Finite State Automata

Computing Science @ Aberdeen

Dept. of Computing Science, University of Aberdeen, UK

Languages and Computability (CS3518)

Outline

- Introduction to the Course
- Pinite State Automata: Preliminaries
- Finite State Automata: Intuition
- Transition graph
 - How FSAs Work
- Formal Definition of FSA
- 6 How Knowledge on FSAs is Gauged
- Formal Definition of Computation
- Oesigning Finite Automata
- Final Remarks

Introduction to the Course

Why should we study formal languages and computability?

- To define the essence of computing
- To define what an algorithm is
- To answer: are there are problems which cannot be solved with computers?
 - ► These are the limits of computing
 - There is no point in waiting for a faster computer/OS
 - ► Useful knowledge as unsolvable problems are common

How do we study formal languages and computability?

- Using mathematics (sets, functions, relations)
- We strip "computing" back to its bare bones
- No technologies, no hardware, no hype

Preliminaries I

Finite State Automata:

- Also called FSA, finite state machine (FSM) or just automata
 - "Automata" plural of "automaton"
- Simple (very limited) computational model:
 - Not a programming language or a technology
 - ▶ No user-interface, no database back-end
- FSAs check if a string of characters adhere to syntax
 - ▶ Variables in programming languages: letters, numbers and "_"
 - ▶ Numbers in programming languages: numbers, "e", ".", "+", "-"
- What can you do with FSAs? Plenty!
 - ► Checking if variables, numbers, etc. are in conformance with syntax
 - ▶ Many controller systems (e.g., thermostat) use FSAs

Preliminaries II

Terminology and convention

- Symbols: atomic (basic) components of a formal language
 - ► Examples: digits 0–9, small letters a–z, special characters %, *, etc.
 - ▶ Symbols cannot be split apart they are like keys of a keyboard
- Alphabet: a finite set of symbols
 - ▶ Referred to as Σ (capital sigma)
 - Examples: $\Sigma_1 = \{0, 1, ..., 9\}, \Sigma_2 = \{a, b, ..., z\}$
- String over alphabet Σ : a finite sequence of symbols from Σ
 - **Example:** strings over $\Sigma = \{0, 1\}$ are 0,00,010, and so on
 - A special **empty string** ϵ (epsilon) with no symbols
 - ▶ Some textbooks represent the empty string as λ (lambda)

Intuition

We define a computational model consisting of

- An input tape where there is a string to be checked
- An FSA
- The output ("accept" or "reject")

Graphically:

Assumptions:

- Tape has a clear "end-of-string" marker
- FSA handles any input characters (no "exceptions")

Transition graph

- FSAs formally defined in terms of sets, functions, etc.
- Graphic representation: transition graph (better for humans)

- Each node/vertex (circle) is a state
 - ▶ Initial state: q_1 (indicated by unlabelled arrow)
 - Final/accepting state: q_2 (indicated by double circle)
- States connected via labelled transitions (edges)
- Labels of transitions compared against characters from input tape

How FSAs Work I

- A "head" (indicated with "↓") reads current tape cell
- At the beginning head is "ready to go", to the left of leftmost cell

"♦" clearly marks end of string

How FSAs Work II

- FSA has a "current state" (indicated via a red square)
 - At the beginning current state is initial state q₁

We'll show next just the input tape and the FSA working together

How FSAs Work III

Step 1:

How FSAs Work IV

Step 2:

How FSAs Work V

Step 3:

How FSAs Work VI

Step 4:

How FSAs Work VII

Step 5:

How FSAs Work VIII

Step 6:

- We reached the end of the input string
- If current state is a final state, then accept
- If current state not a final state, then reject

Formal Definition of FSA I

- Graphic representation is useful for humans
- However, we need precision and compactness
 - Must FSAs have exactly one accepting state?
 - Must FSAs have a transition for all symbols in each state?
- We define FSAs formally via sets and functions

Definition (Finite State Automaton M)

A finite state automaton M is a tuple $M = (Q, \Sigma, \delta, q_0, F)$ where

- Q is a finite set of states
- Σ is a finite set of symbols, our **alphabet**
- $\delta: Q \times \Sigma \mapsto Q$ is the **transition function**
- $q_0 \in Q$ is the initial/start state
- $F \subseteq Q$ is the set of accept states

Formal Definition of FSA II

Back to our questions:

- Must FSAs have exactly one accepting state? No, because
 - F can be empty (no accepting states).
 - F can have more than one state.
- Must FSAs have a transition for all symbols in each state? Yes, because
 - \blacktriangleright δ is a function defined for all values of Q and Σ

Formal Definition of FSA III

Let's formally describe our automaton

Let's call it $M_1 = (Q, \Sigma, \delta, q_1, F)$ where

- $Q = \{q_1, q_2, q_3\}$ and $\Sigma = \{0, 1\}$
- $\delta : Q \times \Sigma$, that is, $\delta : \{q_1, q_2, q_3\} \times \{0, 1\}$

$$\delta(q_1,0)=q_1,\ \delta(q_1,1)=q_2,\ \delta(q_2,0)=q_3,\ \delta(q_2,1)=q_2,\ \delta(q_3,0)=q_2,\ \delta(q_3,1)=q_2$$
 or as a table:

- $q_0 = q_1 \ (q_1 \ \text{is our start state})$
- $F = \{q_2\}$

 q_3 q_2

 q_2

 q_2

 q_2

 $q_1 \mid q_1$

 q_2

 q_3

Formal Definition of FSA IV

- If A is the set of strings M accepts then
 - ▶ We say that A is the language of machine M
 - We write L(M) = A
 - ▶ We say that M recognises A of that M accepts A
- A machine may accept several (infinite!) strings
- · A machine recognises only one language
- If M accepts no strings it still recognises the empty language $L(M) = \emptyset$

How Knowledge on FSAs is Gauged

- Now that we have a formal definition of FSAs, what do we do with it?
- Given an FSA M you should be able to
 - Check whether or not it accepts a particular string
 - Precisely describe what language it accepts
- Given a language description, you should be able to
 - Design an FSA which accepts it
 - Prove that there is not an FSA which accepts it

Formal Definition of Computation

- We introduced an informal model of computation with FSAs
- We need to make it more precise (to avoid ambiguities)

Definition (M accepts w)

Let $M = (Q, \Sigma, \delta, q_0, F)$ be an FSA and $w = a_1 a_2 \cdots a_n$ be a string, where each $a_i \in \Sigma$. M accepts w if, and only if, there is a sequence of states $r_0, r_1, \ldots, r_n, r_j \in Q$, such that the following 3 conditions hold

- 1 $r_0 = q_0$ (the machine starts in the start state)
- 2 $\delta(r_i, a_{i+1}) = r_{i+1}$, for i = 0, ..., n-1(M goes from state to state according to the transition function), and
- $r_n \in F$ (it accepts the input if it ends up in an accept state)

Definition (Regular languages)

A language is called regular if some FSA recognises it.

Designing Finite Automata I

- No simple recipe to design automata
- Suggestion: pretend to be the machine you are designing
 - ► A psychological trick to help engage your mind in the design process
- You receive an input string and must determine whether it should be accepted
- You get to see the symbols in the string one by one
- After each symbol, you must decide whether the string seen so far is in the language
- You, like the machine, don't know when the end of the string is coming, so you must always be ready with the answer

Designing Finite Automata II

- You need to figure out what you need to "remember" about the string
 - Finite states = finite memory
 - Strings can be arbitrarily long; your FSA should work for any string
- Suppose a language over {0,1} of all strings with an odd number of 1s: {1,01,10,1101,...}
 - ▶ No need to remember all characters to determine if number of 1s is odd
 - Simply remember if number of 1s so far is even/odd
 - Keep track of this information as you read new symbols
 - ▶ If you read a 1, flip the answer; if you read a 0, leave answer as is

Designing Finite Automata III

- Once you have determined the necessary information to remember about the string as it is being read,
 - Represent this information as a finite list of possibilities
- In our case, the possibilities would be
 - even so far, and
 - 2 odd so far
- Then you assign a state to each of the possibilities:

Designing Finite Automata IV

- Next assign the transitions by seeing how to go from one possibility to another upon reading a symbol:
 - q_{even} represents the even possibility
 - $ightharpoonup q_{
 m odd}$ represents the odd possibility
- Set transitions to flip state on a 1 and stay put on a 0:

Designing Finite Automata V

- Next set start state to be the state corresponding to the possibility associated with having seen 0 symbols so far (the empty string ϵ)
 - \blacktriangleright Start state corresponds to q_{even} because 0 is an even number
- Last, set accept states to be those corresponding to possibilities where you want to accept the input string
 - ightharpoonup Set $q_{
 m odd}$ to be an accept state because you want to accept when you have seen an odd number of 1s

Final Remarks

- This lecture is not a "crash course" on FSAs
 - ▶ It is just to remind ourselves of the topic and introduce formalism
 - ▶ It's been a long time...
 - ▶ We are aware how you all enjoyed CS2013 ⓒ
- Assumption: CS2013 material "fresh" in your mind
 - New slides for this year's CS2013
 - Available in our MyAberdeen area for CS3518
- Material from Sipser's book (recommended reading), Chapter 1
- Tutorial next week covering this topic

