2020 V and C with Unemployment

This is the example vignette for function: snw_a4chk_unemp_bisec_vec from the PrjOptiSNW Package. This function solves for the V(states, check) for individuals working. Dense solution. Bisection, most time for the test here taken to generate the income matrixes. But these can be generated out of the check loops.

Test SNW_A4CHK_UNEMP_BISEC_VEC Defaults

-5.9155 -5.9043 -5.8275 -5.6315 -5.295

-3.578 -3.5012

Solve for Value/Policy in non-COVID years, then solve for covid year value/policy given covid shocks. COVID lasts one period.

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

r82

X

r83

-3.5892

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	-									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-1.2728e+08	-2.9126	20.655	-7.0915
ap_VFI	2	2	6	4.37e+07	83	5.265e+05	1.3962e+09	31.95	36.423	1.14
cons_VFI	3	3	6	4.37e+07	83	5.265e+05	2.3374e+08	5.3487	8.4439	1.5787

xxx TABLE	:V VFI xxxx	xxxxxxxxxx	XXX							
	_ c1	c2	с3	c4	c5	c526496	c526497	c526498	c526499	c52650
r1	-274.81	-274.42	-271.94	-266.29	-257.26	14.439	14.533	14.626	14.718	14.80
r2	-265.29	-264.9	-262.43	-256.84	-248.12	14.494	14.585	14.674	14.763	14.8
r3	-255.77	-255.38	-252.93	-247.53	-239.24	14.55	14.636	14.723	14.808	14.89
r4	-246.16	-245.8	-243.52	-238.46	-230.68	14.606	14.689	14.772	14.853	14.93
r5	-237.48	-237.14	-235.01	-230.26	-222.92	14.654	14.734	14.813	14.891	14.9
r79	-9.6662	-9.655	-9.5783	-9.3823	-9.0457	2.4698	2.4801	2.4898	2.4989	2.50
r80	-8.7031	-8.6919	-8.6152	-8.4192	-8.0826	2.253	2.261	2.2685	2.2755	2.282
r81	-7.5138	-7.5026	-7.4258	-7.2298	-6.8933	1.9749	1.9803	1.9855	1.9904	1.99

1.582

0.97904

1.5851

0.98004

1.588

0.98097

1.5907

0.98185

1.593

0.9826

	c1	c2	c 3	c4	c5	c526496	c526497	c526498	c526499	c526500
r1	0	0	0.00051498	0.0066578	0.021589	112.13	117.66	123.39	129.3	135.72
r2	0	0	0.00051498	0.0057684	0.020245	112.16	117.7	123.42	129.34	135.75
r3	0	0	0.00020768	0.0041456	0.018539	112.19	117.72	123.45	129.36	135.77
r4	0	0	0.00010346	0.0041199	0.018307	112.85	118.38	124.11	130.02	136.44
r5	0	0	5.2907e-06	0.0041199	0.018091	113.53	119.06	124.78	130.7	137.11
r79	0	0	0	0	0	81.091	85.373	89.342	93.265	97.358
r80	0	0	0	0	0	76.137	79.759	83.442	86.995	90.589
r81	0	0	0	0	0	67.958	70.652	73.689	77.006	81.091
r82	0	0	0	0	0	50.126	53.467	56.319	57.902	60.587
r83	0	0	0	0	0	0	0	0	0	0

-3.3052 -2.9687

	c1	c2	c 3	c4	c 5	c526496	c526497	c526498	c526499
r1	0.036717	0.037251	0.040477	0.044486	0.049324	12.272	12.557	12.851	13.152
r2	0.036717	0.037251	0.040477	0.045375	0.050668	12.508	12.794	13.089	13.391
r3	0.036717	0.037251	0.040784	0.046998	0.052374	12.762	13.05	13.345	13.646
r4	0.038144	0.038678	0.042314	0.048449	0.054031	13.008	13.297	13.593	13.891
r5	0.039534	0.040068	0.043802	0.049839	0.055635	13.245	13.534	13.83	14.125
r79	0.2179	0.21844	0.22216	0.23228	0.25197	35.858	37.4	39.448	41.74
r80	0.2179	0.21844	0.22216	0.23228	0.25197	40.785	42.986	45.321	47.983
r81	0.2179	0.21844	0.22216	0.23228	0.25197	48.942	52.071	55.052	57.95
r82	0.2179	0.21844	0.22216	0.23228	0.25197	66.755	69.238	72.404	77.036
r83	0.2179	0.21844	0.22216	0.23228	0.25197	116.87	122.69	128.71	134.92

```
welf_checks = 2; % 2 checks is $200 dollar of welfare checks
xi=0.5; % xi=0 full income loss from covid shock, xi=1, no covid income losses
b=0; % b=0 means no UI benefits compensating COVID, b=1 if full income replacement
TR = 100/58056;
mp_params('TR') = TR;
mp_params('xi') = xi;
mp_params('b') = b;
mp_params('b') = b;
mp_params('a2_covidyr') = mp_params('a2_covidyr_manna_heaven');
% mp_params('a2_covidyr') = mp_params('a2_covidyr_tax_fully_pay');
[V_unemp_2020,~,cons_unemp_2020,~] = snw_vfi_main_bisec_vec(mp_params, mp_controls, V_ss);
```

Completed SNW_VFI_MAIN_BISEC_VEC 1 Period Unemp Shock; SNW_MP_PARAM=default_docdense; SNW_MP_CONTROL=default_test; time

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

CONTAINER NAME: mp_outcomes ND Array (Matrix etc)

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

	i	idx	ndim	numel	rowN	colN	sum	mean	std	coefvari
	-									
V_VFI	1	1	6	4.37e+07	83	5.265e+05	-1.4885e+08	-3.4063	21.649	-6.3556
ap_VFI	2	2	6	4.37e+07	83	5.265e+05	1.36e+09	31.122	36.291	1.1661
cons_VFI	3	3	6	4.37e+07	83	5.265e+05	2.2982e+08	5.2591	8.4465	1.6061

xxx TABLE:V_VFI xxxxxxxxxxxxxxxxx

	_ c1	c2	c 3	c4	c 5	c526496	c526497	c526498	c526499	c52656
r1	-301.27	-299.77	-291.24	-277.82	-265.42	14.357	14.455	14.551	14.646	14.7
r2	-291.76	-290.26	-281.72	-268.3	-256.02	14.413	14.507	14.6	14.692	14.78
r3	-282.23	-280.74	-272.2	-258.78	-246.76	14.469	14.56	14.649	14.737	14.82
r4	-271.61	-270.22	-262.26	-249.53	-238.04	14.522	14.609	14.695	14.78	14.86
r5	-262.02	-260.72	-253.26	-241.16	-230.13	14.567	14.65	14.733	14.815	14.89
r79	-9.6662	-9.655	-9.5783	-9.3823	-9.0457	2.4678	2.4783	2.4882	2.4974	2.506
r80	-8.7031	-8.6919	-8.6152	-8.4192	-8.0826	2.2515	2.2596	2.2673	2.2745	2.281
r81	-7.5138	-7.5026	-7.4258	-7.2298	-6.8933	1.9738	1.9794	1.9847	1.9896	1.994
r82	-5.9155	-5.9043	-5.8275	-5.6315	-5.295	1.5815	1.5846	1.5875	1.5903	1.592
r83	-3.5892	-3.578	-3.5012	-3.3052	-2.9687	0.97886	0.97987	0.98082	0.98171	0.9825

xxx TABLE:ap_VFI xxxxxxxxxxxxxxxxxx

	c1	c2	c 3	c4	c 5	c526496	c526497	c526498	c526499	c526500
			_	_						
r1	0	0	0	0	0.0083625	107.54	113.08	118.81	124.74	130.85
r2	0	0	0	0	0.0074731	107.44	112.98	118.71	124.63	130.75
r3	0	0	0	0	0.0058503	107.32	112.87	118.6	124.52	130.63
r4	0	0	0	0	0.0049981	107.53	113.08	118.81	124.72	130.84
r5	0	0	0	0	0.004174	107.75	113.3	119.02	124.94	131.06
r79	0	0	0	0	0	80.458	84.335	88.305	92.228	96.321

TABLE	E:cons_VFI x> c1	c2	c3	c4	c 5	c526496	c526497	c526498	c52649
r1	0.018623	0.019158	0.022901	0.033062	0.044486	11.996	12.272	12.557	12.851
r2	0.018623	0.019158	0.022901	0.033062	0.045375	12.23	12.508	12.794	13.089
r3	0.018623	0.019158	0.022901	0.033062	0.046998	12.483	12.762	13.05	13.345
r4	0.019354	0.019888	0.023632	0.033792	0.048579	12.728	13.008	13.297	13.593
r5	0.020066	0.020601	0.024344	0.034504	0.050114	12.963	13.245	13.534	13.83
r79	0.2179	0.21844	0.22216	0.23228	0.25197	35.453	37.4	39.448	41.74
r80	0.2179	0.21844	0.22216	0.23228	0.25197	40.785	42.986	45.321	47.983
r81	0.2179	0.21844	0.22216	0.23228	0.25197	48.942	52.071	55.052	57.274
r82	0.2179	0.21844	0.22216	0.23228	0.25197	65.751	68.234	72.404	76.981
r83	0.2179	0.21844	0.22216	0.23228	0.25197	115.87	121.69	127.71	133.93
_U_20:	20, C_U_20	∂20] = snw_	_a4chk_unem	np_bisec_v	ec(welf_ch	iecks, V_u	nemp_2020), cons_un	emp_202
pleted	SNW_A4CHK_I	UNEMP_BISEC_'	VEC;welf_chec	:ks=2;TR=0.00	∂17225;xi=0.′	5;b=0;SNW_M	P_PARAM=def	ault_docdens	se;SNW_MF
~~~~~		×××××××××××	VYYXXXXX						
			ND Array (Ma	atrix etc)					
	. –	xxxxxxxxxxxxxxxxxxxxxxxxxxxx	, ,	ILITA ELL,					
XXXXXX	***************************************	i id		numel	rowN co	olN	sum	mean	
		± ±4/-	Y HATH	Hulliet	LOMIA C.	OTIM .	Suiii	liican	

75.113

78.735

82.418

85.971

2.2985e+08

-1.4789e+08

5.2598

-3.3842

31447 0.00071963

8.4466

21.533

0.0009649

90.439

V_U_minus_V_unemp 4 4 4.37e+07 83 5.265e+05 9.6208e+05 0.022016 0.19866 mn_MPC_unemp 4.37e+07 83 5.265e+05 9.1286e+06 0.20889 0.28009 mn_V_U_gain_check = V_U_2020 - V_unemp_2020; mn_MPC_U_gain_share_check = (C_U_2020 - cons_unemp_2020)./(welf_checks*mp_params('TR'));

83

83

83

5.265e+05

5.265e+05

5.265e+05

4.37e+07

4.37e+07

4.37e+07

### **Dense Param Results Define Frames**

3

1

2

3

6

6

6

rsa

C U

V U

C_U_minus_C_unemp

0

0

0

a

Define the matrix dimensions names and dimension vector values. Policy and Value Functions share the same ND dimensional structure.

```
cl_mp_datasetdesc{5} = containers.Map({'name', 'labval'}, {'marry', marry_grid});
cl_mp_datasetdesc{6} = containers.Map({'name', 'labval'}, {'kids', kids_grid});
```

# Analyze Difference in V and C with Check

The difference between V and V with Check, marginal utility gain given the check.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
mp_support_graph('cl_st_xtitle') = {'Savings States, a'};
mp_support_graph('st_legend_loc') = 'eastoutside';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('it_legend_select') = 21; % how many shock legends to show
mp_support_graph('cl_colors') = 'jet';
```

#### MEAN(MN_V_GAIN_CHECK(A,Z))

Tabulate value and policies along savings and shocks:

```
% Set
ar_permute = [1,4,5,6,3,2];
% Value Function
st_title = ['MEAN(MN_V_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str(relative tb_az_v = ff_summ_nd_array(st_title, mn_V_U_gain_check, true, ["mean"], 4, 1, cl_mp_datasetdesc
```

XXX	MEAN(MN group	_V_U_GAIN_CHE <b>savings</b>	CK(A,Z)), welf mean_eta_1	_checks=2, TR= <b>mean_eta_2</b>	<pre>0.0017225 xxx     mean_eta_3</pre>	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	mean_eta_5	mean_eta_6	mean_
	1	0	3.2686	2.9159	2.6002	2.318	2.0659	1.8408	
	2	0.00051498	3.1944	2.8537	2.5482	2.2745	2.0295	1.8104	1
	3	0.0041199	2.1812	1.9865	1.8069	1.6419	1.4903	1.3515	1
	4	0.013905	1.1856	1.1059	1.0296	0.95697	0.88832	0.82357	0
	5	0.032959	0.63189	0.59803	0.56309	0.52853	0.49533	0.46386	0
	6	0.064373	0.38548	0.36786	0.34849	0.32838	0.30848	0.28938	0.

```
% Consumption
st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(A,Z)), welf_checks=' num2str(welf_checks) ', TR=' num2str
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 4, 1, cl_mp_dat
```

MEAN(MN	_MPC_U_GAIN_C	.HECK(A,Z)), we	.lf_checks=2,	TR=0.0017225	XXXXXXXXXXXXXX	XXXXXXXXXXX		
group	savings	mean_eta_1	mean_eta_2	mean_eta_3	mean_eta_4	mean_eta_5	mean_eta_6	mean_
1	0	0.99974	0.99974	0.99974	0.99974	0.99974	0.99974	0.99
2	0.00051498	0.99968	0.99968	0.99968	0.99968	0.99968	0.99968	0.99
3	0.0041199	0.9907	0.9907	0.99069	0.99069	0.99069	0.99069	0.99
4	0.013905	0.93825	0.94008	0.94257	0.94511	0.94728	0.94895	0.95
5	0.032959	0.76658	0.7715	0.78107	0.79334	0.80336	0.81189	0.82
6	0.064373	0.66748	0.66771	0.66813	0.66974	0.67476	0.68003	0.68
	1 2 3 4 5	group savings  1 0 2 0.00051498 3 0.0041199 4 0.013905 5 0.032959	group savings mean_eta_1  1 0 0.99974 2 0.00051498 0.99968 3 0.0041199 0.9907 4 0.013905 0.93825 5 0.032959 0.76658	group         savings         mean_eta_1         mean_eta_2           1         0         0.99974         0.99974           2         0.00051498         0.99968         0.99968           3         0.0041199         0.9907         0.9907           4         0.013905         0.93825         0.94008           5         0.032959         0.76658         0.7715	group         savings         mean_eta_1         mean_eta_2         mean_eta_3           1         0         0.99974         0.99974         0.99974           2         0.00051498         0.99968         0.99968         0.99968           3         0.0041199         0.9907         0.9907         0.99069           4         0.013905         0.93825         0.94008         0.94257           5         0.032959         0.76658         0.7715         0.78107	group         savings         mean_eta_1         mean_eta_2         mean_eta_3         mean_eta_4           1         0         0.99974         0.99974         0.99974         0.99974           2         0.00051498         0.99968         0.99968         0.99968         0.99968           3         0.0041199         0.9907         0.9907         0.99069         0.99069           4         0.013905         0.93825         0.94008         0.94257         0.94511           5         0.032959         0.76658         0.7715         0.78107         0.79334	group         savings         mean_eta_1         mean_eta_2         mean_eta_3         mean_eta_4         mean_eta_5           1         0         0.99974         0.99974         0.99974         0.99974         0.99974           2         0.00051498         0.99968         0.99968         0.99968         0.99968         0.99968           3         0.0041199         0.9907         0.9907         0.99069         0.99069         0.99069           4         0.013905         0.93825         0.94008         0.94257         0.94511         0.94728           5         0.032959         0.76658         0.7715         0.78107         0.79334         0.80336	group         savings         mean_eta_1         mean_eta_2         mean_eta_3         mean_eta_4         mean_eta_5         mean_eta_6           1         0         0.99974         0.99974         0.99974         0.99974         0.99974         0.99974         0.99974         0.99974         0.99974         0.99968         0.99968         0.99968         0.99968         0.99968         0.99968         0.99968         0.99968         0.99969         0.99069         0.99069         0.99069         0.99069         0.99069         0.94895         0.94895         0.032959         0.76658         0.7715         0.78107         0.79334         0.80336         0.81189

### Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR='
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(a,z))'};
```





# AN(MN_V_U_GAIN_CHECK(A,Z)), welf_checks=2, TR=0.0017225

Savings States, a



### Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(A,Z)), welf\_checks=' num2str(welf_checks) ', TR=' nump_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(a,z))'};
ff_graph_grid((tb_az_c{1:end, 3:end})', ar_st_eta_HS_grid, agrid, mp_support_graph);
```





# **Analyze Kids and Marriage and Age**

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

MEAN(VAL(KM,J)), MEAN(AP(KM,J)), MEAN(C(KM,J))

Tabulate value and policies:

```
% Set
% NaN(n_jgrid,n_agrid,n_etagrid,n_educgrid,n_marriedgrid,n_kidsgrid);
ar_permute = [2,3,4,1,6,5];
% Value Function
```

st_title = ['MEAN(MN_V_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2str(
tb_az_v = ff_summ_nd_array(st_title, mn_V_U_gain_check, true, ["mean"], 3, 1, cl_mp_datasetdesc

group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_2
								0.040405
1	1	0	0.056525	0.055709	0.054788	0.049813	0.045671	0.042195
2	2	0	0.07892	0.077833	0.076569	0.069558	0.063712	0.0588
3	3	0	0.094947	0.093814	0.092444	0.083999	0.076962	0.07105
4	4	0	0.1089	0.10769	0.10619	0.096505	0.088435	0.081656
5	5	0	0.12087	0.11964	0.11808	0.10735	0.098407	0.0909
6	1	1	0.020236	0.019466	0.018732	0.01691	0.015384	0.014096
7	2	1	0.026774	0.025777	0.02483	0.022419	0.020394	0.018686
8	3	1	0.032413	0.031262	0.03016	0.027238	0.02479	0.022727
9	4	1	0.038629	0.037308	0.036027	0.032547	0.029636	0.02718
10	5	1	0.047127	0.045664	0.044234	0.039996	0.036449	0.033473

#### % Consumption Function

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(KM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx MEAN(	MN_MPC_U_	GAIN_CHEC	K(KM,J)), welf_	checks=2, TR=0.	0017225 xxxxxx	xxxxxxxxxxxxx	XXXXXX	
group	kids	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23
1	1	0	0.16549	0.16921	0.17323	0.174	0.17457	0.17496
2	2	0	0.17382	0.17757	0.18179	0.18303	0.18412	0.18508
3	3	0	0.18125	0.18476	0.1888	0.19007	0.19119	0.19218
4	4	0	0.18496	0.18833	0.19227	0.19353	0.19463	0.1956
5	5	0	0.18849	0.19163	0.19539	0.19652	0.1975	0.19835
6	1	1	0.16194	0.16488	0.17052	0.16816	0.17046	0.1704
7	2	1	0.16405	0.16731	0.17191	0.17081	0.17229	0.17306
8	3	1	0.17002	0.17304	0.17653	0.17663	0.17831	0.17831
9	4	1	0.17342	0.1776	0.1798	0.17998	0.1821	0.18066
10	5	1	0.18369	0.1848	0.18807	0.18962	0.18904	0.18801

#### Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```





Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(KM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```





## **Analyze Education and Marriage**

Aggregating over education, savings, and shocks, what are the differential effects of Marriage and Age.

```
% Generate some Data
mp_support_graph = containers.Map('KeyType', 'char', 'ValueType', 'any');
ar_row_grid = ["E0M0", "E1M0", "E0M1", "E1M1"];
mp_support_graph('cl_st_xtitle') = {'Age'};
mp_support_graph('st_legend_loc') = 'best';
mp_support_graph('bl_graph_logy') = true; % do not log
mp_support_graph('st_rounding') = '6.2f'; % format shock legend
mp_support_graph('cl_scatter_shapes') = {'*', 'p', '*', 'p' };
mp_support_graph('cl_colors') = {'red', 'red', 'blue', 'blue'};
```

MEAN(VAL(EM,J)), MEAN(AP(EM,J)), MEAN(C(EM,J))

marry

mean_age_18

Tabulate value and policies:

group

mean_age_20

mean age 21

mean_age_23

mean_age_22

mean_age_19

1	0	0	0.093194	0.09234	0.091336	0.086002	0.081269	0.077058
2	1	0	0.090871	0.089536	0.087894	0.076887	0.068006	0.060783
3	0	1	0.034608	0.033464	0.032366	0.030036	0.027998	0.026212
4	1	1	0.031464	0.030327	0.029228	0.025608	0.022663	0.020253

#### % Consumption

st_title = ['MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=' num2str(welf_checks) ', TR=' num2st
tb_az_c = ff_summ_nd_array(st_title, mn_MPC_U_gain_share_check, true, ["mean"], 3, 1, cl_mp_dat

xxx MEAN(MN_MPC_U_GAIN_CHECK(EM,J)), welf_checks=2, TR=0.0017225 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx										
gr	oup	edu	marry	mean_age_18	mean_age_19	mean_age_20	mean_age_21	mean_age_22	mean_age_23	
_										
	1	0	0	0.17215	0.17483	0.17774	0.17865	0.1795	0.18029	
	2	1	0	0.18545	0.18977	0.19485	0.19621	0.19731	0.19817	
	3	0	1	0.16439	0.16703	0.16997	0.16976	0.17088	0.17058	
	4	1	1	0.17686	0.18002	0.18476	0.18432	0.18599	0.1856	

#### Graph Mean Values:

```
st_title = ['MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' num
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_V\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_v{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```





### Graph Mean Consumption (MPC: Share of Check Consumed):

```
st_title = ['MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J)), welf\_checks=' num2str(welf_checks) ', TR=' r
mp_support_graph('cl_st_graph_title') = {st_title};
mp_support_graph('cl_st_ytitle') = {'MEAN(MN\_MPC\_U\_GAIN\_CHECK(EM,J))'};
ff_graph_grid((tb_az_c{1:end, 4:end}), ar_row_grid, age_grid, mp_support_graph);
```



