Неприводимость многочленов

Определение 1. Пусть K — коммутативное кольцо, многочлен $f \in K\{x_1, \ldots, x_n\}$ называется неприводимым, если из представления f = hg следует, что один из многочленов g ил h константа.

Теорема 1. Пусть K- поле, тогда любой многочлен из $f \in K\{x_1, \ldots, x_n\}$ единственным образом расскладывается в произведение неприводимых многочленов $f = f_1 f_2 \ldots f_k$ с точностью до перестановки и домножения на константы.

1. Найдите все неприводимые многочлены не выше, чем четвёртой степени над полем \mathbb{Z}_2 . (Маленькая подсказка: а сколько всего многочленов не выше четвёртой степени существует по модулю 2?).

Определение 2. Пусть $f \in \mathbb{Z}[x]$, тогда обозначим за c(f) — наибольший общий делитель всех коэффициентов f.

- **2.** а) Пусть c(f) = 1 и c(g) = 1. Докажите, что $c(fg) = 1.(Ecлu\ c(fg) \neq 1,\ mo\ y$ него есть простой делитель)
- б) Докажите, что c(fg) = c(f)c(g).
- в) **Лемма Гауса** Докажите, что многочлен $f \in \mathbb{Z}[x]$ неприводим над \mathbb{Z} тогда и только тогда, когда он неприводим над \mathbb{Q}
- **3 (Критерий Эйзенштейна).** Пусть $f \in \mathbb{Z}[x]$ и $f = a_n x^n + \ldots + a_0$. Известно, что $a_n \not/p, a_{n-1}, \ldots a_0$, p и $a_0 \not/p^2$ для некоторого простого p. Докажите, что многочлен f неприводим над \mathbb{Z}
- **4.** Пусть p простое число. Докажите, что многочлен $x^{p-1} + x^{p-2} + \ldots + x + 1$ неприводим над $\mathbb Z$
- **5.** Докажите, что если p/q несократимая дробь, являющаяся корнем полинома $f(x) = a_n x^n + \ldots + a_1 x + a_0$ с целыми коэффициентами, то qm p делит f(m) для любого целого m.
- **6.** Доказать, что многочлен $(x-a_1)(x-a_2)\dots(x-a_n)-1$ неприводим, если a_1,a_2,\dots,a_n различные целые числа.
- 7. Докажите, что любой многочлен из $\mathbb{Q}[x]$ представляется в виде суммы двух неприводимых многочленов.
- **8.** а) Пусть $g \in K[x]$ неприводимый многочлен над полем K. Докажите, что на остатках по модулю многочлена g можно ввести операции сложения и умножения так, чтобы они образовывали поле. Для многочленов б) $x^2+1 \in \mathbb{R}[x]$;в) $x^2-2 \in \mathbb{Q}[x]$ постройте биективные отображения f из поля остатков этих многочленов в \mathbb{C} и в $\mathbb{Q}[\sqrt{2}]$ соответственно так, чтобы для любых двух остатков a,b выполнялось:
 - 1. f(a+b) = f(a) + f(b);
 - $2. \ f(ab) = f(a)f(b)$

Неприводимость многочленов

Алгоритм Кронекера.

Алгоритм говорит про заданный многочлен $f \in \mathbb{Z}$, является ли он неприводимым. Если не является, то строит многочлен $g \in \mathbb{Z}, \deg g > 0$, который является делителем f. Докажите корректность алгоритма.

- 1) Пусть $\deg f = n$ и $r = \left[\frac{n}{2}\right]$.
- 2) Рассмотрим числа $c_j = \tilde{f}(j), j = 0, \dots, r$. Если хотябы одно из чисел $c_j = 0$, алгоритм прекращает свою работу, g = x j.
- 3) Если все c_j отличны от 0. Для каждого $0 \leqslant j \leqslant r$ Строим множество C_j , состоящее из всех делителей числа c_j .
- 4) Рассматриваем всевозможные различные наборы чисел $d = d_0, \dots, d_r$ таких, что $d_i \in C_i$.
- 5) Для каждого такого набора строим интерполяционный многочлен g_d по точкам $0, 1, \ldots, r$ в которых многочлен принимает значения d_0, \ldots, d_r .
- 6) Проверяем, делится ли f на g_d . Если разделился на какой-то, то алгоритм заканчивает свою работу и возвращает $g=g_d$.
- 7) Если ни для какого набора $d = d_0, \ldots, d_r$ многочлен f не разделился на g_d , то f неприводим. Алгоритм завершает свою работу.