NOIP模拟

题目名称	大数定理	中心极限定理	散步	买宝石
题目类型	传统题	传统题	传统题	传统题
输入文件名	largenumber.in	centrallimit.in	walk.in	gem.in
输出文件名	largenumber.out	centrallimit.out	walk.out	gem.out
时间限制	1.5s	1s	2s	2s
空间限制	1024m	1024m	1024m	1024m
测试点数目	10	10	20	20
子任务	否	否	是	否

大数定理 (largenumber)

1.5s/1024m

题目描述

小白最近学习了大数定律。

她捡到了一个长度为 n (保证 n 是奇数)的序列。小白想通过若干次删除操作使序列长度为一,其中操作形如"选择一个非开头结尾的位置,删去左右侧两个位置上的数"。小白想要最大化她选择的数的最小值,请你告诉她这个值是什么。

输入格式

请注意, 本题输入数据较大, 请使用快速的读入方式。

第一行一个正整数 n。

第二行一个长度为n的正整数序列。

输出格式

一行一个正整数表示答案。

输入样例

```
1  | 4
2  | 7
3  | 5  | 7  | 4  | 2  | 3  | 1  | 6
4  | 3
5  | 100  | 1  | 100
6  | 5
7  | 1  | 2  | 3  | 4  | 5
8  | 9
9  | 5  | 4  | 3  | 2  | 1  | 2  | 3  | 4  | 5
```

输出样例

```
      1
      3

      2
      1

      3
      3

      4
      3
```

数据范围

再次强调,本题输入数据较大,请使用快速的读入方式。

对于所有测试点, $2\leqslant n\leqslant 2\times 10^6, T\leqslant 4$,保证所有输入数据都是在 $[1,10^9]$ 内的正整数,保证 n 是奇数。

数据点编号	$n \leqslant$	特殊性质
1	5	
2	7	
3	20	
4	100	
5	1000	
$6\sim7$	10^5	有
8	10^5	
$9\sim 10$		

特殊性质:保证序列存在一个位置 p,使得所有的 i < p 都满足 $a_i \leqslant a_{i+1}$,所有的 i > p 都满足 $a_i \leqslant a_{i-1}$ 。

中心极限定理 (centrallimit)

1s/1024m

题目描述

小白最近学习了中心极限定理。

她有一个 $(n+1) \times (n+1)$ 的棋盘(与平时下象棋的棋盘不同,我们可以将其视作一个普通的网格),其中棋子的坐标可以被表示成两个 [0,n] 之间的非负整数组成的数对。

她在棋盘上摆了很多红马,又掏出一个黑卒,她规定这个黑卒只能向右或者向上走,即从 (x,y) 移动到 (x+1,y) 或者 (x,y+1)。

她想知道,有多少种本质不同的从 (0,0) 到 (n,n) 的移动方案,使得不存在一个时刻,黑卒能被某匹红马攻击到?在行进过程中,黑卒会吃掉经过的所有红马。同时,由于是中国象棋,马会"别马脚",即,如果与马四相邻且与卒对角相邻的格子不是空的,那么该马无法攻击到该卒。

由于答案过大, 你只需要告诉她其除以 998244353 的余数。

输入格式

第一行两个正整数 n, m,表示棋盘大小与红马的数量。

接下来m行,每行两个正整数,表示某个红马的坐标。

输出格式

一行一个非负整数,表示方案数除以998244353的余数。

输入样例1

```
1 | 3 2
2 | 2 0
3 | 1 1
```

'

输出样例1

1 | 1

输入样例2

```
1 2 1
2 2 1
```

输出样例2

1 0

输入样例3

1 | 4 3 2 | 2 0 3 | 0 4 4 | 1 4

输出样例3

1 | 5

数据范围

对于所有测试点, $2\leqslant n\leqslant 1000, 0\leqslant m\leqslant 10000$,保证给定的坐标互不相同。

数据点编号	$n \leqslant$	$m \leqslant$	特殊性质
1	2		
2	4		
$3\sim 4$	10		
$5\sim 6$	100	10	
$7\sim 8$			有
$9\sim 10$			

特殊性质: 所有的马都在边界上,即所有马的坐标 (x,y) 都满足 x=0 或 y=0 或 x=n 或 y=n.

散步 (walk)

2s/1024m

题目描述

有一个简单的无向图,由 n 个节点和 m 条边组成,你在上面行走。

每次你走过一条边时,它就会消失,这意味着它不再存在于这个图上。

你需要一直走,直到你当前所在的节点没有边可走。

你可以选择任何节点作为行走的起始节点,但你需要确保行走动作在节点 t 结束。

你需要报告任何合法的行走路径或报告它不存在。

输入格式

输入包含多组测试用例。

第一行包含一个整数T,表示测试用例的数量。

对于每组测试用例,第一行包含三个整数 $n \times m$ 和 t。

接下来的 m 行每行包含两个整数 u 和 v $(1 \le u, v \le n)$,表示一条无向边。

保证该图是一个简单的无向图。

输出格式

对于每个测试用例,如果存在合法路径,请输出 $k\ p_1\ p_2\dots\ p_k$ 来按顺序表示路径上经过的点。 否则,请输出 -1。

输入样例

```
      1
      3

      2
      6
      7
      5

      3
      1
      2

      4
      1
      4

      5
      1
      5

      6
      2
      3

      7
      2
      5

      8
      3
      5

      9
      3
      6

      10
      1
      0

      11
      3
      2

      12
      1
      2

      13
      2
      3
```

输出样例

```
1 | 5 1 5 2 3 5
2 | 1 1
3 | -1
```

数据范围

保证对于所有数据都有 $\sum n, \sum m \leqslant 10^6$ 。

子任务编号	限制	分值
1	$\sum n, \sum m \leqslant 100, 1 \leqslant n \leqslant 10$	10
2	$\sum n, \sum m \leqslant 200, 1 \leqslant n \leqslant 20$	20
3	$\sum n, \sum m \leqslant 20000, 1 \leqslant n \leqslant 2000$	30
4	$\sum n, \sum m \leqslant 1000000$	40

买宝石 (gem)

2s/1024m

题目描述

小明有一天做梦, 梦见自己来到了松鼠的王国。

松鼠的王国可以看成是一棵n个节点的树,根节点是1号。

每个节点i都有一家卖宝石的商店,会出售一种宝石,一共有 k_i 颗,每颗价格 w_i 。

小明从时间 T 从根节点出发,带着 C 的钱一路向下,走到出口节点 X 就会回到现实世界。

这个过程中,小明可以花钱买宝石,直到花光钱为止。为了带更多的宝石回到现实世界,小明希望自己买的宝石尽量便宜。但是,松鼠们有点懒散,每家宝石的开门时间是不一样的,第i个节点的宝石商店,开门时间是 t_i ,也就是,从 t_i 以后,才能在这个商店买宝石。

但是小明没有更多的时间,他必须在时间 T 快速的沿着最近的路径走到 X,以及在路上购买宝石。

他一共有 Q 次计划,第 i 次计划,是 T_i 时间从根节点出发,带着 C_i 的钱,走到 X_i 以后回到现实世界(这期间时间都停留在 T_i)。

请帮小明算一下,他每次计划里,买到的最贵的宝石的价格是多少,如果一颗宝石都没有买到,则认为 是 0。

输入格式

第一行输入n。

接下来 n 行, 每行三个数字 k_i, w_i, t_i 。

接下来 n-1 行,每行输入 u,v,表示一条树边。

接下来一个数字Q。

接下来 Q 行, 每行三个数字 T_i, C_i, X_i 。

输出格式

输出1行,表示每一次询问的答案。

输入样例

```
      1
      5

      2
      2
      2
      2

      3
      2
      3
      1

      4
      2
      4
      3

      5
      2
      1
      4

      6
      2
      1
      2

      7
      1
      2
      2

      8
      2
      3
      9
      3
      4

      10
      3
      5
      1
      7
      1
      1
      1
      2
      4

      13
      1
      5
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
      4
```

```
      14
      1 2 4

      15
      4 7 4

      16
      4 9 4

      17
      3 13 4

      18
      3 14 4
```

输出样例

1 | 3 3 0 2 3 3 4

数据范围

对于 20% 的数据: $n, Q \leq 1000$ 。

对于另 15% 的数据:保证 $t_i = 1$ 。

对于另 10% 的数据:保证 v = 2u或者v = 2u + 1。

对于另 20% 的数据:保证 v = u + 1。

对于 100% 的数据: $n,Q \leq 10^5, 1 \leq k_i \leq 10^5, 1 \leq t_i, w_i, T_i, X_i \leq n, 1 \leq C_i \leq 10^{15}$ 。