Oracle-based algorithms for high-dimensional polytopes

Vissarion Fisikopoulos

Joint work with I.Z. Emiris (UoA), B. Gärtner (ETHZ)

Dept. of Informatics & Telecommunications, University of Athens

Workshop on Geometric Computing, Heraklion, Crete, 22.Jan.2013

► Previous work: Oracle (optimization) & output-sensitive algorthm [EFKP SoCG'12]

- ► Previous work: Oracle (optimization) & output-sensitive algorthm [EFKP SoCG'12]
- ▶ In practice: computation in < 7 dimensions

- ▶ Previous work: Oracle (optimization) & output-sensitive algorthm [EFKP SoCG'12]
- ▶ In practice: computation in < 7 dimensions
- ightharpoonup Q: Can we compute information when dim. > 7? eg. volume

- ▶ Previous work: Oracle (optimization) & output-sensitive algorthm [EFKP SoCG'12]
- ▶ In practice: computation in < 7 dimensions
- \triangleright Q: Can we compute information when dim. > 7? eg. volume
- Q: More polytopes given by optimization oracles ?

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks: Optimization & Volume computation

Experimental Results

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks: Optimization & Volume computation

Experimental Results

Polytope representation

Convex polytope $P \in \mathbb{R}^n$.

Explicit: Vertex-, Halfspace - representation (V_P, H_P) , Edge-sketelon (ES_P) , Triangulation (T_P) , Face lattice

Implicit: Oracles (OPT_P, SEP_P, MEM_P)

Motivation-Applications

- Resultant, Discriminant, Secondary polytopes
- (Generalized) Minkowski sums

Oracles and duality [Grötschel et al.'93]

(Polar) Duality (D):

 $\mathbf{0} \in \mathrm{int}(P), \quad P^* := \{c \in \mathbb{R}^n : c^\mathsf{T} x \le 1, \text{ for all } x \in P\} \subseteq (\mathbb{R}^n)^*$

Oracles and duality [Grötschel et al.'93]

(Polar) Duality (D):

 $\mathbf{0} \in \mathrm{int}(\mathsf{P}), \quad \mathsf{P}^* := \{c \in \mathbb{R}^n : c^\mathsf{T} x \le 1, \text{ for all } x \in \mathsf{P}\} \subseteq (\mathbb{R}^n)^*$

Given OPTIMIZATION compute SEPARATION.

Polytope change of representation

Problem	Algorithm	Complexity	
$V_P o H_P$	Convex hull	EXP	
$OPT_P \to T_P$	Incremental [EFKP'12]	P(in,out)	
Feasibility	Ellipsoid [Kha'79],	P _{bit} , ZPP	
i easibility	Las Vegas [BV'04]		
OPT _P +	Incremental [EFG'12]	P _{bit} (in,out)	
$\{edge\;dir.\} \to ES_{P}$	incrementar [LFG 12]		
$MEM_P \to$	Monte-Carlo	BPP	
$\varepsilon\text{-approx } \operatorname{vol}(P)$	[Dyer et.al'91,LV'04]		

Polytope change of representation

Problem	Algorithm	Complexity	
$V_P \to H_P$	Convex hull	EXP	
$OPT_P \to T_P$	Incremental [EFKP'12]	P(in,out)	
Feasibility	Ellipsoid [Kha'79],	P _{bit} , ZPP	
i easibility	Las Vegas [BV'04]		
OPT _P +	Incremental [EFG'12]	P _{bit} (in,out)	
$\{edge\;dir.\} \to ES_P$	incremental [LFG 12]		
$MEM_P o$	Monte-Carlo		
$\varepsilon\text{-approx } \operatorname{vol}(P)$	[Dyer et.al'91,LV'04]		

Our contribution: Theory & Implementation

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks: Optimization & Volume computation

Experimental Results

Edge skeleton computation

Input:

- ▶ OPT_P
- Edge directions of P: D

Output:

Edge-skeleton of P

Sketch of **Algorithm**:

- ▶ Compute a vertex of P $(x = OPT_P(c)$ for arbitrary $c^T \in \mathbb{R}^n)$
- ▶ Compute segments $S = \{(x, x + d), \text{ for all } d \in D\}$
- ▶ Remove from S all segments (x, y) s.t. $y \notin P (OPT_P \to SEP_P)$
- Remove from S the segments that are not extreme

Edge skeleton computation

Proposition

[RothblumOnn07] Let $P \subseteq \mathbb{R}^n$ given by OPT_P , and $E \supseteq D(P)$. All vertices of P can be computed in

 $O(|E|^{n-1})$ calls to $OPT_P + O(|E|^{n-1})$ arithmetic operations.

Theorem

The edge skeleton of P can be computed in

 $O^*(m^3n)$ calls to $OPT_P \ + O^*(m^3n^{3.38} + m^4n)$ arithmetic operations,

m: the number of vertices of P.

Corollary

For resultant polytopes $R \subset \mathbb{Z}^n$ this becomes (d is a constant)

$$O^*(m^3n^{\lfloor (d/2)+1\rfloor}+m^4n).$$

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks: Optimization & Volume computation

Experimental Results

Random points with Hit-and-Run

- ▶ line ℓ through x, uniform on $B_x(1)$
- move x to a uniform disrtibuted point on P ∩ ℓ

Random points with Hit-and-Run

- ▶ line ℓ through x, uniform on $B_x(1)$
- move x to a uniform disrtibuted point on P ∩ ℓ

Random points with Hit-and-Run

- ▶ line ℓ through x, uniform on $B_x(1)$
- move x to a uniform disrtibuted point on P ∩ ℓ

Optimization using random walks [BV'04]

Optimization reduces to Feasibility:

Input: SEP_P, B, L =
$$\lg \frac{\mathsf{radius}(B)}{\mathsf{radius}(b)}$$

Output: $z \in P \subseteq \mathbb{R}^n$ or P is empty

- 1. Compute N random points $y_1, ..., y_N$ uniform in B;
- 2. Let $z \leftarrow \frac{1}{N} \sum_{i=1}^{N} y_i$; $H \leftarrow SEP_P(z)$;
- 3. If $z \in P$ return z, else $B \leftarrow B \cap H$;
- 4. Repeat steps 1-3, 2nL times; Report P is empty;

Complexity: $O^*(n)$ oracle calls $+ O^*(n^7)$ arithm. oper.

Volume computation using random walks [Dyer et.al'91]

Input: MEM_P, ρ:

 $B(1) \subseteq P \subseteq B(\rho) \subseteq \mathbb{R}^n$

Output: ϵ -approximation vol(P)

- 1. $P_i := P \cap B(2^{i/n})$, $i = 0 : \lceil n \lg \rho \rceil$; $P_0 = B(1)$, $P_{n \lg \rho} = P$
- 2. Generate rand. point in P_0
- 3. Generate rand. points in P_i and count how many fall in P_{i-1}

$$vol(P) = vol(P_0) \prod_{i=1}^{m} \frac{vol(P_i)}{vol(P_{i-1})}$$

Complexity [Lovász et al.'04]: $O^*(n^4)$ oracle calls

Volume of polytopes given by OPT_P

Input: OPT_P, ρ : B(1) \subseteq P \subseteq B(ρ)

Output: ϵ -approximation vol(P)

- Call volume algorithm
- ► Each MEM_P oracle calls feasibility/optimization algorithm

Corollary

An approximation of the volume of resultant and Minkowski sum polytopes given by OPT oracles can be computed in $O^*(n^{\lfloor (d/2)+5\rfloor})$ and $O^*(n^{7.38})$ respectively, where d is a constant.

Outline

Polytope Representation & Oracles

Edge Skeleton Computation

Geometric Random Walks: Optimization & Volume computation

Experimental Results

Experiments Optimization

- ▶ n-cubes (table), n-crosspolytopes, skinny crosspolytopes
- M: multipoint walk, H: Hit-and-Run walk

		Alg.	01	Alg.	O2	Alg. O3	
# rand.	# walk						
points	steps	M(sec)	H(sec)	M(sec)	H(sec)	M(sec)	H(sec)
4	0	0.02	0.05	0.01	0.01	0.01	0.006
38	0	0.59	1.53	0.10	0.08	0.10	0.119
96	1	5.54	13.23	0.47	0.84	0.99	0.727
172	4	61.40	73.94	4.33	5.34	9.82	4.527
265	10	306.20	357.88	26.64	17.22	74.86	16.44
316	14	559.97	853.04	54.71	36.95	112.57	55.60
	points 4 38 96 172 265	points steps 4 0 38 0 96 1 172 4 265 10	# rand. # walk points steps M(sec) 4 0 0.02 38 0 0.59 96 1 5.54 172 4 61.40 265 10 306.20	points steps M(sec) H(sec) 4 0 0.02 0.05 38 0 0.59 1.53 96 1 5.54 13.23 172 4 61.40 73.94 265 10 306.20 357.88	# rand. # walk points # walk steps M(sec) H(sec) M(sec) 4 0 0.02 0.05 0.01 38 0 0.59 1.53 0.10 96 1 5.54 13.23 0.47 172 4 61.40 73.94 4.33 265 10 306.20 357.88 26.64	# rand. # walk points # walk steps M(sec) H(sec) M(sec) H(sec) 4 0 0.02 0.05 0.01 0.01 38 0 0.59 1.53 0.10 0.08 96 1 5.54 13.23 0.47 0.84 172 4 61.40 73.94 4.33 5.34 265 10 306.20 357.88 26.64 17.22	# rand. # walk points # walk steps M(sec) H(sec) M(sec) H(sec) M(sec) M(sec) M(sec) 4 0 0.02 0.05 0.01 0.01 0.01 38 0 0.59 1.53 0.10 0.08 0.10 96 1 5.54 13.23 0.47 0.84 0.99 172 4 61.40 73.94 4.33 5.34 9.82 265 10 306.20 357.88 26.64 17.22 74.86

► Efficient computation (< 1min) up to dimension 11 using Hit-and-Run

Experiments Volume given Membership oracle

▶ n-cubes (table), n-crosspolytopes, σ =average absolute deviation, μ =average over 20 experiments

	exact	exact	# rand.	# walk	vol	vol	vol	vol	approx
n	vol	sec	points	steps	min	max	μ	σ	sec
2	4	0.06	2218	8	3.84	4.12	3.97	0.05	0.23
4	16	0.06	2738	7	14.99	16.25	15.59	0.32	1.77
6	64	0.09	5308	38	60.85	67.17	64.31	1.12	39.66
8	256	2.62	8215	16	242.08	262.95	252.71	5.09	46.83
10	1024	388.25	11370	40	964.58	1068.22	1019.02	30.72	228.58
12	4096	-	14725	82	3820.94	4247.96	4034.39	80.08	863.72

- (the only known) implementation of [Lovász et al.'12] tested only for cubes up to n=8
- lacktriangle volume up to dimension 12 within mins with < 2% error
- ▶ no hope for exact methods in much higher than 10 dim
- the minimum and maximum values bounds the exact volume

Experiments Volume of Minkowski sum

Mink. sum of n-cube and n-crosspolytope, σ =average absolute deviation, μ =average over 10 experiments

n	exact vol	exact sec	# rand. points	# walk steps	vol min	vol max	vol μ	vol σ	approx sec
2	14.00	0.01	216	11	12.60	19.16	15.16	1.34	119.00
3	45.33	0.01	200	7	42.92	57.87	49.13	3.92	462.65
4	139.33	0.03	100	7	100.78	203.64	130.79	21.57	721.42
5	412.26	0.23	100	7	194.17	488.14	304.80	59.66	1707.97

- slower that volume with MEM
- improvements in optimization and volume implementation improve also this

Future work - Open problems

- 1. describe an *efficient* random walk procedure for P given by OPT instead of MEM
- 2. P of special case (e.g. Minkowski sum, resultant, secondary polytope)
- 3. volume computation in the polar dual and Mahler volume
- 4. describe all edge directions of a resultant polytope

References

The code

http://sourceforge.net/projects/randgeom

Thank You!