Протоколы

Понятие протокола

Сетевым протоколом называется набор правил, позволяющий осуществлять соединение и обмен данными между двумя и более включёнными в сеть компьютерами.

Для каждого уровня определяется набор функций—запросов для взаимодействия с выше лежащим уровнем, который называется интерфейсом.

Согласованный набор протоколов разных уровней, достаточный для организации межсетевого взаимодействия, называется *стеком протоколов*.

Основные моменты, касающиеся протоколов

- 1. Существует множество протоколов.
 - 1.1. потребность в памяти;
 - 1.2. использование полосы пропускания;
 - 1.3. уровень функциональности;
 - 1.4. масштабируемость;
- 2. Протоколы работают на разных уровнях модели OSI.
- 3. Несколько протоколов могут работать совместно.

Протоколы в многоуровневой архитектуре

Инициализация связи - каждый протокол имеет средства для идентификации рабочей станции по имени или номеру.

Отправка и получение данных - каждый протокол предоставляет средства для отправки и получения сообщений. Протокол накладывает ограничения на длину сообщений, кроме того, он определяет статус диалога.

Завершение обмена - протокол предоставляет средства для завершения диалога

Работа протоколов

Передача данных по сети, с технической точки зрения, должна быть разбита на ряд последовательных шагов, каждому из которых соответствуют свои правила процедуры, или протокол. Таким образом, сохраняется очередность в выполнении определенных действий. Кроме того, эти действия должны выполняться в одной и той же последовательности на каждом сетевом компьютере. На компьютере-отправителе эти действия выполняются в направлении сверху вниз, а на компьютереполучателе снизу вверх.

Компьютер-отправитель

- ▶разбивает данные на небольшие блоки, называемые пакетами, с которыми может работать протокол;
- ≽добавляет к пакетам <u>адресную информацию</u>, чтобы компьютер-получатель мог определить, что эти данные предназначены именно ему;
- ▶подготавливает данные к передаче через плату сетевого адаптера и далее - по сетевому кабелю.

Компьютер-получатель

- >принимает пакеты данных из сетевого кабеля;
- через плату сетевого адаптера передает пакеты в компьютер;
- ≽удаляет из пакета всю служебную информацию, добавленную компьютером-отправителем;
- ≻копирует данные из пакетов в буфер для их объединения в исходный блок данных;
- ▶передает приложению этот блок данных в том формате, который оно использует.

Маршрутизируемые и немаршрутизируемые протоколы

Данные, передаваемые из одной локальной сети в другую по одному из возможных маршрутов, называются *маршрутизированными*.

Протоколы, которые поддерживают передачу данных между сетями по нескольким маршрутам, называются маршрутизируемыми (routable) протоколами

ПРИВЯЗКА

Процесс, который называется *привязка*, позволяет с достаточной гибкостью настраивать сеть, т.е. сочетать протоколы и платы сетевых адаптеров, как того требует ситуация.

Порядок привязки <u>определяет очередность</u>, с которой операционная система выполняет протоколы.

Стандартные стеки

- набор протоколов ISO/OSI;
- IBM System Network Architecture (SNA);
- Digital DECnet;
- Novell NetWare;
- Apple AppleTalk;
- набор протоколов Интернета, TCP/IP.

Сетевые протоколы

Сетевые протоколы предоставляют следующие услуги: адресацию и маршрутизацию информации, проверку на наличие ошибок, запрос повторной передачи и установление правил взаимодействия в конкретной сетевой среде.

Популярные сетевые протоколы

- <u>DDP</u> (Datagram Delivery Protocol Протокол доставки дейтаграмм). Протокол передачи данных Apple, используемый в Apple Talk.
- <u>IP</u> (Internet Protocol Протокол Internet). Протокол стека TCP/IP, обеспечивающий адресную информацию и информацию о маршрутизации.
- <u>IPX</u> (Internetwork Packet eXchange Межсетевой обмен пакетами) в NWLink. Протокол Novel NetWare, используемый для маршрутизации и направления пакетов.
- <u>NetBEUI</u> (NetBIOS Extended User Interface расширенный пользовательский интерфейс базовой сетевой системы ввода вывода). Разработанный совместно IBM и Microsoft, этот протокол обеспечивает транспортные услуги для NetBIOS.

Транспортные протоколы

- *ATP (Apple Talk Protocol Транзакционный протокол Apple Talk)* и NBP (Name Binding Protocol Протокол связывания имен). Сеансовый и транспортный протоколы Apple Talk.
- *NetBIOS (Базовая сетевая система ввода вывода)*. NetBIOS Устанавливает соединение между компьютерами, а NetBEUI предоставляет услуги передачи данных для этого соединения.
- SPX (Sequenced Packet eXchange Последовательный обмен пакетами) в NWLink. Протокол Novel NetWare, используемый для обеспечения доставки данных.
- TCP (Transmission Control Protocol Протокол управления передачей). Протокол стека TCP/IP, отвечающий за надежную доставку данных

Прикладные протоколы

- AFP (Apple Talk File Protocol Файловый протокол Apple Talk). Протокол удаленного управления файлами Macintosh.
- FTP (File Transfer Protocol Протокол передачи файлов). Протокол стека TCP/IP, используемый для обеспечения услуг по передачи файлов.
- NCP (NetWare Core Protocol Базовый протокол NetWare). Оболочка и редиректоры клиента Novel NetWare.
- SNMP (Simple Network Management Protocol Простой протокол управления сетью). Протокол стека TCP/IP, используемый для управления и наблюдения за сетевыми устройствами.
- *HTTP (Hyper Text Transfer Protocol)* протокол передачи гипертекста.

Cmek OSI

Стек OSI — это набор вполне конкретных спецификаций протоколов, образующих согласованный стек протоколов.

Moments OSI CTex: OSI Уровень припожения FTAM X.500JTM VTдругие X:400 Уровень представления Представительный протокол OSI Уровень сеанса Сеансовый протокол OSI Транспортные протоколы OSI (классы 0-4) Уровень транспорта Сетевые протоколы с установлением и Уровень сепи без установления соединения Ethernet Token Bus Token Ring X.25 Канальный уровень FDDI (OSI-8802.3, | (OSI-8802.4, | (OSI-8802.5, | HDLS | ISDN (ISO-9314) Физический уровень IEEE-802.3) | IEEE-802.4) | IEEE-802.5) | LAP-B

Архитектура стека протоколов Microsoft TCP/IP

Moments OSI

Mogent TCP/IP

Уровень припожения Уровень представления Уровень сеанса

Уровень транспорта

Уровень сепи

Канальный уровень Филический уровень

Совоеты	Windows		NetBIOS			
(r)	Интерф	eříc TD	I			
T	CP		UDP			
ICMP IGMP		IP	ARI RARI			
	Интерфе	řic NDI	S			
Ethernet	Драйверы сетевых карт		PPP			
FDDI	Сетевые адаптеры		Транспация кадров			

Уровень припожения

Уровень транспорта

Межсетевой уровень

Уровень сетевого интерфейса

Уровень приложения

Через уровень Приложения модели TCP/IP приложения и службы получают доступ к сети. Доступ к протоколам TCP/IP осуществляется посредством двух программных интерфейсов (API – Application Programming Interface):

- ➤ Cокеты Windows (WinSock);
- > NetBIOS.

Интерфейсы сокетов Windows и NetBIOS

WinSock является сетевым программным интерфейсом, предназначенным для облегчения взаимодействия между различными TCP/IP — приложениями и семействами протоколов.

Интерфейс NetBIOS используется для связи между процессами (IPC – Interposes Communications) служб и приложений ОС Windows.

Семейство протоколов ТСР/ІР

Надвание протокола	Описание протокола Сетевой программный интерфейс					
WinSock						
NetBIOS	Связь с припожениями ОС Windows					
TDI	Интерфейс транспортного драйвера (Transpor Driver Interface) по жолиет создавать компоненты сеансового уровия.					
TCP	Протокоп управления передачей (Transmission Control Protocol)					
UDP	Протокоп пользовательских дейтаграмм (User Datagram Protocol)					
ARP	Протокоп разрешения адресов (Address Resolution Protocol)					
RARP	Протокоп обратного разрешения адресов (Reverse Address Resolution Protocol)					
IP	Προτοκοπ hternet(hternet Protocol)					
ICMP	Протокоп управляющих сообщений Internet (Internet Control Message Protocol)					
IGMP	Протокоп угравления группами Ингернета (Internet Group Management Protocol),					
NDIS	Интерфейс взавмодействия между драйверами транспортных протоколов					
FTP	Протокоп пересыпки файснов (File Transfer Protocol)					
TFTP	Простой протокоп пересыпки файпов (Trin File Transfer Protocol)					

Уровень транспорта

Уровень транспорта ТСР/ІР отвечает за установления и поддержания соединения между двумя узлами. Основные функции уровня:

- > подтверждение получения информации;
- > управление потоком данных;
- > упорядочение и ретрансляция пакетов;

Протокол управления передачей (ТСР)

(TCP)
Протокол TCP отвечает за надежную передачу данных от одного узла сети к другому. Он создает сеанс с установлением соединения, иначе говоря виртуальный канал между машинами. Установление соединения происходит в три шага:

- 1. Клиент, запрашивающий соединение, отправляет серверу пакет, указывающий номер порта, который клиент желает использовать, а также код (определенное число) ISN (Initial Sequence number).
- 2. Сервер отвечает пакетом, содержащий ISN сервера, а также ISN клиента, увеличенный на 1.
- 3. Клиент должен подтвердить установление соединения, вернув ISN сервера, увеличенный на 1.

Пользовательский протокол дейтаграмм (UDP)

Протокол UDP предназначен для отправки небольших объемов данных без установки соединения и используется приложениями, которые не нуждаются в подтверждении адресатом их получения.

Межсетевой уровень

Межсемевой уровень отвечает за маршрутизацию данных внутри сети и между различными сетями. На этом уровне работают маршрутизаторы, которые зависят от используемого протокола и используются для отправки пакетов из одной сети (или ее сегмента) в другую (или другой сегмент сети). В стеке TCP/IP на этом уровне используется протокол IP.

Протокол Интернета ІР

Протокол IP обеспечивает обмен дейтаграммами между узлами сети и является протоколом, не устанавливающим соединения и использующим дейтаграммы для отправки данных из одной сети в другую.

К его функциям относится фрагментация дейтаграмм и межсетевая адресация.

Адресация в ІР-сетях

Физический, или локальный адрес узла, определяемый технологией, с помощью которой построена сеть, в которую входит узел. Для узлов, входящих в локальные сети - это МАС—адрес сетевого адаптера или порта маршрутизатора.

Сетевой, или IP-адрес - используется на сетевом уровне. Он назначается администратором во время конфигурирования компьютеров и маршрутизаторов.

Символьный адрес, или DNS-имя - адрес назначается администратором и состоит из нескольких частей, например, имени машины, имени организации, имени домена. Такой адрес используется на прикладном уровне, например, в протоколах FTP или telnet

Протоколы сопоставления адреса ARP и RARP

Для определения локального адреса по IP-адресу используется протокол разрешения адреса AddressResolution Protocol;

Протокол, решающий обратную задачу — нахождение IP-адреса по известному локальному адресу, называется *peверсивный ARP — RARP (Reverse Address Resolution Protocol)* и используется при старте бездисковых станций, не знающих в начальный момент своего IP-адреса, но знающих адрес своего сетевого адаптера.

Протокол ІСМР

Протокол управления сообщениями Интернета (ICMP – Internet Control Message Protocol) используется IP и другими протоколами высокого уровня для отправки и получения отчетов о состоянии переданной информации. Этот протокол используется для контроля скорости передачи информации между системами. Если маршрутизатор, соединяющий две системы, перегружен трафиком, он может отправить специальное сообщение ІСМР – ошибку уменьшения скорости отправления сообщений.

Протокол IGMP

Узлы локальной сети используют *протокол управления группами Интернета* (IGMP – Internet Group Management Protocol), чтобы зарегистрировать себя в группе. Информация о группах содержится на маршрутизаторах локальной сети. Маршрутизаторы используют эту информацию для передачи групповых сообщений.

Групповое сообщение, как и широковещательное, используется для отправки данных сразу нескольким узлам.

NDIS

Network Device Interface Specification — спецификация интерфейса сетевого устройства, программный интерфейс, обеспечивающий взаимодействие между драйверами транспортных протоколов, и соответствующими драйверами сетевых интерфейсов. Позволяет использовать несколько протоколов, даже если установлена только одна сетевая карта

Уровень сетевого интерфейса

Отвечает за распределение IP-дейтаграмм. Он работает с ARP для определения информации, которая должна быть помещена в заголовок каждого кадра. Затем на этом уровне создается кадр, подходящий для используемого типа сети, такого как Ethernet, Token Ring или ATM, затем IP-дейтаграмма помещается в область данных этого кадра, и он отправляется в сеть.

Прикладные протоколы

- *>FTAM* − протокол OSI доступа к файлам;
- ➤ X.400 протокол для международного обмена электронной почтой;
- ➤ X.500 протокол служб файлов и каталогов на нескольких системах;
- *SMTP* − протокол Интернета для обмена электронной почтой;
- *▶FTР* протокол Интернета для передачи файлов;

Прикладные протоколы

- >SNMP протокол Интернета для мониторинга сети сетевых компонентов;
- ▶ Telnet протокол Интернета для регистрации на удаленных хостах и обработки данных на них; Apple Talk и Apple Share набор сетевых протоколов фирмы Apple;
- ► *AFP* протокол удаленного доступа к файлам фирмы Apple;
- *▶DAP* протокол доступа к файлам сетей DECnet;
- *▶ATP, NBP* протоколы связи и транспортировки фирмы Apple

Транспортные протоколы

- *TCP* − TCP/IP-протокол для гарантированной доставки данных, разбитых на последовательность фрагментов;
- >SPX часть набора протоколов IPX/SPX для разбитых на последовательность фрагментов, фирмы Novell;
- >NWlink реализация протокола IPX/SPX от фирмы Microsoft;
- NetBEUI (NetBIOS расширенный интерфейс пользователя) устанавливает сеансы связи между компьютерами (NetBIOS) и предоставляет верхним уровням транспортные услуги (NetBEUI)

Сетевые протоколы

IP – TCP/IP-протокол для передачи пакетов;

IPX – протокол фирмы Novell для передачи и маршрутизации пакетов;

DDP – Apple Talk - протокол транспортировки данных.

Стек OSI

Модель OSI

Стек OSI

IEEE-802.3) | IEEE-802.4) | IEEE-802.5) | LAP-B

Уровень приложения

Уровень представления

Уровень сеанса

Уровень транспорта

Уровень сети

Канальный уровень Физический уровень

X.400	X.:	500	VT	FTAM	Г	TM	Į	ругие			
		Представительный протокол OSI									
Ceaнсовый протокол OSI											
Транспортные протоколы OSI (классы 0-4)											
Сетевые протоколы с установлением и без установления соединения											
Etherne (OSI-880	2.3,	(OSI-	en Bus 8802.4,	Token Rin (OSI-8802	.5, I	X.25 HDLS	ISDN	FDDI (ISO-9314)			

NetBIOS

NetBIOS — это соглашение по присвоению имен, сетевой программный интерфейс приложения, а также набор протоколов для совместного использования сетевых ресурсов. *NetBIOS* поддерживает список уникальных имен сетевых ресурсов, обеспечивает службы установления, охраны и разрешения этих имен, осуществляет передачу сообщений между приложениями, использующими эти сетевые ресурсы

Регистрация и поддержка имен NetBIOS

Утверждение существования имени и его принадлежности конкретному компьютеру, пользователю, процессу или группе называется регистрацией имени.

Имя, которое присваивается компьютеру в процессе установки Windows, является NetBIOS-именем и в сети должно быть уникальным.

Имена NetBIOS хранятся в простой двухмерной базе данных, без организации иерархии имен.

Протокол NetBEUI и область его применения

Протокол NetBEUI первоначально был разработан компанией IBM в 1985 году.

Протокол NetBEUI разрабатывался как эффективный протокол, потребляющий немного ресурсов и предназначенный для сетей, насчитывающих не более 200 рабочих станций.

С его помощью невозможна маршрутизация пакетов.

NetBEUI и эталонная модель OSI

Физический – Канальный (LLC и MAC) – Транспортный - Сеансовый NBF - протокол с интенсивным использованием широковещательной передачи. Выполняет функции протокола транспортного и сетевого уровней и предоставляет базовые услуги связи устройствами. При сетевом вводе-выводе верхние уровни (NetBIOS-приложения) передают данные прямо в NBF для обработки. NBF инкапсулирует данные в кадры, находит устройства, с которыми нужно установить связь, и передает данные в сетевую интерфейсную карту для последующей доставки.

- NBF не позволяет осуществлять маршрутизацию;
- + мал и быстр