linearlibrary Leanprover Latex file PDF file

Coq Zulip
Coq file

♠ Isabelle Zulip ♠ Isabelle file
※ CQTS

🚟 Braid group

🐝 nLab

Chern-Weil Theory

Contents

Section	Description			
Introduction				
Contents				
Unicode				
PROPER LOCAL	ES AND LOCAL HOMEOMORPHISMS OF LOCALES			
TRACE AND DETERMINANT IN HILBERT SPACES				
	212222 112222			
	SMOOTH MANIFOLDS			
LIE-ALGEBRAS				
LIE-AI	LGEBRA-VALUED DIFFERENTIAL FORMS			
CURVATURE AND THE FIRST CHERN-CLASS				
THE CHERN HOMOMORPHISM				
	THE CHERN CLASSES			
THE COHOMOLOGY OF GRASSMANIANS				
THE CONCRETE OF CHARDENATING				
BIBLIOGRAPHY				
DIDLIUGRAPHI				

- O. Notes
- 1. Chern-Weil theory is differential cohomology.
- 2. This reflects a topos bit of 0.
- 3. One must include the theory of topological \mathbb{R} -modules and topological \mathbb{C} -modules and topological \mathbb{H} -modules.
- 1. is a colimit involving $\mathbb{Z}[n!^{-1}]$.
- 2. \mathbb{R}^n is the set of points of a locale constructed from the inner product on n as a finite dimensional hilbert space.
- 3. \mathbb{C} is \mathbb{R}^2 .
- 4. The inverse function theorem
- 5. The implicit function theorem
- 6. The logarithm as an integral
- 7. The exponential defined on x , \mathbb{C}^x , and \mathbb{R}^x using the inverse function theorem applied to the logarithm
- 8. The logarithm defined on particular elementary matrices to a power.
- 9. The exponential defined on elementary matrices.
- 10. The elemtnary matrices are to do with the Maurer-cartan form
- 11. log can proximally-locally be defined as the integral of the Maurer-cartain form $A^{-1}dA$ on GL
- 12. the correspondence between Lie-algebra valued differential forms on principal bundles and connections on their balanced product over X
- 13. the topologies of pointwise and uniform convergence respectively
- 1. The Chern classes
- 2.

 EXAMPLE2	

1. Unicode

Lean 4 uses unicode, and this entails an extensive catalogue of characters to choose from. Here is a list of the unicode characters we will use:

Symbol	Unicode	VSCode shortcut	Use		
Lean's Kernel					
×	2A2F	\times	Product of types		
\rightarrow	2192	\rightarrow	Hom of types		
⟨,⟩	27E8,27E9	\langle,\rangle	Product term introduction		
\mapsto	21A6	\mapsto	Hom term introduction		
٨	2227	\wedge	Conjunction		
V	2228	\vee	Disjunction		
A	2200	\forall	Universal quantification		
3	2203	\exists	Existential quantification		
7	00AC	\neg	Negation		
Variables and Constants					
	1D52,1D56		Variables and constants		
	1D52,1D56		Variables and constants		
-	207B		Variables and constants		
0,1,2,3,4,5,6,7,8,9	2080 - 2089	\0-\9	Variables and constants		
α -ω, A-Ω	03B1-03C9		Variables and constants		
	Adjunctions				
=	21C4	\rightleftarrows	Adjunctions		
≒	21C6	\leftrightarrows	Adjunctions		
	1BC94		Right adjoints		
·	0971		Left adjoints		
4	22A3	\dashv	The condition that two Functors are adjoint		
Miscellaneous					
~	223C	\sim	Homotopies		
~	2243	\equiv	Equivalences		
≅	2245	\cong	Isomorphisms		
∞	221E	\infty	Infinity categories and infinity groupoids		

Ι

Exponentiable locales and exponentiable ∞ -sheaves

- 1. Exponentiable ∞ -sheaves
- 2. ...

Proper locales and local homeomorphisms of locales

- 1. Locally compact is equivalent to exponentiable
- $1. \ \mathsf{open/not}$
- 2. closed/not
- 3. universally/not
- 4. diagonal map/not
- 5.

Trace and determinant in Hilbert spaces

- 2. Trace of an operator
- 1. Given a free module, one can define the trace.
- 3. Determinant of an operator
- 1. Given a free module, one can define the determinant.
- 1. The Weil uniformization theorem
- 2. Tate's thesis shows that the Γ -function is a local L-function.

Smooth manifolds

Definition (open map of topological spaces):
Definition (immersion of topological spaces):
Theorem (open immersion of topological spaces is an immersion with open image):

$$\tilde{f}: X \to \tilde{Y}$$

There is a continuous function induced by the universal mapping property of pushout applied to $f \circ \pi_1$ and $f \circ \pi_2$:

Suppose that $\tilde{Y} \to Y$ is an isomorphism. Then the following are equivalent:

- 1. f is a local homeomorphism.
- 2. π_1 and π_2 are local homeomorphisms.

Local homeomorphisms between d-corners local diffeomorphisms between disjoint unions of d-corners?

1. The étale fundamental group of the real numbers is $\mathbb{Z}/2\mathbb{Z}$.

G-groups and groups under G

G-groups and groups under G

 $\text{G-}\infty\text{-groups}$ and $\infty\text{-groups}$ under G

Lie-algebras

\mathtt{L}^{∞} algebras

\mathtt{L}^{∞} algebras

Formal group laws and Lie-algebras in characteristic $\boldsymbol{0}$

- 1. The BCH formula
- 2. Mathoverflow question on ...

Lie-algebra-valued differential forms

Definition 0.0.1. A

Definition 0.0.2.

Both a graded commutative differential graded algebra and a graded commutative differential graded algebra \dots

Monoids in complexes.

- 1. An internal presheaf morphism 3 of an internal category.
- 2. A cogroup map $f: \Omega^{\cdot}A \to \Omega^{\cdot}\mathbb{R}$, $(f \quad f) \bullet \Delta = \Delta \bullet f$

exp:

$\mathsf{L}^\infty\text{-algebra}$ valued differential forms

 $\label{eq:local_state} 1. \ \mbox{Is it natural to make L^∞-algebra valued differential forms only for differential graded A^∞-algebras. }$ Monoid actions in complexes.

Curvature

$\Omega^1(G,): E_{-}()$ G and the Maurer-Cartan form

- 1. The Maurer-Cartan form is a -valued 1-form on G onto which $\Omega^1(\mathsf{G},$) deformation retracts.
- 2. $\Omega^1(G,)$: E_() G, distinct from the instance of E_() G constructed in 1.1.1.1.1.
- 3. $\omega G : \Omega^1(G,)$
- 4. curvature

$$\Omega^1(P,) \cong \ldots \cong \Omega^1(G,)$$
 and the curvature form

The curvature form

- 1. In both commutative algebras and modules, CDGAs and CDGMs, Aut(X)-principal bundles are interesting.
- 2. Will I eventually only discuss calculus in ...

3.

There is an equivalence between:

- 1. Functors into G-principal bundles
- 2.

III

The first Chern-class

The Chern-homomorphism

The Chern classes

1. Do I need the fundamental theorem of of invariant theory?

The Chern roots

The Splitting principle

The cohomology of Grassmanians

Distributions???

...

BIBLIOGRAPHY