Computing Assignment 3

A. The values of the three iterative approaches were determined up to a maximum of 75 iterations in order to ascertain whether they converge. The linked approaches were shown to be convergent if the error $|p_n - p| < 10^{-6}$ was confirmed to be true. The

```
Method 1: Approximation = 1.49130148, Iterations = 5, Converged = 1
Method 2: Approximation = 1.60957651, Iterations = 75, Converged = 0
Method 3: Approximation = 1.49130061, Iterations = 66, Converged = 1
```

The following observation is drawn based on the received statistics-

- Method1 & Method3 converge within 75 iterations
 Method2 doesn't converge for 75 iterations
- \bullet Method1 converges faster than Method3 (ROC1 > ROC3)

B. A plot of absolute error vs. iterations is presented below to further solidify our conclusions in partA.

The following conclusions can be drawn from the graph

- Method2 diverges
- \bullet Method 1 converges faster than Method 3

C. Take into consideration the following to calculate the asymptotic error constant (λ) and order of convergence (α) . Suppose $\{p_n\}_{n=0}^\infty$ is a sequence that converges to p with $p_n\neq p$ for all n. If positive constants λ & α exist with $\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|}=\lambda,$ then sequence $\{p_n\}_{n=0}^\infty$ converges to p of order α with asymptotic error constant λ .

Taking $e_n+1=|p_{n+1}-p|$ and $e_n=|p_n-p|$, we get $\frac{e_{n+1}}{e_n^2}=\lambda$. Using log properties to simplify, we obtain: $\lambda\log e_{n+1}=\log \lambda+\alpha\log e_n$, which is basically a linear equation in the form of y=mx+c. In order to investigate this further, we display a log-log graph to find the corresponding order (α) & (λ) . The following conclusions can be drawn from the graph

- 1. Method 1: $\alpha = 1.967575 \approx 2 \ \& \ \lambda = e^{0.2565872} \approx 1.29$ i.e. Quadratically convergent
- 2. Method3: $\alpha = 0.9685492 \approx 1$ & $\lambda = e^{-0.4800419} \approx 0.61$
- which is less than 1 a Def. 2.7 of text Good job! 10

