CS2120 F22

From Propositional to Predicate Logic

The Expressiveness of a Logic

- The expressiveness of a logic refers to the range of ideas it can encode
 - Propositional logic
 - Syntax
 - The basic truth value constants (true, false)
 - Boolean variables for propositions (X, Y, Z, NiftyIsACat, TomLivesInCVille, etc.)
 - The basic logical connectives
 - Semantics
 - An *interpretation* gives a Boolean value to each variable in an expression
 - The logical connectives are also interpreted: as specifying Boolean functions
 - The meaning of a larger proposition is composed from the meanings of its parts
 - Propositional logic extended with background theories
 - Syntax:
 - Same logical connectives with the same meaning
 - Elementary propositions can be expressed in terms of *background theories* (e.g., arithmetic)
 - Semantics:
 - Richer notion *interpretation*: e.g., variables can now also refer to objects such as numbers
 - Think about our circle/triangle/square puzzle: these funny looking variables refer to *numbers*
 - Can specify much richer ideas, e.g., "no two numbers in a row or column can be <u>equal"</u>

Limitations on the Expressiveness of Propositional Logic

- Variables can't refer to objects of arbitrary types; no notion of types at all
 - o Boolean, sure
 - o But person, electron, mathematical group, school, class, employee, principal, ... no
- Cannot quantify over sets of objects, or over functions, n-ary relations, etc.
 - <u>Every</u> interpretation for proposition P makes P true (P is valid)
 - Some interpretation for proposition P makes P true (P is satisfiable)
 - <u>No</u> interpretation for proposition P makes P true (P is unsatisfiable)
- No mechanism for parameterizing propositions
 - Yes: SocratesIsHuman, KantIsHuman, SearleIsHuman, X, Y,, Z, etc.
 - No: IsHuman(X), where X can be any person: *isHuman(Socrates)*, *isHuman(Kant)*, etc.
 - o A parameterized proposition is called a predicate: e.g., isHuman, isEven, isMortal, ...
 - \circ Predicates can have multiple parameters: e.g., =(m,n); <(m,n); relativelyPrime(m,n); etc.
 - A proposition is a degenerate predicate with no parameters, e.g., isHuman(Socrates)

Predicate Logic

- Predicate logic addresses each limitation vastly expanding its expressiveness
 - Variables can range over values of arbitrary types
 - Syntax adds universal and existential quantifiers
 - \blacksquare \forall x, Px for all, for any, for every value of x, P(x) is true
 - \exists x, Px there *exists*, for *some* value of x, P(x) is true
 - Predicate logic has predicates, denoting whole families of propositions
- But this increase in expressiveness comes with heavy costs
 - Vastly more complex notions of interpretation and truth
 - No longer any possibility of an automated satisfiability solver
 - Can no longer rely on truth table checking as a test of validity
 - One must use deductive reasoning (using inference rules) to check validity
 - A chain of deductive inferences showing validity is what we usually mean by a <u>proof</u>

Rest of today

- Quick reminder of what a natural deduction proof looks like
- Quick exposure to variants of predicate logic
 - Intuitionistic or constructive logic (a.k.a. type theory)
 - First-order predicate logic
- Practice with predicates and quantifiers

Proofs in propositional and predicate logic

- How would you prove that this proposition is valid? $X \land Y \rightarrow Y \land X$
- If it's propositional logic, use a truth table (evaluate it for each interpretation)
- In predicate logic you will generally need to use deductive reasoning
 - Assume H: X ∧ Y (hypothesis, or premise)
 - Goal: In this context, show Y ∧ X
 - Apply and-elimination to H to deduce X and Y separately
 - Apply and-introduction to Y and X in that (reverse) order to show Y ∧ X
 - \circ Having shown that if X \wedge Y then Y \wedge X apply arrow introduction to conclude X \wedge Y \rightarrow Y \wedge X
- Arrow intro: If in a context with H, you can prove K, you can deduce H → K
- A proof in predicate logic is a very different beast than in propositional logic!

Major Variants of Predicate Logic

- First-order predicate logic
 - No explicit types
 - everything is just an object
 - use predicates in lieu of types
 - E.g., \forall x, isHuman x \rightarrow isMortal x
 - Read that as, "With x being any object, if x is Human then x is mortal"
 - You can quantify over sets of objects but not over functions, relations, predicates, propositions
 - o Predicates can have objects but not predicates, functions, relations, propositions as arguments
- Higher-Order constructive logic
 - o Generally come with an exceptionally expressive *type systems*, including user-defined types
 - \circ E.g., if Human is a defined type, you can now write \forall (x: Human), isMortal x
 - o In FOPL, you can apply isMortal to any object, in HOCL applying it to non-human is a type error
 - o In FOPL, you can write *isMortal oxygen*; in HOCL it's just a type error
 - o In HOCL, you can quantify over functions, propositions, etc.
 - HOCL can serve as both a logic and a typed functional programming language
 - FOPL is a subset of HOCL (as propositional logic is a subset of predicate logic)

Let's play with quantifiers: formalize in HOCL

- Every person is mortal
- Some person is happy
- Someone likes everyone
- Everyone likes someone
- There is someone everyone likes
- For any persons, P, Q, R, if P likes Q, and Q likes R, then P might like R
- The enemy of your enemy is your friend
- For any natural number, n, if n is even then n+1 is odd
- With n being any natural number, if n >= 2, then if no number in 2,...,n/2 divides n evenly, then n is prime
- No one likes everyone
- If there's a person everyone likes, then everyone likes someone