

REPORT NO. FAA-AVP-77-20

GENERAL AVIATION DYNAMICS

AN EXTENSION OF THE COST IMPACT STUDY TO INCLUDE DYNAMIC INTERACTIONS IN THE FORECASTING OF GENERAL AVIATION ACTIVITY

VOLUME II. RESEARCH METHODOLOGY

APRIL 1977

FINAL REPORT

Prepared for

U.S. DEPARTMENT OF TRANSPORTATION
FEDERAL AVIATION ADMINISTRATION
Office of Aviation Policy
Aviation Forecast Branch
Washington, D.C. 20591

The contents of this report reflect the views of Battelle's Columbus Laboratories, which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation. This report does not constitute a standard, specification, or regulation.

(9)		Те	chnical Keport D	Occumentation Pag
1. Report No.	Government Accession No.	Dec. 76	ecipient's Catalog N	lo.
FAA-AVP 177-26- 101-2	1 (11)31	Nec 16		
4. Title and Subtitle	1	Annual Control of the	eport Date	
General Aviation Dynamic	s. An Extension	of the ne	comber 31	1976
Cost Impact Study to Inc			erforming Organizati	
actions in the Forecasti	ng of General A	viation	erforming Organizati	on Code
Activity, Volume II: Res			erlorging Organizati	-n Report No.
3 1 1 1 1	-		1 7 3	
M. A. Duffy, G.	L./Elden,	(4 100	PIL
9. Performing Organization Name and Address	v. J./IIrago	10.	Work Unit No. (TRAL	5)
Battelle			-	
Columbus Laboratories			Contract or Grant No	
505 King Avenue		DO	T-FA 74WA-	3485
Columbus, Ohio 43201		13.	Type of Report and P	eriod Covered
12. Sponsoring Agency Name and Address				
Department of Transporta				, October 1
Federal Aviation Adminis				ter 31, 1970
Office of Aviation Polic	Y		Sponsoring Agency C P-120	ode
Washington, D.C. 20591 15 Supplementary Notes	Annual Control of the			
Final prept, 1	/ QCC /O some	51 Nec	(2)	
simulation model of the to forecast GA activity, perform sensitivity anal the most important state aircraft utilization, an	evaluate alter yses. It has variables in	enative pol three major the model;	icy actions sectors,	s, or depicting
Essentially, the GAD model consists of a set of nonlinear, simultative first order difference equations which explicitly describe the decipolicies followed by users of general aviation. The model is desito be implemented through an interactive computer dialogue feature quides the analyst through a series of procedures and analytical				the decision is designed feature than
The volumes included in	this report are	:		
Volume I - Execu Volume II - Resea Volume III - Plann Volume IV - Data	ing Guide	,		
17. Key Words	18. Di	stribution Statement		
System Dynamics Simulation General Aviation Activit	thro Info	ument is avough the Na ormation Se ginia 2216	tional Tech rvice, Spri	
	20. Security Classif. (of the	i = ====)	21. No. of Pages	1 22 0
19. Security Classif. (of this report)	zo. Seconny Ciussin, (or in	is page/	Zir No. or r ages	22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

1/3

TABLE OF CONTENTS

		Page
CHAPTER 1. INTRODUCTION		1
Background		2
Model Perspectives		7
CHAPTER 2. AN OVERVIEW OF THE MODEL		11
Structure of the General Aviation System		11
The Pilot Supply Sector		15
The Aircraft Utilization Sector		16
The Aircraft Demand Sector		17
A Level of Service Index for Commercial Aviation		18
CHAPTER 3. THE PILOT SUPPLY SECTOR		21
Student Pilots (SP)		23
Student Certificates Issued (SCI)		23
Student Pilot Departure Rate (SPD)		30
Private Certificates Issued (PCI)		30
Private Pilots (PP)		33
Private Pilot Departure Rate (PPD)		33
Commercial Certificates Issued (CCI)		33
Commercial Pilots (CP)		36
Commercial Pilot Departure Rate (CPD)		36
Instrument-Rated Pilots (IP)		38
Instrument-Rated Pilot Departure Rate (IPD)		38
Upgrade Rate to Instrument from Private (URIP)		40
Helicopter Certificates Issued (HCI)		40
Helicopter Pilots (HP)		40
Helicopter Pilot Departure Rate (HPD)		43
Helicopter-Rated Pilots (HR)		43
Helicopter-Rated Pilot Departure Rate (HRD)		43
Helicopter-Ratings Issued (HRI)		46
CHAPTER 4. THE AIRCRAFT UTILIZATION AND DEMAND SECTORS		48
Primary Use - Business		51
Primary Use - Corporate		58
Primary Use - Personal		62
Primary Use - Aerial Application		64

	Page
Primary Use - Instructional	69
Primary Use - Air Taxi	72
Primary Use - Other	77
CHAPTER 5. SUPPLEMENTARY MATERIAL	82
Operations	82
Fuel Consumption	86
Contributions to Federal Trust Fund	86
CHAPTER 6. SIMULATION OF THE MODEL	88
Model Capabilities	88
Case 1. Baseline Versus Ullman Bill	91
Baseline Forecast	92
The Ullman Bill	101
Baseline/Ullman Bill Comparison	105
Case 2. Low Versus High Economy	108
Summary	110
APPENDIX A CASE 1. BASELINE VERSUS ULLMAN BILL	A-1
APPENDIX B	
CASE 2. LOW VERSUS HIGH ECONOMY	3-1
LIST OF TABLES	
Table 2-1. User Category Definitions	4
Table 2-2. Aircraft Type Definitions	5
Table 2-3. Significant General Aviation Subsegments	6
Table 2-4. Cost Center Definitions	3-9

		Page
	Continued)	
Table 2-	5. Revenue Aircraft Departures in Scheduled Domestic Service for Certificated Route Air Carrier	20
Table 2-	6. Estimated Resident Population of U.S	26
Table 2-	7. Student Certificates by Age Group	27
Table 2-	8. Student Pilot Departure Rate Normal and Private Certificates Issued Normal	31
Table 2-	9. Private Pilot Departure Rate Normal and Commercial Certificates Issued Normal	34
Table 2-	10. Commercial Pilot Departure Rate Normal	37
Table 2-	11. Instrument-Rated Pilot Departure Rate Normal	39
Table 2-	12. Normal Upgrade Rate to Instrument-Rating for Private Pilots	41
Table 2-	13. Helicopter Pilot Departure Rate Normal	44
Table 2-	14. Helicopter Ratings	45
Table 2-	15. Helicopter Ratings Issued Normal	47
Table 2-	16. Normal Aircraft Destruction Rates	50
Table 2-	17. Estimated Desired-Pilots-Per-Aircraft in the Business/Single Engine Piston Subsegment	53
Table 2-	18. Aircraft Activation Data for Corporate/Turbojet .	60
	19. Fraction of Total Aerial Application Hours Flown by each Aircraft Type	68
Table 2-	20. Fraction of Fixed Wing Instructional Hours Flown	72
Table 2-	21. Fraction of Total Air Taxi Hours	74
	22. CY 1973 Hours/Operation	82
	23. CY 1973 Percent of Local and Itinerant	-
	Traffic at Towered Airports for each Aircraft Type and User Category	83
Table 2-	24. CY 1973 Percent of Local and Itinerant Traffic at Nontowered Airports for each Aircraft Type and User Category	84
Table 2-	25. CY 1973 Percent of G.A. IFR and VFR Operations for each Aircraft Type and User Category	85
Table 2-	26. Average Fuel Consumption Rates	87
Table 2-	27. Active Aircraft by Primary Use - AA(I,J)	95

		Page
	Continued)	
	stimated Hours Flown by Actual Use - HF(I,J) uring CY 1974 (thousands)	97
Table 2-29. S	chedule of Proposed Conservation Tax	101
	LIST OF FIGURES	
Figure 2-1.	General Aviation Dynamics Flow Diagram	13
Figure 2-2.	System Dynamics Flow Diagram Symbols	14
Figure 2-3.	Revenue Aircraft Departures in Scheduled Domestic Service for Certificated Route Air Carrier	19
Figure 2-4.	Pilot Supply Sector	22
Figure 2-5.	Student Certificates Issued Annually	24
Figure 2-6.	Fraction of Available Population Obtaining Student Certificates (Per Year) as a Function of Variable Cost	28
Figure 2-7.	Fraction of Available Population Obtaining Student Certificates (Per Year) as a Function of Variable Cost Index	29
Figure 2-8.	Private Certificates Issued Annually	32
Figure 2-9.	Commercial Certificates Issued Annually	35
Figure 2-10.	Helicopter Certificates Issued	42
Figure 2-11.	Aircraft Demand Sector	49
Figure 2-12.	Business/Single-Engine Piston Example	52
Figure 2-13.	Aircraft Activations in the Business/Single- Engine Piston Subsegment	54
Figure 2-14.	Desired-Pilots-Per-Aircraft as a Function of GNP	56
Figure 2-15.	Corporate/Turbojet Example	59
Figure 2-16.	Personal/Single-Engine Piston Example	63
Figure 2-17.	Aerial/Single-Engine Piston Example	65
Figure 2-18.	Annual Hours Flown in Aerial Application	67
Figure 2-19.	Instructional/Single-Engine Piston Example	70
Figure 2-20.	Instructional Hours Flown per Certificate	71

		Page
	LIST OF FIGURES (Continued)	
Figure 2-21.	Annual Air Taxi Hours Flown	73
Figure 2-22.	Annual Air Taxi Hours Flown as a Function of GNP/MI	75
Figure 2-23.	Air Taxi/Turbojet Example	76
Figure 2-24.	"Other"/Single-Engine Piston Example	78
Figure 2-25.	Annual Hours Flown in the Other/Single and Multi-Engine Piston Subsegments	79
Figure 2-26.	Annual Hours Flown in the Other/Single and Multi-Engine Piston Subsegments as a Function of DPI (Indexed) Times Total	
	Pilots	80
Figure 2-27.	Expected Total Active Aircraft For Baseline Forecast	96
Figure 2-28.	Expected Total Hours Flown For Baseline Forecast	98
Figure 2-29.	Expected Total GA Operations For' Baseline Forecast	99
Figure 2-30.	Expected Active Student Pilots For Baseline Forecast	99
Figure 2-31.	Expected Total Active Pilots For Baseline Forecast	100
Figure 2-32.	Expected Total Active Aircraft Under the Ullman Bill	102
Figure 2-33.	Expected Total Hours Flown Under the the Ullman Bill	103
Figure 2-34.	Expected Total GA Operations Under the Ullman Bill	103
Figure 2-35.	Expected Active Student Pilots Under the Ullman Bill	104
Figure 2-36.	Expected Total Active Pilots Under the Ullman Bill	104
Figure 2-37.	Baseline/Ullman Bill Comparison For Total Aircraft	105
Figure 2-38.	Baseline/Ullman Bill Comparison For Total Hours Flown	106
Figure 2-39.	Baseline/Ullman Bill Comparison For	106

		Page
	LIST OF FIGURES (Continued)	
Figure 2-40	. Baseline/Ullman Bill Comparison For Student Pilots	107
Figure 2-41	. Baseline/Ullman Bill Comparison For Total Pilots	107
Figure 2-42	. Expected Growth of General Aviation in the Low Growth Rate Economy	109
Figure 2-43	Expected Growth of General Aviation in the High Growth Rate Economy	111
Figure 2-44	. Low/High Growth Rate Economy Comparison For Total General Aviation Activity	112

FINAL REPORT

on

GENERAL AVIATION DYNAMICS AN EXTENSION OF THE COST IMPACT STUDY TO INCLUDE DYNAMIC INTERACTIONS IN THE FORECASTING OF GENERAL AVIATION ACTIVITY

VOLUME II. RESEARCH METHODOLOGY

to

FEDERAL AVIATION ADMINISTRATION OFFICE OF AVIATION POLICY

from

BATTELLE Columbus Laboratories

by

M. A. Duffy, G. L. Eiden, C. W. Hamilton, and V. J. Drago

December 31, 1976

CHAPTER 1. INTRODUCTION

This report is the result of a series of research programs dealing with the cost impact effects on general aviation conducted by Battelle Memorial Institute - Columbus Laboratories. Past studies were aimed at developing a consistent data base and methodology for determining the influence of cost changes on both numbers of active aircraft and annual hours flown. During these studies, it became apparent that the complex nature of the general aviation system was not being adequately represented with a set of independent, log-linear regression equations.

A method is needed which,

- (1) Focuses on general aviation activity at the lowest possible level; that is, by individual user category/ aircraft type subsegments,
- Recognizes the important causal interactions between pilots, aircraft, and annual hours flown,

^{*} A subsegment is here defined to be a particular user category/aircraft type combination.

- (3) Has the ability to assess various policy alternatives
 - (4) Can be easily modified as future forecasting requirements are identified.

This report presents the results of a model development effort designed to satisfy the above objectives. Throughout the report, discussion of the model is couched in the terminology of system dynamics. This method has received considerable attention in recent years as a result of Jay Forrestor's work at the Massachusetts Institute of Technology. The technique dates back 20 years or more, and has been used at Battelle for over a decade, beginning with a regional economic study of the Susquehanna River Basin.

In essence, the computer model consists of a set of nonlinear, simultaneous, first-order difference equations. These difference equations explicitly describe the decision policies followed by users of general aviation. The model can be used to simulate the dynamic (time-dependent) behavior of the general aviation system in response to both exogenous and endogenous disturbances. It cannot be expected to "predict" unforeseen happenings that may occur. It has been stated that a good model is distinguished from a poor one because it captures more of the essence of the system that it presumes to represent. A model of this type can never be really completed. As familiarity is gained with its responsiveness and as more is learned about the real system, improvements will undoubtedly be made. However, this General Aviation Dynamics model should pass the test for being a good model and it is hoped that constructive criticisms can be incorporated to evolve an even better model.

Background

Projections of general aviation activity are published annually by the FAA in the "Aviation Forecasts" series which cover a ten year period. An increasingly important, but difficult, facet of such projections is the assessment of the effects of potential cost changes associated with possible federal regulatory actions. Under two earlier Contracts (Contract Nos. DOT-FA72WA-3118 and DOT-FA74WA-3485) Battelle developed a methodology, data base, and results needed to aid FAA planners in the quantitative assessment of the cost impact of proposed regulatory changes.

In both previous studies, the cost-impact relationships were based upon regression analyses using historical data obtained during a time of relatively steady national economic growth. Furthermore, and more importantly, cost changes were assumed to be restricted to general aviation.

In many cases, the results of these studies were misused. Oftentimes these methods were called upon to establish long term forecasts rather than the short term cost sensitivity analyses for which they were developed.

Frustrations arising from misused forecasting methods, which were reinforced during the 1974 fuel crisis, demonstrated the need for a dynamic simulation model of general aviation activity. In particular, a method was needed which could handle the complex interactions occurring between general aviation, federal agencies, competing modes of transportation, as well as national economic conditions. Difficulties experienced in using past forecasting methods developed outside the FAA, dictated that any new method should be readily accessed and easily used by FAA analysts.

Present FAA forecasting methods use a "top-down" approach for projecting general aviation activity; that is, an aggregate level for total GA activity is forecast and, subsequently, subdivided into various sectors of interest. The method presented here is a "bottom-up" approach providing distinct forecasts for activity within each significant user category/aircraft type subsegment.

Two primary activity measures are forecast for each subsegment:

- (1) Number of active aircraft by primary use
- (2) Annual hours in service by actual use

Seven distinct user categories within general aviation were chosen for detailed analyses. Table 2-1 provides their standard FAA definitions. Table 2-2 defines the seven different aircraft types that are included in the model. The choice of seven user categories and seven aircraft types provides for a possible 49 different combinations. However, many of these possible subsegments have little or no recorded activity. Therefore, throughout this report reference will be made to the 29 significant user category/aircraft type subsegments identified in Table 2-3.

TABLE 2-1. USER CATEGORY DEFINITIONS

- BUSINESS TRANSPORTATION Any use of an aircraft not for compensation or hire by an individual for the purposes of transportation required by a business in which he is engaged.
- CORPORATE TRANSPORTATION (previously Executive) Any use of an aircraft by a corporation, company or other organization for the purposes of transporting its employees and/or property not for compensation or hire and employing professional pilots for the operation of the aircraft.
- PERSONAL FLYING Any use of an aircraft for personal purposes not associated with a business or profession, and not for hire. This includes maintenance of pilot proficiency.
- AERIAL APPLICATION Aerial application in agriculture consists of those activities that involve the discharge of materials from aircraft in flight and a miscellaneous collection of minor activities that do not require the distribution of any materials.
- INSTRUCTIONAL FLYING Any use of an aircraft for the purposes of formal instruction with the flight instructor aboard, or with the maneuvers on the particular flight(s) specified by the flight instructor.
- AIR TAXI Any use of an aircraft by the holder of an Air Taxi Operating Certificate which is authorized by that certificate.
- OTHER Any use of an aircraft not accounted for by the previous use categories.

 Note that this includes industrial/special and rental operations.

TABLE 2-2. AIRCRAFT TYPE DEFINITIONS

		Predominant Aircraft Class
1.	Single-engine piston non aerial application	Single-engine piston 4-place and over
2.	Single-engine piston aerial application	
3.	Multi-engine piston	Twin-engine piston under 12,500 lb TOGW
4.	Turboprop	Twin-engine turboprop under 12,500 1b TOGW
5.	Turbojet	Twin-engine turbojet/fan under 20,000 1b TOGW
6.	Piston-engine helicopter	
7.	Turbine-engine helicarer	

TABLE 2-3. SIGNIFICANT GENERAL AVIATION SUBSEGMENTS

USER CATEGORY

- 1. Business
- 2. Corporate
- 3. Personal
- 4. Aerial
- 5. Instruct.
- 6. Air Taxi
- 7. Other

AIRCRAFT TYPE J

- Single-Eng. Piston Nonaerial
- 2. Single-Eng. Piston Aerial
- 3. Multi-Engine Piston
- 4. Turboprop
- 5. Turbojet
- 6. Piston Engine Helicopter
- 7. Turbine Engine Helicopter

NOTE: X denotes insignificant amount of activity.

During the previous Cost Impact studies, major cost centers were defined for both the variable cost of aircraft operation and the fixed cost associated with aircraft ownership. Definitions for cost centers used in the present study are given in Table 2-4. The concept of annualized investment reverts back to the original Cost Impact study, because the only historical data available are based upon this definition. All cost center data have been obtained from reports prepared by Aviation Data Service, Inc.

Model Perspectives

In the following chapters, the General Aviation Dynamics (GAD) model will be discussed in detail. However, some of the major differences between this model and other forecasting methods should be recognized before delving further into the development.

First, it should be understood that the General Aviation Dynamics model has its own strengths and weaknesses. A model of this type cannot be all things to all users. Models reflect the specific purposes for which they were designed and the particular techniques selected. Inclusion of variables and interactions within a model is tantamount to recognizing their explanatory value, while omitted parameters are regarded as unimportant for the specified objectives.

Second, although the General Aviation Dynamics model represents (we believe) a significant advance in the state of the art, it still has considerable room for future improvement. Some parts of the model are more thoroughly understood than others. This is partly because of data availability and partly because of the more stable behavior of certain subsegments of general aviation. For this reason, the model is better judged according to its overall structure, rather than by scrutiny of its individual parts. Indeed, in depth analyses of each sector within the model could provide the basis for entire research programs themselves. The real significance of the model is in the structure which defines the causal interactions between various components of the entire general aviation system.

Third, the following differences between the General Aviation Dynamics (GAD) model and other general aviation forecasting techniques should be considered:

TABLE 2-4. COST CENTER DEFINITIONS

FUEL AND OIL COSTS (\$/HOUR)

Fuel and oil cost per hour are based on the average consumption rate at 75 percent power. Airframe and engine manufacturers recommended fuel type were used for all calculations. The Fuel and Oil Cost Center includes state and federal fuel tax.

AIRFRAME AND AVIONICS MAINTENANCE

AND OVERHAUL COST (\$/HOUR)

This cost center includes all labor and parts costs associated with scheduled and unscheduled airframe and avionics maintenance and overhaul.

ENGINE MAINTENANCE AND OVERHAUL (\$/HOUR)

Engine maintenance and overhaul includes costs for scheduled and unscheduled engine maintenance, overhaul, 100 hour, 1000 hour, and/or annual inspections. Includes also midpoint and cycle costs for turbine engines.

ANNUALIZED INVESTMENT (\$/YEAR)

The purpose of the annualized investment cost center is to represent an annual dollar amount for ownership cost of the aircraft itself. A straight line annualizing schedule applied to the aircraft's first year retail price, including sales tax, has been used.

HULL INSURANCE (\$/YEAR)

Hull insurance cost is the annual premium paid to insure the aircraft against damage while in motion or at rest. A deductible amount is normally included.

LIABILITY AND MEDICAL INSURANCE (\$/YEAR)

Liability insurance premiums are paid to insure the aircraft owner against damage to persons or property by reason of his operation of the aircraft.

HANGAR, STORAGE AND TIE DOWN (\$/YEAR)

Hangar, storage and tie down rates are averaged from known regional hangar rates, parking fees, and manufacturer suggested rates.

TABLE 2-4. COST CENTER DEFINITIONS (Continued)

FEDERAL REGISTRATION FEE AND WEIGHT TAX (\$/YEAR)

The Federal registration fee and weight tax went into effect July 1, 1970. The rates are:

- Reciprocating powered aircraft \$25 plus \$0.02 per pound for aircraft of gross weight over 2,500 pounds.
- Turbine powered aircraft \$25 plus \$0.035 per pound of gross weight.

MISCELLANEOUS (\$/YEAR)

Miscellaneous costs include allowance for the state aircraft registration fees, training, catering, landing fees, navigation materials, airworthiness directive requirements and minor modifications.

- GAD produces forecasts of activity by disaggregating general aviation into 29 user category/aircraft type subsegments.
- Causal relationships are included which describe the interrelationships between pilots, aircraft, and flying.
- 3. GAD has a highly detailed pilot supply sector which recognizes changes in U. S. population and the progression of pilots through increased levels of proficiency.
- 4. GAD recognizes that it is the rates of flow of people and aircraft into and out of the system that must be understood in order to perform meaningful policy evaluation. These rates of flow represent the decisions made within the system, and it is the formulation of these decision policies that is the objective of regression analyses performed during model development.
- GAD is fully capable of evaluating federal policy alternatives that can be translated into either fixed or variable cost changes to general aviation users.
- 6. GAD is fully automated with real-time analysis capability.

CHAPTER 2. AN OVERVIEW OF THE MODEL

The purpose of this chapter is to give the reader a brief overview of the entire General Aviation Dynamics model before the details of each individual model sector are presented. There are three major sectors representing the most important state variables in the model: pilot supply, aircraft utilization, and aircraft demand. The aircraft utilization and aircraft demand sectors are tied together by important negative feedback loops for some user category/aircraft type subsegments. In many cases, the demand for an active aircraft stock is derived from conditions within other sectors. Other subsegments display essentially (as yet) uncontrolled positive growth. The pilot supply sector exhibits a one-way causal influence on both numbers of active aircraft and annual hours flown.

Structure of the General Aviation System

The first step in modeling the general aviation system is to choose a system boundary that defines the concepts which interact to produce the behavior of interest. Interest here is in the mechanisms that foster the growth of general aviation activity. The model should be able to forecast a baseline for uncontrolled general aviation activity over at least a ten year period. It should also be capable of forecasting activity if government controls are imposed in order to either inhibit or enhance general aviation activity. It cannot pretend to predict unforeseen circumstances which might greatly alter the normal system behavior. However, the model should be able to answer "what if" questions concerning its environment. Limiting attention to a ten year forecast should preclude effects of widespread commercialization of any (as yet) unknown technolological development. The general aviation model developed herein is representative of the aggregate level of activity within the U. S. It was not constructed for the purpose of forecasting activity on a regional basis; although it should be adaptable to regional studies.

Three levels (state variables) were chosen as the cornerstones on which to build the system structure:

- Aircraft
- Hours flown
- Pilots

Each of these levels represents the principal variable in a major sector of the general aviation structure. The three levels interact in multiple ways. The entire structure is shown in Figure 2-1.

System dynamics flow diagram symbols are summarized in Figure 2-2. The system levels appear as rectangles. Note that the active aircraft level is subscripted i, j. This is to indicate that active aircraft are distinguished by the number of aircraft of type j (j = 1, 2,7) within user category i(i=1, 2,7). Table 2-3 identifies the 29 particular user category/aircraft type subsegments which are explicitly contained in the model.

Rates are the system's action or policy variables that effect changes in the levels. Aircraft activation, destruction and utilization rates control general aviation activity. Airman certificate issuances and departure rates determine active pilot population.

Since the rates acting on a level summarize the effects of all factors which influence the state of that level, they are generally complex expressions. Often one or more components of a rate are sufficiently important to warrant individual attention. These auxiliary variables are separated algebraically from the rate equation, and are represented pictorially as circles. One such auxiliary variable is the desired-active-aircraft, which represents the goal that each subsegment is striving to achieve under the present system conditions.

Dotted lines are used to indicate an information flow or a causal influence in the direction shown by the arrows. Solid lines represent physical flows such as aircraft or people. Arrows located on either side of a rate (e.g. aircraft activation rate), indicate that the rate can be either positive or negative.

FIGURE 2-1. GENERAL AVIATION DYNAMICS FLOW DIAGRAM

BEST AVAILABLE COPY

FIGURE 2-2. SYSTEM DYNAMICS FLOW DIAGRAM SYMBOLS

The Pilot Supply Sector

The simplest of the model's major sectors in a conceptual sense is the pilot supply sector. Only two factors, certificates issued and pilot departures are involved directly in pilot population change. Two important elements in the determination of certificates issued are U. S. population and a relative measure for the cost of obtaining a certificate. Because of a lack of better data, the variable cost of operating a single-engine piston aircraft was used as a measure of the relative increase in total outlay for an upgraded certificate. Because of the importance of age structure in obtaining student certificates, the total U. S. population is disaggregated into three age classes; 16-24 years, 25-34 years, and over 35 years old.

Figure 2-1 illustrates how flows into and out of a given airman certificate class occur over time. People enter a pilot class by earning an upgraded certificate after achieving the previous certificate type. People leave a pilot class by upgrading to the next higher certificate type or by departing the system altogether. Additional ratings (viz. instrument and helicopter) are, of course, held simultaneously with a valid airman certificate type.

The most important mechanism within the pilot supply sector is the rate of student certificates issued. An increase in student certificates issued will result in an instantaneous increase in student pilots, but will have a delayed reaction before causing an increase in private pilots, and an even longer delay before increasing commercial pilots. On the other hand, a constant rate of student certificates issued will shortly produce a constant level of private pilots, and eventually a constant level of commercial pilots. This has been the situation regarding the issuance of student certificates during the past few years.

The importance of the way in which progression takes place within the pilot supply sector is stressed here because most pilot forecasting methods try to forecast the number of different pilot types independently. Since pilot upgrading and departing occurs continuously over time, the present approach should yield a better "feel" for the true behavior within this sector.

The Aircraft Utilization Sector

Several different behavioral subsegments are evident within the air-craft utilization sector. First is the owner-operator situation, characterized by the business and personal use categories. Here an aircraft is purchased and operated by the same individual. The average annual utilization rates for these aircraft have been varying about a nominal value. Total annual utilization within each of these subsegments is obtained by taking the product of active aircraft and average annual utilization rate.

Demand for aerial application, instructional, and air taxi flying represents an aggregate demand for a general aviation service. The total annual hours demanded are distributed among the available aircraft to determine a derived annual utilization rate. As will be discussed later, these derived utilization rates will be used in determining the demand for additional aircraft in these categories.

Behavior of the single and multi-engine piston aircraft owners within the "other" use category, which are predominantly rental operations, is similar to the total hours flown approach. The remaining segments of the "other" use category are based on average utilization rates.

Different user category/aircraft type subsegments respond to different stimuli. Utilization, either average rate or total hours, has shown a significant correlation with variable cost of operation in only a few of the 29 subsegments. Some subsegments have indicated utilizations dependent on GNP, DPI, or the level of commercial air activity. However, the form of these dependencies is, in some cases, opposite the a priori expectation.

The forecasted level of annual hours flown is used to determine the corresponding level of operations within each subsegment. Operations are distinguished by local-itinerant, towered-non-towered, and IFR-VFR. Annual hours flown is also used in calculating the amount of both piston and jet fuel consumed.

The Aircraft Demand Sector

The structure of the aircraft demand sector is identical for all subsegments of general aviation. Each subsegment has its own goal for a desired number of active aircraft which it is striving to achieve. The main difference between subsegments is in the functional expression for their respective goals.

The demand for aircraft that are owned and operated by the same individual (viz. business and personal user categories), is likely to be dependent on the supply of active certificated pilots. As the number of active pilots increases, the demand for active (business and personal) aircraft will increase. This is expressed through the desired-pilots-per-aircraft ratio. However, in certain cases, the desired-pilots-per-aircraft parameter is shown to be a function of total cost of operation and either GNP or DPI. Thus, as the relative economic attractiveness of owning an aircraft goes down, the same number of pilots will demand fewer aircraft.

The demand for aircraft that are used in providing a service (viz. aerial application, instructional, air taxi and rental) is dependent on the extent to which these aircraft are presently being used. Should the average annual utilization rate of a particular aircraft type within one of these user categories surpass some threshold, then there will be a need for additional aircraft to satisfy what may be an excess demand. The goal for desired number of active aircraft is related to the ratio of desired aircraft utilization rate and actual aircraft utilization rate. Except for aerial applications, the desired aircraft utilization rates within other subsegments have been insensitive to changes in economic variables.

Demand for corporate aircraft is based on a desired number of active aircraft which is directly related to general economic conditions. Intuitively, this functional dependence is appealing. For, should economic growth be stagnated and real GNP remain constant, the desired number of corporate aircraft will remain constant. Ultimately, the demand for additional corporate aircraft would represent only replacement of destroyed aircraft. However, if the economy continues to grow, an ever increasing number of active corporate aircraft will be desired.

A Level of Service Index for Commercial Aviation

The purpose of including a level of commercial aviation service in the general aviation dynamics model was to provide an approximate measure of substitutability between the two modes of travel. More precisely, the intent was to relate time rates of change in general aviation activity levels (hours flown, active aircraft) to potentially impacting rates of change in scheduled air carrier operations. In particular, the commercial aviation level of service index influences activity levels for the corporate use category.

Level of service is taken here to connote a measure of the quantity of service offered by commercial aviation. As such, it serves as a surrogate measure for the probability of the availability of direct service for a trip demand between two arbitrary points (origin - destination) at an arbitrary origination time. This probability depends on three principal attributes of the commercial aviation system: (1) average flight frequency, (2) number of airports served, and (3) the number of direct service routes making up the air carrier network. These factors, in turn, depend on policies and practices pertaining to (1) average load factor, (2) aircraft payload capacity, and (3) route network configuration. It should be noted that level of service is independent of cost.

Based on the foregoing conceptualization of level of service, revenue aircraft departures in scheduled domestic service for certificated route air carriers (RAD) is used in the model as a reasonable surrogate measure of the desired probability. As used in the model, this index is expressed as a proportional change from the model base year, i.e.,

Level of Service Index for Year $t = \frac{RAD(t)}{RAD(1972)}$

Absolute values for revenue aircraft departures for the time period 1961-1974 are given in Figure 2-3 and Table 2-5. It is seen from these figures that revenue aircraft departures increased sharply through the decade of the 60s, followed by a significant decline between 1969 and 1974.

FIGURE 2-3. REVENUE AIRCRAFT DEPARTURES IN SCHEDULED DOMESTIC SERVICE FOR CERTIFICATED ROUTE AIR CARRIER

TABLE 2-5. REVENUE AIRCRAFT DEPARTURES IN SCHEDULED DOMESTIC SERVICE FOR CERTIFICATED ROUTE AIR CARRIER

Yr.	Rev. Acft. Dep.	Yr.	Rev. Acft. Dep.
1961	3,532,448	1971	4,680,612
1962	3,445,720	1972	4,726,047
1963	3,556,700	1973	4,805,141
1964	3,692,959	1974	4,433,387
1965	3,916,616		
1966	4,070,971		
1967	4,624,031		
1968	4,956,741		
1969	5,058,371		
1970	4,776,584		

CHAPTER 3. THE PILOT SUPPLY SECTOR

There are three classes of certificated pilots which are of major importance to general aviation. In order of the required steps for progression these are holders of student, private, and commercial certificates. Airline transport pilots have been disregarded since they represent a relatively small fraction of the total. Helicopter pilots are included because they are important in determining the number of active helicopters.

To obtain a student certificate, an applicant must be at least sixteen years of age and must have passed an FAA-approved medical examination within the previous two years. Thereafter, medical examinations are required biennially to maintain the validity of the license.

This continues to be necessary after he has obtained his private pilot's license, which in turn also requires that he should be at least seventeen years of age and have passed the necessary proficiency tests, and had at least forty hours of flying experience.

To obtain a commercial license the private pilot has to be at least eighteen years old and be able to demonstrate a higher level of proficiency in written and practical examinations. He must have had at least 200 hours of flying time, with a specified proportion of instructional and other experience. Medical examinations for commercial pilots are required annually.

In addition to these types of certificates, instrument ratings and helicopter ratings held by these pilots are also of importance.

Figure 2-4 shows the chosen model of the pilot supply sector. By the nature of its construction, the model asserts that the relationships chosen for inclusion are important, that any omitted relationships are less important, and the "real world" interactions can be represented usefully as described in the details of the model.

All of the data used in quantifying the relationships within the pilot supply sector have been obtained from various issues of the FAA Statistical Handbook of Aviation.

FIGURE 2-4. PILOT SUPPLY SECTOR

As depicted, the pilot supply sector possesses no feedback mechanisms, only "feed-forward". This implies a stable situation which is neither growing nor decaying at an excessive rate. It may be argued that "pilots beget pilots" which would imply a positive feedback and exponential growth. However, this has been assumed not to be the case.

Student Pilots (SP)

Student pilots in Figure 2-4 is a system "level" variable. Student pilots at any point in time are calculated as the student pilot population at the preceding point in time, plus the number of student certificates issued during the intervening interval, minus the number of private certificates issued, minus the student dropouts. Mathematically this is expressed as

 $SP_{t} = SP_{t-1} + DT(SCI - PCI - SPD)$

SP_t: Student pilots at time t (people)

DT: Time interval, DT = (t) - (t-1) (years)

SCI: Rate of student certificate issuances (people/year)

PCI: Rate of private certificate issuances (people/year)

SPD: Rate of student pilot departures (people/year)

Student Certificates Issued (SCI)

Figure 2-5 is a plot of the student certificates issued during each year since 1964. The mid-60s experienced a tremendous growth in the number of certificates issued annually. Through the late-60s and into the 70s, the number of certificates issued decreased and essentially leveled out.

This phenomena may be explained by noting that the general aviation pilot boom of the mid-60s was the result of persons in all age groups obtaining initial certification. As time progressed these older age groups became saturated, to the extent that most persons in an older age group who desired to become a pilot would already have done so. Thus, for the most part, student certificates issued now are to persons just becoming of available age or financially able.

FIGURE 2-5. STUDENT CERTIFICATES ISSUED ANNUALLY

The estimated resident population of the U. S. is presented in Table 2-6 for each of three age groups over the past ten years. Table 2-7 presents data on the fraction of student certificates held by members of these three age groups as of January 1, 1970-1974, the total number of student certificates issued during the previous year, and the fraction of available population within each age group obtaining a certificate. For example

$$SCIN(1) = .00162 = \frac{.371 \times 132,926}{30,433,000}$$

The issuance of student certificates is most likely a relatively stable situation now that the initial boom period has passed. Therefore, the rate of issuance should be related to the level of individual affluence and the relative cost of obtaining a private certificate. Specifically, the influence of disposable personal income per capita (DPI) and variable cost of operating single engine piston aircraft [VC(1)] on the rates of issuance were investigated. Since no historical data on the absolute cost of obtaining the various certificates could be found, VC(1) was chosen as a relative indicator for the total cost of obtaining a certificate. Figure 2-6 illustrates the relationship between SCIN(K) and VC(1).

Linear regression equations were developed by first indexing the variable cost (1972 value = 1) as displayed in Figure 2-7. Both VC(1) and DPI were included as independent variables in a stepwise linear regression analysis. The most significant results were

SCIN(1) =
$$0.00448 - .00292 \frac{\text{VC(1)}}{\text{VC(1)}_{1972}}$$
 $R^2 = .90; F_{1,4} = 37.3$

SCIN(2) = $0.00348 - .00208 \frac{\text{VC(1)}}{\text{VC(1)}_{1972}}$
 $R^2 = .83; F_{1,4} = 19.6$

SCIN(3) = $0.000742 - .000324 \frac{\text{VC(1)}}{\text{VC(1)}_{1972}}$
 $R^2 = .64; F_{1,4} = 7.25$

^{*} R², the coefficient of determination, is interpreted as the proportionate reduction of total variation associated with the use of the independent variable.

^{**} $F_{1,4}$, the ratio of two χ^2 variables, is the test statistic in an analysis of variance approach for testing the validity of the regression equation. $F_{1,4} = 37.3$ indicates that the coefficient of the independent variable is significant at the 0.005 level.

TABLE 2-6. ESTIMATED RESIDENT POPULATION OF U. S.

	POP(1)	POP(2)	POP(3)
As of July 1	16-24 Numbe	25-34 ers In Thousand	35+ s
1965			
1966	27,777	22,483	82,406
1967	28,609	22,896	83,145
1968	29,394	23,700	83,770
1969	30,433	24,406	84,330
1970*	31,733	25,079	85,076
1971	33,194	25,652	85,756
1972	33,619	27,243	86,442
1973	34,336	28,458	87,144
1974	35,053	29,625	87,882
1975	35,778	30,783	88,703

^{*} P-25, No. 614.

Source: U. S. Bureau of the Census, <u>Current Population</u>
<u>Reports</u>, Series p-25, No. 519. "Estimates of
the Population of the United States by Age, Sex,
and Race: April 1, 1960, to July 1, 1973", U. S.
Government Printing Office, Washington, D.C., 1974.

TABLE 2-7. STUDENT CERTIFICATES BY AGE GROUP

ų, 0	Fractio Cert, in	Fraction of Student ort, in Each Age Group	ant Troup	Student Cert, Issued Previous Year	Fracti Popula Student	Fraction of Available Population Obtaining A Student Cert, Previous Yr	le g A s Yr.
Jan. 1	16-24	25-34	35+		16-24	25-34	35+
1970	.371	.347	.282	132,926	.00162	.00190	777000
1971	.384	.333	.283	126,971	.00154	.00168	.000422
1972	.373	.334	.293	128,004	.00144	.00167	.000437
1973	.364	.337	.299	121,543	.00132	.00150	.000420
1974	.372	.339	.289	131,384	.00142	.00156	.000436
1975	.372	.341	.287	113,997	.00121	.00131	.000372

As of Jan. 1, 1970
$$371 \times 132,926$$

$$30,433,000$$
July 1, 1969

Example

SPBN =
$$\hat{\mathbf{a}} + \hat{\mathbf{b}} e^{-t}$$
.
SCIN(1) = .00134 + .00031e^{-t}
SCIN(2) = .00149 + .00044e^{-t}
SCIN(3) = .000422

Note: t = 0 at January 1, 1970 t = 1 at January 1, 1971 Etc. **6**: K = 1, 16-24 Year **X**: K = 2, 25-35 Year **D**: K = 3, 35 + Year

FIGURE 2-6. FRACTION OF AVAILABLE POPULATION OBTAINING STUDENT CERTIFICATES (PER YEAR) AS A FUNCTION OF VARIABLE COST

FIGURE 2-7. FRACTION OF AVAILABLE POPULATION OBTAINING STUDENT CERTIFICATES (PER YEAR) AS A FUNCTION OF VARIABLE COST INDEX

The rate of student certificate issuance is then

$$SCI = \sum_{i=1}^{3} SCIN(i)*POP(i)$$

where POP(I) is the total population within the Ith age group.

Student Pilot Departure Rate (SPD)

Student pilot departure rate depends on the student pilot population SP and on a normalized coefficient SPDN. Student pilot departure rate normal SPDN states the dropout rate per year as a fraction of the student pilot population. SPD, as defined here, is the total rate at which students are dropping out. It is measured in people per year. Calculated values for SPDN since 1964 are presented in Table 2-8. Since there appears to be no trend in the data, it was decided to exponentially smooth these data in order to determine the best value to use in forecasting dropout rates beyond 1975. The smoothed value of SPDN is 0.409.

Private Certificates Issued (PCI)

The rate at which private certificates are issued also depends on the student pilot population SP and on a normalized coefficient PCIN. Private certificates issued normal PCIN states the upgrade rate per year as a fraction of the student pilot population. PCI is the total rate at which students are achieving private pilot status. It is measured in people per year. Figure 2-8 shows that private certificates issued follows the same pattern as student certificates issued. Table 2-8 also presents annual values for PCIN since 1964. The exponentially smoothed value is PCIN = 0.274, and the rate for private certificates issued is simply

PCI = PCIN*SP

If the reciprocal of SPDN + PCIN is formed, the result will be the average "life expectancy" of a student pilot. Substituting in the smoothed values yields an average student pilot lifetime of 1.46 years. This seems entirely reasonable in view of the fact that a student certificate is only valid for two years.

TABLE 2-8. STUDENT PILOT DEPARTURE RATE NORMAL AND PRIVATE CERTIFICATES ISSUED NORMAL

	1.	2.	3.	4.	(4 : 1)	(3:1)
	Student Certificates As of Jan. 1	Student Certificates Issued During	Private Certificates Issued During	Student Departures During	SPDN	PCIN
1975	180,795					
1974	181,905	113,997	48,501	66,606	.366	.267
1973	181,477	131,384	53,140	77,816	.429	.293
1972	186,428	121,543	50,523	75,971	.408	.271
1971	195,861	128,004	49,579	87,858	.448	.253
1970	203,520	126,871	53,026	81,504	.400	.261
1969	209,406	132,926	54,597	84,215	.402	.261
1968	181,287	149,444	54,232	67,093	.370	.299
1967	165,177	159,399	57,520	85,769	.519	.348
1966	139,172	129,180	42,464	60,711	.436	.305
1965	120,743	94,635	33,337	42,869	.355	.276
1964	105,298	84,629	26,425	42,759	.406	.251

FIGURE 2-8. PRIVATE CERTIFICATES ISSUED ANNUALLY

Private Pilots (PP)

4

Private pilots PP at any point in time is calculated as the private pilot population at the preceding point in time, plus the number of private certificates issued during the intervening interval, minus the number of commercial certificates issued, minus the private pilot departures.

$$PP_t = PP_{t-1} + DT(PCI - CCI - PPD)$$

PP,: Private pilots at time t

CCI: Rate of commercial certificates issued

PPD: Rate of private pilot departures

Private Pilot Departure Rate (PPD)

Private pilot departure rate PPD is calculated according to

PPD = PPDN* PP

where the private pilot departure rate normal (PPDN = 0.062) is an exponentially smoothed average of the annual values presented in Table 2-9.

Commercial Certificates Issued (CCI)

The rate at which commercial certificates are issued depends on the private pilot population PP and on a normalized coefficient CCIN. Commercial certificates issued normal CCIN states the upgrade rate per year as a fraction of the private pilot population. CCI is the total rate at which private pilots are progressing to commercial pilot status. Historical data for CCI, measured in people per year, is plotted on Figure 2-9. Table 2-9 presents annual values for CCIN since 1964. The exponentially smoothed value is CCIN = 0.065. However, in a manner similar to SCIN(K), the normal rate of issuance for commercial certificates was found to depend on variable cost

TABLE 2-9. PRIVATE PILOT DEPARTURE RATE NORMAL AND COMMERCIAL CERTIFICATES ISSUED NORMAL

	1.	2.	3.	4.	(4 : 1)	(3 ÷ 1)
	Private Certificates As of Jan. l	Private Certificates Issued During	Commercial Certificates Issued During	Private Pilot Departures During	PPDN	CCIN
1975	305,848					
1974	298,921	48,501	17,693	23,881	.080	.059
1973	307,000*	53,140	16,769	?	-	.055
1972	299,000	50,523	16,043	26,480	.088	.054
1971	290,000	49,579	16,356	24,223	.084	.056
1970	286,000	53,026	21,130	27,896	.098	.074
1969	268,000	54,597	21,399	15,198	.057	.080
1968	240,000	54,232	20,157	6,075	.025	.084
1967	209,000	57,520	19,996	6,524	.031	.096
1966	183,000	42,464	14,210	2,254	.012	.078
1965	162,000	33,337	11,043	1,294	.008	.068
1964	139,000	26,425	8,772	?		.063

^{*} At the close of 1973, there was a purging of the Airmen Certification files. During this process, approximately 26,000 duplicates or faulty records were eliminated. In order to account for this purging, 16,000 were subtracted from all earlier private pilot totals, 10,000 from commercial, and 26,000 from instrument ratings.

FIGURE 2-9. COMMERCIAL CERTIFICATES ISSUED ANNUALLY

CCIN = 0.244 - 0.179
$$\frac{\text{VC(1)}}{\text{VC(1)}_{1972}}$$

R² = 0.47; F_{1,7} = 6.28

The rate for commercial certificates issued is determined according to

CCI = CCIN* PP

As was discussed earlier for the average lifetime within the student pilot category, the average lifetime of a private pilot can be determined from the reciprocal of PPDN + CCIN. Using their smoothed values, yields an average private pilot lifetime of 7.9 years. Again this seems to be a reasonable value which justifies the method of analysis.

Commercial Pilots (CP)

Commercial pilots CP at any point in time is calculated as the commercial pilot population at the preceding point in time, plus the number of commercial certificates issued, minus the commercial pilot departures. Since the airline transport pilot category has been disregarded, commercial pilot departures will include upgrades to this category.

$$CP_t = CP_{t-1} + DT(CCI - CPD)$$

 CP_t : Commercial pilots at time t

CPD: Rate of commercial pilot departures.

Commercial Pilot Departure Rate (CPD)

Commercial pilot departure rate CPD is calculated according to $\mbox{CPD} = \mbox{CPDN* CP}$.

Annual values for CPDN are given in Table 2-10; the exponentially smoothed value for CPDN is .048. The reciprocal of CPDN indicates an average commercial pilot lifetime of 20.8 years.

TABLE 2-19. COMMERCIAL PILOT DEPARTURE RATE NORMAL

	Commercial Certificates As of Jan. 1	Commercial Certificates Issued During	Commercial Pilot Departures During	CPDN
1975	192,425			
1974	182,444	17,693	7,712	.042
1973	183,000*	16,769	?	_
1972	182,000	16,043	12,043	.066
1971	177,000	16,356	11,356	.064
1970	167,000	21,130	11,130	.067
1969	154,000	21,399	8,399	.055
1968	140,000	20,157	6,157	.044
1967	122,000	19,996	1,996	.016
1966	107,000	14,210	?	1.
1965	98,000	11,043	2,043	
1964	86,000	8,772	?	-

^{*} At the close of 1973, there was a purging of the Airmen Certification files. During this process, approximately 26,000 duplicates or faulty records were eliminated. In order to account for this purging, 16,000 were subtracted from all earlier private pilot totals, 10,000 from commercial, and 26,000 from instrument ratings.

Instrument-Rated Pilots (IP)

The assumption being made is that all new commercial certificates will also have an instrument rating. Therefore, the number of instrument-rated pilots IP at any point in time is calculated as the instrument-rated pilot population at the preceding point in time, plus the number of private pilots obtaining an instrument rating during the intervening interval, plus the number of commercial certificates issued, minus the instrument-rated pilot departures.

$$IP_t = IP_{t-1} + DT(URIP + CCI - IPD)$$

IP₊: Instrument-rated pilots at time t

URIP: Upgrade rate to instrument from private

IPD: Instrument-rated pilot departure rate.

Instrument-Rated Pilot Departure Rate (IPD)

Annual values for the instrument-rated pilot departure rate normal IPDN are given in Table 2-11. Recalling that the airmen files were purged at the close of 1973, it is impossible to determine a valid data point for that year. FAA published figures for instrument-ratings held previous to January 1, 1974, were (somewhat) arbitrarily decreased by the 26,000 faulty records found during the file purge. In determining an annual value for IPDN, the difference in ratings held between successive years is more important than the actual number outstanding on a particular date. A smoothed value of IPDN through 1974 is .037 which implies an average instrument rating lifetime of 27.0 years. Instrument-rated pilot departure rate is

IPD = IPDN*IP

TABLE 2-11. INSTRUMENT-RATED PILOT DEPARTURE RATE NORMAL

	Instrument Ratings Held as of Jan. 1	Instrument R a tings Issued During	Instrument Rating Departures During	I PDN
1975	199,323			
1974	185,969	19,012	5,385	.029
1973	162,000*	19,590	?	- m
1972	153,000	17,311	8,311	.054
1971	144,000	17,207	8,207	.057
1970	130,000	20,204	6,204	.048
1969	113,000	20,628	3,628	.032
1968	97,000	17,972	1,972	.020
1967	81,000	19,255	3,255	.040
1966	68,000	14,192	1,192	.018

^{*} At the close of 1973, there was a purging of the Airmen Certification files. During this process, approximately 26,000 duplicates or faulty records were eliminated. In order to account for this purging, 16,000 were subtracted from all earlier private pilot totals, 10,000 from commercial, and 26,000 from instrument ratings.

Upgrade Rate to Instrument from Private (URIP)

The rate at which private pilots are obtaining instrument-ratings is calculated by

URIP = URIPN* PP.

The annual values of URIPN in Table 2-12 yield a smoothed value of .014.

Helicopter Certificates Issued (HCI)

Figure 2-10 is a plot of the helicopter certificates issued during each year since 1964. As with student certificates, the mid-60s experienced a tremendous growth in the number of helicopter certificates issued annually. In the early 70s, the number of certificates issued has steadily decreased. In order to get some idea of the cost impact on certificates issued, the four most recent data points were assumed to be varying strictly because of the variable cost of operating piston helicopters. A log linear regression analysis yielded,

HCI = 2650*
$$\left(\frac{\text{VC(6)}}{\text{VC(6)}_{1972}}\right)^{5.33}$$

R² = .82
F_{1.2} = 9.4

Helicopter Pilots (HP)

Helicopter pilots HP at any point in time are calculated as the helicopter pilot population at the preceding point in time, plus the number of helicopter certificates issued, minus the helicopter pilot departures.

$$HP_t = HP_{t-1} + DT(HCI - HPD)$$

HP_t: helicopter pilots at time t

HPD: Rate of helicopter pilot departures

TABLE 2-12. NORMAL UPGRADE RATE TO INSTRUMENT-RATING FOR PRIVATE PILOTS

	Private Certificates As of Jan. 1	Instrument Rating Certificates Issued To Privates During	URIPN
1975	305,848		
1974	298,921	4,829	.0162
1973	307,000	4,587	.0149
1972	299,000	3,853	.0129
1971	290,000	3,625	.0118
1970	286,000	3,790	.0126
1969	268,000	3,556	.0125
1968	240,000	2,948	.0123

FIGURE 2-10. HELICOPTER CERTIFICATES ISSUED

Helicopter Pilot Departure Rate (HPD)

Helicopter pilot departure rate HPD is calculated according to HPD = HPDN*HP

Annual values for HPDN are given in Table 2-13; the exponentially smoothed average value for CPDN = 0.285. The reciprocal of CPDN indicates an average helicopter pilot lifetime of 3.6 years. This seems low, but many helicopter pilots eventually obtain an airplane certificate which represents a departure from this category.

Helicopter-Rated Pilots (HR)

Helicopter-rated pilots are those pilots holding a fixed wing airman certificate with an additional rating for flying helicopters. Therefore, the number of helicopter-rated pilots HR at any point in time is calculated as the helicopter-rated pilot population at the preceding point in time, plus the number of new helicopter ratings issued, minus the helicopter-rated pilot departures.

$$HR_t = HR_{t-1} + DT(HRI-HRD)$$

 ${\rm HR}_{\rm t}\colon$ Helicopter-rated pilots at time t

HRI: Helicopter-ratings issued rate

HRD: Helicopter-ratings departure rate

Helicopter-Rated Pilot Departure Rate (HRD)

Table 2-14 indicates that commercial certificated pilots hold approximately ten times as many helicopter ratings as either private pilots or others. The assumption was made that the fractional rate of departure for helicopter rated pilots HRDN will equal the fractional rate of departure for commercial pilots CPDN,

HRD = HRDN* HR

where HRDN = 0.048/year.

TABLE 2-13. HELICOPTER PILOT DEPARTURE RATE NORMAL

	Helicopter Certificates As Of Jan. 1	Helicopter Certificates Issued During	Helicopter Pilot Departures During	HPDN
1975	5647			
1974	5968	1298	1619	.271
1973	(7987)*	1719	(3738)	(.468)
1972	7992	2421	2426	.304
1971	6677	3448	2133	.319
1970	4286	4250	1859	.434
1969	3166	2326	1206	.381
1968	2573	1433	840	.326
1967	1819	1411	657	.361
1966	1392	822	395	.284
1965	1058	549	215	.203
1964	823	344	109	.132

^{*} At the close of 1973, there was a purging of the Airmen Certification files. During this process, approximately 26,000 duplicates or faulty records were eliminated. In order to account for this purging, 16,000 were subtracted from all earlier private pilot totals, 10,000 from commercial, and 26,000 from instrument ratings.

TABLE 2-14. HELICOPTER RATINGS

	Commercial Airplane, Commercial Helicopter	Private Airplane, Private Helicopter	Other Helicopter Ratings
1975	19,247	1948	1776
1974*	(18,335)	(1944)	(1515)
1973	19,507	2079	1568
1972	18,326	1839	1428
1971	16,422	1441	1382
1970	14,374	997	1239

^{*} At the close of 1973, there was a purging of the Airmen Certification files. During this process, approximately 26,000 duplicates or faulty records were eliminated. In order to account for this purging, 16,000 were subtracted from all earlier private pilot totals, 10,000 from commercial, and 26,000 from instrument ratings.

Helicopter-Ratings Issued (HRI)

Since commercial certificated pilots are the predominant holders of additional helicopter ratings, the rate of issuance of additional helicopter ratings is assumed to be directly proportional to the number of active commercial pilots. Table 2-15 presents the data used in deriving the fractional helicopter-ratings-issued-normal HRIN. Note that the helicopter rating departures recorded in Table 2-15 are values derived from the above expression for HRD.

HRI = HRIN* CP

The value of HRIN appears to be steadily decreasing during the time interval of valid data. Rather than exponentially smooth a constantly decreasing value, the most recent derived value was chosen; that is, HRIN = .012/year.

TABLE 2-15. HELICOPTER RATINGS ISSUED NORMAL

	Additional Helicopter Ratings As Of Jan. 1	(Derived) Helicopter Rating Departures During	Helicopter Ratings Issued During	Commercial Certificates As Of Jan. 1	HRIN
1975	22,971			192,425	
1974	21,794	1,046	2223	182,444	.012
1973	23,154	<u></u>		183,000	
1972	21,593	1,036	2597	182,000	.014
1971	19,245	924	3272	177,000	.018
1970	16,610	797	3432	167,000	.021

CHAPTER 4. THE AIRCRAFT UTILIZATION AND DEMAND SECTORS

A basic hypothesis implemented in the model is that each subsegment of general aviation is striving to achieve its goal for the number of active aircraft. This goal, DAA, the desired-active-aircraft, can be a complex function of the number of pilots, the average aircraft utilization rate last year, fixed costs, variable costs, and exogenous inputs for GNP, DPI or MI. Thus, the dynamics within the general aviation system are the result of continuous causal interactions between the pilot supply sector, the aircraft utilization sector, and the aircraft demand sector. Because the interdependence between the aircraft utilization and demand sectors is so strong, they will be discussed simultaneously for each user category.

Figure 2-11 illustrates a portion of the structure that is common to all user categories. The number of active aircraft within any user category/aircraft type subsegment $AA_{i,j}$ is determined by the aircraft destruction rate $ADR_{i,j}$ and the aircraft activation rate $AAR_{i,j}$. Although $ADR_{i,j}$ strictly reduces the number of active aircraft, $AAR_{i,j}$ can be either positive or negative. In mathematical form

 $AA(I,J)_{t} = AA(I,J)_{t-1} + DT(AAR(I,J) - ADR(I,J))$

AA(I,J). Active aircraft at time t (aircraft)

AAR: Aircraft activation rate (aircraft/year)

ADR: Aircraft destruction rate (aircraft/year)

The aircraft destruction rate is a function of the annual number of hours flown. According to "Safety in General Aviation", the destruction rate per 1000 flight hours is dependent on user category only; that is, it is independent of aircraft type. The normal values for aircraft destruction rate ADRN are given in Table 2-16. With these values ADR is determined from

ADR(I,J) = ADRN(I)*HF(I,J)

ADRN: Aircraft destruction rate normal (aircraft/year/hours flown)

HF: Annual hours flown (hours flown)

The aircraft activation rate represents the combined effect of purchases of new or used aircraft, aircraft deactivation and aircraft transfers to different user categories. The assumption is made that there is an adequate inventory of new and used aircraft to satisfy all demands. The goal of this system is to maintain the number of active aircraft at the level of desired-active-aircraft DAA. If DAA is greater than AA, then more aircraft will be activated; if, on the other

FIGURE 2-11. AIRCRAFT DEMAND SECTOR

TABLE 2-16. NORMAL AIRCRAFT DESTRUCTION RATES

User Category	Aircraft Destroyed per 100,000 hours
Business	3
Corporate	3
Personal	7
Aerial Application	6
Instructional	3
Air Taxi	2
Other	7

hand, DAA is less than AA, there will be a net flow of aircraft out of this particular subsegment. Of course, these adjustments to the active aircraft fleet cannot occur instantaneously. In particular, for each subsegment there will be an average delay time AT(I,J) in actually realizing these adjustments. Functionally,

$$AAR(I,J) = (DAA(I,J) - AA(I,J))/AT(I,J)$$

DAA: Desired-active-aircraft (aircraft)

AT: Adjustment time (years)

Primary Use - Business

Figure 2-12 shows the fundamental mechanisms that control activity within the "business" use category. The main contention here is that an aircraft used primarily for business will be owned and operated by the same individual. Since this individual must be a member of the active pilot population, there should exist a parameter for describing the propensity for pilots to demand business aircraft. DPPA, desired-pilots-per-aircraft, relates the demand for business aircraft to the number of active pilots (private and commercial).

The goal for active aircraft DAA is simply

$$DAA(I,J) = TP/DPPA(I,J)$$

where TP is total pilots and is equal to the sum of private plus commercial pilots when J identifies fixed wing aircraft, but is equal to the number of helicopter ratings outstanding when J signifies helicopters.

From the data presented in Volume IV, aircraft activations for the business/single-engine piston subsegment can be constructed as in Table 2-17. The key parameter to be determined here is the aircraft activation rate AAR. This represents the decision policy followed by this particular subsegment of the system. Figure 2-13 shows a plot of AAR(1,1) during the four years for which data are available. With only four data points, ordinary least squares analyses would seem to be inappropriate. However, recalling the functional definition for aircraft activation rate

$$AAR(I,J) = (DAA(I,J) - AA(I,J))/AT(I,J)$$
(1)

and substituting the expression for DAA, yields for the business/single-engine piston subsegment

$$AAR(1,1) = \left\{ \frac{TP}{DPPA(1,1)} - AA(1,1) \right\} AT(1,1)$$

FIGURE 2-12. BUSINESS/SINGLE-ENGINE PISTON EXAMPLE

TABLE 2-17. ESTIMATED DESIRED-PILOTS-PER-AIRCRAFT IN THE BUSINESS/SINGLE ENGINE PISTON SUBSEGMENT

Year	AA(1,1) as of Jan 1	Estimated ADR(1,1) during	Estimated AAR(1,1) during	TP= PP+CP Jan 1	Estimated DPPA during
1971	20,522	94	-344	467,000	23.54
1972	20,084	93	1549	481,000	20.75
1973	21,540	114	3943	490,000	16.65
1974	25,369	125	768	481,365	17.89
1975	26,012			498,273	

FIGURE 2-13. AIRCRAFT ACTIVATIONS IN THE BUSINESS/SINGLE-ENGINE PISTON SUBSEGMENT

Solving for DPPA,

$$DPPA(1,1) = TP/(AT(1,1)*AAR(1,1) + AA(1,1))$$
(2)

The only unknown on the right hand side of this equation is AT(1,1), the average delay time in adjusting for a discrepancy between the desired number of aircraft and the actual active aircraft. Because of the discrete nature of data reporting on an annual basis, AT can be assumed to be an integer value; the ultimate choice being dictated by the best fit of the data.

DPPA is not likely to be a constant but should be reflective of general economic conditions as well as the relative cost of aircraft ownership. At an adjustment time of 2 years, the desired-pilot-per-aircraft values calculated from Equation (2) are:

YEAR	DPPA(1,1)
1971	23.5
1972	20.8
1973	16.7
1974	17.9

The fixed cost of ownership turned out to be statistically insignificant in explaining the variation in DPPA. However, a high correlation was found with GNP. Figure 2-14 indicates the variation of DPPA(1,1) with percentage changes in GNP measured in constant 1972 dollars and indexed to the 1972 value of GNP. Unfortunately, the data in Figure 2-14 only encompasses a range in GNP from .94 to 1.05. Realizing that ultimate use of the model will extrapolate GNP far past the limits experienced, it is extremely important to input functional forms that will not lead to ridiculous conclusions. In particular, if a strictly linear function were used for the dependence of DPPA on GNP, DPPA would quickly decrease as GNP increased. Eventually, every active pilot would desire a business aircraft. Because of this, an exponential relationship was used to fit the data. The resulting expressions do not show as great a sensitivity to increases in GNP past the presently available data. Results for fixed wing aircraft are:

FIGURE 2-14. DESIRED-PILOTS-PER-AIRCRAFT AS A FUNCTION OF GNP

DPPA(1,1) = 20.0 GNP^{-3.23}
AT(1,1) = 2. (years)
$$R^2 = .97$$
 $F_{1,2} = 72$

DPPA(1,3) = 62.6 GNP^{-2.92}
AT(1,3) = 3. (years)
 $R^2 = .98$
 $F_{1,2} = .98$

The desired-pilot-per-aircraft parameter for helicopters within the business category did turn out to be a function of the total cost of operation TC,

DPPA(1,6) = 88.4
$$\left(\frac{\text{GNP}}{\text{TC}(1,6)}\right)^{-1.47}$$

AT(1,6) = 1. (year)

R² = .59

F_{1,2} = 2.9

Figure 2-12 indicates that the annual aircraft utilization rate within the business category is a function of the normal aircraft utilization rate AURN, the GNP, and the variable cost of operation VC. Although the mechanisms behind the demand for business and corporate aircraft are different, operation of active aircraft within these two categories is likely to be dependent on the same parameters. So in order to obtain a statistically larger base to work from, the single-engine and multi-engine piston aircraft from both business and corporate were pooled together. However, in order to preserve the idea of an average annual utilization rate for each user category/aircraft type subsegment, the dependent variable regressed was ratioed from the 1972 value of AUR(I,J).

Results of the pooled regression were

The low R² indicates only a small portion of the variance is explained by the independent variables. Indeed, perhaps the only reason for including these terms in the model is that the sign of the exponent on VC(J) appears to be correct; that is, as variable costs increase, annual utilization rates should decrease. On the other hand, one would expect a priori that as GNP decreased, annual utilization rates would also decrease. The sign of the exponent on GNP indicates just the opposite. Some reflection on the aircraft demand sector may explain this apparent incongruity. Demand for business aircraft has been shown to be positively correlated with GNP. Demand for corporate aircraft will also be shown to be positively correlated with GNP. Thus, a decrease in GNP will cause a net reduction in both the business and corporate fleets. Assuming that reductions will be satisfied by the marginal users, then it could be expected that the average annual utilization of those aircraft remaining will actually be greater than before.

A similar analysis was applied to the pooled helicopter subsegments of business and corporate categories.

AUR(I,J) = AURN(I,J)*GNP
$$^{-1.448}$$
*VC(J) $^{-.806}$
AURN(1,6) = 239 (hours/aircraft/year)
AURN(2,7) = 425 " " "

R² = .57
F_{2,7} = 4.7

Primary Use - Corporate

Figure 2-15 shows the fundamental mechanisms that generate activity within the "corporate" use category. It is similar to the flow diagram for the business category, except that the desired-active-aircraft DAA is a function of GNP directly. There is no intervening parameter such as desired-pilot-per-aircraft. The reasoning here is that the number of corporate aircraft is neither restricted nor enhanced by the number of available pilots. Should a corporation obtain an aircraft, it is a relatively easy matter to hire the pilots required to fly it.

FIGURE 2-15. CORPORATE/TURBOJET EXAMPLE

Table 2-18 presents the data required for deriving the desired-active-aircraft parameter for the corporate/turbojet subsegment.

TABLE 2-18. AIRCRAFT ACTIVATION DATA FOR CORPORATE/TURBOJET

Year	AA(2,5)	Estimated ADR(2,5)	AAR(2,5)
1971	809	13	67
1972	863	14	85
1973	934	18	217
1974	1,133	18	164
1975	1,279		

Equation (1) on page 51 can be solved for DAA directly to yield

$$DAA(2,5) = AT(2,5)*AAR(2,5) + AA(2,5)$$

By trying various values for the average delay time, AT(2,5) = 3 resulted in the best fit. DAA was expected to be a function of general economic conditions as measured by GNP and a function of the fixed cost of ownership. However, as with DPPA in the business category, only GNP turned out to be significant. Results for each aircraft type within the corporate category are

DAA(2,1) = -1830 + 2937 GNP
AT(2,1) = 1 (year)

$$R^2 = .77$$

 $F_{1,2} = 6.8$
DAA(2,3) = -6698 + 10,784 GNP
AT(2,3) = 2 (years)
 $R^2 = .98$
 $F_{1,2} = 78$

DAA(2,4) = -2252 + 3594 GNP
AT(2,4) = 1 (year)

$$R^2 = .55$$

 $F_{1,2} = 2.5$
DAA(2,5) = -4842 + 6127 GNP
AT(2,5) = 3 (years)
 $R^2 = .83$
 $F_{1,2} = 10.1$
DAA(2,7) = -566 + 826 GNP
AT(2,7) = 1 (year)
 $R^2 = .53$
 $F_{1,2} = 2.2$

The strictly linear functional form was used to prevent DAA from rising too rapidly as GNP increases from the present value. Note that if economic growth should be curtailed such that GNP (measured in constant dollars) remained constant, the goal for active corporate aircraft would remain constant. Eventually the aircraft activation rate would equal replacement of destroyed aircraft only.

Results for the analysis of aircraft utilization rates for single-engine piston, multi-engine piston and turbine helicopters were presented with the pooled models in the business use category. Corporate turboprops and turbojets were also pooled and analyzed similarly. The most significant results were

The only independent parameter that was significant is the level of service indicator for commercial air traffic, MI. This parameter is measured in revenue-aircraft-departures and normalized to the 1972 value. Initially, it was thought that this parameter would indicate the substitutability between competing modes. However, the positive exponent on MI indicates that as revenue aircraft departures decreased recently, the average utilization of corporate turboprops and turbojets also decreased. Thus, instead of there being a competitive nature between corporate and commercial flying, it appears that the forces which would cause a decrease in commercial traffic are acting similarly on corporate flying; viz. the pressure to reduce flights during the fuel crisis, or the environmental pressures to reduce night flights, etc.

Primary Use - Personal

The fundamental mechanisms generating activity within the "personal" use category are shown in the flow diagram of Figure 2-16. As in the business category, a personal use aircraft is generally owned and operated by the same individual. This suggests investigation of another desired-pilot-per-aircraft parameter. The goal for active aircraft is

$$DAA(I,J) = TP/DPPA(I,J)$$

Within the personal use category, DPPA is a function of DPI rather than GNP. In the case of multi-engine piston aircraft, total annual cost of operation was also found to be significant; because of the scarcity of data, it was necessary to force DPI and TC into the equation as a ratio. Results of log-linear regression analyses are

DPPA(3,1) =
$$6.86 \text{ DPI}^{-.518}$$

AT(3,1) = 1 (year)
 $R^2 = .23$
 $F_{1,2} = .6$

FIGURE 2-16. PERSONAL/SINGLE-ENGINE PISTON EXAMPLE

DPPA(3,3) = 175
$$\left(\frac{\text{DPI}}{\text{TC(3,3)}}\right)^{-.923}$$

AT(3,3) = 1 (year)

R² = .25

F_{1,2} = .7

DPPA(3,6) = 89.5 DPI^{-.701}

AT(3,6) = 1 (year)

R² = .62

F_{1,2} = 3.3

The average annual utilization rates for each aircraft type within the personal use category have been essentially constant over the time period investigated,

Primary Use - Aerial Application

The annual hours flown within the aerial application category represents demand for a service. It is this annual demand that should be forecast within the model simulation. However, the provision of aerial-application aircraft to satisfy this demand will be based upon achieving certain desired aircraft utilization rates. This is indicated in the flow diagram of Figure 2-17, where the desired-active-aircraft goal is now a function of desired-aircraft-utilization-rate DAUR. The reasoning here is that as the actual utilization rate of aerial aircraft increases beyond some threshold, there will be an increased demand for these types of aircraft such that the average utilization rates will be reduced to a normal value.

A variety of regression analyses were made on DAUR by varying the independent parameters. The most significant results are:

DAUR(4,2) = 236 FC(3).978

AT(4,2) = 1 (year)

$$R^2 = .68$$
 $F_{1,2} = 4.2$

DAUR(4,3) = 134 FC(3).86

AT(4,3) = 1 (year)

 $R^2 = .18$
 $F_{1,2} = .4$

DAUR(4,6) = 289 (hours/aircraft/year)

AT(4,6) = 1 (year)

These relationships indicate that as the fixed costs of operation increase the desired-aircraft-utilization-rate will also increase - the larger the cost to be distributed, the more hours required to accomplish it. Since no distinct cost data were available for aircraft type two (single-engine piston, aerial application), the trend was assumed to follow fixed costs for multi-engine piston aircraft (type 3). DAUR for piston helicopters is constant.

Figure 2-18 shows five years of data for the annual hours flown within aerial application. Given the present mix of large and small farms within the U. S., there is a saturation level for annual hours flown at which every potential candidate for aerial application services is receiving them. Therefore, annual aerial application hours can be assumed to follow the so-called logistics or S-growth curve. A least squares fit of the form $\frac{S}{e^{a*b}}$ to the data of Figure 2-18 yields

$$J = \sum_{2,3,6} HF(4,J) = \frac{3,451,000}{e^{.955(.882)^{T}}}$$

where T = 0 during 1970, T = 1; during 1971, etc. This relationship indicates an ultimate saturation level for aerial application equal to 3,451,000 hours per year, or approximately twice the 1974 level.

Of course these total aerial application hours must be distributed between aircraft types 2, 3 and 6. Table 2-19 shows the fraction of total hours flown by each aircraft type during this time period.

FIGURE 2-18. ANNUAL HOURS FLOWN IN AERIAL APPLICATION

TABLE 2-19. FRACTION OF TOTAL AERIAL APPLICATION HOURS FLOWN BY EACH AIRCRAFT TYPE

Year	Single-Engine Piston, Aerial Application	Multi-Engine Piston	Piston Helicopter
1970	.897	.022	.081
1971	. 907	.021	.071
1972	.888	.025	.087
1973	.900	.029	.071
1974	.938	.012	.050
Exponer Smoothe		.021	.068

Since there is no apparent increasing preference for either aircraft types, an exponentially smoothed average value was chosen for the fraction to be applied to future forecasts. For example, the annual hours flown by multi-engine piston within the aerial application category is

$$HF(4,3) = .021*$$
 $\sum_{J=2,3,6} HF(4,J)$

Since the annual hours flown are forecast directly, the desiredactive-aircraft can be found from

$$DAA(I,J) = HF(I,J)/DAUR(I,J)$$

The aircraft activation rate, as always, is then

$$AAR(I,J) = (DAA(I,J) - AA(I,J))/AT(I,J)$$

Primary Use - Instructional

The level of instructional flying should be directly related to the number of new certificates and ratings issued. Figure 2-19 shows the hypothesized functional relationships within the instructional use category. Annual hours flown are determined by the rates of new certificate and rating issuances. As in the aerial application user category, the number of desired-active-aircraft is a function of actual hours flown and the desired-aircraft-utilization-rate.

The key to determining fixed wing instructional flying is the rate of issuance for private certificates, commercial certificates, and instrument ratings. Figure 2-20 shows how the average number of instructional hours flown per certificate issued has been increasing since 1967. Fitting an expression of the form $Y = ae^{1/t}$ yields

$$\frac{\text{Instr.Hr.}}{\text{Cert. Issued}} = 58.6 \text{ e}^{1/\text{t}}$$

which indicates a saturation level of 58.6 instructional hours per certificate issued for fixed wing aircraft. The fraction of fixed wing instructional hours flown by single-engine piston and multi-engine piston are given in Table 2-20. Since there is no apparent trend in the preference of either aircraft type, a simple exponentially smoothed average is used to distribute total fixed wing instructional hours.

A similar analysis applied to helicopter instructional flying yields

$$HF(5,6) = 13.6 (HCI + HRI)$$

The desired-aircraft-utilization-rates for each aircraft type showed absolutely no correlation with either fixed cost, total cost or GNP. Therefore, the four derived values for each DAUR were exponentially smoothed, yielding

$$DAUR(5,1) = 416 (hr/aircraft/year)$$

$$AT(5,1) = 1 (year)$$

DAUR(5,3) = 222 (hr/aircraft/year)

AT(5,3) = 1 (year)

DAUR(5,6) = 241 (hr/aircraft/year)

AT(5,6) = 1 (year)

FIGURE 2-19. INSTRUCTIONAL/SINGLE-ENGINE PISTON EXAMPLE

FIGURE 2-20. INSTRUCTIONAL HOURS FLOWN PER CERTIFICATE ISSUED

TABLE 2-20. FRACTION OF FIXED WING INSTRUCTIONAL HOURS FLOWN

Year	Single-Engine Piston	Multi-Engine Piston
1970	.977	.023
1971	.969	.031
1972	.968	.032
1973	.966	.034
1974	.970	.030
Exponentions Smoothed Average	.970	.030

Primary Use - Air Taxi

Air taxi represents any use of an aircraft by the holder of an Air Taxi Operating Certificate which is authorized by that certificate. Air Taxis are generally operated in one of two ways; either scheduled or on-call.

The term "air taxi" covers various forms of activity, including scheduled and nonscheduled operations, which may in turn include the on-call air taxi, as well as aircraft leasing and charters. The CAB in 1969 designated a further subcategory to be known as the commuter air carrier; any air taxi operator flying at least five round trips weekly on published schedules between any two points.

The predominant air taxi vehicles are piston-powered fixed wing aircraft. However, there are significant numbers of all aircraft types within the air taxi category (except aircraft type 2). Only the piston powered helicopter has shown a reduction in numbers over the past few years.

The demand for air taxi services is likely to be a derived demand for total annual air taxi hours flown. Figure 2-21 shows the growth that air taxi has experienced during the early 1970s. As certificated air carrier operations are reduced, especially at remote locations, air taxi activity would be expected to increase. Air taxi activity should also be dependent on the level of real economic activity

FIGURE 2-21. ANNUAL AIR TAXI HOURS FLOWN

within the U.S. Figure 2-22 displays the annual hours flown as a function of GNP divided by MI. A fit to these data yields

$$\sum_{J=1, J=1, 3-7} HF(6,J) = -8,330,000 + 10,791,000* \frac{GNP}{MI}$$

Table 2-21 indicates the fraction of total air taxi hours flown by each aircraft type.

TABLE 2-21. FRACTION OF TOTAL AIR TAXI HOURS

	A	ircra	ft Ty	pe			
Year	1	3	4	5	6	7	
197.0	.30	.38	.18	.01	.06	.07	Ī
1971	.31	.37	.16	.01	.06	.09	
1972	.29	.40	.15	.02	.04	.10	
1973	.30	.42	.13	.03	.03	.09	
1974	.22	.47	.13	.02	.03*	.13	
Exponenti Smoothed Average		.42	.15	.02	.04	.10	

Assumed equal to 1973 value

Multi-engine piston aircraft appear to be providing an ever increasing share of the air taxi demand. However, because there are no clear trends, either increasing or decreasing, for the other aircraft types, a simple exponentially smoothed average was used to distribute future forecast of total hours between each aircraft type.

Figure 2-23 shows the hypothesized model of causal behavior for turbojets within the air taxi category. Annual hours flown represents a derived demand which is dependent upon both the GNP and the level of commercial air metivity. The desired number of active air taxi aircraft is related to the desired aircraft utilization rate and the actual aircraft utilization rate last war. We significant correlation could be determined between DAUR and any of the explanatory variables. Exponentially smoothed averages for each DAUR are

FIGURE 2-22. ANNUAL AIR TAXI HOURS FLOWN AS A FUNCTION OF GNP/MI (Each Indexed to Their 1972 Values)

DAUR(6,1)	=	386	(hours/aircraft/year)
DAUR(6,3)	=	414	n n
DAUR(6,4)	=	1269	u
DAUR(6,5)	=	440	u
DAUR(6,6)	=	510	
DAUR(6,7)	=	530	n .

with each having a corresponding adjustment time AT = 1 year.

Primary Use - Other

The "other" user category is comprised of rental, industrial/special, and other applications. Industrial/special is any use of an aircraft for specialized work allied with industrial activity; excluding transportation and aerial application. Examples are pipe line patrol, survey, advertising, photography, helicopter hoist, etc. Other use is any use of an aircraft not accounted for by the previous user categories. Each of the six non specialized aircraft types are represented in this combined category. However, the piston powered fixed wing aircraft are predominantly rental aircraft, rotary wing aircraft are predominantly industrial/special, and most turboprops are turbojets are reported to be "other" primary use.

The hypothesized structure of the predominantly rental portion of "other" use is illustrated in Figure 2-24. Figure 2-25 shows the annual hours flown data for single engine and multi-engine piston fixed wing aircraft. Rental activity can be expected to increase with the number of active pilots (potential renters) and also with the relative level of individual affluence, DPI. The annual activity data is plotted versus the product of (normalized) DPI and active pilots (CP + PP) in Figure 2-26. Linear regression analysis applied to these data indicate the following relationship for forecasting the annual demand for (essentially) rental activity:

$$HF(7,1) = 913 (-5309 + .0173 DPI (PP+ CP))$$

 $HF(7,3) = 87 (-5309 + .0173 DPI (PP+ CP))$

FIGURE 2-24. "OTHER"/SINGLE-ENGINE PISTON EXAMPLE

FIGURE 2-25. ANNUAL HOURS FLOWN IN THE OTHER/SINGLE AND MULTI-ENGINE PISTON SUBSEGMENTS

FIGURE 2-26. ANNUAL HOURS FLOWN IN THE OTHER/SINGLE AND MULTI-ENGINE PISTON SUBSEGMENTS AS A FUNCTION OF DPI (INDEXED) TIMES TOTAL PILOTS

Aircraft utilization rates for turboprops and turbojets have been essentially constant within the other category. The average rates are

AURN(7,4) = 436 (hours/aircraft/year) AURN(7,5) = 237 " " "

For rotary wing aircraft, which are mainly industrial/special applications, the aircraft utilization rates are inversely proportional to their variable cost of operation.

 $AUR(I,J) = AURN(I,J)*VC(J)^{-1.30}$

AURN(7,6) = 437 (hours/aircraft/year)

AURN(7,7) = 431 """

CHAPTER 5. SUPPLEMENTARY MATERIAL

Operations

Within any particular user category/aircraft type subsegment, the average trip time (or flying time per operation) should be relatively constant over time. Using the results of two studies conducted for the FAA (see Volume IV), estimates for the average flying time per operation within each subsegment (HPO_{i,i}) were derived. Table 2-22 presents values which are consistent with estimated CY 1973 operations - the latest available data. Simply dividing forecasts for annual hours flown by the appropriate value from Table 2-22, yields reasonable estimates of total operations, functionally

where OPS represents total annual operations within the i \underline{th} user category by aircraft type j.

TABLE 2-22. CY 1973 HOURS/OPERATION

USER CATEGORIES

- 1. Business
- 2. Corporate
- 3. Personal
- 4. Aerial
- 5. Instruct.
- 6. Air Taxi
- 7. Other

AIRCRAFT TYPE J

- 1. Single-Eng. Piston Nonaerial
- 2. Single-Eng. Piston Aerial
- 3. Multi-Engine Piston
- 4. Turboprop
- 5. Turbojet
- 6. All Helicopters

Further estimates were made for dividing operations into local versus itinerant at both towered and non-towered airports, and into IFR versus VFR at all airports. Estimated percentages, based on CY 1973 data, are given in Tables 2-23, 2-24, and 2-25.

TABLE 2-23. CY 1973 PERCENT OF LOCAL AND ITINERANT TRAFFIC AT TOWERED AIRPORTS FOR EACH AIRCRAFT TYPE AND USER CATEGORY

				Airc	raft Typ	e J		
		11	2	3	4	5	6	
	,	.071		.014			.001	
	-	.254		.311			.324	
н	2	.159		.007	.001	.001	.001	
	2	.166		.318	.324	.324	.324	
or	2	.176		.154			.001	
Category	3	.149		.171			. 324	
at	,		.183	.119			.001	
	4		.142	.206			.324	
er	-	.268		.142			.226	
User	5	.057		.183			.099	
		0		0	0	0	0	
	6	.325		. 325	.325	. 325	. 325	
	-	.203		.112	.001	.001	.001	
	7	.122		.213	.324	.324	.324	

USER CATEGORY

- 1. Business
- 2. Corporate
- 3. Personal
- 4. Aerial
- 5. Instruct.
- 6. Air Taxi
- 7. Other

AIRCRAFT TYPE J

- Single-Eng. Piston Nonaerial
- Single-Eng. Piston Aerial
- 3. Multi-Engine Piston
- 4. Turboprop
- 5. Turbojet
- 6. All Helicopters

% Local % !tn.

TABLE 2-24. CY 1973 PERCENT OF LOCAL AND ITINERANT TRAFFIC AT NONTOWERED AIRPORTS FOR EACH AIRCRAFT TYPE AND USER CATEGORY

		1	2	Airc	raft Typ 4	e J	6	
	1	.189	\bowtie	.038			, and the second	X
y I	2	.425 .250	\times	.017 .658	.001 .674	.001	.001 .674	
Category	3	.470 .205	\times	.411	$\geq \leq$	\geq	.001 .674	> <
	4	\times	.489 .186	.318	\geq	\times	.001	\geq
User	5	.674*	$\geq \leq$.379	$\geq \leq$	\gg	.674	> <
	6	.675	\geq	.675	.675	.675	.675	
	7	.542	\times	.300 .375	.001	.001 .674	.674	

USER CATEGORY

- 1. Business
- 2. Corporate
- 3. Personal
- 4. Aerial
- 5. Instruct.
- 6. Air Taxi
- 7. Other

AIRCRAFT TYPE J

- 1. Single-Eng. Piston Nonaerial
- Single-Eng. Piston Aerial
- 3. Multi-Engine Piston
- 4. Turboprop
- 5. Turbojet
- 6. All Helicopters

*Local actually was calculated to be .717 which exceeded allowable limit of .675.

% Local % Itn.

TABLE 2-25. CY 1973 PERCENT OF G.A. IFR AND VFR OPERATIONS FOR EACH AIRCRAFT TYPE AND USER CATEGORY

	_		2	Airc	raft Typ	e J		
	1	.033	Ź	.097	*	Š	.017	
н	2	.967	\Leftrightarrow	.903	.173	.201	.983	
	3	.948	\Leftrightarrow	.874	.827	.799	.039	
Category	4	.984	.004	.958		\Leftrightarrow	.961	\Diamond
User C	5	.004	.996	.984			.999	\Leftrightarrow
Us		.996	\Leftrightarrow	.996		\frown	.999	
	6	.009	\Leftrightarrow	.043	.001	.004	.001	
	7	.995		.957	.999	.996	.999	

USER CATEGORY

% IFR

% VFR

1. Business

2. Corporate

3. Personal

4. Aerial

5. Instruct.

6. Air Taxi

7. Other

AIRCRAFT TYPE J

- Single-Eng. Piston Nonaerial
- Single-Eng. Piston Aerial
- 3. Multi-Engine Piston
- 4. Turboprop
- 5. Turbojet
- 6. All Helicopters

Further estimates were made for dividing operations into local versus itinerant at both towered and non-towered airports, and into IFR versus VFR at all airports. Estimated percentages, based on CY 1973 data, are given in Tables 2-23, 2-24, and 2-25.

Although average flying times and the fraction of operations attributed to itinerant, IFR, etc. are assumed constant over time within a subsegment, the changing mix of operations is preserved by considering activity within distinct subsegments. A detailed description of these derivations is provided in Volume IV.

Fuel Consumption

The annual consumption of both aviation gas and jet fuel is based on consumption rates at 75 percent power. Table 2-26 presents consumption rates which are consistent with the values used by Aviation Data Services, Inc., in determining the variable operating costs. Total estimated fuel consumption is the product of these consumption rates times the appropriate forecast for annual hours flown.

Contributions to Federal Trust Fund

Monies contributed to the Federal Trust Fund by general aviation are collected through the federal fuel tax and federal registration fee. An additional source of revenue could be the imposition of landing fees at FAA towered airports. Although there are presently no federal landing fees, it is possible to institute them during model simulation.

TABLE 2-26. AVERAGE FUEL CONSUMPTION RATES

Aircraft Type	Average Fuel Consumption at 75 Percent Power (gal/hr)
Aviation Gas	
Single-engine piston Non-Aerial Application	11.9
Single-engine piston Aerial Application	13.5
Multi engine piston	33.6
Piston Helicopter	14.0
Jet Fuel	
Turboprop	63.1
Turbojet	336
Turbine Helicopter	25.7

CHAPTER 6. SIMULATION OF THE MODEL

During development of the General Aviation Dynamics model, many simulations were run in order to increase understanding of its behavior and determine which were its more sensitive parts. Similarly, many combinations of various parameters were tried during regression analyses of the rate equations. The results presented in this chapter pertain to the "best" model based on data available through CY1974.

Model Capabilities

In general, there are two ways to use model results or simulations - individually as projections and in pairs as sensitivity measures. Use of the model simply to make projections is precarious. Many potential users will not understand how the projections were derived and will expect unreasonable accuracy. The model is better used by employing extensive sensitivity analysis to evaluate a range of policies under a range of exogenous conditions. This process will identify the principal areas of model uncertainty and those portions of the model that deserve the greatest additional research.

The logical structure of the GAD model has been constructed such that relative comparisons can be made between the model forecasts from any two simulations. In particular, during a sensitivity analysis, absolute forecasts for each simulation are available, as well as percent deviations between the two cases. These deviations can be displayed over time either graphically or in tabular format.

A sensitivity analysis can be performed between any two simulations which are compatible with the model's capabilities. All GAD model output data from the first simulation are stored on a separate temporary file. This base case need not be the "baseline" forecast representative of expected future conditions, but can be the result of any consistent set of conditions chosen by the analyst. Intermediate absolute forecast results from this base case can be obtained by the analyst, if desired. After obtaining all required intermediate output, the second simulation is specified and run. Absolute results of the second simulation are also available to the analyst. Sensitivity results are

derived within the program logic by subtracting the results of the first simulation from the second simulation, dividing by the first simulation, and multiplying by 100 to convert differences to percent deviations from the base case; mathematically,

% Deviation =
$$\frac{AA(I,J)_2 - AA(I,J)_1}{AA(I,J)_1} \times 100$$

where,

AA(I,J)₁ = the number of active aircraft of type J within category I from the first (base) simulation AA(I,J)₂ = the number of active aircraft of type J within category I from the second simulation

Values for these parameters are, of course, obtained at the same instant in time during their respective simulations.

Should conditions within the second simulation not change immediately from the base case, percent deviations, until the change becomes effective, will be zero. Furthermore, by continually computing these deviations over time, the non-linearity in model response is preserved. Most previous sensitivity analyses of general aviation activity were predicated on either linear or log-linear sensitivities.

The GAD model can be used to evaluate alternative scenarios which can be translated into an equivalent change in

- o Variable cost of aircraft operation
- o Fixed cost of aircraft ownership
- o Gross national product
- o Disposable personal income
- o Revenue aircraft departures.

As with any forecasting procedure, care must be taken when interpreting results from simulations which are based on parameter values for outside the scope of historical data. Imposition of landing fees at towered airports is equivalent to increasing the variable cost of operation. Since both the average flight time per operation and the fraction of operations at towered airports are assumed constant, the increment to variable cost (in 1972 \$) from landing fee is

$$\Delta \text{ variable cost}_{ij} = \frac{(.325)(\text{LFEE}_{j})}{2(\text{HPOP}_{ij})} *DEFL72$$

where 32.5 percent of all operations occur at towered airports, LFEE is the landing fee imposed (it can be a function of aircraft type), HPOP is the average flight time per operation within the ij category, and DEFL72 converts current dollars to 1972 dollars. These increments are added to the baseline estimates of variable cost and indexed by the 1972 value.

Since variable cost has previously been assumed to be a function of aircraft type only, the most representative value of HPOP pertaining to each aircraft type was chosen to preserve this notion. It would be possible to construct a separate variable cost for each subsegment, but this has not yet been incorporated. Thus, the increment to variable cost will be the same within all user categories for a particular aircraft type.

Two possibilities exist when a landing fee is imposed: the increased cost will cause a decrease in activity, some of which will be lost altogether and some of which will divert to non-towered airports. Since most subsegments are unaffected by variable cost directly, it was assumed that no traffic diversion would occur. Business and corporate users who have shown a dependence on variable cost would most likely behave in this manner. However, additional research should be conducted to determine the tendency for GA users to divert to other airports.

Fuel tax is another component of variable cost which can be changed directly. New values, in cents-per-gallon, can be stipulated for either aviation gas or jet fuel at any future point in simulated time.

Requirements for new safety or environmental equipment can be translated into an incremental change in the annualized investment cost centers. The effective increase of this new equipment is based on the depreciation schedules and residual values used by Aviation Data Services in determining annualized investment,

Aircraft Type j	Depreciation Period(years) DEPREC	Residual Value(percent of new cost) RESID
Single Engine Piston		
Non-Aerial	5	.25
Aerial Appl.	5	.25
Multi Engine Piston	5	.25
Turboprop	6	.28
Turbojet	6	.40
Piston Helicopter	5	.25
Turbine Helicopter	5	.30

The incremental change $\Delta AI_{\frac{1}{2}}$ measured in 1972 dollars is

where DELTA is the price of the new equipment for aircraft type j in current dollars.

Within the model only four of the 29 subsegments have any dependence on fixed cost. Therefore, the impact of new equipment requirements is minimal. However, since dramatic increases in fixed cost have not yet been experienced, the current behavioral relationships cannot be expected to extrapolate very far past the range of available data. Thus, small increases in fixed cost probably will have the minimal impact indicated; however, larger increases which are evaluated with the present model must be carefully interpreted. If new equipment requirements become mandatory, the general aviation response should be analyzed to update the appropriate relationships.

Case 1. Baseline Versus Ullman Bill

The foundation for planning and policy evaluation by the FAA must be a baseline forecast of uninhibited general aviation activity. Data required for this baseline forecast are entirely self-contained within the model. GNP, DPI and the current dollar deflator are derived from the Wharton national economy

forecasts. Estimates of revenue aircraft departures, variable and fixed costs are representative of current FAA expectations. Values for each of these parameters are included through CY1984.

Baseline Forecast

In the absence of any new data inputs, the following national economic forecasts are used as exogenous inputs:

YEAR	GNP	DPI
1975	1.0176	1.0443
1976	1.0810	1.0980
1977	1.1360	1.1480
1978	1.1600	1.1790
1979	1.1920	1.2000
1980	1.2250	1.2360
1981	1.2530	1.2510
1982	1.2820	1.2690
1983	1.3080	1.2850
1984	1.3600	1.3330

Both GNP and DPI are measured in constant (1972) dollars and indexed to the 1972 value (1972 = 1.000). These estimates are representative of the baseline forecast from the Wharton national economy model.

Fixed and variable costs of aircraft operation are also required through 1984. The following inflation factors (in constant 1972 dollars) are applied to the 1975 values for these costs:

Year	Variable Cost Inflation Factor	Fixed Cost Inflation Factor
1975	1.000	1.000
1976	.999	.984
1977	1.014	.984
1978	1.028	.984
1979	1.040	.981
1980	1.064	.988
1981	1.088	.998
1982	1.110	1.007
1983	1.127	1.013
1984	1.144	1.019

A measure of commercial air traffic is needed through 1984. The following index for Revenue Aircraft Departures is based upon the most recent FAA projections:

	Revenue Aircraft
Year	Departures (1972=1.0)
1975	.933
1976	.943
1977	.973
1978	.993
1979	1.023
1980	1.053
1981	1.092
1982	1.112
1983	1.142
1984	1.172

As was discussed in Chapter 3, the estimated U. S. population by age group is required in forecasting active pilot population. The values provided in Table 2-6 are used in projecting the following population figures:

PROJECTED RESIDENT POPULATION OF U.S.

As of July 1	POP(1) 16-24 Numbe	POP(2) 25-34 rs in Thousand	POP(3) 35+
	Numbe		
1975	35,778	30,783	88,703
1976	35,982	31,353	88,825
1977	36,173	31,803	88,895
1978	35,990	32,123	89,117
1979	35,575	32,745	88,811
1980	34,814	33,388	88,911
1981	34,034	34,194	88,716
1982	32,812	34,227	89,581
1983	31,490	34,501	89,293
1984	30,196	34,791	89,222

An active aircraft is defined as a legally registered civil aircraft for which one or more flight hours are reported. The number of active aircraft outstanding on January 1, 1975, are identified by the 29 significant user category/aircraft type subsegments in Table 2-27. Forecasts of the expected number of active aircraft in each subsegment through January 1, 1985, are presented in Table A-1. Total active aircraft population over time is displayed on Figure 2-27, which indicates that 279,000 active general aviation aircraft are expected by 1985.

The greatest growth in active aircraft is in the business use category which is expected to almost triple by 1985. This represents the compound effect of an increased pilot population and a steadily growing national economy.

TABLE 2-27. ACTIVE AIRCRAFT BY PRIMARY USE - AA(I,J) AS OF JANUARY 1, 1975

			Air	Aircraft Type J			
User Category I	1. Single-Eng. Piston Nonaerial	2. Single-Eng. Piston Aerial	3. Multi- Engine Piston	4. Turboprop	5. Turbojet	6. Piston Engine Helicopter	7. Turbine Engine Helicopter
1. Business	. 26,012	X	7733	X	X	393	X
2. Corporate	1284	X	4253	1636	1279	X	335
3. Personal	73,878	X	2732	X	X	347	\times
4. Aerial	X	5712	260	X	X	465	\times
5. Instruct.	11,799	X	636	X	\times	213	\times
6. Air Taxi	2134	X	2842	338	168	192	553
7. Other	11,045	X	1331	146	132	736	376

FIGURE 2-27. EXPECTED TOTAL ACTIVE AIRCRAFT FOR BASELINE FORECAST

Table 2-28 contains the estimated annual hours flown by actual use during CY 1974. These data are based on a Bureau of Census survey conducted for the FAA. Table A-2 presents GAD model forecasts through CY 1984. The expected growth in annual hours flown is shown in Figure 2-28. By 1984, the annual level of flying activity is expected to be 50 million hours.

TABLE 2-28. ESTIMATED HOURS FLOWN BY ACTUAL USE - HF(I,J) DURING CY 1974 (thousands)

			Air	Aircraft Type J			
User Category I	l. Single-Eng. Piston Nonaerial	2. Single-Eng. Piston Aerial	3. Multi- Engine Piston	4. Turboprop	5. Turbojet	6. Piston Engine Helicopter	7. Turbine Engine Helicopter
1. Business	4160	X	1640	X	X	69	X
2. Corporate	294	X	1480	677	290	X	142
3. Personal	7830	X	404	X	X	10	X
4. Aerial	X	1820	23	X	X	6	X
5. Instruct.	5180	X	161	X	X	92	X
6. Air Taxi	775	X	1720	097	74	X	670
7. Other	3420	X	340	86	139	356	X

FIGURE 2-28. EXPECTED TOTAL HOURS FLOWN FOR BASELINE FORECAST

Table A-3 gives the estimated number of annual operations identified

- (1) towered local versus towered itinerant
- (2) non-towered local versus non-towered itinerant
- (3) all IFR versus all VFR

by

These values are directly related to annual hours flown through the average flight time per operation. Although only the total number of operations are reported for each kind, they are derived by summing appropriately over all 29 subsegments. Figure 2-29 indicates the expected growth in total GA operations.

Active pilot population by certificate type is presented in Table A-4. Also included are the number of helicopter and instrument ratings. Note that the number of student pilots is expected to continually decrease under present conditions. This reflects the U.S. population characteristics and a slightly increasing cost of instructional flying. Figure 2-30 indicates the decrease in

FIGURE 2-29. EXPECTED TOTAL GA OPERATIONS FOR BASELINE FORECAST.

FIGURE 2-30. EXPECTED ACTIVE STUDENT PILOTS FOR BASELINE FORECAST.

student pilots expected over the next ten years. However, the decline in student starts will not decrease the total number of active pilots until the early 1980's, as shown in Figure 2-31.

FIGURE 2-31. EXPECTED TOTAL ACTIVE PILOTS FOR BASELINE FORECAST.

Annual fuel consumption of both aviation gas and jet fuel is presented in Table A-5. Estimated combined fuel consumption in 1984 is 1600 million gallons.

General aviation contributions to the federal trust fund are contained in Table A-6. These monies are derived from the federal fuel tax and the federal registration fee on general aviation aircraft. The fuel tax is currently 3 cents per gallon of aviation gas and 7 cents per gallon of jet fuel. For the baseline simulation, these values are held constant. The revenue collected is expressed in current year dollars. By 1984, this should amount to \$105 million under present tax conditions.

The Ullman Bill

Various pieces of legislation have been proposed which seek ways to conserve energy and to reduce the Nation's dependence on foreign oil. HR 6860, the revised Ullman Bill, was of primary interest to the general aviation community because of the proposal to impose a conservation tax on gasoline. The tax schedule proposed is shown in Table 2-29.

TABLE 2-29. SCHEDULE OF PROPOSED CONSERVATION TAX

Ratio of Calendar Year Fuel Consumption to	Conservation Tax
Fuel Used in 1973	(cents per gallo
Less than or equal to 1.00	3
More than 1.0 but less than 1.01	8
More than 1.01 but less than 1.02	13
More than 1.02 but less than 1.03	18
More than 1.03	23

Since fuel tax is a significant part of the variable cost of operation, the proposed conservation tax should reduce the flying activity within those subsegments that have shown a dependence on variable costs. However, aircraft utilization was found to be independent of variable cost (at least over the range of available data) in 21 of the 29 significant subsegments. Secondary impacts on general aviation activity can be expected through the tax effect on student starts and the demand for aircraft based on total cost of ownership and operation.

Tables A-7 through A-12 present forecasts of general aviation activity, assuming the Ullman Bill becomes effective January 1, 1977.

The conservation tax based on estimated annual fuel consumption is the maximum possible. Because of this effective increase in variable cost, the estimated number of total active aircraft in 1984 is 23,000 less than the baseline forecast. Similarly, annual hours flown are reduced by 5 million and annual operations are reduced by 20 million. Student pilots are also significantly lower than the baseline, because of the increased cost of instructional flying. Even with the reduced level of GA activity, contributions to the federal trust are expected to increase to 457 million dollars in 1984 (Table A-12). Figures 2-32 through 2-36 show the expected evolution in GA activity under these conditions.

FIGURE 2-32. EXPECTED TOTAL ACTIVE AIRCRAFT UNDER THE ULLMAN BILL.

FIGURE 2-33. EXPECTED TOTAL HOURS FLOWN UNDER THE ULLMAN BILL.

FIGURE 2-34. EXPECTED TOTAL GA OPERATIONS UNDER THE ULLMAN BILL.

FIGURE 2-35. EXPECTED ACTIVE STUDENT PILOTS UNDER THE ULLMAN BILL.

FIGURE 2-36. EXPECTED TOTAL ACTIVE PILOTS UNDER THE ULLMAN BILL.

Baseline/Ullman Bill Comparison

Sensitivity analyses consist of making changes in the model, usually in the value of a particular parameter, and comparing the evolution of general aviation simulated with the change to the evolution simulated without the change. Normally, the following sequence of events occurs,

- run the first simulation which becomes the base case for future sensitivity analyses,
- (2) run the second simulation which incorporates a parameter change from the first simulation,
- (3) compare the differences between the two simulations.

Using the baseline forecast for the first simulation and the Ullman Bill forecast for the second simulation, Tables A-13 through A-19 present relative comparisons of the expected evolution of general aviation activity. Comparative results are presented in terms of percent deviation from the baseline. Figures 2-37 through 2-41 indicate that adoption of the Ullman Bill can be expected to decrease active aircraft by 8 percent, total hours by 8.5 percent, total operations by 9.1 percent, student pilots by as much as 25 percent, and total pilots by almost 12 percent through 1984.

FIGURE 2-37. BASELINE/ULLMAN BILL COMPARISON FOR TOTAL AIRCRAFT.

FIGURE 2-38. BASELINE/ULLMAN BILL COMPARISON FOR TOTAL HOURS FLOWN.

FIGURE 2-39. BASELINE/ULLMAN BILL COMPARISON FOR TOTAL OPERATIONS.

FIGURE 2-40. BASELINE/ULLMAN BILL COMPARISON FOR STUDENT PILOTS.

FIGURE 2-41. BASELINE/ULLMAN BILL COMPARISON FOR TOTAL PILOTS.

Case 2. Low Versus High Economy

Since ten year projections of the U. S. national economy are required for model simulations, it is important to investigate the evolution of general aviation under differing growth rates in the U. S. economy. In this section absolute forecast results are presented first for the hypothesis of a low growth rate economy, next for a high growth rate economy, and finally, a comparison of the two scenarios is made. All results are presented in the same format as Case 1 and, since the tables and figures are self-explanatory, additional discussion will be limited. Pilot results have not been included here, because neither GNP nor DPI impacts any of the functional relationships within the pilot supply sector.

Under the assumption of a low growth rate economy, real GNP is assumed to increase at a 3.94 percent annual rate through 1980 and, thence, at a 2.67 percent annual rate through 1984. Real DPI is assumed to increase at a 2.60 percent annual rate through 1980 and, thence, at a 2.17 percent annual rate through 1984. These conditions require the following modifications to the exogenous inputs,

Year	GNP	DPI
1975	1.0176	1.0443
1976	1.0577	1.0715
1977	1.0994	1.0993
1978	1.1427	1.1279
1979	1.1877	1.1572
1980	1.2345	1.1873
1981	1.2675	1.2131
1982	1.3013	1.2394
1983	1.3360	1.2663
1984	1.3717	1.2938

Tables B-1 through B-5 present the expected results under the low growth rate economy assumption. Figure 2-42 displays the evolution of general aviation activity over time.

FIGURE 2-42. EXPECTED GROWTH OF GENERAL AVIATION IN THE LOW GROWTH RATE ECONOMY.

The high growth rate economy assumes values for real GNP annual growth of 4.77 percent through 1980 and 4.20 percent through 1984. Real DPI annual growth is assumed to be 4.20 percent and 4.05 percent, respectively. The corresponding data input is:

YEAR	GNP	DPI
1975	1.0176	1.0443
1976	1.0661	1.0882
1977	1.1170	1.1339
1978	1.1703	1.1815
1979	1.2261	1.2311
1980	1.2846	1.2828
1981	1.3385	1.3348
1982	1.3948	1.3888
1983	1.4533	1.4451
1984	1.5144	1.5036

Tables B-6 through B-10 present the expected results under the high growth rate economy assumption. The growth in total general aviation activity under these assumptions is displayed on Figure 2-43.

Relative comparisons between the low and high growth rate economies are presented in Tables B-11 through B-15. Figure 2-44 displays the percent deviation between the two scenarios for active aircraft, annual hours flown, and total operations.

Summary

Models reflect the specific purposes for which they were designed and the particular techniques selected. A model of this type cannot be all things to all users. Inclusion of variables and interaction within a model is tantamount to recognizing their explanatory value, while omitted parameters are regarded as unimportant for the specified objectives.

The General Aviation Dynamics model represents (we believe) a significant advance, although it still has considerable room for future improvement. Some parts of the model are more thoroughly understood than others. This is partly

FIGURE 2-43. EXPECTED GROWTH OF GENERAL AVIATION IN THE HIGH GROWTH RATE ECONOMY.

FIGURE 2-44. LOW/HIGH GROWTH RATE ECONOMY COMPARISON FOR TOTAL GENERAL AVIATION ACTIVITY.

because of the data availability and partly because of the more stable behavior of certain subsegments within general aviation. For this reason, the model is better judged according to its overall structure, rather than by scrutiny of its individual parts. The real significance of the model is in the structure which defines the casual interactions between various components of the entire general aviation system.

In applying the GAD model to problems other than those for which it was designed, it may be necessary to introduce modifications, append additional sectors, and elaborate some sectors already in the model. The basic approach has been demonstrated; future applications are numerous.

APPENDIX A

CASE 1. BASELINE VERSUS ULLMAN BILL

Section A.1. Baseline

GENERAL AVIATION DYNAMIC MODEL PAGE 1

ACTIVE AIRCRAFT BY PRIMARY USE, DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

TABLE A-1.

		O.					_	_											_																						
	TURBINE	HELIC	60301	335			•	5	376		TURBINE	HELIC	1 . 4 4 1	6	271	0		•	880	9		TURBINE	173	35		324	0			3	387		TURBINE	HELTC	100	14601	36.0	,	•	986	
	PISTON	HELIC	161	0	347	465	213	192	736		PISTON	HELIC	2,236	396	0	329	327	380	176	629		PISTON	HELIC	2.54	445		350	624	197	267	808		PISTON	HEL TC	2200	5,55	,	173	508	201	210
	TURBO	T-12.		1.279		0	•		132		TJRBO	"	1.594		1.300	•	•	•	167	2		10380		1.773		1,443				155	176		TURBO	191		0 + 0 + 0		1.00	9 0	004	201
	TURBO	PROP	:	1.636		0	0	338	146		10880	PROP	1.876		1.384	S	•		352			TURBO	P30P	2.150		1,615	0			394	141		TURBO	9209	2.4.3	24413		000	3 G	7	00
1975	MULTI-	NCTSIG	7.733	4.253	2,732	250	636	2,842	1.331	1976	MULTI-	PISTON	21,103	7.903	4,219	2,593	67.7	721	4.126	1.412	1977	HUL TI-	PISTON	21.781	8,693	9.5.4	2.836	255	652	3.455	1,329	1978	MULTI-	NCLSIG	21.4.2	340 645	200	900.2	272	651	0000
	SNGL-P	A TER	:		0	5,712		0	0			w	6.602	0	0		6.602	a	6	0		SNGL -P	A :: A	6.958			c	6.958		. 0			SNGL-P	2	1 1	?	, c	, c	7.390		, ,
	SNGL-P	NOV-AEP	26.012	1.284	73.878	•	179	13	1		SNSL-P	NOVIA	125,666	25.075	1,151	73,765	0	12,308	1.989	11,318		SNGL-P	NOV-AER	134.814	29.537	1,336	78,985	0	11.364	2.384	11.106		9-19kS	A LACK	417.004	34.992	001.	200.14	0 0 0	11.340	9 1
		1570781	34-138	8.737	76,957	6.437	12,648	6,227	13,766			TOTAL	151,458	34 • 373	8 , 325	76,697	7,058	13.459	7,699	13,916			TOTAL	171.374	38,780	9.266	82.171	7.631	12,223	7.296	13.947			TOTAL	188.020	45.4004	10.171	7 00 LA	8.169	12.232	
		10721	SUSTRIES	CCRPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	BUSINESS	CCAPCRATE	PESSONAL	AESIAL	INSTRUCTIONAL	AIR TAXI	DIHER				TOTAL	BUSINESS	COPPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER.				10731	V 17 1 V 10	COSCOCIO	N A N C V O L O	AFRIAL	ANCITACITACITAL	121 711

ACTIVE AIRCRAFT BY PRIMARY USE. DUQING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

TURBINE	HELTC	1 6 8 8		902	•				161	205			TURBINE	HELIC	1.763	0	415	0	0		798	550			TURBINE	HELIC	1,833	0	445	0	0		792	665		TURBING	71.00	1.804	•		466	0	0	0	789	049
PISTON	21.11	2017	4 6 0	200	202	345	000	200	331	1.021			PISTON	HELIC	3.177	295	0	601	562	200	332	10100	•		PISTON	HELIC		109	6	430	586	200	329	1.200		PISTON	2 - 12	2.4.5	2000	0.31		9++	809	196	328	1.277
TURBO	1:1	320		000					192	534		- (B	"	ဖ		210.2	0			O	23.8	•		10830	130	2,671		2.196	0	0		131	•		TURBO	1:1	2.8.5		-	2.371	0	•	•	190	304
10880	0000	202	2	000		5 6		0	264	141			10480	PROP	2.636		2,003	0	0	J	σ	141			13880	PROP	2,748		2,118	O	0	0	684	141		10380	0000	2.842	•	•	20214	0	•	0	487	141
HUL'I-	NO. 214	26 :102	70.	00.414	2 26.5	3000		150	4.295	1.935	1961		HUL 11-	PISTON	28.943	12.4.19	5.736	3.402	00:	649	4.332	20.66		1981	HULTI-	PISTON	31.050	13,842		3,582	309	637	4.270	35	1982	HUL 71-	NC: STO	2202	30:00	# C	•	3, 562	314	610	4.251	2,592
SNGL-P	0:0	7 700			•	7 794			•	0		:	SNGL -P		8.193	0	0	0	8.193				•		SNGL -P	AER	8.478		•		8.478	0	0	0		SNGL-P	014	7.7.8		> 1		0	9.706	0	0	0
SNGL-P	O D V C N C N	459.220	33 750	667.66		104.		11.275	96	16,183			SAST-P	WON-AER	169.488	44.971	1.652	90.758	•	11.112	96	18.117	:		SAGL-P	NON-AER	180 - 130	20.598	1.759	64.403	0	10.930	5.946	19.594		SNEL-P	NOW A PO	180.707		606.66	1.841	95.965		10.475	.93	• 67
	10101	207 200	202	146.39		151416	610.0	12.133	9.070	20.016				TOTAL	216,662	57,855	11,738	695.46	9.055	11.950	9.086	22.341	******			TOTAL	230.259	64.845	12,570	98.415	9.373	11.767	9.317	24.271			TOTAL	242.632	360.343	00001	13.2/0	101.073	9.628	11.281	8 . 9 7 8	26,632
		10101	33377310	200000000000000000000000000000000000000		A STORY	111111111111111111111111111111111111111	INSTRUCTIONAL	AIR TAXI	01458					TOTAL	BUSIVESS	CORPORATE	PERSONAL	AEPIGL	INSTRUCTIONAL	ATS TAXT	OTHER					TOTAL	935INESS	CORPORATE	PERSONAL	AERIAL	I STRUCT TONAL	AIR TAXI	DIHER				TOTEL	200000	3031VE 33	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	01HER

ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 0° DESIGNATED YEAR, 1985

TURBINE	HELIC	1,929	•	064	•	00	324	683		THORINE	HEI TO	2-000		511	0	0	0	768	721		TURBINE	HELIC	2,105	•	554	0	•	•	752
PISTON	HELIC	3.659	959	0	794	627	212	1.357		PISTON	HELTC	3.739	679		478	949	189	319	1.428		PISTON	HELIC	3,961	726	0	505	299	196	313
TUR30	757	3.051	0	2.5.2	0	00		326		Tipan	1:1	3.235		2.705	0	0	0	195	3+5		TURBO	1:1	3.479	0	2,913	0	0	0	181
TURBO	PROP	2,323	0	2,316	0	04	1.67	141		THE	0000	3.020		2.405	J	•	ى	724	141		10380	PROP	3,193	0	2,589	0		0	494
FUL"I-	NO.SIA	34.323	16.787	6,695	3,729	319	4.076	2.742	1984	HII 71-	PISTON	36.918	18.263	6.991	3,777	325	340	4.136	2.386	1985	HUL TI-	PISTON	39,389	20.166	7,418	3.910	329	605	4.053
SNGL-P	AER	8.910	•		6	8.910		00		d- ISNS	AFR	9.113		6	0	9.113	0	0	•		SNGL-P	ATR	9,289	0	0	0	9.269	0	0
SNGL-P	NOV-AER	198,395	61.556	1,926	99,282	0 4 6	2.812	22.934		d- 1575	MONIAFR	226.429	67.056	2.002	101.101	0	9,263	2.854	24.147		SAGL-P	NOV-AER	217,665	75,014	2,154	103,855	0	8,729	2,796
	TOTAL	253,740	78,999	13,958	103.472	9.857	864	28.182			TOTAL	264.453	85 • 998	14,613	105,352	10,083	9.992	8.736	59*659			TOTAL	279,080	92.906	15.528	108,257	10,230	9 423	8.559
		TOTAL	BUSINESS	CORPORATE	PERSONAL	AFRIAL	100000000000000000000000000000000000000	OTHER				TOTAL	BUSINESS	CCSPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	DTHER				TOTAL	BUSINESS	CORPORATE	PERSONAL	RESIAL	INSTRUCTIONAL	AIR TAXI

TABLE A-2.

ď	•
ð	
	4
,	,
4	Ċ
14	
>	•
_	•
u	1
-	;
2	200000000000000000000000000000000000000
C	•
:	:
ŭ	ï
C	3
2	;
1 DE DESTENDIED VEAD	
	4
,	
á	
4	r
=	?
9	ř
-	,
-	
ć	;
-	
C	•
u	•
0	,
C	•
۵	
č	;
-	
u	•
9	
•	•
•	C
	•
-	
U	•
7	?
-	í
>	•
L	,
0	
YORINAL NO CATOCOTO SA CATY SHOTUTOO SETCIO FOUNDS	
4	2
3	
0	,
=	2
C	•
_	
U	1
5	3
-	
v	,
Ξ	2
5	?
A PLICATA MAD 12	מינים ביינים
-	•
-	
5	
c	,
-	,
u	•
U	1
0	4
=	3
3	

	TURBINE	HELIC	152	0	142	0	0	0	470	140		TURBINE	HELIC	675	0	101	0	5	0	344	105		TURBINE	HELIC	655		110	0	0	G	101	140		TURBINE	HELIC	709	0	116	0	00	127	166
	PISTON	HELIC	715	69	•	10	16	95	91	356		PISTON	HELIC	719	82	0	10	141	8 7	138	227		PISTON	HELIC	747	96	6	10	150	64	152	262		PISTON	HELIC	815	88	0	11	158	121	339
	TURBO	JET	803	0	066	0	•	0	1.4	139		13830	LEC	670	0	571	0		0	69	3.0		TURBO	130	768		9+9	0	0	0	9.1	42		TJR30	J:T	916	0	779	0	00	o ur	210
	TURBO	PROP	1,235	0 !	119	0	•	0	394	96		10880	PROP	1,185	O	209	0	0	0	516	61		TU380	PROP	1.390		722	0	9	9	909	61		TURBO	PROP	1.556	0	855	0	۵٥	7	61
1975	HUL TI-	NOISIG	5,768	1.540	1.480	404	23	161	1.720	340	1976	HULTI-	PISTON	5,357	1.542	1,492	366	11	148	1.445	321	1977	MULTI-	PISTON		1.646	1,559	004	94	148	1,597	397	1978	HULTI-	NCT SI 4	6.377	1,819	1,666	436	613	102	197
	SNGL -P	d	1,820	0	0		1.820	0	0	0		SNGL-P	AER	1.888		0	0	1.888	0	0	6		SNGL-P	AFR	0		. 0	0	2.005		0	•		SNGL-P	41	2,115	9	0	0	2.115		00
	SNGL-P	NOV-DER	21,659	4.160	562	7.830	0	5.180	275	3.420		SNSL-P	NOV-AER	20.799	3.802	236	7,572	•	4.787	929	3.374		SNSL-P	NON-AER	22.705	4.191	266	8.214	0	4.777	1.091	4.167		SAGL-P	NON-AER	24,594	4.803	289	8,697	0.1		4.904
		TOTAL	32,752	5.836	3,180	8.244	1.940	5.433	3.590	264.4			TOTAL	31.093	5.426	3.007	6.047	2.073	4.983	3,439	4.118			TOTAL	34.163	5.922	3,303	8,624	2 . 231	4.973	4.040	660.5			TOTAL	37,081	6.739	3.734	9.1.4	2 . 321	250	5,989
			TOTAL	BUSINESS	CORPORATE	PERSONAL	AEPIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	STHER				TOT 41	BUSTNESS	COSPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI .	ОТНЕЯ				TOTAL	BUSINESS	COSPORATE	PERSONAL	AFPIGL	אים דאים	01458

GENERAL AVIATION DYNAMIC HODEL PAGE 5 HOURS FLOWN (THOUSANDS) DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985 TABLE A-2. (Cont.)

		TURBINE	MELIC	02/	117		•	0	428	175		TURBINE	HELIC	732	0	119	0	0	•	454	189		THERTME	HEL TO	742	0	150		0	0	422	200		TURBINE	HELIC	732	0	120			0	405	202
DESIGNATED YEAR, 1985		PISTON	HELIC	0 7 0	& &	11	165	4 0	171	355		PISTON	HELIC	873	96		12	172	8,	170	340		PISTON	HEL IC	868	16	0	12	179	87	169	399		PISTON	HELIC	606	06		13	185	1.7	162	413
OF DESIGNATE		TURBO	130	10001	896		•	•	98	96		13880	JET	1.185	•	1.039	0	0	0	85	15		TIRRO	151	1.345	0	1.193	0			70	29		1,1830	J:T	1.526	0	1.373			0	18	7.2
JANUARY 1		TURBO	4054	11059	956		0	•	641	9		TURBO	PROP	1.732	0	1.034	•	•	0	637	61		Tuebo	P30P	1.845	0	1.150	0	5	0	534	61		10880	PROP	1.952	0	1.282	0	0	0	809	6.1
S REPORTED ON	1979	HUL TI-	PIS:ON	3	1,757	460	51		1.796	523	1980	HULTI-	PISTON	7.073	2.208	1.839	1.80	53	241	1.782	995	1981	HUL TI-	PISTON	7.417	2.410		205	52		1.774	625	1982	HUL FI-	PISTON	7, 555	2,514	1.976	516	57	129	1.702	661
VIOUS YEAR A		SNGL-P	A: K	01343	80	0	2,216	•	•	•		SNGL -P	AER	5.309	0	0		2.369	•	0	0		SNGL-P	AER	2,395	00			2 3 3 5	0	0	0		SNGL -P	LAI	2.473	0	0	0	2,473	0	0	0
DURING PREVIOUS		SNGL-P	NOV-ACR	560.65	298	9.098	a	4.680	1.154	5.486		SNGL-P	A34-VCN	27,425	5,952	310	9.439	0	4.662	1.146	5 • 965		SNGL-P	A34-KCN	28,808	6.558	361	3.818	•	003.3	1.140	6,561		SNGL-P	834-VCN	29.751	7.142	330	10.084	0	4.151	1.094	076.5
N (THOUSANDS)			1014L	0.700	3.994	9,570	2.432	4.873	4.276	94949			TOTAL	41,328	8.250	4 • 3 + 0	9.930	2,535	4.793	4.244	7.225			TOTAL	43.449	6.00.6	40.00	10.335	5.629	4.593	4.22.4	7.913			TOTAL	666.44	9.846	5,331	10,614	2,715	4.336	4.052	8 • 355
HOURS FLOWN (THOUSA			10101		CORPORTE	PERSONAL	AERITT	INSTRUCTIONAL	AIR TAXI	ОТНЕЯ				TCTAL	BUSINESS	COSPORTE	PERSONAL	AEDIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	BUSINESS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PE CSONAL	BCK Tal.	INSTRUCTIONAL	TXEL TXI	DIMER				TOTAL	BUSINESS	CCPPORATE	PERSONAL	AFRIAL	INSTRUCTIONAL	AIR TAXI	01HER

Commence of the Commence of th

HOURS FLOWN (THOUSANDS) DURING PREVIOUS YFAR AS REFORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

	TURBINE	HELIC	146	0	120	•	0	•	411	216		TURBINE	HELIC	746	•	120	0	3	•	403	223		TURBINE	HELIC	783	•	121	•	0	619	243
	PISTON	HELIC	930	68	0	13	190	9,	164	427		PISTON	HELIC	116	89	0	14	195	45	161	441		PISTON	HELIC	066	89	0	15	661	168	476
	TURBO	7:1	1.680	0	1,520	0	0	•	82	7.7		13830	J:T	1.857	0	1,695	•	0	0	81	8.2		TURBO	JET	2.086	0	1.911	0	0	0 1	91
	THYBO	P30P	2,063	ຍ	1,385	0	ت	0	617	61		10880	P30P	2,173	S	1.507	0	0	0	909	61		TU380	PROP	2,388	0	1,698	0	0	6.29	61
1983	-I. TOH	NO.SId	7, 483	2,618	2,037	526	66	121	1.726	969	1984	HULTI-	PISTON	8.240	3,021	2,096	533	09	1.14	1,6.92	1.25	1985	FULTI-	PISTON	8.688	3,255	2,170	551	61	1.761	778
	SNGL-P	AFR	5.544	0	0	0	2.544	•	0	•		SNGL -P	AER	2.608	5	0	0	2,608	0	0	0		SNGL-P	AER	2.667	0	0	•	2,667	00	
	SNSL-P	NO4-AER	30.763	7,724	339	10.325	0	3.899	1.110	7.305		d-1985	A SA - NON	31.520	8.293	3+7	10,515	0	3.676	1.088	7.504		SNGL-P	AEA-NON	33.109	670.6	365	10,801	0	3.593	8 • 170
		TOTAL	6+9*94	10,632	5.431	10.354	2.733	4.056	4.111	8.783			TOTAL	260.84	11.339	5.755	11,062	2,853	3, 335	4.033	9.136			TOTAL	50.710	12,392	6,265	11.357	2,927	3.7+8	9,819
			TOTAL	BUSINESS	200000000000000000000000000000000000000	PERSONAL	AFRIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	BUSINESS	CORPORATE	PEPSONAL	AFP.IAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	OTHER

TABLE A-3.

TOWERED AND NON-TOWERED OPERATIONS DURING PREVIDUS YEAR AS REPORTED ON JANUARY 1 0° DESIGNATED YEAR, 1985

30.885	.1.113	51,943	50.363	58.594	76,666	83.004	89.312	95,240	35.742
7	1,	57	16	16	1.	1	1	1,	5(
2.971	3.285	3.503	3.85+	4.103	4.367	4.593	4.841	5.168	5.427
1,322	5.875	99.855	1777	58.845	3.691	6.918	C, 881	4.612	90.179
,	J	41	u	u.	£	•	7	7	~
9.630	1.593	4.143	6.076	7.730	9.106	9.711	0.172	965.0	2.359
,	īV	2	3	ın	9	5	9	9	9
4.666	7.132	9.804	1.904	5+0++	6,256	8.186	0.168	2,030	506.4
2	2	2	٣	2	M	3	4	3	4
1.937	1.795	1.751	99.0	2.082	.580	.784	. 932	5.071	1,725
18	13	20	21	22	22	22	22	23	23
921	177	17.8	621	180	31	182	183	184	185
	18,937 24,666 49,630 41,322 2,971	18,837 24,666 49,630 41,322 2,971 19,795 27,132 51,593 45,875 3,285	18.937 24.666 49.630 41.322 2.971 19.795 27.132 51.593 45.875 3.285 20.751 29.804 54.143 50.855 3.509	18.937 24.666 49.030 41.322 2.971 19.795 27.132 51.593 45.875 3.285 20.751 29.804 54.143 50.855 3.509 21.165 31.904 56.070 54.777 3.851	18.937 24.666 49.030 41.322 2.971 19.795 27.132 51.593 45.875 3.285 20.751 29.804 54.143 50.855 3.503 21.565 31.904 56.070 54.777 3.854 22.082 34.045 57.730 58.842 4.105	18.937 24.666 49.030 41.322 2.971 19.795 27.132 51.593 45.875 3.285 20.751 29.804 54.143 50.855 3.503 21.56 31.904 56.070 54.777 3.854 22.082 34.045 57.730 58.842 4.105 22.580 36.256 59.106 63.091 4.357	18.937 24.666 49.030 41.322 2.971 19.795 27.132 51.593 45.875 3.285 20.771 29.804 54.143 50.855 3.503 21.56 31.904 56.070 54.777 3.85 22.082 34.045 57.730 58.842 4.105 22.580 36.256 59.106 63.691 4.367 22.784 38.186 59.711 66.918 4.593	18.837 24.666 49.630 41.322 2.971 19.795 27.132 51.593 45.875 3.285 20.751 29.804 54.143 50.855 3.503 21.56 31.904 56.070 54.777 3.851 22.082 34.045 56.070 58.842 4.105 22.784 38.186 59.106 66.31091 4.367 22.932 40.168 60.172 70.881 4.841	1976 18.937 24.666 49.630 41.322 2.971 130.885 977 19.795 27.132 51.593 45.875 3.285 14.1113 1978 20.751 29.804 54.143 50.855 3.503 151.943 1979 21.465 31.904 56.076 54.777 3.854 160.363 1980 22.580 34.045 57.730 58.842 4.105 168.594 1991 22.580 36.256 59.106 63.691 4.357 176.666 1982 22.584 38.186 59.711 66.918 4.367 186.66 1983 22.932 40.168 60.172 74.612 5.368 195.240

TABLE A-4.

	1975	1976	1977	1978		1979 1980	1991	1982	1983	1984	1985
STUDENT PILOTS	180.809	173,251	180,809 173,251 173,746 171,663 168,74* 165,433 159,237 151,942 144,812 138,096 131,370	171,663	168,747	165,433	159,237	151.942	144,812	138.096	131,370
PRIVATE PILOTS	305,900	321.414	305,900 321,414 333,071 344,538 355,130 364,632 373,948 382,394 389,685 395,611 399,183	344.538	355,130	364,632	373.948	362,394	389,685	395.611	399,183
COMMERCIAL PILOTS	192,500	198,319	192,500 198,319 204,586 210,350 215,336 219,716 222,575 223,892 223,778 222,628 221,680	210,350	215,336	219,716	222,575	253.892	223,778	222,628	221,680
PILOT SUBTOTAL	679,203		692,985 711,503 726,551 739,213 749,781 755,761 758,228 758,275 756,335 752,234	726,551	739,213	749,781	755,761	758.228	758,275	756,335	752,234
HELICOPTER PILOTS	5,647	5.243	096**	4.666		4,376 4,107		3,832 3,488	3,185	2,914	2,672
TOTAL PILOTS	684.847	698,228	698,228 716,464 731,217 743,590 753,888 759,553 761,715 761,459 759,250 754,906	731,217	143,590	753,888	759,553	761,715	761,459	759,250	154,906
INSTRUMENT RATINGS	199,300	211,543	199,300 211,543 224,391 236,540 248,605 258,836 268,098 275,750 281,878 286,847 291,866	236,540	248,005	258,836	268,098	275,750	281,878	286,847	291,866
HELICOPTER RATINGS	22,971		24.178 25.398 26.635 27.881 29.126 30.365 31.578 32.749 33.863 34.909	26,635	27,881	29,126	30 , 365	31,578	32,749	33,863	636*98
TOTAL HELIC RATINGS	28,618	29,421	30,358	31,301	32,257	33,233	34,167	35,066	35,934	36.777	37,581

A-9

TABLE A-5.

IATED YEAR. 1985 FUEL CONSUMED IN

FILLION GALLONS)	DURING	PREVIOUS YEAR.	AS REPORTED	FILLION GALLONS) DURING PREVIOUS YEAR. AS REPORTED ON JANUARY 1 OF DESIGNAL	GNAI
		TOTAL	AV GAS	JET FUEL	
1976		776	794	314	
1977		858 971	506	363	
1979		1.049	616	470	
1930		1,134	209	526	
1981		1.224	637	587	
1982		1,312	657	655	
1983		1,395	681	714	
1984		1.481	700	780	
1985		1.607	736	872	

TABLE A-6.

FEDERAL TAX REVENUE DURING PREVIDUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR. 1985

8-261.49	3.555.92	60.500.239	5.776.07	1.563.20	7.899.68	4,395,39	3.277.77	6.521.53	5.297.60	
97	47	1976	6	98	86	98	86	96	6	

SECTION A.2. ULLMAN BILL

TABLE A-7.

		w	v	.	5 L	n c			. ~						4 6								w	U	2			0			-11		ш	v	2	0	60				6
1985		TURBIN	HELI	1.26		20			u	376		Tiont	7020	111	****	27	•			88	290		TURBIN	HELI	1,35		32				387		TURBIN	HELI	1.59		369			75	9+
DESIGNATED YEAR.		PISTON	HELIC	2 3 4 6	260	1772	2 2 2	213	200	736		PTOTO	2071	2.236	396		329	327	380	176	629		PISTON	HELIC	2.546	445	0	350	6/4	161	808		PISTON	HELIC	2,859	503	272	9 60	201	313	096
1 0F		10330	<u>.</u>	1.579	2	1,279			4	132		00011	1000	709	•	1.300	•			157	127		13830	1:1	1,773		1.443	0	0 6	•	175		TURBO	JET	2.0.46	0	1.648	, c	, 0	182	217
D ON JANUARY		TURBO	PROP	2.120		1.036	5 C	•	~	146		00011	0000	1077		1.384				S	141		TURBO	P20	2,150		1,615	0	0 0		141		10380	PRO	2,413	0	1.808) C	, 0	465	141
YEAR AS REPORTED	1975	KUL 11-	PISTON	19.787	55.5	4.653	257.5	96.4	000	1,331	1976	- TT - 124	TI TOL	201.10	7.933	6.219	2.593	129	721	4.126	1,412	1977	HUL TI-	PISTON	21,781	8 6 9 8	945.4	2,836	255		3.455	1978	HULTI-	PISTON	24,546	805 6	5.006	270	299	4.063	1.643
DURING PREVIOUS Y		SNGL - P	A	5,712	3 (3 c			•				No.	1 0		, c		6.602			. 0		SNGL-P	1.1	10	0	0		6.958		00		SNGL-P	d	7.390	0	ပင	7.390	?	0	0
us:		SAGE-P	NOV-AER	126.152	20.02	1.684	0000	004	66717	11.645		0-1313	2000	*25 125	26.021	1.151	73.765		12.308	1.989	11,318		SNS P	NOV-ASR	134.816	29.637	1,338	78.985	0	11.304	11,166		SNGL-P	NON-AER	148.021	34.997	1.499	70.6	11.364	2.803	13,733
T BY PRIMARY				158.950	34.138	75 957	100.337	64.6	2000	13.766			10101	1 1 1 1 1 1		8.325	76.687	7.058	13.409	7.689	13,916				171.374	38,790	9.266	82.171	7.691	17.4563	13.947				188.958	45.437	10.330	941.8	12.228	8.580	17.161
ACTIVE AIRCRAFT BY PRI				TOTAL	90514ESS	CONFORMIE	7410000	TEST TOTO	TWO TOOL TOWN	01HER				10101	BINTARA	COSPOSATE	TANCO AND	1010	TNSTRUCTIONAL	ATR TAXT	OTHER				TOTAL	BUSINESS	CCRPORATE	PERSONAL	AFRIAL	I Walter Town	AIR TAXI OTHER				TOTAL	BUSINESS	CORPORATE	AFOTAL	INSTRUCTIONAL	AIR TAXI	отнея

TABLE A-7. (Cont.)

ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

2470017	DKULNE.	2772		045	•	•		0	503		TURBINE	HELIC	1.764	0	415	0	•	•	798	550		TURBINE	8	,	443		•	0	192	6		TURBINE	10		46.6	•	. 0	c	780
201010	20101	2,057	700		302	25.5	92.	331	1.023		PISTON	HELIC	3.136	528	ပ	399	562	173	332	1,112		PISTON		ישי	0	416	586	171	329	1.202		PISTON	3 30	ָ ה מ)	~	608	9	0
411300	10530	310.0	1	5				a	234		TURBO	1.1	2,453		2.012		0	0	6	258		TUR30	2-671		2,196		0		191	•		TURSO	2 8 5	0	2.371	;	, 0		• • •
Odella	0220	203.0	3	208.1			.	764	141		TU390	PROP	2,536	0	2,003		0	0	493	141		19800	2.748		2,118	0	0	0	684	141		10280	2.8.0	,	2.214	-	, 0	0	L B 7
- 11	11705	25.74	111	27.14.1	484	285	2 4 5	4. 295	1,935	1980	MULTI-	PISTON	28.571	12,345	5.709	3,268	300	62*	4.302	2,167	1981	MULTI-	30. 174	13.607	6 9 0 9	3, 382	309	458	4.270	2,290	1982	17.00	3 6	1 17 5 7 4		30.101	314	450	
0 1000	אפר - א	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		• •	, .	7.794		, c	, ,		•	AE	σ		0	0	8.193		0	0		SNGL - P	-			0	8.478	0	0	0		SNGL-P	1 0	•	· c		8.706		
9-1546	מייים מייים	457 282	20 767	25.50	1 1 2 2	100	0 120	2.96.2	16.183			Lil		44.493	.0			.2	.96	12		NON-AFI	-	1	S	3		. 85	5.946	•15		2000	178 777	53.705	1.841	92.062	0		2000
	*****	201 278	54. 377	020.11	870	8.615	020.00	0.070	20.019			TOTAL	211,556	57.356	11.801	93,016	9.055	8.875	9,386	22,357		TOTAL	221.593	63.443	12,574	95,028	9,373	8.481	9.017	23,673		10101	020.026	20.00	13.274	95.831	9.528	8 . 334	0 10
		77.01	000000000000000000000000000000000000000	555555	14100000	200000	TANCT TOUR	100100000000000000000000000000000000000	OTHER				TOTAL	BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	ОТИЕЯ			IATOT	BUSIVESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER			27.01	BUSTNESS	COSPORATE	PESCONAL	AERIAL	INSTRUCTIONAL	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

TABLE A-7. (Cont.)

ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

1985		TURBINE	HELIC		964	•	0	•	156	489		TURBINE	HELIC	2.001	0	511	•		0	768			TURBINE	HELIC	2,106	•	956	0	•	0	752	800
NATED YEAR.		PISTON	HELIC	704		441	627	164	315	1,359		PISTON	HELIC	3,633	623	0	757	549	161	1.430			PISTON	HELIC	3.848	665	0	475	299	159	313	1,574
1 OF DESIG		13280	1.11	•	2.542			0	183	326		TURBO	JET	3,235	0	2,715	0	0	0	345			TURBO	JET	3.479	•	2,913	0	0	0	181	385
D ON JANUARY		TURBO	P20P	200	2.316	0	0	0	467	141		10280	PROP	3,020	9	2.405	0	0	ပ	141			TU380	PROP	3,193	•	2,589	0	0	0	494	141
EAR AS REPORTE	1983	FUL T-	NO SID	46.1146	6.698	3.411	319	011	4.076	2,508	1984	HULTI-	PISTON	35.079	17,212	766 • 9	3.410	325	627	4.136	9.00	2061	MULTI-	NCISIA	37,085	18,751	7,422	3.492	329	421	4.053	2,617
PREVIOUS Y		SNGL-P	40	016.0	• •		8.910	0	•	0		SNGL-P	AER	9,113	0	0	0	9,113	0	00			SNGL-P	AFR	9.289	0	0	0	9.289	0	0	•
USE. DURING		SNGL-P	ST-NCN	2000	1.926	92.764	0	7.546	2.812	20,981		SAGL-P	NON-AER	189.455	62.574	2,002	93,1:4	0	7,356	21,525			SAGL-P	AND A - ACK	197,685	490.69	2,154	94,562	0	7 • 219	2.796	21,890
BY PRIHARY			TOTAL	21.00.0	13.972	96.616	9.857	8.150	8.608	25,938			TOTAL	245,536	80.410	14,617	97.038	10.093	7.946	26,736				TOTAL	256,585	88.490	15,632	98.529	10.280	7.739	8 . 559	27.406
ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985				33971310	CCONTROL	PERSONAL	AFRIAL	INSTRUCTIONAL	AIR TAXI	ОТНЕЯ				TOTAL	BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI OTHER					TOTAL	BUSINESS	CORPORATE	PERSONAL	AEDIAL	INSTRUCTIONAL	AIR TAXI	OTHER

TABLE A-8.

	TURBINE HELIC 752 752 142 142 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TURBINE HELIC 6555 110 110 140 140 140	TURBINE HELIC 691 110 110 0 110 0 110 154
D YEAR, 1985	PISTON HELIC 715 69 10 97 97 91	HELIC 644 82 10 141 143 138	PISTON HELIC 747 84, 10 150 49 162	PISTON HELIC 766 81 11 158 171
OF DESISNATED	10830 1031 1000 1000 1000 1000 1000 1000	100 100 100 100 100 100 100 100 100 100	75 9 7 5 8 4 7 6 8 4 7 6 8 8 4 7 6 8 8 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TUR30 JET 916 779 0 0 0 0 0
JANUARY 1	14280 1 4 6 7 7 7 6 7 7 6 6 7 7 6 6 6 6 6 6 6 6	6 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 PARO 1 + 3 9 0 1 + 3 9 0 7 2 2 6 1 6 1	TURBO 1.556 1.556 8.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00
AS REPORTED ON 1975		1,542 1,542 1,492 1,492 1,445 1,445 1,445 1,445		1978 HUC II- PISTON 6, 207 1, 744 1,597 436 49 49 1,793
PREVIOUS VEAR A	SNGL-P 1 AFR 1 4 AFR 1 4 B 2 0 1 6 C 0 1 6 C 0 1 7 C 0 1 C 0	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 2 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	SNGL-P RER 2,115 0 2,115 0 0
DUZING	SNGL-P NON-AER 21.659 4.165 7.165 7.930 5.160 3.620 3.620	20-105 20-109 3 - 802 3 - 802 4 - 672 4 - 787 3 - 929 3 - 929	NON-AER NON-AER 22-705 4-191 266 8-214 4-777 1-1091 4-167	SNGL-P ROA-FE 23.559 4.508 6.508 8.697 8.697 1.153 4.906
AN (THOUSANDS)	707AL 32,752 5,859 3,183 3,524 1,940 1,940 1,940 4,693	707AL 31,093 31,626 31,626 31,626 31,626 4113 4113	707AL 34,153 5,922 3,303 8,624 2,920 4,040 5,099	707AL 35,808 6,433 3,617 9,144 2,321 4,269 6,939
HOURS FLOWN (THO	TOTAL BUSINESS CORPORATE PERSONAL AEPIAL INSTRUCTIONAL AIR TAXI	TOTAL BUSINESS CORPORATE PERSONAL AERIAL INSTRUCTIONAL AIR TAXI OTHER	TOTAL BUSINESS CCCPORATE PERSONAL AERIAL INSTRUCTIONAL AIR TAXI OTHER	TOTAL BUSINESS CORPORATE PERSONAL AEPINU INSTRUCTIONAL AIR TAXI

TABLE A-8. (Cont.)
GENERAL AVIATION DYNAMIC MODEL PAGE 5

5		TURBINE	103	3 -	112				428	163		TURBINE	HELIC	715	•	114	0	0	0	454	177		TURBINE	HELIC	725		115				422	188		TURBINE	HELIC	717	•	115	5	0	0	504	196
YEAR. 198		PISTON	1 0			11	165	4	171	-		PISTON	HELI	817	79	0	12	172	42	170	343		PISTON	HELI	843	62		12	179	1,	169	363		PISTON	E	855	79	•	12	185	04	162	377
OF DESIGNATED		10890	5 6		968			•	98	26		13880	1:1	1,185		1.039		0	0	9.5	51		13380	151	1.345		1.193				78	25		TURBO	7:1	1,526	0	1,373	0	•	0	01	72
JANUARY 1		TURBO	4024	670.7	926			0	641	9		TURBO	PROP	1,732	•	1.034		0	o	637	61		TURBO	PROP	1.845	0	1.150			. 0	634	61		10880	PR3P	1.952	0	1.282		•	0	809	61
AS REPORTED ON	1979	HU. TI-	20127	220.1	1.689	•	51	107	1,796	523	1980	MULTI-	PISTON	6.834	2,112	1.771	461	53	102	1,782	553	1981	HULTI-	PISTON	7,125	2,285	1.344	477	25	101	1.774	589	1982	MULTI-	13	7.302	2.450	1.911	084	57	86	1,702	605
PREVIOUS YEAR !		SNGL-P	X 24 C	10		0	2.216		0	0		SNGL -P	L	2.309		0	0	2,309	0	0	0		SNGL -P	AER	2.395		•		2.395		0	0				2.473	0	0		2.473	•	•	•
DUZING		SNGL-B	200	170.5	286	9.098		3.462	1,154	2.486		SNSI - P	NON-AF	25,540	5.597	599	9.292	0	3,367	1.146	664.5		SNGL-P	NO4-AFR	26.561	6.194	310	883.6	0	3.250	1.140	6.179		SNGL-P	ABA-NON	27,163	6.652	320	9.574	•	3.178	1.094	•
N (THOUSANDS)		,	ייי בייי	7.178	3.909	9.558	2.432	3.611	4.276	6.637			TOTAL	39.132	7.888	4.256	9.755	2,535	3.451	4.244	6.933			TOTAL	40.838	8.558	4.613	0.977	2.529	3,391	4.224	7.44.7			TOTAL	41.987	9.181	5.001	10.066	2.715	3,316	4.052	7.656
HOURS FLOWN (THO				BUSTMESS	CORPORTE	PEPSONAL	ASOIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	BUSINESS	CORPORATE	PERSONAL	AFRIAL	INSTRUCTIONAL	AIR TAXI	01458

TABLE A-8. (Cont.)

GENERAL AVIATION DYNAMIC MODEL PAGE 6

		TURBINE	732		116				411	205		TURBINE	HELIC	732	•	116	0	0	•	403	213		TURBINE	HELIC	769		118	0	00	419	232
DESIGNATED YEAR, 1985		PISTON	876	78		13	190	39	164	392		PISTON	HELIC	892	77	0	13	195	39	161	404		PISTON	HELIC	937	11	0	14	199	168	144
OF DESISNATE		TJR10	1.690		1.520		0	0	9.5	7.7		TURBO	JET	1.857	•	1,695	0	0		81	82		TJR30	_ 130	2.086		1,911	6	00	76	91
ON JANUARY 1		TUR80	2.063		1,385	0	5	0	617	61		TURBO	PROP	2,173	5	1,507		0	0	709	61		TURBO	P30P	2,388	0	1,698	0	မဝ	629	61
AS REPORTED 0	1983	MUL"I-	7.563	2.608	1,973	481	65	96	1,726	620	1967	HOLTI-	PISTON	7,752	2.760	2,033	481	09	76	1.692	631	1985	HULTI-	PISTON	8,120	2,938	2.108	764	951	1.761	668
DURING PREVIOUS YEAR A		SNGL-P	2.544		•	0	2,544	0	0	0		SNGL-P	AFR	2.608	0	0	a	2.608	0		0		SNGL-P	AER	2.667	0	0	0	2,667	0	0
		SNGL-P	27.757	760.7	329	745.6	9	3.098	1,110	605.9		SNGL-P	NON-APR	28,291	7,513	337	9.687	0	3,040	1,088	5.525		SAGL-P	NON-AER	29,419	8.104	355	9.834	2.988	1.132	7.006
HOURS FLOWN (THOUSANDS)		10101	43.245	9.780	5,323	10.141	2.793	3,233	4.111	7.864			TOTAL	44.305	10,351	5,689	10.191	2,853	3.173	4.030	8.018			TOTAL	46.386	11.119	6 • 18 9	10,341	3.119	4.192	8 • 499
HOURS FLOW			TOTAL	91514555	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	BUSINESS	CCSPOSATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	BUSINESS	CORPORATE	PERSONAL	INSTRUCTIONAL	AIR TAXI	01HER

GENERAL AVIATION DYNAMIC MODEL PAGE 7

TOWERED AND NON-TOWERED OPERATIONS DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 DF DESIGNATED YEAR, 19 TOWERED AND NON-TOWERD NON-TOWERD IFR AL. "VFR ALL LOCAL ITINERANT LOCAL ITINERANT LOCAL ITINERANT LOCAL ITINERANT AIRPOPTS AIRPORTS 1976 1977 19,796 27,132 51,593 49,731 3,285 144,605 1978 1979 19,226 50,255 49,731 3,523 144,605 1979 1979 19,226 50,403 53,505 3,505 156,397 1981 19,938 32,493 52,353 60,695 4,194 163,284 1982 20,156 36,037 52,952 66,902 4,375 118,523 1983 20,394 37,612 53,457 66,902 4,554 173,734 1984 20,948 41,430 55,103 74,452 5,353 186,878	13											
	DESIGNATED YEAR.	?	130,885	141,110	144,605	150.186	156,397	163,284	168,526	173,734	178,523	186,878
	JANUARY 1 DF	IFR AL. AIRPOPTS	2,971	3,285	3,523	3,753	3,972	4.194	4.375	4.575	4.15.	5.055
	S REPORTED ON	NCN-TOWERD ITINERANT	41,322	45,875	49.731	53.505	57,103	60.695	63,757	66,902	69.807	74.452
	PREVIOUS YEAR AS	NON-TOWERD LOCAL	020.64	51,593	50.255	50,403	51.146	52,353	52,952	53.457	53,905	55,103
	TIONS DURING	TOWERD	24,666	27.132	28,928	30.805	32,630	34.493	36,037	37,612	39,063	41.430
10WERED AND NO 1976 1977 1979 1981 1982 1983 1984 1984		TOWERD LOCAL	19,837	19.796	19,214	19,225	19.490	19,938	20.156	20 • 339	20 • 502	20,948
	TOWERED AND NO		1976	1977	1978	1979	1990	1981	1932	1993	1984	1985

TABLE A-10.

GENERAL AVIATION DYNAMIC MODEL PAGE 9

PILOT DATA, 1975 TO 1985

	1975	1976	1977	1978	1977 1978 1979 1980	1980	1981	1982	1983	1984	1985
STUDENT PILOTS	180.800	173,251	173,746	139,932	180,800 173,251 173,746 139,932 128,133 123,529 118,350 113,081 109,553 106,589 103,517	123,529	118.350	113,081	109,553	106,589	103,517
PRIVATE PILOTS	305.900	321,414	333.071	351,829	305,900 321,414 333,071 351,829 359,637 363,652 366,001 365,730 365,950 364,271 361,925	363,652	366.001	365.730	365,950	364,271	361,925
COMMERCIAL PILOTS	192,500	198,319	204.686	203,060	192,500 198,319 204,686 203,060 201,973 201,132 200,429 193,818 199,254 198,697 198,126	201,132	500 + 459	199,818	199,254	198,697	198,126
PILOT SUBTOTAL	679,200	692,985	711,503	694.821	679,200 692,985 711,503 694,821 689,809 688,313 684,790 673,629 674,757 669,558 663,569	688,313	684.790	673,629	674.757	669,558	693.569
HELICOPTER PILOTS	5.647	5.243	4.960	4.236	243 4,960 4,236 3,687 3,272 2,919 2,614 2,353 2,137 1,956	3,272	2.919	2,614	2,353	2,137	1,956
TOTAL PILOTS	684.847	698,228	716.464	250.669	684,847 698,228 716,464 699,057 693,496 691,585 687,739 682,243 677,110 671,695	691,585	687.739	682+243	677.110	671,695	665,524
INSTRUMENT RATINGS	199,300	211,543	224.391	229,250	199,300 211,543 224,391 229,250 234,673 240,201 245,683 251,355 256,258 261,237 265,965	240.201	245,683	251,155	256,258	261,237	596.592
HELICOPTER RATINGS	22,971	24.178	25,398	26,635	22,971 24,178 25,398 26,635 27,733 28,883 29,910 30,679 31,795 32,660 33,477	28.883	29,910	30,879	31.795	32,660	33.477
TOTAL HELIC RATINGS	28,618		30,358	30.871	29.421 30.358 30.871 31.480 32.155 32.829 33.494 34.148 34.797 35.432	32,155	32,829	33.494	34.148	34.797	35.432

TABLE A-11.

GENERAL AVIATION DYNAMIC MODEL PAGE 18 FUEL CONSUMED (MILLION GALLONS) DURING PREVIOUS YEAR, AS REPORTED ON JANUARY 1 3F DESIGNATED YEAR, 1985

FUEL	314	363	454	694	526	587	759	713	783	871
130										
AV GAS	462	206	52 R	195	576	909	614	631	949	672
TOTAL	775	863	952	1.024	1,102	1,186	1.258	1,345	1,425	1.543
	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985

TABLE A-12.

GENERAL AVIATION DYNAMIC HODEL PAGE 11

1985
YEAR.
FEDERAL TAX REVENUE DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR.
1
JANDARY
0
REPORTE
AS
YEAR
REVIOUS
NG P
DURI
REVENUE
TAX
FEDERAL

8.261.49	3,555.92	78,807,63	60,291,72	23,703,61	9,082,65	73,988,33	97,021,47	21,258,66	56.818.1	
16	97	97	97	98	00	98	98	98	1985	

SECTION A.3. BASELINE/ULLMAN BILL COMPARISON

TABLE A-13.

SENERAL AVIATION DYNAMIC MODEL PAGE 15 ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIDUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985

	TURBINE	HELIC 0.00	000	00.0	00.0	00.0	0.00	0.00	00.0		#URBINE	HELIC		00000						TURBINE	HELIC	00.0	00.0	00.0	00.0	0.00	00.0	00.0		TURBINE	HELIC	0.00	90.0	00.00	0.00	00.0	0.00	0.16
	PISTON	ייייייייייייייייייייייייייייייייייייייי	20.0	00.0	0.00	00.0	0.00	0.00	00.00		NCISIA	HELIC	00.0	000	0.00	00.0	00.0	00.00		PISTON	HELIC	0.00	00.0	00.00	0.00	0.00	00.00	00.0		PISTON	HELIC	0.03	0.00	0.00	0.00	0.09	0.00	0.23
	TUR80	- 6	000		0.00	00.00	00.0	0.00	0.00		\$U880	JET	0.00	000	00.00	00.0	0.00	00.00		10890	130	0.00	0.00	00.0	00.0	00.0	00.0	00.0		10830	JEC.	00.0	0.00	00.00	00.0	0.00	0.00	0.00
	TURBO	2			0.00	00.0	00.0	00.0	00.0		#UK80	PROP	00.0	00	00.0	00.0	0.00	00.0		TURBO	PROP	00.0	00.0	0.00	00.00	00.0	00.0	00.0		TURBO	PROP	00.0	0.00	0.00	00.00	00.0	0.03	00.0
1975	HULTI-	200			00.0	00.0	00.0	00.0	00.0	1976	MULTE-	NCTSIA	00.0	00	00.0	00.0	0.03	00.0	1977	HULTI-	PISTON	0.00	0.00	0.00	00.0	0000	0.00	00.3	1978	HULTI-	NCTSIA	0.02	1,000	0.00	00.0	0.12	0.00	0.00
	SNGL - P		•		0.00	00.0	0.00	00.0	0.00		SNELER	A 2 3	0.00	00	00.00	00.0	0.00	00.0		SNGL-P	AER	00.0	0.00	00.0	00.0	00.00	0.00	0.00		SNGL-P	AER	00.5	0.00	00.0	0.00	0.03	0.00	
	SNGL-P	200			00.0	00.00	00.0	00.0	00.0		Sw6L = P	NON-AER	00.0	000	00.00	00.0	00.00	00.0		SNGL -P	NON-AER	00.00	00.00	00.0	00.0	00.0	00.0	00.0		SNGL-P	NON-AER	0.01	0.02	00.00	00.00	0.22	00.00	00.0
		33371 3110	25000000	1.00000	75.00.46	AFRIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	COSCORATE	AFRIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	CORPORATE	PF 250NAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	CORFORATE	PFRSONAL	AFRIAL	INSTRUCTIONAL	AIR TEXI	OTHER

TABLE A-13. (Cont.)

SENERAL AVIATION DYNAMIC MODEL PAGE 16 ACTIVE AIRCRAFT BY PRIMARY USE, DURING PREVIDUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985

TURBINE	HELIC	00.0	70.0	00.0	00.0	00.0	00.0	0.16		THORING	HE I TO		0.03	00.0	00.0	00.0	0.00	0.14		TURBINE	HELIC	00.0	0.03	0.00	00.0	00.0	00.0	0.13		TURBINE	HELIC	0.00	0.03	00.00	0.00	0.00	0.00	0.12
PISTON	HELIC	-5.84	00.0	-1.38	00.0	-12.01	0.00	0.24		PICTON		9 4	00.0	-2.41	0000	-13.17	0.00	0.22		PISTON	HELIC	-7.20	00.0	-3.25	00.0	-14.11	00.0	0.20		PISTON								0.18
10830	J:1	00.0	00.0	00.0	00.0	00.0	00.0	00.0		THORD	1		0000	00.00	00.0	00.0	0.00	00.0		10830	130	00.0	0.00	0.0	00.0	00.0	00.0	00.0		TURRO	J.T.	00.0	00.0	00.0	00.0	00.0	0.00	00.0
TURBO	PROP	00.0	00.0	0.00	00.0	0.03	00.0	0.00		THORY	900		000	00.0	00.0	00.0	00.0	0.00		TURBO	PROP	00.0	00.0	00.0	00.0	00.00	00.0	00.0		TURBO	PROP	00.0	0.00	00.0	00.0	00.0	0.00	00.0
HULTI.	PISTON	0.03	0.35	-2.54	00.0	-17.40	0.00	00.0	1980	-11-11W	MCTOTO	0 11	9:0	-3.93	0000	-26.01	0.00	0.05	1981	HULTI-	NCTSIA	-1.70	0.06	-5.59	00.0	-28.15	00.0	-2.74	1982	HULTI-	PISTON	-3.02	0.06	-7.14	6.0.0	-26.32	0.00	-5.77
Sugr-P	AER	0.00	00.00	00.0	00.0	00.0	00.0	0.00		4-1500	0 4 4		0000	00.0	0.00	00.0	00.0	00.0		SNGL-P	AER	0.00	00.0	00.00	00.00	00.00	00.0	0.00		SNGL-P	AER	00.0	0.00	00.0	0.00	00.0	0.00	0.00
SNGL-P	NCN-AER	20.0	0.02	00.0	00.0	-17,35	00.0	00.0		d- 15NV	ON A SAN	78.0	0.02	-1.55	00.0	-26.00	00.00	90.0		SNGL-P	NON-AER	-2,23	0.02	-3,36	00.00	-28.16	00.00	-2.72		SNGL-P	NON-AER	-3.77	0.02	-5.06	00.0	-26.34	00.0	-5.76
		BUSINESS	CORPORATE	PFRSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BILLYTAR	COSPOSATE	PESSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER

TABLE A-13. (Cont.)

GENERAL AVIATION DYNAMIC MODEL PAGE 17 ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIDUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985

	TURBINE	HELIC	00.00	0.02	00.0	00.0	0.00	00.0	0.10		TURBINE	HELIC	00.0	0.02	00.0	0.00	00.0	00.0	0.10		TURBINE	HELIC	00.0	00.00	00.0	00.0	00.0	80.0
	NCTSIG	HILIC.	-7.96	00.0	84.4-	00.0	-14.75	0.00	0.17			HELIC	-8.20	0.00	-4.97	00.0	-14.69	00.0	0.16		PISTON	HELIC	-8.50	-5.38	0.00	-14.35	00.0	0.14
	10430		00.0	00.0	00.0	00.0	00.0	0.00	00.0		TUR30	100		00.0	00.0	00.0	00.0	00.0	00.0		10830	JET	00.0	00	00.0	0.00	00.0	00.0
	TURBO	200	0.00	0.03	00.0	00.0	0.00	00.0	0.00		TURBO	PROP	99.0	00.0	00.0	00.0	00.0	00.0	00.0		TURBO	PRJP	00.0	00	00.0	00.0	00.0	00.0
1983	HULTI-	27.014	-4.41	0.05	-8-32	00.0	-23.65	00.0	-8.53	1984	HULTI-	PISTON	-2.12	0.55	-9.72	0.00	-20.56	00.0	-10.87	1985	HULTI-	MCISIA	-7.02	-10.70	0.00	-17.33	0.00	-12.86
	SNGL-P	PER	0.00	0.00	0.00	00.0	0.00	00.0	0.00		SNGL-P	AER	0000	00.00	00.0	00.0	0.00	00.0	00.0		SNGL-P	AER	0.00	00	0.03	00.0	0.00	0.00
	SNGL-P	NON THE REAL	-5.29	0.02	-6.56	00.0	-23.67	00.00	-8.52		SNGL-P	NON-AER	-6.68	0.01	-7.88	00.0	-20.58	00.0	-10.86		SNGL-P	NON-AER	-7.93	0.01	00.0	-17,30	00.00	-12.85
			BUSINESS	CORPORATE	PERSONAL	AFRIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	COSPORATE	AERIAL	INSTRUCTIONAL	AIR TAXI	01HER

TABLE A-14.

GENERAL AVIATION DYNAMIC MODEL PAGE 18 HOURS FLOWN DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR. AS PERCENT OF BASELINE. 1985

	PISTON TURBINE	FLIC MELIC	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	09.00 00.00	0.00 00.0	0.00 0.00		PISTON TURBINE	ELIC MELIC	0.00 0.00		000						PISTON TURBINE	ELIC HELIC	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00		PISTON TURBINE	ELIC HELIC	-7.03 0.00	0.00	0.00 00.0	0.00	12.02 0.00	0.00 0.00	
			.00	.30	. 30	00.	000		00.			-	00.	60.	000														00.0		TURRO	JET	0.30	0.00	00.0	00.0	0.00	00.0	
	-								0.00 00.0		TI- TURBO			0	000	, c	•		•		_		.00 0.00						0.00 00.0		Ī						-17.45 0.00		
1975									0 99.0	1976		AER		00.0	000					1977			0.00							1978							0.00 -17		
	SNGL-P	NON-AER	00.0	00.0	0.00	09.0	00.0	00.0	00.0		SNGL-P	NON-AER	00.0	00.0	000			00.0			SNGL-P	NON-AER	00.0	00.0	00.0	00.0	00.0	00.0	00.00		SNGL-P	NON-AER	-4.06	-4.05	00.0	00.00	-17.45	00.0	
			BUSINESS	CORPORATE	PERSONAL	AFRIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	CORPORATE	PERSONAL	The Tour	ATO TAKE	OTHER					BUSINESS	CORPORATE	PERSONAL	AFRIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	CORPOPATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	

TABLE A-14. (Cont.)

GENERAL AVIATION DYNAMIC MODEL PAGE 19

1985
NE
ELI
SAS
1 DF DESIGNATED YEAR, AS PERCENT OF BASELINE,
0
N
EAC
4
A
A 2.
YE
63
IAT
IG
230
u.
1 0
~
UA
AA
Z
REVIOUS YEAR AS REPORTED ON JANUARY
RTE
0
8
AS
AR
*
Sno
7
PRE
121
HOURS FLOWN DURING
Z
FLO
S
100
-

	TURBINE	HELIC	0.00	94.4-	0.00	00.0	0.00	0.00	-7.01		TURBINE	HELIC	00.0	-4.13	00.00	00.00	00.00	00.0	64.9-		TURBILLE		2175	00.0	-3.76	00.0	00.0	00.0	00.0	-5.91		TURBINE	HELIC	0.00	-3.46				00.0	00.0	-5.45
	NCISIA	HELIC	-12.14	00.0	-1.38	00.0	-13.17	0.00	-10.35		PISTON	HELIC	-12.49	00.0	-2.41	00.0	-14.11	0.00	-9.78		MCTSTA		27.7	-15.66	0.00	-3.25	00.00	-14.54	0.00	-9.14		NCISIA	HEL IC	-12.73	0.00	-1.92	300	10.00	-14.75	0.00	-8.63
	10830	JET	00.0	00.0	00.00	00.00	0.00	00.00	00.00		TUR30	JET	0.00	00.0	0.30	0.33	00.00	00.0	00.0		THERD	1	- 6	00.0	00.00	00.0	00.0	00.0	0.00	00.00		TURBO	JET	0.00	0.00	00.0		000	300	0.00	0.00
	TURBO	9699	00.0	00.0	00.0	0.00	00.0	00.0	00.0		TURBO	PROP	0.00	0.03	0.03	0.00	00.0	00.0	0.00		TURRO	000	2	0.00	00.00	0.00	00.0	00.0	0.00	00.0		TURSO	PROP	00.0	00.0	00.0			00.0	00.0	00.0
1979	MULTI-	NCTSIG	-3.94	-3.92	-2.54	0.00	-26.03	0.00	00.0	1980	HULTI-	PISTON	-4.34	-3.71	-3.93	0.00	-28.14	0.00	-2.79	1981	ATT III	DICTOR	20.01	-5.18	-3.49	-5.59	00.0	-26.30	0.00	-5.82	1982	MULTI-	PISTON	-6.29	-3.31	-7.14		00.0	50.50	00.0	-8.57
	SNGL-P	A 25.2	00.0	00.0	0.00	00.0	0.00	0.00	00.0		SNGL-P	AER	0.03	00.00	00.0	0.03	00.0	00.0	00.0		d- ISNS		2 4	00.0	0.00	00.0	00.0	0.00	0.00	0.00		SNGL-P	AER	0.00	00.0	00.0		•	200	00.0	0.00
	SNGL-P	NON-AER	-3.84	-3.84	00.00	00.0	-26.03	0.00	00.0		SNCL-P	NON-AER	-4.45	-3.62	-1.55	00.0	-28.14	00.00	-2.79		d- igns	OU V THOM	200	66.6-	-3.38	-3.36	00.00	-26,30	00.00	-5.82		SNGL-P	NOH-AER	-6.86	-3.19	15.06		20.00	53.63	00.0	-8.57
			BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	ОТНЕЯ				BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAKI	OTHER					BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	ОТНЕЯ				BUSINESS	CORPORATE	12707559	101014	THETOUCTION	INSTRUCTIONAL	AIQ TAXI	OTHER

TABLE A-14. (Cont.)

GENERAL AVIATION DYNAMIC MODEL PAGE 20 HOURS FLOWN DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985

	TURBINE	HELIC	00.0	-3.19	00.0	00.0	00.0	00.0	-5.03		URBINE	HELIC	00.00	-2.95	00.00	00.0	00.0	0.00	99.4-		TURBINE	HELIC	00.00	-2.73	00.0	00.0	00.00	00.0	-4.31
	PISTON T		_	_	_		_							_	16.4-			_			PISTON T			_	_				
	10880	٦Ξ٦	00.0	00.0	00.0	00.0	00.0	00.0	00.0		10390	JET	0.00	00.0	00.0	0.30	00.0	00.0	0.00		TURBO	7:1	00.0	00.0	0.30	0.00	00.0	0.00	00.0
	TURBO	PROP	00.0	00.0	0.00	00.0	00.0	0.00	00.0		TURBO	PROP	00.0	00.0	00.0	0.00	00.0	00.0	00.0		TURBO	PROP	00.0	0.03	00.0	00.0	00.0	0.00	00.0
1983	HULTI-	PISTO	14.1-	-3.15	-8.32	00.0	-20.54	0.00	-10.90	1984									-12.88	1985	HULTI-								
	SNGL-P	AFR	00.0	0.00	00.0	0.00	00.0	0.00	00.0		SNGL - P	AER	0.00	00.0	00.0	00.0	00.0	0.00	00.0		SNGL-P	AER	0.00	00.0	00.0	00.0	00.0	00.0	0.00
	SNGL-P	NON-AER	-8.16	-3.01	-6.56	0.00	-20.54	00.00	-10.90		SNGL-P	NON-AER	-9.36	-2.86	-7.88	00.0	-17.29	00.0	-12.88		SNGL - P	NON-AER	-10.44	-2.71	-8.95	00.0	-16.84	00.0	-14.24
			BUSINESS	CORPORATE	PFRSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	CORPOPATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER

TABLE A-15.

5	
6	
-	
198	
w	
Z	
7	
ũ	
S	
M M	
-	
L	
0	
-	
Z	
M	
8	
W	
α.	
S	
A	
α	
4	
A	
-	
0	
1.1	
A	
Z	
9	
Z	
ui	
0	
5	
-	
-	
œ	
A	
⊋	
ā	
7	
_	
Z	
0	
NC O	
NC 031	
RTED ON	
NO DETRO	
PORTED ON	
REPORTED ON	
REPORTED ON	
AS REPORTED ON	
AS REPORTED ON	
IR AS REPORTED ON	
EAR AS REPORTED ON	
YEAR AS REPORTED ON	
YEAR AS REPORTED ON	
IS YEAR AS REPORTED ON	
DUS YEAR AS REPORTED ON	
TOUS YEAR AS REPORTED ON	
VIOUS YEAR AS REPORTED ON	
REVIOUS YEAR AS REPORTED ON	
PREVIOUS YEAR AS REPORTED ON	
, PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1	
PERATIONS DURING	
ED OPERATIONS DURING	

00.0	0.00	-6.35	-7.23	-7.58	-7.91	-8.23	-8.56	-9.17
00.0	-2.37	-2.63	-3.23	-3.94	-4.73	-5.43	-6.21	-6.85
00.00	-2.21	-2.32	-2.95	-3.80	-4.72	-5.61	17.9-	-7.14
0.03	-7.18	-10.11	-11.40	-11.43	-11.32	-11.16	-11.04	-11.64
00.0	-2.94	-3.45	-4.16	-4.86	-5.63	-5.36	-7.06	-7.74
0.60	-9-61	-10.44	-11.74	-11.73	-11.53	-11.31	-11.13	-11.71
1976	1977	1979	1990	1981	1982	1983	1984	1985
	00.0 00.0 00.0 00.0	0.63 0.60 0.63 6.66 9.00 -7.41 -2.94 -7.18 -2.21 -2.37	0.63 0.60 0.63 6.66 9.00 -7.41 -2.94 -7.16 -2.21 -2.37 -10.44 -3.45 -10.11 -2.32 -2.63	0.63 0.60 0.63 6.66 9.00 0.70 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.60 0.60 0.00 0.00 0.00 0.00 0.00 0.00	0.60 0.60 0.00 0.00 0.00 0.00 0.00 0.00	0.60 0.60 0.00 0.00 0.00 0.00 0.00 0.00	1976 0.00 0.00 0.00 0.00 0.00 1977 -7.41 -2.94 -7.16 -2.21 -2.37 -4.83 1979 -10.44 -3.45 -10.11 -2.32 -2.63 -6.35 1981 -11.74 -4.86 -11.40 -2.95 -3.23 -7.23 1981 -11.73 -4.86 -11.43 -3.94 -7.58 1983 -11.31 -5.63 -11.16 -5.61 -6.44 -6.21 -8.56 1984 -11.13 -7.06 -11.04 -6.44 -6.21 -8.56

PILOT DATA, 2 DEVIATION FROM BASELINE, 1975 TO 1985

	1975	1975	1977	1978	1979	1980	1981	1982	1983	1984	1985	
STUDENT PILOTS	0.03	0.00	0.00	-18.48	-24.36	-25.33	-25.67	-25.58	-24.35	-22.81	-21.20	
PRIVATE PILOTS	00.0	0.03	00.0	2.12	1.29	-0.27	-2.13	-4.10	-6.09	-7.92	-9.33	
COMMERCIAL PILOTS	00.0	00.00	00.0	-3.47	-6.21	-8.46	-9.95	-10.75	-10.96	-10.75	-10.63	
PILOT SUSTOTAL	00.00	00.00	00.0	-4.37	-6.68	-8.20	-9.39	-10.37	-11.01	-11.47	-11.79	
HELICOPTER PILOTS	0.00	0.00	0.00	-9.21	-15.75	-20.33		-23.23 -25.04	-26.11	-26.66	-26.81	
TOTAL PILOTS	0.00	00.00	00.0	-4.40	-6.74	-8.26	94.6-	-10.43	-11.08	-11.53	-11.84	
INSTRUMENT PATINGS	0.00	0.00	0.00	-3.08	-5.33	-7.20	-8.36	96.9-	60.6-	-8.93	-8.87	
HELICOPTER RATINGS	00.0	00.00	00.0	0.00	-0.31	-0.84	-1.50	-2.21	-2.91	-3.55	-4.10	••
TOTAL HELIC RATINGS	00.0	0.00	00.0	-1.37	-2.41	-3.25	-3.92		-4.97	-5.38	-5.72	

A-31

TABLE A-17.

GENERAL AVIATION DYNAMIC MODEL PAGE 24 FUEL CONSUMED DURING PREVIOUS YEAR, AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985

JET FUEL		00.0	6.1	0.1	0.0	0.0	0.0		0.0	0.0
AV GAS	0	03.0	3.4	4.2	5.1	5.8	9	7.2	•	9
	97	1977	16	16	86	98	98	98	98	98

GENERAL AVIATION DYNAMIC MODEL PAGE 25

	YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985
	13
	w
	Z
	_
	S
	M
	_
	9
	Z
1	Ä
	8
	5
	_
	AS
	à
	A
	>
	0
	ы
	A
	3
	H
	S
	0
	u
	0
	-
	>
	3
	2
	4
	7
	Z
	0
	0
	-
	8
	۵
	8
	ď
	~
	4
	5
	S
	5
	S
	?
	œ
	a
	ş
	H
	3
	٥
	w
	3
	ū
	M
	œ
	×
	F

FEDERAL

-		50 . R	56.5	352,33	48.1	43.1	39.7	36.4	33.8
16	16	16	26	1980	98	98	98	96	9

APPENDIX B

CASE 2. LOW VERSUS HIGH ECONOMY

Section B.1. Low Economy

ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIDUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

1												TURBINE									962		TURBINE			•					352								•		
PISTON	HELIC	2.346	393	_	347	469	213	192	736			PISTON	HELIC	2.23	386	0	326	327	380	176	656		PISTON	HELIC	2.461	431		3 6 6		167	743		PISTON	HEI TO	2.700	674		362	508	231	297
13830	130	1.579	0	1,279	•	0	0	158	132			TURBO	7:1	1.594	•	1.300	•	0	0	167	127		13880	T:0	1.708	0	1,395	> c		u	158		10230	1	10601		1.542	0	0	0	170
TURBO	PROP	2.120		1.636	ပ	ပ	ت	338	146			TURBO	9099	1.876	0	1.384	0	0	ى	352	141		10330	PROP	2,067	0	1.531			302	141		TURBO	0000	2.253		1.578	0	0	0	434
FULTI-	PISTON	19.747	7.733	4.253	2.732	260	636	2,842		1976	-	HULTI-	PISTON	21.103	7,903	4.219	2,593	129	721	4.126	1,412	1977	HULTI-	E	21,380	8.493	4.420	•	663	200	1.330	1978	HUL 11-	DICTON	23,386	9,384	1.744	2,973	270	661	3.796
SNGL-P	A P P P	5.712	•	0	0	5,712	0	0	•			SNGL -P	A	6.602	0	•	•	6,602	0	(3	0		SNGL-P	AER	6.958	0	0	9 4	•				SNGL-P	AF.2	7.390		0		7,390	0	0
SASI-P	A34-VCN	125.152	25.012	1.284	73.878	•	11,799	2.134	11,045			SAGL-P	NON-LEQ	126.666	520.52	1.151	73.765	0	12,308	1,989	11.318		SAGL-P	ABA-NON	132.625	29.500	1.270	206.11	11.364	2 . 4	11.122		SNGL-P	NON-AFP	142.528	32.389	1,391	81,763	0	11.340	2.619
	TOTAL	158,950	13	8.787	95	43	19	6.227	16				TOTAL	161.458	34.373	8 . 32 5	76,687	7.358	13.409	7.589	13.916			TOTAL	158.438	37.414	8.920	7.501	12.22	7. 301	13.846			TOTAL	181.615	\$2.252	9.634	860.58	9.159	12.202	8.016
		TOTAL	BUSINESS	PPCRATE	SONAL	AERIAL .	STRUCTIONAL	AIR TEXI	ОТНЕЯ					TOTAL	BUSINESS	CORPORATE	PEPSCNAL	AFPIAL	INSTRUCTIONAL	AIR TAXI	0THE8				TOTAL	BUSIVESS	COPPORATE	71010	TRUCTTONAL	ATS TAXT	OTHER				TOTAL	RUSIVESS	CORPORATE	FONDE	45914L	INSTRUCTIONAL	AIR TAXI

ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIDUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

			В-3		
	TURBINE HELIC 1+573 375 0 0 0 721 478	TURBINE HELIC 1,719	415 7 60 7 63 7 64	TURBINE HELIC 1.847 450 450 6 513	TURBINE HELIC 1.9466 478 607
	PISTON HELIC 2,910 519 0 10 380 2 20 0 350 975	PISTON HELIC 3.138	398 552 211 1.098	PISTON HELIC 3,367 611 0 418 586 586 250 250 1,227	PISTON HELIC 3,534 642 642 643 643 643 643 643 643 643 643 643 643
	10480 JET 2.121 1.725 0 1.74 222	TURBO JET 2.374	1,935 0 0 1,94 255	70230 2 • 645 2 • 156 2 • 156 1 89	TUR30 JET 2,891 2,391 0 195 315
	10280 2,415 2,415 1,830 1,830 4444 141	7U380 P20P 24630	1,988 C C 471 141	TU280 P20P 2,776 2,176 2,152 0 0 0 1483	10280 P209 2.905 2.266 0 0 4.98
1979	MULTI- 25.436 16.567 3.137 3.133 3.884 1.772	1986 FULTI- PISTON 27.920 12.038	5,574 3,290 3,00 1,112 1,989	•	1982 MULTI- PISTON 33.106 15.409 6.450 3.560 4.348 2.413
	7 7 7 7 7 7 9 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SNGL-P AE.P 0,193	6 1, 2, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	2 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	SNGL-18
	50.05 10.00 10	SNSC-P NON-AER 164-716 43-412	1,550 89,069 11,11 2,937 16,531	SNSC-P NOV-AER 175.895 50.386 1.787 92.456 10.930 2.913	SNSL-P NO4-AER 188:049 57:070 1:883 95:435 3:000 20:186
	707aL 1955443 49.491 10.585 89.003 1.54.53 1.54.53 1.54.53 1.54.54	TOTAL 210,653 55,982	11,559 92,758 90,055 11,960 20,593 20,593	T07aL 226.573 64.636 12.597 96.326 9.373 11.767 8.918	7074C 241.136 73.121 13.453 99.432 9.628 11.281 9.184
	TOTAL GUSINESS CCRPORATE PERSONAL AINSTRUCTIONAL AIN TAYI	TOTAL	COPPORATE PERSONAL AFRIAL INSTRUCTIONAL AIG TAXI OTHER	TOTAL BUSINESS CORPORATE PESSONAL AERIAL INSTRUCTIONAL INSTRUCTIONAL OTHER	TOTAL BUSINESS CCOPORATE PERSONAL INSTAL AIR TAXI

TABLE B-1. (Cont.)

GENERAL AVIATION DYNAMIC MODEL PAGE 3 ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIDUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

																			В	-4											
	TURBINE	2.006	3	505	0	0		783	712		TURBINE	HELIC	2,099	G	534	0	•	•	802	763		TURBINE	HELIC	2.181	•	195	0	•	0	802	816
	PISTON	3-680	670	6	554	627	193	326	1.410		PISTON	HELIC	3.847	701	0	473	9+5	189	334	1.505		PISTON	HELIC	4.011	736	0	164	299	186	333	1,603
	10380	811.5		2.588	•	0	0	189	3+0		TURBO	JET	3,351	•	2,791	0	0	0	161	366		70480	JET	3.580	0	2,993	0	0	0	193	393
	TURBO	8000	0	2,384	0	J	J	483	141		TURBO	PROP	3,141	0	2.505	0	5	ی	564	141		TURBO	PROP	3,264	U	5.629	9	0	0	564	141
1983	MULTI-	15.159	17,162	6.834	3.648	319	915	4.220	2.600	1987	HULTI-	PISTON	37.868	18,958	7.211	3,727	325	240	4.324	2.774	1985	HUL TI-	PISTON	40,322	20.838	7.590	3.864	329	509	4.320	2,933
	SNGL-P	4 6			•	8.910	•	•	0		SNGL-P	A: R	9.113	"	0	0	9,113	•	0	o		SNGL-P	A :: R	9.289	0	•	•	9.289	0	0	6
	SNGL - P	108-112	63.808	1.982	98.078	•	9.885	2.911	21.747		a- PONS	454-NCN	269,639	73.7E1	2.084	100,346	•	9.263	2,983	23.202		SNGL-P	NOV-AER	218,709	78.024	2.168	132,256	0	8.729	2.980	24.532
	10.101	254.488	81.6+0	14.294	102.181	9.857	16.654	8.912	26.950			TOTAL	258.058	96.433	15,125	134.545	16.093	9.932	9.132	28,751			TOTAL	281,357	865.66	15,964	106,551	10.250	9.423	9.124	30.417
		10161	BUSINESS	CORPORATE	PERSCNAL	ASPIAL	INSTRUCTIONAL	AIR TAXI	ОТНЕЯ				TOTAL	BUSINESS	COPPORATE	PERSCHAL	AFPIAL	INSTRUCTIONAL	AIR TAXI	ОТНЕЯ				TOTAL	BUSINESS	COSPORATE	PEFSONAL	AFRIAL	I "STRUCT IONAL	IXAT GIA	ОТНЕЯ

GENERAL AVIATION DYNAMIC MODEL PAGE 4

HOURS FLOWN (THOUSANDS) DURING PREVIOUS YEAR AS REFORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

				B-5		
	TURBINE HELIC 752	14,000	TURBINE HELIC 549 0 0 0 0 0	344 105	TUR91 ME HELIC 612 0 107 377	TURBINE HELIC 645 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	PISTON HELIC 715 69	3 94 3 94 3 94 3 94	PISTON HELIC 644 82 10 10 141	227	PISTON HELIC 712 34 16 16 16 151 258	PISTON HELIC 763 88 0 10 158 158 158
	7.22 80.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1	~ ~ m	10280 JET 670 671 671	9 0 9 0 9 0	19890 1871 737 624 0 0 75	729 051 051 729 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1,235 1,235 6,77	200000 300000	10480 P408 1+185 607 607	516 61	10.480 1.312 6.85 6.85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	TU480 PROP 1.4.434 7.93 0 0 0 5.79 6.1
1975	PUS TIN 5. 768 1.540	1,400 404 1,20 1,720 3,40	HULTI- PISTON 5,357 1,492 1,492 4,4	1,445 321	HULTI- PISTON 5.702 1.623 1.533 1.533 1.66 1.585	1978 HULTI- PISTON 6,023 1,752 1,566 419 419 419 428
	1. 820 1. 820	4 9 0 0 0 0	2	00	2 2 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SNGL-P 2 415 2 115 2 115 0 0
	21.559 4.150	7.830 5.180 5.180 3.420	S456-P NO4-AFR 20-799 3-802 7-672 7-672	3.374	NOV-DE 22-185 4-076 4-076 5-110 1-019 3-949	SNGC-P NON-BER 23.579 4.521 8.521 8.563 8.563 1.043
	TOTAL 32-752 5-859	7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1014L 31.033 5.426 3.037 8.027 2.073 4.983	3.439	33,267 53,783 5,783 3,520 8,511 2,531 1,973 4,973	1014L 35.619 6.350 3.512 8.933 6.933 4.944 7.853
	TOTAL BUSINESS	PERSONAL ASKISTA INSTRUCTIONAL AIR TAXI	TOTAL BUSINESS CCPPORATE PESSONAL AFRIAL INSTRUCTIONAL	AIR TAYI OTHER	TOTAL BUSINESS CCRPORATE PERSONAL AERIAL INSTRUCTIONAL AIR TAXI	TOTAL BUSINESS CCPPORATE PERSONAL ABTAL INSTRUCTIONAL AIR TAXI

HOURS FLOWN (THOUSANDS) DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

																			1	3-	6																							
	TURBINE										THERTME		725	3		611		0	0	420	187		TURBINE	HELIC	757	0	120	0	0		432	504									0			214
	PISTON	816	89	0	11	165	87	164	339		PICTON		867		2,5		71	172	60,7	168	376		PISTON	HELIC	910	91	0	12	179	10 I	173	80.4		PISTON	HEL TC	800	2 0	0.6	2	13	185	47	168	425
	TURBO	616	0	8+5	0	0	0	82	53		TIPAO	1			0 0	565		0	0	76	51		TUR30	JET	1.332		1,176	0	0	0	98	65		TURBO	1:1	1.517			1.379	0	0	0	70	52
	TURBO	1.571	•	168	0	0	9	613	61		TIESBO	0000	4.7.	01		1.00	٠ د	J	0	630	61		10480	PROP	1.879	ت	1.169	J	0	5	8 7 9	61		10830	PROF	2.003		;	1.312	3	u		629	
1979	HULTI-	6.459	1.926		274	51	145	1.717	087	1980	- TT IN	010101	10101	0000	651.2	1.000	191	53	142	1,763	535	1981	HULTI-	PISTON	7.350	2,375	1,899	187	55		1.815	582	1982	HU. TI-	MCTTIA	7.682	200.0	016.5	1.987	5:5	25	129	1.762	627
	SNSL-P	2,216	0	0		2.216	0	0	o		Q = 15N5		202	•			1	5.359	•	0	0		SNGL-P	AER	2.395		0	3	2,395	•	0	0		SNGL-P	4	2.473	•	> 0			2.473	•	0	0
	SAGL-P NOV-AER	25,101	2.097	290	8.892	0	4.580	1.164	5.038		d- ions	2000	25.66	0 0 0 0	621.0	308	9.263	v	4.602	1.134	5.580		SNGL-P	NON-AER	28.158	5.530	325	9.615	0	•	1.167	7		SNGL-P	NON-AFR	29. 295	7 21.0	0 5 2 5 7	535	9.925	0	4.161	1.133	6.583
	TOTAL	37,833	7,112	3.945	9.344	2.432	4.973	4.088	6.138			10101	1014	70000	00000	767.4	9.739	2.535	4.793	4.198	6.797			TOTAL	42.781	8.937	069.7	10.114	2.629	4.533	4 . 321	7.436			TOTAL	44.753	9:0	964.6	5.154	16.440	2,715	4.336	4.195	7.986
		TOTAL	BUSIVESS	CORPORATE	PERSONAL	AFRIDL	INSTRUCTIONAL	AIS TAXI	01453				******	201111111	SOUNT TOO	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PE 450 VAL	45014L	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	RUSINESS	CORPORATE	PESSONAL	AFRIAL	INSTRUCTIONAL	AIO TAXI	0THE &				TOTAL	911011000	100000000000000000000000000000000000000	CLAPURALE	PERSONEL	AER13L	INSTRUCTIONAL	AIR TAXI	01458

TABLE B-3.

GENERAL AVIATION DYNAMIC MODEL PAGE 7 1985

٠.											
) YEAR	ALL	. 185	138.192	.288	• 062	,676	.737	.553	+ 44.	• 560	
PEST GNATE	VFR ALL AIRPORTS	133	138	155	165	174	182	190	198	207	
1 0:	ALL	126.	3,133	.702	.013	.343	.531	.933	.225	.553	
JANDASA	IFR ALL AIRPORTS	2	mm	2	1	1	1	t	m,	5	
PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR.	NON-TOWERD ITINERANT	41,322	48.085	52,515	57.412	65,695	67,372	72.399	76.843	81.674	
A S											
Y EAD	DW: RD	9.030	56.985	4.903	6.714	9.146	9.102	9, 952	0.654	1.959	
PREVIOUS	NON-TOMERO LOCAL	.1	NIV.	5	5	5	2	10	9	9	
-TOWERED OPERATIONS DURING	TOWFOD	54.655	26.179	36.580	33,24A	35,962	38,339	40.719	43,109	45.581	
NCI	Ħ										
OPERA	LOCAL	837	19.567	365	701	221	955	813	0 93	575	
CES.	T 0	18.	250.	23.	21.	22.	22.	22.	23.	23.	
CNA		1976	1977	1979	1980	1981	1992	1983	1984	1985	
TOWERED AND NON											

GENERAL AVIATION DYNAMIC MODEL PAGE 10

FUEL CONSUMED (MILLION GALLONS) DURING PREVIDUS YEAR, AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

JET FUEL	314	346	393	9++	511	585	299	730	839	468
AV GAS	462	493	525	557	592	627	654	683	710	738
TOTAL	77.5	839	915	1.663	1.103	1.213	1,316	1.414	1.520	1.632
	1976	1977	1978	1979	19.0	1991	1982	1993	1984	1985

のできた。 100mm 100

FEDERAL TAX REVENUE DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

64.192.4	51.774.597	6.976.94	2,819,95	9,606.06	7.229.54	4.763.78	1.643.33	3,219,35	7.171.20
16	1977	97	97	38	98	98	98	98	98

SECTION B.2. HIGH ECONOMY

GENERAL AVIATION DYNAMIC MODEL PAGE 1

ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

	TURBINE	HELIC	1,264	•	335	0	0	0	553	376		THEORY	HEI TO	1.441		271	0	•	•	880	290		TURBINE	HELIC	1,318	3 .	312	a	•	0	641	365		2									221	
	PISTON	HELIC	2,346	393	0	347	465	213	192	736		MOTOTO	HELLC	2-236	396	0	329	327	380	176	629		PISTON	HELIC	2.493	4 36	•	348	627	161	267	191		PISTON	HELIC	2,775	064	0	370		200	100	200	402
	10830	JET	1.579	6	1.279	0	0	•	158	132		00011	1:1	1.534		1.330	0	0	0	157	127		THEAD	757	1.732	3 !	1,413	0	c	0	10	164		13430	TEC.	1.956		1.599	•		•	•	* 6	202
	TU380	PROP	2.126	5	1.636	•	0	0	338	146		0000	0000	1.876		1.384	•	0	0	352	141		THORD	PROP	2.097		1.561	0	0	6	395	141		TURBO	PROP	2.326		1.740		· c	5 6	3 (141
1975	PULTI-	NCISIA	19,787	7.733	4.253	2,732	260	636	2.842	1,331	1976		PICTOR	21.103	7.963	4.219	2.593	129	721	4.126	1,412	1411	HIII TT-	PISTON	21.543	8.559		2.412	255	662	3.457	1.329	1978	HUL TI-	PISTON	23, 370	9.614	4.852	3.060	220	0 / 3	190	260.5	1.611
	SNGL-P	AFR	5,712	0	0	c	5.712			0		0	2000	6.602			0	6.602					de 15NS	AER	6.958		0		6 • 958	0	0	0		SNGL-P	AFR	7.390				0				
	SAGL-P	NOV-AER	125,152	25,012	1.284	73.878	0	11.799	2.134	11.045			0 20 70 70	426.676	26.075	1.151	73.765		12.308	1.989	11.318		0	NON-AER	133.675	28.963	1.294	78.517	0	11.364	2,385	11.112		SAGL-P	NON-AER	145.578	33.551	1.443	83.593		•	11.343	2.585	13.469
		TOTAL			6.787	76.957	6.437	12.548	6.227	13.765			10101		34.373					7.689	13,916			TOTAL	169.913	37 . 899	9.045	81.777	7,691	12,223	7,299	13.878			10707			9.98	86.520			12.202	9.219	16.759
			TOTAL	BUSINESS	CORPORATE	PERSONAL	AFRIAL	TASTRUCT TONAL	AIR TAXI	0THER				10161	BISTANOS	COREDRATE	TANOSCIE	458141	TNSTRUCTIONAL	ATR TAXI	OTHER				TOTAL	BUSINESS	COSPONETE	PEPSONAL	AFRIAL	INSTRUCTIONAL	AIR TAXI	DIMER				TOTAL	PUSTNESS	TIGOCOCI	200000000000000000000000000000000000000	Transfer de	PERIAL	INSTRUCTIONAL	AIR TAXI	OTHER

1985	TURBINE	HELIC	1,673	•	398	6	00	518		THERTME	HEI TO	11.863		643		•	•	819	601		TURBINE	HELIC	2 • 0 38	0	492	00	9	0 0	659	0		TURBINE	HELIC	2.205	0	536			0	902	767
DESIGNATED YEAR, 198	PISTON	-	3.032	537	0	392	536 200	1.051		NOTATE	5 -	3.311	589	•	416	295	200	340	1.204		PISTON	HELIC	3.59	849	0	177	286	200	~ .	1+364		PISTON	HEL TC	'n	695	0	194	608	196	375	1,512
1 06	TU380	757	2,237	0	1.812	6	60	242		THORN	1:1	2.532		2.070	0	0	0	198	584		10330	1:1	2,891		2,356	0	0		202	1		TURBO	1:1	3,236	•	2.549		0	0	218	368
O ON JANUARY	TURBO	4024	2.536	•	1.928	0	00	141		TUSBO	PROP	2.770		2,125	0	0	0	505	141		10380	PROP	3.001		2,330	00	9 0	2 (256	141		10880	F 8 0 P	3,216	0	2,518	U	O	0	557	141
YEAR AS REPORTED 1979	HUL TI-	NOISIO	26.558	11.034	5.344	3.271	6.05	1.897	1980	-11-	PISTON	29.728	12.807	5.883	3.484	300	849		2.173	1981	- II - II	PISTON	33,150	14,938	6.465	3.708	505	637	4.629	694.7	1982	- KULTI-	PISTON	36.906	17,326	7.043	3,889	314	610	4.863	2.760
PREVIOUS	SNGL-P	4	7.794	0	0		7.794	00		d- ISNV	1.	ď		0	0	8.193	0	0	0		SNGL - P	Las	8.478		0		2000	0		-		SNGL - P		8.706	0	0	0	8.706	0	0	0
USE. DURING	246L-P	NO4-AFR	158.741	39.594	1.599	87,582	11.275			d- ISNS	NOV-AFR	173,306	47.240	1.762	91,977	0	11.112	3.644	18.171		846L-P	NOV-AER	139.154	56.245	1.933	65.242	9	10.930	3.194	116.02		SAGL-P	NOV-ARR	205.448	66.156	2,091	100.287		10.475	3,355	23,083
FT BY PRIMARY		TOTAL	202.571	51,266	11,332	91,245	8,615	19.616			TOTAL	7.3	60,536	80	87	3	11,960	31	21			TOTAL	242,339	71,831	13,576	100,391	1.57.5	11.757	34,776	666.63			TOTAL	263,468	84.177	14.837	104,643	9.623	11,281	10.271	28.630
ACTIVE AIRCRAFT			TOTAL	HUSINESS	こしょうしょうしょう	PERSONAL	INSTRUCTIONAL	AIP TAXI OTHER				TOTAL	BUSINESS	CORPORETE	TINDSEED	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	RUSIVESS	CCRPCRATE	JAN CS G	1101010101	ATO TAXE	AIK IAXI	73.10				TOTAL	SUSINESS	CORPORATE	PERSONAL	AFRIAL	INSTRUCTIONAL	AI? TAXI	ОТНЕЯ

ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF MESIGNATED YEAR, 1985

	PISTON TI		4-131	0 743 0	2,953 0 583	492	0 627 0	0 193 0	221 380 914			PISTON TU		1	793	3,258 0 631		0 9.59 0		707	455 1.827 936		PISTON TO	PISTON TO	PISTON TO HELIC 4,659	PISTON TURE HELIC HE 4.659 24	PISTON TC HELIC 4,659 851	PISTON TC HELIC 4,659 851 0	PISTON TO HELIC 4.659 851 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PISTON HELIG 4+659 851 851 5+6 652 186	PISTON HELIC 4+659 851 851 5+6 652 186 419
	TURBC	P30P	3.420	ۍ	2,716	0	0	0	563	141		TURBO	PROP	3.660	0	2.920	•	ى	0	599	141		TURBO	TURBO	TURBO PROP 3.896	70880 PROP 3.896	70x80 9x0P 3.896 3.133	7080 PROP 3.896 3.133	10RB0 3.896 3.896 3.136	3.896 3.896 3.133 0	10RB0 3.896 3.896 3.133 6.133
1983	MULTI-	PISTON	40,553	19,997	7.631	4.053	319	576	4.924	3,051	1981	HUL TI-	PISTON	44.854	52.969	8,238	4.211	325	0+5	5,235	3,337	1985	HUL TI-	MULTI- PISTON	HULTI- PISTON 49,392	MULTI- PISTON 49.392 26.267	MULTI- PISTON 49,392 26,267 8,867	MULTI- PISTON 49,392 26,267 8,867 4,370	HULTI- PISTON 49,392 26,267 8,867 4,370	HULTI- PISTON 49,392 26,267 8,367 4,370 509	HULTI- PISTON 49,392 26,267 8,387 4,370 509
	SNGL -P	AEA	8.910	0	•	0	8,910	0	•	0		SNGL-P	AFR	9.113	0	0	0	9.113	•	0	0		SNGL -P	SNGL - P	SNGL-P A=R 9.289	SNGL - P A = R 9 • 2 8 9	SNGL - P A E R 9 + 2 8 9	SNGL-P AER 9,289 0	7 A PLITA 4 A PLITA 5 A S S S S S S S S S S S S S S S S S S	2 4 4 11 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SNG-1-P 9,289 0 0 0 0 0 0 0 0 0 0
	SAGL -P	ASA-VCN	222,341	77.240	2,256	104.041	0	9.885	3,397	25,521		SNGL -P	NO4-AER	240.325	89.651	2.427	167.459	0	9.263	3.512	27.914		SNGL-P	SNGL-P NOV-AER	SNGL-P NOV-AER 259.442	SNGL-P NOV-AER 259.442 163.576	SNGL-P NOV-AER 259.442 163.576 2.666	SNGL-P NOV-AER 259-442 163-576 2-666 110-541	SNGL-P NOV-AER 259-442 163-576 2-666 110-541	SNGL-P NOV-AER 259-442 163-576 2-666 110-541	SNGL-P NSO4-142 2554-2 163-142 2-666 110-541 3-729 3-749
		TOTAL	285.255	97,390	16.139	104.586	9.857	12.654	16.338	31,640			TOTAL	308.825	113,413	17.484	112.188	10 • 09 3	9.992	11.156	34.610			TOTAL	TOTAL 333.730	TOTAL 333.730 135.694	TOTAL 333,730 136,694 18,891	TOTAL 333,730 136,694 18,891 115,457	1014L 333,730 136,694 18,891 115,457	101AL 333,730 136,694 18,891 115,457 10,283	107AL 333.730 136.694 18.891 115.457 10.283 11.475
			TOTAL	BUSIVESS	CORPORATE	PERSONAL	AERIEL	INSTRUCTIONAL	AIP TEXI	ОТНЕЯ				TOTAL	BUSINESS	COPPOSATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	ОТНЕЯ				TOTAL	TOTAL BUSINESS	TOTAL BUSINESS CORPOGATE	TOTAL BUSINESS CORPORATE PERSONAL	TOTAL BUSINESS CORPORATE PSRSONAL AFRIAL	TOTAL BUSINESS CORPORATE PERSONAL AFRIAL INSTRUCTIONAL	TOTAL BUSINESS CORPORATE PERSONAL AFRIAL INSTRUCTIONAL AIR TAXI

GENERAL AVIATION DYNAMIC MODEL PAGE 4

HOURS FLOWN (THOUSANDS) DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

TURBINE		HELIC 752	•	145	3	•	0	470	140		TURBINE	HELIC	615	0	101	0			364	105		TURBINE	HELIC	628	•	108	0	0	•	387	132		 TURBINE	HELIC	919	0	114	63		• =	,	156	
PISTON		HELIC 715	69	0	10	46	92	91	356		PISTON	ပ	779	82	0	10	141	9	138	227		PISTON	HELIC	725	78	6	10	150	64	155	27.7		 NOISIA	HELIC	788	88	•	11	158	67	633	321	
13880		800	•	065	0	•	0	42	139		TURIO	JET	670	0	571	0	0	0	69	30		TURBO	J.E.T	748	0	532	0	0	0	77	39		108301	JET	880	0	751	0	0			1 80	
TU380	0000	1.235	0	677	C	-	0	294	98		TURBO	PROP	1,185	0	209	0	0	v	516	61		TURBO	PRCP	1.340	0	698	0	0	0	580	61		10280	PROP	1.493	0	823	0	U		9 0 0	9	
MUL TI-		5.768	1.640	1.480	101	52	191	1.720	340	1976	MULTI-	PISTON	5.357	1.542	1,492	366	7.7	148	1.445		1977	MULTI-	PISTON	5,779	1,631	1,543	397	91	148	1.625	389	1978	 -II-IOH	PISTON	6.201	1.781	1,632	431	64	147	1.701	456	
SNGL-P		1.820	0	0	,	1.820	0	0	0		SNGL-P		1.888	0	0	0	1.888					SNGL-P	AER	2.005		0	0	2.005	0	0	0		A-TONS	AFR	2.115	0	0	0	2.115	0			
SNGL-P		21.659	4.160	534	7,830		5.180	272	3.420		SACL-P	NONIAER	50.799	3,802	236	7.672	0	4.787	929	3,374		SNGL-P	NOV-AER	22,459	4,117	559	8.176	0	4.777	1,045	4.086		- 15NS	NON-AER	54.195	6,645	280	8.541	6	6.7.4	900	4.784	
		32,752	5.869	3.183	8.244	1.940	5 433	3.590	4.493			TOTAL	31.093	5.426	3.007	8 0 0 4 7	2.073	4 . 993	3.439	4.118			TOTAL	33.684	5.832	3,240	8.593	2.201	4.973	3.870	4.985			TOTAL	36.347	6.513	3.500	9.034	2 321	7:6.7	a 10 1	5.826	
		TOTAL	BUSINESS	CORPORATE	PTOSONAL	AKIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	SOSIMESS	CCRPORATE	PERSONAL	AFFIAL	INSTRUCTIONAL	AIP TAXI	OTHER				TOTAL	BUSINESS	COPPOPATE	PERSONAL	AFRIAL	INSTRUCTIONAL	AIR TAXI	0THER				TOTAL	BUSINESS	COFPORETE	PERSONAL	AEPIAL	INSTRUCTIONAL	ATO TEXT	ОТНЕЯ	

HOURS FLOWN (THOUSANDS) DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

TURBINE	HELIC	28	3 .	118		0	•	439	181		TURBINE	HEL TC	789		122	•				902		TURBINE	HELIC	837	•	124	00		207	229		TURBINE	HELIC	863	0	125			•	
		925		•	=======================================	165	9	176	366		PISTON			96		12	172	9,	184	412		PISTON	HELIC	416	91	•	113		200	151				1.020		•	1.4	185	1.7	•
10380	751	1.033		650	0	•		8.8	57		TIPRO	1:1	1.228		1.059		0	•	95	29		10830	JET	1.454	0	1.250	00		94	2		10280	750	1.720	•	1.534	0		•	•
10280	PADP	1.564	0	945		0	9	658	61		Tuebo	PROP	1.849		1.097	•	•	0	691	61		10360	PROP	2.052	0	1.266	00		725	61		TUREO	PROP	2.254	ى	1.458	3	0		>
HULTI-	NOISIA	6.757	1.987	1.745	461	51	145	1.843	525	980	Hur TI-	PISTON	7, 329	2.244	1.859	167	53	142	1,933	585	1981	HUL TI-	PISTON	7.941	2.538	1.991	523	4 3 6	070	•	306	HUL TI-	PIS TON	8.500	2.863	2.116	548	57		621
SNGL-P		2.216				2,216	•	0	0	•	d- iSNV	AFR	2.309	0		•	2,309		0	9		SNGL -P	AFR	2.395	9	0	01	66049		. 0		SNGL-P	AFR	2.473	0	0		2.473		
SNGL-B	NOV-AER	25.127	5,343	362	9.108	•	4.580	1.185	5.508		4-1540	A S V - NCN	28.158	6.187	324	9.566	0	4.502	1.243	5,246		d-TONS	NOV-AFR	30.204	7,143	345	10.009			6.993		SNGL-P	NO4-AER	32.176	8.171	363	10.430	0		-
	TOTAL	39.390	7.419	3.938	9.581	2.432	4.873	4.388	6.698			TOTAL	42.591	8.522	4.481	10,359	2,535	4.793	4.663	7,588			TOTAL	45.351	9.772	5.306	10.545	620.2	4.733	8.481			TOTAL	49.005	11.124	5.590	16.932	2.7.5	1 136	-
		1914L	RUSTNESS	317805000	PERSONAL	FRIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TGTEL	BUSINESS	CORPORATE	PERSONAL	AF DIAL	INSTRUCTIONAL	AIR TAXI	ОТНЕЯ				TOTAL	BUSINESS	CCCOORATE	PERSONAL	THE TOTAL STATE	TWO TOOL TOWN	OTHER				TOTAL	RUSTHESS	CCCPOSATE	PERCONAL	ASPIAL	TACTORICTIONAL	110000

HOURS FLOWN (THOUSANDS) DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 1985

																		_	10											
	TURBINE	915	0	126	0	0	0	521	268		TURBINE	HELIC		127	0	0	0	240	290		TURBINE	HELIC	1,001	0	128	•	0	0	561	312
	PISTON	1.072	68	o	14	190	91	208	525		PISTON	HELIC	89	0	15	195	45	216	196		PISTON	HELIC	1,176	89	•	16	199	37	225	409
	10230	1.957	•	1.756	0	0	0	104	46		TUR30	2.263		2.047	0	0	0	108	108		13330	7:1	2,597	0	2,356	•	0	0	112	119
	10830	2.466	O	1,624	0	ی	0	781	61		TURBO	2.701	0	1.830	9	0	ی	810	61		10480	PROP	2.958	o	2.055	0	0	G	842	61
1983	HULTI-	9.183	3,216	2,225	571	64	121	2,186	805	7961	HULTI-	PISTON	3.600	2.341	294	09	114	2.269	872	1985	MULTI-	PISTON	10,552	4.013	2.456	616	61	111	2,358	937
	SNGL-P	2.544	0	0	•	2.544	0		0		SNGL-P	A 5 6 0 8	0		0	2,608	0	0	0		SNGL-P	AFR	2,667	•	0	0	2,667	0	0	0
	GNSL-P	34.242	9.284	381	10.820	J	3.899	1.405	8,452		SNGL-P	NOV-4EP	10.502	399	11.176	0	3.676	1.459	9.155		SNGL-P	NON-AER	38.684	11.826	418	11,496		3,593	1,516	9,836
	TOTAL	52,389	12,539	6.121	11.436	2,733	4.066	5.205	10.209			55.871	14.191	5.744	11,784	2.853	3.835	5.403	11,051			TOTEL	59.656	15,928	7.412	12,128	2,927	3.748	5,614	11.868
		TOTAL	BUSTNESS	CORPORATE	PERSCHAL	AFRIGL	INSTRUCTIONAL	AIR TAXI	01HER			TOTAL	BUSINESS	CORPORATE	PESSONAL	AFPIAL	INSTRUCTIONAL	AIR TAXI	OTHER				TOTAL	BUSINESS	CORPORATE	PE RSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	01158

TABLE B-8.

985 TOWER

198											
PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, 198	VFR ALL	AIRPORTS	130.885	139.502	149,365	161,540	172,922	198.110	211,326	225 + 534	241.482
JANUARY 1 DF	IFR 111	AIRPORTS	2.971	3.223	3.503	3,465	4.261	5.127	5.603	6,117	6,667
S REPORTED ON	NON-TOWERD	ITINERANT	41.322	45.013	49.453	54.891	61.017	74.661	82,124	060.06	98,624
PREVIOUS YEAR A	UNENCT-NON	L004L	49.336	51.327	53,700	56.083	80.00 10.00 10.00 10.00	62,524	64.307	66,275	68.876
	TOWERD	ITINERANT	24,566	26.639	29.086	31.966	35.18	42.212	46.020	50.085	54.477
AND NON-TOWERED OPERATIONS DURING	TOWERD	1004	18.937	19.697	22,584	21.472	22.401	23.840	24.484	25.202	26.171
ERED AND NO			1976	1477	1978	1979	1930	1982	1983	1984	1985

TABLE B-9.

ITED YEAR. 1985 FUEL CONSUMED (MILLION

TOTAL AV GAS JET FUEL	TOTAL
297	176
	_
	-
	N
	-
	•

TABLE B-10.

FEDERAL TAX REVENUE DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR. 1985

1976 1977 1978 1978 1979 1980 1980 1981 1981 1982 1983 115,853,716 1984 1985 128,437,836										
77 77 88 88 88	4.261.49	2-475-42	5,824,39	4,159,18	3.616.51	3.990.43	04.256.95	15,853,71	28,437,83	
	97	16	97	98	98	96	98	98	86	

SECTION B.3. LOW/HIGH ECONOMY COMPARISON

GENERAL AVIATION DYNAMIC MODEL PAGE 15 ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIDUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985

	TURBINE	0.0	-	0	-		0			DIE	100	100	•		•	. 0	00			BIN	"	00.00	.2	0	0	0.	0	.5		BIN	HEL I		2.		00.0	0	5	. '
	PISTON DILIC						9			27.0		. רוני ייני	•	•	•		00			STO	-	1:1	0					-		STJ	HELI	2.3	0	~	0.00	0	S	١,
	TURAD			9		3	-	0.00		a	9 :	, ,	•		•		00			10480	JET	6.00	2	0000		•				10890	"				00.0	0	10	
	TUR90	9	•			9	-	•		9	2 6	5 6	•		•		00			88	2	00.0	6	-	0	0	0			83	50		~		00.0		4	
1475	MULTI-	0.0	9				9		1976	11	- 5	2 0	•	•	•		00		1977	=	5	06.0	0	.7		0		0	1978	ULTI	10	2.4	3	0.	00.0		10	•
	SNGL - P	9	-			9	9	C			1	4	•	•	•		00				W	00.0	0	0	0						A				00.0		0	•
	SNGL-P	•				•				2		2	•		•		00	•		9	AE	1.42	6		9		0.			NG	•	•	•	•	0.00	•		•
		BUSINESS	CORPCPATE	PERSONAL	AFRIAL	INSTRUCTIONAL	ATS TAXI	OTHER				2031415110	003111533	CONTO A PLE	PERSONAL PROPERTY	INSTRUCTIONAL	AIR TAXI					BUSINESS	CORPORATE	PERSONAL	ASRIAL	INSTRUCTIONAL	AIR TAKI	01452				BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	****

B-21

TABLE B-11. (Cont.)

は、一般のでは、一

GENERAL AVIATION DYNAMIC HODEL PAGE 16 ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIDUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985

TURBINE	1	0.30								TURBINE	HELIC	0.00	7.69	0.00	0.00	0.00	7.31	10.44		URBINE	HELIC	0.00	9.18	00.0	0.00	00.00	9.62	12.08		TURBINE	HELIC	00.0	12.27	00.00	00.0	0.00	11.83	15.89
PISTON		3.59	0.03	3,31	0.00	00.0	5.03	7.77				4.81	00.0	4.44	0.00	00.00	7.31	9.59		T NCTSIA		6.05	00.0	5.58	00.0	00.0	9.62	11.19			HELIC	8.38	00.00	6.93	00.0	00.0	11.83	14.81
TURBO	1:1	000	5.35	00.00	0.00	00.0	5.33	62.6		TURBO	JET	00.0	6.98	6.00	0.00	0.00	7.32	11.32		10830	JET	0.00	8.78	00.0	0.00	00.0	9.53	15.98		TURBO	JET	00.0	11.28	0.00	0.03	00.0	11.94	16.98
TURBO	PROP	0.00	5.37	00.0	0.00	0.50	66.4	0.00		TURBO	PROP	0.00	6.86	0.00	0.00	00.0	7.28	00.0		TURBO	PP3P	60.0	8.26	00.0	00.0	00.0	65.6	0.00		TURBO	P80P	00.0	11.12	00.0	00.0	00.0	11.76	00.0
HULTI-	PISTON	4.43	4.13	4.39	60.0	0.00	5.03	64.9	1980	MULTI-	NCISIA	6.63	5.55	5.89	00.0	00.0	7.32	9.28	1981	MULTI-	NCISIA	40.6	7.00	7.42	00.0	00.0	9.53	11.89	1982	MULTI-	PISTON	12 4	9.18	9.24	0.00	0.00	11.34	14.37
SNGL-P	AFR	0.00	0.03	0.03	00.0	0.00	0.00	00.0		SNGL-P	AER	00.0	0.33	0.00	00.0	0.00	0.00	00.0		SNGL-P	AFF	0.00	00.0	0.00	00.0	0.00	00.0	0.03		SNGL-P	AEA	0.00	0.03	00.0	00.0	0.00	0.00	00.0
SNSL-P	NON-AFR	6.12	5.33	2.44	0.00	00.00	5.03	6.48		SNGL-P	A34-NON	8.92	6.82	3.26	00.00	00.0	7.32	9.26		SNGL-P	NON-AER	11.63	£.21	60.4	0.00	00.00	9.63	11.88		SNGL-P	NON-AER	15.92	11.05	5.08	00.0	00.0	11.85	14.35
		BUSINESS	COSPOSATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	ОТНЕЯ				BUSINESS	CORPORATE	PERSONAL	AFRIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINESS	CORPOPATE	PERSONAL	AFRIAL	INSTRUCTIONAL	AIR TEXI	ОТНЕЯ

TABLE B-11. (Cont.)

SENERAL AVIATION DYNAMIC MODEL PAGE 17 ACTIVE AIRCRAFT BY PRIMARY USE. DURING PREVIDUS YEAP AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985

	TURBINE	HELIC	00.0	15.27	00.0	00.0	00.0	16.68	19.44		TURBINE	HELIC	00.0	18.13	9.00	00.0	00.0	21.36	22.73		TURBINE	HELIC	0.00	20.90	00.0	00.0	00.0	25.76	25.86
	MCTSIA	HELIC	10.79	0.00	8.31	00.0	00.0	16.68	18.20		NCTSIA	HELIC	13.22	0.00	9.70	00.0	00.0	21.06	21.38		NCTSIA	HELIC	15.72	0.00	11.11	00.0	00.0	25.76	24.41
	TU330	JET	00.0	14.11	0.50	0.00	0.00	16.58	20.57		TURBO	1:1	00.0	17.36	00.0	0.00	00.0	21.37	24.38		10890	JEL	0.00	20.63	00.0	6.00	0.00	25.77	27.29
	TURBO	PROP	00.0	13.90	00.0	0.00	0.00	16.61	00.0		TURBO	PROP	00.0	16.58	7.00	00.0	00.0	20.99	0.00		TURBO	PPOP	00.0	19.20	00.0	00.3	00.0	25.59	00.0
1943	MULTI-	PETSIA	16.52	11.66	11.39	00.0	00.0	16.59	17.37	1984									26.32	1985	HULTI-	PISTON	26.35	16.83	14.30	00.0	0.00	25.77	23.29
	SNGL-P	LER	0.00	0.69	0.03	0.03	0.30	0.00	00.0		SNGL -P	AFR	0.00	0.00	0.00	00.0	00.0	0.00	0.00		SNGL-P	AER	0.00	00.0	0.00	0.00	0.00	00.00	0.00
	SNGL-P	NON-AER	21.05	13.82	6.08	0.00	90.0	16.69	17.35		SNGL-P	A34-NCM	26.69	16.49	7.09	00.00	00.00	21.07	20.31		SNGL-P	NCN-AER	32,75	19.10	8.10	00.00	03.0	25.77	23.27
			PUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	ОТНЕЯ				BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHEP				RUSINESS	CORPORATE	PERSONAL	AFRIAL	INSTRUCTIONAL	AIR TAXI	OTHER

THE FLOWN DUMING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985

	TURBINE	200	00.0	0.0	00.0	00.0	00.0	00.00	00.0		TURBINE	HELIC	00.0	03.3	00.0	00.0	0.03	00.0	00.0		TURBINE	HEL TO	10	•	1.16	00.0	0.00	00.0	2.55	3.58		TURRINE	,								6.32
	PISTON	2112	00.0	00.00	00.0	00.0	00.00	00.00	0.00		PISTON	HELIC	00.0	0.00	3.00	00.0	00.0	0.00	00.0		METSTA	C - 13 H	2010			1.09	0.00	00.0	2.55	3.15		PISTON	NEI TO		00.0	0.00	2.20	0.00	0.00	5.05	5.66
	TUR30	5			9	•	c.	-	00.0		10830	JET	00.0	00.0	0.00	00.0	09.0	0.00	00.0		TURBO	1:1			1.63	0000	00.0	00.0	2.55	4.05		111830	1:1		9 6	3.10	00.0	0.00	00.0	5.35	7.04
	10833	200	?	-	•	00.0		-	0.00		TUR30	PRJP	00.0		00.00	-			9		10830	0000			1.97		-	0.00	.5	9		TURAD	acad		0 10	3.12	00.0	0.03		5.05	0.00
1975	HULTI-	2000	00.0	0.00	0.00	00.0	0.00	05.0	00.0	1976	MULTI-	NCISIA	00.0	00.0	00.0	00.0	00.0	0.00	0.00	1977	MULTI-	DICTOR			0 .	1.45	000.0	0.00	2.55	3.47	1978	MILI TT-	NCTATO	21.4	70.1	1.65	2.91	00.0	00.0	5.05	6.55
	SNGL-P	1 0	00.0	0.00	00.0	0.00	0.00	90.0	00.0		SNGL-P	AER	0.03	0.00	00.00	00.0	0.00	00.0	00.0		SNGL - P					30	0000	0.00	00.0	00.0		SNG! - P	0.0			20.0	00.0	00.00	0	0.00	0.00
	SNGL-P	71141202	00.0	00.0	00.0	00.0	00.0	00.0	00.0		SNGL-P	NON-AER	00.0	00.0	00.00	00.0	00.00	00.0	00.0		SNGL-P	OH VINCIN		1 2 4	1.53	10.0	00.0	00.0	2.55	3.47		d- ISNS	CAN-NON	2 76	2000	19.7	1.62	00.0	0	5.05	6.55
			HOS IN SS	COSOSATE	PE 25011AL	ACRIAL	INSTRUCTIONAL	ATS TAXT	OTHER				BUSINESS	CORPOSATE	AL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BISTNESS	11 VO 00000	TANGUE OF THE PERSON OF THE PE	PERSONAL POSSESSIONAL	A: RIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BISTREES	0000000	CORPORATE	PERSONAL	AE RIAL	INSTRUCTIONAL	AIR TAXI	OTHER

B-24

HOURS FLOWN DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR. AS PERCENT OF BASELINE. 1985

INE	LIC	1.30	1.47	.03	.00	000	.34	8.56		TURBINE	LIC	00.	+8+	00.0	00.0	000	9.65	10.44		TURBINE	רוכ	00.1	90.	00.	00.0	00.	11.89	90.		INE	רוכ	000	1.75	00 -	000	000	
			30	31	00	00	34	11		2												_									C HFLIC						
٥.	HEL	•	0	•	•	0	7	•		_								65.6		PISTON	Ï						_	_			1			6.93			
TUR30	JET	00.0	5.35	00.0	00.00	00.0	7.34	9.39		10430	JET	0.00	6.98	00.00	00.0	00.0	9.65	11.32		TURBO	JET	00.0	8.78	00.0	0.33	00.0	11.98	12.38		10830	JET	0.00	11.28	0.33	0.00	00.0	
TURBO	PROP	00.0	5.37	0.00	00.00	0.03	7.34	0.03		TURBO	PRJP	0.00	6.86	00.0	0.00	00.0	9.65	00.0		TURBO	PROP	0.00	8.26	00.0	0.03	00.0	11.88	00.0		TUPBO	PRJP	0.63	11.12	0.00	00.0	6.00	
MULTI-	NCTSIA	3.15	2.77	4.39	0000	0.00	7.34	9.32	1980	HULTI-	NCISIA	4.93	3.85	5.89	00.0	00.0	9.65	11.93	1961	AULTI-	NCLSIA	6.85	4.85	7.42	0.00	C.0.3	11.38	14.42	1982	MULTI-	NOTSIG	9.35	6.18	42.6	0.03	0.00	
								0.00		SNGL - P		0.00								S		0.00								S	AER	0.00	0.00	0.00	0.00	00.0	
SNGL-P	NON-AER	4.83	4.05	2.44	00.00	00.00	7.34	9.32		SNGL-P	NON-AER	7.06	5.69	3.26	00.0	90.0	9.65	11.93		SNGL-P	NON-AFR	9,38	6.03	60.7	00.0	00.0	11.88	14.42		SNGL-P	NON-AER	12.74	9.00	5.08	00.0	00.0	
		BIJS INF SS	POSATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	OTHER				BUSINFSS	CORPOPATE	PFRSONAL	AFRIAL	INSTRUCT IONAL	AIR TAXI	OTHER				BUSINESS	CORPORATE	PERSONAL	IAL	INSTRUCTIONAL	TAXI	OTHER				PUSINESS	COSPORATE	PERSONAL	AFRIAL	INSTRUCTIONAL	

TABLE B-12. (Cont.)

1985 HOURS FLO

LINE, 19																													
OF DESIGNATED YEAR. AS PERCENT OF BASELINE.		TURBINE										TURBINE							25.81				TURBINE	TURBINE	TURBINE HELIC 0.00	TURBINE HELIC 0.00 4.75	TURBINE HELIC 0.00 4.75	TURBINE HELIC 0.00 4.75 0.63	TURBINE HELIC 0.00 0.00 0.00 0.00
AS PERCEN		PISTON	HELIC	0.20	00.0	8.31	0.00	0.00	21.11	18.20		NCTSIA	HELIC	0.23	00.0	9.70	0.00	00.0	25.81	21,38			PISTON	PIST 3N HELIC	PISTON HELIC 0.27	PISTON HELIC 0.27	PISTON HELIC 0.27 11.11	PISTON HELIC 0.27 0.00 11.11	PISTON HELIC 0.27 0.00 11.11 0.00
YEAR.		TURAD	JET	00.0	14.11	0.00	6.00	0.00	21.11	23.57		10830	J:T	0.00	17.36	00.0	00.0	00.0	25.91	24.58			25.50	130	0.50 1 = 0 0 • 0	10430 0.00 25.03	20.03	20.00	200000000000000000000000000000000000000
OE STONE IED		TURBO	PPJP	30.0	13.90	0.00	90.0	0.00	21.11	00.0		TURBO	PROP	0.00	16.58	0.03	0.00	00.0	25.81	00.0		TURBO		PROP	9 KO 9	PR3P 0.03 19.20	PRDP 0.00 19.20 0.00	1 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400 400 000 000 000 000 000 000 000 000
10 1 12:10	1983									26.38	1984	MULTI-	NCISIA	16.30	6.43	12.98	0.30	00.0	25.81	23.54	1985	HULTI-		NCISIA	NCTSIA	PISTON 19.94	PISTON 19.94 11.37	PISTON 19.37 14.37 0.00	PIST 1910 1910 1910 1910 1910 1910 1910 191
טאט טאט ט.		SNGL-P	AER	0.03	0.00	0.03	0.00	0.00	0.00	0.00		SNGL-P	AER	0.03	0.00	0.00	0.00	00.0	00.0	30.0		SNGL -P	000	2 3 1	0.00	00.00	1000	0000	
AS REPORTE		SNGL-P	NON-AER	16.83	9.85	6.08	00.0	00.00	21.11	20.38		SNGL-P	NON-AER	21.35	11.59	7.09	00.0	00.0	25.81	23.34		SNGL-P	ADN-ADN		26.20	26.20	26.20 13.23 6.10	26.20 13.23 6.10	26.20 13.23 6.10 0.00
LOWN DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1				RUSINESS	CORPORATE	PFRSONAL	ACRIAL	INSTRUCTIONAL	MIR TAXI	ОТНЕЯ				BUSINESS	CORPORATE	PERSONAL	AERIAL	INSTRUCTIONAL	AIR TAXI	DIHER				1 1	SSINISO	RUSINESS CORPORATE	AUSINESS Corporate Sessonal	RUSINESS CORPOPATE PERSONAL AERIAL	RUSINFSS CORPOPATE PRESSONAL ALRIAL INSTRUCTIONAL
NAO																													

TABLE B-13.

SENERAL AVIATION DYNAMIC MODEL PAGE 21 TOWERED AND NON-TOWERED OPERATIONS DURING PREVIOUS YEAR AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985

00.00	0.95	2.10	3,38	4.76	6.23	8.41	10.90	13.63	16.51
0.00	1.27	2.83	4.43	6.17	7.93	10.63	13.76	17.08	20.57
0.00	1.27	2.84	4.52	6.28	8.07	10.82	13.91	17.24	20.75
0.00	99.0	1.45	2.34	3.29	4.36	5.79	7.44	9.27	11.16
00.0	1.17	2.61	4.17	5.82	7.53	10.16	13.02	16.18	19.52
0.00	0.66	1.43	2.23	3.23	4.23	5.69	7,33	9.13	11.01
1976	1977	1978	1979	1980	1941	1932	1983	1984	1985
	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.66 1.17 0.68 1.27 1.27 1.43 2.61 1.45 2.84 2.83	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 1.27 1.27 1.27 1.27 1.27 1.43 2.29 4.17 2.34 4.52 4.55 4.28 6.28 6.17 4.23 7.53 4.36 8.07 7.93 5.69 10.82 10.69	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1976 0.00 0.00 0.00 0.00 0.00 1977 0.66 1.17 0.68 1.27 1.27 0.95 1978 1.43 2.61 1.46 2.84 2.81 2.10 1979 2.23 4.17 2.34 4.52 4.45 3.38 1980 3.23 5.82 3.23 6.28 6.17 4.76 1941 4.23 7.53 4.36 8.07 7.93 6.25 1942 5.59 10.16 5.79 10.69 8.41 1983 7.33 13.02 7.44 13.91 13.76 10.91 1984 9.13 16.18 9.27 17.24 17.08 13.63

TABLE B-14.

FUEL CONSUMED DURING PREVIOUS YEAR. AS REPORTED ON JANUARY 1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE, 1985

	00.0	1.70	3.66	5.63	7.51	9.25	12.06	15.02	18.04	21.03
200 00	0.00	1.22	2.61	63.4	5.61	7.23	27.6	11.99	14.71	17.53
	1976	1977	1978	1979	1980	1981	1982	1983	1984	1985

TABLE B-15.

SENEPAL AVIATION DYNAMIC MODEL PAGE 25

5	
198	
-1	
¥	
4	
ŭ	
AS	
8	
1 OF DESIGNATED YEAR, AS PERCENT OF BASELINE,	
0	
=	
ũ	
ည	
Ä	
-	
S	
_	
CZ	
4	
>	
O	
111	
₹	
3	
SI	
w	
_	
9	
_	
~	
A	
Z	
3	
7.	
0	
0	
-	
8	
•	
œ	
S	
YEAR AS REPORTED ON JANUARY	
œ	
A	
>	
S	
20	
E	
u	
a	
Z	
7	
2	
3	
Z	
>	
8	
-	
TAX REVENUE DURING	
_	
7	
DER	
0	
9	

.,			4.78	.5	2	B. 0	3.7		9.8
1976	97	16	~	9.6	96	98	98	98	96