Компьютерная обработка результатов измерений

Лекция 3. Теория физических измерений. Систематические и Лекция 4. Теория оценок.

Емельянов Эдуард Владимирович

Специальная астрофизическая обсерватория РАН Лаборатория обеспечения наблюдений

22 марта 2021 года

Измерения и величины

- Погрешность
- 3 Метод наименьших квадратов
- 4 Правило «трех сигм»
- 5) Иррегулярно распределенные данные

Измерения и величины

Мерой называется средство измерений, предназначенное для воспроизведения и хранения значения физической величины. Результатом сравнения оцениваемой вещи с мерой является именованное число, называемое **значением величины**.

Физические величины

- постоянные (инварианты, константы, априорно фиксированные значения);
- изменяющиеся (по определенному закону от t);
- случайные (не имеющие точного значения).

Единицы измерения, размерность.

Скалярные, векторные, комплексные, тензорные величины. Метрология.

Виды измерений

- **Прямое** при котором искомое значение физической величины получают непосредственно.
- Косвенное на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной.
- Совместные проводимые одновременно для нескольких неодноименных величин для определения зависимости между ними.
- Совокупные при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.
- Равноточные выполненные одинаковыми по точности средствами измерений.
- **Неравноточные** выполненных различающимися по точности средствами измерений и (или) в разных условиях.

Виды измерений

Однократное, многократное

Статическое для величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения.

Динамическое для изменяющейся по размеру физической величины.

Абсолютное основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант.

Относительное сравнение с эталонными мерами.

Представление результатов измерений

Графическое

Табличное

	A	В	С	D	E
1	Доходы от ярмарки				
	Товар	Количество	Цена	Общая	Доля от прибыли
2				стоимость	в %
3	Сдобные булочки	130	10	1300	13%
4	Пирожки	130	10	1300	13%
5	Соки на разлив	140	10	1400	
6	Разделочные доски	50	50	2500	25%
7	Швабры	15	100	1500	15%
8	Табуретки	10	200	2000	20%
9	Итого:			10000	

Погрешность

Погрешность — отклонение измеренного значения величины от её истинного (действительного) значения.

Абсолютная погрешность, Δx (напр., RMS); относительная погрешность, $\delta x = \Delta x/\overline{x}$; приведенная погрешность $\gamma x = \Delta x/N_x$ (нормировочный коэффициент).

По причине возникновения

Инструментальные определяются погрешностями применяемых средств измерений.

Методические обусловлены несовершенством метода, а также упрощениями, положенными в основу методики.

Субъективные обусловлены качествами экспериментатора.

Погрешность

По характеру проявления

Случайные обусловлены совокупностью внешних факторов, влияющих на результат эксперимента.

Систематические связаны с влиянием прибора на измеряемую величину или методическими ошибками, выявляются лишь сменой прибора/метода/экспериментатора.

Промахи наиболее сильно себя проявляют и связаны с неисправностью прибора или экспериментатора.

Средняя квадратическая погрешность среднего арифметического

$$\sigma_{\langle x \rangle} = \frac{\sigma_x}{\sqrt{n}} = \sqrt{\frac{\sum_{i=1}^n (\overline{x_i} - \langle x \rangle)^2}{n(n-1)}}.$$

Доверительная вероятность

$$p = P(X_0 \leqslant x \leqslant X_1)$$

Математическое ожидание

Если известен закон распределения (мат. ожидание и дисперсия: μ и σ), то

$$P\Big({<}X{>}{-}z_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\leqslant\mu\leqslant{<}X{>}{+}z_{1-\frac{\alpha}{2}}\frac{\sigma}{\sqrt{n}}\Big)=$$

где z_{α} – α -квантиль нормального распределения

Квартили: первый (0.25-квантиль), второй (0.5-квантиль, медиана) и третий (0.75-квантиль).

lpha—квантилем называется число x_lpha : $P(X\leqslant x_lpha)\geqslant lpha$ и $P(X\geqslant x_lpha)\geqslant 1-lpha$. Т.е. по интегральной функции распределения $F(x_lpha)=lpha$. А т.к. $P(a\leqslant X\leqslant b)=F(b)-F(a)$, получаем:

$$P(x_{1-\frac{\alpha}{2}} \leqslant X \leqslant x_{1+\frac{\alpha}{2}}) = \alpha.$$

Пример

В 64 наблюдениях получено: $S_1=\sum x=600,\ S_2=\sum (x-\overline{x})^2=3800.$ Вычислить 90% доверительный интервал матожидания. Решение: $\sigma=\sqrt{S_2/(n-1)}=7.72;\ < x>=S_1/n=9.375.\ F(0.05)=1.96,$ отсюда найдем границы интервала $< x>\pm F(0.05)\sigma/\sqrt{n}: \overline{x}\in [7.484,11.266]$ с точностью 90%.

Математическое ожидание

Если закон распределения неизвестен, то

$$P\left(\overline{X} - t_{1-\frac{\alpha}{2},n-1} \frac{S}{\sqrt{n}} \leqslant \mu \leqslant \overline{X} + t_{1-\frac{\alpha}{2},n-1} \frac{S}{\sqrt{n}}\right) = 1 - \alpha,$$

где S – несмещенный RMS. Величина

$$T = \frac{\overline{X} - \mu}{S/\sqrt{n}}$$

имеет распределение Стьюдента, а $t_{lpha,n-1}$ – его квантили.

Пример: $\overline{X}=10$, $S_n=2$, n=11 (10 степеней свободы), по таблице для двухстороннего распределения Стьюдента с вероятностью 95% $T_{10}^{95}=2.228$. Тогда доверительный интервал есть $\overline{X}\pm TS_n/\sqrt{n}$, т.е. $\mu\in(8.6565,11.3440)$.

Дисперсия

Если известно среднее, можно воспользоваться распределением $\chi^2.$

$$P\left(\frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{(1+\alpha)/2,n}^2} \leqslant \sigma^2 \leqslant \frac{\sum_{i=1}^{n} (X_i - \mu)^2}{\chi_{(1-\alpha)/2,n}^2}\right) = \alpha.$$

Если же среднее неизвестно, то

$$P\left(\frac{(n-1)S^2}{\chi^2_{(1+\alpha)/2,n-1}} \le \sigma^2 \le \frac{(n-1)S^2}{\chi^2_{(1-\alpha)/2,n-1}}\right) = \alpha$$

Правила вычисления погрешностей

$$\Delta(\sum a_n) = \sum \Delta a_n.$$

$$\prod (a_i \pm \Delta a_i) = \prod a_i \prod (1 \pm \delta a_i) \approx \prod a_i (1 \pm \sum \delta a_i),$$
$$(a[1 \pm \delta a])^n \approx a^n (1 \pm n\delta a).$$

В сложных функциях вида $y = f(x_1, \dots, x_n)$ можно оценить погрешность, воспользовавшись приближением:

$$\delta y \approx \left| \frac{dy}{y} \right| = \left| \frac{df(x_1, \dots, x_n)}{f(x_1, \dots, x_n)} \right|,$$

в котором следует заменить $dx_i/_{x_i}=\delta x_i$ – относительная погрешность измерения величины $x_i,\,dx_i=\Delta x_i$ – абсолютная погрешность. Все слагаемые необходимо суммировать по абсолютной величине.

Метод наименьших квадратов

Пусть имеется функция f(x|a), зависящая от аргумента x и набора параметров a. Данной функции соответствует набор пар данных (x_n,y_n) , причем $y_n=f(x_n|a)+\varepsilon_n$, где ε_n – случайная ошибка. Математическое ожидание ошибки $\overline{\varepsilon}=0$, ее среднеквадратическое отклонение равно σ_n . Для оценки a (аппроксимации набора данных заданной функцией) необходимо минимизировать выражение

$$\Phi = \sum_{n=1}^{N} \left(\frac{y_n - f(x_n|a)}{\sigma_n^2} \right)^2.$$

При этом подразумевается, что число измерений превышает число параметров $a. \,$

Пример: линейная зависимость

Пусть y=ax+b, x_n известны с пренебрежимо малой погрешностью, y_n – результаты измерений с нормальным распределением, $\overline{y_i}=ax_i+b$.

Минимизируем величину $Y=\sum (y_i-\overline{y_i})^2$, $\frac{\partial Y}{\partial a}=0$, $\frac{\partial Y}{\partial b}=0$:

$$a = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - \left(\sum x_i\right)^2} = \frac{\overline{xy} - \overline{x}\,\overline{y}}{\overline{x^2} - (\overline{x})^2},$$

$$b = \frac{\sum x_i^2 \sum y_i - \sum x_i \sum x_i y_i}{n \sum x_i^2 - \left(\sum x_i\right)^2} = \frac{\overline{x^2} \, \overline{y} - \overline{x} \, \overline{x} \overline{y}}{\overline{x^2} - (\overline{x})^2}.$$

$$\sigma^2 = \frac{n}{n-2} \Big(\overline{y^2} - (\overline{y})^2 - a^2 \big[\overline{x^2} - (\overline{x})^2 \big] \Big), \qquad \sigma_a^2 = \frac{\sigma^2}{n \big(\overline{x^2} - (\overline{x})^2 \big)}, \quad \sigma_b^2 = \sigma_a^2 \overline{x^2}.$$

Аппроксимация МНК

Аппроксимация МНК

Некоторые зависимости, можно свести к линейным. Например, $y=\mathrm{e}^{ax+b}\Longrightarrow \ln y=ax+b.$

Возможно также сведение зависимостей к системам линейных уравнений $A\vec{x}=\vec{b}$, ранг матрицы A должен быть больше количества искомых переменных. Минимизируем $(A\vec{x}-\vec{b})^T(A\vec{x}-\vec{b})$, что приводит к системе уравнений

$$A^T A \vec{x} = A^T \vec{b} \implies \vec{x} = (A^T A)^{-1} A^T \vec{b}.$$

Или $\vec{x} = A^+ \vec{b}$ (псевдообратная матрица), в Octave — «левое деление» $A \backslash b$.

Пример

Пусть заведомо величина изменяется по закону $y=a_0+a_1\,\mathrm{e}^{-t}+a_2te^{-t}$. В матричном виде Y=TA, где T – функциональная матрица, у которой в первом столбце размещены единицы (соответствует умножению на a_0), во втором — функция e^{-t} , а в третьем — $t\,\mathrm{e}^{-t}$. Коэффициенты A найдем при помощи МНК: $A=T\backslash Y$.

```
t = [0 0.3 0.8 1.1 1.6 2.3]';
y = [0.6 0.67 1.01 1.35 1.47 1.25]';
T = [ones(size(t)) exp(-t) t.*exp(-t)];
A = T\y
```


Правило «трех сигм»

При гауссовом распределении случайной величины вероятность

$$P(|x - \overline{x}| < 3\sigma) = 2\Phi(3) = 0.9973.$$

 $(\Phi$ – нормальное интегральное распределение).

Правило трех сигм: если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратичного отклонения.

Теорема Ляпунова: случайная величина, являющаяся суммой большого числа взаимно независимых случайных величин, имеет нормальное распределение.

Иррегулярно распределенные данные

БПФ, корреляция, периодограммы и т.п.

- Resampling (если данные достаточно плотно расположены).
- Определение периода как расстояния между минимумами (максимумами) из аппроксимации.
- · Auto Regressive Moving Average (ARMA).
- Фильтрация Калмана.
- Метод Ваничека (аппроксимация набора данных рядом синусоид).
- Периодограмма Ломба-Скаргла (ортогонализация пар синусоид введением задержки во времени, Scargle, 1981).
- Irregular Autoregressive Model (IAR).
- · Complex IAR (CIAR).

Спасибо за внимание!

mailto

eddy@sao.ru edward.emelianoff@gmail.com

