Suggested reading for this week (from the textbook): Study items:

- Definitions: linear combination, span.
- Proofs: basic facts about subspaces, linear combinations, and the span of a set of vectors.
- Understand what is means to say that a subspace is generated by a set of vectors
- Definitions: linearly dependent, linearly independent.
- How do you determine whether a set of vectors is linearly dependent or linearly independent?
- Proofs: basic facts about linearly dependent and independent sets of vectors.

Problems:

- 1. (Damiano-Little 1.2.3(h,i)) ** subspace? polys with $p(\sqrt{2}) = 0$; polys with p(1) = 1 and p(2) = 0.
- 2. (Damiano-Little 1.2.5) Let W be a subspace of a vector space V, let $\vec{y} \in V$, and define the set $\vec{y} + W = \{\vec{x} \in V : \vec{x} = \vec{y} + \vec{w} \text{ for some } \vec{w} \in W\}$. Show that $\vec{y} + W$ is a subspace of V if and only if $y \in W$.
- 3. (Damiano-Little 1.2.8) ** Continuous functions C([a,b]) is a subspace of the vector space F([a,b]) introduced in Exercise 1.1.10.
- 4. ** Define an affine subspace of a vector space. Prove that defines equivalent to translation of a subspace, or to set of differences being a subspace. Example: x + y + z = 1. Also f''(x) = -f(x) and f(0) = 1. In 1.2.3 above, which of the times you answered "no" is this thing an affine subspace instead?
- 5. (Damiano-Little 1.3.1(a,d)) ** Examples of spans in \mathbb{R}^3 and $P_4(\mathbb{R})$; give another name for both sets.

Note. In part (d), ignore the word "geometrically;" just give another name for the set Span(S).

- 6. (Damiano-Little 1.3.3) In $V = P_2(\mathbb{R})$, let $S = \{1, 1 + x, 1 + x + x^2\}$. Show that Span $(S) = P_2(\mathbb{R})$.
- 7. (Damiano-Little 1.3.6(a)) ** Show that $W_1 \cap W_2 \supset \operatorname{Span}(S_1 \cap S_2)$.
- 8. (Damiano-Little 1.3.7) Show that if S is a subset of a vector space V and W is a subspace of V that contains S, then $\operatorname{Span}(S) \subset W$.
- 9. (Damiano-Little 1.4.1(a,b,c,e)) ** Determine whether LI or LD... in $\mathbb{R}^2, \mathbb{R}^3, \mathbb{R}^3, P_2(\mathbb{R})$.
- 10. (Damiano-Little 1.4.5) Let $\vec{v}, \vec{w} \in V$ Show that $\{v, w\}$ is linearly independent if and only if $\{\vec{v} + \vec{w}, \vec{v} \vec{w}\}$ is linearly independent.
- 11. (Damiano-Little 1.4.8) Let W_1, W_2 be subspaces of a vector space, satisfying $W_1 \cap W_2 = \{\vec{0}\}$. Show that if $S_1 \subset W_1$ and $S_2 \subset W_2$ are linearly independent sets, then their union $S_1 \cup S_2$ is linearly independent.
- 12. $(Damiano-Little\ 1.4.9(a))\ **$ If S is LI and spans V, then adding any vector results in an LD set.

Extra practice (not to hand in)

due ***TBA***. page 1 of 2

- (Damiano-Little 1.2.6)
- (Damiano-Little 1.2.10)
- (Damiano-Little 1.3.5)
- (Damiano-Little 1.3.6)

- \bullet (Damiano-Little 1.3.8)
- (Damiano-Little 1.4.2)
- $(Damiano-Little\ 1.4.9(b))$

due ***TBA***. page 2 of 2