Teoria de Matemáticas de Bachillerato

Pedro Ángel Fraile Manzano

6 de noviembre de 2022

Parte I

Prefacios, Repaso y otras consideraciones

Capítulo 1

Operaciones sobre los números reales

Indice del capítulo	
Introducción	8
1.1. Estructura de los números reales	8

1.2. Potencias y sus propiedades

Introducción

Los distintos conjuntos de números surgen de la necesidad de resolver distintas ecuaciones, es decir, a medida que necesitamos resolver ecuaciones más complejas, más se amplían el campo de números con los que podemos actuar:

1.1. Estructura de los números reales

Los números reales tiene estructura de cuerpo y te preguntarás ¿ Qué es un cuerpo?

Definición 1. Un cuerpo es una terna $(\mathbb{K}, +, \cdot)$ donde:

- 1. K es un conjunto de elementos
- 2. + es una operación sobre los elementos de \mathbb{K} que cumple:
 - Es una operación **conmutativa**, es decir, sean $a, b \in \mathbb{K}$ entonces tendremos que a + b = b + a
 - Es una operación **asociativa**, es decir dados $a, b, c \in \mathbb{K}$ tenemos que a + (b + c) = (a + b) + c
 - Existe un **elemento neutro**, es decir $\exists e/e + a = a + e = a \ \forall a \in \mathbb{K}$.
 - Cada elemento $a \in \mathbb{K}$ existe un elemento **inverso** que se denota por a^{-1} de tal manera que $a + a^{-1} = a^{-1} + a = e$ (Esto también se da cuando no se cumple la conmutativa)
- 3. · es una operación que cumple lo siguiente
 - Es una operación **asociativa**, es decir dados $a,b,c \in \mathbb{K}$ tenemos que $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 - Existe un **elemento neutro** para esta operación $\exists e/e \cdot a = a \cdot e = a$ $\forall a \in \mathbb{K}$.
 - Para todo elemento $a \in \mathbb{K}$ entonces $\exists a^{-1}/a \cdot a^{-1} = a^{-1} \cdot a = e$ (Esto es lo que distingue un cuerpo a un anillo)
 - es distributivo respecto de + es decir, $a \cdot (b+c) = a \cdot b + a \cdot b$

Aclaración 1: Aunque se denoten como +, · no tenemos por qué usar las definiciones habituales de la suma y la multiplicación. Por ejemplo, la suma y producto de números reales no son iguales que las mismas operaciones para las matrices (quedaros con ese nombre.)

7

Aclaración 2: De esta manera que tenemos que lo que llamamos en los números reales la resta es la suma por el inverso y la división es el producto por el inverso.

Ejercicio Propuesto. Demostrar que \mathbb{R} y \mathbb{C} son cuerpos

1.2. Potencias y sus propiedades

Definición 2. Podemos definir las potencias como $a^n = \overbrace{a \cdot \ldots \cdot a}^{\text{in veces}}$. Una vez entendido esto tenemos las siguientes propiedades

Propiedades

1.
$$a^1 = a$$
 y $a^0 = 1$ para cualquier $a \in \mathbb{R}$

2.
$$a^{-1} = \frac{1}{a}$$

3.
$$a^n \cdot a^m = a^{n+m}$$

$$4. \ \frac{a^n}{a^m} = a^{n-m}$$

$$5. (a^n)^m = a^{n \cdot m}$$

6.
$$\sqrt[n]{a} = a^{\frac{1}{n}}$$

$$7. \ (a \cdot b)^n = a^n \cdot b^n$$

$$8. \left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$$

Demostración

- 1. Para la primera demostración no hace falta más que decir que estamos "poniendo" sólo una a y que $a^0=1$ es básicamente proveniente del álgebra $\mathbb Z$ modular.
- 2. En este caso, tenemos que al utilizar la propiedad 3 quedará más clara pero si nosotros tenemos $a^1 \cdot a^{-1} = a^0 = 1 \Rightarrow a^{-1} = \frac{1}{a}$
- 3. Ahora tenemos que $a^n \cdot a^m = \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} \cdot \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} = \underbrace{a \cdot \dots \cdot a}_{n \text{ veces}} = \underbrace{a^{n+m}}_{n+m} \underbrace{a \cdot \dots \cdot a}_{n+m} = \underbrace{a^{m+n}}_{n+m} \underbrace{a \cdot \dots \cdot a}_{n+m} = \underbrace{a \cdot \dots \cdot a}_{n+m} = \underbrace{a \cdot \dots \cdot a}_{n+m} = \underbrace{a \cdot \dots \cdot a}_{n+m} \underbrace{a \cdot \dots \cdot a}_{n+m} = \underbrace{$

- 4. Si combinamos la propiedad 2 y 3 queda probado $\frac{a^n}{a^m} = a^n \cdot \frac{1}{a^m} =$ $a^n \cdot a^{-m} = a^{n-m}$
- 5. Este se debe a que estamos multiplicando paquetitos del producto de n a's, es decir, $(a^n)^m = \overbrace{a^n \cdot \ldots \cdot a^n}^{\text{m veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot \ldots \cdot a \cdot \ldots \cdot a}_{\text{n veces}} = \underbrace{a \cdot$ $\underbrace{a \cdot \dots \cdot a}_{\text{n m veces}} = a^{mn}$
- 6. Haciendo un razonamiento análogo pero con el producto lo tenemos
- 7. Tenemos lo siguiente $(a \cdot b)^n = \overbrace{a \cdot b \cdot \ldots \cdot a \cdot b}^{\text{n veces}} = \overbrace{a \cdot \ldots \cdot a}^{\text{n veces}} \cdot \overbrace{b \cdot \ldots \cdot b}^{\text{n veces}} =$ $a^n \cdot b^n$
- 8. Utilizando un razonamiento similar al anterior lo tenemos cambiando únicamente b por b^{-1}

Capítulo 2

2.2.

Un segundo capítulo

	2.1.		 		•								•														11	
	2.2.	•	 	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	11	
2.1.																												

Apéndice A Mi primer apéndice