

OPTIBELT

TECHNICAL MANUAL RIBBED BELT DRIVES

TECHNICAL MANUAL RIBBED BELT DRIVES

This manual contains all relevant technical information as well as the method for calculating drives with optibelt RB ribbed belts and optibelt RBS ribbed belt pulleys for mechanical engineering. The Optibelt range for ribbed belt drives is based on the standards ISO 9982, RMA/MPTA IP-26 and DIN 7867.

Our applications engineers would be pleased to give advice about using these drive systems and will work together with you to solve your drive problems. This service is of course free of charge.

It is especially important for large-scale series to take advantage of this service which will find the best possible solution for your requirements using state-ofthe-art computer programs.

RIBBED BELTS AND RIBBED BELT PULLEYS

Ribbed Belts

1/7/8 **optibelt RB**Ribbed Belts, Profile PJ
Lengths: 280-2489 mm
Other dimensions on request

2/6

optibelt RBRibbed Belts, Profile PK
Lengths: 559-2845 mm Other dimensions on request

3

optibelt RB Ribbed Belts, Profile PH Lengths: 559-2155 mm Other dimensions on request

optibelt RB 4

Ribbed Belts, Profile PM Lengths: 2286-15266 mm Other dimensions on request

5 optibelt RB

Ribbed Belts, Profile PL Lengths: 954-6096 mm Other dimensions on request

optibelt RB

Elastic Ribbed Belts

Profiles: EPH, EPJ on request (not shown)

Ribbed Belt Pulleys

optibelt RBSRibbed Belt Pulleys for Cylindrical Bore

optibelt RBSRibbed Belt Pulleys for Taper Bushes

optibelt RBSRibbed Belt Pulleys with Taper Bushes

optibelt RBS

Ribbed Belt Pulleys with Taper Bushes

CONTENTS

	Introduction	1
	Distribution Organisation of the Arntz Optibelt Group	2
	Ribbed Belts and Ribbed Belt Pulleys	4
PRODUCT DESCRIPTION	Standard Range optibelt RB Ribbed Belts	7
	Elastic optibelt ERB Ribbed Belts / Special Designs	8
	Characteristics – Application Areas Elastic optibelt ERB Ribbed Belts / Roller Conveyor	9
	Special Designs	10-11
	Automotive Drives optibelt CAR POWER RBK	12
STANDARD RANGE	Ribbed Belts	13-14
DRIVE DESIGN	Abbreviations Used in Formulae	15
	Optibelt Power Rating P_N – Arc of Contact Correction Factor c_1	16
	Belt Length Correction Factor c ₃	1 <i>7</i> -18
	Minimum Allowance x/y above and below Drive Centre Distance of	a _{nom} 19
	Drive Service Factor c ₂	20
	A Guide to Selecting Ribbed Belt Profiles	21
	Formulae and Calculation Example	22-24
	Drive Design – optibelt CAP	25
POWER RATINGS	optibelt RB Ribbed Belts, Profile PH	26
	optibelt RB Ribbed Belts, Profile PJ	27
	optibelt RB Ribbed Belts, Profile PK	28
	optibelt RB Ribbed Belts, Profile PL	29
	optibelt RB Ribbed Belts, Profile PM	30

CONTENTS

SPECIAL DRIVES	V-Flat Drives	31-32
	Tension/Guide Idlers	33-34
DIDDED DEIT DILLIEVE	Measuring Pulleys – Length Measuring Conditions	
RIBBED BELT PULLEYS	to DIN 7867 / ISO 9982	35
	Dimensions to DIN 7867 / ISO 9982	36
	Standard Range optibelt TB Taper Bushes	37
	Ribbed Belt Pulleys for Taper Bushes, Profile PJ	38-41
	Ribbed Belt Pulleys for Taper Bushes, Profile PL	42-46
	Ribbed Belt Pulleys for Cylindrical Bore, Profile PJ	47
DESIGN HINTS	Ribbed Belt Tension	48-51
	Frequency Meter / Tension Tester optibelt TT	52
	Frequency Meter / Tension Tester optibelt TT LINE	
	Determining the Static Shaft Loading / Shaft Loading under Dynamic Conditions	54
	Length Tolerances – Installation and Maintenance	
	Ribbed Belt Widths	56
	Problems – Causes – Remedies	57-58
	Additional Range	
	optibelt TT Frequency Meter	59
	optibelt LASER POINTER II	
	Optibelt Pulley Groove Gauges	
	Data Sheet for Drive Calculation/Checking	60-61

STANDARD RANGE optibelt RB RIBBED BELTS

Construction

Optibelt ribbed belts consist of:

- 1 Belt top surface: wear resistant polychloroprene rubber compound
- 2 Tension cord: low-stretch polyester cord embedded in an adhesive rubber compound
- 3 Base compound: parallel V-shaped ribs of a wear resistant rubber compound

Characteristics

- Combines the high flexibility of the flat belt with the high power transmission capability of the traditional V-belts
- Small pulley diameters
- Large speed ratios possible
- Good frictional power transmission and high power transmission capability
- Insensitive to torque impulses and short-term overloading

Applications

Profile PH

Domestic appliances, medical appliances, machine tools, small conveyors, conveyor belt, paper transport machines

Profile PJ

Small compressors, cement mixers, white goods, small tools

Fans, air conditioning, concrete saws, wood saws, industrial washing machines

Compressors (> 30 kW), industrial washing machines

Profile PM

Paper industry, agricultural machines (silage cutter), sugar cane cutter

Standard Profiles

ELASTIC optibelt ERB RIBBED BELTS / SPECIAL DESIGNS

Construction

The elastic ribbed belts of profiles EPH, EPJ and EPK consist

The elastic ribbed belt is characterised by the highly individual options for designing and adapting it for different drive solutions particularly for fixed distances between centres. In addition, the running properties of the ribbed belt can be further optimised by additional refinement of the surface on the ribbed side.

Advantages and Characteristics

- · Assembly is possible on fixed centres with no need for adjustment for belt tensioning
- Good damping performance and shock load resistance due to high elasticity of belt
- Maintenance-free and no retensioning required
- Easy assembly in service areas
- Allows individual design of tension and elongation characteristics

Dimensions

Belt lengths depend on the profile, from 250 mm to 2500 mm.

- Ribbed belt electrically conductive on request
- Ribbed belt high voltage resistant on request
- PAK optimised on request

Ribbed Belt Pulleys

Extensive standard range (see range list); special pulleys on

Please contact our Applications Engineering Department for individual drive solutions.

Special Versions

CHARACTERISTICS - APPLICATION AREAS

Retensioning Not Necessary -**Extended Service Intervals -Optimal Damping of Drive Vibrations**

Recently, some roller conveyor belt systems have been equipped with elastic ribbed belts of the model optibelt ERB. Those belts keep the single rolls moving and do not need any retensioning in continuous industrial operation. Thus, they are virtually maintenance-free. For this reason, elastic ribbed belts are now also deployed in transport technology.

The advantages are more than obvious as elastic ribbed belts do not have to be run in in the first place and do not therefore need to be retensioned. optibelt ERB belts gain the required tension due to a higher basic tension and the systematic settling characteristics of the belts. Retensioning can be dispensed with as a result.

Optibelt ribbed belts offer many advantages for end users, too, such as manufacturing companies that use roller conveyor belts as a means of conveyance to the warehouse. Thanks to the belt, the vibrations of the drive are better absorbed, resulting in a smoothly running, extremely lowvibration roller drive. This leads to a minimised wear of the components and extends the operational life of the individual roller bearings. On the other hand, less vibration means less noise and thus improved working conditions.

Given these obvious advantages for users and manufacturers, there is only one definite goal concerning the optimisation of many roller conveyor belt drives: the changeover from round profile belts and timing belts to elastic ribbed belts made by

PRODUCT DESCRIPTION SPECIAL DESIGNS

SPECIAL DESIGNS

OPTIBELT RIBBED BELTS WITH ARAMID TENSILE REINFORCEMENT OPTIBELT RIBBED BELTS WITH SPECIAL COATINGS

Ribbed Belts with Aramid Tensile Reinforcement

The extremely low-stretch gramid tension cords stand out in comparison with conventional tensile reinforcement such as polyester. They have almost twice the breaking strength of fibres of the same thickness. Despite their high strength, the fibre is flexible and has sufficient elasticity to cushion shocks and vibrations.

Optibelt ribbed belts with aramid tensile reinforcement are for use where

- maximum power transmission is called for,
- overall widths are restricted,
- minimum adjustment range is available for installation and tensionina and
- high temperature impacts are present.

Ribbed belts with aramid tensile reinforcement are ideal for use in drives with heavy wear in mechanical engineering, special-purpose engineering, agricultural engineering and in garden tools.

It is not possible to go into the entire range of criteria in this manual. Please get in touch with our applications engineers for in-depth advice.

Profiles

PK/PL with 8M or 14M surface

Timing belt pulleys HTD or RPP and ribbed belt pulleys profile PK and PL

Applications

The optibelt OMEGA timing belt with additional ribbed PK belt profile on the back cover of the belt is perfect for use in mills, e.g. food, corn, fruit and flour mills, where the back pulley has a reversible direction and slipping is necessary when the drive blocks.

Advantage

The rubber compound filled with aramid fibres is very wear resistant. The back cover of the PK profile is moulded in one operation with the timing belt.

Optibelt Ribbed Belts with Special Coatings

Due to the huge variety of coatings and finishing possibilities plus the properties of the ribbed belt. Optibelt has developed innovative solutions in the field of conveying technology. Optibelt ribbed belts can be provided with an additional top surface coating. The coating is applied in a special adhesive procedure.

Ribbed belts with a patterned top surface can be used in place of expensive conveyor belts. They run singly or with several belts adjacent to each other and transport the goods to be conveyed horizontally and at up and down gradients. Vertical conveyance is possible if the ribbed belts are arranged back to back and the media conveyed is pressed together between the two belts.

Applications

Examples of some of the many successful uses for Optibelt ribbed belts with coatings include:

- Conveying doors, parts of cabinets, veneer and plastic panels for wood-working
- Conveying car body parts and sharp-edged sheet metal panels in the automotive industry
- Conveying cartons and boxes in the packaging industry

AUTOMOTIVE DRIVES optibelt CAR POWER RBK

New engine designs demand more and more space saving. It is not unusual to encounter small pulley diameters and limited drive widths. Being extremely elastic and dimensionally stable, Optibelt ribbed belts can adapt to the respective drive geometry. They are flexible enough to find their path as a serpentine drive through the motor labyrinth. The flexible ribbed belt is extremely quiet and supple in its job of controlling the power train.

Optibelt ribbed belts drive ancillary units in cars, commercial vehicles and buses. They reduce vibration and give the generator, air-conditioning compressor, and the power steering pump the right spin.

Characteristics

- Large speed ratios
- High power transmission
- Minimum slip
- Largely oil and temperature resistant
- Vibration free and quiet
- Extraordinarily resilient

Profiles

PJ, PK, DPK

Dimensions

2 PK from 786 to 905 mm 3 PK from 550 to 1285 mm 4 PK from 560 to 1520 mm 5 PK from 625 to 2055 mm 6 PK from 675 to 2680 mm 7 PK from 870 to 2355 mm 8 PK from 800 to 2605 mm 9 PK from 1200 to 4145 mm 10 PK from 1108 to 2063 mm 11 PK from 1515 to 2055 mm 12 PK from 1165 to 2500 mm 3 EPK from 806 to 885 mm 4 EPK from 711 to 1102 mm 5 EPK from 690 to 926 mm 6 EPK from 691 to 1873 mm 6 DPK from 1188 to 1853 mm 7 DPK from 1360 to 1400 mm Additional sizes on request.

Applications

Use in automotive engineering to drive the power train

- 1 Belt top surface: wear resistant polychloroprene rubber compound
- 2 Tension cord: low-stretch polyester cord
- **3** Cushioning: high-adhesion polychloroprene rubber compound (cushion layer)
- 4 Base compound: polychloroprene rubber compound

STANDARD RANGE RIBBED BELTS

Profile		PH	PJ	PK	PL	PM
Rib pitch	s [mm]	1.60	2.34	3.56	4.70	9.40
Belt thickness	≈ h [mm]	2.50	3.30	4.60	7.00	13.00
Belt speed	≈ v [m/s]	60	60	50	40	30
Minimum pulley diameter	d _{b min} [mm]	13	20	45	75	180
Effective line difference	h_b	0.80	1.25	1.60	3.50	5.00

	Profi	le PH		Profile PJ					
Effective	length L _b								
[mm]	[inch]								
698 735 762 813 858	27.50 28.90 30.00 32.00 33.80	1397 1439 1475 1600 1854	55.00 56.70 58.10 63.00 73.00	280 330 356 362 381	11.00 13.00 14.00 14.30 15.00	1130 1150 1168 1194 1200	44.50 45.30 46.00 47.00 47.30	1915 1930 1956 1965 1981	75.40 76.00 77.00 77.40 78.00
864 886 955 965 975	34.00 34.90 37.60 38.00 38.40	1895 1915 1930 1956 1992	74.60 75.40 76.00 77.00 78.40	406 414 432 457 483	16.00 16.30 17.00 18.00 19.00	1222 1244 1262 1270 1285	48.10 49.00 49.70 50.00 50.60	1992 2083 2155 2210 2337	78.40 82.00 84.80 87.00 92.00
990 1016 1080 1092 1096	39.00 40.00 42.50 43.00 43.10	2083 2155	82.00 84.80	508 559 584 610 660	20.00 22.00 23.00 24.00 26.00	1301 1309 1316 1321 1333	51.20 51.50 51.80 52.00 52.50	2489	98.00
1168 1194 1200 1222 1230	46.00 47.00 47.20 48.10 48.40			711 723 737 762 813	28.00 28.50 29.00 30.00 32.00	1355 1371 1397 1428 1439	53.40 54.00 55.00 56.20 56.70		
1262 1270 1285 1290 1301	49.70 50.00 50.60 50.80 51.20			836 864 914 955 965	32.90 34.00 36.00 37.60 38.00	1475 1549 1600 1651 1663	58.10 61.00 63.00 65.00 65.50		
1309 1316 1321 1333 1371	51.50 51.80 52.00 52.50 54.00			1016 1092 1105 1110 1123	40.00 43.00 43.50 43.70 44.20	1752 1780 1854 1895 1910	69.00 70.00 73.00 74.60 75.20		

Note: Individually designed ribbed belts may deviate from the standard composition. Please contact our Applications Engineering Department!

Non standard lengths on request.

Maximum number of ribs: Please contact our Applications Engineering
Department.

Profile PH is a non stock item.

Ordering example:

For a five-rib ribbed belt with profile PJ with an effective length 660 $\rm L_b$: optibelt RB 5 PJ 660 $\rm L_b$

STANDARD RANGE RIBBED BELTS

		Profil	le PK			Profi	le PL	Profi	le PM
Effective	length L _b	Effective	length L _b	Effective	length L _b	Effective	length L _b	Effective	length L _b
[mm]	[inch]	[mm]	[inch]	[mm]	[inch]	[mm]	[inch]	[mm]	[inch]
630• 648 698 730 775	24.80 25.50 27.50 28.70 30.50	1290 • 1321 • 1330 1345 1371 •	50.80 52.00 52.40 53.00 54.00	2515• 2845•	99.00 112.00	954 991 1075 1194 1270	37.50 39.00 42.30 47.00 50.00	2286 2388 2515 2693 2832	90.00 94.00 99.00 106.00 111.50
800 812 830 865 875	31.50 32.00 32.70 34.00 34.50	1397• 1439• 1460 1520 1560	55.00 56.70 57.50 59.80 61.40			1333 1371 1397 1422 1562	52.50 54.00 55.00 56.00 61.50	2921 3010 3124 3327 3531	115.00 118.50 123.00 131.00 139.00
890 913 920 940 954	35.00 36.00 36.20 37.00 37.60	1570 1600• 1655 1690 1755	61.80 63.00 65.20 66.50 69.10			1613 1664 1715 1764 1803	63.50 65.50 67.50 69.50 71.00	3734 4089 4191 4470 4648	147.00 161.00 165.00 176.00 183.00
962 990 1015 1080 1090	37.80 39.00 40.00 42.50 43.00	1854• 1885 1930• 1956• 1980	73.00 74.20 76.00 77.00 78.00			1841 1943 1981 2020 2070	72.50 76.50 78.00 79.50 81.50	5029 5410 6121 6883• 7646•	198.00 213.00 241.00 271.00 301.00
1125 1150 1165 1190 1200•	44.30 45.30 45.90 46.80 47.20	2030 2050 2080 2120 2145	79.90 80.70 82.00 83.50 84.40			2096 2134 2197 2235 2324	82.50 84.00 86.50 88.00 91.50	8408 • 9169 • 9931 • 10693 • 12217 •	331.00 361.00 391.00 421.00 481.00
1220 1230 1245 1270 1285	48.10 48.40 49.00 50.00 50.60	2170 2235• 2255 2362• 2460	85.40 88.00 88.80 93.00 96.90			2362 2476 2515 2705 2743	93.00 97.50 99.00 106.50 108.00	13741• 15266•	541.00 601.00
						2845 2895 2921 2997 3086	112.00 114.00 115.00 118.00 121.50		
						3124 3289 3327 3492 3696	123.00 129.50 131.00 137.50 145.50		
						4051 4191 4470 4622 5029	159.50 165.00 176.00 182.00 198.00		
						5385 6096	212.00 240.00		

Note: Individually designed ribbed belts may deviate from the standard composition. Please contact our Applications Engineering Department!

Non standard lengths on request.

Maximum number of ribs: Please contact our Applications Engineering Department.

non stock items

ABBREVIATIONS USED IN FORMULAE

a_{nom} = Drive centre distance, calculated with n_k = Speed of small pulley a standard belt length [mm] n_k = Speed of driver pulley.	[rpm]
a standard belt length [mm] and a foldation will be	
$n_1 = \text{Speed of arriver policy}$	[
c_1 = Arc of contact correction factor n_2 = Speed of driven pulley	[rpm]
c ₂ = Drive service factor P = Motor or normal running power	[kW]
c_3 = Belt length correction factor P_B = Design power	[kW]
d_{bg} = Effective diameter of large pulley [mm] P_{N} = Power rating per rib	[kW]
d_{bk} = Effective diameter of small pulley [mm] $s = Drive span length$	[mm]
d_{b1} = Effective diameter of driver pulley [mm] S_{a} = Minimum static shaft loading	[N]
d_{b2} = Effective diameter of driven pulley [mm] $T = Minimum static belt tension per rib$	
F - Rolt deflection per 100 mm chan langth [mm]	[N]
E _a = Belt deflection for a given span length [mm] v = Belt speed E _a = Belt deflection for a given span length [mm] v = Aliainum adjustment required above	[m/s]
x = 0 Minimum adjustment required above $x = 0$ drive centre distance $x = 0$ drive x	
h = Belt thickness [mm] tensioning and retensioning	[mm]
b Effective line difference [mm] y = Minimum adjustment required below	
i = Speed ratio drive centre distance a_{nom} to allow for belt installation	[mm]
k = Constant for calculation of centrifugal force z = Number of ribs	[]
O	[_ 1
Z	[degrees]
L_{bSt} = Standard belt effective length [mm] β = Arc of contact on small pulley °	[degrees]
L _{bth} = Calculated belt effective length [mm]	

OPTIBELT POWER RATING P_N - ARC OF CONTACT CORRECTION FACTOR C1

Optibelt power ratings P_N shown in tables 5 to 9 are based on internationally recognised formulae. These formulae contain material constants which must be used in accordance with the practices of the individual manufacturers. The P_N power rating formula is based on a specific tension ratio between the tight and slack sides of the belt. The P_N power rating tables refer to the smallest loaded pulley in the drive. The belt power ratings P_N from the tables are given for:

- the effective diameter of small pulley d_{bk}
- the speed of small pulley nk
- speed ratio i
- the arc of contact of the belt on small pulley $\beta = 180^{\circ}$
- the ideal belt length for the particular belt profile

From the given drive data, the power rating per rib can be found which must then be modified by application of the arc of contact correction factor c₁ and belt length correction factor c_3 .

Intermediate values can be found by linear interpolation.

The arc of contact correction factor c₁ corrects the power rating P_N when the arc of contact of the belt is smaller than 180°, since the P_N value of the arc of contact β = 180° was determined on the small pulley d_{bk}.

Table 1

d _{bg} – d _{bk} a _{nom}	β ≈	c ₁
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65	180° 177° 174° 171° 168° 165° 160° 156° 153° 150° 147° 144° 141°	1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0
0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55 1.60	136° 133° 130° 126° 123° 119° 115° 112° 109° 106° 103° 100° 96° 92° 88° 84° 80° 77°	0.96 0.95 0.95 0.94 0.94 0.93 0.92 0.92 0.91 0.90 0.89 0.89 0.87 0.86 0.85 0.83 0.82 0.80

Intermediate lengths can be calculated by linear interpolation!

DRIVE DESIGN BELT LENGTH CORRECTION FACTOR c₃

The belt length correction factor c_3 takes into account the flex rate in the particular belt profile in relationship to a standard effective length.

This results in the following relationships:

ribbed belt length used > standard effective length $c_3 > 1.0$ ribbed belt length used = standard effective length $c_3 = 1.0$ ribbed belt length used < standard effective length $c_3 < 1.0$

$$c_3 = 1 + \left[\left(\frac{L_b}{L_{bo}} \right)^{0.09} - 1 \right] \cdot 2.4$$

 L_b = ribbed belt length used L_{bo} = standard effective length

Table 2

	Profi	le PH		Profile PJ					
Effective length L _b [mm]	c ₃	Effective length L _b [mm]	c ₃	Effective length L _b [mm]	c ₃	Effective length L _b [mm]	c ₃		
559 698 735 762 813	0.96 0.96 0.97 0.98 1.00	1956 1992 2083 2155	1.19 1.20 1.21 1.22	280 330 356 362 381	0.74 0.76 0.78 0.78 0.79	1309 1316 1321 1333 1355	1.05 1.05 1.05 1.05 1.06		
858 864 886 914 955	1.01 1.01 1.01 1.02 1.03			406 414 432 457 483	0.80 0.81 0.82 0.83 0.84	1371 1397 1428 1439 1475	1.06 1.06 1.07 1.07 1.08		
965 975 990 1016 1080	1.03 1.03 1.03 1.04 1.06			508 559 584 610 660	0.85 0.87 0.88 0.89 0.90	1549 1600 1651 1663 1752	1.09 1.10 1.10 1.10 1.12		
1092 1096 1168 1194 1200	1.06 1.06 1.07 1.08 1.08			711 723 762 813 836	0.92 0.92 0.93 0.95 0.95	1780 1854 1895 1910 1915	1.12 1.13 1.13 1.14 1.14		
1222 1230 1262 1270 1285	1.08 1.09 1.09 1.09 1.10			864 914 955 965 1016	0.96 0.97 0.98 0.98 1.00	1930 1956 1965 1981 1992	1.14 1.14 1.14 1.14 1.14		
1290 1301 1309 1316 1321	1.10 1.10 1.10 1.10 1.10			1092 1105 1110 1123 1130	1.01 1.01 1.01 1.02 1.02	2083 2155 2210 2337 2489	1.16 1.17 1.17 1.18 1.20		
1333 1371 1397 1439 1475	1.10 1.11 1.11 1.12 1.13			1150 1168 1194 1200 1222	1.02 1.03 1.03 1.03 1.04				
1600 1854 1895 1915 1930	1.15 1.18 1.18 1.19 1.19			1244 1262 1270 1285 1301	1.04 1.04 1.04 1.05 1.05				

DRIVE DESIGN BELT LENGTH CORRECTION FACTOR c₃

Table 2									
	Profi	le PK			Profi	ile PL		Profi	le PM
Effective length L _b [mm]	c ₃	Effective length L _b [mm]	c ₃	Effective length L _b [mm]	c ₃	Effective length L _b [mm]	c ₃	Effective length L _b [mm]	c ₃
559 630 648 698 730 775 800 812 830 865 875 890 913 920 940 954 962 990 1015 1080 1090 1100 1125 1150 1165 1190 1222 1230 1245 1270 1285 1290 1321 1330 1345 1371 1397 1439 1460 1520 1560 1570 1655 1854 1885 1930	0.78 0.81 0.81 0.82 0.84 0.85 0.86 0.86 0.87 0.87 0.88 0.88 0.89 0.89 0.90 0.90 0.92 0.91 0.92 0.91 0.92 0.93 0.93 0.93 0.94 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.96 0.96 0.97 0.97 0.98 0.99 0.99 1.00 1.01 1.01 1.02 1.03 1.04 1.04	1956 1980 2030 2050 2080 2120 2145 2170 2235 2362 2460 2515 2743 2845	1.04 1.05 1.05 1.05 1.06 1.06 1.07 1.09 1.09 1.10 1.12 1.13	954 991 1075 1194 1270 1333 1371 1397 1422 1562 1613 1664 1715 1764 1803 1841 1943 1981 2020 2070 2096 2134 2197 2235 2324 2362 2476 2515 2705 2743 2845 2895 2921 2997 3086 3124 3289 3327 3492 3696	0.83 0.84 0.86 0.88 0.89 0.90 0.91 0.91 0.93 0.94 0.95 0.96 0.97 0.98 0.99 0.99 1.00 1.01 1.01 1.02 1.02 1.03 1.03 1.05 1.05 1.06 1.07 1.07 1.07 1.08 1.08 1.09 1.10 1.11 1.12	4051 4191 4470 4622 5029 5385 6096	1.14 1.15 1.16 1.17 1.19 1.21 1.24	2286 2388 2515 2693 2832 2921 3010 3124 3327 3531 3734 4089 4191 4470 4648 5029 5410 6121 6883 7646 8408 9169 9931 10693 12217 13741 15266	0.87 0.88 0.89 0.91 0.92 0.92 0.93 0.94 0.95 0.96 0.98 1.00 1.01 1.02 1.04 1.06 1.08 1.11 1.13 1.16 1.18 1.19 1.21 1.24 1.30

MINIMUM ALLOWANCE x/y ABOVE AND BELOW DRIVE CENTRE DISTANCE anom

Table 3

Effective length	Minimum allowance x [mm] -	Minimum allowance y [mm] – for ease of fitting						
L _b [mm]	for tensioning and retensioning	Profile PH	Profile PJ	Profile PK	Profile PL	Profile PM		
≤ 500	10	10	10	-	_	_		
> 500 ≤ 1000	15	15	15	20	25	_		
> 1000 ≤ 1500	20	15	15	20	25	_		
> 1500 ≤ 2000	25	15	15	20	25	-		
> 2000 ≤ 2500	30	20	20	20	25	40		
> 2500 ≤ 3000	35	20	20	25	30	40		
> 3000 ≤ 4000	45	-	_	25	30	45		
> 4000 ≤ 5000	55	_	-	30	35	45		
> 5000 ≤ 6000	65	_	-	30	35	50		
> 6000 ≤ 7500	85	_	_	_	_	55		

Minimum Allowance

DRIVE DESIGN DRIVE SERVICE FACTOR c2

The drive service factor c2 takes into account the length of time the drive is operational in a 24 hour period and the type of driver and driven units. It applies exclusively to two pulley drives. It does not take into account other working conditions, such as drives with tension, guide and idler pulleys. Pages 33 to 34 give the design bases for drives with more than two pulleys. Extreme operating conditions such as aggressive dust, particularly high temperatures or the influence of various media are **not** considered. Since it is practically impossible to condense every possible combination of drive unit/driven machine/operating conditions into a standard-compliant form the drive service factors are guide values. In special cases

e.g. high starting load (direct starting of fans), drives with high starting frequency, unusual shock loading, or the regular acceleration/deceleration of mass, the load factor should be increased.

Typical value:

Where the starting load is more than 1.8 times the standard running load, the value should be divided by 1.5 to obtain the minimum drive service factor c_2 ; example: starting load factor $M_A = 3.0$; c₂ selected as 2.0. Where the application is especially problematical please consult our applications engineers.

Table 4

Types of Prime Mover

AC and three-phase motors with normal starting load (up to 1.8 times normal running load), e.g. synchronous and single-phase motors with auxiliary phase, three-phase motors with direct on-line start, star delta or commutator starter, DC shunt wound motors, internal combustion engines and turbines n > 600 rpm

AC and three-phase motors with high starting load (more than 1.8 times normal running load), e.g. single-phase motors with high starting torque, DC motors series and compound wound, internal combustion engines and turbines n < 600 rpm

		11 2 0 0 0					
				Hours per	day duty		
Types of Driven	Machine	10 and under	over 10 to 16	over 16	10 and under	over 10 to 16	over 16
Consistent duty, only low masses to be accelerated	Agitators for liquids with uniform consistency, generators up to 0.05 kW, small conveyor belts for lightweight material, fans up to 0.05 kW, rotary pumps up to 0.05 kW	1.1	1.1	1.2	1.1	1.2	1.3
Consistent light duty operation, low masses to be accelerated	Conveyor belts for lightweight material, fans from 0.06 to 0.1 kW, rotary pumps from 0.06 to 0.1 kW	1.1	1.2	1.3	1.2	1.3	1.4
Inconsistent duty operation, medium- sized masses to be accelerated	Vibrating screens, pit fans, agitators for liquids with fluctuating consistency, compressors, screw presses, woodworking machinery, conveyor belts for heavy material, elevators, conveyor belts, fans above 0.8 kW, drills, milling machines, grinding machines, light lathes, bakery machinery, circular spinning frames, rotary pumps above 0.11 kW, laundry machinery	1.2	1.3	1.4	1.3	1.4	1.5
Inconsistent medium duty, medium-sized shocks and masses to be accelerated	Kneaders, mills, mixers, pumps, drying drums, general milling equipment, centrifuges, agitators for plastic materials with fluctuating consistency, bucket conveyors, centrifugal fans, parallel planing machines, weaving looms	1.3	1.4	1.5	1.4	1.5	1.6
Inconsistent duty operation, high shocks and masses to be accelerated	Paper making machinery, plate conveyors, slag mills, calenders, drilling rigs, heavy duty lathes, punches, shears, draw benches, piston pumps up to 2 cylinders	1.4	1.5	1.6	1.5	1.7	1.8
Inconsistent duty operation, extra high masses to be accelerated, extra high shocks	Dredgers, heavy duty grinders, rolling mills, mixers, sawmills, calenders	1.6	1.7	1.8	1.6	1.8	2.0

A GUIDE TO SELECTING RIBBED BELT PROFILES

By using the following diagram and considering economy and size it is possible to determine the best ribbed belt profile. Optimum utilisation of power and efficiency is achieved by the selection of the largest possible pulley diameter in relation to the profile used. The limits to the permissible circumferential speeds for ribbed belts must be observed:

Profile PH $v_{max} = 60 \text{ m/s}$ Profile PJ $v_{max} = 60 \text{ m/s}$ Profile PK $v_{max} = 50 \text{ m/s}$ Profile PL $v_{max} = 40 \text{ m/s}$ Profile PM $v_{max} = 35 \text{ m/s}$

Please contact our Applications Engineering Department in the case of higher circumferential speeds.

Experience has shown that minimum pulley diameters should be avoided. These drives require a larger number of ribs and consequently broad pulleys. As a result, they are cost-intensive. The ribbed belt width should not be larger than the effective diameter of the small pulley.

In such borderline cases the use of the next smaller belt profile on similar pulley diameters will often save both cost and space.

A check is also advisable if the point of interprofile in the selection diagram used lies in the boundary areas between two profiles.

Diagram 1

DRIVE DESIGN FORMULAE AND CALCULATION EXAMPLE

Prime Mover

Drive Conditions

Operational hours per day: 8 hours Number of starts: 20 per day Normal ambient temperature, no exposure to oil and water

Driven Machine

Grinding spindle P = 13 kW $n_2 = 3100 \pm 100 \text{ rpm}$ Start up: from idling

Electric motor P = 13 kW $n_1 = 2440 \text{ rpm}$ Start up: direct

Starting torque: $M_A = 2.7 M_N$

Drive centre distance: between 350 and 400 mm acceptable Effective diameter of driver pulley: $d_{b1} \leq 140 \text{ mm}$

Formulae

Drive service factor

c₂ from table 4, page 20

Design power

 $P_B = P \cdot c_2$

Belt profile selection

from diagram 1, page 21

Speed ratio

$$i = \frac{n_1}{n_2} = \frac{d_{w2}}{d_{w1}} = \frac{d_{b2} + 2 h_b}{d_{b1} + 2 h_b}$$

h_b see page 32

Effective diameters of ribbed belt pulleys

d_{b1} see page 45

 $d_{b2} = d_{b1} \cdot i + 2 h_b (i - 1)$

when d_{b2} is known:

$$d_{b1} = \frac{d_{b2}}{i} + 2 h_b \left(\frac{1}{i} - 1 \right)$$

Calculation Example

 $c_2 = 1.6$

 $P_B = 13 \cdot 1.6 = 20.80 \text{ kW}$

Profile PL

$$i = \frac{2440}{3173} = 0.769$$

d_{b1} = **123 mm** selected

 $d_{b2} = 123 \text{ mm} \cdot 0.769 + 2 \cdot 3.5 (0.769 - 1) = 92.97 \text{ mm}$

 $d_{b2} = 93 \text{ mm} - \text{see page } 44$

FORMULAE AND CALCULATION EXAMPLE

Formulae

Recalculation of speed of driven machine

$$i_{actual} \ = \frac{d_{w2}}{d_{w1}} = \frac{d_{b2} + 2 \ h_b}{d_{b1} + 2 \ h_b}$$

$$n_{2 \text{ actual}} = \frac{n_1}{i_{\text{actual}}}$$

Drive centre distance (suggested)

Recommendation:
$$a > 0.7$$
 $(d_{ba} + d_{bk})$

$$a < 2$$
 $(d_{bg} + d_{bk})$

Effective length of ribbed belt

$$L_{bth} \approx 2 \ \alpha + 1.57 \ (d_{bg} + d_{bk}) + \frac{(d_{bg} - d_{bk})^2}{4 \ \alpha}$$

$$L_{bth} = 2 \ a \cdot sin \frac{\beta}{2} + \frac{\pi}{2} (d_{bg} + d_{bk}) + \frac{\alpha \cdot \pi}{180^{\circ}} (d_{bg} - d_{bk})$$

Drive centre distance

Calculated from L_{bSt} and L_{bth}

(when
$$L_{bSt} > L_{bth}$$
) $a_{nom} \approx a + \frac{L_{bSt} - L_{bth}}{2}$

(when
$$L_{bSt} < L_{bth}$$
) $a_{nom} \approx a - \frac{L_{bth} - L_{bSt}}{2}$

Actual:
$$a_{nom} = \frac{L_{bSt} - \frac{\pi}{2} \left(d_{bg} + d_{bk}\right)}{4} +$$

$$\sqrt{ \left[\frac{L_{bSt} - \frac{\pi}{2} (d_{bg} + d_{bk})}{4} \right]^2 - \frac{(d_{bg} - d_{bk})^2}{8} }$$

Minimum allowance x/y above and below drive centre distance a_{nom}

x/y from table 3, page 19

Speed

$$v = \frac{d_{wk} \cdot n_k}{19100} = \frac{(d_{bk} + 2 \cdot h_b) \cdot n_k}{19100}$$

Calculation Example

$$i_{actual} = \frac{93 + 2 \cdot 3.5}{123 + 2 \cdot 3.5} = 0.769$$

$$n_{2 \text{ actual}} = \frac{2440}{0.769} = 3173 \text{ rpm}$$

 $i_{actual} = \frac{93 + 2 \cdot 3.5}{123 + 2 \cdot 3.5} =$ **0.769** $n_{2 \text{ actual}} = \frac{2440}{0.769} =$ **3173 rpm**Required:
3100 ± 100 rpm
(Calculated speed meets requirement)

a = 380 mm suggested

$$L_{bth} \approx 2 \cdot 380 + 1.57 \cdot (123 + 93) + \frac{(123 - 93)^2}{4 \cdot 380} \approx 1099.7 \text{ mm}$$

Nearest standard length from page 14 selected

$$L_{bSt} = 1075 \text{ mm}$$

$$a_{nom} \approx 380 - \frac{1099.7 - 1075}{2} \approx 367.65 \text{ mm}$$

$$v = \frac{(93 + 2 \cdot 3.5) \cdot 3173}{19100} = 16.61 \text{ m/s}$$

FORMULAE AND CALCULATION EXAMPLE

Formulae

Arc of contact correction factor and arc of contact $d_{bg} - d_{bk}$

Approximate β° and c_1 from table 1, page 16

Actual: $\cos \frac{\beta}{2} = \frac{d_{bg} - d_{bk}}{2 a_{nom}}$

Belt length correction factor

c₃ from table 2, page 17

Power rating per rib

$$P_{N} \text{ for } \begin{cases} d_{bk} = 93 \text{ mm} \\ n_{k} = 3173 \text{ rpm} \\ i* = \frac{1}{0.769} = 1.3 \end{cases} \qquad \begin{array}{ll} \text{Profile PL} \\ \text{from table 8, page 29} \end{cases}$$

The condition $i \ge 1$ applies for selecting the speed ratio power increment.

Number of ribs

$$z = \frac{P \cdot c_2}{P_N \cdot c_1 \cdot c_3}$$

Minimum static belt tension per rib

$$T \approx \frac{500 \cdot (2.03 - c_1) \cdot P_B}{c_1 \cdot z \cdot v} + k \cdot v^2 \quad \frac{\text{Profile}}{\text{PH}} \quad \frac{k}{0.005} \quad \frac{\text{f [N]}}{\text{(per rib)}}$$

$$k \text{ from table} \quad P_K \quad 0.020 \quad 7.5 \\ P_L \quad 0.036 \quad 10.0 \\ P_M \quad 0.123 \quad 25.0 \\ P_R \quad 0.005 \quad$$

Minimum static shaft loading

$$S_{\alpha} \approx 2 T \cdot \sin \frac{\beta}{2} \cdot z$$

Belt deflection for a given span length

$$E_{\alpha} \approx \frac{E \cdot L}{100}$$

E from diagram 2, page 49

$$L = \alpha_{nom} \cdot \sin \frac{\beta}{2}$$

For explanation see chapter on tensioning on page 48

Calculation Example

$$\frac{123 - 93}{368} = 0.082$$

$$\beta \approx 175^{\circ}$$

$$c_1 = 1.0$$
 linearly interpolated

$$c_3 = 0.86$$

$$P_N = 2.28 + 0.2 =$$
2.48 kW

$$z = \frac{13 \cdot 1.6}{2.48 \cdot 1.0 \cdot 0.86} = 9.74$$

1 optibelt RB ribbed belt 10 PL 1075

$$T \approx \frac{500 \cdot (2.03 - 1.0) \cdot 20.8}{1.0 \cdot 10 \cdot 16.6} + 0.036 \cdot 16.6^2 \approx 75 \text{ N}$$

$$S_a \approx 2 \cdot 75 \cdot 0.9986 \cdot 10 \approx 1500 \text{ N}$$

$$E_{\alpha} \approx \frac{2.5 \cdot 367.0}{100} \approx 9 \text{ mm}$$

 $E \approx 2.5 \text{ mm}$

$$L = 367.6 \cdot 0.9986 = 367.0 \text{ mm}$$

optibelt CAP

To design drive with:

- optibelt RB Ribbed Belt 10 PL 1075 Lb
- optibelt RBS Ribbed Belt Pulley for Taper Bushes TB 10 PL 123
 optibelt TB Taper Bush 2012 (bore diameter 14-50 mm)
 optibelt RBS Ribbed Belt Pulley for Taper Bushes TB 10 PL 93
 optibelt TB Taper Bushes 1610 (bore diameter 14-42 mm)

Tolerances/Indications

Prime mover	:	Electri	c motor	
Driven machine				
Design power	PB:	20.80	kW	
Driver unit output	P:	13.00	kW	
Driver pulley torque	M:	51	Nm	
Speed of driver unit	n ₁ :	2440	1/min	
Effective output speed	n ₂ :	3172	1/min	-55 1/min
	d _{b1} :	123.00	mm	
	d _{b2} :	93.00	mm	
	:	1075	mm	
Effective drive centre distance	a:	367.55	mm	−12.452 mm
Effective speed ratio	i:	0.77		1.7 %
Allowance for installation	y:	25.00	mm	
Allowance for tensioning	x:	20.00	mm	
Effective drive service factor	c ₂ :	1.64		
Belt speed	v:	16.61	m/s	
Flexing cycles	f _B :	30.90	1/s	
Power rating per belt	P _N :	2.49	kW	
Arc of contact correction factor	c ₁ :	1.00		
Belt length correction factor	c ₃ :	0.86		
Arc of contact for small pulley	β:	175.32	0	
Pulley face width	b ₂ :	48.90	mm	
Span length	l:	367.24	mm	
Calculated number of belts	zth:	9.74		for predetermined $c_2 = 1.60$
Drive unit weight	:		kg	
Static shaft loading, initial installation	Sast:	1941	_	
Static shaft loading, used belt	Sast:	1493	Ν	
Dynamic shaft loading	Sadyn:	1308	Ν	

Belt tension methods	Initia	l installation	Operating volta	ge
for predetermined $c_2 =$		1.60	New belt	Used belt
1. optibelt OPTIKRIK II	Static shaft load	ing per belt:	971 N	747 N
2. Deflection with tension gauge		Test load:	100 N	100 N
		Deflection:	7.34 mm	8.45 mm
3. Length addition per 1000 mm belt length		:	2.85 mm	2.11 mm
4. optibelt TT 3 / optibelt TT MINI Frequence	/ Tension Gauge	Frequency:	70.72 1/s	62.02 1/s

PROFILE PH

POWER RATING P_N [kW] PER RIB FOR β = 180°

Table 5

Tab	le 5 ———-														
[s/u	n _k				Ef	fective dic	ımeter of s	mall pulle						Arc of contact correction per rib for speed	ratio i
<u>-</u>	[rpm]	13	1 <i>7</i>	20	25	31,5	35,5	40	45	50	63	71	80	to to to 1.05 1.55	
[\$/w] > (3)	[rpm] 700 950 1450 2850 100 300 500 700 900 1100 1200 1300 1400 1500 1700 2200 2300 2400 2500 2400 2500 2400 2500 3000 3300 3300 3300 3300 3400 3500 3600 3600 4000 4400 4400 4400 4400 44	0.01 0.01 0.02 0.03 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0.06 0.07 0.07 0.07	0.02 0.02 0.03 0.05 0.00 0.01 0.02 0.02 0.02 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.07 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.09 0.01 0.01 0.04 0.04 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.09 0.01	0.02 0.03 0.04 0.07 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.09 0.01 0.10 0.11 0.12 0.12 0.13 0.14 0.14 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.17	0.03 0.04 0.06 0.10 0.01 0.02 0.03 0.04 0.04 0.05 0.05 0.06 0.06 0.07 0.07 0.07 0.07 0.07 0.07 0.09 0.09 0.09 0.10 0.10 0.10 0.11 0.11 0.11 0.12 0.12 0.13 0.13 0.13 0.13 0.14 0.14 0.15 0.15 0.16 0.17 0.17 0.17 0.17 0.17 0.18 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.11 0.11 0.11 0.11 0.11 0.12 0.12 0.13 0.13 0.13 0.14 0.15 0.16 0.16 0.16 0.17 0.17 0.18 0.19 0.19 0.10 0.10 0.11 0.11 0.11 0.12 0.12 0.13 0.13 0.14 0.15 0.16 0.16 0.17 0.18 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.11 0.12 0.12 0.13 0.13 0.14 0.15 0.16 0.16 0.17 0.18 0.19 0.19 0.19 0.19 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.12 0.12 0.13 0.13 0.14 0.15 0.16 0.16 0.17 0.17 0.18 0.19 0.19 0.19 0.19 0.10 0.20	31,5 0.04 0.05 0.08 0.14 0.01 0.02 0.03 0.04 0.05 0.06 0.06 0.07 0.08 0.08 0.09 0.10 0.10 0.11 0.11 0.12 0.12 0.13 0.13 0.14 0.15 0.15 0.15 0.16 0.16 0.17 0.17 0.18 0.19 0.19 0.20 0.21 0.21 0.21 0.22 0.23 0.24 0.24 0.24 0.24 0.26 0.26 0.26 0.27 0.28 0.29 0.29 0.30 0.31 0.31 0.31	35,5 0.05 0.06 0.09 0.16 0.01 0.02 0.03 0.05 0.06 0.07 0.07 0.08 0.09 0.10 0.11 0.11 0.12 0.13 0.13 0.14 0.14 0.15 0.16 0.16 0.17 0.17 0.17 0.17 0.17 0.18 0.19 0.19 0.20 0.20 0.21 0.21 0.22 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.31 0.31 0.32 0.33 0.34 0.35 0.36 0.37	0.05 0.07 0.18 0.01 0.02 0.04 0.05 0.07 0.08 0.08 0.09 0.10 0.10 0.12 0.12 0.13 0.14 0.15 0.16 0.16 0.17 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.24 0.25 0.26 0.27 0.33 0.34 0.35 0.30	0.06 0.08 0.01 0.01 0.03 0.04 0.06 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.19 0.20 0.21 0.22 0.22 0.23 0.24 0.25 0.26 0.27 0.27 0.29 0.30 0.31 0.33 0.34 0.39 0.39 0.30 0.31 0.30 0.31 0.31 0.32 0.32 0.33 0.34 0.34 0.35 0.36 0.37 0.37 0.38 0.39 0.30 0.30 0.30 0.30 0.30 0.30 0.30		0.09 0.11 0.17 0.30 0.02 0.04 0.06 0.09 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.45 0.47 0.48 0.49 0.41 0.42 0.43 0.45 0.47 0.48 0.55 0.57 0.58 0.56 0.57 0.58 0.60 0.61 0.62 0.63 0.65 0.665 0.665 0.665 0.665	0.10 0.13 0.19 0.34 0.02 0.05 0.10 0.12 0.13 0.15 0.16 0.17 0.18 0.19 0.20 0.23 0.24 0.25 0.27 0.28 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.37 0.38 0.39 0.40 0.41 0.43 0.44 0.45 0.47 0.49 0.51 0.52 0.54 0.57 0.59 0.61 0.52 0.64 0.65 0.66 0.68 0.69 0.70 0.71 0.73	0.11 0.15 0.21 0.08 0.01 0.14 0.15 0.19 0.19 0.19 0.21 0.22 0.23 0.24 0.26 0.27 0.28 0.29 0.31 0.35 0.39 0.40 0.40 0.41 0.42 0.43 0.49 0.50 0.51 0.51 0.52 0.53 0.55 0.57 0.59 0.62 0.64 0.66 0.67 0.69 0.70 0.72 0.73 0.75 0.76 0.77 0.78 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79	0.01 0.00 0.01 0	0.01 0.01 0.01 0.01 0.01 0.01 0.01 1 0.01 1 0.02 1
	8000 8200 8400 8600 8600 9000 9200 9400 9600 9800 10300 10400 10500 11500 12100 12500	0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07	0.13 0.13 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.15 0.15 0.16 0.16	0.17 0.18 0.18 0.18 0.19 0.19 0.19 0.20 0.20 0.21 0.21 0.21 0.22 0.23 0.24	0.24 0.24 0.25 0.25 0.26 0.27 0.27 0.28 0.28 0.29 0.30 0.30 0.30	0.33 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.43 0.44 0.44	0.38 0.38 0.39 0.40 0.41 0.41 0.42 0.43 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.51	0.44 0.45 0.46 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.58 0.59	0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.63 0.65	0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.69 0.70	0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.77 0.78 0.79 0.80 0.81	0.75 0.76 0.77 0.78 0.78 0.79 0.80 0.81 0.81 0.82 0.83 0.83 0.84 0.84 0.84	0.81 0.82 0.83 0.83 0.84 0.85 0.86 0.86 0.86 0.86 0.86 0.86 0.86	0.01 0.0 0.01 0.0	1 0.02 2 0.02
							Where	v > 60 m	/s, please			ations Eng	ineers!		
		10)		20)			30) 40)			v [m/s]	

PROFILE PJ

POWER RATING P_N [kW] PER RIP FOR β = 180° AND $L_b = 1016 \text{ mm}$

Table 6

Iabi																					
[s/m] v	n _k [rpm]	20	25	31,5	35,5	40	Effectiv	e diam 50	eter of : 63	small pi	ılley d _{bi} 80	[mm] 90	100	112	125	140	160		r rib for :	rection fo speed ra 1.27 to 1.57	tio i
	700 950 1450 2850 100 300	0.04 0.05 0.06 0.11 0.01 0.02	0.05 0.07 0.09 0.16 0.01 0.03	0.07 0.09 0.13 0.23 0.01 0.03	0.08 0.11 0.15 0.28 0.02 0.04	0.10 0.13 0.18 0.32 0.02 0.05	0.11 0.14 0.21 0.38 0.02 0.05	0.13 0.16 0.24 0.43 0.02 0.06	0.16 0.21 0.31 0.56 0.03 0.08 0.12	0.18 0.24 0.35 0.64 0.03 0.09	0.21 0.28 0.40 0.72 0.04 0.10	0.24 0.31 0.45 0.82 0.04 0.11	0.26 0.35 0.51 0.91 0.05 0.12	0.30 0.39 0.57 1.02 0.05 0.14	0.33 0.44 0.63 1.14 0.06 0.16	0.37 0.49 0.71 1.27 0.06 0.17	0.42 0.56 0.81 1.43 0.07 0.20		0.01 0.01	0.01 0.01 0.02	0.01 0.01 0.01 0.02
2	500 700 900 1100 1300 1400 1500 1600 1700 2000 2100 2200 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300	0.03 0.04 0.05 0.05 0.06 0.07 0.07 0.07 0.08 0.08 0.08 0.09 0.10 0.10 0.11 0.11 0.11 0.11	0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.13 0.14 0.15 0.15 0.16 0.17 0.17	0.05 0.07 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.17 0.19 0.20 0.21 0.22 0.23 0.24 0.24	0.06 0.08 0.10 0.12 0.13 0.14 0.15 0.16 0.17 0.20 0.20 0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30	0.07 0.10 0.12 0.14 0.15 0.18 0.19 0.20 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34	0.08 0.11 0.16 0.18 0.20 0.22 0.23 0.24 0.25 0.26 0.28 0.30 0.31 0.32 0.34 0.35 0.36 0.37 0.38 0.39 0.41	0.09 0.13 0.16 0.19 0.20 0.22 0.23 0.24 0.26 0.29 0.30 0.31 0.35 0.37 0.38 0.39 0.41 0.43 0.45 0.45	0.16 0.20 0.24 0.26 0.30 0.30 0.32 0.34 0.36 0.37 0.39 0.41 0.43 0.50 0.52 0.53 0.57 0.58 0.62	0.14 0.18 0.28 0.30 0.32 0.34 0.36 0.43 0.45 0.47 0.51 0.55 0.57 0.63 0.63 0.65 0.67	0.16 0.21 0.26 0.31 0.34 0.39 0.41 0.46 0.48 0.53 0.56 0.60 0.62 0.67 0.67 0.71 0.76 0.78 0.82	0.18 0.24 0.30 0.36 0.38 0.44 0.47 0.52 0.55 0.60 0.63 0.63 0.76 0.78 0.81 0.81 0.86 0.88 0.93	0.20 0.23 0.40 0.43 0.46 0.52 0.55 0.61 0.64 0.70 0.73 0.76 0.82 0.90 0.93 0.90 0.93	0.22 0.30 0.37 0.44 0.48 0.55 0.55 0.69 0.75 0.85 0.88 0.91 0.98 1.01 1.07 1.10 1.13	0.25 0.33 0.42 0.50 0.54 0.62 0.65 0.77 0.84 0.88 0.91 1.05 1.05 1.15 1.19	0.27 0.37 0.46 0.56 0.60 0.69 0.73 0.77 0.86 0.90 0.94 1.02 1.06 1.14 1.17 1.21 1.28 1.32 1.35 1.39	0.31 0.42 0.53 0.63 0.68 0.78 0.83 0.98 1.07 1.11 1.12 1.24 1.29 1.33 1.45 1.45 1.49 1.53 1.53		0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03
(3)	3400 3500 3600 3700 3900 4000 4100 4200 4300 4500 4500 5000 5100 5200 5300 5500 5500 5500 6000 6200 6400 6400 6400 6800 7000 7200	0.12 0.13 0.13 0.13 0.14 0.14 0.15 0.15 0.16 0.16 0.17 0.17 0.17 0.17 0.18 0.18 0.19 0.20 0.20 0.20 0.21	0.18 0.19 0.20 0.20 0.21 0.21 0.22 0.23 0.23 0.24 0.24 0.25 0.25 0.26 0.27 0.27 0.28 0.29 0.30 0.31 0.32 0.33	0.26 0.27 0.28 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.35 0.37 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45 0.44 0.45 0.48	0.31 0.32 0.33 0.34 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.43 0.44 0.45 0.46 0.47 0.51 0.53 0.55 0.55 0.57	0.37 0.38 0.39 0.41 0.42 0.43 0.45 0.46 0.48 0.49 0.51 0.55 0.55 0.55 0.55 0.56 0.62 0.62 0.65 0.67 0.67	0.43 0.44 0.45 0.46 0.47 0.49 0.50 0.51 0.52 0.53 0.55 0.56 0.57 0.61 0.62 0.63 0.64 0.65 0.67 0.72 0.72 0.78 0.78 0.78 0.78 0.78	0.48 0.501 0.51 0.52 0.53 0.55 0.57 0.59 0.61 0.62 0.63 0.64 0.65 0.68 0.69 0.71 0.72 0.73 0.74 0.78 0.80 0.82 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.89	0.63 0.65 0.67 0.68 0.70 0.73 0.75 0.76 0.82 0.84 0.85 0.88 0.90 0.91 0.93 0.94 0.97 0.98 1.00 1.01 1.07 1.15 1.15	0.72 0.74 0.76 0.78 0.80 0.81 0.83 0.85 0.99 0.92 0.94 0.95 0.97 1.01 1.02 1.10 1.12 1.13 1.15 1.18 1.21 1.32 1.32 1.35	0.84 0.88 0.90 0.92 0.96 0.98 1.00 1.02 1.04 1.10 1.12 1.14 1.16 1.17 1.21 1.25 1.26 1.30 1.33 1.36 1.40 1.43 1.44 1.45 1.45 1.46 1.43 1.46 1.47 1.47 1.48 1.49 1.49 1.49 1.40	0.95 0.97 1.00 1.02 1.04 1.07 1.19 1.13 1.15 1.18 1.22 1.24 1.28 1.30 1.32 1.34 1.36 1.34 1.40 1.42 1.44 1.45 1.49 1.52 1.59 1.65 1.65	1.03 1.06 1.08 1.11 1.13 1.16 1.18 1.21 1.26 1.28 1.33 1.35 1.37 1.42 1.44 1.48 1.50 1.54 1.54 1.56 1.54 1.57 1.74 1.77 1.83	1.18 1.21 1.24 1.27 1.39 1.35 1.37 1.40 1.50 1.55 1.57 1.59 1.62 1.64 1.66 1.68 1.70 1.72 1.74 1.80 1.83 1.87 1.90 1.98	1.31 1.34 1.37 1.40 1.43 1.46 1.55 1.63 1.65 1.68 1.72 1.75 1.75 1.77 1.82 1.82 1.86 1.90 1.92 1.95 1.90 2.05 2.07 2.12	1.42 1.42 1.49 1.52 1.59 1.62 1.68 1.73 1.73 1.79 1.81 1.86 1.89 1.91 2.02 2.03 2.05 2.13 2.11 2.18 2.20 2.21 2.22	1.60 1.64 1.67 1.71 1.74 1.80 1.84 1.87 1.92 1.95 2.03 2.03 2.07 2.07 2.19 2.20 2.21 2.21 2.22 2.23 2.25 2.27 2.28 2.29 2.29 2.29	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.05
10	7400 7600 8000 8200 8400 8600 9000 9200 9400 9700 9900 10100	0.22 0.22 0.23 0.23 0.24 0.24 0.25 0.25 0.26 0.26 0.27	0.35 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.41 0.42 0.43 0.44	0.51 0.52 0.53 0.54 0.55 0.57 0.58 0.59 0.60 0.61 0.63 0.64 0.66	0.61 0.62 0.63 0.64 0.66 0.67 0.71 0.72 0.73 0.75 0.76 0.77	0.71 0.73 0.74 0.76 0.77 0.80 0.82 0.83 0.84 0.86 0.88 0.90 0.93	0.83 0.85 0.86 0.90 0.91 0.93 0.95 0.96 0.98 0.99 1.02 1.03 1.05	0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.07 1.09 1.11 1.13 1.15 1.17 1.18	1.22 1.24 1.27 1.31 1.33 1.36 1.38 1.40 1.42 1.44 1.46 1.50 1.53	1.38 1.40 1.43 1.45 1.50 1.52 1.54 1.56 1.59 1.60 1.63 1.65 1.67	1.54 1.57 1.60 1.62 1.65 1.67 1.71 1.73 1.75 1.77 1.80 1.81 1.83 1.85	1.71 1.74 1.76 1.79 1.81 1.83 1.85 1.87 1.89 1.91 1.92 1.94 1.95 1.96	1.86 1.88 1.91 1.93 1.95 1.97 1.99 2.00 2.01 2.03 2.04 2.05 2.05 2.05	2.01 2.03 2.05 2.07 2.08 2.09 2.10 2.11 2.12 2.12 2.12 2.11 2.10 2.07	2.14	2.23 2.23 2.22 2.21 2.20 Where 60 m/s consult Applica	, please our itions	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.03 0.03 0.03 0.03 0.03 0.04 0.04 0.04	0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07

PROFILE PK

POWER RATING P_N [kW] PER RIB FOR β = 180° AND $L_b = 1600 \text{ mm}$

Tab	le 7																					
v [m/s]	n _k						Effect		neter of	f smal	ll pulle									r rib for	speed ra	ictor [kW] tio i > 1.57
>	[rpm]	45	50	63	<i>7</i> 1	80	90	100 1	12 1	25	140	160	180	190	224	250	280	315	to 1.05	to 1.26		
2	700 950 1450 2850 200 400 600 800 1000 1100 1200 1300 1400 1500	0.17 0.21 0.29 0.48 0.06 0.11 0.15 0.19 0.22 0.24 0.25 0.27 0.29	0.21 0.27 0.37 0.63 0.08 0.13 0.29 0.23 0.28 0.30 0.32 0.34 0.36 0.38	0.32 0.41 0.58 1.00 0.11 0.20 0.28 0.35 0.43 0.46 0.50 0.53 0.53 0.56 0.60	0.38 0.49 0.70 1.23 0.13 0.24 0.33 0.52 0.56 0.60 0.64 0.68 0.72	0.45 0.59 0.84 1.48 0.15 0.28 0.40 0.51 0.61 0.67 0.72 0.77 0.72 0.87	0.69 (0.99 1.75 2.018 (0.33 (0.46 (0.60 (0.72 (0.78 (0.85 (0.91 (0.96 (0	0.79	.92 1 .32 1 .32 2 .23 0 .43 0 .61 0 .79 0 .96 1 .04 1 .12 1 .20 1 .28 1	.05 .51 .65 .27 .49 .70 .90 .09 .19 .28 .37	0.91 1.20 1.73 3.01 0.30 0.56 0.80 1.03 1.25 1.36 1.47 1.57 1.67	1.06 1.39 2.01 3.47 0.35 0.65 0.93 1.20 1.45 1.58 1.70 1.83 1.95 2.07	1.21 1.58 2.28 3.90 0.40 0.74 1.06 1.36 1.66 1.80 1.94 2.08 2.21 2.35	1.28 1.68 2.42 4.11 0.42 0.78 1.12 1.44 1.76 1.91 2.06 2.20 2.35 2.49	1.53 2.00 2.86 4.75 0.50 0.93 1.33 1.72 2.09 2.27 2.44 2.61 2.78 2.95	1.71 2.23 3.19 5.16 0.56 1.04 1.49 1.92 2.34 2.53 2.73 2.73 2.92 3.10 3.28	1.92 2.50 3.56 5.56 0.63 1.17 1.68 2.16 2.62 2.84 3.05 3.26 3.46 3.66	2.16 2.81 3.97 5.91 0.71 1.32 1.89 2.42 2.93 3.18 3.41 3.64 4.07	0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01	0.04 0.07 0.01 0.01 0.02	0.02 0.03 0.05 0.10 0.01 0.02 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.05	0.03 0.04 0.06 0.12 0.01 0.02 0.03 0.03 0.04 0.05 0.05 0.06 0.06
(3)	1600 1700 1800 1900 2000 2100 2300 2400 2500 2600 2700 2800 2900 3000	0.32 0.33 0.34 0.36 0.37 0.39 0.40 0.41 0.42 0.44 0.45 0.46 0.47 0.50	0.40 0.42 0.44 0.46 0.50 0.52 0.53 0.55 0.57 0.60 0.62 0.64	0.63 0.66 0.69 0.72 0.75 0.82 0.84 0.87 0.90 0.93 0.96 0.99 1.02	0.72 0.76 0.80 0.84 0.88 0.92 0.96 1.00 1.03 1.07 1.10 1.14 1.18 1.21 1.25	0.97 0.96 1.01 1.06 1.10 1.15 1.20 1.24 1.28 1.33 1.37 1.41 1.46 1.50 1.54	1.08 1.14 1.19 1.25 1.31 1.36 1.41 1.47 1.52 1.57 1.62 1.67 1.72	1.24 1 1.31 1 1.38 1 1.44 1 1.50 1 1.57 1 1.63 1 1.69 1 1.75 2 1.81 2 1.87 2 1.93 2 2.04 2	.44 1 .51 1 .59 1 .66 1 .74 1 .81 2 .88 2 .95 2 .02 2 .09 2 .16 2 .22 2 .29 2	.64 .73 .82 .90 .98 .07 .15 .23 .31 .39 .46 .54	1.88 1.98 2.07 2.17 2.27 2.36 2.45 2.54 2.63 2.72 2.80 2.89 2.97 3.05 3.13	2.18 2.30 2.41 2.52 2.63 2.74 2.84 2.94 3.14 3.34 3.34 3.35 3.43 3.43	2.48 2.61 2.73 2.86 2.98 3.10 3.21 3.33 3.44 3.55 3.65 3.76 3.86 3.95 4.05	2.62 2.76 2.89 3.02 3.15 3.27 3.40 3.51 3.63 3.74 3.85 3.96 4.06 4.16 4.25	3.11 3.26 3.41 3.56 3.71 3.85 3.98 4.11 4.24 4.36 4.48 4.59 4.69 4.89	3.46 3.63 3.79 3.95 4.11 4.25 4.40 4.53 4.66 4.79 4.90 5.01 5.21 5.21 5.30	3.85 4.03 4.21 4.37 4.54 4.69 4.83 4.97 5.10 5.22 5.33 5.52 5.56 5.60 5.67	4.28 4.47 4.65 4.83 4.99 5.15 5.29 5.42 5.54 5.64 5.74 5.88 5.94 5.97	0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	0.04 0.04 0.05 0.05 0.05 0.06 0.06 0.06 0.07 0.07	0.05 0.06 0.06 0.07 0.07 0.07 0.08 0.08 0.09 0.09 0.10	0.07 0.07 0.08 0.08 0.09 0.09 0.10 0.10 0.11 0.11 0.11 0.12
1	3100 3200 3300 3400 3500 3600 3700 3800 4100 4200 4300 4400 4500 4500 4500 5000 5100 5200 5300 5500 5500 5500	0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.61 0.62 0.63 0.64 0.65 0.67 0.68 0.69 0.70 0.71 0.73 0.73	0.67 0.68 0.70 0.73 0.74 0.76 0.77 0.79 0.80 0.82 0.83 0.84 0.90 0.91 0.92 0.93 0.94 0.97 0.97 0.97	1.04 1.07 1.12 1.15 1.18 1.20 1.23 1.25 1.30 1.31 1.35 1.37 1.40 1.44 1.47 1.49 1.53 1.55 1.57 1.59 1.62	1.31 1.35 1.38 1.41 1.44 1.54 1.57 1.60 1.63 1.69 1.72 1.75 1.78 1.80 1.83 1.86 1.83 1.91	1.58 1.62 1.66 1.70 1.74 1.78 1.85 1.89 1.93 1.93 2.07 2.10 2.14 2.17 2.20 2.23 2.27 2.30 2.33 2.36 2.36 2.32	1.87 1.92 1.97 1.97 2.01 2.105 2.115 2.24 2.24 2.24 2.24 2.24 2.32 2.36 2.40 2.44 2.56 2.60 2.63 2.71 2.74 2.78 2.71 2.78	2.15 2 2.21 2 2.22 2 2.37 2 2.42 2 2.47 2 2.52 2 2.62 3 2.71 3 2.76 3 2.71 3 2.89 3 2.89 3 3.01 3 3.01 3 3.01 3 3.01 3 3.01 3 3.01 3 3.01 3 3.01 3 3.02 3 3.02 3 3.03 3 3.04 3 3.04 3 3.05 3 3.07 3 3.07 3 3.08 3 3.09 3 3.00 3 3.00 3 3.00 3 3.00 3 3.00 3 3.00 3 3.00 3 3.00 3	.48 2 2	.83 .90 .97 .97 .97 .97 .97 .97 .97 .97 .97 .97	3.21 3.29 3.43 3.43 3.51 3.58 3.77 3.83 3.95 4.01 4.21 4.21 4.21 4.21 4.24 4.30 4.34 4.45 4.45 4.45 4.54	3.69 3.77 4.01 4.08 4.15 4.22 4.29 4.35 4.41 4.57 4.62 4.57 4.62 4.71 4.75 4.82 4.85 4.87 4.92 4.93 4.94	4.05 4.14 4.22 4.31 4.37 4.54 4.61 4.64 4.80 4.85 5.00 5.10 5.15 5.16 5.18 5.18 5.18 5.18 5.18 5.18	4.25 4.35 4.62 4.67 4.75 4.82 4.94 4.99 5.04 5.09 5.13 5.25 5.27 5.28 5.28 5.28 5.28 5.25 5.25	4.89 4.98 5.14 5.21 5.32 5.34 5.39 5.55 5.55 5.55 5.55 5.55 5.55 5.54 8.81	5.30 5.45 5.51 5.57 5.62 5.65 5.68 5.71 5.72 5.71 5.69	5.67 5.73 5.78 5.82 5.85 5.86 5.87 5.86	5.97 6.00 6.01	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.13 0.13 0.14 0.14	0.10 0.11 0.12 0.12 0.12 0.13 0.13 0.14 0.15 0.15 0.15 0.16 0.16 0.16 0.17 0.17 0.17 0.18 0.18 0.18 0.19	0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.16 0.17 0.17 0.17 0.18 0.19 0.20 0.20 0.21 0.21 0.22 0.22 0.23 0.23 0.24 0.25
②	6000 6200 6400 6400 6400 7200 7400 7500 8000 8200 8400 8400 8400 9200 9400 9400 9500 10000 10200	0.77 0.78 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88	1.05 1.07 1.10 1.12 1.14 1.16 1.17 1.19 1.21 1.23 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.31	1.73 1.77 1.80 1.84 1.97 1.96 1.98 2.03 2.05 2.08 2.11 2.13 2.14 2.16 2.17 2.18 2.19 2.20	2.17 2.26 2.29 2.33 2.37 2.40 2.43 2.46 2.59 2.54 2.56 2.58 2.59 2.61 2.62 2.63 2.64 2.65 2.65	2.60 2.65 2.70 2.74 2.78 2.82 2.86 2.89 2.92 2.95 3.00 3.02 3.03 3.06 3.07 3.07 3.07 3.06 3.05	3.10 3.15 3.20 3.28 3.31 3.34 3.34 3.45 3.45 3.45 3.45 3.45 3.45 3.41 3.39 3.36	3.46 3 3.51 3 3.56 4 3.60 4 3.64 4 3.71 4 3.73 4 3.73 4 3.77 4 3.78 4 3.78 4 3.77 4 3.78 4 3.77 3 3.78 4 3.77 3 3.78 4 3.74 3 3.78 4 3.74 3 3.76 3 3.76 3 3.72 3	.89 4 .94 4 .98 4 .02 4 .05 4 .07 4 .09 4 .10 4 .10 4 .09 4	.25 .29 .33 .36 .38 .39	4.62	4.95 4.93 4.90 4.85			pl A	/here v ease co pplicat ngineer	onsult o		0.04 0.04 0.04 0.04 0.04 0.05 0.05 0.05	0.15 0.16 0.16 0.17 0.17 0.18 0.19 0.20 0.21 0.21 0.22 0.23 0.23 0.23 0.24 0.25 0.25	0.20 0.21 0.21 0.22 0.23 0.24 0.25 0.25 0.27 0.27 0.28 0.29 0.30 0.31 0.31 0.32 0.33	0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43
			(3	10	(4	U)	50	V												v [n	1/s]	

PROFILE PL

POWER RATING P_N [kW] PER RIB FOR β = 180° AND $L_b = 2096 \text{ mm}$

Table 8

Iab	le 8																				
1/s]	n _k						Effectiv			small p	ulley d _{bl}								ntact corre r rib for s 1.06	peed rat	io i
v [m/s]	[rpm]	76	80	90	100	112	125	140	160	180	200	224	250	280	315	355	400	1.01 to 1.05	to 1.26	to 1.57	> 1.37
(3)	700 950 1450 2850 100 200 300 400 500 600 700 800 900 11000 11000 1200 1300 1400 1500 1600 1700	0.49 0.63 0.89 1.50 0.10 0.24 0.31 0.43 0.49 0.55 0.61 0.76 0.82 0.87 0.96 1.01	0.53 0.69 0.97 1.65 0.10 0.19 0.26 0.34 0.40 0.53 0.60 0.72 0.78 0.83 0.83 0.89 1.00 1.05 1.15	0.64 0.83 1.17 2.00 0.12 0.21 0.40 0.48 0.564 0.71 0.79 0.93 1.00 1.07 1.14 1.20 1.27	0.74 0.96 1.37 2.35 0.14 0.25 0.36 0.36 0.56 0.65 0.74 0.83 0.92 1.00 1.09 1.17 1.25 1.33 1.41 1.49 1.56	0.87 1.12 1.60 2.76 0.16 0.29 0.53 0.65 0.76 0.97 1.07 1.127 1.37 1.46 1.65 1.74 1.83	1.00 1.30 1.85 3.19 0.18 0.34 0.41 0.75 0.87 1.02 1.24 1.35 1.47 1.58 1.69 1.91 2.01 2.12 2.22	1.15 1.49 2.14 3.67 0.21 0.35 0.55 0.70 0.86 1.05 1.15 1.29 1.42 1.56 1.69 1.82 1.95 2.20 2.32 2.44 2.56	1.34 1.75 1.25 1.28 0.24 0.64 0.82 1.00 1.18 1.51 1.67 1.83 1.99 2.14 2.29 2.42 2.58 2.73 2.87 3.00	1.54 2.01 2.88 4.85 0.28 0.51 0.73 0.94 1.15 1.35 1.73 1.92 2.16 2.28 2.45 2.62 2.79 3.12 3.28 3.43	1.73 2.26 3.23 5.38 0.31 0.57 1.06 1.29 1.51 1.73 1.75 2.16 2.36 2.76 2.76 2.76 3.38 3.50 3.68 3.85	1.96 2.56 3.65 5.96 0.35 0.93 1.20 1.46 1.71 1.96 2.20 2.44 2.90 3.12 3.35 3.75 3.75 3.95 4.13	2.20 2.87 4.09 6.51 0.39 0.73 1.04 1.35 1.64 1.93 2.48 2.74 3.05 3.25 3.50 3.74 4.20 4.42 4.63 4.84	2.48 3.23 4.58 7.04 0.44 0.82 1.17 1.52 1.85 2.17 3.08 3.37 3.93 4.19 4.70 4.94 5.17 5.39	2.80 3.64 7.51 0.50 0.92 1.71 2.09 2.45 3.14 3.47 3.87 4.11 4.41 4.78 5.25 5.51 5.79	3.16 4.09 5.71 7.82 0.56 1.04 1.50 1.93 2.35 2.76 3.16 3.54 3.91 4.94 5.26 5.85 6.12 6.31	3.55 4.58 6.32 7.84 0.63 1.17 1.69 2.18 2.65 3.11 3.97 4.38 4.78 5.51 5.51 5.85 6.46 6.74 6.79 7.22	0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.02	0.04 0.07 0.13 0.01 0.02 0.02 0.03 0.04 0.05 0.05 0.06 0.07 0.07 0.07	0.12	0.06 0.08 0.12 0.23 0.01 0.02 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13
10	1800 1900 2000 2100 2300 2400 2500 2600 2700 2800 3000 3100 3200 3400 3500 3700 3800 3900 4000	1.10 1.15 1.19 1.24 1.32 1.36 1.40 1.44 1.48 1.56 1.60 1.63 1.67 1.71 1.74 1.78 1.81	1.21 1.25 1.30 1.35 1.40 1.45 1.54 1.54 1.63 1.67 1.71 1.75 1.83 1.87 1.91 1.95 1.99 2.02	1.46 1.52 1.58 1.64 1.70 1.76 1.81 1.87 1.98 2.03 2.08 2.13 2.23 2.28 2.33 2.38 2.32 2.34 2.47	1.71 1.78 1.85 1.99 2.06 2.13 2.19 2.26 2.32 2.38 2.45 2.51 2.56 2.62 2.68 2.74 2.79 2.89 2.90	1.92 2.00 2.09 2.17 2.26 2.34 2.42 2.50 2.57 2.65 2.72 2.87 2.94 3.01 3.08 3.14 3.21 3.33 3.33 3.45	2.22 2.32 2.42 2.52 2.61 2.70 2.80 2.89 2.98 3.15 3.31 3.31 3.47 3.55 3.69 3.77 3.83	2.56 2.68 2.79 3.01 3.12 3.33 3.52 3.62 3.72 3.81 3.90 4.15 4.23 4.31 4.38 4.45	3.14 3.27 3.40 3.53 3.77 3.89 4.00 4.11 4.22 4.33 4.43 4.53 4.72 4.81 4.89 4.97 5.13	3.43 3.59 3.73 3.88 4.16 4.29 4.42 4.67 4.79 4.90 5.01 5.22 5.31 5.40 5.57 5.65	3.85 4.02 4.18 4.34 4.50 4.65 4.79 4.93 5.19 5.32 5.55 5.75 5.85 5.75 5.85 6.02 6.09 6.16	4.52 4.70 4.87 5.20 5.35 5.50 5.64 5.77 5.90 6.01 6.13 6.23 6.32 6.41 6.49 6.66 6.62 6.67	4.84 5.04 5.23 5.41 5.59 5.75 5.91 6.06 6.33 6.45 6.56 6.76 6.83 6.90 6.700 7.04 7.06	5.39 5.60 5.89 6.17 6.34 6.50 6.64 7.00 7.07 7.17 7.23 7.28 7.31 7.33 7.33 7.32 7.29	6.21 6.41 6.60 6.78 6.79 7.21 7.32 7.41 7.48 7.57 7.59 7.58 7.56 7.44 7.34	6.82 7.02 7.20 7.36 7.49 7.61 7.70 7.76 7.81 7.81 7.77 7.71	7.22 7.42 7.59 7.74 7.86 7.95 8.00 8.03 8.02 7.98 7.90	0.02 0.02 0.03 0.03 0.03 0.03 0.03 0.03	0.09 0.09 0.10 0.11 0.11 0.12 0.12 0.13 0.13 0.14 0.14 0.14 0.15 0.15 0.16 0.17	0.12 0.13 0.13 0.15 0.15 0.16 0.17 0.19 0.19 0.20 0.20 0.21 0.22 0.22 0.23 0.24	0.15 0.16 0.17 0.18 0.19 0.19 0.20 0.21 0.22 0.23 0.23 0.24 0.25 0.25 0.26 0.27 0.28 0.28 0.29
20	4100 4200 4300 4400 4500 4600 4700 4800 4900	1.87 1.91 1.94 1.97 2.00 2.03 2.05 2.11 2.18 2.21 2.23 2.25 2.30 2.32 2.34 2.37 2.39	2.06 2.09 2.13 2.16 2.19 2.26 2.29 2.32 2.37 2.40 2.43 2.45 2.53 2.55 2.57 2.61 2.63	2.57 2.55 2.64 2.68 2.72 2.79 2.83 2.99 2.99 3.02 3.05 3.13 3.17 3.19	2.95 3.00 3.05 3.14 3.18 3.27 3.31 3.32 3.42 3.49 3.53 3.59 3.62 3.64 3.67 3.69 3.71	3.45 3.51 3.561 3.67 3.72 3.76 3.86 3.94 3.98 4.05 4.05 4.15 4.18 4.20 4.25 4.27	3.90 3.96 4.03 4.09 4.15 4.25 4.31 4.36 4.45 4.49 4.53 4.60 4.63 4.69 4.71 4.77 4.78	4.52 4.59 4.61 4.77 4.82 4.88 4.97 5.01 5.09 5.12 5.15 5.20 5.22 5.23 5.25 5.25	5.20 5.26 5.328 5.44 5.49 5.58 5.61 5.70 5.71 5.74 5.74 5.74 5.74 5.72 5.73 5.72 5.68	5.72 5.78 5.90 5.95 5.90 6.06 6.09 6.11 6.13 6.13 6.12 6.10 6.07 6.04 6.00 5.95	6.23 6.28 6.33 6.37 6.40 6.45 6.46 6.45 6.44 6.42 6.34 6.29 6.23 6.09	6.71 6.76 6.76 6.78 6.78 6.75 6.73 6.68 6.63 6.57 6.50 6.41	7.07 7.06 7.04 7.01 6.97 6.91 6.83 6.74	7.24 7.17 7.09				0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.06 0.06	0.18 0.19 0.19 0.20 0.20 0.21 0.21 0.22 0.22 0.23 0.23 0.24 0.25 0.26 0.27 0.28	0.28 0.29 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.35 0.36 0.37 0.38	0.32 0.32 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.40 0.40 0.41 0.42 0.43 0.45 0.45 0.45 0.47
				(3	0	(3	3)							p A	Vhere v lease c applicat nginee	onsult c ions			v [m	/s]	

PROFILE PM

POWER RATING P_N [kW] PER RIB FOR β = 180° AND $L_b = 4089 \text{ mm}$

Table 9

Tab	le 9		
[s/m] ^	n _k [rpm]	Effective diameter of small pulley d _{bk} [mm]	Arc of contact correction factor [kW] per rib for speed ratio i 1.01 1.06 1.27 > 1.57 to to to to 1.05 1.26 1.57
3	700 950 1450 2850 100 200 300 400 500 600 700 800 900	3.51 3.83 4.16 4.93 5.75 6.68 7.74 8.93 10.22 11.60 12.92 14.43 16.07 17.78 19.47 22.23 4.46 4.88 5.30 6.29 7.34 8.52 9.85 11.31 12.86 14.48 15.97 17.58 19.20 20.65 21.74 21.79 6.06 6.65 7.22 8.57 9.96 11.47 13.11 14.80 16.43 17.90 18.97 19.66 19.57 18.16 14.71 8.24 8.97 9.64 11.01 12.10 12.77 12.69 11.34 8.03 1.86 0.70 0.76 0.81 0.95 1.09 1.26 1.45 1.66 1.90 2.17 2.43 2.74 3.10 3.50 3.95 4.93 1.25 1.36 1.46 1.72 1.99 2.30 2.66 3.06 3.51 4.00 4.49 5.07 5.73 6.48 7.31 9.10 1.76 1.91 2.06 2.43 2.82 3.27 3.78 4.36 5.00 5.71 6.40 7.22 8.16 9.22 10.37 12.82 2.23 2.43 2.62 3.10 3.60 4.18 4.84 5.59 6.42 7.32 8.20 9.24 10.42 11.73 13.15 16.08 2.67 2.92 3.16 3.73 4.35 5.05 5.86 6.76 7.75 8.83 9.89 11.12 12.50 14.01 15.62 18.79 3.10 3.39 3.67 4.35 5.07 5.88 6.82 7.87 9.02 10.26 11.46 12.85 14.39 16.04 17.74 20.87 3.51 3.83 4.16 4.93 5.75 6.68 7.74 8.93 10.22 11.60 12.92 14.43 16.07 17.78 19.47 22.23 3.90 4.27 4.63 5.49 6.41 7.44 8.62 9.92 11.34 12.83 14.25 15.83 17.51 19.20 20.75 22.75 4.27 4.68 5.08 6.03 7.04 8.17 9.45 10.86 12.38 13.85 15.83 17.05 18.70 20.26 21.55 22.37	0.06 0.24 0.33 0.42 0.08 0.33 0.45 0.56 0.12 0.50 0.68 0.86 0.24 0.98 1.34 1.69 0.01 0.03 0.05 0.06 0.02 0.07 0.09 0.12 0.02 0.10 0.14 0.18 0.03 0.14 0.19 0.24 0.04 0.17 0.23 0.30 0.05 0.21 0.28 0.36 0.06 0.24 0.33 0.42 0.07 0.27 0.38 0.48 0.07 0.27 0.38 0.48 0.07 0.31 0.42 0.53
1	1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000	4.27 4.68 5.08 6.03 7.04 8.17 9.45 10.86 12.38 13.96 15.43 17.05 18.70 20.26 21.55 22.37 4.63 5.07 5.51 6.55 7.64 8.86 10.24 11.74 13.33 14.97 16.47 18.07 19.62 20.94 21.79 4.98 5.45 5.93 7.04 8.21 9.51 10.97 12.55 14.20 15.87 17.35 18.86 20.22 21.19 21.44 5.31 5.82 6.32 7.51 8.75 10.12 11.65 13.28 14.97 16.63 18.05 19.42 20.50 20.97 5.62 6.16 6.70 7.95 9.26 10.70 12.28 13.95 15.64 17.25 18.57 19.72 20.42 20.26 5.92 6.49 7.05 8.37 9.73 11.23 12.85 14.53 16.20 17.73 18.89 19.75 19.95 6.20 6.80 7.39 8.76 10.18 11.71 13.36 15.04 16.64 18.04 18.99 19.49 6.47 7.09 7.71 9.13 10.58 12.15 13.80 15.45 16.97 18.19 18.87 18.91 6.72 7.36 8.00 9.47 10.96 12.54 14.18 15.78 17.17 18.16 18.51 6.95 7.62 8.27 9.78 11.29 12.88 14.49 16.00 17.23 17.94 17.90 7.16 7.85 8.52 10.06 11.58 13.16 14.73 16.13 17.15 17.53 7.36 8.07 8.75 10.30 11.84 13.39 14.89 16.15 16.92 16.91	0.07 0.31 0.42 0.53 0.08 0.34 0.47 0.59 0.09 0.38 0.52 0.65 0.10 0.41 0.56 0.71 0.11 0.45 0.61 0.77 0.12 0.48 0.66 0.83 0.12 0.51 0.70 0.89 0.13 0.55 0.75 0.95 0.14 0.58 0.80 1.01 0.15 0.62 0.85 1.07 0.16 0.65 0.89 1.13 0.17 0.69 0.94 1.19
20	2100 2200 2300 2400 2500 2600 2700 2800 2900 3000 3100 3200	4.27 4.86 5.07 5.51 6.55 7.64 8.86 10.24 11.74 13.33 14.97 16.47 18.07 19.62 20.94 21.79 4.98 5.45 5.93 7.04 8.21 9.51 10.97 12.55 14.20 15.87 17.35 18.86 20.22 21.19 21.44 5.31 5.82 6.32 7.51 8.75 10.12 11.65 13.28 14.97 16.63 18.05 19.42 20.50 20.97 5.62 6.16 6.70 7.95 9.26 10.70 12.28 13.95 15.64 17.25 18.57 19.72 20.42 20.26 5.92 6.49 7.05 8.37 9.73 11.23 12.85 14.53 16.20 17.73 18.89 19.75 19.95 6.20 6.80 7.39 8.76 10.18 11.71 13.36 15.04 16.64 18.04 18.99 19.49 6.47 7.09 7.71 9.13 10.58 12.15 13.80 15.45 16.97 18.19 18.87 18.91 6.72 7.36 8.00 9.47 10.96 12.54 14.18 15.78 17.17 18.16 18.51 6.95 7.62 8.27 9.78 11.29 12.88 14.49 16.00 17.23 17.94 17.90 7.16 7.85 8.52 10.06 11.58 13.16 14.73 16.13 17.15 17.53 7.36 8.07 8.75 10.30 11.84 13.39 14.89 16.15 16.92 16.91 7.54 8.26 8.96 10.52 12.05 13.56 14.97 16.06 16.54 7.70 8.43 9.13 10.71 12.21 13.67 14.97 15.85 16.00 7.84 8.58 9.29 10.86 12.33 13.72 14.88 15.52 15.29 7.96 8.70 9.41 10.97 12.41 13.71 14.70 15.07 8.06 8.81 9.51 11.05 12.43 13.62 14.43 14.48 8.14 8.88 9.59 11.09 12.32 13.25 13.59 8.23 8.96 9.64 11.05 12.19 12.95 13.02 8.24 8.96 9.63 11.99 12.32 13.25 13.59 8.23 8.96 9.64 11.05 12.19 12.95 13.02 8.24 8.96 9.63 10.97 12.00 12.57 12.34 8.23 8.93 9.58 10.85 11.75 12.12 8.19 8.88 9.50 10.68 11.44 11.58 8.13 8.79 9.38 10.46 11.07 10.96	0.17 0.72 0.99 1.25 0.18 0.76 1.03 1.31 0.19 0.79 1.08 1.37 0.20 0.82 1.13 1.43 0.21 0.86 1.17 1.48 0.22 0.89 1.22 1.54 0.22 0.93 1.27 1.60 0.23 0.96 1.32 1.66 0.24 1.00 1.36 1.72 0.25 1.03 1.41 1.78 0.26 1.06 1.46 1.84 0.26 1.10 1.50 1.90
		Where v > 30 m/s, please consult our Applications Engineers!	
			v [m/s]

SPECIAL DRIVES V-FLAT DRIVE

[mm]

[mm]

The V-flat drive utilises a ribbed belt pulley and a flat faced pulley. Under certain conditions, this type of drive can be used for drives which are subject to shock loadings or have high moments of inertia. Because flywheels or flat pulleys are quite often already fitted, drive costs can be reduced. When converting a flat belt drive to a V-Flat drive, it is usually economical to continue to use the large flat pulley.

= Drive centre distance

 L_{bth} = Calculated belt effective length

b	=	Flat pulley face width	[mm]
b_2	=	Ribbed belt pulley face width	[mm]
D_{α}	=	Flat pulley outside diameter	[mm]
D_{Z}	=	Allowance for determining the theoretical diameter	[mm]
d_b	=	Effective diameter of ribbed belt pulley	[mm]
f	=	Allowance for determining the flat pulley face width	[mm]
h	=	Crown height per 100 mm of pulley face width	[mm]
i	=	Speed ratio	

SPECIAL DRIVES **V-FLAT DRIVE**

Calculation of V-Flat Drives

The calculation for a V-flat drive is undertaken in the same manner as shown on pages 22 to 24. The following important requirements must be checked so as to ensure a reliable and efficient V-flat drive.

- The small pulley must always be a grooved pulley.
- The V-flat drive is particularly economical when

$$K = \frac{D_a - d_b}{a}$$
 lies between 0.5 and 1.15.

The ideal drive is achieved when K = 0.85. If the "K" factor falls outside the recommended range, it is then more economical to use a normal ribbed belt drive with grooved pulleys.

 The following recommendations are made based upon the above requirements:

Speed ratio	$i = \frac{D_a + D_Z}{d_b + 2 h_b} \ge 3$
Drive centre	$a_{all} \ge D_a$
distance	$\alpha = \frac{D_a - d_b}{0.85}$
K (,	$K = \frac{D_a - d_b}{a}$
K factor	K _{all} 0.5 to 1.15

• When calculating the number of ribs and the belt tension, care must be taken to ensure that a special arc of contact correction factor c1 as detailed in the following table 10 is applied.

Table 10: Arc of Contact Correction Factor c1 (for V-Flat Drives Only)

0 180° 0.75 0.07 176° 0.76 0.15 170° 0.77 0.22 167° 0.79 0.29 163° 0.79 0.35 160° 0.80 0.40 156° 0.81	$K = \frac{D_a - d_b}{a}$	β ≈	c ₁
0.45 153° 0.81 0.50 150° 0.82 0.57 146° 0.83 0.64 143° 0.84 0.70 140° 0.85 0.75 137° 0.85 0.80 134° 0.86 0.85 130° 0.86 0.92 125° 0.84 1.00 120° 0.82 1.07 115° 0.80 1.15 110° 0.78 1.21 106° 0.77 1.30 100° 0.73 1.36 96° 0.72 1.45 90° 0.70	0.07 0.15 0.22 0.29 0.35 0.40 0.45 0.50 0.57 0.64 0.70 0.75 0.80 0.85 0.92 1.00 1.07 1.15 1.21 1.30 1.36	176° 170° 167° 163° 160° 156° 153° 150° 146° 143° 130° 137° 134° 130° 125° 120° 115° 110° 106° 100° 96°	0.76 0.77 0.79 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.85 0.86 0.86 0.86 0.86 0.77 0.73 0.72

The length calculation is for the effective length L_b. Therefore, in order to obtain the theoretical calculation diameter, an allowance D₇ must be added to the flat pulley outside diameter.

Table 11: Effective Line Difference hb

Profile	РН	PJ	PK	PL	РМ
h _b nominal dimension	0.80	1.25	1.60	3.50	5.00
D_Z	1.60	2.70	3.50	6.50	11.00

Calculation of the effective length

$$L_{bth} \approx 2 \alpha + 1.57 (d_b + D_a + D_Z) + \frac{(D_a + D_Z - d_b)^2}{4 \alpha}$$

In addition to the drive design on pages 22 to 24,

the static belt tension for V-flat drives must be calculated with the adjacent formula.

Formula:

Calculation of the static belt tension for V-flat drives

$$T = \frac{500 \cdot (2.25 - c_1) \cdot P_B}{c_1 \cdot z \cdot v} + k \cdot v^2$$

SPECIAL DRIVES **TENSION/GUIDE IDLERS**

Tensioning/guide pulleys are ribbed or flat faced and do not transmit power within a drive system. Because they create additional bending stresses within the belt their use should be restricted to the following applications if possible:

- with fixed drive centres to produce the required belt tension and to provide for maximum belt stretch and wear
- as damping and guide rollers with long span lengths
- as guide rollers on drives where the pulleys are not all positioned in one plane
- as movable tensioners, to achieve a constant belt tension. This results in reduced maintenance and longer service life. The tension force is normally generated by springs, pneumatics or hydraulics.

If idler pulleys have to be used for the reasons mentioned above, the following criteria should be observed in drive design:

- position of the pulley in the belt span
- diameter
- shape
- the adjustment travel of the pulley, both for tensioning and retensioning the ribbed belts
- correction of the power rating per rib P_N

Idler Arrangement

Idlers can be used as inside or outside idlers. The end position of the idler must be based on the maximum belt stretch assumption. Flat pulleys, whether used inside or outside should be placed as far away as possible from the next grooved pulley that the ribbed belt will run onto. Misalignment of the idler and the pulley due to lateral movements on the flat pulley can largely be prevented as a result.

If the design conditions do not favour an outside idler, an inside idler is then generally more advantageous. Inside idler diameters can be smaller than outside idler diameters. Inside idlers can be either grooved pulleys or flat pulleys. Inside idlers reduce the arc of contact on the loaded pulleys and hence also the arc of contact correction factor c₁. When calculating the number of ribs, the arc of contact correction factor is to be selected at the point of the maximum belt extension (see table 14, page 34).

Ribbed belt pulleys are to be preferred as inside idlers on long spans as flat pulleys could permit the development of lateral vibration.

Outside idlers must always take the form of flat pulleys as they run on the top surface of the belt. They increase the arc of contact. Care must be taken however to ensure that the maximum possible belt stretch is taken up, and that contact with the opposite span is prevented.

Inside Idler

The diametrically opposed bending caused when outside idlers are used can lead to a reduction of the belt service life.

Idlers on the Tight/Slack Side

Both the theoretical power transmission formulae and actual practice have shown that wherever possible the idler should be placed on the slack side of the drive. This allows the idler tension force to be maintained at a considerably lower level. A spring loaded idler must not be used in a reversing drive because the tight and slack sides change continuously. Our engineers will be pleased to advise you about special problems regarding spring loaded idlers!

Minimum Diameter for Inside Idlers

Inside idler ≥ the smallest driven pulley in the system

Minimum Diameter for Outside Idlers

Outside idler ≥ 1.2 times the smallest loaded pulley in the

Table 12: Minimum Diameter for Idlers

Profile	Minimum diameter of inside idler [mm]	Minimum diameter of outside idler [mm]
PH	20	40
PJ	25	50
PK	50	70
PL	100	150
PM	200	300

Failure to observe the minimum recommended idler diameter will impair the service life of the ribbed belts.

Idler Design

Ribbed belt pulleys used as idlers normally have standard groove dimensions. Flat pulleys should wherever possible be cylindrical, not crowned.

Outside Idler

SPECIAL DRIVES **TENSION/GUIDE IDLERS**

Drive Calculation

The length calculation and the determination of the number of ribs is undertaken as for two-pulley drives. Certain details must, however, be taken into account:

1. Calculate the ribbed belt length over two pulleys using the

$$L_{bth} \approx 2 \ \alpha + 1.57 \ (d_{bg} + d_{bk}) + \frac{(d_{bg} - d_{bk})^2}{4 \ \alpha}$$

2. If the ribbed belt has to be fitted with a fixed drive centre distance, twice the allowance y should be added to the belt length L_{bth} (see table 3, page 19).

$$L_b = L_{bth} + 2 y$$

3. The next longest standard length L_{bSt} should then be selected.

A check should be made to determine whether the belt can be adequately tensioned with the idler in the outermost position. In this idler position, both the standard length L_{bSt} as well as double the allowance x must be taken up (see table 3, page 19).

$$L_b$$
 for idler end position = L_{bSt} + 2 x

Number of Idlers

The application of idlers increases the bending stress in the ribbed belts. To avoid a reduction in belt service life, the idler correction factor c_4 must also be included in the calculation. This correction factor takes the number of idlers into consideration with the minimum diameter being maintained.

Table 13

Number of idlers	c ₄
0	1.00
1	0.91
2	0.86
3	0.81

The nominal power rating P_N per rib is as previously based on the smallest loaded pulley.

In determining the arc of contact correction factor c₁ the smallest contact angle of the loaded pulleys which occurs at maximum belt extension must be used.

Table 14: Arc of Contact Correction Factor c1

β≈	c ₁	β ≈	c ₁
75° 80° 85° 90° 95° 100° 105° 110° 115° 120°	0.78 0.82 0.84 0.85 0.87 0.89 0.90 0.91 0.92 0.93	175° 180° 185° 190° 195° 200° 205° 210° 215° 220°	1.00 1.00 1.00 1.01 1.01 1.01 1.01 1.02 1.02
125° 130° 135° 140° 145° 150° 155° 160° 165° 170°	0.94 0.95 0.96 0.97 0.97 0.98 0.98 0.99 0.99	225° 230° 240° 250°	1.02 1.02 1.02 1.02

The following formula for determining the number of ribs is obtained using the idler correction factor c4:

$$z = \frac{P \cdot c_2}{P_N \cdot c_1 \cdot c_3 \cdot c_4}$$

RIBBED BELT PULLEYS

MEASURING PULLEYS - LENGTH MEASURING CONDITIONS TO DIN 7867 / ISO 9982

Table 15

Profile	Effective circumfer- ence U _b = d _b ·π [mm]	Effective diameter d _b	Groove angle a ± 0.5°	Checking rod diameter d _s ± 0.01 [mm]	Diameter over rod P ± 0.1 [mm]	Groove depth t _{min} [mm]	r _{t min} [mm]	Measuring force per rib Q [N]
PH*	100	31.8	40°	1.0	31.94	1.33	0.15	30
PH	300	95.5	40°	1.0	95.60	1.33	0.15	30
PJ*	100	31.8	40°	1.5	32.06	2.06	0.20	50
PJ	300	95.5	40°	1.5	95.72	2.06	0.20	50
PK	300	95.5	40°	2.5	96.48	3.45	0.25	100
PL	500	159.2	40°	3.5	161.51	4.92	0.40	200
PM	800	254.6	40°	7.0	259.17	10.03	0.75	450

^{*}These values apply only for effective lengths under 457 mm.

The appropriate manufacturing tolerances for the grooves and dimensions of the measuring pulleys are given in tables 15 and 16. Care must be taken to monitor wear or damage. Other diameters may be used for the measuring pulleys providing the groove dimensions from the tables are used.

Measuring of Ribbed Belt Length

The belt is placed over two identical measuring pulleys with a groove configuration as shown in the adjoining figure. A load is applied to the moveable pulley until the measuring force Q is exerted on the ribbed belt. The ribbed belt should be rotated at least three revolutions before measuring the drive centre distance a. Only then is the belt settled properly into the pulley grooves and exact measurements are possible. The effective length is the result of twice the centre distance a plus the effective circumference of the measuring pulley.

$$L_b = 2 \alpha + U_b$$

Method of Measuring Ribbed Belt Effective Length

RIBBED BELT PULLEYS

DIMENSIONS TO DIN 7867 / ISO 9982

Table 16

Profile	Effective diameter d _{b min} [mm]	Groove angle α ± 0.5°	Groove pitch e [mm]	Σ e ± 0.3 [mm]	Groove depth t _{min} [mm]	f _{min} [mm]	h _b [mm]	r _{t min} [mm]	r _{b max} [mm]	2 h _s [mm]	2 δ _{max} [mm]
РН	13	40°	1.60 (± 0.03)	(z – 1) 1.60	1.33	1.3	0.80	0.15	0.30	0.11	0.69
PJ	20	40°	2.34 (± 0.03)	(z – 1) 2.34	2.06	1.8	1.25	0.20	0.40	0.23	0.81
PK	45	40°	3.56 (± 0.05)	(z – 1) 3.56	3.45	2.5	1.60	0.25	0.50	0.99	1.68
PL	75	40°	4.70 (± 0.05)	(z – 1) 4.70	4.92	3.3	3.50	0.40	0.40	2.36	3.50
PM	180	40°	9.40 (± 0.08)	(z – 1) 9.40	10.03	6.4	5.00	0.75	0.75	4.53	5.92

The diameter d_a may be reduced by the dimension $2 \delta - 2 h_s$ at the manufacturer's discretion. The arc with radius r_t must have an angle of at least 30° and merge tangentially with the edge of the groove.

Pulley Face Width b2

$$b_2 = e(z - 1) + 2f$$

The difference between the diameters, measured as distance p, between the outer tangential plane of the test pin in all the grooves of a pulley must not exceed the value given in table 17.

Table 17: Groove to Groove Diameter Variation

Pulley effective diameter [mm]	no. of gro	nce for oves [mm] ≤ 10 grooves	Allowance for each extra groove [mm]
≤ 74	0.10	_	0.003
> 74 ≤ 500	_	0.15	0.005
> 500	_	0.25	0.010

Material

All conventional easily machined material may be used, preferably steel, cast iron, aluminium alloy, brass or high strength plastics.

Surface Finish

Groove surface should have a maximum roughness $R_z \le 3.2 \ \mu m$ and must be free from surface defects.

Balancing

For velocities < 30 m/s static balancing is sufficient. Dynamic balancing is necessary for velocities of \geq 30 m/s.

Manufacture

Pulleys for optibelt RB ribbed belts are made to your specification. Cutting tools for ribbed belt pulleys are available on special request.

Table 18: Run Out Tolerance

Effective diameter d _b [mm]	Run out tolerance t _R
≤ 74	0.13
> 74 ≤ 250	0.25
> 250	0.25 + 0.0004 per mm effective diameter above 250

Side Wobble Tolerance

The side wobble tolerance t_p is 0.002 mm for each mm effective diameter.

Pitch Diameter

The schematic illustration shows the seating of a ribbed belt in the pulley.

RIBBED BELT PULLEYS

STANDARD RANGE optibelt TB TAPER BUSHES

	T	aper	bushe	s with	n metr	ic bor	es an	d key	ways	to DII	N 688	5 par	t 1			
								Taper	Bush		Mater	ial: EN	l-GJL-2(00 – DI	N EN	1561
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050
Bore diameter d ₂ [mm]	10 11 12 14 15 16 18 19 20 22 24 25	10 11 12 14 15 16 18 19 20 22 24 25 28	11 12 14 16 18 19 20 22 24 25 28 30 32	11 12 14 16 18 19 20 22 24 25 28 30 32	14 16 18 19 20 22 24 25 28 30 32 35	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42▲	14 16 18 19 20 22 24 25 28 30 32 35 38 40 42 45 48 50	16 18 19 20 22 24 25 28 30 32 35 38 40 42 45 45 55 60	25 28 30 32 35 38 40 42 45 48 50 55 60 65 70 75	35 38 40 42 45 48 50 55 60 65 70 75	35 38 40 42 45 48 50 55 60 65 70 75 80 85 90	35 38 40 42 45 48 50 55 60 65 70 75 80 85 90	40 42 45 48 50 55 60 65 70 75 80 85 90 95 100	55 60 65 70 75 80 85 90 95 100 105 110	70 75 80 85 90 95 100 105 110 115 120 125
Hexagon socket screws [inch]	$^{1}/_{4} \times ^{1}/_{2}$	$^{1}/_{4} \times ^{1}/_{2}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8}$ x $^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{7}/_{16}$ x $^{7}/_{8}$	$^{1}/_{2} \times 1$	$\frac{5}{8} \times 1^{1}/_{4}$	$\frac{5}{8} \times 1^{1}/_{4}$	$^{1}/_{2} \times 1^{1}/_{2}$	$1/_2 \times 1^1/_2$	$\frac{5}{8} \times \frac{13}{4}$	$^{3}/_{4} \times 2$	$^{7}/_{8} \times 2^{1}/_{4}$
Torque [Nm]	5.7	5.7	20	20	20	20	20	31	49	92	92	115	115	172	195	275
Bush length [mm]	22.3	22.3	25.4	38.1	25.4	25.4	38.1	31.8	44.5	50.8	76.2	63.5	88.9	101.6	114.3	127.0
Weight with d _{2 min} [≈ kg]		0.16	0.28	0.39	0.32	0.41	0.60	0.75	1.06	2.50	3.75	3.90	5.13	7.68	12.70	15.1 <i>7</i>

Over 3525: Cap head screw with hexagon socket

A This bore has a flat keyway.

Flat Keyway for Taper Bushes

	apor Doomos				
Bore diameter d ₂ [mm]	Keyway width b [mm]	Keyway depth t ₂ [mm]	Bore diameter d ₂ [mm]	Keyway width b [mm]	Keyway depth t ₂ [mm]
24	8	2.0	28	8	2.0
25	ρ	1 3	12	12	2.2

	Taper	bush	es wit	h inch	bore	s and	keyw	ay to	Britis	h Sta	ndard	BS 46	5 part	1		
								Taper	· Bush		Mate	rial: EN	l-GJL-2(00 – DI	N EN	1561
	1008	1108	1210	1215	1310	1610	1615	2012	2517	3020	3030	3525	3535	4040	4545	5050
Bore diameter d ₂ [inch]	3/8* 1/2 5/8 3/4 7/8 1▲	3/8* 1/2 5/8 3/4 7/8 1 1 ¹ / ₈ **	1/2 5/8 3/4 7/8 1 1 ¹ /8 1 ¹ /4	5/8* 3/4 7/8 1 1 ¹ /8 1 ¹ /4	1/2* 5/8* 3/4* 7/8* 1* 11/8 11/4 13/8	1/2 5/8 3/4 7/8 1 1 ¹ /8 1 ³ /8 1 ¹ /2 1 ⁵ /8	1/2 5/8 3/4 7/8* 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8*	5/8* 3/4 7/8 1 1 ¹ /8 1 ¹ /4 1 ³ /8 1 ¹ /2 1 ⁵ /8 1 ³ /4 1 ⁷ /8 2	3/4 7/8 1 1 ¹ /8 1 1 ¹ /8 1 ¹ /4 13/8 1 ¹ /2 1 ⁵ /8 1 ³ /4 1 ⁷ /8 2 2 ¹ /8 2 ¹ /4 2 ³ /8 2 ¹ /2	11/4 13/8 11/2 15/8 13/4* 17/8 2 21/8* 21/4 23/8 21/2 25/8 23/4 27/8 3	1 ⁷ / ₈	2 ¹ / ₈ 2 ¹ / ₄ 2 ³ / ₈ 2 ¹ / ₂ 2 ⁵ / ₈ 2 ³ / ₄ 2 ⁷ / ₈ 3 ¹ / ₈ 3 ¹ / ₄ 3 ³ / ₈	11/2 15/8 13/4 17/8 2 21/8 21/4 23/8 21/2 25/8 23/4 27/8 31/8 31/4 33/8 31/2	17/8* 2* 21/8* 21/4* 23/8* 21/2* 25/8* 23/4* 27/8* 3* 31/8*	2 ¹ / ₂ * 2 ³ / ₄ * 2 ⁷ / ₈ * 3* 3 ¹ / ₄ * 3 ³ / ₈ * 3 ³ / ₄ * 4 ¹ / ₄ A ; 4 ¹ / ₄ A ;	
Hexagon socket screws [inch]	$^{1}/_{4} \times ^{1}/_{2}$	$^{1}/_{4} \times ^{1}/_{2}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{3}/_{8} \times ^{5}/_{8}$	$^{7}/_{16}$ x $^{7}/_{8}$	$^{1}/_{2} \times 1$	$\frac{5}{8} \times 1^{1}/_{4}$	$\frac{5}{8} \times 1^{1} / 4$	$1/_2 \times 1^1/_2$	$^{1}/_{2} \times 1^{1}/_{2}$	⁵ / ₈ x 1 ³ / ₄	$^{3}/_{4} \times 2$	$^{7}/_{8} \times 2^{1}/_{4}$
Torque [Nm]	5.7	5.7	20	20	20	20	20	31	49	92	92	115	115	172	195	275
Bush length [mm]	22.3	22.3	25.4	38.1	25.4	25.4	38.1	31.8	44.5	50.8	76.2	63.5	88.9	101.6	114.3	127.0
Weight with $d_{2 min}$ [\approx kg]	0.12	0.16	0.28	0.39	0.32	0.41	0.60	0.75	1.06	2.50	3.75	3.90	5.13	7.68	12.70	15.17

Designation	No. of grooves	Pulley type	Material	d _b [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper bush
TB 4 PJ 47.5 TB 4 PJ 52.5 TB 4 PJ 57.5 TB 4 PJ 62.5 TB 4 PJ 67.5	4 4 4 4	1 1 1 1	GG GG GG GG	47.5 52.5 57.5 62.5 67.5	13 13 13 13	23 23 23 23 23	23 23 23 23 23	47.5 47.5 54.0 54.0 54.0	1008 1008 1108 1108 1108
TB 4 PJ 72.5 TB 4 PJ 77.5 TB 4 PJ 82.5 TB 4 PJ 87.5 TB 4 PJ 92.5	4 4 4 4	1 1 1 1	GG GG GG GG	72.5 77.5 82.5 87.5 92.5	13 13 13 13 13	23 26 26 26 26 26	23 26 26 26 26 26	54.0 70.0 78.0 78.0 78.0	1108 1210 1210 1210 1210
TB 4 PJ 97.5 TB 4 PJ 102.5 TB 4 PJ 107.5 TB 4 PJ 112.5 TB 4 PJ 117.5	4 4 4 4	1 1 1 1	GG GG GG GG	97.5 102.5 107.5 112.5 117.5	13 13 13 13 13	26 26 26 26 26	26 26 26 26 26	78.0 85.0 85.0 85.0 85.0	1210 1610 1610 1610 1610
TB 4 PJ 122.5 TB 4 PJ 127.5 TB 4 PJ 137.5 TB 4 PJ 152.5 TB 4 PJ 162.5	4 4 4 4	1 1 1 1	GG GG GG GG	122.5 127.5 137.5 152.5 162.5	13 13 13 13 13	26 26 26 26 26	26 26 26 26 26	85.0 85.0 85.0 85.0 85.0	1610 1610 1610 1610 1610
TB 4 PJ 172.5 TB 4 PJ 182.5 TB 4 PJ 192.5 TB 4 PJ 202.5 TB 4 PJ 222.5	4 4 4 4	1 1 1 1	GG GG GG GG	172.5 182.5 192.5 202.5 222.5	13 13 13 13 13	26 26 26 33 33	26 26 26 33 33	85.0 85.0 85.0 100.0 100.0	1610 1610 1610 2012 2012

Taper bush	1008	1108	1210	1610	2012
Bore d ₂ [mm] from to	10-25	10-28	11-32	14-42	14-50

Designation	No. of grooves	Pulley type	Material	d _b [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper bush
TB 8 PJ 47.5 TB 8 PJ 52.5 TB 8 PJ 57.5 TB 8 PJ 62.5 TB 8 PJ 67.5	8 8 8 8	4 4 4 4	GG GG GG GG	47.5 52.5 57.5 62.5 67.5	23 23 23 23 23	23 23 23 23 23	23 23 23 23 23	_ _ _	1008 1008 1108 1108 1108
TB 8 PJ 72.5 TB 8 PJ 77.5 TB 8 PJ 82.5 TB 8 PJ 87.5 TB 8 PJ 92.5	8 8 8 8	4 1 1 1	GG GG GG GG	72.5 77.5 82.5 87.5 92.5	23 23 23 23 23 23	23 26 26 26 26 26	23 26 26 26 26 26		1108 1210 1210 1210 1210
TB 8 PJ 97.5 TB 8 PJ 102.5 TB 8 PJ 107.5 TB 8 PJ 112.5 TB 8 PJ 117.5	8 8 8 8	1 1 1 1	GG GG GG GG	97.5 102.5 107.5 112.5 117.5	23 23 23 23 23 23	26 26 26 26 26	26 26 26 26 26 26	78.0 85.0 85.0 85.0 85.0	1210 1610 1610 1610 1610
TB 8 PJ 122.5 TB 8 PJ 127.5 TB 8 PJ 137.5 TB 8 PJ 152.5 TB 8 PJ 162.5	8 8 8 8	1 1 1 1	GG GG GG GG	122.5 127.5 137.5 152.5 162.5	23 23 23 23 23	26 26 26 26 26	26 26 26 26 26	85.0 85.0 85.0 85.0 85.0	1610 1610 1610 1610 1610
TB 8 PJ 172.5 TB 8 PJ 182.5 TB 8 PJ 192.5 TB 8 PJ 202.5 TB 8 PJ 222.5	8 8 8 8	1 1 1 1	GG GG GG GG	172.5 182.5 192.5 202.5 222.5	23 23 23 23 23	26 26 26 33 33	26 26 26 33 33	85.0 85.0 85.0 100.0 100.0	1610 1610 1610 2012 2012

Taper bush	1008	1108	1210	1610	2012
Bore d ₂ [mm] from to	10-25	10-28	11-32	14-42	14-50

GG = Cast iron Further sizes upon request. We reserve to alter specifications without notice. Bore diameters d_2 see page 37.

Designation	No. of grooves	Pulley type	Material	d _b [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper bush
TB 12 PJ 62.5 TB 12 PJ 67.5 TB 12 PJ 77.5 TB 12 PJ 77.5 TB 12 PJ 87.5 TB 12 PJ 87.5 TB 12 PJ 97.5 TB 12 PJ 97.5 TB 12 PJ 102.5 TB 12 PJ 107.5 TB 12 PJ 107.5 TB 12 PJ 117.5 TB 12 PJ 12.5 TB 12 PJ 12.5 TB 12 PJ 137.5 TB 12 PJ 137.5 TB 12 PJ 137.5 TB 12 PJ 152.5 TB 12 PJ 162.5 TB 12 PJ 162.5 TB 12 PJ 162.5 TB 12 PJ 172.5	12 12 12 12 12 12 12 12 12 12 12 12 12 1	2 2 2 2 2 2 2 2 2 2 2 2 2 1 1	66 66 66 66 66 66 66 66 66 66 66 66 66	62.5 67.5 72.5 77.5 82.5 87.5 92.5 97.5 102.5 107.5 112.5 127.5 127.5 137.5 152.5 162.5 172.5	32 32 32 32 32 32 32 32 32 32 32 32 32 3	32 32 32 32 32 32 32 32 32 32 32 32 32 3	23 23 23 26 26 26 26 26 26 26 26 26 26 26 33 33 33 33	50.0 50.0 50.0 62.0 62.0 70.0 70.0 70.0 70.0 70.0 70.0 100.0 100.0 100.0	1108 1108 1108 1210 1210 1610 1610 1610 1610 1610 2012 2012
TB 12 PJ 182.5 TB 12 PJ 192.5 TB 12 PJ 202.5 TB 12 PJ 202.5 TB 12 PJ 222.5	12 12 12 12 12		GG GG GG GG	1/2.5 182.5 192.5 202.5 222.5	32 32 32 32 32 32	32 46 46 46 46	33 46 46 46 46	110.0 110.0 110.0 110.0	2517 2517 2517 2517 2517

Taper bush	1108	1210	1610	2012	2517
Bore d ₂ [mm] from to	10-28	11-32	14-42	14-50	16-60

TB 16 PJ 62.5	Designation	No. of grooves	Pulley type	Material	d _b [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper bush
	TB 16 PJ 62.5 TB 16 PJ 67.5 TB 16 PJ 72.5 TB 16 PJ 77.5 TB 16 PJ 82.5 TB 16 PJ 82.5 TB 16 PJ 87.5 TB 16 PJ 92.5 TB 16 PJ 102.5 TB 16 PJ 107.5 TB 16 PJ 112.5 TB 16 PJ 112.5 TB 16 PJ 122.5 TB 16 PJ 127.5 TB 16 PJ 127.5 TB 16 PJ 137.5 TB 16 PJ 137.5 TB 16 PJ 152.5 TB 16 PJ 182.5 TB 16 PJ 182.5 TB 16 PJ 192.5 TB 16 PJ 192.5 TB 16 PJ 192.5 TB 16 PJ 192.5	16 16 16 16 16 16 16 16 16 16 16 16 16 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1	66 66 66 66 66 66 66 66 66 66 66 66 66	62.5 67.5 72.5 77.5 82.5 87.5 92.5 97.5 102.5 107.5 112.5 112.5 127.5 127.5 127.5 162.5 172.5 182.5 192.5	41 41 41 41 41 41 41 41 41 41 41 41 41 4	[mm] 41 41 41 41 41 41 41 41 41 41 41 41 41	23 23 26 26 26 26 26 26 26 26 26 26 33 33 33 33 33 46 46	50.0 50.0 62.0 62.0 62.0 70.0 70.0 70.0 70.0 85.0 85.0 85.0 85.0 85.0 85.0 110.0	1108 1108 1210 1210 1210 1610 1610 1610 1610 2012 2012

Taper bush	1108	1210	1610	2012	2517
Bore d ₂ [mm] from to	10-28	11-32	14-42	14-50	16-60

GG = Cast iron Further sizes upon request. We reserve to alter specifications without notice.

Bore diameters d_2 see page 37.

TB 6 PL 78 6 2 GG 78 33 33 26 62.0 1210 TB 6 PL 83 6 2 GG 88 33 33 26 62.0 1210 TB 6 PL 88 6 2 GG 88 33 33 26 70.0 1610 TB 6 PL 93 6 2 GG 93 33 33 26 70.0 1610 TB 6 PL 98 6 2 GG 98 33 33 26 70.0 1610 TB 6 PL 103 6 2 GG 98 33 33 26 70.0 1610 TB 6 PL 103 6 2 GG 98 33 33 26 70.0 1610 TB 6 PL 108 6 2 GG 108 33 33 26 70.0 1610 TB 6 PL 118 6 2 GG 108 33 33 26 70.0 1610 TB 6 PL 118 6 2 GG 118 33 33 26 70.0 1610 TB 6 PL 123 6 4 GG 118 33 33 26 70.0 1610 TB 6 PL 123 6 4 GG 123 33 33 36 70.0 1610 TB 6 PL 123 6 4 GG 123 33 33 36 70.0 1610 TB 6 PL 128 6 4 GG 148 33 33 33 70.0 1610 TB 6 PL 188 6 4 GG 148 33 33 33 70.0 1610 TB 6 PL 188 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	Designation	No. of grooves	Pulley type	Material	d _b [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper bush
TB 6 PL 278 6 1 GG 278 33 46 46 110.0 2517 TB 6 PL 298 6 1 GG 298 33 46 46 110.0 2517 TB 6 PL 318 6 1 GG 318 33 46 46 110.0 2517 TB 6 PL 348 6 1 GG 348 33 46 46 110.0 2517 TB 6 PL 388 6 1 GG 388 33 46 46 110.0 2517 TB 6 PL 388 6 1 GG 388 33 46 46 110.0 2517	TB 6 PL 78 TB 6 PL 83 TB 6 PL 88 TB 6 PL 93 TB 6 PL 98 TB 6 PL 103 TB 6 PL 108 TB 6 PL 113 TB 6 PL 113 TB 6 PL 123 TB 6 PL 123 TB 6 PL 148 TB 6 PL 158 TB 6 PL 158 TB 6 PL 168 TB 6 PL 178 TB 6 PL 178 TB 6 PL 188 TB 6 PL 198 TB 6 PL 238 TB 6 PL 238 TB 6 PL 238 TB 6 PL 258 TB 6 PL 278 TB 6 PL 298 TB 6 PL 298 TB 6 PL 318 TB 6 PL 348	grooves 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 4 4 4 4 4 1 1 1 1 1	66666666666666666666666666666666666666	78 83 88 93 98 103 108 113 118 123 133 148 158 168 178 188 198 218 238 258 278 298 318 348	33 33 33 33 33 33 33 33 33 33 33 33 33	[mm] 33 33 33 33 33 33 33 33 33 33 34 46 46 46 46 46 46 46 46 46 46 46 46 46	26 26 26 26 26 26 26 26 26 26 26 33 33 33 33 46 46 46 46 46 46 46 46	62.0 62.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0 - - - 110.0 110.0 110.0 110.0 110.0 110.0 110.0	1210 1210 1610 1610 1610 1610 1610 1610

Taper bush	1210	1610	2012	2517
Bore d ₂ [mm] from to	11-32	14-42	14-50	16-60

Designation	No. of grooves	Pulley type	Material	d _b [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper bush
TB 8 PL 78 TB 8 PL 83 TB 8 PL 88 TB 8 PL 93 TB 8 PL 98	8 8 8 8	2 2 2 2 2	GG GG GG GG	78 83 88 93 98	42 42 42 42 42	42 42 42 42 42	26 26 26 26 26 26	62.0 62.0 70.0 70.0 70.0	1210 1210 1610 1610 1610
TB 8 PL 103 TB 8 PL 108 TB 8 PL 113 TB 8 PL 118 TB 8 PL 123	8 8 8 8	2 2 2 2 2 2	GG GG GG GG	103 108 113 118 123	42 42 42 42 42 42	42 42 42 42 42 42	33 33 33 33 33	85.0 85.0 85.0 85.0 85.0	2012 2012 2012 2012 2012 2012
TB 8 PL 133 TB 8 PL 148 TB 8 PL 158 TB 8 PL 168 TB 8 PL 178	8 8 8 8	2 2 2 2 2	GG GG GG GG	133 148 158 168 178	42 42 42 42 42 42	42 42 42 42 42 46	33 33 33 33 46	85.0 85.0 85.0 85.0	2012 2012 2012 2012 2012 2517
TB 8 PL 188 TB 8 PL 198 TB 8 PL 218 TB 8 PL 238 TB 8 PL 258	8 8 8 8	1 1 1 1	GG GG GG GG	188 198 218 238 258	42 42 42 42 42	46 46 46 46 46	46 46 46 46 46	110.0 110.0 110.0 110.0 110.0	2517 2517 2517 2517 2517
TB 8 PL 278 TB 8 PL 298 TB 8 PL 318 TB 8 PL 348 TB 8 PL 388	8 8 8 8	1 1 1 1	GG GG GG GG	278 298 318 348 388	42 42 42 42 42	46 46 46 46 46	46 46 46 46 46	110.0 110.0 110.0 110.0 110.0	2517 2517 2517 2517 2517

Taper bush	1210	1610	2012	2517
Bore d ₂ [mm] from to	11-32	14-42	14-50	16-60

Designation	No. of grooves	Pulley type	Material	d _b [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper bush
TB 10 PL 88 TB 10 PL 93 TB 10 PL 98 TB 10 PL 103 TB 10 PL 108	10 10 10 10	3 3 3 2 2	GG GG GG GG	88 93 98 103 108	53 53 53 53 53	53 53 53 53 53	26 26 26 33 33	70.0 70.0 70.0 85.0 85.0	1610 1610 1610 2012 2012
TB 10 PL 113 TB 10 PL 118 TB 10 PL 123 TB 10 PL 133 TB 10 PL 148	10 10 10 10	2 2 2 2 2 2	GG GG GG GG	113 118 123 133 148	53 53 53 53 53	53 53 53 53 53	33 33 33 33 33	85.0 85.0 85.0 85.0 85.0	2012 2012 2012 2012 2012 2012
TB 10 PL 158 TB 10 PL 168 TB 10 PL 178 TB 10 PL 188 TB 10 PL 188 TB 10 PL 198	10 10 10 10 10	2 2 2 2 2 2	GG GG GG GG	158 168 178 188 198	53 53 53 53 53	53 53 53 53 53	33 33 46 46 46	85.0 85.0 105.0 105.0 105.0	2012 2012 2517 2517 2517
TB 10 PL 218 TB 10 PL 238 TB 10 PL 258 TB 10 PL 278 TB 10 PL 278 TB 10 PL 298	10 10 10 10	2 2 2 2 2 2	GG GG GG GG	218 238 258 278 298	53 53 53 53 53	53 53 53 53 53	46 46 46 46 46	105.0 105.0 105.0 105.0 105.0	2517 2517 2517 2517 2517
TB 10 PL 318 TB 10 PL 348 TB 10 PL 388	10 10 10	2 2 2 2	GG GG GG	318 348 388	53 53 53	53 53 53	46 46 46	105.0 105.0 105.0	2517 2517 2517

Taper bush	1610	2012	2517
Bore d ₂ [mm] from to	14-42	14-50	16-60

Designation	No. of grooves	Pulley type	Material	d _ь [mm]	b ₂ [mm]	B [mm]	N [mm]	D [mm]	Taper bush
TB 12 PL 88 TB 12 PL 93 TB 12 PL 98 TB 12 PL 103 TB 12 PL 108 TB 12 PL 113 TB 12 PL 118	12 12 12 12 12 12	3 3 3 3 3 3	GG GG GG GG	88 93 98 103 108 113	62 62 62 62 62 62 62	62 62 62 62 62 62 62	26 26 26 33 33 33	70.0 70.0 70.0 85.0 85.0 85.0	1610 1610 1610 2012 2012 2012 2012
TB 12 PL 123 TB 12 PL 133 TB 12 PL 148	12 12 12	3 3 2	GG GG GG	123 133 148	62 62 62	62 62 62	33 33 46	85.0 85.0 105.0	2012 2012 2517
TB 12 PL 158 TB 12 PL 168 TB 12 PL 178 TB 12 PL 188 TB 12 PL 198	12 12 12 12 12	2 2 2 2 2	GG GG GG GG	158 168 178 188 198	62 62 62 62 62	62 62 62 62 62	46 46 46 46 46	105.0 105.0 105.0 105.0 105.0	2517 2517 2517 2517 2517
TB 12 PL 218 TB 12 PL 238 TB 12 PL 258 TB 12 PL 278 TB 12 PL 298	12 12 12 12 12	2 2 2 2 2	GG GG GG GG	218 238 258 278 298	62 62 62 62 62	62 62 62 62 62	46 52 52 52 52	105.0 130.0 130.0 130.0 130.0	2517 3020 3020 3020 3020
TB 12 PL 318 TB 12 PL 348 TB 12 PL 388	12 12 12	2 2 2	GG GG GG	318 348 388	62 62 62	62 62 62	52 52 52	130.0 130.0 130.0	3020 3020 3020

Taper bush	1610	2012	2557	3020
Bore d ₂ [mm] from to	14-42	14-50	16-60	25-75

TB 16 PL 103
TB 16 PL 258

Taper bush	2012	2557	3020
Bore d ₂ [mm] from to	14-50	16-60	25-75

GG = Cast iron Further sizes upon request. We reserve to alter specifications without notice.

Bore diameters d_2 see page 37.

RIBBED BELT PULLEYS FOR CYLINDRICAL BORE, PROFILE PJ

Designation	No. of grooves	Pulley type	Material	d _b [mm]	b ₁ [mm]	B [mm]	D [mm]	Pilot bore d [mm]	Finished bore d _{max} [mm]	Weight [≈ kg]
4 PJ 22.5 4 PJ 27.5 4 PJ 32.5 4 PJ 37.5 4 PJ 42.5 8 PJ 22.5	4 4 4 4 4 8	VB VB VB VB VB	GG GG GG GG GG	22.5 27.5 32.5 37.5 42.5 22.5	13 13 13 13 13	20 20 20 20 20 20	25 30 35 40 45 25	8 8 8 8	12.0 14.0 18.0 20.0 22.0	0.045 0.070 0.100 0.135 0.180 0.063
8 PJ 27.5 8 PJ 32.5 8 PJ 37.5 8 PJ 42.5	8 8 8	VB VB VB VB	GG GG GG	27.5 32.5 37.5 42.5	23 23 23 23	30 30 30 30	30 35 40 45	8 8 8	14.0 18.0 20.0 22.0	0.100 0.150 0.200 0.265
12 PJ 22.5 12 PJ 27.5 12 PJ 32.5 12 PJ 37.5 12 PJ 42.5	12 12 12 12 12	VB VB VB VB VB	GG GG GG GG	22.5 27.5 32.5 37.5 42.5	32 32 32 32 32 32	40 40 40 40 40	25 30 35 40 45	8 8 8 8	12.0 14.0 18.0 20.0 22.0	0.086 0.140 0.200 0.280 0.360

The correct level of belt tension is of great importance for trouble free transmission of power, and for the achievement of an acceptable belt service life. Often, tension which is either too high or too low results in early belt failure. A belt which is over tensioned sometimes causes bearing failure in the driver

It has been shown that the more common tensioning instructions – e. g. using the "thumb pressure deflection method" – do not result in tension being obtained which would enable drives to be operated at optimum efficiency. It is therefore recommended that the required static belt tension "T" be calculated individually for every drive using the following Optibelt formulae. The best initial tension is the absolute minimum for a drive which permits the highest level of power transmission under consideration of the normal slip. Once the ribbed belt has been fitted and the calculated shaft load applied, the tension should be checked, using our Optibelt tension gauge.

The belt should be observed regularly during the first few hours of service. Experience indicates that the first retensioning should be undertaken after running at full load for 0.5 to 4 hours to take up the initial belt stretch.

After approximately 24 hours' running, especially if the belt has not run continuously under full load conditions, the drive should be checked and, if necessary, retensioned. After this, maintenance intervals for the drive can then be increased considerably. In addition, our installation and maintenance instructions should be observed.

Over- or undertensioning of the drive will be avoided if the belt tension is calculated, set and checked by one of the following methods:

I. Checking the Belt Tension by Span Deflection

This method provides an indirect measurement of the calculated or actual static belt tension.

E = Belt deflection per 100 mm span length

 E_a = Belt deflection for a given span length

f = Load used to set belt tension per rib

[mm] [mm] [N] k = Constant for calculation of centrifugal force

L = Span length

[mm]

 S_{α} = Minimum static shaft loading

T = Minimum static belt tension per rib

1. Calculate the static belt tension using the following formula:

$$T \approx \frac{500 \cdot (2.03 - c_1) \cdot P_B}{c_1 \cdot z \cdot v} + k \cdot v^2$$

The drive should initially be tensioned to a maximum of 1.3 T (initial tensioning).

- 2. Determine E the deflection per 100 mm length from the belt tension characteristics as given in diagram 2, page 49.
- 3. Calculate E_a the deflection for a given span length for the actual drive span length L:

$$E_{\alpha} \approx \frac{E \cdot L}{100}$$

$$L = a_{nom} \cdot \sin \frac{\beta}{2}$$

Apply load f* using the value from Diagram 2 at right angles to the span at its centre point, as shown in the figure below. Measure the deflection and adjust if necessary until the correct belt tension is achieved.

* When choosing the load to set belt tension f, the number of ribs must be taken into consideration.

Diagram 2: Ribbed Belt Tension Graphs

II. Checking the Ribbed Belt Tension with a "Length Addition Value"

It has become evident that span deflection methods are not always the ideal checking procedures for ribbed belts. The following very easy method for determining the belt tension is therefore recommended:

1. Calculate the static belt tension "T".

$$T \approx \frac{500 \cdot (2.03 - c_1) \cdot P_B}{c1 \cdot z \cdot v} + k \cdot v^2$$

- 2. The outside length La of the ribbed belt should be measured on the top surface with the belt slack prior to fitting it to the drive. Measurement may also be carried out on the drive itself, but without tension.
- 3. Calculate the length addition value "A" by using the formula:

$$A \approx L_{bSt} \cdot R$$

R = Stretch factor from table 19, page 51

4. This length addition value "A" should then be added to the measured outside length (from step 2).

$$L_\alpha * \approx L_\alpha + A$$

- 5. The ribbed belt should then be tensioned until the outside length La* calculated in step 4 is obtained. The belt tension will then be correct.
- 6. If the drive is to be retensioned, the ribbed belt must first be slackened off so that it can be measured in a stress free condition. The procedure as detailed in steps 4 and 5 is then repeated.

Tighten the belt until the length measured around the outside is 1103 mm. The belt is then correctly tensioned.

Example:

 $P_{B} = 23.4 \text{ kW}$

 $c_1 = 1.0$

 $v = 16.6 \, \text{m/s}$

Drive specification with 1 optibelt RB ribbed belt 12 PL 1075

$$T \approx \frac{500 \cdot (2.03 - 1.0) \cdot 23.4}{1.0 \cdot 12 \cdot 16.6} + 0.036 \cdot 16.6^2 \approx 70 \text{ N}$$

When fitted for the first time, the tension should be multiplied by a factor of 1.3.

Length measured on the back of the belt whilst slack $L_a = 1100 \text{ mm}$

$$A \approx 1075 \cdot 0.00264 \approx 3 \text{ mm}$$

$$L_a* \approx 1100 + 3 = 1103 \text{ mm}$$

III. Checking the Ribbed Belt Tension by Measurement of the Static Shaft Loading

A very accurate method for the setting of the correct belt tension is by direct measurement of the static shaft loading using the formula:

$$S_a \approx 2 T \cdot \sin \frac{\beta}{2} \cdot z$$

This checking method does, however, call for specialised measuring instruments.

Table 19: Stretch Factor R for antibelt RR Ribbed Relts

rofile	PH	PJ	PK	PL	PM
15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 100 120 140 160 180 200 220 240 250 260 280 300 350 400 440 460 480 500 520 540 560 580 600 620 640 660 680 700 720	0.00155 0.00207 0.00263 0.00331 0.00407 0.00500 0.00600 0.00700 0.00831 0.00958 0.01229 0.01356 0.01500 0.01636 0.01780 0.01924 0.02070 0.02644	0.00090 0.00130 0.00168 0.00206 0.00248 0.00300 0.00348 0.00406 0.00459 0.00522 0.00580 0.00644 0.00715 0.00786 0.00863 0.00949 0.01021 0.01106 0.01469 0.01849 0.02229	0.00065 0.00077 0.00093 0.00114 0.00136 0.00160 0.00192 0.00223 0.00254 0.00280 0.00312 0.00346 0.00377 0.00411 0.00445 0.00572 0.00693 0.00820 0.00949 0.01095	0.00066 0.00080 0.00094 0.00109 0.00127 0.00142 0.00160 0.00175 0.00191 0.00212 0.00228 0.00242 0.00261 0.00277 0.00297 0.00369 0.00437 0.00509 0.00580 0.00651 0.00735 0.00811 0.00849	0.00062 0.00072 0.00079 0.00087 0.00098 0.00101 0.00111 0.00120 0.00124 0.00135 0.00159 0.00219 0.00249 0.00279 0.00314 0.00340 0.00356 0.00373 0.00405 0.00405 0.00405 0.00518 0.00598 0.00674 0.00742 0.00772 0.00814 0.00850 0.00889 0.00929 0.00968 0.01004 0.01036 0.01076 0.01116 0.01156

DESIGN SUPPORT

TECHNICAL TOOLS

FREQUENCY METER/TENSION TESTER optibelt TT

The optibelt TT frequency tension tester is an appliance that is used to check the tension of drive belts by means of measuring frequency. Thanks to a compact design, this product offers universal application possibilities in machine construction, in the automotive industry and many other technical applications. The optibelt TT can even be effortlessly used in difficult-to-reach places so that the tension values of V-belts, ribbed belts and timing belts can be easily and quickly checked.

After start up, the device is immediately ready for obtaining data. The measuring head is held over the belt to be tested (two red LED light points help to position it). The belt is made to vibrate by striking it with a finger or an object. The optibelt TT begins recording data and displays the result in Hertz [Hz]. The condition, colour and type of the belt have no effect upon the measurement.

The tension recommendations can be taken from the Optibelt specifications and the CAP calculation.

$$= \sqrt{\frac{F_T \cdot 10^6}{4 \cdot m_k \cdot L^2}}$$
 [Hz] with F_T [N], m_k [kg/m] or [g/m] and L [mm]
$$f = \sqrt{\frac{504 \text{ N} \cdot 10^6}{4 \cdot 0.325 \frac{\text{kg}}{\text{m}} \cdot 401^2 \text{ mm}^2}} = 49.1 \text{ Hz}$$

f ≙ frequency [Hz]

Advantages of optibelt TT

- Two trouble-free measuring methods: EM: electro magnetic wave AC: acceleration, integrated
- Usable also for long centre distances by all-time wide frequency range: ÁC: 1 - 10 Hz

EM: 6 - 600 Hz

- Easy handling of the measuring head: two red LED points on the belt help to find the correct position
- For hard accessible belt span: measuring head on flexible goose-neck (EM) or with 250 mm cable (AC)
- Safe meter-reading by big display: width 43 mm and height 58 mm, illuminated and colored
- Long running time and environmentfriendly by high capacity, rechargeable battery (USB) and changeability
- Chargeable via USB
- No interference in loud and bright environments
- Automatic switch-off function

The optibelt TT:

A guarantee for longer durability of your V-belts, ribbed belts, and timing belts!

DESIGN SUPPORT

TECHNICAL TOOLS

FREQUENCY METER/TENSION TESTER optibelt TT LINE

Advantages of optibelt TT DATA

- Comfortable input and selection of belt drive data on touch screen; show own company logo on start display
- Use own belt drive data and general belt set values from optibelt TT database and span length calculation
- Simultaneous display: set, measuring values; simple descision to okay / not okay: select and register tolerances
- Save measurement results and new belt drive data in optibelt TT DATA: Micro SD slot including Micro SD card
- PC synchronisation for database administration with optibelt TT DATA software: USB cable, Micro SD card; optibelt TT DATA update
- Use data from CAP 7.0 in optibelt TT DATA: Send belt drive identification and set values to TT DATA software

Advantages of optibelt TT RFID

- Integrated optibelt TT RFID Reader loads belt drive data directly from the machine: RFID LABEL with data set
- RFID database administration on optibelt TT RFID or, more comfortable on PC: optibelt TT DATA/RFID software
- RFID LABEL data in- and output with optibelt TT RFID or with PC: optional USB RFID Reader Dongle
- RFID LABEL with free print area for address data of machine and user; adhesive backside, on paper rolls
- Print and data input of RFID LABEL with RFID printer: Data e-mailing, RFID LABEL by post
- Easy mounting of RFID LABEL on the machine: 6 mm thick, adhesive and screwable RFID PLATE

Follow soon!

DESIGN HINTS

DETERMINING THE STATIC SHAFT LOADING / SHAFT LOADING UNDER DYNAMIC CONDITIONS

In order to prevent premature bearing failure, shaft fracture or over engineered bearings and shafts, it is recommended that the dynamic axial force be calculated exactly. This is the only way to determine the stresses to which these components are exposed in the prime mover and driven machines.

In the case of two pulley drives, the driver and driven shafts or bearings are subject to the same dynamic axial force, but in opposite directions.

When tension or guide pulleys are incorporated, the magnitude and direction of the axial force are almost always different on each pulley. If the magnitude and direction of the dynamic axial force is to be determined, a graphical solution using the force parallelogram for the dynamic forces in the tight side S₁ and slack side S₂ is recommended. If only the magnitude of the dynamic axial force is to be determined, this can be achieved using the formula "Sadyn". Both methods are illustrated by the following example.

Details of the calculation example given on pages 22 to 24:

$$P_B = 23.4 \text{ kW}$$

$$c_1 = 1.0$$

$$v = 16.6 \text{ m/s}$$

$$c_1 = 1.0$$

 $\beta = 175^{\circ}$

Dynamic tight side loading during belt operation

$$S_1 \approx \frac{1030 \cdot P_B}{c_1 \cdot v}$$

$$S_1 \approx \frac{1030 \cdot 23.4}{1.0 \cdot 16.6} \approx 1452 \text{ N}$$

Dynamic slack side loading during belt operation

$$S_2 \approx \frac{1000 \cdot (1.03 - c_1) \cdot P_B}{c_1 \cdot v}$$

$$S_2 \approx \frac{1000 \cdot (1.03 - 1.0) \cdot 23.4}{1.0 \cdot 16.6} \approx 42 \text{ N}$$

A) Solution Using the Formula for Sadvn

Dynamic axial force

$$S_{a \, dyn} \approx \sqrt{S_1^2 + S_2^2 - 2 \, S_1 \cdot S_2 \cdot \cos \beta}$$

$$S_{a \text{ dyn}} \approx \sqrt{1452^2 + 42^2 - 2 \cdot 1452 \cdot 42 \cdot (-0.99619)} \approx 1494 \text{ N}$$

B) Graphical Solution

DESIGN HINTS

LENGTH TOLERANCES - INSTALLATION AND MAINTENANCE -**TO ISO 9982**

Table 20: Length Tolerances

	Profile PH	Profile PJ	Profile PK	Profile PL	Profile PM
Effective length L _b [mm]	Tolerance [mm]	Tolerance [mm]	Tolerance [mm]	Tolerance [mm]	Tolerance [mm]
> 200 ≤ 500	+ 4 - 8	+ 4 - 8	+ 4 - 8		
> 500 ≤ 750	+ 5 - 10	+ 5 - 10	+ 5 - 10		
> 750 ≤ 1000	+ 6 - 12	+ 6 - 12	+ 6 - 12	+ 6 - 12	
> 1000 ≤ 1500	+ 8 - 16	+ 8 - 16	+ 8 - 16	+ 8 - 16	
> 1500 ≤ 2000	+ 10 - 20	+ 10 - 20	+ 10 - 20	+ 10 - 20	
> 2000 ≤ 3000	+ 12 - 24				
> 3000 ≤ 4000				+ 15 - 30	+ 15 - 30
> 4000 ≤ 6000				+ 20 - 40	+ 20 - 40

Installation and Maintenance

Geometrically correct designing and power rating of drives with optibelt RB ribbed belts ensures long belt life and a high degree of operating safety.

Since practice has shown that premature failure can very often be traced to faulty installation or maintenance, we recommend that you follow the installation and maintenance instructions listed below.

Safety

Before commencing any maintenance work, ensure that all machine components are safely positioned and cannot be altered whilst the work is in progress. It is also important that the manufacturer's safety instructions are carefully followed.

Pulleys

The grooves must be in good condition, free from scoring, sharp edges or rust and all dimensions should conform to the relevant standard.

Alignment

Shafts and pulleys should be correctly aligned prior to belt

We recommend a maximum tolerance of 0.5° in both planes.

Installation of ribbed belts

The centre distance should be reduced prior to the installation of ribbed belts so that they may be fitted in the grooves without undue force. Forcing ribbed belts over the pulley flanges with a tyre lever, screwdriver or the like, must be avoided as the damage this causes to the ribs and low-stretch tension members is often not visible.

Ribbed belt tension

Once the calculated axial force has been applied, the tension of the ribbed belts should be checked using our tension gauges and the methods described on pages 48 to 51. The belt should be observed regularly during the first few hours of service. Experience has shown that the belt will need retensioning after between 0.5 and 4 hours at full load to take up the initial belt stretch.

• Tension/guide idlers

Where possible, the use of tension and guide idlers should be avoided. If this is not possible, refer to the notes on pages 33 to 34 of this manual and follow any instructions given.

Maintenance

It is recommended that ribbed belt drives should be regularly inspected. This should include checking and, if necessary, correcting the tension.

Suitable guards must be provided to prevent the intrusion of foreign bodies such as stones, swarf or other material between the pulley and the belt.

optibelt RB ribbed belts do not require any special care. Belt dressing (belt wax and spray) should not be used under any circumstances.

DESIGN HINTS RIBBED BELT WIDTHS

Table 21

Number	Profile PH	Profile PJ	Profile PK	Profile PL	Profile PM
of ribs z	[mm]	[mm]	[mm]	[mm]	[mm]

Ribbed belts with more than 30 ribs should be divided. A space of one rib should be maintained between two ribbed belts.

DESIGN HINTS PROBLEMS - CAUSES - REMEDIES

Problem	Causes	Remedies
Excessive wear of ribs	Belt tension too low Ingress of foreign body during running Pulley misalignment Faulty pulleys Wrong belt or pulley profile	Check belt tension and correct Fit an effective guard Re-align pulleys Re-machine or replace pulleys Belt and pulley profiles must be correctly matched
Ribbed belt breakage shortly after fitting (belt torn)	Belt rubbing or catching on protruding parts Drive stalled Drive overloaded Contamination with oil, grease or chemicals	Remove any parts that are in the way; re-align drive Ascertain cause and put it right Check drive conditions and re-dimension Protect drive from environmental influences
Rib breakage and cracks (brittleness)	Outside idler pulley in use whose position and size is not as recommended Pulley diameter too small Excessive exposure to heat Excessive exposure to cold Abnormal belt slip Chemical influences	Follow Optibelt recommendations, e.g. increase pulley size; replace with inside idler on the slack side of the drive Re-design using recommended minimum pulley diameters Remove or shield from heat source; ensure good ventilation Warm belt before start up Retension drive according to installation instructions; check drive design and modify if necessary Shield drive

DESIGN HINTS PROBLEMS - CAUSES - REMEDIES

Problem	Causes	Remedies
Severe belt vibration	Drive undersized	Check drive design and modify if necessary
	Drive centre distance significantly longer than recommended	Shorten centres, use an inside idler on the belt slack side
	High shock loading	Use an inside idler on the slack side
	Belt tension too low	Correct belt tension
	Unbalanced pulleys	Balance pulleys
Ribbed belts cannot be retensioned	Insufficient allowance for centre distance in drive design	Modify drive to allow for the Optibelt recommended take-up
	Excessive stretch caused by overloaded drive	Carry out drive calculation and re-design
	Incorrect belt length	Use a shorter belt
Excessive running noise	Poor pulley alignment	Align pulleys
	Belt tension too low or too high	Check belt tension
	Drive overloaded	Check drive design and modify if necessary
Ribbed belt swelling and softening	Contamination with oil, grease or chemicals	Protect drive from source of contamination
CONTRACTOR		Clean pulleys with cleaning solvent or benzene before fitting new ribbed belts!

Please contact our Applications Engineering Department in the case of other faults. Please give us as much technical information as possible to assist us with replying to your query.

DESIGN HINTS ADDITIONAL RANGE

optibelt TT FREQUENCY METER

Optibelt presents the new generation of TT frequency meter - indispensable for quickly and accurately determining the correct drive belt tension. Now even easier to use and with additional data processing options.

Advantages

- Measuring range from 1 Hz to 600 Hz
- No interference in loud and bright environments
- Display of the last measurement value
- Chargeable via USB

optibelt LASER POINTER II

An indispensable aid for belt drives The user-friendly optibelt LASER POINTER II is a device of proven value, especially for everyday use. The optibelt LASER POINTER II makes it easier to align belt drives. It also helps to determine the most common causes of drive failures:

- Axial misalignment of the pulley
- Horizontal angular misalignment
- Vertical angular misalignment

OPTIBELT PULLEY GROOVE GAUGES

Belts and pulleys can be quickly and effortlessly identified with these groove gauges. They also enable pulley groove edges to be tested for angular deviation and wear.

DATA SHEET FOR DRIVE CALCULATION/CHECKING

For trials For pilot series For production se	ries	New drive Existing drive Requirement	belts/year		de; town) tive length Profile	Date Email Number of ribs	Manufacturer
Prime Mover				Driven Machi	ne		
Type (e.g. electric mot	or, diesel engine 3 cyl.)			Type (e.g. lathe, com	pressor)		
_	oad (e.g. starting load = 1.8			Start:	loaded	LJ UI	nloaded
	g (e.g. star delta)			Niction of Leads			Luru -
	per day p	er hour	per day	Nature of load:	constant shock	P	ulsating L
	======================================		per hour		SHOCK		
	al P		•	Load:	P normal		kW
	mal						
				or max. torque_			
Speed of driver p	oulley n ₁		r <u>pm</u>	Speed of driven	pulley n ₂		rpm
Position of shafts:	horizontal		vertical		n _{2 min}		rpm
	angled	<)					· ·
	d static shaft loading		N		able static shaft lo		^
	le diameter of driver	pulley:		_	de diameter of dri	ven pulley:	
ž. ———				D2			
	b _{2 max}				1 b _{2 max}		
	Speed ratio			i _{min}	i _{max}		
	Drive centre dista			a _{min}		mm	
	Tension/guide id			in drive slack sig			
	. 0	outside		in drive tight sid	le 🗌		
	d _b	mm ribbed	pulley	moveable	(e.g. spring	loaded)	
	d _a		•	fixed			
	Drive Conditio	ns: Ambient tem	perature			°C/F min.	
		_				•	
		Exposure					
			water				
			acid		emperature)		
			dust L	(type)			

Special conditions: Where the drive has inside or outside idler pulleys, three or more driven pulleys or counter-rotating shafts then a drawing or any other relevant information should be submitted.

Drive Details:		

NOTES	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

NOTES

NOTES	

Owner of any and all copyrights and intellectual property rights as well as other rights of use and exploitation:

Arntz Optibelt Group, Höxter/Germany.

Any use, exploitation, reproduction, and any transfer to third parties by any means shall require the prior written approval of the Arntz Optibelt Group, Höxter/Germany.

Print: 0616

Optibelt GmbH

Corveyer Allee 15 37671 Höxter GERMANY **T** +49 (0) 5271-621 **F** +49 (0) 5271-976200

E info@optibelt.com

