Neuroevolution-Based Inverse Reinforcement Learning

Karan K. Budhraja

Committee: Tim Oates (Chair), Cynthia Matuszek, Tim Finin

Motivation

- → Thesis overview
 - Infant learning alone

VS

Infant learning with assistance

Summary: Use genetic algorithms + neural networks to assist in learning

Motivation

- → Reinforcement Learning (RL)
 - Model of learning from experience
 - Inspired by human learning

- → Inverse Reinforcement Learning (IRL)
 - Model of learning from example
 - Also inspired by human learning
 - Aligned with Learning from Demonstration (LfD)

Markov Decision Process (MDP)

- \rightarrow Comprises of (S,A,θ,R,γ)
 - States have features
 - ♦ V: State values based on aggregated rewards
 - \bullet π , π^* : *Policy*, optimal policy

Inverse Reinforcement Learning (IRL)

- \rightarrow Given: (a piece of) some π
 - Demonstration / Examples
 - In case of perfect demonstration, $\pi = \pi^*$
- \rightarrow Goal: Recover R (and all the π)
- → Focus of this work
 - lacktriangle Recover all the π
 - ◆ Assume *R* is a function of *S*

Related Work

- → Feature construction for IRL (FIRL) (2010)
- → Gaussian Process IRL (GPIRL) (2011)
- → Bayesian Non-Parametric (BNP) approaches (2012, 2013)
- → Expectation Maximization (2015)
- → Maximum Likelihood IRL (2014)

Why not try neural networks (NNs)?

- → Regression trees targeted at linear functions
- → Regression trees / GP regression overfit more
- → NNs generate more abstract features
- → NNs are universal approximators
- → Why neuroevolution?
 - Complexity of function is unknown
 - Avoid unnecessary neurons / connections

Safe plan

→ Let's throw neural networks at it and pray :)

Related Work

- → Deep Learning for IRL (2015)
 - Similar to this work
 - Surpasses existing algorithms
 - Intuitively competitive
 - Less efficient
 - Not yet available for comparison

Problem Definition

- → Grid world MDP
- → Possible actions (5): ← ↑ → ↓ Ø
- → State features: *defined by tooklit*
 - We use GPIRL MATLAB toolkit

	+1
	- 1

Problem Definition

- $\rightarrow N_s$: number of examples
- \rightarrow L_s : length of each example
- → Random (optimal) example
 - Start at random state
 - Follow π^* for L_s
- \rightarrow Goal: state features $\Rightarrow R$ or V
 - Use R or V to recover π^*

how good is this

gene?

Genetic Algorithms (GA)

- → Inspired by the biological genomes
- → Evaluate genomes based on *fitness function*

(Artificial) Neural network (ANN / NN)

- → Inspired by biological neural networks
- → Function approximation model

Neuroevolution of Augmented Topologies (NEAT)

- \rightarrow Encode an NN explicitly (w,b) as a genome
- → Use GA to tweak weights and connections
- Begins with relatively simple NN
- → NN gains complexity based on fitness requirement

what fitness function do we use?

Proposed Method: *NEAT-IRL*

contribution I

- → NN input: state features
- → NN output: state value
- → Use policy match based fitness function
 - Cosine of angle between policy action and optimal action directions
 - Accumulate over all example states
- → Algorithm terminates when all examples matched
 - lack Also limited by N_G
- → Existing work uses rule-based learning
 - Excluded from comparison

Proposed Method: NEAT-IRL

FIRL, GPIRL vs NEAT-IRL

- → FIRL, GPIRL focus on reward matching
- → FIRL assumes linear combination of features
- → NEAT-IRL generates state values (not state rewards)
 - State values surface smoother than state rewards
 - Values to policy easy: greedy action selection
- → GP models can be optimized to fit data exactly
 - Easier to overfit

BNP-FIRL(MAP, mean)

Reward (r) = product of composite features (φ) and associated weights (w)

 \rightarrow ψ : Original state features

→ X: atomic features used to form composite features

BNP-FIRL(MAP, mean)

- → Z: atomic features used to build composite features
- IBP used to estimatenumber and values of φ
- → U: negation of boolean feature in composite feature
- → 7: demonstrations

BNP-FIRL(MAP, mean)

- \rightarrow P($r|\tau$) is iteratively maximized
- → Store data over all iterations

what we do with this data matters

- → MAP based result
 - Iterative results used to compute Maximum A-Posteriori (MAP)
 - Use empirical observations to estimate unobserved quantity
 - Inferior to mean based result in our setting
- → Mean based result
 - Compute $r = w.\phi$ per iteration
 - Result = sum of *r* over all iterations

Proposed Method: BNP-FIRL(NEAT)

- \rightarrow Dimensions of w and ϕ vary across iterations
- → Dimensions of *r* are constant across iterations
 - Use as input to NN
 - Output of NN is state reward

contribution II

BNP-FIRL(mean) vs BNP-FIRL(NEAT)

- → BNP-FIRL(mean) uses linear combination of *r* values
- → Non-linear combination expected to perform better
 - More powerful expression of variable relationships
- → BNP-FIRL(NEAT) increases algorithm parameters
 - lacktriangle N_P, N_G

- → Experimental setup
 - Scaled values of IRL toolkit setup used
 - 16x16 grid world: $N_S = 8$, $L_S = 4$
 - Used for primary experiments
 - - Used for MDP based analysis
 - Averages over 25 executions

- → NEAT parameters
 - \bullet $N_P = 150, N_G = 200$
 - Standard values from NEAT implementation
 - Used for isolated testing of NEAT-IRL
 - \bullet $N_P = 50, N_G = 50$

faster IRL completion

- For comparison experiments, arbitrary
- → Algorithms compared
 - ◆ GPIRL > FIRL > other popular IRL algorithms
 - Compare GPIRL, BNP-FIRL(mean), NEAT-IRL and BNP-FIRL(NEAT)

- → Misprediction
 - Percentage of actions over all states predicted incorrectly
- → Graph notation
 - Dotted line used to represent linear MDP data
 - Linearly solvable MDP
 - Cost function for active vs passive action is convex
 - Solid line used to represent standard MDP data

Evaluation: NEAT-IRL (N_P varied, N_G = 50)

Evaluation: NEAT-IRL (N_G varied, $N_P = 150$)

- → GPIRL, BNP-FIRL(mean) vs NEAT-IRL, BNP-FIRL(NEAT)
 - Compared on standard vs linear MDP
 - Compared on deterministic vs non-deterministic MDP
 - Determinism (d) = 1.0, 0.7 respectively

Evaluation: Standard MDP, d = 0.7

Evaluation: Standard MDP, d = 1.0

Evaluation: Linear MDP, d = 0.7

Evaluation: Linear MDP, d = 1.0

- → BNP-FIRL(mean) vs BNP-FIRL(NEAT)
 - lack Linear MDP, d = 0.7 is favourable
 - Extend graph data
 - Examine for extended N_s values
 - Make smoother by averaging 100 executions

Evaluation: Extended N_s (linear MDP, d = 0.7)

→ BNP-FIRL(mean) vs BNP-FIRL(NEAT)

Evaluation: 100 executions (linear MDP, d = 0.7)

→ BNP-FIRL(mean) vs BNP-FIRL(NEAT)

Evaluation: Analyze MDPs (linear MDP, d = 0.7)

→ BNP-FIRL(mean) vs BNP-FIRL(NEAT)

- → BNP-FIRL(mean) vs BNP-FIRL(NEAT)
 - Analyze optimal policies
 - Hypothesize that BNP-FIRL(NEAT) is better for multiple goal states

- → Hypothesis intuition
 - ◆ Multiple goals ⇒ multi-peaked state reward surface
 - ◆ NEAT should help BNP-FIRL with complex *r* functions
- → Hypothesis evaluation
 - Two tailed t-test
 - Results vary for smaller averages
 - Average over 1000 executions
 - M denotes misprediction value

→ Hypothesis evaluation

variance decreases as #goals increases

NP-FIKL(mean) favourable

Number of Goals	Avg. M _{BNP-FIRL(mean)}	Avg. M _{BNP-FIRL(NEAT)}	p-value
1	0.2308	0.3392	3.8837 e-4
2	0.3292	0.3392	0.1870
3	0.4119	0.33913	0.0063
4	0.4954	0.4674	3.9776 e-5

- → Hypothesis evaluation: A closer look at MDPs
- → Observe policy complexity in different cases

- → Hypothesis evaluation
 - ◆ BNP-FIRL(NEAT) better for multiple goals!
 - Use of neural networks helps fit complex r functions
- \rightarrow Algorithm rating (linear MDP, d = 0.7)
 - ◆ BNP-FIRL(NEAT) > BNP-FIRL(mean) > NEAT-IRL > GPIRL

- → Algorithm decision tree
 - Based on experimental results

Future Work

- → NEAT parameters currently arbitrary
 - Can be tuned for a set of MDPs
- → NEAT-IRL computationally inefficient
 - Learn from BNP-FIRL(NEAT)
 - Further computation parallelization
 - Use GPU computing
 - Limit policy prediction to example states
- → Multiple agent setting
 - Incorporate information sharing at a cost

Selected References

- → Choi, Jaedeug, and Kee-Eung Kim. "Bayesian nonparametric feature construction for inverse reinforcement learning." *Proceedings of the Twenty-Third international joint conference on Artificial Intelligence*. AAAI Press, 2013.
- → Hahn, Jurgen, and Abdelhak M. Zoubir. "Inverse Reinforcement Learning using Expectation Maximization in mixture models." *Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on.* IEEE, 2015.
- → Levine, Sergey, Zoran Popovic, and Vladlen Koltun. "Feature construction for inverse reinforcement learning." *Advances in Neural Information Processing Systems*. 2010.
- → Levine, Sergey, Zoran Popovic, and Vladlen Koltun. "Nonlinear inverse reinforcement learning with gaussian processes." *Advances in Neural Information Processing Systems*. 2011.
- → Michini, Bernard, and Jonathan P. How. "Bayesian nonparametric inverse reinforcement learning." Machine Learning and Knowledge Discovery in Databases. Springer Berlin Heidelberg, 2012. 148-163.
- → Yong, Chern Han, et al. "Incorporating Advice into Neuroevolution of Adaptive Agents." *AIIDE*. 2006.
- → Karpov, Igor V., Vinod K. Valsalam, and Risto Miikkulainen. "Human-assisted neuroevolution through shaping, advice and examples." *Proceedings of the 13th annual conference on Genetic and evolutionary computation*. ACM, 2011.

Conclusion

- → NN based IRL is good for non-deterministic linear MDP
- → Better at understanding non-linear reward functions
- → BNP-FIRL(NEAT) > BNP-FIRL(mean) > NEAT-IRL > GPIRL

