Otimização de Sistemas

Prof. Sandro Jerônimo de Almeida, PhD.

Modelagem com Programação Linear

Modelos Matemáticos

 Um modelo matemático é uma representação ou interpretação simplificada da realidade, ou uma interpretação de um fragmento de um sistema

Tipos de Modelos

- Descritivos
- Preditivos
- Estatísticos
- Simulação
- Otimização

Tipos de Modelo de Otimização

- 1) Programação Linear
- 2) Programação Linear Inteira / Mista
- 3) Programação Não-Linear

Modelos de Programação Linear

- 1) Características
- Proporcionalidade
- Aditividade
- Divisibilidade
- Certeza (parâmetros)

Modelos de Programação Linear

Maximizar (minimizar):
$$z = \sum_{i \in N} c_j x_j$$
, $N = \{1,...,n\}$ (1)

Sujeito a:
$$\sum_{i \in N} a_{ij} x_j \ (\leq_i = ou \geq) \ b_i, \ i \in M = \{1, 2, ..., m\}$$
 (2)

$$x_j \ge 0, j \in N$$
 (3)

Por onde começamos?

Definir o Problema

Assumir premissas

Definir variáveis

Modelo de Otimização

- 1) Definição do objetivo: maximizar ou minimizar
- 2) Variáveis de decisão
- 3) Função objetivo
- 4) Restrições

1) Definição do Objetivo

- Maximizar receita
- Maximizar lucro
- Maximizar ROI

- Minimizar despesas
- Minimizar tempo de espera
- Minimizar distância percorrida/combustível

Variáveis de Decisão

- Variáveis as quais buscamos valores ótimos
- Estão diretamente relacionadas com o objetivo

- Quantidade a ser produzido do produto A e B
- Montante (R\$) a serem alocados para as filiais do Norte, Nordeste e Sudeste
- N° de horas de estudos em cada matéria

Função Objetivo

	Camisetas (A)	Bonés (B)	
Lucro por unidade →	R\$ 3,50	R\$ 4,00	

Restrições

- Não é possível ter lucro infinito...
- Vamos buscar os melhores resultados obedecendo a restrições impostas (disponibilidades)

	Camisetas	Bonés	Disponibilidade (semana)
Tempo Costura e Borda	5 min	10 min	2.400 min (40h)
Tecido	1 m²	0,3 m²	1.200 m ²
Lucro	R\$ 3,50	R\$ 4,00	

Restrições

- Estamos sujeitos as seguintes restrições:
- 5A + 10B ≤ 2.400 (minutos)
- $1A + 0.3B \le 1.200 \text{ (m}^2\text{)}$
- A, B \geq 0

- A, D 2 0	Camisetas	Bonés	Disponibilidade (semana)
Tempo Costura e Borda	5 min	10 min	2400 min (40h)
Tecido	1 m ²	0,3 m²	1200 m²
Lucro	R\$ 3,50	R\$ 4,00	

Modelo de Otimização

- Variáveis de Decisão
 - A → Quantidade de **camisetas** a serem produzidas
 - B → Quantidade de **bonés** a serem produzidos
- Modelo

$$5A + 10B \le 2.400 \text{ (minutos)}$$

 $1A + 0.3B \le 1.200 \text{ (m}^2\text{)}$

A, B
$$\geq$$
 0

Exemplo da Pequena Gráfica

- Um gráfica deseja produzir Flyers ou Folders com o maior lucro possível
- Processos: impressão e corte

Recursos

- 4 Impressoras dispõem de 5.000 minutos semanais
- Equipamento de corte dispõe de 1.200 minutos semanais

<u>Impressão</u>

- 100 unidades de Flyers → 30 minutos
- 100 unidades de Folders → 60 minutos

<u>Corte</u>

- 100 unidades de Flyers → 20 minutos
- 100 unidades de Folders → 10 minutos

Lucratividade

- 100 unidades de Flyers → R\$ 1,00
- 100 unidades de Folders → R\$ 1,20

Modelo de Otimização

- 1) Definição do objetivo: maximizar ou minimizar
- 2) Variáveis de decisão
- 3) Função objetivo
- 4) Restrições

Objetivo: Maximizar Lucro

Variáveis de Decisão

- F = Qtde. Lotes de *Flyers* a serem produzidos
- \blacksquare E = Qtde. Lotes de *Folders* a serem produzidos

Função Objetivo

<u>Impressão</u>

- 100 unidades de Flyers → 30 minutos
- 100 unidades de Folders → 60 minutos

Corte

- 100 unidades de Flyers → 20 minutos
- 100 unidades de Folders → 10 minutos

Maximizar L =
$$(1 \times F) + (1.2 \times E)$$

Sujeito a:

F, E devem ser não-negativos

