File: DWPI

DERWENT-ACC-NO: 2000-029868

DERWENT-WEEK: 200003 COPYRIGHT 2003 DERWENT INFORMATION LTD

TITLE: Peeling wafer recycling method used in manufacture of silicon-on-insulator type wafer

PRIORITY-DATA: 1998JP-0114176 (April 9, 1998)

PATENT-FAMILY:

October 29, 1999 PUB-DATE JP 13797583 A

LANGUAGE PAGES MAIN-IPC

H01L021/02 000

INT-CL (IPC): HO1 L 21/02; HO1 L 21/304; HO1 L 27/12

ABSTRACTED-PUB-NO: JP 11297583A BASIC-ABSTRACT:

underwent a by-production using a hydrogen-ion peeling process. The peeling wafer is polished to remove the peripheral step (10) of the NOVELTY - A reprocessing is applied to a peeling wafer (5) which peeling wafer during the reprocessing.

USE - Used in manufacture of SOI type wafer.

ADVANTAGE - Eliminates peripheral step, damaged layer and surface roughness. Prevents generation of abnormal resistance factor caused by generation of oxygen donor, thus improving productivity of SOI type wafer manufacture. Attains cost reduction.

DESCRIPTION OF DRAWING(S) - The figure shows the explanatory process diagrams (A-G) of peeling wafer recycling method.

Peeling wafer 5

Peripheral step 10

File: JPAB

Oct 29, 1999

PUB-NO: JP411297583A

DOCUMENT-IDENTIFIER: JP 11297583 A

TITLE: METHOD OF REUSING PEELED WAFER AND WAFER TO BE REUSED

PUBN-DATE: October 29, 1999

INVENTOR - INFORMATION:

KUWABARA, NOBORU

COUNTRY

MITANI, KIYOSHI

WADA, MASAE

ANDRE, JACQUES OVERTON HERBE

INT-CL (IPC): HO1 L 21/02; HO1 L 21/304; HO1 L 27/12

Ø PROBLEM TO BE SOLVED: To provide a method for actually reusing peeled wafer as silicon wafer, improve the productivity of SOI wafer, and reduce its cost by performing an appropriate reprocessing to the peeled wafer which is a by-product of a hydrogen-ion peeling method. SOLUTION: In a method of reusing a peeled wafer as a silicon wafer, hydrogen-ion peeling method, as reprocessing, a surface oxide film (D), next polishing is performed to remove steps on the periphery (B), and a donor killer heat treatment is performed (E), and finally finish polishing is performed (F), which allows by performing an reprocessing to the peeled wafer which is a by-product produced during manufacturing SOI wafers by a the peeled wafer to be reused. 3 is removed

L4 ANSWER I OF 1 CAPLUS COPYRIGHT 2003 ACS

ull Text

AN 1999:690304 CAPLUS

DN 131:305987

TI Recycling of silicon wafer from silicon-on-insulator (SOI) wafer and recycled wafer

IN Kuwahara, Noboru; Mitani, Kiyoshi; Wada, Masae; Auberton-Herve,

Andre-Jacques

PA Shinetsu Handotai Co., Ltd., Japan; S.O.I. Tec S. A.

SO Jpn. Kokai Tokkyo Koho, 9 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

APPLICATION NO. DATE

JP 1998-114176 19980409

PATENT NO. KIND DATE

PI JP 11297583 A2 19991029

PRAI JP 1998-114176 19980409
AB The Si as a waste from SOI wafer after Smart-Cut process (proton

implantation for easy delamination of a thin layer from a thick substrate) can be recycled. The oxide film formed on the Si wafer, in manuf. of the SOI wafer, is removed, and the Si wafer is heated to remove an O2 donor, and then the Si wafer is polished to smooth the surface, i.e., to remove a step or a protrusion formed undesirably at the edge of the Si wafer, in the recycling process.

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出顧公開番号

特開平11-297583

(43)公開日 平成11年(1999)10月29日

(51) Int.Cl.*		識別記号	FΙ		
H01L	21/02		H01L	21/02	Z
	21/304	6 2 2		21/304	6 2 2 W
	27/12			27/12	В

審査請求 未請求 請求項の数8 FD (全 9 頁)

(21	١	ш	-	4	B
(ZI	76	ы	ш.	•	7

特顯平10-114176

(22)出順日

平成10年(1998) 4月9日

特許法第30条第1項適用申請有り 1997年11月10日 社 団法人応用物理学会発行の「応用物理 第66巻 第11 号」に発表

(71)出版人 000190149

信越半導体株式会社

東京都千代田区丸の内1丁目4番2号

(71)出職人 598054968

エス オー アイ テック エス・エー フランス国 38000 グルノーブル フィ

ルマン グティエ プラサ 1

(72)発明者 桑原 登

群馬県安中市磯部2丁目13番1号 信館半

導体株式会社半導体礦部研究所内

(74)代理人 弁理士 好宮 幹夫

最終頁に続く

(54) 【発明の名称】 剥離ウエーハを再利用する方法および再利用に供されるシリコンウエーハ

(57)【要約】

【課題】 水素イオン剥離法において副生した剥離ウエ 一ハに、適切な再処理を施して、実際にシリコンウエー ハとして再利用することができる方法を提供し、SOI ウエーハの生産性の向上と、コストダウンを図る。

【解決手段】 水素イオン剥離法によってSOIウエー ハを製造する際に副生される剥離ウエーハに、再処理を 加えてシリコンウエーハとして再利用する方法におい て、前記再処理として、表面酸化膜を除去し、ドナーキ ラー熱処理を施し、次いで周辺の段差を除去する研磨を 行い、最後に仕上げ研磨をすることを特徴とする剥離ウ エーハを再利用する方法。

【特許請求の範囲】

【請求項1】 水素イオン剥離法によってSOIウエー ハを製造する際に副生される剥離ウエーハに、再処理を 加えてシリコンウエーハとして再利用する方法におい て、前記再処理として少なくとも剥離ウエーハに周辺の 段差を除去する研磨を行うことを特徴とする剥離ウエー ハを再利用する方法。

【請求項2】 前記再処理として、周辺の段差を除去す る研磨後、仕上げ研磨をすることを特徴とする請求項1 に記載の剥離ウエーハを再利用する方法。

【請求項3】 前記再処理として、周辺の段差を除去す る研磨前に、表面酸化膜を除去することを特徴とする請 求項1または請求項2に記載の剥離ウエーハを再利用す る方法。

【請求項4】 前記再処理中に、剥離ウエーハにドナー キラー熱処理を施すことを特徴とする請求項1ないし請 求項3のいずれか1項に記載の剥離ウエーハを再利用す る方法。

【請求項5】 前記請求項1ないし請求項4のいずれか Iウエーハのベースウエーハとして再利用することを特 徴とする剥離ウエーハを再利用する方法。

【請求項6】 前記請求項1ないし請求項4のいずれか 1項に記載の方法で再処理された剥離ウエーハを、SO I ウエーハのボンドウエーハとして再利用することを特 徴とする剥離ウエーハを再利用する方法。

【請求項7】 前記請求項1ないし請求項4のいずれか 1項に記載の方法で再処理された剥離ウエーハを、シリ コン鏡面ウエーハとして再利用することを特徴とする剥 離ウエーハを再利用する方法。

【請求項8】 前記請求項1ないし請求項4のいずれか 1項に記載の方法で再処理されたことを特徴とする再利 用に供されるシリコンウエーハ。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、イオン注入したウ エーハを結合後に剥離してSOI(silicon o n insulator)ウエーハを製造する、いわゆ る水素イオン剥離法(スマートカット法とも呼ばれてい る)において、副生される剥離ウエーハに再処理を加え 40 てシリコンウエーハとして再利用する方法に関する。

[0002]

【従来の技術】従来、SOI構造のウエーハの作製法と しては、酸素イオンをシリコン単結晶に高濃度で打ち込 んだ後に、高温で熱処理を行い酸化膜を形成するSIM OX (separation by implanted oxygen) 法によるもの と、2枚の鏡面研磨したシリコンウエーハを接着剤を用 いることなく結合し、片方のウエーハを薄膜化する結合 法が注目されている技術である。

【0003】SIMOX法は、デバイス活性領域となる「50」ンウエーハから1枚のSOIウエーハを得ることができ

SOI層の膜厚を、酸素イオン打ち込み時の加速電圧で 决定、制御できるために、薄層でかつ膜厚均一性の高い SOI層を容易に得る事ができる利点があるが、埋め込 み酸化膜の信頼性や、SOI層の結晶性、1300℃以 上の温度での熱処理が必要である等問題が多い。

【0004】一方、ウエーハ結合法は、単結晶のシリコ ン鏡面ウエーハ2枚のうち少なくとも一方に酸化膜を形 成し、接着剤を用いずに接合し、次いで熱処理(通常は 1100℃~1200℃) を加えることで結合を強化

10 し、その後片方のウエーハを研削や湿式エッチングによ り薄膜化した後、薄膜の表面を鏡面研磨してSOI層を 形成するものであるので、埋め込み酸化膜の信頼性が高 くSOI層の結晶性も良好であるという利点がある。

【0005】しかし、機械的な加工により薄膜化してい るため、薄膜化するのに大変な時間がかかる上に、片方 のウエーハは粉等となって消失してしまうので、生産性 が低く、著しいコスト高となってしまう。しかも、機械 加工による研削・研磨では得られるSOI層の膜厚およ びその均一性にも限界があるという欠点がある。尚、ウ 1項に記載の方法で再処理された剥離ウエーハを、SO 20 エーハ結合法は、シリコンウエーハ同士を結合する場合 のみならず、シリコンウエーハとSiO2、SiC、A 12 O3 等の絶縁性ウエーハと直接結合してSOI層を 形成する場合もある。

【0006】最近、SOIウエーハの製造方法として、 イオン注入したウエーハを結合後に剥離してSOIウエ ーハを製造する方法(水素イオン剥離法:スマートカッ ト法と呼ばれる技術)が新たに注目され始めている。こ の方法は、二枚のシリコンウエーハのうち、少なくとも 一方に酸化膜を形成すると共に、一方のシリコンウエー 30 ハの上面から水素イオンまたは希ガスイオンを注入し、 該ウエーハ内部に微小気泡層(封入層)を形成させた 後、該イオンを注入した方の面を酸化膜を介して他方の シリコンウエーハと密着させ、その後熱処理を加えて微 小気泡層を劈開面として一方のウエーハを薄膜状に剥離 し、さらに熱処理を加えて強固に結合してSOIウエー ハとする技術 (特開平5-211128号参照) であ る。この方法では、劈開面は良好な鏡面であり、SOI 層の膜厚の均一性も高いSOIウエーハが比較的容易に 得られている。そして、この水素イオン剥離法において も、シリコンウエーハ同士を結合する場合のみならず、 シリコンウエーハにイオン注入して、これとSiO2、 SiC、Al2 O3 等の絶縁性ウエーハと直接結合して SOI層を形成する場合もある。

[0007]

【発明が解決しようとする課題】このような水素イオン 剥離法でSOIウエーハを作製すると、必然的に1枚の シリコンの剥離ウエーハが副生されることになる。従 来、水素イオン剥離法においては、この副生した剥離ウ エーハを再利用することによって、実質上1枚のシリコ

3

るので、コストを大幅に下げることができるとしてい た。

【0008】ところが、このような剥離ウエーハの再利 用は、概念としてはあるものの、実際に再利用した例は なく、具体的にどのようにして再利用すればよいのか不 明であった。特に、本発明者らの調査では、剥離ウエー ハはそのままでは、通常のシリコン鏡面ウエーハとして 使用できるようなものではなく、ウエーハ周辺に段差が あったり、表面にイオン注入によるダメージ層が存在し たり、表面粗さが大きかったりするものであることがわ 10 とができるので、剥離ウエーハの抵抗異常をなくすこと かった。しかも、剥離ウエーハは、少なくとも剥離のた めの熱処理を受けており、CZウエーハを用いた場合に は、ウエーハ中に酸素析出を起こしていたり、酸素ドナ 一の生成により、抵抗率が所望値に対して大幅にはずれ ていたりすることもある。

【0009】そこで、本発明はこのような問題点に鑑み なされたもので、水素イオン剥離法において副生した剥 離ウエーハに、適切な再処理を施して、実際にシリコン ウエーハとして再利用することができる方法を提供し、 実際にSOIウエーハの生産性の向上と、コストダウン 20 を図ることを目的とする。

[0010]

【課題を解決するための手段】上記課題を解決するため 本発明の請求項1に記載した発明は、水素イオン剥離法 によってSOIウエーハを製造する際に副生される剥離 ウエーハに、再処理を加えてシリコンウエーハとして再 利用する方法において、前記再処理として少なくとも剥 離ウエーハに周辺の段差を除去する研密を行うことを特 徴とする剥離ウエーハを再利用する方法である。

剥離ウエーハには周辺に段差があることが判明した。そ こで、本発明では剥離ウエーハの再処理として、周辺の 段差を研磨することによって除去することにした。剥離 ウエーハの周辺の段差を研磨により除去するようにすれ ば、簡単に周辺の段差を除去できるとともに、剥離ウエ 一八表面のダメージ層の除去および表面粗さの改善も同 時にできる。

【0012】この場合、請求項2に記載したように、剥 離ウエーハの再処理として、周辺の段差を除去する研磨 後、仕上げ研磨をするのが好ましい。これは、周辺の段 40 差を除去する研磨のみで研磨面を仕上げるより、複数段 で研磨した方が研磨面の表面粗さあるいは平坦度等をよ り良好なものとすることができ、高品質の再利用ウエー ハとすることができるからである。そして、仕上げ研磨 も1段で行う必要は必ずしも無いので、2段あるいはそ れ以上で行っても良い。

【0013】また、請求項3に記載したように、剥離ウ エーハの再処理として、周辺の段差を除去する研磨前 に、表面酸化膜を除去するのが好ましい。このように、

おけば、均一に研磨をすることができる。すなわち、周 辺の段差部に酸化膜が付着していると、より大きな段差 となる上に、酸化膜はシリコンと硬度が異なるため、研 磨において均一に研磨するのが難しくなる。

【0014】また、本発明の請求項4に記載した発明 は、剥離ウエーハの再処理中に、剥離ウエーハにドナー キラー熱処理を施すことを特徴とする方法である。ドナ ーキラー熱処理を施すことによって、剥離熱処理等によ って剥離ウエーハ中に発生した酸素ドナーを消去するこ ができる。

【0015】次に、本発明の請求項5に記載した発明 は、前記請求項1ないし請求項4のいずれか1項に記載 の方法で再処理された剥離ウエーハを、SOIウエーハ のベースウエーハとして再利用する方法であり、また、 本発明の請求項6に記載した発明は、前記請求項1ない し請求項4のいずれか1項に記載の方法で再処理された 剥離ウエーハを、SOIウエーハのボンドウエーハとし て再利用する方法であり、さらに、本発明の請求項7に 記載した発明は、前記請求項1ないし請求項4のいずれ か1項に記載の方法で再処理された剥離ウエーハを、シ リコン鏡面ウエーハとして再利用する方法である。

【0016】このように、本発明で再処理された剥離ウ エーハは、表面が均一に研磨されているので、二枚のシ リコンウエーハを貼り合わせてSOIウエーハを作製す る場合のベースウエーハあるいはボンドウエーハとして 用いることができるし、通常のシリコン鏡面ウエーハと しても用いることができる。特に、CZウエーハから副 生された剥離ウエーハをベースウエーハあるいは通常の 【0011】このように、水素イオン剥離法で副生した。30 シリコン鏡面ウエーハとして用いる場合には、再処理さ れた剥離ウエーハ中に剥離熱処理等により酸素析出が発 生しているので、これがゲッタリング効果を発揮するた めに好適なものとなる。また、FZウエーハから副生さ れた剥離ウエーハあるいはエピタキシャル層を有する剥 離ウエーハの場合には、CZウエーハのようにCOP (CrystalOriginated Partic Le)や酸素析出物といった結晶欠陥がないので、ボン ドウエーハとして再利用するのに好適である。

> 【0017】そして、本発明の請求項8に記載した発明 は、前記請求項1ないし請求項4のいずれか1項に記載 の方法で再処理されたことを特徴とする再利用に供され るシリコンウエーハである。上述のように、本発明で再 処理された剥離ウエーハは、シリコンウエーハとして再 利用できるウエーハとなる。この場合、水素イオン剥離 法において子め用いる剥離される側のウエーハの厚さを 厚くしておき、研磨による再処理後、再利用において所 望とされるウエーハの厚さとなるようにすればよい。

【発明の実施の形態】以下、本発明の実施の形態を図面 周辺の段差を除去する研磨前に、表面酸化膜を除去して 50 を参照しながら説明するが、本発明はこれらに限定され

るものではない。ここで、図1は水素イオン剥離法でS ○Ⅰウエーハを製造する方法によるS○Ⅰウエーハの製 造工程の一例を示すフロー図である。また、図2は本発 明の剥離ウエーハを再処理して再利用する方法の一例を 示す工程フロー図である。

【0019】以下、本発明を2枚のシリコンウエーハを 結合する場合を中心に説明する。まず、図1の水素イオ ン剥離法において、工程(a)では、2枚のシリコン鏡 面ウエーハを準備するものであり、デバイスの仕様に合 ドウエーハ2を準備する。次に工程(b)では、そのう ちの少なくとも一方のウエーハ、ここではボンドウエー 1/2を熱酸化し、その表面に約0.1 μ m~2.0 μ m 厚の酸化膜3を形成する。

【0020】工程 (c)では、表面に酸化膜を形成した ボンドウエーハ2の片面に対して水素イオンまたは希が スイオンを注入し、イオンの平均進入深さにおいて表面 に平行な微小気泡層(封入層)4を形成させるもので、 この注入温度は25~450℃が好ましい。工程(d) は、水素イオン注入したボンドウエーハ2の水素イオン 20 注入面に、ベースウエーハ1を酸化膜を介して重ね合せ て密着させる工程であり、常温の清浄な雰囲気下で2枚 のウエーハの表面同士を接触させることにより、接着剤 等を用いることなくウエーハ同士が接着する。

【0021】次に、工程(e)は、封入層4を境界とし て剥離することによって、剥離ウエーハ5とSOIウエ ーハ6(SOI層7+埋込み酸化膜3+ベースウエーハ 1)に分離する剥離熱処理工程で、例えば不活性ガス雰 **開気下約500℃以上の温度で熱処理を加えれば、結晶** の再配列と気泡の凝集とによって剥離ウエーハ5とSO 30 Iウエーハ6に分離される。

【0022】そして、工程(f)では、前記工程(d) (e)の密着工程および剥離熱処理工程で密着させたウ エーハ同士の結合力では、そのままデバイス工程で使用 するには弱いので、結合熱処理としてSOIウエーハ6 に高温の熱処理を施し結合強度を十分なものとする。こ の熱処理は例えば不活性ガス雰囲気下、1050℃~1 200℃で30分から2時間の範囲で行うことが好まし い。なお、工程(e)の剥離熱処理と工程(f)の結合 熱処理を連続的に行ったり、また、工程(e)の剥離熱 40 処理と工程(f)の結合熱処理を同時に兼ねるものとし て行ってもよい。

【0023】次に、工程(g)は、タッチボリッシュと 呼ばれる研磨代の極めて少ない鏡面研磨の工程であり、 SOI層7の表面である劈開面に存在する結晶欠陥層の 除去と表面相さを除去する工程である。以上の工程を経 て結晶品質が高く、膜厚均一性の高いSOI層7を有す る高品質のSOIウエーハ6を製造することができる。 (T程(h))。

【0024】このような水素イオン剥離法においては、「50」で行う必要は必ずしも無く、2段あるいはそれ以上で行

図1(e)工程において、剥離ウエーハラが副生される ことになる。水素イオン剥離法によって作製されるSO Ⅰ層の厚さは、通常0.1~1.5ミクロン程度で、厚 くとも2ミクロン以下であるので、剥離ウエーハ5は充 分な厚さを有する。したがって、これをシリコンウエー ハとして再利用すれば、SOIウエーハの製造コストを 著しく下げることが可能となる。

【0025】ところが、図2(A)に剥離ウエーハの拡 大模式図を示したように、この剥離ウエーハ5の周辺部 った基台となるベースウエーハ1とSOI層となるボン「10」には段差10が発生し、そのままではシリコンウエーハ として使用できないものとなることがわかった。この周 辺の段差10は、ボンドウエーハの周辺部がベースウエ 一ハと結合されずに未結合となることから発生するもの である。従って、この段差の高さは、SOI層の厚さと 埋め込み酸化膜3の厚さを足した程度のものとなる。

> 【0026】また、剥離ウエーハの剥離面11には、水 素イオン注入によるダメージ層12が残存し、その表面 粗さも、通常の鏡面ウエーハに比べて悪いものであるこ とがわかった。特に、局所的な表面粗さが悪く、アルカ リエッチングのような選択性のあるエッチングを施す と、深いピットが形成されてしまうことがわかった。

> 【0027】さらに、この剥離ウエーハラは、少なくと も約500℃以上の剥離熱処理を受けており、CZウエ 一ハのような酸素を含むウエーハをボンドウエーハとし て用いた場合には、酸素ドナーが発生してウエーハの抵 抗が異常値を示すような不都合を生じることもある。

【0028】そこで、本発明者らは、上記のような問題 を解決すべく、水素イオン剥離法において副生した剥離 ウエーハに、適切な再処理を施して、実際にシリコンウ エーハとして再利用する方法を検討した結果木発明に到 ったものである。すなわち、まず本発明では、水素イオ ン剥離法によってSOIウエーハを製造する際に副生さ れる剥離ウエーハに生じる周辺の段差を、研磨により除 去するようにした。

【0029】このように、剥離ウエーハの周辺の段差を 研磨により除去するようにすれば、簡単に周辺の段差を 除去できる。例えば、SOI層の厚さが0.2ミクロン である場合には、1ミクロン程度の研磨代で完全に段差 を除去することができる。しかも、研磨により周辺の段 差を除去する際に、同時に剥離ウエーハ表面のダメージ 層の除去および表面粗さの改善もできる。

【0030】この場合、剥離ウエーハの再処理として は、周辺段差を除去する研磨後、仕上げ研磨をするのが 好ましい。これは、周辺の段差を除去する研磨のみで研 磨面を仕上げるより、より目の細かい研磨材を用いて複 数段で研磨した方が研磨面の表面粗さや平坦度等をより 良好なものとすることができ、通常のシリコン鏡面ウエ 一ハの表面粗さあるいは平坦度と同等の品質を達成する ことができるからである。なお、この仕上げ研磨も1段

っても良い。

【0031】また、本発明においては、剥離ウエーハの再処理として、周辺の段差を除去する研磨前に、表面酸化膜3を除去する研磨前に、表面酸化膜3を除去する研磨前に、表面酸化膜3を除去しておく方が均一に研磨をすることができるからである。すなわち、周辺の段差部10に酸化膜3が付着していると、段差が一段と高いものとなるし、酸化膜はシリコンと硬度が異なるため、剥離ウエーハ面内が均一に研磨され難くなるからである。酸化膜の除去は、剥離ウエーハをフッ10酸中に浸漬することによって簡単に行うことができる。【0032】こうして、剥離ウエーハ周辺部にある段差、剥離面にある水素イオン注入によるダメージ層、および剥離面の表面粗さを除去することができ、通常の鏡面ウエーハに比べ何の遜色もない表面を持つ再利用ウエーハを得ることができる。

【0033】また、本発明において剥離ウエーハがCZウエーハである場合においては、剥離ウエーハの再処理中に、ドナーキラー熱処理を施すのが望ましい。剥離ウエーハは、約500℃以上の剥離熱処理によって剥離さ20れるので、当然そのような低温熱処理を受けていることになる。CZウエーハのように酸素を含むシリコンウエーハに低温熱処理を施すと酸素ドナーが発生し、例えばp型シリコンウエーハの抵抗率が異常に高くなる等の現象が生じることがあることは良く知られている。したがって、水素イオン剥離法によって副生される剥離ウエーハにおいても、剥離熱処理によって酸素ドナーが生じ、剥離ウエーハの抵抗率が異常になることがある。このため、例えばウエーハの厚さを測定する際に一般的に使用されている静電容量方式の測定器で剥離ウエーハの厚さ30を測定することができないといった問題が生じる。

【0034】したがって、本発明では再処理中にドナーキラー熱処理を施すことによって、剥離熱処理等によって剥離ウエーハ中に発生した酸素ドナーを消去し、剥離ウエーハの抵抗異常をなくすようにした。このドナーキラー熱処理としては、一般に行われているように600℃以上の熱処理を加えれば良く、慣用されている方法としては、例えば650℃で20分の熱処理をするようにすればよい。

【0035】そして、剥離ウエーハの再処理中には、ウエーハの洗浄あるいはエッチングが行われることが多く、特に上記のように熱処理をする前には、熱処理においてウエーハを汚染しないように洗浄、エッチングが行われることが多い。この場合、本発明のような剥離ウエーハは、局所的な表面祖さが悪く、ダメージ層も有するので、アルカリエッチングのような選択性のあるエッチングあるいは洗浄を施すと、深いピットが形成されてしまい、後の研磨工程で研磨代を多くする等の対策が必要*

*となるので好ましくない。

【0036】こうして、上記本発明の方法によって再処理されたシリコンウエーハは、通常のシリコン鏡面ウエーハと全く同じ均一に研磨された面状態を有するので、貼り合わせSOIウエーハの原料ウエーハとして用いることができるし、通常の集積回路等の作製用のシリコンウエーハとして用いてもよい。また、いわゆるエピタキシャルウエーハのサブストレートとして用いてもよく、特にその再利用の用途は限定されるものではない。

【0037】この場合、本発明の再処理された剥離ウエーハをベースウエーハあるいは通常のシリコン鏡面ウエーハとして用いる場合には、再処理された剥離ウエーハ中には、水素イオン注入前の熱酸化処理(通常900℃以上)、および約500℃以上といった剥離熱処理により酸素析出が発生しているので、これがいわゆるイントリンシックゲッタリング効果(IG効果)を発揮するために好適なものとなる。また、剥離ウエーハをSOIウエーハを作製する際のベースウエーハあるいはボンドウエーハとして用いれば、実質上1枚のシリコンウエーハから1枚のSOIウエーハを得ることができるので、SOIウエーハの製造コストを著しく減少させることができる。

【0038】なお、本発明で再処理された剥離ウエーハは、所望のシリコンウエーハとして再利用されるが、水素イオン剥離法において予め用いる剥離される側のウエーハであるボンドウエーハの厚さを、再利用ウエーハで必要とされる厚さより若干厚くしておき、研磨による再処理後、再利用において所望とされるウエーハの厚さとなるようにする。

0 【0039】ただし、前述のように、本発明で剥離ウエーハの周辺の段差を研磨により除去するには、SOI層の厚さにもよるが、たかだか1ミクロン程度の研磨代で完全に段差を除去することができるし、その後の仕上げ研磨、エッチングをともなう洗浄等を行っても全体で10ミクロン以下の取り代で充分である。したがって、用いるボンドウエーハの厚さを予め厚くするのも、問題となるようなものではない。

[0040]

すればよい。 【実施例】以下、本発明の実施例を挙げて具体的に説明 【0035】そして、剥離ウエーハの再処理中には、ウ 40 するが、本発明はこれらに限定されるものではない。 エーハの洗浄あるいはエッチングが行われることが多 (実施例) 夢電型がp型で抵抗率が20Ω・cm、直径

が150mmのシリコン鏡面ウエーハを用い、図1 (a)~(h)に示す工程に従った水素イオン剥離法によりSOIウエーハを製造した。ボンドウエーハ2の厚さは、ベースウエーハ1の厚さの平均で約8ミクロン厚いものを用いた。SOI層の厚さは0.2ミクロンとし、その他イオン注入等の主な条件は次の通りである。

- 1)埋込み酸化膜厚:400nm(0.4ミクロン)、
- 2) 水素注入条件:日・イオン、注入エネルギ 69keV

9

注入線量 5.5×10¹⁶/cm²

- 3)剥離熱処理条件: N2 ガス雰囲気下、500℃×30分
- 4) 結合熱処理条件: N2 ガス雰囲気下、1100℃×2時間

【0041】こうして厚さ0、2ミクロンのSOI層を 有する高品質のSOIウエーハを作製することができた が、図1の工程(e)で剥離ウエーハラが副生された。 この剥離ウエーハを図2の工程(A)~(G)にしたが い再処理を加えて、ベースウエーハとして再利用するこ とにした。

【0042】まず、図2(A)の、未処理の剥離ウエー 10 ハ5の周辺形状を、触針式粗さ計でスキャンすることに よって測定した。その測定結果を図3(A)に示した。 この図から明らかであるように、剥離ウエーハ5の周辺 部には貼り合わせ時に周辺で未結合となった部分に起因 する段差10が生じている。そして、その周辺の段差1 0の高さは、SOI層の厚さ(0.2ミクロン)と酸化 膜の厚さ(0.4ミクロン)を加えた値程度以上となる ことがわかる。

【0043】また、図2(A)の、未処理の剥離ウエー ハ5の剥離面11の表面粗さを位相シフト干渉法により 20 250ミクロン角で測定し、原子間力顕微鏡法により1 ミクロン角で測定したところ、それぞれRMS値 (自乗 平均平方根粗さ)で、平均(). 43 nmと8. 3 nmで あった。この値は、通常の鏡面研磨されたシリコンウエ ーハの表面粗さより非常に悪い値であり、特に1ミクロ ン角での値は通常の10倍以上の値で、剥離面は局部的 な面粗れが大きいことがわかる。

【0044】次に、図2(B)では、剥離ウエーハをフ ッ酸中に浸漬することによって、表面の酸化膜3を除去 した。フッ酸は、HF50%水溶液とした。そして、酸 30 化膜を除去した剥離ウエーハの周辺形状を再び触針式粗 さ計でスキャンすることによって測定し、その結果を図 3 (B) に示した。この図から明らかであるように、剥 離ウエーハ5の周辺部にはSOI層の厚さ(0.2ミク ロン) より若干高い段差が生じていることがわかる。

【0045】次に、図2(C)では、剥離ウエーハを汚 染しないように、熱処理前洗浄をした。この洗浄は、い わゆるRCA洗浄として広く知られている、(アンモニ ア/過酸化水素水)、(塩酸/過酸化水素水)の2段洗 浄を行った。この時、前述のように例えば苛性ソーダ等 40 を用いた異方性のエッチング作用の強い、いわゆるアル カリ洗浄は行わないようにする。

【0046】そして、熱処理前洗浄が終わったなら、刺 離ウエーハの抵抗率を測定した後、剥離ウエーハにドナ ーキラー熱処理を施した(図2(D))。熱処理条件 は、650℃で20分間とした。熱処理後再び剥離ウエ 一八の抵抗率を測定した。その結果、熱処理前の測定で は、剥離ウエーハの裏面抵抗率は400~500Ω c m、表面抵抗率は3000Ωcm以上であったのが、ド *率である20Ωcmとなった。

【0047】次に、図2(E)では、ドナーキラー熱処 理が終了した剥離ウエーハに、周辺の段差を除去する研 磨を行った。研磨は、通常のシリコンウエーハを研磨す る装置および条件と同様にすればよい。本発明では、剥 離ウエーハを上下定盤間に挟み込み、定盤を50rpm で相互に逆回転しつつ、500g/cm²の荷重をかけ て、研磨面に研磨スラリーを供給しつつ、剥離面を研磨

【0048】この時、研磨の取り代と周辺の段差の高さ との関係を調査した結果を、図4に示した。この図か ら、研磨代としては1ミクロンも研磨すれば、周辺の段 差は充分に除去できることがわかる。

【0049】また、研磨代5ミクロンの周辺の段差除去 研磨をした剥離ウエーハの周辺形状を再び触針式粗さ計 でスキャンすることによって測定し、その結果を図3

(C) に示した。この図から明らかであるように、剥離 ウエーハの周辺部の段差はきれいに除去されており、シ リコンウエーハとして充分に再利用可能な周辺形状とな っていることがわかる。

【0050】最後に図2(F)において、仕上げ研磨を 行い、剥離ウエーハの再処理を終了した。この時、周辺 の段差除去研磨と仕上げ研磨との全体での研磨による取 り代を、約8ミクロンとなるようにした。そして、仕上 げ研磨後の研磨面 (剥離面) の表面粗さを位相シフト干 渉法により250ミクロン角で測定し、原子間力顕微鏡 法により1ミクロン角で再び測定したところ、それぞれ RMS値(自乗平均平方根粗さ)で、平均0.25 nm と0.19 n mであった。この値は、通常の鏡面研磨さ れたシリコンウエーハの表面粗さと同等であり、著しい 改善が図られたことがわかるとともに、この再処理され た剥離ウエーハは、シリコンウエーハとして再利用でき るものであることがわかる。

【0051】そこで、本実施例では、図2(G)のよう に、再処理された剥離ウエーハをベースウエーハとして 用いた。すなわち、図1(a)のベースウエーハ1とし て再利用ウエーハを用いた。剥離ウエーハは、もともと 8ミクロン厚くしてあったので、再処理後の厚さが、図 1 (a)で用いるベースウエーハの所望厚さになってい る。以後図1の工程にしたがい、水素イオン剥離法によ ってSOIウエーハを作製した所、問題なく通常通りの 高品質SOIウエーハを作製することができた。

【0052】なお、本発明は、上記実施形態に限定され るものではない。上記実施形態は、例示であり、本発明 の特許請求の範囲に記載された技術的思想と実質的に同 一な構成を有し、同様な作用効果を奏するものは、いか ナーキラー熱処理後においては、表裏面とも当初の抵抗*50 なるものであっても本発明の技術的範囲に包含される。

【0053】例えば、上記では2枚のシリコンウエーハ を結合してSOIウエーハを作製する場合を中心に説明 したが、本発明は、この場合に限定されるものではな く、シリコンウエーハにイオン注入後に絶縁性ウエーハ と結合し、シリコンウエーハを剥離してSOIウエーハ を製造する場合に副生する剥離ウエーハに再処理を加え るような場合にも当然に適用可能である。

【0054】また、本発明の剥離ウエーハの再処理工程 も、図2に示したものに限定されるものではなく、この 工程には、洗浄、熱処理等の他の工程が付加されること 10 る。(A)未処理の剥離ウエーハ、(B)酸化膜除去 もあるし、あるいは一部工程順の入れ替え、省略等が目 的に応じて適宜行うことができるものである。

[0055]

【発明の効果】以上説明したように、本発明によれば、 水素イオン剥離法において副生した剥離ウエーハに、適 切な再処理を施して、実際にシリコンウエーハとして再 利用することができるようになる。すなわち、本発明に より、剥離ウエーハで問題となる、ウエーハ周辺の段 差、イオン注入によるダメージ層、表面粗さを除去する ことができ、また剥離熱処理に基づく酸素ドナーの生成 20 による抵抗率異常の問題も排除することができる。した がって、SOIウエーハの著しい生産性の向上と、コス トダウンを図ることができる。

【図面の簡単な説明】

【図1】(a)~(h)は、水素イオン剥離法によるS ○Ⅰウエーハの製造工程の一例を示すフロー図である。 【図2】(A)~(G)は、実施例で採用した本発明の 剥離ウエーハを再利用する方法の工程フロー図である。 【図3】剥離ウエーハの周辺の段差の測定結果図であ 後、(C)周辺段差除去後。

【図4】周辺段差研磨の取り代と段差の高さとの関係を 調査した結果図である。

【符号の説明】

1…ベースウエーハ、 2…ボンドウエーハ、 化膜、4…水素イオン注入微小気泡層(封入層)、 …剥離ウエーハ、6…SOIウエーハ、 7…SOI 層、 10…周辺の段差、11…剥離面、 12…ダメ ージ層。

