Resolution-robust Large Mask Inpainting with Fourier Convolutions

Roman Suvorov, Elizaveta Logacheva, Anton Mashikhin, Anastasia Remizova, Arsenii Ashukha, Aleksei Silvestrov, Naejin Kong, Harshith Goka, Kiwoong Park, Victor Lempitsky, Samsung Al Center Moscow

WACV '22

2022.03.14 윤주열

Image Inpainting

Simple task of filling in missing (masked) areas.

Can be used for image completion or image editing.

Requires a large receptive field when handling large masks.

Fourier Transform

Changing the basis of signals (temporal \rightarrow frequency)

- Decompose a periodic signal into a weighted sum of sinusoidal signals.
- Red signal = $1 \times \sin(\omega t) + 0.5 \times \sin(2\omega t) + 0.1 \times \sin(3\omega t) + \dots$

Inverse Fourier Transform is also a straight forward operation.

Fourier Transform

Changing the basis of signals (spatial \rightarrow frequency)

- Extending to 2D signals (i.e., images)
- Summarize into a global information.

- Examples of 2D FFT

Fast Fourier Convolution (FFC)

Pass convolution filters through features in the frequency domain.

- Effectively obtain a global receptive field.
- Frequency-wise control of features.

Internally exchange local and global features.

- Do not need to "wait" for local features to propagate to other regions.

Model architecture: Simple resblock-based architecture (e.g., MUNIT, FUNIT)

Loss function:
$$\mathcal{L}_{final} = \kappa L_{Adv} + \underline{\alpha \mathcal{L}_{HRFPL}}_{\text{Perceptual loss}} + \underline{\beta \mathcal{L}_{DiscPL}}_{\text{Feature matching loss}} + \gamma R_1$$

High-receptive field Perceptual loss computed from a pre-trained ResNet

Experiments

	ns		Places (512 × 512)					CelebA-HQ (256 × 256)			
	Params ×10 ⁶	Narrow masks		Wide masks		Segm. masks		Narrow masks		Wide masks	
Method	#	FID↓	LPIPS ↓	FID↓	LPIPS ↓	FID↓	LPIPS ↓	FID↓	LPIPS ↓	FID↓	LPIPS ↓
LaMa-Fourier (ours)	27	0.63	0.090	2.21	0.135	5.35	0.058	7.26	0.085	6.96	0.098
CoModGAN [64]	109	0.82▲30%	0.111423%	1.82 18%	0.14749%	6.40 4 20%	0.066 14%	16.8 131%	0.079 7%	24.4 4 250%	0.10244%
MADF [67]	85▲	0.57 \checkmark 10%	0.085 \checkmark 5%	3.76 470%	0.139▲3%	$6.51_{422\%}$	0.061_{45} %	_	_	_	_
AOT GAN [60]	15▼	$0.79_{425\%}$	0.091 1%	5.94 ▲169%	0.149 11%	7.34	0.063 10%	6.67 v8%	0.081 $\sqrt{4}$ %	10.3 48%	0.118
GCPR [17]	30▲	2.93 $363%$	0.143 $59%$	6.54 196%	0.161 19%	$9.20_{472\%}$	$0.073_{427\%}$	_	_	_	_
HiFill [54]	3▼	9.24 1361%	0.218 142%	12.8 479%	0.180 434%	12.7 137%	0.085 49%	_	_	_	_
RegionWise [30]	47▲	0.9042%	0.102 414%	4.75 115%	0.149 11%	7.58 42%	0.066 14	11.1▲53%	0.124 46%	8.54 423%	0.121 423%
DeepFill v2 [57]	4▼	1.06 468%	0.104 4 16%	5.20 135%	$0.155_{\blacktriangle15\%}$	$9.17_{\blacktriangle71\%}$	0.068 $18%$	12.5 473%	0.130 453%	11.2461%	0.126^{28}
EdgeConnect [32]	22 v	1.33 110%	0.111 423%	8.37 4279%	0.160 419%	$9.44_{476\%}$	$0.073_{427\%}$	$9.61_{432\%}$	0.099 17%	9.02 430%	$0.120_{422\%}$
RegionNorm [58]	12▼	$2.13 {\scriptstyle \blacktriangle236\%}$	$0.120 {\color{red}\blacktriangle33\%}$	$15.7 \scriptstyle \blacktriangle613\%$	$0.176 \pm 31\%$	13.7 156	0.082 $42%$	_	_	_	_

Ablations Study

		Pretext		Segmentation masks		
	Model	Problem	Dilation	FID ↓	LPIPS ↓	
\mathcal{L}_{HRFPL}	RN50	Segm.	+	5.69	0.059	
	RN50	Clf.	+	5.8743%	0.059	
$\mathcal{L}_{ ext{Clf}PL}$	RN50	Clf.	_	6.00 45%	0.061 43%	
	VGG19	Clf.	=	6.29411%	0.06346%	
SPL	-	-	-	6.46 13%	0.06549%	

Table 3: Comparison of LaMa-Regular trained with different perceptual losses. The \triangle denotes deterioration, and \blacktriangledown denotes improvement of a score compared to the model trained with HRF perceptual loss based on segmentation ResNet50 with dilated convolutions (presented in the first row). Both dilated convolutions and pretext problem improved the scores.

		suns	cks	Narrov	v masks	Wide masks FID ↓ LPIPS ↓		
Model	Convs	# Para	#Blo	FID↓	LPIPS ↓	FID↓	LPIPS ↓	
Base	Fourier	27	9	0.63	0.090	2.21	0.135	
Base	Dilated	46	9	0.66 4%	0.089 1%	2.30 4%	0.136 1%	
Base	Regular	46	9	0.60 5 %	0.089v1%	3.51 $59%$	0.139	
Shallow	Fourier	19	6	0.72	0.094	2.315%	0.1382%	
Deep	Regular	74	15	0.63	0.090	$2.62 \textcolor{red}{\blacktriangle18\%}$	0.137	

Table 2: The table demonstrates performance of different LaMa architectures while leaving the other components the same. The ▲ denotes deterioration, and ▼ denotes improvement compared to the Base-Fourier model (presented in the first row). The FFC-based models may sacrifice a little performance on narrow masks, but significantly outperform bigger models with regular convolutions on wide masks. Visually, the FFC-based models recover complex visual structures significantly better, as shown in Figure 4.

Results

Demo

Masked Image

CoModGAN

LaMa