PHY2053 Spring 2018 Homework Assignment #1

Douglas H. Laurence

Department of Physical Sciences, Broward College, Davie, FL 33314

Abstract

In this homework assignment, you're going to be solving problems on vectors. These are going to come from end-of-the-chapter problems from Walker, Chapter 3, as well as some problems that I wrote myself. This set of homework set is due **January 17**.

- 1. Walker, Chapter 3, Conceptual Question 4
- 2. Walker, Chapter 3, Conceptual Question 6
- 3. Walker, Chapter 3, Conceptual Question 8
- 4. Walker, Chapter 3, Problem 12
- 5. Walker, Chapter 3, Problem 14
- 6. Walker, Chapter 3, Problem 18
- 7. Walker, Chapter 3, Problem 20
- 8. Consider three vectors:

$$\vec{a} = \hat{i} + 3\hat{j}$$

$$\vec{b} = -4\hat{i} + 2\hat{j}$$

$$\vec{c} = 5\hat{j}$$

Given these vectors, compute the following quantities:

- (a) $\vec{d} = \vec{a} + \vec{b} + \vec{c}$
- (b) θ , the angle between \vec{a} and \vec{b}
- (c) ϕ , the angle of \vec{d} measured **counter-clockwise** from the +x-axis.

1

9. Consider the two vectors:

$$\vec{A} = 3\hat{i} - 2\hat{j}$$

$$\vec{B} = 6\hat{j} + \hat{k}$$

Compute the following quantities:

(a)
$$|\vec{A} + \vec{B}|$$

- (b) $\vec{A} \cdot \vec{B}$
- (c) $\vec{A} \times \vec{B}$
- (d) θ , the angle between \vec{A} and \vec{B}
- 10. Consider the two vectors:

$$\vec{A}=4\hat{i}$$

$$\vec{B} = 2\hat{i} + 3\hat{j}$$

- (a) Draw the two vectors in an xy-coordinate system.
- (b) Define the **projection of** \vec{B} **onto** \vec{A} as the length of \vec{B} that runs parallel to \vec{A} . What is the projection of \vec{B} onto \vec{A} in this case? To help visualize what the projection of a vector represents, imagine an *actual* projector shining a light on a plank of wood, as shown in the following figure. The shadow of that plank of wood is what the projection projection represents. However, to imagine a vector in this analogy, we'd need the width of the board to be zero; so the projection of a vector (the plank of wood) onto another vector (the wall) is analogous to the *height/length* of the shadow.

