

KI Labor - Sommersemester 2022

Reinforcement Learning

Schedule

Datum	Thema	Inhalt	Präsenz			
18.03.22	Allg.	Organisation, Teamfindung, Vorstellung CV	Ja			
25.03.22	CV	Q&A Sessions	Nein			
01.04.22	CV	Sprintwechsel, Vorstellung Assignment	Ja			
08.04.22	CV	Q&A Sessions	Nein			
05.04.22	Ostern	-	•			
22.04.22	CV / NLP	Abgabe CV, Vorstellung NLP	Ja			
29.04.22	NLP	Q&A Sessions	Nein			
06.05.22	NLP	Sprintwechsel, Vorstellung Assignment	Ja			
13.05.22	NLP	Q&A Sessions	Nein			
20.05.22	NLP / RL	Abgabe NLP, Vorstellung RL	Ja			
27.05.22	RL	Sprintwechsel, Vorstellung Assignment	Nein			
03.06.22	Ausfall	Ausfall				
10.06.22	Pfingsten (H-	Pfingsten (H-KA zu)				
17.06.22	RL	Q&A Sessions (Brückentag)	Nein			
24.06.22	RL	Abgabe RL, Abschluss KI Labor	Ja			

Matthias Richter
Machine Learning Engineer
seit 2019

Tim Bossenmaier
Softwareentwickler Datenplattformen
seit 2021

Agenda

> Theorie

- Problemstellung & Lösungsansatz
- Monte Carlo Methoden
- Temporal-Difference Methoden
- Q-Learning

Übungsaufgaben

- Menace Gym (Aufgabe 1)
- CartPole Gym mit Q-Learning (Aufgabe 2)

Reinforcement Learning

"Robots that learn a little like humans do: By trial and error."

Law of effect (nach Thorndike, 1898):

responses that produce a satisfying effect in a particular situation become more likely to occur again in that situation, and responses that produce a discomforting effect become less likely to occur again in that situation.

Menschen lernen Verhalten durch Belohnung und Strafe

(mathematische) Psychologie Kontroll-Theorie

Künstliche Intelligenz Reinforcement Learning

> Operations Research

Neurowissenschaften

Reinforcement Learning

Vergleich mit (un) überwachtem Lernen

(Un)Supervised Learning Reinforcement Learning

Lernen mit Datensätzen Lernen durch Ausprobieren

Ziel: Loss minimieren Ziel: Reward maximieren

Interaktion mit Umwelt nicht Interaktion mit Umwelt ist zentraler Teil des Systems zentraler Teil des Systems

Getrennte Trainings- & Kontinuierliches Lernen /
Durchführungsphase Exploration vs. Exploitation

Meilensteine im Reinforcement Learning

Beispiel: Tic-Tac-Toe

- 9 Felder
- je 3 mögliche Belegungen

Lösbar, aber aufwendige Programmierung

MENACE [Michie 1963]

Matchbox Educable Naughts And Crosses Engine

- Eine Schachtel pro Spielzustand für MENACE
- Perlen in Schachteln für mögliche Spielzüge
- Spielzug bestimmen = Bohne aus Schachtel ziehen

[Michie 1963]: https://people.csail.mit.edu/brooks/idocs/matchbox.pdf

Fotos: James Bridle, http://jamesbridle.com/works/menace

MENACE [Michie 1963]

Nach dem Spiel: Lernen

Gewonnen

je 2 Perlen gleicher Farbe in Schachtel zurücklegen

Unentschieden

Perlen zurücklegen

Verloren

Perlen entfernen

[Michie1963]: https://people.csail.mit.edu/brooks/idocs/matchbox.pdf

Fotos: James Bridle, http://jamesbridle.com/works/menace

MENACE ist Reinforcement Learning

MENACF

Reinforcement Learning

Regeln & Gegner

Zeit

Schachtel

Perlen/Spielzüge

Perlen zurück/weg legen

Spielrunde

Umwelt

 $s_t \in \mathcal{S}$ (Spiel-)Zustand

Aktionen $a_t \in \mathcal{A}$

Reward

 $r: \mathcal{S} \times \mathcal{A} \mapsto \mathbb{R}$

 $t = 0, 1, 2, \dots$

Gridworld

Buchhaltung

Ziel: maximiere gesammelten Reward

Zukünftiger Reward

$$\underline{G_t} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots$$

$$\underset{\text{Zeitpunkt t}}{\sim} \sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \qquad 0 \leq \underline{\gamma} \leq 1$$

$$= r(s_{t+k+1}, \underline{a_{t+k+1}})$$
Discount Factor

Wie die nächste Aktion auswählen?

Plan a_1,a_2,\ldots

$$a=\pi(s)$$

Modell für Zustandsübergänge

Modell für Statusübergang: $P(s_{t+1}|a_t,s_t,\ldots,a_0,s_0)$

... und Reward: $P(s_{t+1}, R_t | a_t, s_t, \dots, R_0, a_0, s_0)$

Aktionen ändern die Umwelt Transition probabilities $P(s_{t+1}|a_t,s_t)$

Beispiel: Geradeaus gehen

 $P(s_{t+1}|a_t,s_t)$ eher groß

 $P(s_{t+1}|a_t,s_t)$ eher klein

Transition probabilities $P(s_{t+1}|a_t,s_t)$

tatsächlicher Zustandsübergang

			(•		-
Aktion des Agenten	(1	80%	0%	10%	10%
		2	0%	80%	10%	10%
56		3	10%	10%	80%	0%
	1	4	10%	10%	0%	80%

Markov-Annahme

Ein stochastischer Prozess ist *Markov'sch*, wenn der aktuelle Zustand nur vom vorherigen Zustand abhängt:

$$P(x_t|x_{t-1},...,x_0) = P(x_t|x_{t-1})$$

Zustandsübergangs-und-Reward-Modell:

$$P(s_{t+1}, R_t | a_t, s_t, \dots, R_0, a_0, s_0) = P(s_{t+1}, R_t | a_t, s_t)$$

Markov Decision Process (MDP)

Formale Beschreibung der Interaktion im RL

States $s \in \mathcal{S}$ Markov-Annahme: Actions $a \in \mathcal{A}$ Zustandsübergang und Reward hängen nur von vorherigen Time t Zustand und Aktion ab Model $P(s_{t+1}, R_t | a_t, s_t)$ Reward r(s, a)

Policy π

Eine Policy definiert das Agenten-Verhalten für alle Zustände s

Deterministisch: $a = \pi(s)$

Wie findet ein Agent eine gute Policy?

Reminder: Agent will Return G_t maximieren

$$G_t = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Kurzsichtiger Agent:

$$\gamma := 0 \leadsto G_t = R_{t+1} = r(s_{t+1}, a_{t+1})$$
$$\Rightarrow \pi(s_t) = \arg\max_{a} r(s_{t+1}, a)$$

Kurzsichtiger Agent

... wählt eine Aktion, die den nächsten Reward maximiert

State s

Rewards

-1	-1	-1	-1	-1
-1	-1	-1	-1	0
-1	-1	-1	-1	-1

Bessere Strategie

Wähle Policy π , die den erwarteten Return maximiert:

$$\pi^* = \arg\max_{\pi} \mathbb{E}_{\pi}[G_t]$$

mit
$$G_t = \sum_{k=0}^{\infty} \gamma^k r(s_{t+k+1}, \pi(s_{t+k}))$$

$$\mathbb{E}[x] = \sum_{x \in \mathcal{X}} P(x) \cdot x$$

State-value function

Welcher State verspricht größten Return?

State s und Policy π

State-value function v_π(s)

-7	-6	-5	-4	-1
-6	-5	-4	-3	Х
-5	-4	-3	-2	-1

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}[R_{t+1} + G_{t+1}(S_{t+1})|S_t = s]$$

State-value function

Welcher Zustand ist besser?

State 1

State 2

Action-value function $q_{\pi}(s,a)$

State s und Policy π

Action-value function $q_{\pi}(s,a)$

$$q_{\pi}(\underline{s},\underline{a}) = \mathbb{E}_{\pi}[G_t|S_t = \underline{s}, A_t = \underline{a}]$$

= $\mathbb{E}[R_{t+1} + G_{t+1}(S_{t+1}, A_{t+1})|S_t = \underline{s}, A_t = \underline{a}]$

Action-value function $q_{\pi}(s,a)$

Action-value function $q_{\pi}(s,a)$

	-7 -7 -5		
- 7 - 8 - 7	-7 -5 -6	-4 -5 -4	Х
	-5 -7 -6		

Q-Table

	•	4	1	•
S ₁₂	-6	-7	-7	-5
S ₂₁	-4	-8	-7	-7
S ₂₂	-3	-5	-7	-6
S ₂₃	-2	-5	-4	-4
S ₃₂	-5	-7	-5	-6

Optimal Policies π*

-5	-4	-3	-2	-1
-4	-3	-2	-1	Х
-5	-4	-3	-2	-1

Optimale Policy ist besser alle andere Policies:

$$\pi^* \geq \pi, \forall \pi$$

Was bedeutet besser?

$$\pi \geq \pi'$$
, if $v_{\pi}(s) \geq v_{\pi'}(s), \forall s$

Exploitation

Maximierung des Rewards gg. bekannter Information

Exploration

Erschließung neuer, unbekannter Bereiche

Monte Carlo Methods

Episode 1

Random Policy π

•••

Episode 2

•••

•••

Monte Carlo Prediction

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(G_t - Q(S_t, A_t))$$
alternative
Schätzung
schätzung

Control Problem: Estimate the optimal policy

Temporal-Difference Methods

Monte Carlo Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(G_t - Q(S_t, A_t))$$
alternative
Schätzung
aktuelle
Schätzung

Temporal-Difference Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\underbrace{R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})}_{\nearrow} - \underbrace{Q(S_t, A_t)}_{\nearrow}) - \underbrace{Q(S_t, A_t)}_{\nearrow})$$
alternative
Schätzung
Schätzung

Q-Learning

Off-Policy TD-Control

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \underline{\gamma}Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

alternative Schätzung

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(R_{t+1} + \underline{\gamma} max_a Q(S_{t+1}, a) - Q(S_t, A_t))$$

alternative Schätzung

Q-Learning

Off-Policy TD-Control

```
Initialize Q(s, a), \forall s \in S, a \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
       Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
       Take action A, observe R, S'
      Q(S, A) \leftarrow Q(S, A) + \alpha \left[ R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]
      S \leftarrow S':
   until S is terminal
```


Aufgaben

OpenAl Gym

Gym

Gym is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents everything from walking to playing games like Pong or Pinball.

View documentation > View on GitHub >

OpenAl Gym

```
import gym
env = gym.make('CartPole-v0')
for i_episode in range(20):
    observation = env.reset()
    for t in range (100):
        env.render()
        action = env.action_space.sample()
        observation, reward, done, info = env.step(action)
        if done:
            print("Episode finished after {} timesteps".format(t+1))
            break
env.close()
```


Aufgabe 1: Einstieg in RL mit MENACE

Jupyter Lab Notebook

Zustands- und Aktionsräume

Wie unterscheiden sich diese Environments?

Zustände & Aktionen diskret

Zustände kontinuierlich & Aktionen diskret

Zustände & Aktionen kontinuierlich

Aufgabe 2: CartPole Gym mit Q-Learning

Jupyter Lab Notebook

Literatur

- Kostenlose "Standard"-Lektüre für den Einstieg in RL: Reinforcement Learning: An Introduction (Sutton and Barto), siehe http://incompleteideas.net/book/RLbook2018.pdf
- Ausführlich und gut erklärter Einstieg in RL (Video-Lektionen): UCL Course on RL (David Silver, Google DeepMind), siehe https://www.davidsilver.uk/teaching/
- Algorithms in Reinforcement Learning von Csaba Szepesvári, siehe https://sites.ualberta.ca/~szepesva/papers/RLAlgsInMDPs.pdf
- Blog mit Videos zum Einstieg in RL und Q-Learning, DQN und vieles mehr: Reinforcement Learning – Introducing Goal Oriented Intelligence, siehe https://deeplizard.com/learn/video/nyjbcRQ-uQ8

Feedback

https://forms.gle/4UeEVTWmHGpRGYkm9

