One-way independent ANOVA (GLM)

Chapters 10 + 15

1

Aims and Objectives

- Understand the basic principles of ANOVA
 - When is it used?
 - What does it tell us?
- Theory of one-way independent ANOVA
- Following up an ANOVA
 - Planned contrasts/comparisons
 - Choosing contrasts
 - Coding contrasts
 - Post hoc tests
- If assumptions are broken
 - Welch's F or bootstrapping
 - Kruskal-Wallis test (non-parametric one-way independent ANOVA)

2

When and why

- When we want to compare means we can use a *t*-test. This test has limitations:
 - You can compare only 2 means: often we would like to compare means from 3 or more groups
 - It can be used only with one predictor/independent variable
- ANOVA
 - Compares several means
 - Can be used when you have manipulated more than one independent variable
 - It is an extension of regression (it is a GLM)

5

DISCOVERI USING	ANOVA as a linear model				
RING STATISTICS	27.10.20	outcome _i = (model) + error _i libido _i = $b_0 + b_1$ low _i + b_1 high _i + ε_i			
TISTICS .	$moralo_i - o_0 + c$	$\eta_1 \log w_i + \partial_2 \operatorname{mgn}_i + \partial_i$			
	$\textbf{Table 10.2:} \ \textbf{Dummy coding for the three-group experimental design}$				
	Group	Dummy Variable 1 (Low)	Dummy Variable 2 (High)		
	Placebo	0	0		
	Low Dose Viagra	1	0		
67	High Dose Viagra	0	1		

8

Theory of ANOVA

• How well does the model fit the data?

- R^2 • The proportion of the total variability in the data accounted for by the model $R^2 = \frac{SS_M}{SS_T}$ - F• SS are total values (i.e. dependent on sample size, Chapter 2 and 7), therefore we need MS to assess whether the model is a significant improvement over the null-model (i.e. the mean) $F = \frac{MS_M}{MS_R}$

11

Theory of ANOVA • The F-statistic - Makes the same assumptions as all parametric test statistics based on the normal distribution: • Dependent variable is measured on at least the interval scale • The variances within each group are approximately equal (homogeneity of variance) • Observations are independent - Is fairly robust against violations of normality and homogeneity of variance, as long as sample sizes of the groups are equal

Follow-up tests

If the F-ratio tells us that group means are different

- We next want to find out where these differences lie!

How?

- Planned contrasts or polynomial trend analysis

Hypothesis driven (planned a priori)

Orthogonal/non-orthogonal

- Post hoc tests

Not planned (no hypothesis)

Compare all pairs of means

13

Planned contrasts

- Basic idea
 - The variability explained by the model (SS $_{\rm M}$) is due to participants being assigned to different groups
 - This variability can be broken down further to test specific hypotheses about which groups might differ
 - We break down the variance according to hypotheses made a priori (before the experiment/analysis)

14

17

Planned contrasts

- Setting the contrasts
 - Independent
 - Contrasts must not interfere with each other: they must test unique hypotheses
 - Only two chunks
 - Each contrast compares two parts of the variation
 - k-1
 - You should always end up with one less contrast than the number of groups

19

Planned contrasts

- Rules when defining contrasts using weights
- If a group is singled out in a comparison, that group should not be used in any subsequent comparisons (only required for orthogonal contrasts)
- 2. Groups coded with positive weights are compared to groups coded with negative weights
 - 3. The sum of weights for a comparison should be zero
 - 4. If a group is not involved in a comparison, assign it a weight of zero
 - 5. For a given contrast, the weights assigned to the group(s) in one chunk of variation should be equal to the number of groups in the opposite chunk of variation

20

Planned contrasts

- Imagine, we want to test the hypotheses:
 - Hypothesis 1 (*i.e.* contrast 1):
 - Men who take Viagra have a higher libido than those who don't
 - placebo ≠ (low, high)
 - Hypothesis 2 (i.e. contrast 2):
 - Men taking a high dose of Viagra have a greater libido than those taking a low dose
 - low 4 high
 - low ≠ high
- How to set the weights?

23

Post hoc tests

- If we have no predictions a priori about our data
 - Compare all means using pairwise comparisons
 - Need to control the family-wise error rate
 - Use stricter criterion to accept a difference as significant
 - · However, this goes at the expense of statistical power
 - Simplest example is the Bonferroni method:

$$p_{crit} = \frac{\alpha}{n \ comparisons}$$

25

One-way independent ANOVA

- General procedure:
 - Enter/import data
 - Make sure R recognizes variables (numeric, factor, date...)
 - Explore data
 - Compute descriptive statistics
 - Plot the data
 - Check parametric assumptions
 - Perform analysis
 - Define contrasts a priori and compute the ANOVA, or...
 - ... compute the ANOVA and perform *post hoc* comparisons
 - Validate and interpret model
 - Check additional parametric assumptions

26

One-way independent ANOVA

- Two equivalent functions in R
 - 'Im()':
- > viagraModel<- lm(libido~ dose, data= viagraData)
- > anova(viagraModel)
- > summary(viagraModel)
- > par(mfrow= c(2,2)); plot(viagraModel)
- 'aov()':
- > viagraModel<- aov(libido~ dose, data=viagraData)
- > summary(viagraModel)
- > summary.lm(viagraModel)
- > par(mfrow= c(2,2)); plot(viagraModel)

28

One-way independent ANOVA

- Assumptions met, planned comparisons:
 - Now perform the analysis
 - > viagraPlanned<- lm(libido~ dose, data=
 - viagraData)
 - > anova(viagraPlanned)
 - > summary(viagraPlanned)

29

One-way independent ANOVA

- Alternatively, we can look for a (linear) trend
 - Set the contrasts using 'contr.poly()'
 - > contrasts(viagraData\$dose)<- contr.poly(3)</pre>
 - Perform the analysis
 - > viagraTrend<- lm(libido~ dose, data=viagraData)
 - > anova(viagraTrend)
 - > summary(viagraTrend)

One-way independent ANOVA

- Or, if we did not have any explicit hypotheses, we can perform post hoc comparisons
 - We already have performed the main analysis
 - > anova(viagraModel)
 - Now, we can use 'pairwise.t.test()' for Bonferroni and related tests...

31

One-way independent ANOVA

- Or, if we did not have any explicit hypotheses, we can perform post hoc comparisons
 - We already have performed the main analysis
 - > anova(viagraModel)
 - ... or 'glht()' for Tukey and Dunnett

 - > summary(postHocs)
 > confint(postHocs)

32

Reporting results

- Depends a little on what exactly we did, but e.g.
 - There was a significant effect of Viagra on levels of libido $(R^2_{Adj,}=0.37,\,F_{(2,\,12)}=5.12,\,p<.05).$ Planned contrasts revealed that taking any dose of Viagra significantly increased libido compared to the placebo (t= 2.47, p< .05), but that taking a high dose did not significantly increase libido compared to taking a low dose (t= 2.03, p= .07).
 - There was a significant effect of Viagra on levels of libido (R²_{Adj}= 0.37, F_(2,12)= 5.12, p< .05). A polynomial trend analysis revealed a significant linear increase (t= 3.16, p< .01) indicating that, as the dose of Viagra increased, libido increased proportionally.

One-way independent ANOVA

- What if assumptions are broken...
 - If Levene's test is significant (variances are different between groups), calculate Welch's F
 - > oneway.test(libido~ dose, data= viagraData)
 - If other assumptions are also not met
 - Robust ANOVA
 - · Non-parametric equivalent: the Kruskal-Wallis test.
 - Like the Wilcoxon tests of Chapter 9, this test ranks the data

34

Kruskal-Wallis test

- Non-parametric one-way independent ANOVA
 - Perform the omnibus test
 - > kruskal.test(libido~ dose, data= viagraData)

 - Post hoc multiple comparisons (package "pgirmess")
 - > kruskalmc(libido~ dose, data= viagraData)
 - Or look for a linear trend in the group rank means using the Jonckheere-Terpstra test (package "clinfun")

35

Reporting results

Kruskal-Wallis test

- The libido of participants was significantly affected by Viagra, $H_{(2)}$ = 6.20, p< .05. Focused comparisons of mean ranks between groups showed that libido was not significantly different between a low dose of Viagra and the placebo ($\Delta_{\rm mean\ rank}$ = 2.7). When a high dose of Viagra was administered, however, libido was significantly higher ($\Delta_{\rm mean\ rank}$ = 6.9) than in the placebo group. No significant difference ($\Delta_{\rm mean\ rank}$ = 4.2) was apparent between the two Viagra treatments. For all comparisons, the critical difference (corrected for the number of comparisons) was 6.8.
- The libido of participants was significantly affected by Viagra, $H_{(2)}\!\!=\!6.20,$ p< .05. The Jonckheere-Terpstra test, moreover, revealed a significant positive trend in the data: as the dose of Viaga increased, so did the median libido of participants (*J*= 61.5, p< .05).

DISCOVERING STATISTICS	•	Pr -
		-
		-
		-
2		

Rest of morning and afternoon...

actical Chapter 10 + 15b

- Read § 10.1, "Cramming Sam's Tips" and "What Have I discovered about statistics?"
- Skip sections on R Commander & Wilcox robust
 - § 10.6.4, § 10.6.6.3, § 10.6.8.3
- Also skip § 10.7
- Read § 15.6.1 and "Cramming Sam's Tips"
- Solve Smart Alex's Tasks: Chapter 10: 2, 3, 5

Chapter 15: 4