Demand Side Analytics

Electricity Demand

Sri "Akhil" Jonnalagadda 06/15/2021

Overview

Premise

- Infrastructure planning is based on electric peak demands
- How does seasonality change demand?
- Is demand tied to a time trend?
- What is the weather and electric demand relationship?
- Can we predict the electric demand?

Takeaways

- Electric Demand rises with temperature and dew point
- Summer and Winter spikes electric demand
- Weekdays and Working hours have higher demand
- Forecasts predict peak demands of ~1700 MW

Data

• Weather data set:

- Hourly Data from 01/2013 to 12/2017, ~80,000 Obs
- Temperature, Dew point, Wind Direction*, Wind Speed**, and Sky Condition**

• Electric Demand data:

- Hourly Data from 01/2016 to 12/2017, ~17,500 Obs
- MegaWatts(MW)

Data Clean

- Data from 01/2016 to 12/2017
- Temperature, Dew point, MW
- Weekly running average is used
- Electric Demand*** is shown by Megawatts (MW)

Electric Demand

^{*}Removed to incomplete data

^{**}No correlation

^{***}Electricity is a utility , quantity represents demand

Weather and Electric Demand

- We see a tight correlation between electric demand, Temperature and Dew
- Low temperatures require heating and high temperatures require cool ie peaks of electric demand
- Temperature and Dew are positively correlated

Electric Demand and Day

- Electric Demand rises by ~100 MW on weekdays
- Trend holds year round
- Summer months (hotter) have a higher demand than winter months (colder)

Electric Demand and Time

- Waking Hours* had a increase in demand, ~60% of day
- Summer Electric Demand rises by
 ~500 MW during waking hours*
- Winter Electric Demand rises by
 ~300 MW during waking hours*
- Summer months (hotter) have a higher demand than winter months (colder)

Demand Sensitivity

- Temperature ~ Electricity Price elasticity* is inelastic (.015)
- Dew ~ Electricity Price elasticity* is inelastic (.019)
- Summers have significantly** higher electric demand by day than winters
- Summers have significantly*** higher electric demand by hours than winters

^{*}Elasticity calculated using quadratic fit and average values

^{**}Through Z-Test at .05 level

^{***}Through F-Test at .05 level

Model Walk

- Simple Time Series Regression
 - Variables limited* to Temperature and Dew
- Training Data from 2016-2017
- Test Data from 2016-2017
- Forecast Data from 2013-2016

Model:

```
Forecast_MW = 1731 + (-28.76 \times Temperature) + (.3321 \times Temperature^2) + (-6.328 \times Dew) + (.06838 \times Dew^2)
```

Forecast

- The seasonality trend over time as expected
- Lower bound of ~1000 MW and an upper bound of ~1700 MW
- R^2 of .57 and RSME of 3.73

Closing thoughts

Takeaways

- Electric Demand has weather, seasonality, weekly and hourly trends
- Electric Demand is inelastic
- Summers have higher demand than winters
- Forecasts predict peak demands of ~1700 MW

Question?