MULTIMEDIA

STUDENT ID NO

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 1, 2016/2017

BEC2044 - ECONOMETRICS I

(All sections / Groups)

12 OCTOBER 2016 9.00 a.m. - 11.00 a.m. (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of SIX (6) pages with FOUR (4) questions only excluding cover page.
- 2. Attempt ALL questions. The distribution of the marks for each question is given.
- 3. Write all your answers in the answer booklet provided.
- 4. Formulas and statistical tables are attached.

QUESTION 1

A group of researchers consider estimation of airline cost function. The table below contains output obtained using their data to estimate a function of the form

 $\ln(VC) = \beta_1 + \beta_2 \ln(Y) + \beta_3 \ln(K) + \beta_4 \ln(PL) + \beta_5 \ln(PF) + \beta_6 \ln(PM) + \beta_7 \ln(STAGE) + e \\ \dots (1.1)$ where VC = variable cost; Y = output; K = capital stock; PL = price of labour; PF = price of fuel; PM = price of materials; and STAGE = average flight length.

Table: Estimation Output of Airline Cost Function

Dependent Variable: ln(VC) Included observations: 268	Coefficient	Standard Error	Tolerance	
Constant	7.5289	(0.5822)	78	
In(Y)	0.6792	(0.0534)	0.214	
ln(K)	0.3503	(0.0529)	0.701	
ln(PL)	0.2754	(0.0438)	0.904	
ln(PF)	0.3219	(0.0361)	0.252	
ln(PM)	-0.0683	(0.1003)	0.578	
ln(STAGE)	-0.1944	(0.0286)	0.384	

 $R^2 = 0.9895$;

Jarque-Bera χ^2 statistics = 2.87;

Durbin-Watson d = 3.91

- (a) Hypothesise the signs for output, capital stock, price of labour, price of fuel, price of materials and average flight length. Do the estimated coefficients have the anticipated signs? (3 marks)
- (b) Compute the value of adjusted R².

(2 marks)

- (c) Is the error term normally distributed? Use 5% as the level of significance. (5 marks)
- (d) Is the overall regression significant? Use 5% as the level of significance. (5 marks)
- (e) Interpret the coefficients of ln(Y), ln(K) and ln(PF).

(5 marks)

- (f) Is there a positive relationship between the variable cost and output? Use 5% as the level of significance. (5 marks)
- (g) Develop and test (use 5% as the level of significance) appropriate hypotheses for the coefficients of capital stock, price of labour, price of fuel, price of materials and average flight length. Which coefficients are not significantly different from zero? Which variable(s) would you consider to omit from the model? (10 marks)
- (h) Compute the Variance Inflation Factor for each independent variable. Assess the degree of multicollinearity and determine its effects. (5 marks)

(Total: 40 marks) Continued...

TSH

QUESTION 2

(a) An estimation of public transport cost function based on 268 observations yields the following results:

$$\widehat{VC} = 1861.05 + 1.97Y + 1.42K + 1.32PL + 1.38PF + 0.93PM + 0.82STAGE$$
 (2.1)

Durbin-Watson statistic = 3.91

- (i) Determine if there is first-order serial correlation for the above model. (4 marks)
- (ii) Describe step-by-step how you would apply the Breusch-Godfrey test for second-order autocorrelation. Your answer should be specific to model (2.1).

 (6 marks)
- (b) "Heteroscedasticity, when left unchecked, can leave a research which has found statistically significant results open to criticism". Explain. (4 marks)
- (c) Consider the model below:

$$Sales_i = \alpha + \beta Y_i + \gamma M_i + \mu_i$$

where

 $Sales_i = the sale of a firm in the i-th region,$

 Y_i = total income in the region, and

 M_i = the amount of money spent by the company advertising in that region.

You suspect that the random error term μ_i has heteroscedasticity with a standard deviation σ that depend on the amount of money spent M_i . Describe the procedure of White test in testing for the heteroscedasticity. (6 marks)

(Total: 20 marks)

QUESTION 3

(a) A researcher estimates the following two econometric models

$$y_{t} = \beta_{1} + \beta_{2} x_{2t} + \beta_{3} x_{3t} + u_{t} \qquad ... (3.1)$$

$$y_{t} = \beta_{1} + \beta_{2} x_{2t} + \beta_{3} x_{3t} + \beta_{4} x_{4t} + v_{t} \qquad ... (3.2)$$

where u_t and v_t are iid disturbances and x_{4t} is an irrelevant variable which does not enter into the data generating process for y_t . Will the value of

(i) R^2 , (5 marks)

(ii) Adjusted R² (5 marks)

be higher for the second model than the first? Explain your answers.

Continued...

(b) Suppose that the "true model" is:

$$lnY = \alpha_0 + \alpha_1 X_1 + \alpha_2 X_2 + \varepsilon \qquad \dots (3.3)$$

but we estimate using the following model:

$$lnY = \alpha_0 + \alpha_1 lnX_1 + \alpha_2 lnX_2 + \alpha_3 X_3 + \varepsilon \qquad ... (3.4)$$

- (i) What are the consequences of "incorrect functional form" in estimation? (3 marks)
- (ii) How can the problem stated in (i) be detected? (4 marks)
- (iii) How can the problem stated in (i) be corrected? (3 marks)

(Total: 20 marks)

QUESTION 4

An econometrics department at a local university keeps track of its major's starting salaries. Does taking econometrics affect starting salary? Let SAL = salary in RM, GPA = grade point average on a 4.0 scale, METRICS = 1 if student took econometrics, and METRICS = 0 otherwise. Using the data of 50 recent graduates, the estimated regression is obtained:

$$\widehat{SAL}$$
 = 24200 + 1643GPA + 5033METRICS
(std. error) (1078) (352) (456) $R^2 = 0.74$

(a) Interpret the estimated equation.

- (8 marks)
- (b) How would you modify the equation to see if women had lower starting salaries than men? {Hint: Define a dummy variable FEMALE = 1, if female; 0 otherwise.}

 (6 marks)
- (c) How would you modify the equation to see if the value of econometrics was the same for men and women? (6 marks)

(Total: 20 marks)

End of Page

Formulas

$$t - statistic = \frac{\hat{\beta} - \beta}{\hat{s}e(\beta)}$$

F - statistic =
$$\frac{ESS/(k)}{RSS/(n-k-1)} = \frac{R^2/(k)}{(1-R^2)/(n-k-1)}$$

$$R^2 = \frac{ESS}{TSS}$$

Adjusted R² = 1 -
$$(1 - R^2)(\frac{n-1}{n-k-1})$$

Total Sum of Squares (TSS) = Explained Sum of Squares (ESS) + Residual Sum of Squares (RSS)

White's general heteroscedasticity test statistics, $\chi^2_{df=k} = n \times R^2$

$$\rho \approx 1 - (d/2)$$

Statistical Tables

Appendix 1: t-Table

two tails	0.2	0.1	0.05	0.02	0.01
One tail	0.1	0.05	0.025	0.01	0.005
df					
10	1.37	1.81	2.23	2.76	3.17
20	1.33	1.72	2.09	2.53	2.84
30	1.31	1.70	2.04	2.46	2.75
40	1.30	1.68	2.02	2.42	2.70
50	1.30	1.68	2.01	2.40	2.68
60	1.30	1.67	2.00	2.39	2.66
75	1.29	1.67	1.99	2.38	2.64
100	1.29	1.66	1.98	2.36	2.63
120	1.29	1.66	1.98	2.36	2.62

Appendix 2: F-table (α=0.05)

df2\df1	1	2	3	4				
10	4.96	4.10	3.71		5	6	7	8
20	4.35	3.49		3.48	3.33	3.22	3.14	3.07
30	4.17	3.32	3.10	2.87	2.71	2.60	2.51	2.45
40	4.08	3.23	2.92	2.69	2.53	2.42	2.33	2.73
50	4.03		2.84	2.61	2.45	2.34	2.25	2.18
60	4.00	3.18	2.79	2.56	2.40	2.29	2.20	2.10
70	3.98	3.15	2.76	2.53	2.37	2.25	2.17	
80	3.96	3.13	2.74	2.50	2.35	2.23	2.14	2.10
100	3.94	3.11	2.72	2.49	2.33	2.21	2.14	2.07
200	3.89	3.09	2.7	2.46	2.31	2.19	2.13	2.06
500		3.04	2.65	2.42	2.26	2.14	2.10	2.03
1000	3.86	3.01	2.62	2.39	2.23	2.12		1.98
1000	3.85	3.00	2.61	2.38	2.22	2.11	2.03	1.96
						۵.11	2.02	1.95

Appendix 3: Chi-square table (α=0.05)

Typhenal	x 3: Uni-squa
df	$\alpha = 0.05$
1	3.84
2	5.99
3	7.82
4	9.49
5	11.07
10	18.31
20	31.41
30	43.77
40	55.76
50	67.51
100	124.34
- HE-SH	The second secon

Appendix 4: Durbin Watson d Table

Critical	Values	for the	Durbin	-Watson	Statistic (d)
	Lev	el of Sig	gnifican	$ce \alpha = 0.0$)5	
L	= 2		L = 3		$l_{c} = A$	L

					0. 0.6	crounce o	0.05			
n	<i>k</i> =	= I	k =	= 2	k =	= 3	k =	= 4	k =	= 5
4444	\mathbf{d}_{L}	d_{U}	d_L	$\mathbf{d}_{\mathbf{U}}$	$d_{\rm L}$	\mathbf{d}_{U}	\mathbf{d}_{L}	$\mathbf{d}_{\mathbf{U}}$	${ m d_L}$	$\mathbf{d}_{\mathbf{U}}$
10	0.88	1.32	0.70	1.64	0.53	2.02	0.38	2.41	0.24	2.82
15	1.08	1.36	0.95	1.54	0.82	1.75	0.69	1.97	0.56	2.21
20	1.20	1.41	1.10	1.54	1.00	1.68	0.90	1.83	0.79	1.99
25	1.29	1.41	1.21	1.55	1.12	1.66	1.04	1.77	0.95	1.89
30	1.35	1.49	1.28	1.57	1.21	1.65	1.14	1.74	1.07	1.83
40	1.44	1.54	1.39	1.60	1.34	1.66	1.29	1.72	1.23	1.79
50	1.50	1.59	1.46	1.63	1.42	1.67	1.38	1.72	1.34	1.77
60	1.55	1.62	1.51	1.65	1.48	1.69	1.44	1.73	1.41	1.77
70	1.58	1.64	1.55	1.67	1.52	1.70	1.49	1.74	1.46	1.77
80	1.61	1.66	1.59	1.69	1.56	1.72	1.53	1.74	1.51	1.77
90	1.63	1.68	1.61	1.70	1.59	1.73	1.57	1.75	1.54	1.78
100	1.65	1.69	1.63	1.72	1.61	1.74	1.59	1.76	1.57	1.78
150	1.72	1.75	1.71	1.76	1.69	1.77	1.68	1.79	1.66	1.80
200	1.76	1.78	1.75	1.79	1.74	1.80	1.73	1.81	1.72	1.82
п	k = 6		k =	= 7	k = 8		k = 9		k = 10	
	d_{L}	\mathbf{d}_{U}	d_L	\mathbf{d}_{U}	\mathbf{d}_{L}	\mathbf{d}_{U}	\mathbf{d}_{L}	d_U	d_L	d_{U}
10	=	=		=	6 0-0 0		1000		=	-
15	0.45	2.47	0.34	2.73	0.25	2.98	0.18	3.22	0.11	3.44
20	0.00	216	0.00	2 24	0.50	0 50	0 10	0.70	0.24	2 00

п	k = 6		k =	k = 7 $k = 8$		= 8	k = 9		k = 10	
	d_L	$ m d_{U}$	d_L	\mathbf{d}_{U}	\mathbf{d}_{L}	\mathbf{d}_{U}	\mathbf{d}_{L}	\mathbf{d}_{U}	d_L	d_{U}
10		3 <u>20</u>	-	=	5 550 5	-	100	-	-	-
15	0.45	2.47	0.34	2.73	0.25	2.98	0.18	3.22	0.11	3.44
20	0.69	2.16	0.60	2.34	0.50	2.52	0.42	2.70	0.34	2.89
25	0.87	2.01	0.78	2.14	0.70	2.28	0.62	2.42	0.54	2.56
30	1.00	1.93	0.93	2.03	0.85	2.14	0.78	2.25	0.71	2.36
40	1.18	1.85	1.12	1.92	1.06	2.00	1.01	2.07	0.95	2.15
50	1.29	1.82	1.25	1.88	1.20	1.93	1.16	1.99	1.11	2.04
60	1.37	1.81	1.34	1.85	1.30	1.89	1.26	1.94	1.22	1.98
70	1.43	1.80	1.40	1.84	1.37	1.87	1.34	1.91	1.31	1.95
80	1.48	1.80	1.45	1.83	1.43	1.86	1.40	1.89	1.37	1.93
90	1.52	1.80	1.49	1.83	1.47	1.85	1.45	1.88	1.42	1.91
100	1.55	1.80	1.53	1.83	1.50	1.85	1.48	1.87	1.46	1.90
150	1.65	1.82	1.64	1.83	1.62	1.85	1.60	1.86	1.59	1.88
200	1.71	1.83	1.70	1.84	1.69	1.85	1.68	1.86	1.67	1.87

where n = number of observations and k = number of independent variables, excluding the intercept.