#### Lecture 9 recap

- 1) Two properties that a linear span must have.
- 2) Linear span inside linear span theorem.
- 3) 'Useless' vector
- 4) Definition of subspace.
- 5) How to show a subset is not a subspace using 1).
- 6) How to show a subset is a subspace by writing as linear span.

#### Lecture 10

Subspaces (cont'd) Linear independence

Let u be a nonzero vector in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ .

span $\{u\}$  is the set of all linear combinations (or scalar multiples) of u.

Geometrically, span $\{u\}$  is a straight line passing through the origin.



Let u be a nonzero vector in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ .

$$(\ln \mathbb{R}^2) u = (u_1, u_2), \operatorname{span}\{u\} = \{(cu_1, cu_2) | c \in \mathbb{R}\}$$

(explicit representation)

(implicit representation i.e. equation of line?)



Let u be a nonzero vector in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ .

$$(\ln \mathbb{R}^2) u = (u_1, u_2), \operatorname{span}\{u\} = \{(cu_1, cu_2) | c \in \mathbb{R}\}$$

(explicit representation)

(implicit representation i.e. equation of line?)

Remember that a line in  $\mathbb{R}^3$  cannot be represented by a single linear equation.

$$u$$
 $(u_1, u_2, u_3)$ 
origin

Let u, v be two nonzero vectors in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ .

 $span\{u,v\}$  is the set of all linear combinations of u and v.

$$= \{ su + tv \mid s, t \in \mathbb{R} \}$$



Let u, v be two nonzero vectors in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ .

 $span\{u,v\}$  is the set of all linear combinations of u and v.

$$= \{ su + tv \mid s, t \in \mathbb{R} \}$$

If u and v are not parallel, span $\{u,v\}$  is a plane containing



the origin.

Let u, v be two nonzero vectors in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ .

 $span\{u,v\}$  is the set of all linear combinations of u and v.

$$= \{ su + tv \mid s, t \in \mathbb{R} \}$$

What if u and v are parallel?

 $span\{u,v\} = span\{u\}$  = straight line passing through the origin.

If u and v are not parallel,

$$(\ln \mathbb{R}^2)$$
 span $\{u,v\} = \mathbb{R}^2$ .

(In  $\mathbb{R}^3$ ) span{u,v} = { $su+tv \mid s,t \in \mathbb{R}$ } (explicit representation)

(implicit representation, i.e. equation of the plane?)

$$u = (u_1, u_2, u_3), v = (v_1, v_2, v_3)$$



#### Remark (All subspaces of $R^2$ )

The following are all the subspaces of  $\mathbb{R}^2$ :

#### Remark (All subspaces of $R^3$ )

The following are all the subspaces of  $\mathbb{R}^3$ :

# Theorem (Solution set of homogeneous systems)

The solution set of a homogeneous system of linear equations in n variables is a subspace of  $\mathbb{R}^n$ .

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = 0 \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = 0 \end{cases}$$

Investigate the solution set of the following homogeneous linear system:

$$\begin{cases} x - 2y + 3z = 0 \\ -2x + 4y - 6z = 0 \\ 3x - 6y + 9z = 0 \end{cases}$$

$$\begin{pmatrix}
1 & -2 & 3 & 0 \\
-2 & 4 & -6 & 0 \\
3 & -6 & 9 & 0
\end{pmatrix}$$
Gaussian
$$\begin{pmatrix}
1 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
Elimination

$$\begin{pmatrix}
1 & -2 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Geometrically, the solution set is a plane in  $\mathbb{R}^3$  containing the origin.

Investigate the solution set of the following homogeneous linear system:

$$\begin{cases} x - 2y + 3z = 0 \\ -2x + 4y - 6z = 0 \\ -3x + 7y - 8z = 0 \end{cases}$$

$$\begin{pmatrix}
1 & -2 & 3 & 0 \\
-2 & 4 & -6 & 0 \\
-3 & 7 & -8 & 0
\end{pmatrix}$$
Gaussian
$$\begin{pmatrix}
1 & 0 & -5 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$
Elimination

$$\begin{pmatrix}
1 & 0 & -5 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & -5 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Geometrically, the solution set is a line in  $\mathbb{R}^3$  passing through the origin.

Investigate the solution set of the following homogeneous

linear system: 
$$\begin{cases} x - 2y + 3z = 0 \\ 4x + y + 2z = 0 \\ -3x + 7y - 8z = 0 \end{cases}$$

The solution set is the zero space {**0**}.

#### Abstract definition of subspace

Let V be a non-empty subset of  $\mathbb{R}^n$ .

Then V is a subspace of  $\mathbb{R}^n$  if and only if

for all  $u, v \in V$  and  $c, d \in \mathbb{R}$ ,  $cu + dv \in V$ .



#### Discussion on redundancy

If  $u_k$  distailinear dombination doft  $u_1, u_2, ..., u_{k-1}$ , then

$$span\{u_1, u_2, ..., u_{k-1}\} = span\{u_1, u_2, ..., u_{k-1}, u_k\}$$

We say that  $u_k$  is redundant in the span of  $\{u_1, u_2, ..., u_{k-1}, u_k\}$ .

I am redundant (2)
Having me around does
not 'add value'



# Definition (linear independence)

Let  $S = \{u_1, u_2, ..., u_k\} \subseteq \mathbb{R}^n$ . Consider the solutions to the following equation (values of  $c_1, c_2, ..., c_k$ )

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = \mathbf{0}$$
 (\*)

- 1) Clearly,  $c_1 = 0$ ,  $c_2 = 0$ ,...,  $c_k = 0$  is a solution. This is called the trivial solution to (\*).
- 2) S is called a linearly independent set if (\*) has only the trivial solution. In this case, we say that  $u_1, u_2, ..., u_k$  are linearly independent vectors.

# Definition (linear independence)

Let  $S = \{u_1, u_2, ..., u_k\} \subseteq \mathbb{R}^n$ . Consider the solutions to the following equation (values of  $c_1, c_2, ..., c_k$ )

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = \mathbf{0}$$
 (\*)

- 2) S is called a linearly independent set if (\*) has only the trivial solution. In this case, we say that  $u_1, u_2, ..., u_k$  are linearly independent vectors.
- 3) S is called a linearly dependent set if (\*) has non-trivial solutions. In this case, we say that  $u_1, u_2, ..., u_k$  are linearly dependent vectors.

# Definition (linear independence)

Let  $S = \{u_1, u_2, ..., u_k\} \subseteq \mathbb{R}^n$ . Consider the solutions to the following equation (values of  $c_1, c_2, ..., c_k$ )

$$c_1 \mathbf{u}_1 + c_2 \mathbf{u}_2 + \dots + c_k \mathbf{u}_k = \mathbf{0}$$
 (\*)

(Only) trivial

solution to (\*)??

What does it mean?





Determine whether (1,-2,3), (5,6,-1), (3,2,1) are linearly independent vectors in  $\mathbb{R}^3$ .

Vector equation:

Linear system:

Determine whether (1,-2,3), (5,6,-1), (3,2,1) are linearly independent vectors in  $\mathbb{R}^3$ .

Solving linear system:

$$\begin{pmatrix}
1 & 5 & 3 & 0 \\
-2 & 6 & 2 & 0 \\
3 & -1 & 1 & 0
\end{pmatrix}
\xrightarrow{\text{Gaussian}}
\xrightarrow{\text{Elimination}}
\begin{pmatrix}
1 & 5 & 3 & 0 \\
0 & 16 & 8 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

How many solutions does the linear system have?

$$\begin{cases} a + 5b + 3c = 0 \\ -2a + 6b + 2c = 0 \\ 3a - b + c = 0 \end{cases}$$

Determine whether (1,-2,3),(5,6,-1),(3,2,1) are linearly independent vectors in  $\mathbb{R}^3$ . The vectors are Solving linear system: linearly dependent.

$$\begin{pmatrix} 1 & 5 & 3 & 0 \\ -2 & 6 & 2 & 0 \\ 3 & -1 & 1 & 0 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 5 & 3 & 0 \\ 0 & 16 & 8 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 5 & 3 & 0 \\
0 & 16 & 8 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

How many solutions does the equation have?

$$a(1,-2,3)+b(5,6,-1)+c(3,2,1)=(0,0,0)$$

Determine whether (1,0,0,1), (0,2,1,0), (1,-1,1,1) are linearly independent vectors in  $\mathbb{R}^4$ .

Vector equation:

Linear system:

#### Linear independence: 1 or 2 vectors

 $S = \{u\}$ . When is S a linearly independent set?

When does the equation  $c\mathbf{u} = \mathbf{0}$  have only the trivial solution c = 0?

 $S = \{u\}$  is a linearly independent set if and only if  $u \neq 0$ .

#### Linear independence: 1 or 2 vectors

 $S = \{u, v\}$ . When is S a linearly independent set?

When does the equation  $c_1 \mathbf{u} + c_2 \mathbf{v} = \mathbf{0}$  have non trivial solutions for  $c_1$  and  $c_2$ ?

 $S = \{u, v\}$  is a linearly dependent set if and only if u and v are scalar multiples of each other.

#### What if a set contains the zero vector?

Let S be a finite set of vectors from  $\mathbb{R}^n$ . Prove that if  $\mathbf{0} \in S$ , then S is a linearly dependent set.

**Proof:** 

# Theorem (another way to look at linear independence)

Recall the discussion on redundancy.

Let  $S = \{u_1, u_2, ..., u_k\}$  be a set of vectors in  $\mathbb{R}^n$ , where  $k \ge 2$ .

1) S is linearly dependent if and only if at least one  $u_i \in S$ 

can be written as a linear combination of the other vectors in S, that is,

$$\mathbf{u}_{i} = a_{1}\mathbf{u}_{1} + a_{2}\mathbf{u}_{2} + \dots + a_{i-1}\mathbf{u}_{i-1} + a_{i+1}\mathbf{u}_{i+1} + \dots + a_{k}\mathbf{u}_{k}$$

for some  $a_1,...,a_{i-1},a_{i+1},...,a_k \in \mathbb{R}$ .

# Theorem (another way to look at linear independence)

Recall the discussion on redundancy.

Let  $S = \{u_1, u_2, ..., u_k\}$  be a set of vectors in  $\mathbb{R}^n$ , where  $k \ge 2$ .

2) S is linearly independent if and only if no vector in S

can be written as a linear combination of the other vectors in S.

#### Remark

So a set a vectors is <u>linearly dependent</u> implies that there exists at least one 'redundant' vector in the set.

A set a vectors is <u>linearly independent</u> implies that there is no 'redundant' vector in the set.

 $S = \{(2,4),(1,0),(0,3)\}$ . Is S a linearly independent set?

 $S = \{(1,0,0),(0,2,0),(0,0,-5)\}$ . Is S a linearly independent set?

#### Theorem (guaranteed dependence)

Let  $S = \{u_1, u_2, ..., u_{\overline{k}}\}$  be a set of vectors in  $\mathbb{R}^{n}$ .

If k > n, then S is linearly dependent.

#### Example (guaranteed dependence)

- 1) A set of three or more vectors in  $\mathbb{R}^{2}$  is always linearly dependent.
- 2) A set of four or more vectors in  $\mathbb{R}^3$  is always linearly dependent.

For two vectors in  $\mathbb{R}^2$  or  $\mathbb{R}^3$ , recall the following:

 $S = \{u, v\}$  is a linearly dependent set if and only if u and v are scalar multiples of each other (they lie on the same line).



For three vectors in  $\mathbb{R}^3$ :

 $S = \{u, v, w\}$  is a linearly dependent set if and only if they lie on the same line or the same plane (when their initial points are placed at the origin).

origin u

{u} is a linearlyindependent set

w origin

*u,v,w* lie on the same line

 $\{u,v\}$  is a linearly

dependent set

 $\{u,v,w\}$  is a linearly

dependent set

For three vectors in  $\mathbb{R}^3$ :

 $S = \{u, v, w\}$  is a linearly dependent set if and only if they lie on the same line or the same plane (when their initial points are placed at the origin).



*u,v,w* lie on the same plane

{u} is a linearlyindependent set

{u,v} is a linearly dependent set

 $\{u,v,w\}$  is a linearly

dependent set

For three vectors in  $\mathbb{R}^3$ :

 $S = \{u, v, w\}$  is a linearly dependent set if and only if they lie on the same line or the same plane (when their initial points are placed at the origin).



For three vectors in  $\mathbb{R}^3$ :

 $S = \{u, v, w\}$  is a linearly dependent set if and only if they lie on the same line or the same plane (when their initial points are placed at the origin).  $w \notin \text{span}\{u, v\}$ 



{u} is a linearlyindependent set

 $\{u,v\}$  is a linearly

independent set



 $\{u,v,w\}$  is a linearly

independent set

#### End of Lecture 10

Lecture 11:

Linear independence (cont'd)

Bases

Dimensions (till Example 3.6.6)