17IT3302

UNIT-IV

- Consider the group $G = \{1, 2, 3, 4, 5, 6\}$ under multiplication 8. modulo 7 **7M**
 - i) Find the multiplication table of G.
 - ii) Find the subgroups and their orders generated by 2 and 3.
 - Define Normal subgroup. Show that a subgroup (H, *) of a group (G, *) is a normal subgroup if and only if $a^{-1} * h * a \in H$ for every $a \in G$ and $h \in H$. **8M**

(or)

- i) Let G be a simple group all of whose vertices have degree 3 and 9. |E| = 2|V|-3. What can be said about G? ii) Is there a simple graph with degree sequence (1, 1, 3, 3, 3, 4, 6, **7M**
 - Define isomorphism and explain with suitable example. **8M**

* * *

VR17

	 	 	 	 	 _
Dog No.					
Reg. No:					
0					

VELAGAPUDI RAMAKRISHNA

SIDDHARTHA ENGINEERING COLLEGE

(AUTONOMOUS)

II/IV B. Tech. DEGREE EXAMINATION, MARCH, 2021

Third Semester

INFORMATION TECHNOLOGY

17IT3302 DISCRETE MATHEMATICS FOR INFORMATION **TECHNOLOGY**

Time: 3hours Max. Marks: 70

Part-A is compulsory

Answer One Question from each Unit of Part-B

Answer to any single question or its part shall be written at one place only

PART-A

 $10 \times 1 = 10M$

- Define proposition. 1.
 - Define sum rule principle.
 - What is ordered pair?
 - Define recursive function.
 - Define homomorphisms.
 - What is the generating function for the sequence 1, 6, 16, 216,...?
 - How many ways the sum can be obtained of 6 when two indistinguishable dice are rolled?
 - State Pigeonhole principle.
 - State any two properties of a group.
 - Define sub graph.

7)? Justify.

17IT3302

PART-B

 $4 \times 15 = 60M$

UNIT-I

- 2. a. Show that $p \leftrightarrow q$ and $\neg p \leftrightarrow \neg q$ are logically equivalent. 7M
 - b. Translate the given statements into propositional logic using the propositions provided:

P: "The message is scanned for viruses".

Q: 'The message was sent from an unknown system".

- i) "The message is scanned for viruses whenever the message was sent from an unknown system".
- ii) "It is necessary to scan the message for viruses whenever it was sent from an unknown system".

 8M

(or)

- 3. a. Show that $p \to q$ and $\neg q \to \neg p$ are logically equivalent. 7M
 - b. Show that among any 4 numbers, one can find 2 numbers so that their difference is divisible by 3.
 (Avoid considering the cases separately. Use Pigeonhole principle).

UNIT-II

4. a. Let P(A) be the power set of any non empty set A. Prove that the relation Í of set inclusion is not an equivalence relation. **7M**

VR17 17IT3302

b. If R is an equivalence relation on a set A, then R⁻¹ is also an equivalence relation on A. Prove. **8M**

(or)

- 5. a. Define relation. Discuss types of relations with suitable examples.

 7M
 - b. Find the generating functions for the following sequences. In each case, try to simplify the answer.

UNIT-III

6. a. Find the unique solution to the following recurrence relation with the given initial conditions:

$$a_n = 9a_{n-1} - 27a_{n-2} + 27a_{n-3}$$
 with $a_0 = 5$, $a_1 = 24$, $a_2 = 117$ **8M**

b. Show that any subgroup of a cyclic group (G, *) is cyclic. 7M

(or)

- 7. a. Let $S = R-\{-1\}$ and * is defined as a*b = a+b+ab. Show that (S, *) is a group. 7M
 - b. Find the particular solution of the recurrence relation $a_{n+2} 4 a_{n+1} + 4 a_n = 2^n.$ 8M