Probability and Statistics Problems

Team

Please solve the following 5 problems.

Problem 1. Suppose that X_n converges to X in distribution and Y_n converges to a constant c in distribution. Show that

- (a) Y_n converges to c in probability;
- (b) X_nY_n converges to cX in distribution.

Problem 2. Let X and Y be two random variables with |Y| > 0, a.s.. Let Z = X/Y.

- (a) Assume the distribution function of (X, Y) has the density p(x, y). What is the density function of Z?
- (b) Assume X and Y are independent and X is N(0,1) distributed, Y has the uniform distribution on (0,1). Give the density function of Z.

Problem 3. Let (Ω, \mathcal{F}, P) be a probability space.

- (a) Let \mathcal{G} be a sub σ -algebra of \mathcal{F} , and $\Gamma \in \mathcal{F}$. Prove that the following properties are equivalent:
 - (i) Γ is independent of \mathcal{G} under P,
- (ii) for every probability Q on (Ω, \mathcal{F}) , equivalent to P, with dQ/dP being \mathcal{G} measurable, we have $Q(\Gamma) = P(\Gamma)$.
- (b) Let X, Y, Z be random variables and Y is integrable. Show that if (X, Y) and Z are independent, then E[Y|X, Z] = E[Y|X].

Problem 4. Let $X_1, ..., X_n$ be i.i.d. $N(0, \sigma^2)$, and let M be the mean of $|X_1|, ..., |X_n|$.

- 1. Find $c \in R$ so that $\hat{\sigma} = cM$ is a consistent estimator of σ .
- 2. Determine the limiting distribution for $\sqrt{n}(\hat{\sigma} \sigma)$.
- 3. Identify an approximate $(1 \alpha)\%$ confidence interval for σ .
- 4. Is $\hat{\sigma} = cM$ asymptotically efficient? Please justify your answer.

Problem 5. The shifted exponential distribution has the density function

$$f(y; \phi, \theta) = 1/\theta \exp\{-(u - \phi)/\theta\}, \qquad y > \phi, \theta > 0.$$

Let Y_1, \ldots, Y_n be a random sample from this distribution. Find the maximum likelihood estimator (MLE) of ϕ and θ and the limiting distribution of the MLE.

You may use the following Rényi representation of the order statistics: Let E_1, \ldots, E_n , be a random sample from the standard exponential distribution (i.e., the above distribution with $\phi = 0, \theta = 1$). Let $E_{(r)}$ denote the r-th order statistics. According to the Rényi representation,

$$E_{(r)} \stackrel{D}{=} \sum_{j=1}^{r} \frac{E_{j}}{n+1-j}, \qquad r = 1, \dots, n.$$

Here, the symbol $\stackrel{D}{=}$ denotes equal in distribution.