Transformation of Two or More Random Variables

Transformation of Two or More Random Variables

Suppose we know the joint probability density function for random variable X_1 and X_2 is $f_{X_1,X_2}(x_1,x_2)$.

If other random variables are defined, Y_1 and Y_2 , where $Y_1 = g_1(x_1, x_2)$ and $Y_2 = g_2(x_1, x_2)$, then we want to know the joint probability density function for the random variables Y_1 and Y_2 , $f_{Y_1,Y_2}(y_1, y_2)$.

Bivariate Discrete Random Variable Transformation

Let $X=(x_1,x_2,\cdots,x_n)$ be a discrete random variable with dimension n. Defined, $Y=(y_1,y_2,\cdots,y_k)=(g_1(x),g_2(x),\cdots,g_k(x))$. Then, the probability mass function (pmf) of Y is:

$$f_{Y_1,Y_2}(y_1,y_2) = P_{Y_1,Y_2}(y_1,y_2) = \sum_{x_1,x_2,\dots,x_n} P_{x_1,x_2,\dots,x_n}(x_1,x_2,\dots,x_n)$$

Example 1

 X_1 and X_2 are 2 random variables with pmf below in the table. Find the pmf for random variable $Y = |X_1 - X_2|$.

		$\mathbf{X_1}$	
		-1	1
X_2	0	1/6	1/6
	0.5	1/3	1/3

X	$\left f_{X_1,X_2}(x_1,x_2) \right $	$Y = X_1 - X_2 $
(-1, 0)	1/6	1
(1, 0)	1/6	1
(-1, 0.5)	1/3	1.5
(1, 0.5)	1/3	0.5

Solution:

Define the part of Y.

$$f_{Y_1,Y_2}(y_1,y_2) = \begin{cases} \frac{2}{6} & ; \quad y = 1\\ \frac{1}{3} & ; \quad y = 1.5\\ \frac{1}{3} & ; \quad y = 0.5 \end{cases}$$

Bivariate Discrete Random Variable Transformation

Suppose X_1 and X_2 are 2 discrete random variables with density $f_{X_1,X_2}(x_1,x_2)$. If $Y_1=g_1(X_1,X_2)$ and $Y_2=g_2(X_1,X_2)$ are one on one transformation, then the joint pmf of Y_1,Y_2 :

$$f_{Y_1,Y_2}(y_1,y_2) = \begin{cases} f_{X_1,X_2}(g_1^{-1}(y_1,y_2),g_2^{-1}(y_1,y_2)) & ; & y_1,y_2 \in \mathcal{B} \\ 0 & ; & otherwise \end{cases}$$

Theorem

Suppose we know the joint probability density function for the random variable X_1 and X_2 is $f_{X_1,X_2}(x_1,x_2)$ which is positive and continuous on the group $\mathcal{A} \subseteq R^2$, and defined function $g_1,g_2:\mathcal{A}\to R$ and \mathcal{B} is an image of \mathcal{A} as a one-to-one transformation of (g_1,g_2) .

Therefore, if $y_1 = g_1(x_1, x_2)$ and $y_2 = g_2(x_1, x_2)$ then the inverse, $x_1 = g_1^{-1}(y_1, y_2)$ and $x_2 = g_2^{-1}(y_1, y_2) \in \mathcal{B}$.

Assume that for $(y_1, y_2) \in \mathcal{B}$, dx_1/dy_1 and dx_2/dy_2 exist, continue, and not equal to 0.

Then the joint probability density function for the random variables Y_1 and Y_2 is:

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}\{g_1^{-1}(y_1,y_2), g_2^{-1}(y_1,y_2)\} \cdot |J|, \qquad (y_1,y_2) \in \mathcal{B}$$

Joint probability density function for the random variables Y_1 and Y_2

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}\{g_1^{-1}(y_1,y_2), g_2^{-1}(y_1,y_2)\} \cdot |J|, (y_1,y_2) \in \mathcal{B}$$

$$J = Jacobian = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$$

Example 2

Suppose the continuous random variables X_1 and X_2 has a distribution Exponential with mean=1 and its probability density function: $f(x)=e^{-x}$, $I_{(0,\infty)}(x)$.

If $Y_1 = X_1$ and $Y_2 = X_1 + X_2$ are defined, determine:

- a) Joint density function for random variables X_1 and X_2 , $f_{X_1,X_2}(x_1,x_2)$.
- b) Joint density function for random variables Y_1 and Y_2 , $f_{Y_1,Y_2}(y_1,y_2)$.
- c) Marginal density function for random variables Y_1 , $f_{Y_1}(y_1)$.

$$f_1(x_1) = e^{-x_1}; \ 0 < x_1 < \infty$$

$$f_2(x_2) = e^{-x_2}; \ 0 < x_2 < \infty$$

$$f_{X_1,X_2} = f_1(x_1)f_2(x_2) = e^{-x_1}e^{-x_2} = e^{-(x_1 + x_2)}; \ 0 < x_1 < \infty, 0 < x_1 < \infty$$

Transformation one-to-one:

$$y_1 = x_1 \rightarrow x_1 = y_1$$

 $y_2 = x_1 + x_2 \rightarrow x_2 = y_2 - x_1 = y_2 - y_1$

Limit:

$$\mathcal{A} = \{(x_1, x_2); 0 < x_1 < \infty, 0 < x_2 < \infty\}$$

$$\mathcal{B} = \{(y_1, y_2); 0 < y_1 < y_2 < \infty\}$$

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ -1 & 1 \end{vmatrix} = 1$$

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}\{g_1^{-1}(y_1,y_2), g_2^{-1}(y_1,y_2)\} \cdot |J|$$

= $e^{-y_1}e^{-(y_2-y_1)} = e^{-y_2}; (y_1,y_2) \in \mathcal{B}$

$$f_{Y_{1}}(y_{1}) = \int_{y_{1}, y_{2}}^{\infty} f_{Y_{1}, Y_{2}}(y_{1}, y_{2}) dy_{2}$$

$$= \int_{y_{1}}^{\infty} e^{-y_{2}} dy_{2}$$

$$= -e^{-y_{2}} \Big|_{y_{1}}^{\infty}$$

$$= 0 + e^{-y_{1}}$$

$$= e^{-y_{1}}; 0 < y_{1} < \infty$$

$$y_{1} \sim exponential(1)$$

Example 3

Suppose the continuous random variable X has a distribution U(0,1), while X_1 and X_2 are independent random variable examples of this distribution. If $Y_1 = X_1 + X_2$ and $Y_2 = X_1 - X_2$ are defined, determine:

- a) Joint density function for random variables Y_1 and Y_2 , $f_{Y_1,Y_2}(y_1,y_2)$.
- b) Marginal density function for random variables Y_1 and Y_2 , $f_{Y_1}\left(y_1\right)$ and $f_{Y_2}\left(y_2\right)$.

 $X \sim U(0,1)$ and X_1, X_2 are independent and identical random sample of this distribution. Then the joint probability density function for X_1 and X_2 is:

$$f_{X_1,X_2}(x_1,x_2) = f_{X_1}(x_1) \cdot f_{X_2}(x_2) = 1; 0 < x_1 < 1 \text{ and } 0 < x_2 < 1$$

then it is defined that:

$$y_1 = g_1(x_1, x_2) = x_1 + x_2$$

 $y_2 = g_2(x_1, x_2) = x_1 - x_2$

Through the substitution or elimination method from the above equation, the following equation will be obtained:

$$x_1 = g_1^{-1}(y_1, y_2) = (y_1 + y_2)/2$$

$$x_2 = g_2^{-1}(y_1, y_2) = (y_1 - y_2)/2$$

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix} = \begin{vmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} \end{vmatrix}$$

So, the common density for the random variables Y_1 and Y_2 is $f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}\{g_1^{-1}(y_1,y_2),g_2^{-1}(y_1,y_2)\} \cdot |J|$ $f_{Y_1,Y_2}(y_1,y_2) = \{(y_1+y_2)/2,(y_1-y_2)/2\} \cdot \left|-\frac{1}{2}\right|$ $f_{Y_1,Y_2}(y_1,y_2) = (1) \cdot \frac{1}{2}$ $f_{Y_1,Y_2}(y_1,y_2) = \frac{1}{2},(y_1,y_2) \in T$

determine the limit value for y_1 and y_2 that is T,

For
$$0 < x_1 < 1$$

 $0 < x_1 < 1 \rightarrow 0 < (y_1 + y_2)/2 < 1 \rightarrow 0 < y_1 + y_2 < 2$
 $0 < y_1 + y_2 \text{ and } y_1 + y_2 < 2$
 $y_2 > y_1 \text{ and } y_2 < 2 - y_1$

For
$$0 < x_2 < 1$$

 $0 < x_2 < 1 \rightarrow 0 < (y_1 - y_2)/2 < 1 \rightarrow 0 < y_1 - y_2 < 2$
 $0 < y_1 - y_2 \text{ and } y_1 - y_2 < 2$
 $y_2 < y_1 \text{ and } y_2 > y_1 - 2$

The marginal distribution for y_1 is

For
$$0 < y_1 \le 1$$

$$f_{Y_1}(y_1) = \int_{-y_1}^{y_1} f_{Y_1Y_2}(y_1, y_2) dy_2 = \int_{-y_1}^{y_1} \frac{1}{2} dy_2 = y_1$$

For
$$1 < y_1 < 2$$

$$f_{Y_1}(y_1) = \int_{y_1-2}^{2-y_1} f_{Y_1Y_2}(y_1, y_2) dy_2 = \int_{y_1-2}^{2-y_1} \frac{1}{2} dy_2 = 2 - y_1$$

Therefore,

$$f_{Y_1}(y_1) = \begin{cases} y_1 & ; & 0 < y_1 \le 1 \\ 2 - y_1 & ; & 1 < y_1 < 2 \\ 0 & ; & otherwise \end{cases}$$

The marginal distribution for y_2 is

For
$$-1 < y_2 \le 0$$

$$f_{Y_2}(y_2) = \int_{-v_2}^{y_2+2} f_{Y_1Y_2}(y_1, y_2) dy_1 = \int_{-v_2}^{y_2+2} \frac{1}{2} dy_1 = y_2 + 1$$

For
$$0 < y_2 < 1$$

$$f_{Y_2}(y_2) = \int_{y_2}^{2-y_2} f_{Y_1Y_2}(y_1, y_2) dy_1 = \int_{y_2}^{2-y_2} \frac{1}{2} dy_1 = 1 - y_2$$

Therefore,

$$f_{Y_2}(y_2) = \begin{cases} y_2 + 1 & ; & -1 < y_2 \le 0 \\ 1 - y_2 & ; & 0 < y_2 < 1 \\ 0 & ; & otherwise \end{cases}$$

Example 4

Suppose the continuous random variable X has the following probability density function

$$f_X(x) = e^{-x}, x \ge 0$$

 X_1 and X_2 is an independent and identic random variable of this probability density function. Determine the probability density function of random variable $Y = X_1/(X_1 + X_2)$.

 X_1 and X_2 is an independent and identic random variable for this probability density function (pdf), then the joint pdf for X_1 and X_2 :

$$f_{X_1,X_2}(x_1,x_2) = e^{-x_1}e^{-x_2} = e^{-(x_1+x_2)}; x_1 \ge 0 \text{ and } x_2 \ge 0$$

It is necessary to define another random variable for the transformation. occurs from two-dimensional space to two-dimensional space. Suppose $Z = X_1 + X_2$, so that we get a pair of transformations i.e. $y = x_1/(x_1 + x_2)$ and $z = x_1 + x_2$. This transformation is one-to-one for all functional areas.

Through the substitution or elimination method from the above equation, the following equation will be obtained:

$$x_1 = yz$$
$$x_2 = (1 - y)z$$

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y} & \frac{\partial x_1}{\partial z} \\ \frac{\partial x_2}{\partial y} & \frac{\partial x_2}{\partial z} \end{vmatrix} = \begin{vmatrix} z & y \\ -z & 1-y \end{vmatrix} = z$$

So, the joint density for the random variables Y and Z is

$$f_{Y,Z}(y,z) = f_{X_1,X_2}(x_1,x_2) \cdot |J|$$

= $e^{-(yz+(1-y)z)} \cdot |J|$
= ze^{-z} , $(y,z) \in T$

Next determine the limit value for y and z, namely T.

Pay attention, because $x_1 \ge 0$ and $x_2 \ge 0$, then

$$0 \le y = x_1/(x_1 + x_2) \le 1 \rightarrow 0 \le y \le 1$$

 $z = x_1 + x_2 \ge 0 \rightarrow z \ge 0$

Therefore,

$$f_{Y,Z}(y,z) = ze^{-z}$$
 , $0 \le y \le 1$ and $z \ge 0$

Marginal distribution for random variables $Y = X_1/(X_1 + X_2)$:

$$\int_{0}^{\infty} ze^{-z}dz = 1$$

Hence, the pdf for random variable $Y = X_1/(X_1 + X_2)$:

$$f_{Y}(y) = \begin{cases} 1 & \text{; } 0 \le y \le 1 \\ 0 & \text{; } otherwise \end{cases}$$

Exercise 1

Suppose the random variables X and Y are independent and have a Negative Exponential probability density function with $\lambda = 1$, and it is defined that the random variable U = (X + Y)/2 and V = (X - Y)/2. Determine:

- a) Joint pdf $f_{U,V}(u,v)$.
- b) Marginal pdf $f_U(u)$ and $f_V(v)$.

Note:

$$f_X(x) = \lambda e^{-\lambda x}, x > 0, \lambda > 0$$

Exercise 2

Suppose the random variables X and Y are independent and have pdf Normal(0,1) and defined U=(X+Y) and V=(X-Y). Determine:

- a) Joint pdf $f_{U,V}(u,v)$.
- b) Marginal pdf $f_U(u)$ and $f_V(v)$.

Thank you