

Best Available Copy

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM

Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

<p>(51) Internationale Patentklassifikation⁶ : A61K 31/00, 31/505, 31/53</p>		<p>A1</p>	<p>(11) Internationale Veröffentlichungsnummer: WO 95/26716</p> <p>(43) Internationales Veröffentlichungsdatum: 12. Oktober 1995 (12.10.95)</p>
<p>(21) Internationales Aktenzeichen: PCT/EP95/01099</p>			<p>129, D-67065 Ludwigshafen (DE). RASCHACK, Manfred [DE/DE]; Donnersbergstrasse 7, D-67256 Weisenheim (DE).</p>
<p>(22) Internationales Anmeldedatum: 23. März 1995 (23.03.95)</p>			<p>(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).</p>
<p>(30) Prioritätsdaten: P 44 11 225.4 31. März 1994 (31.03.94) DE</p>			<p>(81) Bestimmungsstaaten: AU, BR, BY, CA, CN, CZ, FI, HU, JP, KR, KZ, MX, NO, NZ, PL, RU, SG, SI, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).</p>
<p>(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).</p> <p>(72) Erfinder; und</p> <p>(75) Erfinder/Anmelder (<i>nur für US</i>): BAUMANN, Ernst [DE/DE]; Falkenstrasse 6a, D-67373 Dudenhofen (DE). VOGELBACHER, Uwe, Josef [DE/DE]; Niedererdstrasse 56, D-67071 Ludwigshafen (DE). RHEINHEIMER, Joachim [DE/DE]; Merziger Strasse 24, D-67063 Ludwigshafen (DE). KLINGE, Dagmar [DE/DE]; Brückenkopfstrasse 15, D-69120 Heidelberg (DE). RIECHERS, Hartmut [DE/DE]; Bergstrasse 44, D-67067 Ludwigshafen (DE). KRÖGER, Burkhard [DE/DE]; Tilsiterstrasse 21, D-67117 Limburgerhof (DE). BIAŁOJAN, Siegfried [DE/DE]; In den Auwiesen 49, D-68723 Oftersheim (DE). BOLLSCHWEILER, Claus [DE/DE]; Karl-Christ-Strasse 13, D-69118 Heidelberg (DE). WERNET, Wolfgang [DE/DE]; Burgweg 115, D-67454 Hassloch (DE). UNGER, Liliane [DE/DE]; Wollstrasse</p>		<p>Veröffentlicht</p> <p><i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist. Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i></p>	
<p>(54) Title: PYRIMIDINE OR TRIAZINE CARBOXYLIC ACID DERIVATIVES TO BE USED AS MEDICAMENTS</p> <p>(54) Bezeichnung: PYRIMIDIN- ODER TRIAZINCARBONSÄUREDERIVATE ZUR VERWENDUNG ALS ARZNEIMITTEL</p> <p>(57) Abstract</p> <p>The invention concerns the use of carboxylic acid derivatives of formula (I) in which R means a formyl group, a CO₂H group or a residue which can be hydrolysed to form COOH; X means nitrogen or CR¹⁴, wherein R¹⁴ means hydrogen or, together with R³, forms a 3- to 4-member alkylene or alkenylene chain in each of which a methyl group can be replaced by oxygen; Y means sulphur or oxygen or a single bond; Z means sulphur or oxygen; and the other substituents have the meanings given in the description. These derivatives can be used for preparing medicaments.</p> <p>(57) Zusammenfassung</p> <p>Verwendung von Carbonsäurederivaten der Formel (I), in der R eine Formylgruppe, eine Gruppe CO₂H oder einen zu COOH hydrolysierbaren Rest bedeutet: X Stickstoff oder CR¹⁴ bedeutet, wobei R¹⁴ Wasserstoff bedeutet oder zusammen mit R³ eine 3- bis 4-gliedrige Alkylen- oder Alkenylenekette bildet, in der jeweils eine Methylgruppe durch Sauerstoff ersetzt ist; Y Schwefel oder Sauerstoff oder eine Einfachbindung bedeutet; Z Schwefel oder Sauerstoff bedeutet; und die anderen Substituenten die in der Beschreibung angegebene Bedeutung haben zur Herstellung von Arzneimitteln.</p>			

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Österreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SE	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

PYRIMIDIN- ODER TRIAZINCARBONSÄUREDERIVATE ZUR VERWENDUNG ALS ARZNEIMITTEL

Beschreibung

5

Die vorliegende Erfindung betrifft die Verwendung bestimmter Carbonsäuredivate als Arzneimittel.

Endothelin ist ein aus 21 Aminosäuren aufgebautes Peptid, das 10 von vaskulärem Endothel synthetisiert und freigesetzt wird. Endothelin existiert in drei Isoformen, ET-1, ET-2 und ET-3. Im Folgenden bezeichnet "Endothelin" oder "ET" eine oder alle Isoformen von Endothelin. Endothelin ist ein potenter Vaso- konstriktor und hat einen starken Effekt auf den Gefäßtonus. Es 15 ist bekannt, daß diese Vasokonstriktion von der Bindung von Endothelin an seinen Rezeptor verursacht wird (Nature, 332, 411-415, 1988; FEBS Letters, 231, 440-444, 1988 und Biochem. Biophys. Res. Commun., 154, 868-875, 1988).

20 Erhöhte oder abnormale Freisetzung von Endothelin verursacht eine anhaltende Gefäßkontraktion in peripheren, renalen und zerebralen Blutgefäßen, die zu Krankheiten führen kann. Wie in der Literatur berichtet, wurden erhöhte Plasmaspiegel von Endothelin gefunden bei Patienten mit Hypertonie, akutem Myokardinfarkt, pulmonärer 25 Hypertonie, Raynaud-Syndrom, Atherosklerose und in den Atem- wegen von Asthmakern (Japan J. Hypertension, 12, 79 (1989), J. Vascular Med. Biology 2, 207 (1990), J. Am. Med. Association 264, 2868 (1990)).

30 Demnach sollten Substanzen, die spezifisch die Bindung von Endothelin an den Rezeptor inhibieren, auch die obengenannten verschiedenen physiologischen Effekte von Endothelin antagonisieren und daher wertvolle Pharmaka darstellen.

35 Es wurde nun gefunden, daß bestimmte Carbonsäuredivate gute Hemmstoffe für Endothelinrezeptoren sind.

Gegenstand der Erfindung ist die Verwendung von Carbonsäurederivaten mit der im folgenden beschriebenen Formel I zur Herstellung 40 von Arzneimitteln, insbesondere zur Herstellung von Hemmstoffen für Endothelinrezeptoren.

2

Carbonsäurederivate der allgemeinen Formel I

10

in der R eine Formylgruppe, eine Gruppe CO_2H oder einen zu COOH hydrolysierbaren Rest bedeutet und die übrigen Substituenten folgende Bedeutung haben:

15 R² Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio;

X Stickstoff oder CR¹⁴, wobei R¹⁴ Wasserstoff bedeutet oder zusammen mit R³ eine 3- bis 4-gliedrige Alkylen- oder

20 Alkenylenkette bildet, in der jeweils eine Methylengruppe durch Sauerstoff ersetzt ist;

R³ Halogen, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio oder R³ ist mit R¹⁴ wie

25 oben angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;

R⁴ eine C₁-C₁₀-Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkylcarbonyl, C₁-C₈-Alkoxy-

30 carbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

35 eine C₁-C₁₀-Alkylgruppe, welche ein bis fünf Halogenatome tragen kann und einen der folgenden Reste trägt: ein fünf-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein

40 bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio und/oder Phenyl;

45 eine C₃-C₁₂-Cycloalkyl- oder C₃-C₁₂-Cycloalkenylgruppe, die ein Sauerstoff- oder Schwefelatom enthalten kann und ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkyl-

carbonyl, C₁-C₈-Alkoxycarbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

5

eine C₃-C₆-Alkenyl- oder eine C₃-C₆-Alkinylgruppe, welche jeweils ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkylcarbonyl, C₁-C₈-Alkoxycarbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

10

15 ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

20

25 Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio, Amino, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino;

30

35 R⁴ und R⁵ bilden zusammen mit dem benachbarten Kohlenstoffatom einen 3- bis 8-gliedrigen Ring, der ein Sauerstoff- oder Schwefelatom enthalten kann und einen bis drei der folgenden Reste tragen kann: C₁-C₄-Alkyl, Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

40 R⁵ Wasserstoff, C₁-C₄-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl,

45 C₃-C₈-Cycloalkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxyalkyl, C₁-C₄-Alkylthioalkyl, Phenyl oder R⁵ ist mit R⁴ wie oben angegeben zu einem 3- bis 8-gliedrigen Ring verknüpft;

R⁶ C₁-C₈-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder C₃-C₈-Cyclo-

45 alkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylthio,

4

C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxy carbonyl,
 C₁-C₄-Alkylamino, Di-C₁-C₄-alkylamino, Phenyl, ein- oder
 mehrfach, z.B. ein bis dreifach durch Halogen, Nitro, Cyano,
 5 C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogen-
 alkoxy oder C₁-C₄-Alkylthio substituiertes Phenyl oder
 Phenoxy;

10 Phenyl oder Naphthyl, die jeweils durch einen oder mehrere
 der folgenden Reste substituiert sein können: Halogen, Nitro,
 Cyano, Hydroxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,
 C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio,
 C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino;

15 ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein
 bis drei Stickstoffatome und/oder ein Schwefel- oder Sauer-
 stoffatom, welcher ein bis vier Halogenatome und/oder einen
 bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl,
 C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy,
 C₁-C₄-Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei
 20 die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder
 einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl,
 C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder
 C₁-C₄-Alkylthio;

25 Y Schwefel oder Sauerstoff oder eine Einfachbindung;

Z Schwefel oder Sauerstoff;

Die Herstellung der erfindungsgemäßen Verbindungen geht aus von
 30 den Epoxiden IV, die man in allgemein bekannter Weise, z.B. wie
 in J. March, Advanced Organic Chemistry, 2nd ed., 1983, S. 862
 und S. 750 beschrieben, aus den Aldehyden bzw. Ketonen II oder
 den Olefinen III erhält:

5

Carbonsäurederivate der allgemeinen Formel VI können hergestellt werden, indem man die Epoxide der allgemeinen Formel IV (z.B. mit $R = COOR^{10}$) mit Alkoholen oder Thiolen der allgemeinen Formel V, in der R^6 und Z die in Anspruch 1 genannte Bedeutung haben, zur 5 Reaktion bringt.

Dazu werden Verbindungen der allgemeinen Formel IV mit einem Überschuß der Verbindungen der Formel V, z.B. 1,2-7, bevorzugt 15 2-5 Moläquivalenten, auf eine Temperatur von 50 - 200°C, bevorzugt 80 - 150°C, erhitzt.

Die Reaktion kann auch in Gegenwart eines Verdünnungsmittels 20 erfolgen. Zu diesem Zweck können sämtliche gegenüber den verwendeten Reagenzien inerte Lösungsmittel verwendet werden.

Beispiele für solche Lösungsmittel beziehungsweise Verdünnungsmittel sind Wasser, aliphatische, alicyclische und aromatische Kohlenwasserstoffe, die jeweils gegebenenfalls chloriert sein 25 können, wie zum Beispiel Hexan, Cyclohexan, Petrolether, Ligroin, Benzol, Toluol, Xylol, Methylenchlorid, Chloroform, Kohlenstofftetrachlorid, Ethylenchlorid und Trichlorethylen, Ether, wie zum Beispiel Diisopropylether, Dibutylether, Propylenoxid, Dioxan und Tetrahydrofuran, Ketone, wie zum Beispiel Aceton, Methylethyl-30 keton, Methylisopropylketon und Methylisobutylketon, Nitrile, wie zum Beispiel Acetonitril und Propionitril, Alkohole, wie zum Beispiel Methanol, Ethanol, Isopropanol, Butanol und Ethylenglycol, Ester, wie zum Beispiel Ethylacetat und Amylacetat, Säureamide, wie zum Beispiel Dimethylformamid und Dimethylacetamid, Sulfoxide 35 und Sulfone, wie zum Beispiel Dimethylsulfoxid und Sulfolan, und Basen, wie zum Beispiel Pyridin.

Die Reaktion wird dabei bevorzugt in einem Temperaturbereich zwischen 0°C und dem Siedepunkt des Lösungsmittels bzw. Lösungsmittelgemisches durchgeführt.

Die Gegenwart eines Reaktionskatalysators kann von Vorteil sein. Als Katalysatoren kommen dabei starke organische und anorganische Säuren sowie Lewissäuren in Frage. Beispiele hierfür sind unter 45 anderem Schwefelsäure, Salzsäure, Trifluoressigsäure, Bortrifluorid-Etherat und Titan(IV)-Alkoholate.

6

Die erfindungsgemäßen Verbindungen, in denen Y Sauerstoff bedeutet und die restlichen Substituenten die unter der allgemeinen Formel I angegebenen Bedeutung haben, können beispielsweise derart hergestellt werden, daß man die Carbonsäurederivate der 5 allgemeinen Formel VI, in denen die Substituenten die angegebene Bedeutung haben, mit Verbindungen der allgemeinen Formel VII,

in der R^{15} Halogen oder $R^{16}-SO_2-$ bedeutet, wobei R^{16} C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl oder Phenyl sein kann, zur Reaktion bringt.

20 Die Reaktion findet bevorzugt in einem der oben genannten inerten Verdünnungsmittel unter Zusatz einer geeigneten Base, d.h. einer Base, die eine Deprotonierung des Zwischenproduktes VI bewirkt, in einem Temperaturbereich von Raumtemperatur bis zum Siedepunkt des Lösungsmittels statt.

25 Als Base kann ein Alkali- oder Erdalkalimetallhydrid wie Natriumhydrid, Kaliumhydrid oder Calciumhydrid, ein Carbonat wie Alkali-metallcarbonat, z.B. Natrium- oder Kaliumcarbonat, ein Alkali- oder Erdalkalimetallhydroxid wie Natrium- oder Kaliumhydroxid, 30 eine metallorganische Verbindung wie Butyllithium oder ein Alkaliamid wie Lithiumdiisopropylamid dienen.

Die erfindungsgemäßen Verbindungen, in denen Y Schwefel bedeutet und die restlichen Substituenten die unter der allgemeinen Formel 35 I angegebene Bedeutung haben, können beispielsweise derart hergestellt werden, daß man Carbonsäurederivate der allgemeinen Formel VIII, die in bekannter Weise aus Verbindungen der allgemeinen Formel VI erhältlich sind und in denen die Substituenten die oben angegebene Bedeutung haben, mit Verbindungen der allgemeinen 40 meinen Formel IX, in der R^2 , R^3 und X die unter der allgemeinen Formel I angegebene Bedeutung haben, zur Reaktion bringt.

7

10

Die Reaktion findet bevorzugt in einem der oben genannten inerten Verdünnungsmittel unter Zusatz einer geeigneten Base, d.h. eine Base, die eine Deprotonierung des Zwischenproduktes IX bewirkt, 15 in einem Temperaturbereich von Raumtemperatur bis zum Siedepunkt des Lösungsmittels statt.

Als Base können neben den oben genannten auch organische Basen wie tertiäre Amine, z.B. Triethylamin, Pyridin, Imidazol oder 20 Diazabicycloundecen dienen.

Verbindungen der Formel I können auch dadurch hergestellt werden, daß man von den entsprechenden Carbonsäuren, d. h. Verbindungen der Formel I, in denen R¹ Hydroxyl bedeutet, ausgeht und diese 25 zunächst auf übliche Weise in eine aktivierte Form wie ein Halogenid, ein Anhydrid oder Imidazolid überführt und dieses dann mit einer entsprechenden Hydroxylverbindung HOR¹⁰ umsetzt. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und erfordert oft die Zugabe einer Base, wobei die oben genannten 30 in Betracht kommen. Diese beiden Schritte lassen sich beispielsweise auch dadurch vereinfachen, daß man die Carbonsäure in Gegenwart eines wasserabspaltenden Mittels wie eines Carbodiimids auf die Hydroxylverbindung einwirken läßt.

35 Außerdem können Verbindungen der Formel I auch dadurch hergestellt werden, daß man von den Salzen der entsprechenden Carbonsäuren ausgeht, d. h. von Verbindungen der Formel I, in denen R für eine Gruppe COR^1 und R^1 für OM stehen, wobei M ein Alkalimetallkation oder das Äquivalent eines Erdalkalimetallkations
 40 sein kann. Diese Salze lassen sich mit vielen Verbindungen der Formel R^1-A zur Reaktion bringen, wobei A eine übliche nucleofuge Abgangsgruppe bedeutet, beispielsweise Halogen wie Chlor, Brom, Iod oder gegebenenfalls durch Halogen, Alkyl oder Halogenalkyl substituiertes Aryl- oder Alkylsulfonyl wie z.B. Toluolsulfonyl
 45 und Methylsulfonyl oder eine andere äquivalente Abgangsgruppe. Verbindungen der Formel R^1-A mit einem reaktionsfähigen Substituenten A sind bekannt oder mit dem allgemeinen Fachwissen leicht

zu erhalten. Diese Umsetzung läßt sich in den üblichen Lösungsmitteln durchführen und wird vorteilhaft unter Zugabe einer Base, wobei die oben genannten in Betracht kommen, vorgenommen.

5 Der Rest R in Formel I ist breit variabel. Beispielsweise steht R für eine Gruppe

10

in der R¹ die folgende Bedeutung hat:

a) Wasserstoff;

15

b) eine Succinimidylxygruppe;

c) ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat wie Pyrrolyl, Pyrazolyl, Imidazolyl- und Triazolyl,

20

welcher ein bis zwei Halogenatome, insbesondere Fluor und Chlor und/oder ein bis zwei der folgenden Reste tragen kann:

C₁-C₄-Alkyl wie Methyl, Ethyl, 1-Propyl, 2-Propyl, 2-Methyl-2-propyl, 2-Methyl-1-propyl, 1-Butyl, 2-Butyl;

25

C₁-C₄-Halogenalkyl, insbesondere C₁-C₂-Halogenalkyl wie beispielsweise Fluormethyl, Difluormethyl, Trifluormethyl, Chlordifluormethyl, Dichlorfluormethyl, Trichlormethyl, 1-Fluorethyl, 2-Fluorethyl, 2,2-Difluorethyl, 2,2,2-Trifluoroethyl, 2-Chlor-2,2-difluorethyl, 2,2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl und Pentafluorethyl;

30

C₁-C₄-Halogenalkoxy, insbesondere C₁-C₂-Halogenalkoxy wie Difluormethoxy, Trifluormethoxy, Chlordifluormethoxy, 1-Fluorethoxy, 2-Fluorethoxy, 2,2-Difluorethoxy, 1,1,2,2-Tetrafluorethoxy, 2,2,2-Trifluorethoxy, 2-Chlor-1,1,2-trifluorethoxy und Pentafluorethoxy, insbesondere Trifluormethoxy;

35

40

C₁-C₄-Alkoxy wie Methoxy, Ethoxy, Propoxy, 1-Methylethoxy, Butoxy, 1-Methylpropoxy, 2-Methylpropoxy, 1,1-Dimethylethoxy, insbesondere Methoxy, Ethoxy, 1-Methylethoxy;

45

9

C_1-C_4 -Alkylthio wie Methylthio, Ethylthio, Propylthio, 1-Methylethylthio, Butylthio, 1-Methylpropylthio, 2-Methylpropylthio, 1,1-Dimethylethylthio, insbesondere Methylthio und Ethylthio;

5

d)

10

in dem m für 0 oder 1 steht und R^7 und R^8 , die gleich oder unterschiedlich sein können, die folgende Bedeutung haben:

15

Wasserstoff

C_1-C_8 -Alkyl, insbesondere C_1-C_4 -Alkyl wie oben genannt;

20

C_3-C_6 -Alkenyl wie 2-Propenyl, 2-Butenyl, 3-Butenyl, 1-Methyl-2-propenyl, 2-Methyl-2-propenyl, 2-Pentenyl, 3-Pentenyl, 4-Pentenyl, 1-Methyl-2-butenyl, 2-Methyl-2-butenyl, 3-Methyl-2-butenyl, 1-Methyl-3-butenyl, 2-Methyl-3-butenyl, 3-Methyl-3-butenyl,

25

1,1-Dimethyl-2-propenyl, 1,2-Dimethyl-2-propenyl, 1-Ethyl-2-propenyl, 2-Hexenyl, 3-Hexenyl, 4-Hexenyl, 5-Hexenyl, 1-Methyl-2-pentenyl, 2-Methyl-2-pentenyl, 3-Methyl-2-pentenyl, 4-Methyl-2-pentenyl, 3-Methyl-3-pentenyl, 4-Methyl-3-pentenyl,

30

1-Methyl-4-pentenyl, 2-Methyl-4-pentenyl, 3-Methyl-4-pentenyl, 4-Methyl-4-pentenyl, 1,1-Dimethyl-2-butenyl, 1,1-Dimethyl-3-butenyl,

35

1,2-Dimethyl-2-butenyl, 1,2-Dimethyl-3-butenyl, 1,3-Dimethyl-2-butenyl, 1,3-Dimethyl-3-butenyl, 2,2-Dimethyl-3-butenyl, 2,3-Dimethyl-2-butenyl, 2,3-Dimethyl-3-butenyl, 1-Ethyl-2-butenyl, 1-Ethyl-3-butenyl, 2-Ethyl-2-butenyl, 2-Ethyl-3-butenyl, 1,1,2-Tri-methyl-2-propenyl, 1-Ethyl-1-methyl-2-propenyl und 1-Ethyl-2-methyl-2-propenyl, insbesondere 2-Propenyl,

40

2-Butenyl, 3-Methyl-2-butenyl und 3-Methyl-2-pentenyl;

45

C_3-C_6 -Alkinyl wie 2-Propinyl, 2-Butinyl, 3-Butinyl, 1-Methyl-2-propinyl, 2-Pentinyl, 3-Pentinyl, 4-Pentinyl, 1-Methyl-3-butinyl, 2-Methyl-3-butinyl, 1-Methyl-2-butinyl, 1,1-Dimethyl-2-propinyl, 1-Ethyl-2-propinyl, 2-Hexinyl, 3-Hexinyl, 4-Hexinyl, 5-Hexinyl, 1-Methyl-2-pentinyl, 1-Methyl-3-pentinyl, 1-Methyl-4-pentinyl,

10

2-Methyl-3-pentinyl, 2-Methyl-4-pentinyl,
3-Methyl-4-pentinyl, 4-Methyl-2-pentinyl,
1,1-Dimethyl-2-butinyl, 1,1-Dimethyl-3-butinyl,
1,2-Dimethyl-3-butinyl, 2,2-Dimethyl-3-butinyl,
5 1-Ethyl-2-butinyl, 1-Ethyl-3-butinyl, 2-Ethyl-3-butinyl
und 1-Ethyl-1-methyl-2-propinyl, vorzugsweise 2-Propinyl,
2-Butinyl, 1-Methyl-2-propinyl und 1-Methyl-2-butinyl,
insbesondere 2-Propinyl

10 C_3 - C_8 -Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl,
Cyclohexyl, Cycloheptyl und Cyclooctyl, wobei diese Alkyl-,
Cycloalkyl-, Alkenyl- und Alkinylgruppen jeweils ein bis fünf
Halogenatome, insbesondere Fluor oder Chlor und/oder ein bis
zwei der folgenden Gruppen tragen können:

15 C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, C_1 - C_4 -Halogenalkoxy
wie vorstehend genannt, C_3 - C_6 -Alkenyloxy, C_3 - C_6 -Alkenylthio,
 C_3 - C_6 -Alkinyloxy, C_3 - C_6 -Alkinylthio, wobei die in diesen
Resten vorliegenden Alkenyl- und Alkinylbestandteile vorzugs-
weise den oben genannten Bedeutungen entsprechen;

20 C_1 - C_4 -Alkylcarbonyl wie insbesondere Methylcarbonyl, Ethyl-
carbonyl, Propylcarbonyl, 1-Methylethylcarbonyl, Butyl-
carbonyl, 1-Methylpropylcarbonyl, 2-Methylpropylcarbonyl,
25 1,1-Dimethylethylcarbonyl;

20 C_1 - C_4 -Alkoxycarbonyl wie Methoxycarbonyl, Ethoxycarbonyl,
Propyloxycarbonyl, 1-Methylethoxycarbonyl, Butyloxycarbonyl,
1-Methylpropyloxycarbonyl, 2-Methylpropyloxycarbonyl,
30 1,1-Dimethylethoxycarbonyl;

30 C_3 - C_6 -Alkenylcarbonyl, C_3 - C_6 -Alkinylcarbonyl, C_3 - C_6 -Alkenyloxy-
carbonyl und C_3 - C_6 -Alkinyloxycarbonyl, wobei die Alkenyl- bzw.
Alkinylreste vorzugsweise, wie voranstehend im einzelnen auf-
geföhrt, definiert sind;

35 Phenyl, gegebenenfalls ein- oder mehrfach, z.B. ein-
bis dreifach substituiert durch Halogen, Nitro, Cyano,
 C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogen-
alkoxy oder C_1 - C_4 -Alkylthio wie beispielsweise 2-Fluorphenyl,
40 3-Chlorphenyl, 4-Bromphenyl, 2-Methylphenyl, 3-Nitrophenyl,
4-Cyanophenyl, 2-Trifluormethylphenyl, 3-Methoxyphenyl,
4-Trifluorethoxyphenyl, 2-Methylthiophenyl, 2,4-Dichlor-
phenyl, 2-Methoxy-3-methylphenyl, 2,4-Dimethoxyphenyl,
45 2-Nitro-5-cyanophenyl, 2,6-Difluorphenyl;

11

Di- C_1 - C_4 -Alkylamino wie insbesondere Dimethylamino, Dipropylamino, N-Propyl-N-methylamino, N-Propyl-N-ethylamino, Diisopropylamino, N-Isopropyl-N-methylamino, N-Isopropyl-N-ethylamino, N-Isopropyl-N-propylamino;

5

R^7 und R^8 ferner Phenyl, das durch einen oder mehrere, z.B. ein bis drei der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy oder C_1 - C_4 -Alkylthio, wie

10 insbesondere oben genannt;

oder R^7 und R^8 bilden gemeinsam eine zu einem Ring geschlossene, optionell substituierte, z.B. durch C_1 - C_4 -Alkyl substituierte C_4 - C_7 -Alkylenkette, die ein Heteroatom, ausgewählt aus der Gruppe Sauerstoff, Schwefel oder Stickstoff, enthalten kann wie $-(CH_2)_4-$, $-(CH_2)_5-$, $-(CH_2)_6-$, $-(CH_2)_7-$, $-(CH_2)_2-O-(CH_2)_2-$, $-CH_2-S-(CH_2)_3-$, $-(CH_2)_2-O-(CH_2)_3-$, $-NH-(CH_2)_3-$, $-CH_2-NH-(CH_2)_2-$, $-CH_2=CH=CH-CH_2-$, $-CH=CH-(CH_2)_3-$;

20 e)

25

in der k die Werte 0, 1 und 2, p die Werte 1, 2, 3 und 4 annehmen und R^9 für

30 C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl oder gegebenenfalls substituiertes Phenyl steht, wie insbesondere oben genannt.

f) R^1 ferner ein Rest OR^{10} , worin R^{10} bedeutet:

35 Wasserstoff, das Kation eines Alkalimetalls wie Lithium, Natrium, Kalium oder das Kation eines Erdalkalimetalls wie Calcium, Magnesium und Barium oder ein umweltverträgliches organisches Ammoniumion wie tertiäres C_1 - C_4 -Alkylammonium oder das Ammoniumion;

40

C_3 - C_8 -Cycloalkyl wie vorstehend genannt, welches ein bis drei C_1 - C_4 -Alkylgruppen tragen kann;

45 C_1 - C_8 -Alkyl wie insbesondere Methyl, Ethyl, Propyl, 1-Methyl-ethyl, Butyl, 1-Methylpropyl, 2-Methylpropyl, 1,1-Dimethyl-ethyl, Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 1,2-Dimethylpropyl, 1,1-Dimethylpropyl, 2,2-Dimethylpropyl,

12

1-Ethylpropyl, Hexyl, 1-Methylpentyl, 2-Methylpentyl,
 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl,
 1,3-Dimethylbutyl, 2,3-Dimethylbutyl, 1,1-Dimethylbutyl,
 2,2-Dimethylbutyl, 3,3-Dimethylbutyl, 1,1,2-Trimethylpropyl,
 5 1,2,2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl,
 1-Ethyl-2-methylpropyl, welches ein bis fünf Halogenatome,
 insbesondere Fluor und Chlor und/oder einen der folgenden
 Reste tragen kann:

10 C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, C_1-C_4 -Alkylcarbonyl,
 C_3-C_6 -Cycloakyl, C_1-C_4 -Alkoxy carbonyl, Phenyl, Phenoxy oder
 Phenylcarbonyl, wobei die aromatischen Reste ihrerseits
 jeweils ein bis fünf Halogenatome und/oder ein bis drei der
 folgenden Reste tragen können: Nitro, Cyano, C_1-C_4 -Alkyl,
 15 C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy und/oder
 C_1-C_4 -Alkylthio, wie insbesondere oben genannt;

20 eine C_1-C_8 -Alkylgruppe wie vorstehend genannt, welch ein bis
 fünf Halogenatome, insbesonder Fluor und/oder Chlor tragen
 kann und einen der folgenden Reste trägt: ein 5-gliedriger
 Heteroaromat, enthaltend ein bis drei Stickstoffatome, oder
 ein 5-gliedriger Heteroaromat enthaltend ein Stickstoffatom
 und ein Sauerstoff- oder Schwefelatom, welcher ein bis vier
 25 Halogenatome und/oder ein bis zwei der folgenden Reste tragen
 kann:

30 Nitro, Cyano, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy,
 Phenyl, C_1-C_4 -Halogenalkoxy und/oder C_1-C_4 -Alkylthio. Ins-
 besondere seien genannt: 1-Pyrazolyl, 3-Methyl-1-pyrazolyl,
 4-Methyl-1-pyrazolyl, 3,5-Dimethyl-1-pyrazolyl,
 3-Phenyl-1-pyrazolyl, 4-Phenyl-1-pyrazolyl,
 4-Chlor-1-pyrazolyl, 4-Brom-1-pyrazolyl, 1-Imidazolyl,
 1-Benzimidazolyl, 1,2,4-Triazol-1-yl, 3-Methyl-1,2,4-tri-
 azol-1-yl, 5-Methyl-1,2,4-triazol-1-yl, 1-Benztriazolyl,
 35 3-Isopropylisoxazol-5-yl, 3-Methylisoxazol-5-yl, Oxazol-2-yl,
 Thiazol-2-yl, Imidazol-2-yl, 3-Ethylisoxazol-5-yl, 3-Phenyl-
 isoxazol-5-yl, 3-tert.-Butylisoxazol-5-yl;

40 eine C_2-C_6 -Alkylgrupe, welche in der 2-Position einen der
 folgenden Reste trägt: C_1-C_4 -Alkoxyimino, C_3-C_6 -Alkinyloxy-
 imino, C_3-C_6 -Halogenalkenyloxyimino oder Benzyloxyimino;

45 eine C_3-C_6 -Alkenyl- oder eine C_3-C_6 -Alkinylgruppe, wobei diese
 Gruppen ihrerseits ein bis fünf Halogenatome tragen können;

13

R¹⁰ ferner ein Phenylrest, welcher ein bis fünf Halogenatome und/oder ein bis drei der folgenden Reste tragen kann:
 Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio, wie insbesondere oben genannt;

5

ein über ein Stickstoffatom verknüpfter 5-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome, welcher ein bis zwei Halogenatome und/oder ein bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, Phenyl, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio. Insbesondere seien genannt: 1-Pyrazolyl, 3-Methyl-1-pyrazolyl, 4-Methyl-1-pyrazolyl, 3,5-Dimethyl-1-pyrazolyl, 3-Phenyl-1-pyrazolyl, 4-Phenyl-1-pyrazolyl, 4-Chlor-1-pyrazolyl, 4-Brom-1-pyrazolyl, 1-Imidazolyl, 1-Benzimidazolyl, 1,2,4-Triazol-1-yl, 3-Methyl-1,2,4-triazol-1-yl, 5-Methyl-1,2,4-triazol-1-yl, 1-Benztriazolyl, 3,4-Dichlor-imidazol-1-yl;

20

R¹⁰ ferner ein Gruppe

25

worin R¹¹ und R¹², die gleich oder verschieden sein können, bedeuten:

30

C₁-C₈-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₈-Cycloalkyl, wobei diese Reste einen C₁-C₄-Alkoxy, C₁-C₄-Alkylthio und/oder einen gegebenenfalls substituierten Phenylrest, wie insbesondere vorstehend genannt, tragen können;

40

35

Phenyl, das durch einen oder mehrere, z.B. einen bis drei der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio, wobei diese Reste insbesondere den oben genannten entsprechen;

45

oder R¹¹ und R¹² bilden gemeinsam eine C₃-C₁₂-Alkylenkette, welche ein bis drei C₁-C₄-Alkylgruppen tragen und ein Heteroatom aus der Gruppe Sauerstoff, Schwefel und Stickstoff enthalten kann, wie insbesondere bei R⁷ und R⁸ genannt.

45

14

g) R¹ ferner ein Restworin R¹³ bedeutet:

10 C₁-C₄-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl, C₃-C₈-Cycloalkyl wie insbesondere vorstehend genannt, wobei diese Reste einen C₁-C₄-Alkoxy-, C₁-C₄-Alkylthio- und/oder einen Phenylrest wie oben genannt tragen können;

15 Phenyl, gegebenenfalls substituiert, insbesondere wie vorstehend genannt.

Im Hinblick auf die biologische Wirkung sind Carbonsäurederivate der allgemeinen Formel I bevorzugt, in denen die Substituenten 20 folgende Bedeutung haben:

R² die bei R¹ im einzelnen genannten C₁-C₄-Alkyl-, C₁-C₄-Halogenalkyl-, C₁-C₄-Alkoxy-, C₁-C₄-Halogenalkoxy-, C₁-C₄-Alkylthiogruppen und Halogenatome, insbesondere Chlor, Methyl, 25 Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy, besonders bevorzugt Methoxy;

X Stickstoff oder CR¹⁴, worin

30 R¹⁴ Wasserstoff bedeutet oder zusammen mit R³ eine 4- bis 5-gliedrige Alkylen- oder Alkenylenkette bildet, in der jeweils eine Methylengruppe durch Sauerstoff ersetzt ist wie -CH₂-CH₂-O-, -CH=CH-O-, -CH₂-CH₂-CH₂-O-, -CH=CH-CH₂O-, insbesondere Wasserstoff und -CH₂-CH₂-O-;

35 R³ die bei R¹ genannten C₁-C₄-Alkyl-, C₁-C₄-Halogenalkyl-, C₁-C₄-Alkoxy-, C₁-C₄-Halogenalkoxy-, C₁-C₄-Alkylthiogruppen und Halogenatome, insbesondere Chlor, Methyl, Methoxy, Ethoxy, Difluormethoxy, Trifluormethoxy oder mit R¹⁴ wie oben genannt 40 zu einem 5- oder 6-gliedrigen Ring verknüpft ist, besonders bevorzugt steht R³ für Methoxy;

R⁴ C₁-C₁₀-Alkyl wie bei R¹ im einzelnen genannt, welches ein bis fünf Halogenatome wie Fluor, Chlor, Brom, Jod, insbesondere Fluor und Chlor und/oder einen der folgenden Reste tragen kann: Alkoxy, Alkylthio, Cyano, Alkylcarbonyl, Alkoxy-

15

carbonyl, Phenyl, Phenoxy, Phenylcarbonyl wie im allgemeinen und besonderen bei R¹ genannt;

5 C₁-C₁₀-Alkyl wie vorstehend genannt, welches ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor und Chlor, tragen kann und einen ggf. substituierten 5-gliedrigen Heteroaromaten, wie voranstehend für R¹ genannt, trägt;

10 C₃-C₁₂-Cycloalkyl, insbesondere C₃-C₇-Cycloalkyl oder C₃-C₁₂-Cycloalkenyl, insbesondere C₄-C₇-Cycloalkenyl, wobei im gesättigten oder ungesättigten Ring eine Methylengruppe durch ein Sauerstoff- oder Schwefelatom ersetzt sein kann, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Tetrahydrofuranyl, Tetrahydrothienyl, Tetrahydro-15 pyranyl, Tetrahydrothiopyranyl, Cyclopropenyl, Dihydrofuranyl, Dihydrothienyl, Dihdropyran, Dihydrothiopyran, wobei die Cycloalkyl- bzw. Cycloalkenylreste substituiert sein können durch ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor oder Chlor und/oder einen der folgende Reste: C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkylcarbonyl, C₁-C₈-Alkoxy carbonyl, Phenyl, Phenoxy, Phenylcarbonyl wie im allgemeinen und besonderen oben genannt;

20 25 C₃-C₆-Alkenyl oder C₃-C₆-Alkinyl wie bei R¹ genannt, welche ein bis fünf Halogenatome wie vorstehend genannt, insbesondere Fluor und Chlor und/oder einen der folgenden Reste tragen können:

30 C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, Cyano, C₁-C₈-Alkylcarbonyl, C₁-C₈-Alkoxy carbonyl, Phenyl, Phenoxy, Phenylcarbonyl wie im allgemeinen und besonderen oben genannt;

35 ein 5- oder 6-gliedriges Heteroaryl wie Furyl, Thienyl, Pyrryl, Pyrazolyl, Imidazolyl, Triazolyl, Isoxazolyl, Oxazolyl, Isothiazolyl, Thiazolyl, Thiadiazolyl, Pyridyl, Pyrimidinyl, Pyrazinyl, Pyridazinyl, Triazinyl, beispielsweise 2-Furanyl, 3-Furanyl, 2-Thienyl, 3-Thienyl, 3-Isoxazolyl, 4-Isoxazolyl, 5-Isoxazolyl, 3-Isothiazolyl,

40 45 4-Isothiazolyl, 5-Isothiazolyl, 2-Oxazolyl, 4-Oxazolyl, 5-Oxazolyl, 2-Thiazolyl, 4-Thiazolyl, 5-Thiazolyl, 2-Imidazolyl, 4-Imidazolyl, 5-Imidazolyl, 2-Pyrrolyl, 3-Pyrrolyl, 3-Pyrazolyl, 4-Pyrazolyl, 5-Pyrazolyl, 2-Pyridyl, 3-Pyridyl, 4-Pyridyl, Oxa-2,4-diazolyl, Oxa-3,4-diazolyl, Thia-2,4-diazolyl, Thia-3,4-diazolyl und Triazolyl, wobei die Heteroaromaten ein bis fünf Halogenatome wie vorstehend

16

genannt, insbesondere Fluor und Chlor und/oder einen bis drei der folgenden Reste tragen können:

5 C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Alkylthio, Cyano, Nitro, C_1-C_8 -Alkylcarbonyl, C_1-C_8 -Alkoxy carbonyl, Phenyl, Phenoxy, Phenylcarbonyl wie im allgemeinen und besonderen oben genannt;

10 R^4 ferner Phenyl oder Naphthyl, die durch einen oder mehrere, z.B. einen bis drei der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Mercapto, Amino, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogen-alkoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylamino, $Di-C_1-C_4$ -alkylamino, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxy carbonyl, insbesondere wie bei R^7 und R^8 genannt, sowie beispielsweise 3-Hydroxyphenyl, 4-Dimethylaminophenyl, 2-Mercaptophenyl, 3-Methoxycarbonyl-phenyl, 4-Acetylphenyl, 1-Naphthyl, 2-Naphthyl, 3-Brom-2-naphthyl, 4-Methyl-1-naphthyl, 5-Methoxy-1-naphthyl 6-Trifluormethyl-1-naphthyl, 7-Chlor-1-naphthyl, 8-Hydroxy-1-naphthyl;

25 oder R^4 bildet mit R^5 zusammen mit dem benachbarten Kohlenstoffatom einen 3- bis 6-gliedrigen Ring, der ein Sauerstoff- oder Schwefelatom enthalten kann und unsubstituiert ist oder je nach Ringgröße einen bis drei der folgenden Reste trägt: C_1-C_4 -Alkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkyl, C_1-C_4 -Halogen-alkoxy, C_1-C_4 -Alkylthio wie im allgemeinen und besonderen oben genannt;

30 R^5 Wasserstoff, C_1-C_4 -Alkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl, C_3-C_8 -Cycloalkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxyalkyl, C_1-C_4 -Alkylthioalkyl oder Phenyl wie insbesondere vorstehend bei R^4 genannt;

35 R^6 C_1-C_8 -Alkyl, C_3-C_6 -Alkenyl, C_3-C_6 -Alkinyl oder C_3-C_8 -Cycloalkyl wie insbesondere oben genannt, wobei diese Reste jeweils ein-oder mehrfach substituiert sein können durch: Halogen, Nitro, Cyano, C_1-C_4 -Alkoxy, C_3-C_6 -Alkenyloxy, C_3-C_6 -Alkinyloxy, C_1-C_4 -Alkylthio, C_1-C_4 -Halogenalkoxy, C_1-C_4 -Alkylcarbonyl, C_1-C_4 -Alkoxy carbonyl, C_1-C_4 -Alkylamino, $Di-C_1-C_4$ -alkylamino oder gegebenenfalls substituiertes Phenyl oder Phenoxy, wie insbesondere vorstehend genannt;

45 Phenyl oder Naphthyl, das durch einen oder mehreren der folgenden Reste substituiert sein kann: Halogen, Nitro, Cyano, Hydroxy, Amino, C_1-C_4 -Alkyl, C_1-C_4 -Halogenalkyl, C_1-C_4 -Alkoxy, C_1-C_4 -Halogenalkoxy, Phenoxy, C_1-C_4 -Alkylthio, C_1-C_4 -Alkylamino

17

oder C_1 - C_4 -Dialkylamino, wie insbesondere bei R^7 und R^4 genannt;

5 ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei 10 die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und/oder C_1 - C_4 -Alkylthio, wie insbesondere bei R^4 genannt;

15 Y Schwefel, Sauerstoff oder eine Einfachbindung

Z Schwefel oder Sauerstoff.

20 Besonders bevorzugt sind Verbindungen der Formel I, in der R^2 und R^3 Methoxy und X CH bedeuten. Weiterhin bevorzugt sind Verbindungen der Formel I, in der R^2 und R^3 Methoxy, X CH, Y und Z 25 Sauerstoff und R^5 C_1 - C_4 -Alkyl bedeuten. Bevorzugter Rest im Fall von R^1 ist die Gruppe OR^{10} , wobei R^{10} Wasserstoff oder C_1 - C_4 -Alkyl bedeutet.

25 R^4 steht besonders bevorzugt für C_1 - C_4 -Alkyl, gegebenenfalls substituiertes Phenyl oder einen aromatischen heterocyclischen Rest enthaltend ein Heteroatom wie Furyl oder Thienyl.

30 R^6 steht besonders bevorzugt für Phenyl, ggf. 1 - 3fach substituiert durch Halogen, C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy und/oder C_1 - C_4 -Alkylthio.

35 Beispiele für bevorzugte Verbindungen sind in der nachfolgenden Tabelle aufgeführt.

Besonders bevorzugt werden die Verbindungen 4.42 und 4.58 (Beispiel 10, Tab. 4) für die erfindungsgemäße Verwendung eingesetzt.

40

Tabelle

R ¹	R ⁴	R ⁵	R ⁶	R ²	R ³	X	Y	Z
OH	Phenyl	Methyl	Methyl	OCH ₃	OCH ₃	CH	S	S
OH	Phenyl	Methyl	Methyl	OCH ₃	OCH ₃	CH	O	S
OCH ₃	Phenyl	Methyl	Methyl	OCH ₃	OCH ₃	CH	S	S
OH	Phenyl	i-Propyl	Methyl	OCH ₃	OCH ₃	CH	S	S
OCH ₃	2-Fluorophenyl	Ethyl	Methyl	OCH ₃	OCH ₃	CH	O	O
OC ₂ H ₅	3-Chlorophenyl	Propyl	Methyl	OCH ₃	OCH ₃	N	O	O
ON(CH ₃) ₂	4-Bromophenyl	i-Propyl	Methyl	CF ₃	CF ₃	CH	S	O
ON=C(CH ₃) ₂	2-Thienyl	Methyl	Methyl	OCF ₃	OCF ₃	CH	O	S
HNSO ₂ C ₆ H ₅	3-Thienyl	Methyl	Methyl	CH ₃	CH ₃	CH	O	O
NHPhenyl	2-Furyl	Methyl	Methyl	C ₁	C ₁	CH	O	O
ONa	3-Furyl	Methyl	Methyl	OCH ₃	-OCH ₂ -CH ₂ -	S	O	O
O-CH ₂ -C=CH	Phenyl	Ethyl	Ethyl	OCH ₃	CF ₃	CH	O	O
OH	Phenyl	Propyl	Propyl	OCH ₃	OCF ₃	CH	O	S
OCH ₃	Phenyl	i-Propyl	i-Propyl	OCH ₃	CH ₃	CH	O	O
OC ₂ H ₅	Phenyl	Methyl	s-Butyl	OCH ₃	C ₁	CH	S	O
ON(CH ₃) ₂	2-Methylphenyl	Methyl	Methyl	OCH ₃	OCH ₃	CH	O	O
ON(CH ₃) ₂	3-Methoxyphenyl	Methyl	Methyl	OCH ₃	OCH ₃	CH	O	O
ON=C(CH ₃) ₂	4-Nitrophenyl	Methyl	Methyl	OCH ₃	OCH ₃	CH	O	O
NHPhenyl	2-Oxazolyl	Methyl	Methyl	CF ₃	CF ₃	N	S	O

R ¹	R ⁴	R ⁵	R ⁶	R ²	R ³	X	Y	Z
ONa	4-Oxazolyl	Methyl	Propen-3-yl	OCF ₃	OCF ₃	N	O	S
O-CH ₂ -C≡CH	5-Oxazolyl	Methyl	Propin-3-yl	CH ₃	CH ₃	N	O	O
OH	3-Isooxazolyl	Methyl	Cyclopentyl	C1	C1	N	O	O
OCH ₃	4-Isooxazolyl	Methyl	Cyclohexyl	OCH ₃	-O-CH ₂ -CH ₂ -	O	O	O
OC ₂ H ₅	5-Isooxazolyl	Methyl	Cyclopropylmethyl	OCH ₃	CF ₃	N	S	O
ON(CH ₃) ₂	Phenyl	Methyl	1-Phenylpropin-3-yl	OCH ₃	OCF ₃	N	O	S
ON=C(CH ₃) ₂	2-Hydroxyphenyl	Methyl	Methyl	OCH ₃	CH ₃	N	O	O
ONSO ₂ C ₆ H ₅	3-Trifluoromethylphenyl	Methyl	Methyl	OCH ₃	C1	N	O	O
NHPhenyl	4-Dimethylaminophenyl	Methyl	Methyl	OCH ₃	OCH ₃	CH	S	O
ONa	2-Imidazolyl	Ethy	Methyl	OCH ₃	OCH ₃	CH	S	S
O-CH ₂ -C≡CH	4-Imidazolyl	Propyl	Methyl	OCH ₃	OCH ₃	N	S	S
OH	3-Pyrazolyl	i-Propyl	Methyl	CF ₃	CF ₃	CH	O	S
OCH ₃	4-Pyrazolyl	Methyl	Methyl	OCF ₃	OCF ₃	CH	O	O
OC ₂ H ₅	Phenyl	Methyl	Trifluorethyl	CH ₃	CH ₃	O	O	O
ON(CH ₃) ₂	Phenyl	Methyl	Benzyl	C1	C1	CH	O	O
ON(CH ₃) ₂	Phenyl	Methyl	2-Methoxyethyl	OCH ₃	-O-CH ₂ -CH ₂ -	S	O	O
ON=C(CH ₃) ₂	Phenylpropyl	Methyl	3-Methoxycarbonyl-	OCH ₃	CF ₃	N	S	S
NH-Phenyl	2-Pyridyl	Methyl	2-Chloroethyl	OCH ₃	OCF ₃	N	S	S
ONa	3-Pyridyl	Methyl	Methyl	OCH ₃	CH ₃	N	O	O
O-CH ₂ -C≡CH	4-Pyridyl	Methyl	Methyl	OCH ₃	C1	N	O	O
OCH ₃	Phenyl	CH ₃	Phenyl	OCH ₃	OCH ₃	CH	O	O

R ¹	R ⁴	R ⁵	R ⁶	R ²	R ³	X	Y	Z
OH	Phenyl	CH ₃	Phenyl	OCH ₃	CH	O	O	O
OH	Phenyl	CH ₃	Phenyl	OCH ₃	-O-CH ₂ -CH ₂ -	O	O	O
OH	Phenyl	CH ₃	Phenyl	OCH ₃	OCH ₃	N	O	O
OH	Phenyl	CH ₃	Phenyl	OCH ₃	OCH ₃	CH	S	O
OH	Phenyl	CH ₃	Phenyl	OCH ₃	OCH ₃	CH	S	S
OH	Phenyl	CH ₃	Phenyl	OCH ₃	OCH ₃	CH	O	S
OH	Phenyl	H	Phenyl	OCH ₃	OCH ₃	CH	O	O
OH	Phenyl	i-Propyl	Phenyl	OCH ₃	OCH ₃	CH	O	O
OH	CH ₃	CH ₃	Phenyl	OCH ₃	OCH ₃	CH	O	O
OH		-(CH ₂) ₅ -	Phenyl	OCH ₃	OCH ₃	CH	O	O
OH	Phenyl	CH ₃	2-Thiazolyl	OCH ₃	OCH ₃	CH	O	O
OH	2-Thienyl	CH ₃	Phenyl	OCH ₃	OCH ₃	CH	O	O
OCH ₃	2-Fluorophenyl	Ethyl	Phenyl	OCH ₃	OCH ₃	CH	O	O
OC ₂ H ₅	3-Chlorophenyl	Propyl	Phenyl	OCH ₃	OCH ₃	N	O	O
ON(CH ₃) ₂	4-Bromophenyl	i-Propyl	Phenyl	CF ₃	CF ₃	CH	S	O
ON=C(CH ₃) ₂	2-Thienyl	Methyl	Phenyl	OCF ₃	OCF ₃	CH	O	S
NH-SO ₂ -C ₆ H ₅	3-Thienyl	Methyl	Phenyl	CH ₃	CH ₃	CH	O	O
NHPhenyl	2-Furyl	Methyl	Phenyl	C ₁	C ₁	CH	O	O
ONa	3-Furyl	Methyl	Phenyl	OCH ₃	-O-CH ₂ -CH ₂ -	S	O	O
O-CH ₂ =CH	Phenyl	Ethyl	2-Fluorophenyl	OCF ₃	CF ₃	CH	O	O
OH	Phenyl	Propyl	3-Chlorophenyl	OCH ₃	OCF ₃	CH	O	S

R ¹	R ⁴	R ⁵	R ⁶	R ²	R ³	X	Y	Z
OCH ₃	Phenyl	i-Propyl	4-Bromophenyl	OCH ₃	CH ₃	O	O	O
OC ₂ H ₅	Phenyl	Methyl	4-Thiazolyl	OCH ₃	C ₁	CH	S	O
ON (CH ₃) ₂	2-Methylphenyl	Methyl	Phenyl	OCH ₃	OCH ₃	CH	O	O
ON=C (CH ₃) ₂	3-Methoxyphenyl	Methyl	Phenyl	OCH ₃	OCH ₃	CH	O	O
NH-SO ₂ C ₆ H ₅	4-Nitrophenyl	Methyl	Phenyl	OCH ₃	OCH ₃	CH	O	O
NHPhenyl	Methyl	Methyl	Phenyl	CF ₃	CF ₃	N	S	O
ONa	Methyl	Methyl	2-Methylphenyl	OCF ₃	OCF ₃	N	O	S
O-CH ₂ -C≡CH	Methyl	Methyl	3-Methoxyphenyl	CH ₃	CH ₃	N	O	O
OH	Methyl	Methyl	4-Nitrophenyl	C ₁	C ₁	N	O	O
OCH ₃	Phenyl	Methyl	3-Imidazolyl	OCH ₃	-O-CH ₂ -CH ₂ -	O	O	O
OC ₂ H ₅	Phenyl	Methyl	4-Imidazolyl	OCH ₃	CF ₃	N	S	O
ON (CH ₃) ₂	Phenyl	Methyl	2-Pyrazolyl	OCH ₃	OCF ₃	N	O	S
ON=C (CH ₃) ₂	2-Hydroxyphenyl	Methyl	Phenyl	OCH ₃	CH ₃	N	O	O
NH-SO ₂ -C ₆ H ₅	3-Tri fluoromethylphenyl	Methyl	Phenyl	OCH ₃	C ₁	N	O	O
NHPhenyl	4-Dimethylaminophenyl	Methyl	Phenyl	OCH ₃	OCH ₃	CH	S	O
ONa	3-Imidazolyl	Ethyl	Phenyl	OCH ₃	OCH ₃	CH	S	S
O-CH ₂ -C≡CH	4-Imidazolyl	Propyl	Phenyl	OCH ₃	OCH ₃	N	S	S
OH	3-Pyrazolyl	i-Propyl	Phenyl	CF ₃	CF ₃	CH	O	S
OCH ₃	4-Pyrazolyl	Methyl	Phenyl	OCF ₃	OCF ₃	CH	O	O
OC ₂ H ₅	Phenyl	Methyl	2-Dimethylaminophenyl	CH ₃	CH ₃	CH	O	O
ON (CH ₃) ₂	Phenyl	Methyl	3-Hydroxyphenyl	C ₁	C ₁	CH	O	O

R ¹	R ⁴	R ⁵	R ⁶	R ²	R ³	X	Y	Z
ON=C(CH ₃) ₂	Pheny1	Methy1	4-Trifluormethylpheny1	OCH ₃	-O-CH ₂ -CH ₂ -	S	O	
NH-SO ₂ -C ₆ H ₅	Pheny1	Methy1	2-Oxazoly1	OCH ₃	CF ₃	N	S	S
NH-Pheny1	2-Pyridy1	Methy1	4-Isoxazoly1	OCH ₃	OCF ₃	N	S	S
ONa	3-Pyridy1	Methy1	Pheny1	OCH ₃	CH ₃	N	O	O
O-CH ₂ -C≡CH	4-Pyridy1	Methy1	Pheny1	OCH ₃	C1	N	O	O

Die Verbindungen der vorliegenden Erfindung bieten ein neues therapeutisches Potential für die Behandlung von Hypertonie, pulmonalem Hochdruck, Myokardinfarkt, Angina Pectoris, akutem 5 Nierenversagen, Niereninsuffizienz, zerebralen Vasospasmen, zerebraler Ischämie, Subarachnoidalblutungen, Migräne, Asthma, Atherosklerose, endotoxischem Schock, Endotoxin-induziertem Organversagen, intravaskulärer Koagulation, Restenose nach Angioplastie und Cyclosporin-induziertem Nierenversagen, bzw.

10 Hypertonie.

Die gute Wirkung der Verbindungen lässt sich in folgenden Versuchen zeigen:

15 Rezeptorbindungsstudien

Für Bindungsstudien wurden klonierte humane ET_A-Rezeptor-exprimierende CHO-Zellen und Meerschweinchen-Kleinhirnmembranen mit > 60 % ET_B- im Vergleich zu ET_A-Rezeptoren eingesetzt.

20 Membranpräparation

Die ET_A-Rezeptor-exprimierenden CHO-Zellen wurden in F₁₂-Medium mit 10 % fötalem Kälberserum, 1 % Glutamin, 100 E/ml Penicillin 25 und 0,2 % Streptomycin (Gibco BRL, Gaithersburg, MD, USA) vermehrt. Nach 48 h wurden die Zellen mit PBS gewaschen und mit 0,05 % trypsinhaltiger PBS 5 min inkubiert. Danach wurde mit F₁₂-Medium neutralisiert und die Zellen durch Zentrifugation bei 300 x g gesammelt. Zur Lyse der Zellen wurde kurz das Pellet mit 30 Lysispuffer (5 mM Tris-HCl, pH 7,4 mit 10 % Glycerin) gewaschen und danach in einer Konzentration von 10⁷-Zellen/ml Lysispuffer 30 min bei 4°C inkubiert. Die Membranen wurden bei 20.000 x g 10 min zentrifugiert und das Pellet in flüssigem Stickstoff gelagert.

35 Meerschweinchenkleinhirne wurden im Potter-Elvehjem-Homogenisator homogenisiert und durch differentielle Zentrifugation 10 min bei 1.000 x g und wiederholte Zentrifugation des Überstandes 10 min bei 20.000 x g gewonnen.

40 Bindungstests

Für den ET_A- und ET_B-Rezeptorbindungstest wurden die Membranen in Inkubationspuffer (50 mM Tris-HCl, pH 7,4 mit 5 mM MnCl₂, 40 µg/ml 45 Bacitracin und 0,2 % BSA) in einer Konzentration von 50 µg Protein pro Testansatz suspendiert und bei 25°C mit 25 pM [125I]-ET₁ (ET_A-Rezeptortest) oder 25 pM [125I]-RZ₃ (ET_B-Rezeptortest) in

24

Anwesenheit und Abwesenheit von Testsubstanz inkubiert. Die unspezifische Bindung wurde mit 10^{-7} M ET₁ bestimmt. Nach 30 min wurde der freie und der gebundene Radioligand durch Filtration über GF/B Glasfaserfilter (Whatman, England) an einem Skatron-5 Zellsammler (Skatron, Lier, Norwegen) getrennt und die Filter mit eiskaltem Tris-HCl-Puffer, pH 7,4 mit 0,2 % BSA gewaschen. Die auf den Filtern gesammelte Radioaktivität wurde mit einem Packard 2200 CA Flüssigkeitszintillationszähler quantifiziert.

10 Die Bestimmung der K_i -Werte erfolgte über nichtlineare Regressionsanalyse mit dem Programm LIGAND.

In Tabelle A ist die in der Versuchsanordnung ermittelte Wirkung von Verbindungen der Formel I als K_i -Wert [mol/l] angegeben.

15

Tabelle A

20

Verbindung	K_i [mol/l]	
	ET-A	ET-B
4.42	$2,5 \cdot 10^{-7}$	$3,0 \cdot 10^{-6}$
4.58	$1,6 \cdot 10^{-7}$	$4,7 \cdot 10^{-6}$

25 Funktionelles in vitro-Testsystem für die Suche nach Endothelin-rezeptor (Subtyp A)-Antagonisten

Dieses Testsystem ist ein funktioneller, auf Zellen basierender Test für Endothelinrezeptoren. Bestimmte Zellen zeigen, wenn sie mit Endothelin 1 (ET1) stimuliert werden, einen Anstieg der 30 intrazellulären Calciumkonzentration. Dieser Anstieg kann in intakten Zellen, die mit Calcium-sensitiven Farbstoffen beladen wurden, gemessen werden.

35 Aus Ratten isolierte 1-Fibroblasten, bei denen ein endogener Endothelinrezeptor vom A-Subtyp nachgewiesen wurde, wurden mit dem Fluoreszenzfarbstoff Fura 2-an wie folgt beladen: Nach Trypsinierung wurden die Zellen in Puffer A (120 mM NaCl, 5 mM KC1, 1,5 mM MgCl₂, 1 mM CaCl₂, 25 mM HEPES, 10 mM Glucose, pH 7,4) bis zu einer Dichte von 2×10^6 /ml resuspendiert und in 40 30 min bei 37°C im Dunkeln mit Fura 2-am (2 μ M), Pluronic F-127 (0,04 %) und DMSO (0,2 %) inkubiert. Danach wurden die Zellen zweimal mit Puffer A gewaschen und zu 2×10^6 /ml resuspendiert.

45 Das Fluoreszenzsignal von 2×10^5 Zellen pro ml bei Ex/Em 380/510 wurde bei 30°C kontinuierlich registriert. Zu den Zellen wurden die Testsubstanzen zugegeben und nach einer Inkubationszeit von 3 min mit ET1 wurde die maximale Änderung der Fluoreszenz

25

bestimmt. Die Antwort der Zellen auf ET1 ohne vorherige Zugabe einer Testsubstanz diente als Kontrolle und wurde gleich 100 % gesetzt.

5 In Tabelle B ist die in der Versuchsanordnung ermittelte Wirkung von Verbindungen der Formel I als IC₅₀-Wert [mol/l] angegeben.

Tabelle B

10	Verbindung	IC ₅₀ [mol/l]
	4.42	7,4 · 10 ⁻⁷
	4.58	1,0 · 10 ⁻⁶

Testung der ET-Antagonisten in vivo

15

Männliche 250 - 300 g schwere SD-Ratten wurden mit Amobarbital narkotisiert, künstlich beatmet, vagotomisiert und despinallisiert. Die Arteria carotis und Vena jugularis wurden kathetisiert.

20

In Kontrolltieren führt die intravenöse Gabe von 1 µg/kg ET1 zu einem deutlichen Blutdruckanstieg, der über einen längeren Zeitraum anhält.

25

Den Testtieren wurde 5 min vor der ET1 Gabe die Testverbindungen i.v. injiziert (1 ml/kg). Zur Bestimmung der ET-antagonistischen Eigenschaften wurde der Blutdruckanstieg in den Testtieren mit dem in den Kontrolltieren verglichen.

30

Endothelin-1 induzierter "sudden death" an Mäusen

Das Testprinzip besteht in der Hemmung des durch Endothelin verursachten plötzlichen Herztodes der Maus, der wahrscheinlich durch Verengung der Herzkranzgefäße bedingt ist, durch Vorbehandlung mit Endothelin-Rezeptorantagonisten. Nach intravenöser Injektion von 10 nmol/kg Endothelin im Volumen von 5 ml/kg Körpergewicht kommt es innerhalb weniger Minuten zum Tod der Tiere.

35

Die letale Endothelin-1 Dosis wird jeweils an einem kleinen Tierkollektiv überprüft. Wird die Prüfsubstanz intravenös appliziert, erfolgt meist 5 min danach die im Referenzkollektiv letale Endothelin-1 Injektion. Bei anderen Applikationsarten verlängern sich die Vorgabezeiten, gegebenenfalls bis zu mehreren Stunden.

40

45

26

Die Überlebensrate wird dokumentiert und effektive Dosen, die 50 % der Tiere 24 h oder länger gegen den Endothelin-Herztod schützen (ED 50) werden ermittelt.

5 Funktioneller Gefäßtest für Endothelin-Rezeptorantagonisten

An Aortensegmenten des Kaninchens wird nach einer Vorspannung von 2 g und einer Relaxationszeit von 1 h in Krebs-Henseleitlösung bei 37°C und einem pH-Wert zwischen 7,3 und 7,4 zunächst eine 10 K⁺-Kontraktur ausgelöst. Nach Auswaschen wird eine Endothelin-Dosiswirkungskurve bis zum Maximum erstellt.

Potentielle Endothelin-Antagonisten werden an anderen Präparaten des gleichen Gefäßes 15 min vor Beginn der Endothelin-Dosiswirkungskurve appliziert. Die Effekte des Endothelins werden in % der K⁺-Kontraktur berechnet. Bei wirksamen Endothelin-Antagonisten kommt es zur Rechtsverschiebung der Endothelin-Dosiswirkungskurve.

20 Die erfindungsgemäßen Verbindungen können in üblicher Weise oral oder parenteral (subkutan, intravenös, intramuskulär, intraperitoneal) verabfolgt werden. Die Applikation kann auch mit Dämpfen oder Sprays durch den Nasen-Rachenraum erfolgen.

25 Die Dosierung hängt vom Alter, Zustand und Gewicht des Patienten sowie von der Applikationsart ab. In der Regel beträgt die tägliche Wirkstoffdosis zwischen etwa 0,5 und 50 mg/kg Körpergewicht bei oraler Gabe und zwischen etwa 0,1 und 10 mg/kg Körpergewicht bei parenteraler Gabe.

30 Die neuen Verbindungen können in den gebräuchlichen galenischen Applikationsformen fest oder flüssig angewendet werden, z.B. als Tabletten, Filmtabletten, Kapseln, Pulver, Granulate, Dragees, Suppositorien, Lösungen, Salben, Cremes oder Sprays. Diese werden 35 in üblicher Weise hergestellt. Die Wirkstoffe können dabei mit den üblichen galenischen Hilfsmitteln wie Tablettenbindern, Füllstoffen, Konservierungsmitteln, Tablettensprengmitteln, Fließreguliermitteln, Weichmachern, Netzmitteln, Dispergiermitteln, Emulgatoren, Lösungsmitteln, Retardierungsmitteln, Antioxidantien 40 und/oder Treibgasen verarbeitet werden (vgl. H. Sucker et al.: Pharmazeutische Technologie, Thieme-Verlag, Stuttgart, 1991). Die so erhaltenen Applikationsformen enthalten den Wirkstoff normalerweise in einer Menge von 0,1 bis 90 Gew.-%.

Synthesebeispiele

Synthese von Verbindungen der allgemeinen Formel VI

5 Beispiel 1

3-Methoxy-3-(3-methoxyphenyl)-2-hydroxybuttersäuremethylester

19,5 g (88 mmol) 3-(3-Methoxyphenyl)-2,3-epoxybuttersäuremethylester werden in 200 ml absolutem Methanol gelöst und mit 0,1 ml
10 Bortrifluorid-Etherat versetzt. Man röhrt 12 Stunden bei Raumtemperatur und destilliert das Lösungsmittel ab. Der Rückstand wird in Essigester aufgenommen, mit Natriumbicarbonat-Lösung und Wasser gewaschen und über Natriumsulfat getrocknet. Nach Abdestillieren des Lösungsmittels verbleiben 21,1 g eines schwach
15 gelben Öls.

Ausbeute: 94 % (Diastereomerengemisch 1:1)

Beispiel 2

20 3-Benzylxyloxy-3-phenyl-2-hydroxybuttersäuremethylester

9,6 g (50 mmol) 3-Phenyl-2,3-epoxybuttersäuremethylester werden in 150 ml Benzylalkohol gelöst und mit 0,5 ml konzentrierter Schwefelsäure versetzt. Man röhrt 6 Stunden bei 50°C und läßt
25 auf Raumtemperatur abkühlen. Nach Neutralisation mit Natriumbicarbonat-Lösung destilliert man den überschüssigen Benzylalkohol am Hochvakuum ab und reinigt den Rückstand durch Flash-Chromatographie an Kieselgel mit n-Hexan/Essigester 9:1. Nach Abdestillieren des Lösungsmittels verbleiben 6,5 g eines farblosen Öls.

Ausbeute: 43 % (Diastereomerengemisch 3:2)

Analog wurden alle in Tabelle 1 genannten Verbindungen hergestellt.

28

Tabelle 1: Zwischenprodukte der Formel VI mit R¹ = CH₃

		R ⁴			
		R ⁶ — O — C — CH — OH			
5		R ⁵	COOCH ₃		
	Nr.	R ⁶	R ⁴	R ⁵	DV* Fp. [°C]
10	1.1	Methyl	3-Methoxyphenyl	Methyl	1:1 Öl
	1.2	Benzyl	Phenyl	Methyl	3:2 Öl
	1.3	Methyl	2-Fluorphenyl	Methyl	1:1 Öl
	1.4	Methyl	4-i-Propylphenyl	Methyl	
	1.5	Methyl	2-Methylphenyl	Methyl	2:1 Öl
15	1.6	Methyl	3-Methylphenyl	Methyl	
	1.7	Methyl	4-Methylphenyl	Methyl	3:2 Öl
	1.8	Methyl	3-Nitrophenyl	Methyl	
	1.9	Methyl	4-Bromphenyl	Methyl	3:1 Öl
20	1.10	Methyl	2-Furyl	Methyl	
	1.11	Methyl	3-Furyl	Methyl	
	1.12	Methyl	2-Thienyl	Methyl	
	1.13	Methyl	3-Thienyl	Methyl	
	1.14	Methyl	2-Pyridyl	Methyl	
25	1.15	Methyl	3-Pyridyl	Methyl	
	1.16	Methyl	4-Pyridyl	Methyl	
	1.17	Methyl	2-Thiazolyl	Methyl	
	1.18	Methyl	3-Isoxazolyl	Methyl	
30	1.19	Methyl	4-Imidazolyl	Methyl	
	1.20	Methyl	2-Pyrazolyl	Methyl	
	1.21	Methyl	4-Chlorphenyl	Methyl	2:1 Öl
	1.22	Benzyl	3-Methylphenyl	Methyl	1:1 Öl
35	1.23	Methyl	4-Fluorphenyl	Methyl	1:1 Öl
	1.24	Benzyl	4-Bromphenyl	Methyl	1:1 Öl
	1.25	Benzyl	4-Chlorphenyl	Methyl	3:2 Öl
	1.26	Benzyl	4-Fluorphenyl	Methyl	1:1 Öl
40	1.27	Methyl	Phenyl	Ethyl	1:1 Öl
	1.28	Methyl	3-Nitrophenyl	Methyl	2:1 Öl
	1.29	Ethyl	4-Methylphenyl	Methyl	1:1 Öl
	1.30	Benzyl	4-Methylphenyl	Methyl	1:1 Öl
	1.31	Benzyl	Phenyl	Ethyl	1:0 Öl
45	1.32	4-Fluorbenzyl	Phenyl	Methyl	1:1 Öl

* Diastereomerenverhältnis

Synthese von Verbindungen der allgemeinen Formel I:

Beispiel 3:

3-Benzylxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäure-methylester

3 g (10 mmol) 3-Benzylxy-3-phenyl-2-hydroxybuttersäuremethylester (Verb. 1.2) werden in 40 ml Dimethylformamid gelöst und mit 0,3 g (12 mmol) Natriumhydrid versetzt. Man röhrt 1 Stunde und gibt 10 dann 2,2 g (10 mmol) 4,6-Dimethoxy-2-methylsulfonylpyrimidin zu. Nach 24 Stunden Röhren bei Raumtemperatur wird vorsichtig mit 10 ml Wasser hydrolysiert, mit Essigsäure ein pH-Wert von 5 eingestellt und das Lösungsmittel am Hochvakuum abdestilliert. Der Rückstand wird in 100 ml Essigester aufgenommen, mit Wasser 15 gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wird mit 10 ml Methyl-t-butylether versetzt und der gebildete Niederschlag abgesaugt. Nach dem Trocknen verbleiben 2,4 g eines weißen Pulvers.

20 Ausbeute: 55 % (Diastereomerengemisch 1:1)

Fp.: 115 - 117°C

Beispiel 4

3-Benzylxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäure

1,4 g (3 mmol) 3-Benzylxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)-oxybuttersäuremethylester (Bsp. 3) werden in 20 ml Methanol und 20 ml Tetrahydrofuran gelöst und mit 3,7 g 10 % NaOH-Lösung 30 versetzt. Man röhrt 6 Stunden bei 60°C und 12 Stunden bei Raumtemperatur, destilliert die Lösungsmittel im Vakuum ab und nimmt den Rückstand in 100 ml Wasser auf. Nun wird mit Essigester zur Entfernung von nicht umgesetztem Ester extrahiert. Anschließend stellt man die Wasserphase mit verdünnter Salzsäure auf pH 1-2 35 und extrahiert mit Essigester. Nach Trocknen über Magnesiumsulfat und Abdestillieren des Lösungsmittels wird der Rückstand mit wenig Aceton versetzt und der gebildete Niederschlag abgesaugt. Nach dem Trocknen verbleiben 1,2 g eines weißen Pulvers.

40 Ausbeute: 88 % Diastereomerengemisch 3:2

Fp.: 165°C (Zersetzung)

30

Beispiel 5

3-Benzylxy-3-phenyl-2-[(4,6-dimethoxypyrimidin-2-yl)thio]-buttersäuremethylester

5 11 g (25 mmol) 3-Benzylxy-3-phenyl-2-hydroxybuttersäuremethylester (Verb. 1.2) werden in 50 ml Dichlormethan gelöst, 3 g (30 mmol) Triethylamin zugegeben und unter Rühren 3,2 g (28 mmol) Methansulfonsäurechlorid zugetropft. Man röhrt 2 Stunden bei Raumtemperatur, wäscht mit Wasser, trocknet über Magnesiumsulfat 10 und engt im Vakuum ein. Der Rückstand wird in DMF aufgenommen und bei 0°C zu einer Suspension von 12,9 g (75 mmol) 4,6-Dimethoxy-pyrimidin-2-thiol und 8,4 g (100 mmol) Natriumhydrogencarbonat in 100 ml DMF getropft. Nach 2 Stunden Rühren bei Raumtemperatur und weiteren 2 Stunden bei 60°C gießt man auf 1 l Eiswasser und saugt 15 den entstandenen Niederschlag ab. Nach Trocknen verbleiben 3,2 g eines weißen Pulvers.

Ausbeute: 29 % (Diastereomerengemisch 1:1)

20 Analog den obigen Beispielen wurden die in Tabelle 2 genannten Verbindungen hergestellt.

25

30

35

40

45

Tabelle 2

Nr.	R ⁶	R ⁴	R ⁵	Y	R ¹	Diaastereomere	Fp. (°C)
2.1	Benzyl	Phenyl	Methyl	O	OCH ₃	1:1	115-117
2.2	Benzyl	Phenyl	Methyl	O	OH	3:2	165 (Zers.)
2.3	Benzyl	Phenyl	Methyl	S	OCH ₃	1:1	
2.4	Benzyl	Phenyl	Methyl	S	OH		
2.5	Methyl	2-Fluorophenyl	Methyl	O	OCH ₃	1:1	126-128
2.6	Methyl	2-Fluorophenyl	Methyl	O	OH	2:1	185-186
2.7	Methyl	3-Methoxyphenyl	Methyl	O	OCH ₃	1:0 (5:1)	131-132 (93-95)
2.8	Methyl	3-Methoxyphenyl	Methyl	O	OH	1:0	187-189
2.9	Methyl	4-i-Propylphenyl	Methyl	O	OCH ₃		
2.10	Methyl	4-i-Propylphenyl	Methyl	O	OH		
2.11	Methyl	2-Methylphenyl	Methyl	O	OCH ₃	3:1	122-124
2.12	Methyl	2-Methylphenyl	Methyl	O	OH	1:1	135-137

Nr.	R ⁶	R ⁴	R ⁵	Y	R ¹	Diastereomere	Fp. (°C)
2.13	Methyl	3-Methylphenyl	Methyl	O	OCH ₃	1:1	105-110
2.14	Methyl	3-Methylphenyl	Methyl	O	OH	1:1	130-132
2.15	Methyl	4-Methylphenyl	Methyl	O	OCH ₃	1:1	99-102
2.16	Methyl	4-Methylphenyl	Methyl	O	OH	1:1	145-147
2.17	Methyl	4-Bromophenyl	Methyl	O	OCH ₃	1:0	148-150
2.18	Methyl	4-Bromophenyl	Methyl	O	OH	1:0	189-190
2.19	Methyl	2-Furyl	Methyl	O	OCH ₃		
2.20	Methyl	2-Furyl	Methyl	O	OH		
2.21	Methyl	3-Furyl	Methyl	O	OCH ₃		
2.22	Methyl	3-Furyl	Methyl	O	OH		
2.23	Methyl	2-Thienyl	Methyl	O	OCH ₃		
2.24	Methyl	2-Thienyl	Methyl	O	OH		
2.25	Methyl	2-Pyridyl	Methyl	O	OCH ₃	2:1	01
2.26	Methyl	2-Pyridyl	Methyl	O	ONA		175-176
2.27	Methyl	3-Pyridyl	Methyl	O	OCH ₃		
2.28	Methyl	3-Pyridyl	Methyl	O	OH		
2.29	Methyl	4-Pyridyl	Methyl	O	OCH ₃		
2.30	Methyl	4-Pyridyl	Methyl	O	OH		
2.31	Methyl	3-Chlorophenyl	Methyl	O	OCH ₃		
2.32	Methyl	3-Chlorophenyl	Methyl	O	OH		
2.33	Methyl	2-Thiazolyl	Methyl	O	OCH ₃		

Nr.	R ⁶	R ⁴	R ⁵	Y	R ¹	Diastereomere	Fp. (°C)
2.34	Methyl	2-Thiazolyl	Methyl	O	OH		
2.35	Methyl	3-Isoxazolyl	Methyl	O	OCH ₃		
2.36	Methyl	3-Isoxazolyl	Methyl	O	OH		
2.37	Methyl	4-Imidazolyl	Methyl	O	OCH ₃		
2.38	Methyl	4-Imidazolyl	Methyl	O	OH		
2.39	Methyl	2-Pyrazolyl	Methyl	O	OCH ₃		
2.40	Methyl	2-Pyrazolyl	Methyl	O	OH		
2.41	Benzyl	4-Chlorophenyl	Methyl	O	OCH ₃	1:1	112-114
2.42	Benzyl	4-Chlorophenyl	Methyl	O	OH		
2.43	i-Propyl	2-Fluorophenyl	Methyl	O	OCH ₃	4:1	115-120
2.44	i-Propyl	2-Fluorophenyl	Methyl	O	OH	2:1	143-145
2.45	Methyl	4-Fluorophenyl	Methyl	O	OCH ₃	1:1	122-125
2.46	Methyl	4-Fluorophenyl	Methyl	O	OH	3:1	170-172
2.47	Benzyl	3-Methylphenyl	Methyl	O	OCH ₃	1:1	94- 95
2.48	Benzyl	3-Methylphenyl	Methyl	O	OH	1:1	154-156
2.49	Methyl	4-Chlorophenyl	Methyl	O	OCH ₃	1:1	125-127
2.50	Methyl	4-Chlorophenyl	Methyl	O	OH	5:1	206-207
2.51	Methyl	Phenyl	Ethyl	O	OCH ₃	1:0	95-100
2.52	Methyl	Phenyl	Ethyl	O	OH	1:0	140-142
2.53	Benzyl	4-Fluorophenyl	Methyl	O	OCH ₃	1:1	95- 98
2.54	Benzyl	4-Fluorophenyl	Methyl	O	OH	4:1	153-154

Nr.	R ⁶	R ⁴	R ⁵	Y	R ¹	Diastereomere	FP. (°C)
2.55	4-Fluorbenzyl	Phenyl	Methyl	O	OCH ₃	1:0	152-153
2.56	4-Fluorbenzyl	Phenyl	Methyl	O	OH	7:3	160-162
2.57	4-Brombenzyl	Phenyl	Methyl	O	OCH ₃	9:1	158-160
2.58	4-Brombenzyl	Phenyl	Methyl	O	OH	1:0	203-204
2.59	Benzyl	2-Fluorophenyl	Methyl	O	OCH ₃	1:0	129-130
2.60	Benzyl	2-Fluorophenyl	Methyl	O	OH	1:0	200-201
2.61	Benzyl	4-Bromophenyl	Methyl	O	OCH ₃	1:1	78-79
2.62	Benzyl	4-Bromophenyl	Methyl	O	OH	1:1	156-158
2.63	Benzyl	4-Methylphenyl	Methyl	O	OCH ₃	1:1	61
2.64	Benzyl	4-Methylphenyl	Methyl	O	OH	4:1	158-159
2.65	Benzyl	Phenyl	Ethyl	O	OCH ₃	1:0	110-112
2.66	Benzyl	Phenyl	Ethyl	O	OH	1:0	92-93
2.67	Ethyl	4-Methylphenyl	Methyl	O	OCH ₃	1:0	117-119
2.68	Ethyl	4-Methylphenyl	Methyl	O	OH	1:1	61
2.69	Methyl	2-Furyl	H	O	OCH ₃	1:1	61
2.70	Methyl	2-Furyl	H	O	OH	1:1	61
2.71	4-Chlorbenzyl	Phenyl	Methyl	O	OCH ₃	1:0	172-174
2.72	4-Chlorbenzyl	Phenyl	Methyl	O	OH	1:0	60-61
2.73	2-Butyl	4-Bromophenyl	Methyl	O	OCH ₃	-	104-106
2.74	2-Butyl	4-Bromophenyl	Methyl	O	OH	1:0	153-154
2.75	n-Propyl	4-Fluorophenyl	Methyl	O	OCH ₃	9:1	119-120

NR.	R ⁶	R ⁴	R ⁵	Y	R ¹	Diastereomere	Fp. (°C)
2.76	n-Propyl	4-Fluorophenyl	Methyl	O	OH	9:1	104-105
2.77	Methyl	3-Nitrophenyl	Methyl	O	OCH ₃	1:1	101-102
2.78	Methyl	3-Nitrophenyl	Methyl	O	OH	1:1	165-172
2.79	Methyl	4-Trifluorophenyl	Methyl	O	OCH ₃	1:0	112-113
2.80	Methyl	4-Trifluorophenyl	Methyl	O	OH	4:1	68- 70
2.81	Methyl	3-Thienyl	H	O	OCH ₃	1:1	80- 82
2.82	Methyl	3-Thienyl	H	O	OH	1:1	Ö1
2.83	4-Chlorbenzyl	Phenyl	Methyl	O	OCH ₃	0:1	112-113
2.84	4-Chlorbenzyl	Phenyl	Methyl	O	OCH ₃	0:1	60- 61
2.85	Methyl	Phenyl	Ethyl	O	OCH ₃	1:3	125-130
2.86	Methyl	Phenyl	Ethyl	O	OH	0:1	133-135
2.87	Benzyl	3-Methoxyphenyl	Methyl	O	OCH ₃	3:1	86- 87
2.88	Benzyl	3-Methoxyphenyl	Methyl	O	OH	1:0	155
2.89	Benzyl	3-Methoxyphenyl	Methyl	O	OH	0:1	138-140
2.90	2-Phenylethyl	Phenyl	Methyl	O	OH	1:0	147-149
2.91	Methyl	3-Furyl	H	O	OCH ₃	1:1	Öel
2.92	Methyl	3-Furyl	H	O	OH	1:1	131-135
2.93	3-CF ₃ -benzyl	Phenyl	Methyl	O	OCH ₃	2:1	151-152
2.94	3-CF ₃ -benzyl	Phenyl	Methyl	O	OH	1:1	Öel
2.95	2-Fluorbenzol	Phenyl	Methyl	O	OCH ₃	2:1	170-173
2.96	2-Fluorbenzol	Phenyl	Methyl	O	OH	1:0	160-162

Nr.	R ⁶	R ⁴	R ⁵	Y	R ¹	Diastereomere	Fp. (°C)
2.97	2-Fluorbenzy1	Pheny1	Methyl1	O	OH	1:3	138-141
2.98	3-Fluorbenzy1	Pheny1	Methyl1	O	OCH ₃	1:1	81- 86
2.99	3-Fluorbenzy1	Pheny1	Methyl1	O	OH	4:1	195-197
2.100	3-Fluorbenzy1	Pheny1	Methyl1	O	ONa	3:1	250-260
2.101	4-Fluorbenzy1	Pheny1	Methyl1	O	OCH ₃	1:1	112-115
2.102	4-Fluorbenzy1	Pheny1	Methyl1	O	OH		

Synthese von Verbindungen der allgemeinen Formel VI

Beispiel 6

5

3-Phenoxy-3-phenyl-2-hydroxybuttersäuremethylester

28,2 g (0,3 mol) Phenol und 19,2 g (0,1 mol) 3-Phenyl-2,3-epoxybuttersäuremethylester werden zusammen 6 Stunden auf 100°C

10 erhitzt. Nach Abdestillieren des überschüssigen Phenols am Hochvakuum und chromatographischer Reinigung des Rückstands an Kieselgel mit Hexan/Essigestergemischen erhält man 17,9 g eines schwach gelben Öls.

15 Ausbeute: 62,5 %

Beispiel 7

3-(4-Bromphenyl)oxy-3-phenyl-2-hydroxybuttersäuremethylester

20

51,9 g (0,3 mol) 4-Bromphenol und 19,2 g (0,1 mol) 3-Phenyl-2,3-epoxybuttersäuremethylester werden 8 h bei 100°C und 12 h bei Raumtemperatur gerührt. Nach Abdestillieren des überschüssigen Phenols wird der Rückstand mittels Flash-Chromatographie (Kieselgel, n-Hexan-Essigester 9:1) gereinigt. Man erhält 7,2 g eines weißen Feststoffes.

Ausbeute: 20 %

Fp.: 133 - 135°C

30 Analog wurden die in Tabelle 3 genannten Verbindungen hergestellt:

35

40

45

38

Tabelle 3: Zwischenprodukte der Formel VI mit R¹ = CH₃

	R ⁶	R ⁴	R ⁵	Fp. [°C]
10	3.1 Phenyl	Phenyl	Methyl	Öl
	3.2 4-Bromphenyl	Phenyl	Methyl	130-133
	3.3 Phenyl	Methyl	Methyl	
	3.4 Phenyl	Phenyl	i-Propyl	
15	3.5 2-Fluorphenyl	Phenyl	Methyl	
	3.6 3-Fluorphenyl	Phenyl	Methyl	Öl
	3.7 4-Fluorphenyl	Phenyl	Methyl	Öl
	3.8 4-Chlorphenyl	Phenyl	Methyl	
20	3.9 4-Nitrophenyl	Phenyl	Methyl	
	3.10 4-Methylphenyl	Phenyl	Methyl	Öl
	3.11 Phenyl	2-Fluorphenyl	Methyl	
	3.12 Phenyl	3-Methoxyphenyl	Methyl	
25	3.13 Phenyl	4-i-Propylphenyl	Methyl	
	3.14 Phenyl	2-Methylphenyl	Methyl	
	3.15 Phenyl	3-Nitrophenyl	Methyl	
	3.16 Phenyl	4-Bromphenyl	Methyl	
30	3.17 Phenyl	2-Furyl	Methyl	
	3.18 Phenyl	2-Thienyl	Methyl	Öl
	3.19 Phenyl	3-Furyl	Methyl	
	3.20 Phenyl	3-Thienyl	Methyl	
35	3.21 3-Methylphenyl	Phenyl	Methyl	Öl
	3.22 2-Methylphenyl	Phenyl	Methyl	Öl
	3.23 4-i-Propylphenyl	Phenyl	Methyl	Öl
	3.24 Phenyl	4-Chlorphenyl	Methyl	Öl

39

Synthese von Verbindungen der allgemeinen Formel I:

Beispiel 8

5 3-Phenoxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäure methylester

4,4 g (15,4 mmol) 3-Phenoxy-3-phenyl-2-hydroxybuttersäuremethylester (Verb. 1.1) werden in 40 ml Dimethylformamid gelöst und mit 10 0,46 g (18,4 mmol) Natriumhydrid versetzt. Man röhrt 1 Stunde und gibt dann 3,4 g (15,4 mmol) 4,6-Dimethoxy-2-methylsulfonylpyrimidin zu. Nach 24 Stunden Röhren bei Raumtemperatur wird vorsichtig mit 10 ml Wasser hydrolysiert, mit Essigsäure ein pH-Wert von 5 eingestellt und das Lösungsmittel am Hochvakuum ab-15 destilliert. Der Rückstand wird in 100 ml Essigester aufgenommen, mit Wasser gewaschen, über Natriumsulfat getrocknet und das Lösungsmittel abdestilliert. Der Rückstand wird mit 10 ml Methyl-t-butylether versetzt und der gebildete Niederschlag abgesaugt.
Nach dem Trocknen verbleiben 1,6 g eines weißen Pulvers.

20

Ausbeute: 24,5 %

Fp.: 143 - 145°C

Beispiel 9

25**3-Phenoxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäure**

1,3 g 3-Phenoxy-3-phenyl-2-(4,6-dimethoxypyrimidin-2-yl)oxybuttersäuremethylester (Bsp. 8) werden in 20 ml MeOH und 40 ml Tetrahydrofuran gelöst und mit 3,7 g 10 % NaOH-Lösung versetzt. Man röhrt 6 Stunden bei 60°C und 12 Stunden bei Raumtemperatur, destilliert die Lösungsmittel im Vakuum ab und nimmt den Rückstand in 100 ml Wasser auf. Nicht umgesetzter Ester wird mit Essigester extrahiert. Anschließend stellt man die Wasserphase 35 mit verdünnter Salzsäure auf pH 1 - 2 und extrahiert mit Essigester. Nach Trocknen über Magnesiumsulfat und Abdestillieren des Lösungsmittels verbleiben 1,0 g eines weißen Pulvers.

Ausbeute: 79,7 %

40 Fp.: 50 - 55°C

40

Beispiel 10

3-Phenoxy-3-phenyl-2-[(4,6-dimethoxypyrimidin-2-yl)thio]buttersäuremethylester

5

7,2 g (25 mmol) 3-Phenoxy-3-phenyl-2-hydroxybuttersäuremethylester werden in 50 ml Dichlormethan gelöst, 3 g (30 mmol) Triethylamin zugegeben und unter Rühren 3,2 g (28 mmol) Methansulfonsäurechlorid zugetropft. Man röhrt 2 Stunden bei Raumtemperatur, wäscht mit Wasser, trocknet über Magnesiumsulfat und engt im Vakuum ein. Der Rückstand wird in 100 ml DMF aufgenommen und bei 0°C zu einer Suspension von 12,9 g (75 mmol) 4,6-Dimethoxypyrimidin-2-thiol und 8,4 g (100 mmol) Natriumhydrogencarbonat in 100 ml DMF getropft. Nach 2 Stunden Rühren bei Raumtemperatur und weiteren 2 Stunden bei 60°C gießt man auf 1 Liter Eiswasser und saugt den entstandenen Niederschlag ab. Nach Trocknen verbleiben 4,2 g eines weißen Pulvers.

Ausbeute: 38 %

20

Analog den obigen Beispielen wurden die in Tabelle 4 genannten Verbindungen hergestellt.

Tabelle 4

25

Bsp. Nr.	R ⁶	R ⁴	R ⁵	R ¹	Y	Fp. [°C]
35	4.1 Phenyl	Phenyl	Methyl	OCH ₃	O	100-103
	4.2 Phenyl	Phenyl	Methyl	OH	O	50-55
	4.3 Phenyl	Phenyl	Methyl	OCH ₃	S	
40	4.4 Phenyl	Phenyl	Methyl	OH	S	
	4.5 Phenyl	Phenyl	i-Propyl	OCH ₃	O	
	4.6 Phenyl	Phenyl	i-Propyl	OH	O	
	4.7 Phenyl	Methyl	Methyl	OCH ₃	O	
	4.8 Phenyl	Methyl	Methyl	OH	O	
45	4.9 4-Bromphenyl	Phenyl	Methyl	OCH ₃	O	130-135
	4.10 4-Bromphenyl	Phenyl	Methyl	OH	O	155-160
	4.11 2-Fluorphenyl	Phenyl	Methyl	OCH ₃	O	128-134

Bsp. Nr.	R ⁶	R ⁴	R ⁵	R ¹	Y	Fp. [°C]
5	4.12	2-Fluorphenyl	Phenyl	Methyl	OH	170-171
	4.13	3-Fluorphenyl	Phenyl	Methyl	OCH ₃	85- 90
	4.14	3-Fluorphenyl	Phenyl	Methyl	OH	167-169
	4.15	4-Fluorphenyl	Phenyl	Methyl	OCH ₃	115-116
	4.16	4-Fluorphenyl	Phenyl	Methyl	OH	122-125
	4.17	4-Chlorphenyl	Phenyl	Methyl	OCH ₃	Ö1
10	4.18	4-Chlorphenyl	Phenyl	Methyl	OH	94- 98
	4.19	4-Methylphenyl	Phenyl	Methyl	OCH ₃	100-114
	4.20	4-Methylphenyl	Phenyl	Methyl	OH	Ö1
	4.21	4-Nitrophenyl	Phenyl	Methyl	OCH ₃	Ö
	4.22	4-Nitrophenyl	Phenyl	Methyl	OH	Ö
	4.23	Phenyl	2-Fluorphenyl	Methyl	OCH ₃	130-132
15	4.24	Phenyl	2-Fluorphenyl	Methyl	OH	194-195
	4.25	Phenyl	3-Methoxyphenyl	Methyl	OCH ₃	Ö1
	4.26	Phenyl	3-Methoxyphenyl	Methyl	OH	Ö1
	4.27	Phenyl	4-i-Propylphenyl	Methyl	OCH ₃	Ö
	4.28	Phenyl	4-i-Propylphenyl	Methyl	OH	Ö
	4.29	Phenyl	4-Bromphenyl	Methyl	OCH ₃	129-131
20	4.30	Phenyl	4-Bromphenyl	Methyl	OH	Ö1
	4.31	Phenyl	2-Furyl	Methyl	OCH ₃	Ö
	4.32	Phenyl	2-Furyl	Methyl	OH	Ö
	4.33	Phenyl	3-Furyl	Methyl	OCH ₃	Ö
	4.34	Phenyl	3-Furyl	Methyl	OH	Ö
	4.35	Phenyl	2-Thienyl	Methyl	OCH ₃	Ö
25	4.36	Phenyl	2-Thienyl	Methyl	OH	Ö
	4.37	Phenyl	3-Thienyl	Methyl	OCH ₃	Ö
	4.38	Phenyl	3-Thienyl	Methyl	OH	Ö
	4.39	3-Methylphenyl	Phenyl	Methyl	OCH ₃	155
	4.40	3-Methylphenyl	Phenyl	Methyl	OH	100-101
	4.41	4-i-Propyl-phenyl	Phenyl	Methyl	OCH ₃	130-131
30	4.42	4-i-Propyl-phenyl	Phenyl	Methyl	OH	230
	4.43	Phenyl	4-Chlorphenyl	Methyl	OCH ₃	143-144
	4.44	Phenyl	4-Chlorphenyl	Methyl	OH	90- 92
	4.45	Phenyl	2-Methylphenyl	Methyl	OCH ₃	179-180
	4.46	Phenyl	2-Methylphenyl	Methyl	OH	Ö
	4.47	2-Methylphenyl	Phenyl	Methyl	OCH ₃	95-114
45	4.48	2-Methylphenyl	Phenyl	Methyl	OH	80- 85

Bsp. Nr.	R ⁶	R ⁴	R ⁵	R ¹	Y	Fp. [°C]
5	4.49 Phenyl	4-Methylphenyl	Methyl	OCH ₃	O	110-112
	4.50 Phenyl	4-Methylphenyl	Methyl	OH	O	156-157
	4.51 Phenyl	3-Methylphenyl	Methyl	OCH ₃	O	Ö1
	4.52 Phenyl	3-Methylphenyl	Methyl	OH	O	158-160
10	4.53 4-Methoxy-phenyl	Phenyl	Methyl	OCH ₃	O	157-158
	4.54 4-Methoxy-phenyl	Phenyl	Methyl	OH	O	106-107
	4.55 Phenyl	4-Fluorophenyl	Methyl	OCH ₃	O	160-165
	4.56 Phenyl	4-Fluorophenyl	Methyl	OH	O	99-100
15	4.57 4-Methylthio-phenyl	Phenyl	Methyl	OCH ₃	O	160-163
	4.58 4-Methylthio-phenyl	Phenyl	Methyl	OH	O	248-250
	4.59 4-t-Butyl-phenyl	Phenyl	Methyl	OCH ₃	O	106-110
	4.60 4-t-Butyl-phenyl	Phenyl	Methyl	OH	O	250
20	4.61 Phenyl	Phenyl	Ethyl	OCH ₃	O	115-117
	4.62 Phenyl	Phenyl	Ethyl	OH	O	84- 85
	4.63 4-Acetoxy-phenyl	Phenyl	Methyl	OCH ₃	O	157-159
	4.64 4-Hydroxy-phenyl	Phenyl	Methyl	OH	O	80- 90

Patentanspruch

Verwendung von Carbonsäurederivaten der Formel I

5

in der R eine Formylgruppe, eine Gruppe CO_2H oder einen zu COOH 15 hydrolysierbaren Rest bedeutet und die übrigen Substituenten folgende Bedeutung haben:

20 R^2 Halogen, $\text{C}_1\text{-C}_4$ -Alkyl, $\text{C}_1\text{-C}_4$ -Halogenalkyl, $\text{C}_1\text{-C}_4$ -Alkoxy, $\text{C}_1\text{-C}_4$ -Halogenalkoxy oder $\text{C}_1\text{-C}_4$ -Alkylthio;

25 X Stickstoff oder CR^{14} , wobei R^{14} Wasserstoff bedeutet oder zusammen mit R^3 eine 3- bis 4-gliedrige Alkylen- oder Alkenylenkette bildet, in der jeweils eine Methylengruppe durch Sauerstoff ersetzt ist;

30 R^3 Halogen, $\text{C}_1\text{-C}_4$ -Alkyl, $\text{C}_1\text{-C}_4$ -Halogenalkyl, $\text{C}_1\text{-C}_4$ -Alkoxy, $\text{C}_1\text{-C}_4$ -Halogenalkoxy, $\text{C}_1\text{-C}_4$ -Alkylthio oder R^3 ist mit R^{14} wie oben angegeben zu einem 5- oder 6-gliedrigen Ring verknüpft;

35 R^4 eine $\text{C}_1\text{-C}_{10}$ -Alkylgruppe, welche ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: $\text{C}_1\text{-C}_4$ -Alkoxy, $\text{C}_1\text{-C}_4$ -Alkylthio, Cyano, $\text{C}_1\text{-C}_8$ -Alkylcarbonyl, $\text{C}_1\text{-C}_8$ -Alkoxy-carbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: $\text{C}_1\text{-C}_4$ -Alkyl, $\text{C}_1\text{-C}_4$ -Halogenalkyl, $\text{C}_1\text{-C}_4$ -Alkoxy, $\text{C}_1\text{-C}_4$ -Halogenalkoxy und/oder $\text{C}_1\text{-C}_4$ -Alkylthio;

40 R^4 eine $\text{C}_1\text{-C}_{10}$ -Alkylgruppe, welche ein bis fünf Halogenatome tragen kann und einen der folgenden Reste trägt: ein fünf-gliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: $\text{C}_1\text{-C}_4$ -Alkyl, $\text{C}_1\text{-C}_4$ -Halogenalkyl, $\text{C}_1\text{-C}_4$ -Alkoxy, $\text{C}_1\text{-C}_4$ -Halogenalkoxy, $\text{C}_1\text{-C}_4$ -Alkylthio und/oder Phenyl;

45

44

eine C_3 - C_{12} -Cycloalkyl- oder C_3 - C_{12} -Cycloalkenylgruppe, die ein Sauerstoff- oder Schwefelatom enthalten kann und ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann:
 5 C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Cyano, C_1 - C_8 -Alkylcarbonyl, C_1 - C_8 -Alkoxy carbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und/oder C_1 - C_4 -Alkylthio;

10 eine C_3 - C_6 -Alkenyl- oder eine C_3 - C_6 -Alkinylgruppe, welche jeweils ein bis fünf Halogenatome und/oder einen der folgenden Reste tragen kann: C_1 - C_4 -Alkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Alkylthio, Cyano, C_1 - C_8 -Alkylcarbonyl, C_1 - C_8 -Alkoxy carbonyl, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und/oder C_1 - C_4 -Alkylthio;

15

20 ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und/oder C_1 - C_4 -Alkylthio;

25

30 Phenyl oder Naphthyl, die durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, C_1 - C_4 -Alkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy, Phenoxy, C_1 - C_4 -Alkylthio, Amino, C_1 - C_4 -Alkylamino oder C_1 - C_4 -Dialkylamino;

35

40 R^4 und R^5 bilden zusammen mit dem benachbarten Kohlenstoffatom einen 3- bis 8-gliedrigen Ring, der ein Sauerstoff- oder Schwefelatom enthalten kann und einen bis drei der folgenden Reste tragen kann: C_1 - C_4 -Alkyl, Halogen, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxy, C_1 - C_4 -Halogenalkoxy und/oder C_1 - C_4 -Alkylthio;

45 R^5 Wasserstoff, C_1 - C_4 -Alkyl, C_3 - C_6 -Alkenyl, C_3 - C_6 -Alkinyl, C_3 - C_8 -Cycloalkyl, C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Alkoxyalkyl, C_1 - C_4 -Alkylthioalkyl, Phenyl oder R^5 ist mit R^4 wie oben angegeben zu einem 3- bis 8-gliedrigen Ring verknüpft;

45

R⁶ C₁-C₈-Alkyl, C₃-C₆-Alkenyl, C₃-C₆-Alkinyl oder C₃-C₈-Cycloalkyl, wobei diese Reste jeweils ein- oder mehrfach substituiert sein können durch: Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₃-C₆-Alkenyloxy, C₃-C₆-Alkinyloxy, C₁-C₄-Alkylthio,

5 C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylcarbonyl, C₁-C₄-Alkoxy carbonyl, C₁-C₄-Alkylamino, Di-C₁-C₄-alkylamino, Phenyl, ein- oder mehrfach, z.B. ein bis dreifach durch Halogen, Nitro, Cyano, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy oder C₁-C₄-Alkylthio substituiertes Phenyl oder

10 Phenoxy;

Phenyl oder Naphthyl, die jeweils durch einen oder mehrere der folgenden Reste substituiert sein können: Halogen, Nitro, Cyano, Hydroxy, Amino, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl,

15 C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Phenoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylamino oder C₁-C₄-Dialkylamino;

ein fünf- oder sechsgliedriger Heteroaromat, enthaltend ein bis drei Stickstoffatome und/oder ein Schwefel- oder Sauerstoffatom, welcher ein bis vier Halogenatome und/oder einen bis zwei der folgenden Reste tragen kann: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, Phenyl, Phenoxy oder Phenylcarbonyl, wobei die Phenylreste ihrerseits ein bis fünf Halogenatome und/oder einen bis drei der folgenden Reste tragen können: C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy und/oder C₁-C₄-Alkylthio;

20 Y Schwefel oder Sauerstoff oder eine Einfachbindung;

25 Z Schwefel oder Sauerstoff;

30 zur Herstellung von Arzneimitteln.

35

40

45

INTERNATIONAL SEARCH REPORT

Intern'l Application No
PCT/EP 95/01099

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 A61K31/00 A61K31/505 A61K31/53

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 6 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
P, A	DE,A,43 13 412 (BASF AG) 27 October 1994 see the whole document	1
A	EP,A,0 517 215 (UBE INDUSTRIES, LTD.) 9 December 1992 see the whole document	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

6 July 1995

Date of mailing of the international search report

- 9. 08. 95

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Authorized officer

Seegert, K

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No
PCT/EP 95/01099

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
DE-A-4313412	27-10-94	AU-B- WO-A-	6568194 9425442	21-11-94 10-11-94
EP-A-0517215	09-12-92	JP-A- CN-A- US-A- JP-A- JP-A- JP-A-	4360887 1067651 5387575 5148242 5148245 5208962	14-12-92 06-01-93 07-02-95 15-06-93 15-06-93 20-08-93

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 95/01099

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE-A-4313412	27-10-94	AU-B-	6568194	21-11-94
		WO-A-	9425442	10-11-94
EP-A-0517215	09-12-92	JP-A-	4360887	14-12-92
		CN-A-	1067651	06-01-93
		US-A-	5387575	07-02-95
		JP-A-	5148242	15-06-93
		JP-A-	5148245	15-06-93
		JP-A-	5208962	20-08-93

INTERNATIONALER RECHERCHENBERICHT

Internes Aktenzeichen
PCT/EP 95/01099

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 6 A61K31/00 A61K31/505 A61K31/53

Nach der internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 6 A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
P, A	DE,A,43 13 412 (BASF AG) 27.Oktober 1994 siehe das ganze Dokument ---	1
A	EP,A,0 517 215 (UBE INDUSTRIES, LTD.) 9.Dezember 1992 siehe das ganze Dokument -----	1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *' A' Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *' E' älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *' L' Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *' O' Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *' P' Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *' T' Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *' Y' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *' Y' Veröffentlichung von besonderer Bedeutung, die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- *' &' Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
6.Juli 1995	- 9. 08. 95

Name und Postanschrift der Internationale Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016

Bevollmächtigter Bediensteter

Seegert, K

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER: _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.