Evaluation: From precision, recall, and F-measure to ROC, informedness, markedness and correlation

Krishna Kalyan

About the Author

David M W Powers

Follow T

Professor of Computer and Cognitive Science, Director, Knowledge and Interaction Technology Centre Computational Psycholinguistics, Cognitive Linguistics, Computational

Cognitive Science, Sentic Computing, BCI Verified email at flinders.edu.au - Homepage

Title 1–20	Cited by	Year
Evaluation: from precision, recall and F-measure to ROC,		
informedness, markedness and correlation	1113	2011
International Journal of Machine Learning Technology 2 (1), 37-63		
Evaluation: from precision, recall and F-factor to ROC,		
informedness, markedness and correlation	1110 *	2007
DMW Powers School of Informatics and Engineering Technical Reports (24p ver.of ECAI		
oction of information and Engineering Technical Reports (24p Vel.of ECRI		
Measuring semantic similarity in the taxonomy of WordNet		
D Yang, DMW Powers	166	2005
Proceedings of the Twenty-eighth Australasian conference on Computer Science		
Indexing system and method		
R Steele, D Powers	116 *	2003
US Patent 20,030,191,737		
Applications and explanations of Zipf's law		
DMW Powers	97	1998
Proceedings of the joint conferences on new methods in language processing		

Google Scholar

Q

Citation indices			All	S	Since 2012			
Citations		31	180	2197				
h-index				24		16		
i10-index				48			29	
	_		ī	i	i	Ī		

Co-authors View all... Trent Wilson Lewis Martin Luerssen Richard Leibbrandt Adham Atvabi Donagiana Yana Sean Patrick Fitzgibbon

Kenneth Pope Kenneth Trehame

Introduction

► Contingency table

- Measure to evaluate Machine Learning System
- 1. Precision
- 2. Recall
- 3. F Measure
- 4. Issues with them
- Alternate Techniques
- 1. Accuracy
- 2. Cohen Kappa

ROC Analysis

- ► ROC analysis give geometric insights into the nature of the measures and their sensitivity to skew
- Compare Classifiers
- Choose parameters based on maximization of AUC

Informedness and Markedness

Markedness

Markedness quantifies how marked a condition is for the specified predictor, and specifies the probability that a condition is marked by the predictor (versus chance).

Markedness is a deep measure of how consistently the outcome has the Predictor as a Marker by combining surface measures about what proportion of Predictions are correct

Precision + Inverse Precision - 1

Informedness

Informedness quantifies how informed a predictor is for the specified condition, and specifies the probability that a prediction is informed in relation to the condition (versus chance).

Informedness is a deep measure of how consistently the predictor predicts the outcome by combining surface measures about what proportion of outcomes are correctly predicted.

Regression

- ► Linear Regression
- Estimating Coefficients
- 1. Rp
- 2. Rr
- 3. Rg

Conclusion

Infromedness usually is a better evaluation measure in binary classification.

Further work to research into the multiclass application of the technique.

Explore the relationship between Infromedness and Markedness

We have a better and a more intuitive understanding of the mearues that we could use for evaluating our ML system.

- Accuracy
- Cohen Kappa
- Precision
- Recall
- ► F1-Score
- ► Bookmaker Informedness / Delta P'
- Markedness

Skipped

- Significance
- Montecarlo Simulation
- ► Evenness (Used in multiclass problems)