CHARACTERISTIC CLASSES: EXERCISES

ARUN DEBRAY JULY 9, 2020

These exercises are not in order. Do the ones that look the most interesting to you. Some are a lot easier than others.

- (1) Show that \mathbb{CP}^4 cannot be embedded in \mathbb{R}^{11} .
- (2) Show that if $E \subseteq TS^n$ is a subbundle, then either E is trivial or all of TS^n .
- (3) Show that the mod 2 reduction of $p_i(V)$ is $w_i(V)^2$. (4) A degree-d hypersurface in \mathbb{CP}^{n+1} is a smooth (complex-)codimension-1 submanifold $X_d \subset \mathbb{CP}^n$ cut out by a degree-d homogeneous polynomial. If $S \to \mathbb{CP}^{n+1}$ denotes the tautological bundle, then the normal bundle of $X_d \hookrightarrow \mathbb{CP}^{n+1}$ is $(S^*)^{\otimes d}|_{X_d}$.
 - (a) When n = 1, these are smooth projective curves (aka compact Riemann surfaces). What is $\chi(X_d)$? (You should get d(3-d).)
 - (b) Now suppose n=2. Which X_d admit spin structures?
 - (c) For n=2, show $c_1(X_d)=0$ iff d=4. This quartic surface is known as the K3 surface, and generates $\Omega_4^{\mathrm{Spin}} \cong \mathbb{Z}$ (proving that is hard and not part of this exercise). What is its Euler
 - (d) Using that \mathbb{CP}^2 generates $\Omega_4^{SO} \cong \mathbb{Z}$, show that the forgetful map $\Omega_4^{Spin} \to \Omega_4^{SO}$ has image $8 \cdot \Omega_4^{SO}$.