COMP-423B: Quiz 2 Solutions

Prepared by Matthew Wahab (T.A.)

General Comments

• For any questions/comments regarding the correction of the quiz: if I have made a mistake adding up your points, or you feel that your arguments were not understood, please contact me (Matt) at wahab@cim.mcgill.ca

1. **(3 points)**

Marking:

2 marks for part (a.), 1 mark for part (b.).

(a) What is the "inverted file" of the following: abccbaabc ?

Solution:

symbol	n_i	t_i								
a	3	1	0	0	0	0	1	1	0	0
b	3	0	1	0	0	1	0	0	1	0
С	3	0	0	1			0		0	1

We can also encode the gaps between instances of a symbol.

symbol	n_i	offset		
a	3	1	5	1
b	3	2	3	3
c	3	3	1	4

(b) How can "header" information be used to compress inverted files?

Solution:

We use gap or run-length encoding. Define a prefix code for the gaps of each list (say use a Golomb code). The header file needs to send n and n_i for each list. CHECK THIS IN NOTES.

2. **(4 points)**

(a) Encode the following sequence using LZ2 (sliding window):

baabaaaabb

Assume the window size is $n_w = 4$. Your answer should include a parsing of the above sequence into phrases.

Solution:

The phrase is parsed as follows: b, a, a, baa, aa, b, b.

length	symbol	offset
0	'b'	-
0	$^{\prime}a^{\prime}$	-
1	-	1
3	-	3
2	-	2
0	'b'	-
1	-	1

Let C_0 be the code for phrase length, C_1 be the code for offset, and C_2 be the code for symbols. This yields the following code:

$$C_0(0)C_2(b)C_0(0)C_2(a)C_0(1)C_1(1)C_0(3)C_1(3)C_0(2)C_1(2)C_0(0)C_2(b)C_0(1)C_1(1)$$

(b) For the same sequence as in (a), show the phrase table built by an LZ3 encoder.

Solution:

position	symbol	parent
1	'b'	0
2	$^{\prime}a^{\prime}$	0
3	'b'	2
4	'a'	2
5	'b'	4
6	'b'	0

3. **(3 points)**

(a) If the alphabet is {0,1}, then a Lempel Ziv algorithm takes any finite sequence of bits (a sequence) and maps it to another finite sequence of bits (a codeword for the sequence). Thus, the LZ algorithm defines a code on the set of finite bit strings. This code is not a prefix code. Why not? Give a counter example (and

specify the LZ method).

Solution:

In general the Lempel Ziv algorithm does not define a prefix code because if we have two strings s_1 and s_2 , such that s_1 is a prefix of s_2 , then the code for s_1 , $LZ(s_1)$, is a prefix of the code for s_2 , $LZ(s_2)$.

For a specific counter example let's use LZII to encode strings $s_1 = 0$ and $s_2 = 00$. Let C_0 be the code for phrase length, C_1 be the code for offset, and C_2 be the code for symbols.

$$LZII(s_1) = C_0(0)C_2(0)$$

$$LZII(s_2) = C_0(0)C_2(0)C_0(1)C_1(0)$$

Notice that the code for s_1 is a prefix for the code for s_2 .

(b) How could one modify the LZ algorithm/code so that it does define a prefix code?

Solution:

There are several ways to do this:

- Have the algorithm encode the length of the sequence and send it at the end (or beginning) of the encoded sequence.
- Introduce a 'null' character that is encoded at the end of the encoded sequence. Note that the codeword for this 'null' character must not be a prefix of any codeword in C_0 .

4. **(2 points)**

Consider the following conditional probability matrix for a first order Markov model, where the number of symbols in the alphabet is N=3. Assume that these conditional probabilities are the same for all j.

$$P(X_{j+1} \mid X_j) = \frac{1}{8} \begin{bmatrix} 1 & 3 & 2 \\ 1 & 4 & 1 \\ 6 & 1 & 5 \end{bmatrix}$$

If the marginal probability $p(X_1)$ is uniform, then what are the marginal probabilities $p(X_2)$ and $p(X_3)$?

Solution:

For this we use the formula for marginal probability: $p(X_{j+1}) = p(X_{j+1}|X_j)p(X_j)$

$$p(X_2) = p(X_2 \mid X_1)p(X_1) = \frac{1}{8} \begin{bmatrix} 1 & 3 & 2 \\ 1 & 4 & 1 \\ 6 & 1 & 5 \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{2} \end{bmatrix}$$

$$p(X_3) = p(X_3 \mid X_2)p(X_2) = \frac{1}{8} \begin{bmatrix} 1 & 3 & 2 \\ 1 & 4 & 1 \\ 6 & 1 & 5 \end{bmatrix} \begin{bmatrix} \frac{1}{4} \\ \frac{1}{4} \\ \frac{1}{2} \end{bmatrix} = \begin{bmatrix} \frac{1}{4} \\ \frac{7}{32} \\ \frac{17}{32} \end{bmatrix}$$

5. **(3 points)**

The following trie shows the frequency counts of a sequence, after j symbols have been seen by the encoder.

order (k)

- (a) Estimate the conditional probability of X_{j+1} , assuming:
 - a 0^{th} order Markov model;
 - a 1st order Markov model;

You may assume that the alphabet is $\{a,b\}$ only. Be sure to state any other assumptions you make.

Hint: the count at a node at level k+1 is the number of times that the symbol at that node is the next symbol, given the previous k symbols.

Solution:

The 0^{th} order Markov model is:

$$P(X_{j+1}) = \frac{1}{125} \begin{bmatrix} 41\\84 \end{bmatrix}$$

The 1^{st} order Markov model is:

$$P(X_{j+1} \mid X_j) = \begin{bmatrix} \frac{31}{41} & \frac{5}{84} \\ \frac{10}{41} & \frac{78}{84} \end{bmatrix}$$

(b) What were the symbols X_j and X_{j-1} ?

Solution:

This was a trick question. To find out X_j and X_{j-1} you simply needed to see where the counts did not add up. For level k=1 we can see that $78+5\neq 84$ $(X_j=b)$, and at level k=2 that $60+17\neq 78$ $(X_{j-1}=b)$.