R_o^{-1} : If one can find the exponential part of the cumulative growth curve (a short section near the beginning of the curve that loses validity as N approaches zero), one finds the growth rate constant for an exponential, which is $K = d \ln(N) / dt$.

For example, here is some data on Texas' CV19 growth this year (the blue is cumulative), where the second graph zeros in on the very first days of this misery:

If we plot this semi-log (logarithmic vertical axis vs. arithmetic horizontal axis), this is what it looks like. The second graph highlights a straight line section, after which it begins to curve:

The straight section has a slope (ratio of rise over run, vertical over horizontal distance) that is 0.284. Afterwards, it is no longer exponential growth, since it curves off. This is called K, K = 0.284 for Texas. Notice this is a bit arbitrary, and avoids the values less than 40, at the extreme early stage.

Page 1 of 4

¹ Basic Reproduction Rate. R_o is a measure of transmissibility: $R_o < 1$, disease disappears; $R_o = 1$, it's endemic; $R_o > 1$, epidemic. R_o is mentioned a lot during this epidemic, along with flattening of curves, with not a lot of understanding or relevance. The real trick is figuring out the *effective* reproduction rate, R_e .

 $R_o = e^{\kappa \tau}$ where τ is the average infectious period for each person. Doubling time is also often mentioned. Reduce K by reducing contacts, reduce τ by isolation of infected individuals, for example. Here are some K values:

Example (
$$R_0 = 2.6$$
, $K_{TX} = 0.284$ / day)

$$R_0 = e^{K \cdot \tau}$$

$$\tau = \frac{ln(R_0)}{K} \qquad \frac{ln(2.6)}{0.284} = 3.4 \quad \text{day}$$

Example, doubling time (2/1):

$$2 = 1 \cdot e^{K \cdot \tau}$$

$$\tau = \frac{\ln(2)}{K}$$
 $\frac{\ln(2)}{0.284} = 2.4$ day

Modeling

Interestingly, one way these epidemics are visualized and modeled is based on susceptibles contacting infected people at some average rate. These susceptibles are quantified as a percentage or fraction of the entire population² (which implies that some fraction of the population *isn't* susceptible, think vaccine or herd immunity). So, over time, these susceptible people are catching the disease at some rate. You could put it in pseudo-algebraic terms like this:

rate of change of susceptibles = contact rate X fraction X infectious ³

That needs to be refined, since the fraction of the population that are susceptibles will decrease, as they are converted to infectious. That means the rate is negative. So, add a negative sign:

 $susceptibles\ change = -contact\ rate\ X\ fraction\ X\ infectious$

That's a bit cumbersome, so if you follow Leibniz' suggestion, and write a rate of change as the change divided by the corresponding change in time, where the symbol for change (difference) is a d:

$$\frac{dS}{dt} = -contact \ rate \ X \ fraction \ X \ infectious$$

People have come up with less cumbersome algebraic symbols, like β for the contact rate, and a real fraction for the fraction, S/N, where S is susceptibles and N is the number of the total population. Likewise, the average number of infectious would be well served with the letter I, so I.

$$\frac{dS}{dt} = -\beta \frac{S}{N}I$$

² Another way to look at this is the ratio of susceptibles to the whole population is the basis for assigning a *probability* of infection of anyone in the whole population, not just susceptibles: contact rate X probability X infectious. The program of compartmentalizing by susceptibles, infectious, and recovered is known as the SIR model.

³ Contact rate is average number of people a person has contact with, per unit time. Hence contact tracing, that not only tells how many people a certain infected person has had contact with, but hopefully who they were.

That's easier on the eye. It's important to remember all these quantities change over time, so they can be shown as functions of time, which may clutter things up a bit. For example, deaths from an epidemic (not shown here) would reduce the value of *N* over time.

$$\frac{dS(t)}{dt} = -\beta \frac{S(t)}{N(t)} I(t)$$

Furthermore, the number of infectious changes, too. So, another, separate equation:

$$\frac{dI(t)}{dt} = \beta \frac{S(t)}{N(t)} I(t) - \gamma I(t)$$

Notice the first term on the right side of the equation is just the negative of the change in susceptibles, since we're *adding* the same amount to infectious, that was *subtracted* from susceptibles before. So the change in infectious relates to the change in susceptibles, since members from one group are going over to the other. There is also the infectious period (not to be confused with contact rate). After a certain time, infectious either recover or die (this is kind of grim). So that has to be subtracted from the right side of the equation (the second term). γ is a common symbol for the frequency associated with the period of infection. Therefore γ^{-1} is the average period of infection. γ is the third letter in the Greek alphabet, gamma. $\gamma l(t)$ should be recognized as the rate of infectious by death or recovery, taken away from the overall rate.

Here's where an alternative explanation for R_o shows up. This is the basic reproduction "rate" (although it's not really a rate, more on that later). If you want to solve for the infectious rate function I(t), you do the following:

$$\frac{dI(t)}{dt} = \beta \frac{S(t)}{N(t)} I(t) - \gamma I(t) \quad \text{or} \quad dI(t) = \left[\beta \frac{S(t)}{N(t)} I(t) - \gamma I(t) \right] dt \quad \text{in alternative differential form. So, separating the } I(t) - \gamma I(t) = \left[\beta \frac{S(t)}{N(t)} I(t) - \gamma I(t) \right] dt$$

variable, $\frac{dI(t)}{I(t)} = \beta \frac{S(t)}{N(t)} - \gamma dt$. In algebra, you do the same thing to both sides of an equation, so the next step is to integrate both sides:

$$\int \frac{dI(t)}{I(t)} = \int_{t}^{t+\tau} \beta \frac{S(x)}{N(x)} - \gamma \, dx, \text{ using } x \text{ for dummy variable of integration. This adds up the two terms on the right side}$$

of the equation from some time t to a little later time at $t + \tau$. The quantity of the integral on the right can be visualized on a 3D cartesian coordinate graph with axes x, S(x), and N(x) as the volume between the surface $\beta S(x)/N(x) - \gamma$ and the plane defined by the line S(x) = 0 and the line N(x) = 0, from x = t to $x = t + \tau$, from S(t) to $S(t) = t + \tau$, and from $S(t) = t + \tau$.

$$\int \frac{dI(t)}{I(t)} = \int_{t}^{t+\tau} \frac{dI(x)}{I(x)} dx = \ln I(t+\tau) - \ln I(t) \text{ , or } \ln \frac{I(t+\tau)}{I(t)} \text{ , left side simplification.}$$

$$\ln \frac{I(t+\tau)}{I(t)} = \int_{t}^{t+\tau} \beta \frac{S(x)}{N(x)} - \gamma \, dx \qquad \text{And since } \exp \left[\ln \frac{I(t+\tau)}{I(t)} \right] = \frac{I(t+\tau)}{I(t)}, \text{ the following:}$$

$$\frac{I(t+\tau)}{I(t)} = \exp\left[\int_{t}^{t+\tau} \beta \frac{S(x)}{N(x)} - \gamma \, dx\right]$$

Finally, to R_o . It is expedient to combine β and γ into one, which simplifies this expression.⁴

$$R_0 \equiv \frac{\beta}{\gamma}$$
, which makes the above expression $\frac{I(t+\tau)}{I(t)} = \exp\left[\gamma \int_t^{t+\tau} R_0 \frac{S(x)}{N(x)} - 1 dx\right]$. The basic reproduction "rate" is a combination of the contact rate and the infection period in this case, in other words.

Page 3 of 4

.

⁴ As one would expect, there is more than one way to define R_o .

Such a thing is most likely to be numerically integrated, since it is rare to have an explicit algebraic form for S(t) or N(t) that can be integrated in a closed form. It should be clear that epidemics don't stay as pure exponential functions for long, or else everyone would have gotten sick already. So this mysterious integral could lead to a gamma or gamma-like distribution, as so often is the case. Or, if over the interval from t to $t + \tau$, you have reason to believe S/N is relatively constant, the integral simplifies to $\tau \gamma (R_0(S/N) - 1)$. Or

$$\frac{I(t+\tau)}{I(t)} = \exp\left[\tau \gamma \left(R_0 \frac{S}{N} - 1\right)\right]$$
 for interval τ . R_0 clearly governs growth of this exponential function over a

short period, and is dimensionless, since it is a ratio of contact rate and infectious frequency with the same units, time⁻¹. That also explains why it is a bit of misnomer to call it a rate, when it has no unit dimensions, although it's common to hear it called a rate. This R_o is defined a little differently than the first example, as it's what *determines* this exponential function rather than being the *result* of the exponential function, but you can also see when this $R_0 = 1$, the ratio of Γ 's is also equal to one, that is no growth, it's endemic, as with the first definition. The real trick still remains to find out the instantaneous reproduction number or the effective reproduction number—the part of the curve beyond the pure exponential part, and where the numbers get really big!

What if the infectious period is 3 days, the contact period 4 days, and the ratio of susceptibles to the population is 3%, for the period of interest of 1 day? $\beta = \frac{1}{4}$, $\gamma = \frac{1}{3}$, so $R_o = (\frac{1}{4})/(\frac{1}{3}) = 0.75$. The growth multiplier is exp[1 X 1/3 X ($\frac{3}{4}$ X 3% - 1)], or 0.72. This is negative growth, since it is less than 1. If you increase interval τ arithmetically, you will see the growth multiplier decrease exponentially.

Cases can be reported over time as a cumulative value, or as a daily value. It's two ways of saying the same thing; the example at the beginning of this article concentrated on cumulative growth. The cumulative, or the total number of cases up to time t, T(t), follows the equation $dT/dt = \beta S/N I$.