Consecuencias de las ecuaciones de Cauchy-Riemann

2015-02-06 7:00

1 Consecuencias

Condición suficiente para derivabilidad

Teorema

Sea f=u+iv: $U\to\mathbb{C}$ donde U es abierto. Supongamos que u_x,u_y,v_x,v_y existen en U, son continuas en $z_0\in U$, y satisfacen allí las ecuaciones de Cauchy-Riemann, es decir, $u_x(z_0)=v_y(z_0)$ y $v_x(z_0)=-u_y(z_0)$. Entonces f es derivable en z_0 , y $f'(z_0)=u_x(z_0)+iv_x(z_0)$.

Dominios

Definición

Si $D \subseteq \mathbb{C}$ es abierto y conexo, decimos que D es un dominio.

Dominios

Definición

Si $D \subseteq \mathbb{C}$ es abierto y conexo, decimos que D es un dominio.

Lema

Sea $u: D \subseteq \mathbb{C} \to \mathbb{R}$ donde D es un dominio. Si $u_x(z) = u_y(z) = 0$ para todo $z \in D$, entonces u es constante.

Funciones analíticas

Definición

Sea $U \subseteq \mathbb{C}$ un abierto. Si f es derivable en todo $z \in U$, decimos que f es analítica en U.

Funciones analíticas

Definición

Sea $U\subseteq\mathbb{C}$ un abierto. Si f es derivable en todo $z\in U$, decimos que f es analítica en U.

Teorema

Sea f una función analítica en un dominio $D \subseteq \mathbb{C}$. Si f'(z) = 0 para todo $z \in D$, entonces f es constante.

Funciones analíticas

Definición

Sea $U \subseteq \mathbb{C}$ un abierto. Si f es derivable en todo $z \in U$, decimos que f es analítica en U.

Teorema

Sea f una función analítica en un dominio $D \subseteq \mathbb{C}$. Si f'(z) = 0 para todo $z \in D$, entonces f es constante.

Teorema

Sea f = u + iv analítica en un dominio $D \subseteq \mathbb{C}$. Si alguna de las funciones u, v, |f| es constante en D, entonces f es constante en D.

Funciones armónicas

Definición

Sea $u: D \to \mathbb{R}$. El laplaciano de u es

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

La función u es armónica si $\Delta u = 0$

Funciones armónicas

Definición

Sea $u: D \to \mathbb{R}$. El laplaciano de u es

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$$

La función u es armónica si $\Delta u = 0$

Teorema

Sea f = u + iv analítica en un dominio $D \subseteq \mathbb{C}$. Demostraremos más adelante que u, v son funciones de clase C^{∞} . Suponiendo eso, se tiene que u, v son armónicas.