

> by: Borislav Nikolov

> year: 2021

The parent has to know how to program. Spend 30 minutes per day. Every day.

"Anything worth doing is worth doing badly." — G.~K.~Chesterton

Hello World

This chapter is for parents, kids skip to the next one.

Why

I think modern education treats programming as 'career path', I think of that to be wrong. I treat it as literacy. Being literate lets to experience a different world than those who aren't. It is not about having a job, I can't even explain it, being literate just allows you to see the fabric of what everything is made of.

Imagine schools were teaching violin en masse, how would that go? How many kids will be able to make a decent sound? How many will drop out because they are stuck and the rest have to move on because the tests say so?

Sometimes my daughter doesn't like to code, or to read for that matter, of course the rest of the internet is so much more interesting. We are competing with hundreds of thousands of developers in Supercell and Facebook and TikTok and Netflix that train billion parameters models so they can squeeze every last bit of attention from our kids. Of course it is going to be difficult. But, I thought to myself, does that mean I should not try? So a change of approach is needed, completely individualistic and personal approach.

Maybe she will grow hating it, or even hating me. Parenting is difficult.

We are 3 months in, and so far she doesn't hate me.

About the book

This book is for parents who know how to code and for kids who don't, but especially for parents and kids who can spend 30 minutes per day, *every day*. I am writing this book as I am teaching my daughter (10), and you know how in some cooking shows, they skip the part where the food is cooking? I wont do that. The book will be longer than it should.

Again, if your children are older, or younger, this book might not work, you could of course still find pieces that work for you.

This is more of a log of my experience so far. I am writing it as if I am talking to my daughter, so the style might be weird, but for you it should be more of an pool of examples you could use, and maybe just get ideas from the text. Try to avoid giving the book to your child and say "do this chapter", but in is also good experience to be able to do something alone.

Also its nice to print a copy so they don't just copy paste.

What you need:

- Computer
- Patience
- Internet
- Patience

If you don't have a you can buy raspberry pi 400 for 70\$ or so, or something similar that you attach to your TV. If you don't have patience, buy some chamomile tea. You don't need internet subscription, but you would

need a bit of internet to download python and do few google searches.

The schedule is roughly as follows:

- Week 0
 - o Explain the computer
 - Touch Typing
 - HTML
- Week 1
 - HTML: h1, marquee, pink text
 - Touch Typing
- Week 2
 - HTML: tables
 - HTML: lists
 - Touch Typing
- Week 3
 - HTML: tables lists
 - HTML: images, licenses
 - JavaScript: few small programs
- Week 4
 - python: super basic python (print and input and while True)
- Week 5
 - o python: more basic python
- Week 6
 - o python: make hangman game
- Week 7
 - o python: turtle
- Week 8
 - o HTML: love match
 - o python: make text tic tac toe game
 - o python: make trivia game
- Week 9
 - o python: super basic python
- Week 10
 - o python: turtle
- Week 11
 - o python: make text tic tac toe game
- Week 12
 - o python: pygame
 - o python: turtle

We are at week 12 at the moment, I will keep updating the book as we go further.

- Week 13
 - o python: pygame
 - o python: turtle
- Week 14
 - python: basics

o python: turtle

Week 15

o HTML: make a table

o python: make tic tac toe again

python: basicspython: pygame

Week 16

python: love matchpython: trivia game

o python: turtle

Week 17

o python: dungeon game

o python: turtle grid

o python: turtle keyboard input

Week 18

o python: turtle tic tac toe

In most of the weeks you also go back, waaay back, every day you re-iterate variables and for loops, print the numbers from one to 10 forever, ask how many times to be printed, etc.

The reason for so much emphasis on HTML is because it helps with understanding hierarchy, tr is child of table, table is child of body body is child of html, td is a sister to td and both are children of tr etc, it helped a lot with my daughter understanding how the else is sibling to the if and how both are children to while.

Also it is very easy to debug, and inspect, and get immediate feedback. There are many 'hackers' now on tiktok or youtube that shows you how to get a lot robux(money) in roblox by inspecting the page and modifying the HTML, so I think HTML is very important to be understood, not only because it teaches hierarchy, but also it is the canvas of the web.

Other materials

Play other games as well, https://tomorrowcorporation.com/ has some brilliant games, Human Resource Machine is great way to learn loops and conditional jumps, and 7 Billion Humans is amazing for high level concepts, including variables, recursion and sorting. Before we started with HTML we spent about 1 month with those games. They are just incredible and well worth their money.

The Robot Turtles game is amazing as well, you can find it here: https://www.thinkfun.com/products/robot-turtles/

Scratch works for some kids, mine didn't enjoy it much.

Buy few Arduino NANOs (cheap clones from amazon work as well, but you need to install ch340 driver), and some servo motors and write few super basic programs that turn the servo slowly in one direction or another. Connect black/brown wire to gnd, red wire to 5v and orange wire to D9, and run:

```
#include <Servo.h>
#define SERVO_PIN 9
Servo s;
```

```
void setup() {
    s.attach(SERVO_PIN, 1000, 2000);
}

void loop() {
    s.write(0);
    delay(500);

    s.write(60);
    delay(500);

    s.write(120);
    delay(500);
}
```

Motivation

Sometimes there is very little motivation. Kids are super tired from school and playdates and extracurricular activities, makes it hard to spend 30 minutes per day on something. Netflix and YouTube and etc are so much more interesting than what I have to offer, it is a rigged game. Sad that I have to compete with billion parameter models, but here we are.

Anything worth doing, is worth doing poorly. If you cant spend 30 minutes, spend 15, spend 5 minutes if you have to, or even 1. It is all worth it.

I try to spend time in the morning, at least on the weekends, and first thing after school on school days. Luckily now it is a bit easier while we work from home during the pandemic. We tried to setup time before or after dinner, and it doesn't go well.

Sometimes material incentives are also very helpful, e.g. a promise 5\$ gift card, but I think you will have to find out what works for your kids.

Chapter 0 - Week 0

```
day0: learn about the computer
day1: touch typing on keybr.com
day2: install python and make a program
day3: touch typing using your program
day4: HTML
day5: touch typing
day6: HTML
```

This week is one of the more difficult ones. Lots of new things, and some of them might not work on your computer because it is too new or too old, for which I apologize. You might need a bit of help. If you get stuck just call a friend or parent to help you out.

[DAY-0] The Computer

All modern computers(laptops, phones, pc master race rgb monsters, etc) have somewhat similar components: Processor, Memory, Video Card, Disk and USB controller, WiFi card etc. Some of them are in one single chip and you cant even see them anymore, but they are there. For example there are chips that have Processor and Video Card together. The term for processor is actually CPU - Central processing unit, but we called it processors when we were kids and it kind of make sense, since it processes stuff.

Memory (also called RAM), is the place where programs exist to be run by the CPU, it loads its instructions from there, and the instructions tells it what to do, it can write back to memory, or read from a different place or write something to the disk controller or to the video card, etc. Basically the most important stuff happens between the processor and the RAM (which stands for Random Access Memory). It is Random Access because the processor can just go and read or write to specific place, which is pretty cool.

Everything in the RAM disappears when you turn off the computer, so usually the programs and all kinds of information is persistently stored on the Disk. Which is called disk because it used to be spinning, but now most computers have SSD disks which are not *disks* at all, google 'SSD versus spinning disk' if you want to find more. So when the computer starts it will load some information from the disk into memory and start the operating system, which is just a program, not very different than the one you wrote for the touch typing, it takes input, does something with it and then has some output.

[DAY-0] Files

When you store something to disk you usually store it as a file, files can be all kinds, only text, or images, or just raw binary data used for different purposes. Text files are literally that, file that contains text, later you will learn that there is no such thing as text to the computer, all is just bits of information, but we (the humans) decided it is quite useless to look at some numbers of information, so our programs display information in different way, for example the file can contain the number 97 in its raw form 01100001, and if seen from a text editor, it will show the letter 'a', but if seem from image editor it might use it to show some blue-ish color, colors are stored in 4 numbers: transparency(called alpha), red,green and blue, but different formats use different way to store the colors, so it will depend on which format does the program think it is going to display.

See it is all in the eye of the beholder, the file still contains only 97 (01100001), but each program will decide what to do with it.

There are also Directories(also called Folders) (which in many file systems are also files.. but we will get to that later), that can contain files or other directories. Example structure looks like:

```
/
|— home/
| |— jack/
| | |— type.py
| | |— example.txt
| | |— image.jpg
```

The word File is used because people that made those things up were thinking of filing cabinet, with lots of folders that contains pieces of paper.

```
/

/______

/____ /| |

|"·___."| |

|____|/ | |

|| ·__."|| /

|| ____|/ Felix Lee
```

See how those pictures have sometimes names attached to them. Those are their creators, some pictures are from the 80s, so it is amazing we can still find out who made them. You should always attribute the work of an artist.

So the name 'File' and 'Folder' is used. If people were thinking of libraries I guess we would've been using Book for a file and Shelve for Folder? Anyway, my point is: all things have names, some of the names are strange and old, so don't worry if they make no sense.

[DAY-0] ASCII

Computers do not understand text, so when you see text it is usually some number that is displayed as a character, for example 65 is A, 66 is B, and so on. About 60 years ago some people agreed on a common way to map number to character, called THE ASCII STANDARD, super fancy name, for such a simple thing.

```
32
   SPC
                  96
         64
            @
33
         65 A
                  97
34
         66 B
                  98 b
35
         67 C
                  99 c
36
   $
         68 D
                 100 d
         69 E
                 101 e
37
38
         70 F
                 102 f
                103 g
39
         71 G
40
         72 H
                 104 h
         73 I
                105 i
41
         74
42
            J
                 106
                    j
43
         75 K
                 107 k
         76 L
                108 1
44
45
         77 M
                 109 m
46
         78
            Ν
                 110 n
47
         79 0
                 111
                     0
         80 P
                112 p
48
49
   1
         81 Q
                 113
                     q
50
   2
         82 R
                114 r
                115 s
51
   3
         83 S
52 4
         84 T
                 116 t
53
   5
         85 U
                117 u
54
   6
         86 V
                118 v
   7
         87 W
55
                119 w
56
   8
         88 X
                 120 x
   9
         89 Y
                 121
57
                     У
         90 Z
                 122 z
58
59 ;
         91
            [
                 123 {
60
         92
                 124
         93
            1
                 125 }
61 =
         94
                 126 ~
62 >
63 ?
         95
```

Try to decode: 110 105 99 101 32 119 111 114 107 33

Have you seen The Lord of the Rings? Do you remember the Door of Durin? Where Gandalf couldn't remember how to enter and the fellowship almost got eaten?

The experience through this book will feel like that. Sometimes you will be stuck, and I mean really really stuck, and at some point, as if the cosmos itself colludes, something will click, and you will level up. Sadly I can not know when this will happen to **you**, as every person is different.

[DAY-0] How to Google

Anything you don't know how to do, you should use google to search for answers. However it is not easy to know what is good link to read and what is not, try to read from verified sources, like wikipedia, python.org, stackoverflow, mozilla and university websites, ask your parent to help.

There is a lot of scams on the internet, you will open websites that claim you have viruses on your computer and you need to pay 20\$ to clean it, or that you need to install this amazing program that will speed up your

internet. Sometimes on very trusted websites you will see ads that are pure scams, for example ads that looks like Download buttons to get the program you wanted, but it will just download a virus.

Its getting increasingly difficult to distinguish between good and bad information as well, some websites are just poorly written articles, so they can make people clicking on them in order to get money from ads. With time, and with the help of your parent you will learn how to recognize the good articles.

The rules about how to use the internet are:

- The internet is sus!
- Never put your real name or phone number or address anywhere
- Never download anything unless your parent approves
- Never run anything you downloaded (sometimes downloads just start automatically)
- Don't trust messages like 'click here to get free iPhone' or 'clean your computer for free'
- Always ask your parent for help if you are not sure.

There is noting free on the internet. Even this book, even though I am writing it for free, and you can get it for free, but I am hosting it on GitHub (and I don't pay for that), and GitHub, and therefore Microsoft, knows you are reading it, and later they will use that information to show you better ads, or maybe they will use it for some other purpose, like to train a machine to create artificial text, but one thing you must remember is that there is nothing free on the internet.

[DAY-1] Touch Typing

Touch typing is just typing without looking, if you are super slow while typing you will get frustrated too soon.

Use https://www.keybr.com/ or ask someone to recommend you something. After using the touch typing app for few days, write your own.

[DAY-2] Install python

In general the first thing you should do when you don't know how to do something is to google it.

So google 'how to install python', you will see lots of results, some of them will tell you how to install the old version of python, and some will be for the too old or too new version of windows. This makes things a bit more difficult.

Try to download from https://www.python.org/downloads/ and do it yourself, ask your parent for help if you are stuck.

[DAY-2] Make a useful program

After you have installed python3 run IDLE (ask your parent for help) and go to File -> New File and type:

```
import random
letters = 'fjfjfjfjfjfghghghgaa;a;a;abcdefghijklmnopqrstuvwxyz'
difficulty = 2
while True:
    q = ''
    for i in range(difficulty):
```

```
q = q + random.choice(letters)

a = input(q + ': ')
if a == q:
    difficulty += 1
else:
    if difficulty > 2:
        difficulty -= 1
```

Then hit F5 (this will ask you to save the file as well) to run the program. If it is too easy, try adjusting the difficulty or the letters.

The program will ask you to type some letters, after you are done, hit enter, and it will ask you for more or less letters. It will keep doing that forever. It kind of looks like this:

```
aj: aj
akg: akg
jjgh: jjgh
```

If you type it correctly, it will ask for a bigger sequence of characters, and if you make mistake it will ask for smaller.

Don't rush it.

Place your fingers properly on the keyboard, open https://images.google.com and search for 'touch typing' you will see many images of how to place your fingers.

[DAY-3] Touch Typing using your program

Open IDLE again, go to File -> Open File, and find where you saved your program, then double click to open it. After opened hit F5 and it will start again.

Spend the rest of the time for the day touch typing. Don't rush it. Place your fingers properly on the keyboard and slowly type the letters.

Spend the whole day touch typing and making and opening new files in IDLE and notepad; I cant stress enough how important it is for the kid to be independent to be able on its own to make or open a file.

[DAY-4] HTML

We will start with HTML.

Making a page can be a bit overwhelming, so just start small. for example:

Open notepad and make a file on your desktop named "first.html", then write in it:

```
<html>
  <body>
  <h1>welcome!</h1>
  this is my page
```

```
</body>
</html>
```

Open Windows Explorer and find the file on your desktop and double click on it.

Congrats! You have made your first web page!

Now try this:

The rest of the day you will just try some other examples:

List:

Horizontal Line:

'br' means line break, when the browser sees it know it has to show whatever comes next on another line, 'hr' means horizontal rule, just like when you take your ruler and draw a line from left to right in the text book. You see, even though you write things in separate lines (like the word first and line are clearly on separate lines), the browser will not know what to do until you tell it to 'br'. Maybe in school you had a project you have to

use PowerPoint to make a presentation? With the special words ul, li, br, hr, h2 and b you can make your own presentation in HTML!

[DAY-5] HTML

The app you are using right now to see this website is called a web browser, I don't know if kids still call it like that, but adults do.

First the browser app downloads the web page, which is just a normal text file (it is what you see when you click on View Source), then it has to process it, in the same way you read pigpen code or ascii code, you look symbol by symbol and try to make sense out of it by making it into letters you understand.

It looks for word between '<' and then '>', when it sees '<' it knows what ever is between '<' and '>' is important word. Then it has kind of a table so it know what to do with different words, when it sees 'b' it knows that whatever is inside is gonna get **bold**. There are many words like that you should try for yourself 'b' 'i' 'u' 'h1', and many more.

For example, try this on your page: this is bold

[DAY-6] Touch Typing

Spend half the time using your program and half the time on keybr.com.

Chapter 1 - Week 1

```
day0: make new touch typing program
day1: touch typing on keybr.com
day2: touch typing using your program
day3: HTML
day4: HTML
day5: touch typing
day6: HTML
```

[DAY-7] New Touch Typing Program

Make new file on your desktop, touchtyping.html and type in it:

```
return q
}
var currentQuestion = makeNewQuestion()
var questionElement = document.getElementById("question")
questionElement.innerHTML = currentQuestion.join("")
var position = 0
document.body.addEventListener('keydown', (e) => {
  if (e.key == currentQuestion[position]) {
    position++
    if (position == currentQuestion.length) {
      currentQuestion = makeNewQuestion()
      position = 0
    } else {
      currentQuestion[position-1] = '<b>' + currentQuestion[position-1] + '</b>'</b>'
    questionElement.innerHTML = currentQuestion.join("")
})
</script>
```

Don't worry about what it all means. Just type it character by character. Now double click on the file and try out your program, just start typing as the web page is open, and characters will become bold as you type them.

[DAY-8] Touch Typing

Today just spend the day chilling on keybr.com

[DAY-9] Touch Typing using your program

Open touchtyping.html and spend the day using your awesome program. Once you open it, right click and then click on View Source to remember that you actually wrote this! Good job!

[DAY-10] HTML

From now on the HTML examples will be more code and less text, so you just have to go through them with your parent.

```
</body>
</html>
```

Try to touch type as you are writing this, no need to hurry.

This is a funny one, you might not know how to write \P , but just google 'bug emoji' and copy it from there. After you open the web page, click on the bug to see what happens.

You see we add this onclick=... which is code that is going to run every time you click on the bug, and what this code does it copies the button and adds it to the page, including the onclick=.. stuff, so the other button you can press and it will copy itself again!

Try to add more buttons by yourself with other emojis, 🙈, 🤔, 🤡 or 🯠 for example.

[DAY-11] HTML

Making a presentation with HTML

```
<html>
   <body style="font-size: 24px;">
       <h1>Presentation For School</h1>
       <small>by: John, from class 4</small>
       <br>
       <br>
       <br>
       <br>
       <br>
       <hr>
       <h1>First Slide</h1>
       <l
           Something
           very <b>important</b>
           and very <i>strange</i>
       <br>
       <br>
       <br>
       <hr>>
```

```
<h1>Second Slide</h1>
      <l
         Something Else
         very <u>underline</u>
          and very <del>weird</del>
      <br>
      <br>
      <br>
      <hr>>
      <h1>Third Slide</h1>
      <l
         ... surely we can come up with a line
         ... and another line
      <br>
      <br>
      <br>
      <hr>>
   </body>
</html>
```

[DAY-12] Touch Typing

Use your program to touch type or go to keybr.com.

Don't rush.

[DAY-13] HTML

This day is completely free style, try to put all kinds of HTML words inside each other, for example:

Try to add the self cloning ubutton to that page.

Chapter 2 - Week 2

```
day0: HTML tables
day1: HTML tables and lists
day2: HTML multiplication table
day3: HTML multiplication table
day4: touch typing
day5: HTML Links
day6: HTML fun
```

[DAY-14] Tables

Tables are amazing, in fact, tables are one of the things that makes the modern world work. In your school for example, there is a table with the name of each student and their score. Or in your TV there is a table with each program number and the program there (e.g. 24 is 24 Kitchen). On your iPhone there are many programs that use many tables internally to make decisions. There is of course the ASCII table, which can tell you how to get from a character to its raw representation and the other way around. The periodic table is also a famous example. The table on the bus stop tells you which bus will come at what time.

We use tables everywhere.

Here are few examples:

power	pokemons
electiricy	Pikachu
fire	Charmander
grass	Bulbasaur
poison	Bulbasaur

Or something you have probably seen, a multiplication table:

```
      a
      x
      b
      =

      5
      *
      5
      25

      5
      *
      6
      30

      5
      *
      7
      37
```

Make new file (or open the some old html page) and type this:

```
>
     Donald Duck
   1937
   >
     Daisy Duck
   1940
   >
     Scrooge McDuck
   >
     1947
   >
     Ludwig Von Drake
   1961
   </body>
</html>
```

Only 3 new tags we have to learn table, tr, td, th are the main things we will work with, tr means table row and td is table data cell, or a column, th is table header. All the html key words you have learned so far are called tags or elements.

Make and see what happens.

[DAY-15] More tables

```
</marquee>
     <marquee>
        hello universe
       </marquee>
     >
        <b>this does not move</b>
     <marquee>
          <i>this is italic</i>
        </marquee>
     </body>
</html>
```

Now make list in a table

```
>
<l
a
b
c
a
b
c
```

Super small difference between ul and ol, one means 'unordered list' and the other one 'ordered list', so if you use ol every li will have its own number

[DAY-16] Multiplication table

Start writing the whole multiplication table (will take more than 1 day)

[DAY-17] Multiplication table

Finish writing the whole multiplication table.

[DAY-18] Touch Typing

Spend the day touch typing.

[DAY-19] Links

The most powerful feature of HTML is to be able to link to another place in the internet, try this:

The a tag with its href attribute is one of the most important things of the modern internet, it means I can have a web page, and I can link to someone else's web page, and they can link to someone else and so on..

Whatever is in the href attribute this is where the browser will go after you click on whatever is inside the <a> , in our case click here. So after you click on click here your browser will go to wikipedia.com, and from there when you click somewhere it will go to wherever that a's href points to.

[DAY-20] HTML fun

Rainbow:

You dont always need html and body, the most browsers will show a page anyway, but it is good practice to do it proper and use html and body tags. Anyway, the next example is not "up to code".

IT will make a sheep that follows your mouse, its pretty cool.

```
<div id='sheep' style='position:absolute'>৽ৄ</div>
<script>
  var sheep = document.getElementById('sheep')
  document.body.onmousemove = (e) => {
```

```
sheep.style.left = (e.clientX - 5 + 'px');
sheep.style.top = (e.clientY - 5 + 'px');
}
</script>
```

And a ghost button! it will remove itself when you press it.

```
<button onclick="this.parentNode.removeChild(this)">€
```

The way it works is onclick=... will call the code when you click on the button, in this case it says, "whoever my parent is, tell it to remove myself form its children list".

You see, HTML is like a tree, let me show you.

lets say our page is:

```
<html>
 <body>
  NameYear
   >
      <mark>
       hello
      </mark>
    <h1>
      world
     </h1>
    <b>move</b>
    <marquee>
       <i>i>italic</i>
      </marquee>
    </body>
</html>
```

It actually is a tree, every tag has children, and siblings

Well trees in the world are actually the other way around haha. Leave it to programmers to not know how to make a tree $\stackrel{\mbox{\tiny 4}}{\cup}$

But you can see how all things that have the same parent are related, like brothers and sisters.

This is very important, we will spend the next week thinking about it as well.

Chapter 3 - Week 3

```
day0: View Source
day1: Inspect
day2: Images
day3: Licenses
day4: Touch Typing
day5: HTML
day6: HTML
```

[DAY-21] View Source

Browsers on laptops or pcs will allow you to rightclick on any page and then click on View page source, this will show you the HTML of the page your are looking at.

Open https://archive.org then right click on the pager and then click on View page source.

We will spend the rest of the day looking at some page sources

- https://archive.org
- https://www.spacejam.com
- https://www.asciiart.eu/
- https://www.wikipedia.org
- https://www.gutenberg.org/
- https://digitalcomicmuseum.com/
- https://www.terrypratchettbooks.com/
- https://www.goodreads.com/

[DAY-22] Inspect

Make new html file and write the following example:

```
Right click on this page, click Inspect and then go to Console.

<script>
console.log('疑疑疑 You can see that in the console. 疑疑疑疑')
console.log('疑疑疑 type 12312*18237978123 in the console and see what
happens. 疑疑疑疑')
</script>
```

Open the file and then click F12, or right click on the page and click Inspect. You will see the logs.

This will open the developer tools of your browser, you will be able to see the console, where you can run small programs or see the errors and the logs of the current page. Try writing 12312*18237978123 in the console and see the result.

In the inspector you can also modify the HTML that you see. This wont modify the actual page on the server you are downloading from, but you can try things to see how they would look. There are actually many scammers that use this method to lie to people as if they are giving them money, or they say 'I will teach you how to add 10000 robux to your account if you pay me 5\$' and they just show you how to inspect and edit the html you see. This does not actually give you robux of course, it just modifies your local version of the html to show different value and after you reload the page you will see the old value.

Lets try it. Make a new file with this content:

```
<html>
     <body>
     Your Robux Balance is: <b>0$</b>
     </body>
     </html>
```

Open the file and then right click on 0\$ and click inspect. Then you will see 0\$ if you double click on it, you will be able to change it, and you will see the new version. Now reload the page, and you will see the old value is back.

[DAY-23] HTML Images

To show an image you need the img tag, and give it src attribute with the address of the image, for example if I want to display https://picsum.photos/id/237/200/300 I have to do type it like this:

Lets put the images in a table:

Now of course we can have img in a, try this:

```
<html>
 <body>
   <a href="https://wikipedia.com">
          <img src="https://picsum.photos/id/237/200/300">
        </a>
      >
        <a href="https://gutenberg.org">
          <img src="https://picsum.photos/id/40/200/300">
      </body>
</html>
```

Now you can click on the dog or the nose and it will lead you to the pages you link to.

Is it possible to have img and text in a? Well I am glad you asked!

```
<html>
 <body>
   >
        <a href="https://wikipedia.com">
          <img src="https://picsum.photos/id/237/200/300">
          This dog leads to wikipedia
        </a>
       >
        <a href="https://gutenberg.org">
          <img src="https://picsum.photos/id/40/200/300">
          <br>
          This cat (I think) leads to guttenberg.org
        </a>
       </body>
</html>
```

I even have
 in the a, now you can click either on the image or on the text.

There is one more very important attribute of the img tag, and this is the alt attribute, it is used by people who are blind or visually impaired to know what kind of picture is on the page. In our example we can put alt="puppy" on the puppy picture.

```
Hello, and welcome to my page.
   I hope you will like this image.

   <img src="https://picsum.photos/id/237/200/300" alt="puppy">
```

If a blind person visits this page, they use a screen reader that reads most of the text on the page, and if we have alt attribute on images it will say Image ... and whatever the value of alt is, in our case "puppy". So the reader will say:

```
Hello, and welcome to my page. I hope you will like this image.
Image puppy.
```

If you have an image that has no information, like it is just there to make the site pretty, use alt="" then the screen reader will skip it.

[DAY-24] Licenses

If you take a picture of something you are the owner of that picture, and you can put it on your website and say you have the rights of that picture. It is up to you to decide if people should link to it by deciding what under license you will publish the image. There are many licenses you can choose from, there are some that say 'this picture is free for anyone to do whatever they want' or 'you can republish the picture but you cant make money selling it' or 'you can publish it but not print it in books' etc etc.

Complicated stuff this licensing, but the thing you have to remember, it is up to the creator to decide under what license their work can be distributed.

Some licenses you can check out with your parents:

- Creative Commons Licenses CC-BY https://creativecommons.org/licenses/
- GPL https://www.gnu.org/licenses/gpl-3.0.en.html
- MIT License https://opensource.org/licenses/MIT
- Apache License https://www.apache.org/licenses/LICENSE-2.0
- Public Domain https://en.wikipedia.org/wiki/Public-domain-equivalent_license
- Copyright https://en.wikipedia.org/wiki/Copyright

When you want to use someone else's work and it is not clear what license it uses, it is best to ask them. At least that is what I do. People are usually nice and they give me permission to use their work.

It is somewhat controversial what is the right way forward, which license to use and what is the best for you and for the world. Ask to your parent about what happens when you take a picture of a painting of a picture of a video and then you edit the video to include the picture you took in it..

Check out https://tldrlegal.com/ for super short description of licenses

[DAY-25] Touch Typing

relax and spend the day touch typing

[DAY-26] HTML Title

```
<html>
 <head>
   <title>THIS IS SPARTA</title>
 </head>
 <body>
   <marquee>
     <l
       <1i>>
         <a href="https://wikipedia.com">click me</a>
       <
         <mark>hello world</mark>
       </marquee>
 </body>
</html>
```

Usually bodies have a <head> hehe.

In html in the head tag you can put things that will help the browser. For example, what is the title of this page? or what language is this page? Who is the author of this page? etc..

You can also put there some style, changing the body's background color, or the color of the text in the h1 or p:

```
<html>
  <head>
    <style>
      body {
        background: blue;
      }
      p {
        color: pink;
      }
      h1 {
        color: cyan;
    </style>
    <title>some title</title>
  </head>
  <body>
    <center>
```

The *language* we use inside the style tag is called CSS, and it is quite simple (on its surface). We wont get deep into it for a while, but if you are interested check out at https://developer.mozilla.org/en-US/docs/Web/CSS

You see how in certain tags we can use different language, not html, like in <style> we use CSS, in <script> we use JavaScript, we are going to do more work with it soon, but you can check out at https://developer.mozilla.org/en-US/docs/Web/JavaScript

[DAY-27] HTML fun

Many buttons

Replicator

Canvas

```
<html>
<body style="padding: 0; margin: 0">
<canvas id="squares"></canvas>
<script>
var canvas=document.getElementById('squares');
var ctx=canvas.getContext("2d");
canvas.width=window.innerWidth;
canvas.height=window.innerHeight;
function draw() {
   ctx.fillStyle= '#' + Math.floor(Math.random()*16777215).toString(16);
   ctx.globalAlpha=0.5;
   var size=Math.floor((Math.random()) * 60) + 1;
   var x = Math.floor(Math.random()*canvas.width)
   var y = Math.floor(Math.random()*canvas.height)
   ctx.fillRect(x, y, size, size);
};
setInterval(draw,10);
// why dont you try to make them rectangles instead of squares?
// or maybe even circles? google for 'canvas fillRect' and 'canvas arc'
</script>
</body>
</html>
```

The last one is quite crazy! But I am sure you will like the result when done.

Chapter 4 - Week 4

```
day0: Basics of Basics
day1: Dungeon Game
day2: Dungeon Game
day3: Favorite Food
day4: Dungeon Game
day5: Basics of Basics
day6: Touch Typing
```

[DAY-28] Basics of Basics

Make a new file form IDLE, and write in it:

```
print("Hi!")
```

Hit F5 and enjoy!

Your first(or second) python program. Quite useless, but nevertheless. A program is a program!

print() is called a function, functions are kind of mini useful programs, this one will print whatever you tell it.
In this case print("Hi!") will output Hi!. Pretty amazing, I hope one day to explain to you what goes into
showing a character on your screen. Remind me to show you Ben Eater's 6502 videos when you grow up.

"Hi!" is a string, strings are just series of characters, you can make them in python with "something" or 'something', either single quotes or double quotes.

```
while True:
print("Hi!")
```

while True that means forever. so you will see:

```
Hi!
Hi!
Hi!
Hi!
Hi!
Hi!
Hi!
Hi!
Hi!
...
```

Hi forever.

```
while 1 == 1:
print("Hi!)
```

1 == 1 is also True, so this is the same as while True

So while <condition> will keep running the code **inside** it, while the condition holds true, which in the case of 1 == 1 will always be the case.

```
while True:

zzz = input("what is your name: ")

print(zzz)
```

input asks you to type something, and it returns whatever you typed.

zzz = input(....) takes whatever input returns, and puts it into memory that we can use later. zzz is just a
name I picked so I can refer to this value later in the program, in this case on the next line when I do
print(zzz)

print(name) prints whatever is in the memory pointed by zzz.

zzz is called a variable, you can choose the names of your variables, and zzz is surely a poor name, because if I use it 100 lines later in the code, I will forget what kind of information it stores, so usually we give names of the variables that make sense, for example:

```
while True:
name = input("what is your name: ")
print(name)
```

A group of statements with common parent, is called **code block**, in python we use spaces to say what belongs where, so the closest while, for, if, elif, else going up is the parent.

```
while True:
name = input("what is your name: ")
print(name)
```

Will throw an error: IndentationError: unexpected indent because it makes no sense, there is no valid parent to print, This is quite unique in python, most other languages make code blocks with {}, but python makes it prettier and easier to read by using indentation (the spaces/tabs). print(name) has 4 spaces, while name = input.. has 2 spaces, so python expect everything in the while: to have 2 spaces unless a new block starts.

```
while True:
    name = input("what is your name: ")
    if name == "pikachu":
        print(name)
```

This works fine, print(name) now has valid parent that also has a parent.

while True has two children, name = input .. and if name == .. so they must have same indentation, then if ..: also expects a code block, so the children of if name == .. need to have one more indentation to whatever indentation the if had.

Anyway..

Don't worry too much about it, just don't panic when you see IndentationError, and I can promise you, you will see a lot of those. Look at where you got the spaces wrong, and if the block has correct parent.

You have seen by now in JavaScript we use {} to group statements into blocks.

```
if (name == "pikachu") {
   console.log("pikaaaachuuuuu")
   console.log("evolutiooonn!")
}
```

Now lets break out of the loop!

```
while True:
name = input("what is your name: ")
if name == "pikachu":
break
```

if name == "pikachu": will run the code inside if if whatever is in the name variable is equal to the string "pikachu". In this case its only 1 instruction inside it, the break instruction.

break breaks out of the closest while loop, so basically this program will ask what is your name until you type pikachu. It is a bit boring because we never actually print what you typed.

```
while True:
   name = input("what is your name: ")
   print(name)
   if name == "pikachu":
      break

print("DONE")
```

There we go, now it will ask you to type a name, it will print whatever name you typed, and then it will check if the name is equal to "pikachu" it will break the while loop and stop asking. We can actually write this program in a different way. After you break out of the loop, it just continues to execute the program below, in this case will print DONE.

```
name = ''
while name != "pikachu":
  name = input("what is your name: ")
  print(name)
print("DONE")
```

MAGIC!

we start by making name equal to empty string, a string with no characters, and then we check is the statement name != "pikachu" True? If this is True we will execute the code **inside** the while loop, after the last instruction in the loop, the program jumps back to while name != "pikachu" and checks again is name still not equal to "pikachu"? if the statement is False it will not run the code **inside** but will continue, in the above example it will print DONE, because this is the first thing **after** the while loop.

Lets make a more complicated one, this one will ask you what is your name, and if you answer pikachu will print pikaaaaaaachuuuuu and stop, any other answer it will print "Hello, " + answer, so if you type "Jane" it will show "Hello, Jane" and it will ask again.

```
while True:

name = input("what is your name: ")

if name == "pikachu":

print("pikaaaaaaachuuuuu")

break

else:

print("Hello, " + name)
```

In python you can add two strings, if you type "charmander" for name, x = "Hello, " + name will make x to be equal to "Hello, charmander". You can't do "hello" - name, but you can do "hello" * 5 and get "hellohellohellohellohello".

while,if,else,break are keywords, kind of like <html> and <body>, <h1> etc, those are coming from python itself. There are not many python keywords, for reference, this is the **complete** list:

```
False
True
None
        -> name == "pikachu" and age == "33"
        -> name == "pikachu" or name == "charmander"
or
        -> not name == "pikachu" is the same as name != "pikachu"
not
for
       -> used if you know how many times you want to do something
       -> do something until condition is True
while
break
        -> break out of the for or while loop
continue -> go to the start of the while/for loop and continue from there
if
        -> if something is true
        -> else if something else is true
elif
        -> else do this
        -> checks if something is in somethhing else, e.g. "pika" in name
in
        -> make a function
def
as
assert
async
await
class
del
except
finally
from
global
import
is
```

```
lambda
nonlocal
pass
raise
return
try
with
yield
```

THATS THE WHOLE LANGUAGE, there are no more keywords.

[DAY-29] Dungeon Game

```
print("Welcome to the forest!")
print("This is a world of magic and wonders. You are on a cross road, you can go
north east south or west.")
print("South leads to the swamps, where the aligators live")
print("West leads to the mountains, where the yeti lives")
print("North leads to the jungle, where the tigres live")
print("East leads to the desert, where the meerkats live")
print("")
what = input("what would you do next: ")
if what == "east":
  print("Welcome to the desert")
  print("It is very hot, and you need remember to put sun screen.")
  print("Oh, you remember to put your hat as well.")
  print("In the distance you see a meerkat approaching.")
  print("What would you do? Run or Fight the meerkat?")
  print("")
  what = input("what would you do next: ")
  if what == "run":
    print("You start running, and the meerkat is super fast, it catches you in no
time.")
  elif what == "fight":
    print("You try to fight it, but turns out it was friendly and wants to become
your friend.")
    print("What would you do?")
    print("")
    what = input("Do you want to be its friend: ")
    if what == "yes":
      print("Great! Now the meerkat wants to introduce you to his family.")
    elif what == "no":
      print("The meerkat starts crying!")
    print("I dont understand: " + what)
```

That is a lot of typing.

In python there are few very important things. First even though it doesn't look like it, it is actually a tree, like HTML tree. The parent of print("The meerkat starts crying!") is elif what == "no":

Lets discuss another example:

```
a = "he"
b = "ll"
c = "o"
if a == "he":
  if b == "ll":
   if c == "o":
    print("hello")
```

Can you tell who is the parent of who?

BTW, you can also use and, or and not when you want to see if something is True

```
a = "he"
b = "ll"
c = "o"
if a == "he" and b == "ll" and c == "o":
    print("hello")
```

Our game is quite limited, and a quick step to improve it is to make you ask where you want to go until you pick one of the options.

```
def ask(possible_answers):
 answer = ''
  print("---") # print empty line
 while True:
    answer = input("> What would you do next: ")
    if answer not in possible_answers:
      print("> try again, it must be one of:", possible_answers)
    else:
      return answer
print("Welcome to the forest!")
#...
what = ask(["east","west","north","south"])
if what == "east":
  print("Welcome to the desert")
 what = ask(["run","fight"])
 if what == "run":
    print("You start running, and the meerkat is super fast, it catches you in no
time.")
 elif what == "fight":
   print("You try to fight it, but turns out it was friendly and wants to become
your friend.")
   # ...
   what = ask(["yes","no"])
    if what == "yes":
      print("Great! Now the meerkat wants to introduce you to his family.")
    elif what == "no":
      print("The meerkat starts crying!")
elif what == "north":
  print("Welcome to the north pole, it is super cold here.")
```

ask is a function, just like print or input, it will keep asking you > What would you do next: until the answer you type is in the possible_answers list, and if it is it will return it to wherever it is called from. So when we have zzz = ask(["yes","no"] the value of zzz will be whatever is returned from ask. Same as name = input("what is your name) will put in name whatever is returned from input which is whatever you typed on your keyboard.

To make a function in python you need to use the def keyword.

```
def sum(a,b):
return a + b
```

```
r = sum(1737,1231231)
print(r)
```

Whatever is between def and (is the name of the function, in the above example its sum. Between () you put in the name of the variables you expect to use when someone calls your function. I want to sum two numbers, I dont know what the numbers are, so I just make two variables a, b and expect whoever calls my function to give me the numbers, like r = sum(1737, 1231231)

[DAY-31] Dungeon Game

FIGHT TO THE DEATH!

```
import random
import time
def fight(playerHP, enemyHP, enemy_name):
 # fight to the death!
 while playerHP >= 0 and enemyHP >= 0:
    punch = random.randint(0, 20)
    if random.choice(["player","enemy"]) == "player":
      playerHP = playerHP - punch
      print("<"+enemy_name+"> hits you for " + str(punch) + ", " + str(playerHP) +
" left")
    else:
      enemyHP = enemyHP - punch
      print("you hit <"+enemy_name+"> for " + str(punch) + ", " + str(enemyHP) + "
left")
   time.sleep(1)
  return playerHP
fight(100, 50, "meerkat")
```

import imports a module.

random and time those are the modules you import, modules are just a group of functions that you can use, for example time.sleep(1) makes python sleep for 1 second, it calls the function sleep() in the time module.random.choice() you can give a list of things to choose from, and it will randomly select one of the list.random.randint(0,20) means give me a random number between 0 and 20.

str is needed to convert integer to string, because 1 is not the same as "1", "1" is actually the ASCII value of the character 1, so somehow we have to convert the raw number 1 to ASCII code 61, and str() does that.

lets use it now in our dungeon game

```
import random
import time
```

```
def ask(possible_answers):
    ...

def fight(playerHP, enemyHP, enemy_name):
    ...

health = 100

what = ask(["east","west","north","south"])
if what == "east":
    ...
    what = ask(["run","fight"])
if what == "run":
    ...
elif what == "fight":
    meerkatHP = 50
    health = fight(health, meerkatHP, "meerkat")
if health <= 0:
    print("GAME OVER! THE MEERKAT BEAT YOU")
else:
    print("You won against the meerkat, you have " + str(health) + " HP left))</pre>
```

[DAY-32] Favorite Food

Today you have to make only two programs:

```
bad = ["broccoli","chocolate","pineapple"]

while True:
  food = input("what is your favorite food: ")
  if food in bad:
    print("ewwwww I hate " + food)
  else:
    print("yumm, I love " + food)
```

And the second one:

```
bad = ["broccoli","chocolate","pineapple"]
good = ["pizza","popcorn"]
while True:
   food = input("what is your favorite food: ")
   if food in bad:
      print("ewwwww I hate " + food)
   elif food in good:
      print("yumm, I love " + food)
   else:
      print("I have never tried " + food)
```

Great job!

Spend the rest of the day touch typing.

[DAY-33] For

for does something number of times, if I want to print the numbers from 0 to 99, I could do:

```
for i range(100):
print(i)
```

or

```
for i in range(10, 20):
print(i)
```

will print the numbers from 10 to 19

```
colors = ["red","green","blue"]
for color in colors:
   print(color)
```

will print each of the elements in the list. If you want to print each character of a string in a similar way you can do:

```
name = "jack"
for c in name:
   print(c)
```

prints:

```
j
a
c
k
```

[DAY-34] Love Tester

```
def love_test(a,b):
    sum = 0
    for c in a+b:
        print(c + ': ' + str(ord(c)))
        sum += ord(c)

    print('sum is:' + str(sum))
```

```
return sum % 100

while True:
   nameA = input("first name: ")
   nameB = input("second name: ")

print("love test: " + str(love_test(nameA,nameB)))
```

ord takes the ascii code of a character.

% is the remainder, so 109 % 100 is 9, basically what is left after you can cleanly divide two numbers, 812 % 100 is 12, you can fit 100 in 819 exactly 8 times, and then there is 12 left, this 12 is the remainder.

So in this program we take two names into the variables nameA and nameB and then we give them to the love_test function, which sums the ascii code of nameA+nameB, and then returns the remainder of 100.

```
first name: jack
second name: jane
j: 106
a: 97
c: 99
k: 107
j: 106
a: 97
n: 110
e: 101
sum is:823
love test: 23
```

BTW, now you know how those "professional" love testers are made, so if you use https://www.lovetester.nl/ or something similar.. don't read too much into the result. You can easily tweak it to do whatever you want.

[DAY-34] Touch Typing

Whoaa it has been a difficult week.

Relax with some touch typing.

Chapter 5 - Week 5

```
day0: Basics of Basics
day1: Basics of Basics
day2: Basics of Basics
day3: Basics of Basics
day4: Touch Typing
day5: Basics of Basics
day6: Basics of Basics
```

[DAY-35] Basics of Basics

This week there will be less talking and more programming.

Make a program to help you to decide what to do:

```
import random

possible = ["nothing"]
while True:
    x = input("What would you like to do: ")
    if x == "done":
        break
    else:
        possible.append(x)

what = random.choice(possible)
print("possible choices: ")
print(possible)
print("the magic 8 ball decided: " + what)
```

Make a program to help you multiply two numbers:

```
while True:
    a = int(input("first number: "))
    b = int(input("second number: "))
    print(a, "*", b, "=", a*b)
```

Here I do a little trick, and make print print numbers instead of making them into string by passing it as separate parameters to the print function. otherwise I have to do:

```
while True:
    a = int(input("first number: "))
    b = int(input("second number: "))
    print(str(a) + " *" + str(b) + "=" + str(a*b))
```

What is your spy name?

```
name = input("what is your name: ")
print("Your spy name is: " + name[0] + name[1])
```

You can get individual characters from string by picking them up with [] so if name is 'jane' then name[0] is 'j'

Make a calculator

```
while True:
    a = int(input("first number: "))
    b = int(input("second number: "))
    op = input("operation * / + :")
    result = 0
    if op == "*":
        result = a * b
    elif op == "/":
        result = a/b
    elif op == "+":
        result = a+b
    else:
        print("I dont understand " + op)
        continue
    print(a,op,b,'=',result)
```

See how we use continue to not print a result if we don't understand the operation. continue jumps to the beginning of the loop.

[DAY-36] Basics of Basics

Print the numbers from 0 to 9 FOREVER

```
while True:
for i in range(10):
print(i)
```

Print each character of a string:

```
name = input("what is your name: ")
for c in name:
print(c)
```

Sum the numbers from 0 to 99

```
sum = 0
for i in range(100):
   sum = sum + i
print(sum)
```

Print all the prime numbers from 0 to 100:

```
def is_prime(n):
   if n == 1 or n == 0:
    return False
```

```
for i in range(2, n):
   if n % i == 0:
     return False

return True

for i in range(100):
   print(i, is_prime(i))
```

multiply two numbers:

```
a = int(input("number 1: "))
b = int(input("number 2: "))
c = a * b
print(c)
```

Timer:

```
import time

s = int(input("how many seconds: "))
for i in range(s):
   print(i)
   time.sleep(1)

print(s, "SECONDS ARE OVER")
```

[DAY-37] Basics of Basics

Clock

```
import datetime
import time
import os

while True:
   os.system('clear')
   now = datetime.datetime.now()
   print(now)
   time.sleep(1)
```

Calendar

```
def show(calendar):
for row in calendar:
```

Growing list of food.

```
food = []
while True:
  what = input("what is your favorite food: ")
  food.append(what)
  print(what)
```

Guessing game

```
colors = ["red","green","blue"]
score = 0
while True:
  guess = input("guess a color: ")
  if guess in colors:
    print("good guess! I like " + guess)
  else:
    print("nop, I dont like " + guess)
```

Guess again

```
def is_in_list(list,what):
    for element in list:
        if element == what:
            return True
    return False

colors = ["red","green","blue"]
score = 0
while True:
    guess = input("guess a color: ")
    if is_in_list(colors, guess):
        print("good guess! I like " + guess)
```

```
else:
   print("nop, I dont like " + guess)
```

[DAY-38] Basics of Basics

What was your name again?

```
for i in range(10):
  name = input("what is your name: ")
  print(i)
  print(name)
```

First and last letter:

```
name = input("what is your name: ")
print("first letter: " + name[0])
print("last letter: " + name[len(name)-1])
```

to get the last letter we have to count however letters are in the whole name, so len(name) will return 4 for 'jane' and it counts from 1

```
len("jane"):

j a n e
1 2 3 4

len("ja")

j a
1 2
```

but when we are using [0] to get to specific character from a string or element from a list, it counts from 0, so

```
j a n e
0 1 2 3

name = "jane"
name[0] is j
name[1] is a
name[2] is n
name[3] is e

len(name) is 4 (because len counts from 1)
so name[len(name) - 1], is name[4 - 1] or name[3] which is the last letter
```

```
def line(width, symbol):
    for x in range(width):
        print(symbol,end='')

line(20, '#')
line(30, '*')
line(40, '_')
```

Make a triangle

```
def line(width, symbol):
    for x in range(width):
        print(symbol,end='')

for i in range(100):
    line(i,'*')
    print('')
```

Make a beam

```
def line(width, symbol):
    for x in range(width):
        print(symbol,end='')

for i in range(50):
    line(i, ' ')
    line(i, '*')
    print('')
```

Make a box

```
def line(width, symbol):
    for x in range(width):
        print(symbol,end='')

def box(width,height,symbol):
    for y in range(height):
        line(width,symbol)
        print('')

box(16,20)
box(10,20,'#')
box(15,13,'*')
```

Do some touch typing.

[DAY-40] Basics of Basics

Make inverse beam

```
def line(width, symbol):
    for x in range(width):
        print(symbol,end='')

count = 50
for i in range(count):
    line(count - i, ' ')
    line(i, '*')
    print('')
```

Make a tree

```
def line(width, symbol):
    for x in range(width):
        print(symbol,end='')

count = 50
for i in range(count):
    half = int((count-i)/2)
    line(half , ' ')
    line(i, '*')
    print('')
```

Inverse

```
def line(width, symbol):
    for x in range(width):
        print(symbol,end='')

count = 50
for i in range(count):
    line(count-i, '*')
    print('')
```

Inverse tree

```
def line(width, symbol):
    for x in range(width):
       print(symbol,end='')

count = 50
for i in range(count):
```

```
half = int(i/2)
line(half , ' ')
line(count-i, '*')
print('')
```

Art

```
def line(width, symbol):
    for x in range(width):
        print(symbol,end='')

while True:
    count = 10
    for i in range(count):
        line(count-i, '*')
        print('')

for i in range(count):
        line(i, '#')
        print('')
```

Looks so pretty!

```
##
###
####
#####
######
#######
########
########
******
*****
*****
****
****
***
##
###
####
#####
######
#######
#######
```

```
#########

******

*****

*****

****

***

***

***

***

***

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

*

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**

**
```

[DAY-41] Basics of Basics

More Art

```
import random

def line(width, symbol):
    for x in range(width):
        print(symbol,end='')

symbols = ['*','#','%','^','&']
while True:
    count = random.randint(5,80)

symbol = random.choice(symbols)
for i in range(count):
    line(count-i, symbol)
    print('')

symbol = random.choice(symbols)
for i in range(count):
    line(i, symbol)
    print(''')
```

Staircase

```
def line(width, symbol):
    for x in range(width):
        print(symbol,end='')

count = 100
for i in range(0, count, 5):
    line(i, '*')
    print('')
```

Range is so cool, and you didnt even notice!

Try this:

```
for i in range(0, 100, 10):
print(i)
```

it will print

```
0
10
20
30
40
50
60
70
80
```

so every 10th number, now try:

```
for i in range(0, 100, 5):
print(i)
```

and

```
for i in range(0, 100, 2):
print(i)
```

Of course you dont have to start counting from 0:

```
for i in range(50, 100, 2):
print(i)
```

Do some touch typing if there is time left.

Chapter 6 - Week 6

```
day0: Basics of Basics
day1: Basics of Basics
day2: Basics of Basics
day3: Basics of Basics
day4: Basics of Basics
```

```
day5: Basics of Basics
day6: Basics of Basics
```

[DAY-41] Basics of Basics

```
import random
words = ["pizza","pikachu","ball","pokemon"]
while True:
  word = random.choice(words)
  guessed = []
  life = 10
  while True:
    print('*' * 10, ' HANGMAN ', '*' * 10)
    matching = 0
    for c in word:
      if c in guessed:
        print(c,end='')
        matching = matching + 1
      else:
        print('-',end='')
    print('')
    print('*' * 31)
    if matching == len(word):
      print('congratz you won!')
      break
    character = input("guess a character: ")
    if character in word:
      guessed.append(character)
    else:
      print(character + " is not in the word, " + str(life) + ' lives left')
      life = life - 1
      if life == 0:
        print('you lost!')
        break
```

[DAY-42] Basics of Basics

World without a player

```
def render(world):
  for row in world:
    for col in row:
      print(col,end=' ')
```

```
print('')
def empty():
  return [
  ['-','-','-'],
  ['-','-','-'],
  ['-','-','-'],
  ['-','-','-','-'],
  ['-','-','-','-'],
  ['-','-','-'],
  ['-','-','-'],
]
world = empty()
render(world)
while True:
  row = int(input("which row (count from 0): "))
  col = int(input("which column (count from 0): "))
 world[row][col] = 'x'
  render(world)
```

World with a player

```
def render(world):
 for row in world:
   for col in row:
     print(col,end=' ')
   print('')
def empty():
  return [
  ['-','-','-'],
  ['-','-','-'],
  ['-','-','-'],
  ['-','-','-','-'],
  ['-','-','-'],
  ['-','-','-'],
  ['-','-','-'],
1
world = empty()
player_row = 0
player_col = 0
world[player_row][player_col] = 'x'
render(world)
while True:
 direction = input("which direction: ")
```

```
world[player_row][player_col] = '*'
if direction == "up":
    player_row = player_row - 1
elif direction == "down":
    player_row = player_row + 1
elif direction == "left":
    player_col = player_col - 1
elif direction == "right":
    player_col = player_col + 1

world[player_row][player_col] = 'x'
render(world)
```

[DAY-43] Basics of Basics

Even and Odd

```
number = int(input("give me a number: "))
if number % 2 == 0:
  print("this number is even")
else:
  print("this number is odd")
```

Fizz Buzz

Print integers 1 to N, but print "fizz" if an integer is divisible by 3, "buzz" if an integer is divisible by 5, and "fizzbuzz" if an integer is divisible by both 3 and 5.

```
n = 100

for i in range(1,n+1):
    if i % 5 == 0 and i % 3 == 0:
        print("fizz buzz")
    elif i % 3 == 0:
        print("fizz")
    elif i % 5 == 0:
        print("buzz")
    else:
        print(i)
```

or different version

```
n = 100
for i in range(1,n+1):
   fizzbuzzing = False
   if i % 3 == 0:
     fizzbuzzing = True
   print("fizz", end = '')
```

```
if i % 5 == 0:
    fizzbuzzing = True
    print("buzz", end = '')

if not fizzbuzzing:
    print(i, end = '')

print('')
```

There are many ways to write this, lets just have fun.

```
n = 100
numbers = []
# first make empty list with 100 elements
for i in range(1, n+1):
  numbers.append('')
# then fill in the fizzes
for i in range(1, n+1):
  if i % 3 == 0:
    numbers[i-1] += 'fizz'
# then fill in the buzzess
for i in range(1, n+1):
  if i % 5 == 0:
    numbers[i-1] += 'buzz'
# then fill in the numbers
for i in range(1, n+1):
  if numbers[i-1] == '':
    numbers[i-1] = i
# then we print it
for x in numbers:
  print(x)
```

Haha this is a funny way to make fizzbuzz. See first it puts fizz if you can divide it by 3, and then buzz if you can divide it by 5, but if there was already fizz there it will just add if with +=, so it automatically works to put fizzbuzz for 15.

[DAY-44] Basics of Basics

Reviews

```
reviews =[5,3,2,4,1,2,3,4,2,1,5,5,3,2]

sum = 0
for r in reviews:
```

```
sum += r
rating = sum / len(reviews)
print(str(rating) + "☆ out ot 5")
```

Icecream Maker

```
import random
flavors = ['vanilla','chocolate','blue','banana','bluberry']

flavorA = random.choice(flavors)
flavorB = random.choice(flavors)

print(flavorA + " + " + flavorB)
```

Spend the rest of the day touch typing.

[DAY-45] Basics of Basics

Different touch typing

```
import random
vowels = ['a', 'e', 'i', 'o', 'u', 'y']
consonants =
['b','c','d','f','g','h','j','k','l','m','n','p','q','r','s','t','v','w','x','z']
def make_word(n_chars):
 word = ''
  for i in range(n_chars):
    if random.randint(1,100) < 40:</pre>
      word += random.choice(vowels)
    else:
      word += random.choice(consonants)
  return word
def make_sentence(n_words):
  sentence = ''
  for i in range(n_words):
    sentence += make_word(random.randint(3,6))
    sentence += ' '
  # this will remove the last element from the sentence string
  # so we dont have empty space in the end
  return sentence[:-1]
while True:
  sentence = make_sentence(random.randint(10,20))
  print(sentence)
  guess = input('write the sentence: ')
  if guess != sentence:
```

```
print("SORRY")
else:
print("GOOD JOB")
```

spend the rest of the day trying it out

[DAY-46] Basics of Basics

Some turtle!

```
import turtle
turtle.circle(30)
```

Many circles

```
import turtle
for i in range(30):
turtle.circle(i)
```

Bigger circles

```
import turtle

turtle.color("blue")

for i in range(30):
  turtle.circle(50 + i)
```

Smile

```
import turtle
turtle.color("blue")
turtle.circle(100)
turtle.penup()
turtle.goto(60,120)
turtle.pendown()
turtle.circle(20)
turtle.penup()
turtle.goto(20,120)
turtle.pendown()
turtle.circle(20)
turtle.penup()
turtle.goto(-30,20)
turtle.pendown()
turtle.right(45)
turtle.circle(20, 120)
```

[DAY-47] Basics of Basics

Try to make a program that prints a symbol N times, where N is coming from the user input.

Try by yourself.

Chapter 7 - Week 7

```
day0: Basics of Basics
day1: Basics of Basics
day2: Basics of Basics
day3: Basics of the Internet
day4: Basics of the Internet
day5: Basics of the Internet
day6: Touch Typing
```

[DAY-48] Basics of Basics

How big can a string be?

Your computer has limited amount of memory, usually 8 gigabytes, that is a lot of memory. 8 * 1024 megabytes * 1024 kilobytes * 1024 bytes, so 8589934592 bytes. What if we make python create a string with more characters than memory?

NB: before you try that, save all your files because you might have to restart your computer, depending on the operation system version.

```
try_me = 'x' * (8 * 1024 * 1024 * 1024)
print(len(try_me))
```

If you can not press any buttons after that, or the mouse is not working, you will have to hold the power button for 10 seconds to turn your computer off and then turn it back on.

lets try another thing

```
def forever(n):
    print(n)
    forever(n+1)

forever(1)
```

this will throw a weird error

```
RecursionError: maximum recursion depth exceeded while pickling an object
```

Don't be afraid of it, every time you call a function, a little bit of memory has to be used, and this memory is released when the function returns, now imagine a function that calls itself, so you get this:

```
forever(1)
forever(1+1)
forever(1+1+1)
forever(....)
```

So the memory for those function is never released, and this error just says, you cant go and call so many functions that never return. But you will see on your system you can have around 10000 functions that are waiting for their child to return.

Play with it a bit.

```
def one(n):
    print("one", n)
    two(n+1)

def two(n):
    print("two", n)
    one(n+1)

one(1)
```

[DAY-49] Basics of Basics

```
import random
game = [
    ['What is the capital of France?', 'Paris', 'London', 'Paris', 'Berlin', 'Tokyo'],
    ['What is the capital of Japan?','Tokyo','London','Paris','Berlin','Tokyo'],
    ["What is Jane's favorite
food?",'Popcorn','Pizza','Popcorn','Cucumber','Sushi']
1
while True:
    quiz = random.choice(game)
    print(quiz[0])
    for index, possible in enumerate(quiz):
        if index >= 2:
            print(possible)
    answer = input('What is your answer: ')
    if answer == quiz[1]:
        print("$\$\$\$\CORRECT $\$\$\$\")
    else:
        print("INCORRECT")
```

see enumerate is quite handy, you get the index of something and its value while you are doing the for

```
x = ['a','b','c','d']
for index ,element in enumerate(x):
  print(index)
  print(' ' + element)
```

make it easier to read:

```
import random
QUESTION_IDX = 0
ANSWER_IDX = 1
game = [
    ['What is the capital of France?', 'Paris', 'London', 'Paris', 'Berlin', 'Tokyo'],
    ['What is the capital of Japan?','Tokyo','London','Paris','Berlin','Tokyo'],
    ["What is Jane's favorite
food?",'Popcorn','Pizza','Popcorn','Cucumber','Sushi']
]
while True:
    quiz = random.choice(game)
    print(quiz[QUESTION_IDX])
   for index, possible in enumerate(quiz):
        if index >= ANSWER_IDX+1:
            print(possible)
    answer = input('What is your answer: ')
    if answer == quiz[ANSWER_IDX]:
        print("$\$\$\$\")
    else:
       print("INCORRECT")
```

See how just using QUESTION_IDX and ANSWER_IDX instead of 0 and 1 it is easier to read. Now lets try a completely different way:

```
while True:
    quiz = random.choice(game)
    print(quiz["question"])
    for p in quiz["possible"]:
        print(' --> ' + p)
    answer = input('What is your answer: ')

if answer == quiz["answer"]:
    print("分分分 CORRECT 分分分")
else:
    print("INCORRECT")
```

This is just another way to do it, see in the list we can store those strange things. We will talk about them in a couple of weeks, I just wanted to show you how clean it is when

[DAY-50] Basics of Basics

Print the odd numbers from 0 to 999

```
for i in range(1000):
    if i % 2 != 0:
        print(i)
```

rock paper scissors

```
import random
game = ["rock","paper","scissors"]
rounds = 3
nameA = input("name player A: ")
nameB = input("name player B: ")
winsA = 0
winsB = 0
for i in range(rounds):
    playerA = random.choice(game)
    playerB = random.choice(game)
    print("ROUND: " + str(i + 1))
    print("playerA : " + playerA)
    print("playerB : " + playerB)
    if playerA == playerB:
        print(" > DRAW")
    elif playerA == "rock" and playerB == "paper":
        print(" > " + nameB + " WINS")
        winsB += 1
    elif playerA == "rock" and playerB == "scissors":
        print(" > " + nameA + " WINS")
        winsA += 1
```

```
elif playerA == "paper" and playerB == "rock":
        print(" > " + nameA + " WINS")
        winsA += 1
    elif playerA == "paper" and playerB == "scissors":
        print(" > " + nameB + " WINS")
        winsB += 1
    elif playerA == "scissors" and playerB == "rock":
        print(" > " + nameB + " WINS")
        winsB += 1
    elif playerA == "scissors" and playerB == "paper":
        print(" > " + nameA + " WINS")
        winsA += 1
    else:
        print("WTF " + playerA + " " + playerB)
    print("---")
print(nameA + " has " + str(winsA) + " points")
print(nameB + " has " + str(winsB) + " points")
if winsA > winsB:
    print(nameA + " IS THE WINNER")
elif winsA < winsB:</pre>
    print(nameB + " IS THE WINNER")
else:
    # this will show only if we have even number of rounds
    print("THERE IS NO WINNER")
```

[DAY-51] Basics of the Internet

Today is an important day, its Internet awareness day.

Make the most expensive drone on amazon.com cost 0\$, or even -5\$. As we did in the first week, open inspect click on the mouse selector (or press Control+Shift+C) and click on the price you want to change, then double click on the HTML and change it to whatever you want.

After you are done reload the page to see it is not actually changed.

Now do that on roblox, make it look like you have 999999 robux.

Go to google and search for Speed up your internet connection, go over the websites one by one with your parent, and observe, look at many many scams, some are very easy to fall into, some are obvious.

Open youtube.com, search for 'free energy hack' watch some of the videos, then search for 'electroboom free energy' and watch Mehdi explain why it is a scam. Search for 'be carefull what you order from facebook ads' Pleasant Green and watch how he explains a scam with ads to buy a cool looking helmet.

See the internet is a place, where you can find great things, like electroboom and pleasant green or veritasium or vsauce, but also where there are horrible things, like people selling garbage for 30\$. Or people claiming

Now with your parent, search on youtube for 'how to hack in roblox' and look at the scame, how people want to install something so they can steal your password.

[DAY-52] Basics of the Internet

Ok now for something more serious!

Just a quick intro into cookies, when you login to a website, it stores a piece of information on your computer called a cookie, and with every request you make to the website after it sends this cookie, the website can also tell you to replace the cookie. This is how websites know you are logged in, after they check your user and password they send you a cookie with a secret value, that you use for every request, they store that value usually in a database (kind of like huge huge excel sheet, that you can quickly search in), and look it up to see if it is valid.

So imagine websites have a table like so:

username	password
jane	123456
john	blabla

It is a bit more complicated than that, because they don't store the password but "encrypted" version of the password, so instead of 123456 (which is a horrible password btw), they store the result of a cryptographic hash function, hash(salt + '___' + password), and salt is used so that the attacker has to get both the usernames, the encrypted passwords and the code that joins them in order to extract a password using some bruteforce methods.

A cryptographic hash function is like a machine where you put in a lego castle in, and it will spit out exactly 8 pieces (ot 32 or whatever the function is), and there is no easy way for you to guess what kind of castle you put in it, but you know that *always* the same castle will spit out the same 8 pieces.

So in reality the excel sheet looks a bit like this:

username	encrypted password	salt
jane	4c87d9b2ecfbd99c483aedfae8045fe578912e63	someRandom123
john	065ce4538c7c51687270972babdeaa986f3ce1bd	someRandom435

But that is not important, we will use the simple example for our case. When you click 'login' it will send the username and password over the internet, and their server will look in the table for this user and will check if the password matches. If it matches it will insert a row another excel sheet that looks like this:

username	token
jane	bbd0bff806a177f082f3ba2cff33030d335c296e

then tell your browser, hey set this cookies:

```
the username for amazon.com is 'jane' the token is bbd0bff806a177f082f3ba2cff33030d335c296e
```

So next time when you make a request to amazon your browser will send both the user name and the token, amazon will check in the token table if this token is valid (they have expiration date as well, kind of like a real token), and then it will know you actually logged in, without your password being stored on your browser.

Now lets see how someone can login as you without knowing your password.

Login to amazon. Open chrome in private mode. Open amazon there as well, and see that on one browser you are logged in, on the private mode you are not. Now open the console(press F12) on the logged in browser and type this:

```
var cookies = []
for (cookie of document.cookie.split(";")) {
    cookies.push(cookie.replace(" ", ""))
}
console.log(JSON.stringify(cookies))
```

This will print all the cookies amazon has set on your browser in a list.

Copy the whole list of cookies, now on the private mode browser's console(press F12 to open the console) type:

```
var newCookies = ["session-id...." .. .. ] // just paste the whole string from the
other browser
for (cookie of newCookies) {
    document.cookie = cookie;
}
```

Paste the whole list there, and refresh the page.

And voila! You are logged in now without typing a password.

So if you give access to somebody to your computer, they can trivially copy your cookies and send them somewhere, and then they can login as you without even knowing your password. In fact this is a very common way to steal someone's account on social media. Ask them to paste a strange code in the console, which is usually base64 encoded that looks like this:

```
d =
  atob('dmFyIGNvb2tpZXMgPSBbXQpmb3IgKGNvb2tpZSBvZiBkb2N1bWVudC5jb29raWUuc3BsaXQoIjsiK
  SkgewogICAgY29va21lcy5wdXNoKGNvb2tpZS5yZXBsYWNlKCIgIiwgIiIpKQp9CmNvbnNvbGUubG9nKGNv
  b2tpZXMpCg==')
  console.log(d)
  eval(d)
```

You see how it printed your cookies? The thing that runs the code is eval it is kind of like double clicking on a program, but it will run the code that is inside the string you give it. If you want to see what the code does just run console.log(atob('....')) this will just decode the base64 encoding into a string you can read. atob decodes base64 string into the real string, it is kind of like in python ord('a') gives you 97 and chr(97) gives you 'a'.

Of course the code that the scammers give you is more sophisticated, it sends the cookies to their database(think excel sheet) via the internet, including all local storage and local session data, and they can just use it after that.

That is why if you open facebook.com and press F12 you will see giant message:

```
STOP STOP STOP
```

This is a browser feature intended for developers. If someone has told you to copy and paste something here to enable a Facebook feature or "hack" someone else's account, it is a scam and they are trying to access your Facebook account.

When you Logout from somewhere, they delete the token on their side, so the next time a request is made, they know you are not logged in anymore. That is why its important to logout if you use someone else's computer to login.

[DAY-53] Basics of the Internet

The internet is a mess, a mess of things that talk to each other. Each of the things has their own IP address (ip stands for internet protocol), for example open https://1.1.1.1 you see this is a simple ip address of a popular DNS server (dns is a system we use to resolve names into ip addresses, e.g. facebook.com is 31.13.64.35). You can check the ip address by searching 'whats my ip' on google, and because your browser has to connect to google's server and they connect through their IP addresses, so google knows your IP. Of course it is a bit more complicated than that, but for now this will do.

The other most important thing is domain names, like facebook.com and yahoo.com or amazon.de. We need names otherwise everyone will have to remember 31.13.64.35 to open facebook.. which is not easy. To find out the ip of facebook.com you need to ask a .com server about which server is responsible for facebook.com, and then ask this server about what is the ip address of www.facebook.com. The whole system is like a tree.

your internet provider gives you your ip address and also a convenient name server to use, you can also use other name servers like 1.1.1.1 or 8.8.8.8, keep in mind, whoever nameserver you use, knows which websites you visit, because you have to ask them about the ip address of each website you visit.

A lot of scammers also ask you to change your dns server, they lie about getting faster internet and etc, but you see, if you ask a scammer's dns server 'what is the ip address of facebook.com', and they say 'well its 12.12.12.12' or whatever their server's address is, they can show you a webpage that looks like facebook, but its theirs, and when you login they can get your password. Remember when you login your browser sends the password to the other server that has to check it, so they can steal it that way.

To prevent this kind of attacks modern browsers use something called HTTPS, or secure http, you see a small closed lock on the address bar, and when you click it it will say 'Connection is secure', that means that it verified that the website you opened is actually the website you think it is. There are ways to attack this as well, but it is not trivial, and someone has to have physical access to your computer to install a new Trusted Certificate Authority (which we will explain way later).

But one more reason to be sus of people using your computer. Not only they can steal your cookies, but they can also install a new Trusted CA, change the DNS and then intercept all your requests.

[DAY-54] Touch Typing

Touch typing day is finally here! Enjoy keybr.com!

Chapter 7 - Week 7

```
day0: Basics of Basics
day1: Basics of Basics
day2: Basics of Basics
day3: Basics of Basics
day4: Basics of Basics
day5: Basics of Basics
day6: Basics of Basics
```

[DAY-55] Basics of Basics

Tic Tac Toe

```
def empty_game():
    game = [
        [' ','a','b','c','d'],
        ['1','-','-','-'],
        ['3','-','-','-'],
        ['4','-','-','-']
    ]
    return game

def show_game(game):
    for row in game:
        #[' ','a','b','c','d']
        #...
        for col in row:
```

```
#' '
            #'a'
            #'b'
            print (col, end=' ')
        print('')
g = empty_game()
x_or_zero='x'
while True:
    show_game(g)
    p = input('place ' + x_or_zero + ': ')
    if p == 'a1':
        g[1][1]=x_or_zero
    if p == 'a2':
        g[2][1]=x_or_zero
    if p == 'a3':
        g[3][1]=x_or_zero
    if p == 'a4':
        g[4][1]=x_or_zero
    if p == 'b1':
        g[1][2]=x_or_zero
    if p == 'b2':
        g[2][2]=x_or_zero
    if p == 'b3':
        g[3][2]=x_or_zero
    if p == 'b4':
        g[4][2]=x_or_zero
    if p == 'c1':
        g[1][3]=x_or_zero
    if p == 'c2':
        g[2][3]=x_or_zero
    if p == 'c3':
        g[3][3]=x_or_zero
    if p == 'c4':
        g[4][3]=x_or_zero
    if p == 'd1':
        g[1][4]=x_or_zero
    if p == 'd2':
        g[2][4]=x_or_zero
    if p == 'd3':
        g[3][4]=x_or_zero
    if p == 'd4':
        g[4][4]=x_or_zero
    if p == 'clear':
        g = empty_game()
```

```
if x_or_zero =='x':
    x_or_zero = '0'
else:
    x_or_zero='x'
```

Spend the rest of the day playing.

[DAY-56] Basics of Basics

Trivia game

```
def check(question, answer):
    x = input(question + ": ")
    if x == answer:
        return True
    else:
        return False

score = 0
if check("which animal lives on the north pole?", "polar bear"):
    score += 1
if check("which animal lives in the jungle?", "tiger"):
    score += 1

print("your score is: " + str(score))
```

Math test:

```
import random
while True:
    a = random.randint(1,10)
    b = random.randint(1,10)

    r = int(input("what is " + str(a) + " * " + str(b) + "? " ))

if r == a * b:
    print("Correct!")
    else:
    print("Incorrect, the answer was: " + str(a * b))
```

Random characters

```
import random
while True:
```

```
x = random.randint(ord('a'), ord('z'))
print(chr(x))
```

[DAY-57] Basics of Basics

Snake

```
import random
APPLE_SYMBOL = '@'
def render(world):
 for row in world:
    for col in row:
      print(col,end=' ')
    print('')
def empty():
  return [
  ['-','-','-'],
  ['-','-','-'],
  ['-','-','-'],
  ['-','-','-'],
 ['-','-','-'],
  ['-','-','-'],
  ['-','-','-','-'],
]
def snake_eats_itself(positions, current_col, current_row):
    for (col,row) in positions:
        if col == current_col and row == current_row:
            return True
def place_apple(world):
    # just place it on a random square from all possible squares
    possible = []
    for index_row in range(len(world)):
        for index_col in range(len(world[index_row])):
            if world[index_row][index_col] == '-':
                possible.append((index_col,index_row))
    if len(possible) == 0:
        # we cant place an apple
        return False
    else:
        (col,row) = random.choice(possible)
        world[row][col] = APPLE_SYMBOL
        return True
world = empty()
player_row = 0
player_col = 0
player_history = []
```

```
world[player_row][player_col] = '%'
player_history.append((player_col,player_row))
place_apple(world)
render(world)
while True:
  direction = input("which direction: ")
  world[player_row][player_col] = '='
  if direction == "u":
    player_row = player_row - 1
  elif direction == "d":
    player_row = player_row + 1
  elif direction == "l":
    player_col = player_col - 1
  elif direction == "r":
    player_col = player_col + 1
  else:
      print("try again, u for up/d for down/l for left/r for right")
  if snake_eats_itself(player_history, player_col, player_row):
      print("GAME OVER")
      break
  if world[player_row][player_col] == APPLE_SYMBOL:
      world[player_row][player_col] = '$'
      if not place_apple(world):
          print("YOU WON!")
          break
  else:
      world[player_row][player_col] = '%'
  player_history.append((player_col,player_row))
  render(world)
```

[DAY-58] Basics of Basics

Keep working on the snake game if you are not done. if you are do touch typing

[DAY-59] Basics of Basics

Tuples are kind of like lists that you cant grow or shrink, but also you usually assign meaning to each of the positions, for example

```
position = (1,2)

(x,y) = position
print(x)
print(y)
```

it can have more elements

```
posittion = (1,2,3)
  (width,depth,height) = position

print(width)
 print(depth)
 print(height)
```

You see how we used it in the snake game, to make a list of tuples, where we had the player history.

```
positions = [(1,2),(3,4),(5,6)]
print(positions)
for p in positions:
    print(p)
    (x,y) = p
    print(x)
    print(y)
```

It is quite handy when you know you have pairs of data, like X and Y position or Season number and Episode number.

```
favorite_miraculous = [(3,1),(3,2),(2,1)]

for m in favorite_miraculous:
    (season,episode) = m
    print(str(season) + " season episode: " + str(episode))
```

Or more than 2 pieces, you can hold however many you want, but it usually is you that assign meaning to each position, like in the above case, the first element we decide is season, and the second one we decide is episode

[DAY-60] Basics of Basics

Back to the beginning.

- Write a program to make a spy name
- Write a program to ask for favorite food
- Write a program to ask what is your name forever