- **Problem 1.** Alternative regulators in QED (Peskin & Schroeder 7.2) In Section. 7.5, we saw that the Ward identity can be violated by an improperly chosen regulator. Let us check the validity of the identity $Z_1 = Z_2$, to order α , for several choices of the regulator. We have already verified that the relation holds for Paul-Villars regularization.
- **1(a)** Recompute δZ_1 and δZ_2 , defining the integrals (6.49) and (6.50) by simply placing an upper limit Λ on the integration over ℓ_E . Show that, with this definition, $\delta Z_1 \neq \delta Z_2$.
- **1(b)** Recompute δZ_1 and δZ_2 , defining the integrals (6.49) and (6.50) by dimensional regularization. You may take the Dirac matrices to be 4×4 as usual, but note that, in d dimensions,

$$g_{\mu\nu}\gamma^{\mu}\gamma^{\nu}=d.$$

Show that, with this definition, $\delta Z_1 = \delta Z_2$.

Problem 2. (Peskin & Schroeder 7.3) Consider a theory of elementary fermions that couple both to QED and to a Yukawa field ϕ :

$$H_{\rm int} = \int d^3x \, \frac{\lambda}{\sqrt{2}} \phi \bar{\psi} \psi + \int d^3x \, e A_\mu \bar{\psi} \gamma^\mu \psi.$$

- **2(a)** Verify that the contribution to Z_1 from the vertex diagram with a virtual ϕ equals the contribution to Z_1 from the diagram with a virtual ϕ . Use dimensional regularization. Is the Ward identity generally true in this theory?
- **2(b)** Now consider the renormalization of the $\phi \bar{\psi} \psi$ vertex. Show that the rescaling of this vertex at $q^2 = 0$ is not canceled by the correction to Z_2 . (It suffices to compute the ultraviolet-divergent parts of the diagrams.) In this theory, the vertex and field-strength rescaling give additional shifts of the observable coupling constant relative to its bare value.

January 14, 2021 1