Homework 1

Jack Shi - A92122910

Friday, January 19, 2018

Problem 1:

Proove \sqrt{p} is irrational for $p \in \mathcal{P}$, where \mathcal{P} is the set containing all prime numbers.

Proof. Assume \sqrt{p} is rational. This implies that $\exists \ a, \ b \in \mathbb{Z}, \ \sqrt{p} = \frac{a}{b}$. Define $\Omega(x)$ as the number of prime factors for $x, \ x \in \mathbb{Z}$.

$$\sqrt{p} = \frac{a}{b}$$

$$b\sqrt{p} = a$$

$$b^2p = a^2$$

$$\Omega(b^2p) \stackrel{?}{=} \Omega(a^2)$$

$$(\Omega(b) * \Omega(b)) + \Omega(p) \stackrel{?}{=} \Omega(a) * \Omega(a)$$

$$(\Omega(b) * \Omega(b)) + 1 \neq (\Omega(a) * \Omega(a))$$

This statement is false because $(\Omega(x) \in \mathbb{Z}) \wedge (\Omega(p) = 1) \wedge (\Omega(x) * \Omega(x))$ is even. The number of prime factors for the left hand side is odd, and the number of prime factor for the right hand is even. This is a contradiction. The assumption is false, \sqrt{p} is irrational.

Problem 2:

a. Let $n \in \mathbb{Z}$, and $n = \prod_{i=1}^k p_i^{e_i}$, its decomposition into primes. Find a formula for the number of divisors of n.

Let s be a factor of n, n = st, $t \in \mathbb{Z}$:

$$n = \prod_{i=1}^{k} p_i^{e_i}$$

$$st = \prod_{i=1}^{k} p_i^{e_i}$$

$$Let \ s = \prod_{i=1}^{k} p_i^{f_i}$$

$$t = \prod_{i=1}^{k} p_i^{e_i - f_i}$$

From the above expansion, it is aparent that for all prime factors p_i of n, the factor s can choose f_i such that $e_i - f_i \ge 0$ (because otherwise n is no longer an integer). This means f_i can be $\{0, 1 \dots e_i\}$, which has $e_i + 1$ elements. The number of divisors for n is defined as follows:

$$\tau(n) = \prod_{i=1}^{k} (e_i + 1)$$

b. Find number/numbers with the highest number of divisors in [1, 33].

The integers 24 and 30 have the highest number of divisors (8) in [1, 33].

Problem 3:

Fix a real number $x \geq 1$, and let \mathbb{N}_x , denote the set of positive integers with no prime factor exceeding x. Prove the inequality:

$$\sum_{m \in N, \ m \le x} \frac{1}{m} \le \sum_{m \in \mathbb{N}_x} \frac{1}{m}$$

Proof. Wants to show $(m \in N, m \le x) \subseteq (m \in \mathbb{N}_x)$ because $\frac{1}{m} > 0$, therefore the sumation of $\frac{1}{m}$ is greater if one $\sum \frac{1}{m}$ has a greater range than another.

Set cardinality: $\{m \mid m \in N, \ m \leq x\}$ contains all integers greater than 0, less than or equals to x. This implies that the set contains all integers greater than 0 less than or equals to x that is composed of prime factors less than x because. By being less than or equals to x, there cannot be any factors that is greater than x. It is easy to see that $(m \in \mathbb{N}_x)$ is not constrained to be less than or equals to x. This implies that $(m \in N, \ m \leq x) \subseteq (m \in \mathbb{N}_x)$. For reasons stated above, this implies the following inequality holds:

$$\sum_{m \in N, \ m \le x} \frac{1}{m} \le \sum_{m \in \mathbb{N}_x} \frac{1}{m}$$

Problem 4:

a. Show that the following holds:

$$\binom{2n}{0} < \binom{2n}{1} < \dots < \binom{2n}{n} > \dots \binom{2n}{2n-1} > \binom{2n}{2n}$$

Proof. Let $x \in (\mathbb{Z}^+ \cup \{0\})$, proove $\binom{2n}{n}$ is the largest item in the inequality above:

The largest integer value for x for the statement to hold is n-1. The largest item according to the inequality is $\binom{2n}{x+1}$, which is $\binom{2n}{n}$ given x = n-1. Hence prooved the inequality holds.

b. Deduce that $\binom{2n}{n} \leq \frac{4^n}{2n}$.

$$(1+1)^{2n} = 4^n$$

$$\sum_{k=0}^{2n} {2n \choose k} 1^{n-k} 1^k = 4^n$$

$$\frac{\sum_{k=0}^{2n} {2n \choose k}}{2n} = \frac{4^n}{2n}$$

Since $\frac{\sum_{k=0}^{2n} \binom{2n}{k}}{2n}$ is the average value of the sum of $\binom{2n}{k}$ with $k=0\ldots 2n$, from **part a**, we proved that $\binom{2n}{n}$ is the greatest element in the series. It is the case that $\binom{2n}{n}$ equals to the mean of the series if n=0. Hence the following is shown:

$$\binom{2n}{n} \le \frac{\sum_{k=0}^{2n} \binom{2n}{k}}{2n} \Leftrightarrow \binom{2n}{n} \le \frac{4^n}{2n}$$