Genetic regulatory networks

Eukaryotic transcriptional regulation

Finding trans-regulators (genetic perturbation)

Finding cis-regulatory sites

computational (conservation, motifs)

experimental (SELEX, deletion/mutation)

Cis-regulatory analysis

Deletion analysis: necessity

Enhancer assay: sufficiency

A pJB100 zmp-1 3472 bp upstream sequence

Multicellular organisms: the binding site problem

2 x 10⁴ genes

109 bp DNA

Average gene size is thus $10^9/(2 \times 10^4) = 5 \times 10^4$

A hexamer with random GC content occurs once per ~4000 nucleotides (4⁶)

IUPAC Ambiguity Symbols

IUPAC Symbol	Meaning	Complement
A	A	T
С	C	G
G	G	С
T/U	T	A
M	A or C	K
R	A or G	Y
W	A or T	W
s	C or G	S
Y	C or T	R
K	G or T	M
V	A or C or G	В
Н	A or C or T	D
D	A or G or T	Н
В	C or G or T	V
X/N	G or A or T or C	X/N
1-	gap character	J-

Binding sites (simple example)

consensus G C R A C

Position weight matrix (PWM)

Pos	\mathbf{G}	\mathbf{C}	\mathbf{A}	T
1	1	0	0	0
2	0	1	0	0
3	0.5	0	0.5	0
4	0	0	1	0
5	0	1	0	0

sequence logo

http://weblogo.berkeley.edu/logo.cgi

CTCGTA CACGTG CAGGTC CACGTG **CAGGTG CACGTG CAGGTG CACGTG**

GCRAC

Sequence GCATC

Pos G C A T C

1 1 0 0 0 0 G 1 2 3 4 5

2 0 1 0 0 0 C 0 1 0 0 1

3 0.5 0 0.5 0 A 0 0 1 0 0

4 0 0 1 0 T 0 0 0 1

5 0 1 0 0 0

$$(5 x4) \cdot (4 x 5) = (5 x 5)$$

trace (5x5)

$$(5 x4) \cdot (4 x 5) = 3.5$$

normalize?

Regulator	Distance ¹	Discovered	Literature
Abf1	0.143	rTCAytnnnnAcg	rTCAyTnnnnACGw
Ace2	0.18	tGCTGGT	GCTGGT
Aft2	0.15	rCACCC	ATCTTCAAAAGTGCACCCATTTGCAGGTGC
Azf1	0.203	YwTTkcKkTyyckgykky	TTTTTCTT
Bas1	0.045	TGACTC	TGACTC
Cad1	0.089	mTTAsTmAkC	TTACTAA
Cbf1	0.105	tCACGTG	rTCACrTGA
Cin5	0.324	TTAcrTAA	TTACTAA
Fkh1	0.123	gtAAAcAA	GGTAAACAA
Fkh2	0.212	ĞTAAACA	GGTAAACAA
Gal4	0.11	CGGnnnnnnnnnncCg	CGGnnnnnnnnnCCG
Gat1	0.004	aGATAAG	GATAA
Gcn4	0.123	TGAsTCa	ArTGACTCw
Gln3	0.148	GATAAGa	GATAAGATAAG
Hap1	0.191	GGnnaTAnCGs	CGGnnnTAnCGG
Hap4	0.146	gnCcAAtcA	YCNNCCAATNANM
Hsf1	0.198	TTCynnnnnnTTC	TTCTAGAAnnTTCT
Ino2	0.236	ČAcaTGc	ATTTCACATC
Ino4	0.163	CATGTGaa	CATGTGAAAT
Leu3	0.131	cCGgtacCGG	yGCCGGTACCGGyk
Mbp1	0.073	ACGCGt	ACGCGT
Mcm1	0.181	CCnrAtnngg	wTTCCyAAwnnGGTAA
Msn2	0.308	mAGGGGsgg	mAGGGG
Nrg1	0.042	GGaCCCT	CCCT
Pdr1	0.301	ccGCCgRAwr	CCGCGG
Pho4	0.096	CACGTGs	cacgtkng
Rap1	0.181	cayCCrtrCa	wrmACCCATACAyy
Rcs1	0.184	ggGTGcant	AAmTGGGTGCAkT
Reb1	0.055	TTACCCG	TTACCCGG
Rpn4	0.049	GGTGGCAAA	GGTGGCAAA
Sip4	0.184	CGGnynAATGGrr	yCGGAyrrAwGG
Skn7	0.228	GnCnnGsCs	ATTTGGCyGGsCC
Stb5	0.058	CGGnstTAta	CGG
Ste12	0.087	tgAAAC	ATGAAAC
Sum1	0.221	gyGwCAswaaw	AGyGwCACAAAAk
Sut1	0.295	gcsGsgnnsG	CGCG
Swi4	0.122	CgCsAAA	CnCGAAA
Swi6	0.214	CGCgaaa	CnCGAAA
Tec1	0.064	CATTCyy	CATTCy
Tye7	0.193	tCACGTGa	CAnnTG
Ume6	0.16	taGCCGCCsa	wGCCGCCGw
Yap1	0.124	TTaGTmAGc	TTAsTmA
Yap7	0.15	mTkAsTmA	TTACTAA
Zap1	0.085	ACCCTmAAGGTyrT	ACCCTAAAGGT

Name **Sp1**Description stimulating protein 1

Factors <u>T00754</u>; Sp1; Species: rat, Rattus norvegicus. <u>T00752</u>; Sp1; Species: mouse, Mus musculus.

T00759; Sp1; Species: human, Homo sapiens.

100755, DP1, DP00105. IN	iman, nome papiens.				
Matrix	Info N	A	C	G	T Consensus
01	0.043 108.00	32	21	35	20 N
02	0.298 108.00	24	20	56	8 G
03	0.418 108.00	14	10	65	19 G
04	1.225 108.00	17	1	89	1 G
05	2.000 108.00	0	0	108	0 G
06	1.867 108.00	0	2	106	0 G
07	0.940 108.00	19	80	0	9 C
08	1.467 108.00	2	5	99	2 G
09	1.544 108.00	0	1	99	8 G
10	0.747 108.00	21	5	76	6 G
11	0.574 108.00	17	10	72	9 G
12	0.392 108.00	3	55	21	29 Y
13	0.151 108.00	9	40	32	27 N

Basis 108 compiled sequences

Comments TRANSFAC Sites of quality <= 6

Description GAL4

Factors T00302; GAL4; Species: yeast, Saccharomyces cerevisiae.

Matrix	 Info	N	A	С	G	T	Consensu
01	0.210	11.00	1	5	3	2	N
02	0.210	11.00	5	2	1	3	N
03	0.210	11.00	3	2	1	5	N
04	1.561	11.00	1	10	0	0	C
05	1.561	11.00	0	0	10	1	G
06	1.561	11.00	0	1	10	0	G
07	0.132	11.00	4	3	3	1	N
08	0.132	11.00	1	3	4	3	N
09	0.177	11.00	2	4	4	1	N
10	0.691	11.00	7	0	2	2	A
11	0.904	11.00	1	8	2	0	С
12	0.678	11.00	4	1	0	6	W
13	0.210	11.00	1	3	5	2	N
14	0.904	11.00	0	2	1	8	T
15	0.314	11.00	1	6	2	2	С
16	0.323	11.00	1	5	4	1	S
17	0.509	11.00	2	1	1	7	T
18	1.561	11.00	0	10	1	0	С
19	2.000	11.00	0	11	0	0	С
20	2.000	11.00	0	0	11	0	G
21	1.155	11.00	8	0	0	3	A
22	1.054	11.00	7	0	4	0	R
23	0.565	11.00	2	6	3	0	S

Basis 11 genomic binding sites from 6 genes

Gene Regulatory Networks

cis-regulation

E. coli and phage regulatory circuits provided a powerful conceptual framework for understanding gene regulation in multicellular organisms.

cis regulatory elements

conservation to find regions

sets of genes to find motifs

Caenorhabditis species

Reference: Kiontke, K. and David H.A. Fitch. (2005). www.wormbook.org.

lin-3 Anchor Cell Enhancer

Byung Hwang [Devel. 2004] John DeModena, Erich Schwarz

Ungapped blocks =~ regulatory sites in *lin-11*

Vulval and uterine elements: Gupta and Sternberg (2002), Dev Biol. 247, 102-115; unpub. res.

Blocks only *partly* overlap smaller sites (*lin-11*)

'ATGGGA' and 'GTTWAC' identified by YMF/Explanators

Reference: Sinha and Tompa (2003), Nucleic Acids Res. 31, 3586-3688.

Ungapped blocks = \sim 2% Hox DNA

Insert	Cells	Image	Insert	Cells	Image
L1	vulval muscle		H1	MS lineage or Capa and Da lineages	
L2	ventral cord neurons				
			H1	V6 cells	
L2	Q cells				

conservation is a good indicator of function

lin-39-ceh-23 hox cluster on chr III

Steven Kuntz (+Barbara Wold)

Gleason/Eisenmann Dev Biol. 2006

Tests of methods: Prediction of *dpy-8* element

Integrating motifs with conservation & enhancers

(dpy-8 upstream)

Alok Saldanha; Ali Mortazavi

Display: Apollo (moving to Gbrowse)

The proximal *lin-48* sequences in *C. elegans* are distinct from those in other *Caenorhabditis* species

Wang & Chamberlin 2004 Nat Genet

Two distinct transcriptional regulatory pathways in the *C. elegans* anchor cell

B. Hwang Dev. 2004; M. Kirouac Dev. Biol. 2003; D. Sherwood Cell 2005

mature vulval cell-type specific genes

Enhancer assays

~12 genes with vulval cell type specific gene expression Defined 48 conserved (*elegans-briggsae*) regions (RGN) ~200 bp: 9/32 had vulval expression then, sub-regions ~80 bp

grl-4	RGN7	A, B, D
grl-4	RGN7a	A , B , D
pax-2	RGN12	C, D
col-48	RGN14	B, C, D
col-48	RGN14b	B, C, D
F48B9.5	RGN16	A, B, C
sqv-4	RGN17	C, D
sqv-4	RGN28	E, F
sqv-4	RGN28a	E, F
sqv-4	RGN30	vulval cells
daf-6	RGN44	vulval cells

Takao Inoue, Shahla Gharib

Takao Inoue, Shahla Gharib

col-48: 1 of 1 region tested expressed;1 of 3 subregions expressed

Enhancer assays

~12 genes with vulval cell type specific gene expression Defined 48 conserved (*elegans-briggsae*) regions (RGN) ~200 bp: 9/32 had vulval expression

then, sub-regions ~80 bp

Takao Inoue, Shahla Gharib

cis regulatory elements

conservation to find regions

sets of genes to find motifs

cis-Regulatory Analysis of zmp-1 (an MMP)

3-species comparison of the 386 bp zmp-1 vulA-E enhancer

substitute 15 bp and test in transgenic worms

Ted Ririe

No Motif Discovery Method is Perfect (Yet)

Different papers use different motif finders, often referring to an ad hoc search to find one that worked

Tompa et al. (Nat Biotech 2005) compared 13 different motif finders, and concluded: "Biologists would be well advised to use a few complementary tools in combination."

We devised a reproducible method of combination:

Maximal Clique Motif Reduction (MCMR)

Alok Saldanha

MCMR conceptual plan

Given a set of input motifs:

- motif 1
- motif 2
- motif 3
- motif 4
- motif 5

Calculate and threshold pairwise similarity

Alok Saldanha

Find maximal clique of largest size

Alok Saldanha

Replace clique with "reduced" version, disconnect from graph and repeat

Alok Saldanha

3

2

Example of MCMR Output

F55A12.9a T27A3.4 C12C8.1

Maximal Clique Motif Reduction

Sequence logo of top clique from hsp_guha

clique 0 had 6 motifs (list hsp_guha_2_19.fa 25)

19/23 have HSE

alignment

logo

matches

id

coverage

Cytoscape graph of all motifs from hsp_guha

Gbrowse mapping of top clique from hsp_guha

individual motif finder

site	AlignACE	Improbizer	MEME	Mobydick	N-MICA	Weeder	YMF	MCMR
mec	11	-	6	4	-	1	-	1
HSE	21	Y	2	-	Y	1	-	1
HSAS	8	Y	4	7	Y	-	1	2
AIY	2	Y	-	-	-	4	-	2

= rank: Yes, present; -, absent

Fig. 2. Expression profiles of genes containing particular sequence motifs in their promoters, normalized for mean and variance. Expression coherence (EC) values and P values were calculated as described in (61). (A) Cell cycle expression profiles (53) of all genes in the S. cerevisiae genome that contain an exact match to the MCB box in their promoters. (B) Cell cycle expression profiles of S. cerevisiae genes containing an MCB box that is aligned in the CLUSTALW alignment of orthologous sensu stricto promoters. (C) Cell cycle expression profiles of S. cerevisiae genes containing an MCB box that is present but not aligned in each of the orthologous sensu stricto promoters.

11 genes, EC = $0.22 (P = 9.1 \times 10^{-5})$

Cell cycle time

-2

-3

-4

Figure 6 Conservation in the *GAL1*–*GAL10* intergenic region. Multiple alignment of the our species shows a strong overlap between functional nucleotides and stretches of conservation. Asterisks denote conserved positions in the multiple alignment. Blue arrows denote the start and transcriptional orientation of the flanking ORFs. Experimentally ralidated factor-binding footprints are boxed and labelled according to the bound factor.

Stretches of conserved nucleotides are underlined. Nucleotides matching the published Gal4 motif are shown in red. The fourth experimentally validated site differs: it shows a longer footprint and a non-standard consensus motif (bold). This variant motif is also conserved across all four species. Scer, *S. cerevisiae*; Spar, *S. paradoxus*; Smik, *S. mikatae*; Sbay, *S. bayanus*.