9 הרצאה

תכנון דינאמי

שיבוץ אינטרוולים, מסלולים קלים ביותר

קבוצה בלתי תלויה של אינטרוולים עם משקל מקסימלי

נתונים n אינטרוולים (נניח שכבר אחרי מיון לפי זמן סיום) אינטרוולים (נניח שכבר אחרי מיון לפי זמן סיום) אינטרוולים ולפי אינטרוולים ולפי זמן אינטרוולים ולפי זמן אינטרוולים וא מהשניים $a_i,a_j\in I$ אחד מהשניים ומשקל ומשקל $a_i,a_j\in I$ אחד מהשניים ומשקל ומשקל ומשקל וער אינטרוולים ואינטרוולים באינטרוולים ומשקל ומשקל ומשקל ומשקל ומשקל וער אינטרוולים ואינטרוולים ואינטרוולים ומשקל ו

$$s(a_j) > e(a_i)$$
 .1

$$s(a_i) > e(a_j)$$
 .2

רוצים למצוא קבוצה בלתי תלויה של אינטרוולים עם משקל מקסימלי.

דוגמה: קלט לבעיה וקבוצה בלתי תלויה במשקל 13.

נסמן
$$A_i=(a_1,\ldots,a_i)$$
 נסמן

$$p(i) = \max \begin{cases} \max\{j : e(a_j) < s(a_i)\} \\ 0 \end{cases}$$

כלומר a_i מתחיל או 0 אם לא מחתיל פני ש- a_j מסתיים לפני ש- a_j הוא האינדקס המקסימלי כך ש- a_j מסתיים לפני ש a_i הוא הערך אותו אנחנו מחפשים. נגדיר את $\alpha(i)$ הוא הערך אותו אנחנו מחפשים.

טענה 1.

$$\alpha(i) = \max \begin{cases} w(i) + \alpha(p(i)) \\ 0 + \alpha(i-1) \end{cases}$$

כפו כן פתקיים ש:

$$\alpha(0) = 0$$

i הוכחה. באינדוקציה על

בסיס: עבור i=0 טריוויאלי.

 $.OPT_i = OPT \cap A_i$ ונסמן ונסמן פתרון אופטימלי פתרון לשהו כלשהו עבור עבור

אם הנחת האינדוקציה לפי הנחת להכיל אף אינטרוול להכיל להכיל לא לא לא לא לא לא לפי אז OPT אז $a_{i+1} \in \mathit{OPT}$

$$\alpha(p(i)+1) \ge w(OPT_{p(i)})$$

ולכן הטענה מתקיימת כי

$$\alpha(i) \ge \alpha(p(i)) + w(a_i) \ge w(OPT_{p(i)}) + w(a_i)$$

מצד שני, אם $OPT \notin a_{i+1} \notin OP$ מצד שני,

$$\alpha(i-1) \ge OPT_{i-1}$$

והטענה מתקיימת.

חישוב יעיל של

כיצד נחשב את O ביעילות ? נשים לב שאם מחשבים את ערכי O מ-1 עד n ושומרים את הערכים (למשל במערך) אז חישוב של כל ערך לוקח O(1) זמן. זמן הריצה של האלגוריתם:

 $O(n\log n)$ - מיון.

 $(i \ tot)$ חישוב $(i \ tot)$ (חיפוש בינארי לכל $O(n \log n)$ - p חישוב.

O(n) - O חישוב.

 $O(n\log n)$ סך הכל

נחשב:

i	0	1	2	3	4	5	6	7	8	9	10	11
p	0	0	0	1	2	0	4	3	6	7	7	9
α	0	2	3	4	4	6	8	8	9	10	10	12

נמצא את הקבוצה עצמה:

i	0	1	2	3	4	5	6	7	8	9	10	11
p	0	0	0	1	2	0	4	3	6	7	7	9
α	0	2	3	4	4	6	8	8	9	10	10	12
		*		$\overline{}$	*		$\overline{}$	*				_

נקודות חשובות:

- ם במערך באופן החשב את ערכי α בסדר עולה שמירת הערכים במערך בסדר ערכי α באופן רקורסיבי על מה יקרה אם במקום לחשב את ערכי α בסדר בסדר המחסנית ?
 - מה יקרה אם לכל תא במערך נזכור גם את הקבוצה שמתאימה לערך התא ?

מסלולים קלים ביותר בין כל הזוגות

בהינתן גרף (מכוון או לא) עם n צמתים נרצה להדפיס טבלה בגודל האn שבכניסה ה-ij שלה נמצא ערך מסלול קל ביותר מצומת הינתן לצומת j

ניתן, כמובן, לעשות זאת על ידי n הרצות של אלגוריתם בלמן פורד או דייקסטרה ולמצוא את התשובה בסיבוכיות זמן של $O(nm\log n)$ - ו- $O(nm\log n)$ בהתאמה. נראה שאפשר גם יותר טוב.

בהינתן גרף שצמתיו ממוספרים מ-1 עד n נגדיר את d^k_{ij} להיות משקל מסלול קל ביותר מצומת i לצומת j שיכול לעבור רק בצמתי ביניים עם אינדקסים ב-[k].

דוגמה:

 $?d_{19}^9$, d_{19}^7 , d_{19}^6 , d_{19}^2 , d_{19}^1 , d_{19}^0 , d_{19}^0 הבאים הערכים הערכים הערכים אווים

 d_{ij}^n אכחנה j שווה j שווה i לצומת אכחנה 1. משקל מסלול קל

$$d_{ij}^0=w(ij)$$
 .2 אכתנה

 d^k_{ii} עבור עבור מסלול מקבעים מסלול ו-kו ו-j , אותר עכשיו נניח נניח עכשיו

 $d^k_{ij} = d^{k-1}_{ij}$ אז d^k_{ij} א אייך למסלול שמתאים ל- d^k_{ij} אז אז הצומת 3.

 $d_{ij}^k = d_{ik}^{k-1} + d_{kj}^{k-1}$ אז אז למסלול שמתאים למסלול שייך שייך אס הצומת 4. אבחנה

מסקנה 1.

$$d_{ij}^k = \begin{cases} w(ij) & k = 0\\ \min\{d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1}\} & k > 0 \end{cases}$$

כאשר A^n נמלא את ערכי המטריצות מ- A^0 ועד A^0 , כאשר המשוב: נגדיר A^0 מטריצות בגודל A^0 , הועד האר כאשר בשים לא את מטריצה A^0 , אנו צריכים לדעת אך ורק את ערכי המטריצה A^{k-1} מטריצה את מטריצה A^k אנו צריכים לדעת אך ורק את ערכי המטריצה מחשבים A^k ערכים וחישוב של ערך בודד לוקח A^0 0 פעולות.

מסלולים קלים ביותר

כעת נפתור את בעיית המסלול הקל ביותר.

תזכורת: בהינתן גרף (מכוון או לא) G=(E,V), פונקציית משקל $w:E o\mathcal{R}$, צומת מקור G=(E,V), וצומת יעד או למצוא מסלול מ-s ל-t במשקל מינימלי.

ניסיון ראשון

יים ש: מתקיים ל-s, אז מתקיים ש: מהסלול הקל להיות המסלול הקל להיות מתקיים ש

$$a(v) = \min_{uv \in E} a(u) + w(uv))$$

מה הבעיה ?

ניסיון שני

(אז מתקיים ש: a(v,U) אז מתקיים ש: מגדיר את a(v,U) אז היות המסלול הקל ביותר מ-

$$a(v, U) = \min_{uv \in E} a(u, U \setminus \{v\}) + w(uv)$$

? מה הבעיה

פתרון

:נגדיר את a(v,k) להיות מסלול קל ביותר מs ל-v עם k קשתות לכל היותר, ונחשב

$$\forall \ v \neq s, 1 \leq k \leq n-1 \quad a(v,k) = \min_{uv \in E} a(u,k-1) + w(uv)$$

$$\forall \ u \neq s \qquad \qquad a(u,0) = \infty$$

$$a(s,0) = 0$$

v-טענה ביותר המסלול הקל משקל משקל משקל מר(v,n-1) אין אז לכל שליליים אז לכל אין מעגלים מענה פיזער מענה מיינים אין מעגלים אייניים אז לכל איינים א

הוכחת נכונות: כתרגיל.

גרף החישוב

בהינתן נוסחת נסיגה, f, נסתכל על גרף החישוב שלה, G_f זהו גרף מכוון שבו כל צומת מתאימה למצב (ערך פרמטרים מסוים לנוסחה) וקיימת קשת ממצב s_i למצב s_j אמ"מ לצורך חישוב מצב s_i יש צורך לחשב את מצב s_j למשל עבור הקלט הבא לבעיית האינטרוולים:

ונוסחת הנסיגה

$$\alpha(i) = \max \begin{cases} w(i) + \alpha(p(i)) \\ 0 + \alpha(i-1) \end{cases}$$

גרף החישוב יראה כך (ניתן אף לשים משקלים מתאימים על הקשתות):

? מה נדרוש מגרף החישוב

- 1. חסר מעגלים
- 2. לא גדול מדי
- 3. ניתן לחשב את הערכים של הבורות

דוגמה נוספת, כיצד יראה גרף החישוב עבור נוסחת הנסיגה של מסלולים קלים ביותר והקלט הבא:

מימוש

נסתכל על שלוש פונקציות שמחשבות את מספר פיבונצ'י ה-i. מה הסיבוכיות של כל פונקציה?

```
1 function fib(i: number): number {
 2
       if (i \le 1) return 1
 3
       return fib(i - 1) + fib(i - 2)
 4 }
 5
 6 function dp(i: number): number {
 7
       const fib = [1, 1]
 8
       for (let j = 2; j \leq i; j \leftrightarrow)
 9
           fib[j] = fib[j - 1] + fib[j - 2]
10
       return fib[i]
11 }
12
13 const cache = [1, 1]
14 function dp2(i: number): number {
       if (cache[i]) return cache[i]
15
16
       const n = dp2(i - 1) + dp2(i - 2)
17
       cache[i] = n
18
       return n
19 }
20
21 console.time('no dp')
22 console.log(fib(40))
23 console.timeEnd('no dp')
24 // no dp: 1501.243ms
25
26 console.time('dp')
27 console.log(dp(40))
28 console.timeEnd('dp')
29 // dp: 0.129ms
30
31 console.time('dp2')
32 console.log(dp2(40))
33 console.timeEnd('dp2')
34 // dp2: 0.112ms
35
36
```