AD-A013 649

BIOCYBERNETIC CONTROL IN MAN-MACHINE INTERACTION

Jacques J. Vidal, et al

California University

Prepared for:

Office of Naval Research Advanced Research Projects Agency

March 1975

DISTRIBUTED BY:

UCLA-ENG-7535 MARCH 1975

BIOCYBERNETIC CONTROL IN MAN-MACHINE INTERACTION: SEMI-ANNUAL TECHNICAL REPORT 1974-75 (JULY 1, 1974 TO JANUARY 31, 1975)

Sponsored by Advanced Research Projects Agency ARPA Order No. 2816

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
US Department of Commerce
Springfield, VA. 22151

DISTRIBUTION STATEMENT A

Approved for public releases
Distribution Unlimited

COMPUTER SCIENCE DEPARTMENT

School of Engineering and Applied Science
University of California
Los Angeles

DISCLAIMER

0

The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the Advanced Research Projects Agency or the U.S. Government.

REPORT DOCUMENTATION P	READ INSTR	READ INSTRUCTIONS BEFORE COMPLETING FORM		
REPORT NUMBER	2. GOVT ACCESSION	IN NO. 3. RECIPIENT'S CATALO	G NUMBER	
BIOCYBERNETIC CONTROL IN MAN-I	NA A CITITATE	5. TYPE OF REPORT & F	PERIOD COVERED	
		Semi Annual		
INTERACTION: Semi-Annual Technical	Report 1974	-75 July 1, 1974 to Ja	nuary 31, 1975	
·		UCLA ENG-7535		
7. 11 OR's)		8. CONTRACT OR GRANT		
Jacques J. Vidal -Principal Investigate	or			
Marshall D. Buck, Carlos Gonzalez, R		h N00014-69-A-0200	-40 55	
School of Engineering and Applied Scien		10. PROGRAM ELEMENT, AREA & WORK UNIT	PROJECT, TASK	
University of California	ice	AREA & WORK UNIT	NUMBERS	
Los Angeles, California 90024				
	· · · · · · · · · · · · · · · · · · ·			
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE	1	
Office of Naval Research		March 1975	,	
1030 East Green Street		13. NUMBER OF PAGES		
Pasadena, California 91105	from Controlling Of		this report)	
	-		una reporty	
		unclassified		
		ISA. DECLASSIFICATION	DOWNGRADING	
16. DISTRIBUTION STATEMENT (of this Report)				
	DISTRIBUTIO	N STATEMENT A		
	Approved for	r public releases		
		on Unlimited		
_				
17. DISTRIBUTION STATEMENT (of the sharest entered in	Di			
17. DISTRIBUTION STATEMENT (of the ebetract entered in	Block 20, Il diller	ini trom Report)		
18. SUPPLEMENTARY NOTES				
			4	
19. KEY WORDS (Continue on reverse elde if necessery and i				
KET HOROS (Common on Teverse alge II hacessary 213)	identity by block in	imosr)		
Biocybernetic	v	sual Evoked Response		
Mag-Machine Communicati		plored and Patterned Vi	Samuel Chimanels	
EEG Codes		orded and Patterned V	isual Stimuli	
20. ABSTRACT (Continue on reverse side if necessary and fo	dentify by block nu	nber)		
This research program sime at incom-	onetine BBC			
This research program aims at incorp	orating EEG	evoked responses" in	n man-	
machine communication. A methodolo	gy for the re	al-time discrimination	of	
evoked responses by a computer in rea	al-time has h	een developed. Extrem	nely	
high rates of sensory stimulus identific	cation from	EEG have been achieved	i.	

The experimental paradigm has been completely implemented or computer system. Experiments are now in progress that involver implements are now in progress that involver implementation algorithm in an actual man-machine communication	ve the EEG dis-
ia	

BIOCYBERNETIC CONTROL IN MAN-MACHINE INTERACTION: SEMI-ANNUAL TECHNICAL REPORT 1974-75 (July 1, 1974 to January 31, 1975)

6

1.

0

40

This research was supported by the Advanced Research Projects Agency of the Department of Defense Under Contract No. N00014-69-A-0200-4055

School of Engineering and Applied Science
University of California
Los Angeles

BIOCYBERNETIC CONTROL IN MAN-MACHINE INTERACTION: SEMI-ANNUAL TECHNICAL REPORT 1974-75

Short Title of Work: Biocybernetic Control

ARPA Order Number: 2816

Program Code Number: 5D20

Name of Contractor: The Regents of the University of California

Effective Date of Contract: July 1, 1974

Contract Expiration Date: June 30, 1975

Amount of Contract: \$120,000

Contract Number: N00014-69-A-0200-4055

Principal Investigator: Jacques J. Vidal (213) 825-2858

PERSONNEL

Project Director:

Jacques J. Vidal

Research Staff:

Marshall D. Buck Carlos Gonzalez Randall S. Hawkins Ronald H. Olch Tulsi D. Ramchandani

Students and Support Staff:

Dusan Badal Thorn Hertwig Jeffrey Johnson Paula Justman Randy Klein Gregory Parker Jeanette Salkin Larry Sullivan

CONTENTS

		Page
1.	Orientation	1
2.	Progress to Nate	
	2.1 Evoked Responses Exper	
	2.2 Computer System Hardwa	
	2.3 Computer Methodology and Developments	
3.		
	3.1 Color Experiments	8
	3.2 Pattern Position Exper	iments 37
4.	Theoretical Considerations.	42
	4.1 Step-wise Discriminati Rule	on and the Decision 42
	4.2 The Mutual Information	Transfer 45
_		50

1. ORIENTATION

The present document is the interim semi-annual report for the Bio-cybernetic Control in Man-Machine Interaction project at UCLA conducted under Advanced Research Projects Agency Contract No. N00014-69-A-0200-4055. The project started in April 1973 under a different contract. The long-term goals were described in detail in earlier proposals (UCLA-Eng-P2465-N-73 and P-2719-C-74) and are briefly reviewed below.

The ultimate goal of the project is to implement and evaluate the incorporation of electrophysiological brain signals in selected man-machine communication procedures. The messages considered deal with perceptual, cognitive or affective aspects of the dialogues.

In conventional man-machine interaction with computer terminals the terminal provides most of the external environment and generates inputs of stimuli to the operator in the form of graphic displays or alphanumeric messages. Typically the "response" is then the selection of a keyboard sequence. This motor behavior (i.e. the next interactive step in the interchange) is decided upon (voluntary response) from the analysis of the situation. A closer coupling would be obtained, however, if one could tap the covert as well as the overt responses and, to some extent, bypass the requirement for an explicit motor output. Such generalized responses can be categorized as follows:

a) Sensory (Input-Exteroceptive)

4

2

- b) Perceptual/Emotional/Cognitive (Processing-Interoceptive)
- c) Motor (Output-Proprioceptive)

A closely coupled man-machine interface can be conceived as an interface that accesses some of these behavior components directly from biosignals measured on the body. This can in principle be obtained either by passively monitoring peripheral signals (respondents) such as electromyograms (EMG) or electroencephalograms (EEG) and/or by opening new (operant) channels by conditioning some of those signals

in a way that would provide reliable computer access to these internal processes. Close coupling could also be obtained with subliminal muscle control or very low overhead motor behavior such as eye movement or blinks. Whenever applicable this would in fact bypass or considerably reduce motor output and the considerable overhead attached to the externalization. To that effect appropriate respondents must be found and subsequently reinforced, stabilized and placed under voluntary control by operant conditioning. Electrophysiological signals as found in the EEG appear to be the only candidate offering adequate bandwidth for the additional communication channels. The present project uses the EEG in this manner and concentrates on event-bound EEG epochs, i.e. evoked responses.

The experimental approach consists of identifying features in the EEG (evoked responses) that constitute potential codes for the direct communication of specific "messages" relevant to interactive man-computer communication. Such messages would be, for example, recognition of a clue (matching), its acceptance or rejection, the choice between (visual) alternatives, the neural control over the positioning of a pointer on a screen, etc.

Electroencephalographic signals collected on the scalp are spatio-temporal events. Because of electrodes and anatomical limitations space sampling is often coarse and time assumes the role of principal independent variable. Time functions are collected on each location or channel.

To decode the signals one must evaluate the range and bandwidth (i.e. the time windows occupied by each meaningful feature in the functions that constitute the EEG "signatures") and determine the rules of association of those features or (in linguistic terms) the "syntax". The relationship that these (accessible) brain signals offer to conscious experience and human performance (their semantic domain) must also be investigated.

The starting point of this study was the view that EEG signals are a complex structure of elementary wavelets that reflect individual and sequential events taking place in various brain structures. Because of the enormous complexity and interlinking of these events, all small fluctuations in the EEG have generally been ignored and lumped with instrumentation noise, while all the attention was concentrated on rhythmic activity or (in the case of evoked response) slow components of relatively large amplitude. Yet it is becoming evident that these sequences and patterns of distinct wavelets are time signatures that constitute observable components of the brain "state vector". Sequential rules for the appearance and configuration of the wavelets may become identified as the syntactic constraint of a neuro-electric language with a considerable potential in man-machine communication.

References-Section 1

9

3

2

- Vidal, J.J., "New Developments in EEG Signal Processing", <u>Proceedings</u> of the Third Symposium on Nonlinear Estimation, September 11-13, 1972, San Diego, California.
- Vidal, J.J., "Toward Direct Brain Computer Communication", Annual Review of Biophysics and Bioengineering, Vol. 2, Annual Reviews, Inc., Palo Alto, 1973.
- Vidal, J.J., "The Brain Computer Interface Project", The UCLA Computer Science Department Quarterly, Vol. 1, No. 4, 1973.

2. PROGRESS TO DATE

As indicated earlier, the UCLA Biocybernetic Control in Man-Machine Interaction project has been underway at the Brain Computer Interface Laboratory (BCI) since July 1973 under ARPA sponsorship. Accomplishments to date for the ensemble of the project roughly fall into three categories, namely:

- a) evoked response experiment results (2.1)
- b) development of the computer system supporting the effort (2.2)
- c) development of computer methodology and application software for real-time EEG identification (2.3)

The accomplishments during the first year have been described in more detail in the Final Technical Report 1973-74. The present document covers the first half of the second year (1974-75). The salient items are listed in the present section.

2.1 Evoked Response Experiment Results

With the advent of the second year the experimental program went into high gear. Some initial delays were due to system development because of the installation of a new SDS 930 system. A new pool of subjects was formed and an extensive screening program undertaken. At present, five subjects with exceptional performance have been retained. Discrimination accuracy on the standard four color (red/green/blue/yellow) experiment used in the screening revealed capability for accuracies exceeding 90% of correct response in completely randomized testing sets of trials over a single channel. Multi-channel discrimination reached 95% and even 99% in the best cases in repeated trials after new techniques for elimination of outlying responses were introduced.

Preliminary experiments have also been completed with pattern position that have definitely established the feasibility of the closed loop "visual light pen" experiment described in the next section. Discriminability on pattern position still falls short of that of color at this time. In these experiments, however, no attempt had yet been made to optimize the targets or the procedures.

2.2 Computer System Hardware Improvements

3

1

40

1

The major event in the laboratory system occurred at the beginning of the second year and was the procurement through DARO and the installation in the laboratory of a SDS 930 computer. This system came with a complete set of peripherals including two tape drives, a card reader and a high speed lineprinter. Its 16K of memory coupled with a high speed drum holding two million characters is capable of greatly improved performance for on-line data acquisition and discrimination and in addition, of handling a considerable batch processing load. Since the laboratory computer was a completely compatible SDS 920, a reconfiguration was made that turned the real-time control of experiments over to the 930 and relegated the 920 to the function of I/O processor. A special operating system was developed to interleave on-line and off-line work. Between experiments the batch capability is used for computing decision rules on training sets and performing various data reconfigurations. All useful laboratory application routines were re-written for the system and new ones introduced. In particular a BCI version of the Stepwise Discriminant Analysis, the orthogonalization procedure and a factor analysis program were written and completely debugged by January 1975.

2.3 Computer Methodology and Software Development

Several substantial improvements were obtained in the evoked response discrimination procedure. One side of the investigation dealt with determining the threshold for posterior probabilities to be chosen for creating the extra class of "don't know" responses. Increasing the threshold increased the reliability of correct responses but also increased the number of instances in which the computer declined to classify. This optimal tradeoff for a given cost function can be found from the curves relating the correctness of classification versus "don't know" frequency plotted through multiple trials. A similar inquiry was done to find the influence of the "elimination of outliers" from the training set. Outliers are responses that in the training set fall substantially outside the rest of the cluster. The procedure eliminated such responses

and recalculated the decision rule. Again the threshold for outlier labeling can be varied and an optimum found, using testing set correctness as criterion.

The informational meaning of the decision rule given by the discriminant procedure was analysed theoretically and a mutual information measure was defined and added to the output of the procedure. This measure provides an objective and readily understood scale to compare within paradigms, experiments or subjects.

In prevision of cognitive experiments requiring more complex visual targets for subject stimulation, an all out effort was launched to improve the generation of graphic displays on the laboratory IMLAC graphic system. To that effect, a new compiler language (GRAL) was developed and documented. GRAL allows specification of animation images to be made in very simple statements. Compiling is done on the 360/91 to produce object codes for the IMLAC which can be transferred from CCN to the laboratory using the existing link. At the same time a special program for the generation of human faces was written and successfully debugged in IMLAC assembly language as GRAL was not available at the time. This program, developed under a different (Air Force) contract, will directly support the present work. At this time facial features are placed under keyboard control. Relatively simple modifications are being introduced that will place the control under the main laboratory computer. Facial expression can then be used as feedback stimuli in the biocybernetics loop.

References-Section 2

1

-

- Vida), J.J., "Biocybernetic Control in Man-Machine Interaction, Final Technical Report 1973-74", UCLA ENGR-7435
- Gonzalez, C., and J.J. Vidal, "GRAL--A Graphic Compiler Language for Intelligent Terminals", IEEE Transactions on Software Engineering accepted for publication April 1975.
- Vidal, J.J., "Neurocybernetics and Man-Machine Communication", 1975

 International Conference on Cybernetics and Society, San Francisco September 23-25, 1975.
- Rhodes, Michael L., "Test Input, Graphics and Data Structures", <u>IEEE</u>
 <u>Transactions on Software Engineering;</u> submitted for publication,
 1975.
- Vidal, J.J., and Ronald H. Olch, "On-Line Acquisition and Processing of Epoch-Oriented Continuous Data", Current Computer Technology in Neurobiology Workshop I, University of West Virginia, Morgantown, West Virginia, April, 1975.
- Vidal, J.J., and Sam Reisenfeld, "Dynamic Smoothing of EEG Evoked Responses", VIIth IFIP Congress, Nice, France; September 1975.
- Schwartzmann, D. and J.J. Vidal, "An Algorithm for Determining the Topological Dimensionality and Structure of Point Clusters", IEEE Transactions on Computers; accepted for publication 1975.

3. EVOKED RESPONSES RESULTS SUMMARIES

3.1 Color Experiments

Purpose

- To develop further the methodology and performance of on-line machine decoding of brief electrical signals evoked on the human scalp by sensory events.
- To evaluate a group of subjects in order to choose for further study those who show adequate performance.

Methods

Subjects are fifteen untrained female students (ages 19-24). Each was given a routine Ishahara test of color discrimination. Individual recording sessions were then conducted as described below. Each required about two hours.

Standard silver disc electrodes are applied with electroconductive paste at five locations on the scalp (Fpz, Pz, Oz, O_1 and O_2) and to the earlobes (A_1 - A_2). Electrode impedance was always less than $10,000\,\Omega$. Four EEG data channels are recorded (Ch 1: Pz-A, Ch 2: Oz-Pz, Ch 3: O_1 -Pz, Ch 4: O_2 -Pz). The Fpz-Oz signal is used as a blink artifact detection channel; if a peak-to-peak deflection occurs which exceeds a preset level, the current epoch is aborted in order to avoid taking data corrupted by electro-oculographic activity while the subject has her eyes moving or even during brief moments of eye closure. EEG signals are amplified over a bandwidth of 1.0 to 70 Hz, and digitized every four msec. A data epoch consists of samples taken both before (400 to 960 msec depending on individual runs) and after the stimulus time (320 msec in all instances). The data taken prior to stimulation is necessary to provide a lead time whenever the orthogonalization routine of Glassman is used in subsequent processing. It is otherwise dropped at analysis time.

Stimuli consist of brief (30 μ sec.) flashes of xenon strobe light (10^7 lux illuminance in collimated beam) projected through one of four randomly

selected interference filters with peak transmission wavelengths of 620nm (Red), 575nm (Yellow), 515nm (Green) and 465nm (Blue) and a yellow (Wratten #4) background light with a luminance of 100 NITS or 10⁻² lamberts. The stimuli are viewed either through diffusing goggles worn by the subject or by a large diffusing screen of translucent plastic placed before the subject. All experiments are conducted inside a sound attenuated, electrostatically and radio frequency shielded room. Two-hundred epochs are taken and recorded on digital tape.

Analysis

0

3

Data analysis is performed on a SDS 930 computer. Stepwise linear discriminant analysis (SDA) is used to develop four linear discriminant functions (one for each of the four color classes) which are then evaluated for each epoch in order to determine the a-posteriori probability of belonging to each group. The processing is, therefore, conducted in the laboratory on a dedicated machine in contrast to previous work in which stepwise discriminant analysis was performed using the BMD07M package running in batch mode on the IBM 360/91 at the Campus Computing Network.

The requirements for on-line processing necessitated either a modification of 07M so that it could be linked with the Monitor/Line handler routine which interfaces the BCI laboratory computers to the 360/91, or the development of a customized version which could run in our SDS 930 computer in the BCI lab. The latter route was chosen, and the in-house SDA program now possesses several features not provided by the standard BMD package. These features include:

- The capability of selecting and labeling any 40 variables from the multi-channel EEG data input produced by the Data Handling Supervisor/Scheduler running on the 930,
- Flexibility in the assignment of some epochs to a training set,
 and other epochs to a testing set,
- 3) Capability to read the group type of each epoch from the epoch headers provided as part of the BCI Data Format,

- 4) The ability to skip pre-stimulus data automatically;
- 5) Implementation of an a-posteriori decision threshold parameter so that epochs which do not produce a probability of belonging to any source group with a value higher than the decision threshold are classified into a new "default" category;
- 6) An outlier rejection routine which controls the acceptance of epochs for iterative generation of the discriminant functions. For example, only those epochs would be entered which on a prior SDA run have been correctly classified, or epochs which have been defaulted (but not misclassified) as well as those correctly classified.

The SDA program also routinely produces averages, F ratios for each variable, covariances, correlation coefficients, results at each step, evaluation of the discriminant functions (DF's) and epoch predictions, if requested on control cards. In the last version the calculation of the mutual information measure is included.

Results

For the initial evaluations, a general data window was adopted which selected 10 variables from each of four EEG channels, beginning at 80 msec latency from the stimulus, and taking every fourth variable (16 msec intervals) to 224 msec latency. SDA was given on F-to-enter and F-to-delete of 2.2, a decision threshold of 0.25 (no defaults), and told to go 10 steps, F level permitting. Usually 100 epochs were taken as a training set, with an inter epoch stepping interval of 2, that is, every other epoch of a given group type (source color) was taken to train the discriminant function. The testing set then consisted of the other 100 epochs, 25 from each group. Two confusion matrices are obtained upon evaluation of the single epoch events by the DF; one for the training set, and one for the testing set. Overall performance is defined as percentage of correct classification on the testing set. The following results were obtained:

Subject-Date	Experiment Type (G=goggles, S=screen)	% Correct	
SB01 MR13	G	87	
SBO1 MR13	S	86	
APN1 MR19	S	69	
ALL1 MR25	G	76	
ALL1 MR25	S	68	
SAG1 MR27	G	82	
SAG1 MR27	S	84	
SAD1 APO3	G	81	
NLM1 APO8	G	84	
JMS1 AP10	G	68	
SOS1 AP15	G	87	
MMD1 AP15	G	71	
ATW1 AP17	G	74	

Data from three subjects is not included due to hardware problems which prevented accurate data collection. One additional subject's data was formatted incorrectly; this error is expected to be reversible. The average performance of all ten subjects was 78%, using a very general sample variable selection paradigm. Five of them showed performance ranging from 81% to 87% and these will be retained for further study. The variables chosen, their F levels, the discriminant functions, and the training and testing confusion matrices for these five subjects are displayed in Tables 1-5.

-

The data from subjectSB01, whose performance using the general 16 msec window was 87%, was analyzed more extensively in order to investigate the following areas:

1) The degree of performance to be obtained by choosing the best ten variables from 160 of 320 samples taken, rather than entering only 40 samples;

SBO1 MR13-75-0 FOUR COLOR VER EXPERIMENT, GENERAL 16 MSEC. WINDOW

DISCRIMINANT FUNCTIONS AFTER 10 STEPS, WITH D.O.F. = 3.0, 87.0

EPOCHS ACCEPTED UNCONDITIONALLY.

1	VARIABLE	F		GROUP NAME	S	
1 10	EX NAME	LEVEL	RED-8	YELLOW-6	GREEN-3	BLUE-1
1	1.080	•16939E 02		77538E-02	21360E-01	22209E-01
4	1,128	•18892E 02	• 76035E • 01	•16087E-01	•58293E-02	•58899E-02
5	1,144	•70889F 01	•47178E-01	·20427E-01	.24993E-01	.48605E-02
11	C80.5	•15522E 05	61796E-01	59554E-03	17758E-01	- · 18303E - 01
15	2,144	.83504E 01	.65404E-01	.26500E-02	·22209E-01	•99148E-02
21	3,030	.52857E 02	•86481E-01	•30784E=02	•19380E-01	.28339E-01
24	3,123	.23376E 02	- · 10790E - 01	- · 19784E-01	-20024E-01	•25626E-01
25	3,144	•16007E 02	21824E-01	•31948E-03	31637E-01	•10857E-01
25	3,160	•12754E 02	16766E-01	•17582E-01	10067E-02	26954E-01
58	3,192	.62894F 01	- · 80440E - 02	- • 17815E-03	52971E-02	25828E-01
	CONSTANT		43591F 02	51934E 01	65809E 01	91398E 01

TRAINING CONFUSION MATRIX 1EPA = 1 NEPI = 100

SSURCE	PERCENT		CLASSIFIE	CLASSIFIED AS			
	CORRECT	RED-8	YELLOW-6	GREEN-3	BLUE - 1	DEFAULT	
RED-8	100 · C	25.0	• 0	• 0	• 0	•0	
YELLS x-6	. 96.0	• 0	24.0	1.0	• 0	•0	
GREEN-3	92.0	• 0	1.0	23.0	1.0	• 0	
BLUE-1	88.0	•0	• 0	3.0	55.0	• 0	
TATEL	94.0						

TESTING CONFUSION MATRIX IEPT = 2 NEPI = 100

Seurce	PERCENT	0.00	CLASSIFIE		0.118	POTENTIAL SERVICE AND
	CORRECT	RED=8	YELLOW-6	GREEN-3	BLUE-1	DEFAULT
RED-8	100.0	25.0	• 0	•0	•0	•0
YELLEW-6	80.0	• 0	20.0	5.0	• 0	• 0
GREEN-3	88.0	• 0	2.0	22.0	1.0	• 0
BLUE-1	80.0	• 0	1.0	4.0	20.0	• 0
TETAL	87.0		* * * * * *	Brid service allege as relieve		The first specific of the second state of the second state of the second

COMPLETED 10 STEPS OF ANALYSIS

TABLE 1

SADI VISUAL EVOKED RESPONSE EXPERIMENT AN. DATE APR 23 .M.BUCK DATA SET IDENTIFIERS: EXPR = OCHI SUBJ = SADI DATE = APO3

NO. OF VARIABLES = 40

3

3

2

WGT • D • 0 • F • = 100 • CO

F LEVEL TO REMOVE = 2.200

POSTERIORI THRESHOLD = .250

DISCRIMINANT FUNCTIONS AFTER 10 STEPS, WITH D.C.F. = 3.0, 87.0

EPOCHS ACCEPTED UNCONDITIONALLY.

V	RIABLE	F		GROUP NAME	S	
	NAME	LEVEL	RED-8	YELLOW-6	GREEN-3	BLUE-1
3		.60713E 01	•19237E-01	•14228E-01	·31393E-02	•1898CE-01
4	1/128	.80609E 01	•17142E-01	,16852E-01	77749E-02	* • 85393E-02
5	1.144	.15001E 02	39176E-02	- • 26977E-01	.12534E-01	- • 309C7E - 02
13	2,112	.76047E ()1	•17507E-01	.20835E-01	14725E-04	•17553E-01
15	2.144	.1303UE 02	.43793E-01	•78391E-02	17240E-02	12141E-01
16	2,160	.14830E 02	.65495E-02	19705E-01	.21624E-01	·49985E-02
50	2.224	.14791E 02	31194E-01	35081E-02	13316E-01	19627E-02
28	3,192	•51069E 01	•58222E-02	77483E-02	71632E-02	- • 12741E-01
35	4,144	.6 33E 01	10735E-01	10740E-01	.89864E-02	•76888E-02
36	4,160	.91789E 01	11350E-01	•54518E-02	21538E-01	- · 10992E-01
(THATENE		- · 13625	64923E 01	51043E 01	4763:E 01

TRAINING CONFUSION MATRIX IEPA = 1 NEPI = 100

SOURCE	PERCENT	RED-8	CLASSIFIE YELLOW-6	D AS GREEN-3	BLUE-1	DEFAULT	William up graph of the 1 paperson of
RED-3	92.0	23.0	1.0	• 0	1.0	• 0	
YELLOW-6	96.0	• 0	24.0	• 0	1.0	• 0	
GREEN-3	80.0	•0	1.0	20.0	4.0	• 0	
BLUE-1	88.0	• 0	1.0	2.0	55.0	• 0	
TOTAL	89.0						

TESTING CONFUSION MATRIX IEPT = . 2 NEPI = 100

SEURCE	PERCENT	RED-8	CLASSIFIE YELLOW-6	D AS GREEN-3	BLUE + 1	DEFAULT	
RED-3	92.0	23.0	1.0	•0	1.0	•0	
YELLOW-6	72.0	• 0	18.0	5.0	5.0	• 0	
GREEN-3	80.0	1.0	• 0	20.0	4.0	• 0	
BLUE-1	80.0	1.0	1.0	3.0	50.0	• 0	
TOTAL	81.0						

COMPLETED 10 STEPS OF ANALYSIS

TABLE 2

		best available co	opy.					
	NLM1-4PUS-1	75-0, FOUR CE	BLOR VER EXP	PERIMENT	FOUR CH	ANNEL WINE	NBM	
	DATA SET II	DENTIFIERS:	EXPR = 0C4	2 SUBL	J = NLM1	DATE = AF	80°	9
_	NO FF VAR	IAPLES =	40			WGT . D . 6	3.F. = 1	00.00
_	F LEVEL TO	REMOVE = 2	2.200		POSTE	RIORI THRE		• 350
	DISCRIMI	NANT FUNCT	IONS AFTER	10 S	TEPS, WI	TH D.0.F.	= 3.0.	, 87
	EPACHS A	CCEPTED UNC	BNDITIONALL	Υ.	*			
LVDE	ARIABLE Y NAME	F	SEC-S	GRAI	UP NAME	S GREEN-3	- Bi UB	- 1
1	1,080	.43416E 01	•10550F=0		10-3056	·23186E-		
	1/144	.89905E 01	34473F-0		6S6E-02	- 12029F-		
6	1,160	.99072E 01	.23597F-0		531E-01	.20589E-	01 •1799	
10	1,224	.96238E 01	57465E-0		074F-02	•10630E-		
11	2,080	.49451E 02	27412F-0		1C-3808	.24860E-		
12	. 2,006	80484E 01	.236715-0	-	453E-02	- 18723E-		
13	2.112	.87733E C1	-14350F-0		394E-01	•593COE-		
16	2,160	-12914E 02	·99549F-0	_	116E-01	•99606E-		
18	2,193	-88219E 01	126DOE-0		383E-01	63388E-		
29	3.208	.4813QE 01	453205-0		1855-01	25 43 2E -		
	CONSTANT		- · 13127E 0		178E 02	657C6E		
		ATELING CONF	LSTAN MATE	CIX I	FPA =	1 NEPI	= 100	
	SOURCE	PERCENT	CI	ASSIFIE	D A3			
		CARFECT	RED-A VE	LLOW-6	GREEN-3	BLUE-1	DEFAULT	
	RED-8	96.0	24.0	• 0	• 0	1.0	• 0	
	YELLOW-6	92.3	• 0	23.0	5.0	• 0	• 0	-
	GREEN-3	84.0	• 0	1.0	21.0	3.0		
	BLUE-1	C • 88	1 • C	.0	2.0	55.0	•0	
	JOIAL	90.0						
	ΓE	STING CONF	USION MATE	IX I	EPT =	2 1EBI	= 100	
	SOURCE	PERCENT		LASSIFI		- veri	- 100	
		CURRECT	RED-8	FLIAW-A	ED AS GREEN-3	DI 115 - 4	DCC1	
	RED-8	88.0	22.0	•0	5.0		DEFAULT	
	YELLOW-6	80.0	•0	20.0	5.0	1.0	• 0	
	GREEN-3	92.0	ć	1.0	53.0	•0	•0	
difference on a	BLUE-1	76.0	3.0	5.0		1.0	• 0	
	TOTAL	84.0	2.0	5.0	1.0	19.0	• 0	

TABLE 3

COMPLETED 10 STEPS OF ANALYSIS

SAG1 VISUAL EVOKED RESPONSE EXP. SDA RUN DATE AP23 M. BUCK DATA SET IDENTIFIERS: EXPR = OC45 SUBJ = SAG1 DATE = MR27

NO. OF VARIABLES = 40 WGT. D.O.F. = 100.00

F LEVEL TO REMOVE = 2.200 POSTERIORI THRESHOLD = .250

DISCRIMINANT FUNCTIONS AFTER 10 STEPS, WITH D.O.F. = 3.0, 87.0 EPOCHS ACCEPTED UNCONDITIONALLY.

VARIABLE	_		GROUP NAME	S	-
INDEX NAME	The second secon	RED-8	YELLOW-6	GREEN-3	PLUE-1
7 1,170	1001005 01	28001E-02	14366E-01	11239E-01	•11127E-01
12 2.096 15 2.144	TO LOOK OF		•15151E-01	•14627E-03	•18067E-02
19 2,208	ALGOTIC OF		•35758E-01	20884E-01	- · 12518E - 01
22 3,096	1140000	- 12186E-01	•19270E-02	•12330E-01	•33797E-02
23 3,113		•68966E=02 •47143E=02	55048E-03	•18980E-02	•52340E-02
25 3,144		-•19096E-01	•35094E-02 •95040E-03	•78951E-03	19746E-01
29 3,208	•14817E 02	•73393E-02	14690E-01	•24049E-01	•97532E-02
33 4,112	4100715 05	•27685E-01	95332E-02	•25219E-01 ••34436E-02	•3C-97E-01
38 4,192	1700.05 05	•15437E-01	•19838E-01	+15139E-01	•33+32E-01
CONSTAN	T	82761E 01	52343E 01	47336E 01	- • 289/1E-01

TRAINING CONFUSION MATRIX IEPA = 1 NEPI = 100

SOURCE	PERCENT		CLASSIFIE	D AS			**
RED-8 YELLOW-6	92.0 92.0	RED+8 23.0 1.0	YELL0W-6 1.0 23.0	•0 1•0	BLUE-1 1.0	DEFAULT •0	No Alex (Marc) Supply
GREEN+3 BLUE-1	92.0 100.0	•0	•0	53.0	2.0	•0	taki - vilasilanin, tunku mangkasilanin spuncisi ma
TOTAL	94 • C						

TESTING CONFUSION MATRIX IEPT = 2 NEPI = 100

SOURCE	PERCENT		CLASSIFIE	D AS	The second of	
RED-8 YELLOW-6 GREEN-3 BLUE-1	CORRECT 80.0 84.0 84.0 88.0	RED-8 20.0 .0 .0	YELLOW-6 3.0 21.0 3.0 2.0	GREEN-3 •0 3•0 21•0	BLUE-1 2.0 1.0 1.0 22.0	• 0 • 0 • 0
TOTAL	84.0		*****		22.00	• 0

COMPLETED 10 STEPS OF ANALYSIS

47

41

4

4

TABLE 4

				JR COLOR VER			MROUIN . SA	is)
0	DATA SET	IDENTIFI	ERS:	XPR = 0C41	SUBJ = SI	S1 DAT	E = AP15	60 TH G V 1 1 100 MHz via 0 400000 via a
N	NO. OF V	ARIABLES	= 4(0		WG	T. D.0.F.	= 100.00
F	LEVEL	TO REMOVE	= 2.2	200	P	STERIOR	I THRESHOL	D = .250
	DISC	RIMINANT	FUNCTI	ONS AFTER	10 STEPS	WITH	D.8.F. =	3.0 87
ni dip	EPOC	HS ACCEPT	ED UNCE	NDITIONALLY	•	,		
	ARIABLE		F		GRBUP	NAMES		
INDE	X NAME		EL	RED-8	YELLOW		GREEN-3	BLUE-1
1	1,080		7E 01	44250E-01	•34164E	The second second second	10619E-01	96752E-0
8_	1,192			.53972E+01	•16460E		25348E-01	·39052E-0
9	1,208			20241E-01	*•87971E	The second second	53085E+02	•10311E-0
11	2,080	.1101	5E 03	24794E 00	- · 48541E		86770E-01	80291E-D
12	2,096	•1794	SE 02	.55192E-01	•37621E	-01	1 156E-01	.66-11E-0
13	2,112	.1727	5E 02	37892E - 02	- · 22365E	-01	31880E-01	•36351E-D
14	2,128			.86881E-01	• 492785		78447E-01	·22558E-0
- 21	3,080	.2496		•97531E-01	•15499E		30664E-01	·28126E-D
23	3,112			- · 14136E-01	••51733E		31911E-01	+ · 24305E • 0
24	3,128			26383E-01	17669E		44846E-01	61-55E-0
	CONSTAN			32239E 02	*•59442E		96742E 01	72193E 0
					· 33 14LL	0. #0	307422 01	-1/2.936 0
	TRAI	VING CONF	USION	MATRIX I	EPA = 1	NEP	1 = 100	•
SSU	JRCE	PERCENT		CLASSIFIE	D AS			
	- 4	CORRECT	RED-8	YELLOW-6	GREEN-3	BLUE-1	DEFAULT	
REC		100.0	25.0	• 0	• 0	• 0	• 0	
	-BW-6	88.0	•0	22.0	2.0	1.0	•0	
GRE	EEN-3	96.0	•0	• 0	24.0	1.0	• 0	
BLI	JE-1	96.0	.0	1.0	• 0	24.0	• 0	
Tel	TAL	95.0						
	TEST	ING CONFI	JSION	MATRIXI	PT = 2	NEPI	= 100	
Se	URCE	PERCENT		CLASSIFIE			- Jack - Land	
		CORRECT	RED-8		GREEN-3	BLUE - 1	DEFAULT	-
	D-3	92.0	23.0		•0	2.0	• 0	_ (4
	Lew-6	80.0	1.0	20.0	5.0	5.0	• 0	
GR	EEN-3	88.0	1.0	2.0	55.0	• 0	• 0	
	UE-1	88.0	•0		2.0	22.0	• 0	
1.9	TAL	87.0						

- 2) Near optimal trade-off on the number of steps that the SDA program should be allowed to run for the most efficient performance;
- 3) A near optimal trade-off on the value of too high a threshold causes most of the epochs to be defaulted, while a low value forces some misclassifications where only default would be recorded;

1

3

47

4.

41

1

4

3

- 4) The level of performance when the training set is taken from the first half of the data set, and the testing set from the second half;
- 5) The statistical significance of the obtained classification performance.

In order to select a better subset of variables to be used by SDA, four passes of the program are performed, taking every other variable from the 80 samples which are available from each EEG channel. Ten steps are allowed, thus the ten best samples of the 40 entered from each channel are obtained. These 40 selected variables from all four EEG channels are then entered into a final SDA run, and the results are obtained for each step, from 0 to 20.

Initially, step 0, the average value of each variable chosen is obtained (Table 6). Next (Table 7) is obtained the F level of the variables available to this execution. At step 0, these F levels are related to the probability p(that the relative variances measured could be obtained by chance) with degrees of freedom as shown. A p < .01 is obtained with a F of approximately 4. A p < .001 corresponds to F=6. Twenty-six variables exceed F=6, and variable 22 (channel 3, 80 msec) has an F of 125. The value of F-to-enter is, nevertheless, set at 2.2 in order to give more variables a chance to be selected. No defaults are allowed. On step One, the program selects the variable with the highest F value (22), and calculates a set of discriminant functions. These are listed in Table 8. A chi square value of 40.48 is obtained for twenty-one reds from the test set correctly classified, where 5.75 would have occurred by chance. This is significant beyond the p=.001 level, as is the eighteen yellows out of

SB01 MR13-75-0 4 COLOR VEP EXPR. SDA RUN AP 24 M BUCK AVERAGE VALUE OF VARIABLES

		TABLE	GRAN			W	ITHIN GRE	UP	AVERAGES					
	INDEX	NAME	AVERA	GE	RED-8		YELLOW	-6	GREEN	-2	BLUE-			
	1	1,032	•52708E				.41520E							
	5	1,056	12208E				.96800E					02		
	3	1,072			- 282526	03	.30630E			02	18680E	CS		
	4	1.104	17865E	22	•19810E					02	70580E	05		
	5	1,120	11771E	21	•12762E			01	3884UE	02	18000E	01	gen.	
	6	1,128	67958E					02	- • 86800E	01	12748E	C3		
	7	1,136	•13040E			03								_
	8	1,160	•19045E											
	9	1,208	•11908E							03				
	10	1,272					•11780E				_			
	11	2,072	•21729E	02		01		. 02						
	12	2,0%	•10155E	03	•27729E	03	•19880E			05	.75960E	02		-
	13		11<05E	03	•27452E					05	.39540E	CS		
	_	2,083	•45948E	02	•11529E	03	.86000E	01	.64320E		.66900F	01		
	14	2,104	- • 26833E	25	51571E	05	76400E	01	•17400E	05	69480E	03		
	15	2,120	- 111458E	02	11/5/F	03	4320GE	02	-310805	02	400000	0.0		
	16	2,152	74/08E	25	- • 1559CE	03	24120E	02	81120E	02	- 504005	02		
	17	2,168	- 10784E	U3	-•151/6E	03	- 10948F	0.3	- 91840F	02	930005	03		
	18	5,508	- TICOLE	U3	- • 71 U75E	02	- 12740F	03	- 10652F	03	- 122205	2		
	19	2,224	* 0 1 C D J 4 L	03	- • 10/52E	03	- 11732F	03	1235AF	03	- 154345	A 2		
	50	C82 .2	-0/21125	25	- 0250ADE	02	- 43840E	02	- • 92920E	02	10792E	03		
		3,048	• 4 7 3 3 4 E	UC	• 3282/F	65	.3/040E	05	•31440E	02	.40320E	02		
- 10		3.030	-21355E	03	•58852E	03	.45680E	02	.16472E			03	4	
		3,088	•16671E	03	•30490E		.38720E	02	·53535E	03	.11300E	03		
-		3,096	•93156E	05	.64000E	05	.88120E	02	-21564F			00		
		3,120	31500E	25	18600E	03	82280F	02	-20880F					m dawn
_		3,128	- 45969E	02	-•21748E	03	- 10948F	03	-44740E	02	709905	02		
		3,144	••96229E	02	- • 22743E	03	51360F	02	- 11076F	03	- 162605	02		
-		3,160	T + 85000E	Je	* • 18352F	03	-14720F	02	868405	03	1140/-	-2		
		3,200	AIOCCOL	03	- 0 30 COOF	UC	- 11092F	03	■ • 63500E	02	18628E	03		_
		3,312	1103535	U 3	+11/33E	03	• 82360E	02	-14564F	03	. 600205	02		
		4,055	21219E	02	•68095E	01	57360E	02	34360E	02	452005	01		
		4.054	55305F	02	•14524E	03	84200F	02	87880F	02	- 355405	02		
		4,072	.86656E	02	•30590E	03	28600E	02	•17560E	02	.86840E	05		m redupos
	THE RESIDENCE OF A STATE OF THE PARTY OF THE	4.080	•90635E	05	•33838E	03	17840E	02	•17560E •62960E	05	.18680E			
		4,095	82667E	02	-•10343E	03	- 13800F	03	- 30400F	02	- 122045	73		
-		4,120	- + 4 4 3 U C E	02	₹ • 1 / 575E	03	- 10024F	03	- 222405	03	100165	03		
		4,123	* • 56094E	DZ.	- • 19424F	03	- 91920F	02	-101405	03	205305	A 7		_
		4,136	- • 30 3 3 UE	U.C.	- 629300E	03	- 68600F	02	35960F	02	294405	02		
		47 1 4 4	- + 12510E	03	- · 2//24E	03	76480F	02	17828F	03	- 967205	02	a design design of the signs	
	40	4,272	-•85979E	02	10305E	03	14080E	02	11664F	03	-112885	03		
										00	- ATTEODE	03	-	

•

RECURSION = 3

DATA SET IDENTIFIE

Ne. OF DATA = 96

F LEVEL TO ENTER = 2.200.

	*** **********************************	LEV	EL OF VA	RIABLES, D.B.F.	= 3.0,	92.0	- 1
	Annual Control of the	VAR	IABLE	F	- mages at	The state of the same of the s	
	1	NDEX		LEVEL			
	Control of the Contro	1	1,032	208727			
		5	1,056	2.437647			
	The second secon	3	1,072	60.091398			
		4	1,104	5.311652			
	Profit Philippin or 1979 or three attentions define an executive size with a 1 appropriate constraint or the assessment rap was at a	5	1.120	35 • 878864	19 division (in)	Through The Comment and the Comment of the Comment	
1		6	1,128	34.910474			
	Made Masse or Clabs or every extractional state of traver and it would be used in common with and and	7	1,136	32.919548	to date to the description of the order	refer on the same on a same	
		8	1,160	15.202145			
3	Marchaguer I de de faulles - en l	9	1,208	4 • 652525	glar aggrandis — andjanos	difference and restrained	
		10	1,272	3.890392			
		11	2,072	32.601210			
,		12	2,080	36.271406			
		13	2,088	9.052933		personal designation of the second	
4.		14	2,104	5.458114			
40		15	2,120	30.072571		+	
		16	2,152	11.926722			
		17	2,168	3.014460	The state of the s		
)		18	2,208	•846164			
		19	2,224	2.300167		-	112.5
4-		20	2,280	2.808844			
423,		21	3,048	1.043989			nda .
		55	3,080	125.667376			
		23	3,088	33.140087	harrotten oproper)		e de erede de luce e
3		24	3,096	21.931118			
		25	3,120	57.440999			
4.		26	3,128	58.281712			
49		27	3,144	29.102169	- 	decomplete. I a	-
		28	3,160	20.508486			
		29	3,200	16.593696		TOMB	
	Territoria III III II III II III	30	3,312	3.667676			
		31	4,056	1.633334			
2		35	4,064	18.652152			
V		33	4,072	35.314853			
		34	4.080	41.152863			
		35	4,096	11.395302	***	**	
		36	4,120	33.814405			
		37	4,128	24 • 171998			
		38	4,136	28.734916			
		39	4 . 1 4 4	13.110085			
			4 070	4 0744-4			

6.076171

39 40

4,272

3.0. 92.0 STEPS, WITH D.B.F. = EPOCHS ACCEPTED UNCONDITIONALLY. DISCRIMINANT FUNCTIONS AFTER 5801- MR-13-75-0

	3L UE - 1	•10980E-01	20192E 01
	GREEN-3	.15689E-01	26784E 01
BUP NAM	0	.43508E-02	14857
4	X-0-8	.55054E-01	17881E 02
	LEVEL	•12567E 03	1
VARIABLE	DEX NAME	22 3,080	CONSTANT

MATRIX TEPA = 4 NEP	
	N MATRIX
MATRIX	Z
	CONFUSION

	_					
0 0	DEFAUL	O	0	0	0	
:	BLUE-1	•		m	3.0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	GREEN-3	1.0	2.0	15.0	13.0	o company of the company of the company of
CLASSIEIE	ELL9W-6	•	17.0	6.0	0.6	
	å	20.0	0.	1.0	•	
PERCENT.	.	95.2	0.89	0.09	12.0	57.3
SBURCE		RED-8	YELL9W-6	GREEN-3	BLUE-1	TOTAL

TESTING CONFUSION MATRIX IEPT = 5 NEPI = 96

	AULT	0	0	0	0	45 - 45 - 45 - 45 - 45 - 45 - 45 - 45 -
	DEFA					!
	BLUE-1		5.0	9.0	0.9	
D AS	GREEN-3	0°0	1.0	10.0	13.0	
LASSIFIE	YELLOW-6	0	18.0	2.0	0.9	
,		21.0	0	•	•	
PERCENT	CORRECT	91.3	75.0	41.7	24.0	57.3
SBURCE		RED-8	~	Z W	BLUE-1	TOTAL

twenty-four. Green classification fails to achieve significant accuracy, as does blue, with only one variable selected.

0

0

0

O

It can be seen how the DF operates: The average value of variable 22 is larger for red than for any other color, and smallest for yellow. The coefficient for the red DF is also larger than the coefficient for any other group, and the yellow coefficient is the smallest. As shown in Section 4, the coefficients in the decision rule covary with the average values. (They would coincide if the variables were independent and of variance One). The coefficients are used to calculate the a posteriori probabilities of belonging to each group for each epoch tested. The decision goes to the group that gets the maximum probability, providing it exceeds the given default threshold.

On step 2, variable 26 (channel 3, 128 msec) enters with an F of 41.8, and the F level for variable 22 drops from 125.7 to 96.5. Overall performance rises from 57.3% to 75% on the testing set (Table 9). Now both red and yellow epochs are being correctly classified virtually every time.

Steps 3, 4, 5 and 6 add more variables from channel 3. (See Tables 10,11 12 and 13). Performance improves to 94% correct. When, on step 7 (Table 14) a variable from channel 1, 120 msec is added, the F levels of the prior variables are seen to drop; the largest drop occurs in variable 26, channel 3 at 128 msec, demonstrating a correlation between these variables, larger at the closest latency. The classification performance at step 7 does not change from step 6.

Step 8 (Table 15) adds another variable from channel 3, 312 msec, and the performance improves to 95.8%. At the ninth step (Table 16), a variable from channel 2 is added, and performance rises to 97.9% correctly classified from the testing set and 99% from the training set, a remarkable set of figures indeed. This performance is not improved by adding the tenth variable (Table 17), and the eleventh (Table 18). Instead, improving the training set classification accuracy to 100% results in a

5801 - MR-13-76-0

		:	1						
DISCRIMINANT	SNOT LONDE	AFTER	N	STEPS	I H I 3	D.6.F.	10	3.00	91.0
			å						
FURILL AUTROR	FICHOLINI CH	TANAL							

3LUE-1	0024E-0		22501E 01	a T						
GREEN-3	0	5609E-02	7234E 01	96	DEFAULT	0.	•	0	0	
NAMES -6		-01 •3	01 2	NEPI	BLUE-1	0.	2.0	8	15.0	
GROUP	•62694E	16201E	24163E	EPA = 4	D AS GREEN-3	•	٥. د	13.0	0.9	
RED-8	-36 t	40494E-01	23695E 02	MATRIX	CLASSIFIE YELL9W-6	1.0	21.0	3.0	0.4	
لدينا	3E 0	1E 02		CONFUSION	RED-8	20.0	•	1.0	0	
LEV	.964	.4182			PERCENT CORRECT	5	. 4	3	0	71.9
VARIABLE INDEX NAME	3,08	3,12	CONSTANT	TRAIVING	SOURCE	RED-8	3	GREEN-3	BLUE-1	TOTAL

TESTING CONFUSION MATRIX IEPT = 5 NEPI = 9

DEFAULT	•	0	0	•	
BLUE-1	•	0	5.0	14.0	
GREEN-3	0.	0	11.0	10.0	
CLASSIFIED YELLOW-6	0.	24.0	8.0	1.0	
RED-8	23.0	•	•	0	
PERCENT	100.0	100.0	45.8	26.0	75.0
SOURCE	RED-8	YELLOW-6	GREEN-3	BLUE-1	TOTAL

5801. ME 13 - 75-0

DISCRIMINA	DT FN	NCTIONS	AFTER	m	STEPS	WITH	D.8.F.	ш	3.01	0.06
				1		*				

0

O.

-23-

	1				1	
	DEFAULT	0	0.	•	0.	
	BLUE-1	•	3.0	1.0	21.0	10 m
AS (EEN-3	0	0°0	20.0	3.0	•
CLASSIFIE	YELLOW-6 GR	0	20.0	3.0	1.0	•
1	RED-8	21.0	o	1.0	0	1
PERCENT	CORRECT	100.0		80.0	0.48	85.4
SOURCE		RED-8	YELLOW-6	GREEN-3	BLUE-1	TOTAL

96	DEFAULT • 0 • 0
NEPI . 96	BLUE-1 •0 1•0 2•0 21•0
IEPT = 5	GREEN•3 14•0 14•0
	YELLOW-6 YELLOW-6 22.0 8.0
SION MA	25 20 20 20 20 20
TESTING CONFUSION MATRIX	DERCENT 100.0 91.7 58.3 84.0
TEST	SBURCE RED-8 YELLBW-6 GREEN-3 BLUE-1 T3TAL

SB01 MR13 75

DISCRIMINANT	FUNCTIONS	AFTER	4	STEPS	WITH	D.0.F.	ш	3.0.	89.0
EPBCHS ACCEPT	ED UNCONDIT	IBNALLY.							

<u> </u>	778E-0	1992E-C	1960E-0	6585E-0	7162													
	02	48E-0	328-0	08E-0	95E 0	96 *		DEFAULT	Ç	•	O		96	DEFAULT	0	0	0	0
AMES 6	03 • 12	01 .19	01 .21	0217	153	NE D		BLUE-1	0	1.0	21.0		NEP 1	BLUE-1	•	1.0	4.0	19.0
	110E	961	561	371	950	EPA = 4	∢	GREEN-3	•	22.0	6		o⊤ = 5	GREEN.	0	1.0	18.0	2.0
٥	• 68213E-01	1093E-0	6383E-0	313+E-0	SE 0	MATRIX 1E	ASSIF	ELLOW-6	24.0	1.0	1.0		MATRIX IEPI	CLASSIFIED YELLOW-6	0	22.0	0°0	1.0
	05 05 1	L L	E 02	C)		USIBN		RED - 8	•	1.0	•		NEUSION	. 0	23.0	•	•	0
Let	426	400	539	070		AINING CONFUS	RCE	BRREC	96	œ	4	ä	CB	W U W	100	1.	5	76.0
VARIAB DEX NA	22 3,083	10 es	6 3,12	3,16	≪ ⊢	TRAIN	SBURCE	FD.	YELLAW-6	REEV	\supseteq	TBTAL	TESTING	SOURCE	ED.	فيدر	REEN	8.UE-1 T8TA:

TABLE 11

| 100 m | 10

SB01 MR13 75

	SUPE TOUR	ALLEX	Ω	STEPS, WITH	0	B.F. E	3.00	88.0
--	-----------	-------	---	-------------	---	--------	------	------

4. ()

0

0

C

0

	•17771E-01	1980E	68831E-0	26565E-01 47162E 01	
S	·87464	5260E-0	183E-0	4196	
BUP	052E-0	3931E-0 4214E-0	879E-	74	
RED - 8	•67318E-0	23122E-01	653E-0	•27261E	
	020	u 0	מכ	,	
[LJ	•88818E	2623E	173E		
VARIA	3	ישו	3,1	STA	

96 =	DEFAULT •0 •0
NEPI = 96	BLUE-1 0 100 100
X IEPA = 4	GREEN-3 60-00-00-00-00-00-00-00-00-00-00-00-00-0
MATRIX	CLASSIFIED YELLBW-6 0 24.0 2.0 1.0
TRAINING CONFUSION MATRIX	NT RED -8
DNINI	400 400 400 400 400 400 400 400 400 400
TR	SBURCE RED-8 YELLBW-6 GREEN-3 BLUE-1

-25-

		ì	
96	DEFAULT •0	00	0.
NEPI = 96	BLUE-1	000	22.0
PT = 5	8	22.0	5.0
MATRIX IEPT =	CLASSIFIED YELLAW-6 (22.0	1.0
USIBN MA	RED-8	00	•
LESTING CONFUSION	PERCENT CORRECT 100.0	91.7	88 6
ES	SBURCE RED-8	GREEN	TOTAL

SBOI MRI3 75

)

3.01 87.0 STEPS, WITH D.B.F. DISCRIMINANT FUNCTIONS AFTER 6 EPOCHS ACCEPTED UNCONDITIONALLY.

LUE	5445E-0	5133E-0	654	7447E-0	1241E-0	1477E-0	0608E 0														
REEN	159E-0	7936-0	6225-	1546-0	892E+0	311E-0	457E 0	96 =	DEFAULT	0	•	•	•	:	96	DEFAULT	•	0	0	•	
ES	02	01 .1	•	01 .2	2 - 3	1 1	17	NEPI	BLUE-1	0	•	0.	23.0		NEPI	BLUE-1	•	•	1.0	23.0	
3	2225E	4242E	7247E	7307E	8306E	4107E	1815	PA = 4	GREE	•	0.	22.0	2.0		ot * 5	GREE	•	•	21.0	2.0	
ED-	5567E-0	7698E-0	454E	2086E-0	3491E-0	1862E-0	•27309E 0	MATRIX IE	CLASSIFIED YELLOW=6	0	•	30.0	•		MATRIX IEP	CLASSIFIED YELLOW-6	•	•	2.0	•	
ال	6E 02	0	O U	о П	0	E C		BNFUSIBN	0	21.0	•	•	•		FUSION M	0	23.	•	•	0	
LEV	.3932	*8794	.3247	.4102	.1144	.1830		INING CON	PERCENT	000	00	8	è	4	ING CON	PERCENT	100.0	000	7	3	4
VARIABLE INDEX NAME	3,08	3 3,08	4 3,09	5 3,12	7 3014	3,16	CONSTA	TRAI	SOURCE	ED-	-MG77	GREEN-3	LUE	BTA	TEST	SBURCE	ED-	LLBW-	GREEN+3	LUE	BTA

TABLE 13

SB01 MR13 75

3.01 86.0 STEPS, WITH DISCRIMINANT FUNCTIONS AFTER

0

Û

(-

EPOCHS ACCEPTED UNCONDITIONALLY.

	\supset	153E-0	0074E-0	6208E-	0	4087E-	1320E-0	8857E-0	733E
S	GREE	6815E-	416E-	4286E-	•17563E-01	1740E	3424E	1548E-	OSSZE
UP NAME	YELLOW-6	07095-0	3392E-	14324E-0	397E-0	7053E-	7555E-0	•13909E-0	41850E 0
	W	3513	121E-0	9832E-0	344	6503E-0	7008E-0	6215E-0	0 3000
L	LEVEL	8703E	8661E 0	8267E 0	.32076E 02	9752E 0	4587E 0	61E 0	
RIABL	NAN	-	\$08	03	109	12	114	,16	BNSTANT
^	INDEX	ഗ			24				U

TRAINING CONFUSION MATRIX IEPA # 4 NEPI = 96

	DEFAULT	•	0.	•	0	
CLASSIFIED AS	BLUE-1	•	0.	1.0	23.0	
	GRE		•	22.0	2.0	
	YELL9W-6	0.	25.0	2.0	0.	
	RED-8	21.0	•	0	•	
PERCENT	CORRECT			88.0		8.46
SBURCE		RED-3	YELLew-6	GREEN-3	BLUE-1	TOTAL

TESTING CONFUSION MATRIX IEPT = 5 NEPI = 9

						•
	DEFAULT	0.	0	0	0	
D AS	BLUE-1	0	0	1.0	23.0	
	GREEN-3	0.	0.	21.0	2.0	
	YELLOW-6	0	24.0	2.0	0	
	RED-8	23.0	0	•	•	
PERCENT	CORRECT	100.0	100.0	87.5	0.50	8.46
SOURCE)	RED-8	3	GREEN-3	BLUE-1	TOTAL

TABLE 14

SBOI MR13 75

DISCRIMINAN	L LZ	T FUNCTIONS AFTER 8 STEPS, WITH D.O.F. = 3.0, 85	AFTER	∞ o	STEPS, W	HLIM	D.8.F.	ч	3.00	85.0
				1				1		
EPBCHS ACCE	EPTED	ED UNCONDITION	IBNALLY.							

	\supset	13379E-01	70994E-	6007E-	8168E-	23801E-	3322E-	8698E-	24443E+	66915E 01
S	EN	7187E-0	2910E-0	1550E-0	4059E-0	7856E-0	5630E-0	3850E-0	196E-0	14
UP NAME	ELLOW-6	.82763E-02	1961E-0	16200E-0	1853E-0	29717E-0	5127E-0	5392E-	767	7619E
	RED-	•37265E-01	9756E-0	9778E-0	6688E-0	1588E-0	1679E-0	3384E-0	34536-	0 344
	drug dr 149 a a a	02				02				
L	Lal	0	,36839	8849	31781	9782	929	6129	915	
ARIABLE		112	.08	08	60	3,128	114	3,160	3,312	CONSTANT
>	OE)	Ω.	S	m	4	9	7	œ	0	J

	8			1		
96 =	DEFAULT	0	•	0	•	
NEPI	BLUE-1	0	•	1.0	25.0	
4	1		0	0	0	
IEPA =	ED AS	•	•	23.0	•	
MATRIX	CLASSIFIED AS YELLOW+6 GREEN-3	•	25.0	0.1	•	
TRAINING CONFUSION MATRIX	RED 8	21.0	0	•	0	
CON	PERCENT	100.0	0.00	92.0	0.00	97.9
NIZIA	a. U	1			→	0.
7	SBURCE	RED-8	YELLOW-6	GREEN-3	BLUE-1	TOTAL

TEST	TESTING CONFUSION MATRIX	Nelsn		IEPT = 5	# I d 3 N	96
SOURCE	PERCENT	RED-8	CLASSIFIED YELLOW-6	GREEN-3	BLUE-1	DEFAULT
RED-8	100.0	23.0	0.	0	•	0
YELLBW-6	100.0	•	24.0	•	•	•
GREEN-3	91.7	•	2.0	22.0	•	. 0.
BLUE-1	92.0	•	•	2.0	23.0	•
TOTAL	95.8				Bertrude -do-	

SB01 MR13 75

0.40
3.0
u
D.8.F.
E I I
STEPS
6
AFTER
FUNCTIONS
DISCRIMINANT

0

()

EPSCHS ACCEPTED UNCONDITIONALLY.

BLUE-1	2295E-0	1474E-0	7529E-0	3758E-0	0481E-0	8284E-0	4587E-0	3355E-0	96818E-03	5372E 0			•							enter de la companya						1
GREEN-	1501E-0	0389E-0	4910E-0	2638E-0	5178E-0	0524E-C	.49609E-0	1970E-0	.34847E-01	1633E 0	96 = Id		1 DEFA	•	•	•	•		96 = Id		-1 DEFAUL	0.	•	•	•	
LEW-6	7229E-0	4084E-0	0506E-0	8722E-0	9258E-0	5905E-0	9022E-0	1384E-0	8940E+	8256E 0	PA = 4 NE		-3 BLUE	•	0.	•	ខ្លួ		T # 5 NEP	AS	-3 BLUE	0.	•	•0	1.0 24.	
ED-	6168E-0	443E-0	9960E-0	7469E-0	3840E-0	2267E-0	0666E-01	2726E-0	30335-0	·34757E	MATRIX	LASSIF	9-	0	25.0	0	0		MATRIX IEP	LASSIFIED	9.	•	24.0	•	0.	
لناعا	6E 0	46	0 34	6E 0	7E 0	1E O	10 0	6E 3		:	FUSION		0	21.0	•	1.0	0.		FUSION		0	23.0	0.	0	•	
L.	10	679	62	921	321	329	9	165	1038)	NO ON IZ	12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	RA FI	100.	0	96	100.0	6	INGO GNI	FROF	RRE	100.0	00	r.	9	1
VARIABLE INDEX NAME	5 1,12	7 2016	3,08	3 3,08	4 3,09	3,12	7 3,14	3,16	31	Censta	TRAIN	SPURCE		ED.	LLOW	GREEN	BLUE-1	BTA	TEST	SAURCE		ED-		RFFN	LUE-1	BTA

SB01 MR13 75

83.0 3.00 D.8.F. STEPS, WITH DISCRIMINANT FUNCTIONS AFTER 10 EPBCHS ACCEPTED UNCONDITIONALLY.

1	32831F	1997E-0	87856E-	3810E-0	30282E-0	6414E-0	2959E-0	0486E-0	75536E 01
	965	58E-0	04E-0	41E-0	74 809E	96-0	0-39C	34996E-0	1.1.1
X X	3304E-C	25650E-0	•71485E-0	18565E=0	.36305E-0	53544E	2573E-0	399F-0	69731E 0
. 0	5679E-0	6230E-0	69380E=0	4638F=0	-19896E-0	23907E-01	1/59E-0	3637E-0	3921E 0
EVE	5454E 0	3413E 0	משלא משקר משקר	2040F 0	2252E 0	•16365E 02	346	4437E 0	
VARIABL EX NAM	5 1,12	7 200	3,08	4 3.09	9,	114	3,3	4 4,03	CONSTANT

	. 96 =	DEFAULT •0 •0
	NEPI =	BLUE-1 •0 •0 25•0
9	4	m
	IEPA =	1ED AS 6 GREEN-3 0 24.0
	MATRIX	CLASSIFIED YELLOW-6 0 25.0
	FUSION	RED 8 21.0 00
	TATINING CONFUSION MATRIX	PERCENT CGRRECT 100.0 100.0 100.0
	¥ 2	SBURCE RED-8 YELLBW-6 GREEN-3 BLUE-1

* 5 NEPI * 96	GREEN-3 BLUE-1 DEFAULT 0 0 0 0 23.0 1.0 0
MATRIX IEPT =	CLASSIFIE YELLOW-6 .0 24.0
TESTING CONFUSION MATRIX	PERCENT CORRECT RED-8 100.0 100.0 95.8 96.0
TEST	SGURCE RED-8 YELLOW-6 GREEN-3 BLUE-1 TOTAL

SB01 MR13 75

3.01 82.0 D.8.F. = STEPS, WITH DISCRIMINANT FUNCTIONS AFTER 11 EPOCHS ACCEPTED UNCONDITIONALLY.

0

ū

	3L UE	3437E-	3772E-	2749E-0	3392E-0	94437E-02	1927E-0	3116E-0	4320E-0	·43896E-0	3103E-U	•51788E-0	1142E 0
S	GREEN	8621E-0	98375-0	1700E-0	2654E-0	.39214E-01	5457E-0	6151E-0	9730E-0	0343E+0	3433E-0	3323E-0	3404E
90	ELLOW-6	7243E-0	3132E-0	0962E-0	1477E-0	.49907E-01	9785E-0	13988E-0	7513E-0	2238E-0	6523E-0	2699E-0	0296E 0
	RED-	7269E-0	8284E-0	8256E-0	0050E-0	-•60569E-02	1818E-0	1362E-0	4163E-0	2450E-0	5101E-0	9648E-0	0210E 0
L	EVE	5921E	30000	5741E 0	0683E 0	.23023E 02	1750E_0	4195E 0	9261E 0	4833E C	7576E	34L6	- A
	NAN	112	116	80	00	3,096	112	114	116	120	31	w	
>	INDE	ഗ				5						34	

96 =	DEFAULT	0	0	•	0	
NEPI	BLUE-1	0	0.	•	25.0	
IEPA = 4	D AS GREEN-3	0	0.	25.0	•	
MATRIX	CLASSIFIED YELLOW=6 G	0	25.0	•	•	
	RED	21.0	•	•	•	
TRAINING CONFUSION	PERCENT	100.0	100.0	100.0	100.0	100.0
TRA	SBURCE	RED-8	rellew-6	GREEN-3	BLUE-1	TOTAL

96	L		0	0	0	
NEPL = 96	<u>.</u>	0.0	0.	1.0	24.0	-
IEPT = 5		0.00	-	22.0	1.0	
MATRIX	CLASSIFIED	0.00	23.0	1.0	0.	
	L	23.0	•	•	0.	
TESTING CONFUSION	PERCENT	100.0	95.8	91.7	0.96	95.8
TEST	SBURCE	RED-8	YELLBW-6	1	BLUE-1	TSTAL

slight drop of the testing set classification performance (to 95.8%), a sure sign that the last improvement was idiosyncratic. Further steps add no more to the performance, step 20 giving the same results as step 11 (Table 19). The chi square values for the tenth step testing confusion matrix give a p < .001 that such results could be obtained by chance.

It was concluded tentatively at least, that no more than ten steps should be needed for highly accurate single evoked response classification under the present experimental conditions, a value that is consistent with evidence from other quarters (e.g. previous function analysis studies).

If the cost of an error is higher than that of non-classification, then those epochs which do not have a very high probability of belonging to one of the source groups can be defaulted, through use of the a posteriori decision threshold parameter. For instance, when this parameter is set to .999, no classification errors are made (Table 20) for subject SB01, but the price for 100% classification accuracy is a 23% default rate. If the training set is taken as the first 96 epochs, and the testing set the next 96 epochs, the performance drops only slightly, to 95.8% correct (Table 21). Here again, 100% classification accuracy is achieved by setting the decision threshold to .998 and 34% of the epochs are then defaulted (Table 22). Subsequent tests, using the mutual information measure defined in Section 4, indicated that an optimal trade-off value of the threshold parameter was to be found between .4 and .6.

75.0 3.00 DISCRIMINANT FUNCTIONS AFTER 20 STEPS, WITH D.O.F. EPOCHS ACCEPTED UNCONDITIONALLY.

0

0

0

0

0

0

0

													:									1											3 19		
BLUE-1			9	ö	47900E-02	0		0			•					•	2973E-	3082E-	6538E							1			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	:			TABLE		
GREEN-3	257E-0	ó		ó				.59321E-01	100		.45026E-	.14987E-0		0	.79515E-02	0	5222E-0	158E-0	•22859E	PI • 96		A VETA	• ·	•	•	•		96 • 1	1 DEFAULT		•	•	•		
GROUP NAMES	.52875E-0	0	0	0	.34000E-01	0	•11391E-0	.48997E-01	-24289E-	-31073E-0	.77780E-0	•30961E-01	•29223E-0	0	.62084E-	0	0	0	2592E	3v +	AS BILL	ACEINOS DEVE		•	•	25.		R P P	AS BLUE	•	:	22.0 1.0	1.0 24.		
RED-8	- 38494E-01 -	02	0	0	0	0	0	o	.76366E-02	•26531E-01	• 40969E-01	01		01	.01	•17324E-01	.10231E-01	•20195E-02		MATRIX IEPA	CLASSIFIED	0	2 6	0.62	•	•		MATRIX IEPT	CLASSIF1ED YELLOW-6	0		-			
VEL VEL	4E 01			1.1								10								CONFUSION		200	•	•	•	•		CONFUSION M		23.0		•	•		
<u> </u>	•	•	-	7.														.95264€			PERCENT	100		200	3	ġ	3		PERCENT	100.0	95.8	91.7	0.96	95.8	
VARIABLE	3 1,072	_	-	-	7 8	1 3	(c)	(*)	9	9	7	(r)	en 0	e 0	*	S T	*	39 41144	CONSTANT	TRAINING	SOURCE	850-8	4-1-4-1-1-4		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOTOE		TESTING	SBURCE	RED-8		GREEN+3	BLUE-1	TBTAL	

COMPLETED 20 STEPS OF ANALYSIS

SBUL MR13 75 FOUR COLOR VEP EXPR. A POSTERIORI DECISION THRESHOLD .999

DISCRIMINANT FUNCTIONS AFTER 10 STEPS, WITH D.O.F. = 3.0, 83.0
EPOCHS ACCEPTED UNCONDITIONALLY.

	VARIABLE	F	2211	GROUP NAMES	COFEN 2	BLUE+1	
IND	EX NAME	LEVEL	RED+8	YELLOW-6	GREEN-3	TARGET NEW TOTAL TO AND ADDRESS OF THE PARTY NAMED IN	-
-	1,120	.15454E 02	.45679E-01	33304E-02	·22496E-01	22831E-01	
17		.73413E 01	.66230E-02	25650E-01	•11358E-01	21997E-01	
22		.24293E 02	.69380E-01	.71485E-02	.44304E-02	•87856E-02	
23		.90532E 01	18008E-02	18565E-01	.12541E-01	.23810E-01	
		-32040E 02	14638E-03	•29855E-01	.24809E-01	30282E-01	
5,		•32252£ 02	19896E-01	36305E-01	.20773E-01	•18151E-01	
			23907E-01	53544E-02	49949E-01	.86.414E-02	
5		•16365E 02 •17234E 02	39759E-01	·22573E-01	12706E-01	22959E-01	
53			•44459E-01	•18699E-01	.34996E-01	10486E-02	
3		.99191E 01		48399E-02	.29973E-02	16142E-02	
3	4 4,080	•64437E 01	•28637E-01	and the second s		- 475536E 01	
	CONSTANT		••39921E 02	-•69731E 01	11689E 02	-4/5539F OI	

TRAINING CONFUSION MATRIX 1EPA = 4 NEPI = 96

SOURCE	PERCENT	RED-8	CLASSIFIE YELLOW-6	D AS GREEN-3	BLUE-1	DEFAULY
RED-8 YELLEW-6	100.0	21.0	•0 19•0	•0	•0	6.0
GREEN-3	100.0	•0	•0	15.0	•0	10.0
BLUE-1	100.0	• 0	•0	•0	19.0	6.0

TESTING CONFUSION MATRIX IEPT = 5 NEPI = 96

SOURCE	PERCENT CORRECT	RED-8	CLASSIFIE YELLOW-6	D AS GREEN-3	BLUE-1	DEFAULT	
RED-8	100.0	23.0	• 0	• 0	• 0	• Q	
YELLOW-6	100.0	• 0	20.0	• 0	• 0	4.0	
GREEN-3	100.0	• 0	•0	13.0	• 0	11.0	
BLUE-1	100.0	•0	•0	•0	18.0	7.0	
TOTAL	100.0			*			

COMPLETED 10 STEPS OF ANALYSIS

SB01 MR13 4 COLOR VEP EXP. FIRST HALF VS. SECOND HALF . AP 25, M. BUCK DATA SET IDENTIFIERS: EXPR = OC 41

NB. BF VARIABLES = 40 WGT. D.B.F. = 96.00

F LEVEL TO REMOVE = 2.200 POSTERIORI THRESHOLD = .250

DISCRIMINANT FUNCTIONS AFTER 10 STEPS, WITH D.O.F. = 3.0, 83.0

EPOCHS ACCEPTED UNCONDITIONALLY.

	ARIABLE X NAME	F LEVEL	RED-8	GROUP NAME YELLOW-6	S GREEN-3	BLUE+1
3 4	1,072	•10081E 02 •92262E 01	59918E-01 .33689E-01	16802E-02	•40974E-02 ••13910E-01	-•13594E-01 •24566E-01
5 6	1,120	•15742E 02 •94567E 01	-•20966E-01 •90918E-01	•76328E-03 •15685E-01	.45309E-02	- • 55014E-01 • 32760E-01
22	3,080	.20124E 02	•94046E-01 •16924E-01	•12470E-01 ••89115E-02	•16920E-01 •16344E-01	•23643E+01 •19173E+01
24 25	3,095	.87529E 01 .19753E 02	•55347E-02 -•33593E-01	•18783E-01 ••21081E-01	•96249E-02 -•78049E-02	-•19711E-01 •23433E-01
28	3,160	•15540E 02 •46445E 01	58320E-01 17030E-02	•14162E-02 •56732E-02	-•25766E-01 -•11727E-01	-•31667E=01 -•14957E=01
-	THATEMES		54822E 02	-•39615E 01	81830E 01	-•11918E 02

TRAINING CONFUSION MATRIX IEPA = 4 NEPI = 96

SOURCE	PERCENT CORRECT	RED-8	CLASSIFIE YELLOW-6	D AS GREEN+3	BLUE-1	DEFAULT	40 street semile (g. Mg
RED-8 YELLOW-6	100.0	18.0	•0 24•0	• 0	•0	•0	
GREEN-3 BLUE-1	91.3	•0	2.0	21.0	•0 31•0	• 0	or a delayer of the d
TOTAL	97.9		trans (Prince of the African America Con				Processing and the same and the

TESTING CONFUSION MATRIX IEPT = 97 NEPI = 96

SOURCE	PERCENT CORRECT	RED-8	CLASSIFIE YELLOW-6	D AS GREEN-3	BLUE-1	DEFAULT	
RED-8 YELLOW-6	100.0	24.0	24.0	1.0	•0	•0	and the state of t
GREEN-3	96.2	•0	•0	25.0	1.0	•0	
BLUE-1 ,	90.5	•0	• 0	2.0	19.0	• 0	
TOTAL	95.8	/					

COMPLETED 10 STEPS OF ANALYSIS

SB9: MR13 4 COLOR VEP EXP. FIRST HALF VS. SECOND HALF . AP 25, M. BUCK DATA SET IDENTIFIERS: EXPR = 0C41

NO. OF VARIABLES = 40 WGT. D.O.F. = 96.00

F LEVEL TO REMOVE = 2.200

POSTERIORI THRESHOLD # .997

DISCRIMINANT FUNCTIONS AFTER 10 STEPS, WITH D.O.F. = 3.0, 83.0 EPOCHS ACCEPTED UNCONDITIONALLY.

	VARIABLE	F		GROUP NAME	S	
IND	EX NAME	LEVEL	RED-8	YELLEW-6	GREEN-3	BLUE-1
3	1,072	•10081E 02	59918E-01	16802E-02	.40974E-C2	- • 13594E • 01
4	1.104	.92262E 01	•33689E-01	- · 21239E + 02	13910E-01	.24566E-01
5		·15242E 02	-•20966E-01	•76328E-03	.45309E-02	55014E-01
6		•94567E 01	•90918E-01	•15685E-01	•10962E-01	•32760E-01
5.5		.20124E 02	•94046E-01	•12470E-01	•16920E-01	.23643E-01
53		•56605E 01	·16924E-01	89115E-02	•16344E-01	•19173E-01
24		.87529E 01	•55347E-02	•18783E+01	.96249E-02	- • 19711E - 01
25		•19753E 02	33593E-01	21081E-01	78049E-02	.23433E-01
28		•15540E 02	-•58320E-01	•14162E-02	25766E-01	- • 31667E - 01
4 C		.46445E 01	17030E-02	•56732E • 02	11727E-01	- • 14957E - 01
	CONSTANT		54822E 02	-•39615E 01	81830E 01	- 11918E 02

TRAINING CONFUSION MATRIX IEPA = 4 NEPI = 96

SSURCE	PERCENT		CLASSIFIF	D AS		
	CORRECT	RED-8	YELLOW-6	GREEN-3	BLUE - 1	DEFAULT
RED-8	100.0	18.0	• 0	•0	• 0	•0
YELLOW-6	100.0	• 0	14.0	• 0	• 0	10.0
GREEN-3	100.0	• 0	• 0	13.0	• 0	10,0
BLUE-1	100.0	• 0	• 0	• 0	25.0	6.0
TOTAL	100.0					

TESTING CONFUSION MATRIX IEPT = 97 NEPI = 96

SEURCE	PERCENT	RED-8	CLASSIFIE		D. 115		
RED-8	100.0	24.0	YELLOW-6	GREEN+3	BLUE - 1	DEFAULT	
AETTBM-9	100.0	• 0	12.0	• 0	• 0	13.0	
GREEN-3	100.0	• 0	• 0	11.0	• 0	15.0	
BLUE-1	100.0	•0	•0	•0	16.0	5.0	•

COMPLETED 10 STEPS OF ANALYSIS

3.2 Pattern Position Experiments

Purpose

6

G

0

The color stimuli used in the first experiment were always selected by the computer. The pattern-position experiment was designed to allow stimulus selection either by computer, for a training series, or by the subject, for use in controlling a separate "application program" once the computer has established a set of discriminant functions using BCI/SDA.

Methods

The methods of EEG data collection are identical to those described in the color Experiment. The only difference is in the stimulus arrangement. A brief flash trans-illuminates a checkerboard pattern, 1 3/4" square, at a pupil/display plane distance of 46", thus subtending a 2.20 visual angle. The individual checks subtended a 12' visual angle. Four solid state diode lamps (LED's) are positioned at the top, bottom, left and right edges of the checkerboard, 1 cm in front of the checkerboard. The checksize, and checkerboard size were chosen following C.T. White (1968) in order to produce large evoked responses at the scalp. A red filter was used behind the checkerboard to benefit from the previously observed better consistency of red responses, and a blue-green background was continually on, to further enhance retinal red response; the background was superimposed on a large area over the checkerboard. The implement: tion of the present experiment is open loop. For each run, 200 epochs are taken, with the computer randomly selecting one of the four fixation lights for presentation on each trial. The subject is instructed to fixate steadily on the light selected until one second after the flash. Thus the proximal stimulus occupies one of four partly overlapping retinal positions on each trial.

Analysis

The data were analyzed by stepwise discriminant analysis exactly as in the Color Experiment. One half of the epochs were taken for a training set, and the other 100 epochs were then classified using the DF obtained on the training set. A general four channel, 16 msec interval variable selection paradigm was again used.

Results

As in the Color Experiment, evaluation of performance is based on the percent of correct classification of epochs from the testing set, with no defaults.

Subject-Date	EXPR	Performance
NLM1-AP08-75	CB41	74%
MHDI AP15-75	CB41	63%
ATW1 AP17-75	CB41	86%

(Detailed results from subject ATW are shown in Table 23)

Table 24 shows the performance obtained when the a posteriori decision threshold is raised to .900. A classification accuracy of 92% is achieved, with 25% defaults. This performance, while not yet equal to that obtained for color stimuil, is quite good, and can doubtlessly be substantially improved.

Discussion

Regan (1973) has speculated that the use of large (14⁰ diameter) stimuli, rather than foveal stimuli, would produce less intersubject variation in evoked responses obtained from stimuli of varying retinal position. Therefore, it is intended to repeat the Pattern Position Experiment with a larger checkerboard, in order to find the most efficient stimulus for the purpose of on-line evoked response classification. Other improvements

ATW1-AP17-75-0, PATTERN-POSITION EXP. 4 CHANNEL GEN, L WINDOW, 16 MSEC. DATA SET IDENTIFIERS: EXPR = CB41 SUBJ = ATW1 DATE = AP17 NO. OF VARIABLES = 40 WGT. D.8.F. = 100.12 F LEVEL TO REMOVE = 2.200 PASTERIARI THRESHALD = .250 87.0 DISCRIMINANT FUNCTIONS AFTER 10 STEPS, WITH D.O.F. = EPOCHS ACCEPTED UNCONDITIONALLY. NAMES VARIABLE GROUP UP INDEX NAME LEVEL DOMN LEFT RIET ·10933E-01 3 Ch 1,112 ms. . 73779E 01 .25088E-01 -.13389E-01 .22914E-02 .13C2EE-C1 .12931E 02 -.15063E-01 •33287E-01 .44236E-02 1,128 .30526E 02 -.30284E-01 5 -. 43069E-01 .9707EE-02 10144 .20345E-01 .29214E-01 •75250E-02 - · 67744E-C2 8 1.192 •31654E-01 15 .25155E-01 2.144 .12338E 02 -.28995E-02 .444UOE-02 .2C+C4E-D1 23 3,112 .11439E .13641E-01 -.29091E-01 -.20995E-02 - . 45336E-C2 02 25 3,144 .53536E 02 .34319E-01 -.28860E-01 .23870E-01 - . 2C34BE-C1 27 3,176 -. 93601E-02 .29590E-01 .11591E-01 .52092E-03 .10428E 02 -.19368E-01 .14191E 02 -.31993E-01 .84467E-CZ 28 3,192 -.11372E-01 .69536E 01 - . 15295E - 02 39 4,208 --17077E-01 •51192E-03 -- 17353E-C1 -.62407E 01 -.95687E 01 -.86774E 01 - • 47035E 01 CONSTANT TRAINING CONFUSION MATRIX IEPA = 1 NEPI = 100 CLASSIFIED SEURCE PERCENI AS DOWN LEFT RIGHT DEFAULT CORRECT • 0 UP 25.0 .0 .0 .0 100.0 DOWN 23.0 1.0 1.0 .0 92.0 .0 LEFT 1.0 1.0 23.0 .0 .0 92.C 25.0 RIGHT 100.0 .0 .0 .0 .0 TOTAL 96.0 TESTING CONFUSION MATRIX IEPT = 2 NEPI = 100 SOURCE PERCENT CLASSIFIED AS UP LEFT CORRECT DOWN RIGHT DEFAULT UP 72.0 18.0 1.0 5.0 1.0 .0 DOWN 92.0 .0 2.0 23.0 . 0 .0 LEFT 23.0 92.0 . C 2.0 •0 .0 1.0 RIGHT 88.0 2.0 22.0 .0 TOTAL 86.0

0

TABLE 23

COMPLETED 10 STEPS OF

ANALYSIS

DATA SET I	DENTIFIERS	: EXPR	* CB41 S	UBJ = ATW	DATE =	AP17
NO. OF VAR	IABLES .	40			WGT . D	•0•F• = 10
F LEVEL TO	REMOVE =	2.200		Pesi	FRIORI TH	RESHBLD =
TRA	INING CON	FUSION	MATRIX	IEPA =	1 NEP	1 = 100
SEURCE	PERCENT CORRECT		CLASSIF UP DOW	IED AS	T RIGH	DEFAME
UP	100.0	22.0	•0	• 0	•0	DEFAULT 3.0
DOWN	100.0	•0	55.0	• 0	• 0	3.0
LEFT	95.2	•0	1.0	20.0	•0	4.0
RIGHT	100 • 0 98 • 8	•0	• 0	•0	21.0	4.0
TEST	NG CONFUS	ION MAT	RIX IE	PT = 2	NEPI =	100
SOURCE	PERCENT		CLASSIFIE	0 40		
	CORRECT	UP	NWCD	D_AS_ LEFT	RIGHT	DEP
UP	73.7	14.0	• 0	4.0	1.0	DEFAULT
NWED	100.0	•0	22.0	•0	•0	6.0
LEFT	100.0	•0	•0	15.0	•0	3.0
RIGHT	94.7	•0	1.0	•0	18.0	10.0
TOTAL	92.0		•		10.0	6.0

of the target are possible, in particular the use of a diamond shape which will eliminate retinal overlap between positions. It is also expected that the orthogonal transformation of the multi-channel data, which did not perform well with color, should be of advantage in this series because of the spatial dependence. Finally this procedure is about to be performed on-line using a graphic program to provide subject feedback. Spectacular improvement in reliability is expected in this case because of the operant conditioning inherent to the procedure.

1,

0

4. THEORETICAL CONSIDERATIONS

4.1 Stepwise Discrimination and the Decision Rule

Consider the discrimination of a training set consisting of M epochs, represented by N time samples. The initial data set thus consists of M N-vectors:

$$X = \{X_m\} = \{x_{mn}^j\}$$
 $m = 1, 2...N$; $n = 1, 2...N$

Where j = (1,2...J) is an index that designates the training groups. There are J such groups (the "input alphabet") in the training set; M_j is the number of epochs in group j and obviously;

$$\sum_{j} M_{j} = M$$

The mean for groups i and j will be represented by the vectors;

$$\bar{X}^i = \{\bar{x}^i_n\}$$
 ; $\bar{X}^j = \{\bar{x}^j_n\}$

(n can be replaced by k)

The classification is conducted in two sections. First a step-wise discriminant procedure selects K samples, from the original N, that have optimal discrimination properties. There is no loss of generalities in placing these samples at the beginning;

O

$$X = \{x_{mn}^j\}$$

with m = 1, 2...K. The training set is thus now reduced to M K-vectors;

Second, a discriminant function g(X) is obtained for each group. The function is a measure of the posteriori probability $p(j|X_m)$ that a given epoch X_m belong to group j given X_m . Thus if

$$g_i(X_m) > g_i(X_m)$$

for all $i \neq j$; then this epoch would have to be need in group j according to the posteriori probabilities. Discriminant functions are actually obtained from the training set, which instead, provides the probability $p(X_m,j)$ of occurrence of a given observed epoch X_m which is known to belong to group j; then:

0

6

U

$$\mathfrak{I}_{j}(X_{m}) = P(X_{m,j}) P(j)$$
 (1)

Specifically a logarithmic form is calculated which leads to different numerical values for the function q but has the same properties:

$$a_{j}(X_{m}) = \log p(X_{m}, j) + \log p(j)$$
 (2)

which, assuming normal distributions with different means but equal variance (for each group) takes the form:

$$g_{j}(X_{m}) = -\frac{1}{2} \mathcal{D}_{j}^{2}(X_{m}) + \log p(j)$$

 ${\rm D}^2$ is the squared Mahalanobis distance. For an epoch ${\rm X}_{n {\rm L}}$, this distance to the mean for group j is given by;

$$D^{2}(X_{n_{i}}) = (M-J) \sum_{n} \sum_{k} (x_{mn} - \bar{x}_{n}^{j}) a_{nk} (x_{mk} - \bar{x}_{k}^{j})$$

$$n = 1, 2 ... k \qquad ; \qquad k = 1, 2 ... k \qquad (3)$$

a_{nk} is derived from the original within group cross-product matrix;

$$W = \begin{bmatrix} W_{11} & W_{12} \\ W_{21} & W_{22} \end{bmatrix} \tag{4}$$

W is first partitioned; the contributions of the K selected first samples are vested in W_{11} ; and W_{11} is inverted yielding;

$$A = \left| W_{11} \right|^{-1} = \left\{ a_{ni_k} \right\} \tag{5}$$

with n, k = 1, 2...K

A confusion matrix can then be established that shows the number of epochs $\mathbf{M}_{j\,i}$ that came from group j and whose posterior probability was larger for group i.

In the testing phase the discriminant functions $g_j(x)$ are evaluated for j=1,2...J, on-line, in real-time for each incoming epoch x and classified accordingly. The posteriori probabilities of belonging to each group are also calculated;

$$i^{2}(j|X) = \frac{P(j) \exp \left[D_{j}^{2}(X)\right]}{\sum_{i=1}^{J} h(i) \exp \left[D_{i}^{2}(X)\right]}$$
(6)

4.2 The Mutual Information Transfer

Let $A = \{a_1, ..., a_j\}$ be the input alphabet (e.g. the set of color labels for the stimulus flashes). The a-priori entropy of the alphabet is given by:

$$H(A) = \sum_{j} p(a_{j}) \log_{2} \frac{1}{p(a_{j})}$$
 $j=1,2...J$ (7)

Let $B = (b_1 \dots b_j, b_{j+1})$ be the output alphabet (e.g. the set of classes established by a corresponding set of decision functions over the EEG measures (the recorded evoked responses). The decision functions map A into B, where b_j corresponds to a_j for each j=1...J and where b_{j+1} represents an additional default class.

Next, one defines:

2,

$$H(A|b_i) = \sum_{j} p(a_j|b_j) \log_2 \frac{1}{p(a_j|b_i)}$$
 (8)

as the a posteriori entropy of the input alphabet given the event b_j . The sum over all b's gives the "equivocation" of A with B:

$$H(A|E) = \sum_{i} p(L_{i})H(A|D_{i})$$
(9)

H(A|B) = 0 for a completely deterministic mapping $(A \rightarrow B)$; reciprocally H(A|B) = H(A) if the mapping is completely random, i.e. is B is independent of A.

From there the mutual information I(A,B) between the two alphabets or sets of events is defined as:

$$I(A,B) = H(A) - H(A|B)$$

I is non-negative and varies between zero (independence) and H(A). H(A) has an upper bound, which therefore, also holds for I(A,B);

$$\max H(A) = \log_2 N \text{ bits}$$

reached when;

$$p(a_j) = \frac{1}{N}$$
 $j = 1, 2 \dots J$ (10)

Thus, the mutual information provides a single number that characterizes the performance of the channel (i.e. of the experimental paradigm) that can be directly compared to the number of bits embodied in the input channel (i.e. H(A) = 2 for a four color experiment).

It can be shown that mutual information is reciprocal I(A,B) = I(B,A). I(A,B) can also be expressed in terms of the <u>conditional mutual information</u> $I(a_i,B)$ defined for each a_i such that;

$$I(A,B) = \sum_{j} p(a_{j})I(a_{j},B)$$
 (11)

with

$$I(a_{j}|B) = \sum_{i} p(b_{i}|a_{j}) \log_{2} \left[\frac{p(b_{i}|a_{j})}{\sum_{j} p(b_{i}|a_{j})} \frac{p(b_{i}|a_{j})}{\sum_{j} p(b_{i}|a_{j})} \right]$$
(12)

This expression is practical because it can be estimated directly (row by row) since $\widetilde{p}(b_i|a_j)$ figures in the confusion matrix generated by each experiment.

The conditional estimate $\widetilde{I}(a_j,B)$ calculated for each row from (12) measures separately the capability of each input condition or class to get through the channel. Since $p(a_j)$ may not be the same for all j, the upper bound H(A), valid for I(A,B) does not hold for its components $I(a_i,B)$; rather;

$$\max I(a; B) = \log_2 \frac{1}{p(a)}$$
; $j = 1, 2 - 3$ (13)

Mutual information calculations are now incorporated in the BCI Stepwise Discriminant Analysis program.

Comparison Between Average Evoked Responses (AER) and Discriminant Function Coefficients (DEC)

Comparison Between Average Evoked Responses (AER) and Discriminant Function Coefficients (DFC)

5. FACILITIES

The project continues to be conducted under the auspices of the Computer Science Department, University of California, Los Angeles, The principal facility for this project is the computer system at the Brain Computer Interface Laboratory. Laboratory equipment includes three dedicated computers (XDS 930, XDS 920 and IMLAC PDS-1) with complete peripherals (card readers, card punch, rapid access drum, tape drives and line printer).

Experiment subjects are monitored from a specially designed shielded enclosure that contains various input devices and output displays designed in a modular fashion for ease of interfacing with the digital system. The experiment is conducted from an adjacent room containing the control terminals to the system computers, the recording equipment for EEG and other biosignals, as well as voice and video communication devices. The amplified EEG signals are routed to a digitizing station capable of handling 50 simultaneous channels of analog input. During experiments, a dedicated XDS 930 computer with 16K words of core memory and 2M characters on magnetic drum acts as data input controller and realtime experiment controller. All real-time processing functions are performed by the 930 which also creates complete experiment records for offline batch processing. These contain, for each data "epoch", the experiment parameters (sampling rate, epoch lengths, etc.) specified by the experimenter as well as selected results of on-line computation, subject responses, etc. The 930 also controls an TMLAC PDS-1 minicomputer and display terminal with 8K of memory which is reserved for the generation of visual feedback display and some other functions. In addition, the PDS-1 as a stand-alone computer can perform extensive calculations and generate sophisticated graphics including animation.

For very large data processing programs, the main computing power is provided by the campus IBM 360/91 (Campus Computing Network) which is equipped with an exceptionally large core memory of 4M bytes. The digitized data reaches the IBM 360/91 from the laboratory by a special high

speed data line that is used to write and read directly into and from the 360/91 core. The data transfer is controlled with a separate processor (XDS 920) to allow buffering and transfer without interference with experiments. A monitor program in the 360/91 controls both the data flow and the processing protocol from a privileged position with respect to the 360/91 operating system software, thus insuring immediate execution. Complex programs such as spectral or functional analysis of the signals can be performed and the results fed back to the laboratory with minimum turn-around time. The "awakening" of this software system and all subsequent file handling are placed under the campus timeshared system (URSA) and controlled by an IBM 3277 terminal in the laboratory.

Finally, the BCI laboratory computer system has wired-in direct access to the ARPA Network. The Network is being used for accessing and transmitting data to distant facilities (such as MIT-MULTICS) and for communication with other Biocybernetic research groups.