MAT230 Grupper og symmetri Obligatorisk innlevering 2

Christian Stigen

UiS, 18. mars, 2016

Oppgave 2

a) $\phi(n)$ er antall $x, 0 < x \leqslant n$ slik at $\gcd(x, n) = 1$. Funksjonen er multiplikativ; $\phi(10) = \phi(2)\phi(5)$ og

$$\gcd(1,2) = 1$$
 $\gcd(1,5) = 1$ $\gcd(2,5) = 1$ $\gcd(3,5) = 1$ $\gcd(4,5) = 1$

gir $k = 1 \cdot 4 = 4$.

b) Vi vet $|R_{10}| = k = 4$, og $r \in (R_{10}, \cdot_{10})$ er alle $r \in \mathbb{Z}_{10}$ slik at $\gcd(r, 10) = 1$. For å finne elementene til R_{10} kan vi ikke bruke trikset over. Håndsregning gir $R_{10} = \{1, 3, 7, 9\}$. Vi ser også at

$$3^{0} \pmod{10} = 1$$
 $3^{1} \pmod{10} = 3$
 $3^{2} \pmod{10} = 9$
 $3^{3} \pmod{10} = 7$
 $3^{4} \pmod{10} = 1$
 $3^{5} \pmod{10} = 3$

Altså er $R_{10}=\langle 3\rangle$ og dermed syklisk. $(\mathbb{Z}_{k=4},+_4)=\{0,1,2,3\}$ er generert av $\langle 1\rangle$ og er dermed også syklisk.

Setter vi hvert $x \in \mathbb{Z}_4$ inn i $\varphi(x) = 3^x \pmod{10}$ så får vi alle elementene i R_{10} . Videre har vi $\varphi(x +_{10} y) = 3^{x+_{10}y} \pmod{10} = 3^x \pmod{10} 3^y \pmod{10} = \varphi(x)\varphi(y)$.

Vi har altså laget en én-til-én korrespondanse mellom elementene den ene veien, $\varphi \colon \mathbb{Z}_4 \to R_{10}$. Men dette danner en bijeksjon, og da vet vi at den inverse også

eksisterer, og dermed er ϕ en isomorfisme, eller $\mathbb{Z}_4 \cong R_{10}$.

I eksempel (iv) i Armstrong, s. 34, står det at enhver syklisk gruppe G av orden n er isomorfisk med \mathbb{Z}_n . Hvis $\langle x \rangle = G$, så definerer man $\phi \colon G \to \mathbb{Z}_n$ ved $\phi(x^m) = m \pmod{n}$. I vårt tilfelle er x = 3 og n = 4.

Oppgave 3

a) Det er tydelig at $\vec{a} \sim \vec{a}$ for enhver $a \in \mathbb{R}^3$, fordi $a_3 = a_3$.

Hvis $\vec{a} \sim \vec{b}$, så må også $\vec{b} \sim \vec{a}$, fordi $a_3 = b_3$ er det samme som $b_3 = a_3$, og dette gjelder for alle $a, b \in \mathbb{R}^3$.

Hvis $\vec{a} \sim \vec{b}$ og $\vec{b} \sim \vec{c}$, så må $\vec{a} \sim \vec{c}$ fordi $a_3 = b_3$ og $b_3 = c_3$ impliserer at $a_3 = c_3$.

Da alle punktene over er innfridd så har vi vist at \sim er en ekvivalensrelasjon på \mathbb{R}^3 .

b) For en vilkårlig $\vec{a} \in \mathbb{R}^3$ så vil $\mathscr{R}(\vec{a})$ være *ekvivalensklassen* til \vec{a} , det vil si alle vektorer \vec{b} som har samme z-komponent $b_3 = a_3$. Med andre ord er dette en *avbildning av vektorene i* xy-planet definert ved $z = a_3$.

Oppgave 6

Jeg drister meg på denne oppgaven, selv om jeg er ganske sikker på at jeg ikke har kommet helt i mål.

For at \sim skal være en ekvivalensrelasjon på X må vi ha at (1) $x \in X$ slik at $x \sim x$, (2) hvis $x \sim y$ så er $y \sim x$ for to $x, y \in X$ og (3) hvis $x \sim y$ og $y \sim z$ så må $x \sim z$ for tre $x, y, z \in X$.

La oss først *anta* at det finnes en isomorfisme og et tall* $n \in \mathbb{N}^+$ slik at $\varphi \colon \mathbb{Z}^n \times x \to \mathbb{Z}^n \times y$ for to undergrupper x, y av G.

- (1) Da vil $\mathbb{Z}^n \times H \to \mathbb{Z}^n \times H$ være en bijeksjon på seg selv.
- (2) Da φ er en bijeksjon må det finnes en invers φ^{-1} , per definisjon: $H_1 \sim H_2$ impliserer at det finnes $H_2 \sim H_1$.
- (3) Hvis $\varphi\colon H\to H'$ og $\psi\colon H'\to H''$ begge er isomorfismer, så må komposisjonen $\psi\varphi\colon H\to H''$ også være en isomorfisme.

Det som nå gjenstår er å vise at isomorfismen φ faktisk finnes.

Dersom vi antar at $|H_1| = |H_2|$ så må det være mulig å lage en isomorfisme slik at $H_1 \cong H_2$. I dette tilfellet bør n være vilkårlig, fordi det direkte produktet med \mathbb{Z}^n gjøres på både H_1 og H_2 .

Men dersom $|H_1| \neq |H_2|$ så må vi prøve å velge n slik at φ finnes. Hva skjer om vi setter $n = |H_1||H_2|$? Da får vi for hvert element i \mathbb{Z}^n plass til alle elementene i H_1 og H_2 .

Det er så langt jeg klarte å komme, dessverre.

^{*}Oppgaven sier ikke om det er $n \in \mathbb{N}^+$ eller $n \in \mathbb{N}^0$. Vi velger \mathbb{N}^+ , ellers blir oppgaven triviell.