

An Introduction to Chord Recognition Through FFT

Kenneth Ng, MT4599 28th March, 2023

Background info about the project:

- Music Information Retrieval (MIR)
 - OMR
 - QbH
 - Other adaptive models
 - Style/Genre Classification
 - Emotion/Chord Recognition
- Practical, Code-heavy
- Non-technical, Simplistic

Motivations for Chord Recognition:

- Musicology
 - Harmonic Analysis
 - Understanding of Music
- Medical treatment
 - Involuntary Musical Imagery (SSS / Earworm)
- Identification of Music

Chords

Musical constructs that typically consist of **three** or more **notes**

Scientific Pitch Notation

Pitch Class (Chroma) and Octave Number together form note names eg. A4, C4

12-TET

Twelve-tone equal-tempered scale

$$F_{\text{pitch}}(p) = 2^{(p-69)/12} \cdot \underline{440}$$

$$F_{\text{pitch}}(p+1)/F_{\text{pitch}}(p) = 2^{1/12} \approx 1.059463$$

 $p \in [0:127]$

Partial

Any of the sinusoids by which a musical tone is described

Overtone

- Any partial except the lowest
- Produces different timbres

Fundamental frequency

The frequency of the lowest partial present

^{* 88-}key piano keyboard

Prepare audio files

Pick peaks (notes)

- Trim the audio file to separate the chords out
- Normalize
- Denoise

Define a peak

Process overtones (HPS)

02 Perform FFT

- Black box operation
- Spits out frequencies and their corresponding amplitudes

Examples

An overview of how well different types of signals work

1. Synthetic Wave

.

.

.

.

2. Synthetic Chord

.

.

.

.

.

.

.

3. Real Chord (Piano)

.

.

.

.

.

.

4. Real Note (Oboe)

.

.

.

.

.

.

^{*} Many unnecessary peaks are present!

.

Optimizing chord recognition through pure FFT by considering a simple case

- No overtone analysis (HPS)
 - Consider chords within an octave (only fundamental frequencies)
- Improve peak-picking method
- Semi-real piano chords
 - 3-note

.

- 100 random chords per octave number (0-7)
- Can be verified easily without labelling

Result:

495/800 = 61.875 %

.

