Álgebra Universal e Categorias

Exercícios - Folha 3 -

13. Considere os reticulados (R_1, \leq_1) e (R_2, \leq_2) a seguir representados

Para cada uma das aplicações h seguintes, diga se: i. h é isótona; ii. h é um isomorfismo de reticulados.

- (a) $h: R_1 \to R_1$, definida por h(a) = a, h(b) = c, h(c) = d, h(d) = e, h(e) = e.
- (b) $h: R_1 \to R_2$, definida por h(a) = x, h(b) = y, h(c) = z, h(d) = w, h(e) = v.
- (c) $h: R_2 \to R_1$, definida por h(x) = a, h(y) = b, h(z) = c, h(w) = d, h(v) = e.
- (d) $h: R_2 \to R_2$, definida por h(x) = x, h(y) = z, h(z) = y, h(w) = w, h(v) = v.
- 14. Sejam $\mathcal{R}_1 = (R_1, \wedge_1, \vee_1)$ e $\mathcal{R}_2 = (R_2, \wedge_2, \vee_2)$ reticulados e $h: R_1 \to R_2$ um homomorfismo de reticulados. Mostre que:
 - (a) Se $(S_1, \wedge'_1, \vee'_1)$ é um subrreticulado de \mathcal{R}_1 , então $(h(S_1), \wedge'_2, \vee'_2)$, onde \wedge'_2 e \vee'_2 são as correspondências definidas por

$$x \wedge_2' y = x \wedge_2 y$$
, $x \vee_2' y = x \vee_2 y$, $\forall x, y \in h(S_1)$,

é um subrreticulado de \mathcal{R}_2 .

(b) Se $(S_2, \wedge'_2, \vee'_2)$ é um subrreticulado de \mathcal{R}_2 e $h^{\leftarrow}(S_2) \neq \emptyset$, então $(h^{\leftarrow}(S_2), \wedge'_1, \vee'_1)$, onde \wedge'_1 e \vee'_1 são as correspondências definidas por

$$x \wedge_1' y = x \wedge_1 y$$
, $x \vee_1' y = x \vee_1 y$, $\forall x, y \in h^{\leftarrow}(S_2)$,

é um subrreticulado de \mathcal{R}_1 .

- 15. Mostre que se (P, \leq) é um c.p.o. tal que, para todo $H \subseteq P$, existe $\inf H$, então (P, \leq) é um reticulado completo.
- 16. Mostre que todo o reticulado finito é algébrico.
- 17. Justifique que cada um dos reticulados a seguir indicados é algébrico:
 - (a) $(\mathcal{P}(\mathcal{A}),\subseteq)$, onde $\mathcal{P}(\mathcal{A})$ é o conjunto das partes de um conjunto A e \subseteq é a relação de inclusão usual (os elementos compactos de $(\mathcal{P}(\mathcal{A}),\subseteq)$ são os subconjuntos finitos de A).
 - (b) $(\operatorname{Subg}(G), \subseteq)$, onde $\operatorname{Subg}(G)$ representa o conjunto dos subgrupos de um grupo G e \subseteq é a relação de inclusão usual (os elementos compactos de $(\operatorname{Subg}(G), \subseteq)$ são os subgrupos de G finitamente gerados).
- 18. Sejam \mathcal{R} e \mathcal{S} reticulados. Mostre que:
 - (a) Se \mathcal{R} é distributivo (modular), então qualquer subrreticulado de \mathcal{R} é distributivo (modular).
 - (b) Se \mathcal{R} e \mathcal{S} são distributivos (modulares), então $\mathcal{R} \times \mathcal{S}$ é distributivo (modular).
 - (c) Se \mathcal{R} é distributivo (modular) e \mathcal{S} é uma imagem homomorfa de \mathcal{R} , então \mathcal{S} é distributivo (modular).

19. Diga, justificando, quais dos seguintes reticulados são distributivos e quais são modulares.

- 20. Prove que
 - (a) Um reticulado $(R;\wedge,\vee)$ é distributivo se e só se, para quaisquer $a,b,c\in R$,

$$(a \lor c = b \lor c \quad e \quad a \land c = b \land c) \Rightarrow a = b;$$

(b) O reticulado $(\mathbb{N}, m.d.c., m.m.c.)$ é distributivo.