

جامعة الزقازيق - كلية الهندسة - قسم هندسة الحاسبات والمنظومات

CSE100 الحاسبات والبرمجة ١

د/ عمرو زامل

https://dramrzamel.github.io/CSE001/

http://bit.ly/AmrZamel

المحاضرة 3: تمثيل البيانات داخل الحاسب III

تم رفع فيدوهات للعملى (ماتلاب) على الموقع http://bit.ly/AmrZamel

Dr. Amr Zamel

Dr.Eng in Computer and systems Department Faculty of Engineering Zagazig University

HOME

(CSE001) COMPUTER AND PROGRAMMING

News

3-02-2018 Web site Created

Course Info

Lectures

Video

Time Table

مادة الحاسبات والبرمجة (1) للفرقة الاعدادي

محاضرات ماتلاب د/عمرو زامل

ما تم دراسته في المحاضرة السابقة

تمثيل الأعداد في الحاسب (الأنظمة العددية)

التحويلات بين الانظمة العددية المختلفة

تمثيل الرقم السالب داخل الحاسب

نتيجة الاستبيان على المحاضرة السابقة

المحاضرة الثالثه

الأهداف لليوم

مراجعة على تمثيل الاعداد السالبة

العمليات الحسابية داخل الحاسب

تمثيل الاعداد الكسرية داخل الحاسب (النقطة المعومة)

تمثيل الحروف داخل الحاسب

مراجعة على تمثيل الأعداد الموجبه والسالبه

تمثيل الأعداد الموجبة والسالبة

نظام المقدار والاشارة

مثال: حول (12-) باستخدام المقدار والاشارة ممثلا بـ bit

الأرقام السالبة: متمم الواحد

مثال: حول (12-) باستخدام متمم الواحد ممثلا بـ bit

الخطوة ١: حول الرقم الموجب الى ثنائى

-12

الخطوة ٢: الرقم السالب (اقلب كل الارقام)

$$32 + 16 + 2 + 1 = (51)_{10}$$

$$(-x = 2^n - x - 1)$$
: are also are areas of $x = x - 1$

$$-12 = (2^6 - 12 - 1) = (64 - 12 - 1)_{10} = (51)_{10}$$

الأرقام السالبة: متمم الواحد

مثال: اوجد القيمة العشرية لاعداد الثنائية ذي الاشارة في نظام متمم الواحد

الاوزان	Sign	16	8	4	2	1
(-12) ₁₀	1	1	0	0	1	1

الرقم السالب (اقلب كل الارقام) لتحصل على الرقم الموجب

$$(12)_{10}$$
 0 0 1 1 0 0

$$8 + 4 = (12)_{10}$$

الأرقام السالبة: متمم الأثنين

مثال: حول (12-) باستخدام متمم الأثنين ممثلا بـ bit

الخطوة ١: حول الرقم الموجب الى ثنائى

الخطوة ٢ : الرقم السالب (اقلب الارقام بعد اول واحد)

$$32 + 16 + 4 = (52)_{10}$$
 $(-x = 2^n - x) = 1 + 3$ متمم الأثنين: متمم الواحد $-12 = (2^6 - 12) = (52)_{10}$

الأرقام السالبة: متمم الأثنين

مثال: اوجد القيمة العشرية لاعداد الثنائية ذي الاشارة في نظام متمم الاثنين 32-

الاوزان	S	16	8	4	2	1	
$(-12)_{10}$	1	1	0	1	0	0	
	-32 +	- 16	+	4	= (-	-12) ₁₀

الرقم السالب (اقلب الارقام بعد اول واحد) لتحصل على الرقم الموجب (12) 0 0 1 1 0 0 (12)

$$8 + 4 = (12)_{10}$$

ما هو المدى من القيم الموجبة (الأرقام) التى تستطيع تمثيله في 3bit في 3bit

A) 0 to 3

B) 0 to 8

C) 0 to 7

ما هو المدى من القيم الموجبة والسالبة التى تستطيع تمثيله في 3bit بنظام المقدار والشارة

A) -3 to 3

B) -7 to 7

C) -4 to 4

ما هو المدى من القيم الموجبة والسالبة التى تستطيع تمثيله في 3bit بنظام متمم الواحد

A) -3 to 3

B) -7 to 7

C) -4 to 4

مدي تمثيل الأرقام الموجيه والسالبه

أكبر رقم سالب	أكبر رقم موجب	
-(2 ⁿ⁻¹ -1)	(2 ⁿ⁻¹ -1)	الأشاره و القيمه Sign & Mag.
-(2 ⁿ⁻¹ -1)	(2 ⁿ⁻¹ -1)	متمم الواحد 1's Comp.
-(2 ⁿ⁻¹)	(2 ⁿ⁻¹ -1)	متمم الأثنين 2's Comp.

العمليات الحسابيه داخل الحاسب النظام الثنائي بالنظام الثنائي

الجمع - الطرح/(متمم الأثنين)

- خطوات الجمع :B + A ١. قم بالجمع الثنائي للرقمين
 - ٢. يتم إهمال الباقي إذا وجد
- A B = A + (-B) + (-B)
- ا. قم بالحصول علي متمم الاثنين للرقم B من خلال قلب قيمة كل خانه ثم إضافة 1 (القلب بعد اول واحد)
 - ٢. قم بجمع متمم الاثنين الخاص بـ B إلى A.

Example 12+8 using binary in 8 bits

الاوزان	S	64	32	16	8	4	2	1
				1				
+12	0	0	0	0	1	1	0	0
+8	0	0	0	0	1	0	0	0
. 20	0	0	0	1	0	1	0	
+20	0	0	0	1	0	1	0	0

الطرح بستخدام متمم الاثنين

Example 12 - 8 using binary in 8 bits

الاوزان	S	64	32	16	8	4	2	1
+12	0	0	0	0	1	1	0	0
+8	0	0	0	0	1	0	0	0
	1	1	1	1				
+12	0	0	0	0	1	1	0	0
-8	1	1	1	1	1	0	0	0
+4	0	0	0	0	0	1	0	0

الطرح بستخدام متمم الاثنين مثال نفذ هذه العملية في الحاسب 8.25-8.25 في 12.5 ومنهم ٢ للكسر

الاوزان	S	16	8	4	2	1	0.5	0.25
+12.5	0	0	1	1	0	0	1	0
+8.25	0	0	1	0	0	0	0	1
	1	1	1	1	1	1	_	
+12.5	0	0	1	1	0	0	1	0
-8.25	1	1	0	1	1	1	1	1

الطرح بستخدام متمم الاثنين مثال نفذ هذه العملية في الحاسب 8.25 – 12.5 - في البت و منهم ٢ للكسر

	<u>-</u>	J - 0.1	25 -		ے ''	***		
	-32							
الاوزان	S	16	8	4	2	1	0.5	0.25
			_					
+12.5	0	0	1	1	0	0	1	0
+8.25	0	0	1	0	0	0	0	1
						4		
	1		1	1	1	1		
-12.5	1	1	0	0	1	1	1	0
-8.25	1	1	0	1	1	1	1	1
-20.75	1	0	1	0	1	1	0	1
·	-32	+	8 +		2 +	+ 1+	_	0.25

تمثيل الأعداد الكسريه (النقطه المعومه)

تمثيل الأعداد الكسرية

$$1256.3 = 125.63 \times 10^{1}$$

 $= 12.563 \times 10^{2}$

 $= 1.2563 \times 10^{3}$

 $= 0.12563 \times 10^{4}$

تمثيل الأس بإشارته إشارة الرقم +4

قيمة الرقم 12563

Sign of mantissa **Exponent**

Mantissa

تمثيل الأعداد الكسريه: طريقة النقطه المعومه (Floating Point)

تمثيل الأعداد الكسريه: طريقة النقطه المعومه (Floating Point)

تمثيل الأعداد الكسريه: طريقة النقطه المعومه (Floating Point)

•مثل العدد ٣٧٥. • • ١ (بالنظام العشرى) الى مثيله بالنظام الثنائى وذلك بطريقة النقطة المعومة فى كلمة طولها ٢ حرف (2bytes) على ان يتم حجز ست خانات لتمثيل الاس

- •احسب قيمة الخطأ المطلق الحادث
- اقترح اختيار افضل لعدد خانات تمثيل الاس وذلك للحصول على تمثيل أدق ثم احسب قيمة الخطا في هذه الحالة

تمثيل الأعداد الكسريه:

 $100.375 = 1\ 100\ 100\ .\ 011$ $0.110\ 010\ 001\ 1 \times 2^{7}$

خانة الاس						Ν	/lant	essa	انة ال	÷					
b15	b14	b13	b12	b11	b10	b 9	b8	b7	b6	b5	b4	b3	b2	b1	b0
0	0	0	0	1	1	1	1	1	0	0	1	0	0	0	1

قيمة العدد الممثل هي 100.25وبناء عليه فإن الخطأ المطلق = 0.125 لتحسين ذلك الخطأ:

﴿نقترح تخفيض عدد خانات الأس لتصبح 5 بدلا من 6 ﴿ ثُم زيادة عدد خانات تمثيل الرقم لتصبح 10 بدلا من 9

تمثیل الحروف داخل الحاسب BCD AND ASCII CODE

Binary Coded Decimal (BCD)

	Decimal	BCD
	Symbol	Digit
The BCD is simply the 4 bit	0	0000
representation of the decimal digit.	1	0001
	2	0010
	3	0011
For multiple digit base 10 numbers, each	4	0100
symbol is represented by its BCD digit	5	0101
	6	0110
	7	0111
	8	1000
	9	1001

Binary Coded Decimal (BCD)

•BCD for 417 to 195

$$(195)_{10} = (000110010101)_{BCD}$$

Alphanumeric Codes

How do you handle alphanumeric data?

■Formulate a binary code to represent characters! ⊕

•For the 26 letter of the alphabet would need 5 bit for representation.

But what about the upper case and lower case, and the digits, and special characters

A code called ASCII

 ASCII stands for American Standard Code for Information Interchange

The code uses 7 bits to encode 128 unique characters

As a note, formally, work to create this code began in 1960. 1st standard in 1963. Last updated in 1986.

Dec Hex	Oct	Chr	Dec Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr	Dec	Hex	Oct	HTML	Chr
0 0	000	NULL	32 20	040		Space	64	40	100	@	@	96	60	140	`	`
1 1	001	Start of Header	33 21	041	!	!	65	41	101	A	A	97	61	141	a	a
2 2	002	Start of Text	34 22	042	"	II.	66	42	102	B	В	98	62	142	b	b
3 3	003	End of Text	35 23	043	#	#	67	43	103	C	C	99	63	143	c	C
4 4	004	End of Transmission	36 24	044	\$	\$	68	44	104	D	D	100	64	144	d	d
5 5	005	Enquiry	37 25	045	%	%	69	45	105	E	E	101	65	145	e	e
6 6	006	Acknowledgment	38 26	046	&	&	70	46	106	F	F	102	66	146	f	f
7 7	007	Bell	39 27	047	'		71	47	107	G	G	103	67	147	g	g
8 8	010	Backspace	40 28	050	((72	48	110	H	Н	104	68	150	h	h
9 9	011	Horizontal Tab	41 29	051))	73	49	111	I	I	105	69	151	i	i
10 A	012	Line feed	42 2A	052	*	*	74	4A	112	J	J	106	6A	152	j	j
11 B	013	Vertical Tab	43 2B	053	+	+	75	4B	113	K	K	107	6B	153	k	k
12 C	014	Form feed	44 2C	054	,	7	76	4C	114	L	L	108	6C	154	l	1
13 D	015	Carriage return	45 2D	055	-	-	77	4D	115	M	M	109	6D	155	m	m
14 E	016	Shift Out	46 2E	056	.		78	4E	116	N	N	110	6E	156	n	n
15 F	017	Shift In	47 2F	057	/	/	79	4F	117	O	0	111	6F	157	o	0
16 10	020	Data Link Escape	48 30	060	0	0	80	50	120	P	P	112	70	160	p	p
17 11	021	Device Control 1	49 31	061	1	1	81	51	121	Q	Q	113	71	161	q	q
18 12	022	Device Control 2	50 32	062	2	2	82	52	122	R	R	114	72	162	r	r
19 13	023	Device Control 3	51 33	063	3	3	83	53	123	S	S	115	73	163	s	S
20 14	024	Device Control 4	52 34	064	4	4	84	54	124	T	T	116	74	164	t	t
21 15	025	Negative Ack.	53 35	065	5	5	85	55	125	U	U	117	75	165	u	u
22 16	026	Synchronous idle	54 36	066	6	6	86	56	126	V	V	118	76	166	v	V
23 17	027	End of Trans. Block	55 37	067	7	7	87	57	127	W	W	119	77	167	w	W
24 18	030	Cancel	56 38	070	8	8	88	58	130	X	X	120	78	170	x	X
25 19	031	End of Medium	57 39	071	9	9	89	59	131	Y	Υ	121	79	171	y	У
26 1A	032	Substitute	58 3A	072	:	:	90	5A	132	Z	Z	122	7A	172	z	Z
27 1B	033	Escape	59 3B	073	;	;	91	5B	133	[[123	7B	173	{	{
28 1C	034	File Separator	60 3C	074	<	<	92	5C	134	\	1	124	7C	174		
29 1D	035	Group Separator	61 3D	075	=	=	93	5D	135]]	125	7D	175	}	}
30 1E	036	Record Separator	62 3E	076	>	>	94	5E	136	^	٨	126	7E	176	~	~
31 1F	037	Unit Separator	63 3F	077	?	?	95	5F	137	_	_	127	7F	177		Del

asciitbl.com

ما هي الشفرة القياسية الامريكية ASCII Code

هى شفرة مكونة من سبعة ارقام ثنائية (بالاضافة الى خانة الثامنة تمثل خانة التعادلية) متستخده اتمثرا الارقاء (من مال 9) مالحدمة

وتستخدم لتمثيل الارقام (من \cdot الى 9) والحروف (من 4 الى 2 الكبيرة والصغيرة) وكذلك العلامات الخاصة ($^{+}$ - * /)

b7	b 6	b5	b4	b3	b2	b1	b0			
خانة التعادل	المجموعة	مثل کو د	۳ خانات ته		لشفرة	خانات تمثل الشفرة				
	۰۰۰ و ۰۰۰	صة ١	الاوامر الخا		قم)	مفرة الر	(تمثل ث			
		• 1 •	العلامات	رف)	ترتب الح	حرف (شفرة ال			
		• 1	الاعداد ١							
			الحروف							
		1.	• A - O							
		١.	P-Z							
		1	• a - o							
2/17/2018		11) p-z							

ASCII Code

- Represents the numbers (0....9)
 - All start 011 xxxx and the xxxx is the BCD for the digit
- Represent the characters of the alphabet
 - Start with either 100, 101, 110, or 111
- A few special characters are in this area
 - Start with 010 space and !"#\$%&'()*+.-,/
 - Start with 000 or 001 control char like ESC

ASCII Example

Encoding of 123011 0001 011 0010 011 0011

Encoding of Amr

A m r 100 0001 110 1101 111 0010

Note that these are 7 bit codes

```
97 61
       141 a
 98 62
       142 &#098:
 99 63
       143 c
100 64
       144 d
101 65
       145 e
102 66
       146 f
103 67
       147 g
104 68
       150 h
105 69
       151 i
106 6A
       152 j
107 6B
       153 k
108 6C
       154 l
109 6D
       155 m
110 6E
       156 n
111 6F
       157 &#111·
112 70
       160 p
113 71
       161 &#113:
114 72
       162 r
115 73
       163 s
116 74
       164 t
117 75
       165 u
118 76
       166 v
119 77
       167 w
120 78
       170 &#120:
121 79
       171 &#121:
122 7A
       172 &#122: z
```

What to do with the 8th Bit?

In digital systems data is usually organized as bytes or 8 bit of data.

- •How about using the 8th bit for an error coding. This would help during data transmission, etc.
- Parity bit the extra bit included to make the total number of 1s in the byte either even or odd – called even parity and odd parity

Example of Parity

Consider data 100 0001

Even Parity 0 100 0001

Odd Parity 1 100 0001

Consider data 101 0100

Even Parity 1 101 0100

Odd Parity
 0 101 0100

A parity code can be used for ASCII characters and any binary data.

الخلاصة

التحويل بين الأنظمة العددية

تمثيل الارقام السالبة

العمليات الحسابيه بالنظام الثنائي

تمثيل الأعداد الكسريه (النقطه المعومه)

تمثيل الحروف

Home Work

- حول من الرقم AB.2 من النظام السدادسي الى النظام الثماني (بطريقتين مختلفتين)؟
- حول من الرقم 72.34من النظام الثماني الي النظام السدادسي (بطريقتين مختلفتين)؟
 - بستخدام متم الاثنين للارقام السالبة والتمثيل في ٨ خانات نفذ هذه العمليات
 - 25 + 20
 - 25-20 •
 - 20-25 •
 - -20-25 •
- مثل العدد ٦٠٦ (بالنظام العشرى) الى مثيله بالنظام الثنائى وذلك بطريقة النقطة المعومة فى كلمة طولها ٢ حرف (2bytes) عل ان يتم حجز ست خانات لتمثيل الاس
 - مثل الرقم ٥٦.٥٦ (بالنظام العشرى) الى نظريه BCD؟
 - مثل حروف اسمك الاول بستخدام الشفرة القياسية الامريكية ASSCII؟