

2020

	WYPEŁNIA ZDAJĄCY	
KOD PESEL		mioisco
		miejsce na naklejkę

EGZAMIN MATURALNY Z INFORMATYKI

POZIOM ROZSZERZONY

Część I

MIN-R1 1P-203

TERMIN: dodatkowy 2020 r.

CZAS PRACY: 60 minut

LICZBA PUNKTÓW DO UZYSKANIA: 15

WYPEŁNIA ZDAJĄCY	WYBRANE:
	(system operacyjny)
	(program użytkowy)
	(środowisko programistyczne)

Instrukcja dla zdającego

- 1. Sprawdź, czy arkusz egzaminacyjny zawiera 10 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego egzamin.
- 2. Rozwiązania i odpowiedzi zamieść w miejscu na to przeznaczonym.
- 3. Pisz czytelnie. Używaj długopisu/pióra tylko z czarnym tuszem/atramentem.
- 4. Nie używaj korektora, a błędne zapisy wyraźnie przekreśl.
- 5. Pamietaj, że zapisy w brudnopisie nie podlegają ocenie.
- 6. Wpisz zadeklarowane (wybrane) przez Ciebie na egzamin system operacyjny, program użytkowy oraz środowisko programistyczne.
- 7. Jeżeli rozwiązaniem zadania lub jego części jest algorytm, to zapisz go w notacji wybranej przez siebie: listy kroków, pseudokodu lub języka programowania, który wybierasz na egzamin.
- 8. Na tej stronie oraz na karcie odpowiedzi wpisz swój numer PESEL i przyklej naklejkę z kodem.
- 9. Nie wpisuj żadnych znaków w części przeznaczonej dla egzaminatora.

NOWA FORMUŁA

Zadanie 1. Analiza algorytmu

Przeanalizuj następujący algorytm:

Specyfikacja:

Dane:

n − liczba całkowita większa od 1

Algorytm:

dla
$$i=1$$
, 2, 3, ..., n wykonuj
$$P[i] \leftarrow 1$$

$$S[i] \leftarrow 0$$
 dla $j=2$, 3, ..., n wykonuj jeżeli $P[j]=1$
$$i \leftarrow j * j$$
 dopóki $i \leq n$ wykonuj
$$P[i] \leftarrow 0$$

$$i \leftarrow i+j$$

$$S[j] \leftarrow S[j-1] + P[j]$$

Zadanie 1.1. (0-2)

Dla $n \ge 10$ podaj wartości dziesięciu pierwszych elementów tablicy P obliczonych za pomocą podanego algorytmu:

$$P[1] = \dots, P[2] = \dots, P[3] = \dots, P[4] = \dots, P[5] = \dots$$

$$P[6] = \dots, P[7] = \dots, P[8] = \dots, P[9] = \dots, P[10] = \dots$$

Miejsce na obliczenia

Zadanie 1.2. (0-2)

Dla *n*≥10 podaj wartości dziesięciu pierwszych elementów tablicy *S* obliczonych za pomocą podanego algorytmu:

$$S[1] = \dots, S[2] = \dots, S[3] = \dots, S[4] = \dots, S[5] = \dots$$

$$S[2] =,$$

$$S[3] = \dots,$$

$$S[4] = \ldots,$$

$$S[5] =$$

$$S[6] = \dots$$

$$S[7] = \dots$$

$$S[8] = \dots$$

$$S[9] =,$$

$$S[6] = \dots, S[7] = \dots, S[8] = \dots, S[9] = \dots, S[10] = \dots$$

Miejsce na obliczenia

Zadanie 1.3. (0-1)

Dokończ zdanie. Wybierz i zaznacz właściwą odpowiedź spośród podanych.

Dla
$$1 \le a \le b \le n$$
, $S[b] - S[a - 1]$ jest równe

- **A.** liczbie dzielników pierwszych liczby b a.
- **B.** liczbie liczb pierwszych należących do przedziału [a, b].
- C. największemu wspólnemu dzielnikowi a i b.
- **D.** liczbie liczb pierwszych należących do przedziału [a-1, b].

Zadanie 2. Ułamki egipskie

Ułamkami egipskimi nazywamy ułamki postaci $\frac{1}{m}$, gdzie m jest liczbą całkowitą większą od 1. Każdą dodatnią liczbę wymierną a < 1 można przedstawić w postaci sumy ułamków egipskich o różnych mianownikach. Takich różnych rozkładów może być kilka.

Jedna z metod rozkładu liczby wymiernej a na sumę ułamków egipskich jest następująca:

- 1. Szukamy najmniejszej liczby całkowitej n nie mniejszej od odwrotności a. Ułamek $\frac{1}{n}$ jest największym ułamkiem egipskim w rozkładzie liczby a.
- 2. Liczbę $\frac{1}{n}$ odejmujemy od a i otrzymujemy pewną różnicę r, która jest liczbą wymierną mniejszą od 1. Jeżeli r jest równe 0, to rozkład został znaleziony. W przeciwnym przypadku znajdujemy w ten sam sposób rozkład liczby r na ułamki egipskie, które dopisujemy do rozkładu liczby a.

Przykład:

Niech $a=\frac{4}{5}$. Aby znaleźć największy ułamek egipski, który nie jest większy od a, szukamy najmniejszej liczy całkowitej nie mniejszej od odwrotności danego ułamka $\frac{1}{a}=\frac{5}{4}$. Liczba 2 jest taką liczbą, zatem największym ułamkiem egipskim w rozkładzie liczby a jest $\frac{1}{2}$. W kolejnym kroku znajdujemy rozkład na ułamki egipskie liczby $\frac{4}{5}-\frac{1}{2}=\frac{3}{10}$. Ostatecznie otrzymujemy rozkład: $a=\frac{4}{5}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}$.

Zadanie 2.1. (0–2)

Za pomocą opisanego powyżej algorytmu wyznacz rozkłady na sumę ułamków egipskich następujących liczb:

<u>8</u> =

 $\frac{5}{6}$ =

Miejsce na obliczenia

Zadanie 2.2. (0-4)

Napisz w wybranej przez siebie notacji (w postaci pseudokodu, listy kroków lub w wybranym języku programowania) algorytm, który dla danej dodatniej liczby wymiernej a < 1, zadanej w postaci $\frac{p}{q}$ (gdzie p, q – liczby całkowite dodatnie, p < q), wypisze jej rozkład na sumę ułamków egipskich.

Uwaga: w zapisie możesz wykorzystać tylko operacje arytmetyczne (dodawanie, odejmowanie, mnożenie, dzielenie, dzielenie całkowite, reszta z dzielenia), porównywanie liczb, wypisywanie liczb, instrukcje sterujące i przypisania do zmiennych lub samodzielnie napisane funkcje zawierające wyżej wymienione operacje. Możesz również wykorzystać funkcję zaokrąglającą wartość liczby rzeczywistej do najmniejszej liczby całkowitej nie mniejszej od danej liczby (tzw. *sufit*).

Specyfikacja:

Dane:

p, q – dodatnie liczby całkowite, p < q

Wvnik:

ciąg k różnych liczb dodatnich, całkowitych $n_1 < n_2 < ... < n_k$, gdzie k > 0, taki, że

$$\frac{p}{q} = \frac{1}{n_1} + \frac{1}{n_2} + \dots + \frac{1}{n_k}$$

Przykład: dla p = 4 i q = 5 poprawnym wynikiem działania algorytmu jest ciąg liczb 2, 4, 20.

Algorytm:

Zadanie 3. Test

Oceń prawdziwość podanych zdań. Zaznacz P, jeśli zdanie jest prawdziwe, albo F – jeśli jest fałszywe.

W każdym zadaniu punkt uzyskasz tylko za komplet poprawnych odpowiedzi.

Zadanie 3.1. (0-1)

Dana jest rekurencyjna funkcja f(n):

$$f(n)$$
:

jeżeli $n = 0$

wynikiem jest 1

w przeciwnym przypadku

 $s \leftarrow 1$

dla $i = 0, 1, \ldots, n-1$
 $s \leftarrow s + f(i)$

wynikiem jest s

1.	Dla $n < 10$ wynikiem działania funkcji f jest liczba mniejsza od 1000.	P	F
2.	Obliczenie poprawnego wyniku £ (200) zajmie na komputerze w dowolnej szkolnej pracowni najwyżej kilka sekund.	P	F
3.	W trakcie obliczania wartości funkcji f dla dowolnego $n > 0$ nastąpi łącznie co najwyżej $2n$ wywołań tej funkcji.	P	F
4.	f(10) = 1024.	P	F

Zadanie 3.2. (0-1)

Liczba BA₁₆ (zapisana w systemie szesnastkowym) jest równa

1.	186 ₁₀	P	F
2.	2528	P	F
3.	101110102	P	F
4.	22324	P	F

Zadanie 3.3. (0-1)

Dane są dwie tabele powiązane relacją.

Wskaż, które uzupełnienia luk w zapytaniu SQL spowodują, że jego wynikiem będzie lista zawierająca dla każdego reżysera jego nazwisko, imię oraz łączną liczbę filmów przez niego wyreżyserowanych.

SELECT Rezyserzy.nazwisko, Rezyserzy.imie,	[1]
,,,,,	
FROM Rezyserzy INNER JOIN Filmy ON	[2]
GROUP BY	[3]
	,

1.	[1] avg(*) [2] Rezyserzy.idrezysera=Filmy.idrezysera [3] Filmy.nazwisko, Rezyserzy.imie	P	F
2.	[1] * [2] Rezyserzy.idrezysera= Filmy.idfilmu [3] Filmy.idrezysera	P	F
3.	[1] count(nazwisko) [2] Rezyserzy.idrezysera= Filmy.idrezysera [3] Rezyserzy.nazwisko	P	F
4.	[1] count(*) [2] Rezyserzy.idrezysera=Filmy.idrezysera [3] Rezyserzy.imie, Rezyserzy.nazwisko, Rezyserzy.idrezysera	P	F

Zadanie 3.4. (0–1)

W komórkach A1 i B1 arkusza kalkulacyjnego zapisano pewne liczby całkowite dodatnie. W komórce C1 wpisano formułę:

=JEŻELI(MOD(A1;2)=0;JEŻELI(MOD(B1;2)=0;A1*B1/4;A1*B1);JEŻELI(MOD(B1;2)=0;A1*B1;(A1+B1)/2))

1.	Wartość w komórce C1 (wynik działania formuły) będzie zawsze liczbą całkowitą.	P	F
2.	Jeżeli w komórce A1 wpiszemy wartość 4, a w komórce B1 wpiszemy wartość 3 to w komórce C1 (wynik działania formuły) otrzymamy wartość 3.	P	F
3.	Wartość w komórce C1 (wynik działania formuły) będzie zawsze liczbą większą lub równą średniej arytmetycznej liczb wpisanych w komórkach A1 i B1.	P	F
4.	Jeżeli w komórce A1 wpiszemy wartość 2, a w komórce B1 wpiszemy wartość 4 to w komórce C1 (wynik działania formuły) otrzymamy wartość 2.	P	F

BRUDNOPIS (nie podlega ocenie)