Fundamentos de los Lenguajes Informáticos

Grado en Ingeniería Informática (GII)

Doble Grado en Ingeniería Informática y Matemáticas (DGIIM)

modelo B

		GRADO:	
Cada respuesta correcta va	ecta, escríbela en el cuadrado		
. Si $L = \{w \in \{a, b\}^* \mid w _a$	$> w _b$ y $L' = \{w \in \{a, b\}^*$	\boldsymbol{w} es prefijo de alguna palabra de \boldsymbol{I}	Σ},
(a) $L' = \{a, b\}^*$.	(b) $L' \subset \{a, b\}^*$.	(c) $L' = L$.	
e. ¿A cuál de las siguientes e	expresiones regulares es equiv	valente $((abc)^*ab)^*$?	
(a) $ab((c+\epsilon)ab)^*$	(b) $(ab(cab)^*)^*$	$(c) (ab+c)^*$	
. Dadas las dos gramáticas		ué ser cierta. G_1 y G_2 sobre el mismo alfabeto	{(,)} y
respectivos conjuntos de p $P_1 = \{ S_1 \longrightarrow \epsilon \mid (S_1) \}$		(a) $L(G_1) \subset L(G_2)$.	
$P_1 = \{ S_1 \longrightarrow \epsilon \mid (S_1) \}$ $P_2 = \{ S_2 \longrightarrow \epsilon \mid (S_2) \}$		(b) $L(G_2) \subset L(G_1)$. (c) $L(G_1) = L(G_2)$.	
. /	ivalentes a M pero todos ello con no más de 32 estados ϵ		ļ
(c) las dos afirmaciones			
(c) las dos afirmaciones	y no es ambigua?	$\mid S0\mid 0S1,$ ¿cuál de las siguientes	gramátio

(b) Sí. (c) Depende de Σ .			
9. Si $L_{\epsilon}(M)$, el lenguaje recon $L_{\epsilon}(M)$ contener más caden		acía por un autómata con pila $M,$ contiene a $\epsilon,$	¿puede
(a) No si M es determinis(b) Sí, los autómatas con(c) Depende de si el lengu	pila pueden recon		
). Dada la gramática indepen	diente del context	o G definida por el siguiente conjunto de produc	ciones
$\{ S \longrightarrow SS \mid aaSb \mid bSaaasb \mid bSaaas$	$aa \mid \epsilon \},$	(a) $L(G) \subset \{x \in \{a, b\}^* \mid x _a = 2 \cdot x _b\}.$ (b) $L(G) = \{x \in \{a, b\}^* \mid x _a = 2 \cdot x _b\}.$ (c) $L(G) \supset \{x \in \{a, b\}^* \mid x _a = 2 \cdot x _b\}.$	
l. Dado un autómata no dete	m rminista,		
(a) siempre existe uno det(b) no siempre ha de exist	tir uno determinist	a equivalente.	
(c) nunca puede ser equiva	alente a uno deter		
2. Para $L = \{x \in \{a, b, c\}^* \mid a \}$	$x _a = x _b \text{ o } x _b = 0$ con la iteración i	$ x _c$ }, ¿qué cadena convendrá haber elegido al ap $=0$ para demostrar que L no es regular, donde	
2. Para $L = \{x \in \{a, b, c\}^* \mid c \}$ lema de iteración o bombeo constante dada por dicho le (a) $a^N b^N$. (b) $b^N c^N$. (c) $a^N b^N c^N$.	$x _a = x _b$ o $ x _b = 0$ con la iteración i ema?	$ x _c$ }, ¿qué cadena convendrá haber elegido al ap $=0$ para demostrar que L no es regular, donde $\{a,b\},\{a,b\},\{z_0\},\delta,p,z_0,\{p\}\}$ tal que $\delta(p,a,z_0)=0$	N es la
2. Para $L = \{x \in \{a, b, c\}^* \mid z \}$ lema de iteración o bombec constante dada por dicho le (a) $a^N b^N$. (b) $b^N c^N$. (c) $a^N b^N c^N$. 3. Consideremos un autómata $\delta(p, \epsilon, z_0) = \{(q, z_0)\}$ y $\delta(q, \epsilon)$. (a) $L_{\epsilon}(M) = \{a, b\}$, donde	$x _a = x _b \text{ o } x _b = 0$ con la iteración i ema? con pila $M = (\{p, b, z_0\}) = \{(q, \epsilon)\}$. Esta $L_{\epsilon}(M)$ denota el $\{p, s_0\}$, siendo $L_F(M)$ es	$ x _c$ }, ¿qué cadena convendrá haber elegido al ap $=0$ para demostrar que L no es regular, donde $\{a,b\},\{a,b\},\{z_0\},\delta,p,z_0,\{p\}\}$ tal que $\delta(p,a,z_0)=0$ ntonces lenguaje reconocido por pila vacía por M . l lenguaje reconocido por estado final por M .	N es la
 2. Para L = {x ∈ {a,b,c}* z lema de iteración o bombeo constante dada por dicho le (a) a^Nb^N. (b) b^Nc^N. (c) a^Nb^Nc^N. 3. Consideremos un autómata δ(p, ε, z₀) = {(q, z₀)} y δ(q, (a) L_ε(M) = {a,b}, donde (b) L_F(M) = {aⁿ n ∈ N} 	$x _a = x _b \text{ o } x _b = 0$ con la iteración i ema? con pila $M = (\{p, b, z_0\}) = \{(q, \epsilon)\}$. Esta $L_{\epsilon}(M)$ denota el $\{p, s_0\}$, siendo $L_F(M)$ es	$ x _c$ }, ¿qué cadena convendrá haber elegido al ap $=0$ para demostrar que L no es regular, donde $\{a,b\},\{a,b\},\{z_0\},\delta,p,z_0,\{p\}\}$ tal que $\delta(p,a,z_0)=0$ ntonces lenguaje reconocido por pila vacía por M . l lenguaje reconocido por estado final por M .	N es la
 2. Para L = {x ∈ {a,b,c}* z lema de iteración o bombeo constante dada por dicho le (a) a^Nb^N. (b) b^Nc^N. (c) a^Nb^Nc^N. 3. Consideremos un autómata δ(p, ε, z₀) = {(q, z₀)} y δ(q, (a) L_ε(M) = {a,b}, donde (b) L_F(M) = {aⁿ n ∈ N} (c) las dos afirmaciones ar 	$x _a = x _b$ o $ x _b = 0$ con la iteración i ema? con pila $M = (\{p, b, z_0\}) = \{(q, \epsilon)\}$. Esta $L_{\epsilon}(M)$ denota el $\{p, z_0\}$, siendo $L_F(M)$ enteriores son falsas econoce L tiene 1 deconoce L tiene 2 deco	$ x _c$ }, ¿qué cadena convendrá haber elegido al ap $=0$ para demostrar que L no es regular, donde $\{a,b\},\{a,b\},\{z_0\},\delta,p,z_0,\{p\}\}$ tal que $\delta(p,a,z_0)=0$ ntonces lenguaje reconocido por pila vacía por M . Il lenguaje reconocido por estado final por M .	N es la
 Para L = {x ∈ {a,b,c}* z lema de iteración o bombeo constante dada por dicho le (a) a^Nb^N. (b) b^Nc^N. (c) a^Nb^Nc^N. Consideremos un autómata δ(p, ε, z₀) = {(q, z₀)} y δ(q, (a) L_ε(M) = {a,b}, donde (b) L_F(M) = {aⁿ n ∈ N} (c) las dos afirmaciones are (b) el AFD mínimo que re (c) el AFD mínimo que re (c) el AFD mínimo que re 	$x _a = x _b$ o $ x _b = 0$ con la iteración i ema? con pila $M = (\{p, b, z_0\}) = \{(q, \epsilon)\}$. Esta $L_{\epsilon}(M)$ denota el $\{p, s\}$, siendo $L_F(M)$ enteriores son falsas econoce L tiene 1 econoce L tiene 2 econoce L puede termo $\{p, s\}$.	$ x _c$ }, ¿qué cadena convendrá haber elegido al ap $=0$ para demostrar que L no es regular, donde $\{a,b\},\{a,b\},\{z_0\},\delta,p,z_0,\{p\}\}$ tal que $\delta(p,a,z_0)=0$ ntonces lenguaje reconocido por pila vacía por M . Il lenguaje reconocido por estado final por M .	$N ext{ es } 1\epsilon$

8. ¿Son iguales los lenguajes $L_1 = \overline{\varnothing^*}$ y $L_2 = (\overline{\varnothing})^*$?