卷

提醒:请诚信应考,考试违规将带来严重后果!

教务处填写:

年			日
考	试	用	

装订线

(题目不得超过此线

华号:

湖南大学课程考试试卷

试卷编号: ____A___; 考试形式: __ 闭卷____; 考试时间: _120_分钟。

题 号	1~2	3~4	5~6	7~8	9~10	11			总分
应得分	16	16	18	20	18	12			100
实得分									
评卷人									

1. (8分) 计算
$$n$$
 阶行列式 $D_n = \begin{vmatrix} \alpha + \beta & \alpha & 0 & \cdots & 0 & 0 \\ \beta & \alpha + \beta & \alpha & \cdots & 0 & 0 \\ 0 & \beta & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha \\ 0 & 0 & 0 & \cdots & \beta & \alpha + \beta \end{vmatrix}$

2. (8分) 设
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$
, 求 A^n .

0 0 0 0

3.
$$(8 分)$$
 设 $A = \begin{bmatrix} k & 1 & 1 & 1 \\ 1 & k & 1 & 1 \\ 1 & 1 & k & 1 \\ 1 & 1 & 1 & k \end{bmatrix}$, B 为四阶非零矩阵,且 $AB = 0$,求 k 的值.

4. (8 分) 求向量组 $\alpha_1 = (1,-1,2,1,0)^T$, $\alpha_2 = (2,1,4,-2,0)^T$, $\alpha_3 = (3,0,6,-1,0)^T$, $\alpha_4 = (0,3,0,0,1)^T$ 的一个 最大无关组,并把其余向量用这个最大无关组线性表示.

装订线(题目不得超过此线)

5. (6分) 若矩阵
$$A = \begin{bmatrix} 2-a & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & a+2 \end{bmatrix}$$
 是正定矩阵,求 a 的取值.

6. (12 分)设 R^3 中的两组基为 $\alpha_1 = (1,0,0)^T$, $\alpha_2 = (1,1,0)^T$, $\alpha_3 = (1,1,1)^T$,

$$\beta_1 = (1, -1, 0)^T, \beta_2 = (2, 1, 3)^T, \beta_3 = (3, 1, 2)^T,$$
 $\stackrel{?}{R}$

- (1) 由基 $\alpha_1, \alpha_2, \alpha_3$ 到基 $\beta_1, \beta_2, \beta_3$ 的过渡矩阵A;
- (2) 向量 $\alpha = 2\alpha_1 \alpha_2 \alpha_3$ 在基 $\beta_1, \beta_2, \beta_3$ 下的坐标.

7. (8分) 求一个齐次线性方程组,使得它的基础解系为 $\xi_1 = (0,1,2,3)^T$, $\xi_2 = (3,2,1,0)^T$.

8. (12 分)当 λ 取何值时,非齐次线性方程组 $\begin{cases} x_1-x_2+x_3=\lambda\\ x_1+\lambda x_2+x_3=-1 \text{ 有解? 并写出无穷解时的通解.}\\ \lambda x_1+x_2+2x_3=1 \end{cases}$

9. (8分)设三阶实对称矩阵 A 的特征值为 $\lambda_1 = 1, \lambda_2 = 2, \lambda_3 = -2$, $\xi_1 = (1, -1, 1)^T$ 是 A 的属于 λ_1 的一个特征向量,记 $B = A^3 - 4A + E$,这里 E 为三阶单位矩阵.求 B 的全部特征值和对应的特征向量.

10. (10 分) 在某地,每年有比例为 $\frac{3}{4}$ 的农村居民移居城镇,有比例为 $\frac{1}{20}$ 的城镇居民移居农村。 假设某地的总人口数不变,且上述人口迁移的规律不变。若该地在 2000 底的农村人口和城镇人口相等,请预测在 2019 年底该地的农村人口和城镇人口占总人口的比例分别是多少?

11. (12 分)求一个正交变换 X=QY ,将二次型 $f(x_1,x_2,x_3)=x_1^2+4x_2^2+4x_3^2-4x_1x_2+4x_1x_3-8x_2x_3$ 化成标准型,并说明曲面 $f(x_1,x_2,x_3)=1$ 是何几何形状.