Laplace Transform Analysis

Tim McLain

Approach

- Up to this point, we have learned how to derive equations of motion for a variety of systems: mechanical, electrical, fluid
- We will now shift our attention to analyzing these equations to better understand the behavior of these systems
- We will use the Laplace transform
 - Solve EOM for low-order, linear, constant-coefficient systems
 - Create transfer-function-based models
 - Study in detail first-order and second-order systems

Application of the Laplace transform

- Find the equations of motion that describe the system dynamic behavior
- Take the Laplace transform of the equations of motion
- Manipulate transformed equations to obtain transfer function, characteristic equation, eigenvalues, and the final (steady-state) values
- Apply the inverse Laplace transform if the time response is desired

Laplace transform

Definition

$$\mathcal{L}_{-}{f(t)} = F(s) = \int_{0^{-}}^{\infty} f(t)e^{-st}dt$$

- One-sided Laplace transform since lower bound is 0⁻
- 0^- means the instant before t = 0
 - Allows us to include impulses that occur at t = 0
- For simplicity, we will usually drop the minus notation
- Laplace transform of a time-domain function is a function of the complex variable s, which can be thought of as frequency. Taking the Laplace transform is sometimes referred to as taking a system into the frequency domain

Properties of Laplace transform

Superposition – Laplace transform is a linear operation

$$\mathcal{L}\{\alpha f_1(t) + \beta f_2(t)\} = \int_0^\infty [\alpha f_1(t) + \beta f_2(t)] e^{-st} dt$$

$$= \alpha \int_0^\infty f_1(t) e^{-st} dt + \beta \int_0^\infty f_2(t) e^{-st} dt$$

$$= \alpha F_1(s) + \beta F_2(s)$$

Properties of Laplace transform

Laplace transform of time derivative of function

$$\mathcal{L}\left\{\frac{df}{dt}\right\} = -f(0^{-}) + sF(s)$$

Higher order derivatives

$$\mathcal{L}\left\{\ddot{f}\right\} = s^2 F(s) - s f(0^-) - \dot{f}(0^-)$$

$$\mathcal{L}\left\{f^{(m)}\right\} = s^m F(s) - s^{m-1} f(0^-) - s^{m-2} \dot{f}(0^-) - \dots - f^{(m-1)}(0^-)$$

Properties of Laplace transform

Laplace transform of time integral of function

$$\mathcal{L}\left\{\int f(t)\ dt\right\} = \frac{F(s)}{s}$$

Laplace transform of function shifted in time

$$\mathcal{L}\{f(t-T)u_s(t-T)\} = e^{-Ts}F(s)$$

Laplace transform tables

Table 2.2.1 Table of Laplace transform pairs.

X(s))	$x(t), t \geq 0$
1.		$\delta(t)$, unit impulse
2.	$\frac{1}{s}$	$u_s(t)$, unit step
3.	$\frac{c}{s}$	constant, c
4.	$\frac{e^{-sD}}{s}$	$u_s(t-D)$, shifted unit step
5.	$\frac{n!}{s^{n+1}}$	t^n
6.	$\frac{1}{s+a}$	e^{-at}
7.	$\frac{1}{(s+a)^n}$	$\frac{1}{(n-1)!}t^{n-1}e^{-at}$
8.	$\frac{b}{s^2 + b^2}$	$\sin bt$
9.	$\frac{s}{s^2 + b^2}$	$\cos bt$
10.	$\frac{b}{(s+a)^2 + b^2}$	$e^{-at}\sin bt$
11.	$\frac{s+a}{(s+a)^2+b^2}$	$e^{-at}\cos bt$
12.	$\frac{a}{s(s+a)}$	$1 - e^{-at}$

Laplace transform tables

13.
$$\frac{1}{(s+a)(s+b)}$$
 $\frac{1}{b-a}(e^{-at}-e^{-bt})$

14. $\frac{s+p}{(s+a)(s+b)}$ $\frac{1}{b-a}[(p-a)e^{-at}-(p-b)e^{-bt}]$

15. $\frac{1}{(s+a)(s+b)(s+c)}$ $\frac{e^{-at}}{(b-a)(c-a)} + \frac{e^{-bt}}{(c-b)(a-b)} + \frac{e^{-ct}}{(a-c)(b-c)}$

16. $\frac{s+p}{(s+a)(s+b)(s+c)}$ $\frac{(p-a)e^{-at}}{(b-a)(c-a)} + \frac{(p-b)e^{-bt}}{(c-b)(a-b)} + \frac{(p-c)e^{-ct}}{(a-c)(b-c)}$

17. $\frac{b}{s^2-b^2}$ $\sinh bt$

18. $\frac{s}{s^2+b^2}$ $\cosh bt$

19. $\frac{a^2}{s^2(s+a)}$ $at-1+e^{-at}$

20. $\frac{a^2}{s(s+a)^2}$ $1-(at+1)e^{-at}$

21. $\frac{\omega_n^2}{s^2+2\zeta\omega_ns+\omega_n^2}$ $\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_nt}\sin\omega_n\sqrt{1-\zeta^2}t$

22. $\frac{s}{s^2+2\zeta\omega_ns+\omega_n^2}$ $-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_nt}\sin\left(\omega_n\sqrt{1-\zeta^2}t-\phi\right), \phi=\tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$

23. $\frac{\omega_n^2}{s(s^2+2\zeta\omega_ns+\omega_n^2)}$ $1-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_nt}\sin\left(\omega_n\sqrt{1-\zeta^2}t+\phi\right)$

Laplace transform tables

Table 2.2.1 (Continued)

$X(s)$ $x(t), t \geq 0$				
24.	$\frac{1}{s[(s+a)^2+b^2]}$	$\frac{1}{a^2 + b^2} \left[1 - \left(\frac{a}{b} \sin bt + \cos bt \right) e^{-at} \right], \phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$		
25.	$\frac{b^2}{s(s^2+b^2)}$	$1-\cos bt$		
26.	$\frac{b^3}{s^2(s^2+b^2)}$	$bt - \sin bt$		
27.	$\frac{2b^3}{(s^2 + b^2)^2}$	$\sin bt - bt \cos bt$		
28.	$\frac{2bs}{(s^2+b^2)^2}$	$t \sin bt$		
29.	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$	t cos bt		
30.	$\frac{s}{\left(s^2 + b_1^2\right)\left(s^2 + b_2^2\right)}$	$\frac{1}{b_2^2 - b_1^2} \left(\cos b_1 t - \cos b_2 t\right), \left(b_1^2 \neq b_2^2\right)$		
31.	$\frac{s^2}{(s^2 + b^2)^2}$	$\frac{1}{2b}(\sin bt + bt \cos bt)$		

Example

• Find the Laplace transform of this EOM

$$m\dot{v} + bv = f(t)$$

- Find the solution for v(t) if f(t) = 0
- Find the solution for v(t) if f(t) is a step function of size F_0

Final Value Theorem

$$x(t \to \infty) = \lim_{s \to 0} sX(s)$$

Apply to our previous example where

$$V(s) = \frac{F(s) + mv_0}{ms + b}$$