Project Development Phase Model Performance Test

Date	19 November 2022	
Team ID	PNT2022TMID46390	
Project Name	Project – Early Detection of Chronic Kidney	
	Disease using Machine Learning	
Maximum Marks	10 Marks	

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Regression Model: MAE - , MSE - , RMSE - , R2 score - Classification Model: Confusion Matrix - , Accuracy Score- & Classification Report -	See Below
2.	Tune the Model	Hyper-parameter Tuning - Validation Method -	See Below

1. Metrics

Model: Logistic Regression Classification

```
In [114]: # Classification report
         print(classification_report(y_test,y_pred))
                      precision recall f1-score support
                   0
                          1.00 1.00 1.00
                                                         28
                          1.00 1.00
                                           1.00
            accuracy
                                            1.00
                                                         80
            macro avg 1.00 1.00 ighted avg 1.00 1.00
                                          1.00
                                                         80
         weighted avg
In [115]: # Creating a confusion matrix for training set
         y_train_pred=rf.predict(X_train)
         cm=confusion_matrix(y_train,y_train_pred)
Out[115]: array([[121, 1],
               [ 0, 198]], dtype=int64)
In [116]: # Accuracy score
         score=round(accuracy_score(y_train,y_train_pred),3)
         print("Accuracy on training set: {}".format(score))
         Accuracy on training set: 0.997
```

2. Tune the Model

Hyper parameter Tuning:

- The number of features is important and should be tuned in random forest classification.
- Initially all parameters in the data set are taken as independent values to arrive at the dependent decision of Chronic Kidney Disease or No Chronic Kidney Disease.
- But the result was not accurate so used only 8 more correlated values as independent values to arrive at the dependent decision of Chronic Kidney Disease or not.

Validation Method:

It involves partitioning the training data set into subsets, where one subset is held out to test the performance of the model. This data set is called the validation data set.

Cross validation is to use different models and identify the best:

Random Forest Classifier Model performance values:

```
print(f"Confusion Matrix :- \n{confusion_matrix(y_test, rd_clf.predict(X_test))}\n")
print(f"Classification Report :- \n {classification_report(y_test, rd_clf.predict(X_test))}")
```

Training Accuracy of Random Forest Classifier is 98.92857142857143
Test Accuracy of Random Forest Classifier is 99.1666666666667

```
Confusion Matrix :-
[[39 1]
[ 0 80]]
```

Classification Report :-

	precision	recall	f1-score	support
0	1.00	0.97	0.99	40
1	0.99	1.00	0.99	80
accuracy			0.99	120
macro avg	0.99	0.99	0.99	120
weighted avg	0.99	0.99	0.99	120

Hence we tested with Logistic regression and Random Forest Classification wherein the accuracy of Random Forest classification is 95% compared with Logistic Regression.

Metric	Logistic Regression	Random Forest Classification	
Accuracy	0.97	0.99	
Other metrics	<pre>In [114]: # Classification report print(classification_report(y_test,y_pred))</pre>	<pre>print(f"Confusion Matrix :- \n{confusion_matrix(y_test, rd_clf.predict(X_test))}\n") print(f"Classification Report :- \n {classification_report(y_test, rd_clf.predict(X_test))}"</pre>	
	precision recall f1-score support 0 1.00 1.00 1.00 28 1 1.00 1.00 1.00 52 accuracy 1.00 80 macro avg 1.00 1.00 1.00 80 weighted avg 1.00 1.00 1.00 80	Training Accuracy of Random Forest Classifier is 98.92857142857143 Test Accuracy of Random Forest Classifier is 99.1666666666667 Confusion Matrix :- [[39 1] [0 80]]	
	<pre>In [115]: # Creating a confusion matrix for training set y_train_pred=rf.predict(X_train) cm=confusion_matrix(y_train,y_train_pred) cm Out[115]: array([[121, 1], [0, 198]], dtype=int64)</pre>	Classification Report :-	
	<pre>In [116]: # Accuracy score score=round(accuracy_score(y_train,y_train_pred),3) print("Accuracy on training set: {}".format(score)) Accuracy on training set: 0.997</pre>	accuracy 0.99 120 macro avg 0.99 0.99 120 weighted avg 0.99 0.99 0.99 120	

The above table shows that Random Forest Classification gives better results over Logistic Regression.