TRIGONOMETRÍA

La trigonometría estudia la relación entre los lados y ángulos de los triángulos.

FUNCIONES TRIGONOMETRICAS

Sen β= <u>C.o</u> hip

Seno. Es la razón entre la ordenada y la distancia al origen. Cos β = C.a

Coseno. Es la razón entre la abscisa y la distancia al origen. Tang β= <u>C.o</u> C.a

> Tangente. Es la razón entre la ordenada y la abscisa.

Es la razón entre la distancia al origen y la ordenada.

adyaccente

Cotangente. Es la razón entre la abscisa y la ordenada. Cot β= <u>C.a</u> C.o

cateto opuesto

Secante.

Es la razón entre la distancia al origen y la abscisa. Cosecante. Es la razón entre la distancia al origen y la ordenada.

Sec $\beta = \frac{\text{Hip}}{\text{C.o}}$

TRIÁNGULO "AMIGO" ÁNGULOS DE 30° Y 60°

Sen

SIGNOS DE LAS
FUNCIONES
TRIGONOMÉTRI
CAS EN LOS
CUATRO
CUADRANTES.

Tabla de algunas funciones trigonométricas

θ	0°	30°	45°	60°	90°	180°	270°
sen	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
tan	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	œ	0	-∞
cot	œ	√3	1	$\frac{1}{\sqrt{3}}$	0	-∞	0
sec	1	$\frac{2}{\sqrt{3}}$	$\frac{2}{\sqrt{2}}$	2	œ	-1	œ
csc	œ	2	$\frac{2}{\sqrt{2}}$	$\frac{2}{\sqrt{3}}$	1	œ	-1

Conversión de grados a radianes y viceversa

De grados a radianes

De radianes a grados

$$Radianes = \frac{Grados \cdot \pi}{180}$$

$$Grados = \frac{Radianes \cdot 180}{\pi}$$

1	sen² (x) + cos²(x) Se transforma en 1
2	sec² (x) - tan²(x) _Se transforma en → 1
3	tan(x) Se transforma en Sen (x) cos (x)
4	cos(2x) Se transforma en cos²(x) - sen²(x)
5	sen(2x) Se transforma en → 2sen(x)cos(x)
6	cot(x) Se transforma en cos (x) sen (x)
7	1 - sen²(x) Se transforma en → cos²(x)
8	1 - cos²(x) Se transforma en → sen²(x)

Ley de

$$\frac{a}{sen \alpha} = \frac{b}{sen \beta} = \frac{c}{sen \theta}$$

$$\frac{\operatorname{sen} \alpha}{a} = \frac{\operatorname{sen} \beta}{b} = \frac{\operatorname{sen} \theta}{c}$$

Se conocen dos lados y un ángulo o se conoce dos ángulos y un lado.

Ley de Cosenos

$$a^{2} = b^{2} + c^{2} - 2 \cdot b \cdot c \cdot \cos A$$

$$b^{2} = a^{2} + c^{2} - 2 \cdot a \cdot c \cdot B$$

$$c^{2} = a^{2} + b^{2} - 2 \cdot a \cdot b \cdot \cos C$$

Se conoce dos lados y un ángulo.

Teorema de Pitágoras

$$c^2 = a^2 + b^2$$

$$a^2 = c^2 - b^2$$

$$b^2 = c^2 - a^2$$

Se aplica solo para triángulos rectángulos

BIBLIOGRÁFIA

Estudiantes del IPN. (2020). MANUEAL DE EJERCICIOS 2020 (3.a ed.).(México). ISBN

Salgado, F. (2020). Capitulo 1 Trigonometría. (México). Facultad de ingenieria (UNAM):