1. When aqueous A and aqueous B ($C_{Ao} = C_{Bo}$) are brought together they react in two possible ways:

to give a mixture whose concentration of active components (A, B, R, S, T, U) is $C_{TOTAL} = C_A + C_B$, = 60 mol/m³. Find the size of reactor needed and the R/S ratio produced for 90% conversion of an equimolar feed of $F_{Ao} = F_{Bo} = 300$ mol/hr:

- 1.1. in a mixed flow reactor;
- 1.2. in a plug flow reactor;
- 1.3. which reactor gives more C_R.
- 2. The elementary liquid-phase-series reaction

$$A \xrightarrow{K_1} B \xrightarrow{K_2} C$$

is carried out in a 500-dm³ batch reactor. The initial concentration of A is 1.6 mol/dm³. The desired product is B. and separation of the undesired product C is very difficult and costly. Because the reaction is carried out at a relatively high temperature, the reaction is easily quenched.

$$K_1 = 0.4 \text{ h}^{-1}$$
 $K_2 = 0.01 \text{ h}^{-1}$ at 100°C

- a) Assuming that each reaction is irreversible, plot the concentrations of A, B and C as a function of time.
- (b) For a CSTR space time of 0.5 h, what temperature would you recommend to maximize B? ($E_1 = 10,000 \text{ cal/mol}$, $E_2 = 20,000 \text{ cal/mol}$)
- (c) Assume that the first reaction is reversible with $K_{-1} = 0.3 \text{ h}^{-1}$. Plot the concentrations of A, B and C as a function of time.

- (d) Plot the concentrations of A, B and C as a function of time for the case where both reactions are reversible with $K_{-2} = 0.005 \text{ h}^{-1}$.
- (e) Vary K_1 , K_2 , K_{-1} and K_{-2} . Explain the consequence of $K_1 > 100$ and $K_2 < 0.1$ with $K_{-1} = K_{-2} = 0$ and with $K_{-2} = 1$, $K_{-1} = 0$. And $K_{-2} = 0.25$.
- 3. The elementary liquid phase series parallel reaction scheme

$$\begin{array}{cccc} A & \longrightarrow & B & \longrightarrow & C \\ & A & \longrightarrow & R \end{array}$$

is to be carried out in an isothermal CSTR. The rate laws are given by

$$r_R = k'C_A$$

 $r_B = kC_A - kC_B$

Feed is pure A. Find the space time of the CSTR which results in the maximum exit concentration of B.

4. For a given feed stream having C_{Ao} should we use a PFR or a MFR and should we use a high or low or some intermediate conversion level for the exit stream if we wish to maximize $\phi(S/A)$? The reaction system is

$$A \xrightarrow{\frac{1}{2}} R$$
A $\xrightarrow{3}$ S, desired

where n_1 , n_2 , and n_3 , are the reaction orders of reactions 1, 2, and 3.

(a)
$$n_1 = 1$$
, $n_2 = 2$, $n_3 = 3$

(b)
$$n_1 = 2$$
, $n_2 = 3$, $n_3 = 1$

(c)
$$n_1 = 3$$
, $n_2 = 1$, $n_3 = 2$