

NTNU

TDT4136 - AI INTRO

Exercise 2

Øyvind Robertsen Mathias Ose

1.9	2.2	9.1	KB		
1,3	2,2	3,1	ND	α_2	α_3
P W PW	Р			T T T	T T
P W PW	P P P W W PW			Т Т	T T
P P W PW	PW	P P P	Т	T T T	T T
P W PW	P P P W W PW	P P P P P		T T	T T
P P	PW	P W W		T T	
P	P P	W PW		T T	
P P	P P	PW PW PW		1	

Table 1: Wumpus

- 1. We can see that KB $\models \alpha_2$ and KB $\models \alpha_3$ since the single row with KB = True has both α_2 and α_3 True.
- 2. a. True, False is never true, ergo this statement doesn't violate the definition of entailment.
 - b. False. Inverse of above, False is never true, and the statement will therefore always violate the definition.
 - c. True. $M(LHS) \subseteq M(HS)$
 - d. False. With both A and B True, the LHS will be true, but the RHS will be false. Thus $M(\text{LHS}) \not\subseteq M(\text{HS})$.

- e. True. M(LHS) = M(HS) for this statement.
- f. True. The only case that would make the right hand side False is A=B= True, C=False for which the LHS is also false.
- 3. a. $\{T, F\}, \{TF, FT, TT\}, \{T, F\}, 2 * 3 * 2 = 12$
 - b. Only false if all propositions are True, therefore $2^4 1 = 15$ models.
 - c. 0. A = T, B = F means that $A \implies B$ can never be true.
- 4. a. Valid. Smoke \implies Smoke $\equiv \neg$ Smoke \vee Smoke
 - b. Neither. All models except Smoke = True, Fire = False satisfies the sentence.
 - c. Neither.

 $(Smoke \implies Fire) \implies (\neg Smoke \implies \neg Fire) \equiv (\neg Smoke \lor Fire \implies \neg Fire \lor Smoke)$

False for Smoke = False, Fire = True

- 5. a. $^{3}/_{4}Q$
 - b. $^{5}/_{8}Q$
 - c. $^{3}/_{4}Q$

2

1

- 1. $A \wedge B \wedge C$
- $2. A \lor B \lor C$
- $3. \neg A \lor B \lor C$
- 4. $(\neg A \lor C) \land (B \lor C)$
- 5. $\neg A \lor \neg B \lor C \lor D$
- 6. $(\neg A \lor C) \land (\neg A \lor D) \land (\neg B \lor C) \land (\neg B) \lor D$
- 7. $(\neg A \lor \neg B \lor C) \land (A \lor \neg C) \land (B \lor \neg C)$

2

The items in the KB individually CNF to:

- $\bullet \ (\neg A \vee \neg C) \wedge (B \vee \neg C)$
- $(C \vee \neg E) \wedge D$
- \bullet $A \wedge D$

Since these statements are the KB, we can and them together, and simplify:

$$(\neg A \lor \neg C) \land (B \lor \neg C) \land (C \lor \neg E) \land D \land A \land D$$
$$(\neg A \lor \neg C) \land (B \lor \neg C) \land (C \lor \neg E) \land D \land A$$
$$\neg C \land (B \lor \neg C) \land (C \lor \neg E) \land D \land A$$
$$\neg C \land B \land \neg E \land D \land A$$

And at this point we can see that for the KB to hold true, we must have $\neg E$.

3

1

- a. Occupation(Emily, Lawyer) ∨ Occupation(Emily, Surgeon)
- b. Occupation(Joe, Actor) $\land \exists o \{ Occupation(Joe, o) \}$
- c. $\forall x \{ Occupation(x, Doctor) \land Occupation(x, Surgeon) \}$

 $\mathbf{2}$

- a. $\forall x \{ \text{Even}(x) \Leftrightarrow \exists y \{ x = y + y \} \}$
- b. $\forall x \{ \text{Prime}(x) \Leftrightarrow \forall yz \{ x = y \times z \implies z = 1 \lor y = 1 \} \}$
- c. $\forall x \{ \text{Even}(x) \Leftrightarrow \exists yz \{ x = y + z \land (\text{Prime}(y) \land \text{Prime}(z)) \} \}$

3

$$\forall k \{ \text{Key}(k) \implies \exists t_0 \{ \text{Before}(\text{Now}, t_0) \land \forall t \{ \text{Before}(t_0, t) \implies \text{Lost}(k, t) \} \}$$

$$\forall xy \{ \text{Sock}(x) \land \text{Sock}(y) \land \text{Pair}(x, y) \implies$$

$$\exists t_1 \{ \text{Before}(Now, t_1) \land \forall t \{ \text{Before}(t_1, t) \land \text{Lost}(x, t) \} \} \lor$$

$$\exists t_2 \{ \text{Before}(Now, t_2) \land \forall t \{ \text{Before}(t_2, t) \land \text{Lost}(y, t) \} \} \}$$

4

With the following vocabulary:

```
V = \{ \text{Person}(x), \text{IsDNAOfPerson}(x, y), \text{IsParentOf}(x, y), \text{IsDerivedFromPersonsDNA}(x, y) \}
```

where Person(x) is true if x is a person, IsDNAOfPerson(x, y) is true if y is person x's DNA, IsParentOf(x, y) is true if y is x's parent and IsDerivedFromPersonsDNA(x, y) is true if DNA x is derived from person x's DNA.

$$\forall xy \{ \operatorname{Person}(x) \land \operatorname{IsDNAOfPerson}(y, x) \implies \neg \exists z \{ \operatorname{Person}(z) \land \operatorname{IsDNAOfPerson}(y, z) \} \land \forall a \{ \operatorname{Person}(a) \land \operatorname{IsParentOf}(x, a) \implies \operatorname{IsDerivedFromPersonsDNA}(y, a) \} \}$$

4

1

a.
$$\Theta = \{x/\text{Rocky}\}$$

b.
$$\Theta = \{x/\text{Leo}, y/\text{Rocky}\}$$

c.
$$\Theta = \{x/\text{Rocky}, y/\text{Leo}\}$$

- d. Not possible.
- e. Not Possible.

f.
$$\Theta = \{x/\text{Leo}, y/\text{FastestHorse}(\mathbf{x})\}$$

g.
$$\Theta = \{x/\text{Marvin}, y/\text{Leo}\}$$

2

Only the last sentence needs to be converted to CNF.

$$\forall x \{ \operatorname{Green}(x) \leftrightarrow \operatorname{Bikes}(x) \vee \exists y \{ \operatorname{Drives}(x,y) \wedge \operatorname{Hybrid}(y) \} \}$$