ME3500J Design and Manufacturing II

Guideline - Design Review Presentation

Basic guideline

- ✓ Presentation schedule
 - Wednesday, 7/9 and Friday, 7/11
- √ We will give ~12 min to each team.
- ✓ All members must participate in the presentation.
- ✓ Instructor (and/or TAs) will evaluate the presentation and work progress.
 - We expect ~70% of progress on the project by the time the teams present.
 - Active participants asking critical questions to presenters will gain extra points.

Contents of the design review slide

- 1. Introduction (Background)
- 2. Objectives
- 3. Project plan (Gantt chart)
- 4. Design
- 5. Manufacturing
- 6. Analysis
- 7. Mechatronics
- 8. CAD simulation
- 9. Showcase of initial prototype

Introduction (Background)

- ✓ Explain why
 - Why is your design important in association with the game rules/applications?
 - May need literature review other devices
- ✓ In your project, you may consider these:
 - Why need a climbing robot with a locking mechanism
 - Compared yours with the other devices.
 - Address it with the game rule as well.
 - What technical aspects should be improved?
 - Creative linkage design
 - Creative locking design
 - Others

Objectives

- ✓ In your project, you may consider this, for example,
 - Phase 1: Ascent & Zero-Power Lock (Ø 0.3m Pier)
 - Robot ascends vertically to 1.2m height on a 0.3m-diameter pier.
 - Upon reaching 1.2m, power is cut (remote).
 - The robot must **remain locked in place without power for 60 seconds** (no slipping >1 cm).
 - After 60s, power is restored; robot descends to base autonomously.
 - Phase 2: Transition & Second Ascent (Ø 0.6m Pier)
 - The robot is repositioned at the base of a **0.6 m-diameter pier**.
 - Ascends to 1.2m height, power cut again, and maintains position without power for 60 seconds.
 - Power restored; descends to base.

✓ Critical Requirements

- Fail-Safe Locking: Clamping mechanism must hold position passively (no power draw) during 60s tests (e.g., mechanical springs, friction brakes, or selflocking gears).
- Bi-directional Control: Drive system must enable controlled descent (no free-falling; speed ≤10 cm/s).
- Position Accuracy: Stops at 1.2m must be within ±2 cm tolerance (closed-loop sensors required).
- O Time Limits:
 - Full mission (both piers) completed in <10 minutes.</p>
 - Max 3 attempts total.

Project plan

- ✓ Specific plan
 - may add Gantt Chart (by indicating each member's contribution).
- ✓ Tasks for each member
- ✓ Explain each component, for example
 - Climbing robot with locking mechanisms
 - Graphical linkage synthesis
 - CAD drawing & simulation
 - Manufacturing (3D printing or others)
 - Analysis
 - Position analysis (MATLAB simulation)
 - Force analysis (MATLAB simulation)
 - Selection of motors
 - Design of gearboxes
 - Programming of microcontroller
 - Selection of sensors
 - Strategy to integrate with the main device

Synthesis (Design)

UNIVERSITY OF MICHIGAN

- ✓ Creative design compared to others?
- √ Graphical linkage synthesis
 - Two position or three position synthesis.
 - Justification of linkage size for both expansion and shrink modes.
- ✓ You can use other mechanical systems taught in class other than linkage system and provide equivalent graphical explanation.

Fabrication and Assembly (Manufacturing)

- ✓ Selection of materials with sound justification
 - Main body components
 - Supplementary components
 - Motors
 - Sensors
- ✓ Describe the procedure of manufacturing method used.
- ✓ Describe the procedure of assembly of components, motors, sensors, etc.

Analysis

UNIVERSITY OF MICHIGAN

- ✓ Classification of the designed linkage
 - o DOF
 - Crank-slider, crank-crank, etc.
 - Grashof condition
- ✓ Position analysis (MATLAB simulation)
- ✓ Force analysis with free-body-diagrams (MATLAB simulation)
 - Required input torque to lock the device.
 - Justification of the selection of motors
 - Design and analysis of external gearboxes if added.

✓ If you do not use a linkage system on your design, please provide equivalent analysis.

Mechatronics

- √ Flowchart of Raspberry PI programming
- ✓ Circuit diagram
 - How did you connect sensors and actuators

CAD simulation

✓ Virtual demonstration of the designed device

Initial prototype

UNIVERSITY OF MICHIGAN

- ✓ You may show your initial prototype.
 - Videos or pictures

Evaluation form

Grading Sheet for Design Review

Grader:	

Group #____

Grading Policy: The median grade should be between 75 and 85.

1.	Introduction:	5	
	 Why is the design of your device significant regarding the 		
	game rule?		
	 What technical aspects should be improved? 		
	 Good literature review? 	5	
2			
	- Specific design goal on your device?		
3	Project plan (Gantt chart); tasks for each member	5	
	- How much have you finished		
_	- Plan for the rest		
4 5	Creative design compared to others? Design & Manufacturing details	5 20	
) 5	- Graphical linkage synthesis (or equivalent mechanical	20	
	system synthesis)		
	 CAD drawing of the device and components (also in part 		
	8)		
	- Justification of the selection of materials and		
	manufacturing methods using mechanics		
6	Analysis (other mechanical systems need equivalent analysis)	20	
	 Classification of the designed linkage 		
	o DOF		
	 Crank-slider, crank-crank, etc. 		
	Grashof condition		
	- Position analysis (MATLAB simulation)		
	 Force analysis with Free-Body-Diagrams (MATLAB simulation) 		
	 Required input torque to lift the device 		
	 Required input torque to lock the linkage 		
	(Justification of selection of motors)		
7	Mechatronics	5	
	- Flow chart of Raspberry Pi code		
	- Circuit diagram		
8	CAD drawing & Initial prototype	10	
9	Initial prototype (pictures and videos) – 70% done?		
10	Peer evaluation	5	

