Stone duality for finitely valued algebras with a near-unanimity term

Marco Abbadini. University of Birmingham, UK.

Joint work with Adam Přenosil.

MOSAIC Workshop 2023, Vienna, Austria, 29 September 2023.

Goal: represent algebraic structures as algebras of continuous functions satisfying some local constraints.

Algebraic structure \longleftrightarrow Space + local constraints

1. Stone duality (1936): Boolean algebra \cong algebra of continuous functions from a Stone space X to $\{0,1\}$ with pointwise operations.

Space: a Stone space. Local constraints: none.

2. Priestley duality (1969): bounded distributive lattice \cong algebra of order-preserving continuous functions from a Priestley space X to $\{0 < 1\}$. (Priestley space = Stone space with a partial order satisfying compatibility properties.)

Space: a Stone space.

Local constraints: the order.

Algebraic structure \longleftrightarrow Space + local constraints

We investigate the case where the constraints can be made *very* local: on subsets of cardinality ≤ 2 . \rightsquigarrow Easier to describe them.

 $\mathbb{ISP}(L) \coloneqq \mathsf{class}$ of algebras isomorphic to a subalgebra of a power of L.

Davey & Werner (1983): duality for classes of the form $\mathbb{ISP}(L)$ where L is a finite algebra with a near unanimity term. (E.g.: L has a lattice reduct.)

Example: for $\mathbf{L} = \{0,1\}$ we get Stone/Priestley dualities.

Our main result: we give an analagous duality, where the generating algebra ${\bf L}$ is allowed to be infinite.

Our motivation: representation of *positive MV-algebras*, which are algebras related to Łukasiewicz many-valued logic: $\{0,1\}$ is replaced by [0,1].

Examples of generating algebra **L**:

- ▶ $\mathbf{L} = \{0, 1\}$, with the signature of Boolean algebras. \rightsquigarrow Stone duality (1936).
- ▶ $\mathbf{L} = \{0, 1\}$, with the signature of bounded distributive lattices. \leadsto Priestley duality (1969).
- ► L = [0,1], with the signature of MV-algebras.

 Duality for weakly locally finite MV-algebras (Cignoli, Marra, 2012).
- ▶ **L** = [0,1], with the signature of positive MV-algebras, i.e. $\{\oplus, \odot, \vee, \wedge, 0, 1\}$.
- ▶ $L = \mathbb{R}$, with the signature of ℓ -groups with a designated constant 1.
- ▶ **L** = \mathbb{R} , with the signature of ℓ -monoids with designated constants -1 and 1, i.e. $\{+, \lor, \land, 0, 1, -1\}$.

Hypotheses on the generating algebra L (think e.g. of \mathbb{R}):

- 1. **L** has a majority term. (E.g.: **L** has a lattice reduct.) (It can be generalized to near-unanimity terms.)
- (L is "indecomposable":) L is hereditarily finitely subdirectly irreducible, i.e. every subalgebra of L is finitely subdirectly irreducible. (E.g.: every subalgebra of L is simple, and L has two distinct constants.)
- 3. (L is "rigid":) For each subalgebra A of L, the inclusion $A \hookrightarrow L$ is the unique homomorphism from A to L.

We will represent an algebra via a

- 1. Stone space X, together with
- 2. a "local constraint" for each subset $I \subseteq X$ of cardinality ≤ 2 .

For Priestley duality, $\{constraints\} = order$.

Example

$$\mathbf{L} = \langle \mathbb{R}; +, \vee, \wedge, 0, 1, -1 \rangle$$
. (Commutative lattice-ordered monoid. . .)

$$\mathbf{A} \coloneqq \{f \colon \mathbb{N} \to \mathbb{R} \mid f \text{ is eventually constant}\}.$$

 $\mathbf{A} \stackrel{?}{\cong} \{ \text{cont. functions over a Stone space satisfying local constraints} \}.$

Stone space: $\alpha \mathbb{N} = \mathbb{N} \cup \{\infty\}$, the one-point compactification of \mathbb{N} .

A continuous function from $\alpha \mathbb{N}$ to the discrete space \mathbb{R} .

 $\mathbf{A}\cong \text{algebra of continuous functions from }\alpha\mathbb{N} \text{ to the }\underline{\text{discrete}} \text{ space }\mathbb{R}.$ (No local constraints.)

 $\mathbf{B} := \{ f : \mathbb{N} \to \mathbb{R} \mid f \text{ is eventually constant and order-preserving} \}.$

A continuous order-preserving function from $\alpha \mathbb{N}$ to the discrete space \mathbb{R} .

 $\mathbf{B}\cong \mathsf{algebra}$ of $\mathit{order-preserving}$ continuous functions from $\alpha\mathbb{N}$ to the discrete space $\mathbb{R}.$

Order-preservation is given by a family of binary constraints.

Constraint on $\{2,3\}$: $\{(x,y) \in \mathbb{R}^2 \mid x \leq y\}$.

We equip \mathbf{L} with the discrete topology. A continuous function from a Stone space X to \mathbf{L} has finite image.

" $I \subseteq_2 X$ " stands for "I is a subset of X of cardinality at most 2".

Definition

A *Priestley* L-space consists of a Stone space X and, for each $I \subseteq_2 X$, of a subalgebra A_I of L^I s.t.

- 1. (Local-to-global extension) For all $I \subseteq_2 X$, every $f \in \mathbf{A}_I$ has a continuous extension $g: X \to \mathbf{L}$ that satisfies all constraints, i.e. s.t., for all $J \subseteq_2 X$, $g|_J \in \mathbf{A}_J$.
- 2. (**Separation**) For all distinct $x, y \in X$, there is $f \in \mathbf{A}_{\{x,y\}}$ s.t. $f(x) \neq f(y)$.

E.g.: $X = \alpha \mathbb{N}$. For $I \subseteq_2 \alpha \mathbb{N}$, $A_I := \{f : I \to \mathbb{R} \mid f \text{ is order-preserving}\}$.

Definition

An algebra A in $\mathbb{ISP}(L)$ is said to be *finitely* L-valued for each $a \in A$ the set

$$\{h(a)\colon h\colon \mathbf{A}\to \mathbf{L} \text{ homomorphism}\}$$

is finite.

I.e., each element of **A**, thought of as a function $X \to \mathbf{L}$, has finite image.

Example: For $\mathbf{L} = \langle \mathbb{R}; +, \vee, \wedge, 0, 1, -1 \rangle$, the following are finitely \mathbf{L} -valued:

- $ightharpoonup \mathbb{R}$,
- ▶ any finite power \mathbb{R}^n of \mathbb{R} ,
- ▶ any subalgebra of a finite power \mathbb{R}^n of \mathbb{R} ,
- ▶ $\{f: \mathbb{N} \to \mathbb{R} \mid f \text{ is eventually constant}\}.$

Hypotheses on **L** (think of 2, or [0,1], or \mathbb{R}):

- 1. L has a majority term. (E.g.: L has a lattice reduct.)
- (L is "indecomposable":) L is hereditarily finitely subdirectly irreducible, i.e. every subalgebra of L is finitely subdirectly irreducible. (E.g.: every subalgebra of L is simple, and L has two distinct constants.)
- 3. (L is "rigid":) For each subalgebra A of L, the inclusion $A \hookrightarrow L$ is the unique homomorphism from A to L.

Theorem (Main result)

Suppose L satisifes (1–3). The category of finitely L-valued algebras in $\mathbb{ISP}(L)$ (and homomorphisms) is dually equivalent to the category of Priestley L-spaces (and appropriate morphisms).

Thank you!