Basic Analysis using Numpy and Pandas Fitness Dataset

To import library

data

Out[3]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

To get Top 20 record

In [4]: data.head(20)

Out[4]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	Α	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

To get last 20 record

In [5]: data.tail(20)

Out[5]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	Е	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

Statistical Analysis

In [6]: data.describe()

Out[6]:

	Sum of Total Sales
count	9.000000
mean	255.555556
std	337.332963
min	75.000000
25%	127.000000
50%	167.000000
75%	171.000000
max	1150.000000

To get row and column

```
In [7]: print(np.shape(data))
```

(9, 5)

Find Number of Elements

```
In [8]: np.size(data)
```

Out[8]: 45

Find Missing values

```
In [9]: data.isna()
```

Out[9]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
5	False	False	False	False	False
6	False	False	False	False	False
7	False	False	False	False	False
8	False	False	False	False	False

To drop the missing values

```
In [10]: data.dropna(axis=1,how="any")
```

Out[10]:

	Row Labels	Sum of Jan	Sum of Feb	Sum of Mar	Sum of Total Sales
0	А	5.62%	7.73%	6.16%	75
1	В	4.21%	17.27%	19.21%	160
2	С	9.83%	11.60%	5.17%	101
3	D	2.81%	21.91%	7.88%	127
4	E	25.28%	10.57%	11.82%	179
5	F	8.15%	16.24%	18.47%	167
6	G	18.54%	8.76%	17.49%	171
7	Н	25.56%	5.93%	13.79%	170
8	Grand Total	100.00%	100.00%	100.00%	1150

```
In [11]: data["Sum of Total Sales"]
```

Out[11]: 0

- 75
- 160 1
- 2 101
- 3 127
- 4 179 5
- 167
- 171 6 170
- 1150

Name: Sum of Total Sales, dtype: int64

In [12]: data1=data[['Sum of Mar','Sum of Total Sales']] data1

Out[12]:

	Sum of Mar	Sum of Total Sales
0	6.16%	75
1	19.21%	160
2	5.17%	101
3	7.88%	127
4	11.82%	179
5	18.47%	167
6	17.49%	171
7	13.79%	170
8	100.00%	1150

```
In [13]: import matplotlib as mp
```

In [14]: data1.plot.line()

Out[14]: <AxesSubplot:>

In [15]: data1.plot.box()

Out[15]: <AxesSubplot:>


```
In [16]: data1.plot.scatter(x='Sum of Mar',y='Sum of Total Sales')
```

Out[16]: <AxesSubplot:xlabel='Sum of Mar', ylabel='Sum of Total Sales'>

In [17]: data1.plot.area()

Out[17]: <AxesSubplot:>


```
In [18]: data1.plot.hist()
```

Out[18]: <AxesSubplot:ylabel='Frequency'>

In [19]: data1.plot.pie(y="Sum of Total Sales")

Out[19]: <AxesSubplot:ylabel='Sum of Total Sales'>


```
In []:
```