Hey Jarvis

Daniel Sarria, Kyle Clemente, Phi Lu

Objectives

- Utilize machine learning to build a system that can recognize audible events, particularly the human voice through audio classification
- Works similarly to "Hey Siri" or "OK,
 Google" and is able to recognize
 keywords or other audible events, even
 in the presence of other background
 noise or background chatter
- Activate an LED to indicate voice recognition of keyword

Hey Jarvis

- Audio classification system using
 Arduino Nano 33 BLE Sense that
 recognizes the keyword "Hey Jarvis"
 and works in the presence of other
 background noise or background
 chatter
- Potential to add on other commands following the keyword "Hey Jarvis", such as turning on the lights, opening the garage door, and other smart tasks

Steps Overview

- 1. Device Setup
- 2. Data Acquisition
- 3. MFCC
- 4. Training the Model
- 5. Deployment
- 6. Arduino Development
- 7. Testing

Data Acquisition

- Data Collection
 - Noise (~15 mins)
 - Unknown (~16 mins)
 - Trigger Word: 'Hey Jarvis!' (~14 mins)
- Train/Testing
 - Testing (~30 mins)
 - Training (~45 mins)

Mel Frequency Cepstral Coefficient (MFCC)

Training The Model

- Visualization helps audio preprocessing
- Clusters demonstrate similarities and differences based on features
- Ideal to have tight clusters
- Majority of points are classified correctly

Deployment

- Edge Impulse builds firmware
- Export Arduino library
- Develop C++ code to connect trigger word to LED toggling

Demo (LED)

Demo (Output)

```
Output Serial Monitor ×

Message (Enter to send message to 'Arduino Nano 33 BLE' on 'COM12')

Caroling Intercholog in 2 coolsac...

Recording...

Recording done

Predictions (DSP: 176 ms., Classification: 6 ms., Anomaly: 0 ms.):

heyjarvis: 0.00391

noise: 0.00000

unknown: 0.99609

Starting inferencing in 2 seconds...
```

Key Takeaways

- For accurate training, the dataset should have relatively equal amounts of keywords, noise, and unknown audio files
- The model size needed to fit the hardware so the dataset had to be adjusted
- The training dataset used in this project was large which increased our model's accuracy but significantly increased our training time