Xuweiyi Chen

xuweic@umich.edu | (206)532-9635 | chenxuweiyi.com

EDUCATIONAL BACKGROUND

UNIVERSITY OF MICHIGAN

Ann Arbor, MI

M.S. in Computer Science and Engineering

Aug. 2022 – May 2024 (Expected)

Overall GPA: 3.83/4.0

Concentration: Embodied AI

Relevant Courses EECS 595 Natural Language Processing, EECS 598 Deep Reinforcement Learning

UNIVERSITY OF WASHINGTON

Seattle, WA

B.S. in Applied and Computational Mathematical Sciences, CUM LAUDE

Sep. 2018 – June 2022

Overall GPA: 3.82/4.0

Concentration: Causal Inference and Natural Language Processing

Relevant Courses: Data Structures and Algorithm, Database, Networks, Security, Natural Language Processing,

Computer Vision, Statistical Machine Learning

<u>Honors</u>: \$6000 CoMotion Mary Gates Innovation Scholarship \$3000 Usha and S. Rao Varanassi SAFS Scholarship

INTERNSHIPS

Here Technologies

Chicago, IL *May* 2023 – *Aug*. 2023

Data Engineering Intern, led by Dr. Landis Huffman

• Explored using a 6-layer MLP system to implicitly model the surface of the earth, which opens the discussion of applying Deep Learning on Geospatial data.

• Implemented five denoising techniques, resulting in a reduction of standard deviation by 17.6% and mean squared error by approximately 22% compared with USGS data, thereby enhancing overall data quality.

• Led the integration of diverse point cloud data sources and applied denoising techniques, enhancing the map's elevation service accuracy by over 7%.

National Oceanic and Atmospheric Administration

Seattle, WA

Research Assistant Intern, supervised by Dr. Elizabeth Holmes

June 2022 - Sep. 2022

Participated in research regarding the Peruvian Coastal Upwelling System.

- Developed algorithms using wavelet transform, regression, and spline to detect patterns about upwelling changes in time series.
- Discovered significant upwelling changes in pattern after 2010 which contradicts the famous Bakun Hypothesis.

RESEARCH PROJECTS

3D-LLaMA: A Foundation Model for Embodied AI

Ann Arbor, MI

Ann Arbor, MI

SLED lab in the University of Michigan supervised Prof. Joyce Chai

May 2023 - present

- Created large language and vision datasets on top of ScanNet, 3DFront, and structured3D.
- Built a 3D point cloud encoder and explored different ways of expressing 3D data in latent space.
- Constructed an Embodied AI foundation model and showed its potential on downstream tasks.

LLM-Grounder: Open-Vocabulary 3D Visual Grounding with Large Language Model as an Agent.

SLED lab in the University of Michigan supervised Prof. Joyce Chai

Jan. 2023 - Aug. 2023

- Present the first method capable of localizing novel objects in 3D scenes using Neural Radiance Field (NeRF) and Large Language Models (LLMs) through iterative, natural language-based interactions.
- Enables a more human-like interaction with 3D objects in a learned 3D scene representation.
- Evaluated and shown that dynamic grounding outperforms static grounding in terms of accuracy, 3DIoU, and human ratings.

An Automation System for MUSHR Car

Seattle, WA

Course Project of CSE 478 Autonomous Robotics

Jan. 2021 - Apr. 2021

- Constructed a mathematical model of a robot's dynamics and sensors and assembled three components localization, planning, and control to enable a robot to navigate in an environment in a safe, efficient manner.
- Implemented these modules in Python, used ROS for inter-module communications and executed onboard the robot.
- Designed a Bayes filter to estimate the robot's state and environment.
- Derived a controller to robustly track a given path according to stability or optimality criteria.
- Constructed a planning roadmap and applied A* search techniques to compute a dynamically feasible, collision-free path between two locations.

SKILLS

<u>Programming Languages</u>: R, Sage, Julia, MATLAB, Python, Java, HTML, CSS, JavaScript, SQL, Kotlin, C++ <u>Languages</u>: English (proficient), Chinese (proficient)