Dummit & Foote Ch. 7.2: Polynomial Rings, Matrix Rings, and Group Rings

Scott Donaldson

Oct. 2024

Let R be a commutative ring with 1.

2. (10/7/24)

Let $p(x) = a_n x^n + a_{n-a} x^{n-1} + ... + a_1 x + a_0$ be an element of the polynomial ring R[x]. Prove that p(x) is a zero divisor in R[x] if and only if there is a nonzero $b \in R$ such that bp(x) = 0.

Proof. If there exists $b \in R$ such that bp(x) = 0, then the polynomial $b(x) = b \in R[x]$ is an element such that b(x)p(x) = 0, so p(x) is a zero divisor.

Conversely, suppose that p(x) is zero divisor in R. Let $g(x) = b_m x^m + b_{m-1} x^{m-1} + ... + b_0$ be a nonzero polynomial of minimal degree such that p(x)g(x) = 0. Then:

$$p(x)g(x) = (a_n x^n + \dots + a_0)(b_m x^m + \dots + b_0)$$

= $a_n b_m x^{n+m} + \dots + a_0 b_0 = 0$,

which implies that $a_n b_m = 0$.

Then $a_ng(x) = a_nb_mx^m + ...a_nb_0 = a_nb_{m-1}x^{m-1} + ...a_nb_0$ is a polynomial of degree m-1. And, because p(x)g(x) = 0, we have $a_ng(x)p(x) = 0$, contradicting g(x) being a polynomial of minimal degree such that multiplying it by p(x) is zero. Therefore we must have $a_ng(x) = 0$.

Now suppose inductively that $a_{n-i}g(x)=0$ and $a_{n-k}g(x)=0$ for some $i\in\{0,...,n\}$ and all $k\leq i$. Given $p(x)=a_nx^n+...a_0$, let us write $p_{n-i}(x)=a_{n-i}x^{n-i}+...+a_0$. Then:

$$\begin{split} p(x)g(x) &= (a_n x^n + \ldots + a_0)g(x) \\ &= (a_n x^n + \ldots + a_{n-i} x^{n_i} + p_{n-i-1}(x))g(x) \\ &= p_{n-i-1}(x)g(x) \text{ (since } a_n g(x) = \ldots = a_{n-i}g(x) = 0) \\ &= a_{n-i-1} x^{n-i-1}g(x) + \ldots + a_0 g(x) = 0. \end{split}$$

It follows that the leading coefficient of $x^{n+m-i-1}$, $a_{n-i-1}b_m$, must equal zero. By induction, this implies that $a_ib_m=0$ for all $i\in\{0,...,n\}$; that is, $b_mp(x)=0$ and so there exists a $b\in R$ such that bp(x)=0.