A New Penalty Based Algorithm For Multi-User Spectrum Balacing in xDSL Networks

Alastair McKinley, Alan Marshall

Queens University Belfast

30 September 2008

- 1 Transmission Impairments in xDSL
- 2 Discrete Multi-Tone Modulation
- 3 Bit Loading
- 4 Our Proposed Algorithm
- 5 Simulation Results
- 6 Conclusions

- 1 Transmission Impairments in xDSL
- 2 Discrete Multi-Tone Modulation
- 3 Bit Loading
- 4 Our Proposed Algorithm
- 5 Simulation Results
- 6 Conclusions

Transmission Impairments in xDSL

- Telephone loop plant only designed to carry voice at bandwidth 4kHz
- At higher frequencies (i.e. xDSL) strong noise and attenuation
 - Near End Crosstalk
 - Far End Crosstalk
 - Narrow-band Interference (e.g. A.M. radio)
 - Impulse Noise

NEXT and FEXT

- Bundles typically consist of 50-100 lines
- NEXT and FEXT vary with line length and frequency

Crosstalk is the dominant noise source in xDSL

- 1 Transmission Impairments in xDSL
- 2 Discrete Multi-Tone Modulation
- 3 Bit Loading
- 4 Our Proposed Algorithm
- 5 Simulation Results
- 6 Conclusions

Discrete Multi-Tone Modulation

- Frequency Spectrum is split into discrete bands
 - ADSL freq. band: 25kHz-1.1MHz
 - 255 4.3125kHz channels
 - VDSL2: Up to 30MHz
- Each band is an independently modulated QAM channel
- Transmit spectra adjusts to channel characteristics

Discrete Multi-Tone Modulation

- DMT Frames have a variable number of bits depending on data rate
- Sub-carriers within DMT frames are assigned a number of bits and transmit power depending on the CNR (channel-noise ratio)
 - Allows better use of channel than single-carrier QAM
- This process of assinging power to DMT channels is known as
 Bit or Power-Loading

- 1 Transmission Impairments in xDSL
- 2 Discrete Multi-Tone Modulation
- 3 Bit Loading
- 4 Our Proposed Algorithm
- 5 Simulation Results
- 6 Conclusions

Bit Loading

Objective to maximise bit rate for a given power budget

$$\mathsf{Rate} = \sum_{k=1}^K b_n(k)$$

Subject to power constraints on each line

$$\sum_{k=1}^{K} p_n(k) \le P_{budget}$$

■ The number of achievable bits on a particular line/tone

$$b_n(k) = \log_2\left(1 + \frac{SNR_n(k)}{\Gamma}\right)$$

Γ is the "SNR-gap" or "Shannon-gap" related to target symbol error and line coding

Single-User Bit Loading

 Optimal bit loading for a single user is known as a "waterfilling" solution

- Discrete version of waterfilling is known as the Levin-Campello Algorithm
- This is only optimal from the perspective of a single user

Multi-User Bit Loading

- Known as "Dynamic Spectrum Management"
- Large performance gains over current methods

$$b_n(k) = \log_2 \left(1 + \frac{p_n(k)|h_{nn}(k)|^2}{\Gamma\left(\sigma_n^2(k) + \sum_{m \neq n}^{N} p_m(k)|h_{jm}(k)|^2\right)} \right)$$

- The objective is now non-convex in p and exhaustive search is prohibitively expensive
- Many algorithms exist with varying performance and complexity
 - Iterative Waterfilling, Multiuser Greedy
 - Optimal Spectrum Balancing (OSB), ISB, SCALE
 - ASB, Band preference, SBLC

Multi-User Greedy Bit Loading

- Originated from Stanford
 - John Cioffi's group
- Conceptually simple algorithm
- Calculate cost to add a bit on each line/tone
 - Total power required to add a bit to tone in question
 - Includes extra power required by increased crosstalk
 - Choose the bit with the minimum cost until power constraints are met
- Problems:
 - Does not consider fairness
 - Favours shorter lines
 - Very suboptimal performance which strong assymetric crosstalk
- Advantages
 - Significantly lower complexity than many other methods

- 1 Transmission Impairments in xDSL
- 2 Discrete Multi-Tone Modulation
- 3 Bit Loading
- 4 Our Proposed Algorithm
- 5 Simulation Results
- 6 Conclusions

Improved Multi-User Greedy Loading

- Revised cost function
- Two new heuristic metrics
- Crosstalk Penalty Term
 - Indication of crosstalk incurred by loading a bit
 - Based on how many bits were potentially lost on other lines
- Relative Usefullness Adjustment
 - Indication of how useful a tone is to a particular line

$$\gamma_n(k) = \frac{b_n(k)^{ref}}{\bar{b_n}}$$

- Cost Matrix Re-intialisation
 - Re-intialise costs when a line has met rate target or used all power
 - Purpose is to not unneccesarily penalise other lines

- 1 Transmission Impairments in xDSL
- 2 Discrete Multi-Tone Modulation
- 3 Bit Loading
- 4 Our Proposed Algorithm
- 5 Simulation Results
- 6 Conclusions

Scenario 1

- One modem located is located in the Central Office, another in a Remote Terminal
- This configuration exhibits the near-far effect
- Highly assymentric crosstalk

Optimal Spectrum Balancing vs Multi-User Greedy

	OSB	Multi-User Greedy
CO Line	3.496Mbps	1.084Mbps
RT Line	4Mbps	4Mbps

Scenario 1 Results

	OSB	Improved Multi-User Greedy
CO Line	3.496Mbps	3.48Mbps
RT Line	4Mbps	4Mbps

Scenario 2

■ Two CO located modems

Scenario 2 Results

	OSB	Improved Multi-User Greedy
2km Line	7.672Mbps	7.632Mbps
3km Line	8.8Mbps	8.8Mbps

- 1 Transmission Impairments in xDSL
- 2 Discrete Multi-Tone Modulation
- 3 Bit Loading
- 4 Our Proposed Algorithm
- 5 Simulation Results
- 6 Conclusions

Conclusions

- A new algorithm for spectrum managment based on a greedy algorithm with new heuristic adjustments
- The new algorithm achieves excellent performance for the two scenarios tested
 - Further research has shown that ther performance is also good for larger bundles (8-10 lines)
- Computational complexity is very low, making it tractable for spectrum balancing in large bundles