A proper subset of the problems will be selected for grading.

Here are some useful theorems and definitions. Refer to them by number if you use them.

Theorem 1 [Lebesgue's Theorem] Let \mathbb{I} be a generalized rectangle in \mathbb{R}^n and let f be a bounded function from \mathbb{I} to \mathbb{R} . Then, f is integrable if and only if the set of discontinuities of f, $D(f,\mathbb{I}) = \{\mathbf{x} \in \mathbb{I} \mid f \text{ is discontinuous at } \mathbf{x} \}$ has measure zero.

Definition 2 Let $A \subset \mathbb{R}^n$ and let f and g be functions from A to \mathbb{R} . Then, f = g almost everywhere, f = g a.e., if $\{\mathbf{x} \in A \mid f(x) \neq g(x)\}$ has measure zero.

Theorem 3 Let A be a bounded subset of \mathbb{R}^n and let $f: A \to \mathbb{R}$ be a bounded integrable function. If A has measure zero then $\int_A f = 0$.

Theorem 4 Let A be a bounded subset of \mathbb{R}^n and let $f: A \to \mathbb{R}$ be a bounded integrable function.

- (a) If f = 0 a.e. on A, then $\int_A f = 0$.
- (b) If $f(\mathbf{x}) \geq 0$ for all $\mathbf{x} \in A$, then $\int_A f = 0$ if and only if f = 0 a.e. on A.

Problems:

1. (20 points) Let $\mathbb{I} = [a, b] \times [c, d]$ be a rectangle in \mathbb{R}^2 and let $h : \mathbb{I} \to \mathbb{R}$ be a continuous function. For each $y \in [c, d]$ define

$$g(y) = \int_a^b h(x, y) \, dx.$$

Prove that the function $g:[c,d] \to \mathbb{R}$ is continuous.

HINT: First, note that h is uniformly continuous. You may assume that this implies that for each $\epsilon > 0$ there is a $\delta > 0$ such that if y and y_0 are points in [c,d] and $|y-y_0| < \delta$, then for all $x \in [a,b]$, $|h(x,y)-h(x,y_0)| < \frac{\epsilon}{2(b-a)}$. Use this to prove the bound $-\epsilon < g(y)-g(y_0) < \epsilon$, which will prove g is (uniformly) continuous for $y \in [c,d]$.

Solution: Let $\epsilon > 0$. We will assume the hint, so let $\delta > 0$ such that if y and y_0 are points in [c, d] and $|y - y_0| < \delta$, then

$$-\frac{\epsilon}{2(b-a)} < h(x,y) - h(x,y_0) < \frac{\epsilon}{2(b-a)} \quad \forall x \in [a,b]. \tag{1}$$

Now, let $|y - y_0| < \delta$, then

$$g(y) - g(y_0) = \int_a^b (h(x,y) - h(x,y_0)) dx$$

and, by starting with (1) and integrating, we see

$$-\frac{\epsilon}{2} = \int_a^b -\frac{\epsilon}{2(b-a)} \, dx \le \int_a^b \left(h(x,y) - h(x,y_0)\right) \, dx \le \int_a^b \frac{\epsilon}{2(b-a)} = \frac{\epsilon}{2}.$$

This shows $|g(y) - g(y_0)| < \epsilon$ and so g is (uniformly) continuous.

- 2. (15 points) Show that a.e. is an equivalence relation. That is, if $A \subset \mathbb{R}^n$ and f, g, and h are functions from A to \mathbb{R} (or \mathbb{C}), then
 - (a) f = f a.e.; (b) if f = g a.e. then g = f a.e.; (c) if f = g a.e. and g = h a.e. then f = h a.e.

¹©Todd Quinto, and Tufts University

Solution: To determine if f = f a.e., we calculate $\{x \in [a,b] \mid f(x) \neq f(x)\}$. This is the empty set, so it has measure zero (can you prove this?). Therefore f = f a.e.

Now, let f = g a.e. Then, $\{x \in [a,b] \mid f(x) \neq g(x)\}$ has measure zero However this is the same set as $\{x \in [a,b] \mid g(x) \neq f(x)\}$. Therefore g = f a.e.

Finally, let f = g a.e., and g = h a.e. I claim that $\{x \in [a,b] \mid f(x) \neq h(x)\} \subset \{x \in [a,b] \mid f(x) \neq g(x)\} \cup \{x \in [a,b] \mid g(x) \neq h(x)\}$. Since the two sets on the right hand side of this containment have measure zero, so does the set on the left, f = h a.e.

Here's a proof. If f(x) = g(x) and g(x) = h(x), then f(x) = h(x). The contrapositive of this is:

If $f(x) \neq h(x)$, then either $f(x) \neq g(x)$ or $g(x) \neq h(x)$.

This justifies the following containment (read the definition of these sets and compare with the statement just above):

$$\left\{x \in [a,b] \mid f(x) \neq h(x)\right\} \subset \left\{x \in [a,b] \mid f(x) \neq g(x)\right\} \cup \left\{x \in [a,b] \mid g(x) \neq h(x)\right\}.$$

The next problems are about the set $\mathcal{L}^2([a,b],\mathbb{R})$ which is the set of bounded integrable functions from [a,b] to \mathbb{R} with the inner product $\langle f,g\rangle = \int_a^b f(x)g(x)\,dx$.

This is a warm-up for $\mathcal{L}^2([a,b],\mathbb{C})$, which we will consider in class.

- 3. (20 points) Let f and g be functions in $\mathcal{L}^2([a,b],\mathbb{R})$. We will let fg be the product function $fg:[a,b]\to\mathbb{C}$ defined by fg(x)=f(x)g(x).
 - (a) Prove that $D(fg,[a,b]) \subset D(f,[a,b]) \cup D(g,[a,b])$.

HINT: You know that if f and g are both continuous at a point $x \in [a, b]$ then fg continuous at x. What is the contrapositive of this statement?

Solution: The contrapositive of this statement is, if fg is not continuous at x then, either f is not continuous at x or g is not continuous at x. This is equivalent to:

$$D(fg, [a, b]) \subset D(f, [a, b]) \cup D(g, [a, b]).$$
 (2)

- (b) Prove that the product $fg:[a,b] \to \mathbb{R}$ is integrable (thus, $fg \in \mathcal{L}^2([a,b],\mathbb{R})$). **Solution:** Since f and g are integrable, D(f,[a,b]) and D(g,[a,b]) have measure zero. Therefore by (2), D(fg,[a,b]) has measure zero. As fg is bounded, Lebesgue's Theorem shows fg is integrable.
- (c) Explain why the inner product $\langle f, g \rangle$ is defined on $\mathcal{L}^2([a, b], \mathbb{R})$ (i.e., why is the integral defined). **Solution:** As fg is integrable, $\langle f, g \rangle = \int_a^b fg \, dx$ is defined and so the product $\langle f, g \rangle$ is defined.
- (d) Prove that $\langle f,f\rangle=0$ if and only if f=0 a.e.

Solution: $0 = \langle f, f \rangle = \int_a^b f^2 dx$ if and only if the integrand, f^2 , is zero almost everywhere. This is true by Theorem 4.

- 4. (25 points) Let f, g, and h be functions in $\mathcal{L}^2([a,b],\mathbb{R})$ and let $c \in \mathbb{R}$.
 - (a) Prove that f + g and cf are in $\mathcal{L}^2([a,b],\mathbb{R})$. Since the zero function is in $\mathcal{L}^2([a,b],\mathbb{R})$, this shows that $\mathcal{L}^2([a,b],\mathbb{R})$ is a vector space (as it is a subspace of the vector all functions from [a,b] to \mathbb{R}). Solution: First, note that $\mathcal{L}^2([a,b],\mathbb{R})$ is the set of bounded integrable real valued functions. Therefore, if f and g are integrable, then so is f + g and cf, since the integral is linear, which was one of our first theorems about integrable functions.

- (b) Prove that $\int_a^b (f+g) = \int_a^b f + \int_a^b g$. Solution: This follows directly from linearity of the integral, since f+g is integrable.
- (c) Show that $\langle f, g + h \rangle = \langle f, g \rangle + \langle f, h \rangle$, $\langle f, g \rangle = \langle g, f \rangle$, and $\langle cf, g \rangle = c \langle f, g \rangle$. **Solution:** As multiplication is commutative, $\langle f, g \rangle = \int_a^b f(x)g(x) \, dx = \int_a^b g(x)f(x) \, dx = \langle g, f \rangle$. As the integral is linear, $\langle f, g + h \rangle = \int_a^b f(x)(g(x) + h(x)) \, dx = \int_a^b f(x)g(x) \, dx = \int_a^b f(x)h(x) \, dx = \langle f, g \rangle + \langle f, h \rangle$. Similarly, $\langle cf, g \rangle = \int_a^b cf(x)g(x) \, dx = c \int_a^b f(x)g(x) \, dx = \langle f, g \rangle$.
- (d) Is $\mathcal{L}^2([a,b],\mathbb{R})$ an inner product space? Why or why not? **Solution:** The product we defined on $\mathcal{L}^2([a,b],\mathbb{R})$ is positive semidefinite as, for $f \in \mathcal{L}^2([a,b],\mathbb{R})$, $\langle f, f \rangle = \int_a^b f^2(x) \, dx \ge 0$ as $f^2(x) \ge 0$. However, this product is not positive definite as $0 = \langle f, f \rangle = \int_a^b f^2(x) \, dx$ if and only if $f^2(x) = 0$ a.e.

However, this product is not positive definite as $0 = \langle f, f \rangle = \int_a^b f^2(x) dx$ if and only if $f^2(x) = 0$ a.e. on [a,b]. That is $\langle f, f \rangle = 0$ iff f = 0 a.e. This does not imply f = g in $\mathcal{L}^2([a,b],\mathbb{R})$ because f = g in $\mathcal{L}^2([a,b],\mathbb{R})$ if $\forall x \in [a,b]$, f(x) = g(x), that is, if f and g are equal as functions. But there are functions that are equal to zero a.e. but are not the zero function.

- 5. (20 points) Let $L^2([a,b],\mathbb{R})$ be the set $\mathcal{L}^2([a,b],\mathbb{R})$ with equality defined as f=g in $L^2([a,b],\mathbb{R})$ if f=g a.e.
 - (a) Show that under this definition of equality, if f = g in $L^2([a,b],\mathbb{R})$ then $\int_a^b f = \int_a^b g$. **Solution:** Let f and g be in $L^2([a,b],\mathbb{R})$. Then, f = g a.e. as functions. Therefore, f - g = 0 a.e. (can you prove this?). By Theorem 4 this implies $\int_a^b (f-g) = 0$ and so, as f and g are integrable, $\int_a^b f = \int_a^b g$. This says that the integral is well-defined in $L^2([a,b],\mathbb{R})$.
 - (b) Let f_1, f_2, g_1 , and g_2 be functions in $\mathcal{L}^2([a,b],\mathbb{R})$. Assume $f_1 = f_2$ a.e. and $g_1 = g_2$ a.e. Prove $\langle f_1, g_1 \rangle = \langle f_2, g_2 \rangle$. This shows that $\langle f, g \rangle$ is well-defined in $L^2([a,b],\mathbb{R})$.

 Solution: We use a similar argument to that in part (a). Let $f_1 = f_2$ a.e. and $g_1 = g_2$ a.e. I claim that the products $f_1g_1 = f_2g_2$ a.e. Here's the proof. If $x \in [a,b]$ and $f_1(x) = f_2(x)$ and $g_1(x) = g_2(x)$, then $f_1(x)g_1(x) = f_2(x)g_2(x)$. Taking the contrapositive of this, we see that if $f_1(x)g_1(x) \neq f_2(x)g_2(x)$, then either $f_1(x) \neq f_2(x)$ or $g_1(x) \neq g_2(x)$. Therefore $\{x \in [a,b] \mid f_1(x)g_1(x) \neq f_2(x)g_2(x)\} \subset \{x \in [a,b] \mid f_1(x) \neq f_2(x)\} \cup \{x \in [a,b] \mid g_1(x) \neq g_2(x)\}$. Since the two sets on the right side of this containment have measure zero, the set on the left has measure zero, Therefore $f_1g_1 = f_2g_2$ a.e. Then, by the result of part (a), this shows $\langle f_1, g_1 \rangle = \langle f_2, g_2 \rangle$.
 - (c) Show that under this definition, the inner product $\langle f,g\rangle=\int_a^bfg$ is positive definite (that is, $\langle f,f\rangle\geq 0$ and $\langle f,f\rangle=0$ if and only if f=0 in $L^2([a,b],\mathbb{R})$.

 HINT: What does equality in $L^2([a,b],\mathbb{R})$ mean?

 Solution: We already showed for $f\in\mathcal{L}^2([a,b],\mathbb{R})$ that $\langle f,f\rangle\geq 0$. Now, we show that $\langle f,f\rangle=0$ if and only if f=0 a.e. Of course, if f=0 a.e., then $\langle f,f\rangle=\int_a^bf^2=0$ by Theorem 4. Similarly, if $\langle f,f\rangle=0$ then, since $f^2\geq 0$, f=0 a.e. by Theorem 4. That means f=0 in $L^2([a,b],\mathbb{R})$.

Here are optional extra-credit challenge problems. Todd will grade them.

1. (2 points) Use the fact that $f: \mathbb{I} \to \mathbb{R}$ is uniformly continuous to prove the hint to problem 1 of this homework.

Solution: Because h is continuous on the compact set $\mathbb{I} = [a, b] \times [c, d]$, h is uniformly continuous on \mathbb{I} . Let $\epsilon > 0$, then there is a $\delta > 0$ such that if $\|(x, y) - (x_0, y_0)\| < \delta$ then $|h(x, y) - h(x_0, y_0)| < \epsilon$. Now, we just choose $x = x_0$, then, if $|y - y_0| < \delta$, then $\|(x, y) - (x, y_0)\| < \delta$. Therefore $|h(x, y) - h(x, y_0)| < \epsilon$.

2. (2 points—this should be worth much more) Define $f:[0,1] \to \mathbb{R}$ by $f(x) = \begin{cases} 0 & x \notin \mathbb{Q} \cap [0,1] \\ \frac{1}{n} & \text{if } x = \frac{m}{n} \in \mathbb{Q} \cap [0,1] \text{ and } \frac{m}{n} \text{ is in lowest form} \end{cases}$

So, for example, $f(0.75) = \frac{1}{4}$ and $f(\sqrt{2}/2) = 0$.

(a) Show that $D(f, [0,1]) = \mathbb{Q} \cap [0,1]$

Solution: We first show that f is discontinuous at each rational number in [0,1]. Then, we will show that f is continuous at each irrational number in [0,1].

I should have mentioned that f(0) = f(0/1) = 1/1 = 1.

Let q be a rational number in [0,1]. Then f(q) > 0 since f(q) = 1/n where q = p/n when written in reduced form, and $n \in \mathbb{N}$.

Let $q \in \mathbb{Q} \cap [0,1]$, then, by density of the irrationals in [0,1], there is a sequence of irrational numbers in [0,1] $\{r_i\}$ that converges to q. By definition $f(r_i) = 0$ for all j so $f(r_i) \to 0 \neq f(q)$

Now, let r be an irrational number in [0,1]. Then, f(r) = 0. We will show that the only rational numbers "near enough" to r have large denominators, and this will allow us to make |f(x) - f(r)| small for x sufficiently near r. Here goes!

For $N \in \mathbb{N}$, define

$$\mathcal{N}_N = \left\{ \frac{k}{n} \mid 0 \le k \le n \le N \right\}.$$

Then, \mathcal{N}_N is the set of all rational numbers in [0,1] with denominator less than or equal to N.

So, for example $\mathcal{N}_4 = \{1/4, 1/3, 1/2, 2/3, 3/4, 1\}$ and any rational number in $[0, 1] \setminus \mathcal{N}_N$ has denominator greater than 4, and so f(q) < 1/4 for q a rational number that is not in \mathcal{N}_4 .

This is true in general, and for $N \in \mathbb{N}$, any rational number $q \in \mathcal{N}_N$ satisfies $f(q) \ge 1/N$.

The only rational numbers that have f(q) < 1/N must have denominators in lowest form that are greater than N and therefore, not in \mathcal{N}_N .

This means that if q is a rational number in $[0,1] \setminus \mathcal{N}_N$ then f(q) < 1/N

Let r be an irrational number in [0,1]. Let $\epsilon > 0$. Let $N \in \mathbb{N}$ such that $\frac{1}{N} < \epsilon$.

Let $\delta = \min\{|q-r| \mid q \in \mathcal{N}_N\}$. Then, $\delta > 0$ since r is irrational and $\mathcal{N}_N \subset \mathbb{Q}$.

If $|x-r| < \delta$, then $x \notin \mathcal{N}_N$ and therefore $0 \le f(x) < 1/N < \epsilon$ (if x is irrational, then f(x) = 0, and if x is rational, its denominator is greater than N, so $f(x) < 1/N < \epsilon$. To summarise, if $\epsilon > 0$, there is a $\delta > 0$, such that if $x \in [0,1]$ and $|x-r| < \delta$, then $|f(x) - f(r)| < \epsilon$

This shows f is continuous at irrational numbers and discontinuous at rationals: $D(f, [0, 1]) = \mathbb{Q} \cap [0, 1]$.

(b) Show that f is integrable on [0,1].

Solution: This part is much easier. Since f is integrable $(|f(x)| \le 1)$ and D(f, [0, 1]) has measure zero as it is the countable set $\mathbb{Q} \cap [0, 1]$, f is integrable by Lebesgue's Theorem.