Draft Handout 7: Kernel methods

Lecturer & author: Georgios P. Karagiannis georgios.karagiannis@durham.ac.uk

Aim. To introduce the ideas of learning machines by introducing data into high-dimensional feature spaces for computational and accuracy gains; introduce the kernel trick, kernel functions, extend SVM into the kernel framework.

Reading list & references:

- (1) Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine learning: From theory to algorithms. Cambridge university press.
 - Ch. 16.2 Support Vector Machine
- (2) Bishop, C. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: Springer.
 - Ch. 6 Kernel methods

1. Intro and motivation

FIGURE 1.1. Soft SVM from Computer practical 4

2. Improving expressive power

Note 1. To make the class of hypotheses more expressive with purpose to improve accuracy, we can first map the original instance space $x \in \mathcal{X}$ into another space (possibly of a higher dimension) and then learn a hypothesis in that space.

Definition 2. A Hilbert space is a vector space, with an inner product, which is also complete¹.

¹Going deeper to completeness is out of the scope.

Lemma 3. If \mathcal{X} is a linear subspace of a Hilbert space, then every $x \in \mathcal{X}$ can be written as x = u + v where $u \in \mathcal{X}$ and $\langle v, w \rangle = 0$ for all $w \in \mathcal{X}$.

Summary 4. The basic paradigm is as follows:

- (1) Choose a mapping $\psi: \mathcal{X} \to \mathcal{F}$ with $\psi(x) := (\psi_1(x), ..., \psi_n(x))$ for some feature space \mathcal{F} .
- (2) Create the image sequence $\tilde{\mathcal{S}} = \left\{ z_i^{\psi} = (\psi(x_i), y_i) \right\}_{i=1}^m$ from the original training set \mathcal{S} .
- (3) Train a linear predictor h against $\tilde{\mathcal{S}}$.
- (4) Predict the label or the output of a new point x^{new} by $h^{\psi}(x^{\text{new}}) := h \circ \psi(x^{\text{new}})$

Note 5. Feature space \mathcal{F} can be a Hilbert space, e.g a Euclidean space such as $\mathcal{F} \subseteq \mathbb{R}^n$ for some n. That includes infinite dimensional spaces.

Note 6. The introduction of mapping $\psi: \mathcal{X} \to \mathcal{F}$ induces

- (1) probability distribution G^{ψ} over domain $\mathcal{X} \times \mathcal{F}$ with $G^{\psi}(A) = G(\psi^{-1}(A))$ for every set $A \subseteq \mathcal{X} \times \mathcal{F}$.
- (2) predictive rule $h^{\psi}(\cdot) := h \circ \psi(\cdot)$, where $h \circ \psi(\cdot) = h(\psi(\cdot))$
- (3) risk function $R_{G^{\psi}}(h) := R_{G}(h \circ \psi)$, as

$$R_{G}(h \circ \psi) = \int \ell(h \circ \psi, z = (x, y)) dG(z) = \int \ell(h, z^{\psi}) dG^{\psi}(x, y) = R_{G^{\psi}}(h)$$

Note 7. Any feature mapping ψ that maps the original instances \mathcal{X} into some Hilbert space \mathcal{F} can be used. The Euclidean space $\mathcal{F} \subseteq \mathbb{R}^n$ for some n is a Hilbert space. There are also infinite dimensional Hilbert spaces.

Note 8. The success of this learning paradigm in Summary 4 depends on choosing a good ψ for a given learning task. Eg, in SVM, ψ will make the image of the data distribution (close to being) linearly separable in the feature space \mathcal{F} , thus making the resulting learning algorithm a good learner for a given task. This requires prior knowledge of the problem. However, some popular choices are the polynomial kernel and the Gaussian (or Radial Basis Functions) kernels.

Note 9. Using a $\psi(x) := (\psi_1(x), ..., \psi_n(x))$ that is high dimensional (n is too large) may improve accuracy (expressiveness) of the learner (e.g. recall in polynomial regression increasing the polynomial degree). However this increases the computational effort/cost required to perform calculations to minimize the associated risk function in the high dimensional space, as well as we need more data.

3. The Kernel Trick

Note 10. Kernel function K is defined as $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with $K(x, x') = \langle \psi(x), \psi(x') \rangle$ given an embedding $\psi(x)$ of some domain space \mathcal{X} into some Hilbert space \mathcal{F} . Hence, Kernel functions are here are used to describe inner products in the feature space. K can be considered as specifying similarity between instances and of the embedding $\psi(\cdot)$ as mapping the domain set \mathcal{X} into a space where these similarities are realized as inner products.

Problem 11. (General learning problem) Consider a prediction rule $h: \mathcal{X} \to \mathcal{Y}$ with $h_w(x) =$ $\langle w, \psi(x) \rangle$ which is trained against a training sample $\{z_i = (x_i, y_i)\}_{i=1}^m$ with the following general optimization problem

(3.1)
$$\min_{w} \operatorname{minimize} \left(f\left(\langle w, \psi\left(x_{1}\right) \rangle, ..., \langle w, \psi\left(x_{m}\right) \rangle \right) + R\left(\|w\| \right) \right),$$

where $f:\mathbb{R}^m\to\mathbb{R}$ is an arbitrary function and $R:\mathbb{R}_-\to\mathbb{R}$ is a monotonically non-decreasing function.

Example 12. In Soft SVM (Proposition 24), it is $f(a_1,...,a_m) = \frac{1}{m} \sum_{i=1}^m \max\{1-y_i a_i\}$ and $R(a) = \lambda a^2$.

Note 13. The following result states a duality of a general learning problem 11 to be able to be indirectly extended to a possibly high dimensional feature space with purpose to improve the expressiveness (accuracy of the predictive rule) by using kernel ideas mitigating the associated computational cost and data requirements.

Theorem 14. (Representation theorem) Assume mapping $\psi : \mathcal{X} \to \mathcal{F}$ where \mathcal{F} is a Hilbert space. There exists a vector $\alpha \in \mathbb{R}^m$ such that $w = \sum_{i=1}^m \alpha_i \psi(x_i)$ is the optimal solution of (3.1) in Problem 11.

Proof. Let w^* be the optimal solution of (3.1). Because w^* is element of Hilbert space, it can be written as $w^* = \sum_{i=1}^{m} \alpha_i \psi(x_i) + u$ where $\langle u, \psi(x_i) \rangle = 0$ for all i = 1, ..., m. Set $w := w^* - u$. Because $\|w^*\|^2 = \|w\|^2 + \|u\|^2$ it is $\|w\| \le \|w^*\|$ implying that

$$R\left(\|w\|\right) \le R\left(\|w^*\|\right).$$

Because $\langle w, \psi(x_i) \rangle = \langle w^* - u, \psi(x_i) \rangle = \langle w^*, \psi(x_i) \rangle$ for all i = 1, ..., m, it is

$$f(\langle w, \psi(x_1) \rangle, ..., \langle w, \psi(x_m) \rangle) = f(\langle w^*, \psi(x_1) \rangle, ..., \langle w^*, \psi(x_m) \rangle)$$

Then the objective function of 3.1 at w is less than or equal to that of the minimizer w^* implying that $w = \sum_{i=1}^{m} \alpha_i \psi(x_i)$ is an optimal solution.

Note 15. Let $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a kernel function with $K(x, x') = \langle \psi(x), \psi(x') \rangle$. According to the representation Theorem 14, the general learning problem 11, can be equivalently addressed by re-writing the learning predictive rule as

$$h_{\alpha}(x) = \sum_{i=1}^{m} \alpha_{i} K(x_{i}, x)$$

and learning $\{\alpha_i\}$ as the solutions of

(3.2) minimize
$$\left(f\left(\sum_{i=1}^{m} \alpha_{i}K\left(x_{i},x\right),...,\sum_{i=1}^{m} \alpha_{i}K\left(x_{m},x\right)\right) + R\left(\sqrt{\sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i}\alpha_{j}K\left(x_{i},x_{j}\right)}\right) \right)$$

This is because

$$\langle w, \psi(x_j) \rangle = \langle \sum_{i=1}^{m} \alpha_i \psi(x_i), \psi(x_j) \rangle = \sum_{i=1}^{m} \alpha_i \langle \psi(x_i), \psi(x_j) \rangle = \sum_{i=1}^{m} \alpha_i K(x_i, x_j)$$
Created on 2023/03/09 at 11:30:40 by Georgios Karagian

Page 3

and

$$\|w\|^{2} = \langle \sum_{i=1}^{m} \alpha_{i} \psi(x_{i}), \sum_{j=1}^{m} \alpha_{j} \psi(x_{j}) \rangle = \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} \langle \psi(x_{i}), \psi(x_{j}) \rangle = \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{i} \alpha_{j} K(x_{i}, x_{j})$$

Note 16. In learning problem 11, direct access to elements $\psi(\cdot)$ in the feature space is not necessary, as equivalently one can calculate or specify the kernel function (that is inner products in the feature space).

Definition 17. Gram matrix is called the $m \times m$ matrix G s.t. $[G]_{i,j} = K(x_i, x_j)$.

Example 18. In Soft SVM, the predictive rule is $h(x) = \text{sign}(\sum_{i=1}^{m} \alpha_i K(x_i, x))$ where α is learned by

$$\underset{\alpha}{\operatorname{minimize}} \left(\lambda \alpha^{\top} G \alpha + \frac{1}{m} \sum_{i=1}^{m} \max \left(0, 1 - y_i \left[G \alpha \right]_i \right) \right)$$

that can be solved as quadratic programming.

Example 19. (Polynomial Kernels) Let $x \in \mathcal{X} \subseteq \mathbb{R}^n$. Assume we want to extend the linear mapping $x \mapsto \langle w, x \rangle$ to the k degree polynomial mapping $x \mapsto h(x)$. The multivariate polynomial can be written as $h(x) = \langle w, \psi(x) \rangle$, where $\psi : \mathbb{R}^n \to \mathbb{R}^d$ with $\psi(x)$ is a vector of elements $\psi_J(x) = \prod_{i=1}^r x_{J_i}$ for $J \in \{1, ..., n\}^r$ and $r \leq k$. This learning problem can be equivalently be addressed with the k degree polynomial kernel

$$K(x, x') = (1 + \langle x, x' \rangle)^k$$

Solution. Set $x_0 = x'_0 = 1$. Then

$$K(x, x') = (1 + \langle x, x' \rangle)^k = \left(\sum_{j=0}^n x_j x_j'\right)^k$$

$$= \sum_{J \in \{1, ..., n\}^k} \prod_{j=0}^n x_{J_i} x_{J_i}' = \sum_{J \in \{1, ..., n\}^k} \left(\prod_{j=0}^n x_{J_i}\right) \left(\prod_{j=0}^n x_{J_i}'\right)$$

$$= \langle \psi(x), \psi(x') \rangle$$

where $\psi(x)$ is as defined.

4. Construction of Kernels

Note 20. The suitability of any hypothesis class to a given learning task depends on the nature of that task. Feature mapping ψ can be considered as expanding the class of linear classifiers to a richer class (corresponding to linear classifiers over the feature space). Embedding ψ is a way to express and utilize prior knowledge about the problem at hand.

Note 21. Hence, according to the Representation theorem 14, specifying a kernel function is a way to express prior knowledge about the problem with purpose to enrich the hypothesis class and learn a more accurate predictor.

Claim 22. If we believe that positive examples can be distinguished by some ellipse, we can define ψ to be all the monomials up to order 2, or use a degree 2 polynomial kernel.

Note 23. The question is if the specified function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ (by the practitioner) is indeed a kernel function; namely if K can be written as inner product $K(x, x') = \langle \psi(x), \psi(x') \rangle$ of feature functions $\psi(x)$. Theorem 25 provides sufficient and necessary conditions to check that.

Definition 24. A symmetric function $K : \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive semi-definite if its Gram matrix G, $[G]_{i,j} = K(x_i, x_j)$, is a positive semi-definite matrix.

Theorem 25. A symmetric function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ implements an inner product in some Hilbert space if and only if it is positive semi-definite i.e. its Gram matrix G, $[G]_{i,j} = K(x_i, x_j)$, is a positive semi-definite matrix.

Proof. Assume K implements an inner product $K(x, x') = \langle \psi(x), \psi(x') \rangle$ in some Hilbert space. Let G be its Gram matrix with $G = \Psi^{\top} \Psi$ and $\psi(x_i)$ is the i-th column of Ψ . You may consider that \cdot^{\dagger} represents the transpose for simplicity. For any $\xi \in \mathbb{R}^d - \{0\}$

$$\xi^{\dagger}G\xi = \sum_{i} \sum_{j} \xi_{i}K(x_{i}, x_{j}) \xi_{j} = \sum_{i} \sum_{j} \xi_{i}\langle \psi(x_{i}), \psi(x_{j})\rangle \xi_{j} = \sum_{i} \sum_{j} \langle \xi_{i}\psi(x_{i}), \psi(x_{j}) \xi_{j}\rangle$$
$$= \langle \sum_{i} \xi_{i}\psi(x_{i}), \sum_{j} \psi(x_{j}) \xi_{j}\rangle = \left\| \sum_{i} \xi_{i}\psi(x_{i}) \right\|_{2}^{2} \ge 0$$

Assume the symmetric function $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is positive semi-definite. Let $\mathbb{R}^f = \{f: \mathcal{X} \to \mathbb{R}\}$. For $x \in \mathcal{X}$ let function ψ over \mathbb{R}^f with $\psi(x) = K(\cdot, x)$. This allows to define a vector space consisting of all the linear combinations of elements of the form $K(\cdot, x)$, having an inner product

$$\langle \sum_{i} \alpha_{i} K\left(\cdot, x_{i}\right), \sum_{j} \beta_{j} K\left(\cdot, x_{j}\right) \rangle = \sum_{i} \sum_{i} \alpha_{i} \beta_{j} \underbrace{\langle K\left(\cdot, x_{i}\right), K\left(\cdot, x_{j}\right) \rangle}_{=K\left(x_{i}, x_{j}\right)}.$$

This is satisfies all the properties of inner product, s.t. it is symmetric, linearity, positive definite as $K(x, x') \ge 0$. Then there is some feature vector ψ such that $K(x, x') = \langle \psi(x), \psi(x') \rangle$.

Example 26. Consider two kernel functions $K_1: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ and $K_2: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$. Show that K_3 with $K_3(x, x') = K_1(x, x') + K_2(x, x')$ is a kernel function.

Solution. Let Gram matrix, G_j induced by kernel function K_j . For any $\xi \in \mathbb{R}^d - \{0\}$, it is

$$\xi^{\top} G_3 \xi = \xi^{\top} (G_1 + G_2) \xi = \xi^{\top} G_1 \xi + \xi^{\top} G_2 \xi \ge 0$$

that completes the proof according to Lemma 25.

5. Implementations

- 5.1. Kernel SVM.
- 5.2. Kernel PCA.
- 5.3. Gaussian process regression.

APPENDIX A.