

Surface Areas and Volume of a Cuboid and Cube Ex 18.2 Q27 Answer:

We have.

Volume of the godown $(V) = 40 \,\mathrm{m} \times 25 \,\mathrm{m} \times 10 \,\mathrm{m}$

Volume of each crate $(v) = 1.5 \text{ m} \times 1.25 \text{ m} \times 0.5 \text{ m}$

We need to find the maximum number of crates in the godown that can be placed Hence, the number of crates that can be stored,

$$n = \frac{V}{v}$$
=\frac{40 \text{ m} \times 25 \text{ m} \times 10 \text{ m}}{1.5 \text{ m} \times 1.25 \text{ m} \times 0.5 \text{ m}}
= 10666.67

But, we can not place this amount of crates in the godown, as this is not an integer. So, we can place maximum 10666 crates in the godown.

Surface Areas and Volume of a Cuboid and Cube Ex 18.2 Q28 Answer:

We have.

Length of the wall $(L) = 10 \,\mathrm{m}$

 $=1000 \, cm$

Height of the wall $(H) = 4 \,\mathrm{m}$

= 400 cm

Thickness of the wall $(T) = 24 \,\mathrm{cm}$

Dimension of the brick is 24 cm × 12 cm × 8 cm

We need to find the number of bricks

Here.

Volume of the wall,

$$V = L \times H \times T$$
$$= (1000 \times 400 \times 24) \text{ cm}^3$$

Dimensions of the brick are, 24 cm × 12 cm × 8 cm

So, number of bricks in the wall,

$$n = \frac{V}{24 \text{ cm} \times 12 \text{ cm} \times 8 \text{ cm}}$$
$$= \frac{1000 \times 400 \times 24}{24 \times 12 \times 8}$$
$$= 4166.67$$

As this is not an integer, we should take least integer greater than 4166.67. So, we need $\boxed{4167}$ bricks to build the wall.

******* END ******