Deep Learning

Problem Sheet 3 —

- 1. (a) What is a pooling layer in a Convolutional Neural Network? What is the difference between Max pooling and Average pooling?
 - (b) What are the stride and padding parameters in a convolutional layer?
 - (c) A CNN architecture is described in the table below and takes as input an image and produces a 10-dimensional probability vector and is trained using cross-entropy loss. The architecture consists of max pooling layers as well as convolutional layers.

layer	0	1	2	3	4	5	6	7
type	input	conv	pool	conv	pool	conv	conv	loss
num. filters	-	5x5x1	2x2	5x5x20	2x2	4x4x50	1x1x500	-
stride	-	1	2	1	2	1	_	_
padding	-	0	0	0	0	0	0	-
data shape	1x28x28x1							
receptive field								

The input is a $1 \times 28 \times 28 \times 1$ tensor representing $batch \times width \times height \times channels$. Calculate the data shape and receptive field for each layer.

- (d) Standard precision numbers take up 4 bytes per number. Half precision takes only 2 bytes per number. What are the advantages and disadvantages of using half precision?
- (e) Many CNN training problems are compounded by a lack of available training data. Describe some data augmentation techniques to artificially increase the amount of training data. Some of these techniques are performed at training time on the mini-batch before the forward pass. Suggest why?

(a) In a classification problem with three classes, a model will output a 1×3 vector, c, that predicts how strongly the input belongs to a class. However, we want a probability vector, $p \in \mathbb{R}^{3\times 1}$. Such a probability vector must sum to 1 and each element must be positive. To ensure this a Softmax function is used which looks like:

Given
$$c = \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
 (1)
$$p_i = \frac{e^{c_i}}{\sum_{k=1}^3 e^{c_k}} \forall i, k \in 1, 2, 3$$
 (2)

$$p_i = \frac{e^{c_i}}{\sum_{k=1}^3 e^{c_k}} \forall i, k \in 1, 2, 3$$
 (2)

Verify whether p fulfils the necessary criteria of all elements being non-negative and summing up to 1.

- (b) Compute the derivative $\frac{\partial p_i}{\partial c_j}$. Consider the two scenarios when i=j and $i\neq j$.
- (c) Suppose that an image, I is corrupted by white (Gaussian) noise $n \sim N(0, \sigma^2)$ giving us the result Y = I + n. One approach to denoising the image is to take N snapshots of an object from the same view, yielding multiple images and then taking the average of all the images. Here, each image is given by $Y_i = I + n_i \forall i \in 1, ..., N$. Taking the average of the N noisy images yields the denoised image $Y_d = \frac{1}{N} \sum_N Y_N$. Derive the mean, μ_d , and variance, σ_d^2 , of the denoised image Y_d .
- (d) Given an image:

3	4	8	10	22	45	50	65
3	4	8	10	22	45	50	65
3	4	8	10	22	45	50	65
3	4	8	10	22	45	50	65
3	4	8	10	22	45	50	65
3	4	8	10	22	45	50	65
3	4	8	10	22	45	50	65
3	4	8	10	22	45	50	65
3	4	8	10	22	45	50	65

And the horizontal and vertical 3×3 Prewitt filter kernels:

$$h_x = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{pmatrix}$$

$$h_y = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix}$$

Assuming zero padding, compute the gradient magnitude of the second row after convolving with both kernels.

- (e) Repeat the previous question but now use reflection (mirrored) padding.
- 3. (a) What is the difference between invariance and equivariance? Is convolution either of these?
 - (b) What is a 2D separable filter? Are all 2D filters separable?
 - (c) Is the following 2D filter separable?

$$F = \begin{pmatrix} 2 & 3 \\ 1 & 1 \end{pmatrix}$$

If so separate it, otherwise explain why it is not separable.

- (d) A CNN has four consecutive 3×3 convolutional layers with stride 1 and no pooling. How large is the support of a neuron in the fourth layer?
- (e) Why are skip connections used in deep CNN architectures such as ResNet?
- (f) Calculate the (big O) computational complexity of applying both separable and non-separable $K \times K$ Gaussian filters to an $N \times N$ image.