FOSS4G for water management

Vincent Picavet Oslandia

1 - Building blocks

Cloud WebServices

2 - Hydrology

Modules GDAL Raster formats Raster analysis DEM

SAGA GRASS TauDEM

Lots of algorithms available for hydrology and network analysis

SEXTANTE Toolbox

GRASS

Flow calculation **Groundwater flow** Hydrological models Sediment Stream modules Watershed Flooding areas

http://grasswiki.osgeo.org/wiki/Hydrological_Sciences

SAGA

Catchment Sink management Watershed segmentation Water retention capacity Watershed basins Wetness index **Upslope** area

TauDEM

(Terrain Analysis Using Digital Elevation Models)

DEM → **Hydrology Integrated in Sextante**

Flow paths, slopes, contributing areas, stream network delineation, channel network delineation, (sub-)watershed delineation, Watershed / segment attribution, slope/area ratios, accumulation, reverse accumulation, avalanche runout areas...

Complex / custom model

3 - Hydraulics

EPANET

OpenSource Industry standard Hydraulic simulation

Network solver, Headloss pipes, headflow curves of pumps...

Water quality sim.
Pollutant tracking
Big networks (Millions nodes)
Ghydraulics: QGIS plugin

Network analysis

PostGIS

PostGIS topology
Custom topology
Recursive queries
Vector data processing

→ Data quality check

Validity, topology building, constraints, geometry/topology coherence semi-automatic editing

→ Network analysis

Pump activation, area isolation Multiple networks, history management

Water network

Find path

Find upstream


```
create table
       rec res as
with recursive
       search graph(gid, source, depth, path, length, cycle) as (
               select
                       g.gid, g.source, 1 as depth, ARRAY[g.gid] as path
                        , cost, false as cycle
                from
                       tr as g
               where
                       gid = 31913
               union all
               select
                       g.gid
                        , g.source
                        , sg.depth + 1 as depth
                        , path || g.gid as path
                        , sg.length + g.cost as length
                        , g.gid = ANY(path) as cycle
               from
                       tr as g
               join
                        search graph as sg
                on
                        sg.source = g.target
               where
                       not cycle
```

Recursive CTE

setect		
	sg.*	
	, tr.geom	
from		
	search graph as sg	
join		
	tr	
on		
	sg.gid = tr.gid	
limit	1000:	

OSLANDIA

		depth integer				geom geometry(MultiLineString,2154)
31913	20850	1	{31913}	2666.0523017	f	01050000206A08000001000
33855	20735	2	{31913,	3473.3086319	f	01050000206A08000001000
32477	20845	2	{31913,	2725.7640259	f	01050000206A08000001000
33854	19909	3	{31913,	7183.7295195	f	01050000206A08000001000

QGEP

QGEP

VSA-DSS compatible waste-water documentation and management system based on Quantum GIS (QGIS).

QGIS Plugin + PostGIS
Swiss model (http://www.vsa.ch/vsa-dss/datenmodell/)
Digitizing
Profiles
Quality control
Symbology and map exports

4 - Observations & sensors

OGC SWE

- All sensors reporting position
- All connected to the web
- All with metadata registered
- All readable remotely
- Some controllable remotely

Stored Sensor Data

Acronyme	Nom	http://www.opengeospatial.org/ogc/markets-technologie			
TML	Transducer ML	1.0. No longer developed.			
SensorML	Sensor and process descriptions	1.0.1 approved (2007) 2.0 : commenting phase			
O&M	Observations & Measurements	2.0. ISO version approved.			
WNS	Web Notification Service*	0.9 best practice			
sos	Sensor Observation Service	2.0 approved.			
SAS	Sensor Alert Service*	0.9 best practice			
SPS	Sensor Planning Service	2.0 approved.			
SWE Common	Common data model	2.0 approved			

505

(Sensor Observation Service)

HTTP All kind of sensors Mapserver implementation

Waste-water

Veolia Eau Ile de France - Direction Technique

10030 Hopital

H0029 Cambacères H0031 place d'Allemagne

Bon état

En surcharge (niveau d'eau > seuil)

Défectueux

Water supply

Midvatten

QGIS Plugin Hydrogeological observations

Plots
Reporting
Time series
Database

X - What now?

Towards FOSS4G water solution

Most features exist
PostGIS + QGIS =
good platform to start with
Integration work
User feedback needed

Open points

Database models Workflows Better simulation integration Sensor servers integration Advanced symbology **Packaging** Community Mutualization of devs & funding

Open discussion

vincent.picavet@oslandia.com

Twitter: @vpicavet

http://www.oslandia.com

CrayFish QGIS Plugin Pre/post modelers processing Vector rendering (flow)

