

AUTO REGRESSIVE LANGUAGE MODEL

Khethan R G

January 2024

Introduction

Autoregressive Model - An Autoregressive model in the context of neural networks is a type of model that uses observations from previous time steps as input to predict the value at the next time step. It's a form of regression model that uses lagged variables as input.

Let's consider a simple example. Suppose we have a time series data and we want to predict the value for the next time step (t+1) given the observations at the last two time steps (t-1) and (t-2). As a regression model, this would look as follows:

```
X(t+1) = b0 + b1*X(t-1) + b2*X(t-2)
```

Here, X(t+1) is the prediction, b0, b1, and b2 are coefficients found by optimizing the model on training data, and X(t-1) and X(t-2) are input values from previous time steps. Because the regression model uses data from the same input variable at previous time steps, it is referred to as an autoregression (regression of self).

A character level language model is a model which considers each character in a word while prediction the next character. A Bi-Gram neural network is a weak but good beginner language model in which we always work with just 2 characters (in a row) at a time i.e., we are only looking at the one character that was given and try to predict the next character in the sequence.

Manual Method

We basically create a 2D tensor where the values represent the likelihood of the next character (from the column), given the present character (in the row) by looking in this table.

	a	b	 z	start	end
a					
b					
•					
Z					
start					
end					

We first create a dataset which consists of start and end words and looks somewhat like the below image. This is basically the weight matrix. Although here we have some values in the image, these values are initially some random values between range -(1, 1) and then

```
# one hot encoded x values, input to the network
xenc = F.one_hot(xs, num_classes=27).float()

# gradient descent

for k in range(1):
    # forward pass
    logits = xenc @ W
    # basically the probability of next value
    loss = F.cross_entropy(logits, yb)

W.grad = None
loss.backward()
W.data += -50 * W.grad
```

Listing 1: Basic Weight Method

We use this part of the code to update this matrix which helps in finding the next possible value, given the previous value. But this has a lot of disadvantages, like:

- Works only if we have one character from the previous context.
- The predictions also are not very good because only one character is taken to predict.
- If we take "more than one character" to predict the next character then things quickly blow up i.e., the N matrix which is of size (27, 27) is present only for one previous character, since there are 27 possibilities for the prediction i.e., (<.>, a, b, c, ..., z).
- If we take say 2 previous characters for prediction of the next character, then $27^2=729$ number of possibilities exist.

• Prediction array = 27^n where n = number of characters used for prediction.

Multi-Layer Perceptron

To <u>overcome</u> this limitation, we need to use a more sophisticated approach that can capture the features of previous words and use them to predict the features of the next word. For example, we can use a neural network that learns a vector representation for each word, and then uses a recurrent or attention mechanism to combine the vectors of the previous words into a context vector. This context vector can then be used to generate the next word, either by sampling from a soft-max distribution or by using a decoder network.

Using a feature representation also allows for a larger context than n-gram models. N-gram models are limited by the size of the n-gram order, which is usually between 3 and 5. Using a larger n-gram order would result in a huge number of parameters and a sparse data problem. However, using a feature representation, we can use a context that contains many more previous words (e.g., 10) without increasing the number of parameters or the data sparsity.

We want to create an embedding space where each character can have a good vector representation that indicates the location of this character in the space, like the below image, but instead of 2 dimensions, we can have any number of dimensions as we want.

```
1 import torch
2 import torch.nn as nn
3 import torch.nn.functional as F
4 from torch.optim import SGD
5 class CharLanguageModel(nn.Module):
      def __init__(self, vocab_size, n_embd, n_hidden, block_size, max_steps, batch_size)
          super().__init__()
          self.vocab_size = vocab_size
          self.n_embd = n_embd
9
          self.n_hidden = n_hidden
          self.block_size = block_size
11
          self.max_steps = max_steps
12
          self.batch_size = batch_size
13
          self.chars = '.abcdefghijklmnopqrstuvwxyz'
14
          self.stoi = {s:i for i,s in enumerate(self.chars)}
         self.itos = {i:s for s,i in self.stoi.items()}
16
          self.C = torch.randn((vocab_size, n_embd), requires_grad=True)
17
18
          self.fc1 = nn.Linear(n_embd * block_size, n_hidden)
19
          self.bn = nn.BatchNorm1d(n_hidden)
          self.fc2 = nn.Linear(n_hidden, vocab_size)
20
          self.optimizer = SGD(self.parameters(), lr=0.1)
21
23 def forward(self, Xb):
      emb = self.C[Xb]
24
      embcat = emb.view(emb.shape[0], -1)
25
      hprebn = self.fc1(embcat)
26
      hprebn = self.bn(hprebn)
      h = torch.tanh(hprebn)
28
      logits = self.fc2(h)
29
30
      return logits
31
32 def backward(self, loss):
      self.optimizer.zero_grad()
33
      loss.backward()
35
      self.optimizer.step()
36
37 def train_model(self, Xtr, Ytr):
      for i in range(self.max_steps):
38
39
          ix = torch.randint(0, Xtr.shape[0], (self.batch_size,))
          Xb, Yb = Xtr[ix], Ytr[ix]
40
          logits = self.forward(Xb)
41
          loss = F.cross_entropy(logits, Yb)
42
          self.backward(loss)
43
          if i % 10000 == 0:
44
             print(f'{i:7d}/{self.max_steps:7d}: {loss.item():.4f}')
45
```

Listing 2: A character language model

In the above code, we embed the 27 characters that we have into a 10-dimensional space to obtain a *Tensor*, *C* having 27 characters embedded in 10-dimensional space. Then we pass these embedding

Figure 1: Probability matrix

0	.a	.b	.c	.d	.e	. f	. g	.h	.i	. j	.k	.l	.m	.n	.0	. p	.q	. r	.s	.t	.u	. v	. w	.x	. y	. z
	4410	1306	1542	1690	1531	417	669	874	591	2422	2963	1572	2538	1146	394	515	92	1639	2055	1308	78	376	307	134	535	929
a.	aa	ab	ac	ad	ae	af	ag	ah	ai	aj	ak	al	am	an	ao	ap	aq	ar	as	at	au	av	aw	ax	ay	az
6640	556	541	470	1042	692	134	168	2332	1650	175	568	2528	1634	5438	63	82	60	3264	1118	687	381	834	161	182	2050	435
b.	ba	bb	bc	bd	be	bf	bg	bh	bi	bj	bk	bl	bm	bn	bo	bp	bq	br	bs	bt	bu	bv	bw	bx	by	bz
114	321	38	1	65	655	0	0	41	217	1	0	103	O	4	105	0	0	842	8	2	45	O	O	0	83	0
c. 97	ca 815	cb ○	cc 42	cd	ce 551	cf 0	cg 2	ch 664	ci 271	cj 3	ck 316	cl 116	cm O	cn 0	co 380	cp	cq 11	cr 76	cs 5	ct 35	cu 35	cv 0	cw 0	cx 3	cy 104	cz 4
d.	da	db	dc	dd	de	df	dg	dh	di	dj	dk	dl	dm	dn	do	dp	$\mathop{\rm dq}_1$	dr	ds	dt	du	dv	dw	dx	dy	dz
516	1303	1	3	149	1283	5	25	118	674	9	3	60	30	31	378	○		424	29	4	92	17	23	0	317	1
e.	ea	eb	ec	ed	ee	ef	eg	eh	ei	ej	ek	el	em	en 2675	eo	ep	eq	er	es	et	eu	ev	ew	ex	ey	ez
3983	679	121	153	384	1271	82	125	152	818	55	178	3248	769		269	83	14	1958	861	580	69	463	50	132	1070	181
f.	fa	fb	fc	fd	fe	ff	fg	fh	fi	fj	fk	fl	fm	fn	fo	fp	fq	fr	fs	ft	fu	fv	fw 4	fx	fy	fz
80	242	O	0	0	123	44	1	1	160	O	2	20	O	4	60	0	0	114	6	18	10	O		0	14	2
g.	ga	gb	gc	gd	ge	gf	gg	gh	gi	gj	gk	gl	gm	gn	go	gp	gq	gr	gs	gt	gu	gv	gw	gx	gy	gz
108	330	3	0	19	334	1	25	360	190	3	0	32	6	27	83	0	0	201	30	31	85	1	26	0	31	1
h. 2409	ha 2244	hb 8	hc 2	hd 24	he 674	hf 2	hg	hh 1	hi 729	hj 9	hk 29	hl 185	hm 117	hn 138	ho 287	hp 1	hq 1	hr 204	hs 31	ht 71	hu 166	hv 39	hw 10	hx 0	hy 213	hz 20
i.	ia	ib	ic	id	ie	if	ig	ih	ii	ij	ik	il	im	in	io	ip	iq	ir	is	i t	iu	iv	iw	ix	iy	iz
2489	2445	110	509	440	1653	101	428	95	82	76	445	1345	427	2126	588	53	52	849	1316	541	109	269	8	89	779	277
j.	ja	jb	jc	jd	je	jf	jg	jh	ji	jj	jk	jl	jm	jn	jo	jp	jq	jr	js	jt	ju	jv	jw	jx	jy	jz
71	1473	1	4	4	440	O	0	45	119	2	2	9	5	2	479	1	0	11	7	2	202	5	6	0	10	O
k.	ka	kb	kc	kd	ke	kf	kg	kh	ki	kj	kk	kl	km	kn	ko	kp	kq	kr	ks	kt	ku	kv	kw	kx	ky	kz
363	1731	2	2	2	895	1	0	307	509	2	20	139	9	26	344	0	0	109	95	17	50	2	34	0	379	2
I.	la	lb	lc	ld	le	lf	lg	lh	li	lj	lk	II	lm	In	lo	lp	lq	lr	Is	lt	lu	lv	lw	lx	ly	lz
1314	2623	52	25	138	2921	22	6	19	2480	6	24	1345	60	14	692	15	3	18	94	77	324	72	16	0	1588	10
m. 516	ma 2590	mb 112	mc 51	md 24	me 818	mf 1	mg 0	mh 5	mi 1256	mj 7	mk 1	ml 5	mm 168	mn 20	mo 452	mp 38	mq 0	mr 97	ms 35	mt 4	mu 139	mv 3	mw 2	mx 0	my 287	mz 11
n.	na	nb	nc	nd	ne	nf	ng	nh	ni	nj	nk	nl	nm	nn	no	np	nq	nr	ns	nt	nu	nv	nw	nx	ny	nz
6763	2977	8	213	704	1359	11	273	26	1725	44	58	195	19	1906	496	5	2	44	278	443	96	55	11	6	465	145
o. 855	oa 149	ob 140	oc 114	od 190	oe 132	of 34	og 44	oh 171	oi 69	oj 16	ok 68	ol 619	om 261	on 2411	00 115	op 95	oq	or 1059	os 504	ot 118	ou 275	ov 176	ow 114	ox 45	oy 103	oz 54
p. 33	pa 209	pb 2	pc	pd 0	pe 197	pf 1	pg 0	ph 204	pi 61	pj 1	pk 1	pl 16	pm 1	pn 1	po 59	pp 39	pq	pr 151	ps 16	pt 17	pu 4	pv 0	pw	px	py 12	pz 0
q. 28	qa 13	qb O	qc	qd 0	qe 1	qf 0	qg 0	qh 0	qi 13	qj 0	qk 0	ql 1	qm 2	qn 0	qo 2	qp 0	qq	qr	qs 2	qt 0	qu 206	qv 0	qw 3	qx 0	qy 0	qz 0
r.	ra	rb	rc	rd	re	rf	rg	rh	ri	rj	rk	rl	m	m	ro	rp	rq	r	rs	rt	ru	rv	rw	rx	ry	rz
1377	2356	41	99	187	1697	9	76	121	3033	25	90	413	162	140	869	14	16	425	190	208	252	80	21	3	773	23
s. 1169	sa 1201	sb 21	SC 60	sd 9	se 884	sf 2	sg	sh 1285	si 684	sj 2	sk 82	sl 279	sm 90	sn 24	so 531	sp 51	sq 1	sr 55	SS 461	st 765	su 185	SV 14	sw 24	SX	sy 215	SZ 10
t. 483	ta 1027	tb 1	tc 17	td 0	te 716	tf 2	tg	th 647	ti 532	tj 3	tk 0	tl 134	tm 4	tn 22	to 667	tp 0	tq 0	tr 352	ts 35	tt 374	tu 78	tv 15	tw 11	tx 2	ty 341	tz 105
u.	ua	ub	uc	ud	ue	uf	ug	uh	ui	uj	uk	ul	um	un	uo	up	uq	ur	us	ut	uu	uv	uw	ux	uy	uz
155	163	103	103	136	169	19	47	58	121	14	93	301	154	275	10	16	10	414	474	82	3	37	86	34	13	45
v .	va	vb	VC 0	vd	ve	vf	vg	vh	vi	vj	vk	vl	vm	vn	vo	vp	vq	vr	VS	vt	vu	vv	vw	VX	vy	VZ
88	642	1		1	568	0	0	1	911	O	3	14	O	8	153	0	0	48	0	0	7	7	0	0	121	O
w . 51	wa 280	wb 1	WC 0	wd 8	we 149	wf 2	wg 1	wh 23	wi 148	wj O	wk 6	wl 13	wm 2	wn 58	wo 36	wp 0	wq	wr 22	ws 20	wt 8	wu 25	wv 0	ww 2	wx 0	wy 73	wz 1
x. 164	xa 103	xb 1	XC 4	xd 5	xe 36	xf 3	xg 0	xh 1	xi 102	xj 0	xk 0	xl 39	xm 1	xn 1	XO 41	xp	px 0	xr O	xs 31	xt 70	xu 5	xv 0	xw 3	xx 38	xy 30	xz 19
y .	ya	yb	ус	yd	ye	yf	yg	yh	yi	yj	yk	yl	ym	yn	yo	yp	yq	yr	ys	yt	yu	yv	yw	yx	yy	yz
2007	2143	27	115	272	301	12	30	22	192	23	86	1104	148	1826	271	15	6	291	401	104	141	106	4	28	23	78
z. 160	za 860	zb 4	zc 2	zd 2	ze 373	zf 0	zg	zh 43	zi 364	zj 2	zk 2	zl 123	zm 35	zn 4	zo 110	zp 2	zq 0	zr 32	zs 4	zt 4	zu 73	zv 2	zw 3	zx 1	zy 147	zz 45

Figure 2: 2D Embedding

into a linear layer, apply an activation function, normalize it using batch norm, pass through another linear layer and finally use soft max to get the prediction with maximum probability.

Wave-Net Architecture

Previously, we used '3' characters, embedded them, squashed them together, and fed them all into 'tanh'. This potentially squashed too much information too quickly, causing the model to stagnate.

Now, we're making it deeper with a tree-like structure, arriving at a convolutional neural network architecture similar to WaveNet (2016) from DeepMind. In the WaveNet paper, the same hierarchical architecture is implemented more efficiently using causal dilated convolutions, but we don't do that here.

- Causal convolutions ensure that output at a given time step depends only on past and current inputs, not future ones.
- This leads to better inference compared to fully sequential models.
- This architecture can capture short-term dependencies within words and long-term dependencies across sentences.

Our plan is similar to the approach in the paper. We merge/concatenate 2 data points. For example say we have a single input that, after mapping from string to integers, looks like '1,2,3,4,5,4,2,0'. Our context length here is '8' characters to predict the next character. Now we must embed these characters using some embedding dimension, resulting in a single row of size '8*embd_dim'. This was our previous approach. It squashes a lot of info too quickly, so the model takes some time to train. But from WaveNet, we take this '8*embd_dim' and reshape it to

(1,2)*embd_dim,(3,4)*embd_dim,(5,4)*embd_dim,(2,0)*embd_dim'. Here, we are essentially building a deeper network where at each layer, the input only depends on '2' previous values present below it. The below diagram gives the basic idea.


```
# hierarchical network
n_embd = 24 # the dimensionality of the character embedding vectors
n_hidden = 128 # the number of neurons in the hidden layer of the MLP

model = Sequential([
    Embedding(vocab_size, n_embd),
    FlattenConsecutive(2), Linear(n_embd * 2, n_hidden, bias=False), BatchNorm1d(n_hidden), Tanh()

FlattenConsecutive(2), Linear(n_hidden*2, n_hidden, bias=False), BatchNorm1d(n_hidden), Tanh()

FlattenConsecutive(2), Linear(n_hidden*2, n_hidden, bias=False), BatchNorm1d(n_hidden), Tanh()

Linear(n_hidden, vocab_size),

Jinear(n_hidden, vocab_size),

Inear(n_hidden, vocab_size),

Inear(n_hidden, vocab_size),

Inear(n_hidden, vocab_size),
```

Listing 3: WaveNet model

The basic idea is that we are progressively fusing 2 char at first layer, 2 two-chars at second layer and 2 four-chars at third layer and so on.

This is how the fusing happens, we are not squashing everything here at a time, we are merging inputs part by part which helps in preserving information.

Embedding: (4, 8, 24)

FlattenConsecutive : (4, 4, 48) Fusing previous 2 data points

Linear: (4, 4, 128)
BatchNorm1d: (4, 4, 128)

Tanh : (4, 4, 128)

FlattenConsecutive : (4, 2, 256) Fusing previous 2 data points

Linear: (4, 2, 128)
BatchNorm1d: (4, 2, 128)

Tanh: (4, 2, 128)

FlattenConsecutive : (4, 256) Fusing previous 2 data points

Linear: (4, 128)
BatchNorm1d: (4, 128)

Tanh : (4, 128) Linear : (4, 27)

Total layers in the model, 15

This approach also provides better training and validation loss, and also generates more readable text like shown below:

naston.

aashna.

raziah.

edonie.

phoelox.

dawtine.

unnalee.

RNN

Although WaveNet architecture that we implemented was good, it can still only work for generating names, and can't be used to generate textual sentences, this is where Recurrent neural networks come into picture.

A Recurrent Neural Network (RNN) is a type of neural network that is powerful for modeling sequence data such as time series or natural language. Unlike traditional neural networks, where all the inputs and outputs are independent of each other, RNNs have the ability to remember previous inputs while processing.

The fundamental processing unit in an RNN is a <u>Recurrent Unit/Cell</u>, which has the unique ability to maintain a hidden state, allowing the network to capture sequential dependencies by remembering previous inputs while processing. This is also referred to as Memory State.

They are originally three layer networks. The above figure shows a simple one-to-one vanilla

Figure 3: Recurrent neural network

RNN i.e., a single input gives a single output.

In the figure, x_t is taken as the input to the network at time step 't' and h_t represents the hidden state at the same time step. Calculation of h_t is based as per the equation: $h_t = f(U*x_t + W*h_{t1})$

Thus, h_t is calculated based on the current input and the previous time step's hidden state. The function f is taken to be a non-linear transformation, tanh and U, V, W account for weights that are shared across time. In the context of NLP, x_t typically comprises of one-hot encodings or embeddings.

Vanishing Gradient Problem In practice, however, these simple RNN networks suffer from the infamous vanishing gradient problem, which makes it really hard to learn and tune the parameters of the earlier layers in the network. This limitation was overcome by various networks such as long short-term memory (LSTM), gated recurrent units (GRUs), and residual networks (ResNets), where the first two are the most used RNN variants in NLP applications.

```
self.start = nn.Parameter(torch.zeros(1, N_EMBD2)) # the starting hidden state
2 self.wte = nn.Embedding(VOCAB_SIZE, N_EMBD) # token embeddings table
3 self.xh_to_h = nn.Linear(N_EMBD + N_EMBD2, N_EMBD2)
5 # embed all the integers up front and all at once for efficiency
6 emb = self.wte(idx) # (b, t, N_EMBD)
{f 8} # sequentially iterate over the inputs and update the RNN state each tick
9 hprev = self.start.expand((b, -1)) # expand out the batch dimension
10 hiddens = []
for i in range(t):
      xt = emb[:, i, :] # (b, N_EMBD)
      xh = torch.cat([xt, hprev], dim=1) # add rows horizontally
      ht = torch.tanh(self.xh_to_h(xh)) # (b, N_EMBD2)
14
      hprev = ht
      hiddens.append(ht)
18 # decode the outputs
19 hidden = torch.stack(hiddens, 1) # (b, t, N_EMBD2)
20 logits = self.lm_head(hidden)
```

Listing 4: RNN Forward pass

Gated Recurrent Units (GRU)

A gated RNN variant called GRU used for sequential data processing. GRU comprises of two gates, reset gate and update gate. They train faster and perform better on less training data. Being less complex, GRU can be a more efficient RNN than LSTM. The working of GRU is as follows:

Update Gate (z):

$$z_t = \sigma(W_z * [h_{t-1}, x_t])$$

, or $z=(U_z.x_t+W_z.h_{t1})$ Here, z_t is the update gate, and W_z is the weight matrix for the update gate. It determines how much of the past knowledge needs to be passed along into the future.

Reset Gate (r):

$$r_t = \sigma(W_r * [h_{t-1}, x_t])$$

, or $r=(U_r.x_t+W_r.h_{t1})$ Here, r_t is the reset gate, σ is the sigmoid function, W_r is the weight matrix for the reset gate, h_{t-1} is the hidden state from the previous time step, and x_t is the input at the current time step.

It determines how much of the past knowledge to forget. It uses a sigmoid activation function to squash the values between 0 and 1.

Candidate Hidden State:

$$\tilde{h}_t = \tanh(W * [r_t \odot h_{t-1}, x_t])$$

, or $h_t = tanh(U_z.x_t + W_s.(h_{t1}\odot r))$ Here, \tilde{h}_t is the candidate hidden state, tanh is the hyperbolic tangent function, W is the weight matrix, r_t is the reset gate, \odot denotes element-wise multiplication h_{t-1} is the hidden state from the previous time step, and x_t is the input at the current time step. The candidate hidden state is calculated using the reset gate and the input.

Final Hidden State:

$$h_t = (1 - z_t) \odot h_{t-1} + z_t \odot \tilde{h}_t$$

, or $h_t=(1-z)\odot s_t+z\odot h_{t-1}$ Here, h_t is the final hidden state, z_t is the update gate, h_{t-1} is the hidden state from the previous time step, and \tilde{h}_t is the candidate hidden state

The final hidden state is a combination of the previous hidden state and the candidate hidden state, controlled by the update gate. The equation for the final hidden state is as follows:

These equations allow the GRU to effectively learn from sequential data by maintaining a form of memory through its hidden states

Figure 4: Gated Recurrent Unit

```
# input, forget, output, gate
self.xh_to_z = nn.Linear(N_EMBD + N_EMBD2, N_EMBD2)
self.xh_to_r = nn.Linear(N_EMBD + N_EMBD2, N_EMBD2)
4 self.xh_to_hbar = nn.Linear(N_EMBD + N_EMBD2, N_EMBD2)
5 self.start = nn.Parameter(torch.zeros(1, N_EMBD2)) # the starting hidden state
6 self.wte = nn.Embedding(VOCAB_SIZE, N_EMBD) # token embeddings table
_{7} # first use the reset gate to wipe some channels of the hidden state to zero
\boldsymbol{8} # embed all the integers up front and all at once for efficiency
9 emb = self.wte(idx) # (b, t, N_EMBD)
_{11} # sequentially iterate over the inputs and update the RNN state each tick
12 hprev = self.start.expand((b, -1)) # expand out the batch dimension
13 hiddens = []
14 for i in range(t):
      xt = emb[:, i, :] # (b, N_EMBD)
15
      xh = torch.cat([xt, hprev], dim=1)
16
      r = torch.sigmoid(self.xh_to_r(xh))  # reset gate - squashing to zero
17
      hprev_reset = r * hprev
18
      # calculate the candidate new hidden state hbar
19
20
      xhr = torch.cat([xt, hprev_reset], dim=1)
      hbar = torch.tanh(self.xh_to_hbar(xhr)) # new candidate hidden state
21
      # calculate the switch gate that determines if each channel should be updated at all
22
      z = torch.sigmoid(self.xh_to_z(xh))
23
24
      # blend the previous hidden state and the new candidate hidden state
      ht = (1 - z) * hprev + z * hbar # (b, N_EMBD2)
25
      hprev = ht
26
      hiddens.append(ht)
27
      # decode the outputs
28
      hidden = torch.stack(hiddens, 1) # (b, t, N_EMBD2)
29
      logits = self.lm_head(hidden)
30
```

Listing 5: GRU Forward pass

Disadvantages:

- They can't train on longer data, and since our data is small, LSTM also produces similar results.
- Can't be used for training in parallel.

Transformer: Decoder Only

We only use decoder architecture here because we are just generating text in the same language. There is no need to encode anything.

Decoder:

The decoder is composed of a stack of N=6 identical layers (where N=6 is the base model, and N=12 means a large model). N here represents the number of heads.

 $Figure \ 5: \ Transformer, \ Decoder \ only \ architecture$

Each layer has 2 sub-layers. Although the image below shows 3 sub layers here only 2 were implement because it's a simple model. The first is a masked multi-head self-attention mechanism, where matrices KEY, VALUE, and QUERY are created based on the input. This attention mechanism ensures that predictions for position i depend only on the known outputs at positions less than i.

Figure 6: Attention Mechanism in Transformer

This is like a smart key-value lookup dictionary.

Attention is permutation invariant i.e., since these matrix multiplication occur simultaneously and not sequentially they don't care about position, but language is not! So we encode position of each word and add it to the token embedding as well.

The o/p from different layers are first concatenated and then normalized using layer norm, layerNor attention(x)) and then a residual or skip connection is employed wherein the data before this layer is taken and added to the o/p of this layer to avoid vanishing gradients.

```
def forward(self, x):
    # creating an attention matrix
      B,T,C = x.shape
                        # (B,T,C)
      k = self.key(x)
      q = self.query(x) # (B,T,C)
      # compute attention scores ("affinities")
6
      wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
      wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
      wei = F.softmax(wei, dim=-1) # (B, T, T)
      wei = self.dropout(wei)
10
      # perform the weighted aggregation of the values
      # basically this wei Tensor is our
      # `ATTENTION` tensor which multiplied with value gives output vector
      v = self.value(x) # (B,T,C)
      out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
     return out
16
```

Listing 6: Attention Mechanism Code

Following this sub-layer, a simple feed-forward network is used to learn how to create affinities between words properly.

Listing 7: Feed Forward part

This masking ensures that the predictions for position i can depend only on the known outputs at positions less than i.

Attention Equation:

The attention equation in the Transformer model is defined as follows:

$$\texttt{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \texttt{softmax}\left(\frac{\mathbf{Q} \cdot \mathbf{K}^\top}{\sqrt{d_k}}\right) \cdot \mathbf{V}$$

where:

- \bullet $\,{\rm Q}\,,$ $\,{\rm K}\,,$ and $\,{\rm V}$ are the query, key, and value matrices, respectively.
- d_k is the dimension of the key vectors. Here we neglected this.

Multi-Head Attention:

Instead of performing a single attention function with keys, values, and queries, it's beneficial to linearly project them N times with different learned linear projections. We then perform the attention function in parallel, yielding N v-dimensional matrices that are concatenated, and dot product is performed to get the final output having the same size as the input vector.

Figure 7: Multi-Head Attention