Modelos Lineares Generalizados - Introdução a Regresssão Linear

Antonio C. da Silva Júnior

05 de dezembro de 2020

Conceitos gerais

Exemplo

Estudar o comportamento do "tempo de percurso até a escola" em função da "distância percorrida pelos alunos".

Tempo (min)	Distância (km)
15	8
20	6
20	15
40	20
50	25
25	11
10	5
55	32
35	28
30	20

Exemplo

Exemplo

Regressão Linear Simples

Equação do modelo:

$$y = \beta_0 + \beta_1 x + \epsilon, \tag{1}$$

em que β_0 é o intercepto (coeficiente linear), β_1 é a inclinação da reta (coeficiente angular) e ϵ , o termo de erro aleatório.

Silva Júnior, A. C. Regressão Linear 05/12/2020 6/41

Parâmetros

Estimativas

• Modelo ajustado:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x, \tag{2}$$

com $\hat{\beta}_0 = 5.8784$ e $\hat{\beta}_1 = 1.4189$.

Silva Júnior, A. C. Regressão Linear 05/12/2020 8 / 41

Estimativas

Portanto, um aluno que percorre uma distância de 25km, leva em média 41,3 minutos para chegar na escola.

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 \times 25$$

$$41.3509 = 5.8784 + 1.4189 \times 25$$

Interpretação

A cada k unidades a mais de distância percorrida, o tempo de um aluno chegar na escola aumenta, em média, $k\hat{\beta}_1$ unidades de tempo.

Dentro do contexto, 10km a mais de distância percorrida aumenta, em média, 14,19 minutos ($10 \times 1,4189$) o tempo do trajeto.

Interpretação

E caso a distância percorrida seja 0, o tempo para chegar na escola será de 5,8784 $(\hat{\beta}_0)$ minutos.

Matematicamente a afirmação faz sentido, entretanto, ao observar que nos dados de ajuste do modelo não havia nenhum aluno com distância percorrida próxima de 0, concluimos que o intercepto indica, na verdade, uma extrapolação da reta de regressão.

Reta	SQRes
0	2000

Silva Júnior, A. C. Regressão Linear 05/12/2020 13 / 41

Reta	SQRes
0	2000.0
1	1048.9

Silva Júnior, A. C. Regressão Linear 05/12/2020 14 / 41

Reta	SQRes
0	2000.0
1	1048.9
	504.0

Silva Júnior, A. C. Regressão Linear 05/12/2020 15 / 41

Reta	SQRes
0	2000.0
1	1048.9
2	504.9
3	369.0

Silva Júnior, A. C. Regressão Linear 05/12/2020 16 / 41

Reta	SQRes
0	2000.0
1	1048.9
2	504.9
3	369.0
4	726.0

Reta	SQRes
0	2000.00
1	1048.90
2	504.90
3	369.00
4	726.00
5	1149.36

Reta	SQRes
0	2000.00
1	1048.90
2	504.90
3	369.00
4	726.00
5	1149.36
6	1753.04

Resíduo:

$$r_i = y_i - \hat{y}_i,$$

$$r_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i),$$

$$r_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i.$$

• Quadrado do resíduo:

$$r_i^2 = (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2.$$

Soma dos quadrados dos resíduos:

$$S = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2.$$
 (3)

y (ajust)	Res	QRes
17.22973	-2.229730	4.971695
14.39189	5.608108	31.450877
27.16216	-7.162162	51.296567
34.25676	5.743243	32.984843
41.35135	8.648649	74.799123
21.48649	3.513514	12.344777
12.97297	-2.972973	8.838568
51.28378	3.716216	13.810263
45.60811	-10.608108	112.531958
34.25676	-4.256757	18.119978
	17.22973 14.39189 27.16216 34.25676 41.35135 21.48649 12.97297 51.28378 45.60811	17.22973 -2.229730 14.39189 5.608108 27.16216 -7.162162 34.25676 5.743243 41.35135 8.648649 21.48649 3.513514 12.97297 -2.972973 51.28378 3.716216 45.60811 -10.608108

Como estimar β_0 e β_1 de modo que a soma dos quadrados dos resíduos seja mínima?

$$\frac{\partial S}{\partial \beta_0} = \frac{\partial}{\partial \beta_0} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2,$$

$$u = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i,$$

$$\frac{\partial S}{\partial \beta_0} = \frac{\partial}{\partial \beta_0} \sum_{i=1}^n (u)^2,$$

$$\frac{\partial S}{\partial \beta_0} = \sum_{i=1}^n 2uu',$$

$$u' = -1$$
,

$$\frac{\partial S}{\partial \beta_0} = \sum_{i=1}^n 2(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)(-1),$$

$$\frac{\partial S}{\partial \beta_0} = -2\sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i). \tag{4}$$

• Iguala a zero:

$$\frac{\partial S}{\partial \beta_0} = 0,$$

$$-2 \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i) = 0,$$

$$-2\sum_{i=1}^{n}y_{i}+2\sum_{i=1}^{n}\hat{\beta}_{0}+2\sum_{i=1}^{n}\hat{\beta}_{1}x_{i}=0,$$

• Iguala a zero:

$$\frac{-2\sum_{i=1}^{n} y_i}{2n} + \frac{2\sum_{i=1}^{n} \hat{\beta}_0}{2n} + \frac{2\sum_{i=1}^{n} \hat{\beta}_1 x_i}{2n} = \frac{0}{2n},$$
$$-\bar{y} + \hat{\beta}_0 + \hat{\beta}_0 \bar{x} = 0,$$

em que \bar{y} e \bar{x} são as médias amostrais de y e x, respectivamente.

Portanto,

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}. \tag{5}$$

30 / 41

Derivada parcial em relação a $\hat{\beta}_1$:

$$\frac{\partial S}{\partial \beta_1} = \frac{\partial}{\partial \beta_1} \sum_{i=1}^n (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2,$$

$$u = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i,$$

Regressão Linear 05/12/2020 31 / 41

$$\frac{\partial S}{\partial \beta_0} = \frac{\partial}{\partial \beta_0} \sum_{i=1}^n (u)^2,$$

$$\frac{\partial S}{\partial \beta_0} = \sum_{i=1}^n 2uu',$$

$$u'=-x_i$$
,

• Derivada parcial em relação a $\hat{\beta}_0$:

$$\frac{\partial S}{\partial \beta_1} = \sum_{i=1}^n 2(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)(-x_i),$$

$$\frac{\partial S}{\partial \beta_1} = -2\sum_{i=1}^n x_i (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i). \tag{6}$$

Silva Júnior, A. C. Regressão Linear 05/12/2020 33 / 41

Iguala a zero:

$$\frac{\partial S}{\partial \beta_1} = 0,$$

$$-2\sum_{i=1}^{n}x_{i}(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1}x_{i})=0,$$

Silva Júnior, A. C. Regressão Linear 05/12/2020 34 / 41

Resolve o sistema substituindo $\hat{\beta}_0$ pela equação (5):

$$-2\sum_{i=1}^{n} x_{i}(y_{i} - (\bar{y} - \hat{\beta}_{1}\bar{x}) - \hat{\beta}_{1}x_{i}) = 0,$$

$$-2\sum_{i=1}^{n} x_{i}(y_{i} - \bar{y} + \hat{\beta}_{1}\bar{x} - \hat{\beta}_{1}x_{i}) = 0,$$

$$-2\sum_{i=1}^{n} x_{i}(y_{i} - \bar{y} + \hat{\beta}_{1}(\bar{x} - x_{i})) = 0,$$

$$-2\sum_{i=1}^{n} x_{i}(y_{i} - \bar{y}) + \hat{\beta}_{1}x_{i}(\bar{x} - x_{i}) = 0,$$

Resolve o sistema substituindo $\hat{\beta}_0$ pela equação (5):

$$\sum_{i=1}^{n} x_{i}(y_{i} - \bar{y}) + \hat{\beta}_{1}x_{i}(\bar{x} - x_{i}) = 0,$$

$$\sum_{i=1}^{n} x_i (y_i - \bar{y}) + \hat{\beta}_1 \sum_{i=1}^{n} x_i (\bar{x} - x_i) = 0,$$

$$\hat{\beta}_1 \sum_{i=1}^n x_i (\bar{x} - x_i) = -\sum_{i=1}^n x_i (y_i - \bar{y}),$$

Resolve o sistema substituindo $\hat{\beta}_0$ pela equação (5):

$$\hat{\beta}_1 = \frac{-\sum_{i=1}^n x_i (y_i - \bar{y})}{\sum_{i=1}^n x_i (\bar{x} - x_i)},$$

$$\hat{\beta}_1 = \frac{-\sum_{i=1}^n x_i y_i - x_i \bar{y}}{\sum_{i=1}^n x_i \bar{x} - x_i^2},$$

Resolve o sistema substituindo $\hat{\beta}_0$ pela equação (5):

$$\hat{\beta}_1 = \frac{-x_i y_i + \sum_{i=1}^n x_i \bar{y}}{\sum_{i=1}^n x_i \bar{x} - \sum_{i=1}^n x_i^2},$$

$$\hat{\beta}_1 = \frac{\bar{y} \sum_{i=1}^n x_i - \sum_{i=1}^n x_i y_i}{\bar{x} \sum_{i=1}^n x_i - \sum_{i=1}^n x_i^2}.$$
 (7)

Silva Júnior, A. C. Regressão Linear 05/12/2020 38 / 41

Exemplos no Excel...

Exemplo no R:

```
modelo <- lm(formula = Tempo ~ Distancia, data = df_tempo)</pre>
```

```
summary(modelo)
##
## Call:
## lm(formula = Tempo ~ Distancia, data = df_tempo)
##
## Residuals:
       Min
              1Q Median
                                          Max
## -10.6081 -3.9358 0.6419 5.1351 8.6486
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.8784
                          4 5323 1 297 0 230788
## Distancia 1 4189
                          0.2355 6.025 0.000314 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.719 on 8 degrees of freedom
## Multiple R-squared: 0.8194, Adjusted R-squared: 0.7969
## F-statistic: 36.3 on 1 and 8 DF. p-value: 0.0003144
```