RedPRL

designing the people's refinement logic

Jon Sterling

Carnegie Mellon University

what is RedPRL?

A project to build a modernized Nuprl for Computational Cubical Type Theory (Angiuli, Harper, Wilson): the first ever *interactive* proof assistant for higher dimensional type theory.

what is 🗇 RedPRL?

A project to build a modernized Nuprl for Computational Cubical Type Theory (Angiuli, Harper, Wilson): the first ever *interactive* proof assistant for higher dimensional type theory.

I hate writing code, and mechanization with current tools frustrates me. I wish everything could be done on paper.

what is 🗇 RedPRL?

A project to build a modernized Nuprl for Computational Cubical Type Theory (Angiuli, Harper, Wilson): the first ever *interactive* proof assistant for higher dimensional type theory.

I hate writing code, and mechanization with current tools frustrates me. I wish everything could be done on paper.

So, why bother?

the absolute idea

(With thanks to Hegel, Marx, Mao and Lawvere.)

overview of RedPRL

Cubical Refinement Logic		
Cubical Abstract Machine	Cubical Type Theory	
Cubical Abstract Binding Trees		Dependent LCF
Indexed Second- Order Algebra	Lawvere Duality	

outline

1. The LCF/PRL Tradition

2. The Revisionists And Their Running Dogs

3. RedPRL: New Synthesis Of Proof Refinement

```
type evd (* evidence *) type \alpha state = \alpha list \otimes (evd list \rightarrow evd) (* proof state *) type (\alpha, \beta) tactic = \alpha \rightharpoonup \beta state
```

```
(* evidence *)
type evd
type \alpha state = \alpha list \otimes (evd list \rightarrow evd) (* proof state *)
type (\alpha, \beta) tactic = \alpha \rightarrow \beta state
(* proof state "monad" *)
val id: (\alpha, \alpha) tactic
val map : (\alpha \rightarrow \beta) \rightarrow (\alpha \text{ state}, \beta) tactic
val mul: (\alpha \text{ state state}, \alpha) \text{ tactic}
val orelse : (\alpha, \beta) tactic \otimes (\alpha, \beta) tactic \rightarrow (\alpha, \beta) tactic
(* standard tacticals *)
val then : (\alpha, \beta) tactic \otimes (\beta, \gamma) tactic \rightarrow (\alpha, \gamma) tactic
fun then (t_1, t_2) = \text{mul} \circ \text{map } t_2 \circ t_1
val then1: (\alpha, \beta) tactic \otimes (\beta, \gamma) tactic list \rightarrow (\alpha, \gamma) tactic
```

include LCF

```
\begin{array}{ll} \textbf{datatype} & j dg = & \vdash \textbf{ of prop dict} \otimes prop \\ \textbf{type rule} = (j dg, j dg) & \textbf{tactic} \end{array}
```

include LCF
datatype prop =

```
∧ of prop⊗prop
∨ of prop⊗prop
⊃ of prop⊗prop
⊤,⊥
datatype jdg = \vdash of prop dict \otimes prop
type rule = (jdg, jdg) tactic
val \wedge_R, \vee_R, \supset_R, \top_R, \bot_R : \text{rule}
val hyp: string → rule
val \wedge_I : \mathbf{string} \otimes \mathbf{string} \otimes \mathbf{string} \rightarrow \mathsf{rule}
```

programs as evidence

Abstract (!!) type of evidence implemented as functional programming language:

```
{\tt datatype}\ {\tt evd} =
```

```
var of string \lambda of string \otimes evd ap of evd \otimes evd pair of evd \otimes evd \pi_1, \pi_2 of evd inl, inr of evd split of evd \otimes evd \otimes evd
```

programs as evidence

Abstract (!!) type of evidence implemented as functional programming language:

```
datatype evd =
```

```
var of string \lambda of string \otimes evd ap of evd \otimes evd pair of evd \otimes evd \pi_1, \pi_2 of evd inl, inr of evd \otimes evd \otimes evd split of evd \otimes evd \otimes evd
```

Other options possible: machine code, JavaScript, Perl, PHP, Julia :-), etc.

inference rule ⇔ ML function

inference rule ⇔ ML function

$$\frac{\Delta, x : P, \Xi \vdash P}{\Delta, x : P, \Xi \vdash P} \ \, hyp[x] \quad \Leftrightarrow \quad \begin{array}{l} \text{fun hyp} (x) \ \, \left(\ \, \Gamma \vdash P \ \, \right) = \\ \text{let} \ \, \left(\Delta, Q, \Xi \right) = \text{split}(\Gamma, x) \\ \text{and} \quad \text{true} = (P = Q) \\ \text{in} \ \, \left([], \text{fn} \ \, [] \Rightarrow \text{var}(x) \right) \end{array}$$

inference rule
⇔ ML function

$$\frac{\mathsf{fun} \; \mathsf{hyp}(x) \; \left(\; \Gamma \vdash P \; \right) =}{\mathsf{let} \; \left(\Delta, Q, \Xi \right) = \mathsf{split}(\Gamma, x) } \\ = \frac{\mathsf{let} \; \left(\Delta, Q, \Xi \right) = \mathsf{split}(\Gamma, x) }{\mathsf{and} \; \mathsf{true} = (P = Q) } \\ = \mathsf{in} \; \left([], \mathsf{fn} \; [] \Rightarrow \mathsf{var}(x) \right)$$

$$\frac{\Gamma \vdash P \; \Gamma \vdash Q}{\Gamma \vdash P \land Q} \; \land_R \quad \Leftrightarrow \quad \frac{\mathsf{fun} \; \land_R \left(\; \Gamma \vdash P \land Q \; \right) =}{\left(\; \Gamma \vdash P, \; \Gamma \vdash Q \; \right], } \\ = \left(\; \frac{\Gamma \vdash P, \; \Gamma \vdash Q}{\mathsf{fn} \; [M, M] \Rightarrow \mathsf{pair}(M, M)} \right)$$

$$\frac{\Delta, x: P \land Q, y: P, z: Q, \Xi \vdash R}{\Delta, x: P \land Q, \Xi \vdash R} \land_L[x, y, z]$$

$$\Leftrightarrow$$

$$\mathsf{fun} \land_L(x, y, z) \left(\Gamma \vdash R \right) =$$

$$\mathsf{let} \quad (\Delta, P \land Q, \Xi) = \mathsf{split}(\Gamma, x)$$

$$\mathsf{in} \quad \left(\begin{bmatrix} \Delta, x: P \land Q, y: P, z: Q, \Xi \vdash R \end{bmatrix}, \\ \mathsf{fn} \quad [M] \Rightarrow [\pi_1(\mathsf{var}(x)), \pi_2(\mathsf{var}(x))/y, z]M \right)$$

$$\frac{\overline{x:P \land Q,y:P,z:Q \vdash P} \quad \overline{x:P \land Q,y:P,z:Q \vdash Q}}{\underbrace{x:P \land Q,y:P,z:Q \vdash P \land Q}}_{X:P \land Q \vdash P \land Q} \quad \land_L [x,y,z]} \land_R$$

$$\updownarrow$$

$$\uparrow_L (x,y,z)$$
then \land_R

```
\frac{x:P \land Q, y:P, z:Q \vdash P}{x:P \land Q, y:P, z:Q \vdash Q} \xrightarrow{hyp[z]} \frac{x:P \land Q, y:P, z:Q \vdash Q}{x:P \land Q \vdash P \land Q} \land_L [x,y,z]
\updownarrow
\uparrow_L (x,y,z)
\uparrow_{hyp(z)} \uparrow_{hyp(z)
```

```
\frac{x:P \land Q, y:P, z:Q \vdash P}{x:P \land Q, y:P, z:Q \vdash P} \begin{array}{c} hyp[y] & \overline{x:P \land Q, y:P, z:Q \vdash Q} \\ & \frac{x:P \land Q, y:P, z:Q \vdash P \land Q}{x:P \land Q \vdash P \land Q} & \land_L[x,y,z] \end{array} \\ & \updownarrow \\ \\ \frac{\land_L(x,y,z)}{then} \begin{array}{c} \land_L(x,y,z) \\ then & \land_R \\ thenl & \begin{bmatrix} hyp(y), \\ hyp(z) \end{bmatrix} \end{array} \\ \xrightarrow{} pair(\pi_1(var(x)), \pi_2(var(x)))
```

A proof synthesizes a program (stop calling this "extraction"!). Depending on the structure of our logic, we can enforce many invariants!

A proof synthesizes a program (stop calling this "extraction"!). Depending on the structure of our logic, we can enforce many invariants!

★ Structural invariants: ordered/affine/linear resource usage

A proof synthesizes a program (stop calling this "extraction"!). Depending on the structure of our logic, we can enforce many invariants!

- ★ Structural invariants: ordered/affine/linear resource usage
- ★ Behavioral invariants: termination, productivity, specification satisfaction

A proof synthesizes a program (stop calling this "extraction"!). Depending on the structure of our logic, we can enforce many invariants!

- ★ Structural invariants: ordered/affine/linear resource usage
- ★ Behavioral invariants: termination, productivity, specification satisfaction
- * Cost invariants?

A proof synthesizes a program (stop calling this "extraction"!). Depending on the structure of our logic, we can enforce many invariants!

- ★ Structural invariants: ordered/affine/linear resource usage
- ★ Behavioral invariants: termination, productivity, specification satisfaction
- ⋆ Cost invariants?

All this is possible, whilst generating efficient codes in an arbitrary language. Proof structure does not need to appear in programs.

- ★ sequent calculus rules trivially translated into ML
- * easy to check that a collection of rules is correct
- * THESE RULES ARE definitive

- ★ sequent calculus rules trivially translated into ML
- \star easy to check that a collection of rules is correct
- * THESE RULES ARE definitive
- * data abstraction guarantees provenience of evidence

- * sequent calculus rules trivially translated into ML
- \star easy to check that a collection of rules is correct
- * THESE RULES ARE definitive
- * data abstraction guarantees provenience of evidence
- * "decidable" typechecking completely irrelevant: type membership just another judgment

- ★ sequent calculus rules trivially translated into ML
- * easy to check that a collection of rules is correct
- * THESE RULES ARE definitive
- ⋆ data abstraction guarantees provenience of evidence
- * "decidable" typechecking completely irrelevant: type membership just another judgment
- ★ "independently checkable evidence" likewise a distraction¹, because of the soundness of the rules

¹full employment for purveyors of proof assistants

- ⋆ sequent calculus rules trivially translated into ML
- \star easy to check that a collection of rules is correct
- * THESE RULES ARE definitive
- ⋆ data abstraction guarantees provenience of evidence
- * "decidable" typechecking completely irrelevant: type membership just another judgment
- ★ "independently checkable evidence" likewise a distraction¹, because of the soundness of the rules

DECISIVELY SMASH THE FORMALIST CLIQUE!

¹full employment for purveyors of proof assistants

there were some problems...

* sadly, no dependent refinement (cf. "constructible subgoals property")

- * sadly, no dependent refinement (cf. "constructible subgoals property")
- * no existential variables and unification in core LCF framework (compromises soundness for some logics)

- * sadly, no dependent refinement (cf. "constructible subgoals property")
- * no existential variables and unification in core LCF framework (compromises soundness for some logics)
- * many sensible rules cannot be encoded (e.g. bidirectional typing)

- * sadly, no dependent refinement (cf. "constructible subgoals property")
- * no existential variables and unification in core LCF framework (compromises soundness for some logics)
- * many sensible rules cannot be encoded (e.g. bidirectional typing)
- ⋆ complicated and brittle tactics are necessary for basic use

outline

1. The LCF/PRL Tradition

2. The Revisionists And Their Running Dogs

3. RedPRL: New Synthesis Of Proof Refinement

★ untrusted, non-definitive rules

★ untrusted, non-definitive rules

* core language with definitive typechecker

- ★ untrusted, non-definitive rules
- ⋆ core language with definitive typechecker
- non-local unification and existential variables in rules and tactics (generally unsound)

- ⋆ untrusted, non-definitive rules
- ⋆ core language with definitive typechecker
- non-local unification and existential variables in rules and tactics (generally unsound)
- * "fine", because everything must pass through the typechecker

- ★ untrusted, non-definitive rules
- ⋆ core language with definitive typechecker
- non-local unification and existential variables in rules and tactics (generally unsound)
- * "fine", because everything must pass through the typechecker

Advantages: excellent proof automation; very practical in many cases; can experiment with fancy tactics and refinement strategies without compromising soundness.

- ★ untrusted, non-definitive rules
- * core language with definitive typechecker
- non-local unification and existential variables in rules and tactics (generally unsound)
- * "fine", because everything must pass through the typechecker

Advantages: excellent proof automation; very practical in many cases; can experiment with fancy tactics and refinement strategies without compromising soundness.

Coq is the most successful proof assistant based on type theory in history.

Disadvantages of revisionism

1. dangling existential variables (partly mitigated)

- 1. dangling existential variables (partly mitigated)
- obscenely large objects must exist in memory and be shoved through a typechecker: space usage is out of control, easy to wedge Coq

- 1. dangling existential variables (partly mitigated)
- obscenely large objects must exist in memory and be shoved through a typechecker: space usage is out of control, easy to wedge Coq
- not clear how to integrate external sources of truth (solvers) without destroying the character of the logic

- 1. dangling existential variables (partly mitigated)
- obscenely large objects must exist in memory and be shoved through a typechecker: space usage is out of control, easy to wedge Coq
- not clear how to integrate external sources of truth (solvers) without destroying the character of the logic
- more difficult to verify a (real) typechecker than a (real) refiner

- 1. dangling existential variables (partly mitigated)
- obscenely large objects must exist in memory and be shoved through a typechecker: space usage is out of control, easy to wedge Coq
- not clear how to integrate external sources of truth (solvers) without destroying the character of the logic
- more difficult to verify a (real) typechecker than a (real) refiner
- logical rules are duplicated in two encodings: refinement rules and typechecking rules

Disadvantages of revisionism

- dangling existential variables (partly mitigated)
- obscenely large objects must exist in memory and be shoved through a typechecker: space usage is out of control, easy to wedge Coq
- not clear how to integrate external sources of truth (solvers) without destroying the character of the logic
- more difficult to verify a (real) typechecker than a (real) refiner
- 5. logical rules are duplicated in two encodings: refinement rules and typechecking rules

RESIST FRENCH IMPERIALISM AND UPHOLD ROBIN MILNER THOUGHT!

outline

1. The LCF/PRL Tradition

2. The Revisionists And Their Running Dogs

3. RedPRL: New Synthesis Of Proof Refinement

□ RedPRL is a return to orthodoxy, synthesizing modern developments in proof refinement.

* **Dependent LCT:** each subgoal induces a metavariable that can be used in the statements of later subgoals.

- * **Dependent LCF:** each subgoal induces a metavariable that can be used in the statements of later subgoals.
- * Metavariables can only be resolved *locally*, by refinement rules (NOT UNIFICATION).

- * **Dependent LC3:** each subgoal induces a metavariable that can be used in the statements of later subgoals.
- * Metavariables can only be resolved Locally, by refinement rules (NOT UNIFICATION).
- * Adds nothing to the object logic: just a means of incremental construction / refinement.

- * **Dependent LC3:** each subgoal induces a metavariable that can be used in the statements of later subgoals.
- * Metavariables can only be resolved Locally, by refinement rules (NOT UNIFICATION).
- * Adds nothing to the object logic: just a means of incremental construction / refinement.
- * Precisely what is needed to encode existential instantiation, bidirectional typing rules.

Resolving existential variables via unification is so much fun! But it induces non-local soundness conditions for a refiner (very sad!).

 Changes the character of the implemented logic: can make type theory anti-classical if not careful (cf. Agda).

- Changes the character of the implemented logic: can make type theory anti-classical if not careful (cf. Agda).
- 2. Probably unsound in the presence of subtyping and non-discrete equality (e.g. Nuprl).

- Changes the character of the implemented logic: can make type theory anti-classical if not careful (cf. Agda).
- 2. Probably unsound in the presence of subtyping and non-discrete equality (e.g. Nuprl).
 - * Works out fine in Coq because the refinement rules do not need to be sound.

- Changes the character of the implemented logic: can make type theory anti-classical if not careful (cf. Agda).
- 2. Probably unsound in the presence of subtyping and non-discrete equality (e.g. Nuprl).
 - * Works out fine in Coq because the refinement rules do not need to be sound.
 - ★ Unification must be integrated as a judgment in your theory, not as part of a refinement framework. See Cockx/Devriese/Piessens ICFP 2016.

$$\begin{array}{c} \mathcal{J}_0 \leadsto \mathfrak{X}_0 \\ \mathcal{J}_1 \leadsto \mathfrak{X}_1 \\ \vdots \\ \mathcal{J}_n \leadsto \mathfrak{X}_n \\ \hline \mathcal{J} \leadsto \left[\mathfrak{X}_0, \ldots, \mathfrak{X}_n\right].M \end{array} \text{my-rule}$$

```
 \begin{array}{c} [\Omega].\, \mathcal{J}_0 \leadsto \mathfrak{X}_0 \\ [\Omega,\mathfrak{X}_0].\, \mathcal{J}_1 \leadsto \mathfrak{X}_1 \\ \vdots \\ [\Omega,\mathfrak{X}_0,\ldots,\mathfrak{X}_{n-1}].\, \mathcal{J}_n \leadsto \mathfrak{X}_n \\ \hline \\ [\Omega].\, \mathcal{J} \leadsto [\mathfrak{X}_0,\ldots,\mathfrak{X}_n].\, M \end{array} \text{ my-rule}
```

```
 \begin{array}{c} [\Omega]. \, \mathcal{J}_0 \leadsto \mathbf{x}_0 \\ [\Omega, \mathbf{x}_0]. \, \mathcal{J}_1 \leadsto \mathbf{x}_1 \\ \vdots \\ [\Omega, \mathbf{x}_0, \ldots, \mathbf{x}_{n-1}]. \, \mathcal{J}_n \leadsto \mathbf{x}_n \\ \hline [\Omega]. \, \mathcal{J} \leadsto [\mathbf{x}_0, \ldots, \mathbf{x}_n]. \, \mathbf{M} \end{array} \text{ my-rule}
```

* **lax naturality** ensures that rules commute with substitution up to approximation

```
 \begin{array}{c} [\Omega].\, \mathcal{J}_0 \, \leadsto \, \mathbf{x}_0 \\ [\Omega,\,\mathbf{x}_0].\, \mathcal{J}_1 \, \leadsto \, \mathbf{x}_1 \\ \vdots \\ [\Omega,\,\mathbf{x}_0,\,\dots\,,\mathbf{x}_{n-1}].\, \mathcal{J}_n \, \leadsto \, \mathbf{x}_n \\ \hline [\Omega].\, \mathcal{J} \, \leadsto \, [\mathbf{x}_0,\,\dots\,,\mathbf{x}_n].\, \mathbf{M} \end{array} \text{ my-rule}
```

- * lax naturality ensures that rules commute with substitution up to approximation
- ★ gorgeous denotational semantics

from classic lcf to dependent lcf

```
 \begin{array}{c} [\Omega]. \, \mathcal{J}_0 \, \leadsto \, \mathfrak{X}_0 \\ [\Omega, \mathfrak{X}_0]. \, \mathcal{J}_1 \, \leadsto \, \mathfrak{X}_1 \\ \vdots \\ [\Omega, \mathfrak{X}_0, \, \ldots, \mathfrak{X}_{n-1}]. \, \mathcal{J}_n \, \leadsto \, \mathfrak{X}_n \\ \hline \\ [\Omega]. \, \mathcal{J} \, \leadsto \, [\mathfrak{X}_0, \, \ldots, \mathfrak{X}_n]. \, \mathcal{M} \end{array} \text{ my-rule}
```

- * lax naturality ensures that rules commute with substitution up to approximation
- ⋆ gorgeous denotational semantics
- ★ EASY to implement. (maybe not super efficient! refinement machine future work.)

from classic lcf to dependent lcf

```
 \begin{array}{c} [\Omega]. \, \mathcal{J}_0 \, \rightsquigarrow \, \mathfrak{x}_0 \\ [\Omega, \mathfrak{x}_0]. \, \mathcal{J}_1 \, \rightsquigarrow \, \mathfrak{x}_1 \\ \vdots \\ [\Omega, \mathfrak{x}_0, \, \ldots, \mathfrak{x}_{n-1}]. \, \mathcal{J}_n \, \rightsquigarrow \, \mathfrak{x}_n \\ \hline \\ [\Omega]. \, \mathcal{J} \, \rightsquigarrow \, [\mathfrak{x}_0, \, \ldots, \mathfrak{x}_n]. \, \mathcal{M} \end{array} \text{ my-rule}
```

- * **lax naturality** ensures that rules commute with substitution up to approximation
- ⋆ gorgeous denotational semantics
- * EASY to implement. (maybe not super efficient! refinement machine future work.)
- ⋆ dependent refinement = maximum parallelism of proof acts

Enables a straightforward encoding of sophisticated dependent refinement rules which are not expressible in **Classic fCf** or Nuprl.

Enables a straightforward encoding of sophisticated dependent refinement rules which are not expressible in **Classic fCf** or Nuprl. For example...

$$\begin{array}{c|c} [\Omega]. \ \Gamma \vdash A \ true \leadsto \mathfrak{m} \\ [\Omega,\mathfrak{m}]. \ \Gamma \vdash B[\mathfrak{m}] \ true \leadsto \mathfrak{n} \\ \hline [\Omega]. \ \Gamma \vdash (x:A) \times B[x] \ true \leadsto [\Omega,\mathfrak{m},\mathfrak{n}]. \ \langle \mathfrak{m},\mathfrak{n} \rangle \end{array} \text{ intro/} \Sigma$$

Enables a straightforward encoding of sophisticated dependent refinement rules which are not expressible in **Classic fCf** or Nuprl. For example...

$$\frac{[\Omega]. \ \Gamma \vdash A \ true \leadsto m}{[\Omega, m]. \ \Gamma \vdash B[m] \ true \leadsto n} \\ \overline{[\Omega]. \ \Gamma \vdash (x:A) \times B[x] \ true \leadsto [\Omega, m, n]. \langle m, n \rangle} \ intro/\Sigma$$

wow!!

A more sophisticated example: bidirectional typing rules (not just for typecheckers!—crucial for automation).

A more sophisticated example: bidirectional typing rules (not just for typecheckers!—crucial for automation).

 $[\Omega]. \ \Gamma \vdash \textit{R(S)} \ \textit{synth} \leadsto [\Omega, \texttt{ty}, \alpha, \texttt{b}, _]. \ \textbf{b}$

synth/ap

A more sophisticated example: bidirectional typing rules (not just for typecheckers!—crucial for automation).

use dependent lef today!

Implemented as a modular **Standard ML** library, which you can use in your own project today!

https://github.com/RedPRL/sml-dependent-lcf

use dependent lef today!

Implemented as a modular **Standard ML** library, which you can use in your own project today!

https://github.com/RedPRL/sml-dependent-lcf

Restricts automatically to **Classic LCF** when instantiated without dependency/substitution structure.

CUBICAL THOUGHT IS THE NEVER-SETTING SUN!

Computational Higher-Dimensional Type Theory [Angiuli/Harper/Wilson POPL 2017]

* a type theory with both extensional equality and intensional identification (paths)

- * a type theory with both extensional equality and intensional identification (paths)
- ★ higher inductive types: the circle

- * a type theory with both extensional equality and intensional identification (paths)
- ⋆ higher inductive types: the circle
- ★ strict types: strict booleans (new)

- * a type theory with both extensional **equality** and intensional **identification** (paths)
- ⋆ higher inductive types: the circle
- ⋆ strict types: strict booleans (new)
- computational canonicity (previous Licata/Harper result established canonicity up to judgmental equality for 2D type theory)

- * a type theory with both extensional **equality** and intensional **identification** (paths)
- ★ higher inductive types: the circle
- ⋆ strict types: strict booleans (new)
- * computational canonicity (previous Licata/Harper result established canonicity up to judgmental equality for 2D type theory)
- * an instance of univalence, not_x.

- * a type theory with both extensional **equality** and intensional **identification** (paths)
- ⋆ higher inductive types: the circle
- ⋆ strict types: strict booleans (new)
- computational canonicity (previous Licata/Harper result established canonicity up to judgmental equality for 2D type theory)
- * an instance of univalence, not_x.
- ★ a deterministic and type-free operational semantics, amenable to cost analysis.

cubical meaning explanation

 Computational meaning explanations à la Martin-Löf: precise and coherent philosophical foundation.

cubical meaning explanation

- ★ Computational meaning explanations à la Martin-Löf: precise and coherent philosophical foundation.
- ★ Restricts approximately to MLTT 1979 (Constructive Mathematics and Computer Programming) at dimension 0.