Adjoint Operator

Let H be a Hilbert space and let $A \in \mathcal{B}(H)$. Fix some $\vec{y} \in H$ and define:

$$f_{\vec{y}}(\vec{x}) = \langle A\vec{x}, \vec{y} \rangle$$

f is clearly linear, and it is bounded:

$$|f_{\vec{y}}(\vec{x})| = |\langle A\vec{x}, \vec{y} \rangle| \le \|A\vec{x}\| \, \|\vec{y}\| \le \|A\| \, \|\vec{x}\| \, \|\vec{y}\| = (\|A\| \, \|\vec{y}\|) \, \|\vec{x}\|$$

Furthermore, by the Riesz Representation Theorem, $\exists, \vec{z} \in H$ such that:

$$f_{\vec{v}}(\vec{x}) = \langle \vec{x}, \vec{z} \rangle$$
 where $||f_v|| = ||\vec{z}||$

Let
$$\vec{z} = A^* \vec{y}$$
.

Definition

Let H be a Hilbert space and let $A \in \mathcal{B}(H)$. The *adjoint* of A, denoted A^* is the uniquely-defined operator that makes the following statement true $\forall \vec{x}, \vec{y} \in H$:

$$\langle A\vec{x}, \vec{y} \rangle = \langle \vec{x}, A^*\vec{y} \rangle$$

Example

Let $H = \mathbb{C}^N$ and let $A \in \mathcal{B}(H)$.

A can be represented by matrix multiplication.

Assume the standard basis:

$$a_{ij}^* = \langle A^* e_j, e_i \rangle = \langle e_j, A e_i \rangle = \overline{\langle A e_i, e_j \rangle} = \overline{a_{ji}}$$

Therefore, A^* corresponds to the conjugate transpose of the matrix corresponding to A.

Note that this also holds for H infinite dimensional and separable.

Lemma

Let H Hilbert space and let $S, T \in \mathcal{B}(H)$:

1).
$$(\forall \vec{x}, \vec{y} \in H, \langle S\vec{x}, \vec{y} \rangle = \langle T\vec{x}, \vec{y} \rangle) \iff S = T$$

2).
$$(\forall \vec{x}, \vec{y} \in H, \langle \vec{x}, S\vec{y} \rangle = \langle \vec{x}, T\vec{y} \rangle) \iff S = T$$

Proof

Assume $\vec{x}, \vec{y} \in H$.

$$\langle S\vec{x}, \vec{y} \rangle = \langle T\vec{x}, \vec{y} \rangle \quad \Longleftrightarrow \quad \langle S\vec{x}, \vec{y} \rangle - \langle T\vec{x}, \vec{y} \rangle = 0$$

$$\Longleftrightarrow \quad \langle S\vec{x} - T\vec{x}, \vec{y} \rangle = 0$$

$$\Longleftrightarrow \quad \langle (S - T)\vec{x}, \vec{y} \rangle = 0$$

$$\Longleftrightarrow \quad S - T \equiv 0$$

$$\Longleftrightarrow \quad S = T$$

$$\begin{split} \langle \vec{x}, S \vec{y} \rangle &= \langle \vec{x}, T \vec{y} \rangle &\iff \overline{\langle S \vec{y}, \vec{x} \rangle} &= \overline{\langle T \vec{y}, \vec{x} \rangle} \\ &\iff \langle S \vec{y}, \vec{x} \rangle &= \langle T \vec{y}, \vec{x} \rangle \\ &\iff S &= T \end{split}$$

Theorem

Let H be a Hilbert space and let $A \in \mathcal{B}(H)$:

$$A^* \in \mathcal{B}(H)$$

Proof

Assume $\vec{x}, \vec{y}, \vec{z} \in H$ and $\alpha, \beta \in \mathbb{C}$:

$$\langle \vec{z}, A^*(\alpha \vec{x} + \beta \vec{y}) \rangle = \langle A\vec{z}, \alpha \vec{x} + \beta \vec{y} \rangle$$

$$= \overline{\alpha} \langle A\vec{z}, \vec{x} \rangle + \overline{\beta} \langle A\vec{z}, \vec{y} \rangle$$

$$= \overline{\alpha} \langle \vec{z}, A^* \vec{x} \rangle + \overline{\beta} \langle \vec{z}, A^* \vec{y} \rangle$$

$$= \langle z, \alpha A^* \vec{x} + \beta A^* \vec{y} \rangle$$

 $\therefore A^*(\alpha \vec{x} + \beta \vec{y}) = \alpha A^* \vec{x} + \beta A^* \vec{y}$ and thus A^* is linear.

$$||A^*\vec{x}||^2 = \langle A^*\vec{x}, A^*\vec{x} \rangle$$

$$= \langle A(A^*\vec{x}), \vec{x} \rangle$$

$$\leq ||A(A^*\vec{x})|| ||\vec{x}||$$

$$\leq ||A|| ||A^*\vec{x}|| ||\vec{x}||$$

Thus $||A^*\vec{x}|| \le ||A|| \, ||\vec{x}||$ with equality at $\vec{x} = 0$.

Therefore A^* is bounded by ||A||.

Properties

Let H be a Hilbert space and let $A,B\in\mathcal{B}(H)$ and $\alpha\in\mathbb{C}$:

1).
$$(A+B)^* = A^* + B^*$$

2).
$$(\alpha A)^* = \overline{\alpha} A^*$$

3).
$$(A^*)^* = A$$

4).
$$I^* = I$$

5).
$$(AB)^* = B^*A^*$$

Proof

Assume $\vec{x}, \vec{y} \in H$:

$$\begin{split} \langle (A+B)^*\vec{x}, \vec{y} \rangle &= \langle \vec{x}, (A+B)\vec{y} \rangle \\ &= \langle \vec{x}, A\vec{y} + B\vec{y} \rangle \\ &= \langle \vec{x}, A\vec{y} \rangle + \langle \vec{x}, B\vec{y} \rangle \\ &= \langle A^*\vec{x}, \vec{y} \rangle + \langle B^*\vec{x}, \vec{y} \rangle \\ &= \langle A^*\vec{x} + B^*\vec{x}, \vec{y} \rangle \\ &= \langle (A^* + B^*)\vec{x}, \vec{y} \rangle \end{split}$$

$$(A + B)^* = A^* + B^*$$

$$\langle (\alpha A)^* \vec{x}, \vec{y} \rangle = \langle \vec{x}, \alpha A \vec{y} \rangle = \overline{\alpha} \, \langle \vec{x}, A \vec{y} \rangle = \overline{\alpha} \, \langle A^* \vec{x}, \vec{y} \rangle = \langle \overline{\alpha} A^* \vec{x}, \vec{y} \rangle$$

$$\therefore (\alpha A)^* = \overline{\alpha} A^*$$

3).

$$\langle (A^*)^* \vec{x}, \vec{y} \rangle = \langle \vec{x}, A^* \vec{y} \rangle = \langle A \vec{x}, \vec{y} \rangle$$

$$(A^*)^* = A$$

4).

$$\langle I^* \vec{x}, \vec{y} \rangle = \langle \vec{x}, I \vec{y} \rangle = \langle \vec{x}, \vec{y} \rangle = \langle I \vec{x}, \vec{y} \rangle$$

$$\therefore I^* = I$$

5).

$$\langle (AB)^*\vec{x}, \vec{y} \rangle = \langle \vec{x}, (AB)\vec{y} \rangle = \langle \vec{x}, A(B\vec{y}) \rangle = \langle A^*\vec{x}, B\vec{y} \rangle = \langle B^*(A^*\vec{x}), \vec{y} \rangle = \langle (B^*A^*)\vec{x}, \vec{y} \rangle$$

$$\therefore (AB)^* = B^*A^*$$

Theorem

Let H be a Hilbert space and $A \in \mathcal{B}(H)$:

1).
$$||A^*|| = ||A||$$

2).
$$||A^*A|| = ||A||^2$$

Proof

Assume $\vec{x} \in H$:

1). From above:
$$||A^*|| \le ||A||$$
.
Also: $||A|| = ||(A^*)^*|| \le ||A^*||$.

$$\therefore \|A^*\| = \|A\|$$

2). $||A^*A|| \le ||A^*|| \, ||A|| = ||A|| \, ||A|| = ||A||^2$ Also:

$$||A||^{2} = \left[\sup_{\|\vec{x}\|=1} ||A\vec{x}||\right]^{2}$$

$$= \sup_{\|\vec{x}\|=1} ||A\vec{x}||^{2}$$

$$= \sup_{\|\vec{x}\|=1} \langle A\vec{x}, A\vec{x} \rangle$$

$$= \sup_{\|\vec{x}\|=1} \langle A^{*}(A\vec{x}), \vec{x} \rangle$$

$$= \sup_{\|\vec{x}\|=1} \langle (A^{*}A)\vec{x}, \vec{x} \rangle$$

$$\leq \sup_{\|\vec{x}\|=1} ||A^{*}A|| ||\vec{x}|| ||\vec{x}||$$

$$\leq \sup_{\|\vec{x}\|=1} ||A^{*}A|| ||\vec{x}|| ||\vec{x}||$$

$$= \sup_{\|\vec{x}\|=1} ||A^{*}A|| ||\vec{x}||^{2}$$

$$\leq ||A^{*}A||$$

$$\therefore ||A^{*}A|| = ||A||^{2}$$