#### 2.1 Introduction to Functions-Reading

Notebook: Discrete Mathematics [CM1020]

**Created:** 2019-10-07 2:31 PM **Updated:** 2019-10-22 5:26 PM

Author: SUKHJIT MANN

Tags: decreasing, Domain, increasing, Injective, invertible, Range, Surjective

**Cornell Notes** 

Topic:

2.1 Introduction to functions-Reading

Course: BSc Computer Science

Class: Discrete Mathematics-

Reading

Date: October 22, 2019

#### **Essential Question:**

What is a function and what are its properties?

## **Questions/Cues:**

- What is a function?
- What is the domain, co-domain, range, image and pre-image of a function?
- How do we the sum and multiplication of two functions?
- How is an image of a subset of a set defined?
- What is a one-to-one function?
- What is an increasing or decreasing function?
- What is an onto function?
- What is a bijective function?
- What is the inverse of a function?

## Notes

- Function = let A and B be nonempty set, function f from A to B is assignment of exactly 1 element of B to each element of A; write f (a) = b if b is unique element of B assigned by function f to element a of A.
  - $\circ~$  If f is function from A to B, write  $f{:}A o B$
  - Functions sometimes also called mappings or transformations
- If function from A to B, A is domain of f and B is co-domain of f; if f (a) = b, b is image of a and a is pre-image of b. Range or image of f is set of all images of elements of A
  - If function f from A to B, say f maps A to B
  - 2 functions equal if have same domain, co-domain and map each elem. of common domain to same elem. in common co-domain
  - function called real-valued if co-domain is set of real numbers; called integervalued if co-domain is set of integers
  - Two real-val or int-valued functions with same domain can added, well as multiplied
- Let  ${f_1}$  and  ${f_2}$  be function A to R =  ${f_1}+{f_2}$  and  ${f_1}{f_2}$  also functions from A to R defined for all  $x\in A$  by:

$$\circ$$
  $(f_1 + f_2)(x) = f_1(x) + f_2(x)$ 

- $\circ$   $(f_1f_2)(x) = f_1(x)f_2(x)$
- For function A to B, image of subset of A = image of S under function f is subset of B that consists of images of elements of S
  - o image of S, f (S)
  - o  $f(S) = \{ t \mid \exists s \in S (t = f(s)) \}$
  - o shorthand,  $\{f(s) \mid s \in S\}$  to denote set
  - \*\*\* f (S) denotes set, not value of the function f for the set S
- one-to-one or an injunction of function f = if and only if f (a) = f (b) implies that a = b
  for all a and b in domain of f
  - function said to be injective if it's one-to-one
  - function f is one-to-one if and only if f (a)  $\neq$  f (b) whenever a  $\neq$  b
- increasing function = function f whose domain and codomain are subsets of set of real #, called increasing if  $f(x) \le f(y)$ , strictly increasing if f(x) < f(y), whenever x < y and x and y in the domain of f
- decreasing function = f called decreasing if  $f(x) \ge f(y)$ , strictly decreasing if f(x) > f(y), whenever x < y and x and y in domain of f.
  - strictly = strict inequality
- onto or surjective function = function f from A to B is onto, if and only if for every element  $b \in B$  there an element  $a \in A$  with f (a) = b
  - o function is onto if also range and co-domain are equal
- bijection = function f is one-to one correspondence or bijection, if both one-to-one and onto; said to be bijective
  - called invertible if inverse is definable, not invertible b/c no one-to-one correspondence and no inverse exists

Suppose that  $f: A \to B$ .

To show that f is injective Show that if f(x) = f(y) for arbitrary  $x, y \in A$  with  $x \neq y$ , then x = y.

To show that f is not injective Find particular elements  $x, y \in A$  such that  $x \neq y$  and f(x) = f(y).

To show that f is surjective Consider an arbitrary element  $y \in B$  and find an element  $x \in A$  such that f(x) = y.

To show that f is not surjective Find a particular  $y \in B$  such that  $f(x) \neq y$  for all  $x \in A$ .

Let f be a one-to-one correspondence from the set A to the set B. The *inverse function* of f is the function that assigns to an element b belonging to B the unique element a in A such that f(a) = b. The inverse function of f is denoted by  $f^{-1}$ . Hence,  $f^{-1}(b) = a$  when f(a) = b.



**FIGURE 6** The Function  $f^{-1}$  Is the Inverse of Function f.

# Summary

In this week, we learned what is function is, with what the domain, co-domain, and range of a function represent. Also we explored injective, surjective and bijective functions. Lastly, we looked at the invertibility of a function.