- Hash Diffie-Hellman Assumption

G: finite cyclic group of order n ,
$$H: G^2 \to K$$
 a hash function
Def: Hash-DH (HDH) assumption holds for (G, H) if:
$$(g, g^a, g^b \ (H(g^b, g^{ab}))) \approx_p (g, g^a, g^b, R)$$
where g —{generators of G}, (G, H) $(G,$

- · HDH is a stronger assumption
- Example

Suppose
$$K = \{0,1\}^{128}$$
 and
H: $G^2 \to K$ only outputs strings in K that begin with 0
(i.e. for all x,y: msb(H(x,y))=0)

Can Hash-DH hold for (G, H)?

- O Yes, for some groups G
- No, Hash-DH is easy to break in this case
 - O Yes, Hash-DH is always true for such H
- H acts as an extractor: strange distribution on g squared => uniform on K
- · very easy to distinguish the distributions
- msb of the right will be 0 with probability 1/2
- · msb of the left will be 0 always
- ElGamal is semantically secure under Hash-DH

KeyGen:
$$g \leftarrow \{\text{generators of G}\}$$
, $a \leftarrow Z_n$

output $pk = (g, h = g^a)$, $sk = a$

$$E(pk = (g,h), m) : b \leftarrow Z_n$$

$$k \leftarrow H(g^b,h^b), c \leftarrow E_s(k,m)$$
output (g^b,c)

$$(g^b,c)$$

$$D(sk = a, (u,c)) : k \leftarrow H(u,u^a), m \leftarrow D_s(k,c)$$
output m

- ElGamal is semantically secure under Hash-DH
 - the output of the hash function g to the b and g to the ab is indistinguishable from random
 - if we replace the hash function by a truly random key K then the attacker cannot distinguish these two games

- the games on the right are a symmetric encryption system and semantically secure so the two games are indistinguishable therefor the two games on the left are also computationally indistinguishable for the same reasoning.
- ElGamal chosen ciphertext security?
 - give the attacker more power => stronger assumption
 - give the attacker the ability to make queries

To prove chosen ciphertext security need stronger assumption

Interactive Diffie-Hellman (IDH) in group G:

IDH holds in G if: ∀efficient A: Pr[A outputs gab] < negligible

- ElGamal chosen ciphertext security?

Security Theorem:

If IDH holds in the group G, (E_s, D_s) provides auth. enc. and $H: G^2 \to K$ is a "random oracle" then **ElGamal** is CCA^{TO} secure.

Variants of ElGamal With a Better Security Analysis

- Review: ElGamal encryption
 - Keygen picks a random generator
 - a picks a random exponent from Z n
 - output
 - pk generator and h = generator to the a
 - sk a
 - Encryption
 - Decryption

- ElGamal chosen ciphertext security

Security Theorem:

If IDH holds in the group G, (E_s, D_s) provides auth. enc. and $\mathbf{H}: \mathbf{G}^2 \longrightarrow \mathbf{K}$ is a "random oracle" then **ElGamal** is CCA^{ro} secure.

Can we prove CCA security based on CDH $(g, g^a, g^b \leftrightarrow g^{ab})$?

- Option 1: use group G where CDH = IDH, (a.k.a bilinear group)
- Option 2: change the ElGamal system .
- Variants: twin ElGamal

KeyGen:
$$g$$
 {generators of G} , $a1, a2 \leftarrow Z_n$
output $pk = (g, h_1 = g^{a1}, h_2 = g^{a2})$, $sk = (a1, a2)$

E(
$$pk=(g,h_1,h_2)$$
, m): $b \leftarrow Z_n$

$$k \leftarrow H(g^b, h_1^b, h_2^b)$$

$$c \leftarrow E_s(k, m)$$
output (g^b, c)

D($sk=(a1,a2), (u,c)$):
$$k \leftarrow H(u, u^{a1}, u^{a2})$$

$$m \leftarrow D_s(k, c)$$
output m

D(sk=(a1,a2), (u,c)):

$$k \leftarrow H(u, u^{a1}, u^{a2})$$

$$m \leftarrow D_s(k, c)$$
output m

- Chosen ciphertext security

Security Theorem:

If CDH holds in the group G, (E_s, D_s) provides auth. enc. and $H: G^3 \longrightarrow K$ is a "random oracle" then **twin ElGamal** is CCA" secure.

Cost: one more exponentiation during enc/dec

— Is it worth it? No one knows ...

- ElGamal security w/o random oracles?

Can we prove CCA security without random oracles?

- Option 1: use Hash-DH assumption in "bilinear groups"
 Special elliptic curve with more structure [CHK'04 + BB'04]
- Option 2: use Decision-DH assumption in any group [CS'98]
- A unifying Theme
- One-way functions (informal)

A function $f: X \longrightarrow Y$ is one-way if

- There is an efficient algorithm to evaluate f(·), but
- Inverting f is hard:

for all efficient A and $\underline{x} \leftarrow X$: $\Pr[F(A(f(x))) = F(x)] < \text{negligible}$

Functions that are not one-way: $f(x) = x_s$ f(x) = 0

Example 1: generic one-way functions

Let
$$f: X \longrightarrow Y$$
 be a secure PRG (where $|Y| \gg |X|$)

(e.g. f built using det. counter mode)

Lemma: f a secure PRG ⇒ f is one-way

Proof sketch:

of sketch:

A inverts
$$f \Rightarrow B(y) = \begin{cases} f(A(y)) = y \text{ or lips } d \\ 0 \text{ of } d \end{cases}$$
 is a distinguisher

Generic: no special properties. Difficult to use for key exchange.

- seed causes the generator to output the same strings
- Example 2: The DLOG one-way function

Fix a finite cyclic group G (e.g $G = (Z_p)^*$) of order n g: a random generator in G (i.e. $G = \{1, g, g^2, g^3, ..., g^{n-1}\}$)

Define:
$$f: Z_n \longrightarrow G$$
 as $f(x) = g^x \in G$

Properties:
$$f(x)$$
, $f(y) \Rightarrow f(x+y) = f(x) \cdot f(y) \in G$

Dan Bon

- Example 3: The RSA one-way function

- choose random primes p,q ≈1024 bits. Set **N=pq**.
- choose integers e, d s.t. e·d = 1 (mod φ(N))

Define: f:
$$\mathbb{Z}_N^* \to \mathbb{Z}_N^*$$
 as $f(x) = x^e$ in \mathbb{Z}_N

Lemma: f is one-way under the RSA assumption

Properties: $f(x \cdot y) = f(x) \cdot f(y)$ and **f has a trapdoor**

- Summary
 - Public key encryption
 - made possible by one way functions with special properties
 - homomorphic properties and trapdoors
 - F(x), F(y) => F(x + y) or F(x * y)
- Farewell (For Now)
- Quick review: primitives

- Remaining core topics (part 2)
 - Digital signatures and certificates
 - Authenticated key exchange
 - User authentication:
 passwords, one-time passwords, challenge-response
 - Privacy mechanisms
 - Zero-knowledge protocols
- Man more topics to cover
 - Elliptic Curve Crypto
 - · Quantum computing
 - New key management paradigms: identity based encryption and functional encryption
 - · Anonymous digital cash
 - Private voting and auction systems
 - Computing on ciphertexts: fully homomorphic encryption
 - Lattice-based crypto
 - · Two party and multi-party computation

- Final words

Be careful when using crypto:

 A tremendous tool, but if incorrectly implemented: system will work fine, but may be easily attacked

Make sure to have others review your designs and code

Don't invent your own ciphers or modes

_