1. (i) A curve with equation y = f(x) has $f(x) \ge 0$ for $x \ge a$ and

$$A = \int_a^b f(x) dx$$
 and $V = \pi \int_a^b [f(x)]^2 dx$

where a and b are constants with b > a.

Use integration by substitution to show that for the positive constants r and h

$$\pi \int_{a+h}^{b+h} [r + f(x-h)]^2 dx = \pi r^2 (b-a) + 2\pi rA + V$$

(Total 3 marks)

2.	Given that	$\int_{0}^{\frac{\pi}{2}} \left(1 + \tan\left[\frac{1}{2}x\right]\right)^{2} dx = a + \ln b$	
	find the value of a and the value		(Total 7 marks)

3. (a) Show that

$$\sin 3x = 3\sin x - 4\sin^3 x \tag{3}$$

Hence find

- (b) $\int \cos x (6\sin x 2\sin 3x)^{\frac{2}{3}} dx$ (3)
- (c) $\int (3\sin 2x 2\sin 3x \cos x)^{\frac{1}{3}} dx$ (4)

(Total 10 marks)

4. (a)	Use	the	substitution	$x = \sec \theta$	to	show	that
1	~,	000	CIIC	Daobertation	5000	•	DIIC	CIICC

$$\int_{\sqrt{2}}^{2} \frac{1}{(x^2 - 1)^{\frac{3}{2}}} dx = \frac{\sqrt{6} - 2}{\sqrt{3}}$$
(5)

(b) Use integration by parts to show that

$$\int \csc\theta \cot^2\theta d\theta = \frac{1}{2} \left[\ln|\csc\theta + \cot\theta| - \csc\theta \cot\theta \right] + c$$

(6)

(Total 11 marks)

5.

$$I = \int \frac{1}{(x-1)\sqrt{(x^2-1)}} dx, \quad x > 1$$

(a) Use the substitution $x = 1 + u^{-1}$ to show that

$$I = -\left(\frac{x+1}{x-1}\right)^{\frac{1}{2}} + c.$$

(7)

(b) Hence show that

$$\int_{\sec \alpha}^{\sec \beta} \frac{1}{(x-1)\sqrt{(x^2-1)}} \, \mathrm{d}x = \cot \left(\frac{\alpha}{2}\right) - \cot \left(\frac{\beta}{2}\right), \qquad 0 < \alpha < \beta < \frac{\pi}{2}$$

(5)

(Total 12 marks)

6.	The	points	(x,	y)	on	the	curve	C	satisfy
----	-----	--------	-----	----	----	-----	-------	---	---------

$$(x+1)(x+2)\frac{\mathrm{d}y}{\mathrm{d}x} = xy.$$

The line with equation y = 2x + 5 is the tangent to C at a point P.

(a) Find the coordinates of P.

(4)

(b) Find the equation of C, giving your answer in the form y = f(x).

(8)

(Total 12 marks)

7.	(a) Use the trapezium rule with 4 strips to find an approximate value for	
	$\int_{0}^{1} 16^{x} dx$	
	J 0	(2)
	(h) II 4h- 4miiiiii 4h- 4i 4h- 4ii	(2)
	(b) Use the trapezium rule with <i>n</i> strips to write down an expression that would give an approximate value for	
	$\int_0^1 16^x dx$	
	J 0	(2)
	(a) Homes show that	(2)
	(c) Hence show that	
	$\int_{0}^{1} 16^{x} dx = \lim_{n \to \infty} \left(\frac{1}{n} \left(1 + 16^{\frac{1}{n}} + \dots + 16^{\frac{n-1}{n}} \right) \right)$	
		(3)
	(d) Use integration to determine the exact value of	
	^ 1	
	$\int_0^1 16^x dx$	
		(3)
	Given that the limit exists,	
	(e) use part (c) and the answer to part (d) to determine the exact value of	
	$\lim_{x\to 0}\frac{16^x-1}{x}$	
	·	(5)
	(+	·S1)
_		

8.

In this question u and v are functions of x. Given that $\int u dx$, $\int v dx$ and $\int uv dx$ satisfy

$$\int uv \, dx = \left(\int u \, dx\right) \times \left(\int v \, dx\right) \qquad uv \neq 0$$

(a) show that
$$1 = \frac{\int u \, dx}{u} + \frac{\int v \, dx}{v}$$
 (3)

Given also that $\frac{\int u \, dx}{u} = \sin^2 x$,

- (b) use part (a) to write down an expression, in terms of x, for $\frac{\int v \, dx}{v}$, (1)
- (c) show that $\frac{1}{u}\frac{du}{dx} = \frac{1 2\sin x \cos x}{\sin^2 x}$ (3)
- (d) hence use integration to show that $u = Ae^{-\cot x}\csc^2 x$, where A is an arbitrary constant. (6)
- (e) By differentiating $e^{\tan x}$ find a similar expression for v. (2)

(Total 15 marks)

9. (a) Starting from $[f(x) - \lambda g(x)]^2 \ge 0$ show that λ satisfies the quadratic inequality

$$\left(\int_{a}^{b} \left[g(x)\right]^{2} dx\right) \lambda^{2} - 2\left(\int_{a}^{b} f(x)g(x) dx\right) \lambda + \int_{a}^{b} \left[f(x)\right]^{2} dx \geqslant 0$$

where a and b are constants and λ can take any real value.

(2)

(b) Hence prove that

$$\left[\int_{a}^{b} f(x)g(x) dx\right]^{2} \leqslant \left[\int_{a}^{b} [f(x)]^{2} dx\right] \times \left[\int_{a}^{b} [g(x)]^{2} dx\right]$$
(3)

(c) By letting f(x) = 1 and $g(x) = (1 + x^3)^{\frac{1}{2}}$ show that

$$\int_{-1}^{2} \left(1 + x^{3}\right)^{\frac{1}{2}} dx \leqslant \frac{9}{2}$$
 (4)

(d) Show that $\int_{-1}^{2} x^2 \left(1 + x^3\right)^{\frac{1}{4}} dx = \frac{12\sqrt{3}}{5}$ (3)

(e) Hence show that

$$\frac{144}{55} \leqslant \int_{-1}^{2} \left(1 + x^3\right)^{\frac{1}{2}} dx$$

(4)

(Total 16 marks)

10.. (a) Show that

$$\frac{\mathrm{d}}{\mathrm{d}u}\ln\left(u+\sqrt{u^2-1}\right) = \frac{1}{\sqrt{u^2-1}}$$

(2)

(b) Use the result from part (a) and the substitution $x + 3 = \frac{1}{t}$ to find

$$\int \frac{1}{(x+3)\sqrt{2x+7}} \, \mathrm{d}x$$

(6)

(c) Express $\frac{1}{2x^2 + 13x + 21}$ in partial fractions.

(2)

(d) Find

$$\int_{1}^{9} \frac{1}{\left(2x^2 + 13x + 21\right)\sqrt{2x + 7}} \, \mathrm{d}x$$

giving your answer in the form $\ln r - s$ where r and s are rational numbers.

(6)

(Total 16 marks)

1	1	

- (a) Given that f is a function such that the integrals exist,
 - (i) use the substitution u = a x to show that

$$\int_0^a f(x) dx = \int_0^a f(a - x) dx$$
 (2)

(ii) Hence use symmetry of $f(\sin x)$ on the interval $[0,\pi]$ to show that

$$\int_0^{\pi} x f(\sin x) dx = \pi \int_0^{\frac{\pi}{2}} f(\sin x) dx$$
(4)

(b) Use the result of (a)(i) to show that

$$\int_0^{\frac{\pi}{2}} \frac{\sin^n x}{\sin^n x + \cos^n x} \mathrm{d}x$$

is independent of n, and find the value of this integral.

(4)

(c) (i) Prove that

$$\frac{\cos x}{1 + \cos x} \equiv 1 - \frac{1}{2}\sec^2\left(\frac{x}{2}\right)$$

(ii) Hence use the results from (a) to find

$$\int_0^\pi \frac{x \sin x}{1 + \sin x} \mathrm{d}x$$

(7)

(d) Find

$$\int_0^\pi \frac{x \sin^4 x}{\sin^4 x + \cos^4 x} \mathrm{d}x$$

(4)

(+S2)

Question 11 continued
(Total for Question 11 is 23 marks)