Espaces préhilbertiens réels

Feuille d'exercices #14

Exercice 1 — Montrer que les applications suivantes définissent un produit scalaire sur E:

1.
$$(P,Q) \mapsto \sum_{k=0}^{n} P^{(k)}(0)Q^{(k)}(0)$$
 avec $E = \mathbb{R}_n[X]$ $(n \in \mathbb{N})$.

2.
$$(f,g) \mapsto \int_0^1 f(t)g(t)(1-t^2) dt$$
 avec $E = \mathcal{C}([0,1];\mathbb{R})$.

3.
$$(P,Q) \mapsto \int_{-\infty}^{+\infty} e^{-t^2} P(t) Q(t) dt$$
 avec $E = \mathbb{R}[X]$.

Exercice 2 — Soient E un espace préhilbertien réel et $n \in \mathbb{N}^*$. On suppose qu'il existe $(e_1, ..., e_n) \in E^n$ tels que :

$$\begin{cases} \forall i \in [1, n], & ||e_i|| = 1 \\ \forall x \in E, & \sum_{i=1}^{n} (x|e_i)^2 = ||x||^2. \end{cases}$$

Démontrer que $(e_1, ..., e_n)$ est une base orthonormale de E.

Exercice 3 — Montrer que pour tout $n \in \mathbb{N}$, $\sum_{k=0}^{n} \sqrt{\binom{n}{k}} \le \sqrt{2^n(n+1)}$.

Exercice 4 — Soient *E* un espace préhilbertien réel et *F*, *G* deux sous-espaces vectoriels de *E*.

- 1. Montrer que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.
- 2. Montrer que si *E* est euclidien, $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.

Exercice 5 — Dans l'espace euclidien canonique \mathbb{R}^3 , on pose :

$$F = \{(x, y, z) \in \mathbb{R}^3 \mid z = x + y\}$$

Déterminer la matrice de la projection orthogonale sur F dans la base canonique.

Exercice 6 — On munit \mathbb{R}^4 muni du produit scalaire usuel et on considère le sousespace vectoriel F de \mathbb{R}^4 d'équations :

$$\begin{cases} x + y + z + t = 0 \\ x + 2y + 3z + 4t = 0 \end{cases}$$

- 1. Déterminer une base orthonormale de F ainsi que de F^{\perp} .
- 2. Déterminer la matrice dans la base canonique de la proj. orthogonale sur *F*.
- 3. Pour tout $u \in E$, déterminer d(u, F).

Exercice 7 — Soient E un espace préhilbertien réel et deux vecteurs $a, x \in E$ avec a non nul. On considère la droite vectorielle D = Vect(a) et son orthogonal $H = D^{\perp}$. Exprimer d(x, D) et d(x, H) en fonction de ||x|| et (x|a).

Exercice 8 — On munit $E = \mathcal{C}([0,1];\mathbb{R})$ du produit scalaire $(f,g) \mapsto \int_0^1 f(t)g(t) dt$.

- 1. On pose $F = \{ f \in E \mid f(0) = 0 \}$. Montrer que $F^{\perp} = \{ 0 \}$.
- 2. Montrer que $(\mathscr{C}^1([0,1];\mathbb{R}))^{\perp} = \{0\}.$

Exercice 9 — Soit $E = \mathbb{R}[X]$.

- 1. Montrer que l'égalité $\langle P, Q \rangle = \int_0^1 PQ$ définit un produit scalaire sur E.
- 2. Déterminer une base orthonormée de $F=\mathbb{R}_2[X]$ pour ce produit scalaire.
- 3. Déterminer la projection orthogonale de X^3 sur F et calculer $d(X^3, F)$.

Exercice 10 — On cherche à calculer $I = \inf_{(a,b) \in \mathbb{R}^2} \int_0^1 (e^{-t} - at - b)^2 dt$.

On munit pour cela $\mathscr{C}([0,1];\mathbb{R})$ du produit scalaire $(f,g)\mapsto \int_0^1 f(t)g(t)\,\mathrm{d}t$.

- 1. Montrer que $I = d(\varphi, F)^2$ pour une certaine application $\varphi \in \mathscr{C}([0, 1]; \mathbb{R})$ et un certain sous-espace vectoriel F de $\mathscr{C}([0, 1]; \mathbb{R})$ à préciser.
- 2. Déterminer le projeté orthogonal de φ sur F et en déduire I.

Exercice 11 — Déterminer comme dans l'exercice précédent :

$$\inf_{a,b \in \mathbb{R}} \int_0^{\pi} (a \sin x + b \cos x - x)^2 dx \quad \text{et} \quad \inf_{(a,b,c) \in \mathbb{R}^3} \int_0^{+\infty} (x^3 + ax^2 + bx + c)^2 e^{-2x} dx$$

Exercice 12 — Pour $A, B \in \mathcal{M}_n(\mathbb{R})$, on pose $(A|B) = \text{Tr}(A^{\top}B)$. On note $\mathcal{S}_n(\mathbb{R})$ (respectivement $\mathcal{A}_n(\mathbb{R})$) l'espace des matrices symétriques (resp. antisymétriques).

- 1. Montrer que $(\cdot|\cdot)$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que $\mathcal{M}_n(\mathbb{R}) = \mathcal{S}_n(\mathbb{R}) \stackrel{\perp}{\oplus} \mathcal{A}_n(\mathbb{R})$.
- 3. Déterminer la projection orthogonale d'une matrice M sur $\mathcal{A}_n(\mathbb{R})$.
- 4. Montrer que $d(M, \mathcal{S}_n(\mathbb{R})) = \frac{1}{2} \|M M^\top\|$ pour $M \in \mathcal{M}_n(\mathbb{R})$.
- 5. Calculer $d(M, \mathcal{A}_3(\mathbb{R}))$ avec $M = \begin{bmatrix} 1 & 2 & 1 \\ -2 & -1 & -1 \\ -1 & -1 & -2 \end{bmatrix}$.

Exercice 13 — Soit E un espace préhilbertien réel et p un projecteur de E. Montrer que p est un projecteur orthogonal si et seulement si :

$$\forall x \in E$$
, $\|p(x)\| \le \|x\|$

Exercice 14 — Soient $E = \mathcal{C}^2([0,1],\mathbb{R})$ et $\langle f,g \rangle = \int_0^1 \left(f(t)g(t) + f'(t)g'(t) \right) dt$.

- 1. Vérifier que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur E.
- 2. Soient $F = \{ f \in E \mid f(0) = f(1) = 0 \}$ et $G = \{ f \in E \mid f'' = f \}$. Montrer que F et G sont des sous-espaces supplémentaires orthogonaux de E.
- 3. En déduire $\inf_{f \in H} \int_0^1 (f^2(t) + f'^2(t)) dt$ où $H = \{ f \in E \mid f(0) = \alpha, f(1) = \beta \}.$

Exercice 15 — Opérateur de Volterra

Soit $E = \mathscr{C}([0,1],\mathbb{R})$ muni du produit scalaire $\langle f,g \rangle = \int_0^1 f(t)g(t) \, \mathrm{d}t$. On considère l'application T définie sur E par :

$$\forall x \in [0,1], \quad T(f)(x) = \int_0^x f(t) \, \mathrm{d}t$$

- 1. Montrer que $T \in \mathcal{L}(E)$ et justifier l'existence de $T^* \in \mathcal{L}(E)$ tel que pour tous $f, g \in E, \langle T(f), g \rangle = \langle f, T^*(g) \rangle$.
- 2. Déterminer, pour tout $f \in E$, (T(f))' et $(T^*(f))'$.
- 3. Déterminer les éléments propres de $T^* \circ T$.

Exercice 16 — Polynômes de Tchebychev

1. Montrer que pour tout $n \in \mathbb{N}$, il existe $T_n \in \mathbb{R}[X]$ tel que :

$$\forall x \in [0, \pi], \quad T_n(\cos(x)) = \cos(nx).$$

On vérifiera que $T_{n+2} = 2XT_{n+1} - T_n$ pour tout $n \in \mathbb{N}$.

- 2. Pour tout $n \in \mathbb{N}$, déterminer le degré et le coefficient dominant de T_n .
- 3. a) Soit $E = \mathcal{C}([-1,1],\mathbb{R})$. Montrer que φ est un produit scalaire, où :

$$\forall f, g \in E, \quad \varphi(f, g) = \int_{-1}^{1} \frac{f(t)g(t)}{\sqrt{1 - t^2}} dt$$

b) On pose $P_0 = \frac{1}{\sqrt{\pi}}$ et pour tout n > 0, $P_n = \sqrt{\frac{2}{\pi}} T_n$.

Montrer que $(P_k)_{k \in [0,n]}$ forme une base orthonormale de $\mathbb{R}_n[X]$.

c) Pour $f \in E$ et $n \in \mathbb{N}$, on note $\sum_{k=0}^{n} a_k T_k$ sa projection orthogonale sur $\mathbb{R}_n[X]$. Montrer que la série de terme général a_n^2 converge.

Exercice 17 — Famille de polynômes orthogonaux

Soient $E = \mathbb{R}[X]$, $-\infty \le a < b \le +\infty$ et $w :]a, b[\to \mathbb{R}$ continue et strictement positive telle que l'intégrale $\langle P, Q \rangle = \int_a^b P(t)Q(t)w(t) dt$ converge pour tous $P, Q \in \mathbb{R}[X]$.

- 1. Montrer que $\langle \cdot, \cdot \rangle$ définit un produit scalaire sur E.
- 2. Établir l'existence d'une unique famille orthogonale $(P_n)_{n\in\mathbb{N}}$ de polynômes unitaires tels que $\deg(P_n)=n$ pour tout $n\in\mathbb{N}$.
- 3. Justifier que pour $n \in \mathbb{N}^*$, P_n admet n racines réelles distinctes dans a, b, que l'on note par la suite a_1, \ldots, a_n .
- 4. Montrer qu'il existe $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ tels que :

$$\forall P \in \mathbb{R}_{2n-1}[X], \quad \int_a^b P(t)w(t) dt = \sum_{i=1}^n \lambda_i P(\alpha_i)$$

5. Prouver enfin l'existence de $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ telles que pour tout $n\in\mathbb{N}^*$, $P_{n+1}=(X+a_n)P_n+b_nP_{n-1}$.