Дискретные структуры

МФТИ, весна 2014

Александр Дайняк

www.dainiak.com

Проекции множеств

Пусть \mathcal{F} — непустое семейство различных подмножеств некоторого множества S.

Пусть $A \subseteq S$.

Проекция семейства \mathcal{F} на множество A — это семейство $\{A \cap X \mid X \in \mathcal{F}\}.$

Будем обозначать проекцию так: $\mathcal{F}|_A$.

<u>Неформально:</u> мы «фотографируем» A с помощью «объективов» из \mathcal{F} , и $\mathcal{F}|_A$ — это всевозможные изображения, которые мы при этом можем увидеть.

Примеры проекций множеств

- Если $A \coloneqq \{1,2,3\}$ и $F \coloneqq \{\emptyset,\{1\},\{1,2\},\{3,4\}\},$ то $\mathcal{F}|_A = \{\emptyset,\{1\},\{1,2\},\{3\}\}.$
- Если $A \coloneqq \{a, b, c, d\}$ (см. рисунок) и $\mathcal{F} \coloneqq \{$ открытые полуплоскости в $\mathbb{R}^2 \}$, то $\mathcal{F}|_A = 2^A \setminus \{\{a, c\}, \{b, d\}\}$:

a • b •

 $d \bullet c \bullet$

Свойства проекций множеств (упражнения)

Если \mathcal{F} — семейство подмножеств S, то

- $\mathcal{F}|_{\emptyset} = \{\emptyset\}$
- $\mathcal{F}|_{S} = \mathcal{F}$

Простые свойства:

- $(\mathcal{F}' \cup \mathcal{F}'')|_A = (\mathcal{F}'|_A) \cup (\mathcal{F}''|_A)$
- $(\mathcal{F}' \cap \mathcal{F}'')|_A \subseteq (\mathcal{F}'|_A) \cap (\mathcal{F}''|_A)$
- $(\mathcal{F}|_A)|_B = \mathcal{F}|_{A \cap B}$

Дробление

Будем говорить, что множество A дробится семейством \mathcal{F} , если $\mathcal{F}|_A = 2^A$.

Примеры:

- Множество $\{1,2\}$ дробится семейством $\{\{1,3\},\{2,3\},\{1,2\},\{3,4\}\}$, но HE дробится семейством $\{\{1,2,3\},\{1\},\{2\}\}$.
- Любое множество A дробится семейством \mathcal{F} , таким, что $2^A \subseteq \mathcal{F}$.
- Множество из четырёх точек H дробится семейством полуплоскостей в \mathbb{R}^2 .

Есть множество объектов \mathcal{O} , каждый из которых принадлежит одному из двух классов (надёжные/ненадёжные заёмщики, полезные письма/спам, и т.д.)

Хочется построить алгоритм классификации объектов, который бы для любого $o \in \mathcal{O}$ выдавал номер класса class(o), которому принадлежит o.

Подход:

• строим отображение из множества объектов $\mathcal O$ в «просто устроенное» пространство — например, в $\mathbb R^n$

Подход:

- строим отображение из множества объектов \mathcal{O} в «просто устроенное» пространство например, в \mathbb{R}^n ,
- учимся классифицировать векторы, сопоставляемые объектам из \mathcal{O} , с помощью несложных функций (линейных, пороговых и т.п.) *классификаторов*.

Пусть A — множество векторов в \mathbb{R}^n , сопоставленных объектам из \mathcal{O} .

Пусть \mathcal{F} — семейство всевозможных кусков \mathbb{R}^n , которые можно «отсечь» с помощью функций классификации.

Если A дробится с помощью \mathcal{F} , это хорошо, т.к. как бы ни были распределены по классам объекты из \mathcal{O} , можно построить классификатор, правильно относящий все объекты к своим классам.

Пусть A — множество векторов в \mathbb{R}^n , сопоставленных объектам из \mathcal{O} .

Пусть \mathcal{F} — семейство всевозможных кусков \mathbb{R}^n , которые можно «отсечь» с помощью функций классификации.

Если A дробится с помощью \mathcal{F} , это хорошо, т.к. как бы ни были распределены по классам объекты из \mathcal{O} , можно построить классификатор, правильно относящий все объекты к своим классам.

Пусть A — множество векторов в \mathbb{R}^n , сопоставленных объектам из \mathcal{O} .

Пусть \mathcal{F} — семейство всевозможных кусков \mathbb{R}^n , которые можно «отсечь» с помощью функций классификации.

Если A дробится с помощью \mathcal{F} , это хорошо, т.к. как бы ни были распределены по классам объекты из \mathcal{O} , можно построить классификатор, правильно относящий все объекты к своим классам.

Размерность Вапника—Червоненкиса

Размерность Вапника—Червоненкиса (VC-размерность) семейства \mathcal{F} — это $\max\{ |A| \mid A \text{ дробится с помощью } \mathcal{F} \}$

Будем обозначать размерность так: $vc \mathcal{F}$.

Если $vc\mathcal{F} = n$, то с помощью \mathcal{F} можно раздробить какое-то (необязательно произвольное!) множество мощности n.

Если максимум не достигается, будем полагать $\operatorname{vc} \mathcal{F} = \infty$.

VC-размерность семейства полуплоскостей в \mathbb{R}^2

Пример. Пусть \mathcal{F} — семейство всех открытых полуплоскостей в \mathbb{R}^2 .

- Никакое множество мощности 4 не дробится с помощью ${\mathcal F}.$
- Есть множества мощности 3, дробящиеся с помощью \mathcal{F} : любая тройка неколлинеарных точек плоскости.

Поэтому для такого $\mathcal F$ имеем $\operatorname{vc} \mathcal F = 3$.

В общем случае размерность семейства всех полупространств в \mathbb{R}^n равна (n+1).

Простые свойства VC-размерности

Свойства-упражнения:

• Если $\mathcal{F}' \subseteq \mathcal{F}''$, то $\operatorname{vc} \mathcal{F}' \leq \operatorname{vc} \mathcal{F}''$.

• Для любого множества A и любого семейства $\mathcal F$ выполнено $\mathrm{vc}(\mathcal F|_A) \leq \mathrm{vc}\,\mathcal F$.

(Достаточно доказать, что если какое-то B дробится с помощью $\mathcal{F}|_A$, то оно же дробится и с помощью \mathcal{F} .)

Домен

Доменом семейства ${\mathcal F}$ назовём множество

$$\operatorname{dom} \mathcal{F} \coloneqq \bigcup_{X \in \mathcal{F}} X$$

Содержательно, домен (domain) — это набор всех элементов, встречающиеся во множествах из \mathcal{F} .

Будем обозначать $\|\mathcal{F}\| \coloneqq |\text{dom }\mathcal{F}|$.

Связь мощности семейств и VC-размерности

Теорема.

Если $\|\mathcal{F}\| = n$ и $\mathrm{vc}\,\mathcal{F} = d$, то

$$|\mathcal{F}| \le \sum_{i=0}^d \binom{n}{i}$$

Замечание-упражнение.

Оценка теоремы точна: достаточно рассмотреть семейство

$$\mathcal{F} := \{X \subseteq \{1, \dots, n\} \mid |X| \le d\}.$$

$$\|\mathcal{F}\| = n \text{ vc } \mathcal{F} = d \Rightarrow |\mathcal{F}| \leq \sum_{i=0}^{d} \binom{n}{i}$$

Доказательство индукцией по n,d.

База индукции:

Если n=0, то $\mathrm{dom}\,\mathcal{F}=\emptyset$, а значит, $\mathcal{F}=\{\emptyset\}$ и $\mathrm{vc}\,\mathcal{F}=0$.

Имеем

$$|\mathcal{F}| = 1 = \sum_{i=0}^{0} \binom{0}{i}$$

$$\|\mathcal{F}\| = n \text{ vc } \mathcal{F} = d \Rightarrow |\mathcal{F}| \leq \sum_{i=0}^{d} \binom{n}{i}$$

Доказательство индукцией по n,d.

База индукции:

Если n>0 и d=0, то заметим, что $|\mathcal{F}|\leq 1$.

В противном случае нашлись бы $S_1, S_2 \in \mathcal{F}$, такие, что $S_1 \setminus S_2 \neq \emptyset$.

И тогда для любого $s \in S_1 \setminus S_2$ множество $\{s\}$ дробилось бы с помощью \mathcal{F} , что противоречит условию d=0.

Так что получаем

$$|\mathcal{F}| \le 1 = \sum_{i=0}^{0} \binom{n}{i}$$

Два вспомогательных семейства

Индуктивный переход:

Пусть $\|\mathcal{F}\| = n > 0$, vc $\mathcal{F} = d > 0$, и пусть для всех семейств с меньшим доменом и/или размерностью утверждение теоремы выполнено.

Зафиксируем произвольный $x \in \operatorname{dom} \mathcal{F}$ и рассмотрим семейства \mathcal{F}' и \mathcal{F}'' :

- $\mathcal{F}' \coloneqq \{ S \subseteq (\text{dom } \mathcal{F}) \setminus \{x\} \mid S \in \mathcal{F} \text{ или } S \cup \{x\} \in \mathcal{F} \}$
- $\mathcal{F}'' \coloneqq \{ S \subseteq (\text{dom } \mathcal{F}) \setminus \{x\} \mid S \in \mathcal{F} \quad \text{и} \quad S \cup \{x\} \in \mathcal{F} \}$

Заметим, что $|\mathcal{F}| = |\mathcal{F}'| + |\mathcal{F}''|$.

Параметры вспомогательных семейств

- $\mathcal{F}' \coloneqq \{ S \subseteq (\operatorname{dom} \mathcal{F}) \setminus \{x\} \mid S \in \mathcal{F} \text{ или } S \cup \{x\} \in \mathcal{F} \}$ $\mathcal{F}'' \coloneqq \{ S \subseteq (\operatorname{dom} \mathcal{F}) \setminus \{x\} \mid S \in \mathcal{F} \text{ и } S \cup \{x\} \in \mathcal{F} \}$ $|\mathcal{F}| = |\mathcal{F}'| + |\mathcal{F}''|$
- Имеем $\|\mathcal{F}'\| \le \|\mathcal{F}\| 1$ и $\|\mathcal{F}''\| \le \|\mathcal{F}\| 1$.
- Если для какого-то A выполнено $\mathcal{F}'|_A=2^A$, то $\mathcal{F}|_A=2^A$, поэтому $\mathrm{vc}\,\mathcal{F}'\leq\mathrm{vc}\,\mathcal{F}$.
- Если для какого-то A выполнено $\mathcal{F}''|_A = 2^A$, то $\mathcal{F}|_{A \cup \{x\}} = 2^{A \cup \{x\}}$, поэтому $\mathrm{vc}\,\mathcal{F}'' \leq \mathrm{vc}\,\mathcal{F} 1$.

$$\|\mathcal{F}\| = n \text{ vc } \mathcal{F} = d \Rightarrow |\mathcal{F}| \leq \sum_{i=0}^{d} \binom{n}{i}$$

- $\mathcal{F}' \coloneqq \{ S \subseteq (\text{dom } \mathcal{F}) \setminus \{x\} \mid S \in \mathcal{F} \text{ или } S \cup \{x\} \in \mathcal{F} \}$
- $\mathcal{F}'' \coloneqq \{ S \subseteq (\text{dom } \mathcal{F}) \setminus \{x\} \mid S \in \mathcal{F} \quad \text{и} \quad S \cup \{x\} \in \mathcal{F} \}$
- $|\mathcal{F}| = |\mathcal{F}'| + |\mathcal{F}''|$
- $\|\mathcal{F}'\| \le \|\mathcal{F}\| 1$ и $\|\mathcal{F}''\| \le \|\mathcal{F}\| 1$
- $\operatorname{vc} \mathcal{F}' \leq \operatorname{vc} \mathcal{F}$ и $\operatorname{vc} \mathcal{F}'' \leq \operatorname{vc} \mathcal{F} 1$

Применяя предположение индукции, получаем

$$|\mathcal{F}| \le \sum_{i=0}^{d-1} \binom{n-1}{i} + \sum_{i=0}^{d} \binom{n-1}{i} = \sum_{i=0}^{d} \binom{n-1}{i-1} + \sum_{i=0}^{d} \binom{n-1}{i} = \sum_{i=0}^{d} \binom{n}{i}$$

Следствие из доказанной теоремы

Теорема.

Если
$$\|\mathcal{F}\| = n$$
 и $\operatorname{vc} \mathcal{F} = d$, то $|\mathcal{F}| \leq \sum_{i=0}^{d} \binom{n}{i}$.

Следствие.

Если $\operatorname{vc} \mathcal{F} = d$, то для любого множества A выполнено неравенство

$$|\mathcal{F}|_A| \le \sum_{i=0}^a \binom{|A|}{i}$$

Доказательство:

Достаточно заметить, что $\operatorname{vc} \mathcal{F}|_A \leq \operatorname{vc} \mathcal{F}$.

Измельчения

h-измельчением семейства ${\mathcal F}$ называется семейство

$$\mathcal{F}^{(h)} \coloneqq \{X_1 \cap \dots \cap X_h \mid X_1, \dots, X_h \in \mathcal{F}\}$$

Очевидное соотношение:

$$\mathcal{F} = \mathcal{F}^{(1)} \subseteq \mathcal{F}^{(2)} \subseteq \mathcal{F}^{(3)} \subseteq \cdots$$

Мотивация из анализа данных:

вместо одиночных классификаторов рассматриваем конъюнкции нескольких однотипных классификаторов.

Примеры измельчений

- Если $\mathcal{F} \coloneqq \big\{\{1\},\{2,3\},\{1,3\}\big\}$, то $\mathcal{F}^{(2)} = \big\{\emptyset,\{1\},\{3\},\{2,3\},\{1,3\}\big\}$.
- Если \mathcal{F} семейство всех полуплоскостей в \mathbb{R}^2 , то $\mathcal{F}^{(3)}$ содержит всевозможные полуплоскости, бесконечные углы, и треугольники (вместе с внутренностью).

VC-размерность измельчений

Теорема.

Для любого \mathcal{F} , такого, что $\operatorname{vc} \mathcal{F} = d \geq 2$, и для любого $h \geq 2$ выполнено неравенство

$$\operatorname{vc} \mathcal{F}^{(h)} \leq 2dh \log_2 dh$$

Доказательство:

Пусть A — произвольное множество, такое, что $|A| = n > 2dh \log_2 dh$.

Имеем

$$\left|\mathcal{F}^{(h)}\right|_{A}\right| \leq |\mathcal{F}|_{A}|^{h} \leq \left(\sum_{i=0}^{d} \binom{n}{i}\right)^{n} \leq n^{dh}.$$

Достаточно доказать, что $n^{dh} < 2^n$.

VC-размерность измельчений

Доказываем: $n^{dh} < 2^n$ при $n > 2dh \log_2 dh$.

Пусть $n = \alpha \cdot dh \log_2 dh$, где $\alpha > 2$.

Имеем

$$n^{dh} < 2^{n} \Leftrightarrow$$

$$\Leftrightarrow (\alpha dh \log_{2} dh)^{dh} < (dh)^{\alpha dh} \Leftrightarrow$$

$$\Leftrightarrow \alpha dh \log_{2} dh < (dh)^{\alpha} \Leftrightarrow$$

$$\Leftrightarrow \alpha \log_{2} dh < (dh)^{\alpha-1}$$

Последнее неравенство следует из того, что $\alpha < (dh)^{\alpha-1.5}$ при $\alpha > 2$ и $dh \ge 4$, и $\log_2 dh \le (dh)^{0.5}$ при $dh \ge 4$.

VC-размерность измельчений

Теорема.

Для любого \mathcal{F} , такого, что $\operatorname{vc}\mathcal{F}=d\geq 2$, и для любого $h\geq 2$ выполнено неравенство

$$\operatorname{vc} \mathcal{F}^{(h)} \le 2dh \log_2 dh$$

Следствие.

Пусть \mathcal{F}_{Δ} — семейство всех треугольников (с внутренностью) на плоскости. Имеем

$$\operatorname{vc} \mathcal{F}_{\Delta} \le 2 \cdot 3 \cdot 3 \cdot \log_2(3 \cdot 3) < 58$$

ε -сети

Пусть задано семейство $\mathcal F$ и конечное множество A.

arepsilon-сетью для множества A (относительно \mathcal{F}) называется любая с.о.п. для совокупности

$$\{S \in \mathcal{F}|_A \text{ т. ч. } |S| \ge \varepsilon \cdot |A|\}$$

Иначе говоря, ε -сеть для A — это такое подмножество $A' \subseteq A$, что любое множество из \mathcal{F} , «залезающее» хотя бы на ε -ю долю элементов A, «зацепит» и хотя бы один элемент из A'.

Существование «экономных» ε -сетей

Теорема. (Хаусслер—Вельцль '1987)

Если семейство $\mathcal F$ таково, что $\mathrm{vc}\,\mathcal F=d<\infty$, то для любого $\varepsilon>0$ и любого A существует ε -сеть размера не больше $\frac{8d}{\varepsilon}\log_2\frac{8d}{\varepsilon}$.

Сила теоремы: оценка в теореме никак не зависит от размера множества A!

Геометрическое следствие теоремы Хаусслера—Вельцля

Теорема. (Простое следствие теоремы X-B)

Пусть $\varepsilon \in (0,1)$ — сколь угодно малое число, и пусть $n = \left\lceil \frac{500}{\varepsilon} \log_2 \frac{500}{\varepsilon} \right\rceil$.

Пусть A-произвольное конечное множество точек на плоскости.

Тогда в A можно «испачкать» n точек, так, что любой треугольник, содержащий по крайней мере ε -ю долю точек из A, окажется запачканным (т.е. в него попадёт хотя бы одна запачканная точка).

Техническая лемма

Утверждение. Пусть проводятся k испытаний Бернулли с вероятностью успеха в отдельном испытании не менее ε . Тогда вероятность того, что всего произойдёт не менее $\frac{\varepsilon k}{2}$ успехов, не меньше $1-\frac{4}{\varepsilon k}$.

 \mathcal{A} оказательство. Пусть ξ — число успехов в k испытаниях. Имеем

$$\Pr\{\xi \ge \frac{\varepsilon k}{2}\} = 1 - \Pr\{\xi < \frac{\varepsilon k}{2}\} \ge 1 - \Pr\{|\xi - \mathbb{E}\xi| \ge \frac{\varepsilon k}{2}\} \ge 1 - \frac{\mathbb{D}\xi}{\left(\frac{\varepsilon k}{2}\right)^2} = 1 - \frac{k \cdot \varepsilon (1 - \varepsilon)}{\left(\frac{\varepsilon k}{2}\right)^2} \ge 1 - \frac{4}{\varepsilon k}.$$

Доказательство теоремы Х—В

Пусть A — произвольное множество.

Положим
$$k \coloneqq \left[\frac{8d}{\varepsilon}\log_2\frac{8d}{\varepsilon}\right]$$
.

Выберем случайное подмножество в A мощности k и докажем, что оно с ненулевой вероятностью будет искомой ε -сетью.

Будем случайно выбирать упорядоченный набор $U=(u_1,\dots,u_k)$, где $a_i\in A$.

Каждая компонента набора выбирается из n возможностей равновероятно. (Допускаются повторения в U.)

Доказательство теоремы Х—В

«Плохое» событие для нас:

$$B\coloneqq \{\ \exists S\in \mathcal{F} \ \text{ т.ч. } |S\cap A|\geq \varepsilon n \text{ и } S\cap U=\emptyset \ \}$$

Расширение «плохого» события:

Случайно выберем набор U длины k и независимо случайно выберем набор $V\coloneqq (v_1,\dots,v_k).$

Положим

$$B'\coloneqq \left\{\exists S\in\mathcal{F} \text{ т.ч. } |S\cap A|\geq \varepsilon n \text{ и } S\cap U=\emptyset \text{ и } |S\cap V|\geq \frac{\varepsilon k}{2} \right\}$$
 Здесь $|S\cap V|\coloneqq \#\{i\in\{1,\dots,k\}\mid v_i\in S\}.$

Лирическое отступление

Казалось бы, зачем вводить какое-то V, когда этого совершенно не требует формулировка задачи?

Нам нужно как-то столкнуть два враждующих события: что некоторое S сильно пересеклось с A, но при этом никак не пересеклось со случайным подмножеством A.

Столкнуть здесь означает показать, что вероятность одновременного совпадения этих противоположностей мала.

Мы не знаем свойства S (перед ним квантор \exists , оно выбирается из какого-то сложного \mathcal{F}), зато у нас есть конечное фиксированное A, и выбором ещё одного случайного $V \subset A$ мы сглаживаем своё незнание структуры S.

Случайность здесь — это вид усреднения, сглаживания острых углов.

Связь вероятностей $\Pr B$ и $\Pr B'$

- $B \coloneqq \{\exists S \in \mathcal{F} \text{ т.ч. } |S \cap A| \ge \varepsilon n \text{ и } S \cap U = \emptyset\}$
- $B' \coloneqq \left\{ \exists S \in \mathcal{F} \text{ т.ч. } |S \cap A| \ge \varepsilon n \text{ и } S \cap U = \emptyset \text{ и } |S \cap V| \ge \frac{\varepsilon k}{2} \right\}$

Утверждение.

$$\Pr B' \ge \frac{1}{2} \Pr B$$

Доказательство:

Т.к. B' включает B, то $\frac{\Pr B'}{\Pr B} = \Pr(B' \mid B)$.

Значит, достаточно доказать, что $\Pr(B' \mid B) \ge \frac{1}{2}$.

Связь вероятностей $\Pr B$ и $\Pr B'$

- $B \coloneqq \{\exists S \in \mathcal{F} \text{ т.ч. } |S \cap A| \ge \varepsilon n \text{ и } S \cap U = \emptyset\}$
- $B' \coloneqq \left\{ \exists S \in \mathcal{F} \text{ т.ч. } |S \cap A| \ge \varepsilon n \text{ и } S \cap U = \emptyset \text{ и } |S \cap V| \ge \frac{\varepsilon k}{2} \right\}$

Доказываем, что $\Pr(B' \mid B) \ge \frac{1}{2}$.

Пусть мы случайно выбрали U и оказалось, что для некоторого $S_0 \in \mathcal{F}$ выполнилось условие $|S_0 \cap A| \geq \varepsilon n$.

Тогда при случайном выборе V имеем

 $\Pr\{|S_0\cap V|\geq rac{arepsilon k}{2}\}=\Pr\{$ среди элементов v_1 , ... , v_k не менее $rac{arepsilon k}{2}$ попали в $S_0\}$

Это равно вероятности того, что при k испытаниях Бернулли с вероятностью успеха $\frac{|S_0\cap A|}{|A|}$ произойдёт не менее $\frac{\varepsilon k}{2}$ успехов.

Связь вероятностей $\Pr B$ и $\Pr B'$

- $B \coloneqq \{\exists S \in \mathcal{F} \text{ т.ч. } |S \cap A| \ge \varepsilon n \text{ и } S \cap U = \emptyset\}$
- $B' \coloneqq \left\{ \exists S \in \mathcal{F} \text{ т.ч. } |S \cap A| \ge \varepsilon n \text{ и } S \cap U = \emptyset \text{ и } |S \cap V| \ge \frac{\varepsilon k}{2} \right\}$

При случайном выборе U получилось $|S_0 \cap A| \ge \varepsilon n$ для $S_0 \in \mathcal{F}$.

 $\Pr(B' \mid B)$ — вероятность того, что при k испытаниях Бернулли с вероятностью успеха $\frac{|S_0 \cap A|}{|A|} \geq \varepsilon$ произойдёт не менее $\frac{\varepsilon k}{2}$ успехов.

$$\Pr(B' \mid B) \geq 1 - \frac{4}{\varepsilon k} = 1 - \frac{4}{\varepsilon \left[\frac{8d}{\varepsilon} \log_2 \frac{8d}{\varepsilon}\right]} > \frac{1}{2}.$$

Смена вероятностной модели

- $B \coloneqq \{\exists S \in \mathcal{F} \text{ т.ч. } |S \cap A| \ge \varepsilon n \text{ и } S \cap U = \emptyset\}$
- $B' \coloneqq \left\{ \exists S \in \mathcal{F} \text{ т.ч. } |S \cap A| \ge \varepsilon n \text{ и } S \cap U = \emptyset \text{ и } |S \cap V| \ge \frac{\varepsilon k}{2} \right\}$
- PrB < 2 PrB'

Осталось теперь показать, что $\Pr B' < \frac{1}{2}$.

Рассмотрим другую вероятностную модель: выбираем случайно набор $T=(t_1,\ldots,t_{2k})\in A^{2k}$, а затем случайно (одним из $\binom{2k}{k}$ способов) делим его на два набора U и V.

Заметим, что вероятности всех событий, зависящих от U и V, в новой модели те же, что и в старой.

Смена вероятностной модели

- Выбираем случайно $T \in A^{2k}$, случайно разбиваем его на U и V.
- $B'\coloneqq\left\{\exists S\in\mathcal{F}$ т.ч. $|S\cap A|\geq \varepsilon n$ и $S\cap U=\emptyset$ и $|S\cap V|\geq \frac{\varepsilon k}{2}\right\}$
- Хотим показать, что $\Pr B' < \frac{1}{2}$.

$$\Pr B' = \sum_{T_0 \in A^{2k}} \Pr(B' \mid T = T_0) \cdot \Pr\{T = T_0\}$$

Достаточно показать, что при любом фиксированном T_0 выполнено $\Pr(B' \mid T = T_0) \leq \frac{1}{2}$.

Оценка $\Pr B'$ при фиксированном T

- Выбираем случайно $T \in A^{2k}$, случайно разбиваем его на U и V.
- $B' \coloneqq \left\{\exists S \in \mathcal{F} \text{ т.ч. } |S \cap A| \geq \varepsilon n \text{ и } S \cap U = \emptyset \text{ и } |S \cap V| \geq \frac{\varepsilon k}{2} \right\}$
- Хотим показать, что $\Pr(B' \mid T = T_0) \leq \frac{1}{2}$ для любого T_0 .

Зафиксируем $T=T_0$.

$$B'=\bigcup_{S\in\mathcal{F}}B'_S$$
, где $B'_S\coloneqq \left\{|S\cap A|\geq \varepsilon n$ и $S\cap U=\emptyset$ и $|S\cap V|\geq \frac{\varepsilon k}{2}\right\}$.

Т.к. событие B_S' определяется не целым S, а лишь пересечением $S \cap T_0$, то

$$B' \subseteq \bigcup_{S \in \mathcal{F}|_{T_0}} \{ S \cap U = \emptyset \ \ \mathsf{и} \ \ |S \cap V| \ge \frac{\varepsilon k}{2} \}$$

Оценка $\Pr B'$ при фиксированном T

- Выбираем случайно $T \in A^{2k}$, случайно разбиваем его на U и V.
- $B' = \bigcup_{T_0} \bigcup_{S \in \mathcal{F}|_{T_0}} \{ T = T_0 \ и \ S \cap U = \emptyset \ и \ |S \cap V| \ge \frac{\varepsilon k}{2} \}$
- Хотим показать, что $\Pr(B' \mid T = T_0) \le \frac{1}{2}$ для любого T_0 .

Зафиксируем T_0 . Событие $\{S \cap U = \emptyset \text{ и } |S \cap V| \ge \frac{\varepsilon k}{2} \}$ происходит только если $|T_0 \cap S| = t \ge \frac{\varepsilon k}{2}$.

 $\Pr\{\text{при } | T_0 \cap S| = t \text{ разбиение } T_0 \text{ на } U \text{ и } V \text{ окажется таким, что } S \cap U = \emptyset\} =$

$$= \frac{\binom{2k-t}{k}}{\binom{2k}{k}} = \frac{k(k-1) \cdot \dots \cdot (k-t+1)}{2k(2k-1) \cdot \dots \cdot (2k-t+1)} \le 2^{-t} \le 2^{-\varepsilon k/2}$$

Оценка $\Pr B'$ при фиксированном T

• Выбираем случайно набор $T \in A^{2k}$, а затем случайно разбиваем его на два набора U и V.

•
$$B' = \bigcup_{S \in \mathcal{F}|_{T_0}} \{ S \cap U = \emptyset \quad \mathsf{и} \quad |S \cap V| \ge \frac{\varepsilon k}{2} \}$$

• Хотим показать, что $\Pr(B' \mid T = T_0) \le \frac{1}{2}$ для любого T_0 .

Из доказанного следует, что при фиксированном T

$$\Pr{B'} \leq |\mathcal{F}|_{T_0} |\cdot 2^{-\varepsilon k/2} \leq 2^{-\varepsilon k/2} \cdot \sum_{i=0}^d {2k \choose i} < \frac{1}{2}$$

(при
$$k = \left\lfloor \frac{8d}{\varepsilon} \log_2 \frac{8d}{\varepsilon} \right\rfloor$$
).