Основные понятия теории множеств: 8/8

Станислав Олегович Сперанский

Санкт-Петербургский государственный университет

Санкт-Петербург 2019

Пусть дано ч.у.м. $\mathfrak{A}=\langle A,\leqslant_A\rangle$. Под цепью в \mathfrak{A} понимается непустое $S\subseteq A$ такое, что для любых $a_1,a_2\in S$,

$$a_1 \leqslant_A a_2$$
 или $a_2 \leqslant_A a_1$.

Иными словами, цепи суть непустые подмножества носителя, индуцирующие линейные порядки.

Теорема (Лемма Цорна; в ZFC)

Пусть $\mathfrak{A} = \langle A, \leqslant_A \rangle$ — ч.у.м. с непустым носителем, в котором у любой цепи имеется верхняя грань. Тогда в \mathfrak{A} есть максимальный элемент.

Доказательство.

Зафиксируем какой-нибудь кардинал κ , который строго больше, чем |A|. Пусть η — функция выбора для $\mathcal{P}(A)\setminus\{\varnothing\}$. Используя трансфинитную рекурсию, определим $f:\subseteq\kappa\to A$ по правилу

$$f(\beta) = \eta(\{a \in A \mid a>_A a' \text{ для всех } a' \in \operatorname{range}(f \upharpoonright_{\beta})\}).$$

Легко видеть, что для любых $\beta_1,\beta_2\in \mathsf{dom}\,(f)$,

$$\beta_1 < \beta_2 \implies f(\beta_1) <_A f(\beta_2).$$

. .

Доказательство (окончание).

Из этого мы выводим два следствия.

1. f инъективна. Стало быть, $\mathrm{dom}\,(f) \neq \kappa$, а потому $\mathrm{dom}\,(f) = \alpha$ для некоторого $\alpha < \kappa$, причём

$$\{a \in A \mid a>_{\mathcal{A}} a'$$
 для всех $a' \in \mathsf{range}(f)\} = \varnothing$.

2. range (f) является цепью в $\mathfrak A$. Значит, у range (f) есть хотя бы одна верхняя грань в $\mathfrak A$, которую мы обозначим за a_{\circ} .

Разумеется, a_{\circ} окажется максимальным элементом в $\mathfrak A$ (в противном случае мы бы получили противоречие с (1)).

Пусть $\mathfrak{A} = \langle A, \leqslant_A \rangle$ — ч.у.м., в котором у любой цепи имеется верхняя грань. Тогда для каждого $a \in A$ в \mathfrak{A} есть макс. элемент $a' \geqslant_A a$.

Доказательство.

Случай, когда $A=\varnothing$, тривиален. Поэтому будем считать, что $A\neq\varnothing$. Зафиксируем произвольное $a\in A$. Возьмём

$$B := \{b \in A \mid a \leqslant_A b\}$$
 u $\leqslant_B := \leqslant_A \cap B \times B$.

Очевидно, $\mathfrak{B} = \langle B, \leqslant_B \rangle$ будет ч.у.м., которое удовлетворяет условию леммы Цорна. Стало быть, в \mathfrak{B} есть максимальный элемент a'. При этом $a \leqslant_A a'$ и, кроме того, a' окажется максимальным в \mathfrak{A} .

Немного трансфинитной комбинаторики

Теорема (в ZFC)

Пусть X бесконечно. Тогда $|X \times X| = |X|$.

Доказательство.

Рассмотрим

$$M \ := \ \Big\{ f \mid f : U \xrightarrow[\text{Ha}]{\text{1-1}} U \times U, \ \text{где} \ U \subseteq X \ \text{и} \ U \neq \varnothing \Big\}.$$

Поскольку X бесконечно, у него есть счётное подмножество, которое, разумеется, равномощно собственному декартову квадрату. Поэтому $M \neq \varnothing$. Определим

$$\leq$$
 := $\{(f_1, f_2) \in M \times M \mid f_1 \subseteq f_2\}.$

Очевидно, $\mathfrak{M} = \langle M, \leqslant \rangle$ является ч.у.м.

◆ロ → ◆部 → ◆注 → 注 り へ で

Доказательство (продолжение).

Давайте проверим, что в $\mathfrak M$ у каждой цепи имеется верхняя грань, а значит, к $\mathfrak M$ применима лемма Цорна.

Пусть S — произвольная цепь в \mathfrak{M} . Возьмём

$$f_{S} := \bigcup_{f \in S} f.$$

Легко видеть, что f_S будет биекцией из $\mathrm{dom}\,(f_S)$ на $\mathrm{range}\,(f_S)$, причём

$$\mathsf{dom}\,(f_S) \ = \ \bigcup_{f \in S} \mathsf{dom}\,(f) \quad \mathsf{u} \quad \mathsf{range}\,(f_S) \ = \ \bigcup_{f \in S} \mathsf{range}\,(f).$$

. .

Доказательство (ещё продолжение).

Покажем, что range $(f_S)= {\sf dom}\,(f_S) imes {\sf dom}\,(f_S)$. Поскольку S является цепью в \mathfrak{M} , имеет место

$$\bigcup_{f_1,f_2\in S}\operatorname{dom}\left(f_1\right)\times\operatorname{dom}\left(f_2\right)\ =\ \bigcup_{f\in S}\operatorname{dom}\left(f\right)^2.$$

(здесь и далее мы часто пишем U^2 вместо $U \times U$; просьба не путать с множеством всех функций из 2 в U). Следовательно,

$$\operatorname{range}(f_S) = \bigcup_{f \in S} \operatorname{range}(f) = \bigcup_{f \in S} \operatorname{dom}(f)^2 = \bigcup_{f_1, f_2 \in S} \operatorname{dom}(f_1) \times \operatorname{dom}(f_2) = \left(\bigcup_{f \in S} \operatorname{dom}(f)\right)^2 = \operatorname{dom}(f_S)^2.$$

Стало быть, $f_S \in M$. Более того, $f_S \geqslant f$ для любого $f \in S$. В итоге f_S оказывается верхней гранью (и даже супремумом) для S в \mathfrak{M} .

Доказательство (и ещё продолжение).

По лемме Цорна в $\mathfrak M$ есть максимальный элемент f_{\circ} . Для краткости обозначим dom (f_{\circ}) через Y. Гипотетически возможны два случая.

«Хороший случай»: Допустим, что $|X\setminus Y|\leqslant |Y|$. Тогда

$$|Y| \leqslant |X| = |X \setminus Y \sqcup Y| \leqslant |\{0,1\} \times Y| \leqslant |Y \times Y| = |Y|$$

откуда |X|=|Y| по теореме К.–Ш.–Б., а потому $|X\times X|=|X|.$

<u>«Плохой случай»</u>: Теперь допустим, что $|Y| < |X \setminus Y|$. В частности, Y равномощно некоторому $Z \subseteq X \setminus Y$. Очевидно,

$$(Y \sqcup Z)^2 = Y^2 \sqcup (Y \times Z) \sqcup (Z \times Y) \sqcup Z^2,$$

причём
$$\left|Z^{2}\right|=\left|Z\times Y\right|=\left|Y\times Z\right|=\left|Y^{2}\right|=\left|Y\right|=\left|Z\right|.$$

Доказательство (окончание).

Далее, возьмём

$$V := (Y \times Z) \sqcup (Z \times Y) \sqcup Z^2.$$

Таким образом, $(Y \sqcup Z)^2 = Y^2 \sqcup V$. Заметим, что

$$|Z| \leq |V| = |\{0,1,2\} \times Z| \leq |Z \times Z| = |Z|,$$

откуда |V|=|Z| по теореме К.–Ш.–Б. Пусть g — какая-нибудь биекция из Z на V. Определим $h: (Y\cup Z)\to (Y\cup Z)^2$ по правилу

$$h(x) := \begin{cases} f_{\circ}(x) & \text{если } x \in Y; \\ g(x) & \text{если } x \in Z. \end{cases}$$

Разумеется, h будет биекцией, т.е. $h \in M$. Но $h > f_{\circ}$ — противоречие. Выходит, что «плохой случай» невозможен.

Если $0 < |X| \leqslant |Y|$ и Y бесконечно, то $|X \times Y| = |Y|$.

Доказательство.

Ясно, что

$$|Y| \leqslant |X \times Y| \leqslant |Y \times Y| = |Y|,$$

откуда $|X \times Y| = |Y|$ по теореме К.-Ш.-Б.

Иными словами, если X и Y непусты, и хотя бы одно из них бесконечно, то

$$|X \times Y| = \max\{|X|, |Y|\},\$$

где $\max \{...\}$ обозначает «максимальный/наибольший эл-т $\{...\}$ ».

Пусть $|X| \leqslant |Y|$ и Y бесконечно. Тогда $|X \cup Y| = |Y|$.

Доказательство.

Легко видеть, что

$$|Y| \leqslant |X \cup Y| = |X \setminus Y \sqcup Y| \leqslant |\{0,1\} \times Y| = |Y|,$$

откуда $|X \cup Y| = |Y|$ по теореме К.-Ш.-Б.

Иными словами, если хотя бы одно из X и Y бесконечно, то

$$|X \cup Y| = \max\{|X|, |Y|\}.$$

Пусть |X| < |Y| и Y бесконечно. Тогда $|Y \setminus X| = |Y|$.

Доказательство.

В силу предыдущего следствия,

$$|Y| = \max\{|X|, |Y|\} = |X \cup Y| = |X \cup Y \setminus X| = \max\{|X|, |Y \setminus X|\}.$$

Поскольку
$$|Y| \neq |X|$$
, мы получаем $|Y| = |Y \setminus X|$.

Пусть X бесконечно. Тогда $|X^*| = |X|$.

Доказательство.

Вспомним, что $X^* = \bigcup_{n \in \mathbb{N}} X^n$, где X^n — множество всех функций из n в X. По индукции легко показать, что

$$\left|X^{n+1}
ight| \ = \ |X|$$
 для всех $n\in\mathbb{N}.$

При этом $X^0 = \{\varnothing\}$. Стало быть,

$$|X^*| = |X^* \setminus X^0| = \left| \bigcup_{n \in \mathbb{N}} X^{n+1} \right| = |\mathbb{N} \times X| = |X|$$

(проверка третьего равенства — простое упражнение).

