Unemployment

Exploration of Unemployment in the US in 2015

Hypothesis: Gender, Race, and Occupation Type have an impact on predicting unemployment in a specific US County

Null Hypothesis: Gender, Race, and Occupation does NOT have an impact on predicting unemployment in a specific US County

Preparation

Import libraries

```
In [153]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm
import seaborn as sns
```

Import the .csv data set

```
In [17]: df = pd.read_csv('acs2015_county_data.csv')
    df
```

Out[17]:

	CensusId	State	County	TotalPop	Men	Women	Hispanic	White	Black	Native	
0	1001	Alabama	Autauga	55221	26745	28476	2.6	75.8	18.5	0.4	
1	1003	Alabama	Baldwin	195121	95314	99807	4.5	83.1	9.5	0.6	
2	1005	Alabama	Barbour	26932	14497	12435	4.6	46.2	46.7	0.2	
3	1007	Alabama	Bibb	22604	12073	10531	2.2	74.5	21.4	0.4	
4	1009	Alabama	Blount	57710	28512	29198	8.6	87.9	1.5	0.3	
3215	72145	Puerto Rico	Vega Baja	56858	27379	29479	96.4	3.4	0.1	0.0	
3216	72147	Puerto Rico	Vieques	9130	4585	4545	96.7	2.9	0.0	0.0	
3217	72149	Puerto Rico	Villalba	24685	12086	12599	99.7	0.0	0.0	0.0	
3218	72151	Puerto Rico	Yabucoa	36279	17648	18631	99.8	0.2	0.0	0.0	
3219	72153	Puerto Rico	Yauco	39474	19047	20427	99.5	0.5	0.0	0.0	

Columns

It looks like the data set is structured in the following

3220 rows × 37 columns

- 1. County ID; State; Country
- 2. Total Pop
- 3. Sex
- 4. Race
- 5. Income, Income Per Capita, & respective errors
- 6. Poverty & Child Poverty %
- 7. Occupation Type
- 8. Commute Type
- 9. Type of Employment

Shape

In this data set, there are 37 total attributes & 3220 observations

```
In [19]: df.shape
Out[19]: (3220, 37)
```

Describe

Summarize all attributes

```
In [20]: df.describe()
```

Out[20]:

	CensusId	TotalPop	Men	Women	Hispanic	White	
count	3220.000000	3.220000e+03	3.220000e+03	3.220000e+03	3220.000000	3220.000000	3220.0
mean	31393.605280	9.940935e+04	4.889694e+04	5.051241e+04	11.011522	75.428789	8.6
std	16292.078954	3.193055e+05	1.566813e+05	1.626620e+05	19.241380	22.932890	14.2
min	1001.000000	8.500000e+01	4.200000e+01	4.300000e+01	0.000000	0.000000	0.0
25%	19032.500000	1.121800e+04	5.637250e+03	5.572000e+03	1.900000	64.100000	0.4
50%	30024.000000	2.603500e+04	1.293200e+04	1.305700e+04	3.900000	84.100000	1.9
75%	46105.500000	6.643050e+04	3.299275e+04	3.348750e+04	9.825000	93.200000	9.6
max	72153.000000	1.003839e+07	4.945351e+06	5.093037e+06	99.900000	99.800000	85.9

8 rows × 35 columns

Dataframe Types

Two attritributes are objects; the rest are either in64 or float64

In [21]:	df.dtypes	
Ou+ [2 1 1 •	CensusId	int64
ouc[21]:	State	object
		-
	County	object int64
	TotalPop	
	Men	int64
	Women	int64
	Hispanic	float64
	White	float64
	Black	float64
	Native	float64
	Asian	float64
	Pacific	float64
	Citizen	int64
	Income	float64
	IncomeErr	float64
	IncomePerCap	int64
	IncomePerCapErr	int64
	Poverty	float64
	ChildPoverty	float64
	Professional	float64
	Service	float64
	Office	float64
	Construction	float64
	Production	float64
	Drive	float64
	Carpool	float64
	Transit	float64
	Walk	float64
	OtherTransp	float64
	WorkAtHome	float64
	MeanCommute	float64
	Employed	int64
	PrivateWork	float64
	PublicWork	float64
	SelfEmployed	float64
	FamilyWork	float64
	Unemployment	float64
	dtype: object	

```
df_clean = df[['TotalPop', 'Men', 'Women', 'Hispanic',
                     'White', 'Black', 'Native', 'Asian', 'Pacific', 'Citizen', 'Incom
            e',
                      'IncomePerCap', 'Poverty', 'ChildPoverty',
                      'Professional', 'Service', 'Office', 'Construction',
                     'Production',
                     'Employed', 'Unemployment']]
           df clean
Out[63]:
                             Men Women Hispanic White Black Native Asian
                                                                               Pacific
                                                                                       Citizen ...
                  TotalPop
                                                                                                  Inco
               0
                     55221
                           26745
                                    28476
                                               2.6
                                                     75.8
                                                            18.5
                                                                    0.4
                                                                                   0.0
                                                                                        40725
                                                                           1.0
                                                4.5
                                                     83.1
               1
                    195121
                           95314
                                    99807
                                                             9.5
                                                                    0.6
                                                                           0.7
                                                                                   0.0
                                                                                       147695
               2
                                                     46.2
                     26932 14497
                                    12435
                                               4.6
                                                            46.7
                                                                    0.2
                                                                           0.4
                                                                                   0.0
                                                                                        20714 ...
               3
                     22604 12073
                                    10531
                                               2.2
                                                     74.5
                                                            21.4
                                                                    0.4
                                                                           0.1
                                                                                   0.0
                                                                                        17495
               4
                     57710 28512
                                    29198
                                                8.6
                                                     87.9
                                                             1.5
                                                                    0.3
                                                                           0.1
                                                                                   0.0
                                                                                        42345
            3215
                     56858 27379
                                                             0.1
                                                                                   0.0
                                                                                        43656
                                    29479
                                               96.4
                                                      3.4
                                                                    0.0
                                                                           0.0
            3216
                      9130
                            4585
                                     4545
                                                                                         7085
                                               96.7
                                                      2.9
                                                             0.0
                                                                    0.0
                                                                           0.0
                                                                                   0.0
            3217
                     24685 12086
                                    12599
                                               99.7
                                                      0.0
                                                             0.0
                                                                    0.0
                                                                           0.0
                                                                                   0.0
                                                                                        18458
            3218
                     36279 17648
                                    18631
                                               99.8
                                                      0.2
                                                             0.0
                                                                           0.1
                                                                                   0.0
                                                                                        27924 ...
                                                                                        30661 ...
            3219
                     39474 19047
                                    20427
                                               99.5
                                                      0.5
                                                             0.0
                                                                    0.0
                                                                           0.0
                                                                                   0.0
```

```
3220 rows × 21 columns
```

Top 5 Highest Unemployment Rate by County

```
In [164]: top_unemployed_counties = df[['State', 'County', 'TotalPop','Unemploymen
    t']].sort_values(by=['Unemployment'], ascending=False)
    top_unemployed_counties.head(10)
```

Out[164]:

	State	County	TotalPop	Unemployment
3142	Puerto Rico	Adjuntas	18962	36.5
3183	Puerto Rico	Lares	28727	35.2
3179	Puerto Rico	Jayuya	15890	31.7
3196	Puerto Rico	Orocovis	22595	31.2
3158	Puerto Rico	Cataño	26680	30.8
3208	Puerto Rico	San Sebastián	40471	29.4
2376	South Dakota	Corson	4149	29.4
3213	Puerto Rico	Utuado	31474	28.8
2412	South Dakota	Oglala Lakota	14153	28.7
81	Alaska	Kusilvak Census Area	7914	28.6

Takeaway: As you can see, 7 of the most unemployed counties are located within Puerto Rico and 2 of the most unemployed counties are in South Dakota.

Data Visualizations

Scatter Line - Poverty % vs Unemployment

```
In [165]: sns.scatterplot(data=df_clean, x="Poverty", y="Unemployment", size = 'Un
employment', hue = 'Unemployment')
```

Out[165]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa837e537d0>

Counties w/ higher Poverty % tend to have a higher Unemployment rate

Scatterplot - Income vs Unemployment

```
In [135]: sns.scatterplot(data=df_clean, x="Income", y="Unemployment", size = 'Une
mployment', hue = 'Unemployment')
```

Out[135]: <matplotlib.axes. subplots.AxesSubplot at 0x7fa844940390>

Counties w/ a lower Income tend to have a higher unemployment rate

Pairplot on Sex

Takeaway: It seems Gender does not have an impact on unemployment

Pairplot on Ethnicity

Takeaway: Communities with less diversity (i.e. lacking Asian and Pacific communities) are more likely to have a higher unemployment rate

Pairplot on Occupation

Out[150]: <seaborn.axisgrid.PairGrid at 0x7fa86056e110>

Takeaway: There is a negative correlation between the unemployment rate and the percentage of construction jobs. Also from 2011 onwards there has been a significant increase in the spending on the construction sector in the US budget.

```
In [138]: sns.heatmap(df_clean.corr())
```

Out[138]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa85c3158d0>

Based on the correlation heat map above, it seems like income, poverty, and occupation type are highly correlated

Pivot Table on Sex vs County

Out[55]:

County	Abbeville	Acadia	Accomack	Ada	Adair	Adams	Addison	Adjuntas	Aguada	Agı
Men	12308	30023	16117	208879	36220	409098	18355	9266	19912	
Women	12689	32140	16998	208622	37854	406893	18588	9696	20691	
TotalPop	24997	62163	33115	417501	74074	815991	36943	18962	40603	
3 rows ×	3 rows × 1928 columns									

Prepartion for Linear Regression Model

Ran into NaN Error

Need to drop NaN values

```
In [81]: df clean.isna().sum()
Out[81]: TotalPop
                           0
                           0
          Men
          Women
                           0
                           0
          Hispanic
          White
                           0
          Black
                           0
                           0
          Native
                           0
          Asian
          Pacific
                           0
          Citizen
                           0
          Income
          IncomePerCap
                           0
          Poverty
          ChildPoverty
                           1
          Professional
                           0
          Service
                           0
          Office
          Construction
                           0
                           0
          Production
          Employed
                           0
          Unemployment
                           0
          dtype: int64
         df_clean = df_clean.dropna()
In [84]:
```

```
df_clean.isna().sum()
Out[85]: TotalPop
                            0
                            0
          Men
          Women
                            0
          Hispanic
                            0
                            0
          White
          Black
                            0
                            0
          Native
          Asian
                            0
                            0
          Pacific
          Citizen
                            0
          Income
                            0
                            0
          IncomePerCap
          Poverty
                            0
          ChildPoverty
                            0
          Professional
                            0
          Service
                            0
          Office
                            0
          Construction
                            0
          Production
                            0
          Employed
                            0
          Unemployment
                            0
          dtype: int64
```

Rechecking the Correlation

```
df clean.corr()['Unemployment'].sort values(ascending=False)
Out[93]: Unemployment
                          1.000000
         Poverty
                          0.712419
         ChildPoverty
                          0.678441
         Service
                          0.365371
         Black
                          0.352943
         Hispanic
                          0.321536
         Native
                          0.187386
         Office
                          0.161331
         Production
                          0.079907
         Citizen
                          0.031346
         Women
                          0.031068
         TotalPop
                          0.030313
                          0.029522
         Men
                          0.014002
         Employed
         Pacific
                         -0.015888
         Asian
                         -0.055315
         Construction
                         -0.091779
         Professional
                         -0.300318
         Income
                         -0.509054
         White
                         -0.540146
         IncomePerCap
                         -0.547239
         Name: Unemployment, dtype: float64
```

```
In [166]: sns.heatmap(df_clean.corr())
```

Out[166]: <matplotlib.axes._subplots.AxesSubplot at 0x7fa8407e46d0>

Fitting the Linear Regression Model

```
In [90]: est = sm.OLS(y,x)
  est2 = est.fit()
  print(est2.summary())
```

OLS Regression Results

			egression		
===========		========	:=======	=======	=========
Dep. Variabl		Unemployment	R-square	d (uncente	ered):
Model:		OLS	Adj. R-squared (uncentered):		
0.915			-	- `	,
Method:]	Least Squares	F-statis	tic:	
1827.		-			
Date:	Sun	, 03 Apr 2022	Prob (F-	statistic)):
0.00		09:08:45	Tog Tileo	1;bood.	
Time: -7683.9		09:08:45	Log-Like	iinood:	
No. Observat	ions:	3218	AIC:		
1.541e+04		2100	DIG		
Df Residuals 1.552e+04	:	3199	BIC:		
Df Model:		19			
Covariance T	vne:	nonrobust			
		======================================	=======	========	
=======					
	coef	std err	t	P> t	[0.025
0.975]					
	-5.749e-07	1.92e-06	-0.300	0.764	-4.33e-06
3.18e-06					
Men	1.568e-05	1.04e-05	1.501	0.134	-4.8e-06
3.62e-05					
Women	-1.625e-05	1.06e-05	-1.527	0.127	-3.71e-05
4.62e-06					
Hispanic 0.071	0.0076	0.032	0.233	0.815	-0.056
White	0.0018	0.033	0.054	0.957	-0.062
0.066					
Black	0.0431	0.033	1.320	0.187	-0.021
0.107					
Native	0.0734	0.035	2.074	0.038	0.004
0.143 Asian	0.0296	0.046	0.649	0.517	-0.060
0.119	0.0290	0.040	0.049	0.317	-0:000
Pacific	-0.1833	0.160	-1.147	0.251	-0.496
0.130 Citizen	1.853e-05	3.11e-06	5.965	0.000	1.24e-05
2.46e-05	1.0556-05	3.11e-00	5.905	0.000	1.246-05
Income	5.082e-05	9.71e-06	5.233	0.000	3.18e-05
6.99e-05					
IncomePerCap -2.06e-05	-6.065e-05	2.04e-05	-2.969	0.003	-0.000
Poverty	0.3239	0.020	16.123	0.000	0.284
0.363					
ChildPoverty 0.009	-0.0149	0.012	-1.211	0.226	-0.039
Professional	-0.0761	0.035	-2.200	0.028	-0.144
-0.008		-	-	-	
Service	0.0732	0.034	2.141	0.032	0.006
0.140					

Office 0.178	0.1101	0.035	3.162	0.002	0.042	
Construction	-0.0531	0.035	-1.537	0.124	-0.121	
0.015 Production 0.081	0.0136	0.034	0.394	0.693	-0.054	
	-2.177e-05	5.14e-06	-4.233	0.000	-3.19e-05	
=========		=========	=======	-======		==
====== Omnibus: 1.684		298.199	Durbin-V	Vatson:		
Prob(Omnibus)):	0.000	Jarque-E	Bera (JB):		1
Skew:		0.283	Prob(JB)):		
Kurtosis: 1.14e+16		6.344	Cond. No	· ·		
=========	-=======	========	=======		-=======	==

======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 5.9e-18. This might indicate that there are

strong multicollinearity problems or that the design matrix is singula ${\tt r.}$

We need to clean up the data some more. Some of these columns are not needed.

We will remove TotalPop & Employed

OLS Regression Results

			egression				
===========		========	=======	=======	========		
Dep. Variable	:	Unemployment	R-square	R-squared (uncentered):			
Model:		OLS	Adj. R-s	quared (ur	ncentered):		
0.915	-		D static				
Method: 1917.	1	Least Squares	F-statis	tic:			
Date: 0.00	Sun	, 03 Apr 2022	Prob (F-	statistic):		
Time:		10:18:32	Log-Like	lihood:			
-7692.9 No. Observati	.ons:	3218	AIC:				
1.542e+04 Df Residuals:		3200	BIC:				
1.553e+04		1.0					
Df Model: Covariance Ty	mo.•	18 nonrobust					
_	_	1101110bust	:=======	========			
=======							
0.975]	coef	std err	t	P> t	[0.025		
Men 2.43e-05	4.095e-06	1.03e-05	0.398	0.691	-1.61e-05		
	-2.401e-05	1.11e-05	-2.169	0.030	-4.57e-05		
Hispanic	0.0039	0.032	0.121	0.904	-0.060		
White	-0.0028	0.033	-0.085	0.932	-0.067		
0.062 Black	0.0387	0.033	1.182	0.237	-0.026		
0.103 Native	0.0687	0.035	1.939	0.053	-0.001		
0.138 Asian	0.0065	0.045	0.144	0.886	-0.082		
0.095 Pacific	-0.1304	0.160	-0.817	0.414	-0.444		
0.183							
Citizen 2.3e-05	1.693e-05	3.09e-06	5.477	0.000	1.09e-05		
Income 7.01e-05	5.097e-05	9.74e-06	5.235	0.000	3.19e-05		
IncomePerCap -3.42e-05	-7.387e-05	2.02e-05	-3.650	0.000	-0.000		
Poverty 0.357	0.3172	0.020	15.799	0.000	0.278		
${\tt ChildPoverty}$	-0.0127	0.012	-1.032	0.302	-0.037		
0.011 Professional	-0.0709	0.035	-2.047	0.041	-0.139		
-0.003 Service	0.0849	0.034	2.486	0.013	0.018		
0.152 Office 0.192	0.1236	0.035	3.554	0.000	0.055		

Construction 0.022	-0.0461	0.035	-1.335	0.182	-0.114	
Production 0.087	0.0190	0.034	0.552	0.581	-0.049	
=======================================	========	=======	========	:=======	======	==
Omnibus:		289.920	Durbin-Wat			
1.671						
Prob(Omnibus): 491.440		0.000	Jarque-Ber	a (JB):		1
Skew:		0.267	Prob(JB):			
0.00			` ,			
Kurtosis:		6.292	Cond. No.			
1.16e+06						
==========	========	=======	========	========		==

======

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- $\[2\]$ The condition number is large, 1.16e+06. This might indicate that there are

strong multicollinearity or other numerical problems.

New Train Data Columns

```
x2 = df clean[['TotalPop', 'Men', 'Women', 'Hispanic', 'White', 'Black',
In [160]:
          'Native',
                  'Asian', 'Pacific', 'Citizen', 'Income', 'IncomePerCap', 'Povert
                 'ChildPoverty', 'Professional', 'Service', 'Office', 'Constructio
          n',
                 'Production', 'Unemployment']]
          # Changing integers to percent
          x2['Men %'] = x2['Men']/x2['TotalPop']
          x2['Women %'] = x2['Women']/x2['TotalPop']
          x2['Citizen %'] = x2['Citizen']/x2['TotalPop']
          # Race - floats to percent
          x2['Hispanic'] = x2['Hispanic']/100
          x2['White'] = x2['White']/100
          x2['Black'] = x2['Black']/100
          x2['Native'] = x2['Native']/100
          x2['Pacific'] = x2['Pacific']/100
          # Occupation Type - floats to percent
          x2['Poverty'] = x2['Poverty']/100
          x2['ChildPoverty'] = x2['ChildPoverty']/100
          x2['Professional'] = x2['Professional']/100
          x2['Service'] = x2['Service']/100
          x2['Office'] = x2['Office']/100
          x2['Construction'] = x2['Construction']/100
          x2['Production'] = x2['Production']/100
          # Unemployment - float to percent
          x2['Unemployment'] = x2['Unemployment']/100
          y2 = x2[['Unemployment']]
          x2 = x2[['Men', 'Women', 'Hispanic', 'White', 'Black', 'Native',
                  'Asian', 'Pacific', 'Citizen', 'Income', 'IncomePerCap', 'Povert
          у',
                 'ChildPoverty', 'Professional', 'Service', 'Office', 'Constructio
          n',
                  'Production']]
```

```
In [161]: est5 = sm.OLS(y,x2)
  est6 = est5.fit()
  print(est6.summary())
```

OLS Regression Results

			egression			
=======================================		========	=======	=======	-=======	
Dep. Variable	Unemployment	R-square	R-squared (uncentered):			
Model:				quared (ur	ncentered):	
0.915 Method:	I	Least Squares	F-statis	tic:		
1917. Date:	Sun	, 03 Apr 2022	Prob (F-	statistic)	:	
0.00 Time:		11:34:16	Log-Like	lihood:		
-7692.9 No. Observati	iong.	3218	AIC:			
1.542e+04						
Df Residuals: 1.553e+04	:	3200	BIC:			
Df Model:		18				
Covariance Ty	_	nonrobust 		=======		
=======	_	_				
0.975]	coef	std err	t	P> t	[0.025	
Men 2.43e-05	4.095e-06	1.03e-05	0.398	0.691	-1.61e-05	
	-2.401e-05	1.11e-05	-2.169	0.030	-4.57e-05	
Hispanic 6.755	0.3915	3.246	0.121	0.904	-5.972	
White	-0.2785	3.283	-0.085	0.932	-6.715	
6.158 Black	3.8713	3.275	1.182	0.237	-2.551	
10.293 Native	6.8750	3.545	1.939	0.053	-0.076	
13.826 Asian		0.045				
0.095						
Pacific 18.261	-13.0448	15.967	-0.817	0.414	-44.351	
Citizen 2.3e-05	1.693e-05	3.09e-06	5.477	0.000	1.09e-05	
Income 7.01e-05	5.097e-05	9.74e-06	5.235	0.000	3.19e-05	
IncomePerCap -3.42e-05	-7.387e-05	2.02e-05	-3.650	0.000	-0.000	
Poverty	31.7227	2.008	15.799	0.000	27.786	
_	-1.2715	1.232	-1.032	0.302	-3.686	
	-7.0920	3.465	-2.047	0.041	-13.886	
-0.298 Service	8.4915	3.416	2.486	0.013	1.793	
15.190 Office	12.3559		3.554	0.000	5.539	
19.172						

Construction 2.164	-4.6148	3.457	-1.335	0.182	-11.394	
Production 8.665	1.9036	3.448	0.552	0.581	-4.858	
=========	========	=======	========		========	-=
======						
Omnibus: 289.920 Durbin				cson:		
1.671						
Prob(Omnibus):		0.000	Jarque-Bei	ca (JB):		1
491.440		0.000	ourque ber	(0D).		_
		0.065	- 1 ()			
Skew:		0.267	Prob(JB):			
0.00						
Kurtosis:		6.292	Cond. No.			
1.16e+08						
======						

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.16e+08. This might indicate that there are

strong multicollinearity or other numerical problems.

Takeaway from LR Model

We were hoping to use this model to run a test model on the US Census 2017 County data, however as shown above, the p-values indicate that some features are not as significant as we initially hypothesized.