2. In each circuit in Fig. 1, either the value of v or i is not known

Figure 1

a) Calculate the values of v_a , i_b , v_c , and i_d . Units are important for all questions.

		Va= 1 * 8 = 8V	Vc = -/ x20 =	-20V
	入与	$T_b = \frac{50}{\sqrt{0.2}} - 10A$	- 60	
,	wer:	3	10 = 25	-2 A

b) Determine the power dissipated in each resistor. ov

`

(a)
$$V_{0} \times 1 = 8 \times 1 = 8 W$$
 (c) $-1 \times -20 = 20 \mu$
(b) $50 \times 250 = 500 \mu$
Answer: (d) $-2 \times -50 = 100 \mu$

7. The variable resistor R in the circuit in Fig. 6 is adjusted until io equals 20 mA Find the value of R.

8. Find (a) i₀ (b) i₁, and (c) i₂ in the circuit in Fig.7

Figure 7

4. Refer to the following circuit to answer following questions

a) Calculate the output voltage v_0 for the voltage divider circuit

$$V_0 = 150 \times \frac{2k}{(5.2+2)k} = 41.66V$$
Answer:

b) Calculate the net current flowing through the circuit

$$\frac{1}{1} = \frac{150V}{(5200+2000)} = 20.8 \text{ mA} = 0.0208 \text{ A}$$
Answer:

c) Calculate the total power of this circuit in the absence of R1, if the existing voltage source is replaced by a similar source of 100V.

0.3
$$P = V_I = \frac{V_V^2}{R} = \frac{(100)^2}{2000} = 5 \omega$$
.

Answer:

5-6. Refer to the following circuit to answer following questions

5. Find the equivalent resistance R_{ab} in the circuit by using a Y-to-Δ transformation involving the resistors R2, R3, and R5.

1. For the circuit shown, find Vout.

2. For the circuit shown, find the relationship between Vout and Vin.

3. For the circuit below, determine:

a) The current, i_{t} and voltage v_{out} if u(t) = 4V

b) The current, i, and voltage v_{out} if $u(t) = 2\cos(5t)$

Void =
$$-2u(t) = -4(0x(5t) [v]$$

Answer: $T = -(-4(0x(5t)) = \frac{1}{5}(0x(5t) [A])$

4. For the circuit shown, find Vout.

Answer:

O K(L at V-

$$\frac{2-0}{10} + \frac{4-0}{10} + \frac{3-0}{10} = 0 - Vovit$$

Answer: $Vovit = 2 + 4 + 3 = 9$
 $Vovit = -9 \text{ CV}$

5. For the circuit shown, find Vout.

6. For the circuit shown, find Vout.

