

Lévy NMF for robust nonnegative source separation

Paul Magron, Roland Badeau, Antoine Liutkus

IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA)

17.10.2017

Source separation

■ Problem : extract the X_k , $k \in \{1, ..., K\}$ from :

$$X = \sum_{k} X_k$$

- Nonnegative data: audio spectrograms, images, fluorescence spectra...
- Many methods : PCA, ICA, NMF...

Nonnegative matrix factorization

- Probabilistic approach : sources as latent variables;
- $\hbox{ Maximum likelihood} \leftrightarrow \hbox{Minimization of a cost function between } X \\ \hbox{ and } WH.$

Robustness

Traditional distribution are not *heavy-tailed*: no robustness to outliers.

- \rightarrow Stable distributions :
 - Stability and robustness...
 - ... not a nonnegative support in general.

Goal: A robust nonnegative data model for source separation

Outline

1 Lévy NMF model

2 Parameter estimation

3 Experimental evaluation

1 Lévy NMF model

2 Parameter estimation

3 Experimental evaluation

Stable distributions

A family of **heavy-tailed** distributions **Symmetric** α -stable (S α S) : $\beta = 0$. **Stability** : a sum of stable variables is stable.

Special cases:

- Gaussian : $\alpha = 2$ and $\beta = 0$;
- Cauchy : $\alpha = 1$ and $\beta = 0$;
- Lévy : $\alpha = 1/2$ and $\beta = 1$;

Positive α -stable distributions

In general, the support of the stable distributions is \mathbb{R} (or \mathbb{C}).

For $\beta = 1$ and $\alpha < 1$, the support is $[\mu; +\infty[$.

 \rightarrow **Positive** α -stable (P α S) distributions :

$$\mathcal{P}\alpha\mathcal{S}(\sigma) = \mathcal{S}(\alpha, 0, \sigma, 1)$$
, with $\alpha < 1$.

Lévy distribution (α =1/2) :

$$p(x \mid \sigma) = \begin{cases} \sqrt{\frac{\sigma}{2\pi}} \frac{1}{x^{3/2}} e^{-\frac{\sigma}{2x}} & \text{if } x > 0\\ 0 & \text{else.} \end{cases}$$

Positive α -stable distributions

Mixture model

- Nonnegative data $X \in \mathbb{R}_+^{F \times T}: X = \sum_k X_k$.
- Independent Lévy coefficients :

$$\begin{split} X_k(f,t) \sim \mathcal{L}(\sigma_k(f,t)) \\ \rightarrow X \sim \mathcal{L}(\sigma) \text{ with } \sqrt{\sigma} = \sum_k \sqrt{\sigma_k}. \end{split}$$

NMF on the dispersion parameters :

$$\sqrt{\sigma} = WH$$
,

where $W \in \mathbb{R}_{+}^{F \times K}$ and $H \in \mathbb{R}_{+}^{K \times T}$.

→ Lévy NMF model.

1 Lévy NMF model

2 Parameter estimation

3 Experimental evaluation

Maximum likelihood (ML)

Log-likelihood of the data:

$$\begin{split} L(W,H) &= \sum_{f,t} \log(p(X(f,t);\sigma(f,t))) \\ &\stackrel{c}{=} \frac{1}{2} \sum_{f,t} \log([WH](f,t)^2) - \frac{[WH](f,t)^2}{X(f,t)} \\ &\stackrel{c}{=} -\frac{1}{2} d_{IS}([WH]^{\odot 2},X), \end{split}$$

 $\mathsf{ML} \leftrightarrow \mathsf{Minimize}$ the Itakura-Saito divergence between $[WH]^{\odot 2}$ and X

Heuristic approach

Decomposition of the gradient of C w.r.t. θ (= W or H):

$$\frac{\partial \mathcal{C}}{\partial \theta} = \nabla_{\theta}^{+} - \nabla_{\theta}^{-} \text{, with } \nabla_{\theta}^{+} > 0 \text{ and } \nabla_{\theta}^{-} > 0.$$

Update rule:

$$\theta \leftarrow \theta \odot \frac{\nabla_{\theta}^{-}}{\nabla_{\theta}^{+}}$$

- No guarantee that the cost function is non-increasing;
- In practice, it is observed for many NMF models...
- ... but not for the Lévy case.

Majorize-Minimization

 \blacksquare Auxiliary function G:

$$\forall (\theta,\overline{\theta}),\, \mathcal{C}(\theta) \leq G_{\overline{\theta}}(\theta), \text{ and } \mathcal{C}(\overline{\theta}) = G_{\overline{\theta}}(\overline{\theta})$$

• Update : $\theta^{(it+1)} = \arg\min_{\theta} G_{\theta^{(it)}}(\theta)$

Majorize-Minimization

- G is obtained by using convexity inequalities;
- For Lévy NMF:

$$W \leftarrow W \odot \left(\frac{[WH]^{\odot - 1}H^T}{([WH] \odot X^{\odot - 1})H^T} \right)^{\odot 1/2}$$

and

$$H \leftarrow H \odot \left(\frac{W^T [WH]^{\odot - 1}}{W^T ([WH] \odot X^{\odot - 1})} \right)^{\odot 1/2}$$

- Similar updates to the heuristic approach, with a power 1/2.
- The cost function is non-increasing under these updates.

Lévy NMF vs. ISNMF

If K=1 and $W(f)=1 \ \forall f$:

$$H_{\mathsf{IS}}(t) \leftarrow \frac{1}{F} \sum_{f} X(f,t), \ H_{\mathsf{L\acute{e}vy}}(t) \leftarrow \sqrt{\frac{F}{\sum_{f} \frac{1}{X(f,t)}}}.$$

- ISNMF → Arithmetic mean;
- Lévy NMF \rightarrow Harmonic mean (and $\sqrt{\ }$).

If F = 10 and X(f,t) = 1 except for one entry : $X(f_0,t_0) = 10^8$:

$$H_{\rm IS}(t_0) \leftarrow 10^7$$
, $H_{\rm Lévy}(t_0) \leftarrow 1.05$.

→ Robustness of Lévy NMF

Source estimation

- Natural estimator : $\hat{X}_k = \mathbb{E}_{X_k|X}(X_k)$.
- For any P α S distribution :

$$\hat{X}_k = \frac{\sigma_k^{\alpha}}{\sum_{l} \sigma_l^{\alpha}} \odot X \tag{1}$$

→ Generalized Wiener filtering

For Lévy NMF:

$$\hat{X}_k = \frac{W_k H_k}{\sum W_l H_l} \odot X \tag{2}$$

1 Lévy NMF model

2 Parameter estimation

3 Experimental evaluation

Music spectrogram inpainting

- Data: 6 guitar pieces;
- The spectrograms are corrupted with impulsive noise;
- The models are learned on the corrupted data;
- The noise localization is unknown.

Music spectrogram inpainting

	Log(KL)	SDR (dB)	
ISNMF	9.0	-23.5	
KLNMF	6.2	-8.9	
Cauchy NMF	3.4	7.6	
RPCA	3.6	7.4	()
Lévy NMF	3.2	9.2	
Weighted ISNMF	3.8	4.5	

- Bad results with classical NMFs (IS and KL);
- Lévy NMF compares with other methods.

Musical accompaniment enhancement

- Data: 50 music songs;
- Musical accompaniment is assumed well-represented by a low-rank NMF model;
- Voice is assumed to be similar to impulsive noise.

Music

s

Conclusion

A robust nonnegative data model

- Many areas of application : data mining, applied physics...
- An extension of Wiener filtering to nonnegative data.

Future work

- MAP estimation : priors on the parameters (sparsity, temporal smoothness...);
- Generalization to $P\alpha S$ or inverse-Gamma distributions.