PROYECTO INTELIGENCIA ARTIFICIAL GRUPO #6

INTEGRANTES:

- 1. MARIA CORDOVA
- 2. GIMGER FERNANDEZ
- 3. EDGAR PIN
- 4. NELSON RODRIGUEZ

IMPORTACION DE LIBRERIAS

```
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np

from mpl_toolkits.mplot3d import Axes3D

from sklearn.cluster import KMeans
from sklearn.preprocessing import StandardScaler

import matplotlib.cm as cm
from sklearn.metrics import silhouette_samples, silhouette_score
```

CONEXION

```
from google.colab import drive
drive.mount('/content/drive')
```

Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount("/content/drive", force_remount=True).

LECTURA DEL DATASET INDICADORES 2019

datos_2019 = pd.read_excel('/content/drive/My Drive/proyecto/indicadores2019_cia.xlsx')

ANALISIS EXPLORATORIO

datos_2019

		AÑO	EXPEDIENTE	NOMBRE	RAMA	DESCRIPCIÓN RAMA	RAMA 6 DÍGITOS	SUBRAMA 2 DÍGITOS	
	0	2019	1	ACEITES TROPICALES SOCIEDAD ANONIMA ATSA	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0126.01	A01	
	1	2019	2	ACERIA DEL ECUADOR CA ADELCA.	С	INDUSTRIAS MANUFACTURERAS.	C2410.25	C24	
	2	2019	3	ACERO COMERCIAL	G	COMERCIO AL POR MAYOR Y AL POR	G4659.99	G46	
INDIC	AMOS	LA RAI	MA A TRABAJA	AR EN ESTE CASO TOMAREI	MOS C	OMO REFERENCIA LA	RAMA DE	LA AGRIC	CULTURA GANADERIA
	_	0010	A	AEROVIAS DEL CONTINENTE		TRANSPORTE Y			
du= da	atos_20	019[(da	tos_2019.RAMA	=="A")]					
				VOENCIVE A		COMERCIO AL POR			
du.fi] du.dro du	• •) nplace=	True)						

/usr/local/lib/python3.8/dist-packages/pandas/util/_decorators.py:311: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame

LIMPIEZA DE DATOS

du.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1565 entries, 29 to 84841
Data columns (total 37 columns):
# Column
                                            Non-Null Count Dtype
    AÑO
0
                                            1565 non-null
                                                            int64
    EXPEDIENTE
                                            1565 non-null
                                                            int64
     NOMBRE
                                            1565 non-null
                                                            object
    RAMA
                                            1565 non-null
                                                            object
    DESCRIPCIÓN RAMA
                                            1565 non-null
                                                            object
    RAMA 6 DÍGITOS
                                            1565 non-null
 5
                                                            object
    SUBRAMA 2 DÍGITOS
                                            1565 non-null
                                                            object
    LIQUIDEZ CORRIENTE
                                            1565 non-null
                                                            float64
    PRUEBA ÁCIDA
                                            1565 non-null
 8
                                                            float64
    ENDEUDAMIENTO DEL ACTIVO
                                            1565 non-null
                                                            float64
 10
    ENDEUDAMIENTO PATRIMONIAL
                                            1565 non-null
                                                            float64
 11 ENDEUDAMIENTO A CORTO PLAZO
                                            1565 non-null
                                                            float64
    ENDEUDAMIENTO A LARGO PLAZO
                                            1565 non-null
                                                            float64
 13 COBERTURA DE INTERESES
                                            1565 non-null
                                                            float64
 14 ENDEUDAMIENTO DEL ACTIVO FIJO
                                            1565 non-null
                                                            float64
 15 APALANCAMIENTO
                                            1565 non-null
                                                            float64
 16 APALANCAMIENTO FINANCIERO
                                            1565 non-null
                                                            float64
 17 FORTALEZA PATRIMONIAL
                                            1565 non-null
                                                            float64
 18 ENDELIDAMTENTO PATRIMONIAL CORRIENTE
                                            1565 non-null
                                                            float64
   ENDEUDAMIENTO PATRIMONIAL NO CORRIENTE 1565 non-null
 19
                                                            float64
 20 APALANCAMIENTO A CORTO Y LARGO PLAZO
                                            1565 non-null
                                                            float64
 21 ROTACIÓN DE CARTERA
                                            1565 non-null
                                                            float64
 22 ROTACIÓN DE ACTIVO FIJO
                                            1565 non-null
                                                            float64
 23
    ROTACIÓN DE VENTAS
                                            1565 non-null
                                                            float64
    PERIODO MEDIO DE COBRANZA CORTO PLAZO
 24
                                            1565 non-null
                                                            float64
    PERIODO MEDIO DE PAGO CORTO PLAZO
                                            1565 non-null
                                                            float64
 25
   IMPACTO GASTOS ADMINISTRACIÓN Y VENTAS
                                            1565 non-null
                                                            float64
 26
    IMPACTO DE LA CARGA FINANCIERA
                                            1565 non-null
                                                            float64
 27
    RENTABILIDAD NETA DEL ACTIVO
 28
                                            1565 non-null
                                                            float64
    MARGEN BRUTO
 29
                                            1565 non-null
                                                            float64
    MARGEN OPERACTONAL
 30
                                            1565 non-null
                                                            float64
 31
    RENTABILIDAD NETA DE VENTAS
                                            1565 non-null
                                                            float64
    RENTABILIDAD OPERACIONAL DEL PATRIMONIO 1565 non-null
                                                            float64
    RENTABLIDAD FINANCIERA
                                            1565 non-null
                                                            float64
 34
    UTILIDAD OPERACIONAL/TOTAL DE ACTIVOS
                                            1565 non-null
                                                            float64
 35
   ROE
                                            1565 non-null
                                                            float64
 36 ROA
                                            1565 non-null
                                                           float64
dtypes: float64(30), int64(2), object(5)
memory usage: 464.6+ KB
                        VIAFOU
                                                 OILVIOULIUIVA
```

du.isnull().any()

AÑO	False
EXPEDIENTE	False
NOMBRE	False
RAMA	False
DESCRIPCIÓN RAMA	False
RAMA 6 DÍGITOS	False
SUBRAMA 2 DÍGITOS	False
LIQUIDEZ CORRIENTE	False
PRUEBA ÁCIDA	False
ENDEUDAMIENTO DEL ACTIVO	False
ENDEUDAMIENTO PATRIMONIAL	False
ENDEUDAMIENTO A CORTO PLAZO	False
ENDEUDAMIENTO A LARGO PLAZO	False
COBERTURA DE INTERESES	False
ENDEUDAMIENTO DEL ACTIVO FIJO	False
APALANCAMIENTO	False
APALANCAMIENTO FINANCIERO	False
FORTALEZA PATRIMONIAL	False
ENDEUDAMIENTO PATRIMONIAL CORRIENTE	False
ENDEUDAMIENTO PATRIMONIAL NO CORRIENTE	False
APALANCAMIENTO A CORTO Y LARGO PLAZO	False
ROTACIÓN DE CARTERA	False
ROTACIÓN DE ACTIVO FIJO	False
ROTACIÓN DE VENTAS	False
PERIODO MEDIO DE COBRANZA CORTO PLAZO	False
PERIODO MEDIO DE PAGO CORTO PLAZO	False
IMPACTO GASTOS ADMINISTRACIÓN Y VENTAS	False
IMPACTO DE LA CARGA FINANCIERA	False
RENTABILIDAD NETA DEL ACTIVO	False
MARGEN BRUTO	False
MARGEN OPERACIONAL	False
RENTABILIDAD NETA DE VENTAS	False
RENTABILIDAD OPERACIONAL DEL PATRIMONIO	False

RENTABLIDAD FINANCIERA False
UTILIDAD OPERACIONAL/TOTAL DE ACTIVOS False
ROE False
ROA False
dtype: bool

data=du.drop(columns = ["AÑO"])

data

	EXPEDIENTE	NOMBRE	RAMA	DESCRIPCIÓN RAMA	RAMA 6 DÍGITOS	SUBRAMA 2 DÍGITOS	LIQUIDEZ CORRIENTE	PRUE ÁCI
29	258	COMPANIA ECUATORIANA DEL TE CA CETCA	А	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0127.09	A01	1.943430	0.9596
75	620	INCUBADORA NACIONAL CA INCA	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0146.01	A01	2.452399	2.3360
97	762	LA VINA CIA LTDA	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0119.03	A01	39.975285	39.9752
184	1324	TEXTILES TEXSA SA	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0116.05	A01	34.262527	26.1561
188	1342	PIRETRO LATINOAMERICANO CA PIRELA	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0128.03	A01	0.728577	0.6773
82834	4 723649	LANFLOWERS S.A.	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0119.03	A01	0.955308	0.8940
8285	5 723681	LUA CACAO Y CHOCOLATE LUATE CIA.LTDA.	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0127.02	A01	2.285701	1.2710
8349:	3 724476	CAMARONERA SAFANDO CAMSAFA S.A.	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0321.02	A03	1.011221	1.0112
8392	7 725017	AROMAS NATIVOS DEL ECUADOR ANESA NATIVAROMAS S.A.	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0150.00	A01	1.334564	1.3185
8484	1 726214	ESPINCORD S.A.	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0321.02	A03	0.776520	0.4945
4505	00 1							

1565 rows × 36 columns

MAPA DE CALOR DE LAS CORRELACIONES EN BASE A ROA

corr = data.set_index('ROA').corr()
corr.style.background_gradient(cmap ='coolwarm')

	EXPEDIENTE	LIQUIDEZ CORRIENTE	PRUEBA ÁCIDA	ENDEUDAMIENTO DEL ACTIVO	ENDEUDAMIENTO PATRIMONIAL	ENDEUDAMIEN A CORTO PLA
EXPEDIENTE	1.000000	-0.023753	-0.022061	0.263909	0.042671	0.0522
LIQUIDEZ CORRIENTE	-0.023753	1.000000	0.998908	-0.041646	0.004424	-0.0805
PRUEBA ÁCIDA	-0.022061	0.998908	1.000000	-0.039391	0.003615	-0.0728
ENDEUDAMIENTO DEL ACTIVO	0.263909	-0.041646	-0.039391	1.000000	0.105755	-0.0936
ENDEUDAMIENTO PATRIMONIAL	0.042671	0.004424	0.003615	0.105755	1.000000	-0.0897
ENDEUDAMIENTO A CORTO PLAZO	0.052286	-0.080536	-0.072802	-0.093629	-0.089750	1.0000
ENDEUDAMIENTO A LARGO PLAZO	-0.052286	0.080536	0.072802	0.093629	0.089750	-1.0000
COBERTURA DE INTERESES	0.015624	0.000412	0.000276	0.012688	0.002783	-0.0012
ENDEUDAMIENTO DEL ACTIVO FIJO	-0.015886	0.001116	0.001034	0.004011	-0.003592	0.0304
APALANCAMIENTO	0.042009	0.004461	0.003648	0.103946	0.999994	-0.0898
APALANCAMIENTO FINANCIERO	0.020176	-0.006620	-0.000606	-0.000482	0.021640	0.0307
FORTALEZA PATRIMONIAL	-0.021766	-0.000967	-0.002011	0.032855	0.634752	-0.0347
ENDEUDAMIENTO PATRIMONIAL CORRIENTE	0.109842	-0.010804	-0.009598	0.155289	0.643152	0.0932
ENDEUDAMIENTO PATRIMONIAL NO CORRIENTE	0.027961	0.011800	0.011918	0.068240	0.834794	-0.1414
APALANCAMIENTO A CORTO Y LARGO PLAZO	0.057781	0.007050	0.007519	0.106813	0.925606	-0.0954
ROTACIÓN DE CARTERA	-0.014610	-0.001503	-0.001699	-0.011809	0.003381	-0.0043
ROTACIÓN DE ACTIVO FIJO	-0.014046	-0.001226	-0.001271	0.007557	0.003228	0.0324
ROTACIÓN DE VENTAS	0.123411	-0.019228	-0.018289	0.126516	-0.019411	0.2132
PERIODO MEDIO DE COBRANZA CORTO PLAZO	-0.004155	0.000824	0.001052	0.020098	0.004322	-0.0245
PERIODO MEDIO DE PAGO CORTO PLAZO	-0.030784	-0.002184	-0.001842	0.010511	-0.004361	0.0389
IMPACTO GASTOS ADMINISTRACIÓN Y VENTAS	0.011484	-0.001012	-0.000799	0.070278	0.004917	-0.0348
IMPACTO DE LA CARGA FINANCIERA	0.055386	-0.003387	-0.002918	0.144522	0.045730	-0.2110
RENTABILIDAD NETA DEL ACTIVO	-0.061971	0.001172	0.000631	-0.531215	-0.035427	0.0759
MARGEN BRUTO	-0.003117	0.000943	0.000802	-0.026533	-0.002266	0.0098
MARGEN OPERACIONAL	-0.009136	0.000998	0.000804	-0.058056	-0.004180	0.0277
RENTABILIDAD NETA DE VENTAS	-0.036277	0.002013	0.001689	-0.143178	-0.005919	0.0427
RENTABILIDAD OPERACIONAL DEL PATRIMONIO	0.046006	-0.005072	-0.003066	0.075942	0.364625	0.0366
RENTABLIDAD describe()	0.016647	A AA48AA	0 001/06	0 0268E7	O 647077	n no z a

data.describe()

	EXPEDIENTE	LIQUIDEZ CORRIENTE	PRUEBA ÁCIDA	ENDEUDAMIENTO DEL ACTIVO	ENDEUDAMIENTO PATRIMONIAL	A CORTO PLAZO	ENDEL A LAI
count	1565.000000	1565.000000	1565.000000	1565.000000	1565.000000	1565.000000	15
mean	212651.573163	3.611597	3.158438	0.695185	19.091569	0.657878	
std	231486.688668	54.459652	54.359693	0.369955	135.514520	0.307271	
min	258.000000	0.003140	0.003140	0.001096	0.001097	0.000119	
25%	63075.000000	0.732460	0.532882	0.493342	0.973716	0.403596	
50%	129195.000000	1.121257	0.898475	0.712236	2.415759	0.714228	
75%	181689.000000	1.859574	1.557522	0.892908	6.722759	0.972112	
max	726214.000000	2145.126000	2145.126000	5.452787	3270.168000	1.000000	

8 rows × 31 columns

+_+

data.columns

len(du)

1565

data[data['ROE']<500].sample(600).plot.scatter(x='ROE', y='RENTABILIDAD NETA DEL ACTIVO')</pre>


```
valor_por_salario = data.groupby("RAMA")["RENTABILIDAD NETA DE VENTAS","ROA"].max()
valor_por_salario.plot.bar()
plt.title("AGRICULTURA GANADERIA Y PESCA 2019")
plt.show()
```

```
<ipython-input-135-7169fe6bf98d>:1: FutureWarning: Indexing with multiple keys (implicitly conve
       valor_por_salario = data.groupby("RAMA")["RENTABILIDAD NETA DE VENTAS","ROA"].max()
               AGRICULTURA GANADERIA Y PESCA 2019
                              RENTABILIDAD NETA DE VENTAS
      0.6
du.boxplot(by ='RAMA', column=['RENTABILIDAD NETA DE VENTAS','ROA'], grid = False,)
du[['RENTABILIDAD NETA DE VENTAS','ROA']].plot(subplots=True, layout=(-1,5), figsize=(30,10) )
     array([[<matplotlib.axes._subplots.AxesSubplot object at 0x7f5edb1f4eb0>,
              <matplotlib.axes._subplots.AxesSubplot object at 0x7f5edb201670>,
              <matplotlib.axes._subplots.AxesSubplot object at 0x7f5edaa49cd0>,
              <matplotlib.axes._subplots.AxesSubplot object at 0x7f5edaa4e2b0>,
              <matplotlib.axes._subplots.AxesSubplot object at 0x7f5eda85ba00>]],
           dtype=object)
        RENTABILIDAD NETA DE VENTAS BOY RAMA ROA
       -25
       -50
                     0
      -125
      -150
      -175
                   A
RAMA
                                             A
RAMA
                          RENTABILIDAD NETA DE VENTAS
       -25
       -50
       -75
                                                       -2
      -100
      -125
      -150
      -175
```

MODELO PREDICTIVO LINEAL

20000

40000

60000

80000

20000

40000

60000

80000

data.describe()

```
ENDEUDAMIENTO
    IENTO ENDEUDAMIENTO ENDEUDAMIENTO ENDEUDAMIENTO
                                                        COBERTURA DE
                                                                          DEL ACTIVO APALANCAMIENTO
                                                           TNTERESES
    CTTVO
             PATRIMONIAL A CORTO PLAZO A LARGO PLAZO
                                                                                FIJO
    00000
             1565.000000
                            1565.000000
                                           1565.000000 1.565000e+03
                                                                         1565.000000
                                                                                         1565.000000
    05195
                                               0.342122 -3.073684e+02
                                                                                           10 071441
                10.001560
                               0.657979
                                                                           12 212012
from sklearn import linear model
from sklearn.metrics import mean_squared_error, r2_score
                0.001097
                               0.000119
                                              U.UUUUUU -1.200900E+U0
                                                                            -U.ZUZ90 I
                                                                                            U.ZZ40/0
# Vamos a RECORTAR los datos en la zona donde se concentran más los puntos
# esto es en el eje X: entre 0 y 3.500
# y en el eje Y: entre 0 y 80.000
filtered_data = data[(data['RENTABILIDAD NETA DE VENTAS'] <=3) & (data['ROA'] < 3)]</pre>
colores=['orange','blue']
tamanios=[60,60]
f1 = filtered_data['RENTABILIDAD NETA DE VENTAS'].values
f2 = filtered_data['ROA'].values
# Vamos a pintar en colores los puntos por debajo y por encima de la media de Cantidad de Palabras
asignar=[]
for index, row in filtered_data.iterrows():
    if(row['RENTABILIDAD NETA DE VENTAS']>=-2):
        asignar.append(colores[0])
        asignar.append(colores[1])
plt.scatter(f1, f2, c=asignar, s=tamanios[0])
plt.show()
       0
      -1
      -2
      -3
              -150
                                -75
        -175
                    -125
                          -100
                                      -50
# Asignamos nuestra variable de entrada X para entrenamiento y las etiquetas Y.
dataX =filtered_data[["RENTABILIDAD OPERACIONAL DEL PATRIMONIO"]]
X train = np.array(dataX)
y_train = filtered_data['LIQUIDEZ CORRIENTE'].values
# Creamos el objeto de Regresión Linear
regr = linear_model.LinearRegression()
# Entrenamos nuestro modelo
regr.fit(X_train, y_train)
# Hacemos las predicciones que en definitiva una línea (en este caso, al ser 2D)
y_pred = regr.predict(X_train)
# Veamos los coeficienetes obtenidos, En nuestro caso, serán la Tangente
print('Coefficients: \n', regr.coef_)
# Este es el valor donde corta el eje Y (en X=0)
print('Independent term: \n', regr.intercept_)
# Error Cuadrado Medio
print("Mean squared error: %.2f" % mean_squared_error(y_train, y_pred))
# Puntaje de Varianza. El mejor puntaje es un 1.0
print('Variance score: %.2f' % r2_score(y_train, y_pred))
     Coefficients:
      [-0.00550695]
     Independent term:
      3.643255931916952
     Mean squared error: 2963.88
     Variance score: 0.00
y_pred = regr.predict(X_train)
plt.scatter(X_train,y_train,color='b')
```

```
import torch
from \ torch \ import \ nn
from torch.nn import functional as F
import torch.utils.data as Data
from torch import optim
from sklearn import datasets
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import r2_score
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt
import tqdm
D1= data[['RENTABILIDAD NETA DE VENTAS','ROA']]
D2=data[['ROE']]
X = D1.values
y = D2.values
X_train, X_test, y_train, y_test = train_test_split(X,y, random_state=1)
print(X.shape)
print(y.shape)
     (1565, 2)
     (1565, 1)
class DataMaker(Data.Dataset):
 def __init__(self, X, y):
    #scaler = StandardScaler()
    scaler = MinMaxScaler()
    self.targets = scaler.fit_transform(X.astype(np.float32))
    self.labels = y.astype(np.float32)
 def __getitem__(self, index):
    return self.targets[index, :], self.labels[index]
 def __len__(self):
    return len(self.targets)
class MLP(nn.Module):
 def __init__(self, n_features, hiddenA, hiddenB):
    super().__init__()
    self.linearA = nn.Linear(n_features, hiddenA)
    self.linearB = nn.Linear(hiddenA, hiddenB)
    self.linearC = nn.Linear(hiddenB, 1)
  def forward(self, x):
   yA = F.relu(self.linearA(x))
    yB = F.relu(self.linearB(yA))
    return self.linearC(yB)
```

```
torch.manual_seed(1)
     <torch. C.Generator at 0x7f5ede49cb10>
train_set = DataMaker(X_train, y_train)
test_set = DataMaker(X_test, y_test)
bs = 25
n_samples , n_features = X.shape
train_loader = Data.DataLoader(train_set, batch_size=bs, shuffle=True)
test_loader = Data.DataLoader(test_set, batch_size=bs, shuffle=True)
model = MLP(n_features,100,50)
criterion = nn.MSELoss(size_average=False)
optimizer = optim.Adam(model.parameters(),lr=0.01)
     /usr/local/lib/python3.8/dist-packages/torch/nn/_reduction.py:42: UserWarning: size_average and reduce args will be deprecated, ple
       warnings.warn(warning.format(ret))
    4
n_epochs = 100
all_losses = []
for epoch in range(n_epochs):
    progress_bar = tqdm.notebook.tqdm(train_loader, leave=False)
    losses = []
    total = 0
    for inputs, target in progress_bar:
       optimizer.zero grad()
        y_pred = model(inputs)
        loss = criterion(y_pred, torch.unsqueeze(target,dim=1))
        loss.backward()
        optimizer.step()
        progress_bar.set_description(f'Loss: {loss.item():.3f}')
        losses.append(loss.item())
        total += 1
    epoch_loss = sum(losses) / total
    all_losses.append(epoch_loss)
    mess = f"Epoch #{epoch+1}\tLoss: {all_losses[-1]:.3f}"
    tqdm.tqdm.write(mess)
```

```
/usr/local/lib/python 3.8/dist-packages/torch/nn/modules/loss.py: 536: \ UserWarning: \ Using a target in the control of the
               return F.mse_loss(input, target, reduction=self.reduction)
           /usr/local/lib/python3.8/dist-packages/torch/nn/modules/loss.py:536: UserWarning: Using a target
               return F.mse_loss(input, target, reduction=self.reduction)
          Epoch #1
                                            Loss: 28516.329
          Epoch #2
                                            Loss: 27449.047
           Epoch #3
                                            Loss: 28582.948
           Epoch #4
                                            Loss: 28596.926
           Epoch #5
                                            Loss: 28587.307
           Epoch #6
                                            Loss: 28647.000
           Epoch #7
                                            Loss: 28553.039
           Epoch #8
                                            Loss: 28586.610
           Epoch #9
                                            Loss: 28552.749
                                            Loss: 28618.908
          Epoch #10
                                            Loss: 28588.503
          Epoch #11
                                            Loss: 28584.200
          Epoch #12
           Epoch #13
                                            Loss: 28598.852
           Epoch #14
                                            Loss: 28584.123
           Epoch #15
                                            Loss: 28578.428
           Epoch #16
                                            Loss: 28584.214
           Epoch #17
                                            Loss: 28581.757
           Epoch #18
                                            Loss: 27862.179
          Epoch #19
                                            Loss: 28579.420
                                            Loss: 28582.000
           Epoch #20
                                            Loss: 28580.298
           Epoch #21
           Epoch #22
                                            Loss: 28581.422
          Epoch #23
                                            Loss: 28582.912
          Epoch #24
                                            Loss: 28581.470
           Epoch #25
                                            Loss: 27873.903
           Epoch #26
                                            Loss: 28583.687
                                            Loss: 28587.136
           Epoch #27
                                            Loss: 28578.733
           Epoch #28
          Epoch #29
                                            Loss: 28585.375
                                            Loss: 27864.900
          Epoch #30
                                            Loss: 28585.124
          Epoch #31
          Epoch #32
                                            Loss: 28585.713
           Epoch #33
                                            Loss: 28577.692
           Epoch #34
                                            Loss: 28579.376
           Epoch #35
                                            Loss: 28579.458
           Epoch #36
                                            Loss: 28581.796
                                            Loss: 28581.475
           Epoch #37
           Epoch #38
                                            Loss: 28579.399
           Epoch #39
                                            Loss: 28579.390
           Epoch #40
                                            Loss: 28581.291
          Epoch #41
                                            Loss: 28580.117
           Epoch #42
                                            Loss: 28579.243
           Epoch #43
                                            Loss: 28579.753
           Epoch #44
                                            Loss: 28578.990
           Epoch #45
                                            Loss: 28578.792
           Epoch #46
                                            Loss: 28465.312
           Epoch #47
                                            Loss: 28578.606
           Epoch #48
                                            Loss: 28588.929
           Epoch #49
                                            Loss: 28578.826
          Epoch #50
                                            Loss: 28577.594
                                            Loss: 28579.735
           Epoch #51
                                            Loss: 28579.762
          Enoch #52
           Fnoch #53
                                            Loss: 28580.724
          Epoch #54
                                            Loss: 28572.372
           Epoch #55
                                            Loss: 28580.495
           Epoch #56
                                            Loss: 28580.813
           Epoch #57
                                            Loss: 28581.828
           Epoch #58
                                            Loss: 28579.981
plt.plot(all_losses)
           [<matplotlib.lines.Line2D at 0x7f5edfbcc070>]
             28600
             28400
             28200
             28000
             27800
```

```
y_pred = []
model.train(False)
for inputs, targets in test_loader:
    y_pred.extend(model(inputs).data.numpy())
    y_true.extend(targets.numpy())
```

```
print(len(y_pred),len(y_true))
plt.scatter(x=y_pred, y=y_true)
plt.plot([0,50], [0,50],'--k')

392 392
[<matplotlib.lines.Line2D at 0x7f5edf5e00a0>]

-200
-400
-400
-800
-1000
-800
-1000
0 10 20 30 40 50
```

print("MAE:", mean_absolute_error(y_true, y_pred))
print("MSE:", mean_squared_error(y_true, y_pred))
print("R^2:", r2_score(y_true, y_pred))

MAE: 3.5467746 MSE: 2915.4019

R^2: -0.0015956673141215294

EVALUANDO MODELO 2019

 $\label{eq:dfs_rg_l} $$ dfs_rg_l = data[['ROE','RENTABILIDAD OPERACIONAL DEL PATRIMONIO', 'RENTABILIDAD NETA DE VENTAS']] $$ $$ \#Remover Outliers$

dfs_rg_l

dfs_Y

97 -0.0 184 0.0	090584 001185 025209 010888	0.469808 -0.001166 0.202467	0.031100 -0.059696 0.053528
184 0.0	025209		
		0.202467	0.053528
188 0.0	010888		
		0.896037	0.009275
82834 -1.3	386262	-1.423590	-0.023413
82855 -4.7	738655	-4.718581	-2.395046
83493 0.0	075985	21.726015	0.000585
83927 -0.	197612	0.099645	-0.458346
84841 0.9	909427	3.478133	0.133201
1565 rows ×	3 columns		

https://colab.research.google.com/drive/1vykOVgTJ18yUwdwXVtXk6WPoucBKn4zt#scrollTo=8j_e_7Ejd1Aj&printMode=true

ROE

 $\label{eq:dfs_x} $$ dfs_rg_1[['ROE','RENTABILIDAD OPERACIONAL DEL PATRIMONIO', 'RENTABILIDAD NETA DE VENTAS']] $$ dfs_x $$ and $$ dfs_x $$ a$

	ROE	RENTABILIDAD OPERACIONAL DEL PATRIMONIO	RENTABILIDAD NETA DE VENTAS	2
29	0.234019	1.272980	0.110454	
75	0.090584	0.469808	0.031100	
97	-0.001185	-0.001166	-0.059696	
184	0.025209	0.202467	0.053528	
188	0.010888	0.896037	0.009275	
82834	-1.386262	-1.423590	-0.023413	
82855	-4.738655	-4.718581	-2.395046	
83493	0.075985	21.726015	0.000585	
83927	-0.197612	0.099645	-0.458346	
84841	0.909427	3.478133	0.133201	

dfs_X.plot(subplots=True, layout=(-1,3), figsize=(30,10))

1565 rows × 3 columns

dfs_Y.plot(subplots=True, layout=(-1,3), figsize=(10,5))


```
scaler = StandardScaler()
inputs = scaler.fit_transform(dfs_X)
dX = np.array(inputs, dtype='float32')
dY = np.array(dfs_Y, dtype='float32')
dX
     array([[ 0.03602017, -0.08927003, 0.06761088],
              0.03083186, -0.10528919,
                                        0.05132422],
            [ 0.02751244, -0.11468271, 0.03268897],
            [ 0.03030379, 0.31866318, 0.0450612 ],
            [\ 0.02040731,\ -0.11267205,\ -0.04913051],
            [ 0.06045087, -0.04528852, 0.07227939]], dtype=float32)
dΥ
     array([[ 0.23401906],
            [ 0.09058373],
            [-0.00118463],
            [ 0.07598484],
            [-0.19761197],
            [ 0.90942705]], dtype=float32)
print('tamaño de dX INDICADORES : ',dX.shape) #tamaño de dX INDICADORES
print('tamaño de dY ROE : ',dY.shape) #tamaño de dY ROE
     tamaño de dX INDICADORES : (1565, 3)
     tamaño de dY ROE : (1565, 1)
X = torch.from_numpy(dX)
Y = torch.from_numpy(dY)
from torch.utils.data import TensorDataset
dataset = TensorDataset(X,Y)
dataset[1:2]
     (tensor([[ 0.0308, -0.1053, 0.0513]]), tensor([[0.0906]]))
```

```
from torch.utils.data import DataLoader
bs=64
train_loader = DataLoader(dataset,batch_size=bs,shuffle=True)
class ModeloRegresionLineal(torch.nn.Module):
def init (self):
 super(ModeloRegresionLineal, self).__init__()
 self.linear = torch.nn.Linear(3,1) #X @ w.t() + b
def forward(self, x):
 y_pred = self.linear(x)
 return y_pred
epochs = 30
ta = 1e-9 # Tasa Aprendizaje
modelo = ModeloRegresionLineal()
funcion_costo = torch.nn.MSELoss(reduction = 'mean')
optimizer = torch.optim.SGD(modelo.parameters(), lr = ta) #Actualiza los pesos w y el bias b
for i in range(epochs):
 for x,y in train loader:
   preds = modelo(x)
   loss = funcion_costo(preds, y)
   optimizer.zero_grad()
   loss.backward()
   optimizer.step()
 print(f"Epoch {i}/{epochs}: Loss {loss}")
     Epoch 0/30: Loss 3.7705414295196533
     Epoch 1/30: Loss 1.0743095874786377
     Epoch 2/30: Loss 0.627961277961731
     Epoch 3/30: Loss 0.5228757858276367
     Epoch 4/30: Loss 0.3778226375579834
     Epoch 5/30: Loss 0.5754765272140503
     Epoch 6/30: Loss 0.6021027565002441
     Enoch 7/30: Loss 568.1649169921875
     Epoch 8/30: Loss 0.6125538349151611
     Epoch 9/30: Loss 0.6532401442527771
     Epoch 10/30: Loss 37.30521774291992
     Epoch 11/30: Loss 0.43684738874435425
     Epoch 12/30: Loss 0.5169415473937988
     Epoch 13/30: Loss 38331.1640625
     Epoch 14/30: Loss 0.63414466381073
     Epoch 15/30: Loss 0.9429479837417603
     Epoch 16/30: Loss 0.6123935580253601
     Epoch 17/30: Loss 4.168334007263184
     Epoch 18/30: Loss 0.39348939061164856
     Epoch 19/30: Loss 0.6212916374206543
     Epoch 20/30: Loss 0.5643094182014465
     Epoch 21/30: Loss 0.4787541627883911
     Epoch 22/30: Loss 0.6774821877479553
     Epoch 23/30: Loss 0.5652852654457092
     Epoch 24/30: Loss 4.309688568115234
     Epoch 25/30: Loss 3.741856098175049
     Epoch 26/30: Loss 79.4842300415039
     Epoch 27/30: Loss 1.4696449041366577
     Epoch 28/30: Loss 17.733261108398438
     Epoch 29/30: Loss 0.47814205288887024
modelo.linear.weight #w
     Parameter containing:
     tensor([[0.3176, 0.3116, 0.0187]], requires_grad=True)
modelo.linear.bias #b
     Parameter containing:
     tensor([-0.4816], requires_grad=True)
# Evaluando el modelo
y_pred = []
y_true = []
modelo.train(False)
for inputs, targets in train_loader:
y_pred.extend(modelo(inputs).data.numpy())
y_true.extend(targets.numpy())
plt.scatter(y_pred, y_true)
plt.ylabel('ROE')
```

```
plt.xlabel('ROE (Predicciones)')
plt.plot([-1,1], [-1, 1], '--k', c='r')
plt.show()
# Calculando Errores
mae = mean_absolute_error(y_true=y_true, y_pred=y_pred)
mse = mean_squared_error(y_true=y_true, y_pred=y_pred, squared=True)
rmse = mean_squared_error(y_true=y_true, y_pred=y_pred, squared=False)
print(f"\nResultados Del año 2019 datos:")
print(f"MAE: {mae}")
print(f"MSE: {mse}")
```


Resultados Del año 2019 datos: MAE: 1.7818398475646973

MSE: 751.5975952148438 RMSE: 27.415279388427734

**EVALUANDO MODELO 2020

LECTURAS DATASET

```
datos_2018 = pd.read_excel('/content/drive/My Drive/proyecto/indicadores2018_cia.xlsx')
datos_2017 = pd.read_excel('/content/drive/My Drive/proyecto/indicadores2017_cia.xlsx')
datos_2020 = pd.read_excel('/content/drive/My Drive/proyecto/indicadores2020_cia.xlsx')
datos_2020.fillna(0)
datos_2020.dropna(inplace=True)
datos_2020
```

	AÑO	EXPEDIENTE	NOMBRE	RAMA	DESCRIPCIÓN RAMA	RAMA 6 DÍGITOS	SUBRAMA 2 DÍGITOS	LIQU CORRI
0	2020	1	ACEITES TROPICALES SOCIEDAD ANONIMA ATSA	А	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0126.01	A01	6.35
2	2020	3	ACERO COMERCIAL ECUATORIANO S.A.	G	COMERCIO AL POR MAYOR Y AL POR MENOR REPARACIÃ	G4659.99	G46	6.85
4	2020	22	AGENCIAS Y REPRESENTACIONES CORDOVEZ SA	G	COMERCIO AL POR MAYOR Y AL POR MENOR REPARACIÃ	G4630.95	G46	1.74
7	2020	49	ALMACENES EL GLOBO DE QUITO SA	G	COMERCIO AL POR MAYOR Y AL POR MENOR REPARACIÃ	G4719.00	G47	2.36

dfs_rg_1 = datos_2020[['ROE','RENTABILIDAD OPERACIONAL DEL PATRIMONIO', 'RENTABILIDAD NETA DE VENTAS']]
#Remover Outliers

dfs_rg_l

	ROE	RENTABILIDAD OPERACIONAL DEL PATRIMONIO	RENTABILIDAD NETA DE VENTAS
0	0.017822	0.079047	0.145618
2	-0.080518	-0.120850	-0.034202
4	0.093772	0.167538	0.033429
7	-0.985009	-0.901599	-0.217195
8	-0.057209	0.319549	-0.044041
83769	0.090264	-6.274013	0.012410
83825	-0.341922	0.310856	-0.036434
83830	0.899413	0.901391	0.326974
83880	-1.014521	-0.762914	-51.375614
84433	0.533966	49.896259	0.008106
4.4000			

14020 rows × 3 columns

	ROE	1
0	0.017822	
2	-0.080518	
4	0.093772	
7	-0.985009	
8	-0.057209	
83769	0.090264	
83825	-0.341922	
83830	0.899413	
83880	-1.014521	
84433	0.533966	
14020 rd	ows × 1 columns	

 $\label{eq:dfs_x} $$ $ dfs_rg_1[['ROE','RENTABILIDAD OPERACIONAL DEL PATRIMONIO', 'RENTABILIDAD NETA DE VENTAS']] $$ dfs_X $$ $$ $$ $$$

```
ROE RENTABILIDAD OPERACIONAL DEL PATRIMONIO RENTABILIDAD NETA DE VENTAS
        0
             0.017822
                                                       0.079047
                                                                                    0.145618
        2
             -0.080518
                                                      -0.120850
                                                                                    -0.034202
                                                       0.167538
                                                                                    0.033429
        4
             0.093772
        7
             -0.985009
                                                      -0.901599
                                                                                    -0.217195
             -0.057209
                                                       0.319549
                                                                                    -0.044041
        8
        ...
      83769 0.090264
                                                      -6.274013
                                                                                    0.012410
      83825 -0.341922
                                                       0.310856
                                                                                    -0.036434
      83830 0.899413
                                                       0.901391
                                                                                    0.326974
                                                      -0.762914
                                                                                   -51.375614
      83880 -1 014521
      84433 0.533966
                                                      49.896259
                                                                                    0.008106
scaler = StandardScaler()
inputs = scaler.fit_transform(dfs_X)
dX = np.array(inputs, dtype='float32')
dY = np.array(dfs_Y, dtype='float32')
dX
     array([[ 0.04036301, -0.03196327, 0.0089452 ],
              0.03204108, -0.03560445, 0.00878947],
            [ 0.04679025, -0.03035139, 0.00884804],
            [ 0.11496707, -0.01698408, 0.00910226],
            [-0.04699835, -0.0472998 , -0.03567374]
            [ 0.08404137, 0.87546974, 0.00882611]], dtype=float32)
dΥ
     array([[ 0.01782197],
            [-0.08051773],
            [ 0.09377224],
            [ 0.8994128 ],
            [-1.014521],
            [ 0.53396606]], dtype=float32)
print('tamaño de dX INDICADORES : ',dX.shape) #tamaño de dX INDICADORES
print('tamaño de dY ROE : ',dY.shape) #tamaño de dY ROE
     tamaño de dX INDICADORES : (14020, 3)
     tamaño de dY ROE : (14020, 1)
X = torch.from_numpy(dX)
Y = torch.from_numpy(dY)
from torch.utils.data import TensorDataset
dataset = TensorDataset(X,Y)
dataset[1:2]
     (tensor([[ 0.0320, -0.0356, 0.0088]]), tensor([[-0.0805]]))
from torch.utils.data import DataLoader
train_loader = DataLoader(dataset,batch_size=bs,shuffle=True)
class ModeloRegresionLineal(torch.nn.Module):
def __init__(self):
 super(ModeloRegresionLineal, self). init ()
 self.linear = torch.nn.Linear(3,1) #X @ w.t() + b
 def forward(self, x):
 y_pred = self.linear(x)
 return y_pred
epochs = 30
ta = 1e-9 # Tasa Aprendizaje
modelo = ModeloRegresionLineal()
```

```
funcion_costo = torch.nn.MSELoss(reduction = 'mean')
optimizer = torch.optim.SGD(modelo.parameters(), lr = ta) #Actualiza los pesos w y el bias b
for i in range(epochs):
 for x,y in train_loader:
  preds = modelo(x)
   loss = funcion_costo(preds, y)
   optimizer.zero_grad()
   loss.backward()
  optimizer.step()
 print(f"Epoch {i}/{epochs}: Loss {loss}")
     Epoch 0/30: Loss 0.40508660674095154
     Epoch 1/30: Loss 0.07188256084918976
     Epoch 2/30: Loss 0.05984983593225479
     Epoch 3/30: Loss 0.39519166946411133
     Epoch 4/30: Loss 0.08602160215377808
     Epoch 5/30: Loss 0.050189536064863205
     Epoch 6/30: Loss 0.14426694810390472
     Epoch 7/30: Loss 0.056205134838819504
     Epoch 8/30: Loss 0.3164328336715698
     Epoch 9/30: Loss 0.7531360983848572
     Epoch 10/30: Loss 0.10635189712047577
     Epoch 11/30: Loss 0.07201410084962845
     Epoch 12/30: Loss 0.0933629646897316
     Epoch 13/30: Loss 0.08790195733308792
     Epoch 14/30: Loss 0.032197535037994385
     Epoch 15/30: Loss 0.03589369356632233
     Epoch 16/30: Loss 0.07310549169778824
     Epoch 17/30: Loss 0.2789304256439209
     Epoch 18/30: Loss 0.244041308760643
     Epoch 19/30: Loss 0.12054206430912018
     Epoch 20/30: Loss 0.5896925926208496
     Epoch 21/30: Loss 0.532899022102356
     Epoch 22/30: Loss 0.5470948815345764
     Epoch 23/30: Loss 0.17196761071681976
     Epoch 24/30: Loss 0.09500324726104736
     Epoch 25/30: Loss 0.5141614675521851
     Epoch 26/30: Loss 1.830703854560852
     Epoch 27/30: Loss 1.7079228162765503
     Epoch 28/30: Loss 0.11422447860240936
     Epoch 29/30: Loss 0.48125335574150085
modelo.linear.weight #w
     Parameter containing:
     tensor([[-0.4006, 0.0599, -0.4219]], requires_grad=True)
modelo.linear.bias #b
     Parameter containing:
     tensor([0.3034], requires_grad=True)
# Evaluando el modelo
y_pred = []
y_true = []
modelo.train(False)
for inputs, targets in train_loader:
y_pred.extend(modelo(inputs).data.numpy())
y_true.extend(targets.numpy())
plt.scatter(y_pred, y_true)
plt.ylabel('ROE')
plt.xlabel('ROE (Predicciones)')
plt.plot([-1,1], [-1, 1], '--k', c='r')
plt.show()
# Calculando Errores
mae = mean_absolute_error(y_true=y_true, y_pred=y_pred)
mse = mean_squared_error(y_true=y_true, y_pred=y_pred, squared=True)
rmse = mean_squared_error(y_true=y_true, y_pred=y_pred, squared=False)
print(f"\n Prediccion año 2020 datos:")
print(f"MAE: {mae}")
print(f"MSE: {mse}")
print(f"RMSE: {rmse}")
```


EVALUANDO MODELO 2017

NOL (FIGUREIOTICS)

datos_2017.fillna(0)

datos_2017.dropna(inplace=True)

datos_2017

	AÑO	EXPEDIENTE	NOMBRE	RAMA	DESCRIPCIÓN RAMA	RAMA 6 DÍGITOS	SUBRAMA 2 DÍGITOS
1	2017	2	ACERIA DEL ECUADOR CA ADELCA.	С	INDUSTRIAS MANUFACTURERAS.	C2410.25	C24
2	2017	3	ACERO COMERCIAL ECUATORIANO S.A.	G	COMERCIO AL POR MAYOR Y AL POR MENOR REPARACIÃ	G4659.99	G46
4	2017	22	AGENCIAS Y REPRESENTACIONES CORDOVEZ SA	G	COMERCIO AL POR MAYOR Y AL POR MENOR REPARACIÃ	G4630.95	G46
7	2017	49	ALMACENES EL GLOBO DE QUITO SA	G	COMERCIO AL POR MAYOR Y AL POR MENOR REPARACIÃ	G4719.00	G47
8	2017	63	CONFITECA C.A.	С	INDUSTRIAS MANUFACTURERAS.	C1073.21	C10
80431	2017	714930	CAMARONERA MARCRESCI MARCRESCISA S.A.	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0321.02	A03
80447	2017	714947	COMERCIALIZADORA Y CONSERVADORA DE PESCADO BUS	Α	AGRICULTURA, GANADERÃ A, SILVICULTURA Y PESCA.	A0311.01	A03
80460	2017	714960	METALAUSTROFERRETERIA CIA.LTDA.	G	COMERCIO AL POR MAYOR Y AL POR MENOR REPARACIÃ	G4610.05	G46
80679	2017	715220	REYLACTEOS C.L.	С	INDUSTRIAS MANUFACTURERAS.	C1050.01	C10
80680	2017	715221	EXPOPLAST C.L.	С	INDUSTRIAS MANUFACTURERAS.	C2220.91	C22
13049 rd	ows × 3	7 columns					
7							

 $\label{eq:dfs_rg_l} $$ dfs_rg_l = datos_2020[['ROE','RENTABILIDAD OPERACIONAL DEL PATRIMONIO', 'RENTABILIDAD NETA DE VENTAS']] $$ $$ \#Remover Outliers$

dfs_rg_l

/23, 1	.აა			PROTE	510 IA GRUPO 6.Ipynb - Colabo
		ROE	RENTABILIDAD (OPERACIONAL DEL PATRIMONIO	RENTABILIDAD NETA DE VENTAS
	0	0.017822		0.079047	0.145618
	2	-0.080518		-0.120850	-0.034202
	4	0.093772		0.167538	0.033429
	7	-0.985009		-0.901599	-0.217195
	8	-0.057209		0.319549	-0.044041
	83769	U Uduje4		-6 274013	N N1241N
fs_Y fs_Y	= dfs_	rg_1[['ROE	']]		
		ROE	7		
	0	0.017822			
	2	-0.080518			
	4	0.093772			

0 0.017822
2 -0.080518
4 0.093772
7 -0.985009
8 -0.057209
... ...
83769 0.090264
83825 -0.341922
83830 0.899413
83880 -1.014521
84433 0.533966
14020 rows × 1 columns

 $\label{eq:dfs_x} $$ dfs_rg_1[['ROE', 'RENTABILIDAD OPERACIONAL DEL PATRIMONIO', 'RENTABILIDAD NETA DE VENTAS']] $$ dfs_x $$ $$$

	ROE	RENTABILIDAD OPERACIONAL DEL PATRIMONIO	RENTABILIDAD NETA DE VENTAS	1
0	0.017822	0.079047	0.145618	
2	-0.080518	-0.120850	-0.034202	
4	0.093772	0.167538	0.033429	
7	-0.985009	-0.901599	-0.217195	
8	-0.057209	0.319549	-0.044041	
83769	0.090264	-6.274013	0.012410	
83825	-0.341922	0.310856	-0.036434	
83830	0.899413	0.901391	0.326974	
83880	-1.014521	-0.762914	-51.375614	
84433	0.533966	49.896259	0.008106	
14020 ro	wwo v 2 colur	mna		

14020 rows × 3 columns

```
dΥ
```

```
array([[ 0.01782197],
            [-0.08051773],
            [ 0.09377224],
            [ 0.8994128 ],
            [-1.014521 ],
            [ 0.53396606]], dtype=float32)
print('tamaño de dX INDICADORES : ',dX.shape) #tamaño de dX INDICADORES
print('tamaño de dY ROE : ',dY.shape) #tamaño de dY ROE
     tamaño de dX INDICADORES : (14020, 3)
     tamaño de dY ROE : (14020, 1)
X = torch.from_numpy(dX)
Y = torch.from_numpy(dY)
from torch.utils.data import TensorDataset
dataset = TensorDataset(X,Y)
dataset[1:2]
     (tensor([[ 0.0320, -0.0356, 0.0088]]), tensor([[-0.0805]]))
from torch.utils.data import DataLoader
hs=64
train_loader = DataLoader(dataset,batch_size=bs,shuffle=True)
class ModeloRegresionLineal(torch.nn.Module):
def __init__(self):
 super(ModeloRegresionLineal, self).__init__()
 self.linear = torch.nn.Linear(3,1) #X @ w.t() + b
 def forward(self, x):
 y_pred = self.linear(x)
 return y_pred
epochs = 30
ta = 1e-9 # Tasa Aprendizaje
modelo = ModeloRegresionLineal()
funcion_costo = torch.nn.MSELoss(reduction = 'mean')
optimizer = torch.optim.SGD(modelo.parameters(), lr = ta) #Actualiza los pesos w y el bias b
for i in range(epochs):
 for x,y in train_loader:
   preds = modelo(x)
   loss = funcion_costo(preds, y)
   optimizer.zero_grad()
   loss.backward()
   optimizer.step()
 print(f"Epoch {i}/{epochs}: Loss {loss}")
     Enoch 0/30: Loss 0.2329263538122177
     Epoch 1/30: Loss 0.34837332367897034
     Epoch 2/30: Loss 0.2433815449476242
     Epoch 3/30: Loss 0.05776943266391754
     Epoch 4/30: Loss 0.16537369787693024
     Epoch 5/30: Loss 0.7609979510307312
     Epoch 6/30: Loss 0.10551682114601135
     Epoch 7/30: Loss 0.12570995092391968
     Epoch 8/30: Loss 0.08270823210477829
     Epoch 9/30: Loss 0.4433460533618927
     Epoch 10/30: Loss 19.59803009033203
     Epoch 11/30: Loss 0.11380017548799515
     Epoch 12/30: Loss 0.2834673523902893
     Epoch 13/30: Loss 0.08755698800086975
     Epoch 14/30: Loss 0.11523362994194031
     Epoch 15/30: Loss 0.19123423099517822
     Epoch 16/30: Loss 0.5826622247695923
     Epoch 17/30: Loss 0.9881596565246582
     Epoch 18/30: Loss 0.24328851699829102
     Epoch 19/30: Loss 0.8955906629562378
     Epoch 20/30: Loss 73.48155212402344
     Epoch 21/30: Loss 0.03496107831597328
     Epoch 22/30: Loss 0.09457211196422577
     Epoch 23/30: Loss 0.36414679884910583
     Epoch 24/30: Loss 0.06265504658222198
     Epoch 25/30: Loss 1.380377173423767
     Epoch 26/30: Loss 0.2700571119785309
```

```
Epoch 27/30: Loss 0.14082761108875275
     Epoch 28/30: Loss 0.07182713598012924
     Epoch 29/30: Loss 3.421013355255127
modelo.linear.weight #w
     Parameter containing:
     tensor([[ 0.4892, -0.0573, -0.1931]], requires_grad=True)
modelo.linear.bias #b
     Parameter containing:
     tensor([-0.2467], requires_grad=True)
# Evaluando el modelo
y_pred = []
y_true = []
modelo.train(False)
for inputs, targets in train_loader:
y_pred.extend(modelo(inputs).data.numpy())
y_true.extend(targets.numpy())
plt.scatter(y_pred, y_true)
plt.ylabel('ROE')
plt.xlabel('ROE (Predicciones)')
plt.plot([-1,1], [-1, 1], '--k', c='r')
plt.show()
# Calculando Errores
mae = mean_absolute_error(y_true=y_true, y_pred=y_pred)
mse = mean_squared_error(y_true=y_true, y_pred=y_pred, squared=True)
rmse = mean_squared_error(y_true=y_true, y_pred=y_pred, squared=False)
print(f"\nResultados Del año 2017 datos:")
print(f"MAE: {mae}")
print(f"MSE: {mse}")
print(f"RMSE: {rmse}")
```


Resultados Del año 2017 datos: MAE: 1.0072892904281616

MSE: 128.7194061279297 RMSE: 11.345457077026367

EVALUANDO MODELO 2018

```
datos_2018.fillna(0)
datos_2018.dropna(inplace=True)
datos_2018
```

	AÑO	EXPEDIENTE	NOMBRE	RAMA	DESCRIPCIÓN RAMA	RAMA 6 DÍGITOS	SUBRAMA 2 DÍGITOS	LIQU CORRI
1	2018	2	ACERIA DEL ECUADOR CA ADELCA.	С	INDUSTRIAS MANUFACTURERAS.	C2410.25	C24	1.58
2	2018	3	ACERO COMERCIAL ECUATORIANO S.A.	G	COMERCIO AL POR MAYOR Y AL POR MENOR REPARACIÃ	G4659.99	G46	3.08
4	2018	22	AGENCIAS Y REPRESENTACIONES CORDOVEZ SA	G	COMERCIO AL POR MAYOR Y AL POR MENOR REPARACIÃ	G4630.95	G46	1.46
7	2018	49	ALMACENES EL GLOBO DE QUITO SA	G	COMERCIO AL POR MAYOR Y AL POR MENOR REPARACIÃ	G4719.00	G47	1.44
8	2018	63	CONFITECA C.A.	С	INDUSTRIAS MANUFACTURERAS.	C1073.21	C10	1.76
83339	2018	720498	OPENAUDIO S.A.	G	COMERCIO AL POR MAYOR Y AL POR MENOR REPARACIÃ	G4759.06	G47	0.73
83409	2018	720576	BRADFORD GRILL BRADFORDGRILL	1	ACTIVIDADES DE ALOJAMIENTO Y DE	15610.02	156	0.29

dfs_rg_1 = datos_2020[['ROE','RENTABILIDAD OPERACIONAL DEL PATRIMONIO', 'RENTABILIDAD NETA DE VENTAS']]
#Remover Outliers

dfs_rg_l

	ROE	RENTABILIDAD OPERACIONAL DEL PATRIMONIO	RENTABILIDAD NETA DE VENTAS
0	0.017822	0.079047	0.145618
2	-0.080518	-0.120850	-0.034202
4	0.093772	0.167538	0.033429
7	-0.985009	-0.901599	-0.217195
8	-0.057209	0.319549	-0.044041
83769	0.090264	-6.274013	0.012410
83825	-0.341922	0.310856	-0.036434
83830	0.899413	0.901391	0.326974
83880	-1.014521	-0.762914	-51.375614
84433	0.533966	49.896259	0.008106
14020 rd	ows × 3 colur	mns	

dfs_Y = dfs_rg_l[['ROE']]
dfs_Y

```
ROE 0.017822
```

_			
	ROE	RENTABILIDAD OPERACIONAL DEL PATRIMONIO	RENTABILIDAD NETA DE VENTAS
0	0.017822	0.079047	0.145618
2	-0.080518	-0.120850	-0.034202
4	0.093772	0.167538	0.033429
7	-0.985009	-0.901599	-0.217195
8	-0.057209	0.319549	-0.044041
83769	0.090264	-6.274013	0.012410
83825	-0.341922	0.310856	-0.036434
83830	0.899413	0.901391	0.326974
83880	-1.014521	-0.762914	-51.375614
84433	0.533966	49.896259	0.008106
14020 rd	ows × 3 colu	mns	
= np.arra	y(inputs,	ransform(dfs_X) dtype='float32') ltype='float32')	
array([[0.032041	001, -0.03196327, 0.0089452], L08, -0.03560445, 0.00878947], 025, -0.03035139, 0.00884804],	
	[-0.046998	707, -0.01698408, 0.00910226], 335, -0.0472998, -0.03567374], 137, 0.87546974, 0.00882611]], dtype=flo	pat32)
array([[0.017821 [-0.080517 [0.093772	773],	
	, [0.899412 [-1.014521 [0.533966		
		IDICADORES : ',dX.shape) #tamaño de dX INE DE : ',dY.shape) #tamaño de dY ROE	CICADORES
		CCADORES : (14020, 3) : (14020, 1)	
	om_numpy(c		
	tils.data nsorDatase	<pre>import TensorDataset et(X,Y)</pre>	
taset[1:2]			
(tensor	·([[0.0326	0, -0.0356, 0.0088]]), tensor([[-0.0805]]))
om torch.u =64	tils.data	import DataLoader	
	= DataLoa	der(dataset,batch_size=bs,shuffle=True)	
efinit_	_(self):	ineal(torch.nn.Module):	
super(Mode	tokegresio	onLineal, self)init()	

```
self.linear = torch.nn.Linear(3,1) #X @ w.t() + b
def forward(self, x):
 y_pred = self.linear(x)
 return y pred
enochs = 30
ta = 1e-9 # Tasa Aprendizaje
modelo = ModeloRegresionLineal()
funcion_costo = torch.nn.MSELoss(reduction = 'mean')
optimizer = torch.optim.SGD(modelo.parameters(), lr = ta) #Actualiza los pesos w y el bias b
for i in range(epochs):
  for x,y in train_loader:
  preds = modelo(x)
   loss = funcion_costo(preds, y)
  optimizer.zero_grad()
   loss.backward()
   optimizer.step()
 print(f"Epoch {i}/{epochs}: Loss {loss}")
     Epoch 0/30: Loss 0.03816503658890724
     Epoch 1/30: Loss 0.028957800939679146
     Epoch 2/30: Loss 15.449923515319824
     Epoch 3/30: Loss 2.0858418941497803
     Epoch 4/30: Loss 7.917113780975342
     Epoch 5/30: Loss 0.012297725304961205
     Epoch 6/30: Loss 1.0257222652435303
     Epoch 7/30: Loss 0.009770125150680542
     Epoch 8/30: Loss 7.122675895690918
     Epoch 9/30: Loss 0.22992557287216187
     Epoch 10/30: Loss 22.455156326293945
     Epoch 11/30: Loss 2.2673659324645996
     Epoch 12/30: Loss 0.7916465997695923
     Epoch 13/30: Loss 3.1368720531463623
     Epoch 14/30: Loss 0.010750258341431618
     Epoch 15/30: Loss 0.2509259879589081
     Epoch 16/30: Loss 0.052849724888801575
     Epoch 17/30: Loss 0.13255004584789276
     Epoch 18/30: Loss 0.004006273113191128
     Epoch 19/30: Loss 0.12529690563678741
     Epoch 20/30: Loss 0.2967700660228729
     Epoch 21/30: Loss 0.1448555439710617
     Epoch 22/30: Loss 0.23854151368141174
     Enoch 23/30: Loss 0.03809897601604462
     Epoch 24/30: Loss 0.08151651173830032
     Epoch 25/30: Loss 0.31255555152893066
     Epoch 26/30: Loss 0.034633819013834
     Epoch 27/30: Loss 0.1523798406124115
     Epoch 28/30: Loss 0.03502373397350311
     Epoch 29/30: Loss 0.4350312054157257
modelo.linear.weight #w
     Parameter containing:
     tensor([[ 0.3152, -0.0519, -0.2671]], requires_grad=True)
modelo.linear.bias #b
     Parameter containing:
     tensor([-0.0733], requires_grad=True)
```

```
# Evaluando el modelo
y_pred = []
y_true = []
modelo.train(False)
for inputs, targets in train_loader:
y_pred.extend(modelo(inputs).data.numpy())
y_true.extend(targets.numpy())
plt.scatter(y_pred, y_true)
plt.ylabel('ROE')
plt.xlabel('ROE (Predicciones)')
plt.plot([-1,1], [-1, 1], '--k', c='r')
plt.show()
# Calculando Errores
mae = mean_absolute_error(y_true=y_true, y_pred=y_pred)
mse = mean_squared_error(y_true=y_true, y_pred=y_pred, squared=True)
rmse = mean_squared_error(y_true=y_true, y_pred=y_pred, squared=False)
print(f"\nResultados Del año 2017 datos:")
print(f"MAE: {mae}")
print(f"MSE: {mse}")
print(f"RMSE: {rmse}")
```


Resultados Del año 2017 datos: MAE: 0.916106104850769 MSE: 132.8055419921875 RMSE: 11.524128913879395

CONCLUSION

Segun los datos analizados podemos detectar que el año en el que mejor predice es el año del 2017 ya que nos da un error bien bajo por lo

0 s se ejecutó 01:30

×