SI231 Matrix Analysis and Computations Linear Systems and LU Decomposition

Ziping Zhao

Spring Term 2022–2023

School of Information Science and Technology ShanghaiTech University, Shanghai, China

http://si231.sist.shanghaitech.edu.cn

Linear Systems

- direct methods for general linear systems
- direct methods for special (structured) linear systems
- iterative methods for linear systems
- other topics on linear systems

Main Results

• a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is said to have an LU decomposition/factorization if it can be factored as

$$\mathbf{A} = \mathbf{L}\mathbf{U},$$

where $\mathbf{L} \in \mathbb{R}^{n \times n}$ is lower triangular; $\mathbf{U} \in \mathbb{R}^{n \times n}$ is upper triangular

- does not always exist
- pivoting: there exists a permutation matrix $\mathbf{P} \in \mathbb{R}^{n \times n}$ such that $\mathbf{P}\mathbf{A} = \mathbf{L}\mathbf{U}$
- ullet LDL decomposition/factorization: if $\mathbf{A} \in \mathbb{S}^n$ has an LU decomposition, then $\mathbf{U} = \mathbf{D}\mathbf{L}^T$ where \mathbf{D} is diagonal
- Cholesky decomposition/factorization: if $\mathbf{A} \in \mathbb{S}^n$ is PD, it can always be factored as

$$\mathbf{A} = \mathbf{G}\mathbf{G}^T,$$

where G is lower triangular

The System of Linear Equations

Consider the system of linear equations (or linear system)

$$\mathbf{A}\mathbf{x} = \mathbf{b},$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$ are given, and $\mathbf{x} \in \mathbb{R}^n$ is the solution to the system.

- a linear inverse problem
- a system of nonlinear equations (or nonlinear system) $f(\mathbf{x}; \mathbf{A}) = \mathbf{b}$ can often be approximated by a linear system or solved via successive linear approximation
- solving system of linear (nonlinear) equations is closely related to linear (nonlinear) programming
- Rouché-Capelli theorem: The linear system has a solution if and only if $rank(\mathbf{A}) = rank([\mathbf{A} \mid \mathbf{b}])$. If there are solutions, they form an affine subspace of \mathbb{R}^n of dimension $n rank(\mathbf{A})$.
- Gauss elimination (GE), a.k.a. Gaussian elimination and row reduction, is an algorithm consisting of a sequence of operations on a matrix to get a row echelon form. This method can also be used to compute the rank of a matrix, the inverse of an invertible matrix, and the determinant of a square matrix.
- Cramer's rule (for square A)

The System of Linear Equations

Consider the system of linear equations (or linear system)

$$\mathbf{A}\mathbf{x} = \mathbf{b},$$

where $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $\mathbf{b} \in \mathbb{R}^n$ are given, and $\mathbf{x} \in \mathbb{R}^n$ is the solution to the system.

- a linear square system (or square systems of linear equations)
- A will be assumed to be nonsingular (unless specified)
- we consider the real case for convenience; extension to the complex case is simple
 - if A is real and b is complex
 - * get the real and complex part of the solution separately
 - if A is complex
 - * rewrite LU decomposition routine to use complex arithmetic (more complicated code, fewer operations)
 - * solve real and imaginary parts of matrix separately (utilizes same code, costs twice as many operations/storage space)

Solving the Linear System

Problem: compute the solution to Ax = b in a numerically efficient manner.

- the problem is easy if A^{-1} is known
 - but computing A^{-1} also costs computations...
 - do you know how to compute A^{-1} efficiently?
- here, A is assumed to be a general nonsingular matrix.
 - the problem may become easy in some special cases, e.g., diagonal A, lower triangular A, upper triangular A, orthogonal A, permutation matrices A, Toeplitz A, circulant A, sparse A (solving (large) sparse linear systems is an important topic).

Solving Some "Easy" Linear Systems

• diagonal matrices **A** $(a_{ij} = 0 \text{ if } i \neq j)$: n flops

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} = [b_1/a_{11}, \dots, b_n/a_{nn},]$$

- lower triangular matrices **A** $(a_{ij} = 0 \text{ if } i < j)$: n^2 flops with forward substitution
- upper triangular matrices \mathbf{A} ($a_{ij} = 0$ if i > j): n^2 flops with backward substitution
- orthogonal matrices $\mathbf{A}^{-1} = \mathbf{A}^T$
 - compute $\mathbf{x} = \mathbf{A}^T \mathbf{b}$ for general \mathbf{A} in $2n^2$ flops
 - less with structure, e.g., if $\mathbf{A} = \mathbf{I} 2\mathbf{a}\mathbf{a}^T$ with $\|\mathbf{a}\|^2 = 1$, we can compute $\mathbf{x} = \mathbf{A}^T\mathbf{b} = \mathbf{b} 2(\mathbf{a}^T\mathbf{b})\mathbf{a}$ in 4n flops
- permutation matrices $\mathbf{A}^{-1} = \mathbf{A}^T$ Example:

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \qquad \mathbf{A}^{-1} = \mathbf{A}^{T} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

compute $\mathbf{x} = \mathbf{A}^T \mathbf{b}$ in 0 flops

Direct Methods for General Linear Systems

LU Decomposition

LU decomposition: given $A \in \mathbb{R}^{n \times n}$, find two matrices $L, U \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{A} = \mathbf{L}\mathbf{U}$$
,

where $\mathbf{L} \in \mathbb{R}^{n \times n}$ is unit lower/left triangular (lower triangular with unit diagonal elements (i.e., $\ell_{ii} = 1$ for all i)), $\mathbf{U} \in \mathbb{R}^{n \times n}$ is upper/right triangular, and \mathbf{L} and \mathbf{U} are called the LU factors of \mathbf{A} . (sometimes also called LR decomposition)

a kind of triangular decomposition

Idea: Suppose that A has an LU decomposition. Then, solving Ax = b can be recast as two linear system problems:

- 1. solve Lz = b for z, and then
- 2. solve $\mathbf{U}\mathbf{x} = \mathbf{z}$ for \mathbf{x} .

Questions:

- 1. how to solve Lz = b, and then Ux = z?
- 2. how to perform A = LU? Does LU decomposition exist?

Forward Substitution

Example: a 3×3 lower triangular system $\mathbf{Lz} = \mathbf{b}$

$$\begin{bmatrix} \ell_{11} & 0 & 0 \\ \ell_{21} & \ell_{22} & 0 \\ \ell_{31} & \ell_{32} & \ell_{33} \end{bmatrix} \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

If $\ell_{11}, \ell_{22}, \ell_{33} \neq 0$, then z_1, z_2, z_3 can be solved by

$$z_1 = b_1/\ell_{11}$$

 $z_2 = (b_2 - \ell_{21}z_1)/\ell_{22}$
 $z_3 = (b_3 - \ell_{31}z_1 - \ell_{32}z_2)/\ell_{33}$

Forward Substitution

Forward substitution for solving Lz = b:

$$z_i = \left(b_i - \sum_{j=1}^{i-1} \ell_{ij} z_j\right) \bigg/ \ell_{ii}, \quad \text{for } i = 1, 2, \dots, n.$$

Forward substitution in MATLAB form:

```
function z= for_subs(L,b)
n= length(b);
z= zeros(n,1);
z(1)= b(1)/L(1,1);
for i=2:1:n
     z(i)= (b(i)-L(i,1:i-1)*z(1:i-1))/L(i,i);
end;
```

• complexity: $\mathcal{O}(n^2)$ (n^2 multiplications/divisions + $n^2 - n$ additions/subtractions)

Backward Substitution

Example: a 3×3 upper triangular system $\mathbf{U}\mathbf{x} = \mathbf{z}$

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} z_1 \\ z_2 \\ z_3 \end{bmatrix}.$$

If $u_{11}, u_{22}, u_{33} \neq 0$, then x_1, x_2, x_3 can be solved by, in sequence,

$$x_3 = z_3/u_{33}$$

 $x_2 = (z_2 - u_{23}x_3)/u_{22}$
 $x_1 = (z_1 - u_{12}x_2 - u_{13}x_3)/u_{11}$

Backward Substitution

Backward substitution for solving Ux = z:

$$x_i = \left(z_i - \sum_{j=i+1}^n u_{ij} x_j\right) / u_{ii}, \quad \text{for } i = n, n-1, \dots, 1.$$

Backward substitution in MATLAB form:

```
function x= back_subs(U,z)
n= length(z);
x= zeros(n,1);
x(n)= z(n)/U(n,n);
for i= n-1:-1:1,
     x(i)= ( z(i)- U(i,i+1:n)*x(i+1:n) )/U(i,i);
end;
```

• complexity: $\mathcal{O}(n^2)$ (n^2 multiplications/divisions + n^2-n additions/subtractions)

Gauss Transformations: the Key Building Block for LU

Observation: given $\mathbf{x} \in \mathbb{R}^n$ that has $x_k \neq 0$, $1 \leq k \leq n$,

$$\begin{bmatrix} 1 & & & & \\ & \ddots & & \\ & & 1 & \\ & & -\frac{x_{k+1}}{x_k} & 1 \\ & \vdots & & \ddots & \\ & & -\frac{x_n}{x_k} & & & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_k \\ x_{k+1} \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 \\ \vdots \\ x_k \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$

The above M also satisfies

$$\mathbf{M}\mathbf{y} = \mathbf{y}$$
, for any $\mathbf{y} = [y_1, \dots, y_{k-1}, 0, \dots, 0]^T$, $y_i \in \mathbb{R}$.

Characterization of a Gauss transformation M (an outer-product form):

$$\mathbf{M} = \mathbf{I} - \boldsymbol{\tau} \mathbf{e}_k^T, \qquad \boldsymbol{\tau} = [0, \dots, 0, x_{k+1}/x_k, \dots, x_n/x_k]^T.$$

where τ is called Gauss vector with $x_{k+1}/x_k, \ldots, x_n/x_k$ called multipliers.

Finding ${\bf U}$ by Gauss Elimination

Problem: find Gauss transformations $\mathbf{M}_1, \dots, \mathbf{M}_{n-1} \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{M}_{n-1}\cdots\mathbf{M}_2\mathbf{M}_1\mathbf{A}=\mathbf{U},\quad \mathbf{U}$$
 being upper triangular.

Step 1: choose \mathbf{M}_1 such that $\mathbf{M}_1\mathbf{a}_1=[\ a_{11},0,\ldots,0\]^T$

• if $a_{11} \neq 0$, then we can choose

$$\mathbf{M}_1 = \mathbf{I} - \boldsymbol{\tau}^{(1)} \mathbf{e}_1^T, \qquad \boldsymbol{\tau}^{(1)} = [0, a_{21}/a_{11}, \dots, a_{n1}/a_{11}]^T.$$

• result:

$$\mathbf{M}_{1}\mathbf{A} = \mathbf{A} - \boldsymbol{\tau}^{(1)}\mathbf{e}_{1}^{T}\mathbf{A} = \begin{bmatrix} a_{11} & \times & \dots & \times \\ 0 & \times & \dots & \times \\ \vdots & \vdots & & \vdots \\ 0 & \times & \dots & \times \end{bmatrix}$$

Finding U by Gauss Elimination

Step 2: let $\mathbf{A}^{(1)} = \mathbf{M}_1 \mathbf{A}$. Choose \mathbf{M}_2 such that $\mathbf{M}_2 \mathbf{a}_2^{(1)} = [\ a_{12}^{(1)}, a_{22}^{(1)}, 0, \dots, 0\]^T$.

• if $a_{22}^{(1)} \neq 0$, then we can choose

$$\mathbf{M}_2 = \mathbf{I} - \boldsymbol{\tau}^{(2)} \mathbf{e}_2^T, \qquad \boldsymbol{\tau}^{(2)} = [0, 0, a_{32}^{(1)} / a_{22}^{(1)}, \dots, a_{n,2}^{(1)} / a_{22}^{(1)}]^T.$$

• result:

$$\mathbf{M}_{2}\mathbf{A}^{(1)} = \mathbf{A}^{(1)} - \boldsymbol{\tau}^{(2)}\mathbf{e}_{2}^{T}\mathbf{A}^{(1)} = \begin{bmatrix} a_{11}^{(1)} & a_{12}^{(1)} & \times & \dots & \times \\ 0 & a_{22}^{(1)} & \times & \dots & \times \\ \vdots & 0 & \times & & \times \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \times & \dots & \times \end{bmatrix}$$

Finding U by Gauss Elimination

Let $\mathbf{A}^{(k)} = \mathbf{M}_k \mathbf{A}^{(k-1)}$, $\mathbf{A}^{(0)} = \mathbf{A}$. Note $\mathbf{A}^{(k)} = \mathbf{M}_k \cdots \mathbf{M}_2 \mathbf{M}_1 \mathbf{A}$.

Step k: Choose \mathbf{M}_k such that $\mathbf{M}_k \mathbf{a}_k^{(k-1)} = [\ a_{1k}^{(k-1)}, \dots, a_{kk}^{(k-1)}, 0, \dots, 0 \]^T$.

• if $a_{kk}^{(k-1)} \neq 0$, then

$$\mathbf{M}_k = \mathbf{I} - \boldsymbol{\tau}^{(k)} \mathbf{e}_k^T, \qquad \boldsymbol{\tau}^{(k)} = [0, \dots, 0, a_{k+1,k}^{(k-1)} / a_{kk}^{(k-1)}, \dots, a_{n,k}^{(k-1)} / a_{kk}^{(k-1)}]^T,$$

• result:

$$\mathbf{A}^{(k)} = \mathbf{M}_{k} \mathbf{A}^{(k-1)} = \mathbf{A}^{(k-1)} - \boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T} \mathbf{A}^{(k-1)} = \begin{vmatrix} a_{11}^{(k-1)} & \cdots & a_{1k}^{(k-1)} & \times & \cdots & \times \\ 0 & \cdots & \vdots & \vdots & \vdots & \vdots \\ \vdots & & a_{kk}^{(k-1)} & \vdots & \vdots & \vdots \\ \vdots & & & 0 & \times & \times \\ \vdots & & & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \times & \cdots & \times \end{vmatrix}$$

 $- \mathbf{A}^{(n-1)} = \mathbf{U}$ is upper triangular

Where is L?

We have seen that under the assumption of $a_{kk}^{(k-1)} \neq 0$ for all k,

$$\mathbf{U} = \mathbf{M}_{n-1} \cdots \mathbf{M}_2 \mathbf{M}_1 \mathbf{A}$$
 is upper triangular.

But where is L?

Property 1. Let $A, B \in \mathbb{R}^{n \times n}$ be lower triangular. Then, AB is lower triangular. Also, if A, B have unit diagonal entries, then AB has unit diagonal entries.

Property 2. If $\mathbf{A} \in \mathbb{R}^{n \times n}$ is lower triangular, then $\det(\mathbf{A}) = \prod_{i=1}^{n} a_{ii}$.

Property 3. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be nonsingular lower triangular. Then, \mathbf{A}^{-1} is lower triangular with $[\mathbf{A}^{-1}]_{ii} = 1/a_{ii}$.

Suppose that every \mathbf{M}_k is invertible. Then,

$$\mathbf{L} = \mathbf{M}_1^{-1} \mathbf{M}_2^{-1} \cdots \mathbf{M}_{n-1}^{-1}$$

satisfies A = LU, and is lower triangular with unit diagonal entries.

A Naive Implementation of LU (Don't Use It)

```
\begin{array}{lll} & \text{function } [\text{L},\text{U}] = \text{my\_naive\_lu}(\text{A}) \\ & \text{n= size}(\text{A},1); \\ & \text{L= eye}(\text{n}); \text{ t= zeros}(\text{n},1); \text{ U= A}; \\ & \text{for } \text{k=1:1:n-1}, \\ & \text{rows= k+1:n}; \\ & \text{t}(\text{rows}) = \text{U}(\text{rows},\text{k})/\text{U}(\text{k},\text{k}); \\ & \text{M= eye}(\text{n}); \text{ M}(\text{rows},\text{k}) = -\text{t}(\text{rows}); \\ & \text{U= M*U;} & \% \text{ compute } \mathbf{A}^{(k)} = \mathbf{M}_k \mathbf{A}^{(k-1)} \\ & \text{L= L*inv}(\text{M}); & \% \text{ to eventually obtain } \mathbf{L} = \mathbf{M}_1^{-1} \mathbf{M}_2^{-1} \cdots \mathbf{M}_{n-1}^{-1} \\ & \text{end;} \end{array}
```

Weaknesses:

- the above code treats each $\mathbf{A}^{(k)} = \mathbf{M}_k \mathbf{A}^{(k-1)}$ as a general matrix multiplication process, which takes $\mathcal{O}(n^3)$ flops. It does not utilize structures of \mathbf{M}_k .
- (more serious) to compute L, the above code calls inverse n-1 times. If the problem is to solve Ax = b, then why not just call inverse once for A?

Computing L

Fact: $\mathbf{M}_k^{-1} = \mathbf{I} + \boldsymbol{\tau}^{(k)} \mathbf{e}_k^T$.

Verification by definition: by noting $[\boldsymbol{\tau}^{(k)}]_k = 0$,

$$(\mathbf{I} + \boldsymbol{\tau}^{(k)} \mathbf{e}_k^T) \mathbf{M}_k = (\mathbf{I} + \boldsymbol{\tau}^{(k)} \mathbf{e}_k^T) (\mathbf{I} - \boldsymbol{\tau}^{(k)} \mathbf{e}_k^T)$$

$$= \mathbf{I} + \boldsymbol{\tau}^{(k)} \mathbf{e}_k^T - \boldsymbol{\tau}^{(k)} \mathbf{e}_k^T + \boldsymbol{\tau}^{(k)} \underbrace{\mathbf{e}_k^T \boldsymbol{\tau}^{(k)}}_{=0} \mathbf{e}_k^T = \mathbf{I}.$$

can also be verified by matrix inversion lemma (cf. Basic Concepts)

By the same spirit $(\mathbf{e}_j^T \boldsymbol{\tau}^{(k)} = 0 \text{ for } j \leq k)$, it can be verified that

$$\mathbf{L} = \mathbf{M}_{1}^{-1} \mathbf{M}_{2}^{-1} \dots \mathbf{M}_{n-1}^{-1} = (\mathbf{I} + \boldsymbol{\tau}^{(1)} \mathbf{e}_{1}^{T}) (\mathbf{I} + \boldsymbol{\tau}^{(2)} \mathbf{e}_{2}^{T}) \dots (\mathbf{I} + \boldsymbol{\tau}^{(n-1)} \mathbf{e}_{(n-1)}^{T})$$

$$= \mathbf{I} + \boldsymbol{\tau}^{(1)} \mathbf{e}_{1}^{T} + \boldsymbol{\tau}^{(2)} \mathbf{e}_{2}^{T} \dots + \boldsymbol{\tau}^{(n-1)} \mathbf{e}_{(n-1)}^{T} = \mathbf{I} + \sum_{k=1}^{n-1} \boldsymbol{\tau}^{(k)} \mathbf{e}_{k}^{T}$$

A More Mature LU Code (Still Not the LU inside MATLAB)

• complexity: $\mathcal{O}(2n^3/3)$

$$\sum_{k=1}^{n-1} \left(\sum_{\text{rows}=k+1}^{n} 1 + 2 \sum_{\text{rows}=k+1}^{n} \sum_{\text{rows}=k+1}^{n} 1 \right) = \sum_{k=1}^{n-1} \left(n - k + 2(n-k)^2 \right) = 2n^3/3 + \mathcal{O}(n^2)$$

ullet works as long as $a_{kk}^{(k-1)}$ —the so-called **pivots**—are all nonzero

Existence and Uniqueness of LU Decomposition

Theorem 1. A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has a unique LU decomposition if every leading principal submatrix $\mathbf{A}_{\{1,...,k\}}$ satisfies

$$\det(\mathbf{A}_{\{1,\ldots,k\}}) \neq 0,$$

for $k = 1, 2, \ldots, n-1$, i.e., the first n-1 leading principal minors are nonzero.

- the proof is essentially about when $a_{kk}^{(k-1)} \neq 0$.
- see Theorem 3.2.1 in [Golub-van-Loan'13]

Existence and Uniqueness of LU Decomposition

Theorem 2. If **A** is nonsingular, then it admits a unique LU decomposition if and only if all its leading principal minors are nonzero.

Theorem 3. If A is singular of rank k, then it admits a unique LU decomposition if the first k leading principal minors are nonzero.

• see Section 3.5 in [Horn-Johnson'12]

For the existence and uniqueness of LU decomposition of a general matrix, refer to: C. R. Johnson and P. Okunev, *Necessary and Sufficient Conditions for Existence of the LU Factorization of an Arbitrary Matrix*, 1997. Available online at https://arxiv.org/pdf/math/0506382v1.pdf.

Remark:

- A nonsingular matrix can have no or a unique LU decomposition.
- ullet A singular matrix can have no, a unique, or infinitely many LU decompositions. E.x.p., for the zero matrix any unit lower triangular matrix can be used as ${f L}$ in an LU.

Doolittle Algorithm for LU Decomposition

- ullet Doolittle algorithm provides an alternative way to factor ${f A}$ into an LU decomposition without going through the hassle of Gauss elimination.
- ullet For a general matrix ${f A}$, we assume that an LU decomposition exists, and write the form of ${f L}$ and ${f U}$ explicitly.

the form of **L** and **U** explicitly.
$$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \dots & a_{3n} \\ \vdots & \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & a_{n3} & \dots & a_{nn} \end{bmatrix} = \begin{bmatrix} 1 & & & & & \\ \ell_{21} & 1 & & & & \\ \ell_{31} & \ell_{32} & 1 & & & \\ \ell_{n1} & \ell_{n2} & \ell_{n3} & \dots & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} & \dots & u_{1n} \\ u_{22} & u_{23} & \dots & u_{2n} \\ u_{33} & \dots & u_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ u_{nn} \end{bmatrix}$$

ullet We then systematically solve for the entries in ${f L}$ and ${f U}$ from the equations that result from the multiplications necessary for ${f A}={f L}{f U}.$

for
$$k = 1, 2, ..., n$$

the
$$k$$
th row $u_{kj}=a_{kj}-\sum_{i=1}^{k-1}\ell_{ki}u_{ij},$ for $j=k,k+1,\ldots,n.$

the
$$k$$
th column $\ell_{ik} = \left(a_{ik} - \sum_{j=1}^{k-1} \ell_{ij} u_{jk}\right) / u_{kk},$ for $i = k+1, k+2, \ldots, n$.

Discussion

- the LU algorithm described above requires nonzero pivots, $a_{kk}^{(k-1)} \neq 0$ for all k.
- \bullet Gauss elimination is known to be numerically unstable when a pivot is close to zero, i.e., $\left|a_{kk}^{(k-1)}\right|\ll 1$
- examine the main step in Gauss elimination (in scalar form)

$$a_{ij}^{(k)} = [\mathbf{M}_k]_{ik} a_{kj}^{(k-1)} + a_{ij}^{(k-1)}$$

any roundoff error in the computation of $a_{kj}^{(k-1)}$ is amplified by multiplier $[\mathbf{M}_k]_{ik}$

- pivoting: to ensure that the multipliers are small, at each Gauss elimination step, interchange the rows of $\mathbf{A}^{(k)}$ to obtain better pivots.
 - when you call lu(A) or A\b in MATLAB, it always perform pivoting

LU Decomposition with Partial Pivoting

• pivoting: when eliminating elements in $\mathbf{a}_k^{(k-1)}$, find an integer $p, k \leq p \leq n$, s.t.

$$|a_{pk}^{(k-1)}| = \max_{k \le i \le n} |a_{ik}^{(k-1)}|.$$

and then interchange rows p and k of $\mathbf{A}^{(k-1)}$.

- ullet requires $\mathcal{O}(n^2)$ comparisons to determine the appropriate row interchanges
- $[\mathbf{M}_k]_{ik} = -a_{ik}^{(k-1)}/a_{kk}^{(k-1)}$, then $|[\mathbf{M}_k]_{ik}| \leq 1$ for $k = 1, \ldots, n-1$ and $i = k+1, \ldots, n$.

LU decomposition with partial pivoting: given $\mathbf{A} \in \mathbb{R}^{n \times n}$, find three matrices $\mathbf{L}, \mathbf{U}, \mathbf{P} \in \mathbb{R}^{n \times n}$ such that

$$PA = LU$$

where

 $\mathbf{P} \in \mathbb{R}^{n \times n}$ is a permutation matrix

 $\mathbf{L} \in \mathbb{R}^{n \times n}$ is unit lower triangular with $|\ell_{ij}| \leq 1$;

 $\mathbf{U} \in \mathbb{R}^{n \times n}$ is upper triangular.

Questions: how to perform PA = LU?

Finding U by Gauss Elimination with Partial Pivoting

Problem: find interchange permutations (a.k.a. elementary permutations) $\Pi_1, \Pi_2, \ldots, \Pi_{n-1} \in \mathbb{R}^{n \times n}$ and Gauss transformations $M_1, M_2, \ldots, M_{n-1} \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{M}_{n-1}\mathbf{\Pi}_{n-1}\cdots\mathbf{M}_2\mathbf{\Pi}_2\mathbf{M}_1\mathbf{\Pi}_1\mathbf{A}=\mathbf{U},\quad \mathbf{U}$$
 being upper triangular,

and no multipliers in \mathbf{M}_k for $k=1,\ldots,n-1$ is larger than one in absolute value.

Where is P and Where is L?

Fact: since each permutation matrix Π_k at most interchanges row k with row p, where p > k, there is no difference between applying all of the row interchanges "up front" and applying Π_k immediately before applying M_k for each k. It follows that

$$\tilde{\mathbf{M}}_{n-1}\cdots \tilde{\mathbf{M}}_2 \tilde{\mathbf{M}}_1 \mathbf{\Pi}_{n-1}\cdots \mathbf{\Pi}_2 \mathbf{\Pi}_1 \mathbf{A} = \mathbf{U}, \quad \mathbf{U}$$
 being upper triangular, (*)

where $\tilde{\mathbf{M}}_k$'s are "new" Gauss transformations related to \mathbf{M}_k .

From (*), we have

- ullet ${f P}={f \Pi}_{n-1}\cdots{f \Pi}_2{f \Pi}_1$ (the product of all interchange permutation matrices)
- ullet $\mathbf{L} = ilde{\mathbf{M}}_1^{-1} ilde{\mathbf{M}}_2^{-1} \cdots ilde{\mathbf{M}}_{n-1}^{-1}$ where $(\mathbf{\Pi}_k$ is symmetric and hence involutory)

$$\begin{split} \tilde{\mathbf{M}}_k &= (\mathbf{\Pi}_{n-1} \cdots \mathbf{\Pi}_{k+1}) \mathbf{M}_k (\mathbf{\Pi}_{k+1} \cdots \mathbf{\Pi}_{n-1}) \\ &= (\mathbf{\Pi}_{n-1} \cdots \mathbf{\Pi}_{k+1}) (\mathbf{I} - \boldsymbol{\tau}^{(k)} \mathbf{e}_k^T) (\mathbf{\Pi}_{k+1} \cdots \mathbf{\Pi}_{n-1}) = \mathbf{I} - \tilde{\boldsymbol{\tau}}^{(k)} \mathbf{e}_k^T \end{split}$$

which is unit lower triagular with $\tilde{\boldsymbol{\tau}}^{(k)} = (\boldsymbol{\Pi}_{n-1} \cdots \boldsymbol{\Pi}_{k+1}) \boldsymbol{\tau}^{(k)}$ and hence $\tilde{\boldsymbol{\mathbf{M}}}_k^{-1} = \mathbf{I} + \tilde{\boldsymbol{\tau}}^{(k)} \mathbf{e}_k^T$. Then, $\mathbf{L} = \tilde{\mathbf{M}}_1^{-1} \tilde{\mathbf{M}}_2^{-1} \cdots \tilde{\mathbf{M}}_{n-1}^{-1} = \mathbf{I} + \sum_{k=1}^{n-1} \tilde{\boldsymbol{\tau}}^{(k)} \mathbf{e}_k^T$.

Where is P and Where is L?

Proof: moving Π_k to the far-right-hand side

$$\begin{split} \mathbf{U} &= \mathbf{M}_{n-1} \mathbf{\Pi}_{n-1} \mathbf{M}_{n-2} \mathbf{\Pi}_{n-2} \cdots \mathbf{\Pi}_{3} \mathbf{M}_{2} \mathbf{\Pi}_{2} \mathbf{M}_{1} \mathbf{\Pi}_{1} \mathbf{A} \\ &= \mathbf{M}_{n-1} \mathbf{\Pi}_{n-1} \mathbf{M}_{n-2} (\mathbf{\Pi}_{n-1} \mathbf{\Pi}_{n-1}) \mathbf{\Pi}_{n-2} \cdots \mathbf{\Pi}_{3} \mathbf{M}_{2} (\mathbf{\Pi}_{3} \mathbf{\Pi}_{3}) \mathbf{\Pi}_{2} \mathbf{M}_{1} (\mathbf{\Pi}_{2} \mathbf{\Pi}_{2}) \mathbf{\Pi}_{1} \mathbf{A} \\ &= \mathbf{M}_{n-1} (\mathbf{\Pi}_{n-1} \mathbf{M}_{n-2} \mathbf{\Pi}_{n-1}) \mathbf{\Pi}_{n-1} (\mathbf{\Pi}_{n-2} \cdots \mathbf{M}_{2} \mathbf{\Pi}_{3}) \mathbf{\Pi}_{3} (\mathbf{\Pi}_{2} \mathbf{M}_{1} \mathbf{\Pi}_{2}) \mathbf{\Pi}_{2} \mathbf{\Pi}_{1} \mathbf{A} \\ &= \mathbf{M}_{n-1} (\mathbf{\Pi}_{n-1} \mathbf{M}_{n-2} \mathbf{\Pi}_{n-1}) \mathbf{\Pi}_{n-1} (\mathbf{\Pi}_{n-2} \cdots \mathbf{M}_{2} \mathbf{\Pi}_{3}) (\mathbf{\Pi}_{4} \mathbf{\Pi}_{4}) \mathbf{\Pi}_{3} (\mathbf{\Pi}_{2} \mathbf{M}_{1} \mathbf{\Pi}_{2}) (\mathbf{\Pi}_{3} \mathbf{\Pi}_{3}) \mathbf{\Pi}_{2} \mathbf{\Pi}_{1} \mathbf{A} \\ &= \mathbf{M}_{n-1} (\mathbf{\Pi}_{n-1} \mathbf{M}_{n-2} \mathbf{\Pi}_{n-1}) (\mathbf{\Pi}_{n-1} \mathbf{\Pi}_{n-2} \cdots \mathbf{M}_{2} \mathbf{\Pi}_{3} \mathbf{\Pi}_{4}) \mathbf{\Pi}_{4} (\mathbf{\Pi}_{3} \mathbf{\Pi}_{2} \mathbf{M}_{1} \mathbf{\Pi}_{2} \mathbf{\Pi}_{3}) \mathbf{\Pi}_{3} \mathbf{\Pi}_{2} \mathbf{\Pi}_{1} \mathbf{A} \\ &= \cdots \\ &= \underbrace{\mathbf{M}_{n-1}}_{\tilde{\mathbf{M}}_{n-1}} \underbrace{(\mathbf{\Pi}_{n-1} \mathbf{M}_{n-2} \mathbf{\Pi}_{n-1})}_{\tilde{\mathbf{M}}_{n-2}} \underbrace{(\mathbf{\Pi}_{n-1} \mathbf{\Pi}_{n-2} \cdots \mathbf{\Pi}_{3} \mathbf{\Pi}_{2} \mathbf{M}_{1} \mathbf{\Pi}_{2} \mathbf{\Pi}_{3} \cdots \mathbf{\Pi}_{n-1})}_{\tilde{\mathbf{M}}_{n-1}} \underbrace{(\mathbf{\Pi}_{n-1} \mathbf{M}_{n-2} \mathbf{\Pi}_{n-1})}_{\tilde{\mathbf{M}}_{n-2}} \underbrace{(\mathbf{\Pi}_{n-1} \mathbf{\Pi}_{n-2} \cdots \mathbf{\Pi}_{3} \mathbf{\Pi}_{2} \mathbf{M}_{1} \mathbf{\Pi}_{2} \mathbf{\Pi}_{3} \cdots \mathbf{\Pi}_{n-1})}_{\tilde{\mathbf{M}}_{n-1}} \mathbf{\Pi}_{n-1} \cdots \mathbf{\Pi}_{3} \mathbf{\Pi}_{2} \mathbf{M}_{1} \mathbf{\Pi}_{2} \mathbf{\Pi}_{3} \cdots \mathbf{\Pi}_{n-1})}_{\tilde{\mathbf{M}}_{1}} \underbrace{(\mathbf{\Pi}_{n-1} \mathbf{\Pi}_{n-2} \cdots \mathbf{\Pi}_{3} \mathbf{\Pi}_{2} \mathbf{\Pi}_{1} \mathbf{\Pi}_{2} \mathbf{\Pi}_{3} \cdots \mathbf{\Pi}_{n-1})}_{\tilde{\mathbf{M}}_{1}} \mathbf{\Pi}_{1}}_{\mathbf{M}_{1}} \mathbf{\Pi}_{2} \mathbf{\Pi}_{2} \mathbf{\Pi}_{3} \cdots \mathbf{\Pi}_{n-1})} \underbrace{(\mathbf{\Pi}_{n-1} \mathbf{\Pi}_{n-2} \cdots \mathbf{\Pi}_{3} \mathbf{\Pi}_{2} \mathbf{\Pi}_{1} \mathbf{\Pi}_{2} \mathbf{\Pi}_{3} \cdots \mathbf{\Pi}_{n-1})}_{\tilde{\mathbf{M}}_{1}} \mathbf{\Pi}_{1}}_{\mathbf{M}_{1}} \mathbf{\Pi}_{2} \mathbf{\Pi}_{2} \mathbf{\Pi}_{2} \cdots \mathbf{\Pi}_{n-1})}_{\tilde{\mathbf{M}}_{1}} \mathbf{\Pi}_{1}}_{\mathbf{M}_{1}} \mathbf{\Pi}_{2} \mathbf{\Pi}_{2} \mathbf{\Pi}_{1} \mathbf{\Pi}_{1} \mathbf{\Pi}_{1}}_{\mathbf{M}_{1}} \mathbf{\Pi}_{1}}_{\mathbf{M}_{1}} \mathbf{\Pi}_{1} \mathbf{\Pi}_{1}}_{\mathbf{M}_{1}} \mathbf{\Pi}_{1}}_{\mathbf{M}_{1}} \mathbf{\Pi}_{1}}_{\mathbf{M}_{1}$$

The LU with Partial Pivoting Code

```
function [P,L,U] = my_lu_pivoting(A)
n = size(A,1);
P = eye(n); L = eye(n); t = zeros(n,1); U = A;
for k=1:1:n-1,
     P(k,:) \longleftrightarrow P(p,:); % to form the permutation matrix
     U(k,k:n) \longleftrightarrow U(p,k:n); % interchange rows in A^{(k)}
     L(k,1:k-1) \longleftrightarrow L(p,1:k-1); % interchange the mutipliers
     rows= k+1:n:
     t(rows) = U(rows,k)/U(k,k);
     U(rows,rows) = U(rows,rows) - t(rows)*U(k,rows);
     U(rows,k) = 0;
     L(rows,k)= t(rows);
end;
```

- complexity: $\mathcal{O}(2n^3/3)$
- Reiteration: If row k and p are interchanged to create the kth pivot, the multipliers $[\ell_{k1}, \ldots, \ell_{k,k-1}]$ and $[\ell_{p1}, \ldots, \ell_{p,k-1}]$ trade places in the formation of \mathbf{L} .

Discussion

Theorem 4. Any matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ has an LU decomposition with partial pivoting.

- ullet procedures for solving a linear system $\mathbf{A}\mathbf{x}=\mathbf{b}$ by LU dec. with partial pivoting
 - LU decomposition: decompose **A** as $\mathbf{PA} = \mathbf{LU} \ (2n^3/3 \text{ flops})$.
 - Permutation: Pb (0 flops).
 - Forward substitution: solve $\mathbf{Lz} = \mathbf{Pb}$ (n^2 flops).
 - Backward substitution: solve $\mathbf{U}\mathbf{x} = \mathbf{z}$ (n^2 flops).

complexity: $\mathcal{O}(2n^3/3)$

LU Decomposition with Complete Pivoting

• complete/full pivoting: when eliminating elements in $\mathbf{a}_k^{(k-1)}$, find integers p,q, $k \leq p,q \leq n$, s.t.

$$|a_{pq}^{(k-1)}| = \max_{k \le i, j \le n} |a_{ij}^{(k-1)}|.$$

and then interchange rows p and k and then columns q and k of $\mathbf{A}^{(k-1)}$.

- ullet requires $\mathcal{O}(n^3)$ comparisons to determine the row and column interchanges
- $[\mathbf{M}_k]_{ik} = -a_{ik}^{(k-1)}/a_{kk}^{(k-1)}$, then $|[\mathbf{M}_k]_{ik}| \leq 1$ for $k = 1, \ldots, n-1$ and $i = k+1, \ldots, n$.

LU decomposition with complete pivoting: given $\mathbf{A} \in \mathbb{R}^{n \times n}$, find matrices $\mathbf{L}, \mathbf{U}, \mathbf{P}, \mathbf{Q} \in \mathbb{R}^{n \times n}$ such that

$$PAQ = LU$$

where

 $\mathbf{P}, \mathbf{Q} \in \mathbb{R}^{n \times n}$ is a permutation matrix

 $\mathbf{L} \in \mathbb{R}^{n \times n}$ is unit lower triangular with $|\ell_{ij}| \leq 1$;

 $\mathbf{U} \in \mathbb{R}^{n \times n}$ is upper triangular.

Questions: how to perform PAQ = LU?

LU Decomposition with Complete Pivoting

Finding U by Gauss elimination with complete pivoting

Problem: find interchange permutations $\Pi_1, \Pi_2, \dots, \Pi_{n-1}, \Gamma_1, \Gamma_2, \dots, \Gamma_{n-1} \in \mathbb{R}^{n \times n}$ and Gauss transformations $\mathbf{M}_1, \mathbf{M}_2, \dots, \mathbf{M}_{n-1} \in \mathbb{R}^{n \times n}$ such that

 $\mathbf{M}_{n-1}\mathbf{\Pi}_{n-1}\cdots\mathbf{M}_2\mathbf{\Pi}_2\mathbf{M}_1\mathbf{\Pi}_1\mathbf{A}\mathbf{\Gamma}_1\mathbf{\Gamma}_2\cdots\mathbf{\Gamma}_{n-1}=\mathbf{U},\quad \mathbf{U}$ being upper triangular,

and no multipliers in \mathbf{M}_k for $k=1,\ldots,n-1$ is larger than one in absolute value.

Where is P, Q, and L?

- L, P is defined as the same with LU factorization with partial pivotings
- $\mathbf{Q} = \mathbf{\Gamma}_1 \mathbf{\Gamma}_2 \cdots \mathbf{\Gamma}_{n-1}$
- LU decomposition with complete pivoting PAQ = LU (more stable, higher cost)

Discussion

- ullet besides solving Ax = b, LU decomposition (with pivoting) can also be used to
 - compute A^{-1} : let $B = A^{-1}$.

$$\mathbf{AB} = \mathbf{I} \iff \mathbf{Ab}_i = \mathbf{e}_i, \ i = 1, \dots, n \text{ (i.e., solve } n \text{ linear systems)}.$$

- compute $\det(\mathbf{A})$: $\det(\mathbf{A}) = \det(\mathbf{L})\det(\mathbf{U}) = \prod_{i=1}^n u_{ii}$ (cf. Property 2).
- I have learned solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ by reducing the augmented matrix $[\mathbf{A} \mid \mathbf{b}]$ to a row echelon form based on Gauss elimination followed by backward substitution in "elementary linear algebra". Why LU decomposition?
 - reducing the augmented matrix $[\mathbf{A} \mid \mathbf{b}]$ to a row echelon form: $\mathcal{O}(n^3)$
 - LU decomposition PA = LU: $\mathcal{O}(n^3)$
 - what if you have a series of linear systems, i.e., $\mathbf{A}\mathbf{x}_i = \mathbf{b}_i$ for $i = 1, \dots, N$?

Properties of LU

Given the LU factorization A = LU,

- $rank(\mathbf{A}) = number of pivots (pivots cannot be 0) = number of nonzero rows of <math>\mathbf{U}$
 - for nonsingular \mathbf{A} , all $u_{ii} \neq 0$
- ullet the basis of $\mathcal{R}(\mathbf{A})$ is the pivot columns of \mathbf{A}
- rank(A) = number of pivot columns of A = number of pivot rows of A
- nullity(A) = number of non-pivot columns of A
- $\mathcal{R}(\mathbf{A})$ is a subspace of the $\mathcal{R}(\mathbf{L})$
- ullet the basis of $\mathcal{R}(\mathbf{A})$ is the columns of \mathbf{L} corresponding to the pivot rows of \mathbf{U}

Via the use of Gaussian elimination or LU factorization applied to $\mathbf{A} \in \mathbb{R}^{m \times n}$, one can determine the dimensions of all of the four subspaces associated with \mathbf{A} and basis vectors for them. We will continue a similar discussion on SVD Topic.

LDM Decomposition

LDM decomposition: given $\mathbf{A} \in \mathbb{R}^{n \times n}$, find matrices $\mathbf{L}, \mathbf{D}, \mathbf{M} \in \mathbb{R}^{n \times n}$ such that

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{M}^T$$
,

where

L, M is unit lower triangular,

$$\mathbf{D} = \mathrm{Diag}(d_1, \dots, d_n).$$

- a different way of writing the LU decomposition (if it exists)
- ullet For nonsingular ${f A}$, if ${f A}={f L}{f U}$ is the LU decomposition, then the same ${f L}$,

$$\mathbf{D} = \mathrm{Diag}(u_{11}, \dots, u_{nn}), \qquad \mathbf{M}^T = \mathbf{D}^{-1}\mathbf{U},$$

form the LDM decomposition.

- ullet ${f D}$ is the matrix of pivots. ${f M}^T$ is a row scaling of ${f U}$.
- ullet Therefore, for nonsingular $oldsymbol{A}$, the existence of LDM decomposition follows that of LU and hence the LDM decomposition is unique.
- ullet also usually referred to as the LDU decomposition with ${f U}={f M}^T$

Solving LDM Decomposition

Notation: $A_{i:j,k:l}$ denotes a submatrix of A obtained by keeping $i, i+1, \ldots, j$ rows and $k, k+1, \ldots, l$ columns of A.

Idea: examine $A = LDM^T$ column by column:

$$\mathbf{a}_j = \mathbf{A}\mathbf{e}_j = \mathbf{L}\mathbf{v},\tag{*}$$

where $1 \leq j \leq n$,

$$\mathbf{v} = \mathbf{D}\mathbf{M}^T \mathbf{e}_j$$
.

Observations:

1. (\star) can be expanded as

$$\begin{bmatrix} \mathbf{A}_{1:j,j} \\ \mathbf{A}_{j+1:n,j} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{1:j,1:j} & \mathbf{0} \\ \mathbf{L}_{j+1:n,1:j} & \mathbf{L}_{j+1:n,j+1:n} \end{bmatrix} \begin{bmatrix} \mathbf{v}_{1:j} \\ \mathbf{0} \end{bmatrix} = \begin{bmatrix} \mathbf{L}_{1:j,1:j} \mathbf{v}_{1:j} \\ \mathbf{L}_{j+1:n,1:j} \mathbf{v}_{1:j} \end{bmatrix}$$

- 2. $v_i = d_i m_{ji}$, specifically, $v_j = d_j$ since $m_{ij} = 1, \ i = j$;
- 3. $v_i = 0, i = j + 1, \dots, n$;

(can also analyze $\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{M}^T$ row by row defining $\mathbf{e}_i^T\mathbf{A} = \mathbf{u}^T\mathbf{M}^T$ and $\mathbf{u}^T = \mathbf{e}_i^T\mathbf{L}\mathbf{D}$)

Solving LDM Decomposition

$$\mathbf{A}_{1:j,j} = \mathbf{L}_{1:j,1:j} \mathbf{v}_{1:j} \\ \mathbf{A}_{j+1:n,j} = \mathbf{L}_{j+1:n,1:j} \mathbf{v}_{1:j}$$

$$v_i = d_i m_{ji} \; (v_j = d_j)$$

$$v_i = d_i m_{ji} \ (v_j = d_j)$$

$$\begin{bmatrix} v_1 \\ v_2 \\ 0 \\ \vdots \end{bmatrix} = \begin{bmatrix} \times & & \\ & ? & \\ & & \ddots \end{bmatrix} \begin{bmatrix} 1 & ? & \\ & 1 & \\ & & \ddots \end{bmatrix} \mathbf{e}_j$$

Problem: suppose that $L_{1:n,1:j-1}$ (the first j-1 columns of L) is known. Find $\mathbf{L}_{j+1:n,j}$ (the jth column of \mathbf{L}), d_j , and $\left[\mathbf{M}^T\right]_{1:j-1,j}$ (the jth column of \mathbf{M}^T).

- 1. $\mathbf{L}_{1:j,1:j}$ is known; solve $\mathbf{A}_{1:j,j} = \mathbf{L}_{1:j,1:j} \mathbf{v}_{1:j}$ for $\mathbf{v}_{1:j}$ via forward substitution
- 2. obtain $\mathbf{L}_{j+1:n,j}$, d_j , and $\left[\mathbf{M}^T\right]_{1:j-1,j}$ (can be solved in parallel) $-\mathbf{L}_{j+1:n,j} = (\mathbf{A}_{j+1:n,j} \mathbf{L}_{j+1:n,1:j-1}\mathbf{v}_{1:j-1})/v_j$.

 - $-d_j=v_j$
 - $-m_{ii} = v_i/d_i$ for $i = 1, \dots, j-1$.

An LDM Decomposition Code

```
function [L,D,M] = my_ldm(A)
n = size(A,1);
L= eye(n); d= zeros(n,1); M= eye(n);
v = zeros(n,1);
for j=1:n,
      % solve \mathbf{A}_{1:j,j} = \mathbf{L}_{1:j,1:j} \mathbf{v}_{1:j} by forward substitution
      v(1:j) = for_subs(L(1:j,1:j),A(1:j,j));
     d(j) = v(j);
      for i=1:j-1,
          M(j,i) = v(i)/d(i);
      end;
     L(j+1:n,j) = (A(j+1:n,j)-L(j+1:n,1:j-1)*v(1:j-1))/v(j);
end:
D= diag(d);
```

- complexity: $\mathcal{O}(2n^3/3)$ (same as the previous LU code)
- the LDM is not normally used in practice for solving general linear systems
- however, LDM decomposition is much more interesting when A is symmetric

Direct Methods for Special Linear Systems

LDL Decomposition for Symmetric Matrices

If A is symmetric, then the LDM decomposition may be reduced to

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T$$
.

Theorem 5. If $A = LDM^T$ is the LDM decomposition of a nonsingular symmetric A, then L = M.

Solving LDL:

recall that in the previous LDM decomposition, the key is to find the unknown

$$\mathbf{v} = \mathbf{D}\mathbf{M}^T \mathbf{e}_j$$

by solving $\mathbf{A}_{1:j,j} = \mathbf{L}_{1:j,1:j} \mathbf{v}_{1:j}$ via forward substitution.

- ullet Finding ${f v}$ is much easier and there is no need to run forward substitution.
 - (exploit the symmetry property) since $\mathbf{M}=\mathbf{L}$,

$$v_i = d_i \ell_{ji}$$
.

All the elements, except for v_j , are known.

$$- a_{jj} = \mathbf{L}_{j,1:j} \mathbf{v}_{1:j} = \mathbf{L}_{j,1:j-1} \mathbf{v}_{1:j-1} + v_j = \mathbf{L}_{j,1:j-1} \mathbf{D}_{1:j-1,1:j-1} \mathbf{L}_{j,1:j-1}^T + v_j$$

An LDL Decomposition Code

```
function [L,D] = my_ldl(A)
n = size(A,1);
L= eye(n); d= zeros(n,1); M = eye(n);
v = zeros(n,1);
for j=1:n,
     v(1:j) = for_subs(L(1:j,1:j),A(1:j,j));
     v(1:j-1) = L(j,1:j-1)'.*d(1:j-1); % replace for_subs.
     v(j) = A(j,j) - L(j,1:j-1)*v(1:j-1); % replace for_subs.
     d(j) = v(j);
     for i=1:j-1,
         M(j,i) = v(i)/d(i);
     end:
     L(j+1:n,j) = (A(j+1:n,j)-L(j+1:n,1:j-1)*v(1:j-1))/v(j);
end;
D= diag(d);
```

- complexity: $\mathcal{O}(n^3/3)$, half of LU or LDM
- LDL is used to solve symmetric linear systems

Cholesky Factorization for PD Matrices

ullet a matrix $\mathbf{A} \in \mathbb{S}^n$ is said to be positive semidefinite (PSD) if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} \geq 0$$
, for all $\mathbf{x} \in \mathbb{R}^n$;

and positive definite (PD) if

$$\mathbf{x}^T \mathbf{A} \mathbf{x} > 0$$
, for all $\mathbf{x} \in \mathbb{R}^n$ with $\mathbf{x} \neq \mathbf{0}$

Cholesky factorization: given a PD $\mathbf{A} \in \mathbb{S}^n$, factorize \mathbf{A} as

$$\mathbf{A} = \mathbf{G}\mathbf{G}^T$$
,

where $G \in \mathbb{R}^{n \times n}$ is lower triangular with positive diagonal elements and is called the Cholesky factor of A.

- ullet the factorization is also written as $\mathbf{A} = \mathbf{R}^T\mathbf{R}$ with upper triangular $\mathbf{R} \in \mathbb{R}^{n \times n}$
- we only discuss symmetric PD matrices here

Cholesky Factorization for PD Matrices

Theorem 6. If $\mathbf{A} \in \mathbb{S}^n$ is PD, then there exists a unique lower triangular $\mathbf{G} \in \mathbb{R}^{n \times n}$ with positive diagonal elements such that $\mathbf{A} = \mathbf{G}\mathbf{G}^T$.

• idea: if A is symmetric and PD, then its LDL decomposition

$$\mathbf{A} = \mathbf{L}\mathbf{D}\mathbf{L}^T$$

has $d_i > 0$ for all i = 1, ..., n (as an exercise, verify this). Putting $\mathbf{G} = \mathbf{L}\mathbf{D}^{\frac{1}{2}}$ where $\mathbf{D}^{\frac{1}{2}} = \mathrm{Diag}(d_1^{\frac{1}{2}}, ..., d_n^{\frac{1}{2}})$ yields the Cholesky factorization.

Solving Cholesky factorization:

(exploit the symmetry) the key is to find the unknown

$$\mathbf{v} = \mathbf{G}^T \mathbf{e}_j$$
 or $v_i = g_{ji}$.

All the elements, except for v_j , are known.

• (exploit the positive-definiteness property)

$$a_{jj} = \mathbf{G}_{j,1:j} \mathbf{v}_{1:j} = \mathbf{G}_{j,1:j-1} \mathbf{v}_{1:j-1} + g_{jj} v_j = \mathbf{G}_{j,1:j-1} \mathbf{G}_{j,1:j-1}^T + g_{jj}^2$$
$$= \mathbf{v}_{1:j-1}^T \mathbf{v}_{1:j-1} + (v_j)^2$$

A Cholesky Factorization Code

```
function [G]= my_Cholesky(A)
n= size(A,1);
G= zeros(n,n);
v= zeros(n,1);
for j=1:n,
     v(1:j-1)= G(j,1:j-1);
     v(j)= sqrt(A(j,j)- v(1:j-1)'*v(1:j-1));
     G(j,j)= v(j);
     G(j+1:n,j)= (A(j+1:n,j)-G(j+1:n,1:j-1)*v(1:j-1))/v(j);
end;
```

- computing procedure is similar to LDL
- ullet can be computed in $\mathcal{O}(n^3/3)$, no pivoting required, numerically very stable
- Cholesky decomposition is used to solve PD linear systems

Pivoted Cholesky Factorization

Pivoted Cholesky factorization: given a PSD $\mathbf{A} \in \mathbb{S}^n$, factorize \mathbf{A} as

$$\mathbf{A} = \mathbf{P}\mathbf{G}\mathbf{G}^T\mathbf{P}^T,$$

where P is a permutation matrix, and

$$\mathbf{G} = egin{bmatrix} \mathbf{G}_1 \ \mathbf{G}_2 \end{bmatrix} \in \mathbb{R}^{n imes r}$$

with leading submatrix $G_1 \in \mathbb{R}^{r \times r}$ being lower triangular with positive diagonal.

• r_{ii} can be chosen to satisfy $r_{11} \geq r_{22} \geq \cdots \geq r_{rr} > 0$

• $\operatorname{rank}(\mathbf{A}) = \operatorname{rank}(\mathbf{G}) = \operatorname{rank}(\mathbf{G}_1) = r$

LU Decomposition for Band Matrices

For a banded matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$,

- lower bandwidth p if $a_{ij} = 0$ whenever i > j + p
- upper bandwidth q if $a_{ij} = 0$ whenever j > i + q

Theorem 7. Suppose $A \in \mathbb{R}^{n \times n}$ has an LU factorization A = LU. If A has lower bandwidth p and upper bandwidth q, then L has lower bandwidth p and U has upper bandwidth q.

Proof: cf. Theorem 4.3.1 in [Golub-van-Loan'13] for details

- L inheritates the lower bandwidth of A
- U inheritates the upper bandwidth of A

Banded LU factorization with partial pivoting: the upper bandwidth of ${\bf U}$ is p+q cf. Theorem 4.3.2 in [Golub-van-Loan'13] for details