TEA013 Matemática Aplicada I
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P02A, 03 dez 2022

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

1 [25] Utilizando **obrigatoriamente** o Teorema da Convolução, calcule

$$\mathcal{L}^{-1}\left\{\frac{1}{s^2 - 3s + 2}\right\}$$

SOLUÇÃO DA QUESTÃO:

Prof. Nelson Luís Dias

$$s^{2} - 3s + 2 = (s - 1)(s - 2);$$

$$\mathcal{L}^{-1}\left\{\frac{1}{s^{2} - 3s + 2}\right\} = \mathcal{L}^{-1}\left\{\frac{1}{(s - 1)(s - 2)}\right\}.$$

Mas

$$\mathcal{L}^{-1}\left\{\frac{1}{s-1}\right\} = e^t,$$

$$\mathcal{L}^{-1}\left\{\frac{1}{s-2}\right\} = e^{2t},$$

$$\mathcal{L}^{-1}\left\{\frac{1}{(s-1)(s-2)}\right\} = \int_0^t e^{t-\tau}e^{2\tau} d\tau$$

$$= e^t \int_0^t e^{\tau} d\tau$$

$$= e^{2t} - e^t \blacksquare$$

$$\langle , \rangle : \mathbb{V} \times \mathbb{V} \to \mathbb{C}$$

$$(x, y) \mapsto \langle x, y \rangle$$

é um produto interno, enumere as 5 propriedades que o definem adotadas neste curso.

SOLUÇÃO DA QUESTÃO:

As propriedades definidoras do produto interno são:

$$\langle x, y \rangle = \langle y, x \rangle^*,$$

$$\langle x, y + z \rangle = \langle x, y \rangle + \langle x, z \rangle,$$

$$\langle x, \alpha y \rangle = \alpha \langle x, y \rangle,$$

$$\langle x, x \rangle > 0, \ x \neq 0,$$

$$\langle x, x \rangle = 0, \ x = 0.$$

3 [25] Calcule a série de Fourier **complexa** de

$$f(x) = \begin{cases} -1, & -1 \le x < 0, \\ +1, & 0 \le x \le 1. \end{cases}$$

SOLUÇÃO DA QUESTÃO:

$$f(x) = \sum_{n = -\infty}^{+\infty} c_n e^{\frac{2\pi i n x}{L}};$$

$$c_0 = \frac{1}{L} \int_a^b f(x) e^0 dx$$

$$= \frac{1}{2} \int_{-1}^{+1} f(x) dx$$

$$= 0;$$

Se $n \neq 0$,

$$c_{n} = \frac{1}{L} \int_{a}^{b} f(x) e^{-\frac{2\pi i n x}{L}} dx,$$

$$a = -1,$$

$$b = +1,$$

$$L = 2,$$

$$c_{n} = \frac{1}{2} \left[\int_{-1}^{0} (-1) e^{-\frac{2\pi i n x}{L}} dx + \int_{0}^{+1} (+1) e^{-\frac{2\pi i n x}{L}} dx \right]$$

$$\vdots$$

$$= \frac{i}{\pi n} \left[(-1)^{n} - 1 \right];$$

$$f(x) = \sum_{\substack{n = -\infty \\ n \neq 0}}^{n = +\infty} \frac{i}{\pi n} \left[(-1)^{n} - 1 \right] e^{\pi i n x} \blacksquare$$

4 [25] Sabendo que, se $m, n \in \mathbb{Z}$,

$$\int_{-1}^{+1} \operatorname{sen}(m\pi x) \operatorname{sen}(n\pi x) dx = \begin{cases} 0 & m \neq n, \\ 1 & m = n, \end{cases}$$

calcule a série de Fourier trigonométrica de

$$f(x) = \operatorname{sen}(\pi x), \qquad -1 \le x \le +1.$$

SOLUÇÃO DA QUESTÃO:

$$f(x) = \frac{A_0}{2} + \sum_{n=1}^{\infty} A_n \cos\left(\frac{2n\pi x}{L}\right) + B_n \sin\left(\frac{2n\pi x}{L}\right).$$

Mas f(x) é ímpar; logo, $A_n = 0$.

$$a = -1,$$

$$b = +1,$$

$$L = 2,$$

$$B_n = \frac{2}{2} \int_{-1}^{+1} \operatorname{sen}(\pi x) \operatorname{sen}(n\pi x) dx$$

$$= \begin{cases} 0 & n \neq 1, \\ 1 & n = 1. \end{cases}$$

Portanto, a série de Fourier de f(x) é a própria função:

$$f(x) = \operatorname{sen}(\pi x) \blacksquare$$