Classification of Darboux Transformations for super KdV (An intrigue of Non Standard Differential Calculus)

Sean Hill Jointly with Professor Ekaterina Shemyakova

SUNY New Paltz

Introduction

- ► The Darboux Transformation is used for finding solutions of PDE's. We consider the super KdV (Korteweg-de Vries) equation and the Darboux transformation of the KdV.
- ▶ We have shown all Darboux Transformations of order one are only of a specific form, reminiscent to the classical case.
- ▶ Previously, Liu et al (95,97) found a family of solutions of this form to the super KdV but it was not shown that they were the only possible solutions.
- Our current work is on Darboux Transformations of order two with hopes to generalize for order n.

Problem Statement

The idea is that if we have some equation, $f_{xx}+u(x)f=0$ we may write it as L[f]=0 where $L=\partial_x^2+u$, and we transform $L\to L_1$ where $L_1=\partial_x^2+u_1$ so that $NL=L_1M$ for certain operators N and M.

It follows that N and M must be of the same order. What is known is a complete classification of the form of operators M that satisfy the conditions of the transformation in the classical case, using standard calculus. Our goal is to generalize to the supercase, where elements supercommute.

Plan of the talk

- Introduce superalgebra on simple examples
- Own results so far
- ► What is left to do

Crash course in supermathematics

- Two types of elements, even elements (behave like standard variables x, y) and odd elements which commute but with a negative sign.
- ▶ If μ and α are odd elements, then $\mu\alpha = -\alpha\mu$.
- An even element m commutes with any other element, i.e. $m\beta = \beta m$ regardless of whether β is even or odd.
- $ightharpoonup lpha^2 = 0$ for all odd lpha, thus odd elements have no inverses.
- We use a specific odd differential operator $D=\partial_{\tau}+\tau\partial_{x}$ where τ is an odd variable and x is an even variable. This operator plays an important role in supermathematics.
- ▶ Leibniz rule, (or Product Rule), is the same up to a possible sign, i.e. $D(ab) = D[a]b + (-1)^{|a||D|}aD[b]$.

New Paltz

Supercommutativity

Let \mathbb{K} be a fixed commutative ring (in most applications \mathbb{K} is a field such as \mathbb{R} or \mathbb{C}). A **superalgebra** $\mathscr{A}=\mathscr{A}_0\oplus\mathscr{A}_1$ over \mathbb{K} is a \mathbb{K} -module \mathscr{A} with direct sum \oplus decomposition and a bilinear operator $\mathscr{A}\times\mathscr{A}\to A$ such that $\mathscr{A}_i\mathscr{A}_j=\mathscr{A}_{i+j}$ (mod 2). A superring \mathbb{Z}_2 -graded ring is a superalgebra over the ring \mathbb{Z} . For all $a_i\in\mathscr{A}_i$, we say a_i is **homogenous**.

- ▶ If $a_0 \in \mathcal{A}_0$, then we define parity of a_0 as $P_{a_0} = |a_0| = 0$, and we say a_0 is even.
- ▶ If $a_1 \in \mathscr{A}_1$, then $P_{a_1} = |a_1| = 1$ and we say a_1 is odd.
- ▶ If a, b are homogenous, then |ab| = |a| + |b|.
- An associative superalgebra satisfies associativity under (·) and a unital superalgebra contains the multiplicative identity element. Supercommutativity is, for all homogenous $a, b \in A$, the property $ba = (-1)^{|a|\cdot|b|}ab$ New Paltz

Lemma

If $D = \partial_{\tau} + \tau \partial_{x}$ (τ odd, x even) then $D^{2} = \partial_{x}$.

Proof.

Since τ and ∂_{τ} are odd, x and ∂_{x} , we have

$$(2-(3+\pi 3)^2-3^2+3)\pi 3$$

$$D^2 = (\partial_{\tau} + \tau \partial_{x})^2 = \partial_{\tau}^2 + \partial_{\tau} [\tau \partial_{x}] + \tau \partial_{x} \partial_{\tau} + \tau \partial_{x} \tau \partial_{x}$$

$$= (\partial_{\tau} + \tau \partial_{x})^{2} = \partial_{\tau}^{2} + \partial_{\tau} [\tau \partial_{x}]$$

$$= 0 + \partial_x - \tau \partial_\tau \partial_x + \tau \partial_x \partial_\tau + \tau (\partial_x [\tau] + \tau \partial_x^2)$$

$$= \partial_{\mathsf{x}} - \tau \partial_{\tau} \partial_{\mathsf{x}} + \tau \partial_{\tau} \partial_{\mathsf{x}} + \tau^2 \partial_{\mathsf{x}}^2$$

 $=\partial_{\mathsf{v}}$

(1)

(2)

(3)(4)

Peculiarities of supercalculus

Note D is odd but this differential operator doesn't commute in any sense. So $D^2 \neq 0$. However $\partial_{\tau}^2 = 0$, and ∂_{x} commutes as usual. We now provide some examples of simple calculations

- if α is odd then $\alpha^2 = 0$. D is odd but $D^2 = \partial_x$.
- $(\mu D)^2 = \mu D \cdot \mu D = \underbrace{\mu D[\mu]}_{\text{function; order 0}}$
- If φ is odd then $\underbrace{(D+\varphi)^2}_{\text{order }2?} = \underbrace{\partial_{\mathsf{x}} + D[\varphi]}_{\text{order }1?}$.
- ▶ $D[\varphi f] = D[\varphi]f \varphi D[f]$, where φ is odd.

Our first result: Correct definition of Order

We need to introduce our own notion of order to make up for the fact that $D^2 = \partial_x$. (We rewrite every $\partial_x = D^2$ and consider only operators with even leading coefficient.)

First order Darboux Transformations of Super KdV

- lackbox Odd variables will be greek letters, α, β etc. and even variables will be latin, x, y etc. The following variables will all be functions of τ and x.
- ▶ Define the super derivative $D = \partial_{\tau} + \tau \partial_{\mathsf{x}}$ as before.
- ▶ Let $N = D + \nu$, $M = D + \mu$,
- Let $L = \partial_x^2 + \alpha D + u$ (the operator form of the KdV, $\varphi_{xx} + \alpha D[\varphi] + u\varphi = 0$), and $L_1 = \partial_x^2 + \alpha_1 D + u_1$.

Our first result,

Lemma

Suppose

$$NL = L_1M$$

then N = M.

After tedious calculation, we show

$$NL = L_1 M$$

:

$$\mu_{xx} - 2\mu_x D[\mu] + D[\alpha\mu - \mu] = 0$$

We noticed this is equivalent to a full differential

$$D\left[D[\mu_x] - D[\mu]^2 + \alpha\mu - u\right] = 0$$

and hence

$$D[\mu_x] - D[\mu]^2 + \alpha\mu - u = \lambda$$

$$D[\mu_{\mathsf{x}}] - D[\mu]^2 + \alpha\mu - u = \lambda \tag{5}$$

The next step was to consider μ in the form of a logarithmic derivative of some even function f.

Lemma

Given a field \mathbb{K} large enough to have coefficients for solutions of $f_{\tau} + \tau f_{\chi} = -\mu f^{-1}$. Every odd $\mu(\chi, \tau)$ can be represented in the form $\mu = -D[f]f^{-1}$ for a suitable even $f(\chi, \tau)$.

Note by this substitution we are not putting any restrictions on μ . Substituting this for μ into (5), we see that

$$f_{xx} + \alpha D[f] + uf = \lambda f$$
 i.e. $L[f] = \lambda f$ (6)

Global Context of Our Results

Current Results

- Previously, Liu (95) showed that, given $ML = L_1 M$ if $L[\varphi] = 0$ then $M = D D[\varphi]\varphi^{-1}$ satisfies the transformation.
- ▶ Here we have shown that *M* can only be of this form.

Future

- ▶ Liu, Nimmo (2009) also found a family of operators *M* of arbitrary order, which define Darboux transformations of super KdV.
- Analogously, we would like to show that this is the only family of higher order.

Future and Current Work

Our current goals are revisiting the classical case and seeing how we can generalize these results for order $n \ge 2$ in a way that can be readily adapted into the super case.

Thank you!

