Dynamic Resource Allocation

Spectrum of Achievable Performances & Algorithmic Design Principles

Akshit Kumar

Joint work with Omar Besbes and Yash Kanoria

Columbia Business School

A few (demand) types are present

All (demand) types are present

Entire spectrum of how to model (demand) types

Entire spectrum of how to model (demand) types

1. What is the interplay between the distribution of request types and achievable algorithmic performance?

- Entire spectrum of how to model (demand) types
- 1. What is the interplay between the distribution of request types and achievable algorithmic performance?
- 2. Can we design a **unified**, **simple** and **near-optimal** algorithms which works for all type distributions?

A few types are present Bounded Regret

All types are present Logarithmic Regret

one algorithm to solve them all

A few types are present ounded Regre

Bounded Regret

All types are present
Logarithmic Regret

Entire spectrum of regret scalings is possible

β -clustered distributions

 Given a sequence of T values and budget B, the DM wants to select the top B values

- Given a sequence of T values and budget B, the DM wants to select the top B values
- The values arrive in an online fashion

- Given a sequence of T values and budget B, the DM wants to select the top B values
- The values arrive in an online fashion
- The DM must make irrevocable accept/reject decisions

- Given a sequence of T values and budget B, the DM wants to select the top B values
- The values arrive in an online fashion
- The DM must make irrevocable accept/reject decisions
- ullet Assumption: The values are drawn i.i.d from a known distribution F

- Given a sequence of T values and budget B, the DM wants to select the top B values
- The values arrive in an online fashion
- The DM must make irrevocable accept/reject decisions
- Assumption: The values are drawn i.i.d from a known distribution F
- Performance Metric: Minimize Regret

Regret (π) = (Expected Maximum Value in Hindsight) – (Expected Value under π)

Distribution shape is a fundamental driver of performance

Distribution shape is a fundamental driver of performance

Distribution shape is a fundamental driver of performance

Dealing with gaps in an algorithmic challenge

Distribution shape is a fundamental driver of performance

Dealing with gaps in an algorithmic challenge

Conservativeness with respect to gaps (CwG) principle enables nearoptimal performance

Rarity of types (Shape of the distribution)

Distribution shape is a fundamental driver of performance

Dealing with gaps in an algorithmic challenge

Conservativeness with respect to gaps (CwG) principle enables nearoptimal performance

Use RAMS to operationalize CwG

Rarity of types (Shape of the distribution)

Multi-secretary Problem

one algorithm to solve them all

A few types are present ounded Regre

Bounded Regret

All types are present
Logarithmic Regret

Entire spectrum of regret scalings is possible

β -clustered distributions

Regret is the additive gap b/w the value of hindsight opt. and value under some algorithm

Certainty Equivalent Control computes the budget ratio

Certainty Equivalent Control computes the budget ratio

br = Budget Ratio = (Remaining Budget) / (Remaining Time)

Certainty Equivalent Control computes the budget ratio

br = Budget Ratio = (Remaining Budget) / (Remaining Time)

Accept if the request type value is more than $F^{-1}(1 - br)$, else reject the request

Certainty Equivalent Control computes the budget ratio

br = Budget Ratio = (Remaining Budget) / (Remaining Time)

Accept if the request type value is more than $F^{-1}(1 - br)$, else reject the request

Certainty Equivalent Control computes the budget ratio

br = Budget Ratio = (Remaining Budget) / (Remaining Time)

Accept if the request type value is more than $F^{-1}(1 - br)$, else reject the request

Certainty Equivalent Control computes the budget ratio

br = Budget Ratio = (Remaining Budget) / (Remaining Time)

Accept if the request type value is more than $F^{-1}(1 - br)$, else reject the request

Regret(CE) = $\Omega(\sqrt{T})$ (highly sub-optimal regret scaling)

Accept if the request type value is more than $\overline{\text{HS}}$, else reject the request

Accept if the request type value is more than $\overline{\text{HS}}$, else reject the request

 $Regret(RAMS) = O(log^2T)$

Accept if the request type value is more than $\overline{\text{HS}}$, else reject the request

 $Regret(RAMS) = O(log^2T)$

Regret(CE) = $\Omega(\sqrt{T})$ (highly sub-optimal regret scaling)

Accept if the request type value is more than $\overline{\text{HS}}$, else reject the request

Conservativeness with respect to Gaps Principle

If the CE threshold $F^{-1}(1 - br)$ is close to a gap, use the gap as the threshold. Otherwise continue using the CE threshold.

Accept if the request type value is more than $\overline{\text{HS}}$, else reject the request

Connections to "Dual Averaging"

The different HS thresholds are the shadow prices of the budget for different scenarios, the bid price is computed by averaging the HS thresholds

State (Budget) B_t and feasible set of actions A_t

State (Budget) B_t and feasible set of actions A_t

State (Budget) B_t and feasible set of actions A_t

Request $\theta_t = (r_t, c_t)$ arrives at time t

State (Budget) B_t and feasible set of actions A_t Request $\theta_t = (r_t, c_t)$ arrives at time t

Simulate multiple request scenarios

State (Budget) B_t and feasible set of actions A_t Request $\theta_t = (r_t, c_t)$ arrives at time t

Simulate multiple request scenarios

$$\theta_{t}, \theta_{t+1}^{(1)}, \theta_{t+2}^{(1)}, ..., \theta_{T}^{(1)}$$
 Scenario 1
 $\theta_{t}, \theta_{t+1}^{(2)}, \theta_{t+2}^{(2)}, ..., \theta_{T}^{(2)}$ Scenario 2
 \vdots
 $\theta_{t}, \theta_{t+1}^{(m)}, \theta_{t+2}^{(m)}, ..., \theta_{T}^{(m)}$ Scenario m

State (Budget) B_t and feasible set of actions A_t

Request $\theta_t = (r_t, c_t)$ arrives at time t

Simulate multiple request scenarios

$$\theta_{t}, \theta_{t+1}^{(1)}, \theta_{t+2}^{(1)}, ..., \theta_{T}^{(1)}$$
 Scenario 1
 $\theta_{t}, \theta_{t+1}^{(2)}, \theta_{t+2}^{(2)}, ..., \theta_{T}^{(2)}$ Scenario 2
 \vdots
 $\theta_{t}, \theta_{t+1}^{(m)}, \theta_{t+2}^{(m)}, ..., \theta_{T}^{(m)}$ Scenario m

For each scenario k, compute the compensation for each action in A_t

State (Budget) B_t and feasible set of actions A_t

Request $\theta_t = (r_t, c_t)$ arrives at time t

Simulate multiple request scenarios

$$\theta_{t}, \theta_{t+1}^{(1)}, \theta_{t+2}^{(1)}, ..., \theta_{T}^{(1)}$$
 Scenario 1
 $\theta_{t}, \theta_{t+1}^{(2)}, \theta_{t+2}^{(2)}, ..., \theta_{T}^{(2)}$ Scenario 2
 \vdots
 $\theta_{t}, \theta_{t+1}^{(m)}, \theta_{t+2}^{(m)}, ..., \theta_{T}^{(m)}$ Scenario m

For each scenario k, compute the compensation for each action in A_t

Compensation(scenario k, a) = (Max total reward in scenario k) – (Max total reward in scenario k if action a is taken at time t)

State (Budget) B_t and feasible set of actions A_t

Request $\theta_t = (r_t, c_t)$ arrives at time t

Simulate multiple request scenarios

$$\theta_{t}, \theta_{t+1}^{(1)}, \theta_{t+2}^{(1)}, ..., \theta_{T}^{(1)}$$
 Scenario 1
 $\theta_{t}, \theta_{t+1}^{(2)}, \theta_{t+2}^{(2)}, ..., \theta_{T}^{(2)}$ Scenario 2
 \vdots
 $\theta_{t}, \theta_{t+1}^{(m)}, \theta_{t+2}^{(m)}, ..., \theta_{T}^{(m)}$ Scenario m

For each scenario k, compute the compensation for each action in A_t

Take the action with the minimum compensation averaged over m scenarios

Compensation(scenario k, a) = (Max total reward in scenario k) – (Max total reward in scenario k if action a is taken at time t)

State (Budget) B_t and feasible set of actions A_t

Request $\theta_t = (r_t, c_t)$ arrives at time t

Simulate multiple request scenarios

$$\theta_t, \theta_{t+1}^{(1)}, \theta_{t+2}^{(1)}, ..., \theta_T^{(1)}$$
 Scenario 1
 $\theta_t, \theta_{t+1}^{(2)}, \theta_{t+2}^{(2)}, ..., \theta_T^{(2)}$ Scenario 2
 \vdots

$$\theta_t, \theta_{t+1}^{(m)}, \theta_{t+2}^{(m)}, \dots, \theta_T^{(m)}$$
 Scenario m

For each scenario k, compute the compensation for each action in A_t

Take the action with the minimum compensation averaged over m scenarios

Repeat the process

Compensation(scenario k, a) = (Max total reward in scenario k) – (Max total reward in scenario k if action a is taken at time t)

RAMS minimizes hindsight-based regret

RAMS minimizes hindsight-based regret

Informal Meta Theorem [RAMS inherits guarantees of near-optimal algos].

Given a dynamic resource allocation setting, if there exists an algorithm **ALG** satisfying certain technical conditions, then

Regret(RAMS) ≤ Regret Upper Bound of **ALG** + Sampling Error

RAMS minimizes hindsight-based regret

Informal Meta Theorem [RAMS inherits guarantees of near-optimal algos].

Given a dynamic resource allocation setting, if there exists an algorithm ALG satisfying certain technical conditions, then

Regret(RAMS) ≤ Regret Upper Bound of **ALG** + Sampling Error

Proof of the Informal Meta Theorem.

$$\mathsf{Regret}(\mathsf{RAMS}) = \sum_{t=1}^T \mathbb{E} \big[\mathsf{Comp}_t \big(a_t^{\mathsf{RAMS}} \big) \big] \leq \sum_{t=1}^T \mathbb{E} \big[\mathsf{Comp}_t \big(a_t^{\mathsf{ALG}} \big) \big]$$

Performance Diff. Lemma

Compensated Coupling or RAMS chooses the action with the minimum compensation

RAMS is on-par with SOTA

RAMS is on-par with SOTA

Corollary of the Meta Theorem.

Polynomial regret for multi-secretary problem under different type distributions [this work]

Bounded regret for Network Revenue Management and Online Matching for a **few types** [Vera and Banerjee '21]

Logarithmic regret for Network Revenue Management with many types and nondegeneracy assumps. [Bray '23]

Log-Squared regret for Network Revenue Management with many types and w/o non-degeneracy assumps. [Jiang et. al '22]

RAMS is on-par with SOTA

Corollary of the Meta Theorem.

Polynomial regret for multi-secretary problem under different type distributions [this work]

Bounded regret for Network Revenue Management and Online Matching for a few types [Vera and Banerjee '21]

Logarithmic regret for Network Revenue Management with many types and nondegeneracy assumps. [Bray '23]

Log-Squared regret for Network Revenue Management with many types and w/o non-degeneracy assumps. [Jiang et. al '22]

What is the interplay between the distribution of request types and achievable algorithmic performance?

β -clustered distributions

Can we design a **unified**, **simple** and **near-optimal** algorithms which works for all type distributions?

one policy to solve them all

β –clustered distributions

