# **CS2040S**

# Java

- Use Object.equals(Object o) to compare objects
- String concatenation takes O(length)

# **Big-O** notation

**Upper bound** T(n) = O(f(n)) if for some c > 0 and  $n_0 > 0$ ,

$$T(n) \leq c f(n)$$

for all  $n > n_0$ .

**Lower bound**  $T(n) = \Omega(f(n))$  if for some c > 0 and  $n_0 > 0$ ,

$$T(n) \ge cf(n)$$

for all  $n > n_0$ .

**Tight bound**  $T(n) = \Theta(f(n))$  if

$$T(n) = O(f(n))$$
 and  $T(n) = \Omega(f(n))$ 

Properties Let T(n) = O(f(n)) and S(n) = O(g(n)).

1. If T(n) is a polynomial of degree k then

$$T(n) = O(n^k)$$

- 2. Addition: T(n) + S(n) = O(f(n) + g(n))
- 3. Multiplication:  $T(n) \times S(n) = O(f(n) \times g(n))$
- 4. Max:  $\max(T(n), S(n)) = O(f(n) + g(n))$
- 5. Composition:  $T(S(n)) = O(f \circ g(n))$  only if both functions are increasing

#### Overview

$$1 < \log n < \sqrt{n} < n < n \log n$$
$$< n^{2} < n^{3} < 2^{n} < 2^{2n} < n! < n^{n}$$

Stirling's approximation  $n! \approx \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ Used to show that  $\log(n!) = O(n \log n)$ 

Geometric series

$$S_n = a + ar + ar^2 + \dots + ar^{n-1} = \frac{a(1-r^n)}{1-r}$$

Harmonic series  $\sum_{i=1}^{\infty} \frac{1}{i} = O(\log n)$ 

 $\textbf{Logarithm change of base} \ \log_b a = \frac{\log_x b}{\log_x a}$ 

**Master theorem** Comparing f(n) with  $n^{\log_b(a)}$  as polynomials, for  $a \ge 1$  and b > 1,

$$\begin{split} T(n) &= aT\left(\frac{n}{b}\right) + f(n) \\ &= \begin{cases} \Theta(n^{\log_b(a)}) & \text{if } f(n) < n^{\log_b(a)} \\ \Theta(n^{\log_b(a)}\log n) & \text{if } f(n) = n^{\log_b(a)} \\ \Theta(f(n)) & \text{if } f(n) > n^{\log_b(a)} \end{cases} \end{split}$$

# Algorithms

(with binary search as example algo)

**Precondition** Fact that is true before algorithm runs. e.g. Array is sorted

Postcondition Fact that is true when algorithm ends. e.g. If element in array, then A[begin] = kev

Invariant Relationship between variables that is always true

Loop invariant Invariant at beginning/end of loop e.g. A[begin] <= key <= A[end], i.e. key is in range

#### Peak finding

Assume A[-1] and A[n] are -INT\_MAX.

FindPeak(A, n)

mid = n/2

if A[mid+1] > A[mid] then recurse on right half

elif A[mid-1] > A[mid] then recurse
 on left half

else A[mid] is a peak

If we recurse into right half, then:

- Given that A[mid] < A[mid+1] (condition for recursing into right half)
- Assuming no peak, then A[mid]
   A[mid+1] < A[mid+2] < ... </li>
   A[n-1] > A[n] = -INT\_MAX
- Hence peak must exist

# Sorting

 ${\bf Bubble} \ \ {\bf compare} \ \ {\bf adjacent} \ \ {\bf and} \ \ {\bf swap} \ \ {\bf to} \ \ {\bf make}$   ${\bf right} > {\bf left}$ 

Selection find smallest element and swap it to end of sorted region  $\,$ 

**Insertion** swap each new element until it is correctly placed within sorted region

**Small arrays** Insertion sort is stable, works fast for nearly sorted arrays, has little overhead.

Merge (recursive) sort each half and merge

Quick (recursive) partition about chosen pivot

#### In-place partitioning O(n)

- Choose a random pivot (for good quicksort performance), and swap it to the start
- 2. Increase lptr while element at left < pivot
- 3. Decrease rptr while element at right > pivot
- 4. If not yet at centre, swap pointers and repeat

#### Quicksort variations

- Is stable only if the partitioning is stable. Requires O(n) extra space to store initial indices
- If pivot splits by a fraction, good enough
- 3-way partitioning: pack duplicates in middle to eliminate duplicate elements worst case
- Paranoid: force a good pivot
- k-pivots:  $O(k \log k)$  to sort pivots  $+ O(n \log k)$  to binary search the pivots to choose correct bucket to place the new item.  $T(n) = O(n \log_k n \log k) = O(n \log n)$
- 2-pivot quicksort is in practice better, because of cache performance

# Probability

**Linearity of expectation** For random variables X and Y:

$$E(aX+bY)=aE(X)+bE(Y) \\$$

**Expected trials** If an event X has probability of success p, then an expected  $\frac{1}{p}$  trials is required for 1 success.

#### Order Statistics

Find kth smallest element Quicksort but only recurse on relevant side - O(n)

#### **Interval Tree**

Each node stores an interval, keyed on left endpoint, augmented with max right endpoint in subtree

#### Search $O(\log n)$

- 1. If value in node interval, return node
- 2. If value > node.left.max, recurse right
- 3. Else recurse left

**Search** Find number of points in range [a, b] -  $O(k + \log n)$ , where k is number of points found

• Internal nodes contain max in left subtree

**All-overlaps** If we want to find all k intervals

that contain value -  $O(k \log n)$ 

2. Add to list and delete interval

• Leaf nodes contain points

• Build tree:  $O(n \log n)$ 

• Space: O(n)

Orthogonal Range Searching

1. Search for interval

- 1. Find split node, highest node with key in range [a, b]
- 2. Do left child traversal
  - If node in query range, then add entire right subtree to list, and recurse left
  - Else recurse right
- 3. Do right child traversal (similar)

#### n dimensional search

- Recursively store d-1 dim range tree in each node of a 1D range tree
- Build tree:  $O(n \log^{d-1} n)$
- Query:  $O(\log^d n + k)$
- Space:  $O(n \log^{d-1} n)$
- 2D tree Rotate: O(n)

# $\underline{\text{Trees}}$

# Binary trees

- A binary tree is either empty, or a node pointing to two binary trees.
- In a balanced tree,  $h = O(\log n)$
- $\bullet\,$  Height is no. of edges on longest path to leaf

The following operations are all  $O(\log n)$ :

searchMin keep going left

searchMax keep going right

search, insert go left/right depending on comparison of new key with cur key

#### successor

- If node has right child: right.searchMin()
- Else traverse upwards until ancestor contains node in left subtree, then return ancestor

### predecessor

- If node has left child: left.searchMax()
- Else traverse upwards until ancestor contains node in right subtree, then return ancestor

#### delete

- 0 children: remove node
- 1 child: remove node, connect parent to child
- 2 children: delete successor (at most 1 child), replace node value with successor value

The following operations are all O(n):

in-order left, self, right

pre-order self, left, right

post-order left, right, self

level-order decreasing height (BFS)

**Ancestor** Node x is an ancestor of node  $y \Leftrightarrow x$  comes before y in pre-order, AND y comes before x in post-order.

O(1) work

$$T(n) = T(\frac{n}{k}) + O(1) = O(\log n)$$

 $T(n) = kT(\frac{n}{k}) + O(1) = O(n)$  $T(n) = kT(\frac{n}{2k}) + O(1) = O(\sqrt{n})$  Not O(1) work

$$T(n) = T(\frac{n}{k}) + O(n) = O(n)$$
  

$$T(n) = kT(\frac{n}{k}) + O(n) = O(n \log n)$$

 $T(n) = kT(\frac{n}{k}) + O(n\log n) = O(n\log^2 n)$ 

Subtract in recurrence

$$T(n) = T(n-c) + O(n) = O(n^2)$$

$$T(n) = 2T(n-1) + O(1) = O(2^n)$$

$$T(n) = T(n-1) + T(n-2) + O(1) = O(1)$$

 $T(n) = T(n-1) + T(n-2) + O(1) = O(\phi^n)$ 

# AVL trees

- A node v is height balanced if |v.L.height - v.R.height| <= 1</pre>
- A height balanced tree has at  $h < 2 \log n$  (actually, approximately  $\frac{1}{\log \phi} \log n$ )

Balancing Assume A is left-heavy. Otherwise, if A is right-heavy, substitute ALL left, right with right, left

Case 1: B is balanced: rightRotate(A)



Case 2: B is left-heavy: rightRotate(A)



Case 3: B is **right-heavy**: leftRotate(A.left); rightRotate(A)



Update weights after rightRotate(A)



Update max after rightRotate(A)



• Insertion: max 2 rotations

• Deletion:  $\max O(\log n)$  rotations

Quick

 $\Omega(n \log n)$ 

 $O(n \log n)$ 

Rank of node Position in in-order

rank(node)

rank = node.left.weight + 1

while node != null

if node is right child

rank += node.parent.left.weight + 1 node = node.parent

return rank

#### Trie

- search, insert: O(L)
- space:  $O(\sum L + \text{overhead})$

### k-d tree

- Stores coordinates in x y plane
- Levels alternate between splitting plane by x or

#### Search node $O(\log n)$

- 1. If horizontal split, compare x-coordinate
- 2. If vertical split, compare y-coordinate
- 3. O(h) time

**Search min**  $O(\sqrt{n})$  (e.g. min x)

- 1. If horizontal split, recurse left child
- 2. If vertical split, recurse on both children
- 3.  $T(n) = 2T(\frac{n}{4}) + O(1)$

**Build**  $O(n \log n)$ 

- 1. Choose either x or u.
- 2. Quickselect median of x or y
- 3. Split array into two halves using median
- 4. Paritioning: O(n)

#### (a,b)-tree



#### Rules

1. (a, b) child policy

|          | # Keys |     | # Children |     |
|----------|--------|-----|------------|-----|
| Node     | Min    | Max | Min        | Max |
| Root     | 1      | b-1 | 2          | b   |
| Internal | a-1    | b-1 | a          | b   |
| Leaf     | a-1    | b-1 | 0          | 0   |

- 2. A non-leaf node must have one more child than its number of keys
- 3. All leaf nodes must all be at the same depth

## **Definitions**

- Key range: Range of keys allowed in a subtree (wrt parent)
- Key list: List of keys in node (assume sorted)
- Tree list: List of children

B-tree simply (B, 2B) trees

Search  $O(\log n)$ :

 $O(n^2)$ 

- $O(\log b)$  binary search keylist for subtree containing the key to search
- Repeat along height of  $O(\log_a n)$

Insert  $O(\log n)$ : Like search, then perform split/merge as necessary

- Proactive: preemptively split nodes at full capacity (only applies if  $b \ge 2a$ )
- Passive: insert then check (potentially splitting all the way to root)

**Delete**  $O(\log n)$ : Like search, then perform split/merge as necessary

#### Split



- 1. Pick median key of overfull range z as new split kev k
- 2. Put k into parent
- 3. Split z into LHS and RHS of k
- 4. If parent is overfull, split(parent)

#### Merge



Let d be deleted node, and l be left sibling of d. Assume keylist of l and d have < b - 1 keys in total. Otherwise use share below

- 1. Pick key k from parent, on left of d
- 2. Move k to keylist of l
- 3. Merge d keylist, treelist into l
- 4. Delete d

Share Merge; split newly combined node

# Hashing

#### Hash functions

- Maps universe to keys in [1, m]
- Store item with key k in bucket hash(k)
- Since universe size larger, collisions inevitable by pigeonhole principle

#### Simple uniform hash

- Each key has equal probability of being mapped to each bucket
- Keys are mapped independently

Chaining Assume n keys have been inserted into hash table of size m.

- ullet Each bucket c stores linked list of items with hash(k) = c
- Insert: O(1 + hash) = O(1)
- Total space: O(n+m)

#### Search

- Worst case: O(n + hash) = O(n)
- Expected case:  $O(1 + \frac{n}{m})$ , good m: O(1)

# Expected max cost of n inserts

•  $O(\log n) = \Theta(\frac{\log n}{\log \log n})$ 

pivot is in correct position

| Sort      | Best               | Average       | Worst         | Stable | Memory | Invariant (after $k$ iterations)                       |
|-----------|--------------------|---------------|---------------|--------|--------|--------------------------------------------------------|
| Bubble    | $\Omega(n)$        | $O(n^2)$      | $O(n^2)$      | ✓      | O(1)   | last $k$ elements in correct position                  |
| Selection | $\Omega(n^2)$      | $O(n^2)$      | $O(n^2)$      | ×      | O(1)   | first $k$ elements in correct position                 |
| Insertion | $\Omega(n)$        | $O(n^2)$      | $O(n^2)$      | ✓      | O(1)   | (original) first $k$ elements in relative sorted order |
| Merge     | $\Omega(n \log n)$ | $O(n \log n)$ | $O(n \log n)$ | ✓      | O(n)   | subarray is sorted                                     |

O(1)