Data Science Capstone Project

Terry Strickland Tuesday, 13June2023

Table of Contents

Project Overview Project Goal Data Overview portfolio.json profile.json transcript.json **Data Exploration** Portfolio.json Profile.json **Key observations:** Transcript.ison Data Processing (transcript.json) Step 1 Step 2 Defining the 'effective_offer' Step 3 Step 4 Engineering a 'feature' for the machine learning 'model' Data Processing for 'offers_bogo' data frame Data Processing for 'offers discount' data frame Building the machine learning 'model' Results (before 'hyperparameter tuning' with GridSearch) Searching for the best 'hyperparameters' using 'GridSearch' Results (after 'hyperparameter tuning' with GridSearch) Results (after making 2 new 'models' with the best 'hyperparameters' from GridSearch) Finding the 'features' that have impact on the 'effective offer' for both 'offers bogo' and 'offers discount' dataframe Conclusion

Project Overview

We were provided with three distinct datasets from Starbucks, each containing information on promotional offers sent to customers, recorded transactions related to those offers, and demographic data about the customers.

The data set contains simulated information that mimics how customers use the Starbucks Rewards mobile app. Starbucks sends out an offer to mobile app users every few days. An offer might be a simple advertisement for a beverage or a discount or BOGO (buy one get one free) offer. Some users may not receive any offers during certain weeks, and not all users receive the same offer.

Project Goal

The goal is to combine transaction (transcript.json), demographic and offer data to determine which demographic groups respond best to which offer type.

Data Overview

There are three files:

- 1. portfolio.json containing offer ids and meta data about each offer (duration, type, etc.)
- 2. profile.json demographic data for each customer
- 3. transcript.json records for transactions, offers received, offers viewed, and offers completed

Descriptions for each files:

portfolio.json

- id (string) offer id
- offer_type (string) type of offer ie BOGO, discount, informational
- difficulty (int) minimum required spend to complete an offer
- reward (int) reward given for completing an offer
- duration (int) time for offer to be open, in days
- channels (list of strings)

profile.json

- age (int) age of the customer
 - (numeric) missing value encoded as 118
- became_member_on (int) date when customer created an app account
- gender (str) gender of the customer (note some entries contain 'O' for other)
- id (str) customer id
- income (float) customer's income

transcript.json

event (str) - record description (ie transaction, offer received, offer viewed, etc.)

person (str) - customer id

time (int) - time in hours since the start of the test. The data begins at time t=0

value - (dict of strings) - either an offer id or transaction amount depending on the record

- offer id: (string/hash) not associated with any "transaction"
- amount: (numeric) money spent in "transaction"
- reward: (numeric) money gained from "offer completed"

Data Exploration

Portfolio.json

Has 10 rows and 6 columns where each row has a unique 'id' value

	reward	channels	difficulty	duration	offer_type	id
0	10	[email, mobile, social]	10	7	bogo	ae264e3637204a6fb9bb56bc8210ddfd
1	10	[web, email, mobile, social]	10	5	bogo	4d5c57ea9a6940dd891ad53e9dbe8da0
2	0	[web, email, mobile]	0	4	informational	3f207df678b143eea3cee63160fa8bed
3	5	[web, email, mobile]	5	7	bogo	9b98b8c7a33c4b65b9aebfe6a799e6d9
4	5	[web, email]	20	10	discount	0b1e1539f2cc45b7b9fa7c272da2e1d7
5	3	[web, email, mobile, social]	7	7	discount	2298d6c36e964ae4a3e7e9706d1fb8c2
6	2	[web, email, mobile, social]	10	10	discount	fafdcd668e3743c1bb461111dcafc2a4
7	0	[email, mobile, social]	0	3	informational	5a8bc65990b245e5a138643cd4eb9837
8	5	[web, email, mobile, social]	5	5	bogo	f19421c1d4aa40978ebb69ca19b0e20d
9	2	[web, email, mobile]	10	7	discount	2906b810c7d4411798c6938adc9daaa5

We have a total of:

- 4 unique BOGO (buy one get one) offers
- 4 unique discount offers
- 2 unique informational offers

No data processing is required for this data set.

Profile.json

Key observations:

- Has 17000 rows and 5 columns
- Each row has a unique 'id' value that represents a customer
- The 'age' column with a value of 118 is considered as missing value
- The rows on the 'age' column is 118, the value for 'gender' and 'income' is None and NaN respectively
- A quick check reveals that there are 2175 rows with missing values on columns: 'age', 'gender' and 'income'

Most customers' income is around \$58,000

Most customers are between 50 and 70 years old, with more male customers being older than female customers

Female customers have higher income

Transcript.json

There are a total of 30,6534 rows and when we separate these rows by 'event type' we get:

- 76277 for 'offer received'
- 57725 for 'offer viewed'
- 138953 for 'transaction'
- 33579 for 'offer completed'

Data Processing (transcript.json)

Step 1

- we extract the 'data' from the 'value' column and create a new column called 'offer_id'
- 4 new columns are created: 'offer id', 'amount', 'offer_id', 'reward'
- we then 'move' data from 'offer_id' and 'offer id' column to a new column 'id_temp'
- drop the 'offer_id' and 'offer id' column
- rename the 'id_temp' column back to 'offer_id'
- we now have a 'offer_id' column that contains the 'id' from the 'value' column
- the final data frame is called 'transcript'

Step 2

- we now merge the 'transcript' and 'portfolio' data frame together
- why? we're 'linking' the 'events' in 'transcript' data frame to the 'offer_type' and 'id' in the 'portfolio' data frame
- this will create our 'target feature' (y) column called 'effective_offer'
- dropping the 'reward_x' and 'reward_y' column (we don't need them)
- make a new data frame 'transcript2' and sort the 'time' column in ascending order. this will give us the 'flow' of the events

Defining the 'effective_offer'

- we define an 'effective offer' as:
 - 'offer viewed' -> 'transaction'

the 'effective_offer' is '1' if the above condition is met

- we define 'not effective offer' as:
 - 'offer received' -> 'offer viewed'
 - 'offer received' -> 'offer completed'

the 'effective_offer' is '0' if the above condition is met

- we again merge 'transcript2' and 'profile' data frame together
- and drop the columns that we don't need

Step 3

- using 'transcript2' data frame, we create 2 new data frames:
 - bogo_only1
 - discount_only1

These data frame will have only the 'BOGO' (buy one get one) and 'discount' 'offer_type', the 'offer_type' column

- we then filter these 2 data frames and look for the 'effective_offer'
- and then 'link' the 'effective_offer' to the 'person' column
- this will tell us which customer completed the 'BOGO' and 'discount' offer

bogo_only1

discount_only1

Step 4

- add the 'effective_offer' column to the 'offers_bogo' and 'offers_discount' data frame
- these 2 data frames have 'person', 'offer_id', 'effective_offer' columns that tells us which customer uses which 'offer' and was it 'effective' or not

Engineering a 'feature' for the machine learning 'model'

- the 'became_member_on' will be the column that we will 'engineer'
- by converting the current format of YYYYMMDD to 'the number of days' they are a member, counting from december 31st 2018

offers_bogo.head()							
	person	offer_id	effective_offer	gender	age	income	membership_days
	0011e0d4e6b944f998e987f904e8c1e5	9b98b8c7a33c4b65b9aebfe6a799e6d9	1	О	40	57000.0	356
	0020c2b971eb4e9188eac86d93036a77	4d5c57ea9a6940dd891ad53e9dbe8da0	1	F	59	90000.0	1032
	0020ccbbb6d84e358d3414a3ff76cffd	9b98b8c7a33c4b65b9aebfe6a799e6d9	1	F	24	60000.0	780
	0020ccbbb6d84e358d3414a3ff76cffd	f19421c1d4aa40978ebb69ca19b0e20d	1	F	24	60000.0	780
-	004b041fbfe44859945daa2c7f79ee64	f19421c1d4aa40978ehh69ca19h0e20d	1	F	55	74000 0	237

Data Processing for 'offers_bogo' data frame

- we again merge the 'offers_bogo' data frame with the 'profile' data frame
- convert the 'channels' column into a 'one hot encoding' format
 - you will end up with 4 new columns: 'web', 'email', 'mobile', 'social'
 - with values of 0 or 1
- convert the 'gender' column into a 'one hot encoding' format
 - you will end up with 3 new columns: 'F', 'M', 'O'
 - with values of 0 or 1

Data Processing for 'offers_discount' data frame

- we first need to 'address' the NaN values in the 'gender' and 'income' column by dropping them (the NaN values)
- we then repeat the same process as 'offers_bogo' data frame
- but we wrote a function 'convert_process2()' to accomplish the task

Building the machine learning 'model'

We will build 3 machine learning 'models'

- KNN (K Nearest Neighbors), for benchmarking against the other 2 models below
- Random Forest Classifier, for the 'offers_bogo' data frame
- Random Forest Classifier, for the 'offers_discount' data frame

All the 'models' with start with a randomly selected 'hyperparameters' and then we will use 'GridSearchCV' to find the best 'hyperparameters' for each 'model'

```
# create a KNN model
compareModel1 = KNeighborsClassifier(
   n_neighbors=3, # choose the number of neighbors
   weights='uniform', # weight function used in prediction
   algorithm='auto', # algorithm used to compute the nearest neighbors
   leaf_size=30, # leaf size passed to BallTree or KDTree
   p=2, # power parameter for the Minkowski metric
   metric='minkowski', # the distance metric to use for the tree
   metric_params=None, # additional keyword arguments for the metric fun
   n_jobs=None # the number of parallel jobs to run for neighbors search
bogoModel1 = RandomForestClassifier(
   random_state=2, # sets the 'seed' for the random number generator, so
   max_depth=11, # limits how many splits each tree can have, which help
   min_samples_split=10, # a 'node' in the tree will only split if it ha
   n_estimators=20, # sets the number of 'trees in the forest'. More tre
   min_samples_leaf=20 # each "leaf" at the end of a tree must have at
```

Our (total 13) 'features' (X) will be:

- 'age', 'income', 'membership_days', 'reward', 'difficulty', 'duration', 'web', 'email', 'mobile', 'social', 'gender_F', 'gender_M', 'gender_O'

Our 'target feature' (y) will be:

- 'effective_offer'

Results (before 'hyperparameter tuning' with GridSearch)

The KNN model (compareModel1) has:

- training accuracy of 0.8745
- testing accuracy of 0.7700

The Random Forest Classifier model (bogoModel1) has:

- training accuracy of 0.8263
- testing accuracy of 0.8160

The Random Forest Classifier model (discountModel1) has:

- training accuracy of 0.8959
- testing accuracy of 0.8322

We can see that the Random Forest Classifier model for both 'offers_bogo' and 'offers_discount' data frame has a higher accuracy than the KNN model.

	$KNeighbors Classifier_bogo Model 1$	$Random Forest Classifier_bogo Model 1$	$KNeighbors Classifier_discount Model 1$	$Random Forest Classifier_discount Model 1$
train_time	0.025999	0.107413	0.024514	0.118890
pred_time	0.534127	0.026462	0.467992	0.025282
training_score	0.874501	0.826298	0.895924	0.869608
testing_score	0.769962	0.815970	0.832212	0.869410

Searching for the best 'hyperparameters' using 'GridSearch'

We will use 'GridSearch' for both dataframes:

```
- 'offers_bogo'
- 'offers_discount'

with the following 'parameter grid' to search through:

param_grid={
        'max_depth': [5,10,15],
        'n_estimators': [25,30,40],
        'min_samples_split': [2, 10, 20],
        'min_samples_leaf': [2, 10, 15, 20],
    }
```

Results (after 'hyperparameter tuning' with GridSearch)

After running 'GridSearch', we found the best 'hyperparameters' for 'offers_bogo' dataframe to be:

```
'max_depth': 15,
'min_samples_leaf': 15,
'min_samples_split': 2,
'n_estimators': 40

and 'offers_discount' dataframe to be:
'max_depth': 10,
'min_samples_leaf': 20,
'min_samples_split': 2,
'n_estimators': 25
```

Results (after making 2 new 'models' with the best 'hyperparameters' from GridSearch)

'bogo_model2'

Training accuracy: 0.8745 Test accuracy: 0.7700

'discount_model2'

Training accuracy: 0.8959 Test accuracy: 0.8322

The first 2 models:

- 'bogo_model1'
- 'discount_model1'

(before 'hyperparameter tuning') has a higher accuracy than the 2 models after 'hyperparameter tuning' with 'GridSearch'

	train_time	pred_time	training_score	testing_score
Random Forest Classifier_bogo Model 1	0.107413	0.026462	0.826298	0.81597
$Random Forest Classifier_discount Model 1$	0.118890	0.025282	0.869608	0.86941

Finding the 'features' that have impact on the 'effective_offer' for both 'offers_bogo' and 'offers_discount' dataframe

Looking at the bogoModel1.feature_importances_ and discountModel1.feature_importances_ we can see that the 'features' that have the most impact on the 'effective_offer' are:

- membership_days
- income
- age

Where 'membership_days' has the most impact on the 'effective_offer' for both 'offers_bogo' and 'offers_discount' dataframe

Conclusion

Based on the analysis above, the most impactful factor for an 'effective offer' are customers with long membership time; they are more likely to be interested in completing offers.

Additionally, customers with higher incomes are also more likely to be interested in such an offer. I	Γhis
is likely because these customers have more disposable income.	