MATH3411 INFORMATION, CODES & CIPHERS

Test 3 Session 2 2018 SOLUTIONS

Version A

Multiple choice: d, d, c, e, b True/False: \mathbf{F} , \mathbf{T} , \mathbf{T} , \mathbf{T} , \mathbf{F} .

- 1. (d): $H_M = \frac{8}{13}H(0.75) + \frac{8}{13}H(0.4) \approx 0.904$
- 2. (d): The second least likely codewords have probability $\frac{4}{125}$ and length $\lceil \log_2 \frac{125}{4} \rceil = 5$.
- 3. (c): $H(B|A) = \sum_{i} P(a_i)H(B|a_i) = \frac{3}{7}H(\frac{4}{5}) + \frac{4}{7}H(\frac{5}{8}) = \frac{3}{7}H(\frac{1}{5}) + \frac{4}{7}H(\frac{3}{8})$.
- 4. (e): You can use Euler's Theorem but it's easier just to note that $10^3 \equiv -1 \pmod{1001}$:

$$10^{1001} \equiv (10^3)^{333} \times 10^2 \equiv (-1)^{333} \times 100 \equiv -100 \equiv 901 \pmod{1001}$$
.

5. (b) Neither 12 nor 18 are coprime to 28, unlike 3 and 9. Consider a = 3: Since $3^3 \equiv -1 \pmod{28}$.

$$3^{27} \equiv (3^3)^9 \equiv (-1)^9 \equiv -1 \not\equiv 1 \pmod{28}$$
.

We see that n = 28 is not pseudo-prime to base 3. Consider Assignment, Project Exam Help

We see that n = 28 is pseudo-prime to base 9.

- (i) False: φ(22) = https://powcoder.com
 - (ii) **True**: $x^3 + x + 1$ has no roots in \mathbb{Z}_2 so it has no linear factor. Since its degree is 3, it is irreducible. Therefore, $\mathbb{Z}_2[x]/\langle x^3+x+1\rangle$ is a field.
 - (iii) True: gcd(3,17) Close W(Clanata POW Coder
 - (iv) **True**: $11 = 5^5 \pmod{18}$ and $\gcd(5, \phi(18)) = 1$ (here $\phi(18) = 5$).
 - (v) False: There are $\phi(\phi(125)) = \phi(100) = 40$ primitive elements in \mathbb{U}_{125} .
- 7. (i) Here, $\alpha^2 = -\alpha 2 = 2\alpha + 1$:

$$\begin{array}{ll} \alpha^1 = \alpha & \alpha^5 = 2\alpha \\ \alpha^2 = 2\alpha + 1 & \alpha^6 = \alpha + 2 \\ \alpha^3 = 2\alpha + 2 & \alpha^7 = \alpha + 1 \\ \alpha^4 = 2 & \alpha^8 = 1 \end{array}$$

(ii)
$$\frac{\alpha^2 + 1}{\alpha^3 + \alpha^4} = \frac{2\alpha + 2}{2\alpha + 1} = \frac{\alpha^3}{\alpha^2} = \alpha$$

(iii)
$$m_2(x) = (x - \alpha^2)(x - \alpha^6) = x^2 - (\alpha^2 + \alpha^6)x + 1 = x^2 + 1$$

Version B

Multiple choice: e, c, c, d, a True/False: \mathbf{F} , \mathbf{T} , \mathbf{T} , \mathbf{F} , \mathbf{F} .

- 1. (e): $H_M = \frac{2}{5}H(0.7) + \frac{3}{5}H(0.2) \approx 0.786$
- 2. (c): H(A, B) = H(A) + H(B) I(A, B) = 0.93 + 0.76 0.56 = 1.13
- 3. (c): By Euler's Theorem, $5^{\phi(2018)} \equiv 5^{1008} \equiv 1 \pmod{2018}$, so

$$5^{2018} \equiv (5^{1008})^2 \times 5^2 \equiv 1^2 \times 25 \equiv 25 \pmod{2018}$$
.

- 4. (d) $6 \equiv 5^3 \pmod{17}$ and $\gcd(3, 16) = 1$; also, $10 \equiv 5^7 \pmod{17}$ and $\gcd(7, 16) = 1$. Therefore, both 6 and 10 are primitive elements in \mathbb{Z}_{17} .
- 5. (a): The second most likely codewords have probability $\frac{50}{343}$ and length $\lceil \log_3 \frac{343}{50} \rceil = 2$.
- (i) **False**: $\phi(48) = \phi(3)\phi(2^4) = 16$.
 - (ii) **True**: $x^3 + x^2 + 1$ has no roots in \mathbb{Z}_2 so it has no linear factor. Since its degree is 3, it is irreducible.
 - (iii) **True**: There are $\phi(\phi(31)) = \phi(30) = 8$ primitive elements in \mathbb{U}_{31} .
 - (iv) False: gcd(2,61) = 1 and $2^{60} \equiv 1 \pmod{61}$;
 - however, for the prime powers p = 3, 5 of $n 1 = 60, 2^{\frac{60}{p}} \equiv 1 \pmod{31}$.

7. (i) Here,
$$\alpha^2 = -2\alpha \frac{1}{2} \frac{1}{$$

(ii)

$$\begin{pmatrix} \alpha^4 & \alpha^5 & 2 \\ \alpha^2 & \alpha^7 & \alpha^3 \end{pmatrix} \xrightarrow{R1 = \alpha^4 R1} \begin{pmatrix} 1 & \alpha & 1 \\ 1 & \alpha^5 & \alpha \end{pmatrix} \xrightarrow{R2 = R2 - R1} \begin{pmatrix} 1 & \alpha & 1 \\ 0 & \alpha & \alpha - 1 \end{pmatrix}$$

$$\xrightarrow{R1 = R1 - R2} \begin{pmatrix} 1 & 0 & 2\alpha + 2 \\ 0 & \alpha & \alpha^7 \end{pmatrix} \xrightarrow{R2 = \alpha^{-1} R2} \begin{pmatrix} 1 & 0 & \alpha^6 \\ 0 & 1 & \alpha^6 \end{pmatrix}$$

so $x = y = \alpha^6 = 2\alpha + 2$.

(iv)
$$m_5(x) = (x - \alpha^5)(x - \alpha^7) = x^2 - (\alpha^7 + \alpha^5)x + \alpha^7\alpha^5 = x^2 - 2x + 2 = x^2 + x + 2$$