★第一章 随机事件与概率

1. 设随机事件 $A 与 B$ 互不相容,且 $P(A) > 0$, $P(B) > 0$,则(D)
A. $P(A) = 1 - P(B)$ B. $P(AB) = P(A)P(B)$ C. $P(A \cup B) = 1$ D. $P(\overline{AB}) = 1$
2. 设 A 、 B 为随机事件,且 $P(B) > 0$, $P(A \mid B) = 1$,则必有(A)
A. $P(A \cup B) = P(A)$ B. $A \subset B$ C. $P(A) = P(B)$ D. $P(AB) = P(A)$
3. 将两封信随机地投入四个邮筒中,则未向前面两个邮筒投信的概率为(A)
A. $\frac{2^2}{4^2}$ B. $\frac{C_2^1}{C_4^2}$ C. $\frac{2!}{A_4^2}$ D. $\frac{2!}{4!}$
4. 某人连续向一目标射击,每次命中目标的概率为 $\frac{3}{4}$,他连续射击直到命中为止,则射击次数为 3 的概
率是(C)
A. $\left(\frac{3}{4}\right)^3$ B. $\left(\frac{3}{4}\right)^2 \times \frac{1}{4}$ C. $\left(\frac{1}{4}\right)^2 \times \frac{3}{4}$ D. $C_4^2 \left(\frac{1}{4}\right)^2 \frac{3}{4}$
5. 一只口袋中装有 3 只红球和 2 只黑球,今从中任意取出 2 只球,则这 2 只球恰为一红一黑的概率是 $\frac{3/5}{}$.
6.
7. 设 A 、 B 为两个随机事件, $0 < P(B) < 1$,且 $P(A \mid B) = P(A \mid \overline{B})$,证明事件 $A \subseteq B$ 相互独立.
证明: $P(A \mid B) = P(A \mid \overline{B}) \Rightarrow \frac{P(AB)}{P(B)} = \frac{P(A\overline{B})}{P(\overline{B})} \Rightarrow P(AB)(1 - P(B)) = (P(A) - P(AB))P(B)$
$\Rightarrow P(AB) = P(A)P(B)$, 故事件 $A = B$ 相互独立。
8. 设随机事件 A 与 B 互不相容, $P(A) = 0.4$, $P(B) = 0.2$,则 $P(A \mid B) = (A)$
A. 0 B. 0.2 C. 0.4 D. 0.5
A. 0 B. 0.2 C. 0.4 D. 0.5 9. 掷一枚不均匀硬币,正面朝上的概率为 $\frac{2}{3}$,将此硬币连掷 4 次,则恰好 3 次正面朝上的概率是($\frac{C}{3}$)
A. $\frac{8}{81}$ B. $\frac{8}{27}$ C. $\frac{32}{81}$ D. $\frac{3}{4}$
10. 设 $A \setminus B$ 为两个随机事件,则 $(A \cup B)A = (B)$
A. AB B. A C. B D. $A \cup B$
12. 设随机事件 $A \subseteq B$ 相互独立, $P(A) = P(B) = 0.5$,则 $P(A \cup B) = 0.75$

13. 设随机事件 A 与 B 相互独立, $P(A)$ = 0.2, $P(B)$ = 0.8,则 $P(A \mid B)$ =
14. 从分别标有 1, 2, …, 9 号码的九件产品中随机取三次,每次取一件,取后放回,则取得的三件产品
的标号都是偶数的概率为
15. 设两两独立的三个随机事件 A 、 B 、 C 满足 $ABC = \Phi$,且 $P(A) = P(B) = P(C) = x$,则当
$x = 1/2$ \exists $P(A \cup B \cup C) = \frac{3}{4}$.
16. 把三个不同的球随机地放入三个不同的盒中,则出现两个空盒的概率为1/9
17. 设随机事件 A 与 B 相互独立, A 发生 B 不发生的概率与 B 发生 A 不发生的概率相等,且 $P(A) = \frac{1}{3}$,
则 $P(B) = \underline{1/3}$.
18. 先后投掷两颗骰子,则点数之和不小于 10 的概率为
19. 设 A 、 B 为随机事件,且 A \subset B ,则 $\overline{A \cup B}$ 等于(\overline{B})
A. \overline{A} B. \overline{B} C. \overline{AB} D. $\overline{A} \cup \overline{B}$
20. 同时掷 3 枚均匀硬币,则至多有 1 枚硬币正面向上的概率为 (D)
A. $\frac{1}{8}$ B. $\frac{1}{6}$ C. $\frac{1}{4}$ D. $\frac{1}{2}$
21. 某地区成年人患结核病的概率为 0.015, 患高血压病的概率为 0.08, 设这两种病的发生是相互独立的,则该地区内任一成年人同时患有这两种病的概率为
22. 一批产品中有 10 个正品和 2 个次品,现随机抽取两次,每次取一件,取后放回,则第二次取出的是次品的概率为
23. 设 A 、 B 、 C 为三个随机事件, $P(A) = P(B) = P(C) = \frac{1}{4}$, $P(AB) = P(BC) = P(AC) = \frac{1}{6}$,
$P(ABC) = 0$, $\bigcup P(A \cup B \cup C) = \frac{1/4}{2}$.
24. 10 粒围棋子中有 2 粒黑子, 8 粒白子, 将这 10 粒棋子随机地分成两堆, 每堆 5 粒,则两堆中各有 1
粒黑子的概率为 $\frac{C_8^4 C_2^1}{C_{10}^5}$.

25. 设A、B为随机事件,P(B) > 0,证明: $P(A \mid B) = 1 - P(A \mid B)$.

证明:
$$P(A|B) + P(\overline{A}|B) = \frac{P(AB)}{P(B)} + \frac{P(\overline{A}B)}{P(B)} = \frac{P(AB) + P(B) - P(AB)}{P(B)} = 1$$

所以, $P(A \mid B) = 1 - P(\overline{A} \mid B)$

26. 设随机事件 A 与 B 互不相容,且有 P(A) > 0,P(B) > 0,则下列关系成立的是(B)

A. A, B相互独立

- B. A,B不相互独立
- C. A , B 互为对立事件
- D. A, B 不互为对立事件

27. 己知 P(A) = 0.3, P(B) = 0.5, $P(A \cup B) = 0.6$, 则 P(AB) = (B)C. 0.8 A. 0.15 B. 0.2 D. 1 28. 已知 P(A) = 0.3, P(B) = 0.5, $P(A \cup B) = 0.8$,那么 $P(\overline{AB}) = 1$, $P(\overline{AB}) = 0.2$. 29. 一袋中装有两种球: 白色球和花色球.已知白色球占总数的 30%,又在花色球中有 50%涂有红色.现从 袋中任取一球,则此球涂有红色的概率为 0.35 30. 观察四个新生儿的性别,设每一个出生婴儿是男婴还是女婴概率相等,则恰有 2 男 2 女的概率为 31.同时掷 3 颗骰子,则至少有一颗点数为偶数的概率为_____<mark>7/8</mark>____,又若将一颗骰子掷 100 次,则出 现偶数点的次数大于 60 次的概率近似为 $1-\Phi(2)$. 32. 袋中装有编号为 1, 2, 3, 4, 5, 6, 7 的 7 张卡片, 今从袋中任取 3 张卡片, 则所取出的 3 张卡片 中有 6 无 4 的概率为_____ 2/7 33. 加工某种零件,如生产情况正常,则次品率为3%,如生产情况不正常,则次品率为20%,按以往经 验,生产情况正常的概率为80%,①任取一只零件,求它是次品的概率.②已知所制成的一个零件是次 品,求此时生产情况正常的概率. \mathbf{M} : 令 A = "零件为次品", B = "生产情况正常" 依题意, P(B) = 0.8, $P(\overline{B}) = 0.2$, P(A|B) = 0.03, $P(A|\overline{B}) = 0.2$ ① $P(A) = P(B)P(A|B) + P(\overline{B})P(A|\overline{B}) = 0.8 \times 0.03 + 0.2 \times 0.2 = 0.064$ $(2) P(B|A) = \frac{P(B)P(A|B)}{P(A)} = \frac{0.8 \times 0.03}{0.064} = 0.375$ 34. 设 $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, $P(AB) = \frac{1}{6}$, 则事件 A 与 B (A) C. 互不相容 D. 互为对立事件 A. 相互独立 35. 设 $P(A) = \frac{1}{3}$, $P(A \cup B) = \frac{1}{2}$, $P(AB) = \frac{1}{4}$, 则 $P(B) = \frac{5/12}{2}$.

36. 设 P(A) = 0.8, P(B) = 0.4, $P(B \mid A) = 0.25$,则 $P(A \mid B) = 0.5$

37. 若 1, 2, 3, 4, 5 号运动员随机排成一排,则 1 号运动员站在正中间的概率为_____<u>1/5</u>______

38. 已知一批产品中有95%是合格品,检验产品质量时,一个合格品被误判为次品的概率为0.02,一个次品被误判为合格品的概率是0.03,求:(1)任意抽查一个产品,它被判为合格品的概率;(2)一个经检查被判为合格的产品确实是合格品的概率.

解: $\Diamond A =$ "判为合格品", B = "产品合格"

依题意,
$$P(B) = 0.95, P(\overline{B}) = 0.05$$
, $P(A|B) = 1 - 0.02 = 0.98$, $P(A|\overline{B}) = 0.03$

(1)
$$P(A) = P(B)P(A|B) + P(\overline{B})P(A|\overline{B}) = 0.95 \times 0.98 + 0.05 \times 0.03 = 0.9325$$

(2)	$P(R \mid A) =$	$\frac{P(B)P(A B)}{P(A B)}$	-0.95×0.98	– n oos <i>i</i>
(2)	I(D A) =	P(A)	0.9325	— 0.770 4

39.	从一批产品中随机抽两次,	每次抽1件。	以A表示事件	"两次都抽得正品",	B 表示事件	"至少抽得
_	一件次品",则下列关系式中	正确的是(『))			

A. $A \subset B$

B. $B \subset A$

 $C. \quad A = B$

D. $A = \overline{B}$

40. 对一批次品率为 p(0 的产品逐一检测,则第二次或第二次后才检测到次品的概率为(<math>A)

A. *p*

B. 1 - p

C. p(1-p)

D. p(2-p)

41. 设 $A \setminus B$ 为随机事件, $A \cup B$ 互不相容,P(B) = 0.2,则P(AB) = 0.2.

42. 袋中有50个球,其中20个黄球、30个白球,今有2人依次随机地从袋中各取一球,取后不放回, 则第2个人取得黄球的概率为 2/5

43. 某宾馆大楼有6部电梯,各电梯正常运行的概率均为0.8,且各电梯是否正常运行相互独立。试计算:

- (1) 所有电梯都正常运行的概率 p_1 ;
- (2) 至少有一台电梯正常运行的概率 p_{2} ;
- (3) 恰有一台电梯因故障而停开的概率 p_3 .

\mathbf{p}_1 = 0.8^3

(2)
$$p_2 = 1 - 0.2^3$$

(3)
$$p_3 = 3 \times 0.2 = 0.6$$

44. 设事件 A = B 互不相容,且 P(A) > 0, P(B) > 0,则有(A)

A. $P(A \cup B) = P(A) + P(B)$

B.
$$P(AB) = P(A)P(B)$$

C. $A = \overline{B}$

D.
$$P(A | B) = P(A)$$

45. 某人独立射击三次,其命中率为 0.8,则三次中至多击中一次的概率为(D)

A. 0.002

B. 0.008

c. 0.08

D. 0.104

46. 设 P(A) = 0.4, P(B) = 0.5, 若 A 、 B 互不相容,则 P(AB) = 1

47. 某厂产品的次品率为 5%, 而正品中有 80%为一等品, 如果从该厂的产品中任取一件来检验, 则检验 结果是一等品的概率为 0.76

48. 设A与B互为对立事件,且P(A) > 0, P(B) > 0,则下列各式中错误的是(B)

A. P(A) = 1 - P(B) B. P(AB) = P(A)P(B) C. $P(A \cup B) = 1$ D. P(AB) = 1

49. 设 $A \setminus B$ 为两个随机事件,且P(A) > 0,则 $P(A \cup B \mid A) = ($ D)

A. $P(AB)$	B. <i>P</i> (<i>A</i>)	C. <i>P</i> (<i>B</i>)	D. 1
50. 设事件 A 、 B 相	互独立,且 $P(A) = 0.2$,	$P(B) = 0.4 , \ \mathbb{M} P(A \cup B)$	= 0.52 .
51. 从 0, 1, 2, 3, 4	五个数中任意取三个数,	则这三个数中不含 0 的概率	率为。
52. 设 $P(A) = \frac{1}{3}$, P	$(A \cup B) = \frac{1}{2}, \coprod A = B$	互不相容,则 $P(\overline{B}) = \phantom{AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	<u>5/6</u> °
	$\frac{1}{3}$,其次品率 $\frac{1}{3}$,其次品率 $\frac{1}{3}$, $\frac{1}{3}$	3	其次品率为 10%, 从这批产品
	$P(B) = 0.5$, $\mathbb{E} P(\overline{A} \mid \overline{B})$		
$ \mathbf{\widetilde{R}}: P(\overline{A} \mid \overline{B}) = 0.3 \Longrightarrow $	$\Rightarrow \frac{P(\overline{AB})}{P(\overline{B})} = 0.3 \Rightarrow \frac{P(\overline{AC})}{1 - P(\overline{AC})}$	$\frac{\overline{OB}}{B} = 0.3$	
$\frac{1 - (P(A) + P(B) - B)}{1 - P(B)}$	$\frac{P(AB)}{} = 0.3 \Rightarrow \frac{1 - (0.4)}{}$	$\frac{+0.5 - P(AB)}{1 - 0.5} = 0.3 \Rightarrow F$	P(AB) = 0.05
55. 设 <i>A、B</i> 为随机	事件,且 $P(B) > 0$, $P(A)$	A B) = 1,则有(
$A. P(A \cup B) > P(A $	A) B. $P(A \cup B) > P$	P(B) C. $P(AB) = P(B)$	$D. P(A \cup B) = P(B)$
56. 一批产品中有 30% 级品的概率是(取出的4个样品中恰有2个一
A. 0.168		c. 0.309	D. 0.360
57. 已知 $A \subset B$, $P($	A) = 0.2, $P(B) = 0.3$,	则 $P(AB) = 0$	·
者,则 P(男子 色]	言)= <u>2/3</u>	<u></u> .	现随机地选一人,发现是色盲的 3 件中恰有一件次品的概率
A. $\frac{1}{60}$	B. $\frac{7}{45}$	C. $\frac{1}{5}$ D.	$\frac{7}{15}$
60. 设 <i>A</i> 与 <i>B</i> 是两个隙	可机事件,已知 $P(A) = 0.4$	$4, P(B) = 0.6, P(A \cup B) =$	= 0.7 , \emptyset $P(\overline{AB}) = _{\underline{0.3}}$.
61. 设事件 A 与 B 相	互独立,且 $P(A) = 0.3$,	$P(B) = 0.4, \square P(A \cup B)$	= 0.58

62. 一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二 次取得白球的概率 p = 21/100_______.

63. 设有两种报警系统 I 与 II,它们单独使用时有效的概率分别为 0.92 与 0.93,且已知在系统 I 失效的 条件下,系统Ⅱ有效的概率为0.85,试求:

(1) 系统 Ⅰ与Ⅱ同时有效的概率; (2) 至少有一个系统有效的概率.

解: 依题意, $P(I) = 0.92, P(II) = 0.93, P(II | \overline{I}) = 0.85$

(1)
$$P(II | \overline{I}) = 0.85 \Rightarrow \frac{P(\overline{I}II)}{P(\overline{I})} = 0.85 \Rightarrow \frac{P(II) - P(I \cap II)}{1 - P(I)} = 0.85$$

$$\Rightarrow \frac{0.93 - P(I \cap II)}{1 - 0.92} = 0.85 \Rightarrow P(I \cap II) = 0.862$$

(2)
$$P(I \cup II) = P(I) + P(II) - P(I \cap II) = 0.92 + 0.93 - 0.862 = 0.988$$

64. 设 $A \setminus B$ 为两事件, P(B) > 0 , 若 P(A|B) = 1 ,则必有 (C)

- A. $A \subset B$
- B. P(A) = P(B) C. $P(A) = P(A \cup B)$ D. P(AB) = P(A)

65. 设事件 A 、 B 互不相容,已知 P(A) = 0.4 , P(B) = 0.5 ,则 P(AB) = (A, D)

- A. 0.1
- C. 0.9

66. 已知事件 $A \times B$ 相互独立,且 P(A) > 0, P(B) > 0,则下列等式成立的是(B)

- A. $P(A \cup B) = P(A) + P(B)$ B. $P(A \cup B) = 1 P(\overline{A})P(\overline{B})$
- C. $P(A \cup B) = P(A)P(B)$ D. $P(A \cup B) = 1$

67. 某人射击三次, 其命中率为 0.8, 则三次中至多命中一次的概率为(D)

- A. 0.002
- B. 0.04
- C. 0.08
- D. 0.104

68. 已知 $P(A) = \frac{3}{A}$, $P(B) = \frac{1}{A}$, $B \subset A$, 则有 $P(B \mid A) = \frac{1/3}{A}$.

69. 己知 $P(A) = \frac{1}{2}$, $P(B) = \frac{1}{3}$, 且 A 、 B 相互独立,则 $P(AB) = \frac{1/3}{2}$.

- 70. 袋中有5个黑球3个白球,从中任取的4个球中恰有3个白球的概率为____1/14__
- 71. 设某班有学生 100 人,在概率论课程学习过程中,按照学习态度可分为 A: 学习很用功; B: 学习较 用功; C: 学习不用功。这三类分别占总人数 20%, 60%, 20%。这三类学生概率论考试能及格的概率依 次为 95%, 70%, 5%。试求:
- (1) 该班概率论考试的及格率;
- (2) 如果某学生概率论考试没有通过,该学生是属学习不用功的概率.

解: 令 D = "及格"

(1)
$$P(D) = P(A)P(D|A) + P(B)P(D|B) + P(C)P(D|C)$$

 $=0.2\times0.95+0.6\times0.7+0.2\times0.05=0.62$

(2)
$$P(C|\overline{D}) = \frac{P(C)P(\overline{D}|C)}{P(\overline{D})} = \frac{0.2 \times 0.95}{1 - 0.62} = 0.5$$

72. 设A, B 为两个互不相容事件,则下列各式中错误的是(C)

A. P(AB) = 0

B.
$$P(A \cup B) = P(A) + P(B)$$

- C. P(AB) = P(A)P(B)
- D. P(B-A) = P(B)
- 73. 设事件 A, B 相互独立, 且 $P(A) = \frac{1}{3}$, $P(B) = \frac{1}{5}$, 则 $P(A \mid B) = (D)$
 - A. $\frac{1}{15}$
- B. $\frac{1}{5}$ C. $\frac{4}{15}$ D. $\frac{1}{3}$
- 74. 设 $A \setminus B$ 为两随机事件,且 $A \subseteq B$ 互不相容,P(A) = 0.3, P(B) = 0.4,则 P(AB) = 0.3
- 75. 盒中有4个棋子,其中白子2个,黑子2个,今有1人随机地从盒中取出2子,则这2个子颜色相 同的概率为 1/3
- 76. 某气象站天气预报的准确率 0.8, 且各次预报之间相互独立.试求:
 - (1) 5次预报全部准确的概率 p_1 ;
 - (2) 5次预报中至少有1次准确的概率 p_2 ;
 - (3) 5次预报中至少有 4次准确的概率 p_3 .
 - **解**: (1) $p_1 = 0.8^5$
 - (2) $p_2 = 1 0.2^5$
 - (3) $p_3 = 5 \times 0.8^4 \times 0.2 + 0.8^5$

★第二章 随机变量及其概率分布

- 1. 已知随机变量 X 的概率密度为 $f_X(x)$,令 Y = -2X,则 Y 的概率密度 $f_Y(y)$ 为(D)
- A. $2f_X(-2y)$ B. $f_X\left(\frac{-y}{2}\right)$ C. $-\frac{1}{2}f_X\left(\frac{-y}{2}\right)$ D. $\frac{1}{2}f_X\left(\frac{-y}{2}\right)$
- 2. 如果函数 $f(x) = \begin{cases} x, & a \le x \le b \\ 0, &$ 其他 是某连续随机变量 X 的概率密度,则区间 [a,b] 可以是(C
 - A. (0,1)
- B. (0, 2)
- C. $(0, \sqrt{2})$

- 3. 下列各函数中是随机变量分布函数的为(B
 - A. $F_1(x) = \frac{1}{1+x^2}, -\infty < x < +\infty$ B. $F_2(x) = \begin{cases} \frac{x}{1+x}, & x > 0 \\ 0, & x < 0 \end{cases}$

 - C. $F_3(x) = e^{-x}, -\infty < x < +\infty$ D. $F_4(x) = \frac{3}{4} + \frac{1}{2\pi} \arctan x, -\infty < x < +\infty$
- 4. 已知随机变量 X 的分布列为

则常数 $a = _____0.1____.$

- 5. 设随机变量 $X \sim N(0,1)$, $\Phi(x)$ 为其分布函数,则 $\Phi(x)+\Phi(-x)=$ ______.
- 6. 已知连续型随机变量X的分布函数为

$$F(x) = \begin{cases} \frac{1}{3}e^x, & x < 0\\ \frac{1}{3}(x+1), & 0 \le x < 2\\ 1, & x \ge 2 \end{cases}$$

设 X 的概率密度为 f(x) ,则当 x < 0时, $f(x) = \frac{1}{3}e^{x}$.

- 7. 设一批产品共有 1000 个,其中有 50 个次品。从中随机地有放回地抽取 500 个产品,X 表示抽到次品 的个数,则 $P\{X = 3\} = ($ C)
- A. $\frac{C_{50}^3 C_{950}^{497}}{C_{500}}$ B. $\frac{A_{50}^3 A_{950}^{497}}{A_{500}}$ C. $C_{500}^3 (0.05)^3 (0.95)^{497}$
- D. $\frac{3}{500}$
- 8. 设连续随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{x}{2}, 0 < x < 2 \\ 0, 其他 \end{cases}$,则 $P\{-1 \le X \le 1\} = (B)$

Λ	ſ
Α	•

A. 0 B. 0.25 C. 0.5

9. 设随机变量 $X \sim N(\mu, \sigma^2)$, 且 F(x) 为 X 的分布函数, $\Phi(x)$ 为标准正态分布函数,则 F(x) 与 $\Phi(x)$

之间的关系为
$$F(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$
.

- 10. 设随机变量 $X \sim B(3,0.4)$,且随机变量 $Y = \frac{X(3-X)}{2}$,则 $P\{Y=1\} = \underline{0.72}$
- 11. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} x, & 0 \le x \le 1 \\ 2 - x, 1 < x \le 2, \\ 0, & \text{其他} \end{cases}$$

求: (1) X 的分布函数 F(x); (2) $P\{X < 0.5\}$, $P\{X > 1.3\}$.

解: (1)
$$x < 0$$
 时, $F(x) = 0$

$$0 \le x < 1$$
 $\forall f(x) = \int_{-\infty}^{x} f(t) dt = \int_{0}^{x} t dt = \frac{1}{2} x^{2}$

$$2 \le x$$
 时, $F(x) = 1$

所以,
$$F(x) = \begin{cases} 0, x < 0 \\ \frac{1}{2}x, 0 \le x < 1 \\ -\frac{1}{2}x^2 + 2x - 1, 1 \le x < 2 \\ 1, x \ge 2 \end{cases}$$

(2)
$$P{X < 0.5} = F(0.5) = 0.25$$

$$P{X > 1.3} = 1 - P{X \le 1.3} = 1 - F(1.3) = 0.245$$

12. 设随机变量 X 的概率密度为 f(x) ,则 f(x) 一定满足 (C)

$$A. \quad 0 \le f(x) \le 1$$

B.
$$P\{X > x\} = \int_{-\infty}^{x} f(t)dt$$

$$C. \int_{-\infty}^{+\infty} f(x) dx = 1$$

$$D. \quad f(+\infty) = 1$$

13. 已知随机变量X的分布列为

$$\begin{array}{c|ccccc} X & -1 & 2 & 5 \\ \hline P & 0.2 & 0.35 & 0.45 \\ \end{array}$$

则
$$P(\{-2 < X \le 4\} - \{X > 2\}) = ($$
 D)

A. 0

B. 0.2

C. 0.35

D. 0.55

- 14. 设随机变量 $X \sim B(3,0.3)$, 且 $Y = X^2$, 则 $P\{Y = 4\} = 0.189$
- 15. 已知随机变量 X 的分布函数为 $F_X(x)$,则随机变量 Y=3X+2 的分布函数 $F_Y(y)=F_X\left(\frac{y-2}{3}\right)$.
- 16. 已知随机变量 X 的分布函数为 $F(x) = \frac{1}{2} + \frac{1}{\pi} \arctan x$, $-\infty < x < +\infty$,

求: (1) $P\{-1 < X \le \sqrt{3}\}$;

(2) 常数c,使 $P\{X > c\} = \frac{1}{4}$.

解: (1)
$$P\{-1 < X \le \sqrt{3}\} = F(\sqrt{3}) - F(-1) = \frac{7}{12}$$

(2)
$$P\{X > c\} = \frac{1}{4} \Rightarrow 1 - P\{X \le c\} = \frac{1}{4} \Rightarrow 1 - F(c) = \frac{1}{4} \Rightarrow c = 1$$

- 17. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} \frac{1}{2}\cos x, & a < x < b \\ 0, & 其他 \end{cases}$,则区间 (a,b) 是(D)

- A. $(0, \frac{\pi}{2})$ B. $(-\frac{\pi}{2}, 0)$ C. $(-\pi, \pi)$ D. $(-\frac{\pi}{2}, \frac{\pi}{2})$
- 18. 设 $X \sim N(5,4)$,若d满足 $P\{X > d\} = \Phi(1)$,则 $d = _____$.
- 19. 已知X服从两点分布,其分布列为

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P & 0.4 & 0.6 \end{array}$$

那么当 $0 \le x < 1$ 时, X 的分布函数的取值为 $F(x) = \underline{0.4}$

20. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} K(1-x), & 0 < x < 1 \\ 0, & 其他 \end{cases}$$

则 K = 2

- 21. 设某批鸡蛋每只的重量 X (以克计) 服从 $N(50.5^2)$ 分布,
 - (1) 从该批鸡蛋中任取一只, 求其重量不足 45 克的概率;
 - (2) 从该批鸡蛋中任取5只,求至少有2只鸡蛋其重量不足45克的概率.

解: (1)
$$p_1 = P(X < 45) = P\left(\frac{X - 50}{5} < \frac{45 - 50}{5}\right) = 1 - \Phi(1)$$

(2) 令Y为 5 只鸡蛋中,重量不足 45 克的只数,则 $X \sim B(5, p_1)$

$$P(Y \ge 2) = 1 - P(Y < 2) = 1 - P(Y = 0) - P(Y = 1) = 1 - C_5^0 p_1^0 (1 - p_1)^5 - C_5^1 p_1^1 (1 - p_1)^4$$
$$= 1 - (1 - p_1)^5 - 5p_1 (1 - p_1)^4$$

- 22. 设随机变量 $X \sim B(4,0.2)$,则 $P\{X > 3\} = (A)$ A. 0.0016 B. 0.0272 C. 0.4096 D. 0.8192 23. 设随机变量 X 的分布函数为 F(x),下列结论中不一定成立的是(D) A. $F(+\infty) = 1$ B. $F(-\infty) = 0$ D. F(x) 为连续函数 C. $0 \le F(x) \le 1$ 24. 设随机变量 X 的概率密度为 f(x),且 $P\{X \ge 0\} = 1$,则必有(C) B. f(x) 在 $(-\infty,0)$ 内小于零 A. f(x)在 $(0,+\infty)$ 内大于零 $C. \quad \int f(x) dx = 1$ D. f(x) 在 $(0,+\infty)$ 上单调增加 25. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{2\sqrt{2\pi}} e^{-\frac{(x+1)^2}{8}}, -\infty < x < +\infty, 则 <math>X \sim ($ B)B. N(-1,4)D. N(-1,16)A. N(-1,2)C. N(-1.8)26. 设 X 为连续随机变量,c 为一个常数,则 $P\{X = c\} = ______0$ ______. 27. 已知随机变量 X 的概率密度为 $f(x) = \begin{cases} 3\sin 3x, \frac{\pi}{6} < x < \frac{\pi}{3}, \quad \text{则 } P\{X \le \frac{\pi}{4}\} = \frac{\sqrt{2}}{2}. \end{cases}$ 28. 设连续随机变量 X 的分布函数为 $F(x) = \begin{cases} 1 - e^{-2x}, & x > 0 \\ 0, & 其他 \end{cases}$, 其概率密度为 f(x), 则 $f(1) = \frac{2e^{-2}}{2}$. 29. 设随机变量 $X \sim N(2,4)$,则 $P\{X \leq 2\} = _{0.5}$ 30. 设随机变量 X 的分布列为 记 X 的分布函数为 F(x),则 $F(2) = ____1/2$
- 31. 己知随机变量 $X \sim N(0,1)$,则随机变量 Y = 2X + 1 的概率密度 $f_Y(y) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(y-1)}{8}}$.
- 32. 设随机变量 $X \sim N(-1, 2^2)$,则 X的概率密度 f(x) = (A)
 - A. $\frac{1}{2\sqrt{2\pi}}e^{-\frac{(x+1)^2}{8}}$ B. $\frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-1)^2}{8}}$ C. $\frac{1}{2\sqrt{4\pi}}e^{-\frac{(x+1)^2}{4}}$ D. $\frac{1}{2\sqrt{4\pi}}e^{-\frac{(x+1)^2}{8}}$

- 33. 设F(x)和f(x)分别为某随机变量的分布函数和概率密度,则必有(C

- A. f(x) 单调不减 B. $\int_{-\infty}^{+\infty} F(x) dx = 1$ C. $F(-\infty) = 0$ D. $F(x) = \int_{-\infty}^{+\infty} f(x) dx$

- 34. 随机变量 X 在区间 (-2,1) 内取值的概率应等于随机变量 $Y = \frac{X+3}{2}$ 在区间 $\left(\frac{1}{2},2\right)$ 内取值的概率.

- 37. 设随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x < 0 \\ x^2, 0 \le x < 1, & 以 Y 表示对 <math>X$ 的 3 次独立重复观测中事件 $1, & x \ge 1 \end{cases}$

$$\left\{X \leq \frac{1}{2}\right\}$$
 出现的次数,则 $P\left\{Y = 2\right\} = \underline{9/64}$ ______.

- 38. 两门炮轮流向同一目标射击,直到目标被击中为止. 已知第一门炮和第二门炮的命中率分别为 0.5 和 0.6,第一门炮先射,以 X 表示第二门炮所耗费的炮弹数,试求:
 - (1) $P\{X=0\};$ (2) $P\{X=1\}.$

解: (1)
$$P\{X=0\}=0.5$$

(2)
$$P\{X=1\}=0.5\times0.6=0.3$$

- 39. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} K(4x 2x^2), 1 < x < 2 \\ 0, 其他 \end{cases}$,则 K = (C)
 - A. $\frac{5}{16}$
- B. $\frac{1}{2}$
- C. $\frac{3}{4}$
- D. $\frac{4}{5}$
- 40. 设事件 $\{X = K\}$ 表示在n次独立重复试验中恰好成功K次,则称随机变量X服从(B)
 - A. 两点分布
- B. 二项分布
- C. 泊松分布
- D. 均匀分布

- 41. 设随机变量 $X \sim B(n, p)$,则 $P\{X = 0\} = (1-p)^n$.
- 42. 设随机变量 X 的分布函数 $F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & 0 \le x < 1 \\ \frac{2}{3}, & 1 \le x < 3 \\ 1, & x \ge 3 \end{cases}$,则 $P\{X = 1\} = \underline{1/6}$ _____.

44. 设事件 A 在 5 次独立试验中发生的概率为 p ,当事件 A 发生时,指示灯可能发出信号,以 X 表示事件 A 发生的次数.

(1) 当
$$P{X = 1} = P{X = 2}$$
时, 求 p 的值;

(2) 取 p = 0.3, 只有当事件 A 发生不少于 3 次时, 指示灯才发出信号, 求指示灯发出信号的概率.

解: 依题意,
$$X \sim B(5, p)$$
, $P(X = k) = C_5^k p^k (1-p)^{5-k}$, $k = 0,1,2,3,4,5$

(1)
$$\oplus P\{X=1\} = P\{X=2\}$$
, $\#$

$$C_5^1 p^1 (1-p)^4 = C_5^2 p^2 (1-p)^3$$
, 由此解得, $p = \frac{1}{3}$

(2)
$$P(X \ge 3) = P(X = 3) + P(X = 4) + P(X = 5)$$

$$= C_5^3 \cdot 0.4^3 \times 0.6^2 + C_5^4 \cdot 0.4^4 \times 0.6^1 + C_5^5 \cdot 0.4^5 \times 0.6^0 = 0.3174$$

45. 设连续型随机变量X的分布函数为

$$F(x) = \begin{cases} A + Be^{-\frac{x^2}{2}}, & x > 0, \\ 0, & x \le 0 \end{cases}$$

- (1) 求常数 A 和 B;
- (2) 求随机变量X的概率密度;
- (3) 计算 $P\{1 < X < 2\}$.

#: (1)
$$F(+\infty) = \lim_{x \to +\infty} F(x) = \lim_{x \to +\infty} \left(A + Be^{-\frac{x^2}{2}} \right) = A = 1$$

$$F(0+) = \lim_{x \to 0+} F(x) = \lim_{x \to 0+} \left(1 + Be^{-\frac{x^2}{2}}\right) = 1 + B = 0 \Longrightarrow B = -1$$

所以,
$$F(x) = \begin{cases} 1 - e^{-\frac{x^2}{2}}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

(2)
$$f(x) = F'(x) = \begin{cases} xe^{-\frac{x^2}{2}}, x > 0\\ 0, x \le 0 \end{cases}$$

(3)
$$P\{1 < X < 2\} = F(2) - F(1) = e^{-\frac{1}{2}} - e^{-2}$$

46. 下列各函数中可作为随机变量分布函数的是(B))

A.
$$F_1(x) = \begin{cases} 2x, & 0 \le x \le 1 \\ 0, & 其他 \end{cases}$$
 B. $F_2(x) = \begin{cases} 0, & x < 0 \\ x, & 0 \le x < 1 \\ 1, & x \ge 1 \end{cases}$

C.
$$F_3(x) = \begin{cases} -1, & x < -1 \\ x, & -1 \le x < 1 \\ 1, & x \ge 1 \end{cases}$$

D.
$$F_4(x) = \begin{cases} 0, & x < 0 \\ 2x, & 0 \le x < 1 \\ 2, & x \ge 1 \end{cases}$$

47. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} \frac{|x|}{4}, & -2 < x < 2, \\ 0, & \text{其他} \end{cases}$$

则 $P\{-1 < X < 1\} = (A)$

- A. $\frac{1}{4}$ B. $\frac{1}{2}$
- C. $\frac{3}{4}$
- 48. 设随机变量 $X \sim N(2,2^2)$,则 $P\{0 < X \le 4\} = ____0.6826$ _____.(附: $\Phi(1) = 0.8413$)
- 49. 设连续型随机变量 X 的分布函数为

$$F(x) = \begin{cases} 1 - e^{-3x}, & x > 0 \\ 0, & x \le 0 \end{cases}$$

则当x > 0时,X的概率密度 $f(x) = 3e^{-3x}$.

50. 一台仪器装有 6 只相互独立工作的同类电子元件,其寿命 X (单位: 年)的概率密度为

$$f(x) = \begin{cases} \frac{1}{3}e^{-\frac{x}{3}}, & x > 0, \\ 0, & x \le 0 \end{cases}$$

且任意一只元件损坏时这台仪器都会停止工作,试求:

- (1) 一只元件能正常工作 2 年以上的概率;
- (2) 这台仪器在2年内停止工作的概率.

#: (1)
$$P(X \ge 2) = \int_2^{+\infty} f(x) dx = \int_2^{+\infty} \frac{1}{3} e^{-\frac{x}{3}} dx = e^{-\frac{2}{3}}$$

(2) 令 Y 表示"6 只电子元件中正常工作小于 2 年的只数",则 $Y \sim B \left(6, 1 - e^{-\frac{2}{3}} \right)$

$$P(Y \ge 1) = 1 - P(Y = 0) = 1 - C_6^0 \left(1 - e^{-\frac{2}{3}}\right)^0 \left(e^{-\frac{2}{3}}\right)^6 = 1 - e^{-4}$$

51. 设离散型随机变量X的分布律为

F(x)为其分布函数,则F(3) = (D)

- A. 0.2
- B. 0.4
- D. 1
- 52. 设随机变量 $X \sim N(\mu, \sigma^2)$,则随 σ 增大, $P\{X \mu | < \sigma\}$ (A)

- A. 单调增大 B. 单调减少 C. 保持不变

- 54. 设随机变量 X 的概率分布律为

则 $P\{1 \le X \le 3\} = \underline{53/56}$.

- 55. 设随机变量 $X \sim N(2,9)$,则 $Z = \frac{X-2}{2} \sim N(0,1)$ 分布.
- 56. 下列各函数中,可作为某随机变量概率密度的是(A
 - A. $f(x) = \begin{cases} 2x, & 0 < x < 1 \\ 0, & \text{其他} \end{cases}$
- B. $f(x) = \begin{cases} \frac{1}{2}, & 0 < x < 1 \\ 0, & 其他 \end{cases}$
- C. $f(x) = \begin{cases} 3x^2, & 0 < x < 1 \\ -1, & \text{ if the } \end{cases}$ D. $f(x) = \begin{cases} 4x^3, & -1 < x < 1 \\ 0, & \text{ if the } \end{cases}$
- 57. 某种电子元件的使用寿命 X (单位: 小时)的概率密度为 $f(x) = \begin{cases} \frac{100}{x^2}, & x \ge 100 \\ 0, & x < 100 \end{cases}$,任取一只电子

元件,则它的使用寿命在150小时以内的概率为(B)

- B. $\frac{1}{2}$ C. $\frac{1}{2}$
- 58. 下列各表中可作为某随机变量分布律的是(C)

 - C. $\frac{X}{P}$ $\frac{1}{2}$ $\frac{2}{2}$ $\frac{4}{2}$ D. $\frac{X}{P}$ $\frac{1}{2}$ $\frac{1}{2}$
- 59. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} ce^{-\frac{x}{5}}, & x \ge 0, \text{ 则常数 } c \text{ 等于 } (B) \\ 0, & x < 0 \end{cases}$
 - A. $-\frac{1}{5}$
- c. 1
- 60. 已知随机变量 X 服从参数为 λ 的泊松分布,且 $P\{X=0\}=e^{-1}$,则 $\lambda=$ ____1
- 61. 在相同条件下独立地进行 4 次射击,设每次射击命中目标的概率为 0.7,则在 4 次射击中命中目标的 次数 X 的分布律为 $P\{X=i\} = C_4^i \cdot 0.7^i \times 0.3^{4-i}$, i=0,1,2,3,4.

62. 设随机变量 $X \sim N(1,4)$, $\Phi(x)$ 为标准正态分布函数,已知 $\Phi(1) = 0.8413$, $\Phi(2) = 0.9772$,则

$$P\{X | < 3\} = \underline{0.8641}$$
.

- 63. 设随机变量 $X \sim B(4, \frac{2}{3})$,则 $P\{X < 1\} = ____1/81$ _____.
- 64. 已知随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x \le -6\\ \frac{x+6}{12}, & -6 < x < 6, \\ 1, & x \ge 6 \end{cases}$$

则当-6 < x < 6时,X的概率密度 $f(x) = \frac{1}{12}$

65. 设随机变量 X 的分布律为

且 $Y = X^2$, 记随机变量Y的分布函数为 $F_v(y)$,

X	-1	0	1	2	
P	1	3	1	7	
	8	8	16	16	

则
$$F_Y(3) = 9/16$$
.

66. 已知随机变量 X 的分布函数为

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}, & 0 \le x < 1 \\ \frac{2}{3}, & 1 \le x < 3 \\ 1, & x \ge 3 \end{cases}$$

则 $P\{X=1\}=$ (A)

- A. $\frac{1}{6}$ B. $\frac{1}{2}$
- c. $\frac{2}{3}$

68. 在[0,T]内通过某交通路口的汽车数 X 服从泊松分布,且已知 $P\{X=4\}=3P\{X=3\}$,则在[0,T]内 至少有一辆汽车通过的概率为 $1-e^{-12}$.

- 69. 甲在上班路上所需的时间(单位:分) $X \sim N(50, 100)$.已知上班时间为早晨8时,他每天7时出
 - 门, 试求:
 - (1) 甲迟到的概率;
- (2)某周(以五天计)甲最多迟到一次的概率.($\Phi(1) = 0.8413$, $\Phi(1.96) = 0.9750$, $\Phi(2.5) = 0.9938$) 解:

70. 设随机变量 X 在[-1,2]上服从均匀分布,则随机变量 X 的概率密度 f(x) 为(

A.
$$f(x) = \begin{cases} \frac{1}{3}, & -1 \le x \le 2; \\ 0, & 其他. \end{cases}$$

B.
$$f(x) = \begin{cases} 3, & -1 \le x \le 2; \\ 0, & 其他. \end{cases}$$

C.
$$f(x) = \begin{cases} 1, & -1 \le x \le 2; \\ 0, & 其他. \end{cases}$$

D.
$$f(x) = \begin{cases} -\frac{1}{3}, & -1 \le x \le 2; \\ 0, & 其他. \end{cases}$$

- 71. 设随机变量 $X \sim B\left(3, \frac{1}{3}\right)$, 则 $P\{X \ge 1\} = ($
 - A. $\frac{1}{27}$
- B. $\frac{8}{27}$ C. $\frac{19}{27}$ D. $\frac{26}{27}$
- 72. 若随机变量 X 在区间 $[-1,+\infty)$ 内取值的概率等于随机变量 Y = X 3 在区间 $[a,+\infty)$ 内取值的概率, 则 *a* =_____.
- 73. 设离散型随机变量 X 的分布律为 则常数 $c = _____.$

$$\begin{array}{c|ccccc}
X & -1 & 0 & 1 \\
\hline
P & 2c & 0.4 & c
\end{array}$$

- 74. 设离散型随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x < -1; \\ 0.2, & -1 \le x < 0; \\ 0.3, & 0 \le x < 1; \\ 0.6, & 1 \le x < 2; \\ 1, & x \ge 2, \end{cases}$ 75. 设随机变量 X 的分布函数为 $F(x) = \begin{cases} 0, & x < 10; \\ 1 \frac{10}{x}, & x \ge 10. \end{cases}$ 用 Y 表示对 X 的 3 次独立重复观察中事件
- ${X > 20}$ 出现的次数,则 $P{Y > 1} =$ ______.
- 76. 一批产品共10件,其中8件正品,2件次品,每次从这批产品中任取1件,设X为直至取得正品为 止所需抽取次数.
 - (1) 若每次取出的产品仍放回去,求X的分布律;
 - (2) 若每次取出的产品不放回去,求 $P{X = 3}$.

★第三章 多维随机变量及其概率分布

1. 设二维随机向量(X,Y)的联合分布列为

У	0	1	2
0	$\frac{1}{12}$	$\frac{2}{12}$	$\frac{2}{12}$
1	$\frac{1}{12}$	$\frac{1}{12}$	0
2	$\frac{2}{12}$	$\frac{1}{12}$	$\frac{2}{12}$

则 $P{X=0}=($

A.
$$\frac{1}{12}$$
 B. $\frac{2}{12}$ C. $\frac{4}{12}$

B.
$$\frac{2}{12}$$

C.
$$\frac{4}{12}$$

D.
$$\frac{5}{12}$$

2. 设随机变量 X 与 Y 相互独立,且 $P\{X \le 1\} = \frac{1}{2}$, $P\{Y \le 1\} = \frac{1}{3}$,则 $P\{X \le 1, Y \le 1\} = \underline{\hspace{1cm}}$.

3. 设二维随机向量(*X*, *Y*)的联合概率密度为 $f(x, y) = \begin{cases} e^{-y}, 0 < x < y \\ 0 &$ 其他

(1) 求(X,Y)分别关于X和Y的边缘概率密度 $f_{Y}(x)$, $f_{Y}(y)$;

- (2) 判断 X 与 Y 是否相互独立,并说明理由:
- (3) 计算 $P{X+Y \leq 1}$.

4. 先后投掷两颗骰子,则点数之和不小于 10 的概率为

5. 设随机向量(X,Y)的概率密度为 $f(x,y) = \begin{cases} c, & x^2 + y^2 \le 1 \\ 0, & 其他 \end{cases}$,则常数c =______.

关于Y的边缘概率密度 $f_{Y}(y) =$ ______

7. 从 1, 2, 3 三个数字中随机地取一个, 记所取的数为 X, 再从 1 到 X 的整数中随机地取一个, 记为 Y, 试 求(X,Y)的联合分布列.

8. 设二维随机向量(X,Y)的概率密度为f(x,y),则 $P\{X>1\}=($

$$A. \int_{-\infty}^{1} dx \int_{-\infty}^{+\infty} f(x, y) dy$$

B.
$$\int_{1}^{+\infty} dx \int_{-\infty}^{+\infty} f(x, y) dy$$

$$C. \int_{1}^{1} f(x, y) dx$$

$$D. \int_{1}^{+\infty} f(x, y) dx$$

9. 设二维随机向量 (X,Y) 的概率密度为 $f(x,y) = \frac{1}{2\pi}e^{-\frac{x^2+y^2}{2}}$,则(X,Y)关于Y 的边缘概率密度

$$f_{\gamma}(y) = \underline{\hspace{1cm}}$$

10. 设随机变量 X 服从区间 [0,0.2] 上的均匀分布,随机变量 Y 的概率密度为

$$f_Y(y) = \begin{cases} 5e^{-5y}, & y \ge 0 \\ 0, & y < 0 \end{cases}$$

且X与Y相互独立. 求:

- (1) X 的概率密度; (2) (X,Y) 的概率密度; (3) $P\{X > Y\}$.
- 11. 设随机变量 $X \sim N(-1,5)$, $Y \sim N(1,2)$, 且 X 与 Y 相互独立,则 X 2Y 服从()分布.
 - A. N(-3, 1)
- B. N(-3.13)
- C. N(-3,9)
- D. N(-3,1)

12. 设随机变量 $X \times Y$ 有联合概率密度

$$f(x,y) = \begin{cases} cxy, & 0 < x < 1, 0 < y < 2 \\ 0, & \sharp \dot{\Xi} \end{cases},$$

- (1) 确定常数c;
- (2) $X \times Y$ 是否相互独立(要说明理由).
- 13 . 已知二维随机向量 (X,Y) 服从区域 $G:0 \le x \le 1,0 \le y \le 2$ 上的均匀分布,则

$$P\bigg\{0\leq Y\leq \frac{1}{2}\bigg\}=\underline{\qquad}.$$

14. 设二维随机向量(X,Y)的联合分布列为

试求: (1)(X,Y)关于X和关于Y的边缘分布列;

- (2) X与Y是否相互独立?为什么?
- (3) $P{X + Y = 0}$.
- 15. 设二维随机向量(X,Y)的联合分布列为

 $2 \qquad \frac{1}{3} \qquad \qquad \alpha \qquad \qquad \beta$

若X与Y相互独立,则()

A.
$$\alpha = \frac{2}{9}$$
, $\beta = \frac{1}{9}$

B.
$$\alpha = \frac{1}{9}, \ \beta = \frac{2}{9}$$

C.
$$\alpha = \frac{1}{6}, \ \beta = \frac{1}{6}$$

D.
$$\alpha = \frac{5}{18}$$
, $\beta = \frac{1}{18}$

16. 设二维随机向量(X,Y)在区域 $G:0\leq x\leq 1,0\leq y\leq 2$ 上服从均匀分布, $f_Y(y)$ 为(X,Y)关于Y的

边缘概率密度,则 $f_Y(1) = ($)

B.
$$\frac{1}{2}$$

18. 设二维随机向量 $(X,Y) \sim N(0,0,4,4,0)$,则 $P\{X>0\} =$ _____.

19. 设二维随机向量
$$(X,Y)$$
 的概率密度为 $f(x,y) = \frac{1}{2\pi} e^{-\frac{x^2+y^2}{2}}$, $-\infty < x, y < +\infty$

- (1) 求(X,Y)关于X和关于Y的边缘概率密度;
- (2) 问X与Y是否相互独立,为什么?
- 20. 设二维随机向量(X,Y)的联合分布函数F(x,y),其联合分布列为

Y X	0	1	2
-1	0. 2	0	0.1
0	0	0.4	0
1	0.1	0	0.2

则 F(1,1) = ()

21. 设随机向量
$$(X,Y)$$
的联合概率密度为 $f(x,y) = \begin{cases} \frac{1}{8}(6-x-y), 0 < x < 2, 2 < y < 4\\ 0, 其它 \end{cases}$

 $P\{X < 1, Y < 3\} = ()$

A.
$$\frac{3}{8}$$

B.
$$\frac{5}{8}$$

c.
$$\frac{4}{8}$$

D.
$$\frac{7}{9}$$

22. 设随机变量 X 与 Y 相互独立, 其概率密度各为

$$f_X(x) = \begin{cases} e^{-x}, & x > 0 \\ 0, & x \le 0 \end{cases}, \qquad f_Y(y) = \begin{cases} e^{-y}, & y > 0 \\ 0, & y \le 0 \end{cases}$$

则二维随机向量(X,Y)的联合概率密度f(x,y) =______.

23. 设二维随机向量(X,Y)的联合分布列为

Y	1	2	3
-1	2/9	a/6	1/4
0	1/9	1/4	a^2

则常数 $a = _____$.

24. 设二维随机向量(X,Y)的概率密度为 $f(x,y) = \begin{cases} \frac{1}{3}(x+y), 0 \le x \le 2, 0 \le y \le 1\\ 0,$ 其它

边缘概率密度 $f_{x}(x) =$ ______.

25. 设二维随机向量(X,Y)的联合分布列为

Y	0	1	2
0	$\frac{1}{4}$	$\frac{1}{6}$	$\frac{1}{8}$
1	$\frac{1}{4}$	$\frac{1}{8}$	$\frac{1}{12}$

- (1) 求(X,Y)关于X、Y的边缘分布列;
- (2) X 与 Y 是否相互独立:
- (3) 计算 $P{X + Y = 2}$.
- 26. 设二维随机变量(X,Y)的分布律为

則
$$P{X + Y = 0} = ($$
)
A. 0.2
B. 0.3
C. 0.5
D. 0.7

27. 设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} c, & -1 < x < 1, -1 < y < 1 \\ 0, & 其他 \end{cases}$$
, 则常数 $c = ($

A.
$$\frac{1}{4}$$

B.
$$\frac{1}{2}$$

28. 设 $(X,Y) \sim N(0,0,1,1,0)$,则(X,Y)关于X的边缘概率密度 $f_X(x) =$ ______

29. 设
$$(X,Y)$$
的概率密度为 $f(x,y) =$
$$\begin{cases} \frac{1}{4}xy, & 0 \le x \le 2, 0 \le y \le 2 \\ 0, & \text{其他} \end{cases}$$
, 则 $P\{X \le 1, Y \le 1\} =$ ______.

30. 设随机变量 X 与 Y 相互独立,且 X,Y 的分布律分别为

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P & \frac{1}{4} & \frac{3}{4} \end{array}$$

试求: (1) 二维随机变量(X,Y)的分布律; (2) 随机变量Z = XY的分布律.

31. 设二维随机变量 (X,Y) 的联合概率密度为 $f(x,y) = \begin{cases} 2e^{-(x+2y)}, x > 0, y > 0 \\ 0, 其它 \end{cases}$,则 $P\{X < Y\} = ($

A.
$$\frac{1}{4}$$

B.
$$\frac{1}{3}$$

C.
$$\frac{2}{3}$$

D.
$$\frac{1}{2}$$

32. 设随机变量 X 与 Y 相互独立, 其联合分布律为

则有()

A.
$$\alpha = 0.10$$
, $\beta = 0.22$

B.
$$\alpha = 0.22$$
, $\beta = 0.10$

C.
$$\alpha = 0.20$$
, $\beta = 0.12$

D.
$$\alpha = 0.12$$
, $\beta = 0.20$

- 33. 有十张卡片,其中六张上标有数字 3,其余四张上标有数字 7,某人从中随机一次取两张,设 X 表示抽取的两张卡片上的数字之和,Y 表示两个数字差的绝对值,则(X,Y)的联合分布律为______.
- 34. 设随机变量 X , Y 都服从标准正态分布,且 X 与 Y 相互独立,则 X , Y 的联合概率密度 $f(x,y) = _____.$
- 35. 设随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} \frac{1}{2}e^{-\frac{x}{2}}, & x > 0, 0 \le y \le 1\\ 0, & 其它 \end{cases},$$

则(X,Y)关于Y的边缘密度 $f_v(y) =$ ______.

36. 设二维随机变量(X,Y)的概率密度为

$$f(x,y) = \begin{cases} ke^{-3x-4y}, & x \ge 0, y \ge 0 \\ 0, & 其他 \end{cases}$$

- (1) 求常数k;
- (2) $\bar{x} P\{0 < X < 1, 0 < Y < 2\}$;
- (3) X与Y是否相互独立.
- 37. 甲从 1, 2, 3 中随机抽取一数,若甲取得的是数 k ,则乙再从 1 到 k 中随机抽取一数,以 X 和 Y 表示甲乙各取得的数,分别求 X 和 Y 的分布律.
- 38. 设随机变量 X 与 Y 相互独立,它们的分布律分别为

$$\begin{array}{c|ccc} Y & -1 & 0 \\ \hline P & \frac{1}{4} & \frac{3}{4} \end{array}$$

则 $P{X + Y = 1} =$ _____

39. 设二维随机变量(X,Y)的概率密度为

$$f(x, y) = \begin{cases} xe^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{其他} \end{cases}$$

- (1) 求(X,Y)分别关于X, Y的边缘概率密度 $f_X(x)$, $f_Y(y)$;
- (2) 判定X,Y的独立性,并说明理由;
- (3) 求 $P{X > 1, Y > 1}$.
- 40. 已知 X , Y 的联合概率分布如下表, F(x,y) 为其联合分布函数,则 $F(0,\frac{1}{2}) = ($

Х	-1	0	2
0	0	1/6	5/12
1/3	1/12	0	0
1	1/3	0	0

A. 0

B. $\frac{1}{12}$

c. $\frac{1}{6}$

D. $\frac{1}{4}$

41. 设二维随机变量(X,Y)的联合概率密度为

$$f(x,y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0 \\ 0, & \text{ } \sharp \dot{\Xi} \end{cases},$$

则 $P\{X \ge Y\} = ($)

A. $\frac{1}{4}$

B. $\frac{1}{2}$

C. $\frac{2}{3}$

 $\frac{3}{4}$

42. 设随机变量(X,Y)的联合分布如下表,则 α =

Х	1	2
1	$\frac{1}{6}$	$\frac{1}{9}$
2	$\frac{1}{2}$	α

43. 设随机变量 (X,Y) 的概率密度为 $f(x,y) = \begin{cases} xy & 0 \le x \le 1, 0 \le y \le 2 \\ 0 & \text{其他} \end{cases}$,则 X 的边缘概率密度

$$f_X(x) = \underline{\hspace{1cm}}$$

44. 设随机变量(X,Y)服从区域D上的均匀分布,其中区域D是直线y=x, x=1和x轴所围成的三 角形区域,则(X,Y)的概率密度 f(x,y) =_____

45. 设二维随机变量(X, Y)的概率密度为

$$f(x, y) = \begin{cases} 4xy, & 0 \le x \le 1, & 0 \le y \le 1; \\ 0, & 其他, \end{cases}$$

则当 $0 \le x \le 1$ 时,(X, Y) 关于X的边缘概率密度为 $f_X(x) = ($

A.
$$\frac{1}{2x}$$

C.
$$\frac{1}{2y}$$
 D. 2y

46. 设二维随机变量(X, Y)的分布律为

Y	1	2	3	
1	$\frac{1}{10}$	$\frac{2}{10}$	$\frac{2}{10}$	
2	$\frac{3}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	

则
$$P\{XY = 2\} = ($$
) A. $\frac{1}{5}$ B. $\frac{3}{10}$ C. $\frac{1}{2}$ D. $\frac{3}{5}$

A.
$$\frac{1}{5}$$

B.
$$\frac{3}{10}$$

C.
$$\frac{1}{2}$$

D.
$$\frac{3}{5}$$

47. 设二维随机变量 (X, Y) 的概率密度为 $f(x, y) = \begin{cases} \frac{1}{4}, & -1 \le x \le 1, -1 \le y \le 1; \\ 0, & 其他, \end{cases}$

则
$$P{X + Y \le 2} =$$
_____.

48. 设二维随机变量(X, Y)的分布律为

Y	1	2	3
1	$\frac{1}{6}$	$\frac{1}{8}$	$\frac{1}{4}$
2	$\frac{1}{12}$	$\frac{1}{8}$	$\frac{1}{4}$

则
$$P\{|X-Y|=1\}=$$
______.

- 49. 设二维随机变量 (X, Y) 的概率密度为 $f(x, y) = \begin{cases} e^{-(x+y)}, & x > 0, y > 0; \\ 0, & 其他. \end{cases}$
 - (1) 分别求 (X, Y) 关于 X 和 Y 的边缘概率密度;
 - (2) 问: X与Y是否相互独立,为什么?

★第四章 随机变量的数字特征

- 1. 已知随机变量 X 和 Y 相互独立,且它们分别在区间 [-1,3] 和 [2,4] 上服从均匀分布,则 E(XY) = (
 - A. 3

B. 6

C. 10

- D. 12
- 2. 设随机变量 X 服从参数为 2 的泊松分布,则 $E(X^2) =$ ______.
- 3. 设随机变量 X 的概率密度为 $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}, -\infty < x < +\infty$,则 $E(X+1) = \underline{\qquad}$.
- 4. 设随机变量 X 与 Y 相互独立,且 D(X) = 1, D(Y) = 2,则 D(X Y) =______.
- 5. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} cx^{\alpha}, 0 < x < 1 \\ 0, 其他 \end{cases}$,且 E(X) = 0.75,求常数 c 和 α .
- 6. 设随机变量 X_1 与 X_2 相互独立,且 $X_1 \sim N(\mu,\sigma^2)$, $X_2 \sim N(\mu,\sigma^2)$, 令 $X=X_1+X_2$, $Y=X_1-X_2$ 。求: (1) D(X), D(Y);
 - (2) X与Y的相关系数 ρ_{xy} .
- 7. 设离散随机变量X的分布列为

则 D(X) = ()

A. 0.21

B. 0.6

c. 0.84

D. 1.2

- 8. 设随机变量 $X \sim B(30, \frac{1}{6})$,则 E(X) = ()
 - A. $\frac{1}{6}$
- B. $\frac{5}{6}$
- c. $\frac{25}{6}$
- D. 5
- 9. 设随机变量 $X \sim N(1,4)$,则 E(2X+3) =______.
- 10. 设X、Y 为随机变量,且D(X+Y)=7,D(X)=4,D(Y)=1,则Cov(X,Y)=______.
- 11. 设二维随机向量(X,Y)的概率密度为 $f(x,y) = \begin{cases} 2, 0 < x < 1, 0 < y < x \\ 0, 其他 \end{cases}$
 - 求: (1) E(X+Y);
- (2) E(XY);
- (3) $P\{X + Y \le 1\}$.
- 12. 设二维随机向量 $(X,Y)\sim N(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,\rho)$,则下列结论中错误的是()
 - A. $X \sim N(\mu_1, \sigma_1^2)$, $Y \sim N(\mu_2, \sigma_2^2)$

- B. X 与 Y 相互独立的充分必要条件是 $\rho = 0$
- C. $E(X+Y) = \mu_1 + \mu_2$
- D. $D(X+Y) = \sigma_1^2 + \sigma_2^2$
- 13. 设随机变量 $X \times Y$ 都服从区间[0,1]上的均匀分布,则 E(X + Y) = 0

- 14. 设X为随机变量,其方差存在,c为任意非零常数,则下列等式中正确的是()
 - A. D(X+c) = D(X)

- B. D(X + c) = D(X) + c
- C. D(X-c) = D(X)-c
- D. D(cX) = cD(X)
- 15. $\forall E(X) = E(Y) = 2, \quad Cov(X,Y) = -\frac{1}{6}, \quad \emptyset E(XY) = ()$
 - A. $-\frac{1}{6}$ B. $\frac{23}{6}$ C. $\frac{25}{6}$

- 16. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} |x|, -1 < x < 1 \\ 0, 其他 \end{cases}$,则 $E(X) = \underline{\qquad}$
- 17. 设随机变量 X 与 Y 相互独立,且 D(X) = 2 , D(Y) = 1 ,则 $D(X 2Y + 3) = ___$
- 18. 设随机变量 X 的分布列为

记 $Y = X^2$, 求: (1) D(X), D(Y); (2) ρ_{XY} .

- 19. 设随机变量 $X \sim B(100, 0.1)$,则方差 D(X) = (
 - A. 10
- B. 100.1
- D. 3
- 20. 设随机变量 $X \sim U(0,2)$,又设 $Y = e^{-2X}$,则 E(Y) = (
 - A. $\frac{1}{2}(1-e^{-4})$ B. $\frac{1}{4}(1-e^{-4})$ C. $\frac{1}{4}$

- 21. 设电流 I (安) 的概率密度为 $f(x) = \begin{cases} 6x(1-x), 0 < x < 1 \\ 0, 其他 \end{cases}$,电阻 R 的概率密度为 $g(y) = \begin{cases} 2y, 0 < y < 1 \\ 0, 其他 \end{cases}$,

设 I^2 与R相互独立. 试求功率 $W = I^2R$ 的数学期望.

- 22. 设(X,Y)为二维连续随机向量,则X与Y不相关的充分必要条件是(
 - A. X与Y相互独立
- B. E(X + Y) = E(X) + E(Y)
- C. E(XY) = E(X)E(Y)
- D. $(X,Y) \sim N(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, 0)$

23. 设二维随机向量 $(X,Y) \sim N(1,1,4,9,\frac{1}{2})$,则Cov(X,Y) = (A. $\frac{1}{2}$ В. 3 C. 18 D. 36 24. 已知二维随机向量(X,Y)的联合分布列为 则 E(X) = () A. 0.6 B. 0.9 25. 设随机变量 X 的分布列为 26. 己知随机变量 X 服从泊松分布,且 D(X) = 1,则 $P\{X = 1\} =$ ______ 27. 设随机变量 X 与 Y 相互独立,且 D(X) = D(Y) = 1,则 $D(X - Y) = _____$ 28. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} x, & 0 \le x < 1 \\ 2 - x, 1 \le x < 2, \\ 0. & 其它. \end{cases}$ (1) E(X), D(X); (2) $E(X^n)$, 其中n为正整数. 29. 设随机向量 X_1, X_2, \cdots, X_n 相互独立,且具有相同分布列: 则 $D(\overline{X}) = ($

- A. $\frac{pq}{n^2}$ B. $\frac{pq}{n}$ C. pq D. npq 30. 设随机变量 $X \sim B(12,\frac{1}{2})$, $Y \sim B(18,\frac{1}{3})$,且 X 与 Y 相互独立,则 D(X+Y) =______.
- 32. 己知 E(X) = 1, E(Y) = 2, E(XY) = 3, 则 X , Y 的协方差 Cov(X,Y) =_____

33. 设随机变量 X 的分布列为

已知 E(X) = 0.1, $E(X^2) = 0.9$, 试求:

- (1) D(-2X+1); (2) p_1, p_2, p_3 ; (3) X 的分布函数 F(x).
- 34. 设随机变量 X 与 Y 相互独立,且它们分别在区间 [-1, 3] 和 [2, 4] 上服从均匀分布,则 E(XY) = ()
 - A. 1

B. 2

C. 3

- D. 4
- 35. 设随机变量 X 与 Y 相互独立,且有 D(X) = 3 , D(Y) = 1 , 则 D(X Y) = 1 .
- 36. 设随机变量 X , Y 的数学期望与方差都存在,若 Y = -3X + 5 ,则相关系数 $\rho_{xy} =$
- 37. 设(X,Y)为二维随机向量,E(X) = E(Y) = 0,D(X) = 16,D(Y) = 25, $\rho_{XY} = 0.6$,则有 Cov(X,Y) =_____.
- 38. 设随机变量 X 与 Y 满足 E(X) = 1, E(Y) = 0 , D(X) = 9 , D(Y) = 16 ,且 $\rho_{XY} = \frac{1}{2}$, $Z = \frac{X}{2} \frac{Y}{2}$,
 - 求: (1) E(Z) 和 D(Z);
- (2) ρ_{xz} .
- 39. 设随机变量 X 服从参数为 2 的泊松分布,则下列结论中正确的是(
 - A. E(X) = 0.5, D(X) = 0.5
- B. E(X) = 0.5, D(X) = 0.25

 - C. E(X) = 2, D(X) = 4 D. E(X) = 2, D(X) = 2
- 40. 设随机变量 X 与 Y 相互独立,且 $X \sim N(1,4)$, $Y \sim N(0,1)$, 令 Z = X Y ,则 $E(Z^2) = (1,4)$
 - A. 1

B. 4

C. 5

- D. 6
- 41. 己知 D(X) = 4, D(Y) = 25, Cov(X,Y) = 4,则 $\rho_{XY} = ($
 - A. 0.004

- B. 0.04
- C. 0.4

D. 4

- 42. $\forall X \sim B(4, \frac{1}{2})$, $\bigcup E(X^2 + 1) = \underline{\hspace{1cm}}$.
- 43. 设E(X) = 2, E(Y) = 3, E(XY) = 7, 则Cov(2X,Y) =
- 44. 设随机变量 X 的概率密度为

$$f(x) = \begin{cases} cx^2, & -2 \le x \le 2 \\ 0, & 其他 \end{cases}$$

- 试求: (1) 常数c; (2) E(X), D(X); (3) $P\{X E(X) | < D(X)\}$.

- 45. 设随机变量 $X \sim N(1,2^2)$, $Y \sim N(1,2)$, 已知 X 与 Y 相互独立,则 3X 2Y 的方差为 ()
 - A. 8

B. 16

C. 28

- D. 44
- 46. 设X、Y 为随机变量,D(X) = 25,D(Y) = 16,Cov(X,Y) = 8,则相关系数 $\rho_{XY} =$ ______.
- 47. 设随机变量 X 在区间 [0,5] 上服从均匀分布,则 $D(X) = _____.$
- 48. 设 $E(X^2) = 0$,则E(X) =_____.
- 49. 设随机变量 X 与 Y 相互独立,且都服从正态分布 $N(0,\sigma^2)$,记 $U=\alpha X+\beta Y$,(α 与 β 为不相等的常数)。求:
- (1) D(U) 和 D(V);
- (2) U 与V 的相关系数 $ho_{\scriptscriptstyle UV}$.
- 50. 设E(X), E(Y), D(X), D(Y)及Cov(X,Y)均存在,则D(X-Y)=(
 - A. D(X) + D(Y)

B. D(X) - D(Y)

C. D(X) + D(Y) - 2Cov(X,Y)

D. D(X) - D(Y) + 2Cov(X, Y)

51. 已知随机变量 X 的分布律为

且E(X)=1,则常数x=(

X	-2	1	х
Р	$\frac{1}{4}$	p	$\frac{1}{4}$

- A. 2
- B. 4
- C. 6
- D. 8
- 52. 设二维随机变量(X,Y)的分布律为

则 D(X) = ()

A. $\frac{5}{2}$

B. $\frac{13}{8}$

C. $\frac{5}{4}$

D. $\frac{15}{16}$

53. 已知随机变量X的分布律为

则
$$P\{X < E(X)\} = _____.$$

$$\begin{array}{c|cccc} X & -1 & 0 & 5 \\ \hline P & 0.5 & 0.3 & 0.2 \\ \end{array}$$

- 54. 已知 E(X) = -1, D(X) = 3,则 $E(3X^2 2) =$ _____
- 55. 设 X_1 , X_2 与Y均为随机变量,已知 $Cov(X_1,Y)=-1$, $Cov(X_2,Y)=3$,则 $Go(X_1+2X_2,Y)=$ _____.
- 56. 设二维随机变量(X,Y)的分布律为

且已知E(Y)=1,试求: (1) 常数 α , β ; (2) E(XY); (3) E(X).

- 57. 已知随机变量 X 服从参数为 2 的指数分布,则随机变量 X 的期望为(
 - A. $-\frac{1}{2}$

- 58. 设 $X \sim N(0,1)$, $Y \sim B(16,\frac{1}{2})$, 且两随机变量相互独立,则 D(2X+Y) =______.
- 59. 设随机变量 X 只取非负整数值,其概率为 $P\{X = k\} = \frac{a^k}{(1+a)^{k+1}}$,其中 $a = \sqrt{2} 1$,试求 E(X) 及 D(X).
- 60. 2008 年北京奥运会即将召开,某射击队有甲、乙两个射手,他们的射击技术如下表。其中X表示甲 射击环数, Y表示乙射击环数, 试讨论派遣哪个射手参赛比较合理?

X	8	9	10
P	0.4	0.2	0.4

Y	8	9	10
Р	0. 1	0.8	0. 1

61. 设二维随机变量(X, Y)的分布律为

Y	0	1
0	$\frac{1}{3}$	$\frac{1}{3}$
1	$\frac{1}{3}$	0

则(X, Y)的协方差Cov(X,Y)=(

- A. $-\frac{1}{9}$ B. 0 C. $\frac{1}{9}$ D. $\frac{1}{3}$ 62. 设随机变量 $X\sim B\left(18,\frac{1}{3}\right)$, Y 服从参数为 3 的泊松分布,且 X 与 Y 相互独立,则 D (X+Y)=_____.
- 63. 设随机变量 X 的概率密度为 $f(x) = \begin{cases} 2x, & 0 \le x \le 1; \\ & \text{则 } E(|X|) = \underline{}. \end{cases}$
- 64. 己知 *E* (*X*) =2, *E* (*Y*) =2, *E* (*XY*) =4, 则 *X*, *Y* 的协方差 Cov(*X*,*Y*)=
- 65. 设离散型随机变量 X 的分布律为
- , 且已知 E(X)=0.3, 试求:

$$X = 0$$
 1 $P = p_1 = p_2$

(1) p_1, p_2 ; (2) D (-3X+2); (3) X 的分布函数 F(x).

第五章 大数定律及中心极限定理

1. 设 $\Phi(x)$ 为标准正态分布函数, $X_i = \begin{cases} 1, & \text{事件A发生} \\ 0, & \text{事件A不发生} \end{cases}$, $i = 1, 2, \cdots, 100$,且P(A) = 0.8,

 $X_1, X_2, \cdots, X_{100}$ 相互独立。令 $Y = \sum_{i=1}^{100} X_i$,则由中心极限定理知Y的分布函数F(y)近似于(

- B. $\Phi\left(\frac{y-80}{4}\right)$
- C. $\Phi(16y + 80)$ D. $\Phi(4y + 80)$
- 2. 设随机变量 $X \sim U[0,1]$,由切比雪夫不等式可得 $P\left\{\left|X \frac{1}{2}\right| \ge \frac{1}{\sqrt{2}}\right\} \le$
- 3. 设随机变量 X 的期望 E(X) 与方差 D(X) 都存在,则对任意正数 ε ,有()
 - A. $P\{X E(X) | \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$ B. $P\{X E(X) | \ge \varepsilon\} \ge \frac{D(X)}{\varepsilon^2}$
 - C. $P\{X E(X) | \le \varepsilon\} \le \frac{D(X)}{\varepsilon^2}$ D. $P\{X E(X) | \le \varepsilon\} \ge \frac{D(X)}{\varepsilon^2}$
- 4. 设随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立且同分布,它们的期望为 μ ,方差为 σ^2 ,令 $Z_n = \frac{1}{n} \sum_{i=1}^n X_i$,

则对任意正数 ε ,有 $\lim_{n\to\infty} P\{Z_n - \mu | \ge \varepsilon\} =$ __

5. 设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 独立同分布,

$$\begin{array}{c|cc} X_i & 0 & 1 \\ \hline P & 1-p & p \end{array},$$

 $\exists i = 1, 2, \dots, 0$

 $\Rightarrow Y_n = \sum_{i=1}^n X_i$, $n = 1, 2, \dots$, $\Phi(x)$ 为标准正态分布函数,则 $\lim_{n \to \infty} P \left\{ \frac{Y_n - np}{\sqrt{np(1-p)}} \le 1 \right\} = 0$

A. 0

в. $\Phi(1)$

- C. $1 \Phi(1)$
- 6. 设E(X) = -1,D(X) = 4,则由切比雪夫不等式估计概率 $P\{-4 < X < 2\} \ge _____$
- 7. 设随机变量序列 $X_1,X_2,\cdots,X_n,\cdots$ 独立同分布,且 $E(X_i)=\mu$, $D(X_i)=\sigma^2$, $\sigma>0$, $i=1,2,\cdots$. $\Phi(x)$

为标准正态分布函数,则对于任意实数x, $\lim_{n\to\infty}P\left\{\frac{\sum\limits_{i=1}^nX_i-n\mu}{\sqrt{n\sigma}}\geq x\right\}=($)

A. 0

B. $\Phi(x)$

- C. $1 \Phi(x)$
- D. 1

- 8. 一个系统由 100 个互相独立起作用的部件组成,各个部件损坏的概率均为 0.1. 已知必须有 84 个以上 的部件工作才能使整个系统工作,则由中心极限定理可得整个系统工作的概率约为 .(已 知 Φ (2) = 0.9772)
- 9. 设 $X_1, X_2, \dots, X_n, \dots$ 为独立同分布的随机变量序列,且都服从参数为 $\frac{1}{2}$ 的指数分布,则当n 充分大时,

随机变量 $Y = \frac{1}{n} \sum_{i=1}^{n} X_{i}$ 的概率分布近似服从 ()

A.
$$N(2,4)$$

B.
$$N(2, \frac{4}{n})$$

B.
$$N(2, \frac{4}{n})$$
 C. $N(\frac{1}{2}, \frac{1}{4n})$ D. $N(2n, 4n)$

D.
$$N(2n, 4n)$$

- 10 . 设随机变量 X 服从参数为 2 的泊松分布, 试由切比雪夫不等式估计 $P\{X - E(X) | < 2\} \ge$ _____.
- 11. 设随机变量 X 服从区间 [0,1] 上的均匀分布,由切比雪夫不等式可得 $P\left\{\left|X-\frac{1}{2}\right| \geq \frac{1}{2}\right\} \leq \underline{\hspace{1cm}}$
- 12. 设 $X_1, X_2, \cdots, X_n, \cdots$ 为独立同分布的随机变量序列,且均服从参数为 λ ($\lambda > 1$)的指数分布,记 $\Phi(x)$ 为标准正态分布函数,则有(

$$\lambda \sum_{n \to \infty}^{n} X_{i} - n$$
A. $\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_{i} - n\lambda}{\sqrt{n\lambda}} \le x\} = \Phi(x)$
B. $\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_{i} - n\lambda}{\sqrt{n\lambda}} \le x\} = \Phi(x)$

B.
$$\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_i - n\lambda}{\sqrt{n\lambda}} \le x\} = \Phi(x)$$

C.
$$\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_i - n\lambda}{\lambda \sqrt{n}} \le x\} = \Phi(x)$$
D.
$$\lim_{n \to \infty} P\{\frac{\sum_{i=1}^{n} X_i - \lambda}{\sqrt{n\lambda}} \le x\} = \Phi(x)$$

D.
$$\lim_{n \to \infty} P\{\frac{\sum_{i=1} X_i - \lambda}{\sqrt{n\lambda}} \le x\} = \Phi(x)$$

- 13 . 设随机变量 $X \sim B(100, 0.2)$,用中心极限 求 $P\{X > 10\} \approx$. $(\Phi(2.5) = 0.99987)$
- 14. 设相互独立的随机变量序列 $X_1, X_2, \cdots, X_n, \cdots$ 服从相同的概率分布,且 $E(X_i) = \mu$, $D(X_i) = \sigma^2$,

 $\overline{U}\overline{X_n} = \frac{1}{n}\sum_{i=1}^n X_i$, $\Phi(x)$ 为标准正态分布函数,则 $\lim_{n\to\infty} P\left\{\left|\overline{X_n} - \mu\right| \le \frac{\sigma}{\sqrt{n}}\right\} = ($

B.
$$1 - \Phi(1)$$

C.
$$2\Phi(1)-1$$

15. 设m 是n 次独立重复试验中A 发生的次数,p 是事件A 的概率,则对任意正数 ε ,有

 $\lim_{n\to\infty} P\left\{ \left| \frac{m}{n} - p \right| < \varepsilon \right\} = \underline{\hspace{1cm}}.$

16. 设 X_1,X_2,\cdots,X_n 是来自总体 $N(\mu,\sigma^2)$ 的样本,对任意的 $\varepsilon>0$,样本均值 \overline{X} 所满足的切比雪夫不 等式()

A.
$$P\left(\overline{X} - n\mu\right) < \varepsilon \right) \ge \frac{n\sigma^2}{\varepsilon^2}$$

B.
$$P\left(\overline{X} - \mu \right) < \varepsilon \ge 1 - \frac{\sigma^2}{n\varepsilon^2}$$

C.
$$P\left(\overline{X} - \mu \right| \ge \varepsilon \le 1 - \frac{n\sigma^2}{\varepsilon^2}$$

D.
$$P\left\{\overline{X} - n\mu\right| \ge \varepsilon\right\} \le \frac{n\sigma^2}{\varepsilon^2}$$

- 18. 设 X_1, X_2, \cdots, X_n 是来自总体X服从参数为 2 的泊松分布的样本,则当n充分大的时候,随机变量

19. 设随机变量 X_1 , X_2 , …, X_n , …相互独立同分布,且 X_i 的分布律为

$$\begin{array}{c|cccc} X_i & 0 & 1 \\ \hline P & 1-p & p \end{array}$$

 $i=1,2,\cdots,\Phi(x)$ 为标准正态分布函数,

$$\text{III} \lim_{n \to \infty} P \left\{ \frac{\sum_{i=1}^{n} X_i - np}{\sqrt{np(1-p)}} \ge 2 \right\} = ()$$

A. 0

B. 1

- C. $\Phi(2)$
- D. $1-\Phi(2)$
- 20. 一个系统由 100 个互相独立起作用的部件组成,各个部件损坏的概率均为 0.2,已知必须有 80 个以上的部件正常工作才能使整个系统工作,则由中心极限定理可得,整个系统正常工作的概率为_____.

第六章 统计量及其抽样分布

1. 设样本的频数分布为

X	0	1	2	3	4
频数	1	3	2	1	2

则样本方差 $s^2 =$.

- 2. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 为来自总体 X 的样本, \overline{X} 为样本均值,则 $D(\overline{X}) = \underline{\hspace{1cm}}$.
- 3. 设总体 $X \sim N(\mu, \sigma^2)$,其中 μ 已知, σ^2 未知, X_1, X_2, \cdots, X_n 为其样本, $n \geq 2$,则下列说法中正确的是()
 - A. $\frac{\sigma^2}{n}\sum_{i=1}^n (X_i \mu)^2$ 是统计量

B. $\frac{\sigma^2}{n} \sum_{i=1}^n X_i^2$ 是统计量

C. $\frac{\sigma^2}{n-1} \sum_{i=1}^n (X_i - \mu)^2$ 是统计量

- D. $\frac{\mu}{n} \sum_{i=1}^{n} X_i^2$ 是统计量
- 4. 设随机变量 X 与 Y 相互独立,且 $X \sim N(0,5)$, $Y \sim \chi^2(5)$,则随机变量 $Z = \frac{X}{\sqrt{Y}}$ 服从自由度为 5 的分布.
- 6. 设总体 X 服从区间 [-a,a] 上的均匀分布 (a>0) , X_1,X_2,\cdots,X_n 为其样本,且 $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$,则 $E(\overline{X})=$ ________.
- 7. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \dots, X_n 为其样本, S^2 为样本方差,且 $\frac{cS^2}{\sigma^2} \sim \chi^2(n-1)$,则常数 c =_______.
- 8. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, X_3, X_4 是来自 X 的样本, \overline{X} 是样本均值, S^2 是样本方差,则

$$\overline{X} \sim \underline{\qquad}, \quad \frac{4(\overline{X} - \mu)^2}{\sigma^2} \sim \underline{\qquad}, \quad Cov(2X_1, X_3) = \underline{\qquad},$$

9. 设总体 $X \sim N(\mu, \sigma^2)$,其中 μ, σ^2 已知, X_1, X_2, \cdots, X_n $(n \ge 3)$ 为来自总体 X 的样本, \overline{X} 为样本均值, S^2 为样本方差,则下列统计量中服从 t 分布的是(

A.
$$\frac{\overline{X}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}}}$$

B.
$$\frac{\overline{X} - \mu}{\sqrt{\frac{(n-1)S^2}{\sigma^2}}}$$

A.
$$\frac{\overline{X}}{\sqrt{\frac{(n-1)S^2}{\sigma^2}}}$$
B.
$$\frac{\overline{X} - \mu}{\sqrt{\frac{(n-1)S^2}{\sigma^2}}}$$
C.
$$\frac{\overline{X} - \mu}{\sqrt{\frac{(n-1)S^2}{\sigma^2}}}$$
D.
$$\frac{\overline{X} - \mu}{\frac{\sigma/\sqrt{n}}{\sqrt{n}}}$$

D.
$$\frac{\overline{X} - \mu}{\frac{\sigma / \sqrt{n}}{\sqrt{\frac{S^2}{\sigma^2}}}}$$

10. 设总体 X 服从正态分布 N(0,0.25), X_1,X_2,\cdots,X_7 为来自该总体的一个样本, 要使

$$a\sum_{i=1}^{7}X_{i}^{2}\sim\chi^{2}(7)$$
,则应取常数 $a=$ _______.

- 11. 设 X_1, X_2, \dots, X_6 是来自正态总体N(0,1)的样本,则统计量 $\frac{X_1^2 + X_2^2 + X_3^2}{X_1^2 + X_2^2 + X_3^2}$ 服从(
 - A. 正态分布
- B. χ^2 分布
- C. *t* 分布
- D. F 分布
- 12. 设总体 X 的概率密度为 $f(x) = \begin{cases} |x|, -1 < x < 1 \\ 0, 其他 \end{cases}$, $X_1, X_2, \cdots, X_{100}$ 为来自总体 X 的样本, $X_1, X_2, \cdots, X_{100}$ 为来自总体 $X_1, X_2, \cdots, X_{100}$ 为来自总体 $X_1, X_2, \cdots, X_{100}$ 为

均值,则
$$E(\overline{X}) = \underline{\hspace{1cm}}$$

13. 设 X_1, X_2, \cdots, X_n $(n \ge 2)$ 为来自正态总体N(0,1) 的简单随机样本, \overline{X} 为样本均值, S^2 为样本方差, 则有(

A.
$$n\overline{X} \sim N(0,1)$$

B.
$$nS^2 \sim \chi^2(n)$$

$$C. \frac{(n-1)\overline{X}}{S} \sim t(n-1)$$

D.
$$\frac{(n-1)X_1^2}{\sum_{i=2}^n X_i^2} \sim F(1, n-1)$$

14. 设总体 $X\sim N(\mu,\sigma^2)$, X_1,X_2,\cdots,X_n 为 X 的一个样本, 若 μ 已知, 则统计量

$$\frac{1}{\sigma^2} \sum_{i=1}^n (X_i - \mu)^2 \sim ____ 分布.$$

- 15. 设随机变量 $t \sim t(n)$,其概率密度为 t(x;n),若 $P\left\{ \left| t \right| > t_{\frac{\alpha}{2}}(n) \right\} = \alpha$,则有 $\int_{-1}^{t_{\frac{\alpha}{2}}(n)} t(x;n) dx = ______.$
- 16. 设总体 $X \sim N(0,1)$, x_1, x_2, \dots, x_n 为来自该总体的样本,则统计量 $\sum_{i=1}^{n} x_i^2$ 的抽样分布为______
- 17. 设总体 $X \sim N(1, \sigma^2)$, x_1, x_2, \dots, x_n 为来自该总体的样本, $x = \frac{1}{n} \sum_{i=1}^{n} x_i$, 则 $E(x) = \underline{\qquad}$

18.
$$F_{0.05}(7,9) = ($$

A.
$$F_{0.95}(9,7)$$

B.
$$\frac{1}{F_{0.05}(9,7)}$$
 C. $\frac{1}{F_{0.05}(7,9)}$ D. $\frac{1}{F_{0.05}(9,7)}$

C.
$$\frac{1}{F_{0.05}(7,9)}$$

D.
$$\frac{1}{F_{0.05}(9,7)}$$

19. 设总体 X 服从正态分布 N(0,1), 而 X_1,X_2,\cdots,X_{15} 是来自总体 X 的简单随机样本,则随机变量

$$Y = \frac{X_1^2 + \dots + X_{10}^2}{2(X_{11}^2 + \dots + X_{15}^2)} \sim \underline{\hspace{1cm}} \% \pi.$$

20. 设 X_1, X_2, \dots, X_n 为 正 态 总 体 $N(\mu, \sigma^2)$ 的 - 个 样 本 , $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$,

- 21. 设总体 X 服从参数为 λ 的泊松分布, X_1, X_2, \cdots, X_n 为总体 X 的一个样本, \overline{X} 、 S^2 分别为样本均 值与样本方差,则对任意 $0 \le \alpha \le 1$, $E\left[\alpha \overline{X} + (1-\alpha)S^2\right] = \underline{\hspace{1cm}}$.
- 22. 设 x_1, x_2, \dots, x_5 是来自正态总体 $N(0, \sigma^2)$ 的样本,样本均值 $\bar{x} = \frac{1}{5} \sum_{i=1}^{5} x_i$,样本方差

$$s^2 = \frac{1}{4} \sum_{i=1}^{5} (x_i - \bar{x})^2$$
, $\stackrel{=}{\pi} \frac{cs^2}{\sigma^2} \sim \chi^2(4)$, $\bigcirc c = \underline{\qquad}$.

- 23. 设 $x_1, x_2, \cdots, x_{n_1}$ 与 $y_1, y_2, \cdots, y_{n_2}$ 分别是来自总体 $N(\mu_1, \sigma^2)$ 与 $N(\mu_2, \sigma^2)$ 的两个样本,它们相互独 立,且x,y分别为两个样本的样本均值,则x-y所服从的分布为(
 - A. $N(\mu_1 \mu_2, \left(\frac{1}{n} + \frac{1}{n}\right)\sigma^2)$

B. $N(\mu_1 - \mu_2, \left(\frac{1}{n} - \frac{1}{n}\right)\sigma^2)$

C. $N(\mu_1 - \mu_2, \left(\frac{1}{n^2} + \frac{1}{n^2}\right)\sigma^2)$

- D. $N(\mu_1 \mu_2, \left(\frac{1}{n^2} \frac{1}{n^2}\right)\sigma^2)$
- 24. 设 X_1, X_2, \dots, X_n 是来自总体 $N(\mu, \sigma^2)$ 的样本,则 $\sum_{i=1}^n \left(\frac{X_i \mu}{\sigma}\right)^2 \sim$ ______(标出参数).
- 25. 设 $x_1, x_2, \cdots, x_{100}$ 为来自总体 $X \sim N(\mu, 4^2)$ 的一个样本,而 $y_1, y_2, \cdots, y_{100}$ 为来自总体 $Y \sim N(\mu, 3^2)$ 的 一个样本,且两个样本独立,以 \overline{X} , \overline{Y} 分别表示这两个样本的样本均值,则 \overline{X} - \overline{Y} ~(
 - A. $N\left(0, \frac{7}{100}\right)$
- B. $N\left(0,\frac{1}{4}\right)$
- C. N(0, 7)
- D. *N* (0, 25)
- 26. 设总体 X 的概率密度为 $f(x) = \begin{cases} \frac{3}{2}x^2, & |x| < 1, \\ 0, & \text{其他.} \end{cases}$ 为总体 X 的一个样本, X 为总体 X

的样本均值,则 $E(\overline{X}) = \underline{\hspace{1cm}}$

★第七章 参数估计

- 1. 某大学从来自 A、B 两市的新生中分别随机抽取 5 名与 6 名新生,测其身高(单位: cm)后算得 x=175.9,y=172.0; $s_1^2=11.3$, $s_2^2=9.1$ 。假设两市新生身高分别服从正态分布 $X\sim N(\mu_1,\sigma^2)$, $Y\sim N(\mu_2,\sigma^2)$,其中 σ^2 未知。试求 $\mu_1-\mu_2$ 的置信度为 0.95 的置信区间. (已知 $t_{0.025}(9)=2.2622$, $t_{0.025}(11)=2.2010$)
- 2. 设总体 X 的概率密度为 $f(x;\theta)=egin{cases} \frac{1}{\theta}e^{-\frac{x}{\theta}}, & x\geq 0 \\ 0, & 其中 \,\theta>0 \,$ 为未知参数, X_1,X_2,\cdots,X_n 为来自

总体 X 的样本, 试求 θ 的极大似然估计.

3. 设总体 X 的分布列为

$$\begin{array}{c|cccc} X & 0 & 1 \\ \hline P & 1-p & p \end{array}$$

其中p为未知参数,且 X_1, X_2, \cdots, X_n 为其样本,则p的矩估计 $\stackrel{\wedge}{p} = \underline{\hspace{1cm}}$.

4. 某工厂生产一种零件,其口径 X (单位:毫米) 服从正态分布 $N(\mu, \sigma^2)$,现从某日生产的零件中随机抽出 9 个,分别测得其口径如下:

14.6, 14.7, 15.1, 14.9, 14.8, 15.0, 15.1, 15.2, 14.7

- (1) 计算样本均值 \bar{x} :
- (2) 已知零件口径 X 的标准差 $\sigma=0.15$,求 μ 的置信度为 0.95 的置信区间 ($u_{0.025}=1.96$, $u_{0.05}=1.645$).
- 5. 设某大学中教授的年龄 $X \sim N(\mu, \sigma^2)$, 其中 μ, σ^2 均未知, 今随机了解到 5 位教授的年龄如下:

试求均值 μ 的置信度 0.95 的置信区间. (已知 $t_{0.025}(4) = 2.7764$)

- 6. 设总体 $X \sim N(\mu, \sigma^2)$, 抽取样本 x_1, x_2, \dots, x_n , 且 $x = \frac{1}{n} \sum_{i=1}^n x_i$ 为样本均值。
- (1) 已知 σ =4, x=12, n=144, 求 μ 的置信度为 0.95的置信区间;
- (2) 已知 σ = 10,问:要使 μ 的置信度为 0.95 的置信区间长度不超过 5,样本容量n至少应取多大? (已知 $u_{0.025}$ = 1.96, $u_{0.05}$ = 1.645)
- 7. 设 X_1, X_2, X_3 是来自正态总体 $N(0, \sigma^2)$ 的样本,已知统计量 $c(2X_1^2 X_2^2 + X_3^2)$ 是方差 σ^2 的无偏

估计量,则常数c=()
A. $\frac{1}{4}$ B. $\frac{1}{2}$ A. $\frac{1}{4}$ C. 2 D. 4

- 8. 设 X_1, X_2, \cdots, X_9 为来自总体X的样本,X服从正态分布 $N(\mu, 3^2)$,则 μ 的置信度为 0.95的置信区 间长度为______. (附: $u_{0.025} = 1.96$)
- 9. 设总体 X 服从参数为 λ 的指数分布,其中 λ 未知, X_1, X_2, \cdots, X_n 为来自总体 X 的样本,则 λ 的矩 估计为
- 10. 若 $\hat{\theta}$ 为未知参数 θ 的估计量,且满足 $E(\hat{\theta}) = \theta$,则称 $\hat{\theta}$ 是 θ 的(
 - A. 无偏估计量
- B. 有偏估计量
- C. 渐近无偏估计量
- D. 一致估计量
- 11. 设总体 X 服从泊松分布,即 $X \sim P(\lambda)$,则参数 λ^2 的极大似然估计量为
- 12. 用传统工艺加工某种水果罐头, 每瓶中维生素 C 的含量为随机变量 X (单位: mg). 设 $X \sim N(\mu, \sigma^2)$, 其中 μ , σ^2 均未知. 现抽查 16 瓶罐头进行测试,测得维生素 C 的平均含量为 20. 80mg,样本标准差为 1. 60mg,试求 μ 的置信度 95%置信区间. (已知 $t_{0.025}(15) = 2.13$, $t_{0.025}(16) = 2.12$)
- 13. 设 X_1, X_2 是来自总体X的一个容量为 2的样本,则在下列E(X)的无偏估计量中,最有效的估计量 是

A. $\frac{1}{2}(X_1 + X_2)$ B. $\frac{2}{3}X_1 + \frac{1}{3}X_2$ C. $\frac{3}{4}X_1 + \frac{1}{4}X_2$ D. $\frac{3}{5}X_1 + \frac{2}{5}X_2$

14. 设总体 X 的概率密度为 $f(x) = \begin{cases} \frac{\lambda^k}{(k-1)!} x^{k-1} e^{-\lambda x}, x > 0 \\ 0 & x < 0 \end{cases}$, 其中 k 为已知正整数,求参数 λ ($\lambda > 0$)

的极大似然估计.

15. 设总体 X 的概率密度为

$$f(x;\theta) = \begin{cases} \theta x^{-(\theta+1)}, & x > 1 \\ 0, & \text{ 其他} \end{cases}$$

其中 θ (θ >1) 是未知参数, x_1, x_2, \cdots, x_n 是来自该总体X 的样本,试求 θ 的矩估计 $\hat{\theta}$.

- 16. 设 X_1, X_2, X_3 为总体X的样本, $T = \frac{1}{2}X_1 + \frac{1}{6}X_2 + CX_3$,则C =_______时, $T \not = E(X)$ 的无偏估计.
- 17. 设总体 X 的概率密度为 $f(x;\lambda) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$, 其中 $\lambda > 0$ 是未知参数,1.50、1.63、1.60、2.00、

1.40、1.57、1.60、1.65、1.55、1.50 是取自总体 X 的一个容量为 10 的简单随机样本, 试分别用矩 估计法和极大似然估计法求 λ 的估计.

18. 设总体 $X \sim N(\mu, \sigma^2)$, 其中 μ 未知, x_1, x_2, x_3, x_4 为来自总体 X 的一个样本,则以下关于 μ 的四个无

(偏估计:
$$\hat{\boldsymbol{\mu}}_1 = \frac{1}{4}(x_1 + x_2 + x_3 + x_4)$$
, $\hat{\boldsymbol{\mu}}_2 = \frac{1}{5}x_1 + \frac{1}{5}x_2 + \frac{1}{5}x_3 + \frac{2}{5}x_4$, $\hat{\boldsymbol{\mu}}_3 = \frac{1}{6}x_1 + \frac{2}{6}x_2 + \frac{2}{6}x_3 + \frac{1}{6}x_4$,

$$\hat{\mu}_4 = \frac{1}{7}x_1 + \frac{2}{7}x_2 + \frac{3}{7}x_3 + \frac{1}{7}x_4 + \frac{1}{7}\pi + \frac{1$$

A. $\hat{\mu}_1$

- B. $\hat{\mu}_2$
- C. $\hat{\mu}_3$
- D. $\hat{\mu}_{\scriptscriptstyle 4}$

19. 设 x_1 , x_2 ,…, x_{25} 为来自总体 X 的一个样本, $X \sim N(\mu, 5^2)$,则 μ 的置信度为 0.90 的置信区间长度为 ______. ($\mu_{0.05}$ =1.645)

20. 设总体 X 服从参数为 $\lambda(\lambda > 0)$ 的泊松分布, x_1, x_2, \dots, x_n 为 X 的一个样本,其样体均值 $\bar{x} = 2$,则 λ 的矩估计值 $\hat{\lambda} = ______.$

★第八章 假设检验

- 1. 设总体 $X \sim N(\mu, \sigma^2)$,其中 μ 未知, X_1, X_2, \cdots, X_n 为其样本。若假设检验问题为 $H_0: \sigma^2=1$, $H_1: \sigma^2 \neq 1$,则采用的检验统计量应为
- 2. 设某个假设检验问题的拒绝域为W,且当原假设 H_0 成立时,样本值 (x_1,x_2,\cdots,x_n) 落入W的概率为 0. 15,则犯第一类错误的概率为 .
- 4. 从一大批发芽率为 0.9 的种子中随机抽取 100 粒,则这 100 粒种子的发芽率不低于 88%的概率约 为______. (已知 Φ (0.67)=0.7486)
- 5. 已知某炼铁厂在生产正常的情况下,铁水含碳量 X 服从正态分布,其方差为 0.03,在某段时间抽测了 10

炉铁水,算得铁水含碳量的样本方差为 0.0375. 试问这段时间生产的铁水含碳量方差与正常情况下的方差有无显著差异?(取显著性水平 $\alpha=0.05$, $\chi^2_{0.025}(9)=19.023$, $\chi^2_{0.975}(9)=2.7$)

- 6. 设总体 $X\sim N(\mu,\sigma^2)$, σ^2 未知,且 X_1,X_2,\cdots,X_n 为其样本, \overline{X} 为样本均值, S 为样本标准差,则对于假设检验问题 $H_0:\mu=\mu_0$, $H_1:\mu\neq\mu_0$,应选用的统计量是()
- A. $\frac{\overline{X} \mu_0}{S / \sqrt{n}}$ B. $\frac{\overline{X} \mu_0}{\sigma / \sqrt{n-1}}$ C. $\frac{\overline{X} \mu_0}{S / \sqrt{n-1}}$ D. $\frac{\overline{X} \mu_0}{\sigma / \sqrt{n}}$

8. 某批矿砂的 7 个样本中镍含量经测定为(%)

- 7. 设总体 $X \sim N(\mu, \sigma^2)$, X_1, X_2, \cdots, X_n 为其样本,其中 σ^2 未知,则对假设检验问题 $H_0: \mu = \mu_0$, $H_1: \mu \neq \mu_0$ 在显著水平 α 下,应取拒绝域 $W = \underline{\hspace{1cm}}$.
- 3. 25 3. 27 3. 23 3. 24 3. 26 3. 27 3. 24 设该测定值总体 $X \sim N(\mu, \sigma^2)$,其中 μ, σ^2 均未知,取 $\alpha = 0.01$ 检验假设 $H_0: \mu = 3.25$, $H_1: \mu \neq 3.25$.(已知 $t_{0.005}(6) = 3.7074$)
- 9. 某型号元件的尺寸 X 服从正态分布,且均值为 3. 278cm,标准差为 0. 002cm. 现用一种新工艺生产此类型元件,从中随机取 9 个元件,测量其尺寸,算得均值 x=3. 2795cm,问用新工艺生产的元件的尺寸均值与以往有无显著差异.(取 $\alpha=0.05$,已知 $u_{0.025}=1.96$, $u_{0.05}=1.645$)
- 10. 20 名患者分为两组,每组 10 名. 在两组内分别试用 A、B 两种药品,观测用药后延长的睡眠时间,结果 A 种药品延长时间的样本均值与样本方差分别为 $x_A=2$. 33, $x_A^2=6.51$;B 种药品延长时间的样本均

值与样本方差分别为 $x_B=0.75$, $s_B^2=3.49$ 。假设 A、B 两种药品的延长时间均服从正态分布,且两者方差相等。试问:可否认为 A、B 两种药品对延长睡眠时间的效果无显著差异? (取 $\alpha=0.01$,已知 $t_{0.005}(18)=2.8784$, $t_{0.005}(20)=2.8453$)

11. 某工厂生产的铜丝的折断力(N)服从正态分布 $N(\mu, 8^2)$. 今抽取 10 根铜丝,进行折断力试验,测得结果如下:

578 572 570 568 572 570 572 596 584 570 在显著水平 $\alpha = 0.05$ 下,是否可以认为该日生产的铜丝的折断力的标准差显著变大? (已知 $\chi^2_{0.05}(9) = 16.919$, $\chi^2_{0.025}(9) = 19.023$, $\chi^2_{0.05}(10) = 18.307$, $\chi^2_{0.025}(10) = 20.483$)

- 12. 设总体 X 服从正态分布 $N(\mu,1)$, x_1,x_2,\cdots,x_n 为来自该总体的样本,x 为样本均值,x 为样本标准 差,欲检验假设 $H_0: \mu=\mu_0$, $H_1: \mu\neq\mu_0$,则检验用的统计量是(
- A. $\frac{\bar{x} \mu_0}{s / \sqrt{n}}$ B. $\sqrt{n}(\bar{x} \mu_0)$ C. $\frac{\bar{x} \mu_0}{s / \sqrt{n-1}}$ D. $\sqrt{n-1}(\bar{x} \mu_0)$
- 13. 设样本 x_1, x_2, \cdots, x_n 来自正态总体 $N(\mu, 9)$,假设检验问题为 $H_0: \mu = 0$, $H_1: \mu \neq 0$,则在显著性水平 α 下,检验的拒绝域W=
- 14. 设 0. 05 是假设检验中犯第一类错误的概率, H_0 为原假设,则 P{拒绝 $H_0 \mid H_0$ 真}=_____.
- 15. 根据调查,去年某市居民月耗电量服从正态分布 $N(32,10^2)$ (单位: 度). 为确定今年居民月耗电量状况,随机抽查了 100 户居民,得到他们月耗电量平均值为 33. 85. 是否认为今年居民月耗电量有显著提高? (取 $\alpha=0.05$,已知 $t_{0.05}(9)=1.8331$, $t_{0.025}(9)=2.2622$, $z_{0.05}=1.645$, $z_{0.025}=1.96$)
- 16. 某日从饮料生产线随机抽取 16 瓶饮料,分别测得重量(单位: 克)后算出样本均值x=502.92 及样本标准差s=12. 假设瓶装饮料的重量服从正态分布 $N(\mu,\sigma^2)$,其中 σ^2 未知,问该日生产的瓶装饮料的平均重量是否为 500 克?(取 $\alpha=0.05$,已知 $t_{0.025}(15)=2.13$)
- 17. 设总体 $X \sim N(\mu, \sigma^2)$, σ^2 未知, \overline{X} 为样本均值, $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \overline{X})^2$, $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$,

检验假设 H_0 : $\mu = \mu_0$ 时采用的统计量是()

A.
$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$
 B. $T = \frac{\overline{X} - \mu_0}{S_n / \sqrt{n}}$ C. $T = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$ D. $T = \frac{\overline{X} - \mu_0}{S / \sqrt{n}}$

- 19. 在假设检验中, H_0 为原假设, H_1 为备择假设,犯第二类错误的情况为_____
- 20. 某厂生产的一种元件,其寿命服从方差 σ_0^2 =10 的正态分布,现换一种新工艺生产该元件,从生产情况看,寿命的波动比较大,现随机取 26 个,测得样本方差 s^2 =12,试判断用新工艺生产后,元件寿命波动较以往有无显著变化.(α =0.05)(附: $\chi_{0.025}^2(25)$ =40.65, $\chi_{0.975}^2(25)$ =13.12)