Samenvatting van Hypothese Toetsen:

1. Toetsen over een verwachting, variantie bekend

Toetsings grootheid:
$$T = \frac{\sqrt{n}(\bar{\chi} - \mu_0)}{5}$$

Links Eenzijdig	Rechts Eenzijdig	Twee Zijdig
H_1 : $\mu < \mu_0$	$H_1: \mu > \mu_0$	H_1 : $\mu \neq \mu_0$
Verwerpen als:	Verwerpen als:	Verwerpen als:
$T \leq -z_{\alpha}$	$T \ge z_{\alpha}$	$T \le -z_{\alpha f_2} OF T \ge z_{\alpha f_2}$

Gebruik de tabel voor veel voorkomende waarden van α . Let op dat in *die specifieke* tabel, de zwaarde voor α al gedeeld is door 2 voor een 2-zijdige toets.

2. Toetsen over een verwachting, variantie onbekend

Toetsings grootheid:
$$T = \frac{\sqrt{n}(\bar{x} - \mu_o)}{S}$$

Links Eenzijdig	Rechts Eenzijdig	Twee Zijdig
H_1 : $\mu < \mu_0$	$H_1: \mu > \mu_0$	H_1 : $\mu \neq \mu_0$
Verwerpen als:	Verwerpen als:	Verwerpen als:
$T \leq -t_{n-1}(\alpha)$	$T \ge t_{n-1}(\alpha)$	$ T \geq t_{n-1}(\alpha/2)$

Gebruik de T distribution tabel.

3. Toetsen van een hypothese over een variantie

Toetsings grootheid:
$$T = \frac{(n-1)s^2}{6s^2}$$

Links Eenzijdig	Rechts Eenzijdig	Twee Zijdig
H_1 : $\sigma^2 < \sigma^2$	H_1 : $\sigma^2 > \sigma^2$	$H_1: \sigma^2 \neq \sigma^2$
Verwerpen als:	Verwerpen als:	Verwerpen als:
$T \leq X_{n-1}(1-\alpha)$	$T \ge X_{n-1}(\alpha)$	$T \le X_{n-1}(1-\frac{\alpha}{2}) \text{ OF } T \ge X_{n-1}(\frac{\alpha}{2})$
		-

Gebruik de Chi Squared distribution tabel.