# Redes Neurais em predição de gênero musical

Tiago Costa Carvalho - 11315101 Gustavo Fernandes Carneiro de Castro - 11369684

# Introdução

# Objetivo

Utilizar-se de um perceptron multicamadas (MLP) para predizer o gênero musical de um conjunto de músicas selecionadas arbitrariamente.







# Introdução

Para isto, foram obtidos coeficientes MFC (mel-frequency cepstrum), através da biblioteca librosa, do python. Além disso, também foi usado scikit learn e o pandas para as análises e utilização dos algoritmos.



# Metodologia

## Gêneros escolhidos

foram selecionados arbitrariamente 10 gêneros musicais para serem estudados:

- Clássico (C),
- Eletrônica (E)
- Heavy Metal (HM)
- Jazz (J)
- Pop (P)
- Rock (R)
- Rhythm & Blues/Soul (R&B/ReB)
- Rap e derivados (RAP)
- Retro Gaming (RG)
- Samba (S)

Para cada gênero, foi selecionado, em média 22 músicas, totalizando 205 músicas no conjunto de dados final.

### librosa

Através desta biblioteca, foram retirados os coeficientes usados neste estudo ao inserir os arquivos .mp3 das músicas escolhidas arbitrariamente para representar o gênero musical.

Utilizando o método *librosa.feature.mfcc()*, extrai-se os *Mel-frequency cepstral coefficients* (*MFCCs*) de um dado .mp3. Esses coeficientes representam; de forma simples, o espectro de força de uma onda sonora ao longo do tempo.

### librosa

Com isso, para cada coeficiente i, i =  $\{1,...,20\}$ , foi calculado o valor deste em todos os instantes t de cada música. Depois, foi calculada a média do coeficiente i em todos os instantes t, finalizando com um total de n = 20 atributos para cada música.

#### Instantes t

| C      | 11-5 | 68.85394 | -568.85394 | -568.85394 | <br>-568.85394 | -568.85394 | -568.85394 |    |
|--------|------|----------|------------|------------|----------------|------------|------------|----|
| e      | [    | 0.       | 0.         | Ø.         | <br>Ø.         | 0.         | 0.         | ]  |
| f<br>i | [    | 0.       | 0.         | 0.         | <br>0.         | 0.         | 0.         | ]  |
| c<br>i |      | 0.       | 0.         | 0.         | <br>0.         | 0.         | 0.         | 1  |
| е      | į    | 0.       | 0.         | 0.         | <br>0.         | 0.         | 0.         | i  |
| n<br>t | ]    | 0.       | 0.         | 0.         | <br>0.         | 0.         | 0.         | ]] |
| e      | (20, | 7414)    |            |            |                |            |            |    |

## Análise

Foi utilizado o método *GridSearchCV()* para automatizar os testes para diversas opções de parâmetros. Entre eles:

- Função de ativação: 'identity' função linear, 'logistic' função logística sigmoidal, 'tanh' função da tangente hiperbólica e 'relu' - ativação linear retificada
- Quantidade de camadas ocultas, e quantidade de neurônios em cada uma (por ex: [200,200])
- taxa de aprendizado inicial: 0.001, 0.01, ...
- algoritmo de solução para otimização de pesos: lbfgs, sgd, adam
- número máximo de iterações: 1000, 10000, ....
- aleatorização da ordem dos dados de entrada: sim, não.

Além disso, foi utilizado um cross-validation com 5 folds.

Os resultados foram analisados usando matrizes de confusão.

# Resultados



- função de ativação: identidade
- duas camadas ocultas com 200 perceptrons cada
- taxa inicial de aprendizado: 0,01
- algoritmo de solução: adam
- número máximo de iterações: 200
- aleatorização da ordem das entradas
- momentum: 0.9

melhor taxa de acerto: 45,3%



- função de ativação: função hiperbólica tangencial
- uma camada ocultas com 100 perceptrons cada
- taxa inicial de aprendizado: 0,05
- algoritmo de solução: sgd
- número máximo de iterações: 200
- aleatorização da ordem das entradas
- momentum: 0.9

melhor taxa de acerto: 45,3%



- função de ativação: função hiperbólica tangencial
- uma camada oculta com 9 perceptrons
- taxa inicial de aprendizado: 0,1
- algoritmo de solução: descida gradiente estocástica
- número máximo de iterações: 200
- momentum: 0.9

- 16

- 14

- 12

- 10

taxa de acerto de 44,3%

# Conclusão

### Conclusão

- 1. Uma base de dados maior irá beneficiar em grande escala a predição dos gêneros.
- 2. Nota-se uma taxa de acerto grande quando usa-se apenas uma camada oculta com 9 perceptrons, o que se aproxima da quantidade de classes sendo analisadas.
- 3. A rede neural consistentemente agrupou em suas predições Heavy metal e Rock, Clássico e Jazz, Eletrônica e Pop; sugerindo uma aproximação na composição dessas músicas.
- 4. A rede neural teve consistentemente mais dificuldade, principalmente, com os gêneros Rock,Pop e Rap; sugerindo então que estes são mais ecléticos ou que as músicas selecionadas para representar esse gênero neste banco não são "distintas" o suficiente.
- 5. Dificuldades gerais com Retrô Gaming, Samba e o R&B

### Referências

- https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.nsctot al.com.br%2Fnoticias%2Fmichael-jackson-esta-vivo-medium-brasileir a-afirma-que-sim&psig=AOvVaw2fd53HBsV80VI5BEZBrONQ&ust=16 38471257033000&source=images&cd=vfe&ved=0CAsQjRxqFwoTCKi Fhp-jw\_QCFQAAAAAdAAAAABAD
- https://www.google.com/url?sa=i&url=https%3A%2F%2Fpt.wikipedia. org%2Fwiki%2FClaude\_Debussy&psig=AOvVaw0o9Oq10sSde7gGv95 NgrLt&ust=1638471335191000&source=images&cd=vfe&ved=0CAs QjRxqFwoTCNCi8sWjw\_QCFQAAAAAdAAAABAD
- https://en.wikipedia.org/wiki/Spectral\_density#Power\_spectral\_densi
  ty
- https://www.kaggle.com/ashishpatel26/feature-extraction-from-audio
- https://en.wikipedia.org/wiki/Mel-frequency\_cepstrum
- https://scikit-learn.org/

# Obrigado por assistir!

:D