

Post-Quantum Cryptography

Paulo S. L. M. Barreto

Syndrome Decoding

Syndrome Decoding

- Let $q = p^m$ for some prime p and m > 0 (for cryptographic applications p = 2).
- □ The (Hamming) weight w(u) of $u \in (\mathbb{F}_q)^n$ is the number of nonzero components of u.
- □ The distance between u, $v \in (\mathbb{F}_q)^n$ is $dist(u, v) \equiv w(u v)$.
- □ A linear [n, k]-code C over \mathbb{F}_q is a k-dimensional vector subspace of $(\mathbb{F}_q)^n$.

General/Syndrome Decoding (GDP/SDP)

- □ GDP
- Input:
 - positive integers n, k, t;
 - generator matrix $G \in (\mathbb{F}_q)^{k \times n}$;
 - vector $c \in (\mathbb{F}_q)^n$.
- □ Question: \exists ? $m \in (\mathbb{F}_q)^k$ such that e = c mG has weight $w(e) \leq t$?

- □ SDP
- Input:
 - positive integers n, r, t;
 - parity-check matrix $H \in (\mathbb{F}_q)^{r \times n}$;
 - vector $s \in (\mathbb{F}_q)^r$.
- **Question**: \exists ? $e \in (\mathbb{F}_q)^n$ of weight $w(e) \leq t$ such that $He^T = s^T$?

Both are NP-complete!

Syndrome Decoding

Let $d = \min\{\text{dist}(u, v) \mid u, v \in \mathcal{C}\}$. If $v, e \in (\mathbb{F}_2)^n$ and $w(e) \leq \lfloor (d-1)/2 \rfloor \equiv t$, the SDP has a unique solution for $c = v \oplus e$.

Syndrome Decoding

- Determining the minimum distance of a linear code is NP-hard.
- Bounded Distance Decoding Problem (BDDP):
 - Given a binary (n, k)-code \mathcal{C} with known minimum distance d and $c \in (\mathbb{F}_2)^n$, find $v \in \mathcal{C}$ such that $\operatorname{dist}(v, c) = d$.
- \square : BDDP is SDP with knowledge of d.
- BDDP is *believed* (but not known for sure) to be intractable.

Ranking and Unranking Permutations

■ Some SDP-based cryptosystems represent messages as *t*-error *n*-vectors, i.e. *n*-bit vectors with Hamming weight *t*.

Mapping messages between error vector and normal form involves permutation ranking and unranking.

Ranking and Unranking Permutations

- Let $B(n, t) = \{u \in (\mathbb{F}_2)^n \mid w(u) = t\}$, with cardinality $r = \binom{n}{t} \approx \frac{n^t}{t!}$
- □ A ranking function is a mapping rank: $B(n, t) \rightarrow \{1...r\}$ which associates a unique index in $\{1...r\}$ to each element in B(n, t). Its inverse is called the unranking function.
- □ Rank size: $\lg r \approx t (\lg n \lg t + 1)$ bits.

Ranking and Unranking Permutations

□ Ranking and unranking can be done in O(n) time (Ruskey 2003, algorithm 4.10).

Computationally simplest ordering: colex.

□ Definition: $a_1a_2...a_n < b_1b_2...b_m$ in colex order iff $a_n...a_2a_1 < b_m...b_2b_1$ in lex order.

Colex Ranking

Sum of binomial coefficients:

$$Rank(a_1a_2...a_k) = \sum_{j=1}^{k} {a_j - 1 \choose j}$$

Implementation strategy: precompute a table of binomial coefficients.

Colex Unranking

```
input: r // permutation rank
for j \leftarrow k downto 1 {
     p \leftarrow j while \binom{p}{i} \le r {

\begin{array}{c}
p \leftarrow p + 1 \\
r \leftarrow r - {p-1 \choose j} \\
a_j \leftarrow p
\end{array}

return a_1 a_2 \dots a_k
```


Irreducible Polynomials

- Theorem: for $i \ge 1$, the polynomial $x^{q^i} x$ $\in \mathbb{F}_q[x]$ is the product of all monic irreducible polynomials in $\mathbb{F}_q[x]$ whose degree divides i.
- Ben-Or irreducibility test: monic $g \in \mathbb{F}_q[x]$ of degree d is irreducible iff $GCD(g, x^{q^i} - x \mod g) = 1$ for i = 1, ..., d/2.

Irreducible Polynomials

- Efficient implementation of Ben-Or:
 - **compute** $y \leftarrow x^q \mod g$.
 - compute $z_i \leftarrow y^i \mod g$ for $0 \le i < t$.
 - initialize $v \leftarrow x$.
 - for j = 1, ..., t/2:
 - let $v = \sum_{i=0}^{t-1} v_i x^i$: set $v \leftarrow x^{qJ} \mod g = v^q \mod g = (\sum_{i=0}^{t-1} v_i x^i)^q \mod g = \sum_{i=0}^{t-1} v_i (x^q \mod g)^i \mod g = \sum_{i=0}^{t-1} v_i (y^i \mod g) = \sum_{i=0}^{t-1} v_i z_i$.
 - □ check that $GCD(g, (v x) \mod g) \neq 1$.

Goppa Codes

- Let $g(x) = \sum_{i=0}^{t} g_i x^i$ be a monic $(g_t = 1)$ polynomial in $\mathbb{F}_a[x]$.
- Let $L = (L_0, ..., L_{n-1}) \in (\mathbb{F}_q)^n$ (all distinct) such that $g(L_i) \neq 0$ for all j.
- Properties:
 - Easy to generate and plentiful.
 - Usually g(x) is chosen to be irreducible; if so, $\mathbb{F}_{q^t} = \mathbb{F}[x]/g(x)$.

Goppa Codes

□ The syndrome function is the linear map $S: (\mathbb{F}_p)^n \to \mathbb{F}_a[x]/g(x)$:

$$S(c) = \sum_{i=0}^{n-1} \frac{c_i}{x - L_i} = \sum_{c_i=1} \frac{1}{x - L_i} \pmod{g(x)}.$$

The Goppa code $\Gamma(L, g)$ is the kernel of the syndrome function, i.e. $\Gamma = \{c \in (\mathbb{F}_p)^n \mid S(c) = 0\}$.

Goppa Codes

- N.B. Usually $t = O(n / \lg n)$. CFS are an exception, with n = O(t!).
- The syndrome can be written in matrix form as a mapping H^* : $(\mathbb{F}_p)^n \to (\mathbb{F}_q)^t$ or even H: $(\mathbb{F}_p)^n \to (\mathbb{F}_p)^{mt}$ (just write the \mathbb{F}_p components of each \mathbb{F}_q element from H^* on m successive rows of H).
- H is the parity check matrix of the code. Determining whether $c \in (\mathbb{F}_p)^n$ is a code word amounts to checking that $Hc^{\mathsf{T}} = 0$.

Parity-Check Matrix

□ Easy to compute H^* from L and g, namely, $H^*_{t\times n} = T_{t\times t}V_{t\times n}D_{n\times n}$, where:

$$T = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ g_{t-1} & 1 & 0 & \dots & 0 \\ g_{t-2} & g_{t-1} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ g_1 & g_2 & g_3 & \dots & 1 \end{bmatrix}, \quad V = \begin{bmatrix} 1 & 1 & \dots & 1 \\ L_0 & L_1 & \dots & L_{n-1} \\ L_0^2 & L_1^2 & \dots & L_{n-1}^2 \\ \vdots & \vdots & \ddots & \vdots \\ L_0^{t-1} & L_1^{t-1} & \dots & L_{n-1}^{t-1} \end{bmatrix},$$

$$D = \begin{bmatrix} 1/g(L_0) & 0 & \dots & 0 \\ 0 & 1/g(L_1) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1/g(L_{n-1}) \end{bmatrix}.$$

- A Goppa code Γ is a k-dimensional subspace of $(\mathbb{F}_p)^n$ for some k with n-mt $\leq k \leq n-t$.
- □ In general the minimum distance of Γ is $d \ge t + 1$, but in the *binary* case whenever g(x) has no multiple zero (in particular when g(x) is irreducible) the minimum distance becomes $d \ge 2t + 1$.

- \square A *generator matrix* for Γ is a matrix $G_{k\times n}$ whose rows form a basis of Γ .
- $\square G$ defines a mapping $(\mathbb{F}_p)^k \to (\mathbb{F}_p)^n$ such that $uG \in \Gamma$, $\forall u \in (\mathbb{F}_p)^k$.
- □ Therefore $H(uG)^{T} = HG^{T}u^{T} = o^{T}$ for all u, i.e. $HG^{T} = O$.

□ If G is in *echelon* form, it is trivial to map between $(\mathbb{F}_p)^k$ and $(\mathbb{F}_p)^n$.

□ The first k columns of $uG \in (\mathbb{F}_p)^n$ directly spell $u \in (\mathbb{F}_p)^k$ itself.

■ The remaining n - k columns contain the "checksum" of u.

- It is easy to solve $H_{mt\times n}G^{\mathsf{T}}_{n\times k} = O_{mt\times k}$ for G in echelon form and k = n mt, i.e. $G_{k\times n} = [I_{k\times k} \mid X_{k\times mt}]$.
- Let $H_{mt \times n} = [L_{mt \times k} \mid R_{mt \times mt}]$. Equation HG^T = O becomes $[L_{mt \times k} \mid R_{mt \times mt}]$ $[I_{k \times k} \mid X^T_{mt \times k}]$ = $L_{mt \times k} + R_{mt \times mt}X^T_{mt \times k} = O_{mt \times k}$, whose solution is $X^T_{mt \times k} = R^{-1}_{mt \times mt}L_{mt \times k}$, or $G_{k \times n} = [I_{k \times k} \mid L^T_{k \times mt}(R^T)^{-1}_{mt \times mt}]$.

- □ Any nonzero matrix H' satisfying $H'G^T = O$ is an alternative parity check matrix.
 - Since $T_{t \times t}$ is invertible $(\det(T) = 1)$ and $H_{t \times n} = T_{t \times t} V_{t \times n} D_{n \times n}$, clearly $H'G^T = O$ for H' = VD.
 - Let $G_{k \times n} = [I_{k \times k} \mid X_{k \times t}]$ and $H'' = [X^{\mathsf{T}}_{t \times k} \mid I_{t \times t}]$. Clearly $[X^{\mathsf{T}}_{t \times k} \mid I_{t \times t}]$ $[I_{k \times k} \mid X^{\mathsf{T}}_{t \times k}] = O_{t \times k}$, i.e. $H''G^{\mathsf{T}} = O$.
 - For any nonsingular matrix $S_{t \times t}$, $H''' \leftarrow SH''$ satisfies $H'''G^T = O$.

Error Correction

Error Locator Polynomial

Efficient decoding procedure for known g and L via the error locator polynomial:

$$\sigma(x) \equiv \prod_{e_i=1} (x - L_i) \in \mathbb{F}_q[x]/g(x).$$

 \square Property: $\sigma(L_i) = 0 \Leftrightarrow e_i = 1$.

Alternant Error Locator Polynomial

Efficient decoding procedure for known g and L via the error locator polynomial:

$$\sigma(x) \equiv \prod_{e_i \neq 0} (1 - xL_i) \in \mathbb{F}_q[x]/g(x).$$

□ Property: $\sigma(L_i^{-1}) = 0 \Leftrightarrow e_i \neq 0$.

Error Correction

- Let $m \in \Gamma$, let $e \in (\mathbb{F}_2)^n$ be an error vector of weight $w(e) \leq t$, and $c = m \oplus e$.
- \square Compute the syndrome of e through the relation S(e) = S(c).
- \square Compute the error locator polynomial σ from the syndrome (Sugiyama *et al*. 1975).
- \square Determine which L_i are zeroes of σ , thus retrieving e and recovering m.

Error Correction (aka "Binary Goppa Miracle")

- Let $s(x) \leftarrow S(e)$. If s(x) = 0, nothing to do (no error), otherwise s(x) is invertible.
 - Property #1: $\sigma(x) = a(x)^2 + xb(x)^2$.
 - Property #2: $\frac{d}{dx}\sigma(x) = b(x)^2$.
 - Property #3: $\frac{d}{dx}\sigma(x) = \sigma(x)s(x)$.
- Thus $b(x)^2 = (a(x)^2 + xb(x)^2)s(x)$, hence a(x) = b(x)v(x) with $v(x) = \sqrt{x + 1/s(x)}$ mod g(x).

Extended Euclid!

Extended Euclid!

Computing $s(x)^{-1}$ (mod g(x))

```
F \leftarrow s, G \leftarrow g, B \leftarrow 1, C \leftarrow 0
while (\deg(F) > 0) {
      if (\deg(F) < \deg(G)) {
             F \leftrightarrow G, B \leftrightarrow C
      j \leftarrow \deg(F) - \deg(G), h \leftarrow F_{\deg(F)} / G_{\deg(G)}
      F \leftarrow F - h x^{j} G, B \leftarrow B - h x^{j} C
if (F \neq 0) return B / F_0 else "not invertible"
```


Decoding a binary Goppa syndrome s(x)

- □ Given: v(x), $g(x) \in \mathbb{K}[x]$
- \square Find: a(x), b(x), $f(x) \in \mathbb{K}[x]$
- □ Where: b(x)v(x) + f(x)g(x) = a(x)
- Thus $a(x) = \overline{b(x)}v(x)$ mod g(x), i.e. a(x) = b(x)v(x) in $\mathbb{K}[x]/g(x)$.
- Conditions:
 - \bullet deg(a) $\leq \lfloor t/2 \rfloor$, deg(b) $\leq \lfloor (t-1)/2 \rfloor$.

Decoding a binary Goppa syndrome s(x)

```
A \leftarrow v, a \leftarrow g, B \leftarrow 1, b \leftarrow 0, t \leftarrow \deg(g)
while (deg(a) > \lfloor t/2 \rfloor) {
    A \leftrightarrow a, B \leftrightarrow b
    while (\deg(A) \ge \deg(a)) {
        j \leftarrow \deg(A) - \deg(a), h \leftarrow A_{\deg(A)} / a_{\deg(a)}
         A \leftarrow A - h x^{j} a, B \leftarrow B - h x^{j} b
\sigma(x) \leftarrow a(x)^2 + xb(x)^2
return σ // error locator polynomial
```


Decoding an alternant syndrome s(x)

- \square Given: $s(x) \in \mathbb{K}[x], t \in \mathbb{N}$
- \square Find: $\omega(x)$, $\sigma(x)$, $f(x) \in \mathbb{K}[x]$
- □ Where: $\sigma(x)s(x) + f(x)x^{2t} = \omega(x)$
- Thus $\omega(x) = \sigma(x)s(x) \mod x^{2t}$, i.e. $\omega(x) = \sigma(x)s(x) \in \mathbb{K}[x]/x^{2t}$.
- Conditions:
 - $extbox{deg}(\omega) \leq t 1, \deg(\sigma) \leq t.$

Decoding an alternant syndrome s(x)

```
A \leftarrow s, a \leftarrow x^{2t}, B \leftarrow 1, b \leftarrow 0
while (deg(a) > t - 1) {
    A \leftrightarrow a, B \leftrightarrow b
    while (\deg(A) \ge \deg(a)) {
        j \leftarrow \deg(A) - \deg(a), h \leftarrow A_{\deg(A)} / a_{\deg(a)}
         A \leftarrow A - h x^{j} a, B \leftarrow B - h x^{j} b
\sigma(x) \leftarrow b(x) / b_0 / \text{hence } \sigma(0) = 1
\omega(x) \leftarrow a(x) / b_0 // \text{ normalize}
return \omega, \sigma // error evaluator & locator polynomials
```


Coding-Based Cryptosystems

McEliece Cryptosystem

- Key generation:
 - Let p be a prime power and $q = p^d$ for some d.
 - Choose a secure, uniformly random [n, k] t-error correcting alternant code $\mathcal{A}(L, D)$ over \mathbb{F}_p , with $L, D \in (\mathbb{F}_a)^n$.
 - N.B. A(L, D) defined e.g. by the parity-check matrix H = vdm(L) diag(D).
 - Compute for A(L, D) a systematic generator matrix $G \in (\mathbb{F}_p)^{k \times n}$.
 - Set $K_{priv} = (L, D), K_{pub} = (G, t).$

McEliece Cryptosystem

- "Hey, wait, I know McEliece, and this does not look quite like it!"
- Observations:
 - A secret, random L is equivalent to a public, fixed L coupled to a secret, random permutation matrix $P \in (\mathbb{F}_p)^{k \times k}$, with $\mathcal{A}(LP, DP)$ as the effective code.
 - If G_0 is a generator for $\mathcal{A}(L, D)$ when L is public and fixed, and S is the matrix that puts G_0P in systematic form, then $G = SG_0P$ is a systematic generator of $\mathcal{A}(LP, DP)$, as desired.
 - Goppa: D = 1/g(L), $A(L, D) = \Gamma(L, g)$, $K_{priv} = (L, g)$.

McEliece Cryptosystem

- \square Encryption of a plaintext $m \in (\mathbb{F}_p)^k$:
 - Choose a uniformly random t-error vector $e \in (\mathbb{F}_p)^n$ and compute $c = mG + e \in (\mathbb{F}_p)^n$ (IND-CCA2 variant via e.g. Fujisaki-Okamoto).
- \square Decryption of a ciphertext $c \in (\mathbb{F}_p)^n$:
 - Use the trapdoor to obtain the usual alternant paritycheck matrix H (or equivalent).
 - Compute the syndrome $s^T \leftarrow Hc^T = He^T$ and decode it to obtain the error vector e.
 - Read m directly from the first k components of c e.

McEliece-Fujisaki-Okamoto: Setup

- □ Random oracle (message authentication code) \mathcal{H} : $(\mathbb{F}_p)^k \times \{0, 1\}^* \to \mathbb{Z}/s\mathbb{Z}$, with $s = (n \text{ choose } t) (p-1)^t$.
- \square Unranking function $\mathcal{U}: \mathbb{Z}/s\mathbb{Z} \to (\mathbb{F}_p)^n$.
- □ Ideal symmetric cipher \mathcal{E} : $(\mathbb{F}_p)^k \times \{0, 1\}^*$ $\rightarrow \{0, 1\}^*$.
- □ Alternant decoding algorithm \mathcal{D} : $(\mathbb{F}_q)^n \times (\mathbb{F}_p)^n \times (\mathbb{F}_p)^n \times (\mathbb{F}_p)^n \times (\mathbb{F}_p)^n$.

McEliece-Fujisaki-Okamoto: Encryption

- □ Input:
 - uniformly random symmetric key $r \in (\mathbb{F}_p)^k$;
 - message $m \in \{0, 1\}^*$.
- Output:
 - McEliece-FO ciphertext $c \in (\mathbb{F}_p)^n \times \{0, 1\}^*$.
- Algorithm:
 - $h \leftarrow \mathcal{H}(r, m)$
 - $e \leftarrow \mathcal{U}(h)$
 - $w \leftarrow rG + e$
 - $d \leftarrow \mathcal{E}(r, m)$
 - $c \leftarrow (w, d)$

McEliece-Fujisaki-Okamoto: Decryption

- □ Input:
 - McEliece-FO ciphertext c = (w, d).
- Output:
 - message $m \in \{0, 1\}^*$, or rejection.
- Algorithm:
 - $(r, e) \leftarrow \mathcal{D}(L, D, w)$
 - $m \leftarrow \mathcal{E}^{-1}(r, d)$
 - $h \leftarrow \mathcal{H}(r, m)$
 - $v \leftarrow \mathcal{U}(h)$
 - accept $m \Leftrightarrow v = e$ and w = rG + e

Niederreiter Cryptosystem

- Key generation:
 - Choose a secure, uniformly random [n, k] terror correcting alternant code $\mathcal{A}(L, D)$ over \mathbb{F}_p , with $L, D \in (\mathbb{F}_q)^n$.
 - Compute for A(L, D) a systematic parity-check matrix $H \in (\mathbb{F}_p)^{r \times n}$.
 - Set $K_{priv} = (L, D), K_{pub} = (H, t).$

Niederreiter Cryptosystem

- Encryption of plaintext $m \in \mathbb{Z}/s\mathbb{Z}$, $s = (n \text{ choose } t) (p 1)^t$:
 - Represent m as a t-error vector $e \in (\mathbb{F}_p)^n$ via permutation unranking.
 - Compute the syndrome $c^T = He^T$ as ciphertext.
- Decryption of ciphertext $c \in (\mathbb{F}_p)^r$:
 - Let $H_0 = \text{vdm}(L)$ diag(D) be the trapdoor parity-check matrix for $\mathcal{A}(L, D)$, so that $H_0 = SH$ for some nonsingular matrix S. Compute $c_0^{\mathsf{T}} = Sc^{\mathsf{T}}$. Notice that $c_0^{\mathsf{T}} = S(He^{\mathsf{T}}) = H_0e^{\mathsf{T}}$, a decodable syndrome (using the trapdoor). Also, $S = H_0H^{\mathsf{T}}(HH^{\mathsf{T}})^{-1}$.
 - \blacksquare Decode the syndrome c_0^{T} to e^{T} using the decoding trapdoor.
 - Recover m from e via permutation ranking.

Niederreiter Cryptosystem

- The computational security levels of McEliece and Niederreiter are exactly equivalent.
- Both need extra message formatting to achieve indistinguishability properties.
- Niederreiter leads more naturally to digital signatures.

- Security based on the BDDP assumption.
- Represent the message as a decodable syndrome, then decode the syndrome to produce the error vector as the signature.
- □ Verify the signature by matching it to the syndrome of the message.
- Short signatures possible via permutation ranking.

- System setup:
 - Choose $m, t \le m$ and $n = 2^m$.
 - Choose a hash function \mathcal{H} : $\{0, 1\}^* \times \mathbb{N} \to (\mathbb{F}_2)^{n-k}$.
- Key generation:
 - Choose a t-error correcting, binary Goppa code $\Gamma(L, g)$, compute for it a systematic parity-check matrix H.
 - $Arr K_{private} = (L, g); K_{public} = (H, t).$

- □ Signing a message *m*:
 - Let H_0 be the trapdoor parity-check matrix for $\Gamma(L, g)$, so that $H_0 = SH$ for some nonsingular matrix S. Find $i \in \mathbb{N}$ such that, for $c \leftarrow \mathcal{H}(m, i)$ and $c_0^{\mathsf{T}} \leftarrow Sc^{\mathsf{T}}$, c_0 is a decodable H_0 -syndrome of Γ .
 - Using the decoding algorithm for Γ , compute the error vector e whose H_0 -syndrome is c_0 , i.e. $c_0^T = H_0 e^T$.
 - The signature is (e, i). Notice that $c_0^T = H_0 e^T = SHe^T$ and hence $He^T = S^{-1}c_0^T = c^T$, i.e. $c = \mathcal{H}(m, i)$ is the H-syndrome of e.
- \square Verifying a signature (e, i):
 - Compute $c \leftarrow He^{\mathsf{T}}$.
 - Accept the signature iff $c = \mathcal{H}(m, i)$.

The number of possible hash values is 2^{n-k} = $2^{mt} = n^t$ and the number of syndromes decodable to codewords of weight t is

$$\binom{n}{t} \approx \frac{n^t}{t!}$$

□ : The probability of finding a codeword of weight t is $\approx 1/t!$, and the expected value of hash queries is $\approx t!$.

- □ If the n-bit error e of weight t is encoded via permutation ranking, the signature length is $\approx \lg(n^t/t!) + \lg(t!) = t \lg n \approx mt$.
- □ Public key is huge: *mtn* bits.
- \square Recommendation for security level $\approx 2^{80}$:
 - original: m = 16, t = 9, $n = 2^{16}$, signature length = 144 bits, key size = 1152 KiB.
 - updated: m = 15, t = 12, $n = 2^{15}$, signature length = 180 bits, key size = 720 KiB;

- □ Bleichenbacher's attack: Wagner's generalized (3way) birthday attack ⇒ security level lower than expected.
- Larger key sizes, longer signature generation.
- Dyadic keys: shorter by a factor u =largest power of 2 dividing t, but 2^u times longer signature generation.

m	t=9	t=10	t=11	t=12
15	60.2	63.1	67.2	<u>81.5</u>
16	63.3	66.2	71.3	<u>85.6</u>
17	66.4	69.3	75.4	<u>89.7</u>
18	69.5	72.4	79.5	<u>93.7</u>
22	<u>81.7</u>	<u>84.6</u>	<u>95.8</u>	<u>110.0</u>

- $\square H \in (\mathbb{F}_2)^{(n/2) \times n}$: uniformly random binary parity-check matrix (N.B. originally of size $(n-k) \times n$).
- □ Gaborit-Girault improvement: uniformly random double circulant $H = [I \mid C]$, with $C_{ij} = c_{(j-i) \mod n/2}$ for some $c \in (\mathbb{F}_2)^{n/2}$.
- □ Misoczki-Barreto alternative: uniformly random double dyadic $H = [I \mid D]$, with $D_{ij} = d_{i \oplus j}$ for some $d \in (\mathbb{F}_2)^{n/2}$.

■ Key pair:

■ Private key: random $x \in (\mathbb{F}_2)^n$ of weight t.

Public key: syndrome $s = xH^T \in (\mathbb{F}_2)^{n/2}$.

Commitment:

The prover chooses a uniformly random word $y \in (\mathbb{F}_2)^n$ and a uniformly random permutation σ on $\{0, ..., n-1\}$ and sends $c_0 = \text{hash}(\sigma(y)), c_1 = \text{hash}(\sigma(y + x)), \text{ and } c_2 = \text{hash}(\sigma \mid Hy^T) \text{ to the verifier.}$

- Challenge & Response:
 - The verifier sends a uniformly random $b \in \mathbb{F}_3$ to the prover.
 - The prover responds by revealing:
 - \mathbf{p} \mathbf{y} and \mathbf{g} if $\mathbf{b} = \mathbf{0}$;
 - $\square y + x$ and σ if b = 1;
 - $\sigma(y)$ and $\sigma(x)$ if b=2.

- Verification:
 - The verifier verifies that:
 - c_0 and c_2 are correct if b = 0;
 - c_1 and c_2 are correct if b = 1 (noticing that Hy^T) $= H(y + x)^T + Hx^T = H(y + x)^T + s^T$;
 - c_0 and c_1 are correct if b=3 (noticing that $\sigma(y+x)=\sigma(y)+\sigma(x)$).
 - The probability of cheating in this ZKP is 2/3. Repeating $\lceil (\lg \varepsilon)/(1 \lg 3) \rceil$ times reduces the cheating probability below ε .

- □ Gaborit-Girault propose n = 347 and t = 76 to achieve security 2^{83} with double circulant keys.
- Exactly the same parameters are fine with double dyadic keys.
- □ In either case the key is only 2n = 694 bits long and the global matrix H fits n = 347 bits.

- □ Identity-based identification: Goppa trapdoor for the Stern scheme combined with CFS signatures.
- □ Stern public key is the user's identity mapped to a decodable syndrome (N.B. the identity has to be complemented by a short counter provided by the KGC).
- □ Identity-based private key is a CFS signature of the user's identity, i.e. an error vector x of weight t computed by the KGC.

Choosing Parameters

□ Using systematic (echelon) form, storage reduces to only $k \times (n - k)$ bits.

security level	m	n	k	t	naïve key size	echelon key size	source
2 ⁵⁶	10	1024	524	50	65.5 KiB	32 KiB	original
2 ⁸⁰	11	1632	1269	33+1	74–253 KiB	57 KiB	BLP
2 ¹¹²	12	2480	1940	45+1	164–587 KiB	128 KiB	BLP
2 ¹²⁸	12	2960	2288	56+1	243–827 KiB	188 KiB	BLP
2 ¹⁹²	13	4624	3389	95+2	698–1913 KiB	511 KiB	BLP
2 ²⁵⁶	13	6624	5129	115+2	1209–4147 KiB	937 KiB	BLP

Choosing the Code

- Most syndrome-based cryptosystems can be instantiated with general (n, k)-codes.
- Not all choices of code are secure.
 - McEliece with maximum rank distance (MRD) or Gabidulin codes is insecure (Gibson 1995, 1996).
 - Niederreiter with GRS codes is insecure (Sidelnikov-Shestakov 1992).
- Binary Goppa seems to be OK.
 - ... Except if the coefficients of the Goppa polynomial itself are all binary (Loidreau-Sendrier 1998).
 - Distinguishing a (complete) permuted Goppa code from a random code of the same length and distance (Sendrier 2000): $O(t n^{t-2} \log^2 n)$.

Compact Goppa Codes?

- □ Recap: a Goppa code is entirely defined by:
 - a monic polynomial $g(x) \in \mathbb{F}_q[x]$ of degree t,
 - a sequence $L \in (\mathbb{F}_q)^n$ of distinct elements with $g(L) \neq 0$.
- □ Features:
 - good error correction capability (all t design errors in the binary case).
 - withstood cryptanalysis quite well.
- □ Goal: replace the large $O(n^2)$ -bit representation by a compact one (like above!).

Cauchy Matrices

- □ A matrix $\overline{M} \in \mathbb{K}^{t \times n}$ over a field \mathbb{K} is called a Cauchy matrix iff $M_{ij} = 1/(z_i L_j)$ for disjoint sequences $z \in \mathbb{K}^t$ and $L \in \mathbb{K}^n$ of distinct elements.
- Property: any Goppa code where g(x) is square-free admits a parity-check matrix in Cauchy form [TZ 1975].
- Compact representation, but:
 - code structure is apparent,
 - usual tricks to hide it destroy the Cauchy structure.

Dyadic Matrices

□ Let r be a power of 2. A matrix $H \in \mathcal{R}^{r \times r}$ over a ring \mathcal{R} is called *dyadic* iff $H_{ij} = h_{i \oplus j}$ for some vector $h \in \mathcal{R}^r$.

Dyadic Matrices

- □ Dyadic matrices form a subring of $\mathcal{R}^{r \times r}$ (commutative if \mathcal{R} is commutative).
- □ Compact representation: O(r) rather than $O(r^2)$ space.
- Efficient arithmetic: multiplication in time O(r lg r) time via fast Walsh-Hadamard transform, inversion in time O(r) in characteristic 2.
- Idea: find a dyadic Cauchy matrix.

Quasi-Dyadic Codes

□ **Theorem**: a dyadic Cauchy matrix is only possible over fields of characteristic 2 (i.e. $q = 2^m$ for some m), and any suitable $h \in (\mathbb{F}_q)^n$ satisfies

$$\frac{1}{h_{i \oplus j}} = \frac{1}{h_i} + \frac{1}{h_j} + \frac{1}{h_0}$$

with $z_i = 1/h_i + \omega$, $L_j = 1/h_j - 1/h_0 + \omega$ for arbitrary ω , and $H_{ij} = h_{i \oplus j} = 1/(z_i - L_j)$.

Dyadic Cauchy Matrices

- \square Dyadic: $M_{ij} = h_{i \oplus j}$ for $h \in (\mathbb{F}_q)^n$.
- \square Cauchy: $M_{ij} = 1/(x_i y_j)$ for $x, y \in (\mathbb{F}_q)^n$.
- Dyadic matrices are symmetric:

$$1/(x_i - y_j) = 1/(x_j - y_i) \Leftrightarrow y_j = x_i + y_i - x_j \Leftrightarrow -y_j = \alpha + x_j$$
 (taking $i = 0$ in particular) for some constant $\alpha \Leftrightarrow M_{ij} = 1/(x_i + x_j + \alpha)$ for $x \in (\mathbb{F}_q)^n$.

- Dyadic matrices have constant diagonal:
 - $M_{ii} = 1/(2x_i + \alpha) = h_0 \Leftrightarrow \text{all } x_i \text{ equal (impossible) or char 2.}$

Dyadic Cauchy Matrices

Condition $h_{i \oplus j} = 1/(x_i + x_j + \alpha)$ shows that $\alpha = 1/h_0$ (taking i = j in particular), hence $1/h_{i \oplus j} + 1/h_0 = x_i + x_j$, or simply

$$x_i = 1/h_i + 1/h_0 + x_0$$

(taking j = 0 in particular).

□ Thus $1/h_{i \oplus j} + 1/h_{0} = x_{i} + x_{j} = 1/h_{i} + 1/h_{j}$, so necessarily the sequence h satisfies

$$\frac{1}{h_{i\oplus j}} = \frac{1}{h_i} + \frac{1}{h_j} + \frac{1}{h_0}$$

Constructing Dyadic Codes

□ Choose distinct h_0 and h_i with $i = 2^u$ for $0 \le u < \lceil \lg n \rceil$ uniformly at random from \mathbb{F}_a , then set

$$h_{i+j} \leftarrow \frac{1}{\frac{1}{h_i} + \frac{1}{h_i} + \frac{1}{h_0}}$$

for 0 < j < i (so that $i + j = i \oplus j$).

 \square Complexity: O(n).

Quasi-Dyadic Codes

- Structure hiding:
 - choose a long dyadic code over \mathbb{F}_q ,
 - blockwise shorten the code (Wieschebrink),
 - permute dyadic block columns,
 - dyadic-permute individual blocks,
 - take a binary subfield subcode.
- \square Quasi-dyadic matrices: $((\mathbb{F}_2)^{t \times t})^{m \times \ell}$.

Compact Keys

■ Binary quasi-dyadic codes obtained from a Goppa code over $\mathbb{F}_{2^{16}}$ with $t \times t$ dyadic submatrices:

level	n	k	t	size	generic	shrink	RSA
2 ⁸⁰	2304	1280	64	20480 bits	57 KiB	23	1024 bits
2112	3584	1536	128	24576 bits	128 KiB	43	2048 bits
2 ¹²⁸	4096	2048	128	32768 bits	188 KiB	47	3072 bits
2 ¹⁹²	7168	3072	256	49152 bits	511 KiB	85	7680 bits
2 ²⁵⁶	8192	4096	256	65536 bits	937 KiB	117	15360 bits

Linear Attacks

- The relation between the decodable private parity-check matrix H and the public generator matrix G is $HXG^T = O$ for some permutation matrix X.
- □ Attack idea: guess H and solve the above equation for X.
- □ Possible when (1) it is feasible to guess H, and (2) the linear system is determined.

Linear Attacks

- For a generic, irreducible Goppa code there are roughly $O(q^t/(t \log q)) \sim O(2^{mt}/mt) \sim O(2^{2^m})$ possibilities for H, too many to mount an attack. Besides, X is as general as it can be, so there is no hope of getting a determined linear system.
- For a quasi-cyclic code there are only $O(2^m)$ possibilities. Besides, the linear system is overdetermined due to severe constraints on X. As a consequence, most if not all quasi-cyclic proposals have been broken.

Linear Attacks

- For a quasi-dyadic codes there are $O(2^{m^2})$ possibilities, still too many. Besides, X is only constrained to consist of dyadic submatrices, but these are otherwise independent and the system remains highly indetermined.
- □ Hence quasi-dyadic, binary Goppa codes resist this kind of attack.