GUIÃO 06 - PROGRAMAÇÃO DINÂMICA

1 - Números de Delannoy

Os números de Delannoy representam o número de caminhos definidos numa grelha, desde o canto inferior esquerdo – posição (0, 0) – até qualquer outra posição (m, n), sendo permitidos apenas movimentos para cima (N), para a direita (E) ou na diagonal (NE).

As figuras seguintes apresentam os caminhos que é possível definir até às posições (1, 1), (2, 2) e (3, 3).

Os números de Delannoy são definidos pela seguinte relação de recorrência:

$$D(m, n) = 1$$
, se $m = 0$ ou $n = 0$
 $D(m, n) = D(m-1, n) + D(m-1, n-1) + D(m, n-1)$

Tarefas

- Implemente uma função recursiva, para calcular o número de Delannoy D(m, n).
- Qual é o maior número **D(k, k)** que consegue determinar em tempo útil, usando o seu computador? **D(14,14)**
- Implemente uma função iterativa, usando Programação Dinâmica e um array 2D local, para calcular o número de Delannoy D(m, n).
 Complexidade n^2
- Implemente uma função recursiva, usando memoization e um array 2D global, para calcular o número de Delannoy D(m, n).
 Complexidade melhor caso OMEGA (1) Complexidade O(n ^2)
- Para analisar o esforço computacional requerido por cada uma das funções, construa uma tabela como a da figura seguinte e conte o número de adições realizadas para calcular cada um dos seus elementos. Classifique as funções de acordo com a sua ordem de complexidade.

1
21
221
1561
8361
36365
134245
433905
1256465
3317445
8097453

1

2 - O Problema da Fileira de Moedas ("The Coin Row Problem")

Seja dada uma sequência de **n moedas** de **valores inteiros** – **c**₁, **c**₂, …, **c**_n –, com possíveis repetições.

Pretende-se resolver o seguinte problema de otimização combinatória:

• determinar o valor de um subconjunto de moedas com o maior valor total, com a restrição de que esse subconjunto não contém moedas que sejam adjacentes na sequência dada.

Note que podem ocorrer mais do que um subconjunto de moedas com o valor ótimo (i.e., máximo), que são designados soluções ótimas equivalentes.

Para uma sequência de n moedas, o valor de uma solução ótima pode ser determinado pela seguinte relação de recorrência, em que V(i), i = 0, 1, 2, ..., n, representa o valor de uma solução ótima considerando apenas as primeiras i moedas.

$$V(0) = 0$$

 $V(1) = c_1$
 $V(n) = max \{ c_n + V(n-2), V(n-1) \}, para n > 1$

Tarefas

- Considere a sequência de moedas de valor 5, 1, 2, 10, 6, 2. Calcule manualmente o valor da correspondente solução ótima.
- Implemente uma **função recursiva** que, dada uma sequência de n moedas, cujos valores estão armazenados num array, calcula o valor V(n) de uma sua solução ótima.
- Qual é o tamanho da maior sequência que consegue processar em tempo útil, usando o seu computador?
- Implemente uma função iterativa, usando Programação Dinâmica e um array local, para calcular o valor V(n) de uma solução ótima para uma sequência de n moedas.
- Implemente uma **função recursiva**, usando **memoization** e um **array global**, para calcular o valor V(n) de uma solução ótima para uma sequência de n moedas.
- Para analisar o esforço computacional requerido por cada uma das funções, conte o número de comparações realizadas para determinar o valor da solução ótima, para sequências de moedas sucessivamente mais longas. Classifique as funções de acordo com a sua ordem de complexidade.

Tarefa adicional

• Para a função iterativa que usa **Programação Dinâmica**, desenvolva uma estratégia que, além de determinar o valor de uma solução ótima, **identifique as moedas** que constituem essa solução.