MODULE 3

• How a single perceptron can be used to represent the Boolean functions such as AND, OR

=>	Boolson	function	AND
		V	The second secon

A	B	AAB
0	-0.	0
0	1	0
1	0	0
		1

* Set
$$w_0 = -0.8$$
 $w_1 = 0.5$
 $w_2 = 0.5$

900 $A w_1 = 0.5$

$$O(x_1...x_n) = \begin{cases} 1 & \text{if } w_0 + w_1 x_1 + w_2 x_2 + ... + w_n x_n > 0 \\ -1 & \text{otherwise.} \end{cases}$$

1) if
$$A=0 + B=0 \Rightarrow 0 + 0 - 0.8 + (0.5 + 0) + (0.5 + 0) = 0$$

= $-0.8 < 0$ So, output = 0

2) if
$$A=0$$
 $9B=1=)$ $-0.8+(0.5*0)+(0.5*1)$
--0.320 So, output = 0

3 il
$$A=1&B=1 \Rightarrow -0.8 + (0.5*1) + (0.5*0) = -0.3 < 0$$

Output = 0

Deepak D, Asst. Professor, Dept. of CS&E, Canara Engg. College, Mangaluru

-		
A	B	AVB
0	0	0
0	1	1
1	. 0	1
1	1	

* Set
$$w_0 = -0.3$$

 $w_1 = 0.5$
 $w_2 = 0.5$

$$20$$
 A $w_1 = 0.5$ $w_0 = -0.3$

$$\mathcal{A}_{1}$$
 $\mathbb{R}_{w_{2}=0.5}$
 \mathbb{E}_{n}
 $\mathbb{E}_{w_{i}}$
 \mathbb{E}_{n}
 \mathbb{E}_{n}

i)
$$A=0$$
 $B=0 \Rightarrow -0.3 + (0.5*0) + (0.5*0)$

2)
$$A=0$$
 $B=1 \Rightarrow -0.3 + (0.5*0) + (0.5*1)$

$$= 0.2 > 0$$
 So output $= 1$

3)
$$A=1$$
 $B=0 \Rightarrow -0.3 + (0.5 *1) + (0.5 *0) = 0.2 > 0 So, output = 1$

A)
$$A=1$$
 $B=1 \rightarrow -0.3 + (0.5*1) + (0.5*0)$
= 0.7>0 So output=1

2 A Design a two-input perceptron that implements the boolean function A $\Lambda \neg B$. Design a two-layer network of perceptron's that implements A XOR B.

a) The pheraptron has two input A, B and constant 1

A	B	7B	AATB
0 (-1)	QF) ••	0 (-1)
0 (-1)	1	0 (-1)	0 (-1)
1	0(-1)	1	1
1	1	0 5	0 (-1)

The values of A & B are 1 (true) or -1 or 0 for false.

Decition Suspices

- 1.5

* The line closses the A ones at 1 and B ones at -1

* The weights one $w_0 = -1$ $w_1 = 1$ $w_2 = -1$.

 $w_0 = -1$ $x_1 A w_1 = 1$

12 B W2=-1

output

- ⇒ b) A xOB B lamnot be calculated by a single perception, so build a live-layer network of perceptions
 - * Experies A xOR B in turns q other logical. Connectives

 A xOR B = $(A \land TB) \lor (TA \land B)$
 - * Define the perephtion P, and Pz for (AATB) \$ (TAAB)
 - * Composing the outputs of P, & P, into a Puleption P, that implements O(P,) V O(P2)

3. Consider two perceptrons defined by the threshold expression $w_0 + w_1x_1 + w_2x_2 > 0$. Perceptron A has weight values

$$w_0 = 1$$
, $w_1 = 2$, $w_2 = 1$

and perceptron B has the weight values

$$w_0 = 0$$
, $w_1 = 2$, $w_2 = 1$

True or false? Perceptron A is more-general than perceptron B.

Solution

Teue, Perception A is more-general than Perception B.

- => O(x1...xn) = worko + w1x1 + w2x2+ -- + wnxn
- $\Rightarrow \emptyset$ B((χ_1, χ_2)) = 1. \ $(\omega_0 = 0, \omega_1 = 2, \omega_2 = 1)$ 0+2 $(\chi_1 + \chi_2)$ $\Rightarrow (\omega_0 = 0, \omega_1 = 2, \omega_2 = 1)$

where, no is constant which is equal to 1 i.e., no=1

 $\Rightarrow A((11,12))=1 \quad \text{\emptyset} \quad \text{$w_0=1$}, \quad \text{$w_1=2$}, \quad \text{$w_2=1$}$ $1+2x_1+2x_2>0 \Rightarrow 1+2+1>0$

Here, Preciption A is more general than perception B because every instance of 12, 4×2 that latisfies perception B also Satisfies perception A.