Residual Networks (Part 3)

Dr. Alireza Aghamohammadi

Motivation

▶ Despite utilizing He initialization in the residual block, the values tend to grow exponentially during the forward pass through the network¹.

¹Reference: "Understanding Deep Learning"

Batch Normalization

- ightharpoonup Batch normalization, also known as BatchNorm, adjusts each activation h by shifting and rescaling it.
- ightharpoonup This process ensures that the mean and variance across the batch $\mathcal B$ are learned values during the training phase.
- ► Typically, batch normalization is applied prior to the activation function².

²Reference: "Understanding Deep Learning"

Algorithm

- ▶ **Input:** The algorithm takes as input the values of h_i for a mini-batch \mathcal{B} , along with the parameters γ and δ that are to be learned during the process.
- ▶ Output: The output of the algorithm is the transformed values of h_i .

1.
$$m_h = \frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} h_i$$

$$2. \quad s_h = \sqrt{\frac{1}{|\mathcal{B}|} \sum_{i \in \mathcal{B}} (h_i - m_h)^2}$$

3.
$$h_i = \frac{h_i - m_h}{s_i + \epsilon} \quad \forall i \in \mathcal{B}$$

4.
$$h_i = \gamma h_i + \delta \quad \forall i \in \mathcal{B}$$

- ▶ After performing this operation, the activations for each member of the batch have a mean of δ and a standard deviation of γ . Both these values are learned during the training process.
- Each hidden unit undergoes batch normalization independently.