Housing Price Analysis

<u>Group 4</u> Pranav, Priya, Sheel, Sirjana

Reason why we selected this topic?

- Housing market is a hot topic and considered as best long term investment
- House price trend always a concern for majority of population

- Analyse and predict house price based on multiple factors such as Year, Mortgage rate and Immigration
- Provide expected house price based on user input

Data Source

HPI Data: A monthly seasonally adjusted housing prices showing composite HPI and Composite Benchmark was extracted from CMHC (Canada Mortgage and Housing Corporation) from January 2005 to September 2022

Mortgage Data: A dataset showing monthly mortgage rate from 1951 - 2022 was collected from Kaggle.com.

<u>Immigrants Data</u>: Quarterly information on immigrants was extracted from Statistics Canada.

Tools and Technology

Preprocessing Data: Python, Pandas

DataBase: PostgreSQL, SQLAlchemy

Machine Learning: Python - pandas, sklearn, train_test_split, matplotlib

Visualisation: Flask, Plotly, json, Javascript, HTML

Presentation: Google Slides

Quick Database Diagram

Data Set

Mortgage_rates.csv

3 columns and 858 rows

house_price.xlsx

13 columns and 214 rows

• <u>immigration.xlsx</u>

30 rows and 130 columns

Summary of Dataframe

	Max	Min	Average
House Price (CAD)	840,000.00	221,100.0	438,980.28
No. of Immigrant	138,190.0	34,070.0	63,574.82
Mortgage Rate (%)	6.81	3.20	4.5

Data Preprocessing

Cleaned table

- Date column in mm-dd-yy format
- Price column as the dependent variable
- Final tables as csv file
- Quarterly date changed to monthly format
- Dropped unnecessary columns
- Filled missing values for immigrants data
- Filtered data from 2000-05-01 to 2021-12-01

ERD & Database

 Saved and exported three clean dataframe to PgAdmin using connection string

```
# Save immigrant dataframe(df) to SQL
df3.to_sql(name='immigrant', con=engine,if_exists='replace',index=False)
```

- → Housing_Database
 → ⑤ Casts
 → ❤ Catalogs
 → ☐ Event Triggers
 → ☐ Extensions
 → ⑥ Foreign Data Wrappers
 → ☐ Languages
 → ஃ Publications
 - ✓ Schemas (1)
 ✓ public
 - > 🖟 Aggregates
 - > A Collations
 - > 🏠 Domains
 - > 🔓 FTS Configurations
 - > IT FTS Dictionaries
 - > Aa FTS Parsers
 - > @ FTS Templates
 - > Foreign Tables
 - > (iii) Functions
 - > 🖟 Materialized Views
 - > 🔁 Operators
 - > () Procedures
 - > 1..3 Sequences
 - ▼ 目 Tables (4)
 - > 🖽 db1
 - > 🗎 house_price
 - > III immigrant
 - > \equiv mortgage_rate

Final Database

 Created final database by joining three tables on date column

Date	HPI	Price	Immigrants	Mortgage Rate
2005-01	100.0	221100	18812.666666666700	5.6
2005-02	100.6	222500	18812.666666666700	5.59
2005-03	101.4	224200	18812.666666666700	5.6
2005-04	102.2	225900	24823.666666666700	5.67
2005-05	102.8	227400	24823.666666666700	5.55
2005-06	103.8	229600	24823.666666666700	5.31
2005-07	105.1	232400	25315.0	5.26
2005-08	106.5	235400	25315.0	5.32
2005-09	107.9	238500	25315.0	5.3
2005-10	109.4	241900	18462.0	5.39
2005-11	111.0	245400	18462.0	5.56
2005-12	112.4	248500	18462.0	5.6
2006-01	114.1	252200	18378.0	5.65
2006-02	115.6	255600	18378.0	5.75
2006-03	117.2	259100	18378.0	5.78
2006-04	119.0	263000	22636.33333333333	5.88

Final Database

Imported to Pandas using connection string to connect it to machine learning model and visualization dashboard

```
connect_string = f"postgresql://postgres:zunu1900@127.0.0.1:5432/Housing_Database"
```

```
engine=create_engine(connect_string)
data = pd.read_sql("SELECT * FROM db1", engine)
print(f"Got dataframe with {len(data)} entries")
```

Machine Learning Model

Preliminary data processing

Feature Selection

Training and Testing split

- Date column was changed to ordinal
- HPI column was dropped

- Target variable:Price
- Features: rate, immigrants, date

 Data were split into train and test size in the ratio of 80:20

Model Choice

Linear Regression Model is used as we are predicting house price based on a combination of input variables like date, interest rate, immigrant population.

Benefit

- The model is easier to implement, easier to train and interpret
- It helps to find the nature of relationship among the variables

Drawback

- The model is prone to overfitting
- It assumes linear relation between dependent and independent variable thus can over simplify real world problems

Main Analysis-Findings

Linear Regression Model was run and following are the results from the Model

R-squared: 0.94358

Exploratory Data Analysis

Final Dashboard

Machine Learning Prediction

Challenges Insufficient Dataset Technical issues (Github: merge deployment conflict)

Recommendations for Future Analysis

Time series Analysis

Include daily data to conduct time series analysis

Include more features in the dataset

Include more features like region, income level, house types in the analysis

THANK YOU