Baccalauréat Métropole et La Réunion − 12 septembre 2023 ≈ Sujet 2

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

EXERCICE 1 5 points

La paratuberculose est une maladie digestive infectieuse qui touche les vaches. Elle est due à la présence d'une bactérie dans l'intestin de la vache.

On réalise une étude dans une région dont 0,4 % de la population de vaches est infectée.

Il existe un test qui met en évidence la réaction immunitaire de l'organisme infecté par la bactérie. Le résultat de ce test peut être soit « positif », soit « négatif ».

On choisit une vache au hasard dans la région.

Compte tenu des caractéristiques du test, on sait que :

- Si la vache est atteinte par l'infection, la probabilité que son test soit positif est de 0,992;
- Si la vache n'est pas atteinte par l'infection, la probabilité que son test soit négatif est de 0,984.

On désigne par :

- *I* l'évènement « la vache est atteinte par l'infection »;
- T l'évènement « la vache présente un test positif ».

On note \overline{I} l'évènement contraire de I et \overline{T} l'évènement contraire de T.

Les parties A et B sont indépendantes.

Partie A

1. Reproduire et compléter l'arbre pondéré ci-dessous modélisant la situation.

- **2. a.** Calculer la probabilité que la vache ne soit pas atteinte par l'infection et que son test soit négatif. On donnera le résultat à 10^{-3} près.
 - **b.** Montrer que la probabilité, à 10^{-3} près, que la vache présente un test positif est environ égale à 0,020.
 - **c.** La « valeur prédictive positive du test » est la probabilité que la vache soit atteinte par l'infection sachant que son test est positif. Calculer la valeur prédictive positive de ce test. On donnera le résultat à 10^{-3} près.
 - **d.** Le test donne une information erronée sur l'état de santé de la vache lorsque la vache n'est pas infectée et présente un résultat positif au test ou lorsque la vache est infectée et présente un résultat négatif au test.
 - Calculer la probabilité que ce test donne une information erronée sur l'état de santé de la vache. On donnera un résultat à 10^{-3} près.

Partie B

3. Lorsqu'on choisit au hasard dans la région un échantillon de 100 vaches, on assimile ce choix à un tirage avec remise.

On rappelle que, pour une vache choisie au hasard dans la région, la probabilité que le test soit positif est égale à 0,02.

On note X la variable aléatoire qui à un échantillon de 100 vaches de la région choisies au hasard associe le nombre de vaches présentant un test positif dans cet échantillon.

- **a.** Quelle est la loi de probabilité suivie par la variable aléatoire *X*? Justifier la réponse et préciser les paramètres de cette loi.
- **b.** Calculer la probabilité que dans un échantillon de 100 vaches, il y ait exactement 3 vaches présentant un test positif. On donnera un résultat à 10^{-3} près.
- **c.** Calculer la probabilité que dans un échantillon de 100 vaches, il y ait au plus 3 vaches présentant un test positif. On donnera un résultat à 10^{-3} près.
- **4.** On choisit à présent un échantillon de *n* vaches dans cette région, *n* étant un entier naturel non nul. On admet que l'on peut assimiler ce choix à un tirage avec remise.

Déterminer la valeur minimale de n pour que la probabilité qu'il y ait, dans l'échantillon, au moins une vache testée positive, soit supérieure ou égale à 0,99.

EXERCICE 2 5 points

On considère la fonction f définie sur l'intervalle]0; $+\infty[$ par

$$f(x) = (2 - \ln x) \times \ln x,$$

où ln désigne la fonction logarithme népérien.

On admet que la fonction f est deux fois dérivable sur]0; $+\infty[$.

On note C la courbe représentative de la fonction f dans un repère orthogonal et C' la courbe représentative de la fonction f', fonction dérivée de la fonction f.

La **courbe** C' est donnée ci-dessous ainsi que son unique tangente horizontale (T).

- 1. Par lecture graphique, avec la précision que permet le tracé ci-dessus, donner :
 - **a.** le coefficient directeur de la tangente à *C* au point d'abscisse 1.
 - **b.** le plus grand intervalle sur lequel la fonction f est convexe.
- **2. a.** Calculer la limite de la fonction f en $+\infty$.
 - **b.** Calculer $\lim_{x\to 0} f(x)$. Interpréter graphiquement ce résultat.
- **3.** Montrer que la courbe *C* coupe l'axe des abscisses en deux points exactement dont on précisera les coordonnées.
- **4. a.** Montrer que pour tout réel x appartenant à]0; $+\infty[$, $f'(x) = \frac{2(1-\ln x)}{x}$.
 - **b.** En déduire, en justifiant, le tableau de variations de la fonction f sur $]0; +\infty[$.
- 5. On note f'' la dérivée seconde de f et on admet que pour tout réel x appartenant à]0; $+\infty[$, $f''(x) = \frac{2(\ln x 2)}{x^2}$.

Déterminer par le calcul le plus grand intervalle sur lequel la fonction f est convexe et préciser les coordonnées du point d'inflexion de la courbe C.

EXERCICE 3 5 points

On considère la suite (u_n) définie par : $\begin{cases} u_1 = \frac{1}{e} \\ u_{n+1} = \frac{1}{e} \left(1 + \frac{1}{n}\right) u_n \text{ pour tout entier } n \geqslant 1. \end{cases}$

- 1. Calculer les valeurs exactes de u_2 et u_3 . On détaillera les calculs.
- **2.** On considère une fonction écrite en langage Python qui, pour un entier naturel n donné, affiche le terme u_n . Compléter les lignes L_2 et L_4 de ce programme.

$$egin{array}{c|c} L_1 & {
m def \ suite(n):} \\ L_2 & \dots & \dots & \dots & \dots \\ L_3 & {
m for \ i \ in \ range(1, \ n):} \\ L_4 & {
m u=............} \\ L_5 & {
m return \ u} \\ \end{array}$$

- **3.** On admet que tous les termes de la suite (u_n) sont strictement positifs.
 - **a.** Montrer que pour tout entier naturel n non nul, on $a: 1 + \frac{1}{n} \le e$.
 - **b.** En déduire que la suite (u_n) est décroissante.
 - **c.** La suite (u_n) est-elle convergente? Justifier votre réponse.
- **4. a.** Montrer par récurrence que pour tout entier naturel non nul, on a : $u_n = \frac{n}{e^n}$.
 - **b.** En déduire, si elle existe, la limite de la suite (u_n) .

EXERCICE 4 5 points

Cet exercice est un questionnaire à choix multiples.

Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Une réponse exacte rapporte un point. Une réponse fausse, une réponse multiple ou l'absence de réponse à une question ne rapporte ni n'enlève de point. Pour répondre, indiquer sur la copie le numéro de la question et la lettre de la réponse choisie. Aucune justification n'est demandée.

L'espace est rapporté à un repère orthonormé $(O; \overrightarrow{\iota}, \overrightarrow{\jmath}, \overrightarrow{k})$.

On considère:

les points A(-1; -2; 3), B(1; -2; 7) et C(1; 0; 2);

 $\begin{cases} y=2 \\ z=-4+3t \end{cases}, \text{ où } t \in \mathbb{R};$ la droite Δ de représentation paramétrique :

le plan \mathscr{P} d'équation cartésienne : 3x+2y+z-4=0; le plan \mathcal{Q} d'équation cartésienne : -6x - 4y - 2z + 7 = 0.

- 1. Lequel des points suivants appartient au plan \mathcal{P} ?
 - **a.** R(1; -3; 1);
- **b.** S(1;2;-1);
- **c.** T(1; 0; 1); **d.** U(2; -1; 1).

- **2.** Le triangle ABC est :
 - **a.** équilatéral;
 - **c.** isocèle non rectangle;

- **b.** rectangle isocèle;
- d. rectangle non isocèle.

- **3.** La droite Δ est :
 - **a.** orthogonale au plan \mathcal{P} ;
 - **c.** incluse dans le plan \mathscr{P} ;

- **b.** sécante au plan \mathcal{P} ;
- **d.** strictement parallèle au plan \mathscr{P} .
- **4.** On donne le produit scalaire $\overrightarrow{BA} \cdot \overrightarrow{BC} = 20$.

Une mesure au degré près de l'angle ÂBC est :

- **a.** 34° ;
- **b.** 120° ;
- **c.** 90° ;
- **d.** 0° .

- **5.** L'intersection des plans \mathscr{P} et \mathscr{Q} est :
 - a. un plan;

b. l'ensemble vide;

c. une droite;

d. réduite à un point.