RADIATION BIOLOGY

Dr. Irfan Adil Majid

Assistant Professor of Oral Medicine and Radiology

Lecture Learning Outcomes

- Describe the biological effects of radiation on living cells
- Enumerate the effects of radiation from molecular to macromolecular level of living cells
- Describe the the oral and maxillofacial effects of of x-radiation

Introduction

 Radiation Biology is Study of effects of Ionizing Radiation on living system

How does radiation interact with cells?

Past Theory

Hit Theory

Radiation causes Free Radicals to damage Only the cell that is "Hit" by Direct Ionization

Current Theories

By-stander Effects

Radiation causes Free Radicals to Trigger Cell-cell communication and Cellmatrix communication to cells Other than those which are "hit" by the direct ionization

Terminology

Deterministic Effect

Are "Definitive" damaging effects to the body when exposed to specific high dose radiation, depending upon the radiation dose Eg: Radiation mucositis

Stochastic Effect

Are effects that "May" develop when exposed to radiation, donot depend on the amount of radiation dose Eg: Radiation induced cancer

Radiation Chemistry

■ Initial interaction between Ionizing Radiation and tissues takes place within 10⁻¹³ seconds

 Effects of Ionizing radiation on cells may persist for hours, decades, or generations

Mechanism of Radiation Caused Damage

 Direct Effect: Energy of photon or secondary electron Ionizes biologic molecule

 Indirect Effect: Energy of photon or Secondary electron Ionizes water and forms Free Radicals and free radicals in-turn cause damage to biologic molecules

Direct Effect

- Organic Molecule and hydrogen atom [RH]
- \blacksquare RH + X-Radiation \longrightarrow R* + H + e
- R* is a Free Radical
- The Generation of free radicals takes place in less than 10 secs
- Free radicals are extremely reactive and have very short life

Sequalae of Free Radical Formed by Direct Hit

- They quickly become stable molecules by either
- 1. Dissociation or
- 2. Cross-linking
- Dissociation

$$R^* \longrightarrow X + Y$$

• Cross-linking $R^* + S^* \longrightarrow RS$

• Only 1/3 of effects are by Direct Interaction

Indirect Effect

• "Hydrogen" [H] and "Hydroxyl" [OH] Free Radicals are formed by Radiolysis of water

• 2/3 of harmful effects are caused by Indirect effect

Indirect Effect Cont...

- Interaction of Hydrogen and Hydroxyl Free Radicals with organic molecules results in formation of "Organic free radicals"
- Hydroxyl radical is more important in causing tissue damage

$$\blacksquare RH + H$$
 $\longrightarrow R*+ H2$

$$\blacksquare RH + OH \longrightarrow R* + HO2$$

Factors Affecting Radiosensitivity of Cells

Depends on

1. Mitotic Rate

2.Cells with potential to under-go mitosis in future

3. Primitive cells

Radiosensitivity Cells Based on Histology of Cells

- Vegetative Intermitotic Cells
- Differentiating Intermitotic Cells
- Multipotential Connective tissue Cells
- Reverting Post-mitotic cells
- Fixed Post-mitotic Cells

Radiosensitivity Cells Based on Histology of Cells

- Vegetative Intermitotic Cells
 - Divide regularly and have long mitotic future
 - Most radiosensitive cells
 - These are precursor cells that function to replace worn-out cells
 - Eg: Spermatogenic Cells,
 Erythroblastic series and Basal
 cells of Oral Mucous Membrane

- Differentiating Intermitotic Cells
 - Less radiosensitive
 - They divide less often they also undergo some amount of differentiation between divisions Eg: Spermatocytes, Oocytes

Radiosensitivity Cells Based on Histology of Cells Cont...

- Multipotential Connective Tissue Cells
 - Intermediate radiosensitive cells
 - Divide less regularly and usually in response to a demand for more cells Eg: Vascular endothelial cells, Fibroblast, Mesenchymal cells

- Reverting Post-mitotic cells
 - Radioresistant cells because they divide Infrequently
 - These cells are specialized cells in function
 - Eg: Acinar and ductal cellsof
 Salivary glands, paranchyma of
 Pancreas, Liver, kidney and Thyroid

Radiosensitivity Cells Based on Histology of Cells Cont...

- Fixed Post-mitotic Cells
 - Most resistant, highly differentiated cells, once mature, are incapable of division
 - Eg: Neurons, Striated muscle, Squamous epithelial cells and Erythrocytes

High	Intermediate	Low
1.Lymphoid	1.Fine	1.Optic Lens
Organ	Vasculature	2.Mature
2.Bone Marrow	2.Growing	Erythrocytes
3.Testes	Cartilage	3.Muscle
4.Intestine	3. Growing Bone	Cells
5.Mucous	4.Salivary Glands	4.Nerves
Membrane	5.Lungs, Kidney, Liver	

Effects of Radiation

- I. On Biological [Biochemical] molecules
 - I.1. Nucleic acids
 - I.2.Proteins
- II. Effects at cellular level:
 - II.1.Nucleus
 - II.2.Chromosomal Aberration
 - II.3.Cytoplasmic changes
- III. Effects on Cell Kinetics
 - III.1.Mitotic delay
 - III.2.Cell death

I. Changes In Biologic [Biochemical] Molecules

1. Nucleic Acids

2. Proteins

I.1. Nucleic Acid

- Change or loss of Base-pairs
- Disruption of Hydrogen bonds between DNA strands
- Damaged to DNA by radiation leads to Mutation, Carcinogenesis and Cell Death

I.2. Proteins

- Radiation damage leads to changes in the secondary and Tertiary structures
- Disruption of side chains or breakage of Hydrogen and Disulfide Bonds
- Amplify or Retard Enzyme System, alters the biologic effects of enzyme system

II. Radiation Effects At Cellular Level

II.1. Nucleus

II.2. Chromosomes

II..3. Cytoplasm

II.1. Nucleus

- Takes a few hours for changes to take place at cellular
- Nucleus is more radiosensitive in terms of damage
- The most sensitive site is the DNA can lead to,
- 1. Breakage of one or both strands of DNA
- 2. Cross-linking within DNA strands
- 3. Cross-linking within the Helix

II.2. Chromosomes

• Chromosome aberration in cell is found at time of cell division

- Type of damage depends on the stage of Cell Cycle
- Stages of Cell Cycle

II.2. Chromosomes Cont...

• Chromatid Aberration: Radiation exposure occurs after DNA synthesis [G₂ or mid and late S], one arm of the chromosome is affected

II.2. Chromosomes Cont...

• Chromosome Aberration: radiation exposure occurs before the DNA has replicated [G₁ or early S], both the arms of affected chromosome are affected

II.2. Chromosomes Cont...

• Chromatid Aberration: Are repaired by biologic process and go unrecognized

• Chromosome Aberration: Are not repaired or improperly repaired,

leading to Mutation

Thank You

II.3. Cytoplasm

• Higher doses are required to cause radiation damage to other cellular organelle[30-50Gy]

 Increased permeability of Mitochondria leading to swelling and disorganization of internal Cristae

III. Radiation Effects at Tissue And Organ Level

Short term Effects

Long Term Effects

Early Effects of Radiation on Humans

- Very high dose of radiation delivered in a short time
 e.g: Cancer Radiotherapy [Deterministic effect]
- Hematologic syndrome
- G.I. syndrome
- CNS syndrome
- Tissue damage-erythema, desquamation
- Hematologic damage
- Cytogenic damage

Late Effects

Low dose radiation for long time, e.g. Diagnostic radiation [Stochastic effect]

- Leukemia
- Bone cancer
- Breast cancer
- Thyroid cancer
- Local tissue damage
- Lifespan shortening
- Genetic damage
- Cytogenic damage

Short Term Effect

Determined by <u>sensitivity of cells</u>

 Continuously proliferating cells are irradiated they are lost by Mitosis linked cell death

Long Term Effects

• Depend primarily on the extent of <u>damage to the Fine Vasculature</u>

Radiation Effects On Oral Cavity

 Acute reactions/Complications: Direct tissue toxicity and possibly secondary bacterial infections

• Chronic complications: Due to change in the vascular supply, fibrosis in connective tissue and muscle, and change in the cellularity of tissues

Radiation Effects On Oral Cavity

- Oral Mucous Membrane
- Taste Buds
- Salivary Glands
- Teeth
- Bone
- Mandibular Dysfunction

Oral Mucous Membrane

- Basal cell layer are radiosensitive Vegetative and Differentiating Intermitotic Cells
- At the end of second week cells in the basal layer die
- Mucous membrane begins to break downand forms white to yellow psuedomembrane

Oral Mucous Membrane Cont...

• Sequelae of Mucositis: severe pain, increased risk for Local and Systemic Infection, compromised Oral and Pharyngeal function, and Oral Bleeding

- Healing completes by 2 months
- Mucosa continues to be thin, atrophic and avascular for months or years

Treatment

Good Oral Hygiene

- Topical Ansthetics: Benzocaine, Lidocaine, Benzydamine hydrochloride
- Antibiotic Mouth Rinse: Chlorhexidine Gluconate

• Coating Agents: Milk of Magnesia, Kaopectate

Taste Buds

- Second to third week of radiation therapy the Taste Buds are affected
- Taste may be affected directly by radiation damage to taste buds, or indirectly, due to hypo salivation and secondary infections
- Reverts to normal in 2-4 months

- Very high dose radiation can cause permanent damage to the taste buds
- Zinc supplementation [zinc sulfate, 220 mg twice daily] may be useful

Salivary Glands

• Serous Acini are more Radiosensitive than Mucus Acini

- Parotid gland is more sensitive than Sub-mandibular or Sub-lingual glands
- Paranchymal part is more sensitive than the ductal system
- The extent of damage is dose dependent

Salivary Glands Pathogenesis

Effects Of Radiation On Salivary Glands

- Reduced pH and Buffering capacity leads to decalcification of dental tissues
- Oral microbial flora becomes more Acido-genic
- Increased incidence of Candidiasis and viral infections
- Difficulty in speech, formation of bolus, deglutation

Treatment

Good Oral Hygiene

- Topical Fluoride application
- Mouth-wetting agents/saliva substitutes: repeated sipping of water, artificial salivary substitutes

Sialogouges: Pilocarpine 15 mg/d, Bethanechol 75-200 mg/day

Teeth

1. Radiation Precedes Tooth Development

 Pulpal tissue consist of Reverting Post-mitotic Cells, tooth bud is destroyed

2. Radiation after initiation of calcification:

 Tooth malformations, retarded root development, dwarfed teeth, failure to form teeth

Radiation Following tooth Development

Radiation Caries due to:

- 1. Hyposalivation and Increased viscosity
- 2. Increased pH
- 3. Loss of buffering capacity
- 4. Loss of remineralizing potential
- 5. Change in the bacterial flora

Types of caries

1. Superfecial buccal, occlusal, incisal, and palatal

2. Cementum and Dentine Caries at cervical region

3.Dark pigmentation of entire crown

Bone

 Radiation damages the vasculature of Periostium and Cortical Bone: Hypovascular, Hypoxia

- Destroys Osteoblast and Oteoclast: Hypocellular
- Marrow is replaced by fatty and fibrous tissue

Bone Cont...

- Marrow tissue becomes
 Hypovascular, Hypoxic, and
 Hypocellular
- Reduced mineralization of bone

Finally leading to"Osteoradionecrosis"

Prevention

- Removal of caries lesions before radiotherapy
- Extraction of mobile and periodontally tooth as atraumatic as possible
- Adjustment of dentures if necessary
- Desirable to postpone radiography for at least 6 mons post radiotherapy

Mandibular Dysfunction

Musculoskeletal syndromes arise due to <u>Fibrosis of Muscles</u>

Treatment

- Occlusal stabilization appliances, Physiotherapy
- Exercises
- Trigger point injections
- Analgesics, Muscle relaxants, Tricyclic medications, and

Dentofacial Abnormalities

- Agenesis of teeth, roots, abnormal root forms and abnormal calcification
- Growth of the facial skeleton in the radiated field can result in Micrognathia, Retro-gnathia, altered growth of the maxilla
- Growth and development may get affected if treatment affects the Pituitary Gland

Thank you

Cell Cycle

Length of Time in Phases of the Cell Cycle

Cells:

Phase of	CHO cells	HeLa cells
cell cycle	(hours)	(hours)
Тс	11	24
Tm	1	1
Ts	6	8
TG2	3	4
TG1	1	11

Variation from one cell type to another is greatest for G1 phase.