

SIGIR-25 Full Papers Track

Dynamic Time-aware Continual User Representation Learning

Seungyoon Choi, Sein Kim, Hongseok Kang, Wonjoong Kim, Chanyoung Park

Korean Advanced Institute of Science and Technology (KAIST)

The method of sequentially learning new knowledge in a **single model** while handling multiple tasks.

The method of sequentially learning new knowledge in a **single model** while handling multiple tasks.

The method of sequentially learning new knowledge in a single model while handling multiple tasks.

The method of sequentially learning new knowledge in a **single model** while handling multiple tasks.

The method of sequentially learning new knowledge in a single model while handling multiple tasks.

The method of sequentially learning new knowledge in a single model while handling multiple tasks.

Challenges of Continual Learning

- Catastrophic Forgetting
 - When training a model in a Continual Setting, there is a situation
 where it becomes biased towards the recent data distribution

Positive Transfer

- Positive Forward Transfer
 - The knowledge learned from the previous task should be beneficial for the next task

- Positive Backward Transfer
 - The knowledge learned from the next task should also be helpful for improving the performance of the previous task

User Modeling

Generating user representations for each task to enable personalized recommendations

<Example of model operation for each task>

Universal User Representation Learning

Problems on User Modeling

Inefficient: Create and train new models for each new task

Research Objective

- Solve various tasks through a Universal User Representation
- Maintain competitive performance across tasks using single universal user representation

Continual User Representation Learning

Sequentially solving the user modeling tasks

Continual User Representation Learning

Motivation

Limitations of the previous work

Limitation of not considering the **flow of time** as the task progresses:

- In the real world, time passes as the task progresses
- **New users** with **new items** emerge

Tmall	Num. items	The number of new items emerged								
Dataset	given on 8/11	8/11 ~ 8/26	8/26 ~ 9/11	9/11 ~ 9/26	9/26 ~ 10/11	10/11 ~ 10/26	10/26~ 11/12			
Click	570.6K	65.0K	79.0K	61.0K	58.9K	77.0K	171.3K			
Cart	6.2K	1.1K	1.9K	1.7K	1.9K	3.2K	27.1K			
Purchase	153.3K	16.8K	26.5K	19.2K	18.4K	21.3K	117.3K			
Favorite	195.2K	27.2K	34.4K	28.1K	28.2K	39.1K	93.1K			

<Number of **new items** over time in Tmall dataset>

Motivation

Proposed Evaluation Scenario

Training Phase

Time passes as tasks progress

Inference Phase

 Evaluation is conducted on all preceding tasks at the point when the final task is completed

Motivation

Existing Method

TERACON utilize the data for the **entire time period equally** to all tasks \rightarrow **unrealistic!**

The failure to perform proper knowledge transfer in the shifted distribution \rightarrow Catastrophic forgetting!

Challenges

Forward Knowledge Transfer

 Transferring the knowledge learned from past tasks to the current task to ensure that the knowledge acquired from previous tasks is not forgotten → avoid Catastrophic Forgetting

Backward Knowledge Transfer

- As new items are added over time, the distribution shifts
- The knowledge from the current task is transferred to the past task to help it adapt to the current distribution

- → DynamIc Time-aware ConTinual User RepresentatiOn Learning (DITTO)
 - Investigates how/what/why to forward/backward transfer under continuous shifts in item distribution

Preliminaries

Notation

• Sequence of Tasks : $\mathcal{T} = \{T_1, T_2, ..., T_i, ..., T_M\}$

timestamp
$$t = \{t_1, t_2, ..., t_j, ..., t_M\}$$

$$\mathcal{T}^t = \left\{T_1^{t_1}, T_2^{t_2}, ..., T_k^{t_k}, ..., T_M^{t_M}\right\}$$

- User across entire tasks : $\mathcal{U} = \{u_1, u_2, ..., u_N\}$
- Set of items : *I*
- Behavior sequence of u_l up to the time point t_j : $\mathbf{x}_{t_j}^{u_l} = \{x_1^{u_l}, x_2^{u_l}, ..., x_n^{u_l}\}$

Distribution-aware Forward Knowledge Transfer (FKT)

- Transferring knowledge from previous tasks to the current task by considering the relationship between tasks
- Previous work used Pseudo-labeling!
 - If the previous task has been adequately learned,
 it is possible to generate pseudo-labels for previous task using current task's input
 - E.g.,
 Task 1: Learn the age of users u_1, u_2, u_3 Task 2: Predict the gender of users u_3, u_4, u_5 current input \rightarrow Generates pseudo-labels
 for the ages of u_3, u_4, u_5 By training on these pseudo-labels,
 it is possible to retain the age information for u_3 and learn the age information of u_4, u_5
 - By training on pseudo-labels,
 the knowledge from past tasks can be preserved

Distribution-aware Forward Knowledge Transfer (FKT)

- Reliability of Pseudo-labels
 - Due to the continuous emergence of new items as the task progresses, reliable pseudo-labels cannot be generated

→ User behavior sequences that allow for generating reliable pseudo-labels through distribution-aware sampling strategy!

		Tmall		
T_1	T_2	<i>T</i> ₃	T_4	T_5
w/o. sampling -0.013	0.0271	0.0258	0.0277	0.0138
w. sampling 0.3912	0.3413	0.3974	0.4078	0.3827

Distribution-aware Forward Knowledge Transfer (FKT)

- Distribution-aware User Sampling
 - Sampling user behavior sequences that have a distribution similar to the one during the learning of past tasks
 - Sampling the Top K most similar user behavior sequences for past tasks by comparing the representation of the user behavior sequence with the average of the item embeddings after the past task has been learned

$$\mathcal{U}_{FKT}^{T_k \to T_i} = \underset{u_l}{\operatorname{argmax}} (S_{i,k}) \cos \left(\tilde{\mathbf{h}}_{u_l}^{T_k^{t_j}}, \mathbb{E}[\mathbf{I}^{T_k}] \right), \quad u_l \in \mathcal{U}^{T_i^{t_j}}$$

→ The reliability of the pseudo-labels improves when compared to the actual labels

		Tmall		
T_1	T_2	<i>T</i> ₃	T_4	T_5
w/o. sampling -0.013	0.0271	0.0258	0.0277	0.0138
w. sampling 0.3912	0.3413	0.3974	0.4078	0.3827

→ The model is able to effectively retain the past knowledge that needs to be remembered, excluding the shifted distribution!

$$\mathcal{L}_{FKT}^{T_k \to T_i} = \underset{u_l}{\mathbb{E}} \left[L_{MSE}(\mathcal{M}(\mathbf{x}_{t_j}^{u_l}; \mathbf{m}^{T_k}), \tilde{\mathbf{h}}_{u_l}^{T_k^{t_j}}) \right], \quad u_l \in \mathcal{U}_{FKT}^{T_k \to T_i}$$

Distribution-aware Backward Knowledge Transfer (BKT)

- Transferring knowledge to allow past tasks to adapt to the shifted distribution as new items are added
- Distribution-aware User Sampling
 - Sampling user behavior sequences that have a distribution different from the one during the learning of past tasks
 - Sampling the Top K most dissimilar user behavior sequences for past tasks by comparing the representation of the user behavior sequence with the average of the item embeddings after the past task has been learned

$$\mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \underset{u_l}{\operatorname{argmin}} (S_{i,k}) \cos \left(\tilde{\mathbf{h}}_{u_l}^{T_k^{t_j}}, \mathbb{E}[\mathbf{I}^{T_k}] \right), \quad u_l \in \mathcal{U}^{T_i^{t_j}}$$

- Backward Knowledge Transfer through Contrastive Learning
 - Since reliable pseudo-labels cannot be generated, an unsupervised learning approach is utilized
 - Applying contrastive learning by augmenting the sampled user behavior sequence with two different views

$$\mathcal{L}_{cl}^{u_l} = -\log \frac{\exp \left(\operatorname{sim} \left(a_1(\mathbf{x}_{t_j}^{u_l}), a_2(\mathbf{x}_{t_j}^{u_l}) \right)}{\exp \left(\operatorname{sim} \left(a_1(\mathbf{x}_{t_j}^{u_l}), a_2(\mathbf{x}_{t_j}^{u_l}) \right) + \sum\limits_{s^- \in S^-} \exp \left(\operatorname{sim} \left(a_1(\mathbf{x}_{t_j}^{u_l}), s^- \right) \right)}{\mathcal{L}_{BKT_2}^{T_k \leftarrow T_i}} \\ \mathcal{L}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\ \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} = \mathbb{E} \left[\mathcal{L}_{cl}^{u_l} \right], \quad u_l \in \mathcal{U}_{BKT_2}^{T_k \leftarrow T_i} \\$$

→ The past task can adapt to the current shifted distribution!

(a) User Sampling Strategy

Datasets & Tasks Descriptions

Tmall

User Behavior Modeling $\cdot \quad T_1 : \text{(userID, recent 100 clicking interactions)}$ $\cdot \quad T_2 : \text{(userID, the item that the user put in the cart)}$ $\cdot \quad T_3 : \text{(userID, the item purchased by user)}$ $\cdot \quad T_4 : \text{(userID, the item favored by the user)}$ $\cdot \quad T_5 : \text{(userID, age)}$ $\cdot \quad T_6 : \text{(userID, gender)}$

ML (Movie Lens)

User behavior modeling T_1 : (userID, recent 30 clicking interactions)

Item Recommendation T_2 : (userID, an item that is rated higher than 4) T_3 : (userID, one of 5-star items)

Taobao

User behavior modeling	•	T_1 : (userID, recent 50 page-view interactions)
•	•	T_2 : (userID, the item that the user put in the cart)
Item Recommendation	•	T_3 : (userID, the item favored by the user)
•	•	T_4 : (userID, the item purchased by user)

Dataset	Task 1 $ \mathcal{U}^{T_1^{t_1}} $		Task $\mathcal{U}^{T_2^{t_2}}$		Task $ \mathcal{U}^{T_3^{t_3}} $	$3(T_3^{t_3}) = \mathcal{Y}^{T_3^{t_3}} $	Task $ \mathcal{U}^{T_4^{t_4}} $		Task 5 ($ \mathcal{U}^{T_5^{t_5}} $	$ \mathcal{J}_{5}^{t_{5}} $ $ \mathcal{J}^{T_{5}^{t_{5}}} $	Task 6 ($ \mathcal{U}^{T_6^{t_6}} $	$\frac{(T_6^{t_6})}{ \mathcal{Y}^{T_6^{t_6}} }$
Tmall	Cli 355K	ck 525K	1.29K	art 526K	Puro 65K	chase 591K	Favo 54K	orite 648K	Age 393K	6	Gend 402K	er 2
ML	Cli 53K	ick 4K	4-s 1.2K	tar 4.5K	5-s 6.1K	star 6.8K		-	-		-	
Taobao	Page 434K	View 1.47M	Ca 311K	art 1.63M	Fav 295K	orite 1.83M	321K	uy 2.00M	-		-	

Overall Performance

•				Tn	nall				ML			Tao	bao	
_		T_1	T_2	T_3	T_4	T_5	T_6	T_1	T_2	T_3	T_1	T_2	T_3	T_4
Trains a single model for each task from scratch	SinMo	0.3002	0.1032	0.2234	0.2135	0.3327	0.7432	0.3603	0.0804	0.4531	0.3340	0.2087	0.2417	0.3526
Transfer Learning $(T_1 \rightarrow T_i)$	FineAll PeterRec	0.3022 0.3022	0.1101 0.1096	0.1568 0.1588	0.1116 0.1135	0.2831 0.3165	0.7219 0.7458	0.3603 0.3603	0.0671 0.0785	0.4015 0.4565	0.3340 0.3340	0.3081 0.3393	0.3288 0.3268	0.3442 0.3691
Multi-task Learning	MTL	-	0.1327	0.2392	0.1367	0.2674	0.7070	-	0.0685	0.4261	-	0.2523	0.2737	0.3120
Continual Learning	Piggyback HAT CONURE TERACON	0.3022 0.3597 0.3366 0.3698	0.1106 0.1712 0.1417 0.2002	0.0944 0.1726 0.2145 0.2405	0.0680 0.1555 0.1927 0.2462	0.2638 0.3557 0.3103 0.3170	0.6993 0.7378 0.6994 0.7411	0.3603 0.3517 0.3635 0.3755	0.0741 0.0518 0.0625 0.0816	0.4108 0.4592 0.4779 0.5094	0.3340 0.2439 0.3241 0.2803	0.1848 0.3001 0.3349 0.3272	0.1800 0.3599 0.3569 0.4843	0.2868 0.3488 0.4469 0.4858
	DITTO	0.6102	0.2764	0.3058	0.3345	0.3209	0.7496	0.4168	0.0890	0.5107	0.4291	0.3407	0.4903	0.4960

- Transferring knowledge without considering the passage of time can lead to negative transfer (SinMo vs. TL/CL)
- Continual learning-based methods perform better than Transfer learning-based method
- DITTO outperforms the SinMo & Continual learning-based method
 - Modeling by considering the relation between tasks and the passage of time

Ablation Study

Overall performance with and without the FKT and BKT modules,
 and performance for (users who interacted only with existing items / users who interacted with new items)

Row	Con FKT	nponent BKT	T_1	T_2	T_3	T_4	T_5	T_6
	TKI	DKI	1		1	1	1	1
(1)	X	X	0.2572 (0.2744 / 0.2517)	0.1994 (0.2056 / 0.1975)	` '	0.2170 (0.2217 / 0.2162)	0.2281 (0.2317 / 0.2175)	0.7446 (0.7446 / -)
(2)	✓	X	0.2925 (0.3903 / 0.2627)	0.1955 (0.2248 / 0.1825)	0.2371 (0.2685 / 0.2162)	0.2401 (0.2652 / 0.2226)	0.3240 (0.3484 / 0.3016)	0.7392 (0.7392 / -)
(3)	X	✓	0.5717 (0.5624 / 0.5763)	0.2514 (0.2423 / 0.2524)	0.2799 (0.2780 / 0.2807)	0.3069 (0.3013 / 0.3105)	0.3061 (0.3059 / 0.3067)	0.7445 (0.7445 / -)
(4)-1	✓	✓ (only \mathcal{L}_{BKT_1})	0.6073 (0.6092 / 0.6059)	0.2506 (0.2538 / 0.2475)	0.2942 (0.3063 / 0.2869)	0.3010 (0.3165 / 0.2886)	0.3184 (0.3163 / 0.3251)	0.7450 (0.7450 / -)
(4)-2	✓	✓ (only \mathcal{L}_{BKT_2})	0.2816 (0.3878 / 0.2500)	0.2039 (0.2095 / 0.1984)	0.2455 (0.2516 / 0.2322)	0.2266 (0.2371 / 0.2233)	0.2836 (0.2885 / 0.2792)	0.7478 (0.7478 / -)
(5)	✓ (random)	√ (random)	0.5968 (0.5804 / 0.6066)	0.1221 (0.1242 / 0.1190)	0.1418 (0.1491 / 0.1288)	0.1579 (0.1652 / 0.1437)	0.3182 (0.3212 / 0.3173)	0.7477 (0.7477 / -)
(6)	✓	✓	0.6102 (0.6044 / 0.6099)	0.2764 (0.2801 / 0.2722)	0.3058 (0.3162 / 0.3013)	0.3345 (0.3375 / 0.3338)	0.3209 (0.3195 / 0.3256)	0.7496 (0.7496 / -)

- FKT module is beneficial for users who interacted with existing items (Row (1) vs. (2))
- BKT module is beneficial for users who have interacted with **newly emerged items** (Row (1) vs. (3))
- Distribution-aware sampling strategy helps in utilizing users that are suitable for the objectives of each module (Row (5) vs. (6))

Order Robustness

(a) Original	T	1	Т	2	T_{ϵ}	3	7	Γ_4	T_5	;	T_{ϵ}	5
	MRR@5	KT	MRR@5	KT	MRR@5	KT	ACC	KT	ACC	KT	ACC	KT
SinMo	0.3002	-	0.1032	-	0.2234	-	0.2135	-	0.3327	-	0.7432	-
HAT	0.3597	19.82%	0.1712	65.89%	0.1726	-22.74%	0.1555	-27.17%	0.3557	6.91%	0.7378	-0.73%
CONURE	0.3366	12.13%	0.1417	37.31%	0.2145	-3.98%	0.1927	-9.74%	0.3103	-6.73%	0.6994	-5.89%
TERACON	0.3698	23.18%	0.2002	93.99%	0.2405	7.65%	0.2462	15.32%	0.3170	-4.72%	0.7411	-0.28%
DITTO	0.6102	103.26%	0.2764	167.83%	0.3058	36.88%	0.3345	56.67%	0.3209	-3.55%	0.7496	0.86%
	Ι τ		l 7	,	T		1 7	r	l т		l	
(b) Darragad	T	1	T T	6	1	5	Į.	T_4	T_3	3	T_2	2
(b) Reversed	MRR@5	KT	ACC	KT	ACC	KT	ACC	KT	MRR@5	KT	MRR@5	KT
(b) Reversed SinMo						-						
	MRR@5		ACC	KT	ACC	KT	ACC	KT	MRR@5	KT	MRR@5	
SinMo	MRR@5	KT -	ACC 0.7133	KT -	ACC 0.3768	KT -	ACC 0.2913	KT -	MRR@5 0.3360	KT -	MRR@5	KT
SinMo HAT	MRR@5 0.3222 0.4309	- 33.74%	ACC 0.7133 0.6695	-6.14%	ACC 0.3768 0.3522	-6.53%	ACC 0.2913 0.4465	KT - 53.27%	MRR@5 0.3360 0.4625	- 37.65%	MRR@5 0.4062 0.4695	KT - 15.58%

- DITTO maintains its superiority even when the order of tasks is changed
 - Verifying the effectiveness of maximizing positive knowledge transfer between tasks regardless of the task order
- TERACON fails to generate reliable pseudo-labels for users with shifted item distributions, leading to negative transfer
- → DITTO is order robust framework

Noise Robustness

• Inserting a noisy task (i.e., T_{noise}) between T_3 and T_4 , which contains noisy labels

				Tmall			
	T_1	T_2	T_3	T_{noise}	T_4	T_5	T_6
HAT	0.3495	0.1612	0.1553		0.1021	0.3145	0.7211
IIAI	(-2.84 %)	(-5.84 %)	(-10.02 %)	_	(-34.34 %)	(-11.58 %)	(-2.26 %)
CONURE	0.3366	0.1417	0.2145		0.1526	0.3020	0.6901
CONURE	(0.0 %)	(0.0 %)	(0.0 %)	-	(-20.81 %)	(-2.67 %)	(-1.33 %)
TERACON	0.3458	0.1875	0.1951		0.2261	0.3004	0.7343
TERACON	(-6.49 %)	(-6.34 %)	(-18.88 %)	-	(-8.16 %)	(-5.24 %)	(-0.92 %)
DITTO	0.5967	0.2697	0.2854		0.3125	0.3137	0.7455
DITIO	(-2.21 %)	(-2.42 %)	(-6.67 %)	-	(-6.58 %)	(-2.24 %)	(-0.55 %)

- Only user behavior sequences, **not label information**, are used for pseudo-label generation
 - → forward knowledge transfer is possible without being affected by noisy labels
- Backward knowledge transfer is performed in an **unsupervised manner**, it is not affected by noisy labels
- → DITTO is noise robust framework

Conclusion

Summary

 Continual user representation learning framework that maximizes knowledge transfer between tasks under time-driven distribution shifts

Contribution

- Propose a continual user representation learning scenario that accounts for the passage of time
- Develop **distribution-aware user sampling strategies and transfer methods** tailored to each objective to maximize positive knowledge transfer between tasks
- Extensive experiments demonstrate the effectiveness and efficiency of DITTO

Thank you!

[Full Paper] https://arxiv.org/abs/2504.16501

[Source Code] https://github.com/seungyoon-Choi/DITTO_official

[Lab Homepage] http://dsail.kaist.ac.kr

[Email] csyoon08@kaist.ac.kr

