Stable Marriage Problem

Shusen Wang

Stable Marriage

Is this a stable marriage?

If a man and a woman (who are not spouses) prefer each other over their current spouses, then the marriage is not stable.

Is this a stable marriage?

Alex prefers Ada over his wife, Cindy.

Is this a stable marriage?

- Alex prefers Ada over his wife, Cindy.
- Ada prefers Alex over her husband, Chris.

This is not a stable marriage!

- Alex prefers Ada over his wife, Cindy.
- Ada prefers Alex over her husband, Chris.

This is a stable marriage

This is a stable marriage

This is a stable marriage

This is another stable marriage

Stable marriage is not unique.

Stable Marriage Problem

- Directed weighted bipartite graph: G = (U, V, E).
 - *u*: a set of men.
 - \mathcal{V} : a set of women.
 - The weights are the orders of preference.

Stable Marriage Problem

- Directed weighted bipartite graph: G = (U, V, E).
 - \mathcal{U} : a set of men.
 - \mathcal{V} : a set of women.
 - The weights are the orders of preference.
- The numbers of men and women are the same: $|\mathcal{U}| = |\mathcal{V}| = n$.
- If a man and a woman both prefer each other over their current spouses, then the marriage is not stable.

Gale-Shapley Algorithm

- David Gale and Lloyd S. Shapley. College Admissions and the Stability of Marriage. *American Mathematical Monthly*, 69 (1): 9–14, 1962.
- Time complexity: $O(n^2)$.
- To be introduced in the next lecture.

Thank You!