

Signalization Plan for an urban intersection

Subject: Roads

Professor : Dr. Schuchmann Gábor

Student : Amgalantuul Purevsuren GJOPB2

2020/2021 Budapest

Given data:

The neptun code is GJOPB2, according to this datas are:

- 1. O-D matrix -2
- 2. Traffic development factor 1.10
- 3. Bus stop location B-D, after
- 4. Tram track location- A, terminal
- 5. Pedestrian crossing locations A-C+B-D

1) O-D matrix with the a multiplier of traffic development will be:

Orig\Dest	A	В	C	D	Total
A	-	1	660	165	825
В	330	-	165	1100	1595
С	880	110	-	-	990
D	165	1210	330	-	1705
Total	1375	1320	1155	1265	5115

Figure 1. Legs of the intersection

Figure 2. Order of the phases.

Figure 3. Demand calculation

I calculated demand using O-D matrix with multiplier table. Straight and turning one line each in case of the A leg, then B and C legs have each two straight, two turning to left and right direction. In the C leg, I have one line straight moving then right turning as you can see in the conflict map below. Demand didn't exceed the limit capacity which is 1400 V/h.

2. Conflict map

3. Intergreen times

$$t_{ki} = t_{\acute{a}} + t_{\ddot{u}i} - t_{bi}$$

This formula is used in the calculation. Then the calculation intergreen times were t_{k1} =5.0s, t_{k2} =6.0s, t_{k3} =5.0s after adding them up $\sum t_{ki}$ =16.0s.

3.1 Cycle time and green times

$$t_{zi} = (P - \Sigma t_k) \cdot \frac{Fi}{\Sigma F}$$

To calculate green times, I subtracted 16.0s from the given value 90s to obtain total green time. In this case it is 77s. Using the figure 3. I divided proportionally, then It gives t_{z1} =27s, t_{z2} =37s, t_{z3} =10s.

4. Signal plan

5. Capacity usage

$$K_{lane} = \frac{t_{zi}}{h} \times \frac{3600}{P}$$
 [E/h]

 K_{11} =540 V/h(reserve 12%)

 $K_{12}=740 \text{ V/h}(\text{reserve } 12\%)$

 $K_{13}=200V/h$ (reserve 12%)