

5.25" Motherboard Supports Socket G1 Intel® Core™ i3/i5/i7 CPU, VGA/HDMI/LVDS Dual Display, Dual GbE, Eight USB 2.0, Four SATA 3Gb/s, Two PCIe mini, PCIe x16, PCI-104, RoHS

User Manual

Revision

	Date	Version	Changes
	8 February, 2011	1.00	Initial release

Copyright

COPYRIGHT NOTICE

The information in this document is subject to change without prior notice in order to improve reliability, design and function and does not represent a commitment on the part of the manufacturer.

In no event will the manufacturer be liable for direct, indirect, special, incidental, or consequential damages arising out of the use or inability to use the product or documentation, even if advised of the possibility of such damages.

This document contains proprietary information protected by copyright. All rights are reserved. No part of this manual may be reproduced by any mechanical, electronic, or other means in any form without prior written permission of the manufacturer.

TRADEMARKS

All registered trademarks and product names mentioned herein are used for identification purposes only and may be trademarks and/or registered trademarks of their respective owners.

Table of Contents

1 INTRODUCTION	1
1.1 Introduction	2
1.2 Connectors	3
1.3 Dimensions	4
1.4 Data Flow	6
1.5 TECHNICAL SPECIFICATIONS	7
2 UNPACKING	9
2.1 Anti-static Precautions	10
2.2 Unpacking Precautions	10
2.3 PACKING LIST	11
2.3.1 Optional Items	12
3 CONNECTORS	14
3.1 Peripheral Interface Connectors	15
3.1.1 NOVA-HM551 Layout	15
3.1.2 Peripheral Interface Connectors	16
3.1.3 External Interface Panel Connectors	17
3.2 Internal Peripheral Connectors	18
3.2.1 Audio Connector	18
3.2.2 Battery Connector	19
3.2.3 Digital I/O Connector	19
3.2.4 Fan Connector (CPU)	20
3.2.5 Fan Connector (System)	21
3.2.6 Front Panel Connector	22
3.2.7 Keyboard/Mouse Connector	23
3.2.8 Backlight Inverter Connector	24
3.2.9 LVDS LCD Connector	25
3.2.10 Parallel Port Connector	27
3.2.11 PCI-104 Connector	28
3.2.12 PCIe Mini Card Slots	29

	3.2.13 PCI Express x16 Slot	31
	3.2.14 Power Connector (+12V)	33
	3.2.15 Power Button	34
	3.2.16 SATA Drive Connectors	34
	3.2.17 SATA Power Connectors	35
	3.2.18 Serial Port Connector (RS-232)	36
	3.2.19 Serial Port Connectors (RS-232/422/485)	37
	3.2.20 SMBus Connector	38
	3.2.21 SPI Flash Connector	39
	3.2.22 USB Connectors	40
	3.2.23 VGA Connector (Internal)	41
	3.3 EXTERNAL PERIPHERAL INTERFACE CONNECTOR PANEL	42
	3.3.1 Ethernet Connector	43
	3.3.2 HDMI Connectors	44
4	INSTALLATION	45
-		
	4.1 Anti-static Precautions	
	4.2 Installation Considerations	
	4.2.1 Installation Notices	
	4.3 Unpacking	
	4.4 CPU, CPU COOLING KIT AND SO-DIMM INSTALLATION	
	4.4.1 Socket G1 CPU Installation	
	4.4.2 Socket G1 Cooling Kit Installation	
	4.4.3 SO-DIMM Installation	
	4.5 JUMPER SETTINGS	54
	4.5.1 AT/ATX Power Select	54
	4.5.2 Clear CMOS	55
	4.5.3 COM 5 Function Select	56
	4.5.4 COM 6 Function Select	57
	4.5.5 LVDS Voltage Select	58
	4.5.6 LVDS Panel Resolution Select	59
	4.5.7 PCI-104 Voltage Setup	60
	4.6 Chassis Installation	61
	4.6.1 Airflow	61
	4.6.2 Motherboard Installation	61

4.7 Internal Peripheral Device Connections	62
4.7.1 Audio Kit Installation	62
4.7.2 Keyboard/Mouse Connector	63
4.7.3 PCIe Mini Card Installation	64
4.7.4 SATA Drive Connection	65
4.7.5 Four Serial Port Connector	66
4.7.6 USB Cable	67
4.8 External Peripheral Interface Connection	68
4.8.1 HDMI Display Device Connection	69
4.8.2 LAN Connection (Single Connector)	
4.9 Software Installation	71
5 BIOS SCREENS	73
5.1 Introduction	74
5.1.1 Starting Setup	
5.1.2 Using Setup	
5.1.3 Getting Help	
5.1.4 Unable to Reboot After Configuration Changes	
5.1.5 BIOS Menu Bar	
5.2 Main	76
5.3 ADVANCED	77
5.3.1 ACPI Configuration	
5.3.2 Trusted Computing	
5.3.3 CPU Configuration	
5.3.4 SATA Configuration	81
5.3.5 USB Configuration	82
5.3.6 Super IO Configuration	
5.3.6.1 COM n Configuration	84
5.3.7 H/W Monitor	91
5.3.8 Serial Port Console Redirection	94
5.3.8.1 Console Redirection Settings	95
5.4 Chipset	96
5.4.1 North Bridge Configuration	97
5.4.2 South Bridge Configuration	98
5 4 3 Intel IGD SWSCI OnRegion	100

5.5 Boot	102
5.6 Security	103
5.7 Exit	104
A BIOS MENU OPTIONS	106
B ONE KEY RECOVERY	109
B.1 ONE KEY RECOVERY INTRODUCTION	110
B.1.1 System Requirement	111
B.1.2 Supported Operating System	112
B.2 Setup Procedure for Windows	113
B.2.1 Hardware and BIOS Setup	113
B.2.2 Create Partitions	114
B.2.3 Install Operating System, Drivers and Applications	117
B.2.4 Build-up Recovery Partition	118
B.2.5 Create Factory Default Image	120
B.3 SETUP PROCEDURE FOR LINUX	125
B.4 RECOVERY TOOL FUNCTIONS	128
B.4.1 Factory Restore	130
B.4.2 Backup System	131
B.4.3 Restore Your Last Backup	132
B.4.4 Manual	133
B.5 OTHER INFORMATION	134
B.5.1 Using AHCI Mode or ALi M5283 / VIA VT6421A Controller	134
B.5.2 System Memory Requirement	136
C TERMINOLOGY	137
D WATCHDOG TIMER	142
E HAZARDOUS MATERIALS DISCLOSURE	145
E.1 HAZARDOUS MATERIAL DISCLOSURE TABLE FOR IPB PRODUCTS CERTIFIED AS	3
ROHS COMPLIANT UNDER 2002/95/EC WITHOUT MERCURY	146

List of Figures

Figure 1-1: NOVA-HM551	2
Figure 1-2: Connectors	3
Figure 1-3: NOVA-HM551 Dimensions (mm)	4
Figure 1-4: NOVA-HM551 Dimensions (mm)	5
Figure 1-5: Data Flow Block Diagram	6
Figure 3-1: Connector and Jumper Locations	15
Figure 3-2: Audio Connector Location	18
Figure 3-3: Battery Connector Location	19
Figure 3-4: Digital I/O Connector Locations	20
Figure 3-5: CPU Fan Connector Location	21
Figure 3-6: +12V Fan Connector Locations	22
Figure 3-7: Front Panel Connector Location	23
Figure 3-8: Keyboard/Mouse Connector Location	24
Figure 3-9: Backlight Inverter Connector Location	25
Figure 3-10: LVDS Connector Location	26
Figure 3-11: Parallel Port Connector Location	27
Figure 3-12: PCI-104 Connector Location	28
Figure 3-13: PCle Mini Card Slot Location	30
Figure 3-14: PCle x16 Slot Location	31
Figure 3-15: CPU 12V Power Connector Location	33
Figure 3-16: Power Button Location	34
Figure 3-17: SATA Drive Connector Locations	35
Figure 3-18: SATA Power Connector Locations	36
Figure 3-19: COM Connector Pinout Locations	36
Figure 3-20: Serial Port Connector Location	38
Figure 3-21: SMBus Connector Location	39
Figure 3-22: SPI Flash Connector Locations	40
Figure 3-23: USB Connector Pinout Locations	40
Figure 3-24: VGA Connector Location	41
Figure 3-25: NOVA-HM551 External Peripheral Interface Connector	42
Figure 3-26: RJ-45 Ethernet Connector	43

Figure 4-1: Make sure the CPU socket retention screw is unlocked	50
Figure 4-2: Lock the CPU Socket Retention Screw	51
Figure 4-3: Cooling Kit Support Bracket	52
Figure 4-4: SO-DIMM Installation	53
Figure 4-5: Jumper Locations	54
Figure 4-6: AT/ATX Power Select Jumper Location	55
Figure 4-7: Clear CMOS Jumper	56
Figure 4-8: COM 5 Function Select Jumper Location	57
Figure 4-9: COM 6 Function Select Jumper Location	58
Figure 4-10: LVDS Voltage Selection Jumper Locations	59
Figure 4-11:LVDS Panel Resolution Jumper Pinout Locations	60
Figure 4-12: PCI-104 Voltage Jumper Location	61
Figure 4-13: Audio Kit Cable Connection	62
Figure 4-14: Keyboard/mouse Y-cable Connection	64
Figure 4-15: PCle Mini Card Installation	65
Figure 4-16: SATA Drive Connection	66
Figure 4-17: Four Serial Port Connector	67
Figure 4-18: Serial Device Connector	67
Figure 4-19: Dual USB Cable Connection	68
Figure 4-20: HDMI Connection	69
Figure 4-21: LAN Connection	70
Figure 4-22: Introduction Screen	71
Figure 4-23: Available Drivers	72
Figure B-1: IEI One Key Recovery Tool Menu	110
Figure B-2: Launching the Recovery Tool	114
Figure B-3: Recovery Tool Setup Menu	115
Figure B-4: Command Mode	115
Figure B-5: Partition Creation Commands	116
Figure B-6: Launching the Recovery Tool	118
Figure B-7: System Configuration for Windows	118
Figure B-8: Build-up Recovery Partition	119
Figure B-9: Press any key to continue	119
Figure B-10: Press F3 to Boot into Recovery Mode	120
Figure B-11: Recovery Tool Menu	120
Figure B-12: About Symantec Ghost Window	121

Figure B-13: Symantec Ghost Path	121
Figure B-14: Select a Local Source Drive	122
Figure B-15: Select a Source Partition from Basic Drive	122
Figure B-16: File Name to Copy Image to	123
Figure B-17: Compress Image	123
Figure B-18: Image Creation Confirmation	124
Figure B-19: Image Creation Process	124
Figure B-20: Image Creation Complete	124
Figure B-21: Press Any Key to Continue	125
Figure B-22: Partitions for Linux	126
Figure B-23: System Configuration for Linux	127
Figure B-24: Access menu.lst in Linux (Text Mode)	127
Figure B-25: Recovery Tool Menu	128
Figure B-26: Recovery Tool Main Menu	129
Figure B-27: Restore Factory Default	130
Figure B-28: Recovery Complete Window	130
Figure B-29: Backup System	131
Figure B-30: System Backup Complete Window	131
Figure B-31: Restore Backup	132
Figure B-32: Restore System Backup Complete Window	132
Figure B-33: Symantec Ghost Window	133

List of Tables

Table 1-1: Technical Specifications	8
Table 3-1: Peripheral Interface Connectors	17
Table 3-2: Rear Panel Connectors	
Table 3-3: Audio Connector Pinouts	18
Table 3-4: Battery Connector Pinouts	19
Table 3-5: Digital I/O Connector Pinouts	
Table 3-6: CPU Fan Connector Pinouts	21
Table 3-7: +12V Fan Connector Pinouts	22
Table 3-8: Front Panel Connector Pinouts	23
Table 3-9: Keyboard/Mouse Connector Pinouts	24
Table 3-10: Backlight Inverter Connector Pinouts	25
Table 3-11: LVDS Connector Pinouts	26
Table 3-12: Parallel Port Connector Pinouts	27
Table 3-13: PCI-104 Connector Pinouts	29
Table 3-14: PCle Mini Card Slot Pinouts	31
Table 3-15: PCle x16 Side A Pinouts	32
Table 3-16: PCle x16 Side B Pinouts	33
Table 3-17: CPU 12V Power Connector Pinouts	33
Table 3-18: SATA Drive Connector Pinouts	35
Table 3-19: SATA Power Connector Pinouts	36
Table 3-20: Serial Port Connector Pinouts	37
Table 3-21: Serial Port Connector Pinouts	38
Table 3-22: SMBus Connector Pinouts	39
Table 3-23: SPI Flash Connector Pinouts	40
Table 3-24: USB Port Connector Pinouts	41
Table 3-25: VGA Connector Pinouts	41
Table 3-26: LAN Pinouts	43
Table 3-27: RJ-45 Ethernet Connector LEDs	43
Table 3-28: HDMI Connector Pinouts	44
Table 4-1: Jumpers	54
Table 4-2: AT/ATX Power Select Jumper Settings	55

Table 4-3: Clear CMOS Jumper Settings	56
Table 4-4: COM 5 Function Select Jumper Settings	57
Table 4-5: COM 6 Function Select Jumper Settings	58
Table 4-6: LVDS Voltage Selection Jumper Settings	59
Table 4-7: LVDS1 Panel Resolution Jumper Setting	60
Table 4-8: PCI-104 Voltage Jumper Settings	61
Table 5-1: BIOS Navigation Keys	75

List of BIOS Menus

BIOS Menu 1: Main	76
BIOS Menu 2: Advanced	77
BIOS Menu 3: ACPI Configuration	78
BIOS Menu 4: TPM Configuration	79
BIOS Menu 5: CPU Configuration	80
BIOS Menu 6: IDE Configuration	81
BIOS Menu 7: USB Configuration	82
BIOS Menu 8: Super IO Configuration	84
BIOS Menu 9: COM n Configuration Menu	84
BIOS Menu 10: Hardware Health Configuration	91
BIOS Menu 11: Serial Port Console Redirection	94
BIOS Menu 12: Console Redirection Settings	95
BIOS Menu 13: Chipset	96
BIOS Menu 14:North Bridge Chipset Configuration	97
BIOS Menu 15:South Bridge Chipset Configuration	98
BIOS Menu 16: Intel IGD SWSCI OpRegion	100
BIOS Menu 17: Boot	102
BIOS Menu 18: Security	103
BIOS Menu 19:Exit	104

Chapter

1

Introduction

1.1 Introduction

Figure 1-1: NOVA-HM551

The NOVA-HM551 5.25" motherboard is a Socket G1 32nm Intel® Core™ i3, i5 and i7 processor platform. Up to two 4.0 GB 800 MHz or 1066 MHz DDR3 SDRAM SO-DIMMs are supported by the NOVA-HM551.

The integrated Intel® HM55 Express Chipset supports two GbE LAN port through the dual Realtek RTL8111E Ethernet controllers (with ASF 2.0 support). The NOVA-HM551 also supports four SATA 3Gb/s drives and provides 5 V SATA power.

The NOVA-HM551 supports dual display via VGA, two HDMI and an internal LVDS connector. Eight USB 2.0 channels, one PCIe x16 socket, two PCIe mini sockets and one PCI-104 slot provide flexible expansion options. High Definition Audio (HDA) support ensures HDA devices can be easily implemented on the NOVA-HM551. Serial device connectivity is provided by four internal RS-232 and two internal RS-232/422/485 connectors.

1.2 Connectors

The connectors on the NOVA-HM551 are shown in the figure below.

Figure 1-2: Connectors

1.3 Dimensions

The dimensions of the board are listed below:

Length: 193.04 mmWidth: 146.05 mm

Figure 1-3: NOVA-HM551 Dimensions (mm)

Figure 1-4: NOVA-HM551 Dimensions (mm)

1.4 Data Flow

Figure 1-5 shows the data flow between the two on-board chipsets and other components installed on the motherboard and described in the following sections of this chapter.

Figure 1-5: Data Flow Block Diagram

1.5 Technical Specifications

NOVA-HM551 technical specifications are listed in table below.

Specification	NOVA-HM551	
Form Factor	5.25"	
Socket	Socket G1 (rPGA988A)	
CPU Supported	32 nm Intel® Core™ i3 processor	
	32 nm Intel® Core™ i5 processor	
	32 nm Intel® Core™ i7 processor (the i7 dual-core series	
	supports integrated graphics but not the i7 quad-core series)	
Express Chipset	Intel® HM55	
Memory	Two 204-pin SO-DIMM sockets support two 800/1066 MHz	
	DDR3 SDRAM SO-DIMMs (system max. 8 GB)	
Graphics Engine	Gen 5.75 with 12 Execution Units DirectX* 10, OpenGL* 2.1	
Audio	Realtek ALC888 HD 7.1 channel audio codec	
LAN	Dual Realtek RTL8111E PCIe GbE controllers (LAN1 with	
	ASF 2.0 support)	
Super I/O	Fintek F81865	
BIOS	UEFI BIOS	
Digital I/O	8-bit digital I/O (4-bit input/4-bit output)	
Watchdog Timer	Software programmable supports 1~255 sec. system reset	
ТРМ	Optional on-board Infineon SLB9635TT1.2 module	
Expansion		
PCIe	Two PCIe Mini slots	
	One PCIe x16 slot	
PCI-104	One PCI-104 slot	
I/O Interface Connectors		
Audio Connector	One internal audio connector (10-pin header)	

Specification	NOVA-HM551	
Display Ports	One internal VGA port (10-pin box header)	
	Two HDMI port (up to 1080p)	
	One internal 18/24-bit dual-channel LVDS connector	
Ethernet	Two RJ-45 GbE ports	
Serial Ports	Four RS-232 via one 40-pin header	
	Two RS-232/422/485 via two 14-pin headers	
USB 2.0/1.1 Ports	Eight internal USB ports via four 8-pin headers	
Parallel Port	One internal parallel port via one 26-pin header	
Keyboard/Mouse	One keyboard/mouse connector via one 6-pin wafer	
Fan Connectors	One 4-pin CPU fan connector	
	One 3-pin system fan connector	
SMBus	One SMBus connector via one 4-pin wafer	
Storage		
Serial ATA	Four SATA 3.0 Gb/s connectors	
	Two 5V SATA power connectors	
Environmental and Power Specifications		
Power Supply	12 V only	
	ATX and AT power supported	
Power Connector	One internal 4-pin Molex power connector for power supply	
Power Consumption	12V@4.67A (2.66 GHz Intel® Core™ i7 620M CPU with two	
	1333 MHz 4 GB DDR3 SO-DIMMs)	
Operating Temperature	-10°C ~ 60°C (requires cooler and silicone heat sink paste)	
Humidity	5% ~ 95% (non-condensing)	
Physical Specifications	ations	
Dimensions	203 mm x 146 mm	
Weight GW/NW	800 g / 300 g	

Table 1-1: Technical Specifications

Chapter

2

Unpacking

2.1 Anti-static Precautions

WARNING!

Static electricity can destroy certain electronics. Make sure to follow the ESD precautions to prevent damage to the product, and injury to the user.

Make sure to adhere to the following guidelines:

- Wear an anti-static wristband: Wearing an anti-static wristband can prevent electrostatic discharge.
- Self-grounding: Touch a grounded conductor every few minutes to discharge any excess static buildup.
- Use an anti-static pad: When configuring any circuit board, place it on an anti-static mat.
- Only handle the edges of the PCB: Don't touch the surface of the motherboard. Hold the motherboard by the edges when handling.

2.2 Unpacking Precautions

When the NOVA-HM551 is unpacked, please do the following:

- Follow the antistatic guidelines above.
- Make sure the packing box is facing upwards when opening.
- Make sure all the packing list items are present.

2.3 Packing List

NOTE:

If any of the components listed in the checklist below are missing, do not proceed with the installation. Contact the IEI reseller or vendor the NOVA-HM551 was purchased from or contact an IEI sales representative directly by sending an email to sales@iei.com.tw.

The NOVA-HM551 is shipped with the following components:

Quantity	Item and Part Number	Image
1	NOVA-HM551 motherboard	
1	Audio cable	
	(P/N : 32000-072100-RS)	
1	Keyboard and mouse Y cable	
	(P/N : 32000-023800-RS)	-
1	Quad RS-232 cable	
	(P/N : 32100-147900-RS)	
2	SATA and 5 V power cable	
	(P/N : 32801-000201-100-RS)	/41
1	USB cable	
	(P/N : 32000-044300-RS)	

1	VGA cable (P/N : 32000-033800-RS)	
1	Mini jumper pack (2.0mm) (P/N : 33100-000033-RS)	***
1	Utility CD	i i i i i i i i i i i i i i i i i i i
1	Quick Installation Guide	One hander on

2.3.1 Optional Items

The following are optional components which may be separately purchased:

Item and Part Number	Image
CPU cooler for 55 W mobile processor (P/N : CF-989A-RS-R11)	
CPU cooler for 50 W mobile processor (P/N : CF-989B-RS)	
Dual USB cable (w bracket) (P/N :CB-USB02A-RS)	Consultation of the second
LPT cable (wo bracket) (P/N : 32200-015100-RS)	

SATA to IDE/CompactFlash® converter board (P/N : SAIDE-KIT01-R10)		
RS-232/422/485 cable		
(P/N : 32205-000300-100-RS)	66	

Chapter

3

Connectors

3.1 Peripheral Interface Connectors

This chapter details all the jumpers and connectors.

3.1.1 NOVA-HM551 Layout

The figures below show all the connectors and jumpers.

Figure 3-1: Connector and Jumper Locations

3.1.2 Peripheral Interface Connectors

The table below lists all the connectors on the board.

Connector	Туре	Label
Audio connector	10-pin box header	AUDIO1
Battery connector	2-pin wafer	BAT1
DDR3 SO-DIMM socket	204-pin socket	DIMM1
DDR3 SO-DIMM socket	204-pin socket	DIMM2
Digital I/O connector	10-pin header	DIO1
Fan connector (CPU)	4-pin wafer	CPU_FAN1
Fan connector (system)	3-pin wafer	SYS_FAN1
Front panel connector	10-pin header	F_PANEL1
Keyboard and mouse connector	6-pin wafer	KB_MS1
LVDS backlight inverter connector	5-pin wafer	INVERTER1
LVDS LCD connector	30-pin crimp	LVDS1
Parallel port connector	25-pin header	LPT1
PCI-104 slot	PCI-104 slot	PC104_PLUS
PCIe Mini card slot	PCIe Mini card slot	CN3
PCIe Mini card slot	PCIe Mini card slot	CN4
PCIe x16 slot	PCIe x16 slot	CONN1
Power connector (+12V, power supply)	4-pin connector	PWR2
Power button	Push button	PWR_SW1
RS-232 serial port connector	40-pin header	COM1
RS-232/422/485 serial port connector	14-pin header	COM5

RS-232/422/485 serial port connector	14-pin header	COM6
Serial ATA (SATA) drive connector	7-pin SATA	S_ATA1
Serial ATA (SATA) drive connector	7-pin SATA	S_ATA2
Serial ATA (SATA) drive connector	7-pin SATA	S_ATA5
Serial ATA (SATA) drive connector	7-pin SATA	S_ATA6
SATA power connector	2-pin wafer	SATA_PWR1
SATA power connector	2-pin wafer	SATA_PWR2
SMBus connector	4-pin wafer	SMB1
SPI Flash connector	8-pin wafer	JSPI1
USB connector	8-pin header	USB1
USB connector	8-pin header	USB2
USB connector	8-pin header	USB3
USB connector	8-pin header	USB4
VGA connector	10-pin box header	VGA1

Table 3-1: Peripheral Interface Connectors

3.1.3 External Interface Panel Connectors

The table below lists the connectors on the external I/O panel.

Connector	Туре	Label
Ethernet connector	RJ-45	LAN1
Ethernet connector	RJ-45	LAN2
HDMI	HDMI port	HDMI1
HDMI	HDMI port	HDMI2

Table 3-2: Rear Panel Connectors

3.2 Internal Peripheral Connectors

The section describes all of the connectors on the NOVA-HM551.

3.2.1 Audio Connector

CN Label: AUDIO1

CN Type: 10-pin header (2x5)

CN Location: See Figure 3-2

CN Pinouts: See Table 3-3

The audio connector is connected to external audio devices including speakers and microphones for the input and output of audio signals to and from the system.

Figure 3-2: Audio Connector Location

Pin	Description	Pin	Description
1	MIC-L	2	ANALOG GND
3	MIC-R	4	PRESENCE#
5	LINE-R	6	MIC-JD
7	FRONT-IO	8	NC
9	LINE-L	10	INE-JD

Table 3-3: Audio Connector Pinouts

3.2.2 Battery Connector

CN Label: BAT1

CN Type: 2-pin wafer (1x2)

CN Location: See Figure 3-3

CN Pinouts: See **Table 3-4**

This is connected to the system battery. The battery provides power to the system clock to retain the time when power is turned off.

Figure 3-3: Battery Connector Location

Pin	Description	
1	Battery+ (+3.3V)	
2	Ground	

Table 3-4: Battery Connector Pinouts

3.2.3 Digital I/O Connector

CN Label: DIO1

CN Type: 10-pin header

CN Location: See Figure 3-4

CN Pinouts: See Table 3-5

The digital I/O connector provides programmable input and output for external devices. The digital I/O provides 4-bit output and 4-bit input.

Figure 3-4: Digital I/O Connector Locations

Pin	Description	Pin	Description
1	GND	2	+5V
3	Output 3	4	Output 2
5	Output 1	6	Output 0
7	Input 3	8	Input 2
9	Input 1	10	Input 0

Table 3-5: Digital I/O Connector Pinouts

3.2.4 Fan Connector (CPU)

CN Label: CPU_FAN1

CN Type: 4-pin wafer (1x4)

CN Location: See **Figure 3-5**

CN Pinouts: See **Table 3-6**

The fan connector attaches to a CPU cooling fan.

Figure 3-5: CPU Fan Connector Location

Pin	Description
1	GROUND
2	+12V
3	CPUFANIN
4	CPUFANOUT

Table 3-6: CPU Fan Connector Pinouts

3.2.5 Fan Connector (System)

CN Label: SYS_FAN1

CN Type: 3-pin wafer (1x3)

CN Location: See Figure 3-6

CN Pinouts: See Table 3-7

The cooling fan connector provides a 12V, 500mA current to the cooling fan. The connector has a "rotation" pin to get rotation signals from fans and notify the system so the system BIOS can recognize the fan speed. Please note that only specified fans can issue the rotation signals.

Figure 3-6: +12V Fan Connector Locations

Pin	Description
1	SYSFANINO
2	+12V
3	GND

Table 3-7: +12V Fan Connector Pinouts

3.2.6 Front Panel Connector

CN Label: F_PANEL1

CN Type: 10-pin header (1x10)

CN Location: See Figure 3-7

CN Pinouts: See Table 3-8

The front panel connector connects to external switches and indicators to monitor and controls the motherboard. These indicators and switches include:

- Power button
- Reset
- Power LED
- HDD LED

Figure 3-7: Front Panel Connector Location

Function	Pin	Description	Function	Pin	Description
	1	NC	Power LED	6	PWR_LED+
Power Button	2	PWR_BTN+		7	PWR_LED+
	3	PWR_BTN-		8	PWR_LED-
HDD LED	4	HDD_LED+	Reset	9	RESET+
	5	HDD_LED-		10	RESET-

Table 3-8: Front Panel Connector Pinouts

3.2.7 Keyboard/Mouse Connector

CN Label: KB_MS1

CN Type: 6-pin wafer (1x6)

CN Location: See Figure 3-8

CN Pinouts: See **Table 3-9**

The keyboard/mouse connector connects to a PS/2 Y-cable that can be connected to a PS/2 keyboard and mouse.

Figure 3-8: Keyboard/Mouse Connector Location

Pin	Description
1	+5 VCC
2	MS DATA
3	MS CLK
4	KB DATA
5	KB CLK
6	GROUND

Table 3-9: Keyboard/Mouse Connector Pinouts

3.2.8 Backlight Inverter Connector

CN Label: INVERTER1

CN Type: 5-pin wafer (1x5)

CN Location: See Figure 3-9

CN Pinouts: See Table 3-10

The backlight inverter connector provides power to an LCD panel.

Figure 3-9: Backlight Inverter Connector Location

Pin	Description
1	BRIGHTNESS
2	GROUND1
3	+12 V
4	GROUND2
5	BACKLIGHT ENABLE

Table 3-10: Backlight Inverter Connector Pinouts

3.2.9 LVDS LCD Connector

CN Label: LVDS1

CN Type: 30-pin crimp (2x15)

CN Location: See Figure 3-10

CN Pinouts: See **Table 3-11**

The LVDS connector is for an LCD panel connected to the board.

Figure 3-10: LVDS Connector Location

Pin	Description	Pin	Description
1	GND	2	GND
3	A_YO	4	A_Y0#
5	A_Y1	6	A_Y1#
7	A_Y2	8	A_Y2#
9	A_CK	10	A_CK#
11	A_Y3	12	A_Y3#
13	GND	14	GND
15	B_Y0	16	B_Y0#
17	B_Y1	18	B_Y1#
19	B_Y2	20	B_Y2#
21	B_CK	22	B_CK#
23	B_Y3	24	B_Y3#
25	GND	26	GND
27	VCC_LCD	28	VCC_LCD
29	VCC_LCD	30	VCC_LCD

Table 3-11: LVDS Connector Pinouts

3.2.10 Parallel Port Connector

CN Label: LPT1

CN Type: 26-pin box header

CN Location: See Figure 3-11

CN Pinouts: See **Table 3-12**

The parallel port connector connects to a parallel port connector interface or some other parallel port device such as a printer.

Figure 3-11: Parallel Port Connector Location

Pin	Description	Pin	Description
1	STROBE#	14	AUTO FORM FEED #
2	DATAO	15	ERROR#
3	DATA1	16	INITIALIZE#
4	DATA2	17	PRINTER SELECT LN#
5	DATA3	18	GND
6	DATA4	19	GND
7	DATA5	20	GND
8	DATA6	21	GND
9	DATA7	22	GND
10	ACKNOWLEDGE#	23	GND
11	BUSY	24	GND
12	PAPER EMPTY	25	GND
13	PRINTER SELECT	26	N/C

Table 3-12: Parallel Port Connector Pinouts

3.2.11 PCI-104 Connector

CN Label: PCI104_PLUS1

CN Type: PCI-104 connector

CN Location: See Figure 3-12

CN Pinouts: See **Table 3-13**

The PCI-104 connector is for installing a PCI-104 expansion card.

Figure 3-12: PCI-104 Connector Location

Pin	Row A	Row B	Row C	Row D
1	GND	RESERVED1	+5V	AD0
2	VIO1	AD2	AD1	+5V
3	AD5	GND	AD4	AD3
4	CBEO-	AD7	GND	AD6
5	GND	AD9	AD8	GND
6	AD11	VIO2	AD10	M66EN
7	AD14	AD13	GND	AD12
8	+3V	CBE1-	AD15	+3V
9	SERR-	GND	SBO-	PAR
10	GND	PERR-	+3V	SDONE
11	STOP-	+3V	LOCK-	GND
12	+3V	TRDY-	GND	DEVSEL-

Pin	Row A	Row B	Row C	Row D
13	FRAME-	GND	IRDY-	+3V
14	GND	AD16	+3V	CBE2-
15	AD18	+3V	AD17	GND
16	AD21	AD20	GND	AD19
17	+3V	AD23	AD22	+3V
18	IDSEL0	GND	IDSEL1-	IDSEL2
19	AD24	CBE3-	VIO4	IDSEL3
20	GND	AD26	AD25	GND
21	AD29	+5V	AD28	AD27
22	+5V	AD30	GND	AD31
23	REQ0-	GND	REQ1-	VIO5
24	GND	REQ2-	+5V	GNTO-
25	GNT1-	VIO3	GNT2-	GND
26	+5V	PCICLKO	GND	PCICLK1
27	PCICLK2	+5V	PCICLK3	GND
28	GND	INTD-	+5V	PCIRST-
29	+12V	INTA-	INTB-	INTC-
30	-12V	RESERVED2	RESERVED3	GND

Table 3-13: PCI-104 Connector Pinouts

3.2.12 PCle Mini Card Slots

CN Label: CN3, CN4

CN Type: PCle Mini card slot

CN Location: See Figure 3-13

CN Pinouts: See **Table 3-14**

The PCIe Mini card slot is for installing PCIe Mini expansion cards.

Figure 3-13: PCle Mini Card Slot Location

Pin	Description	Pin	Description
1	PCIE_WAKE#	2	VCC3
3	N/C	4	GND
5	N/C	6	1.5V
7	N/C	8	N/C
9	GND	10	N/C
11	CLK-	12	N/C
13	CLK+	14	N/C
15	GND	16	N/C
17	PCIRST#	18	GND
19	N/C	20	VCC3
21	GND	22	PCIRST#
23	PERN2	24	3VDual
25	PERP2	26	GND
27	GND	28	1.5V
29	GND	30	SMBCLK
31	PETN2	32	SMBDATA
33	PETP2	34	GND
35	GND	36	USBD-
37	N/C	38	USBD+
39	N/C	40	GND
41	N/C	42	N/C
43	N/C	44	N/C
45	N/C	46	N/C
47	N/C	48	1.5V

Pin	Description	Pin	Description
49	N/C	50	GND
51	N/C	52	VCC3

Table 3-14: PCle Mini Card Slot Pinouts

3.2.13 PCI Express x16 Slot

CN Label: CONN1

CN Type: PCIe x16 slot

CN Location: See **Figure 3-14**

CN Pinouts: See **Table 3-15** (Side A) **Table 3-16** (Side B)

The PCIe x16 expansion cards slot is for PCIe x16 expansion cards.

Figure 3-14: PCle x16 Slot Location

Pin	Description	Pin	Description	Pin	Description	Pin	Description
A1	Name	A22	HSIn(1)	A43	HSIp(6)	A64	HSIp(11)
A2	PRSNT#1	A23	GND	A44	HSIn(6)	A65	HSIn(11)
А3	+12v	A24	GND	A45	GND	A66	GND
A4	+12v	A25	HSIp(2)	A46	GND	A67	GND
A 5	GND	A26	HSIn(2)	A47	HSIp(7)	A68	HSIp(12)
A6	JTAG2	A27	GND	A48	HSIn(7)	A69	HSIn(12)
A7	JTAG3	A28	GND	A49	GND	A70	GND
A8	JTAG4	A29	HSIp(3)	A50	RSVD	A71	GND
A9	JTAG5	A30	HSIn(3)	A51	GND	A72	HSIp(13)
A10	+3.3v	A31	GND	A52	HSIp(8)	A73	HSIn(13)

Pin	Description	Pin	Description	Pin	Description	Pin	Description
A11	+3.3v	A32	RSVD	A53	HSIn(8)	A74	GND
A12	PWRGD	A33	RSVD	A54	GND	A75	GND
A13	GND	A34	GND	A55	GND	A76	HSIp(14)
A14	REFCLK+	A35	HSIp(4)	A56	HSIp(9)	A77	HSIn(14)
A15	REFCLK-	A36	HSIn(4)	A57	HSIn(9)	A78	GND
A16	GND	A37	GND	A58	GND	A79	GND
A17	HSIp(0)	A38	GND	A59	GND	A80	HSIp(15)
A18	HSIn(0)	A39	HSIp(5)	A60	HSIp(10)	A81	HSIn(15)
A19	GND	A40	HSIn(5)	A61	HSIn(10)	A82	GND
A20	RSVD	A41	GND	A62	GND		
A21	GND	A42	GND	A63	GND		

Table 3-15: PCle x16 Side A Pinouts

Pin	Description	Pin	Description	Pin	Description	Pin	Description
B1	+12v	B22	GND	B43	GND	B64	GND
B2	+12v	B23	HSOp(2)	B44	GND	B65	GND
В3	RSVD	B24	HSOn(2)	B45	HSOp(7)	B66	HSOp(12)
B4	GND	B25	GND	B46	HSOn(7)	B67	HSOn(12)
B5	SMCLK	B26	GND	B47	GND	B68	GND
В6	SMDAT	B27	HSOp(3)	B48	PRSNT#2	B69	GND
В7	GND	B28	HSOn(3)	B49	GND	B70	HSOp(13)
В8	+3.3v	B29	GND	B50	HSOp(8)	B71	HSOn(13)
В9	JTAG1	B30	RSVD	B51	HSOn(8)	B72	GND
B10	3.3 Vaux	B31	PRSNT#2	B52	GND	B73	GND
B11	WAKE#	B32	GND	B53	GND	B74	HSOp(14)
B12	RSVD	B33	HSOp(4)	B54	HSOp(9)	B75	HSOn(14)
B13	GND	B34	HSOn(4)	B55	HSOn(9)	B76	GND
B14	HSOp(0)	B35	GND	B56	GND	B77	GND
B15	HSOn(0)	B36	GND	B57	GND	B78	HSOp(15)
B16	GND	B37	HSOp(5)	B58	HSOp(10)	B79	HSOn(15)
B17	PRSNT#2	B38	HSOn(5)	B59	HSOn(10)	B80	GND
B18	GND	B39	GND	B60	GND	B81	PRSNT#2

Pin	Description	Pin	Description	Pin	Description	Pin	Description
B19	HSOp(1)	B40	GND	B61	GND	B82	RSVD#2
B20	HSOn(1)	B41	HSOp(6)	B62	HSOp(11)		
B21	GND	B42	HSOn(6)	B63	HSOn(11)		

Table 3-16: PCle x16 Side B Pinouts

3.2.14 Power Connector (+12V)

CN Label: PWR2

CN Type: 4-pin Molex power connector (1x4)

CN Location: See **Figure 3-15**

CN Pinouts: See Table 3-17

The connector supports the 12V power supply.

Figure 3-15: CPU 12V Power Connector Location

Pin	Description	Pin	Description
1	GND	2	GND
3	+12V	4	+12V

Table 3-17: CPU 12V Power Connector Pinouts

3.2.15 Power Button

CN Label: PWR_SW1

CN Type: Push button

CN Location: See Figure 3-16

Use the on-board power button to power on/off the motherboard.

Figure 3-16: Power Button Location

3.2.16 SATA Drive Connectors

CN Label: S_ATA1, S_ATA2, S_ATA5, S_ATA6

CN Type: 7-pin SATA drive connectors

CN Location: See Figure 3-17

CN Pinouts: See Table 3-18

The two SATA 3Gb/s drive connectors are each connected to a SATA 3Gb/s drive. The SATA 3Gb/s drives transfer data at speeds as high as 3.0 Gb/s.

Figure 3-17: SATA Drive Connector Locations

Pin	Description
1	GND
2	TX+
3	TX-
4	GND
5	RX-
6	RX+
7	GND

Table 3-18: SATA Drive Connector Pinouts

3.2.17 SATA Power Connectors

CN Label: SATA_PWR1, SATA_PWR2

CN Type: 2-pin wafer (1x2)

CN Location: See Figure 3-18

CN Pinouts: See Table 3-19

The SATA Power Connectors provides +5V power output to the SATA connectors.

Figure 3-18: SATA Power Connector Locations

Pin	Description
1	+5V
2	GND

Table 3-19: SATA Power Connector Pinouts

3.2.18 Serial Port Connector (RS-232)

CN Label: COM1

CN Type: 40-pin header (2x20)

CN Location: See Figure 3-19

CN Pinouts: See Table 3-20

This connector provides RS-232 connections for four serial ports.

Figure 3-19: COM Connector Pinout Locations

Pin	Description	Pin	Description
1	DATA CARRIER DETECT (DCD1#)	2	DATA SET READY (DSR1#)
3	RECEIVE DATA (RXD1)	4	REQUEST TO SEND (RTS1#)
5	TRANSMIT DATA (TXD1)	6	CLEAR TO SEND (CTS1#)
7	DATA TERMINAL READY (DTR1#)	8	RING INDICATOR (RI1#)
9	GND	10	GND
11	DATA CARRIER DETECT (DCD2#)	12	DATA SET READY (DSR2#)
13	RECEIVE DATA (RXD2)	14	REQUEST TO SEND (RTS2#)
15	TRANSMIT DATA (TXD2)	16	CLEAR TO SEND (CTS2#)
17	DATA TERMINAL READY (DTR2#)	18	RING INDICATOR (RI2#)
19	GND	20	GND
21	DATA CARRIER DETECT (DCD3#)	22	DATA SET READY (DSR3#)
23	RECEIVE DATA (RXD3)	24	REQUEST TO SEND (RTS3#)
25	TRANSMIT DATA (TXD3)	26	CLEAR TO SEND (CTS3#)
27	DATA TERMINAL READY (DTR3#)	28	RING INDICATOR (RI3#)
29	GND	30	GND
31	DATA CARRIER DETECT (DCD4#)	32	DATA SET READY (DSR4#)
33	RECEIVE DATA (RXD4)	34	REQUEST TO SEND (RTS4#)
35	TRANSMIT DATA (TXD4)	36	CLEAR TO SEND (CTS4#)
37	DATA TERMINAL READY (DTR4#)	38	RING INDICATOR (RI4#)
39	GND	40	GND

Table 3-20: Serial Port Connector Pinouts

3.2.19 Serial Port Connectors (RS-232/422/485)

CN Label: COM5, COM6

CN Type: 14-pin header (2x7)

CN Location: See Figure 3-20

CN Pinouts: See **Table 3-21**

Used for RS-232/422/485 communications.

Figure 3-20: Serial Port Connector Location

Pin	DESCRIPTION	Pin	DESCRIPTION
1	DATA CARRIER DETECT (DCD#)	2	DATA SET READY (DSR#)
3	RECEIVE DATA (RXD)	4	REQUEST TO SEND (RTS#)
5	TRANSMIT DATA (TXD)	6	CLEAR TO SEND (CTS#)
7	DATA TERMINAL READY (DTR#)	8	RING INDICATOR (RI#)
9	GND	10	GND
11	TXD485+	12	TXD485#
13	RXD485+	14	RXD485#

Table 3-21: Serial Port Connector Pinouts

3.2.20 SMBus Connector

CN Label: SMB1

CN Type: 4-pin wafer

CN Location: See Figure 3-21

CN Pinouts: See **Table 3-22**

The SMBus (System Management Bus) connector provides low-speed system management communications.

Figure 3-21: SMBus Connector Location

Pin	Description
1	GND
2	SMB_DATA
3	SMB_CLK
4	+5V

Table 3-22: SMBus Connector Pinouts

3.2.21 SPI Flash Connector

CN Label: JSPI1

CN Type: 8-pin wafer (1x6)

CN Location: See Figure 3-22

CN Pinouts: See **Table 3-23**

The 8-pin SPI Flash connector is used to flash the BIOS.

Figure 3-22: SPI Flash Connector Locations

Pin	Description	Pin	Description
1	SPI_VCC(+3.3V)	2	GND
3	SPI_CS#0	4	SPI_CLK
5	SPI_SO0	6	SPI_SI
7	N/C	8	N/C

Table 3-23: SPI Flash Connector Pinouts

3.2.22 USB Connectors

CN Label: USB1, USB2, USB3, USB4

CN Type: 8-pin header (2x4)

CN Location: See Figure 3-23

CN Pinouts: See Table 3-24

The USB connectors connect to USB devices. Each pin header provides two USB ports.

Figure 3-23: USB Connector Pinout Locations

Pin	Description	Pin	Description
1	VCC (+5V)	2	GND
3	DATA-	4	DATA+
5	DATA+	6	DATA-
7	CND	Ω	VCC (+5V)

Table 3-24: USB Port Connector Pinouts

3.2.23 VGA Connector (Internal)

CN Label: VGA1

CN Type: 10-pin box header

CN Location: See Figure 3-24

CN Pinouts: See **Table 3-25**

The VGA connector connects to a monitor.

Figure 3-24: VGA Connector Location

Pin	Description	Pin	Description
1	RED	2	VDDCLK
3	GREEN	4	VDDCDA
5	BLUE	6	GND
7	HSYNC	8	GND
9	VSYNC	10	CRT_PLUG#

Table 3-25: VGA Connector Pinouts

The Intel® HD Graphics is **NOT** integrated in all the Intel® Core[™] i7 Desktop processor family and Intel® Core[™] i5-700 series processor. An additional graphic card must be installed in order to support display output. Otherwise, the display will show "No display output" when connected to the on-board VGA port.

Reference Intel® Core TM i3 Desktop CPU:

http://ark.intel.com/ProductCollection.aspx?familyID=43129&MarketSegment=DT Intel® Core **Intel** i5 Desktop CPU:

http://ark.intel.com/ProductCollection.aspx?familyID=42912&MarketSegment=DT Intel® Core **Intel** To Desktop CPU:

http://ark.intel.com/ProductCollection.aspx?familyID=28037&MarketSegment=DT

3.3 External Peripheral Interface Connector Panel

Figure 3-25 shows the NOVA-HM551 external peripheral interface connector (EPIC) panel. The NOVA-HM551 EPIC panel consists of the following:

- 2 x Ethernet connectors
- 2 x HDMI connectors

Figure 3-25: NOVA-HM551 External Peripheral Interface Connector

3.3.1 Ethernet Connector

CN Label: LAN1, LAN2

CN Type: RJ-45

CN Location: See Figure 3-25

CN Pinouts: See Table 3-26

The NOVA-HM551 is equipped with two built-in RJ-45 Ethernet controllers. Each controller can connect to the LAN through one RJ-45 LAN connector.

Pin	Description	Pin	Description
1	MDI0+	2	MDIO+
3	MDI1+	4	MDI1-
5	NC	6	NC
7	MDI2+	8	MDI2-
9	MDI3+	10	MDI3-

Table 3-26: LAN Pinouts

The RJ-45 Ethernet connector has two status LEDs, one green and one yellow. The green LED indicates activity on the port and the yellow LED indicates the speed. See **Table 3-27**.

Speed LED		Activity/Link LED		
STATUS	DESCRIPTION	STATUS	DESCRIPTION	
Off	10 Mbps connection	Off	No link	
Green	100 Mbps connection	Yellow	Linked	
Orange	Gbps connection	Blinking	TX/RX activity 1	

Table 3-27: RJ-45 Ethernet Connector LEDs

Figure 3-26: RJ-45 Ethernet Connector

3.3.2 HDMI Connectors

CN Label: HDMI1, HDMI2

CN Type: HDMI type A connector

CN Location: See Figure 3-25

CN Pinouts: See Table 3-28

The HDMI (High-Definition Multimedia Interface) connector connects to digital audio or video sources.

Pin	Description	Pin	Description
1	HDMI_DATA2	13	N/C
2	GND	14	N/C
3	HDMI_DATA2#	15	HDMI_SCL
4	HDMI_DATA1	16	HDMI_SDA
5	GND	17	GND
6	HDMI_DATA1#	18	+5V
7	HDMI_DATA0	19	HDMI_HPD
8	GND	20	HDMI_GND
9	HDMI_DATA0#	21	HDMI_GND
10	HDMI_CLK	22	HDMI_GND
11	GND	23	HDMI_GND
12	HDMI_CLK#		

Table 3-28: HDMI Connector Pinouts

Chapter

4

Installation

4.1 Anti-static Precautions

WARNING:

Failure to take ESD precautions during the installation of the NOVA-HM551 may result in permanent damage to the NOVA-HM551 and severe injury to the user.

Electrostatic discharge (ESD) can cause serious damage to electronic components, including the NOVA-HM551. Dry climates are especially susceptible to ESD. It is therefore critical that whenever the NOVA-HM551 or any other electrical component is handled, the following anti-static precautions are strictly adhered to.

- Wear an anti-static wristband: Wearing a simple anti-static wristband can help to prevent ESD from damaging the board.
- Self-grounding: Before handling the board, touch any grounded conducting material. During the time the board is handled, frequently touch any conducting materials that are connected to the ground.
- Use an anti-static pad: When configuring the NOVA-HM551, place it on an antic-static pad. This reduces the possibility of ESD damaging the NOVA-HM551.
- Only handle the edges of the PCB: When handling the PCB, hold the PCB by the edges.

4.2 Installation Considerations

A NOTE:

The following installation notices and installation considerations should be read and understood before the NOVA-HM551 is installed. All installation notices pertaining to the installation of the NOVA-HM551 should be strictly adhered to. Failing to adhere to these precautions may lead to severe damage of the NOVA-HM551 and injury to the person installing the motherboard.

4.2.1 Installation Notices

WARNING:

The installation instructions described in this manual should be carefully followed in order to prevent damage to the NOVA-HM551, NOVA-HM551 components and injury to the user.

Before and during the installation please **DO** the following:

- Read the user manual:
 - The user manual provides a complete description of the NOVA-HM551 installation instructions and configuration options.
- Wear an electrostatic discharge cuff (ESD):
 - O Electronic components are easily damaged by ESD. Wearing an ESD cuff removes ESD from the body and helps prevent ESD damage.
- Place the NOVA-HM551 on an antistatic pad:
 - O When installing or configuring the motherboard, place it on an antistatic pad. This helps to prevent potential ESD damage.
- Turn all power to the NOVA-HM551 off:

O When working with the NOVA-HM551, make sure that it is disconnected from all power supplies and that no electricity is being fed into the system.

Before and during the installation of the NOVA-HM551 **DO NOT:**

- Remove any of the stickers on the PCB board. These stickers are required for warranty validation.
- Use the product before verifying all the cables and power connectors are properly connected.
- Allow screws to come in contact with the PCB circuit, connector pins, or its components.

4.3 Unpacking

When the NOVA-HM551 is unpacked, please check all the unpacking list items listed in Chapter 3 are indeed present. If any of the unpacking list items are not available please contact the NOVA-HM551 vendor reseller/vendor where the NOVA-HM551 was purchased or contact an IEI sales representative.

4.4 CPU, CPU Cooling Kit and SO-DIMM Installation

WARNING:

A CPU should never be turned on without the specified cooling kit being installed. If the cooling kit (heat sink and fan) is not properly installed and the system turned on, permanent damage to the CPU, NOVA-HM551 and other electronic components attached to the system may be incurred. Running a CPU without a cooling kit may also result in injury to the user.

The CPU, CPU cooling kit and DIMM are the most critical components of the NOVA-HM551. If one of these component is not installed the NOVA-HM551 cannot run.

4.4.1 Socket G1 CPU Installation

WARNING:

CPUs are expensive and sensitive components. When installing the CPU please be careful not to damage it in anyway. Make sure the CPU is installed properly and ensure the correct cooling kit is properly installed.

To install a socket G1 CPU onto the NOVA-HM551, follow the steps below:

WARNING:

When handling the CPU, only hold it on the sides. DO NOT touch the pins at the bottom of the CPU.

Step 1: Unlock the CPU retention screw. When shipped, the retention screw of the CPU socket should be in the unlocked position. If it is not in the unlocked position, use a screwdriver to unlock the screw. See Figure 4-1.

Figure 4-1: Make sure the CPU socket retention screw is unlocked

- Step 2: Inspect the CPU socket. Make sure there are no bent pins and make sure the socket contacts are free of foreign material. If any debris is found, remove it with compressed air.
- **Step 3:** Correctly Orientate the CPU. Make sure the IHS (integrated heat sink) side is facing upwards.
- Step 4: Correctly position the CPU. Match the Pin 1 mark with the cut edge on the CPU socket. See Figure 4-1.
- **Step 5:** Align the CPU pins. Carefully align the CPU pins with the holes in the CPU socket.
- **Step 6: Insert the CPU.** Gently insert the CPU into the socket. If the CPU pins are properly aligned, the CPU should slide into the CPU socket smoothly.
- Step 7: Lock the retention screw. Rotate the retention screw into the locked position.

 See Figure 4-2.

Figure 4-2: Lock the CPU Socket Retention Screw

4.4.2 Socket G1 Cooling Kit Installation

An IEI Socket G1 CPU cooling kit can be purchased separately. (See **Chapter 3**) The cooling kit comprises a CPU heat sink and a cooling fan.

WARNING:

Do not wipe off (accidentally or otherwise) the pre-sprayed layer of thermal paste on the bottom of the heat sink. The thermal paste between the CPU and the heat sink is important for optimum heat dissipation.

To install the cooling kit, please follow the steps below.

Step 1: Install the cooling kit bracket. A cooling kit bracket is installed on the rear of the motherboard. Align the bracket with the four retention holes at the back of the motherboard. Once properly aligned, insert four retention screws from the front of the motherboard.

Figure 4-3: Cooling Kit Support Bracket

- Step 2: Open the lever at the top of the heat sink. Lift the lever at the top of the cooling kit to loosen the cooling kit clamps.
- Step 3: Secure the cooling kit. Gently place the heat sink and cooling kit onto the CPU.

 Make sure the hooks are properly secured to the bracket. To secure the cooling kit, close the top lever.
- Step 4: Connect the fan cable. Connect the cooling kit fan cable to the fan connector on the NOVA-HM551. Carefully route the cable and avoid heat generating chips and fan blades.

4.4.3 SO-DIMM Installation

To install an SO-DIMM, please follow the steps below and refer to **Figure 4-4**.

Figure 4-4: SO-DIMM Installation

- Step 1: Open the SO-DIMM socket handles. Open the two handles outwards as far as they can. See Figure 4-4.
- Step 2: Align the SO-DIMM with the socket. Align the SO-DIMM so the notch on the memory lines up with the notch on the memory socket. See Figure 4-4.
- **Step 3: Insert the SO-DIMM**. Once aligned, press down until the SO-DIMM is properly seated. Clip the two handles into place. See **Figure 4-4**.
- **Step 4:** Removing a SO-DIMM. To remove a SO-DIMM, push both handles outward.

 The memory module is ejected by a mechanism in the socket.

4.5 Jumper Settings

NOTE:

A jumper is a metal bridge used to close an electrical circuit. It consists of two or three metal pins and a small metal clip (often protected by a plastic cover) that slides over the pins to connect them. To CLOSE/SHORT a jumper means connecting the pins of the jumper with the plastic clip and to OPEN a jumper means removing the plastic clip from a jumper.

Figure 4-5: Jumper Locations

Before the NOVA-HM551 is installed in the system, the jumpers must be set in accordance with the desired configuration. The jumpers on the NOVA-HM551 are listed in **Table 4-1**.

Description	Туре	Label
AT/ATX power mode setting	3-pin header	J_ATXCTL1
Clear CMOS	3-pin header	J_CMOS1
COM5 RS-232/422/485 select	8-pin header	JP4
COM6 RS-232/422/485 select	8-pin header	JP5
LVDS LCD voltage select	3-pin header	J_VLVDS1
LVDS panel resolution select	8-pin header	J_PID1
PCI-104 and VIO voltage select	3-pin header	JP6

Table 4-1: Jumpers

4.5.1 AT/ATX Power Select

Jumper Label: J_ATXCTL1

Jumper Type: 3-pin header (1x3)

Jumper Settings: See Table 4-2

Jumper Location: See Figure 4-6

The AT/ATX Power Select jumper specifies the systems power mode as AT or ATX. AT/ATX Power Select jumper settings are shown in **Table 4-2**.

Setting	Description
Short 1 - 2	Use ATX power (Default)
Short 2 – 3	Use AT power

Table 4-2: AT/ATX Power Select Jumper Settings

The location of the AT/ATX Power Select jumper is shown in **Figure 4-6** below.

Figure 4-6: AT/ATX Power Select Jumper Location

4.5.2 Clear CMOS

Jumper Label: J_CMOS1

Jumper Type: 3-pin header (1x3)

Jumper Settings: See Table 4-3

Jumper Location: See Figure 4-7

If the NOVA-HM551 fails to boot due to improper BIOS settings, the clear CMOS jumper clears the CMOS data and resets the system BIOS information. To do this, use the jumper

cap to close pins 2 and 3 for a few seconds then reinstall the jumper clip back to pins 1 and 2.

If the "CMOS Settings Wrong" message is displayed during the boot up process, the fault may be corrected by pressing the F1 to enter the CMOS Setup menu. Do one of the following:

- Enter the correct CMOS setting
- Load Optimal Defaults
- Load Failsafe Defaults.

After having done one of the above, save the changes and exit the CMOS Setup menu.

The clear CMOS jumper settings are shown in **Table 4-3**.

Setting	Description
Short 1 - 2	Keep CMOS Setup (Default)
Short 2 - 3	Clear CMOS Setup

Table 4-3: Clear CMOS Jumper Settings

The location of the clear CMOS jumper is shown in Figure 4-7 below.

Figure 4-7: Clear CMOS Jumper

4.5.3 COM 5 Function Select

Jumper Label: JP4

Jumper Type: 8-pin header

Jumper Settings: See Table 4-4

Jumper Location: See Figure 4-8

The COM 5 Function Select jumper sets the communication protocol used by the third serial communications port (COM 5) as RS-232, RS-422 or RS-485. The COM 5 Function Select settings are shown in the table below.

Setting	Description
Short 1-2	RS-232 (Default)
Short 3-4	RS-422
Short 5-6	RS-485
Short 5-6, 7-8	RS-485 with RTS control

Table 4-4: COM 5 Function Select Jumper Settings

Figure 4-8: COM 5 Function Select Jumper Location

4.5.4 COM 6 Function Select

Jumper Label: JP5

Jumper Type: 8-pin header

Jumper Settings: See Table 4-5

Jumper Location: See Figure 4-9

The COM 6 Function Select jumper sets the communication protocol used by the third serial communications port (COM 6) as RS-232, RS-422 or RS-485. The COM 6 Function Select settings are shown in the table below.

Setting	Description	
Short 1-2	RS-232 (Default)	
Short 3-4	RS-422	
Short 5-6	RS-485	
Short 5-6, 7-8	RS-485 with RTS control	

Table 4-5: COM 6 Function Select Jumper Settings

Figure 4-9: COM 6 Function Select Jumper Location

4.5.5 LVDS Voltage Select

WARNING:

Incorrect voltages can destroy the LCD panel. Make sure to select a voltage that matches the voltage required by the LCD panel.

Jumper Label: J_VLVDS1

Jumper Type: 3-pin header

Jumper Settings: See Table 4-6

Jumper Location: See Figure 4-10

The LCD voltage selection jumper sets the voltage of the power supplied to the LCD panel.

Setting	Description
Short 1-2	+3.3 V (Default)

Setting	Description
Short 2-3	+5.0 V

Table 4-6: LVDS Voltage Selection Jumper Settings

Figure 4-10: LVDS Voltage Selection Jumper Locations

4.5.6 LVDS Panel Resolution Select

Jumper Label: J_PID1

Jumper Type: 8-pin header

Jumper Settings: See Table 4-7

Jumper Location: See Figure 4-11

The LVDS Panel Resolution jumper configures the resolution of the LVDS output. The LVDS Panel Resolution jumper settings are shown in Table 4-6.

Pin	Description		
OFF	640 X 480 (18-bit)		
Short 1-2	800 X 600 (18-bit) (Default)		
Short 3-4	1024 X 768 (18-bit)		
Short 1-2, 3-4	1024 X 768 (24-bit)		
Short 5-6	1024 X 768 (48-bit)		
Short 1-2, 5-6	1280 X 1024 (48-bit)		

Pin	Description
Short 3-4, 5-6	1600 X 1200 (48-bit)
Short 1-2, 3-4, 5-6	1280 X 768 (18-bit)
Short 7-8	1280 X 800 (18-bit)
Short 1-2, 7-8	1366 X 768 (24-bit)
Short 3-4, 7-8	1440 X 900 (36-bit)
Short 1-2, 3-4, 7-8	1440 X 900 (48-bit)
Short 5-6, 7-8	1680 X 1050 (48-bit)
Short 1-2, 5-6, 7-8	1920 X 1080 (48-bit)
Short 3-4, 5-6, 7-8	1920 X 1200 (48-bit)

Table 4-7: LVDS1 Panel Resolution Jumper Setting

Figure 4-11:LVDS Panel Resolution Jumper Pinout Locations

4.5.7 PCI-104 Voltage Setup

Jumper Label: JP6

Jumper Type: 3-pin header

Jumper Settings: See Table 4-8

Jumper Location: See Figure 4-12

This jumper selects the voltage supplied to the PCI-104 expansion module.

Setting	Description	
Short 1-2	+5.0 V (Default)	

Setting	Description
Short 2-3	+3.3 V

Table 4-8: PCI-104 Voltage Jumper Settings

Figure 4-12: PCI-104 Voltage Jumper Location

4.6 Chassis Installation

4.6.1 Airflow

WARNING:

Airflow is critical to the cooling of the CPU and other onboard components. The chassis in which the NOVA-HM551 must have air vents to allow cool air to move into the system and hot air to move out.

The NOVA-HM551 must be installed in a chassis with ventilation holes on the sides allowing airflow to travel through the heat sink surface. In a system with an individual power supply unit, the cooling fan of a power supply can also help generate airflow through the board surface.

4.6.2 Motherboard Installation

To install the NOVA-HM551 motherboard into the chassis please refer to the reference material that came with the chassis.

4.7 Internal Peripheral Device Connections

This section outlines the installation of peripheral devices to the onboard connectors

4.7.1 Audio Kit Installation

The Audio Kit that came with the NOVA-HM551 connects to the audio connector on the NOVA-HM551. The audio kit consists of three audio jacks. Mic-in connects to a microphone. Line-in provides a stereo line-level input to connect to the output of an audio device. Line-out, a stereo line-level output, connects to two amplified speakers. To install the audio kit, please refer to the steps below:

- **Step 1:** Locate the audio connector. The location of the 10-pin audio connector is shown in **Chapter 3**.
- Step 2: Align pin 1. Align pin 1 on the on-board connector with pin 1 on the audio kit connector. Pin 1 on the audio kit connector is indicated with a white dot. See Figure 4-13.

Figure 4-13: Audio Kit Cable Connection

Step 3: Connect the audio devices. Connect speakers to the line-out audio jack.
Connect the output of an audio device to the line-in audio jack. Connect a microphone to the mic-in audio jack.

4.7.2 Keyboard/Mouse Connector

The NOVA-HM551 is shipped with a keyboard/mouse Y-cable connector. The keyboard/mouse Y-cable connector connects to a keyboard/mouse connector on the NOVA-HM551 and branches into two cables that are each connected to a PS/2 connector, one for a mouse and one for a keyboard. To connect the keyboard/mouse Y-cable connector please follow the steps below.

- **Step 1:** Locate the connector. The location of the keyboard/mouse Y-cable connector is shown in **Chapter 3**.
- Step 2: Align the connectors. Correctly align pin 1 on the cable connector with pin 1 on the NOVA-HM551 keyboard/mouse connector. See Figure 4-14.
- Step 3: Insert the cable connectors Once the cable connector is properly aligned with the keyboard/mouse connector on the NOVA-HM551, connect the cable connector to the on-board connectors. See Figure 4-14.

Figure 4-14: Keyboard/mouse Y-cable Connection

- Step 4: Attach PS/2 connectors to the chassis. The keyboard/mouse Y-cable connector is connected to two PS/2 connectors. To secure the PS/2 connectors to the chassis please refer to the installation instructions that came with the chassis.
- Step 5: Connect the keyboard and mouse. Once the PS/2 connectors are connected to the chassis, a keyboard and mouse can each be connected to one of the PS/2 connectors. The keyboard PS/2 connector and mouse PS/2 connector are both marked. Please make sure the keyboard and mouse are connected to the correct PS/2 connector.

4.7.3 PCIe Mini Card Installation

To install the PCIe Mini card, please refer to the diagram and instructions below.

Figure 4-15: PCle Mini Card Installation

- Step 1: Insert into the socket at and angle. Line up the notch on the card with the notch on the connector. Slide the PCIe Mini card into the socket at an angle of about 20°.
- Step 2: Push down until the card clips into place. Push the other end of the card down until it clips into place on the plastic connector.

4.7.4 SATA Drive Connection

The NOVA-HM551 is shipped with two SATA drive cables. To connect the SATA drives to the connectors, please follow the steps below.

- **Step 1:** Locate the connectors. The locations of the SATA drive connectors are shown in **Chapter 3**.
- Step 2: Insert the cable connector. Press the clip on the connector at the end of the SATA cable and insert the cable connector into the on-board SATA drive connector. See Figure 4-16.
- Step 3: Connect the SATA power cable. Connect the SATA power connector into the on-board SATA power connector. See Figure 4-16.

Step 4: Connect the cable to the SATA disk. Connect the connector on the other end of the cable to the connector at the back of the SATA drive. See Figure 4-16.

Figure 4-16: SATA Drive Connection

4.7.5 Four Serial Port Connector

The 40-pin serial port connector connects the board connector to four DB-9 connectors. To install, please follow the steps below.

- **Step 1:** Locate the COM connector. The locations of the COM port connectors are shown in Chapter 4.
- Step 2: Insert the cable connector. Align the cable connector with the onboard connector. Make sure pin 1 on the board and connector line up.

Figure 4-17: Four Serial Port Connector

Step 3: Secure the serial ports to the chassis. Tighten the screws on the DB-9 connectors to secure them to the chassis.

Figure 4-18: Serial Device Connector

4.7.6 USB Cable

The NOVA-HM551 is shipped with a dual port USB 2.0 cable. To connect the USB cable connector, please follow the steps below.

Step 1: Locate the connectors. The locations of the USB connectors are shown in Chapter 3.

WARNING:

If the USB pins are not properly aligned, the USB device can burn out.

- Step 2: Align the connectors. The cable has two connectors. Correctly align pin 1 on each cable connector with pin 1 on the NOVA-HM551 USB connector.
- Step 3: Insert the cable connectors. Once the cable connectors are properly aligned with the USB connectors on the NOVA-HM551, connect the cable connectors to the on-board connectors. See Figure 4-19.

Figure 4-19: Dual USB Cable Connection

Step 4: Attach the USB connectors to the chassis. The USB 2.0 connectors each of two retention screw holes. To secure the connectors to the chassis please refer to the installation instructions that came with the chassis.

4.8 External Peripheral Interface Connection

The following external peripheral devices can be connected to the external peripheral interface connectors.

- HDMI devices
- RJ-45 Ethernet cable connector

To install these devices, connect the corresponding cable connector from the actual device to the corresponding NOVA-HM551 external peripheral interface connector making sure the pins are properly aligned.

4.8.1 HDMI Display Device Connection

The HDMI connector transmits a digital signal to compatible HDMI display devices such as a TV or computer screen. To connect the HDMI cable to the NOVA-HM551, follow the steps below.

- **Step 1:** Locate the HDMI connector. The location is shown in Chapter 3.
- **Step 2:** Align the connector. Align the HDMI connector with the HDMI port. Make sure the orientation of the connector is correct.

Figure 4-20: HDMI Connection

Step 3: Insert the HDMI connector. Gently insert the HDMI connector. The connector should engage with a gentle push. If the connector does not insert easily, check again that the connector is aligned correctly, and that the connector is being inserted with the right way up.

4.8.2 LAN Connection (Single Connector)

There is one external RJ-45 LAN connector. The RJ-45 connector enables connection to an external network. To connect a LAN cable with an RJ-45 connector, please follow the instructions below.

- Step 1: Locate the RJ-45 connectors. The location of the LAN connector is shown in Chapter 4.
- **Step 2:** Align the connectors. Align the RJ-45 connector on the LAN cable with one of the RJ-45 connectors on the NOVA-HM551. See Figure 4-21.

Figure 4-21: LAN Connection

Step 3: Insert the LAN cable RJ-45 connector. Once aligned, gently insert the LAN cable RJ-45 connector into the on-board RJ-45 connector.

4.9 Software Installation

All the drivers for the NOVA-HM551 are on the CD that came with the system. To install the drivers, please follow the steps below.

Step 1: Insert the CD into a CD drive connected to the system.

If the installation program doesn't start automatically:

Click "Start->My Computer->CD Drive->autorun.exe"

Step 2: The driver main menu appears (**Figure 4-22**).

Figure 4-22: Introduction Screen

Step 3: Click NOVA-HM551.

Step 4: A new screen with a list of available drivers appears (**Figure 4-23**).

NOVA-HM551 5.25" SBC

Figure 4-23: Available Drivers

Step 5: Install all of the necessary drivers in this menu.

Chapter

5

BIOS Screens

5.1 Introduction

The BIOS is programmed onto the BIOS chip. The BIOS setup program allows changes to certain system settings. This chapter outlines the options that can be changed.

5.1.1 Starting Setup

The UEFI BIOS is activated when the computer is turned on. The setup program can be activated in one of two ways.

- 1. Press the F2 key as soon as the system is turned on or
- 2. Press the **F2** key when the "**Press F2 to enter SETUP**" message appears on the screen.

If the message disappears before the **F2** key is pressed, restart the computer and try again.

5.1.2 Using Setup

Use the arrow keys to highlight items, press **ENTER** to select, use the PageUp and PageDown keys to change entries, press **F1** for help and press **Esc** to quit. Navigation keys are shown in.

Key	Function	
Up arrow	Move to the item above	
Down arrow	Move to the item below	
Left arrow	Move to the item on the left hand side	
Right arrow	Move to the item on the right hand side	
+	Increase the numeric value or make changes	
-	Decrease the numeric value or make changes	
Page up	Move to the next page	
Page down	Move to the previous page	

Key	Function			
Esc	Main Menu – Quit and do not save changes into CMOS			
	Status Page Setup Menu and Option Page Setup Menu			
	Exit current page and return to Main Menu			
F1	General help, only for Status Page Setup Menu and Option			
	Page Setup Menu			
F9	Load optimized defaults			
F10	Save changes and Exit BIOS			

Table 5-1: BIOS Navigation Keys

5.1.3 Getting Help

When **F1** is pressed a small help window describing the appropriate keys to use and the possible selections for the highlighted item appears. To exit the Help Window press **Esc** or the **F1** key again.

5.1.4 Unable to Reboot After Configuration Changes

If the computer cannot boot after changes to the system configuration is made, CMOS defaults. Use the jumper described in Chapter 5.

5.1.5 BIOS Menu Bar

The **menu bar** on top of the BIOS screen has the following main items:

- Main Changes the basic system configuration.
- Advanced Changes the advanced system settings.
- Chipset Changes the chipset settings.
- Boot Changes the system boot configuration.
- Security Sets User and Supervisor Passwords.
- Save & Exit Selects exit options and loads default settings

The following sections completely describe the configuration options found in the menu items at the top of the BIOS screen and listed above.

5.2 Main

The **Main** BIOS menu (**BIOS Menu 1**) appears when the **BIOS Setup** program is entered. The **Main** menu gives an overview of the basic system information.

	tility - Copyright (C) 2010 America Chipset Boot Security Save	
BIOS Information BIOS Vendor Core Version Project Version	American Megatrends 4.6.3.7 0.16 E349AR10.ROM	Set the Time. Use Tab to switch between Time elements.
Build Date Memory Information	12/28/2010 16:23:19	
Total Memory	2048 MB (DDR3 1333)	<pre>←→: Select Screen ↑ ↓: Select Item</pre>
System Date System Time	[Tue 08/18/2008] [14:20:27]	EnterSelect F1 General Help F2 Previous Values
Access Level	Administrator	F3 Optimized Defaults F4 Save ESC Exit
Version 2.10	0.1208. Copyright (C) 2010 American	

BIOS Menu 1: Main

→ BIOS Information

The **BIOS Information** lists a brief summary of the BIOS. The fields in **BIOS Information** cannot be changed. The items shown in the system overview include:

BIOS Vendor: Installed BIOS vendor

Core Version: Current BIOS version

Project Version: the board version

Build Date: Date the current BIOS version was made

→ Memory Information

The **Memory Information** lists a brief summary of the on-board memory. The fields in **Memory Information** cannot be changed.

Total Memory: Displays the auto-detected system memory size and type.

The System Overview field also has two user configurable fields:

→ System Date [xx/xx/xx]

Use the **System Date** option to set the system date. Manually enter the day, month and year.

→ System Time [xx:xx:xx]

Use the **System Time** option to set the system time. Manually enter the hours, minutes and seconds.

5.3 Advanced

Use the **Advanced** menu (**BIOS Menu 2**) to configure the CPU and peripheral devices through the following sub-menus:

WARNING!

Setting the wrong values in the sections below may cause the system to malfunction. Make sure that the settings made are compatible with the hardware.

Aptio Setup Utility - (Copyright (C) 2010 Am	ericar	n Megatrends, Inc.
Main Advanced Chipset	Boot	Security	Save	& Exit
> ACPI Settings > Trusted Computing > CPU Configuration				System ACPI Parameters
> SATA Configuration> USB Configuration> Super IO Configuration> H/M Monitor				
> Serial Port Console Redired	ction			↑↓: Select Item EnterSelect F1 General Help F2 Previous Values
				F3 Optimized Defaults F4 Save ESC Exit
Version 2.10.1208. Co	pyright (C)	2010 Amer	rican	Megatrends, Inc.

BIOS Menu 2: Advanced

5.3.1 ACPI Configuration

The **ACPI Configuration** menu (**BIOS Menu 3**) configures the Advanced Configuration and Power Interface (ACPI) options.

Aptio Setup Utility	- Copyright (C) 2010 America	n Megatrends, Inc.
ACPI Sleep State	[S1 (CPU Stop Clock)]	Set the ACPI state used
		for System suspend
		<pre>←→: Select Screen</pre> ↑ ↓: Select Item
		EnterSelect
		F1 General Help F2 Previous Values
		F3 Optimized
		Defaults
		F4 Save ESC Exit
Version 2.10.1208.	Copyright (C) 2010 American	Megatrends, Inc.

BIOS Menu 3: ACPI Configuration

→ ACPI Sleep State [S1 (CPU Stop Clock)]

Use the **ACPI Sleep State** option to specify the sleep state the system enters when it is not being used.

→	S1	(CPU	Stop	DEFAULT	The system enters S1(POS) sleep state. The		
	Clo	ck)			system appears off. The CPU is stopped; RAM is		
					refreshed; the system is running in a low power mode.		
→	S3 RAM	(Susper /I)	nd to		The caches are flushed and the CPU is powered off. Power to the RAM is maintained. The computer returns slower to a working state, but		

more power is saved.

5.3.2 Trusted Computing

Use the **Trusted Computing** menu (**BIOS Menu 4**) to configure settings related to the Trusted Computing Group (TCG) Trusted Platform Module (TPM).

Aptio Setup Utility - Copy Advanced	yright (C) 2010 America	n Megatrends, Inc.
TPM Configuration TPM SUPPORT TPM State Pending TPM operation	[Enable] [Disabled] [None]	Enables or Disables TPM support. O.S. will not show TPM. Reset of platform is required.
Current TPM Status Information TPM Enabled Status: TPM Active Status: TPM Owner Status:	[Disable] [Deactivated] [Unowned]	<pre>←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save ESC Exit</pre>
Version 2.10.1208. Copyr	right (C) 2010 American	Megatrends, Inc.

BIOS Menu 4: TPM Configuration

→ TPM Support [Enable]

Use the **TPM Support** option to configure support for the TPM.

- **Disable** TPM support is disabled.
- **Enable DEFAULT** TPM support is enabled.

→ TPM State [Disabled]

Use the **TPM State** option to configure the TPM state.

- → **Disabled Default** TPM is disabled.
- **Enabled** TPM is enabled.

5.3.3 CPU Configuration

Use the **CPU Configuration** menu (**BIOS Menu 5**) to view detailed CPU specifications and configure the CPU.

BIOS Menu 5: CPU Configuration

The CPU Configuration menu (BIOS Menu 5) lists the following CPU details:

- Processor Type: Lists the brand name of the CPU being used
- EMT64: Indicates if the EM64T is supported by the CPU.
- Processor Speed: Lists the CPU processing speed
- Processor Stepping: Lists the CPU processing stepping
- Microcode Revision: Lists the microcode revision
- Processor Cores: Lists the number of the processor core
- Intel HT Technology: Indicates if the Intel HT Technology is supported by the CPU.

5.3.4 SATA Configuration

Use the **SATA Configuration** menu (**BIOS Menu 6**) to change and/or set the configuration of the SATA devices installed in the system.

Aptio Setup Utility Advanced	- Copyright (C) 2010 Americ	an Megatrends, Inc.
SATA Configuration SATA Port0	Not Present	(1) IDE Mode. (2) AHCI Mode. (3) RAID Mode.
SATA Port1 SATA Port2 SATA Port3	Not Present Not Present Not Present	
SATA Mode Serial-ATA Controller 0 Serial-ATA Controller 1	[IDE Mode] [Compatible] [Enhanced]	<pre>←→: Select Screen ↑↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save ESC Exit</pre>
Version 2.10.1208.	Copyright (C) 2010 American	Megatrends, Inc.

BIOS Menu 6: IDE Configuration

→ SATA Mode [IDE Mode]

Use the SATA Mode option to configure SATA devices as normal IDE devices.

→	Disable		Disables SATA devices.
→	IDE Mode	DEFAULT	Configures SATA devices as normal IDE device.
→	AHCI Mode		Configures SATA devices as AHCI device.

→ Serial-ATA Controller 0/1 [Compatible]

Use the **Serial-ATA Controller** option to configure the Serial-ATA controller mode when the SATA mode is set to IDE Mode.

Disable Disables Serial-ATA controller.

NOVA-HM551 5.25" SBC

→	Enhanced		Configures the Serial-ATA controller to be in enhanced
			mode. In this mode, IDE channels and SATA channels
			are separated. Some legacy OS do not support this
			mode.
→	Compatible	DEFAULT	Configures the Serial-ATA controller to be in compatible mode. In this mode, a SATA channel will replace one of
			the IDE channels.

5.3.5 USB Configuration

Use the **USB Configuration** menu (**BIOS Menu 7**) to read USB configuration information and configure the USB settings.

Aptio Setup Utility Advanced	- Copyright (C) 2010 Ameri	can Megatrends, Inc.
USB Configuration USB Devices:		Enables Legacy USB support. AUTO option disables legacy support
2 Hubs All USB Devices Legacy USB Support	[Enabled]	if no USB devices are connected. DISABLE option will keep USB devices available only for EFI applications.
		<pre>←→: Select Screen ↑ ↓: Select Item</pre>
		EnterSelect F1 General Help F2 Previous Values F3 Optimized
Version 2.10.1208.	Copyright (C) 2010 America	Defaults F4 Save ESC Exit an Megatrends, Inc.

BIOS Menu 7: USB Configuration

→ USB Devices

The USB Devices Enabled field lists the USB devices that are enabled on the system

→ All USB Devices [Enabled]

Use the All USB Devices option to enable the USB devices.

Disabled
 All USB devices are disabled.

Enabled DEFAULT All USB devices are enabled.

→ Legacy USB Support [Enabled]

Use the **Legacy USB Support** BIOS option to enable USB mouse and USB keyboard support. Normally if this option is not enabled, any attached USB mouse or USB keyboard does not become available until a USB compatible operating system is fully booted with all USB drivers loaded. When this option is enabled, any attached USB mouse or USB keyboard can control the system even when there is no USB driver loaded onto the system.

Enabled DEFAULT Legacy USB support enabled

Disabled
 Legacy USB support disabled

Auto Legacy USB support disabled if no USB devices are

connected

5.3.6 Super IO Configuration

Use the **Super IO Configuration** menu (**BIOS Menu 8**) to set or change the configurations for the FDD controllers, parallel ports and serial ports.

Aptio Setup Utility - Copyright (C) 2010 America Advanced	n Megatrends, Inc.
Super IO Configuration	Set Parameters of Serial Port 0 (COMA)
Super IO Chip Fintek F81865 > COM1 Configuration > COM2 Configuration	
> COM3 Configuration > COM4 Configuration	<pre>←→: Select Screen ↑ ↓: Select Item</pre>
<pre>> COM5 Configuration > COM6 Configuration > Parallel Port Configuration</pre>	EnterSelect F1 General Help
> rararrer Fort configuration	F2 Previous Values F3 Optimized Defaults
	F4 Save ESC Exit
Version 2.10.1208. Copyright (C) 2010 American	Megatrends, Inc.

BIOS Menu 8: Super IO Configuration

5.3.6.1 COM n Configuration

Use the COM n Configuration menu (BIOS Menu 9) to configure the serial port n.

BIOS Menu 9: COM n Configuration Menu

5.3.6.1.1 COM1 Configuration

→ Serial Port [Enabled]

Use the **Serial Port** option to enable or disable the serial port.

Disabled
 Disable the serial port

Enabled DEFAULT Enable the serial port

→ Change Settings [Auto]

Use the **Change Settings** option to change the serial port IO port address and interrupt address.

Auto DEFAULT The serial port IO port address and interrupt address

are automatically detected.

IO=3F8h; Serial Port I/O port address is 3F8h and the interrupt

IRQ=4 address is IRQ4

IO=3F8h; Serial Port I/O port address is 3F8h and the interrupt

IRQ=3, 4 address is IRQ3, 4

> IO=2F8h; Serial Port I/O port address is 2F8h and the interrupt

IRQ=3, 4 address is IRQ3, 4

IO=2C0h; Serial Port I/O port address is 2C0h and the interrupt

IRQ=3, 4 address is IRQ3, 4

ID=2C8h; Serial Port I/O port address is 2C8h and the interrupt

IRQ=3, 4 address is IRQ3, 4

5.3.6.1.2 COM2 Configuration

→ Serial Port [Enabled]

Use the **Serial Port** option to enable or disable the serial port.

Disabled Disable the serial port

Enabled DEFAULT Enable the serial port

→ Change Settings [Auto]

Use the **Change Settings** option to change the serial port IO port address and interrupt address.

→	Auto	DEFAULT	The serial port IO port address and interrupt address are automatically detected.
→	IO=2F8h; IRQ=3		Serial Port I/O port address is 2F8h and the interrupt address is IRQ3
→	IO=3F8h; IRQ=3, 4		Serial Port I/O port address is 3F8h and the interrupt address is IRQ3, 4
→	IO=2F8h; IRQ=3, 4		Serial Port I/O port address is 2F8h and the interrupt address is IRQ3, 4
→	IO=2C0h; IRQ=3, 4		Serial Port I/O port address is 2C0h and the interrupt address is IRQ3, 4
→	IO=2C8h; IRQ=3, 4		Serial Port I/O port address is 2C8h and the interrupt address is IRQ3, 4

5.3.6.1.3 COM3 Configuration

→ Serial Port [Enabled]

Use the **Serial Port** option to enable or disable the serial port.

→	Disabled		Disable the serial port
→	Enabled	DEFAULT	Enable the serial port

→ Change Settings [Auto]

Use the **Change Settings** option to change the serial port IO port address and interrupt address.

NOVA-HM551 5.25" SBC

Auto DEFAULT The serial port IO port address and interrupt address

are automatically detected.

IO=3E8h; Serial Port I/O port address is 3E8h and the interrupt

IRQ=11 address is IRQ11

IO=3E8h; Serial Port I/O port address is 3E8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

IO=2E8h; Serial Port I/O port address is 2E8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

IO=2D0h; Serial Port I/O port address is 2D0h and the interrupt

IRQ=10, 11 address is IRQ10, 11

→ IO=2D8h; Serial Port I/O port address is 2D8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

5.3.6.1.4 COM4 Configuration

→ Serial Port [Enabled]

Use the **Serial Port** option to enable or disable the serial port.

Disabled Disable the serial port

Enabled DEFAULT Enable the serial port

→ Change Settings [Auto]

Use the **Change Settings** option to change the serial port IO port address and interrupt address.

Auto DEFAULT The serial port IO port address and interrupt address

are automatically detected.

IO=2E8h; Serial Port I/O port address is 2E8h and the interrupt

IRQ=11 address is IRQ11

IO=3E8h; Serial Port I/O port address is 3E8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

NOVA-HM551 5.25" SBC

→	IO=2E8h:	Serial Port I/O port address is 2E8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

→ IO=2D0h; Serial Port I/O port address is 2D0h and the interrupt

IRQ=10, 11 address is IRQ10, 11

IO=2D8h; Serial Port I/O port address is 2D8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

5.3.6.1.5 COM5 Configuration

→ Serial Port [Enabled]

Use the Serial Port option to enable or disable the serial port.

Disabled Disable the serial port

Enabled DEFAULT Enable the serial port

→ Change Settings [Auto]

Use the **Change Settings** option to change the serial port IO port address and interrupt address.

→	Auto	DEFAULT	The serial port IO port address and interrupt address

are automatically detected.

→ IO=2E0h; Serial Port I/O port address is 2E0h and the interrupt

IRQ=11 address is IRQ11

> IO=2E0h; Serial Port I/O port address is 2E0h and the interrupt

IRQ=10, 11 address is IRQ10, 11

IO=2D0h; Serial Port I/O port address is 2D0h and the interrupt

IRQ=10, 11 address is IRQ10, 11

IO=2D8h; Serial Port I/O port address is 2D8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

> IO=2B0h; Serial Port I/O port address is 2B0h and the interrupt

IRQ=10, 11 address is IRQ10, 11

5.3.6.1.6 COM6 Configuration

→ Serial Port [Enabled]

Use the Serial Port option to enable or disable the serial port.

Disabled
 Disable the serial port

Enabled DEFAULT Enable the serial port

→ Change Settings [Auto]

Use the **Change Settings** option to change the serial port IO port address and interrupt address.

→ Auto DEFAULT The serial port IO port address and interrupt address

are automatically detected.

O=2D0h; Serial Port I/O port address is 2D0h and the interrupt

IRQ=11 address is IRQ11

> IO=2E0h; Serial Port I/O port address is 2E0h and the interrupt

IRQ=10, 11 address is IRQ10, 11

IO=2D0h; Serial Port I/O port address is 2D0h and the interrupt

IRQ=10, 11 address is IRQ10, 11

IO=2D8h; Serial Port I/O port address is 2D8h and the interrupt

IRQ=10, 11 address is IRQ10, 11

IO=2B0h; Serial Port I/O port address is 2B0h and the interrupt

IRQ=10, 11 address is IRQ10, 11

5.3.6.1.7 Parallel Port Configuration

→ Parallel Port [Enabled]

Use the **Parallel Port** option to enable or disable the parallel port.

→	Disabled		Disable the parallel port
→	Enabled	DFFAULT	Enable the parallel port

→ Change Settings [Auto]

Use the **Change Settings** option to change the parallel port IO port address and interrupt address.

→	Auto	DEFAULT	The parallel port IO port address and interrupt
			address are automatically detected.
→	IO=378h;		Parallel Port I/O port address is 378h and the
	IRQ=7		interrupt address is IRQ7
→	IO=278h;		Parallel Port I/O port address is 278h and the
	IRQ=7		interrupt address is IRQ7
→	IO=3BCh;		Parallel Port I/O port address is 3BCh and the
	IRQ=7		interrupt address is IRQ7
→	IO=378h		Parallel Port I/O port address is 378h
→	IO=278h		Parallel Port I/O port address is 278h
→	IO=3BCh		Parallel Port I/O port address is 3BCh

→ Device Mode [Standard and Bi-direction (SPP) mode]

Use the **Device Mode** option to select the mode the parallel port operates in.

- Standard and Bi-direction (SPP) mode
- EPP-1.9 and SPP mode
- ECP mode
- ECP and EPP 1.9 mode
- Printer mode
- EPP 1.7 and SPP mode
- ECP and EPP 1.7 mode

5.3.7 H/W Monitor

The H/W Monitor menu (**BIOS Menu 10**) shows the operating temperature, fan speeds and system voltages.

Aptio Setup Utility -	Copyright (C) 2010 Amer	ican Megatrends, Inc.
Advanced		
PC Health Status		
CPU Temperature	:+40 C	
SYS Temperature	:+28 C	
CPU FAN Speed	:4587 RPM	
SYS FAN Speed	:N/A	
VCC3V	:+3.344 V	
V_core	:+1.088 V	
+5V	:+5.129 V	←→ : Select Screen
+12V	:+11.176 V	↑↓: Select Item
+1.5V	:+1.600 V	EnterSelect
VSB3V	:+3.344 V	F1 General Help
VBAT	:+3.264 V	F2 Previous Values
CPU Smart Fan Control	[Auto Mode]	F3 Optimized Defaults
Temperature Bound 1	60	F4 Save
Temperature Bound 2	50	ESC Exit
Temperature Bound 3	40	
Temperature Bound 4	30	
Version 2.10.1208. Co	opyright (C) 2010 Americ	can Megatrends, Inc.

BIOS Menu 10: Hardware Health Configuration

→ CPU Smart Fan Control [Auto Mode]

Use the CPU Smart Fan Control option to configure the CPU fan.

→	Auto Mode	DEFAULT	The fan adjusts its speed using these settings by
			RPM:
			Temperature Bound 1
			Temperature Bound 2
			Temperature Bound 3
			Temperature Bound 4

→ Manual Mode

The fan spins at the speed set in:

Manual Duty Cycle Setting

(Min=0, Max=100)

NOTE:

Smart fan functions are supported only when using a 4-pin fan. When using a 3-pin fan, the functions are not supported.

→ First Boundary Temperature [60]

WARNING:

CPU failure can result if this value is set too high

When the fan is off, it will only start when the temperature exceeds this setting.

Minimum Value: 0°C

Maximum Value: 127°C

→ Second Boundary Temperature [50]

WARNING:

CPU failure can result if this value is set too high

When the fan is off, it will only start when the temperature exceeds this setting.

Minimum Value: 0°C

Maximum Value: 127°C

→ Third Boundary Temperature [40]

WARNING:

CPU failure can result if this value is set too high

When the fan is off, it will only start when the temperature exceeds this setting.

Minimum Value: 0°C

Maximum Value: 127°C

→ Fourth Boundary Temperature [30]

WARNING:

CPU failure can result if this value is set too high

When the fan is off, it will only start when the temperature exceeds this setting.

Minimum Value: 0°C

Maximum Value: 127°C

→ PC Health Status

The following system parameters and values are shown. The system parameters that are monitored are:

- System Temperatures:
 - O CPU Temperature
 - O System Temperature
- Fan Speeds:
 - O CPU Fan Speed
 - O System Fan Speed
- Voltages:
 - o VCC3V
 - O V_core

- O +5V
- O +12 V
- O +1.5V
- o VSB3V
- O VBAT

5.3.8 Serial Port Console Redirection

The **Serial Port Console Redirection** menu (**BIOS Menu 11**) allows the console redirection options to be configured. Console redirection allows users to maintain a system remotely by re-directing keyboard input and text output through the serial port.

BIOS Menu 11: Serial Port Console Redirection

→ Console Redirection

Use **Console Redirection** option to enable or disable the console redirection function.

NOVA-HM551 5.25" SBC

Disabled Disabled the console redirection function

Enabled Enabled the console redirection function

5.3.8.1 Console Redirection Settings

The **Console Redirection Settings** menu (**BIOS Menu 12**) allows the console redirection options to be configured. The option is active when Console Redirection option is enabled.

Aptio Setup Utility - Cop Advanced	yright (C) 2009 America	n Megatrends, Inc.
COMO Console Redirection Settings		Emulation: ANSI: Extended ASCII char set. VT100: ASCII char set.
Terminal Type Bits per second Data Bits Parity Stop Bits	[ANSI] [115200] 8 None 1	VT100+: Extends VT100 to support color, function keys, etc. VT-UTF8: Uses UTF8 encoding to map Unicode chars onto 1 or more bytes.
		<pre>←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save ESC Exit</pre>
Version 2.00.1201. Copyr	right (C) 2009 American	Megatrends, Inc.

BIOS Menu 12: Console Redirection Settings

→ Terminal Type [ANSI]

Use the **Terminal Type** option to specify the remote terminal type..

The target terminal type is VT100

→ VT100+ The target terminal type is VT100+

→ VT-UTF8 The target terminal type is VT-UTF8

ANSI DEFAULT The target terminal type is ANSI

→ Bits per second [115200]

Use the **Bits per second** option to specify the transmission speed of the serial port.

→	9600		The transmission speed is 9600
→	19200		The transmission speed is 19200
→	57600		The transmission speed is 57600
→	115200	DEFAULT	The transmission speed is 115200

5.4 Chipset

Use the **Chipset** menu (**BIOS Menu 13**) to access the Northbridge and Southbridge configuration menus

WARNING!

Setting the wrong values for the Chipset BIOS selections in the Chipset BIOS menu may cause the system to malfunction.

BIOS Menu 13: Chipset

5.4.1 North Bridge Configuration

Use the North Bridge Chipset Configuration menu (BIOS Menu 14) to configure the Northbridge chipset.

Aptio Setup Utility - Cop Chipset	yright (C) 2010 America	n Megatrends, Inc.
Memory Information CPU Type	Clarksfield	Select which graphics controller to use as the primary boot device.
Total Memory	2048 MB (DDR3 1333)	
Memory Slot0 Memory Slot2	2048 MB (DDR3 1333) 0 MB (DDR3 1333)	
CAS# Latency(tCL) RAS# Active Time(tRAS) Row Precharge Time(tRP) RAS# to CAS# Delay(tRCD) Write Recovery Time(tWR) Row Refresh Cycle Timea(tRFC) Write to Read Delay(tWTR) Active to Active Delay Read CAS# Precharge(tRTP)	8 24 9 9 10 74 5 4	<pre>←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save</pre>
Initate Graphic Adapter IGD Memory	[PEG/IGD] [64M]	ESC Exit
Version 2.10.1208. Copyr	right (C) 2010 American	Megatrends, Inc.

BIOS Menu 14:North Bridge Chipset Configuration

→ Initiate Graphics Adapter [PEG/IGD]

Use the **Initiate Graphics Adapter** option to select the graphics controller used as the primary boot device. Select either an integrated graphics controller (IGD) or a combination of PCI graphics controller, a PCI express (PEG) controller or an IGD. Configuration options are listed below:

- IGD
- PEG/IGD **DEFAULT**

→ IGD Memory [64 MB]

Use the **IGD Memory** option to specify the amount of system memory that can be used by the Internal graphics device.

→ Disable

32 MB 32 MB of memory used by internal graphics device

DEFAULT 64 MB of memory used by internal graphics device

5.4.2 South Bridge Configuration

Use the **South Bridge Configuration** menu (**BIOS Menu 15**) to configure the Southbridge chipset.

Aptio Setup Utility - Chipset	Copyright (C) 2010 Amer	ican Megatrends, Inc.
Auto Power Button Function Restore AC Power Loss	[Disabled] [Power On]	Restore AC Power Loss help.
Audio Configuration Azalia HD Audio Set Spread Spectrum	[Enabled] [Disabled]	<pre>←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save ESC Exit</pre>
Version 2.10.1208. Co	opyright (C) 2010 Americ	

BIOS Menu 15:South Bridge Chipset Configuration

→ Restore AC Power Loss [Power On]

Use the **Restore on AC Power Loss** BIOS option to specify what state the system returns to if there is a sudden loss of power to the system.

→ Power Off The system remains turned off

Power On DEFAULT The system turns on

→ Azalia HD Audio [Enabled]

Use the Azalia HD Audio option to enable or disable the High Definition Audio controller.

Disabled The onboard High Definition Audio controller is disabled

→ Enabled Default The onboard High Definition Audio controller automatically detected and enabled

→ Set Spread Spectrum [Disabled]

Use the **Set Spread Spectrum** option to reduce the EMI. Excess EMI is generated when the system clock generator pulses have extreme values. Spreading the pulse spectrum modulates changes in the extreme values from spikes to flat curves, thus reducing the EMI. This benefit may in some cases be outweighed by problems with timing-critical devices, such as a clock-sensitive SCSI device.

Disabled DEFAULT EMI not reduced

Enabled EMI reduced

5.4.3 Intel IGD SWSCI OpRegion

Use the **Intel IGD SWSCI OpRegion** menu to configure the video device connected to the system.

BIOS Menu 16: Intel IGD SWSCI OpRegion

→ DVMT/FIXED Memory [256 MB]

Use the **DVMT/FIXED Memory** option to specify the maximum amount of memory that can be allocated as graphics memory. Configuration options are listed below.

- 128 MB
- 256 MB Default
- Maximum

→ Active LFP [Enable LVDS]

Use the **Active LFP** option to enable the LVDS connector. Configuration options are listed below.

- Disable LVDS
- Enable LVDS **DEFAULT**

→ LCD Panel Type [Select by Panel ID]

Use the **LCD Panel Type** option to select the type of flat panel connected to the system. Configuration options are listed below.

- Select by Panel ID DEFAULT
- 800x600 18bit
- 1024x768 18bit
- 1024x768 24bit
- 1280x800 18bit
- 1280x1024 48bit
- 1366x768 18bit
- 1400x1050 48bit
- 1440x900 48bit
- 1600x900 48bit
- 1600x1200 48bit
- 1680x1050 48bit
- 1920x1080 48bit
- 1920x1200 48bit
- 2048x1536 48bit

→ Panel ID Resolution

Displays the panel resolution detected by the BIOS.

5.5 Boot

Use the **Boot** menu (**BIOS Menu 17**) to configure system boot options.

Aptio Setup Utility - Co Main Advanced Chipset		_
Boot Configuration Quiet Boot Bootup NumLock State Realtek 8111E PXE OpROM	[Enabled] [On] [Disabled]	Enables/Disables Quiet Boot option
Boot Option Priorities		<pre>←→: Select Screen ↑ ↓: Select Item EnterSelect F1 General Help F2 Previous Values F3 Optimized Defaults F4 Save ESC Exit</pre>
Version 2.10.1208. Cop	yright (C) 2010 America	n Megatrends, Inc.

BIOS Menu 17: Boot

→ Quiet Boot [Enabled]

Use the **Quiet Boot** BIOS option to select the screen display when the system boots.

7	Disabled		Normal POST messages displayed
→	Enabled	DEFAULT	OEM Logo displayed instead of POST messages

→ Bootup NumLock [On]

Use the **Bootup NumLock** BIOS option to specify if the number lock setting must be modified during boot up.

Does not enable the keyboard Number Lock automatically. To use the 10-keys on the keyboard, press the Number Lock key located on the upper left-hand corner of the 10-key pad. The Number Lock LED on the keyboard lights up when the Number Lock is engaged.

→ On DEFAULT

Allows the Number Lock on the keyboard to be enabled automatically when the computer system boots up. This allows the immediate use of the 10-key numeric keypad located on the right side of the keyboard. To confirm this, the Number Lock LED light on the keyboard is lit.

→ Realtek 8111E PXE OpROM [Disabled]

Use the **Realtek 8111E PXE OpROM** option to enable the Realtek 8111E PCIe GbE controller to boot the system.

→ Disabled DEFAULT Cannot be booted from a remote system through the

Realtek 8111E PCIe GbE controller

Enabled Can be booted from a remote system through the

Realtek 8111E PCIe GbE controller

5.6 Security

Use the **Security** menu (**BIOS Menu 18**) to set system and user passwords.

BIOS Menu 18: Security

→ Administrator Password

Use the **Administrator Password** to set or change a administrator password.

→ User Password

Use the **User Password** to set or change a user password.

5.7 Exit

Use the **Exit** menu (**BIOS Menu 19**) to load default BIOS values, optimal failsafe values and to save configuration changes.

BIOS Menu 19:Exit

→ Save Changes and Reset

Use the **Save Changes and Reset** option to save the changes made to the BIOS options and to exit the BIOS configuration setup program.

→ Discard Changes and Reset

Use the **Discard Changes and Reset** option to exit the system without saving the changes made to the BIOS configuration setup program.

→ Restore Defaults

Use the **Restore Defaults** option to load the optimal default values for each of the parameters on the Setup menus. **F3 key can be used for this operation.**

→ Save as User Defaults

Use the Save as User Defaults option to save the changes done so far as user defaults.

→ Restore User Defaults

Use the **Restore User Defaults** option to restore the user defaults to all the setup options.

BIOS Menu Options

BIOS Information	76
Memory Information	76
System Date [xx/xx/xx]	77
System Time [xx:xx:xx]	77
ACPI Sleep State [S1 (CPU Stop Clock)]	78
TPM Support [Enable]	79
TPM State [Disabled]	79
SATA Mode [IDE Mode]	81
Serial-ATA Controller 0/1 [Compatible]	81
USB Devices	82
All USB Devices [Enabled]	83
Legacy USB Support [Enabled]	83
Serial Port [Enabled]	85
Change Settings [Auto]	85
Serial Port [Enabled]	85
Change Settings [Auto]	86
Serial Port [Enabled]	86
Change Settings [Auto]	86
Serial Port [Enabled]	87
Change Settings [Auto]	87
Serial Port [Enabled]	88
Change Settings [Auto]	88
Serial Port [Enabled]	89
Change Settings [Auto]	89
Parallel Port [Enabled]	89
Change Settings [Auto]	90
Device Mode [Standard and Bi-direction (SPP) mode]	90
CPU Smart Fan Control [Auto Mode]	91
First Boundary Temperature [60]	92
Second Boundary Temperature [50]	92
Third Boundary Temperature [40]	93
Fourth Boundary Temperature [30]	93
PC Health Status	93
Console Redirection	94

NOVA-HM551 5.25" SBC

Terminal Type [ANSI]	95
Bits per second [115200]	96
Initiate Graphics Adapter [PEG/IGD]	97
IGD Memory [64 MB]	98
Restore AC Power Loss [Power On]	98
Azalia HD Audio [Enabled]	99
Set Spread Spectrum [Disabled]	99
DVMT/FIXED Memory [256 MB]	100
Active LFP [Enable LVDS]	100
LCD Panel Type [Select by Panel ID]	101
Panel ID Resolution	101
Quiet Boot [Enabled]	102
Bootup NumLock [On]	102
Realtek 8111E PXE OpROM [Disabled]	103
Administrator Password	103
User Password	104
Save Changes and Reset	104
Discard Changes and Reset	104
Restore Defaults	104
Save as User Defaults	105
Restore User Defaults	105

Appendix

B

One Key Recovery

B.1 One Key Recovery Introduction

The IEI one key recovery is an easy-to-use front end for the Norton Ghost system backup and recovery tool. The one key recovery provides quick and easy shortcuts for creating a backup and reverting to that backup or for reverting to the factory default settings.

The IEI One Key Recovery tool menu is shown below.

Figure B-1: IEI One Key Recovery Tool Menu

Prior to using the IEI One Key Recovery tool (as shown in **Figure B-1**) to backup or restore <u>Windows</u> system, five setup procedures are required.

- 1. Hardware and BIOS setup (see **Section B.2.1**)
- 2. Create partitions (see Section B.2.2)
- 3. Install operating system, drivers and system applications (see **Section B.2.3**)
- 4. Build-up recovery partition (see **Section B.2.4**)
- 5. Create factory default image (see **Section B.2.5**)

After completing the five initial setup procedures as described above, users can access the recovery tool by pressing <F3> while booting up the system. The detailed information of each function is described in **Section B.4**.

NOTE:

The initial setup procedures for Linux system are described in **Section B.3**.

B.1.1 System Requirement

The recovery CD can only be used with IEI products. The software will fail to run and a warning message will appear when used on non-IEI hardware.

To create the system backup, the main storage device must be split into two partitions (three partitions for Linux). The first partition will be for the operating system, while the second partition will be invisible to the operating system and contain the backup made by the one key recovery software.

The partition created for recovery images must be big enough to contain both the factory default image and the user backup image. The size must be calculated before creating the partitions. Please take the following table as a reference when calculating the size of the partition.

	os	OS Image after Ghost	Compression Ratio
Windows® 7	7 GB	5 GB	70%
Windows® XPE	776 MB	560 MB	70%
Windows® CE 6.0	36 MB	28 MB	77%

Specialized tools are required to change the partition size if the operating system is already installed.

B.1.2 Supported Operating System

The recovery CD is compatible with both Microsoft Windows and Linux operating system (OS). The supported OS versions are listed below.

- Microsoft Windows
 - O Windows XP (Service Pack 2 or 3 required)
 - O Windows Vista
 - O Windows 7
 - O Windows CE 5.0
 - O Windows CE 6.0
 - O Windows XP Embedded
- Linux
 - O Fedora Core 12 (Constantine)
 - Fedora Core 11 (Leonidas)
 - O Fedora Core 10 (Cambridge)
 - O Fedora Core 8 (Werewolf)
 - O Fedora Core 7 (Moonshine)
 - O RedHat RHEL-5.4
 - O RedHat 9 (Ghirke)
 - O Ubuntu 8.10 (Intrepid)
 - O Ubuntu 7.10 (Gutsy)
 - O Ubuntu 6.10 (Edgy)
 - O Debian 5.0 (Lenny)
 - O Debian 4.0 (Etch)
 - O SuSe 11.2
 - O SuSe 10.3

Installing unsupported OS versions may cause the recovery tool to fail.

B.2 Setup Procedure for Windows

Prior to using the recovery tool to backup or restore Windows system, a few setup procedures are required.

- Step 1: Hardware and BIOS setup (see Section B.2.1)
- Step 2: Create partitions (see Section B.2.2)
- Step 3: Install operating system, drivers and system applications (see Section B.2.3)
- **Step 4:** Build-up recovery partition (see **Section B.2.4**)
- **Step 5:** Create factory default image (see **Section B.2.5**)

The detailed descriptions are described in the following sections.

NOTE:

The setup procedures described below are for Microsoft Windows operating system users. For Linux system, most setup procedures are the same with Microsoft Windows except for several steps which is described in **Section B.3**.

B.2.1 Hardware and BIOS Setup

- **Step 1:** Make sure the system is powered off and unplugged.
- **Step 2:** Install a hard drive or SSD in the system. An unformatted and unpartitioned disk is recommended.
- **Step 3:** Connect an optical disk drive to the system and insert the recovery CD.

- Step 4: Turn on the system.
- Step 5: Press the <DELETE> key as soon as the system is turned on to enter the BIOS.
- Step 6: Select the connected optical disk drive as the 1st boot device. (Boot → Boot Device Priority → 1st Boot Device).
- **Step 7:** Save changes and restart the computer. Continue to the next section for instructions on partitioning the internal storage.

B.2.2 Create Partitions

To create the system backup, the main storage device must be split into two partitions (three partitions for Linux). The first partition will be for the operating system, while the second partition will be invisible to the operating system and contain the backup made by the one key recovery software.

- **Step 1:** Put the recovery CD in the optical drive of the system.
- Step 2: Boot the system from recovery CD. When prompted, press any key to boot from the recovery CD. It will take a while to launch the recovery tool. Please be patient!

Figure B-2: Launching the Recovery Tool

Step 3: The recovery tool setup menu is shown as below.

```
1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.
```

Figure B-3: Recovery Tool Setup Menu

Step 4: Press <**5**> then <Enter>.

```
1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.5
```

Figure B-4: Command Mode

Step 5: The command prompt window appears. Type the following commands (marked in red) to create two partitions. One is for the OS installation; the other is for saving recovery files and images which will be an invisible partition.

(Press <Enter> after entering each line below)

system32>diskpart

DISKPART>list vol

DISKPART>sel disk 0

DISKPART>create part pri size= ____

DISKPART>assign letter=N

DISKPART>create part pri size= ____

DISKPART>assign letter=F

DISKPART>exit

system32>format N: /fs:ntfs /q /y

system32>format F: /fs:ntfs /q /v:Recovery /y

system32>exit

Figure B-5: Partition Creation Commands

Use the following commands to check if the partitions were created successfully.

Step 6: Press any key to exit the recovery tool and automatically reboot the system. Please continue to the following procedure: Build-up Recovery Partition.

B.2.3 Install Operating System, Drivers and Applications

Install the operating system onto the unlabelled partition. The partition labeled as "Recovery" is for use by the system recovery tool and should not be used for installing the operating system or any applications.

NOTE:

The operating system installation program may offer to reformat the chosen partition. DO NOT format the partition again. The partition has already been formatted and is ready for installing the new operating system.

To install the operating system, insert the operating system installation CD into the optical drive. Restart the computer and follow the installation instructions.

B.2.4 Build-up Recovery Partition

- Step 1: Put the recover CD in the optical drive.
- **Step 2:** Start the system.
- Step 3: Boot the system from recovery CD. When prompted, press any key to boot from the recovery CD. It will take a while to launch the recovery tool. Please be patient!

Figure B-6: Launching the Recovery Tool

Step 4: When the recovery tool setup menu appears, press <2> then <Enter>.

```
2. X:\I386\system32\cmd.exe

1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.2
```

Figure B-7: System Configuration for Windows

Step 5: The Symantec Ghost window appears and starts configuring the system to build-up a recovery partition. In this process, the partition which is created for

recovery files in **Section B.2.2** is hidden and the recovery tool is saved in this partition.

Figure B-8: Build-up Recovery Partition

Step 6: After completing the system configuration, press any key in the following window to reboot the system.

```
1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.2
Press any key to continue . . . _
```

Figure B-9: Press any key to continue

Step 7: Eject the recovery CD.

B.2.5 Create Factory Default Image

Before creating the factory default image, please configure the system to a factory default environment, including driver and application installations.

To create a factory default image, please follow the steps below.

Step 1: Turn on the system. When the following screen displays (Figure B-10), press the <F3> key to access the recovery tool. The message will display for 10 seconds, please press F3 before the system boots into the operating system.

Figure B-10: Press F3 to Boot into Recovery Mode

Step 2: The recovery tool menu appears. Type <4> and press <Enter>. (Figure B-11)

```
X:\Windows\System32\cmd.exe

1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:4
```

Figure B-11: Recovery Tool Menu

Step 3: The About Symantec Ghost window appears. Click **OK** button to continue.

Figure B-12: About Symantec Ghost Window

Step 4: Use mouse to navigate to the option shown below (Figure B-13).

Figure B-13: Symantec Ghost Path

Step 5: Select the local source drive (Drive 1) as shown in Figure B-14. Then click OK.

Figure B-14: Select a Local Source Drive

Step 6: Select a source partition (Part 1) from basic drive as shown in **Figure B-15**.

Then click OK.

Figure B-15: Select a Source Partition from Basic Drive

Step 7: Select 1.2: [Recovery] NTFS drive and enter a file name called iei

(Figure B-16). Click Save. The factory default image will then be saved in the selected recovery drive and named IEI.GHO.

WARNING:

The file name of the factory default image must be iei.GHO.

Figure B-16: File Name to Copy Image to

Step 8: When the Compress Image screen in Figure B-17 prompts, click High to make the image file smaller.

Figure B-17: Compress Image

Step 9: The Proceed with partition image creation window appears, click **Yes** to continue.

Figure B-18: Image Creation Confirmation

Step 10: The Symantec Ghost starts to create the factory default image (**Figure B-19**).

Figure B-19: Image Creation Process

Step 11: When the image creation completes, a screen prompts as shown in Figure B-20.

Click Continue and close the Ghost window to exit the program.

Figure B-20: Image Creation Complete

Step 12: The recovery tool main menu window is shown as below. Press any key to reboot the system.

```
X:\Windows\System32\cmd.exe

1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:4

Done!
Press any key to continue . . . _
```

Figure B-21: Press Any Key to Continue

B.3 Setup Procedure for Linux

The initial setup procedures for Linux system are mostly the same with the procedure for Microsoft Windows. Please follow the steps below to setup recovery tool for Linux OS.

- Step 1: Hardware and BIOS setup. Refer to Section B.2.1.
- Step 2: Install Linux operating system. Make sure to install GRUB (v0.97 or earlier)

 MBR type and Ext3 partition type. Leave enough space on the hard drive to

 create the recover partition later.

NOTE:

If the Linux OS is not installed with GRUB (v0.97 or earlier) and Ext3, the Symantec Ghost may not function properly.

While installing Linux OS, please create two partitions:

- Partition 1: /
- Partition 2: SWAP

Please reserve enough space for partition 3 for saving recovery images.

Figure B-22: Partitions for Linux

Step 3: Create a recovery partition. Insert the recovery CD into the optical disk drive.
Follow Step 1 ~ Step 3 described in Section B.2.2. Then type the following commands (marked in red) to create a partition for recovery images.

system32>diskpart

DISKPART>list vol

DISKPART>sel disk 0

DISKPART>create part pri size= ___

DISKPART>assign letter=N

DISKPART>exit

system32>format N: /fs:ntfs /q /v:Recovery /y

system32>exit

Step 4: Build-up recovery partition. Press any key to boot from the recovery CD. It will take a while to launch the recovery tool. Please be patient. When the recovery tool setup menu appears, type <3> and press <Enter> (Figure B-23). The Symantec Ghost window appears and starts configuring the system to build-up a recovery partition. After completing the system configuration, press any key to reboot the system. Eject the recovery CD.

```
1.Ghost Execution
2.System Configuration For Windows
3.System Configuration For Linux
4.Exit
5.CMD
Type the number to print text.3
```

Figure B-23: System Configuration for Linux

Step 5: Access the recovery tool main menu by modifying the "menu.lst". To first access the recovery tool main menu, the menu.lst must be modified. In Linux system, enter Administrator (root). When prompt appears, type:

cd /boot/grub

vi menu.lst

```
Fedora release 9 (Sulphur)
Kernel 2.6.25-14.fc9.i686 on an i686 (tty2)
localhost login: root
Password:
[root@localhost ~]# cd /boot/grub/
[root@localhost grub]# vi menu.lst _
```

Figure B-24: Access menu.lst in Linux (Text Mode)

Step 6: Modify the menu.lst as shown below.

Type command:

```
title Recovery Partition
root (hd0,2)
makeactive
chainloader +1
```

Step 7: The recovery tool menu appears. (**Figure B-25**)

```
1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:
```

Figure B-25: Recovery Tool Menu

Step 8: Create a factory default image. Follow Step 2 ~ Step 12 described in SectionB.2.5 to create a factory default image.

B.4 Recovery Tool Functions

After completing the initial setup procedures as described above, users can access the recovery tool by pressing <**F3**> while booting up the system. The main menu of the recovery tool is shown below.


```
1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:
```

Figure B-26: Recovery Tool Main Menu

The recovery tool has several functions including:

- 6. **Factory Restore**: Restore the factory default image (iei.GHO) created in **Section B.2.5**.
- 7. **Backup system**: Create a system backup image (iei_user.GHO) which will be saved in the hidden partition.
- 8. Restore your last backup: Restore the last system backup image
- 9. **Manual**: Enter the Symantec Ghost window to configure manually.
- 10. Quit: Exit the recovery tool and restart the system.

WARNING:

Please do not turn off the system power during the process of system recovery or backup.

WARNING:

All data in the system will be deleted during the system recovery. Please backup the system files before restoring the system (either Factory Restore or Restore Backup).

B.4.1 Factory Restore

To restore the factory default image, please follow the steps below.

- **Step 1:** Type <1> and press <**Enter**> in the main menu.
- Step 2: The Symantec Ghost window appears and starts to restore the factory default. A factory default image called **iei.GHO** is created in the hidden Recovery partition.

Figure B-27: Restore Factory Default

Step 3: The screen is shown as in **Figure B-28** when completed. Press any key to reboot the system.

```
X:\Windows\System32\cmd.exe

1. Factory Restore

2. Backup system

3. Restore your last backup.

4. Manual

5. Quit
Please type the number to select and then press Enter:1

Recovery complete!

Press any key to continue . . . _
```

Figure B-28: Recovery Complete Window

B.4.2 Backup System

To backup the system, please follow the steps below.

- **Step 1:** Type <**2**> and press <**Enter**> in the main menu.
- Step 2: The Symantec Ghost window appears and starts to backup the system. A backup image called iei_user.GHO is created in the hidden Recovery partition.

Figure B-29: Backup System

Step 3: The screen is shown as in Figure B-30 when system backup is completed.

Press any key to reboot the system.

```
X:\Windows\System32\cmd.exe

1. Factory Restore
2. Backup system
3. Restore your last backup.
4. Manual
5. Quit
Please type the number to select and then press Enter:2

System backup complete!
Press any key to continue . . .
```

Figure B-30: System Backup Complete Window

B.4.3 Restore Your Last Backup

To restore the last system backup, please follow the steps below.

- **Step 1:** Type <**3**> and press <**Enter**> in the main menu.
- Step 2: The Symantec Ghost window appears and starts to restore the last backup image (iei_user.GHO).

Figure B-31: Restore Backup

Step 3: The screen is shown as in Figure B-32 when backup recovery is completed.

Press any key to reboot the system.

```
X:\Windows\System32\cmd.exe

1. Factory Restore

2. Backup system

3. Restore your last backup.

4. Manual

5. Quit

Please type the number to select and then press Enter:3

Recovery complete!

Press any key to continue . . . _
```

Figure B-32: Restore System Backup Complete Window

B.4.4 Manual

To restore the last system backup, please follow the steps below.

- **Step 1:** Type **<4>** and press **<Enter>** in the main menu.
- **Step 2:** The Symantec Ghost window appears. Use the Ghost program to backup or recover the system manually.

Figure B-33: Symantec Ghost Window

Step 3: When backup or recovery is completed, press any key to reboot the system.

B.5 Other Information

B.5.1 Using AHCI Mode or ALi M5283 / VIA VT6421A Controller

When the system uses AHCI mode or some specific SATA controllers such as ALi M5283 or VIA VT6421A, the SATA RAID/AHCI driver must be installed before using one key recovery. Please follow the steps below to install the SATA RAID/AHCI driver.

- Step 1: Copy the SATA RAID/AHCI driver to a floppy disk and insert the floppy disk into a USB floppy disk drive. The SATA RAID/AHCI driver must be especially designed for the on-board SATA controller.
- Step 2: Connect the USB floppy disk drive to the system.
- Step 3: Insert the One Key Recovery CD into the system and boot the system from the CD.
- **Step 4:** When launching the recovery tool, press <**F6**>.

Step 5: When the following window appears, press **<S**> to select "Specify Additional Device".

Step 6: In the following window, select a SATA controller mode used in the system. Then press **<Enter>**. The user can now start using the SATA HDD.

Step 7: After pressing <Enter>, the system will get into the recovery tool setup menu.
Continue to follow the setup procedure from Step 4 in Section B.2.2 Create
Partitions to finish the whole setup process.

B.5.2 System Memory Requirement

To be able to access the recovery tool by pressing <F3> while booting up the system, please make sure to have enough system memory. The minimum memory requirement is listed below.

Using Award BIOS: 128 MB system memory

Using AMI BIOS: 512 MB system memory.

Appendix

C

Terminology

AC '97 Audio Codec 97 (AC'97) refers to a codec standard developed by

Intel® in 1997.

ACPI Advanced Configuration and Power Interface (ACPI) is an OS-directed

configuration, power management, and thermal management interface.

AHCI Advanced Host Controller Interface (AHCI) is a SATA Host controller

register-level interface.

ATA The Advanced Technology Attachment (ATA) interface connects

storage devices including hard disks and CD-ROM drives to a

computer.

APM The Advanced Power Management (APM) application program

interface (API) enables the inclusion of power management in the

BIOS.

ARMD An ATAPI Removable Media Device (ARMD) is any ATAPI device that

supports removable media, besides CD and DVD drives.

ASKIR Amplitude Shift Keyed Infrared (ASKIR) is a form of modulation that

represents a digital signal by varying the amplitude ("volume") of the

signal. A low amplitude signal represents a binary 0, while a high

amplitude signal represents a binary 1.

BIOS The Basic Input/Output System (BIOS) is firmware that is first run when

the computer is turned on and can be configured by the end user

CODEC The Compressor-Decompressor (CODEC) encodes and decodes

digital audio data on the system.

CMOS Complimentary metal-oxide-conductor is a type of integrated circuit

used in chips like static RAM and microprocessors.

COM COM is used to refer to serial ports. Serial ports offer serial

communication to expansion devices. The serial port on a personal

computer is usually a male DE-9 connector.

DAC The Digital-to-Analog Converter (DAC) converts digital signals to

analog signals.

DDR Double Data Rate refers to a data bus transferring data on both the

rising and falling edges of the clock signal.

DMA Direct Memory Access (DMA) enables some peripheral devices to

bypass the system processor and communicate directly with the

system memory.

DIMM Dual Inline Memory Modules are a type of RAM that offer a 64-bit data

bus and have separate electrical contacts on each side of the module.

EHCI The Enhanced Host Controller Interface (EHCI) specification is a

register-level interface description for USB 2.0 Host Controllers.

GbE Gigabit Ethernet (GbE) is an Ethernet version that transfers data at 1.0

Gbps and complies with the IEEE 802.3-2005 standard.

GPIO General purpose input

IrDA Infrared Data Association (IrDA) specify infrared data transmission

protocols used to enable electronic devices to wirelessly communicate

with each other.

L1 Cache The Level 1 Cache (L1 Cache) is a small memory cache built into the

system processor.

L2 Cache The Level 2 Cache (L2 Cache) is an external processor memory cache.

LVDS Low-voltage differential signaling (LVDS) is a dual-wire, high-speed

differential electrical signaling system commonly used to connect LCD

displays to a computer.

MAC The Media Access Control (MAC) protocol enables several terminals or

network nodes to communicate in a LAN, or other multipoint networks.

PCIe PCI Express (PCIe) is a communications bus that uses dual data line
--

for full-duplex (two-way) serial (point-to-point) communications between the SBC components and/or expansion cards and the SBC chipsets.

Each line has a 2.5 Gbps data transmission rate and a 250 MBps

sustained data transfer rate.

POST The Power-on Self Test (POST) is the pre-boot actions the system

performs when the system is turned-on.

QVGA Quarter Video Graphics Array (QVGA) refers to a display with a

resolution of 320 x 240 pixels.

RAM Random Access Memory (RAM) is a form of storage used in computer.

RAM is volatile memory, so it loses its data when power is lost. RAM has very fast data transfer rates compared to other storage like hard

drives.

SATA Serial ATA (SATA) is a serial communications bus designed for data

transfers between storage devices and the computer chipsets. The

SATA bus has transfer speeds up to 1.5 Gbps and the SATA 3Gb/s bus

has data transfer speeds of up to 3.0 Gbps.

S.M.A.R.T Self Monitoring Analysis and Reporting Technology (S.M.A.R.T) refers

to automatic status checking technology implemented on hard disk

drives.

UART Universal Asynchronous Receiver-transmitter (UART) is responsible for

asynchronous communications on the system and manages the

system's serial communication (COM) ports.

UHCI The Universal Host Controller Interface (UHCI) specification is a

register-level interface description for USB 1.1 Host Controllers.

USB The Universal Serial Bus (USB) is an external bus standard for

interfacing devices. USB 1.1 supports 12Mbps data transfer rates, while

USB 2.0 supports 480Mbps data transfer rates.

VGA The Video Graphics Array (VGA) is a graphics display system

developed by IBM.

Appendix

D

Watchdog Timer

The following discussion applies to DOS environment. IEI support is contacted or the IEI website visited for specific drivers for more sophisticated operating systems, e.g., Windows and Linux.

The Watchdog Timer is provided to ensure that standalone systems can always recover from catastrophic conditions that cause the CPU to crash. This condition may have occurred by external EMI or a software bug. When the CPU stops working correctly, Watchdog Timer either performs a hardware reset (cold boot) or a Non-Maskable Interrupt (NMI) to bring the system back to a known state.

A BIOS function call (INT 15H) is used to control the Watchdog Timer:

INT 15H:

AH – 6FH Sub-function:						
AL – 2:	Sets the Watchdog Timer's period.					
BL:	Time-out value (Its unit-second is dependent on the item "Watchdog					
	Timer unit select" in CMOS setup).					

Table D-1: AH-6FH Sub-function

Call sub-function 2 to set the time-out period of Watchdog Timer first. If the time-out value is not zero, the Watchdog Timer starts counting down. While the timer value reaches zero, the system resets. To ensure that this reset condition does not occur, calling sub-function 2 must periodically refresh the Watchdog Timer. However, the Watchdog timer is disabled if the time-out value is set to zero.

A tolerance of at least 10% must be maintained to avoid unknown routines within the operating system (DOS), such as disk I/O that can be very time-consuming.

When exiting a program it is necessary to disable the Watchdog Timer, otherwise the system resets.

Example program:

```
; INITIAL TIMER PERIOD COUNTER
W_LOOP:
        MOV
                 AX, 6F02H
                                ;setting the time-out value
        MOV
                 BL, 30H
                                     ;time-out value is 48 seconds
        INT
                  15H
; ADD THE APPLICATION PROGRAM HERE
        CMP
                  EXIT_AP, 1
                                     ;is the application over?
        JNE
                  W_LOOP
                                ;No, restart the application
        MOV
                AX, 6F02H
                                ;disable Watchdog Timer
        MOV
                BL, 0
        INT
                 15H
; EXIT ;
```


Appendix

Ε

Hazardous Materials Disclosure

E.1 Hazardous Material Disclosure Table for IPB Products Certified as RoHS Compliant Under 2002/95/EC Without Mercury

The details provided in this appendix are to ensure that the product is compliant with the Peoples Republic of China (China) RoHS standards. The table below acknowledges the presences of small quantities of certain materials in the product, and is applicable to China RoHS only.

A label will be placed on each product to indicate the estimated "Environmentally Friendly Use Period" (EFUP). This is an estimate of the number of years that these substances would "not leak out or undergo abrupt change." This product may contain replaceable sub-assemblies/components which have a shorter EFUP such as batteries and lamps. These components will be separately marked.

Please refer to the table on the next page.

Part Name	Toxic or Hazardous Substances and Elements							
	Lead	Mercury	Cadmium	Hexavalent	Polybrominated	Polybrominated		
	(Pb)	(Hg)	(Cd)	Chromium	Biphenyls	Diphenyl Ethers		
				(CR(VI))	(PBB)	(PBDE)		
Housing	x	О	О	О	О	Х		
Display	Х	О	О	О	О	Х		
Printed Circuit	Х	0	О	0	0	Х		
Board								
Metal	Х	О	О	О	0	0		
Fasteners								
Cable	Х	О	О	О	О	Х		
Assembly								
Fan Assembly	Х	О	О	О	О	X		
Power Supply	Х	О	0	0	0	Х		
Assemblies								
Battery	0	0	О	О	0	0		

- O: This toxic or hazardous substance is contained in all of the homogeneous materials for the part is below the limit requirement in SJ/T11363-2006
- X: This toxic or hazardous substance is contained in at least one of the homogeneous materials for this part is above the limit requirement in SJ/T11363-2006

此附件旨在确保本产品符合中国 RoHS 标准。以下表格标示此产品中某有毒物质的含量符合中国 RoHS 标准规定的限量要求。

本产品上会附有"环境友好使用期限"的标签,此期限是估算这些物质"不会有泄漏或突变"的年限。本产品可能包含有较短的环境友好使用期限的可替换元件,像是电池或灯管,这些元件将会单独标示出来。

部件名称	有毒有害物质或元素						
	铅	汞	镉	六价铬	多溴联苯	多溴二苯醚	
	(Pb)	(Hg)	(Cd)	(CR(VI))	(PBB)	(PBDE)	
売 体	Х	0	0	0	0	X	
显示	Х	0	0	0	0	Х	
印刷电路板	Х	0	0	0	0	Х	
金属螺帽	Х	0	0	0	0	0	
电缆组装	Х	0	0	0	0	Х	
风扇组装	Х	0	0	0	0	Х	
电力供应组装	Х	0	0	О	0	Х	
电池	0	0	0	0	0	0	

O: 表示该有毒有害物质在该部件所有物质材料中的含量均在 SJ/T11363-2006 标准规定的限量要求以下。

X: 表示该有毒有害物质至少在该部件的某一均质材料中的含量超出 SJ/T11363-2006 标准规定的限量要求。