28BYJ-48 步进电机:

步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲: 当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个来控制角位移量,从而达到准确定位的目的;同时您可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

步进电机 28BY J48 型四相八拍电机,电压为 DC5V—DC12V。当对步进电机施加一系列连续不断的控制脉冲时,它可以连续不断地转动。每一个脉冲信 号对应步进电机的某一相或两相绕组的通电状态改变一次,也就对应转子转过一定的角度(一个步距角)。当通电状态的改变完成一个循环时,转子转过一个齿距。 四相步进电机可以在不同的通电方式下运行,常见的通电方式有单(单相绕组通电)四拍(A-B-C-D-A。。。),双(双相绕组通电)四拍(AB-BC-CD-DA-AB-。。。),八拍(A-AB-B-BC-C-CD-D-DA-A。。。)

驱动方式: (4-1-2相驱动)

导线颜色	1	2	3	4	5	6	7	8
5红	+	+	+	+	+	+	+	+
4橙	_	_						-
3黄		-	-	-				
2粉				-	-	-		
1蓝						-	-	_

一 CCW方向旋转 (轴伸端视) 方向

红线接电源 5V, 橙色电线接 P1.3 口, 黄色电线接 P1.2 口, 粉色电线接 P1.1 口, 蓝色接 P1.0 口。

由于单片机接口信号不够大需要通过 ULN2003 放大再连接到相应的电机接口,如下:

橙	黄	粉	蓝	十六制 (P1 口)
1	0	0	0	0x08
1	1	0	0	0x0c
0	1	0	0	0x04
0	1	1	0	0x06
0	0	1	0	0x02
0	0	1	1	0x03
0	0	0	1	0x01
1	0	0	1	0x09

顺序刚好相反

所以可以定义旋转相序

uchar code CCW[8]={0x08, 0x0c, 0x04, 0x06, 0x02, 0x03, 0x01, 0x09}; //逆时

钟旋转相序表

uchar code CW[8]={0x09, 0x01, 0x03, 0x02, 0x06, 0x04, 0x0c, 0x08}; //正时

钟旋转相序表

主要技术参数					N=64						
电机型号	电压 V	相数	相电阻Ω ±10%	步距角度	减速比	起动转矩 100P. P. S g. cm	起动频率 P. P. S	定位转矩 g. cm	摩擦转矩 g. cm	嘈声 dB	绝缘介 电强度
28BYJ48	5	4	300 (5. 625/64	1:64	≥300	≥550	≥300	-	≤35	600VAC

C 语言代码:

#include<AT89X52.h>

#include <intrins.h>

#define uchar unsigned char

#define uint unsigned int

uchar code CCW[8]={0x08, 0x0c, 0x04, 0x06, 0x02, 0x03, 0x01, 0x09}; //逆时钟旋转相序表

```
uchar code CW[8] = \{0x09, 0x01, 0x03, 0x02, 0x06, 0x04, 0x0c, 0x08\}; //正时
钟旋转相序表
 sbit K1=P3<sup>2</sup>; //反转按键
 sbit K2=P3<sup>3</sup>; //正转按键
 sbit K3=P3<sup>4</sup>; //停止按键
 sbit FMQ=P3<sup>6</sup>; // 蜂鸣器
void delaynms (uint aa)
 uchar bb;
  while(aa--)
  for (bb=0; bb<115; bb++) //1ms 基准延时程序
void delay500us (void)
 int j;
 for(j=0; j<57; j++)
  {
void beep (void)
 uchar t;
 for (t=0; t<100; t++)
  delay500us();
 FMQ=!FMQ; //产生脉冲
 FMQ=1; //关闭蜂鸣器
}
```

void motor ccw(void)

```
uchar i, j;
                           //电机旋转一周,不是外面所看到的一
 for (j=0; j<8; j++)
周,是里面的传动轮转了一周
 {
  if(K3==0)
  break; //如果 K3 按下, 退出此循环
for(i=0;i<8;i++) //旋转45度
 P1=CCW[i];
  delaynms(10); //调节转速
}
 }
void motor_cw(void)
 uchar i, j;
 for (j=0; j<8; j++)
  if(K3==0)
  break; //如果 K3 按下, 退出此循环
for(i=0;i<8;i++) //旋转 45 度
 P1=CW[i];
  delaynms(2); //调节转速
void main (void)
uchar r;
uchar N=64; //因为步进电机是减速步进电机,减速比的 1/64,
     //所以 N=64 时, 步进电机主轴转一圈
while(1)
```

```
if(K1==0)
   beep();
  for (r=0;r<N;r++)
   motor_ccw(); //电机逆转
   if(K3==0)
   beep();
  break;
  else if (K2==0)
   beep();
      for(r=0;r<N;r++)
   motor_cw(); //电机反转
   if(K3==0)
   beep();
  break;
   }
  else
  P1=0xf0; //电机停止
}
```

附: 步进电机小知识(转)

1. 什么是步进电机?

步进电机是一种将电脉冲转化为角位移的执行机构。通俗一点讲: 当步进驱动器接收到 一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(及步进角)。您可以通过控制脉冲个来控制角位移量,从而达到准确定位的目的;同时您可以 通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。

2. 步进电机分哪几种?

步进电机分三种:永磁式 (PM),反应式 (VR) 和混合式 (HB) 永磁式步进一般为两相,转矩和体积较小,步进角一般为 7.5 度 或 15 度; 反应式步进一般为三相,可实现大转矩输出,步进角一般为 1.5 度,但噪声和振动都很大。在欧美等发达国家 80 年代已被淘汰; 混合式步进是指混合了永磁式和反应式的优点。它又分为两相和五相:两相步进角一般为 1.8 度而五相步进角一般为 0.72 度。这种步进电机的应用最为广泛。

3. 什么是保持转矩 (HOLDING TORQUE)?

保持转矩(HOLDING TORQUE)是指步进电机通电但没有转动时,定子锁住转子的力矩。它是步进电机最重要的参数之一,通常步进电机在低速时的力矩接近保持转矩。由于步进电机的输出力矩随速度的增大而不断衰减,输出功率也随速度的增大而变化,所以保持转矩就成为了衡量步进电机最重要的参数之一。比如,当人们说 2N. m 的步进电机,在没有特殊说明的情况下是指保持转矩为 2N. m 的步进电机。

4. 什么是 DETENT TORQUE?

DETENT TORQUE 是指步进电机没有通电的情况下,定子锁住转子的力矩。 DETENT TORQUE 在国内没有统一的翻译方式,容易使大家产生误解;由于 反应式步进电机的转子不是永磁材料,所以它没有 DETENT TORQUE。

- 5. 步进电机精度为多少? 是否累积?
- 一般步进电机的精度为步进角的 3-5%, 且不累积。
- 6. 步进电机的外表温度允许达到多少?

步进电机温度过高首先会使电机的磁性材料退磁,从而导致力矩下降乃至于失步, 因此电机外表允许的最高温度应取决于不同电机磁性材料的退磁点;

- 一般来讲,磁性材料的退磁点都在摄氏 130 度以上,有的甚至高达摄氏 200 度以上,所以步进电机外表温度在摄氏 80-90 度完全正常。
- 7. 为什么步进电机的力矩会随转速的升高而下降?

当步进电机转动时,电机各相绕组的电感将形成一个反向电动势;频率越高,反向电动势越大。在它的作用下,电机随频率(或速度)的增大而相电流减小,从而导致力矩下降。

8. 为什么步进电机低速时可以正常运转, 但若高于一定速度就无法启动, 并伴有啸叫声?

步进电机有一个技术参数: 空载启动频率,即步进电机在空载情况下能够正常启动的脉冲频率,如果脉冲频率高于该值,电机不能正常启动,可能发生丢步或堵转。在有负载的情况下,启动频率应更低。如果要使电机达到高速转动,脉冲频率应该有加速过程,即启动频率较低,然后按一定加速度升到所希望的高频(电机转速从低速升到高速)。

9. 如何克服两相混合式步进电机在低速运转时的振动和噪声?

步进电机低速转动时振动和噪声大是其固有的缺点,一般可采用以下方案来克服:

- A. 如步进电机正好工作在共振区,可通过改变减速比等机械传动避开共振区;
- B. 采用带有细分功能的驱动器,这是最常用的、最简便的方法;
- C. 换成步距角更小的步进电机,如三相或五相步进电机;
- D. 换成交流伺服电机, 几乎可以完全克服震动和噪声, 但成本较高;
- E. 在电机轴上加磁性阻尼器, 市场上已有这种产品, 但机械结构改变较大。
- 10. 细分驱动器的细分数是否能代表精度?

步进电机的细分技术实质上是一种电子阻尼技术(请参考有关文献),其主要目的是减弱或消除步进电机的低频振动,提高电机的运转精度只是细分技术的一个附带功能。比如对于步进角为 1.8°的两相混合式步进电机,如果细分驱动器的细分数设置为 4,那么电机的运转分辨率为每个脉冲 0.45°,电机的精度能否达到或接近 0.45°,还取决于细分驱动器的细分电流控制精度等其它因素。不同厂家的细分驱动器精度可能差别很大;细分数越大精度越难控制。

11. 四相混合式步进电机与驱动器的串联接法和并联接法有什么区别?

四相混合式步进电机一般由两相驱动器来驱动,因此,连接时可以采用串联接法或并联接法将四相电机接成两相使用。串联接法一般在电机转速较的场合使用,此时需要的驱动器输出电流为电机相电流的 0.7 倍,因而电机发热小;并联接法一般在电机转速较高的场合使用(又称高速接法),所需要的驱动器输出电流为电机相电流的 1.4 倍,因而电机发热较大。

12. 如何确定步进电机驱动器的直流供电电源?

A. 电压的确定

混合式步进电机驱动器的供电电源电压一般是一个较宽的范围(比如 IM483 的供电电压为 12~48VDC),电源电压通常根据电机的工作转速和响应要求来选择。如果电机工作转速较高或响应要求较快,那么电压取值也高,但注意电源电压的纹波不能超过驱动器的最大输入电压,否则可能损坏驱动器。

B. 电流的确定

供电电源电流一般根据驱动器的输出相电流 I 来确定。如果采用线性电源,电源电流一般可取 I 的 $1.1\sim1.3$ 倍;如果采用开关电源,电源电流一般可取 I 的 $1.5\sim2.0$ 倍。

13. 混合式步进电机驱动器的脱机信号 FREE 一般在什么情况下使用?

当脱机信号 FREE 为低电平时,驱动器输出到电机的电流被切断,电机转子处于自由状态(脱机状态)。在有些自动化设备中,如果在驱动器不断电的情况下要求直接转动电机轴(手动方式),就可以将 FREE 信号置低,使电机脱机,进行手动操作或调节。手动完成后,再将 FREE 信号置高,以继续自动控制。

14. 如果用简单的方法调整两相步进电机通电后的转动方向?

只需将电机与驱动器接线的 A+和 A-(或者 B+和 B-)对调即可。

四相五线减速步进电机 28BYJ-48 原理、仿真及演示程序(使用 ULN2003A 驱动)减速步进电机 28BYJ-48 的原理如下图:

中间部分是转子,由一个永磁体组成,边上的是定子绕组。当定子的一个绕组通 电时,将产生一个方向的电磁场,如果这个磁场的方向和转子磁场方向不在同一 条直线上,那么定子和转子的磁场将产生一个扭力将定子扭转。

依次改变绕组的磁场,就可以使步进电机正转或反转(比如通电次序为 A->B->C->D 正转,反之则反转)。而改变磁场切换的时间间隔,就可以控制步进 电机的速度了,这就是步进电机的驱动原理。

由于步进电机的驱动电流较大,单片机不能直接驱动,一般都是使用 ULN2003 达林顿阵列驱动,当然,使用下拉电阻或三极管也是可以驱动的,只不过效果不是那么好,产生的扭力比较小。参考: 减速步进电机 28BY J-48 最简单的驱动方法

28BYJ-48 的内部结构请见 这里

下面是一个步进电机的演示程序:

```
#include <reg52.h>
sbit key=P2<sup>0</sup>; //按键控制步进电机的方向
unsigned char speed=5; //步进电机的转速
//八拍方式驱动, 顺序为 A AB B BC C CD D DA
unsigned char code
clockWise[] = {0x01, 0x03, 0x02, 0x06, 0x04, 0x0c, 0x08, 0x0d};
void delay (unsigned char z)
unsigned char x, y;
for (x=0; x \le z; x++)
for (y=0; y<110; y++);
void main()
unsigned char i;
while(1)
for (i=0; i<8; i++)
if (key)
            //按键未按下,正转
P0=clockWise[i];
delay(speed);
else //按键按下, 反转
P0=clockWise[8-i];
delay(speed);
```

 $\verb|http://www.brsbox.com/filebox/down/fc/79bf41133cc59eaf2ca9531a5382557| b$

