مدارهای الکتریکی و الکترونیکی فصل سوم: تحلیل گره و مش

استاد درس: محمود ممتازپور ceit.aut.ac.ir/~momtazpour

فهرست مطالب

□ تحلیل گره و مش

تحليل مدار

- □ مدارها را می توان با روشهای خلاقانه مختلفی تحلیل کرد.
- □ ولی هر چه مدارها پیچیده تر می شوند، نیاز به یک روش ساختیافته برای اعمال قوانین KVL و KVL و قانون اهم به مدارها بیشتر حس می شود.
 - □ در روش تحلیل گره:
 - □ متغیرهای مجهول، ولتاژ گرههای مدار است.
 - □ برای هر گره مدار، معادله KCL نوشته میشود.
 - □ در روش تحلیل مش:
 - 🗖 متغیرهای مجهول، جریان مشهای مدار است.
 - □ برای هر مش مدار، معادله KVL نوشته میشود.

روش تحلیل گره

□ به غیر از گره مرجع (که ولتاژ آن صفر است)، به بقیه گرهها یک ولتاژ نسبت میدهیم.

- □ در این مثال، ۳ گره وجود دارد.
- □ ایده اصلی روش تحلیل گره: اگر ولتاژ گرهها مشخص شود، همه پارامترهای مدار بهدست خواهد آمد.

نحوه انتخاب مرجع

- □ انتخاب گره مرجع دلخواه است. این گره می تواند:
 - □ پایین ترین گره مدار باشد.
- □ گره زمین یا سر منفی منبع تغذیه باشد (اگر یک منبع وجود دارد).
- □ یک گره با بیشترین تعداد اتصال باشد (برای ساده کردن معادلات)

□ ولتاژ بقیه گرهها نسبت به گره مرجع سنجیده میشود.

اعمال KCL به گرهها (به غیر از گره مرجع)

□ معادله KCL گره اول با اعمال همزمان قانون اهم به مقاومتها

اعمال KCL به گرهها (به غیر از گره مرجع)

□ معادله KCL گره دوم با اعمال همزمان قانون اهم به مقاومتها

تحلیل گره

مثال: جریان i را در مدار زیر بیابید. \square

تحلیل گره و منابع جریان وابسته

□ مثال: توان تولیدی منبع وابسته را بهدست آورید.

راهنمایی: متغیر i_1 را با v_1 استفاده از رابطه آن با v_1 حذف کنید.)

منابع ولتاژ در روش تحلیل گره (مفهوم ابرگره)

- \Box چالش: در هنگام نوشتن معادله KCL برای گرههای ۲ و \Box جریان گذرنده از منبع ولتاژ چقدر است؟
 - □ برای اجتناب از یک متغیر مجهول دیگر برای جریان منبع ولتاژ، معادله KCL را برای ابرگره (Supernode) مینویسیم:

روش تحلیل گره با وجود ابرگره

- 2. معادله KCL را برای ابرگره شامل گرههای ۲ و ۳ بنویسید.
 - 3. معادله منبع ولتاژ درون ابرگرهرا نیز اضافه کنید.

مثال

را بیابید. میریان i_1 را بیابید. میریان میران از میران از میران میرا

روش تحلیل مش (جایگزین روش گره)

- □ مش: حلقهای که درونش حلقه دیگری وجود ندارد.
 - □ در روش مش:
 - □ به همه مشهای مدار یک جریان نسبت میدهیم.
 - □ برای همه مشها KVL مینویسیم.
 - □ مثال: مدار زیر چند مش دارد؟

روش تحلیل مش

نوشتن KVL برای مشها

تحلیل مش: مثال ۱

□ توان تولیدی منبع ۲ ولتی را تعیین کنید.

تحلیل مش: مثال ۲

ورید. i_3 و i_2 را بهدست آورید. i_4

منابع جریان در روش تحلیل مش (مفهوم ابرمش)

- □ چالش: در هنگام نوشتن معادله KVL برای مشهای ۱ و ۳، ولتاژ دو سر منبع جریان چقدر است؟
 - □ برای اجتناب از یک متغیر مجهول دیگر برای ولتاژ منبع جریان، معادله KVL را برای ابرمش (Supermesh) مینویسیم:

روش تحلیل مش با وجود ابرمش

- معادله KVL مش ۲ را بنویسید.
- معادله KVL را برای ابرمش شامل

مشهای ۱ و ۳ بنویسید.

تحلیل مش و منابع وابسته: مثال

□ جریانهای مش را بیابید.

تحلیل مش یا گره؟ کدام را انتخاب کنیم؟

- □ روشی که به تعداد معادلات کمتری منجر میشود.
 - □ یا روشی که با آن راحت تر هستید.
 - □ یا هر دو! (یکی برای چک کردن نتایج دیگری)

خلاصه مطالب

□ تحلیل گرہ

- مه گرههای مدار را بیابید. یکی را به عنوان مرجع انتخاب کنید و ... به آن ولتاژ صفر بدهید. بقیه گرهها را با متغیرهای v_2 v_1 و ... نامگذاری کنید.
 - 2. همه منابع ولتاژ (مستقل و وابسته) را اتصال کوتاه کنید.
 - 3. برای گرههای باقیمانده KCL بنویسید.
 - 4. در صورت لزوم برای منابع ولتاژ معادله بنویسید.
 - 5. در صورت لزوم برای منابع وابسته بر حسب ولتاژ گرهها معادله بنویسید.

خلاصه مطالب (ادامه)

- □ تحلیل مش
- ... همه مشهای مدار را بیابید و جریان آنها را با متغیرهای i_2 و ... نامگذاری کنید.
 - 2. همه منابع جریان (مستقل و وابسته) را مدار باز کنید.
 - 3. برای مشهای باقیمانده KVL بنویسید.
 - 4. در صورت لزوم برای منابع جریان معادله بنویسید.
 - 5. در صورت لزوم برای منابع وابسته بر حسب جریان مشها معادله بنویسید.

تمرین کلاسی ۱

. ولتاژ v_{x} را با استفاده از روش تحلیل گره بهدست آورید.

1. یافتن گرهها، انتخاب مرجع، نام گذاری ولتاژ گرهها

- 2. اتصال كوتاه كردن منابع ولتاژ
- 3. نوشتن KCL برای گرههای باقیمانده
 - 4. نوشتن معادله منابع ولتاژ
 - 5. نوشتن معادله منابع وابسته

تمرین کلاسی ۲

. ولتاژ v_{x} را با استفاده از روش تحلیل مش بهدست آورید.

- 1. یافتن مشها، نامگذاری جریان مشها
 - 2. مدار باز کردن منابع جریان
- 3. نوشتن KVL برای مشهای باقیمانده
 - 4. نوشتن معادله منابع جریان
 - 5. نوشتن معادله منابع وابسته