Package 'TransPhylo'

October 12, 2022

00000112, 2022
Version 1.4.5
Date 2021-04-20
Title Inference of Transmission Tree from a Dated Phylogeny
Maintainer Xavier Didelot <xavier.didelot@gmail.com></xavier.didelot@gmail.com>
Description Inference of transmission tree from a dated phylogeny. Includes methods to simulate and analyse outbreaks. The methodology is described in Didelot et al. (2014) <doi:10.1093 molbev="" msu121="">, Didelot et al. (2017) <doi:10.1093 molbev="" msw275="">.</doi:10.1093></doi:10.1093>
License GPL (>= 2)
Depends R (>= $3.0.0$)
Imports Rcpp (>= 0.12.8), stats, graphics, ape
Suggests knitr, testthat, purrr, coda, grDevices, lattice, rmarkdown
LinkingTo Rcpp
Encoding UTF-8
RoxygenNote 7.1.1
SystemRequirements C++11
VignetteBuilder knitr
NeedsCompilation yes
Author Xavier Didelot [aut, cre] (https://orcid.org/0000-0003-1885-500X), Yuanwei Xu [ctb]
Repository CRAN
Date/Publication 2021-04-20 13:30:03 UTC
R topics documented:
TransPhylo-package

2 TransPhylo-package

X		
	ummary.resTransPhylo	•
	imulateOutbreak	
	electTTree	
	otreeFromPhylo	
	orobTTreeR	
	probTTree	
	probPTreeGivenTTreeR	
	probPTreeGivenTTree	
	orint.ttree	
	orint.resTransPhylo	
	orint.ptree	
	orint.ctree	
	plotTTree2	
	olotTTree	
	olotTraces	
	olotCTree	
	olot.ttree	
	olot.resTransPhylo	
	olot.ptree	
	olot.ctree	
	phyloFromPTree	
	nedTTree	
	nakeTTree	
	nakeCTreeFromPTree	
	nfer_multittree_share_param	
	nferTTree	
	getOffspringDist	
	getInfectionTimeDist	
	getIncidentCases	
	getGenerationTimeDist	
	extractTTree	
	extractPTree	
	extractCTree	
	1	
	lateLastSample	

Description

Inference of transmission tree from a dated phylogeny. Includes methods to simulate and analyse outbreaks.

as.mcmc.resTransPhylo 3

Author(s)

Xavier Didelot <xavier.didelot@gmail.com>

References

Didelot et al. (2014) <doi:10.1093/molbev/msw121> Didelot et al. (2017) <doi:10.1093/molbev/msw275>.

See Also

https://github.com/xavierdidelot/TransPhylo

as.mcmc.resTransPhylo Convert to coda mcmc format

Description

Convert to coda mcmc format

Usage

```
as.mcmc.resTransPhylo(x, burnin = 0.5)
```

Arguments

x Output from inferTTree

burnin Proportion of the MCMC output to be discarded as burnin

Value

meme object from coda package

computeMatTDist Build a matrix indicating for each pairs of individuals how many intermediates there are in the transmission chain

Description

Build a matrix indicating for each pairs of individuals how many intermediates there are in the transmission chain

Usage

```
computeMatTDist(record, burnin = 0.5)
```

4 consTTree

Arguments

record Output from inferTTree function

burnin Proportion of the MCMC output to be discarded as burnin

Value

Matrix of intermediates in transmission chains between pairs of hosts

computeMatWIW Build a matrix of probability of who infected whom from a MCMC

output

Description

Build a matrix of probability of who infected whom from a MCMC output

Usage

```
computeMatWIW(record, burnin = 0.5)
```

Arguments

record Output from inferTTree function

burnin Proportion of the MCMC output to be discarded as burnin

Value

Matrix of probability of who infected whom

consTTree Build a consensus transmission tree from a MCMC output

Description

Build a consensus transmission tree from a MCMC output

Usage

```
consTTree(record, burnin = 0.5, minimum = 0.2, debug = F)
```

Arguments

record Output from inferTTree function

burnin Proportion of the MCMC output to be discarded as burnin

minimum Minimum probability for inclusion of a partition in the consensus

debug Used for debugging

convertToCoda 5

Value

The consensus transmission tree

convertToCoda

Convert to coda mcmc format

Description

Convert to coda meme format

Usage

```
convertToCoda(record, burnin = 0.5)
```

Arguments

record Output from inferTTree function

burnin Proportion of the MCMC output to be discarded as burnin

Value

Object of class meme from coda package

dateLastSample

Return the date of last sample from a ttree or ctree or ptree

Description

Return the date of last sample from a ttree or ctree or ptree

Usage

```
dateLastSample(x)
```

Arguments

Х

A transmission tree or colored tree or phylogenetic tree

Value

date of the last sample

6 extractPTree

extractCTree Return the combined tree corresponding to a given iteration of the TransPhylo results

Description

Return the combined tree corresponding to a given iteration of the TransPhylo results

Usage

```
extractCTree(res, iteration)
```

Arguments

res Output from inferTTree command iteration Number of the iteration to be extracted

Value

The colored tree at the specified iteeatino

extractPTree Extracts phylogenetic tree from a combined phylogenetic/transmission tree

Description

Extracts phylogenetic tree from a combined phylogenetic/transmission tree

Usage

```
extractPTree(ctree)
```

Arguments

ctree Combined tree

Value

phylogenetic tree

Examples

```
extractPTree(simulateOutbreak())
```

extractTTree 7

extractTTree	Extracts transmission tree from a combined phylogenetic/transmission
	tree

Description

Extracts transmission tree from a combined phylogenetic/transmission tree

Usage

```
extractTTree(ctree)
```

Arguments

ctree

Combined tree

Value

transmission tree

Examples

```
extractTTree(simulateOutbreak())
```

getGenerationTimeDist Extract and return realised generation time distribution

Description

Extract and return realised generation time distribution

Usage

```
getGenerationTimeDist(
  record,
  burnin = 0.5,
  maxi = 2,
  numBins = 20,
  show.plot = F
)
```

Arguments

record	MCMC output	produced by	inferTTree

burnin Proportion of the MCMC output to be discarded as burnin

maxi Maximum generation time to consider

numBins Number of time bins to compute and display distribution

show.plot Show a barplot of the distribution

8 getIncidentCases

Value

Vector of times between becoming infected and infecting others (generation times) in the posterior

Returns and/or plot numbers of sampled and unsampled cases over time

Description

Returns and/or plot numbers of sampled and unsampled cases over time

Usage

```
getIncidentCases(
  record,
  burnin = 0.5,
  numBins = 10,
  dateT = NA,
  show.plot = FALSE
)
```

Arguments

record	Output from inferTTree function
burnin	Proportion of the MCMC output to be discarded as burnin
numBins	Number of time bins to compute and display incident cases
dateT	Date when process stops (this can be Inf for fully resolved outbreaks)
show.plot	Show a plot of incident cases over time with stacked bars

Value

List with four entries. Time is a vector of the time points. allCases is the average number of cases at each time in the posterior. sampledCases: average number of sampled cases. unsampCases: average number of unsampled cases.

getInfectionTimeDist 9

getInfectionTimeDist	Extract and return distribution of infection time of given sampled
	case(s)

Description

Extract and return distribution of infection time of given sampled case(s)

Usage

```
getInfectionTimeDist(record, burnin = 0.5, k, numBins = 10, show.plot = F)
```

Arguments

record MCMC output produced by infe	er l'Iree
-------------------------------------	-----------

burnin Proportion of the MCMC output to be discarded as burnin

k Case(s) whose posterior infection times are to be extracted. Either a string

matching one of the case names in the data, or a vector of such strings

numBins Number of bins to use for plot show.plot Show a barplot of the distribution

Value

Posterior infection times for the case(s) in k. If length(k)==1 then a vector is returned, otherwise a matrix

Description

Extract and return offspring distribution of given sampled case(s)

Usage

```
getOffspringDist(record, burnin = 0.5, k, show.plot = F)
```

Arguments

record	MCMC output	produced by inferTTree

burnin Proportion of the MCMC output to be discarded as burnin

k Case(s) whose offspring distribution are to be extracted. Either a string matching

one of the case names in the data, or a vector of such strings

show.plot Show a barplot of the distribution

inferTTree

Value

Posterior offspring distribution for the case(s) in k. If length(k)==1 then a vector is returned, otherwise a matrix

getSamplingTimeDist

Extract and return realised sampling time distribution

Description

Extract and return realised sampling time distribution

Usage

```
getSamplingTimeDist(
  record,
  burnin = 0.5,
  maxi = 2,
  numBins = 20,
  show.plot = F
)
```

Arguments

record MCMC output produced by inferTTree

burnin Proportion of the MCMC output to be discarded as burnin

maxi Maximum generation time to consider

numBins Number of time bins to compute and display distribution

show.plot Show a barplot of the distribution

Value

Vector of times between becoming infected and becoming sampled in the posterior

inferTTree

Infer transmission tree given a phylogenetic tree

Description

Infer transmission tree given a phylogenetic tree

inferTTree 11

Usage

```
inferTTree(
  ptree,
 w.shape = 2,
 w.scale = 1,
 ws.shape = NA,
 ws.scale = NA,
 w.mean = NA,
 w.std = NA,
 ws.mean = NA,
 ws.std = NA,
 mcmcIterations = 1000,
  thinning = 1,
  startNeg = 100/365,
  startOff.r = 1,
  startOff.p = 0.5,
  startPi = 0.5,
  updateNeg = TRUE,
  updateOff.r = TRUE,
  updateOff.p = FALSE,
  updatePi = TRUE,
  startCTree = NA,
  updateTTree = TRUE,
  optiStart = 2,
 dateT = Inf,
  verbose = F
)
```

ptree	Phylogenetic tree
w.shape	Shape parameter of the Gamma distribution representing the generation time
w.scale	Scale parameter of the Gamma distribution representing the generation time
ws.shape	Shape parameter of the Gamma distribution representing the sampling time
ws.scale	Scale parameter of the Gamma distribution representing the sampling time
w.mean	Mean of the Gamma distribution representing the generation time
w.std	Std of the Gamma distribution representing the generation time
ws.mean	Mean of the Gamma distribution representing the sampling time
ws.std	Std of the Gamma distribution representing the sampling time
${\tt mcmcIterations}$	Number of MCMC iterations to run the algorithm for
thinning	MCMC thinning interval between two sampled iterations
startNeg	Starting value of within-host coalescent parameter Ne*g
startOff.r	Starting value of parameter off.r
startOff.p	Starting value of parameter off.p

startPi	Starting value of sampling proportion pi
updateNeg	Whether of not to update the parameter Ne*g
updateOff.r	Whether or not to update the parameter off.r
updateOff.p	Whether or not to update the parameter off.p
updatePi	Whether or not to update the parameter pi
startCTree	Optional combined tree to start from
updateTTree	Whether or not to update the transmission tree
optiStart	Type of optimisation to apply to MCMC start point (0=none, 1=slow, 2=fast)
dateT	Date when process stops (this can be Inf for fully simulated outbreaks)
verbose	Whether or not to use verbose mode (default is false)

Value

posterior sample set of transmission trees

Examples

```
inferTTree(ptreeFromPhylo(ape::rtree(5),2020),mcmcIterations=100)
```

```
infer_multittree_share_param
```

Simultaneously infer transmission trees given phylogenetic trees User can specify any subset of parameters that will be shared by providing a character vector of parameter names to the argument "share".

Description

Simultaneously infer transmission trees given phylogenetic trees User can specify any subset of parameters that will be shared by providing a character vector of parameter names to the argument "share".

Usage

```
infer_multittree_share_param(
  ptree_lst,
  w.shape = 2,
  w.scale = 1,
  ws.shape = w.shape,
  ws.scale = w.scale,
  mcmcIterations = 1000,
  thinning = 1,
  startNeg = 100/365,
  startOff.r = 1,
  startOff.p = 0.5,
  startPi = 0.5,
```

```
prior_pi_a = 1,
prior_pi_b = 1,
updateNeg = TRUE,
updateOff.r = TRUE,
updateOff.p = FALSE,
updatePi = TRUE,
share = NULL,
startCTree_lst = rep(NA, length(ptree_lst)),
updateTTree = TRUE,
optiStart = 2,
dateT = Inf,
verbose = F
```

ptree_lst	List of phylogenetic tree
w.shape	Shape parameter of the Gamma probability density function representing the generation time
w.scale	Scale parameter of the Gamma probability density function representing the generation time
ws.shape	Shape parameter of the Gamma probability density function representing the sampling time
ws.scale	Scale parameter of the Gamma probability density function representing the sampling time
${\tt mcmcIterations}$	Number of MCMC iterations to run the algorithm for
thinning	MCMC thinning interval between two sampled iterations
startNeg	Starting value of within-host coalescent parameter Ne*g
startOff.r	Starting value of parameter off.r
startOff.p	Starting value of parameter off.p
startPi	Starting value of sampling proportion pi
prior_pi_a	First shape parameter of Beta prior for pi
prior_pi_b	Second shape parameter of Beta prior for pi
updateNeg	Whether of not to update the parameter Ne*g
updateOff.r	Whether or not to update the parameter off.r
updateOff.p	Whether or not to update the parameter off.p
updatePi	Whether or not to update the parameter pi
share	Character vector of parameters to be shared. For example, share = $c("off.r", "off.p")$ would share the offspring distribution. Allowed parameter names are "neg", "off.r", "off.p" and "pi".
startCTree_lst	Optional combined list of trees to start from
updateTTree	Whether or not to update the transmission tree
optiStart	Type of optimisation to apply to MCMC start point (0=none, 1=slow, 2=fast)
dateT	Date when process stops (this can be Inf for fully simulated outbreaks)
verbose	Whether or not to use verbose mode (default is false)

14 makeCTreeFromPTree

Value

list the same size as input, each element contains posterior transmission trees inferred from corresponding phylogenetic tree

Author(s)

Yuanwei Xu

makeCTreeFromPTree Create a transmission tree compatible with the provided phylogenetic tree

Description

Create a transmission tree compatible with the provided phylogenetic tree

Usage

```
makeCTreeFromPTree(
  ptree,
  off.r = NA,
  off.p = NA,
  neg = NA,
  pi = NA,
  w.shape = NA,
  w.scale = NA,
  ws.scale = NA,
  T = NA,
  optiStart = 0
)
```

ptree	Phylogenetic tree
off.r	First parameter of the negative binomial distribution for offspring number
off.p	Second parameter of the negative binomial distribution for offspring number
neg	the within-host effective population size (Ne) timesgeneration duration (g)
pi	probability of sampling an infected individual
w.shape	Shape parameter of the Gamma probability density function representing the generation time
w.scale	Scale parameter of the Gamma probability density function representing the generation time
ws.shape	Shape parameter of the Gamma probability density function representing the sampling time

makeTTree 15

ws.scale	Scale parameter of the Gamma probability density function representing the sampling time
T	Date when process stops (this can be Inf for fully simulated outbreaks)
optiStart	Method used to optimised colored tree (0=none, 1=slow, 2=fast)

Value

A minimal non-zero probability phylogenetic+transmission tree, or an optimised version if parameters are provided

makeTTree

Simulate a transmission tree

Description

Simulate a transmission tree

Usage

```
makeTTree(
  off.r,
  off.p,
  pi,
  w.shape,
  w.scale,
  ws.shape = w.shape,
  ws.scale = w.scale,
  maxTime = Inf,
  nSampled = NA
)
```

off.r	First parameter of the negative binomial distribution for offspring number
off.p	Second parameter of the negative binomial distribution for offspring number
pi	probability of sampling an infected individual
w.shape	Shape parameter of the Gamma probability density function representing the generation time
w.scale	Scale parameter of the Gamma probability density function representing the generation time
ws.shape	Shape parameter of the Gamma probability density function representing the sampling time
ws.scale	Scale parameter of the Gamma probability density function representing the sampling time
maxTime	Duration of simulation (can be Inf)
nSampled	Number of sampled individuals (can be NA for any)

phyloFromPTree

Value

A N*3 matrix in the following format with one row per infected host, first column is time of infection, second column is time of sampling, third column is infector

medTTree

Return the medoid from a MCMC output

Description

Return the medoid from a MCMC output

Usage

```
medTTree(record, burnin = 0.5)
```

Arguments

record O

Output from inferTTree function

burnin Proportion of the MCMC output to be discarded as burnin

Value

The index of the medoid

phyloFromPTree

Converts a phylogenetic tree into an ape phylo object

Description

Converts a phylogenetic tree into an ape phylo object

Usage

```
phyloFromPTree(ptree)
```

Arguments

ptree

phylogenetic tree

Value

phylo object

Examples

```
phyloFromPTree(extractPTree(simulateOutbreak()))
```

plot.ctree 17

plot.ctree

Plotting for ctree

Description

Plotting for ctree

Usage

```
## S3 method for class 'ctree' plot(x, ...)
```

Arguments

x Object of class ctree, ie a colored phylogenetic tree

... Additional parameters are passed on

Value

Plot of ctree

Examples

```
plot(simulateOutbreak())
```

plot.ptree

Plotting for ptree

Description

Plotting for ptree

Usage

```
## S3 method for class 'ptree' plot(x, ...)
```

Arguments

x Object of class ptree, ie a phylogenetic tree

... Additional parameters are passed on to ape::plot.phylo

Value

Plot of ptree

18 plot.ttree

Examples

```
plot(ptreeFromPhylo(ape::rtree(5),2020))
```

plot.resTransPhylo

 $Plotting\ for\ resTransPhylo$

Description

Plotting for resTransPhylo

Usage

```
## S3 method for class 'resTransPhylo' plot(x, ...)
```

Arguments

x Output from inferTTree

... Additional parameters are passed on

Value

Plot of TransPhylo results

plot.ttree

Plotting for ttree

Description

Plotting for ttree

Usage

```
## S3 method for class 'ttree'
plot(x, type = "summarised", w.shape = NA, w.scale = NA, ...)
```

X	Object of class ttree, ie a transmission tree
type	Type of plot to display, can be 'detailed' or 'summarised' (default)
w.shape	Shape parameter of the generation time, needed for detailed plot only
w.scale	Scale parameter of the generation time, needed for detailed plot only
	Additional parameters are passed on

plotCTree 19

Value

Plot of ttree

Examples

```
plot(extractTTree(simulateOutbreak()))
```

plotCTree

Plot both phylogenetic and transmission trees using colors on the phylogeny

Description

Plot both phylogenetic and transmission trees using colors on the phylogeny

Usage

```
plotCTree(
   tree,
   showLabels = TRUE,
   showStars = TRUE,
   cols = NA,
   maxTime = NA,
   cex = 1
)
```

Arguments

tree Combined phylogenetic/transmission tree

 $show Labels \qquad \qquad Whether or not to show the labels$

showStars Whether or not to show stars representing transmission events

cols Colors to use for hosts

maxTime Maximum time to show on the x axis

cex Expansion factor

Value

Returns invisibly the first parameter

Examples

```
plotCTree(simulateOutbreak())
```

20 plotTTree

plotTraces	Plot MCMC traces
------------	------------------

Description

Plot MCMC traces

Usage

```
plotTraces(record, burnin = 0, extend = F)
```

Arguments

record Output from inferTTree function

burnin Proportion of the MCMC output to be discarded as burnin

extend Whether to also show traces of off.r and off.p

Value

Returns invisibly the first parameter

plotTTree	Plot a transmission tree in a detailed format	
-----------	---	--

Description

Plot a transmission tree in a detailed format

Usage

```
plotTTree(ttree, w.shape, w.scale, showLabels = TRUE, maxTime = NA, cex = 1)
```

ttree	Transmission free
w.shape	Shape parameter of the Gamma probability density function representing the generation time
w.scale	Scale parameter of the Gamma probability density function representing the generation time
showLabels	Whether or not to show the labels
maxTime	Maximum value of time to show on x axis
cex	Expansion factor

plotTTree2 21

Value

Returns invisibly the first parameter

Examples

```
plotTTree(extractTTree(simulateOutbreak()),2,1)
```

plotTTree2

Plot a transmission tree in an economic format

Description

Plot a transmission tree in an economic format

Usage

```
plotTTree2(
   ttree,
   showLabels = TRUE,
   showMissingLinks = 0,
   maxTime = NA,
   cex = 1
)
```

Arguments

ttree Transmission tree

showLabels Boolean for whether or not to show the labels

showMissingLinks

Option for how to show missing links: (0) as dots, (1) as several gray levels, (2)

as a single gray level

maxTime Maximum value of time to show on x axis

cex Expansion factor

Value

Returns invisibly the first parameter

Examples

```
plotTTree2(extractTTree(simulateOutbreak()))
```

print.ptree

print.ctree

Print function for ctree objects

Description

Print function for ctree objects

Usage

```
## S3 method for class 'ctree'
print(x, ...)
```

Arguments

x Object of class ctree, ie a colored phylogenetic tree

... Additional parameters are passed on

Value

Print out details of the ctree

Examples

```
print(simulateOutbreak())
```

print.ptree

Print function for ptree objects

Description

Print function for ptree objects

Usage

```
## S3 method for class 'ptree'
print(x, ...)
```

Arguments

x Object of class ptree, ie a phylogenetic tree

... Additional parameters are passed on

Value

Print out details of the ptree

print.resTransPhylo 23

Examples

```
print(extractPTree(simulateOutbreak()))
```

print.resTransPhylo

Print function for resTransPhylo objects

Description

Print function for resTransPhylo objects

Usage

```
## S3 method for class 'resTransPhylo'
print(x, ...)
```

Arguments

x output from inferTTree

... Additional parameters are passed on

Value

Print out details of TransPhylo results

print.ttree

Print function for ttree objects

Description

Print function for ttree objects

Usage

```
## S3 method for class 'ttree'
print(x, ...)
```

Arguments

x Object of class ttree, ie a transmission tree

... Additional parameters are passed on

Value

Print out details of the ttree

Examples

```
print(extractTTree(simulateOutbreak()))
```

probPTreeGivenTTree	Calculate the probability of a phylogenetic tree given a transmission
	tree

Description

Calculate the probability of a phylogenetic tree given a transmission tree

Usage

```
probPTreeGivenTTree(ctree, neg, w = integer(0))
```

Arguments

ctree Combined phylogenetic/transmission tree

neg Within-host coalescent rate

w Vector of hosts for which to calculate the probability, or nothing for all

Value

Probability of phylogeny given transmission tree

probPTreeGivenTTreeR	Calculate the probability of a phylogenetic tree given a transmission
	tree

Description

Calculate the probability of a phylogenetic tree given a transmission tree

Usage

```
probPTreeGivenTTreeR(ctree, neg, w = NULL)
```

Arguments

ctree Combined phylogenetic/transmission tree

neg Within-host coalescent rate

w Vector of hosts for which to calculate the probability, or NULL for all

Value

Probability of phylogeny given transmission tree

probTTree 25

probTTree Calculates the log-probability of a trans	mission tree
---	--------------

Description

Calculates the log-probability of a transmission tree

Usage

```
probTTree(
   ttree,
   rOff,
   pOff,
   pi,
   shGen,
   scGen,
   shSam,
   scSam,
   dateT,
   delta_t = 0.01
)
```

Arguments

ttree	Transmission tree
r0ff	First parameter of the negative binomial distribution for offspring number
pOff	Second parameter of the negative binomial distribution for offspring number
pi	probability of sampling an infected individual
shGen	Shape parameter of the Gamma probability density function representing the generation time
scGen	Scale parameter of the Gamma probability density function representing the generation time
shSam	Shape parameter of the Gamma probability density function representing the sampling time
scSam	Scale parameter of the Gamma probability density function representing the sampling time
dateT	Date when process stops (this can be Inf for fully simulated outbreaks)
delta_t	Grid precision

Value

Probability of the transmission tree

26 probTTreeR

probTTreeR	Calculates the log-probability of a transmission tree	

Description

Calculates the log-probability of a transmission tree

Usage

```
probTTreeR(
   ttree,
   off.r,
   off.p,
   pi,
   w.shape,
   ws.shape,
   ws.scale,
   dateT
)
```

Arguments

ttree	Transmission tree
off.r	First parameter of the negative binomial distribution for offspring number
off.p	Second parameter of the negative binomial distribution for offspring number
pi	probability of sampling an infected individual
w.shape	Shape parameter of the Gamma probability density function representing the generation time
w.scale	Scale parameter of the Gamma probability density function representing the generation time
ws.shape	Shape parameter of the Gamma probability density function representing the sampling time
ws.scale	Scale parameter of the Gamma probability density function representing the sampling time
dateT	Date when process stops (this can be Inf for fully simulated outbreaks)

Value

Probability of the transmission tree

ptreeFromPhylo 27

ptreeFromPhylo

Converts an ape phylo object into a phylogenetic tree

Description

Converts an ape phylo object into a phylogenetic tree

Usage

```
ptreeFromPhylo(tr, dateLastSample)
```

Arguments

```
tr phylo object dateLastSample date of the last sample
```

Value

phylogenetic tree

Examples

```
ptreeFromPhylo(ape::rtree(5),2020)
```

selectTTree

Select the most representative transmission tree from a MCMC output

Description

Select the most representative transmission tree from a MCMC output

Usage

```
selectTTree(record, burnin = 0.5)
```

Arguments

record Output from inferTTree function

burnin Proportion of the MCMC output to be discarded as burnin

Value

The index of the selected transmission tree

28 simulateOutbreak

simulateOutbreak

Simulate an outbreak

Description

Simulate an outbreak

Usage

```
simulateOutbreak(
 off.r = 1,
 off.p = 0.5,
 neg = 0.25,
 nSampled = NA,
 pi = 0.5,
 w.shape = 2,
 w.scale = 1,
 ws.shape = NA,
 ws.scale = NA,
 w.mean = NA,
 w.std = NA,
 ws.mean = NA,
 ws.std = NA,
 dateStartOutbreak = 2000,
 dateT = Inf
)
```

off.r	First parameter of the negative binomial distribution for offspring number
off.p	Second parameter of the negative binomial distribution for offspring number
neg	the within-host effective population size (Ne) timesgeneration duration (g)
nSampled	number of sampled infected individuals, or NA for any
pi	probability of sampling an infected individual
w.shape	Shape parameter of the Gamma probability density function representing the generation time
w.scale	Scale parameter of the Gamma probability density function representing the generation time
ws.shape	Shape parameter of the Gamma probability density function representing the sampling time
ws.scale	Scale parameter of the Gamma probability density function representing the sampling time
w.mean	Mean of the Gamma distribution representing the generation time
w.std	Std of the Gamma distribution representing the generation time

summary.resTransPhylo 29

ws.mean Mean of the Gamma distribution representing the sampling time
ws.std Std of the Gamma distribution representing the sampling time

 ${\tt dateStartOutbreak}$

Date when index case becomes infected

dateT Date when process stops (this can be Inf for fully simulated outbreaks)

Value

Combined phylogenetic and transmission tree

Examples

```
simulateOutbreak()
simulateOutbreak(off.r=2,dateStartOutbreak=2010,dateT=2015)
```

 $summary.resTransPhylo\ \textit{Summary function for resTransPhylo objects}$

Description

Summary function for resTransPhylo objects

Usage

```
## S3 method for class 'resTransPhylo'
summary(object, ...)
```

Arguments

object output from inferTTree
... Passed on to print.phylo

Value

Print out details of TransPhylo results

Index

```
probTTree, 25
probTTreeR, 26
ptreeFromPhylo, 27

selectTTree, 27
simulateOutbreak, 28
summary.resTransPhylo, 29

TransPhylo (TransPhylo-package), 2
TransPhylo-package, 2
```