Course	18CSC204J	Course		DESIGN AND A	NAI VSIS OF AL	CORITHMS	Course	_	Professional Core	L	T	Р	С
Code	100002040	Name		DEGICIN AND A	INALIOIO OI AL	SORTTINO	Category		Trolessional Gole	3	0	2	4
Pre-requisi Courses	18CSC201J,	18CSC202J		Co-requisite Courses	18CSC207J		Progre e Cou		Nil				
	ering Department	Сотр	uter Science and		Da	ta Book / Codes/Standards		1303					

Course (CLR):	Learning Rationale	The purpose of learning this course is to:	L	earni	ng					Prog	ram L	_earn	ing O	utcor	nes (F	PLO)				
CLR- 1:	Design efficient algorithm	ns in solving complex real time problems	1	2	3	1	2	3	4	5	6	7	8	9	1	1	1 2	1	1	1 5
CLR- 2:	Analyze various algorith	n design techniques to solve real time problems in polynomial time							A			E n				-				
CLR- 3:	Utilize various approach	es to solve greedy and dynamic algorithms	e	E x	E x	E		D	n a			v i		1		Р				ii
CLR- 4:	Utilize back tracking and	branch and bound paradigms to solve exponential time problems	e I	p e	p e	n g	Р	e	y	М	S	r o		n d		r o	L			1
CLR- 5:	Analyze the need of app	roximation and randomization algorithms, utilize the importance Non polynomial algorithms	o f	c t	c t	n e	r o	i g	i	o d	O C	n m		i V	C 0	j e	f e			1
CLR- 6:	Construct algorithms tha	t are efficient in space and time complexities	T h	e d P	e d A	e r	b l e	n & D	, D	e r n	i e +	e n	Е	i d u	m m u	c t M	L o	Р	Р	Р
(CLO):	Learning Outcomes	At the end of this course, learners will be able to:	n k i n g (B l o o m)	oficiency(%)	t a i n m e n t (%)	n gK n o w l e d g e	m A n a l y s i s	e v e l o p m e n t	s i g n , R e s e a r c h	Тоо_Оѕаσе	y & C u t u r e	& Sustainability	h i c s	al&TeamWork	n i cation	g t . & F i nance	g L e a r n i n g	S O - 1	S O - 2	S O - 3
CLO- 1:	Apply efficient algorithm	s to reduce space and time complexity of both recurrent and non-recurrent relations	3	8	0	L	Н	-	Н	L	-	-	-	L	L	-	Н	-	-	-
CLO- 2:	Solve problems using di	ride and conquer approaches	3	8 5	7 5	М	Н	L	М	L	-	-	-	М	L	-	Н	-	-	-
CLO- 3:	Apply greedy and dynan	ic programming types techniques to solve polynomial time problems.	3	7 5	7	М	Н	М	Н	L	-	-	-	М	L	-	Н	-	-	-
CLO- 4:	Create exponential prob	ems using backtracking and branch and bound approaches.	3	8 5	8	М	Н	М	Н	L	-	-	-	М	L	-	Н	-	-	-
CLO- 5:	Interpret various approxi	mation algorithms and interpret solutions to evaluate P type, NP Type, NPC, NP Hard problems	3	8 5	7 5	Н	Н	М	Н	L	-	-	-	М	L	-	Н	-	-	-
CLO- 6:	Create algorithms that a	re efficient in space and time complexities by using divide conquer, greedy, backtracking technique	3	8	7 0	L	Н	М	Н	L	-	-	-	L	L	-	Н	-	-	-

	ration nour)	15	15	15	15	15
S-	SLO- 1	Introduction-Algorithm Design	Introduction-Divide and Conquer	Introduction-Greedy and Dynamic Programming	Introduction to backtracking - branch and bound	Introduction to randomization and approximation algorithm
1	SLO- 2	Fundamentals of Algorithms	Maximum Subarray Problem	Examples of problems that can be solved by using greedy and dynamic approach	N queen's problem - backtracking	Randomized hiring problem
S-	SLO- 1	Correctness of algorithm	Binary Search	Huffman coding using greedy approach	Sum of subsets using backtracking	Randomized quick sort
2	SLO- 2	Time complexity analysis	Complexity of binary search	Comparison of brute force and Huffman method of encoding	Complexity calculation of sum of subsets	Complexity analysis
S-	SLO- 1	Insertion sort-Line count, Operation count	Merge sort	Knapsack problem using greedy approach	Graph introduction	String matching algorithm
3	SLO- 2	Algorithm Design paradigms	Time complexity analysis	Complexity derivation of knapsack using greedy	Hamiltonian circuit - backtracking	Examples
S 4- 5	SLO- 1 SLO- 2	Lab 1: Simple Algorithm-Insertion sort	Lab 4: Quicksort, Binary search	Lab 7: Huffman coding, knapsack and using greedy	Lab 10: N queen's problem	Lab 13: Randomized quick sort
S-	SLO- 1	Designing an algorithm	Quick sort and its Time complexity analysis	Tree traversals	Branch and bound - Knapsack problem	Rabin Karp algorithm for string matching
6	SLO- 2	And its analysis-Best, Worst and Average case	Best case, Worst case, Average case analysis	Minimum spanning tree - greedy Kruskal's algorithm - greedy	Example and complexity calculation. Differentiate with dynamic and greedy	Example discussion
S-	SLO- 1	Asymptotic notations Based on growth functions.	Strassen's Matrix multiplication and its recurrence relation	Minimum spanning tree - Prims algorithm	Travelling salesman problem using branch and bound	Approximation algorithm
7	SLO- 2	0,0,θ, ω, Ω	Time complexity analysis of Merge sort	Introduction to dynamic programming	Travelling salesman problem using branch and bound example	Vertex covering
S-	SLO- 1	Mathematical analysis	Largest sub-array sum	0/1 knapsack problem	Travelling salesman problem using branch and bound example	Introduction Complexity classes
8	SLO- 2	Induction, Recurrence relations	Time complexity analysis of Largest sub-array sum	Complexity calculation of knapsack problem	Time complexity calculation with an example	P type problems
S 9-	SLO- 1	Lab 2: Bubble Sort	Lab 5: Strassen Matrix multiplication	Lab 8: Various tree traversals, Krukshall's	Lab 11: Travelling salesman problem	Lab 14: String matching algorithms
10	SLO- 2			MST		
S-	SLO- 1	Solution of recurrence relations	Master Theorem Proof	Matrix chain multiplication using dynamic programming	Graph algorithms	Introduction to NP type problems
11	SLO- 2	Substitution method	Master theorem examples	Complexity of matrix chain multiplication	Depth first search and Breadth first search	Hamiltonian cycle problem
S-	SLO- 1	Solution of recurrence relations	Finding Maximum and Minimum in an array	Longest common subsequence using dynamic programming	Shortest path introduction	NP complete problem introduction
12	SLO- 2	Recursion tree	Time complexity analysis-Examples	Explanation of LCS with an example	Floyd-Warshall Introduction	Satisfiability problem
S-	SLO- 1	Solution of recurrence relations	Algorithm for finding closest pair problem	Optimal binary search tree (OBST)using dynamic programming	Floyd-Warshall with sample graph	NP hard problems
13	SLO- 2	Examples	Convex Hull problem	Explanation of OBST with an example.	Floyd-Warshall complexity	Examples

S	SLO-					
14 -1	1 SLO-	Lab 3: Recurrence Type-Merge sort, Linear search	Lab 6: Finding Maximum and Minimum in an array, Convex Hull problem	Lab 9: Longest common subsequence	Lab 12: BFS and DFS implementation with array	Lab 15: Discussion over analyzing a real time problem
5	2					

Learning
Resources

- Thomas H Cormen, Charles E Leiserson, Ronald L Revest, Clifford Stein, Introduction to Algorithms, 3rd ed., The MIT Press Cambridge, 2014
- 2. Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2nd ed., Pearson Education, 2006
- 3. Ellis Horowitz, Sartajsahni, Sanguthevar, Rajesekaran, Fundamentals of Computer Algorithms, Galgotia Publication, 2010
- 4. S. Sridhar, Design and Analysis of Algorithms, Oxford University Press, 2015

Learning Asses	ssment										
	Bloom's			Conti	nuous Learning Asse	essment (50% weigh	ntage)			Final Evamination	n (50% weightage)
	Level of	CLA – 1	1 (10%)	CLA –	2 (15%)	CLA –	3 (15%)	CLA – 4	(10%)#		ii (50% Weightage)
	Thinking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice
Level 1	Remember	20%	20%	15%	15%	15%	15%	15%	15%	15%	15%
Level 1	Understand	2070	2070	1070	1070	1070	1070	1070	1070	1070	1070
Level 2	Apply	20%	20%	20%	20%	20%	20%	20%	20%	20%	20%
Level 2	Analyze	2070	2070	2070	2070	2070	2070	2070	2070	2070	2070
Level 3	Evaluate	10%	10%		15%	15%	15%	15%	15%	15%	15%
LGVGI J	Create	1070	1070	\15%	1070	1070	1070	1370	1070	1070	1070
	Total	100) %	100	0 %	100	0 %	100) %		-

CLA - 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers								
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts						
1. G. Venkiteswaran, Wipro Technologies, gvenki@pilani.bits-pilani.ac.in	1. MiteshKhapra, IITM Chennai, miteshk@cse.iitm.ac.in	1. Mr.K.Senthil Kumar, SRMIST						
2. Dr.SainarayananGopalakrishnan, HCL Technologies, sai.jgk@gmail.com	2. V. Masilamani. IIITDM, masila@iiitdm.ac.in	2. Dr.A.Razia Sulthana, SRMIST						
		3. Mr. V. Sivakumar, SRMIST						
		4. Ms. R. Vidhya, SRMIST						