

Cast Materials

Prof. Juhani Orkas

Overview

- Iron based
 - Grey iron
 - Nodular iron
 - White iron
 - Cast steel
- Nonferrous cast materials
 - Aluminium alloy
 - Magnesium alloy
 - Titanium alloy
 - Copper alloy
 - Nickel-base alloy

Iron-carbon diagram

- Cast iron
 - C > 2,06 %
- Grey cast iron
 - Stable system
 - Fe-C
 - Iron-graphite
 - Si, Ti, Al
- White cast iron
 - Metastable system
 - Fe-Fe₃C
 - Iron-cementite
 - Mn, Cr, Mo

Classification of iron based materials

Cast vs forged materials

The advantages of casting include:

- No real upper size limit in casting weight
- Large range of alloy choices
- As forgings remain solid, custom alloys are far more difficult to get into production whereas with casting, alloys including Chrome, Nickel and Moly can be added at the molten stage.
- Tooling is often less expensive than forge dies
- Smaller production series is possible
- Complicated/complex parts are no problem

Cast vs forged materials

The advantages of forging include:

- Generally tougher than alternatives
- Will handle impact better than castings
- The nature of forging excludes the occurence of porosity, shrinkage, cavities and cold pour issues.
- The tight grain structure of forgings making it mechanically strong. There is less need for expensive alloys to attain high strength components.
- The tight grain structure offers great wear resistance without the need to make products "superhard"

Cast vs welded materials

The advantages of casting include:

- Welding during the fabrication process creates more stress and distortion due to localized heat. Casting, on the other hand, creates a more homogeneous microstructure as there is no heat affected zone.
- The ability to transition material thicknesses reduce stress.
- It's possible to cast complex dimensions, shapes and sizes
- Converting a steel fabrication to a ductile iron casting also offers better machinability and greater vibration dampening properties

Cast iron

- Carbon cut out as Graphite
 - Grey color at the fracture surface
- Silicon
 - Graphite stabilizing
- Compressive strength higher than tensile strength (~2:1)
 - No bond between Iron and Carbon
- Good machinability
 - Carbon interrupts the metal micro-structure
 - Carbon lubricates the cutting tools
- Designation system: GJ(Symbol) R_m

Cast iron - Overview

- Lamellar graphite iron (GJL)
 - Pressure and wear-resistant
 - Corrosion-resistant
 - Good damping characteristics
 - Low tensile strength and elongation at fracture
 - Low costs
- Vermicular graphite iron (GJV)
 - Between GJL and GJS
 - Low thermal expansion
- Spheroidal graphite iron (GJS)
 - Ductile
 - High tensile strength and elongation at fracture

Cast iron - Overview

Lamellar graphite iron GJL

- Ferritic-pearlitic structure
 - $-R_m$ ≤ 400 MPa
 - Poor toughness
 - Good compressive strength
- Cooling conditions affects microstructure
 - Tensile strength depends on wall-thickness
 - Higher strength in thin walls
- Very good damping capacity (Vibration)
 - GJL: GJS: Steel 1:1,8:4,3
- Notch-sensitive
 - High tension gradient at graphite flakes
- Good friction properties
- Very good pouring properties

EN GJL-250

Lamellar graphite iron GJL

- Bed for machine tools
 - EN GJL-250 /-300
 - Up to 12,8 m

- Gearbox for a printing machine
 - EN GJL-250

Spheroidal graphite iron GJS

- Add magnesium or cerium
 - Spheriodal graphite
- Ferritic-pearlitic structure
 - $-R_m$ ≤ 800 MPa
 - Moderate toughness
- Less Notch-sensitive than GJL
 - Average tension gradient at graphite spheres
- Moderate damping capacity
- For mechanical stresses parts

EN GJS-400

EN GJS-700

Spheroidal graphite iron GJS

- High C- and Si-level
 - Low strength and Brinell hardness
 - High elongation at fracture

Spheroidal graphite iron GJS

- Cylinder block for marine diesel engine
 - EN GJS-400-18U
 - 9 x 2.84 x 3.35 m
 - 81'450 kg

- Rotor hub (1.5MW)
 - EN GJS-400-18U-LT
 - 3.128 x 2.7 x 2.1 m
 - 8'400 kg

Cast steel GS

- Advantages
 - Mechanical properties of steel together with the castability
 - Malleable
 - Wide range of materials
 - Adjusable strengt properties
 - Heat treatment necessary
 - Welding!
 - Corrosion resistance!

- Disadvantages
 - Higher melting point > 1400°C
 - High demands on technology
 - Bad mould-filling capacity
 - More viscouse than cast iron
 - hypoeutectic
 - High shrinkage ~2%
 - Castings without heat treatment unusable
 - Brittle
 - Coarse grain
 - Dendritic

Cast steel GS

- Pelton wheel
 - High strengt

- Shunting switch
 - G-X120Mn12

Classification of nonferrous cast materials

Aluminum alloy

- Suitable for complex thin-walled parts
- High dimensional accuracy
- Low weight with high rigidity
 - Good strength-weight ratio
- Smooth surfaces and edges
- Good machinability
- High thermal conductivity
- Good electrical conductivity
- Corrosion and weathering resistance
- Several surface treatments possible

Aluminum alloy

- Al Si (4xxx)
 - Near eutectic (12% Si)
 - Low melting point (576°C)
 - Good fluidity
 - Less shrinkage
 - · High strength
 - Hypereutectoid (up to 25% Si)
 - Used as piston alloy
 - Worse fluidity
 - Primary solidification of Si
 - Higher wear resistance due to Si crystals
 - Lower coefficient of expansion

Aluminum alloy

- Daimler valve body
 - AlSi9Cu3
 - Wall-thickness: 2-6mm
 - Drafts: 1° (valve core 5°)

- BMW integral cross member
 - EN AC AlMg5Si2Mn
 - Weldable without pre-treatment

Magnesium alloy

- Lightest of all structural metals
 - $\sim 1800 \text{ kg/m}^3$
 - Excellent strength-weight ratio
- Hexagonal lattice
 - High strength
 - High electrical and thermal conductivity
 - Without Al and Zn
 - Brittle
 - Notch-sensitive
- Excellent machinability
- Good damping coefficient
 - Better vibration reduction than AI or GJx

Titanium alloy

- Very high tensile strength and toughness
 - even at extreme temperatures
- Light weight
- Properties depending on phase
 - α phase
 - $-\alpha+\beta$ phase
 - β phase
- Extreme corrosion resistance
 - Very dense TiO2 layer
 - Biocompatibility
- Expensive

Copper alloy

- Properties
 - Corrosion resistance
 - Good bearing qualities
 - Attractive appearance
- Bronze
 - CuSn
- Brass
 - CuZn
- Red brass (gunmetal)
 - CuZnSn
- Aluminium bronze
 - CuAl

CuSn11 (50:1)

CuAl20 (500:1)

Bronze (CuSn)

- Up to 20% Sn
 - -9-12% for casting alloys
- Nonmagnetic
- High thermal and electrical conductivity
- High corrosion resistance
 - Seawater resistance
- Good wear resistance
- Good damping coefficient
- Red brass (CuZnSn)
 - Cheaper due to cheap Zn
 - Similar properties

Brass (CuZn)

- 5 to 45 % Zn
- Tensile strength up to 750 MPa
- No cryogenic embrittlement
- Good corrosion resistance
 - Depends on alloying element
- Antimicrobial
 - Used at public places
- Specialbrass
 - CuZn + other element

- Impeller for a pump
 - CuZn37Mn3Al2PbSi

- Multi Cone Synchro System
 - Depends on the application

Aluminium bronze (CuAI)

- 9 14% AI
- High corrosion resistance
 - Seawater resistance
- Good wear resistance
- Good cavitation resistance
- Applications
 - Ship propeller
 - Sliding elements
 - Bearings
 - Chemical industries
 - Gear wheels

- World largest ship propeller (MMG)
 - CuAl9Ni6Fe5Ma
 - Container ship with 120,000 PS
 - 9,6 m; 131 t

