COURSE: UCS1502 - MICROPROCESSORS AND INTERFACING

Instruction set of 8086 – (Branch, flag manipulation and machine control instruction)

Dr. K. R. Sarath Chandran Assistant Professor, Dept. of CSE

This presentation covers

• Instruction set of 8086 (Branch , flag related and machine control instructions)

Learning Outcome of this module

 To understand branch ,flag related and machine control instructions of 8086

Contents

- Different types of branch, flag manipulation and machine control instructions of 8086
- Explanation of all branch, flag manipulation and machine control instructions of 8086

Types of instructions in 8086

- 1. Data transfer instructions
- 2. Arithmetic and logical instructions
- 3. Branch instructions
- 4. Loop instructions
- 5. Machine control instructions
- 6. Flag manipulation instructions
- 7. Shift and rotate instructions
- 8. String manipulation instructions

2 classifications

Unconditional branch instructions
Conditional branch instructions

Unconditional branch instructions

CALL - To call a procedure and save their return address to the stack.

RET - To return from the procedure to the main program.

JMP - To jump to the provided address to proceed to the next instruction.

INT N - To interrupt the program during execution and calling a service specified.

- Total 256 software interrupts (N can be from 00 to FFH)
- Eg:
- INT 00 divided by zero
- INT 01 single step
- INT 02 NMI ..

INTO - Interrupt on overflow (same as INT 04)

IRET – To return from ISR.It pops flags also.RET instruction will not pop back flags

LOOP - Used to loop a group of instructions until CX =0

```
MOV CX, 0005H
L1: <INST 1>
<INST 2>
```

ήLOOP L1

- Decrement CX
- If CX≠0 jump to label

LOOPE / LOOPZ

Loop if ZF=1 and CX≠0

LOOPNE / LOOPNZ

Loop if ZF=0 and CX≠0

Conditional branch instructions

```
JA/JNBE – jump if above/not below or equal
```

JAE/JNB /JNC- jump if above or equal /not below / no carry

JBE/JNA - jump if below or equal/ not above

JC – jump if carry flag CF = 1

JE/JZ – jump if equal/zero flag ZF = 1

JG/JNLE - jump if greater/not less than or equal

JGE/JNL - jump if greater than or equal/not less than

JL/JNGE - jump if less than/not greater than or equal


```
JLE/JNG – jump if less than/equal/if not greater than JNE/JNZ – jump if not equal/zero flag ZF = 0
JNO – jump if no overflow flag OF = 0
JNP/JPO – jump if not parity/parity odd PF = 0
JNS – jump if not sign SF = 0
JO – jump if overflow flag OF = 1
JP/JPE – jump if parity/parity even PF = 1
JS – jump if sign flag SF = 1
```


Flag manipulation instructions

STC – set carry flag

CLC – clear/reset carry flag

CMC – complement carry flag

STD – set the direction flag

CLD – clear/reset the direction flag

STI – set the interrupt enable flag

CLI – clear the interrupt enable flag

Machine control instructions

WAIT – Wait till \overline{TEST} pin = 0

HLT – Halt the program

NOP – No operation

ESC – Used to pass instruction to 8087

LOCK –Used as prefix instruction to prevent another processor from taking the control over the bus while executing an instruction (it will make \overline{LOCK} pin to 0)

References

• Doughlas V. Hall, "Microprocessors and Interfacing, Programming and Hardware", Second Edition, TMH.

Thank you

