U.S.S.N. 09/832,232

Response to Office Action

Page 3 of 33

Amendments to the Claims

This listing of claims will replace all prior versions, and listing, of claims in the application.

Listing of Claims:

Claim 1 (Canceled)

2. (Currently Amended) A method for driving an image display device which includes a

plurality of pixel electrodes which are formed on a substrate, pixel switching elements which are

individually connected to the pixel electrodes, a plurality of signal lines for applying a data signal

according to a display image to the pixel electrodes, and a common electrode being formed on a

second substrate for applying a common potential to pixels, said method controlling a voltage

applied to the pixel electrodes in a conduction period of the pixel switching elements according

to a pulse width supplied to the signal lines,

wherein the voltage applied to the pixel electrodes is less than a voltage supplied to the

signal lines, and

wherein a proportion of a maximum value of the voltage applied to the pixel electrodes

with respect to the voltage supplied to the signal lines becomes different depending on a polarity

of the voltage applied to the pixel electrodes.

3. (Currently Amended) A method for driving an image display device which includes a

plurality of pixel electrodes which are formed on a substrate, pixel switching elements which are

individually connected to the pixel electrodes, a plurality of signal lines for applying a data signal

U.S.S.N. 09/832,232

Response to Office Action

Page 4 of 33

according to a display image to the pixel electrodes, and a common electrode for applying a

common potential to pixels, said method controlling a voltage applied to the pixel electrodes in a

conduction period of the pixel switching elements according to a pulse width supplied to the

signal lines,

wherein the voltage applied to the pixel electrodes is less than a voltage supplied to the

signal lines, and

wherein the pulse width of a supplied voltage to the signal lines in the conduction period

of the pixel switching elements when a positive polarity voltage is applied to the pixel electrodes

becomes different depending on a polarity of the voltage is different from the pulse width of a

supplied voltage to the signal lines in the conduction period of the pixel switching elements when

a negative polarity voltage is applied to the pixel electrodes, even when displaying the same tone

is being displayed.

٠;

4. (Previously Presented) A method for driving an image display device which includes

a plurality of pixel electrodes which are formed on a substrate, pixel switching elements which

are individually connected to the pixel electrodes, a plurality of signal lines for applying a data

signal according to a display image to the pixel electrodes, and a common electrode for applying

a common potential to pixels, said method controlling a voltage applied to the pixel electrodes in

a conduction period of the pixel switching elements according to a pulse width supplied to the

signal lines,

U.S.S.N. 09/832,232

Response to Office Action

Page 5 of 33

wherein the voltage applied to the pixel electrodes is less than a voltage supplied to the

signal lines, and

wherein an allocated time for a single scanning line is different for each polarity of the

voltage applied to the pixel electrodes.

5. (Previously Presented) A method for driving an image display device which includes

a plurality of pixel electrodes which are formed on a substrate, pixel switching elements which

had pare individually connected to the pixel electrodes, a plurality of signal lines for applying addata to the pixel electrodes, a plurality of signal lines for applying addata to the pixel electrodes, a plurality of signal lines for applying addata to the pixel electrodes, a plurality of signal lines for applying addata

signal according to a display image to the pixel electrodes, and a common electrode for applying

a common potential to pixels, said method controlling a voltage applied to the pixel electrodes in

a conduction period of the pixel switching elements according to a pulse width supplied to the

signal lines,

wherein the voltage applied to the pixel electrodes is less than a voltage supplied to the

signal lines, and

wherein, with respect to an image display device having the common electrode for

applying a common potential to the pixels and having a plurality of scanning lines for driving the

pixel switching elements, liquid crystal is displaced according to a potential difference between

the common electrode and the pixel electrodes so as to carry out display, and an amplitude of a

voltage supplied to the signal lines is equal to an amplitude of a voltage supplied to the common

electrode.

U.S.S.N. 09/832,232

Response to Office Action

Page 6 of 33

6. (Previously Presented) A method for driving an image display device which includes

a plurality of pixel electrodes which are formed on a substrate, pixel switching elements which

are individually connected to the pixel electrodes, a plurality of signal lines for applying a data

signal according to a display image to the pixel electrodes, and a common electrode for applying

a common potential to pixels, said method controlling a voltage applied to the pixel electrodes in

that the late of a conduction period of the pixel switching elements according to a pulse width supplied to the stream of the pixel switching elements according to a pulse width supplied to the stream of the pixel switching elements according to a pulse width supplied to the stream of the pixel switching elements according to a pulse width supplied to the stream of the pixel switching elements according to a pulse width supplied to the stream of the pixel switching elements according to a pulse width supplied to the stream of the pixel switching elements according to a pulse width supplied to the stream of the pixel switching elements according to a pulse width supplied to the stream of the pixel switching elements according to a pulse width supplied to the stream of the pixel switching elements according to a pulse width supplied to the stream of the pixel switching elements according to a pulse width supplied to the stream of the pixel switching elements according to the stream of the pixel switching elements according to the stream of the pixel switching elements according to the switching

of and we do a signablines; which we have so the control of the first action of a second with the control that a great is the

is companied because wherein the voltage applied to the pixel electrodes is less than a voltage supplied to the process.

signal lines, and

wherein a maximum value of an amplitude of the voltage applied to the pixel electrodes

is in a range of not less than 80 percent and not more than 98 percent of an amplitude of a voltage

supplied to the signal lines.

Claims 7 - 9 (Canceled)

U.S.S.N. 09/832,232

Response to Office Action

Page 7 of 33

10. (Currently Amended) The method as set forth in claim 7, A method for driving an image display device, said method applying a voltage between a potential of signal lines and a potential of a common electrode when a potential of scanning lines is ON, and displaying tones

by modulating a pulse width of a two-value voltage supplied to the signal lines,

wherein tones are displayed by shifting phases of waveforms of the signal lines and the scanning lines, and polarities of pixels in a signal line direction are inverted alternately; and

wherein a potential difference between the potential of the signal lines and the potential and the pot

the second of the common electrode is maximum at an end of one horizontal period. The second of the common electrode is maximum at an end of one horizontal period.

11. (Currently Amended) The method as set forth in claim 8, A method for driving an interpretable of the method as set forth in claim 8, A method for driving an interpretable of the method as set forth in claim 8, A method for driving an interpretable of the method as set forth in claim 8, A method for driving an interpretable of the method as set forth in claim 8, A method for driving an interpretable of the method as set forth in claim 8, A method for driving an interpretable of the method as set forth in claim 8, A method for driving an interpretable of the method for driving an interpretable of the method as set forth in claim 8, A method for driving an interpretable of the method for driving an inte image display device, said method applying a voltage between a potential of signal lines and a potential of a common electrode when a potential of scanning lines is ON, and displaying tones by modulating a pulse width of a two-value voltage supplied to the signal lines,

wherein tones are displayed by shifting phases of waveforms of the signal lines and the common electrode, and polarities of pixels in a signal line direction are inverted alternately, and ____wherein a potential difference between the potential of the signal lines and the potential of the common electrode is maximum at an end of one horizontal period.

12. (Currently Amended) The method as set forth in claim 7, A method for driving an image display device, said method applying a voltage between a potential of signal lines and a

U.S.S.N. 09/832,232

Response to Office Action

Page 8 of 33

potential of a common electrode when a potential of scanning lines is ON, and displaying tones by modulating a pulse width of a two-value voltage supplied to the signal lines. wherein tones are displayed by shifting phases of waveforms of the signal lines and the scanning lines, and polarities of pixels in a signal line direction are inverted alternately, and ____wherein a potential difference between the potential of the signal lines and the potential of the common electrode is minimum at an end of one horizontal period.

<u>នាងសីសក្រុម ម៉ែង សម្រាប់ ដោយសាសសាស ។ ប្រាក់ មានប្រាក់ ប្រាក់ បានបង្ហាញសេសសាសសាសសាសសាសសាស្ត្រ ប្រាក់ បានប្រាក</u>្ស

13. (Currently Amended) The method as set forth in claim 8, A method for driving an Alexander with the image display device, said method applying a voltage between a potential of signal lines and a transfer of signal lines are signal lines and a transfer of signal lines and a transfer of potential of a common electrode when a potential of scanning lines is ON, and displaying tones by modulating a pulse width of a two-value voltage supplied to the signal lines, wherein tones are displayed by shifting phases of waveforms of the signal lines and the common electrode, and polarities of pixels in a signal line direction are inverted alternately, and ____wherein a potential difference between the potential of the signal lines and the potential of the common electrode is minimum at an end of one horizontal period.

Claims 14 - 37 (Canceled)

38. (Currently Amended) The method as set forth in claim 7, A method for driving an image display device, said method applying a voltage between a potential of signal lines and a

U.S.S.N. 09/832,232

Response to Office Action

Page 9 of 33

potential of a common electrode when a potential of scanning lines is ON, and displaying tones by modulating a pulse width of a two-value voltage supplied to the signal lines, wherein tones are displayed by shifting phases of waveforms of the signal lines and the scanning lines, and polarities of pixels in a signal line direction are inverted alternately, and wherein:

a phase of the common electrode is constant with respect to a scanning signal, and tones are displayed by shifting phases of waveforms of the signal lines and the scanning lines so that the potential of the signal lines is switched between high level and low level after an article and part elapsed time period which varies depending on the tone when the potential of the scanning lines which varies depending on the tone when the potential of the scanning lines which varies depending on the tone when the potential of the scanning lines which varies depending on the tone when the potential of the scanning lines which varies depending on the tone when the potential of the scanning lines which varies depending on the tone when the potential of the scanning lines which varies depending on the tone when the potential of the scanning lines which varies depending on the tone when the potential of the scanning lines which varies are the scanning lines which was also as the scanning lines which was alo is ON.

39. (Currently Amended) The method as set forth in claim 9, A method for driving an image display device, said method applying a voltage between a potential of signal lines and a potential of a common electrode when a potential of scanning lines is ON, and displaying tones by modulating a pulse width of a two-value voltage supplied to the signal lines, wherein tones are displayed by shifting phases of waveforms of the signal lines and the common electrode, and polarities of pixels in a signal line direction are inverted alternately. wherein the waveform of the common electrode is off-phase by a certain degree with respect to the waveform of the scanning lines, and

Applicant: T. Yamamoto, et al. U.S.S.N. 09/832,232 Response to Office Action Page 10 of 33

_____wherein tones are displayed by shifting phases of waveforms of the signal lines and the common electrode so that the potential of the signal lines is switched between high level and low level after an elapsed time period which varies depending on the tone when the potential of the scanning lines is ON.

a phase of a waveform of the common electrode has a constant phase difference with respect to a phase of a waveform of the scanning line, and

U.S.S.N. 09/832.232

Response to Office Action

Page 11 of 33

the signal line driving section supplies a signal, which is created by shifting a phase of a voltage waveform whose polarity is inverted per one horizontal period so that the potential of the signal lines is switched between high level and low level after an elapsed time period which varies depending on the tone when the potential of the scanning lines is ON, with respect to a phase of a voltage waveform of the scanning lines, to the signal lines.

41. (Currently Amended) The image display device as set forth in claim 24, An image display device which includes a plurality of pixel electrodes which are formed on a substrate, again to have a plurality of pixel electrodes which are formed on a substrate, again to have a plurality of pixel electrodes which are formed on a substrate, again to have a plurality of pixel electrodes which are formed on a substrate, again to have a plurality of pixel electrodes which are formed on a substrate, again to have a plurality of pixel electrodes which are formed on a substrate, again to have a plurality of pixel electrodes which are formed on a substrate, again to have a plurality of pixel electrodes which are formed on a substrate, again to have a plurality of pixel electrodes which are formed on a substrate, again to have a plurality of pixel electrodes which are formed on a substrate, again to have a plurality of pixel electrodes which are formed on a substrate and the pixel electrodes which are formed on a substrate and the pixel electrodes which are formed on a substrate and the pixel electrodes which are formed on a substrate and the pixel electrodes which are formed on a substrate and the pixel electrodes which are formed on a substrate and the pixel electrodes which are formed on a substrate and the pixel electrodes which are formed on a substrate and the pixel electrodes which are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a substrate and the pixel electrodes are formed on a su pixel switching elements which are individually connected to the pixel electrodes, a plurality of signal lines for applying a data signal according to a display image to the pixel electrodes, and a common electrode for applying a common potential to pixels, said image display device applying a voltage between a potential of the signal lines and a potential of the common electrode when a potential of scanning lines is ON, and displaying tones by modulating a pulse width of a two-value voltage supplied to the signal lines. wherein said image display device includes a signal line driving section for supplying a signal, which is created by shifting a phase of a voltage waveform whose polarity is inverted per one horizontal period, according to tone data of the display image, with respect to a phase of a voltage waveform of the scanning lines, to the signal lines, and wherein:

a phase of a waveform of the common electrode has a constant phase difference with respect to a phase of a waveform of the scanning line, and

U.S.S.N. 09/832,232

Response to Office Action

Page 12 of 33

the signal line driving section supplies a signal, which is created by shifting a phase of a voltage waveform whose polarity is inverted per one horizontal period so that the potential of the signal lines is switched between high level and low level after an elapsed time period which varies depending on the tone when the potential of the scanning lines is ON, with respect to a phase of a voltage waveform of the scanning lines, to the signal lines.

42. (Currently Amended) The driving device as set forth in claim 20, A driving device a market of an image display device which includes a plurality of pixel electrodes which are formed on a mean symbol during that the substrate, pixel switching elements which are individually connected to the pixel electrodes, a consequence of the pixel switching elements which are individually connected to the pixel electrodes, a consequence of the pixel electrodes, and the pixel electrodes of the pixel electrodes, and the pixel electrodes of the pixel electrodes. plurality of signal lines for applying a data signal according to a display image to the pixel electrodes, and a common electrode for applying a common potential to pixels, said driving device applying a voltage between a potential of the signal lines and a potential of the common electrode when a potential of scanning lines is ON, and displaying tones by modulating a pulse width of a two-value voltage supplied to the signal lines, wherein said driving device includes a signal line driving section for supplying a signal, which is created by shifting a phase of a voltage waveform whose polarity is inverted per one horizontal period, according to tone data of the display image, with respect to a phase of a voltage waveform of the common electrode, to the signal lines, and _wherein:

> a phase of a waveform of the common electrode has a constant phase difference with respect to a phase of a waveform of the scanning line, and

U.S.S.N. 09/832,232

Response to Office Action

Page 13 of 33

the signal line driving section supplies a signal, which is created by shifting a phase of a voltage waveform whose polarity is inverted per one horizontal period so that the potential of the signal lines is switched between high level and low level after an elapsed time period which varies depending on the tone when the potential of the scanning lines is ON, with respect to a phase of a voltage waveform of the common electrode, to the signal lines.

43. (Currently Amended) The image display device as set forth in claim 25, An image Also that the adisplay device which includes a plurality of pixel-electrodes which are formed on a substrate, where the adiabatical rapped put the pixel switching elements which are individually connected to the pixel electrodes, a plurality of the pixel electrodes, a plurality of the pixel electrodes. signal lines for applying a data signal according to a display image to the pixel electrodes, and a common electrode for applying a common potential to pixels, said image display device applying a voltage between a potential of the signal lines and a potential of the common electrode when a potential of scanning lines is ON, and displaying tones by modulating a pulse width of a two-value voltage supplied to the signal lines, wherein said image display device includes a signal line driving section for supplying a signal, which is created by shifting a phase of a voltage waveform whose polarity is inverted per one horizontal period, according to tone data of the display image, with respect to a phase of a voltage waveform of the common electrode, to the signal lines, and

_wherein:

a phase of a waveform of the common electrode has a constant phase difference with respect to a phase of a waveform of the scanning line, and

U.S.S.N. 09/832,232

Response to Office Action

Page 14 of 33

the signal line driving section supplies a signal, which is created by shifting a phase of a

voltage waveform whose polarity is inverted per one horizontal period so that the potential of the

signal lines is switched between high level and low level after an elapsed time period which

varies depending on the tone when the potential of the scanning lines is ON, with respect to a

phase of a voltage waveform of the common electrode, to the signal lines.

Claims 44 - 59 (Canceled)

kangarati sangaran nga kawa ne sa anga talah n<mark>galah nakan si pandal</mark>ah kagan ay nga nata sa atau sa atau sa at

ngan sadati nati nga Maddali 🕟 na sa kalanda akaladara. Wadagan ngalagan nati gana na kata kata kata kata kata