

Создание и адаптация модели SRM-6

Грачик Еремян

Содержание

Геология

- Краткие сведения о модели
- Создание границы модели
- Создание поверхности кровли пласта
- Создание скважин
- Создание каротажей и отбивок
- Построение поверхности подошвы пласта
- 7. Задание разлома и грида
- Задание ЗСВ
- Расчет ФЕС по скважинам
- 10. Задание кубов ФЕС
- 11. Задание пластовых флюидов
- 12. Задание ОФП
- 13. Задание сжимаемости породы
- 14. Задание заканчивания скважин

• Гидродинамика и адаптация

- 15. Создание Truth Case
- 16. Создание Base Case
- 17. Задание целевой функции
- 18. Задание неопределенности в Workflow
- 19. Адаптация Base Case
- 20. Результаты адаптации

Краткие сведения о модели

- Название **SRM-6** (synthetic reservoir model with 6 wells)
- Размер модели в плане 1800х2400м
- Толщина пласта 11-14м
- Грид 18х24х15, 6480 ячеек,
- Разработка методом заводнения
- Адаптация на синтетическую историю

Создание и сохранение нового проекта

- 1. Создание и сохранение нового проекта в Petrel
- a) **File** → **New project** → Левый клик
- b) **File** → **Save project as** → Создаем папку **SRM-6**, заходим в неё, задаем имя файла для сохранения "SRM-6" → Сохранить
- c) При вопросе о системе координат выбираем опцию «Continue spatially unaware»

Создание границы модели

- 2. Создание границы модели
- a) **Home** → **Window** → **2D window** → Левый клик
- b) **Structural Modeling** → **Polygon editing** → Иконка **Add points to polygon** → Левый клик в 2D окне → Появится точка
- c) Правый клик на объект "Polygons 1" во вкладке **Input** → F2 → Задать имя "SRM-6_boundary"
- d) Правый клик на "SRM-6_boundary" → **Spreadsheet** → Вставить по 4-ой иконке ещё 3 строки и прописать координаты.

Создание границы модели

- 2. Создание границы модели
- e) Ha **Tool Palette** клик на иконку **Polygon editing** → Правый клик на точку полигона → **Close selected polygon** → Левый клик (теперь прямоугольный полигон закрыт)

Создание поверхности кровли пласта

- 3. Создание поверхности кровли пласта
- a) Structural Modeling → Point editing → Иконка Add points to pointset → Левый клик в 2D окне → Появится точка → Закрыть Tool Palette
- b) Правый клик на объект "Points 1" во вкладке **Input** → F2 → Задать имя "Points for Top Surface"
- c) Правый клик на "Points for Top Surface" → **Spreadsheet** → Вставить по 1-ой иконке ещё 9 строк и прописать координаты для получившихся 10 точек.

Создание поверхности кровли пласта

- 3. Создание поверхности кровли пласта
- d) Structural Modeling → Make Surface → Заполнить необходимые данные → Apply
- → Поверхность кровли пласта Тор создана

Создание скважин

- 4. Создание скважин
- a) **Home** → **Object** → **New well** → Левый клик
- b) В окне Create new well заполнить необходимые данные \rightarrow **Ок**
- с) Поочередно создать 6 скважин (Р добывающие, І нагнетательные)

Создание каротажей и отбивок

- 5. Создание каротажей и отбивок
- a) Home → Window → Well section window → Левый клик → Ок
- b) Input → Wells → Global well logs → Правый клик → Insert global well log (cont.)
- c) Раскрыть список Global well logs → Правый клик по Log1 → Левый клик по Settings
- d) В окне **Settings** выбрать вкладку **Info** \rightarrow Задать имя "SP", выбрать template "**Spontaneous potential**" \rightarrow **Ок** \rightarrow Шаблон для каротажа SP создан
- e) Чтобы создать сами каротажи для каждой скважины: правый клик по скважине -> Add empty "SP" log to well (для каждой из 6)
- f) Скважина \rightarrow Well logs \rightarrow Правый клик по SP \rightarrow Spreadsheet \rightarrow Заполнить таблицу \rightarrow Ок

Создание каротажей и отбивок

5. Создание каротажей и отбивок

- g) Для создания пластопересечений Правый клик на **Wells** во вкладке **Input** → **Settings** → Левый клик → Вкладка **Report** → Заполнить необходимые данные → **Run** → **O**к
- → Получили пересечения скважин с поверхностью кровли (папка **Well tops** во вкладке **Input**)
- h) Отобразим каротажи с выравниванием от полученных точек кровли: Well tops → Stratigraphy → Правый клик по Тор → Flatten well section on well top (видно расхождение от каротажей)

Создание каротажей и отбивок

5. Создание каротажей и отбивок

i) Добавим отбивку подошвы по SP:

Stratigraphy → **Edit well tops** → B окне Well section window поставить отбивку подошвы левым кликом на каждой скважине (отбивка Тор не должна быть активной (выделенной жирным) для создание именно новой отбивки) → Появится **Horizon 1** → Переименовать его в "Bottom".

j) Скорректируем отбивки в соответствии с каротажем SP: Правый клик на **Well tops** → **Spreadsheet** → Выбрать **MD** из списка **Edit point** → Записать отбивки кровли и подошвы по SP → **Apply** → **Ok**

Well	Surface	MD
P1	Тор	2431.19
P1	Bottom	2444.74
P2	Тор	2428.36
P2	Bottom	2441.21
Р3	Тор	2424.98
Р3	Bottom	2437.92
l1	Тор	2443.61
l1	Bottom	2454.7
12	Тор	2447.31
12	Bottom	2461.11
13	Тор	2442.37
13	Bottom	2456.55

Построение поверхности подошвы пласта

6. Построение поверхности подошвы пласта

а) Подсаживаем поверхность кровли на обновленные отбивки по скважинам: Structural Modeling → Make Surface → Заполнить необходимые данные → Apply → Поверхность кровли пласта Тор обновлена в соответствии с корректными отбивками по скважинам

Построение поверхности подошвы пласта

6. Построение поверхности подошвы пласта

b) Строим поверхность подошвы пласта на основе поверхности кровли и отбивок подошвы в скважинах: Structural Modeling → Make Surface → Заполнить необходимые данные → Apply

7. Задание разлома и грида

- а) Создаем модель с возможностью задавать разломы: Structural modeling → Define model
- \rightarrow Задаем имя модели "SRM-6" \rightarrow Ok (модель появится во вкладке Models)
- b) Преобразование полигона границы модели в границу модели во вкладке **Models**: Правый клик по полигону "SRM-6_boundary" → **Convert to grid boundary** → Левый клик
- c) Строим вспомогательный полигон для создания разлома: Выделить полигон "SRM_boundary" во вкладке **Input** → Copy/Paste (копия появится в самом низу списка) → Переименовать в "Polygon for Fault" → Правый клик по полигону → **Spreadsheet** → Задать координаты плоскости разлома → **Ok**
- d) **Home** → **Window** → **3D window** → Левый клик
- e) Включить **Polygon for Fault** во вкладке **Input** → На панели инструментов выбрать **View from west** → Приблизить прямоугольник
- f) Structural Modeling → Edit fault model → Левый клик → Add pillar by 1 point

7. Задание разлома и грида

- g) Задаем параметры разлома и вставляем 2 отрезка (pillars) левым кликом мыши на середину левой и правой стороны полигона → Модель разлома создана во вкладке **Models**
- h) Построение грида: Выбрать **2D окно** → Включить модель разлома **Fault 1** и границу модели **Boundary** во вкладке **Models**

7. Задание разлома и грида

i) Задаем грид: Structural Modeling → Pillar gridding → По умолчанию 100х100м → Apply → $Ok \rightarrow Yes$

7. Задание разлома и грида

j) Задаем объект **Horizons** для грида во вкладке **Models** на основе отбивок и поверхностей кровли и подошвы: **Structural Modeling** → **Horizons** → Добавляем 2 строки и задаем поверхности и отбивки → Переходим во вкладку **Faults** → Настраиваем параметры разлома

 \rightarrow Apply \rightarrow Ok

7. Задание разлома и грида

k) Задаем разбиение на слои по вертикали: Structural Modeling → Layering → Задаем количество слоев \rightarrow Apply \rightarrow Ok \rightarrow Грид 18x24x15 ячеек с разломом создан

Задание ЗСВ

- 8. Задание 3CB (FWL)
- a) Property Modeling → Contacts → Задаем параметры контактов → Apply → Ok
- → Объект FWL создан в папке Fluid Contacts во вкладке Models
- b) Для визуализации куба свойств в 3D окне создадим куб свойств высоты над уровнем FWL, который понадобится при последующих расчетах: Property Modeling → Geometrical → Выбираем Method Above contact и подаем на вход созданный FWL из вкладки Models → Apply → Ok

Задание ЗСВ

- 8. Задание 3CB (FWL)
- с) Переименуем созданный куб в Properties во вкладке Models в "H_FWL"
- d) Перейдем в 3D окно и отобразим куб свойств **H_FWL**
- e) Настроим цветовую шкалу: Правый клик по кубу H_FWL → Settings → Colors

Расчет ФЕС по скважинам

- 9. Расчет ФЕС по скважинам
- а) Перейдем в окно Well section window
- b) Правый клик на Global well logs в разделе Wells во вкладке Input → Calculator → Рассчитаем a_SP, Net_Res, Poro и Perm по формулам → Рассчитанные кривые появятся во вкладке Input в папке Global well logs и в папках каждой скважины

Расчет ФЕС по скважинам

- 9. Расчет ФЕС по скважинам
- c) Настроим объект **Net_Res**: Правый клик по каротажу **Net_Res** → **Settings** → **Info** → Левый клик по **Color Table** → Настраиваем названия и цвета фаций → **Apply** → **Ok**

10. Задание кубов ФЕС

a) Произведем апскейлинг свойств **Net_Res**, **Poro** и **Perm** на ячейки модели, в которых расположены скважины: **Property Modeling** → **Well log upscaling** → Hacтpaиваем параметры апскейлинга → **Apply** → **Ok**

10. Задание кубов ФЕС

b) Для проверки результата разместим кривые и апскейленные свойства на одних и тех же треках, а так же настроим границы отображения и цветовые шкалы (для кубов)

10. Задание кубов ФЕС

c) Задание куба коллектора: **Property Modeling → Facies →** Настройка параметров → **Apply** → **Ok** → Свойство **Net_Res[U]** теперь распределено по всему кубу модели

- 10. Задание кубов ФЕС
- d) Задание куба пористости: **Property Modeling** \rightarrow **Petrophysical** \rightarrow Настройка параметров
- \rightarrow Apply \rightarrow Ok \rightarrow Свойство Poro[U] теперь распределено по всему кубу модели

- 10. Задание кубов ФЕС
- e) Задание куба проницаемости: Property Modeling -> Petrophysical -> Настройка параметров
- → Apply → Ok → Свойство Perm[U] теперь распределено по всему кубу модели
- *Присваиваем значения 0 для фации Shale аналогично с кубом пористости

10. Задание кубов ФЕС

f) Задание недостающих кубов с помощью калькулятора свойств (**один из методов**): **Property Modeling** → **Calculator** → Задание формулы и выбор правильного шаблона → **Enter**

Зависимости

$$\varphi = 0.175\alpha_{SP} + 0.025
\ln k = 70\varphi - 8.2$$

$$J_f = \frac{\Delta \rho g \Delta h \sqrt{k/\varphi}}{\sigma \cos \theta}
S_{wc} = -0.048 \ln k + 0.5$$

$$S_w = -0.11 \ln J_f + 0.48$$

Кубы свойств

*Значение Jf=1.1 соответствует входному капиллярному давлению и позволяет моделировать ВНК

10. Задание кубов ФЕС

g) Для проверки отобразим кубы SWL, SWATINIT, SWTRANS, SOWCR, SWU, Jf в окне Well section window, настроив шкалы насыщенностей от 0 до 1 и Jf от 0 до 20.

Задание пластовых флюидов

- 11. Задание пластовых флюидов
- a) Reservoir Engineering
- → Fluid model → Use presets
- → Dead oil → Настройка параметров \rightarrow Apply \rightarrow Ok
- → Пластовые флюиды заданы (папка Fluids в Input)

Задание ОФП

- 12. Задание ОФП
- a) Reservoir Engineering → Rock physics → Настройка параметров во вкладках Saturation
- → Apply → Ok → ОФП задана (папка Rock physics functions в Input)

Параметр	Знач.	Комментарий
Swmin	0.00	Связанная водонасыщенность
Swcr	0.00	Критическая водонасыщенность
Sorw	0.01	Остаточная нефтенасыщенность
Corey_O_W	5.00	Степень уравнения Кори по нефти
Corey_water	1.20	Степень уравнения Кори по воде
Krw_Sorw	0.70	Концевая точка ОФП по воде Krw при Sorw
Krw_S1	1.00	Макс. ОФП по воде Krw при Sw=1
Kro_Somax	1.00	ОФП по нефти Kro при макс. при So

$$Sw_{scaled} = Sw_{norm}(1 - SOWCR - SWL) + SWL$$

^{*}ОФП будут масштабироваться на каждую ячейку на значения рассчитанных кубов SWL, SWCR, SOWCR

Задание сжимаемости породы

- 13. Задание сжимаемости породы
- a) Reservoir Engineering → Rock physics → Настройка параметров во вкладке Compaction
- → Apply → Ok → Сжимаемость породы задана (папка Rock physics functions в Input)

Задание заканчивания скважин

14. Задание заканчивания скважин

a) Well Engineering → Automated design → Hастройка параметров → Run → Ok → Поочередное создание заканчиваний скважин в соответствии с заданными датами

→ Во вкладке Input у каждой скважины появится подпапка Completions

Скважина	Бурение
P1	01.01.2010
12	01.07.2010
P2	01.01.2011
13	01.07.2011
Р3	01.01.2012
l1	01.07.2012

Создание Truth Case

15. Создание Truth Case

а) Для создания Truth Case с "истинными" значениями параметров модели сначала нужно рассчитать модель "на прогноз" с заданными забойными давлениями. Для этого нужно создать объект Development strategy с датами моделирования 2010.01.01 до 2017.01.01. Well Engineering → Development strategy → Настройка параметров → Apply→ Ok → Во вкладке Input появится папка Development strategies

Создание Truth Case

15. Создание Truth Case

b) Зададим в качестве настроечного параметра (обладающего неопределенностью) проводимость разлома. Для Truth Case "истинная" проводимость разлома будет 0.2. Reservoir Engineering \rightarrow Assign multiplier \rightarrow Настройка параметров \rightarrow Apply \rightarrow Ok → Во вкладке Models папке 3D grid – Fault – Fault properties появится объект Transmissibility multiplier со значением 0.2

- c) Рассчитаем **Truth Case** модель при проводимости разлома **0.2**: **Simulation** → **Define case** → Настройка параметров → **Check** (инициализация)
- → Run (расчет) → Ok (закрыть окно) → Truth_Case рассчитан (появился во вкладке Cases), в папке с проектом Петрель появилась папка SRM-6.sim с результатами расчетов

15. Создание Truth Case

d) Пересчитаем **Truth Case** с добавленными переменными результатов:

Simulation → **Define case** → **Advanced** → **Editor** → Добавление переменных → **Apply** → **Ok**→ **Run** → **Ok** → **Truth_Case** рассчитан со всеми необходимыми для аналитики переменными (новые кейсы будут автоматически основаны на этом шаблоне)

- e) Выгрузим результаты расчетов **Truth_Case** в формате **.vol** для последующего использования в качестве контроля по жидкости для **Development strategy**:
 Вкладка **Results** → Папка **Dynamic results data** → Раскрыть папку **Rates** (можно любую) → Правый клик по любому дебиту внутри → Левый клик по **Export object** → Указываем путь, формат и имя для сохранения → **Coxpaнить** → Выбираем необходимые данные → **Ok** → Файл **Control LRAT.vol** сохранится в указанной папке
- Export as × 🔀 Export dynamic result data × Re-sampling G 🧦 📂 🞹 🕶 NRM-6 Папка: Resample time axis From: 29.03.2019 🔲 🔻 To: 29.03.2019 🗒 🔻 Имя Дата изменения Тип SRM-6.ptd 01.04.2019 15:45 Папка с файлами Every: 1 Month(s) Недавние 🛜 SRM-6.sim 01.04.2019 16:32 Папка с файлами места Select result sets Select results None None All Рабочий стол %☐ Gas-oil ratio -- Truth_Ca: ■ V Pressures P Tubing head pressure P Pressure Выбираем: P V Bottom hole pressure WCT, BHP, Библиотеки Performance **™** Rates OPR, WPR, WIR, P Reservoir volume production **Identifier (well)** Reservoir volume injection rat 🖓 🔽 Water production rate Компьютер P 🗸 Oil production rate 🖳 Gas production rate Имя файла: Сохранить 🤁 🗹 Water injection rate P Oil injection rate **Тип** файла: Well observed data (ASCII) (*.vol) Отмена 🏂 🔲 Gas injection rate File example/description: Thermal properties Volumes | Importing observed data 📴 🔽 Identifier Example file: *FIELD *DAILY *IGNORE_MISSING ✓ OK X Cancel

- f) Загрузим Control_LRAT.vol для использования в качестве контроля для Development strategy: Вкладка Input → Правый клик по Wells → Левый клик по Import (on selection) → Указать путь к Control_LRAT.vol → Выбрать файл → Открыть → Ok
- → Данные загружены во складку Input

15. Создание Truth Case

g) Создадим Development strategy типа History с контролем по жидкости

Well Engineering → Development strategy → Настройка параметров → Apply→ Ok

→ Во вкладке Input в папка Development strategies появится объект History strategy

15. Создание Truth Case

h) Пересчитываем Truth Case, указав Development strategy **History strategy Simulation** → **Define case** → Настройка параметров → **Run**→ **Ok**

- i) Выгрузим результаты расчета **Truth Case** как **History.vol**, выбрав параметры: **WCT, BHP, OPR, WPR, WIR, Identifier (well)**
- j) Загрузим файл **History.vol в качестве синтетической истории для скважин**, с которой будут сравниваться расчеты по адаптации.
- *Данную операцию с созданием синтетической истории после создания файла для контроля по жидкости мы выполнили по причине того, что Development strategy типов Prediction и History работают несколько поразному. В данном случае, мы получили аналог исторических данных, на которые можно адаптировать несадаптированную модель.
- *В любых расчетах контроль по жидкости устанавливается данными в файле Control_LRAT.vol

15. Создание Truth Case

к) Визуализируем рассчитанные показатели разработки залежи:

Home → **Window** → **Charting window** → Левый клик

Simulation → Results charting → Левый клик → Настройка параметров → Apply → Ok

→ Шаблоны графиков сохранятся во вкладке Results в папке Results charts and analyses

15. Создание Truth Case

I) Построенные графики можно наблюдать на вкладке Charting window

16. Создание Base Case

а) Base Case – модель в первом приближении для процесса адаптации. Для создания Base **Case** изменим проводимость разлома на **1**. В процессе автоматизированной адаптации алгоритму необходимо будет итеративно подобрать истинную проводимость разлома (0.2). Reservoir Engineering → Assign multiplier → Edit existing → Изменить Transmissibility multiplier constant Ha 1 \rightarrow Apply \rightarrow Ok

16. Создание Base Case

b) Рассчитаем Base Case модель при измененной проводимости разлома 1: Simulation → Define case → Create new → Hasbahue меняем на Base Case → Check → Run → Ok → Base_Case рассчитан (появился во вкладке Cases и в папке с проектом Петрель SRM-6.sim)

16. Создание Base Case

с) Отобразим показатели разработки модели **Base Case** на графиках в **Charting window** для скважины **P3**. Для этого создадим и настроим график для **Base Case**.

16. Создание Base Case

d) Из графика показателей работы скважины **P3** видна невязка по всем показателям по причине того, что проводимость разлома **Base Case** равна **1** и отличается от истинной **0.2**.

Задание целевой функции

17. Задание целевой функции

а) Для того, чтобы перейти к процессу автоматизированной адаптации необходимо задать целевую функцию, которая будет характеризовать расхождение расчета с историей.

Simulation → Objective function → Настройка параметров → Apply → Ok

→ Созданная целевая функция появится в папке Objective functions во вкладке Input

Задание неопределенности в Workflow

18. Задание неопределенности в Workflow

а) Для осуществления адаптации необходимо задать неопределенность параметру модели, при подборе которого будет достигаться сходимость расчетных параметров разработки с историей. Зададим в качестве неопределенности проводимость разлома в Workflow. Simulation → Uncertainty and optimization → Настройка параметров → Добавление неопределенности в проводимость разлома \rightarrow Задание диапазона изменения в Variables

Адаптация Base Case

19. Адаптация Base Case

а) Выберем и настроим оптимизационный алгоритм. Возьмем для примера Simplex optimizer. До начала расчета нужно проверить корректность задания целевой функции в Workflow, нажав двойной клик по целевой функции в теле Workflow.

Для старта адаптации нажать $Test \rightarrow Run \rightarrow Процесс автоадаптация начался$

Результаты адаптации

20. Результаты адаптации

а) Просмотрим и оценим результаты адаптации. После завершения оптимизации, когда достигнута сходимость либо максимально заданное число итераций, появляется отчет в окне **Output sheet**. Как видно из таблицы, истинная проводимость разлома вычислена, начиная с **10-й итерации**.

7	\$LOOP		\$Fault	\$OF1_OPR_BHP	Accepted by
8	1		0.50000000	98.66182921	true
9	2		0.25000000	96.89976431	true
10	3		0.00000000	751.61132406	true
11	4		0.37500000	98.00649784	true
12	5		0.12500000	98.34294363	true
13	6		0.31250000	97.53968544	true
14	7		0.18750000	96.41292822	true
15	8		0.21875000	96.46749966	true
16		9	0.15625000	97.21325079	true
17		10	0.20312500	96.21427807	true
18		11	0.19531250	96.25175965	true
19		12	0.21093750	96.34427257	true
20		13	0.19921875	96.16984200	true
21		14	0.20117188	96.17680310	true
22					
23	Optimization has converged.				
24	Best result is iteration 13.				
25					
26	Base Case	13	0.19921875	96.16984200	true

Результаты адаптации

20. Результаты адаптации

b) Визуализируем результаты 10-й итерации (**Base_Case_10**). Таким образом, достигнута адаптация модели. Расчет 14 итераций занял 5 минут.

Спасибо за внимание

Грачик Еремян eremyanga@pet.hw.tpu.ru

Национальный исследовательский Томский политехнический университет

Центр подготовки и переподготовки специалистов нефтегазового дела

Россия, г. Томск, ул. Усова, 4a hw.tpu.ru info@hw.tpu.ru

