Artificial Bee Colony (ABC) based Variable Density Sampling Scheme for CS-MRI

Akshay Kumar Jagadish, Soumya Goswami, Pramit Saha, Satrajit Chakrabarty and **Kasi Rajgopal**

> Department of Electrical Engineering Indian Institute of Science Bengaluru, India

35th International Conference TENCON - 2016 November 28, 2016

Introduction

Problem Formulation

Solution

Experiments

MRI AND ITS BASIC PRINCIPLE

- ► MRI (magnetic resonance imaging) is an imaging modality that uses non-ionizing radiation to create diagnostic useful images.
- ▶ It exploits the property of directional magnetic field, or moment, associated with charged particles in motion. Nuclei containing an odd number of protons and/or neutrons have a characteristic motion or precession.
- Scan sequences provide excellent soft tissue contrast and high resolution
- ► Has the ability to provide structural, functional (fMRI) information and useful in several diagnostic studies
- Disadvantage Data acquisition is sequential and slow, cannot be used on patients with metallic implants

PRINCIPLE

No magnetic field Strong Magnetic Field B_0

RF pulse RF Removed

The protons (Hydrogen ions) in the body are spinning clockwise or anti-clockwise in random orientations in steady state.

When a strong magnetic field is B_0 is applied these tiny magnets tend to align with B_0 resulting in a net magnetic moment.

An RF pulse in resonant frequency applied, pushes aligned proton (H+) to a higher energy level

When the RF pulse is turned off, the protons precess and return to original magnetization B_0 , emitting a RF signal called free induction decay signal. The FID signal is a measure of proton density in the

slice being imaged.

k-space Encoding

By applying the gradient magnetic field in x and y directions in steps, FID signal can be acquired for each step.

The gradient magnetic field applied in steps varies the precession frequencies of the protons, thus encoding their spatial locations.

A 2D FT is performed on all the FID signals to obtain the image I(x, y) such that

$$I(x,y) = \sum \left[\sum K(x,y)e^{-j\omega_x n} \right] e^{-j\omega_x n}$$
(1)

where K(x,y) is the matrix of FID signals and I(x,y) is the proton density image

SCAN TIME REDUCTION TECHNIQUES

There are many methods using hardware and scan sequences

- ► Pulse sequences which use shorter TR
- ► Pulse sequences allowing reduction in number of RF excitation, ie collecting more than one line of *k*-space in a single TR
- ► Methods which improve SNR thus reducing number of signal averaging
- ▶ *k*-space sampling strategies which allow reduction of number of phase encode lines.

These techniques and MRI hardware have enabled faster data collection and faster imaging.

Currently, these techniques have reached a limit where the fundamental physical and physiological effects limit ability to encode and collect data more quickly.

OVERVIEW

T . 1 ...

Problem Formulation

Solution

Experiments

COMPRESSED SENSING AND UNDERSAMPLING k-SPACE

Compressed sensing (CS) and reconstruction theory, (Candes and Romberg, 2006) works on the principle of acquiring a signal based on its information content (significant samples in some domain) and a non-linear reconstruction algorithm to estimate the signal from the fewer sample.

The main constraints for compressed sensing are

- ▶ 1) Sparsity
- ▶ 2) incoherence
- ▶ 3) Random sampling or encoding

k-space characteristics

- ▶ MR images express weak sparsity in Fourier domain.
- ► They can be reconstructed from random limited *k*-space samples (Lustig et al 2008, Lustig et al. 2007)
- ► Generate efficient undersampling matrices Radial, circular, spiral, etc
- ► Adaptive schemes (F Knoll et al. 2011) and pseudo-random sampling methods have been attempted (Wang et al. 2009)

MRI Image and its *k*-space

(a) In-Vivo Brain Image

(b) k-space

Introduction Problem Formulation Solution Experiments

VARIABLE DENSITY PATTERNS

- ▶ k-space modeled as a power law distribution with increasing distance (Lustig), or TSP based π distribution, (Chauffert et al 2014)
- ► Sample *k*-space with a Deterministic central region and the rest random based on above model.

(c) Lustig l_2 pattern

(d) Lustig l_{∞} pattern

(e) π Distribution pattern

How to choose the Deterministic Dense Region and Suitable PDF function for *k*-space ?

► Adaptive Model - Magnitude *k*-space is the pdf

OVERVIEW

Solution

INTRODUCTION TO BEE-COLONY

- ► The Artificial Bee-Colony algorithm, a swarm intelligence algorithm, was introduced by Karaboga et. al [1] for the purpose of numerical optimization.
- ► The Four Essential Components of Bee Colony-
 - 1. **Food Sources** They refer to nectars foraged by the bee and are distributed according to a chosen *Fitness Distribution*.
 - Scout Bees These are Random Forager who perform the task of searching for food sources and pass on that information to other bees in the hive.
 - 3. **Employed Bees** These are bees which are *associated* with a particular food source.
 - Onlooker Bees These bees use the information provided by Scout bee and Employed bees o find a another nectar in the neighbourhood of already found food source.

MOTIVATION / IDEA:

- ► The sample at regions closer to **center of** *k***-space** hold information regarding the **overall structure of the image**, **contrast and SNR** Hence, needs to be given higher priority.
- ▶ By choosing a fitness distribution that **mimics** *k***-space** of an MR image, its characteristics can be captured as the bees forage.
- ► Exploiting the behaviour of the bees to pick only nectars with high quality as they can perform both **Global** and **Local search**.
- Such that sampling scheme obtained in three phases satisfies
 Randomness and Incoherence properties required for CS-MRI.

RANDOM SEARCH BY SCOUT-BEES

► The pre-defined number of scout-bees forage for N_k nectars from k^{th} annular regions known as bins.

$$r_{k} = \begin{cases} r_{k-1} + c_{k} * \Delta r, & \text{if } k > 0 \\ r_{IN}, & \text{if } k = 0 \end{cases}$$
 (2)

where Δr gives the incremental width of the annular region and c_k determines the relative bin width of successive bins.

▶ The location of food sources in k^{th} bin is given by:

$$x_i^k = (rand(0,1)(r_k - r_{k-1}) + r_{k-1}, \ \theta), \forall k \in \{1,2,...\}$$
 (3)

where $i \in \{1, 2, 3,N_k\}$, $\theta \in [0, 2\pi]$ is a randomly chosen angle and $x_i^0 = (rand(0, 1)r_{IN}, \theta)$ gives the location of food sources within r_{IN} .

► The entire k-space is spanned bin-wise according to the aforementioned steps, and information regarding the quality and distance accrued over time.

LOCAL SEARCH BY THE EMPLOYED-BEES

- ▶ A neighbourhood search is performed by M bees moving in concentric circles of varying width r_l until at least one better position is found.
- ▶ If the bee fail to update its position in one cycle, they restart the process by searching in circles of larger radii, $r_{l+1} = r_l + l * \Delta r_l$.
- ► The food selection follows a greedy nectar selection mechanism and is as follows:

$$x_{i+N_k}^k := y_j^l \ , \ i \in \{1,2,3,...,\}$$
 subject to the constraint $\nabla f(y_j^l) \geq \nabla f(y_{j-1}^l)$

- ▶ These newly chosen profitable nectars are added to the N_k food sources already present in the each bin, based on its location in k-space.
- ► Thus, the effective number of points in each of the bin after updating is $N_k^e \ge N_k$.

ADVANCE OF THE ONLOOKER-BEES

- ► A designated number of the onlookers move towards the location of *E* food sources.
- ► They are chosen from the nectars obtained in (4), if they exceed a threshold, *f*_{th} defined as follows:

$$x_e^k := x_i^k, \text{ if } f(x_i^k) > f_{th} \ \forall i \in \{1, 2, ..., N_k^e\}$$
 (5)

where $e \in \{1, 2,, E\}$ and E was fixed to be 50% of the employed-bee swarm size.

▶ On reaching the E locations, as only one bee can reach the best position x_e^k , out of S, the remaining bees can best be in only close proximity of x_e^k at the locations $x_{e'}^k$ such that:

$$|x_e^k - x_{e'}^k| < \epsilon \text{ and } f(x_{e'}^k) \le f(x_e^k).$$

▶ The net count of samples after the advance of the onlookers is N_k^o .

SUMMARY: PARAMETERS REQUIRED

- ► The are **five** parameters and distribution to be passed to the algorithm are :
 - ▶ Initial Food sources N_0
 - ▶ Initial search radius r_{IN}
 - Swarm size of the employed-bees M
 - ► Bin Width Δr
 - ► Maximal radius for neighborhood search *r*_s
 - ► Fitness distribution f(x).
- ► The optimal parameters were found by **Monte-Carlo Simulations** using standard fitness distribution that mimics *k*-space Gaussian Distribution.

ALGORITHM

Input : N_0 , r_{IN} , M, Δr , h r_s and f(x). **Output**: k-ABC based VDS scheme

- 1 Initialize with N_0 food sources within the radius r_{IN} .
- 2 Pick N_k food sources randomly from each bin.
- ³ Pass the information regarding the M best nectars within r_s of k-space to the employed-bees and evaluate them.
- 4 The employed-bees perform a neighborhood search to find better nectars locally.
- 5 Evaluate these nectars and perform greedy-selection which results in N_k^e samples/bin.
- 6 The onlooker-bees choose the E best nectars, from the available N_k^e nectars, based on distance criterion and settle in their vicinity. Memorize the locations of all food sources selected by scout, employed and onlooker-bees in the bin, N_k^o .
- Repeat the steps **2-7** for all bins.
 - Peform logical OR of N_k^o over k bins to obtain sampling scheme.

k-ABC - A Visual Representation

OVERVIEW

Experiments

PARAMETERS CHOSEN FOR DLMRI RECONSTRUCTION

- ▶ DLMRI [2] simultaneously learns an image patch based dictionary and reconstructs the image iteratively using undersampled data.
- ► Key parameters used in DLMRI are:
 - ▶ K-SVD itrations = 20,
 - ► Reconstruction Iterations = 10,
 - ▶ Patch size = 36,
 - ► Overlap Stride = 1.

k-ABC based VDS scheme given a Fitness Distribution

Top row: Gaussian Distribution, *Bottom row*: π -Distribution

Parameters and Reconstruction Results - Gaussian Distribution

Table: Image Quality of Reconstruction Results for Brain Image for different under-sampling percentages (*R*)

Parameters			Quality Measures						
N_0	r_s	M	R%	PSNR	$PSNR(\mu/\sigma^2)$	HFEN	HFEN(μ/σ^2)	SSIM	$SSIM(\mu/\sigma^2)$
1500	0.67	75	20	43.71	43.66/0.009	0.30	0.28/0.001	0.97	0.96/1.93e-06
1400	0.60	45	15	42.39	42.48/0.004	0.52	0.49/0.007	0.95	0.95/1.01e-05
1200	0.50	35	10	40.86	40.85/0.013	0.80	0.80/0.002	0.94	0.93/7.57e-05
900	0.40	10	5	37.13	36.28/0.478	1.88	2.04/0.060	0.90	0.89/0.004

k-ABC Sampling Schemes - Gaussian Distribution

Figure: **VDS Schemes and Reconstructed Images:** *Top row*: Sampling patterns *k*-ABC , *Bottom row*: Reconstructed In-Vivo Brain image for *R*=5% and 20%. Inset shows magnification of fine structures

Intensity Profile Comparison - R = 5% and 20%

Figure: Image Profile of Reconstructed In vivo Brain MR image

COMPARISON BETWEEN OTHER SAMPLING SCHEMES

Table: Reconstruction Quality of Spinal Image for different VDS schemes for under-sampling (*R*) of 20% and 5%

VDS Scheme	PSNR	HFEN	SSIM
k-ABC (Gaussian distribution)	41.21 (31.59)	0.54 (3.49)	0.98 (0.89)
k -ABC (π -distribution)	40.44 (31.14)	0.64 (3.75)	0.98 (0.88)
Independent π -distribution[3]	36.93 (29.19)	1.72 (4.98)	0.94 (0.84)
Power Law based distribution [4]	32.64 (26.23)	3.25 (6.61)	0.89 (0.76)

Introduction Problem Formulation Solution Experiments

COMPARISON BETWEEN OTHER SAMPLING SCHEMES

Figure: **VDS Schemes and Reconstructed Images:** *Top row*: Sampling patterns for *R*=5% - *k*-ABC and Independent pi-distribution, *Bottom row*: Corresponding Reconstructed T2-Weighted Spinal image.

Conclusion

- ► The image quality parameters **PSNR**, **HFEN**, **SSIM** fare better in the *k*-ABC Sampling method on retrospective reconstruction.
- ► The inset embedded inside the reconstructed images show magnification of the fine features.
- ► From the visual as well as image quality metrics an improvement is observed.
- ▶ Thus one can conclude that the proposed *k*-ABC method yields significantly better results when compared to the other state of the art patterns, at even very low undersampling percentages.

Introduction Problem Formulation Solution Experiments

References I

[1] D. Karaboga and B. Gorkemli, "A combinatorial artificial bee colony algorithm for traveling salesman problem," in *Innovations in Intelligent Systems and Applications (INISTA)*, 2011 International Symposium on, pp. 50–53, June 2011.

- [2] S. Ravishankar and Y. Bresler, "Mr image reconstruction from highly undersampled k-space data by dictionary learning," *Medical Imaging, IEEE Transactions on*, vol. 30, no. 5, pp. 1028–1041, 2011.
- [3] N. Chauffert, P. Ciuciu, J. Kahn, and P. Weiss, "Variable density sampling with continuous trajectories," *SIAM Journal on Imaging Sciences*, vol. 7, no. 4, pp. 1962–1992, 2014.
- [4] M. Lustig, D. Donoho, and J. M. Pauly, "Sparse mri: The application of compressed sensing for rapid mr imaging," *Magnetic resonance in medicine*, vol. 58, no. 6, pp. 1182–1195, 2007.

EXPERIMENTS

Thank You

