Policy evaluation goal: given policy π find

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s], \quad \text{for all } s \in \mathcal{S},$$
 (1)

where
$$G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$$
.

Policy evaluation goal: given policy π find

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s], \quad \text{for all } s \in \mathcal{S},$$

where
$$G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$$
.

Dynamic Programming or Exhaustive Search: directly estimate (1).

Policy evaluation goal: given policy π find

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s], \quad \text{for all } s \in \mathcal{S},$$
(1)

where
$$G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$$
.

Dynamic Programming or Exhaustive Search: directly estimate (1).

Approximate expectation with empirical mean.

Policy evaluation goal: given policy π find

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s], \quad \text{for all } s \in \mathcal{S},$$
(1)

where $G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$.

Dynamic Programming or Exhaustive Search: directly estimate (1).

Approximate expectation with empirical mean. Let S(s) = total return of state s

$$V\left(s
ight)=rac{S\left(s
ight)}{N\left(s
ight)}\stackrel{ ext{LLN}}{
ightarrow}
u_{\pi}\left(s
ight),\quad ext{as }N\left(s
ight)
ightarrow\infty.$$

Policy evaluation goal: given policy π find

$$\nu_{\pi}(s) = \mathbb{E}_{\pi}[G_t \mid S_t = s], \quad \text{for all } s \in \mathcal{S},$$
(1)

where $G_t = R_{t+1} + \gamma R_{t+2} + \cdots + \gamma^{T-1} R_T$.

Dynamic Programming or Exhaustive Search: directly estimate (1).

Approximate expectation with empirical mean. Let S(s) = total return of state s

$$V\left(s
ight)=rac{S\left(s
ight)}{N\left(s
ight)} \stackrel{ ext{LLN}}{
ightarrow}
u_{\pi}\left(s
ight), \quad ext{as } N\left(s
ight)
ightarrow \infty.$$

From now on

- common: sample a "future" path starting from current state.
- different: ways to estimate S(s) and update V(s).

Let $V_{\text{old}}(s) = \frac{S(s)}{N(s)}$ and do one more update

$$V_{\text{new}}(s) = \frac{S(s) + G_t}{N(s) + 1}$$

$$= \frac{N(s) V_{\text{old}}(s) + G_t}{N(s) + 1} = \frac{(N(s) + 1) V_{\text{old}}(s) + (G_t - V_{\text{old}}(s))}{N(s) + 1}.$$
(MC)

Let $V_{\text{old}}(s) = \frac{S(s)}{N(s)}$ and do one more update

$$V_{\text{new}}(s) = \frac{S(s) + G_t}{N(s) + 1}$$

$$= \frac{N(s) V_{\text{old}}(s) + G_t}{N(s) + 1} = \frac{(N(s) + 1) V_{\text{old}}(s) + (G_t - V_{\text{old}}(s))}{N(s) + 1}.$$
(MC)

Simplify

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \frac{1}{N\left(s\right) + 1}\left(G_{t} - V\left(S_{t}\right)\right)$$
 (MC)

Let $V_{\text{old}}(s) = \frac{S(s)}{N(s)}$ and do one more update

$$V_{\text{new}}(s) = \frac{S(s) + G_t}{N(s) + 1}$$

$$= \frac{N(s) V_{\text{old}}(s) + G_t}{N(s) + 1} = \frac{(N(s) + 1) V_{\text{old}}(s) + (G_t - V_{\text{old}}(s))}{N(s) + 1}.$$
(MC)

Simplify

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \frac{1}{N\left(s\right) + 1}\left(G_{t} - V\left(S_{t}\right)\right)$$
 (MC)

Replace $\frac{1}{N(s)+1}$ with some $\alpha \in (0,1)$

Let $V_{\text{old}}(s) = \frac{S(s)}{N(s)}$ and do one more update

$$V_{\text{new}}(s) = \frac{S(s) + G_t}{N(s) + 1}$$

$$= \frac{N(s) V_{\text{old}}(s) + G_t}{N(s) + 1} = \frac{(N(s) + 1) V_{\text{old}}(s) + (G_t - V_{\text{old}}(s))}{N(s) + 1}.$$
(MC)

Simplify

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \frac{1}{N\left(s\right) + 1}\left(G_{t} - V\left(S_{t}\right)\right)$$
 (MC)

Replace $\frac{1}{N(s)+1}$ with some $\alpha \in (0,1)$

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \frac{\alpha}{\alpha}\left(G_{t} - V\left(S_{t}\right)\right)$$
 (\alpha-MC)

Replace G_t with $G_t^{(1)} := \underbrace{R_{t+1} + \gamma V(S_{t+1})}$

Replace
$$G_t$$
 with $G_t^{(1)} := \underbrace{R_{t+1} + \gamma V(S_{t+1})}$

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha \left(G_{t}^{\left(1\right)} - V\left(S_{t}\right)\right),$$
 (TD)

where $\delta_t := R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ is called the 1-step TD error.

Replace G_t with $G_t^{(1)} := \underbrace{R_{t+1} + \gamma V(S_{t+1})}$

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha \left(G_{t}^{\left(1\right)} - V\left(S_{t}\right)\right),$$
 (TD)

where $\delta_t := R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ is called the 1-step TD error.

Replace
$$G_t^{(1)}$$
 with $G_t^{(2)} := R_{t+1} + \gamma R_{t+2} + \gamma^2 V(S_{t+2})$

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha \left(G_{t}^{(2)} - V\left(S_{t}\right)\right).$$
 (TD-2)

Replace
$$G_t$$
 with $G_t^{(1)} := R_{t+1} + \gamma V(S_{t+1})$

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha\left(G_{t}^{\left(1\right)} - V\left(S_{t}\right)\right),$$
(TD)

where $\delta_t := R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ is called the 1-step TD error.

Replace
$$G_{t}^{(2)}$$
 with $G_{t}^{(n)} := R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^{n} V(S_{t+n})$

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha\left(G_{t}^{\left(n\right)} - V\left(S_{t}\right)\right).$$
 (TD-n)

Replace G_t with $G_t^{(1)} := \underbrace{R_{t+1} + \gamma V(S_{t+1})}_{}$

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha \left(G_{t}^{\left(1\right)} - V\left(S_{t}\right)\right),$$
 (TD)

where $\delta_t := R_{t+1} + \gamma V(S_{t+1}) - V(S_t)$ is called the 1-step TD error.

Replace $G_t^{(2)}$ with $G_t^{(n)} := R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V(S_{t+n})$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(n)} - V(S_t) \right).$$
 (TD-n)

Replace $G_t^{(n)}$ with $G_t^{(\infty)} := G_t$ and you get again (MC).

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(\infty)} - V(S_t) \right).$$
 (MC)

Replace G_t with arbitrary convex combinations of $G_t^{(n)}$, $n=1,2,\ldots,\infty$

$$G_t^{\lambda} := (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)}$$

Replace G_t with arbitrary convex combinations of $G_t^{(n)}$, $n = 1, 2, ..., \infty$

$$G_t^{\lambda} := (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)} \overset{\text{finite horizon } T}{=} (1 - \lambda) \sum_{n=1}^{T-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-1} G_t,$$

Replace G_t with arbitrary convex combinations of $G_t^{(n)}$, $n = 1, 2, \ldots, \infty$

$$G_t^{\lambda} := (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)} \stackrel{\text{finite horizon } T}{=} (1 - \lambda) \sum_{n=1}^{T-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-1} G_t,$$

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha\left(\frac{G_{t}^{\lambda}}{I} - V\left(S_{t}\right)\right).$$
 (TD(λ))

Replace G_t with arbitrary convex combinations of $G_t^{(n)}$, $n = 1, 2, ..., \infty$

$$G_t^{\lambda} := (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)} \stackrel{\text{finite horizon } T}{=} (1 - \lambda) \sum_{n=1}^{T-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-1} G_t,$$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t) \right).$$
 (TD(λ))

For
$$\lambda = 0$$
, it holds that $G_t^0 = G_t^{(1)} + \sum_{n=2}^{T-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-1} G_t = G_t^{(1)}$ so,

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(1)} - V(S_t) \right).$$
 (TD(0) \equiv TD)

Replace G_t with arbitrary convex combinations of $G_t^{(n)}$, $n = 1, 2, ..., \infty$

$$G_t^{\lambda} := (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)} \stackrel{\text{finite horizon } T}{=} (1 - \lambda) \sum_{n=1}^{T-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-1} G_t,$$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right).$$
 (TD(λ))

For
$$\lambda = 0$$
, it holds that $G_t^0 = G_t^{(1)} + \sum_{n=2}^{T-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-1} G_t = G_t^{(1)}$ so,

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(1)} - V(S_t) \right).$$
 (TD(0) \equiv TD)

For
$$\lambda = 1$$
, it holds that $G_t^1 = (1 - \lambda) \sum_{n=1}^{T-1} \lambda^{n-1} G_t^{(n)} + G_t = G_t$ so,

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha\left(G_{t} - V\left(S_{t}\right)\right).$$
 (TD(1) \equiv MC)

Replace G_t with arbitrary convex combinations of $G_t^{(n)}$, $n = 1, 2, ..., \infty$

$$G_t^{\lambda} := (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_t^{(n)} \stackrel{\text{finite horizon } T}{=} (1 - \lambda) \sum_{n=1}^{T-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-1} G_t,$$

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{\lambda} - V(S_t)\right).$$
 (TD(λ))

For
$$\lambda = 0$$
, it holds that $G_t^0 = G_t^{(1)} + \sum_{n=2}^{T-1} \lambda^{n-1} G_t^{(n)} + \lambda^{T-1} G_t = G_t^{(1)}$ so,

$$V(S_t) \leftarrow V(S_t) + \alpha \left(G_t^{(1)} - V(S_t) \right).$$
 (TD(0) \equiv TD)

For
$$\lambda = 1$$
, it holds that $G_t^1 = (1 - \lambda) \sum_{n=1}^{T-1} \lambda^{n-1} G_t^{(n)} + G_t = G_t$ so,

$$V\left(S_{t}\right) \leftarrow V\left(S_{t}\right) + \alpha\left(G_{t} - V\left(S_{t}\right)\right).$$
 (TD(1) \equiv MC)

Offline Updates, Forward View

Common methodology up to now. Initialize: S_t and V(s), $s \in S$

- Forward view: take some action from S_t and observe rewards (far or near) in the future.
- Offline updates: When you finish with the forward view (end of episode or n steps + estimate), return to S_t and update $V(S_t)$ according to this information.

Online Updates, Backward View

Obvious twists/improvements

- Backward view: once I learn something about $V(S_t)$, then implicitly, I learned something about S_{t-1} , so I will update S_{t-1} as well.
- Online updates: update knowledge (here values of states) in visited states as it comes in, i.e., online.

In sum:

- · Collect information as before.
- Allow information to propagate to previously visited states.

Backward View: Intuition

Starting from a state S_t and value estimates $V\left(s\right), s \in \mathcal{S}$

- Take an action and observe some reward (G_t , $G_t^{(1)}$ etc.).
- Update $V(S_t)$ accordingly.
- Observation: recent actions (states) before S_t are also responsible for this reward, with *more recent states being more responsible*.
- Observation: frequent actions (states) before S_t are also responsible for the outcome, with *more frequent states being more responsible*.

Backward View: Intuition

Starting from a state S_t and value estimates $V\left(s\right), s \in \mathcal{S}$

- Take an action and observe some reward (G_t , $G_t^{(1)}$ etc.).
- Update $V(S_t)$ accordingly.
- Observation: recent actions (states) before S_t are also responsible for this reward, with *more recent states being more responsible*.
- Observation: frequent actions (states) before S_t are also responsible for the outcome, with *more frequent states being more responsible*.

Update frequent/recent states too using eligibility traces

$$\begin{split} &E_{0}\left(s\right)=0\\ &E_{t}\left(s\right)=\gamma\lambda E_{t-1}\left(s\right)+\mathbf{1}_{t}\left(s\right),\quad\text{for all }s\in\mathcal{S}. \end{split}$$

Space
$$|\mathcal{S}|=$$
 4, $\gamma=$ 1, $\alpha=$ 0.5, $\lambda=$ 0.9

$$\begin{array}{c|ccccc}
E_t(s) & S' & S \\
\hline
t = 0 & 0 & 0 & 0 & 0
\end{array}$$

Space $|\mathcal{S}| = 4$, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. Initialize: $S_1 = S$, V(s) = 0 for all $s \in \mathcal{S}$.

$$\begin{array}{c|cccc}
E_t(s) & S' & S \\
\hline
t = 0 & 0 & 0 & 0 \\
t = 1 & & & & \\
\end{array}$$

$$t = 1$$

•
$$E_1(S) = \gamma \lambda E_0(s) + \mathbf{1}(S_1 = S) = 0 + 1 = 1.$$

Space $|\mathcal{S}| = 4$, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. Initialize: $S_1 = S$, V(s) = 0 for all $s \in \mathcal{S}$.

$$\begin{array}{c|cccc}
E_t(s) & S' & S \\
\hline
t = 0 & 0 & 0 & 0 \\
t = 1 & & & & \\
\end{array}$$

$$t = 1$$

•
$$E_1(S) = \gamma \lambda E_0(s) + \mathbf{1}(S_1 = S) = 0 + 1 = 1.$$

Space $|\mathcal{S}| = 4$, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. Initialize: $S_1 = S$, V(s) = 0 for all $s \in \mathcal{S}$.

Space $|\mathcal{S}| = 4$, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. Initialize: $S_1 = S$, V(s) = 0 for all $s \in \mathcal{S}$.

$$\begin{array}{c|ccccc}
V\left(S_{t}\right) & S' & S \\
\hline
t = 0 & 0 & 0 & 0
\end{array}$$

- Take action at $S_1 = S$: observe $S_2 = S'$ and $R_2 = 3$.
- Calculate TD error: $\delta_1 = R_2 + \gamma V(S') V(S) = 3 + 0 0 = 3$.

Space $|\mathcal{S}| = 4$, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. Initialize: $S_1 = S$, V(s) = 0 for all $s \in \mathcal{S}$.

$$\begin{array}{c|cccc}
V\left(S_{t}\right) & S' & S \\
\hline
t = 0 & 0 & 0 & 0
\end{array}$$

- Take action at $S_1 = S$: observe $S_2 = S'$ and $R_2 = 3$.
- Calculate TD error: $\delta_1 = R_2 + \gamma V(S') V(S) = 3 + 0 0 = 3$.
- Update V(s) for all $s \in S$

$$V(s) \leftarrow V(s) + \alpha \delta_1 E_1(s) = \begin{cases} 0 + 0.5 \cdot 3 \cdot 1 = 1.5, & \text{if } s = S, \\ 0, & \text{otherwise} \end{cases}$$

Space $|\mathcal{S}| = 4$, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. Initialize: $S_1 = S$, V(s) = 0 for all $s \in \mathcal{S}$.

- Take action at $S_1 = S$: observe $S_2 = S'$ and $R_2 = 3$.
- Calculate TD error: $\delta_1 = R_2 + \gamma V(S') V(S) = 3 + 0 0 = 3$.
- Update V(s) for all $s \in S$

$$V(s) \leftarrow V(s) + \alpha \delta_1 E_1(s) = \begin{cases} 0 + 0.5 \cdot 3 \cdot 1 = 1.5, & \text{if } s = S, \\ 0, & \text{otherwise} \end{cases}$$

Space
$$|\mathcal{S}| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_2 = S'$

Space
$$|\mathcal{S}| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_2 = S'$

$$\begin{array}{c|ccccc}
E_t(s) & S' & S \\
\hline
t = 0 & 0 & 0 & 0 & 0 \\
t = 1 & 0 & 0 & 1 & 0 \\
t = 2 & & & & \\
\end{array}$$

$$t = 2$$

•
$$E_2(S) = \gamma \lambda E_1(S) + \mathbf{1}(S_2 = S) = 0.9 \cdot 1 + 0 = 0.9.$$

Space
$$|S| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_2 = S'$

$E_t(s)$		S'	S	
t = 0	0	0	0	0
t = 1	0	0	1	0
t = 2				

$$t = 2$$

•
$$E_2(S) = \gamma \lambda E_1(S) + \mathbf{1}(S_2 = S) = 0.9 \cdot 1 + 0 = 0.9.$$

•
$$E_2(S') = \gamma \lambda E_1(S') + \mathbf{1}(S_2 = S') = 0 + 1 = 1.$$

Space
$$|\mathcal{S}| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_2 = S'$

$V\left(S_{t}\right)$		S'	S	
t = 0	0	0	0	0
t = 0 $t = 1$	0	0	1.5	0

$$t = 2$$

Space
$$|\mathcal{S}| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_2 = S'$

$$\begin{array}{c|ccccc} E_t(s) & S' & S \\ \hline t = 0 & 0 & 0 & 0 & 0 \\ t = 1 & 0 & 0 & 1 & 0 \\ t = 2 & 0 & 1 & 0.9 & 0 \\ \hline R_3 = -2.5 & & & \end{array}$$

$V\left(S_{t}\right)$		S'	S	
t = 0	0	0	0	0
t = 0 $t = 1$	0	0	1.5	0

$$t = 2$$

• Take action at $S_2 = S'$: observe $S_3 = S$ and $R_3 = -2.5$.

Space
$$|\mathcal{S}|=4, \gamma=1, \alpha=0.5, \lambda=0.9$$
. Space $|\mathcal{S}|=S'$

$$\begin{array}{c|ccccc} E_t(s) & S' & S \\ \hline t = 0 & 0 & 0 & 0 & 0 \\ t = 1 & 0 & 0 & 1 & 0 \\ t = 2 & 0 & 1 & 0.9 & 0 \\ \hline R_3 = -2.5 & & & \end{array}$$

)	0	0	0
)	0 1	.5	0
	0	0 0 0 0 1	0 0 0 0

- Take action at $S_2 = S'$: observe $S_3 = S$ and $R_3 = -2.5$.
- Calculate TD error: $\delta_2 = R_3 + \gamma V\left(S\right) V\left(S'\right) = -2.5 + 1.5 0 = -1.$

Space
$$|\mathcal{S}| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_2 = S'$

- Take action at $S_2 = S'$: observe $S_3 = S$ and $R_3 = -2.5$.
- Calculate TD error: $\delta_2 = R_3 + \gamma V(S) V(S') = -2.5 + 1.5 0 = -1.$
- Update V(s) for all $s \in S$

$$V(s) \leftarrow V(s) + \alpha \delta_2 E_2(s) = \begin{cases} 0 + 0.5 \cdot (-1) \cdot 1 = -0.5, & \text{if } s = S', \\ 1.5 + 0.5 \cdot (-1) \cdot 0.9 = 1.05, & \text{if } s = S \\ 0, & \text{otherwise} \end{cases}$$

Space
$$|\mathcal{S}| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_2 = S'$

$$\begin{array}{c|ccccc} E_t(s) & S' & S \\ \hline t = 0 & 0 & 0 & 0 & 0 \\ t = 1 & 0 & 0 & 1 & 0 \\ t = 2 & 0 & 1 & 0.9 & 0 \\ \hline \end{array}$$

- Take action at $S_2 = S'$: observe $S_3 = S$ and $R_3 = -2.5$.
- Calculate TD error: $\delta_2 = R_3 + \gamma V(S) V(S') = -2.5 + 1.5 0 = -1.$
- Update V(s) for all $s \in S$

$$V(s) \leftarrow V(s) + \alpha \delta_2 E_2(s) = \begin{cases} 0 + 0.5 \cdot (-1) \cdot 1 = -0.5, & \text{if } s = S', \\ 1.5 + 0.5 \cdot (-1) \cdot 0.9 = 1.05, & \text{if } s = S \\ 0, & \text{otherwise} \end{cases}$$

Space
$$|\mathcal{S}|=$$
 4, $\gamma=$ 1, $\alpha=$ 0.5, $\lambda=$ 0.9. $S_3=S$

$E_t(s)$		S'	S	
t = 0 $t = 1$ $t = 2$	0	0	0	0
t = 1	0	0	1	0
t = 2	0	1	0.9	0

$V\left(S_{t}\right)$		S'	S	
t = 0 $t = 1$ $t = 2$	0	0	0	0
t = 1	0	0	1.5	0
t = 2	0	-0.5	1.05	0

Space
$$|\mathcal{S}| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_3 = S$

$E_t(s)$		S'	S	
t = 0 $t = 1$ $t = 2$ $t = 3$	0	0	0	0
t = 1	0	0	1	0
t = 2	0	1	0.9	0
t = 3				

$V\left(S_{t}\right)$		S'	S	
t = 0 $t = 1$ $t = 2$	0	0	0	0
t = 1	0	0	1.5	0
t = 2	0	-0.5	1.05	0

$$t = 3$$

•
$$E_3(S) = \gamma \lambda E_2(S) + \mathbf{1}(S_3 = S) = 0.9 \cdot 0.9 + 1 = 1.81.$$

Space
$$|\mathcal{S}| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_3 = S$

$E_t(s)$		S'	S	
t = 0 $t = 1$ $t = 2$ $t = 3$	0	0	0 1 0.9	0
t = 1	0	0	1	0
t = 2	0	1	0.9	0
t = 3				

$V\left(S_{t}\right)$		S'	S	
t = 0 $t = 1$ $t = 2$	0	0	0	0
t = 1	0	0	1.5	0
t = 2	0	-0.5	1.05	0

•
$$E_3(S) = \gamma \lambda E_2(S) + \mathbf{1}(S_3 = S) = 0.9 \cdot 0.9 + 1 = 1.81.$$

•
$$E_3(S') = \gamma \lambda E_2(S') + \mathbf{1}(S_3 = S') = 0.9 \cdot 1 + 0 = 0.9.$$

Space
$$|\mathcal{S}|=$$
 4, $\gamma=$ 1, $\alpha=$ 0.5, $\lambda=$ 0.9. $S_3=S$

$E_t(s)$		S'	S	
t = 0 $t = 1$ $t = 2$ $t = 3$	0	0	0	0
t = 1	0	0	1	0
t = 2	0	1	0.9	0
t = 3	0	0.9	1.81	0

$V\left(S_{t}\right)$		S'	S	
t = 0	0	0	0	0
t = 0 $t = 1$ $t = 2$	0	0	1.5	0
t = 2	0	-0.5	1.05	0

t = 3

Space
$$|S| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_3 = S$

$E_t(s)$		S'	S	
t = 0	0	0	0	0
t = 0 $t = 1$	0	0	1	0
t = 2 $t = 3$	0	1	0.9	0
t = 3	0	0.9	1.81	0
$R_4=3$				

$V\left(S_{t}\right)$		S'	S	
t = 0 $t = 1$ $t = 2$	0	0	0	0
t = 1	0	0	1.5	0
t = 2	0	-0.5	1.05	0

• Take action at $S_3 = S$: observe $S_4 = S'$ and $R_4 = 3$.

Space
$$|S| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_3 = S$

$E_t(s)$		S'	S	
t = 0 $t = 1$ $t = 2$ $t = 3$	0	0	0	0
t = 1	0	0	1	0
t = 2	0	1	0.9	0
t = 3	0	0.9	1.81	0
$R_4=3$				

$V\left(S_{t}\right)$		S'	S	
t = 0 $t = 1$ $t = 2$	0	0	0	0
t = 1	0	0	1.5	0
t = 2	0	-0.5	1.05	0

- t = 3
 - Take action at $S_3 = S$: observe $S_4 = S'$ and $R_4 = 3$.
 - Calculate TD error: $\delta_3 = R_4 + \gamma V(S') V(S) = 3 0.5 1.05 = 1.45$.

Space
$$|\mathcal{S}|=4$$
, $\gamma=1$, $\alpha=0.5$, $\lambda=0.9$. $S_3=S$

$E_t(s)$		S'	S	
t = 0 $t = 1$ $t = 2$ $t = 3$	0	0	0	0
t = 1	0	0	1	0
t = 2	0	1	0.9	0
t = 3	0	0.9	1.81	0
R ₄ =3				

$V\left(S_{t}\right)$		S'	S	
t = 0	0	0	0	0
t = 0 $t = 1$ $t = 2$	0	0	1.5	0
t = 2	0	-0.5	1.05	0

- Take action at $S_3 = S$: observe $S_4 = S'$ and $R_4 = 3$.
- Calculate TD error: $\delta_3 = R_4 + \gamma V(S') V(S) = 3 0.5 1.05 = 1.45$.

• Update
$$V(s)$$
 for all $s \in S$
$$V(s) \leftarrow V(s) + \alpha \delta_3 E_3(s) = \begin{cases} -0.5 + 0.5 \cdot 1.45 \cdot 0.9 = 0.15, & \text{if } s = S', \\ 1.05 + 0.5 \cdot 1.45 \cdot 1.81 = 2.36, & \text{if } s = S \\ 0, & \text{otherwise} \end{cases}$$

Space
$$|S| = 4$$
, $\gamma = 1$, $\alpha = 0.5$, $\lambda = 0.9$. $S_3 = S$

$E_t(s)$	ı	S'		
t = 0 $t = 1$ $t = 2$ $t = 3$	0	0	0	0
t = 1	0	0	1	0
t = 2	0	1	0.9	0
t = 3	0	0.9	1.81	0

$V\left(S_{t}\right)$		S'	S	
t = 0 $t = 1$ $t = 2$ $t = 3$	0	0	0	0
t = 1	0	0	1.5	0
t = 2	0	-0.5	1.05	0
t = 3	0	0.15	2.36	0

- Take action at $S_3 = S$: observe $S_4 = S'$ and $R_4 = 3$.
- Calculate TD error: $\delta_3 = R_4 + \gamma V(S') V(S) = 3 0.5 1.05 = 1.45$.

• Update
$$V(s)$$
 for all $s \in S$
$$V(s) \leftarrow V(s) + \alpha \delta_3 E_3(s) = \begin{cases} -0.5 + 0.5 \cdot 1.45 \cdot 0.9 = 0.15, & \text{if } s = S', \\ 1.05 + 0.5 \cdot 1.45 \cdot 1.81 = 2.36, & \text{if } s = S \\ 0, & \text{otherwise} \end{cases}$$

Remarks I

For
$$\lambda = 0$$
, it holds that $E_t(s) = \underline{\gamma \cdot 0 \cdot E_{t-1}(s)} + \mathbf{1}(S_t = s) = \mathbf{1}(S_t = s)$, so
$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t = V(S_t) + \alpha \left(\frac{G_t^{(1)}}{I} - V(S_t)\right). \tag{TD(0)}$$

Remarks I

For $\lambda = 0$, it holds that $E_t(s) = \underline{\gamma \cdot 0 \cdot E_{t-1}(s)} + \mathbf{1}(S_t = s) = \mathbf{1}(S_t = s)$, so

$$V(S_t) \leftarrow V(S_t) + \alpha \delta_t = V(S_t) + \alpha \left(G_t^{(1)} - V(S_t)\right).$$
 (TD(0))

For general $\lambda \in (0, 1]$, we have the following

Theorem

The offline forward and backward $TD(\lambda)$ accumulate the same error, i.e.,

$$\sum_{t=1}^{T} \alpha \delta_{t} E_{t}\left(s\right) = \alpha \sum_{t=1}^{T} \left(G_{t}^{\lambda} - V\left(S_{t}\right)\right) \mathbf{1}_{t}\left(s\right).$$

Special case, $\lambda = 1$, then TD(1) and MC accumulate the same error.

Remarks II

Proof.

Step 1: Show that

$$\sum_{k=t}^{T} (\gamma \lambda)^{k-t} \, \delta_k = G_t^{\lambda} - V(S_t) \,,$$

using telescoping sum (slides), where $\delta_k := R_{k+1} + \gamma V(S_{t+1}) - V(S_t)$.

Step 2: By definition of E_t , it holds that

$$E_{t}(s) = (\gamma \lambda) E_{t-1}(s) + \mathbf{1}_{t}(s)$$

$$= (\gamma \lambda) [(\gamma \lambda) E_{t-2}(s) + \mathbf{1}_{t-1}(s)] + \mathbf{1}_{t}(s)$$

$$= (\gamma \lambda)^{2} E_{t-2}(s) + (\gamma \lambda) \mathbf{1}_{t-1}(s) + \mathbf{1}_{t}(s) = \dots$$

$$= (\gamma \lambda)^{t} E_{t-2}(s) + \sum_{i=1}^{t} (\gamma \lambda)^{t-j} \mathbf{1}_{j}(s) = \sum_{i=1}^{t} (\gamma \lambda)^{t-j} \mathbf{1}_{j}(s), \forall s \in S.$$

Remarks II

So,

$$\sum_{t=1}^{T} \alpha \delta_{t} E_{t}(s) = \alpha \sum_{t=1}^{T} \delta_{t} \sum_{k=1}^{t} (\gamma \lambda)^{t-k} \mathbf{1}_{k}(s) \qquad | \text{ change summation order}$$

$$= \alpha \sum_{k=1}^{T} \left(\sum_{t=k}^{T} (\gamma \lambda)^{t-k} \delta_{t} \right) \mathbf{1}_{k}(s) \qquad | \text{ use Step 1}$$

$$= \alpha \sum_{k=1}^{T} \left(G_{k}^{\lambda} - V(S_{k}) \right) \mathbf{1}_{k}(s).$$

13 / 13