Chapitre 5 : Modèles de RI

Plan du cours

Cours RI M. Boughanem

Qu'est ce qu'un modèle de RI?

- But : formalisation de la fonction de pertinence
- Un modèle de recherche spécifie les détails de
 - Représentation du document
 - Représentation de la requête
 - Définition de la pertinence
 - à Implique la notion de tri (classement) des documents
 - Tous les modèles ne trient pas les documents
 - Exact match (appariement exact) versus Best match(meilleur appariement)

Qu'est ce qu'un modèle de RI?

- Exact match versus Best Match
 - Exact Math
 - Requête spécifie de manière précise les critères recherchés
 - L'ensemble des documents respectant exactement la requête sont sélectionnés, mais pas ordonné
 - Best matching (Ranking based models)
 - Requête décrit les critères recherchés dans un document
 - Les documents sont sélectionnés selon un degré de pertinence (similarité/ probabilité) vis-à-vis de la requête et sont ordonnés

IR models

- Appariement exact :
 - Théorie des ensembles :
 - Boolean model (±1950)
- Modèle de tri de documents : Ranked models
 - Algèbre
 - Vector space model (±1970)
 - LSI (Latent semantic Indexing)(± 1994)
 - Probabilité
 - Probabilistic model (±1976)
 - Inference network model (±1992)
 - Language model (±1998)
 - DFR (Divergence from Randomness model) (±2002)
 - Modèles neuronaux(Neural Model)

Appariement exact/Exact matching : Modèle booléen/Boolean Model

Le Modèle Booléen

- Le premier modèle de RI
- Basé sur la théorie des ensembles
- Représentation des documents et des requêtes :
 - Un document est représenté un ensemble de termes
 - Ex: d1(t1,t2,t5); d2(t1,t3,t5,t6); d3(t1,t2,t3,t4,t5)
 - Une requête est un ensemble de mots avec des opérateurs booléens : AND (∧), OR(∨), NOT (→)
 - Ex: $q = t1 \wedge (t2 \vee \leftarrow t3)$
- Appariement Exact basé sur la présence ou l'absence des termes de la requête dans les documents
 - Appariement (q,d) = RSV(q,d)=1 ou 0

Le Modèle Booléen

•
$$q = t1 \wedge (t2 \vee \leftarrow t3)$$

• d1(t1,t2,t5); d2(t1,t3,t5,t6); d3(t1,t2,t3,t4,t5)

$$Rsv(q,d1) = Rsv(q,d2) = Rsv(q,d3) =$$

Inconvénient du Modèle Booléen

• La sélection d'un document est basée sur une décision binaire

- Pas d'ordre pour les documents sélectionnés
- Formulation de la requête difficile pas toujours évidente pour beaucoup d'utilisateurs

• Problème de collections volumineuses : le nombre de documents retournés peut être considérable

Modèles de tri/ Rank-based models

Modèles de tri

- Les modèles de tri retournent les documents dans un ordre trié censé représenter la pertinence de la requête vis-àvis du document.
- Requêtes en texte libre: l'utilisateur exprimeson besoin en fournissant au moteur de recherche une liste de mots clés
- Dans ces modèles on calcule un score de **pertinence**: RSV(requête, document)

Modèle de tri: modèle formel

- Dans la majorité de ces modèles, même si le cadre théorique diffère,
 - Requête et document sont représentés dans l'espace du vocabulaire (représentation vectorielle, sac de mots; word embeddings)
 - $d(w_1, w_2, ..., w_n)$
 - $q(q_1, q_2, ..., q_n)$
- Le score de pertinence

$$-RSV(q, d) = \sum (q_i * w_i)$$

Les modèles de RI se différencient clairement dans leur manière d'interpréter la notion de pertinence à ceci influence les poids des termes

Modèle Vectoriel (Vector Space Model) (VSM)

- Proposé par Salton dans le système SMART (Salton, G. 1970)
- Documents et requêtes sont représentés sous forme vectorielle
- La pertinence est interprétée comme une similarité vectorielle (c'est ce que nous traitons depuis le début de cet enseignement)

$$score(q, d) = \sum_{t \in q} w(t, q).w(t, d)$$

$$Tf^*idf$$

Laponderation se base sur tf.idf

Mais possède (exploite) plusieurs variantes

Term frequency		Docum	ent frequency	Normalization			
n (natural)	$tf_{t,d}$	n (no)	1	n (none)	1		
I (logarithm)	$1 + \log(tf_{t,d})$	t (idf)	$\log \frac{N}{\mathrm{df}_t}$	c (cosine)	$\frac{1}{\sqrt{w_1^2 + w_2^2 + \dots + w_M^2}}$		
a (augmented)	$0.5 + \frac{0.5 \times tf_{t,d}}{max_t(tf_{t,d})}$	p (prob idf)	$\max\{0,\log \frac{N-\mathrm{df}_t}{\mathrm{df}_t}\}$	u (pivoted unique)	1/u		
b (boolean)	$\begin{cases} 1 & \text{if } \operatorname{tf}_{t,d} > 0 \\ 0 & \text{otherwise} \end{cases}$			b (byte size)	$1/\mathit{CharLength}^{lpha}$, $lpha < 1$		
L (log ave)	$\frac{1 + \log(\operatorname{tf}_{t,d})}{1 + \log(\operatorname{ave}_{t \in d}(\operatorname{tf}_{t,d}))}$						

Une variante est identifiée par un nom d'attribut pour chaque colonne (un tf, un idf, une normalisation)

Une pondération de type Inc à logarithme pour tf, pas d'idf, normalisation cosine Une pondération de type Itcà logaritme pour tf, idf et cosine

Dans le modèle vectoriel on aura ce type de notation : ddd.qqq (ddd pour le document, qqq pour la requête)

$$score(q,d) = \sum_{t \in q} w(t,q).w(t,d)$$

Suite exemple

ddd.qqq=lnc.ltc.

- df(t) : nombre de documents contenant le terme t
- N : le nombre de documents dans la collection

Exemple Inc.ltc

Document: car insurance auto insurance Query: best car insurance

Terme	Req (Itc)						Document(Inc)				Prod
	freq	tf	nd	idf	w(t,q)	Nor.li satio n	freq	tf-	w(t,d)	n'lisa tion	
auto	0	0	5000				1	1			
best	1	1	50000				0	0			
car	1	1	10000				1	1			
insurance	1	1	1000				2	1.3			

N=10^6 documents

Modèle sac de mots

- La représentation vectorielle ne tient pas compte de l'ordre des mots
 - « Un garçon manque une pomme » est représenté par le même vecteur que « une pomme mange un garçon »
 - à c'est ce que l'on appelle « Sac de mots » (Bag of words)

Modèles probabilistes pour la recherche d'information

Modèle probabiliste

- Lemodèle probabiliste tente d'estimer la probabilité d'observer des événements liés au document et à la requête
- Plusieurs modèles probabilistes, se différencient selon
 - Les événements qu'ils considèrent
 - P(pert/d, q) : probabilité de pertinencede d vis à vis de q
 - P(q,d)
 - P(q|d)
 - P(d|q)
 - Les distributions (lois) qu'ils utilisent

Plusieurs modèles de RI basés sur les probabilités

Modèle probabiliste classique

Modèle inférentiel

Modèle de langue

BIR

2-Poisson

Inquery

Modèle de croyances

Unigram

Ngram

Tree
Depend.

BM25. DFR

La forme (finale) de BM25

$$RSV(q,d) = \sum_{t \in q} \frac{(k_1 + 1)tf_{t,d}}{k_1((1-b) + b\frac{dl}{avg(dl)} + tf_{t,d}} \log \frac{N}{df(t)}$$

- k₁ est entre 1.2–2 et b autour de 0.75
- dl : taille du document (en nombre de mots ou en octets)
- Avg(dl): taille moyenne des documents
- tf_{t,d}: fréquence du terme t dans le document d
- df(t): nombre de documents contenant le terme t
- N: le nombre de documents dans la collection

Une des formules de calcul de poids des termes à donc RSV(q,d)- les plus performantes et les plus utilisées dans le domaine de la RI