Implementation of a full-stack environment

Cyril Tabet, Walid Anabtawi, Marc Violides, Sophia Gurria, Youssef Abdel Nasser, & Miguel Amengual

TABLE OF CONTENTS

1 PROJECT OVERVIEW

2 DATA UNDERSTANDING

3 APPROACH

4 NEXT STEPS...

PROJECT OVERVIEW

Goal, scope, steps, timeline & milestones for the project

GOAL & PROJECT SCOPE

METHODOLOGY

DATA PROCESSING

Merge the 4 JSON datasets, and data cleaning.

DASHBOARD

Create a dashboard mapping locations in Madrid to show TOP 10 restaurants by: rating, review count, zip code, and graph the distribution of > 4.5* rated and > 10 reviews restaurant by categories

DATA INGESTION

200 restaurants in Madrid (50 Spanish, 50 Burgers, 50 Italian, 50 Mexican)

ML MODELS - SPARK MLib

Train model that predicts the rating of the restaurant (check 3 types of regression and register results in MLFlow).

DATA UNDERSTANDING

Sample and overview of the data, first insights into the data preprocessing stage

DATA OVERVIEW

- **id**: unique for every restaurant (remove)
- **alias**: detailed name of restaurant (remove: same information as name)
- **name**: name of the restaurant (keep)
- **image_url**: url to image of restaurant (remove)
- is_closed: all restaurants are available (remove: FALSE for all)
- url: url to restaurant (keep for reference)
- **review_count**: change data type to numeric (keep: transform)
- categories: create two separate columns, one with an alias and the other with the title (keep: transform)
- **distance**: distance (keep)

- rating: average rating of the restaurant (keep)
- coordinates: create two separate columns, one for latitude and one for longitude (keep: transform)
- transactions: empty list (remove)
- price: how expensive the restaurant is (keep: transform)
- **location**: keep the displayed address only (keep)
- **phone**: restaurant's phone number (remove)
- display_phone: restaurant's phone number (remove)

SAMPLE OF THE DATA

	id	ali	as	name	image_url
190	W3SoFLIRcyVvb-Y3jl6g9	Q la-	panza-es-primero-madrid	La Panza es Primero	https://s3-media
191	uHL7ravKYyrTl07fv_hfUg	g ros	si-la-loca-madrid	Rosi La Loca	https://s3-media
192	RLyWLS6W6XAjvu43TK0	Ox8w la-	chelinda-madrid-3	La Chelinda	https://s3-media
193	8X3z6KuJch6oQMM6kQ	Hzgw na	cho-bravo-madrid	Nacho Bravo	https://s3-media
		is_closed	d uri		
		is_closed	d url https://www.yelp.com/bi	iz/la	
			-		
		False	https://www.yelp.com/bi	iz/rc	

APPROACH

Data ingestion, processing, analytics,

Data Ingestion Strategy

Data Sources

Collect data from Yelp using API network protocol

Ingest

Data is in JSON format, get a pandas dataframe for each type

Save as table (bronze)

This will be very beneficial in the long run to get raw data

Combine

Combine the 4 dataframes to get a single one

Data Processing Strategy

Data cleaning

We start by removing variables that are not useful for our analysis (Silver)

Get results and store

Get results of regressors compare them and store the best performing one

Define IVs and DV

With the DV being ratings find features with most correlation

Split data and regression

Train-test split and apply 3 types of regressors in MLflow (Gold)

NEXT STEPS...

PIPELINES

Create the pipelines for the ingestion and preprocessing.

MACHINE LEARNING

Perform Machine Learning on MLFlow and compare the models.

Data visualization for querying with different variables such as rating, review_counts and postal code.