

Loner Bridge Radio Frequency (RF) Exposure Compliance

1 Document Revision History

Revision	Date	Author	Summary
1	June 5, 2014	Scott Jacobsen	Initial release
2	June 11, 2014	Scott Jacobsen	Amend Iridium duty cycle and 900 FHSS antenna gain

2 Purpose of this Report

The purpose of this report is to show the radio frequency (RF) exposure compliance of certain simultaneous transmission configurations of the modules inside the product named Loner Bridge.

3 Identifiers

3.1 Host Product

Internal Product Name: Loner Bridge

Model: BRG NAT 001A

3.2 Module Identifiers

Module Description	Model	FCC ID	IC ID	Grantee
Cellular	BGS2	W77BLGSM1	8255A-BLGSM1	Blackline GPS
Satellite	9602	Q639602	4629A-9602	Iridium Satellite
				LLC
Frequency Hopping	MLINK G 900A	KQNMLINK900	2361A-MLINK900	Murandi
Transceiver	FW			Communications
				Ltd

3.3 Antennas

Frequency Band	Vendor	Model	Peak Gain(dBi)	Data Sheet Reference
Cellular	Murandi	Bridge Cellular	0.5	Appendix A
	Communications	Antenna		
PCS	Murandi	Bridge Cellular	1.5	Appendix A
	Communications	Antenna		
Satellite	Taoglas	IP.1621.25.4.A.02	3.0	Appendix B
915 MHz ISM	Murandi	MLink Antenna	2.4	Appendix C

Communications			
----------------	--	--	--

4 Module Technical Details

Technology	Frequency Band	Lowest transmit frequency (MHz)	Highest transmit frequency (MHz)	Kind of modulation	Power Class	Tested power control level	GPRS/EGPRS mobile station class	GPRS/EGPRS multislot class	Maximum output power (dBm)	Frame Length (ms)	Slot Length (ms)	Number of Slots used for Transmissions	Duty Cycle (percent)
GSM	Cellular	824.2	848.8	GMSK	4	5	В	10	32.3	4.615	0.577	2	25
GSM	PCS	1850.2	1909.8	GMSK	1	0	В	10	29.7	4.615	0.577	2	25
Satellite	L-Band	1616	1626	QPSK	N/A	N/A	N/A	N/A	34.39	90	8.28	1	9.2
FHSS	ISM	903	927	BPSK	N/A	N/A	N/A	N/A	29.0	N/A	N/A	N/A	50

5 Test Standards

Test Standard	Version	Test Standard Description
FCC 47 CFR 2.1091	e-CFR June 2, 2014	Radiofrequency radiation
		exposure evaluation: mobile
		devices.
RSS-102	Issue 4, March 2010	6 Radio Frequency (RF) Exposure
		Compliance of
		Radiocommunication Apparatus
		(All Frequency Bands)

6 Limits

6.1 FCC and IC Limits for General Population/Uncontrolled Exposure

Frequency Range	E-field strength (V/m)	H-field strength (A/m)	B-field strength (μΤ)	Power density (mW/cm2)
300 – 1500 MHz				f(MHz) / 1500
1.5 – 100 GHz				1.0

6.2 Limits for Categorical Exclusion from Routine Evaluation

Frequency Range	FCC Specification	IC Specification
Below 1.5 GHz	EIRP < 1.5 W	EIRP < 2.5 W
Above 1.5 GHz	EIRP < 3 W	EIRP < 5 W

7 RF Exposure Assessment

7.1 Maximum permissible exposure (MPE)

Fixed/mobile exposure conditions of multiple transmitters installed in different hosts represent the most difficult situation in terms of the determination of minimum safety distances. While EMF measurements most often only refer to a single configuration with only one transmitter or with multiple co-located transmitters a general approach is needed to determine a worst case condition under which several transmitters and their antennas can be installed to prevent additional RF exposure evaluation for each host.

This test report illustrates how three specific radio modules can be integrated in a host without the need of further testing.

The background of the calculation is a minimum distance of 20 cm between antenna(s) and user (mobile exposure condition), and the compliance with the requirements of section 5.

blacklinegps

7.2 Formulas

1. Average power density for each transmitter at a distance of 20 cm, S_{eq} , is calculated using the following formula:

$$S_{eq} = \frac{P \cdot G}{4\pi \cdot r^2} \times \eta$$

where

P is the peak power conducted into the antenna

G is the peak antenna gain

 η is the duty cycle of transmissions

R = 20 cm

2. Then the ratio $\frac{S_{eq}}{S_{lim}}$ is calculated for all applied limits, where S_{lim} is the limit at the frequency of

interest, as specified in section 6. This essentially converts the power densities into unit-less values representing the portion of the power density limit generated by individual transmitters.

3. Finally, it must be ensured that the sum of all worst case power densities of all active transmitters do not exceed the limits, even if they are far below the limits for the single transmitter. The ratios for all the transmitters calculated in step 2 are summed together in all possible combinations of transmitters such that

$$\sum_{1}^{n} \frac{S_{eq n}}{S_{\lim n}} = \frac{S_{eq 1}}{S_{\lim 1}} + \frac{S_{eq 2}}{S_{\lim 2}} + \dots + \frac{S_{eq n}}{S_{\lim n}} \le 1$$

7.3 Individual Radiated Power Densities

Module	Frequency (MHz)	Conducted Output Power (mW)	Conducted Output Power (dBm)	Antenna Gain (dBi)	Antenna Gain (linear)	EIRP (dBm)	EIRP (mW)	Duty Cycle (%)	S _{eq} - Average Power Density (mW/cm²)	S _{lim} - Power Density Limit (mW/cm²)	Portion of Limit
GSM850	824.2	1732	32.4	0.5	1.12	32.9	1943	25	0.10	0.55	0.1759
PCS1900	1850.2	975	29.9	1.5	1.41	31.4	1377	25	0.07	1.00	0.0685
Satellite	1616	1410	31.5	3.0	2.00	34.5	2813	10.36	0.05	1.00	0.0580
915 ISM	903	800	29.0	2.4	1.74	31.4	1390	50	0.14	0.60	0.2297

7.4 Total Radiated Power Densities from Transmitter Combinations

A. GSM 850, Satellite, 915 MHz ISM

$$0.1759 + 0.0515 + 0.2297 =$$
0.4636

B. PCS1800, Satellite, 915 MHz ISM

$$0.0685 + 0.0515 + 0.2297 =$$
0.3562

The summations of the individual radiated power density portions for the two transmitter combinations are both less than 1.0, and hence the total radiated power density from the Loner Bridge is deemed to be compliant with the regulatory requirements.

8 Statement of Compliance

The electromagnetic field (EMF) values found for the co-located modules of Loner Bridge are below the maximum allowed levels according to the standards listed in section 5 when used with the antennas specified in section 3.3.

Appendix A: Bridge Cellular Antenna

Bridge Cellular Antenna Datasheet

Revision – Draft May 21, 2014

Table of Contents

1	REVISION HISTORY	. 2
2	ABBREVIATIONS	. 2
3	INTRODUCTION	. 3
4	ANTENNA SPECIFICATION	3

Revision History 1

Revision	Date	Description
Draft	May 21, 2014	Initial release

Abbreviations 2

Abbreviation	Description		
Attn	attenuator		
BW	bandwidth		
dB	decibel		
dBc	decibel relative to carrier power		
dBi	decibel relative to an isotropic antenna		
dBm	decibel relative to 1 milliwatt		
FCC	federal communications commission		
FHSS	frequency hopping spread spectrum		
GPS	global positioning system		
IC	Industry Canada		
ISM	industrial, scientific and medical		
ISR	interrupt service routine		
kHz	kilohertz		
LCD	liquid crystal display		
LED	light emitting diode		
LNA	low noise amplifier		
mA	milliampere		
mcd	millicandle		
MHz	mega-hertz		
mm	millimeter		
msec	millisecond		
mV	millivolt		
PA	power amplifier		
PLL	phase locked loop		
ppm	parts per million		
RBW	resolution bandwidth		
RF	radio frequency		
RTC	Real time clock		
TBC	to be confirmed		
TBD	to be determined		
TRP	total radiated power		
μA	microampere		
TDD	Time division duplex		

Murandi Communications Ltd.

Abbreviation	Description
UART	universal asynchronous receiver/transmitter
V	volts
W	width

3 Introduction

This document contains the Antenna Specifications for the Bridge Cellular integral antenna.

4 Antenna Specification

Subject	Specification	Comments
Frequency Range		
GSM 850		
Uplink	824 MHz – 849 MHz	
Downlink	869 MHz – 894 MHz	
PCS 1900		
Uplink	1850 MHz – 1910 MHz	
Downlink	1930 MHz – 1990 MHz	
Peak Gain		
GSM 850	+0.5 dBi max	
PCS 1900	+1.5 dBi max	

Murandi

Communications Ltd.

Total Radiated power: -9.07 dBm

Efficiency -3.54 dB

Typical performance:

Total Radiated power: -12.01 dBm Efficiency -2.95 dB

Vertical Polarization Vert. Component: -14.01 dBm Peak Gain: 0.01 dBi Theta 165, Phi 180

Vertical Polarization Vert. Component: -10.71 dBm Peak Gain: 1.00 dBi Theta 165, Phi 60

Horizontal Polarization Horz. Component: -16.34 dBm Peak Gain: 0.17 dBi Theta 165, Phi 270

Horizontal Polarization Horz. Component: -14.11 dBm Peak Gain: -0.32 dBi Theta 165, Phi 345

File Name: Cell Antenna 894MHz with new match all modules no housing

Tx Power: -9.06 dBm Frequency: 893.80 MHz Cable Attenuation: 1.34 dB Tue. Nov 26, 2013 6:30 PM Receive Antenna Gain: 1.65 dBi Separation: 1.16 m

File Name: Cell Antenna 1850MHz with new match2 all modules no housing Tx Power: -5.53 dBm

Frequency: 1849.70 MHz Cable Attenuation: 2.10 dB Thu, Nov 28, 2013 10:48 AM Receive Antenna Gain: 1.65 dBi Separation: 1.22 m

Antenna Orientation

Confidential and Proprietary

Appendix B: Taoglas Satellite Antenna

SPECIFICATION Iridium Certified

Part No. : **IP.1621.25.4.A.02**

Product Name : 4mm thick Iridium Patch Antenna, 1621MHz

Features : 25mm*25mm*4mm

ROHS Compliant

:

1. Introduction

This miniaturized ceramic Iridium patch antenna is based on smart **XtremeGain**™ technology. It is mounted via pin and double-sided adhesive and has been selected as optimal solution for the customer device environment. Iridium certifies the IP.1621.25.4.A.02 for commercial use in connection with the Iridium Communications systems.

2. Key Antenna Performance Indicators Original Patch Specification tested on 50*50mm ground plane

No	Parameter	Specification	Notes
	Range of Receiving		
1	Frequency	1616~1626.5Mhz	
			with 50*50mm GND
2	Center Frequency	1621MHz ±3MHz	Plane
3	Bandwidth	16MHz	Return Loss ≤-10dB
4	VSWR	1.5 max	Center Frequency
5	Gain at Zenith	+2.0dBi typ.	Center Frequency
6	Gain at 10° Elevation		Center Frequency
7	Axial Ratio	3 dB Max	Center Frequency
8	Polarization	RHCP	
9	Impedance	50Ω	
	Frequency Temp Coefficient		
10	(Tf)	0±20ppm/°C	-40°C to +85°C
11	Operating Temperature	-40°C to +85°C	
12	Antenna Weight	10g	

3. Mechanical Specifications

3.1 Shape and Dimension

	Name	Material	Finish	QTY
1 IP.25A Iridium Patch (25x25x4mm)		Ceramic	Clear	1
2 Double sided Adhesive		NITTO 5015	White Liner	1
3	Pin	Brass	Tin Plated	1

SPE-11-8-017/D/SS Page 3 of 11

3.2 Layout

3.3 Mark

3.4Test Jig and Dimensions

3.5 Test Fixture Antenna Setup and Measurements

4. Performance testing and results

Antenna Gain Chart

XZ-Plane

YZ-Plane

XZ+YZ-Plane

Plane	Max Gain(dBi)	Min Gain(dBi)	Avg. Gain(dBi)
XZ	2.72/1.00	-6.84/104	-1.05
YZ	3.00/358.99	-7.57/101.85	-0.86

Axial Ratio

5. Packaging

- •Per Tray: 50 pieces
- •Per Carton(Inside Box) . 4 Trays = 200 pieces
- •Outer Carton (Outside Box). 4 Cartons = 800 pieces

Taoglas makes no warranties based on the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Taoglas reserves all rights to this document and the information contained herein. Reproduction, use or disclosure to third parties without express permission is strictly prohibited. Copyright © 2012, Taoglas Ltd.

Appendix C: 915 MHz ISM Antenna

MLink Antenna Specification

Revision – Draft Feb 10, 2014

Table of Contents

1	REVISION HISTORY	2
2	ABBREVIATIONS	2
	REFERENCE DOCUMENTS	
4	INTRODUCTION	3
	ANTENNA SPECIFICATION	
	REVISIONS	

1 Revision History

Revision	Date	Description
Draft	Feb 10, 2014	Initial release

The details of each revision are captured in Revision Details Section 6.

2 Abbreviations

Abbreviation	Description
Attn	attenuator
BW	bandwidth
dB	decibel
dBc	decibel relative to carrier power
dBi	decibel relative to an isotropic antenna
dBm	decibel relative to 1 milliwatt
FCC	federal communications commission
FHSS	frequency hopping spread spectrum
GPS	global positioning system
IC	Industry Canada
ISM	industrial, scientific and medical
ISR	interrupt service routine
kHz	kilohertz
LCD	liquid crystal display
LED	light emitting diode
LNA	low noise amplifier
mA	milliampere
mcd	millicandle
MHz	mega-hertz
mm	millimeter
msec	millisecond
mV	millivolt
PA	power amplifier
PLL	phase locked loop
ppm	parts per million
RBW	resolution bandwidth
RF	radio frequency
RTC	Real time clock

Murandi Communications Ltd.

106, 4715 - 13th St. NE, Calgary, Alberta, Canada, T2E 6M3
Tel: (403) 777-9988 email murandi@murandi.com
Fax: (403) 777-9989 www.murandi.com

Confidential and Proprietary

Abbreviation	Description
TBC	to be confirmed
TBD	to be determined
TRP	total radiated power
μA	microampere
TDD	Time division duplex
UART	universal asynchronous receiver/transmitter
V	volts
W	width

3 Reference Documents

- 1. MLink Circuit Description Draft, Feb 10, 2014
- 2. MLink Block Diagrams Draft, Feb 10, 2014
- 3. Schematics (MLINK Rev 3.pdf)
- 4. Bill of Materials (MLINK Rev 3.bom)
- Pictures (IMG_1673.jpg, IMG_1677.jpg, IMG_1680.jpg, IMG_1682.jpg, IMG_1684.jpg, & IMG_1695.jpg)

4 Introduction

This document contains Antenna Specifications for the Murandi Communications MLink 900 MHz transceiver as part of the FCC & IC submission.

5 Antenna Specification

MLink 900 integral antenna performance was measured in the following orientation:

Murandi Communications Ltd.

106, 4715 - 13th St. NE, Calgary, Alberta, Canada, T2E 6M3
Tel: (403) 777-9988 email murandi@murandi.com
Fax: (403) 777-9989 www.murandi.com

The following results obtained:

Total Radiated power: -0.41 dBm Efficiency -0.11 dB

Vertical Polarization

Vert. Component: -0.43 dBm

Peak Gain: 2.14 dBi Theta 90, Phi 285

Horizontal Polarization

Horz. Component: -23.26 dBm

Peak Gain: -14.22 dBi Theta 165, Phi 75

File Name: MLink 65558 33pF 915MHz with 2AA cells extender

Estimated

Tx Power: -0.30 dBm Frequency: 915.50 MHz

Cable Attenuation: 1.45 dB Notes:

Fri, Nov 15, 2013 12:29 PM Receive Antenna Gain: 1.65 dBi

Separation: 1.20 m

The peak antenna gain is 2.4 dBi in the vertical polarization.

Revisions 6

Fax: (403) 777-9989 Confidential and Proprietary