Modern Analysis 1 L8 and L9

Guanyun Liu

October 2, 2023

1 Recall

• **AMGM** If $a_1, \dots, a_n \ge 0$, then $\frac{a_1 + \dots + a_n}{n} \ge (a_1 + \dots + a_n)^{\frac{1}{n}}$ with equality $\Leftrightarrow a_1 = \dots = a_n$.

2 Example 1

 \mathbb{E} Maximize $x(1-x)^n$ on (0,1).

Solution:

Consider the following numbers $a_0 = x, a_1 = 1 - x, ..., a_n = 1 - x$, according to AMGM we have

$$(a_0 a_1 \cdots a_n)^{\frac{1}{n+1}} \le \frac{a_0 + a_1 + \dots + a_n}{n+1}$$

$$\Rightarrow (nx(1-x)^n)^{\frac{1}{n+1}} \le \frac{n}{n+1}$$

$$\Rightarrow nx(1-x)^n \le \left(\frac{n}{n+1}\right)^{n+1}$$

$$\Rightarrow x(1-x)^n \le \frac{n^n}{(n+1)^{n+1}}$$

Equality holds $\Leftrightarrow a_0 = a_1 = \dots = a_n$, that is $x = \frac{1}{n+1}$.

3 Example 2

Given $a_1, \dots, a_N > 0$, show that if $\pi \in S_N$, $\sum_{n=1}^N \frac{a_{\pi(n)}}{a_n} \ge N$

For example, $a,b,c>0,\,\frac{b}{c}+\frac{c}{a}+\frac{a}{b}\geq 3$

Proof. Apply AMGM to
$$\frac{a_{\pi_q}}{a_1}, \cdots, \frac{a_{\pi_N}}{a_N}$$
 $\frac{a_{\pi_1}}{a_1} + \cdots + \frac{a_{\pi_N}}{a_N}$ $\geq \left(\frac{a_{\pi_1}}{a_1} \cdot \cdots \cdot \frac{a_{\pi_N}}{a_N}\right)^{\frac{1}{N}}$

 $\therefore \pi$ is permutation of N

:. RHS's numerator is exactly same as the denominator with different order

 $\therefore RHS = 1$

$$\therefore \frac{\frac{a_{\pi_1}}{a_1} + \dots + \frac{a_{\pi_N}}{a_N}}{N} \ge 1 \therefore \frac{a_{\pi_1}}{a_1} + \dots + \frac{a_{\pi_N}}{a_N} \ge N \text{ with equality holds if } \pi = \text{identity, i.e. } a_{\pi_i} = a_i \qquad \square$$

4 Uniqueness of \mathbb{R}

Theorem 4.1. If F and F' are fields with compatible total orders having the least upper bound property, then there exists a unique **field isomorphism** from $F \to F'$.

Remark. The smallest (or prime) subfield of F is an isomorphic copy of the rationals, say \mathbb{Q} . Similarly, $F' \supseteq \mathbb{Q}'$.

Fact: There is a unique field isomorphism $\phi_0: \mathbb{Q} \to \mathbb{Q}'$

Fact: If $a \in F$, and $\mathbb{Q}_a := \{q \in \mathbb{Q} : q < a\}$, then $\sup \mathbb{Q}_a = a$

Proof. $\mathbb{Q}_a \neq \text{due to Archimedies.}$

Thus, \mathbb{Q}_a is nonempty and bounded above.

The \mathbb{D} of $\mathbb{Q}_a \Rightarrow a$ is an upper bound for \mathbb{Q}_a

Now, we need to show a is the least upper bound by showing if there exists a t < a, then t is not an upper bound.

Let t < a

Archimedies gives us $q \in \mathbb{Q}s.t.t < q < a$

$$a < a \land q \in \mathbb{Q} \Rightarrow q \in \mathbb{Q}_a$$

Therefore, t < q implies t is not an upper bound for \mathbb{Q}_a . Thus, $sup\mathbb{Q}_a = a$.

Let's define a function $\phi: F \to F'$ as $\phi(a) = \sup[\phi_0(\mathbb{Q}_a)]$, where $\phi_0: \mathbb{Q} \to \mathbb{Q}_a$. Then, we have the following claims:

- $\phi_0(\mathbb{Q}_a) \neq \emptyset$ because ϕ_0 is isomorphism, i.e. bijective mapping, and $\mathbb{Q}_a \neq \emptyset$.
- $\phi_0(\mathbb{Q}_a)$ is bounded above by Archimedies.

Proof. Choose $n > a, n \in \mathbb{Z}$, because integers are not bounded above.

Now,
$$q \in \mathbb{Q}_a \Rightarrow n > a > q$$

 $n > q \Rightarrow \phi_0(n) > \phi_0(q)$ because the isomorphism ϕ_0 preserves order (\mathbb{E}) .

Therefore, $\phi_0(n)$ is an upper bound for $\phi_0(\mathbb{Q}_a)$

• $\phi: F \to F'$ is an isomorphism.

Proof. We need to show:

1.
$$\phi(a+b) = \phi(a) + \phi(b)$$

First,
$$\mathbb{Q}_{a+b} = \mathbb{Q}_a + \mathbb{Q}_b$$
.

If so, (assumping this is correct), then $\phi_o(\mathbb{Q}_{a+b}) = \phi_0(\mathbb{Q}_a) + \phi_0(\mathbb{Q}_b)$, because ϕ_0 is isomorphism.

$$\therefore \phi(a+b) = \sup[\phi_0(\mathbb{Q}_{a+b})]$$

$$= \sup[\phi_0(\mathbb{Q}_a) + \phi_0(\mathbb{Q}_b)]$$

$$= \sup[\phi_0(\mathbb{Q}_a)] + \sup[\phi_0(\mathbb{Q}_b)]$$

$$= \phi(a) + \phi(b)$$

Now, to prove $\mathbb{Q}_{a+b} = \mathbb{Q}_a + \mathbb{Q}_b$, we need to show $\mathbb{Q}_{a+b} \subseteq \mathbb{Q}_a + \mathbb{Q}_b$ and $\mathbb{Q}_{a+b} \supseteq \mathbb{Q}_a + \mathbb{Q}_b$

"
\(\subseteq \) is easy: if $x \in \mathbb{Q}_a$ and $y \in \mathbb{Q}_b$, then x + y < a + b and $x + y \in \mathbb{Q}_{a+b}$

"\(\to\)" is not easy because the set \mathbb{Q}_a is defined as q strictly less (<) than a.

Let $z \in \mathbb{Q}_{a+b}$, then $\mathbb{Q} \ni z < a+b$.

We want z = x + y for some $x \in \mathbb{Q}_a$ and $y \in \mathbb{Q}_b$.

Since z-a < b, according to Archimedes: $\exists y \in \mathbb{Q} \text{ s.t. } z-a < y < b \Rightarrow y \in \mathbb{Q}_b$

Let x = z - y, certainly $x \in \mathbb{Q}$.

Since z - b < a, again by Archimedes, $\exists x \in \mathbb{Q}$

Check x < a HOW?????

2. $\phi(ab) = \phi(a)\phi(b)$

5 Isomorphism

Definition 5.1. Given two groups (G, *) and (H, \odot) , a **group isomorphism** from (G, *) to (H, \odot) is a bijective group homomorphism from G to H. This means that a group isomorphism is a bijective function $f: G \to H$ such that $\forall u, v \in G$, it holds that

$$f(u * v) = f(u) \odot f(v)$$

The two groups G and H are isomorphic if there exists an isomorphism from one to the other, denoted as $(G,*) \cong (H, \odot)$

6 Homomorphism

Definition 6.1. Let (G, *) and (H, \odot) be groups. A homomorphism $f : G \to H$ is a function s.t. $\forall g_1, g_2 \in G$,

$$f(g_1 * g_2) = f(g_1) \odot f(g_2)$$

Definition 6.2. Equivalently, the function $f:G\to H$ is a group homomorphism if whenever $a,b,c\in G$

$$a * b = c \Rightarrow f(a) \odot f(b) = f(c)$$

M The purpose of defining a group homomorphism is to create functions that **preserve** the algebraic structure. According to the alternative definition, the group H in some sense has a similar algebraic structure as G and the homomorphism h preserves that.

Proposition 6.0.1. Let G and H be groups, written multiplicatively and let $f: G \to H$ be a homomorphism. Then,

- 1. f(1) = 1, where the 1 on the left is the identity in G and the 1 one the right is the identity in H. In other words, f take the identity in G to the identity in H.
- 2. $\forall g \in G, f(g^{-1}) = (f(g))^{-1}$