Lecture 7 Further Edge Detection

COMP3204 & COMP6223 Computer Vision

What better ways are there to detect edges?

Department of Electronics and Computer Science

Applying Sobel operator

Stages in Canny edge detection operator

Canny edge detection operator

Formulated with three main objectives:

- optimal detection with no spurious responses;
- good localisation with minimal distance between detected and true edge position; and
- single response to eliminate multiple responses to a single edge.

Approximation

- use Gaussian smoothing;
- 2. use the Sobel operator;
- combine?
- 3. use non-maximal suppression; and
- 4. threshold with hysteresis to connect edge points.

Interpolation in non-maximum suppression

Hysteresis thresholding transfer function

Action of non-maximum suppression and hysteresis thresholding

Comparing hysteresis thresholding with uniform thresholding

(a) hysteresis thresholding, upper level = 40, lower level = 10

(b) uniform thresholding, level = 40

(c) uniform thresholding, level = 10

Comparing Canny with Sobel

First and second order edge detection

Edge detection via the Laplacian operator

0	-1	0
-1	4	-1
0	-1	0

1	2	3	4	1	1	2	1	0	0	0	0	0	0	0	0
2	2	3	0	1	2	2	1	0	1	-31	-47	-36	-32	0	0
3	0	38	39	37	36	3	0	0	-44	70	37	31	60	-28	0
4	1	40	44	41	42	2	1	0	-42	34	12	1	50	-41	0
1	2	43	44	40	39	3	1	0	-37	47	8	-6	31	-32	0
2	0	39	41	42	40	2	0	0	-45	72	37	45	74	-36	0
0	2	0	2	2	3	1	1	0	6	-44	-38	-40	-31	-6	0
0	2	1	3	1	0	4	2	0	0	0	0	0	0	0	0
	(a) image data						(b) result of the Laplacian operator								

Mathbelts on...

$$\nabla^{2}g(x,y) = \frac{\partial^{2}g(x,y,\sigma)}{\partial x^{2}}U_{x} + \frac{\partial^{2}g(x,y,\sigma)}{\partial y^{2}}U_{y}$$

$$= \frac{\partial\nabla g(x,y,\sigma)}{\partial x}U_{x} + \frac{\partial\nabla g(x,y,\sigma)}{\partial y}U_{y}$$

$$= \left(\frac{x^{2}}{\sigma^{2}} - 1\right)\frac{e^{\frac{-(x^{2}+y^{2})}{2\sigma^{2}}}}{\sigma^{2}} + \left(\frac{y^{2}}{\sigma^{2}} - 1\right)\frac{e^{\frac{-(x^{2}+y^{2})}{2\sigma^{2}}}}{\sigma^{2}}$$

$$= \frac{1}{\sigma^{2}}\left(\frac{(x^{2}+y^{2})}{\sigma^{2}} - 2\right)e^{\frac{-(x^{2}+y^{2})}{2\sigma^{2}}}$$

Top 3 hits Google: "Lalpacian of Gaussian"

$$LoG(x,y) = -\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

$$LoG \stackrel{\triangle}{=} \triangle G_{\sigma}(x,y) = \frac{\partial^2}{\partial x^2} G_{\sigma}(x,y) + \frac{\partial^2}{\partial y^2} G_{\sigma}(x,y) = \frac{x^2 + y^2 - 2\sigma^2}{\sigma^4} e^{-(x^2 + y^2)/2\sigma^2}$$

LoG(x,y) =
$$-\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

Two wrong, one right. Just one.....why?

(and two of them don't even work!!)

http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm; http://fourier.eng.hmc.edu/e161/lectures/gradient/node8.html; http://academic.mu.edu/phys/matthysd/web226/Lab02.htm

Shape of Laplacian of Gaussian operator

Zero crossing detection

• Basic – straight comparison

f(x, y)

Advanced

$$IF(\max(1,2,3,4) > 0 \land \min(1,2,3,4) < 0)$$
 $THEN$ $f(x, y) = edge$

Marr-Hildreth edge detection

Comparison of edge detection operators

Newer stuff - phase congruency

• Immune to overall change in brightness (wow!!)

(a) modified cameraman image

(b) edges by the Canny operator

(c) phase congruency

Newer stuff – interest detections

feature points

SIFT (mega famous) (wait for Jon)

regions

brightness clustering

(excellent, but confess its ours)

Lomeli-R. and Nixon and Carter, Mach Vis Apps 2016