MATH 4330 — Assignment 1 Solutions

Instructor: Kevin McGregor

Question 1: A researcher wants to study whether an existing drug causes a particular kind of skin reaction. She collects data from an existing medical database; she samples individuals who showed the skin reaction as well as individuals without a reaction. She then examines how many individuals had taken the drug of interest.

(a) [2 points] What kind of study is this? Be as specific as possible, and explain your answer.

Answer: This is a **retrospective** study, because the researcher is using existing data and looking back into the past.

(b) [2 points] Suppose the researcher finds that those who took the drug had a higher chance of developing a skin reaction. Do you believe this result? Can you think of other specific factors that might affect the conclusion? Explain your answers.

Answer: Since the study is observational, we cannot say for certain whether the drug caused the skin reaction. In an observational study there is a possibility of confounders. In this example, the prior health of the patient could be related to both the chance of being prescribed the drug AND the chance of developing a skin reaction.

Question 2: [2 points] A researcher runs a randomized experiment where study participants are randomized to be given either a drug or a placebo. Another researcher wants to perform an additional study on this same study group. He asks participants whether they get more or less than 3 hours of exercise per week. He concludes that individuals with more than 3 hours of exercise per week have lower blood pressure than those who get less than 3 hours, on average. Are you worried about confounders in this conclusion? Explain.

Answer: There is a possibility of confounders. While the original study was randomized, it was the drug itself that was randomized, not exercise. There could still be a confounder such as age or prior health in the exercise/blood pressure relationship. In fact, if exercise and blood pressure were measured after the drug was administered, then the drug itself could be a confounder, because it could affect exercise habits as well as blood pressure.

Question 3: We want to study the genetics of colour distribution in a population of unicorns. Suppose that in unicorns there is a single gene that determines colour; there are two variants of the gene, one called A and the other called a. Each unicorn has two copies of the gene (one from each parent). The combination of the gene variants for copy 1 and copy 2 of the gene determines colour as follows:

Copy 1	Copy 2	Colour
\overline{A}	A	Red
A	a	Pink
a	A	Pink
a	a	White

We want to determine if "random mating" is happening in this unicorn population. This would mean that the probability that a newly born unicorn inherits variant A or a with probability equal to the prevalence of each variant in the overall population.

(a) [3 points] Let p be the proportion of the A variant in the population, and q be the proportion of the variant a, so that q = 1 - p. Under random mating, each newborn unicorn inherits A with probability p and a with probability q and the two copies inherited in each unicorn are independent of one another. Calculate the expected proportions of unicorn colours under random mating.

Answer: Since the two copies of the gene are inherited independently, we can calculate colour probabilities as follows:

$$P(\text{Red}) = P(AA) = P(A) \cdot P(A) = p^2$$

$$P(\text{Pink}) = P(Aa) + P(aA) = 2P(A)P(a) = 2pq$$

$$P(\text{White}) = P(aa) = P(a) \cdot P(a) = q^2$$

(b) [5 points] Suppose you know that p = 0.75 and q = 0.25, and that you collect the following data from a sample of unicorns:

Colour	Number of unicorns
Red	45
Pink	49
White	12

Use the appropriate statistical test to determine whether the random mating assumption holds in this population. Write out your calculations for this part; using R for this part will not result in credit.

Answer: Calculating expected proportions using part (a) we have:

$$P(\text{Red}) = 0.75^2 = 0.5625$$

 $P(\text{Pink}) = 2(0.75)(0.25) = 0.375$
 $P(\text{White}) = 0.25^2 = 0.0625$

The total number of counts is n = 45 + 49 + 12 = 106. Therefore, the expected counts of the three colours is:

Colour	Expected count
Red	106(0.5625) = 59.625
Pink	106(0.375) = 39.75
White	106(0.0625) = 6.625

Since we're comparing the counts of a single categorical variable to hypothesized proportions, we're doing a chi-squared test for goodness of fit. The test statistic is:

$$X^{2} = \frac{(45 - 59.625)^{2}}{59.625} + \frac{(49 - 39.75)^{2}}{39.75} + \frac{(12 - 6.625)^{2}}{6.625}$$
$$= 10.101$$

There are three categories, so we have 3-1=2 degrees of freedom. The chi-squared upper tail for level $\alpha=0.05$ is 0.0064. Therefore, we reject the null hypothesis that the observed counts follow the hypothesized distribution. Therefore, we do **not** have evidence of random mating.