$$x^2 - 4x + 2 = -x^2 - 8x$$

MI

$$x^2 + 2x + 1 = 0$$
 or $(x + 1)^2 = 0$
or $2(x + 1)^2 = 0$

A2

MI

$$U_3 = 4$$
 Al

$$y = \frac{2(\sqrt{2}+1)}{(\sqrt{2}-1)(\sqrt{2}+1)}$$
 MI At

$$y = 2 + 2N2$$

Al c.a.o

4. a)
$$(x+2)^2 + 8$$
b) 8

5. a)
$$16-8x < 30$$
 or $4-2x < \frac{7}{2}$ My $-8x < 14$ or $-4x < 7$ of MI $2 > -\frac{7}{4}$ A! $\frac{1}{2}$ Do NUT ACCOST $-\frac{7}{4} < x$

- WHELL GUYTTON SCORES O
- Do NOT ACCOPT $3 < \alpha < \frac{2}{3}$
- · ACCEPT AND INSTAND OF DR

17 NO MARICS ART SCORED THAN AWARD ONE MARK FOR 13+16+19+...

ALL MARKS FEE DEPENDENT ON QUANTITIES BENC PART OF

7. (a)
$$-\frac{2-2}{7-1}$$
 op $\frac{2-(-2)}{1-7}$ M1
 $-\frac{2}{3}$ A1
 $y-2=-\frac{2}{3}(x-1)$ or $y+2=\frac{1}{3}(x-7)$ M1 At $2x+3y=8$ A1 e.g.,

6) GRADINT OF
$$\frac{3}{2}$$
 IS IMPURD OR USED BY $\frac{3}{2}$ IS IMPURD OR USED BY $\frac{3}{2}$ ($x+7$) My $\frac{3}{2}$ ($x+7$) My $\frac{3}{2}$ AY $\frac{3}{2}$ $\frac{3$

SUBSTITUTES
$$J=1$$
 INTO THERE $||J_2||$ MI AT $C(1,-1)$ OR $y=-1$ AI AT A 1 AT A 2 MI A 39

ACTIVENATIVE LAB = NSZ OF OR BC = NIIT

SHARE GI TOUCHING AT ORIGIN GI CROSSING AT (-310) GI

TEANSIATION INTO

CORRECT OR INTARCAPTS BUTH A!

CORRECT OF INTARCAPTS BUTH A!

9. a)
$$500 = 77 + (n-1) \times 3$$
 or practical method MI $h = 142$
 11×10^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}
 142^{-1}

(1) (1)
$$\frac{4x^2 + 4x + 1}{9x^4}$$
 M1 $\frac{4}{9}x^{-2} + \frac{4}{9}x^{-3} + \frac{1}{9}x^{-4}$ A3

b)
$$\left(-\frac{8}{9}x^{-3}\right) - \frac{4}{3}x^{-4} + \frac{4}{9}x^{-5}$$
 A2 -1 eeoo
4 how Non SIMPUFIED FRACTIONS

c)
$$\left(-\frac{4}{9}x^{-1}\right) - \frac{2}{9}x^{-2} - \frac{1}{27}x^{-3} + C$$
Allow non Simplific Practicals
But No Double Fractions

$$B_{1}$$

$$B_{2}^{2} + (2m+3)2 + m^{2} = 0$$

$$B_{3}^{2} - 4\alpha c = 0$$

$$4m^{2} + 12m + 9 - 4m^{2}$$

$$12m = -9$$

$$M_{1}$$

$$M_{2}^{2} - \frac{3}{4}$$

$$M_{3}^{2} - 4x \ln x + 9 -$$

12. (a)
$$\frac{dy}{dx} = 12a^2 - 7$$
 My

GRADINT IMPURD OR STATED AS 5 A1

$$y + 4 = 5(x-1)$$
 of 41
 $f \cdot g \quad y = 5x - 9$

(b)
$$4x^3 - 7a - 1 = 5x - 9$$
 M1
 $x^3 - 3x + 2 = 0$ M1
 $(x-1)^2(x+2) = 0$ A1

x = -2, y = -19 or (-2, -19) A2