

(19) Europäisches Patentamt
European Patent Office
Office européen des brevets

(11) Publication number:

0 451 604 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication of patent specification: **21.12.94** (51) Int. Cl.⁵: **C08C 19/44, B60C 1/00**

(21) Application number: **91104738.9**

(22) Date of filing: **26.03.91**

(54) **Diene polymers and copolymers terminated by reaction with n-alkyl and n-aryl imines.**

(30) Priority: **09.04.90 US 506306**

(43) Date of publication of application:
16.10.91 Bulletin 91/42

(45) Publication of the grant of the patent:
21.12.94 Bulletin 94/51

(84) Designated Contracting States:
BE DE ES FR GB IT NL

(56) References cited:
EP-A- 0 198 294
DE-A- 3 639 569
US-A- 3 178 398

(73) Proprietor: **BRIDGESTONE/FIRESTONE, INC.**
1200 Firestone Parkway
Akron, Ohio 44317 (US)

(72) Inventor: **Stayer, Mark L., Jr.**
1213 Cramer Drive
Mogadore,
Ohio 44260 (US)
Inventor: **Antkowiak, Thomas A.**
9916 Mennonite Road
Rittman,
Ohio 44270 (US)
Inventor: **Lawson, David F.**
11621 Garden Lane, NW
Uniontown,
Ohio 44685 (US)
Inventor: **Koch, Russell W.**
2135 Howard Street
Hartville,
Ohio 44632 (US)

(74) Representative: **Kraus, Walter, Dr. et al**
Patentanwälte Kraus, Weisert & Partner
Thomas-Wimmer-Ring 15
D-80539 München (DE)

EP 0 451 604 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

DescriptionBackground of The Invention

5 The invention relates to a process for preparing terminally functionalized diene polymers and copolymers having reduced hysteresis. More particularly, the invention relates to a process for preparing terminally functionalized diene polymers and copolymers which comprises reacting a living diene polymer or copolymer obtained by anionic polymerisation with certain substituted imines, to the terminally functionalized diene polymers or copolymers produced by the process, to elastomer compositions containing
10 such diene polymers or copolymers and to tire treads formed from such elastomer compositions.

In recent years, those active in the tire industry have greatly increased their emphasis on the development of tires having both reduced rolling resistance and good wet traction properties. As is well known, that portion of the tire which exerts the greatest influence on rolling resistance and traction is the tread or tread rubber portion. Low rolling resistance is desirable from a fuel consumption standpoint while
15 good wet traction is desirable from a safety standpoint. However, as a general rule, these properties have been found to conflict with each other. Thus, a reduction in rolling resistance generally leads to an almost directionally proportional reduction in wet traction while an increase in wet traction generally leads to an almost directionally proportional increase in rolling resistance.

The prior art has proposed a number of approaches to the solution of this problem. Such approaches
20 have generally involved modifying the properties of the elastomer or elastomer composition utilized to form the tire tread in order to achieve the best possible balance between rolling resistance and traction. The approaches involving modification of the elastomer have generally been based on improving the interaction between the elastomer and the carbon black used in compounding the elastomer to prepare the tire tread composition in order to improve the dispersion of the carbon black into the elastomer. This has the effect of
25 reducing the hysteresis of the tire tread composition which in turn results in low rolling resistance.

One known approach to modifying the diene polymer or copolymer elastomer to reduce the hysteresis of elastomer compositions formed therefrom involves coupling the living diene polymer or copolymer chains with metal halides. Thus, U.S. patents 4,383,085 and 4,515,922 describe the coupling of living diene polymer or copolymer chains obtained by anionic polymerization using an organolithium initiator with metal
30 halides such as tin halides, silicon halides and the like. These patents indicate that tire treads formed from rubber compositions containing the coupled polymers have reduced hysteresis along with reduced rolling resistance and improved wet skid resistance.

Another known approach to modifying the diene polymer or copolymer elastomer to reduce the hysteresis of elastomer composition involves terminating the living diene polymer or copolymer chains with
35 certain compounds containing functional groups which are reactive with the lithium terminals of the living polymer as illustrated by U.S. Patent 4,835,209 and EPO 0316255. Thus, U.S. 4,835,209 discloses the termination of living diene polymer or copolymer chains with carbodiimides. The patent discloses that rubber compositions containing such polymers have excellent performance characteristics with respect to tensile strength, impact resistance, low heat-generating properties and wear resistance without impairing wet
40 skid properties. EPO 0316255 discloses the termination of living diene polymer or copolymer chains with a capping agent selected from the group consisting of (a) halogenated nitriles having the structural formula $X - A - C = N$ wherein X is a halogen atom and A is an alkylene group of 1 to 20 carbon atoms, (b) heterocyclic aromatic nitrogen-containing compounds, and (c) alkyl benzoates. This published application discloses that compositions containing such polymers have reduced hysteresis and that tire treads made
45 from such compositions have lower rolling resistance and better traction characteristics.

Diene polymers and copolymers have also been subjected to various reactions with compounds containing reactive nitrogen-containing groups including certain substituted imines to improve certain properties of the polymers as disclosed by the following patents.

U.S. 3,178,398 relates to a method of preparing polymers including diene polymers and copolymers
50 having terminal groups containing reactive nitrogen and to the curing of the resultant polymers with polyhalogen-containing compounds. The patent discloses that diene polymers or copolymers containing such terminal groups can be prepared by reacting the living diene polymer or copolymer with a non-polymerizable compound containing the structure

55 $\geq C - N = C \leq$

Compounds containing the foregoing structure which are disclosed in the reference include heterocyclic nitrogen compounds, substituted imines and carbodiimides. Substituted imines which are specifically

disclosed include N-ethylmethylenimine, N-methylbenzylidenimine, N-hexylcinnamylidenimine, N-decyl-2-ethyl-1,2-diphenylbutylenimine, N-phenylbenzylidenimine, N-dodecylcyclohexanimine, N-propyl-2,5-cyclohexadienimine, N-methyl-1-naphthalenimine, N,N'-dimethylbutanediimine, N,N'-dipentyl-2-pentene-1,5-diimine, N-nonyl-1,4-naphthoquinonimine, N,N'-diphenyl-1,4-quinonediimine and N,N'-diphenyl-1,3-indanediimine. The patent indicates that when such polymers are compounded and cured the resultant product has a good balance of physical properties. However, no mention is made of any effect on the hysteresis of the product.

U.S. Patent 4,677,153 relates to a method for modifying a rubber having unsaturated carbon-to-carbon bonds (i.e. double bonds) with (a) an organic compound having a group represented by the formula $\text{-CH} = \text{N-}$ and (b) an organic acid halide having a group represented by the formula -COX wherein X is a halogen atom, in the presence of a Lewis acid. Organic compounds having the group represented by the formula $\text{-CH} = \text{N-}$ which are disclosed include substituted imines such as, for example, benzylidene methylamine, benzylidene aniline, dimethylaminobenzylidene butylaniline, etc. However, a careful reading of the reference indicates that the unsaturated rubber which is reacted with the (a) and (b) compounds is not a living polymer rubber but rather a previously terminated or "dead" polymer rubber. Thus, it appears clearly evident that the reaction between the unsaturated rubber and these compounds is not at the terminals of the polymer chains of the rubber.

The reference teaches that the modified rubber has improved green strength and when vulcanized has improved tensile and rebound resiliency.

U.S. 4,734,461 relates to a method of preparing diene polymers or copolymers, particularly block copolymers of the A-B-A type, which involves coupling living diene polymer or copolymer chains with new coupling agents of the general formula

25

wherein X= aryl, condensed aryl, aryl isolated by a heteroatom or by an alkenyl group, alkyl with a number of C atoms comprised between 2 and 20, cycloalkyl, alkylcycloalkyl, radical with heteroatom; all these groups possibly containing a functional group of vinyl aromatic, ester, aldehydic, ketonic, cyano type etc.; Y= aryl, cycloalkyl, alkyl, alkylaryl, alkylcycloalkyl, possibly containing a functional group of vinylaromatic, ester, aldehydic, ketonic, cyano type, etc; n= an integer of from 1 to 4; n'= an integer of from 1 to 4; R= H or alkyl group, preferably H; and Z= aryl, alkyl, cycloalkyl, possibly containing a functional group of vinylaromatic, ester, aldehydic, ketonic, cyano type, etc. The patent discloses that the resultant polymer has increased Mooney viscosity, molecular weight and green tensile strength as well as reduced cold flow.

U.S. 4,735,994 relates to a method of preparing diene polymers or copolymers, particularly block copolymers of the A-B-A type, which involves coupling living diene polymer or copolymer chains with new coupling agents of the general formula

40

45

wherein R= alkyl, condensed aryl, aryl isolated by an heteroatom or by an alkenylic group, alkyl with 2 to 20 carbon atoms, cycloalkyl, alkylcycloalkyl, radical with heteroatoms; R'= aryl, cycloalkyl, alkyl, alkylaryl, alkylcycloalkyl; n= an integer of from 2 to 4, representing the functionality of radical R'''; R''= H or alkyl group, preferably H and R'''= aryl, alkyl or cycloalkyl. The reference discloses that the resultant polymer has increased Mooney viscosity, molecular weight and green tensile strength as well as reduced cold flow.

EPO 0207565 relates to a method of preparing diene polymers or copolymers, particularly block copolymers of the A-B-A type, which involves coupling living diene polymer or copolymer chains with new coupling agents of the general formula

55

(R-CH = CH-CH = N)_n - R' and/or

wherein R = aryl, alkyl, cycloalkyl; R' = aryl, alkyl containing 2 to 20 carbon atoms, cycloalkyl, condensed aryl, aryl isolated by an heteroatom or by an alkenylic group, radical with heteroatoms; n = an integer of from 1 to 4, representing the functionality of the R' group; R'' = aryl, alkyl, cycloalkyl; n' = an integer of from 1 to 4, representing the functionality of the R'' group and R''' = H or an alkyl group, preferably H. The reference discloses that the resultant polymers have increased Mooney viscosity, molecular weight and green tensile strength as well as reduced cold flow.

Coupling processes such as those described in this reference result in increased molecular weight of the polymer which lowers hysteresis. However, such increases in the molecular weight of the polymers tend to result in poor processability of rubber compounds containing the polymers.

U.S. 4,816,520 relates to terminally functionalized polymers, including diene polymers and copolymers, and a process for their preparation. The reference discloses that the terminally functionalized polymers are prepared from living polymers obtained by anionic polymerization of olefinically unsaturated monomers by first reacting the living polymers with capping reagents comprising various nitrogen compounds including substituted imines (Schiff bases) and diaziridines and then reacting the capped polymer with a terminating agent which contains halogen or acid anhydride groups. Capping reagents which are disclosed include among others a compound of the formula

wherein R₁ is H, alkyl, cycloalkyl or aryl and R₂ and R₃ are each alkyl, cycloalkyl or aryl. Terminating agents which are disclosed include halogen compounds such as chloromethylstyrenes, acryloyl chloride, methacryloyl chloride, epichlorohydrin, etc. and acid anhydride compounds such as acrylic anhydride, methacrylic anhydride, maleic anhydride, etc.

Summary of the Invention

In accordance with the present invention, a process for preparing a terminally functionalized polymer is provided. The process involves reacting a living polymer obtained by anionic polymerization of a diene monomer or mixture of a diene monomer and a vinylaromatic hydrocarbon monomer with a compound having the formula

50 wherein R₁ and R₂ are selected from the group consisting of H, alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl and aprotic O, N and S-containing alkyl, cycloalkyl, aryl and aralkyl groups; wherein R₃ is selected from the group consisting of alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl and aprotic O, N, and S-containing alkyl, cycloalkyl, aryl and aralkyl groups; with the proviso that at least one of the R₁, R₂ and R₃ groups must be a dialkylaminoaryl group and that not all of the R₁, R₂ and R₃ groups can be aryl groups.

The resultant terminally functionalized polymer has reduced hysteresis properties and can be utilized to form elastomer compositions and tire treads having reduced rolling resistance and increased rebound resilience.

Detailed Description of the Invention

The term "living polymer" as employed throughout the specification and claims refers to polymers which are prepared by anionic polymerization of a diene monomer or mixture of a diene monomer and a vinyl aromatic hydrocarbon monomer using an initiator such as an organolithium compound. The resultant polymer contains active terminals (e.g. lithium terminals) which can be reacted with compounds containing reactive functional groups.

The term "hysteresis" as employed throughout the specification refers to the heat generating properties of a vulcanized elastomer or rubber composition. An art recognized measurement of the hysteresis of an elastomer composition is the tan delta value of the vulcanized composition. Low tan delta values are indicative of low hysteresis and consequently tires formed from such elastomer compositions have lower rolling resistance.

As indicated heretofore, the terminally functionalized polymers of the invention are prepared by reacting a living polymer obtained by anionic polymerization of a diene monomer or a mixture of a diene monomer and a vinyl aromatic hydrocarbon monomer with certain substituted imines or Schiff bases, which are broadly defined above and more specifically defined below. Thus, the living polymers are diene polymers and copolymers. The living diene polymer is a polymer of a conjugated diene and the living diene copolymer is a random copolymer of a conjugated diene and a vinyl aromatic hydrocarbon.

Conjugated dienes which may be utilized in preparing the living polymers and copolymers include 1,3-butadiene, 2-methyl-1,3-butadiene (isoprene), 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and 1,3-hexadiene as well as mixtures thereof. The preferred diene is 1,3-butadiene.

Vinyl aromatic hydrocarbons which may be utilized in preparing the living copolymers include styrene, vinyl toluene, alpha-methyl styrene, vinyl naphthalene and vinyl pyridine. The preferred vinyl aromatic hydrocarbon is styrene.

The living polymer can be prepared in a well known manner by polymerizing the monomer or monomers in a hydrocarbon solvent in the presence of an anionic initiator. In instances where it is desired to control the 1,2-microstructure of the diene polymer or copolymer and to effect randomization of the copolymer, this can readily be accomplished by including an appropriate polar modifier such as an ether or a tertiary amine in the polymerization mixture.

Anionic initiators which may be utilized in the preparation of the living polymers and copolymers may be any of the organoalkali metal initiators known in the art to be useful for the polymerization of diene polymers and copolymers. The preferred initiators are organolithium initiators, especially the alkylolithium initiators. Suitable organolithium initiators which may be utilized include ethyllithium, n-butyllithium, tetramethylene dilithium, hexyllithium, cyclohexyl lithium, phenyllithium and tolyllithium. A particularly preferred initiator is n-butyllithium.

It is also possible to employ as the anionic initiator an initiator formed by reacting a functionalizing agent with the above-described organolithium initiators. Thus, such initiators can be formed by reacting a functionalizing agent selected from the group consisting of substituted aldimines, ketimines and secondary amines with the organolithium compound. For example, an anionic initiator of this type can be formed by reacting a substituted aldimine such as dimethylamino benzylidene methylamine with n-butyllithium. A number of initiators of this type are described in our copending application serial no. (docket no. 8808040).

Hydrocarbon solvents which may be employed in the preparation of the living polymers and copolymers include aromatic and aliphatic hydrocarbons in which the monomers, initiator and modifier are soluble. Suitable hydrocarbon solvents include hexane, heptane, pentane, octane, cyclohexane, cycloheptane, cyclopentane, methyl cyclohexane, benzene and toluene. The preferred hydrocarbon solvents are hexane and cyclohexane.

Polar modifiers which may be utilized to control the 1,2-microstructure content of the living diene polymers or copolymers and to effect randomization of the copolymers may be any of those heretofore known in the diene polymer or copolymer art to be useful for that purpose. Suitable polar modifiers include ethers such as tetrahydrofuran (THF), tetrahydropyran, 1,4-dioxane, monoglycol methyl ether (monoglyme), diglycol methyl ether (diglyme), triglycol methyl ether (triglyme) and the oligomeric oxolanyl alkane compounds described in U.S. 4,429,091 such as bis (2-oxolanyl) methane; 2,2-bis (2-oxolanyl) propane; 1,1-bis (2-oxolanyl) ethane; 2,2-bis (5-methyl-2-oxolanyl) propane and the like and tertiary amine compounds such as triethyl amine, tripropyl amine, tributyl amine, N,N,N',N'-tetramethylethylene diamine (TMEDA) and dipiperidino ethane. The preferred polar modifiers are TMEDA and the oligomeric oxolanyl propanes.

The living random copolymers of conjugated dienes and vinyl aromatic hydrocarbons utilized to prepare the terminally functionalized polymers of the invention may have diene contents of from 99 to 20 percent by

weight and vinyl aromatic hydrocarbon contents of from 1 to 80 percent by weight with the preferred copolymers having diene contents of from 90 to 60 percent by weight and vinyl aromatic hydrocarbon contents of from 10 to 40 percent by weight.

The living polymers of conjugated dienes and random copolymers of conjugated dienes and vinyl aromatic hydrocarbons employed to prepare the terminally functionalized polymer may have 1,2-microstructure contents ranging from 10 to 80 percent with the preferred polymers or copolymers having 1,2-microstructure contents of from 25 to 65 percent. The preparation of diene polymers or copolymers having a particular 1,2-microstructure content is dependent on a number of factors including the specific initiator, the type polar modifier, the modifier to initiator ratio and the polymerization temperature. Illustrative methods of preparing diene polymers and copolymers having 1,2-microstructure contents ranging from 15 to 90 percent or more are described in numerous patents and publications including U.S. Patents 3,451,988 and 4,264,753; and the publication "Temperature and Concentration Effects on Polar-Modifier Alkyllithium Polymerizations and Copolymerizations", Journal of Polymer Science, Part A-1, Vol. 10, pages 1319-1334 (1972).

One of ordinary skill in the polymerization arts can by utilizing the disclosures of the patents and publication readily determine the type initiator, the type polar modifier, the necessary modifier-initiator ratio and polymerization conditions necessary to obtain a living diene polymer or copolymer having the desired 1,2-microstructure content.

The terminally functionalized polymers of the invention are prepared by reacting the above living polymers, preferably in solution in the hydrocarbon solvent in which they were prepared, with a substituted imine or Schiff base compound having the formula:

30 Wherein R₁ and R₂ are selected from the group consisting of H, alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl, and aprotic O, N, and S - containing alkyl, cycloalkyl, aryl, and aralkyl groups; wherein R₃ is selected from the group consisting of alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl, and aprotic O, N, and S - containing alkyl, cycloalkyl, aryl and aralkyl groups; with the proviso that at least one of the R₁, R₂, and R₃ groups must be a dialkylaminoaryl group and that not all of the R₁, R₂, and R₃ groups can be aryl groups. The alkyl groups in the above formula may contain from 1 to 20 carbon atoms with alkyl groups containing from 1 to 8 carbons being preferred.

35 It should be noted in regard to the dialkylamino aryl group that the alkyl group of the dialkylamino substituent may be either linear, branched or cyclic in nature. Thus, the dialkylamino substituent may be represented by the formula:

45 or by the formula:

55 Wherein R₄ is an alkyl, cycloalkyl or aralkyl group containing from 1 to 12 carbon atoms and R₅ contains from 3 to 6 methylene groups.

The preferred substituted imines represented by the general formula fall into two classes:

(1) Those in which R₁ is H and R₂ and R₃ are aryl groups with at least one of the R₂ and R₃ groups being a dialkylaminoaryl group.

(2) Those in which R₁ is H, R₂ is alkyl or aralkyl in which the carbon adjacent to the imine carbon is completely substituted with alkyl, aryl or aralkyl groups and R₃ is a dialkylaminoaryl group.

5 Illustrative examples of the R₂ groups of the second class include those represented by the formula:

30 Illustrative examples of substituted imines which may be employed include dialkylaminobenzylidene alkylamines such as dimethylaminobenzylidene methylamine, dimethylaminobenzylidene ethylamine and dimethylaminobenzylidene butylamine; dialkylaminobenzylidene anilines such as dimethylaminobenzylidene aniline, dimethylaminobenzylidene butylaniline and dimethylaminobenzylidene dodecylaniline; dialkylaminobenzylidene alkoxyanilines such as dimethylaminobenzylidene methoxyaniline and dimethylaminobenzylidene ethoxyaniline; dialkylaminobenzylidene dialkylaminoanilines such as dimethylaminobenzylidene dimethylaminoaniline and dimethylaminobenzylidene diethylaminoaniline; benzylidene dialkylaminoanilines such as benzylidene dimethylaminoaniline and benzylidene diethylaminoaniline and alkoxybenzylidene dialkylaminoanilines such as methoxybenzylidene dimethylaminoaniline, methoxybenzylidene diethylaminoaniline and α,α -dialkylalkylidine dialkylaminoanilines.

35 Particularly, preferred substituted imines for use in preparing the terminally functionalized polymers of the invention are dimethylaminobenzylidene aniline, dimethylaminobenzylidene butylaniline, benzylidene dimethylaminoaniline, dimethylaminobenzylidene dimethylaminoaniline, dimethylaminobenzylidene methoxyaniline, methoxybenzylidene dimethylaminoaniline, dimethylaminobenzylidene dodecylaniline and 2-methylpent-4-en-2-yl methylidene p-dimethylaminoaniline.

40 The reaction of the living polymer in solution with the substituted imine terminating agent can be conducted if desired by simply adding the terminating agent per se to the polymer solution. However, it is generally preferred to add the terminating agent in the form of a solution thereof in an appropriate solvent for ease of handling. The amounts of terminating agent added to the living polymer are dependent upon the 45 amounts of live organoalkali metal end groups (e.g. live lithium end groups) present in the living polymer and the amounts of terminating agent desired in the finished polymer. It will be noted that the number of moles of live alkali metal end groups in the living polymer is presumed to be equivalent to the number of moles of alkali metal groups present in the organoalkali metal initiator utilized to effect polymerization. In general, the amount of terminating agent employed to react with the live alkali metal groups of the living 50 polymer herein may range from stoichiometric, i.e. 1 mole of terminating agent per mole of live alkali metal end groups, to a large excess of terminating agent. However, from 1.00 to 1.25 moles of terminating agent per mole of alkali metal end groups is preferred.

Temperatures employed in reacting the living polymer with the terminating agent may vary considerably and are selected with the basic criteria of preserving the live alkali metal end groups of the living polymer for reaction with the terminating agents. Thus, the reaction temperatures may range from about 0°C to about 100°C with preferred temperatures ranging from 30°C to 100°C and especially preferred temperatures ranging from 50°C to 80°C. The reaction times may also vary considerably and are in general dependent upon reaction temperatures. Hence, the reaction times may range from about 0.5 to about 24 hours.

After the terminating reaction is complete, it is generally desirable to quench the polymer in order to deactivate any live alkali metal end groups (e.g. lithium end groups) which may remain. This serves to prevent the living polymer from reacting with any carbon dioxide or oxygen which may be present. The quenching reaction can be conducted in known manner by adding a conventional polymer terminating agent such as water or an alcohol (e.g. isopropanol) to the polymer solution.

The resultant terminally functionalized polymer may be recovered from the polymer solution and dried using conventional procedures. Thus, for example, the polymer can be recovered from solution by coagulation either by adding a sufficient volume of a non-solvent liquid (e.g. an alcohol) for the polymer to the solution or alternatively by adding the polymer solution to a sufficient volume of the non-solvent. It is usually desirable in carrying out the coagulation procedure to include an appropriate antioxidant for the polymer in the non-solvent. The recovered polymer can then be dried using a conventional polymer drying procedure such as drum drying, vacuum drying, extruder drying, tunnel drying and oven drying.

Elastomer compositions of the invention can be prepared by compounding or mixing the terminally functionalized polymers herein with carbon black and other conventional rubber additives such as fillers, plasticizers, antioxidants and curing agents using standard rubber mixing equipment and procedures. Such elastomer compositions when vulcanized using conventional rubber vulcanization conditions have reduced hysteresis properties and are particularly adapted for use as tread rubbers for tires having reduced rolling resistance.

The following examples are submitted for the purpose of further illustrating the nature of the present invention and should not be regarded as a limitation on the scope thereof. Parts and percentages shown in the examples are by weight unless otherwise indicated.

30 Examples 1 - 3

These examples illustrate the process for preparing the terminally functionalized polymers of the invention.

35 (A) Preparation of Living Random Copolymer of Butadiene/Styrene

A "living" medium vinyl butadiene/styrene copolymer was prepared in accordance with the following procedure:
 To a stainless steel 50 gallon reactor equipped with stirrer and thermometer and maintained under a nitrogen atmosphere was charged 6.41 lb. (28.0 moles) of styrene, 21.6 lb (181.5 moles) of 1,3-butadiene, 158.5 lb of hexane, 49 millimoles (hereinafter abbreviated as mM) of TMEDA modifier and 99 mM of n-butyllithium initiator. After adding the initiator, the temperature of the reaction mixture was set at 38°C and allowed to rise to 49°C for about 15 minutes, then cooled to 24°C with stirring, all under positive nitrogen pressure. The reaction mixture was then heated to 49°C for an additional 4.5 hours. A sample of the resultant living copolymer was quenched with isopropanol and drum dried to serve as a control for the terminally functionalized copolymers of Examples 1-3. Additional samples of the living copolymer were terminally functionalized in accordance with the procedure of step (B).

(B) Preparation of Terminally Functionalized Copolymers

50 Samples of the living copolymer prepared in step (A) were then injected into 0.79 Kg (28 ounce) glass bottles sealed with a rubber septum and under nitrogen purge by means of a hypodermic needle in order to avoid exposing the living copolymers to the atmosphere. The glass bottles containing samples of living copolymer were injected with various substituted imines of the invention. The amounts of living polymer solution, the amounts of living polymer, the type terminating agent and amounts thereof are shown in Table I. The control copolymer is included in Table I for convenience.

Table I

<u>Example</u>	<u>Live Bd/Sty Polymer soln (grams)</u>	<u>Live Bd/Sty Polymer (grams)</u>	<u>Terminator</u>	<u>mM Li* Theory</u>	<u>mM** Terminator</u>
Control	-----	-----	isopropanol	-----	-----
1	1230.6	184.6	DMABA ⁽¹⁾	1.447	1.445
2	1242.5	186.4	DMABMA ⁽²⁾	1.461	1.460
3	1217.3	182.6	DMABBA ⁽³⁾	1.432	1.432

* theoretical amount of live lithium ends

** approx. stoichiometric amount based on amount of live lithium ends

(1) Dimethylaminobenzylidene aniline

(2) Dimethylaminobenzylidene methylamine

(3) Dimethylaminobenzylidene butylaniline

The glass bottles containing the polymer solutions of examples 1-3 were then tumbled in a water bath at 50°C for 13.5 hours to complete the terminating reaction. The terminated polymers were then quenched with 1.5 milliliters (ml) of isopropanol followed by the addition with stirring of 6 ml of a standard antioxidant solution. The polymer samples were recovered from solution by coagulating each polymer solution into two volumes (approx. 3 liters) of isopropanol. The polymers were then dried on a standard drum drier at 148°C.

The control polymer and the terminated polymers of examples 1-3 were analyzed by GPC, HNMR and DSC to determine molecular weight (Mw and Mn), molecular weight distribution (Mw/Mn), microstructure, styrene content and glass transition temperature (Tg). Polymer analyses are shown in Table II.

Table II

<u>Ex.</u>	<u>Mn</u>	<u>Molecular Weight</u>		<u>Microstructure, %</u>			<u>Bound Styrene, %</u>	<u>Tg.</u>
		<u>Mw</u>	<u>Mw/Mn</u>	<u>1,2*</u>	<u>1,4*</u>			
Control	153,531	183,035	1.19	55.0	45.0		20.6	-38
1	150,297	181,342	1.21	55.0	45.0		20.6	-35
2	147,843	168,594	1.14	55.0	45.0		20.6	-35
3	151,107	173,816	1.15	55.0	45.0		20.6	-35

* based on butadiene = 100.

Examples 4-8

These examples illustrate the preparation of additional terminally functionalized butadiene/styrene (Bd/Sty) copolymers of the invention.

In these examples, the living copolymer was prepared in accordance with the following procedure:

To a stainless steel 5 gallon reactor equipped with stirrer and thermometer and maintained under a nitrogen atmosphere was charged 2,168.0 grams of 1,3 butadiene, 707.6 grams of styrene 8,260.0 grams of

hexane, 18.87 mM of n-butyllithium and 1.785 mM of 2,2-bis (2-oxolanyl) propane modifier. Polymerization of the monomers was conducted by first heating the contents of the reactor at 50 °C for 5.6 hours and then continuing heating at 32 °C for an additional 17 hours.

The terminally functionalized copolymers were prepared substantially in accordance with the procedure of step (B) of examples 1-3. For comparative purposes, samples of living copolymer were terminated with isopropanol and with certain substituted imines not within the scope of the invention to serve as controls. The terminated polymers were analyzed for properties as in examples 1-3. Details of the polymer termination reactions and polymer analysis are shown in Tables III-IV. The controls in the Tables are identified by the designations C₁, C₂, C₃ etc. for convenience.

10

Table III

	Ex.	C ₁	C ₂	C ₃	4
15	Live Bd/Sty Polymer soln (g)	671.2	703.2	675.5	717.1
	Live Bd/Sty Polymer (g)	167.8	175.9	168.9	176.8
20	Terminator	i-PrOH ⁽¹⁾	BA ⁽²⁾	BMA ⁽³⁾	DMABA ⁽⁴⁾
	mM Li (theory)	-----	1.15	1.11	1.16
25	mM Terminator ⁽⁵⁾	-----	1.44	1.38	1.45
	Polymer analysis:				
30	<u>Molecular weight</u>				
	Mn	143,857	147,562	147,482	148,409
	Mw	160,364	164,242	162,628	165,011
35	Mw/Mn	1.11	1.11	1.10	1.11
	<u>Microstructure, %</u>				
	1,2	43.5	43.5	43.5	43.5
40	1,4	56.5	56.5	56.5	56.5
	Bound Styrene, %	24.6	24.6	24.6	24.6
	Mooney Viscosity (ML/4/100°C)	38.5	39.8	38.7	41.0
45	Tg, °C	-51.7	-	-	-

(1) isopropanol

(2) Benzylidene aniline

(3) Benzylidene methylamine

(4) Dimethylaminobenzylidene aniline

(5) approximately 25% excess based on theoretical amount of live lithium ends

50

55

Table III(a)*

Ex.		5	6
5	Live Bd/Sty Polymer Soln(g)	690.8	682.1
	Live Bd/Sty Polymer (g)	172.7	170.6
	Terminator	BDMAA ⁽¹⁾	DMABDMDA ⁽²⁾
10	mM Li(theory)	1.14	1.12
	mM Terminator	1.42	1.40
	Polymer analysis:		
15	<u>Molecular weight</u>		
	Mn	148,451	153,813
	Mw	165,640	170,963
20	Mw/Mn	1.12	1.11
	<u>Microstructure, %</u>		
	1,2	43.5	43.5
25	1,4	56.5	56.5
	Bound Styrene, %	24.6	24.6
30	Mooney Viscosity (ML/4/100%)	42.0	42.0
	Tg, °C	-	-

* Continuation of Table III

(1) Benzylidene dimethylaminoaniline

(2) Dimethylaminobenzylidene dimethylaminoaniline

35

40

45

50

55

Table IV

Ex.	C ₄	Z	S
5 Live Bd/Sty Polymer soln (g)	----	760.5	771.1
Live Bd/Sty Polymer (g)	----	168.0	170.4
Terminator	i-PrOH	DMABMOA ⁽¹⁾	MOBDMAA ⁽²⁾
10 mM Li(theory)	----	1.159	1.176
mM Terminator ⁽³⁾	----	1.391	1.411
Polymer analysis:			
15 <u>Molecular weight</u>			
Mn	160,397	155,278	156,490
Mw	180,356	175,448	176,713
20 Mw/Mn	1.12	1.13	1.13
<u>Microstructure, %</u>			
1,2	62.7	62.7	62.7
25 1,4	37.3	37.3	37.3
Bound Styrene, %	25.0	25.0	25.0
Mooney Viscosity (ML/4/100°C)	53.0	54.3	53.0
30 Tg, °C	-30	-	-

(1) Dimethylaminobenzylidene methoxyaniline

(2) Methoxybenzylidene dimethylaminocaniline

(3) approx 20% excess based on theoretical amount of live Li ends

35

Example 9

40 This example illustrates the preparation of a terminally functionalized butadiene/styrene copolymer of the invention on a larger scale.

In this example, a living copolymer was prepared in a stainless steel 50 gallon reactor substantially in accordance with the procedure of step (A) of examples 1-3 except that the oligomeric oxolanyl propane compound of examples 4-8 was utilized as the polar modifier. A small sample of the resultant living copolymer was then terminated with isopropanol to serve as a control. The remainder of the living copolymer batch was then terminally functionalized substantially in accordance with the procedure described in examples 1-8. The terminated polymers were analyzed for properties as in examples 1-8. Details of the polymer termination reaction and polymer analysis are shown in Table V.

50

55

Table V

Ex.	C ₅	9
5 Live Bd/Sty Polymer Soln (g)	----	68,456.0
Live Bd/Sty Polymer (g)	----	10,268.4
Terminator	i-ProOH	DMABDDA ⁽¹⁾
10 mM Li (theory)	----	99.13
mM Terminator ⁽²⁾	----	114
Polymer analysis:		
15 <u>Molecular weight</u>		
Mn	129,368	132,664
Mw	158,303	153,279
20 Mw/Mn	1.22	1.16
<u>Microstructure, %</u>		
1,2	60.2	60.2
25 1,4	39.8	39.8
Bound Styrene, %	22.1	22.1
30 Mooney Viscosity (ML/4/100°C)	33.0	27.0
Tg, °C	-35.8	-

(1) Dimethylaminobenzylidene dodecylaniline

(2) 15% excess based on amount of live Li ends

35

Examples 10-18

These examples illustrate the effect of the terminally functionalized butadiene/styrene copolymers of the invention on the hysteresis and stress-strain properties of cured elastomer or rubber compounds containing them.

In these examples, the terminally functionalized copolymers of examples 1-9 were compounded with carbon black and other conventional rubber additives using a standard tread rubber compound formulation. These compound examples are identified in the Tables below as Compound examples 10-18. The associated control copolymers (Control and C₁-C₅) were compounded in the same manner to serve as control compounds. The control compounds are identified in the Tables below as Compound examples A-F. The standard tread rubber compound had the following formulation:

50

55

parts by weight

5	copolymer	100.0
	carbon black	55.0
	process oil	10.0
	zinc oxide	3.0
10	stearic acid	2.0
	antioxidant	1.0
	wax	2.0
	sulphur	1.5
	accelerator	1.0

15 The rubber compounds were mixed using conventional rubber mixing equipment and procedures. The resultant tread rubber compounds were then cured for 35 minutes at 148°C. The cured compounds were tested for hysteresis (Tan delta) and stress-strain properties. Tan delta (Tan δ) was conducted at 22°C and 50°C using a Dynastat machine operating at a frequency of 1 Herz and 7% strain. Tan δ is a measure of
 20 the ratio of the loss modulus of the compound to the storage modulus and as indicated above, the lower the value of Tan δ , the lower the hysteresis of the compound. Tests and test results are shown in Tables VI-IX.

Table VI

	Compound Ex.	A	10	11	12
25	Copolymer Ex. Copolymer Terminator	Control i-PrOH	1 DMABA	2 DMABMA	3 DMABBA
30	Tan δ				
	22°C	.2058	.1281	.1700	.1222
	50°C	.1505	.0896	.1330	.0831
35	% Δ Tan δ^*				
	22°C	-----	-37.8	-17.4	-40.6
	50°C	-----	-40.5	-11.6	-44.8
40	Stress-Strain, R.T.				
	300% modulus, $\times 10^6$ Pa (psi)	12.0 (1741)	13.9 (2022)	16.1 (2328)	16.5 (2392)
	Tensile, $\times 10^6$ Pa (psi)	15.4 (2235)	20.9 (3034)	21.5 (3116)	20.2 (2922)
	Elongation at Break, %	420	463	434	400

* % change in Tan δ : minus values indicate reduction in Tan δ .

45 Compound examples 10-12 contain copolymers which are terminally functionalized with substituted imines of the invention. As indicated by the above Tan δ values, these compounds exhibit reduced hysteresis as compared to compound example A which contains the unmodified control copolymer. Thus, compound examples 10-12 show Tan δ reductions of 12-45% at 50°C and 17-40% at 22°C as compared to the Tan δ values of control compound example A at these temperatures. Since all of the polymers used
 50 in these compounds were derived from the same base polymer, the structural variations were minimized and molecular weights were closely matched as shown in Table II thereby eliminating the effect of these factors on compound hysteresis. As further indicated by the Tan δ results, the copolymers terminated with dimethylaminobenzylidene aniline (DMABA) and dimethylaminobenzylidene butylaniline (DMABBA), preferred terminating agents of the invention, were somewhat more effective in reducing compound hysteresis
 55 than the copolymer terminated with dimethylaminobenzylidene methylamine (DMABMA).

Table VII

Compound Ex.	B	C	D	13
Copolymer Ex. Copolymer Terminator	C ₁ i-PrOH	C ₂ BA	C ₃ BMA	4 DMABA
Tan δ				
22 °C	.1826	.1761	.1513	.1175
50 °C	.1423	.1366	.1195	.0827
% Δ Tan δ				
22 °C	----	-3.6	-17.1	-35.7
50 °C	----	-4.7	-16	-41.9
Stress-Strain, R.T				
300% modulus x 10 ⁶ Pa (psi)	13.6 (1974)	14.2 (2066)	14.2 (2058)	15.1 (2197)
Tensile, x 10 ⁶ Pa (psi)	17.7 (2560)	20.7 (3007)	19.2 (2782)	20.3 (2945)
Elongation at break, %	375	415	387	373

Table VII(a)*

Compound Ex.	B**	14	15
Copolymer Ex. Copolymer Terminator	C ₁ i-PrOH	5 BDMAA	6 DMABDMAA
Tan δ			
22 °C	.1826	.1118	.1224
50 °C	.1423	.0782	.0865
% Δ Tan δ			
22 °C	-----	-38.8	-33.0
50 °C	-----	-45.0	-39.2
Stress-Strain, R.T.			
300% modulus, x 10 ⁶ Pa (psi)	13.6 (1974)	14.5 (2104)	15.8 (2295)
Tensile, x 10 ⁶ Pa (psi)	17.7 (2560)	22.3 (3232)	22.1 (3202)
Elongation at Break, %	375	414	391

* Continuation of Table VII

****** repeated from Table VII for convenience in comparing data

45 As in the compound examples of Table VI, all of the copolymers used in the compounds of Tables VII
and VII (a) were derived from the same base copolymer (see Tables III and III(a)) in order to minimize
structural and molecular weight variations, thereby eliminating or substantially reducing the effect of these
factors on compound hysteresis. As clearly indicated by the above data, compound examples 13-15 which
50 contain copolymers terminated with substituted imines of the invention exhibit reduced hysteresis as
compared to compound example B which contains the unmodified copolymer example C₁. Thus, compound
examples 13-15 show Tan δ reductions ranging from about 36-45% at 22 °C and from 33-42% at 50 °C as
compared to the Tan δ values of compound example B. In contrast, compound examples C and D which
55 contain copolymers terminated with benzylidene aniline (BA) and benzylidene methylamine (BMA) respec-
tively (copolymer examples C₂ and C₃), substituted imines which do not contain a dialkylaminoaryl
substituent and are therefore outside the scope of the invention, exhibit either very little reduction in
hysteresis (compound example C) or much less of a reduction in hysteresis (compound example D) as
compared to compound examples 13-15 which contain copolymers terminated with substituted imines of
the invention. This clearly indicates that not all substituted imines which could be utilized to terminate living

copolymers are effective in reducing compound hysteresis but rather that only a limited number of substituted imines are effective for that purpose.

Table VIII

	Compound Ex.	E	16	17
10	Copolymer Ex. Copolymer Terminator	C ₄ i-PrOH	7 DMABMOA	8 MOBDMAA
	Tan δ			
15	22 °C 50 °C	0.2164 0.1655	0.1453 0.1019	0.1493 0.0967
	% Δ Tan δ			
20	22 °C 50 °C	----- -----	-32.9 -38.4	-31 -41.6
	Stress-Strain, R.T.			
25	300% modulus, x 10 ⁶ Pa (psi)	13.5 (1955)	15.2 (2199)	16.5 (2388)
	Tensile, x 10 ⁶ Pa (psi)	13.7 (1991)	17.6 (2559)	18.8 (2729)
	Elongation at break, %	304	337	332

Table IX

	Compound Ex.	F	18
30	Copolymer Ex. Copolymer Terminator	C ₅ i-PrOH	9 DMABDDA
	Tan δ		
35	22 °C 50 °C	0.1939 0.1490	0.1326 0.1061
	% Δ Tan δ		
40	22 °C 50 °C	----- -----	-31.6 -28.8
	Stress-Strain, R.T.		
45	300% modulus x 10 ⁶ Pa (psi)	14.6 (2119)	14.3 (2075)
	Tensile, x 10 ⁶ Pa (psi)	19.2 (2779)	21.3 (3083)
	Elongation at break, %	432	464

As in compound examples 10-15, compound examples 16-18 of Table VIII and IX which contain copolymers terminated with substituted imines of the invention (copolymer examples 7-9) exhibit reduced hysteresis as compared to compound examples E and F which contain unmodified control copolymers (copolymer examples C₁ and C₅). Thus, compound examples 16-18 show hysteresis reductions ranging from about 31-33% at 22 °C and from about 29-42% at 50 °C as compared to the hysteresis values of control compound examples E and F.

Claims

55 1. A process for preparing a terminally functionalized polymer from a living polymer obtained by anionic polymerization of a diene monomer or mixture of a diene monomer and a vinyl aromatic hydrocarbon monomer which comprises reacting the living polymer with a compound having the formula:

Wherein R₁ and R₂ are selected from the group consisting of H, alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl, and aprotic O, N and S-containing alkyl, cycloalkyl, aryl, and aralkyl groups; wherein R₃ is selected from the group consisting of alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl, and aprotic O, N and S-containing alkyl, cycloalkyl, aryl and aralkyl groups; With the proviso that at least one of the R₁, R₂, and R₃ groups must be a dialkylaminoaryl group and that not all of the R₁, R₂, and R₃ groups can be aryl groups.

15 2. The process of claim 1 wherein said living polymer is a living polymer of butadiene or a copolymer of butadiene and styrene.

3. The process of claim 1 wherein said compound is selected from the group consisting of dialkylaminobenzylidene alkylamines, dialkylaminobenzylidene anilines, dialkylaminobenzylidene alkoxyanilines, dialkylamino benzylidene dialkylaminoanilines, benzylidene dialkylaminoanilines, alkoxybenzylidene dialkylaminoanilines and α,α -dialkylalkylidene dialkylaminoanilines.

20 4. The process of claim 1 wherein said compound is dimethylaminobenzylidene aniline.

25 5. The process of claim 1 wherein said compound is benzylidene dimethylaminoaniline.

6. The process of claim 1 wherein said compound is dimethylaminobenzylidene dimethylaminoaniline.

7. The process of claim 1 wherein said compound is dimethylaminobenzylidene methoxyaniline.

30 8. The process of claim 1 wherein said compound is dimethylaminobenzylidene dodecylaniline or dimethylaminobenzylidene butylaniline.

9. The process of claim 1 wherein said compound is methoxybenzylidene dimethylaminoaniline.

35 10. The process of claim 1 wherein said terminally functionalized polymer is a terminally functionalized polymer of butadiene or a copolymer of butadiene and styrene.

11. A terminally functionalized polymer prepared by reacting a living polymer obtained by anionic polymerization of a diene monomer or a mixture of a diene monomer and a vinyl aromatic hydrocarbon monomer with a compound having the formula:

50 Wherein R₁ and R₂ are selected from the group consisting of H, alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl, and aprotic O, N, and S-containing alkyl, cycloalkyl, aryl, and aralkyl groups; wherein R₃ is selected from the group consisting of alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl, and aprotic O, N and S-containing alkyl, cycloalkyl, aryl and aralkyl groups; With the proviso that at least one of the R₁, R₂, and R₃ groups must be a dialkylaminoaryl group and that not all of the R₁, R₂ and R₃ groups can be aryl groups.

55 12. The terminally functionalized polymer of claim 11 wherein said terminally functionalized polymer is a polymer of butadiene or a copolymer of butadiene and styrene.

13. The terminally functionalized polymer of claim 11 wherein the terminal functional group is formed by reacting the living polymer with a compound selected from the group consisting of dialkylaminobenzylidene alkylamines, dialkylaminobenzylidene anilines, dialkylaminobenzylidene alkoxyanilines, dialkylaminobenzylidene dialkylaminoanilines, benzylidene dialkylaminoanilines, alkoxybenzylidene dialkylaminoanilines and α,α -dialkylalkylidene dialkylaminoanilines.

5 14. The terminally functionalized polymer of claim 11 wherein the terminal functional group of the polymer is formed by reacting the living polymer with dimethylaminobenzylidene aniline.

10 15. The terminally functionalized polymer of claim 11 wherein the terminal functional group is formed by reacting the living polymer with benzylidene dimethylaminoaniline.

15 16. The terminally functionalized polymer of claim 11 wherein the terminal functional group is formed by reacting the living polymer with dimethylaminobenzylidene dimethylaminoaniline.

20 17. The terminally functionalized polymer of claim 11 wherein the terminal functional group is formed by reacting the living polymer with dimethylaminobenzylidene methoxyaniline.

25 18. The terminally functionalized polymer of claim 11 wherein the terminal functional group is formed by reacting the living polymer with dimethylaminobenzylidene dodecylaniline or dimethylaminobenzylidene butylaniline.

30 19. The terminally functionalized polymer of claim 11 wherein the terminal functional group is formed by reacting the living polymer with methoxybenzylidene dimethylaminoaniline.

25 20. An elastomer composition adapted for use in forming the tread portion of tires having reduced rolling resistance which comprises a terminally functionalized elastomeric polymer and rubber additives, wherein said terminally functionalized polymer is prepared by reacting a living polymer obtained by anionic polymerization of a diene monomer or mixture of a diene monomer and a vinyl aromatic hydrocarbon monomer with a compound having the formula:

35 Wherein R₁ and R₂ are selected from the group consisting of H, alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl, and aprotic O, N, and S - containing alkyl, cycloalkyl, aryl, and aralkyl groups; wherein R₃ is selected from the group consisting of alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl, and aprotic O, N, and S - containing alkyl, cycloalkyl, aryl, and aralkyl groups;
40 With the proviso that at least one of the R₁, R₂, and R₃ groups must be a dialkylaminoaryl group and that not all of the R₁, R₂ and R₃ groups can be aryl groups.

45 21. The elastomer composition of claim 20 wherein said terminally functionalized polymer is a polymer of butadiene or a copolymer of butadiene and styrene.

50 22. The elastomer composition of claim 20 wherein the terminal functional group of said terminally functionalized polymer is formed by reacting the living polymer with a compound selected from the group consisting of dialkylaminobenzylidene alkylamines, dialkylaminobenzylidene anilines, dialkylaminobenzylidene alkoxyanilines, dialkylaminobenzylidene dialkylaminoanilines, benzylidene dialkylaminoanilines, alkoxybenzylidene dialkylaminoanilines and α,α -dialkylalkylidene dialkylaminoanilines.

55 23. The elastomer composition of claim 20 wherein the terminal functional group of said terminally functionalized polymer is formed by reacting the living polymer with dimethylaminobenzylidene aniline.

24. The elastomer composition of claim 20 wherein the terminal functional group of said terminally functionalized polymer is formed by reacting the living polymer with benzylidene dimethylaminoaniline.

5 25. The elastomer composition of claim 20 wherein the terminal functional group of said terminally functionalized polymer is formed by reacting the living polymer with dimethylaminobenzylidene dimethylamino aniline.

10 26. The elastomer composition of claim 20 wherein the terminal functional group of said terminally functionalized polymer is formed by reacting the living polymer with dimethylaminobenzylidene methoxyaniline.

15 27. The elastomer composition of claim 20 wherein the terminal functional group of said terminally functionalized polymer is formed by reacting the living polymer with dimethylaminobenzylidene dodecylaniline or dimethylaminobenzylidene butylaniline.

20 28. The elastomer composition of claim 20 wherein the terminal functional group of said terminally functionalized polymer is formed by reacting the living polymer with methoxybenzylidene dimethylaminoaniline.

25 29. A tire having reduced rolling resistance in which the tread portion of the tire is formed from an elastomer composition which comprises a terminally functionalized elastomeric polymer and rubber additives, wherein said terminally functionalized elastomeric polymer is prepared by reacting a living polymer obtained by anionic polymerization of a diene monomer or mixture of a diene monomer and a vinyl aromatic hydrocarbon monomer with a compound having the formula:

25

30

Wherein R₁ and R₂ are selected from the group consisting of H, alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl, and aprotic O, N, and S - containing alkyl, cycloalkyl, aryl, and aralkyl groups; wherein R₃ is selected from the group consisting of alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl and aprotic O, N, and S - containing alkyl, cycloalkyl, aryl, and aralkyl groups; wherein R₃ is selected from the group consisting of alkyl, cycloalkyl, aryl, dialkylaminoaryl, aralkyl and aprotic O, N, and S - containing alkyl, cycloalkyl, aryl, and aralkyl groups; With the proviso that at least one of the R₁, R₂, and R₃ groups must be a dialkylaminoaryl group and that not all of the R₁, R₂ and R₃ groups can be aryl groups.

40

30. The tire of claim 29 wherein the terminally functionalized elastomeric polymer of said elastomer composition is a polymer of butadiene or copolymer of butadiene and styrene.

45. The tire of claim 29 wherein the terminally functionalized elastomeric polymer of said elastomer composition is formed by reacting the living polymer with a compound selected from the group consisting of dialkylaminobenzylidene alkylamines, dialkylaminobenzylidene anilines, dialkylaminobenzylidene alkoxyanilines, dialkylaminobenzylidene dialkylaminoanilines, benzylidene dialkylaminoanilines, alkoxybenzylidene dialkylaminoanilines and α,α -dialkylalkylidene dialkylaminoanilines.

50. 32. The tire of claim 29 wherein the terminally functionalized elastomeric polymer of said elastomer composition is formed by reacting the living polymer with dimethylaminobenzylidene aniline.

55. 33. The tire of claim 29 wherein the terminally functionalized elastomeric polymer of said elastomer composition is formed by reacting the living polymer with benzylidene dimethylaminoaniline.

34. The tire of claim 29 wherein the terminally functionalized elastomeric polymer of said elastomer composition is formed by reacting the living polymer with dimethylaminobenzylidene dimethylaminoaniline.

35. The tire of claim 29 wherein the terminally functionalized elastomeric polymer of said elastomer composition is formed by reacting the living polymer with dimethylaminobenzylidene methoxyaniline.

36. The tire of claim 29 wherein the terminally functionalized elastomeric polymer of said elastomer composition is formed by reacting the living polymer with dimethylaminobenzylidene dodecyylaniline or dimethylaminobenzylidene butylaniline.

37. The tire of claim 29 wherein the terminally functionalized elastomeric polymer of said elastomer composition is formed by reacting the living polymer with methoxybenzylidene dimethylaminoaniline.

10

Patentansprüche

1. Verfahren zur Herstellung eines endständig funktionalisierten Polymeren aus einem lebenden Polymeren, erhalten durch anionische Polymerisation eines Dienmonomeren oder eines Gemisches eines Dienmonomeren und eines vinylaromatischen Kohlenwasserstoffmonomeren, dadurch **gekennzeichnet**, daß man das lebende Polymere mit einer Verbindung der Formel:

worin R_1 und R_2 aus der Gruppe bestehend aus H, Alkyl, Cycloalkyl, Aryl, Dialkylaminoaryl, Aralkyl und aprotischen O-, N- und S-haltigen Alkyl-, Cycloalkyl-, Aryl- und Aralkylgruppen ausgewählt sind, wobei R_3 aus der Gruppe bestehend aus Alkyl-, Cycloalkyl-, Aryl-, Dialkylaminoaryl-, Aralkylgruppen und aprotischen O-, N- und S-haltigen Alkyl-, Cycloalkyl-, Aryl- und Aralkylgruppen ausgewählt ist, umsetzt, mit der Maßgabe, daß mindestens eine der R_1 -, R_2 - und R_3 -Gruppen eine Dialkylaminoarylgruppe sein muß und daß die R_1 -, R_2 - und R_3 -Gruppen nicht gleichzeitig Arylgruppen sein können.

2. Verfahren nach Anspruch 1, dadurch **gekennzeichnet**, daß das lebende Polymere ein lebendes Polymeres von Butadien oder ein Copolymeres von Butadien und Styrol ist.

3. Verfahren nach Anspruch 1, dadurch **gekennzeichnet**, daß man die genannte Verbindung aus der Gruppe bestehend aus Dialkylaminobenzyliden-Alkylaminen, Dialkylaminobenzyliden-Anilinen, Dialkylaminobenzyliden-Alkoxyanilinen, Dialkylamino-Benzyliden-Dialkylaminoanilinen, Benzyliden-Dialkylaminoanilinen, Alkoxybenzyliden-Dialkylaminoanilinen und α,α -Dialkylalkylen-Dialkylaminoanilinen auswählt.

4. Verfahren nach Anspruch 1, dadurch **gekennzeichnet**, daß die Verbindung Dimethylaminobenzyliden-Anilin ist.

5. Verfahren nach Anspruch 1, dadurch **gekennzeichnet**, daß die Verbindung Benzyliden-Dimethylaminoanilin ist.

6. Verfahren nach Anspruch 1, dadurch **gekennzeichnet**, daß die Verbindung Dimethylaminobenzyliden-Dimethylaminoanilin ist.

7. Verfahren nach Anspruch 1, dadurch **gekennzeichnet**, daß die Verbindung Dimethylaminobenzyliden-Methoxyanilin ist.

8. Verfahren nach Anspruch 1, dadurch **gekennzeichnet**, daß die Verbindung Dimethylaminobenzyliden-Dodecyylanilin oder Dimethylaminobenzyliden-Butylanilin ist.

9. Verfahren nach Anspruch 1, dadurch **gekennzeichnet**, daß die Verbindung Methoxybenzyliden-Dimethylaminoanilin ist.

10. Verfahren nach Anspruch 1, dadurch **gekennzeichnet**, daß das endständig funktionalisierte Polymere ein endständig funktionalisiertes Polymeres von Butadien oder ein Copolymeres von Butadien und Styrol ist.

5 11. Endständig funktionalisiertes Polymeres hergestellt durch Umsetzung eines lebenden Polymeren, erhalten durch anionische Polymerisation eines Dienmonomeren oder eines Gemisches eines Dienmonomeren und eines vinylaromatischen Kohlenwasserstoffmonomeren mit einer Verbindung der Formel:

10

15

worin R_1 und R_2 aus der Gruppe bestehend aus H, Alkyl, Cycloalkyl, Aryl, Dialkylaminoaryl, Aralkyl und aprotischen O-, N- und S-haltigen Alkyl-, Cycloalkyl-, Aryl- und Aralkylgruppen ausgewählt sind, wobei R_3 aus der Gruppe bestehend aus Alkyl-, Cycloalkyl-, Aryl-, Dialkylaminoaryl-, Aralkylgruppen und aprotischen O-, N- und S-haltigen Alkyl-, Cycloalkyl-, Aryl- und Aralkylgruppen ausgewählt ist, umgesetzt, mit der Maßgabe, daß mindestens eine der R_1 -, R_2 - und R_3 -Gruppen eine Dialkylaminoarylgruppe sein muß und daß die R_1 -, R_2 - und R_3 -Gruppen nicht gleichzeitig Arylgruppen sein können.

20

12. Endständig funktionalisiertes Polymeres nach Anspruch 11, dadurch **gekennzeichnet**, daß das endständig funktionalisierte Polymere ein Polymeres von Butadien oder ein Copolymeres von Butadien und Styrol ist.

25

13. Endständig funktionalisiertes Polymeres nach Anspruch 11, dadurch **gekennzeichnet**, daß die endständige funktionelle Gruppe durch Umsetzung des lebenden Polymeren mit einer Verbindung ausgewählt aus der Gruppe bestehend aus Dialkylaminobenzyliden-Alkylaminen, Dialkylaminobenzyliden-Anilinen, Dialkylaminobenzyliden-Alkoxyanilinen, Dialkylaminobenzyliden-Dialkylaminoanilinen, Benzyliden-Dialkylaminoanilinen, Alkoxybenzyliden-Dialkylaminoanilinen und α,α -Dialkylalkyliden-Dialkylaminoanilinen gebildet worden ist.

30

14. Endständig funktionalisiertes Polymeres nach Anspruch 11, dadurch **gekennzeichnet**, daß die endständige funktionelle Gruppe des Polymeren durch Umsetzung des lebenden Polymeren mit Dimethylaminobenzyliden-Anilin gebildet worden ist.

35

15. Endständig funktionalisiertes Polymeres nach Anspruch 11, dadurch **gekennzeichnet**, daß die endständige funktionelle Gruppe des Polymeren durch Umsetzung des lebenden Polymeren mit Benzyliden-Dimethylaminoanilin gebildet worden ist.

40

16. Endständig funktionalisiertes Polymeres nach Anspruch 11, dadurch **gekennzeichnet**, daß die endständige funktionelle Gruppe des Polymeren durch Umsetzung des lebenden Polymeren mit Dimethylaminobenzyliden-Dimethylaminoanilin gebildet worden ist.

45

17. Endständig funktionalisiertes Polymeres nach Anspruch 11, dadurch **gekennzeichnet**, daß die endständige funktionelle Gruppe des Polymeren durch Umsetzung des lebenden Polymeren mit Dimethylaminobenzyliden-Methoxyanilin gebildet worden ist.

50

18. Endständig funktionalisiertes Polymeres nach Anspruch 11, dadurch **gekennzeichnet**, daß die endständige funktionelle Gruppe des Polymeren durch Umsetzung des lebenden Polymeren mit Dimethylaminobenzyliden-Dodecylanilin oder Dimethylaminobenzyliden-Butylanilin gebildet worden ist.

55

19. Endständig funktionalisiertes Polymeres nach Anspruch 11, dadurch **gekennzeichnet**, daß die endständige funktionelle Gruppe des Polymeren durch Umsetzung des lebenden Polymeren mit Methoxybenzyliden-Dimethylaminoanilin gebildet worden ist.

20. Elastomermasse, geeignet zur Bildung von Reifenprofilen mit verringertem Rollwiderstand, dadurch gekennzeichnet, daß sie ein endständig funktionalisiertes elastomeres Polymeres und Kautschuk additive umfaßt, wobei das endständig funktionalisierte Polymere durch Umsetzung eines lebenden Polymeren, hergestellt durch anionische Polymerisation eines Dienmonomeren oder eines Gemisches eines Dienmonomeren und eines vinylaromatischen Kohlenwasserstoffmonomeren mit einer Verbindung der Formel:

15 worin R₁ und R₂ aus der Gruppe bestehend aus H, Alkyl, Cycloalkyl, Aryl, Dialkylaminoaryl, Aralkyl und
aprotischen O-, N- und S-haltigen Alkyl-, Cycloalkyl-, Aryl- und Aralkylgruppen ausgewählt sind, wobei
R₃ aus der Gruppe bestehend aus Alkyl-, Cycloalkyl-, Aryl-, Dialkylaminoaryl-, Aralkylgruppen und
aprotischen O-, N- und S-haltigen Alkyl-, Cycloalkyl-, Aryl- und Aralkylgruppen ausgewählt ist, umsetzt,
mit der Maßgabe, daß mindestens eine der R₁-, R₂- und R₃-Gruppen eine Dialkylaminoarylgruppe sein
muß und daß die R₁-, R₂- und R₃-Gruppen nicht gleichzeitig Arylgruppen sein können, hergestellt
worden ist.

21. Elastomermasse nach Anspruch 20, dadurch **gekennzeichnet**, daß das endständig funktionisierte
25 Polymere ein Polymeres von Butadien oder ein Copolymeres von Butadien und Styrol ist.

22. Elastomermasse nach Anspruch 20, dadurch **gekennzeichnet**, daß die endständige funktionelle
Gruppe des endständig funktionalisierten Polymeren durch Umsetzung des lebenden Polymeren mit
30 einer Verbindung, ausgewählt aus der Gruppe bestehend aus Dialkylaminobenzyliden-Alkylaminen,
Dialkylaminobenzyliden-Anilinen, Dialkylaminobenzyliden-Alkoxyanilinen, Dialkylaminobenzyliden-Dial-
kylaminoanilinen, Benzyliden-Dialkylaminoanilinen, Alkoxybenzyliden-Dialkylaminoanilinen und α , α -Dial-
kylalkyliden-Dialkylaminoanilinen gebildet worden ist.

23. Elastomermasse nach Anspruch 20, dadurch **gekennzeichnet**, daß die endständig funktionelle Gruppe
35 des endständig funktionalisierten Polymeren durch Umsetzung des lebenden Polymeren mit Dimethyla-
minobenzyliden-Anilin gebildet worden ist.

24. Elastomermasse nach Anspruch 20, dadurch **gekennzeichnet**, daß die endständig funktionelle Gruppe
40 des endständig funktionalisierten Polymeren durch Umsetzung des lebenden Polymeren mit Benzyliden-Dimethylaminoanilin gebildet worden ist.

25. Elastomermasse nach Anspruch 20, dadurch **gekennzeichnet**, daß die endständig funktionelle Gruppe
45 des endständig funktionalisierten Polymeren durch Umsetzung des lebenden Polymeren mit Dimethyla-
minobenzyliden-Dimethylaminoanilin gebildet worden ist.

26. Elastomermasse nach Anspruch 20, dadurch **gekennzeichnet**, daß die endständig funktionelle Gruppe
50 des endständig funktionalisierten Polymeren durch Umsetzung des lebenden Polymeren mit Dimethyla-
minobenzyliden-Methoxyanilin gebildet worden ist.

27. Elastomermasse nach Anspruch 20, dadurch **gekennzeichnet**, daß die endständig funktionelle Gruppe
55 des endständig funktionalisierten Polymeren durch Umsetzung des lebenden Polymeren mit Dimethyla-
minobenzyliden-Dodecylanilin oder Dimethylaminobenzyliden-Butylanilin gebildet worden ist.

28. Elastomermasse nach Anspruch 20, dadurch **gekennzeichnet**, daß die endständig funktionelle Gruppe
60 des endständig funktionalisierten Polymeren durch Umsetzung des lebenden Polymeren mit Methoxy-
benzyliden-Dimethylaminoanilin gebildet worden ist.

29. Reifen mit verringertem Rollwiderstand, bei dem das Profil des Reifens aus einer Elastomermasse, die ein endständig funktionalisiertes elastomeres Polymeres und Kautschukadditive umfaßt, gebildet ist, dadurch **gekennzeichnet**, daß das endständig funktionalisierte elastomere Polymere durch Umsetzung eines lebenden Polymeren, erhalten durch anionische Polymerisation eines Dienmonomeren oder Gemisches eines Dienmonomeren und eines vinylaromatischen Kohlenwasserstoffmonomeren mit einer Verbindung der Formel:

15 worin R_1 und R_2 aus der Gruppe bestehend aus H, Alkyl, Cycloalkyl, Aryl, Dialkylaminoaryl, Aralkyl und aprotischen O-, N- und S-haltigen Alkyl-, Cycloalkyl-, Aryl und Aralkylgruppen ausgewählt sind, wobei R_3 aus der Gruppe bestehend aus Alkyl-, Cycloalkyl-, Aryl-, Dialkylaminoaryl-, Aralkylgruppen und aprotischen O-, N- und S-haltigen Alkyl-, Cycloalkyl-, Aryl- und Aralkylgruppen ausgewählt ist, umgesetzt, mit der Maßgabe, daß mindestens eine der R_1 -, R_2 - und R_3 -Gruppen eine Dialkylaminoarylgruppe sein muß und daß die R_1 -, R_2 - und R_3 -Gruppen nicht gleichzeitig Arylgruppen sein können, hergestellt worden ist.

20 30. Reifen nach Anspruch 29, dadurch **gekennzeichnet**, daß endständig funktionalisierte elastomere Polymere der Elastomermaße ein Polymeres von Butadien oder Copolymeres von Butadien und Styrol ist.

25 31. Reifen nach Anspruch 29, dadurch **gekennzeichnet**, daß das endständig funktionalisierte elastomere Polymere der Elastomermaße durch Umsetzung des lebenden Polymeren mit einer Verbindung, ausgewählt aus der Gruppe bestehend aus Dialkylaminobenzyliden-Alkylaminen, Dialkylaminobenzyliden-Anilinen, Dialkylaminobenzyliden-Alkoxyanilinen, Dialkylaminobenzyliden-Dialkylaminoanilinen, Benzyliden-Dialkylaminoanilinen, Alkoxybenzyliden-Dialkylaminoanilinen und α , α -Dialkylalkyliden-Dialkylaminoanilinen gebildet worden ist.

35 32. Reifen nach Anspruch 29, dadurch **gekennzeichnet**, daß das endständig funktionalisierte elastomere Polymere der Elastomermaße durch Umsetzung des lebenden Polymeren mit Dimethylaminobenzyliden-Anilin gebildet worden ist.

40 33. Reifen nach Anspruch 29, dadurch **gekennzeichnet**, daß das endständig funktionalisierte elastomere Polymere der Elastomermaße durch Umsetzung des lebenden Polymeren mit Benzyliden-Dimethylaminoanilin gebildet worden ist.

45 34. Reifen nach Anspruch 29, dadurch **gekennzeichnet**, daß das endständig funktionalisierte elastomere Polymere der Elastomermaße durch Umsetzung des lebenden Polymeren mit Dimethylaminobenzyliden-Dimethylaminoanilin gebildet worden ist.

35. Reifen nach Anspruch 29, dadurch **gekennzeichnet**, daß das endständig funktionalisierte elastomere Polymere der Elastomermaße durch Umsetzung des lebenden Polymeren mit Dimethylaminobenzyliden-Methoxyanilin gebildet worden ist.

50 36. Reifen nach Anspruch 29, dadurch **gekennzeichnet**, daß das endständig funktionalisierte elastomere Polymere der Elastomermaße durch Umsetzung des lebenden Polymeren mit Dimethylaminobenzyliden-Dodecylanilin oder Dimethylaminobenzyliden-Butylanilin gebildet worden ist.

55 37. Reifen nach Anspruch 29, dadurch **gekennzeichnet**, daß das endständig funktionalisierte elastomere Polymere der Elastomermaße durch Umsetzung des lebenden Polymeren mit Methoxybenzyliden-Dimethylaminoanilin gebildet worden ist.

Revendications

1. Procédé de préparation d'un polymère à fonctionnalisation terminale à partir d'un polymère vivant obtenu par polymérisation anionique d'un monomère diénique ou d'un mélange d'un monomère diénique et d'un monomère hydrocarboné aromatique vinylique, qui comprend la réaction du polymère vivant avec un composé répondant à la formule :

15 dans laquelle R_1 et R_2 sont choisis entre H, des groupes alkyle, cycloalkyle, aryle, dialkylaminoaryle, aralkyle, et des groupes alkyle, cycloalkyle, aryle et aralkyle aprotiques contenant des atomes de O, N et S ; R_3 est choisi entre des groupes alkyle, cycloalkyle, aryle, dialkylaminoaryle, aralkyle et des groupes alkyle, cycloalkyle, aryle et aralkyle aprotiques contenant des atomes de O, N et S ;
20 sous réserve qu'au moins l'un des groupes R_1 , R_2 et R_3 représente un groupe dialkylaminoaryle et que tous les groupes R_1 , R_2 et R_3 ne puissent représenter des groupes aryle.

2. Procédé suivant la revendication 1, dans lequel le polymère vivant est un polymère vivant de butadiène ou un copolymère de butadiène et de styrène.

25 3. Procédé suivant la revendication 1, dans lequel le composé est choisi dans le groupe consistant en dialkylaminobenzylidène-alkylamines, dialkylaminobenzylidène-anilines, dialkylaminobenzylidène-alkoxyanilines, dialkylaminobenzylidène-dialkylamino-anilines, benzylidène-dialkylamino-anilines, alkoxybenzylidènedialkylamino-anilines et α,α -dialkylalkylidènedialkylamino-anilines.

30 4. Procédé suivant la revendication 1, dans lequel le composé est la diméthylaminobenzylidène-aniline.

5. Procédé suivant la revendication 1, dans lequel le composé est la benzylidène-diméthylamino-aniline.

35 6. Procédé suivant la revendication 1, dans lequel le composé est la diméthylaminobenzylidène-diméthylamino-aniline.

7. Procédé suivant la revendication 1, dans lequel le composé est la diméthylaminobenzylidène-méthoxyaniline.

40 8. Procédé suivant la revendication 1, dans lequel le composé est la diméthylaminobenzylidène-dodécylaniline ou la diméthylaminobenzylidène-butylaniline.

9. Procédé suivant la revendication 1, dans lequel le composé est la méthoxybenzylidène-diméthylaminoaniline.

45 10. Procédé suivant la revendication 1, dans lequel le polymère à fonctionnalisation terminale est un polymère de butadiène ou copolymère de butadiène et de styrène à fonctionnalisation terminale.

50 11. Polymère à fonctionnalisation terminale préparé par réaction d'un polymère vivant obtenu par polymérisation anionique d'un monomère diénique ou d'un mélange d'un monomère diénique et d'un monomère hydrocarboné aromatique vinylique avec un composé répondant à la formule :

dans laquelle R₁ et R₂ sont choisis entre H, des groupes alkyle, cycloalkyle, aryle, dialkylaminoaryle, aralkyle, et des groupes alkyle, cycloalkyle, aryle et aralkyle aprotiques comprenant des atomes de O, N, et S ; R₃ est choisi entre des groupes alkyle, cycloalkyle, aryle, dialkylaminoaryle, aralkyle et des groupes alkyle, cycloalkyle, aryle et aralkyle aprotiques contenant des atomes de O, N et S ;

5 sous réserve qu'au moins un des groupes R₁, R₂ et R₃ représente un groupe dialkylaminoaryle et que tous les groupes R₁, R₂ et R₃ ne puissent représenter des groupes aryle.

- 12. Polymère à fonctionnalisation terminale suivant la revendication 11, qui est un polymère de butadiène ou un copolymère de butadiène et de styrène.
- 10 13. Polymère à fonctionnalisation terminale suivant la revendication 11, dans lequel le groupe fonctionnel terminal est formé par réaction du polymère vivant avec un composé choisi dans le groupe consistant en dialkylaminobenzylidène-alkylamines, dialkylaminobenzylidène-anilines, dialkylaminobenzylidène-alkoxy-aniline, dialkylaminobenzylidène-dialkylamino-anilines, benzylidène-dialkylaminoanilines, alkoxy-benzylidène-dialkylamino-anilines et α,α -dialkylalkylidène-dialkylamino-anilines.
- 15 14. Polymère à fonctionnalisation terminale suivant la revendication 11, dans lequel le groupe fonctionnel terminal du polymère est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-aniline.
- 20 15. Polymère à fonctionnalisation terminale suivant la revendication 11, dans lequel le groupe fonctionnel terminal est formé par réaction du polymère vivant avec la benzylidène-diméthylamino-aniline.
- 25 16. Polymère à fonctionnalisation terminale suivant la revendication 11, dans lequel le groupe fonctionnel terminal est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-diméthylamino-aniline.
- 30 17. Polymère à fonctionnalisation terminale suivant la revendication 11, dans lequel le groupe fonctionnel terminal est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-méthoxy-aniline.
- 35 18. Polymère à fonctionnalisation terminale suivant la revendication 11, dans lequel le groupe fonctionnel terminal est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-dodécylaniline ou la diméthylaminobenzylidène-butylaniline.
- 40 19. Polymère à fonctionnalisation terminale suivant la revendication 11, dans lequel le groupe fonctionnel terminal est formé par réaction du polymère vivant avec la méthoxybenzylidène-diméthylamino-aniline.
- 45 20. Composition élastomère apte à l'utilisation dans la formation de la portion de bande de roulement de bandages pneumatiques présentant une résistance réduite au roulement, qui comprend un polymère élastomère à fonctionnalisation terminale et des additifs de caoutchouc, dans laquelle ledit polymère à fonctionnalisation terminale est préparé par réaction d'un polymère vivant obtenu par polymérisation anionique d'un monomère diénique ou d'un mélange d'un monomère diénique et d'un monomère hydrocarboné aromatique vinylique avec un composé répondant à la formule :

dans laquelle R₁ et R₂ sont choisis entre H, des groupes alkyle, cycloalkyle, aryle, dialkylaminoaryle, aralkyle, et des groupes alkyle, cycloalkyle, aryle et aralkyle aprotiques contenant des atomes de O, N et S ; R₃ est choisi entre des groupes alkyle, cycloalkyle, aryle, dialkylaminoaryle, aralkyle, et des groupes alkyle, cycloalkyle, aryle et aralkyle aprotiques contenant des atomes de O, N et S ;

55 sous réserve qu'au moins un des groupes R₁, R₂ et R₃ représente un groupe dialkylaminoaryle et que tous les groupes R₁, R₂ et R₃ ne puissent représenter des groupes aryle.

21. Composition élastomère suivant la revendication 20, dans laquelle le polymère à fonctionnalisation terminale est un polymère de butadiène ou un copolymère de butadiène et de styrène.

22. Composition élastomère suivant la revendication 20, dans laquelle le groupe fonctionnel terminal dudit polymère à fonctionnalisation terminale est formé par réaction du polymère vivant avec un composé choisi dans le groupe consistant en dialylaminobenzylidène-alkylamines, dialkylaminobenzylidène-anilines, dialkylaminobenzylidène-nealkoxyanilines, dialkylaminobenzylidène-dialkylamino-anilines, benzylidène-dialkylamino-anilines, alkoxybenzylidène-dialkylamino-anilines et α,α -dialkylalkylidène-dialkylamino-anilines.

10 23. Composition élastomère suivant la revendication 20, dans laquelle le groupe fonctionnel terminal du polymère à fonctionnalisation terminale est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-aniline.

15 24. Composition élastomère suivant la revendication 20, dans laquelle le groupe fonctionnel terminal du polymère à fonctionnalisation terminale est formé par réaction du polymère vivant avec la benzylidène-diméthylamino-aniline.

20 25. Composition élastomère suivant la revendication 20, dans laquelle le groupe fonctionnel terminal du polymère à fonctionnalisation terminale est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-diméthylamino-aniline.

25 26. Composition élastomère suivant la revendication 20, dans laquelle le groupe fonctionnel terminal du polymère à fonctionnalisation terminale est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-méthoxy-aniline.

30 27. Composition élastomère suivant la revendication 20, dans laquelle le groupe fonctionnel terminal du polymère à fonctionnalisation terminale est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-dodécylaniline ou la diméthylaminobenzylidène-butylaniline.

28. Composition élastomère suivant la revendication 20, dans laquelle le groupe fonctionnel terminal du polymère à fonctionnalisation terminale est formé par réaction du polymère vivant avec la méthoxybenzylidène-diméthylamino-aniline.

35 29. Bandage pneumatique ayant une résistance réduite au roulement, dans lequel la portion de bande de roulement du bandage pneumatique est formée à partir d'une composition Élastomère qui comprend un polymère élastomère à fonctionnalisation terminale et des additifs de caoutchouc, dans laquelle le polymère élastomère à fonctionnalisation terminale est préparé par réaction d'un polymère vivant obtenu par polymérisation anionique d'un monomère diénique ou d'un mélange d'un monomère diénique et d'un monomère hydrocarboné aromatique vinylique avec un composé répondant à la formule :

50 dans laquelle R_1 et R_2 sont choisis entre H, des groupes alkyle, cycloalkyle, aryle, dialkylaminoaryle, aralkyle, et des groupes alkyle, cycloalkyle, aryle et aralkyle aprotiques contenant des atomes de O, N et S ; R_3 est choisi entre des groupes alkyle, cycloalkyle, aryle, dialkylaminoaryle, aralkyle et des groupes alkyle, cycloalkyle, aryle et aralkyle aprotiques contenant des atomes de O, N et S ; R_3 est choisi entre des groupes alkyle, cycloalkyle, aryle, dialkylaminoaryle, aralkyle et des groupes alkyle, cycloalkyle, aryle et aralkyle aprotiques contenant des atomes de O, N et S ; sous réserve qu'au moins un des groupes R_1 , R_2 et R_3 représente un groupe dialkylaminoaryle et que tous les groupes R_1 , R_2 et R_3 ne puissent représenter des groupes aryle.

30. Bandage pneumatique suivant la revendication 29, dans lequel le polymère élastomère à fonctionnalisation terminale de la composition élastomère est un polymère de butadiène ou un copolymère de butadiène et de styrène.

5 31. Bandage pneumatique suivant la revendication 29, dans lequel le polymère élastomère à fonctionnalisation terminale de la composition élastomère est formé par réaction du polymère vivant avec un composé choisi dans le groupe consistant en dialkylaminobenzylidène-alkylamines, dialkylaminobenzylidène-anilines, dialkylaminobenzylidène-alkoxy-anilines, dialkylaminobenzylidène-dialkylamino-anilines, benzylidène-dialkylamino-anilines, alkoxybenzylidène-dialkylamino-anilines et α,α -dialkylalkylidène-dialkylamino-anilines.

10 32. Bandage pneumatique suivant la revendication 29, dans lequel le polymère élastomère à fonctionnalisation terminale de la composition élastomère est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-aniline.

15 33. Bandage pneumatique suivant la revendication 29, dans lequel le polymère élastomère à fonctionnalisation terminale de la composition élastomère est formé par réaction du polymère vivant avec la benzylidène-diméthylamino-aniline.

20 34. Bandage pneumatique suivant la revendication 29, dans lequel le polymère élastomère à fonctionnalisation terminale de la composition élastomère est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-diméthylamino-aniline.

25 35. Bandage pneumatique suivant la revendication 29, dans lequel le polymère élastomère à fonctionnalisation terminale de la composition élastomère est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-méthoxy-aniline.

30 36. Bandage pneumatique suivant la revendication 29, dans lequel le polymère élastomère à fonctionnalisation terminale de la composition élastomère est formé par réaction du polymère vivant avec la diméthylaminobenzylidène-dodécyl-aniline ou la diméthylaminobenzylidène-butylaniline.

35 37. Bandage pneumatique suivant la revendication 29, dans lequel le polymère élastomère à fonctionnalisation terminale de la composition élastomère est formé par réaction du polymère vivant avec la méthoxybenzylidène-diméthylaminoaniline.

35

40

45

50

55