OPTIQUE ONDULATOIRE

PHY2303P

Author Brandon Lin

Contents

1	\mathbf{Pro}	priétés Ondulatoires de la Lumière	3
	1.1	Modèle scalaire de la lumière	3
	1.2	Propagation et déphasage	4
	1.3	Surfaces d'ondes	4
	1.4	Autres phéomènes affectant le signal optique	5
2	Interférences Lumineuses		
	2.1	Superposition de deux ondes cohérentes	6
	2.2	Cohérence temporelle	7
	2.3	Conclusion	7
3	Division de front d'onde		
	3.1	Trous de Young	8
	3.2	Variations sur l'expérience des trous de Young	8
	3.3	Interférences à N ondes - Réseaux	9
4	Division d'Amplitude : Interféromètre de Michelson		11
	4.1	Généralités	11
	4.2	Utilisation en lame d'air	11
	4.3	Utilisation en coin d'air	12
5	Interférences En Lumière Non Monochromatique - Spectroscopie Inter-		
	fére	entielle	14
	5.1	Spectres de sources	14
	5.2	Interférences à deux ondes en lumière monochromatique	15
	5.3	Spectroscopie à réseau	17
	5.4	Couleurs interférentielles	18
6	Diffraction		19
	6.1	Principe de Huygens-Fresnel	19
	6.2	Diffraction de Fraunhofer	19
	6.3	Notions d'optique de Fourier	23

1 Propriétés Ondulatoires de la Lumière

1.1 Modèle scalaire de la lumière

Le signal lumineux s(M,t)

• Formule

• Superposition

$$s(M,t) = s_1(M,t) + s_2(M,t)$$

Le modèle scalaire permet d'expliquer :

- L'optique géométrique
- Les intérférences
- La diffraction

Intensité ou Éclairement

• Puissance lumineuse

$$\langle dP(M,t)\rangle = \langle Ks^2(M,t)dS\rangle$$

• Formule par la définition

$$I(M) = 2\langle s^2(M,t)\rangle$$

• Unité : $W.m^{-2}$

Onde lumineuse monochromatique

 $\bullet\,$ Forme générale : Amplitude optique, Phase retard

$$s(M,t) = a(M)\cos(\omega t - \varphi(M))$$

- $\omega, T, f, \lambda_0, \lambda, k_0, k$
- Notation complexe

$$\underline{s}(M,t) = a(M) \exp j(\omega t - \varphi(M))$$

$$\underline{A}(M,t) = a(M) \exp j(-\varphi(M))$$

• Écalairement d'une onde monochromatique

$$I = a^{2}(M) = \underline{s}(M, t)\underline{s}^{*}(M, t) = |\underline{s}(M, t)|^{2} = |\underline{A}(M, t)|^{2}$$

3

1.2 Propagation et déphasage

Chemin optique (SM)

• Formule

$$(SM) = c \times \tau_{SM}$$

• Cas d'un milieu uniforme

$$n = \frac{c}{v} \implies (SM) = c \times \frac{SM}{v} = nSM$$

• Expression générale

$$(SM) = \int_{\Gamma} n(P) \mathrm{d}l_P$$

Déphasage par propagation

• Relation générale φ_{SM}

$$s(M,t) = \gamma s(S, t - \tau_{SM})$$

$$a(M)\cos(\omega t - \varphi(M)) = \gamma a(S)\cos(\omega(t - \tau_{SM}) - \varphi(S))$$

$$\varphi(M) = \varphi(S) + \omega \tau_{SM} \text{ et } a(M) = \gamma a(S)$$

$$\varphi(M) = \varphi(S) + k_0(SM)$$

• Cas particulières : en phase, en opposition de phase

1.3 Surfaces d'ondes

Surface d'onde ou Surface équiphase

• Définition : (SM) = cte

• Cas d'une source ponctuelle : $(SM) = n \times SM$, sphères centrées sur la source

• Théorème de Malus : Après un nombre quelconque de réflexions et de réfractions, ley rayons lumineux issus d'une source ponctuelle sont orthogonaux aux surfaces d'ondes.

• Exemple : l'onde subit une réflexion sur un miroir plan.

Stigmatisme et chemin optique

• Le chemin optique qui relie deux points conjugués est indépendant du rayon considéré.

• Exemple : Lentille avec épaisseur

Ondes sphériques

- Phase de l'OSPM, cas div et conv
- Vecteur d'onde, définition
- Amplitude d'une OSPM : (Cas $\mathcal{P}(r) = \mathcal{P}(O)$)
- Expression dans un milieu homogène :

$$\underline{s}(M,t) = \frac{\alpha}{r} \exp j(\omega t - kr)$$

Ondes Planes

• Expression générale :

$$\underline{s}(M,t) = a \times \exp j(\omega t - \boldsymbol{k}.\boldsymbol{OM})$$

1.4 Autres phéomènes affectant le signal optique

Absorption: Changement d'amplitude

• Formule

$$s(M,t) = \gamma_{NM} \times s\left(N, t - \frac{(NM)}{c}\right) \text{ avec } \gamma_{NM} = \exp(-\alpha \times NM)$$

• Coefficient d'absorption γ_{NM} , dimension : inverse d'une longueur

Réflexion et transmission

- Déphasage :
 - Cas de $\varphi_{\text{sup}} = +\pi$
 - Cas de $\varphi_{\text{sup}} = +1/2\pi$
- Coefficient de réflexion $\underline{r},$ de transmission \underline{t}

$$r = \frac{n_1 - n_2}{n_1 + n_2}, \ t = \frac{2n_1}{n_1 + n_2}$$

• Coefficient de réflexion et de transmisson en puissance R, T, relation

$$R = |r|^2$$
, $T = \frac{n_2}{n_1}|t|^2$, $R + T = 1$

5

2 Interférences Lumineuses

2.1 Superposition de deux ondes cohérentes

On ne considère que les deux ondes parfaitement monochromatiques.

Éclairement résultant de deux ondes

- Formule de l'éclairemnt résultant
- Terme d'interférences

Cohérence ou incohérence

- mutuellement incohérentes
- Condition d'interférences

Interférences entre deux ondes monochromatiques cohérentes

• Formule de Fresnel

Donc, l'éclairement observé en un point dépend du déphasage des deux ondes en ce point.

- Cas : Deux ondes ont même éclairement, formule
- Interférences constructives, destructives
- Ordre d'interférence
 - Définition
 - Lien avec constructivité

Contraste

- Définition
- Dimension (sans unité)
- Cas : Ondes incohérentes et cohérentes
- Contraste maximale
- Condition d'observabilité du phénomène d'interférences

Interférences entre deux sources ponctuelles cohérentes dans un milieu uniforme

- Ondes synchrones
- Déphasage
- Frange d'interférence
 - Franges brillantes
 - Franges sombres
- Hyperboloïdes de révolution

Systèmes optiques stigmatiques et interférences

- Conclusion
- Exemple : Observation dans le plan focal

2.2 Cohérence temporelle

Modèle des trains d'ondes

- La phase de l'onde émise est aléatoire.
- Temps de cohérence τ_c
- Longueur de cohérence l_c
- Élargissement spectral

Interférences entre ondes issues d'une source unique

- Conclusion pour les sources distinctes
- Division du front d'onde (Trous d'Young)
- Division d'amplitude (Interféromètre de Michelson)
- Différence de marche $\delta_{2/1}$
- Interférences constructives et destructives : expressions
- Condition d'interférences : la différence de marche

2.3 Conclusion

Pour observer le phénomène d'interférences, il faut

3 Division de front d'onde

3.1 Trous de Young

Diffraction de la lumière par un trou

- Figure
- Expression de $\varphi(M)$

Expérience des trous de Young

- Schéma expérimental
- S, T_1, T_2, M
- a, D
- Expressions de $\delta_{2/1}(M)$ et $\Delta \varphi(M)$

Figure d'interférences

- invariance
- Positions (x) des franges brillantes et sombres
- \bullet Interfrange i
- L'éclairement I

3.2 Variations sur l'expérience des trous de Young

Observation à l'infini

- δ
- i

Déplacement de la source

- δ
- *x*₀
- *i*

Principe : Lorsque les éléments sont incohérentes, leur éclairements s'ajoutent.

Fente incohérente éclairée

- $dI_0 =$
- dI =
- $I = \iint \mathrm{d}I$
- $f = \operatorname{sinc}$
- I_0, L_b
- Le paramètre de $\textit{visibilit\'e}\ v$
- Inversion de contraste
- Contraste γ

Fentes de Young

 \bullet Idée

3.3 Interférences à N ondes - Réseaux

Dispositif

- $Pas\ du\ r\'eseau: a,$ relation avec N
- Configuration de Fraunhofer
- Figure

Caractéristiques générales de l'éclairement

- $\Delta \varphi$ entre deux ondes adjacentes
- Maxima principaux
- Relation des réseaux, indépendance
- ullet Ordre de diffraction m

Écalairement

- Amplitude résultante
- Éclairement maximal
- Éclairement en dehors des maxima, $\underline{A}_{\rm tot},\,\underline{I}_{\rm tot}$

Conséquences

- $D\'{e}rivation D_m$
- Nombre d'ordres m observables
- Dérivation minimale, $\mathrm{d}D_m/\mathrm{d}i$

4 Division d'Amplitude : Interféromètre de Michelson

4.1 Généralités

Structure de l'interféromètre

- Figure
- Bras de l'interféromètre
- Degrés de liberté : Chariotage, Orientation

Interféromètre idéal et réelle

- Différence de marche
- $\bullet \ \ Lame \ compensatrice$
- Contact optique

4.2 Utilisation en lame d'air

Figure 1: Lame d'air

Localisation

• Condition d'observation

Figure d'interférences

- \bullet i =
- $\delta =$
- Franges d'égale inclinaison
- ρ =
- Éclairement
- Évolution de l'éclairement vers le contact optique

Élargissement de la source et localisation

• Conclusion

4.3 Utilisation en coin d'air

Figure 2: Coin d'air

Localisation

 $\bullet\,$ Les interférences sont localisées :

Figure d'intérférences

- Incidence normale, $\delta =$
- Incidence quasi normale, $\delta =$
- Frange d'égale épaisseur
- Position des franges brillantes y =
- i =

Effet d'un chariotage

- $e_y =$
- $y_m =$
- Conclusion

Visulation Pratique

• $i_{\text{ecran}} =$

Application

Figure 3: Visualisation de défaut

- $\delta = 0$
- Δ/i

5 Interférences En Lumière Non Monochromatique -Spectroscopie Interférentielle

5.1 Spectres de sources

• Cas idéal : Ondes monochromatique

• Cas réel : Superposition d'ondes monochromatiques

Paramètres descriptifs d'une source monochromatique

- Pulsation ω
- Longueur d'onde $\lambda =$
- Vecteur d'onde spatial k =
- Fréquence f =
- Nombre d'onde $\sigma =$

Sources à spectre discret

Considérée comme la superposition d'un ensemble discret de sources parfaitement monochromatiques.

Sources réelles à spectre continu

• Densité spectrale de puissance $B_{\omega}(\omega)$ ou $B_{\lambda}(\lambda)$

$$dP =$$

$$P_{[\omega_1,\omega_2]} = \int_{\omega_1}^{\omega_2}$$

- Unités
- Changement de paramètre : $B_{\lambda}(\lambda)$
- $B_f(f)$, $B_{\sigma}(\sigma)$, $B_k(k)$

Largeur spectrale

- $\Delta\omega\in$
- $\Delta \lambda \in$
- Relation entre $\Delta \omega$ et $\Delta \lambda$

Filtre coloré

Effets

Approximation monochromatique

- Condition
- $B_{\omega, \max}$

5.2 Interférences à deux ondes en lumière monochromatique

Doublet spectral

- La source est composée de deux sources
- Pour deux ondes non cohérentes, les éclairements s'ajoutent, car ils n'interfèrent pas.
- Avec

 $-\Delta\omega$

 $-\omega_m$

On obtient

$$I(\delta) = I_1(\delta) + I_2(\delta)$$

$$-$$

- Périodicités
- Courbes enveloppes I_+ et I_-
- I_{\max} et I_{\min}
- γ

Source de spectre continu

• Avec K constante, chaque intervalle $[\omega,\omega+\mathrm{d}\omega]$ donne un éclairement d'interférences monochromatique :

$$dI =$$

$$I(\delta) = 2K \int_0^\infty$$

- Transformée de Fourier en cosinus : Passage de $B_{\omega}(\omega)$ à $I(\delta)$.
- Cas d'une source de densité spectrale rectangulaire, c'est-à-dire, $B(\omega) =$

$$I(\delta) =$$

- Si on admet que le spectre est relativement étroit :
 - $-I_{\max}$ et I_{\min}
 - $-\gamma$

Figure 4: Interférogramme pour un spectre rectangulaire

Cas d'une source de spectre quelconque de largeur spectrale

- Les interférences ne sont visible que si
- Le nombre de franges visibles est

$$N =$$

Description spectrale et modèle des trains d'ondes

- $|\delta| \le$
- $l_c =$

Conséquence et applications

Trous de Young

- |x| <
- Spectre cannelé : Intensité nulle. Les longueurs d'onde vérifient :

$$\lambda_m =$$

Tomopgraphie par cohérence optique (OCT)

Les interférences ne sont visibles que si

5.3 Spectroscopie à réseau

Principe et pouvoir dispersif

• Rappel : Relation des réseaux :

$$a \times (\sin \theta_m - \sin_i) = m\lambda_0$$

• Pouvoir dispersif : Définition et à partir de la relation des réseaux :

$$P_{d,m} =$$

- Pour maximiser $P_{d,m}$, on peut :
- Pour ne se superposent les lumières des différentes ordres (Chevauchement des ordres), on doit avoir :

Pouvoir de résolution

- L'intensité tombe à zéros, los rque $\varphi =$
- Pour l'obetenir, it fault $\delta\theta =$
- Pour pouvoir séparer deux longueurs d'ondes distantes, il faut que $\delta\theta$ <
- En résumé :

$$\frac{\delta \lambda}{\lambda} >$$

• Conclusion : Pouvoir séparer des longueurs d'ondes proches, il est nécessaire de :

5.4 Couleurs interférentielles

Lame à faces parallèles en incidence normale

- Déphasage entre les deux ondes réfléchies
- Des longueurs d'ondes λ_m pour les quelles l'intensité réfléchie est nulle

6 Diffraction

6.1 Principe de Huygens-Fresnel

Principe de Huyghens-Fresnel

- Contribution de Huyghens (1678)
- Formulation de Fresnel (1818)

Figure 5: Formulation de Fresnel

- $d\Sigma_P$
- $-\,$ Signal observé en M est
- En notant \underline{A}_{SPM} l'amplitude d'une onde issue de S, allant jusqu'à M en passant par P :

$$\underline{A}_{\mathrm{diff}}(M) =$$

6.2 Diffraction de Fraunhofer

Résultat utile :

$$\int_{x_0 - a/2}^{x_0 + a/2} \exp(jkx) \mathrm{d}x =$$

Configuration de Fraunhofer

Configuration:

Figure 6: Direction d'observation

Cas d'une pupille plane

• En incidence normale, avec $\underline{a_0} =$

$$\underline{A}_{\mathrm{diff}}(M) =$$

Figure 7: Diffraction par une pupille plane

- En incidence quel
conque, soit $\boldsymbol{u_i} =$

$$\underline{A}_{\mathrm{diff}}(M) =$$

• De plus, on ajoute un objet de transparence variable : $\underline{A}(P)=$ Enfin, on obtient l'expression général (en incidence normale) :

$$\underline{A}_{\mathrm{diff}}(M) =$$

Fente rectangulaire éclairée par une onde plane

• Ouverture recatanguaire de largeur a et de hauteur b :

$$-\frac{a}{2} \le x_P \le \frac{a}{2}, -\frac{b}{2} \le y_P \le \frac{b}{2}$$

• L'amplitude diffractée est :

$$\underline{A}_{\text{diff}}(M) =$$

• Avec $I_0 =$

$$I_{\text{diff}}(M) =$$

- En incidence non normale
- L'ouverture est centrée en $(x_0, y_0) \neq (0, 0)$
- La lumière est principalement diffractée dans un secteur : $\Delta\alpha,\;\Delta\beta$ suffit

Figure 8: Secteur angulaire de diffraction

- Zero d'éclairement sont les lignes : x', y' suffit
- L'optique géométrique est la limite de l'optique ondulatoire quand $\lambda \to 0$, en ce cas, un éclairement qui est nul presque partout, SAUF SUR LE POINT x'=y'=0
- Diffraction par une fente très allongée, avec K' =

$$A_{\text{diff}}(M) =$$

résultat :

Ouverture Circulaire

• L'éclairement dans une direction θ est : (Hors programme)

$$I_{\text{diff}}(\theta) = I_0 \left(\frac{2J_1 \left(\frac{2\pi a}{\lambda} \theta \right)}{\frac{2\pi a}{\lambda} \theta} \right)^2$$

Figure 9: Éclairement pour une ouverture circulaire

- Le premier zéro d'éclairement est donné par : $\theta \approxeq$
- Le rayon de la tache d'Airy :

$$r_{\rm Airy} =$$

• Critère de Rayleigh : L'angle de séparation limite vérifie :

$$\alpha_{\rm lim} =$$

Diffraction par des fentes de Young

• Deux fentes de Young

- Amplitude

$$\underline{A}_{\text{diff}}(M) =$$

- Éclairement

$$I_{\text{diff}}(M) =$$

• Deux trous carrés distants :

- Amplitude

$$\underline{A}_{\mathrm{diff}}(M) =$$

- Éclairement

$$I_{\text{diff}}(M) =$$

• Généralisation

6.3 Notions d'optique de Fourier

Étude de la diffraction par des objets de transparence $\tau(x_P)$ quelconque.

Plan de Fourier

• Plan de Fourier, Schéma

Figure 10: Plan de Fourier

- L'amplitude observée sur le $plan\ de\ Fourier,$ cas $\tau(x)=\underline{\tau_0}$:

$$\underline{A}_{\mathrm{diff}}(M) =$$

• Conclusion

Diffraction par un objet de transparence sinusoïdale

- La transparence est donnée par : $\tau(x) =$
- $\bullet \ \ \mathit{Fr\'equence spatiale} \ \Sigma =$
- L'amplitude sur le plan de Fourier est :

$$\underline{A}_{\text{diff}}(M) =$$

- Conclusion : Chaque point \boldsymbol{x}_F du plan de Fourier :

$$x_F =$$

Cas d'une structure périodique

• Pour un réseau de transmission périodique, la transformation de Fourier implique :

$$\tau(x_F) =$$

• L'amplitude dans le plan de Fourier est donc :

$$\underline{A}_{\text{diff}}(M) =$$

• On obtiendra une amplitude non nulle sur un ensemble de point équidistants :

$$x_{F,n} =$$

• Donc, les points brillants sont dans les directions

$$\theta_n =$$

Il s'agit bien sûr de la relation des réseaux :

$$a \times (\sin \theta_n - \sin i) = n\lambda$$

évaluée aux petits angles, en incidence normal i=0, avec une période $a=\Lambda$

Montage 4f'

• Schéma

Figure 11: Montage 4f'

- $\bullet \ \ Lentille \ de \ reconstruction$
- Objet de transmission uniforme
- Objet de transmission sinusoïdale

$$oldsymbol{u}_{S_1},oldsymbol{u}_{S_2}$$

- I
- Point décalé
- Schéma général : Décomposition + Reconstruction