Logic and Sets 3

disjunctive and conjunctive normal forms adequate systems of connectives satisfiability

Propositional logic: The story so far

- propositional logic formulas
 - \blacktriangleright truth tables for \neg , \land , \lor , \oplus , \rightarrow , \leftrightarrow
- ▶ semantic entailment ⊨
 - $ightharpoonup \phi_1, \ldots, \phi_n \models \psi$
- metalogic statements
 - $ightharpoonup \phi \wedge \psi$ is a tautology $\iff \phi$ and ψ are tautologies
- logic puzzles
 - on an island with liars and truth speakers

Today

- disjunctive normal form (DNF)
 - turning a truth table into DNF
- adequate systems of connectives
 - **▶** {¬,∨}
 - Sheffer stroke
- conjunctive normal form (CNF)
 - turning a truth table into CNF
 - rewriting a formula into CNF
 - tautology test for CNF
- satisfiability
 - solving Sudoku puzzles
 - DPLL procedure for CNF

Disjunctive normal form

Expressive power of propositional logic

Theorem

Propositional logic is functionally complete:

Each truth table can be represented by a propositional formula.

Darling, does your Swiss army knife have a garlic press?

Extracting formulas from truth tables

As an example, we construct a formula that corresponds to the following truth table.

This formula is true exactly on the rows marked by \leftarrow .

Solution:
$$(p \land \neg q \land \neg r) \lor (\neg p \land q \land r) \lor (\neg p \land \neg q \land \neg r)$$

Extracting formulas from truth tables

Τ

Formulas corresponding to a truth table constructed in this way are of a special syntactic shape: disjunctive normal form (DNF).

Disjunctive normal form

Definition

- A literal is a propositional variable or the negation of a propositional variable: $p, q, \neg q, \neg r, s, ...$
- A disjunctive normal form is a disjunction $\psi_1 \lor \cdots \lor \psi_n$ where the formulas ψ_i are conjunctions of literals.

$$\blacktriangleright \underbrace{(p \land \neg q \land \neg r)}_{\psi_1} \lor \underbrace{(\neg p \land q \land r)}_{\psi_2} \lor \underbrace{(\neg p \land \neg q \land \neg r)}_{\psi_3}$$

$$\blacktriangleright \underbrace{(\neg q \land r)}_{\psi_1} \lor \underbrace{(p \land q \land \neg s)}_{\psi_2} \lor \underbrace{\neg r}_{\psi_3}$$

 \triangleright 'conjunction' ψ_3 consists of just one single literal $\neg r$

$$\underbrace{p \land q \land \neg s}_{\psi_1}$$

 \triangleright one single conjunction ψ_1 of literals

Disjunctive normal form

Question

Why don't we need to write brackets around disjunctions, and only a single pair of brackets around conjunctions?

Answer: Disjunction and conjunction are both associative.

Question

Is the formula p in DNF?

Answer: Yes!

The 'disjunction' consists of a single 'conjunction', which in turn consists of a single literal.

Extracting DNF-formulas from known truth tables

Extraction of DNF's from truth tables yields semantic equivalences.

A DNF for
$$p \to q$$

$$\begin{array}{c|cccc}
p & q & p \to q \\
\hline
T & T & T & \Leftarrow & p \land q \\
\hline
T & F & F \\
F & T & T & \Leftarrow & \neg p \land q \\
F & F & T & \Leftarrow & \neg p \land \neg q
\end{array}$$

So we find the semantic equivalence

$$p \rightarrow q \equiv (p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$$

This produces the DNF $(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$.

DNF-extraction from truth tables

Question

Which DNF is extracted from the truth table of $p \wedge q$?

Answer: The formula itself, $p \wedge q$.

Question

Which DNF is extracted from the truth table of $p \lor q$?

Answer:
$$(p \land q) \lor (p \land \neg q) \lor (\neg p \land q)$$

So we find the semantic equivalence

$$p \lor q \equiv (p \land q) \lor (p \land \neg q) \lor (\neg p \land q)$$

DNF-extraction from truth tables of contradictions

Let us try to extract a DNF from the truth table of $p \land \neg p$.

$$\begin{array}{c|c}
p & p \land \neg p \\
\hline
T & F \\
F & F
\end{array}$$

In this case DNF-extraction as described does not succeed, since there are no T's.

Here one can stipulate as the result of the extraction process a contradiction $q \land \neg q$, which is a DNF.

Or we can nominate \perp , a logical constant denoting *false* which will be introduced later on, to be an "empty" DNF.

Adequate systems of connectives

Adequate systems of connectives

Definition

A system C of connectives is *adequate* if *every* truth table can be expressed as a formula with connectives in C.

The DNF corresponding to a given truth table contains only the connectives ¬, ∧, ∨.

Hence $\{\neg, \land, \lor\}$ is an *adequate* system of connectives.

- ▶ Actually the system $\{\neg, \land\}$ is already adequate.
 - ▶ Because we have $\phi \lor \psi \equiv \neg(\neg \phi \land \neg \psi)$.
 - ▶ So all occurrences of \lor can be eliminated from a formula: Replace subformulas $\phi \lor \psi$ by $\neg(\neg \phi \land \neg \psi)$.
- ▶ Likewise, the system {¬, ∨} is adequate.
 - ► Because we have $\phi \wedge \psi \equiv \neg(\neg \phi \vee \neg \psi)$.

Examples

Express $(p \land \neg q) \lor (\neg p \land q)$ in the system $\{\neg, \land\}$

Transform this formula using $\phi \lor \psi \equiv \neg(\neg \phi \land \neg \psi)$.

$$\underbrace{(p \land \neg q)}_{\phi} \lor \underbrace{(\neg p \land q)}_{\psi} \quad \rightsquigarrow \quad \neg(\neg \underbrace{(p \land \neg q)}_{\phi} \land \neg \underbrace{(\neg p \land q)}_{\psi})$$

Express $(p \land \neg q) \lor (\neg p \land q)$ in the system $\{\neg, \lor\}$

Transform this formula using $\phi \wedge \psi \equiv \neg(\neg \phi \vee \neg \psi)$.

Only negation or conjunction

Question

Is negation – by itself an adequate system?

Answer: No, it can only express negation and identity (by a double negation) on a single propositional variable.

Question

Is conjunction ∧ by itself an adequate system?

Answer: No, since substituting T for all propositional variables will always yield T. So e.g. $\neg p$ cannot be expressed.

Sheffer stroke

The *Sheffer stroke* | forms an adequate system by itself.

The meaning of $\phi \mid \psi$ is: not both ϕ and ψ .

$$\phi \mid \psi \equiv \neg(\phi \wedge \psi)$$

It is also called the NAND-operation.

Henry M. Sheffer (1882-1964)

Truth table of φ | ψ

ф	ψ	φ ψ
Т	Т	F
T	F	T
F	Т	Т
F	F	T

Expressing ¬ and ∨ with the Sheffer stroke

Question

What does $\phi \mid \phi$ mean?

Answer: ¬ф

Question

How can $\phi \lor \psi$ be expressed using only | and \neg ?

Hint: $\phi \lor \psi \equiv \neg(\neg \phi \land \neg \psi)$

Answer: $\neg \phi \mid \neg \psi$

Question

How can $\phi \lor \psi$ be expressed using only |?

Answer: $(\phi | \phi) | (\psi | \psi)$

Sheffer stroke on its own is adequate

{|} is an adequate system.

We show this by expressing the connectives of the known adequate system $\{\neg, \lor\}$ using only $|\cdot|$.

Expressing \(\) with the Sheffer stroke

Question

Express $\phi \wedge \psi$ using only |.

Hint: Use $\phi \wedge \psi \equiv \neg \neg (\phi \wedge \psi)$.

Answer:

$$\phi \wedge \psi \equiv \neg \neg (\phi \wedge \psi) \equiv \neg (\phi | \psi) \equiv (\phi | \psi) | (\phi | \psi)$$

Recapitulating: Adequate systems of connectives

Definition

A system C of connectives is *adequate* if every truth table can be expressed as a formula with connectives in C.

- \blacktriangleright $\{\neg, \land, \lor\}$ is an adequate system of connectives
- \blacktriangleright $\{\neg, \land\}$ is adequate
- \blacktriangleright $\{\neg, \lor\}$ is adequate
- ► {|} is adequate

So the NAND-gate is sufficient to build all hardware circuits.

Conjunctive normal form

Conjunctive normal form

A conjunctive normal form (CNF) is analogous to a DNF, but with the roles of \wedge and \vee reversed.

Definition

- A clause is a disjunction of literals.
- \blacktriangleright A conjunctive normal form is a conjunction $\psi_1 \land \cdots \land \psi_n$ where the formulas ψ_i are *clauses*.

Examples

$$\blacktriangleright (p \lor r) \land (p \lor \neg q)$$

$$= \psi_1 \wedge \psi_2$$

$$= \psi_1 \wedge \psi_2 \wedge \psi_3$$

$$\triangleright$$
 $p \lor q \lor \neg s$

$$= \psi_1$$

Conjunctive normal form

Parse tree of a CNF

- ▶ only connectives ∧, ∨,¬
- ▶ ¬ occurs only directly above a propositional variable
- ► ∧ never occurs below ∨

Challenge

Given ϕ , find a CNF ψ such that $\phi \equiv \psi$.

Method I: via a truth table.

Method II: stepwise transformation with algorithm CNF.

Truth table method for CNF

A CNF representing this truth table should express that we are **not** in one of the three rows marked by \leftarrow

Solution:
$$(\neg p \lor \neg q \lor r) \land (\neg p \lor q \lor r) \land (p \lor q \lor r)$$

Transformation method to CNF using algorithm CNF

The algorithm CNF transforms formulas ϕ built from $\neg, \land, \lor, \rightarrow$ to a CNF in 3 steps:

1. IMPL-FREE: Eliminate all occurrences of \rightarrow .

$$\phi \rightarrow \psi \equiv \neg \phi \lor \psi$$

2. NNF: Bring all occurrences of — inside, until they are all directly in front of a propositional variable.

$$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi \qquad \neg\neg\phi \equiv \phi$$
$$\neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$$

3. DISTR: Use distributivity to re-arrange \vee and \wedge .

$$(\phi \land \psi) \lor \chi \equiv (\phi \lor \chi) \land (\psi \lor \chi)$$
$$\chi \lor (\phi \land \psi) \equiv (\chi \lor \phi) \land (\chi \lor \psi)$$

Transformation CNF on parse trees

Example transformation CNF

Application of algorithm CNF to
$$p \to \neg(p \to q)$$

$$p \to \neg(\underline{p} \to q) \qquad \sim_{\text{IMPL-FREE}} \qquad \underline{p} \to \neg(\underline{\neg p} \lor q)$$

$$\sim_{\text{IMPL-FREE}} \qquad \neg p \lor \neg(\underline{\neg p} \lor q)$$

$$\sim_{\text{NNF}} \qquad \neg p \lor (\underline{p} \land \neg q)$$

$$\sim_{\text{NNF}} \qquad \neg p \lor (\underline{p} \land \neg q)$$

$$\sim_{\text{DISTR}} \qquad (\neg p \lor p) \land (\neg p \lor \neg q)$$

Tautology test for CNFs

A simple criterion determines whether a CNF is a tautology.

We need two *metalogic* observations:

1. A conjunction is a tautology *if and only if* all its conjuncts are tautologies:

$$\models \psi_1 \wedge ... \wedge \psi_n \iff \models \psi_1 \text{ and } ... \text{ and } \models \psi_n$$

2. A clause, i.e., a disjunction of literals, is a tautology if and only if it contains literals p and $\neg p$ for some p.

Examples:

$$\models p \lor \neg q \lor \neg p \lor r$$

but
$$\not\models p \lor \neg q \lor r$$

Tautology test for CNFs

Criterion

A CNF $\psi_1 \wedge \psi_2 \wedge \cdots \wedge \psi_n$ is a tautology if and only if each *clause* ψ_i contains literals p and $\neg p$ for some p.

Example 1

$$(p \lor \neg q \lor \neg p) \land (\neg p \lor \neg q \lor q) \land (\neg p \lor p)$$
 is a tautology.

The 1st and 3rd clause have the pair $p, \neg p$.

The 2nd clause has the pair $q, \neg q$.

Example 2

$$(p \lor \neg q \lor \neg r) \land (\neg p \lor q \lor p) \land (\neg q \lor q)$$
 is *not* a tautology.

Question: Which valuation returns F for this formula?

Satisfiability

Satisfiability problem

Satisfiability problem: Given a propositional formula ϕ , try to find a valuation that applied to ϕ yields T.

Many challenges can be represented as a satisfiability problem:

- planning in Artificial Intelligence
- automatic test pattern generation
- equivalence checking in circuit design
- theorem proving
- inversion attacks on cryptographic hash functions
- identification of haplotypes in bioinformatics
- Sudoku puzzles

Satisfiability problem is NP-complete

The satisfiability problem is NP-complete:

No efficient general solution for this problem has yet been found.

It is like looking for a needle in a vast haystack of valuations.

Because a formula with n variables has 2^n possible valuations.

There are $\approx 2^{270}$ atoms in the universe.

Finding an efficient solution (or proving none exists) would earn you a million dollar from the Clay Mathematics Institute, which declared it one of 7 *Millennium Problems*.

SAT solvers

Still, algorithms exist to efficiently solve the satisfiability problem for *most* (but not all) propositional formulas.

Efficient software has been developed for solving satisfiability, called *SAT solvers*.

SAT solvers can for instance quickly solve *Sudoku puzzles*.

The number of possible (mostly wrong) solutions for a Sudoku puzzle far exceeds the number of atoms in the universe.

So when your granny solves one, show her some respect!

Sudoku from the World Championship 2008

Every row, column and 3×3 block should contain each number from 1 to 9 exactly once.

					4	6	
				3			9
	8	4		7			1
2					7	1	
2 5 9		3	8				
9			1		5	3	
	2	5		8			6
				2	9	8	5
				5			7

In 2008 the world champion needed 2.5 minutes to solve it.

Encoding Sudoku as a satisfiability problem

For $i, j, k \in \{1, ..., 9\}$ we use $9^3 = 729$ variables p_{ijk} such that:

 p_{ijk} is true \iff the field in row i, column j contains the number k.

Question

Express in a propositional formula:

- ▶ the position at row 5 and column 3 contains the number 2
- 2 is on this position if and only if none of the other numbers is on this position

Answer: p₅₃₂

$$p_{532} \leftrightarrow \neg p_{531} \wedge \neg p_{533} \wedge \neg p_{534} \wedge \ldots \wedge \neg p_{539}$$

Encoding Sudoku as a satisfiability problem

For $i, j, k \in \{1, ..., 9\}$ we use $9^3 = 729$ variables p_{ijk} such that: p_{ijk} is true \iff the field in row i, column j contains the number k.

We express the Sudoko rules in propositional logic:

1. In every field precisely one number k. 729 formulas like:

$$p_{127} \leftrightarrow \neg p_{121} \wedge \neg p_{122} \wedge \ldots \wedge \neg p_{126} \wedge \neg p_{128} \wedge \neg p_{129}$$

2. In every row precisely one number k. 729 formulas like:

$$p_{127} \leftrightarrow \neg p_{117} \wedge \neg p_{137} \wedge \neg p_{147} \wedge \ldots \wedge \neg p_{197}$$

3. In every column precisely one number k. 729 formulas like:

$$p_{127} \leftrightarrow \neg p_{227} \wedge \neg p_{327} \wedge \ldots \wedge \neg p_{927}$$

4. In every 3×3 subgrid precisely one number k. 729 formulas like:

$$p_{127} \leftrightarrow \neg p_{117} \land \neg p_{137} \land \neg p_{217} \land \neg p_{227} \land \neg p_{237} \land \neg p_{317} \land \neg p_{327} \land \neg p_{337}$$

5. Number k is given to start with, at the field in row i and column j. Typically fewer than 30 formulas of the form p_{ijk} .

Sudoku from the World Championship 2008

7	9	2	5	8	1	4	6	3
6	5	1	2	4	3	8	7	9
3	8	4	9	6	7	2	5	1
2	4	6	3	5	9	7	1	8
5	1	3	8	7	4	6	9	2
9	7	8	1	2	6	5	3	4
1	2	5	7	9	8	3	4	6
4	3	7	6	1	2	9	8	5
8	6	9	4	3	5	1	2	7

SAT solver yices needs 0.015 seconds.

Davis-Putnam-Logemann-Loveland procedure (1962)

The DPLL procedure, which checks satisfiability of formulas in *CNF*, is a key ingredient of SAT solvers. (Al course Intelligent Systems)

```
Atomic propositions ⊤ ('constant true') and ⊥ ('constant false')
```

 \top and \bot are *constants* (i.e., have no arguments), where:

- ▶ under every valuation, T has truth value T
- ▶ under every valuation, ⊥ has truth value F

The DPLL procedure applies the following reduction rules to eliminate connectives with \top or \bot :

DPLL procedure

We check the satisfiability of a CNF ϕ .

- eliminate "unit" clauses:
 - ▶ for each *unit clause* p of ϕ , replace all p's in ϕ by \top
 - for each unit clause $\neg p$ of ϕ , replace all p's in ϕ by \bot
- eliminate "pure" propositional variables:
 - ▶ if a p occurs only *positively* in ϕ , replace all p's in ϕ by \top
 - ▶ if a p occurs only *negatively* in ϕ , replace all p's in ϕ by \bot
- \triangleright if ϕ becomes \top , then it is *satisfiable*
- \blacktriangleright if ϕ becomes \bot , then it is *unsatisfiable*
- else choose a p in φ:
 - replace all p's in ϕ by \top , and apply the DPLL procedure
 - ▶ if the outcome is "unsatisfiable", then replace all p's in ϕ by \bot , and again apply the DPLL procedure

DPLL procedure

Question

Why may the DPLL procedure take a long time to terminate?

Note: Elimination of unit clauses and of pure propositional variables does *not* involve *backtracking*.

Question

Suppose the DPLL procedure finds a formula ϕ is satisfiable. How can a valuation be determined that applied to ϕ yields T?

Question

Apply the DPLL procedure to check the satisfiability of:

$$\blacktriangleright (p \lor q \lor \neg r) \land (\neg p \lor q \lor \neg r) \land \neg q$$

$$\blacktriangleright (p \lor q) \land (p \lor \neg q) \land (\neg p \lor \neg q)$$

Take home

- disjunctive normal form (DNF)
 - construction of a DNF via a truth table
- adequate systems of connectives
 - **▶** {¬,∨} {¬,∧}
 - ▶ {|} with Sheffer stroke
- conjunctive normal form (CNF)
 - construction via a truth table
 - rewriting a formula into CNF
 - tautology test for CNF
- satisfiability
 - encoding Sudoku in propositional logic
 - DPLL procedure for CNF

Next week's lecture consists of question hours for logic and sets in preparation of the midterm exam