

Meng Jiang

CSE 40647/60647 Data Science Fall 2017 Introduction to Data Mining

Efficient Computation

- General computation heuristics (Agarwal et al.'96)
- Computing full/iceberg cubes: 3 methodologies
 - Bottom-Up:
 - Multi-way array aggregation (Zhao, Deshpande & Naughton, SIGMOD'97)
 - Top-down:
 - BUC (Beyer & Ramarkrishnan, SIGMOD'99)
 - Integrating Top-Down and Bottom-Up:
 - Star-cubing algorithm (Xin, Han, Li & Wah: VLDB'03)
- High-dimensional OLAP:
 - A shell-fragment approach (Li, et al. VLDB'04)
- Computing alternative kinds of cubes:
 - Partial cube, closed cube, approximate cube,

Multi-Way Array Aggregation

- Bottom-up: Partition a huge *sparse* array into *chunks* (a small subcube which fits in memory) and aggregation.
- Data addressing: Compressed sparse array addressing (chunk_id, offset)
- Compute aggregates in "multiway" by visiting cube cells in the order which minimizes the # of times to visit each cell, and reduces memory access and storage cost

What is the best traversing order to do multi-way aggregation?

 $ABC \rightarrow AB$, BC and AC

A: 40 (location),

B: 400 (item),

C: 4,000 (time)

В

Multi-way Array Aggregation (3-D to 2-D)

 How much memory cost of computation (aggregation for AB, AC, BC planes) can we save?

Multi-way Array Aggregation (3-D to 2-D)

- How to minimizes the memory requirement and reduced I/Os?
 - Keep the smallest plane in main memory
 - Fetch and compute only one chunk at a time for the largest plane
 - The planes should be sorted and computed according to their size in

Min memory size: 156,000

< 40*400 + 400*4,000 + 40 * 4,000 = 1,776,000 One **column** of AC plane: 40 * (4,000/4) = 40,000

Multi-Way Array Aggregation

- Array-based "bottom-up" algorithm (from ABC to AB,...)
- Using multi-dimensional chunks
- Simultaneous aggregation on multiple dimensions
- Cannot do Apriori pruning: No iceberg optimization
- Comments on the method
 - Efficient for computing the full cube for a small number of dimensions
 - If there are a large number of dimensions, "top-down" computation and iceberg cube computation methods should be used

BUC (Top Down: From AB to ABC)

BUC (Beyer & Ramakrishnan, SIGMOD'99)

BUC: acronym of Bottom-Up (cube) Computation

(Note: It is "top-down" in our view since we put Apex cuboid on the top!)

all

AD

ACD

BC

BD

BCD

CD

AB

 \mathbf{AC}

 Divides dimensions into partitions and facilitates iceberg pruning (it works now!)

 If a partition does not satisfy min_sup, its descendants can be pruned

K. Beyer and R. Ramakrishnan. Bottom-Up Computation of
Sparse and Iceberg CUBEs. SIGMOD'99

Data Warehouse: From Tables and Spreadsheets to Data Cubes

- A data warehouse is based on a multidimensional data model which views data in the form of a data cube
- A data cube, such as sales, allows data to be modeled and viewed in multiple dimensions
 - Dimension tables, such as item (item_name, brand, type), or time (day, week, month, quarter, year)
 - Fact table contains measures (such as dollars_sold) and keys to each of the related dimension tables
- **Data cube**: A lattice of cuboids
 - In data warehousing literature, an n-D base cube is called a base cuboid
 - The top most o-D cuboid, which holds the highest-level of summarization, is called the apex cuboid
 - The lattice of cuboids forms a data cube

Data Warehouse

- Defined in many different ways, but not rigorously
 - A decision support database that is maintained separately from the organization's operational database

Operational Databases

(Data) Marts

(Data) Warehouse

Data Warehouse

- Defined in many different ways, but not rigorously
 - A decision support database that is maintained separately from the organization's operational database
 - Support information processing by providing a solid platform of consolidated, historical data for analysis

Data Warehouse

 "A data warehouse is a <u>subject-oriented</u>, <u>integrated</u>, <u>time-variant</u>, and <u>nonvolatile</u> collection of data in support of management's decision-making

process."—William H. (Bill) Inmon

- Data warehousing:
 - The process of constructing and using data warehouses

(1) Subject-Oriented

- Organized around major subjects, such as customer, product, sales
- Focusing on the modeling and analysis of data for <u>decision makers</u>, NOT on <u>daily operations</u> or <u>transaction processing</u>
- Provide a simple and concise view around particular subject issues by excluding data that are not useful in the decision support process

(2) Integrated

- Constructed by integrating multiple, heterogeneous data sources
 - relational databases, flat files, on-line transaction records
- Data cleaning and data integration techniques are applied
 - Ensure consistency in naming conventions, encoding structures, attribute measures, etc. among different data sources
 - Ex. Hotel price: differences on currency, tax, breakfast covered, and parking

(3) Time-Variant

- The time horizon for the data warehouse is significantly longer than that of operational systems
 - Operational database: current value data
 - Data warehouse data: provide information from a historical perspective (e.g., past 5-10 years)
- Every key structure in the data warehouse
 - Contains an element of time, explicitly or implicitly
 - But the key of operational data may or may not contain "time element"

(4) Nonvolatile

- Independence
 - A physically separate store of data transformed from the operational environment
- Static: Operational update of data does NOT occur in the data warehouse environment
 - Does not require transaction processing, recovery, and concurrency control mechanisms
 - Requires only two operations in data accessing:
 - initial loading of data and access of data

OLTP vs OLAP

- OLTP: Online transactional processing
 - DBMS operations
 - Query and transactional processing
- OLAP: Online analytical processing
 - Data warehouse operations (drilling, slicing, dicing, etc.)
 - Data analysis to support decision making

OLTP vs OLAP

	OLTP	OLAP
users	clerk, IT professional	knowledge worker
function	day to day operations	decision support
DB design	application-oriented	subject-oriented
data	current, up-to-date	historical,
	detailed, flat relational	summarized, multidimensional
	isolated	integrated, consolidated
usage	repetitive	ad-hoc
access	read/write	lots of scans
	index/hash on prim. key	
unit of work	short, simple transaction	complex query
# records	tens	millions
accessed		
#users	thousands	hundreds
DB size	100MB-GB	100GB-TB
metric	transaction throughput	query throughput, response

Data Warehouse: A Multi-Tiered Architecture

Top Tier: Front-End Tools

Middle Tier: OLAP Server

Bottom Tier: Data
 Warehouse Server

Data

From Data to Data Warehouse: Extraction, Transformation, and Loading (ETL)

Data extraction

get data from multiple, heterogeneous, and external sources

Data cleaning

detect errors in the data and rectify them when possible

Data transformation

convert data from legacy or host format to warehouse format

Load

 sort, summarize, consolidate, compute views, check integrity, and build indices and partitions

Refresh

propagate the updates from the data sources to the warehouse

Data Warehouse Usage

- Three kinds of data warehouse applications
 - Information processing
 - supports querying, basic statistical analysis, and reporting using crosstabs, tables, charts and graphs
 - Analytical processing
 - multidimensional analysis of data warehouse data
 - supports basic OLAP operations, slice-dice, drilling, pivoting
 - Data mining
 - knowledge discovery from hidden patterns
 - supports associations, constructing analytical models, performing classification and prediction, and presenting the mining results using visualization tools

Efficient Processing OLAP Queries

- **Determine which operations** should be performed on the available cuboids
 - Transform drill, roll, etc. into corresponding SQL and/or OLAP operations,
 e.g., dice = selection + projection
- Determine which materialized cuboid(s) should be selected for OLAP op.
 - Let the query to be processed be on {brand, province_or_state} with the condition "year = 2004", and there are 4 materialized cuboids available:
 - 1) {year, item_name, city}
 - 2) {year, brand, country}
 - 3) {year, brand, province_or_state} √
 - 4) {item_name, province_or_state} where year = 2004

Which should be selected to process the query?

References

- S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakrishnan, and S. Sarawagi. On the computation of multidimensional aggregates. VLDB'96
- D. Agrawal, A. E. Abbadi, A. Singh, and T. Yurek. Efficient view maintenance in data warehouses. SIGMOD'97
- R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. ICDE'97
- S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology. ACM SIGMOD Record, 26:65-74, 1997
- J. Gray, et al. Data cube: A relational aggregation operator generalizing group-by, cross-tab and sub-totals. Data Mining and Knowledge Discovery, 1:29-54, 1997.
- A. Gupta and I. S. Mumick. Materialized Views: Techniques, Implementations, and Applications. MIT Press, 1999
- J. Han. Towards on-line analytical mining in large databases. SIGMOD Record, 1998
- V. Harinarayan, A. Rajaraman, and J. D. Ullman. Implementing data cubes efficiently. SIGMOD'96

References (cont.)

- C. Imhoff, N. Galemmo, and J. G. Geiger. Mastering Data Warehouse Design: Relational and Dimensional Techniques. John Wiley, 2003
- W. H. Inmon. Building the Data Warehouse. John Wiley, 1996
- R. Kimball and M. Ross. The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. 2ed. John Wiley, 2002
- P. O'Neil and D. Quass. Improved query performance with variant indexes. SIGMOD'97
- S. Sarawagi and M. Stonebraker. Efficient organization of large multidimensional arrays. ICDE'94
- P. Valduriez. Join indices. ACM Trans. Database Systems, 12:218-246, 1987.
- J. Widom. Research problems in data warehousing. CIKM'95.
- K. Wu, E. Otoo, and A. Shoshani, Optimal Bitmap Indices with Efficient Compression, ACM Trans. on Database Systems (TODS), 31(1), 2006, pp. 1-38.