A Practical Construction for Decomposing Numerical Abstract Domains

Gagandeep Singh Markus Püschel

Martin Vechev

Department of Computer Science

Numerical abstract domains

Numerical Domain	Representable Constraints ($c \in \mathbb{Q} \ or \mathbb{R}$)	Cost and Expressivity
Interval	$\pm x_i \le c$	
Pentagon	$(\pm x_i \le c) \ or \ (x_i \le x_j)$	
Zones	$(\pm x_i \le c) \ or \ (x_i - x_j \le c)$	
Octagon	$(\pm x_i \le c)$ or $(\pm x_i \pm x_j \le c)$	
TVPI	$a_i x_i + a_j x_j \le c, a_i \in \mathbb{Z}$	
Polyhedra	$a_1 x_1 + a_2 x_2 + \dots + a_n x_n \le c, a_i \in \mathbb{Z}$	

Static analysis with precise numerical domains is expensive

Domain transformers

Octagon

// abstract program state: $\{-x_1 - x_2 \le 0, -x_2 \le 0, -x_3 - x_4 \le 0\}$ // program statement: If $(x_2 + x_3 + x_4 \le 1)$

Best, Exponential

$$\{-x_1 - x_2 \le 0, -x_2 \le 0, -x_3 \le 0, -x_3 - x_4 \le 0, x_2 \le 0, x_3 + x_4 \le 1, -x_1 \le 1\}$$

Standard, Quadratic

$$\{-x_1 - x_2 \le 0, -x_2 \le 0, -x_3 \le 0, -x_3 - x_4 \le 0, x_3 + x_4 \le 1\}$$

Trivial,
Constant

{}

Online decomposition

Numerical domain analysis can be made faster through online decomposition

- Decomposing standard Octagon analysis ([PLDI 2015])
- Decomposing standard Polyhedra analysis ([SAS 2003, POPL2017])

Limitations of prior work

- Numerical abstract domains and their transformers
 - ad hoc design
 - guided by cost precision tradeoff
 - tailored for specific use cases

Drawback: Prior work cannot be reused for new domain transformers

Required: Universal construction for decomposing numerical domains

Contributions

Decomposed Our decomposed analysis **Original** Significantly fast 32 vars Abstract Always sound 3 vars Black box element + Monotonic — Under practical **Transformer** construction 28 vars Precise conditions 80 vars 17 vars

Complete end-to-end implementation

- Polyhedra
- Octagon
- Zones

Benchmark: >30K LOC, >550 vars

Analysis	Poly	Oct	Zones
Original	6142 s	28 s	3 s
Decomposed	4.4 s	1.9 s	1.5 s

Requirements on numerical abstract domains

- An abstract element $\mathcal I$ in domain $\mathcal D$ is conjunction of finite number of representable constraints
- The concretization function γ for $\mathcal D$ should be meet preserving

$$\gamma(\mathcal{I} \cap \mathcal{J}) = \gamma(\mathcal{I}) \cap \gamma(\mathcal{J})$$

• The ordering of abstract elements in the domain satisfies:

$$\mathcal{I} \sqsubseteq \mathcal{I}' \Longleftrightarrow \gamma(\mathcal{I}) \subseteq \gamma(\mathcal{I}')$$

Partitioning variable set \mathcal{X}

	Finest uniqu	e	A permissible	e An invalid
${\mathcal I}$	partition $\pi_{\mathcal{I}}$	${\mathcal I}$	partition $ar{\pi}_{\mathcal{I}}$	partition
$\{-x_1 - x_2 \le 0\}$	$\{x_1, x_2\}$	$\{-x_1 - x_2 \le 0\}$	$\{x_1, x_2\}$	$\{x_1, x_3\}$
$\{x_3 \le 0\}$	$\{x_3\}$	$\{x_3 \le 0, x_4 \le 0\}$	$\{x_3, x_4\}$	{ <i>x</i> ₂ }
$\{x_4 \le 0\}$	$\{x_4\}$			$\{x_4\}$

 Expensive to maintain finest partitions thus online decomposition maintains permissible partitions

Polyhedra

Decomposable transformers

$$\{x_1 + x_2 \le 0\}$$

$$\{x_1, x_2\}$$

//abstract program state:

$$\{x_3 + x_4 \le 5\}$$

$$\{x_3, x_4\}$$

//program statement:

Non-decomposable

If
$$(x_5 + x_6 \le 0)$$

Decomposable

$$J^{\prime\prime}$$

$$\bar{\pi}_{J''}$$

$$\{x_1 + x_2 \le 0\}$$

$$\{x_1, x_2\}$$

$$\{x_3 + x_4 \le 5\}$$

$$\{x_3, x_4\}$$

$$\{x_5 + x_6 \le 0\}$$

$$\{x_5, x_6\}$$

$$\mathcal{I}' \left\{ x_1 + x_2 + x_3 + x_4 + x_5 + x_6 \le 5 \right\}$$

$$\bar{\pi}_{1}$$
, { x_{1} , x_{2} , x_{3} , x_{4} , x_{5} , x_{6} }

Decomposable transformers

Non-decomposed transformer

Black box construction

Decomposed transformer

Design from scratch

- Conditional
- Assignment
- Meet
- Join
- Widening

Polyhedra

Conditional Transformer T_{cond}

Definition: Let \mathcal{I} be an abstract element in domain \mathcal{D} with the associated permissible partition $\bar{\pi}_{\mathcal{I}}$ and $\sum a_i x_i \leq c$ be the conditional statement then,

$$\mathcal{B}_{cond} := \{ x_i : a_i \neq 0 \}$$

$$\mathcal{B}_{cond}^* := \bigcup_{\mathcal{X}_k \cap \mathcal{B}_{cond} \neq \emptyset} \mathcal{X}_k, \ \mathcal{X}_k \in \bar{\pi}_{\mathcal{I}}$$

Octagon

Conditional Transformer T_{cond}

$$\mathcal{I}_O := T_{cond}^d(\mathcal{I}) := T_{cond} \big(\mathcal{I}(\mathcal{B}_{cond}^*) \big) \cup \mathcal{I}(\mathcal{X} \setminus \mathcal{B}_{cond}^*)$$

$$\bar{\pi}_{\mathcal{I}_O} \coloneqq \{\mathcal{X}_k \in \bar{\pi}_{\mathcal{I}} : \mathcal{X}_k \cap \mathcal{B}^*_{cond} = \emptyset\} \cup \{\mathcal{B}^*_{cond}\}$$

$$\mathcal{J}$$

$$\{x_1 \le 0\}$$

$$\{x_2 + x_3 \le 0\}$$

$$ar{\pi}_{\mathcal{I}}$$

$$\{x_1\} \qquad \mathsf{lf}(x_3 \le 0)$$

$$\{x_2, x_3\}$$
 $\mathcal{B}^*_{cond} = \{x_2, x_3\}$

$$T_{cond}^{d}(\mathcal{I})$$

$$|\{x_1 \le 0\}|$$

$$\{x_2 + x_3 \le 0, \\ x_3 \le 0\}$$

$$\{x_2, x_3\}$$

 $\bar{\pi}_{\mathcal{I}_{O}}$

 $\{x_1\}$

Conditional Transformer T_{cond}

Theorem: $\gamma(T_{cond}(\mathcal{I})) = \gamma(T_{cond}^{d}(\mathcal{I}))$ if for any associated permissible partition $\bar{\pi}_{I}$, the output $T_{cond}(I)$ satisfies:

- $T_{cond}(\mathcal{I}) = \mathcal{I} \cup \mathcal{I}' \cup \mathcal{I}''$ where \mathcal{I}' is a set of non-redundant constraints between the variables from \mathcal{B}_{cond}^* only and \mathcal{I}'' is a set of redundant constraints between the variables in ${\mathcal X}$
- $\gamma(T_{cond}(\mathcal{I}(\mathcal{B}_{cond}^*))) = \gamma(\mathcal{I}(\mathcal{B}_{cond}^*)\cup\mathcal{I}')$

$$\gamma(T_{cond}(\mathcal{I}(\mathcal{B}_{cond}^*))) = \gamma(\mathcal{I}(\mathcal{B}_{cond}^*) \cup \mathcal{I}') = \gamma(\{x_2 + x_3 \le 0, x_3 \le 0\})$$

Refinement

- The output partition can be refined after computing the output
 - non-invertible assignment
 - join
- Allows us to produce finer output partitions than prior work for
 - Polyhedra
 - Octagon

Experimental Evaluation

- Crab-Ilvm analyzer
 - intra procedural analysis
 - analyzes Ilvm bitcode
- Software verification competition benchmarks
 - linux device drivers
 - control flow
- Polyhedra
 - non decomposed transformers from PPL and decomposed from [POPL'17]
- Octagon
 - non decomposed and decomposed transformers from [PLDI'I5]
- Zones
 - Implemented non decomposed transformers

Polyhedra

Benchmark	PPL	POPL'17	POPL'18	Speedup vs	
	(s)	(s)	(s)	PPL	POPL'17
net_fddi_skfp	6142	9.2	4.4	1386	2
mtd_ubi	МО	4	1.9	∞	2.1
usb_core_main0	4003	65	29	136	2.2
tty_synclinkmp	МО	3.4	2.5	∞	1.4
scsi_advansys	ТО	4	3.4	>4183	1.2
staging_vt6656	ТО	2	0.5	>28800	4
net_ppp	10530	924	891	11.8	I
P10_l00	121	11	5.4	22.4	2
p16_l40	MO	11	2.9	∞	3.8
p12_l57	MO	14	6.5	∞	2.1
p13_l53	МО	54	25	∞	2.2
p19_l59	МО	70	12	∞	5.9

Octagon

Benchmark	PLDI'15	PLDI'15	POPL'18	Spee	dup vs
	ND(s)	D(s)	(s)	ND	D
net_fddi_skfp	28	2.6	1.9	15	1.4
mtd_ubi	3411	979	532	6.4	1.8
usb_core_main0	107	6.1	4.9	22	1.2
tty_synclinkmp	8.2	I	0.8	10	1.2
scsi_advansys	9.3	1.5	0.8	12	1.9
staging_vt6656	4.8	0.3	0.2	24	1.5
net_ppp	11	1.1	1.2	9.2	0.9
p10_l00	20	0.5	0.5	40	1
p16_l40	8.8	0.6	0.5	18	1.2
p12_l57	19	1.2	0.7	27	1.7
p13_l53	43	1.7	1.3	33	1.3
p19_l59	41	2.8	1.2	31	2.2

Zones

Benchmark	Non Decomposed (s)	POPL'18 (s)	Speedup
net_fddi_skfp	3	1.5	2
mtd_ubi	1.4	0.7	2
usb_core_main0	10.3	4.6	2.2
tty_synclinkmp	1.1	0.7	1.6
scsi_advansys	0.9	0.7	1.3
staging_vt6656	0.5	0.2	2.5
net_ppp	1.1	0.7	1.5
p10_l00	1.9	0.4	4.6
p16_I40	1.7	0.7	2.5
p12_I57	3.5	0.9	3.9
p13_I53	8.7	2.1	4.2
p19_I59	9.8	1.6	6.1

Black box construction

$$\mathcal{I}_{O} := T_{cond}^{d}(\mathcal{I}) := T_{cond}(\mathcal{I}(\mathcal{B}_{cond}^{*})) \cup \mathcal{I}(\mathcal{X} \setminus \mathcal{B}_{cond}^{*})$$

$$\bar{\pi}_{\mathcal{I}_O} \coloneqq \{ \mathcal{X}_k \in \bar{\pi}_{\mathcal{I}} : \mathcal{X}_k \cap \mathcal{B}_{cond}^* = \emptyset \} \cup \{ \mathcal{B}_{cond}^* \}$$

$$\begin{array}{ccc}
\mathcal{I} & \overline{\pi}_{\mathcal{I}} \\
\{x_1 \le 0\} & \{x_1\} & \mathsf{lf}(x_3 \le 0) \\
\{x_2 + x_3 \le 0\} & \{x_2, x_3\} & \mathcal{B}^*_{cond} = \{x_2, x_3\}
\end{array}$$

$$T_{cond}^{d}(\mathcal{I}) \qquad \bar{\pi}_{\mathcal{I}_{0}}$$

$$\{x_{1} \leq 0\} \qquad \{x_{1}\}$$

$$\{x_{2} + x_{3} \leq 0, \quad \{x_{2}, x_{3}\}$$

Same precision in practice

Theorem: $\gamma(T_{cond}(\mathcal{I})) = \gamma(T_{cond}^d(\mathcal{I}))$ if for any associated permissible partition $\bar{\pi}_{\mathcal{I}}$, the output $T_{cond}(\mathcal{I})$ satisfies:

- $T_{cond}(\mathcal{I}) = \mathcal{I} \cup \mathcal{I}' \cup \mathcal{I}''$ where \mathcal{I}' is a set of non-redundant constraints between the variables from \mathcal{B}_{cond}^* only and \mathcal{I}'' is a set of redundant constraints between the variables in \mathcal{X}
- $\gamma(T_{cond}(\mathcal{I}(\mathcal{B}_{cond}^*))) = \gamma(\mathcal{I}(\mathcal{B}_{cond}^*) \cup \mathcal{I}')$

$$\gamma(T_{cond}(\mathcal{I}(\mathcal{B}_{cond}^*))) = \gamma(\mathcal{I}(\mathcal{B}_{cond}^*) \cup \mathcal{I}') = \gamma(\{x_2 + x_3 \le 0, x_3 \le 0\})$$

Complete end-to-end implementation

- Polyhedra
- Octagon
- Zones

Benchmark: >30K LOC, >550 vars

Analysis	Poly	Oct	Zones
Original	6142 s	28 s	3 s
Decomposed	4.4 s	1.9 s	1.5 s