Tactile Rendering Based on Skin Stress Optimization

Mickeal VERSCHOOR, Dan CASAS et Miguel A. OTADUY

Samuel LE BERRE 13/11/2020

Sommaire

Le matériel

Algorithme

Mesure

Résultat

Pour aller plus loin

Le matériel

L'appareil

3 moteurs

3 DoF

+- 40°

LeapMotion

16 Os et 70 contraintes

30 fps

Algorithme

Réseau de neurone :

- → 18 entrées
- → 10 sorties
- → 260 neurones dans la couche cachée
- → softplus
- → erreur : 4.2%
- → erreur: 7.4% sans frottement

Algorithme

Algorithme de base :

argmin du résultat du réseau de neurone - le contact cible (en VE)

Optimisation:

Gauss-Newton

7.5ms et 6.5 iteration

Mesure

Résultats

	Ours	Force	p-val	Geometry	p-val
contact loc.	82% (11%)	51% (8%)	4e-9	78% (11%)	0.17
press/slide	73% (14%)	53% (14%)	8e-4	53% (9%)	4e-5

Pour aller plus loin

Peu de DoF

1 appareil à chaque doigt

Augmentation linéaire du problème

Sources

"Tactile Rendering Based on Skin Stress Optimization", Mickeal Verschoor, Dan Casas, et Miguel A. Otaduy. SIGGRAPH 2020

https://www.youtube.com/watch?v=lioOnNVHxFk