

- a) course code => MA 2033
 - b) (ourse title =) Linear Algebra
- c) email address =)

 nirun. 18@cse.mrt.ac.1k

 mrmnirun@gmail.com
- d) Index No =)

180431V

- e) No of pages => 9
- f) signature = p. glisar

$\langle i \rangle$								
/	1) · U, W are subspace of v							
	<u>.'. ⊘</u> € U							
	<u>o</u> e w							
	• 0 + 0 = 0							
	· OGU+W							
	:. U+W is an nonempty.							
	· let x1, x2 & U+W							
	=) x1 = U1 + W1 (U1 & U and W1 & W)							
	$u_2 = u_2 + w_2 (u_2 \in U \text{and} w_2 \in W)$							
	$n_1 + n_2 = (u_1 + w_1) + (u_2 + w_2)$							
	= (u1 + w1 + u2 + w2) association							
	ras 7							
	= (u1+u2) + (w1+w2) [as (u1+w2) & u (w1+w2) & w							
	: M1 + M2 E U+W							
	Ly satisfies closure under							
	add ftir,							
	· let a scaler k.							
	k m = k (u,+w,)							
	= k 4, + k w, distributive law							
	Scalar multi							
	= kuitkmi [oskui 6 U]							
	= KUI + KWI OS KUI 6 U 7							
	KM EU+W							
	closure under scalar multiplicat							
	satisfied							

							•			7
	, 1	لمايد	1 0	a •	subset o	£ \	<u> </u>	-	CV	
	V	4 00			, , , , , , , , , , , , , , , , , , , ,			W	E V	
_	1.1	T (V)	1 4	000	compty.			-		

· U+W gatesfy closure under addition

Scalar multiplication

· U+W is a subspace of

U+wisa subspace of V contains U, W

b) it must contain linear span of U and W

-'. Span Cu, w) ⊆ U+w —*

and if y e u+w +n-n.

7 = 7 + 2 . = 1 × 4 + 1 × 10

. Vis a linear combination of elements U, V, W and v & Span (u, w)

:. u+w c spon (u,w) - **

* , * 6 =)

U+w= spon Cu,w)

(y. frim

III) above proved

U+W= span Cu, w?

$$U+W = 3 pan \left\{ (1,3,-2,2,3), (1,4,-3,4,2), (2,3,-1,-2,4), (1,3,0,2,1), (2,5,3,2,1) \right\}$$

6 x 6 motorn form change and row red-ce.

$$\begin{bmatrix} 1 & 3 & -2 & 2 & 3 \\ 1 & 4 & -3 & 4 & 2 \\ 2 & 3 & -1 & -2 & 9 \\ 1 & 3 & 0 & 2 & 1 \\ 1 & 5 & -6 & 6 & 3 \\ 2 & 5 & 3 & 2 & 1 \end{bmatrix}$$

Basis of set (utw) = {(1,0,0,-4,7), (0,1,0,2,-2), (0,0,1,0,-1)}

nimension of (u+w) = 3//

 $= (r_1, r_2, \dots, r_n) \begin{cases} b_{11} \dots b_{1k} \\ o \circ o \circ o \circ \\ \vdots \\ o = - \vdots \end{cases} + \begin{bmatrix} o \circ o \circ o \circ \\ b_{21} \dots b_{2k} \\ o \circ o = - \vdots \\ \vdots \\ o \circ o = - \vdots \end{cases} + \dots$

+ --- o (bn, --- bne)

= +, [b,1 - - - b,e] + + [b2, b2, - . . b2e] + - - .

++ o [bnx - - - bne]

-'- RB 13 a linear combination of rous of By

[a, -- a, n] [h, -- h, e]
[an, -- amn] [bn, -- bne] $= \begin{bmatrix} +a_1 \\ 0 \\ 1 \\ \vdots \\ b_{nq} - - - b_{ne} \end{bmatrix} + \begin{bmatrix} 0 \\ b_{11} \\ 0 \\ \vdots \\ b_{n1} - - - b_{ne} \end{bmatrix}$ like + nat = ta, [b, --- bir] + taz [b21 --- bze] + --. + ram [bn . - - . bne] / -) row grace AB is sponned by row rectors of B · . row spoce of AB is contained in B's row 9 pace

111) ranke (AB) = dimension of row space of AB

in above result of tow groce of ABis contained in B

dimension of dimension of run space run space of AB afB

ronk (AB) < ronk (B) //

a) i) If (v1, u2, --.. un) linearly aderendant =) FI MI + KZ MZ + - . . + FN MN = 0 =)

(at lower one cofficerent)

(to) as Tis linear T (k, u) + k, 42 + - . . + k, un) = T (0) CT is linea.] k, T. u1 + k2T. u2 + _ __ + kn T. (un) = T (0, y) = 0.T. CV) here atleast one 1; \$0 9 T(y), T(u)), --- 3 linearly independent in U/ 11) It {u1, u2, ... un} linearly independent in V =) k1 u1 + k, u2 + --- + knun = 0=) a11 k; =0 apply transform of Tis linear E, T(U1)+ E2T (U2)+ --- + EnT (Un) = T (O. U) = 0 . TCy) =) k, = k, = - . kn = 0 = 2 T(u,), T(u2), - - . T(uy) } lineouty independent in V)

$$P(0) > C$$

$$P(1) = \alpha + b + C$$

$$P(-1) = \alpha - b + C$$

$$T(r) = \begin{bmatrix} c & \alpha+b+c \\ a-b+c & c \end{bmatrix}$$

$$= c \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + a \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Ronge of Tis spanned by

and they are linearly independent //

·) congider

$$\begin{cases}
C & \alpha + b + C \\
a - b + c & c
\end{cases} =
\begin{cases}
0 & 0 \\
0 & 0
\end{cases}$$

. C = 0

bornal of I spanned by [3] /

$$(i) = (i)$$

$$(\tau \cap J)$$

$$\begin{bmatrix} T C (12x) \end{bmatrix}_{0}^{1} = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 1 \end{bmatrix}$$

$$\left[7 \left(1 + n^2 \right) \right]_{\beta^1} = \left[\begin{array}{c} 1 \\ 2 \\ 1 \end{array} \right]$$