Learning Objectives

- After this segment, students will be able to
 - Compare traditional & location prediction models
 - Contrast Linear Regression & Spatial Auto-Regression

Illustration of Location Prediction Problem

Spatial Computing

Research Group

Neighbor Relationship: W Matrix

(c) Row-normalized W

Location Prediction Models

- Traditional Models, e.g., Regression (with Logit or Probit),
 - Bayes Classifier, ...
- Spatial Models
 - Spatial autoregressive model (SAR)
 - Markov random field (MRF) based Bayesian Classifier

Spatial
$y = \rho W y + X \beta + \varepsilon$
$Pr(c_i \mid X, C_N) = \frac{Pr(C_i) Pr(X, C_N \mid c_i)}{Pr(X, C_N)}$

Comparing Traditional and Spatial Models

- Dataset: Bird Nest prediction
- Linear Regression
 - Lower prediction accuracy, coefficient of determination,
 - Residual error with spatial auto-correlation
- Spatial Auto-regression outperformed linear regression

Spatial Computing

Research Group

Modeling Spatial Heterogeneity: GWR

- Geographically Weighted Regression (GWR)
 - Goal: Model spatially varying relationships
 - Example: $y = X\beta + \varepsilon$ Where β and ε are location dependent

Source: resources.arcgis.com

Research Needs for Location Prediction

- Spatial Auto-Regression
 - Estimate W
 - Scaling issue $\rho Wy \text{ vs. } X\beta$
- Spatial interest measure
 - e.g., distance(actual, predicted)

than Prediction 1

Spatial Computing

Research Group