T.D. III - Intégrale sur un segment

I - Calculs d'intégrales par primitives

Exercice 1. (Fonctions polynomiales, 📽) Déterminer des primitives des fonctions suivantes puis calculer la valeur de l'intégrale :

1.
$$x^2 + x + 1$$
.
$$\int_{1}^{2} (x^2 + x + 1) \, \mathrm{d}x$$

2.
$$2x^3 + 4x + 2$$
.
$$\int_0^2 (2x^3 + 4x + 2) \, dx.$$

3.
$$4x^3 + 2x^2 - 1$$
.
$$\int_{-2}^{2} (4x^3 + 2x^2 - 1) \, dx$$

1.
$$x^2 + x + 1$$
.

$$\int_{1}^{2} (x^2 + x + 1) dx.$$
2. $2x^3 + 4x + 2$.

$$\int_{0}^{2} (2x^3 + 4x + 2) dx.$$
3. $4x^3 + 2x^2 - 1$.

$$\int_{1}^{2} (4x^3 + 2x^2 - 1) dx.$$
4. $x^{10} + \frac{1}{5}x^4 + \frac{1}{2}$.

$$\int_{0}^{1} \left(x^{10} + \frac{1}{5}x^4 + \frac{1}{2}\right) dx.$$

Exercice 2. (Fonctions puissances, 🌣) Déterminer des primitives des fonctions suivantes puis calculer la valeur de l'intégrale :

$$\int_0^1 x^{3/2} \, \mathrm{d}x$$

$$\begin{array}{ccc}
\mathbf{2.} & \frac{1}{\sqrt{x}}. \\
\int_0^1 \frac{1}{\sqrt{x}} \, \mathrm{d}x.
\end{array}$$

$$\int_{1}^{2} \frac{1}{3x^{2}} \, \mathrm{d}x$$

5.
$$(2x+1)(x^2+x)^5$$
.
$$\int_{-1}^{0} (2x+1)(x^2+x)^5 dx$$

Exercice 3. (Logarithmes & Exponentielles, 🗫

$$\int_{1}^{2} \frac{3}{x} \, \mathrm{d}x.$$

$$\begin{array}{c|c}
2. & \frac{3x^2 + 4x}{x^3 + 2x^2 + 1}. \\
\int_{1}^{2} & \frac{3x^2 + 4x}{x^3 + 2x^2 + 1} \, dx.
\end{array}$$

$$\int_{-2}^{2} e^{2x} dx.$$

$$\mathbf{4.} \quad \frac{1}{e^{12x}}.$$

$$\int_{-2}^{2} \frac{1}{e^{12x}} dx.$$

5.
$$(e^x + 1)(e^x + x)^{22}$$
.
$$\int_0^1 (e^x + 1)(e^x + x)^{22} dx$$
.

$$\mathbf{6.} \quad \frac{e^x + 1}{e^x + x}.$$

$$\int_0^1 \frac{e^x + 1}{e^x + x} \, \mathrm{d}x.$$

Exercice 4. (Calculs d'intégrales, 🗱) Calculer les valeurs des intégrales suivantes:

2.
$$\int_{-2}^{1} e^{3x} dx$$
.

3.
$$\int_{1}^{-1} e^{3} dx$$
.

4.
$$\int_{0}^{1} \frac{1}{x} dx$$
.

5.
$$\int_0^1 2 e^x + 3x^2 dx$$
.

Exercice 5. Soit $A \ge 1$. Déterminer $\int_{-x}^{A} \frac{\ln(x)}{x} dx$.

II - Fonctions définies par morceaux

Exercice 6. (Loi uniforme) Soit f la fonction définie par f(x) = 0 si $x \notin [1,3]$ et $f(x) = \frac{1}{2}$ sinon.

- 1. Représenter graphiquement la fonction f.
- 2. Déterminer les intégrales suivantes :

a)
$$\int_{-2}^{0} f(x) \, \mathrm{d}x$$
.

b)
$$\int_{-1}^{3/2} f(x) \, \mathrm{d}x$$
.

c)
$$\int_{-1}^{2} f(x) \, \mathrm{d}x$$
.

6

d)
$$\int_{-4}^{3} f(x) \, \mathrm{d}x$$
.

e)
$$\int_{-5}^{10} f(x) \, \mathrm{d}x$$
.

3. Si $x \in [1,3]$, déterminer $\int_1^x f(t) dt$.

Exercice 7. (Loi exponentielle) Soit f la fonction définie par f(x) = 0 si x < 0 et $f(x) = 2e^{-2x}$ sinon.

- 1. Représenter graphiquement la fonction f.
- 2. Déterminer les intégrales suivantes :

a)
$$\int_{-2}^{0} f(x) \, \mathrm{d}x.$$

d)
$$\int_{-4}^{3} f(x) dx$$
.

b)
$$\int_{-1}^{3/2} f(x) \, \mathrm{d}x$$
.

e)
$$\int_{-5}^{10} f(x) \, \mathrm{d}x$$

c)
$$\int_{-1}^{2} f(x) \, dx$$
.

3. Si
$$x \ge 0$$
, déterminer $\int_0^x f(t) dt$ et en déduire $\lim_{x \to +\infty} \int_0^x f(t) dt$.

Exercice 8. (
$$\mathscr{E}$$
) Calculer $\int_{-1}^{5} |x-2| dx$.

III - Linéarité de l'intégrale

Exercice 9. (\$\omega_b^a)

- **1.** Montrer que pour tout $t \in [0,1], \frac{t}{1+t} = 1 \frac{1}{1+t}$
- **2.** En déduire la valeur de $\int_0^1 \frac{t}{1+t} dt$.

Exercice 10. (C) Pour tout $n \ge 1$, on pose $I_n = \int_0^1 \frac{t^n}{1+t} dt$. Montrer que $I_{n+1} + I_n = \frac{1}{n+1}$.

Exercice 11. () Soit $I = \int_0^1 \frac{1}{1+x} dx$ et $J = \int_0^1 \frac{x}{1+x} dx$.

- 1. Calculer I.
- **2.** Calculer I + J.
- **3.** En déduire la valeur de J.

Exercice 12. (4) Soit $I = \int_0^1 \frac{x}{1+x^2} dx$ et $J = \int_0^1 \frac{x^3}{1+x^2} dx$.

- **1.** Calculer I.
- **2.** Calculer I + J.
- **3.** En déduire la valeur de J.

IV - Dérivation par rapport aux bornes

Exercice 13. (\mathscr{F}) Montrer que $F(x) = \int_3^x (t^2 - 2t + 1) dt$ est croissante.

Exercice 14. Soit f la fonction définie pour tout $x \ge 1$ par $f(x) = \int_1^x \frac{e^t}{t} dt$.

- 1. Déterminer la dérivée f' de f.
- **2.** En déduire l'équation de la tangente à la courbe représentative de f au point d'abscisse 1.
- **3.** Déterminer la dérivée seconde f'' de f.

V - Inégalités

Exercice 15. Soit g la fonction définie pour tout $x \ge 1$ par $g(x) = \frac{e^x}{r^3}$.

- 1. Déterminer la dérivée g' de g.
- 2. En déduire le tableau de variations de g.
- **3.** En déduire l'encadrement : $0 \leqslant \int_1^3 g(t) dt \leqslant 2 e$.

Exercice 16. Soit f la fonction définie pour tout $x \ge 1$ par $f(x) = \int_1^x \frac{e^t}{t} dt$.

- **1.** Minorer $\frac{1}{t}$ pour tout $t \in [1, x]$ et en déduire que $f(x) \geqslant \frac{e^x e}{x}$.
- **2.** En déduire $\lim_{x\to+\infty} f(x)$.

Exercice 17. (\mathscr{D}) Pour tout n entier naturel, on pose $u_n = \int_{-1}^{1/2} \frac{x^n}{1 - x^2} \, \mathrm{d}x.$

- 1. Montrer que la suite (u_n) est décroissante.
- **2.** Montrer que (u_n) est minorée par 0.
- **3.** En minorant $1-x^2$, montrer que $u_n \leqslant \frac{4}{3(n+1)} \left(\frac{1}{2}\right)^{n+1}$.
- **4.** En déduire la limite de la suite (u_n) .

Exercice 18. (\mathfrak{P}) Pour tout n entier naturel non nul, on pose $I_n = \int_{\mathbb{R}} \ln(1+x^n) \, \mathrm{d}x.$

- **1.** Montrer que, pour tout n entier naturel non nul, $0 \le I_n \le \ln(2)$.
- **2.** Étudier les variations de la suite (I_n) .
- **3.** En déduire que la suite (I_n) converge.

VI - Intégrations par parties

Exercice 19. (4) À l'aide d'une intégration par parties, calculer les intégrales suivantes :

1.
$$\int_0^1 x e^x dx$$
.

4.
$$\int_0^1 x^2 e^x dx$$
.

2.
$$\int_{1}^{2} x e^{2x} dx$$
.

4.
$$\int_0^1 x^2 e^x dx$$
.
5. $\int_1^2 x^2 \ln(x) dx$.

$$3. \int_1^e x \ln(x) \, \mathrm{d}x.$$

6.
$$\int_{1}^{e} (\ln(t))^2 dt$$
.

Exercice 20. Soit $A \ge 1$. À l'aide d'une intégration par parties, déterminer $\int_{1}^{A} \frac{\ln(x)}{r^2} dx$.

Exercice 21. Soit f la fonction définie pour tout $x \ge 1$ par $f(x) = \int_{1}^{x} \frac{e^{t}}{t} dt.$

1. À l'aide d'une intégration par parties, montrer que

$$f(x) = \frac{e^x}{x} - e + \int_1^x \frac{e^t}{t^2} dt.$$

2. À l'aide d'une seconde intégration par parties, montrer que

$$f(x) = \frac{e^x}{x} + \frac{e^x}{x^2} - 2e + 2\int_1^x \frac{e^t}{t^3} dt.$$

Exercice 22. (\mathscr{D}) Pour tout n entier naturel, on pose $u_n = \int_0^1 (1-t)^n e^t dt.$

- **1.** Calculer u_0 .
- 2. Montrer que $f(t) = (2-t)e^t$ est une primitive de la fonction $q(t) = (1 - t) e^{t}$.
- **3.** Déterminer la valeur de u_1 .
- **4.** À l'aide d'une intégration par parties, montrer que, pour tout n entier naturel, $u_{n+1} = (n+1)u_n - 1$.
- 5. Montrer que la suite (u_n) converge et déterminer sa limite.
- **6.** Déterminer la limite de (nu_n) .

Exercice 23. (\mathfrak{P}) Pour tout n entier naturel non nul, on pose $u_n = \int_{-\infty}^{\infty} t(\ln(t))^n dt.$

- **1.** Calculer u_0 .
- **2. a)** Montrer que, pour tout $t \in [1, e], 0 \le \ln(t) \le 1$.
 - **b)** En déduire que la suite (u_n) est décroissante.
- 3. En utilisant une intégration par parties, montrer que pour tout nentier naturel, $u_{n+1} = \frac{e^2}{2} - \frac{n+1}{2}u_n$.
- **4.** En déduire u_1 , u_2 et u_3 .