CENG 355 Midterm Solutions

1. There are many possible solutions. One of them is shown below.

```
#define PBIN (volatile char *) 0xFFFFFFF3
#define PBOUT (volatile char *) 0xFFFFFFF4
#define PBDIR (volatile char *) 0xFFFFFFF5
#define CNTM (volatile int *) 0xFFFFFFD0
#define CTCON (volatile char *) 0xFFFFFFD8
#define CTSTAT (volatile char *) 0xFFFFFFD9
#define IVECT (volatile int *) (0x20)
interrupt void intserv();
unsigned char digit = 0;
                                         /* digit for display */
int main() {
 unsigned char sample = 0;
                                         /* Port B input sample */
  *PBDIR = 0xF0;
                                         /* Set Port B direction */
  *IVECT = (volatile int *) &intserv;
                                         /* Set interrupt vector */
 asm("MoveControl PSR,#0x40");
                                         /* CPU responds to IRQ */
                                         /* Display 0 */
  *PBOUT = 0x0;
  *CNTM = 100000000;
                            /* Initialize: 1-second timeout */
  *CTCON = 0x11;
                             /* Enable Timer interrupts and start */
 asm("BitClear #6, PSR"); /* Incrementing not allowed initially */
 while (1) {
    sample = *PBIN & 0x3;
                                    /* Sample PBIN, isolate E and D */
    if (sample == 0x1) asm("BitSet #6, PSR"); /* ISR will run */
   if (sample == 0x2) asm("BitClear #6, PSR"); /* ISR will not run */
 exit(0);
interrupt void intserv() {
 digit = (digit + 1)%10;  /* Increment digit */
tppoum digit */
  *PBOUT = digit << 4;
                            /* Update display */
  *CSTAT = 0x0;
                            /* Clear Timer status flags */
}
```

2.

(a) Direct-mapped: 2-bit **Block = A_{5-4}**, 2-bit **Word = A_{3-2}**; miss rate = 6/10.

Tag	Word 3	Word 2	Word 1	Word 0	_
01	[4C]	[48]	[44]	[40]	Block 0
00	[1C]	[18]	[14]	[10]	Block 1
00	[2C]	[28]	[24]	[20]	Block 2
					Block 3

(b) 2-way set-associative: 1-bit **Set = A_4**, 2-bit **Word = A_{3-2}**; miss rate = 7/10.

Tag	Word 3	Word 2	Word 1	Word 0	_
100	[8C]	[88]	[84]	[80]	Set 0
010	[4C]	[48]	[44]	[40]	Set 0
000	[1C]	[18]	[14]	[10]	Set 1
					Set 1

(c) Fully associative: 2-bit **Word = A_{3-2}**; miss rate = 4/10.

Tag	Word 3	Word 2	Word 1	Word 0
0010	[2C]	[28]	[24]	[20]
1000	[8C]	[88]	[84]	[80]
0001	[1C]	[18]	[14]	[10]
0100	[4C]	[48]	[44]	[40]

3.

Maximum I/O rate is $R_{I/O}/d_{I/O} = 1K$.

Polling:

(0.1*1K) $A_{poll-ready}$ + (0.9*1K) $A_{poll-not-ready}$ = 220K accesses total. $T_{ave-poll}$ = h_{poll} C + (1- h_{poll})M = 0.9 τ + 1 τ = 1.9 τ (per access). Polling cost = 220K * 1.9 τ = 418K τ .

Interrupts:

(0.1*1K) A_{int} = 50K accesses total. $T_{ave-int}$ = $h_{int}C$ + (1- h_{int})M = 0.8 τ + 2 τ = 2.8 τ (per access). Interrupt cost = 50K * 2.8 τ = 140K τ .

•

Interrupts are cheaper than polling by the factor of 418/140 = 2.99.

4.

 T_1 has the highest priority (1/40), followed by T_2 (1/60), followed by T_3 (1/120).

