

Name: Abdul Ghani Khan

Roll No: 22P-9037

Section: BCS-3D

Course: Computer Organization & Assembly Language

Assignment: 01

Question No. 1:

Write a program in assembly language for each of the below separately that sets

the following flags.

(Write four programs i.e. One for each part)

A) Zero Flag

Code

Result

B) Carry Flag

Code

```
1 [org 0x0100]
2
3 mov ax , 0xFFFF
4 add ax , 1
5
6 mov ax , 0x4c00
int 0x21
```

Result

C) Parity Flag

Code

```
1 [org 0x0100]
2 3 mov ax , 10 add ax , 2 5 6 mov ax , 0x4c00 int 0x21
```

Result

D) Auxiliary Flag

Code

```
[org 0x0100]
1
 2
 3
      mov bx , 0x0122
      mov ax , 0x012F
 4
 5
 6
      add ax , bx
7
8
      mov ax , 0x4c00
 9
      int 0x21
10
```

Result

Question No. 2:

What will be the size of the following assembly language program in bytes? Explain your answer using ". lst" file of this code.

1			[org 0x0100]
2	00000000	B80500	mov ax, 5
3	00000003	BB0A00	mov bx, 10
4	00000006	01D8	add ax, bx
5	80000000	BB0F00	mov bx, 15
6	0000000B	01D8	add ax, bx
7			
8	0000000D	B8004C	mov ax, 0x4c00
9	00000010	CD21	int 0x21

Explanation: -

Let's Break down one by one as we know that the mov instruction takes 3 bytes and its used four times so 3*4 is 12. Also, we know that the add instruction takes 2 bytes and it is used twice so 2*2 is 4 so 12+4 is 16. Now the last instruction (int 0x21) takes 2 bytes Now adding them 16+2=18 so this program takes 18 bytes

Line By Line If We Add: 3 + 3 + 2 + 3 + 2 + 3 + 2 = 18

Also looking at the lst file our answer matches by counting the number of bytes each line of the instructions is taking.

Question No. 3:

Calculate the physical memory address generated by the following segmentoffset pairs:

A. 1DDD:0436

Physical Address: **1E206**

B. 1234:7920

Physical Address: 19C60

C. 74F0:2123

Physical Address: 77023

D. 0000:6727

Physical Address: 06727

E. FFFF:4336

Physical Address: 04326

F. 1080:0100

Physical Address: 10900

Rough Work

(h) 1000: 0436.	(9) 0000:6727
10000	00000
+ 00436	+ 0 6 7 2 7
1E206	06727.
2 1234 : 7920	(S) FFFF: 4336.
12340	FFFFO quis will be
+ 0 7 9 2 0	+ 04336 dropped because
19060	1 04326 is a usapanourd
	caro go will go mo the
3 74Fo: 2123	6 1080:0100 carry.
74 F 0 0	10800
+ 02123	+ 00100
77023	10900