Statistics

Stats is all about data

Raw data

- May have errors
- Not validated
- Unformatted
- Uninterpretable
- Not cleansed
- ..

State	District	Jun	Jul	Λιια
				Aug
Andhra Pradesh	Adilabad	213.245	260.107	449.676
Andhra Pradesh	Vizianagaram	265.521	139.41	266.612
Arunachal				
Pradesh	Changlang	264.225	323.216	371.473
Arunachal				
Pradesh	DibangValley	214.674	316.565	336.434
Assam	Karimganj	164.937	270.082	589.803
Assam	Kokrajhar	580.901	312.208	564.161
Bihar	Supaul	173.777	152.199	200.673
Bihar Vaishali		126.427	120.119	134.309
Chandigarh	Chandigarh	87.6	87.6 236.5	
Chattisgarh	Bastar	318.126	255.674	366.698
Chattisgarh	Rajnandgaon	213.481	213.481 378.729	
Chattisgarh	Surguja	227.882	210.418	159.516
Dadra & Nagar	Dadra & Nagar			
Haveli	Haveli	341.727	603.201	234.86
Delhi	New Delhi	80.69	272.234	125.493
Gujarat	Ahmadabad	55.405	335.661	81.557
Gujarat	Amreli	55.892	376.289	103.858
Gujarat	The Dangs	280.156	585.72	242.533
Haryana	Ambala	93.162	237.152	141.453
Haryana	Bhiwani	58.104	219.684	75.383
Himachal			_	
Pradesh	Chamba	90.188	145.487	141.654
Himachal				
Pradesh	Hamirpur	96.383	201.116	147.078

Rainfall in Districts of Indian states during the monsoon season

- No errors
- Validated
- Formatted
- Interpretable
- Cleansed

• ..

State	Average (cm)
Andhra Pradesh	239.383
Arunachal Pradesh	239.4495
Assam	372.919
Bihar	150.102
Chandigarh	87.6
Chattisgarh	265.8035
Dadra & NagarHaveli	341.727
Delhi	80.69
Gujarat	55.6485
Haryana	75.633
Himachal Pradesh	93.2855

Average rainfall (in cms.) in Indian states

About data

Data collection

Data is collected in different ways:

- Census
- Observation
- Convenience sample
- Random samples
- Historical data (data collected over time)
- Any other

Data forms

Data can be in any of these forms

- Structured (rows and columns)
- Semi-structured (XML/ JSON)
- Unstructured (free text)

Data collected method

- Batch
- Real-time

day	Date	Open	High	Low	Close	Total Shares
1	01-Jan-15	171	171	167.5	168.35	35357
2	02-Jan-15	169.2	172.8	168.75	171.7	100909
3	05-Jan-15	171.3	171.95	167.45	168.85	95765
4	06-Jan-15	169	172.9	167.3	168.15	134474

Numeric data can be of 2 types:

Discrete data

Eg:

Year – 1972,1998,2005,2018 ...

Age: 12,18,24,39,40 ...

Continuous data

Eg:

Weight – 43.1,55.4,76.9 ...

Temperature: 31.1,33.4,90.5 ...

Character data can be of 2 types:

Strings and literals

Eg: "computer", "Statistics" ...

Factors

Nominal	Ordinal	<u>I</u> nterval	Ratio
---------	---------	------------------	-------

Nominal Ordinal Interval Ratio

- Used as names / labels without any quantitative measure
- No numerical significance
- Examples:

Gender

Male

Female

Marital Status

Single

Married

Divorced

Religion

Hindu Jain

Buddhism

Sikh

Christian

Nominal Ordinal Interval Ratio

- Order is important, rather than the name
- Difference between 2 values is not really known
- Examples:

Income Level

- 1 = Low
- 2 = Middle
- 3 = High
- 4 = Very high

Feeling today

- 1 = Very unhappy 2
- =Unhappy
- 3 = Ok
- 4 = Happy
- 5 = Very happy

Rating

- 3 = Very Good
- 2 = Good
- 1 = Bad

Nominal Ordinal Interval Ratio

- Numerical scales where order and difference are known
- Do not have a true 0
- •Examples:

Temperature

Time

Marks

Temp.
0
5
10
15
20
25

Marks	Freq.
90-100	2
80-89	3
70-79	7
60-69	11
50-59	15
40-49	3
30-39	4
20-29	5
0-19	0

Data Types

Nominal Ordinal Interval Ratio

- Numerical scales where order and difference are known
- Hasatrue 0 (means "does not exist")
- Descriptive and Inferential statistical analysis performed

•Examples:

Height

Weight

Age

Income

Years of education

Data Distribution

Frequency distribution

Listing of the observed frequencies of all outcomes of an experiment that actually occurred when the experiment was done

Probability distribution

Listing of all the probabilities of all the possible outcomes that could result if the experiment were done

Data Mining

- To discover patterns in a dataset involving statistics, database concepts and machine learning
- Extract this information to transform them into useful interpretations
- Data Mining is an essential part of a process commonly known as KDD (Knowledge discovery in databases)

Some typical tasks in Data mining

- 1) Anomaly detection in data
- 2) Association rule analysis (Apriori)
- 3) Clustering (Unsupervised machine learning)
- 4) Classification and Regression (Supervised machine learning)
- 5) Visualization

Population vs Sample

Types of Statistics

Descriptive Statistics

Describes the various aspects of dataset

Measure of Central tendency

Mean Weighted Mean Geometric Mean Median Mode

Range

Measure of Dispersion

Interfractile Range Quartiles Interquartile Range Standard Deviation Variance

Measure of Association

Correlation
Covariance
Coefficient of Covariation

Inferential Statistics

What conclusion can be drawn from the dataset

Estimation

Hypothesis Testing

Descriptive Statistics

I. Measure of Central tendency

Central tendency measures the centre value / middle value / average value of a given dataset

- 1. Mean
- 2. Median
- 3. Mode

1. Mean

- Arithmetic mean is the "average" of a range of data (numeric)
- Common examples: Test Marks, Temperature, Runs scored in cricket etc.
- Conventional symbols:
 - \checkmark n = sample size
 - \checkmark x = observation(s)
 - $\sqrt{\bar{x}}$ = sample mean
 - \checkmark μ = population mean
- Arithmetic Mean $\bar{x} = (\sum x / n)$

Advantages

- A single number represents a whole dataset
- Intuitively clear
- Only 1 mean per dataset easy for comparison

Disadvantages

- Affected by extreme values so not a reliable measure
- Every value is taken for calculation (use grouped data)
- Cannot compute mean for open-ended classes

Open-ended classes

One or more classes do not have a boundary

height	frequency
4.0 - 4.5	10
4.6 - 5.0	8
5.1 - 5.3	20
5.4 - 5.5	19
5.6 - 5.8	20
> 5.8	4

Grouped Data - Mean

n=100

701

Minimum score = 701
Maximum score = 1900
Interval = 100
Total classes = 12
Total observations = 100
N*x=125000

#	min	max	range	n	
1	701	800	701-800	4	
2	801	900	801-900	7	
3	901	1000	901-1000	8	
4	1001	1100	1001-1100	10	
5	1101	1200	1101-1200	12	
6	1201	1300	1201-1300	17	
7	1301	1400	1301-1400	13	
8	1401	1500	1401-1500	10	
9	1501	1600	1501-1600	9	
10	1601	1700	1601-1700	7	
11	1701	1800	1701-1800	2	
12	1801	1900	1801-1900	1	
				100	

Mean =
$$\Sigma(F_x/n) = 1250$$

Exercise

Frequency distribution represents the time in seconds to servecustomers at a local store. Compute the sample mean of the servingtime

min	max	X	n	n*x	avg	
20	29	24	6	144		
30	39	34	16	544		
40	40 49		21	924		
50	50 59 54		59 54 29 1566			
60	60 69		25	1600		
70	79	74	22	1628		
80	89	84	11	924		
90	90 99 94		7 658			
100	100 109 10		4	416		
110	110 119 1		0	0		
120	129 124 2 248		248			
			143	8652	60.5	

time	frequency
20-29	6
30-39	16
40-49	21
50-59	29
60-69	25
70-79	22
80-89	11
90-99	7
100-109	4
110-119	0
120-129	2

4. Median

- Position based single value that measures the central item in a dataset
- Middlemost / Centremost item in a dataset
- About half of the items lie above this point; and the other half below it
- Tocalculate Median, data needs to be sorted (Ascending / Descending)
- Formula for Median
 - ✓ For non-grouped data
 - [(n+1) / 2]th item, when *n* is odd
 - $[(n/2)^{th} + ((n/2) + 1)^{th})/2]$ item, when **n** is even
 - ✓ For grouped data
 - (n/ 2)th item

Advantages

- Extreme values do not effect Median strongly
- Easyto calculate

Disadvantages

- Needs sorting of data before calculation
- Can be time consuming in large datasets

Median

Item	Time
1	10.2
2	10.3
3	10.7
4	10.8
5	11
6	11.1
7	15

n = 7 $[(n+1)/2]^{th} = 4^{th} 4^{th}$ element = 10.8 Median = 10.8

Exercise: Calculate the Median

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
42	53	90	81	120	41	42	29	87	11	35	69	40	77	97	63

1: Sort the dataset

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
11	29	35	40	41	42	42	53	63	69	77	81	87	90	97	120

n = 16

$$[(n/2)^{th}+((n/2)+1)^{th})]/2$$

 $[8^{th}+9^{th}]/2=(53+63)/2=58$ ->Median

Median for Grouped data

Consider the monthly balance of 100 customers of a bank, calculate the Median monthlybalance.

class	Balance	Freq	Cumfreq	
1	0-20	17	17	
2	20-40	28	45	4
3	<mark>40-60</mark>	<mark>32</mark>	<mark>77</mark>	4
4	60-80	24	101	
5	80-100	19	120	

Formula n = 120

(n/2) = 60 element

60 lies between 45 and 77 So it will be our median class

L= Lower limit of the median class

n= No. of observation

f = Frequency of the Median class

cf= Cumulative frequency of the class preceding the median class

h = class size

Solving for x.

$$x = 49.37$$

5. Mode

- A single value that is repeated most often
- Used for both qualitative and quantitative data
- Bimodal distribution different values repeated same number of times

Offic broduced / flou	Unit	produced.	/hou
-----------------------	------	-----------	------

1	3	7	10	20
1	3	7	11	20
2	5	9	12	20
2	5	9	16	24

Most popular colours for dresses

Black	White	Green	Blue	Blue
Blue	Green	Yellow	White	Green
Black	Pink	Black	Yellow	Green
Green	Green	Green	Blue	Blue

Frequency Distribution

0-2	4
3-9	9
10-20	7
>20	1

Advantages

- Not affected by extreme values
- Can be used even for open-ended classes

Disadvantages

- Datasets may not contain repeated values
- In case of many modes, interpretation may be difficult

Mode for Grouped data

Modal class- the class which has the highest frequecy

class	Balance	Freq		
1	125-130	7	F0	
2	130-135	<mark>14</mark>	F1-modal class	(
3	135-140	10	F2	(
4	140-145	10		
5	145-150	9		

L= Lower limit

f1 = Frequency of the Modal class

h = class size

Grouped Mean

1. Consider the following frequency distribution. Calculate the mean weight of students.

Class Interval	0-10	10-20	20-30	30-40	40-50
Frequency	12	16	6	7	9

lass Interval	Frequency f _i	Class Mark x _i	(f _i .x _i)
0-10	12	5	60
10-20	16	15	240
20-30	6	25	150
30-40	7	35	245
40-50	9	45	405
	∑f _i =50		$\sum f_{i.} x_i = 1100$

Mean = $\sum (f_i \cdot x_i) / \sum f_i = 1100/50 = 22$

2. Calculate the median for the following frequency distribution.

Class Interval	0-8	8-16	16-24	24-32	32-40	40-48
Frequency	8	10	16	24	15	7

Solution

lass	Frequency	Cumulative Frequency
0-8	8	8
8-16	10	18
16-24	16	34
24-32	24	58
32-40	15	73
40-48	7	80
	$N = \sum f_i = 80$	

Now, N = 80 = (N/2) = 40.

The cumulative frequency just greater than 40 is 58 and the corresponding class is 24-32.

Thus, the median class is 24-32.

I = 24, h = 8, f = 24, $c_f = c.f.$ of preceding class = 34, and (N/2) = 40.

Median, $M_e = I + h\{(N/2-cf)/f\}$