Syntaks og semantik

Lektion 7

4 marts 2008

Forord

- Pushdown-automater
- Automater med stacke
 - Grammatikker
- Chomsky-hierarkiet

Definition 2.13: En pushdown-automat (PDA) er en 6-tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet

PDA

- Γ : stack-alfabetet
- **4** $\delta: \mathbf{Q} \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \to \mathcal{P}(\mathbf{Q} \times \Gamma_{\varepsilon})$: transitionsfunktionen
- $oldsymbol{0} g_0 \in Q$: starttilstanden
- $F \subseteq Q$: mængden af accepttilstande

M siges at acceptere et ord $w \in \Sigma^*$ hvis der findes $m \in \mathbb{N}$ og $w_1, w_2, \ldots, w_m \in \Sigma_{\varepsilon}, r_0, r_1, \ldots, r_m \in Q \text{ og } s_0, s_1, \ldots, s_m \in \Gamma^* \text{ således}$ at $W = W_1 W_2 \dots W_m$ og

- $\mathbf{0}$ $r_0 = q_0 \text{ og } s_0 = \varepsilon$,
- ② for alle i = 0, 1, ..., m 1 findes $a, b \in \Gamma_{\varepsilon}$ og $t \in \Gamma^*$ som opfylder $s_i = at$, $s_{i+1} = bt$ og $(r_{i+1}, b) \in \delta(r_i, w_{i+1}, a)$, og

Eksempel:

Genkender sproget

 $\{w \in \{a,b\}^* \mid \text{antallet af } a \text{ i } w = \text{antallet af } b \text{ i } w\}$

At læse strengen abba:

Definition: Et sprog siges at være kontekstfrit hvis der findes en CFG der genererer det.

Sætning 2.20: Et sprog er kontekstfrit hvis og kun hvis der findes en PDA der genkender det.

Grammatikker

- at bevise CFG ⇒ PDA:
 - Lav en CFG *G* om til en ("generaliseret") PDA med 3 tilstande: Fra q_{start} til q_{loop} pushes startsymbolet fra G på stacken. Fra q_{loop} til sigselv er der transitioner der
 - ekspanderer en variabel i G til en af dens højresider i Gs produktioner.
 - forsøger at matche en terminal fra input med en terminal fra stacken.

Fra q_{loop} til q_{accept} er der en transition der kun er tændt når stacken er tom.

at bevise PDA ⇒ CFG: Senere i dag

Definition: En automat med k stacke, for $k \in \mathbb{N}_0$, er en 6-tupel $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$, hvor delene er

- Q: en endelig mængde af tilstande
- Σ : input-alfabetet
- Γ : stack-alfabetet
- \bullet $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon}^{k} \to \mathcal{P}(Q \times \Gamma_{\varepsilon}^{k})$: transitionsfunktionen
- $\mathbf{0} \ q_0 \in Q$: starttilstanden
- $F \subseteq Q$: mængden af accepttilstande
 - k = 0 : NFA
 - k = 1 : PDA
 - $k \ge 2$: Turing-maskine!
 - to stacke er nok!

Definition: En grammatik er en 4-tupel $G = (V, \Sigma, R, S)$, hvor delene er

Grammatikker

- V : en endelig mængde af variable
- ② Σ : en endelig mængde af terminaler, med $V \cap \Sigma = \emptyset$
- **③** $R: (V \cup \Sigma)^+ \rightarrow \mathcal{P}((V \cup \Sigma)^*)$: produktioner
- $S \in V$: startvariablen
 - $A, B \in V$ og $a \in \Sigma$: regulær grammatik • alle produktioner på formen $A \to w$, for $A \in V$ og $w \in (V \cup \Sigma)^*$:

• alle produktioner på formen $A \to \varepsilon$, $A \to a$ eller $A \to aB$, for

- kontekstfri grammatik
- alle produktioner på formen $uAv \rightarrow uwv$, for $A \in V$ og $u, v, w \in (V \cup \Sigma)^*$: kontekst-sensitiv grammatik

Eksempel på en kontekst-sensitiv grammatik:

$$S o aBSc \mid abc \qquad Ba o aB \qquad Bb o bb$$

Genererer sproget $\{a^nb^nc^n \mid n \in \mathbb{N}_+\}$

PDA	Automater med stacke		ammatikker	Chomsky-hierarkiet
	Type 3	Type 2	Type 1	Type 0
	regulære	kontekstfrie	kontekst-	rekursivt
	sprog	sprog	sensitive	enumerable
			sprog	sprog
	regulære	kontekstfrie	kontekst-	generelle
	grammatikker	grammatikker	sensitive grammatikker	grammatikker
	endelige	pushdown-	lineært	Turing-
	automater	automater	begrænsede Turing- maskiner	maskiner
determ- inisme	ingen ind- skrænkning	indskrænkning	vides ikke	ingen ind- skrænkning
lukning:	Sidestilling			Sitt William 19
∪, ∘, *	ja	ja	ja	ja
	-			
_	ja	nej	ja	ja
-	ja	nej	ja	nej _{8/17}

 $\mathsf{PDA} \Rightarrow \mathsf{CFG}$

Kontekstfrie og ikke kontekstfrie sprog

5 Ethvert sprog genkendt af en PDA er kontekstfrit6 Pumpelemmaet for kontekstfrie sprog

Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ . Da findes en CFG G over Σ med $\llbracket G \rrbracket = \llbracket P \rrbracket$.

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

- Sørg for at P kun har én accepttilstand q_a og at stacken tømmes før P går i q_a .
- 2 Lad $V = \{A_{pq} \mid p, q \in Q\}$, og sørg for at A_{pq} deriverer præcist de strenge som bringer P fra p med tom stack til q med tom stack.
- **3** Lad $S = A_{q_0 q_a}$. Voilà!

Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ. Da findes en CFG G over Σ med $\llbracket G \rrbracket = \llbracket P \rrbracket$.

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

• Sørg for at P kun har én accepttilstand q_a og at stacken tømmes før P går i q_a .

Nyt stacksymbol \$. Tre nye tilstande: q_s , q_e og q_a . Nye transitioner: $q_s \xrightarrow{\varepsilon,\varepsilon \to \$} q_0$, $q \xrightarrow{\varepsilon,\varepsilon \to \varepsilon} q_e$ for alle $q \in F$, $q_e \xrightarrow{\varepsilon,a \to \varepsilon} q_e$ for alle $a \in \Sigma$, og $q_e \xrightarrow{\varepsilon,\$ \to \varepsilon} q_a$.

Sørg for at enhver transition *enten* pusher *eller* popper.

- Erstat enhver transition $q \xrightarrow{a,b \to c} r \mod q \xrightarrow{a,b \to \varepsilon} q_1 \xrightarrow{\varepsilon,\varepsilon \to c} r$
- Erstat enhver transition $q \xrightarrow{a,\varepsilon \to \varepsilon} r \mod q \xrightarrow{a,\varepsilon \to x} q_1 \xrightarrow{\varepsilon,x \to \varepsilon} r$ for et eller andet symbol $x \in \Gamma$.

 $PDA \Rightarrow CFG$

Lemma 2.27: Lad Σ være et alfabet og P en PDA over Σ . Da findes en CFG G over Σ med [G] = [P].

Bevis: Lad $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$. Vi konstruerer $G = (V, \Sigma, R, S)$:

- 2 Lad $V = \{A_{pq} \mid p, q \in Q\}$, og sørg for at A_{pq} deriverer præcist de strenge som bringer P fra p med tom stack til q med tom stack.
 - Lav en produktion $A_{pp} \to \varepsilon$ for alle $p \in Q$ (terminering)
 - Lav en produktion $A_{pq} \rightarrow A_{pr}A_{rq}$ for alle $p, q, r \in Q$ (rekursion)
 - For alle $p, q, r, s \in Q$: Hvis $p \xrightarrow{a,\varepsilon \to t} r$ og $s \xrightarrow{b,t \to \varepsilon} q$ for nogle $a,b \in \Sigma_{\varepsilon}$ og et $t \in \Gamma$: Lav en produktion $A_{pq} \to aA_{rs}b$. (produktion)
 - der skal argumenteres for at dette giver det rigtige resultat!

 $PDA \Rightarrow CFG$ Pumpelemmaet

Sætning 2.34: For ethvert kontekstfrit sprog A findes der et (naturligt) tal p således at ethvert ord $s \in A$ der har længde mindst p kan opsplittes i fem stykker, s = uvxyz, med

- $|\mathbf{v}y| > 0$ og $|\mathbf{v}xy| \le p$,
- og således at ordene $uv^i xy^i z \in A$ for alle $i \in \mathbb{N}_0$.

Anvendelse: Vis a sproget *X ikke er kontekstfrit*:

Antag at X er kontekstfrit. Så må det opfylde pumpelemmaet. Lad p være pumpelængden.

Find en streng s som

- har $|s| \ge p$, dvs. bør kunne pumpes,
- men som ikke kan pumpes, ligegyldigt hvordan man opsplitter s = uvxyz.

Modstrid!

 $\mathsf{PDA} \Rightarrow \mathsf{CFG}$

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$.

- Lad b være længden af den længste streng på højresiden af produktionerne i G: $b = \max\{|s| \mid s \in P(A), A \in V\}$
- 2 Lad $p = b^{|V|+1}$. Fejl i bogen! Tag et $s \in A \text{ med } |s| \ge p$. |V| er antallet af variable i G.

 $PDA \Rightarrow CFG$ Pumpelemmaet

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$.

- Lad b være længden af den længste streng på højresiden af produktionerne i G: $b = \max\{|s| \mid s \in P(A), A \in V\}$
- 2 Lad p = b^{|V|+1}. Fejl i bogen! Tag et s ∈ A med |s| ≥ p.
 3 Lad τ være et af de parsetræer for s der har færrest punkter. τ
- har højde mindst |V|+1. Lad h være højden af τ . Hvert punkt i τ har højst b sønner, så τ har højst b^h blade. Tegnene i s står i bladene, så s har længde højst b^h . Men $|s| > b^{|V|}$, så h > |V|.

 $\mathsf{PDA} \Rightarrow \mathsf{CFG}$

Bevis: Lad $G = (V, \Sigma, P, S)$ være en CFG med $\llbracket G \rrbracket = A$.

- 1 Lad b være længden af den længste streng på højresiden af produktionerne i G: $b = \max\{|s| \mid s \in P(A), A \in V\}$
- 2 Lad $p = b^{|V|+1}$. Fejl i bogen! Tag et $s \in A \text{ med } |s| \ge p$.
- **3** Lad τ være et af de parsetræer for s der har færrest punkter. τ har højde mindst |V| + 1.
- 4 Lad ℓ være en sti i τ af længde mindst |V| + 2.
- **1** ℓ indeholder mindst |V|+1 variable (og én terminal), så blandt de *sidste* |V|+1 variable i ℓ er der en der forekommer *to gange*. Kald den R.
- Lad x være den delstreng af s der deriveres af den sidste forekomst af R. Strengen der deriveres af den næstsidste forekomst af R kan da skrives vxy, og s = uvxyz.
 Dvs. R ^{*}⇒ x, R ^{*}⇒ vRy ^{*}⇒ vxy, og S ^{*}⇒ uRz ^{*}⇒ uvRyz ^{*}⇒ uvxyz.

Lad x være den delstreng af s der deriveres af den sidste forekomst af R. Strengen der deriveres af den næstsidste forekomst af R kan da skrives vxy, og s = uvxyz.

- **②** Den næstsidste forekomst af R er blandt de sidste |V| + 1 variable i ℓ , så deltræet med dette R som rod har højde højst |V| + 1, så $|vxy| \le b^{|V|+1} = p$. Fejl i bogen!
- Ved at erstatte deltræet med det næstsidste R som rod, med deltræet med det sidste R som rod fås derivationen S ^{*}⇒ uRz ^{*}⇒ uxz. Dvs.
 - $uxz = uv^0xy^0z \in A$
 - |vy| > 0, for ellers ville s = uxz, og det parsetræ for uxz vi lige har lavet er mindre end det vi startede med. Modstrid til (3).
- ② Ved at erstatte deltræet med det *sidste R* som rod, med deltræet med det *næstsidste R* som rod fås derivationen $S \stackrel{*}{\Rightarrow} uRz \stackrel{*}{\Rightarrow} uvRyz \stackrel{*}{\Rightarrow} uv^2Ry^2z \stackrel{*}{\Rightarrow} uv^2xy^2z$. Ved at gentage dette fås derivationer til uv^ixy^iz for alle $i \in \mathbb{N}$.