Zusammenfassung für Zeichnen von Graphen

Sommersemester 2014

von Dagmar Sorg

DIVIDE AND CONQUER

1 Binärbäume

Die Tiefe eines Knotens (depth(v)) ist der Abstand von der Wurzel bis v.

Der *Divide and Conquer*-Ansatz wird verwendet, um ein geradliniges Gitterlayout für geradlinige Repräsentationen zu finden. Dies funktioniert für Binärbäume wie folgt:

- 1. Bestimmung des Teillayouts für $T_l(v)$
- 2. Bestimmung des Teillayouts für $T_r(v)$
- 3. Zusammenfügen zu Gesamtlayouts

1.1 Baumdurchläufe

Es gibt drei Arten von Baumduchläufen:

- 1. Preorder
- 2. Inorder
- 3. Postorder

Ein Gitterlayout hat ausschließlich ganzzahlige Koordinaten

Geradlinige Repräsentationen sind Standardrepräsentationen mit geraden Kanten

Ein Layout ist vollatändig bestimmt, wenn für jeden Konten $v \in V$ eine x-Koordinate (x(v)) und eine y-Koordinate (y(v)) gegeben sind.

1.2 Definition eines Gitterlayouts

Für jeden Knoten ist der Punkt im Layout folgendermaßen definiert:

$$\begin{array}{rcl} x(v_i) & = & i \\ y(v_i) & = & -depth(v_i) \end{array}$$

Dieses Layout ist abwärts, kreuzungsfrei und kann in Linearzeit bestimmt werden.

Beispiel (Inorder - Layout):

Beispiel (Preorder - Layout):

Nachteile:

- 1. Breite = n-1
- 2. Kantenlänge $\mathcal{O}(n)$
- 3. Knoten sind nicht zentriert über Nachfolgern

Problem 1 und 2 können durch Berechnung relativer Koordinaten behoben werden:

- Berechnung der Koordinaten der Teilbäume getrennt
- Zusammenlegen der Layouts, sodass die umgebenden Rechtecke Abstand 2 oder 3 haben
- Elterknoten wird zentriert über den Nachfolgern platziert (bzw. eins weiter nach rechts/links, wenn es wichtig ist, um welchen Nachfolger es sich handelt)
- ⇒ immer noch in Linearzeit bestimmbar, aber immer noch zu breit
 - ⇒ verwenden von **Konturen** statt Rechtecken: Platzieren der Teilbäume so, dass der minimale horizontale Abstand zweier Knoten de gleichen Tlefe 2 (bzw. 3) ist

1.2.1 Bestimmung eines Layouts mithilfe von Konturen

- Abstand zwischen zwei Knoten mit gleicher Tiefe ist zwei (drei, falls Teilbaumwurzeln sonst ungeraden Abstand haben)
- zur Bestimmung in Linearzeit (Bestimmung pro Knoten):
 - 1. Berechnung des x-Offsets (relative Position zum Vorgänger)
 - 2. Speichern der linken und rechten Kontur seines Teilbaumes als eine einfach verkettete Liste
- Algorithmus von Reingold und Tilford arbeitet in zwei Schritten:
 - 1. postorder: zur Bestimmung von Konturen und x-Offsets

- Abarbeiten von $T_l(v)$ und $T_r(v)$
- Absteigen in den Konturen beider Teilbäume parallel, bis die Konturen des niedrigeren Teilbaums endet
- linke (rechte) Kontur von T(v) besteht aus v, der linken (rechten) Kontur von $T_l(v)$ ($T_r(v)$) und dem (falls vorhanden) linken (rechten) Kontur von $T_r(v)$ ($T_l(v)$)
- Bestimmen des Mindestabstandes $d \geq 2$ der Nachfolger von v aus den x-Offsets der rechten Kontur von $T_l(v)$ und der linken Kontur von $T_r(v)$
- Erhöhen von d_v um 1, falls ungerade
- Setzten des x-Offsets der Nachfolger von v (wenn vorhanden) auf $-\frac{d_v}{2}$ bzw. $+\frac{d_v}{2}$
- 2. preorder: Kalkulation der x-Koordinaten mithilfe des Zusammennehmens der x-Offsets
 - Bearbeitung von T(v): x ist die Koordinate des Vorgängers (oder x = 0, falls v die Wurzel ist)
 - -x(v) = x + x Offset(v)
 - Algorithmus von Reingold/Tilford (in Linearzeit) berechnet:
 - st geradliniges Gitterlayout, das tiefengeschichtet und kreuzungsfrei ist
 - * Knoten mit selber Tiefe haben Abstand ≥ 2
 - * Knoten sind über Nachfolgern zentriert
 - * linke/rechte Nachfolger liegen strikt links/rechts von ihrem Vorgänger
 - * identische Teilbäume sind gleich ausgelegt
 - ⇒ Binärbaumlayout*

* Das Layout ist nicht unbedingt Platzoptimal:

1.2.2 Die Breitenminimierung von Binärbäumen ist \mathcal{NP} -schwer.

Beweisidee:

Bemerkung: Das Problem ist in \mathcal{P} , falls keine ganzzahligen Koordinaten (Gitterlayout) erforderlich sind. Allgemeine Idee:

bekannt: gibt es einen Polynomial-Zeit-Algorithmus, der L' löst, können alle Probleme in \mathcal{NP} in Polynomial-Zeit gelöst werden

Hier wird gezeigt, dass sogar für feste Werte (W=24) das Problem in \mathcal{NP} liegt. Das Problem ist sicher in \mathcal{NP} , da sich jedes gegebene Layout auf die Eigenschaften eines Binärbaumes und die Breite prüfen lässt. Ablauf des Beweises:

- Reduzierung von 3-SAT auf Binärbaum mit minimaler Breite mithilfe von $F = C_1 \wedge \cdots \wedge C_m$ als 3-SAT-Formel mit
 - Klauseln $C_i = y_{i,1} \vee y_{i,2} \vee y_{i,3}$
 - Literalen $y_{i,j} \in \{x_1, \dots, x_n, \overline{x_1}, \dots, \overline{x_n}\}$
- Konstruktion der Instanz T(F) für das Layoutproblem, die genau dann ein Layout mit Breite $W \leq 24$ hat, falls F erfüllbar ist
- Erzeugung von Teilbäumen für Variablen, Literale und Klauseln
- Teilbäume der drei in der Klausel C_i auftretenden Literale werden zu $T(C_i)$ zusammengefügt (mithilfe von einer ausreichend langen Kette von Knoten, die beim mittleren Literal eingefügt wird und an der Wurzel des nächsten Baumes endet)
- Beweis, dass falls F gilt auch T(F) gilt und falls F nicht gilt auch T(F) nicht gilt

1.3 Radiales Layout

- der Radius entspricht der Tiefe des Knotens
- rekursive Zuweisung der Position jeden Knotens, mit dem ihm noch verbleibenden Kreisteil
- für ein kreuzungsfreies Layout wird der für die Rekursion verfügbare Platz durch die Tangente der Teilbaumwurzel beschränkt
- Vergleich Algorithmus 1. (berechnet in linearer Zeit ein kreuzungsfreies Layout)

2 Serien-parallele (SP) Graphen

Ein SP-Graph ist:

- gerichtet
 - besteht entweder aus zwei Knoten s,t und der Kante $\{s,t\}$ oder
 - aus zwei SP-Graphen G_1, G_2 mit s_1, s_2, t_1, t_2 , entstanden aus serielle Komposition: t_1, s_2 werden verschmolzen, $s_1 \to s, t_2 \to t$ parallele Komposition: jeweils s_1, s_2 und t_1, t_2 werden zu s, t verschmolzen

Fakten:

- Jeder SP-Graph ist azyklisch und planar.
- Jedes kreuzungsfreie Aufwärtslayout für geordnete SP-Graphen benötigt im schlechtesten Fall eine Gitter, das exponentiell groß in der Anzahl der Knoten des Graphen ist.

 Beweis:

2.1 Divide-and-Conquer Ansatz zur Erstellung von $\it SP$ -Graphen auf einem Gitter der Größe $O(n^2)$

- im Dekompositionsbaum stehen Q-Knoten nur rechts von einem P-Knoten (*linkslastig*)
- Algorithmus:

- 1. Layout von G liegt in einem rechtwinkligen, gleichschenkligen Dreieck Δ_G , mit vertikaler Basis und linksliegenden Scheitel
- 2. auf der unteren / oberen Ecke von $\Delta(G)$ liegt die Quelle / Senke von G aber kein Knoten liegt auf den linken Ecken von $\Delta(G)$
- 3. falls v Nachbar der Quelle / Senke von G ist, dann liegt kein anderer Knoten rechts der Senkrechten durch v und unterhalb der fallenden / oberhalb der steigenden Diagonalen durch v

Aus den Höhenunterschieden und Höhen zu den Komponenten können mittels eines preorder Durchlaufes durch den Dekompositionsbaum die absoluten Koordinaten ermittelt werden (ähnlich wie bei x-Offsets der Binärbäume).

Der Algorithmus erstellt in Linearzeit aus einem linkslastig geordneten Dekompositionsbaum eines einfachen SP-Graphes ein Gitterlayout, das

- kreuzungsfrei ist (Kreuzungen können nur bei paralleler Komposition entstehen): aus (3.) folgt das Bild (1)
- höchstens quadratische Fläche benötigt: per Induktion beweisbar (alle Teile des Graphen G liegen in seinem Dreieck \rightarrow bleibt zu zeigen, dass die Höhe von $\Delta(G)$ linear in der Anzahl der Knoten ist).
- Schönere Darstellung mit Sichtbarkeitsrepräsentation
- Erweiterung auf die Darstellung mit orthogonalen Buskanten

Inkrementelle Konstruktion

Bei dieser Art der Konstruktion entsteht der Graph nach und nach, d.h. ein Anfangslayout wird Stück für Stück erweitert und nicht zum Schluss als ein Ganzes berechnet.

Jeder der Layoutalgorithmen besteht zusätzlich aus einem Vorverarbeitungsschritt, zum Festlegen einer Reihenfolge mit bestimmten Eigenschaften, die für den eigentlichen Algorithmus wichtig sind.

1 Orthogonale Gitterlayouts

- jeder Knoten hat höchstens Grad 4
- Algorithmus von Biedl und Kant (vier Schritte):
 - 1. Zerlegung des Graphen in Komponenten
 - 2. Bestimmung der Reihenfolge für die Knoten jeder Komponente
 - 3. inkrementelle Bestimmung des Layouts für jede Komponente: die Knoten werden in ihrer Reihenfolge in das Layout eingefügt
 - 4. Kombinierung der Layouts der einzelnen Komponenten
- der Graph wird zuerst in hinreichend zusammenhängende Teilgraphen zerlegt

1.1 Zweifache Zusammenhangskomponenten

- Zwei Kanten in einem ungerichteten Graphen heißen biconnected, wenn sie auf einem einfachen Kreis liegen.
- eine zweifache Zusammenhangskomponente wird auch als Block bezeichnet
- aus einem zweifach zusammenhängenden Graphen müssen mindestens zwei Knoten entfernt werden, damit der Graph nicht mehr zusammenhängend ist
- die zweifachen Zusammenhangskomponenten können in Linearzeit berechnet werden, Vergleich Algorithmus 2.

Beweisidee:

per Induktion über die Anzahl der Kantendurchläufe:

- eine Kante heißt offen, wenn noch kein Backtracking erfolgt ist
- eine Kante heißt fertig, falls Backtracking erfolgt ist
- eine Komponente heißt offen / fertig, falls ihre erste Kante offen / fertig ist
- $-G_t$ ist der durch die nummerierten Kanten induzierte Teilgraph nach t Kantendurchläufen
- offene Zusammenhangskomponenten werden als $G_t^{(i)}$, seine ersten Kanten als $E_t^{(i)}$ mit $e_i^{(i)}$, $1 \le i \le k_t$ in der Reihenfolge, wie sie markiert wurden
- zu Zeigen sind die folgenden Invarianten:
 - 1. alle Kanten einer fertigen Zusammenhangskomponenten zeigen auf die erste Kante der Komponente
 - 2. auf dem Stack C liegen (von unten nach oben) $e_t^{(1)}, \ldots, e_t^{(k_t)}$
 - 3. auf dem Stack S bilden die Kanten aus $E_t^{(1)}, \dots, E_t^{(k_t)}$ Intervalle (in dieser Reihenfolge)

- alle Aussagen sind am Anfang richtig, bleibt zu zeigen dass sie auch für t > 0, nach t 1 Durchläufen gelten (zwei Fälle):
 - 1. Vorwärtsdurchlauf:

- \triangleright e ist Baumkante
 - $\Rightarrow w$ ist Knoten vom Grad 1 in G_t
 - $\Rightarrow e$ ist einzige Kante einer neuen offenen Komponente
 - \Rightarrow alle Invarianten gelten
- ightharpoonup e ist Rückwärtskante zum Knoten w
 - $\Rightarrow e$ bildet zusammen mit dem letzten (bei wbeginnenden) Teilstück des Weges der offenen Kanten einen einfachen Kreis
 - \Rightarrow alle Kanten auf diesem Kreis gehören zur gleichen Zusammenhangskomponente von G_t
 - \Rightarrow alle nach edurchlaufenen Kanten werden aus Centfernt
 - ⇒ alle Invarianten gelten

2. Backtracking:

- ightharpoonup e wird fertig
 - \Rightarrow durch 2. Invariante: e erste Kante der offenen Komponente \Leftrightarrow sie liegt oben auf C
- ▶ es gibt keine Quer- oder Vorwärtskanten in der ungerichteten Tiefensuche
 - ⇒ die Zusammenhangskomponente kann nicht mehr größer werden
 - \Rightarrow Zusammenhangskomponente ist fertig
- \blacktriangleright durch 3. Invariante werden durch die **repeat**-Schleife die richtigen Kanten von Sentfernt
 - \Rightarrow die Invarianten gelten
- Linearzeit: jede Kante wird höchstens einmal auf C und S gelegt

1.2 Knotenreihenfolge bestimmen (2. Schritt)

- der Algorithmus nutzt die $st\mbox{-}Ordnung$ als Reihenfolge der einzufügenden Knoten
- eine st-Ordnung ist wie folgt definiert:

$$\exists \ 1 \le i < j < k \le n \text{ mit } \{v_i, v_j\}, \{v_j, v_k\} \in E$$

- G=(V,E), zweifach zusammenhängender Graph $\Leftrightarrow \exists$ zu jeweils zwei Knoten $s \neq t \in V$ eine st-Ordnung
- durch eine Orientierung erhält jede Kante in einem Graphen eine Richtung
- eine st-Orientierung ist azyklisch mit s, t als einzige Quelle/Senke
- eine st-Ordnung kann mithilfe von topologischer Sortierung aus einer st-Orientierung in Linearzeit berechnet werden

1.2.1 Ohrendekomposition

• die Folge $D = (P_0, \dots, P_r)$ von (offenen) Pfaden heißt (offene) Ohrendekomposition, falls

- für
$$G_i = (V_i, E_i)$$
 gilt $V_i = \bigcup_{j=0}^i V(P_j)$
und $E_i = \bigcup_{j=0}^i E(P_j), 0 \le 1 \le r$

- $-E(P_0),\ldots,E(P_r)$ ist eine Partition von E
- für alle $P_i = (v_0, e_1, v_1, \dots, e_k, v_k), 1 \le i \le r$ gilt
 - $\blacktriangleright \{v_0, v_k\} \subseteq V_{i-1}$
 - $\blacktriangleright \{v_1, \dots, v_{k-1}\} \cap V_{i-1} = \emptyset$
- eine Ohrendekomposition beginnt mit der Kante $\{s,t\} \in E$, wenn $P_0 = (s, \{s,t\},t)$
- für jeden zweifach zusammenhängenden Graphen gibt es für jede Kante $e = \{s, t\}$ eine Ohrendekomposition, die mit e beginnt
- es kann in Linearzeit eine st-Orientierung aus einer offenen Ohrendekomposition konstruiert werden, die mit $\{s,t\}$ beginnt

Beweis:

Durch Konstruktion:

- aus P_0, \ldots, P_r , beginnend mit $\{s, t\}$, wird eine st-Orientierung konstruiert, indem
 - $ightharpoonup P_0$ von s nach t orientiert wird
 - ▶ $P_i = (u, ..., w), 1 \le i, \le r$ von u nach w orientiert wird, falls u in der von $P_0, ..., P_{i-1}$ induzierten partiellen Ordnung vor w liegt, sonst umgekehrt
- | Weg von der Ohrendekomposition zu einer st-Ordnung:

offene Ohrenkomposition
$$\xrightarrow[\text{Orientierung}]{\text{Erweiterung der Knoten}} st$$
-Orientierung $\xrightarrow[\text{topologische}]{\text{topologische}} st$ -Ordnung

- Bestimmung einer Ohrendekomposition durch einen Tiefensuchbaum:
 - Baumkanten $\{v, w\}$ werden als $v \to w$ bezeichnet
 - Rückwärtskanten $\{v, w\}$ werden als $v \hookrightarrow w$ bezeichnet
 - ein uv-Pfad mit höchstens Baumkanten wird als $u \stackrel{*}{\to} v$ bezeichnet
 - Konstruktion der Ohrendekomposition:
 - 1. P_0 ist das Anfangsohr
 - 2. $\exists v \hookrightarrow w \notin E_i$ nach Konstruktion von $P_0, \dots, P_i, i \geq 0$ $\Rightarrow P_{i+1}$ ist wie folgt definiert $(v, w, x \in V)$:

eine offene Ohrendekomposition $D(T) = (P_0, \dots, P_r)$ überdeckt G = (V, E) vollständig $\Rightarrow V = V_r, E = E_r$:

Beweisidee:

Mit der zweifach Verbundenheit des Graphen kann man durch Konstruktion mithilfe eines Knotens $u \notin V_r$ einen Widerspruch herbei führen.

- die Ohren werden aufgrund der Orientierung der zugehörigen Baumkante orientiert, in der Reihenfolge von D(T)
- die Dekomposition definiert für jedes $i=0,\ldots,r$ eine partielle Ordnung (reflexiv, transitiv, antisymmetrisch, nicht für alle Paare definiert - sonst total)

$$\prec_i : \{v, w\} \in E_i \text{ von } v \text{ nach } w \text{ orientiert } \Rightarrow v \prec_i w$$

- die Orientierung von D(T) liefert eine st-Orientierung von G
- die erhaltene Ordnung von V_i ist eine lineare Erweiterung von \prec_i für alle $0 \le j \le i \ (\prec_i \subseteq \prec_i)$ \Rightarrow die Ordnung ist eine st-Ordnung von G
- Vergleich Algorithmus 3.

1.3 Layout einer Komponente (3. Schritt)

- ullet gegeben sind der zweifach zusammenhängende Graph G und die st-Ordnung von G
- für jeden Knoten gilt $d_q^{\leftarrow}(v) = \#$ adjazenter Vorgänger
- für jeden Knoten gilt $d_q^{\rightarrow}(v) = \#$ adjazenter Nachfolger

- $\bullet \ \ d(v) = d_g^{\leftarrow}(v) + d_g^{\rightarrow}(v)$
- $1 \le d_g^{\leftarrow}(v)$ $3 \le d_g^{\rightarrow}(v)$
- Plazierung der ersten beiden Knoten (links)
- für alle adjazenten Nachfolger werden jeweils die Gittervertikalen durch v sowie, falls nötig, zwei neue links und rechts vom Layout reserviert
- alle anderen Knoten werden auf der Gitterhorizontalen mit $y(v_i) = i$ entsprechend der Anzahl der adjazenten Vorgänger plaziert
- v_n kommt auf die Gitterhorizontale y(t) = n (siehe links)
- die benötigte Gittergröße ist höchstens $(m-n+1) \times n$
 - erste beiden Knoten brauchen Höhe 1
 - die weiteren Knoten erhöhen die Hähe um 1
 - -der letzte Knoten erhöht die Höhe höchstens um 2
 - \Rightarrow Höhe n
 - erste beiden Knoten brauchen Breite $d_g^{\rightarrow}(v_1) + d_g^{\rightarrow}(v_2) 2$
 - die weiteren Knoten vergrößern die Breite um $d_q^{\rightarrow}(v_i) 1$
 - der letzte Knoten erhöht die Breite nicht
 - \Rightarrow Breite= $\sum_{v \in V} (d_g^{\rightarrow}(v) 1) + 1 = m n + 1$

- die Gesamtzahl der Knicke ist höchstens 2m-2n+4 und keine Kante hat mehr als 2 Knicke
 - für v_1, v_2 werden $d_q^{\rightarrow}(v_1) + d_q^{\rightarrow}(v_2) 1$ Knicke erzeugt
 - für jeden Knoten $v \neq v_1, v_2, v_n$ werden $d_g^\leftarrow(v) 1 + d_g^\rightarrow(v) 1 = 2d_G(v) 2$ Knicke erzeugt
 - für v_n werden 4 Knicke benötigt, falls $d_G(v_n)=4$, sonst nur $d_G(v_n)-1$
 - \Rightarrow maximal: $\sum_{v \in V} d_G(v) 2 + 4 = 2m 2n + 4$
 - erste und letzte Kante $\{v_1,v_2\}, \{v_{n-1},v_n\}$ haben maximal 2 Knicke (Konstruktion)
 - jede andere Kante hat höchstens einen Knick auf der Gitterhorizontalen durch beide Endknoten
- \bullet ist G planar und liegen s,t auf der äußeren Facette
 - \Rightarrow für jede st-Ordnung v_1, \dots, v_n liegt v_i auf der äußeren Facette des von v_1, \dots, v_{i-1} induzierten Teilgraphen, sowie die Vorgänger von v_i bilden auf der äußeren Facette ein Intervall
- durch Einfügen von neuen Spalten direkt neben dem gerade zu platzierenden Knoten, berechnet der Algorithmus kreuzungsfreie, orthogonale Gitterlayouts
- gibt einen Graph, der 3 Knicke an einer Kante braucht!

1.4 Kombination der Komponentenlayouts (4. Schritt)

2 Kreuzungsfreie geradlinige Gitterlayouts

Jeder planare Graph hat eine kreuzungsfreie, geradlinige Standardrepräsentation. (Nachteil der Konstruktion: hohe Auflösung nötig, weil die Kantenlängen stark variieren können)

Beweisidee:

Durch Konstruktion (Funktioniert nicht mit allen Nachbarn, nur bei Knoten mit genau zwei Nachbarn!):

2.1 Shift-Methode (Gittergröße $\mathcal{O}(n) \times \mathcal{O}(n)$)

2.1.1 Definitionen:

connectivity: $\kappa(G)$ ist die kleinste Anzahl von Knoten, die entfernt werden müssen, damit G nicht mehr zusammenhängend ist

maximal planar/trianguliert: durch Hinzufügen einer Kante, wäre der Graph nicht mehr planar

kombinatorische Einbettung: z.B. die kreisförmige Anordnung der Kanten um jeden Knoten des Graphen

chord: eine Kante zwischen zwei Knoten v, w auf einem Kreis C, wobei v und w auf C nicht nebeneinander liegen

kanonische Ordnung: eine Ordnung $\pi = (v_1, \dots, v_n)$, für die für jedes $3 \le k \le n$ gilt:

- **col** Knoten $\{v_1, \ldots, v_k\}$ induzieren einen zweifach verbundenen und innen triangulierten Graphen
- **co2** (v_1, v_2) ist eine Außenkante von G_k
- **co3** $k < n \Rightarrow v_{k+1}$ liegt auf der Außenfläche von G_k und alle Nachbarn von v_{k+1} in G_k erscheinen nacheinander auf $C_0(G_k)$

Jeder triangulierte, planare Graph besitzt eine kanonische Ordnung (durch Konstruktion mit co1-3 klar)

2.1.2 Ablauf

- 1. Hinzufügen von Kanten bis der Graph zweifach zusammenhängend ist
- 2. Triangulation durch Hinzufügen weiterer Kanten
- 3. Bestimmung einer kanonischen Ordnung der Knoten (Vergleich Algorithmus 4., in Linearzeit)
- 4. inkrementelle Bestimmung relativer Koordinaten der Knoten
- 5. Bestimmung absoluter Koordinaten
- 6. Herausnehmen aller Kanten, die nicht zum Ausgangsgraphen gehören

2.1.3 Algorithmus

- Einfügungsreihenfolge der Knoten entspricht der kanonischen Ordnung
- Anfangsknoten v_1, v_2, v_3
- Einfügen von v_k in das Layout von G_{k-1}
- zum Sicherstellen der Planarität werden die Knoten zum Teil horizontal verschoben
- jeder Knoten hat eine Liste L(v) mit Knoten, die zusammen mit v verschoben werden müssen

2.1.4 Anmerkungen

- für zwei Gitterpunkte mit Manhatten distance $(L_1(P_1,P_2)=|x_1-x_2|+|y_1-y_2|)$ wird der Gitterpunkt für v_k durch den Schnittpunkt der Geraden mit Steigung -1 durch P_2 und Steigung 1 durch P_1 berechnet (Vergleich Algorithmus 5.)
- gestartet wird mit den Punkten $P(v_1) = (0,0), P(v_2) = (2,0), P(v_3) = (1,1)$ (entspricht G_3)
- Anfangslisten $L(v_i) = \{v_i\}, i = 1, 2, 3$
- zum Zeichnen von G_k müssen folgende 3 Invarianten gelten:
 - 1. $P(v_1) = (0,0)$ und $P(v_2) = (2k-4,0)$
 - 2. $x(w_1) < x(w_2) < \cdots < x(w_t)$ für $C_0(G_k) = (v_1 = w_1, \dots, w_t = v_2)$
 - 3. alle Kanten (w_i, w_{i+1}) auf $C_0(G_k)$ sind geradlinig mit Steigung 1, bzw. -1
- Nachteil: sehr kleine Winkel möglich \Rightarrow unleserliche Graphen können entstehen

Kombinatorische Optimierung (Flussmethoden)

Layoutprobleme für planare Graphen

- geradlinige Layouts mit "guter"Winkelauflösung
- orthogonale Layouts mit einer minimalen Anzahl an Knicken
- aufwärtsgerichtete Layouts gerichteter, azyklischer Graphen
- \Rightarrow Lösung mit Flussmethoden

1 Grundlagen

1.1 planare Einbettung

- alle Kanten (Jordan-Kurven) schneiden sich nur in ihren Endpunkten
- feste Lage (Knoten haben feste Positionen mit kombinatorischer Einbettung)
- zerlegt die Ebene in Flächen (Gebiete/Facetten)

Für zusammenhängende, planare Graphen gilt n - m + f = 2.

1.2 klassisches st-Flussmodell

• Netzwerk (D = (V, A), s, t, c) mit

$$D = (V, A)$$
 gerichteter Graph

- s Quelle
- t Senke
- c Kapazitäten $c: A \to \mathbb{R}_0^+$
- $x: A \to \mathbb{R}_0^+$ heißt Fluss, wenn
 - **1.** Kapazitätsbedingung: $\forall (i,j) \in A : 0 \le x(i,j) \le c(i,j)$
 - **2. Flusserhaltungsbedingung:** $\forall i \in V \setminus \{s,t\}: \sum\limits_{j \ : \ (i,j) \in A} x(i,j) \sum\limits_{j \ : \ (j,i) \in A} x(j,i) = 0$
- Wert eines Flusses x:

$$w(x) = \sum_{j \ : \ (s,j) \in A} x(s,j) = \sum_{j \ : \ (j,t) \in A} x(j,t)$$

- klassisches Dualitätsresultat: w(x) entspricht der Kapazität eines s-t-Schnittes mit
 - $-S\subset V$
 - $-s \in S, t \in V \setminus S$

$$-C(S, V \setminus S) = \sum_{\substack{(i,j) \in A \\ i \in S, \ j \in V \setminus S}} c(i,j)$$

1.3 Allgemeines Flussmodell

- wie klassisches Flussmodell mit zusätzlich
 - untere und obere Kapazitäten statt einfachen Kapazitäten $(l:A\to\mathbb{R}^+_0,\ u:A\to\mathbb{R}^+_0)$
 - Knotenbewertung $b:v\to\mathbb{R}$ mit $\sum_{i\in V}b(i)=0$ (Knoten mit b(i)>0 sind Quellen, mit b(i)<0 sind Senken)
- $x: A \to \mathbb{R}_0^+$ heißt Fluss, wenn
 - 1. Kapazitätsbedingung: $\forall (i,j) \in A : l(i,j) \leq x(i,j) \leq u(i,j)$
 - 2. Flusserhaltungsbedingung: $\forall i \in V$: $\sum\limits_{j \ : \ (i,j) \in A} x(i,j) \sum\limits_{j \ : \ (j,i) \in A} x(j,i) = b(i)$

1.4 Fluss mit minimalen Kosten

Zusätzlich zum Flussmodell ist noch die Funktion $cost:A\to\mathbb{R}_0^+$ gegeben. Gesucht ist somit die Minimierung von

$$cost(x) = \sum_{(i,j)\in A} cost(i,j) \cdot x(i,j)$$

2 Schranken für die Winkelauflösung in geradlinigen Layouts

 $\bullet\,$ gesucht ist eine geradlinige Einbettung von einem planaren Graphen G mit maximalem

$$x_{min} = \min_{\substack{v \in V, \ f \in \mathcal{F} \\ v \text{ inzident zu } f}} \{x(v, f)\}$$

• \mathcal{NP} -schwer

Einschränkung: planare kombinatorische Einbettung ist gegeben

Modell: Formulierung des Problems als Flussmodell (liefert untere Schranke für x_min)

2.1 Grundidee der Konstruktion

Es gilt:

1. Knotenbedingung:
$$\forall v \in V : \sum_{f \in \mathcal{F} \text{ inzident zu } v} x(v,f) = 2 \cdot \pi$$

2. Facettenbedingung:

$$\forall f \in \mathcal{F} \setminus \{f_0\} : \sum_{\substack{v \in \text{ inzident zu } f}} x(v, f) = (d_G(f) - 2) \cdot \pi$$

$$f_0 : \sum_{\substack{v \in \text{ inzident zu } f_0}} x(v, f_0) = d_G(f_0) \cdot \pi - (d_G(f_0) - 2) \cdot \pi$$

$$= (d_G(f_0) + 2) \cdot \pi$$

2.2 Definition des Flussnetzwerks N(G) = (D = (W, A), b, l, u)

$$W = V \cup \mathcal{F}$$

$$A = \{(v, f) \in V \times \mathcal{F}, v \text{ inzident zu } f\}$$

$$b(v) = 2\pi, \ \forall v \in V$$

$$b(f) = -(d_G(f) - 2)\pi, \ \forall f \in \mathcal{F} \setminus \{f_0\}$$

$$b(f_0) = -(d_G(f) + 2)\pi$$

$$l(a) = 0, \ \forall a \in A$$

$$u(a) = 2\pi, \ \forall a \in A$$

2.3 Definition des Flussnetzwerks $N_{s,t}(G) = (D = (W_{s,t}, A_{s,t}), l, u)$

$$\begin{aligned} W_{s,t} &= W \cup \{s,t\} \\ A_{s,t} &= A \cup \{(s,v) | v \in V\} \cup \{(f,t) | f \in \mathcal{F}\} \\ l(s,v) &= l(f,t) = 0, \quad \forall v \in V, \ f \in \mathcal{F} \\ u(s,v) &= 2\pi, \ \forall v \in V \\ u(f,t) &= -(d_G(f) - 2)\pi, \quad \forall f \in \mathcal{F} \setminus \{f_0\} \\ u(f_0,t) &= -(d_G(f) + 2)\pi \end{aligned}$$

2.4 untere Schranke von x_{min}

 α ist genau dann eine untere Schranke von x_min für einen maximalen Fluss x, falls $\max w(x_{s,t})$ von $N_{s,t}(G)$ gleich $\max w(x'_{s,t})$ von $N'_{s,t}(G) = ((W_{s,t},A_{s,t}),l',u)$ mit $l'(a) = \alpha, \ \forall a \in A$ \Rightarrow Beweis mit Ford und Fulkerson (Kapazität jedes s-t-Schnittes in $N'_{s,t}(G)$ ist nicht kleiner als due Kapazität eines minimalen s-t-Schnittes in $N_{s,t}(G)$).

2.5 Konstruktion eines Flusses

2.5.1 Definition

lokal konstistent: Zuweisung von Winkelwerten, die Knoten- und Facettenbedingungen erfüllen

I nicht zu jeder lokal konsistenten Zuweisung gibt es auch eine Einbettung, die diese realisiert

Beispiel (Konstruktion):

- es gibt für jeden triangulierten, planar eingebetteten Graphen eine lokal konsistente Winkelzuweisung mit $x_{min} \in \Omega(\frac{1}{\Delta c})$
- oberes liefert nur eine obere Schranke für die untere Schranke, da nicht jede lokal konsistente Zuweisung realisierbar ist
- ein **Dreiecksgraph** ist bis auf die äußere Facette trianguliert (z.B. der Wheel-Graph (W_d))
- für jeden planaren Dreiecksgraphen mit kombinatorischer Einbettung, beschrieben durch \mathcal{F} , und einer vorgegebenen Winkelzuweisung $(\alpha_i, \beta_i, \gamma_i, \ \forall 1 \leq i \leq d)$ gibt es eine geradlinige Realisierung der Einbettung mit dieser Winkelzuweisung, gdw.

1.
$$\sum_{i=0}^{d} \gamma_i = 2\pi, \ \forall 1 \le i \le d$$

2.
$$\alpha_i + \beta_i + \gamma_i = \pi, \ \forall 1 \le i \le d$$

$$3. \prod_{i=0}^{d} \frac{\sin \alpha_i}{\sin \beta_i} = 1$$

(⇒) Beweis:

1./2. gilt durch Definition

3. L_i ist die Länge bei Kante e_i zwischen den Winkeln β_i und $\alpha_{(i \mod d)+1}$

$$\Rightarrow \prod_{i=0}^{d} \frac{L_{(i \mod d)+1}}{L_i} = \frac{L_2}{L_1} \cdot \frac{L_3}{L_2} \cdot \dots \cdot \frac{L_1}{L_d} = 1$$

$$\Rightarrow \frac{L_{(i \mod d)+1}}{L_i} = \frac{\sin \alpha_{(i \mod d)+1}}{\sin \beta_{(i \mod d)+1}}$$

$$\Rightarrow \text{Bedingung 2 ist wahr}$$

(← (Konstruktion der Zeichnung mit den Winkeln)) Beweis:

- beliebiges L_1 wählen, Zeichnen der Kante $\{v, v_2\}$
- Berechnen von L_{i+1} mit L_i $(i=1,\ldots,d-1)$ durch $L_{i+1}=L_i\cdot\frac{\sin\alpha_{i+1}}{\sin\beta_{i+1}}$. Zeichnen der Kante $\{v,v_{(i-2\mod d)}\}$ mit γ_{i+1} am Knoten v
- \Rightarrow (Bedingung 1/2)
 - ▶ Konstruktion eines neuen Dreiecks mit vorgeschriebenen Winkeln, die $\{v, v_{i+1}\}$ gemeinsam haben mit dem vorherigen Dreieck, ist gültig
 - ▶ Dreiecke überlappen sich nicht
 - \Rightarrow durch Konstruktion erhalten wir $L_d = L_1 \cdot \prod_{i=2}^d \frac{\sin \alpha_i}{\sin \beta_i}$
- \Rightarrow (Bedingung 3)

$$\blacktriangleright \ \frac{L_1}{L_d} = \frac{\sin \alpha_1}{\sin \beta_1}$$

- \blacktriangleright somit erfüllen L_1 und L_d das Dreieck
- ⇒ dadurch, dass alle Winkel positiv sind, ist die Zeichnung planar

3 Knickminimierung in orthogonalen Layouts

Das Knickminimierungsproblem (allgemein) ist \mathcal{NP} -schwer. orthogonale Beschreibung (H) keine Kantenlängen, keine Positionen für Knoten eine Folge von Facettenbeschreibungen H(f), $f \in \mathcal{F}$ mit Elementen (e, δ, x) definiert durch

- δ eine Folge aus $\{0,1\}$, 0 kodiert einen $\frac{\pi}{2}$ Knick, 1 einen $\frac{3\pi}{2}$
- $x ext{ ein Winkel aus } \{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\}$

H ist korrekt, falls

- **O1** Es gibt eine planare Einbettung, die H entspricht
- **O2** $(e, \delta_1, x_1), (e, \delta_2, x_2)$ \Rightarrow δ_2 entsteht aus δ_1 durch kippen jedes einzelnen Bits von δ_1 und umkehren der Folge δ_1

O3
$$|\delta|_0$$
, $|\delta|_1$ sind die Anzahl der $0/1$ in δ für $r = (e, \delta, x)$ gilt $C(r) = |\delta|_0 - |\delta|_1 + (2 - \frac{2x}{\pi})$

$$\Rightarrow \sum_{r \in H(f)} C(r) = \begin{cases} 4 & f \in \mathcal{F} \setminus \{f_0\} \\ -4 & f = f_0 \end{cases}$$

04 $\forall v \in V$ ist die Summe der Winkel bei v gleich 2π

Beispiel (orthogonale Beschreibung):

$$f_0 : (e_1, 11, \frac{\pi}{2}), (e_5, 111, \frac{3\pi}{2}), \\ (e_4, \emptyset, \pi), (e_3, \emptyset, \pi), (e_2, \emptyset, \frac{\pi}{2})$$

$$f_1 : (e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi)$$

$$f_1$$
: $(e_1, 00, \frac{3\pi}{2}), (e_2, \emptyset, \frac{\pi}{2}), (e_6, 00, \pi)$

$$f_2$$
: $(e_5,000,\frac{\pi}{2}),(e_6,11,\frac{\pi}{2}),$
 $(e_3,\emptyset,\pi),(e_4,\emptyset,\frac{\pi}{2})$

orthogonales Layout feste Positionen und somit auch Kantenlängen für alle Teile des Graphen

3.1 Knickminimierung mit vorgegebener Einbettung

$$G = (V, E), \mathcal{F}, f_0$$

$$Minimierung \ der \ Knickzahl \ (1.Schritt)$$
orhtogonale Beschreibung
$$Kompaktierung \ (2.Schritt)$$
orhtogonales Layout

3.1.1 Schritt 1: orthogonale Beschreibung

Definition des Flussnetzwerks N(G) = ((W, A), l, u, b, cost)

$$W = V \cup \mathcal{F}$$

$$A = \{(v, f) \in V \times \mathcal{F}, v \text{ inzident zu } f\}$$

$$\cup \{(f, g) \in \mathcal{F}, f \text{ und } g \text{ haben gemeinsame Kante}\}$$

$$b(v) = 4\frac{\pi}{2} \Rightarrow 4, \forall v \in V$$

$$b(f) = -2(d_G(f) - 2)\frac{\pi}{2} \Rightarrow -2(d_G(f) - 2), \forall f \in \mathcal{F} \setminus \{f_0\}$$

$$b(f_0) = -2(d_G(f) + 2)\frac{\pi}{2} \Rightarrow -2(d_G(f) + 2)$$

$$l(v, f) = 1, l(f, g) = 0$$

 $u(v, f) = 4, u(f, g) = \infty$
 $cost(v, f) = 0, cost(f, g) = 1$

Eine Flusseinheit entspricht einem $\frac{\pi}{2}\text{-Winkel/-Knick}$

- N(G) = ((W, A), l, u, b, cost) ist ein Flussnetzwerk (Beweis durch Satz von Euler)
- zu jedem planaren Graph mit $\Delta(G) \leq 4$ und kombinatorischer Einbettung existiert genau eine orthogonale Beschreibung mit k Knicken, wenn es einen Fluss x in N(G) mit k Kosten gibt

Beweis:

TODO

3.1.2 Schritt 2: Kompaktierung

- betrachten den Spezialfall mit der Eigenschaft, dass alls Facetten in H(G) Rechtecke sind
- zur Konstruktion wird ein Flussnetzwerk verwendet
- für den Spezialfall kann garantiert werden: das konstruierten Layout hat:
 - 1. minimale Gesamtkantenlänge
 - 2. minimale Fläche
- Konstruktion von zwei Flussnetzwerken (N_{ver}, N_{hor}) mit $cost(a) = 1, l(a) = 1, u(a) = \infty$

$$N_{ver} = ((W_{ver}, A_{ver}), s, t \in W_{ver}, l, u, cost)$$

$$N_{hor} = ((W_{hor}, A_{hor}), s, t \in W_{hor}, l, u, cost)$$

• Beobachtungen:

- alle Knicke liegen auf f_0
- wenn gegenüberliegende Seiten die Gleiche Länge zugewiesen bekommen, kann ein korrektes Layout konstruiert werden
- für ganzzahlige Kantenbewertung x_{ver}, x_{hor} mit minimalen Kosten im entsprechenden Flussnetzwerk und orthogonaler Beschreibung, die nur aus Rechtecken besteht, gilt:
 - 1. x_{ver}, x_{hor} ist ein Fluss gdw. die Kantenlängen ein korrektes Layout induzieren **Begründung:** Äquivalenz der Flusserhaltungsbedingung und Layouteigenschaft (gegenüberliegende Seiten haben gleiche Länge)
 - 2. der Wert von x_{ver} entspricht der Höhe des Layouts, x_{hor} entspricht der Breite des Layouts **Begründung:** durch Konstruktion
 - 3. $x_{hor} + xver$ entspricht der Gesamtkantenlänge des Layouts **Begründung:** durch Konstruktion
- \Rightarrow Flüsse mit minimalen ganzzahligen Kosten induzieren ein planares, orthogonales Gitterlayout mit minimaler Fläche und Gesamtkantenlänge

3.1.3 Erweiterung auf den allgemeinen Fall

rectangular refinement von H(G) ist eine orthogonale Beschreibung H'(G') von G mit

- G' ist entstanden aus einer Sequenz der folgenden Operationen:
 - Hinzufügen eines isolierten Knotens
 - Hinzufügen von Knoten auf Kanten
 - Hinzufügen von Kanten
- die "Teilbeschreibung"durch H' von G ist die gleiche wie H(G)
- die Facetten von H'(G') sind Rechtecke
- \Rightarrow man erhält eine Zeichnung von G mithilfe einer Zeichnung von G' (ohne hinzugefügte Elemente)
- 1. Realisierung: G' = G, H'(G') = H(G)
 - Einfügen eines Knotens auf jedem Knick von $\mathcal{H}(G)$
 - Aktualisieren von H'(G')

2. Facetten haben beliebige orthogonale Form:

1. innere Facetten:

Ablauf:

a) Realisierung für jede Facette $f \in \mathcal{F}$

b) für jede Kante e in H'(f) wird folgendes definiert:

 $\operatorname{cont}(e)$: erste Kante e' in H'(f) nach e, für die gilt: Summe der turn -Werte aller Kanten

von inklusiv e bis exklusiv e' gleich 1 ist

- c) für e mit turn(e) = -1 wird ein neuer Knoten project(e) auf front(e) sowie eine neue geradlinige Kante estend(e) = (corner(e), project(e)) eingefügt, Erweiterung von H'(G') entsprechend
- d) falls $front(e) = front(e') \Rightarrow project(e)$ nach project(e') eingefügt

2. **äußere Facette:** um G wird ein minimales Rechteck gelegt, auf das die Knicke der äußeren Facette projiziert werden

Bemerkungen:

- k ist die Anzahl der Knicke in H(G)
 - $\Rightarrow H'(G')$ hat $\mathcal{O}(n+k)$ Knoten
 - $\Rightarrow H'(G')$ kann in $\mathcal{O}(n+k)$ konstruiert werden
- die Flussnetzwerke zu H'(G') garantieren **nicht** mehr minimale Gesamtkantenlänge und minimale Fläche
- mit einem geeigneten Algorithmus für die Flussberechnung (minimale Kosten) kann zu planaren Graphen mit kombinatorischer Einbettung ein orthogonales Layout mit minimaler Knickzahl in $\mathcal{O}(n^{\frac{7}{4}} \cdot \log n)$ berechnet werden

Erweiterung auf allgemeine Graphen:

ohne Gradbeschränkung (als Beispiel):

LAGEN-LAYOUTS (LAYERED LAYOUT)

Es sollen gerichtete hierarchische Graphen so dargestellt werden, dass die Knoten auf unterschiedlichen Lagen liegen. Es sollen im End-Layout folgende Bedingungen gelten:

- 1. möglichst alle Kanten sind aufwärts gerichtet
- 2. möglichst wenig Kanten erzeugen Kreuzungen
- 3. alle Kanten sind möglichst vertikal und geradlinig dargestellt
- 4. alle Knoten sind gleichmäßig verteilt und lange Kanten werden vermieden

Algorithmus zur Konstruktion eines Lagen-Layouts:

- Schritt 1: Kreise entfernen Finden einer minimalen Anzahl an Kanten, durch deren Entfernung der Graph azyklisch ist, und drehe ihre Richtung um
- Schritt 2: Lagenzuordnung Berechnung einer guten Zuordnung der Knoten auf Lagen (y-Koordinaten), sodass alle Kanten aufwärts gerichtet sind. Alle Kanten, die mindestens eine Lage überqueren werden ersetzt durch einen Pfad mit Dummy-Knoten auf jeder kreuzenden Lage.
- **Schritt 3: Kreuzungsreduktion** Berechnung einer Anordnung für jede Lage, für welche die Anzahl der entstehenden Kreuzungen minimal ist
- Schritt 4: Knoten-/Kantenpositionierung (horizontale Koordinatenzuweisung) Berechnung der x-Koordinaten der Knoten (& Dummy-Knoten), so dass keine Überlappungen entstehen. Einfügen der Kanten geradlinig und Entfernen der Dummy-Knoten. Wiederherstellen der ursprünglichen Kantenrichtungen

Beispiel (Sugiyma Framework):

1 Entfernen von Kreisen

maximal azyklischer Teilgraph

- ist \mathcal{NP} -schwer
- äquivalente Formulierungen:

Minumum Feedback Arc Set gesucht ist eine Teilmenge $A_f \subseteq A$ mit $|A_f|$ ist minimal, sodass $D_f = (V, A \setminus A_f)$ azyklisch ist

Lineare Anordnung gesucht ist eine Anordnung der Knoten, sodass für $\sigma: V \to \{1, \dots, |V|\}$ für jede Kante $(u, v) \in A\sigma(u) > \sigma(v)$ minimiert wird

die oberen Kanten sollen minimiert werden

• Bezeichnungen:

$$\begin{array}{lll} \delta^+(v) &=& \{(v,u):(v,u)\in A\}\\ \delta^-(v) &=& \{(u,v):(u,v)\in A\}\\ \delta(v) &=& \delta^-(v)\cup \delta^+(v) & \text{(Nachbarschaft von } v)\\ |\delta^+(v)| &=& \deg^+(v) & \text{(Ausgangsgrad von } v)\\ |\delta^-(v)| &=& \deg^-(v) & \text{(Eingangsgrad von } v) \end{array}$$

- ein naiver Ansatz zur Konstruktion eines kreisfreien Graphen ist der Greedy-Algorithmus (Vergleich Algorithmus 6. mit Laufzeit $\mathcal{O}(n+m)$ mit $|A'| \geq \frac{1}{2}|A|$)
- bessere Lösung ist der verbesserter Greedy-Algorithmus (Vergleich Algorithmus 7. mit Laufzeit $\mathcal{O}(n+m)$ (mit 2n-3 Buckets für deg^+-deg^- und der maximalen Anzahl an behaltenen Kanten $(|A'| \geq \frac{1}{2}|A| + \frac{1}{6}|V|)$)

2 Lagenzuordnung

Für einen DAG (gerichteter azyklischer Graph) soll eine zulässige Partition der Knotenmenge auf Lagen L_y gefunden werden (alle positiven ganzzahligen y-Koordinaten für alle $v \in V$) mit $y(u) < y(v), \forall (u, v) \in A$. Bemerkung (Optimierungskriterium):

- kompaktes layering
 - Höhe = # Lagen h
 - Breite = $\max |L_i|$, $0 \le i \le h$
- "richtig": Kanten gehen nur über eine Lage, falls nicht werden Dummy-Knoten eingefügt
- Minimierung der Anzahl an Dummy-Knoten

Minimierung der Höhe: hierfür wird ein longest-path-layering verwendet:

weise v der Ebene L_p zu, falls p die Länge des längsten Pfades von einer Quelle ist (in Linearzeit für DAGs, Vergleich Algorithmus 8.)

Minimierung der Höhe bei vorgegebener Breite: ist \mathcal{NP} -schwer (auch mit Einheitsbearbeitungsdauern), äquivalent zu $PRE - SCHED_B\{<\}$

2.1 Scheduling mit Vorgängerbedingung

Aus n Jobs J_1, \ldots, J_n mit Bearbeitungsdauern p_1, \ldots, p_n und der Bedingung $J_i < J_k$ (J_i muss vor J_k abgeschlossen werden) mit B gleichen Maschinen, soll ein Schedule der Jobs auf den Maschinen gefunden werden, der die Vorgängerbedingungen erfüllt und minimale Bearbeitungsdauer hat.

Es gilt
$$PRE - SCHED_2\{<\} \in \mathcal{P}$$

Zu entscheiden, ob es zu n Jobs und $T \in \mathbb{N}$ ein Scheduling auf B Maschinen gibt mit $T_i \leq T, \forall 1 \leq i \leq n$ ist \mathcal{NP} -vollständig.

Beweis:

Es wird gezeigt, dass $QLIQUE \propto PRE - SCHED_B \{ < 3 \}$

CLIQUE Gibt es für einen Graphen G=(V,E) und $K\in\mathbb{N},\ K\leq |V|$ einen vollständigen Teilgraphen mit mindestens K Knoten?

Definitionen für das Bilden einer Instanz von CLIQUE für $PRE - SCHED_B\{< T\}$ mit gegebenen G, K:

•
$$K' = |V| - K$$

•
$$L = K \frac{K-1}{2}$$

•
$$L' = |E| - L$$

•
$$B = \max\{K, L + K', L'\} + 1$$

• Dummy-Jobs mit
$$X_i < Y_r < Z_s$$
:

$$-X_j, \ j=1,\ldots,B-K$$

$$-Y_r, r = 1, \dots, B - L - K'$$

$$- Z_s, \ s = 1, \dots, B - L'$$

Für jeden Knoten v wird ein Job J_v eingeführt, sowie für jede Kante e ein Job J_e .

 \Rightarrow Gesamtzahl der Jobs n = 3B.

 $\Rightarrow PRE - SCHED_B\{<3\}$ muss alle Slots füllen, bei 3 Maschinen gilt (falls es ein Clique der Größe K gibt):

- im ersten Zeitslot (von oben nach unten) stehen alle CLIQUE-Knoten, aufgefüllt mit Dummy-Jobs (K+(B-K)=B)
- im zweiten Zeitslot stehen (von oben nach unten) alle CLIQUE-Kanten, dann alle übrigen Knoten, aufgefüllt mit Dummy-Jobs (L + (B L K') + K' = B)
- im dritten Zeitslot stehen (von oben nach unten) alle übrigen Kanten, aufgefüllt mit Dummy-Jobs (L'+B-L'=B)

Wenn keine Clique der Größe K existiert, gilt:

- in jedem Schedule müssen B Jobs in der ersten Zeiteinheit ausgeführt werden
- K davon müssen Knoten-Jobs sein
- \Rightarrow die existieren aber nicht

Bemerkung: mit der minimalen Anzahl der Dummy-Knoten kann es effizient durchgeführt werden, aber die Kombination von minimale Höhe und minimaler Anzahl an Dummy Knoten ist auch in \mathcal{NP}

Ist h_{OPT} minimale Höhe eines Layerings mit Breite B, dann erfüllt die resultierende Höhe aus LIST - SCHEDULING (Jobs stehen in einer Liste, wenn eine Maschine frei ist, wird der erste Job aus der Liste abgearbeitet)

$$h \le (2 - \frac{1}{B})h_{OPT}$$

$$\Rightarrow$$
 ", $(2 - \frac{1}{B})$ "-Approximation

3 Kreuzungsminimierung

GLOBALE UND LOKALE OPTIMIERUNG

ALGORITHMEN

Algorithmus 1: Radiales Baumlayout

```
Input: Binärbaum T = (V, E) mit Wurzel R \in V
Data: Anzahl n_v der Knoten in Teilbaum T(v), v \in V
Output: Polarkoordinaten p_v = (d_v, \alpha_v), v \in V
\textbf{Function} \ \texttt{postorder}(\textit{vertex} \ \textit{v})
     n_v \leftarrow 1;
     foreach Nachfolger w von v do
          Postorder(w);
       \lfloor n_v \leftarrow n_v + n_w;
Function preorder (vertex v, double t, \alpha_{min}, \alpha_{max})
     d_v \leftarrow t;
     \alpha_v \leftarrow \frac{\alpha_{min} + \alpha_{max}}{2};
     if t > 0 then
          \alpha_{min} \leftarrow \max\{\alpha_{min}, \alpha_v - \arccos\frac{t}{t+1}\}; 
\alpha_{max} \leftarrow \min\{\alpha_{max}, \alpha_v + \arccos\frac{t}{t+1}\};
     left \leftarrow \alpha_{min};
     {\bf foreach}\ {\it Nachfolger}\ w\ {\it von}\ v\ {\bf do}
           right \leftarrow left + \frac{n_w}{n_v - 1} \cdot (\alpha_{max} - \alpha_{min});
PREORDER(w, t + 1, left, right);
       \lfloor left \leftarrow right;
begin
     Postorder(r);
     PREORDER(r, 0, 0, 2\pi);
```

Algorithmus 2: BICOMP

```
Input: ungerichteter Graph G = (V, E)
\mathbf{Data}: Zähler i für DFS-Nummerierung der Knoten
Stack S für nicht klassifizierte Kanten
Stack C der Repräsentaten auf aktuellem DFS-Weg
\mathbf{Output}: DFS-Nummern (Knoten, Kanten), Blockrepräsentant BICOMP zu jeder Kante
Function dfs(vertex v)
   i \leftarrow i + 1
   DFS[v] \leftarrow i
   while \exists unnumerierte Kante e = \{v, w\} do
       DFS[e] \leftarrow DFS[v];
       Push(e, S);
       if w unnummeriert then
           Push(e, C);
           DFS(w);
           [Backtracking]
           if e = top(C) then
              repeat
               e' = e;
              until e' \leftarrow \text{Pop}(S);
              Pop(C);
       else
           while DFS[top(C)] > DFS[w] do
            \mid \operatorname{Pop}(C);
begin
   i \leftarrow 0;
   for
each s \in V do
       if s unnumeriert then
          DFS(s);
```

Algorithmus 3: st-Ordnung

```
Input: ungerichteter Grpah G = (V, E), Kante \{s, t\} \in E
Data: ausgehende Baumkanten CHILDEDGE für Knoten
Vorgängerknoten PARENT für Knoten
Pfad P (aktuelles Ohr)
abhängige Nichtbaumkanten D von Baumkanten
Output: Liste L der Knoten in Bicomp. von \{s, t\} (in der st-Ordnung)
Function process_ears(Baumkante\ w \rightarrow x)
    foreach v \hookrightarrow w \in D[w \to x] do
       u \leftarrow v; while u \notin L do
           u \leftarrow PARENT[u];
                                                              // Pfad zurückgehen, bis zu altem Ohr,
                                                                    // das schon in L(orientiert) ist
       P \leftarrow (u \stackrel{*}{\rightarrow} v \hookrightarrow w);
       if w \to x von w nach x (oder x nach w) orientiert ist then
           orientiere P von w nach x (oder x nach w);
           füge inneren Knoten von P unmittelbar vor (oder hinter) u in L ein;
       foreach Baumkante\ w' \rightarrow x'\ von\ P\ do
        | PROCESS_EARS(w' \to x')
   D[\{w,x\}] \leftarrow \emptyset;
Function dfs(vertex v)
   i \leftarrow i + 1
    DFS[v] \leftarrow i
   while \exists unnumerierte Kante e = \{v, w\} do
       DFS[e] \leftarrow DFS[v];
       if w unnummeriert then
           CHILDEDGE[v] \leftarrow e;
           PARENT[w] \leftarrow v;
           DFS(w);
       else
           \{w, x\} \leftarrow CHILDEDGE[w];
           D[\{w, x\}] \leftarrow D[\{w, x\}] \cup \{e\};
           if x \in L then
            PROCESS_EARS(w \to x);
begin
   Initialisieren von L mit s \to t;
   DFS[s] \leftarrow 1;
   i \leftarrow 1;
    DFS[\{s,t\}] \leftarrow 1;
    CHILDEDGE[s] \leftarrow \{s, t\};
   DFS(t);
```

Algorithmus 4: kanonische Ordnung

```
Input: triangulierter planarer Graph G = (V, E) mit C_0(G) = \{v_1, v_2, v_3\}
Data: mark(v)= true, falls v zu \pi hinzugefügt wurde
\operatorname{out}(v) = \operatorname{true}, \text{ falls } v \in C_0(G_k)
\operatorname{chords}(v) = \# \operatorname{der} \operatorname{chords} \operatorname{von} C_0(G_k), \operatorname{dessen} \operatorname{Endknoten} v \operatorname{ist}
Output: kanonische Ordnung \pi = (v_1, v_2, \dots, v_n)
begin
     for all the v \in V do
          chords(v) \leftarrow 0;
          out(v) \leftarrow \text{false};
         mark(v) \leftarrow false;
     out(v_1), out(v_2), out(v_3) \leftarrow \text{true}; \text{ for } k = 3, \dots, 3 \text{ do}
          wähle v \neq v_1, v_2 mit mark(v) = false, out(v) = false, chords(v) = 0;
          v_k \leftarrow v;
          mark(v) \leftarrow true;
          (w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2) \leftarrow C_0(G_{k-1});
          (w_p, \ldots, w_q) \leftarrow \text{unmarkierte Nachbarn von } v_k;
          for i = p, \ldots, q do
               out(w_i) \leftarrow \text{true};
               Update der chord-Zähler für w_i und alle seine Nachbarn;
```

Algorithmus 5: shift-Methode

```
Input: triangulierter palanerer Graph G = (V, E), kanonische Ordnung \pi = (v_1, \dots, v_n)
\mathbf{Data}: Liste L(v) mit allen Knoten, die mit dem Knoten v verschoben werden müssen
Output: planare, geradlinige Gitterzeichnung induziert durch die Koordinaten P(v) = (x(v), y(v)) für
            alle v \in V
begin
    P(v_1) = (0,0);
    P(v_2) = (2,0);
    P(v_3) = (1,1);
    L(v_1) = \{v_i\} \text{ für } i = 1, 2, 3;
    for k = 4, \ldots, n do
        (w_1 = v_1, w_2, \dots, w_{t-1}, w_t = v_2) \leftarrow C_0(G_{k-1});
        (w_p, \ldots, w_q) \leftarrow \text{Nachbarn von } v_k \text{ auf } C_0(G_{k-1});
        for all the v \in \bigcup_{i=p+1}^{q-1} L(w_i) do
         x(v) \leftarrow x(v) + 1;
                                                                           // Verschiebung um 1 nach rechts
        // Verschiebung um 2 nach rechts
        P(v_k) \leftarrow \mu(P(w_p), P(w_q)); \qquad // \ \mu(P_1, P_2) = (\frac{1}{2}(x_1 - y_1 + x_2 + y_2), \frac{1}{2}(-x_1 + y_1 + x_2 + y_2))
       L(v_k) \leftarrow \{v_k\} \cup \bigcup_{i=p+1}^{q-1} L(w_i);
```

Algorithmus 6: Greedy-Algorithmus

```
Input: gerichteter Graph D = (V, A)

Data: A' neue Kantenmenge

Output: kreisfreier gerichteter Graph

begin

A' \leftarrow \emptyset;

foreach v \in V do

if deg^+(v) \ge deg^-(v) then

A' \leftarrow A' \cup \delta^+(v);

else

A' \leftarrow A' \cup \delta^-(v);

löschen von v und \delta(v) aus D;
```

Algorithmus 7: verbesserter Greedy-Algorithmus

Input: gerichteter Graph D = (V, A)

```
Data: A' neue Kantenmenge
Output: kreisfreier gerichteter Graph
begin

| while V \neq \emptyset do
| while \exists source v \in V do
| A' \leftarrow A' \cup \delta^+(v);
| löschen von v und \delta(v) aus D;

| while \exists target v \in V do
| A' \leftarrow A' \cup \delta^-(v);
| löschen von v und \delta(v) aus D;

Löschen aller isolierten Knoten aus V;
| if V \neq \emptyset then
| Let v \in V mit deg^+(v) - deg^-(v) maximal;
| A' \leftarrow A' \cup \delta^+(v);
| löschen von v und \delta(v) aus D;
```

Algorithmus 8: Longest Path Layering

```
Input: kreisfreier gerichteter Graph D = (V, A) Output: Longest path layering von D Data: V_{source}: die Menge aller aktuellen source-Knoten (d(v) = 0) d(v) = deg^-(v) für alle v \in V L_i: Liste aller Knoten auf dem Layer i begin  \begin{array}{c|c} i \leftarrow 0; \\ \textbf{while } V \neq \emptyset \textbf{ do} \\ \hline & \textbf{foreach } v \in V_{source} \textbf{ do} \\ \hline & \textbf{Zuweisung von } v \textbf{ zu } L_i; \\ \hline & \textbf{foreach } (v, w) \in A \textbf{ do} \\ \hline & Liste aller Knoten auf dem Layer <math>i i \leftarrow i + 1; i \leftarrow i + 1;
```