los archivos entre distintos servidores DNS.

Registros DNS: Ejemplos de MX

- Una de las principales aplicaciones de DNS es la de e-mail
- Nunca nadie escribió julian@10.10.2.1
- Cuando mandamos mail a querty@dc.uba.ar, el servidor final al que se debería mandar el mail es uno de los mencionados arriba.
- Notar que tienen un número antes del nombre, indicando prioridades. A menor el número, es mayor la prioridad.
- Por eso primero se intentaría enviar el mail a mx1.dc.uba.ar, caso contrario a mx1.uba.ar y por último a mx2.uba.ar
- Se asume además de que el servidor autoritativo de dc.uba.ar. sabe al menos la IP de mx1.dc.uba.ar.
- Caso contrario cuando necesite la IP de alguno de los restantes, se lo pregunta al DNS del dominio uba ar

Tipo consultas y respuestas

Consultas Iterativas y Recursivas

- Consulta iterativa: Devuelve el nombre del próximo NS.
- Consulta recursiva: Propaga la consulta hacia el próximo NS.

Respuestas Autoritativas y no Autoritativas

- Si la información viene de un servidor primario o secundario es autoritativa, indica que está respaldada por el administrador de la zona.
- Si es información cacheada no se la considera autoritativa.

Ejercicio

Dada la consulta DNS:

request penguins.cs.princeton.edu. A

Detallar el recorrido que hace una consulta iterativa completa asumiendo que las caches están vacías y que hay un servidor autoritativo por cada subdominio.

Rta:

Dado:

Base de registros DNS

exactas.uba.ar. 1w	IN	SOA	exactas.uba.ar jperez.exactas.uba.ar (2005091900 3h 1h 1w 1h)
exactas.uba.ar.	IN	NS	ns.exactas.uba.ar
exactas.uba.ar.	IN	MX	mailserver.exactas.uba.ar
mailserver	IN	CNAME	proxy.exactas.uba.ar
www	IN	A	208.190.1.20
ads	IN	A	208.190.1.21
proxy	IN	A	208.190.1.22
proxy	IN	A	208.190.1.23
proxy	IN	Α	208.190.1.24
ns	IN	Α	208.190.1.26
zorzal	IN	A	208.190.1.21
pc1	IN	A	208.190.1.30

Se muestra una salida por pantalla de una consulta DNS:

Consulta parcial

```
;; flags: qr rd ra;
;; QUESTION SECTION:
;exactas.uba.ar. IN MX
;; ANSWER SECTION:
....
;; Query time: 3 msec
;; SERVER: 208.190.1.26#53(208.190.1.26)
;; WHEN: Sat Feb 31 11:06:56 2046
;; MSG SIZE rcvd: 328
```

Explique en qué consiste la consulta realizada y complete la sección answer de la consulta con una respuesta válida que permita el acceso al servicio solicitado.

- Computer Networks. Peterson & Davie. 5ta edición.
- RFC 1034 Concepts and Facilities
- RFC 1035 Implementation and Specification