Solución numérica de ecuaciones diferenciales ordinarias

Métodos Numéricos

Prof. Eduardo Uribe

Conferencia 22

Conferencia 22

- Teoría básica
- 2 Método de Euler
- Métodos de Taylor
- Esquemas de Runge-Kutta
- 5 Sistemas de Ecuaciones
- 6 Métodos multipaso

Ecuaciones diferenciales ordinarias

Problema de condición inicial

Encontrar una función y(t) que cumpla las siguientes condiciones:

$$\frac{dy}{dt} = f(t, y), \quad \forall t \in [a, b]; \quad y(a) = \alpha$$

donde f(t, y), a, b y α son los datos del problema.

Resultado de existencia y unicidad

Sea f(t,y) continua en la franja $D=\{(t,y)\mid t\in [a,b],y\in\mathbb{R}\}$ y tal que satisface una condición de Lipschitz de parámetro L en y (o sea, $|f(t,y_1)-f(t,y_2)|\leq L|y_1-y_2|$), entonces el problema de valor inicial

$$\frac{dy}{dt} = f(t, y), \quad \forall t \in [a, b]; \quad y(a) = \alpha$$

posee una única solución y(t), con $t \in [a, b]$.

Ejemplo

Consideremos el problema de valor inicial

$$y' = 1 + t \sin(ty), \quad 0 \le t \le 2, \quad y(0) = 0$$

Si se mantiene constante t y se aplica el teorema del valor medio a la función

$$f(t,y) = 1 + t\sin(ty)$$

comprobemos que, siempre que $y_1 < y_2$, existe un número ξ en $\left(y_1,y_2\right)$ con

$$\frac{f(t,y_2)-f(t,y_1)}{y_2-y_1}=\frac{\partial}{\partial y}f(t,\xi)=t^2\cos(\xi t)$$

por tanto,

$$|f(t, y_2) - f(t, y_1)| = |y_2 - y_1||t^2 \cos(\xi t)| \le 4|y_2 - y_1|$$

y f satisface la condición de Lipschitz L=4. Y como además f(t,y) es continua cuando $t\in[0,2]$ y $y\in\mathbb{R}$, el problema de valor inicial tiene una única solución.

Deducción de ecuación en diferencias

Discretización equidistante

Para resolver el problema inicial

$$\frac{dy}{dt} = f(t, y), \quad \forall t \in [a, b]; \quad y(a) = \alpha$$

definimos una malla de N puntos $t_i = a + ih$, i = 0, 1, ..., N, con tamaño de paso h = (b - a)/N.

Aplicando desarrollo de Taylor

Si y(t) es una solución dos veces diferenciable del problema inicial tenemos:

$$y(t_{i+1}) = y(t_i) + y'(t_i)(t_{i+1} - t_i) + \frac{y''(\xi_i)}{2}(t_{i+1} - t_i)^2$$
$$y(t_{i+1}) \approx y(t_i) + f(t_i, y(t_i))h$$

Algoritmo de Euler

Ecuaciones en diferencias: $w_i \approx y(t_i)$

$$w_0 = \alpha$$

 $w_{i+1} = w_i + hf(t_i, w_i)$

Pseudocódigo

DATOS: a < b: Límites del intervalo y N (Nro de subintervalos)

 α : VALOR INICIAL.

RESULT: Aproximaciones w_0, \ldots, w_N de $y(t_0), \ldots, y(t_N)$

PASO 1: Definir: h = (b - a)/N; i = 0, $t_0 = a$, $y w_0 = \alpha$

PASO 2: Para i = 1 : N calcular:

$$w_i = w_{i-1} + hf(t_{i-1}, w_{i-1})$$

 $t_i = t_{i-1} + h$

PASO 3: STOP (w_0, \ldots, w_N)

Ejemplo

Ejercicio

Utilizando el método de Euler para ${\it N}=10$ encuentre una solución aproximada de:

$$y' = y - t^2 + 1, \quad t \in [0, 2], \quad y(0) = 0.5$$

Solución

Analítica:

$$y(t) = (t+1)^2 - \frac{1}{2}e^t$$

Numérica:
$$h = \frac{2}{10} = 0.2$$
; $t_i = 0.2i$; $w_0 = 0.5$

$$w_{i+1} = w_i + h(w_i - t_i^2 + 1)$$

$$w_{i+1} = w_i + 0.2(w_i - 0.04i^2 + 1)$$

$$w_{i+1} = 1.2w_i - 0.008i^2 + 0.2$$

Ejemplo

Resultados numéricos

$$y(t) = (t+1)^2 - \frac{1}{2}e^t$$

$$w_{i+1} = 1.2w_i - 0.008i^2 + 0.2$$

t;	Wi	$y(t_i)$	$\overline{ y(t_i)-w_i }$
0.0	0.5000000	0.5000000	0.0000000
0.2	0.8000000	0.8292986	0.0292986
0.4	1.1520000	1.2140877	0.0620877
0.6	1.5504000	1.6489406	0.0985406
0.8	1.9884800	2.1272295	0.1387495
1.0	2.4581760	2.6408591	0.1826831
1.2	2.9498112	3.1799415	0.2301303
1.4	3.4517734	3.7324000	0.2806266
1.6	3.9501281	4.2834838	0.3333557
1.8	4.4281538	4.8151763	0.3870225
2.0	4.8657845	5.3054720	0.4396874

Ejemplo graficado: a = 0, b = 2, $h_1 = 1$, $h_2 = 0.5$, $h_3 = 0.2$

Ejemplo graficado: a = 0, b = 4, $h_1 = 1$, $h_2 = 0.5$, $h_3 = 0.2$

Deducción

Discretización equidistante para resolver el problema inicial

$$\frac{dy}{dt} = f(t, y), \quad \forall t \in [a, b]; \quad y(a) = \alpha$$

Malla de N puntos $t_i = a + ih$, i = 0, 1, ..., N, con h = (b - a)/N.

Aplicando desarrollo de Taylor de grado n

$$y(t_{i+1}) = y(t_i) + hy'(t_i) + \frac{h^2}{2}y''(t_i) + \dots + \frac{h^n}{n!}y^{(n)}(t_i) + \frac{y^{(n+1)}(\xi_i)}{(n+1)!}h^{(n+1)}$$

pero:

$$y'(t) = f(t, y(t)), \quad y''(t) = f'(t, y(t)), \dots, y^{(k)}(t) = f^{(k-1)}(t, y(t))$$

luego

$$y(t_{i+1}) \approx y(t_i) + hf(t_i, y(t_i)) + \frac{h^2}{2}f'(t_i, y(t_i)) + \dots + \frac{h^n}{n!}f^{(n-1)}(t_i, y(t_i))$$

Método de Taylor de orden n:

Ecuaciones en diferencias

$$w_0 = \alpha$$

 $w_{i+1} = w_i + hT^{(n)}(t_i, w_i), i = 0, 1, ..., N-1$

donde

$$T^{(n)}(t_i, w_i) = f(t_i, w_i) + \frac{h}{2}f'(t_i, w_i) + \cdots + \frac{h^{(n-1)}}{n!}f^{(n-1)}(t_i, w_i)$$

n=1, Método de Euler: $T^{(1)}(t_i,w_i)=f(t_i,w_i)$

Ejemplo:
$$y' = y - t^2 + 1$$
, $t \in [0, 2]$, $y(0) = 0.5$

Método de Taylor de orden 2 (n = 2):

$$f'(t, y(t)) = \frac{d}{dt}(y - t^2 + 1) = y' - 2t = y - t^2 + 1 - 2t$$

$$T^{(2)}(t_i, w_i) = w_i - t_i^2 + 1 + \frac{h}{2}(w_i - t_i^2 - 2t_i + 1)$$

$$T^{(2)}(t_i, w_i) = (1 + \frac{h}{2})[w_i - t_i^2 + 1] - ht_i$$

Método de Taylor de orden n:

Ejemplo: $y' = y - t^2 + 1$, $t \in [0, 2]$, y(0) = 0.5

Método de Taylor de orden 4 (n = 4):

$$f'(t,y(t)) = y - t^{2} + 1 - 2t \Longrightarrow f''(t,y(t)) = y' - 2t - 2$$

$$f''(t,y(t)) = y - t^{2} + 1 - 2t - 2 = y - t^{2} - 2t - 1$$

$$f'''(t,y(t)) = y' - 2t - 2 = y - t^{2} - 2t - 1$$

$$T^{(4)}(t_{i}, w_{i}) = f(t_{i}, w_{i}) + \frac{h}{2}f'(t_{i}, w_{i}) + \frac{h^{2}}{6}f''(t_{i}, w_{i}) + \frac{h^{3}}{24}f'''(t_{i}, w_{i})$$

$$T^{(4)}(t_{i}, w_{i}) = w_{i} - t_{i}^{2} + 1 + \frac{h}{2}(w_{i} - t_{i}^{2} - 2t_{i} + 1) + \frac{h^{2}}{6}(w_{i} - t_{i}^{2} - 2t_{i} - 1) + \frac{h^{3}}{24}(w_{i} - t_{i}^{2} - 2t_{i} - 1)$$

 $T^{(4)}(t_i, w_i) = \left(1 + \frac{h}{2} + \frac{h^2}{6} + \frac{h^3}{24}\right)(w_i - t_i^2) - \left(1 + \frac{h}{3} + \frac{h^2}{12}\right)(ht_i) + 1 + \frac{h}{2} - \frac{h^2}{6} - \frac{h^3}{24}$

Ejemplo

Resultados numéricos; $y(t_i)$; w_i (para n = 1, n = 2 y n = 4)

$y(t_i)$	(n = 1)	(n = 2)	(n = 4)
0.5000000	0.5000000	0.5000000	0.5000000
0.8292986	0.8000000	0.8300000	0.8293000
1.6489406	1.5504000	1.6520760	1.6489468
2.6408591	2.4581760	2.6486459	2.6408744
3.1799415	2.9498112	3.1913480	3.1799640
4.2834838	3.9501281	4.3061464	4.2835285
4.8151763	4.4281538	4.8462986	4.8152377
5.3054720	4.8657845	5.3476843	5.3055554
	0.5000000 0.8292986 1.6489406 2.6408591 3.1799415 4.2834838 4.8151763	0.5000000 0.5000000 0.8292986 0.8000000 1.6489406 1.5504000 2.6408591 2.4581760 3.1799415 2.9498112 4.2834838 3.9501281 4.8151763 4.4281538	0.5000000 0.5000000 0.5000000 0.8292986 0.8000000 0.8300000 1.6489406 1.5504000 1.6520760 2.6408591 2.4581760 2.6486459 3.1799415 2.9498112 3.1913480 4.2834838 3.9501281 4.3061464 4.8151763 4.4281538 4.8462986

Errores: $|w_i - y(t_i)|$ (para n = 1, n = 2 y n = 4)

-t _i	(n = 1)	(n = 2)	(n = 4)
0.2	0.0292986	0.0007014	0.0000014
0.6	0.0985406	0.0031354	0.0000062
1.0	0.1826831	0.0077868	0.0000153
1.2	0.2301303	0.0114065	0.0000225
1.6	0.3333557	0.0226626	0.0000447
1.8	0.3870225	0.0311223	0.0000615
2.0	0.4396874	0.0422123	0.0000834

Ejemplo graficado: a = 0, b = 2, h = 0.2, n = 1, n = 2, n = 4

Ejemplo graficado: a = 0, b = 4, n = 1, n = 2, n = 4

Metodología

Motivación

Sustituir en los métodos de Taylor de orden superior las derivadas de f en $T^{(n)}$ por expresiones de igual error local que solo requieran evaluar f. Por ejemplo: Encontrar coeficientes a_1 , α_1 y β_1 tales que:

$$T^{(2)}(t,y) = f(t,y) + \frac{h}{2}f'(t,y) = a_1f(t+\alpha_1,y+\beta_1) + O(h^2)$$

En este caso se obtiene derivando y sustituyendo:

$$a_1 = 1$$
, $\alpha_1 = \frac{h}{2}$, $\beta_1 = \frac{h}{2}f(t, y)$

Runge-Kutta de orden superior

Método del punto medio (Runge Kutta de orden 2)

Ecuaciones en diferencias:

$$w_0 = \alpha$$

 $w_{i+1} = w_i + hf(t_i + \frac{h}{2}, w_i + \frac{h}{2}f(t_i, w_i))$

Esquema de Runge Kutta de orden 4

Ecuaciones en diferencias:

$$w_0 = \alpha$$

$$k_1 = hf(t_i, w_i)$$

$$k_2 = hf(t_i + \frac{h}{2}, w_i + \frac{1}{2}k_1)$$

$$k_3 = hf(t_i + \frac{h}{2}, w_i + \frac{1}{2}k_2)$$

$$k_4 = hf(t_{i+1}, w_i + k_3)$$

$$w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Ejemplo con Métodos de Runge Kutta

Resultados numéricos (para Euler y Runge-Kutta n = 2 y n = 4)

ti	$y(t_i)$	Euler	(n = 2)	(n = 4)
0.0	0.5000000	0.5000000	0.5000000	0.5000000
0.2	0.8292986	0.8000000	0.8280000	0.8292933
0.6	1.6489406	1.5504000	1.6446592	1.6489220
1.0	2.6408591	2.4581760	2.6331668	2.6408227
1.2	3.1799415	2.9498112	3 1704634	3 1798942
1.6	4.2834838	3.9501281	4 2706218	4.2834095
1.8	4.8151763	4.4281538	4.8009586	4.8150857
2.0	5.3054720	4.8657845	5.2903695	5.3053630

Errores: $|w_i - y(t_i)|$ (para Euler y Runge-Kutta n = 2 y n = 4)

ti	Euler	(n = 2)	(n = 4)
0.2	0.0292986	0.0012986	0.0000053
0.6	0.0985406	0.0042814	0.0000186
1.0	0.1826831	0.0076923	0.0000364
1.2	0.2301303	0.0094781	0.0000474
1.6	0.3333557	0.0128620	0.0000743
1.8	0.3870225	0.0142177	0.0000906
2.0	0.4396874	0.0151025	0.0001089

Gráficos: Euler y Runge-Kutta de orden 2 y 4

Gráficos: Euler y Runge-Kutta de orden 2 y 4

Motivación

Podemos encontrar una solución numérica del sistema:

$$\begin{cases} x'(t) = f(t, x, y) & x(t_0) = x_0 \\ y'(t) = g(t, x, y) & y(t_0) = y_0 \end{cases}$$

Reescribiendo el sistema de la forma:

$$\left[\begin{array}{c} x'(t) \\ y'(t) \end{array}\right] = \left[\begin{array}{c} f(t, x, y) \\ g(t, x, y) \end{array}\right]$$

obteniendo la ecuación Y' = F(t, Y) donde $Y : \mathbb{R} \to \mathbb{R}^2$ y $F : \mathbb{R}^3 \to \mathbb{R}^2$ y aplicamos las mismas técnicas ya explicadas anteriormente.

Método de Runge-Kutta de orden 4

$$\begin{cases} x_{k+1} = x_k + \frac{h}{6}(f_1 + 2f_2 + 2f_3 + f_4) \\ y_{k+1} = y_k + \frac{h}{6}(g_1 + 2g_2 + 2g_3 + g_4) \end{cases}$$

Donde

$$\begin{cases} f_1 = f(t_k, x_k, y_k) & g_1 = g(t_k, x_k, y_k), \\ f_2 = f(t_k + \frac{h}{2}, x_k + \frac{h}{2}f_1, y_k + \frac{h}{2}g_1) & g_2 = g(t_k + \frac{h}{2}, x_k + \frac{h}{2}f_1, y_k + \frac{h}{2}g_1), \\ f_3 = f(t_k + \frac{h}{2}, x_k + \frac{h}{2}f_2, y_k + \frac{h}{2}g_2) & g_3 = g(t_k + \frac{h}{2}, x_k + \frac{h}{2}f_2, y_k + \frac{h}{2}g_2), \\ f_4 = f(t_k + h, x_k + hf_3, y_k + hg_3) & g_4 = g(t_k + h, x_k + hf_3, y_k + hg_3) \end{cases}$$

Ejemplo

Consideremos el siguiente sistema de ecuaciones

$$\begin{cases} x'(t) = x + 2y \\ y'(t) = 3x(t) + 2y(t) \end{cases} con \begin{cases} x(0) = 6 \\ y(0) = 4 \end{cases}$$

cuya solución exacta es: $x(t) = 2e^{-t} + 4e^{4t}$ e $y(t) = 6e^{4t} - 2e^{-t}$

Continuación...

La tabla siguiente muestra el método de Runge-Kutta de orden 4 en el intervalo [0, 0.2] tomando 10 subintervalo de paso h = 0.02

k	t _k	x_k	Ук
0	0.00	6.00000000	4.00000000
1	0.02	6.29654551	4.53932490
2	0.04	6.61562213	5.11948599
3	0.06	6.96852528	5.74396525
4	0.08	7.35474319	6.41653305
5	0.10	7.77697287	7.14127221
6	0.12	8.23813750	7.92260406
7	0.14	8.74140523	8.76531667
8	0.16	9.29020955	9.67459538
9	0.18	9.88827138	10.6560560
10	0.20	10.5396230	11.7157807

Las soluciones así calculadas presentan errores que se acumulan en cada paso. En el extremo derecho del intervalo:

$$x(0.2) - x_{10} = 0.0000022$$

 $y(0.2) - y_{10} = 0.0000034$

Ejemplo

Consideremos la siguiente ecuación de movimiento armónico amortiguado:

$$x''(t) + 4x'(t) + 5x(t) = 0, \quad x(0) = 3, \quad x'(0) = -5$$

La solución exacta es:

$$x(t) = 3e^{-2t}\cos(t) + e^{-2t}\sin(t)$$

Y su sistema equivalente:

$$\begin{cases} x'(t) = y(t) \\ y'(t) = -5x(t) - 4y(t) \end{cases} con \begin{cases} x(0) = 3 \\ y(0) = -5 \end{cases}$$

Continuación...

En la tabla siguiente se muestra los resultados de Runge-Kutta orden 4 en el intervalo $[0,\ 5]$, con N=50 y h=1 y la comparación con la solución exacta:

k	t _k	X _k	$x(t_k)$
0	0.0	3	3
1	0.1	2.52564583	2.52565822
2	0.2	2.10402783	2.10404686
3	0.3	1.73506269	1.73508427
4	0.4	1.41653369	1.41655509
5	0.5	1.14488509	1.14490455
10	1.0	0.33324302	0.33324661
20	2.0	-0.00620684	-0.00621162
30	3.0	-0.00701079	-0.00701204
40	4.0	-0.00091163	-0.00091170
48	4.8	-0.00004972	-0.00004969
49	4.9	-0.00002348	-0.00002345
50	5.0	-0.00000493	-0.00000490

Dos ejemplos

Técnica multipaso de Adams-Bashforth de orden 4 (explícito)

$$w_0 = \alpha$$
, $w_1 = \alpha_1$, $w_2 = \alpha_2$, $w_3 = \alpha_3$

$$w_{i+1} = w_i + \frac{h}{24} \left[55f(t_i, w_i) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3}) \right]$$

Técnica multipaso de Adams-Moulton de orden 4 (implícito)

$$w_0 = \alpha$$
, $w_1 = \alpha_1$, $w_2 = \alpha_2$

$$w_{i+1} = w_i + \frac{h}{24} [9f(t_{i+1}, w_{i+1}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2})]$$

Metodología de Predictor-Corrector

$$w_{i+1}^0 = w_i + \frac{h}{24} [55f(t_i, w_i) - 59f(t_{i-1}, w_{i-1}) + 37f(t_{i-2}, w_{i-2}) - 9f(t_{i-3}, w_{i-3})]$$

$$w_{i+1}^{(k+1)} = w_i + \frac{h}{24} \left[9f(t_{i+1}, w_{i+1}^{(k)}) + 19f(t_i, w_i) - 5f(t_{i-1}, w_{i-1}) + f(t_{i-2}, w_{i-2}) \right]$$