Introduction to Machine Learning Applications

Spring 2023

Exam 2 review

Minor Gordon

gordom6@rpi.edu

Decision trees

Example of a Decision Tree

Training Data

Model: Decision Tree

Another Example of Decision Tree

categorical continuous

ID	Home Owner	Marital Status	Annual Income	Defaulted Borrower
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Design Issues of Decision Tree Induction

- How should training records be split?
 - Method for specifying test condition
 - depending on attribute types
 - Measure for evaluating the goodness of a test condition
- How should the splitting procedure stop?
 - Stop splitting if all the records belong to the same class or have identical attribute values
 - Early termination

How to determine the best split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

Ensemble modeling

Categories of Ensemble Tree Models

- Boosted Trees Incrementally training each new instance to emphasize the training instances previously mis-modeled.
 - ADABOOST (Adaptive Boosting)
 - XGBOOST (Gradient Boosting)
- Bagged Trees (Bootstrap Aggregating): Create many different trees by repeatedly resampling with replacement.
 - RANDOM FOREST (one of many)

For each there are many other related models

Weak classifier

- Classifier that performs poorly, but better than random guessing
- Example: decision stump

k Nearest Neighbors (kNN)

Nearest Neighbor Classification

- Imagine data projected in a ndimensional space, where n is the number of features
- Classification can be based on K neighbors or density

k-NN variations

- Best choice of *k* depends upon the data
 - Hyperparameter optimization
- Skewed class distribution causes issues for majority voting
 - ullet Weight the classification, accounting for distance from the distance point to k nearest neighbors

k-NN distances

- Distance metrics: Euclidean, Jaccard coefficient (binary vectors), Hamming distance, ...
- May need feature engineering and dimensionality reduction to make Euclidean distance more useful
- Naïve KNN computes distances from the test example to all stored examples
 - Nearest neighbor search algorithms

Clustering

What is Cluster Analysis?

 Given a set of objects, place them in groups such that the objects in a group are similar (or related) to one another and different from (or unrelated to) the objects in other groups

Notion of a Cluster can be Ambiguous

Types of Clusterings

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
 - Partitional Clustering
 - A division of data objects into non-overlapping subsets (clusters)
 - Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Hierarchical Clustering

Characteristics of the Input Data Are Important

- Type of proximity or density measure
 - Central to clustering
 - Depends on data and application
- Data characteristics that affect proximity and/or density are
 - Dimensionality
 - Sparseness
 - Attribute type
 - Special relationships in the data
 - For example, autocorrelation
 - Distribution of the data
- Noise and Outliers
 - Often interfere with the operation of the clustering algorithm
- Clusters of differing sizes, densities, and shapes

K-means Clustering

- Partitional clustering approach
- Number of clusters, K, must be specified
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- The basic algorithm is very simple

1: Select K points as the initial centroids.

2: repeat

3: Form K clusters by assigning all points to the closest centroid.

4: Recompute the centroid of each cluster.

5: **until** The centroids don't change

Example of K-means Clustering

Example of K-means Clustering

K-means Clustering — Details

- Simple iterative algorithm.
 - Choose initial centroids;
 - repeat {assign each point to a nearest centroid; re-compute cluster centroids}
 - until centroids stop changing.
- Initial centroids are often chosen randomly.
 - Clusters produced can vary from one run to another
- The centroid is (typically) the mean of the points in the cluster, but other definitions are possible.
- K-means will converge for common proximity measures with appropriately defined centroid
- Most of the convergence happens in the first few iterations.
 - Often the stopping condition is changed to 'Until relatively few points change clusters'

Two different K-means Clusterings

Importance of Choosing Initial Centroids ...

Importance of Choosing Initial Centroids ...

Introduction to Data Mining, 2nd Edition Tan, Steinbach Karpatne Kumar

K-means Objective Function

- A common objective function (used with Euclidean distance measure) is Sum of Squared Error (SSE)
 - For each point, the error is the distance to the nearest cluster center
 - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster $C_{
 m i}$ and $m_{
 m i}$ is the centroid (mean) for cluster $C_{
 m i}$
- SSE improves in each iteration of K-means until it reaches a local or global minima.
- This is called the model's inertia: the mean squared distance between each instance and its closest centroid.

Unsupervised Measures: Cohesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
 - Example: SSE
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE) $SSE = \sum_{i} \sum_{m \in C} (x m_i)^2$
 - Separation is measured by the between cluster sum of squares $SSB = \sum |C_i|(m-m_i)^2$

Where $|C_i|$ is the size of cluster i, m is the global average point, m_i is the centroid of cluster i, and x is a point in the cluster

Determining the Correct Number of Clusters

- SSE is good for comparing two clusterings or two clusters
- SSE can also be used to estimate the number of clusters

