

郑浩杰 20170730

目录

- ◆ H6方案设计介绍
- ◆ 原型机测试报告
- ◆ 硬件调试流程,测试、生产工具介绍
- ◆物料支持情况、设计模板情况
- ◆客户案审核流程

目录

- ◆ H6方案设计
- ◆原型机测试报告
- ◆ 硬件调试流程,测试、生产工具介绍
- ◆物料支持情况、设计模板情况
- ◆客户案审核流程

✓ 盒子标准运用框图:

BLOCK

- ✓ H6: 高集成度,接口丰富:
 - ◆CPU:四核A53,支持 DVFS 动态调频调压
 - ◆GPU: Mali-T720MP2, 支持IDLE功能/动态调频调压
 - ◆接口:
 - ◆HDMI2.0A,支持4K@60Hz,支持HDCP2.2
 - ◆USB3.0,最高支持super-speed 5G bps
 - ◆USB2.0 x 2 , 最高支持high-speed 480M
 - ◆PCIE2.0,支持1 GEN2(5G bps) lane
 - ◆以太网 , 支持10/100/1000M传输速率 和 RMII/MII PHY接口

- ✓ H6:高度集成,接口丰富
 - ◆CVBS: 支持NTSC 和 PAL
 - ◆CSI: 最高支持1080P@60Hz
 - ◆RGB:最高支持 1920*1080@60Hz
 - ◆其他接口:SPI x 2, TWI x 4, SMHC x 3,
 - ◆TSC x 4 , UART x 5 , 12S x 2 , PWM x 2 ,
 - ◆Spdif x 1 , DMIC x 8 , MIC x 2 , Lineout x 1
 - \diamond Scr x 2 , IR x 1 , HSIC x 1

- ✓ PMIC 电源: AXP805, 支持5路DCDC 和 10路LDO
- ✓ 主要供电如下:
- ✓ CPU: DCDCA+DCDCB(驱动能力5A)
- ✓ GPU: DCDCC(驱动能力2.5A)
- ✓ SYS: DCDCD(驱动能力1.5A)
- ✓ DRAM: DCDCE(驱动能力1.5A)
- ✓ 注意:
- ✓ 1: CPU GPU SYS 由于供电电流较大,DCDC反馈点应该在主控底部采样。

✓ H6 主要模块供电框图:

- ✓ GPIO复用
- ✓ 目前H6 有7组GPIO,如下:
- ✓ PC(用于存储,如EMMC,NAND,NOR)
- ✓ PD(显示, TS, 1000M网,数学MIC, I2C等复用)
- ✓ PF (用于SD卡)
- ✓ PG(用于WIFI+BT)
- ✓ PH(普通IO口, I2S, smart卡)
- ✓ PL, PM (CPUS接口 待机时可控制)
- ✓ 注意: PC, PD不带中断功能。PF, PH IO电压固定为3.3V不可调。

- ✓ SMHC(SD/MMC host controller)
 - ◆SMHC0: 4-bit, SDR 50M, IQ支持3.3V,
 - ◆运用: CARD
 - ◆SMHC1: 4-bit, IO支持1.8V和 3.3V, 支持DDR SDR模式,应用: WIFI SDIO
 - ◆SMHC2: 8-bit, IO支持1.8V和3.3V,支持DDR SDR模式,应用:EMMC

- ✓ USB
 - ◆USB0 支持USB2.0 OTG USB1 支持USB3.0 HOST
 - ◆USB3 支持USB2.0 HOST
 - ◆限流IC的设计目的:防止USB设备对系统抽电过大,导致系统供电不稳定。
 - ◆注意:USB3.0设计中TX的查分走线必须添加隔直电

- ✓ USB
 - **◆**PCB上:
 - ◆1:走线按照90欧阻抗设计
 - ◆2:ESD器件靠近接口端摆放
 - ◆3:隔直电容靠近IC端摆放
 - ◆4:查分走线保证第二层参考 平面完整,走线尽可能包地。

- ✓ HDMI
 - ◆支持HDMI2.0a,设计电路如下:MOS电路是为了电平匹配。

- ✓ HDMI
 - **◆**PCB上:
 - ◆1:走线按照100欧阻抗设计
 - ◆2:差分对不要添加任何过孔
 - ◆3:ESD器件靠近HDMI座子摆放
 - ◆4:保证参考平面完整不被切割, 走线尽可能包地处理

✓ CVBS与音频

◆1:输出音频幅度如果想达到2V的话,需要添加运放电

路。

- ✓ CVBS与音频
 - **◆**PCB上:
 - ◆ 1: 音频走线和CVBS走线避免被其他电源走线,时钟走线干扰,最好能做到均包地处理。

- ✓ XX □
 - ◆1: H6 支持100M PHY,设计时注意TX/RX均要查分走线。
 - ◆2:电容封装不能小于1206,并且高压电容的耐压不能小于2KV。
 - ◆3:75欧电阻使用0805封装,在雷击时小封装可能会被烧 毁。
 - ◆4:走线和器件需要远离其它低压信号或器件,距离必须大于50mm+1/mm,下下下则雷击时容易出现串扰导致其它靠近器件损坏;

目录

- ◆ H6方案设计
- ◆ 测试情况,测试报告
- ◆ 硬件调试流程,测试、生产工具介绍
- ◆物料支持情况、设计模板情况
- ◆客户案审核流程

✓ 测试项目:

- ◆HDMI眼图
- ◆USB眼图
- ◆网口眼图
- ◆音频指标
- ◆CVBS指标
- **◆ESD&EMI**

✓ HDMI眼图 (4K60Hz):

✓ USB眼图 (USB2.0):

◆HDMI眼图[

✓ USB眼图(USB3.0):

◆HDMI眼图

✓ 网口眼图:

✓ 音频指标:

音频测试						
测试项			测试数据			
最大输出电平	输入信号	标准值(600Ω负载)	接600Ω负载时	结果	备注	
最大输出电平	0dBFS/1KHz	$2v \pm 0.2v$	2. 016V/2. 015V	PASS		
THD+N	1KHz/-8dBFS	≤1.5%	0.01%	PASS		
SNR	1KHz/-60dB	>70dB	85. 429dB/85. 388dB	PASS		
动态范围	10-20k-sweep-6dBFS	>80dB	86. 3dB	PASS		
串扰	R_1khz0dB_L_0data	≤-70dB	-82. 1dB	PASS		
	L_1khz0dB_R_0data	≪ −70dB	-82. 8dB	PASS		
幅频响应	20Hz—20kHz	+/-2 dB	-0.6dB	PASS		
	60Hz—18kHz	+/-1dB	-0. 4dB	PASS		

✓ CVBS指标:

Signal Name	Spec range	Test value	Test Result	Remark
视频输出幅度	700±25 (mVp-p)	708	PASS	
视频同步幅度	300±15 (mVp-p)	302	PASS	
色同步幅度	300±15 (mVp-p)			
亮度非线性	±5%	2.60%	PASS	
色度/亮度/增益差	±5%	0.70%	PASS	
色度/亮度/时延差	≤50ns	16.3	PASS	
《系数失真	≤4%	0.8	PASS	
短时间失真上下冲比例	≤20%			
短时间失真上下冲 <mark>时</mark> 间	≤300ns			
行前沿同步抖动	≤20ns	3	PASS	
副載波对行同步相位漂移	≤10 degree			
视频信噪比 (加权)	≥56dB	62.7	PASS	
观频信噪比(不加权)	≥52dB	56.2	PASS	
幅频响应特性	±0.5dB(≤4.8MHz)	0.4	PASS	
	0.5/-3dB(≥4.8MHz)	0/-0.5	PASS	
散分增益	≤5%	0.15	PASS	
散分相位	≤8degree	0.44	PASS	
色度信噪比 AM	≥50dB			
色度信噪比 PM	≥50dB			

✓ ESD&EMI :

◆ESD 接触放电 : +-4K

◆空气放电: +-8K

◆EMI 测试 (CCC&CE): PASS,余量至少 3db

*

目录

- ◆ H6方案设计
- ◆测试情况,测试报告
- ◆ 硬件调试流程,测试、生产工具介绍
- ◆物料支持情况、设计模板情况
- ◆客户案审核流程

✓ 硬件调试流程:

◆1:电源是否正常

◆2:晶振是否起振

◆3:复位信号是否一直被拉低

*

✓ 电源:

序号	名称	数值
1	VDD_CPU	0.9
2	VDD_GPU	0.9
3	VDD-SYS	0.9
3	VCC-DRAM	1.2
4	ALDO1	3.3
5	ALDO2	0
6	BLDO1	1.8
7	BLDO2	1.8
8	BLDO3	0
9	CLD01	3.3
10	CLDO2	0
11	CLDO3	0
12	VCC-5V	5

✓ 上电调试流程:

- ◆(1)确认焊接问题,是否有短路。
- ◆(2)确认PMU出来各路电压是否正确。
- ◆ (3)检查系统复位信号是否为高电平。系统复位信号有可能被拉低,导致系统无法启动。
- ◆ (4)检查24MHz晶振是否起振,最好通过示波器观察波形是否正确。
- ◆(5)通过插USB线连接PC看设备管理器能否识别到ID(无系统启动情况下),有系统时可在关机后按住UBOOT功能键再插入USB上电。

✓ 烧写调试流程:

- ✓ 烧写调试流程:
- ✓ (1) 若系统无固件,则可插入USB升级(USB0默认为固件下载接口);若系统已有固件,则可在系统断电后,按住UBOOT功能键,插入USB上电升级,将会进入升级界面。
- ✓ (2)升级时,若PhoenixSuit中出现右图提示框
- ✓ (3)接上串口,看打印,定位问题。
- ✓ 如 DDR int fail Atry emmc fail等

- ✓ 接口调试流程(HDMI):
- ✓ (1)对照原理图检查HDMI部分有没有错件漏件,开路短路虚焊, 并确认HDMI座是否焊接牢固。
- ✓ (2) 将HDMI头插到电视上,测试HDMI-5V电压是否在 4.8~5.3V之间, HHPD网络的电压在2V以上。
- ✓ (3) 用示波器测量差分信号单端的直流电位为3.3V±5%。
- ✓ (4)单端信号波幅满足400mV≤ Vswing≤600mV; 差分信号幅 度满足800mV≤ Vswing≤1200mV;
- ✓ (5)如果要得到更好的兼容性,请做HDMI的眼图测试,针对眼 图测试报告对PCB作相应改善。

- ✓ 接口调试流程(WIFI):
- ✓ (1) 如果使用USB WIFI首先检查USB走线,是否严格按照差分 走线要求,确保USB的DM、DP网络不能分叉,打开WIFI后测量 WIFI-VIO的电压是否为3.3V。
- ✓ (2)如果使用SDIO WIFI 还需测量晶振是否正常起振。
- ✓ (3)针对 homlet方案的不同WIFI天线选用要求如下:
- ✓ (4)如果使用铁壳、建议使用外置天线,如果是塑胶壳可以使用带馈线的PCB天线。
- ✓ WIFI天线匹配方法:到专业天线测试机构做天线匹配

- ✓ 接口调试流程(USB):
- ✓ (1)检查USB接口到板的连接性,排除接口损坏的原因。
- ✓ (2)检查USBx-DRVVBUS是否有电压输出。
- ✓ 如果有输出,请确认DM,DP的导通性。中间的电阻或者共模电感是否能有漏贴或者虚焊。
- ✓ 如果没有输出,请确认USB-5V是否有电压,USBx-DRVVBUS是 否被拉高,限流芯片是否虚焊或损坏。

- ✓ 接口调试流程(网口):
- ✓ (1) 确定百兆以太网供电VCC33-EPHY是否为3.3V。
- ✓ (2)确定以太网接口焊接没有虚焊和短路。
- ✓ (3)确定以太网接口焊接没有虚焊和短路。
- ✓ (4)确定芯片端EPHY-RTX接地6.04K电阻是否贴正确。

- ✓ 接口调试流程(Card):
- ✓ (1)检查卡的供电是否有电压(3.3V)。如果没电压,请检查 串接电阻是否过大(典型为2.2欧)或者漏焊或者虚焊。
- ✓ (2) 检查SDC0-CMD和SDC0-DET上拉电阻有没有虚焊或者漏焊。
- ✓ (3) 检查与data,cmd线并接的TVS管是否存在短路或负载电容过大,调试时可尝试直接去掉这些TVS管。
- ✓ (4)尝试调节与CLK串接电阻的阻值。

◆量产烧录工具

1.PhoenixUSBPRO

概述: PhoenixUSBPro是一款通过PC-USB将IMG下载到盒子主板的PC端工具。最高支持同时下载8台机器。

使用方法:《PhoenixUSBPro量产升级说明文档》中说明。

需要设备:PC机器(支持USB2.0, window XP SP3以上操作系统)

有源USB HUB(支持USB2.0,带载能力5A以上,推荐使用SSK系列)

USB线若干(50CM~150CM之间,带屏蔽)

注意事项:

工具第一次使用界面的 USB0-7需要和实际的USB 口有一个绑定的过程,第 一次烧录时只能每个口烧 录完成后再继续下一个口 的烧录。

2.PhoenixCard

概述: PhoenixCard是一款通过PC将IMG下载到SD卡, 然后通过SD卡

将IMG下载到盒子主板的PC端工具。

使用说明:详细请看《PhoenixCard使用说明》。

需要设备: PC一台(支持USB2.0, window XP SP3以上操作系统)

SD-USB转换器。(支持USB2.0)

SD卡若干(容量2GB以上, Class 4以上)

注意事项:

使用PhoenixCard时会 清除卡上的数据,操作前请 备份好卡上的重要数据

◆量产测试工具

1.DragonBoard (PCBA测试程序)

概述:板卡测试程序时基于Linux BSP + 2D可视化系统的测试程序,其原理是在Linxu层上通过加载 H6方案PCBA上的各个硬件模块驱动并调用其功能,来筛选SMT不良和物料不良。其目的主要为了减少加载安卓系统所损耗的时间,并减少工厂流水线上测试人员的重复性操作。需要工具:SD卡若干(容量2GB以上,Class 4以上)测试治具(包含需要测试各种模块)

◆维修工具

1 PhoenixSuit(单机USB升级工具)

概述:单机升级程序是通过PC-USB将IMG下载到盒子的PC端工具, 支持强制擦除Flash与显示软件版本功能。面向用户端与维修人 员。

使用说明:《PhoenixSuit使用说明文档》

需要工具:PC机器(支持USB2.0, window XP SP3以上操作系统)

USB线(50CM~150CM之间,带屏蔽)

注意事项:

PhoenixSuit不能与
PhoenixUSB Pro同时存在,
在使用PhoenixUSB Pro时
必须将PhoenixSuit退出。

目录

- ◆ H6方案设计
- ◆测试情况,测试报告
- ◆ 硬件调试流程,测试、生产工具介绍
- ◆物料支持情况、设计模板情况
- ◆ 客户案审核流程

存储物料支持情况

- ✓ DDR类型支持:
 - ◆DDR3, DDR4, DDR3L, LPDDR3, LPDDR2
 - ◆目前模板: ALL-4layers
 - ◆ DDR3&DDR3L: 2*16 4*16 4*8 频率933M
 - ◆ DDR4: 2*16 频率1066M
 - ◆ LPDDR3: 1*32 BGA178 频率933M

存储物料支持情况

- ✓ DDR物料支持情况:
- ✓ 目前支持一共8家主流厂商、共16颗物料
- ✓ EMMC物料支持情况:
- ✓ 目前支持一共15家主流厂商,共90颗物料
- ✓ NAND物料支持情况:
- ✓ 目前支持一共13家主流厂商,共84颗物 料

✓ DDR模板大体情况:

H6 DDR模板概况				
模板	DDR3&DDR3L		DDR4	LPDDR3
颗粒数 量	2*16	4*16	2*16	1*32
频率	933M	933M	1066M	912M
PCB层数	4	4	4	4
面积	3. 3*3. 7	2. 8*3. 9	3. 6*4. 0	2. 1*3. 6

存储物料支持情况

- ✓ DDR不同模板设计时,电源注意事项:
 - **◆**DDR3 :
 - ◆VDD18-DRAM使用供给主控
 - **◆**DDR4:
 - ◆VDD18-DRAM使用供给主控
 - ◆VDD25-DRAM供给DDR4颗粒,挂在ALDO3上面
 - ◆LPDDR3:(注意两路1V8的供电不能连接在一起)
 - ◆VDD18-DRAM使用供给主控
 - ◆VDD18-LPDDR3供给LPDDR3颗粒,挂在RTC上面

目录

- ◆ H6方案设计
- ◆测试情况,测试报告
- ◆ 硬件调试流程,测试、生产工具介绍
- ◆物料支持情况、设计模板情况
- ◆客户案审核流程

客户案审核流程

- ✓ 原理图,PCB审核流程和注意事项:
 - ◆1:原理图:应注明修改地方或者提供changelist
 - ◆2: PCB : 应先与AW-checklist 做核对,并提供核对后checklist 供check 参考。
 - ◆3:反馈 :针对AW修改建议,应反馈哪些点修改完成,哪些点无法修改,双方评估确定风险
 - ◆4:PCB终板建议再次发回全志审核

✓ 硬件资料列表:

