Las muestras de estas dos secuencias se multiplican después mediante el empleo del método de la multiplicación convencional, pero sin efectuar ninguna operación en las columnas. Primero, cada muestra de $\{g[n]\}$ se multiplica con h[0] y las muestras de la secuencia del producto se colocan en una fila que comienza en el índice de tiempo n=0. Después, cada muestra de $\{g[n]\}$ se multiplica con h[1] y las muestras de la secuencia del producto se colocan en una segunda fila que empieza en el índice del tiempo n=1. Por último, cada muestra de $\{g[n]\}$ se multiplica por h[2] y las muestras de la secuencia del producto se sitúan en un tercer renglón que empieza en el índice de tiempo n=2. Este proceso se representa a continuación.

n:	0	1	2	3	4	5
g[n]:	g[0]	g[1]	g[2]	g[3]		
h[n]:	h[0]	<i>h</i> [1]	h[2]	-		
	g[0]h[0]	g[1]h[0]	g[2]h[0]	g[3]h[0]		
	-	g[0]h[1]	g[1]h[1]	g[2]h[1]	g[3]h[1]	
	-	-	g[0]h[2]	g[1]h[2]	g[2]h[2]	g[3]h[2]
y[n]:	<i>y</i> [0]	y[1]	y[2]	y[3]	· y[4]	<i>y</i> [5]

Debe notarse que cada línea de la tabla anterior corresponde a una respuesta del impulso retrasada y ponderada. Las muestras de la secuencia $\{y[n]\}$ generadas por la suma de convolución se obtuvieron mediante la suma de las tres entradas en la columna sobre cada muestra, dadas por

$$y[0] = g[0]h[0],$$

$$y[1] = g[1]h[0] + g[0]h[1],$$

$$y[2] = g[2]h[0] + g[1]h[1] + g[0]h[2],$$

$$y[3] = g[3]h[0] + g[2]h[1] + g[1]h[2],$$

$$y[4] = g[3]h[1] + g[2]h[2],$$

$$y[5] = g[3]h[2].$$

EJEMPLO 2.29 Convolución de dos secuencias unilaterales mediante el empleo del método tabular

Se formula la suma de convolución de las dos secuencias $\{x[n]\}\$ y $\{h[n]\}\$ del ejemplo 2.26 utilizando el método anterior. El proceso se ilustra a continuación.

n:	0	1	2	3	4	5	6	7
x[n]:	-2	0	1	-1	3	1 2 0 2		
h[n]:	1	2	0	-1	11. <u>-</u> 11	* (14.11 * 1		194
	-2,	0	1	-1	3			
		-4	0	2	-2	6		
	1	-	0	0	0	0	0	
	-			2	0	-1	1	-3
y[n]:	-2	-4	1	3	1	5	1	-3

De tal modo, la suma de convolución de las dos secuencias x[n] y h[n] produce

$$\{y[n]\} = \{-2, -4, 1, 3, 1, 5, 1, -3\}, 0 \le n \le 7$$

que es idéntica a la que se obtuvo en el ejemplo 2.26.