

Beyond auto-scaling: application-aware optimal elasticity

Microservice 2019 (Dortmund, Germany) 19-20-21 February 2019

Iacopo Talevi - University of Bologna, Italy

joint work with:

Gianluigi Zavattaro - University of Bologna/INRIA, Italy Jacopo Mauro - Southern Denmark University, Denmark

State-of-the-art deployment technologies

Are based on:

autoscaling metrics

```
spec:
  minReplicas: 1
  maxReplicas: 10
  metrics:

    type: Resource

     resource:
       name: cpu
         target:
         type: Utilization
         averageUtilization: 50
```


Amazon EC2 Auto Scaling

New Approach

Differences

Autoscaling	Approach Proposed
Reasoning at the local microservice level	Reasoning at the global architectural level
Focus on single microservice	Exploit information on dependencies among the microservices
Add/Remove several instances of single service	Add/Remove several instances of different services

Theorem Proved

The problem of deploying component-based software systems, in the **general case**, **is undecidable**.

(Roberto Di Cosmo, Jacopo Mauro, Stefano Zacchiroli, and Gianluigi Zavattaro. Aeolus: A component model for the cloud. Inf. Comput. 2014)

We demonstrated that the **optimal deployment problem for microservices is decidable**.

(Mario Bravetti, Saverio Giallorenzo, Jacopo Mauro, Iacopo Talevi, and Gianluigi Zavattaro. Optimal and Automated Deployment for Microservices. In FASE, 2019)

What is necessary?

1. microservice interdependencies

2. resource consumption

3. define "offline" the deployment goal

What means Optimal?

The **optimal deployment** has two properties:

- 1. each used node has at least as many resources as those needed by the hosted microservices
- 2. the **total cost** (i.e., the sum of the costs) of the used nodes **is minimal**

Algorithm

Optimal allocation of microservices to node

Binding optimization

Generation of the plan

Case Study

Tools Used

1. Abstract Behavioral Specification (ABS) language

- 2. SmartDepl, an ABS extension that allows to specify:
 - a. the resources provided by the deployment components
 - b. ABS Classes annotations that indicate the computing resources necessary and dependencies
 - c. the specification of declarative deployment rules

It uses an external solver that generates ABS classes modeling the optimal deployments (**Zephyurs2**)

For each node type:

```
"c4_large" : {
    "cost" : 119,
    "payment_interval" : 1,
    "resources" : {
        "Cores" : 2,
        "Memory" : 375
    }
}
```


For each microservices:

```
"class" : "MessageReceiver",
"scenarios":[
        "cost" : {
            "Cores": 2,
            "Memory": 200
        "sig" : [
                "kind" : "require",
                "type" : "MessageParser_LoadBalancerInterface"
```


For each Load Balancer:

```
"class" : "MessageParser_LoadBalancer",
"scenarios" : [
        "cost" : { "Cores" : 2, "Memory" : 200 },
       "methods" : [ {
            "add" : {
                "name": "connectInstance",
                "param_type" : "MessageParserInterface"
            "remove" : {
                "name": "disconnectInstance",
                "return_type": "MessageParserInterface"
```


For each deployment plan:

```
"id":"MainSmartDeployer",
"specification":"
                     MessageReceiver = 1 and
                     MessageParser = 1 and
                     HeaderAnalyser = 1 and
                     LinkAnalyser = 1 and ...."
"cloud_provider_DC_availability":{
    "c4 large":40,
    "c4_xlarge":40,
    "c4_2xlarge":40
"bind preferences":[
    "local",
    "sum ?x of type MessageParser in '.*': forall ?y of type
MessageParser_LoadBalancer in '.*': ?x used by ?y", ....
```


Deployment Plans Created

Microservice (max computational load)	Initial (10K)	+20K	+50K	+80K
$MessageReceiver(\infty)$	1	# <u>#</u>	=	-
MessageParser(40K)	1	-	+1	-
HeaderAnalyzer(40K)	1	-	+1	-
LinkAnalyzer(40K)	1	in .	+1	:-
TextAnalyzer(15K)	1	+1	+2	+2
SentimentAnalyzer(15K)	1	+3	+4	+6
AttachmentsManager(30K)	1	+1	+2	+2
VirusScanner(13K)	1	+3	+4	+6
ImageAnalyzer(30K)	1	+1	+2	+2
NSFWDetector(13K)	1	+3	+4	+6
ImageRecognizer(13K)	1	+3	+4	+6
MessageAnalyzer(70K)	1	+1	+2	+2

The ABS code modeling the system and the generated code are publicly available at: https://github.com/lacopoTalevi/SmartDeploy-ABS-ExampleCode

Conclusion

- In this work, we prove that the generation of a deployment plan for an architecture of microservices is decidable and fully automatable, testing it in a real-world microservice architecture model
- Regarding autoscaling, our work is an example of how we can go beyond single-component horizontal scaling policies

As future work, we want to study the possibilities of **speed-up** the solution of the optimization problems to obtain **on-the-fly deployment plans**.