Proyecto #2 - Grupo 2

Laboratorio Sistemas de Bases de Datos 2 - Sección A Primer Semestre 2025

5 de mayo de 2025

Miembros

Nombre	Carnet		
Julio Alejandro Zaldaña Ríos	202110206		
Edgar Mauricio Gómez Flores	2011-14340		
Edgar Rolando Alvarez Rodriguez	202001144		

Modelos de Bases de Datos

Se crearon modelos para basarse en la creación de las bases de datos.

MySQL - Diagrama Entidad Relación

Para la base de datos relacional, se utilizó una estructura relacional de 4 tablas, que respeta las prácticas de normalización y relaciones explícitas mediante claves foráneas.

Se crearon cuatro tablas:

- 1. Pacientes
- 2. Habitaciones
- 3. Logactividades
- 4. Loghabitaciones

Pacientes LogActividades LogHabitaciones **⊨** Habitaciones id (PK): Clave primaria autoincremental. id (PK): Clave idPaciente (FK): primaria idPaciente (PK): Referencia al paciente idHabitacion (PK): autoincremental. Identificador único del asociado. Identificador único de la idHabitacion (FK): paciente. idHabitacion (FK): habitación. Referencia a la edad: Edad del Referencia a la habitacion: Nombre o habitación. habitación. paciente. descripción de la fechaHora: Fecha y fechaHora: Fecha y genero: Género del habitación. hora del estado. paciente. hora de la actividad. status: Estado de la actividad: habitación. Descripción de la acción.

MongoDB - Diagrama Colecciones

MongoDB permite un modelo más flexible basado en documentos. Aquí se optó por dos colecciones principales, estructuradas de manera jerárquica mediante subdocumentos y arrays embebidos:

♣ Pacientes	Habitaciones			
Cada documento representa un paciente individual, con su	Cada documento representa una habitación			
historial de actividades embebido.	con su historial de estados.			

♣ Pacientes
➡ Habitaciones

Campos:

- _id (idPaciente): Identificador del paciente.
- edad: Edad del paciente.
- genero: Género del paciente.
- actividades: Array de objetos con:
- fechaHora: Fecha y hora de la actividad.
- actividad: Descripción.
- habitacion: Subdocumento:
 - idHabitacion
- nombre (de la habitación).

Campos:

- <u>_id</u> (idHabitacion): Identificador único.
- nombre: Nombre de la habitación.
- estados: Array de objetos con:
- fechaHora: Momento del cambio.
- estado: Descripción del estado.

Fases de Desarrollo

Correr Docker

```
$ docker compose -f docker-compose.yml up
```

Insertar datos

```
$ python3 -m venv .venv
$ source .venv/bin/activate
$ pip install pandas openpyxl sqlalchemy pymysql pymongo cryptography tabulate
$ python load.py
```

Analizar queries

```
$ python benchmark.py
```

API de Python para Consultas en ambas bases de datos.

Ingresar a la carpeta de fastapi y correr el contenedor de docker que contiene las dos bases de datos y la api desarrollada con fast api.

```
cd fastapi
docker compose up --build -d
```

Las consultas se hicieron con Postman, se tienen las respuestas de las consultas dentro de la carpeta endpoints, con las colecciones de los endpoints.

Consultas MYSQL

1. Total de pacientes que llegan a la clínica por edad catalogados por las siguientes categorías

- Pediátrico: menores de 18 años
- Mediana edad: entre 18 y 60 años
- Geriátrico: mayores de 60 años

2. Cantidad de pacientes que pasan por cada habitación

3. Cantidad de pacientes que llegan a la clínica, agrupados por género

4. Top 5 edades más atendidas en la clínica

5. Top 5 edades menos atendidas en la clínica

6. Top 5 habitaciones más utilizadas

7. Top 5 habitaciones menos utilizadas

```
GET V http://3.147.45.23.6500/top.5. habitaciones_menos_utilizadas

Send

Params Authorization Headers (7) Body Scripts Tests Settlings

Body Cookies Headers (4) Test Results © 200 OK 308 ms 4818 © Save Responding Test Results © 1 Test Results © 200 OK 308 ms 4818 © Save Responding Test Results © 200 OK 308 ms 4818 © Test Results © 200 OK 308 ms 4818 © Test Results © 200 OK 308 ms 4818 © Test Results © 3 Test Results © 4 Test Results © 5 Test Results © 5 Test Results © 6 Test Results © 7 Test R
```

8. Día con más pacientes en la clínica

Consultas MongoDB

- 1. Total de pacientes que llegan a la clínica por edad catalogados por las siguientes categorías
- Pediátrico: menores de 18 años
- Mediana edad: entre 18 y 60 años
- Geriátrico: mayores de 60 años

2. Cantidad de pacientes que pasan por cada habitación

3. Cantidad de pacientes que llegan a la clínica, agrupados por género

4. Top 5 edades más atendidas en la clínica

5. Top 5 edades menos atendidas en la clínica

6. Top 5 habitaciones más utilizadas

7. Top 5 habitaciones menos utilizadas

```
PROYECTO2_BASES2_MONGO / /top_5_habitaciones_menos_utilizadas_mongo
          http://3.147.45.23:6500/top_5_habitaciones_menos_utilizadas_mongo
Params Authorization Headers (7) Body Scripts Tests Settings
Body Cookies Headers (4) Test Results
                                                                                                           200 OK 553 ms 444 B 6 🛱 | 🖭 Save
 {} JSON ∨ ▷ Preview 🍪 Visualize ∨
                                                                                                                                       ⊒ ا ⊊
               "habitacion": "Estación de revisión 4",
               "total pacientes": 472
              "habitacion": "Sala de procedimientos 4",
               "total_pacientes": 760
              "habitacion": "Sala de procedimientos 3",
              "total_pacientes": 1022
              "total_pacientes": 1029
              "habitacion": "Estación de revisión 3",
              "total_pacientes": 1092
```

8. Día con más pacientes en la clínica

Analisis de las bases de datos

Análisis Comparativo: MySQL vs MongoDB para el Sistema Hospitalario

Resultados del Benchmark

Consulta	MySQL avg (s)	MySQL med (s)	MySQL p90 (s)	Mongo avg (s)	Mongo med (s)	Mongo p90 (s)
pacientes_por_categoria_edad	0.12464	0.11436	0.16031	0.09668	0.09288	0.11228
pacientes_por_habitacion	0.28011	0.14348	0.17877	0.24636	0.23161	0.30955
pacientes_por_genero	0.11781	0.11600	0.13179	0.07527	0.07182	0.08891
top_5_edades_mas_atendidas	0.07410	0.07149	0.09201	0.06979	0.06617	0.07692
top_5_edades_menos_atendidas	0.07814	0.07563	0.09468	0.07102	0.06780	0.08749
top_5_habitaciones_mas_utilizadas	0.14063	0.13524	0.16370	0.27151	0.24641	0.36983
top_5_habitaciones_menos_utilizadas	0.13853	0.13301	0.17278	0.27523	0.24619	0.38146
dia_con_mas_pacientes	0.05585	0.05446	0.06401	0.24658	0.23194	0.30825

Basado en los resultados del benchmark realizado con 100 iteraciones por consulta, podemos observar lo siguiente:

1. Consultas más rápidas en MongoDB:

- o pacientes_por_categoria_edad: MongoDB 22.4% más rápido (0.09668s vs 0.12464s)
- o pacientes_por_genero: MongoDB 36.1% más rápido (0.07527s vs 0.11781s)
- top_5_edades_mas_atendidas: MongoDB 5.8% más rápido (0.06979s vs 0.0741s)
- top_5_edades_menos_atendidas: MongoDB 9.1% más rápido (0.07102s vs 0.07814s)

2. Consultas más rápidas en MySQL:

- pacientes_por_habitacion: MySQL 11.9% más rápido (0.28011s vs 0.24636s)
- top_5_habitaciones_mas_utilizadas: MySQL 48.2% más rápido (0.14063s vs 0.27151s)
- top_5_habitaciones_menos_utilizadas: MySQL 49.7% más rápido (0.13853s vs 0.27523s)
- o dia con mas pacientes: MySQL 77.4% más rápido (0.05585s vs 0.24658s)

Ventajas de MongoDB en este contexto

- 1. **Rendimiento superior en consultas de análisis demográfico**: MongoDB muestra claras ventajas en consultas relacionadas con categorías de edad y género de pacientes.
- 2. **Modelo de datos más natural**: La estructura documental de MongoDB se adapta mejor a los datos hospitalarios donde cada paciente tiene múltiples actividades asociadas, evitando joins complejos.
- 3. **Escalabilidad horizontal**: MongoDB ofrece mejor escalabilidad para crecimiento futuro de datos.

Ventajas de MySQL en este contexto

 Mejor rendimiento en consultas relacionadas con habitaciones: MySQL muestra mejor desempeño en operaciones que involucran relaciones entre tablas (habitaciones y pacientes).

2. **Consistencia transaccional**: Para operaciones críticas que requieren ACID, MySQL sigue siendo mejor opcon.

3. **Consultas complejas**: Las consultas que requieren múltiples joins y operaciones relacionales son más eficientes en MySQL.

Conclusion Final

Para este caso en específico, se recomendaría implementar MongoDB como base de datos principal para la empresa hospitlaria, debido a:

- 1. La mayoría de las consultas analíticas (especialmente las relacionadas con pacientes) son más rápidas en MongoDB.
- 2. Los datos médicos son semi-estructurados, por eso el modelo documental funciona mejor.
- 3. Las operaciones más frecuentes (análisis por edad, género) son significativamente más rápidas.