Ingeniería de Requerimientos

Qué, Por qué, Quién, Cómo y Cuándo

Rompiendo el hielo...

• ¿Qué es la Ingeniería de Requerimientos?

¿Experiencia Previa?

- Quién alguna vez hizo (en el mundo real):
 - Relevamiento de requerimientos
 - Entrevistas con clientes
 - Análisis funcional
 - Tests de Aceptación/Sistema
 - Validación de Especificación de Requerimientos
 - Negociación de Funcionalidad

La Ingeniería de Software

- Se ocupa de construir un producto de software de alta calidad bajo restricciones de tiempo y presupuesto.
- Problemáticas fundamentales:
 - Escala y complejidad.
 - ¿Qué significa alta calidad?

Calidad y Propósito

- Software se desarrolla para un fin o propósito
- El propósito es relativo a actividades humanas
 - Está lejos del software mismo.
- Podemos definir calidad como el grado con que el software cumple con el propósito
- Ingeniería de Requerimientos trata (en parte) de la Identificación del propósito.
 - Si no conocemos el propósito no podemos construir un sistema de calidad
 - Un entendimiento pobre del propósito lleva a sistemas de baja calidad

Software vs Sistema

- Software siempre es embebido
 - Embebido en hardware
 - Embebido en actividad humana (personas, organizaciones)
 - Embebido en un mundo físico
- Visión Sistémica:
 - Sistemas intensivos en Software: Software + Hardware + Entorno
 - El software es un componente más
 - Ingeniería de Requerimientos de Sistemas Intensivos en Software
 - El problema (y solución) es el resultado del comportamiento emergente de la interacción entre los componentes del sistema

Ejemplo

- Sistema de remate por Internet
 - Componentes: Compradores, Vendedores, Empresas transportistas, subsistema de pago electrónico, sistema de correo electrónico
 - Software: el componente a ser construido o extendido para insertar y difundir ítems, manejo de ofertas, facturación a oferente ganador, registro de evaluaciones de compradores y vendedores, etc...
 - El propósito es relativo a propiedades emergentes como:
 Satisfacción de vendedores al lograr acceso a más clientes potenciales, satisfacción de compradores al acceder a mayor variedad de productos, relaciones de confianza entre compradores y vendedores, etc...

Ejemplo 2

- Sistema de gestión de vuelo
 - Componentes: pilotos, controladores de tráfico aéreo, instrumentos de abordo y en tierra, el sistema de prevención de colisiones, etc...
 - Software: el piloto automático a ser desarrollado
 - Propiedades emergentes: Transportación rápida y segura de pasajeros, distancias mínimas entre aviones, capacidad de aterrizajes en aeropuerto en hora pico, ...

La Ingeniería de Requerimientos

No es una fase o etapa!

Comunicación es tan importante como la recolección y análisis

Calidad signifíca
que cumple con su
propósito.
No se puede decir nada
acerca de calidad si no
se entiende el propósito.

Requirements Engineering (RE) is a set of activities concerned with identifying and communicating the purpose of a software-intensive system, and the contexts in which it will be used. Hence, RE acts as the bridge between the real world needs of users, customers, and other constituencies affected by a software system, and the capabilities and opportunities afforded by software intensive technologies

Diseñadores necesitan saber cómo y donde el sistema será utilizado.

Requerimientos tratan en parte de lo que se necesita...

...y en parte de lo que es posible

Necesidad de indentificar todas las partes involucradas - no sólo el usario y cliente

Preguntas que todos nos hacemos...

¿Por qué la ingeniería de requerimientos es importante?

La voz de la experiencia...

RE is hard & critical ...

"hardest, most important function of SE is the iterative *extraction* & *refinement* of requirements"

(F. Brooks, No Silver Bullet: Essence and Accidents of Software Engineering, 1987)

Requirements is one of the six key activities...

(D. L. Parnas, "Inaugural Lecture" U. Limerick, 2003)

Requirements...Engineering?

the requirements for a system do not rise naturally; instead, they need to be engineered..."

(T. E. Bell, T. A. Thayer. Software Requirements: Are They Really a Problem? ICSE 1976)

El Costo de Corrección Tardía

(B.W. Boehm, "Software Engineering Economics", Prentice Hall, 1981.

B.W. Boehm, "Verifying and Validating Software Requirements and Design Specifications," IEEE Software, 1984)

El Problema de los Requerimientos

(más recientemente: 1994/1998)

• Standish Group: proyectos de software en EEUU

	1994	1998
Exitosos	16%	26%
Con problemas	53%	46%
Cancelados	31%	28%

Causa percibida de éxito y fracaso (Top 3)

	Exitoso	Con problemas	Cancelado
1.	Usuarios involucrados	Falta de input de los usuarios	Requerimientos incompletos
2.	Apoyo de gerencia ejecutiva	Requerimientos incompletos	Falta de input de los usuarios
3.	Clara descripción de requerimientos	Requerimientos cambiantes	Falta de recursos

Factores que ponen en problemas un proyecto

1.	Falta de input de los usuarios	12.8%
2.	Requerimientos y Especificaciones Incompletos	12.3%
3.	Requerimientos y Especificaciones cambiantes	11.8%
4.	Falta de apoyo de gerencia ejecutiva	7.5%
5.	Incompetencia técnica	7.0%
6.	Falta de recursos	6.4%
7.	Expectativas no realistas	5.9%
8.	Objetivos poco claros	5.3%
9.	Tiempos poco realistas	4.3%
10.	Tecnología nueva	3.7%
	Otros	23.0%

Posiblemente anecdótico pero da una indicación de los problemas percibidos en el desarrollo de software

Factores que causan una cancelación

1.	Requerimientos incompletos	13.1%
2.	Falta de involucramiento de usuarios	12.4%
3.	Falta de recursos	10.6%
4.	Expectativas no realistas	9.9%
5.	Falta de apoyo gerencial	9.3%
6.	Requerimientos y Especificaciones cambiantes	8.7%
7.	Falta de planificación	8.1%
8.	"Ya no lo necesitabamos"	7.5%
9.	Falta de gestión	6.2%
10.	Incompetencia Tecnológica	4.3%
	Otros	9.9%

Factores que contribuyen al éxito

1.	Involucramiento de Usuarios	15.9%
2.	Apoyo de Gerencia Ejecutiva	13.9%
3.	Descripción de Requerimientos Clara	13.0%
4.	Planificación Apropiada	9.6%
5.	Expectativas realistas	8.2%
6.	Entregas (milestones) mas pequeñas	7.7%
7.	Personal competente	7.2%
8.	Ownership	5.3%
9.	Visión y Objetivos claros	2.9%
10.	Otros	13.9%

Resultados similares en otros estudios ...

Relevamiento de 3800 organizaciones europeas, 17 países

Los problemas mayores en software son...

- Especificación de requerimientos
 - > 50% respuestas
- Gestión de requerimientos
 - > 50% respuestas

(European Software Institute, Technical Report 1996-TR95104)

Los costos mas allá del dinero

- Sistema de lanzamiento personal de cohetes, Iraq, 2003
 - Requerimiento faltante: Objetivo default sin definir
- IranAir A300, Iran, Julio 1988
 - Requerimiento faltante: Secuencias de eventos relevantes no fueron considerados para reconocer "amenazas"
 - Requerimiento faltante: Información básica faltante en displays de aviones de combate c.r.a altitud y ascenso/descenso de aviones "enemigos"
- American Airlines Boeing 757, Cali, Colombia, Diciembre 1995
 - Presunción del dominio incorrecta: El aviso automático de extender flaps en coordenada X
 Ilega antes de que el avión haya pasado X.
- Subte de Nueva York, Junio 1995
 - Propiedad del dominio cambiante: El "peor caso de frenado" es peor hoy que en 1918.
- Sistema Bancario on-line
 - Requerimiento de seguridad: Tres ingresos de PIN incorrecto -> cuenta inhabilitada
 - Requerimiento faltante: Impedir probar el mismo PIN para múltiples cuentas

Complejidad: ¿Esencia o Accidente?

- Alto acoplamiento entre personas y software
 - Modos de interacción no triviales: complejos, de larga duración, iniciativa mixta, con función social
 - Software y Sociedad se moldean mutuamente: El cumplimiento del propósito altera el contexto
- Imposibilidad de dar una formulación definitiva del problema
 - No se puede formalizar un mundo fundamentalmente informal
- La correctitud de la solución no suele tener una respuesta binaria
 - Grado de satisfacción del propósito puede ser difícil de medir
- La dificultad de separar problemas y síntoma
- ...

Complejidad: ¿Esencia o Accidente?

- Múltiples sistemas coexisten:
 - sistema actual,
 - múltiples propuestas de sistema a construir,
 - familia de sistemas,
 - posibles evoluciones del sistema
- Múltiples niveles de abstracción:
 - de objetivos de negocios a detalles operativos
- Múltiples aspectos
 - Funcional, calidad, desarrollo
 - aspectos duros y blandos
- Múltiples partes interesadas
 - con intereses contrapuestos
 - con antecedentes e intereses diversos
 - clientes, usuarios, expertos del dominio, desarrolladores, ...

Ingeniería de Requerimientos

¿ Cómo, Cuándo y Quién?

Separación del Problema y la Solución

- Descripción del Problema
 - a ser concensuado con interesados
 - base de un contrato
 - usado para evaluar diferentes opciones de diseño
 - una fuente de casos de test
 - base para dimensionar, organizar y dirigir un equipo de trabajo
- Requiere controlar si:
 - El problema se corresponde con las verdaderas necesidades
 - La solución correctamente resuelve la descripción del problema

Validación y Verificación

- Validación: un proceso cuyo objetivo es incrementar la confianza de que una descripción formal se corresponde con la realidad (es decir, el mundo informal)
 - Ej. si la descripción del problema se corresponde con las necesidades reales.

- Verificación: un proceso cuyo objetivo es garantizar que una descripción formal es correcta con respecto a otra
 - Ej. garantizar que la descripción del problema satisface la descripción de la solución.

Estos definiciones valen no solo para IR sino para todo IS

Elicit:

- to evoke or draw out (a response, answer, or fact) from someone in reaction to one's own actions or questions
- Evocar (una contestación, respuesta, dato) de alguien como reacción a preguntas o acciones....
- ¿Cómo es el sistema actual?
- ¿Cuáles son sus problemas?
- ¿Qué objetivos de mejora hay?
- ¿Qué estrategias para lograr estos objetivos existen?

Documentación orientada al análisis:

- Abstraer y estructurar lo elicitado
- Documentar de manera rigurosa

- Verificación inter e intra modelos
- ¿Existen contradicciones?
- ¿Hay riesgos obstáculos a tener en cuenta?
- ¿Los objetivos de negocio están garantizados?

- ¿Entendimos bien?
- ¿Modelamos bien?
- ¿Los modelos reflejan la realidad?
- ¿Los requerimientos reflejan necesidades reales?

- ¿Cómo comparan las distintas estrategias de alcance de objetivos?
- ¿Cuáles son los criterios de evaluación?
- ¿Cuales son los criterios de preferencia de los interesados?

- Generación de "el entregable"
- Documentación completa y detallada
- Documentación orientada a
 - lectura,
 - contrato,
 - encliclopedia,...

Desarrollo de Requerimientos

Gestión de Requerimientos

Actividades y Entidades

Stakeholders

Sistemas existentes

Documentos

Modelos de Requerimientos

Elicitación

modelado

Especificación

Especificación de Requerimientos

Análisis y validación

Negociación y priorización

Modelos para la Ingeniería de Requerimientos

Ciclo de Vida de la IR

(Según Boehm, 1988 - Kontoya/Somerville, 1997)

Caracterización de Progreso

Ciclo de Vida del Desarrollo de Software Modelo Cascada (Royce, 1970)

El Modelo V

El Modelo V

Ciclo de Vida del Desarrollo de Software Modelo Espiral (Boehm, 1988)

Ciclo de Vida del Desarrollo de Software Unified SW Development Process (Jacobson, 1999)

El Modelo Twin Peaks

¿Quienes hacen Ingeniería de Requerimientos?

- Muy difícil encontrar a una persona...
 - que sepa entrevistar, escuchar, cuestionar (pensamiento crítico), modelar, analizar, facilitar discusiones y negociaciones, observar, comunicar de manera verbal y escrita, relacionarse con gente, innovar,...
 - que tenga experiencia en el dominio del problema y de la solución
- ¿Existen?

Resumen

- Una introducción a la Ingeniería de Requerimientos
 - De qué trata
 - Por qué vale la pena
 - Actividades principales
 - Ciclo de vida
 - Contexto en el ciclo de vida del desarrollo de software
 - Quién lo hace

Bibliografía

- Requirements Engineering: From System Goals to UML Models to Software Specifications, Axel van Lamsweerde, Wiley, 2009
 - Este libro sirve como apoyo para la mayor parte de la primer mitad de la materia. Particularmente capítulos 1, 7, 8, y 10 a 17.
- Software Requirements & Specifications: A Lexicon of Practice, Principles and Prejudices, Michael Jackson. Addison-Wesley and ACM Press, 1996.
 - Este libro, excelentemente escrito, discute los fundamentos de Ingeniería de Requerimientos en mas profundidad.