Task 1

1. (first file)

$ \begin{array}{c} $	J = (7900) r (12 Pm) [-1, 2, 12 Pm] minutes seconds = 03 ° 46 = 226500 D 101	or (10 pm) 7 10 pm min sec - 04803=243 See
D72 = min sec = 229 500 D122=	min Sec -03 % 48=228 Sec 0102	= 04° 33= 273 See
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	min sec 04 0 23=26350 D103	min sec = 03 % 47 = 227 See
min sec D74 = 040 55=295 see D124	min Sec = 04003=2435000104	min sec = 05 ° 03=303500
$\frac{1}{3}$ min sec $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{$	min sec = 048 S 7=297 300 D105	min sec = 04 ° 59 = 299 Sec
min sec D76 = 06 % 18=3785@D126	min Jec = 060 12=372500 D106	min sec = 06 % 07 = 3675ee
= min sec = D ₇₇ = 11 % 19=6795ec D ₁₂ -	min sec = 080 46=5260010	$\frac{\text{min}}{-08} \stackrel{\text{Sec}}{\circ} 21 = 501 \text{ Sec}$

(Second file)

For dealing with data, we convert every one of them to seconds to be easy to deal EX 3min and 47 sec = 3*60+47=227 sec and so on

1st_file 7 AM	1st_file 12PM	1st_file 10PM	2nd_file 7AM	2nd_file 12PM	2nd_file 10PM
227	226	243	207	205	225
229	228	273	210	209	249
232	263	227	214	243	223
295	243	303	279	235	291
392	297	299	370	270	306
378	372	367	344	351	413
679	526	501	640	483	468

For finding the right distribution we used a program called <u>Minitab</u>
Which can detect the right distribution by <u>the higher P parameter</u>

2.

Ⅲ WORKSHEET 1

Distribution Identification for 1st-file 7am

Goodness of Fit Test

Distribution	AD	P	LRT P
Normal	0.662	0.047	
Box-Cox Transformation	0.394	0.269	
Lognormal	0.454	0.182	
3-Parameter Lognormal	0.455	*	0.037
Exponential	1.412	0.029	
2-Parameter Exponential	0,462	>0.250	0.000
Weibull	0.594	0.099	
3-Parameter Weibull	0.396	0.396	3.008
Smallest Extreme Value	0.866	0.020	
Largest Extreme Value	0.556	0.135	
Gamma	0.547	0.181	
3-Parameter Gamma	0.391	*	0.007
Logistic	0.570	0.086	
Loglogistic	0,443	0.214	

Ⅲ WORKSHEET 1

Distribution Identification for 1st-file 12pm

Goodness of Fit Test

Distribution	AD	P	LRT P
Normal	0.641	0.054	
Box-Cox Transformation	0.261	0.579	
Lognormal	0.460	0.175	
3-Parameter Lognormal	0.271	*	0.055
Exponential	1.751	0.012	
2-Parameter Exponential	0.275	>0.250	0.000
Weibull	0.625	0.085	
3-Parameter Weibull	0.244	>0.500	P.09
Smallest Extreme Value	0.823	0.024	
Largest Extreme Value	0.512	0.179	
Gamma	0.555	0.172	
3-Parameter Gamma	0.271	*	0.023
Logistic	0.568	0.087	
Loglogistic	0.427	0.232	

■ WORKSHEET 1

Distribution Identification for 1st-file 10pm

Goodness of Fit Test

Distribution	AD	P	LRT P
Normal	0.467	0.167	3.
Box-Cox Transformation	0.150	0.928	
Lognormal	0.290	0.508	
3-Parameter Lognormal	0.196	*	0.150
Exponential	1.890	0.008	
2-Parameter Exponential	0.215	>0.250	0.000
Weibull	0.493	0.198	
3-Parameter Weibull	0.247	>0.500	0.081
Smallest Extreme Value	0.700	0.052	
Largest Extreme Value	0.270	>0.250	
Gamma	0.364	>0.250	
3-Parameter Gamma	0.353	*	0.756
Logistic	0.384	>0.250	
Loglogistic	0.257	>0.250	
35 () () () () ()	0 770	*	0 470

Ⅲ WORKSHEET 1

Distribution Identification for 2nd-file 7am

Distribution	AD	P	LRT P
Normal	0.640	0.054	
Box-Cox Transformation	0.360	0.334	
Lognormal	0.420	0.228	
3-Parameter Lognormal	0.406	*	0.066
Exponential	1.369	0.033	
2-Parameter Exponential	0.400	>0.250	0.000
Weibull	0.565	0.127	
3-Parameter Weibull	0.358	0.470	≥.012
Smallest Extreme Value	0.853	0.021	
Largest Extreme Value	0.517	0.175	
Gamma	0.513	0.212	
3-Parameter Gamma	0.364	*	0.017
Logistic	0.540	0.104	
Loglogistic	0.405	>0.250	

As for high values of p, we have chosen the 3-Parameter Weibull distribution.

3.

A) Yes, the distributions are similar. They all follow the 3-Parameter Weibull distribution.

B) The mean of the 1st file at 7am:

The mean of the 1st file at 12pm:

The mean of the 1st file at 10pm:

The mean of the 2nd file at 7am:

The mean of the 2nd file at 12pm:

The mean of the 2nd file at 10pm:

From these results, we recommend to download at 12 pm.

c) we have shown the data of the second file. we have downloaded the first file from Google Drive which has data Centers in countries in North America, South America, Europe and Asia. we have downloaded the second file from GEOFABRIK Site which has a data center in Germany. Germany isn't of the countries which the data centers of Google Drive are located in.

The second file has been downloaded faster from the first file as the mean time of downloading the Second file is less than the first file:

The difference in size between the two files is 3 MB ("first file:143 MB"

"second file: 140 MB") so the difference is small so we recommend to download from the second site (GEOFABRIK).

```
mean of 1st file at 7am = \frac{227+229+232+29}{7} mean of 1st file at 12 fm = \frac{226+228+263+243+297+372+526}{7} = \frac{347.429}{5} = \frac{3
```

```
[39 ving time]

First file

mean at 79m - mean at 12 Pm = 347.429-307.857 = 39.572 Sec.

mean at 10 Pm - mean at 12 Pm = 316.143-307.857 = 8-286 Sec.

second file

mean at 79m - mean at 12 Pm = 323.429-285.143 = 38.286 Sec.

mean at 79m - mean at 12 Pm = 310.714 - 285.143 = 25.571 Sec.
```

```
Expecting 99in

First File

mean at 18 \text{ Pm} = 307.857 = 0.8861

mean at 18 \text{ Pm} = 307.857 = 0.97379

mean at 18 \text{ Pm} = 307.857 = 0.97379

second File

mean at 18 \text{ Pm} = 285.143 = 0.88162

mean at 79m = 323.429

mean at 18 \text{ Pm} = 285.143 = 0.9177

mean at 18 \text{ Pm} = 285.143 = 0.9177

mean at 18 \text{ Pm} = 285.143 = 0.9177
```

TASK (2)

Bluetooth

Brief about the technology:

Bluetooth is a wireless technology standard used for exchanging data between fixed and mobile devices over short distances using UHF radio waves.

Why Bluetooth?

- Bluetooth removes problem of radio interface by using speed frequency hopping technology.
- low power consumption for the chip almost 0.3 mW so more battery life.
- over comes constrains of line of sight.
- although new technologies nowadays but Bluetooth is a perfect solution for some applications like internet of things (IOT) and connecting some devices wire-less.

we have used in our experiment and all results are depending on a Bluetooth 4.2 version for both the transmitter and the receiver at outdoor.

walking through the experiment:

a. Taking results for sending same file at different time.

a file size 2.3 MB is used.

starting the experiment at 4 pm and repeating for every hour.

Time sent	Transfer time(S)
4:00 pm	13.3
5:00 pm	13.17
6:00 pm	13.54
7:00 pm	13.86
8:00 pm	13.67
9:00 pm	14

From the previous results we can see clearly that transfer time for same file at different times is almost the same during whole experiment So, transfer time is **Almost** independent of the time we send at.

The time we send at doesn't really affect the results.

Our results can be expressed as normal distribution.

b. repeating the measurement for different distances between the wireless devices.

A 1.56 MB file is used through this part.

Taking in consider that Bluetooth 4.2 range out door is different from indoor Our results based on outdoor readings .

Distance between devices	Transfer time (s)
(m)	
0	9.09
2.5	9.14
5	9.61
10	10.17
15	10.94
20	13.07
25	13.79
30	16
35	26.5
40	30.825
45	34.5
50	Connection failed

We have noted that time required to transfer the file depends on other factors rather the distance like the crowd in street so the readings is almost all in a little crowded street.

Notes from results:

- As long as we increase the distance the time required to transfer the same file will increase.
- At 50m the connection between devices have failed So we can say that :
- Maximum range to transfer is < 50M, beyond this range connection failed.
- Our recommended range is < 25M , connection was so good and take the shortest times to transfer at this range .
 The time needed in a range less than 20m is better by almost 35% the maximum range .
- -of course all ranges are for outdoor.
 - Probability same file to be sent decreases as long as we increase the distance we can say that it is almost exponential distributed.

The figure represent a C.D.F for previous results considering it follows an exponential distribution.

c. by repeating for different file sizes.

We have used a variety of file sizes up to 12.5 MB all the operation at a constant distance between the devices .

File size (MB)	Transfer time (s)	Rate (MB/S)
1.2	6.92	0.173
1.6	9.31	0.171
1.9	11.41	0.166
3	17.68	0.169
3.3	18.65	0.176
5.2	30	0.173
7.2	41.22	0.174
8.7	48.53	0.180
10.7	59.85	0.178
12.4	68.88	0.180

Notes from results:

- as long as the file size increase the time needed to transfer the file also increased.
- data rate is almost constant for variety of sizes.
- from our results we can say that bluetooth is a good choice for transferring small sizes of files but for large files it won't be the smartest choice.

the figure represent a C.D.F if it follows an exponential distribution .

Figures in this task is done by matlab with following code for the C.D.F's .

Note: the average used in the equations is the average of our results from previous tables.

```
Code:
%Plotting CDF of the file size
x1=[0:1:50];
e=2.7182818284590452353602874713527;
y1=1-(e.^{(-.1739*x1)});
figure(1);
plot(x1,y1), xlabel('time'), ylabel('CDF');
grid on;
%Plotting CDF of ditance
x2=[0:.5:10];
y2=1-(e.^(-1.223*x2));
figure(2);
plot(x2,y2),xlabel('time'), ylabel('CDF');
grid on;
```

Histograms and P.D.F using Minitab

distance

File size

Task 3

Explanation about task 3

In this task we chose two different data:

1) Data about the 20 years of Olympic history(athletes): their age, height and weight for almost 27,000 athletes

the link for this data is

https://www.kaggle.com/heesoo37/120-years-of-olympic-history-athletes-and-results

2) Data about the population of the cities in India (population of men, population of women, men who graduated, women who graduated for almost 500 different cities in India

the link for this data is

https://www.kaggle.com/zed9941/top-500-indian-cities

these two data are from Kaggle website and there are real as many data scientists and machine learning developer take this data to use it in their work

we use every Random variable in this data, take samples, take their average and each time we increase the size of the sample until the mean you compute is independent from the sample size

we also include the excel data sheets in our submission and we include the table of the number of samples, the mean of them and the plots which explain the results in this report

Data about the 20 years of Olympic history(athletes)

Number of sample	average of age	average of height	average of weight
200	27.33163265	178.7831325	76.10542169
400	26.52432432	175.2069173	74.74914676
600	25.85424354	176.3673469	72.84451902
800	25.72027027	175.0793388	71.20343137
1000	25.47435897	175.8503937	71.79335072
2000	25.34032512	175.8928571	71.6120801
4000	25.12734975	175.1595711	70.97222222
6000	25.2383629	175.2569809	71.03729456
8000	25.33596215	175.3727668	71.08134824
10000	25.39120395	175.2568819	70.86644147
12000	25.39523102	175.1957311	70.78490627
14000	25.41817502	175.3400329	70.9071356
16000	25.43783077	175.4330414	70.99428295

for **age variable**, we recommended to take a sample size **more than or equal 22000** because it's obvious that the mean started to be constant from that size

for **weight variable**, we recommended to take a sample size **more than or equal**10000 because it's obvious that the mean started to be constant from that size

for **height variable**, we recommended to take a sample size **more than or equal 10000** because it's obvious that the mean started to be constant from that size

so, as a result: while increasing the sample size the mean will be orbit around a specific value until we reach a constant value for the mean which don't depend on the sample size

Data about the population of the cities in India

a Average Female_gradu	Average male_gradua	Average population_fe	Average population_male	number of samples
49668.3	65703.4	422560.6	467738	10
3328	43040.96667	260961.2667	286739.7667	30
24821.:	33301.72	201037.94	220414.32	50
21062.:	28454.58571	171184.7286	187602.0143	70
26391.4888	35911.77778	207372.4667	227922.9222	90
25557.90909	35184.88182	199955.5818	219693.0455	110
26897.3461	36433.5	204096.9923	222286.2615	130
31744.8733	42270.37333	227356.3133	249553.0533	150
29899.3941	39907.08235	217084.4353	238262.5059	170
34793.6473	46104.81579	251481.1263	277606.0526	190
33750.6666	44872.73333	243346.5905	268621.6905	210
33928.5130	45082.43043	244897.8348	269901.213	230
32607.29	43444.132	236741.708	260717.16	250
31543.9481	41999.66667	229531.6	253127.1778	270
33025.8482	43583.2069	238211.0724	262345.0517	290
31962.5806	42188.75161	232851.5774	255959.1613	310
30976.20909	40942.49091	227006.5879	249505.0818	330
30710.70	40565.88857	225573.0657	247780.7086	350
29911.6918	39536.98919	219407.2459	240860.1676	370
30327.2948	40128.13077	221207.8154	242803.6256	390
29779.0170	39432.29024	217797.3585	238945.9268	410
29033.4465	38473.43256	213250.3372	233848.3023	430
28705.2	38088.6	214255.1356	235774.9111	450
28441.2212	37606.27021	212541.5574	233376.8574	470
28486.7951	37715.56187	213765.5842	234346.789	494

for **population male variable**, we recommended to take a sample size **more than or equal 430** because it's obvious that the mean started to be constant from that size

for **population female variable**, we recommended to take a sample size **more than or equal 430** because it's obvious that the mean started to be constant from that size

for **male graduate's variable**, we recommended to take a sample size **more than or equal 450** because it's obvious that the mean started to be constant from that size

for **female graduate's variable**, we recommended to take a sample size **more than or equal 450** because it's obvious that the mean started to be constant from that size

so, **as a result**: increasing the sample lead to a different value of mean until a specific number of sample (which depend on the variable) where the mean is independent from the sample size