

Assignment-06b

Course ID: CSC-301

Section: 1

Submitted to: A.R Azimul Haque

Group: K

Submitted by: Nafisa Nawal

ID: 1810064

Md . Ashikur Rahman

ID: 1831110

Date of Submission: 12th September 2021

Answere to the avestion no - 1

Prob def: Placeing Probabilities in decending Order. We know death percentage. Using Hudsmans optical code Joremula.

Hudsmans optical code Joremula.

The state of the s

Regula	ex that sme	en Death			1				2
0000	10	0.21 [10]	0.21 [10]	0.21		0.25 [01]	0.34 [00]	0.41 Er 7	0 - /
0001	11	[1]	0-26 [11]	0-20 [11]	0.20 [1]	0.21 [10]	0-25	0.94	0.91
0010	100	0.15 [001]	0.15 [00]]	0.15	0:19 [200]	0.20 [11]	0.21	0.25	,
0011	011	0.12 [011]	0.12 [011]	0.13 [010]	0.15 [601]	[000]	0-20 E117	- 1	
0100	0000	[0000]	[0000]	0.12 [011]	0.13	0.15		. ,	N 43
0101	0001	[0001][0.08	0.11	012		. 7741	7.7	/
0110	0101		0-07 1	A. AD					
0111	111000	0-05 C	01017						
1000	01001	0.02 [0100]			7				

(b) code length = 4. Regular coding Price (9x1)=4

(c) Hutsman optical coding Price.

 $= \frac{1}{2} \left\{ \sum_{j=1}^{2} b_{j} \right\} \left(c^{2} \right)$

 $= (0.21 \times 2) + (0.20 \times 2) + 0.15 \times 3) + (0.12 \times 3)$ $+ (0.11 \times 4) + (0.08 \times 4) + (0.06 \times 4) + (0.05 \times 5) +$ (0.02×5)

= = 2.98 (Ans)

Answer to the question no-2

Prob det: Placeing Probabilites in desending order We know the number of attack Use F Their given integer form and sum. Use FANDE'S Nearly optimal code

FAN	DE,	Ne Ne	orely	opti	mal	code	WASAN.	
Regular	Affack	Percentage					e 5	Leng
000	620	0.1854	1	7 (17)			11	2
001	560	0.1675	FK -	10 -	101)	12.0)	101	3
010	515	0.154	Thes	16 -	-> (loo)	27.01	(00	3
011	421	0.125	O	01 -	> (11)		011	3
106	360	0.1077	0	0 \ -	> (010)		010	3
101	320	0.0957	0	00 -	> (00)		001	3
011	285	0.085	0	00	000-	7600D	0001	4
111		0.786	0	00	000-	(000)	0000	4

(b) Length 3 : Regular coding Price (3x1)=3

(c) Optical code Price,

$$= \frac{2(0.185042) + (0.1675 \times 3) + (0.154 \times 3) + (0.0957 \times 3)}{(0.1259 \times 9) + (0.1077 \times 3) + (0.0957 \times 3)}$$

$$+ (0.0852 \times 4) + (0.786 \times 4)$$

$$= 2.978 \quad (Ans)$$

Answers to the auestion no-3

Prob det: A code can detect all combinatio of k

Orr fewer errors. The minimum distance between

2 code at least 'k+1'. Correct code minimum

distance between 2 code at least 2k+1.

64 = 26 : Information digit = 6 for 2 enror Correction and distanc = 2 k+1 = 2.2+ : Prity - chect digit P=5

 $K_7 = K_1 \oplus K_2 \oplus K_3 \oplus K_4 + K_5 (P_1)$ $K_8 = K_1 \oplus K_2 \oplus K_3 \oplus K_4 \oplus K_6 (P_2)$ $K_9 = K_1 \oplus K_2 \oplus K_3 \oplus K_5 \oplus K_6 (P_3)$ $K_{10} = K_1 \oplus K_2 \oplus K_4 \oplus K_5 \oplus K_6 (P_4)$ $K_{11} = K_1 \oplus K_3 \oplus K_4 \oplus K_5 \oplus K_6 (P_5)$

 $S_1 = \{ u_1, u_2, u_3, u_4, u_5, u_7 \}$ $S_2 = \{ u_1, u_2, u_3, u_4, u_6, u_8 \}$ $S_3 = \{ u_1, u_2, u_3, u_5, u_6, u_9 \}$ $S_4 = \{ u_1, u_2, u_4, u_5, u_6, u_9 \}$ $S_5 = \{ u_1, u_3, u_4, u_5, u_6, u_9 \}$

	1/	-										
	K,	K2	K3	44	us	No	K7	ng	Ka	x10	L	(1)
	0		1	(0	00	+	1	0	0	Ò	
	0		1	1 >	0	1	1	0		1	1	
	0)	01	91	6	0	1			-1	
	1	0	3	1	1	1	0	0	0	0	0	
	(0	0	0	0	0	1	1		1	1	
	1	0	0	0	0	(1	0	0	0	0	
	1	0	. 0	0	11	0	0	1	0	0	C	
-	1	0		0	51	1	O	0	1		1	
-			0	11	0	0	0	0	1	G	0	
	(0	0	1	0		0	1	0	0	1	
	od?	0	0	(ea	, both	0	6	0	0	21	1	
	1	0	0	1	1	1	1	1	1	0	0	
3	(0	1.	0	0	0	0	0	0	1 =	0	
	1	0	1	0	0	713	0	10	1-100	ONI	1	
1	1	0	1	0	1	٥	1	0	1	3		\
	1	0	١	0	1	1	1	1	0	(C)
	1	0	1	(0	0	12	1	0	0	51	1
	1	0	1	\	0	1.	1	0	1	1		C
	1	0	}	1	?	0	O	1	1	7		0
	1	0	1	1	-1	1	0	0	0	0		1
)	1	6	0	8	0	O	0	0	O		1
	1	1	0	0		1	O	1. The	17	100		0
Χ.	1	1	0	0	T	O	1	0	1	1		0
	1	1	0	Ó	1	1	\	1	0	C)	1
		1	0	:	0	0	1	7	0	1	1	0
	1	1	0	,	Ò	1	\	\bigcirc	١	(\mathcal{C}	1
1	,		0	1	1	0	0	1	5 21.	0.0	I	1
())	8	1	(1	0	0	C	3)	C
-))	;	0	0	۵						O

							•			
4	112	N3	ny	N5	no	N.F	248	us	240	1200
,	1	1	0	8	1	1	0	0	1	1
1		1	0	1	0	0	1	3	1	9
	1	1	0	((0	O	1	1	0
1	-	(11	8	0	0	0	1	1	1
10		(01	6	9	0	01	0	0	0
1	1	1	0	(0	্ৰ	0	0	0	0
10	1	1	4	1	1	1	1	1	1	1

Ps the world.

intersection = {5,15,} U {5,15,} U {5,15,} U {5,3,15,3} U {5,4,5,4} U $\{S_5 \mid S_5\}$ We take $P_1 = \text{Jalie}$ e S_1 of arthrives $P_2 = \text{True}, P_3 = \text{True},$ e, $P_5 = \text{False}$ $\{S_3 \mid S_4 \mid S_5\}$

else we take si

(1) 11000 / 10001 archives

then P1 = True, P2 = True, P3 = True,

Py = True, Ps = False

2 SINISIN Syn Ssy

1 { Maintins moi Kii3 U { K3, K7, K8, K9, Ki 1 2 K2, K3, Ka, K5, K6) K113

= K 11

(11) 111111 (11)

then P1=False, P2=False, P3 = False, P4=False, P5=False

-: 2 S, NSLNS3NS4NS53

Conclusion:

(1) Find the Hutsman Code. Using rules we find coding Price and Optical coding price.

(11) Using Jormula Sind Nance's code, regular coding price and nearby optical

(111) Find error detention and error correction for 64 code world