CPTS SIS HW3 Yang Zhang 11529139

a negative integer.

- 1. a. Build a bipartite graph from the sample from C

 by finding the mapping from high bit to low bit

 b. Run max flow algorithm over the bipartite graph

 to calculate the max matching number M.

 c. apply the Thoorem 2 from the paper Security of Numerics
 - C. apply the Theorem 2 from the paper Security of Numers Sensors in Automata, the overage Leahing bits is log(M)
- 2. Write another program that take x as input and int[] {x1, x2, ..., x7} as output.

 the logic of the program is the same as my Function but in reversed order. Input a negative number x +0

 the program if there is a valid output inti] {x1, x2

 ..., x7} returned, then there are values for x1, x2, ..., x7 passed to the my Function the can return

3. For a set $K = \{1, \dots, k\}$ any subset p of K can be expressed as $\{b_1, \dots, b_k\}$ where b_i is a boolean varible to indicate whether element b_i in the subset. (Using b_i = 0 for false, b_i = 1 for true) In this way each subset can be encoded in to a binary form. $B = \{0, 0, 0\}$ $K = \{1, 1, 1, 1, \dots, 1\}$

Then covert the binary reprensation into decimal integer where the bound is [0, 2]K]

Since each binary reprensation is unique, each committed decimal integer is also unique. (C is 1-1)

The number of subset of K is 2k, so Cp \(\int \{ 1, \ldots, \int \(\text{B}_k \} \)

The number of bodean varible for nodes = log(2048) = 11
11 varibles needed to encode every node, so 11×2 = 22 needed to
encode the graph (each edge how two nodes)

Log (40) ≈ 6. There are at least 6 bits needed to hash 40 students that each students has a unique hashcode assigned