TASK 1. Implementation of a P (proportional) level controller: a. Enhance the simulator with a P controller including a manual control term, u_man, with an appriorpate value. (You may put the controller before (above) the process simulator in the simulation loop.) The setpoint should be plotted together with the process variable (level). In [10]: # %% Import import matplotlib.pyplot as plt import numpy as np # %% Time settings: ts = 1 # Time-step [s]t_start = 0.0 # [s] $t_stop = 5000.0 \# [s]$ $N_{sim} = int((t_{stop-t_{start}})/ts) + 1$ # %% Process params: rho = 145 # $[kg/m^3]$ $A = 13.4 \# \lceil m^2 \rceil$ $t_{delay} = 250.0 \# [s]$ $h_{min} = 0 \# [m]$ $h_{max} = 15 \# [m]$ $u_min = 0 \# \lceil kg/s \rceil$ $u_max = 50 \# [kg/s]$ # %% Initialization of time delay: $u_delayed_init = 25 \# [kg/s]$ $N_{delay} = int(round(t_{delay}/ts)) + 1$ delay_array = np.zeros(N_delay) + u_delayed_init # %% Arrays for plotting: t_array = np.zeros(N_sim) h_array = np.zeros(N_sim) u_array = np.zeros(N_sim) h_sp_array = np.zeros(N_sim) # %% Initial state: h_k = 10.0 # m setpoint h_sp = h_k # just for graph h_kp1 = 10.0 # m initializing only k_pu = 26 # from labview simulation # %% Simulation for-loop: for k in range(0, N_sim): $t_k = k^*ts$ **if** t_k <= 250: $u_man = 25 \# kg/s$ $w_out_k = 25 \# kg/s$ else: $u_man = 30 \# kg/s$ $w_out_k = 25 \# kg/s$ # PID Tuning with the Ziegler-Nichols $k_p = 0.45*k_pu$ e_k = h_sp - h_kp1 # control error $u_p_k = k_p^*e_k \# p\text{-term}$ u_k = u_man + u_p_k # total control signal $u_k = np.clip(u_k, u_min, u_max)$ # Time delay: u_delayed_k = delay_array[-1] delay_array[1:] = delay_array[0:-1] $delay_array[0] = u_k$ # Euler-forward integration (Euler step): w_in_k = u_delayed_k # kg/s $dh_dt_k = (1/(rho^*A))^*(w_in_k - w_out_k)$ $h_{kp1} = h_k + ts*dh_dt_k$ $h_{kp1} = np.clip(h_{kp1}, h_{min}, h_{max})$ # Storage for plotting: $t_array[k] = t_k$ $u_array[k] = u_k$ $h_{array}[k] = h_k$ $h_{sp_array}[k] = h_{sp}$ # Time shift: $h_k = h_{kp1}$ # %% Plotting: plt.close('all') plt.figure(1) plt.subplot(2, 1, 1)plt.plot(t_array, h_array, 'b', label='h_level') plt.plot(t_array, h_sp_array, 'g', label='h_setpoint') plt.legend() plt.grid() plt.xlim(t_start, t_stop) plt.xlabel('t [s]') plt.ylabel('[m]') plt.subplot(2, 1, 2) plt.plot(t_array, u_array, 'g', label='control signal') plt.legend() plt.grid() plt.xlim(t_start, t_stop) plt.xlabel('t [s]') plt.ylabel('[kg/s]') plt.show() 10.75 国^{10.50} h_level h_setpoint 10.25 10.00 1000 2000 3000 4000 5000 30 -[kg/s] 25 control signal 20 1000 2000 3000 4000 5000 t [s] b. Tune the P controller with the Ziegler-Nichols method. Is the stability of the control system acceptable with the P controller? Ans: The model was tuned with the P controller with the Ziegler-Nichols method as: $k_p = 0.45*k_pu$ e_k = h_sp - h_kp1 # control error $u_p_k = k_p^*e_k \# p\text{-term}$ u_k = u_man + u_p_k # total control signal $u_k = np.clip(u_k, u_min, u_max)$ From the figure above it is clear that the stability of the control system is not acceptable with the P controller. c. What is the steady-state control error if the outflow changes from 25 to 30 kg/s? In [7]: for k in range(0, N_sim): $t_k = k^*ts$ **if** t_k <= 250: $u_man = 25 \# kg/s$ $w_out_k = 30 \# kg/s$ else: $u_man = 30 \# kg/s$ $w_out_k = 30 \# kg/s$ # PID Tuning with the Ziegler-Nichols $k_p = 0.45*k_pu$ e_k = h_sp - h_kp1 # control error $u_p_k = k_p^*e_k \# p\text{-}term$ u_k = u_man + u_p_k # total control signal $u_k = np.clip(u_k, u_min, u_max)$ # Time delay: $u_delayed_k = delay_array[-1]$ delay_array[1:] = delay_array[0:-1] $delay_array[0] = u_k$ # Euler-forward integration (Euler step): w_in_k = u_delayed_k # kg/s $dh_dt_k = (1/(rho*A))*(w_in_k - w_out_k)$ $h_{kp1} = h_k + ts*dh_dt_k$ $h_{kp1} = np.clip(h_{kp1}, h_{min}, h_{max})$ # Storage for plotting: $t_array[k] = t_k$ $u_array[k] = u_k$ $h_{array}[k] = h_k$ $h_{sp_array}[k] = h_{sp}$ # Time shift: $h_k = h_{kp1}$ # %% Printing control error print('The control error is: ', e_k) The control error is: -0.5753475930068248 2. Implementation of a PI level controller: a. Implement a PI controller instead of the P controller. The controller should have anti windup (you can limit the integral term between u_max and u_min using the numpy clip() function). In [13]: # %% Import import matplotlib.pyplot as plt import numpy as np # %% Time settings: ts = 1 # Time-step [s] t_start = 0.0 # [s] $t_{stop} = 5000.0 \# [s]$ $N_{sim} = int((t_{stop}-t_{start})/ts) + 1$ # %% Process params: rho = 145 # $[kg/m^3]$ $A = 13.4 \# [m^2]$ $t_{delay} = 250.0 \# [s]$ $h_{min} = 0 \# [m]$ $h_{max} = 15 \# [m]$ $u_min = 0 \# [kg/s]$ $u_max = 50 \# [kg/s]$ # %% Initialization of time delay: $u_delayed_init = 25 \# [kg/s]$ $N_{delay} = int(round(t_{delay}/ts)) + 1$ delay_array = np.zeros(N_delay) + u_delayed_init # %% Arrays for plotting: t_array = np.zeros(N_sim) h_array = np.zeros(N_sim) u_array = np.zeros(N_sim) h_sp_array = np.zeros(N_sim) # %% Initial state: h_k = 10.0 # m setpoint h_sp = h_k # just for graph h_kp1 = 0.0 # m initializing only $u_i_k = 0$ # %% Simulation for-loop: for k in range(0, N_sim): $t_k = k^*ts$ **if** t_k <= 250: $u_man = 25 \# kg/s$ $w_out_k = 25 \# kg/s$ else: $u_man = 30 \# kg/s$ $w_out_k = 25 \# kg/s$ # PID Tuning with the Skogested Method $k_p = 6$ ti = 1000e_k = h_sp - h_kp1 # control error $u_p_k = k_p^*e_k \# p\text{-}term$ $u_i_k = u_i_k + ((k_p*ts)/ti)*e_k$ $u_k = u_man + u_p_k + u_i_k + total control signal$ $u_k = np.clip(u_k, u_min, u_max)$ # Time delay: $u_delayed_k = delay_array[-1]$ delay_array[1:] = delay_array[0:-1] $delay_array[0] = u_k$ # Euler-forward integration (Euler step): w_in_k = u_delayed_k # kg/s $dh_dt_k = (1/(rho^*A))^*(w_in_k - w_out_k)$ $h_{kp1} = h_k + ts*dh_dt_k$ $h_{kp1} = np.clip(h_{kp1}, h_{min}, h_{max})$ # Storage for plotting: $t_array[k] = t_k$ $u_array[k] = u_k$ $h_{array}[k] = h_k$ $h_{sp_array}[k] = h_{sp}$ # Time shift: $h_k = h_{kp1}$ # %% Plotting: plt.close('all') plt.figure(1) plt.subplot(2, 1, 1)plt.plot(t_array, h_array, 'b', label='h_level') plt.plot(t_array, h_sp_array, 'g', label='h_setpoint') plt.legend() plt.grid() plt.xlim(t_start, t_stop) plt.xlabel('t [s]') plt.ylabel('[m]') plt.subplot(2, 1, 2) plt.plot(t_array, u_array, 'g', label='control signal') plt.legend() plt.grid() plt.xlim(t_start, t_stop) plt.xlabel('t [s]') plt.ylabel('[kg/s]') plt.show() 11.0 h_level h_setpoint _ 10.5 10.0 1000 3000 4000 2000 5000 50 control signal (kg/s) 30 1000 3000 4000 5000 t [s] b. Tune the PI controller with the Skogestad method. Is the stability of the control system acceptable with the PI controller? Ans: The model was tuned with the PI controller with the Ziegler-Nichols method as: $k_p = 6$ ti = 750e_k = h_sp - h_kp1 # control error $u_p_k = k_p^*e_k \# p\text{-term}$ $u_i_k = u_i_k + ((k_p^*ts)/ti)^*e_k$ $u_k = u_man + u_p_k + u_i_k + total control signal$ $u_k = np.clip(u_k, u_min, u_max)$ From the figure above it is clear that the stability of the control system is acceptable with the PI controller. c. What is the steady-state control error if the outflow changes from 25 to 30 kg/s? In [12]: for k in range(0, N_sim): $t_k = k*ts$ **if** t_k <= 250: $u_man = 25 \# kg/s$ $w_out_k = 30 \# kg/s$ $u_man = 30 \# kg/s$ $w_out_k = 30 \# kg/s$ # PID Tuning with the Ziegler-Nichols $k_p = 6$ ti = 1000e_k = h_sp - h_kp1 # control error $u_p_k = k_p^*e_k \# p\text{-term}$ $u_i_k = u_i_k + ((k_p*ts)/ti)*e_k$ $u_k = u_man + u_p_k + u_i_k + total control signal$ $u_k = np.clip(u_k, u_min, u_max)$ # Time delay: $u_delayed_k = delay_array[-1]$ delay_array[1:] = delay_array[0:-1] $delay_array[0] = u_k$ # Euler-forward integration (Euler step): w_in_k = u_delayed_k # kg/s $dh_dt_k = (1/(rho^*A))^*(w_in_k - w_out_k)$ $h_{kp1} = h_k + ts*dh_dt_k$ $h_{kp1} = np.clip(h_{kp1}, h_{min}, h_{max})$ # Storage for plotting: $t_array[k] = t_k$ $u_array[k] = u_k$ $h_{array}[k] = h_k$ $h_{sp_array}[k] = h_{sp}$ # Time shift: $h_k = h_{kp1}$ # %% Printing control error print('The control error is: ', e_k) The control error is: -0.0005846509360605268 3. Stability of the control system: Assume PI control. a. Demonstrate that the control system becomes unstable if the time-delay in the control loop is too large (which may be due to a reduction of the conveyor belt speed). Specifically: Which time-delay makes the control system marginally stable (oscillatory with no damping)? In [14]: # %% Time settings: ts = 1 # Time-step [s] $t_{start} = 0.0 \# [s]$ $t_{stop} = 5000.0 \# [s]$ $N_{sim} = int((t_{stop-t_{start}})/ts) + 1$ # %% Process params: rho = 145 # $[kg/m^3]$ $A = 13.4 \# [m^2]$ $t_{delay} = 2500.0 \# [s]$ $h_{min} = 0 \# \lceil m \rceil$ $h_{max} = 15 \# [m]$ $u_min = 0 \# [kg/s]$ $u_max = 50 \# [kg/s]$ # %% Initialization of time delay: u_delayed_init = 25 # [kg/s] $N_{delay} = int(round(t_{delay}/ts)) + 1$ delay_array = np.zeros(N_delay) + u_delayed_init # %% Arrays for plotting: t_array = np.zeros(N_sim) h_array = np.zeros(N_sim) u_array = np.zeros(N_sim) h_sp_array = np.zeros(N_sim) # %% Initial state: h_k = 10.0 # m setpoint h_sp = h_k # just for graph h_kp1 = 0.0 # m initializing only $u_i_k = 0$ # %% Simulation for-loop: for k in range(0, N_sim): $t_k = k*ts$ **if** t_k <= 250: $u_man = 25 \# kg/s$ $w_out_k = 25 \# kg/s$ else: $u_man = 30 \# kg/s$ w_out_k = 25 # kg/s # PID Tuning with the Ziegler-Nichols $k_p = 6$ ti = 1000e_k = h_sp - h_kp1 # control error $u_p_k = k_p^*e_k \# p\text{-term}$ $u_i_k = u_i_k + ((k_p*ts)/ti)*e_k$ u_k = u_man + u_p_k + u_i_k# total control signal $u_k = np.clip(u_k, u_min, u_max)$ # Time delay: u_delayed_k = delay_array[-1] delay_array[1:] = delay_array[0:-1] $delay_array[0] = u_k$ # Euler-forward integration (Euler step): w_in_k = u_delayed_k # kg/s $dh_dt_k = (1/(rho^*A))^*(w_in_k - w_out_k)$ $h_{kp1} = h_k + ts*dh_dt_k$ $h_{kp1} = np.clip(h_{kp1}, h_{min}, h_{max})$ # Storage for plotting: $t_array[k] = t_k$ $u_array[k] = u_k$ $h_{array}[k] = h_k$ $h_{sp_array}[k] = h_{sp}$ # Time shift: $h_k = h_{kp1}$ # %% Printing control error print('The control error is: ', e_k) # %% Plotting: plt.close('all') plt.figure(1) plt.subplot(2, 1, 1)plt.plot(t_array, h_array, 'b', label='h_level') plt.plot(t_array, h_sp_array, 'g', label='h_setpoint') plt.legend() plt.grid() plt.xlim(t_start, t_stop) plt.xlabel('t [s]') plt.ylabel('[m]') plt.subplot(2, 1, 2)plt.plot(t_array, u_array, 'g', label='control signal') plt.legend() plt.grid() plt.xlim(t_start, t_stop) plt.xlabel('t [s]') plt.ylabel('[kg/s]') plt.show() The control error is: -5.0 h level 14 h_setpoint 10 1000 — control signal 40 [kg/s] 0 t [s] The figure above clerly represents that the control erros is 5 which means the system is unstable or there is no damping in the system. b. Demonstrate that the control system becomes unstable if the cross-sectional area of the tank is too small (in general, the area may decrease if the walls are not straight). Specifically: Which area value makes the control system marginally stable (oscillatory with no damping)? In [17]: # %% Time settings: ts = 1 # Time-step [s] $t_{start} = 0.0 \# [s]$ t_stop = 5000.0 # [s] $N_{sim} = int((t_{stop-t_{start}})/ts) + 1$ # %% Process params: rho = 145 # $[kg/m^3]$ $A = 7.5 \# [m^2]$ $t_{delay} = 250.0 \# [s]$ $h_min = 0 \# [m]$ $h_{max} = 15 \# [m]$ $u_min = 0 \# [kg/s]$ $u_max = 50 \# [kg/s]$ # %% Initialization of time delay: $u_delayed_init = 25 \# [kg/s]$ $N_{delay} = int(round(t_{delay}/ts)) + 1$ delay_array = np.zeros(N_delay) + u_delayed_init # %% Arrays for plotting: t_array = np.zeros(N_sim) h_array = np.zeros(N_sim) u_array = np.zeros(N_sim) h_sp_array = np.zeros(N_sim) # %% Initial state: h_k = 10.0 # m setpoint h_sp = h_k # just for graph h_kp1 = 0.0 # m initializing only $u_i_k = 0$ # %% Simulation for-loop: for k in range(0, N_sim): $t_k = k^*ts$ **if** t_k <= 250: $u_{man} = 25 \# kg/s$ $w_out_k = 25 \# kg/s$ $u_man = 30 \# kg/s$ $w_out_k = 25 \# kg/s$ # PID Tuning with the Ziegler-Nichols $k_p = 6$ ti = 1000e_k = h_sp - h_kp1 # control error $u_p_k = k_p^e_k \# p\text{-term}$ $u_i_k = u_i_k + ((k_p^*ts)/ti)^*e_k$ $u_k = u_man + u_p_k + u_i_k + total control signal$ $u_k = np.clip(u_k, u_min, u_max)$ # Time delay: u_delayed_k = delay_array[-1] delay_array[1:] = delay_array[0:-1] $delay_array[0] = u_k$ # Euler-forward integration (Euler step): w_in_k = u_delayed_k # kg/s $dh_dt_k = (1/(rho^*A))^*(w_in_k - w_out_k)$ $h_{kp1} = h_k + ts*dh_dt_k$ $h_{kp1} = np.clip(h_{kp1}, h_{min}, h_{max})$ # Storage for plotting: $t_array[k] = t_k$ $u_array[k] = u_k$ $h_array[k] = h_k$ $h_{sp_array}[k] = h_{sp}$ # Time shift: $h_k = h_{kp1}$ # %% Printing control error print('The control error is: ', e_k) # %% Plotting: plt.close('all') plt.figure(1) plt.subplot(2, 1, 1)plt.plot(t_array, h_array, 'b', label='h_level') plt.plot(t_array, h_sp_array, 'g', label='h_setpoint') plt.legend() plt.grid() plt.xlim(t_start, t_stop) plt.xlabel('t [s]') plt.ylabel('[m]') plt.subplot(2, 1, 2) plt.plot(t_array, u_array, 'g', label='control signal')

plt.legend()
plt.grid()

plt.show()

11

Ξ₁₀

50

. (Kg/s] ∞

plt.xlim(t_start, t_stop)

h_level h_setpoint

The control error is: 0.945915554908277

2000

control signal

plt.xlabel('t [s]')
plt.ylabel('[kg/s]')

Report for assignment: Programming a simulator of a level control system

The starting point of the following tasks is this simulator of the chip tank (no controller is included in the simulator):

sim_chiptank.py. The process model is as presented in Ch. 36.1 in the document Process ModelsPreview the document, but with the following difference: The control signal u [kg/s] sets the flow through feed screw (no feed screw gain is included in the

The nominal wood-chip level setpoint is 10 m. The nominal wood-chip outflow (disturbance) is 25 kg/s. The maximum control signal is 50 kg/s, and the minimum is 0 kg/s (the control signal should should . The maximum level is 15 m, and the minimum

in **Python**

September 28th, 2020

simulator).

is 0 m.

Wood Chip Tank

Model Equation

Variables and parameters

Block Diagram of the wood chip tank

Wood Chip Tank

Course: FM1220-120H Automatic Control

Dhanush Wagle, M.Sc EPE, 238810