Wie Daten-Wissenschaft neues Wissen schafft

Intelligente Datenanalysen

Data Science

Überzeugende Datenvisualisierungen

Modul ST-01

Praktische Statistik für Data Science

Was ist Data Science?

Was ist Data Science?

DATA MANAGEMENT

Was ist Data Science?

Visual story

User friendly

Easy to understand

Succinct & Honest

Targeted to audience

Question specific

Was ist Data Analytics und welche Grenzen hat Data Analytics? Data Analytics **Advanced Analytics Machine Learning** Reinforcement Learning **Standard Analytics** (Unsupervised Learning) (Supervised Learning) (Reward Learning) Statistische Cluster-Mathematische Assoziations-Klassifikations-Regressions-Methoden Methoden analyse analyse analyse analyse Deskriptive Induktive Statistik Statistik Univariate Bivariate Analyse Analyse

Was ist Data Analytics und welche Grenzen hat Data Analytics? **Data Analytics Advanced Analytics Machine Learning** Reinforcement Learning **Standard Analytics** (Unsupervised Learning) (Supervised Learning) (Reward Learning) Mathematische Statistische Assoziations-Cluster-Klassifikations-Regressions-Methoden analyse Methoden analyse analyse analyse Algorithmenbasierte Datenanalysen Induktive Deskriptive Was ist ein Algorithmus? Statistik Statistik Allgemein gesagt, gibt ein Algorithmus eine Vorgehensweise vor, um eine Aufgabe oder ein

Allgemein gesagt, gibt ein Algorithmus eine Vorgehensweise vor, um eine Aufgabe oder ein Problem zu lösen. Anhand dieses Lösungsplans werden in Einzelschritten Eingabedaten in Ausgabedaten umgewandelt.

Ein Algorithmus ist eine eindeutige Handlungsvorschrift zur Lösung einer Aufgabe oder eines Problems. Algorithmen bestehen aus endlich vielen, wohldefinierten Einzelschritten. Damit können sie zur Ausführung in ein Computerprogramm implementiert, aber auch in menschlicher Sprache formuliert werden.

Univariate

Analyse

Bivariate

Analyse

Was ist Data Analytics und welche Grenzen hat Data Analytics? **Data Analytics Advanced Analytics Machine Learning Reinforcement Learning Standard Analytics** (Unsupervised Learning) (Supervised Learning) (Reward Learning) Mathematische Statistische Assoziations-Cluster-Klassifikations-Regressionsanalyse Methoden Methoden analyse analyse analyse Algorithmenbasierte Datenanalysen Deskriptive Induktive Was ist ein Algorithmus? Statistik Statistik wohldefinierte Eingabe zur Lösung einer Ausgabe Aufgabe oder eines **Problems** Univariate **Bivariate** Analyse Analyse Algorithmus

Was ist Data Analytics und welche Grenzen hat Data Analytics? **Data Analytics Advanced Analytics Machine Learning Reinforcement Learning Standard Analytics** (Unsupervised Learning) (Supervised Learning) (Reward Learning) Mathematische Statistische Assoziations-Cluster-Klassifikations-Regressions-Methoden Methoden analyse analyse analyse analyse Algorithmenbasierte Datenanalysen Induktive Deskriptive Was ist ein Algorithmus? Statistik Statistik 1. Mehl und Milch Pfannkuchen 1 Prise Salz Univariate **Bivariate** Analyse Analyse Algorithmus

Was ist Data Analytics und welche Grenzen hat Data Analytics? **Data Analytics Advanced Analytics Machine Learning Reinforcement Learning Standard Analytics** (Unsupervised Learning) (Supervised Learning) (Reward Learning) Statistische Mathematische Assoziations-Cluster-Klassifikations-Regressionsanalyse Methoden Methoden analyse analyse analyse Algorithmenbasierte Datenanalysen Deskriptive Induktive Was ist ein Algorithmus? Statistik Statistik wohldefinierte Daten Ergebnis zur Verarbeitung der Daten Univariate **Bivariate** Analyse Analyse Algorithmus

Was ist Data Analytics und welche Grenzen hat Data Analytics? **Data Analytics Advanced Analytics** Machine Learning Reinforcement Learning **Standard Analytics** (Unsupervised Learning) (Supervised Learning) (Reward Learning) Statistische Mathematische Assoziations-Cluster-Klassifikations-Regressions-Methoden analyse Methoden analyse analyse analyse Algorithmenbasierte Datenanalysen Induktive Deskriptive Statistik Statistik Bivariate Univariate Analyse Analyse

Agenda von Modul ST-01 (1/2)

- Univariate Analyse
 - Skalenniveaus von Daten und statistische Lagemaße
 - Statistische Lagemaße
 - Modus, Median, Quartil, Interquartilsabstand, Spannweite und Mittelwert
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Skalenniveaus von Daten und statistische Streuungsmaße
 - Statistische Streuungsmaße
 - Varianz und Standardabweichung
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Agenda von Modul ST-01 (2/2)

- Bivariate Analyse
 - Skalenniveaus von Daten und statistische Zusammenhangsmaße
 - Statistische Zusammenhangsmaße
 - Chi²-Koeffizient und Cramer's V
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Korrelationskoeffizient (Pearson)
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - t-Wert und Cohen's D
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Agenda von Modul ST-01 (1/2)

- Univariate Analyse
 - Skalenniveaus von Daten und statistische Lagemaße
 - Statistische Lagemaße
 - Modus, Median, Quartil, Interquartilsabstand, Spannweite und Mittelwert
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Skalenniveaus von Daten und statistische Streuungsmaße
 - Statistische Streuungsmaße
 - Varianz und Standardabweichung
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Skalenniveaus von Daten und statistische Lagemaße

- männlich / weiblich
- Berlin / Hamburg / Köln
- Lager 1 / Lager 2 / Lager 3

keine Beziehung

- unfreundlich < freundlich
- -AAA > AA+ > AA > A+ > A
- Schulnoten: 1 > 3 > 6

Ordnungsbeziehung

- Einkommen
- Alter
- Umsatz

Arithmetische Beziehung

Skalenniveaus von Daten und statistische Lagemaße

Skalenniveaus von Daten und statistische Lagemaße

Lagemaße, die ein niedriges Skalenniveau voraussetzen, können problemlos für Datensätze mit einem höheren Skalenniveau berechnet werden

Agenda von Modul ST-01 (1/2)

- Univariate Analyse
 - Skalenniveaus von Daten und statistische Lagemaße
 - Statistische Lagemaße
 - Modus, Median, Quartil, Interquartilsabstand, Spannweite und Mittelwert
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Skalenniveaus von Daten und statistische Streuungsmaße
 - Statistische Streuungsmaße
 - Varianz und Standardabweichung
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Wert, der am häufigsten vorkommt

Modus (Modalwert)

Wert, der in der Mitte liegt

Median

Werte, die in der Mitte der beiden Hälften liegen

Abstand (Differenz) zwischen oberem und unterem Quartil

Interquartilsabstand

180 cm - 160 cm = 20 cm

Abstand (Differenz) zwischen Maximal- und Minimalwert

Spannweite

180 cm - 150 cm = 30 cm

(ungewichteter) Durchschnittswert

Mittelwert

$$150cm + 160cm + 170cm + 180cm + 180cm = 840cm$$

$$\frac{840 \text{ cm}}{5} = 168 \text{ cm}$$

Median vs. Mittelwert

Median vs. Mittelwert

Vorteil des Medians

 Unempfindlich gegenüber Extremwerten und Ausreißern

Nachteil des Medians

 Man kennt zwar die Mitte der Verteilung, aber nicht die Schwerpunkte der Daten

Vorteil des Mittelwerts

- Ein Vorteil des Mittelwerts ist, dass er sensitiv hinsichtlich jeden einzelnen Werts ist.
- Das bedeutet, dass wenn sich ein Wert ändert, sich auch der Mittelwert ändert.
- Aufgrund dieser Eigenschaft ist der Mittelwert ein guter Schätzer des Zentrums einer Verteilung.

Nachteil des Mittelwerts

 Dadurch, dass der Mittelwert sehr sensitiv hinsichtlich jeden Werts ist, kann er auch stark beeinflusst werden durch Ausreißer.

Median vs. Mittelwert

9 Personen haben das folgende Einkommen:

```
Person A = 10.000 €
```

Person B = 20.000 €

Person C = 20.000 €

Person D = 30.000 €

Person E = 30.000 €

Person F = 40.000 €

Person G = 40.000 €

Person H = 50.000 €

Person I = 660.000 €

Summe = 900.000 €

Wie hoch ist das "mittlere" Einkommen?

Mittelwert = 900.000 / 9 = 100.000 €

Median = 30.000 € → näher an der "Wahrheit"

→ positiv verzerrte Verteilung

Median vs. Mittelwert

Fallstudie "Fahrradtour"

Tag	Kilometer	Höhenmeter
Tag 1	66	227
Tag 2	85	179
Tag 3	55	267
Tag 4	32	363
Tag 5	73	232
Tag 6	55	261
Tag 7	42	304
Tag 8	30	442
Tag 9	102	191
Tag 10	48	313
Tag 11	53	289
Tag 12	75	213
Tag 13	60	249
Tag 14	64	218

Fallstudie "Fahrradtour"

Tag		Kilometer	Höhenmeter
		30	179
		32	191
	せ	42	213
	rtie	48	218
	SO	53	227
	nd	55	232
	ige	55	249
	ste	60	261
	auf	64	267
	Werte aufsteigend sortiert	66	289
	Ver	73	304
		75	313
		85	363
		102	442

Modus (Modalwert)

Modus $_{Kilometer} = 55$

Modus $_{H\ddot{o}henmeter} = n.a.$ (nicht berechenbar)

Fallstudie "Fahrradtour"

Tag	Tag		Kilometer	Höhenmeter
			30	179
			32	191
	せ		42	213
	ı t ie		48	218
	SOI		53	227
	pu		55	232
	ige		55	249
	Werte aufsteigend sortiert		60	261
	auf		64	267
	te		66	289
	/er		73	304
	>		75	313
			85	363
			102	442

Median

$$Median_{Kilometer} = \frac{55 + 60}{2} = 57,5$$

Median Höhenmeter =
$$\frac{249 + 261}{2}$$
 = 255,0

Fallstudie "Fahrradtour"

Tag		Kilometer	Höhenmeter
		30	179
		32	191
	irt	42	213
	£	48	218
		53	227
	nd	55	232
	lge	55	249
	Werte aufsteigend sortiert	60	261
	aur 	64	267
	te	66	289
	Ver	73	304
	>	75	313
		85	363
		102	442

Unteres und oberes Quartil

("ungewichtete" Methode gem. "Orange")

Unteres Quartil $_{Kilometer} = 48$

Unteres Quartil $_{H\ddot{o}henmeter} = 218$

Oberes Quartil $_{Kilometer} = 73$

Oberes Quartil $_{H\ddot{o}henmeter} = 304$

Fallstudie "Fahrradtour"

Tag	Kilometer	Höhenmeter
	30	179
	32	191
rt	42	213
rtie	48	218
Werte aufsteigend sortiert	53	227
pu	55	232
ige	55	249
ste	60	261
auf	64	267
te	66	289
Ver	73	304
	75	313
	85	363
	102	442

Interquartilsabstand

Interquartilsabstand _{Kilometer} =

Oberes Quartil Kilometer – Unteres Quartil Kilometer =

$$73 - 48 = 25$$

Interquartils abstand $_{H\ddot{o}henmeter} =$

Oberes Quartil Höhenmeter – Unteres Quartil Höhenmeter

$$304 - 218 = 86$$

Fallstudie "Fahrradtour"

Tag		Kilometer	Höhenmeter
		30	179
		32	191
	t	42	213
	rtie	48	218
	SO	53	227
	pu	55	232
	ige	55	249
	ste	60	261
	auf	64	267
	Werte aufsteigend sortiert	66	289
	Ver	73	304
		75	313
		85	363
		102	442

Spannweite

Fallstudie "Fahrradtour"

Tag		Kilometer	Höhenmeter
		30	179
		32	191
せ		42	213
		48	218
SOI		53	227
pu		55	232
ige		55	249
ste		60	261
auf		64	267
te		66	289
Ver		73	304
		75	313
		85	363
		102	442

(arithmetischer) Mittelwert

Mittelwert $_{Kilometer} = \frac{30 + 32 + 42 + 48 + 53 + 55 + 55 + 60 + 64 + 66 + 73 + 75 + 85 + 102}{14}$ = 60,0

Anzahl der Werte in der Tabelle (Urliste)

 $Mittelwert_{H\"{o}henmeter} =$

$$\frac{179 + 191 + 213 + 218 + 227 + 232 + 249 + 261 + 267 + 289 + 304 + 313 + 363 + 442}{14}$$
= 267,7

Anzahl der Werte in der Tabelle (Urliste)

Modus, Median, Quartil, Interquartilsabstand, Spannweite und Mittelwert

Agenda von Modul ST-01 (1/2)

- Univariate Analyse
 - Skalenniveaus von Daten und statistische Lagemaße
 - Statistische Lagemaße
 - Modus, Median, Quartil, Interquartilsabstand, Spannweite und Mittelwert
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Skalenniveaus von Daten und statistische Streuungsmaße
 - Statistische Streuungsmaße
 - Varianz und Standardabweichung
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Fallstudie in "EXCEL"

Statistische Excel-Standard-Funktionen (Auswahl):

Modus (Modalwert): MODALWERT (Matrix)

Median: MEDIAN (Matrix)

Quartile: QUARTILE (Matrix; Funktion)

Funktionen:

1 = Unteres Quartil

2 = Median

3 = Oberes Quartil

Spannweite (Minimalwert): MIN (Matrix)
Spannweite (Maximalwert): MAX (Matrix)

(arithmetischer) Mittelwert: MITTELWERT (Matrix)

Fallstudie in "ORANGE"

Box Plot

Fallstudie in "ORANGE"

Agenda von Modul ST-01 (1/2)

- Univariate Analyse
 - Skalenniveaus von Daten und statistische Lagemaße
 - Statistische Lagemaße
 - Modus, Median, Quartil, Interquartilsabstand, Spannweite und Mittelwert
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Skalenniveaus von Daten und statistische Streuungsmaße
 - Statistische Streuungsmaße
 - Varianz und Standardabweichung
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Skalenniveaus von Daten und statistische Lagemaße

Agenda von Modul ST-01 (1/2)

- Univariate Analyse
 - Skalenniveaus von Daten und statistische Lagemaße
 - Statistische Lagemaße
 - Modus, Median, Quartil, Interquartilsabstand, Spannweite und Mittelwert

Modul ST-01

- Fallstudie in "EXCEL"
- Fallstudie in "ORANGE"
- Skalenniveaus von Daten und statistische Streuungsmaße
- Statistische Streuungsmaße
 - Varianz und Standardabweichung
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

$$s^2 = \frac{(50-70)^2 + (80-70)^2 + (60-70)^2 + \dots + (90-70)^2}{11} = 127,27$$

Standardabweichung (absolut)

$$s_{absolut} = \sqrt{Varianz}$$

$$S_{absolut} = \sqrt{\sum_{S^2 = \frac{1}{i=1} (x_i - \overline{x})^2}^{n}}$$

74

$$s_{absolut} = \sqrt{127,27} = 11,28$$

Standardabweichung (relativ)

$$\mathbf{1}_{x_i} - \overline{x}$$

$$s_{absolut} = \sqrt{Varianz}$$

$$S_{absolut} = \sqrt{\sum_{S^2 = \frac{1}{i=1}}^{n} (x_i - \overline{x})^2}$$

$$S_{relativ} = \sqrt{\sum_{S^2 = \frac{\sum_{i=1}^{n} (\pi_i - \overline{\pi})^2}{n}}^{n}}$$

$$s_{relativ} = \frac{11,28}{70} = 0,16 = 16\%$$

Mittelwert und Standardabweichung (absolut)

(arithmetischer) Mittelwert: 70 Standardabweichung (absolut): 11

Mittelwert und Standardabweichung (absolut)

(arithmetischer) Mittelwert: 70 Standardabweichung (absolut): 24

Mittelwert und Standardabweichung (absolut)

Beispiel Schulnoten

Fallstudie "Fahrradtour"

Tag	Kilometer	Höhenmeter
Tag 1	66	227
Tag 2	85	179
Tag 3	55	267
Tag 4	32	363
Tag 5	73	232
Tag 6	55	261
Tag 7	42	304
Tag 8	30	442
Tag 9	102	191
Tag 10	48	313
Tag 11	53	289
Tag 12	75	213
Tag 13	60	249
Tag 14	64	218

Fallstudie "Fahrradtour"

Tag	Kilometer	Höhenmeter
Tag 1	66	227
Tag 2	85	179
Tag 3	55	267
Tag 4	32	363
Tag 5	73	232
Tag 6	55	261
Tag 7	42	304
Tag 8	30	442
Tag 9	102	191
Tag 10	48	313
Tag 11	53	289
Tag 12	75	213
Tag 13	60	249
Tag 14	64	218

Varianz

Varianz _{Kilometer} =

$$\frac{(66-60)^2 + (85-60)^2 + (55-60)^2 + \dots + (64-60)^2}{14} = 363,3$$
Anzahl der Werte in der Tabelle (Urliste)

 $Varianz_{H\ddot{o}henmeter} =$

$$\frac{(227-267,7)^2+(179-267,7)^2+(267-267,7)^2+...+(218-267,7)^2}{14}=4.701,8$$
Anzahl der Werte in der Tabelle (Urliste)

Fallstudie "Fahrradtour"

Tag	Kilometer	Höhenmeter
Tag 1	66	227
Tag 2	85	179
Tag 3	55	267
Tag 4	32	363
Tag 5	73	232
Tag 6	55	261
Tag 7	42	304
Tag 8	30	442
Tag 9	102	191
Tag 10	48	313
Tag 11	53	289
Tag 12	75	213
Tag 13	60	249
Tag 14	64	218

Standardabweichung (absolut)

Standardabweichung (absolut) $_{Kilometer} = \sqrt{Varianz} _{Kilometer} =$

$$\sqrt{363,3} = 19,1$$

Standardabweichung (absolut) $_{H\ddot{o}henmeter} = \sqrt{Varianz} + \frac{1}{H\ddot{o}henmeter} = \frac{1}{Varianz} + \frac{1}{H\ddot{o}henmeter} + \frac{1}{Varianz} + \frac{1}{H\ddot{o}henmeter} = \frac{1}{Varianz} + \frac{1}{H\ddot{o}henmeter} + \frac{1}{Varianz} + \frac{1}{H\ddot{o}henmeter} + \frac{1}{Varianz} + \frac{1}{H\ddot{o}henmeter} = \frac{1}{Varianz} + \frac{1}{H\ddot{o}henmeter} + + \frac{1}{H\ddot{o}h$

$$\sqrt{4.701,8} = 68,6$$

Fallstudie "Fahrradtour"

Tag	Kilometer	Höhenmeter
Tag 1	66	227
Tag 2	85	179
Tag 3	55	267
Tag 4	32	363
Tag 5	73	232
Tag 6	55	261
Tag 7	42	304
Tag 8	30	442
Tag 9	102	191
Tag 10	48	313
Tag 11	53	289
Tag 12	75	213
Tag 13	60	249
Tag 14	64	218

Standardabweichung (relativ)

Standardabweichung (relativ) $_{Kilometer} =$

$$\frac{\text{Standardabweichung (absolut)}_{\text{Kilometer}}}{\text{Mittelwert}_{\text{Kilometer}}} = \frac{19,1}{60,0} = 0,32 = 32\%$$

Standardabweichung (relativ) $_{H\ddot{o}henmeter} =$

$$\frac{\text{Standardabweichung (absolut)}_{\text{H\"ohenmeter}}}{\text{Mittelwert}_{\text{H\"ohenmeter}}} = \frac{68,6}{267,7} = 0,26 = 26\%$$

Agenda von Modul ST-01 (1/2)

- Univariate Analyse
 - Skalenniveaus von Daten und statistische Lagemaße
 - Statistische Lagemaße
 - Modus, Median, Quartil, Interquartilsabstand, Spannweite und Mittelwert
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Skalenniveaus von Daten und statistische Streuungsmaße
 - Statistische Streuungsmaße
 - Varianz und Standardabweichung
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Fallstudie in "EXCEL"

Statistische Excel-Standard-Funktionen (Auswahl):

Varianz: VARIANZENA (Matrix)

Standardabweichung (absolut): STABWNA (*Matrix*)

Fallstudie in "ORANGE"

Box Plot

Fallstudie in "ORANGE"

Agenda von Modul ST-01 (2/2)

- Bivariate Analyse
 - Skalenniveaus von Daten und statistische Zusammenhangsmaße
 - Statistische Zusammenhangsmaße
 - Chi²-Koeffizient und Cramer's V
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Korrelationskoeffizient (Pearson)
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - t-Wert und Cohen's D
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Bivariate Analyse | Skalenniveaus von Daten und statistische Zusammenhangsmaße

Frage: Liegt in einem bivariaten Datensatz ein Zusammenhang vor?

nominalskaliert ordinalskaliert metrisch Chi²-Koeffizient Korrelations-Rangkorrelations-(Cramer's V) koeffizient koeffizient (Spearman) (Pearson) t-Wert (Cohen's D)

Agenda von Modul ST-01 (2/2)

- Bivariate Analyse
 - Skalenniveaus von Daten und statistische Zusammenhangsmaße
 - Statistische Zusammenhangsmaße
 - Chi²-Koeffizient und Cramer's V
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Korrelationskoeffizient (Pearson)
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - t-Wert und Cohen's D
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Chi²-Koeffizient und Cramer's V

Frage: Liegt in einem bivariaten Datensatz ein Zusammenhang vor?

Chi²-Koeffizient und Cramer's V

Fallstudie "Studienfach":

Gibt es bei 500 befragten Studenten/innen einen Zusammenhang zwischen dem Geschlecht und dem Studienfach?

beobachtet	BWL	Soz	VWL	SoWi	Stat	SUMME
männlich	110	120	20	30	20	300
weiblich	90	60	30	10	10	200
SUMME	200	180	50	40	30	500

beobachtet	BWL	Soz	VWL	SoWi	Stat	SUMME
männlich	110	120	20	30	20	300
weiblich	90	60	30	10	10	200
SUMME	200	180	50	40	30	500

erwartet	BWL	Soz	VWL	SoWi	Stat	SUMME
männlich	120	108	30	24	18	300
weiblich	80	72	20	16	12	200
SUMME	200	180	50	40	30	500

beobachtet	BWL	Soz	VWL	SoWi	Stat	SUN	ИΜЕ
männlich	110	120	20	30	20		300
weiblich	90	60	30	10	10		200
SUMME	200	180	50	40	30		500

$$120 = \frac{200 \times 300}{500}$$

erwartet	BWI	Soz	VWL	SoWi	Stat	SUMME
männlich	120	108	30	24	18	300
weiblich	80	72	20	16	12	200
SUMME	200	180	50	40	30	500

beobachtet	BWL	Soz	VWL	SoWi	Stat	SU	IMME
männlich	110	120	20	30	20		300
weiblich	90	60	30	10	10		200
SUMME	200	180	50	40	30		500

$$108 = \frac{180 \times 300}{500}$$

erwartet	BWL	Soz	VWL	SoWi	Stat	SUMME
männlich	120	108	30	24	18	300
weiblich	80	72	20	16	12	200
SUMME	200	180	50	40	30	500

Chi²-Koeffizient und Cramer's V

beobachtet	BWL	Soz	VWL	SoWi	Stat	SU	MME
männlich	110	120	20	30	20		300
weiblich	90	60	30	10	10		200
SUMME	200	180	50	40	30	D (500

$$12 = \frac{30 \times 200}{500}$$

erwartet	BWL	Soz	VWL	SoWi	Sta	t SUMME
männlich	120	108	30	24	1	300
weiblich	80	72	20	16	1	2 200
SUMME	200	180	50	40	3	500

2. Schritt: Berechnung des Chi²-Koeffizienten

beobachtet	BWL	Soz	VWL	SoWi	Stat	SUMME
männlich	110	120	20	30	20	300
weiblich	90	60	30	10	10	200
SUMME	200	180	50	40	30	500

erwartet	BWL	Soz	VWL	SoWi	Stat	SUMME
männlich	120	108	30	24	18	300
weiblich	80	72	20	16	12	200
SUMME	200	180	50	40	30	500

Chi²-Koeffizient =
$$\frac{(110-120)^2}{120} + \frac{(120-108)^2}{108} + ... + \frac{(10-12)^2}{12} = 18,06$$

Chi²-Koeffizient und Cramer's V

2. Schritt: Berechnung des Chi²-Koeffizienten

beobachtet	BWL	Soz	VWL	SoWi	Stat	SUMME
männlich	110	120	20	30	20	300
weiblich	90	60	30	10	10	200
SUMME	200	180	50	40	30	500

erwartet	BWL	Soz	VWL	SoWi	Stat	SUMME
männlich	120	108	30	24	18	300
weiblich	80	75	20	16	12	200
SUMME	200	180	50	40	30	500

Chi²-Koeffizient =
$$\frac{(110-120)^2}{120} + \frac{(120-108)^2}{108} + ... + \frac{(10-12)^2}{12} = 18,06$$

2. Schritt: Berechnung des Chi²-Koeffizienten

beobachtet	BWL	Soz	VWL	SoWi	Stat	SUMME
männlich	110	120	20	30	20	300
weiblich	90	60	30	10	10	200
SUMME	200	180	50	40	30	500

erwartet	BWL	Soz	VWL	SoWi	S	tat	SUMME
männlich	120	108	30	24		18	300
weiblich	80	72	20	16		12	200
SUMME	200	180	50	40		3 0	500

Chi²-Koeffizient =
$$\frac{(110-120)^2}{120} + \frac{(120-108)^2}{108} + ... + \frac{(10-12)^2}{12} = 18,06$$

Frage: Sprechen 18,06 für einen Zusammenhang oder nicht? **Problem:** Der Chi²-Koeffizient ist für sich schwer interpretierbar!

Exkurs: H₀-Hypothesentest

 H_0 = Es besteht kein Zusammenhang zwischen Geschlecht und Studiengang H_1 = Es besteht ein Zusammenhang zwischen Geschlecht und Studiengang

Exkurs: H_0 -Hypothesentest

 H_0 = Es besteht kein Zusammenhang zwischen Geschlecht und Studiengang H_1 = Es besteht ein Zusammenhang zwischen Geschlecht und Studiengang

	P			-12							
DF	0.995	0.975	0.2	0.1	0.05	0.025	0.02	0.01	0.005	0.002	0.001
1	.0004	.00016	1.642	2.706	3.841	5.024	5.412	6.635	7.879	9.55	10.828
2	0.01	0.0506	3.219	4.605	5.991	7.378	7.824	9.21	10.597	12.429	13.816
3	0.0717	0.216	4.642	6.251	7.815	9.348	9.837	11.345	12.838	14.796	16.266
4	0.207	0.484	5.989	7.779	9.488	11.143	11.668	13.277	14.86	16.924	18.467
5	0.412	0.831	7.289	9.236	11.07	12.833	13.388	15.086	16.75	18.907	20.515
6	0.676	1.237	8.558	10.645	12.592	14.449	15.033	16.812	18.548	20.791	22.458
7	0.989	1.69	9.803	12.017	14.067	16.013	16.622	18.475	20.278	22.601	24.322
8	1.344	2.18	11.03	13.362	15.507	17.535	18.168	20.09	21.955	24.352	26.124
9	1.735	2.7	12.242	14.684	16.919	19.023	19.679	21.666	23.589	26.056	27.877
10	2.156	3.247	13.442	15.987	18.307	20.483	21.161	23.209	25.188	27.722	29.588
11	2.603	3.816	14.631	17.275	19.675	21.92	22.618	24.725	26.757	29.354	31.264
12	3.074	4.404	15.812	18.549	21.026	23.337	24.054	26.217	28.3	30.957	32.909
13	3.565	5.009	16.985	19.812	22.362	24.736	25.472	27.688	29.819	32.535	34.528

Chi²-Verteilungstabelle:

P = Irrtumswahrscheinlichkeit $\Rightarrow z.B. \ 0.05 = 5\%$ DF = Freiheitsgrad (Spalten - 1 x Zeilen - 1) $\Rightarrow im Beispiel (5 - 1) x (2 - 1) = 4$

Ergebnis: Da 18,06 größer ist der kritische Wert von 9,488, wird die Nullhypothese H_0 verworfen und H_1 angenommen.

Frage: Wir stark ist dieser Zusammenhang, d.h. wie groß ist die sog. "Effektstärke"?.

Lösung: Cramer's V als normalisierte Metrik zur Messung der Effektstärke des Zusammenhangs!

3. Schritt: Berechnung Cramer's V

Cramer's
$$V = \sqrt{\frac{Chi^2}{n \times (m-1)}}$$

n = Gesamtzahl der Fälle (Beobachtungen) m = Minimum von Anzahl Zeilen bzw. Spalten

3. Schritt: Berechnung Cramer's V

Cramer's
$$V = \sqrt{\frac{Chi^2}{n \times (m-1)}}$$

n = Gesamtzahl der Fälle (Beobachtungen) m = Minimum von Anzahl Zeilen bzw. Spalten

beobachtet	BWL	Soz	VWL	SoWi	Stat	SUMME
männlich	110	120	20	30	20	300
weiblich	90	60	30	10	10	200
SUMME	200	180	50	40	30	500

Cramer's
$$V = \sqrt{\frac{18,06}{500 \times (2-1)}} = 0,19$$

3. Schritt: Berechnung Cramer's V

Cramer's
$$V = \sqrt{\frac{Chi^2}{n \times (m-1)}}$$

n = Gesamtzahl der Fälle (Beobachtungen) m = Minimum von Anzahl Zeilen bzw. Spalten

beobachtet	BWL	Soz	VWL	SoWi	Stat	SUMME
männlich	110	120	20	30	20	300
weiblich	90	60	30	10	10	200
SUMME	200	180	50	40	30	500

Cramer's
$$V = \sqrt{\frac{18,06}{500 \times (2-1)}} = 0,19$$

4. Schritt: Interpretation von Cramer's V

Merke: Cramer's V liegt immer zwischen 0 und 1 und ist daher eine normalisierte Metrik!

4. Schritt: Interpretation von Cramer's V

Merke: Cramer's V liegt immer zwischen 0 und 1 und ist daher eine normalisierte Metrik!

Agenda von Modul ST-01 (2/2)

- Bivariate Analyse
 - Skalenniveaus von Daten und statistische Zusammenhangsmaße
 - Statistische Zusammenhangsmaße
 - Chi²-Koeffizient und Cramer's V
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Korrelationskoeffizient (Pearson)
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - t-Wert und Cohen's D
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Fallstudie in "EXCEL"

Statistische Excel-Standard-Funktionen (Auswahl):

Es existiert keine EXCEL-Standard-Funktion, die den Chi²-Koeffizienten oder Cramer's V berechnet!

Fallstudie in "ORANGE"

Box Plot

Agenda von Modul ST-01 (2/2)

- Bivariate Analyse
 - Skalenniveaus von Daten und statistische Zusammenhangsmaße
 - Statistische Zusammenhangsmaße
 - Chi²-Koeffizient und Cramer's V
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Korrelationskoeffizient (Pearson)
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - t-Wert und Cohen's D
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Korrelationskoeffizient (Pearson)

Frage: Liegt in einem bivariaten Datensatz ein Zusammenhang vor?

Besteht ein Zusammenhang zwischen den täglich gefahrenen Kilometern und Höhenmetern?

Tag	Kilometer	Höhenmeter
Tag 1	66	227
Tag 2	85	179
Tag 3	55	267
Tag 4	32	363
Tag 5	73	232
Tag 6	55	261
Tag 7	42	304
Tag 8	30	442
Tag 9	102	191
Tag 10	48	313
Tag 11	53	289
Tag 12	75	213
Tag 13	60	249
Tag 14	64	218

Besteht ein Zusammenhang zwischen den täglich gefahrenen Kilometern und Höhenmetern?

Tag	Kilometer	Höhenmeter
Tag 1	66	227
Tag 2	85	179
Tag 3	55	267
Tag 4	32	363
Tag 5	73	232
Tag 6	55	261
Tag 7	42	304
Tag 8	30	442
Tag 9	102	191
Tag 10	48	313
Tag 11	53	289
Tag 12	75	213
Tag 13	60	249
Tag 14	64	218

Lagemaß:

 $Mittelwert_{Kilometer} = 60,0$

 $Mittelwert_{H\ddot{o}henmeter} = 267,7$

Streuungsmaß:

Standardabweichung (absolut) $_{Kilometer} = 19,1$

Standardabweichung (absolut) $_{H\ddot{o}henmeter} = 68,6$

Besteht ein Zusammenhang zwischen den täglich gefahrenen Kilometern und Höhenmetern?

Tag	Kilometer	Höhenmeter	Kilometer x Höhenmeter
Tag 1	66	227	14.982
Tag 2	85	179	15.215
Tag 3	55	267	14.685
Tag 4	32	363	11.616
Tag 5	73	232	16.936
Tag 6	55	261	14.355
Tag 7	42	304	12.768
Tag 8	30	442	13.260
Tag 9	102	191	19.482
Tag 10	48	313	15.024
Tag 11	53	289	15.317
Tag 12	75	213	15.975
Tag 13	60	249	14.940
Tag 14	64	218	13.952

Lagemaß:

 $Mittelwert_{Kilometer} = 60,0$

 $Mittelwert_{H\"{o}henmeter} = 267,7$

Streuungsmaß:

Standardabweichung (absolut) $_{Kilometer} = 19,1$

Standardabweichung (absolut) $_{H\ddot{o}henmeter} = 68,6$

Zusammenhangsmaß:

 $Korrelationskoeffizinent (Pearson) = \frac{Mittelwert (Kilometer \times H\"{o}henmeter) - Mittelwert _{Kilometer} \times Mittelwert _{H\"{o}henmeter}}{Standardabweichung(absolut)_{Kilometer} \times Standardabweichung(absolut)_{H\"{o}henmeter}}$

Besteht ein Zusammenhang zwischen den täglich gefahrenen Kilometern und Höhenmetern?

Tag	Kilometer	Höhenmeter	Kilometer x Höhenmeter
Tag 1	66	227	14.982
Tag 2	85	179	15.215
Tag 3	55	267	14.685
Tag 4	32	363	11.616
Tag 5	73	232	16.936
Tag 6	55	261	14.355
Tag 7	42	304	12.768
Tag 8	30	442	13.260
Tag 9	102	191	19.482
Tag 10	48	313	15.024
Tag 11	53	289	15.317
Tag 12	75	213	15.975
Tag 13	60	249	14.940
Tag 14	64	218	13.952

Lagemaß:

 $Mittelwert_{Kilometer} = 60,0$

 $Mittelwert_{H\"{o}henmeter} = 267,7$

Streuungsmaß:

Standardabweichung (absolut) $_{Kilometer} = 19,1$

Standardabweichung (absolut) $_{H\ddot{o}henmeter} = 68,6$

Zusammenhangsmaß:

Kovarianz (skalierungsabhängig)

 $Korrelationskoeffizinent (Pearson) = \frac{\text{Mittelwert (Kilometer} \times \text{H\"{o}henmeter}) - \text{Mittelwert}_{\text{Kilometer}} \times \text{Mittelwert}_{\text{H\"{o}henmeter}}}{\text{Standardabweichung(absolut)}_{\text{Kilometer}} \times \text{Standardabweichung(absolut)}_{\text{H\"{o}henmeter}}}$

Korrelationskoeffizient (Pearson)

Fallstudie "Fahrradtour":

Besteht ein Zusammenhang zwischen den täglich gefahrenen Kilometern und Höhenmetern?

Tag	Kilometer	Höhenmeter	Kilometer x Höhenmeter
Tag 1	66	227	14.982
Tag 2	85	179	15.215
Tag 3	55	267	14.685
Tag 4	32	363	11.616
Tag 5	73	232	16.936
Tag 6	55	261	14.355
Tag 7	42	304	12.768
Tag 8	30	442	13.260
Tag 9	102	191	19.482
Tag 10	48	313	15.024
Tag 11	53	289	15.317
Tag 12	75	213	15.975
Tag 13	60	249	14.940
Tag 14	64	218	13.952

Lagemaß:

 $Mittelwert_{Kilometer} = 60,0$

 $Mittelwert_{H\"{o}henmeter} = 267,7$

Streuungsmaß:

Standardabweichung (absolut) $_{Kilometer} = 19,1$

Standardabweichung (absolut) $_{H\ddot{o}henmeter} = 68,6$

Zusammenhangsmaß:

 $Korrelationskoeffizinent (Pearson) = \frac{Mittelwert (Kilometer \times H\"{o}henmeter) - Mittelwert _{Kilometer} \times Mittelwert _{H\"{o}henmeter}}{Standardabweichung(absolut)_{Kilometer} \times Standardabweichung(absolut)_{H\"{o}henmeter}}$

Normierung auf Wertebereich [-1,+1]

Korrelationskoeffizient (Pearson)

Fallstudie "Fahrradtour":

Besteht ein Zusammenhang zwischen den täglich gefahrenen Kilometern und Höhenmetern?

Tag	Kilometer	Höhenmeter	Kilometer x Höhenmeter
Tag 1	66	227	14.982
Tag 2	85	179	15.215
Tag 3	55	267	14.685
Tag 4	32	363	11.616
Tag 5	73	232	16.936
Tag 6	55	261	14.355
Tag 7	42	304	12.768
Tag 8	30	442	13.260
Tag 9	102	191	19.482
Tag 10	48	313	15.024
Tag 11	53	289	15.317
Tag 12	75	213	15.975
Tag 13	60	249	14.940
Tag 14	64	218	13.952

Lagemaß:

 $Mittelwert_{Kilometer} = 60,0$

 $Mittelwert_{H\ddot{o}henmeter} = 267,7$

Streuungsmaß:

Standardabweichung (absolut) $_{Kilometer} = 19,1$

Standardabweichung (absolut) $_{H\ddot{o}henmeter} = 68,6$

Zusammenhangsmaß:

Korrelationskoeffizinent (Pearson) =
$$\frac{14.893 - 60,0 \times 267,7}{19,1 \times 68,6} = \frac{-1.069,5}{1.306,9} = -0,895$$

Besteht ein Zusammenhang zwischen den täglich gefahrenen Kilometern und Höhenmetern?

Korrelationskoeffizient (Pearson): -0,895

Achtung: (negativer) statistischer Zusammenhang, aber keine Kausalität!

Korrelationskoeffizient (Pearson)

Korrelationskoeffizient (Pearson)

Interpretation des Korrelationskoeffizienten (Pearson)

M = 1	perfekter positiver Zusammenhang	"Je mehr X, desto mehr Y"
0.7 < M < 0.99	sehr starker positiver Zusammenhang	
0,5 < M < 0,69	starker positiver Zusammenhang	
0.3 < M < 0.49	mittelstarker positiver Zusammenhang	
0,2 < M < 0,29	schwacher positiver Zusammenhang	
M = 0	statistische Unabhängigkeit, d.h. es best	eht kein Zusammenhang
-0,2 < M < -0,29	schwacher negativer Zusammenhang	
-0.3 < M < -0.49	mittelstarker negativer Zusammenhang	
-0,5 < M < -0,69	starker negativer Zusammenhang	
-0,7 < M < -0,99	sehr starker negativer Zusammenhang	
M = -1	perfekter negativer Zusammenhang	"Je mehr X, desto weniger Y"

Agenda von Modul ST-01 (2/2)

- Bivariate Analyse
 - Skalenniveaus von Daten und statistische Zusammenhangsmaße
 - Statistische Zusammenhangsmaße
 - Chi²-Koeffizient und Cramer's V
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Korrelationskoeffizient (Pearson)
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - t-Wert und Cohen's D
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Fallstudie in "EXCEL"

Statistische Excel-Standard-Funktionen (Auswahl):

Korrelationskoeffizient (Pearson): KORREL (Matrix1; Matrix2)

Fallstudie in "ORANGE"

Correlations

Agenda von Modul ST-01 (2/2)

- Bivariate Analyse
 - Skalenniveaus von Daten und statistische Zusammenhangsmaße
 - Statistische Zusammenhangsmaße
 - Chi²-Koeffizient und Cramer's V
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Korrelationskoeffizient (Pearson)
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - t-Wert und Cohen's D
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Korrelationskoeffizient (Pearson)

Frage: Liegt in einem bivariaten Datensatz ein Zusammenhang vor?

t-Wert und Cohen's D

Der t-Wert gibt an, ob ein Zusammenhang zwischen einem nominal ("kategorial") skalierten und einem metrisch skalierten Merkmal besteht:

Anzahl der Beobachtungen in den jeweiligen (nominalen) Kategorien

Je höher der t-Wert, desto mehr unterscheiden sich die beiden Kategorien voneinander und desto stärker der Zusammenhang zwischen dem nominal ("kategorial") skalierten und dem metrisch skalierten Merkmal.

Besteht ein Zusammenhang zwischen den täglich gefahrenen Kilometern (metrisch skaliert) und Regen-Tagen (nominal skaliert)?

Tag	Kilometer	Regen
Tag 1	66	nein
Tag 2	85	nein
Tag 3	55	ja
Tag 4	32	ja
Tag 5	73	ja
Tag 6	55	ja
Tag 7	42	nein
Tag 8	30	nein
Tag 9	102	ja
Tag 10	48	nein
Tag 11	53	ja
Tag 12	75	nein
Tag 13	60	nein
Tag 14	64	ja

Besteht ein Zusammenhang zwischen den täglich gefahrenen Kilometern (metrisch skaliert) und Regen-Tagen (nominal skaliert)?

Tag	Kilometer	Regen
Tag 1	66	nein
Tag 2	85	nein
Tag 3	55	ja
Tag 4	32	ja
Tag 5	73	ja
Tag 6	55	ja
Tag 7	42	nein
Tag 8	30	nein
Tag 9	102	ja
Tag 10	48	nein
Tag 11	53	ja
Tag 12	75	nein
Tag 13	60	nein
Tag 14	64	ja

$$t - Wert = \frac{\mid Mittelwert_{Kategorie\ 1} - Mittelwert_{Kategorie\ 2}\mid}{\sqrt{\frac{Varianz_{Kategorie\ 1}}{n_1} + \frac{Varianz_{Kategorie\ 2}}{n_2}}}$$

Besteht ein Zusammenhang zwischen den täglich gefahrenen Kilometern (metrisch skaliert) und Regen-Tagen (nominal skaliert)?

Tag	Kilometer	Regen
Tag 1	66	nein
Tag 2	85	nein
Tag 3	55	ja
Tag 4	32	ja
Tag 5	73	ja
Tag 6	55	ja
Tag 7	42	nein
Tag 8	30	nein
Tag 9	102	ja
Tag 10	48	nein
Tag 11	53	ja
Tag 12	75	nein
Tag 13	60	nein
Tag 14	64	ja

$$t - Wert = \frac{| \text{Mittelwert}_{Regen=nein} - \text{Mittelwert}_{Regen=ja}|}{\sqrt{\frac{\text{Varianz}_{Regen=nein}}{n_{Regen=nein}} + \frac{\text{Varianz}_{Regen=ja}}{n_{Regen=ja}}}}$$

$$t - Wert = \frac{|\frac{(66 + \dots + 60)}{7} - \frac{(55 + \dots + 64)}{7}|}{\sqrt{\frac{\text{Varianz}_{Regen=nein}}{7} + \frac{\text{Varianz}_{Regen=ja}}{7}}}$$

$$t - Wert = \frac{|58 - 62|}{\sqrt{\frac{(66 - 58)^2 + \dots + (60 - 58)^2}{7} + \frac{(55 - 62)^2 + \dots + (64 - 62)^2}{7}}}$$

$$t - Wert = \frac{4}{\sqrt{\frac{318,0}{1000} + \frac{400,6}{1000}}} = \frac{4}{10,1} = 0,39$$

Frage: Sprechen 0,39 für einen Zusammenhang oder nicht? **Problem:** Der t-Wert ist für sich schwer interpretierbar!

Lösung: Cohen's D als Metrik zur Messung der Effektstärke des Zusammenhangs!

Fallstudie "Fahrradtour":

Besteht ein Zusammenhang zwischen den täglich gefahrenen Kilometern (metrisch skaliert) und Regen-Tagen (nominal skaliert)?

Tag	Kilometer	Regen
Tag 1	66	nein
Tag 2	85	nein
Tag 3	55	ja
Tag 4	32	ja
Tag 5	73	ja
Tag 6	55	ja
Tag 7	42	nein
Tag 8	30	nein
Tag 9	102	ja
Tag 10	48	nein
Tag 11	53	ja
Tag 12	75	nein
Tag 13	60	nein
Tag 14	64	ja

$$Cohen's \ D^* = \frac{t - Wert}{\sqrt{\frac{n}{4}}} \qquad \qquad n = \textit{Anzahl der Werte in der Tabelle (Urliste, properties)}$$

Cohen's D* =
$$\frac{0.39}{\sqrt{\frac{14}{4}}} = \frac{0.39}{1.87} = 0.21$$

* = für den Fall $n_1 = n_2$

t-Wert und Cohen's D

Interpretation von Cohen's D

Merke: Cohen's D (gem. vorstehender Formeln) liegt zwischen 0 und ∞ und ist daher <u>keine</u> normalisierte Metrik!

Interpretation von Cohen's D

Merke: Cohen's D (gem. vorstehender Formeln) liegt zwischen 0 und ∞ und ist daher <u>keine</u> normalisierte Metrik!

Agenda von Modul ST-01 (2/2)

- Bivariate Analyse
 - Skalenniveaus von Daten und statistische Zusammenhangsmaße
 - Statistische Zusammenhangsmaße
 - Chi²-Koeffizient und Cramer's V
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - Korrelationskoeffizient (Pearson)
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"
 - t-Wert und Cohen's D
 - Fallstudie in "EXCEL"
 - Fallstudie in "ORANGE"

Fallstudie in "EXCEL"

Statistische Excel-Standard-Funktionen (Auswahl):

Es existiert keine EXCEL-Standard-Funktion, die den t-Wert oder Cohen's D berechnet!

Fallstudie in "ORANGE"

Box Plot

