

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2023/0231015 A1 JUN et al.

Jul. 20, 2023 (43) **Pub. Date:**

(54) CROSSING MULTI-STACK NANOSHEET STRUCTURE AND METHOD OF MANUFACTURING THE SAME

(71) Applicant: SAMSUNG ELECTRONICS CO.,

LTD, Suwon-si (KR)

(72) Inventors: Hwichan JUN, Albany, NY (US);

Inchan Hwang, Schenectady, NY (US); Byounghak Hong, Albany, NY (US)

(73) Assignee: SAMSUNG ELECTRONICS CO.,

LTD, Suwon-si (KR)

(21) Appl. No.: 18/187,506

(22) Filed: Mar. 21, 2023

Related U.S. Application Data

- (63) Continuation of application No. 17/148,252, filed on Jan. 13, 2021, now Pat. No. 11,670,677.
- (60) Provisional application No. 63/086,763, filed on Oct. 2, 2020.

Publication Classification

(51) Int. Cl. H01L 29/06 (2006.01)H01L 29/40 (2006.01)

H01L 29/66	(2006.01)
H01L 29/786	(2006.01)
H01L 29/423	(2006.01)
H01L 29/417	(2006.01)
H01L 27/088	(2006.01)

(52) U.S. Cl.

CPC H01L 29/0665 (2013.01); H01L 29/401 (2013.01); H01L 29/66742 (2013.01); H01L 29/78696 (2013.01); H01L 29/42392 (2013.01); H01L 29/66545 (2013.01); H01L 29/41733 (2013.01); H01L 27/088 (2013.01)

(57)**ABSTRACT**

A semiconductor device includes a substrate; a 1st transistor formed above the substrate, and having a 1st transistor stack including a plurality of 1^{st} channel structures, a 1^{st} gate structure surrounding the 1^{st} channel structures, and 1^{st} and 2^{nd} source/drain regions at both ends of the 1^{st} transistor stack in a 1^{st} channel length direction; and a 2^{nd} transistor formed above the 1st transistor in a vertical direction, and having a 2^{nd} transistor stack including a plurality of 2^{nd} channel structures, a 2^{nd} gate structure surrounding the 2^{nd} channel structures, and 3^{rd} and 4^{th} source/drain regions at both ends of the 2^{nd} transistor stack in a 2^{nd} channel length direction, wherein the 3^{rd} source/drain region does not vertically overlap the 1^{st} source/drain region or the 2^{nd} source/drain region, and the 4th source/drain region does not vertically overlap the 1^{st} source/drain region or the 2^{nd} source/drain region.

