Note modèles fractaux anisotropes

Leo Davy

April 23, 2022

1 Modèles isotropes

1.1 Mouvement brownien

Définition 1.1. On appelle mouvement brownien (en dimension d), tout processus mesurable $(B_t)_{t \in \mathbb{R}_+}$ à valeurs dans \mathbb{R}^d vérifiant :

- 1. $B_0 = 0$ p.s.
- 2. Le processus est à accroissements independants¹
- 3. $\forall s \leq t$ les accroissements suivent une loi normale $B_t B_s \sim \mathcal{N}(0, (t-s)I_d)^2$
- 4. Le processus est à trajectoire p.s. continues

Proposition 1.1. Soit (B_t) un mouvement brownien

- 1. Pour tout s > 0, on a que $B_t^s = B_{s+t} B_s$ est un mouvement brownien³
- 2. Pour tout c > 0, $\tilde{B}_t = cB_{\frac{t}{c^2}}$ est un mouvement brownien
- 3. On peut construire une isométrie⁴ entre les fonctions de carré intégrables classique $L^2(\mathbb{R}_+)$ (avec la mesure de Lebesgue), et $L^2(\Omega, \mathcal{F}, \mathbb{P})$ un espace de Gaussiennes indépendantes qui vérifie $W(\mathbb{1}_{[0,t]}) = B_t...$

Theoreme 1.1. Une fonction $f: \mathbb{R}^d \to \mathbb{R}$ est définie positive si et seulement si il existe une mesure de probabilité symétrique μ sur \mathbb{R}^d telle que

$$\forall x \in \mathbb{R}^d, \quad f(x) = f(0) \int_{\mathbb{R}^d} e^{i\langle x, \xi \rangle} \mu(d\xi). \tag{1}$$

C'est à dire qu'il existe un vecteur aléatoire symétrique Z sur \mathbb{R}^d tel que

$$\forall x \in \mathbb{R}^d, \quad f(x) = f(0)\mathbb{E}e^{i\langle x, Z \rangle}. \tag{2}$$

¹Pour tout $t_1 \le t_2 \le t_3$, on a que $B_{t_2} - B_{t_1}$ est indépendant de $B_{t_3} - B_{t_2}$.

²Implique stationarité ($\mu = 0$) du brownien, et isotropie ($\Sigma = \sigma I_d$)

³Indépendant de $\mathcal{F}_s = \sigma(\{B_u : u \leq s\})$

⁴C'est à dire, que pour n'importe quel $f \in L^2(\mathbb{R}_+)$, on a que $\mathcal{W}(f)$ est une gaussienne centrée de variance $||f||_{L^2}$ et on a aussi $\mathbb{E}[\mathcal{W}(f_i)\mathcal{W}(f_j)] = \langle f_i, f_j \rangle_{L^2}$

Conséquences du théorème (dans le cas où (X_t) est un champ gaussien stationnaire)

Proposition 1.2. 1. Si X est stationnaire et sa fonction d'autocovariance $K(t) = \mathbb{E}X_{s+t}X_s$ est continue, alors il existe une unique mesure finie μ sur \mathbb{R}^d telle que

$$K(t) = \int_{\mathbb{R}^d} e^{i\langle t, \xi \rangle} \mu(d\xi) \tag{3}$$

appelée mesure spectrale du champ X.

2. Si K admet $\mu(d\xi) = f(\xi)d\xi$ comme densité spectrale, alors f est définie positive et le champ gaussien $(Y_t)_t$ défini par

$$Y_t = \int_{\mathbb{D}^d} \sqrt{f(\xi)} e^{i\langle t, \xi \rangle} \hat{W}(d\xi) \tag{4}$$

est indistinguable de X et appelé représentation spectrale de X.

Dans le cas où le champ n'est pas nécessairement stationnaire mais a des accroissements stationnaires, on peut écrire la fonction de covariance par une mesure spectrale μ sous la forme

$$K(s,t) = \int_{\mathbb{R}} \left(e^{i\langle t,\xi\rangle} - 1 \right) \left(e^{-i\langle s,\xi\rangle} - 1 \right) \mu(d\xi) + t\Sigma s \tag{5}$$

pour une certaine matrice σ symétrique définie positive.

Et la représentation spectrale de X devient, avec $\mu(d\xi) = f(\xi)d\xi$

$$Y_t = \int_{\mathbb{R}^d} \left(e^{i\langle t, \xi \rangle} - 1 \right) \sqrt{f(\xi)} \hat{W}(d\xi) + \langle t, N \rangle$$
 (6)

où N est un vecteur gaussien centré de covariance Σ .

1.2 Mouvement brownien fractionnaire

Une première généralisation du mouvement brownien se fait par le mouvement brownien fractionnaire, en oubliant la condition d'avoir des accroissements indépendants.

Définition 1.2. Soit 0 < H < 1. Il existe un unique processus gaussien qui est H-autosimilaire, à accroissements stationnaires et tel que $Var(B_H(1)) = 1$. Le mouvement brownien fractionnaire $(B^H(t))_t$ est un tel processus, dont la covariance est donnée par

$$Cov(B^{H}(t), B^{H}(s)) = \frac{t^{2H} + s^{2H} - |t - s|^{2H}}{2}$$
(7)

H est le coefficient de Hurst (que l'on considérera comme paramètre de régularité).

• Si $H = \frac{1}{2}$, la corrélation est nulle, donc (par gaussianité) les accroissements sont indépendants et on retrouve le mouvement brownien.

- Si $H > \frac{1}{2}$, la corrélation est positive, donc les accroissements tendent à avoir le même signe (le processus est dit persistant) et va donc avoir une forme de régularité.
- Si $H < \frac{1}{2}$, la corrélation est négative, les accroissements tendent à avoir des signes opposés et donc on aura beaucoup d'irrégularités.

FIGURE 1.10 – Réalisations du FBM pour différents paramètres de Hurst (a) H = 0.2, (b) H = 0.5 et (c) H = 0.8.

Deux représentations intégrales du mouvement brownien fractionnaire existent

Proposition 1.3. 1. Par moyenne mobile

$$B^{H}(t) = \frac{1}{C_{1}(H)} \int_{\mathbb{R}} \left((t - x)_{+}^{H - \frac{1}{2}} - (-x)_{+}^{H - \frac{1}{2}} \right)$$
 (8)

2. Harmonisable

$$B^{H}(t) = \frac{1}{C_{2}(H)} \int_{\mathbb{R}} \frac{e^{it\xi} - 1}{|\xi|^{H + \frac{1}{2}}} \hat{W}(\xi)$$
 (9)

Référence : Thèse Kévin Polisano, Chapitre 1

2 Modèles anisotropes

2.1 Drap brownien fractionnaire

Le premier modèle anisotrope est celui du drap brownien fractionnaire (Fractional Brownian Sheet - FBS). Dans celui-ci, on impose deux régularités H_1 et H_2 suivant chacun des axes. Moralement, c'est un produit de mouvements browniens fractionnaires.

Définition 2.1. Le FBS B^{H_1,H_2} est un champ gaussien centré, nul sur les axes, et de covariance

$$\mathbb{E}\left[B^{H_1,H_2}(x_1,x_2)B^{H_1,H_2}(x_1',x_2')\right] \\ = \frac{C_1(H_1)^2}{2} \left(|x_1|^{2H_1} + |x_1'|^{2H_1} - |x_1 - x_1'|^{2H_1}\right) \frac{C_1(H_2)^2}{2} \left(|x_2|^{2H_2} + |x_2'|^{2H_2} - |x_2 - x_2'|^{2H_2}\right).$$

Proposition 2.1. Le FBS peut s'écrire sous les formes intégrales suivantes :

1. par moyenne mobile⁵

$$B^{H_1,H_2}(x_1,x_2) = \frac{1}{C_1(H_1)C_1(H_2)} \int_{\mathbb{R}^2} f_{H_1}(x_1,u) f_{H_2}(x_2,v) dB(x_1,x_2)$$
 (10)

$$où f_H(x, w) = (x - w)_+^{H - \frac{1}{2}} - (-x)_+^{H - \frac{1}{2}}$$

2. harmonisable

$$B^{H_1, H_2}(x_1, x_2) = \int_{\mathbb{R}^2} \frac{(e^{ix_1\xi_1} - 1)(e^{ix_2\xi_2} - 1)}{|\xi_1|^{H_1 + \frac{1}{2}}|\xi_2|^{H_2 + \frac{1}{2}}} \hat{W}(\xi_1, \xi_2)$$
(11)

2.2 Modèle de Bonami et Estrade

Un champ gaussien à accroissements stationnaires est caractérisé par son semi-variogramme

$$v_X(y) = \frac{1}{2}\mathbb{E}(X(y) - X(0))^2. \tag{12}$$

En l'exprimant à partir de la mesure spectrale $\mu(d\xi) = f(\xi)d\xi$ associée à X, on peut alors réexprimer le champ sous la forme harmonisable

$$X^{f}(x) = \int_{\mathbb{R}^2} \left(e^{i\langle x,\xi\rangle} - 1 \right) f(\xi)^{\frac{1}{2}} \hat{W}(d\xi). \tag{13}$$

L'intérêt est qu'on peut alors caractériser les propriétés de symétrie de X à partir de f.

Theoreme 2.1. 1. (Deux champs gaussiens stationnaires ont mêmes lois finies dimensionnelles si et seulement si ils ont le même variogramme)

- 2. X^f est autosimilaire si et seulement si f est homogène
- 3. X^f est isotrope si et seulement si f est radiale

A partir de là, on peut construire des modèles avec des propriétés de régularité et d'autosimilarité en fixant f.

1. Fractional Brownian Field

$$\xi \mapsto \frac{1}{||\xi||^{2H+2}} \tag{14}$$

2. Extended Fractional Brownian Field

$$\xi \mapsto \frac{1}{||\xi||^{2h(\xi)+2}} \tag{15}$$

où $\xi \mapsto h(\xi)$ est constante sur chaque direction et contrôle la régularité directionnelle

⁵Je crois que la variable d'intégration est u, v plutôt que x_1, x_2

3. Operator Scaling Gaussian Random Field (hyperbolic wavelet transform)

$$f_{\theta_0,\alpha_0}(\xi) = |\zeta_1|^{1/\alpha_0} + |\zeta_2|^{1/(2-\alpha_0)}$$
(16)

et on peut généraliser pour fixer au choix une propriété d'autosimilarité matricielle.

Un modèle plutôt général de champ brownien anisotrope est donné par les champs browniens fractionnaires anisotropes définis par

$$f(\xi) = c(\arg \xi) ||\xi||^{-2h(\arg(\xi))-2}$$
(17)

où c et h sont des fonctions π -périodiques qui permettent de controler les propriétés d'autosimilarité et d'anisotropie (en choisissant le degré d'homogénéité de f via h et l'anisotropie via c).

On a donc un modèle assez général de textures anisotropes spatialement homogène⁶, si maintenant on veut des modèles localement anisotropes , Polisano propose le modèle de champ brownien fractionnaire anisotrope généralisé.

Définition 2.2. Soient $h: \mathbb{R}^2 \to [0,1]$ et $C: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}_+$ satisfaisant les hypothèses \mathcal{H} , on définit alors le champ brownien fractionnaire anisotrope généralisé par

$$X(x) = \int_{\mathbb{R}^2} (e^{i\langle x,\xi\rangle} - 1) \frac{C(x,\xi)}{||\xi||^{h(x)+1}} \hat{W}(d\xi)$$
 (18)

Hypothèses (\mathcal{H})

- $\blacksquare \ h \text{ est } \beta \text{h\"old\'erienne}^1 \text{, telle que } a = \inf_{x \in \mathbb{R}^2} h(x) > 0, \, b = \sup_{x \in \mathbb{R}^2} h(x) < 1 \text{ et } b < \beta \leq 1.$
- $(x, \xi) \mapsto C(x, \xi)$ est bornée, c.-à-d. $\forall (x, \xi) \in \mathbb{R}^2 \times \mathbb{R}^2$, $C(x, \xi) \leqslant M$.
- $\xi \mapsto C(x, \xi)$ est paire et homogène de degré $0 : \forall \rho > 0, C(x, \rho \xi) = C(x, \xi)$.
- $x \mapsto C(x, \xi)$ est continue et vérifie : il existe un réel η , avec $\beta \leq \eta \leq 1$ tel que

$$\forall x \in \mathbb{R}^2, \quad \sup_{z \in B(0,1)} \|z\|^{-2\eta} \int_{\mathbb{S}^1} \left[C(x+z,\Theta) - C(x,\Theta) \right]^2 d\Theta \le A_x < \infty. \quad (3.1)$$

De plus, $x \mapsto A_x$ est supposée bornée sur tout compact de \mathbb{R}^2 .

 $^{^6}$ La variation du champ dépend de la direction dans laquelle on regarde la variation, mais pas de la position d'où l'on regarde

FIGURE 3.9 – Simulation d'un LAFBF de fonction d'orientation $\alpha(x_1, x_2) = -\frac{\pi}{2} + x_1$ pour différentes fonctions de Hurst (a) linéaire, (b) radiale, (c) sinusoïdale, ainsi que leurs réalisations respectives (d), (e) et (f).

FIGURE 3.11 – Image de texture de taille 512 × 512 résultant de la simulation du champ $Z_{\Phi,X}(x)=X(\mathbf{R}_{-\alpha(x)}x)$ sur $[0,1]^2$, où X est un champ élémentaire de paramètres $H=0.5,\ \alpha_0=0$ et $\delta=0.3$. (a) $\alpha(x_1,x_2)=-\frac{\pi}{3}$, (b) $\alpha(x_1,x_2)=-\frac{\pi}{2}+x_1$, (c) $\alpha(x_1,x_2)=-\frac{\pi}{2}+x_2$, (d) $\alpha(x_1,x_2)=-\frac{\pi}{2}+x_1^2-x_2$.