Projekt 1

Jan Borowksi

 $15\ 03\ 2020$

Eksploracja Danych

Zaczniemy od eksploracji danych ze zbioru dresses-sales z OpenML. W pierwotnym zbiorze występują braki danych przedstawione jako "?" zostały one już zamienione na ${\bf NA}$. Najpierw przyjrzyjmu się typom zminnych w zbiorze:

Widzimy ,że zdecydowana większośc zmiennych to zmienne kategoryczne. Przyjrzyjmy się im bliżej:

##	Style		Pr	Price		Size	Seas	on	NeckLine	
##	Casual	:232	Average	:252	fre	ee :173	Summer :	159 o-ne	ck :2	271
##	Sexy	: 69	Low	:129	L	: 96	Spring :	122 v-ne	ck :1	124
##	party	: 51	low	: 45	M	:177	Winter:	99 slas	h-neck:	25
##	cute	: 45	Medium	: 30	s	: 1	Automn :	61 boat	-neck :	19
##	vintage	: 25	very-hig	h: 21	S	: 37	winter :	46 Swee	theart:	14
##	bohemian	: 24	(Other)	: 21	sma	all: 1	(Other):	11 (Oth	er) :	44
##	(Other)	: 54	NA's	: 2	XL	: 15	NA's :	2 NA's	:	3
##	Sle	eeveL	ength w	aiseli	ne		Material	Fa	.bricType	Э
##	sleevles	s :	223 ?	:	0	cotton	:152	chiffon	:135	
##	full	:	97 drop	ped :	4	polyster	: 99	broadcl	oth: 31	
##	short	:	96 empi	re :1	04	silk	: 26	worsted	: 19	
##	halfslee	ve :	35 natu	ral :3	04	chiffonf	abric: 25	jersey	: 12	
##	threequa	rter:	17 prin	cess:		mix		shiffon	. : 9	
##	(Other)	:	30 NA's	: :	87	(Other)	: 58	(Other)	: 28	
##	NA's	:	2			NA's	:128	NA's	:266	
##	Deco	ratio	n Pa	ttern						
##	lace	: 70	solid	:203						
##	sashes		-							
##	beading	: 22	${\tt patchwo}$	rk: 48						
##	applique	: 21	animal	: 21						
##	hollowout	t: 21	striped	: 17						
##	(Other)	: 88	(Other)	: 31						
##	NA's	:236	NA's	:109						

Widzimy pojawiające się sytuację jak w zmiennej **Price**, gdzie mamy "low" i "Low" pozbędę się takich błędów przed dalszą eksploracją. Nie ma większego sensu przygladać się macierzy korelacji ponieważ nie działa ona zbyt dobrze dla zmiennych kategorycznych. Sprawdzę, więc rozkład zmiennej ciagłej "Rating":

Widzimy rozkład bimodalny ale z opisu wiemy ,
że Rating przyjmuje wartości z zbioru 1-5 więc0nale
ży traktować jako braki danych. Po ich usunięciu:

Widzimy ,że w wiekszości są to zmienne o rozkładie wykładniczym. Warto też zauważyć dość równy podział klas.

##Braki Danych Na początek przyjrzymy się rozłożeniu braków danych:

Widzimy ,że większe ilości braków danych występują w przypadku zmiennych walseline,Material,FabricType,Decoration,Pattern oraz Rating jeśli jako braki traktować 0. Oprócz tego widać pojedyncze braki w pozostałych zmiennych. Z nimi poradzę sobie poprzez usunięcie 7 wierszy z całej ramki jeszcze przed rozpoczęciem testów.

Uzupełnanie braków danych

W tej sekcij przygotuję dane uzupełnione na różne sposoby:

```
#Zaczniemy od usunięcia kolumn zawierających braki
dresses_sales_col_remove <- dresses_sales[,-c(3,8:12)]</pre>
#Usunięcia wierszy zawierających braki
dresses_sales_row_remove<- dresses_sales%>%drop_na()
#uzupełnienie medianą, średnia, modą) potrzebny będzie podział zbioru na testowy i treningowy.
#Do pozostałych technik
# Wykorzystamy stały podział na zbiory testowy i trenignowy
train_set = sample(length(row.names(dresses_sales)), 0.8 * length(row.names(dresses_sales)))
test_set = setdiff(seq_len(length(row.names(dresses_sales))), train_set)
# Uzupełnię osobno w zbiorze testowym i treningowym
columns to imput <- c('waiseline','Material','FabricType','Decoration','Pattern')</pre>
# Uzupełnanie moda
Mode <- function(x) {</pre>
 ux <- unique(x[!is.na(x)])</pre>
  ux[which.max(tabulate(match(x, ux)))]
dresses_sales_mode <- dresses_sales</pre>
for (i in columns_to_imput){
  mode <- Mode(dresses_sales_mode[train_set,i])</pre>
  NA_position <- ifelse(is.na(dresses_sales_mode[train_set,i]),TRUE,FALSE)
  dresses_sales_mode[train_set,i][NA_position] <- mode</pre>
}
dresses sales mode mean <- dresses sales mode
dresses_sales_mode_median <- dresses_sales_mode</pre>
mode <- Mode(dresses_sales_mode[train_set, 'Rating'])</pre>
NA_position <- ifelse(is.na(dresses_sales_mode[train_set, 'Rating']), TRUE, FALSE)
dresses_sales_mode[train_set, 'Rating'][NA_position] <- mode</pre>
# Uzupełnaianie inaczej jest możliwe tylko dla kolumny Rating w innych
# wypadkach średnia ani mediana nie ma sensu
# Uzupełneinie średnią zmiennej Rating
mean_ <- mean(dresses_sales_mode_mean[train_set, 'Rating'], na.rm=TRUE)</pre>
NA_position <- ifelse(is.na(dresses_sales_mode_mean[train_set,'Rating']),TRUE,FALSE)
dresses_sales_mode_mean[train_set, 'Rating'] [NA_position] <- mean_</pre>
# Uzupełnianie zmiennej Rating medianą
media <- median(dresses_sales_mode_median[train_set, 'Rating'], na.rm=TRUE)</pre>
NA_position <- ifelse(is.na(dresses_sales_mode_median[train_set,'Rating']),TRUE,FALSE)
dresses_sales_mode_median[train_set,'Rating'][NA_position] <- media</pre>
```

Po przygotowaniu danych można przejść do trenowania algorytmu.

Przygotowanie algorytmu

Użylem krosvalidacji do znaleziena najlepszych parametrów dla wybranego uzupełnienia (będę uzywał drzewa decyzyjnego). Funkcja znajdująca najlepsze parametry:

```
# Krosvalidacja
# funkcja zwraca algorytm z optymalnymi parametrami
# do funkcji podajemy zbiór treningowy
param_search <- function(df){</pre>
task = TaskClassif$new(id = "col_remove", backend = df, target = "Class")
cv = rsmp("cv", folds = 5)
heat_map <- matrix(nrow=20,ncol=30)</pre>
rownames(heat_map) <- 1:20</pre>
for (i in 1:20){
for (j in 1:30){
   learner = mlr learners$get("classif.rpart")
   learner$param_set$values = mlr3misc::insert_named(
  learner$param_set$values,
 list(cp = i/20, minsplit = j)
   invisible(capture.output(rr <- resample(task, learner, cv)))</pre>
   heat_map[i,j] <- mean(rr$score(msr("classif.acc"))$classif.acc)</pre>
}
# Zwraca algorytm z najlepszymi parametrami
a<- which(heat map == max(heat map), arr.ind = TRUE)
best_lerner = mlr_learners$get("classif.rpart")
learner$param_set$values = mlr3misc::insert_named(
 learner$param_set$values,
  list(cp = a[1]/20, minsplit = a[2]))
return(best_lerner)
}
# Funkcja przeprowadzająca test
accuracy <- msr("classif.acc")</pre>
precision <- msr("classif.precision")</pre>
test <- function(alg,train_s,test_s,df){</pre>
 task <- TaskClassif$new(id = "some", backend = df, target = "Class")</pre>
 # Trenowanie
 alg$train(task, row_ids = train_s)
  # Predykcja
```

```
prediction <- alg$predict(task, row_ids = test_s)

# Miary
acc <- prediction$score(accuracy)
pr <- prediction$score(precision)

return(c(acc,pr))
}</pre>
```

Porównanie technik imputacij danych

W każdym wypadku postepuję według schematu:

- 1. Przy pomocy kroswalidacji znajduję najlpesze wartości parametrów na zbiorze treningowym,
- 2. Trenuję algorytm na zbiorze treningowym z ustalonymi parametrami,
- 3. Stosuję wybraną technikę imputacji dla zbioru testowego,
- 4. Testuję wytrenowany algorytm na zbiorze testowym.

Zaczniemy od usuwania kolumn:

```
## [1] "Dokładność :0.697"
## [1] "Precyzja :0.7333"
Usuwanie wierszy:
## [1] "Dokładność :0.75"
```

[1] "Dokładność :0.75"
[1] "Precyzja :0.5714"

 Dalej w analogiczy sposób używająć wcześniej przygotowanego podziału.

Uzupełnianie modą:

```
## [1] "Dokładność :0.5859"
## [1] "Precyzja :0.5385"
```

Uzupełnianie zmiennych kategorycznych modą i ciągłych średnią:

```
## [1] "Dokładność :0.5859"
## [1] "Precyzja :0.5385"
```

Uzupełnianie zminnych kategorycznych modą i ciągłych medianą:

```
## [1] "Dokładność :0.5859"
## [1] "Precyzja :0.5385"
```

Ponieważ drzewa decyzjne dopuszczają taką możliwość sprawdźmy jaki będzie wynik bez usuwania braków:

```
## [1] "Dokładność :0.6061"
## [1] "Precyzja :0.561"
```

Zastosuje jescze jedną technike polegającą na zamianie kolumny z brakami na kolune 0,1 gdzie 0 oznacza brak danych. Rating zastąpimy średnią:

```
## [1] "Dokładność :0.7071"
## [1] "Precyzja :0.7273"
```

Podsumowanie

Porównanie wyników

Table 1: Wyniki testów

	Dokładność	Precyzja
Usuwanie kolumn	0.697	0.733
Usuwanie wierszy	0.750	0.571
Uzupełnanie modą	0.586	0.538
Uzupełnanie modą i średnią	0.586	0.538
Uzupełnianie modą i medianą	0.586	0.538
Brak uzupełniania	0.606	0.561
Kolumny 0-1	0.707	0.727

Po pierwsze należy zauważyć ,że wyniki są ogólnie słabe może to wynikać z danych zawierających prawie same zmienne kategoryczne (sytuację mógł by poprawić ich encoding).

Porównanie technik imputacij:

- $1. \mathbf{Usuwanie\ kolumn}$ dobry wynik na tle pozostałych , ale prowadzi do usunięcia połowy danych nie jest to najlepsze rozwiązanie w ogólnym przypadku,
- 2. **Usuwanie wierszy** wynik pozornie dobry, ale należy pamiętać ,że w pozostawiło to niecałe 20% danych czyli 75 obserwacij. Ciężko wyciągać jakieś wnioski na podstawie tak małej próbki, ale napewno prowadzi do utraty sporej części danych,
- 3. Uzupełnianie modą wynik nie zbyt dobry bliski klasyfikatora przypadkowego ,
- 4. Uzupełnianie modą i średnią wynik taki sam jak poprzednio,
- 5.**Uzupełnianie modą i medianą** wynik taki jak dwa poprzednie, wypełnienie kolumny Rating nie ma większego znaczenia,
- 6.**Brak uzupełnienia** wynik nieco lepszy od poprzednich choć również bardzo słaby, w praktyce miało to być coś w rodzaju próby kontrolnej,
- 7. Kolumna 0-1 Najlepszy ze sposobów "który choć traci nieco danych prowadzi do najlepszych wyników.