Analyse. Soit f une fonction dérivable de $\mathbb R$ dans $\mathbb R$ telle que :

$$f' = af$$

D'après cette forme, il vient que :

$$f(x) = Ce^{ax}$$
, $C \in \mathbb{R}$

puisque d'après les formules de dérivation du cours, il s'agit de la seule solution. $Synth\`ese$. Soit g une fonction dérivable de $\mathbb R$ dans $\mathbb R$ telle que:

$$g(x) = Ce^{ax}$$
, $(a; C) \in \mathbb{R}^2$

 $\mathbf{D}\text{'une part}$:

 $g'(x)=aCe^{ax}$ D'après la dérivée de exponentiel rond u, avec u une fonction de $\mathbb R$ dans $\mathbb R$

D'autre part :

$$ag(x) = aCe^{ax}$$

Ainsi:

$$g' = ag$$

Donc:

$$S = x \mapsto Ce^{ax}/C \in \mathbb{R}$$