Lecture 9: Integral Curves and Flows

Tianpei Xie

Oct. 16th., 2022

Contents

1	Integral Curves	2
2	Flows 2.1 Global Flows	5
3	Flowouts	7
4	Flows and Flowouts on Manifolds with Boundary	7
5	Lie Derivatives	7
6	Commuting Vector Fields 6.1 Commuting Vector Fields	
7	Time-Dependent Vector Fields	11

Figure 1: An integral curve of a vector field [Lee, 2003.]

1 Integral Curves

- Suppose M is a smooth manifold with or without boundary. If $\gamma: J \to M$ is a smooth curve, then for each $t \in J$, the velocity vector $\gamma'(t)$ is a vector in $T_{\gamma(t)}M$.
- **Definition** Suppose M is a smooth manifold with or without boundary and V is a *vector* field on M. An <u>integral curve</u> of V is a differentiable curve $\gamma: J \to M$ whose **velocity** at each point is equal to the **value** of V at that point:

$$\gamma'(t) = V_{\gamma(t)}, \quad \forall t \in J.$$

(See Fig. 1) If $0 \in J$, the point $\gamma(0)$ is called **the starting point of** γ .

• Example (Integral Curves)

- 1. Let (x, y) be standard coordinates on \mathbb{R}^2 , and let $V = \frac{\partial}{\partial x}$ be the **first coordinate vector field**. It is easy to check that the integral curves of V are precisely **the straight lines** parallel to the x-axis, with parametrizations of the form $\gamma(t) = (a+t,b)$ for constants a and b. (Fig. 2 (a))
- 2. Let $W=x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x}$ on \mathbb{R}^2 (Fig. 2(b)). If $\gamma:\mathbb{R}\to\mathbb{R}^2$ is a smooth curve, written in standard coordinates as $\gamma(t)=(x(t),y(t))$, then the condition $\gamma'(t)=W_{\gamma(t)}$ for γ to be an integral curve translates to

$$x'(t)\frac{\partial}{\partial x}\Big|_{\gamma(t)} + y'(t)\frac{\partial}{\partial y}\Big|_{\gamma(t)} = x(t)\frac{\partial}{\partial y}\Big|_{\gamma(t)} - y(t)\frac{\partial}{\partial x}\Big|_{\gamma(t)}.$$

Comparing the components of these vectors, we see that this is equivalent to the system of ordinary differential equations

$$x'(t) = -y(t)$$
$$y'(t) = x(t).$$

These equations have the solutions:

$$x(t) = a\cos(t) - b\sin(t)$$

$$y(t) = a\sin(t) + b\cos(t)$$

for arbitrary constants a and b, and thus each curve of the form $\gamma(t) = (a\cos(t) - b\sin(t), a\sin(t) + b\cos(t))$ is an integral curve of W.

Figure 2: Vector fields and their integral curves [Lee, 2003.]

• Remark Finding integral curves boils down to solving a system of ordinary differential equations in a smooth chart. Suppose $\gamma: J \to M$ is a smooth curve and V is a smooth vector field on M. On a smooth coordinate domain $U \subseteq M$, we can write γ in local coordinates as $\gamma(t) = (\gamma^1(t), \ldots, \gamma^n(t))$. Then the condition $\gamma'(t) = V_{\gamma(t)}$ for to be an integral curve of V can be written

$$\dot{\gamma}^i \frac{\partial}{\partial x^i} \Big|_{\gamma(t)} = V^i(\gamma(t)) \frac{\partial}{\partial x^i} \Big|_{\gamma(t)},$$
 (1)

which reduces to the following $autonomous\ system\ of\ ordinary\ differential\ equations$ (ODEs):

$$\dot{\gamma}^i(t) = V^i(\gamma^1(t), \dots, \gamma^n(t)), \qquad i = 1, \dots, n.$$
(2)

• The fundamental fact about such systems is the existence, uniqueness, and smoothness theorem from ODE theory [Amann, 2011, Hirsch et al., 2012].

Proposition 1.1 Let V be a smooth vector field on a smooth manifold M. For each point $p \in M$, there exist $\epsilon > 0$ and a smooth curve $\gamma : (-\epsilon, \epsilon) \to M$ that is an integral curve of V starting at p.

• The next two lemmas show how affine reparametrizations affect integral curves.

Lemma 1.2 (Rescaling Lemma). [Lee, 2003.]

Let V be a smooth vector field on a smooth manifold M, let $J \subseteq \mathbb{R}$ be an interval, and let $\gamma: J \to M$ be an integral curve of V. For any $a \in \mathbb{R}$, the curve $\widetilde{\gamma}: \widetilde{J} \to M$ defined by $\widetilde{\gamma}(t) = \gamma(at)$ is an integral curve of the vector field aV, where $\widetilde{J} = \{t : at \in J\}$.

- Lemma 1.3 (Translation Lemma). [Lee, 2003.] Let V, M, J, and γ be as in the preceding lemma. For any $b \in \mathbb{R}$, the curve $\widehat{\gamma} : \widehat{J} \to M$ defined by $\widehat{\gamma}(t) = \gamma(t+b)$ is also an integral curve of V, where $\widehat{J} = \{t : t+b \in J\}$.
- Proposition 1.4 (Naturality of Integral Curves). [Lee, 2003.] Suppose M and N are smooth manifolds and $F: M \to N$ is a smooth map. Then $X \in \mathfrak{X}(M)$ and $Y \in \mathfrak{X}(N)$ are F-related **if and only if** F takes integral curves of X to integral curves of Y, meaning that for each integral curve γ of X, $F \circ \gamma$ is an integral curve of Y.

Proof: Suppose first that X and Y are F-related, and $\gamma: J \to M$ is an integral curve of X.

Figure 3: Flows for F-related vector fields [Lee, 2003.]

If we define $\sigma: J \to N$ by $\sigma = F \circ \gamma$ (see Fig. 3), then

$$\sigma'(t) = (F \circ \gamma)'(t) = dF_{\gamma(t)}(\gamma'(t)) = dF_{\gamma(t)}(X_{\gamma(t)}) = Y_{F(\gamma(t))} = Y_{\sigma(t)},$$

so σ is an integral curve of Y.

Conversely, suppose F takes integral curves of X to integral curves of Y. Given $p \in M$, let $\gamma: (-\epsilon, \epsilon) \to M$ be an integral curve of X starting at p. Since $F \circ \gamma$ is an integral curve of Y starting at F(p), we have

$$Y_{F(p)} = (F \circ \gamma)'(0) = dF_p(\gamma'(0)) = dF_p(X_p)$$

which shows that X and Y are F-related.

2 Flows

2.1 Global Flows

• Definition A <u>global flow on M</u> (also called a <u>one-parameter group action</u>) is defined as a <u>continuous left</u> \mathbb{R} -action on M; that is, a <u>continuous map</u> $\theta : \mathbb{R} \times M \to M$ satisfying the following properties for all $s, t \in \mathbb{R}$ and $p \in M$:

$$\theta(t, \theta(s, p)) = \theta(t + s, p), \quad \theta(0, p) = p \tag{3}$$

- For a global flow θ on M, we define two collections of maps as follows:
 - **Definition** For each $t \in \mathbb{R}$, **define** a continuous map $\theta_t : M \to M$ by

$$\theta_t(p) = \theta(t, p).$$

The defining properties in (3) are equivalent to *the group laws*:

$$\theta_t \circ \theta_s = \theta_{t+s}, \quad \theta_0 = \mathrm{Id}_M$$
 (4)

- **Definition** For each $p \in M$, define a curve $\theta^{(p)} : \mathbb{R} \to M$ by

$$\theta^{(p)}(t) = \theta(t, p).$$

The image of this curve is the <u>orbit</u> of p under the group action.

Figure 4: The infinitesimal generator of the globla flow [Lee, 2003.]

• **Definition** If $\theta : \mathbb{R} \times M \to M$ is a smooth global flow, for each $p \in M$ we define a tangent vector $V_p \in T_pM$ by

$$V_p = (\theta^{(p)})'(0) = d\theta^{(p)} \left(\frac{d}{dt} \Big|_{t=0} \right).$$

The assignment $p \mapsto V_p$ is a (rough) vector field on M; which is called the infinitesimal generator of the global flow θ .

Remark V is the *infinitesimal generator* of the flow $\theta \Leftrightarrow \theta$ is the *integral curve* of V.

Proposition 2.1 Let θ : ℝ × M → M be a smooth global flow on a smooth manifold M.
 The infinitesimal generator V of θ is a smooth vector field on M; and each curve θ^(p) is an integral curve of V.

This means that $(\theta^{(p)})'(t) = V_{\theta^{(p)}(t)}$ for all $p \in M$ and all $t \in \mathbb{R}$.

2.2 The Fundamental Theorem on Flows

• We have seen that *every smooth global flow* gives rise to *a smooth vector field* whose *integral curves* are precisely the curves defined by the flow.

Conversely, however, it is **not true** that every smooth vector field is the infinitesimal generator of a smooth global flow.

• **Definition** If M is a manifold, a **flow domain** for M is an open subset $\mathfrak{D} \subseteq \mathbb{R} \times M$ with the property that for each $p \in M$, the set $\mathfrak{D}^{(p)} = \{t \in \mathbb{R} : (t,p) \in \mathfrak{D}\}$ is an open interval **containing** 0 (Fig. 5).

A <u>flow</u> on M is a continuous map $\theta : \mathfrak{D} \to M$; where $\mathfrak{D} \subseteq \mathbb{R} \times M$ is a flow domain, that satisfies the following **group laws**:

$$\theta(0, p) = p, \quad \forall p \in M \tag{5}$$

$$\theta(t, \theta(s, p)) = \theta(t + s, p), \quad \forall s \in \mathfrak{D}^{(p)}, \ t \in \mathfrak{D}^{(\theta(s, p))}, \ \text{(i.e. } t + s \in \mathfrak{D}^{(p)})$$
 (6)

We sometimes call θ <u>a local flow</u> to distinguish it from a global flow as defined earlier. The unwieldy term <u>local one-parameter group action</u> is also used.

• **Definition** If θ is a flow, we define $\theta_t(p) = \theta^{(p)}(t) = \theta(t, p)$ whenever $(t, p) \in \mathfrak{D}$, just as for a global flow. For each $t \in \mathbb{R}$, we also define

$$M_t = \{ p \in M : (t, p) \in \mathfrak{D} \} \tag{7}$$

Figure 5: The flow domain [Lee, 2003.]

so that

$$p \in M_t \Leftrightarrow t \in \mathfrak{D}^{(p)} \Leftrightarrow (t, p) \in \mathfrak{D}.$$

If θ is smooth, the infinitesimal generator of θ is defined by $V_p = (\theta^{(p)})'(0)$.

- Proposition 2.2 If $\theta : \mathfrak{D} \to M$ is a smooth flow, then the infinitesimal generator V of θ is a smooth vector field, and each curve $\theta^{(p)}$ is an integral curve of V.
- **Definition** A maximal integral curve is one that cannot be extended to an integral curve on any larger open interval, and a maximal flow is a flow that admits no extension to a flow on a larger flow domain.
- Theorem 2.3 (Fundamental Theorem on Flows). [Lee, 2003.]
 Let V be a smooth vector field on a smooth manifold M. There is a unique smooth maximal flow θ : D → M whose infinitesimal generator is V. This flow has the following properties:
 - 1. For each $p \in M$, the curve $\theta^{(p)} : \mathfrak{D}^{(p)} \to M$ is the **unique maximal integral curve** of V starting at p.
 - 2. If $s \in \mathfrak{D}^{(p)}$, then $\mathfrak{D}^{(\theta(s,p))}$ is the interval $\mathfrak{D}^{(p)} s = \{t s : t \in \mathfrak{D}^{(p)}\}.$
 - 3. For each $t \in \mathbb{R}$, the set M_t is **open** in M; and $\theta_t : M_t \to M_{-t}$ is a **diffeomorphism** with **inverse** θ_{-t} .
- Remark The flow whose existence and uniqueness are asserted in the fundamental theorem is called the flow generated by V, or just the flow of V.
- Proposition 2.4 (Naturality of Flows). [Lee, 2003.] Suppose M and N are smooth manifolds, $F: M \to N$ is a smooth map, $X \in \mathfrak{X}(M)$, and $Y \in \mathfrak{X}(N)$. Let θ be the flow of X and η the flow of Y. If X and Y are F-related, then for each $t \in \mathbb{R}$, $F(M_t) \subseteq N_t$ and $\eta_t \circ F = F \circ \theta_t$ on M_t :

$$M_{t} \xrightarrow{F} N_{t}$$

$$\theta_{t} \downarrow \qquad \qquad \downarrow \eta_{t}$$

$$M_{-t} \xrightarrow{F} N_{-t}$$

• Corollary 2.5 (Diffeomorphism Invariance of Flows). Let $F: M \to N$ be a diffeomorphism. If $X \in \mathfrak{X}(M)$ and θ is the flow of X, then the flow of pushforward F_*X is $\eta_t = F \circ \theta_t \circ F^{-1}$, with domain $N_t = F(M_t)$ for each $t \in \mathbb{R}$.

2.3 Complete Vector Fields

• As we observed earlier in this chapter, not every smooth vector field generates a *global flow*. The ones that do are important enough to deserve a name.

Definition We say that a smooth vector field is **complete** if it generates a **global flow**, or equivalently if each of its maximal integral curves is defined for all $t \in \mathbb{R}$.

• We will show below that all compactly supported smooth vector fields, and therefore all smooth vector fields on a compact manifold, are complete. The proof will be based on the following lemma.

Lemma 2.6 (Uniform Time Lemma).

Let V be a smooth vector field on a smooth manifold M, and let θ be its flow. Suppose there is a **positive number** ϵ such that for **every** $p \in M$, the domain of $\theta^{(p)}$ contains $(-\epsilon, \epsilon)$. Then V is complete.

- Theorem 2.7 Every compactly supported smooth vector field on a smooth manifold is complete.
- Corollary 2.8 On a compact smooth manifold, every smooth vector field is complete.
- Left-invariant vector fields on Lie groups form another class of vector fields that are always complete.

Theorem 2.9 Every left-invariant vector field on a Lie group is complete.

• Here is another useful property of integral curves.

Lemma 2.10 (Escape Lemma).

Suppose M is a smooth manifold and $V \in \mathfrak{X}(M)$. If $\gamma : J \to M$ is a maximal integral curve of V whose domain J has a finite least upper bound b, then for any $t_0 \in J$, $\gamma([t_0,b))$ is not contained in any compact subset of M.

3 Flowouts

•

4 Flows and Flowouts on Manifolds with Boundary

5 Lie Derivatives

- The directional derivatives of a smooth function on M is obtained via vf where v is a tangent vector operator $v \in T_pM$. What about the directional derivative of a vector field?
- **Remark** In *Euclidean space*, it makes sense to ask this question. We can define *the directional derivatives of a vector field W at point p* as below:

$$D_v W(p) := \lim_{t \to 0} \frac{W_{p+t\,v} - W_p}{t} = \frac{d}{dt} \Big|_{t=0} W_{p+t\,v}.$$

Figure 6: The directional derivative of vector fields [Lee, 2003.]

An easy calculation shows that $D_vW(p)$ can be evaluated by applying D_v to each component of W separately (See Fig 6.):

$$D_v W(p) = D_v W^i(p) \frac{\partial}{\partial x^i} \Big|_p$$

Unfortunately, this definition is heavily dependent upon the fact that \mathbb{R}^n is a **vector space**, so that the tangent vectors W_{p+tv} and W_p can **both** be viewed as elements of \mathbb{R}^n .

• Remark For a manifold M, the vector field W_{p+tv} may not be well-defined since we do not know if $p+tv \in M$. Therefore, we replace p+tv by the curve $\gamma(t)=\theta(p,t)$ where $\gamma(0)=p$ and $\gamma'(0)=v$. On the other hand, the vector field $W_{\gamma(0)}$ and $W_{\gamma(t)}$ are not in the same tangent space (one in $T_{\gamma(0)}M$ and the other $T_{\gamma(t)}M$). We got away with it in Euclidean space because there is a canonical identification of each tangent space with \mathbb{R}^n itself; this is not true for general smooth manifold M.

This problem can be circumvented if we replace the vector $v \in T_pM$ with a **vector field** $V \in \mathfrak{X}(M)$, so we can use the **flow** of V to **push values of** W **back to** p and then differentiate.

Definition Suppose M is a smooth manifold, V is a smooth vector field on M; and θ is
the flow of V. For any smooth vector field W on M, define a rough vector field on M,
denoted by L_V W and called the Lie derivative of W with respect to V, by

$$(\mathcal{L}_{V} W)_{p} = \lim_{t \to 0} \frac{d(\theta_{-t})_{\theta_{t}(p)} \left(W_{\theta_{t}(p)}\right) - W_{p}}{t}$$

$$= \frac{d}{dt}\Big|_{t=0} d(\theta_{-t})_{\theta_{t}(p)} \left(W_{\theta_{t}(p)}\right),$$
(8)

provided the derivative exists. For small $t \neq 0$, at least the difference quotient makes sense: θ_t is defined in a neighborhood of p, and θ_{-t} is the inverse of θ_t , so both $d(\theta_{-t})_{\theta_t(p)}(W_{\theta_t(p)})$ and W_p are elements of T_pM (Fig 7).

- Remark If M has nonempty boundary, this definition of $\mathcal{L}_V W$ makes sense as long as V is tangent to ∂M so that its flow exists.
- Lemma 5.1 Suppose M is a smooth manifold with or without boundary, and $V, W \in \mathfrak{X}(M)$. If $\partial M \neq \emptyset$, assume in addition that V is tangent to ∂M . Then $(\mathcal{L}_V W)_p$ exists for every $p \in M$, and $\mathcal{L}_V W$ is a smooth vector field.

Proof: Let θ be the flow of V. For arbitrary $p \in M$, let $(U, (x^i))$ be a smooth chart containing p. Choose an open interval J_0 containing 0 and an open subset $U_0 \subseteq U$ containing p such

Figure 7: The Lie derivative of vector fields [Lee, 2003.]

that θ maps $J_0 \times U_0$ into U. For $(t,x) \in J_0 \times U_0$, write the component functions of θ as $(\theta^1(t,x),\ldots,\theta^n(t,x))$. Then for any $(t,x) \in J_0 \times U_0$, the matrix of $d(\theta_{-t})_{\theta_t(x)}: T_{\theta_t(x)}M \to T_xM$ is

$$\left(\frac{\partial \theta^i}{\partial x^j}(-t,\theta(t,x))\right).$$

Therefore,

$$d\left(\theta_{-t}\right)_{\theta_{t}(p)}\left(W_{\theta_{t}(p)}\right) = \frac{\partial\theta^{i}}{\partial x^{j}}(-t,\theta(t,x))W^{j}(\theta(t,x))\frac{\partial}{\partial x^{i}}\Big|_{x}.$$

Because θ^i and W^j are smooth functions, the coefficient of $\partial/\partial x^i|_x$ depends smoothly on (t,x). It follows that $(\mathscr{L}_V W)_x$, which is obtained by taking the derivative of this expression with respect to t and setting t=0, exists for each $x\in U_0$ and depends smoothly on x.

• The following theorem is critical to understand the *Lie derivatives* and *Lie bracket*.

Theorem 5.2 If M is a smooth manifold and $V, W \in \mathfrak{X}(M)$, then $\mathscr{L}_V W = [V, W]$.

Proof: Suppose $V, W \in \mathfrak{X}(M)$, and let $\mathcal{R}(V) \subseteq M$ be the set of regular points of V (the set of points $p \in M$ such that $V_p \neq 0$). Note that $\mathcal{R}(V)$ is open in M by continuity, and its closure is the support of V. We will show that $(\mathcal{L}_V W)_p = [V, W]_p$ for all $p \in M$, by considering three cases.

 $-p \in \mathcal{R}(V)$. In this case, we can choose smooth coordinates (u^i) on a neighborhood of p in which V has the coordinate representation $V = \partial/\partial u^1$ (Theorem 9.22). In these coordinates, the flow of V is $\theta_t(u) = (u^1 + t, u^2, \dots, u^n)$. For each fixed t, the matrix of $d(\theta_{-t})_{\theta_t(x)}$ in these coordinates (the Jacobian matrix of θ_{-t}) is the identity at every point. Consequently, for any $u \in U$,

$$d(\theta_{-t})_{\theta_t(u)} (W_{\theta_t(u)}) = d(\theta_{-t})_{\theta_t(u)} \left(W^j(u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j} \Big|_{\theta_t(u)} \right)$$
$$= W^j(u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j} \Big|_{u}.$$

Using the definition of the Lie derivative, we obtain

$$(\mathscr{L}_V W)_u = \frac{d}{dt}\Big|_{t=0} W^j(u^1 + t, u^2, \dots, u^n) \frac{\partial}{\partial u^j}\Big|_u = \frac{\partial W^j}{\partial u^1}(u^1, u^2, \dots, u^n) \frac{\partial}{\partial u^j}\Big|_u.$$

On the other hand, by virtue of formula (note that $V_i = 0$ for all $i \neq 1$ and $V_1 = 1$.)

$$[V, W] = \left(V^{i} \frac{\partial W^{j}}{\partial u^{i}} - W^{i} \frac{\partial V^{j}}{\partial u^{i}}\right) \frac{\partial}{\partial u^{j}}$$

$$= \left(\frac{\partial W^{j}}{\partial u^{1}}\right) \frac{\partial}{\partial u^{j}},$$
(9)

for the Lie bracket in coordinates, $[V, W]_u$ is easily seen to be equal to the same expression.

- $-p \in \operatorname{supp}(V)$. Because $\operatorname{supp}V$ is the closure of $\mathcal{R}(V)$, it follows by continuity from Case 1 that $(\mathcal{L}_V W)_p = [V, W]_p$ for $p \in \operatorname{supp}(V)$.
- $-p \in M \setminus \operatorname{supp}(V)$. In this case, $V \equiv 0$ on a neighborhood of p. On the one hand, this implies that θ_t is equal to the identity map in a neighborhood of p for all t, so $d(\theta_{-t})_{\theta_t(p)}(W_{\theta_t(p)}) = W_p$, which implies $(\mathscr{L}_V W)_p = 0$. On the other hand, $[V, W]_p = 0$ by formula (9).
- Remark This theorem allows us to extend the definition of the *Lie derivative* to arbitrary smooth vector fields on a smooth manifold M with boundary. Given $V, W \in \mathfrak{X}(M)$ we define $(\mathscr{L}_V W)_p$ for $p \in \partial M$ by embedding M in a smooth manifold \widetilde{M} without boundary (such as the double of M), extending V and W to smooth vector fields on \widetilde{M} , and computing the Lie derivative there. By virtue of the preceding theorem, $(\mathscr{L}_V W)_p = [V, W]_p$ is independent of the choice of extension.
- Remark This theorem also gives us a geometric interpretation of the Lie bracket of two vector fields: it is the directional derivative of the second vector field along the flow of the first.
- Corollary 5.3 Suppose M is a smooth manifold with or without boundary, and $V, W, X \in \mathfrak{X}(M)$.
 - 1. $(Anti-symmetric) \mathcal{L}_V W = -\mathcal{L}_W V$.
 - 2. $\mathscr{L}_V[W, X] = [\mathscr{L}_V W, X] + [W, \mathscr{L}_V X].$
 - 3. (Lie Bracket definition) $\mathcal{L}_{[VW]}X = \mathcal{L}_{V}\mathcal{L}_{W}X \mathcal{L}_{W}\mathcal{L}_{V}X$.
 - 4. If $g \in \mathcal{C}^{\infty}(M)$, then $\mathscr{L}_V(gW) = (Vg)W + g\mathscr{L}_VW$.
 - 5. (Pushforward) If $F: M \to N$ is a diffeomorphism, then $F_*(\mathcal{L}_V X) = \mathcal{L}_{F_*V} F_*X$.
- Remark Note that the Lie derivative is **not linear over** $\mathcal{C}^{\infty}(M)$ in V, i.e.

$$\mathcal{L}_{fV} W \neq f \mathcal{L}_V W$$

- Remark If V and W are vector fields on M and θ is the flow of V, the Lie derivative $(\mathcal{L}_V W)_p$, by definition, expresses the t-derivative of the **time-dependent vector** $d(\theta_{-t})_{\theta_t(p)}(W_{\theta_t(p)}) \in T_p M$ at t = 0. The next proposition shows how it can also be used to compute the derivative of this expression at other times.
- Proposition 5.4 Suppose M is a smooth manifold with or without boundary and $V, W \in \mathfrak{X}(M)$. If $\partial M \neq \emptyset$, assume also that V is tangent to ∂M . Let θ be the flow of V. For any

 (t_0, p) in the domain of θ ,

$$\frac{d}{dt}\Big|_{t=t_0} d\left(\theta_{-t}\right)_{\theta_t(p)} \left(W_{\theta_t(p)}\right) = d(\theta_{-t_0}) \left((\mathscr{L}_V W)_{\theta_{t_0}(p)} \right). \tag{10}$$

6 Commuting Vector Fields

6.1 Commuting Vector Fields

- **Definition** If $\theta: \mathfrak{D} \to M$ is a **smooth flow**, a vector field W is said to be **invariant under** θ if W is θ_t -related **to itself** for each t; more precisely, this means that $W|_{M_t}$ is θ_t -related to $W|_{M_{-t}}$ for each t, or equivalently that

$$d(\theta_t)_p(W_p) = W_{\theta_t(p)}, \quad \forall (t, p) \in \mathfrak{D}$$

- **Theorem 6.1** For smooth vector fields V and W on a smooth manifold M, the following are equivalent:
 - 1. V and W commute.
 - 2. W is invariant under the flow of V.
 - 3. V is invariant under the flow of W.
- Corollary 6.2 Every smooth vector field is invariant under its own flow.

Note that $[V, V] \equiv 0$.

• **Definition** If θ and ψ are flows on M, we say that θ and ψ **commute** if the following condition holds for every $p \in M$: whenever J and K are open intervals containing 0 such that one of the expressions $\theta_t \circ \psi_s(p)$ or $\psi_s \circ \theta_t(p)$ is defined for **all** $(s,t) \in J \times K$, **both are defined** and **they are equal**.

For global flows, this is the same as saying that $\theta_t \circ \psi_s = \psi_s \circ \theta_t$ for all s and t.

• Theorem 6.3 Smooth vector fields commute if and only if their flows commute.

6.2 Commuting Frames

7 Time-Dependent Vector Fields

References

- Herbert Amann. Ordinary differential equations: an introduction to nonlinear analysis, volume 13. Walter de gruyter, 2011.
- Morris W Hirsch, Stephen Smale, and Robert L Devaney. Differential equations, dynamical systems, and an introduction to chaos. Academic press, 2012.
- John Marshall Lee. *Introduction to smooth manifolds*. Graduate texts in mathematics. Springer, New York, Berlin, Heidelberg, 2003. ISBN 0-387-95448-1.