INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

PROBABILITY AND STATISTICS QUESTION BANK

1	Department	COMPUTER SCIENCE AND ENGINEERING					
2	Course Title	PROBAB	PROBABILITY AND STATISTICS				
3	Course Code	AHSD11	AHSD11				
4	Program	B.Tech					
5	Semester	III					
6	Regulation	BT-23					
		Theory Practical					
7	Structure of the course	Lecture	Tutorials	Credits	Lab	Credits	
		3	1	4	-	-	
	Type of course	Core	Professional	Open	VAC	MOOCs	
8	(Tick type of course)	Core	Elective	Elective	VAC	MOOCS	
		✓	×	×	×	×	
9	Course Offered	Odd Semest	er 🗸	Even Semes	ter ×		
	Total lecture, tutorial	and practic	cal hours for	this course			
10	(16 weeks of teaching	per semeste	er)		,		
	Lectures: 48 hours		Tutorials:	16 hours	Practical:	0 hours	
11	Course Instructor	Dr. G SRIN	IIVASU				
12	Date Approved by BOS	23/08/2023					
13	Course Webpage	www.iare.ac	e.in//				
1.4		Level	Course Code	Semester	Prerequisites		
14	Course Prerequistes	B.Tech	AHSD02 AHSD08	I/ II	Matrices an	nd Calculus / DEVC	

15. COURSE OBJECTIVES:

The students will try to learn:

I	The theory of probability, conditional probability, Bayes theorem and their applications.
II	The theory of random variables, basic random variate distributions and their applications.
III	The role of Binomial, Poisson and Normal distributions in solving the real-life problems.
IV	The methods and techniques for quantifying the degree of closeness among two or more variables by using coefficient of correlation and the concept of linear regression analysis.

V The Estimation theory and hypothesis testing in statistics play a vital role in the assessment of the quality of the materials, products and ensuring the standards of the engineering process.

16. COURSE OUTCOMES:

After successful completion of the course, students should be able to:

CO 1	Define the axioms of the probability, conditional probability and by using these concepts, establish the elementary theorems on probability. Explain the role of Bayes theorem in solving the typical uncertain problems in probability.	Understand
CO 2	Explain the role of random variables and types of random variables, expected values of the discrete and continuous random variables under randomized probabilistic conditions.	Understand
CO 3	Interpret the parameters of descrete random variate Probability distributions such as Binomial, Poisson distributions by using their probability functions, expectation and variance.	Understand
CO 4	Apply the Normal distribution for the problems defined under continuous random variables to find probabilities.	Apply
CO 5	Identify Bivariate Regression as well as Correlation Analysi for statistical forecasting	Apply
CO 6	Identify the role of statistical hypotheses, confidence intervals, the tests of hypotheses for large samples and small samples in making decisions over statistical claims in hypothesis testing	Apply

QUESTION BANK:

Q.No	QUESTION	Taxonomy	How does this	CO's
		MODULE I	subsume the level	
		ABILITY TH	IEODV	
DAR	T A-PROBLEM SOLVING			TIONS
1	A committee consists of 9 students 2 of which are from	Apply	Learner to recall the concept of a theory of	CO 1
	1st year, 3 from second year and 4 from third year. Three students are to be removed at random. What is the chance that (i) The three students belong to different classes. (ii) Two belong to the same class and third to the different class. (iii) The three		probability and use it to calculate the required solutions.	
2	belong to the same class. Two dice are thrown,let A be the event of getting sum of points is odd.B is the event at least one ace.Describe the A and B and $A \cap B$.Find $P(A),P(B),P(A/B),P(B/A)$.	Apply	Learner to recall the concept of a theory of probability and use it to calculate the required solutions.	CO 1
3	State and prove Law of addition of probability for two events	Apply	Learner to recall the concept of axioms of probability and use it to prove the theorem.	CO 1
4	Define conditional probability and state and prove the multiplication theorem on probability	Remember	Learner to recall the concept of conditional probability and use it to prove the theorem.	CO 1
5	If A and B are two independent events then show that (i) \bar{A} and B (ii) A and \bar{B} (iii) \bar{A} and \bar{B} are also independent.	Understand	Learner to recall the concept of independent events and use it to prove the theorem.	CO 1
6	A bag contains 5 red,3 black balls. Second bag contains 4 red,5 black balls. One of the bags is selected at random and 2 balls are drawn from it. What is the probability that one ball is red and second ball is black.	Apply	Learner to recall the concept of theory of probability and use it to prove the theorem.	CO 1

7	If two dice are thrown, what is the probability that the sum is (i) greater than 8 and (ii) neither 7 nor 11.	Apply	Learner to recall the concept of theory of probability and addition theorem to find the solution.	CO 1
8	In a group there are 4 men and 2 women form this group ,three persons are selected at random .Find the probability that three persons are a) 1 men and 2 women b) 2 men and 1 women.	Apply	Learner to recall the concept of theory of probability to find the solution.	CO 1
9	A problem in statistics is given to the three students A, B and C whose chances of solving it or $\frac{1}{2}, \frac{3}{4}$ and $\frac{1}{4}$ respectively. What is the probability that the problem will be solved if all of them try independently.	Apply	Learner to recall the concept of theory of probability to find the solution.	CO 1
10	Three boxes contains: 3 red, 4 white and 1 blue; 1 red, 2 white and 3 blue balls; 4 red, 3 white, and 2 blue balls. One box is chosen at random and a ball is withdrawn it happens to be red. What is the probability that it come from box two.	Apply	Learner to recall the concept of Bayes theorem to find the solution.	CO 1
	PART-B LON	G ANSWEI	RQUESTIONS	
1	60 boys and 20 girls are there in a class. Half of the boys and half of the girls of the class play cricket. Find the probability of the selected person to be a boy or a girl, who plays cricket.	Apply	Learner to recall the concept of theorem of probability to find the solution.	CO 1
2	A bag contains 5 red and 10 black balls. 8 of them are placed in another box. What is the chance that the later box contains 2 red and 6 black balls.	Apply	Learner to recall the concept of theorem of probability to find the solution.	CO 1

3	Box I has 2 block balls,3 red balls and 1 white ball.Box II has 1 block ball,1 red ball and 2 white balls.Box III has 5 black balls,3 red balls and 4 white balls.One box is selected at random; one ball is drawn.Find the probability that the ball is red.	Apply	Learner to recall the concept of theorem of probability to find the solution.	CO 1
4	A bag contains 10 gold and 8 silver coins. Two successive drawings of 4 coins are made such that (i) coins are replaced before the second trial. (ii) the coins are not replaced before the second trial. Find the probability that the first drawing will give 4 gold and the 4 silver coins.	Apply	Learner to recall the concept of theorem of probability to find the solution.	CO 1
5	If A and B are any two events then prove that $P(A^c \cap B) = P(B) - P(A \cap B)$.	Apply	Learner to recall the axioms of probability to find the solution.	CO 1
6	A box contains 6 red, 4 white and 5 black balls. A person draws 4 balls at random from the box. Find the probability that among the balls drawn there is at least 1 ball of each colour.	Apply	Learner to recall the concepts of theorem of probability to find the solution.	CO 1
7	If A and B are any two events then prove that $P(A \cap B^c) = P(A) - P(A \cap B)$.	Apply	Learner to recall the concepts of theorem of probability to find the solution.	CO 1
8	A card is drawn from a well shuffled pack of cards. What is the probability that it is either a spade or an ace.	Apply	Learner to recall the concepts of theorem of probability to find the solution.	CO 1

9	In a bolt factory machines A, B, C manufactured 20%, 30% and 50% of the total. Of their output 6%, 3% and 2% are defective. A bolt is withdrawn at random and found to be defective. find the probabilities that it is manufactured from (i) Machine A (ii) Machine B (iii) Machine C .	Apply	Learner to recall the concepts of Bayes theorem to find the solution.	CO 1
10	A business man goes to hotels $X, Y, Z, 20\%, 50\%, 30\%$ of the time respectively. It is known that $5\%, 4\%, 8\%$ of the rooms in X, Y, Z hotels have faulty plumbings. What is the probability that business man's room having faulty plumbing id assigned to hotel Z	Apply	Learner to recall the concepts of Bayes theorem to find the solution.	CO 1
11	If $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$ and $P(A \cap B) = \frac{1}{5}$, then find $(i)P(A \cup B)$ $(ii)P(\bar{A} \cap B)$ (iii) $P(A \cap \bar{B})$ (iv) $P(\bar{A} \cap \bar{B})$	Apply	Learner to recall the concepts of theory of probability to find the solution.	CO 1
12	From six gentle men and four ladies, a committee of five is to be formed. Find the probability that this can be done so as to always include atleast one lady.	Apply	Learner to recall the concepts of theory of probability to find the solution.	CO 1
13	The chance that doctor A will diagnose x correctly is 60%. The chance that a patient will die by his treatment after correct diagnosise is 40% and the chance of death by wrong diagnosise is 70%. A patient of doctor A, who had disease x, died. What is the chance that his disease was diagnosised correctly.	Apply	Learner to recall the concepts of theory of probability to find the solution.	CO 1

14	A bag contains 5 white,7 black and 4 red balls ,if three balls are drawn in random. Find the probability that a) All are different b) All are same c)2 balls are same and one is different.	Apply	Learner to recall the concepts of theory of probability to find the solution.	CO 1
15	In neighbourhood,90% children were falling sick due fle and 10% due to measles and no other disease. The probability of obseeming rashes for measles is 0.95 and for flu is 0.08. If a child develops rashes, find the child's probability of having flu.	Apply	Learner to recall the concepts of theory of probability to find the solution.	CO 1
16	In a class there are 10 boys and 5 girls. A committee of 4 students are to be selected from the class. Find the probability for the committee to contain at least three girls.	Apply	Learner to recall the concepts of theory of probability to find the solution.	CO 1
17	Suppose 5 men out of 100 and 25 women out of 10,000 are color blind. A color blind person is chosen at random. What is the probability of the person being a male.	Apply	Learner to recall the concepts of Bayes theorem to find the solution.	CO 1
18	In a certain college, 4% of men and 1% of women are taller than 1.8m. further more 60% of the students are women.Now,if a student is selected at random and is taller than 1.8m., What is the probability that the student is a women?	Apply	Learner to recall the concepts of Bayes theorem to find the solution.	CO 1
19	A can hit a target 3 times in 5 shots,B can hit a target 2 times in 5 shots and C ,3 times in 4 shots . Find the probability of the target being hit ,when all of them try .	Apply	Learner to recall the concepts of addition theorem to find the solution.	CO 1

20	It is observed that 50% of	Apply	Learner to recall the	CO 1
	mails are spam. There is a		concepts of	
	software that filtees spam		multiplication theorem to	
	mail before reaching the		find the solution.	
	inbox.If acceuraly for			
	detecting a spam mail is 99%			
	and chances of tagging a			
	non-spam mail as spam mail			
	is 5%. If a ceartain mail is			
	tagged as spam. Find the			
	probability that it is not a			
	spam mail.			

	PART-C SHOP	RT ANSWER	R QUESTIONS	
1	State the classical definition of probability?	Remember	_	CO 1
2	What is the chance that a leap-year selected at random contains 53 sundays.	Understand	_	CO 1
3	If a coin is tossed twice then find probability of getting at least one head.	Understand	_	CO 1
4	A bag contains three red balls, 4 white balls and 7 black balls. Find the probability of drawing red or black ball.	Understand		CO 1
5	A coin is tossed n times then the probability that the head will present itself an odd number of times.	Understand		CO 1
6	Two cards are drawn at random from a pack of 52 cards. Find the pprobability of these two being aces.	Understand		CO 1
7	Define conditional probability.	Remember	_	CO 1
8	State multiplication theorem on probability for three events.	Remember	_	CO 1
9	State addition theorem on probability for three events.	Remember	_	CO 1
10	Six boys and six girls sit round a table randomly. Find the probability that all the six girls sit together.	Understand	_	CO 1
11	Find the chance that a non leap-year contains 53 Mondays.	Understand	_	CO 1
12	State Bayes Theorem	Remember	_	CO 1
13	Define Random Experiment with an example.	Remember	_	CO 1
14	Define exhaustive outcomes in an experiment with two examples.	Remember		CO 1
15	Define Mutually exclusive events with an example.	Remember	_	CO 1

16	Define simple and complex events with examples.	Remember	_	CO 1
17	State the classical definition of probability. If a fair coin is tossed six times. Calculate the probability of getting four heads.	Remember	Learner to recall the concept of classical probability and explain its practical importance and use it to calculate the probability of getting four heads when a fair coin is tossed for 6 times.	CO 1
18	State the limitations of classical definition of probability.	Remember	_	CO 1
19	Outline the classical definition of probability. A coin is tossed 9 times. Calculate the probability of getting 5 heads.	Understand	Learner to recall the concept of classical probability and explain its practical importance and use it to calculate the probability of getting four heads when a fair coin is tossed for 9 times.	CO 1
20	State the axioms of probability.	Remember	_	CO 1
		MODULE II		
DAT		OOM VARIA		MICAIC
1	The probability density function of a random variable X is Calculate the value of $f(x) = \begin{cases} 3x^2, 0 < x < 1 \\ 0, otherwise \end{cases}$ calculate the value a, if $P(a \le x \le 1) = \frac{19}{81}$	Apply Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2

2	The daily consumption of electric power (in millions of kW-hours) is a random variable having the probability density function $f(x) = \begin{cases} \frac{1}{9}xe^{\frac{-x}{3}}, x > 0\\ 0, otherwise \end{cases}$ If the total production is 12	Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range	CO 2
	million kW-hours, determine the probability that there is a power cut on a given day.		probabilities, expected values.	
3	A fair coin is tossed until a head or five tails occurs. Find the expected number E of tosses of the coin.	Apply	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 2
4	A fair die is tossed. Let the random variable X denote the twice the number appearing on the die:(i) construct the probability distribution of X hence find Mean and Variance.	Apply	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 2
5	If $f(x) = k e^{ -x }$ is probability density function in the interval, x is a real, then evaluate ii) Mean iii) Variance iv) $P(0 < X < 4)$. By finding k.	Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2

6	The function 0< x<1 is valensity function Calculate the		Appl	у	Learn concer rando expla proba function rando continuit to continuit proba values	CO 2						
7	random varia $f(\mathbf{x}) = \begin{cases} e^{-x}, & \mathbf{x} \\ 0, & oth \end{cases}$	the density function of a random variable X is $\mathbf{x} = \begin{cases} e^{-x}, x \geq 0 \\ 0, otherwise \end{cases}$ aluate E[X] , $E(X^2)$, $V(X)$.					У	concerando expla proba function rando it to continuo cont	om var in the bility ion of om var calcula nuous bilitie	a con iable prop dens a cor iable ate th	and erties of ity ntinuous and use ne	CO 2
8	If $E[X] = 10$, $V(X)=1$, then Calculate $E(2X(X+10))$.					Appl	у	concerando expla proba of a d varial	bility liscrete ole and ate th	a disc iable prop mass e ran d use	and erties of function dom	CO 2
9	A discrete rahas the following distribution. (ii) P(X<3)	wing pro Calcula	obabi ate (i	ility) k	Ur	Understand		Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.				CO 2
	1	X	1	2	3	4	5	6	7	8		ı
		P(X)	2k	4k	6k	8k	10k	12k	14k	4k		

10	For the continuous revariable X whose prodensity function is given by $f(x) = \begin{cases} cx(2-x), 0 \le 0, otherwise \end{cases}$ Calculate c, mean arrowariance of X.		Арр		con ran exp pro fun ran it t con pro valu	dom dain to dom dom dom tinuo babilitues.	to recall the of a continuous variable and the properties of ity density of a continuous variable and use culate the us range ities, expected	CO 2	
	PART	r-B LO	NG	ANS	WEF	l QU	EST	IONS	
1	Let X denotes the m of the two numbers to appear when a pair of dice is thrown once. the (i) Discrete probability distribution (ii) Experimental Variance.	that of fair calculat ability	ie e	Unders	stand	con ran exp pro of a var cale ran	dom dann tababilia discriable culate	to recall the of a discrete variable and the properties of ity mass function rete random and use it to the discrete obabilities, values.	CO 2
2	Let X denotes the number heads in a single toss coins. Determine P(X P(1 <x≤3)< td=""><td>ir</td><td>Арр</td><td>CO 2</td></x≤3)<>	ir	Арр	CO 2					
3	A random variable X following probability function. Calculate (Expectation (ii) vari Standard deviation.		expected values. Apply Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.					CO 2	
		X	-1	0	1	2	3		
		P(X)	0.3	0.1	0.1	0.3	0.2		

4	Find the mean and of the uniform prodistribution given 1/n for x=1,2,3,	bability by $P(x)=$	Ар	ply	con ran exp pro of a vari	cept of dom valain the bability a discre- iable an culate t	recall the a discrete ariable and e properties of mass function te random and use it to he discrete babilities, values.	CO 2
5	A random variable following probabili function. Calculate Expectation (ii) va Standard deviation	Ap	ply	con ran exp pro of a vari	cept of dom valain the bability a discretiable are culate to ge probected valate to	CO 2		
	1	x 8 P(X) 1/8	12 1/6	16 3/8	20 1/4	24 1/12		
6	The length of time minutes) that a cent speaks on the telep found to be randon phenomenon, with probability function by the function $f(x) = \begin{cases} Ae^{\frac{-x}{5}}, x \ge 0 \\ 0, otherwis \end{cases}$ Calculate the value makes $f(x)$ a probate density function. (calculate the probate she will take over the sum of the probate she will take over the sum of the probate she will take over the sum of the probate she will take over the sum of the probate she will take over the sum of the probate she will take over the sum of the probate she will take over the sum of the probate she will take over the sum of the probate she will take over the sum of the probate she will take over the probate she will take over the sum of the probate she will take over the probate she will be pr		ply	Lea con ran exp pro function it to con	rner to cept of dom valain the bability ction of dom valous tinuous babiliti	recall the a continuous riable and e properties of density f a continuous riable and use late the s range es, expected	CO 2	

7	If X denote to two numbers when a pair tossed. Estimates Distribution Mean and (iii)			oply		concept randor explain probable of a di variable calcular range personne concept random pe	er to recall to of a disc n variable n the propositive mass screte ran- le and use the the dis- probabilitied values.	erete and erties of function dom it to crete ies,	CO 2			
8	Is the function follows a density will a function of the function of the following functions for the function of the function	sity furces $c \ge 0$ to the part of a site of	robaring he	on . abili This	s ne	Aı	oply		concept randor explain probable function randor it to calcontinuous continuous continuous content concept randor continuous continuous content	er to recall to of a con m variable in the propositive densi- on of a con m variable alculate the alculate the alculate spilities, exp	tinuous and erties of ity ntinuous and use ne	CO 2
9	If probability function . $f(x) = \begin{cases} kx^3, 0 \\ 0, oth \end{cases}$ Calculate the between x=1	$0 \le x \le erwise$ e value e proba	3 of F bilit	У		A	oply		concept randor explain probable function randor it to calcontinuous continuous continuous content concept randor continuous continuous content	er to recall to of a con n variable n the propositive densi- on of a cor n variable alculate the nous range polities, exp	tinuous and erties of ity ntinuous and use ne	CO 2
10	A random variable x has the following probability function: Calculate (i) k (ii) P(x<6) (iii) P(X≥6)					Aj	oply		Learner concept random explain probable of a divariable calcular range properties.	CO 2		
		X	0	1	2	3	4	5	6	7		

11	Let X denotes the minimum of the two numbers that appear when a pair of fair dice is thrown once. calculate the (i) Discrete probability distribution (ii) Expectation (iii) Variance.	Understand	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 2
12	A random variable X has the following probability function: Then Calculate (i) k (ii) mean (iii) variance.	Apply	Learner to recall the concept of a discrete random variable and explain the properties of probability mass function of a discrete random variable and use it to calculate the discrete range probabilities, expected values.	CO 2
		-2 -1 0 0.1 k 0.2	$ \begin{array}{c cccc} 1 & 2 & 3 \\ 2k & 0.4 & 2k \end{array} $	
13	A continuous random variable has the probability density function $f(x) = \begin{cases} kxe^{-\lambda x}, for x \ge 0, \\ \lambda > 0 \\ 0, otherwise \end{cases}$ Evaluate (i) Mean (ii) Variance by finding k.	Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2
14	If the Probability density function of random variable is $f(x) = k(1 - x^2)$, $0 < x < 1$, then Calculate (i) k (ii) $P(0.1 < x < 0.2)$ (iii) $P(x > 0.5)$.	Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2

15	A random variable X h following probability function. Calculate (i) Expectati variance (iii) Standard deviation.		Unc	lersta	nd	Learne concep rando explai proba of a di variab calcular range expect	CO 2	
		x P(X)	4	5	6	8		
16	If X is a Continuous ray variable whose density function is $f(x) = \begin{cases} x, if & 0 < x < \\ (2-x), 1 \le x < \\ 0 & elsewhere \end{cases}$ Evaluate $E(25X^2 + 30X)$	0.1	0.3 Apply	0.4	Learne concept rando explain probability function in to continuous probability alues	CO 2		
17	The cumulative distribution function for a continuous random variable X is $f(x) = \begin{cases} 1 - e^{-2x}, if & x \ge 0 \\ 0, x < 0 \end{cases}$ Evaluate (i) density function $f(x)$ (ii) Mean and (iii) Variance of the density function.			Apply		Learne concept rando explair probate function rando continuo probate values	CO 2	
18	Two coins are tossed simultaneously. Let X denotes the number of then Calculate $E[X]$, $E[x^3]$, $V(X)$.	F	Apply		concept rando explair probation of a divariable calcular range	er to recall the ot of a discrete m variable and n the properties of bility mass function iscrete random ale and use it to ate the discrete probabilities, ted values.	CO 2	

19	Is the function defined by $f(x) = \begin{cases} 0, if & x < 2 \\ \frac{(2x+3)}{18}, 2 \le x \le 4, & \text{a} \\ 0, & x > 4 \end{cases}$ probability density function? Estimate the probability that a variate having $f(x)$ as density function will fall in the interval $2 \le x \le 3$.	Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2
20	The probability density function of a random variable X is $f(x) = \frac{k}{x^2+1}, -\infty < x < \infty$ Calculate K and the distribution function $F(x)$.	Apply	Learner to recall the concept of a continuous random variable and explain the properties of probability density function of a continuous random variable and use it to calculate the continuous range probabilities, expected values.	CO 2
	PART-C SHOP	RT ANSWEF	R QUESTIONS	
1	State the classical definition of probability?	Remember	_	CO 2
2	If $E(X) = 6$ and $E(X^2) = 100$ find the variance.	Understand	_	CO 2
3	If three coins are thrown at a time and X denotes the random variable which is defined as $X(x) = no$ of heads, write its probability distribution table.	Understand		CO 2
4	If $E(X) = 7$, $E(X^2) = 40$, find the value of $E(5X^2 - 11x + 8)$	Apply	_	CO 2
5	State the definitions of discrete and continuous random variables with a suitable example.	Understand	_	CO 2
6	List out the important Properties of probability density function.	Remember	_	CO 2

7	Find the probability distribution of getting number tails if we toss three coins calculate mean.	Understand		CO 2
8	State the definition of mathematical expectation of a probability distribution function	Remember	_	CO 2
9	State the definition of the Mean and Variance of a probability mass function.	Remember	_	CO 2
10	State the definition of the Mean and Variance of a probability density function.	Remember		CO 2
11	Find the probability distribution for sum of scores on dice if we throw two dice.	Understand	_	CO 2
12	Out of 24 mangoes, 6 mangoes are rotten. If two mangoes drawn at random, obtain probability distribution of number of rotten mangoes that can be drawn. also find the expectation	Understand		CO 2
13	If X is a random variable then show that $E[X+K]=E(X)+K$ where 'K' constant.	Understand	Learner to Explain the concept of random variable and Prove E [X+K]=E(X)+K, where 'K' constant.	CO 2
14	Show that $\sigma^2 = E(X^2) - \mu^2$.	Understand	Learner to Explain the concept of variance of a random variable and Prove	CO 2
15	State the definitions of the probability mass function and probability density of random variables.	Remember	_	CO 2
16	If X is Discrete Random variable then show that $V[aX+b]=a^2 V(X)$.	Understand	Learner to Explain the concept of variance of a random variable and Prove that $V[aX+b]=a^2$ $V(X)$.	CO 2

17	State the classical definition of probability. If a fair coin is tossed six times. Calculate the probability of getting four heads.	Understand	Learner to recall the concept of classical probability and explain its practical importance and use it to calculate the probability of getting four heads when a fair coin is tossed for 6 times.	CO 2
18	State the definition of different types of random variables with example.	Remember	_	CO 2
19	Outline the classical definition of probability. A coin is tossed 9 times. Calculate the probability of getting 5 heads.	Understand	Learner to recall the concept of classical probability and explain its practical importance and use it to calculate the probability of getting four heads when a fair coin is tossed for 9 times.	CO 2
20	State the definition of random variable with an example.	Remember	_	CO 2
		MODULE III LITY DISTR		
PAR	T A-PROBLEM SOLVING			STIONS
1	Show that the Poisson distribution is a limiting case of Binomial distribution.	Apply	Learner to recall the definitions of Binomial as well as Poisson distributions and outline the proof of the theorem that Poisson distribution is a limiting case of Binomial distribution.	CO 3
2	Derive the mean and variance of the Poisson distribution.	Apply	Learner to recall the definition of Poisson distribution and outline the proof of variance of Poisson distribution	CO 3
3	Explain the properties of Binomial distribution. Obtain the formula for mean of Binomial Distribution.	Remember	Learner to recall the definition of Binomial distribution and Outline the proof of mean of binomial distribution.	CO 3

5	The variance and mobinomial variable X parameters n and p 4. Calculate i) $P(X P(X \ge 1))$ iii) $P(0 < 1)$ Calculate the expective frequencies of the B distribution to the findata	ıd		oply		definidistril the property and usefinidistril the property and usefinite the property a	tion oution cope nial se E la te ed I er te tion oution cope nial se E la te	o recall the of Binomial on and explain rties of distribution Binomial o calculate the probabilities. o recall the of Binomial on and explain rties of distribution Binomial o calculate the requencies.	CO 3		
		1	2	3	4	5	6				
		25	52	58	32	16	4				
						E-II					ı
6	Explain the propert normal distribution the Mean of Norma distribution.	. O			Remember Learner to recall the definition of Normal distribution and Illustrate the propert of Normal curve and derive the mean of normal distribution.					of Normal on and the properties l curve and e mean of	CO 4
7	Explain the propert normal distribution Determine the Mod Normal distribution		Reme	embe		defini distril Illustr of Nor derive	tion outicate rma e the	o recall the of Normal on and the properties l curve and e mode of stribution.	CO 4		
8	Derive the median of Normal distribution Explain the propert normal distribution	an ies	d		Ap	pply		defini distril Illustr of Nor derive	tion outicate rma e the	o recall the of Normal on and the properties I curve and e median of stribution.	CO 4

9	The marks obtained in Statistics in a certain examination found to be normally distributed. If 15% of the students greater than or equal to 60 marks, 40% less than 30 marks. Calculate the mean and standard deviation.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the mean and standard deviation.	CO 4
10	If 7% of the students scored marks less than 35 and 11% of the students scored above 63 marks calculate the mean and variance assuming normality.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the mean and standard deviation.	CO 4
	PART-B LON	G ANSWER	QUESTIONS	
1	Out of 20 tape recorders 5 are defective. Calculate the standard deviation of defective in the sample of 10 randomly chosen tape recorders. Calculate (i) P(X=0) (ii) P(X=1) (iii) P(X=2) (iv) P(0 <x<4).< td=""><td>Apply</td><td>Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.</td><td>CO 3</td></x<4).<>	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3
2	A car-hire firm has two cars which it hires out day by day. The number of demands for a car on each day is distributed as a Poisson distribution with mean 1.5. Calculate the proportion of days (i) on which there is no demand (ii) on which demand is refused.	Apply	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 3
3	The average number of phone calls per minute coming into a switch board between 2 P.M. and 4 P.M. is 2.5. Estimate the probability that during one particular minute (i) 4 or fewer calls (ii) more than 6 calls.	Apply	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 3

4	In 1000 sets of trials per an event of small probability the frequencies the successes are given below. Calculate the expected frequencies Using Poisson. x 0 1 f 305 365				App	oly	t c	Learn lefin listri he p listri Poiss calcu	CO 3			
				2 210	3 80	4 28	5 9	6	7	Total 1000		
5	4 coins are tossed 160 times. Fit the Binomial distribution of getting number of heads.				Apply Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required frequencies.						CO 3	
6	Out of 800 families with 5 children each, calculate how many would you expect to have (i)3 boys (ii)5 girls (iii)either 2 or 3 boys? Assume equal probabilities for boys and girls.				Understand				ner ition but rop mia use ula red	CO 3		
7	If a Poisson distribution is such that then Calculate $P(x=1) = \frac{3}{2}P(x=3) \text{ then }$ calculate (i) $P(X \ge 1)$ (ii) $P(X \le 3)$ (ii) $P(2 \le X \le 5)$.				Apply				ner ition ibut rop ibut on late	CO 3		
8	Average number on any day on a highway is 1.8. Oprobability that of accidents is (i) (ii) at most one.	nation Calculathe nu	nal ate the ımber	:	App	oly	t c c c c c c c c c c c c c c c c c c c	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.				CO 3

9	Calculate the expected frequencies Using Binomial Distribution to the following data	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required frequencies.	CO 3
10	The probability that a man hitting a target is 1/3. If he fires 5 times, the probability that he fires (i) At most 3 times (ii) At least 2 times	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3
		CIE-II		
11	The marks obtained in mathematics by 1000 students is normally distributed with mean 78% and standard deviation 11% .Determine i)How many students got marks above 90%. ii) What was the highest mark obtained by the lowest 10% of the students .iii) Within what limits did the middle of 90% of the students lie.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4
12	800 male students weights are normally distributed with mean 140 pounds and standard deviation 10 pounds. Find the number of students whose weight are i) between 138 and 148 pounds ii) more than 152 pounds.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4

13	For a normally distributed variate with mean 1 and standard deviation 3. Calculate $i)P(3.43 \le X \le 6.19)$ $ii)P(-1.43 \le X \le 6.19)$.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4
14	If X is a normal variate with mean 30 and standard deviation 5. Calculate the probabilities that $i)P(26 \le x \le 40)$ $ii)P(X \ge 45)$.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4
15	The mean weight of 500 male students at a certain college is 75kg and the standard deviation is 7kg. Assuming that the weights are normally distributed Calculate how many students weight (i) Between 60 and 78 kg (ii) more than 92kg.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4
16	The mean and standard deviation of the box obtained by 1000 students in an examination are respectively 34.5 and 16.5. Assuming the normality of the distribution. Calculate the approximate number of students expected to obtain marks between 30 and 60.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4
17	If the masses of 300 students are normally distributed with mean 68 kgs and standard deviation 3 kgs. Calculate How many students have masses (i) greater than 72 kg (ii) less than or equal to 64 kg (iii) between 65 and 71 kg inclusive.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4

18	In a Normal distribution, 7% of the item are under 35 and 89% are under 63. Calculate the mean and standard deviation of the distribution.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the mean and variance.	CO 4
19	The life of electronic tubes of a certain type may be assumed to be normal distributed with mean 155 hours and standard deviation 19 hours. Calculate the probability that the life of a randomly chosen tube is (i) between 136 hours and 174 hours. (ii) less than 117 hours (iii) will be more than 195 hours	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4
20	1000 students have written an examination with the mean of test is 35 and standard deviation is 5. Assuming the distribution to be normal Calculate i) How many students marks like between 25 and 40? ii) How many students get more than 40? iii) How many students get below 20? iv) How many students get below 20? iv) How many students get more than 50.	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4

	PART-C SHOP	T		
1	20% of items produced from a goods factory are defective. If we choose 5 items randomly then Calculate the probability of non-defective item.	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3
2	The probability if no misprint in a book is e^{-4} . Calculate probability that a page of book contains exactly two misprints.	Apply	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 3
3	Assume that 50% of all engineering students are good in Mathematics. Determine the probability that among 18 engineering students exactly 10 are good in Mathematics.	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3
4	If the probability of a defective bolt is 0.2, Calculate (i) mean (ii) standard deviation for the bolts in a total of 400.	Apply	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 3
5	Interpret the properties of Binomial distribution.	Remember	Learner to Define the binomial distribution and explain its properties and parameters.	СО 3
6	If n=4, p=0.5 then Calculate standard deviation of the binomial distribution.	Apply	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3

7	Explain the properties of Poisson distribution.	Remember	Learner to Define the Poisson distribution and explain its properties and parameters.	CO 3
8	Build the binomial distribution for which the mean is 4 and variance 3	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required parameters.	CO 3
9	If X is Poisson variate such that $P(X=1) = 24P(X=3)$ then Calculate the mean.	Apply	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the mean.	CO 3
10	Interpret the properties of Binomial distribution. Derive the recurrence relation for binomial distribution.	Understand	Learner to Define the binomial distribution and explain its properties and use it to derive the recurrence relation.	CO 3
		CIE-II		
11	The mean and variance of a binomial distribution are 4 and 4/3 respectively. Then Calculate P(x=1).	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3
12	In eight throws of a die 5 or 6 is considered a success. Calculate the mean number of success	Understand	Learner to recall the definition of Binomial distribution and explain the properties of Binomial distribution and use Binomial formula to calculate the required probabilities.	CO 3

13	If a bank received on the average 6 bad cheques per day, Calculate the probability that it will receive 4 bad cheques on any given day.	Understand	Learner to recall the definition of Poisson distribution and explain the properties of Poisson distribution and use Poisson formula to calculate the required probabilities.	CO 3
14	State the formulae of Mean, Variance of Poisson distribution	Remember	_	CO 3
15	State the formulae of mode of a Binomial distribution.	Remember	_	CO 3
16	State the formulae of mean, variance of Binomial distribution.	Remember		CO 3
17	Explain the properties of Poisson distribution. Derive the recurrence relation for the Poisson distribution.	Remember	Learner to Define the Poisson distribution and explain its properties and use it to derive the recurrence relation.	CO 3
18	Illustrate the properties of the Normal curve.	Remember	Learner to recall the definition of Normal distribution and Illustrate the properties of Normal curve.	CO 4
19	Explain the properties of normal distribution.	Understand	Learner to Define the Normal distribution and explain its properties and parameters.	CO 4
20	If X is normally distributed with mean 2 and variance 0.1, then Calculate $P(x-2 \ge 0.01)$?	Apply	Learner to recall the definition of Normal distribution and explain the properties of Normal distribution and use Normal distribution formula to calculate the required probabilities.	CO 4

]	MO	DUL	Έľ	V							
			COR	RE	LAT	ION	AN	D R	EGI	RES	SION	1				
PAR	T A-PROB	LEI	M SO	OLV	ING	AN	D C	RIT	ICA	L TI	HIN	KIN	G QUE	STIONS		
1	Calculate co						App	ly		arner				CO 5		
	correlation				dΥ				- 1	_	ient of					
	for the follo	wing	g data	a.					- 1		nterpret					
										e degi tween						
									- 1	riable						
											ent of					
									coı	relat						
				X	10	12	18	24	23	27						
				Y	13	18	12	25	30	10						
2	Ten compet						App	ly		arner				CO 5		
	test were ra		-							_			ient of			
	judges A, B								1	nk co						
	following or correlation			_						erpre senes		_	ree of			
	which pair		,							en tv						
	nearest app	_	_							ing sp						
	likings in m												elation.			
	1	Ra	ank A	1	6	5	10	3	2 4	1 9	7	8		1		
		R	ank E	3 3	5	8	4									
		R	ank (6	4	9	8 1 2 3 10 5 7									
3	Interpret th	e pr	opert	ies c	of		App	ly	Le	arner	CO 5					
	rank correla								- 1	•	ient of					
	Obtain the									nk co						
	coefficient f data.	or ti	ne ioi	IOWII	ıg				- 1	erpre senes		_	ree of			
	data.									en tv						
									_	ing sp			-			
									coe	efficie	nt of	corr	elation.			
		X	68	64	75	50	64	80	75	40	55	64				
		Y	62	58	68	45	81	60	68	48	50	70				
4	Show that t						App	ly		arner				CO 5		
	correlation	lies	betwe	een -	1				concept of coefficient of							
	and 1.												utline			
									the proof if the theorem that coefficient of							
						correlation lie										
										-1 and 1.						

5	The ranks of the 15 students in two subjects A and B are given below, the two numbers within the brackets denoting the ranks of the same student in A and B respectively. (1,10), (2,7), (3,2), (4,6), (5,4), (6,8), (7,3), (8,1), (9,11), (10,15), (11,9), (12,5), (13,14), (14,12), (15,13) Use Spearman's formula to Calculate the rank correlation coefficient.	Apply	Learner to recall the concept of coefficient of rank correlation and Interpret the degree of closeness between the given two variables by using spearman's rank coefficient of correlation.	CO 5
6	Outline the proof of the formula for angle between two regression lines.	Apply	Learner to recall the concept of regression lines and Interpret the angle between the given regression lines by using coefficient of correlation and regression coefficients.	CO 5
7	If $\sigma_x = \sigma_y = \sigma$ and the angle between the regression lines are $\theta = Tan^{-1}(3)$. Outline the formula of angle between two regression lines. Obtain r.	Apply	Learner to recall the concept of regression lines and Interpret the angle between the given regression lines by using coefficient of correlation and regression coefficients.	CO 5
8	If θ is the angle between two regression lines and S.D. of Y is twice the S.D. of X and r = 0.25, Calculate $\tan \theta$.	Apply	Learner to recall the concept of regression lines and Interpret the angle between the given regression lines by using coefficient of correlation and regression coefficients.	CO 5
9	Outline the formulae of regression lines. Calculate the value of y when $x = 12$ from the following data:	Apply	Learner to recall the formulae of regression lines and Translate the inherent relation between the given two variables in to a mathematical function by using linear Regression.	CO 5

									X		Y			
				Av	vera	ge			7.	6 3	14.8			
			St	andar	d de	eviat	ion		3.	6	2.5			
			Coef	ficient	of o	corre	latio	n	0.9	9	-			
10	Construct th	e regi	essio	n		An	ply		Le	earne	r to	recall	the	CO 5
	equation of Y	_				1	1 /						ession	
	data given be									ies a				
	deviations from			_					in	herei	between			
	of X and Y.	Estim	ate t	he					th	e giv	en tv	vo va	riables in	
	likely deman	d whe	en the	price					to	a m	ather	$_{ m matic}$	al	
	is Rs. 20.								fu	nctic	g linear			
								Re	egres	sion.				
			Price	(Rs.)		10	1:	2	13	12	16	15		
		Amo	ount d	leman	ded	40	38	3	43	45	37	43		
	L	PA]	RT-E	LON	1G	AN	\mathbf{SW}	ER	\mathbf{Q}^{\dagger}	UES				
1	A random sa						ply			earne	the	CO 5		
-	students is se	-		_		1-	P-J			ncep				
	grades in ma					1	nk c							
	statistics are												gree of	
	Calculate Sp	earma	an's r	ank							n the			
	correlation co								gi	ven t	les by			
									us	ing s	s rank			
									co	effici	ient c	of cor	relation.	
						1	2		3	4	5		•	
			Mat	hemat	ics	85	60	-	73	40	90			
			St	atistic	9	93	75	-	32	50	80			
				ausuc	D .				65 50 80 Learner to recall the					
2	Calculate the	e coef									er to	recall	the	CO 5
2	Calculate the		ficient	of			ply	,	Le	earne				CO 5
2	Calculate the correlation fr		ficient	of						earne ncep	t of o	coeffic	cient of	CO 5
2	correlation fr		ficient	of						earne ncep rrela	t of o	coefficand I	cient of nterpret	CO 5
2	correlation fr		ficient	of					Le co	earne ncep rrela e de	t of ottion	coefficand I	cient of	CO 5
2	correlation fr		ficient	of					Le co	earne ncep rrela e deg	ot of ontion gree on the	coefficand I	cient of nterpret seness n two	CO 5
2	correlation fr		ficient	of					Le co co th	earne ncep rrela e deg etwee riabl	ot of oution gree on the les by	coefficand I of close give usin	cient of nterpret seness n two	CO 5
2	correlation fr		ficient	of					Le co co the be va	earne ncep rrela e deg etwee riabl	ot of oution gree on the les by	coeffice and I of close give y usin oeffice	cient of nterpret seness n two	CO 5
2	correlation fr		ficient	of		Ap		11	Le co co the be va	earne orcep rrela e deg etwee riable earso orrela	ot of oution gree of the	coeffice and I of close give y usin oeffice	cient of nterpret seness n two	CO 5

3	Explain the rank correla The followi marks in obstudents in statistics. Valuable, A: statistics. Coefficient of	ation ng da otain acco Wher acco	coeffata gived by wintarie R: countainta	ficient ives the 10 ncy and roll ncy, S	he nd		App	ly	ran Inte	k cor erpret seness en tw	of correlate the second terms between the control of the control of the correct o	efficion a deg weer riabl	ient of and ree of	CO 5
		R	1	2	3	4	5	6	7	8	9	10		
		A	45	70	65	30	90	40	50	75	85	60		
1	Calculate	S	35	90	70	40	95	40	80	80	80	50	4 h a	
4	Calculate to coefficient of the following wages and	of con	relat ta. W	ion fr 7here	om W:		App	ly	con the bet var Pea	relati degr ween iables	of coon as ee of the s by	efficand Indexication Indicates Indi	ient of nterpret seness n two	CO 5
		W	100	101	10)2	102	100	99	97	98	96		
		С	98	99	9	9	97	95	92	95	94	90		
5	Explain the rank correlation Calculate a coefficient of the following Fertilizer us Productivity	ation suits of cor ag da sed(t	coeffable relatate: Vones)	ficient ion fo Vhere	r F:		App	ly	con the bet var Pea	relati degr ween iables	ient of nterpret seness n two	CO 5		
		F	15	18	20) 2	24	30	35	40	50	0		
		P				1		120	130	150				T
6	The following distribution population totally part them. Calcusted is any relational and blindre intervals, Not thousands apersons.	are ong re e		App	ly	con the bet var Pea	relati degr ween iables	of coon as ee of the s by	efficand Indexication Indexented Indexented Indexented Indexes (Indexes)	ient of nterpret seness n two	CO 5			

		A	0-1	0 1	0-20	20	-30	30	-40	40)-50	50-	60	60-	70	70	-80		
		N	100)	60	4	0	3	36	2	24	1	1	6			3		
		В	55		40	4	:0	4	10	:	36	25	2	18	3	1	15		
7	Inter	pret	the	prop	ertie	s of			App	oly		Learı	ner		CO 5				
	rank											conce	•						
	Follo	-										rank							
	obtai		-									Inter	_						
	two s	_										closeness between the given two variables by							
	Math what						of					given							
	the s					_						_	_						
	is rel			111 0 00	o su	ojeco	3					coefficient of correlation.							
			-		S 1	2	3	4	5	6	7	8	9	10					
				-	$M = \frac{1}{2}$		$\frac{1}{1}$	5	3	9	7	10	6	8					
8	The	rank	s of	16 st	uder	$\frac{1}{\text{nts in}}$			App	olv		Leari	ner	to re	call	l the		Т	CO 5
	Math								rr	J		conce							
	are a	s fol	lows	(1,1)), (2	,10),						rank	cor	relati	ion	and	l		
	(3,3)	, (4, 4)	4), (5,5),),						Inter	pret	the	deg	gree	of			
	(7,2)	•			(10,1)	1),						close							
	(11,1)	, .		, .	- 10'							given							
	(13,1)											using spearman's rank coefficient of correlation.							
	$\begin{pmatrix} (16,1) \\ \text{corre} \end{pmatrix}$,						coemcient of correlation						UlOII	٠				
	profi						in												
	math				_	_	111												
9	A sa								App	olv		Learner to recall the							CO 5
	their	_								·		conce							
	follov	wing	data	a abo	out t	heir						rank	cor	relati	ion	and	ł		
	elder											Inter	-		•	_			
	coeff											close							
	Whe											given					by		
	inche inche		ıa s:	Son's	s neig	gnt ii	1					using coeffi					tion		
	IIICIIC	·o.	F	65	63	67	64	6	Q	62	70	66	68			$\frac{761a}{71}$	1011	•	
			S	68	66	68	65	_		66	68	65	71		_	70			
10	Expl	ain t					00		App			Leari	<u> </u>						CO 5
10	rank		_	_					πhľ	,1 y		conce			000				
	Follo						rank	_											
	obtained by 10 students in											Inter							
	two s		-									close	_		-	_			
	Math											given two variables by using spearman's rank							
	what					_						_	_						
	the s			in tw	o su	bject	S					coeffi	cier	nt of	cor	rela	tion	.	
	are r	elate	ed?																

		M	48	33	40	9	16	16	(65 2	24	16	57			
		S	13	13	24	6	15	4	4	20	9	6	19			
11	Outline the regression li the regressio best fit to t	ines. (ta:		App			form lines inher the g to a funct Regr	cearner to recall the cormulae of regression ness and Translate the herent relation between the given two variables in to a mathematical anction by using linear degression.							
			X	$\begin{array}{ c c c }\hline 10\\\hline 10\\\hline \end{array}$					$\frac{17}{29}$	33	$\begin{array}{ c c } 25 \\ \hline 37 \end{array}$					
12	In the follow weight of Poweight of Poweight of Poweight of Poweight with the second	otassi lissolv vater of the y the es. Us estima	um by ve in at V ne for method at S 0 0 0	S is promit 100 ° C. m. mod cois whe	ide Fit of m		App			Lear: form lines inher the g	ner ulae and cent given mat	to relative to relative to relative two two two controls and two controls are the control are two controls a	regre ansla ation o var natica	ssion te the between iables	in	CO 5
13	Interpret the regression of a sample of observation quantities with $\sum X = 11.3$ $\sum X^2 = 12.5$ $\sum Y^2 = 84.5$ $\sum XY = 22$ above data Calculate the equation	oeffici 200 p the fevere costs, 16, 96, 2.13, show	ients. pairs collow alcula $Y = 2$ Fro how efficie	Fro of ing ated. 20.78 om the to ents of	m,		App	ly		inher the g to a	ulae and cent given mat tion	e of a relative two two transfers of two two transfers of two transfers of the relation to the	regre ansla ition o var natica	ssion te the between iables	in	CO 5
14	Outline the between two If $\sigma_x = \sigma_y = \sigma$ between the is $\theta = Tan^{-1}$	form regreated and regree	ula o ession the a	f ang n lin angle n line	es. es		App	ly		angle regre	ept and e be essio icier regr	of real Intervention line of the contract of t	egresserpre en the nes b		g	CO 5

15	Outline the formulae of regression lines. Calculate both regression lines which best fit to the following data: Also, i) find y when x= 13.ii) find x when y = 11.5		Apply		Learner to recall the formulae of regression lines and Translate the inherent relation between the given two variables in to a mathematical function by using linear Regression.		CO 5		
		x 2 4 y 4 2		8	$\frac{10}{4}$	12 11	14 12		
16	Interpret the properties of regression coefficients. For 20 army personal the regression of weight of kidneys (Y) on weight of heart (X) is Y = 0.399X+6.394 and the regression of weight of heart on weight of kidneys is X=1.212Y+2.461. Calculate the correlation coefficient.						Learner to recall the concept of regression ines and Interpret the degree of closeness between the given two variables by using coefficient of correlation and regression coefficients.		CO 5
17	Outline the formulae of regression lines. Calculate the most likely production corresponding to a rainfall 40 from the following data:			Apply		Learner to recall the formulae of regression lines and Translate the inherent relation between the given two variables in to a mathematical function by using linear Regression.		CO 5	
				Rain fall		, , ,			
		Average Standard deviation		30			500Kgs		
	Coefficient of correlate					100 Kgs			
18	Outline the formulae of regression lines. The heights of mothers and daughters are given in the following table. From the two tables of regression estimate the expected average height of daughter when the height of the mother is 64.5 inches. Where F: Mother's height in inches and D: Daughter's height in inches.		1	Apply		Learner to recall the concept of coefficient of rank correlation and Interpret the degree of closeness between the given two variables by using Pearson's coefficient of correlation.		CO 5	

		M	62	63		4	64	65		66	68	_	_							
19	Explain the prank correlation A panel of two Q graded sever	on coeff o judge	ficier s P a	nt.	6	Apply Learner to recall the concept of coefficient of rank correlation and Interpret the degree of							CO 5							
	performances independently marks as follo The eight per which judge Cattend, was as marks by judg had also been calculate how would be expediently been awarded eighth performances.	by award ws: forman ywould warded ge P. If presen many n ected to by him	ing ce, not 37 judg t, nark	ge Q as re						close give usin	ene n t	ess b wo v spear	etwe varia rman	en the bles by i's rank rrelation.						
		Perfor	man	ce	1	2	;	3	4	5	5	6	7							
		Marks	by .	Р	46	42	2 4	14	40	4:	3	41	45							
		Marks			40	38		36	35			37	41		ı					
20	Given the bi-variate data Using regression lines i) find y when x= 10.ii) find x when y = 2.5					Using regression lines i) find y when $x=10.ii$) find x when					1	A ppl	J		form lines inhe the to a func	nulas arerererererererererererererererererere	ae or nd T nt re ren t athe	f regarans latio wo v mati	ll the ression late the n between ariables in cal ng linear	CO 5
			X	1	5	3	2	1	1	7	3	3			,					
			Y	6	1	0	0	1	2	1	5									
		PART-		НО	RT				ER	QU	ES	STI	ONS		00.7					
1	State the define correlation coefficients					A	Appl	У		_					CO 5					
2	List out the ty correlation.	ypes of				A	Appl	У		_					CO 5					
3	Given $n = 12, \sigma_x = 2.5$ and $\sigma_y = 3.6$ sum of the product of deviation from the mean of X and Y is 64 Calculate the correlation co-efficient.					Apply				Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.					CO 5					

4	State the formula of rank correlation coefficient.	Apply	_	CO 5
5	State the properties of correlation coefficient.	Apply	-	CO 5
6	If $\sum XY = 216$, $\sum X^2 = 102$, $\sum Y^2 = 471$ then Calculate correlation coefficient.	Apply	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.	CO 5
7	Given n=10, $\sigma_x = 5.4$ and $\sigma_y = 6.2$ sum of product of deviations from the mean of X and Y is 66 Calculate the correlation co-efficient.	Apply	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.	CO 5
8	State the properties of rank correlation coefficient.	Apply	-	CO 5
9	From the following data calculate (i) correlation coefficient (ii) standard deviation of y. $b_{xy} = 0.85$, $b_{yx} = 0.89$ and $\sigma_x = 3$	Apply	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.	CO 5
10	If N=8, $\sum X = 544$, $\sum Y = 552$, $\sum XY = 37560$ then Calculate COV (X, Y).	Apply	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the covariance for the given data.	CO 5

11	The equations of two regression lines are 7x-16y+9=0, 5y-4x-3=0. Calculate the coefficient of correlation.	Apply	Learner to recall the concept of coefficient of correlation and explain its practical importance and use the formula to calculate the coefficient of correlation for the given data.	CO 5
12	State the formulae of normal equations for regression lines?	Apply	_	CO 5
13	State the formula of angle between two regression lines	Apply	_	CO 5
14	Find the means of X and Y variables from the following two regression equations: $2Y-X-50=0$, $3Y-2X-10=0$	Apply		CO 5
15	Find the coefficient of correlation between X and Y variables from the following two regression equations: 2Y-X-50 = 0 3Y-2X-10 = 0	Apply		CO 5
16	Find the means of X and Y variables from the following two regression equations: $4X-5Y+33=0$ $20X-9Y-107=0$	Apply		CO 5
17	Find the coefficient of correlation between X and Y variables from the following two regression equations: $4X-5Y+33=0\ 20X-9Y-107=0$	Apply		CO 5
18	State the properties of regression lines.	Remember	_	CO 5
19	List the differences between correlation and regression.	Apply		CO 5
20	$\sum X = 15, \sum Y = 25,$ $\sum X^2 = 55, \sum Y^2 = 135,$ $\sum XY = 83 \text{ and N} = 5 \text{ find}$ the regression coefficient of y on x.	Apply		CO 5

		MODULE V		
	TESTIN	G OF HYPO	THESIS	
PAR	T A-PROBLEM SOLVING	AND CRITI	ICAL THINKING QUES	STIONS
1	It is claimed that a random sample of 49 tires has a mean life of 15200 kms This sample was taken from population whose mean is 15150 kms and S.D is 1200 km Examine the truth value of the claim at 0.05 level of significant.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
2	A manufacturer claims that at least 95% of the equipment which he supplied to a factory confirmed to specifications. An examination of sample of 200 pieces of equipment received 18 were faulty Examine the truth value of the claim at 0.05 level.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
3	Among the items produced by a factory out of 500, 15 were defective. In another sample of 400, 20 were defective Examine whether there is any significant difference between two proportions at 5% level.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
4	A mechanist making engine parts with axle diameters of 0.700 inch. A random sample of 10 parts shows a mean diameter of 0.742 inch with a S.D of 0.040 inch. Compute the statistic you would use to Examine whether the work is meeting the specifications.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6

5	To examine that the hintelligent investigate 9 couples at them a test. The result Where H: wife's I.Q. value of the	e an of l.Q.	Арр	ply	pro hyp suit for calc valu	arner ocedure table mula culate ue wi ue to erence	CO 6						
	level of sig	gnifica H	ance o	f 0.05.	97	105	123	109	86	78	103	1	
		W	106	98	87		116	95	90	69	103	_	
6	Pumpkins were grown under two experimental conditions. Two random samples of 11 and 9 pumpkins. The sample standard deviation of their weights as 0.8 and 0.5 respectively. Assuming that the weight distributions are normal, Examine the truth value of hypothesis that the					App	ply	Lea pro equ cald vali the dra	arner oceduments ality culate ue contabulate tabu	to re re of of va e test mpar llated e infe	ecall the F-test ariance statistic it we have been considered to be consid	es for es and stic ith e to	CO 6
7	true variances are equal. From the following data, calculate whether there is any significant liking in the habit of taking soft drinks among the categories of employees.					App	oly	pro squ ind attracted con tab	Learner to recall the procedure of Chi square-test for independency of attributes and calculate test statistic value compare it with the tabulated value to draw the inference.				CO 6
	1		Sof	t drinl	ks	Clerks	Teac	chers	offic	cers			1
	Pepsi				10 25		25 65						
	Thumbs up				ıp	15 30			6				
	Fanta					50	6	60 30					

8	In an investigation on the					Appl	у	Learne	er to re	call t	he	CO 6
		e perforn		the				proced	ure of	Chi		
	followin	g results	are					square	-test fo	r		
	obtained	d. Exam	ine whe	$_{ m ether}$				indepe	ndency	of		
	the perf	ormance	of the					attribu	ites an	d cal	culate	
	machines is independent or not by using chi square test							test st	atistic	value)	
								compa	re it w	ith tl	ne	
	at 5% LOS.							tabula	ted val	ue to	draw	
								the inf	erence			
				No o	f ur	nits insp	ected	No o	f defec	tive		
		Mac	chine1			375			17			
		Mac	chine2			450			22			
9	_	of stud				Appl	у 🗍	Learne				CO 6
		rom two						proced			0	
		n their v	_					hypothesis and select the				
	kilograms mean							suitabl				
	calculat	ed and s	hown b	$_{ m elow}$						_	are the	
	make a large sam			camine				calcula				
		ificance	of diffe	rence		value with the tabulated value to draw the				ulated		
	between	means.										
								inferen	ice.			
				Mear	ı	Standar	rd Dev	viation	Samp	ole Si	ze	
		Univer	sity A	55			10			10		
		Univer	sity B	57			15		:	20		
10	The mea	asureme	nts of t	he		Appl	y	Learne	er to re	call t	he	CO 6
	output o	of two u	nits hav	<i>i</i> e				proced	ure of	F-tes	st for	
	given th	e followi	ing resu	ılts.				equalit	y of va	rian	ces and	
	Assumir	ng that b	ooth sa	mples				calcula	te test	stat	istic	
	have be	re been obtained from the					value o	compar	e it v	vith		
	normal populations at 10%							the tal				
	significa	nt level,	examin	ne				draw t	he infe	rence	e.	
	whether	the two	popula	ations								
	have the	e same v	ariance									
			Unit-	A 1	4.1	10.1	14.7	13.7	14.0			
			Unit -	R 1	4.0	14.5	13.7	12.7	14.1			

	PART-B LONG	G ANSWEI	R QUESTIONS	
1	A sample of 400 items is taken from a population whose standard deviation is 10. The mean of sample is 40. Examine whether the sample has come from a population with mean 38 also calculate 95% confidence interval for the population.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
2	The means of two large samples of sizes 1000 and 2000 members are 67.5 inches and 68.0 inches respectively. Can the samples be regarded as drawn from the same population of S.D 2.5 inches?	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
3	An ambulance service claims that it takes on the average 8.9 minutes to reach its destination in emergency calls. To check on This claim the agency which issues license to Ambulance service has then timed on fifty emergency calls getting a mean of 9.2 minutes with 1.6 minutes. Examine the claim at 5% LOS	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
4	According to norms established for a mechanical aptitude test, the persons who are 18 years have an average weight of 73.2 with S.D 8.6 if 40 randomly selected persons have average 76.7 Examine the truth value of the hypothesis $H_0:\mu$ =73.2 against alternative hypothesis: $\mu > 73.2$.	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6

5	bulbs promanufactor mean lift and so desample by manufactor mean hours we have a mean hours we have the saminum and the saminu	le of 100 electricoduced by eturer 'A' showed to time of 1190 and to f 75 bulbs produfacturer 'B' Shife time of 123 ith s.d. of 120 le whether there we between the	ed a hours duced lowed o hors. is any	Apply	proced hypoth suitabl formul calcula value v	er to recall the ture of testing of testing of testing of testistic and compare ated test statistic with the tabulation draw the test.	the the tic	CO 6
		es of the two bra						
6	A cigare firm cla of cigare brand E that 42 200 smc and 18 of 100 s B. Exar difference	ette manufactur ims that brand ettes outsells its 3 by 8%. if it is out of a sample okers prefer brand but of another s mokers prefer b nine whether 8% ce is a valid clai	ing A line found of A sample rand m.	Apply	proced hypoth suitabl formul calcula value v value t inferen		the the tic	CO 6
7	rural ar phones in urbar accepted of 'cell' area and	t of 400 persons ea possessed 'ce while 120 out on area. Can it had that the propophones in the rad Urban area is Use 5% of level once.	ell' f 500 pe ortion ural same	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.			CO 6
8	drawn f and from kilogram calculat make a	s of students we rom two univers in their weights as mean and S.I. ed and shown be large sample Ex- ificance of differ a means.	sities in D are below camine	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.			CO 6
			Mean	Standard De	viation	Sample Size		
		University A	55	10		400		
		University B	57	15		100		

9	600 men w smokers. I informatio conclusion of men in smokers?	vere for Does T n supp that t This c	This port the the majority ity are	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
10	mean life of S.D of 20th manufactur mean life of Examine v	of 990 ars. The arer class of bulb whethe	bulbs gives a hours with he hours with he hims that the hims 1000 hrs. In the sample dard or not?	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
11	had the fo 70,120,110 98,107,100 support th population	llowing 1,101,8 . Do to the assument the true at 5%	8,83,95, he data mption of is I.Q of 100. th value of	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
12	Two rando the followi Examine v samples ca population	ng res whethe ame fro	ults. r the om the same	Apply	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.	CO 6
	Sample	size	Sample mean	Sum of squ	ares of deviations from mean	
	I	10	15		90	
	II	12	14		108	

13	Two independent samples of items are given respectively had the following values. Examine whether there is any significant difference between their means?						App	ply	,	Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulated value to draw the inference.					CO 6	
		S	Sample	Ι	11	11	13		11	15	9	12	1	4		
		S	ample	II	9	11	10		13	9	8	10	-			
14	Time taken by workers in performing a job by method 1 and method 2 is given below. Does the data show that variances of time distribution from population which these samples are drawn do not differ significantly?						Apj	рту		Learner to recall the procedure of F-test for equality of variances and calculate test statistic value compare it with the tabulated value to draw the inference.					est for aces and tistic with ue to	CO 6
			Metho	od 1	20	1	6 2	27	23	22	2 2	26	_			
		ŀ	Metho	od 2	2 27	3	3 4	12	35	32	2 ;	34	38			
15	Method 2 27 A die is thrown 264 times with the following results. Prove that the die is unbiased.					with the following results. Prove that the die is procedure of Chi square-test for							tistic with ue to	CO 6		
		N	o appe	arec	d-on	die	1		2	3	4	5		6		
					ncy		40	3	32	28	58	5		52		
16	Frequency 200 digits were chosen at random from set of tables the frequency of the digits is Where d: digits and f: frequencies. Use chi square test to examine the correctness of the hypothesis that the digits are distributed in equal number in the table.						Ap	ply	,	Learner to recall the procedure of Chi square-test for equal frequencies and calculate test statistic value compare it with the tabulated value to draw the inference.				CO 6		
		d	0	1	2	3	4		5	6	7		8	9		
		f	18	19	23	21	16		25	22	20	2	1	15		

17	The average breaking strength of the steel rods is specified to be 18.5 thousand pounds. sample of 14 rods were tested. The mean and S.D obtained were 17.85 and 1.955 respectively. Is the result of experiment significant? Apply Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the calculated test statistic value with the tabulate value to draw the inference. Apply Learner to recall the procedure of testing of hypothesis and select the suitable test statistic formula and compare the value with the tabulate value to draw the inference. Apply Learner to recall the procedure of testing of hypothesis and select the suitable test statistic value with the tabulate value to draw the inference.									g of ect the ic are the istic	CO 6
18	A group of with media 39, 48, 60 group of 7 same hosp medicine 164, 68, 69 you agree medicine 1 weigh sign	cine A we and 41 kg patients bital treat B weigh 3 and 62 kg with the B increase	eigh 42, gs. Secon from the ed with 48, 42, 56 gs. Do claim the es the	nd e S,	Apply		proc hypo suita form calca valu valu	rner to recedure of othesis and and ulated to e with the to drawner.	of testing and select statistic comparest statistic tabu	g of ect the ic are the istic	CO 6
19	In one sar observation deviations values from 120 and in of 12 observation difference level.	ras e .4.	Apply		procedure calculation valuation the	rner to reedure of ality of ulate te e compatabulate with the in	CO 6				
20	The follow samples at the heat-p (in million ton) of spe from two tuse the 0. significant whether it assume the two poequal.	re measure or oducing as of calor ecimens of calor ecimens of the control of the	capacity ies per if coal if mine nable to riances of s are	of	Apply		procedure calculation the draw	rner to reedure of ality of ulate te compatabulate with the in	of F-test variance st statis are it w ed value	for es and stic ith e to	CO 6
		Mine 1	8,260	8,13			070	8,340			
		Mine 2	7,950	1,89	00 7,900	8,1	140	7,920	7,840		

	PART-C SHOR	T ANSWE	R QUESTIONS	
1	State the definition of population? Give an example.	Apply		CO 6
2	State the definition of sample? Give an example.	Apply	_	CO 6
3	State the definition of parameter and statistic.	Apply	_	CO 6
4	State the definition of standard error of a statistic.	Apply	_	CO 6
5	In a manufacturing company out of 100 goods 25 are top quality. Find sample proportion.	Apply	_	CO 6
6	Find the confidence interval for single proportion if 18 goods are defective from a sample of 200 goods.	Apply	_	CO 6
7	Find the sample proportion in one day production of 400 articles only 50 are top quality.	Apply	_	CO 6
8	State the formula for difference of means in large samples.	Apply	_	CO 6
9	State the formula of test statistic for difference of proportions in large samples.	Apply	_	CO 6
10	If $\bar{x} = 47.5$, $\mu = 42.1$, s=8.4,n=24 then Find t.	Apply	_	CO 6
11	If $\bar{x} = 40$, $\mu = 25$, s=8.4,n=24 then Find t.	Apply	_	CO 6
12	State the definition of the statistic for t test for single mean?	Apply	_	CO 6
13	State the definition of degree of freedom.	Apply	_	CO 6
14	Find $F_{0.05}$ with $(7, 8)$ degrees of freedom.	Apply	_	CO 6
15	Find $t_{0.05}$ when 16 degrees of freedom.	Apply	_	CO 6
16	State the definition of the statistic for t test for difference of means?	Apply	_	CO 6

17	State the formula of the	Apply	_	CO 6
	degree of freedom for t test			
	for difference of means?			
18	State the definition of the statistic for F test?	Apply	_	CO 6
19	State the formula of the degree of freedom for chi square test for contingency table of order 4x3?	Apply		CO 6
20	State the Formula of statistic for chi square test?	Apply	_	CO 6

Course Coordinator: Dr. G.Srinivasu, Associate Professor HOD