TSF TASK 2 - GRIP MARCH'21

ADITYA AMBWANI

Prediction Using Unsupervised ML

Aim:- From the given 'Iris' dataset, predict the optimum number of clusters and represent it visually.

The Sparks Foundation GRIP MARCH'21

Step 1 - Importing Libraries

```
import pandas as pan
import numpy as ny
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.datasets import load_iris
from sklearn.cluster import KMeans
import warnings
warnings.filterwarnings('ignore')
```

Step 2 - Load the iris dataset

```
In [2]: data = load_iris()
    data_x_df= pan.DataFrame(ny.column_stack((data.data, data.target)), columns = data.feat
    data_x_df['label'] = data_x_df.target.replace(dict(enumerate(data.target_names)))
    data_x_df.head()
```

Out[2]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	label
	0	5.1	3.5	1.4	0.2	0.0	setosa
	1	4.9	3.0	1.4	0.2	0.0	setosa
	2	4.7	3.2	1.3	0.2	0.0	setosa
	3	4.6	3.1	1.5	0.2	0.0	setosa
	4	5.0	3.6	1.4	0.2	0.0	setosa

```
In [3]: # Viewing the Last 5 rows of our dataset
data_x_df.tail()
```

Out[3]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	label
	145	6.7	3.0	5.2	2.3	2.0	virginica
	146	6.3	2.5	5.0	1.9	2.0	virginica
	147	6.5	3.0	5.2	2.0	2.0	virginica
	148	6.2	3.4	5.4	2.3	2.0	virginica

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	label
149	5.9	3.0	5.1	1.8	2.0	virginica

Step 3 - Calulating number of rows and coloumns

```
In [4]: data_x_df.shape
```

Out[4]: (150, 6)

Step 4 - Checking for any null value in our dataset

```
In [5]: data_x_df.isnull()
```

Out[5]:	9	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	label
	0	False	False	False	False	False	False
	1	False	False	False	False	False	False
	2	False	False	False	False	False	False
	3	False	False	False	False	False	False
	4	False	False	False	False	False	False
	•••						
	145	False	False	False	False	False	False
	146	False	False	False	False	False	False
	147	False	False	False	False	False	False
	148	False	False	False	False	False	False
	149	False	False	False	False	False	False

150 rows × 6 columns

Step 5 - Checking for some more information on our dataset

```
data_x_df.info()
In [6]:
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 150 entries, 0 to 149
        Data columns (total 6 columns):
         #
             Column
                                 Non-Null Count Dtype
             sepal length (cm)
         0
                                                  float64
                                 150 non-null
         1
             sepal width (cm)
                                 150 non-null
                                                  float64
         2
             petal length (cm)
                                 150 non-null
                                                  float64
         3
             petal width (cm)
                                 150 non-null
                                                 float64
                                 150 non-null
         4
             target
                                                 float64
             label
                                 150 non-null
                                                 object
        dtypes: float64(5), object(1)
        memory usage: 7.2+ KB
       Step 6 - Using seaborn to plot the pair plot
         sns.pairplot(data_x_df, hue='label')
In [7]:
```

Out[7]: <seaborn.axisgrid.PairGrid at 0xdb55cbe190>

Step 7 - Plotting te correlation matrix

In [8]: sns.heatmap(data_x_df.corr(),annot=True,fmt='.1g',cmap='coolwarm',vmin=-1,vmax=1,linewi
Out[8]: <AxesSubplot:>

Step 8 - 'ELBOW' method to find optimum number of clusters

[681.370599999996, 152.34795176035797, 78.851441426146, 57.25600931571815, 46.446182051 28204, 39.03998724608725, 34.29822966507179, 30.014398496240617, 28.03690635345049, 26.5 34529220779234, 24.017409798327492, 22.611814560232254, 21.29261112885971, 20.2977500177 4859, 19.211721918432456, 18.147461141799383, 17.35341513878279, 16.44187692862693, 15.6 28506387403455, 14.667646358543427]

Step 9 - Plotting the elbow graph

```
In [10]: plt.plot(range(1, 21), wcs, color = 'r')
    plt.title('Elbow Graph')
    plt.xlabel('Number of Clusters')
    plt.ylabel('wcs')
    plt.annotate('Elbow', xytext=(6,200), xy=(3,79), arrowprops={'facecolor':'green'})
    plt.grid()
    plt.show()
```


Elbow occurs where the line graph bends and wcs does not decrease significantly with every iteration. Elbow occurs at number of clusters = 3 which is equal to optimum number of clusters.

Step 10 - Creating kmeans classifier

```
In [11]:
        model = KMeans(n_clusters = 3, init = 'k-means++',
                     max iter = 250, n init = 15, random state = 0)
        y = model.fit predict(x)
        print(y)
       0\;0\;2\;2\;0\;0\;0\;0\;2\;0\;2\;0\;2\;0\;0\;0\;2\;0\;0\;0\;0\;2\;0\;0\;0\;2\;0\;0\;0\;2\;0
        0 21
        # Plotting the three clusters of first two columns(sepal length, sepal width)
In [12]:
        plt.scatter(x[y == 0, 0], x[y == 0, 1],
                  s = 50, c = 'blue', label = 'Iris-setosa')
        plt.scatter(x[y == 1, 0], x[y == 1, 1],
                  s = 50, c = 'orange', label = 'Iris-versicolour')
        plt.scatter(x[y == 2, 0], x[y == 2, 1],
                  s = 50, c = 'green', label = 'Iris-virginica')
        # Plotting the centroids of each clusters
        plt.scatter(model.cluster centers [:, 0], model.cluster centers [:,1],
                  s = 100, c = 'red', label = 'Centroids')
        plt.legend(loc=1)
        plt.grid()
```


In []: