Simulation physique de solides indéformables

$$i = R(\theta_i) K_i^o R(\theta_i)^{-1}$$

Problématique :

Comment produire une simulation physique de solides indéformables à la fois rapide et précise ?

Sommaire

- I. Objectifs
- II. Cadre physique
- III. Implémentation informatique
 - IV. Résultats

Objectifs

I. Objectifs

- Physiquement correct

- Précis

- Temps réel

Cadre physique

Représentation vectorielle : solide Si

$$q_i = \begin{pmatrix} x_i \\ \theta_i \end{pmatrix} \quad \dot{q}_i = \begin{pmatrix} \dot{x}_i \\ \dot{\theta}_i \end{pmatrix} \quad \ddot{q}_i = \begin{pmatrix} \ddot{x}_i \\ \ddot{\theta}_i \end{pmatrix}$$

$$m_i \quad K_i = R(\theta_i) K_i^o R(\theta_i)^{-1}$$

$$M_i = \begin{pmatrix} m_i I_3 & 0_3 \\ 0_3 & K_i \end{pmatrix}$$

Représentation vectorielle : solide Si

$$F_i = F_{ext,i} + F_{C,i} = \begin{pmatrix} f_{ext,i} \\ \tau_{ext,i} \end{pmatrix} + \begin{pmatrix} f_{C,i} \\ \tau_{C,i} \end{pmatrix}$$

$$M_i \ddot{q}_i = F_i \Leftrightarrow \begin{cases} m_i a_i = f_{ext,i} + f_{C,i} \\ K_i \alpha_i = \tau_{ext,i} + \tau_{C,i} \end{cases}$$

Représentation vectorielle : système $S = \{S_i\}_{i \in [1,n]}$

$$q = \begin{pmatrix} q_1 \\ q_2 \\ \vdots \\ q_n \end{pmatrix} = \begin{pmatrix} x_1 \\ \theta_1 \\ \vdots \\ x_n \\ \theta_n \end{pmatrix} \qquad M = \begin{pmatrix} M_1 & 0 & \cdots & 0 \\ 0 & M_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & M_n \end{pmatrix}$$

$$F = F_{ext} + F_C = \begin{pmatrix} F_{ext,1} \\ F_{ext,2} \\ \vdots \\ F_{ext,n} \end{pmatrix} + \begin{pmatrix} F_{C,1} \\ F_{C,2} \\ \vdots \\ F_{C,n} \end{pmatrix} = \begin{pmatrix} f_{ext,1} \\ \tau_{ext,1} \\ \vdots \\ f_{ext,n} \\ \tau_{ext,n} \end{pmatrix} + \begin{pmatrix} f_{C,1} \\ \tau_{C,1} \\ \vdots \\ f_{C,n} \\ \tau_{C,n} \end{pmatrix}$$

$$M\ddot{q} = F = F_{ext} + F_C \Leftrightarrow \begin{cases} M_1 \ddot{q}_1 &= F_{ext,1} + F_{C,1} \\ &\vdots \\ M_n \ddot{q}_n &= F_{ext,n} + F_{C,n} \end{cases}$$

Concept de contrainte

$$C_{l_j,j} \colon \mathcal{Q}(S) \to \mathbb{R}^{l_j}$$

$$C_{l_j,j}(q(t)) = 0$$

$$C = \begin{pmatrix} C_{l_1,1} \\ \vdots \\ C_{l_m,m} \end{pmatrix}$$

$$\frac{\mathrm{d}C}{\mathrm{d}t}(q) = \frac{\partial C}{\partial q}(q)\frac{\mathrm{d}q}{\mathrm{d}t} = J(q)\dot{q} \text{ avec } J = \frac{\partial C}{\partial q}$$

Concept de contrainte

Formule de F_c d'inconnue λ

$$J(q)M^{-1t}J(q)\lambda = -\dot{J}(q)\dot{q} - J(q)M^{-1}F_{ext}$$
$${}^tJ(q)\lambda = F_C$$

```
// A representation of a physical system
typedef struct PhysicsSystem
   struct Constraint** constraints; // Constraints
   uint nbConstraints; // Number of constraints
   phys_trsfrm** physicsObjects; // Objects
   uint nbPhysObjects; // Number of objects
   // STATE
                            al matr
   tlvec* dq:
                    obal velocity vector
   struct {
       tlvec'
                    'IBase; // Inverse mome
       tmat3
                                                 inertia at origin
                   'I; // Current inverse
                                                 of inertia (rotated)
       tmat3
    } W; // T
                   rse inertia matrix
   tlvec* Fex
                   External forces
                            ative o
   block_tmat* dJ; // Derivative Jacobian matrix of constraints vector relative to time
   block_tmat* leftMember; // Left member of the equation
   block tmat* P; // Conditionned left member
   tlvec* rightMember; // Right member of the equation
   tlvec* X; // The solution to the linear equation
   block_tmat* JW; // J * M^-1
    tlvec* Fc; // The constraint force (what we are looking for)
```

Structures : matrices par blocs

Structures : quaternions

$$i^{2} = j^{2} = k^{2} = ijk = -1$$

$$\mathbb{H} = \text{Vect}(1, i, j, k) \simeq \mathbb{R}^{4}$$

$$U(1, \mathbb{H}) = \{q \in \mathbb{H}, \|q\|_{2} = 1\} \simeq SO_{3}(\mathbb{R})$$

Rotation de
$$v = \begin{pmatrix} x_v \\ y_v \\ z_v \end{pmatrix} \in \mathbb{R}^3 \text{ par } q = \begin{pmatrix} x_q \\ y_q \\ z_q \\ w_q \end{pmatrix} \in U(1, \mathbb{H}):$$

$$v_q := 0 + \mathbf{i}x_v + \mathbf{j}y_v + \mathbf{k}z_v$$

$$v_q' := qv_q q^{-1} = qv_q \overline{q}$$

$$v' := \begin{pmatrix} y_{v_q'} \\ z_{v_q'} \\ w_{v_q'} \end{pmatrix}$$

Algorithmes : intégration

Calcul vélocités à $t + \Delta t$:

$$\dot{q}(t + \Delta t) = \ddot{q}(t) + M^{-1}F\Delta t$$

$$\Leftrightarrow$$

$$\forall i \in [1, n], \begin{cases} v_i(t + \Delta t) = v_i(t) + m_i f_i(t + \Delta t) \Delta t \\ \omega_i(t + \Delta t) = \omega_i(t) + K_i(t) \tau_i(t + \Delta t) \Delta t \end{cases}$$

Calcul positions à $t + \Delta t$:

$$\forall i \in [1, n], \begin{cases} x_i(t + \Delta t) = x_i(t) + v_i(t + \Delta t)\Delta t \\ \theta_i(t + \Delta t) = \theta_i(t) + \frac{1}{2}\omega_i(t + \Delta t) \times \theta_i(t)\Delta t \end{cases}$$

Algorithmes : système linéaire

Gauss-Seidel → Bi-Conjugate Gradients Stabilized (BiCGSTAB)

 $A \in \mathcal{M}_n(\mathbb{R}), b \in \mathbb{R}^n$. Trouver $x \in \mathbb{R}^n$ tel que Ax = b

ALG3 / MC64 (Conditionnement)

Interface utilisateur, librairies

SupSy Librairies (SL)

> GLFW + OpenGL

SupSy Game Engine (SGE)


```
#include <SupSy/SGE.h>
#include <SupSy/SGE/builtin/extData/freeCam.h>

int main() {
    initializeApp("Small App");
    freeCam_addDefault((vec3*)&vec3_zero, (quat*)&quat_identity, 60, false);

while (!appShouldClose()) {
    startFrameUpdate();
    sceneUpdate(APP->scene);
    RErenderScene(APP->scene, REGetOutputFB(APP->renderEnvironment));
    blitToScreenFB(REGetOutputFB(APP->renderEnvironment));
    endFrameUpdate();
}
```

```
∨ SL

✓ maths

  C constants.h
  C math.c
  C math.h
  C matrix.c
  C matrix.h
                   М
 C quaternion.c
 C quaternion.h
                   М
  C vector.c
  C vector.h

✓ utils

  C arenaAlloc.c
  C arenaAlloc.h
  C array.c
  C array.h
  C debug.c
 C debug.h
 C imageImporter.c
  C imageImporter.h
  C inout.c
  C inout.h
  C list.c
  C list.h
```

Résultats

IV. Résultat

Double Pendule 45° Corde 20 segments

Trébuchet 2D

Conclusion

Explications détaillées : formule de F_c

$$C(q) = 0$$

$$\frac{dC}{dt}(q) = J(q)\dot{q} = 0$$

$$\frac{d^2C}{dt^2}(q) = \dot{J}(q)\dot{q} + J(q)\ddot{q} = 0$$

$$F_C \cdot \dot{q} = {}^t F_C \dot{q} = 0$$
et $J(q)\dot{q} = 0$

$${}^t J(q)\lambda = F_C$$

$$\dot{J}(q)\dot{q} + J(q)\ddot{q} = \dot{J}(q)\dot{q} + J(q)M^{-1}(F_{ext} + F_C) = 0$$

$$J(q)M^{-1t}J(q)\lambda = -\dot{J}(q)\dot{q} - J(q)M^{-1}F_{ext}$$

Explications détaillées : inversibilité de M

$$M \in GL_{6n}(\mathbb{R}) \Leftrightarrow \forall i \in [1, n], \ M_i = \begin{pmatrix} m_i I_3 & 0_3 \\ 0_3 & K_i \end{pmatrix} \in GL_6(\mathbb{R})$$
$$\Leftrightarrow \forall i \in [1, n], \ m_i \neq 0 \land K_i = R(\theta_i) K_i^o R(\theta_i)^{-1} \in GL_3(\mathbb{R})$$
$$\Leftrightarrow \forall i \in [1, n], \ m_i \neq 0 \land K_i^o \in GL_3(\mathbb{R})$$

$$K_i^o = \begin{pmatrix} \iint_{P \in V} \rho_i(P)(y^2 + z^2) \, dV & \iint_{P \in V} -\rho_i(P)xy \, dV & \iint_{P \in V} -\rho_i(P)xz \, dV \\ \iint_{P \in V} -\rho_i(P)xy \, dV & \iint_{P \in V} \rho_i(P)(x^2 + z^2) \, dV & \iint_{P \in V} -\rho_i(P)yz \, dV \\ \iint_{P \in V} -\rho_i(P)xz \, dV & \iint_{P \in V} -\rho_i(P)yz \, dV & \iint_{P \in V} \rho_i(P)(x^2 + y^2) \, dV \end{pmatrix}$$

$$\iint_{P \in V} \rho_i(P)(y^2 + z^2) dV = I_{Ox} > 0$$

$$\iint_{P \in V} \rho_i(P)(x^2 + z^2) dV = I_{Oy} > 0$$

$$\det(K_i^o) = I_{Ox}I_{Oy}I_{Oz} > 0$$

$$\iint_{P \in V} \rho_i(P)(y^2 + z^2) dV = I_{Oz} > 0$$

Explications détaillées : existence de λ

On considère que la contrainte est toujours satisfaite, donc que :

$$\forall q \in \mathcal{Q}(S), \ \frac{dC}{dt}(q) = J(q)\dot{q} = 0$$

Autrement dit:

$$\{\dot{q} \mid q \in \mathcal{Q}(S)\} = \ker(J(q))$$

De plus, par application du principe de moindre action, on sait que F_C ne travaille pas donc :

$$F_C \cdot \dot{q} = 0$$

 F_C est donc orthogonal à tout vecteur de $\ker(J(q))$:

$$F_C \in \ker(J(q))^{\perp} \Leftrightarrow F_C \in \operatorname{Im}({}^t J(q))$$

 F_C admet un antécédant par ${}^tJ(q)$, il existe λ tel que $F_C={}^tJ(q)\lambda$

Explications détaillées : conditionnement

Conditionnement:

 $A \in \mathcal{M}_n(\mathbb{R}), b \in \mathbb{R}^n$. Trouver $x \in \mathbb{R}^n$ tel que Ax = b

 $\|\cdot\|_s$ norme suborndonnée respectivement à la norme de Frobenius :

$$(A + \delta A)(x + \delta x) = b$$
 $\mathcal{K}(A) = \frac{1}{n} ||A||_s ||A^{-1}||_s$

$$\frac{\|\delta x\|}{\|x + \delta x\|} \le \mathcal{K}(A) \frac{\|\delta A\|}{\|A\|}$$

Explications détaillées : conditionnement

Table 1: Condition numbers before and after equilibration for ALG3 and MC64					
matrix	\overline{n}	nnz of A	$\operatorname{cond}_{orig}(A)$	$\operatorname{cond}_{MC64}(A)$	$\overline{\operatorname{cond}_{ALG3}(A)}$
$\overline{\text{dw4096}}$	8192	41746	$1.50 \cdot 10^7$	$9.63 \cdot 10^5$	$5.90 \cdot 10^5$
rajat13	7598	48762	$1.46\cdot 10^{11}$	$1.62\cdot 10^1$	$6.07 \cdot 10^2$
$\mathrm{utm}5940$	5940	83842	$1.91\cdot 10^9$	$2.75 \cdot 10^9$	$3.90 \cdot 10^9$
tols 2000	2000	5184	$6.92\cdot 10^6$	$1.08 \cdot 10^{2}$	$1.11 \cdot 10^{2}$
rajat19	1157	3699	$9.17\cdot10^{10}$	$5.87\cdot10^{11}$	$7.33 \cdot 10^{8}$
unsym-rand05	1024	1048576	$2.73 \cdot 10^{13}$	$1.77 \cdot 10^5$	$2.27 \cdot 10^5$
unsym-rand04	512	262144	$2.07\cdot 10^{11}$	$1.85\cdot 10^5$	$5.66\cdot10^5$
unsym-rand03	256	65536	$1.26\cdot 10^{11}$	$1.80 \cdot 10^4$	$2.78 \cdot 10^4$
unsym-rand02	128	16384	$1.03 \cdot 10^{9}$	$1.18 \cdot 10^4$	$1.26 \cdot 10^4$
unsym-rand01	64	4096	$1.59 \cdot 10^7$	$1.40 \cdot 10^3$	$2.10 \cdot 10^3$

An exploration of matrix equilibration

Paul Liu, Stanford

Explications détaillées : RK4

$$\forall t \in \mathbb{R}, \ g(f,t) = \frac{df}{dt}(t)$$
 $f_0 = f(t_0)$ $t_n = t_0 + n\tau$

$$f(t_{n+1}) = f_n = \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}$$

$$k_1 = g(f_n, t_n)$$

$$k_2 = g(f_n + \frac{\tau}{2}k_1, t_n + \frac{\tau}{2})$$

$$k_3 = g(f_n + \frac{\tau}{2}k_2, t_n + \frac{\tau}{2})$$

$$k_4 = g(f_n + \tau k_3, t_n + \tau)$$