PROBLEMAS RESUELTOS ROZAMIENTO

CAPITULO 8 FRICCION

Sexta, Septima y Octava edición

Ferdinand P. Beer E. Russell Johnston Jr William E. Clausen

FRICCION

- 8.1 Introducción
- 8.2 Leyes de la fricción seca. Coeficientes de fricción
- 8.3 Angulos de fricción
- 8.4 Problemas que involucran fricción seca
- 8.5 Cuñas
- 8.6 Tornillos de rosca cuadrada
- 8.7 Chumaceras. Fricción en ejes
- 8.8 Cojinetes de empuje. Fricción en discos
- 8.9 Fricción en ruedas. Resistencia a la rodadura o rodamiento
- 8.10 Fricción en bandas.

Erving Quintero Gil

Ing. Electromecánico Bucaramanga – Colombia 2010

Para cualquier inquietud o consulta escribir a:

<u>quintere@hotmail.com</u>
<u>quintere@gmail.com</u>
<u>quintere2006@yahoo.com</u>

PROBLEMA TIPO 8.1

Una fuerza de 500 N actúa, tal como se muestra en la figura, sobre un bloque de 150 kg situado sobre un plano inclinado. Los coeficientes de rozamiento entre el bloque y el plano son $\mu_s=0,25$ y $\mu_k=0,20$. Determinar si el bloque está en equilibrio y encontrar el valor de la fuerza de rozamiento.

W = 1472 N

SOLUCIÓN

Fuerza necesaria para el equilibrio. Se determinará primero el valor de la fuerza de rozamiento necesaria para mantener el equilibrio. Suponiendo que F está dirigida hacia abajo y a la izquierda, se dibuja el diagrama de sólido libre del bloque. El peso del bloque es:

$$W = mg = (150 \text{ kg})(9.81 \text{ m/s}^2) = 1471.5 \text{ N}$$

Las ecuaciones de equilibrio dan

$$+ \nearrow \Sigma F_x = 0$$
: 500 N $-\frac{3}{5}(1471,5 \text{ N}) - F = 0$
 $F = -382,9 \text{ N}$ $F = 382,9 \text{ N} \nearrow$
 $+ \nearrow \Sigma F_y = 0$: $N - \frac{4}{5}(1471,5 \text{ N}) = 0$

La fuerza F necesaria para mantener el equilibrio es de 383 N dirigida hacia arriba y a la derecha: por consiguiente, tiende a descender por el plano.

N = +1177.2 N N = 1177.2 N

Fuerza de rozamiento máxima. El módulo de la máxima fuerza de rozamiento que puede desarrollarse es

$$F_{\text{máx}} = \mu_s N$$
 $F_{\text{máx}} = 0.25(1177.2 \text{ N}) = 294.3 \text{ N}$

Como el valor de la fuerza necesaria para mantener el equilibrio (383 N) es mayor que el valor máximo que puede obtenerse (294 N), el equilibrio no se mantendrá y *el bloque deslizará bajando por el plano.*

Valor real de la fuerza de rozamiento. El módulo de la fuerza de rozamiento real se obtiene como sigue

$$F_{\text{real}} = F_k = \mu_k N =$$

= 0,20(1177,2 N) = 235,4 N

El sentido de esta fuerza es contrario al del movimiento; por consiguiente, la fuerza está dirigida hacia arriba y a la derecha

Debe señalarse que las fuerzas que actúan sobre el bloque no están equilibradas; la resultante es:

$$\frac{3}{5}(1471,5 \text{ N}) - 500 \text{ N} - 235,4 \text{ N} = 147,5 \text{ N} \checkmark$$

PROBLEMA TIPO 8.2

Sobre un bloque de apoyo actúan las dos fuerzas que se indican. Sabiendo que entre el bloque y el plano inclinado los coeficientes de rozamiento son $\mu_s=0.35$ y $\mu_k=0.25$, hallar la fuerza **P** necesaria para (a) iniciar el movimiento del bloque plano arriba, (b) mantenerlo en movimiento plano arriba, (c) impedir que deslice plano abajo.

SOLUCIÓN

Diagrama de sólido libre. Para cada parte del problema dibujamos un diagrama de sólido libre del bloque y un triángulo de fuerzas con la fuerza vertical de 800 N, la fuerza horizontal P y la fuerza R ejercida por el plano inclinado sobre el bloque. La dirección de R debemos determinarla en cada caso. Como P es perpendicular a la fuerza de 800 N, el triángulo de fuerzas es rectángulo y nos da P de inmediato. Sin embargo, en la mayoría de los problemas el triángulo de fuerzas no es rectángulo y hay que aplicar el teorema del seno.

a. Fuerza P para iniciar el ascenso del bloque

$$P = (800 \text{ N}) \text{ tg } 44,29^{\circ}$$
 $P = 780 \text{ N} \leftarrow \blacktriangleleft$

b. Fuerza P para mantener el ascenso del bloque

$$P = (800 \text{ N}) \text{ tg } 39,04^{\circ}$$
 $P = 649 \text{ N} \leftarrow \blacktriangleleft$

c. Fuerza P para que el bloque no deslice hacia abajo

$$P = (800 \text{ N}) \text{ tg } 5,71^{\circ}$$
 $P = 80.0 \text{ N} \leftarrow \blacktriangleleft$

PROBLEMA TIPO 8.3

El soporte móvil representado en la figura puede colocarse a cualquier altura a lo largo del tubo de 60 mm de diámetro. Si el coeficiente de rozamiento estático entre el tubo y el soporte es 0,25, determinar la distancia mínima x a la que puede soportarse la carga W. Despreciar el peso del soporte.

SOLUCIÓN

Diagrama de sólido libre. Se dibuja el diagrama de sólido libre del soporte. Cuando W está situado a la distancia mínima x del eje del tubo, el soporte está a punto de deslizar y las fuerzas de rozamiento en A y B han alcanzado sus valores máximos.

$$F_A = \mu N_A = 0.25 N_A$$
$$F_B = \mu N_B = 0.25 N_B$$

Ecuaciones de equilibrio

y como se ha visto que N_B es igual a N_A

$$N_A = 2W$$

+ $5\Sigma M_B = 0$: $N_A(120 \text{ mm}) - F_A(60 \text{ mm}) - W(x - 30 \text{ mm}) = 0$
 $120N_A - 60(0.25N_A) - Wx + 30W = 0$
 $120(2W) - 15(2W) - Wx + 30W = 0$

 $0.50N_A = W$

dividiendo entre W y despejando x:

 $x = 240 \text{ mm} \blacktriangleleft$

PAUTAS PARA RESOLVER PROBLEMAS

En esta lección se estudiaron y aplicaron las *leyes del rozamiento seco*. Hasta ahora habíamos tratado exclusivamente *a*) con superficies lisas que podían moverse libremente unas respecto a otras, *b*) superficies rugosas que no permitían movimientos relativos de unas respecto a otras.

- A. Al resolver problemas en los que intervenga el rozamiento seco, conviene tener presente lo siguiente.
- 1. La reacción R ejercida por una superficie sobre un sólido libre puede descomponerse en una componente N y una componente tangencial F. Esta última se conoce como fuerza de rozamiento. Cuando un cuerpo está en contacto con una superficie fija, el sentido de la fuerza de rozamiento F es el contrario al del movimiento, o al del movimiento inminente, del cuerpo.
- a. No habrá movimiento mientras F no sobrepase el valor máximo F_m ' $\mu_s N$, siendo μ_s el coeficiente de rozamiento estático.
- b. Habrá movimiento si para mantener el equilibrio se requiere un valor de F mayor que F_m . Cuando se inicia el movimiento, el valor real de F desciende a $F = \mu_k$, siendo μ_k el coeficiente de rozamiento cinético [Prob. tipo 8.1].
- 2. Cuando intervienen sólo tres fuerzas podría ser preferible otro método de análisis [Prob. tipo 8.2]. En este caso la reacción \mathbf{R} se define por su módulo R y el ángulo ϕ que forma con la normal a la superficie. No habrá movimiento mientras ϕ no sobrepase el valor máximo ϕ_s , siendo tg $\phi_k = \mu_k$. Habrá movimiento si para mantener el equilibrio se requiere un valor de ϕ mayor que ϕ_5 y el valor de ϕ descenderá a ϕ_k , siendo tg $\phi_k = \mu_k$.
- 3. Cuando dos cuerpos están en contacto se debe determinar el sentido del movimiento real o relativo inminente en el punto de contacto. Sobre cada uno de los dos cuerpos se debe mostrar una fuerza de fricción F en una dirección opuesta a la dirección del movimiento real o inminente del cuerpo visto desde el otro cuerpo.
- B. Métodos para resolver problemas. El primer paso es dibujar un diagrama de sólido libre del cuerpo considerado, decomponiendo la fuerza ejercida en cada superficie donde haya rozamiento en una componente normal N y una fuerza de rozamiento F. Si intervienen varios cuerpos, se dibujará un diagrama de sólido libre de cada uno, rotulando y atribuyendo una dirección y sentido a las fuerzas que haya en cada superficie de contacto del modo en que se expuso en el Capítulo 6 al estudiar los entramados.

El problema puede que corresponda a una de las tres categorías siguientes:

- 1. Se conocen todas las fuerzas aplicadas y todos los coeficientes de rozamiento y se quiere saber si se mantiene el equilibrio. Adviértase que en esta situación no se conoce la fuerza de rozamiento y no puede suponerse que sea igual a $\mu_s N$.
 - a. Escribir las ecnaciones de equilibrio para determinar N y F.
- Si $F \leq F_m$, hay equilibrio. Si $F > F_m$, hay movimiento y la fuerza de rozamiento vale $F_k = \mu_k N$ [Prob. tipo 8.1].
- 2. Se conocen todas las fuerzas aplicadas y se desea hallar el valor permitido mínimo de μ_s para el que se mantiene el equilibrio. Se supondrá que el movimiento es inminente y se determinará el correspondiente valor de μ_s .
 - a. Escribir las ecuaciones de equilibrio para determinar N y F.
- b. Como el movimiento es inminente, $F = F_m$. Sustituir en $F_m = \mu_s N$ los valores hallados de N y F y despejar μ_s .
- 3. El movimiento del cuerpo es inminente y se conoce µ; se desea hallar alguna cantidad desconocida, tal como una distancia, un ángulo, el módulo de una fuerza o la dirección de una fuerza.
- y, en el diagrama de sólido libre, se dibuja la fuerza de rozamiento con un sentido contrario al del movimiento supuesto.
- b. Como el movimiento es inminente, $F = F_m = \mu_s N_s$ Sustituyendo μ_s por su valor conocido, en el diagrama de sólido libre puede expresarse F en función de N, determinándose así una incógnita.
- c. Exeribir las ecuaciones de equilibrio y despejar de ellas la incógnita que se busca [Prob. tipo 8.3].

Problema 8.1 Dinámica Beer/Johnston octava edición

Si $W_A = 25$ lb y $\theta = 30^{\circ}$, determine a) el valor mínimo de W_B para que el sistema este en equilibrio, b) el valor máximo de W_B para que el sistema este en equilibrio.

b) el valor máximo de W_B para que el sistema este en equilibrio.

Se analiza si el sistema intentara desplazarse por el plano inclinado hacia abajo, es decir la fuerza maxima para que el sistema completo se desplace hacia la derecha, en este caso la fuerza de rozamiento actúa hacia la izquierda y paralela al plano inclinado.

Bloque A

$$\Sigma F_Y = 0$$

$$T - W_A = 0$$

$$T = W_A$$

$$W_A = 25 lb$$

T = 25 lb

Bloque B

$$sen 30 = \frac{W_{BX}}{W_{B}}$$

$$W_{BX} = W_{B} * sen 30$$

 $W_{BX} = 0.5 W_{B}$

$$\Sigma F_{Y} = 0$$

$$N - W_{BY} = 0$$

$$N = W_{BY}$$

 $N = 0.866 W_B$

$$\mu_S$$
 = Coeficiente de fricción estático = 0,35

$$F_R = \mu_S * N$$

$$F_R = 0.35 * N$$

$$F_R = 0.35 W_{BY}$$

$$F_R = 0.35 * (0.866 W_B)$$

$$F_R = 0.3031 W_B$$

$$\cos 30 = \frac{W_{BY}}{W_{B}}$$

$$W_{BY} = W_B * cos 30$$

$$W_{BY} = 0.866 W_{B}$$

$$\Sigma F_{X} = 0$$

$$W_{BX} - F_R - T = 0$$

$$0.5 W_B - 0.3031 W_B - 25 = 0$$

$$0,1969 W_B - 25 = 0$$

$$0,1969 W_B = 25$$

$$W_B = \frac{25}{0,1969} = 127 \text{ lb}$$

a) el valor mínimo de W_B para que el sistema este en equilibrio

Se analiza si el sistema intentara desplazarse por el plano inclinado hacia abajo, es decir la fuerza minima para que el sistema completo se desplace hacia la derecha, en este caso la fuerza de rozamiento actúa hacia la izquierda y paralela al plano inclinado.

Bloque A

$$\Sigma F_Y = 0$$

$$T - W_A = 0$$

$$T = W_A$$

$$W_A = 25 lb$$

T = 25 lb

Bloque B

$$sen 30 = \frac{W_{BX}}{W_{B}}$$

$$W_{BX} = W_{B} * sen 30$$

$$W_{BX} = 0.5 W_{B}$$

$$\Sigma F_Y = 0$$

$$N - W_{BY} = 0$$

$$N = W_{BY}$$

 $N = 0.866 W_B$

$$\mu_S$$
 = Coeficiente de fricción estático = 0,35

$$F_R = \mu_S * N$$

$$F_R = 0.35 * N$$

$$F_R = 0.35 W_{BY}$$

$$F_R = 0.35 * (0.866 W_B)$$

$$F_R = 0.3031 W_B$$

$$\cos 30 = \frac{W_{BY}}{W_{B}}$$

$$W_{BY} = W_{B} * \cos 30$$

$$W_{BY} = 0.866 W_{B}$$

$$\Sigma F_X = 0$$

$$W_{BX} + F_R - T = 0$$

$$0.5 \, W_B + 0.3031 \, W_B - 25 = 0$$

$$0.8031 \text{ W}_{B} - 25 = 0$$

$$0.8031 \text{ W}_{B} = 25$$

Problema 8.1 Dinámica Beer/Johnston sexta edición

Determinar si el bloque de la figura está en equilibrio y hallar el módulo y el sentido de la fuerza de rozamiento cuando $\theta = 30^{\circ}$ y P = 50 N.

$$F_{R}$$
 F_{R}
 F_{R

$$\sin 30 = \frac{PY}{P}$$

$$P_Y = P * sen 30$$

$$P_Y = 50 * 0.5$$

 $P_Y = 25$ Newton

$$\cos 30 = \frac{P_X}{P}$$

$$P_X = P * \cos 30$$

$$P_X = 50 * 0,866$$

$$sen 30 = \frac{FX}{F}$$

$$F_X = F * sen 30$$

$$F_X = 1250 * 0.5$$

$$\cos 30 = \frac{FY}{F}$$

 W_{B}

$$\frac{\cos 30}{F}$$

$$F_Y = F * cos 30$$

 $F_Y = 1250 * 0,866$

$$F_Y = 1082,5N$$

$$\Sigma F_Y = 0$$

$$N - P_Y - F_Y = 0$$

$$N = P_Y + F_Y$$

N = P sen 30 + F cos 30

N = 25 Newton + 1082,53 Newton

N = 1107,53 Newton

 $\Sigma F_X = 0$

 $F_{EQUILIBRIO} + P_X - F_X = 0$

 $F_{EQUILIBRIO} = F_X - P_X$

 $F_{EQUILIBRIO} = F sen 30 - P cos 30$

 $F_{EQUILIBRIO}$ = 625 Newton – 43,3 Newton

F_{EQUILIBRIO} = 581,7 Newton

(Se necesita esta fuerza para que el cuerpo este en equilibrio.)

La fuerza de rozamiento se opone al movimiento.

 F_{MAXIMA} = Es la fuerza de rozamiento, se opone al movimiento.

 $F_{MAXIMA} = (\mu_S) * N$

F_{MAXIMA} = Coeficiente de fricción estático * Normal

 $F_{MAXIMA} = 0.3 * 1107,53$ Newton

F_{MAXIMA} = 332,25 Newton (Esta es la fuerza que se opone al movimiento)

Si la fuerza máxima es < que la fuerza de equilibrio, que se necesita para mantener el cuerpo en reposo, **entonces el cuerpo se desplaza por el plano inclinado.**

F_{MAXIMA} < F_{EQUILIBRIO}

332,25 Newton < 581,7 Newton

Conclusión: El cuerpo se desplaza por el plano inclinado.

Como el cuerpo se desplaza, entonces la fuerza de rozamiento se calcula con el coeficiente de fricción cinético

 $\mu_K = 0.2$ (coeficiente de fricción cinético)

 $F_R = (\mu_K) * N$

 $F_R = 0.2 * 1107,53$

 $F_R = 221,5$ Newton (Ver diagrama de fuerzas)

Nota: La fuerza de rozamiento se opone al movimiento, por esto la dirección de la fuerza de rozamiento es contraria al desplazamiento del cuerpo.

Problema 8.1 Dinámica Beer/Johnston

Determinar si el bloque de la figura está en equilibrio y hallar el módulo y el sentido de la fuerza de rozamiento cuando $\theta = 30^{\circ}$ y P = 200 N.

 $\mu_S = 0.3$ (coeficiente de fricción estático)

 $\mu_K = 0.2$ (coeficiente de fricción cinético)

FEQUILIBRIO

P = 50 N

30°

30⁰

F = 1250 N

 F_x

$$sen 30 = \frac{PY}{P}$$

$$\cos 30 = \frac{PX}{P}$$

$$sen 30 = \frac{FX}{F}$$

$$\cos 30 = \frac{FY}{F}$$

$$P_Y = P * sen 30$$

 $P_Y = 200 * 0.5$

$$P_X = P * cos 30$$

 $P_X = 200 * 0,866$

$$F_X = F * sen 30$$

 $F_X = 1000 * 0.5$

$$F_Y = F * cos 30$$

 $F_Y = 1000 * 0,866$

$$P_Y = 100 \text{ Newton}$$
 $P_X = 173,2 \text{ Newton}$

$$F_X = 500 \text{ Newton}$$

$$F_Y = 866,02 \text{ N}$$

$$\Sigma F_Y = 0$$

$$N - P_Y - F_Y = 0$$

$$N = P_Y + F_Y$$

$$N = P sen 30 + F cos 30$$

N = 966,02 Newton

$$\Sigma F_X = 0$$

$$F_{EQUILIBRIO} + P_X - F_X = 0$$

$$F_{EQUILIBRIO} = F_X - P_X$$

$$F_{EQUILIBRIO} = F sen 30 - P cos 30$$

$$F_{EQUILIBRIO} = 500 \text{ Newton} - 173,2 \text{ Newton}$$

F_{EQUILIBRIO} = 326,8 Newton

(Se necesita esta fuerza para que el cuerpo este en equilibrio.)

La fuerza de rozamiento se opone al movimiento.

 F_{MAXIMA} = Es la fuerza de rozamiento, se opone al movimiento.

 $F_{MAXIMA} = (\mu_S) * N$

F_{MAXIMA} = Coeficiente de fricción estático * Normal

 $F_{MAXIMA} = 0.3 * 966,02 Newton$

 F_{MAXIMA} = 289,8 Newton (Esta es la fuerza que se opone al movimiento)

Si la fuerza máxima es < que la fuerza de equilibrio, que se necesita para mantener el cuerpo en reposo, **entonces el cuerpo se desplaza por el plano inclinado.**

F_{MAXIMA} < F_{EQUILIBRIO}

289,8 Newton < 326,8 Newton

Conclusión: El cuerpo se desplaza por el plano inclinado.

Como el cuerpo se desplaza, entonces la fuerza de rozamiento se calcula con el coeficiente de fricción cinético

 $\mu_K = 0.2$ (coeficiente de fricción cinético)

 $F_R = (\mu_K) * N$

 $F_R = 0.2 * 966.02$ Newton

 F_R = 193,2 Newton (Ver diagrama de fuerzas)

Nota: La fuerza de rozamiento se opone al movimiento, por esto la dirección de la fuerza de rozamiento es contraria al desplazamiento del cuerpo.

Problema 8.1 Dinámica Beer/Johnston

Determinar si el bloque de la figura está en equilibrio y hallar el módulo y el sentido de la fuerza de rozamiento cuando $\theta = 30^{\circ}$ y P = 50 lb.

 $\mu_S = 0.3$ (coeficiente de fricción estático)

 $\mu_K = 0.2$ (coeficiente de fricción cinético)

$$sen 30 = \frac{PY}{P}$$

$$P_{Y} = P * sen 30$$

$$P_Y = 50 * 0.5$$

$$P_{Y} = 25 \text{ lb}$$

$$\cos 30 = \frac{P_X}{P}$$

$$P_X = P * cos 30$$

 $P_X = 50 * 0,866$

$$P_X = 43,3 \text{ lb}$$

sen
$$30 = \frac{F_X}{F}$$

$$F_X = F * sen 30$$

$$F_X = 250 * 0.5$$

 $F_X = 125 lb$

$$\cos 30 = \frac{FY}{F}$$

$$F_Y = F * \cos 30$$

$$F_Y = 250 * 0,866$$

 $F_Y = 216.5 lb$

$$\Sigma F_Y = 0$$

$$N - P_Y - F_Y = 0$$

$$N = P_Y + F_Y$$

N = P sen 30 + F cos 30

N = 25 lb + 216.5 lb

N = 241.5 lb

$$\Sigma F_X = 0$$

$$F_{EQUILIBRIO} + P_X - F_X = 0$$

$$F_{EQUILIBRIO} = F_X - P_X$$

F_{EQUILIBRIO} = F sen 30 - P cos 30

 $F_{EQUILIBRIO} = 125 lb - 43,3 lb$

 $F_{EQUILIBRIO} = 81,7 lb$

(Se necesita esta fuerza para que el cuerpo este en equilibrio.)

La fuerza de rozamiento se opone al movimiento.

 F_{MAXIMA} = Es la fuerza de rozamiento, se opone al movimiento.

 $F_{MAXIMA} = (\mu_S) * N$

F_{MAXIMA} = Coeficiente de fricción estático * Normal

 $F_{MAXIMA} = 0.3 * 241.5 lb$

F_{MAXIMA} = 72,45 lb (Esta es la fuerza que se opone al movimiento)

Si la fuerza máxima es < que la fuerza de equilibrio, que se necesita para mantener el cuerpo en reposo, **entonces el cuerpo se desplaza por el plano inclinado.**

F_{MAXIMA} < F_{EQUILIBRIO} 72,45 lb < 81,7 lb

Conclusión: El cuerpo se desplaza por el plano inclinado.

Como el cuerpo se desplaza, entonces la fuerza de rozamiento se calcula con el coeficiente de fricción cinético

 μ_K = 0,2 (coeficiente de fricción cinético)

 $F_R = (\mu_K) * N$

 $F_R = 0.2 * 241.5 lb$

 F_R = 48,3 lb (Ver diagrama de fuerzas)

Nota: La fuerza de rozamiento se opone al movimiento, por esto la dirección de la fuerza de rozamiento es contraria al desplazamiento del cuerpo.

Problema 8.2 Dinámica Beer/Johnston

Determinar si el bloque de la figura está en equilibrio y hallar el módulo y el sentido de la fuerza de rozamiento cuando $\theta = 35^{\circ}$ y P = 400 N.

 $\mu_S = 0.3$ (coeficiente de fricción estático)

 $\mu_K = 0.2$ (coeficiente de fricción cinético)

sen
$$35 = \frac{P_Y}{P}$$

$$\cos 35 = \frac{P_X}{P}$$

sen
$$35 = \frac{F_X}{F}$$

$$\cos 35 = \frac{F_Y}{F}$$

$$P_Y = P * sen 35$$

$$P_X = P * cos 35$$

$$F_X = F * sen 35$$

 $F_X = 1000 * 0,573$
 $F_X = 573$ Newton

$$P_Y = 400 * 0,573$$

 $P_Y = 229,43$

$$P_X = P * \cos 35$$

 $P_X = 400 * 0.819$
 $P_X = 327.66$ Newton

$$F_Y = F * \cos 35$$

 $F_Y = 1000 * 0.819$
 $F_Y = 819.15$

Newton

$$\Sigma F_Y = 0$$

$$N - P_Y - F_Y = 0$$

$$N = P_Y + F_Y$$

$$N = P sen 35 + F cos 35$$

N = 229,43 Newton + 819,15 Newton

Newton

N = 1048,58 Newton

$$\Sigma F_X = 0$$

$$F_{\text{EQUILIBRIO}} + P_{\text{X}} - F_{\text{X}} = 0$$

$$F_{EQUILIBRIO} = F_X - P_X$$

$$F_{EQUILIBRIO} = F sen 30 - P cos 30$$

 $F_{EQUILIBRIO} = 573 \text{ Newton} - 327,66 \text{ Newton}$

F_{EQUILIBRIO} = 245,34 Newton

(Se necesita esta fuerza para que el cuerpo este en equilibrio.)

La fuerza de rozamiento se opone al movimiento.

 F_{MAXIMA} = Es la fuerza de rozamiento, se opone al movimiento.

 $F_{MAXIMA} = (\mu_S) * N$

F_{MAXIMA} = Coeficiente de fricción estático * Normal

 $F_{MAXIMA} = 0.3 * 1048,58 \text{ Newton}$

 $F_{MAXIMA} = 314,57$ Newton (Esta es la fuerza que se opone al movimiento)

Si la fuerza máxima es < que la fuerza de equilibrio que se necesita para mantener el cuerpo en reposo, entonces el cuerpo se desplaza por el plano inclinado.

F_{MAXIMA} > F_{EQUILIBRIO} 314,57 Newton > 245,34 Newton

Conclusión: El cuerpo permanece en reposo

Como el cuerpo permanece en reposo, entonces la fuerza de rozamiento se calcula con el coeficiente de fricción estático

 $\mu_S = 0.3$ (coeficiente de fricción estático)

 $F_{R} = (\mu_{S}) * N$

 $F_R = 0.3 * 1048,58 \text{ Newton}$

 $F_R = 314,57$ Newton (Ver diagrama de fuerzas)

Nota: La fuerza de rozamiento se opone al movimiento, por esto la dirección de la fuerza de rozamiento es contraria al desplazamiento del cuerpo.

Problema 8.2 Dinámica Beer/Johnston sexta edición

Determinar si el bloque de la figura está en equilibrio y hallar el módulo y el sentido de la fuerza de rozamiento cuando $\theta = 35^{\circ} \text{ y P} = 50$ N.

$$sen 35 = \frac{PY}{P}$$

$$\cos 35 = \frac{P_X}{P}$$

$$P_Y = P * sen 35$$

 $P_Y = 50 * 0,573$

$$P_X = P * \cos 35$$

$$P_Y = 50 * 0.573$$

 $P_Y = 28.67 N$

$$P_X = 50 * 0.819$$

 $P_X = 40.95$ Newton

$$sen 35 = \frac{FX}{F}$$

$$F_X = F * sen 35$$

$$F_X = 1250 * 0,573$$

 $F_X = 716,97$ Newton

$$\cos 35 = \frac{F\gamma}{F}$$

$$F_Y = F * \cos 35$$

 $F_Y = 1250 * 0.819$

$$F_Y = 1023,94N$$

$$\Sigma F_Y = 0$$

$$N - P_Y - F_Y = 0$$

$$N = P_Y + F_Y$$

$$N = P sen 35 + F cos 35$$

N = 1052,61 Newton

$$\Sigma F_X = 0$$

$$F_{EQUILIBRIO} + P_X - F_X = 0$$

$$F_{\text{EQUILIBRIO}} = F_{\text{X}} - P_{\text{X}}$$

$$F_{\text{EQUILIBRIO}} = F \text{ sen } 35 - P \text{ cos } 35$$

(Se necesita esta fuerza para que el cuerpo este en equilibrio.)

La fuerza de rozamiento se opone al movimiento.

 F_{MAXIMA} = Es la fuerza de rozamiento, se opone al movimiento.

 $F_{MAXIMA} = (\mu_S) * N$

F_{MAXIMA} = Coeficiente de fricción estático * Normal

 $F_{MAXIMA} = 0.3 * 1052,61$ Newton

 $F_{\text{MAXIMA}} = 315,78 \text{ Newton}$ (Esta es la fuerza que se opone al movimiento)

Si la fuerza máxima es < que la fuerza de equilibrio que se necesita para mantener el cuerpo en reposo, entonces el cuerpo se desplaza por el plano inclinado.

F_{MAXIMA} < F_{EQUILIBRIO} 315,78 Newton < 676,02 Newton

Conclusión: El cuerpo se desplaza por el plano inclinado.

Como el cuerpo se desplaza, entonces la fuerza de rozamiento se calcula con el coeficiente de fricción cinético

 $\mu_K = 0.2$ (coeficiente de fricción cinético)

 $F_R = (\mu_K) * N$

 $F_R = 0.2 * 1052,61$ Newton

 $F_R = 210,52$ Newton (Ver diagrama de fuerzas)

Nota: La fuerza de rozamiento se opone al movimiento, por esto la dirección de la fuerza de rozamiento es contraria al desplazamiento del cuerpo

Problema 8.2 Dinámica Beer/Johnston

Determinar si el bloque de la figura está en equilibrio y hallar el módulo y el sentido de la fuerza de rozamiento cuando $\theta = 35^{\circ}$ y P = 100 lb.

 $\mu_S = 0.3$ (coeficiente de fricción estático)

 $\mu_{K} = 0.2$ (coeficiente de fricción cinético)

$$sen 30 = \frac{P_Y}{P}$$

$$P_Y = P * sen 3$$

$$P_Y = 100 * 0.573$$

$$P_Y = 57,35 \text{ lb}$$

$$\cos 30 = \frac{P_X}{P}$$

$$P_{Y} = P * sen 35$$
 $P_{X} = P * cos 35$ $P_{Y} = 100 * 0,573$ $P_{X} = 100 * 0,819$

$$P_X = 81,91 \text{ lb}$$

$$sen 30 = \frac{FX}{F}$$

$$F_X = F * sen 35$$

$$F_X = 250 * 0,573$$

$$F_X = 143,39 \text{ lb}$$

$$\cos 30 = \frac{F_Y}{F}$$

$$F_Y = F * \cos 35$$

$$F_Y = 250 * 0.819$$

$$F_Y = 204,78 \text{ lb}$$

$$\Sigma F_Y = 0$$

$$N - P_Y - F_Y = 0$$

$$N = P_Y + F_Y$$

N = P sen 35 + F cos 35N = 57.35 lb + 204.78 lb

N = 262,13 lb

 $\Sigma F_X = 0$

 $F_{EQUILIBRIO} + P_X - F_X = 0$

 $F_{EQUILIBRIO} = F_X - P_X$

 $F_{EQUILIBRIO} = F sen 35 - P cos 35$

 $F_{EQUILIBRIO} = 143,39 \text{ lb} - 81,91 \text{ lb}$

$F_{\text{EQUILIBRIO}} = 61,48 \text{ lb}$

(Se necesita esta fuerza para que el cuerpo este en equilibrio.)

La fuerza de rozamiento se opone al movimiento.

 F_{MAXIMA} = Es la fuerza de rozamiento, se opone al movimiento.

 $F_{MAXIMA} = (\mu_S) * N$

F_{MAXIMA} = Coeficiente de fricción estático * Normal

 $F_{MAXIMA} = 0.3 * 262,13 lb$

 $F_{MAXIMA} = 78,63 \text{ lb}$ (Esta es la fuerza que se opone al movimiento)

Si la fuerza máxima es < que la fuerza de equilibrio, que se necesita para mantener el cuerpo en reposo, entonces el cuerpo se desplaza por el plano inclinado.

Conclusión: El cuerpo permanece en reposo.

Como el cuerpo permanece en reposo, entonces la fuerza de rozamiento se calcula con el coeficiente de fricción estático

 μ_S = 0,3 (coeficiente de fricción estático)

 $F_R = (\mu_S) * N$

 $F_R = 0.3 * 262.13 lb$

F_R = 78,63 lb (Ver diagrama de fuerzas)

Nota: La fuerza de rozamiento se opone al movimiento, por esto la dirección de la fuerza de rozamiento es contraria al desplazamiento del cuerpo.

Problema 8.3 Dinámica Beer/Johnston sexta edición

Determinar si el bloque de la figura está en equilibrio y hallar el módulo y el sentido de la fuerza de rozamiento cuando $\theta = 40^{\circ}$ y P = 400 N.

$$\Sigma F_Y = 0$$

 $N + P_Y - F_Y = 0$
 $N = F_Y - P_Y$
 $N = F \cos 25 - P \sin 15$
 $N = 725,04 N - 103,52 N$
 $N = 621,52 N$

$$\begin{split} \Sigma & F_X = 0 \\ F_{EQUILIBRIO} + F_X - P_X = 0 \\ F_{EQUILIBRIO} & = P_X - F_X \\ F_{EQUILIBRIO} & = P * \cos 15 - F * \sin 25 \\ F_{EQUILIBRIO} & = 386,37 \text{ N} - 338,09 \text{ N} \end{split}$$

$F_{\text{EQUILIBRIO}} = 48,28 \text{ N}$

(Se necesita esta fuerza para que el cuerpo este en equilibrio.)

La fuerza de rozamiento se opone al movimiento.

 F_{MAXIMA} = Es la fuerza de rozamiento, se opone al movimiento.

 $F_{MAXIMA} = (\mu_S) * N$

F_{MAXIMA} = Coeficiente de fricción estático * Normal

 $F_{MAXIMA} = 0.2 * 621,52 N$

F_{MAXIMA} = 124,3 N (Esta es la fuerza que se opone al movimiento)

Si la fuerza máxima es < que la fuerza de equilibrio, que se necesita para mantener el cuerpo en reposo, entonces el cuerpo se desplaza por el plano inclinado.

F_{MAXIMA} > F_{EQUILIBRIO} 124,3 N > 48,28 N

Conclusión: El cuerpo permanece en reposo.

Como el cuerpo permanece en reposo, entonces la fuerza de rozamiento se calcula con el coeficiente de fricción estático

 $\mu_S = 0.2$ (coeficiente de fricción estático)

 $F_R = (\mu_S) * N$

 $F_R = 0.2 * 621,52 N$

F_R **= 124,3 N** (Ver diagrama de fuerzas)

Nota: La fuerza de rozamiento se opone al movimiento, por esto la dirección de la fuerza de rozamiento es contraria al desplazamiento del cuerpo.

Problema 8.4 Dinámica Beer/Johnston sexta edición

Determinar si el bloque de la figura está en equilibrio y hallar el módulo y el sentido de la fuerza de rozamiento cuando $\theta = 35^{\circ}$ y P = 200 N.

$$sen 25 = \frac{FX}{F}$$

$$\cos 25 = \frac{F_Y}{F}$$

$$\sin 10 = \frac{P_Y}{P}$$

$$\cos 10 = \frac{P_X}{P}$$

$$F_X = F * sen 25$$

 $F_X = 800 * 0,422$

$$F_Y = F * cos 25$$

 $F_Y = 800 * 0,906$

$$P_Y = P * sen 10$$

 $P_Y = 200 * 0,173$

$$P_X = P * cos 10$$

$$F_X = 338,09 \text{ N}$$

$$F_Y = 725,04 \text{ N}$$

$$P_Y = 34,72 \text{ N}$$

$$P_X = 200 * 0,984$$

 $P_X = 196,96 N$

$$\Sigma F_Y = 0$$

$$N + P_Y - F_Y = 0$$

$$N = F_Y - P_Y$$

$$N = 725,04 N - 34,72 N$$

N = 690.32 N

$$\Sigma F_X = 0$$

$$F_X - P_X - F_{EQUILIBRIO} = 0$$

$$F_{EQUILIBRIO} = F_X - P_X$$

 $F_{EQUILIBRIO} = F * sen 25 - P * cos 10$

 $F_{EQUILIBRIO} = 338,09 \text{ N} - 196,96 \text{ N}$

$F_{EQUILIBRIO} = 141,13 N$

(Se necesita esta fuerza para que el cuerpo este en equilibrio.)

La fuerza de rozamiento se opone al movimiento.

 F_{MAXIMA} = Es la fuerza de rozamiento, se opone al movimiento.

 $F_{MAXIMA} = (\mu_S) * N$

F_{MAXIMA} = Coeficiente de fricción estático * Normal

 $F_{MAXIMA} = 0.2 * 690.32 N$

 $F_{\text{MAXIMA}} = 138,06 \text{ N}$ (Esta es la fuerza que se opone al movimiento)

Si la fuerza máxima es < que la fuerza de equilibrio, que se necesita para mantener el cuerpo en reposo, **entonces el cuerpo se desplaza por el plano inclinado.**

F_{MAXIMA} < F_{EQUILIBRIO} 138,06 N < 141,13 N

Conclusión: El cuerpo se desplaza por el plano inclinado.

Como el cuerpo se desplaza, entonces la fuerza de rozamiento se calcula con el coeficiente de fricción cinético

 $\mu_K = 0.15$ (coeficiente de fricción cinético)

 $F_R = (\mu_K) * N$

 $F_R = 0.15 * 690.32$ Newton

 $F_R = 103,54$ Newton (Ver diagrama de fuerzas)

Nota: La fuerza de rozamiento se opone al movimiento, por esto la dirección de la fuerza de rozamiento es contraria al desplazamiento del cuerpo

Problema 8.5 Dinámica Beer/Johnston sexta edición

Sabiendo que θ = 45°, hallar el intervalo de valores de P para el cual hay equilibrio.

F = 800N

25⁰

F = 800N

98,7

 $36,3^{0}$

$$25^{0} + 11,3^{0} = 36,3^{0}$$

$$180^{0} - 45^{0} - 36,3^{0} = 98,7^{0}$$

$$\frac{P}{\sin 36.3} = \frac{F}{\sin 98.7}$$

$$\frac{P}{\sin 36,3} = \frac{800}{\sin 98,7} = \frac{800}{0.988} = 809,31$$

P = 479,12 Newton Esta es la fuerza necesaria para que el cuerpo se desplace hacia arriba

45°

$$25^{\circ}$$
 - $11,3^{\circ}$ = $13,7^{\circ}$

$$180^{0} - 45^{0} - 13,7^{0} = 121,3^{0}$$

Ley de senos

$$\frac{P}{\text{sen } 13,7} = \frac{F}{\text{sen } 121,3}$$

$$\frac{P}{\sin 13,7} = \frac{800}{\sin 121,3} = \frac{800}{0.854} = 926,36$$

P = 219,39 Newton

Esta es la fuerza minima necesaria para que el cuerpo se mantenga en equilibrio

219,39 N < P < 479,12 N

Problema 8.6 Dinámica Beer/Johnston sexta edición

Hallar para qué intervalo de valores de P se conserva el equilibrio.

$$P = 500N$$
 90°
 $R = 14.03^{\circ}$

tg
$$Ø_s = \mu_S$$

tg $Ø_s = 0.25$
 $Ø_s = \text{arc tg } 0.25$

$$Ø_s = 14,036^0$$

$$30^{0} + 14,036^{0} = 44,036^{0}$$

$$180^{0} - 90^{0} - 44,03^{0} = 45,97^{0}$$

$$tg 44,03 = \frac{P}{F}$$

P = 483,35 Newton Esta es la fuerza necesaria para que el cuerpo se desplace hacia arriba

$$30^{\circ} - 14.036^{\circ} = 15.964^{\circ}$$

$$180^{\circ} - 90^{\circ} - 15,96^{\circ} = 74,04^{\circ}$$

$$tg 15,96 = \frac{P}{F}$$

$$P = F * tg 15,96$$

$$P = 500 * tg 15,96$$

P = 500 * 0.285

P = 142,99 N

Esta es la fuerza minima necesaria para que el cuerpo se mantenga en equilibrio

142,99 N < P < 483,35 N

Problema 8.7 Dinámica Beer/Johnston sexta edición

Sabiendo que el coeficiente de rozamiento entre el bloque de 25 kg y el plano inclinado es μ s = 0,25, hallar (a) el menor valor de P necesario para iniciar el movimiento del bloque plano arriba, (b) el correspondiente valor de β

P es perpendicular con R

$$W = m * g$$

$$W = 25 \text{ kg} * 9.8 \text{ m/seg}^2$$

W = 245 Newton

$$tg \, \varnothing_s = \mu_S$$

$$tg Ø_s = 0.25$$

$$Ø_s$$
 = arc tg 0,25

$$Ø_s = 14,036^0$$

$$30^{0} + Ø_{s} =$$

$$30^{\circ} + 14,036^{\circ} = 44,036^{\circ}$$

Por geometría, se deduce que:

$$Ø_s = \beta$$

$$30^{0} + \emptyset_{s} =$$

 $30^{0} + 14,036^{0} = 44,036^{0}$

$$90^{\circ} + 44.03^{\circ} + \alpha = 180^{\circ}$$

$$\alpha = 180^{0} - 90^{0} - 44,03^{0}$$

 $\alpha = 45.97^{\circ}$

$$\sin 44,03 = \frac{P}{W}$$

P = W * sen 44,03

P = 245 * sen 44,03

P = 245 * 0,695

P = 170,28 Newton

Esta es la fuerza necesaria para que el cuerpo se desplace hacia arriba

(b) el correspondiente valor de β

$$\beta = 14,04^{\circ}$$

Problema 8.8 Dinámica Beer/Johnston sexta edición

Sabiendo que el coeficiente de rozamiento entre el bloque de 15 kg y el plano inclinado es μ_S = 0,25, Hallar (a) el menor valor de P necesario para mantener el bloque en equilibrio, (b) el correspondiente valor de β

P es perpendicular con R

$$W = m * g$$

$$W = 15 \text{ kg} * 9.8 \text{ m/seg}^2$$

W = 147 Newton

tg
$$Ø_s = \mu_S$$

tg $Ø_s = 0.25$

$$Ø_s = \text{arc tg } 0,25$$

$$Ø_s = 14,036^0$$

$$30^{0} + \varnothing_{s} =$$

 $30^{0} + 14,036^{0} = 44,036^{0}$

$$44,03^0 + \alpha = 90^0$$

$$\alpha = 90^{\circ} - 44,03^{\circ}$$

 $\alpha = 45.97^{\circ}$

P = 105,68 Newton

Esta es la fuerza necesaria para que el cuerpo se desplace hacia arriba

$$30^{0} + \varnothing_{s} = 44.036^{0}$$

$$44,036^{\circ} + \beta = 90^{\circ}$$

 $\beta = 90^{\circ} - 44,036^{\circ}$

$$\beta = 45,97^{0}$$

Problema 8.8 Dinámica Beer/Johnston octava edición

Si el coeficiente de fricción estática entre el bloque de 30 lb y el plano inclinado que se muestra en la figura es μ_S = 0,25, determine (a) el valor minimo de P necesario para mantener el bloque en equilibrio, (b) el valor correspondiente de β

P es perpendicular con R

tg
$$Ø_s = \mu_S$$

tg $Ø_s = 0.25$
 $Ø_s = \text{arc tg } 0.25$
 $Ø_s = 14.036^0$

$$30^{0} + \varnothing_{s} =$$

 $30^{0} + 14.036^{0} = 44.036^{0}$

$$44,03^0 + \alpha = 90^0$$

$$\alpha = 90^{\circ} - 44,03^{\circ}$$

$\alpha = 45.97^{\circ}$

$$P = 30 * sen 45,97$$

P = 30 * 0,7189

P = 21,56 lb

Esta es la fuerza necesaria para que el cuerpo se desplace hacia arriba

$$30^{\circ} + \varnothing_{s} = 44,036^{\circ}$$

$$44,036^{\circ} + \beta = 90^{\circ}$$

 $\beta = 90^{\circ} - 44,036^{\circ}$

$\beta = 45,97^{0}$

Problema 8.9 Dinámica Beer/Johnston sexta edición

W = 75 N

 $P \cos \theta$

Considerando solo valores de θ menores que 90° , hallar el menor valor de θ necesario para que el bloque empiece a moverse hacia la derecha cuando (a) W = 75 Newton (b) W = 100 Newton

tg
$$Ø_s = \mu_S$$

tg $Ø_s = 0.25$
 $Ø_s = arc$ tg 0.25
 $Ø_s = 14.036^0$

$$30^{0} + \varnothing_{s} =$$

 $30^{0} + 14,036^{0} = 44,036^{0}$

Pero :
$$tg Ø_s = 0.25$$

P = 30 Newton

$$0,25 = \frac{30 \operatorname{sen} \theta}{75 + 30 \operatorname{cos} \theta}$$

$0.25 (75 + 30 \cos \theta) = 30 \sin \theta$

$$18,75 + 7,5 \cos \theta = 30 \sin \theta$$
$$\frac{18,75}{7,5} + \frac{7,5 \cos \theta}{7,5} = \frac{30}{7,5} sen \theta$$

$$2,5 + \cos \theta = 4 \sin \theta$$

Despejando: cos θ $\cos \theta = 4 \sin \theta - 2.5$

elevando al cuadrado la igualdad

$$(\cos \theta)^2 = (4 \sin \theta - 2.5)^2$$

Desarrollando el binomio

$$\cos^2 \theta = (4 \sin \theta)^2 - (2) * (4 \sin \theta) * (2,5) + (-2,5)^2$$

$$\cos^2 \theta = 16 \, \text{sen}^2 \, \theta - 20 \, \text{sen} \, \theta + 6,25$$

A CADA LADO DE LA IGUALDAD LE SUMO sen² θ

 $\cos^2 \theta + \sin^2 \theta = 16 \sin^2 \theta - 20 \sin \theta + 6.25 + \sin^2 \theta$

No olvide que existe una identidad que dice

$$\cos^2 \theta + \sin^2 \theta = 1$$

Reemplazando

$$\cos^2 \theta$$
 + $\sec^2 \theta$ = 16 $\sec^2 \theta$ - 20 $\sec \theta$ + 6,25 + $\sec^2 \theta$
1 = 16 $\sec^2 \theta$ - 20 $\sec \theta$ + 6,25 + $\sec^2 \theta$

Ordenando y simplificando la ecuación

1 =
$$16 \operatorname{sen}^2 \theta$$
 - 20 sen θ + 6,25 + sen² θ

$$1 = 17 \text{ sen}^2 \theta - 20 \text{ sen } \theta + 6,25$$

$$0 = 17 \operatorname{sen}^2 \theta - 20 \operatorname{sen} \theta + 6,25 - 1$$

$$0 = 17 \text{ sen}^2 \theta - 20 \text{ sen } \theta + 5.25$$

$$17 \text{ sen}^2 \theta - 20 \text{ sen } \theta + 5,25 = 0$$

sen
$$\theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-20) \pm \sqrt{(-20)^2 - 4*17*(5,25)}}{2*17} = \frac{20 \pm \sqrt{400 - 357}}{34}$$

sen
$$\theta = \frac{20 \pm \sqrt{43}}{34} = \frac{20 \pm 6,55}{34}$$

sen
$$\theta = \frac{20 + 6,55}{34} = \frac{26,55}{34} = 0,78$$

Sen $\theta = 0.78$

$$\theta$$
 = arc sen (0,78)

$$\theta = 51.36^{\circ}$$

(b) W = 100 Newton

$$tg \phi_{S} = \frac{P sen \theta}{100 + P cos \theta}$$

Pero : $tg Ø_s = 0.25$

$$0.25 = \frac{30 \sin \theta}{100 + 30 \cos \theta}$$

$0.25 (100 + 30 \cos \theta) = 30 \sin \theta$

$$25 + 7.5 \cos \theta = 30 \sin \theta$$

$$\frac{25}{7,5} + \frac{7,5\cos\theta}{7,5} = \frac{30}{7,5} sen\theta$$

$3.33 + \cos \theta = 4 \sin \theta$

Despeiando: cos θ $\cos \theta = 4 \sin \theta - 3{,}333$

elevando al cuadrado la igualdad $(\cos \theta)^2 = (4 \sin \theta - 3{,}333)^2$

Desarrollando el binomio

$$\cos^2 \theta = (4 \sin \theta)^2 - (2) * (4 \sin \theta) * (3,333) + (-3,333)^2$$

$$\cos^2 \theta = 16 \, \text{sen}^2 \, \theta - 26,66 \, \text{sen} \, \theta + 11,108$$

A CADA LADO DE LA IGUALDAD LE SUMO sen² θ $\cos^2 \theta + \sin^2 \theta = 16 \sin^2 \theta - 26,66 \sin \theta + 11,108 + \sin^2 \theta$

No olvide que existe una identidad que dice $\cos^2 \theta + \sin^2 \theta = 1$

Reemplazando

$$\cos^2 \theta$$
 + $\sec^2 \theta$ = 16 $\sec^2 \theta$ - 26,66 $\sec^2 \theta$ + 11,108 + $\sec^2 \theta$
1 = 16 $\sec^2 \theta$ - 26,66 $\sec^2 \theta$ + 11,108 + $\sec^2 \theta$

Ordenando y simplificando la ecuación

$$1 = 16 \text{ sen}^2 \theta - 26,66 \text{ sen } \theta + 11,108 + \text{sen}^2 \theta$$

$$1 = 17 \operatorname{sen}^2 \theta - 26.66 \operatorname{sen} \theta + 11.108$$

$$0 = 17 \text{ sen}^2 \theta - 26,66 \text{ sen } \theta + 11,108 - 1$$

 $0 = 17 \text{ sen}^2 \theta - 26,66 \text{ sen } \theta + 10,108$

$$0 = 17 \text{ sen}^2 \theta - 26.66 \text{ sen } \theta + 10.108$$

$$17 \operatorname{sen}^2 \theta - 26,66 \operatorname{sen} \theta + 10,108 = 0$$

 $\theta = arc sen (0.9632)$

 $\theta = 67.88^{\circ}$

Problema 8.9 Dinámica Beer/Johnston

Un bloque de 6 kg esta en reposo como lo indica la figura. Determine el rango positivo de valores de θ para los cuales el bloque se mantiene en equilibrio si a) θ es menor a 90°, b) θ tiene un valor entre 90° v 180°

a)
$$\theta$$
 es menor a 90° , $\mathbf{0}^{\circ} \leq \theta \leq \mathbf{90}^{\circ}$

tg
$$Ø_s = \mu_S$$

tg $Ø_s = 0.4$
 $Ø_s = arc tg 0.4$
 $Ø_s = 21,801^0$

Ley de senos

$$\frac{P}{\operatorname{sen}[\phi_{S}]} = \frac{W}{\operatorname{sen}[\theta - \phi_{S}]}$$
$$\frac{40}{\operatorname{sen}[21,801]} = \frac{58,8}{\operatorname{sen}[\theta - 21,801]}$$

$$40 * sen (\theta - 21,801) = 58,8 * sen (21,801)$$

$$40 * sen (\theta - 21,801) = 58,8 * 0,3713$$

$$40 * sen (\theta - 21,801) = 21,83$$

$$sen(\theta - 21,801) = \frac{21,83}{40} = 0,5459$$

$$sen (\theta - 21,801) = 0,5459$$

$$\theta - 21,801 = arc sen (0,5459)$$

$$\theta - 21,801 = 33,08^{\circ}$$

$$\theta = 33,08^0 + 21,801^0$$

 $\theta = 54.89^{\circ}$

Problema 8.10 Dinámica Beer/Johnston sexta edición

El bloque de 40 kg esta unido a la barra AB y descansa sobre una barra movil. Sabiendo que μ_S = 0,25 y μ_k = 0,2 hallar el modulo de la fuerza horizontal Pa aplicar a la cinta para mantenerla en movimiento (a) hacia la derecha (b) hacia la izquierda.

Problema 8.10 Dinámica Beer/Johnston sexta edición

Sabiendo que P = 25 lb, hallar para que intervalo de valores de θ se conserva el equilibrio del bloque de 18 lb.

a) el ángulo mínimo para impedir que se desplace hacia bajo

tg
$$Ø_s = \mu_S$$

tg $Ø_s = 0.45$
 $Ø_s = arc tg 0.45$

$Ø_s = 24,22^0$

Ley de senos

$$\frac{P}{\text{sen}[90 - \phi_{S}]} = \frac{W}{\text{sen}[\phi_{S} + \theta]}$$

$$\frac{25}{\operatorname{sen}[90 - \phi_{\mathbf{S}}]} = \frac{18}{\operatorname{sen}[\phi_{\mathbf{S}} + \theta]}$$

25 * sen (
$$\varnothing_S$$
 + θ) = 18 * sen (90 - \varnothing_S)

Pero: $\emptyset_s = 24,22^0$

$$25 * sen (24,22 + \theta) = 18 * sen (90 - 24,22)$$

$$25 * sen (24,22 + \theta) = 18 * sen (65,78)$$

$$25 * sen (24,22 + \theta) = 18 * 0,9119$$

$$25 * sen (24,22 + \theta) = 16,41$$

$$sen(24,22+\theta) = \frac{16,41}{25} = 0,6564$$

Sen(24,22 +
$$\theta$$
) = 0,6564
(24,22 + θ) = arc sen 0,6564
(24,22 + θ) = 41,02⁰
 θ = 41,02⁰ - 24,22⁰

b) el ángulo mínimo para impedir que se desplace hacia arriba

$$\beta + \emptyset_S = \theta$$

 $\beta = \theta - \emptyset_S$

Pero: $Ø_s = 24,22^0$

Ley de senos

 $16,82^0 < \theta < 65,26^0$

Problema 8.11 Dinámica Beer/Johnston

Entre todas las superficies de contacto los coeficientes de rozamiento son μ_S = 0,4 y μ_k = 0,3. Hallar la fuerza P mas pequeña de iniciar el movimiento del bloque de 30 kg. Si el cable AB (a) se sujeta como se muestra, (b) se retira.

El bloque m₁ se desplaza hacia la derecha, entonces F_{R1} actúa en sentido contrario.

Bloque m_1 **W**₁ = **40 lb**

$$\sum F_Y = 0$$
$$N_1 - W_1 = 0$$

$$N_1 = W_1$$

 $N_1 = 40 lb$

μ_S = 0,4 S e utiliza para hallar F_{R1} y F_{R2}

$$F_{R1} = \mu_S * N_1$$

 $F_{R1} = 0.4 * 40 \text{ lb}$
 $F_{R1} = 16 \text{ lb}$

$$\sum F_X = 0$$

T - $F_{R1} = 0$
T = F_{R1}
T = 16 lb.

El bloque m_2 se desplaza hacia la izquierda, entonces F_{R1} y F_{R2} actúan en sentido contrario.

Bloque m_2 $W_1 = 60 lb$

 μ_S = 0,4 S e utiliza para hallar F_{R1} y F_{R2} F_{R2} = μ_S * N_2 F_{R2} = 0,4 * 100 lb

 $F_{R2} = 40 \text{ lb}$

Problema 8.11 Dinámica Beer/Johnston sexta edición

Sabiendo que $\theta = 40^{\circ}$, hallar la menor fuerza P para la cual el bloque de 7,5 kg. Esta en equilibrio.

$$W = 7.5 \text{ kg} * 9.8 \text{ m/seg}^2$$

W = 73,5 Newton

 a) el mínimo valor de P para impedir que se desplace hacia bajo

Problema 8.12 Dinámica Beer/Johnston

Entre todas las superficies de contacto los coeficientes de rozamiento son μ_S = 0,4 y μ_k = 0,3. Hallar la fuerza P mas pequeña de iniciar el movimiento del bloque de 60 lb. Si el cable AB (a) se sujeta como se muestra, (b) se retira

Se analiza primero que el cable AB no permite que el bloque de 40 lb se pueda mover. La fuerza P mueve el bloque de 60 lb hacia la izquierda, observe que se forman 2 fuerzas de rozamiento.

 F_{R1} es la fuerza de rozamiento estático entre los 2 bloques. $W_1 = 40 \text{ lb.}$ $W_2 = 60 \text{ lb.}$ $W_2 = 60 \text{ lb.}$ $W_3 = 60 \text{ lb.}$

Bloque m_1 $W_1 = 40 lb$

$$\sum F_Y = 0$$

 $N_1 - W_1 = 0$
 $N_1 = W_1$
 $N_1 = 40 \text{ lb}$

Bloque 2

 $\mu_S = 0.4 S e utiliza para hallar F_{R1} y F_{R2}$

 $F_{R1} = \mu_S * N_1$ $F_{R1} = 0.4 * 40 \text{ lb}$ $F_{R1} = 16 \text{ lb}$ Bloque m₂ W₂ = 60 lb

$\sum F_Y = 0$
$N_2 - W_1 - W_2 = 0$
$N_2 = W_1 + W_2$
$N_2 = 40 + 60$
$N_2 = 100 \text{ lb}$

 $\mu_{S} = 0,4$ Se utiliza para hallar $F_{R1} y F_{R2}$ $F_{R2} = \mu_{S} * N_{2}$ $F_{R2} = 0,4 * 100 \text{ lb}$ $F_{R2} = 40 \text{ lb}$ $\sum F_{X} = 0$ $F_{R1} + F_{R2} - P = 0$ $P = F_{R1} + F_{R2}$ P = 16 lb + 40 lb

(b) se retira el cable AB. Esto quiere decir que el bloque m₁ se suma al bloque m₂. En este caso solo actúa la fuerza de rozamiento entre la suma de los bloques y el piso

 $\begin{aligned} W_T &= W_1 + W_2 & \sum F_Y &= 0 & \mu_S &= \textbf{0,4} \text{ Se utiliza} \\ W_T &= 40 \text{ lb} + 60 \text{ lb} & \textbf{N} - W_T &= \textbf{0} \\ N &= W_T & F_R &= \mu_S * \textbf{N} \\ W_T &= \textbf{100 lb} & \textbf{N} &= \textbf{100 lb} & F_R &= \textbf{0,4} * \textbf{100 lb} \\ F_R &= \textbf{40 lb} \end{aligned}$

 $\sum F_X = 0$

P = 56 lb

Problema 8.12 Dinámica Beer/Johnston sexta edición

Sabiendo que P = 100 Newton, hallar para que intervalo de valores de θ se conserva el equilibrio del bloque de 7,5 kg.

W = 73,5 Newton

tg
$$\emptyset_s = \mu_S$$

tg $\emptyset_s = 0,45$
 $\emptyset_s = \text{arc tg } 0,45$
 $\emptyset_s = 24,22^0$

$$\frac{P}{\text{sen}[90 - \phi_{S}]} = \frac{W}{\text{sen}[\phi_{S} + \theta]}$$
$$\frac{100}{\text{sen}[90 - \phi_{S}]} = \frac{73.5}{\text{sen}[\phi_{S} + \theta]}$$

$$100 * sen (Ø_S + \theta) = 73.5 * sen (90 - Ø_S)$$

Pero: $\emptyset_s = 24,22^0$

$$100 * sen (24,22 + \theta) = 73,5 * sen (90 - 24,22)$$

$$100 * sen (24,22 + \theta) = 73,5 * sen (65,78)$$

$$100 * sen (24,22 + \theta) = 73,5 * 0,9119$$

$$100 * sen (24,22 + \theta) = 67,03$$

$$\operatorname{sen}(24,22+\theta) = \frac{67,03}{100} = 0,67$$

$$Sen(24,22 + \theta) = 0.67$$

$$(24,22 + \theta) = arc sen 0,67$$

$$(24,22 + \theta) = 42,09^{0}$$

$$\dot{\theta} = 42,09^{0} - 24,22^{0}$$

$$\theta = 17.87^{\circ}$$

c) el ángulo mínimo para impedir que se desplace hacia arriba

$$\beta + \emptyset_S = \theta$$

 $\beta = \theta - \emptyset_S$

$$\frac{P}{\operatorname{sen}[90 + \phi_{\mathbf{S}}]} = \frac{W}{\operatorname{sen}[\beta]}$$

$$\frac{P}{\text{sen}[90 + \phi_S]} = \frac{W}{\text{sen}[\theta - \phi_S]}$$

$$\frac{100}{\text{sen}[90-24,22]} = \frac{73,5}{\text{sen}[\theta-24,22]}$$

$$100 * sen(\theta - 24,22) = 73,5 * sen (90 - 24,22)$$

$$100 * sen(\theta - 24,22) = 73,5 * sen (65,78^{\circ})$$

$$100 * sen(\theta - 24,22) = 73,5 * 0,9119$$

$$100 * sen(\theta - 24,22) = 67,03$$

$$\operatorname{sen}(\theta - 24,22) = \frac{67,03}{10} = 0,67$$


```
sen(\theta - 24,22) = 0,6566

(\theta - 24,22) = arc sen (0,67)

(\theta - 24,22) = 42,09^{0}

(\theta - 24,22) = 42,09^{0} + 24,22^{0}

\theta = 66,31^{0}
```

 $17.87^{\circ} < \theta < 66.31^{\circ}$

Problema 8.13 Dinámica Beer/Johnston

Entre todas las superficies de contacto los coeficientes de rozamiento son μ_S = 0,4 y μ_k = 0,3. Hallar la fuerza P mas pequeña de iniciar el movimiento del bloque de 30 kg. Si el cable AB (a) se sujeta como se muestra, (b) se retira.

El bloque $\,m_1\,$ se desplaza hacia la derecha, entonces $F_{R1}\,$ actúa en sentido contrario.

 μ_{S} = 0,4 S e utiliza para hallar F_{R1} y F_{R2}

 $F_{R1} = \mu_S * N_1$ $F_{R1} = 0.4 * 196 N$ $F_{R1} = 78.4 Newton$

 $\sum F_X = 0$ **T** - **F**_{R1} = **0** T = F_{R1} **T** = **78.4** Newton.

El bloque m_2 se desplaza hacia la izquierda, entonces F_{R1} y F_{R2} actúan en sentido contrario.

 μ_S = 0,4 S e utiliza para hallar F_{R1} y F_{R2} F_{R2} = μ_S * N_2 F_{R2} = 0,4 * 490 N F_{R2} = 196 Newton

(b) se retira el cable AB. Esto quiere decir que el bloque m₁ se suma al bloque m₂. En este caso solo actúa la fuerza de rozamiento entre la suma de los bloques y el piso

Problema 8.13 Dinámica Beer/Johnston

El bloque A de 8 kg y el bloque B de 12 kg lb están en reposo sobre un plano inclinado como se muestra en la figura. Si el coeficiente de fricción estática entre todas las superficies de contacto es de 0,2, determine el valor de θ requerido para que se inicie el movimiento.

El bloque B intenta moverse hacia la derecha por acción de la fuerza de 10 lb, entonces las 2 fuerzas de rozamiento actúan en sentido contrario al movimiento.

$$m_A = 8 \text{ kg}$$

 $m_B = 12 \text{ kg}$

Pero: $W_A = 8 \text{ kg} * 9.8 \text{ m/seg}^2$ $W_A = 78.4 \text{ Newton}$

Bloque A

 μ_S = 0,2 Se utiliza para hallar F_{R1} y F_{R2} F_{R1} = μ_S * N_1 F_{R1} = 0,2 * N_1

Bloque B

$$\sum F_Y = 0$$

 $N_2 - N_1 - W_B = 0$
 $N_2 = N_1 + W_B$

 $\mu_{S} = 0.2$ Se utiliza para hallar F_{R1} y F_{R2} $F_{R2} = \mu_{S} * N_{2}$ $F_{R2} = 0.2 * N_{2}$ $F_{R2} = 0.2 * (N_{1} + W_{B})$

Pero: $W_B = 12 \text{ kg} * 9.8 \text{ m/seg}^2$

 $W_B = 117,6$ Newton

Despejando:

$$50 - 23,52 = 0,4 * N_1$$

 $26,48 = 0,4N_1$
 $N_1 = \frac{26,48}{0,4} = 66,2 \text{ Newton}$

 $N_1 = 66,2 \text{ Newton}$

Bloque A

$$\sum F_Y = 0$$

$$F_Y + N_1 - W_A = 0$$

$$F_Y = W_1 - W_2 = 0$$

 $F_Y = W_A - N_1$ $F_Y = 78.4 - 66.2$

 $F_Y = 12,2$ Newton

$$F_{R1} = 0.2 * N_1$$

 $F_{R1} = 0.2 * 66.2$

F_{R1} = 13,24 Newton

$$\sum F_X = 0$$

$$F_{R1} - F_X = 0$$

$$F_X = F_{R1}$$

$$F_X = 13,24 \text{ Newton}$$

$$F_{R2} = 0.2 * (N_1 + 117.6)$$

 $F_{R2} = 0.2 N_1 + 23.52$

$$\sum F_X = 0$$

50 - F_{R1} - F_{R2} = 0
50 = F_{R1} + F_{R2}

Reemplazando

Bloque total

$$\operatorname{tg} \theta = \frac{F_{Y}}{F_{X}} = \frac{12,2}{13,24} = 0,9214$$

 $\theta = \text{arc tg } (0.9214)$

$\theta = 42,65^{0}$

Problema 8.14 Dinámica Beer/Johnston

El bloque A de 8 kg y el bloque B de 16 lb están en reposo sobre un plano inclinado como se muestra en la figura. Si el coeficiente de fricción estática entre todas las superficies de contacto es de 0,25, determine el valor de θ requerido para que se inicie el movimiento.

Diagrama de cuerpo libre para el bloque A

El bloque A intenta moverse hacia la izquierda, entonces la fuerza de rozamiento F_{R1} actúa en sentido contrario para tratar de impedir el movimiento del bloque A.

Diagrama de cuerpo libre para el bloque B

El bloque B intenta moverse hacia la derecha por el plano inclinado hacia abajo, entonces actúan dos fuerzas fuerza de rozamiento.

F_{R1} actúa en sentido contrario al movimiento y en forma horizontal, y trata de impedir el movimiento del bloque B.

F_{R2} actúa en sentido contrario al movimiento y en forma paralela al plano inclinado, y trata de impedir el movimiento del bloque B.

Bloque A	$\sum F_Y = 0$	μ _S = 0,25 Se utiliza	$\sum F_X = 0$
$W_A = 8 lb$	$\overline{N}_A - W_A = 0$	para hallar F _{R1} y F _{R2}	\overline{F}_{R1} - T = 0
	$N_A = W_A$	$F_{R1} = \mu_S * N_2$	$T = F_{R1}$
	$N_A = 8 lb$	$F_{R1} = 0.25 * 8 lb$	T = 2 lb
		$F_{\text{D},i} = 2 \text{ lh}$	

Bloque B

$$\begin{split} & \operatorname{sen} \theta = \frac{W_{AX}}{W_{A}} & \cos \theta = \frac{W_{AY}}{W_{A}} & \operatorname{sen} \theta = \frac{W_{BX}}{W_{B}} & \cos \theta = \frac{W_{BY}}{W_{B}} \\ & W_{AX} = W_{A} * \operatorname{sen} \theta & W_{AY} = W_{A} * \cos \theta & W_{BX} = W_{B} * \operatorname{sen} \theta & W_{BY} = W_{B} * \cos \theta \\ & W_{AX} = 8 \operatorname{sen} \theta & F_{Y} = 8 \cos \theta & W_{BX} = 16 \operatorname{sen} \theta & W_{BY} = 16 \cos \theta \end{split}$$

Bloque B

$$W_B = 16 lb$$

$$\begin{split} & \sum F_{Y} = 0 \\ & N_{B} - W_{AY} - W_{BY} - F_{R1Y} = 0 \\ & N_{B} = W_{AY} + W_{BY} + F_{R1Y} \\ & N_{B} = 8 \cos \theta + 16 \cos \theta + 2 \sin \theta \end{split}$$

$$N_B = 24 \cos \theta + 2 \sin \theta$$

$$\mu_S$$
 = 0,25 Se utiliza para hallar F_{R1} y F_{R2} F_{R2} = μ_S * N_B

$$F_{R2} = 0.25 * (24 \cos \theta + 2 \sin \theta)$$

$$F_{R2} = 6 \cos \theta + 0.5 \sin \theta$$

$$\begin{array}{l} \sum F_X = 0 \\ W_{BX} + W_{AX} - F_{R2} - F_{R1X} - T = 0 \\ 16 \text{ sen } \theta + 8 \text{ sen } \theta - (6 \cos \theta + 0.5 \text{ sen } \theta) - 2 \cos \theta - 2 = 0 \\ 16 \text{ sen } \theta + 8 \text{ sen } \theta - 6 \cos \theta - 0.5 \text{ sen } \theta - 2 \cos \theta - 2 = 0 \\ 23.5 \text{ sen } \theta - 6 \cos \theta - 2 \cos \theta - 2 = 0 \\ 23.5 \text{ sen } \theta - 8 \cos \theta - 2 = 0 \\ \textbf{23.5 sen } \theta - \textbf{2} = \textbf{8 cos } \theta \end{array}$$

$$\frac{23.5 \operatorname{sen} \theta}{8} - \frac{2}{8} = \frac{8}{8} \cos \theta$$

2,937sen θ - 0,25 =
$$\cos \theta$$

elevando al cuadrado la igualdad $(\cos \theta)^2 = (2,937 \sin \theta - 0,25)^2$

Desarrollando el binomio

$$\cos^2 \theta = (2.937 \text{sen } \theta)^2 - (2) * (2.937 \text{sen } \theta) * (0.25) + (0.25)^2$$

$$\cos^2 \theta = 8,625 \operatorname{sen}^2 \theta - 1,468 \operatorname{sen} \theta + 0,0625$$

A CADA LADO DE LA IGUALDAD LE SUMO
$$sen^2 \theta$$

 $sen^2 \theta + cos^2 \theta = 8,625 sen^2 \theta - 1,468 sen \theta + 0,0625 + sen^2 \theta$

No olvide que existe una identidad que dice $\cos^2 \theta + \sin^2 \theta = 1$

1 =
$$8,625 \text{ sen}^2 \theta$$
 - $1,468 \text{ sen } \theta$ + $0,0625 + \text{sen}^2 \theta$
0 = $8,625 \text{ sen}^2 \theta$ - $1,468 \text{ sen } \theta$ + $0,0625 + \text{sen}^2 \theta$ - 1

Ordenando y simplificando la ecuación

$$0 = 8,625 \operatorname{sen}^2 \theta - 1,468 \operatorname{sen} \theta + 0,0625 + \operatorname{sen}^2 \theta - 1$$

$$0 = 9,625 \text{ sen}^2 \theta - 1,468 \text{ sen } \theta - 0,9375$$

pero:
$$a = 9,625$$
 $b = -1,468$ $c = -0,9375$

$$sen \theta = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-(-1,468) \pm \sqrt{(-1,468)^2 - 4*9,625*(-0,9375)}}{2*9,625} = \frac{1,468 \pm \sqrt{2,155 + 36,09}}{19,25}$$

$$sen \theta = \frac{1,468 \pm \sqrt{38,245}}{19,25} = \frac{1,468 \pm 6,184}{19,25}$$

$$sen \theta = \frac{7,6522}{19,25} = 0,3975$$

Sen
$$\theta$$
 = 0,3975 θ = arc sen 0,3975

 $\theta = 23.42^{0}$

Problema 8.14 Dinámica Beer/Johnston sexta edición

Entre todas las superficies de contacto los coeficientes de rozamiento son μ_S = 0,4 y μ_k = 0,3. Hallar la fuerza P mas pequeña de iniciar el movimiento del bloque de 30 kg. Si el cable AB (a) se sujeta como se muestra, (b) se retira.

Se analiza primero que el cable AB no permite que el bloque de 20 kg se pueda mover. La fuerza P mueve el bloque de 30 kg hacia la izquierda, observe que se forman 2 fuerzas de rozamiento.

Bloque m₁

$$W_1 = m_1 * g$$

 $W_1 = 20 \text{ kg} * 9.8 \text{ m/seg}^2$

 $W_1 = 196 \text{ Newton}$

$$\sum F_{Y} = 0$$

 $N_{1} - W_{1} = 0$
 $N_{1} = W_{1}$
 $N_{1} = 196 \text{ Newton}$

 μ_S = 0,4 S e utiliza para hallar F_{R1} y F_{R2}

 $F_{R1} = \mu_S * N_1$

 $F_{R1} = 0.4 * 196$ Newton

F_{R1} = **78,4 Newton**

Bloque m₂

 $W_2 = m_2 * g$

 $W_2 = 30 \text{ kg } * 9.8 \text{ m/seg}^2$

 W_2 = 294 Newton

 $\mu_s = 0.4$ Se utiliza para hallar F_{R1} y F_{R2}

 $F_{R2} = \mu_S * N_2$

 $F_{R2} = 0.4 * 490 N$

F_{R2} = 196 **Newton**

 $\sum F_Y = 0$

 $N_2 - W_1 - W_2 = 0$

 $N_2 = W_1 + W_2$

 $N_2 = 196 + 294$

 $N_2 = 490$ Newton

 $\sum F_X = 0$

 $F_{R1} + F_{R2} - P = 0$

 $P = F_{R1} + F_{R2}$

P= 78,4 N + 196 N

P = 274.4 N

(b) se retira el cable AB. Esto quiere decir que el bloque m₁ se suma al bloque m₂. En este caso solo actúa la fuerza de rozamiento entre la suma de los bloques y el piso

 $W_T = W_1 + W_2$ $W_T = 196 + 294$ $\sum F_Y = 0$

 $N - W_T = 0$

 $N = W_T$

 $W_T = 490 \text{ Newton}$

N = 490 Newton

 $\mu_s = 0,4$ Se utiliza

para hallar F_R

 $F_R = \mu_S * N$

 $F_R = 0.4 * 490 N$

 $F_R = 196 \text{ Newton}$

 $\sum F_X = 0$

 $F_R - P = 0$

 $P = F_{R1}$

P = 196 Newton

Bloque total

Ρ F_R es la fuerza de rozamiento estático entre la suma de los bloques y el piso.

