CIS560

Obtaining a Good Database Design – Part 3

1

What we've seen so far:

- •We briefly discussed the 3NF and BCNF.
- •They are defined using:
 - Functional Dependencies
 - Keys
- •We defined functional dependencies.
- •We defined closures and how they help
 - Find all functional dependencies
 - Determine whether a dependency violates BCNF

What we've seen so far:

- •A **superkey** is a set of attributes $A_1, ..., A_n$ s.t. for any other attribute B, we have $A_1, ..., A_n \rightarrow B$
- •A key is a minimal superkey
 - •A set of attributes which is a superkey
 - And for which no subset is a superkey
- We can decompose "bad" relations into BCNF relations.

KANSAS STATE | Computer Science

2

Boyce-Codd Normal Form

- •A relation R is in BCNF if and only if for every functional dependency X → A:
 - •X → A is a trivial functional dependency or
 - •X is a superkey for R
- Equivalently: ∀ X, either
 (X⁺ = X) or (X⁺ = all attributes)

A closer look at decompositions Name **Price** Category iPad 529 Tablet iPhone 429 Gadget iPad 529 Gadget Name **Price** Name Category iPad 529 iPad Tablet iPhone 429 iPhone Gadget iPad 529 iPad Gadget Lossless decomposition

5

KANSAS STATE

Computer Science

Lossless Decompositions

A decomposition is *lossless* if we can recover the exact information we started with:

KANSAS STATE | Computer Science

7

Decompositions in General

A **BCNF** decomposition is **always lossless**.

KANSAS STATE | Computer Science

A Problem with BCNF?

Professor Project Department

FD's: Professor → Department; Project, Department → Professor

So, there is a BCNF violation, and we decompose.

Professor Department Professor → Department

Professor Project No FDs

In BCNF we lose the FD: Project, Department \rightarrow Professor

q

So what's the problem?

Professor	Professor Department		Project	
Johnson CIS		Johnson	Recruitment	
Robinson	CIS	Robinson	Recruitment	

No problem so far. All *local* FD's are satisfied.

Let's put all the data back into a single table again:

Professor	Department	Project	
Johnson Robinson	CIS	Recruitment Recruitment	

Violates the dependency: Project, Department \rightarrow Professor!

Preserving Functional Dependencies

- •We lose dependencies when a relation with dependency $X \rightarrow Y$ is decomposed and:
 - X ends up in one of the new relations
 - •Y ends up only in another
- Such a decomposition is not "dependency-preserving."
- •Common form is AB \rightarrow C and C \rightarrow B
 - Remember our example?
 - Professor → Department
 - Project, Department → Professor

KANSAS STATE | Computer Science

11

BCNF decomposition does not always preserve dependencies.

General Decomposition Goals

- •Eliminate anomalies
 - Redundancy, update, and delete anomalies
- Recoverability of information
 - Can we get the original relation back?
- Preservation of dependencies
 - Can we enforce the functional dependencies without performing joins?

BCNF Decompositions

•No anomalies

Recoverability of information

Sometimes may lose dependencies

KANSAS STATE

Computer Science

15

What to do?

17

More Terms

- Candidate Key
 Another name for a minimal superkey
- Prime AttributesAttributes of a candidate key
- •Non-Prime Attributes

 Do not occur in ANY candidate key

Normalization

Simple attributes

Origin	Country	
Liverpool	UK	

KANSAS STATE

Computer Science

19

Normalization

if composite key:

all non-prime attributes depend on the full key

Album	Artist	Label	ArtistCountry
Please Please Me	9	Parlophone	UK

KANSAS STATE

Computer Science

non-prime attributes not dependent on each other

Album	Artist	Year	Studio	StudioCountry
Please Please Me	9	1963	Abbey Road	UK

KANSAS STATE | Computer Science

21

Every non-key attribute must provide a fact about the key, the whole key, and nothing but the key.

Third Normal Form (3NF)

A relation R is in the third normal form if:

For every nontrivial dependency in R where $A_1, A_2, ..., A_n \rightarrow B$, { $A_1, A_2, ..., A_n$ } must be a superkey for R, or B is part of a key.

 $\frac{Kansas\ State}{\text{U}\ \text{N}\ \text{I}\ \text{V}\ \text{E}\ \text{R}\ \text{S}\ \text{I}\ \text{T}\ \text{Y}} \ \Big| \ \text{Computer Science}$

23

3NF vs. BCNF

- ■R is in BCNF if for every nontrivial FD $A_1, A_2, ..., A_n \rightarrow B$, then $\{A_1, A_2, ..., A_n\}$ is a superkey.
- ■BCNF is slightly stronger than 3NF.

■Example: R(A,B,C) with {A,B}→C, C→B
•3NF but not BCNF (B is part of the key)

3NF Decompositions

Recoverability of information

Preservation of dependencies

May still have anomalies

KANSAS STATE | Computer Science

25

Practical advise

Aim for BCNF Settle for 3NF

KANSAS STATE | Computer Science

In Conclusion of Learning BCNF/3NF

- •How can we improve this?
 - Order Number
 - Order Date
 - Customer Name
 - Billing address
 - Product Name
 - SKU
 - Product Category
 - Quantity
 - Unit Price

