

AdaBoost Regressor

A Journey through Pseudocode

SmartScience

Ensembling

Ensembling is a process where multiple diverse models are created, either by using many different modeling algorithms or using different training data sets.

The ensemble model then aggregates the prediction of base models and results in once final prediction for the unseen data.

- considers
 homogeneous
 weak learners.
- learns independently in parallel.
- Combines them for overall prediction.

- considers
 homogeneous
 weak learners.
- learns
 sequentially
 and adaptive
 manner..
- Combines them for overall prediction.

- considers
 heterogeneous
 weak learners.
- Learns independently in parallel.
- Combines them for overall prediction.

AdaBoost Pseudocode walkthrough

AdaBoost - Regressor

SmartScience

- 1. Initialize the weights with $w_n^1=rac{1}{N}$ for $n=1,2,\ldots,N$.
- 2. For $t=1,2,\ldots,T$ or while $ar{L}^t$, as defined below, is less than or equal to 0.5,
 - \circ Draw a sample of size N from the training data with replacement and with probability w_n^t for $n=1,2,\ldots,N$.
 - Fit weak learner t to the resampled data and calculate the fitted values on the original dataset. Denote these fitted values with $f^t(\mathbf{x}_n)$ for $n=1,2,\ldots,N$.
 - \circ Calculate the observation error L_n^t for $n=1,2,\ldots,N$:

$$egin{aligned} D^t &= \max_n \{|y_n - f^t(\mathbf{x}_n)|\} \ L^t_n &= rac{|y_n - f^t(\mathbf{x}_n)|}{D^t} \end{aligned}$$

 \circ Calculate the model error \bar{L}^t :

$$ar{L}^t = \sum_{n=1}^N L_n^t w_n^t$$

If $ar{L}^t \geq 0.5$, end iteration and set T equal to t-1.

- Let $\beta^t = \frac{\bar{L}^t}{1-\bar{L}^t}$. The lower β^t , the greater our confidence in the model.
- \circ Let $Z^t = \sum_{n=1}^N w_n^t (eta^t)^{1-L_n}$ and update the model weights with

$$w_n^{t+1} = rac{w_n^t(eta^t)^{1-L_n}}{Z^t},$$

which increases the weight for observations with a greater error \mathcal{L}_n^t .

3. Set the overall fitted value for observation n equal to the weighted median of $f^t(\mathbf{x}_n)$ for $t=1,2,\ldots,T$ using weights $\log(1/\beta^t)$ for model t.

1. Initialize the weights with $w_n^1 = \frac{1}{N}$ for $n=1,2,\ldots,N$.

Here;

N = number of observations

 w_n^1 – initialize weight of each observation with 1/N

- 2. For $t=1,2,\ldots,T$ or while $ar{L}^t$, as defined below, is less than or equal to 0.5,
 - \circ Draw a sample of size N from the training data with replacement and with probability w_n^t for $n=1,2,\ldots,N$.
 - Fit weak learner t to the resampled data and calculate the fitted values on the original dataset. Denote these fitted values with $f^t(\mathbf{x}_n)$ for $n=1,2,\ldots,N$.
 - \circ Calculate the observation error L_n^t for $n=1,2,\ldots,N$:

$$egin{aligned} D^t &= \max_n \{|y_n - f^t(\mathbf{x}_n)|\} \ L^t_n &= rac{|y_n - f^t(\mathbf{x}_n)|}{D^t} \end{aligned}$$

Here a loop is initiated(t-model index).

Draw bootstrap sample from the data with weights calculated $f^t(x_n)$ – fitted weak learner

D₊ – maximum of absolute error

 L_n^t - Error ratio by row

 \circ Calculate the model error $ar{L}^t$:

$$ar{L}^t = \sum_{n=1}^N L_n^t w_n^t$$

If $ar{L}^t \geq 0.5$, end iteration and set T equal to t-1.

- Let $\beta^t = \frac{\bar{L}^t}{1-\bar{L}^t}$. The lower β^t , the greater our confidence in the model.
- \circ Let $Z^t = \sum_{n=1}^N w_n^t(eta^t)^{1-L_n}$ and update the model weights with

$$w_n^{t+1}=rac{w_n^t(eta^t)^{1-L_n}}{Z^t},$$

which increases the weight for observations with a greater error L_n^t .

 \bar{L}^t – model error

 β^t – similar to 'amount of say' – takes large value when error is large.

 w_n^{t+1} - updated weights which increases with error

3. Set the overall fitted value for observation n equal to the weighted median of $f^t(x_n)$ for t=1,2,...,T using weights $log(1/\beta^t)$ for model t.

Thank You