Tuller #2
sección 2.3.6
5 a) Comprobar que las matrices de puuli forman una base para el espació de las matrices 2×2 hermiticas.
· Comprobar si son hermiticas:
- 0 = (0,t)*
$ (\sigma_0^4)^{\frac{1}{2}} \left(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}^{\frac{1}{2}} \right) $
= (10)
Hermitica.

- 5,= ((o,)*)*
$((G_{+})^{\epsilon})^{*} = \left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right)^{*}$
= (0 1 1 0)
Hermitica
$-\sigma_2 = ((\sigma_2)^c)^*$
$\sigma_2 = \left(\begin{pmatrix} o - i \\ i \end{pmatrix} \right)^{\frac{1}{2}}$
= (0 i)*
- (o-i)
Hermitica.
$-((6_3)^6)^{*} = ((10)^6)^{*}$
= (1 0) 0 -1)
Hermitica.

# 00, 01, 02, 03 son linealmente independientes	
· Encontrar los de para los que genera e espacio de hermiticas 2×2.	
# Forma general de una matriz hermitika 2	X2.
$A = \begin{pmatrix} a & c + id \\ c - id & b \end{pmatrix}$	
# Matrices de pauli.	ш
$P = \left(\alpha_0 + \alpha_3, \alpha_1 - i\alpha_2\right)$	
- Sistema de ecraciones	7-6
1) $\alpha_0 + \alpha_3 = \alpha$	N IS
2) $\alpha_1 - i\alpha_2 = c + id$ 3) $\alpha_1 + i\alpha_2 = c - id$	100
4) a - a = b	

& Sumar	do y restando 2) y 3) encontrumos que y de = d.	U
y Suma	do y restando 1) y 4) obtenemos que;	
	$x_0 = a + b$, $x_0 = a - b$	
La	matrit que genera el espació es:	
	$A = \begin{pmatrix} a+b \\ 2 \end{pmatrix} o_0 + c o_1 + d o_2 + \begin{pmatrix} a-b \\ 2 \end{pmatrix} o_3$	
5,6)8	a jo el producto interno definido como A,B) = Tr(A¹B).	100
# Ya	ve lus matrices son hermiticas podemos d $Tr(ouo_{V})=0 \text{si} u\neq V$	ec
. 6, 02	$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 - \lambda \\ \lambda & 0 \end{pmatrix} = \lambda \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$	
Tr (0.	$6_2) = \lambda(1-1) = 0$	
. 610	$= \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	

