Submitted by-Aditya Gautam

Roll No-12

M.sc. 3rd semester

Date of Assignment-26/10/2020

Date of Submission-01/10/2020

Experiment No -01

Topic- Tracing a power curve for testing the mean of Normal Distribution.

<u>Problem</u> –A random sample of size 25 is drawn from $N\sim(\mu,\sigma^2)$ where $\sigma^2=4$. Draw the power curve for testing $H_0: \mu=2$

Against

(1)
$$H_1: \mu > 2$$
 (2) $H_1: \mu < 2$ (3) $H_1: \mu \neq 2$

Use the level of significance as $\alpha = 0.05$.

Theory and Calculation-

Using Neyman's pearson fundamental lemma, the critical region is given by-

$$\begin{split} & \text{W} = \{\mathbf{x}: \frac{L(\tilde{\mathbf{x}}, \theta_1)}{L(\tilde{\mathbf{x}}, \theta_0)} \geq k\} \\ & \text{Here, } \mathbf{f}(\mathbf{x}, \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2} \frac{\mathbf{x}^2 - \mu}{\sigma^2}}, \ -\infty < \mathbf{x} < \infty \ , \ -\infty < \mu < \infty, \quad \sigma > 0 \end{split}$$

$$& \text{Therefore } \frac{L(\tilde{\mathbf{x}}, \mu_1)}{L(\tilde{\mathbf{x}}, \mu_0)} = \frac{\prod_{i=1}^n f(x_{i:} \mu_1, \sigma^2)}{\prod_{i=1}^n f(x_{i:} \mu_0, \sigma^2)} \geq k$$

$$& \Rightarrow \frac{(\frac{1}{\sigma\sqrt{2\pi}})^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_1)^2}}{(\frac{1}{\sigma\sqrt{2\pi}})^n e^{-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu_0)^2}} \geq k$$

$$& \Rightarrow e^{-\frac{1}{2\sigma^2} \left[\sum_{i=1}^n (x_i - \mu_1)^2 - \sum_{i=1}^n (x_i - \mu_0)^2 \right]} \geq k$$

$$& \Rightarrow e^{-\frac{1}{2\sigma^2} \left[n(\mu_1^2 - \mu_0^2) - 2 \sum_{i=1}^n (\mu_1 - \mu_0) \right]} \geq k$$

$$& \Rightarrow e^{-\frac{1}{2\sigma^2} \left[n(\mu_1^2 - \mu_0^2) - 2 n x (\mu_1 - \mu_0) \right]} \geq k$$

$$& \Rightarrow -\frac{1}{2\sigma^2} \left[n(\mu_1^2 - \mu_0^2) - 2 n x (\mu_1 - \mu_0) \right] \geq k', \ \text{where } k' = \log k$$

$$& \Rightarrow -\frac{n}{2\sigma^2} \left[n(\mu_1^2 - \mu_0^2) + \frac{n \bar{x}}{\sigma^2} (\mu_1 - \mu_0) \right] \geq k'$$

$$& \Rightarrow \frac{n \bar{x}}{\sigma^2} (\mu_1 - \mu_0) \geq k' + \frac{n}{2\sigma^2} ((\mu_1^2 - \mu_0^2))$$

$$& \Rightarrow \bar{x} (\mu_1 - \mu_0) \geq k'', \ \text{where } k'' = \frac{\sigma^2}{n} \left[k' + \frac{n}{2\sigma^2} ((\mu_1^2 - \mu_0^2)) \right]$$

$$& \Rightarrow \bar{x} (\mu_1 - \mu_0) \geq k'', \ \text{where } k'' = \frac{\sigma^2}{n} \left[k' + \frac{n}{2\sigma^2} ((\mu_1^2 - \mu_0^2)) \right]$$

Case I: When $\mu_1 > \mu_0$, then the critical region is

$$W_1=\{x\colon \bar x\geq k_1\}$$

Case II: When $\mu_1 < \mu_0$, then the critical region is

$$W_2 = \{x : \bar{x} \le k_2\}$$

(I) We are to test H_0 : $\mu = 2$ against H_1 : $\mu > 2$. The critical region for testing this is given by

$$W_1 = \{x : \bar{x} \ge k_1\}$$

where k_1 is a constant to be determined such that

$$P(x \in W_1|H_0) = \alpha$$

$$\Rightarrow P(\bar{x} \ge k_1 | H_0) = 0.05$$

To obtain the value of k_1 , we need the following R command

k1 = qnorm(0.95, 2, 2/5)

k1

$$k_1 = 2.657941$$

Thus the critical region is $W_1 = \{x : \bar{x} \ge 2.657941\}$

Power of the test is given by=1- β = $P(x \in W_1|H_1)$

$$= P(\bar{x} \ge 2.657941 \mid \mu > 2)$$

=1-
$$P(\bar{x} \le 2.657941 \mid \mu > 2)$$

Now to draw the power curve we construct the following table using the following R command-

Trial values of $\mu(>2)$	Power
3.01	0.8106100
3.02	0.8173061
3.03	0.8238523
3.04	0.8302482
3.05	0.8364931
3.06	0.8425868
3.07	0.8485294
3.08	0.8543208
3.09	0.8599615
3.10	0.8654519
3.11	0.8707927
3.12	0.8759848
3.13	0.8810290
3.14	0.8859266
3.15	0.8906789
3.16	0.8952872
3.17	0.8997532

3.18	0.9040785
3.19	0.9082650
3.20	0.9123145
3.21	0.9162292
3.22	0.9200111
3.23	0.9236625
3.24	0.9271856
3.25	0.9305829

Programming in R for case 1

```
sigma = 2
sigma n=25
n
sd=sigma/sqrt(n)
sd
k1=qnorm(0.95,2,sd)
k1
mu=c(3.01,3.02,3.03,3.04,3.05,3.06,3.07,3.08,3.09,3.10,3.11,3.12,3.13,3.14,3.15,3.16,3.17,3.18,3.19,3.20,3.21,3.22,3.23,3.24,3.25)
mu
power=mat.or.vec(25,1)
power
```

```
power1=mat.or.vec(25,1)

power1

for(i in 1:25){
  power[i]=pnorm(k1,mu[i],sd)
  power

power1[i]=1-power[i]}

power1

plot(mu,power1)
```

Power curve for case 1

ii) Here we are to test H_0 : $\mu = 2$ against H_1 : $\mu < 2$. The critical region for testing this is given by

$$W_2 = \{x : \bar{x} \le k_2\}$$

where k_2 is a constant to be determined such that

$$P(x \in W_2|H_0) = \alpha$$

$$\Rightarrow P(\bar{x} \le k_2 | H_0) = 0.05$$

To obtain the value of k_2 , we need the following R command

k2 = qnorm(0.05, 2, 2/5)

k2

$$k_2 = 1.342059$$

Thus the critical region is $W_2 = \{x: \bar{x} \ge 1.342059\}$

Power of the test is given by=1- β = $P(x \in W_2|H_1)$

$$= P(\bar{x} \le 1.342059 \mid \mu < 2)$$

Now to draw the power curve we construct the following table considering different trail values ($\mu < 2$).

Trial values for $\mu < 2$	Power
1.60	0.2595110
1.61	0.2514756
1.62	0.2435735
1.63	0.2358076
1.64	0.2281801
1.65	0.2206934
1.66	0.2133493
1.67	0.2061498
1.68	0.1990963
1.69	0.1921902
1.70	0.1854327
1.71	0.1788246
1.72	0.1723668
1.73	0.1660597

1.74	0.1599037
1.75	0.1538989
1.76	0.1480453
1.77	0.1423426
1.78	0.1367904
1.79	0.1313881
1.80	0.1261349
1.81	0.1210299
1.82	0.1160721
1.83	0.1112602
1.84	0.1065928

Programming in R for case 2

```
sigma=2
sigma
n=25
n
sd=sigma/sqrt(n)
sd
k2=qnorm(0.05,2,sd)
k2
mu = c(1.60, 1.61, 1.62, 1.63, 1.64, 1.65, 1.66, 1.67, 1.68, 1.69, 1.70, 1.71, 1.72, 1.73, 1.74, 1.75, 1.76, 1.
77,1.78,1.79,1.80,1.81,1.82,1.83,1.84)
mu
power=mat.or.vec(25,1)
power
for(i in 1:25){
power[i]=pnorm(k2,mu[i],sd)
power
```

plot(mu,power)

Power curve for case 2

iii) Here we are to test H_0 : $\mu = 2$ against H_1 : $\mu \neq 2$. The critical region for testing this is given by

$$W_3 = \{x: \bar{x} \le k_3 \text{ or } \bar{x} \ge k_4 \}$$

where k_3 and k_4 are some constants to be determined such that

$$P(x \in W_3 | H_0) = \alpha$$

$$\Rightarrow P(\bar{x} \le k_3 \text{ or } \bar{x} \ge k_4 | H_0) = 0.05$$

$$\Rightarrow P(\bar{x} \le k_3) + P(\bar{x} \ge k_4) = 0.05$$

Assuming that the test is equitailed, we have

$$P(\bar{x} \le k_3) = \frac{0.05}{2} = 0.025$$

$$\&P(\bar{x} \ge k_4) = 0.025$$

To obtain the values of k_3 and k_4 , we use the following R command:

k3

k4=qnorm(1-0.025,2,2/5)

k4

$$k_3 = 1.216014$$
 and $k_4 = 2.783986$

Thus, the critical region is

$$W_3 = \{x : \bar{x} \le 1.216014 \text{ or } \bar{x} \ge 2.783986\}$$

The power of the test is given by

$$\begin{aligned} 1 - \beta &= P(x \in W_3 | H_1) \\ &= P(x : \bar{x} \le 1.216014 \ or \ \bar{x} \ge 2.783986 | H_1) \\ &= P_{\mu \ne 2}(x : \bar{x} \le 1.216014) + P_{\mu \ne 2}(\bar{x} \ge 2.783986 | H_1) \\ &= P_{\mu \ne 2}(x : \bar{x} \le 1.216014) + [1 - P_{\mu \ne 2}(\bar{x} \le 2.783986 | H_1)] \end{aligned}$$

To draw the power curve we construct the following table considering different trail values $of \mu \neq 2$.

Trial values for $\mu \neq 2$	Power
1.60	0.17007505
1.61	0.16398881
1.62	0.15806362
1.63	0.15230016
1.64	0.14669894
1.65	0.14126035
1.66	0.13598463
1.67	0.13087189
1.68	0.12592212
1.69	0.12113520
1.70	0.11651088
1.71	0.11204884
1.72	0.10774863
1.73	0.10360975
1.74	0.09963160
1.75	0.09581353
1.76	0.09215481
1.77	0.08865468
1.78	0.08531233
1.79	0.08212691
1.80	0.07909753
1.81	0.07622332
1.82	0.07350335
1.83	0.07093673
1.84	0.06852255
3.01	0.71397901
	0.72241999
3.02	
3.03	0.73073741
3.04	0.73892797
	0.74698854
3.05	0.77404504
3.06	0.75491624
	0.76270839
3.07	

2.00	0.77036251
3.08	0.77787635
3.09	0.77787033
	0.78524787
3.10	
3.11	0.79247525
	0.79955687
3.12	
3.13	0.80649134
	0.81327748
3.14	
3.15	0.81991430
5.12	0.82640104
3.16	
3.17	0.83273713
	0.83892220
3.18	
	0.84495607
3.19	0.05002077
3.20	0.85083877
	0.85657049
3.21	
3.22	0.86215163
	0.86758274
3.23	
3.24	0.87286456
5.21	0.87799798
3.25	

Programming in R for case 3

sigma=2

sigma

n=25

```
n
sd=sigma/sqrt(n)
 sd
k3=qnorm(0.025,2,sd)
k3
k4=qnorm(1-0.025,2,sd)
k4
mu = c(1.60, 1.61, 1.62, 1.63, 1.64, 1.65, 1.66, 1.67, 1.68, 1.69, 1.70, 1.71, 1.72, 1.73, 1.74, 1.75, 1.76, 1.
77, 1.78, 1.79, 1.80, 1.81, 1.82, 1.83, 1.84, 3.01, 3.02, 3.03, 3.04, 3.05, 3.06, 3.07, 3.08, 3.09, 3.10, 3.11, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 3.12, 
3.12, 3.13, 3.14, 3.15, 3.16, 3.17, 3.18, 3.19, 3.20, 3.21, 3.22, 3.23, 3.24, 3.25)
 mu
power2=mat.or.vec(50,1)
power2
for(i in 1:50){
power2[i]=pnorm(k3,mu[i],sd)+(1-pnorm(k4,mu[i],sd))}
 power2
plot(mu,power2)
```

power curve for case 3

