Hyperplane based Classifiers (2): Large-Margin Classification - SVM

CS771: Introduction to Machine Learning
Piyush Rai

Support Vector Machine (SVM)

SVM originally proposed by Vapnik and colleagues in early 90s

- Hyperplane based classifier. Ensures a large margin around the hyperplane
- Will assume a linear hyperplane to be of the form $\mathbf{w}^{\mathsf{T}}\mathbf{x} + \mathbf{b} = \mathbf{0}$ (nonlinear ext. later)

■ Two other "supporting" hyperplanes defining a "no man's land"

problem

- Ensure that <u>zero</u> training examples fall in this region (will relax later)
- The SVM idea: Position the hyperplane s.t. this region is as "wide" as possible

The 1/-1 in supp. h.p. equations is arbitrary; can replace by any scalar m/-m and solution won't change, except a simple scaling of **w**

CS771: Intro to M

Hard-Margin SVM

- Hard-Margin: Every training example must fulfil margin condition $y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1$
- Meaning: Must not have any example in the no-man's land

- Also want to maximize margin $2\gamma = \frac{2}{\|w\|}$
- Equivalent to minimizing $\|w\|^2$ or $\frac{\|w\|^2}{2}$
- The objective func. for hard-margin SVM

Constrained optimization problem with *N* inequality constraints. Objective and constraints both are convex

$$\min_{\mathbf{w},b} f(\mathbf{w},b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $y_n(\mathbf{w}^T \mathbf{x}_n + b) \ge 1, \qquad n = 1, \dots, N$

Soft-Margin SVM (More Commonly Used)

- Allow some training examples to fall within the no-man's land (margin region)
- Even okay for some training examples to fall totally on the wrong side of h.p.
- Extent of "violation" by a training input (x_n, y_n) is known as slack $\xi_n \ge 0$
- $lacktriangleright \xi_n > 1$ means totally on the wrong side

$$\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b \ge 1 - \xi_n$$
 if $y_n = +1$
 $\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b \le -1 + \xi_n$ if $y_n = -1$
 $y_n(\mathbf{w}^{\mathsf{T}} \mathbf{x}_n + b) \ge 1 - \xi_n \quad \forall n$

Soft-margin constraint:

Soft-Margin SVM (Contd)

■ Goal: Still want to maximize the margin such that

- Sum of slacks is like the training error
- Soft-margin constraints $y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) \ge 1 \xi_n$ are satisfied for all training ex.
- lacksim Do not have too many margin violations (sum of slacks $\sum_{n=1}^N \xi_n$ should be small)

■ The objective func. for soft-margin SVM

- ullet Hyperparameter ${\it C}$ controls the trade off between large margin and small training error (need to tune)
 - Large C: small training error but also small margin (bad)
 - Small *C*: large margin but large training error (bad)

Solving the SVM Problem

Solving Hard-Margin SVM

■ The hard-margin SVM optimization problem is

$$\min_{\mathbf{w},b} f(\mathbf{w},b) = \frac{||\mathbf{w}||^2}{2}$$

subject to $1 - y_n(\mathbf{w}^T \mathbf{x}_n + b) \le 0, \qquad n = 1, \dots, N$

- A constrained optimization problem. One option is to solve using Lagrange's method
- Introduce Lagrange multipliers α_n (n = 1, ..., N), one for each constraint, and solve

$$\min_{\mathbf{w},b} \max_{\alpha \geq 0} \mathcal{L}(\mathbf{w},b,\alpha) = \frac{||\mathbf{w}||^2}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b)\}$$

- $\bullet \alpha = [\alpha_1, \alpha_2, ..., \alpha_N]$ denotes the vector of Lagrange multipliers
- It is easier (and helpful; we will soon see why) to solve the dual: min and then max

Solving Hard-Margin SVM

■ The dual problem (min then max) is

Note: if we ignore the bias term **b** then we don't need to handle the constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$ (problem becomes a bit more easy to solve)

 $\max_{\alpha \geq 0} \min_{\mathbf{w}, b} \mathcal{L}(\mathbf{w}, b, \alpha) = \frac{\mathbf{w}^{\top} \mathbf{w}}{2} + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^{\top} \mathbf{x}_n + b)\}$

Otherwise, the α_n 's are coupled and some opt. techniques such as coordinate ascent can't easily be applied

■ Take (partial) derivatives of \mathcal{L} w.r.t. \boldsymbol{w} and \boldsymbol{b} and setting them to zero gives (verify)

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 \Rightarrow \boxed{\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n} \qquad \frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0$$

$$\frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0$$

 α_n tells us how important training example (x_n, y_n) is

- \blacksquare The solution \boldsymbol{w} is simply a weighted sum of all the training inputs
- Substituting $w = \sum_{n=1}^{N} \alpha_n y_n x_n$ in the Lagrangian, we get the dual problem as (verify)

This is also a "quadratic program" (QP) – a quadratic function of the variables α

$$\max_{\alpha \geq 0} \mathcal{L}_D(\alpha) = \sum_{n=1}^N \alpha_n - \frac{1}{2} \sum_{m,n=1}^N \alpha_m \alpha_n y_m y_n(\boldsymbol{x}_m^T \boldsymbol{x}_n)$$

Note that inputs appear only as pairwise dot products. This will be useful later on when we make SVM nonlinear using kernel methods

Maximizing a concave function (or minimizing a convex function) s.t. $\pmb{\alpha} \geq \pmb{0}$ and $\sum_{n=1}^N \alpha_n y_n = 0$. Many methods to solve it.

G is an $N \times N$ p.s.d. matrix, also called the Gram Matrix, $G_{nm} = y_n y_m x_n^{\mathsf{T}} x_m$, and 1 is a vector of all 1s

Solving Hard-Margin SVM

lacktriangle One we have the $lpha_n$'s by solving the dual, we can get $oldsymbol{w}$ and b as

$$\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n$$
 (we already saw this)

$$b = -\frac{1}{2} \left(\min_{n:y_n = +1} \mathbf{w}^T \mathbf{x}_n + \max_{n:y_n = -1} \mathbf{w}^T \mathbf{x}_n \right)$$
 (exercise)

■ A nice property: Most α_n 's in the solution will be zero (sparse solution)

- Reason: KKT conditions
- For the optimal α_n 's, we must have
- Thus α_n nonzero only if $y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n + b) = 1$, i.e., the training example lies on the boundary

$$\alpha_n\{1 - y_n(\mathbf{w}^\top \mathbf{x}_n + b)\} = 0$$

These examples are called support vectors

Solving Soft-Margin SVM

Recall the soft-margin SVM optimization problem

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} f(\boldsymbol{w},b,\boldsymbol{\xi}) = \frac{||\boldsymbol{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$
subject to $1 \le y_n(\boldsymbol{w}^T \boldsymbol{x}_n + b) + \xi_n, \quad -\xi_n \le 0 \qquad n = 1,\dots, N$

- Here $\boldsymbol{\xi} = [\xi_1, \xi_2, ..., \xi_N]$ is the vector of slack variables
- Introduce Lagrange multipliers α_n , β_n for each constraint and solve Lagrangian

$$\min_{\mathbf{w},b,\xi} \max_{\alpha \geq 0,\beta \geq 0} \mathcal{L}(\mathbf{w},b,\xi,\alpha,\beta) = \frac{||\mathbf{w}||^2}{2} + +C\sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n$$

- The terms in red color above were not present in the hard-margin SVM
- lacktriangle Two set of dual variables $m{lpha}=[lpha_1,lpha_2,...,lpha_N]$ and $m{eta}=[eta_1,eta_2,...,eta_N]$
- Will eliminate the primal var \mathbf{w} , \mathbf{b} , $\mathbf{\xi}$ to get dual problem containing the dual variables

Solving Soft-Margin SVM

Note: if we ignore the bias term b then we don't need to handle the constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$ (problem becomes a bit more easy to solve)

■ The Lagrangian problem to solve

Otherwise, the $lpha_n$'s are coupled and some opt. techniques such as co-ordinate aspect can't easily applied

$$\min_{\mathbf{w},b,\xi} \max_{\alpha \geq 0,\beta \geq 0} \mathcal{L}(\mathbf{w},b,\xi,\alpha,\beta) = \frac{||\mathbf{w}||^2}{2} + +C\sum_{n=1}^{N} \xi_n + \sum_{n=1}^{N} \alpha_n \{1 - y_n(\mathbf{w}^T \mathbf{x}_n + b) - \xi_n\} - \sum_{n=1}^{N} \beta_n \xi_n$$

■ Take (partial) derivatives of $\mathcal L$ w.r.t. $\pmb w, \pmb b$, and $\pmb \xi_n$ and setting to zero gives

$$\frac{\partial \mathcal{L}}{\partial \mathbf{w}} = 0 \Rightarrow \boxed{\mathbf{w} = \sum_{n=1}^{N} \alpha_n y_n \mathbf{x}_n}, \qquad \frac{\partial \mathcal{L}}{\partial b} = 0 \Rightarrow \sum_{n=1}^{N} \alpha_n y_n = 0, \qquad \frac{\partial \mathcal{L}}{\partial \xi_n} = 0 \Rightarrow C - \alpha_n - \beta_n = 0$$

- lacktriangle Using $C-lpha_n-eta_n=0$ and $eta_n\geq 0$, we have $lpha_n\leq C$ (for hard-margin, $lpha_n\geq 0$)
- lacktriangle Substituting these in the Lagrangian ${\cal L}$ gives the Dual problem

Given α , w and b can be found just like the hard-margin SVM case

$$\max_{\boldsymbol{\alpha} \leq C, \boldsymbol{\beta} \geq 0} \mathcal{L}_{D}(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \sum_{n=1}^{N} \alpha_{n} - \frac{1}{2} \sum_{m,n=1}^{N} \alpha_{m} \alpha_{n} y_{m} y_{n} (\boldsymbol{x}_{m}^{T} \boldsymbol{x}_{n}) \quad \text{s.t.} \quad \sum_{n=1}^{N} \alpha_{n} y_{n} = 0$$

The dual variables β don't appear in the dual problem!

Maximizing a concave function (or minimizing a convex function) s.t. $\alpha \leq C$ and $\sum_{n=1}^{N} \alpha_n y_n = 0$. Many methods to solve it.

$$\max_{oldsymbol{lpha} \leq oldsymbol{\mathcal{C}}} \mathcal{L}_D(oldsymbol{lpha}) = oldsymbol{lpha}^ op oldsymbol{1} - rac{1}{2}oldsymbol{lpha}^ op oldsymbol{\mathsf{G}} oldsymbol{lpha}^ op$$

In the solution, $\pmb{\alpha}$ will still be sparse just like the hard-margin SVM case. Nonzero α_n correspond to the support vectors

(Note: For various SVM solvers, can see "Support Vector Machine Solvers" by Bottou and Lin ML

Support Vectors in Soft-Margin SVM

- The hard-margin SVM solution had only one type of support vectors
 - lacktriangle All lied on the supporting hyperplanes $m{w}^{ op} m{x}_n + b = 1$ and $m{w}^{ op} m{x}_n + b = -1$
- The soft-margin SVM solution has three types of support vectors (with nonzero α_n)

- 1. Lying on the supporting hyperplanes
- 2. Lying within the margin region but still on the correct side of the hyperplane
- Lying on the wrong side of the hyperplane (misclassified training examples)

SVMs via Dual Formulation: Some Comments

Recall the final dual objectives for hard-margin and soft-margin SVM

Hard-Margin SVM:
$$\max_{\alpha \geq 0} \ \mathcal{L}_D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top \mathbf{G} \alpha$$

Soft-Margin SVM: $\max_{\alpha \leq C} \mathcal{L}_D(\alpha) = \alpha^\top \mathbf{1} - \frac{1}{2} \alpha^\top \mathbf{G} \alpha$

Note: Both these ignore the bias term b otherwise will need another constraint $\sum_{n=1}^{N} \alpha_n y_n = 0$

- The dual formulation is nice due to two primary reasons
 - Allows conveniently handling the margin based constraint (via Lagrangians)
 - Allows learning nonlinear separators by replacing inner products in $G_{nm} = y_n y_m x_n^{\mathsf{T}} x_m$ by general kernel-based similarities (more on this when we talk about kernels)
- lacktriangle However, dual formulation can be expensive if N is large (esp. compared to D)
 - Need to solve for N variables $\alpha = [\alpha_1, \alpha_2, ..., \alpha_N]$
 - Need to pre-compute and store $N \times N$ gram matrix G
- ullet Lot of work on speeding up SVM in these settings (e.g., can use co-ord. descent for $oldsymbol{lpha}$)

Solving for SVM in the Primal

Maximizing margin subject to constraints led to the soft-margin formulation of SVM

$$\arg\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \frac{||\boldsymbol{w}||^2}{2} + C \sum_{n=1}^{N} \xi_n$$
 subject to $y_n(\boldsymbol{w}^T \boldsymbol{x}_n + b) \ge 1 - \xi_n, \quad \xi_n \ge 0 \qquad n = 1, \dots, N$

- Note that slack ξ_n is the same as $\max\{0,1-y_n(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n+b)\}$, i.e., hinge loss for (\mathbf{x}_n,y_n)
- lacktriangle Thus the above is equivalent to minimizing the ℓ_2 regularized hinge loss

$$\mathcal{L}(\boldsymbol{w},b) = \sum_{n=1}^{N} \max\{0, 1 - y_n(\boldsymbol{w}^{\top}\boldsymbol{x}_n + b)\} + \frac{\lambda}{2}\boldsymbol{w}^{\top}\boldsymbol{w}$$

- $lacksymbol{\blacksquare}$ Sum of slacks is like sum of hinge losses, C and λ play similar roles
- Can learn (w,b) directly by minimizing $\mathcal{L}(w,b)$ using (stochastic) (sub) grad. descent
 - Hinge-loss version preferred for linear SVMs, or with other regularizers on w (e.g., ℓ_1)

SVM: Summary

- A hugely (perhaps the most!) popular classification algorithm
- Reasonably mature, highly optimized SVM softwares freely available (perhaps the reason why it is more popular than various other competing algorithms)
- Some popular ones: libSVM, LIBLINEAR, sklearn also provides SVM
- Lots of work on scaling up SVMs * (both large N and large D)
- Extensions beyond binary classification (e.g., multiclass, structured outputs)
- Can even be used for regression problems (Support Vector Regression)
- Nonlinear extensions possible via kernels

Coming up next

- A co-ordinate ascent algorithm for solving the SVM dual
- Multi-class SVM
- One-class SVM
- Kernel methods and nonlinear SVM via kernels

