ALGEBRA Y GEOMETRIA ANALITICA

TEMA 2: RELACIONES Y FUNCIONES Esp. Prof. Liliana N. Caputo

RELACIONES BINARIAS

- Sean A y B dos conjuntos. Llamamos relación de A en B, a cualquier subconjunto del producto cartesiano AxB. Es decir, si R ⊂ AxB, R es una relación de A en B. En este caso, A se llama ALCANCE de la relación R y B se llama RANGO de R.
- Si R es una relación de A en B y (x, y) ∈ R decimos que y es una imagen de x, así como también que x es una preimagen de y.

EJEMPLOS

- Como Ø es un subconjunto de cualquier otro, en particular Ø ⊂ AxB, cualesquiera sean A y B. Se llama, "relación vacía".
- Como todo conjunto está incluido en sí mismo, en particular el producto cartesiano AxB es una relación de A en B.
- Como una relación de A en B es un subconjunto de AxB, se puede escribir por extensión o por comprensión.

EJEMPLOS

Sean los conjuntos: $A=\{0,1,2,3\}$; $B=\{1,3,4,9\}$ y las siguientes relaciones de A en B:

 $R = \{(0, 3), (2, 9)\}$ (por extensión)

 $S = \{(x, y) \in AxB / y = x + 1\}$ (por comprensión)

Otras maneras de presentar una relación de A en B:

$$(x, y) \in T \Leftrightarrow y = x - 3;$$

$$x M y \Leftrightarrow y = 2x$$

$$f: A \rightarrow B / f(x) = x^2$$

EJEMPLOS

Sean los conjuntos A={0,1,2,3} y B={1,3,4, 9} como en el ejemplo anterior, la relación

S ={(0, 1), (2, 3), (3,4)} ya vista se puede presentar, también mediante una matriz booleana, como sigue:

	1	3	4	9
0	1	0	0	0
1	0	0	0	0
2	0	1	0	0
3	0	0	1	0

Donde se consigna 1 en la celda xy, siempre que sea $v[(x,y) \in S] = 1$, y 0 en caso contrario.

CONJUNTOS DE DEFINICION

- Ya hemos dicho que si R es una relación de un conjunto A en otro conjunto B, A se llama alcance y B rango de la relación R.
- ▶ El siguiente subconjunto de A se denomina **DOMINIO** de R: $D(R) = \{x \in A \mid (x, y) \in R\}$. Para el ejemplo de la relación $R = \{(0, 3), (2, 9)\}$, $D(R) = \{0, 2\}$.
- El siguiente subconjunto de B se denomina **IMAGEN** de R: R(A) = $\{y \in B \mid (x, y) \in R\}$. Para el ejemplo de la relación R = $\{(0, 3), (2, 9)\}$, R(A)= $\{3, 9\}$.

REPRESENTACION GRAFICA

 Una relación se puede representar gráficamente mediante diagramas de Venn.
 Para la relación R del ejemplo, la gráfica es:

A={0,1,2,3} B={1,3,4, 9} R ={(0, 3), (2, 9)}

REPRESENTACION GRAFICA

También se pueden representar en gráficos cartesianos, donde cada punto del plano representa a un par ordenado. En el eje horizontal se representan los elementos del alcance (x) y en el vertical los del rango (y).

RELACION INVERSA

Dada una relación R de A en B, existe su inversa, R-1, de B en A, tal que:

$$(x, y) \in R^{-1} \Leftrightarrow (y, x) \in R$$

O lo que es lo mismo:

$$R^{-1}(x) = y \Leftrightarrow R(y) = x$$

Para el ejemplo dado, R = $\{(0, 3), (2, 9)\} \subset AxB$, resulta R⁻¹ = $\{(3, 0), (9, 2)\} \subset BxA$

Probaremos a continuación que $(R^{-1})^{-1} = R$

RELACIONES EN UN CONJUNTO

- Sea A un conjunto no vacío. Diremos que R es una relación en A, si R es un subconjunto del producto cartesiano AxA es decir, si R ⊂ A².
- EJEMPLOS: Si A={1,2,3} las siguientes son relaciones en A:
- $R = \{(1,2), (2,1)\}$
- $S = \{((1,1), (1, 3), (3, 1)\}$
- $T = \{(x, y) \in A^2/ x > y\}$
- $M = \{(1, 1), (1, 2), (2, 2), (3, 3)\}$

CLASIFICACION

Sea A un conjunto no vacío cualquiera y sea R una relación en A. Diremos que:

- R es una **relación de orden amplio en A**, si se cumplen las siguientes propiedades:
- a) Propiedad reflexiva: $\forall x \in A$: $(x, x) \in R$.
- b) <u>Propiedad antisimétrica</u>: Es verdadera la siguiente implicación:

$$(x, y) \in R \land (y, x) \in R \Rightarrow x = y.$$

c) <u>Propiedad transitiva</u>: Es verdadera la siguiente implicación:

$$(x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R.$$

CLASIFICACION

Sea A un conjunto no vacío cualquiera y sea R una relación en A. Diremos que:

- Res una relación de orden estricto en A, si se cumplen las siguientes propiedades:
- a) <u>Propiedad asimétrica</u>: Es verdadera la siguiente implicación:

$$(x, y) \in R \Rightarrow (y, x) \notin R.$$

b) Propiedad transitiva.

ORDEN	TOTAL	O PARCIAI	ı

- Sea R ⊂ A² una relación de orden (amplio ó estricto) en A:
- R es un orden total en A si, y sólo si,

$$\forall x, y \in A$$
: $(x, y) \in R \lor (y, x) \in R$.

Si R no es un orden total en A, diremos que es un **orden parcial**. Entonces:

$$\exists x, y \in A/(x, y) \notin R \land (y, x) \notin R.$$

CLASIFICACION

Sea A un conjunto no vacío cualquiera y sea R una relación en A. Diremos que:

- R es una **relación de equivalencia en A**, si se cumplen las siguientes propiedades:
- a) Propiedad reflexiva.
- b) <u>Propiedad simétrica</u>: Es verdadera la siguiente implicación: $(x, y) \in R \Rightarrow (y, x) \in R$.
- c) Propiedad transitiva.

CONJUNTO COCIENTE

 Sea R una relación de equivalencia en A ≠ Ø y a ∈ A. Llamamos clase de equivalencia de a, al conjunto de todos los elementos de A que se relacionan con "a". Es decir, al conjunto:

$$\overline{a} = \{ x \in A / (x, a) \in R \}$$

 El conjunto formado por todas las clases de equivalencia de elementos de A se denomina conjunto cociente. Notación: A/R.

CI	_ASI	IFI	CA	C	\cap	N
V-1					$\mathbf{\mathcal{L}}$	ıv

- Puede notarse que existen relaciones que no son de orden ni de equivalencia es decir, que la clasificación dada **no es exhaustiva**. En efecto, la relación $R = \{1,2\}$, $(2,1)\}$ en el conjunto $A = \{1,2,3\}$ no es clasificable porque no cumple la propiedad transitiva, pues $(1,2) \in R \land (2,1) \in R \land (1,1) \notin R$.
- Además no es excluyente, puesto que existen relaciones que son de orden amplio y de equivalencia, como la identidad en cualquier conjunto $A \neq \emptyset$.

IDENTIDAD

> Sea un conjunto $A \neq \emptyset$. Definimos la identidad en A, como la siguiente relación en A: i_A : $A \rightarrow A / i_A(x) = x$

lo cual equivale a que $(x, y) \in i_A \Leftrightarrow y = x$ Probaremos que

 i_A es relación de equivalencia y de orden amplio en $A \neq \emptyset$, cualquiera.

CLASIFICACION

- Veamos una serie de relaciones en un conjunto A = {1, 2, 3, 4, 5} y veamos cuáles son clasificables y cuáles no.
- $R = I_A \cup \{(4,2), (2,3)\}$
- $S = \{((1,1), (1,3), (3,1)\}$
- $T = \{(x,y) \in A^2/ x > y\}$
- $M = i_A \cup \{(1, 5), (1, 2), (4, 2)\}$
- La relación del ejercicio 2 i del T.P. 2.

6

TEOREMA (Se acepta sin demostración) Si R es una relación de equivalencia en un conjunto no vacío A, A/R es una partición de A. Recíprocamente, si P es una partición de un conjunto no vacío A, P induce una relación de equivalencia en A. Ejemplos: Hallaremos el conjunto cociente del ejercicio 2 ii del T.P. 2. que es una partición de A. Veamos cuál es la relación de equivalencia en el ejercicio 5 a del T.P. 2. **FUNCIONES** DEFINICION Un relación f de A en B es una función si, y

- sólo si, a cada elemento de A f le hace corresponder una única imagen en B.
- Nótese que la definición dada nos asegura que los conjuntos alcance y dominio de f son iguales, con lo cual la siguiente proposición es verdadera: ∀x∈ A: f(x) ∈ B.
- Además, como cada elemento de A tiene una única imagen en B, también es verdadera:

$$f(x) = y \wedge f(x) = z \Rightarrow y = z$$

EJEMPLOS	S
-----------------	---

- ► Si $A=\{0,1,2,3\}$; $B=\{1,3,4,9\}$ y R = $\{(0,3),(2,9)\}$, R no es función porque $D(R)=\{0,2\} \neq A$.
- La relación ya analizada del ejercicio 5 a del TP 2, no es función de A en A, ya que 1 ∈ A y admite dos imágenes distintas: 1 y 2.
- Veamos que i_A, cualquiera sea el conjunto no vacío A, es una función de A en A.

IGUALDAD

▶ Dadas dos funciones f: A \rightarrow B y g: C \rightarrow D, definimos la igualdad como sigue:

$$f = g \Leftrightarrow A = C \land \forall x \in A$$
: $f(x) = g(x)$

• Ejemplo: Sean A ={1, 2, 3}, B ={ $x \in \mathbb{N}/x \le 20$ } C = { $x \in \mathbb{N}/x < 30$ } y las funciones:

$$f:A \to B / f(x) = (1 + x)^2$$
,

$$g:A \to C/g(x) = x^2 + 2x + 1$$
,

$$h: \mathbb{N} \to \mathbb{N} / h(x) = (1 + x)^2,$$

Veamos que f = g, pero $f \ne h$.

CLASIFICACION

- Sea f: A → B una función. Entonces:
- f es inyectiva si, y sólo si, $x \neq y \Rightarrow f(x) \neq f(y)$, con $x, y \in A$.
- f es sobreyectiva si, y sólo si, f(A) = B.
- f es biyectiva si, y sólo si, f es inyectiva y sobreyectiva.
- Veamos a continuación que i_A es una función biyectiva, cualquiera sea el conjunto A, no vacío.

FUNCION INVERSA	
Sea f: $A \rightarrow B$ una función. Como f es una	
relación de A en B, ya sabemos que existe su	
inversa f^{-1} : B \rightarrow A. Veamos en qué casos	
dicha relación inversa es función:	
TEOREMA:	
f^{-1} : B \rightarrow A es función si, y sólo si, f es biyectiva	
Admitimos que esta proposición es	
verdadera, sin demostración.	
COMPOSICION DE FUNCIONES	
▶ Sean f: A \rightarrow B y g: C \rightarrow D functiones, tales que	
$f(A) \subset C$. La composición de f y g, en ese	
orden, es la función siguiente:	
$g \circ f : A \to D / (g \circ f)(x) = g[f(x)]$	
▶ Ejemplo: Sean A = $\{1, 2, 3\}$, B = $\{x \in \mathbb{N} / x \le 10\}$	
$C = \{x \in \mathbb{N} / x < 15\} \text{ y } D = \{x \in \mathbb{N} / x \le 20\},\$	
siendo además:	
f: A \rightarrow B / f(x) = x ² y g: C \rightarrow D /g(x) = x + 1	
Como $f(A) = \{1, 4, 9\} \subset C$, $g \circ f$ es la función:	
$g_{\circ}f: A \to D/(g_{\circ}f)(x) = g[f(x)] = g(x^2) = x^2 + 1.$	
PROPIEDADES	
Sean $f:A \rightarrow B$ y $g:C \rightarrow D$ functiones, con $f(A) \subset C$.	
Entonces:	
$ ightharpoonup g_{\circ}f \neq f_{\circ}g$	
Si f y g son inyectivas, g₀f es inyectiva.	
Si B = C, f y g son sobreyectivas, entonces,	
gof es sobreyectiva.	
Si B = C, f y g son biyectivas, $g_0 f$ es biyectiva.	
$f_0f^{-1} = i_A \wedge f^{-1}_0f = i_B$	
Veamos sus demostraciones	