Introdução à Teoria dos Grafos

Prof. Alexandre Noma

Aula passada

Ford-Fulkerson-Method(G, s, t):

- 1. Inicialmente, fluxo $\mathbf{f} = 0$
- 2. Enquanto existir um caminho aumentante P:
- 3. Incremente o fluxo f (usando P)
- 4. Devolva **f**

Hoje

- Definições
 - Corte
 - Fluxo no corte
 - Capacidade do corte
- Propriedades
 - 1. Conservação do fluxo
 - 2. Limite superior para o fluxo
 - 3. (Teorema) Fluxo máximo = Corte mínimo

- **Corte** (S,T)
- Fluxo do corte
- Capacidade do corte

- Corte (S,T)
- Fluxo do corte
- Capacidade do corte

- Corte (S,T)
- Fluxo do corte
- Capacidade do corte

$$f(S,T) = ?$$

- Corte (S,T)
- Fluxo do corte
- Capacidade do corte

$$f(S,T) = 12+11-4=19$$

- Corte (S,T)
- Fluxo do corte
- Capacidade do corte

- Corte (S,T)
- Fluxo do corte
- Capacidade do corte

$$f(S,T) = 12+11-4=19$$

$$c(S,T) = 12+14=26$$

Propriedades

- (P1) (conservação do fluxo)
 - O fluxo é igual para qualquer corte.

- (P2) (limitante superior)
 - O fluxo é limitado pela capacidade de qualquer corte.

(P3) (teorema: fluxo máximo = corte mínimo)

— ...

$$f = 11 + 8 = 19$$

$$f = 11 + 8 = 19$$

$$f = 15+4 = 19$$

$$f(S,T) = ?$$

Propriedades

- (P1) (conservação do fluxo)
 - O fluxo é igual para qualquer corte.

- (P2) (limitante superior)
 - O fluxo é limitado pela capacidade de qualquer corte.

(P3) (teorema: fluxo máximo = corte mínimo)

— ...

$$f = 11 + 8 = 19$$
 $\leq c = 13 + 16 = 29$

$$f = 15+4 = 19 \le C = 20+4=24$$

Propriedades

- (P1) (conservação do fluxo)
 - O fluxo é igual para qualquer corte.

- (P2) (limitante superior)
 - O fluxo é limitado pela capacidade de qualquer corte.

• (P3) (teorema: fluxo máximo = corte mínimo)

- ...

3. (Teorema) Fluxo máx = Corte mín

- Dados:
 - **G**, **s**, **t**, e fluxo **f**

- As seguintes afirmações são equivalentes:
 - (a) A rede residual **não** tem **caminho aumentante**.
 - (b) Fluxo f é máximo.
 - (c) (Corte mínimo) Fluxo f(S,T) = c(S,T) para um corte (S,T).

3. Fluxo máximo = Corte mínimo?

Caminho aumentante? (rede residual)

3. Fluxo máximo = Corte mínimo?

Fluxo máximo

3. Fluxo máximo = Corte mínimo?

Aplicações em imagens

Corte mínimo

– 1. "Recorte": segmentação de imagens

- 2. "Costura": síntese de texturas

- Segmentação interativa de imagens
 - Y. Boykov, M. Jolly. 2001.
 Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images.

- Segmentação interativa de imagens
 - Y. Boykov, M. Jolly. 2001.
 Interactive Graph Cuts for Optimal Boundary & Region Segmentation of Objects in N-D Images.

Capacidades?

Capacidade:

- grande entre pixels "similares"
- pequena entre pixels "diferentes"

Corte mínimo:

- onde há maior contraste (entre objeto e fundo)

1. Recortar: Troca de fundo

1. Recortar: Troca de fundo

A B

(a)

Pixels???

Capacidades?

Capacidades?

A capacidade é pequena entre pixels similares.

O corte mínimo onde a sobreposição é mais parecida.

V. Kwatra, A. Schödl, I. Essa, G. Turk, A. Bobick. 2003.
 Graphcut Textures: Image and Video Synthesis Using Graph Cuts.

http://gimp-texturize.sourceforge.net/

Exercício Programa

• 18-corteMinimo.py