Großübung: Grundlagen der Theoretischen Informatik

Christopher Bischopink[™]

[™]bischopink@informatik.uni-oldenburg.de

31. Januar 2020

Organsiatorisches

Klausur

- ▶ Do, 06.02.2020, 8-11 Uhr
- ► A14-1-101/102
- Einziges Hilfsmittel: Doppelseitig (handschriftlich!)
 beschriebener DIN A4 Zettel
- ► Klausurdauer: 2,5 Stunden

Aufgaben

- \triangleright ε -NEA \leadsto NEA
- ► ~ regulärer Ausdruck

$\varepsilon\text{-NEA}$

Aufgaben

- \triangleright ε -NEA \leadsto NEA
- ► → regulärer Ausdruck

Skript

▶ $q \in F_A$ gdw.

$$\exists q' \in F : q \stackrel{\varepsilon}{\Rightarrow} q'$$

Kontextfreie Grammatik

$$G = (\{S, A, B\}, \{a, b, c, d\}, P, S) \text{ mit } P =$$

$$\{S \rightarrow AB, \ A \rightarrow aAdd | \varepsilon, \ B \rightarrow bbBc | bbc \}$$

Aufgaben

- Kellerautomat nach Konstruktionsverfahren
- Sprache
- ► Konstuktion eines Kellerautomaten

Äquivalenzklassen und Minimalautomat

$$L = \{ w \in \{a, b, c\}^* | \#_a(w) = \#_b(w) = 1 \}$$

Aufgaben

- Äquivalenzklassen
- Äquivalenzklassenautomat

PCP

- $ightharpoonup PCP_1 = \{(b, bbb), (bb, b)\}$
- $ightharpoonup PCP_2 = \{(ab, b), (b, bb), (ba, ab), (b, a)\}$
- \triangleright $PCP_3 = \{(ab, b), (b, bb), (b, a)\}$
- $ightharpoonup PCP_4 = \{(b, bb), (ba, ab), (bb, a)\}$

Aufgabe

Lösung angeben bzw. begründen warum keine existieren kann

Pumping-Lemma

Gegben seien die beiden Sprachen

$$L_{1,2} = \{a^i b^j c^k\}$$
 mit:

- ightharpoonup i = j + k für L_1 bzw.
- $ightharpoonup k = i \cdot j \text{ für } L_2.$

Aufgabe

Zeigen, dass L nicht regulär bzw. kontextfrei ist.