Resumos de CAL

June 2021

1 Problemas NPC

1.1 Circuit-SAT

Há uma atribuição de valores lógicos às entradas de um circuito que torna as saídas verdadeiras?

1.2 SAT

(Satisfação booleana) Há uma atribuição de valores lógicos que torna a expressão verdadeira?

1.3 3-CNF-SAT

Variante de SAT, com 3 literais apenas

1.4 Clique Problem

Há um clique (subgrafocompleto) de tamanho $\geq k$?

Um clique de um grafo não dirigido é um subconjunto dos seus vértices, tal que, para quaisquer pares de vértices u e v neste subconjunto, existe uma aresta do grafo que liga os vértices u e v.

1.5 Subset Sum Problem

Há um subconjunto de soma zero?

1.6 Vertex Cover

Há um conjunto com vértices $\leq k$ que toca em todas as arestas?

1.7 Hamiltonian Cycle

Verificar se existe um ciclo que visita cada vértice exatamente uma vez

1.8 Directed Hamiltonian Cycle

Mesma coisa que acima mas num grafo dirigido

1.9 TSP

Há um ciclo com peso $\leq k$ que passa em todos os vértices?

1.10 Independent Set

Um conjunto independente de um grafo G = (V, E) é um subconjunto $V_I \subseteq V$, tal que não há dois vértices em V_I que partilham uma aresta de E

* $u, v \in V_I$ não podem ser vizinhos em G.

O grafo G tem um conjunto independente de tamanho geqk?

1.11 Jogging Problem

Considere um grafo não dirigido G, admitindo arestas paralelas e anéis, com pesos inteiros positivos nas arestas, no qual se distingue um vértice home.

O problema da caminhada (Jogging (J)) consiste em verificar se existe um caminho de peso total k, começando e terminando em home, sem repetir arestas

1.12 Steiner Tree Problema

Seja G=(V,E) um grafo não dirigido com pesos não negativos e Seja $S\subseteq V$ um subconjunto de vértices, chamados terminais.

Uma árvore de Steiner é uma árvore em G que contém todos os vértices de S

Determinar se existe uma árvore de Steiner de peso total que não excede um número natural k pré-definido

Nome	Complexidade Temporal	Complexidade Espacial
Merge Sort	$O(n \log n)$	O(n)
Quicksort	$O(n^2)$ pior caso / $O(nlogn)$	O(1)
Cálculo de x^n DC	$O(\log n)$	$O(\log n)$
Pesquisa Binária	$O(\log n)$	S (10g 11)
Soma de subconjuntos naive	$O(2^n)$	
Combinação ${}^{n}C_{k}$ DP	$O(k \cdot (n-k))$	O(n-k)
LIS (Longest Increasing Subsequence) PD	$O(n^2)$	O(n)
Prob Troco DP	O(nn)	O(n)
Representação Grafo: Matriz de adjacências	O(titit)	O(N)
Representação Grafo: Lista de adjacências		O(V) O(E + V)
Ordenação Topológica (Inserções / Eliminações em	O(V + E)	O(E + V)
tempo constante)	O(V + E)	
Caminho mais curto (CMC)		
CMC grafo dirigido não pesado (bfs)	O(V + E)	O(V)
CMC grafo dirigido pesado (dijkstra)	$O((V + E) \cdot log V)$ ou $O(V \cdot$	O(V)
Civic grato dirigido pesado (dijkstra)	log(V) com fibonacci heaps	
CMC grafo dirigo com arestas de peso negativo	$O(E \cdot V)$	
(Bellman-Ford)	$O(E \cdot V)$	
CMC grafo dirigidos acíclicos (ordenação topológica)	O(V + E)	
Decrease-Key para filas de prioridades	O(Y + E)	
D-K naive	O(n)	
D-K naive D-K melhorado	$O(\log n)$	
D-K memorado D-K optimizado (Fibonacci Heaps)	O(1)	
_ ,	$\frac{O(1)}{O(V (V + E) \cdot log V)}$	
Caminho mais curto entre todos os pares de vértices:	$O(V (V + E) \cdot log V)$	
Dijkstra Caminho mais curto entre todos os pares de vértices:	0(11/3)	
Floyd-Warshall	$O(V ^3)$	
Algoritmo de Prim	$O(V ^2)$ sem fila de prioridade;	
Algoritmo de Frim	$O(V ^2)$ sem ma de prioridade; $O(E \log V)$ com fila de priori-	
	$O(E \log V)$ com ma de prioridade.	
Algoritmo de Kruska	O(E log E) ou $O(E log V)$	
Cálculo de Low()	$O(E \log E)$ of $O(E \log V)$	
Ford-Fulkerson	O(E + V) O(F E), onde F é o fluxo	
FOIG-Fulkerson	$O(F \mid E \mid)$, onde F e o nuxo máximo	
Edmonds-Karp	$\frac{\text{maximo}}{O(V E ^2)}$	
Algoritmo de Dinic	O(V E) $O(V ^2 E)$	
-	<u> </u>	
Algoritmo de Dinic em Redes Unitárias	$O(V ^{\frac{1}{2}} E)$	
Calculo grafo de resíduos	$O(F \mid E \mid log \mid V \mid)$?	
Encontrar circuito de Euler em grafo não dirigido	O(E + V)	
Emparelhamento de tamanho máximo num grafo	$O(\sqrt{ V }\cdot E)$	
bipartido(Hopcroft-Karp/Dinic)	0/17/ 17/ 17/	
Emparelhamento de peso máximo num grafo bipar-	$O(V \cdot E \cdot log_{ E / V +1} V)$	
tido pesado (Algoritmo Húngaro)	0/17/	
Emparelhamento de peso máximo num grafo	$O(V \cdot E \cdot log V)$	
genérico pesado (Galil-Micali-Gabow)	0 (
Emparelhamento de tamanho máximo num grafo	$O(\sqrt{ V }_{\dot{3}} E)$	
genérico (Micali-Vazirani)	ů.	
Gale-Shapley	$O(n^2)$	
Gale-Shapley com listas de preferências incompletas	$O(n_{internos} \cdot n_{hospitais})$	
Pesquisa Exata Naive	$O(P \cdot T)$	0 (17)
Pesquisa Exata baseado em autómato finito	O(T)	$O(P \cdot \Sigma)$
Pesquisa Exata KMP		
Edit Distance	$\frac{O(T + P)}{O(P \cdot T)}$	$O(P \cdot T)$