Distributed FFTs for integrated algorithms

Tze Meng Low Elliott Binder

Planewave Pseudopotential Method in DFT

$$\{-\frac{1}{2}\nabla^{2} + \int \frac{\rho(r')}{|r-r'|} dr' + \sum_{I} \frac{Z}{|r-R_{I}|} + V_{XC}(\rho(r))\} \psi_{j}(r) = E_{j} \psi_{j}(r)$$

Computational Task (CG solver)	Scaling
Orthogonalization	$MN^2 (\alpha N^3)$
Subspace diagonalization	N ³
3d FFTs (most communications)	NMlogM (α N²)
Nonlocal pseudopotential	MN ² (N ² real space)

N: number of eigenpairs (bands, states, electrons) required (lowest in spectrum) (N is in the range of 100s to 1000s)

M: matrix (Hamiltonian) dimension, #Fourier components (M ~ 256^3 to 1024^3)

Basic 3DFFT

 3 functions to invoke distributed 3DFFT. Similar to all many distributed 3DFFT framework

- Assumptions
 - Data is evenly distributed in blocks of pencils
 - All temporary data and communication buffers will be created as part of the plan
 - Requires at least 2 x (MNK / (rc)) additional space on the GPU for intermediate results

E COMPUTION PROJECT

Requirements for Integrated Planewave algorithm

- Many zero elements in data cube
- Exploiting zero elements reduces computation and communication

Communications

- Ratio of Cube to Cylinder Volume is π/16 = 0.196
- 5.1 factor less data communicated compared to full (library) 3D FFT

FLOPS

- Three sets of 1D FFTS $(\pi/16)N^2$, $(1/2)N^2$, N^2
- Full 3D FFT 3N² sets of 1D FFTS
- 1.70 factor lower FLOP count compared to full (library) 3D FFT

Embedded 3DFFT

Similar interface with is_embedded set to true

- Exploit locations of non-zeros to reduce amount of data communicated
- Padding performed for 2nd and 3rd stage performed as part of the communication
- Same assumptions as the basic 3DFFT

Backup Slides with code

```
fftx_plan plan = fftx_plan_distributed(r, c, M, N, K, batch, is_embedded);

DEVICE_SYNCHRONIZE();
MPI_Barrier(MPI_COMM_WORLD);

for (int t = 0; t < 1; t++) {
    double start_time = MPI_Wtime();
    fftx_execute(plan, (double*)out_buffer, (double*)in_buffer, (is_forward ? FFTX_FORWARD: FFTX_BACKWARD));
    double end_time = MPI_Wtime();

    double min_time = min_diff(start_time, end_time, MPI_COMM_WORLD);
    double max_time = max_diff(start_time, end_time, MPI_COMM_WORLD);

DEVICE_MEM_COPY(fftx_out, out_buffer, (Mo*No*Ko/p) * sizeof(complex<double>)*batch, MEM_COPY_DEVICE_TO_HOST);
DEVICE_SYNCHRONIZE();
}
```

Execute with command

srun -A CSC304_crusher -N 4 -n \$((\$P * \$P)) --gpus-per-node 8 --gpu-bind=closest -t 00:01:00 ./testmddft3d.x

Performance on Crusher

Full vs Embedded 3DFFT

