ពិជគណិតលីនេអ៊ែរ

បង្រៀនដោយ លោកគ្រូ ហាំ ការីម December 20, 2021

ជំពូកទី 1

លំហវ៉ិចទ័រ

1.1 រំឭកមេរៀន

ឧទាហរណ៍ 1.1 ប្រមាណវិធី + និង \times ជាប្រមាណវិធីក្នុងលើសំណុំ \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} ឬ \mathbb{C} ។ ដើម្បីផ្លៀងផ្ទាត់សំណើខាងលើយើងយក \mathbb{K} ជាសំណុំណាមួយក្នុងចំណោមសំណុំ ខាងលើ ។ យើងឃើញថាគ្រប់ $a,b \in \mathbb{K}$ យើងបាន

$$a+b\in\mathbb{K}$$
 SH $a imes b\in\mathbb{K}$

ម្យ៉ាងទៀត a+b និង ab ជាជាតុតែមួយគត់ (unique element) ក្នុងសំណុំ $\mathbb K$ ដូចនេះប្រមាណវិធី + និង \times ជាប្រមាណវិធីក្នុងលើសំណុំ $\mathbb N$, $\mathbb Z$, $\mathbb Q$, $\mathbb R$ ឬ $\mathbb C$ ។

ឧទាហរណ៍ 1.2 + និង - មិនមែនជាប្រមាណវិធីក្នុងសំណុំ $\mathbb{Q}^{\mathbb{C}}$ ទេព្រោះប្រមាណវិធី នេះមិនស្ដាប (closed) លើ $\mathbb{Q}^{\mathbb{C}}$ ឡើយ ។ ជាឧទាហរណ៍យើងអាចយក $a=\sqrt{2}\in\mathbb{Q}^{\mathbb{C}}$ និង $b=-\sqrt{2}\in\mathbb{Q}^{\mathbb{C}}$ តែ

$$a + b = \sqrt{2} + (-\sqrt{2}) = 0 \notin \mathbb{Q}^{\mathbb{C}}$$

ហើយ

$$a \times b = \sqrt{2}(-\sqrt{2}) = -2 \notin \mathbb{Q}^{\complement}$$

ដូច្នេះ + និង - មិនមែនជាប្រមាណវិធីក្នុងលើសំណុំ Q^0 ឡើយ ។

ឧទាហរណ៍ 1.3 ផលគុណស្កាលែនៃពីរវ៉ិចទ័រក្នុង \mathbb{R}^n មិនមែនជាប្រមាណវិធីក្នុងលើ \mathbb{R}^n ទេព្រោះបើយើងយក $\mathbf{x}=(x_1,x_2,\ldots,x_n)\in\mathbb{R}^n$ និង $\mathbf{y}=(y_1,y_2,\ldots,y_n)\in\mathbb{R}^n$ ដែល $x_i,y_i\in\mathbb{R}$ យើងតែងតែទទួលបាន

$$\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^{n} x_i y_i \in \mathbb{R}$$

មានន័យថា $\mathbf{x} \cdot \mathbf{y} \notin \mathbb{R}^n$ នោះប្រមាណវិធីនេះមិនស្ដាបលើ \mathbb{R}^n ទេ ។

ឧទាហរណ៍ 1.4 តាង $\mathcal{F}(A,A)$ ជាសំណុំនៃអនុគមន៍ពី A ទៅ A ។ គេកំណត់អនុគមន៍ មួយដែល

$$\circ: \quad \mathcal{F}(A,A) \times \mathcal{F}(A,A) \quad \longrightarrow \quad \mathcal{F}(A,A)$$
$$(f,g) \quad \longmapsto \quad f \circ g$$

ជាប្រមាណវិធីក្នុងលើ $\mathcal{F}(A,A)$ ។

ដើម្បីងាយស្រួលសរសេរយើងតាង $\mathcal{F}:=\mathcal{F}(A,A)$ ។ ដើម្បីបង្ហាញថា \circ ជា ប្រមាណវិធីយើងត្រូវស្រាយឱ្យឃើញ \circ ខ្លួនឯងជាអនុគមន៍ (function) ហើយមាន លក្ខណៈស្ដាបលើ \mathcal{F} ។ ដើម្បីស្រាយថា $\circ\colon \mathcal{F}\times\mathcal{F}\to\mathcal{F}$ ជាអនុគមន៍ យើងយក $(f,g)\in\mathcal{F}\times\mathcal{F}$ ហើយឧបមាថាមាន $a,b\in\mathcal{F}$ ដែល $f\circ g=a$ និង $f\circ g=b$ ។ ដោយយើងកំណត់យក $f\circ g(x)=f(g(x))$ ចំពោះគ្រប់ $x\in A$ នោះយើងបាន

$$a(x) = f(g(x)) = b(x)$$

នោះយើងបាន a=b ។ ដូចនេះ $\circ\colon \mathcal{F}\times\mathcal{F}\to\mathcal{F}$ ជាអនុគមន៍ ។ បន្ទាប់មកយើងស្រាយភាពស្ដាបរបស់ \circ ។ ដោយគ្រប់ $f,g\in\mathcal{F}$ នោះ

$$f \colon A \to A$$
 និង $g \colon A \to A$

នោះយើងបាន $f\circ g(x)=f(g(x))\in A$ គ្រប់ $x\in A$ នោះយើងបាន $f\circ g$ ជា អនុគមន៍ពី A ទៅ A ។