

			Abril de 2021
Nombres:			
Instrucciones: su hoja de resp	Resuelva en equipos de ouestas.	3 integrantes según	corresponda. Entregue

- a) Una variable aleatoria continua, X, sigue una distribución normal de media μ y desviación típica σ , y se designa por N(μ , σ), si se cumplen las siguientes condiciones:
 - 1. La variable puede tomar cualquier valor: (-∞, +∞)
 - 2. La función de densidad, es la expresión en términos de ecuación matemática de la curva de Gauss:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$$

Considere N(0,1). Calcule mediante método de aleatorios el máximo y mínimo de la función. Emplee 1000 vectores en 5 iteraciones. Considere el dominio de la función [-10.0, 10.0] (Aleatorios con punto decimal).

Iteración	X	f(x) Mínimo	x	f(x) Máximo
1				
2				
3				
4				
5				

b) Sea un pulso rectangular de duración T y amplitud A, calculando su transformada de Fourier. La definición matemática de un pulso de amplitud 1, centrado en el origen y de duración T es:

$$rect\left(\frac{t}{T}\right) = \begin{cases} 1, |t| \le \frac{T}{2} \\ 0, |t| > \frac{T}{2} \end{cases}$$

en nuestro caso queremos un pulso rectangular de amplitud A, así que la función será:

$$g(t) = A \cdot rect \left(\frac{t}{T}\right) = \begin{cases} A, |t| \le \frac{T}{2} \\ 0, |t| > \frac{T}{2} \end{cases}$$

calculando la transformada de Fourier de esta señal obtenemos:

$$G(f) = F[g(t)] = \int_{-\pi}^{\pi} g(t) \cdot e^{-j2\pi ft} dt = \int_{-y_2}^{y_2} A \cdot e^{-j2\pi ft} dt = A \frac{e^{j2\pi f\frac{T}{2}} - e^{-j2\pi ft\frac{T}{2}}}{j2\pi f} = A \frac{\sin\left(2\pi f\frac{T}{2}\right)}{\pi f} = A \frac{\sin(\pi fT)}{\pi f}$$

Con el cálculo de la transformada de Fourier hemos obtenido una de las funciones que más aparecen en el análisis de teoría de señales, es la función sinc. Vamos a ver su definición:

$$\operatorname{sinc}(\lambda) = A \frac{\sin(\pi \lambda)}{\pi \lambda}$$

Obtenga el máximo de la función obtenida de la transformada de Fourier del pulso, mediante método de aleatorios. Emplee 100 vectores en 5 iteraciones. Considere el dominio de la función [-10.00, 10.00] (Aleatorios con punto decimal). La amplitud A=1.

Iteración	λ	Máximo Sinc(λ)
1		
2		
3		
4		
5		

c) Se desea conocer el valor de la impedancia de una bocina que se conectará a un equipo de audio que emplea un PAM8403 cuya placa de especificación dice: 3W@4ohms a fin de transferir la máxima potencia a la bocina. Emplee 5 iteraciones, con 10 vectores cada una. Considere la Z de los cables despreciable.

Nota:

Potencia =
$$V * I = (I * Z) * I = I^2 * Z$$

Recuerde que la impedancia interna del equipo es constante, es decir 4 ohms, proponga impedancias de bocinas de [0.5 a 32] ohms (Aleatorios con punto decimal), y halle el máximo de potencia que puede tener la bocina. Utilice aleatorios decimales.

Iteración	Potencia	Ζ (Ω)	P (W)	P (W)
		bocina	interna	bocina
1	3 W			
2	3 W			
3	3 W			
4	3 W			
5	3 W			

d) Calcule el mínimo y máximo de la función Sigmoide empleada como función de activación en una red neuronal artificial.

$$Sigmoide(x) = \frac{1}{1 + e^{-x}}$$

Emplee 1000 vectores en 5 iteraciones. Considere el dominio de la función [-50.0, 50.0] (Aleatorios con punto decimal).

Iteración	X	Sigmoide(x) Mínimo	x	Sigmoide(x) Máximo
1				
2				
3				
4				
5				