

TD 1

Robot pour la chirurgie endoscopique- Corrigé

Présentation

Évaluation de la fonction de transfert du moto-réducteur

Question 1 Transformer les équations temporelles ci-dessus. Remplir sous forme littérale les blocs du schéma suivant. Exprimer les grandeurs physiques entre chaque bloc.

Banque PT - SIA - 2005.

Correction

On a

- $\qquad \qquad \bullet \quad U(p) = RI(p) + LpI(p) + E(p);$
- $ightharpoonup E(p) = k_e \Omega_{\text{réd}}(p);$
- $ightharpoonup C_{\text{réd}}(p) = k_c I(p);$
- $\qquad \qquad C_{\text{r\'ed}}(p) C_r(p) f_v \Omega_{\text{r\'ed}}(p) = J_{\text{\'equ}} p \Omega_{\text{r\'ed}}(p).$

Question 2 Exprimer littéralement sous forme canonique la fonction de transfert du moto-réducteur $M(p) = \frac{\Omega_{\text{réd}}(p)}{U(p)}$ lorsque $C_r(p) = 0$.

Correction

En raisonnant à partir des équations, on a :
$$U(p) = RI(p) + LpI(p) + E(p) \Rightarrow U(p) = I(p) (R + Lp) + k_e \Omega_{\text{réd}}(p) \Rightarrow U(p) = \frac{C_{\text{réd}}}{k_c} (R + Lp) + k_e \Omega_{\text{réd}}(p) \Rightarrow U(p) = \frac{\left(J_{\text{équ}}p + f_v\right) \Omega_{\text{réd}}(p)}{k_c} (R + Lp) + k_e \Omega_{\text{réd}}(p)$$

$$\Rightarrow U(p) = \left(\frac{\left(J_{\text{équ}}p + f_v\right)}{k_c} (R + Lp) + k_e\right) \Omega_{\text{réd}}(p)$$
Au final, $M(p) = \frac{k_c}{\left(J_{\text{équ}}p + f_v\right) (R + Lp) + k_e k_c}$.

En mettant l'expression sous forme canonique, on a :
$$M(p) = \frac{k_c}{J_{\rm \acute{e}qu}Lp^2 + \left(RJ_{\rm \acute{e}qu} + Lf_v\right)p + k_ek_c + Rf_v}$$

$$\Rightarrow M(p) = \frac{\frac{k_c}{k_ek_c + Rf_v}}{\frac{J_{\rm \acute{e}qu}L}{k_ek_c + Rf_v}p^2 + \frac{RJ_{\rm \acute{e}qu} + Lf_v}{k_ek_c + Rf_v}p + 1}.$$
 En réalisant l'application numérique, on a : $M(p) = \frac{0.44}{3.2 \times 10^{-6}p^2 + 14.6 \times 10^{-3}p + 1}.$

Question 3 Après avoir analysé cette courbe, expliquer pourquoi on peut négliger l'inductance *L*.

Correction

En observant cette courbe, l'absence de tangente horizontale à l'origine permet de modéliser le système comme un système d'ordre 1. En négligeant L, le terme d'ordre 2 devient donc négligeable et M(p) se modélise par une fonction d'ordre 1.

Question 4 Justifier analytiquement la réponse précédente à partir de l'expression de $M_1(p)$ lorsque l'on envisage une étude fréquentielle : on précisera la valeur du pôle dominant, l'autre (faisant intervenir la valeur de L) étant rejeté.

Correction

En utilisant la formulation de $M_1(p)$ donnée, on calcule le discriminant du dénominateur et on a : $\Delta=\left(14,5\times10^{-3}\right)^2-4\cdot3,1\times10^{-6}=0$, 00019785. Au final, $p_1=\frac{-14,5\times10^{-3}-\sqrt{\Delta}}{2\cdot3,1\times10^{-6}}\simeq -4607$ et $p_2=\frac{-14,5\times10^{-3}+\sqrt{\Delta}}{2\cdot3,1\times10^{-6}}\simeq -70$. Le dénominateur peut donc se factoriser sous la forme $3,1\times10^{-6}$ (p+4607) (p+70). Le pole p_2 et donc dominant par rapport à p_1 .

Question 5 Exprimer littéralement, sous forme canonique, la fonction de transfert du moto-réducteur $M_2(p) = \frac{\Omega_{\text{réd}}(p)}{U(p)} = \frac{G_s}{1+Tp}$. Donner les valeurs numériques de G_s et de T à partir de l'expression de $M_1(p)$ et des réponses apportées précédemment.

Correction

En utilisant l'expression établie initialement en en négligeant l'inductance, on a $M_2(p) = \frac{\frac{k_c}{k_e k_c + R f_v}}{\frac{RJ_{\rm equ}}{k_e k_c + R f_v}p + 1}$. En réalisant l'application numérique, $M_2(p) = \frac{0,437}{1+0,015p}$ ($G_s = 0,437$ rad s⁻¹ V⁻¹ et T = 0,015 s).

Question 6 Déterminer les valeurs de G_s et T, à partir de la courbe de tension image de $\omega_{\text{réd}}(t)$ (expliquer les démarches sous la figure et comparer avec les résultats obtenus précédemment).

Correction

La tension de consigne étant de 24 V et la vitesse de sortie est telle que $24 \cdot G_S \cdot K_{tachy} = 1,75 \text{ V}$

La Martinière

soit $G_S = \frac{1,75}{24 \times 0,166} = 0,439 \text{ rad s}^{-1} \text{ V}^{-1}$. En utilisant la méthode de 63 % de la valeur finale, on a $\tau = 0.02$ s. Ón constate que les résultats sont relativement proches de ceux formulés par l'hypothèse « L négligeable ».

Respect du critère de marge de phase

Question 7 Donner la fonction de transfert du bloc B(p) et la valeur du coefficient du bloc C en incr./rad. Exprimer numériquement, en fonction de k, la fonction de transfert en boucle ouverte $H_O(p)$.

Correction

B assure la réduction de la fréquence de rotation et son intégration dans le but d'obtenir un angle; donc $B(p) = \frac{1}{50p}$. Par ailleurs $C = \frac{360}{2\pi}$ incr/rad. On a donc $H_O(p) = \frac{1}{50p} \frac{360}{2\pi} \frac{kG_S}{1 + Tp}$.

Question 8 Tracer les diagrammes de Bode du système en boucle ouverte pour k = 1. Le système est-il stable en boucle fermée pour cette valeur de *k* ? Justifier.

Correction

Au vu du tracé, la phase est supérieure à -135° lorsque le gain est nul. Le système est donc stable.

Question 9 Calculer l'écart statique $\varepsilon_{\mathrm{cons}\infty}$ en incréments lorsque la consigne est un échelon de position : $Cons(t) = 1 \cdot u(t)$.

Correction

Méthode 1 (à connaître après le cours sur la précision - Cycle 2)

La boucle ouverte est de classe 1, l'entrée est un échelon et il n'y a pas de perturbation. L'écart statique est donc nul.

Méthode 2 (à savoir faire) - Calcul de l'écart

On a
$$\varepsilon(p) = \frac{\operatorname{Cons}(p)}{1 + \operatorname{FTBO}(p)}$$
. $\operatorname{Cons}(p) = \frac{1}{p}$. On a alors $\varepsilon_{\operatorname{cons}\infty} = \lim_{t \to +\infty} \varepsilon(t) = \lim_{p \to +0} p \varepsilon(p)$
$$= \lim_{p \to +0} p \frac{1}{p} \frac{1}{1 + \operatorname{FTBO}(p)} = 0.$$

Question 10 Calculer, pour la valeur k_{45} de k établie précédemment, l'écart statique $\varepsilon_{\mathrm{pert}\infty}$ en incréments entre la consigne et la mesure lorsque la perturbation est l'échelon de couple résistant $C_r u(t)$ induit par les frottements secs.

Correction On a $\varepsilon(p) = \operatorname{Cons}(p) - B(p)C\Omega(p) = \operatorname{Cons}(p) - B(p)C\left(\varepsilon(p)KM(p) - C_r(p)\frac{M(p)R}{k_c}\right)$ $\Leftrightarrow \varepsilon(p)\left(1 + B(p)CKM(p)\right) = \operatorname{Cons}(p) + B(p)CC_r(p)\frac{M(p)R}{k_c} \Leftrightarrow \varepsilon(p) = \operatorname{Cons}(p)\frac{1}{1 + B(p)CKM(p)}$ $+C_r(p)\frac{M(p)RB(p)C}{k_c\left(1 + B(p)CKM(p)\right)}$ $= \lim_{p \to 0} p\varepsilon(p) = \lim_{p \to 0} \frac{1}{1 + B(p)CKM(p)}$ $+C_r\frac{M(p)RB(p)C}{k_c\left(1 + B(p)CKM(p)\right)}$ $= \lim_{p \to 0} C_r\frac{G_S}{1 + T_p}R\frac{1}{50p}C$ $= \lim_{p \to 0} C_r\frac{G_SRC}{k_c\left((1 + T_p)50p + CKG_S\right)}$ $= C_r\frac{G_SRC}{k_cCKG_S} = C_r\frac{R}{k_cK}$ On a donc $\varepsilon_{\text{pert}\infty} = C_r\frac{R}{k_cK}$ soient $\varepsilon_{\text{pert}\infty} = 0, 2\frac{10}{2, 11} = 0,95$ incr.

Question 11 La chaîne cinématique de transmission est telle qu'il faut 150 incréments pour que la crémaillère se déplace de 1 mm, quelle est l'incidence de cet écart sur la position de l'instrument? Conclure par rapport aux exigences du cahier des charges. Proposer une modification du bloc K qui annulerait cet écart.

Correction

Si on majore l'erreur précédente à 1 incrément, l'erreur sur la position de l'instrument est de 0,007 mm. Cette erreur est inférieure à 0,2 mm (exigence 3). On peut conserver la valeur k=1.

Vérification des performances de la chaîne de positionnement de l'instrument

Modélisation par schéma-blocs

Analyse du déplacement en translation de la crémaillère

Question 12 Exprimer le coefficient du bloc H_2 et préciser l'unité.

Correction

En notant x le déplacement en translation, on a $x=\frac{38,4}{2}\Theta$. On a donc $H_2=\frac{x}{\Theta}=19,2\,\mathrm{mm}\,\mathrm{rad}^{-1}=0,0192\,\mathrm{m}\,\mathrm{rad}^{-1}$.

En régime statique, la position de la crémaillère est l'image de la position de la main, aux écarts près.

Question 13 Quelle relation doit vérifier le produit P des gains des blocs C_1 , H_1 , H_2 ? Justifier. Exprimer le coefficient c_1 en incréments par mètre du bloc C_1 .

Correction

Dans le cas ou l'instrument doit réaliser les mêmes mouvements que la main, il est nécessaire que P=1.

On a $G_{H_1} \cdot G_{H_2} = 0$, 0192×0 , 00035 = 6, 72×10^{-6} .

On a donc $c_1 = 148\,810\,\mathrm{incr}\,\mathrm{m}^{-1}$.

Pour augmenter la précision de l'opération chirurgicale, on désire que la crémaillère se déplace 10 fois moins que la main.

Question 14 Exprimer le nouveau coefficient c_2 du bloc C_1 ainsi que le nouveau produit P_1 .

Correction

On souhaite maintenant que $P_1 = \frac{1}{10}$ et $c_1 = 14\,881$ incr m⁻¹.

Analyse du déplacement de l'instrument chirurgical par rapport à la crémaillère

Question 15 Établir, à partir de cette figure, l'expression de la fonction de transfert $H_3(p)$; déterminer les valeurs caractéristiques : gain statique, coefficient d'amortissement et pulsation propre.

Correction

Pour un échelon de 20 mm, le déplacement est de 20 mm. Le gain statique est donc de K=1. Le premier dépassement absolu est d'environ 30 mm soit un dépassement de 50 % par rapport à la valeur finale. En utilisant l'abaque des temps de réponse, on trouve $\xi=0,2$. Le temps de réponse à 5 % est d'environ 0,55 s. En utilisant l'abaque, on a $\omega_0 Tr=15$. On a donc $\omega_0=27\,\mathrm{rad\,s^{-1}}$.

Au final,
$$H_3(p) = \frac{1}{1 + \frac{2 \cdot 0, 2}{27}p + \frac{p^2}{27^2}}$$
.

Question 16 Le critère de la bande passante de 4 Hz à −3 dB est-il satisfait?

Correction

On trace le diagramme de Bode. La bande passante à $-3\,\mathrm{dB}$ est de $4\,\mathrm{Hz}$. Une marge de sécurité serait peut être préférable.

Question 17 Après avoir mis l'équation différentielle du mouvement sous forme canonique : $A\ddot{z}(t) + B\dot{z}(t) + z(t) = 0$, exprimer le coefficient d'amortissement ξ_3 et la pulsation propre ω_{03} du mouvement en fonction de k_0 , f_0 , m_1 .

Correction

On a
$$m_1 \frac{d^2 z(t)}{dt^2} + f_0 \frac{dz(t)}{dt} + k_0 z = 0 \Leftrightarrow \frac{m_1}{k_0} \frac{d^2 z(t)}{dt^2} + \frac{f_0}{k_0} \frac{dz(t)}{dt} + z = 0.$$

On a donc $\omega_{03}^2 = \frac{k_0}{m_1}$ et $\frac{2\xi_3}{\omega_{03}} = \frac{f_0}{k_0}$ et $\xi_3 = \frac{f_0}{2k_0} \sqrt{\frac{k_0}{m_1}} = \frac{f_0}{2} \sqrt{\frac{1}{k_0 m_1}}.$

On donne la valeur numérique de la masse de l'instrument chirurgical et de la plaque d'interface : $m_1 = 1,6$ kg.

Question 18 Pour la valeur de ω_{03} calculée précédemment, déterminer la valeur minimale de la raideur k_0 (en N/m) qui permettrait de respecter le critère de la bande passante à -3 dB de 4 Hz. (On notera que $\omega_{-3\,\mathrm{dB}}>\omega_{03}$).

Correction

On a
$$\omega_{-3\,\text{dB}} > \omega_{03}$$
 or $\omega_{03}^2 = \frac{k_0}{m_1} \Rightarrow k_0 = m_1 \omega_{03}^2$; donc nécessairement, $\omega_{-3\,\text{dB}} > \sqrt{\frac{k_0}{m_1}}$
 $\Rightarrow k_0 < \omega_{-3\,\text{dB}}^2 m_1 \Rightarrow k_0 < 2^2 4^2 \pi^2 \times 1,6 \ k < 1010 \ \text{N m}^{-1}$.

Analyse du déplacement de l'instrument par rapport au déplacement de la main

Question 19 Mettre en évidence et donner les valeurs numériques : de l'écart dynamique maximal; de l'écart de traînage (ou de vitesse) ε_v en régime établi, du retard de traînage. Le cahier des charges est-il satisfait pour ce dernier critère?

Correction

- ► Écart dynamique maximal : 5 mm.
- ullet Écart de traînage (ou de vitesse) $arepsilon_v$ en régime établi : 4 mm.
- ► Retard de traînage : 0,02 s cahier des charges validé Req 4.

Question 20 Déterminer à partir de cette courbe, l'amplitude du mouvement pris par l'instrument. Quelle est la conséquence de ce mouvement sur la plaie chirurgicale?

artinière

Correction

Pour une sinusoïde de période $0,25\,\mathrm{s}$, la pulsation est de $\frac{2\pi}{0,25}=25\,\mathrm{rad\,s^{-1}}$. À cette pulsation, le gain est de $8\,\mathrm{dB}$. Le rapport S/E est donc de $10^{8/20}=2,5$ ainsi l'amplitude du robot sera de $2,5\,\mathrm{mm}$. Il faudrait régler l'asservissement pour que ces vibrations soient atténuées/filtrées (plutôt qu'amplifiées).

Amélioration des performances dynamiques

Question 21 Tracer sur la figure précédente, les trois courbes asymptotiques d'amplitude de ces filtres avec des couleurs différentes. Sachant que les mouvements dont la période est inférieure à 1 s ne doivent pas être atténués de plus de 1 dB, choisir le numéro 1, 2 ou 3 du filtre qui atténue de 8 à 10 dB le tremblement de la main de période 0,25 s. Tracer sur cette figure, dans une autre couleur, l'allure de la courbe d'amplitude corrigée par ce filtre. Le niveau de 4 Hz, de la bande passante à -3 dB du critère de rapidité est-il toujours respecté?

Correction

Le filtre $T_2 = 0.1$ s permet d'atténuer le gain à une pulsation de 25 rad s⁻¹ sans trop atténuer le gain à des pulsation inférieures à 6,3 rad s⁻¹.

