CMPT-413 Computational Linguistics

Anoop Sarkar http://www.cs.sfu.ca/~anoop

March 28, 2007

$$P(input) = \sum_{tree} P(tree \mid input)$$

$$P(Calvin imagined monsters in school) =?$$
 Notice that $P(VP \rightarrow V NP) + P(VP \rightarrow VP PP) = 1.0$

```
P(Calvin imagined monsters in school) =?
(S (NP Calvin)
   (VP (V imagined)
       (NP (NP monsters)
           (PP (P in)
                (NP school))))
(S (NP Calvin)
   (VP (VP (V imagined)
           (NP monsters))
       (PP (P in)
           (NP school))))
```

```
(S (NP Calvin)
                                                  (VP (V imagined)
                                                                                                                     (NP (NP monsters)
                                                                                                                                                                                       (PP (P in)
                                                                                                                                                                                                                                                          (NP school)))))
P(tree_1) = P(S \rightarrow NP \ VP) \times P(NP \rightarrow Calvin) \times P(VP \rightarrow V \ NP) \times P(VP \rightarrow V 
                                                                                                                                                                            P(V \rightarrow imagined) \times P(NP \rightarrow NP PP) \times P(NP \rightarrow monsters) \times
                                                                                                                                                                              P(PP \rightarrow P NP) \times P(P \rightarrow in) \times P(NP \rightarrow school)
                                                                                                                              = 1 \times 0.25 \times 0.9 \times 1 \times 0.25 \times 0.25 \times 1 \times 1 \times 0.25 = .003515625
```

```
(S (NP Calvin)
                                                 (VP (VP (V imagined)
                                                                                                                                                                                   (NP monsters))
                                                                                                                   (PP (P in)
                                                                                                                                                                                   (NP school))))
P(tree_2) = P(S \rightarrow NP \ VP) \times P(NP \rightarrow Calvin) \times P(VP \rightarrow VP \ PP) \times 
                                                                                                                                                                         P(VP \rightarrow V NP) \times P(V \rightarrow imagined) \times P(NP \rightarrow monsters) \times
                                                                                                                                                                           P(PP \rightarrow P NP) \times P(P \rightarrow in) \times P(NP \rightarrow school)
                                                                                                                            = 1 \times 0.25 \times 0.1 \times 0.9 \times 1 \times 0.25 \times 1 \times 1 \times 0.25 = .00140625
```

```
P(Calvin imagined monsters in school)
                                     = P(tree_1) + P(tree_2)
                                        .003515625 + .00140625
                                        .004921875
                                         arg max
                                                  P(tree | input)
              Most likely tree is tree_1 =
(S (NP Calvin)
   (VP (V imagined)
        (NP (NP monsters)
            (PP (P in)
                 (NP school)))))
(S (NP Calvin)
   (VP (VP (V imagined)
            (NP monsters))
        (PP (P in)
            (NP school))))
```

PCFG

- ► Central condition: $\sum_{\alpha} P(A \rightarrow \alpha) = 1$
- Called a proper PCFG if this condition holds
- ▶ Note that this means $P(A \rightarrow \alpha) = P(\alpha \mid A) = \frac{f(A,\alpha)}{f(A)}$
- $P(T \mid S) = \frac{P(T,S)}{P(S)} = P(T,S) = \prod_{i} P(RHS_i \mid LHS_i)$

PCFG

What is the PCFG that can be extracted from this single tree:

```
(S (NP (Det the) (NP man))
(VP (VP (V played)
(NP (Det a) (NP game)))
(PP (P with)
(NP (Det the) (NP dog)))))
```

How many different rhs α exist for A → α where A can be S, NP, VP, PP, Det, N, V, P

PCFG

```
\rightarrow NP VP c = 1 p = 1/1 = 1.0
NP
         Det NP c = 3 p = 3/6 = 0.5
     \rightarrow man c = 1 p = 1/6 = 0.1667
NP
NP
     \rightarrow game c = 1 p = 1/6 = 0.1667
NP
     \rightarrow dog c = 1 p = 1/6 = 0.1667
VP
     \rightarrow VP PP c = 1 p = 1/2 = 0.5
VP
     \rightarrow V NP c = 1 p = 1/2 = 0.5
PP
     \rightarrow P NP c = 1 p = 1/1 = 1.0
Det
     \rightarrow the c = 2 p = 2/3 = 0.67
Det \to a c = 1 p = 1/3 = 0.33
     \rightarrow played c = 1 p = 1/1 = 1.0
           with c = 1 p = 1/1 = 1.0
```

- We can do this with multiple trees. Simply count occurrences of CFG rules over all the trees.
- A repository of such trees labelled by a human is called a TreeBank.

Ambiguity

Part of Speech ambiguity

```
saw \rightarrow noun
saw \rightarrow verb
```

- Structural ambiguity: Prepositional Phrases I saw (the man) with the telescope I saw (the man with the telescope)
- Structural ambiguity: Coordination a program to promote safety in ((trucks) and (minivans)) a program to promote ((safety in trucks) and (minivans)) ((a program to promote safety in trucks) and (minivans))

Ambiguity ← attachment choice in alternative parses

Parsing as a machine learning problem

- S = a sentence
 T = a parse tree
 A statistical parsing model defines P(T | S)
- ► Find best parse: $\underset{T}{\text{arg max}} P(T \mid S)$
- ► $P(T \mid S) = \frac{P(T,S)}{P(S)} = P(T,S)$
- Best parse: ${}^{arg \, max}_{T} P(T, S)$
- e.g. for PCFGs: $P(T, S) = \prod_{i=1...n} P(RHS_i \mid LHS_i)$

Prepositional Phrases

- noun attach: I bought the shirt with pockets
- verb attach: I washed the shirt with soap
- As in the case of other attachment decisions in parsing: it depends on the meaning of the entire sentence – needs world knowledge, etc.
- Maybe there is a simpler solution: we can attempt to solve it using heuristics or associations between words

Structure Based Ambiguity Resolution

- Right association: a constituent (NP or PP) tends to attach to another constituent immediately to its right (Kimball 1973)
- Minimal attachment: a constituent tends to attach to an existing non-terminal using the fewest additional syntactic nodes (Frazier 1978)
- These two principles make opposite predictions for prepositional phrase attachment
- Consider the grammar:

$$VP \rightarrow V NP PP$$
 (1)

$$NP \rightarrow NP PP$$
 (2)

for input: I_{VP} saw I_{NP} the man ... I_{PP} with the telescope I_{NP} , RA predicts that the PP attaches to the NP, i.e. use rule (2), and MA predicts V attachment, i.e. use rule (1)

Structure Based Ambiguity Resolution

- Garden-paths look structural: The emergency crews hate most is domestic violence
- Neither MA or RA account for more than 55% of the cases in real text
- Psycholinguistic experiments using eyetracking show that humans resolve ambiguities as soon as possible in the left to right sequence using the words to disambiguate
- Garden-paths are caused by a combination of lexical and structural effects:
 - The flowers delivered for the patient arrived

Ambiguity Resolution: Prepositional Phrases in English

► Learning Prepositional Phrase Attachment: Annotated Data

V	n1	р	n2	Attachment
join	board	as	director	V
is	chairman	of	N.V.	N
using	crocidolite	in	filters	V
bring	attention	to	problem	V
is	asbestos	in	products	N
making	paper	for	filters	N
including	three	with	cancer	N
:	:	:	:	:

Prepositional Phrase Attachment

Method	Accuracy
Always noun attachment	59.0
Most likely for each preposition	72.2
Average Human (4 head words only)	88.2
Average Human (whole sentence)	93.2

Back-off Smoothing

- Let 1 represent noun attachment.
- We want to compute probability of noun attachment: p(1 | v, n1, p, n2).
- ▶ Probability of verb attachment is $1 p(1 \mid v, n1, p, n2)$.

Back-off Smoothing

1. If f(v, n1, p, n2) > 0 and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p, n2)}{f(v, n1, p, n2)}$$

2. Else if f(v, n1, p) + f(v, p, n2) + f(n1, p, n2) > 0and $\hat{p} \neq 0.5$

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, n1, p) + f(1, v, p, n2) + f(1, n1, p, n2)}{f(v, n1, p) + f(v, p, n2) + f(n1, p, n2)}$$

3. Else if f(v, p) + f(n1, p) + f(p, n2) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, v, p) + f(1, n1, p) + f(1, p, n2)}{f(v, p) + f(n1, p) + f(p, n2)}$$

4. Else if f(p) > 0

$$\hat{p}(1 \mid v, n1, p, n2) = \frac{f(1, p)}{f(p)}$$

5. Else $\hat{p}(1 \mid v, n1, p, n2) = 1.0$

Prepositional Phrase Attachment: (Collins and Brooks 1995)

- Results: 84.5% accuracy with the use of some limited word classes for dates, numbers, etc.
- Using complex word classes taken from WordNet (which we shall be looking at later in this course) increases accuracy to 88% (Stetina and Nagao 1998)
- We can improve on parsing performance with Probabilistic CFGs by using the insights taken from PP attachment.
- Modify the PCFG model to be sensitive to words and other context-sensitive features of the input.
- And generalizing to other kinds of attachment problems, like coordination or deciding which constituent is an argument of a verb.

Some other studies

- Toutanova, Manning, and Ng, 2004: use sophisticated smoothing model for PP attachment 86.18% with words & stems; with word classes: 87.54%
- Merlo, Crocker and Berthouzoz, 1997:
 test on multiple PPs, generalize disambiguation of 1 PP to 2-3
 PPs

14 structures possible for 3PPs assuming a single verb: all 14 are attested in the Treebank same model as CB95; but generalized to dealing with upto 3PPs

1PP: 84.3% 2PP: 69.6% 3PP: 43.6%

Note that this is still not the real problem faced in parsing natural language

Adding Lexical Information to PCFG

Adding Lexical Information to PCFG (Collins 99, Charniak 00)

 $P_h(VB \mid VP, indicated) \times P_l(STOP \mid VP, VB, indicated) \times P_r(NP(difference) \mid VP, VB, indicated) \times P_r(PP(in) \mid VP, VB, indicated) \times P_r(STOP \mid VP, VB, indicated)$

Evaluation of Parsing

Consider a candidate parse to be evaluated against the truth (or gold-standard parse):

```
candidate: (S (A (P this) (Q is)) (A (R a) (T test)))
gold: (S (A (P this)) (B (Q is) (A (R a) (T test))))
```

In order to evaluate this, we list all the constituents

Candidate	Gold	
(0,4,S)	(0,4,S)	
(0,2,A)	(0,1,A)	
(2,4,A)	(1,4,B)	
	(2,4,A)	

- Skip spans of length 1 which would be equivalent to part of speech tagging accuracy.
- ▶ Precision is defined as $\frac{\#correct}{\#proposed} = \frac{2}{3}$ and recall as $\frac{\#correct}{\#in\ gold} = \frac{2}{4}$.
- Another measure: crossing brackets,

```
candidate: [ an [incredibly expensive] coat ] (1 CB)
gold: [ an [incredibly [expensive coat]]
```

Evaluation of Parsing

num of correct constituents Bracketing recall R num of constituents in the goldfile num of correct constituents Bracketing precision P num of constituents in the parsed file Complete match % of sents where recall & precision are both 100% num of constituents crossing a goldfile constituent Average crossing num of sents No crossing % of sents which have 0 crossing brackets 2 or less crossing % of sents which have ≤ 2 crossing brackets

Statistical Parsing Results

	≤ 40 <i>wds</i>	≤ 40 <i>wds</i>	≤ 100 <i>wds</i>	≤ 100 <i>wds</i>
System	Р	R	Р	R
(Magerman 95)	84.9	84.6	84.3	84.0
(Collins 99)	88.5	88.7	88.1	88.3
(Charniak 97)	87.5	87.4	86.7	86.6
(Ratnaparkhi 97)			86.3	87.5
(Charniak 99)	90.1	90.1	89.6	89.5
(Collins 00)	90.1	90.4	89.6	89.9
Voting (HB99)	92.09	89.18		

Practical Issues: Beam Thresholding and Priors

- ▶ Probability of nonterminal X spanning j ... k: N[X, j, k]
- ▶ Beam Thresholding compares N[X, j, k] with every other Y where N[Y, j, k]
- But what should be compared?
- ▶ Just the *inside probability*: $P(X \stackrel{*}{\Rightarrow} t_j \dots t_k)$? written as $\beta(X, j, k)$
- Perhaps $\beta(\text{FRAG}, 0, 3) > \beta(\text{NP}, 0, 3)$, but NPs are much more likely than FRAGs in general

Practical Issues: Beam Thresholding and Priors

▶ The correct estimate is the *outside probability*:

$$P(S \stackrel{*}{\Rightarrow} t_1 \dots t_{j-1} \ X \ t_{k+1} \dots t_n)$$

written as $\alpha(X, j, k)$

▶ Unfortunately, you can only compute $\alpha(X, j, k)$ efficiently after you finish parsing and reach (S, 0, n)

Practical Issues: Beam Thresholding and Priors

- ► To make things easier we multiply the prior probability P(X) with the inside probability
- In beam Thresholding we compare every new insertion of X for span j, k as follows:
 Compare P(X) · β(X, j, k) with the most probable Y P(Y) · β(Y, j, k)
- Assume Y is the most probable entry in j, k, then we compare

beam
$$\cdot P(Y) \cdot \beta(Y, j, k)$$
 (3)

$$P(X) \cdot \beta(X, j, k) \tag{4}$$

- If (4) < (3) then we prune X for this span j, k
- beam is set to a small value, say 0.001 or even 0.01.
- As the beam value increases, the parser speed increases (since more entries are pruned).
- ► A simpler (but not as effective) alternative to using the beam is to keep only the top *K* entries for each span *j*, *k*

Experiments with Beam Thresholding

