2018015027 정보통계학과 김한탁

- 1. wine{HDclassif} 지료는 이태리의 특정 지역에서 생산된 3종류의(class)의 와인에 대해 화학성분 (v1-v3)을 분석한 자료이다. 와인의 종류별로 6개 변수(v1-v6)만을 사용하여 다음분석을 실시하여라
 - (a) 표본평균벡터를 구하여라.
 - (b) 표본공분산행렬을 구하여라.
 - (c) 표본상관행렬을 구하여라.

solve)

1) HDclassif 패키지를 설치한다.

install.packages("HDclassif")
library(HDclassif)
data(wine)
wine

그릮1) wine의 데이터

•	class	V1 ÷	V2 ÷	V3 =	V4 ÷	V5 [‡]	V6 ÷	V7 ÷	V8 =	V9 ÷	V10 ÷	V11 ÷	V12	V13
1	1	14.23	1.71	2.43	15.6	127	2.80	3.06	0.28	2.29	5.640000	1.040	3.92	1065
2	1	13.20	1.78	2.14	11.2	100	2.65	2.76	0.26	1.28	4.380000	1.050	3,40	1050
3	1	13.16	2.36	2.67	18.6	101	2.80	3,24	0.30	2.81	5.680000	1.030	3.17	1185
4	1	14.37	1.95	2.50	16.8	113	3.85	3.49	0.24	2.18	7.800000	0.860	3,45	1480
5	1	13.24	2,59	2.87	21.0	118	2.80	2.69	0.39	1.82	4.320000	1.040	2.93	735
6	1	14.20	1.76	2.45	15.2	112	3,27	3.39	0.34	1.97	6.750000	1.050	2.85	1450
7	1	14.39	1.87	2.45	14.6	96	2.50	2.52	0.30	1.98	5.250000	1.020	3.58	1290
8	1	14.06	2.15	2.61	17.6	121	2.60	2.51	0.31	1.25	5.050000	1.060	3.58	1295
9	1	14.83	1.64	2.17	14.0	97	2.80	2.98	0.29	1.98	5,200000	1.080	2.85	1045
10	1	13.86	1.35	2.27	16.0	98	2.98	3.15	0.22	1.85	7,220000	1.010	3.55	1045
								:						
174	3	13.71	5.65	2,45	20.5	95	1,68	0,61	0.52	1.06	7.700000	0.640	1.74	740
175	3	13,40	3.91	2.48	23.0	102	1.80	0,75	0.43	1,41	7.300000	0.700	1.56	750
176	3	13,27	4.28	2.26	20.0	120	1.59	0.69	0.43	1,35	10.200000	0.590	1.56	835
177	3	13.17	2.59	2.37	20.0	120	1,65	0.68	0.53	1,46	9.300000	0.600	1.62	840
178	3	14.13	4.10	2.74	24.5	96	2.05	0,76	0.56	1,35	9,200000	0.610	1.60	560

2) 위의 wine 데이터에서 6개의 변수(v1-v6)를 열로 포함하고, class에 따라(class=1, 2, 3) 행을 분류하는 wineclass1, winclass2, wineclass3를 만든다.

```
wineclass1<-subset(wine,class==1,select=c(V1, V2, V3, V4, V5, V6))
wineclass2<-subset(wine,class==2,select=c(V1, V2, V3, V4, V5, V6))
wineclass3<-subset(wine,class==3,select=c(V1, V2, V3, V4, V5, V6))
wineclass1
wineclass2
wineclass3</pre>
```

그림2) wineclass1, wineclass2, wineclass3의 데이터

1. wineclass1(59개)

6	V5 ÷	V4	V3	V2 [‡]	V1	*
2.80	127	15.6	2,43	1.71	14.23	1
2.65	100	11.2	2.14	1.78	13.20	2
2.80	101	18.6	2.67	2,36	13.16	3
			÷			
3.20	118	16.3	2.30	1.70	14.22	57
3.00	102	16.8	2.68	1.97	13.29	58
3,40	108	16.7	2.50	1.43	13.72	59

2. winclass2(71개)

*	V1 ⁰	V2 =	V3 [‡]	V4 [‡]	V5 =	V6
60	12.37	0.94	1.36	10.6	88	1.98
61	12.33	1.10	2.28	16.0	101	2.05
62	12.64	1,36	2,02	16.8	100	2.02
			÷			
128	11.79	2.13	2.78	28.5	92	2.13
129	12,37	1.63	2.30	24.5	88	2.22
130	12,04	4.30	2.38	22.0	80	2,10

3. wineclass3(48개)

A	V1	V2	V3 *	V4	V5	V 6
131	12.86	1,35	2.32	18.0	122	1.51
132	12.88	2.99	2,40	20.0	104	1.30
133	12.81	2.31	2.40	24.0	98	1.15
76	13.27	4,28	2.26	20.0	120	1,59
177	13.17	2.59	2.37	20.0	120	1.65
178	14,13	4.10	2.74	24.5	96	2.05

위의 준비된 자료들을 통해 (a), (b), (c)를 구해보자.

- (a) apply함수를 통해, 각 열(v1-v6)의 평균을 구할 수 있다. 따라서 wineclass1, 2, 3의 각 열의 평균은 다음과 같다.
- (a) R코드 및 결과

```
13.744746
                 2.455593 17.037288 106.338983 2.840169
        2.010678
> apply(wineclass2,2,mean)
     V1
            V2
                    V3
                           V4
12.278732 1.932676 2.244789 20.238028 94.549296 2.258873
> apply(wineclass3,2,mean)
           V2
                    V3
                          V4
                                 V5
13.153750 3.333750 2.437083 21.416667 99.312500 1.678750
```

- (b) cov함수를 이용해 구한 wineclass1, 2, 3의 표본공분산행렬은 다음과 같다.
- (b) R코드 및 결과

```
> cov(wineclass1)
           V1
                        V2
V1 0.21355985 -0.012891204 -0.0155994155 -0.3746283
                                                    0.7731911 0.0658974576
                                                    0.5733869 -0.0194914962
V2 -0.01289120 0.474099532 0.0041013150 0.1052501
V3 -0.01559942 0.004101315 0.0516043834 0.3177534
                                                    0.9123816 0.0003697253
V6 0.06589746 -0.019491496 0.0003697253 -0.1924719
                                                    1.0933898 0.1148947984
> cov(wineclass2)
                       V2
           V1
                                  V3
V1 0.28940551 -0.01167085 -0.03646241 -0.1014225 -0.2695795 -0.01359002
V2 -0.01167085 1.03137988 0.04764272 0.8093968 -1.3064909 0.02184449 
V3 -0.03646241 0.04764272 0.09951960 0.7347153 0.6824748 0.01929404
                                                 0.6824748
V4 -0.10142254 0.80939678 0.73471529 11.2209618
                                                  0.1830986 0.23372918
V5 -0.26957948 -1.30649095 0.68247485 0.1830986 280.6796781
                                                            0.64034205
v6 -0.01359002 0.02184449 0.01929404 0.2337292
                                                  0.6403421
> cov(wineclass3)
                                   V3
           V1
V1 0.28115585 0.063721809 0.024000532 0.2513830 -0.4858777
                                                            0.03981755
V2 0.06372181 1.183538830 0.003628191 0.2089362 -2.0731117 -0.06241436
   0.02400053 0.003628191 0.034110461 0.3163475
                                                 0.4249734 0.03101543
   0.25138298  0.208936170  0.316347518  5.0992908
                                                  3.9202128 0.29382979
V5 -0.48587766 -2.073111702 0.424973404 3.9202128 118.6023936 -0.15406915
   0.03981755 -0.062414362 0.031015426 0.2938298 -0.1540691 0.12742819
```

위의 cov(wineclass1)은 wineclass1의 변수들(v1-v6) 중 두 변수 간의 표본공분산을 행렬로 나타낸 것이다. cov(wineclass2), cov(wineclass3) 또한 각각 wineclass2, winclass3 의 데이터를 이용하여 같은 원리로 얻은 결과들이다.

(c) cor함수를 이용해 구한 winclass1, 2, 3의 표본상관행렬은 다음과 같다.

(c) R코드 및 결과

```
> cor(wineclass1)
V1 1.00000000 -0.04051342 -0.148595353 -0.31836650 0.15936069 0.420686596
V2 -0.04051342 1.00000000 0.026220748 0.06003086 0.07931716 -0.083514182
V3 -0.14859535 0.02622075 1.000000000 0.54933018 0.38254929 0.004801597
V4 -0.31836650 0.06003086 0.549330176 1.00000000 0.23833672 -0.222999482
V5 0.15936069 0.07931716 0.382549294 0.23833672 1.00000000 0.307240885
V6 0.42068660 -0.08351418 0.004801597 -0.22299948 0.30724088 1.000000000
> cor(wineclass2)
                                                   V4
            V1
                         V2
                                     V3
V1 1.00000000 -0.02136189 -0.2148512 -0.056281546 -0.029910794 -0.04632149
V2 -0.02136189 1.00000000 0.1487075 0.237923371 -0.076787688
V3 -0.21485117 0.14870750 1.0000000 0.695263983 0.129129914
                                                                     0.03944104
                                                                      0.11214627
V4 -0.05628155 0.23792337 0.6952640 1.000000000 0.003262605
                                                                      0.12794218
V5 -0.02991079 -0.07678769 0.1291299
                                         0.003262605
                                                       1.000000000
                                                                      0.07008457
V6 -0.04632149 0.03944104 0.1121463 0.127942178 0.070084567 1.00000000
> cor(wineclass3)
           V1
                        V2
                                   V3
                                               V4
V1 1.0000000 0.11046464 0.2450775 0.20994591 -0.08414080 0.21036246
V2 0.1104646 1.00000000 0.0180574 0.08504866 -0.17497851 -0.16071652
V3
   0.2450775  0.01805740  1.0000000  0.75851775  0.21128625  0.47043669
V4 0.2099459 0.08504866 0.7585177 1.00000000 0.15940723 0.36450893
v5 -0.0841408 -0.17497851 0.2112862 0.15940723 1.00000000 -0.03963111
V6 0.2103625 -0.16071652 0.4704367 0.36450893 -0.03963111 1.00000000
```

위의 cor(wineclass1)은 wineclass1의 변수들(v1-v6) 중 두 변수 간의 표본상관계수를 행렬로 나타낸 것이다. cor(wineclass2), cor(wineclass3) 또한 각각 wineclass2, winclass3 의 데이터를 이용하여 같은 원리로 얻은 결과들이다.

- 3. 다음의 대칭행렬 $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$ 에 대해 물음에 답하여라(직접계산 및 R코드 제시).
 - (a) 고윳값, 고유벡터를 구하여라.
 - (b) 스펙트럼 분해를 실시하여라.
 - (c) 역행렬 (A^{-1}) 과 제곱근행렬 $(A^{1/2})$ 을 구하여라.
 - (d) $A^T A$ 와 AA^T 의 고윳값과 고유벡터를 구하여라.

solve)

(a) 대칭행렬 A에 대해 다음의 관계가 성립한다.

$$Av = \lambda v$$

 $\Leftrightarrow Av - \lambda v = 0$ (0: 영행렬)
 $\Leftrightarrow (A - \lambda E)v = 0$ (E : 단위행렬) (1

이를 만족하는 고유벡터 $v(v \neq 0)$ 이 존재하기 위해서는 다음을 만족하여야 한다.

$$\det(A - \lambda E) = 0 \tag{2}$$

따라서 위의 식(2)를 λ 에 대해 풀면 고윳값을 구할 수 있다. 다음은 이를 토대로 고윳값을 구하는 과정이다.

$$\det(A - \lambda E) = \begin{vmatrix} 3 - \lambda & 1\\ 1 & 3 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow (3 - \lambda)^2 - 1 = 0$$

$$\Leftrightarrow \lambda = 4, 2$$

위의 결과를 통해, λ는 4, 2임을 알 수 있다.

이렇게 구해진 고윳값을 식(1)에 대입하여, 고윳값 4, 2에 각각 대응하는 고유벡터를 구할 수 있다. 그 과정은 다음과 같다.

1)
$$\lambda = 4$$

$$(A-4E)v_1={1\choose 1-1}v_1=0$$
 $(v_1={x_1\choose x_2}$ 인 임의의 벡터) $\Leftrightarrow -x_1+x_2=0$ $x_1-x_2=0$ $\Leftrightarrow v_1={1\choose 1}t$, $t\neq 0$ $(\because x_1=x_2=t)$

$$(2)\lambda = 2$$

$$\begin{split} &(A-2E)v_2=\begin{pmatrix}1&1\\1&1\end{pmatrix}v_2=0 & (v_2=\begin{pmatrix}y_1\\y_2\end{pmatrix}$$
인 임의의 벡터)
$$&\Leftrightarrow y_1+y_2=0 \\ &\Leftrightarrow v_2=\begin{pmatrix}1\\-1\end{pmatrix}s\,,\,s\neq0 & (\because y_1=s) \end{split}$$

따라서 각각의 고윳값에 대응하는 고유벡터는 $v_1 = t(1,1)^t$, $v_2 = s(1,-1)^t$ 이다.

(a) R코드 및 결과

> A < -matrix(c(3,1,1,3),2,2,byrow=TRUE)

> A

[,1] [,2]

[1,] 3 1

[2,] 1 3

> ev<-eigen(A)

> ev

#A의 고윳값과 고유벡터

eigen() decomposition

\$values

[1] 4 2

\$vectors

$$[,1] \qquad [,2]$$

- [1,] 0.7071068 -0.7071068
- [2,] 0.7071068 0.7071068

(b) 대칭행렬 A는 다음과 같이 스펙트럼 분해 할 수 있다.

$$A = P\Lambda P^T$$

$$(P=(e_1,e_2,\ \cdots,e_p), \qquad e_i:\lambda_i$$
에 대응하는 단위 고유벡터 $\Lambda=diag(\lambda_1,\lambda_2,\ \cdots,\lambda_p), \quad \lambda_i:A$ 의 고윳값

다음은 위의 식을 토대로 문제의 2×2 대칭행렬 A를 스펙트럼 분해하는 과정이다.

$$\begin{split} A &= PAP^T \\ &= (e_1, e_2, \, \cdots, e_i) \begin{pmatrix} \lambda_1 \cdots 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_i \end{pmatrix} (e_1, e_2, \, \cdots, e_i)^t \\ &= \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}, \quad ((e_1, e_2) = (e_1, e_2)^t = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}, \quad A = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix} = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}) \\ &= \begin{pmatrix} \frac{4}{\sqrt{2}} & \frac{2}{\sqrt{2}} \\ \frac{4}{\sqrt{2}} & -\frac{2}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \\ &= \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \end{split}$$

위의 결과는 (a)에서 구한 고윳값과 고유벡터를 이용해 쉽게 구할 수 있었다. A가 직교행렬 P와 대각행렬 Λ 에 관한 식으로 나타났기 때문에 스펙트럼 분해가 되었다고 할 수 있다.

- (b) R코드 및 결과
- > A < -matrix(c(3,1,1,3),2,2,byrow=TRUE)
- > ev<-eigen(A)

> ev\$vectors

#A의 고유벡터를 열벡터로 하는 행렬

[1]

 $[,1] \qquad [,2]$

- [1,] 0.7071068 -0.7071068
- [2,] 0.7071068 0.7071068
- > diag(ev\$values)

#A의 고윳값을 대각원소로 하는 대각행렬

[,1] [,2]

- [1,] 4 0
- [2,] 0 2
- > ev\$vectors%*%diag(ev\$values)%*%t(ev\$vectors) #스펙트럼 분해

[,1] [,2]

- [1,] 3 1
- [2,] 1 3

(c) 역행렬 (A^{-1}) 과 제곱근행렬 $(A^{1/2})$ 은 (b)에서 사용했던 스펙트럼 분해로 구할 수 있다. 다음은 스펙트럼 분해를 통해 역행렬 (A^{-1}) 을 구하는 과정이다.

$$A^{-1} = (P\Lambda P^{T})^{-1}$$

$$= P^{-1}\Lambda^{-1}(P^{T})^{-1}$$

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{4} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{4\sqrt{2}} & \frac{1}{2\sqrt{2}} \\ \frac{1}{4\sqrt{2}} & -\frac{1}{2\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{3}{8} & -\frac{1}{8} \\ -\frac{1}{8} & \frac{3}{8} \end{pmatrix}$$

$$= \begin{pmatrix} 0.375 & -0.125 \\ -0.125 & 0.375 \end{pmatrix}$$

식의 결과를 통해 역행렬 $(A^{-1}) = \begin{pmatrix} 0.375 & -0.125 \\ -0.125 & 0.375 \end{pmatrix}$ 임을 알 수 있었다.

다른 방법으로 또한 역행렬 (A^{-1}) 을 구할 수 있는데, 그 과정은 아래와 같다.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
일 때, $A^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -c \\ -b & a \end{pmatrix}$ 이다.

따라서
$$A = \begin{pmatrix} 3 \ 1 \ 3 \end{pmatrix}$$
이면, $A^{-1} = \frac{1}{8} \begin{pmatrix} 3 \ -1 \ -1 \ 3 \end{pmatrix} = \begin{pmatrix} 0.375 \ -0.125 \ 0.375 \end{pmatrix}$ 이다.

결국 두 과정 모두 역행렬 $(A^{-1})=\begin{pmatrix} 0.375 & -0.125 \\ -0.125 & 0.375 \end{pmatrix}$ 이므로, 스펙트럼 분해를 통해역행렬 (A^{-1}) 을 옳게 구했다고 할 수 있다.

다음은 스펙트럼 분해를 이용하여, 제곱근행렬 $(A^{1/2})$ 을 구하는 과정이다.

$$A^{1/2} = P \Lambda^{1/2} P^T$$

$$= \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

,
$$((e_1,e_2)=(e_1,e_2)^t=egin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}, A=egin{pmatrix} \sqrt{\lambda_1} & 0 \\ 0 & \sqrt{\lambda_2} \end{pmatrix}=egin{pmatrix} 2 & 0 \\ 0 & \sqrt{2} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{2}{\sqrt{2}} & 1\\ \frac{2}{\sqrt{2}} & -1 \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} 1 + \frac{1}{\sqrt{2}} & 1 - \frac{1}{\sqrt{2}} \\ 1 - \frac{1}{\sqrt{2}} & 1 + \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$= \begin{pmatrix} 1.707107 & -0.292893 \\ -0.292893 & 1.707107 \end{pmatrix}$$

위의 과정으로 제곱근행렬 $(A^{1/2}) = \begin{pmatrix} 1.707107 & -0.292893 \\ -0.292893 & 1.707107 \end{pmatrix}$ 임을 알 수 있다.

(c) R코드 및 결과

> A<-matrix(c(3,1,1,3),2,2,byrow=TRUE)

> solve(A)

#A의 역행렬

$$[,1]$$
 $[,2]$

> ev<-eigen(A)

> ev\$vectors

#A의 단위 고유벡터를 열벡터로 하는 행렬

[.2] [.1]

- [1,] 0.7071068 -0.7071068
- [2,] 0.7071068 0.7071068

> diag(sqrt(ev\$values))

#고윳값의 제곱근을 대각원소로 하는 대각행렬

$$[,1]$$
 $[,2]$

- [1,] 2 0.000000
- [2.] 0 1.414214
- > ev\$vectors%*%diag(sqrt(ev\$values))%*%t(ev\$vectors) #A의 제곱근행렬

$$[,1] \qquad [,2]$$

- [1,] 1.7071068 0.2928932
- [2,] 0.2928932 1.7071068

(d) 우선 $A^T A$ 의 고윳값과 고유벡터를 구해보자.

$$A^TA = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix} = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}$$
이므로, (a)의 방식대로, 풀이하면 다음과 같다.

$$\det(A^T A - \lambda E) = \begin{vmatrix} 10 - \lambda & 6 \\ 6 & 10 - \lambda \end{vmatrix} = 0$$

$$\Leftrightarrow (10 - \lambda)^2 - 36 = 0$$

$$\Leftrightarrow \lambda = 16, 4$$

위의 결과를 통해, λ는 16, 4임을 알 수 있고, 구한 고윳값을 통해 고유벡터 또한 구할 수 있다. 그 과정은 다음과 같다.

1)
$$\lambda = 16$$

$$\begin{split} &(A\ ^TA-16E)v_1=\begin{pmatrix} -6 & 6 \\ 6 & -6 \end{pmatrix} v_1=0\\ &\Leftrightarrow -x_1+x_2=0\,,\ x_1-x_2=0 \qquad (v_1=\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
인 임의의 벡터)
$$&\Leftrightarrow v_1=\begin{pmatrix} 1 \\ 1 \end{pmatrix} t\,,\ t\neq 0 \qquad \qquad (\because x_1=x_2=t) \end{split}$$

$$(2)\lambda = 4$$

$$(A^{T}A - 4E)v_2 = \begin{pmatrix} 6 & 6 \\ 6 & 6 \end{pmatrix} v_2 = 0$$

$$\Leftrightarrow y_1+y_2=0$$
 $\qquad \qquad (v_2=inom{y_1}{y_2}$ 인 임의의 벡터) $\Leftrightarrow v_2=inom{1}{-1}s$, $s\neq 0$ $\qquad (\because y_1=s)$

따라서 각각의 고윳값에 대응하는 고유벡터는 $v_1=t(1,1)^t,\,v_2=t(1,-1)^t$ 이다.

그런데
$$A^TA = AA^T = \begin{pmatrix} 10 & 6 \\ 6 & 10 \end{pmatrix}$$
으로 서로 같음을 알 수 있다.

그러므로 $A^T A$ 와 AA^T 는 λ 는 16, 4, 대응하는 고유벡터는 $v_1 = t(1,1)^t$, $v_2 = s(1,-1)^t$ 을 가진다고 할 수 있다.

```
(d) R코드 및 결과
> A < -matrix(c(3,1,1,3),2,2,byrow=TRUE)
> A
   [,1] [,2]
[1,] 3 1
[2,] 1 3
> t(A)%*%A
   [,1] [,2]
[1,] 10 6
[2,] 6 10
> A%*%t(A)
   [,1] [,2]
[1,] 10 6
[2,] 6 10
> eigen(t(A)%*%A)
                                               # t(A)%*%A의 고윳값과 고유벡터
eigen() decomposition
$values
[1] 16 4
$vectors
             [,2]
        [,1]
[1,] 0.7071068 -0.7071068
[2,] 0.7071068 0.7071068
> eigen(A%*%t(A))
                                               # A%*%t(A)의 고윳값과 고유벡터
eigen() decomposition
$values
[1] 16 4
$vectors
        [,1]
               [,2]
[1,] 0.7071068 -0.7071068
```

[2,] 0.7071068 0.7071068

5. 다음의 대칭행렬 A에 대해 스펙트럼 분해를 실시하고 그 결과를 확인하여라(R 코드 제시).

$$A = \begin{pmatrix} 6 & -2 - 1 \\ -2 & 6 & -1 \\ -1 - 1 & 5 \end{pmatrix}$$

solve)

R코드 및 결과

> A<-matrix(c(6, -2, -1, -2, 6, -1, -1, -1, 5), 3, 3, byrow=TRUE)

> A

[,1] [,2] [,3]

[1,] 6 -2 -1

[2,] -2 6 -1

[3,] -1 -1 5

> ev<-eigen(A)

#A의 고윳값과 고유벡터

#A의 단위 고유벡터를 열벡터로 하는 행렬

> ev\$vectors

[,1] [,2] [,3]

- [1,] 7.071068e-01 -0.4082483 -0.5773503
- [2,] -7.071068e-01 -0.4082483 -0.5773503
- [3,] -5.551115e-17 0.8164966 -0.5773

> diag(ev\$values)

#고윳값을 대각원소로 하는 대각행렬

[,1] [,2] [,3]

- [1,] 8 0 0
- [2,] 0 6 0
- [3,] 0 0 3

> ev\$vectors%*%diag(ev\$values)%*%t(ev\$vectors) #스펙트럼 분해

[,1] [,2] [,3]

- [1,] 6 -2 -1
- [2,] -2 6 -1
- [3,] -1 -1 5

```
7. (문제 5)의 행렬 A에 대해 다음 물음에 답하여라(R 코드 제시).
  (a) 일반화분산과 총분산을 구하여라.
  (b) A의 제곱근행렬을 구하여라.
solve)
(a) R코드 및 결과
> A<-matrix(c(6, -2, -1, -2, 6, -1, -1, -1, 5), 3, 3, byrow=TRUE)
> A
   [,1] [,2] [,3]
[1,] 6 -2 -1
[2,] -2 6 -1
[3,] -1 -1 5
> cov(A)
                               #표본공분산행렬
   [,1] [,2] [,3]
[1,] 19 -13 -6
[2,] -13 19 -6
[3,] -6 -6 12
> eigen(cov(A))$values
                             #표본공분산행렬의 고윳값
[1] 32 18 0
> prod(eigen(cov(A))$values)
                             #일반화분산
[1] 0
> tr(cov(A))
                              #총분산
[1] 50
(b) R코드 및 결과
> A<-matrix(c(6, -2, -1, -2, 6, -1, -1, -1, 5), 3, 3, byrow=TRUE)
> A
   [,1] [,2] [,3]
[1,] 6 -2 -1
[2,] -2 6 -1
[3,] -1 -1 5
> ev<-eigen(A)
```

> ev

\$values [1] 8 6 3

eigen() decomposition

#A의 고윳값과 고유벡터

\$vectors

[,1] [,2] [,3]

[1,] 7.071068e-01 -0.4082483 -0.5773503

[2,] -7.071068e-01 -0.4082483 -0.5773503

[3,] -5.551115e-17 0.8164966 -0.5773503

> ev\$vectors

#A의 단위 고유벡터를 열벡터로 하는 행렬

[,1] [,2] [,3]

[1,] 7.071068e-01 -0.4082483 -0.5773503

[2,] -7.071068e-01 -0.4082483 -0.5773503

[3,] -5.551115e-17 0.8164966 -0.5773503

> diag(sqrt(ev\$values))

#고윳값의 제곱근을 대각원소로 하는 대각행렬

[,1] [,2] [,3]

[1,] 2.828427 0.00000 0.000000

[2,] 0.000000 2.44949 0.000000

[3,] 0.000000 0.00000 1.732051

> ev\$vectors%*%diag(sqrt(ev\$values))%*%t(ev\$vectors)

#A의 제곱근행렬

[,1] [,2] [,3]

[1,] 2.3998121 -0.4286150 -0.2391463

[2,] -0.4286150 2.3998121 -0.2391463

[3,] -0.2391463 -0.2391463 2.2103434