Minería de Datos IIC2433

Latent Semantic Indexing Vicente Domínguez

Recordando: Corpus

Un corpus es un conjunto de documentos.

Ejemplo:

- Documento 1: Un auto rojo
- Documento 2: Un tomate rojo y un globo rojo.
- **Documento 3:** Un plátano amarillo y un tomate verde.

Vocabulario

Un **vocabulario** es una secuencia ordenada de **palabras** con un identificador único.

Ejemplo:

ID	palabra
1	amarillo
2	auto
3	globo
4	plátano
5	rojo
6	tomate
7	un
8	verde
9	у

Bag of Words (bolsa de palabras)

Representamos un documento como una **bolsa de palabras**, sin considerar el orden de éstas.

Un tomate rojo y un globo rojo.

Bag of Words (bolsa de palabras)

Podemos representar la bolsa de palabras de forma numérica, en una matriz

- **Documento 1:** Un auto rojo
- **Documento 2:** Un tomate rojo y un globo rojo.
- **Documento 3:** Un plátano amarillo y un tomate verde.

	1	2	3	4	5	6	7	8	9
Doc. 1									
Doc. 2									
Doc. 3									

ID	palabra
1	amarillo
2	auto
3	globo
4	plátano
5	rojo
6	tomate
7	un
8	verde
9	у

Bag of Words (bolsa de palabras)

Podemos representar la bolsa de palabras de forma numérica, en una matriz

- **Documento 1:** Un auto rojo
- Documento 2: Un tomate rojo y un globo rojo.
- Documento 3: Un plátano amarillo y un tomate verde.

	1	2	3	4	5	6	7	8	9
Doc. 1	0	1	0	0	1	0	1	0	0
Doc. 2	0	0	1	0	2	1	2	0	1
Doc. 3	1	0	0	1	0	1	2	1	1

ID	palabra
1	amarillo
2	auto
3	globo
4	plátano
5	rojo
6	tomate
7	un
8	verde
9	у

Tf-idf (term frequency - inverse document frequency)

$$\mathrm{idf}(t,D) = \log rac{N}{|\{d \in D: t \in d\}|}$$

- **Documento 1:** Un auto rojo
- **Documento 2:** Un tomate rojo y un globo rojo.
- Documento 3: Un plátano amarillo y un tomate verde.

ID	palabra	idf
1	amarillo	0,48
2	auto	0,48
3	globo	0,48
4	plátano	0,48
5	rojo	0.17
6	tomate	0.17
7	un	0
8	verde	0,48
9	у	0.17

Tf-idf (term frequency - inverse document frequency)

Para representar los documentos multiplicamos la frecuencia de cada palabra **tf** por el peso calculado **idf**

• **Documento 1:** Un auto rojo

Documento 2: Un tomate rojo y un globo rojo.

• **Documento 3:** Un plátano amarillo y un tomate verde.

Doc.	1
Doc.	2

Doc.	3

1	2	3	4	5	ь	1	8	9
0	0,48	0	0	0.17	0	0	0	0
0	0	0.48	0	0.34	0	0	0	0
0,48	0	0	0,48	0	0.17	0	0,48	0.17

ID	palabra	idf
1	amarillo	0,48
2	auto	0,48
3	globo	0,48
4	plátano	0,48
5	rojo	0.17
6	tomate	0.17
7	un	0
8	verde	0,48
9	у	0.17

matriz de términos/documentos?

¿Habrán métodos especializados para la

- La matriz original es demasiado *sparse* para trabajarse computacionalmente.
- LSI busca una representación en baja dimensionalidad de la matriz de documentos.
- Trata de reducir el rango de la matriz original, tratando de armar una matriz aproximada lo más parecida posible.
- Pensado también para mitigar los problemas de **sinonimia** y **polisemia**.

- Sea X una matriz donde el elemento (i,j) corresponde a la ocurrencia del término i en el documento j. La matriz X se ve de la siguiente forma

- De esta representación, se pueden obtener varias cosas simplemente realizando multiplicaciones
- $\mathbf{t}_i^T \mathbf{t}_p$: nos da la correlación que existe entre el término i y el p, a traves de
- los documentos
- XX^T : el producto de estas matrices nos da todas las relaciones de términos.
- $\mathbf{d}_j^T \mathbf{d}_q$: nos da la correlación que existe entre el documento j y el q, a traves de los términos
- X^T X: el producto de estas matrices nos da todas las relaciones de documentos.

- De álgebra lineal sabemos que, dada una matriz X de m x n, sabemos que existe una descomposición:

$$X = U\Sigma V^T$$

- Donde U y V son matrices ortogonales y Σ es una matriz diagonal.
- Esta descomposición también es conocida como SVD o Singular Value Decomposition.

- Dada esta descomposición, podemos reconstruir nuestras matrices de relaciones.

$$egin{array}{lll} XX^T &=& (U\Sigma V^T)(U\Sigma V^T)^T = (U\Sigma V^T)(V^{T^T}\Sigma^T U^T) \ XX^T &=& U\Sigma V^T V\Sigma^T U^T = U\Sigma \Sigma^T U^T \ & X^T X &=& (U\Sigma V^T)^T (U\Sigma V^T) = (V^{T^T}\Sigma^T U^T)(U\Sigma V^T) \ X^T X &=& V\Sigma^T U^T U\Sigma V^T = V\Sigma^T \Sigma V^T \end{array}$$

- Dada esta descomposición, podemos reconstruir nuestras matrices de relaciones.

$$egin{array}{lll} XX^T &=& (U\Sigma V^T)(U\Sigma V^T)^T = (U\Sigma V^T)(V^{T^T}\Sigma^T U^T) \ XX^T &=& U\Sigma V^T V\Sigma^T U^T = U\Sigma \Sigma^T U^T \ & X^T X &=& (U\Sigma V^T)^T (U\Sigma V^T) = (V^{T^T}\Sigma^T U^T)(U\Sigma V^T) \ X^T X &=& V\Sigma^T U^T U\Sigma V^T = V\Sigma^T \Sigma V^T \end{array}$$

- Ahora, dado que $\Sigma\Sigma^T$ y $\Sigma^T\Sigma$ son diagonales. Vemos que la matriz U debe contener los vectores propios de XX^T natriz de Vcontener los vectores propios de X^TX do esto. La descomposición puede verse de la siguiente forma.

- ¿Qué podemos hacer con esto?
- Está demostrado que si elegimos los mayores valores singulares con sus correspondientes vectores singulares, obtendremos una matriz con el menor error posible utilizando la norma de Frobenius.

- ¿Qué podemos hacer con esto?
- Está demostrado que si elegimos los mayores valores singulares con sus correspondientes vectores singulares, obtendremos una matriz con el menor error posible utilizando la norma de Frobenius.

$$X = C - C_k$$
 $||X||_F = \sqrt{\sum_{i=1}^M \sum_{j=1}^N X_{ij}^2}$.

- ¿Qué podemos hacer con esto?
- Está demostrado que si elegimos los mayores valores singulares con sus correspondientes vectores singulares, obtendremos una matriz con el menor error posible utilizando la norma de Frobenius.

- Finalmente obtenemos esto:

$$X_k = U_k \Sigma_k V_k^T$$

- ¿Qué podemos hacer con esto?

- Se pueden ver que tan relacionados estan dos documentos o dos términos en un espacio dimensional más pequeño.
- Se pueden clusterizar documentos.
- Se pueden realizar consultas de busqueda, transformando la consulta en un mini documento.
- Se ha mostrado que palabras con sinonimia si otorgan resultados similares en las consultas.