Testing Model With Multiple Evaluation Metrics

Multiple evaluation metrics means evaluating the model's performance on a test set using different performance measures. This can provide a more comprehensive understanding of the model's strengths and weaknesses. We are using evaluation metrics for classification tasks including accuracy, precision, recall, support and F1-score.

Compare The Model

For comparing the above three models

```
from sklearn import model_selection
from sklearn.neural_network import MLPClassifier
```

```
dfs = []
models = [
         ('RF', RandomForestClassifier()),
         ('DecisionTree',DecisionTreeClassifier()),
         ('ANN',MLPClassifier())
results = []
    scoring = ['accuracy', 'precision_weighted', 'recall_weighted', 'f1_weighted', 'roc_auc']
    target_names = ['no delay', 'delay']
    for name, model in models:
       kfold = model_selection.KFold(n_splits=5, shuffle=True, random_state=90210)
       cv_results = model_selection.cross_validate(model, x_train, y_train, cv=kfold, scoring=scoring)
       clf = model.fit(x_train, y_train)
       y_pred = clf.predict(x_test)
       print(name)
       print(classification_report(y_test, y_pred, target_names=target_names))
       results.append(cv results)
        names.append(name)
       this_df = pd.DataFrame(cv_results)
       this_df['model'] = name
       dfs.append(this_df)
final = pd.concat(dfs, ignore_index=True)
return final
```

RF						
	precision	recall	f1-score	suppor	t	
no delay	0.93	0.96	0.95	193	6	
delay	0.72	0.58	0.64	31	1	
accuracy			0.91	224	7	
macro avg		0.77	0.79			
weighted avg	0.90	0.91	0.91	224	7	
DecisionTree						
	precision	recall	f1-score	suppor	t	
4-1	0.03	0.03	0.03	103	_	
no delay delay	0.93 0.56	0.93 0.55	0.93 0.55			
uelay	0.56	0.55	0.55	31	•	
accuracy			0.88	224	7	
macro avg	0.74	0.74	0.74			
weighted avg		0.88	0.88	224	7	
ANN						
AINI	precision	naca	ill f1-s	cono (unnont	
	precision	reca	111 11-2	core s	support	
	0.00	9990	06	2 25	1025	
no delay				0.95	1936	
delay	0.70	0.	58	0.63	311	
accuracy				0.91	2247	
macro avg	0.82	0.	77	0.79	2247	
weighted avg	0.90	0.	91	0.90	2247	

Comparing Model Accuracy Before & After Applying Hyperparameter Tuning

Evaluating performance of the model From sklearn, cross_val_score is used to evaluate the score of the model. On the parameters, we have given rf (model name), x, y, cv (as 5 folds). Our model is performing well. So, we are saving the model by pickle.dump().

Note: To understand cross validation, refer to this link

```
\mbox{\tt\#} giving some parameters that can be used in randized search \mbox{\tt cv}
parameters = {
               'n_estimators' : [1,20,30,55,68,74,90,120,115],
                'criterion':['gini','entropy'],
                'max_features' : ["auto", "sqrt", "log2"],
        'max_depth' : [2,5,8,10], 'verbose' : [1,2,3,4,6,8,9,10]
#performing the randomized cv
RCV = RandomizedSearchCV(estimator=rf,param_distributions=parameters,cv=10,n_iter=4)
RCV.fit(x_train,y_train)
         bt_params
   {'verbose': 10,
     'n_estimators': 90,
     'max_features': 'log2',
     'max_depth': 10,
     'criterion': 'entropy'}
         bt_score
   0.905498809615237
model = RandomForestClassifier(verbose= 10, n_estimators= 120, max_features= 'log2',max_depth= 10,criterion= 'entropy')
RCV.fit(x_train,y_train)
```