

FCC PART 15.407 TEST REPORT

For

SWIT Electronics Co., Ltd.

10 Heng Tong Road, Xin'gang Economic and Technological Development Zone, Nanjing 210038 China

FCC ID: 2AFFCS-FLOW2000RX

Report Type: Product Type: Original Report 2000ft Wireless HD Sam. Te. **Test Engineer:** Sam Ye **Report Number:** RSHA191012008-00A **Report Date:** 2019-11-13 Oscar Ye Oscar. Ye **Reviewed By:** EMC Manager **Test Laboratory:** Bay Area Compliance Laboratories Corp. (Kunshan) No.248 Chenghu Road, Kunshan, Jiangsu province, China Tel: +86-0512-86175000 Fax: +86-0512-88934268 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the device described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
Measurement Uncertainty Test Facility	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT EXERCISE SOFTWARE	
EQUIPMENT MODIFICATIONS	8
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	9
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	12
FCC §1.1310 & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)	14
APPLICABLE STANDARD	
CALCULATED FORMULARY:	
CALCULATED DATA (WORST CASE):	
FCC §15.203 – ANTENNA REQUIREMENT	15
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.407 (b) (6) §15.207 (a) – AC POWER LINE CONDUCTED EMISSIONS	16
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER SETUP	
Test Procedure	17
CORRECTED FACTOR & OVER LIMIT CALCULATION	17
Test Results Summary	
TEST DATA	17
§15.205 & §15.209 & §15.407(B) (1), (2), (3),(6),(7) – UNDESIRABLE EMISSION & RESTRI	ICTED BANDS20
APPLICABLE STANDARD	20
EUT Setup	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
TEST PROCEDURE	21
Factor & Over Limit Calculation (for Below 1GHz)	22 22
TEST DATA	
FCC §15.407(a) &§15.407(e)–EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST PROCEDURE TEST DATA	
FCC §15.407(a) (1) (3) – CONDUCTED TRANSMITTER OUTPUT POWER	12
APPLICABLE STANDARD	
1 EST 1 ROCEDURE	43

Bay Area Compliance Laboratories Corp. (Kunshan)	Report No.: RSHA191012008-00A
TEST DATA	44
FCC §15.407(a) (1) (3) - POWER SPECTRAL DENSITY	45
APPLICABLE STANDARD	45
TEST PROCEDURE	45

Test Data45

FCC Part 15.407 Page 3 of 49

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Applicant	SWIT Electronics Co., Ltd.
Tested Model	FLOW2000 Rx
Series Model	FLOW500 Rx, S-6160 Rx, S-6115 Rx
Model Difference	Model names
Product Type	2000ft Wireless HD
Operating Frequency	5182.5~5222.5MHz, 5762.5~5822.5MHz
Power Supply	DC 7~34V
Modulation Type	OFDM
Antenna Type	Omni Antenna
Maximum Antenna Gain	2.0dBi

Report No.: RSHA191012008-00A

Adapter Information: Model: SW-120100

Input: AC100-240V 50/60Hz 0.5A

Output:12V, 1000mA

Objective

This type approval report is prepared on behalf of *SWIT Electronics Co., Ltd.* in accordance with Part 2-Subpart J, Part 15-Subparts A and E of the Federal Communication Commissions' rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.407 NII and Part 15B JAB submissions with FCC ID: 2AFFCS-FLOW2000TX. FCC Part 15B JAB submissions with FCC ID: 2AFFCS-FLOW2000RX.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed and Bay Area Compliance Laboratories Corp. (Kunshan).

FCC Part 15.407 Page 4 of 49

^{*}All measurement and test data in this report was gathered from production sample serial number: 20191012008. (Assigned by the BACL. The EUT supplied by the applicant was received on 2019-10-12)

Measurement Uncertainty

Item		Uncertainty
AC Power Line	es Conducted Emissions	3.19 dB
RF conduct	ed test with spectrum	0.9dB
RF Output Po	ower with Power meter	0.5dB
	30MHz~1GHz	6.11dB
De l'ete l'encieden	1GHz~6GHz	4.45dB
Radiated emission	6GHz~18GHz	5.23dB
	18GHz~40GHz	5.65dB
Оссир	pied Bandwidth	0.5kHz
Temperature		1.0℃
Humidity		6%

Report No.: RSHA191012008-00A

Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Kunshan) to collect test data is located on the No.248 Chenghu Road, Kunshan, Jiangsu province, China.

Bay Area Compliance Laboratories Corp. (Kunshan) Lab is accredited to ISO/IEC 17025 by A2LA (Lab code: 4323.01), the FCC designation No. CN1185 under the FCC KDB 974614 D01 and CAB identifier CN0004 under the ISED requirement. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2014.

FCC Part 15.407 Page 5 of 49

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The EUT was configured for testing in an engineering mode which was provided by the manufacturer.

Report No.: RSHA191012008-00A

The channel list is as below, Channel 00, 01, 02, 03, 04, 06 were tested.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	5182.5	04	5782.5
01	5202.5	05	5802.5
02	5222.5	06	5822.5
03	5762.5	/	/

EUT Exercise Software

RF test tool: ARSiriusPCTool_V1.0.1.exe

Pre-scan with all the data rates, and the worst case was performed as below:

5182.5-5222.5MHz

Frequency (MHz)	Data Rate	Power Setting
5182.5		17
5202.5	MCS 0	17
5222.5		17

5762.5-5822.5MHz

Frequency (MHz)	Data Rate	Power Setting
5762.5		17
5782.5	MCS 0	17
5822.5		17

FCC Part 15.407 Page 6 of 49

Duty Cycle 5182.5MHz-5222.5MHz:

Frequency: 5202.5MHz

Report No.: RSHA191012008-00A

5762.5MHz-5822.5MHz:

Frequency: 5782.5MHz

FCC Part 15.407 Page 7 of 49

Frequency Range (MHz)	Duty Cycle (%)	T (ms)	1/T (kHz)	10log(1/x)
5182.5-5222.5	16.82	1.253	0.80	7.74
5762.5-5822.5	16.69	1.253	0.80	7.78

Report No.: RSHA191012008-00A

Note: "x" means duty cycle.

Equipment Modifications

No modification was made to the EUT.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
SWIT	Monitor 1	/	/
SWIT	Adapter	GP304U-120-200	/
SWIT	TX	FLOW2000 Tx	/
ANMTE	Monitor 2	SFD-EPC/APC170	

External I/O Cable

Cable Description	Length (m)	From/Port	То
SDI Cable 1	0.4	EUT	Monitor1
SDI Cable 2	1.5	EUT	Monitor 2
Power Cable 1	1.0	EUT	Adapter 1
Power Cable 2	1.0	Adapter 1	AC Source/LISN
Power Cable 3	1.5	Adapter 2	Monitor 1
Power Cable 4	1.0	Adapter 2	AC Source/LISN
Power Cable 5	1.0	AC Source	Monitor 2

FCC Part 15.407 Page 8 of 49

Block Diagram of Test Setup

For Conducted Emissions:

For Radiated Emissions(Below 1GHz):

Turntable

FCC Part 15.407 Page 9 of 49

Report No.: RSHA191012008-00A

For Radiated Emissions(Above 1GHz):

FCC Part 15.407 Page 10 of 49

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§1.1310 & §2.1091	MAXIMUM PERMISSIBLE EXPOSURE (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207 & §15.407(b) (6)	AC Power Line Conducted Emissions	Compliant
§ 15.205 & §15.209 & §15.407(b) (1), (2), (3),(6),(7)	Undesirable Emission & Restricted Bands	Compliant
§§15.407(a) &§15.407(e)	Emission Bandwidth	Compliant
§15.407(a) (1) (3)	Conducted Transmitter Output Power	Compliant
§15.407(a) (1) (3)	Power Spectral Density	Compliant

Report No.: RSHA191012008-00A

FCC Part 15.407 Page 11 of 49

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Radiated Emission Test (Chamber 1#)						
Rohde & Schwarz	EMI Test receiver	ESR	1316.3003K03- 102454-Qd	2019-06-25	2020-06-24		
Sunol Sciences	Broadband Antenna	JB3	A090413-1	2016-12-26	2019-12-25		
Sonoma Instrunent	Pre-amplifier	310N	171205	2019-08-15	2020-08-14		
Audix	Test Software	e3	V9	-	-		
MICRO-COAX	Coaxial Cable	Cable-8	008	2019-08-15	2020-08-14		
MICRO-COAX	Coaxial Cable	Cable-9	009	2019-08-15	2020-08-14		
MICRO-COAX	Coaxial Cable	Cable-10	010	2019-08-15	2020-08-14		
	Radiated En	nission Test (Cha	mber 2#)				
Rohde & Schwarz	EMI Test Receiver	ESU40	100207	2019-05-30	2020-05-29		
ETS-LINDGREN	Horn Antenna	3115	6229	2019-01-11	2022-01-10		
ETS-LINDGREN	Horn Antenna	3116	00084159	2019-10-18	2022-10-17		
Mini-Circuits	Amplifier	ZVA-183W-S+	220701818	2019-05-20	2020-05-19		
SELECTOR	Amplifier	EM18G40G	060726	2019-03-22	2020-03-21		
MICRO-TRONICS	Band Reject Filter	BRC50703	G094	2019-08-05	2020-08-04		
MICRO-TRONICS	Band Reject Filter	BRC50705	G085	2019-08-05	2020-08-04		
Narda	Attenuator	10dB	010	2019-08-15	2020-08-14		
Rohde & Schwarz	Auto test Software	EMC32	100361	/	/		
MICRO-COAX	Coaxial Cable	Cable-6	006	2019-08-15	2020-08-14		
MICRO-COAX	Coaxial Cable	Cable-11	011	2019-08-15	2020-08-14		
MICRO-COAX	Coaxial Cable	Cable-12	012	2019-08-15	2020-08-14		
MICRO-COAX	Coaxial Cable	Cable-13	013	2019-08-15	2020-08-14		
	R	F Conducted Test					
Rohde & Schwarz	Signal Analyzer	FSIQ26	836131/009	2018-11-12	2019-11-11		
Agilent	Power Meter	N1912A	MY5000492	2018-11-18	2019-11-17		
Agilent	Power Sensor	N1921A	MY54210024	2018-11-18	2019-11-17		
Narda	Attenuator/10dB	10dB	/	2019-01-10	2020-01-09		
BACL	Temperature & Humidity Chamber	BTH-150	30023	2018-12-20	2019-12-19		
SWIT	RF Cable	SWIT C01	C01	Each Time	/		

Report No.: RSHA191012008-00A

FCC Part 15.407 Page 12 of 49

Manufacturer	Description	Model Serial Number		Calibration Date	Calibration Due Date
	Cond	lucted Emission T	est		
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2019-07-11	2020-07-10
Rohde & Schwarz	LISN	ESH3-Z5	862770/011	2018-11-12	2019-11-11
Rohde & Schwarz	LISN	ENV216	3560655016	2018-11-30	2019-11-29
Audix	Audix Test Software		V9		
Narda	Attenuator/6dB	10690812-2	26850-6	2019-01-10	2020-01-09
MICRO-COAX	MICRO-COAX Coaxial Cable		015	2019-08-15	2020-08-14

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Kunshan) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.407 Page 13 of 49

FCC §1.1310 & §2.1091 - MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Report No.: RSHA191012008-00A

Applicable Standard

According to subpart 1.1310, 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure										
Frequency Range Electric Field Magnetic Field Power Density Averaging Time (MHz) Strength (V/m) Strength (A/m) (mW/cm²) (minutes)										
0.3-1.34	614	1.63	*(100)	30						
1.34-30	824/f	2.19/f	*(180/f²)	30						
30-300	27.5	0.073	0.2	30						
300-1500	/		f/1500	30						
1500-100,000	/		1.0	30						

f = frequency in MHz; * = Plane-wave equivalent power density

Calculated Formulary:

Predication of MPE limit at a given distance

 $S = PG/4\pi R^2 = power density (in appropriate units, e.g. mW/cm^2);$

P = power input to the antenna (in appropriate units, e.g., mW);

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain;

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm);

Calculated Data (worst case):

Frequency Range	Maximum Antenna Gain		Tune-up Conducted Power		Evaluation Distance	Power Density	MPE Limit	
(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm^2)	
5182.5~5222.5	2.00	1.58	17.00	50.12	20	0.0158	1.00	
5762.5~5822.5	2.00	1.58	16.50	44.67	20	0.0140	1.00	

Note:

The Tune-up conducted power was declared by the Manufacturer.

Conclusion: The device meets MPE at distance 20cm.

FCC Part 15.407 Page 14 of 49

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

Report No.: RSHA191012008-00A

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT. Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.407, if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Antenna Connector Construction

The EUT has four Omni antennas which the antenna gains are both 2.0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC Part 15.407 Page 15 of 49

FCC §15.407 (b) (6) §15.207 (a) – AC POWER LINE CONDUCTED EMISSIONS

Report No.: RSHA191012008-00A

Applicable Standard

FCC §15.207(a), §15.407(b) (6)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

FCC Part 15.407 Page 16 of 49

Test Procedure

During the conducted emission test, the adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Corrected Factor & Over Limit Calculation

The Corrected factor is calculated by adding LISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Report No.: RSHA191012008-00A

Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB)

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit of 7dB means the emission is 7 dB above the limit. The equation for Over Limit calculation is as follows:

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

Test Results Summary

According to the recorded data in following table, the EUT complied with the FCC Part 15.207.

Test Data

Environmental Conditions

Temperature:	20.2 ℃
Relative Humidity:	51 %
ATM Pressure:	101.3 kPa

The testing was performed by Sam Ye on 2019-10-24.

EUT operation mode: Transmitting in low channel of 5762.5-5822.5MHz (worst case)

FCC Part 15.407 Page 17 of 49

AC 120V/60 Hz, Line

FCC Part 15.407 Page 18 of 49

AC 120V/60 Hz, Neutral

	Read			Limit	0ver	
Freq	Level	Factor	Level	Line	Limit	Remark
MHz	dBuV	dB	dBuV	dBuV	dB	
0.363	8.40	19.79	28.19	48.65	-20.46	Average
0.363	15.40	19.79	35.19	58.65	-23.46	QP
0.502	-0.90	19.76	18.86	46.00	-27.14	Average
0.502	16.60	19.76	36.36	56.00	-19.64	QP
0.857	-4.19	19.71	15.52	46.00	-30.48	Average
0.857	8.31	19.71	28.02	56.00	-27.98	QP
1.671	2.40	19.84	22.24	46.00	-23.76	Average
1.671	12.70	19.84	32.54	56.00	-23.46	QP
2.650	0.40	19.47	19.87	46.00	-26.13	Average
2.650	11.60	19.47	31.07	56.00	-24.93	QP
4.384	-4.59	19.47	14.88	46.00	-31.12	Average
4.384	8.51	19.47	27.98	56.00	-28.02	QP
	MHz 0.363 0.363 0.502 0.502 0.857 0.857 1.671 1.671 2.650 2.650 4.384	MHz dBuV 0.363 8.40 0.363 15.40 0.502 -0.90 0.502 16.60 0.857 -4.19 0.857 8.31 1.671 2.40 1.671 12.70 2.650 0.40 2.650 11.60 4.384 -4.59	MHz dBuV dB 0.363 8.40 19.79 0.363 15.40 19.79 0.502 -0.90 19.76 0.502 16.60 19.76 0.857 -4.19 19.71 0.857 8.31 19.71 1.671 2.40 19.84 1.671 12.70 19.84 2.650 0.40 19.47 2.650 11.60 19.47 4.384 -4.59 19.47	MHz dBuV dB dBuV 0.363 8.40 19.79 28.19 0.363 15.40 19.79 35.19 0.502 -0.90 19.76 18.86 0.502 16.60 19.76 36.36 0.857 -4.19 19.71 15.52 0.857 8.31 19.71 28.02 1.671 2.40 19.84 22.24 1.671 12.70 19.84 32.54 2.650 0.40 19.47 19.87 2.650 11.60 19.47 31.07 4.384 -4.59 19.47 14.88	MHz dBuV dB dBuV dBuV 0.363 8.40 19.79 28.19 48.65 0.363 15.40 19.79 35.19 58.65 0.502 -0.90 19.76 18.86 46.00 0.502 16.60 19.76 36.36 56.00 0.857 -4.19 19.71 15.52 46.00 0.857 8.31 19.71 28.02 56.00 1.671 2.40 19.84 22.24 46.00 1.671 12.70 19.84 32.54 56.00 2.650 0.40 19.47 19.87 46.00 2.650 11.60 19.47 31.07 56.00 4.384 -4.59 19.47 14.88 46.00	MHz dBuV dB dBuV dBuV dB 0.363 8.40 19.79 28.19 48.65 -20.46 0.363 15.40 19.79 35.19 58.65 -23.46 0.502 -0.90 19.76 18.86 46.00 -27.14 0.502 16.60 19.76 36.36 56.00 -19.64 0.857 -4.19 19.71 15.52 46.00 -30.48 0.857 8.31 19.71 28.02 56.00 -27.98 1.671 2.40 19.84 22.24 46.00 -23.76 1.671 12.70 19.84 32.54 56.00 -23.46 2.650 0.40 19.47 19.87 46.00 -26.13 2.650 11.60 19.47 31.07 56.00 -24.93 4.384 -4.59 19.47 14.88 46.00 -31.12

1) Factor (dB) = LISN VDF (dB) + Cable Loss (dB) + Transient Limiter Attenuation (dB) 2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC Part 15.407 Page 19 of 49

Applicable Standard

FCC §15.407 (b) (1), (2), (3), (6), (7); §15.209; §15.205;

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

Report No.: RSHA191012008-00A

For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

As per FCC §15.35(d):Unless otherwise specified, on any frenquency or frequencies above 1000MHz, the radiated emission limits are based on the use of measurement instrunmentation employing an average detector function. Unless otherwise specified, measurements above 1000MHz shall be performed using a minimum resolution bandwidth of 1MHz.

According to 789033 D02 General UNII Test Procedures New Rules v02r01, emission shall be computed as: $E[dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

EUT Setup

Below 1 GHz:

FCC Part 15.407 Page 20 of 49

1 GHz-40GHz:

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC 15.209 and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 40 GHz.

During the radiated emission test, the EMI test receiver Setup was set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Detector
30 MHz – 1000 MHz	120 kHz	300 kHz	120 kHz	QP
Above 1GHz	1MHz	3 MHz	/	PK
Above IGHZ	1MHz	3 MHz	/	Ave.

Test Procedure

During the radiated emission test, the adapter was connected to AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

Data was recorded in Quasi-peak detection mode for frequency range of 30 MHz-1GHz, peak and Average detection modes for frequencies above 1GHz.

FCC Part 15.407 Page 21 of 49

Factor & Over Limit Calculation (for Below 1GHz)

The factor is calculated by adding Antenna Factor, Cable Loss and Amplifier Gain. The basic equation is as follows:

Report No.: RSHA191012008-00A

Factor (dB) = Antenna Factor (dB/m) + Cable Loss (dB) + Amplifier Gain (dB)

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over Limit of 7dB means the emission is 7 dB above the limit. The equation for over Limit calculation is as follows:

Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

Corrected Amplitude & Margin Calculation (for Above 1GHz)

The Corrected Amplitude is calculated by adding the Antenna Loss and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit –Corrected Amplitude

Test Data

Environmental Conditions

Temperature:	20.2~23.8 ℃
Relative Humidity:	48~51 %
ATM Pressure:	101.1~101.3 kPa

The testing was performed by Sam Ye from 2019-10-24 to 2019-11-13.

Test Mode: Transmitting

FCC Part 15.407 Page 22 of 49

Spurious Emission Test

30MHz-1GHz(5182.5-5222.5MHz):

Horizontal

Pre-scan in the X, Y and Z axes of orientation, the worst case **Z-axis of orientation** was recorded

Report No.: RSHA191012008-00A

		Read		Limit	0ver	APos	TPos		
	Freq	Level	Level	Line	Limit			Remark	Factor
	MHz	dBuV	dBuV/m	dBuV/m	dB	cm	deg		dB/m
1	68.63	46.20	29.22	40.00	-10.78	200	351	QP	-16.98
2	85.00	46.61	29.39	40.00	-10.61	200	174	QP	-17.22
3	110.18	51.20	38.62	43.50	-4.88	200	85	QP	-12.58
4	116.95	48.90	37.65	43.50	-5.85	200	345	QP	-11.25
5	136.46	49.00	37.43	43.50	-6.07	100	139	QP	-11.57
6	155.36	46.30	34.33	43.50	-9.17	100	302	QP	-11.97

FCC Part 15.407 Page 23 of 49

Report No.: RSHA191012008-00A

VerticalPre-scan in the X, Y and Z axes of orientation, the worst case **Z-axis of orientation** was recorded

		Read		Limit	0ver	APos	TPos		
	Freq	Level	Level	Line	Limit			Remark	Factor
-	MHz	dBuV	dBuV/m	dBuV/m	dB		deg		dB/m
1	68.15	53.41	36.39	40.00	-3.61	100	0	QP	-17.02
2	74.66	49.41	32.38	40.00	-7.62	100	285	QP	-17.03
3	107.89	52.00	38.96	43.50	-4.54	100	148	QP	-13.04
4	117.36	49.40	38.23	43.50	-5.27	100	98	QP	-11.17
5	142.32	45.91	34.11	43.50	-9.39	100	104	QP	-11.80
6	151.07	49.20	37.29	43.50	-6.21	100	358	QP	-11.91

FCC Part 15.407 Page 24 of 49

30MHz-1GHz(5762.5-5822.5MHz):

Horizontal

Pre-scan in the X, Y and Z axes of orientation, the worst case **Z-axis of orientation** was recorded

		Read			Limit	0ver	APos	TPos	
	Freq	Level	Factor	Level	Line	Limit			Remark
_	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	cm	deg	
1	113.32	49.39	-11.96	37.43	43.50	-6.07	200	1	QP
2	129.02	44.76	-11.18	33.58	43.50	-9.92	200	354	QP
3	135.51	41.31	-11.52	29.79	43.50	-13.71	200	354	QP
4	143.33	41.94	-11.81	30.13	43.50	-13.37	200	219	QP
5	165.49	43.00	-12.30	30.70	43.50	-12.80	200	151	QP
6	520.89	29.42	-5.19	24.23	46.00	-21.77	200	200	QP

FCC Part 15.407 Page 25 of 49

Vertical

Pre-scan in the X, Y and Z axes of orientation, the worst case **Z-axis of orientation** was recorded

		Read			Limit	0ver	APos	TPos	
	Freq	Level	Factor	Level	Line	Limit			Remark
_									
	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	cm	deg	
1	34.52	34.77	-6.89	27.88	40.00	-12.12	100	151	QP
2	37.29	36.54	-9.20	27.34	40.00	-12.66	100	144	QP
3	113.71	44.00	-11.89	32.11	43.50	-11.39	100	359	QP
4	120.70	41.10	-10.69	30.41	43.50	-13.09	100	359	QP
5	129.92	43.06	-11.23	31.83	43.50	-11.67	100	250	QP
6	177.51	40.36	-12.89	27.47	43.50	-16.03	100	289	QP

Note:

1) Factor (dB) = Antenna Factor (dB/m) + Cable Loss (dB) + Amplifier Gain (dB)

2) Over Limit (dB) = Read level (dB μ V) + Factor (dB) - Limit (dB μ V)

FCC Part 15.407 Page 26 of 49

1GHz-18GHz (5182.5-5222.5MHz):

(Pre-scan in the X, Y and Z axes of orientation, the worst case **Z-axis of orientation** was recorded.)

Note:

- 1. This test was performed with the 5150-5250MHz band reject filter.
- Corrected Factor = Antenna factor (RX) + Cable Loss Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

Low Channel: 5182.5MHz

Report No.: RSHA191012008-00A

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Correct	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1338.30		28.05	150	V	244	-10.8	54.00	25.95
1338.30	41.02		150	V	7	-10.8	74.00	32.98
1593.30		33.25	200	V	261	-9.6	54.00	20.75
1593.30	44.28		200	V	4	-9.6	74.00	29.72
2123.70	38.94		200	V	116	-7.9	68.20	29.26
6909.20	52.06		200	V	180	5.2	68.20	16.14
9761.80	51.09		150	V	76	7.9	68.20	17.11
17457.70	57.13		200	V	106	14.1	68.20	11.07

FCC Part 15.407 Page 27 of 49

Report No.: RSHA191012008-00A

Middle Channel: 5202.5MHz

Full Spectrum

Frequency	Corrected A	Amplitude	Rx Antenna		Turntable	Correct	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1409.70		26.59	200	V	61	-10.4	54.00	27.41
1409.70	38.67		200	V	207	-10.4	74.00	35.33
1593.30		35.36	200	Н	264	-9.6	54.00	18.64
1593.30	39.68		200	V	345	-9.6	74.00	34.32
2125.40	38.84		200	V	305	-7.9	68.20	29.36
6936.40	56.88		150	V	313	5.2	68.20	11.32
8842.10	50.78		150	V	83	7.2	68.20	17.42
17442.40	56.56		150	V	160	14.0	68.20	11.64

FCC Part 15.407 Page 28 of 49

High Channel: 5222.5MHz

Full Spectrum

Frequency	Corrected Amplitude		Rx Antenna		Turntable	Correct	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1504.90		29.60	200	V	151	-9.9	54.00	24.40
1504.90	40.32		200	V	126	-9.9	74.00	33.68
2125.40	40.02		100	V	190	-7.9	68.20	28.18
6963.60	53.74		200	V	191	5.3	68.20	14.46
9297.70	50.67		150	V	69	7.7	68.20	17.53
14390.90	56.60		150	Н	318	12.7	68.20	11.60
17416.90	56.69		100	Н	71	13.9	68.20	11.51

FCC Part 15.407 Page 29 of 49

5762.5-5822.5MHz:

Pre-scan with X,Y and Z axes of orientation, the worst case **Z-axis of orientation** was recorded

Note:

- 1. This test was performed with the 5725-5850MHz band reject filter.
- 2. Corrected Factor = Antenna factor (RX) + Cable Loss Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit Corrected. Amplitude

Low Channel: 5762.5MHz

Report No.: RSHA191012008-00A

Frequency	Corrected .	Amplitude	Rx A	ntenna	Turntable	Correct	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBµV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1426.70		27.63	200	V	241	-10.3	54.00	26.37
1426.70	39.51		200	V	88	-10.3	74.00	34.49
1593.30		32.94	200	V	1	-9.6	54.00	21.06
1593.30	39.46		150	V	247	-9.6	74.00	34.54
2123.70	38.91		100	V	104	-7.9	68.20	29.29
4228.30		33.89	100	V	231	-1.5	54.00	20.11
4228.30	43.49		100	V	183	-1.5	74.00	30.51
10479.20	52.67		100	Н	103	8.9	68.20	15.53
17376.10	57.18		150	V	131	13.6	68.20	11.02

FCC Part 15.407 Page 30 of 49

Middle Channel: 5782.5MHz

Report No.: RSHA191012008-00A

Full Spectrum

Frequency	Corrected A	Amplitude	Rx A	ntenna	Turntable	Correct	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1064.60		25.18	150	V	39	-12.3	54.00	28.82
1064.60	35.23		150	V	39	-12.3	74.00	38.77
1508.30		27.73	200	V	222	-9.9	54.00	26.27
1508.30	41.52		200	V	222	-9.9	74.00	32.48
2123.70	39.63		150	V	217	-7.9	68.20	28.57
5035.80		37.45	150	V	312	-0.2	54.00	16.55
5035.80	44.82		150	V	312	-0.2	74.00	29.18
9073.30		41.59	200	V	303	7.7	54.00	12.41
9073.30	50.88		200	V	303	7.7	74.00	23.12
17569.90	55.99		150	Н	67	14.20	68.20	12.21

FCC Part 15.407 Page 31 of 49

High Channel: 5822.5MHz

Full Spectrum

Frequency	Corrected Amplitude		Rx Antenna		Turntable	Correct	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
1419.90		30.08	200	V	84	-10.4	54.00	23.92
1419.90	40.45		200	V	84	-10.4	74.00	33.55
2123.70	40.05		150	V	134	-7.9	68.20	28.15
4850.50		35.46	150	V	283	-0.5	54.00	18.54
4850.50	44.32		150	V	283	-0.5	74.00	29.68
7725.20		41.05	150	V	168	9.0	54.00	12.95
7725.20	49.87		150	V	168	9.0	74.00	24.13
14028.80	55.65		200	V	179	12.5	68.20	12.55
17474.70	56.55		200	Н	195	14.1	68.20	11.65

FCC Part 15.407 Page 32 of 49

18GHz-40GHz (5182.5-5222.5MHz):

(Pre-scan in the X, Y and Z axes of orientation, the worst case 5182.5MHz in Z-axis of orientation was recorded)

Horizontal

Report No.: RSHA191012008-00A

Date: 7.NOV.2019 01:20:13

Vertical

Date: 7.NOV.2019 01:51:52

FCC Part 15.407 Page 33 of 49

(Pre-scan in the X, Y and Z axes of orientation, the worst case 5782.5MHz in Z-axis of orientation was recorded)

Horizontal

Report No.: RSHA191012008-00A

Date: 13.NOV.2019 11:50:42

Vertical

Date: 13.NOV.2019 12:51:35

FCC Part 15.407 Page 34 of 49

Restricted Bands Emissions Test (5182.5-5222.5MHz):

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss - Amplifier Factor

Corrected Amplitude = Corrected Factor + Reading

Margin = Limit - Corrected. Amplitude

(Pre-scan in the X, Y and Z axes of orientation, the worst case in Z-axis of orientation was recorded)

Frequency	Corrected Amplitude		Rx Antenna		Turntable	Correct	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Degree	Factor (dB/m)	(dBµV/m)	(dB)
		L	ow Channe	1: 5182.5MF	Iz			
5150.00		44.01	150	Н	125	10.2	54	9.99
5150.00	53.72		150	Н	125	10.2	74	20.28
5150.00		42.11	200	Н	321	10.2	54	11.89
5150.00	51.89		200	Н	321	10.2	74	22.11
		Н	igh Channe	l: 5222.5MF	Iz			
5350.00		43.75	150	Н	19	10.9	54	10.25
5350.00	52.12		150	Н	19	10.9	74	21.88
5350.00		45.88	100	Н	107	10.9	54	8.12
5350.00	54.35		100	Н	107	10.9	74	19.65

Report No.: RSHA191012008-00A

Restricted Bands Emissions Test (5762.5-5822.5MHz):

Note:

- 1. Corrected Factor = Antenna factor (RX) + Cable Loss Amplifier Factor
- 2. Corrected Amplitude = Corrected Factor + Reading
- 3. Margin = Limit Corrected. Amplitude

(Pre-scan in the X, Y and Z axes of orientation, the worst case in Z-axis of orientation was recorded)

Frequency	Corrected Amplitude		Rx A	Rx Antenna		Correct	Limit	Margin
(MHz)	MaxPeak (dBμV/m)	Average (dBμV/m)	Height (cm)	Polar (H/V)	Turntable Degree	Factor (dB/m)	(dBµV/m)	(dB)
		L	ow Channe	el: 5762.5Ml	Hz			
5650.00	58.62		200	Н	286	11.7	68.2	9.58
5700.00	59.78		200	Н	286	11.7	105.2	45.42
5720.00	58.47		150	Н	153	11.7	110.8	52.33
5725.00	60.12		150	Н	153	11.7	122.2	62.08
		Н	igh Channe	el: 5822.5M	Hz			
5850.00	58.96		200	Н	154	12.2	122.2	63.24
5855.00	59.41		200	Н	154	12.2	110.8	51.39
5875.00	60.27		100	Н	154	12.2	105.2	44.93
5925.00	59.82		100	Н	154	12.2	68.2	8.38

FCC Part 15.407 Page 35 of 49

FCC §15.407(a) &§15.407(e)-EMISSION BANDWIDTH

Applicable Standard

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz band is made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Report No.: RSHA191012008-00A

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure

1. Emission Bandwidth (EBW)

- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.725-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth $(VBW) \ge 3 \times RBW$.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

FCC Part 15.407 Page 36 of 49

Test Data

Environmental Conditions

Temperature:	23.6~24.5 °C
Relative Humidity:	48~50 %
ATM Pressure:	101.1~101.3 kPa

The testing was performed by Sam Ye from 2019-10-31 to 2019-11-06.

Test Result: Pass.

5182.5-5222.5 MHz:

Channel	Frequency (MHz)	26dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	5182.5	5.090	4.629
Middle	5202.5	5.070	4.649
High	5222.5	5.110	4.669

Report No.: RSHA191012008-00A

5762.5-5822.5MHz:

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	99% Bandwidth (MHz)
Low	5762.5	4.589	4.649
Middle	5782.5	4.709	4.669
High	5822.5	4.709	4.669

FCC Part 15.407 Page 37 of 49

5182.5-5222.5MHz:

26 Bandwidth&99% Occupied Bandwidth

Frequency: 5182.5MHz

Report No.: RSHA191012008-00A

Frequency: 5202.5MHz

FCC Part 15.407 Page 38 of 49

Frequency: 5222.5MHz

Report No.: RSHA191012008-00A

5762.5-5822.5 MHz

6 Bandwidth

Frequency: 5762.5MHz

FCC Part 15.407 Page 39 of 49

Frequency: 5782.5MHz

Report No.: RSHA191012008-00A

Frequency: 5822.5MHz

FCC Part 15.407 Page 40 of 49

99% Occupied Bandwidth

Frequency: 5762.5MHz

Report No.: RSHA191012008-00A

Frequency: 5782.5MHz

FCC Part 15.407 Page 41 of 49

Frequency: 5822.5MHz

Report No.: RSHA191012008-00A

FCC Part 15.407 Page 42 of 49

FCC §15.407(a) (1) (3) – CONDUCTED TRANSMITTER OUTPUT POWER

Report No.: RSHA191012008-00A

Applicable Standard

According to §15.407(a)(1)

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

According to §15.407(a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

FCC Part 15.407 Page 43 of 49

Test Data

Environmental Conditions

Temperature:	24.2 °C
Relative Humidity:	50 %
ATM Pressure:	101.3 kPa

The testing was performed by Sam Ye on 2019-10-31.

Test Mode: Transmitting

Frequency Range (MHz)	Frequency (MHz)	Average Conducted Output Power (dBm)	Limit (dBm)	Result
	5182.5	16.39	30	PASS
5182.5-5222.5 MHz	5202.5	16.52	30	PASS
	5222.5	16.04	30	PASS
	5762.5	16.05	30	PASS
5762.5-5822.5 MHz	5782.5	15.69	30	PASS
	5822.5	15.45	30	PASS

Report No.: RSHA191012008-00A

FCC Part 15.407 Page 44 of 49

FCC §15.407(a) (1) (3) - POWER SPECTRAL DENSITY

Applicable Standard

According to §15.407(a) (1)

(iii) For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Report No.: RSHA191012008-00A

According to §15.407(a) (3)

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

The measurements are base on FCC KDB 789033 D02 General UNII Test Procedyres New Rules v02r01: Guidelines for Compliance Testing of Unlicensed National Information Infrastructure (U-NII) Devices section F: Maximum power spectral density (PPSD)

Test Data

Environmental Conditions

Temperature:	23.4~24.5 °C
Relative Humidity:	48~50%
ATM Pressure:	101.1~101.3 kPa

The testing was performed by Sam Ye from 2019-10-31 to 2019-11-06.

FCC Part 15.407 Page 45 of 49

Test Mode: Transmitting

5182.5MHz-5222.5MHz:

Frequency (MHz)	PSD (dBm/MHz)	Limit (dBm/MHz)	Result
5182.5	12.03	17	PASS
5202.5	11.82	17	PASS
5222.5	11.47	17	PASS

Report No.: RSHA191012008-00A

5762.5MHz-5822.5MHz:

Frequency MHz	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Result
5762.5	9.58	30	PASS
5782.5	8.93	30	PASS
5822.5	8.74	30	PASS

FCC Part 15.407 Page 46 of 49

5182.5MHz-5222.5MHz:

Power spectral density-5182.5MHz

Report No.: RSHA191012008-00A

Power spectral density-5202.5MHz

FCC Part 15.407 Page 47 of 49

Power spectral density-5222.5MHz

Report No.: RSHA191012008-00A

5762.5MHz-5822.5 MHz:

Power spectral density-5762.5MHz

FCC Part 15.407 Page 48 of 49

Power spectral density-5782.5MHz

Report No.: RSHA191012008-00A

Power spectral density-5822.5MHz

***** END OF REPORT *****

FCC Part 15.407 Page 49 of 49