3

数字 3 代表第 3 组,根 据实际组号双击后修改

数字逻辑实验报告

实验1

学	期	2022-2023 学年第 1 学期		实验日期	学生填写		
学	院	学生	填写	专 业	学生填写		
班	级	学生填写	学 号	学生填写	姓 名	学生填写	
组	号	学生填写	学 号	学生填写	姓 名	学生填写	
评 阅 内 容 此栏内容由教师填写							

任务一	任务二	总结	格式	成绩

题 目

实验 1: XXXXXX (根据具体实验修改)

一、实验目的

(参考实验指导书撰写)

- 1. 掌握计数器的工作原理
- 2. 掌握利用集成器件设计计数器的方法
 - 二、任务一设计与实现

1. 要求

(参考实验指导书撰写)

报告部分,尽量格式、字体统一, 减少不要的空行;各部分要有相 应的文字描述,不能只有图没有 文字。

任务:设计一个十进制计数器

要求:

- (1) 输入端包括: 时钟端、清零端、计数控制端。 输出端包括: 4 位计数输出端和 1 位进位输出端。
- (2) 课前编写好程序。
- (3) Quartus II 13.0 软件进行编辑、编译、仿真。
- (4) 根据实验平台进行引脚分配并下载演示实验结果。
- 2. 设计思路

(根据要求先用文字进行描述如何实现该电路,并给出电路的总体框图。)

图 1 为十进制计数器原理框图,本次实验共涉及三个模块。其中输入信号可由拨动开关提供,显 示模块可以由直接由 LED 显示或通过七段译码电路送数码管显示, 计数器模块包括计数逻辑和清零逻 辑,其中计数逻辑完成计数器加1的功能,清零逻辑在计数到9时输出清零信号,在下一个时钟到来时 完成计数器清零。

3

数字逻辑实验报告

实验 1

图 1 十进制计数器原理框图

3. 详细设计

(根据总体框图进行设计,要有文字性描述并给出电路原理图或代码。如涉及到有关真值表、化简、状态图等内容,需要列出。)

表 1 74163 功能表

输入控制端					功能		
CLRN	LDN	ENP	ENT	CLK	划肥		
0	X	X	X	1	清零		
1	0	X	X	1	置数(接收输入端 ABCD 数据)		
1	1	0	X	X	保持		
1	1	X	0	X	保持		
1	1	1	1	1	计数器加1		

图 2 用 74163 同步清零功能实现的十进制加法计数器

3

数字逻辑实验报告

实验 1

4. 仿真验证

对于波形需有文字性描述或解释,说明电路设计的正确性;波形图上测试向量尽量完备,要能看清数据,且在图上能够按测试功能做出标识。

图 3 十进制计数器仿真波形

从仿真波形图上可以看到, en 为低电平时计数器不计数, en 为高电平时进入计数状态, clk 每一个上升沿,计数器加 1;当计数器从 0000 计数到 1001 时,计数器清 0,从波形上可以验证本电路设计符合要求。

5. 引脚分配

说明输入输出引脚分别连接到实验台上的哪些部件,如开关SW1, LED1、数码管等。

输入端 en 接拨动开关。

输入端的时钟信号 clk,选择 EXTEND-MODULE1 中 FPGA EA2 上的 PIN P20;

4 个输出连接红色信号指示灯 D4~D0。

具体引脚分配见表 2。

表 2 十进制计数器所选平台端口及对应引脚编号

平台端口	SW1	EA2	LED1	LED2	LED3	LED4
引脚号	PIN_N18	PIN_P20	PIN_U12	PIN_V12	PIN_V15	PIN_W13
输出端名称	en	clk	y[3]	y[2]	y[1]	y[0]

参考表 2, 在 Quartus II 中进行引脚分配并锁定, 如图 4 所示

	From	То	Assignment Name	Value	Enabled
1		i clk	Location	PIN_P20	Yes
2		en en	Location	PIN_N18	Yes
3		₩ Y	Location		Yes
4			Location	PIN_W13	Yes
5			Location	PIN_V15	Yes
6			Location	PIN_V12	Yes
7			Location	PIN_U12	Yes
8	< <new>></new>	< <new>></new>	< <new>></new>		

图 4 引脚分配图

6. 实验现象

(根据输入, 记录下观察到的现象; 也可用表的形式将现象记录下来)

组员3

数字逻辑实验报告

实验 1

三、任务二设计与实现

- 1. 要求
- 2. 设计思路
- 3. 详细设计
- 4. 仿真验证
- 5. 引脚分配
- 6. 实验现象

四、总结

(本次实验的收获,主要是理论或知识上的收获,可以是电路设计、硬件调试中遇到的一些问题,自己 是如何解决的。不用写感想)

如电路设计时的问题

1、语法错误

10170 Verilog HDL syntax error at vote4_1.v(2) near text "input"; expecting ";"

Module 最后一行需要添加";"。

10170 Verilog HDL syntax error at vote4_1.v(14) near text "endmodule"; expecting "end"

"begin"和 "end" 需要成对出现,丢掉了一个 end。

.

根据实验序号修改

组(3

据实际组号双击后修改 数字逻辑实验报告

实验 1

