Introducción a los Sistemas Operativos

Introducción - I

Profesores:

Lía Molinari Juan Pablo Pérez Macia Nicolás

I.S.O.

✓ Versión: Marzo 2013

☑Palabras Claves: Sistemas Operativos, Harware, Interrupciones, Registros

Algunas diapositivas han sido extraídas de las ofrecidas para docentes desde el libro de Stallings (Sistemas Operativos) y el de Silberschatz (Operating Systems Concepts)

¿Qué es un Sistema Operativo?

Sistema Operativo

☑Es software:

✓ necesita procesador y memoria para ejecutarse

☑ Dos perspectivas

- ✓ de arriba hacia abajo
- ✓ de abajo hacia arriba

Perspectiva de arriba hacia abajo

- ☑ Abstracción con respecto a la arquitectura
- ☑El SO "oculta" el HW y presenta a los programas abstracciones más simples de manejar.
- ✓ Arquitectura: conjunto de instrucciones, organización de memoria, E/S, estructura de bus)
- ✓ Los programas de aplicación son los "clientes" del SO.
- ☑ Comparación: uso de escritorio y uso de comandos de texto
- ☑ Comodidad, "amigabilidad" (friendliness)

Perspectiva de abajo hacia arriba

- ☑ Visión del SO como un administrador de recursos
- ✓ Administra los recursos de HW de uno o más procesadores
- ☑ Provee un conjunto de servicios a los usuarios del sistema
- ✓ Maneja la memoria secundaria y dispositivos de I/O.
- ☑ Ejecución simultánea de programas
- ✓ Multiplexación en tiempo (CPU) y en espacio (memoria)

Elementos Básicos de una computadora

- ✓ Procesador
- ☑ Memoria Principal
 - ✓ Volátil
 - ✓ Se refiere como memoria real o primaria
- ☑ Componentes de I/O
 - ✓ Dispositivos de memoria secundaria
 - ✓ Equipamiento de comunicación
 - √ terminales
- **☑** Bus Sistema
 - ✓ comunicación entre procesadores, memoria, dispositivos de I/O

Componentes de alto nivel

Registros del Procesador

- ✓ Visibles por el usuario
 - ✓ Registros que pueden ser usados por las aplicaciones
- ✓ De Control y estado
 - ✓ Para control operativo del procesador
 - ✓ Usados por rutinas privilegiadas del SO para controlar la ejecución de programas

Registros Visibles por el usuario

- ✓ Pueden ser referenciados por lenguaje de máquina
- ☑ Disponible para programas/aplicaciones
- - ✓ Datos
 - ✓ Direcciones
 - Index
 - Segment pointer
 - Stack pointer

Registros de Control y Estado

- ✓ Program Counter (PC)
 - ✓ Contiene la dirección de la proxima instrucción a ser ejecutada
- ☑ Instruction Register (IR)
 - ✓ Contiene la instrucción a ser ejecutada
- ✓ Program Status Word (PSW)
 - ✓ Contiene códigos de resultado de operaciones
 - √ habilita/deshabilita Interrupciones
 - ✓ Indica el modo de ejecución (Supervisor/user)

Ejecución de Instrucción

☑Dos pasos

- ✓ Procesador lee la instrucción desde la memoria
- ✓ Procesador ejecuta la instrucción

Ciclo Instrucción

Instrucción: Fetch y Execute

☑El procesador busca (fetch) la instrucción en la memoria

$$-(PC) \rightarrow IR$$

☑El PC se incrementa después de cada fetch

$$-PC = PC + 4$$

Instruction Register

- ☑ La instrucción referenciada por el PC se almacena en el IR y se ejecuta
- ☑ Categorías de instrucciones
 - ✓ Procesador-memoria
 - Transfiere datos entre procesador y memoria
 - ✓ Procesador-I/O
 - Transfiere datos a/o desde periféricos
 - ✓ Procesamiento de Datos
 - Operaciones aritméticas o lógicas sobre datos
 - ✓ Control
 - Alterar secuencia de ejecución

Características de una máquina hipotética

Ejemplo de una ejecución de programa

Figure 1.4 Example of Program Execution (contents of memory and registers in hexadecimal)

Interrupciones

- ☑Interrumpen el secuenciamiento del procesador en la ejecución de un proceso
- ☑Dispositivos de I/O más lentos que el procesador
 - ✓ Procesador debe esperar al dispositivo

Clases de Interrupciónes

Table 1.1 Classes of Interrupts

ne condition that occurs as a result of an	erated by some condition that occurs as a result of an instruction	Generated by	Program
--	--	--------------	---------

execution, such as arithmetic overflow, division by zero, attempt to execute an illegal machine instruction, and reference outside a user's allowed

an illegal machine instruction, and reference outside a user's allowed

memory space.

Timer Generated by a timer within the processor. This allows the operating system

to perform certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an operation

or to signal a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

Flujo de control SIN interrupciones

Flujo de control CON interrupciones

Interrupt Handler

- ☑Programa (o rutina) que atiende una determinada interrupción
 - ✓Por ejemplo, para un dispositivo particular de I/O
- ☑Generalemente es parte del SO

Interrupciones

✓ Suspende la secuencia normal de ejecución

Ciclo de interrupción

Ciclo de interrupción

- ☑El procesador chequea la existencia de interrupciones.
- ☑Si no existen interrupciones, la proxima instrucción del programa es ejecutada
- ☑Si hay pendiente alguna interrupción, se suspende la ejecución del progama actual y se ejecuta la rutina de manejo de interrupciones.

Simple Interrupt Processing

Multiples Interrupciones

☑ Deshabilitar las interrupciones mientras una interrupción está siendo procesada.

Multiples Interrupciones

☑ Definir prioridades a las interrupciones

Multiples Interrupciones

Figure 1.13 Example Time Sequence of Multiple Interrupts

Direct Memory Access (DMA)

- ☑El intercambio de I/O ocurre directamente con la memoria
- ☑El procesador le da autoridad al dispositivo de I/O para leer o escribir a memoria
- ☑Releva al procesador de la responsabilidad del intercambio

