Длинные линии

Цель работы: ознакомится и проверить на практике теорию распространения электрических сигналов вдоль длинной линии; измерить амплитудо- и фазово-частотные характеристики коаксиальной линии; определить погонные характеристики такой линии; на примере модели длинной линии изучить вопрос распределения амплитуды колебаний сигнала по длине линии.

Оборудование: осциллограф АКТАКОМ ADS-6142H; генератора АКИП 3420/1; бухта с коаксиальным кабелем pk 50-4-11; схематический блок "модель длинной линии"; магазин сопротивления P33, соединительные провода.

Введение.

Рассмотрим элемент dx длинного коаксиального кабеля. Этот элемент представляет собой изолированный коаксиальный проводящий (медный) цилиндр некоторого радиуса r_2 , на оси которого расположен сплошной тонкий проводник (медный) круглого сечения с

Рис.1 Схематическое изображение элемента dx длинного коаксиального кабеля.

радиусом r_1 . Пространство между этими проводниками заполнена средой, обладающей диэлектрической проницаемостью ε и магнитной восприимчивостью μ . Как известно, такой элемент обладает индуктивностью

$$dL = 2\mu \ln(r_2/r_1)dx. \tag{1}$$

Удельная (погонная) индуктивность единицы длины такого кабеля:

$$L_x = \frac{dL}{dx} = 2\mu \ln(r_2/r_1). \tag{2}$$

Два проводника, образующих этот элемент dx коаксиального кабеля, должны обладать взаимной ёмкостью. Можно показать, что ёмкость элемента dx коаксиального кабеля определяется выражением:

$$dC = \frac{\mathcal{E}}{2\ln(r_2/r_1)}dx,$$
 (3)

а его удельная (погонная) ёмкость единицы длины равна:

$$C_x = \frac{dC}{dx} = \frac{\varepsilon}{2\ln(r_2/r_1)}.$$
 (4)

Когда по такому кабелю передаётся сигнал, в его центральной жиле и внешней оболочке возникают взаимно противоположные токи I(x), а также электрическое напряжение U(x) между внешним и внутренним проводниками. При высоких частотах ν сигналов, распространяющихся в кабеле (когда длина кабеля $l > V/\nu$, где V - характерная скорость распространения сигнала в кабеле, эта скорость, как правило, порядка скорости света) I(x) и U(x) вообще говоря зависят от координаты x.

Изменение напряжения на концах элемента dx вызваны возникновением ЭДС индукции и падением напряжения в результате омического сопротивления проводников:

$$U(x+dx)-U(x) = -\frac{L_x dx}{c^2} \frac{\partial I}{\partial t} - R_x dx I, \qquad (5)$$

где погонное сопротивление

$$R_x = \frac{dR}{dx} = \frac{1}{\sigma \cdot S},\tag{6}$$

здесь σ - удельная проводимость материала проводников, S - площадь их поперечного сечения.

Изменение силы тока вызвано тем, что некоторая часть электрического заряда q как бы "перетекает на "обкладки" конденсатора, роль которых играют проводники коаксиального кабеля:

$$I(x+dx)-I(x) = -\frac{\partial q}{\partial t}, \qquad (7)$$

где $q = C_x dxU$.

Представим уравнения (5) и (7) в виде системы, описывающей распространение сигнала вдоль длинной линии:

$$\begin{cases}
U(x) = U(x+dx) + \frac{L_x dx}{c^2} \frac{\partial I}{\partial t} + R_x dxI, \\
I(x) = I(x+dx) + \frac{\partial q}{\partial t}.
\end{cases}$$
(8)

Эту систему уравнений называют телеграфными уравнениями. Разделим оба уравнения на длину элемента dx и, воспользовавшись определением дифференциалов, перепишем (8) следующим образом:

$$\begin{cases} \frac{\partial I}{\partial x} = -C_x \frac{\partial U}{\partial t}, \\ \frac{\partial U}{\partial x} = -\frac{L_x}{c^2} \frac{\partial I}{\partial t} - R_x I. \end{cases}$$
(9)

Из (9) выразим перекрёстные производные:

$$\begin{cases}
\frac{\partial^{2} I}{\partial x \partial t} = -C_{x} \frac{\partial^{2} U}{\partial^{2} t}, \\
\frac{\partial^{2} U}{\partial x^{2}} = -\frac{L_{x}}{c^{2}} \frac{\partial^{2} I}{\partial x \partial t} - R_{x} \frac{\partial I}{\partial x}.
\end{cases} (10)$$

Из (9) и (10) получаем волновое уравнение для напряжения U(x)

$$\frac{\partial^2 U}{\partial x^2} = \frac{L_x C_x}{c^2} \frac{\partial^2 U}{\partial t^2} + R_x C_x \frac{\partial U}{\partial t} . \tag{11}$$

Или в каноническом виде:

$$\frac{\partial^2 U}{\partial t^2} - V_{\phi}^2 \frac{\partial^2 U}{\partial r^2} + \gamma \frac{\partial U}{\partial t} = 0, \qquad (12)$$

где введены следующие обозначения для фазовой скорости:

$$V_{\phi} = \frac{c}{\sqrt{L_{\nu}C_{\nu}}},\tag{13}$$

и декремента затухания:

$$\gamma = R_x C_x V_\phi^2 \,. \tag{14}$$

Подставляя (2) и (4) в выражение для фазовой скорости (13), легко видеть, что, эта скорость имеет тот же вид, как и скорость распространения обычных электромагнитных волн в некоторой среде с диэлектрической проницаемостью ε и магнитной восприимчивостью μ :

$$V_{\phi} = \frac{c}{\sqrt{\varepsilon \mu}} \,. \tag{15}$$

Решение (12) удобно искать в виде:

$$U(x,t) = U_0 e^{-i\alpha t} e^{(-\alpha + ik)x}. \tag{16}$$

Из первого уравнения системы (9) легко установить характер изменения силы тока в длинной линии:

$$I(x,t) = U_0 \frac{C_x \omega}{k + i\alpha} e^{-i\omega t} e^{(-\alpha + ik)x}. \tag{17}$$

Из (16) и (17) видно, что отношение силы тока и напряжения в длинной линии не зависят от времени и координаты. Это отношение называют волновым сопротивлением (импедансом):

$$Z(\omega,k) = \frac{U(x,t)}{I(x,t)} = \frac{k+i\alpha}{C_x\omega}.$$
 (18)

В пределе малых затуханий $\alpha << \omega$

$$Z(\omega,k) \approx \frac{k}{C_x \omega} = \frac{1}{C_x V_{\phi}} = \frac{1}{c} \sqrt{\frac{L_x}{C_x}} . \tag{19}$$

Если в конце такую длинную линию замкнуть на сопротивление

$$R_0 = \frac{1}{c} \sqrt{\frac{L_x}{C_x}} \,, \tag{20}$$

то бегущая вдоль длинной линии волна "будет воспринимать" нагрузку как бесконечное продолжение этой длинной линии. Другими словами, когда длинная линия подключена к нагрузке с сопротивлением R_0 , отражённой волны не возникает. Во всех остальных случаях, когда $R \neq R_0$ (в том числе и в частных случаях незамкнутого конца, когда $R \to \infty$ и короткозамкнутой линии, когда R = 0) возникает отражённая волна, описываемая выражением (сравни с (13)):

 $U(x,t) = U_0 e^{-i\omega t} e^{-(\alpha+ik)x}$, которое также удовлетворяет решению системы (9).

Подставляя (16) в (12) получаем характеристическое уравнение:

$$-\omega^2 - V_{\phi}^2 \left(-\alpha + ik\right)^2 - i\omega\gamma = 0. \tag{21}$$

Или, разделяя действительную и мнимую части, приходим к системе:

$$\begin{cases} \omega^2 = V_{\phi}^2 (k^2 - \alpha^2), \\ 2\alpha k V_{\phi}^2 = \omega \gamma. \end{cases}$$
 (22)

Из (22) следует (в пределе малых затуханий $\alpha << \omega$):

$$\alpha = \frac{\omega}{V_{\phi}} \sqrt{\frac{\sqrt{1 + (\gamma/\omega)^2 - 1}}{2}} \approx \frac{\omega}{V_{\phi}} \sqrt{\frac{\gamma^2}{4\omega^2}} = \frac{\gamma}{2V_{\phi}} = R_x C_x \frac{V_{\phi}}{2}, \qquad (23)$$

$$k = \frac{\omega}{V_{\phi}} \,. \tag{24}$$

Таким образом, амплитуда напряжения на нагрузке (в конце длинной линии) будет иметь вид:

$$U_{H}(t) = U_{0}e^{-\alpha l}e^{ikl}e^{-i\omega t}. \tag{25}$$

При этом амплитуда колебаний на согласованной нагрузке (в конце длинной линии) имеет вид:

$$U_{\scriptscriptstyle H} = U_{\scriptscriptstyle 0} e^{-\alpha l} \,, \tag{26}$$

и набег фазы сигнала на выходе (в конце длинной линии) относительно входного сигнала (вначале длинной линии) будет иметь вид:

$$\Delta \varphi = kl. \tag{27}$$

Так как модуль волнового вектора k прямо пропорционален частоте сигнала ω (см. выражение (24)) следует понимать, что разность фазы $\Delta \varphi$ монотонно увеличивается с увеличением ω .

Из (26) и (27) легко экспериментально определить декремент затухания α и волновое число k для различных ω :

$$\alpha(\omega) = \frac{1}{l} \ln \left(\frac{U_0}{U_n} \right), \tag{28}$$

$$k(\omega) = \frac{\Delta \varphi}{l} \,. \tag{29}.$$

Важно! Обратите внимание, что все выражения здесь приведены в СГС.

Экспериментальная часть работы.

- 1. Соберите схему согласно рис.1. Для этого:
- а) один конец коаксиального кабеля с помощью "тройника" подключите к выходу "1" генератора и ко входу СН1 осциллографа (для соединения тройника с генератором используйте короткий коаксиальный кабель; тройник следует напрямую подключить к осциллографу, чтобы сдвиг фазы сигнала на входе в осциллограф и в начале "длинной линии" был минимален);
- б) второй конец кабеля "длинной линии" подключите ко входу CH2 осциллографа.

Рис.1. Схема установки для наблюдения распространения сигналов вдоль длинной линии.

Включение и подготовка приборов к работе.

Осциллограф АКТАКОМ ADS-6142H

Подключите питание осциллографа AKTAKOM ADS-6142H и включите прибор нажатием и удержанием кнопки POWER в течение 5 секунд. Подождите пока прибор произведет самостоятельное тестирование. Это займет несколько секунд и на экране появится рабочее окно осциллографа.

Каждый канал имеет независимое вертикальное меню и каждый пункт меню может быть установлен для каждого канала. Для управления вертикальной разверткой используете кнопки СН1, СН2, чтобы настроить систему вертикального отклонения и положение сигнала соответствующего канала.

Меню	Установки	Описание	
Связь Вх.	AC	Режим закрытого входа, блокировка входа по постоянному току	
	DC	Режим открытого входа	
	Земля	Вакорачивание на землю	
Инверсия	Выкл	Отображение неинвертированной осциллограммы	
	Вкл	Включение инверсии	
Пробник	КоэфОсл.	Установка коэффициента ослабления. Должен совпадать с	
	(0,001Х до	коэффициентом ослабления пробника для корректного	
	1000X)	считывания вертикальной развертки.	
		Включение (Да) или выключение (Нет) режима вычисления	
		величины и формы тока в исследуемой цепи путём измерения	
		падения напряжения на последовательно включённым в цепь	
	ИзмТока	резисторе минимально возможной величины. При включении	
	(Да/Нет)	режима поверните ручку Multipurpose, чтобы установить	
		соотношение ампер/вольт. Диапазон значений составляет 100 мА	
		/ V - 1 KA / V. Величина A/V = 1/номинал резистора. Отношение	
		V/ А вычисляется автоматически.	
ОгрПолос	Вся полоса	Полный диапазон	
	20M	Включено ограничение полосы пропускания 20 МГц	

Нажмите кнопку СН1 для входа в нижнее меню установок канала СН1. Выберите

следующие настройки:

Меню	Установки	Описание	
Связь Вх.	DC	Режим открытого входа	
Инверсия	Rinen	Отображение неинвертированной	
	DBIKJI	осциллограммы	
Пробник	КоэфОсл. (0,001Х до	1X	
	1000X)	1A	
	ИзмТока (Да/Нет)	Нет	
ОгрПолос	Вся полоса	Полный диапазон	
Больше	ярлык	ВКЛ.	
	Ед. изм	V	
	Импеданс	50 Ом	

После этого нажмите кнопку CH2 для входа в нижнее меню установок канала CH2 и полностью повторите те же настройки, что и для канала CH1.

Генератора АКИП 3420/1

- 1. Подключите питание генератора АКИП 3420/1 и включите прибор нажатием кнопки POWER. Подождите пока прибор произведет самостоятельное тестирование. Это займет несколько секунд и на экране появится рабочее окно генератора.
- 2. Нажмите кнопку "Форма" и в меню выберите синусоидальный сигнал "Синус". Далее в нижнем интерактивном меню:
 - выберите "Част/Период" и установите частоту сигнала около 2-5 МГц;
 - выберите "Уровень/Высокий" и установите амплитуду сигнала, равную 4 В;
 - в разделе "Смещение/Низкий" установите 0 В;
 - в разделе "Фаза" 0°;
 - в "Меню Выхода": выберите подменю "Нагрузка" и установите 50 Ом.
- 3. Нажмите кнопку "*Выход*" над выходом канала "A" генератора. На экране осциллографа появятся два синусоидальных сигнала, соответствующих входному сигналу в начале длинной линии (канал CH1) и сигналу в конце этой линии (канал CH2).

І. Оценка фазовой и групповой скорости

Синусоидальный сигнал (согласованная линия)

- 1. Проверьте, что длинная линия нагружена согласованной нагрузкой. Для этого в меню настройки параметров канала СН2 осциллографа в разделе "больше" убедитесь, что выставлено сопротивление 50 Ом, что соответствует согласованной нагрузке в конце длинной линии.
- 2. Меняя частоту выходного сигнала генератора в пределах от 1 МГц до 30 МГц и подбирая необходимые параметры вертикальной и горизонтальной развёрток осциллографа качественно пронаблюдайте, как изменяется сигнал (сдвиг фазы и амплитуда) в начале и в конце (на согласованной нагрузке) в длинной линии.
- 3. Определите резонансные частоты (случай, когда "нули" или локальные экстремумы функций сигналов в начале и конце длинной линии совпадают). Резонансные частоты соответствуют ситуации, когда сдвиг фаз между сигналом на входе и выходе длинной линии кратен 2π .
- 4. Анализируя набор резонансных частот оцените величину фазовой скорости и сделайте выводы о наличии или отсутствии дисперсии в данном диапазоне частот.

Синусоидальный сигнал (линия без нагрузки)

- 5. В меню настройки параметров канала СН2 осциллографа в разделе "больше" выберите величину сопротивления 1 МОм, что моделирует незамкнутый выход (отсутствие нагрузки) в конце длинной линии.
- 6. Меняя частоту выходного сигнала генератора в пределах от 1 МГц до 30 МГц и подбирая необходимые параметры вертикальной и горизонтальной развёрток осциллографа проделайте аналогичные качественные наблюдения, как изменяется сигнал в начале и в конце (на ненагруженном выходе) в длинной линии.
- 7. Определите резонансные частоты (случай, когда "нули" или локальные экстремумы функций сигналов в начале и конце длинной линии совпадают). Резонансные частоты соответствуют ситуации, когда сдвиг фаз между сигналом на входе и выходе длинной линии кратен 2π .
- 8. Анализируя набор резонансных частот оцените величину фазовой скорости и сделайте выводы о наличии или отсутствии дисперсии в данном диапазоне частот.

Прямоугольные импульсы (согласованная линия)

- 1. В меню настройки параметров канала СН2 осциллографа в разделе "больше" выберите величину сопротивления 50 Ом, что соответствует согласованной нагрузке в конце длинной линии.
- 2. Нажмите кнопку "Форма" генератора и в нижнем интерактивном меню выберите импульсный сигнал "Импульс"; далее:
 - выберите "Част/Период" и установите частоту сигнала около 2-5 МГц;
 - выберите "Уровень/Высокий" и установите амплитуду сигнала, равную 4 В;
 - в разделе "Смещение/Низкий" установите смещение 2 В;
 - в нижнем интерактивном меню для выбора параметров импульса выберите "Парам Имп" и введите минимально возможную для данного типа генераторов длительность импульса 10 нс;
 - выберите "ВрНарас" и установите время нарастания сигнала 4 нс.
- 3. Нажмите кнопку "Выход" над выходом канала "A" генератора. На экране осциллографа появятся две последовательности импульсов, соответствующих входному сигналу в начале длинной линии (канал CH1) и сигналу на согласованной нагрузке в конце длинной линии (канал CH2).
- 4. Меняя частоту и длительность импульсов во всех допустимых пределах генератора и подбирая необходимые параметры вертикальной и горизонтальной развёрток осциллографа качественно пронаблюдайте, как изменяется сигнал в начале и в конце (на согласованной нагрузке) в длинной линии.
- 5. Верните настройки выходного сигнала генератора согласно пункту 2. Меняя частоты повторения импульсов от 1 МГц до 20 МГц определите резонансные частоты (случай, когда "нули" или локальные экстремумы функций сигналов в начале и конце длинной линии совпадают). Резонансные частоты соответствуют ситуации, когда временной сдвиг между сигналом на входе и выходе длинной линии кратен периоду повторений импульсов.
- 6. Анализируя набор резонансных частот оцените величину групповой скорости и сделайте выводы о наличии или отсутствии дисперсии в данном диапазоне частот.

Прямоугольные импульсы (линия без нагрузки)

7. В меню настройки параметров канала СН2 осциллографа в разделе "больше" выберите величину сопротивления 1 МОм, что моделирует незамкнутый выход (отсутствие нагрузки) в конце длинной линии.

- 8. Меняя частоту и длительность импульсов во всех допустимых пределах генератора и подбирая необходимые параметры вертикальной и горизонтальной развёрток осциллографа качественно пронаблюдайте, как изменяется сигнал в начале и в конце (на согласованной нагрузке) в длинной линии.
- 9. Верните настройки выходного сигнала генератора согласно пункту 2. Меняя частоты повторения импульсов от 1 МГц до 20 МГц определите резонансные частоты (случай, когда "нули" или локальные экстремумы функций сигналов в начале и конце длинной линии совпадают). Резонансные частоты соответствуют ситуации, когда временной сдвиг между сигналом на входе и выходе длинной линии кратен периоду повторений импульсов.
- 10. Анализируя набор резонансных частот оцените величину групповой скорости и сделайте выводы о наличии или отсутствии дисперсии в данном диапазоне частот.

II. Амплитудно-частотная и фазово-частотная характеристики

- 1. В меню настройки параметров канала СН2 осциллографа в разделе "больше" выберите величину сопротивления 50 Ом, что соответствует согласованной нагрузке в конце длинной линии.
 - 2. Нажмите кнопку "Форма" и в меню выберите синусоидальный сигнал "Синус".
 - 3. В нижнем интерактивном меню:
 - выберите "Част/Период" и установите частоту сигнала около 2-5 МГц;
 - выберите "Уровень/Высокий" и установите амплитуду сигнала, равную 1 В (при необходимости амплитуду напряжения можно будет увеличить до 8 В);
 - в разделе "Смещение/Низкий" установите **0** В;
 - в разделе "Фаза" 0°.
 - в "Меню Выхода": выберите подменю "Нагрузка" и установите 50 Ом.
- 4. Нажмите кнопку "Выход" над выходом канала "A" генератора. На экране осциллографа появятся два синусоидальных сигнала, соответствующих входному сигналу в начале длинной линии (канал CH1) и сигналу в конце этой линии (канал CH2).
- 5. Меняя частоту выходного сигнала генератора в пределах от 1 МГц до 40 МГц и подбирая необходимые параметры вертикальной и горизонтальной развёрток осциллографа таким образом, чтобы на экране осциллографа отображалось 1-2 периодов колебаний наблюдаемых сигналов, снимите АЧХ и ФЧХ длинной линии.

Замечание. Снятие АЧХ и ФЧХ удобно проводить с использованием "курсоров" (на рис. 2а, 2б, 2в это штриховые вертикальные и горизонтальные линии). Для этого следует:

- а) Убедится, что осциллограмма отцентрирована по вертикали на нулевое значение.
- b) С помощью ручек "Scale" установить одинаковый масштаб для обоих каналов.
- c) Нажать на кнопку "Cursor". В нижнем интерактивном меню выбрать тип "Время & Напряж.", а источник "Кан. 1".
- На экране осциллографа появятся две горизонтальные и две вертикальные синие линии.
- е) *Горизонтальную линию (а)* установить на локальный максимум сигнала в начале длинной линии *(сигнал по кан.1, жёлтый)*.
- f) *Горизонтальную линию (b)* установить на локальный максимум сигнала в конце длинной линии *(сигнал по кан.2, синий)*.
- g) В левом нижнем углу экрана осциллографа будут приведены соответствующие значения у1 и у2 для соответствующих амплитуд сигналов.

- h) **Вертикальную линию (а)** установить на локальный максимум сигнала в начале длинной линии (сигнал по кан.1, жёлтый).
- i) **Вертикальную линию (b)** установить на локальный максимум сигнала в конце длинной линии (сигнал по кан.2, синий).
- ј) В левом нижнем углу экрана осциллографа будет приведено значение Δx , соответствующее сдвигу фазы сигнала в конце длинной линии от сигнала в её начале в пределах $\Delta \phi < 2\pi$. Для определения сдвига фаз, выраженного в радианах нужно $\Delta \phi = \Delta x \cdot 2\pi \cdot v$, где v текущая частота сигнала.

Важно!

Так как различные периоды синусоид неразличимы, то с помощью осциллографа удаётся измерить лишь некоторый сдвиг фаз, меньший 2π . Как было ранее отмечено, разность фазы $\Delta \varphi$ монотонно увеличивается с увеличением ω (см. выражения (24) и (27)) и может оказаться так, что $\Delta \varphi > 2\pi$. Следует отметить, что для параметров нашего эксперимента, при длине коаксиального кабеля около 50 м, набег фазы величиной 2π радиан будет достигнут при частоте сигнала около 4 МГц, при частоте сигнала 8 МГц этот набег фазы уже будет составлять около 4π радиан и т.д.

Таким образом, каждый раз при новом значении частоты сигнала, подбирая развёртки для обоих каналов осциллографа таким образом, чтобы на этом экране отображались полтора-два периода колебаний обоих сигналов, экспериментально можно определить сдвиг сигналов Δx , соответствующий лишь части сдвига фаз, которая меньше 2π .

Рис.2а Характерная осциллограмма сигнала в начале длинной линии (жёлтая синусоида) и в конце длинной линии (синяя синусоида) для частоты 1 МГц.

Рис. 26 Характерная осциллограмма сигнала в начале длинной линии (жёлтая синусоида) и в конце длинной линии (синяя синусоида) для частоты 3 МГц.

Рис.2в Характерная осциллограмма сигнала в начале длинной линии (жёлтая синусоида) и в конце длинной линии (синяя синусоида) для частоты 5 МГц.

Замечание:

На рис. 2 схематически изображены синусоиды: желтая соответствует входному сигналу, синяя - сигналу на нагрузке. По сути, это один и тот же сигнал в начале и конце своего пути по длинной линии. Рис.2а соответствует частоте сигнала 1 МГц; рис. 2б - частоте сигнала 3 МГц, а рис.2в - 5 МГц.

Например, рисунки 2a и 2в практически неразличимы, однако следует понимать, что на рис. 2a сдвиг фазы $\Delta \varphi$ пропорционален величине Δx , a в случае рис. 2в $\Delta \varphi \propto (\Delta x + \Delta x_1)$. При последующем увеличении частоты сигнала полный сдвиг фаз окажется настолько большим, что уже не будет виден на осциллографе. В этом случае следует учитывать монотонность зависимости сдвига фаз от частоты, и не забывать добавлять к измеряемым сдвигам набега фазы $\propto \Delta x_1$, дополнительный набег фазы $\propto \Delta x_1$, $2\Delta x_1$, $3\Delta x_1$ и т.д. Т.е. не забывать добавлять к измеряемому на осциллограмме сдвигу

фаз дополнительный, кратный периоду колебаний в соответствии с текущей частотой, сдвиг.

Обработка результатов измерений.

Часть I. Определение параметров коаксиального кабеля.

Для определения характеристик коаксиального кабеля первое уравнение системы (22) с учётом (23) удобно переписать следующим образом:

$$\overline{y}_{1} = \frac{L_{x}C_{x}}{c^{2}}x_{1},\tag{30}$$

где

$$x_1 = \omega^2, (31)$$

$$y_1 = k(\omega)^2 - \alpha(\omega)^2. \tag{32}$$

По коэффициенту наклона такой прямой установите произведение $L_x C_x$, а зная волновое сопротивление коаксиального кабеля (согласованную нагрузку) с учётом (20) определите погонные характеристики кабеля: L_x , C_x . Сравните полученные значения с номинальными.

Зная геометрические параметры коаксиального кабеля с помощью выражений (2) и (4) определите диэлектрическую проницаемостью ε и магнитную восприимчивости μ материала, заполняющего пространство между проводниками в кабеле.

Часть II. Определение удельной проводимости проводников.

Теперь определим удельную проводимость σ материала проводников длинной линии.

Метод А.

Из (23) и (28) следует:

$$\alpha(\omega) = \frac{1}{l} \ln \left(\frac{U_0}{U_{\scriptscriptstyle H}} \right) = R_{\scriptscriptstyle X} C_{\scriptscriptstyle X} \frac{V_{\scriptscriptstyle \phi}}{2} \,. \tag{33}$$

Если взять удельную проводимость для меди и подставить в известное выражение для характерной толщины скин-слоя:

$$\delta = \frac{c}{2\pi\sqrt{v\sigma}},\tag{34}$$

то окажется, что даже при минимальной частоте $\nu=1$ МГц эта толщина будет равна около 65 мкм, что примерно в десять раз меньше радиуса центрального проводника (диаметр центральной жилы равен $d=1,37\,$ мм). При больших частотах характерная толщина скинслоя ещё меньше. Поэтому для упрощения будем предполагать, что весь ток сосредоточен в приповерхностном слое и потери, связанные с джоулевым нагревом описываются следующим выражением:

$$dN = \sigma E_0^2 \int_0^\infty e^{-2\frac{z}{\delta}} dz dx L \bigg|_{L=\pi l} = \sigma E_0^2 \cdot dx \cdot \pi d \cdot \frac{\delta}{2} \left(-e^{-2\frac{z}{\delta}} \right) \bigg|_0^\infty \frac{\sigma \cdot \pi d}{dx} \cdot \frac{\delta}{2} \left(dU \right)^2 = \frac{\left(dU \right)^2}{dR}, \quad (35)$$

где

$$dR = \frac{dx}{\sigma \cdot \pi d} \cdot \frac{2}{\delta} \ . \tag{36}$$

Погонное сопротивление с учётом скин-эффекта можно определить следующим образом:

$$R_{x} = \frac{dR}{dx} = \frac{2}{\sigma \cdot \pi d \cdot \delta}.$$
 (37)

Или, с учётом выражения для характерной толщины скин-слоя (34), имеем:

$$R_{x} = \frac{4\sqrt{v}}{\sqrt{\sigma \cdot c \cdot d}}.$$
 (38)

Таким образом, подставляя (38) в (33) приходим к зависимости:

$$\alpha(\omega) = \frac{1}{l} \ln \left(\frac{U_0}{U_u} \right) = \frac{4}{\sqrt{\sigma} \cdot d} C_x \frac{V_\phi}{c} \sqrt{V} . \tag{39}$$

Это выражение можно переписать в следующем виде:

$$y_2 = \frac{4}{\sqrt{\sigma} \cdot d} C_x \frac{V_\phi}{c} x_2, \tag{40}$$

где

$$x_2 = \sqrt{V} , \qquad (41)$$

$$\overline{y}_2 = \alpha(\omega).$$
 (42)

Постройте зависимость декремента затухания y_2 от корня частоты гармонического сигнала x_2 .

По наклону прямой на графике, можно определить удельную проводимость σ :

$$\sigma = \left(\frac{2C_x V_\phi}{c \cdot d \cdot (\Delta y_2 / \Delta x_2)}\right)^2,\tag{43}$$

Метод Б.

Подставив выражение для γ из (14) во второе уравнение системы (22) и сокращая на квадрат скорости V_{ϕ}^2 легко прийти к выражению:

$$2\alpha k = \omega R_x C_x. \tag{44}$$

Зная амплитуду колебаний и сдвиг фазы в конце длинной линии относительно входного сигнала экспериментально можно определить как $\alpha(\omega)$, так и $k(\omega)$ (см., например, выражения (28) и (29)). Таким образом, выражение (44) можно представить в следующем виде:

$$y_3 = \frac{4\pi \cdot C_x}{\sqrt{\sigma} \cdot d \cdot c} x_3,\tag{45}$$

где

$$x_3 = v^{3/2}$$
, (46)

$$y_3 = \alpha(\omega) \cdot k(\omega) = \frac{1}{l} \ln \left(\frac{U_0}{U_{_H}} \right) \cdot \frac{\Delta \varphi}{l}$$
 (47)

Постройте зависимость, описываемую выражением (45). По наклону, полученной прямой определите удельную проводимость σ :

$$\sigma = \left(\frac{4\pi \cdot C_x}{d \cdot c(\Delta y_3 / \Delta x_3)}\right)^2,\tag{48}$$

Длинная линия. Модель.

Соберите схему согласно рис. 3.

Рис. 3. Модель длинной линии.

1. Прежде чем приступить к работе, оцените предельную частоту распространения сигнала (здесь и далее будем использовать СИ):

$$v_0 = \frac{1}{\pi \sqrt{LC}} \tag{*}$$

а также согласованную нагрузку для частот $\nu <<
u_0$

$$R_0 = \sqrt{\frac{L}{C}} \tag{**}$$

- 2. Для наблюдения бегущей волны подключите к выходу цепочки, моделирующей длинную линию магазин сопротивлений и выставьте на нём значение, соответствующее согласованной нагрузке. Поочерёдно подавая сигнал с каждого элемента цепочки на осциллограф, убедитесь в том, что амплитуда сигнала не изменяется. В этом случае реализуется модель бегущей вдоль длинной линии волны. Если же амплитуда колебаний на различных элементах цепочки окажется не одинаковой, плавно подкорректируйте значение сопротивления на нагрузке до полного согласования линии.
- 3. Затем с помощью осциллографа измерьте сдвиг фаз $\Delta \varphi$ между двумя любыми соседними ячейками для 8-10 значений частот в пределах от 0 до ν_0 .

- 4. *Наблюдение резонансов* будем проводить в двух случаях: когда сопротивление на нагрузке равно нулю (клеммы на выходе соединены проводом малого сопротивления) и когда оно окажется бесконечно большим (клеммы на выходе ни к чему не подключены). Определите все возможные резонансные частоты в диапазоне от 2 к Γ ц до V_0 при $R = 0 \, \mathrm{Om}$ и $R \to \infty \, \mathrm{Om}$.
- 5. Для **3-4 <u>наименьших</u> резонансных частом** снять зависимость амплитуды колебаний напряжения на соответствующих ячейках цепочки в зависимости от их номера (распределение амплитуды колебаний вдоль длинной линии). Построить графики распределения напряжений вдоль цепочки.
- $6^{(*)}$. Для этих же *резонансных частот* снять резонансные кривые (путем измерения зависимости напряжения на первой клемме от частоты *вблизи выбранного резонансного* значения) и определить их добротность. Построить резонансные кривые.

Обработка результатов

- 7. По результатам измерений <u>в пункте 3</u> постройте соответствующий график зависимости $\Delta \varphi(\nu)$, и сравнить его с расчётным (см, например, выражения (27) или (29) в теоретической части описания работы).
- 8. По результатам измерений <u>в пункте 5</u> построить графики распределения напряжений вдоль цепочки Для **3-4** *наименьших резонансных частом*.

(ж) - не обязательный пункт.