Data 100 & 200A Spring 2019

Principles and Techniques of Data Science

MIDTERM 1

INSTRUCTIONS

- You have 70 minutes to complete the exam.
- The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written $8.5" \times 11"$ crib sheet of your own creation and the official Data 100 study guide.
- Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name	
First name	
Student ID number	
CalCentral email (_@berkeley.edu)	
Exam room	
Name of the person to your left	
Name of the person to your right	
All the work on this exam is my own. (please sign)	

1. (12 points) Python vs. SQL

Fill in both the Python code and the SQL query to produce each result below, assuming that the following three tables are stored both as Pandas DataFrames and Sqlite tables. Only the first few rows are shown for each table. The cities table contains one row per city and its population in thousands. The names table contains one row per state. The states table contains one row per state with its population in millions. Assume that cities contains only a small subset of US cities. There may be multiple cities in each state, but every city is in a state that appears in both names and states, and every state contains at least one city.

cities	
city	pop
Nevada City, California	3
Carson City, Nevada	55
Newark, New Jersey	285

names		
abb	rev	full
CA		California
NV		Nevada
WA		Washington

states	
state	people
CA	39.5
NV	3.0
WA	7.4

(a) (4 pt) Create a table t that is the same as cities but with an additional column ab containing the abbreviation (e.g. CA) of the state in which each city is located. *Hint*: The str.extract method of a Series called on a regular expression with one group returns a DataFrame with one column labeled 0 containing the first substring matching the group. Assume there is exactly one comma in each city value.

Pytho	n: t = cities.copy()				
	x =	str.extract(r'			')[0]
	t['ab'] = list(name	s.set_index().loc[x,])
SQL:	CREATE TABLE t AS S	ELECT,	,	_ AS ab FROM cities	JOIN names ON
			LIKE		;
	(b) (4 pt) Create a two-ostates with a populat	column table u of the citicion above 5 million. Assu		`	/
Pytho	n: m = t.merge(,		,)
	u = m[] []
SQL:	CREATE TABLE u AS SE	LECT city, pop FROM	t WHERE		
	ab IN ();
	(c) (4 pt) Create a table cities (from the cities	e with one row per state es table) in that state th			nd the fraction of
Pytho	n: t[].groupby	().agg(
	lambda s: sum() / len()
SQL:	SELECT ab, SUM(CASE	WHEN THEN	ELSE	END) / CAST(COU	NT(*) AS float)
	EDON + GDOND	DV			

2. (6 points) Sampling

Circle the correct response to each question about this population of six individuals.

$\operatorname{cluster}$
Blue
Blue
Blue
Blue
Gold
Gold

(a) (2 pt) From the population above, you draw a simple random sample A of 2 individuals. What's the probability that Ace and Adele both appear in sample A?

 $\frac{1}{3} \cdot \frac{1}{3} \qquad \frac{1}{6} + \frac{1}{6} \qquad 2 \cdot \frac{1}{6} \cdot \frac{1}{6} \qquad 2 \cdot \frac{1}{6} \cdot \frac{1}{5} \qquad 2 \cdot \left(\frac{1}{3} \cdot \frac{1}{3}\right) \qquad 2 \cdot \left(\frac{1}{6} + \frac{1}{6}\right)$

(b) (2 pt) You separately draw a cluster sample B from the same population based on the cluster column. (Sample A is replaced in the population before drawing sample B, so the two are independent.) What's the probability that Ace and Adele both appear in sample B?

0

None of these

(c) (2 pt) You then combine all individuals from sample A and sample B into sample C. Thus, there may be repeated individuals in sample C. What's the probability that Bella appears exactly once in sample C?

0

None of these

3. (4 points) Regular Expressions

$$[a-z]+[a-z]{2}[-r]-?[a-z]+$$

Circle all of the strings below that match the regular expression above. Only circle a string below if the whole **string** matches the expression, not just a substring.

bar_chart

group_by_x

a_box_plot

visualize_first

4. (10 points) Data Visualization

- (a) (2 pt) Are the two histograms below displaying exactly the same data? Circle only one answer.
 - (a) Yes
- (b) No
- (c) Impossible to tell

- (b) (2 pt) Are the two Gaussian kernel density plots below displaying exactly the same data? Circle only one answer.
 - (a) Yes
- (b) No
- (c) Impossible to tell

- (c) (2 pt) Which of the following can be determined from looking at this pie chart? Circle only one answer.
 - (a) Category B is twice as frequent as category A
 - (b) Category A is half as frequent as category B
 - (c) Category B is more frequent than category A
 - (d) All of the above
 - (e) None of the above

- (d) (2 pt) You have 30 unique observations of a real-valued quantitative variable. Which of the following visualizations effectively depicts the distribution of these values while retaining as much information as possible about the original data? Circle only one answer.
 - (a) A pie chart
 - (b) A strip chart
 - (c) A box plot
- (e) (2 pt) You are given six lists, each of a few thousand numbers taking on values in the real line. Which of the following is the most effective way to visually compare the center and spread of the corresponding six distributions? Choose only one answer.
 - (a) Side-by-side box plots
 - (b) Side-by-side histograms
 - (c) Side-by-side strip charts

5. (8 points) Dimensionality Reduction

You perform principal component analysis on a data matrix D using the following Python code from lecture:

```
n = D.shape[0]
X = (D - np.mean(D, axis=0)) / np.sqrt(n)
u, s, vt = np.linalg.svd(X, full_matrices=False)
```

The resulting value of s is np.array([3, 1, 0, 0, 0]).

(a) (4 pt) To draw a histogram of the data's distribution along the first principal component of X, which of the following arrays would you visualize? Circle all correct expressions.

(b) (2 pt) What proportion of the total variance in D is accounted for by the first principal component?

(c) (2 pt) What is the rank of X?