Macías Márquez Misael Iván

1. Comprobar el principio de superposición, solo para R6

El principio de superposición establece que el efecto que dos o más fuentes tienen sobre una impedancia es igual a la suma de cada uno de los efectos de cada fuente tomados por separado, sustituyendo todas las fuentes de tensión restantes por un corto circuito, y todas las fuentes de corriente restantes por un circuito abierto¹.

Empecemos por medir el voltaje en R6 dejando abiertas las terminales de la fuente de corriente:

$$\delta V_1 = (1,056413 \cdot 0,0035 + 10 \cdot 0,0005) = 0,008697V$$

y ahora sustituyendo la fuente de voltaje por un corto circuito y midiendo de nuevo el voltaje en R6:

¹https://es.wikipedia.org/wiki/Teorema_de_superposici%C3%B3n

$$\delta V_2 = (9.51713 \cdot 0.0035 + 10 \cdot 0.0005) = 0.03830V$$

Sumando los 2 voltajes obtenidos obtenemos tenemos que²:

$$V_1 + V_2 = (1,0564 \pm 0,008697)V + (9,5171 \pm 0,03830)V = (10,5735 \pm 0,0470)V$$

El voltaje del circuito completo para la resistencia R6 es:

 $^{^2}$ Las incertidumbre reportadas son las descritas en el manual del multímetro çhrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/viewer.html?pdfurl=https $\%3A\ \%2F\ \%2Fwww.tme.eu\ \%2FDocument\ \%2F90420.pdf$

lo que nos da un error relativo de $2,5\,\%$ y lamentablemente el error es 30 veces la incertidumbre absoluta dada por el principio de superposición por lo que se podría considerar no satisfactoria.

2. Medir todos los voltajes V's

Colocando un multímetro en cada componente de circuito en paralelo:

nos dan los siguientes voltajes:

3. Medir todas las corrientes I's

En este caso se deben colocar los multímetros en serie.

4. Aplicando el teorema de Thévenin, medir R_{eq} y V_{eq} en R6 El voltaje equivalente V_{eq} para R6 se mide de la siguiente forma:

Para medir la resistencia equivalente R_{eq} en R6 se deben quitar todas las fuentes de voltaje y corriente del circuito.

5. Aplicando el teorema de Norton, medir R_{eq} y I_{eq} en R6 Midiendo la corriente equivalente I_{eq} con el multímetro en paralelo:

y de nuevo la resistencia equivalente R_{eq} :

Multiplicando la intensidad equivalente I_{eq} por la resistencia equivalente R_{eq} :

 $[(14,6005 \pm 0,07)mA] \cdot [(733,426 \pm 0,014)\Omega] = (10,708 \pm 0,010)V$

con un error relativo de 1,2 % comparado con lo medido en el objetivo anterior y con el error siendo 13 veces la incertidumbre absoluta.