ENGENHARIA DE SOFTWARE 2 Gerenciamento de Sistemas

Profa Cristiane Palomar Mercado

Por que gerenciar software?

Orçamentos organizacionais

Cronogramas apertados

Metas mais importantes para projetos de software

Fornecer o software ao cliente no prazo estabelecido

Manter os custos gerais dentro do orçamento Entregar software que atenda às expectativas do cliente Manter uma equipe de desenvolvimento que trabalhe bem e feliz.

Atividades de gerenciamento

Planejamento de projeto:

- Elaboração de estimativa
- Cronograma e atribuição de tarefas para as pessoas.
- Supervisão do trabalho para garantir que seja realizado conforme os padrões exigidos
- Acompanhamento do progresso do projeto (prazo x orçamento)

Geração de relatórios:

 Comunicar em vários níveis, desde informações técnicas detalhadas até resumos de gerenciamento.

Atividades de gerenciamento

- Gerenciamento de Riscos:
 - Avaliar e controlar riscos e agir quando surgem problemas.
- Gestão de pessoas:
 - Escolher pessoas e gerenciá-las de modo que levem a um desempenho eficaz da equipe.

Habilidades que dependem de experiência

Elaboração de Propostas:

- Descrever os objetivos do projeto e como será realizado:
 - Estimativas de custo
 - Cronograma

Gerenciamento de riscos

Gerenciamento de riscos

Riscos de projeto: afetam o cronograma ou os recursos de projeto. Exemplo: perda de um projetista experiente: atraso no cronograma.

Riscos de produto: afetam a qualidade ou o desempenho do software. Exemplo: falha de um componente comprado para o desempenho esperado, podendo afetar o desempenho geral do sistema de forma mais lenta do que o esperado.

Riscos de negócio: afetam a organização que desenvolve ou adquire o software. Exemplo: um concorrente que introduz um novo produto é um risco empresarial.

Risco	Afeta	Descrição
Rotatividade de pessoal	Projeto	Pessoal experiente deixará o projeto antes de ser concluído.
Mudança de gerência	Projeto	Haverá uma mudança na gerência da organização com prioridades diferentes.
Indisponibilidade de hardware	Projeto	Hardware que é essencial para o projeto não será entregue no prazo.
Mudança de requisitos	Projeto e produto	Haverá um número maior de alterações nos requisitos do que o previsto.
Atrasos de especificação	Projeto e produto	Especificações de interfaces essenciais não estão disponíveis no prazo.
Tamanho subestimado	Projeto e produto	O tamanho do sistema foi subestimado.
Baixo desempenho de ferramenta CASE	Produto	Ferramentas CASE, que apoiam o projeto, não executam como o previsto.
Mudança de tecnologia	Negócio	A tecnologia sobre a qual o sistema foi construido é substituída por uma nova tecnologia.
Concorrência de produto	Negócio	Um produto concorrente é comercializado antes que o sistema seja concluído.

Processo de Gerenciamento de Riscos

Gerenciamento de Pessoas

Gerenciamento de Pessoas

Pessoas são os maiores ativos da empresa.

 Gerentes de projeto de software devem entender as questões técnicas que influenciam o trabalho de desenvolvimento de software.

Gerenciamento de Pessoas

Consistência. Tratar as pessoas da mesma forma. Equipe não devem sentir que sua contribuição para a organização é subvalorizada.

Respeitar as diferentes habilidades dando oportunidades para que as pessoas contribuam no projeto

Inclusão: desenvolver um ambiente de trabalho em que todas as visões são consideradas, mesmo aquelas dos membros mais novos da equipe.

Ser honesto sobre o que está indo bem e o que vai mal na equipe.

Motivação de Pessoas

Hierarquia de Necessidades Humanas

Organizar alguns encontros presenciais no início do projeto para que as pessoas possam interagir diretamente com outros membros da equipe.

Pessoas tornam-se parte de um grupo social e aceitam as metas e prioridades desse grupo.

Geralmente, as pessoas que trabalham em organizações de desenvolvimento de software não estão famintas ou fisicamente ameaçadas pelo ambiente.

Motivação de Pessoas

Hierarquia de Necessidades Humanas

Dar às pessoas responsabilidade por seu trabalho, e fornecer um programa de treinamento.

O treinamento é uma importante influência motivadora para as pessoas.

Mostrar as pessoas que elas são valorizadas pela organização, e uma forma simples e eficaz de fazer isso é pelo reconhecimento público.

Trabalho em equipe

- Softwares profissionais é desenvolvido por equipes de projeto que variam em tamanho.
- Com pequenos grupos, os problemas de comunicação são reduzidos.
- Montar uma equipe que tenha o equilíbrio entre as habilidades técnicas, a experiência e as personalidades é uma tarefa de gerenciamento crítico.

Trabalho em equipe

Apesar de questões de projeto e organizacionais, existem três fatores genéricos que afetam o trabalho de equipe:

- 1) Pessoas: Mistura de pessoas em um grupo de um projeto, pois o desenvolvimento de software envolve diversas atividades, como negociação com clientes, programação, testes e documentação.
- 2) Organização: Um grupo pode ser organizado de maneira que os indivíduos possam contribuir com o melhor de suas habilidades e as tarefas possam ser concluídas conforme o esperado.
- 3) Comunicações técnicas e gerenciais: A boa comunicação entre os membros do grupo, bem como entre a equipe de engenharia de software e outros participantes do projeto é essencial.

Seleção de membros de grupo

- Equilíbrio certo entre as habilidades técnicas e personalidades.
- Um grupo com personalidades complementares pode funcionar melhor do que um grupo selecionado unicamente pela capacidade técnica.
- As pessoas que são orientadas a interações ajudam a facilitar as comunicações dentro do grupo. Elas gostam de conversar e podem detectar as tensões e divergências em um estágio inicial, antes que isso tenha um grande impacto sobre o grupo.

Organização do Grupo

- 1. Líder técnico.
- 2. Quem será envolvido na tomada de decisões técnicas críticas? Arquiteto de sistema, pelo gerente de projetos ou por um consenso entre o maior número de membros de equipe?
- 3. Como serão tratadas as interações com os stakeholders externos e a gerencia sênior da empresa?
- 4. Como os grupos podem integrar pessoas que não estão no mesmo local de trabalho?
- 5. Como o conhecimento pode ser compartilhado entre o grupo? No entanto, deve-se evitar muito compartilhamento de informações, pois as pessoas ficam sobrecarregadas e o excesso de informações pode distraí-las de seu trabalho.

Comunicações de grupo

- 1. Tamanho de grupo. Conforme um grupo se torna maior, a comunicação eficaz entre os membros fica mais difícil.
- 2. Estrutura de grupo. Pessoas em grupos estruturados informalmente comunicam mais eficazmente do que as pessoas em grupos com uma estrutura formal, hierárquica.
- 3. Composição de grupo. Geralmente, a comunicação é melhor em grupos com diferentes habilidades.
- 4. Ambiente físico de trabalho. A organização do local de trabalho é um fator importante para facilitar ou inibir as comunicações.
- 5. Canais de comunicação disponíveis. Existem muitas formas diferentes de comunicação: face a face, e-mail, documentos formais, telefone, chats, redes sociais e wikis. Com equipes mais distribuídas, com pessoas trabalhando remotamente, precisa-se fazer uso de várias tecnologias para facilitar a comunicação.

Planejamento de Projetos

Planejamento

1. No estágio de proposta: plano para decidir se tem os recursos para concluir o trabalho e para calcular o preço.

2. Durante a fase de início de projeto: quem vai trabalhar nele e como será dividido em incrementos, como os recursos serão alocados.

3. Planejamento é modificado enquanto há evolução do trabalho.

Processo de planejamento de projeto

Custos do Software

• custos de esforço (os custos de pagamentos de gerentes e engenheiros de software);

• custos de hardware e software, incluindo manutenção;

• os custos de viagens e treinamentos.

Fatores que afetam a definição de preço de software

Fator	Descrição		
Oportunidade de mercado	Uma organização de desenvolvimento pode cotar um preço baixo porque deseja mover-se para um novo segmento de mercado de software. Aceitar um baixo lucro em um projeto pode dar à organização a oportunidade de fazer um lucro maior no futuro. A experiência adquirida também pode ajudá-la a desenvolver novos produtos.		
ncerteza de estimativa de custo	Se uma organização está insegura quanto a sua estimativa de custo, ela pode aumentar seu preço por un contingência acima de seu lucro normal.		
Condições contratuais	Um cliente pode estar disposto a permitir que o desenvolvedor mantenha a propriedade do código-fonte o reutilize em outros projetos. O preço cobrado pode ser menor se o código-fonte do software for entregua ao cliente.		
Volatilidade de requisitos	Se os requisitos podem ser alterados, uma organização pode reduzir seu preço para ganhar um contrat Após a adjudicação, pode cobrar preços elevados por alterações nos requisitos.		
Saude financeira	Os desenvolvedores com dificuldades financeiras podem baixar seus preços para ganhar um contrato melhor obter um lucro menor do que sair do negócio. Em tempos economicamente dificeis, o fluxo de cai é mais importante do que o lucro.		

Programação do Projeto

Programação de projeto: processo de decidir como será organizado o trabalho de um projeto em tarefas separadas e quando e como essas tarefas serão executadas.

É estimado o tempo de calendário e o esforço necessários para concluir cada tarefa, bem como quem vai trabalhar nas tarefas identificadas.

Processo de programação do projeto

Para cada Atividade:

1. Duração de dias ou meses

2. Estimativa de esforço, que reflete o número de pessoas/dia ou pessoas/mês para concluir o trabalho.

3. Deadline para a conclusão da atividade

Cronograma

Tarefa	Esforço (pessoas-dias)	Duração (dias)	Dependências
TI	15	10	
T2	8	15	
T3	20	15	T1 (M1)
T4	5	10	
T5	5	10	T2, T4 (M3)
T6	10	5	T1, T2 (M4)
T7	25	20	T1 (M1)
T8	75	25	T4 (M2)
T9	10	15	T3, T6 (M5)
T10	20	15	T7, T8 (M6)
T11	10	10	T9 (M7)
T12	20	10	T10, T11 (M8)

Gráfico de Barras de Atividades

Técnicas de Estimativa

Técnicos baseados em experiências: Se baseiam na experiência do gerente em projetos anteriores e em seu domínio de aplicação.

Modelagem algorítmico de custos: Calcula o esforço de projeto com base em estimativas de atributos de produto, como tamanho e características do processo.

Referência

SOMMERVILLE, Ian. Engenharia de software. 10. ed. São Paulo: Pearson, 2019.

