^nsys

Ansys Fluent Simulation Report

Analyst	lorenzo.campoli	
Date	6/3/2025 09:45 AM	

Table of Contents

1 System Information

2 Geometry and Mesh

2.1 Mesh Size

2.2 Mesh Quality

2.3 Orthogonal Quality

3 Simulation Setup

3.1 Physics

3.1.1 Models

3.1.2 Material Properties

3.1.3 Cell Zone Conditions

3.1.4 Boundary Conditions

3.1.5 Reference Values

3.2 Solver Settings

4 Run Information

5 Solution Status

6 Report Definitions

7 Plots

8 Contours

9 Vectors

System Information

Application	Fluent	
Settings	3d, double precision, density-based implicit, SST k-omega	
Version	23.2.0-10213	
Source Revision	aafc525902	
Build Time	Aug 18 2023 08:23:03 EDT	
CPU	Intel(R) Xeon(R) Gold 6242R	
os	Windows	

Geometry and Mesh

Mesh Size

Cells	Cells Faces	
5540296	20851453	10106834

Mesh Quality

Name	Туре	Min Orthogonal Quality	Max Aspect Ratio	
enclosure-enclosure1	Mixed Cell	0.123239	503658.25	

Orthogonal Quality

Simulation Setup

Ρ	n۱	/SI	CS

Models

Model	Settings	
Space	3D	

Model	Settings
Time	Steady
Viscous	SST k-omega turbulence model
Heat Transfer	Enabled

Material Properties

- Fluid	
— air	
Density	ideal gas
Cp (Specific Heat)	nasa 9 piecewise polynomial
Thermal Conductivity	piecewise linear
Viscosity	sutherland
Molecular Weight	28.966 kg/kmol
- Solid	
aluminum	
Density	2719 kg/m^3
Cp (Specific Heat)	871 J/(kg K)
Thermal Conductivity	202.4 W/(m K)

Cell Zone Conditions

- Fluid		
enclosure-enclosure1		
Material Name	air	
Specify source terms?	no	
Specify fixed values?		
Frame Motion?		
Laminar zone?		
Porous zone?		
3D Fan Zone?		

Boundary Conditions

- Inlet	
- nozzle_exit	
Velocity Specification Method	Magnitude, Normal to Boundary
Reference Frame	Absolute
Velocity Magnitude [m/s]	2650
Supersonic/Initial Gauge Pressure [Pa]	2072
Temperature [K]	1840
Turbulent Specification Method	Intensity and Length Scale
Turbulent Intensity [%]	10
Turbulent Length Scale [m]	0.3
Outflow Gauge Pressure [Pa]	0
Note: Reinjected particles do not change their injection association	no
— far	

Gauge Pressure [Pa]	0
Mach Number	1.08
Temperature [K]	216.65
Coordinate System	Cartesian (X, Y, Z)
Component of Flow Direction (x,y,z)	(-1, 0, 0)
Turbulent Intensity (%)	Intensity and Viscosity Ratio
Turbulent Viscosity Retic	5
Turbulent Viscosity Ratio	10
Note: Reinjected particles do not change their injection association	no
— inlet	0
Gauge Pressure [Pa]	0
Mach Number	1.08
Temperature [K]	216.65
Coordinate System	Cartesian (X, Y, Z)
Component of Flow Direction (x,y,z)	(-1, 0, 0)
Turbulent Specification Method	Intensity and Viscosity Ratio
Turbulent Intensity [%]	5
Turbulent Viscosity Ratio	10
Note: Reinjected particles do not change their injection association	no
Outlet	
— outlet	
Backflow Reference Frame	Absolute
Gauge Pressure [Pa]	0
Pressure Profile Multiplier	1
Backflow Total Temperature [K]	216.5
Backflow Direction Specification Method	Normal to Boundary
Turbulent Specification Method	Intensity and Viscosity Ratio
Backflow Turbulent Intensity [%]	5
Backflow Turbulent Viscosity Ratio	10
Note: Reinjected particles do not change their injection association	no
Acoustic Wave Model	Off
Backflow Pressure Specification	Total Pressure
Build artificial walls to prevent reverse flow?	no
Radial Equilibrium Pressure Distribution	no
Average Pressure Specification?	no
Specify targeted mass flow rate	no
- Symmetry	
symmetry	symmetry
- Wall	
- s01s02s03	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
	T
Thermal BC Type	Temperature

Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	rough bc standard
Wall Roughness Height [m]	0.0001
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
- raceway2	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Temperature
Temperature [K]	323
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	rough bc standard
Wall Roughness Height [m]	0.0001
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
- s04s05	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Temperature
Temperature [K]	323
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	rough bc standard
Wall Roughness Height [m]	0.0001
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
- fin1	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0
Material Name	aluminum
Thermal BC Type	Temperature
Temperature [K]	323
Wall Motion	Stationary Wall
Shear Boundary Condition	No Slip
Wall Surface Roughness	rough bc standard
Wall Roughness Height [m]	0.0001
Wall Roughness Constant	0.5
Convective Augmentation Factor	1
- base	
Wall Thickness [m]	0
Heat Generation Rate [W/m^3]	0

Material Name	aluminum	
Thermal BC Type		
Temperature [K]	Temperature 323	
Wall Motion		
Shear Boundary Condition	Stationary Wall No Slip	
	rough bc standard	
Wall Surface Roughness	0.0001	
Wall Roughness Constant	0.5	
Wall Roughness Constant		
Convective Augmentation Factor	1	
— pl_body	0	
Wall Thickness [m]	0	
Heat Generation Rate [W/m^3]	0	
Material Name	aluminum	
Thermal BC Type	Temperature	
Temperature [K]	323	
Wall Motion	Stationary Wall	
Shear Boundary Condition	No Slip	
Wall Surface Roughness	rough bc standard	
Wall Roughness Height [m]	0.0001	
Wall Roughness Constant	0.5	
Convective Augmentation Factor	1	
<pre>- pl_nose</pre>		
Wall Thickness [m]	0	
Heat Generation Rate [W/m^3]	0	
Material Name	aluminum	
Thermal BC Type	Temperature	
Temperature [K]	323	
Wall Motion	Stationary Wall	
Shear Boundary Condition	No Slip	
Wall Surface Roughness	rough bc standard	
Wall Roughness Height [m]	m] 0.0001	
Wall Roughness Constant	onstant 0.5	
Convective Augmentation Factor	1	
<pre>- vernier_exit1</pre>		
Wall Thickness [m]	0	
Heat Generation Rate [W/m^3]	0	
Material Name	aluminum	
Thermal BC Type	Temperature	
Temperature [K]	323	
Wall Motion	Stationary Wall	
Shear Boundary Condition	No Slip	
Wall Surface Roughness	rough bc standard	
Wall Roughness Height [m]	0.0001	
Wall Roughness Constant	0.5	
Convective Augmentation Factor	1	

<pre>- vernier_exit8</pre>		
Wall Thickness [m]	0	
Heat Generation Rate [W/m^3]	0	
Material Name	aluminum	
Thermal BC Type	Temperature	
Temperature [K]	323	
Wall Motion	Stationary Wall	
Shear Boundary Condition	No Slip	
Wall Surface Roughness	rough bc standard	
Wall Roughness Height [m]	0.0001	
Wall Roughness Constant	0.5	
Convective Augmentation Factor	1	
— pl_fin1		
Wall Thickness [m]	0	
Heat Generation Rate [W/m^3]	0	
Material Name	aluminum	
Thermal BC Type	Temperature	
Temperature [K]	323	
Wall Motion	Stationary Wall	
Shear Boundary Condition	No Slip	
Wall Surface Roughness	rough bc standard	
Wall Roughness Height [m]	0.0001	
Wall Roughness Constant	0.5	
Convective Augmentation Factor	1	
nozzle_wall		
Wall Thickness [m]	0	
Heat Generation Rate [W/m^3]	0	
Material Name	aluminum	
Thermal BC Type	Temperature	
Temperature [K]	323	
Wall Motion	Stationary Wall	
Shear Boundary Condition	No Slip	
Wall Surface Roughness	rough bc standard	
Wall Roughness Height [m]	0.0001	
Wall Roughness Constant	0.5	
Convective Augmentation Factor	1	

Reference Values

Area	0.44175 m^2
Density	0.3622478 kg/m^3
Enthalpy	217516.6 J/kg
Length	1.5 m
Pressure	0 Pa
Temperature	216.65 K

Velocity	318 m/s
Viscosity	1.652313e-05 kg/(m s)
Ratio of Specific Heats	1.4
Yplus for Heat Tran. Coef.	300
Reference Zone	enclosure-enclosure1

Solver Settings

Equations		
Flow	True	
Turbulence	True	
Numerics		
Absolute Velocity Formulation	True	
 Under-Relaxation Factors 		
Turbulent Kinetic Energy	0.8	
Specific Dissipation Rate	0.8	
Turbulent Viscosity	1	
Solid	1	
 Discretization Scheme 		
Flow	Second Order Upwind	
Turbulent Kinetic Energy	Second Order Upwind	
Specific Dissipation Rate	Second Order Upwind	
Time Marching		
Solver	Implicit	
Courant Number	40	
- Solution Limits		
Minimum Absolute Pressure [Pa]	6.731715	
Maximum Absolute Pressure [Pa]	2167274	
Minimum Static Temperature [K]	10	
Maximum Static Temperature [K]	4686.7	
Minimum Turb. Kinetic Energy [m^2/s^2]	1e-14	
Minimum Spec. Dissipation Rate [s^-1]	1e-20	
Maximum Turb. Viscosity Ratio	1e+07	
Maximum rulb. Viscosity Natio	16107	

Run Information

Number of Machines	1
Number of Cores	36
Case Read	18.206 seconds
Data Read	14.796 seconds
Iteration	24937.3 seconds
AMG	13578.4 seconds
Virtual Current Memory	47.872 GB

Virtual Peak Memory	50.3653 GB	
Memory Per M Cell	8.57778	

Solution Status

Iterations: 956

	Value	Absolute Criteria	Convergence Status
continuity	0.002474937	0.001	Not Converged
x-velocity	0.001747896	0.0001	Not Converged
y-velocity	0.001195793	0.0001	Not Converged
z-velocity	0.0005098218	0.0001	Not Converged
energy	0.002330829	0.0001	Not Converged
k	0.0008343247	0.0001	Not Converged
omega	0.001267204	0.001	Not Converged

Report Definitions

q_average	8806.652	W/m^2
cn_moment	-0.187969	
cm	0.5719479	
су	0.04116483	
cn	0.9595893	
ca	0.8277517	
cfl-number	3	

Plots

Residuals

ca_plot

cn_plot

cn_plot

cy_plot

cy_plot

cm_plot

cn_moment_plot

cn_moment_plot

q_plot

Contours

density

mach

velocity

