Serie de Taylor y Polinomios de Lagrange

Mateo Cumbal

2024-11-27

Tabla de Contenidos

1	CONJUNTO DE EJERCICIOS	1
	EJERCICIO 1 2.1 Serie de Taylor	
	EJERCICIO 2 3.1 Serie de Taylor	

1 CONJUNTO DE EJERCICIOS

Determine el orden de la mejor aproximación para las siguientes funciones, usando la Serie de Taylor y el Polinomio de Lagrange:

2 EJERCICIO 1

$$\frac{1}{25x^2+1}, x_0 = 0$$

2.1 Serie de Taylor

Como es evidente, mientras mayor sea el orden del polinomio de Taylor, mejor es la aproximación de la función alrededor de ese punto, por tanto vamos a realizar hasta el polinomio de grado 20.

```
import sympy as sp
import numpy as np
import matplotlib.pyplot as plt
x = sp.symbols('x')
f = 1 / (25 * x ** 2 + 1)
x0 = 0
n = 14
f_lambdified = sp.lambdify(x, f, modules=["numpy"]) # Función Original
x_{vals} = np.linspace(-1, 1, 300)
f_vals = f_lambdified(x_vals)
f0_vals = np.ones_like(x_vals) # PO: Función Constante
plt.figure(figsize=(10, 8))
plt.plot(x_vals, f_vals, label='$f(x) = \frac{1}{25x^2 + 1}$', color='red', linewidth=2)
plt.plot(x_vals, f0_vals, label='$P_0(x)$', linestyle='-.', color='orange', alpha=0.7)
for i in range(3, n + 2, 2): \#Pn: Polinomios de Taylor, n > 1
    taylor_series = sp.series(f, x, x0, i).removeO()
    print(f'Polinomio de Taylor - Orden: {i - 1}: {taylor_series}')
    taylor_lambdified = sp.lambdify(x, taylor_series, modules=["numpy"])
    taylor_vals = taylor_lambdified(x_vals)
    plt.plot(x_vals, taylor_vals, label=f'$P_{i-1} (x)$', linestyle='-.', alpha=0.7)
plt.axvline(0, color="black", lw=0.7)
plt.axhline(0, color="black", lw=0.7)
plt.scatter(x0, 1, color='black', s=60)
plt.title('Aproximaciones de \frac{1}{25x^2} + 1 en x = 0 con Polinomios de Taylor')
plt.xlabel('x')
plt.ylabel('f(x)')
```

```
Polinomio de Taylor - Orden: 2: 1 - 25*x**2

Polinomio de Taylor - Orden: 4: 625*x**4 - 25*x**2 + 1

Polinomio de Taylor - Orden: 6: -15625*x**6 + 625*x**4 - 25*x**2 + 1
```

plt.grid(True)
plt.legend()

plt.show()

plt.xlim(-0.5, 0.5) plt.ylim(-0.5, 1.2)

```
Polinomio de Taylor - Orden: 8: 390625*x**8 - 15625*x**6 + 625*x**4 - 25*x**2 + 1

Polinomio de Taylor - Orden: 10: -9765625*x**10 + 390625*x**8 - 15625*x**6 + 625*x**4 - 25*x

Polinomio de Taylor - Orden: 12: 244140625*x**12 - 9765625*x**10 + 390625*x**8 - 15625*x**8

Polinomio de Taylor - Orden: 14: -6103515625*x**14 + 244140625*x**12 - 9765625*x**10 + 390625*x**10 + 390625*x*
```


Para esta función en particular, los términos correspondientes a los órdenes pares tienen coeficientes iguales a cero. Como resultado, dichos términos no aportan ninguna modificación al polinomio de Taylor existente y, por lo tanto, no se incluyen en la demostración.

2.2 Polinomio de Lagrange

from scipy.interpolate import lagrange

Definimos la función:

```
def f(x):
    return 1 / (25 * x ** 2 + 1)
```

Y los parametros iniciales: * El número de puntos * El intervalo en donde se encuentran

```
n = 7

xi = -0.25

xf = 0.25
```

Como vamos a aproximar alrededor de cero, escogemos un intervalo pequeño.

```
xs = np.linspace(xi, xf, n)
ys = f(xs)
polynomial = lagrange(xs, ys)
x_vals = np.linspace(-1, 1, 500)
f_{vals} = f(x_{vals})
lagrange_vals = polynomial(x_vals)
plt.figure(figsize=(10, 6))
plt.plot(x_vals, f_vals, label='Función original: <math>f(x) = \frac{1}{25x^2 + 1}', color='blue f(x) = \frac{1}{25x^2 + 1}
plt.plot(x_vals, lagrange_vals, label='Interpolación de Lagrange: $P(x)$', color='orange', l
plt.scatter(xs, ys, color='red', label='Puntos de interpolación') # Puntos de interpolación
plt.title(f"Interpolación de Lagrange para {n} puntos")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.legend()
plt.axvline(0, color="black", lw=0.7)
plt.axhline(0, color="black", lw=0.7)
plt.ylim(-1, 1.5)
plt.xlim(-0.6, 0.6)
plt.grid()
plt.show()
```


Obteniendose así la función aproximada dados los puntos en ese intervalo:

El polinomio interpolado es:
$$6 \hspace{1.5cm} 5 \hspace{1.5cm} 4 \hspace{1.5cm} 3 \hspace{1.5cm} 2 \\ -3066 \hspace{1.5cm} x \hspace{1.5cm} - \hspace{1.5cm} 5.514e \hspace{1.5cm} - \hspace{1.5cm} 12 \hspace{1.5cm} x \hspace{1.5cm} + \hspace{1.5cm} 420.8 \hspace{1.5cm} x \hspace{1.5cm} + \hspace{1.5cm} 1.35e \hspace{1.5cm} - \hspace{1.5cm} 13 \hspace{1.5cm} x \hspace{1.5cm} - \hspace{1.5cm} 24.08 \hspace{1.5cm} x \hspace{1.5cm} + \hspace{1.5cm} 1.193e \hspace{1.5cm} - \hspace{1.5cm} 15 \hspace{1.5cm} x \hspace{1.5cm} + \hspace{1.5cm} 1$$

3 EJERCICIO 2

$$\arctan(x), x_0 = 1$$

3.1 Serie de Taylor

Valores Iniciales

```
x = sp.symbols('x')
f = sp.atan(x)
x0 = 1
n = 10
f_lambdified = sp.lambdify(x, f, modules=["numpy"]) # Función Original
x_{vals} = np.linspace(-1.5, 3.5, 500)
f_vals = f_lambdified(x_vals) # PO: Función Constante
f0_vals = np.full_like(x_vals, np.pi/4)
plt.figure(figsize=(10, 8))
plt.plot(x_vals, f_vals, label='$f(x) = arctan(x)$', color='red', linewidth=2)
plt.plot(x_vals, f0_vals, label='$P_0(x)$', linestyle='-.', color='orange', alpha=0.7)
for i in range(2, n + 2): # Polinomios de Taylor, n > 0
                  taylor_series = sp.series(f, x, x0, i).removeO()
                 print(f'Polinomio de Taylor - Orden: {i - 1}: {taylor_series}')
                  taylor_lambdified = sp.lambdify(x, taylor_series, modules=["numpy"])
                  taylor_vals = taylor_lambdified(x_vals)
                  plt.plot(x_vals, taylor_vals, label=f'$P_{i-1}(x)$', linestyle='-.', alpha=0.7)
plt.axvline(0, color="black", lw=0.7)
plt.axhline(0, color="black", lw=0.7)
plt.scatter(x0, np.arctan(x0), color='black', s=60)
plt.title('Aproximaciones de $arctan(x)$ en $x = 1$ con Polinomios de Taylor')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.grid(True)
plt.legend()
plt.xlim(-1.5, 3.5)
plt.ylim(-1, 1.4)
plt.show()
Polinomio de Taylor - Orden: 1: x/2 - 1/2 + pi/4
Polinomio de Taylor - Orden: 2: x/2 - (x - 1)**2/4 - 1/2 + pi/4
Polinomio de Taylor - Orden: 3: x/2 + (x - 1)**3/12 - (x - 1)**2/4 - 1/2 + pi/4
Polinomio de Taylor - Orden: 4: x/2 + (x - 1)**3/12 - (x - 1)**2/4 - 1/2 + pi/4
Polinomio de Taylor - Orden: 5: x/2 - (x - 1)**5/40 + (x - 1)**3/12 - (x - 1)**2/4 - 1/2 + p
Polinomio de Taylor - Orden: 6: x/2 + (x - 1)**6/48 - (x - 1)**5/40 + (x - 1)**3/12 - (x - 1
Polinomio de Taylor - Orden: 7: x/2 - (x - 1)**7/112 + (x - 1)**6/48 - (x - 1)**5/40 + (x - 1)**7/112 + (x - 1)**6/48 - (x - 1)**5/40 + (x - 1)**7/112 + (x - 1)**6/48 - (x - 1)**5/40 + (x - 1)**7/112 + (x - 1)**6/48 - (x - 1)**5/40 + (x - 1)**7/112 + (x - 1
Polinomio de Taylor - Orden: 8: x/2 - (x - 1)**7/112 + (x - 1)**6/48 - (x - 1)**5/40 + (x - 1)**7/112 + (x - 1)**6/48 - (x - 1)**5/40 + (x - 1)**5/40 + (x - 1)**6/48 - (x - 1)**5/40 + (x -
```

Polinomio de Taylor - Orden: 9: x/2 + (x - 1)**9/288 - (x - 1)**7/112 + (x - 1)**6/48 - (x - Polinomio de Taylor - Orden: 10: <math>x/2 - (x - 1)**10/320 + (x - 1)**9/288 - (x - 1)**7/112 + (x - 1

3.2 Polinomio de Lagrange

```
def f(x):
    return np.arctan(x)

n = 6
xi = -0.25
xf = 2.25
```

```
xs = np.linspace(xi, xf, n)
ys = f(xs)
polynomial = lagrange(xs, ys)
x_vals = np.linspace(-2, 4, 500)
f_{vals} = f(x_{vals})
lagrange_vals = polynomial(x_vals)
plt.figure(figsize=(10, 6))
plt.plot(x_vals, f_vals, label='Función original: <math>f(x) = arctan(x)', color='blue'
plt.plot(x_vals, lagrange_vals, label='Interpolación de Lagrange: $P(x)$', color='orange', l
plt.scatter(xs, ys, color='red', label='Puntos de interpolación') # Puntos de interpolación
plt.title(f"Interpolación de Lagrange para {n} puntos")
plt.xlabel("x")
plt.ylabel("f(x)")
plt.legend()
plt.axvline(0, color="black", lw=0.7)
plt.axhline(0, color="black", lw=0.7)
plt.ylim(-2, 4)
plt.xlim(-2, 4)
plt.grid()
plt.show()
```


Obteniendose así la función aproximada dados los puntos en ese intervalo:

```
print('El polinomio interpolado es:')
print(polynomial)
```

```
El polinomio interpolado es:  5 \qquad 4 \qquad 3 \qquad 2 \\ -0.0294 \ x + 0.1793 \ x - 0.3394 \ x - 0.02659 \ x + 1.001 \ x + 0.0009614
```