קורס: 20425 ״הסתברות לתלמידי מדעי המחשב״

(84/א מועד - 2010 (סמסטר א 11.2.2010 מועד א/

חומר העזר המותר: מחשבון מדעי בלבד.

ספר הקורס, מדריך הלמידה או כל חומר כתוב אחר – **אסורים לשימוש!**

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם חשבו את התוצאה הסופית (כמובן, במידת האפשר).

לבחינה מצורפים: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית ודף נוסחאות הכולל 2 עמודים.

שאלה 1 (25 נקודות)

 $i=1,2,\dots,n$ משתנים מקריים בלתי-תלויים, כך שלכל X_n , ... , X_2 , X_1 א. (12) אינו בלתי-תלויים מקריים $Var(X_i)=\sigma^2$ - וווע בי $E[X_i]=\mu$

$$M_n = \sum_{i=1}^n X_i / n$$
 נגדיר

. M_n ל- X_1 לינארי בין המתאם המתאם חשב את

 $E[X_i]=0$ מתקיים $i=1,2,\ldots$ כך שלכל היים, כך מקריים מקריים מקריים , ... , X_2 , X_1 ב. יהיו ב. $E[X_i]=0$ מעבור קבוע חיובי , $E[X_i^2] \leq M$ ו-

$$S_n = \sum_{i=1}^n X_i$$
 נגדיר

$$.arepsilon > 0$$
 , $\lim_{n o \infty} P \left\{ \left| rac{S_n}{n} \right| > arepsilon
ight\} = 0$ הוכח כי

שאלה 2 (25 נקודות)

ילד קטן מקליד את 22 האותיות העבריות מ-אי עד תי (ללא אותיות סופיות) בסדר אקראי, כך שכל אחת מפיעה בדיוק פעם אחת ברצף ההקלדה.

- (8 נקי) א. מהי ההסתברות שברצף ההקלדה האותיות אי, ב' ו-ג' תופענה עד (וכולל) למקום העשיריי (שלוש האותיות לא חייבות להופיע במקומות סמוכים או בסדר מסוים).
 - (8 נקי) ב. מהי ההסתברות שברצף ההקלדה האותיות די ו-הי תופענה לפני האותיות צי ו-קי!
- (9 נקי) ג. מהי ההסתברות שברצף ההקלדה תופיע לפחות אחת משלוש המילים יינמליי, ייספהיי ויירשתייי!

שאלה 3 (25 נקודות)

יורים במטרה שוב ושוב, עד שפוגעים בה 3 פעמים בסך-הכל.

אין תלות בין יריות שונות.

.(0 היא בכל ירייה במטרה במטרה לפגוע ההסתברות

X יהיו שספר הראשונה (וכולל) לפגיעה הראשונה = X

תספר היריות עד (וכולל) לפגיעה השלישית. = Y

. Y ו- X ו- Y ו- X ו- Y ו- Y ו- Y ו- Y ו- Y ו- Y רשום אותה באופן מדויק ו**פרט את תחום הערכים האפשריים המתאים לה**.

 $.j=3,4,\ldots$ עבור עבור, Y=j בהינתן של X בהינתן ההסתברות הומקציית ההסתברות פונקציים את את פונקציים המתאים לה.

 $P\{Y-X=9\}$ ג. חשב את (8 נקי).

שאלה 4 (25 נקודות)

. ו-G ו-G מאורעות זרים במרחב המדגם של ניסוי מקרי כלשהו (נקי) א. יהיו

G יתרחש לפני המאורע Fיתרחש הוכח יזה, ההסתברות על ניסוי המאורע בלתי-תלויות על ניסוי ה $\cdot \frac{P(F)}{P(F)+P(G)}$ היא

(12 נקי) ב. שני אבירים משתתפים בדו-קרב.

שני האבירים יורים זה על זה עד שלפחות אחד מהם מוטל מת.

האביר האחרון שנותר בחיים מנצח בדו-קרב.

.0.3 פוגע ביריבו בהסתברות B פוגע אביר ביריבו בהסתברות A פוגע ביריבו ביריבו בכל ירייה, אביר אביר אביר או בין תוצאות הירי של אותו אביר או בין תוצאות הירי של שני האבירים.

- 1. נניח שהאבירים יורים זה על זה <u>בו-זמנית,</u> כלומר, בכל פעם שניהם יורים באותו הזמן.מהי ההסתברות שאביר A ינצח בדו-קרב?
 - (כלומר, מהי ההסתברות שאביר A הוא היחיד שיִּוְתֵּר בחיים:)
- נניח שהאבירים יורים זה על זה לסירוגין, כלומר, בכל פעם יורה רק אביר אחד, ואביר A הוא זה שיורה ראשון, אחריו יורה אביר B, וחוזר חלילה.
 מהי ההסתברות שאביר A ינצח בדו-קרב?

שאלה 5 (25 נקודות)

משקלו של אבטיח מזן מסוים הוא משתנה מקרי נורמלי עם תוחלת של 4 קייג וסטיית-תקן של 0.2 קייג. אין תלות בין משקלים של אבטיחים שונים.

- (6 נקי) א. מהו המשקל, שההסתברות שאבטיח מקרי מזן זה ישקול יותר ממנו היא 20.85
- (6 נקי) ב. המחיר לקייג אחד של אבטיח מהזן המדובר הוא 2 שייח. מהי הפונקציה יוצרת המומנטים של המשתנה המקרי, המוגדר על-ידי המחיר של אבטיח מקרי!
 - (7 נקי) ג. בוחרים באקראי 50 אבטיחים מהזן שלעיל.
 ידוע שלפחות שניים מ-50 האבטיחים הללו שוקלים יותר מ-4.2 קייג.
 מהי ההסתברות שבדיוק 7 מהם שוקלים יותר מ-4.2 קייג!
 - (6 נקי) ד. מהי ההסתברות שמשקלם הכולל של 3 אבטיחים לא יעלה על 11.5 קייג!

בהצלחה!

 $\Phi(x)$, ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

х	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.1	0.0331	0.0371	0.0020	0.0001	0.0700	0.0750	0.0772	0.0000	0.0011	0.0077
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.8	0.9974	0.9973	0.9970	0.9983	0.9984	0.9978	0.9979	0.9979	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

$\Phi(x)$	0.50	0.55	0.60	0.65	0.70	0.75	0.80	0.85	0.90
x	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(x)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
x	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326

דף נוסחאות לבחינה

הפונקציה יוצרת המומנטים	השונות	התוחלת	פונקציית ההסתברות / פונקציית הצפיפות	ההתפלגות
$(pe^t + 1 - p)^n$	np(1-p)	пр	$\binom{n}{i} \cdot p^i \cdot (1-p)^{n-i} , i = 0, 1, \dots, n$	בינומית
$\frac{pe^{t}/(1-(1-p)e^{t})}{t<-\ln(1-p)}$	$(1-p)/p^2$	1/ <i>p</i>	$(1-p)^{i-1} \cdot p$, $i = 1, 2,$	גיאומטרית
$\exp\{\lambda(e^t-1)\}$	λ	λ	$e^{-\lambda} \cdot \lambda^i / i!$, $i = 0,1,$	פואסונית
$ \frac{\left(pe^t/(1-(1-p)e^t)\right)^r}{t<-\ln(1-p)} $	$(1-p)r/p^2$	r/p	$\binom{i-1}{r-1}(1-p)^{i-r} \cdot p^r$, $i=r,r+1,$	בינומית שלילית
	$\frac{N-n}{N-1}n\frac{m}{N}(1-\frac{m}{N})$	nm/N	$ \binom{m}{i} \binom{N-m}{n-i} / \binom{N}{n} , i = 0, 1,, m $	היפרגיאומטרית
	$(n^2-1)/12$	m + (1+n)/2	$\frac{1}{n}$, $i = m+1, m+2,, m+n$	אחידה בדידה
$(e^{bt}-e^{at})/(tb-ta), t\neq 0$	$(b-a)^2/12$	(a+b)/2	$1/(b-a) , a \le x \le b$	אחידה
$\exp\{\mu t + \sigma^2 t^2/2\}$	σ^2	μ	$(1/\sqrt{2\pi}\sigma)\cdot e^{-(x-\mu)^2/(2\sigma^2)}$, $-\infty < x < \infty$	נורמלית
$\lambda/(\lambda-t)$, $t<\lambda$	$1/\lambda^2$	1/λ	$\lambda e^{-\lambda x}$, $x > 0$	מעריכית
			$\binom{n}{n_1,\dots,n_r} \cdot p_1^{n_1} \cdot \dots \cdot p_r^{n_r} , \sum n_i = n, \sum p_i = 1$	מולטינומית

נוסחת הבינום
$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P(A) = P(A \cap B) + P(A \cap B^C)$$

$$P\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n P(A_i) - \sum_{i < j} P(A_i \cap A_j) + \ldots + (-1)^{n+1} P(A_1 \cap A_2 \cap \ldots \cap A_n)$$
 הסתברות מותנית
$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A_1 \cap A_2 \cap \ldots \cap A_n) = P(A_1) P(A_2 \mid A_1) P(A_3 \mid A_1 \cap A_2) \cdot \ldots \cdot P(A_n \mid A_1 \cap A_2 \cap \ldots \cap A_{n-1})$$
 נוסחת הכפל
$$P(A) = \sum_{i=1}^n P(A \mid B_i) P(B_i) \quad , \quad S$$
 נוסחת ההסתברות השלמה
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S$$
 נוסחת בייט
$$P(B_j \mid A) = \frac{P(A \mid B_j) P(B_j)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} \quad , \quad S$$
 נוסחת שנוחלת של פונקציה של מ"מ
$$P(B_i \mid A) = \frac{P(B_i \mid A)}{\sum_{i=1}^n P(A \mid B_i) P(B_i)} = E[X^2] - (E[X])^2$$
 שונות
$$E[AX + b] = aE[X] + b$$

אם מופעים של מאורע נתון מתרחשים בהתאם לשלוש ההנחות של **תהליך פואסון** עם קצב λ ליחידת זמן אחת, אז מספר המופעים שמתרחשים ביחידת זמן אחת הוא משתנה מקרי פואסוני עם הפרמטר λ .

$$P\{X>s+t ig|X>t\}=P\{X>s\}$$
 , $s,t\geq 0$ תכונת חוסר-הזכרון
$$E[X\mid Y=y]=\sum_{x}xp_{X\mid Y}(x\mid y)=\int xf_{X\mid Y}(x\mid y)dx$$
 תוחלת מותנית

 $Var(aX + b) = a^2 Var(X)$

$$\text{Var}(X\mid Y=y) = E[X^2\mid Y=y] - (E[X\mid Y=y])^2$$
 נוסחת התוחלת המותנית
$$E[X] = E[E[X\mid Y]] = \sum_y E[X\mid Y=y] p_y(y)$$
 נוסחת השונות המותנית
$$E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i]$$
 נוסחת השונות המותנית
$$E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i]$$
 נוסחת השונות משותפת
$$E\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n E[X_i]$$
 שונות משותפת
$$Cov(X,Y) = E[(X-E[X])(Y-E[Y])] = E[XY] - E[X]E[Y]$$
 שונות של סכום משתנים מקריים
$$Cov\left(\sum_{i=1}^n X_i, \sum_{j=1}^m Y_j\right) = \sum_{i=1}^n \sum_{j=1}^m Cov(X_i, Y_j)$$
 שונות של סכום משתנים מקריים
$$Cov\left(\sum_{i=1}^n X_i\right) = \sum_{i=1}^n Var(X_i) + 2\sum_{i < j} Cov(X_i, X_j)$$
 שונות של סכום משתנים מקריים
$$eitgxin in x_i = E[e^{tX}]$$
 (באשר $X_i = E[e^{tX}]$ (באשר

- אם A ו- B מאורעות זרים של ניסוי מקרי, אז ההסתברות שבחזרות ביית על הניסוי P(A)/[P(A)+P(B)] המאורע A יתרחש לפני המאורע B היא
- ullet סכום של מיימ בינומיים (גיאומטריים) ביית עם אותו הפרמטר p הוא מיימ בינומי (בינומי-שלילי).
 - סכום של מיימ פואסוניים ביית הוא מיימ פואסוני.
 - סכום של מיימ נורמליים ביית הוא מיימ נורמלי.
- (p אותו (בינומיים (בינומיים עם אותו Y ההתפלגות המותנית של X בהינתן X+Y=n , כאשר כארית היא בינומית (היפרגיאומטרית).

$$\begin{split} \sum_{i=0}^n i &= \frac{n(n+1)}{2} \qquad ; \qquad \sum_{i=0}^n i^2 = \frac{n(n+1)(2n+1)}{6} \qquad ; \qquad \sum_{i=0}^n i^3 = \frac{n^2(n+1)^2}{4} \\ \sum_{i=0}^\infty \frac{x^i}{i!} &= e^x \qquad ; \qquad \sum_{i=0}^n x^i = \frac{1-x^{n+1}}{1-x} \qquad ; \qquad \sum_{i=0}^\infty x^i = \frac{1}{1-x} \quad , \quad -1 < x < 1 \\ \int (ax+b)^n dx &= \frac{1}{a(n+1)}(ax+b)^{n+1} \quad , \quad n \neq -1 \qquad ; \qquad \int \frac{1}{ax+b} dx = \frac{1}{a}\ln(ax+b) \\ \int e^{ax} dx &= \frac{1}{a}e^{ax} \qquad ; \qquad \int b^{ax} dx = \frac{1}{a\ln b}b^{ax} \qquad ; \qquad \int f(x)g'(x) dx = f(x)g(x) - \int f'(x)g(x) dx \end{split}$$