Leeds University Business School

Assessed Coursework Coversheet

For use with individual assessed work

Student ID Number:	2	0	1	5	9	6	9	1	8
Module Code:	LUBS33	370							
Module Title:	Applied	Econom	etrics						
Module Leader:	Muham	mad Ali N	lasir						
Declared Word Count:	2996								

Please read the following carefully and be accurate in your responses; they are all important:

	Delete as appropriate
By submitting this work I declare it is all my own work, other than where indicated by references. I have not colluded with others, re-submitted past work of my own, submitted any work done by others or by Generative AI unless indicated, or otherwise breached the University academic integrity rules. I understand that any discrepancies between this declaration and the assignment could result in an academic malpractice procedure.	YES
Read the full University of Leeds declaration of academic integrity here https://secretariat.leeds.ac.uk/wp-content/uploads/sites/109/2022/12/academic integrity.pdf	
My declared word count is accurate and I have not attempted to mislead. I understand that making a fraudulent statement about word count could result in an academic malpractice procedure, and/or may impact the mark.	YES
I have applied for an extension but have not heard yet whether it is granted. I am submitting this paper in the knowledge that I may request to submit a later version, if extension granted. Markers should be aware that this may not be my final version of the assignment. (Please indicate length of extension requested too, so we know when to expect updated submissions – delete two leaving the correct one visible)	NO
I am aware of the Generative AI category for this assignment (delete two, leaving the correct one visible), and have adhered to the guidance for that category.	RED

Assignments should be submitted in time but will be accepted (with late penalties) up to 14 days after deadline. Late penalties = 5 marks per 24hours late, down to a minimum of the bare pass mark (if pass standard).

Determinants of Inflation in Denmark and a Panel Data analysis of Denmark and 4 other countries.

Section I: Introduction

Inflation is defined as the sustained rise in the general price level (Blanchard, Amighini, & Giavazzi, 2021, p. 577).

Negative effects of inflation are well documented. For example, inflation induces overinvestment in the financial sector: as price instability increases, arbitrage opportunities grow (*ibid*, p. 4); this transfer of resources out of the productive sector can be "as large as a few percentage points of GDP and can even be seen at relatively low or moderate rates of inflation." (Mishkin & Posen, 1997, p. 4) Inflation also causes fiscal drag, which occurs when nominal income rises as real income and tax brackets remain frozen, decreasing disposable income in real terms; Fischer (1994, p. 14) estimates that an inflation rate of 10% could put the social cost of fiscal drag at 2-3% of GNP.

Due to these problems, governments around the world have decided to target low and stable inflation as a policy objective of their monetary authorities (Mishkin & Posen, 1997). These monetary authorities need a clear model for producing inflation forecasts (Masson, Savastano, & Sharma, 1997, p. 9) and must understand the determinants of inflation. This paper will contribute to this understanding by estimating the relationship between inflation and past inflation, money supply, exchange rates, and global energy prices. Inflation will be investigated first in Denmark, then also Norway, Sweden, Iceland and the UK.

Section II: Literature Review

Among economists, there are competing explanations for the fundamental causes of inflation. Friedman provides the well-known monetarist explanation where inflation is the result of money supply rising faster than output (Leeson & Palm, 2012, p. 3). This view is popular and

the relationship between money supply growth and inflation has been examined by a number of studies.

Holod (2000) uses a VEC model to investigate the relationship between price level, exchange rate and money supply in Ukraine. Holod (2000) finds that the influence of money supply on inflation is not very strong, which he explains is due to concurrent fluctuations in the money demand.

Lim & Sek (2015) explore panel data on 28 countries by estimating inflation as an ARDL model against money supply (M4) and a number of other regressors. In high inflation countries, every 1% increase in the money supply is found to induce a 0.77% increase in inflation, in the long-run. In low-inflation countries, increased money supply does not have a significant effect in the long-run and decreases inflation in the short-run in low inflation countries.

Money growth leads to inflation by increasing aggregate demand, known as demand-pull inflation. On the other hand, cost-push inflation, which follows a reduction in aggregate supply, has also been examined in the literature. Cost-push inflation is typically caused by high factor prices (Ellahi, 2017, p. 3). Global energy prices are one example of a variable which should have such an effect on factor prices, and this view is supported by existing evidence.

Jatuporn (2024) and Liang & Long (2018) both estimated the impacts of global oil price changes on CPI and PPI using ARDL and NARDL models to analyse Thailand and China, respectively. Both studies find that ARDL models do not find evidence of long-run effects of oil price shocks on inflation, however NARDL models can capture the effects at a 1% significance level. Jatuporn (2024) finds: +1% change in oil price led to +0.147% CPI change; -1% change in oil price led to -0.115% CPI change. Liang & Long (2018) did not

find significant long-run effects due to a drop in oil prices, but found a +1% change in oil price led to a +0.143% CPI change.

Finally, there is also a lot of evidence examining the effects of a currency's exchange rate on domestic prices. Movements in the exchange rate influence domestic prices through various channels, from direct effects on energy prices (discussed above) to indirect effects on import prices (Ha et al., 2019); this raises the price of inputs and thus the price of capital, reducing aggregate supply. The marginal effect of a 1% depreciation in the exchange rate on inflation is known as the exchange rate pass-through ratio (Ha et al., 2019, p. 271).

The exchange rate pass-through varies across countries and time (Ha, Kose, Ohnsorge, & Yilmazkuday, 2019, p. 284). Choudhri & Hakura (2001) estimated inflation as an ARDL model, using panel data of 71 countries. The explanatory variables were the nominal exchange rate and foreign CPI. They find that the long-run pass-through rates in Denmark, Sweden, Norway, and the UK are 0.24, 0.03, 0.13, and 0.03, respectively – Iceland did not form part of the panel. They also determine that the main reason for cross-country variation in the pass-through rate is due to the different inflationary regimes between countries.

Section III: Timeseries variables, data and models

A. Data sources

Data	Source
CPI	(IMF, 2024)
M3	(OECD, 2024)
Exchange Rate	(BIS, 2024)
Global Energy Prices	(FRED, 2024)

The literature varies between using real effective exchange rates (Deniz, Tekce, & Yilmaz, 2016) and nominal effective exchange rates (Choudhri & Hakura, 2001; Campa & Goldberg, 2005) – in this paper I will use the nominal exchange rate following from Campa &

Goldberg's (2005) model where it is the nominal rate that influences decision-makers at the microlevel.

B. Presenting and transforming the data

Table I contains the summary statistics for Denmark in the studied period (2000:1-2023:4). This includes the consumer price index (cpi) in 2015=100, money supply aggregate M3 (m), nominal effective exchange rate index (xr) in 2020=100, and the global energy price index (gep) in 2016=100.

Any monthly data was converted into quarterly data by taking the value for the last month of each quarter.

Table I

Statistic	cpi	m	xr	gep
Mean	94.527	1271726.000	96.050	153.268
Median	96.967	1394929.000	96.120	148.764
S.D.	10.845	377165.800	3.815	64.919
Min	75.429	507134.000	85.430	61.703
Max	117.867	1922206.000	103.240	350.124
Obs	96	96	96	96

Figure I represents the variables visually in the studied period (2000:1-2023:4).

Figure I

To reduce data variability and find elastic relationships (Jatuporn, 2024), all variables have been transformed into logarithmic functions (*lcpi*, *lm*, *lxr*, *lgep*).

C. Stationarity Testing

The Augmented Dickey-Fuller (ADF) test will be used to test for stationarity.

Each variable is first estimated as:

$$\Delta z_t = \gamma z_{t-1} + \sum_{i=1}^{i=p} \phi_i \Delta z_{t-i} + X + e_t$$

Where:

• Z = [lcpi, lm, lmxr, lgep];

- p is the number of lagged, differenced, dependent variables to include to eliminate serial correlation;
- $X = [\alpha, \lambda t]$, added if the variable is exhibiting drifting or trending behaviour;
- e_t is a stochastic error term.

The Breusch-Godfrey (BG) test is used to find how many autoregressive lags eliminate serial correlation. As all variables have non-zero means, they must have a drift/constant component. All variables – except lgep – appear to be increasing over time, and thus will also be tested with trend components.

Table II shows results for *lgep* estimated with a drift term and all other variables estimated with a trend term. BG test is included in Appendix 1 and ADF test in Appendix 2.

Table II

Variable	Lags (p)	Test statistic	5% critical value	MacKinnon p- value
lcpi	5	-2.131	-3.460	0.529
lm	0	-1.616	-3.455	0.786
lxr	3	-3.271	-3.458	0.0712
lgep*	1	-2.743	-1.662	0.0059***

^{***} denotes the 1% significance level

 H_0 : Random walk with or without drift

 $*H_0$: Random walk with drift

We do not accept the alternate hypothesis that *lcpi*, *lm*, *lxr* are trend-stationary. We accept the alternate hypothesis that *lgep* is stationary with drift.

lcpi, *lm*, and *lxr* are then re-estimated using the ADF¹ test with a drift constant and tested for serial correlation², shown in Table III.

Table III

Variable	Lags (p)	Test statistic	5% critical	MacKinnon p
			value	value
lcpi	5	-0.286	-1.663	0.388
lm	0	-1.937	-1.661	0.0279**
lxr	4	-2.095	-1.663	0.0196**

^{**} denotes the 5% significance level

 H_0 : Random walk with drift

We accept the null hypothesis that lcpi is a random walk with drift, and accept the alternative hypothesis that lm and lxr are drift-stationary processes due to their non-zero means.

As *lcpi* is non-stationary, it is differenced (=*dlcpi*) and tested again for stationarity. A BG test³ and then an ADF test⁴ are applied. As *dlcpi* has a non-zero mean, tests are conducted using a drift constant. Results are shown in Table IV.

Table IV

Variable	Lags (p)	Test statistic	5% critical	MacKinnon p-
			value	value
dlcpi	4	-4.114	-1.663	0.0000***

^{***} denotes the 1% significance level

We accept the alternate hypothesis that *dlcpi* is drift-stationary.

All stationary variables are displayed in Figure II.

² Appendix 3

¹ Appendix 4

³ Appendix 5

⁴ Appendix 6

Figure II

D. Inflation as an ARMA model

i. <u>Estimation</u>

dlcpi will be estimated as an ARMA(p,q) model:

$$dlcpi_{t} = \alpha + \sum_{i=1}^{i=p} \beta_{i} dlcpi_{t-i} + \sum_{i=0}^{i=q} \gamma_{i} \epsilon_{t-i} + \epsilon_{t}$$

To select lags (p and q), I will be using the AIC and BIC up to a maximum of p = q = 2.

Table V

Model	ARMA Specification	AIC	BIC
1	(0,1)	-706.9376	-701.8299
2	(0,2)	-706.9988	-699.3292
3	(1,0)	-707.9764	-702.8686
4	(1,1)	-706.2838	-698.6222
5	(1,2)	-704.5892	-694.3737

6	(2,0)	-706.2211	-698.5594
7	(2,1)	-704.2863	-694.0708
8	(2,2)	-713.3489	-700.5795

Figure III

Shown in Figure III and Table V, AIC selects model 8, ARMA(2,2), whereas SIC/BIC selects model 3, ARMA(1,0), i.e., a pure AR(1) model.⁵

Model 3:6

$$dlcpi_t = \beta_1 dlcpi_{t-1} + \epsilon_t$$

Variable	Coefficient	p-value
	(Robust Std. Err)	
$dlcpi_{t-1}$	0.380355	0.000***
	(0.1405789)	

^{***} denotes the 1% significance level

Model 8:7

$$dlcpi_t = \beta_1 dlcpi_{t-1} + \beta_2 dlcpi_{t-2} + \gamma_1 \epsilon_{t-1} + \gamma_2 \epsilon_{t-2} + \epsilon_t$$

Variable Coefficient p-value	e
------------------------------	---

⁵ Appendix 7 ⁶ Appendix 8

⁷ Appendix 9

	(Robust Std. Err)	
$dlcpi_{t-1}$	-0.899534	0.000***
	(0.2194136)	
$dlcpi_{t-2}$	0.076611	0.688
	(0.221312)	
ϵ_{t-1}	1.427597	0.000***
V -	(0.1399993)	
ϵ_{t-2}	0.5024687	0.006***
- -	(0.1556634)	

*** denotes the 1% significance level

Model 8 is chosen because the extra parameters which it adds are mostly very significant and make theoretical sense and, while the extra autoregressive term is insignificant, it decreases overall autocorrelation – this can be seen when estimating the correlogram for each model:

However, model 8 suffers from serial correlation – further autoregressive terms are added to reduce this until there is no serial correlation; this process is shown in Figure IV.

ARMA(4,2) is preferred to eliminate serial correlation, but its coefficients are mostly insignificant,⁸ whereas ARMA(3,2) contains significant results while exhibiting very small signs of autocorrelation and so is preferred. Regression results are shown in Table VI.⁹

Table VI

Variable	Coefficient (Robust Std. Err)	p-value
$dlcpi_{t-1}$	0.606	0.000***
	(0.125)	
$dlcpi_{t-2}$	-1.009	0.000***
	(0.0223)	
$dlcpi_{t-3}$	0.558	0.000***
	(0.131)	
ϵ_{t-1}	-0.163	0.050*
	(0.0830)	
ϵ_{t-2}	1.000	0.000***
· -	(1.92×10^{-6})	

^{*} denotes the 10% significance level

ii. <u>Analysis</u>

Regressing on *dlcpi* finds effects on the rate of change of period-on-period inflation in Denmark, i.e., the acceleration of Danish CPI. For example, a 1pp increase in inflation from quarters t-2 to t-1 will, on average, cause a 0.606pp increase in inflation from quarters t-1 to t.

The autoregressive coefficients indicate that inflation in past periods has varying effects on the present period; an increase in inflation by 1pp two periods ago will decrease present inflation by 1.009pp today. However, by summing past period coefficients we know that in general, a homogenous increase in past inflation (i.e., +1pp in all past periods) will increase inflation by 0.155pp today.

_

^{***} denotes the 1% significance level

⁸ Appendix 18

⁹ Appendix 19

The moving average coefficients indicate the impulse response due to an exogenous shock. The effects of a shock two periods ago are fully passed on to the current period; an inflation shock in the previous period is very close to conventional statistical significance and will cause an opposing change in inflation in the present period. The coefficients indicates that inflationary shocks in Denmark dissipate eventually, but slowly.

E. Estimating inflation as an ARDL model

i. Estimation

dlcpi will be estimated as an ARDL model:

$$dlcpi_{t} = \alpha + \sum_{i=1}^{i=p} \beta_{i}dlcpi_{t-i} + \sum_{i=0}^{i=q} \gamma_{i}lm_{t-i} + \sum_{i=0}^{i=r} \delta_{i}lxr_{t-i} + \sum_{i=0}^{i=s} \kappa_{i}lgep_{t-i} + \epsilon_{t}$$

Specification selection, i.e., choosing p, q, r, s, will be done on the basis of AIC/BIC testing and prevalence of autocorrelation. All 54 possible specification combinations will be checked and the entire table of results is available in Appendix 10.

Figure V

Figure VI

Model 11 is selected by both AIC and BIC, shown in Figure V and Figure VI.

This model does suffer from autocorrelation which can be eliminated by adjusting the model to ARDL(5,1,0,1).¹⁰

ARDL(5,1,0,1):

$$dlcpi_{t} = \beta_{1}dlcpi_{t-1} + \gamma_{1}lm_{t} + \gamma_{2}lm_{t-1} + \delta_{1}lxr_{t} + \kappa_{1}lgep_{t} + \kappa_{2}lgep_{t-1} + \epsilon_{t}$$

Table VII

Variable	Coefficient	p-value
	(Robust Std. Err)	
$dlcpi_{t-1}$	0.394	0.006***
	(0.139)	
$dlcpi_{t-2}$	-0.00215	0.981
	(0.0895)	
$dlcpi_{t-3}$	0.00469	0.962
- 0 0	(0.0983)	
$dlcpi_{t-4}$	0.473	0.000***
	(0.104)	
$dlcpi_{t-5}$	-0.401	0.004***
	(0.137)	
lm_t	0.0160	0.129
v	(0.0104)	
lm_{t-1}	-0.0159	0.127

¹⁰ Appendix 17

-

	(0.0103)	
lxr_t	-0.0164	0.294
	(0.0155)	
$lgep_t$	0.0197	0.000***
	(0.00311)	
$lgep_{t-1}$	-0.0171	0.000***
	(0.00304)	

** denotes the 5% significance level

ii. Analysis

Like the ARMA model, regressing on *dlcpi* finds a percentage point change in period-on-period inflation.

Most coefficients are insignificant, with only autoregressive and global energy prices being near a conventional significance level, indicating that changes in the money supply or nominal exchange rate have no measurable effect on inflation in Denmark. The effects of energy prices vary; a 1% increase in current global energy prices increases inflation by 1.97pp, but decreases inflation by 1.71pp in the next period, increasing it overall by 0.26pp in future periods.

The autoregressive terms also vary; in general, past increases in inflation increase current inflation: a 1pp increase in all past levels of inflation will on average increase current inflation by 0.466pp.

Section IV: Panel Data Estimation

Inflation will be modelled using the Fixed Effect, Random Effect, and Pooled OLS Models (FEM, REM, POLS). The units and their corresponding time periods are shown in Table VIII.

Table VIII

Unit	Time Period
Denmark	2000Q1-2023Q4 [no omissions]
Sweden	2000Q1-2023Q4 [no omissions]
Norway	2000Q1-2023Q4 [no omissions]

^{***} denotes the 1% significance level

Iceland	2000Q1-2023Q4 [no omissions]
United Kingdom	2000Q1-2023Q4 [no omissions]

A. Testing each model

	POLS	FEM	REM
dlcpi	Coefficient	Coefficient	Coefficient
	(Std. Err)	(Std. Err)	(Std. Err)
lm	-0.00145*	-0.00128	-0.00124
	(0.000849)	(0.00115)	(0.00109)
lxr	0.00291	-0.00425	-0.00317
	(0.00247)	(0.00320)	(0.00306)
lgep	0.00620***	0.0172***	0.00567***
	(0.000935)	(0.0264)	(0.000961)
F	0.000	00***	N/A
Breusch – Pagan	0.0000***	N/A	0.0000***
Hausman	N/A	0. 1	085

^{*} denotes the 10% significance level

Estimations and tests can be found for FEM/POLS, REM/POLS, and FEM/REM in Appendix 11, Appendix 12, and Appendix 13 respectively. Ultimately, REM is preferred.

B. Results of the REM

i. <u>Estimation</u>

After testing the model is re-estimated with cluster-robust standard errors. 11 The equation is:

$$dlcpi_{it}^* = \beta_0 + \beta_1 lm_{it}^* + \beta_2 lxr_{it}^* + \beta_3 lgep_{it}^* + \epsilon_{it}$$

Where
$$z_{it}^* = z_{it} - \lambda \bar{z}_{it}$$
 and $\lambda = 1 - \frac{\sigma_{\epsilon}}{\sqrt{T\sigma_u^2 + \sigma_{\epsilon}^2}}$.

Variable	Coefficient (Robust Std. Error)	p-value
lm.	-0.00124	0.318
· · · ·	(0.00124)	0.510

¹¹ Appendix 14

^{***} denotes the 1% significance level

lxr	-0.00317	0.446
	(0.00416)	
lgep	0.00567	0.000***
	(0.00125)	

*** denotes the 1% significance level

ii. Analysis

All variables are not significant at any conventional level except global energy prices. It is estimated that a 1% increase in global energy prices will increase inflation by 0.567pp in all sample countries. This supports our prior ARDL analysis that money supply and the exchange rate have no significant effect on inflation.

Section V: Inflation Targeting Logit Estimation

Previous inflation regressions estimated inflation as period-on-period inflation. However, inflation targeting in industrialised countries typically attempts to control for year-on-year (YoY) inflation (Hammond, 2012, p. 8). Consequently, YoY inflation will be used for assessing inflation targeting success; the YoY inflation for each country is shown in Figure VII and the equation is shown below.

$$inflation_{YoY} = \frac{cpi_t - cpi_{t-4}}{cpi_t}$$

Figure VII

I will be using a logistic model to fit the data as this model is present in the literature when estimating inflation targeting (Milas, Dergaides, Panagiotidis, & Papapanagiotou, 2024).

i. <u>Estimation</u>

The model is:

$$P(IT = 1) = \Lambda(\beta_1 + \beta_2 lgep + \beta_3 X)$$

Where P(IT = 1) is the probability a country is under 2% inflation and X is an array of variables X = [lm, lxr]; an LR test is applied to examine whether the X variables should be included as the model is primarily meant to examine the impact of global energy prices.

X is significant: LR $\chi^2(2) = 27.94$, $Prob > \chi^2 = 0.0000$. Consequently, the model is:

$$P(IT=1) = \Lambda(\beta_1 + \beta_2 lgep + \beta_3 lm + \beta_4 lxr)$$

Table IX shows that the model correctly classified 61.88% of estimates, indicating the model is a good fit.¹³

¹³ Appendix 16

¹² Appendix 15

Table IX

Logistic Model Estimation						
Prediction	Truly 1	Truly 0	Total			
$Pr(IT = 1) \ge 0.5$	120	79	199			
Pr(IT = 1) < 0.5	104	177	281			
Total	224	256	480			
Sensitivity	53.57%					
Specificity	69.14%					
Correctly Classified	61.88%					

Table X¹⁴ and Table XI¹⁵ present the marginal effects at average (MEA) and average marginal effects (AME), respectively.

 $Table\ X$

Variable	MEA	p-value
	(Delta-method Std. Error)	_
lgep	-0.426	0.000***
	(0.0678)	
lxr	0.0713	0.673
	(0.169)	
lm	0.282	0.000***
	(0.0598)	

Table XI

Variable	AME	p-value
	(Delta-method Std. Error)	
lgep	-0.385	0.000***
	(0.0510)	
lxr	0.0644	0.673
	(0.153)	
lm	0.255	0.000***
	(0.0491)	

<u>Analysis</u> ii.

Table X shows effects of a percentage increase of a variable from its average value. A 1% rise in global energy prices from its average its decreases the probability of being below 2%

Appendix 20Appendix 21

inflation by 42.6%, indicating that rising global energy prices destabilises interest targeting regimes. A 1% rise in the money supply from its average increases the probability of being below 2% inflation by 28.2%, indicating it helps to stabilise inflation.

Table XI shows the effects of a percent increase in a variable averaged across all values, echoing findings from Table X. On average, a 1% increase in the global price of energy decreases chances of being below 2% inflation by 38.5%; on average, a 1% increase in the money supply increases chances of being below 2% inflation by 25.5%.

Effects of the exchange rate are insignificant in both estimates, indicating little impact on inflation.

Section VI: Conclusion

This paper analysed the determinants of inflation, and the success of inflation targeting, in Denmark, Norway, Sweden, Iceland and the UK. Proposed determinants of inflation were the broad money supply M3, the nominal effective exchange rate, and global energy prices.

Inflation was found to have significant autoregressive coefficients in all AR models, indicating that any increase or decrease in inflation today will propagate into the future; the ARMA model suggests that in Denmark, inflationary shocks dissipate slowly on average. While current theory supports the idea that the money supply and exchange rate depreciation have positive relationships with inflation, ARDL and REM regressions were unable to verify this. Theoretical arguments and empirical findings that global energy prices have a positive effect on inflation were verified.

Finally, the logistic regression to analyse effects on the inflation targeting regime confirmed, unlike other models, that money supply does have a significant effect; however, the empirical evidence suggests a larger money supply makes inflation likelier to stay within target, which is counter to theoretical assumptions.

Bibliography

- BIS. (2024, 12 5). *Effective Exchange Rates*. Retrieved from BIS Data Portal: https://data.bis.org/topics/EER/data
- Blanchard, O., Amighini, A., & Giavazzi, F. (2021). *Macroeconomics: A European Perspective*. Harlow: Pearson.
- Campa, J. M., & Goldberg, L. S. (2005). EXCHANGE RATE PASS-THROUGH INTO IMPORT PRICES. *The Reveiw of Economics and Statistics*, 679-690.
- Choudhri, E. U., & Hakura, D. S. (2001). Exchange Rate Pass-Through to Domestic Prices: Does the Inflationary Environment Matter? International Monetary Fund.
- Deniz, P., Tekce, M., & Yilmaz, A. (2016). Investigating the Determinants of Inflation: A Panel Data Analysis. *International Journal of Financial Research*, 233-246.
- Ellahi, N. (2017). The Determinants of Inflation in Pakistan: An Econometric Analysis. *The Romanian Economic Journal*, 2-12.
- Fischer, S. (1994). *Modern Approaches to Central Banking*. Cambridge, MA: National Bureau of Economic Research.
- FRED. (2024, October 9). *Global price of Energy index*. Retrieved from Federak Reserve Bank of St. Louis: https://fred.stlouisfed.org/series/PNRGINDEXQ
- Ha, J., Kose, M. A., Ohnsorge, F., & Yilmazkuday, H. (2019). Inflation and Exchange Rate Pass-Through. In J. Ha, M. A. Kose, & F. Ohnsorge, *Inflation in Emerging and Developing Economies: Evolution, Drivers, and Policies* (pp. 271-317). Washington DC: The World Bank.
- Hammond, G. (2012). State of the art Inflation Targeting. London: Bank of England.
- Holod, D. (2000). The Relationship between price level, money supply and exchange rate in Ukraine. Kyiv, Ukraine: National University of Kiev-Mohyla.
- IMF. (2024, 07 12). *Consumer Price Index (CPI)*. Retrieved from IMF Data Portal: https://data.imf.org/?sk=4ffb52b2-3653-409a-b471-d47b46d904b5
- Jatuporn, C. (2024). Assessing the impact of global oil prices on domestic price levels in Thailand: A nonlinear ARDL investigation. *Energy Nexus*.
- Leeson, R., & Palm, C. G. (2012). *Collected Works of Milton Friedman*. Retrieved from Hoover Institution Library & Archives: https://miltonfriedman.hoover.org/internal/media/dispatcher/271018/full
- Liang, J., & Long, S. (2018). Asymmetric and nonlinear pass-through of global crude oil price to China's PPI and CPI inflation. *Economic Research*, 240-251.
- Lim, Y. C., & Sek, S. K. (2015). An Examination on the Determinants of Inflation. *Journal of Economics, Business and Management*, 678-682.
- Masson, P. R., Savastano, M. A., & Sharma, S. (1997). *The Scope for Inflation Targeting in Developing Countries*. International Monetary Fund.

- Milas, C., Dergaides, T., Panagiotidis, T., & Papapanagiotou, G. (2024). An assessment of inflation targeting. *The Quarterly Review of Economics and Finance*.
- Mishkin, F. S., & Posen, A. S. (1997). *Inflation Targeting: Lesson from four countries*. Cambridge, MA: National Bureau of Economic Research.
- OECD. (2024, 12 10). *Monetary Aggregates*. Retrieved from OECD Data Explorer: https://data-explorer.oecd.org/vis?lc=en&tm=monetary%20aggregates&pg=0&snb=16&df[ds]=ds DisseminateFinalDMZ&df[id]=DSD_STES%40DF_MONAGG&df[ag]=OECD.SDD .STES&df[vs]=4.0&dq=.M..IX..Y...&lom=LASTNPERIODS&lo=5&to[TIME_PERIOD]=false

Appendix

Appendix 1

Estimated using a foreach loop in Stata. The name of the variable, e.g., lcpi, is at the top of each section followed by the results of the BG test looking at 4 lags of the error term, up to a maximum of 5 lags in the ADF test. Each variable section is then followed by a dashed line to indicate the next variable's estimation has begun. Output has been split into two columns to reduce pagination. The ADF test includes a **trend term**.

. foreach v of v	varlist lcpi lm lxr l	.gep {		3 4	3.916 4.498	3 4	0.2707 0.3428
dis	splay "`v'" splay "Lags: 0" etly regress D.`v' L	`v' trend		Lags: 1	H0: no seria	al correlation	
5. est	at bgodfrey, lags(1/ values lags = 1/5 {	4) nomiss0		-	M test for autocorr	elation	
7. 8.	display "Lags: quietly regress	`lags'" D.`v' L(1/`lags')	D.`v' L.`v' trend	lags(p)	chi2	df	Prob > chi2
9. 10. }		lags(1/4) nomiss0		1	1.045	1	0.3065
11. dis	play "*	*"		2	1.908	2	0.3851
12. } lcpi				3 4	2.318 2.432	3 4	0.5091 0.6568
Lags: 0				Lags: 2	H0: no seria	al correlation	
	LM test for autocorr			Breusch-Godfrey L	M test for autocorr	elation	
lags(p)	chi2	df	Prob > chi2	lags(p)	chi2	df	Prob > chi2
1 2	15.522 16.469	1 2	0.0001 0.0003	1	0.487	1	0.4852
3	18.263	3	0.0004	2	0.954	2	0.6205
4	28.871	4	0.0000	3 4	1.118 1.954	3 4	0.7728 0.7442
ags: 1	H0: no seria	l correlation				l correlation	
	LM test for autocorr	elation		Lags: 3	1101 110 301 10		
lags(p)	chi2	df	Prob > chi2		M test for autocorr		
+				lags(p)	chi2	df	Prob > chi2
1 2	0.112 2.358	1 2	0.7378 0.3076	1	0.674	1	0.4115
3	15.398 22.773	3 4	0.0015 0.0001	2	0.680 1.444	2 3	0.7117
4	22.773		0.0001	4	2.043	4	0.6953 0.7278
.ags: 2	H0: no seria	l correlation			H0: no seria	l correlation	
	LM test for autocorr			Lags: 4	M tost for suteson	nolation	
lags(p)	chi2	df	Prob > chi2				
1	2.284	1	0.1307	lags(p)	chi2	df	Prob > chi2
2	15.294	2	0.0005	1	0.048	1	0.8259
3 4	14.431 21.716	3 4	0.0024 0.0002	2 3	0.884 2.181	2	0.6429 0.5358
	HO: no seri	l correlation		4	7.039	4	0.1338
_ags: 3	110. 110 361 12	ir correlation		Lags: 5	H0: no seria	al correlation	
					M test for autocorr		
lags(p)	chi2	df 	Prob > chi2	lags(p)	chi2	df	Prob > chi2
1 2	13.099 20.590	1 2	0.0003 0.0000	1	0.815	1	0.3668
3	19.580	3	0.0002	2	1.882	2	0.3903
4	19.510	4	0.0006	3 4	6.664 7.755	3 4	0.0834 0.1010
_ags: 4	H0: no seria	l correlation				l correlation	
Breusch-Godfrey	LM test for autocorr	elation		* 1xr	_*		
lags(p)	chi2	df	Prob > chi2	Lags: 0			
+					M test for autocorr		
1 2	10.241 9.600	1 2	0.0014 0.0082	lags(p)	chi2	df	Prob > chi2
3	9.516 13.602	3 4	0.0232 0.0087	1	0.349	1	0.5548
"			0.0087	2	1.141	2	0.5654
_ags: 5	H0: no seria	l correlation		3 4	7.332 10.069	3 4	0.0620 0.0393
	LM test for autocorr				H0: no seria	al correlation	
lags(p)	chi2	df	Prob > chi2	Lags: 1			
1	0.712	1	0.3989		M test for autocorr		
2 3	0.758 4.798	2 3	0.6844 0.1872	lags(p)	chi2	df	Prob > chi2
4	5.159	4	0.2714	1	0.524	1	0.4692
	H0: no seria	l correlation		2 3	6.704 9.631	2	0.0350 0.0220
				4	8.957	4	0.0622
m ags: 0				Lags: 2	H0: no seria	l correlation	
	LM test for autocorr				M test for autocorr	relation	
lags(p)	chi2	df	Prob > chi2				Dook v at 22
1	2.513	1	0.1129	lags(p)			Prob > chi2
2	3.532	2	0.1710	1	6.436	1	0.0112

	9.533 10.641	2	0.0085 0.0138	12gs(n)	chi2	df	Drob > chi'
3 4	10.641 10.119	4	0.0138 0.0385	lags(p)			Prob > chi2
	H0: no s	erial correlation		1 2	0.261 0.293	1 2	0.6093 0.8636
ags: 3				3	0.235 0.340	3 4	0.9718 0.9871
Breusch-Godfrey L	LM test for auto	correlation		4			0.98/1
lags(p)	chi2	df	Prob > chi2	Lags: 2	H0: no seria	1 correlation	
1	3.419	1	0.0644		1 test for autocorr	olation	
2	6.294	2	0.0430				
3	6.598 9.300	3 4	0.0859 0.0540	lags(p)	chi2	df	Prob > chi
		erial correlation		1	0.039 0.099	1 2	0.8443 0.9517
ags: 4	110. 110 51	eriai correlacion		3	0.266	3	0.9664
Breusch-Godfrey L	LM test for auto	correlation		4	0.548	4	0.9687
		df	Dunk v ski2	1 2	H0: no seria	l correlation	
lags(p)	chi2	ат	Prob > chi2	Lags: 3			
1 2	3.080 3.800	1 2	0.0792 0.1496		1 test for autocorr		
3	7.488	3	0.0579	lags(p)	chi2	df	Prob > chi
4	8.155		0.0861	1	0.050	1	0.8237
_ags: 5	H0: no s	erial correlation		2 3	0.200 0.441	2 3	0.9049 0.9316
	IM 4 6			4	1.328	4	0.8566
	LM test for auto				H0: no seria	l correlation	
lags(p)	chi2	df	Prob > chi2	Lags: 4			
1	1.058	1	0.3036	Breusch-Godfrey LM	1 test for autocorr	elation	
2 3	3.835 4.354	2 3	0.1470 0.2257	lags(p)	chi2	df	Prob > chi
4	4.601	4	0.3308	1	0.104	1	0.7469
		erial correlation		2	0.271	2	0.8732
* lgep	*			3 4	0.899 0.923	3 4	0.8257 0.9213
ags: 0						l correlation	
Breusch-Godfrey l	LM test for auto	correlation		Lags: 5	no. no serie	1 CONTENACION	
lags(p)	chi2	df	Prob > chi2	Breusch-Godfrey LM	1 test for autocorr	elation	
0 117 1							Dbb.
+	14 500		0.0001		-1-20		
1 2	14.588 14.576	1 2	0.0001 0.0007	lags(p)	chi2	df 	
2 3	14.576 14.406	2 3	0.0007 0.0024	1	0.123	1	0.7254
2	14.576 14.406 14.619	2 3 4	0.0007	1 2 3	0.123 0.876 1.435	1 2 3	0.7254 0.6452 0.6974
2 3 4	14.576 14.406 14.619	2 3	0.0007 0.0024	1 2	0.123 0.876 1.435 2.940	1 2 3 4	0.7254 0.6452
2 3 4 Lags: 1	14.576 14.406 14.619 	2 3 4 erial correlation	0.0007 0.0024	1 2 3	0.123 0.876 1.435 2.940	1 2 3	0.7254 0.6452 0.6974
2 3 4 Lags: 1	14.576 14.406 14.619 	2 3 4 erial correlation	0.0007 0.0024 0.0056	1 2 3 4	0.123 0.876 1.435 2.940	1 2 3 4	0.7254 0.6452 0.6974
2 3 4 4 4 4 4 4 4 4 4	14.576 14.496 14.619 HØ: no si	2 3 4 erial correlation	9. 9007 9. 9024 9. 9056 	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
2 3 4 4 4 4 4 4 4 4 4	14.576 14.496 14.619 HØ: no si	2 3 4 erial correlation	0.0007 0.0024 0.0056	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
2 3 4 1 Lags: 1 Breusch-Godfrey 1 ADF test us	14.576 14.486 14.619 H0: no si	2 3 4 erial correlation	9. 9007 9. 9024 9. 9056 	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
Lags: 1 ADF test us variable see	14.576 14.406 14.619 H0: no si LM test for autor Sing trend t ctions.	2 3 4 erial correlation correlation	9. 9007 9. 9024 9. 9056 	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 3reusch-Godfrey I ADF test us	14.576 14.406 14.619 H0: no si LM test for autor Sing trend t ctions.	2 3 4 erial correlation correlation	9. 9007 9. 9024 9. 9056 	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
2 3 4 Lags: 1 Breusch-Godfrey L ADF test us variable sec	14.576 14.406 14.619 HO: no so soing trend to ctions. 1, lags(5) tre	2 3 4 erial correlation correlation erm for lcpi,ln	9. 9007 9. 9024 9. 9056 	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 ADF test us variable second dispersion of the second dispersion	HO: no so M test for autor Sing trend to Cotions. 1, lags(5) treesey-Fuller tes	2 3 4 erial correlation correlation erm for lcpi, ln nd t for unit root	e. 0007 e. 0024 e. 0056 	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 ADF test us variable second diller lcpi	HO: no so M test for autor Sing trend to Cotions. 1, lags(5) treesey-Fuller tes	2 3 4 erial correlation correlation erm for lcpi, lm nd t for unit root	e.eeer e.ee24 e.ee56 Appe n,lxr and drift tern mber of obs = 90	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 ADF test us variable second dispersion of the second dispersion	HO: no so M test for autor Sing trend to Cotions. 1, lags(5) treesey-Fuller tes	2 3 4 erial correlation correlation erm for lcpi, lm nd t for unit root	e. 0007 e. 0024 e. 0056 	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 ADF test us variable sec. dfuller lcpi Augmented Dick	He: no so LM test for autor Sing trend t ctions. 1, lags(5) tre key-Fuller tes	2 3 4 erial correlation correlation erm for lcpi, lm nd t for unit root Nu	e.eeer e.ee24 e.ee56 Appe n,lxr and drift tern mber of obs = 90	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 ADF test us variable sec. dfuller lcpi Augmented Dick	He: no so LM test for autor Sing trend t ctions. 1, lags(5) tre key-Fuller tes	2 3 4 erial correlation correlation erm for lcpi, lm nd t for unit root Nu Nu hout drift	0.0007 0.0024 0.0056 Appea n, lxr and drift term mber of obs = 90 mber of lags = 5	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
2 3 4 Lags: 1 Breusch-Godfrey L ADF test us variable sec	He: no so LM test for autor Sing trend t ctions. 1, lags(5) tre key-Fuller tes	2 3 4 erial correlation correlation nd t for unit root Nu Nu hout drift Dickey	e.eeer e.ee24 e.ee56 Appe n,lxr and drift tern mber of obs = 90	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
Lags: 1 ADF test us Variable sec dfuller lcpi Augmented Dick Variable: lcpi	HO: no so M test for autor Sing trend to Ctions. 1, lags(5) tre Rey-Fuller tes Lk with or wit Test Statistic	2 3 4 erial correlation correlation erm for lcpi, lm nd t for unit root Nu Nu hout drift Dickey	0.0007 0.0024 0.0024 0.0056 Appe n, lxr and drift term mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.6452 0.6974 0.5679
Lags: 1 ADF test us Variable sec dfuller lcpi Augmented Dick Variable: lcpi	HO: no so M test for autor Sing trend to Ctions. 1, lags(5) tre Rey-Fuller tes Lk with or wit Test Statistic	2 3 4 erial correlation correlation erm for lcpi, ln nd t for unit root Nu Nu hout drift Dickey	0.0007 0.0024 0.0024 0.0056 Appe n, lxr and drift term mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 ADF test us variable second dispersion of the second dispersion	He: no so It is the state of t	2 3 4 erial correlation correlation erm for lcpi, lm nd t for unit root Nu Nu hout drift Dickey critica 1% -4.062 -3	0.0007 0.0024 0.0056 Appe n,lxr and drift term mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
Lags: 1 ADF test us variable second distribution with the second distribu	14.576 14.406 14.619 HO: no so Enter the state of the s	2 3 4 erial correlation correlation erm for lcpi, ln nd t for unit root Nu Nu hout drift Dickey	0.0007 0.0024 0.0056 Appe n,lxr and drift term mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 ADF test us variable sec dfuller lcpi Augmented Dick variable: lcpi 0: Random wal	14.576 14.406 14.619 HO: no so Enter the state of the s	2 3 4 erial correlation correlation erm for lcpi, lm nd t for unit root Nu Nu hout drift Dickey critica 1% -4.062 -3	0.0007 0.0024 0.0056 Appe n,lxr and drift term mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 ADF test us variable sed dfuller lcpi augmented Dick variable: lcpi 0: Random wal	14.576 14.406 14.619 H0: no so Enter the state of the s	2 3 4 erial correlation correlation erm for lcpi, lm nd t for unit root Nu Nu hout drift Dickey	0.0007 0.0024 0.0056 Appe n,lxr and drift term mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
2 3 4 Apr 1 Areusch-Godfrey I Apr 1	14.576 14.406 14.619 H0: no so Sing trend to Ctions. 1, lags(5) tre Rey-Fuller tes Lk with or wit Test statistic -2.131 roximate p-val trend test for unit	2 3 4 erial correlation correlation erm for lcpi, lm nd t for unit root Nu Nu hout drift Dickey	0.0007 0.0024 0.0056	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
2 3 4 Apr 4	14.576 14.406 14.619 H0: no so Sing trend to Ctions. 1, lags(5) tre Rey-Fuller tes Lk with or wit Test statistic -2.131 roximate p-val trend test for unit	2 3 4 erial correlation correlation correlation nd t for unit root Nu Nu hout drift Dickey	0.0007 0.0024 0.0056	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 ADF test us variable sec dfuller lcpi Augmented Dick Variable: lcpi AcKinnon appr dfuller lm, Dickey-Fuller Variable: lm He: Random wal	14.576 14.406 14.619 HO: no so Ring trend to Ctions. 1, lags(5) tre Rey-Fuller tes Lk with or wit Test statistic -2.131 roximate p-val trend test for unit Lk with or wit Test	2 3 4 erial correlation correlation erm for lcpi, lm nd t for unit root Nu Nu hout drift -4.062 -3 ue for Z(t) = 0.52 root Nu Nu hout drift Dickey root Nu Nu hout drift Dickey root Nu Nu hout drift Dickey Dickey Dickey Dickey Dickey Dickey Dickey	0.0007 0.0024 0.0024 0.0056 n, lxr and drift term mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10%	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 ADF test us variable sec diffuller lcpi Augmented Dick variable: lcpi Acriable: lcpi	14.576 14.406 14.619 H0: no so Ring trend to ctions. 1., lags(5) tree dey-Fuller tes ctions. 1. roximate p-val trend test for unit k with or wit Test statistic -2.131 roximate p-val trend test for unit k with or wit	2 3 4 erial correlation correlation correlation erm for lcpi, lm nd t for unit root Nu Nu hout drift —2.062 —3. ue for Z(t) = 0.52 root Nu Nu hout drift Dickey ————————————————————————————————————	0.0007 0.0024 0.0024 0.0056 n,lxr and drift term mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10% 89 mber of obs = 95 mber of lags = 0 -Fuller 1 value 89	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679
ags: 1 ADF test us variable sec dfuller lcpi Augmented Dick /ariable: lcpi H0: Random wal Z(t) MacKinnon appr dfuller lm, Dickey-Fuller /ariable: lm	14.576 14.406 14.619 H0: no so Ring trend to ctions. 1., lags(5) tree dey-Fuller tes ctions. 1. roximate p-val trend test for unit k with or wit Test statistic -2.131 roximate p-val trend test for unit k with or wit	2 3 4 erial correlation correlation correlation erm for lcpi, lm nd t for unit root Nu Nu hout drift Dickey	0.0007 0.0024 0.0024 0.0056 n,lxr and drift term mber of obs = 90 mber of lags = 5 -Fuller 1 value 5% 10% 89 mber of obs = 95 mber of lags = 0 -Fuller 1 value 89	1 2 3 4 4	0.123 0.876 1.435 2.940 H0: no seria	1 2 3 4	0.7254 0.6452 0.6974 0.5679

. dfuller lxr, lags(3) trend

Augmented Dickey-Fuller test for unit root

Variable: lxr

Number of obs = 92 Number of lags = 3

			Dickey-Fuller	
	Test		critical value	
	statistic	1%	5%	10%
Z(t)	-3.271	-4.058	-3.458	-3.155
MacKinnon	approximate p-valu	ue for Z(t)	= 0.0712.	

. dfuller lgep, lags(1) drift

Augmented Dickey-Fuller test for unit root

Variable: lgep Number of obs = 94 Number of lags = 1

HO: Random walk with drift, d = 0

Breusch-Godfrey LM test for autocorrelation

Test critical value -----statistic 1% 5% 10%

Z(t) -2.568 -2.368 -1.662 -1.291

p-value for Z(t) = 0.0059

Appendix 3

Estimated using a foreach loop in Stata. The name of the variable, e.g., lcpi, is at the top of each section followed by the results of the BG test looking at 4 lags of the error term, up to a maximum of 5 lags in the ADF test. Each variable section is then followed by a dashed line to indicate the next variable's estimation has begun. Output has been columnated to reduce pagination. The ADF test includes a **drift term**

				lags(p)	chi2	df	Prob > chi2
	varlist lcpi lm lxr l	lgep {					
	isplay "`v'"			1	15.204	1	0.0001
	isplay "Lags: 0"			2	15.393	2	0.0005
	uietly regress D.`v' l			3	15.608	3	0.0014
	stat bgodfrey, lags(1/	/4) nomiss0		4	18.000	4	0.0012
	orvalues lags = 1/5 {						
7.	display "Lags:				H0: no seria	al correlation	
8.		s D.`v' L(1/`lags'		Lags: 5			
9.		, lags(1/4) nomiss	ð				
10. }					M test for autocori	relation	
	isplay "*	*"					
12. }				lags(p)	chi2	df	Prob > chi
cpi							
ags: 0				1	1.482	1	0.2235
				2	1.910	2	0.3847
reusch-Goatre	y LM test for autocorr	relation		3 4	4.187 5.560	3 4	0.2420 0.2345
lags(p)	chi2	df	Prob > chi2	4	5.560	4	0.2345
	CIIIZ	ur			HO: no seri:	al correlation	
1	13.451	1	0.0002	*		31 (011(14(10))	
2	14.315	2	0.0002	lm			
3	15.226	3	0.0016	Lags: 0			
4	21.778	4	0.0002	Lags. 0			
'				Breusch-Godfrey L	M test for autocori	relation	
ags: 1	H0: NO Seria	al correlation		lags(p)	chi2	df	Prob > chi
reusch-Godfre	y LM test for autocorr	relation		1	2.122	1	0.1452
				2	2.793	2	0.2474
lags(p)	chi2	df	Prob > chi2	3 4	3.303 3.642	3 4	0.3472 0.4566
1	0.300	1	0.5839	4		4	
2	1.331	2	0.5139		HO: no seri:	al correlation	
з і	9.225	3	0.0264	Lags: 1			
4	22.072	4	0.0002				
					M test for autocor		
ags: 2	H0: NO Seria	al correlation		lags(p)	chi2	df	Prob > chi
3reusch-Godfre	y LM test for autocorr	relation		1	0.715	1	0.3977
				2	1.701	2	0.4272
lags(p)	chi2	df	Prob > chi2	3	1.824	3	0.6096
+				4	2.000	4	0.7357
1	0.992	1	0.3193				
2	8.887	2	0.0118		H0: no seria	al correlation	
3	21.834	3	0.0001	Lags: 2			
4	21.661	4	0.0002	Breusch-Godfrey I	M test for autocori	celation	
_	H0: no seria	al correlation					
.ags: 3				lags(p)	chi2	df 	Prob > chi
	y LM test for autocorr			1	0.674	1	0.4118
	chi2	df	Prob > chi2	2 3	0.850	2	0.6538
lags(p)	CN1Z			4	1.059 2.289	4	0.7870
1	7.893	1	0.0050	4	2.289		0.6827
2	20.768	2	0.0000				
3	20.768	3	0.0001	1205: 3	no. no seria	al correlation	
3 4	20.442	4	0.0001	Lags: 3			
				•	M test for autocor		
ags: 4	H0: no seria	al correlation		lags(p)	chi2	df	Prob > chi
-				O /			

4	1.657 2.587	3 4	0.6464 0.6292
	H0: no seria	al correlation	
ags: 4			
	M test for autocorr		
lags(p)	chi2	df 	Prob > chi2
1	0.115	1	0.7350
2 3	1.354 2.863	2 3	0.5082 0.4132
4 İ	6.626	4	0.1570
	H0: no seria	al correlation	
ags: 5			
	M test for autocorr	relation	
lags(p)	chi2	df	Prob > chi2
1	1.232	1	0.2671
2	2.450	2	0.2938
3 4	6.109 9.148	3 4	0.1064 0.0575
		l connolation	
	-* Ho: no seria	al correlation	
xr ags: 0			
	M test for autocorr		
lags(p)	chi2	df	Prob > chi2
1	0.143	1	0.7049
2 3	0.873 5.573	2 3	0.6464 0.1343
4	9.625	4	0.0472
	H0: no seria	al correlation	
ags: 1			
reusch-Godfrey L	M test for autocorr	relation	
lags(p)			Prob > chi2
+			
1 2	0.484 5.191	1 2	0.4866 0.0746
3	9.390	3	0.0245
4	8.767	4	0.0672
	110		
2	HØ: NO SEria	al correlation	
ags: 2			
reusch-Godfrey L	M test for autocorr		
reusch-Godfrey L	M test for autocorr chi2	relation df	Prob > chi2
reusch-Godfrey L	M test for autocorr	relation df	
reusch-Godfrey L lags(p)	M test for autocorr chi2 4.962 9.383	df	Prob > chi2 0.0259 0.0092
lags(p) 1 2 3	M test for autocorr chi2 4.962	df	Prob > chi2 0.259
lags(p) 1 2 3	chi2 4.962 9.383 11.411 10.156	df 1 2 3 4	Prob > chi2 0.0259 0.0092 0.0097
lags(p) 1 2 3	chi2 4.962 9.383 11.411 10.156	df 1 2 3	Prob > chi2 0.0259 0.0092 0.0097
lags(p) 1 2 3 4 ags: 3	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria	df 1 2 3 4 sl correlation	Prob > chi2 0.0259 0.0092 0.0097
1 2 3 4 4 4 4 4 4 4 4 4	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria	df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379
lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria	df 1 2 3 4 correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379
reusch-Godfrey L lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735	df 1 2 3 4 sol correlation df df	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296
lags(p)	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2	df 1 2 3 4 sl correlation df	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2
lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735 8.342 8.134 10.126	relation df 1 2 3 4 4 sol correlation df 1 2 3 4 4	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384
reusch-Godfrey L lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735 8.342 8.134 10.126	relation df 1 2 3 4 4 sol correlation df 1 2 3 4 4	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433
reusch-Godfrey L lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735 8.342 8.134 10.126	df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation df 1 2 3 4	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384
reusch-Godfrey L lags(p) 1	M test for autocorr	df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384
Teusch-Godfrey L	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735 8.342 8.134 10.126 H0: no seria	df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384
lags(p)	M test for autocorr	df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation df df df df df	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2
reusch-Godfrey L lags(p) 1	M test for autocorr	relation df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384
reusch-Godfrey L lags(p) 1	M test for autocorr chi2 4.962 9.383 11.411 10.156 H0: no seria M test for autocorr chi2 4.735 8.342 8.134 10.126 H0: no seria M test for autocorr chi2 3.883 4.222 7.269	df	Prob > chi2 0.0259 0.0902 0.0907 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0658
reusch-Godfrey L lags(p) 1	M test for autocorr	relation df 1 2 3 4 4 sol correlation df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211
Treusch-Godfrey L lags(p) 1	M test for autocorr	df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0902 0.0907 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0658
reusch-Godfrey L lags(p) 1	M test for autocorr	df 1 2 3 4 sol correlation	Prob > chi2 0.0259 0.0902 0.0907 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0658
lags(p)	M test for autocorr	df 1 2 3 4 correlation	Prob > chi2 0.0259 0.0902 0.0907 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0658
Teusch-Godfrey L	M test for autocorr	1	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0638 0.1107
Teusch-Godfrey L	M test for autocorr	relation df 1 2 3 4 sol correlation relation df 1 2 3 4 sol correlation relation df 1 2 3 4 sol correlation relation relation	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0638 0.1107
lags(p)	M test for autocorr	### Telation ### T	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0384 Prob > chi2 0.0488 0.1211 0.0638 0.1107
reusch-Godfrey L lags(p) 1	M test for autocorr	### def 1	Prob > chi2 0.0259 0.0902 0.0907 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0638 0.1107 Prob > chi2 0.0638 0.1107
reusch-Godfrey L lags(p) 1	M test for autocorr	### def 1	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0638 0.1107 Prob > chi2 0.2523 0.4105
reusch-Godfrey L lags(p) 1	M test for autocorr	### Telation ### T	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0638 0.1107 Prob > chi2 0.2523 0.4105
lags(p)	M test for autocorr	### def 1	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0638 0.1107 Prob > chi2 0.2523 0.4105
Teusch-Godfrey L	M test for autocorr	### def 1	Prob > chi2 0.0259 0.0092 0.0097 0.0379 Prob > chi2 0.0296 0.0154 0.0433 0.0384 Prob > chi2 0.0488 0.1211 0.0638 0.1107 Prob > chi2 0.2523 0.4105

1		13.833	1	0.0002
2		13.977	2	0.0009
3	ĺ	13.824	3	0.0032
4	ĺ	14.161	4	0.0068

H0: no serial correlation

Lags: 1

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

lags(p)	chi2	df	Prob > chi2
1	0.466	1	0.4950
2	0.453	2	0.7972
3	0.350	3	0.9503
4	0.449	4	0.9783
	H0: no seria	al correlation	
Lags: 2			

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.004	1	0.9503
2	0.076	2	0.9625
3	0.277	3	0.9642
4	0.451	4	0.9781

H0: no serial correlation Lags: 3

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

lags(p)	chi2	df	Prob > chi2
1 2	0.058 0.249	1 2	0.8101 0.8831
3 4	0.401 1.012	3 4	0.9400 0.9080

H0: no serial correlation

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

1 2 3	0.6956 0.8714 0.8080 0.8051
	1 2 3 4

H0: no serial correlation Lags: 5

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1 2 3 4	0.096 0.839 1.488 3.106	1 2 3 4	0.7564 0.6572 0.6850 0.5402

H0: no serial correlation

Appendix 4

ADF test using drift term for lcpi, lm, lxr. Horizontal lines added to split output into variable sections.

```
. dfuller lcpi, lags(5) drift
Augmented Dickey-Fuller test for unit root
Variable: lcpi
                                 Number of obs = 90
                                 Number of lags = 5
H0: Random walk with drift, d = 0
                    τ-aıstribution
------ critical value -------
                            t-distribution
statistic 1% 5% 10%
Z(t) -0.286 -2.372 -1.663 -1.292
p-value for Z(t) = 0.3879
. dfuller lm, drift
Dickey-Fuller test for unit root
                                 Number of obs = 95
Variable: lm
                                 Number of lags = 0
H0: Random walk with drift, d = 0
t-distribution

Test ------ critical value ------
statistic 1% 5% 10%
          -1.937
                      -2.367 -1.661
                                          -1.291
-----
p-value for Z(t) = 0.0279
. dfuller lxr, lags(4) drift
Augmented Dickey-Fuller test for unit root
Variable: lxr
                                  Number of obs = 91
                                 Number of lags = 4
H0: Random walk with drift, d = 0
                            t-distribution
Test ------ critical value -------
statistic 1% 5% 10%
        -2.095 -2.371 -1.663 -1.292
p-value for Z(t) = 0.0196
                                                 Appendix 5
Estimated using a foreach loop in Stata. The ADF test includes a drift term
10.
        display "*----*"
```

```
11.
12. }
D.lcpi
```

Breusch-Godfrey LM	test for autocor	relation	
lags(p)	chi2	df	Pr
1	0.261	1	

lags(p)	chi2	df	Prob > chi2
1	0.261	1	0.6092
2	1.283	2	0.5265
3	8.876	3	0.0310
4	22.001	4	0.0002

H0: no serial correlation Lags: 1

Breusch-Godfrey LM test for autocorrelation

lags(p)	 :	chi2	df	Prob > chi2
1 2 3	 	0.920 8.535 21.670	1 2 3	0.3374 0.0140 0.0001
4		21.553	4	0.0002

H0: no serial correlation

Breusch-Godfrev LM test for autocorrelation

Di Cu.			,	 		uu coco.					
:	lags ((p)	!	 	chi	2	 df	 Prob	>	chi2	2

1	7.627	1	0.0058
2	20.688	2	0.0000
3	20.412	3	0.0001
4	20.398	4	0.0004

H0: no serial correlation

Lags: 3

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

lags(p) chi2 df Prob > c	chi2
1 15.287 1 0.0001 2 15.647 2 0.0004 3 15.757 3 0.0013 4 18.242 4 0.001	.3

H0: no serial correlation

Lags: 4

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

lags(p)		chi2	df	Prob > chi2
1	į	1.411	1	0.2348
2	1	1.737 4.249	3	0.4197 0.2358
4	İ	5.497	4	0.2400

Lags: 5

H0: no serial correlation

 ${\tt Breusch-Godfrey\ LM\ test\ for\ autocorrelation}$

lags(p)		chi2	df	Prob > chi2
1 2		0.349 3.125	1 2	0.5547 0.2096
3 4	İ	4.429 5.378	3 4	0.2187 0.2507

H0: no serial correlation

Appendix 6

ADF test using drift term for dlcpi.

. dfuller d.lcpi, lags(4) drift

Augmented Dickey-Fuller test for unit root

Variable: D.lcpi

Number of obs = 90 Number of lags = 4

H0: Random walk with drift, d = 0

		t-	distribution	
	Test	cr	itical value	
	statistic	1%	5%	10%
Z(t)	-4.114	-2.372	-1.663	-1.292

p-value for Z(t) = 0.0000

Appendix 7

. eststo ARMA: arimasel d.lcpi, ar(2) ma(2)

Model1: AR(0) MA(1) Model2: AR(0) MA(2) Model3: AR(1) MA(0) Model4: AR(1) MA(1) Model5: AR(1) MA(2) Model6: AR(2) MA(0) Model7: AR(2) MA(0) Model8: AR(2) MA(2)

	AR	MA	Nparm	LLF	AIC	SIC
Model1 Model2	0 0	1 2	2	355.4688 356.4954	-706.9376 -706.9908	-701.8299 -699.3292
Model3 Model4	1	0	2	355.9882 356.1419	-707.9764 -706.2838	-702.8686 -698.6222
Model4 Model5	1 1	1 2	4	356.1419	-706.2838 -704.5892	-698.6222
Model6	2	0	3	356.1105	-706.2211	-698.5594
Model7	2	1	4	356.1431	-704.2863	-694.0708
Model8	2	2	5	361.6745	-713.3489	-700.5795

7.32

```
Appendix 8
. arima dlcpi, ar(1) robust
(setting optimization to BHHH)
Iteration 0: Log pseudolikelihood = 355.98779
Iteration 1: Log pseudolikelihood = 355.98812
Iteration 2: Log pseudolikelihood = 355.98816
Iteration 3: Log pseudolikelihood = 355.98817
Iteration 4: Log pseudolikelihood = 355.98818
ARIMA regression
Sample: 2000q2 thru 2023q4
                                                               Number of obs
                                                                Wald chi2(1)
                                                               Prob > chi2
Log pseudolikelihood = 355.9882
                                                                                               0.0068
         | Semirobust dlcpi | Coefficient std. err.
                                                           P>|z| [95% conf. interval]
dlcpi
_cons | .0046215 .0009386 4.92 0.000 .0027819 .0064611
```

.380355 .1405789 2.71 0.007 .1048253 .6558846 L1. .0047036 .0066993 /sigma| .0057014 .0005091 11.20 0.000 Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

Appendix 9

. arima dlcpi, ar(1/2) ma(1/2) robust

(setting optimization to BHHH) Iteration 0: Log pseudolikelihood = 347.23067 Iteration 1: Log pseudolikelihood = 352.68152 Iteration 2: Log pseudolikelihood = 353.68017 Iteration 3: Log pseudolikelihood = 355.04277 Iteration 4: Log pseudolikelihood = 359.79432 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 361.0122 Iteration 6: Log pseudolikelihood = 361.10737
Iteration 7: Log pseudolikelihood = 361.39219 Iteration 8: Log pseudolikelihood = 361.61468
Iteration 9: Log pseudolikelihood = 361.65691
Iteration 10: Log pseudolikelihood = 361.65801 Iteration 11: Log pseudolikelihood = 361.67869
Iteration 12: Log pseudolikelihood = 361.67379
Iteration 13: Log pseudolikelihood = 361.67444
Iteration 14: Log pseudolikelihood = 361.67445

ARIMA regression

ARMA

Sample: 2000q2 thru 2023q4 Number of obs Wald chi2(4) 680.78 Log pseudolikelihood = 361.6745 Prob > chi2 0.0000

			Semirobust				
	dlcpi	Coefficient	std. err.	z	P> z	[95% conf.	interval]
dlcpi							
	_cons	.0045876	.0008768	5.23	0.000	.0028691	.0063061
ARMA		 					
	ar	İ					
	L1.	8995348	.2194136	-4.10	0.000	-1.329578	4694921
	L2.	.076611	.221312	0.35	0.729	3571526	.5103746
	ma						
	L1.	1.427597	.1399993	10.20	0.000	1.153203	1.701991
	L2.	.5024687	.1556634	3.23	0.001	.197374	.8075633
	/sigma	.0053414	.0005515	9.68	0.000	.0042605	.0064224

Note: The test of the variance against zero is one sided, and the two-sided confidence interval is truncated at zero.

Appendix 10

	L.Dlcpi	L2.Dlcpi	lin	kı	lgep	L.lgep	L2.lgep	L.lxr	L2.lxr	L.lm	L2.lm	cons	. ~	bic
Dlepi	L.Dlcpi 0.278* (0.136)	2.	-0.00451 (0.00236	0.00884 (0.0207)	0.00495							0.00164 (0.0782)	94	-701.8
Dlcpi	0.284* (0.129)		-0.00451 -0.00219 (0.00236) (0.00220)	-0.00258 (0.0198)	0.00495** 0.0166*** (0.00167) (0.00312)	-0.0129* (0.00283						0.0273 (0.0769)	94	-695.1
Dlepi	0.317* (0.132)		-0.00310) (0.00230)	(0.00119	* 0.0185*** () (0.00350)	-0.0129*** -0.0197*** (0.00283) (0.00525)	0.00536 (0.00352)					0.0202	94	-709.8
Dlcpi	0.278 [*] (0.137)) -0.0045	0.00930 (0.0429)	0.00495 0.0016	5	9	-0.0005 (0.0477)				0.00196 (0.0844)	94	-684 5
Dlcpi	0.283* (0.130)		-0.00450 -0.00182 (0.00259) (0.00245)	0.0130 (0.0416)	0.00495** 0.0168*** (0.00169) (0.00318)	-0.0131* (0.00283		-0.000564 -0.0192 (0.0477) (0.0450)				0.0386	94	-708.5
Dlcpi	0.316 [*] (0.133)		-0.00274 (0.00253)	0.0158 (0.0425)	* 0.0188*** (0.00350)	-0.0131*** -0.0198*** (0.00283) (0.00519)	0.00532 (0.00354)	-0.0181 (0.0459)				0.0309	94	-708.0
Dlepi	0.280 [*] (0.137)		+ -0.0054 5) (0.0025)	0.0121 (0.0429)	** 0.00464)) (0.0016	3 *	5	-0.0460 (0.0596)	0.0534 (0.0418)			-0.0330 (0.0889)	94	-681.1
Dlcpi	0.285* (0.131)		-0.00541* -0.00252 (0.00258) (0.00249)	0.0148	0.00464** 0.0163*** (0.00168) (0.00318)	-0.0128*** (0.00277) (-0.0506 (0.0564)	0.0375			0.0133	94	-707.2
Dlepi	0.321* (0.134)		$ \begin{array}{llllllllllllllllllllllllllllllllllll$	0.0181 (0.0424)	0.00495^{**} 0.0166^{***} 0.0185^{***} 0.00495^{**} 0.0168^{***} 0.0188^{***} 0.00464^{**} 0.0163^{***} 0.0183^{***} 0.00550^{**} 0.0176^{***} 0.0191^{***} 0.00552^{**} 0.0180^{***} 0.0194^{***} 0.00520^{**} 0.0174^{***} 0.00167) (0.00312) (0.00350) (0.00150) (0.00318) (0.00350) (0.00168) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318) (0.00318)	-0.0128*** -0.0199*** (0.00277) (0.00507)	0.00565 (0.00349)	-0.0536 (0.0572)	0.0424 (0.0410)			0.00164	94	-706.8
Dlcpi	0.247 (0.130)		9 0.0200 7) (0.0106	0.00200	** 0.00550 5) (0.0017	7)	9			-0.0241 (0.0098		0.0240 (0.0768)	94	-703.4 -688.1
Dlepi	0.250* (0.124)		0.0249* (0.0102)	-0.0105 (0.0185)	0.00550** 0.0176*** (0.00173) (0.00316)	-0.0134* (0.00277				* -0.0265* 2) (0.00943		0.0529	94	-713.2 -695.4
Dlepi	0.278 [*] (0.127)		0.0227* (0.0105)	-0.00715 (0.0186)	** 0.0191*** 5) (0.00345)	-0.0134*** -0.0187*** (0.00277) (0.00506)	0.00418 (0.00343)			$-0.0241^* -0.0265^{**} -0.0250^* -0.0242^* -0.0269^{**} -0.0254^* -0.0253^* -0.0276^{**} \\ (0.00982) \ (0.00943) \ (0.00957) \ (0.00980) \ (0.00959) \ (0.00970) \ (0.0101) \ (0.00989)$		0.0459 (0.0714)	94	-691.8
Dlcpi	0.246 (0.131)		0.0202	5 0.00653	** 0.00552 5) (0.0017	5) #	3	-0.00556 (0.0462)		* -0.0242* 7) (0.00980)		0.0273	94	-701.4 -683.6
Dlepi	0.249 [*] (0.124)		0.0258 [*]) (0.0104)	0.0101	0.00552** 0.0180*** (0.00174) (0.00325)	-0.0137* (0.00279		6 -0.0256) (0.0428)		* -0.0269 ^{**} 0) (0.00959)		0.0684	94	-711.5
Dlcpi	0.276 [*] (0.127)		0.0236* (0.0107)	0.0124 (0.0401)	** 0.0194*** 5) (0.00348)	-0.0137*** -0.0188*** (0.00279) (0.00500)	0.00411	-0.0243 (0.0438)		** -0.0254* 9) (0.00970)		0.0607	94	-710.4 -687.6
Dlcpi	0.248 (0.132)		0.0203	0.00953	** 0.00520 8) (0.0017	0)	9	-0.0569 (0.0591)	0.0602	* -0.0253* 0) (0.0101)		-0.0109	94	-680.6
Dlepi	0.250 [*] (0.125)		0.0257*) (0.0105)	0.0122	0.00520** 0.0174*** (0.00173) (0.00325)	-0.0133*** (0.00275)		-0.0628) (0.0554)	0.0442	* -0.0276		0.0393	94	-710.5
Dlcpi	0.280 [*] (0.128)		0.0233* (0.0108)	0.0148 (0.0400)		*** -0.0189*** 5) (0.00488)	0.00445 (0.00338)	-0.0644 (0.0566)	0.0477 (0.0403)			0.0286 (0.0816)	94	-709.5
Dlcpi	0.227 (0.141)		0.0192 (0.0107)		** 0.00584 \$) (0.0017.	3 1	9			-0.0261* -0.0134 (0.01000) (0.0164)	-0.00990 (0.0114)	0.0339 (0.0781)	94	-701.9
Dlepi	0.223 (0.133)		0.0239*) (0.0102)	-0.000623 -0.0145 (0.0206) (0.0186)	0.00584** 0.0184*** (0.00175) (0.00319)	-0.0138 ³				-0.0117) (0.0155)	0 -0.0138	0.0675	94	-712.5 -692.1
Dlepi	0.250 (0.137)		0.0219 [*] (0.0105)	-0.0112 (0.0187)	0.0198*** 0.00345)	-0.0138*** -0.0186*** (0.00279) (0.00510)	0.00388 (0.00345)			-0.0111 (0.0155)	-0.0131 (0.0107)	0.0602 (0.0727)	94	-688.4
Dlcpi	0.227 (0.142)		0.0194 (0.0107)	0.00423	** 0.00587 5) (0.0017	9)	5)	-0.00597 (0.0473)			-0.00992 (0.0115)	0.0374	94	-700.0
Dlepi	0.221 (0.133)		0.0249*) (0.0104)	0.00692	0.00587** 0.0188*** (0.00177) (0.00327)	-0.0140 [†] (0.00278		7 -0.0267) (0.0439)		-0.0135 -0.0119 (0.0164) (0.0157)	2 -0.0139) (0.0108)	0.0838	94	-710.8 -688.0
Dlepi	0.248 (0.138)		0.0228 [*] (0.0107)	0.00922	** 0.0201*** 7) (0.00347)	-0.0140*** -0.0188*** (0.00278) (0.00504)	0.00380 (0.00348)	-0.0255 (0.0448)		-0.0113 (0.0157)	-0.0132 (0.0108)	0.0760	94	-709.6 -684.2
Dlcpi	0.231 (0.143)		0.0196	0.00738	** 0.00551 7) (0.0017	Đ **	3	-0.0551 (0.0592)	0.0576 (0.0413)	-0.0158) (0.0171)	-0.00874 (0.0117)		94	-676.5
Dlepi	0.224 (0.134)		0.0249*) (0.0106)	3 0.00904) (0.0394)	0.00551** 0.0182*** (0.00177) (0.00326)	-0.0137 (0.00273		-0.0603) (0.0551)	0.0399	-0.0136	4 -0.0130 (0.0111)	-0.000359 0.0565 (0.0893) (0.0853)	94	-709.6 -684.2
Dlcpi	0.254 (0.139)		0.0226 [*]) (0.0109)	0.0117	$0.0189^{***} 0.00584^{**} 0.0184^{***} 0.0198^{***} 0.00587^{**} 0.0188^{***} 0.0201^{***} 0.00551^{**} 0.0182^{***} 0.0196^{***} 0.00526^{**} \\ (0.00344) (0.00175) (0.00319) (0.00345) (0.00177) (0.00327) (0.00347) (0.00177) (0.00326) (0.00342) (0.00173)$	-0.0137*** -0.0188*** (0.00273) (0.00491)	0.00414 (0.00341)	-0.0620 (0.0567)	0.0435	-0.0131) (0.0164)	-0.0122) (0.0112)	0.0455	94	-680.5
Dlcpi	0.327* (0.145)	-0.107 (0.0847)	-0.00492*) (0.00241)	0.00501	** 0.00526 ^{**} 2) (0.00173)	U .	IJ.					0.0236	93	-678.1

93 -70	(0.						(0.	(0.4	(0.	(0.	(0.	(0.	(29) Dlcp
93 -701.7 -684.0	0.0599 (0.0776)						-0.0135*** (0.00310)	0.0171*** (0.00329)	-0.0102 (0.0204)	-0.00199 (0.00229)	0.00320 (0.0884)	0.301 [*] (0.131)	
93 -701.3 -681.1	0.0529 (0.0752)					0.00559 (0.00352)	-0.0135*** -0.0205*** (0.00310) (0.00548)	0.0190*** (0.00368)	-0.00618 (0.0199)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	-0.00731 (0.0904)	0.340* (0.134)	(30) Dlepi
93 -691.3 -673.6	0.0211 (0.0865)				0.00531 (0.0487)			0.00524** 0.0171*** (0.00175) (0.00333)	0.000544 -0.00440 (0.0445) (0.0420)	-0.00501 (0.00264)	-0.106 (0.0861)	0.327* (0.145)	(31) Dlepi
93 -699.7 -679.5	0.0633 (0.0811)				-0.00693 (0.0451)		-0.0136*** -0.0205** (0.00310) (0.00548)	0.0171*** (0.00333)		-0.00186 (0.00253)	0.00238 (0.0889)	0.301 [*] (0.133)	(32) Dlcpi
93 -699.3 -676.5	0.0557 (0.0788)				-0.00555 (0.0460)	0.00557 (0.00354)	*-0.0205*** (0.00548)	0.0191*** 0.00493** 0.0166*** (0.00368) (0.00174) (0.00333)	-0.00157 (0.0427)	-0.00290 (0.00262)	-0.00795 (0.0910)	0.339* (0.135)	(33) Dlcpi
93 -690.5 -670.2	-0.0135 (0.0913)			0.0530 (0.0418)	-0.0397 (0.0604)			0.00493** (0.00174)	0.00328 -0.00237 (0.0447) (0.0422)	-0.00590* -0.00256 (0.00266) (0.00260)	-0.106 0.000231 (0.0869) (0.0900)	0.329* (0.147)	(34) Dlcpi
93 -698.3 -675.5	0.0382 (0.0877)			0.0368 (0.0413)	-0.0379 (0.0572)		-0.0132*** -0.0205** (0.00304) (0.00532)	0.0166*** (0.00333)		-0.00256 (0.00260)		0.303* (0.134)	(35) Dlcpi
93 -698.1 -672.8	0.0264 (0.0865)			0.0421 (0.0415)	-0.0409 (0.0582)	0.00591 (0.00350)	*-0.0205*** (0.00532)	0.0186*** 0.00561*** 0.0185*** 0.0198**** (0.00363) (0.00176) (0.00330) (0.00357)	0.000922 (0.0429)	-0.00376 (0.00271)	-0.0110 (0.0920)	0.344 [*] (0.138)	(36) Dlcpi
93 -693.8 -676.1	0.0386 (0.0817)		-0.0208* (0.0104)					0.00561** (0.00176)	-0.000310 -0.0182 (0.0214) (0.0198)		-0.0692 (0.0887)	0.284 [*] (0.140)	(37) Dlcpi
93 -704.3 -684.0	0.0821 (0.0754)		-0.0266* (0.0101)				-0.0146*** -0.0198** (0.00297) (0.00525)	0.0185*** (0.00330)		0.0255* (0.0110)	0.0611 (0.0906)	0.245 (0.124)	(38) Dlcpi
93 -703.2 -680.4	0.0752 (0.0741)		-0.0247* (0.0102)			0.00419 (0.00353)	*-0.0198*** (0.00525)	0.0198*** (0.00357)	-0.0146 (0.0198)	0.0228 [*] (0.0114)	0.0490 (0.0924)	0.278* (0.128)	(39) Dlcpi
93 -691.8 -671.5	0.0385 (0.0856)		-0.0208* (0.0104)		0.000225 -0.0146 (0.0480) (0.0438)			0.00561** 0.0186*** (0.00178) (0.00336)	-0.000497 -0.00618 (0.0450) (0.0414)	0.0164 (0.0113)	-0.0692 (0.0896)	0.284 [*] (0.141)	(40) Dlcpi
93 -702.4 -679.6	0.0895 (0.0781)		-0.0269* (0.0103)				-0.0148*** -0.0198** (0.00298) (0.00523)	0.0186*** (0.00336)		0.0261 [*] (0.0113)	0.0600 (0.0905)	0.244 (0.125)	(41) Dlcpi
93 -701.3 -675.9	0.0819 (0.0771)		-0.0250* (0.0104)		-0.0130 (0.0447)	0.00415 (0.00355)	*-0.0198*** (0.00523)	0.0200*** (0.00359)	-0.00394 (0.0420)	0.0233* (0.0116)	0.0481 (0.0923)	0.277* (0.130)	(42) Dlcpi
93 -691.3 -668.5	0.000912 0.0609 (0.0904) (0.0854		-0.0220* (0.0107)	0.0590 (0.0410)	-0.0502 (0.0608)			0.00529*** (0.00176)	0.00249 (0.0453)	0.0166 (0.0114)	-0.0661 (0.0904)	0.285* (0.142)	(43) Dlcpi
93 -701.2 -675.9	5		-0.0276* (0.0105)	0.0429 (0.0395)	-0.0509 (0.0561)		-0.0144*** -0.0198** (0.00293) (0.00508)	0.0181*** (0.00337)	-0.00386 (0.0416)	0.0260* (0.0114)	0.0590 (0.0907)	0.245 (0.126)	(44) Dlcpi
93 -700.3 -672.4	0.0502 (0.0848)		-0.0256* (0.0106)	0.0465 (0.0402)	-0.0522 (0.0575)	0.00449 (0.00348)	-0.0198*** (0.00508)	0.0195*** (0.00356)	-0.00124 (0.0421)	0.0230 (0.0117)	0.0461 (0.0923)	0.281* (0.132)	(45) Dlcpi
93 -692.5 -672.2	0.0485 (0.0828)	-0.0107 (0.0114)	-0.00908 (0.0169)					0.00601*** (0.00178)	-0.00287 (0.0217)	0.0153 (0.0114)	-0.0780 (0.0891)	0.266 (0.149)	(46) Dlcpi
93 -703.4 -680.6	0.0950 (0.0760)	-0.0131 (0.0107)	-0.0123 (0.0163)				-0.0149*** (0.00300)	0.0192*** (0.00334)	-0.0216 (0.0197)	0.0243 [*] (0.0111)	0.0523 (0.0916)	0.222 (0.132)	(47) Dlcpi
93 -702.2 -676.9	0.0879 (0.0750)	-0.0124 (0.0107)	-0.0112 (0.0163)			0.00394 (0.00353)	-0.0149*** -0.0197*** (0.00300) (0.00531)	0.0204*** (0.00359)	-0.0181 (0.0197)	0.0218 (0.0115)	0.0414 (0.0932)	0.255 (0.138)	(48) Dlcpi
93 -690.5 -667.7	0.0489 (0.0869)	-0.0107 (0.0115)	-0.00909 -0.0125 (0.0169) (0.0164)		-0.000725 -0.0160 (0.0493) (0.0449)			0.00601**	-0.00226 -0.00845 (0.0463) (0.0418)	0.0153 (0.0114)	-0.0781 (0.0899)	0.266 (0.151)	(49) Dlcpi
93 -701.5 -676.2	0.103 (0.0793)	-0.0132 (0.0109)					-0.0150*** -0.0197** (0.00299) (0.00528)	0.0193*** (0.00340)		0.0249 [*] (0.0113)	0.0511 (0.0913)	0.221 (0.134)	(50) Dlcpi
93 -700.3 -672.5	0.0954 (0.0786)	-0.0125 (0.0108)	-0.0114 (0.0164)		-0.0144 (0.0459)	0.00389 (0.00357)	-0.0150*** -0.0197*** (0.00299) (0.00528)	0.0192*** 0.0204*** 0.00601** 0.0193*** 0.0206*** 0.00566** 0.0188*** 0.0201*** (0.00334) (0.00359) (0.00181) (0.00340) (0.00361) (0.00181) (0.00340) (0.00357)	-0.00624 (0.0424)	0.0224 (0.0117)	0.0404 (0.0929)	0.253 (0.140)	(51) Dlcpi
93 -689.8 -664.5	0.0119 (0.0926)	-0.00946 (0.0116)	-0.0115 (0.0176)	0.0562 (0.0414)	-0.0486 (0.0609)		*	0.00566**(0.00181)	0.000787 -0.00619 (0.0462) (0.0418)	0.0157 (0.0117)	-0.0742 (0.0908)	0.269 (0.152)	(52) Dlcpi
93 -700.2 -672.4	0.0762 (0.0874)	-0.0123 (0.0111)	-0.0141 (0.0169)	0.0390 (0.0400)	-0.0489 (0.0559)		-0.0146** (0.00294)	(0.00340)		0.0249* (0.0115)	0.0507 (0.0914)	0.223 (0.135)	(53) Dlcpi
93 -699.2 -668.8	0.0653 (0.0872)	-0.0115 (0.0112)	-0.0130 (0.0169)	0.0426 (0.0407)	-0.0503 (0.0576)	0.00422 (0.00350)	-0.0146***-0.0198*** (0.00294) (0.00513)	0.0201*** (0.00357)	-0.00358 (0.0424)	0.0222 (0.0118)	0.0391 (0.0929)	0.258 (0.142)	(54) Dlcpi

Appendix 11

```
R-squared:
                                                   Obs per group:
     Within = 0.0915
                                                                 min =
                                                                                 95
                                                                              95.0
     Between = 0.0248
                                                                  avg =
     Overall = 0.0718
                                                                  max =
                                                   F(3, 467)
                                                                              15.68
corr(u_i, Xb) = -0.0684
                                                   Prob > F
                                                                              0.0000
     dlcpi | Coefficient Std. err.
                                            t P>|t| [95% conf. interval]
                                                   0.264 -.0035382
0.184 -.0105385
         lm | -.0012838 .0011473 -1.12
lxr | -.004254 .0031981 -1.33
                                                                           .0009707
        lxr |
                                                                           .0020305
                .0056259 .0009738 5.78 0.000 .0037124
.0172206 .0264191 0.65 0.515 -.0346944
       lgep |
_cons | .0172206 .0264191 0.65 0.515 -.0346944
                                                                          .0691355
    sigma_u | .00311715
                .00727819
     sigma_e |
   rho | .15499753 (fraction of variance due to u_i)
F test that all u_i=0: F(4, 467) = 14.31
                                                                Prob > F = 0.0000
                                                                 Appendix 12
. reg dlcpi lm lxr lgep
                                   df MS
     Source |
                    SS
                                                      Number of obs =
                                                                                475
                                                     F(3, 471)
Prob > F
                                                                              16.06
       Model | .002840985
                                    3 .000946995
    Residual | .027770526
                                  471 .000058961
                                                      R-squared
                                                                             0.0928
                                                      Adj R-squared =
                                                                             0.0870
       Total | .03061151 474 .000064581 Root MSE
______
     dlcpi | Coefficient Std. err. t P>|t| [95% conf. interval]

        lm
        -.001447
        .0008487
        -1.70
        0.889

        lxr
        .0029066
        .0024725
        1.18
        0.240

        lgep
        .0061984
        .0009348
        6.63
        0.000

        _cons
        -.0169459
        .0191463
        -0.89
        0.377

                                                           -.0031148
                                                                           .0002207
                                                            -.0019518
                                                                           .0077651
                                                            -.0545686
                                                                          .0206768
. xtreg dlcpi lm lxr lgep, re
                                                                           475
Random-effects GLS regression
                                                   Number of obs
Group variable: countryID
                                                   Number of groups =
R-squared:
                                                   Obs per group:
     Within = 0.0912
                                                                 min =
    Between = 0.0021
Overall = 0.0769
                                                                  avg =
                                                                                95.0
                                                                  max =
                                                                                95
                                                   Wald chi2(3)
                                                                              46.33
corr(u_i, X) = 0 (assumed)
                                                   Prob > chi2
                                                                             0.0000
       dlcpi | Coefficient Std. err.
                                             z P>|z| [95% conf. interval]
-----+-----
         lm | -.0012355 .0010923 -1.13 0.258
lxr | -.0031661 .003064 -1.03 0.301
lgep | .005667 .000961 5.90 0.000
cons | .0112128 .0250962 0.45 0.655
                                                          -.0033764
-.0091715
        lxr |
                                                                           .0028393
                                                           .0037835
-.0379748
       lgep
                                                                           .0075505
                                                                           .0604005
       cons
     sigma_u | .00222592
     sigma_e |
                .00727819
        rho | .08553384 (fraction of variance due to u_i)
. xttest0
Breusch and Pagan Lagrangian multiplier test for random effects
        dlcpi[countryID,t] = Xb + u[countryID] + e[countryID,t]
        Estimated results:
                                            SD = sqrt(Var)
                 -----
                   dlcpi | .0000646 .0080362
                                .000053
                                               .0072782
                        u | 4.95e-06
                                             .0022259
        Test: Var(u) = 0
                           chibar2(01) = 151.19
Prob > chibar2 = 0.0000
                                                                 Appendix 13
. eststo fixed: qui xtreg dlcpi lm lxr lgep, fe
. xtreg dlcpi lm lxr lgep, re
{\tt Random-effects\ GLS\ regression}
                                                   Number of obs
                                                                                475
```

Number of groups =

Group variable: countryID

R-squared:				Obs per	group:	
Within					min =	
Between Overall					avg = max =	
Overuii	- 0.0703					
				Wald ch	ni2(3) =	46.33
corr(u_i, X)	= 0 (assumed)			Prob >	chi2 =	0.0000
	Coefficient					
	+					
lm	0012355 0031661 .005667	.0010923	-1.13	0.258	0033764	.0009053
lxr	0031661	.003064	-1.03	0.301	0091715	.0028393
lgep	.0112128	.000961	0.45	0.655	0379748	.0075505
	+					
sigma_u	.00222592					
	.00727819					
	.08553384					
. hausman fix	ed					
		icients		(1 5)	sqrt(diag	() () (5))
	(b) fixed	(B)	D:	(D-B)	sqrt(diag	((V_b-V_B))
					Std.	
	0012838			0000482		3508
lxr	004254	0031661		0010879		9165
lgep		.005667				1573
		= Consistent				fnom vtnog
В	= Inconsistent					
_		,			,	
Test of H0: D	ifference in c	oefficients r	not syst	tematic		
	(b-B)'[(V_b-V	_B)^(-1)](b-l	3)			
= Prob > chi2 =	6.07 0 1085					
	ot positive de	finite)				
`	•	,				
					Appe	endix 14
. xtreg dlcpi	lm lxr lgep,	re robust			$\Gamma\Gamma$	
	s GLS regressi				of obs =	
Random-effect Group variabl	s GLS regressi				of obs = of groups =	
Group variabl	s GLS regressi			Number	of groups =	
	s GLS regressi e: countryID			Number		: 5
R-squared: Within Between	s GLS regressi e: countryID = 0.0912 = 0.0021			Number	of groups = r group: min = avg =	95 95.0
Group variabl R-squared: Within	s GLS regressi e: countryID = 0.0912 = 0.0021			Number	of groups = rgroup: min =	95 95.0
R-squared: Within Between	s GLS regressi e: countryID = 0.0912 = 0.0021			Number Obs per	of groups = r group: min = avg = max =	95 95.0
Group variabl R-squared: Within Between Overall	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769			Number Obs per	of groups = ' group:	95 95.0 95 1290.99
R-squared: Within Between	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769			Number Obs per	of groups = ' group:	95 95.0
Group variabl R-squared: Within Between Overall corr(u_i, X)	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed)	on (Std. err		Number Obs per Wald ch Prob >	of groups = group: min = avg = max = ni2(3) = chi2 = clusters in	95 95.0 95.0 95 1290.99 0.0000
Group variabl R-squared: Within Between Overall corr(u_i, X)	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed)	on (Std. err		Number Obs per Wald ch Prob >	of groups = group: min = avg = max = ni2(3) = chi2 = clusters in	95 95.0 95.0 95 1290.99 0.0000
Group variabl R-squared: Within Between Overall corr(u_i, X)	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed)	(Std. err		Number Obs per Wald ch Prob >	of groups = ' group:	95.0 95.0 95.0 95.0 95 0.0000
Group variabl R-squared: Within Between Overall corr(u_i, X)	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed)	(Std. err	z	Number Obs per Wald ch Prob >	of groups = ' group:	95.0 95.0 95.0 95.0 90.0000 countryID)
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed)	(Std. err Robust std. err.	z -1.00	Number Obs per Wald ch Prob > ted for 5	of groups = 'group: min = avg = max = mi2(3) = chi2(3) = ch	95.0 95.0 95.0 95.0 95.0 0.0000 countryID)
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed)	(Std. err Robust std. err.	z -1.00	Number Obs per Wald ch Prob > ted for 5	of groups = 'group: min = avg = max = mi2(3) = chi2(3) = ch	95.0 95.0 95.0 95.0 95.0 0.0000 countryID)
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed)	(Std. err Robust std. err.	z -1.00	Number Obs per Wald ch Prob > ted for 5	of groups = 'group: min = avg = max = mi2(3) = chi2(3) = ch	95.0 95.0 95.0 95.0 95.0 0.0000 countryID)
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons	s GLS regressi e: countryID = 0.0912 = 0.0769 = 0 (assumed) 	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Number Obs per Wald ch Prob > ted for 5 P> z 0.318 0.446 0.000 0.576	of groups = 'group: min = avg = max = ni2(3) = chi2 = clusters in [95% conf 003659 011315 -0032086 0281097	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed)	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Number Obs per Wald ch Prob > ted for 5 P> z 0.318 0.446 0.000 0.576	of groups = 'group: min = avg = max = ni2(3) = chi2 = clusters in [95% conf 003659 011315 -0032086 0281097	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma e	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) 	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	-1.00 -0.76 4.52 0.56	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.000 0.576	of groups = group: min = avg = max = hi2(3) = chi2 = colusters in 003659 011315 .0032086 0281097	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e _rho	s GLS regressi e: countryID = 0.0912 = 0.0769 = 0 (assumed) 	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Number Obs per Wald ch Prob > ted for 5	of groups = representation of groups: min = avg = max = mi2(3) = chi2 = 5 clusters in [95% conf	95.0 95.0 95.0 95.0 0.0000 0.0 countryID)
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e _rho	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) 	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576	of groups = representation of groups: min = avg = max = mi2(3) = chi2 = 5 clusters in [95% conf	95.0 95.0 95.0 95.0 95.0 95.0 95.0 95.0
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e _rho	s GLS regressi e: countryID = 0.0912 = 0.0769 = 0 (assumed) 	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576	of groups = group: min = avg = max = ni2(3) = chi2 = ic clusters in 003659 011315 .0032086 0281097	95.95.0 95.0 95.0 95.0 0.0000 countryID)
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient +	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576	of groups = group: min = avg = max = ni2(3) = chi2 = ic clusters in 003659 011315 .0032086 0281097	95.0 95.0 95.0 95.0 0.0000 0.0 countryID)
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e _rho	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient +	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576	of groups = group: min = avg = max = ni2(3) = chi2 = ic clusters in 003659 011315 .0032086 0281097	95.95.0 95.0 95.0 95.0 0.0000 countryID)
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient 0012355 0031661 .005667 .0112128 .00222592 .00727819 .08553384	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576	of groups = group: min = avg = max = hi2(3) = chi2 = iclusters in 003659 011315 .0032086 0281097	95.95.0 95.0 95.0 95.0 0.0000 countryID)
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho . logistic it	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient 0012355 0031661 .005667 .0112128 .00222592 .00727819 .08553384	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576	of groups = group: min = avg = max = ni2(3) = chi2 = clusters in 003659 011315 .0032086 0281097 Number of ole CR chi2(1)	95.95.0 95.0 95.0 96.0 96.0 97.0 98.0 98.0 99.0 99.0 99.0 99.0 99.0 99
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho . logistic it Logistic regr	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) 	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576	of groups = group: min = avg = max = ni2(3) = chi2 = clusters in 003659 011315 .0032086 0281097 Number of ole CR chi2(1)	95.95.0 95.0 95.0 96.0 96.0 97.0 98.0 98.0 99.0 99.0 99.0 99.0 99.0 99
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho . logistic it Logistic regr	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient 0012355 0031661 .005667 .0112128 .00222592 .00727819 .08553384	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576	of groups = group: min = avg = max = hi2(3) = chi2 = iclusters in 003659 011315 .0032086 0281097 Appee Number of o	95.95.0 95.0 95.0 96.0 96.0 97.0 98.0 98.0 99.0 99.0 99.0 99.0 99.0 99
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho . logistic it Logistic regr	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient 0012355 0031661 .005667 .0112128 .00222592 .00727819 .08553384 lgep ession d = -321.47399	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629 (fraction or	z -1.00 -0.76 4.52 0.56	Number Obs per Wald ch Prob > ted for 5 P> z 0.318 0.446 0.000 0.576 acc due t	of groups = `group: min = avg = max = mi2(3) = chi2 = clusters in [95% conf 003659011315 .00320860281097 Appe Number of o LR chi2(1) Prob > chi2 Pseudo R2	95. 95.0 95.0 95.0 95.0 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho . logistic it Logistic regr	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient 0012355 0031661 .005667 .0112128 .00727819 .08553384 lgep ession d = -321.47399	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629	z -1.00 -0.76 4.52 0.56	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.000 0.576	of groups = group: min = avg = max = hi2(3) = chi2 = Conf 003659 011315 .0032086 0281097 Co u_i) Number of o LR chi2(1) Prob > (hi2 Pseudo R2	95. 95.0 95.0 95.0 95.0 95.0 95.0 95.0 9
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho . logistic it Logistic regr	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient +	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629 (fraction or	z -1.00 -0.76 4.52 0.56	Number Obs per Wald ch Prob > ted for 5 P> z 0.318 0.446 0.000 0.576 ance due t	of groups =	95. 95.0 95.0 95.0 95.0 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho . logistic it Logistic regr	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient +	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629 (fraction or	z -1.00 -0.76 4.52 0.56	Number Obs per Wald ch Prob > ted for 5 P> z 0.318 0.446 0.000 0.576 ance due t	of groups =	95. 95.0 95.0 95.0 95.0 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho . logistic it Logistic regr Log likelihoo it	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient 0012355 0031661 .005667 .0112128 .00727819 .08553384	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629 (fraction or Std. err. .083324 100.2411	z -1.00 -0.76 4.52 0.56 	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576 nce due t	of groups = group: min = avg = max = hi2(3) = chi2 = iclusters in 003659 011315 0281097 Co u_i) Number of c IR chi2(1) Prob > chi2 Pseudo R2 [95% conf	95. 95.0 95.0 95.0 95.0 95.0 95.0 95.0 9
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho . logistic it Logistic regr Log likelihoo it lgep _cons	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient 0012355 0031661 .005667 .0112128 .00222592 .00727819 .08553384 lgep ession d = -321.47399	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629 (fraction of std. err. .083324 .083324	z -1.00 -0.76 4.52 0.56 	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576 nce due t	of groups = group: min = avg = max = hi2(3) = chi2 = iclusters in 003659 011315 0032086 0281097 Co u_i) Number of c IR chi2(1) Prob > chi2 Pseudo R2 [95% conf	95. 95.0 95.0 95.0 95.0 95.0 95.0 95.0 9
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho . logistic it Logistic regr Log likelihoo it lgep _cons	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient 0012355 0031661 .005667 .0112128 .00727819 .08553384	(Std. err. Robust std. err. .0012365 .0041577 .0012543 .0200629 (fraction of std. err. .083324 .083324	z -1.00 -0.76 4.52 0.56 	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576 nce due t	of groups = group: min = avg = max = hi2(3) = chi2 = iclusters in 003659 011315 0032086 0281097 Co u_i) Number of c IR chi2(1) Prob > chi2 Pseudo R2 [95% conf	95. 95.0 95.0 95.0 95.0 95.0 95.0 95.0 9
Group variabl R-squared: Within Between Overall corr(u_i, X) dlcpi lm lxr lgep _cons sigma_u sigma_e rho . logistic it Logistic regr Log likelihoo it lgep _cons Note: _cons e	s GLS regressi e: countryID = 0.0912 = 0.0021 = 0.0769 = 0 (assumed) Coefficient 0012355 0031661 .005667 .0112128 .00222592 .00727819 .08553384 lgep ession d = -321.47399	(Std. err. Robust std. err0012365 .0041577 .0012543 .0200629 (fraction or	z -1.00 -0.76 4.52 0.56 	Wald ch Prob > ted for 5 P> z 0.318 0.446 0.0576 nce due t	of groups = group: min = avg = max = hi2(3) = chi2 = iclusters in 003659 011315 0032086 0281097 Co u_i) Number of c IR chi2(1) Prob > chi2 Pseudo R2 [95% conf	95. 95.0 95.0 95.0 95.0 95.0 95.0 95.0 9

. logistic it lgep lm lxr

Number of obs = 480 LR chi2(3) = 48.28 Prob > chi2 = 0.0000 Logistic regression Log likelihood = -307.50326 Pseudo R2 = 0.0728 it | Odds ratio Std. err. z P>|z| [95% conf. interval] .1056918 .1803496 .0491709 -6.28 0.000 3.109738 .7472943 4.72 0.000 .3077434 lgep | 4.980514 1m | lxr |
 1xr
 1 .331985
 .9045517
 0.42
 0.673
 .3519231
 5.041395

 _cons
 .0000972
 .0005092
 -1.76
 0.078
 3.38e-09
 2.797531
 ______ Note: _cons estimates baseline odds. . estimates store full . lrtest full restricted Likelihood-ratio test Assumption: restricted nested within full LR chi2(2) = 27.94Prob > chi2 = 0.0000 Appendix 16 . logistic it lgep lxr lm Logistic regression Number of obs = 480 LR chi2(3) = 48.28Prob > chi2 = 0.0000Log likelihood = -307.50326 Pseudo R2 = 0.0728 it | Odds ratio Std. err. z P>|z| [95% conf. [95% conf. interval] .3077434 1.941661 4.980514 3.38e-09 2.797531 Note: _cons estimates baseline odds. . estat class Logistic model for it ----- True -----Classified | D ~D | Total Total + | 120 79 | 199 - | 104 177 | 281 -----Total | 224 256 | 480 Classified + if predicted Pr(D) >= .5True D defined as it != 0 Sensitivity Pr(+| D) 53.57% Sensitive, Specificity

Positive predictive value

Pr(D | +)

Pr(D | -) 69.14% 60.30% 30.86%

Appendix 17

 forvalues 	lags = 1/5 {
2.	display "AR lags: `lags'"
3.	eststo: quietly regress Dlcpi $L(1/\label{logs}).Dlcpi L(0/1).lm lxr L(0/1).lxr$
4.	estat bgodfrey, lags(1/5)
5. }	
AR lags: 1	
(est1 stored)	

61.88%

Breusch-Godfrev LM test for autocorrelation

False + rate for classified + $Pr(\sim D \mid +)$ 39.70% False - rate for classified - $Pr(\mid D \mid -)$ 37.01%

False - rate for true D

Correctly classified

lags(p)	chi2	df	Prob > chi2
1	0.096	1	0.7572
2	0.251	2	0.8818
3	0.448	3	0.9303
4	16.222	4	0.0027
5	19.089	5	0.0018

Pr(- | D)

H0: no serial correlation

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	0.056	1	0.8123
2	0.082	2	0.9597
3	0.763	3	0.8583
4	15.805	4	0.0033
5	18.239	5	0.0027

H0: no serial correlation

AR lags: 3 (est3 stored)

Breusch-Godfrey LM test for autocorrelation

lags(p)	- 1	chi2	df	Prob > chi2
 	+			
1		3.479	1	0.0621
2		7.552	2	0.0229
3	Ĺ	7.891	3	0.0483
4	Ĺ	19.931	4	0.0005
5	i	20.996	5	0.0008

H0: no serial correlation

AR lags: 4 (est4 stored)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1	11.177	1	0.0008
2	14.189	2	0.0008
3	15.179	3	0.0017
4	15.275	4	0.0042
5	18.148	5	0.0028

H0: no serial correlation

AR lags: 5 (est5 stored)

Breusch-Godfrey LM test for autocorrelation

lags(p)	chi2	df	Prob > chi2
1 2 3	1.819 1.982 3.104	1 2 3	0.1774 0.3712 0.3758
4 5	7.086 10.393	4 5	0.3738 0.1314 0.0648

H0: no serial correlation

Appendix 18

arima Dlcpi, ar(1/4) ma(1/2) robust

(setting optimization to BHHH)
Iteration 0: Log pseudolikelihood = 353.88446
Iteration 1: Log pseudolikelihood = 354.30768
Iteration 2: Log pseudolikelihood = 354.67405
Iteration 3: Log pseudolikelihood = 365.86616
Iteration 3: Log pseudolikelihood = 362.36155
(switching optimization to BFGS)
Iteration 5: Log pseudolikelihood = 365.41376
Iteration 6: Log pseudolikelihood = 365.41376
Iteration 7: Log pseudolikelihood = 365.41376
Iteration 9: Log pseudolikelihood = 365.64532
Iteration 10: Log pseudolikelihood = 365.6486
Iteration 11: Log pseudolikelihood = 365.66494
Iteration 12: Log pseudolikelihood = 365.67431
Iteration 13: Log pseudolikelihood = 365.67431
Iteration 14: Log pseudolikelihood = 365.67715
(switching optimization to BHHH)
Iteration 15: Log pseudolikelihood = 365.67716

ARIMA regression

Sample: 2000q2 thru 2023q4 Number of obs = 95 Wald chi2(6) = 60.95 Log pseudolikelihood = 365.6772 Prob > chi2 = 0.0000

	 	Semir	obust	 	
	•				[95% conf. interval]
Dleni	 + 			 	

Olcpi

ar .1. 1539197	0.816 0.963 0.878 0.008 0.466 0.613	-1.448851 -1.307976 5456914 .1094591 -1.044175 7216644 	1.14101; 1.24750; .4662658; .724071; 2.28305; 1.22303;
ARMA	0.816 0.963 0.878 0.008 0.466 0.613	-1.448851 -1.307976 5456914 .1094591 -1.044175 7216644 .0041124 and the tw	1.14101: 1.24750: .466255: .724071: 2.28305: 1.22303: .0061298
1. 1539197	0.963 0.878 0.008 0.466 0.613 	-1.307976 5456914 .1094591 -1.044175 7216644 .0041124 and the tw	1.24750; .4662658; .7240713; 2.28305; 1.22303; .0061298; o-sided
L2. 0302372 .6519198	0.963 0.878 0.008 0.466 0.613 	-1.307976 5456914 .1094591 -1.044175 7216644 .0041124 and the tw	1.24750; .466265; .724071; 2.28305; 1.22303; .0061298; o-sided
L3. 0397128 .2581571 -0.15 L4. .4167652 .1567917 2.66 ma .4167652 .1567917 2.66 ma .2506852 .1567917 2.66 .2506852 .4961058 0.51	0.878 0.008 0.466 0.613 	5456914 .1094591 -1.044175 7216644 .0041124 and the tw	.466265 .724071 2.28305 1.22303 .0061290
L4. .4167652 .1567917 2.66 ma L1. .6194411 .8487993 0.73 L2. .2596852 .4961058 0.51 //sigma .0051211 .0005147 9.95 Note: The test of the variance against zero is confidence interval is truncated at zero. Note: The test of the variance against zero is confidence interval is truncated at zero. . arima Dlcpi, ar(1/3) ma(1/2) robust (setting optimization to BHHH) Iteration 0: Log pseudolikelihood = 352.89905 Iteration 1: Log pseudolikelihood = 354.82793 Iteration 2: Log pseudolikelihood = 367.28448 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 370.8931 Iteration 6: Log pseudolikelihood = 371.30418 Iteration 7: Log pseudolikelihood = 371.30418 Iteration 8: Log pseudolikelihood = 371.78118 Iteration 9: Log pseudolikelihood = 371.84392 Iteration 10: Log pseudolikelihood = 372.96525 Iteration 11: Log pseudolikelihood = 372.96525 Iteration 12: Log pseudolikelihood = 372.06123 Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 (switching optimization to BFGS)	0.466 0.613 0.000	.1094591 -1.044175 7216644 	.724071 2.28305 1.22303 .006129 0-sided
ma L1. .6194411 .8487993 0.73	0.613	7216644 .0041124 and the tw	1.22303 .006129 o-sided
L1. .6194411 .8487993 0.73 L2. .2566852 .4961058 0.51 /sigma .0051211 .0005147 9.95 Note: The test of the variance against zero is confidence interval is truncated at zero. . arima Dlcpi, ar(1/3) ma(1/2) robust (setting optimization to BHHH) Iteration 0: Log pseudolikelihood = 352.89905 Iteration 1: Log pseudolikelihood = 354.82793 Iteration 2: Log pseudolikelihood = 364.82793 Iteration 3: Log pseudolikelihood = 367.28448 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 370.8931 Iteration 6: Log pseudolikelihood = 371.30418 Iteration 7: Log pseudolikelihood = 371.30418 Iteration 8: Log pseudolikelihood = 371.78118 Iteration 9: Log pseudolikelihood = 371.84392 Iteration 10: Log pseudolikelihood = 371.84392 Iteration 11: Log pseudolikelihood = 372.06512 Iteration 12: Log pseudolikelihood = 372.06512 Iteration 15: Log pseudolikelihood = 372.06123 Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 (switching optimization to BFGS)	0.613	7216644 .0041124 and the tw	1.22303 .006129 o-sided
L2. .2506852 .4961058	0.613	7216644 .0041124 and the tw	1.223039 .0061298 o-sided
/sigma .0051211 .0005147 9.95 Note: The test of the variance against zero is confidence interval is truncated at zero. . arima Dlcpi, ar(1/3) ma(1/2) robust (setting optimization to BHHH) Iteration 0: Log pseudolikelihood = 352.89905 Iteration 1: Log pseudolikelihood = 354.1232 Iteration 2: Log pseudolikelihood = 361.49586 Iteration 3: Log pseudolikelihood = 367.28448 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 370.8931 Iteration 5: Log pseudolikelihood = 371.38418 Iteration 7: Log pseudolikelihood = 371.38418 Iteration 8: Log pseudolikelihood = 371.38118 Iteration 9: Log pseudolikelihood = 371.84392 Iteration 10: Log pseudolikelihood = 371.84392 Iteration 11: Log pseudolikelihood = 372.06512 Iteration 12: Log pseudolikelihood = 372.06124 Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123	0.000	.0041124 and the tw	.0061298
/sigma .0051211 .0005147 9.95 Note: The test of the variance against zero is a confidence interval is truncated at zero. . arima Dlcpi, ar(1/3) ma(1/2) robust (setting optimization to BHHH) Iteration 0: Log pseudolikelihood = 352.89905 Iteration 1: Log pseudolikelihood = 354.82793 Iteration 2: Log pseudolikelihood = 364.82793 Iteration 3: Log pseudolikelihood = 361.49586 Iteration 4: Log pseudolikelihood = 367.28448 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 370.8931 Iteration 6: Log pseudolikelihood = 371.30418 Iteration 7: Log pseudolikelihood = 371.30418 Iteration 8: Log pseudolikelihood = 371.78118 Iteration 9: Log pseudolikelihood = 371.84392 Iteration 10: Log pseudolikelihood = 371.84392 Iteration 11: Log pseudolikelihood = 372.06512 Iteration 13: Log pseudolikelihood = 372.06124 (switching optimization to BHHH) Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 (switching optimization to BFGS)	0.000	.0041124 and the tw	.006129 o-sided
Note: The test of the variance against zero is confidence interval is truncated at zero. . arima Dlcpi, ar(1/3) ma(1/2) robust (setting optimization to BHHH) Iteration 0: Log pseudolikelihood = 352.89905 Iteration 1: Log pseudolikelihood = 354.1232 Iteration 2: Log pseudolikelihood = 364.82793 Iteration 3: Log pseudolikelihood = 367.28448 (switching optimization to BFGS) Iteration 4: Log pseudolikelihood = 367.28448 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 370.8931 Iteration 6: Log pseudolikelihood = 371.38418 Iteration 7: Log pseudolikelihood = 371.8418 Iteration 9: Log pseudolikelihood = 371.84392 Iteration 10: Log pseudolikelihood = 371.84392 Iteration 11: Log pseudolikelihood = 372.96525 Iteration 12: Log pseudolikelihood = 372.96525 Iteration 13: Log pseudolikelihood = 372.96124 Iteration 15: Log pseudolikelihood = 372.96123 Iteration 16: Log pseudolikelihood = 372.96123 Iteration 17: Log pseudolikelihood = 372.96123 Iteration 19: Log pseudolikelihood = 372.96123 Iteration 19: Log pseudolikelihood = 372.96123 Iteration 19: Log pseudolikelihood = 372.96123 Iteration 20: Log pseudolikelihood = 372.96123 Iteration 20: Log pseudolikelihood = 372.96123 Iteration 20: Log pseudolikelihood = 372.96123 Iteration 20: Log pseudolikelihood = 372.96123 Iteration 20: Log pseudolikelihood = 372.96123		and the tw	o-sided
(setting optimization to BHHH) Iteration 0: Log pseudolikelihood = 352.89905 Iteration 1: Log pseudolikelihood = 354.82793 Iteration 2: Log pseudolikelihood = 354.82793 Iteration 3: Log pseudolikelihood = 364.82793 Iteration 3: Log pseudolikelihood = 367.28448 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 370.8931 Iteration 6: Log pseudolikelihood = 371.30418 Iteration 7: Log pseudolikelihood = 371.78118 Iteration 9: Log pseudolikelihood = 371.78118 Iteration 10: Log pseudolikelihood = 371.84392 Iteration 10: Log pseudolikelihood = 372.96451 Iteration 11: Log pseudolikelihood = 372.06123 Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BHHO) Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 372.06123		Appen	adix 19
(setting optimization to BHHH) Iteration 0: Log pseudolikelihood = 352.89905 Iteration 1: Log pseudolikelihood = 354.1232 Iteration 2: Log pseudolikelihood = 354.82793 Iteration 3: Log pseudolikelihood = 367.28448 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 370.8931 Iteration 6: Log pseudolikelihood = 371.38418 Iteration 7: Log pseudolikelihood = 371.38118 Iteration 8: Log pseudolikelihood = 371.84392 Iteration 10: Log pseudolikelihood = 371.84392 Iteration 11: Log pseudolikelihood = 372.96511 Iteration 12: Log pseudolikelihood = 372.96512 Iteration 13: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123 372.06123		Търрен	www.Ty
Iteration 0: Log pseudolikelihood = 352.89905			
Iteration 1: Log pseudolikelihood = 354.1232 Iteration 3: Log pseudolikelihood = 364.42793 Iteration 3: Log pseudolikelihood = 361.49586 Iteration 4: Log pseudolikelihood = 367.28448 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 371.30418 Iteration 6: Log pseudolikelihood = 371.30418 Iteration 7: Log pseudolikelihood = 371.78118 Iteration 8: Log pseudolikelihood = 371.78118 Iteration 10: Log pseudolikelihood = 371.84392 Iteration 10: Log pseudolikelihood = 372.06512 Iteration 12: Log pseudolikelihood = 372.06123 Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123			
Iteration 2: Log pseudolikelihood = 354.82793 Iteration 3: Log pseudolikelihood = 367.28448 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 370.8931 Iteration 6: Log pseudolikelihood = 371.30418 Iteration 7: Log pseudolikelihood = 371.30418 Iteration 7: Log pseudolikelihood = 371.78118 Iteration 8: Log pseudolikelihood = 371.78118 Iteration 9: Log pseudolikelihood = 371.84392 Iteration 10: Log pseudolikelihood = 371.98394 Iteration 11: Log pseudolikelihood = 372.06512 Iteration 12: Log pseudolikelihood = 372.06512 Iteration 13: Log pseudolikelihood = 372.06114 Iteration 14: Log pseudolikelihood = 372.06123 Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123			
Iteration 3: Log pseudolikelihood = 361.49586 367.28448 (switching optimization to BFGS) Steration 5: Log pseudolikelihood = 370.8931 371.39418 371.39			
Iteration 4: Log pseudolikelihood = 367.28448 (switching optimization to BFGS) Iteration 5: Log pseudolikelihood = 370.8931 Iteration 6: Log pseudolikelihood = 371.39418 Iteration 7: Log pseudolikelihood = 371.63834 Iteration 8: Log pseudolikelihood = 371.63834 Iteration 9: Log pseudolikelihood = 371.84392 Iteration 10: Log pseudolikelihood = 371.84392 Iteration 11: Log pseudolikelihood = 371.98394 Iteration 12: Log pseudolikelihood = 372.96525 Iteration 14: Log pseudolikelihood = 372.96122 (switching optimization to BHHH) Iteration 15: Log pseudolikelihood = 372.96123 Iteration 16: Log pseudolikelihood = 372.96123 Iteration 18: Log pseudolikelihood = 372.96123 Iteration 19: Log pseudolikelihood = 372.96123 Iteration 19: Log pseudolikelihood = 372.96123 Iteration 20: Log pseudolikelihood = 372.96123 Iteration 20: Log pseudolikelihood = 372.96123 Iteration 20: Log pseudolikelihood = 372.96123 Iteration 20: Log pseudolikelihood = 372.96123 Iteration 20: Log pseudolikelihood = 372.96123 Iteration 20: Log pseudolikelihood = 372.96123			
Tteration 5: Log pseudolikelihood = 370.8931			
Iteration 6: Log pseudolikelihood			
Iteration 7: Log pseudolikelihood = 371.63834			
Iteration 8: Log pseudolikelihood = 371.78118			
Iteration 10: Log pseudolikelihood = 371.98394 Iteration 11: Log pseudolikelihood = 372.084511 Iteration 12: Log pseudolikelihood = 372.08125 Iteration 13: Log pseudolikelihood = 372.06124 (switching optimization to BHHH) Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123			
Iteration 11: Log pseudolikelihood = 372.04511 Iteration 12: Log pseudolikelihood = 372.05825 Iteration 13: Log pseudolikelihood = 372.06124 Iteration 14: Log pseudolikelihood = 372.06122 (switching optimization to BHHH) Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123			
Iteration 12: Log pseudolikelihood = 372.05825 Iteration 13: Log pseudolikelihood = 372.06114 Iteration 14: Log pseudolikelihood = 372.06122 (switching optimization to BHHH) Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123			
Iteration 13: Log pseudolikelihood = 372.06114 Iteration 14: Log pseudolikelihood = 372.06122 (switching optimization to BHHH) Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123			
Iteration 14: Log pseudolikelihood = 372.06122 (switching optimization to BHHH) Iteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123			
(switching optimization to BHHH) Tteration 15: Log pseudolikelihood = 372.06123 Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123 Iteration 20: Log pseudolikelihood = 372.06123			
Iteration 16: Log pseudolikelihood = 372.06123 Iteration 17: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123			
Iteration 17: Log pseudolikelihood = 372.06123 Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123			
<pre>Iteration 18: Log pseudolikelihood = 372.06123 Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123</pre>			
<pre>Iteration 19: Log pseudolikelihood = 372.06123 (switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123</pre>			
<pre>(switching optimization to BFGS) Iteration 20: Log pseudolikelihood = 372.06123 Iteration 21: Log pseudolikelihood = 372.06123</pre>		curcy	
ARIMA regression		up)	
Sample: 2000q2 thru 2023q4	Number of	obs =	95
·	Wald chi2	(5) =	9.15e+12
Log pseudolikelihood = 372.0612	Prob > ch		
Semirobust		[95% conf.	
Dlcpi Coefficient std. err. z	P> z	[95% CONT.	
Dlcpi 0046406 0010371 4 53	0.000	0026254	000001
_cons .0046486 .0010271 4.53		.0026354	.0066617
ARMA			
ar			
L1. .605816 .1250264 4.85 L2. -1.008781 .0223089 -45.22	0.000	.3607687	.8508632
L2. -1.008/81 .0223089 -45.22 L3. .5582308 .1307205 4.27	0.000	-1.052506	965056
13302300 11307203 4.27	0.000	.3020234	.014430
ma			
L11625848 .0830045 -1.96			.00010
L2. 1 1.92e-06 5.2e+05			
/sigma .0046467 .0004254 10.92		.0038129	.0054806
Note: The test of the variance against zero is			
confidence interval is truncated at zero.			
. margins, dydx(*) atmeans		Appen	ndix 20
Conditional marginal effects		Number of	obs = 48
Model VCE: OIM			
Expression: Pr(it), predict()			
dy/dx wrt: lm lxr lgep			
At: lm = 14.28433 (mean) lxr = 4.702961 (mean)			
lgep = 4.938275 (mean)			
lxr = 4.702961 (mean)			

| Delta-method | dy/dx std. err. z P>|z| [95% conf. interval]

lm .	.2821887	.0597815	4.72	0.000	.1650193	.3993582
lxr	.0713022	.168909	0.42	0.673	2597533	.4023577
lgep	.4260316	.0678015	-6.28	0.000	5589201	2931431

Appendix 21

. margins, dydx(*)

Average marginal effects Model VCE: OIM

Number of obs = 480

Expression: Pr(it), predict()
dy/dx wrt: lm lxr lgep

	dy/dx			P> z	[95% conf.	. interval]
lm lxr lgep	.255002 .0644328	.0491422 .1525415 .0510444	5.19 0.42 -7.54	0.000 0.673 0.000	.158685 2345431 4850318	.351319 .3634087 2849416

Appendix 22

Country	Appendix 22							
Country	Year	CPI	M 5.440.40	XR	GEP			
Denmark	2000-Q1	75.43	544848	87.47	65.11588			
Denmark	2000-Q2	76.29	547345	87.46	68.41304			
Denmark	2000-Q3	76.37	528715	85.43	77.47352			
Denmark	2000-Q4	76.88	507134	86.88	83.47962			
Denmark	2001-Q1	77.23	539457	88.37	77.00172			
Denmark	2001-Q2	78.23	553418	87	72.29822			
Denmark	2001-Q3	78.20	577537	89.42	64.42305			
Denmark	2001-Q4	78.43	546402	88.82	51.7029			
Denmark	2002-Q1	79.17	546185	88.16	53.32751			
Denmark	2002-Q2	80.00	564875	90.16	62.74335			
Denmark	2002-Q3	80.00	591127	90.92	65.27137			
Denmark	2002-Q4	80.50	611199	91.73	68.73497			
Denmark	2003-Q1	81.33	769030.6	94	83.64521			
Denmark	2003-Q2	81.83	813925.9	95.71	73.31			
Denmark	2003-Q3	81.47	804375.9	94.56	74.8078			
Denmark	2003-Q4	81.67	797960.2	96.34	77.97722			
Denmark	2004-Q1	82.10	904526.5	96.07	85.41406			
Denmark	2004-Q2	82.73	903858.8	95.89	94.06901			
Denmark	2004-Q3	82.43	900187.3	96.05	102.9367			
Denmark	2004-Q4	82.80	838414.3	97.41	109.9186			
Denmark	2005-Q1	83.10	864338.2	96.65	114.9754			
Denmark	2005-Q2	84.13	939591.6	94.75	125.6224			
Denmark	2005-Q3	84.30	948963.5	94.67	149.9138			
Denmark	2005-Q4	84.53	990974.8	94.25	151.7998			
Denmark	2006-Q1	84.83	1048928	94.36	148.562			
Denmark	2006-Q2	85.83	1044634	95.63	160.0213			
Denmark	2006-Q3	85.90	1074177	95.63	160.1574			
Denmark	2006-Q4	85.97	1081853	95.84	144.0664			
Denmark	2007-Q1	86.43	1154050	96.26	142.6794			
Denmark	2007-Q2	87.20	1159683	96.31	158.9655			

	2027.00		1005000		100 00 10
Denmark	2007-Q3	86.87	1205903	96.71	169.3849
Denmark	2007-Q4	87.83	1219234	97.69	201.078
Denmark	2008-Q1	89.07	1333667	99.12	223.6517
Denmark	2008-Q2	90.27	1344689	99.05	279.7467
Denmark	2008-Q3	90.50	1365583	97.63	273.0155
Denmark	2008-Q4	90.40	1440043	99.91	153.8137
Denmark	2009-Q1	90.63	1585819	100.76	120.6482
Denmark	2009-Q2	91.37	1590255	100.99	135.3894
Denmark	2009-Q3	91.40	1650386	100.86	148.9652
Denmark	2009-Q4	91.53	1552182	100.88	166.084
Denmark	2010-Q1	92.53	1565894	97.54	175.9608
Denmark	2010-Q2	93.37	1590244	94.37	176.2554
Denmark	2010-Q3	93.57	1453105	95	171.6313
Denmark	2010-Q4	93.90	1488658	94.83	190.2588
Denmark	2011-Q1	95.03	1350947	95.91	219.5917
Denmark	2011-Q2	96.20	1285336	96.57	241.9276
Denmark	2011-Q3	96.10	1326945	96.09	233.3416
Denmark	2011-Q4	96.33	1341033	95.32	231.1862
Denmark	2012-Q1	97.60	1486451	94.41	242.8439
Denmark	2012-Q2	98.30	1462908	93.56	225.0866
Denmark	2012-Q3	98.47	1466950	92.93	223.085
Denmark	2012-Q4	98.50	1380792	93.57	221.4684
Denmark	2013-Q1	98.73	1268374	93.72	227.321
Denmark	2013-Q2	99.13	1213403	95.07	218.7575
Denmark	2013-Q3	98.97	1198748	95.68	229.5335
Denmark	2013-Q4	99.13	1190746	96.98	227.9075
Denmark	2014-Q1	99.33	1205490	97.49	229.4645
Denmark	2014-Q2	99.73	1226402	96.8	230.6925
Denmark	2014-Q3	99.53	1271047	95.75	216.9077
Denmark	2014-Q4	99.60	1340333	96.15	172.218
Denmark	2015-Q1	99.60	1409065	91.79	127.9972
Denmark	2015-Q2	100.33	1472939	92.82	134.0564
Denmark	2015-Q3	100.13	1482362	94.47	113.7305
Denmark	2015-Q4	99.93	1502359	93.68	100.1444
Denmark	2016-Q1	99.90	1449874	94.6	81.02994
Denmark	2016-Q2	100.47	1506643	95.23	100.2401
Denmark	2016-Q3	100.30	1451791	95.42	103.2608
Denmark	2016-Q4	100.33	1443999	94.98	115.4691
Denmark	2017-Q1	100.87	1483209	94.87	123.0723
Denmark	2017-Q2	101.30	1519955	96.23	113.8648
Denmark	2017-Q3	101.83	1497568	97.37	118.1562
Denmark	2017-Q4	101.60	1486878	97.79	138.1095
Denmark	2018-Q1	101.47	1467769	98.4	149.1056
Denmark	2018 Q1 2018-Q2	102.30	1504671	97.98	159.2765
Dominark	2010 Q2	102.00	100-071	57.50	100.2700

	I				I
Denmark	2018-Q3	102.73	1484004	99.45	166.749
Denmark	2018-Q4	102.40	1444197	98.4	151.0079
Denmark	2019-Q1	102.67	1457211	97.81	135.0537
Denmark	2019-Q2	103.07	1470591	98.4	134.1393
Denmark	2019-Q3	103.17	1467413	98.31	121.7694
Denmark	2019-Q4	103.10	1481422	97.76	126.1776
Denmark	2020-Q1	103.30	1503450	99.66	102.8085
Denmark	2020-Q2	103.17	1580147	99.99	68.76653
Denmark	2020-Q3	103.70	1594749	101.34	90.31376
Denmark	2020-Q4	103.57	1653672	101.16	104.9307
Denmark	2021-Q1	104.03	1660705	100.46	139.4159
Denmark	2021-Q2	104.87	1660342	100.48	156.2154
Denmark	2021-Q3	105.67	1664364	100.15	192.6785
Denmark	2021-Q4	106.83	1658998	99.77	244.045
Denmark	2022-Q1	109.07	1651784	99.55	277.7365
Denmark	2022-Q2	112.67	1732447	99.29	311.7772
Denmark	2022-Q3	115.40	1808152	98.8	350.1239
Denmark	2022-Q4	116.70	1833211	100.76	258.4067
Denmark	2023-Q1	117.07	1854009	101.39	203.6714
Denmark	2023-Q2	116.67	1841922	102.64	175.8058
Denmark	2023-Q3	117.87	1882319	103.24	189.2505
Denmark	2023-Q4	117.23	1922206	102.84	189.2923
UK	2000-Q1	72.8	885160	129.31	65.11588
UK	2000-Q2	73.46667	920679	125.13	68.41304
UK	2000-Q3	73.46667	920246	125.4	77.47352
UK	2000-Q4	73.93333	937378	126.86	83.47962
UK	2001-Q1	73.7	982075	125.96	77.00172
UK	2001-Q2	74.76667	997434	127.23	72.29822
UK	2001-Q3	74.76667	1018918	128.19	64.42305
UK	2001-Q4	74.93333	1023825	128.23	51.7029
UK	2002-Q1	75	1037198	128.28	53.32751
UK	2002-Q2	75.73333	1053359	126.32	62.74335
UK	2002-Q3	75.8	1068215	130.73	65.27137
UK	2002-Q4	76.16667	1065938	130.05	68.73497
UK	2003-Q1	76.13333	1086546	125.19	83.64521
UK	2003-Q2	76.76667	1118734	124.6	73.31
UK	2003-Q3	76.8	1131657	123.33	74.8078
UK	2003-Q4	77.16667	1154822	126.26	77.97722
UK	2004-Q1	77.16667	1199007	131.87	85.41406
UK	2004-Q2	77.8	1237892	133.07	94.06901
UK	2004-Q3	77.83333	1241290	129.95	102.9367
1117			4000040	120.27	100 0106
UK	2004-Q4	78.33333	1263843	130.37	109.9186
UK	2004-Q4 2005-Q1	78.33333 78.53333	1303305	129.77	114.9754

UK	2005-Q3	79.7	1390408	128.95	149.9138
UK	2005-Q4	80.1	1424566	127.4	151.7998
UK	2006-Q1	80.2	1489864	125.74	148.562
UK	2006-Q2	81.23333	1523221	129.1	160.0213
UK	2006-Q3	81.73333	1568903	131.52	160.1574
UK	2006-Q4	82.26667	1613079	133.02	144.0664
UK	2007-Q1	82.43333	1666884	131.68	142.6794
UK	2007-Q2	83.3	1743928	132.73	158.9655
UK	2007-Q3	83.33333	1783727	131.2	169.3849
UK	2007-Q4	84.13333	1817043	126.79	201.078
UK	2008-Q1	84.53333	1939942	119.89	223.6517
UK	2008-Q2	86.1	1965777	117.34	279.7467
UK	2008-Q3	87.06667	1979156	113.23	273.0155
UK	2008-Q4	87.23333	2137477	99.77	153.8137
UK	2009-Q1	87.03333	2184558	98.26	120.6482
UK	2009-Q2	87.83333	2145521	106.75	135.3894
UK	2009-Q3	88.2	2192640	103.19	148.9652
UK	2009-Q4	88.63333	2194011	101.99	166.084
UK	2010-Q1	89.06667	2405016	98.07	175.9608
UK	2010-Q2	90.06667	2378543	102.61	176.2554
UK	2010-Q3	90.26667	2365930	102.74	171.6313
UK	2010-Q4	91.06667	2323609	101.67	190.2588
UK	2011-Q1	92.23333	2347111	101.5	219.5917
UK	2011-Q2	93.43333	2343657	99.67	241.9276
UK	2011-Q3	93.96667	2345838	100.33	233.3416
UK	2011-Q4	94.73333	2266224	102.46	231.1862
UK	2012-Q1	95.1	2269930	102.91	242.8439
UK	2012-Q2	95.8	2286645	105.14	225.0866
UK	2012-Q3	96.06667	2308780	106.5	223.085
UK	2012-Q4	97.03333	2327083	105.57	221.4684
UK	2013-Q1	97.43333	2365874	99.81	227.321
UK	2013-Q2	98.06667	2405517	102.26	218.7575
UK	2013-Q3	98.36667	2401599	104.48	229.5335
UK	2013-Q4	98.93333	2362530	106.7	227.9075
UK	2014-Q1	99.03333	2373954	108.23	229.4645
UK	2014-Q2	99.66667	2369611	110.82	230.6925
UK	2014-Q3	99.83333	2368315	110.52	216.9077
UK	2014-Q4	99.96667	2355042	110.44	172.218
UK	2015-Q1	99.43333	2367424	114.11	127.9972
UK	2015-Q2	100.0333	2358527	116.37	134.0564
UK	2015-Q3	100.1667	2371473	116.63	113.7305
UK	2015-Q4	100.3333	2387951	116.18	100.1444
UK	2016-Q1	100.1333	2440460	108.8	81.02994
UK	2016-Q2	100.8	2540055	107.9	100.2401

LIIZ	2010 02	101.0	0000111	00.0	102 2000
UK	2016-Q3	101.2	2603111	99.9	103.2608
UK	2016-Q4	101.8667	2623525	99.69	115.4691
UK	2017-Q1	102.3	2701204	97.28	123.0723
UK	2017-Q2	103.4	2732932	97.66	113.8648
UK	2017-Q3	103.9333	2784804	97.71	118.1562
UK	2017-Q4	104.7	2785885	99.14	138.1095
UK	2018-Q1	104.8333	2779712	100.09	149.1056
UK	2018-Q2	105.7667	2827878	99.54	159.2765
UK	2018-Q3	106.3333	2848633	99.74	166.749
UK	2018-Q4	106.9	2897741	97.86	151.0079
UK	2019-Q1	106.7333	2840100	101.62	135.0537
UK	2019-Q2	107.8	2874566	98.3	134.1393
UK	2019-Q3	108.2333	2886847	97.74	121.7694
UK	2019-Q4	108.4333	2886737	102.76	126.1776
UK	2020-Q1	108.5	3081384	98.43	102.8085
UK	2020-Q2	108.6667	3182092	98.79	68.76653
UK	2020-Q3	109.0667	3206464	99.2	90.31376
UK	2020-Q4	109.2333	3250823	99.84	104.9307
UK	2021-Q1	109.4667	3303094	104.62	139.4159
UK	2021-Q2	110.9333	3374829	104.91	156.2154
UK	2021-Q3	111.9667	3446725	104.43	192.6785
UK	2021-Q4	114.0667	3488172	104.69	244.045
UK	2022-Q1	115.5	3544223	105.56	277.7365
UK	2022-Q2	119.7333	3566080	102.46	311.7772
UK	2022-Q3	121.7667	3704873	99.09	350.1239
UK	2022-Q4	124.8	3588323	102.32	258.4067
UK	2023-Q1	125.8667	3568912	101.39	203.6714
UK	2023-Q2	128.9333	3560863	105.78	175.8058
UK	2023-Q3	129.5	3543629	105.98	189.2505
UK	2023-Q4	130.2333	3529941	106.19	189.2923
Iceland	2000-Q1	69.25832	279073	191.24	65.11588
Iceland	2000-Q2	70.22756	288517	188.17	68.41304
Iceland	2000-Q3	70.64897	293314	183	77.47352
Iceland	2000-Q4	71.49178	298536	174.16	83.47962
Iceland	2001-Q1	71.89212	314291	171.56	77.00172
Iceland	2001-Q2	74.16772	323161	150.08	72.29822
Iceland	2001-Q3	76.20007	336280	150.74	64.42305
Iceland	2001-Q4	77.40515	342904	146.12	51.7029
Iceland	2002-Q1	78.43093	361421	154.11	53.32751
Iceland	2002-Q2	78.68308	368268	162.73	62.74335
Iceland	2002-Q3	78.8323	385440	162.67	65.27137
Iceland	2002-Q4	79.2924	395228	165.87	68.73497
Iceland	2003-Q1	79.76785	407635	171.45	83.64521
Iceland	2003 Q1 2003-Q2	80.32027	439506	170.86	73.31
iociana	2000 Q2	00.02027	- 55500	170.00	70.01

				74.8078
				77.97722
				85.41406
				94.06901
2004-Q3	83.22798	554670	169.32	102.9367
2004-Q4	84.32364	533829	179.42	109.9186
2005-Q1	85.04003	574857	189.63	114.9754
2005-Q2	85.60893	616135	185	125.6224
2005-Q3	86.49389	626469	192.77	149.9138
2005-Q4	87.96881	657501	193.74	151.7998
2006-Q1	88.70628	726744	174.87	148.562
2006-Q2	91.63506	740103	156.89	160.0213
2006-Q3	93.57935	739658	166.44	160.1574
2006-Q4	94.26886	786185	163.08	144.0664
2007-Q1	94.64812	834962	168.95	142.6794
2007-Q2	95.8702	977101	178.1	158.9655
2007-Q3	97.13443	1167682	170.26	169.3849
2007-Q4	99.13611	1231465	168.4	201.078
2008-Q1	101.4119	1401956	139.25	223.6517
2008-Q2	107.6375	1383818	126.01	279.7467
2008-Q3	110.7791	1427196	116.42	273.0155
2008-Q4	116.0609	1626153	92.78	153.8137
2009-Q1	118.7369	1569545	103.54	120.6482
2009-Q2	120.458	1656159	87.63	135.3894
2009-Q3	122.9729	1669340	85.89	148.9652
2009-Q4	126.042	1608593	85.15	166.084
2010-Q1	127.5778	1579829	87.21	175.9608
2010-Q2	129.0649	1516161	92.94	176.2554
2010-Q3	128.3282	1499424	96.59	171.6313
2010-Q4	129.5863	1448967	96.3	190.2588
2011-Q1	130.1382	1449761	92.49	219.5917
2011-Q2	133.5531	1440356	90.61	241.9276
2011-Q3	135.0736	1581364	92.47	233.3416
2011-Q4	136.3798	1575226	92.36	231.1862
2012-Q1	138.5077	1562251	87.58	242.8439
2012-Q2	141.243	1482413	90.42	225.0866
2012-Q3	140.8956	1477387	91.35	223.085
2012-Q4	142.2504	1459100	87.6	221.4684
2013-Q1	144.4994	1446695	89.83	227.321
2013-Q2	145.9538	1494495	91.86	218.7575
2013-Q3	146.5674	1534121	91.93	229.5335
2013-Q4	147.6731	1524314	93.56	227.9075
2014-Q1	148.0784	1540663	96.92	229.4645
2014-Q2	149.3594	1547757	96.98	230.6925
	2005-Q2 2005-Q3 2005-Q4 2006-Q1 2006-Q2 2006-Q3 2006-Q4 2007-Q1 2007-Q2 2007-Q3 2007-Q4 2008-Q1 2008-Q2 2008-Q3 2009-Q4 2010-Q1 2010-Q2 2010-Q3 2010-Q4 2011-Q1 2011-Q2 2011-Q3 2011-Q4 2011-Q4 2012-Q1 2012-Q2 2012-Q3 2012-Q4 2013-Q1 2013-Q4 2013-Q4 2013-Q4 2013-Q4 2013-Q4 2013-Q4 2013-Q4 2013-Q4 2013-Q4	2003-Q4 81.26844 2004-Q1 81.47914 2004-Q2 82.84871 2004-Q3 83.22798 2004-Q4 84.32364 2005-Q1 85.04003 2005-Q2 85.60893 2005-Q3 86.49389 2005-Q4 87.96881 2006-Q1 88.70628 2006-Q2 91.63506 2006-Q3 93.57935 2006-Q4 94.26886 2007-Q1 94.64812 2007-Q2 95.8702 2007-Q3 97.13443 2007-Q4 99.13611 2008-Q1 101.4119 2008-Q2 107.6375 2008-Q3 110.7791 2008-Q4 116.0609 2009-Q1 118.7369 2009-Q2 120.458 2009-Q3 122.9729 2009-Q4 126.042 2010-Q1 127.5778 2010-Q2 129.0649 2011-Q1 130.1382 2011-Q3 135.0736	2003-Q4 81.26844 464313 2004-Q1 81.47914 500320 2004-Q2 82.84871 510333 2004-Q3 83.22798 554670 2004-Q4 84.32364 533829 2005-Q1 85.04003 574857 2005-Q2 85.60893 616135 2005-Q3 86.49389 626469 2005-Q4 87.96881 657501 2006-Q1 88.70628 726744 2006-Q2 91.63506 740103 2006-Q3 93.57935 739658 2006-Q4 94.26886 786185 2007-Q1 94.64812 834962 2007-Q2 95.8702 977101 2007-Q3 97.13443 1167682 2007-Q4 99.13611 1231465 2008-Q1 101.4119 1401956 2008-Q2 107.6375 1383818 2008-Q3 110.7791 1427196 2008-Q4 116.0609 1626153 2009-Q3 122.9729	2003-Q4 81.26844 464313 165.88 2004-Q1 81.47914 500320 170.57 2004-Q2 82.84871 510333 168.94 2004-Q3 83.22798 554670 169.32 2004-Q4 84.32364 533829 179.42 2005-Q1 85.04003 574857 189.63 2005-Q2 85.60893 616135 185 2005-Q3 86.49389 626469 192.77 2005-Q4 87.96881 657501 193.74 2006-Q1 88.70628 726744 174.87 2006-Q2 91.63506 740103 156.89 2006-Q3 93.57935 739658 166.44 2006-Q4 94.26886 786185 163.08 2007-Q1 94.64812 834962 168.95 2007-Q2 95.8702 977101 178.1 2007-Q3 97.13443 1167682 170.26 2007-Q4 99.13611 1231465 168.4 2008-Q2

Iceland 2014-Q3 149.6836 1602025 96.34 216.9077 Iceland 2014-Q4 149.527 1631855 96.34 172.218 Iceland 2015-Q1 149.6645 1720780 95.78 127.9972 Iceland 2015-Q3 151.6534 1768067 96.73 134.0564 Iceland 2015-Q4 152.488 1722792 102.29 100.1444 Iceland 2016-Q1 152.5682 1623637 103.7 81.02994 Iceland 2016-Q3 154.6452 1633883 114.54 103.2608 Iceland 2016-Q4 155.3546 1642936 123.55 115.4691 Iceland 2017-Q1 155.3648 1746155 125.23 123.0723 Iceland 2017-Q3 157.1923 1756048 118.85 118.1562 Iceland 2017-Q4 158.186 1725644 121.81 138.1095 Iceland 2018-Q2 160.392 1816410 121.1 159.2765						
Iceland 2015-Q1 149.6645 1720780 95.78 127.9972 Iceland 2015-Q2 151.6534 1768067 96.73 134.0564 Iceland 2015-Q3 152.6461 1783965 101.34 113.7305 Iceland 2015-Q4 152.428 1722792 102.29 100.1444 Iceland 2016-Q2 154.1141 1644610 105.95 100.2401 Iceland 2016-Q3 154.6452 1633883 114.54 103.2608 Iceland 2016-Q3 155.3546 1642936 123.55 115.4691 Iceland 2017-Q1 155.3648 1746155 125.23 123.0723 Iceland 2017-Q2 156.7952 1729747 130.57 113.8698 Iceland 2017-Q3 159.1792 1756048 118.85 118.1662 Iceland 2017-Q4 158.186 1725644 121.81 138.10562 Iceland 2018-Q3 161.4228 1884621 119.13 166.749	Iceland	-	149.6836	1602025	96.34	216.9077
Iceland 2015-Q2 151.6534 1768067 96.73 134.0564 Iceland 2015-Q3 152.6461 1783965 101.34 113.7305 Iceland 2015-Q4 152.428 1722792 102.29 100.1444 Iceland 2016-Q1 152.5682 1623637 103.7 81.02994 Iceland 2016-Q2 154.1141 1644610 105.95 100.2401 Iceland 2016-Q3 154.6452 1633883 114.54 103.2608 Iceland 2016-Q4 155.3546 1642936 123.55 115.4691 Iceland 2017-Q1 155.3648 1746155 125.23 123.0723 Iceland 2017-Q3 157.1923 1756048 118.85 118.1562 Iceland 2017-Q4 158.166 1725644 121.81 138.1059 Iceland 2018-Q2 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749	Iceland	2014-Q4	149.527	1631855	96.34	172.218
Iceland 2015-Q3 152.6461 1783965 101.34 113.7305 Iceland 2015-Q4 152.428 1722792 102.29 100.1444 Iceland 2016-Q1 152.5682 1623637 103.7 81.02994 Iceland 2016-Q2 154.1141 1644610 105.95 100.2401 Iceland 2016-Q3 154.6452 1633883 114.54 103.2608 Iceland 2017-Q1 155.3648 1746155 125.23 123.0723 Iceland 2017-Q2 156.7952 1729747 130.57 113.8648 Iceland 2017-Q3 157.1923 1756048 118.85 118.1562 Iceland 2017-Q4 158.186 1725644 121.81 138.1095 Iceland 2018-Q1 159.1792 1756067 123.6 149.1056 Iceland 2018-Q3 161.4228 1884621 119.13 166.746 Iceland 2018-Q3 164.128 1918-89 111.3 151.079	Iceland	2015-Q1	149.6645	1720780	95.78	127.9972
Iceland 2015-Q4 152.428 1722792 102.29 100.1444 Iceland 2016-Q1 152.5682 1623637 103.7 81.02994 Iceland 2016-Q2 154.1141 1644610 105.95 100.2401 Iceland 2016-Q3 154.6452 1633883 114.54 103.2608 Iceland 2017-Q1 155.3648 1746155 125.23 123.0723 Iceland 2017-Q2 156.7952 1729747 130.57 113.8648 Iceland 2017-Q3 157.1923 1756048 118.85 118.1562 Iceland 2017-Q4 158.186 1725644 121.81 138.1095 Iceland 2018-Q1 159.1792 1756067 123.6 149.1056 Iceland 2018-Q1 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2018-Q4 163.3804 1846298 110.21 151.0079	Iceland	2015-Q2	151.6534	1768067	96.73	134.0564
Iceland 2016-Q1 152.5682 1623637 103.7 81.02994 Iceland 2016-Q2 154.1141 1644610 105.95 100.2401 Iceland 2016-Q3 154.6452 1633883 114.54 103.2608 Iceland 2017-Q1 155.3648 1746155 125.23 123.0723 Iceland 2017-Q2 156.7952 1729747 130.57 113.8648 Iceland 2017-Q3 157.1923 1756048 118.85 118.1562 Iceland 2017-Q4 158.186 1725644 121.81 138.1095 Iceland 2018-Q1 159.1792 1756067 123.6 149.1056 Iceland 2018-Q1 160.392 1816410 121.1 159.2765 Iceland 2018-Q2 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2019-Q1 164.1148 1912889 111.33 135.0537	Iceland	2015-Q3	152.6461	1783965	101.34	113.7305
Iceland 2016-Q2 154.1141 1644610 105.95 100.2401 Iceland 2016-Q3 154.6452 1633883 114.54 103.2608 Iceland 2016-Q4 155.3546 1642936 123.55 115.4691 Iceland 2017-Q1 155.3648 1746155 125.23 123.0723 Iceland 2017-Q2 156.7952 1729747 130.57 113.8648 Iceland 2017-Q3 157.1923 1756048 118.85 118.1562 Iceland 2017-Q4 158.186 1725644 121.81 138.1095 Iceland 2018-Q1 159.1792 1756067 123.6 149.1056 Iceland 2018-Q2 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2019-Q1 164.1148 191289 111.38 135.0537 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393	Iceland	2015-Q4	152.428	1722792	102.29	100.1444
Iceland 2016-Q3 154.6452 1633883 114.54 103.2608 Iceland 2016-Q4 155.3546 1642936 123.55 115.4691 Iceland 2017-Q1 155.3648 1746155 125.23 123.0723 Iceland 2017-Q2 156.7952 1729747 130.57 113.8648 Iceland 2017-Q3 157.1923 1756048 118.85 118.1562 Iceland 2017-Q4 158.186 1725644 121.81 138.1095 Iceland 2018-Q1 159.1792 1756067 123.6 149.1056 Iceland 2018-Q2 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2018-Q4 163.3804 1846298 110.21 151.0079 Iceland 2019-Q1 164.1148 1912889 111.38 135.0537 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393	Iceland	2016-Q1	152.5682	1623637	103.7	81.02994
Iceland 2016-Q4 155.3546 1642936 123.55 115.4691 Iceland 2017-Q1 155.3648 1746155 125.23 123.0723 Iceland 2017-Q2 156.7952 1729747 130.57 113.8648 Iceland 2017-Q3 157.1923 1756048 118.85 118.1562 Iceland 2017-Q4 158.186 1725644 121.81 138.1095 Iceland 2018-Q1 159.1792 1756067 123.6 149.1056 Iceland 2018-Q2 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2018-Q4 163.3804 1846298 110.21 151.0079 Iceland 2019-Q1 164.1148 1912889 111.38 135.0537 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393 Iceland 2019-Q3 166.3845 1888818 110.23 121.7694	Iceland	2016-Q2	154.1141	1644610	105.95	100.2401
Iceland 2017-Q1 155.3648 1746155 125.23 123.0723 Iceland 2017-Q2 156.7952 1729747 130.57 113.8648 Iceland 2017-Q3 157.1923 1756048 118.85 118.1562 Iceland 2017-Q4 158.186 1725644 121.81 138.1095 Iceland 2018-Q1 159.1792 1756067 123.6 149.1056 Iceland 2018-Q2 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2018-Q4 163.3804 1846298 110.21 151.0793 Iceland 2019-Q1 164.1148 1912889 111.38 135.0537 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393 Iceland 2019-Q3 166.3845 188818 110.23 121.7694 Iceland 2019-Q4 167.4468 1888892 111.42 126.1776	Iceland	2016-Q3	154.6452	1633883	114.54	103.2608
Iceland 2017-Q2 156.7952 1729747 130.57 113.8648 Iceland 2017-Q3 157.1923 1756048 118.85 118.1562 Iceland 2017-Q4 158.186 1725644 121.81 138.1095 Iceland 2018-Q1 159.1792 1756067 123.6 149.1056 Iceland 2018-Q2 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2019-Q1 164.1148 1912889 110.21 151.0079 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393 Iceland 2019-Q3 166.3845 188818 110.23 121.7694 Iceland 2019-Q4 167.4468 1888892 111.42 126.1766 Iceland 2020-Q1 167.5441 2007442 103.23 102.8085 Iceland 2020-Q2 169.9926 2053942 100.98 68.76653	Iceland	2016-Q4	155.3546	1642936	123.55	115.4691
Iceland 2017-Q3 157.1923 1756048 118.85 118.1562 Iceland 2017-Q4 158.186 1725644 121.81 138.1095 Iceland 2018-Q1 159.1792 1756067 123.6 149.1056 Iceland 2018-Q2 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2018-Q4 163.3804 1846298 110.21 151.0079 Iceland 2019-Q1 164.1148 1912889 111.38 135.0537 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393 Iceland 2019-Q3 166.3845 1888818 110.23 121.7694 Iceland 2020-Q1 167.5441 2007442 103.23 102.8085 Iceland 2020-Q2 169.9926 2053942 100.98 68.76653 Iceland 2020-Q3 171.7787 2137932 95.86 90.31376	Iceland	2017-Q1	155.3648	1746155	125.23	123.0723
Iceland 2017-Q4 158.186 1725644 121.81 138.1095 Iceland 2018-Q1 159.1792 1756067 123.6 149.1056 Iceland 2018-Q2 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2019-Q4 163.3804 1846298 110.21 151.0079 Iceland 2019-Q1 164.1148 1912889 111.38 135.0537 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393 Iceland 2019-Q3 166.3845 1888818 110.23 121.7694 Iceland 2019-Q4 167.4468 1888892 111.42 126.1776 Iceland 2020-Q1 167.5441 2007442 103.23 102.8085 Iceland 2020-Q3 171.7787 2137932 95.86 90.31376 Iceland 2020-Q4 173.3847 2109670 100.45 104.9307	Iceland	2017-Q2	156.7952	1729747	130.57	113.8648
Iceland 2018-Q1 159.1792 1756067 123.6 149.1056 Iceland 2018-Q2 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2018-Q4 163.3804 1846298 110.21 151.0079 Iceland 2019-Q1 164.1148 1912889 111.38 135.0537 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393 Iceland 2019-Q3 166.3845 1888818 110.23 121.7694 Iceland 2019-Q4 167.4468 1888892 111.42 126.1776 Iceland 2020-Q1 167.5441 2007442 103.23 102.8085 Iceland 2020-Q2 169.9926 2053942 100.98 68.76653 Iceland 2020-Q3 171.7787 2137932 95.86 90.31376 Iceland 2021-Q1 174.63 2133928 101.9 139.4159	Iceland	2017-Q3	157.1923	1756048	118.85	118.1562
Iceland 2018-Q2 160.392 1816410 121.1 159.2765 Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2018-Q4 163.3804 1846298 110.21 151.0079 Iceland 2019-Q1 164.1148 1912889 111.38 135.0537 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393 Iceland 2019-Q3 166.3845 1888818 110.23 121.7694 Iceland 2019-Q4 167.4468 1888892 111.42 126.1776 Iceland 2020-Q1 167.5441 2007442 103.23 102.8085 Iceland 2020-Q2 169.9926 2053942 100.98 68.76653 Iceland 2020-Q3 171.7787 2137932 95.86 90.31376 Iceland 2020-Q4 173.3847 2109670 100.45 104.9307 Iceland 2021-Q1 177.4928 2222003 105.31 156.2154	Iceland	2017-Q4	158.186	1725644	121.81	138.1095
Iceland 2018-Q3 161.4228 1884621 119.13 166.749 Iceland 2018-Q4 163.3804 1846298 110.21 151.0079 Iceland 2019-Q1 164.1148 1912889 111.38 135.0537 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393 Iceland 2019-Q3 166.3845 1888818 110.23 121.7694 Iceland 2019-Q4 167.5441 2007442 103.23 102.8085 Iceland 2020-Q1 167.5441 2007442 103.23 102.8085 Iceland 2020-Q2 169.9926 2053942 100.98 68.76653 Iceland 2020-Q3 171.7787 2137932 95.86 90.31376 Iceland 2020-Q3 171.7787 2137932 95.86 90.31376 Iceland 2021-Q1 174.63 2133928 101.9 139.4159 Iceland 2021-Q2 177.4928 2222003 105.31 156.2154	Iceland	2018-Q1	159.1792	1756067	123.6	149.1056
Iceland 2018-Q4 163.3804 1846298 110.21 151.0079 Iceland 2019-Q1 164.1148 1912889 111.38 135.0537 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393 Iceland 2019-Q3 166.3845 1888818 110.23 121.7694 Iceland 2019-Q4 167.4468 1888892 111.42 126.1776 Iceland 2020-Q1 167.5441 2007442 103.23 102.8085 Iceland 2020-Q2 169.9926 2053942 100.98 68.76653 Iceland 2020-Q3 171.7787 2137932 95.86 90.31376 Iceland 2020-Q4 173.3847 2109670 100.45 104.9307 Iceland 2021-Q1 174.63 2133928 101.9 139.4159 Iceland 2021-Q2 177.4928 2222003 105.31 156.2154 Iceland 2021-Q3 179.157 2321380 102 192.6785	Iceland	2018-Q2	160.392	1816410	121.1	159.2765
Iceland 2019-Q1 164.1148 1912889 111.38 135.0537 Iceland 2019-Q2 165.8497 1933034 107.94 134.1393 Iceland 2019-Q3 166.3845 1888818 110.23 121.7694 Iceland 2019-Q4 167.4468 1888892 111.42 126.1776 Iceland 2020-Q1 167.5441 2007442 103.23 102.8085 Iceland 2020-Q2 169.9926 2053942 100.98 68.76653 Iceland 2020-Q3 171.7787 2137932 95.86 90.31376 Iceland 2020-Q4 173.3847 2109670 100.45 104.9307 Iceland 2021-Q1 174.63 2133928 101.9 139.4159 Iceland 2021-Q2 177.4928 2222003 105.31 156.2154 Iceland 2021-Q3 179.157 2321380 102 192.6785 Iceland 2021-Q4 181.7612 2340190 104.33 244.045	Iceland	2018-Q3	161.4228	1884621	119.13	166.749
Iceland 2019-Q2 165.8497 1933034 107.94 134.1393 Iceland 2019-Q3 166.3845 1888818 110.23 121.7694 Iceland 2019-Q4 167.4468 1888892 111.42 126.1776 Iceland 2020-Q1 167.5441 2007442 103.23 102.8085 Iceland 2020-Q2 169.9926 2053942 100.98 68.76653 Iceland 2020-Q3 171.7787 2137932 95.86 90.31376 Iceland 2020-Q4 173.3847 2109670 100.45 104.9307 Iceland 2021-Q1 174.63 2133928 101.9 139.4159 Iceland 2021-Q2 177.4928 2222003 105.31 156.2154 Iceland 2021-Q3 179.157 2321380 102 192.6785 Iceland 2021-Q4 181.7612 2340190 104.33 244.045 Iceland 2022-Q1 185.4247 2384004 106.74 277.7365	Iceland	2018-Q4	163.3804	1846298	110.21	151.0079
Iceland 2019-Q3 166.3845 1888818 110.23 121.7694 Iceland 2019-Q4 167.4468 1888892 111.42 126.1776 Iceland 2020-Q1 167.5441 2007442 103.23 102.8085 Iceland 2020-Q2 169.9926 2053942 100.98 68.76653 Iceland 2020-Q3 171.7787 2137932 95.86 90.31376 Iceland 2021-Q1 174.63 2133928 101.9 139.4159 Iceland 2021-Q2 177.4928 2222003 105.31 156.2154 Iceland 2021-Q3 179.157 2321380 102 192.6785 Iceland 2021-Q4 181.7612 2340190 104.33 244.045 Iceland 2022-Q1 185.4247 2384004 106.74 277.7365 Iceland 2022-Q2 191.4818 2452948 110.43 311.7772 Iceland 2022-Q3 196.4758 2516402 108.43 350.1239	Iceland	2019-Q1	164.1148	1912889	111.38	135.0537
Iceland2019-Q4167.44681888892111.42126.1776Iceland2020-Q1167.54412007442103.23102.8085Iceland2020-Q2169.99262053942100.9868.76653Iceland2020-Q3171.7787213793295.8690.31376Iceland2020-Q4173.38472109670100.45104.9307Iceland2021-Q1174.632133928101.9139.4159Iceland2021-Q2177.49282222003105.31156.2154Iceland2021-Q3179.1572321380102192.6785Iceland2021-Q4181.76122340190104.33244.045Iceland2022-Q1185.42472384004106.74277.7365Iceland2022-Q2191.48182452948110.43311.7772Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q2260.861162429109.468.41304Sweden2000-Q3260.73331164008103.7583.47962Sweden2000-Q42	Iceland	2019-Q2	165.8497	1933034	107.94	134.1393
Iceland2020-Q1167.54412007442103.23102.8085Iceland2020-Q2169.99262053942100.9868.76653Iceland2020-Q3171.7787213793295.8690.31376Iceland2020-Q4173.38472109670100.45104.9307Iceland2021-Q1174.632133928101.9139.4159Iceland2021-Q2177.49282222003105.31156.2154Iceland2021-Q3179.1572321380102192.6785Iceland2021-Q4181.76122340190104.33244.045Iceland2022-Q1185.42472384004106.74277.7365Iceland2022-Q2191.48182452948110.43311.7772Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2505Iceland2023-Q4214.58972760579105.37189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q2260.861162429109.468.41304Sweden2000-Q3260.73331164008103.7583.47962Sweden2001-Q12	Iceland	2019-Q3	166.3845	1888818	110.23	121.7694
Iceland2020-Q2169.99262053942100.9868.76653Iceland2020-Q3171.7787213793295.8690.31376Iceland2020-Q4173.38472109670100.45104.9307Iceland2021-Q1174.632133928101.9139.4159Iceland2021-Q2177.49282222003105.31156.2154Iceland2021-Q3179.1572321380102192.6785Iceland2021-Q4181.76122340190104.33244.045Iceland2022-Q1185.42472384004106.74277.7365Iceland2022-Q2191.48182452948110.43311.7772Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2505Iceland2023-Q4214.58972760579105.37189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q3260.73331164008103.7583.47962Sweden2001-Q1262.60331164008103.7583.47962Sweden2001-Q1262.981153409100.0777.00172	Iceland	2019-Q4	167.4468	1888892	111.42	126.1776
Iceland2020-Q3171.7787213793295.8690.31376Iceland2020-Q4173.38472109670100.45104.9307Iceland2021-Q1174.632133928101.9139.4159Iceland2021-Q2177.49282222003105.31156.2154Iceland2021-Q3179.1572321380102192.6785Iceland2021-Q4181.76122340190104.33244.045Iceland2022-Q1185.42472384004106.74277.7365Iceland2022-Q2191.48182452948110.43311.7772Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2505Iceland2023-Q4214.58972760579105.37189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q2260.861162429109.468.41304Sweden2000-Q3260.73331167693104.9977.47352Sweden2001-Q1262.60331164008103.7583.47962Sweden2001-Q1262.981153409100.0777.00172	Iceland	2020-Q1	167.5441	2007442	103.23	102.8085
Iceland2020-Q4173.38472109670100.45104.9307Iceland2021-Q1174.632133928101.9139.4159Iceland2021-Q2177.49282222003105.31156.2154Iceland2021-Q3179.1572321380102192.6785Iceland2021-Q4181.76122340190104.33244.045Iceland2022-Q1185.42472384004106.74277.7365Iceland2022-Q2191.48182452948110.43311.7772Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2505Iceland2023-Q4214.58972760579105.37189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q2260.861162429109.468.41304Sweden2000-Q3260.73331167693104.9977.47352Sweden2000-Q4262.60331164008103.7583.47962Sweden2001-Q1262.981153409100.0777.00172	Iceland	2020-Q2	169.9926	2053942	100.98	68.76653
Iceland2021-Q1174.632133928101.9139.4159Iceland2021-Q2177.49282222003105.31156.2154Iceland2021-Q3179.1572321380102192.6785Iceland2021-Q4181.76122340190104.33244.045Iceland2022-Q1185.42472384004106.74277.7365Iceland2022-Q2191.48182452948110.43311.7772Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2505Iceland2023-Q4214.58972760579105.37189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q2260.861162429109.468.41304Sweden2000-Q3260.73331167693104.9977.47352Sweden2000-Q4262.60331164008103.7583.47962Sweden2001-Q1262.981153409100.0777.00172	Iceland	2020-Q3	171.7787	2137932	95.86	90.31376
Iceland2021-Q2177.49282222003105.31156.2154Iceland2021-Q3179.1572321380102192.6785Iceland2021-Q4181.76122340190104.33244.045Iceland2022-Q1185.42472384004106.74277.7365Iceland2022-Q2191.48182452948110.43311.7772Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2505Iceland2023-Q4214.58972760579105.37189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q2260.861162429109.468.41304Sweden2000-Q3260.73331167693104.9977.47352Sweden2000-Q4262.60331164008103.7583.47962Sweden2001-Q1262.981153409100.0777.00172	Iceland	2020-Q4	173.3847	2109670	100.45	104.9307
Iceland2021-Q3179.1572321380102192.6785Iceland2021-Q4181.76122340190104.33244.045Iceland2022-Q1185.42472384004106.74277.7365Iceland2022-Q2191.48182452948110.43311.7772Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2505Iceland2023-Q4214.58972760579105.37189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q2260.861162429109.468.41304Sweden2000-Q3260.73331167693104.9977.47352Sweden2000-Q4262.60331164008103.7583.47962Sweden2001-Q1262.981153409100.0777.00172	Iceland	2021-Q1	174.63	2133928	101.9	139.4159
Iceland2021-Q4181.76122340190104.33244.045Iceland2022-Q1185.42472384004106.74277.7365Iceland2022-Q2191.48182452948110.43311.7772Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2505Iceland2023-Q4214.58972760579105.37189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q2260.861162429109.468.41304Sweden2000-Q3260.73331167693104.9977.47352Sweden2000-Q4262.60331164008103.7583.47962Sweden2001-Q1262.981153409100.0777.00172	Iceland	2021-Q2	177.4928	2222003	105.31	156.2154
Iceland2022-Q1185.42472384004106.74277.7365Iceland2022-Q2191.48182452948110.43311.7772Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2505Iceland2023-Q4214.58972760579105.37189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q2260.861162429109.468.41304Sweden2000-Q3260.73331167693104.9977.47352Sweden2000-Q4262.60331164008103.7583.47962Sweden2001-Q1262.981153409100.0777.00172	Iceland	2021-Q3	179.157	2321380	102	192.6785
Iceland2022-Q2191.48182452948110.43311.7772Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2505Iceland2023-Q4214.58972760579105.37189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q2260.861162429109.468.41304Sweden2000-Q3260.73331167693104.9977.47352Sweden2000-Q4262.60331164008103.7583.47962Sweden2001-Q1262.981153409100.0777.00172	Iceland	2021-Q4	181.7612	2340190	104.33	244.045
Iceland2022-Q3196.47582516402108.43350.1239Iceland2022-Q4198.90362548527102.79258.4067Iceland2023-Q1203.93362598181104.19203.6714Iceland2023-Q2209.49282667682105.87175.8058Iceland2023-Q3211.7392779329110.08189.2505Iceland2023-Q4214.58972760579105.37189.2923Sweden2000-Q1259.04671171981108.2465.11588Sweden2000-Q2260.861162429109.468.41304Sweden2000-Q3260.73331167693104.9977.47352Sweden2000-Q4262.60331164008103.7583.47962Sweden2001-Q1262.981153409100.0777.00172	Iceland	2022-Q1	185.4247	2384004	106.74	277.7365
Iceland 2022-Q4 198.9036 2548527 102.79 258.4067 Iceland 2023-Q1 203.9336 2598181 104.19 203.6714 Iceland 2023-Q2 209.4928 2667682 105.87 175.8058 Iceland 2023-Q3 211.739 2779329 110.08 189.2505 Iceland 2023-Q4 214.5897 2760579 105.37 189.2923 Sweden 2000-Q1 259.0467 1171981 108.24 65.11588 Sweden 2000-Q2 260.86 1162429 109.4 68.41304 Sweden 2000-Q3 260.7333 1167693 104.99 77.47352 Sweden 2000-Q4 262.6033 1164008 103.75 83.47962 Sweden 2001-Q1 262.98 1153409 100.07 77.00172	Iceland	2022-Q2	191.4818	2452948	110.43	311.7772
Iceland 2023-Q1 203.9336 2598181 104.19 203.6714 Iceland 2023-Q2 209.4928 2667682 105.87 175.8058 Iceland 2023-Q3 211.739 2779329 110.08 189.2505 Iceland 2023-Q4 214.5897 2760579 105.37 189.2923 Sweden 2000-Q1 259.0467 1171981 108.24 65.11588 Sweden 2000-Q2 260.86 1162429 109.4 68.41304 Sweden 2000-Q3 260.7333 1167693 104.99 77.47352 Sweden 2000-Q4 262.6033 1164008 103.75 83.47962 Sweden 2001-Q1 262.98 1153409 100.07 77.00172	Iceland	2022-Q3	196.4758	2516402	108.43	350.1239
Iceland 2023-Q2 209.4928 2667682 105.87 175.8058 Iceland 2023-Q3 211.739 2779329 110.08 189.2505 Iceland 2023-Q4 214.5897 2760579 105.37 189.2923 Sweden 2000-Q1 259.0467 1171981 108.24 65.11588 Sweden 2000-Q2 260.86 1162429 109.4 68.41304 Sweden 2000-Q3 260.7333 1167693 104.99 77.47352 Sweden 2000-Q4 262.6033 1164008 103.75 83.47962 Sweden 2001-Q1 262.98 1153409 100.07 77.00172	Iceland	2022-Q4	198.9036	2548527	102.79	258.4067
Iceland 2023-Q3 211.739 2779329 110.08 189.2505 Iceland 2023-Q4 214.5897 2760579 105.37 189.2923 Sweden 2000-Q1 259.0467 1171981 108.24 65.11588 Sweden 2000-Q2 260.86 1162429 109.4 68.41304 Sweden 2000-Q3 260.7333 1167693 104.99 77.47352 Sweden 2000-Q4 262.6033 1164008 103.75 83.47962 Sweden 2001-Q1 262.98 1153409 100.07 77.00172	Iceland	2023-Q1	203.9336	2598181	104.19	203.6714
Iceland 2023-Q4 214.5897 2760579 105.37 189.2923 Sweden 2000-Q1 259.0467 1171981 108.24 65.11588 Sweden 2000-Q2 260.86 1162429 109.4 68.41304 Sweden 2000-Q3 260.7333 1167693 104.99 77.47352 Sweden 2000-Q4 262.6033 1164008 103.75 83.47962 Sweden 2001-Q1 262.98 1153409 100.07 77.00172	Iceland	2023-Q2	209.4928	2667682	105.87	175.8058
Sweden 2000-Q1 259.0467 1171981 108.24 65.11588 Sweden 2000-Q2 260.86 1162429 109.4 68.41304 Sweden 2000-Q3 260.7333 1167693 104.99 77.47352 Sweden 2000-Q4 262.6033 1164008 103.75 83.47962 Sweden 2001-Q1 262.98 1153409 100.07 77.00172	Iceland	2023-Q3	211.739	2779329	110.08	189.2505
Sweden 2000-Q2 260.86 1162429 109.4 68.41304 Sweden 2000-Q3 260.7333 1167693 104.99 77.47352 Sweden 2000-Q4 262.6033 1164008 103.75 83.47962 Sweden 2001-Q1 262.98 1153409 100.07 77.00172	Iceland	2023-Q4	214.5897	2760579	105.37	189.2923
Sweden 2000-Q3 260.7333 1167693 104.99 77.47352 Sweden 2000-Q4 262.6033 1164008 103.75 83.47962 Sweden 2001-Q1 262.98 1153409 100.07 77.00172	Sweden	2000-Q1	259.0467	1171981	108.24	65.11588
Sweden 2000-Q4 262.6033 1164008 103.75 83.47962 Sweden 2001-Q1 262.98 1153409 100.07 77.00172	Sweden	2000-Q2	260.86	1162429	109.4	68.41304
Sweden 2001-Q1 262.98 1153409 100.07 77.00172	Sweden	2000-Q3	260.7333	1167693	104.99	77.47352
-	Sweden	2000-Q4	262.6033	1164008	103.75	83.47962
Sweden 2001-Q2 267.9667 1207078 97.05 72.29822	Sweden	2001-Q1	262.98	1153409	100.07	77.00172
	Sweden	2001-Q2	267.9667	1207078	97.05	72.29822

Sweden	2001-Q3	268.13	1231473	0105	C 4 4000E
				94.85	64.42305
Sweden	2001-Q4	269.2667	1164592	96.77	51.7029
Sweden	2002-Q1	270.0033	1178417	100.21	53.32751
Sweden	2002-Q2	273.2733	1199039	102.16	62.74335
Sweden	2002-Q3	273.0667	1249366	102.49	65.27137
Sweden	2002-Q4	275.06	1262172	104.48	68.73497
Sweden	2003-Q1	278.0633	1262267	105.75	83.64521
Sweden	2003-Q2	278.3633	1242834	109.39	73.31
Sweden	2003-Q3	277.3967	1282800	108.53	74.8078
Sweden	2003-Q4	278.5967	1307593	111.84	77.97722
Sweden	2004-Q1	278.21	1269561	108.89	85.41406
Sweden	2004-Q2	279.4933	1253884	109.61	94.06901
Sweden	2004-Q3	278.9467	1329793	110.52	102.9367
Sweden	2004-Q4	279.9267	1360279	113.86	109.9186
Sweden	2005-Q1	278.9467	1345842	111.67	114.9754
Sweden	2005-Q2	280.32	1416856	106.86	125.6224
Sweden	2005-Q3	280.41	1442514	106.07	149.9138
Sweden	2005-Q4	281.96	1533038	104.32	151.7998
Sweden	2006-Q1	281.1267	1539448	104.89	148.562
Sweden	2006-Q2	284.5867	1653888	108.5	160.0213
Sweden	2006-Q3	284.87	1708882	108.28	160.1574
Sweden	2006-Q4	286.31	1762550	111.55	144.0664
Sweden	2007-Q1	286.5967	1781949	108.51	142.6794
Sweden	2007-Q2	289.74	1867760	108.11	158.9655
Sweden	2007-Q3	290.4	1984698	109.25	169.3849
Sweden	2007-Q4	295.3067	2089485	108.74	201.078
Sweden	2008-Q1	295.8733	2030426	110.76	223.6517
Sweden	2008-Q2	300.7333	2051509	111.16	279.7467
Sweden	2008-Q3	302.84	2060333	107.21	273.0155
Sweden	2008-Q4	302.5367	2164492	96.83	153.8137
Sweden	2009-Q1	298.21	2097672	93.46	120.6482
Sweden	2009-Q2	298.9867	2096402	96.42	135.3894
Sweden	2009-Q3	298.55	2073889	103.14	148.9652
Sweden	2009-Q4	300.2933	2135298	100.78	166.084
Sweden	2010-Q1	300.25	2121598	104.76	175.9608
Sweden	2010-Q2	301.76	2125772	103.02	176.2554
Sweden	2010-Q3	301.91	2159185	108.11	171.6313
Sweden	2010-Q4	305.97	2188006	110.23	190.2588
Sweden	2011-Q1	308.0933	2172324	113.93	219.5917
Sweden	2011-Q2	311.58	2209010	111.62	241.9276
Sweden	2011-Q3	311.9233	2284103	110.55	233.3416
Sweden	2011-Q4	314.12	2339371	111.04	231.1862
Sweden	2012-Q1	313.5233	2374874	111.71	242.8439
Sweden	2012-Q2	315.0567	2346213	110.81	225.0866

Sweden 2012-Q3 313.8633 2390875 115.83 223.085 Sweden 2012-Q4 314.34 2412372 114.47 221.4684 Sweden 2013-Q1 313.3467 2397290 119.32 227.321 Sweden 2013-Q3 314.1467 2449436 116.12 218.7575 Sweden 2013-Q4 314.5467 2487778 114.78 227.9075 Sweden 2014-Q1 312.2567 2466666 116.75 229.4645 Sweden 2014-Q3 313.6233 2557125 112.68 230.6925 Sweden 2014-Q4 313.8767 2589790 107.73 172.218 Sweden 2015-Q1 312.29 2616459 105.18 127.9972 Sweden 2015-Q3 313.4333 2715715 106.48 113.7305 Sweden 2015-Q4 314.0833 2787814 107.55 100.1444 Sweden 2016-Q3 316.6733 2958416 107.96 81.0294 Swe						
Sweden 2013-Q1 313.3467 2397290 119.32 227.321 Sweden 2013-Q2 314.1867 2449436 116.12 218.7575 Sweden 2013-Q3 314.1467 242066 117.08 229.5335 Sweden 2014-Q1 312.2567 2466666 116.75 229.4645 Sweden 2014-Q2 314.2133 2557125 112.68 230.6925 Sweden 2014-Q3 313.6233 2553883 109.96 216.9077 Sweden 2015-Q1 312.29 2616459 105.18 127.9972 Sweden 2015-Q1 313.5767 2718829 106.03 134.0564 Sweden 2015-Q2 313.5767 2718829 106.03 134.0564 Sweden 2015-Q2 316.13 2903905 106.03 134.0564 Sweden 2016-Q1 314.333 2846216 107.96 81.02994 Sweden 2016-Q3 316.673 2995449 105.2 103.2608 Swed	Sweden	-	313.8633	2390875	115.83	223.085
Sweden 2013-Q2 314.1867 2449436 116.12 218.7575 Sweden 2013-Q3 314.1467 2422066 117.08 229.5335 Sweden 2013-Q4 314.5467 2487778 114.78 227.9075 Sweden 2014-Q1 312.2567 2466666 116.75 229.4645 Sweden 2014-Q3 313.6233 2553883 109.96 216.9077 Sweden 2014-Q4 313.8767 2589790 107.73 172.218 Sweden 2015-Q2 313.5767 2718829 106.03 314.0564 Sweden 2015-Q3 313.4333 2715715 106.48 113.7305 Sweden 2015-Q4 314.0833 2715715 106.48 113.7305 Sweden 2015-Q4 314.0333 2846216 107.96 81.02994 Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 <td< td=""><td>Sweden</td><td>2012-Q4</td><td>314.34</td><td>2412372</td><td>114.47</td><td>221.4684</td></td<>	Sweden	2012-Q4	314.34	2412372	114.47	221.4684
Sweden 2013-Q3 314.1467 2422066 117.08 229.5335 Sweden 2013-Q4 314.5467 2487778 114.78 227.9075 Sweden 2014-Q1 312.2567 2466666 116.75 229.4645 Sweden 2014-Q2 314.2133 2557125 112.68 230.6925 Sweden 2014-Q4 313.8767 2589790 107.73 172.218 Sweden 2015-Q1 312.29 2616459 105.18 127.9972 Sweden 2015-Q2 313.5767 2718829 106.03 134.0564 Sweden 2015-Q3 313.4333 2715715 106.48 113.7305 Sweden 2016-Q1 314.0833 2787814 107.55 100.1444 Sweden 2016-Q1 314.0833 2846216 107.96 81.02994 Sweden 2016-Q3 316.6733 29955449 105.2 103.2608 Sweden 2017-Q1 318.97 3142133 104.78 123.0723	Sweden	2013-Q1	313.3467	2397290	119.32	227.321
Sweden 2013-Q4 314.5467 2487778 114.78 227.9075 Sweden 2014-Q1 312.2567 2466666 116.75 229.4645 Sweden 2014-Q2 314.2133 2557125 112.68 230.6925 Sweden 2014-Q3 313.6233 2553883 109.96 216.9077 Sweden 2015-Q1 312.29 2616459 105.18 127.9972 Sweden 2015-Q2 313.5767 2718829 106.03 134.0564 Sweden 2015-Q3 313.4333 2715715 106.48 113.7305 Sweden 2015-Q4 314.0833 2787814 107.55 100.1444 Sweden 2016-Q1 314.3233 2846216 107.96 81.02994 Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 102.2 103.2608 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sw	Sweden	2013-Q2	314.1867	2449436	116.12	218.7575
Sweden 2014-Q1 312.2567 2466666 116.75 229.4645 Sweden 2014-Q2 314.2133 2557125 112.68 230.6925 Sweden 2014-Q3 313.6233 2553883 109.96 216.9077 Sweden 2014-Q4 313.8767 2589790 107.73 172.218 Sweden 2015-Q1 312.29 2616459 105.18 127.9972 Sweden 2015-Q3 313.4333 2715715 106.48 113.7305 Sweden 2015-Q4 314.0833 2787814 107.55 100.1444 Sweden 2016-Q1 314.3233 2846216 107.96 81.02994 Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Swede	Sweden	2013-Q3	314.1467	2422066	117.08	229.5335
Sweden 2014-Q2 314.2133 2557125 112.68 230.6925 Sweden 2014-Q3 313.6233 2553883 109.96 216.9077 Sweden 2014-Q4 313.8767 2589790 107.73 172.218 Sweden 2015-Q1 312.29 2616459 105.18 127.9972 Sweden 2015-Q2 313.5767 2718829 106.03 134.0564 Sweden 2015-Q3 313.4333 2715715 106.48 113.7305 Sweden 2016-Q4 314.0833 2787814 107.55 100.1444 Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 Sweden 2016-Q4 318.593 2997943 102.86 115.4691 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden	Sweden	2013-Q4	314.5467	2487778	114.78	227.9075
Sweden 2014-Q3 313.6233 2553883 109.96 216.9077 Sweden 2014-Q4 313.8767 2589790 107.73 172.218 Sweden 2015-Q1 312.29 2616459 105.18 127.9972 Sweden 2015-Q2 313.5767 2718829 106.03 134.0564 Sweden 2015-Q4 314.0833 2787814 107.55 100.1444 Sweden 2016-Q1 314.3233 2846216 107.96 81.02994 Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 Sweden 2016-Q4 318.5933 2997943 102.86 115.4691 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q3 323.4967 324557 103.57 138.1095 Sweden	Sweden	2014-Q1	312.2567	2466666	116.75	229.4645
Sweden 2014-Q4 313.8767 2589790 107.73 172.218 Sweden 2015-Q1 312.29 2616459 105.18 127.9972 Sweden 2015-Q2 313.5767 2718829 106.03 134.0564 Sweden 2015-Q3 313.4333 2715715 106.48 113.7305 Sweden 2016-Q1 314.0833 2787814 107.55 100.1444 Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 Sweden 2016-Q4 318.5933 2997943 102.86 115.4691 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q3 323.4967 324547 103.57 138.1095 Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden	Sweden	2014-Q2	314.2133	2557125	112.68	230.6925
Sweden 2015-Q1 312.29 2616459 105.18 127.9972 Sweden 2015-Q2 313.5767 2718829 106.03 134.0564 Sweden 2015-Q3 313.4333 2715715 106.48 113.7305 Sweden 2016-Q4 314.0833 2787814 107.55 100.1444 Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 Sweden 2017-Q1 318.933 2997943 102.86 115.4691 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q3 323.4967 3256637 107.72 118.1562 Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden 2018-Q1 332.3867 3408270 99.94 159.2765 Sweden	Sweden	2014-Q3	313.6233	2553883	109.96	216.9077
Sweden 2015-Q2 313.5767 2718829 106.03 134.0564 Sweden 2015-Q3 313.4333 2715715 106.48 113.7305 Sweden 2015-Q4 314.0833 2787814 107.55 100.1444 Sweden 2016-Q1 314.3233 2846216 107.96 81.02994 Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 Sweden 2017-Q1 318.5933 2997943 102.86 115.4691 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q3 323.4967 3256637 107.72 118.1562 Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Swed	Sweden	2014-Q4	313.8767	2589790	107.73	172.218
Sweden 2015-Q3 313.4333 2715715 106.48 113.7305 Sweden 2015-Q4 314.0833 2787814 107.55 100.1444 Sweden 2016-Q1 314.3233 2846216 107.96 81.02994 Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 Sweden 2016-Q4 318.5933 2997943 102.86 115.4691 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q3 323.4967 3256637 107.72 118.1562 Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden <td>Sweden</td> <td>2015-Q1</td> <td>312.29</td> <td>2616459</td> <td>105.18</td> <td>127.9972</td>	Sweden	2015-Q1	312.29	2616459	105.18	127.9972
Sweden 2015-Q4 314.0833 2787814 107.55 100.1444 Sweden 2016-Q1 314.3233 2846216 107.96 81.02994 Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 Sweden 2016-Q4 318.5933 2997943 102.86 115.4691 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q3 323.4967 3256637 107.72 118.1562 Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden <td>Sweden</td> <td>2015-Q2</td> <td>313.5767</td> <td>2718829</td> <td>106.03</td> <td>134.0564</td>	Sweden	2015-Q2	313.5767	2718829	106.03	134.0564
Sweden 2016-Q1 314.3233 2846216 107.96 81.02994 Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 Sweden 2016-Q4 318.5933 2997943 102.86 115.4691 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q3 323.4967 3256637 107.72 118.1562 Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden <td>Sweden</td> <td>2015-Q3</td> <td>313.4333</td> <td>2715715</td> <td>106.48</td> <td>113.7305</td>	Sweden	2015-Q3	313.4333	2715715	106.48	113.7305
Sweden 2016-Q2 316.13 2903905 107.68 100.2401 Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 Sweden 2016-Q4 318.5933 2997943 102.86 115.4691 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q3 323.4967 3256637 107.72 118.1562 Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden 2018-Q4 330.9967 3432832 100.6 151.0079 Sweden 2019-Q1 334.51 3608433 96.99 134.1393 Sweden	Sweden	2015-Q4	314.0833	2787814	107.55	100.1444
Sweden 2016-Q3 316.6733 2955449 105.2 103.2608 Sweden 2016-Q4 318.5933 2997943 102.86 115.4691 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q4 323.4967 3256637 107.72 118.1562 Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden 2018-Q4 330.9967 3432832 100.6 151.0079 Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden	Sweden	2016-Q1	314.3233	2846216	107.96	81.02994
Sweden 2016-Q4 318.5933 2997943 102.86 115.4691 Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q4 324.2167 3256637 107.72 118.1562 Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden 2018-Q4 330.9967 3432832 100.6 151.0079 Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden	Sweden	2016-Q2	316.13	2903905	107.68	100.2401
Sweden 2017-Q1 318.97 3142133 104.78 123.0723 Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q3 323.4967 3256637 107.72 118.1562 Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden 2018-Q4 330.9967 3432832 100.6 151.0079 Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden	Sweden	2016-Q3	316.6733	2955449	105.2	103.2608
Sweden 2017-Q2 321.75 3229497 103.77 113.8648 Sweden 2017-Q3 323.4967 3256637 107.72 118.1562 Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden 2018-Q4 330.9967 3432832 100.6 151.0079 Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden 2020-Q2 334.8833 4168527 99.95 68.76653 Sweden	Sweden	2016-Q4	318.5933	2997943	102.86	115.4691
Sweden 2017-Q3 323.4967 3256637 107.72 118.1562 Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden 2018-Q4 330.9967 3432832 100.6 151.0079 Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden 2019-Q4 336.6933 3702972 97.92 126.1776 Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden 2020-Q2 334.8833 4168527 99.95 68.76653 Sweden	Sweden	2017-Q1	318.97	3142133	104.78	123.0723
Sweden 2017-Q4 324.2167 3242547 103.57 138.1095 Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden 2018-Q4 330.9967 3432832 100.6 151.0079 Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden 2019-Q4 336.6933 3702972 97.92 126.1776 Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden 2020-Q2 334.8833 4168527 99.95 68.76653 Sweden 2020-Q3 337.3033 4194349 101.79 90.31376 Sweden	Sweden	2017-Q2	321.75	3229497	103.77	113.8648
Sweden 2018-Q1 324.38 3344454 101.65 149.1056 Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden 2018-Q4 330.9967 3432832 100.6 151.0079 Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden 2019-Q4 336.6933 3702972 97.92 126.1776 Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden 2020-Q2 334.8833 4168527 99.95 68.76653 Sweden 2020-Q3 337.3033 4194349 101.79 90.31376 Sweden 2021-Q1 338.88 4504150 103.57 139.4159 Sweden	Sweden	2017-Q3	323.4967	3256637	107.72	118.1562
Sweden 2018-Q2 327.86 3408270 99.94 159.2765 Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden 2018-Q4 330.9967 3432832 100.6 151.0079 Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden 2019-Q4 336.6933 3702972 97.92 126.1776 Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden 2020-Q2 334.8833 4168527 99.95 68.76653 Sweden 2020-Q3 337.3033 4194349 101.79 90.31376 Sweden 2021-Q1 338.88 4504150 103.57 139.4159 Sweden 2021-Q2 340.91 4673288 104.17 156.2154 Sweden	Sweden	2017-Q4	324.2167	3242547	103.57	138.1095
Sweden 2018-Q3 330.3667 3406311 99.84 166.749 Sweden 2018-Q4 330.9967 3432832 100.6 151.0079 Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden 2019-Q4 336.6933 3702972 97.92 126.1776 Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden 2020-Q2 334.8833 4168527 99.95 68.76653 Sweden 2020-Q3 337.3033 4194349 101.79 90.31376 Sweden 2020-Q4 337.77 4361253 104.41 104.9307 Sweden 2021-Q1 338.88 4504150 103.57 139.4159 Sweden 2021-Q2 340.91 4673288 104.17 156.2154 Sweden	Sweden	2018-Q1	324.38	3344454	101.65	149.1056
Sweden 2018-Q4 330.9967 3432832 100.6 151.0079 Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden 2019-Q4 336.6933 3702972 97.92 126.1776 Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden 2020-Q2 334.8833 4168527 99.95 68.76653 Sweden 2020-Q3 337.3033 4194349 101.79 90.31376 Sweden 2020-Q4 337.77 4361253 104.41 104.9307 Sweden 2021-Q1 338.88 4504150 103.57 139.4159 Sweden 2021-Q2 340.91 4673288 104.17 156.2154 Sweden 2021-Q3 343.9867 4764850 103.2 192.6785 Sweden	Sweden	2018-Q2	327.86	3408270	99.94	159.2765
Sweden 2019-Q1 330.4567 3506802 97.65 135.0537 Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden 2019-Q4 336.6933 3702972 97.92 126.1776 Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden 2020-Q2 334.8833 4168527 99.95 68.76653 Sweden 2020-Q3 337.3033 4194349 101.79 90.31376 Sweden 2020-Q4 337.77 4361253 104.41 104.9307 Sweden 2021-Q1 338.88 4504150 103.57 139.4159 Sweden 2021-Q2 340.91 4673288 104.17 156.2154 Sweden 2021-Q3 343.9867 4764850 103.2 192.6785 Sweden 2021-Q4 348.98 4826810 101.6 244.045 Sweden	Sweden	2018-Q3	330.3667	3406311	99.84	166.749
Sweden 2019-Q2 334.51 3608433 96.99 134.1393 Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden 2019-Q4 336.6933 3702972 97.92 126.1776 Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden 2020-Q2 334.8833 4168527 99.95 68.76653 Sweden 2020-Q3 337.3033 4194349 101.79 90.31376 Sweden 2020-Q4 337.77 4361253 104.41 104.9307 Sweden 2021-Q1 338.88 4504150 103.57 139.4159 Sweden 2021-Q2 340.91 4673288 104.17 156.2154 Sweden 2021-Q3 343.9867 4764850 103.2 192.6785 Sweden 2021-Q4 348.98 4826810 101.6 244.045 Sweden 2022-Q1 354.64 4958495 98.53 277.7365 Sweden	Sweden	2018-Q4	330.9967	3432832	100.6	151.0079
Sweden 2019-Q3 335.38 3670791 96.16 121.7694 Sweden 2019-Q4 336.6933 3702972 97.92 126.1776 Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden 2020-Q2 334.8833 4168527 99.95 68.76653 Sweden 2020-Q3 337.3033 4194349 101.79 90.31376 Sweden 2020-Q4 337.77 4361253 104.41 104.9307 Sweden 2021-Q1 338.88 4504150 103.57 139.4159 Sweden 2021-Q2 340.91 4673288 104.17 156.2154 Sweden 2021-Q3 343.9867 4764850 103.2 192.6785 Sweden 2021-Q4 348.98 4826810 101.6 244.045 Sweden 2022-Q1 354.64 4958495 98.53 277.7365 Sweden 2022-Q2 366.2633 5078210 97.7 311.7772 Sweden	Sweden	2019-Q1	330.4567	3506802	97.65	135.0537
Sweden2019-Q4336.6933370297297.92126.1776Sweden2020-Q1333.7333395380295.99102.8085Sweden2020-Q2334.8833416852799.9568.76653Sweden2020-Q3337.30334194349101.7990.31376Sweden2020-Q4337.774361253104.41104.9307Sweden2021-Q1338.884504150103.57139.4159Sweden2021-Q2340.914673288104.17156.2154Sweden2021-Q3343.98674764850103.2192.6785Sweden2021-Q4348.984826810101.6244.045Sweden2022-Q1354.64495849598.53277.7365Sweden2022-Q2366.2633507821097.7311.7772Sweden2022-Q3377.4333502283595.31350.1239Sweden2022-Q4389.31495545195.32258.4067Sweden2023-Q1395.1333484919493.95203.6714	Sweden	2019-Q2	334.51	3608433	96.99	134.1393
Sweden 2020-Q1 333.7333 3953802 95.99 102.8085 Sweden 2020-Q2 334.8833 4168527 99.95 68.76653 Sweden 2020-Q3 337.3033 4194349 101.79 90.31376 Sweden 2020-Q4 337.77 4361253 104.41 104.9307 Sweden 2021-Q1 338.88 4504150 103.57 139.4159 Sweden 2021-Q2 340.91 4673288 104.17 156.2154 Sweden 2021-Q3 343.9867 4764850 103.2 192.6785 Sweden 2021-Q4 348.98 4826810 101.6 244.045 Sweden 2022-Q1 354.64 4958495 98.53 277.7365 Sweden 2022-Q2 366.2633 5078210 97.7 311.7772 Sweden 2022-Q3 377.4333 5022835 95.31 350.1239 Sweden 2022-Q4 389.31 4955451 95.32 258.4067 Sweden	Sweden	2019-Q3	335.38	3670791	96.16	121.7694
Sweden2020-Q2334.8833416852799.9568.76653Sweden2020-Q3337.30334194349101.7990.31376Sweden2020-Q4337.774361253104.41104.9307Sweden2021-Q1338.884504150103.57139.4159Sweden2021-Q2340.914673288104.17156.2154Sweden2021-Q3343.98674764850103.2192.6785Sweden2021-Q4348.984826810101.6244.045Sweden2022-Q1354.64495849598.53277.7365Sweden2022-Q2366.2633507821097.7311.7772Sweden2022-Q3377.4333502283595.31350.1239Sweden2022-Q4389.31495545195.32258.4067Sweden2023-Q1395.1333484919493.95203.6714	Sweden	2019-Q4	336.6933	3702972	97.92	126.1776
Sweden 2020-Q3 337.3033 4194349 101.79 90.31376 Sweden 2020-Q4 337.77 4361253 104.41 104.9307 Sweden 2021-Q1 338.88 4504150 103.57 139.4159 Sweden 2021-Q2 340.91 4673288 104.17 156.2154 Sweden 2021-Q3 343.9867 4764850 103.2 192.6785 Sweden 2021-Q4 348.98 4826810 101.6 244.045 Sweden 2022-Q1 354.64 4958495 98.53 277.7365 Sweden 2022-Q2 366.2633 5078210 97.7 311.7772 Sweden 2022-Q3 377.4333 5022835 95.31 350.1239 Sweden 2022-Q4 389.31 4955451 95.32 258.4067 Sweden 2023-Q1 395.1333 4849194 93.95 203.6714	Sweden	2020-Q1	333.7333	3953802	95.99	102.8085
Sweden 2020-Q4 337.77 4361253 104.41 104.9307 Sweden 2021-Q1 338.88 4504150 103.57 139.4159 Sweden 2021-Q2 340.91 4673288 104.17 156.2154 Sweden 2021-Q3 343.9867 4764850 103.2 192.6785 Sweden 2021-Q4 348.98 4826810 101.6 244.045 Sweden 2022-Q1 354.64 4958495 98.53 277.7365 Sweden 2022-Q2 366.2633 5078210 97.7 311.7772 Sweden 2022-Q3 377.4333 5022835 95.31 350.1239 Sweden 2022-Q4 389.31 4955451 95.32 258.4067 Sweden 2023-Q1 395.1333 4849194 93.95 203.6714	Sweden	2020-Q2	334.8833	4168527	99.95	68.76653
Sweden 2021-Q1 338.88 4504150 103.57 139.4159 Sweden 2021-Q2 340.91 4673288 104.17 156.2154 Sweden 2021-Q3 343.9867 4764850 103.2 192.6785 Sweden 2021-Q4 348.98 4826810 101.6 244.045 Sweden 2022-Q1 354.64 4958495 98.53 277.7365 Sweden 2022-Q2 366.2633 5078210 97.7 311.7772 Sweden 2022-Q3 377.4333 5022835 95.31 350.1239 Sweden 2022-Q4 389.31 4955451 95.32 258.4067 Sweden 2023-Q1 395.1333 4849194 93.95 203.6714	Sweden	2020-Q3	337.3033	4194349	101.79	90.31376
Sweden 2021-Q2 340.91 4673288 104.17 156.2154 Sweden 2021-Q3 343.9867 4764850 103.2 192.6785 Sweden 2021-Q4 348.98 4826810 101.6 244.045 Sweden 2022-Q1 354.64 4958495 98.53 277.7365 Sweden 2022-Q2 366.2633 5078210 97.7 311.7772 Sweden 2022-Q3 377.4333 5022835 95.31 350.1239 Sweden 2022-Q4 389.31 4955451 95.32 258.4067 Sweden 2023-Q1 395.1333 4849194 93.95 203.6714	Sweden	2020-Q4	337.77	4361253	104.41	104.9307
Sweden 2021-Q3 343.9867 4764850 103.2 192.6785 Sweden 2021-Q4 348.98 4826810 101.6 244.045 Sweden 2022-Q1 354.64 4958495 98.53 277.7365 Sweden 2022-Q2 366.2633 5078210 97.7 311.7772 Sweden 2022-Q3 377.4333 5022835 95.31 350.1239 Sweden 2022-Q4 389.31 4955451 95.32 258.4067 Sweden 2023-Q1 395.1333 4849194 93.95 203.6714	Sweden	2021-Q1	338.88	4504150	103.57	139.4159
Sweden 2021-Q4 348.98 4826810 101.6 244.045 Sweden 2022-Q1 354.64 4958495 98.53 277.7365 Sweden 2022-Q2 366.2633 5078210 97.7 311.7772 Sweden 2022-Q3 377.4333 5022835 95.31 350.1239 Sweden 2022-Q4 389.31 4955451 95.32 258.4067 Sweden 2023-Q1 395.1333 4849194 93.95 203.6714	Sweden	2021-Q2	340.91	4673288	104.17	156.2154
Sweden 2022-Q1 354.64 4958495 98.53 277.7365 Sweden 2022-Q2 366.2633 5078210 97.7 311.7772 Sweden 2022-Q3 377.4333 5022835 95.31 350.1239 Sweden 2022-Q4 389.31 4955451 95.32 258.4067 Sweden 2023-Q1 395.1333 4849194 93.95 203.6714	Sweden	2021-Q3	343.9867	4764850	103.2	192.6785
Sweden 2022-Q2 366.2633 5078210 97.7 311.7772 Sweden 2022-Q3 377.4333 5022835 95.31 350.1239 Sweden 2022-Q4 389.31 4955451 95.32 258.4067 Sweden 2023-Q1 395.1333 4849194 93.95 203.6714	Sweden	2021-Q4	348.98	4826810	101.6	244.045
Sweden 2022-Q3 377.4333 5022835 95.31 350.1239 Sweden 2022-Q4 389.31 4955451 95.32 258.4067 Sweden 2023-Q1 395.1333 4849194 93.95 203.6714	Sweden	2022-Q1	354.64	4958495	98.53	277.7365
Sweden 2022-Q4 389.31 4955451 95.32 258.4067 Sweden 2023-Q1 395.1333 4849194 93.95 203.6714	Sweden	2022-Q2	366.2633	5078210	97.7	311.7772
Sweden 2023-Q1 395.1333 4849194 93.95 203.6714	Sweden	2022-Q3	377.4333	5022835	95.31	350.1239
	Sweden	2022-Q4	389.31	4955451	95.32	258.4067
Sweden 2023-Q2 402,2033 4875388 91.26 175,8058	Sweden	2023-Q1	395.1333	4849194	93.95	203.6714
	Sweden	2023-Q2	402.2033	4875388	91.26	175.8058

Sweden	2023-Q3	406.5633	4810689	90.49	189.2505
Sweden	2023 Q3 2023-Q4	410.92	4887832	95.86	189.2923
Norway	2000-Q1	74.73333	695398.3	116.88	65.11588
Norway	2000 Q1 2000-Q2	75.3	711039.3	114.89	68.41304
Norway	2000 Q2 2000-Q3	75.53333	737412	115.33	77.47352
Norway	2000 Q3 2000-Q4	76.23333	745011.3	116	83.47962
Norway	2000-Q4 2001-Q1	77.36667	775066	118.13	77.00172
Norway	2001 Q1 2001-Q2	78.26667	780980	119.4	72.29822
Norway	2001-Q2 2001-Q3	77.46667	799276	121.8	64.42305
Norway	2001-Q3 2001-Q4	77.76667	808141	121.09	51.7029
Norway	2001-Q4 2002-Q1	78.16667	840517.3	124.17	53.32751
Norway	2002-Q1 2002-Q2	78.63333	844060.7	132.64	62.74335
Norway	2002-Q2 2002-Q3	78.56667	855674	134.5	65.27137
Norway	2002-Q3 2002-Q4	79.5	870594.3	137.07	68.73497
Norway	2002-Q4 2003-Q1	81.76667	888272.3	130.44	83.64521
Norway	-	80.4	886196.3	127.52	73.31
-	2003-Q2				
Norway	2003-Q3	80.06667	896661	125.36	74.8078
Norway	2003-Q4	80.46667	897625.7	127.34	77.97722
Norway	2004-Q1	80.6	913801.3	122.72	85.41406
Norway	2004-Q2	81.06667	930800.3	126	94.06901
Norway	2004-Q3	81.03333	939391	125.06	102.9367
Norway	2004-Q4	81.46667	960420	129.01	109.9186
Norway	2005-Q1	81.4	989392.7	128.81	114.9754
Norway	2005-Q2	82.3	1015704	131.08	125.6224
Norway	2005-Q3	82.46667	1045202	132.77	149.9138
Norway	2005-Q4	82.96667	1068293	129.37	151.7998
Norway	2006-Q1	83.23333	1094170	129.49	148.562
Norway	2006-Q2	84.26667	1130090	133.1	160.0213
Norway	2006-Q3	84.3	1166245	126.59	160.1574
Norway	2006-Q4	85	1203003	128.34	144.0664
Norway	2007-Q1	84.06667	1263899	129.35	142.6794
Norway	2007-Q2	84.53333	1308729	130.69	158.9655
Norway	2007-Q3	84.43333	1365461	135.26	169.3849
Norway	2007-Q4	86.16667	1403369	133.82	201.078
Norway	2008-Q1	87.03333	1355600	136.73	223.6517
Norway	2008-Q2	87.26667	1364232	136.6	279.7467
Norway	2008-Q3	88.4	1380705	131.73	273.0155
Norway	2008-Q4	89.23333	1403727	116.44	153.8137
Norway	2009-Q1	89.16667	1414734	125.38	120.6482
Norway	2009-Q2	90	1421998	124.15	135.3894
Norway	2009-Q3	90	1422121	128.84	148.9652
Norway	2009-Q4	90.5	1417723	131.84	166.084
Norway	2010-Q1	91.8	1425791	132.81	175.9608
Norway	2010-Q2	92.33333	1435282	130.21	176.2554

Norway	2010-Q3	91.66667	1472332	131.06	171.6313
Norway	2010-Q4	92.56667	1505171	131.08	190.2588
Norway	2011-Q1	93.06667	1539229	134.02	219.5917
Norway	2011-Q2	93.66667	1561308	135.11	241.9276
Norway	2011-Q3	93.03333	1584807	135.75	233.3416
Norway	2011-Q4	93.33333	1614443	133.75	231.1862
Norway	2012-Q1	93.83333	1636814	136.42	242.8439
Norway	2012-Q2	94.03333	1642174	134.58	225.0866
Norway	2012-Q3	93.36667	1671052	136.65	223.085
Norway	2012-Q4	94.46667	1689021	138.73	221.4684
Norway	2013-Q1	95	1704042	136.31	227.321
Norway	2013-Q2	95.86667	1722819	133.83	218.7575
Norway	2013-Q3	96.16667	1757430	130.49	229.5335
Norway	2013-Q4	96.63333	1778708	125.43	227.9075
Norway	2014-Q1	97	1813292	127.94	229.4645
Norway	2014-Q2	97.66667	1840671	128.01	230.6925
Norway	2014-Q3	98.23333	1872292	126.63	216.9077
Norway	2014-Q4	98.6	1895108	115.29	172.218
Norway	2015-Q1	98.9	1929111	114.05	127.9972
Norway	2015-Q2	99.83333	1885493	114.02	134.0564
Norway	2015-Q3	100.2	1911601	109.06	113.7305
Norway	2015-Q4	101.0667	1922110	106.07	100.1444
Norway	2016-Q1	102.0333	1938315	107.61	81.02994
Norway	2016-Q2	103.3	1968534	109.29	100.2401
Norway	2016-Q3	104.2	2017774	111.33	103.2608
Norway	2016-Q4	104.6667	2032441	112.82	115.4691
Norway	2017-Q1	104.6667	2064653	111.79	123.0723
Norway	2017-Q2	105.4667	2103836	108.77	113.8648
Norway	2017-Q3	105.7667	2141616	112.32	118.1562
Norway	2017-Q4	106.0667	2157826	106.74	138.1095
Norway	2018-Q1	106.7667	2182966	110.56	149.1056
Norway	2018-Q2	108	2240977	111.17	159.2765
Norway	2018-Q3	109.2333	2264659	111.34	166.749
Norway	2018-Q4	109.6333	2260281	107.86	151.0079
Norway	2019-Q1	109.9667	2279670	108.34	135.0537
Norway	2019-Q2	110.6333	2317740	108.9	134.1393
Norway	2019-Q3	111.0333	2372610	106.74	121.7694
Norway	2019-Q4	111.4	2361448	105	126.1776
Norway	2020-Q1	111.2333	2411830	94.64	102.8085
Norway	2020-Q2	111.9	2554970	99.9	68.76653
Norway	2020-Q3	112.7667	2614444	100.6	90.31376
Norway	2020-Q4	112.8333	2644051	101.98	104.9307
Norway	2021-Q1	114.5333	2705435	105.77	139.4159
,	2021 Q1				

Norway	2021-Q3	116.7	2888050	105.07	192.6785
Norway	2021-Q4	118.0667	2904629	104.92	244.045
Norway	2022-Q1	118.9	2967466	109.16	277.7365
Norway	2022-Q2	121.7667	3049576	102.83	311.7772
Norway	2022-Q3	124.5667	3127018	103.65	350.1239
Norway	2022-Q4	125.9	3088067	102.97	258.4067
Norway	2023-Q1	126.7667	3132817	95.98	203.6714
Norway	2023-Q2	129.6667	3105646	93.8	175.8058
Norway	2023-Q3	130.2	3098135	96.68	189.2505
Norway	2023-Q4	131.6	3101977	95.56	189.2923

Appendix 23

Do-file for ARDL

```
*FOR SETTING UP FROM EXCEL UNDIFFERENCED VARIABLES gen date = quarterly(quarter, "YQ")
foreach v of var * {
               drop if missing(`v')
}
foreach v of var * {
        gen 1`v' = ln(`v')
}
*FOR SERIAL CORRELATION TESTING ALL UNDIFFERENCED VARIABLES
foreach v of varlist lcpi lm lxr lgep {
    display "`v'"
    display "Lags: 0"
               quietly regress D.`v' L.`v' trend
               dusetly regress b. V. V. Clehu
estat bgodfrey, lags(1/4) nomiss0

forvalues lags = 1/5 {
    display "Lags: `lags'"
    quietly regress D.`v' L(1/`lags')D.`v' L.`v' trend
    estat bgodfrey, lags(1/4) nomiss0
               display "*----*"
}
foreach v of varlist D.lcpi {
    display "'v'"
    display "Lags: 0"
    quietly regress D.'v' L.'v' trend
               dusetly regress b. V. V. Clend
estat bgodfrey, lags(1/4) nomiss0
forvalues lags = 1/5 {
    display "Lags: `lags'"
    quietly regress b.`v' L(1/`lags')b.`v' L.`v' trend
                               estat bgodfrey, lags(1/4) nomiss0 \,
               display "*----*"
}
*FOR ARDL TESTING ALL UNDIFFERENCED VARIABLES
forvalues cpilags = 1/2 {
               forvalues mlags = 0/2 {
                              forvalues xrlags = 0/2 {
forvalues geplags = 0/2 {
                                                              eststo: regress lcpi L(1/`cpilags').lcpi L(0/`mlags').lm L(0/`xrlags').lxr
L(0/`geplags').lgep
                                              }
                               }
               }
esttab, scalars (aic bic) noobs
*-----
*FOR ARDL TESTING ALL DIFFERENCED VARIABLES
eststo clear
forvalues cpilags = 1/2 {
               forvalues mlags = 0/2 {
forvalues xrlags = 0/2 {
```

forvalues geplags = 0/2 {

```
eststo: quietly regress Dlcpi L(1/\hat{p}).Dlcpi L(0/\hat{m}).Dlm L(0/\hat{x}).Dlm L(0/\hat{x}).Dlxr
L(0/`geplags').Dlgep, robust
                                }
                      }
esttab using test2.csv, replace scalars (aic bic) se
*FOR ARDL TESTING FINAL SPECIFICATION
eststo clear
forvalues cpilags = 1/2 {
           forvalues mlags = 0/2 {
                      forvalues xrlags = 0/2 {
                                forvalues geplags = 0/2 {
                                           eststo: quietly regress Dlcpi L(1/`cpilags').Dlcpi L(0/`mlags').lm L(0/`xrlags').lxr
L(0/`geplags').lgep, robust
                                }
                      }
esttab using ardlspec.csv, replace scalars (aic bic) se
*FOR SERIAL CORRELATION TESTING DIFFERENT ARDL SPECIFICATIONS
estat bgodfrey, lags(1/5)
}
*FOR DETRENDING ALL VARIABLES
foreach v of varlist lcpi lm lxr lgep {
          quietly reg`v' date
predict t`v', resid
                                                              Appendix 24
Do-file for Panel Data estimation
*Initial set-up
foreach v of varlist cpi m xr gep {
         gen l`v' = ln(`v')
           label variable l`v' "LN of `v'"
}
foreach v of varlist lcpi lm lxr lgep {
          *needed because Breusch Pagan test breaks if using D. operator gen d'v' = D.'v' label variable d'v' "Lag of `v'"
}
gen date = quarterly(year, "YQ")
format date %tq
gen trend = _n
xtset countryID date
*Breusch Pagan test: RE vs OLS
reg dlcpi lm lxr lgep
xtreg dlcpi lm lxr lgep, re
xttest0
*F-test: FE vs OLS
xtreg dlcpi lm lxr lgep, fe
   *Automatically performs the F-test at the bottom
*Hausman test: FE vs RE eststo fixed: qui xtreg dlcpi lm lxr lgep, fe
xtreg dlcpi lm lxr lgep, re
hausman fixed
*note: I think random effects win
xtreg dlcpi lm lxr lgep, re robust
                                                              Appendix 25
Do-file for logistic regression
gen inf = lcpi - l4.lcpi
drop it
gen it = 0
replace it = 1 if rinf < 0.02
```