04_AutoML_example1

June 27, 2019

1 AutoML and Ensemble Learning with H2O.ai

• Introduction to H2O ai

Attaching package: GGally

```
· getting started

    AutoML workflow

   • Performance and Prediction

    AutoML variable importance

   • Available algorithms
In [1]: library( readr )
        library( dplyr )
        library( GGally )
Attaching package: dplyr
The following objects are masked from package:stats:
    filter, lag
The following objects are masked from package:base:
    intersect, setdiff, setequal, union
Loading required package: ggplot2
Registered S3 methods overwritten by 'ggplot2':
  method
                 from
  [.quosures
                 rlang
  c.quosures
                 rlang
  print.quosures rlang
Registered S3 method overwritten by 'GGally':
  method from
  +.gg ggplot2
```

The following object is masked from package:dplyr:

2 Funky data example

```
In [3]: funky_data <- read_csv( "funkydata.csv" ) %>%
            mutate( Y = factor( Y ) )
Parsed with column specification:
cols(
  Gaussian1 = col_double(),
 Gaussian2 = col_double(),
 Moon1 = col_double(),
 Moon2 = col_double(),
 Circle1 = col_double(),
 Circle2 = col_double(),
 Y = col_double()
)
In [4]: library( skimr )
Attaching package: skimr
The following object is masked from package:stats:
    filter
```

In [5]: skim_to_wide(funky_data)

	type	variable	missing	complete	n	n_unique	top_counts	ord
A tibble: 7 Œ 16	<chr></chr>	<cl< td=""></cl<>						
	factor	Y	0	200	200	2	0: 100, 1: 100, NA: 0	FA
	numeric	Circle1	0	200	200	NA	NA	NA
	numeric	Circle2	0	200	200	NA	NA	NA
	numeric	Gaussian1	0	200	200	NA	NA	NA
	numeric	Gaussian2	0	200	200	NA	NA	NA
	numeric	Moon1	0	200	200	NA	NA	NA
	numeric	Moon2	0	200	200	NA	NA	NA

```
In [6]: ggpairs( funky_data, aes( alpha=0.1, color=Y ) )
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```

```
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
```


In [7]: library(h2o)

For H2O package documentation, ask for help: > ??h2o After starting H2O, you can use the Web UI at http://localhost:54321 For more information visit http://docs.h2o.ai Attaching package: h2o The following objects are masked from package:stats: cor, sd, var The following objects are masked from package:base: &&, %*%, %in%, ||, apply, as.factor, as.numeric, colnames, colnames<-, ifelse, is.character, is.factor, is.numeric, log, log10, log1p, log2, round, signif, trunc In [8]: h2o.init() H2O is not running yet, starting it now... Note: In case of errors look at the following log files: /var/folders/8j/_h7w48591zq59klcljxctvcs25_0zh/T//RtmpaxYBGF/h2o_colettace_started_from_r. /var/folders/8j/_h7w48591zq59klcljxctvcs25_0zh/T//RtmpaxYBGF/h2o_colettace_started_from_r. Starting H2O JVM and connecting: . Connection successful! R is connected to the H2O cluster: H2O cluster uptime: 1 seconds 451 milliseconds H2O cluster timezone: America/New_York H2O data parsing timezone: UTC H2O cluster version: 3.24.0.5 H2O cluster version age: 8 days H2O cluster name: H2O_started_from_R_colettace_yhm690 H2O cluster total nodes: H2O cluster total memory: 3.56 GB H2O cluster total cores:

TRUE

H2O cluster allowed cores: 8

H2O cluster healthy:

```
H2O Connection ip:
                             localhost
   H20 Connection port:
                             54321
   H20 Connection proxy:
                             NΑ
   H20 Internal Security:
                             FALSE
   H20 API Extensions:
                             Amazon S3, XGBoost, Algos, AutoML, Core V3, Core V4
                             R version 3.6.0 (2019-04-26)
   R Version:
In [9]: funky_data = as.h2o( funky_data )
  |-----| 100%
In [10]: class( funky_data )
  'H2OFrame'
In [11]: summary( funky_data )
Warning message in summary.H20Frame(funky_data):
Approximated quantiles computed! If you are interested in exact quantiles, please pass the `ex-
Gaussian1
                  Gaussian2
                                  Moon1
                                                    Moon2
Min.
       :-3.70164
                Min.
                       :-2.4650 Min.
                                         :-1.20354
                                                    Min.
                                                          :-0.9726
1st Qu.:-0.92574
                 1st Qu.:-0.6316 1st Qu.:-0.09335
                                                    1st Qu.:-0.2183
Median :-0.01343
                 Median: 0.1066 Median: 0.46347
                                                    Median : 0.2632
Mean :-0.09543
                 Mean : 0.1677
                                  Mean : 0.50255
                                                    Mean : 0.2487
                                  3rd Qu.: 1.04960
3rd Qu.: 0.76956
                  3rd Qu.: 0.9259
                                                    3rd Qu.: 0.6657
Max. : 3.38425
                                        : 2.24426
                  Max.
                        : 3.2245
                                  Max.
                                                    Max.
                                                          : 1.2825
Circle1
                  Circle2
                                    Y
```

2.1 Split into train val test

:-1.21187

Mean : 0.01718

3rd Qu.: 0.47565

Max. : 1.19801

Min.

Mean

1st Qu.:-0.44734 1st Qu.:-0.474603

Median: 0.04368 Median: -0.044858

Min.

 H2O you give your "desired" train/val/test ratios and it gives you back approximately the proportions you want

0:100

1:100

• E.g., Say we want 500 samples for training, 100 samples for validation and 400 samples for test data:

:-1.258472

:-0.002766

3rd Qu.: 0.432842

Max. : 1.200726

2.2 AutoML results

• Printing the results object shows you info from the winning "leader" model, and well as the "leaderboard" of how well the various models performed

```
In [18]: dim( aml_results@leaderboard )
    1.2082.6
In [22]: head( aml_results@leaderboard, 20 )
```

	model_id	auc	logloss				
	<chr></chr>	<dbl></dbl>	<dbl></dbl>				
	XGBoost_grid_1_AutoML_20190627_121001_model_143	1.0000000	6.252269e-02				
	XGBoost_grid_1_AutoML_20190627_121001_model_122	1.0000000	6.911448e-02				
	XGBoost_grid_1_AutoML_20190627_121001_model_148	1.0000000	7.210843e-02				
	XGBoost_grid_1_AutoML_20190627_121001_model_124 DeepLearning_grid_1_AutoML_20190627_121001_model_14	1.0000000 1.0000000	5.184913e-02 1.200763e-07				
	DeepLearning_grid_1_AutoML_20190627_121001_model_14 DeepLearning_grid_1_AutoML_20190627_121001_model_7	1.0000000	1.795007e-02				
	StackedEnsemble_BestOfFamily_AutoML_20190627_121001	1.0000000	3.869660e-02				
A df[,6]: 20 Œ 6	XGBoost_grid_1_AutoML_20190627_121001_model_156	0.9996226	6.308121e-02				
	DeepLearning_grid_1_AutoML_20190627_121001_model_3	0.9992453	6.517710e-02				
	XGBoost_grid_1_AutoML_20190627_121001_model_85	0.9992453	7.710078e-02				
	StackedEnsemble_AllModels_AutoML_20190627_121001	0.9992453	1.011197e-01				
	DeepLearning_grid_1_AutoML_20190627_121001_model_9	0.9992453	6.464990e-02				
	XGBoost_grid_1_AutoML_20190627_121001_model_25	0.9988679	8.680839e-02				
	XGBoost_grid_1_AutoML_20190627_121001_model_173	0.9988679	5.271640e-01				
	XGBoost_grid_1_AutoML_20190627_121001_model_140	0.9988679	8.582076e-02				
	XGBoost_grid_1_AutoML_20190627_121001_model_50	0.9984906	7.613767e-02				
	XGBoost_grid_1_AutoML_20190627_121001_model_181	0.9984906	3.647458e-01				
	XGBoost_grid_1_AutoML_20190627_121001_model_4	0.9984906	7.956581e-02				
	XGBoost_grid_1_AutoML_20190627_121001_model_157	0.9981132	8.424608e-02				
	XGBoost_grid_1_AutoML_20190627_121001_model_7	0.9981132	1.473685e-01				
<pre>In [20]: getParms(aml_results@leader)</pre>							
\$model_id 'XGBoost_grid_1_AutoML_20190627_121001_model_143'							
\$training_frame 'automl_training_RTMP_sid_b932_3'							
\$nfolds 5							
\$keep_cross_validation_models FALSE							
\$keep_cross_validation_predictions TRUE							
\$fold_assignment 'Modulo'							
\$stopping_metric 'logloss'							
\$stopping_tolerance 0.05							
\$seed '-9118792347905751911'							
\$distribution 'bernoulli'							

n

\$ntrees 103

\$max_depth 20

\$min_rows 0.01

	predict	p0	p1
	<fct></fct>	<dbl></dbl>	<dbl></dbl>
	1	0.003199100	0.996800900
	0	0.990319550	0.009680446
	0	0.996739209	0.003260799
	0	0.994402945	0.005597057
	0	0.996943951	0.003056029
	1	0.002768338	0.997231662
	0	0.996874869	0.003125152
	0	0.994392037	0.005607983
	1	0.082000196	0.917999804
	0	0.980747581	0.019252392
	0	0.111670792	0.888329208
	1	0.006192982	0.993807018
	1	0.002698720	0.997301280
	0	0.996312141	0.003687858
	0	0.965337813	0.034662213
	0	0.965095460	0.034904540
	1	0.003074586	0.996925414
	0	0.995468318	0.004531683
	0	0.990804672	0.009195301
	1	0.021566689	0.978433311
	0	0.994225919	0.005774109
	1	0.005199194	0.994800806
	0	0.990367115	0.009632888
	0	0.933854520	0.066145495
	0	0.933238626	0.066761374
	0	0.995287836	0.004712182
	0	0.992851913	0.007148073
	0	0.989509702	0.010490319
4 1/F 01 100 CF 0	0	0.996046543	0.003953473
A df[,3]: 103 Œ 3	1	0.076979578	0.923020422
	1	0.102084875	0.897915125
	1	0.011659980	0.988340020
	1	0.004415810	0.995584190
	0	0.333979487	0.666020513
	1	0.051807821	0.948192179
	0	0.196451485	0.803548515
	0	0.946147144	0.053852841
	0	0.995928228	0.004071767
	0	0.945539057	0.054460917
	1	0.003308177	0.996691823
	0	0.972926259	0.027073767
	1	0.004879534	0.995120466
	1	0.002771556	0.997228444
	0	0.992878377	0.007121624
	1	0.003055513	0.996944487
	0	0.932834148	0.067165881
	1	0.004070818	0.895929182
	0	0.985665262	0.014334713
	0	0.978906095	0.021093879
	0	0.650776029	0.349224001