Podstawy Fizyki

dla Informatyki

Stanisław Drożdż Katedra Informatyki PK

Przedmiot badań fizyki kwantowej

- Fizyka kwantowa (mechanika kwantowa, teoria kwantów) zajmuje się opisem świata mikroskopowego.
- Przykład: atomy, cząsteczki chemiczne, jądra atomowe, cząstki elementarne (elektrony, protony).
- Fizyka kwantowa stanowi też teoretyczna podstawę wielu dziedzin nauki i techniki, np. chemii, biologii molekularnej, astrofizyki, elektroniki.
- W odróżnieniu od fizyki klasycznej, opisującej świat makroskopowy, wiele wielkości fizycznych w fizyce kwantowej (np. energia) istnieje w postaci minimalnych porcji zwanych kwantami lub ich całkowitych wielokrotnościach.
- Pojęcie kwantu zostało wprowadzone przez Maxa Plancka w 1900 r. w celu wyjaśnienia promieniowania ciała doskonale czarnego.

Efekt fotoelektryczny

- Efekt fotoelektryczny: wybijanie elektronów z powierzchni metalu przez wiązkę światła
- Wykorzystanie: np. kamery video, noktowizory

Nieoczekiwane wyniki:

- 1) Maksymalna energia elektronu E_k nie zależy od natężenia światła
- 2) Efekt nie występuje poniżej pewnej częstości progowej światła v₀

Niezgodność efektu fotoelektrycznego z teorią klasyczną

Wyniki eksperymentów są sprzeczne z teorią klasyczną, według której światło jest falą elektromagnetyczną o następujących własnościach:

- Jego energia zależy od natężenia światła, zatem ilość wybitych elektronów powinna rosnąć ze wzrostem natężenia ⇒ niezgodność z wynikiem 1.
- Energia fali świetlnej nie zależy od jej częstości ν (koloru) ⇒ wynik 2 jest niezrozmiały.

 $\nu=c/\lambda$, gdzie c jest prędkością, a λ długością fali

Wyjaśnienie efektu fotoelektrycznego

Hipoteza Alberta Einsteina z 1905 roku:

Światło istnieje w postaci kwantów zwanych fotonami

Energia fotonu:

$$E = h\nu$$

Stała Plancka:

$$h = 6.63 \cdot 10^{-34} \text{J} \cdot \text{s} = 4.14 \cdot 10^{-15} \text{eV} \cdot \text{s}$$

- Pochłanianie i emisja pojedynczego fotonu zachodzi w atomach tworzących dane ciało
- Efekt fotoelektryczny jest opisany przez

Równanie Einsteina:

$$h\nu = E_{k\text{max}} + \Phi$$
, Φ – praca wyjścia

Teoria Einsteina wyjaśniła efekt fotoelektryczny ⇒ nagroda Nobla w 1921 r.

Pęd fotonu

Rozpraszanie Comptona

 Einstein postuluje, że foton ma pęd, tak jak cząstka materialna.

Pęd fotonu:
$$p = \frac{h\nu}{c} = \frac{h}{\lambda}$$

- Zostało to potwierdzone przez rozpraszanie fotonów X na słabo związanych elektronach.
- Zmiana długości fali fotonu w procesie rozpraszania jest sprzeczna z fizyką klasyczną, natomiast zgadza się z teorią Einsteina.

Natura światła

Rys. 39.6. Na przestonę B, w której znajdują się dwie równoległe szczeliny, kierowane jest światło. Wiązki wychodzące z tych szczelin uginają się na skutek dyfrakcji. Dwie ugięte wiązki nakładają się na siebie na ekranie C i tworzą prążki interferencyjne. Mały detektor fotonów D umieszczony w płaszczyźnie ekranu C sygnalizuje absorpcję każdego fotonu głośnym trzaskiem

Doświadczenie Younga (HRW)

- Światło przejawia naturę falową w zjawisku interferencji.
 Falę tą można interpretować jako falę prawdopodobieństwa.
 Jasne prążki obrazu interferencyjnego ⇒ maksima prawdopodobieństwa.
- Światło zachowuje się jak cząstki – fotony rozpraszaniu comptonowskim i w zjawisku fotoelektrycznym.
- Teoria kwantów powinna opisać dwoistą naturę światła

Falowy charakter materii

- Hipoteza Luis de Broglie'a z 1924 r.: cząstki materialne też mogą przejawiać naturę falową.
- Zależność między długością fali cząstki a jej pędem jest analogiczna jak dla fotonu.

Długość fali de Broglie'a:

$$\lambda = \frac{h}{p} = \frac{h}{mv}$$

- Liczne doświadczenia z cząstkami i atomami potwierdziły "dualizm korpuskularno-falowy" materii.
- Obiekty makroskopowe są dobrze opisane przez klasyczną fizykę, bez uwzględniania natury falowej.

Interferencja elektronów

Powstawanie obrazu interferencyjnego wywołanego wiązką elektronów przechodzącą przez dwie szczeliny (HRW).

Fale materii są falami prawdopodobieństwa.

Tory cząstek w komorze pęcherzykowej

Tory naładowanych cząstek (doświadczenie Alvareza) — jeden z dowodów na korpuskularną naturę materii.