

Les équations du second degré et discriminant

Les équations du second de gré avec le discriminant dans un cours de maths en 1ère S avec les différentes formules pour résoudre l'équation.

I.Fonction polynôme du second degré

1.Généralités

Définition:

Toute fonction f définie sur \mathbb{R} par $f(x)=ax^2+bx+c$ avec a,b,c trois nombres réels tel que a soit non nul est appelée **fonction polynôme du second degré** ou, simplement, **trinôme**.

2.Forme canonique

Théorème:

Tout fonction f du second degré définie sur \mathbb{R} par $f(x)=ax^2+bx+c$ avec a,b,c trois nombres réels tel que a soit non nul peut s'écrire de **façon unique** sous la forme $f(x)=a(x-a_0)^2+\beta$.

Cette forme est appelée la **forme canonique** du trinôme.

La courbe représentative de f est appelée la parabole et son équation est $y=ax^2+bx+c$.

Exemple:

Déterminer la forme canonique de la fonction suivante :

$$f(x) = 2x^{2}-4x+8$$

$$f(x) = 2(x^{2}-2x+4)$$

$$f(x) = 2[(x-1)^{2}-1+4]$$

$$f(x) = 2[(x-1)^{2}+3]$$

$$f(x) = 2(x-1)^{2}+6$$

Propriété:

Une parabole de sommet $S(\alpha_{111}\beta_{11})$ est symétrique par rapport à la droite d'équation $x=\alpha$.

3. Sens de variation d'une fonction

Propriété:

Soit f une fonction du second degré dont la forme canonique est $f(x) = a(x - \alpha_1)^2 + \beta$.

Le sens de variation de f dépend du signe du nombre a.

Vocabulaire:

- Si a>0, f admet un **minimum** en x=a égal à b que l'on peut traduire par "le sommet de la parabole est en bas" ou par "**f est convexe**".
- Si a<0, f admet un **maximum** en x=a égal à b que l'on peut traduire par "le sommet de la parabole est en haut" ou par "**f est concave**".

II.les équation du second degré et trinôme

1. Résolution d'équations du second degré

Définition : équation du second degré.

Une **équation du second degré** est une équation du type $ax^2+bx+c=0$ avec a,b,c trois nombres réels tel que a soit non nul.

Définition: discriminant.

 $\Delta_i = b^2 - 4a\varepsilon$ est le discriminant du trinôme du second degré $ax^2 + bx + \varepsilon$.

Vocabulaire:

On appelle **racine** du trinôme du second degré ax^2+bx+c les solutions de l'équation $ax^2+bx+c=0$.

Les solutions de l'équation $f(x)=ax^2+bx+c=0$ sont appelées **racines ou zéros** de la fonction f.

Théorème:

Le nombre de solutions de l'équation du second degré $ax^2+bx+c=0$ dépend du signe de \triangle .

Résolution d'une équation du second degré

Calcul de Δ :

$$\Delta = b^2 - 4ac$$

Déduction de l'ensemble des solutions de l'équation :

En fonction de la valeur de Δ , nous avons 3 cas distincts :

Si $\Delta > 0$:

L'équation admet deux solutions dans R :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$

$$x_2 = \frac{-b - \sqrt{\Delta}}{2a}$$

Si $\Delta = 0$:

L'équation admet une unique solution dans R :

$$x = \frac{-b}{2a}$$

 $Si \Delta < 0$:

L'équation admet deux solutions dans C :

$$x_1 = \frac{-b - i\sqrt{-\Delta}}{2a}$$

2.Le signe du trinôme

	Solutions de l'équation $ax^2 + bx + c = 0$	Signe de $P(x) = ax^2 + bx + c$	Factorisation de $P(x) = ax^2 + bx + c$
Δ> 0	Deux solutions distinctes $x_1 = \frac{-b + \sqrt{\Delta}}{2a} \text{ et } x_2$ $= \frac{-b - \sqrt{\Delta}}{2a}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$P(x) = a(x - x_1)(x - x_2)$
Δ= 0	Une solution double $x_3 = -\frac{b}{2a}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$P(x) = a(x - x_3)^2$
Δ< 0	Pas de solution	$ \begin{array}{ c c c c c }\hline x & -\infty & +\infty \\\hline P(x) & \text{signe de } a \\\hline \end{array} $	Pas de factorisation possible