Average Matrix of the DFT ensemble

Benevolent Tomato

Definition Average Matrix

Let N be a positive integer. We define the average matrix of the DFT ensemble of order N to be a (N-1) square matrix defined as the following.

$$A_{ij} = \begin{cases} 1 & N|ij \\ 0 & N \nmid ij \end{cases}$$

For example, the average matrix of order 6 is

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Definition Spaced Bases

Consider the vector space $\mathbb{R}^{(N-1)}$. Define the mth spaced base ν_m as follows.

$$(\nu_m)_i := \begin{cases} 1 & (m|i) \\ 0 & (m \nmid i) \end{cases}$$

For example, in a (9-1) dimensional vector space, the 3rd space base will be

$$\nu_3 = \{0, 0, 1, 0, 0, 1, 0, 0\}$$

Moreover, if m|N, we call the vector a divisor vector. Otherwise, the vector is called a nondivisor vector. For convinience ν_1 is identified as a nondivisor vector.

Proposition The image of divisor vectors under transformation

Let A be the average matrix of the DFT ensemble of order N, that is a (N-1)-by-(N-1) matrix. Let m|N. Then, the following formula precisely describes the entries of the image of the mth spaced vector under the transformation induced by A.

$$(A\nu_m)_i = \frac{N}{\operatorname{lcm}(N/\operatorname{gcd}(i,N),m)} - 1$$

Proof. By direct computation, we write the *i*th entry of $A\nu_m$.

$$A\nu_m = \sum_{i=1}^{N-1} A_{ij}(\nu_m)_j$$

The terms in the sum is nonvanishing if and only if

$$N|ij$$
 and $m|j$

which is equivalent to the condition

$$\frac{N}{\gcd(N,i)}|j$$
 and $m|j$

. We wish to count the number of j 's in the range $\left[1,N-1\right]$ that satisfy the condition. We conclude

$$(A\nu_m)_i = \frac{N}{\operatorname{lcm}(N/\operatorname{gcd}(i, N), m)} - 1$$

Remark Image of nondivisor vectors

By a similar argument, when $m \nmid N$,

$$(A\nu_m)_i = \left\lfloor \frac{N-1}{\text{lcm}(N/\text{gcd}(i,N),m)} \right\rfloor$$

Corollary Divisor vectors map to divisor vectors

Let m|N. Then $A\nu_m$ can be expressed as a linear combination of divisor vectors, i.e.

$$A\nu_m = \sum_{d|N} \tilde{a}_{md} \nu_m$$

Proof. Suppose we start from $A\nu_m$ and subtract divisor vectors to make it zero. We demonstrate this with $A\nu_2$ for N=8. We start with the vector

$$\{0, 1, 0, 3, 0, 1, 0\}$$

Subtract ν_2 to obtain

$$\{0,0,0,1,0,0,0\}$$

and subtract ν_4 to obtain the zero vector. We conclude

$$A\nu_2 = \nu_2 + \nu_4$$

Now we prove the theorem in a general sense. Suppose we have subtracted k vectors in a sense described above, and call the remainder vector r_k . We induct on k. If k = 0, we take p, the smallest prime divisor of N. Look at all the entries j such that p|j. We know

$$(A\nu_m)_j = \frac{N}{\operatorname{lcm}(N/\gcd(j,N),m)} - 1 \ge \frac{N}{\operatorname{lcm}(N/\gcd(p,N),m)} - 1$$

and thus subtracting $(A\nu_m)_p\nu_p$ will preserve all the matrix entries positive.

Now, let $k \geq 1$. Let p to be the index of the first positive value occurring in r_i . If $p \nmid N$, then the pth entry of $A\nu_m$ will be zero, so we can assume p|N. By subtracting $(r_k)_k\nu_p$, we only affect the entries of r_k that are a multiple of k. It suffices to show that for all p|j, $(A\nu_m)_j \geq (A\nu_m)_p$

$$(A\nu_m)_j = \frac{N}{\operatorname{lcm}(N/\gcd(j,N),m)} - 1 \ge \frac{N}{\operatorname{lcm}(N/\gcd(p,N),m)} - 1$$

and the theorem holds.

Remark Nondivisor vectors map to divisor vectors

Replace the formula for divisor vectors to nondivisor vectors, and repeat the same inductive argument used for the divisor vectors.

Theorem Eigenvalues of A

The nonzero eigenvalues of A are exactly the eigenvalues of the simplified matrix

$$\tilde{A} := [\tilde{a}_{d_i d_i}]$$

where d_i is the *i*th proper divisor of A greater than 1. Therefore, if N has $\sigma(N)$ divisors including N, it can have at maximum $\sigma(N) - 2$ eigenvalues, for \tilde{A} is a square matrix of order $\sigma(N) - 2$.

Proof. We first notice that the set of all spacing vectors

$$\{\nu_1, \nu_2, \cdots \nu_{N-1}\}$$

form a basis of \mathbb{R}^{N-1} . By the proposition, we notice that the image of this base under the transformation A maps to the space induced by

$$\{\nu_{d_1}, \nu_{d_2}, \cdots \nu_{d_{\sigma(N)-1}}\}$$

. Hence, all nonzero eigenvectors must be in the subspace

$$\mathrm{span}(\nu_{d_1},\nu_{d_2},\cdots\nu_{d_{\sigma(N)-1}})$$

and the coefficients \tilde{a} are described in the proposition.

Remark The simplified matrix for prime powers

If $N = 2^k$, the simplified matrix can be simply written as

$$\begin{bmatrix} 1 & 2 & \cdots & 2^{k-2} & 2^{k-1} \\ 1 & 2 & \cdots & 2^{k-2} & 0 \\ & & \vdots & & \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

Theorem Lower bounds of the largest eigenvalue of the DFT matrix

. Let λ_{max} be the maximum eigenvalue of a (N-1)-by-(N-1) average matrix. The lower bound is

$$\lambda_{max} \geq \frac{N}{2\sigma(N) - 2} \sqrt{\sum_{d|N} \frac{1}{d^2}}$$

Proof. Since the average matrix is real symmetric, its eigenvalues must be real. We also know that there are only $\sigma(N)$ nonzero eigenvalues of this matrix. Thus,

$$\sum_{i < \sigma(N)} \lambda_i^2 \le \sigma(N) \lambda_{max}^2$$

By the eigenvalue trace lemma,

$$\sum_{i \leq \sigma(N)} \lambda_i^2 = \operatorname{tr}(A^2) = \sum_{1 \leq i, j \leq N} a_{ij}^2 = \sum_{d \mid N} \left(\frac{N}{d} - 1\right) \left(\frac{N}{d} - \varphi\left(\frac{N}{d}\right)\right) \geq \sum_{d \mid N} \left(\frac{N}{d} - \varphi\left(\frac{N}{d}\right)\right)^2$$

Trivially,

$$\sum_{d|N} \left(\frac{N}{d} - \varphi\left(\frac{N}{d}\right) \right)^2 \ge \frac{1}{4} \sum_{d|N} \left(\frac{N}{d}\right)^2$$

Combining the two observations, we conclude

$$\lambda_{max} \geq rac{N}{2\sigma(N) - 2} \sqrt{\sum_{d|N} rac{1}{d^2}}$$

Corollary When N is a power of 2

By plugging in $N=2^k$, we obtain

$$\lambda_{max} = o\left(\frac{2^k}{k}\right)$$