Language and Logic Assignment 1

- Please submit your solutions in a .pdf file in addition to commented code and executable files with instructions regarding execution.
- Submit each file separately in uncompressed format.
- The deadline for submissions is 14 April 2019.
- Only typed solutions will be accepted. You can however submit scans or images of the automata. Please show the steps when solving the questions.
- Reports that do not comply with the aforementioned requirements will not be considered.

Question 1.

Give equivalent DFAs and Regular Expressions with the minimum number of operators for the following NFAs (25points)

Question 2.

Write regular expressions over $\Sigma = \{a, b, c\}$ for (20points)

1.Strings with:

- 1. Starting or ending with a number of a's divisible by 2 and
- 2. can be split into disjoint substrings of length 5 such that each of such a substring has 3 b's and 2 c's

2.Strings with at least 2 a's separated by a substring with the following properties:

- 1. contains at least 1 occurrence of each of a, b, c and
- 2. has length that is a multiple of 2

Note: The properties refer to the substring and not the whole word.

3.Integer literals in java consist of a set of digits that can be categorized based on their prefix and suffix.

- 1. When a literal is prefixed with "0" it corresponds to an octal int
- 2. When a literal is prefixed with "0b" or "0B", it corresponds to an binary int
- 3. When a literal is prefixed with "0x" or "0X", it corresponds to a hexadecimal int
- 4. When no prefix exists, it is considered a decimal int
- 5. If any of the above cases is suffixed with an "L", then the integer is considered a long instead.
- Write a regular expression or a set of regular expressions capable to recognize the type and numerical base of integers in java
- Give the equivalent NFA

Question 3.

1.Prove whether the following languages are regular or not over $\Sigma = \{a, b, c\}$ (10points)

$$(ab)^n (ba)^m \ n \ge m \ge 0$$

$$c^{2k}ab^2c^{2n} \ n \ge 0, k > 1$$

Question 4.

Enhanced Dictionary design and implementation (30points)

A word dictionary can be implemented using an automaton.

- 1. Explain how a deterministic automaton that can store any set of English words can be built.
 - Give an automaton that contains: {logic, logical, local, locally, paradox, paradoxes}.
- 2. Explain how the above designed automaton can be extended with automatic completion and grammatical checking capabilities.

Implement your solution (both the automaton and auto-completion and grammatical checking) in a programming language of your choice, it should be able to:

- 1. Load an external dictionary given as a raw text file.
- 2. Search for a word in the dictionary.
- 3. Provide automatic completion by increasing depth.
- 4. Be able to grammatically check a sentence based on the automaton.

Note: you can use the words file provided with the assignment to validate your programs.

Question 5.

Let Σ_1 and Σ_2 be two arbitrary alphabets, and f be a function that maps every symbol of Σ_1 to an element in Σ_2 , i.e., $f: \Sigma_1 \to \Sigma_2$. Let L_1 be a regular language, $f^*(s_1s_2...) = f(s_1)f(s_2)...$ where $s_1s_2...$ is a string, and $f^*(L_1) = \bigcup_{w \in L_1} f^*(w)$. The function $F(L_2)$ is defined as follows:

$$F(L_2) = \{ w \in \Sigma_1^* \mid f^*(w) \in L_2 \}$$

Show that if L_2 is regular, then $F(L_2)$ is regular as well. (15 points)