Mathematical Operations

- Base 10: our native base.
- Glyphs: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
- The algorithms to evaluate various functions are the same, regardless of base
- On a computer, we are limited to a certain number of digits.
- We can summarize our results: 0 == FALSE, 1 == TRUE
 - For unsigned operations:
 - the final value is Zero (Z)
 - the calculation resulted in final carry (C)
 - For signed values
 - the final value is Negative (S)
 - the calculation resulted in an overflow (V)

Addition: (Before)

- First, introduce some status values:
 - Zero, Carry, (Sign, Overflow)
- Assume a word size of 4
- Notice the notation of "to carry" a value

<u> </u>		

C Z

Addition: (After)

- First, introduce some status values:
 - Zero, Carry, (Sign, Overflow)
- Assume a word size of 4
- Notice the notation of "to carry" a value

Subtraction (before)

- 3757 1963 = 1794
- Traditional Method:
 - Notice the notation of "to borrow" a value

- Other Methods: (common core)
 - Left → Right (Mental Math)
 - Singapore (No Borrow)
 - Counting Up (Giving Change)
- Via Method of Complements

Subtraction (after)

- 3757 1963 = 1794
- Traditional Method:
 - Notice the notation of "to borrow" a value

- Other Methods: (common core)
 - Left → Right (Mental Math)
 - Singapore (No Borrow)
 - Counting Up (Giving Change)
- Via Method of Complements

Method of Complements

- A technique to encode both positive and negative numbers
 - o uses the same algorithm to perform addition, subtraction performed by the addition of complements
- Complement: a thing that completes or brings to perfection: $X + Y = 10^n$ (10...0)
- Radix 10:
 - 10's complement

$$7 + x = 10$$

$$=$$
 46 + y = 100

$$x = 3$$

$$y = 54$$

o 9's complement

$$a = 2$$

$$b = 53$$

<u>9's compleme</u>	
45	33
+ 88 +	1
4 33	34

Algorithm: Subtraction via 9's Complements

- Example: $873 218 \Rightarrow 0873 0218$
 - 4-digit register:
 - \bullet 10^5 = 10,000
- 1. Take the nines complement of the subtrahend (0218)
 - O With respect to 1 0000
- 2. Add the complement to the minuend (0873)
- 3. Drop the leading "1" (the Carry)
- 4. Add 1

Algorithm: Subtraction via 9's Complements

• Example: $873 - 218 \Rightarrow 0873 - 0218$

- 2. Add the complement to the minuend (0873)
- 3. Drop the leading "1"
- 4. Add 1
- Optimization: introduce initial carry in

5

Algorithm: Subtraction via 10's Complements

• Example: $13 - 9 \Rightarrow 0013 - 0009$

0

- 1. Take the 10s complement of the subtrahend (0009) -
- 2. Add the complement to the minuend
- 3. Drop the leading "1".
- Optimization: Addition of adding one is baked in!