Project Overview: Inventory Optimization for Athers Food Inc.

As part of a supply chain audit initiated by the incoming COO, I led the development and simulation of inventory strategies for Athers Food Inc., a major shelf-stable food manufacturer facing rising revenues but declining profits. The goal was to assess and improve the company's inventory policies to support sustainable growth and profitability.

My Role and Contributions

1. Demand Analysis and Forecasting

- Modeled daily demand using a Negative Binomial distribution adjusted for seasonality (holiday peaks) and year-over-year growth.
- Used Python (Pandas, NumPy, SciPy) to simulate demand for four consecutive years (2019–2022), incorporating business-specific trends such as holiday surges (+70 units/day) and annual demand growth (+10 units/day).
- Produced demand visualizations to help the executive team understand demand variability and seasonality.

2. Reverse Engineering of Existing Inventory Policy

- Analyzed historical inventory data to infer the existing policy, discovering that the company followed a fixed-time, fixed-quantity monthly ordering system with a 9-day lead time.
- Demonstrated that the current approach was not demand-responsive and led to excessive holding costs despite minimizing stockouts.

3. Development and Simulation of EOQ-Based Policies

- Applied the classical Economic Order Quantity (EOQ) model to historical demand data for 2019–2022.
- Simulated the EOQ policy using custom Python functions, accounting for setup, holding, production costs, and stockouts.
- Evaluated trade-offs using "stockouts vs. profit" and "stockouts vs. cost" plots, revealing that while EOQ reduced costs, it led to unacceptable service-level issues due to high stockouts.

4. Cost-Profit-Risk Trade-Off Analysis

- Integrated safety stock into the EOQ model to improve resilience.
- Simulated and visualized various service levels to quantify the relationship between safety stock, total cost, and profit.
- Recommended a buffered EOQ policy as a temporary middle-ground for improving reliability without excessive cost.

5. Design of a Flexible, Continuous-Review Inventory Policy

- Proposed and implemented a dynamic inventory control model based on real-time monitoring.
- Used statistical reorder points incorporating demand mean, standard deviation, lead time, and Z-score for service level.
- Simulation showed this policy produced superior profitability (\$2.42M) with significantly fewer stockouts compared to fixed or EOQ-based systems.

Tools & Technologies Used

- Python (Pandas, NumPy, SciPy, Matplotlib)
- Statistical Modeling: Negative Binomial distribution, trend/seasonality adjustments
- Operations Research: EOQ modeling, safety stock calculation
- Inventory Simulation: Discrete event simulation with lead time and demand variability
- Visualization & Reporting: Risk-return plots, cost breakdowns, policy comparison tables

Outcome

The project provided Athers Food Inc. with a data-driven roadmap for improving inventory performance. The flexible inventory model I proposed balanced profitability, responsiveness, and resilience, and was well-aligned with the new COO's objective of building a modern, agile supply chain.

This project demonstrated my ability to combine quantitative analysis with business strategy, transforming complex data into actionable decisions.