STATUS REPORT: DIH SUMMER PROJECT

Probabilistic Approach Based Anomaly Detection Techniques for Real Time Systems

Prepared by:

Shikhar Gupta [15035040] Rahul Meena [16084012] Harshit Mishra [16155031]

Supervised by:
Dr. Hari Prabhat Gupta
Dept. of Computer Science

Problem Statement:

- In a data-driven culture, companies approach decision-making from a quantitative point of view and rely less on gut feeling when making major decisions. ... Lack of accurate, timely or relevant data from across the business is also a major concern among companies with primitive or basic capabilities.
- In statistics, an **outlier** is an observation point that is distant from other observations. ... An **outlier** can cause serious **problems** in statistical analyses. **Outliers** can occur by chance in any distribution, but they often indicate either measurement **error** or that the population has a heavy-tailed distribution.

Anomaly Detection problems

Anomaly detection is applicable in a variety of domains, such as intrusion detection, fraud detection, fault detection, system health monitoring, event detection in sensor networks, and detecting ecosystem disturbances. It is often used in preprocessing to remove anomalous data from the dataset. In supervised learning, removing the anomalous data from the dataset often results in a statistically significant increase in accuracy.

Dataset: Single Chest-Mounted Accelerometer Dataset

Data Set Information:

- The dataset collects data from a wearable accelerometer mounted on the chest
- Sampling frequency of the accelerometer: 52 Hz
- Accelerometer Data are Uncalibrated
- User Activity: Walking
- Data Format: CSV
- Training Instance = 25000

Attribute Information:

sequential number, x acceleration, y acceleration, z acceleration

Data Statistics:

	x-axis	y-axis	z-axis
count	25000.000000	25000.00000	25000.00000
mean	1884.735640	2380.74432	2052.27404
Std	45.984328	88.14063	48.85544
min	1704.000000	2179.00000	1878.00000
25%	1859.000000	2315.00000	2019.00000
50%	1886.000000	2364.00000	2043.00000
75%	1908.000000	2433.00000	2085.00000
max	2110.000000	2678.00000	2248.00000

Our approach:

We are using linear regression technique for anomaly detection in real time system data. linear regression is a linear approach to modelling the relationship between a scalar response (or dependent variable) and one or more explanatory variables (or independent variables). The case of one explanatory variable is called simple linear regression.

Implementation:

Importing Libraries :- numpy,matplotlip,pandas, sklearn, linear model

Training data loading
Attribute :- x,y,z
25000 intense

```
223
24 model_X = linear_model.LinearRegression()
25 model_X.fit(X,Y)
26 linear_model.LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
27 model_Y = linear_model.LinearRegression()
28 model_Y.fit(Y,Z)
29 linear_model.LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
30 model_Z = linear_model.LinearRegression()
31 model_Z.fit(Z,X)
32 linear_model.LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
33
34
```


Test data loading
Attribute :- x,y,z
___100 intense

```
38
 39 n=1
 40 count = 0
 41 for instance in test array:
 42 #
        print(instance)
       result Y = model X.predict(instance[0])
 43
       result_Z = model_Y.predict(instance[1])
 44
 45
       result X = model Z.predict(instance[2])
       if result X > 2110*(.92) or result X < 1704*(1.05):
 46
            print("Outlier Detected at instance ",n," in value",instance[2]," of Z-axis ")
 47
            #print("Expected X at", result X)
 48
            count+=1
            outlier list.append(n)
A 50
       if result Y > 2678*(.92) or result Y < 2179*(1.05):
 51
 52
            print("Outlier Detected at instance ",n," in value",instance[0]," of X-axis ")
 53
            #print("Expexted Y at", result Y)
            count+=1
 54
A 55
            outlier list.append(n)
 56
       if result Z > 2248*(.92) or result Z < 1878*(1.05):
            print("Outlier Detected at instance ",n," in value",instance[1]." of Y-axis ")
 57
            #print("Expexted Z at", result Z)
 58
 59
            count+=1
            outlier list.append(n)
A 60
```


Plotting – 3D graph with X,Y,Z attribute loading of both training and testing data

