(a) Write down the log posterior log
$$p(f_x|y,X)$$
 for the representation $f_x = [f(n), f(n), \dots, f(n)]$

① prior over latent $f: p(f) = GP(f; m, k)$

② $g_i \in \mathcal{E}^{-1}$, g_i imput extent point $i = g_i \in \mathcal{E}^{-1}$, $g_i \in \mathcal{E}^{-1}$, $g_$

(b) Compute the gradient of this log postrior

$$\nabla_{f_{x}} \log \left(p(f_{x}|y,X) \right)$$
Answer: Operar our latest $f: p(f) = GP(f_{y}m,x)$

$$\underbrace{\partial}_{f_{x}} e^{\frac{1}{2}} e^{\frac{1}{2}} \underbrace{\partial}_{f_{x}} e^{\frac{1}{2}} e^{\frac{1}{2}} \underbrace{\partial}_{f_{x}} e^{\frac{1}{2}} e^{\frac{1}{2}} e^{\frac{1}{2}} \underbrace{\partial}_{f_{x}} e^{\frac{1}{2}} e^{\frac{1}{2}} e^{\frac{1}{2}} \underbrace{\partial}_{f_{x}} e^{\frac{1}{2}} e^{\frac{1}{2}} \underbrace{\partial}_{f_{x}} e^{\frac{1}{2}} e$$

Consider
$$-\frac{\partial}{\partial f_{x_i}} \log \left(1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right) \right) = \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 + \exp \left(-\frac{1}{3} \cdot f_{x_i} \right)}$$

$$= \frac{1}{1 +$$