Системы линейных алгебраических уравнений. Часть 3. Итерационные методы решения

Скалько Юрий Иванович **Цыбулин Иван**

Задача

Рассмотрим систему уравнений $\mathbf{A}\mathbf{x} = \mathbf{b}$, где

$$\mathbf{A} = \begin{pmatrix} 20 & 0 & -6 \\ 0 & 20 & 7 \\ -6 & 7 & 8 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 26 \\ -7 \\ -14 \end{pmatrix}$$

Выпишем для нее методы Якоби и Зейделя и исследуем их на сходимость

Метод Якоби

Метод Якоби получается, если в системе уравнений $\mathbf{A}\mathbf{x} = \mathbf{b}$ диагональные неизвестные брать с итерации k+1, а внедиагональные — с k.

$$\begin{cases} 20x_1^{(k+1)} + 0x_2^{(k)} - 6x_3^{(k)} &= 26\\ 0x_1^{(k)} + 20x_2^{(k+1)} + 7x_3^{(k)} &= -7\\ -6x_1^{(k)} + 7x_2^{(k)} + 8x_3^{(k+1)} &= -14 \end{cases}$$

Перепишем в виде метода простой итерации $\mathbf{x}_{k+1} = \mathbf{B}\mathbf{x}_k + \mathbf{f}$:

$$\begin{cases} x_1^{(k+1)} &= \frac{3}{10} x_3^{(k)} + \frac{13}{10} \\ x_2^{(k+1)} &= -\frac{7}{20} x_3^{(k)} - \frac{7}{20} \\ x_3^{(k+1)} &= \frac{3}{4} x_1^{(k)} - \frac{7}{8} x_2^{(k)} - \frac{7}{4} \end{cases}$$

Сходимость метода Якоби

Диагонального преобладания (достаточное условие) у ${\bf A}$ нет, поэтому метод Якоби может не сходится. Будем проверять необходимое и достаточное условие метода простых итераций $|\lambda({\bf B})| < 1$.

$$\mathbf{B} = \begin{pmatrix} 0 & 0 & \frac{3}{10} \\ 0 & 0 & -\frac{7}{20} \\ \frac{3}{4} & -\frac{7}{8} & 0 \end{pmatrix}$$

$$\begin{split} \det(\boldsymbol{B} - \lambda \boldsymbol{E}) &= -\lambda \left(\lambda^2 - \frac{49}{160}\right) + \frac{9}{40}\lambda = \lambda \left(\frac{85}{160} - \lambda^2\right) = 0 \\ \lambda &= \left\{0, \pm \sqrt{\frac{17}{32}}\right\}, \quad |\lambda(\boldsymbol{B})| < 1 \end{split}$$

Метод сходится при любом начальном приближении

Метод Зейделя

Метод Зейделя получается, если в системе уравнений $\mathbf{A}\mathbf{x} = \mathbf{b}$ неизвестные на диагонали и ниже брать с итерации k+1, а остальные — с k.

$$\begin{cases} 20x_1^{(k+1)} + 0x_2^{(k)} - 6x_3^{(k)} &= 26\\ 0x_1^{(k+1)} + 20x_2^{(k+1)} + 7x_3^{(k)} &= -7\\ -6x_1^{(k+1)} + 7x_2^{(k+1)} + 8x_3^{(k+1)} &= -14 \end{cases}$$

Перепишем в виде метода простой итерации $\mathbf{x}_{k+1} = \mathbf{B}\mathbf{x}_k + \mathbf{f}$:

$$\begin{cases} x_1^{(k+1)} &= \frac{3}{10} x_3^{(k)} + \frac{13}{10} \\ x_2^{(k+1)} &= -\frac{7}{20} x_3^{(k)} - \frac{7}{20} \\ x_3^{(k+1)} &= \frac{3}{4} \left(\frac{3}{10} x_3^{(k)} + \frac{13}{10} \right) - \frac{7}{8} \left(-\frac{7}{20} x_3^{(k)} - \frac{7}{20} \right) - \frac{7}{4} = \frac{17}{32} x_3^{(k)} - \frac{15}{32} \end{cases}$$

Сходимость метода Зейделя

Хотя матрица $\mathbf{A} = \mathbf{A}^\mathsf{T} > 0$ и удовлетворяет достаточному условию сходимости метода Зейделя, проверим сходимость по определению.

$$\mathbf{B} = \begin{pmatrix} 0 & 0 & \frac{3}{10} \\ 0 & 0 & \frac{-7}{20} \\ 0 & 0 & \frac{17}{32} \end{pmatrix}$$

Найдем $\lambda(\mathbf{B})$:

$$\det(\mathbf{A} - \lambda \mathbf{E}) = \lambda^2 \left(\frac{17}{32} - \lambda\right) = 0$$
$$\lambda = \left\{0, 0, \frac{17}{32}\right\}$$

Все $\lambda(\mathbf{B})$ лежат в единичном круге, а значит, метод сходится.

Методы Якоби и Зейделя Немонотонная сходимость итерационных методов

Возможны случаи, когда итерационные методы сначала удаляются от точного решения, а затем начинают приближаться. Это называется немонотонной сходимостью итерационного процесса.

Будет сходимость метода монотонной или нет, зависит от

матрицы итерационного процесса ${f B}$, используемого начального приближения и нормы, в которой изучается сходимость. Введем невязку ${f r}_k={f x}_k-{f x}^*$, где ${f x}^*$ — точное решение. Вычитая из ${f x}_{k+1}={f B}{f x}_k+{f f}$ предельное равенство ${f x}^*={f B}{f x}^*+{f f}$, получаем соотношение для невязки

$$\mathbf{r}_{k+1} = \mathbf{Br}_k$$

Немонотонная сходимость итерационных методов

На каждом шаге процесса невязка умножается на матрицу В.

$$\mathbf{r}_{k+1} = \mathbf{Br}_k$$

Нас интересует, будет ли норма невязки $\varepsilon_k = \|\mathbf{r}_k\|_{ullet}$ стремится к нулю монотонно или нет. Рассмотрим случаи

• $q = \|B\|_{\bullet} < 1$. В этом случае сходимость монотонная:

$$\varepsilon_{k+1} = \|\mathbf{r}_{k+1}\|_{\bullet} = \|\mathbf{B}\mathbf{r}_k\|_{\bullet} \le \|\mathbf{B}\|_{\bullet}\|\mathbf{r}_k\|_{\bullet} = q\varepsilon_k < \varepsilon_k$$

ullet $q = \|B\|_{ullet} \geq 1$. Возьмем ${f r}_0
eq 0$ такое, чтобы

$$\|\mathsf{Br}_0\|_{\bullet} = \|\mathsf{B}\|_{\bullet}\|\mathsf{r}_0\|_{\bullet}$$

Получаем, что $\varepsilon_1 = \|\mathbf{r}_1\|_{\bullet} = \|\mathbf{Br}_0\|_{\bullet} = q\|\mathbf{r}_0\|_{\bullet} = q\varepsilon_0 \geq \varepsilon_0$ Для начального приближения $\mathbf{x}_0 = \mathbf{x}^* + \mathbf{r}_0$ сходимость будет немонотонная.

методы якоби и зеиделя Немонотонная сходимость

Например, для рассмотренного метода Якоби

$$\mathbf{B} = \begin{pmatrix} 0 & 0 & \frac{3}{10} \\ 0 & 0 & -\frac{7}{20} \\ \frac{3}{4} & -\frac{7}{8} & 0 \end{pmatrix}$$

сходимость в норме $\| \|_1$ будет монотонная ($\| \mathbf{B} \|_1 = \frac{7}{8} < 1$), а в норме $\| \|_{\infty}$ — не всегда. Норма $\| \mathbf{B} \|_{\infty} = \frac{13}{8}$ достигается на векторе $\mathbf{r}_0 = (1,-1,0)^\mathsf{T}$. В качестве начального приближения можно взять

$$\mathbf{x}_0 = \mathbf{x}^* + r_0 = (1, 0, -1)^\mathsf{T} + (1, -1, 0)^\mathsf{T} = (2, -1, -1)^\mathsf{T}$$

Число итераций

Предположим, что некоторая норма $\|\mathbf{B}\|_{ullet} = q < 1$ оказалась меньше единицы. Как оценить число итераций N, необходимых, чтобы обеспечить $\varepsilon_N = \|\mathbf{x}_N - \mathbf{x}^*\|_{ullet} < \varepsilon$, где ε задано? Воспользуемся соотношением

$$\mathbf{r}_{k+1} = \mathbf{B}\mathbf{r}_k \Rightarrow \varepsilon_{k+1} \le q\varepsilon_k \le \cdots \le q^{k+1} \|\mathbf{x}_0 - \mathbf{x}^*\|_{ullet}$$

В этой оценке имеется решение \mathbf{x}^* , которое заранее не известно. Избавимся от него следующим способом

$$\begin{aligned} \|\mathbf{x}_0 - \mathbf{x}_*\|_{\bullet} &\leq \|\mathbf{x}_0 - \mathbf{x}_1\|_{\bullet} + \|\mathbf{x}_1 - \mathbf{x}_*\|_{\bullet} \leq \|\mathbf{x}_1 - \mathbf{x}_0\|_{\bullet} + q\|\mathbf{x}_0 - \mathbf{x}_*\|_{\bullet} \\ &(1 - q)\|\mathbf{x}_0 - \mathbf{x}_*\| \leq \|\mathbf{x}_1 - \mathbf{x}_0\| \end{aligned}$$

Получаем оценку

$$arepsilon_N \leq rac{q^N}{1-q} \|\mathbf{x}_1 - \mathbf{x}_0\|_{ullet}, \quad N = \left\lceil rac{\ln((1-q)arepsilon) - \ln\|\mathbf{x}_1 - \mathbf{x}_0\|_{ullet}}{\ln q}
ight
ceil$$

Метод простой итерации с параметром auМетод простой итерации

Пусть матрица ${\bf A}={\bf A}^{\sf T}>0$. Запишем метод простой итерации с параметром au

$$\mathbf{x}_{k+1} = (\mathbf{E} - \tau \mathbf{A})\mathbf{x}_k + \tau \mathbf{b}$$

Здесь ${\bf B}={\bf E}-\tau{\bf A}$. У матрицы ${\bf B}$ такие же собственные вектора, что и у матрицы ${\bf A}$, а их собственные числа связаны отношением *

$$\lambda(\mathbf{B}) = 1 - \tau \lambda(\mathbf{A})$$

Необходимое и достаточное условие сходимости $|\lambda(\mathbf{B})| < 1$ ограничивает

$$0 < au < rac{2}{\max \lambda(\mathbf{A})} \equiv rac{2}{\lambda_{max}}$$

 $^{^*}$ Если $\mathbf{A}\mathbf{x}=\lambda\mathbf{x}$, то $\mathbf{B}\mathbf{x}=(\mathbf{E}- au\mathbf{A})\mathbf{x}=\mathbf{x}- au\lambda\mathbf{x}=(1- au\lambda)\mathbf{x}$

Метод простой итерации с параметром auСкорость сходимости

Поскольку матрица ${\bf A}$ симметрична (следовательно и матрица ${\bf B}$), ее собственные вектора ${\bf w}_i$ образуют ортогональную систему. Обозначим $q_i=1- au\lambda_i$.

$$\mathbf{A}\mathbf{w}_i = \lambda_i \mathbf{w}_i, \quad \mathbf{B}\mathbf{w}_i = q_i \mathbf{w}_i = (1 - \tau \lambda_i) \mathbf{w}_i$$

Разложим вектор невязки по этому базису из собственных векторов матриц **A** и **B**:

$$\mathbf{r}_{k} = \sum_{i=1}^{n} \alpha_{i}^{(k)} \mathbf{w}_{i}$$

$$\mathbf{r}_{k+1} = \mathbf{B} \mathbf{r}_{k} = \sum_{i=1}^{n} \mathbf{B} \alpha_{i}^{(k)} \mathbf{w}_{i} = \sum_{i=1}^{n} (1 - \tau \lambda_{i}) \alpha_{i}^{(k)} \mathbf{w}_{i}$$

Получается, что $\alpha_i^{(k)} = q_i^k \alpha_i^{(0)}$, то есть *i*-я компонента невязки стремится к нулю со скоростью $|q_i|$.

Метод простой итерации при $au \ll rac{1}{\lambda_{max}}$

Метод простой итерации при $au pprox rac{1}{\lambda_{ extit{max}}}$

Метод простой итерации при $au < au_{opt} = rac{2}{\lambda_{\min} + \lambda_{\max}}$

Метод простой итерации при $au = au_{opt} = rac{2}{\lambda_{\min} + \lambda_{\max}}$

Метод простой итерации при $au > au_{opt} = rac{2}{\lambda_{\min} + \lambda_{\max}}$

Метод простой итерации при $au > rac{2}{\lambda_{max}}$

Метод простой итерации с параметром auПоведение при различных значениях параметра

Можно сделать несколько выводов

- При малом au ($au \ll \frac{1}{\lambda_{max}}$) метод сходится очень медленно, и основным "тормозом" является часть невязки, которая соответствует первому собственному вектору ($\lambda = \lambda_{min}$). Скорость сходимости $q = 1 \tau \lambda_{min}$
- ullet При достаточно большом au $(au>rac{2}{\lambda_{ ext{max}}})$ метод расходится
- ullet При отрицательном au (au < 0) метод расходится
- При большом au ($au\lesssim \frac{2}{\lambda_{\max}}$) метод сходится медленно, здесь "тормозом" является уже максимальное собственное число. Скорость сходимости $q= au\lambda_{\max}-1$
- При некотором au ($au = au_{opt} = rac{2}{\lambda_{\min} + \lambda_{\max}}$) компоненты невязки с $\lambda = \lambda_{\min}$ и $\lambda = \lambda_{\max}$ стремятся к нулю с одинаковой скоростью. Промежуточные компоненты стремятся к нулю еще быстрее. Этот вариант оптимален по скорости сходимости $q = q_{opt} = rac{\lambda_{\max} \lambda_{\min}}{\lambda_{\max} + \lambda_{\min}}$

Метод простой итерации с параметром auСходимость при специальных приближениях

Возможно ли, что в некоторых условиях при $au \neq au_{opt}$ невязка будет стремиться к нулю быстрее, чем при $au = au_{opt}$?

Оказывается, что да, но только при определенных начальных приближениях. Просиходит это, когда некоторые коэффициенты $\alpha_i^{(0)}$ в разложении невязки по собственным векторам матрицы обращаются в ноль. При этом не важно, чему равно соответствующее q_i , $\alpha_i^{(k)} = q_i^k \alpha_i^{(0)}$ будет продолжать оставаться нулем.

Однако, важно не нарушать условие $|q_i| \leq 1$. В противном случае $\alpha_i^{(k)}$ может легко вырасти из "машинного нуля" до больших чисел и остановить сходимость процесса.

Метод простой итерации с параметром au Сходимость при специальных приближениях

Вернемся к системе $\mathbf{A}\mathbf{x} = \mathbf{b}$ с

$$\mathbf{A} = \begin{pmatrix} 20 & 0 & -6 \\ 0 & 20 & 7 \\ -6 & 7 & 8 \end{pmatrix} \quad \mathbf{b} = \begin{pmatrix} 26 \\ -7 \\ -14 \end{pmatrix}$$

Собственные числа λ_i и вектора \mathbf{w}_i для этой системы:

$$\lambda_{min} = \lambda_1 = 3 < \lambda_2 = 20 < \lambda_3 = 25 = \lambda_{max}$$
 $\mathbf{w}_1 = \begin{pmatrix} 6 \\ -7 \\ 17 \end{pmatrix} \quad \mathbf{w}_2 = \begin{pmatrix} 7 \\ 6 \\ 0 \end{pmatrix} \quad \mathbf{w}_3 = \begin{pmatrix} 6 \\ -7 \\ -5 \end{pmatrix}$

Метод простой итерации с параметром *т* - Сходимость при специальных приближениях

Рассмотрим начальное приближение $\mathbf{x}_0 = (0, -13, 16)^\mathsf{T}$. Соответствующая невязка

$$\mathbf{r}_0 = \mathbf{x}_0 - \mathbf{x}^* = \begin{pmatrix} 0 \\ -13 \\ 16 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -13 \\ 17 \end{pmatrix} = \mathbf{w}_1 - \mathbf{w}_2$$

В начальной невязке отсутствует компонента, соответствующая максимальному собственному числу (λ_3)

Скорость сходимости q определяется самой медленно сходящейся компонентой из оставшихся

$$q=\max(|q_1|,|q_2|,|q_3|)=\max(|1- au\lambda_1|,|1- au\lambda_2|)$$

Сходимость при $\alpha_3=0$

Найдем, при каких au величина $q=\max(|1- au\lambda_1|,|1- au\lambda_2|)$ оказывается меньше q_{opt} (то есть сходимость быстрее).

Метод простой итерации с параметром auСходимость при $lpha_3=0$

Величина $q=\max(|q_1,q_2|)$ оказывается меньше q_{opt} в диапазоне

$$\tau \in \left(\tau_{opt}, \frac{1+q_{opt}}{\lambda_2}\right)$$

Сходимость при этих au и данном начальном приближении будет действительно быстрее, чем при au_{opt} .

Однако, при $au>\frac{2}{\lambda_3}$ итерационный процесс потеряет устойчивость (q_3 станет больше 1), третья компонента в невязке (которая имелась из-за численных ошибок), быстро вырастет при $q_3>1$. Поэтому для вычислительно устойчивого процесса

$$au \in \left(au_{opt}, rac{1+q_{opt}}{\lambda_2}
ight) \cap \left[0, rac{2}{\lambda_3}
ight]$$

Метод простой итерации с параметром au Сходимость при $lpha_2=0$

Найдем численное выражение для границ au для конкретной матрицы из задачи:

$$\begin{split} \tau_{opt} &= \frac{2}{\lambda_1 + \lambda_3} = \frac{2}{3 + 25} = \frac{1}{14} \approx 0.0714 \\ q_{opt} &= \frac{\lambda_3 - \lambda_1}{\lambda_1 + \lambda_3} = \frac{25 - 3}{25 + 3} = \frac{11}{14} \approx 0.7857 \\ \tau &\in \left(\tau_{opt}, \frac{1 + q_{opt}}{\lambda_2}\right) \cap \left[0, \frac{2}{\lambda_3}\right] = \left(\frac{1}{14}, \frac{5}{56}\right) \cap \left[0, \frac{2}{25}\right] = \left(\frac{1}{14}, \frac{2}{25}\right] \end{split}$$

Быстрее всего метод при таком начальном приближении сходится при $q_1=-q_2$ и $\tilde{\tau}_{opt}=\frac{2}{\lambda_1+\lambda_2}=\frac{2}{23}$. Поскольку это значение больше $\frac{2}{\lambda_3}$, вычислительно устойчивый метод быстрее всего сходится при $\tau=\frac{2}{\lambda_3}$. Это ближайшее значение из множества устойчивых параметров $\left[0,\frac{2}{\lambda_3}\right]$ к $\tilde{\tau}_{opt}$.

Метод простой итерации с параметром au Сходимость при специальных приближениях

Рассмотрим теперь другое начальное приближение $\mathbf{x}_0 = (14, -1, -6)^\mathsf{T}$. Начальная невязка

$$\mathbf{r}_0 = \mathbf{x}_0 - \mathbf{x}^* = \begin{pmatrix} 14 \\ -1 \\ -6 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 13 \\ -1 \\ -5 \end{pmatrix} = \mathbf{w}_2 + \mathbf{w}_3$$

Теперь в невязке отсутствует первая компонента (λ_3). По аналогии с предыдущим пунктом,

$$q = \max(|q_1|, |q_2|, |q_3|) = \max(|1 - \tau \lambda_2|, |1 - \tau \lambda_3|)$$

Сходимость при $\alpha_1=0$

Найдем, при каких au величина $q=\max(|1- au\lambda_2|,|1- au\lambda_3|)$ оказывается меньше q_{opt} (то есть сходимость быстрее).

В диапазоне

$$au \in \left(rac{1-q_{opt}}{\lambda_2}, au_{opt}
ight)$$

величина q оказывается меньше q_{opt} , то есть сходимость быстрее. Отметим, что данный диапазон оказыается лежащим целиком в отрезке устойчивых методов $\left[0,\frac{2}{\lambda_3}\right]$.

При данном начальном приближении максимальная скорость сходимости достигается при $q_2=-q_3$ и $ilde{ au}_{opt}=rac{2}{\lambda_2+\lambda_2}$. Это значение $ilde{ au}_{opt}$ всегда приводит к устойчивому методу. Для данной задачи

$$au \in \left(rac{3}{280}, rac{1}{14}
ight), \quad ilde{ au}_{opt} = rac{2}{45}$$

Спасибо за внимание!

tsybulin@crec.mipt.ru