Prediction Assignment Project

Diego Mora 6/13/2019

Summary

In this report we want to construct a model for predict the correct exceution of a particular excercise using the data of some sensors applied to 6 athletes. We are going to load and transform the data and then fit a random forest model.

Load the Data

```
urltraining <- c("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv")
urltesting <- c("https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv")
download.file(urltraining,paste(getwd(),"/training.csv",sep = ""))
download.file(urltesting,paste(getwd(),"/testing.csv",sep = ""))
training <- read.csv("training.csv", na.strings = c("NA","","#DIV/0!"))
testing <- read.csv("testing.csv", na.strings = c("NA","","#DIV/0!"))</pre>
```

plot(training\$classe)

Transform

Select just the variables that have relevant data, it means the variables with less than 70% of NA values.

```
training <- training %>% select(which(colMeans(is.na(.)) < 0.7))</pre>
```

As we don't want that our model depends on a particular participant we can take off the name variable, the time stamps and the "x" variable that is nothing more than the index.

```
training <- training %>% select(6:60)
```

Prediction Model

Data Partition:

```
set.seed(1919)
inTrain <- createDataPartition(y=training$classe, p=0.7, list=FALSE)
trainingMod <- training[inTrain,]
testingMod <- training[-inTrain,]</pre>
```

First step is preprocessing the data using PCA and setting the threshold to find how many components we need. We want threshold or 95%, to find how many number of components are needed to capture the 95% of the variance. Note: we exclude the "classe" variable in the preprocess.

```
preProc <- preProcess(trainingMod[,1:54],method = "pca",thresh = 0.95)</pre>
preProc
## Created from 13737 samples and 54 variables
##
## Pre-processing:
     - centered (53)
##
##
     - ignored (1)
     - principal component signal extraction (53)
##
     - scaled (53)
##
##
## PCA needed 25 components to capture 95 percent of the variance
Now we can use our preprocessing to set a new training data with our Principal Components
trainPC <- predict(preProc, trainingMod[,1:54])</pre>
We can now fit a model, we want to use Random Forest
modelFit <- randomForest(trainingMod$classe~.,data = trainPC)</pre>
Our PCA for the testing set and then the predictions. We can measure our model with the confusion matrix.
testPC <- predict(preProc,testingMod[,1:54])</pre>
pred <- predict(modelFit,testPC)</pre>
confusionMatrix(testingMod$classe,predict(modelFit,testPC))
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                             С
                                  D
                                       Ε
                  Α
            A 1657
                      10
                                        0
##
                             6
                                  1
##
            В
                 15 1100
                           20
                                  0
            С
                  2
                      20
                          989
                                 14
                                        1
##
            D
                       0
##
                  1
                            39
                                921
                                        3
            Ε
                       2
                                  3 1071
##
                  0
                             6
##
## Overall Statistics
##
                   Accuracy: 0.975
##
                     95% CI : (0.9707, 0.9789)
##
##
       No Information Rate: 0.2846
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.9684
##
    Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
                         Class: A Class: B Class: C Class: D Class: E
```

##

##	Sensitivity	0.9893	0.9717	0.9330	0.9808	0.9926
##	Specificity	0.9960	0.9918	0.9923	0.9913	0.9977
##	Pos Pred Value	0.9898	0.9658	0.9639	0.9554	0.9898
##	Neg Pred Value	0.9957	0.9933	0.9854	0.9963	0.9983
##	Prevalence	0.2846	0.1924	0.1801	0.1596	0.1833
##	Detection Rate	0.2816	0.1869	0.1681	0.1565	0.1820
##	Detection Prevalence	0.2845	0.1935	0.1743	0.1638	0.1839
##	Balanced Accuracy	0.9926	0.9818	0.9627	0.9861	0.9951

Conclusion

This random forest model has a 97.5% of Accuracy with a 95% confidence interval of 97% to 97.9%. we need 25 Principal Components to describe the 95% of the variance of the data.

References

The data used to this project was taken from:

Velloso, E.; Bulling, A.; Gellersen, H.; Ugulino, W.; Fuks, H. Qualitative Activity Recognition of Weight Lifting Exercises. Proceedings of 4th International Conference in Cooperation with SIGCHI (Augmented Human '13) . Stuttgart, Germany: ACM SIGCHI, 2013.