Lattices: A Comprehensive Chapter

Prepared for 2nd-Year Students by Aditya Tandon

September 1, 2025

Outline

- Introduction to Lattices
- Meet and Join (GLB and LUB)
- Types of Lattices
- 4 Special Lattices: M_3 and N_5
- 6 Relations Among Lattice Types
- **6** Symmetry Types in Relations

Outline

- Introduction to Lattices
- 2 Meet and Join (GLB and LUB)
- Types of Lattices
- 4 Special Lattices: M_3 and N_5
- 5 Relations Among Lattice Types
- **6** Symmetry Types in Relations

Historical Background and Motivation

The study of lattices emerged from algebra, logic, and order theory.

- Many familiar operations share a common structure: union/intersection, gcd/lcm, AND/OR.
- The abstract structure is a lattice.
- Lattices unify reasoning across set theory, number theory, logic, linear algebra, and CS.

Order and Structure in Everyday Life

- Task scheduling: latest common prerequisite ⇒ meet; earliest common milestone ⇒
 join.
- **Hierarchies:** lowest common supervisor \Rightarrow meet; combined responsibility \Rightarrow join.
- **Sets:** intersection = meet, union = join.

Posets and Lattices

Definition

A poset (P, \leq) : reflexive, antisymmetric, transitive.

Posets and Lattices

Definition

A poset (P, \leq) : reflexive, antisymmetric, transitive.

Remark

Antisymmetry \neq asymmetry. Antisymmetric means: $a \leq b \& b \leq a \Rightarrow a = b$.

Posets and Lattices

Definition

A poset (P, \leq) : reflexive, antisymmetric, transitive.

Remark

Antisymmetry \neq asymmetry. Antisymmetric means: $a \leq b \& b \leq a \Rightarrow a = b$.

Definition

A *lattice* is a poset where every pair a, b has GLB $(a \land b)$ and LUB $(a \lor b)$.

Hasse Diagrams — Rules

- Least element at bottom; greatest at top (if they exist).
- Draw edges only for cover relations; omit transitive edges.
- Edges are implicitly upward: higher nodes are greater.

Example: Power Set of {a,b}

Least $0 = \emptyset$, Greatest $1 = \{a, b\}$. Meet $= \cap$, Join $= \cup$.

Example: Divisors of 12 under Divisibility

Meet = gcd, Join = lcm; least = 1, greatest = 12.

Outline

- Introduction to Lattices
- Meet and Join (GLB and LUB)
- Types of Lattices
- 4 Special Lattices: M_3 and N_5
- 6 Relations Among Lattice Types
- **6** Symmetry Types in Relations

Definitions & Universal Properties

For a, b in a poset (P, \leq) :

- $m = a \wedge b$ if $m \leq a, b$ and for any $x \leq a, b, x \leq m$.
- $j = a \lor b$ if $a, b \le j$ and for any x with $a, b \le x$, $j \le x$.

Uniqueness (Sketch)

If m and m' are both GLBs, then $m \le m'$ and $m' \le m$; by antisymmetry m = m'. (Similarly for LUBs.)

Contexts & Examples

- Sets: $A \wedge B = A \cap B$, $A \vee B = A \cup B$.
- Divisibility: $a \wedge b = \gcd(a, b), \ a \vee b = \operatorname{lcm}(a, b).$
- **Logic:** $p \wedge q$ (AND), $p \vee q$ (OR).
- Vector spaces: $U \wedge V = U \cap V$, $U \vee V = \operatorname{span}(U \cup V)$.

Worked Example: $\mathcal{P}(\{a, b, c\})$

$$X = \{a, b\}, Y = \{b, c\}: GLB = \{b\}, LUB = \{a, b, c\}.$$

Worked Example: Divisors of 36

Outline

- Introduction to Lattices
- Meet and Join (GLB and LUB)
- Types of Lattices
- 4 Special Lattices: M_3 and N_5
- 6 Relations Among Lattice Types
- **6** Symmetry Types in Relations

Bounded Lattices

Definition

A lattice is bounded if it has least 0 and greatest 1 with $0 \le x \le 1$ for all x.

Bounded: Examples

Bounded: Divisors of 12

Least = 1, Greatest = 12.

Complemented Lattices

Definition

A bounded lattice is *complemented* if for every a there is b with $a \wedge b = 0$ and $a \vee b = 1$.

Complemented: $\mathcal{P}(\{a,b,c\})$

Complements are set-theoretic complements.

Complemented: Divisors of 30 (Boolean)

Complements: $d \leftrightarrow 30/d$ (e.g., $2 \leftrightarrow 15$).

Distributive Lattices

Definition

A lattice is **distributive** if for all a, b, c:

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c), \quad a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c).$$

Distributive Lattices

Definition

A lattice is **distributive** if for all a, b, c:

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c), \quad a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c).$$

Examples

- Power set lattices $\mathcal{P}(S)$ under \subseteq .
- Divisors of a square-free integer under divisibility.

Distributive Lattices

Definition

A lattice is **distributive** if for all a, b, c:

$$a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c), \quad a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c).$$

Examples

- Power set lattices $\mathcal{P}(S)$ under \subseteq .
- Divisors of a square-free integer under divisibility.

Non-example: M_3 (diamond lattice), N_5 (pentagon lattice).

Modular Lattices

Definition

A lattice is **modular** if whenever $a \le c$,

$$a \lor (b \land c) = (a \lor b) \land c.$$

Modular Lattices

Definition

A lattice is **modular** if whenever $a \le c$,

$$a \lor (b \land c) = (a \lor b) \land c.$$

Examples

- Subspaces of a vector space under inclusion.
- M_3 is modular but not distributive.

Modular Lattices

Definition

A lattice is **modular** if whenever $a \le c$,

$$a \lor (b \land c) = (a \lor b) \land c.$$

Examples

- Subspaces of a vector space under inclusion.
- M_3 is modular but not distributive.

Non-example: N_5 (fails modular law).

Complete Lattices

Definition

A lattice is **complete** if every subset $S \subseteq L$ has:

$$\bigwedge S$$
 (infimum) and $\bigvee S$ (supremum).

Complete Lattices

Definition

A lattice is **complete** if every subset $S \subseteq L$ has:

$$\bigwedge S$$
 (infimum) and $\bigvee S$ (supremum).

Examples

- $\mathcal{P}(S)$ (power set): arbitrary intersections/unions.
- (\mathbb{R}, \leq) extended with $\pm \infty$.

Boolean Lattices

Definition

A lattice is Boolean if it is:

- Bounded (has 0 and 1),
- Distributive,
- Complemented.

Boolean Lattices

Definition

A lattice is **Boolean** if it is:

- Bounded (has 0 and 1),
- Distributive,
- Complemented.

Examples

- $\mathcal{P}(S)$ for any finite set S.
- Divisors of 30 under divisibility.

Boolean Lattices

Definition

A lattice is **Boolean** if it is:

- Bounded (has 0 and 1),
- Distributive,
- Complemented.

Examples

- $\mathcal{P}(S)$ for any finite set S.
- Divisors of 30 under divisibility.

Boolean lattices underpin Boolean algebra and digital logic.

Outline

- Introduction to Lattices
- Meet and Join (GLB and LUB)
- Types of Lattices
- 4 Special Lattices: M_3 and N_5
- Relations Among Lattice Types
- **6** Symmetry Types in Relations

M₃ (Diamond): Modular, Not Distributive

$$a \wedge (b \vee c) = a \wedge 1 = a \neq 0 = (a \wedge b) \vee (a \wedge c).$$

N₅ (Pentagon): Not Modular (Not Distributive)

$$a \lor (b \land c) = a \lor 0 = a \neq b = (a \lor b) \land (a \lor c).$$

Outline

- Introduction to Lattices
- 2 Meet and Join (GLB and LUB)
- Types of Lattices
- 4 Special Lattices: M_3 and N_5
- Selations Among Lattice Types
- **6** Symmetry Types in Relations

Hierarchy

Boolean \Rightarrow Distributive \Rightarrow Modular \Rightarrow Lattice.

- Not reversible in general.
- Counterexamples: M_3 (modular $\not\Rightarrow$ distributive), N_5 (lattice $\not\Rightarrow$ modular), divisors of 12 (distributive $\not\Rightarrow$ Boolean).

Counterexamples (Sketch)

- **Modular** \Rightarrow **Distributive:** M_3 (already shown).
- Lattice \Rightarrow Modular: N_5 (already shown).
- **Distributive** ⇒ **Boolean:** A distributive lattice without complements (e.g., divisors of 12).

Summary Table

Class Implication	True	Counterexample to Reverse
$Boolean \Rightarrow Distributive$	Yes	Distributive not Boolean: D_{12}
$Distributive \Rightarrow Modular$	Yes	M_3
$Modular \Rightarrow Lattice$	Yes	N_5

Glossary (1/2)

- Poset: reflexive, antisymmetric, transitive relation.
- Hasse diagram: show cover relations upward; omit transitive edges.
- Meet (∧): GLB / infimum. Examples: ∩, gcd.
- **Join** (\vee): LUB / supremum. Examples: \cup , lcm.
- Least/Greatest elements: 0 and 1 if they exist.

Glossary (2/2)

- Bounded: has 0 and 1.
- Complement/Complemented: $a \wedge b = 0$, $a \vee b = 1$; every element has complement.
- **Distributive:** meet/join distribute.
- Modular: $a \le c \Rightarrow a \lor (b \land c) = (a \lor b) \land c$.
- Complete: arbitrary ∧, ∨ exist.
- **Boolean:** bounded + distributive + complemented.
- M_3 : modular, not distributive. N_5 : not modular.

Outline

- Introduction to Lattices
- Meet and Join (GLB and LUB)
- Types of Lattices
- 4 Special Lattices: M_3 and N_5
- Selations Among Lattice Types
- **6** Symmetry Types in Relations

Symmetric Relation $(R = R^{-1})$

Definition: If $(a, b) \in R \Rightarrow (b, a) \in R$. **Real–world:** friendship / siblings / equality.

Anti-symmetric $(R \cap R^{-1} \subseteq \Delta)$

Rule: overlap only on the diagonal $\Delta = \{(x, x)\}$. **Examples:** \subseteq , \leq , divides.

Asymmetric $(R \cap R^{-1} = \emptyset \& irreflexive)$

Rule: $R \cap R^{-1} = \emptyset$ and no $(a, a) \in R$. **Examples:** parent-of, <.

Questions?

