Spark, de l'étincelle à la production

Lucien Fregosi Nicolas Martin

05/06: Paris (REX DataLake AWS avec La Mutuelle Générale)

12/06: Paris (La data Experience et design de services)

14/06: Toulouse (Industrialiser Spark)

20/06: Paris (REX l'IA au service de la validation de documents administratifs)

27/06: Lyon (Big Data in the Cloud)

Nicolas Martin

Data engineer #Data #Cloud

nmartin@ippon.fr

Lucien Fregosi

Data engineer #Data #Cloud

lfregosi@ippon.fr Mobile: +33 6 45 85 83 97

Introduction - Why Should we industrialize Spark?

Our Manifesto

We want our Jobs go on for a long time

We want to be efficient during development

We want to evolve our Jobs to add new features or refactor

We want to monitor and debug our Jobs

We want to work with clean and qualitative data

We want to put in production often in an automatic way

We want to have good performance

We want to track data transformation

Typical Data Science Work

"Data is just another IT field, all best practices should be applied (Test, CI/CD, Log Performance...)"

Data engineer to the rescue!!

Data Journey

Data Governance

Spark - Distributed computing Framework

Spark - Key Concepts

Transformations (lazy)	Actions		
select	show		
distinct	count		
groupBy	collect		
sum	save		
orderBy			
filter			
limit			

Spark - Most used languages

LANGUAGES USED IN SPARK YEAR-OVER-YEAR

% of respondents who use each language (more than one language could be selected)

Spark - Cluster Manager

Data cleaning

- "Never trust the input"
- Schema validation
- Define a key for deduplication
- Handle missing values

Data wrangling solutions:

Data checks

- Quality check
 - Provide KPI before and after cleansing
 - Monitor KPI evolution
- Check for null value number
- Check for number of rows
- Depends on your data, check for max/min average..
- Gives you informations for data governance

Processing

Development environment

- Use a project a professional project structure not a script
 - https://github.com/dbast/spark-scala-template
 - https://github.com/AlexIoannides/pyspark-example-project
- Use a dependency manager

Use a version controller and do code review

Development environment

- Give developers immediate environment
- Hide configuration complexity
- Harmonize development
- Handle session

Testing Spark Code

- How to unit test Spark jobs?
 - Unit test for Scala/Python Function

- How to do integration tests for Spark jobs?
 - Work with sample data
 - Spark Testing Base https://github.com/holdenk/spark-testing-base

- How do I validate my job efficiency?
 - Check for counters with metrics (bytes read, time, etc..)
 - Spark Validator https://github.com/holdenk/spark-validator

Testing Spark Code

- How perf test Spark jobs?
- Benchmark
 - Set a baseline performance
 - Launch this test every changes made (it has to be short)
- For horizontality scalability test:

CI/CD

What is Continuous Integration?

CI/CD

How can we implement Continuous Integration in Spark?

Job configuration

Depends on your Cluster Topology!!

Job Configuration Example

- Class: Main class
- Master: Cluster Manager (Yarn)
- Deploy mode: Client
- Driver-memory: 4go
- Num-executors: 10
- Executor-core: 4
- Executor-memory: 4go
- Garbage Collector: G1GC
- Serializer: Kryo

We can adjust with number of executors and increase/decrease core and memory

Allocation could be dynamic (for development mainly)

Data knowledge and partitioning

- To do have good performance, you have to know your data
- Know how your dataset is constituted
- Partition should have more or less the same size

Performances

- Shuffle
 - During "byKey" operations
 - During joins
 - Due to repartitionning

Skew

- Too big partitions
- Can be seen when task are longer than others
- Easily findable in Spark UI

Narrow transformation

- Input and output stays in same partition
- No data movement is needed

Wide transformation

- Input from other partitions are required
- Data shuffling is needed before processing

Performances: Cache & Broadcast

- Cache
 - Prevents recalculation of a dataframe in different actions
 - Always chach dataframe if it will be used different times
 - You can cache in memory, on disc or both
- Broadcast
 - Allow diffusing a variable on all executors in read-only
 - Map-side join with lookup table

Performances: Files Format & Compression Algorithm

Dataset	Size on Amazon S3	Query Run time	Data Scanned	Cost	
Data stored as CSV files	1 TB	236 seconds	1.15 TB	\$5.75 \$0.01	
Data stored in Apache Parquet format*	130 GB	6.78 seconds	2.51 GB		
Savings / Speedup	87% less with Parquet	34x faster	99% less data scanned	99.7% savings	

	CSV	ORC		Parquet	
		ZLIB	SNAPPY	GZIP	SNAPPY
data size	11.5 GB	1.1 GB	1.6 GB	1.2 GB	1.7 GB
conversion time from CSV	NA	9 m 10 s	9 m 15 s	10 m 0 s	9 m 23 s
Files	21	42	42	42	42
Time for delayed flights	5 m 57 s	49 s	47 s	1 m 2 s	49 s
Time for fetching a single record	255 s	70 sh	62.5	130 5	1115

Logs The simple way

Spark History Server -> Applicatif

Log Yarn -> Ressources & Metrics

Logs Beyond the UI: ELK or Splunk

As Spark is a distributed computing framework, how to gather logs and use it

Logs Beyond the UI: Rex Custom Solution

Logs Beyond the UI: Monitor Resources and use flamegraphs

https://github.com/criteo/babar

Schedule Spark Jobs & Workflow management

Machine learning

- Can we industrialize Machine learning pipline with spark?
 (feature creation, coding normalization, algorithms...)
- Pipeline object in Spark
- Can be done like batch processing
- Adapt agile method into Machine Learning

Take Care of Overfitting

Data exposition

- After data treatment, we want to use this data.
 - For business purpose, we can expose data through a BI Tool
 - Tableau, microstrategy
 - Use it on webapp => Relational database
 - Better performances than datalake. Latency is reduced
 - Export it in csv format for diffusion

Data responsibility

- In a company, who is responsible for data?
- How it is related to industrialization?

Data catalog

- What are my datasets in my datalake?
- Three major issues addressed by data catalog
 - What do we know about our information?
 - Where did this data come from and who can use it?
 - Does this data adhere to company policies and rules?

- Schema, last build date, metadatas
- Hive metastore, Collibra, Apache Atlas, Zeenea, Custom app

Apache Atlas

Data lineage

 Getting informations about how the datasets are created and which operations were achieved to build the dataset.

Dataset Automatocs Reloading

Automatic rebuilding from lineage

RGPD

- RGPD is a huge Topic
- Job should anonymize data during the ingestion

How to delete Data in a distributed immutable environment?

Conclusion IppporT∉ebhologies 2018

Conclusion

Data governance

lucien fregosi

@lulufrego

Ippon.fr

contact@ippon.fr

+33 1 46 12 48 48

@IpponTech