Правительство Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный университет» Кафедра статистического моделирования

Сорокин Владимир Николаевич

МЕТОДЫ РЕШЕНИЯ ЗАДАЧ ТРОПИЧЕСКОЙ ОПТИМИЗАЦИИ

Дипломная работа

Допущена к защите

Заведующий кафедрой:

д. ф.-м. н., профессор С. М. Ермаков

Научный руководитель:

д. ф.-м. н., доцент Н. К. Кривулин

Рецензент:

д. ф.-м. н., профессор И.В. Романовский

Saint Petersburg State University Department of Statistical Modelling

Sorokin Vladimir Nikolaevich

SOLUTION METHODS FOR TROPICAL OPTIMISATION PROBLEMS

Graduation Thesis

Admitted for defence

Head of Department:

Doctor of Physics and Mathematics,

Professor S. M. Ermakov

Scientific Supervisor:

Doctor of Physics and Mathematics,

Associate Professor N. K. Krivulin

Reviewer:

Doctor of Physics and Mathematics,

Professor J. V. Romanovsky

Содержание

Введение		• 4
Глава 1. Элементы тропической математики		(
1.1. Идемпотентное полуполе		(
1.2. Алгебра матриц		
Глава 2. Линейные неравенства и их решения		(
2.1. Простейшие линейные неравенства		
2.2. Задачи тропической оптимизации		. 10
2.3. Задача оптимизации с ограничениями		. 1
2.4. Оценка вычислительной сложности		. 1
2.5. Численные примеры		. 1
2.5.1. Задача без ограничений		. 1
2.5.2. Задачи с ограничениями		. 18
Глава 3. Применение в составлении плана исполнения проекта		25
3.1. Построение математической модели		. 25
3.2. Применение модели для составления плана ликвидации последстви	йр	a-
диационной аварии		. 25
Глава 4. Программное обеспечение		30
4.1. Структура программного обеспечения		. 30
Заключение		. 3
Литература		. 34
Приложение А Программные средства		3(

Введение

Существует широкий класс задач оптимизации, в которых целевая функция и ограничения выражаются при помощи операций максимума и минимума, а также арифметических операций. К этому классу относятся, например, некоторые задачи размещения [1–3] и сетевого планирования [4–7]. Решение таких задач часто сопряжено с определенными трудностями, которые могут быть связаны, в частности, с нелинейностью и негладкостью целевой функции и ограничений.

Во многих случаях решение подобных задач можно существенно упростить путем их представления на языке тропической математики и использования ее результатов. Тропическая (идемпотентная) математика представляет собой область, связанную с изучением теории полуколец с идемпотентным сложением и ее приложениями [1, 6, 8–10]. Одним из направлений развития этой области является разработка методов и алгоритмов решения задач оптимизации, которые могут быть сформулированы в терминах тропической математики (задач тропической оптимизации).

Изучению задач тропической оптимизации посвящен целый ряд исследований, опубликованных за последние несколько десятилетий. К числу таких публикаций относятся ранние работы [4–6], которые положили начало развитию этого направления, а также недавние работы [3, 7, 11–16].

Одной из задач оптимизации, которая рассматривалась еще в работе [4], является задача минимизации функционала, определенного на множестве вещественных векторов при помощи заданной матрицы и операции сопряженного транспонирования. В терминах тропического полукольца $\mathbb{R}_{\max,+}$, где максимум выступает в роли сложения, а арифметическое сложение в роли умножения, эта задача приобретает форму

$$\min \quad \boldsymbol{x}^{-} \boldsymbol{A} \boldsymbol{x},$$

где A — квадратная матрица, x — неизвестный вектор, x^- — вектор, полученный при помощи мультипликативно сопряженного транспонирования x, а матрично-векторные операции определены аналогично стандартным с заменой обычных покомпонентных операций сложения и умножения на тропические.

Было известно (см., например, [4]), что минимум в задаче совпадает с тропическим спектральным радиусом матрицы \boldsymbol{A} и достигается на любом собственном векторе, соответствующем этому радиусу. Полное решение задачи, которое оказывается шире, чем

множество собственных векторов A, найдено в работах [11, 12, 17].

В настоящей работе рассматривается дальнейшее обобщение задачи, в котором целевая функция имеет более сложную форму и введены дополнительные ограничения. В главе 1 представлен краткий обзор основных понятий и результатов тропической математики, необходимых для последующего анализа и решения задачи. Затем в главе 2 формулируется новая задача оптимизации, находится ее полное решение в явном виде в компактной векторной форме и проводится оценка вычислительной сложности. Приводятся числовые примеры решения задач на множестве двумерных векторов, а также представлется графическая иллюстрация решений на плоскости в декартовой системе координат. Полученный результат применяется в главе 3 для решения практических задач управления сроками проекта (задач сетевого планирования). В главе 4 производится описание использованного программного обеспечения, исходный код которого приводится в приложении А

Глава 1

Элементы тропической математики

В этом разделе приводятся основные понятия и результаты тропической математики [10], на которые опирается анализ и решение задач оптимизации в остальной части работы. Дополнительные детали и подробное изложение различных аспектов теории и методов тропической математики можно найти, например, в работах [1, 8, 9].

1.1. Идемпотентное полуполе

Рассмотрим набор $\langle \mathbb{X}, \oplus, \odot, \mathbb{O}, \mathbb{1} \rangle$, где \mathbb{X} — непустое множество, на котором определены операции сложения \oplus и умножения \odot . По сложению \mathbb{X} является идемпотентным коммутативным моноидом с нейтральным элементом \mathbb{O} (нулем) таким, что $x \oplus \mathbb{O} = x$ для любого $x \in \mathbb{X}$. По умножению множество $\mathbb{X} \setminus \{\mathbb{O}\}$ представляет собой коммутативную группу с нейтральным элементом $\mathbb{1}$ (его называют единицей) и поглощающим \mathbb{O} .

Сложение идемпотентно: для любого $x \in \mathbb{X}$ выполняется $x \oplus x = x$. Идемпотентность сложения индуцирует частичный порядок на \mathbb{X} так, что $x \leq y$ тогда и только тогда, когда $x \oplus y = y$. Отсюда следует, что неравенство $x \oplus y \leq z$ равносильно неравенствам $x \leq z$ и $y \leq z$. Кроме того, операции \oplus и \odot монотонны в смысле указанного порядка по каждому аргументу: из неравенства $x \leq y$ следует неравенство $x \oplus z \leq y \oplus z$. В дальнейшем будем предполагать, что определенный таким образом частичный порядок может быть продолжен до полного порядка на \mathbb{X} .

Умножение дистрибутивно относительно сложения и обратимо для всех элементов, кроме \mathbb{O} : для любого $x \in \mathbb{X} \setminus \{\mathbb{O}\}$ существует обратный x^{-1} такой, что $x \odot x^{-1} = \mathbb{1}$. Неравенство $x \leq y$ также влечет неравенство $x \odot z \leq y \odot z$ для любого z. Если x и y не равны нулю, то из $x \leq y$ вытекает $x^{-1} \geq y^{-1}$. Естественным образом можно задать целые степени: $x^0 = \mathbb{1}$, $x^p = x^{p-1} \odot x$, $x^{-p} = (x^{-1})^p$ для любого ненулевого x и натурального p.

Учитывая, что множество X не является группой по сложению, такая структура обычно называется идемпотентным полуполем. Будем считать полуполе алгебраически замкнутым в том смысле, что введенная операция возведения в целую степень может быть распространена на случай рационального показателя степени.

Далее будем опускать знак умножения для упрощения записи. Обозначения неравенств и оператора min будут пониматься в смысле порядка на X, описанного выше.

Примерами идемпотентных полуполей на множестве вещественных чисел являются $\mathbb{R}_{\max,+} = \langle \mathbb{R} \cup \{-\infty\}, \max, +, -\infty, 0 \rangle$, $\mathbb{R}_{\min,+} = \langle \mathbb{R} \cup \{+\infty\}, \min, +, +\infty, 0 \rangle$, $\mathbb{R}_{\max,\times} = \langle \mathbb{R}_+ \cup \{0\}, \max, \times, 0, 1 \rangle$, $\mathbb{R}_{\min,\times} = \langle \mathbb{R}_+ \cup \{+\infty\}, \min, \times, +\infty, 1 \rangle$, где $\mathbb{R}_+ = \{x \in \mathbb{R} | x > 0\}$. Дополнительные примеры могут быть найдены, в частности, в [9].

Рассмотрим полуполе $\mathbb{R}_{\max,+}$. В нем роль нуля играет $-\infty$, а единицы -0. Для любого $x \in \mathbb{R}$ существует обратный по умножению x^{-1} , который равен противоположному числу -x в обычной арифметике. Степень x^y определена для любых $x,y \in \mathbb{R}$ и соответствует арифметическому произведению xy. Порожденный сложением порядок на $\mathbb{R}_{\max,+}$ совпадает с естественным линейным порядком на \mathbb{R} .

1.2. Алгебра матриц

Рассмотрим теперь матрицы над \mathbb{X} . Обозначим через $\mathbb{X}^{m \times n}$ множество матриц, состоящих из m строк и n столбцов. Матрица, все элементы которой равны \mathbb{O} , считается нулевой. Матрица, у которой нет нулевых строк (столбцов) называется регулярной по строкам (столбцам). Если все столбцы и строки матрицы ненулевые, то матрица является регулярной.

Операции сложения и умножения матриц вводятся аналогично операциям в стандартной алгебре с заменой соответствующих покомпонентных операций на \oplus и \odot . Пусть $\mathbf{A} = (a_{ij}), \mathbf{B} = (b_{ij})$ и $\mathbf{C} = (c_{ij})$ — матрицы подходящего размера, а x — скаляр. Тогда

$$\{\boldsymbol{A} \oplus \boldsymbol{B}\}_{ij} = a_{ij} \oplus b_{ij}, \qquad \{\boldsymbol{AC}\}_{ij} = \bigoplus_{k=1}^{n} a_{ik} c_{kj}, \qquad \{x\boldsymbol{A}\}_{ij} = x a_{ij}.$$

Транспонирование матрицы \boldsymbol{A} обозначается через $\boldsymbol{A}^{\mathrm{T}}.$

Рассмотрим квадратные матрицы из $\mathbb{X}^{n\times n}$. Обозначим через I единичную матрицу, на главной диагонали которой стоят $\mathbb{1}$, а вне ее — $\mathbb{0}$. Для любой квадратной матрицы A и натурального p, определим степень $A^0 = I$, $A^p = A^{p-1}A$.

След квадратной матрицы $A = (a_{ij})$ задается суммой ее диагональных элементов,

$$\operatorname{tr} \mathbf{A} = a_{11} \oplus \cdots \oplus a_{nn}.$$

Непосредственно из определения следа для любых матриц A и B, и скаляра x

могут быть выведены равенства

$$\operatorname{tr}(\boldsymbol{A} \oplus \boldsymbol{B}) = \operatorname{tr} \boldsymbol{A} \oplus \operatorname{tr} \boldsymbol{B}, \qquad \operatorname{tr}(\boldsymbol{A}\boldsymbol{B}) = \operatorname{tr}(\boldsymbol{B}\boldsymbol{A}), \qquad \operatorname{tr}(x\boldsymbol{A}) = x \operatorname{tr} \boldsymbol{A}.$$

Биномиальное тождество для матриц \boldsymbol{A} и \boldsymbol{B} из $\mathbb{X}^{n\times n}$, и натуральной степени m имеет следующий вид

$$(oldsymbol{A}\oplus oldsymbol{B})^m = igoplus_{k=1}^m igoplus_{i_0+\cdots+i_k=m-k} oldsymbol{B}^{i_0} oldsymbol{A} oldsymbol{B}^{i_1} \cdots oldsymbol{A} oldsymbol{B}^{i_k} \oplus oldsymbol{B}^m.$$

Для проверки этого утверждения достаточно заметить, что при раскрытии скобок будут получаться всевозможные произведения из m сомножителей, k из которых равны A, m-k равны B (при k=m получим A^m).

Нетрудно проверить справедливость тождества

$$\bigoplus_{k=1}^{m} (\mathbf{A} \oplus \mathbf{B})^{k} = \bigoplus_{k=1}^{m} \bigoplus_{0 \le i_{0} + \dots + i_{k} \le m - k} \mathbf{B}^{i_{0}} \mathbf{A} \mathbf{B}^{i_{1}} \cdots \mathbf{A} \mathbf{B}^{i_{k}} \oplus \bigoplus_{k=1}^{m} \mathbf{B}^{k}.$$
 (1.1)

Здесь мы сгруппировали в одну сумму все слагаемые по степеням матрицы $\boldsymbol{A},$ а затем добавили сумму степеней $\boldsymbol{B}.$

Матрица, состоящая из одного столбца или строки, образует вектор. Если не оговорено иначе, будем рассматривать векторы как вектор-столбцы. Множество вектор-столбцов размерности n с элементами из \mathbb{X} будем обозначать \mathbb{X}^n . Вектор считается регулярным, если у него отсутствуют нулевые компоненты.

Мультипликативно сопряженным транспонированием вектора $\boldsymbol{x}=(x_j)$ будем называть преобразование, при котором он трансформируется в вектор-строку $\boldsymbol{x}^-=(x_j^-)$ с элементами $x_j^-=x_j^{-1}$, если $x_j\neq \mathbb{0}$ и $x_j^-=\mathbb{0}$ в противном случае. Для регулярных векторов \boldsymbol{x} и \boldsymbol{y} из покомпонентного неравенства $\boldsymbol{x}\leq \boldsymbol{y}$ следует неравенство $\boldsymbol{x}^-\geq \boldsymbol{y}^-$ и наоборот.

Для ненулевого вектора x справедливо равенство $x^-x=1$. Если вектор x — регулярный, то верно и следующее неравенство

$$xx^{-} > I. \tag{1.2}$$

Скаляр λ является собственным числом матрицы ${\pmb A}$, если существует ненулевой вектор ${\pmb x}$ такой, что ${\pmb A}{\pmb x}=\lambda {\pmb x}$. Максимальное (в смысле порядка, определенного идемпотентным сложением) собственное число называется спектральным радиусом матрицы ${\pmb A}$ и вычисляется по формуле

$$\lambda = \bigoplus_{m=1}^{n} \operatorname{tr}^{1/m}(\boldsymbol{A}^{m}). \tag{1.3}$$

Глава 2

Линейные неравенства и их решения

2.1. Простейшие линейные неравенства

Рассмотрим решения линейных неравенств, которые будут использоваться ниже. Сначала предположим, что заданы матрица $\mathbf{A} \in \mathbb{X}^{m \times n}$ и регулярный вектор $\mathbf{d} \in \mathbb{X}^m$. Требуется найти все векторы $\mathbf{x} \in \mathbb{X}^n$, удовлетворяющие неравенству

$$Ax \le d. \tag{2.1}$$

Решение задачи обеспечивается следующим утверждением, доказательство которого приводится, например, в работах [10, 17].

Лемма 1. Для любой регулярной по столбцам матрицы A и регулярного вектора d, все решения неравенства (2.1) имеют вид

$$x \leq (d^-A)^-$$
.

Теперь исследуем другую задачу: пусть заданы матрица $\boldsymbol{A} \in \mathbb{X}^{n \times n}$ и вектор $\boldsymbol{b} \in \mathbb{X}^n$. Необходимо найти все регулярные векторы \boldsymbol{x} , для которых выполняется неравенство

$$\mathbf{A}\mathbf{x} \oplus \mathbf{b} \le \mathbf{x}.\tag{2.2}$$

Для этого сначала введем функцию, играющую в некотором смысле роль определителя, которая ставит в соответствие любой матрице $\mathbf{A} \in \mathbb{X}^{n \times n}$ скаляр по правилу

$$\operatorname{Tr}(\boldsymbol{A}) = \operatorname{tr} \boldsymbol{A} \oplus \cdots \oplus \operatorname{tr} \boldsymbol{A}^n.$$

При условии, что ${\rm Tr}({\pmb A}) \le {\mathbb 1}$, введем оператор, известный также как «звезда Клини», который сопоставляет матрице ${\pmb A}$ матрицу

$$A^* = I \oplus A \oplus \cdots \oplus A^{n-1}$$
.

Решение неравенства (2.2) получено в [11] в следующей форме.

Теорема 1. Для любой матрицы A и вектора b справедливы следующие утверждения:

- 1. Если $\mathrm{Tr}(\boldsymbol{A}) \leq 1$, то все регулярные решения неравенства (2.2) имеют вид $\boldsymbol{x} = \boldsymbol{A}^*\boldsymbol{u}$, где \boldsymbol{u} регулярный вектор такой, что $\boldsymbol{u} \geq \boldsymbol{b}$.
- 2. Если Tr(A) > 1, то регулярных решений не существует.

2.2. Задачи тропической оптимизации

Рассмотрим задачи оптимизации, которые формулируются в терминах тропической математики и состоят в минимизации линейных и нелинейных функционалов, а также могут иметь ограничения в виде векторных уравнений и неравенств [18].

Имеется целый ряд задач, решение которых опирается на экстремальное свойство спектрального радиуса матрицы и связано с его вычислением [11, 12, 14, 17]. Это свойство состоит в том, что спектральный радиус матрицы определяет минимум функционала, который задается этой матрицей с использованием оператора мультипликативно сопряженного транспонирования следующим образом.

Пусть спектральный радиус матрицы $A \in \mathbb{X}^{n \times n}$ равен λ . Рассмотрим задачу

$$\min \quad \boldsymbol{x}^{-}\boldsymbol{A}\boldsymbol{x},\tag{2.3}$$

где минимум берется на множестве всех регулярных векторов $x \in \mathbb{X}^n$. Эта задача имеет приложения, например, в сетевом планирование [1, 17], оптимальном размещении объектов [1, 14], принятии решений [15] и в других областях.

Полное решение этой задачи приводится в [11, 12, 17] в следующем виде.

Лемма 2. Пусть A — матрица со спектральным радиусом $\lambda > 0$. Тогда минимум в задаче (2.3) равен λ , а все регулярные решения задачи имеют вид

$$\boldsymbol{x} = (\lambda^{-1}\boldsymbol{A})^*\boldsymbol{u}, \qquad \boldsymbol{u} \in \mathbb{X}^n.$$

Известны решения для вариантов задачи (2.3), в которых целевая функция задана в более общем виде. Пусть в дополнение к матрице $\mathbf{A} \in \mathbb{X}^{n \times n}$ заданы векторы $\mathbf{p}, \mathbf{q} \in \mathbb{X}^n$ и скаляр $r \in \mathbb{X}$. Требуется найти все регулярные векторы $\mathbf{x} \in \mathbb{X}^n$, обеспечивающие

$$\min \quad \boldsymbol{x}^{-}\boldsymbol{A}\boldsymbol{x} \oplus \boldsymbol{x}^{-}\boldsymbol{p} \oplus \boldsymbol{q}^{-}\boldsymbol{x} \oplus r. \tag{2.4}$$

Справедливо следующее утверждение, которое было получено в [17].

Теорема 2. Пусть A — матрица со спектральным радиусом $\lambda > 0$, а q — регулярный вектор. Тогда минимум в задаче (2.4) равен

$$\mu = \lambda \oplus \bigoplus_{m=1}^{n} (\boldsymbol{q}^{-} \boldsymbol{A}^{m-1} \boldsymbol{p})^{1/(m+1)} \oplus r, \qquad (2.5)$$

а все регулярные решения задачи имеют вид

$$x = (\mu^{-1}A)^*u, \qquad \mu^{-1}p \le u \le \mu(q^{-}(\mu^{-1}A)^*)^{-}.$$
 (2.6)

Другой вариант расширения задачи на экстремальное свойство спектрального радиуса — добавление ограничений на множество допустимых значений.

Пусть заданы матрицы $A, B \in \mathbb{X}^{n \times n}$ и вектор $p \in \mathbb{X}^n$. Необходимо определить множество всех регулярных векторов $x \in \mathbb{X}^n$, на которых достигается минимум в задаче

$$\min \quad \boldsymbol{x}^{-}\boldsymbol{A}\boldsymbol{x} \oplus \boldsymbol{x}^{-}\boldsymbol{p},$$

$$\boldsymbol{B}\boldsymbol{x} \leq \boldsymbol{x}.$$
(2.7)

Теорема 3. Пусть A — матрица со спектральным радиусом $\lambda > 0$, а B — матрица, для которой $Tr(B) \leq 1$. Тогда минимум в задаче (2.7) равен

$$\theta = \lambda \oplus \bigoplus_{k=1}^{n-1} \bigoplus_{1 \le i_1 + \dots + i_k \le n-k} \operatorname{tr}^{1/k}(\boldsymbol{A}\boldsymbol{B}^{i_1} \cdots \boldsymbol{A}\boldsymbol{B}^{i_k}),$$

а все регулярные решения имеют вид

$$oldsymbol{x} = (heta^{-1} oldsymbol{A} \oplus oldsymbol{B})^* oldsymbol{u}, \qquad oldsymbol{u} \geq heta^{-1} oldsymbol{p}.$$

Ниже будет предложено решение задачи, которая является дальнейшим обобщением задачи (2.7) с целевой функцией, которая определена также, как в задаче (2.4).

2.3. Задача оптимизации с ограничениями

В этом разделе изучается новая задача тропической оптимизации с нелинейной целевой функцией и ограничениями в форме линейного неравенства. На основе метода, предложенного в [11, 17], для решения задачи вводится дополнительная переменная, которая описывает минимальное значение целевой функции. Затем задача сводится к решению неравенства, в котором дополнительная переменная выступает в роли параметра. Необходимые и достаточные условия существования решений неравенства используются для вычисления параметра, а затем общее решение неравенства берется в качестве решения исходной задачи оптимизации.

Пусть заданы матрицы $A, B \in \mathbb{X}^{n \times n}$, векторы $p, q \in \mathbb{X}^n$ и скаляр $r \in \mathbb{X}$. Требуется найти все регулярные векторы $x \in \mathbb{X}^n$, которые решают задачу

min
$$x^-Ax \oplus x^-p \oplus q^-x \oplus r$$
,
 $Bx \le x$. (2.8)

Теорема 4. Пусть A — матрица со спектральным радиусом $\lambda > 0$, а B — матрица, для которой $\mathrm{Tr}(B) \leq 1$. Для любого натурального m введем обозначения

$$S_{0m} = \bigoplus_{i=0}^m B^i, \qquad S_{km} = \bigoplus_{0 \le i_0 + \dots + i_k \le m-k} B^{i_0} A B^{i_1} \dots A B^{i_k}, \qquad k = 1, \dots, m.$$

Тогда минимум в задаче (2.8) равен

$$\theta = r \oplus \bigoplus_{k=1}^{n} \operatorname{tr}^{1/k}(\boldsymbol{S}_{kn}) \oplus \bigoplus_{k=0}^{n-1} (\boldsymbol{q}^{-} \boldsymbol{S}_{k,n-1} \boldsymbol{p})^{1/(k+2)},$$
(2.9)

а все регулярные решения имеют вид

$$\boldsymbol{x} = (\theta^{-1}\boldsymbol{A} \oplus \boldsymbol{B})^* \boldsymbol{u}, \qquad \theta^{-1} \boldsymbol{p} \le \boldsymbol{u} \le \theta (\boldsymbol{q}^- (\theta^{-1}\boldsymbol{A} \oplus \boldsymbol{B})^*)^-.$$
 (2.10)

Доказательство. Сначала заметим, что $\boldsymbol{x}^{-}\boldsymbol{A}\boldsymbol{x}\oplus\boldsymbol{x}^{-}\boldsymbol{p}\oplus\boldsymbol{q}^{-}\boldsymbol{x}\oplus\boldsymbol{r}\geq\boldsymbol{x}^{-}\boldsymbol{A}\boldsymbol{x}\geq\lambda>0$ (по лемме 2), откуда следует, что целевая функция в (2.8) ограничена снизу. Обозначим минимум целевой функции на множестве всех регулярных векторов \boldsymbol{x} через $\boldsymbol{\theta}$. Тогда все регулярные решения задачи (2.8) получаются из системы

$$x^-Ax \oplus x^-p \oplus q^-x \oplus r = \theta,$$

 $Bx \le x.$

Так как θ по предположения — минимум целевой функции, то можно заменить равенство на неравенство

$$x^{-}Ax \oplus x^{-}p \oplus q^{-}x \oplus r \leq \theta,$$

$$Bx \leq x.$$
(2.11)

Первое неравенство в (2.11) равносильно системе неравенств

$$egin{aligned} oldsymbol{x}^-oldsymbol{A}oldsymbol{x} & \in oldsymbol{ heta}, \ oldsymbol{x}^-oldsymbol{p} & \in eta, \ oldsymbol{q}^-oldsymbol{x} & \in eta, \ oldsymbol{r} & \in oldsymbol{ heta}. \end{aligned}$$

Перемножив соответствующие части второго и третьего неравенств, получим

$$q^-p \le q^-xx^-p \le \theta^2$$
.

Следовательно, $\theta \geq (q^-p)^{1/2}$. Учитывая четвертое неравенство и то, что $\theta \geq x^-Ax \geq \lambda$, находим нижнюю границу для θ в форме

$$\theta \ge \lambda \oplus (\boldsymbol{q}^- \boldsymbol{p})^{1/2} \oplus r.$$

Применив лемму 1 к первым трем неравенствам рассматриваемой системы, а затем домножая первые два из полученных неравенств на θ^{-1} , получаем

$$egin{aligned} & heta^{-1} m{A} m{x} \leq m{x}, \ & heta^{-1} m{p} \leq m{x}, \ & m{x} \leq heta m{q}. \end{aligned}$$

Наконец, объединяя эти неравенства с неравенством $Bx \leq x$, запишем систему (2.11) в виде двойного неравенства

$$(\theta^{-1} \mathbf{A} \oplus \mathbf{B}) \mathbf{x} \oplus \theta^{-1} \mathbf{p} \le \mathbf{x} \le \theta \mathbf{q}. \tag{2.12}$$

По теореме 1 существование регулярных решений для левой части неравенства (2.12) равносильно выполнению условия $\text{Tr}(\theta^{-1} \boldsymbol{A} \oplus \boldsymbol{B}) \leq 1$. Рассмотрим выражение

$$\operatorname{Tr}(\theta^{-1}\boldsymbol{A}\oplus\boldsymbol{B})=\bigoplus_{k=1}^n\operatorname{tr}(\theta^{-1}\boldsymbol{A}\oplus\boldsymbol{B})^k=\operatorname{tr}\left(\bigoplus_{k=1}^n(\theta^{-1}\boldsymbol{A}\oplus\boldsymbol{B})^k\right).$$

Сначала, применяя тождество (1.1) при m = n, запишем

$$\bigoplus_{k=1}^n (\theta^{-1}\boldsymbol{A} \oplus \boldsymbol{B})^k = \bigoplus_{k=1}^n \bigoplus_{0 \le i_0 + \dots + i_k \le n-k} \theta^{-k} (\boldsymbol{B}^{i_0} \boldsymbol{A} \boldsymbol{B}^{i_1} \dots \boldsymbol{A} \boldsymbol{B}^{i_k}) \oplus \bigoplus_{k=1}^n \boldsymbol{B}^k.$$

Теперь с учетом обозначения S_{kn} , получим

$$\operatorname{Tr}(\theta^{-1}\boldsymbol{A}\oplus\boldsymbol{B})=\bigoplus_{k=1}^n\theta^{-k}\operatorname{tr}\boldsymbol{S}_{kn}\oplus\operatorname{Tr}(\boldsymbol{B}).$$

Заметим, что неравенство ${\rm Tr}({\pmb B}) \leq \mathbb{1}$ выполнено по условиям теоремы, поэтому требуется обеспечить выполнение неравенства

$$\bigoplus_{k=1}^n \theta^{-k} \operatorname{tr} \mathbf{S}_{kn} \le \mathbb{1}.$$

Последнее неравенство эквивалентно системе неравенств

$$\theta^{-k} \operatorname{tr} \mathbf{S}_{kn} \le 1, \qquad k = 1, \dots, n.$$

Решение неравенств системы приводит к системе

$$\operatorname{tr}^{1/k}(\boldsymbol{S}_{kn}) \le \theta, \qquad k = 1, \dots, n,$$

которая, в свою очередь, равносильна одному неравенству

$$\theta \ge \bigoplus_{k=1}^n \operatorname{tr}^{1/k}(\boldsymbol{S}_{kn}).$$

Заметим, что $\boldsymbol{S}_{kn} \geq \boldsymbol{A}^k$ для всех $k=1,\ldots,n,$ откуда следует, что

$$\bigoplus_{k=1}^n \operatorname{tr}^{1/k}(\boldsymbol{S}_{kn}) \ge \bigoplus_{k=1}^n \operatorname{tr}^{1/k}(\boldsymbol{A}^k) = \lambda.$$

Тогда можно уточнить установленную ранее нижнюю границу для θ следующим образом:

$$\theta \geq r \oplus (\boldsymbol{q}^{-}\boldsymbol{p})^{1/2} \oplus \bigoplus_{k=1}^{n} \operatorname{tr}^{1/k}(\boldsymbol{S}_{kn}).$$

Теперь необходимо получить решение неравенства (2.12). Применяя теорему 1, находим решение левой части неравенства в виде

$$\boldsymbol{x} = (\theta^{-1}\boldsymbol{A} \oplus \boldsymbol{B})^*\boldsymbol{u},$$

где $oldsymbol{u}$ — любой регулярный вектор такой, что $oldsymbol{u} \geq heta^{-1} oldsymbol{p}$.

С учетом полученного решения правое неравенство в (2.12) принимает форму

$$(\theta^{-1} \boldsymbol{A} \oplus \boldsymbol{B})^* \boldsymbol{u} \leq \theta \boldsymbol{q}.$$

По лемме 1 решение этого неравенства записывается в виде

$$\boldsymbol{u} \leq \theta(\boldsymbol{q}^{-}(\theta^{-1}\boldsymbol{A} \oplus \boldsymbol{B})^{*})^{-}.$$

Объединив оба неравенства для u, имеем

$$\theta^{-1} \boldsymbol{p} \leq \boldsymbol{u} \leq \theta (\boldsymbol{q}^{-} (\theta^{-1} \boldsymbol{A} \oplus \boldsymbol{B})^{*})^{-}.$$

Выясним, для каких значений θ множество регулярных решений полученного неравенства не пусто. Необходимо решить относительно θ неравенство

$$\theta^{-1} \boldsymbol{p} \le \theta (\boldsymbol{q}^{-} (\theta^{-1} \boldsymbol{A} \oplus \boldsymbol{B})^{*})^{-}. \tag{2.13}$$

Умножая неравенство (2.13) на $\theta^{-1} \boldsymbol{q}^- (\theta^{-1} \boldsymbol{A} \oplus \boldsymbol{B})^*$ слева, приходим к неравенству

$$\theta^{-2} \boldsymbol{q}^{-} (\theta^{-1} \boldsymbol{A} \oplus \boldsymbol{B})^* \boldsymbol{p} \le 1. \tag{2.14}$$

Теперь покажем, что неравенство (2.13), в свою очередь, тоже является следствием (2.14). Для этого умножим неравенство (2.14) слева на $\theta(\boldsymbol{q}^-(\theta^{-1}\boldsymbol{A}\oplus\boldsymbol{B})^*)^-$, а затем применим неравенство (1.2). В результате получим

$$\theta^{-1}\boldsymbol{p} \leq \theta^{-1}(\boldsymbol{q}^{-}(\theta^{-1}\boldsymbol{A} \oplus \boldsymbol{B})^{*})^{-}\boldsymbol{q}^{-}(\theta^{-1}\boldsymbol{A} \oplus \boldsymbol{B})^{*}\boldsymbol{p} \leq \theta(\boldsymbol{q}^{-}(\theta^{-1}\boldsymbol{A} \oplus \boldsymbol{B})^{*})^{-},$$

откуда следует, что оба неравенства эквивалентны.

Рассмотрим неравенство (2.14). Учитывая, что $\text{Tr}(\theta^{-1} \mathbf{A} \oplus \mathbf{B}) \leq 1$, можно записать

$$(\theta^{-1}oldsymbol{A}\oplusoldsymbol{B})^*=igoplus_{m=0}^{n-1}(heta^{-1}oldsymbol{A}\oplusoldsymbol{B})^m=oldsymbol{I}\oplusigoplus_{m=1}^{n-1}(heta^{-1}oldsymbol{A}\oplusoldsymbol{B})^m.$$

Также, как и в первой части доказательства, применим тождество (1.1) при m=n-1. Используя обозначение $S_{k,n-1}$ с учетом условия теоремы $\mathrm{Tr}(\boldsymbol{B}) \leq \mathbb{1}$, имеем

$$(\theta^{-1}\boldsymbol{A}\oplus\boldsymbol{B})^* = \boldsymbol{I} \oplus \bigoplus_{k=1}^{n-1} \theta^{-k}\boldsymbol{S}_{k,n-1} \oplus \bigoplus_{k=1}^{n-1} \boldsymbol{B}^k = \bigoplus_{k=1}^{n-1} \theta^{-k}\boldsymbol{S}_{k,n-1} \oplus \boldsymbol{S}_{0,n-1} = \bigoplus_{k=0}^{n-1} \theta^{-k}\boldsymbol{S}_{k,n-1}.$$

Подставляя полученное выражение в неравенство (2.14), приходим к неравенству

$$igoplus_{k=0}^{n-1} heta^{-k-2} oldsymbol{q}^- oldsymbol{S}_{k,n-1} oldsymbol{p} \leq \mathbb{1}.$$

Решая это неравенство относительно θ тем же путем, что и выше, получим

$$heta \geq igoplus_{k=0}^{n-1} (oldsymbol{q}^- oldsymbol{S}_{k,n-1} oldsymbol{p})^{1/(k+2)}.$$

Заметим, что при k=0 правая часть неравенства равна $({m q}^-{m B}^*{m p})^{1/2} \geq ({m q}^-{m p})^{1/2}.$

Объединив все нижние границы, установленные для θ , можем записать неравенство

$$\theta \geq r \oplus \bigoplus_{k=1}^{n} \operatorname{tr}^{1/k}(\boldsymbol{S}_{kn}) \oplus \bigoplus_{k=0}^{n-1} (\boldsymbol{q}^{-} \boldsymbol{S}_{k,n-1} \boldsymbol{p})^{1/(k+2)}.$$

Чтобы получить минимум целевой функции, заменим в этом соотношении знак неравенства на знак равенства.

Осталось записать общее решение в форме

$$x = (\theta^{-1} A \oplus B)^* u, \qquad \theta^{-1} p \le u \le \theta (q^- (\theta^{-1} A \oplus B)^*)^-,$$

и тем самым завершить доказательство теоремы.

2.4. Оценка вычислительной сложности

В этом разделе производится оценка вычислительной сложности решения задачи (2.8), а также предлагается метод, позволяющий существенно уменьшить количество необходимых арифметических операций.

Основная сложность при решении задачи (2.8) состоит в необходимости вычисления слагаемых

$$oldsymbol{S}_{0m} = igoplus_{i=0}^m oldsymbol{B}^i, \qquad oldsymbol{S}_{km} = igoplus_{0 \leq i_0 + \cdots + i_k \leq m-k} oldsymbol{B}^{i_0} oldsymbol{A} oldsymbol{B}^{i_1} \cdots oldsymbol{A} oldsymbol{B}^{i_k}, \qquad k = 1, \dots, m,$$

которые требуются для нахождении минимума целевой функции

$$heta = r \oplus igoplus_{k=1}^n \operatorname{tr}^{1/k}(\boldsymbol{S}_{kn}) \oplus igoplus_{k=0}^{n-1} (\boldsymbol{q}^- \boldsymbol{S}_{k,n-1} \boldsymbol{p})^{1/(k+2)}.$$

Подсчитаем количество матриц, участвующих в суммах S_{km} из формулы для θ . Эти суммы состоят из всевозможных произведений матриц, которые получены путем перемножения от 1 до n сомножителей A или B. Число таких произведений из k сомножителей может быть подсчитано так же, как и количество различных комбинаций, которые возможно составить из нулей и единиц, располагая их на k знаковых местах. Для k сомножителей это число равняется 2^k . Общее количество подобных произведений от 1 до n сомножителей составляет $2+2^2+\ldots+2^n=2^{n+1}-2$.

Таким образом, при прямом подсчете θ вычислительная сложность оказывается экспоненциальной. Далее представлен метод, который позволяет существенно снизить количество операций по сравнению с прямым подходом.

Обозначим через M_{km} — сумму всевозможных произведений, состоящих из k матриц A и m-k матриц B, при этом $M_{0m}=B^m$, $M_{mm}=A^m$, $M_{00}=I$. С учетом этих обозначений можно переписать суммы S_{km} в виде

$$S_{0m} = \bigoplus_{i=0}^{m} M_{0i}, \qquad S_{km} = \bigoplus_{i=k}^{m} M_{ki}, \qquad k = 1, \dots, m.$$

$$(2.15)$$

Заметим, что любую из матриц, которые входят в сумму $M_{k,m+1}$ (при $1 \le k \le m$), можно получить из матрицы, входящей в M_{km} , домножением на B или из матрицы, входящей в $M_{k-1,m}$, домножением на A. Отсюда можно вывести формулу, которая выражает последующий слой матриц M через предыдущий:

$$M_{k,m+1} = BM_{km} \oplus AM_{k-1,m} = M_{km}B \oplus M_{k-1,m}A, \qquad 1 \le k \le m.$$

Основываясь на этой формуле, действует метод для подсчета слагаемых: поочередно, слой за слоем вычисляются слагаемые M_{km} , после чего по формуле (2.15) находятся все необходимые суммы S_{km} , и, соответственно, минимум целевой функции θ . Наглядная иллюстрация подобной схемы изображена на рис. 2.1.

Рис. 2.1. Схема подсчета слагаемых в методе спуска.

Если подсчитать вычислительную сложность данного метода, то для вычисления всех слагаемых вида M_{0m} и M_{mm} потребуется 2(n-1) операций умножения матриц, а для вычисления каждого из остальных n(n-1)/2 слагаемых необходимо по две операции умножения и по одной сложения матриц. Таким образом, сложность нахождения слагаемых M_{km} составляет порядка $O(n^2)$ операций с матрицами, а итоговая сложность нахождения всех регулярных решений задачи (2.8) оказывается полиномиальной.

2.5. Численные примеры

Для того, чтобы проиллюстрировать полученные результаты, в настоящем разделе будут рассмотрены примеры их использования в терминах полуполя $\mathbb{R}_{\max,+}$. Сначала приводится задача без ограничений, к которой затем добавляются ограничения на множество допустимых значений.

2.5.1. Задача без ограничений

Предположим, что в задаче (2.8) отсутствуют ограничения. Тогда она принимает вид задачи (2.4). При условии, что n=2, предположим, что матрица \boldsymbol{A} , векторы \boldsymbol{p} и \boldsymbol{q}^- и скаляр r заданы в виде

$$\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix}, \quad \mathbf{q}^- = \begin{pmatrix} 1 & -1 \end{pmatrix}, \quad \mathbf{p} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad r = 2.$$

Для решения задачи применим теорему 2. Сначала по формуле (2.5) найдем ми-

нимум целевой функции $\mu=\lambda\oplus \left(m{q}^-m{p}
ight)^{1/2}\oplus \left(m{q}^-m{A}m{p}
ight)^{1/3}\oplus r$. Для этого вычислим

$$\mathbf{A}^{2} = \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 4 \\ 7 & 8 \end{pmatrix}, \quad \lambda = 4,$$

$$\mathbf{q}^{-}\mathbf{p} = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2, \quad (\mathbf{q}^{-}\mathbf{p})^{1/2} = 1,$$

$$\mathbf{q}^{-}\mathbf{A}\mathbf{p} = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 4, \quad (\mathbf{q}^{-}\mathbf{A}\mathbf{p} =)^{1/3} = 4/3.$$

Отсюда получаем $\mu = 4$. Также подсчитаем

$$\mu^{-1}\boldsymbol{A} = \begin{pmatrix} -3 & -4 \\ -1 & 0 \end{pmatrix}, \qquad (\mu^{-1}\boldsymbol{A})^* = \begin{pmatrix} 0 & -4 \\ -1 & 0 \end{pmatrix}, \qquad \mu^{-1}\boldsymbol{p} = \begin{pmatrix} -3 \\ -3 \end{pmatrix},$$
$$\mu(\boldsymbol{q}^{-}(\mu^{-1}\boldsymbol{A})^*)^{-} = 4\left(\begin{pmatrix} 1 & -1 \end{pmatrix}\begin{pmatrix} 0 & -4 \\ -1 & 0 \end{pmatrix}\right)^{-} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}.$$

Применяя формулу (2.6), находим решение в виде

$$x = \begin{pmatrix} 0 & -4 \\ -1 & 0 \end{pmatrix} u, \qquad \begin{pmatrix} -3 \\ -3 \end{pmatrix} \le u \le \begin{pmatrix} 3 \\ 5 \end{pmatrix}.$$

Переходя к обычной записи, полагая $\boldsymbol{x}=(x_1,x_2)^{\mathrm{T}}$ и $\boldsymbol{u}=(u_1,u_2)^{\mathrm{T}}$, получаем

$$x_1 = \max(u_1, u_2 - 4),$$
 $-3 \le u_1 \le 3,$
 $x_2 = \max(u_1 - 1, u_2),$ $-3 \le u_2 \le 5.$

Графическая иллюстрация решения в декартовой системе координат дана на рис. 2.2 (слева). Множество решений образует многоугольную область со штрихованными границами. Эта область получена пересечением полосы между двумя сплошными прямыми линиями, проведенными под углом 45° к координатным осям, и прямоугольника, границы которого изображены пунктиром.

2.5.2. Задачи с ограничениями

Модифицируем предыдущую задачу: добавим ограничения, приведя ее к виду (2.8). В качестве матрицы \boldsymbol{B} рассмотрим матрицу

$$\boldsymbol{B} = \left(\begin{array}{cc} 0 & -1 \\ -2 & 0 \end{array} \right).$$

Рис. 2.2. Примеры множества решений задачи: без ограничений (слева) и с ограничениями (в центре и справа).

Чтобы применить теорему 4, сначала вычислим

$$\boldsymbol{B}^{2} = \boldsymbol{B} = \boldsymbol{B}^{*}, \quad \operatorname{Tr}(\boldsymbol{B}) = 0 = 1,$$

$$\boldsymbol{A}\boldsymbol{B} = \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix} = \boldsymbol{A},$$

$$\boldsymbol{B}\boldsymbol{A} = \begin{pmatrix} 0 & -1 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}.$$

Минимум целевой функции при n=2 по формуле (2.9) равен $\theta=r\oplus {\rm tr}(\boldsymbol{S}_{12})\oplus {\rm tr}^{1/2}(\boldsymbol{S}_{22})\oplus (\boldsymbol{q}^{-}\boldsymbol{S}_{01}\boldsymbol{p})^{1/2}\oplus (\boldsymbol{q}^{-}\boldsymbol{S}_{11}\boldsymbol{p})^{1/3}$. Для его вычисления найдем матрицы

$$S_{01} = I \oplus B$$
, $S_{11} = A$, $S_{12} = A \oplus BA \oplus AB = \begin{pmatrix} 2 & 3 \\ 3 & 4 \end{pmatrix}$, $S_{22} = A^2 = \begin{pmatrix} 3 & 4 \\ 7 & 8 \end{pmatrix}$,

и подсчитаем значения

$$q^{-}S_{01}p = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ -2 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 2, \qquad (q^{-}S_{01}p =)^{1/2} = 1,$$

 $(q^{-}S_{11}p)^{1/3} = 4/3, \qquad \operatorname{tr} S_{12} = 4, \qquad \operatorname{tr}^{1/2}(S_{22}) = 8/2 = 4.$

Получаем, что минимальное значение целевой функции, равное $\theta=4$ не изменилось. Осталось вычислить

$$\theta^{-1} \boldsymbol{A} \oplus \boldsymbol{B} = \begin{pmatrix} -3 & -4 \\ -1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & -1 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = (\theta^{-1} \boldsymbol{A} \oplus \boldsymbol{B})^*,$$

$$\theta \left(\boldsymbol{q}^{-} \left(\theta^{-1} \boldsymbol{A} \oplus \boldsymbol{B} \right)^{*} \right)^{-} = 4 \left(\left(\begin{array}{cc} 1 & -1 \end{array} \right) \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array} \right) \right)^{-} = \left(\begin{array}{cc} 3 \\ 4 \end{array} \right).$$

Применяя формулу (2.10), находим решение в виде

$$x = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} u, \qquad \begin{pmatrix} -3 \\ -3 \end{pmatrix} \le u \le \begin{pmatrix} 3 \\ 4 \end{pmatrix}.$$

При переходе к обычной записи, получаем

$$x_1 = \max(u_1, u_2 - 1), \quad -3 \le u_1 \le 3,$$

$$x_2 = \max(u_1 - 1, u_2), \quad -3 \le u_2 \le 4.$$

Как показано на рис. 2.2 (в центре), в случае, если множество решений задачи без ограничений пересекается с допустимым множеством (это полоса между прямыми, проведенными через концы векторов b_1^* и b_2^* , которые являются столбцами матрицы B^*), то минимумы обеих задач равны, а множество решений задачи с ограничениями совпадает с этим пересечением.

Пусть в рассматриваемой задаче матрица ${m B}$ задана следующим образом:

$$\boldsymbol{B} = \left(\begin{array}{cc} 0 & -5 \\ 5 & -4 \end{array} \right).$$

Чтобы воспользоваться формулами из теоремы 4, вычислим

$$\mathbf{B}^{2} = \begin{pmatrix} 0 & -5 \\ 5 & 0 \end{pmatrix} = \mathbf{B}^{*}, \qquad \operatorname{Tr}(\mathbf{B}) = 0 = 1,$$

$$\mathbf{A}\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} 0 & -5 \\ 5 & -4 \end{pmatrix} = \begin{pmatrix} 5 & -4 \\ 9 & 0 \end{pmatrix},$$

$$\mathbf{B}\mathbf{A} = \begin{pmatrix} 0 & -5 \\ 5 & -4 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 6 & 5 \end{pmatrix}.$$

Снова применим формулу (2.9) для нахождения минимума θ . Заметим, что в слагаемых S_{11} , S_{22} , а значит и в $(\boldsymbol{q}^{-}S_{11}\boldsymbol{p})^{1/3}$ матрица \boldsymbol{B} не присутствует, поэтому воспользуемся их значениями из предыдущего примера. Подсчитаем недостающие слагаемые:

$$S_{01} = I \oplus B = B^*, \qquad q^- S_{01} p = \begin{pmatrix} 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & -5 \\ 5 & 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = 5,$$

$$(q^{-}S_{01}p =)^{1/2} = 5/2, \quad S_{12} = A \oplus BA \oplus AB = \begin{pmatrix} 5 & 0 \\ 9 & 5 \end{pmatrix}, \quad \text{tr } S_{12} = 5.$$

Отсюда получаем $\theta = 5$, из чего следует, что минимум увеличился. Осталось найти

$$\theta^{-1}\mathbf{A}\oplus\mathbf{B}=\left(\begin{array}{cc}-4&-5\\-2&-1\end{array}\right)\oplus\left(\begin{array}{cc}0&-5\\5&-4\end{array}\right)=\left(\begin{array}{cc}0&-5\\5&-1\end{array}\right),\quad \left(\theta^{-1}\mathbf{A}\oplus\mathbf{B}\right)^*=\left(\begin{array}{cc}0&-5\\5&0\end{array}\right),$$

$$\theta^{-1}\boldsymbol{p} = \begin{pmatrix} -4 \\ -4 \end{pmatrix}, \quad \theta(\boldsymbol{q}^{-}(\theta^{-1}\boldsymbol{A}\oplus\boldsymbol{B})^{*})^{-} = 5\left(\begin{pmatrix} 1 & -1 \end{pmatrix}\begin{pmatrix} 0 & -5 \\ 5 & 0 \end{pmatrix}\right)^{-} = \begin{pmatrix} 1 \\ 6 \end{pmatrix}.$$

Решение находим по формуле (2.10) в виде

$$x = \begin{pmatrix} 0 & -5 \\ 5 & 0 \end{pmatrix} u, \qquad \begin{pmatrix} -4 \\ -4 \end{pmatrix} \le u \le \begin{pmatrix} 1 \\ 6 \end{pmatrix}.$$

В терминах обычных операций полученное решение записывается в форме

$$x_1 = \max(u_1, u_2 - 5), \quad -4 \le u_1 \le 1,$$

$$x_2 = \max(u_1 + 5, u_2), \quad -4 \le u_2 \le 6.$$

Множество решений задачи изображено на рис. 2.2 (справа) в виде отрезка прямой, проведенной под углом 45° к координатным осям. Этот пример иллюстрирует случай, когда допустимая область решений не пересекается с множеством решений задачи без ограничений, вследствие чего минимум в задаче возрастает.

Глава 3

Применение в составлении плана исполнения проекта

В этом разделе, мы рассмотрим приложение результатов, полученных выше, для решения задачи планирования времени выполнения проекта. Для этого составляется математическая модель, использованная в [17], которая усложняется в настоящей работе добавлением новых ограничений.

3.1. Построение математической модели

Рассмотрим проект, состоящий из набора операций (работ, заданий), которые выполняются параллельно. Пусть они связаны одной или несколькими логическими зависимостями (связями), такими как «старт-финиш», «старт-старт», «ранний финиш» и «поздний старт» (более подробно данные обозначения, включая примеры, описаны в [19]). Ограничения типа «старт-финиш» устанавливают для любых двух операций минимальный допустимый интервал времени между началом одной операции и завершением другой. Ограничения «старт-старт» определяют минимальный интервал между началом выполнения двух операций.

Ограничения «поздний старт» и «ранний финиш» задают нижнюю и верхнюю границы для временного интервала (окна), который заранее выделяется (назначается) для выполнения каждой операции. Считается, что любая операция должна полностью занимать выделенное для нее окно. В случае, когда запланированное время начала операции оказывается больше нижней границы окна, оно корректируется так, чтобы совпадать с этой границей. Аналогично, если время завершения меньше верхней границы, оно сдвигается до указанной границы.

Для каждой операции в проекте учетное время исполнения (проведения, работы) определяется, как временной интервал между скорректированным временем начала и окончания операции. Задача состоит в том, чтобы минимизировать учетное время проведения всех операций при условии, что они завершаются как можно раньше с учетом всех описанных выше ограничений.

Рассмотрим проект, состоящий из n операций. Для каждой операции с номером $i=1,\ldots,n$ обозначим время начала через x_i , а время окончания через y_i . Пусть a_{ij} —

минимально возможная задержка между началом операции $j=1,\ldots,n$ и окончанием операции i. В случае, если для какого-то j задержка не указана, положим ее равной $a_{ij}=-\infty=0$. Ограничение «старт-финиш» приводит к равенствам

$$y_i = \max(a_{i1} + x_1, \dots, a_{in} + x_n), \qquad i = 1, \dots, n.$$

Обозначим через b_{ij} наименьший допустимый интервал времени между началом операции $j=1,\ldots,n$ и началом операции i. Тогда зависимость вида «старт-старт» между ними обуславливает неравенства

$$x_i > \max(b_{i1} + x_1, \dots, b_{in} + x_n), \qquad i = 1, \dots, n.$$

Введем обозначения l_i и p_i для временных ограничений «поздний старт» и «ранний финиш» соответственно для операции i. Пусть также s_i обозначает скорректированное время начала, а t_i — окончания операции i. Рассматривая интервал времени, определяемый ограничениями «ранний финиш» и «поздний старт», получаем

$$s_i = \min(x_i, l_i) = -\max(-x_i, -l_i), \qquad t_i = \max(y_i, p_i), \qquad i = 1, \dots, n.$$

При этом, максимальное учетное время исполнения операций задается как

$$\max(t_1-s_1,\ldots,t_n-s_n).$$

Таким образом, мы свели задачу оптимального составления расписания к форме

$$\min \max_{1 \le i \le n} (t_i - s_i),$$

$$s_i = -\max(-x_i, -l_i),$$

$$t_i = \max\left(\max_{1 \le j \le n} (a_{ij} + x_j), p_i\right),$$

$$x_i \ge \max_{1 \le j \le n} (b_{ij} + x_j), \qquad i = 1, \dots, n.$$

Так как в формулировке задачи присутствуют только операции взятия максимума, сложения и вычисления противоположного (обратного по сложению), то мы можем переписать ее в терминах идемпотентного полуполя $\mathbb{R}_{\max,+}$. Для этого сначала введем следующие обозначения для матриц

$$\mathbf{A} = (a_{ij}), \quad \mathbf{B} = (b_{ij}),$$

и для векторов

$$p = (p_i),$$
 $l = (l_i),$ $x = (x_i),$ $s = (s_i),$ $t = (t_i).$

Используя матричную алгебру над $\mathbb{R}_{\max,+}$, запишем

$$oldsymbol{s} = (oldsymbol{x}^- \oplus oldsymbol{l}^-)^-, \qquad oldsymbol{t} = oldsymbol{A} oldsymbol{x} \oplus oldsymbol{p}.$$

Тогда целевая функция приобретает форму

$$s^-t=(x^-\oplus l^-)(Ax\oplus p)=x^-Ax\oplus l^-Ax\oplus x^-p\oplus l^-p,$$

а задача планирования сроков выполнения проекта теперь принимает вид

min
$$x^-Ax \oplus l^-Ax \oplus x^-p \oplus l^-p$$
,
 $Bx \le x$. (3.1)

Заменив q^- на l^-A , r на l^-p , и, применяя теорему (2.8), мы получаем ответ.

Теорема 5. Пусть A — матрица со спектральным радиусом $\lambda > \mathbb{O}$, B — матрица, для которой $\mathrm{Tr}(B) \leq \mathbb{1}$, а l — регулярный вектор. Обозначим

$$S_{-1} = I$$
, $S_0 = AB^*$, $S_k = \bigoplus_{0 \le i_0 + \dots + i_k \le n - k - 1} AB^{i_0}AB^{i_1} \cdots AB^{i_k}$, $k = 1, \dots, n - 1$.

Тогда минимум в задаче (3.1) равен

$$\theta = \bigoplus_{k=0}^{n-1} \operatorname{tr}^{1/(k+1)}(\boldsymbol{S}_k) \oplus \bigoplus_{k=-1}^{n-1} (\boldsymbol{l}^{-} \boldsymbol{S}_k \boldsymbol{p})^{1/(k+2)},$$
(3.2)

а все регулярные решения имеют вид

$$\boldsymbol{x} = (\theta^{-1}\boldsymbol{A} \oplus \boldsymbol{B})^*\boldsymbol{u}, \qquad \theta^{-1}\boldsymbol{p} \leq \boldsymbol{u} \leq \theta(\boldsymbol{l}^-\boldsymbol{A}(\theta^{-1}\boldsymbol{A} \oplus \boldsymbol{B})^*)^-.$$
 (3.3)

$$\bigoplus_{k=-1}^{n-1} (\boldsymbol{l}^{-}\boldsymbol{S}_{k}\boldsymbol{p})^{1/(k+2)} = \bigoplus_{k=0}^{n-1} (\boldsymbol{l}^{-}\boldsymbol{A}\boldsymbol{S}_{k,n-1}\boldsymbol{p})^{1/(k+2)} \oplus \boldsymbol{l}^{-}\boldsymbol{p},$$

$$\bigoplus_{k=0}^{n-1} \operatorname{tr}^{1/(k+1)}(\boldsymbol{S}_{k}) = \bigoplus_{k=1}^{n} \operatorname{tr}^{1/k}(\boldsymbol{S}_{kn}),$$

где обозначения S_{km} определены в теореме 4.

Действительно, при k=-1 соответствующее слагаемое приобретает форму

$$(\boldsymbol{l}^{-}\boldsymbol{S}_{k}\boldsymbol{p})^{1/(k+2)} = (\boldsymbol{l}^{-}\boldsymbol{I}\boldsymbol{p})^{1/(-1+2)} = \boldsymbol{l}^{-}\boldsymbol{p}.$$

При других значениях k получаем

$$\bigoplus_{k=0}^{n-1} (\boldsymbol{l}^{-} \boldsymbol{S}_{k} \boldsymbol{p})^{1/(k+2)} = (\boldsymbol{l}^{-} \boldsymbol{A} \boldsymbol{B}^{*} \boldsymbol{p})^{1/2} \oplus \bigoplus_{k=1}^{n-1} (\boldsymbol{l}^{-} \bigoplus_{0 \leq i_{0} + \dots + i_{k} \leq n - k - 1}^{n-1} \boldsymbol{A} \boldsymbol{B}^{i_{0}} \boldsymbol{A} \boldsymbol{B}^{i_{1}} \cdots \boldsymbol{A} \boldsymbol{B}^{i_{k}} \boldsymbol{p})^{1/(k+2)} = \\
= (\boldsymbol{l}^{-} \boldsymbol{A} \boldsymbol{B}^{*} \boldsymbol{p})^{1/2} \oplus \bigoplus_{k=1}^{n-1} (\boldsymbol{l}^{-} \boldsymbol{A} \bigoplus_{0 \leq i_{0} + \dots + i_{k} \leq n - k - 1}^{n-1} \boldsymbol{B}^{i_{0}} \boldsymbol{A} \boldsymbol{B}^{i_{1}} \cdots \boldsymbol{A} \boldsymbol{B}^{i_{k}} \boldsymbol{p})^{1/(k+2)} = \\
= (\boldsymbol{l}^{-} \boldsymbol{A} \boldsymbol{S}_{0,n-1} \boldsymbol{p})^{1/2} \oplus \bigoplus_{k=1}^{n-1} (\boldsymbol{l}^{-} \boldsymbol{A} \boldsymbol{S}_{k,n-1} \boldsymbol{p})^{1/(k+2)} = \bigoplus_{k=0}^{n-1} (\boldsymbol{l}^{-} \boldsymbol{A} \boldsymbol{S}_{k,n-1} \boldsymbol{p})^{1/(k+2)}.$$

Для проверки равенства

$$\bigoplus_{k=0}^{n-1}\operatorname{tr}^{1/(k+1)}(\boldsymbol{S}_k) = \bigoplus_{k=1}^{n}\operatorname{tr}^{1/k)}(\boldsymbol{S}_{k,n})$$

достаточно вспомнить свойство следа $\operatorname{tr}(\boldsymbol{A}\boldsymbol{B})=\operatorname{tr}(\boldsymbol{B}\boldsymbol{A})$, благодаря которому можно свести выражение, записанное через \boldsymbol{S}_{kn} , к другой форме, через \boldsymbol{S}_k , сделав матрицу \boldsymbol{A} первым сомножителем в каждом из произведений.

Таким образом, мы проверили равенство минимальных значений целевой функции θ , и тем самым завершили доказательство теоремы.

3.2. Применение модели для составления плана ликвидации последствий радиационной аварии

Для иллюстрации полученного результата, рассмотрим следующую задачу. На некоторой территории произошла экологическая катастрофа с радиоактивным заражением местности. Необходимо провести обследование местности, выработать план первичных работ и осуществить его.

Для этого в район заражения будут отправлены три группы: исследователи, проектировщики/руководители и рабочая группа. В силу некоторых обстоятельств, существуют ограничения на наиболее позднюю дату высадки, а также на наиболее раннюю возможность эвакуации групп после завершения задания (для каждой группы ограничения свои). При этом существуют зависимости между работой разных групп (для начала проектирования необходимо первичное исследование; для начала работ необходим проект и уточненные данные исследований; кроме того, у исследователей и проектировщиков есть дополнительные задачи). Необходимо запланировать операцию таким образом, чтобы минимизировать максимальное (учетное) время, проведенное группами в опасной зоне (для минимизации полученной дозы радиации).

Предположим, что в проекте заданы следующие матрицы ограничений

$$m{A} = \left(egin{array}{ccc} 10 & 3 & \emptyset \ \emptyset & 7 & 2 \ \emptyset & \emptyset & 10 \end{array}
ight), \qquad m{B} = \left(egin{array}{ccc} 0 & \emptyset & \emptyset \ 3 & 0 & -3 \ 7 & 2 & 0 \end{array}
ight),$$

где A — матрица ограничений вида «старт-финиш», B — «старт-старт». Помимо этого заданы наиболее поздние сроки высадки групп («поздний старт») — вектор l и наиболее ранние возможные даты эвакуации («ранний финиш») — вектор p:

$$\boldsymbol{p} = \left(\begin{array}{ccc} 7 & 5 & 10 \end{array}\right)^{\mathrm{T}}, \qquad \boldsymbol{l} = \left(\begin{array}{ccc} 2 & 2 & 2 \end{array}\right)^{\mathrm{T}},$$

причем столбцы (строки) идут в следующем порядке: исследователи, проектировщики и рабочая группа.

Теперь, чтобы применить теорему 4, мы должны проверить условия существования регулярных решений. Для этого вычислим матрицу

$$oldsymbol{B}^2 = \left(egin{array}{ccc} 0 & \mathbb{O} & \mathbb{O} \ 4 & 0 & -3 \ 7 & 2 & 0 \end{array}
ight).$$

Отсюда находим $\operatorname{Tr}(\boldsymbol{B}) = 0 = 1$. Кроме того, заметим, что $\boldsymbol{B}^* = \boldsymbol{B}^2$.

Также подсчитаем

$$\mathbf{A}^{2} = \begin{pmatrix} 20 & 13 & 5 \\ 0 & 14 & 12 \\ 0 & 0 & 20 \end{pmatrix}, \qquad \mathbf{A}^{3} = \begin{pmatrix} 30 & 23 & 15 \\ 0 & 21 & 22 \\ 0 & 0 & 30 \end{pmatrix}, \qquad \lambda = 10.$$

По формуле (3.2) получаем минимум целевой функции равный

$$\theta = \operatorname{tr}(\boldsymbol{S}_0) \oplus \operatorname{tr}^{1/2}(\boldsymbol{S}_1) \oplus \operatorname{tr}^{1/3}(\boldsymbol{S}_2) \oplus \boldsymbol{l}^{-}\boldsymbol{S}_{-1}\boldsymbol{p} \oplus \left(\boldsymbol{l}^{-}\boldsymbol{S}_0\boldsymbol{p}\right)^{1/2} \oplus \left(\boldsymbol{l}^{-}\boldsymbol{S}_1\boldsymbol{p}\right)^{1/3} \oplus \left(\boldsymbol{l}^{-}\boldsymbol{S}_2\boldsymbol{p}\right)^{1/4}.$$

Рассмотрим подробно составные части каждой из S_i :

$$oldsymbol{S}_{-1} = oldsymbol{I}, \qquad oldsymbol{S}_0 = oldsymbol{A} \oplus oldsymbol{A} oldsymbol{B} \oplus oldsymbol{A} oldsymbol{B}^2, \qquad oldsymbol{S}_1 = oldsymbol{A}^2 \oplus oldsymbol{A} oldsymbol{B} oldsymbol{A} \oplus oldsymbol{A}^2 oldsymbol{B}, \qquad oldsymbol{S}_2 = oldsymbol{A}^3.$$

Таким образом, для нахождения S_0 необходимо вычислить матрицы

$$\mathbf{AB} = \begin{pmatrix} 10 & 3 & 0 \\ 0 & 7 & 2 \\ 0 & 0 & 10 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 3 & 0 & -3 \\ 7 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 10 & 3 & 0 \\ 10 & 7 & 4 \\ 17 & 12 & 10 \end{pmatrix},$$

$$\mathbf{A}\mathbf{B}^{2} = \begin{pmatrix} 10 & 3 & 0 \\ 10 & 7 & 4 \\ 17 & 12 & 10 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 4 & 0 & -3 \\ 7 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 10 & 3 & 0 \\ 11 & 7 & 4 \\ 17 & 12 & 10 \end{pmatrix},$$

просуммировав которые получаем

$$m{S}_0 = m{A} \oplus m{A} m{B} \oplus m{A} m{B}^2 = \begin{pmatrix} 10 & 3 & 0 \\ 11 & 7 & 4 \\ 17 & 12 & 10 \end{pmatrix}, \quad \operatorname{tr}(m{S}_0) = 10.$$

Чтобы найти S_1 , подсчитаем значения матриц

$$\mathbf{ABA} = \begin{pmatrix} 10 & 3 & 0 \\ 10 & 7 & 4 \\ 17 & 12 & 10 \end{pmatrix} \begin{pmatrix} 10 & 3 & 0 \\ 0 & 7 & 2 \\ 0 & 0 & 10 \end{pmatrix} = \begin{pmatrix} 20 & 13 & 10 \\ 20 & 14 & 14 \\ 27 & 20 & 20 \end{pmatrix},$$

$$\mathbf{A}^{2}\mathbf{B} = \begin{pmatrix} 10 & 3 & 0 \\ 0 & 7 & 2 \\ 0 & 0 & 10 \end{pmatrix} \begin{pmatrix} 10 & 3 & 0 \\ 10 & 7 & 4 \\ 17 & 12 & 10 \end{pmatrix} = \begin{pmatrix} 20 & 13 & 10 \\ 19 & 14 & 12 \\ 27 & 22 & 20 \end{pmatrix},$$

отсюда выводим матрицу S_1 :

$$S_1 = A^2 \oplus ABA \oplus A^2B = \begin{pmatrix} 20 & 13 & 10 \\ 20 & 14 & 14 \\ 27 & 22 & 20 \end{pmatrix}, \quad \operatorname{tr}(S_1) = 20, \quad \operatorname{tr}^{1/2}(S_1) = 10.$$

Матрица $\mathbf{S}_2 = \mathbf{A}^3$ была найдена ранее, $\operatorname{tr}(\mathbf{S}_2) = 30$, $\operatorname{tr}^{1/3}(\mathbf{S}_2) = 10$.

Теперь вычислим $l^-S_{-1}p = l^-Ip = l^-p$:

$$\boldsymbol{l}^{-}\boldsymbol{p} = \begin{pmatrix} -2 & -2 & -2 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \\ 10 \end{pmatrix} = 8,$$

$$\boldsymbol{l}^{-}\boldsymbol{S}_{0}\boldsymbol{p} = \begin{pmatrix} -2 & -2 & -2 \end{pmatrix} \begin{pmatrix} 10 & 3 & 0 \\ 11 & 7 & 4 \\ 17 & 12 & 10 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \\ 10 \end{pmatrix} = 22, \quad (\boldsymbol{l}^{-}\boldsymbol{S}_{0}\boldsymbol{p})^{1/2} = 11,$$

а также остальные слагаемые из второй суммы:

$$\boldsymbol{l}^{-}\boldsymbol{S}_{1}\boldsymbol{p} = \begin{pmatrix} -2 & -2 & -2 \end{pmatrix} \begin{pmatrix} 20 & 13 & 10 \\ 20 & 14 & 14 \\ 27 & 22 & 20 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \\ 10 \end{pmatrix} = 32, \quad (\boldsymbol{l}^{-}\boldsymbol{S}_{1}\boldsymbol{p})^{1/(1+2)} = 32/3,$$

$$\boldsymbol{l}^{-}\boldsymbol{S}_{2}\boldsymbol{p} = \begin{pmatrix} -2 & -2 & -2 \end{pmatrix} \begin{pmatrix} 30 & 23 & 15 \\ 0 & 21 & 22 \\ 0 & 0 & 30 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \\ 10 \end{pmatrix} = 38, \quad (\boldsymbol{l}^{-}\boldsymbol{S}_{2}\boldsymbol{p})^{1/(2+2)} = 19/2.$$

Получаем минимум целевой функции $\theta = \max(10, 8, 11, 32/3, 19/2) = 11.$

$$\theta^{-1} \mathbf{A} = \begin{pmatrix} -1 & -8 & 0 \\ 0 & -4 & -9 \\ 0 & 0 & -1 \end{pmatrix}, \qquad \theta^{-1} \mathbf{A} \oplus \mathbf{B} = \begin{pmatrix} 0 & -8 & 0 \\ 3 & 0 & -3 \\ 7 & 2 & 0 \end{pmatrix},$$

$$(\theta^{-1}\mathbf{A} \oplus \mathbf{B})^2 = \begin{pmatrix} 0 & -8 & -11 \\ 4 & 0 & -3 \\ 7 & 2 & 0 \end{pmatrix} = (\theta^{-1}\mathbf{A} \oplus \mathbf{B})^*.$$

Помимо этого подсчитаем значения

$$\boldsymbol{l}^{-}\boldsymbol{A} = \begin{pmatrix} -2 & -2 & -2 \end{pmatrix} \begin{pmatrix} 10 & 3 & 0 \\ 0 & 7 & 2 \\ 0 & 0 & 10 \end{pmatrix} = \begin{pmatrix} 8 & 5 & 8 \end{pmatrix},$$

$$\mathbf{l}^{-}\mathbf{A}(\theta^{-1}\mathbf{A}\oplus\mathbf{B})^{*} = \begin{pmatrix} 8 & 5 & 8 \end{pmatrix} \begin{pmatrix} 0 & -8 & -11 \\ 4 & 0 & -3 \\ 7 & 2 & 0 \end{pmatrix} = \begin{pmatrix} 15 & 10 & 8 \end{pmatrix}.$$

Левую и правую границы для вектора u находим по формуле (3.2):

$$\theta^{-1}\boldsymbol{p} = \begin{pmatrix} -4 \\ -6 \\ -1 \end{pmatrix}, \qquad \theta(\boldsymbol{l}^{-}\boldsymbol{A}(\theta^{-1}\boldsymbol{A} \oplus \boldsymbol{B})^{*})^{-} = \begin{pmatrix} -4 \\ 1 \\ 3 \end{pmatrix}.$$

Получаем, что множество всех решений задачи состоит из векторов

$$\boldsymbol{x} = \begin{pmatrix} 0 & -8 & -11 \\ 4 & 0 & -3 \\ 7 & 2 & 0 \end{pmatrix} \boldsymbol{u}, \qquad \begin{pmatrix} -4 \\ -6 \\ -1 \end{pmatrix} \leq \boldsymbol{u} \leq \begin{pmatrix} -4 \\ 1 \\ 3 \end{pmatrix}.$$

В терминах обычных операций решение принимает вид

$$x_1 = \max(u_1, u_2 - 8, u_3 - 11),$$
 $-4 \le u_1 \le -4,$
 $x_2 = \max(u_1 + 4, u_2, u_3 - 3),$ $-6 \le u_2 \le 1,$
 $x_3 = \max(u_1 + 7, u_2 + 2, u_3),$ $-1 \le u_3 \le 3.$

Заметим, что неравенство $-4 \le u_1 \le -4$ равносильно равенству $u_1 = -4$. С учетом этого, решение может быть переписано в виде

$$x_1 = \max(-4, u_2 - 8, u_3 - 11),$$
 $u_1 = -4,$
 $x_2 = \max(0, u_2, u_3 - 3),$ $-6 \le u_2 \le 1,$
 $x_3 = \max(3, u_2 + 2, u_3),$ $-1 \le u_3 \le 3.$

Отсюда видно, что все компоненты вектора \boldsymbol{x} ограничены снизу: $x_1 \ge -4$, $x_2 \ge 0$, $x_3 \ge 3$. Помимо этого, так как каждая из компонент не убывает как по u_2 , так и по u_3 , то, подставив верхние границы $u_2 = 1$, $u_3 = 3$, находим верхнюю границу вектора \boldsymbol{x} :

$$x_1 \le \max(-4, 1-8, 3-11) = -4,$$

 $x_2 \le \max(0, 1, 3-3) = 1,$
 $x_3 \le \max(3, 1+2, 3) = 3.$

Для компонент x_1 и x_3 верхняя граница совпала с нижней, поэтому $x_1 = -4$, $x_3 = 3$. Заметим также, что компонента u_3 вектора \boldsymbol{u} не оказывает влияния на вектор \boldsymbol{x} , а от компоненты u_2 зависит только компонента $x_2 = u_2$ при $0 \le u_2 \le 1$.

Получаем, что множество всех регулярных решений задачи, на которых достигается минимум целевой функции $\theta=11$, состоит из векторов вида

$$\boldsymbol{x} = \begin{pmatrix} -4 & u_2 & 3 \end{pmatrix}^{\mathrm{T}}, \qquad 0 \leq u_2 \leq 1.$$

Глава 4

Программное обеспечение

Для расчетов в работе использовалось программное обеспечение, написанное на языке R, листинг которого приводится в приложении A. Оно позволяет проводить вычисления в различных идемпотентных полуполях.

4.1. Структура программного обеспечения

В программе реализованы следующие функции:

- Функция мультипликативно сопряженного транспонирования conjInv;
- Функция сложения матриц в идемпотентном полуполе parplus;
- Функция перемножения матриц в идемпотентном полуполе multiply;
- \bullet Оператор «звезда Клини» ast;
- Функция вычисления следа матрицы в идемпотентном полуполе -tr;
- Функция вычисления тропического аналога определителя Tr;
- Функция, решающая задачу без ограничений (2.4), unconstr;
- Функция вычисления необходимых компонент $S_{km}-sCreate;$
- Функция, решающая задачу с ограничениями (2.8), constr;
- Функции для работы в полуполе $\mathbb{R}_{\max,+}$;

Функция мультипликативно сопряженного транспонирования conjInv принимает на вход обязательный параметр — вектор, а также необязательные: функцию обращение числа inv и тропический нуль zero. Здесь и далее, если не указывать необязательные параметры, по умолчанию используется полуполе $\mathbb{R}_{\max,+}$.

Функция сложения матриц в идемпотентном полуполе parplus принимает на вход обязательный параметр — набор векторов/матриц, а также необязательные: функцию тропического сложения plus и параметр учета пропущенных значений na.rm. За основу для этой функции была взята встроенная функция pmax. Используется в случае, если сложение матриц не задано явно другой функцией.

Функция перемножения матриц в идемпотентном полуполе multiply принимает на вход обязательные параметры — две матрицы подходящего размера, необязательные: функцию тропического сложения plus и функцию тропического умножения mult.

Оператор «звезда Клини» ast принимает на вход обязательный параметр — квадратную матрицу, необязательные: функцию тропического сложения plus, функцию тропического умножения mult, тропический нуль zero, тропическую единицу identity, функцию сложения матриц pplus.

Функция вычисления следа матрицы в идемпотентном полуполе tr принимает на вход обязательный параметр — квадратную матрицу, необязательный — функцию тропического сложения plus.

Функция вычисления тропического аналога определителя Tr принимает на вход обязательный параметр — квадратную матрицу, необязательные: функцию тропического сложения plus и функцию тропического умножения mult.

Функция вычисления спектрального радиуса матрицы в идемпотентном полуполе spectr принимает на вход обязательный параметр — квадратную матрицу, необязательные: функцию тропического сложения plus, функцию тропического умножения mult и функцию тропического возведения в степень deq.

Функция unconstr, решающая задачу без ограничений, принимает на вход обязательные параметры: матрицу A, векторы p, q, скаляр r, необязательные: функцию тропического сложения plus, функцию тропического умножения mult, тропический нуль zero, тропическую единицу identity, функцию сложения матриц pplus, функцию тропического возведения в степень deg, функцию взятия обратного по умножению inv.

Функция sCreate для вычисления необходимых компонент S_{km} принимает на вход обязательные параметры: матрицы A и B, необязательные: функцию тропического сложения plus, функцию тропического умножения mult, тропический нуль zero, тропическую единицу identity, функцию сложения матриц pplus. На выходе выдается список, содержащий sArr — массив матриц $S_{k,n-1}$, $k = 0 \dots n-1$, snArr — массив матриц S_{kn} ,

 $k = 0 \dots n$, а также исходные матрицы.

Функция constr, решающая задачу с ограничениями, принимает на вход обязательные параметры: матрицу \boldsymbol{A} , векторы \boldsymbol{p} , \boldsymbol{q} , скаляр r, матрицу \boldsymbol{B} , необязательные: функцию тропического сложения plus, функцию тропического умножения mult, тропический нуль zero, тропическую единицу identity, функцию сложения матриц pplus, функцию тропического возведения в степень deg, функцию взятия обратного по умножению inv.

Эти функции использовались для проведения расчетов в настоящей работе. Несмотря на то, что все примеры приводились в полуполе $\mathbb{R}_{\max,+}$, приведенные выше функции могут корректно работать и в иных полуполях при задании соответствующих этим полуполям необязательных параметрах.

Заключение

Таким образом, в работе были получены следующие результаты.

- Представлен обзор некоторых задач оптимизации тропической математики.
- Полностью решена задача оптимизации с линейными ограничениями и целевой функцией более общего вида, результат оформлен в виде теоремы.
- Приведены числовые примеры с графическими иллюстрациями, которые соответствуют различным вариантам взаимного расположения множества решений задачи без ограничений и множества ограничений в двумерном случае.
- Полученная теорема применена к задаче составления расписания проекта, представлена математическая модель.
- Подробно разобран числовой пример, демонстрирующий применение предъявленной модели для решения задачи.
- Проведена оценка вычислительной сложности, и предложен метод, который позволяет существенно снизить сложность.

Эти результаты увеличивают область приложения тропической математики, а также расширяют возможность ее применения при решении задач оптимизации.

Литература

- Cuninghame-Green R. A. Minimax algebra and applications // Advances in Imaging and Electron Physics / Ed. by P. W. Hawkes. San Diego, CA: Academic Press, 1994.
 Vol. 90 of Advances in Imaging and Electron Physics. P. 1–121.
- 2. Zimmermann K. Disjunctive optimization, max-separable problems and extremal algebras // Theoret. Comput. Sci. 2003. Vol. 293, no. 1. P. 45–54.
- 3. Tharwat A., Zimmermann K. One class of separable optimization problems: solution method, application // Optimization. 2010. Vol. 59, no. 5. P. 619–625.
- 4. Cuninghame-Green R. A. Describing industrial processes with interference and approximating their steady-state behaviour // Oper. Res. Quart. 1962. Vol. 13, no. 1. P. 95–100.
- Cuninghame-Green R. A. Projections in minimax algebra // Math. Program. 1976.
 Vol. 10. P. 111–123.
- 6. Zimmermann U. Linear and Combinatorial Optimization in Ordered Algebraic Structures. Amsterdam: Elsevier, 1981. Vol. 10 of Annals of Discrete Mathematics. 390 p.
- 7. Butkovič P., Aminu A. Introduction to max-linear programming // IMA J. Manag. Math. 2009. Vol. 20, no. 3. P. 233–249.
- 8. Baccelli F. L., Cohen G., Olsder G. J., Quadrat J.-P. Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley Series in Probability and Statistics. Chichester: Wiley, 1993. 514 p.
- 9. Маслов В. П., Колокольцов В. Н. Идемпотентный анализ и его применение в оптимальном управлении. М.: Физматлит, 1994. 144 с.
- 10. Кривулин Н. К. Методы идемпотентной алгебры в задачах моделирования и анализа сложных систем. СПб.: Изд-во С.-Петерб. ун-та, 2009. 256 с.
- 11. Krivulin N. A multidimensional tropical optimization problem with nonlinear objective function and linear constraints // Optimization. 2015. Vol. 64, no. 5. P. 1107–1129.
- 12. Krivulin N. A constrained tropical optimization problem: Complete solution and application example // Tropical and Idempotent Mathematics and Applications / Ed. by

- G. L. Litvinov, S. N. Sergeev. Providence, RI: American Mathematical Society, 2014.
 Vol. 616 of Contemporary Mathematics. P. 163–177.
- 13. Krivulin N. Complete solution of a constrained tropical optimization problem with application to location analysis // Relational and Algebraic Methods in Computer Science / Ed. by P. Höfner, P. Jipsen, W. Kahl, M. E. Müller. Cham: Springer, 2014. Vol. 8428 of Lecture Notes in Computer Science. P. 362–378.
- Кривулин Н. К. Экстремальное свойство собственного значения неразложимых матриц в идемпотентной алгебре и решение задачи размещения Вебера—Ролса // Вестник С.-Петербургского Университета. Сер.1: Математика. 2011. Т. 44, № 4. С. 272–281.
- 15. Gaubert S., Katz R. D., Sergeev S. Tropical linear-fractional programming and parametric mean payoff games // J. Symbolic Comput. 2012. Vol. 47, no. 12. P. 1447–1478.
- Butkovič P. Max-linear Systems: Theory and Algorithms. Springer Monographs in Mathematics. London: Springer, 2010. 272 p.
- 17. Krivulin N. Extremal properties of tropical eigenvalues and solutions to tropical optimization problems // Linear Algebra Appl. 2015. Vol. 468. P. 211–232.
- 18. Krivulin N. Tropical optimization problems // Advances in Economics and Optimization: Collected Scientific Studies Dedicated to the Memory of L. V. Kantorovich / Ed. by L. A. Petrosyan, J. V. Romanovsky, D. W. K. Yeung. New York: Nova Science Publishers, 2014. Economic Issues, Problems and Perspectives. P. 195–214.
- 19. Руководство к своду знаний по управлению проектами (Руководство РМВОК). Project Management Institute, Inc, 2013. Пятое издание.

Приложение А

Программные средства

```
conjInv \leftarrow function(x, inv = maxplusinv, zero = -Inf) {
    res \leftarrow matrix(zero, nrow(x), ncol(x))
    res[x != zero] = inv(x[x != zero])
    t (res)
  }
 # Tropical matrices multiplication function
  multiply <- function(A, B, plus = max, mult = add) {
    if (ncol(A) != nrow(B))
      stop("Incompatible matrices!")
10
    rows <- nrow(A)
12
    cols <- ncol(B)
13
    res <- matrix (0., nrow = rows, ncol = cols)
14
    for (i in 1:rows) {
      for (j in 1:cols) {
         res[i,j] \leftarrow plus(mult(A[i,], B[,j]))
17
      }
18
    }
19
    res
21
22
  parplus <- function (..., plus = max, na.rm = FALSE)
  {
24
    elts \leftarrow list (...)
25
    if (length(elts) = 0L)
26
      stop("no arguments")
27
    mmm < - elts[[1L]]
    attr (mmm, "dim") <- NULL
29
    has.na <- FALSE
30
    for (each in elts[-1L]) {
31
      attr(each, "dim") <- NULL
32
      l1 <- length (each)
      12 < - length (mmm)
34
```

```
if (12 < 11) {
         if (12 & 11%%12)
36
           warning ("an argument will be fractionally recycled")
37
        mmm <- rep (mmm, length.out = 11)
38
39
       else if (11 && 11 < 12) {
         if (12\%11)
41
           warning ("an argument will be fractionally recycled")
42
         each <- rep(each, length.out = 12)
       }
44
       nas \leftarrow cbind(is.na(mmm), is.na(each))
45
       if (has.na || (has.na <- any(nas))) {
46
        mmm[nas[, 1L]] \leftarrow each[nas[, 1L]]
47
         each[nas[, 2L]] \leftarrow mmm[nas[, 2L]]
48
       }
49
50
       len <- length (mmm)
51
       for (i in 1:len) {
52
           mmm[i] <- plus(mmm[i], each[i])
       }
       if (has.na &&!na.rm)
55
        mmm[nas[, 1L] | nas[, 2L]] <- NA
56
    mostattributes (mmm) <- attributes (elts [[1L]])
    mmm
59
  }
60
61
  ast <- function(A, plus = max, mult = add, zero = -Inf, identity = 0,
62
                    pplus = NULL) {
63
    d < - ncol(A)
64
    if (d != nrow(A))
65
       stop("Non-square matrix is given!")
    id <- matrix(zero, d, d, byrow=TRUE)
67
    if (d > 1) {
68
       diag(id) <- identity
69
    }
70
    else id <- identity
    res <- id
72
    temp <- A
```

```
if (is.null(pplus))
       pplus <- function (...) parplus (..., plus=plus)
75
     res <- pplus (res, temp)
76
     if (d > 2)  {
77
       for (i in 1:(d-2)) {
78
          temp <- multiply (temp, A, plus, mult)
          res <- pplus (res, temp)
80
       }
81
     }
82
     res
83
  }
84
85
   tr <- function(A, plus = max) {
86
     d < - ncol(A)
87
     if (d != nrow(A))
88
       stop("Non-square matrix is given!")
89
     if (d > 1)
90
       temp <- plus (diag(A))
91
     _{\rm else}
92
       temp < A[1,1]
93
     temp
94
  }
95
96
  Tr <- function(A, plus = max, mult = add) {
     d < - ncol(A)
98
     if (d != nrow(A))
99
       warning("Non-square matrix is given!")
100
     temp <- A
101
     res <- tr(A, plus)
102
     for (i in 2:d) {
103
       temp <- multiply (temp, A, plus, mult)
104
       res <- plus (res, tr(temp))
     }
106
107
     res
  }
108
   spectr <- function(A, plus = max, mult = add, deg = div) {
     d \leftarrow ncol(A)
111
     if (d != nrow(A))
112
```

```
warning ("Non-square matrix is given!")
113
     temp <- A
114
      res \leftarrow tr(A)
115
      for (i in 1:(d-1)) {
116
        temp <- multiply (temp, A, plus, mult)
117
        res \leftarrow plus (res, deg (tr(temp, plus), 1/(i+1)))
     }
119
     res
120
   }
   unconstr <- \ function (A, \ p, \ q, \ r, \ plus = max, \ mult = add, \ zero = -Inf,
                              \label{eq:identity} \operatorname{identity} \, = \, 0 \, , \; \; \operatorname{pplus} \, = \, \operatorname{NULL}, \; \; \operatorname{deg} \, = \, \operatorname{div} \, ,
124
                              inv = maxplusinv) {
125
126
     lambda <- spectr(A, plus, mult, deg)
127
      if (lambda == zero)
128
        stop("Incorrect matrix: eigenvalue equals zero!")
129
130
     myu <- plus (lambda, r)
     qm \leftarrow conjInv(q, inv = inv, zero=zero)
132
     d < - nrow(A)
133
      temp <- matrix(zero, d, d, byrow=TRUE)
134
      diag(temp) <- identity</pre>
136
      for (i in 1:d) {
137
        myu <- plus (myu, deg (multiply (multiply (qm, temp, plus, mult),
138
                                              p, plus, mult), 1/(i + 1))
139
        temp <- multiply (temp, A, plus, mult)
140
141
     }
142
     myuminus <- inv(myu)
143
     matr <- ast(mult(myuminus, A), plus, mult, zero, identity, pplus)
      left <- mult(myuminus, p)</pre>
145
      right <- mult(myu, conjInv(multiply(qm, matr, plus, mult),
146
                                        inv = inv, zero = zero)
147
      list(myu = myu, matr = matr, left = left, right = right, A = A,
148
            p = p, q = q, r = r
150 }
151
```

```
sCreate <- function(A, B, plus = max, mult = add, zero = -Inf,
                             identity = 0, pplus = NULL) {
     n \leftarrow nrow(A)
154
     mArr \leftarrow array(zero, c(n, n, n + 1))
155
     mNew \leftarrow array(zero, c(n, n, n + 1))
     snArr <- \ array (\, zero \, , \ c \, (\, n \, , \ n \, , \ n \, + \, 1) \, )
      sArr \leftarrow array(zero, c(n, n, n + 1))
158
     # Identity matrix should be added as it is M {00}
160
     \operatorname{diag}(\operatorname{sArr}[,,1]) \leftarrow \operatorname{identity}
161
     mArr[,,1] \leftarrow B
163
     mArr[,,2] \leftarrow A
164
165
      if (is.null(pplus))
166
        pplus <- function (...) parplus (..., plus=plus)
167
168
      for (i in 2:n) {
        for (j in 1:(i + 1))
           sArr[,,j] \leftarrow pplus(sArr[,,j], mNew[,,j])
171
        mNew[,,1] \leftarrow multiply(B, mArr[,,1], plus, mult)
173
        mNew[,,i+1] \leftarrow multiply(A, mArr[,,i], plus, mult)
        for (j in 2:i)
          mNew[\;,\,,j\;]\;<-\;pplus\left(\,m\,ultiply\left(A,\;mArr\left[\;,\,,j\;-\;1\right]\,,\;plus\;,\;mult\,\right)\,,
                                   multiply (B, mArr[,,j]))
        mArr <- mNew
178
     }
179
     snArr <- pplus (sArr, mNew)
180
      list(sArr = sArr[,,1:n], snArr = snArr, A = A, B = B)
181
   }
182
   constr < -function(A, p, q, r, B, plus = max, mult = add, zero = -Inf,
184
                           identity = 0, pplus = pmax, deg = div,
185
                           inv = maxplusinv) {
186
     lambda <- spectr(A, plus, mult, deg)
187
      if (lambda == zero)
        stop("Incorrect matrix: eigenvalue equals zero!")
189
190
```

```
\# Checking matrix B. Using x \land \neq y \iff x \land plus y = y
     trB <- Tr(B, plus, mult)
192
     if ((trB != identity) & (plus(trB, identity) == trB))
193
       stop("Incorrect matrix: Tr(B) > \backslash mathbb{1}")
194
195
     n \leftarrow nrow(A)
     temp <- sCreate(A, B, plus, mult, zero, identity, pplus)
197
     myu <- r
198
     for (i in 1:n) {
199
       myu \leftarrow plus(myu, deg(tr(temp\$snArr[,,i+1], plus), 1/i),
200
                     deg(multiply(multiply(conjInv(q, inv=inv, zero=zero),
                                              temp$sArr[,,i], plus, mult),
202
                                   p, plus, mult), 1/(i + 1)))
203
     }
204
205
     myuminus <- inv(myu)
206
207
     if (is.null(pplus))
208
       pplus <- function (...) parplus (..., plus=plus)
210
     matr <- ast(pplus(mult(myuminus, A), B), plus, mult, zero, identity)
211
     qm \leftarrow conjInv(q, inv = inv, zero = zero)
     left <- mult(myuminus, p)</pre>
     right <- mult(myu, conjInv(multiply(qm, matr, plus, mult),
                                    inv = inv, zero = zero)
215
     xleft <- multiply(matr, left, plus, mult)</pre>
216
     xright <- multiply(matr, right, plus, mult)</pre>
     list (myu = myu, matr = matr, left = left, right = right, A = A,
218
          p=p,\;q=q,\;r=r,\;B=B,\;xleft=xleft,\;xright=xright)
219
   }
220
   add \leftarrow function(x, y) x + y
223
   div \leftarrow function(x, m) x * m
225
|maxplusinv| < - function(x) - x
```

Listing A.1. Исходные коды использованных функций