Práctico 2

SISTEMAS DE ECUACIONES SOLUCIONES

(1) Encontrar un vector $(x, y, z) \in \mathbb{R}^3$ no nulo que sea ortogonal a los vectores

$$u = (4, -1, 1), \quad v = (2, 1, 1) \quad y \quad w = (1, 2, 1).$$

¿Hay un único vector con esta propiedad? ¿Cómo describiría a todos los vectores que satisfacen dicha propiedad?

Un vector (x, y, z) será ortogonal a u, v y w si y sólo si el producto escalar con estos es cero. Es decir, debe verificar la siguietes igualdades:

$$\langle u, (x, y, z) \rangle = \langle v, (x, y, z) \rangle = \langle w, (x, y, z) \rangle = 0.$$

Desarrollando explicícitamente estos productos escalares obtenemos el siguiente sistema de ecuaciones

Entonces, para encontrar un vector ortogonal a los vectores dados debemos resolver este sistema. Para este fin armamos la matriz del sistema y la reducimos hasta una MERF:

$$\begin{bmatrix} 4 & -1 & 1 \\ 2 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \xrightarrow{F_1 \leftrightarrow F_3} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 1 \\ 4 & -1 & 1 \end{bmatrix} \xrightarrow{F_2 - 2F_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -3 & -1 \\ 0 & -9 & -3 \end{bmatrix} \xrightarrow{F_3 + 3F_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -3 & -1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$\xrightarrow{-\frac{1}{3}F_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{F_1 - 2F_2} \begin{bmatrix} 1 & 0 & \frac{1}{3} \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & 0 \end{bmatrix} = B$$

El sistema homogéneo asociado a la MERF B es

$$(**) \begin{cases} x + \frac{1}{3}z = 0 \\ y + \frac{1}{3}z = 0 \end{cases}$$

Despejando x e y en función de z, vemos que las soluciones de este sistema son los vectores (x, y, z) tales que

$$x = -\frac{1}{3}z$$
 y $y = -\frac{1}{3}z$.

Luego, si le damos valores concretos a z encontramos soluciones del sistema (**) y también del sistema (*) porque tienen las mismas soluciones. Por ejemplo, (-1, -1, 3) es la solución correspondiente a z = 3.

En conclusión, el vector (-1, -1, 3) es no nulo y ortogonal a u, v y w, como queríamos.

Por lo dicho anteriormente, no es el único vector con estas propiedades. Por ejemplo, tomando z = -6, tenemos que (2, 2, -6) es otro vector no nulo ortogonal a u, v y w.

El conjunto de todos los vectores ortogonales a u, v y w puede ser descripto como el conjunto de soluciones del sistema (*) o, equivalentemente, como el conjuto de soluciones del sistema (**). En base a lo dicho anteriormente este conjunto de soluciones es descripto más explicitamente así

$$\left\{ \left(-\frac{1}{3}z, -\frac{1}{3}z, z \right) : z \in \mathbb{R} \right\}$$

(2) Dar un vector $(x, y, z) \in \mathbb{R}^3$ no nulo que pertenezca a la intersección de los planos

$$P_1 = \{(x, y, z) \in \mathbb{R}^3 \mid 4x - y + z = 0\},\$$

$$P_2 = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + y + z = 0\},\$$

$$P_3 = \{(x, y, z) \in \mathbb{R}^3 \mid x + 2y + z = 0\}.$$

¿Hay un único vector con esta propiedad? ¿Cómo describiría a todos los vectores que satisfacen dicha propiedad?

SOLUCIÓN: Un vector (x, y, z) pertenece a los tres planos si y sólo si satisface las ecuaciones que definen cada uno de los planos. En otras palabras, (x, y, z) esta en la intersección $P_1 \cap P_2 \cap P_3$ si y sólo si es solución del sistema formado por las tres ecuaciones que definen los planos:

$$\begin{cases} 4x - y + z = 0 \\ 2x + y + z = 0 \\ x + 2y + z = 0 \end{cases}$$

Este es el mismo sistema del ejercicio anterior. Entonces (-1, -1, 3) es un vector no nulo perteneciente a la intersección $P_1 \cap P_2 \cap P_3$. Y las otras preguntas se responden de igual manera. En particular,

$$P_1 \cap P_2 \cap P_3 = \left\{ \left(-\frac{1}{3}z, -\frac{1}{3}z, z \right) : z \in \mathbb{R} \right\}.$$

(3) Sean $u=(4,2,1),\ v=(-1,1,2)$ y w=(1,1,1) vectores en \mathbb{R}^3 . Decidir si existen $x,y,z\in\mathbb{R}$ no todos nulos, tales que

$$(0,0,0) = xu + yv + zw.$$

Solución: Para ver más claro el problema empecemos por desarrollar la combinación lineal

$$(0,0,0) = xu + yv + zw(0,0,0)$$

= $x(4,2,1) + y(-1,1,2) + z(1,1,1)$
= $(4x - y + z, 2x + y + z, x + 2y + z).$

Ahora bien, esta iguadad vale si y sólo si cada uno de las coordenadas de este último vector es cero. Es decir, debe valer que x, y, z son solución del sistema

$$\begin{cases} 4x - y + z = 0 \\ 2x + y + z = 0 \\ x + 2y + z = 0 \end{cases}$$

Nuevamente, este es el mismo sistema del primer ejercicio. En particular, (-1, -1, 3) es una solución y los valores

$$x = -1, \quad y = -1, \quad z = 3$$

satisfacen los requerimientos del ejercicio.

(4) Encontrar los coeficientes reales del polinomio $p(x) = ax^2 + bx + c$ de manera tal que p(1) = 2, p(2) = 7 y p(3) = 14.

Solución: Planteemos a nivel de los coeficientes del polinomio las condiciones:

$$P(1) = 2 \Rightarrow a \cdot 1^{2} + b \cdot 1 + c = 2$$

$$P(2) = 7 \Rightarrow a \cdot 2^{2} + b \cdot 2 + c = 7$$

$$P(3) = 14 \Rightarrow a \cdot 3^{2} + b \cdot 3 + c = 14.$$
(*)

Nuestro objetivo es averiguar a, b y c, que como vemos, se podrían obtener resolviendo el sistema de ecuaciones lineales planteado en (*). La matriz ampliada de este sistema es

$$[A|Y] = \begin{bmatrix} 1 & 1 & 1 & 2 \\ 4 & 2 & 1 & 7 \\ 9 & 3 & 1 & 14. \end{bmatrix}$$

Resolvamos el sistema.

$$\begin{bmatrix} 1 & 1 & 1 & 2 \\ 4 & 2 & 1 & 7 \\ 9 & 3 & 1 & 4 \end{bmatrix} \xrightarrow{F_3 - 9F_1} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -2 & -3 & -1 \\ 0 & -6 & -8 & -4 \end{bmatrix} \xrightarrow{F_3 - 3F_2} \begin{bmatrix} 1 & 1 & 1 & 2 \\ 0 & -2 & -3 & -1 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

$$\xrightarrow{F_1 - F_3} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & -2 & 0 & -4 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{F_2/(-2)} \begin{bmatrix} 1 & 1 & 0 & 3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix} \xrightarrow{F_1 - F_2} \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Luego a = 1, b = 2, c = -1. Es decir el polinomio que satisface las hipótesis es:

$$x^2 + 2x - 1$$
.

(5) Determinar cuáles de las siguientes matrices son MERF.

$$\begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Solución: Recordemos que una matriz MERF debe satisfacer:

- a) la primera entrada no nula de una fila es 1 (el 1 principal).
- b) Cada columna que contiene un 1 principal tiene todos los otros elementos iguales a 0.
- c) todas las filas cuyas entradas son todas iguales a cero están al final de la matriz, y
- d) en dos filas consecutivas no nulas el 1 principal de la fila inferior está más a la derecha que el 1 principal de la fila superior.

Las primeras cuatro matrices satisfacen la definición de MERF.

La 5° matriz no satisface b), pues el 1 principal es la segunda fila está en la columna 3 y en esa columna hay otro elemento no nulo (en la posición 33 hay un 1).

La 6° matriz tampoco es MERF pues la fila 2 es nula y la fila 3 no lo es. Luego no satisface c).

- (6) Para cada una de las MERF del ejercicio anterior,
 - (a) asumir que es la matriz de un sistema homogéneo, escribir el sistema y dar las soluciones del sistema.
 - (b) asumir que es la matriz ampliada de un sistema no homogéneo, escribir el sistema y dar las soluciones del sistema.

Solución: Como ya vimos en el ejercicio anterior las MERF son

$$(i) \ \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad (ii) \ \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \end{bmatrix}, \quad (iii) \ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad (iv) \ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(a)

(i) El sistema homogéneo correspondiente es

$$\begin{aligned}
x_1 + 2x_2 &= 0 \\
x_3 &= 0,
\end{aligned}$$

luego $x_1 = -2x_2$ y las soluciones del sistema son $\{(-2t, t, 0) : t \in \mathbb{R}\}.$

(ii) El sistema homogéneo correspondiente es

$$\begin{aligned}
 x_1 + 2x_3 &= 0 \\
 x_2 - 3x_3 &= 0
 \end{aligned}$$

luego $x_1 = -2x_3$, $x_2 = 3x_3$ y las soluciones son $\{(-2t, 3t, t) : t \in \mathbb{R}\}$.

(iii) El sistema homogéneo correspondiente es

$$\begin{array}{rcl} x_2 &= 0 \\ x_3 &= 0, \end{array}$$

luego las soluciones son $\{(t,0,0):t\in\mathbb{R}\}.$

(iv) El sistema homogéneo correspondiente es

$$x_2 = 0,$$

luego las soluciones son $\{(t,0,s):t,s\in\mathbb{R}\}.$

(b) Las matrices ampliadas son

$$(i) \ \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad (ii) \ \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -3 \end{bmatrix}, \quad (iii) \ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad (iv) \ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

(i) El sistema no homogéneo correspondiente es

$$x_1 + 2x_2 = 0$$

0 = 1

Por lo tanto no tiene solución.

(ii) El sistema correspondiente es

$$\begin{array}{rcl}
x_1 & = 2 \\
x_2 & = -3,
\end{array}$$

luego la solución es (2, -3).

(iii) El sistema correspondiente es

$$x_2 = 0$$

0 = 1.

Por lo tanto no tiene solución.

(iv) El sistema correspondiente es

$$x_2 = 0$$
,

luego las soluciones son $\{(t,0): t \in \mathbb{R}\}.$

(7) Para cada uno de los siguientes sistemas de ecuaciones, describir explícita o paramétricamente todas las soluciones e indicar cuál es la MERF asociada al sistema.

(a)
$$\begin{cases} -x - y + 4z = 0 \\ x + 3y + 8z = 0 \\ x + 2y + 5z = 0 \end{cases}$$
 (b)
$$\begin{cases} x - 3y + 5z = 0 \\ 2x - 3y + z = 0 \\ -y + 3z = 0 \end{cases}$$
 (c)
$$\begin{cases} x - z + 2t = 0 \\ -x + 2y - z + 2t = 0 \\ -x + y = 0 \end{cases}$$

(d)
$$\begin{cases} -x - y + 4z = 1 \\ x + 3y + 8z = 3 \\ x + 2y + 5z = 1 \end{cases}$$
 (e)
$$\begin{cases} x - 3y + 5z = 1 \\ 2x - 3y + z = 3 \\ -y + 3z = 1 \end{cases}$$
 (f)
$$\begin{cases} x - z + 2t = 1 \\ -x + 2y - z + 2t = 3 \\ -x + y = 1 \end{cases}$$

Solución:

(a) La matriz asociada a este sistema es la matriz A_1 que escribimos más abajo y a la cual luego reducimos a una MERF.

$$A_{1} = \begin{bmatrix} -1 & -1 & 4 \\ 1 & 3 & 8 \\ 1 & 2 & 5 \end{bmatrix} \xrightarrow{F_{2}+F_{1}} \begin{bmatrix} -1 & -1 & 4 \\ 0 & 2 & 12 \\ 0 & 1 & 9 \end{bmatrix} \xrightarrow{F_{1}+F_{3}} \begin{bmatrix} -1 & 0 & 13 \\ 0 & 0 & -6 \\ 0 & 1 & 9 \end{bmatrix}$$

$$\xrightarrow{F_{1}/(-1)} \begin{bmatrix} 1 & 0 & -13 \\ 0 & 0 & 1 \\ 0 & 1 & 9 \end{bmatrix} \xrightarrow{F_{1}+13F_{2}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \xrightarrow{F_{2}\leftrightarrow F_{3}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = R_{1}.$$

Luego el sistema tiene solución trivial (0,0,0) y la MERF es la matriz Id₃.

(b)

$$A_{2} = \begin{bmatrix} 1 & -3 & 5 \\ 2 & -3 & 1 \\ 0 & -1 & 3 \end{bmatrix} \xrightarrow{F_{2}-2F_{1}} \begin{bmatrix} 1 & -3 & 5 \\ 0 & 3 & -9 \\ 0 & -1 & 3 \end{bmatrix} \xrightarrow{F_{1}-3F_{3}} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 0 & 0 \\ 0 & -1 & 3 \end{bmatrix}$$

$$\xrightarrow{-F_{3}} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 0 & 0 \\ 0 & 1 & -3 \end{bmatrix} \xrightarrow{F_{2}\leftrightarrow F_{3}} \begin{bmatrix} 1 & 0 & -4 \\ 0 & 1 & -3 \\ 0 & 0 & 0 \end{bmatrix} = R_{2}.$$

Luego la MERF asociada al sistema es R_2 y ahora el nuevo sistema es

$$\begin{cases} x - 4z = 0 \\ y - 3z = 0 \end{cases} \Rightarrow \begin{cases} x = 4z \\ y = 3z. \end{cases}$$

Por lo tanto las soluciones del sistema son $\{(4t, 3t, t) : t \in \mathbb{R}\}.$

(c) Este es un sistema homogéneo de 3 ecuaciones con 4 incógnitas (x, y, z, t). La matriz del sistema es la A_3 que mostramos en la siguiente fila y luego la reducimos a MERF:

$$A_{3} = \begin{bmatrix} 1 & 0 & -1 & 2 \\ -1 & 2 & -1 & 2 \\ -1 & 1 & 0 & 0 \end{bmatrix} \xrightarrow{F_{2}+F_{1}} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 2 & -2 & 4 \\ 0 & 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_{2}/2} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 2 \\ 0 & 1 & -1 & 2 \end{bmatrix} \xrightarrow{F_{3}-F_{2}} \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R_{3}.$$

Luego R_3 es la MERF asociada al sistema. El sistema ahora es

$$\begin{cases} x - z + 2t = 0 \\ y - z + 2t = 0 \end{cases} \Rightarrow \begin{cases} x = z - 2t \\ y = z - 2t. \end{cases}$$

Por lo tanto, las soluciones del sistema son $\{(u-2v,u-2v,u,v):u,v\in\mathbb{R}\}.$

(d) Este es un sistema no homogéneo de 3 ecuaciones y 3 incógnitas. La matriz ampliada del sistema es $[A_1|Y]$, donde A_1 es la matriz del inciso (a). Luego para reducir

 A_1 a MERF hacemos los mismos pasos que en (a):

$$[A_{1}|Y] = \begin{bmatrix} -1 & -1 & 4 & 1 \\ 1 & 3 & 8 & 3 \\ 1 & 2 & 5 & 1 \end{bmatrix} \xrightarrow{F_{2}+F_{1}} \begin{bmatrix} -1 & -1 & 4 & 1 \\ 0 & 2 & 12 & 4 \\ 0 & 1 & 9 & 2 \end{bmatrix} \xrightarrow{F_{1}+F_{3}} \begin{bmatrix} -1 & 0 & 13 & 3 \\ 0 & 0 & -6 & 0 \\ 0 & 1 & 9 & 2 \end{bmatrix}$$

$$\xrightarrow{F_{1}/(-1)} \begin{bmatrix} 1 & 0 & -13 & -3 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 9 & 2 \end{bmatrix} \xrightarrow{F_{1}+13F_{2}} \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 2 \end{bmatrix} \xrightarrow{F_{2}\leftrightarrow F_{3}} \begin{bmatrix} 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix} .$$

Luego la MERF asociada al sistema es Id_3 (con en (a), obviamente) y la solución del sistema es (-3, 2, 0).

(e) Este es un sistema no homogéneo de 3 ecuaciones y 3 incógnitas. La matriz ampliada del sistema es $[A_2|Y]$ donde A_2 es la matriz del inciso (b). Luego para reducir A_2 a MERF hacemos los mismos pasos que en (b):

$$[A_{2}|Y] = \begin{bmatrix} 1 & -3 & 5 & 1 \\ 2 & -3 & 1 & 3 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{F_{2}-2F_{1}} \begin{bmatrix} 1 & -3 & 5 & 1 \\ 0 & 3 & -9 & 1 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{F_{1}-3F_{3}} \begin{bmatrix} 1 & 0 & -4 & -2 \\ 0 & 0 & 0 & 4 \\ 0 & -1 & 3 & 1 \end{bmatrix}$$

$$\xrightarrow{-F_{3}} \begin{bmatrix} 1 & 0 & -4 & -2 \\ 0 & 0 & 0 & 4 \\ 0 & 1 & -3 & -1 \end{bmatrix} \xrightarrow{F_{2}\leftrightarrow F_{3}} \begin{bmatrix} 1 & 0 & -4 & -2 \\ 0 & 1 & -3 & -1 \\ 0 & 0 & 0 & 4 \end{bmatrix} .$$

Luego la MERF asociada al sistema es R_2 del ejercicio (b) y como en el nuevo sistema tenemos la ecuación 0 = 4, el sistema no tiene solución.

(f) Este es un sistema no homogéneo de 3 ecuaciones con 4 incógnitas. La matriz ampliada del sistema es $[A_3|Y]$ donde A_3 es la matriz del inciso (c). Luego para reducir A_3 a MERF hacemos los mismos pasos que en (c):

$$[A_3|Y] = \begin{bmatrix} 1 & 0 & -1 & 2 & 1 \\ -1 & 2 & -1 & 2 & 3 \\ -1 & 1 & 0 & 0 & 1 \end{bmatrix} \xrightarrow{F_2 + F_1} \begin{bmatrix} 1 & 0 & -1 & 2 & 1 \\ 0 & 2 & -2 & 4 & 4 \\ 0 & 1 & -1 & 2 & 2 \end{bmatrix} \xrightarrow{F_2/2}$$

$$\begin{bmatrix} 1 & 0 & -1 & 2 & 1 \\ 0 & 1 & -1 & 2 & 2 \\ 0 & 1 & -1 & 2 & 2 \end{bmatrix} \xrightarrow{F_3 - F_2} \begin{bmatrix} 1 & 0 & -1 & 2 & 2 \\ 0 & 1 & -1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

Luego R_3 (de (c)) es la MERF asociada al sistema. El sistema ahora es

$$\begin{cases} x - z + 2t = 2 \\ y - z + 2t = 2 \end{cases} \Rightarrow \begin{cases} x = z - 2t + 2 \\ y = z - 2t + 2. \end{cases}$$

Por lo tanto, las soluciones del sistema son $\{(u-2v+2,u-2v+2,u,v):u,v\in\mathbb{R}\}.$

(8) Para cada uno de los siguientes sistemas, describir implícitamente el conjunto de los vectores (b_1, b_2, b_3) o (b_1, b_2, b_3, b_4) para los cuales cada sistema tiene solución.

(a)
$$\begin{cases} x - 3y + 5z = b_1 \\ 2x - 3y + z = b_2 \\ -y + 3z = b_3 \end{cases}$$
 (b)
$$\begin{cases} x - z + 2t = b_1 \\ -x + 2y - z + 2t = b_2 \\ -x + y = b_3 \\ y - z + 2t = b_4 \end{cases}$$
 (c)
$$\begin{cases} -x - y + 4z = b_1 \\ x + 3y + 8z = b_2 \\ x + 2y + 5z = b_3 \end{cases}$$

Solución:

(a) La matriz ampliada del sistema es

$$[A_2|Y] = \begin{bmatrix} 1 & -3 & 5 & b_1 \\ 2 & -3 & 1 & b_2 \\ 0 & -1 & 3 & b_3 \end{bmatrix}.$$

Observar que A_2 es la misma matriz que la de los ejercicios (7) b) y e) y, por lo tanto, los pasos para reducir la matriz asociada al sistema serán los mismos.

$$[A_2|Y] = \begin{bmatrix} 1 & -3 & 5 & b_1 \\ 2 & -3 & 1 & b_2 \\ 0 & -1 & 3 & b_3 \end{bmatrix} \xrightarrow{F_2 - 2F_1} \begin{bmatrix} 1 & -3 & 5 & b_1 \\ 0 & 3 & -9 & b_2 - 2b_1 \\ 0 & -1 & 3 & b_3 \end{bmatrix} \xrightarrow{F_1 - 3F_3} \xrightarrow{F_2 + 3F_3}$$

$$\begin{bmatrix} 1 & 0 & -4 & b_1 - 3b_3 \\ 0 & 0 & 0 & -2b_1 + b_2 + 3b_3 \\ 0 & -1 & 3 & b_3 \end{bmatrix} \xrightarrow{F_3} \begin{bmatrix} 1 & 0 & -4 & b_1 - 3b_3 \\ 0 & 0 & 0 & -2b_1 + b_2 + 3b_3 \\ 0 & 1 & -3 & -b_3 \end{bmatrix} \xrightarrow{F_2 \leftrightarrow F_3} \begin{bmatrix} 1 & 0 & -4 & b_1 - 3b_3 \\ 0 & 1 & -3 & -b_3 \\ 0 & 0 & 0 & -2b_1 + b_2 + 3b_3 \end{bmatrix}.$$

Luego el conjunto de b_i 's para los cuales el sistema tiene solución es

$$\{(b_1, b_2, b_3) \in \mathbb{R}^3 : -2b_1 + b_2 + 3b_3 = 0\}.$$

(b) La matriz ampliada del sistema es

$$[B|Y] = \begin{bmatrix} 1 & 0 & -1 & 2 & b_1 \\ -1 & 2 & -1 & 2 & b_2 \\ -1 & 1 & 0 & 0 & b_3 \\ 0 & 1 & -1 & 2 & b_4 \end{bmatrix}.$$

Ahora, reducimos B a una MERF:.

$$[B|Y] = \begin{bmatrix} 1 & 0 & -1 & 2 & b_1 \\ -1 & 2 & -1 & 2 & b_2 \\ -1 & 1 & 0 & 0 & b_3 \\ 0 & 1 & -1 & 2 & b_4 \end{bmatrix} \xrightarrow{F_2 + F_1} \begin{bmatrix} 1 & 0 & -1 & 2 & b_1 \\ 0 & 2 & -2 & 4 & b_1 + b_2 \\ 0 & 1 & -1 & 2 & b_1 + b_3 \\ 0 & 1 & -1 & 2 & b_4 \end{bmatrix} \xrightarrow{F_2/2}$$

$$\begin{bmatrix} 1 & 0 & -1 & 2 & b_1 \\ 0 & 1 & -1 & 2 & b_1 + b_2 \\ 0 & 1 & -1 & 2 & b_1 + b_3 \\ 0 & 1 & -1 & 2 & b_4 \end{bmatrix} \xrightarrow{F_3 - F_2} \begin{bmatrix} 1 & 0 & -1 & 2 & b_1 \\ 0 & 1 & -1 & 2 & b_1 + b_2 \\ 0 & 0 & 0 & 0 & b_1 + b_3 - \frac{1}{2}b_1 - \frac{1}{2}b_2 \\ 0 & 0 & 0 & 0 & b_4 - \frac{1}{2}b_1 - \frac{1}{2}b_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & -1 & 2 & b_1 \\ 0 & 1 & -1 & 2 & b_1 \\ 0 & 1 & -1 & 2 & \frac{1}{2}b_1 + \frac{1}{2}b_2 \\ 0 & 0 & 0 & 0 & \frac{1}{2}b_1 - \frac{1}{2}b_2 + b_3 \\ 0 & 0 & 0 & 0 & -\frac{1}{2}b_1 - \frac{1}{2}b_2 + b_4 \end{bmatrix} .$$

Luego el conjunto de b_i 's para los cuales el sistema tiene solución es

$$\{(b_1, b_2, b_3, b_4) \in \mathbb{R}^3 : \frac{1}{2}b_1 - \frac{1}{2}b_2 + b_3 = 0 \land -\frac{1}{2}b_1 - \frac{1}{2}b_2 + b_4 = 0\}.$$

(c) La matriz ampliada del sistema es

$$[A_1|Y] = \begin{bmatrix} -1 & -1 & 4 & b_1 \\ 1 & 3 & 8 & b_2 \\ 1 & 2 & 5 & b_3 \end{bmatrix}.$$

Observar que A_1 es la misma matriz que la de los ejercicios (7) a) y d) y, por lo tanto, los pasos para reducir la matriz asociada al sistema serán los mismos.

$$A_{1} = \begin{bmatrix} -1 & -1 & 4 & b_{1} \\ 1 & 3 & 8 & b_{2} \\ 1 & 2 & 5 & b_{3} \end{bmatrix} \xrightarrow{F_{2}+F_{1}} \begin{bmatrix} -1 & -1 & 4 & b_{1} \\ 0 & 2 & 12 & b_{1}+b_{2} \\ 0 & 1 & 9 & b_{1}+b_{3} \end{bmatrix} \xrightarrow{F_{1}+F_{3}} \xrightarrow{F_{2}-2F_{3}}$$

$$\begin{bmatrix} -1 & 0 & 13 & 2b_{1}+b_{3} \\ 0 & 0 & -6 & -b_{1}+b_{2}-2b_{3} \\ 0 & 1 & 9 & b_{1}+b_{3} \end{bmatrix} \xrightarrow{F_{1}/(-1)} \begin{bmatrix} 1 & 0 & -13 & -2b_{1}-b_{3} \\ 0 & 0 & 1 & \frac{1}{6}b_{1}-\frac{1}{6}b_{2}+\frac{1}{3}b_{3} \\ 0 & 1 & \frac{1}{6}b_{1}-\frac{13}{6}b_{2}+\frac{10}{3}b_{3} \\ 0 & 1 & 0 & -\frac{1}{2}b_{1}+\frac{3}{2}b_{2}-2b_{3} \end{bmatrix} \xrightarrow{F_{2}\leftrightarrow F_{3}} \begin{bmatrix} 1 & 0 & 0 & \frac{1}{6}b_{1}-\frac{13}{6}b_{2}+\frac{10}{3}b_{3} \\ 0 & 1 & 0 & -\frac{1}{2}b_{1}+\frac{3}{2}b_{2}-2b_{3} \\ 0 & 0 & 1 & \frac{1}{6}b_{1}-\frac{1}{6}b_{2}+\frac{1}{3}b_{3} \end{bmatrix}.$$

Luego el conjunto de b_i 's para los cuales el sistema tiene solución es \mathbb{R}^3 .

(9) Sea
$$A = \begin{bmatrix} 1 & 2 & 3 & \cdots & 2016 \\ 2 & 3 & 4 & \cdots & 2017 \\ 3 & 4 & 5 & \cdots & 2018 \\ \vdots & & & & \vdots \\ 100 & 101 & 102 & \cdots & 2115 \end{bmatrix}$$

- (a) Encontrar todas las soluciones del sistema AX = 0.
- (b) Encontrar todas las soluciones del sistema $AX = \begin{bmatrix} \vdots \end{bmatrix}$.

Solución:

(a) Reducimos la matriz A aplicando operaciones elementales por filas:

$$A = \begin{bmatrix} 1 & 2 & 3 & \cdots & 2016 \\ 2 & 3 & 4 & \cdots & 2017 \\ 3 & 4 & 5 & \cdots & 2018 \\ \vdots & & & \vdots \\ 100 & 101 & 102 & \cdots & 2115 \end{bmatrix} \xrightarrow{F_2 - F_1} \begin{bmatrix} 1 & 2 & 3 & \cdots & 2016 \\ 1 & 1 & 1 & \cdots & 1 \\ 2 & 2 & 2 & \cdots & 2 \\ \vdots & & & & \vdots \\ 99 & 99 & 99 & \cdots & 99 \end{bmatrix} \xrightarrow{F_3 - 2F_2} \vdots$$

$$\vdots & & & \vdots \\ F_{100} - 99F_2 \\ \vdots & & & & \vdots \\ F_{100} - 99F_2 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \xrightarrow{F_2 \leftrightarrow F_1} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 3 & \cdots & 2016 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \xrightarrow{F_2 - F_1} \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 3 & \cdots & 2016 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} \xrightarrow{F_1 - F_2} \begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & 2 & 3 & \cdots & 2015 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix} = R_A$$

Luego R_A es la MERF asociada al sistema. El sistema ahora es

$$\begin{cases} x_1 + (-1)x_3 + (-2)x_4 + \dots + (-2014)x_{2016} = 0 \\ x_2 + 2x_3 + 3x_4 + \dots + 2015x_{2016} = 0 \end{cases} \Rightarrow \begin{cases} x_1 = \sum_{j=3}^{2016} (j-2)x_j \\ x_2 = \sum_{j=3}^{2016} (1-j)x_j \end{cases}$$

Por lo tanto, las soluciones del sistema son:

$$\{(\sum_{j=3}^{2016}(j-2)x_j,\sum_{j=3}^{2016}(1-j)x_j,x_3,x_4,\cdots,x_{2016}):x_3,x_4,\cdots,x_{2016}\in\mathbb{R}\}.$$

(b) Podemos repetir la secuencia de operaciones elementales sobre el vector de unos para obtener las soluciones:

$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \xrightarrow{F_{2}-F_{1}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \xrightarrow{F_{3}-2F_{2}} \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \xrightarrow{F_{2} \leftrightarrow F_{1}} \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \xrightarrow{F_{2} \leftrightarrow F_{1}} \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \xrightarrow{F_{2} - F_{1}} \begin{bmatrix} 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

Análogamente al inciso (a), el sistema ahora es:

$$\begin{cases} x_1 + (-1)x_3 + (-2)x_4 + \dots + (-2014)x_{2016} = -1 \\ x_2 + 2x_3 + 3x_4 + \dots + 2015x_{2016} = 1 \end{cases} \Rightarrow \begin{cases} x_1 = -1 + \sum_{j=3}^{2016} (j-2)x_j \\ x_2 = 1 + \sum_{j=3}^{2016} (1-j)x_j \end{cases}$$

Por lo tanto, las soluciones del sistema son:

$$\{(-1+\sum_{j=3}^{2016}(j-2)x_j,1+\sum_{j=3}^{2016}(1-j)x_j,x_3,x_4,\cdots,x_{2016}):x_3,x_4,\cdots,x_{2016}\in\mathbb{R}\}.$$

- (10) Sea $A = \begin{bmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{bmatrix}$. Reduciendo A por filas,
 - (a) encontrar todas las soluciones sobre \mathbb{R} y \mathbb{C} del sistema AX = 0.
 - (b) encontrar todas las soluciones sobre \mathbb{R} y \mathbb{C} del sistema $AX = \begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix}$.

Solución:

(a) Reducimos la matriz A aplicando operaciones elementales por filas:

$$A = \begin{bmatrix} 3 & -1 & 2 \\ 2 & 1 & 1 \\ 1 & -3 & 0 \end{bmatrix} \xrightarrow{F_1 \leftrightarrow F_3} \begin{bmatrix} 1 & -3 & 0 \\ 2 & 1 & 1 \\ 3 & -1 & 2 \end{bmatrix} \xrightarrow{F_2 - 2F_1} \begin{bmatrix} 1 & -3 & 0 \\ 0 & 7 & 1 \\ 0 & 8 & 2 \end{bmatrix} \xrightarrow{F_3 - F_2} \begin{bmatrix} 1 & -3 & 0 \\ 0 & 7 & 1 \\ 0 & 1 & 1 \end{bmatrix} \xrightarrow{F_3 \leftrightarrow F_2} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 7 & 1 \end{bmatrix} \xrightarrow{F_3 - 7F_2} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -6 \end{bmatrix} \xrightarrow{F_3(-\frac{1}{6})} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \xrightarrow{F_1 - 3F_3} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = R_A$$

Luego el sistema tiene solución trivial (0,0,0) y la MERF es la matriz Id₃. Notar que todas las operaciones realizadas valen tanto para \mathbb{R} como para \mathbb{C} , por lo que (0,0,0) es la solución para ambos casos.

(b) Análogamente a lo realizado en el ejercicio (7.b), podemos repetir la secuencia de operaciones elementales sobre el vector $\begin{bmatrix} 1 \\ i \\ 0 \end{bmatrix}$:

$$\begin{bmatrix} 1\\i\\0 \end{bmatrix} \xrightarrow{F_1 \leftrightarrow F_3} \begin{bmatrix} 0\\i\\1 \end{bmatrix} \xrightarrow{F_2 - 2F_1} \begin{bmatrix} 0\\i\\1 \end{bmatrix} \xrightarrow{F_3 - F_2} \begin{bmatrix} 0\\i\\1-i \end{bmatrix} \xrightarrow{F_3 \leftrightarrow F_2} \begin{bmatrix} 0\\1-i\\i \end{bmatrix} \xrightarrow{F_1 + 3F_2} \xrightarrow{F_3 - 7F_2} \begin{bmatrix} 3-3i\\1-i\\1-i\\\frac{7}{6}-\frac{4}{3}i \end{bmatrix} \xrightarrow{F_1 - 3F_3} \begin{bmatrix} -\frac{1}{2}+i\\-\frac{1}{6}+\frac{1}{3}i\\\frac{7}{6}-\frac{4}{3}i \end{bmatrix}$$

En este punto, si bien las operaciones propiamente dichas sólo involucraron números reales, tenemos que la solución tiene números complejos, por lo que el sistema no

tiene solución en \mathbb{R} , pero si tiene solución en \mathbb{C} , y es $X = \begin{bmatrix} -\frac{1}{2} + i \\ -\frac{1}{6} + \frac{1}{3}i \\ \frac{7}{6} - \frac{4}{3}i \end{bmatrix}$

(11) Suponga que tiene que resolver un sistema de m ecuaciones lineales con n incógnitas. Antes de empezar a hacer cuentas y apelando a la teoría, ¿Qué puede afirmar acerca del conjunto de soluciones en base a si m > n, m = n ó m < n? ¿Cómo saber si es vacío o no vacío? ¿Si tiene una o varias soluciones?

Solución:

No hay una respuesta concluyente a este ejercicio pero nos sirve para pensar un poco y repasar la teoría. Algunos razonamientos que podemos hacer son los siguientes.

Si el sistema tiene menos incógnitas que ecuaciones (m > n) hay chances de que no tenga solución. En cierto sentido, cada ecuación es una condición para el conjunto de soluciones y entonces podría ser que estemos poniendo demasiadas condiciones y que sean contradictorias entre ellas y así no habría una solución común a todas (ver la página 29 de la Clase 08 Teórica - Sistemas de ecuaciones 3 (17-09-20)).

Si el sistema tiene más incógnitas que ecuaciones (m < n) y el sistema tiene solución entonces el sistema tiene infinitas soluciones. Esto es porque hay incógnitas que no van a ser 1 principal y entonces serían variables libres (ver la página 35 de la Clase 08 Teórica - Sistemas de ecuaciones 3 (17-09-20)).

- (12) (a) Sean $\lambda_1, ..., \lambda_n \in \mathbb{R}$ y $b_1, ..., b_n \in \mathbb{R}$.
 - (a) Para cada $n \in \{1, 2, 3, 4, 5\}$, plantear un sistema de ecuaciones lineales que le permita encontrar un polinomio p(x) con coeficientes reales de grado n-1 tal que

$$p(\lambda_1) = b_1, \dots, p(\lambda_n) = b_n.$$

- (b) ¿Se le ocurre alguna condición con la cual pueda afirmar que el sistema anterior no tiene solución?
- (c) ¿Puede dar una forma general del sistema para cualquier n?

SOLUCIÓN: (a) En el ejercicio (4) hicimos n=3 para un caso concreto (p(1)=2, p(2)=7 y p(3)=14). como en ese caso, una forma de resolver el problema es plantear un sistema de ecuaciones donde los coeficientes del polinomio sean la incógnitas. Sea

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_{n-1} x^{n-1},$$

entonces, $p_n(\lambda_i) = b_i$ se traduce en la ecuación

$$a_0 + a_1 \lambda_i + a_2 \lambda_i^2 + \dots + a_{n-1} \lambda_i^{n-1} = b_i.$$

Las matrices ampliadas de los sistemas de ecuaciones para n = 4 y n = 5, son

$$\begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 & \lambda_1^3 & b_1 \\ 1 & \lambda_2 & \lambda_2^2 & \lambda_2^3 & b_2 \\ 1 & \lambda_3 & \lambda_3^3 & \lambda_3^3 & b_3 \\ 1 & \lambda_4 & \lambda_4^2 & \lambda_4^3 & b_4 \end{bmatrix}, \begin{bmatrix} 1 & \lambda_1 & \lambda_1^2 & \lambda_1^3 & \lambda_1^4 & b_1 \\ 1 & \lambda_2 & \lambda_2^2 & \lambda_2^3 & \lambda_2^4 & b_2 \\ 1 & \lambda_3 & \lambda_3^2 & \lambda_3^3 & \lambda_3^4 & b_3 \\ 1 & \lambda_4 & \lambda_4^2 & \lambda_3^3 & \lambda_4^4 & b_4 \\ 1 & \lambda_5 & \lambda_5^2 & \lambda_5^3 & \lambda_5^4 & b_5 \end{bmatrix},$$

respectivamente. Para n = 1, 2, 3 es claro como son los sistemas.

(b) Si sobrentendemos que todos los λ_i son distintos entre si, la respuesta es no.

Obviamente si $\lambda_i = \lambda_j$ y $b_i \neq b_j$, entonces $p(\lambda_i) = b_i \neq b_j = p(\lambda_j) = p(\lambda_i)$, es decir llegamos a la conclusión que $p(\lambda_i) \neq p(\lambda_i)$, lo cual es absurdo.

(Veremos más adelante, usando determinantes, que si $\lambda_i \neq \lambda_j$ para $i \neq j$, entonces siempre encontraremos un polinomio que satisfaga las condiciones del ejercicio).

(c) No es difícil generalizar (a) para cualquier n: la matriz ampliada del sistema de ecuaciones correspondiente al caso n es

(La matriz V es llamada la matriz de Vandermonde.)

Ejercicios de repaso.

(21) Juego Suko. Colocar los números del 1 al 9 en las celdas de la siguiente tabla de modo que el número en cada círculo sea igual a la suma de las cuatro celdas adyacentes, y la suma de las celdas del mismo color sea igual al número en el círculo de igual color.

SOLUCIÓN: Queremos ver que valor toma cada celda y, por lo tanto, a cada celda le asignamos una variable:

x_1	x_2	x_3	
x_4	x_5	x_6	
x_7	x_8	x_9	

Tenemos entonces las 9 incógnitas que debemos resolver y la información del Suko original nos dice que se deben cumplir las siguientes ecuaciones:

$$x_1 + x_2 + x_4 + x_5 = 12, (1)$$

$$x_2 + x_3 + x_5 + x_6 = 19, (2)$$

$$x_4 + x_5 + x_7 + x_8 = 23, (3)$$

$$x_5 + x_6 + x_8 + x_9 = 26, (4)$$

$$x_4 + x_5 = 9, (5)$$

$$x_1 + x_2 + x_3 + x_6 = 14, (6)$$

$$x_7 + x_8 + x_9 = 22 \tag{7}$$

Primero vamos a tratar de resolver el sistema de ecuaciones. Podríamos plantear la matriz ampliada del sistema y reducir la matriz, pero en este caso va a resultar más corto trabajar con las ecuaciones directamente. Hay 9 incógnitas y 7 ecuaciones, entonces en general es razonable que queden 7 variables dependientes y 2 variables libres. Con esto en mente trataremos de despejar todo en función de las variables x_1 y x_3 (esto fue elegido arbitrariamente).

Como
$$x_4 + x_5 = 9 \stackrel{\text{(1)}}{\Rightarrow} x_1 + x_2 + 9 = 12$$
, es decir $x_1 + x_2 = 3$ o $x_2 = 3 - x_1$ (a).

Como
$$x_4 + x_5 = 9 \stackrel{(3)}{\Rightarrow} 9 + x_7 + x_8 = 23 \Rightarrow x_7 + x_8 = 14 \stackrel{(7)}{\Rightarrow} 14 + x_9 = 22 \Rightarrow x_9 = 8 \ (b)$$
.

Ahora, como $x_1+x_2=3 \stackrel{(6)}{\Rightarrow} 3+x_3+x_6=14$, es decir $x_3+x_6=11$ o $x_6=11-x_3$ (c). Si en la ecuación (2) reemplazamos x_2 y x_6 , obtenemos

$$19 = x_2 + x_3 + x_5 + x_6 = (3 - x_1) + x_3 + x_5 + (11 - x_3) = 14 - x_1 + x_5,$$

o
$$x_5 = 5 + x_1 (d)$$
.

Con todo lo que hemos averiguado hacemos reemplazos en (4):

$$26 = x_5 + x_6 + x_8 + x_9 = (5 + x_1) + (11 - x_3) + x_8 + 8 = 24 + x_1 - x_3 + x_8$$

luego $x_8 = 2 - x_1 + x_3$ (e).

De la fórmula (7), de (e) y de (b), obtenemos

$$22 = x_7 + x_8 + x_9 = x_7 + (2 - x_1 + x_3) + 8 = 10 + x_7 - x_1 + x_3$$

luego $x_7 = 12 + x_1 - x_3 (f)$.

Utilizando (d) y la fórmula (5):

$$9 = x_4 + x_5 = x_4 + (5 + x_1) = 5 + x_1 + x_4$$

luego $x_4 = 4 - x_1(g)$.

Teníamos 7 ecuaciones y 9 incógnitas, entonces. como ya dijimos, era de esperarse que queden 7 variables dependientes y 2 variables libres, en este caso x_1 y x_3 . Si no tuviéramos más restricciones la cantidad de soluciones sería infinita, pero debemos considerar que

$$x_i \in \mathbb{N} \quad \land \quad 1 \le x_i \le 9 \quad \land \quad x_i \ne x_i \text{ si } i \ne j.$$
 (*)

(1 < i, j < 7).

Debido a (*) y (a), x_1 solo puede ser 1 o 2.

Caso $x_1 = 1$. por las ecuaciones $(a), \dots, (f)$ obtenemos:

$$x_1 = 1,$$
 $x_2 = 2,$ $x_4 = 3,$ $x_5 = 6,$ $x_9 = 8,$ $x_6 = 11 - x_3,$ $x_7 = 13 - x_3,$ $x_8 = x_3 + 1,$ (**)

y x_3 libre (con las restricciones de (*)). Luego, x_3 tampoco puede tomar los valores 1, 2, 3, 6, 8 (pues ya los tienen otras variables), así que $x_3 = 4, 5, 7, 9$.

Subcaso $x_1 = 1$, $x_3 = 4$. En este caso, por (**): $x_6 = 7$, $x_7 = 9$, $x_8 = 5$, y estas serían soluciones admisibles.

Subcaso $x_1 = 1$, $x_3 = 5$. En este caso, por (**), $x_6 = 6 = x_5$, lo cual no es admisible (debe ser $x_6 \neq x_5$.)

Subcaso $x_1 = 1$, $x_3 = 7$. En este caso, por (**), $x_8 = 7 + 1 = 8 = x_9$, lo cual no es admisible.

Subcaso $x_1 = 1$, $x_3 = 9$. En este caso, por (**), $x_8 = 10$, lo cual no es admisible $(x_i \le 9 \text{ para todo } i)$.

Falta ver

Caso $x_1 = 2$. Por la ecuación (g) obtenemos $x_4 = 4 - 2 = 2 = x_1$, lo cual no es admisible.

Es decir, hay una única solución para estas ecuaciones con las restricciones mencionadas:

$$x_1 = 1,$$
 $x_2 = 2,$ $x_3 = 4,$ $x_4 = 3,$ $x_5 = 6,$ $x_6 = 7$ $x_7 = 9,$ $x_8 = 5,$ $x_9 = 8.$

(22) Suponga que tiene que resolver un sistema de ecuaciones lineales homogéneo y que tras hacer algunas operaciones elementales por fila a la matriz asociada obtiene una matriz con la siguiente forma

$$\left(\begin{array}{cccc}
a & * & * & * \\
0 & b & * & * \\
0 & 0 & c & * \\
0 & 0 & 0 & d
\end{array}\right)$$

donde $a, b, c, d \in \mathbb{R}$ y * son algunos números reales. ¿Qué conclusiones puede inferir acerca del conjunto de soluciones a partir de los valores de a, b, c y d?

Solución:

Lo primero que podemos observar es que si a, b, c y d son todos no nulos entonces podemos aplicar las operaciones elementales por fila de multiplicar cada fila por a^{-1} , b^{-1} , c^{-1} y d^{-1} . Luego de esto nos quedaría una matriz con la siguiente forma

$$\left(\begin{array}{cccc}
1 & * & * & * \\
0 & 1 & * & * \\
0 & 0 & 1 & * \\
0 & 0 & 0 & 1
\end{array}\right).$$

Luego podemos usando esos 1's principales podemos eliminar las entradas por encima de ellos obteniendo la matriz identindad

$$\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right).$$

En conclusión si a, b, c y d son todos no nulos podemos llegar mediante operaciones elementales por filas a la identidad y por lo tanto la única solución del sistema es la trivial (0,0,0,0), recordar el Teorema 2.4.5.

En cambio, si alguno de los escalares a, b, c y d es nulo, entonces no podemos obtener un 1 principal en su lugar. Más aún, la MERF a la que lleguemos tendrá una fila nula y por lo tanto el sistema tendrá infinitas soluciones, recordar el Teorema 2.4.2.

Por ejemplo, si d=0 esto es claro pues la matriz sería

$$\left(\begin{array}{cccc}
a & * & * & * \\
0 & b & * & * \\
0 & 0 & c & * \\
0 & 0 & 0 & 0
\end{array}\right).$$

Si c = 0 y $d \neq 0$, entonces la matriz es

$$\left(\begin{array}{cccc}
a & * & * & * \\
0 & b & * & * \\
0 & 0 & 0 & * \\
0 & 0 & 0 & d
\end{array}\right).$$

Luego, podemos multiplicar por d^{-1} la última fila y luego anular la entrada por arriba del 1 que nos quede y así obtener la matriz

$$\left(\begin{array}{cccc}
a & * & * & * \\
0 & b & * & * \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right).$$

Un razonamiento similar podríamos hacer con las demás posibilidades.

Moraleja: para saber si un sistema homogéneo tiene una o infinitas soluciones no es necesario reducir la matriz hasta llegar a una MERF basta con llegar a una triangular superior. Pero para calcular de forma paramétrica el conjunto de soluciones si es necesario llegar a una MERF.

(23) Suponga que tiene que resolver un sistema de ecuaciones lineales y que tras hacer algunas operaciones elementales por fila a la matriz ampliada obtiene una matriz con la siguiente forma

$$\left(\begin{array}{ccc|c}
a & * & * & * & * \\
0 & b & * & * & * \\
0 & 0 & 0 & 0 & c \\
0 & 0 & 0 & d & *
\end{array}\right)$$

donde $a, b, c, d \in \mathbb{R}$ y * son algunos números reales. ¿Qué conclusiones puede inferir acerca del conjunto de soluciones a partir de los valores de a, b, c, d?

Solución:

Lo primero que podemos notar es que si c es no nulo el sistema no tiene solución. Pues sería equivalente a un sistema cuya ecuación 0 = c es falsa. Asumamos ahora que c = 0. Si a, b y d son no nulos, entonces como antes podemos simplificarlos aplicando la operación elemental multiplicar la respectiva fila por a^{-1} , b^{-1} y d^{-1} . Luego intercambiar la tercer y cuarta fila para obtener la matriz

$$\begin{pmatrix}
1 & * & * & * & * \\
0 & 1 & * & * & * \\
0 & 0 & 0 & 1 & * \\
0 & 0 & 0 & 0 & 0
\end{pmatrix}$$

Razonando como en el ejercicio anterior podemos transforma la matriz en una MERF que va a tener una fila nula. Además, este sistema tiene una solución. En efecto, para fijar ideas supongamos que z_1 , z_2 y z_3 son las entradas de la última columna de la matriz ampliada entonces $(z_1, z_2, 0, z_3)$ es una solución. Por el Teorema 2.4.2, en este caso el sistema tiene infinitas soluciones.

Hay otros varios casos para analizar de manera similar.

Moraleja: al igual que antes no es necesario llegar a una MERF para saber si el sistema tendrá o no solución, una o infinitas. Pero para calcular de forma paramétrica el conjunto de soluciones si es necesario llegar a una MERF.