Grundlagen Teilchenphysik

Anna von Karstedt, Hannes Richardt

Fakultät für Mathematik, Informatik und Naturwissenschaften Universität Hamburg

26. Januar 2025

Gliederung

- 1. Standardmodell
 - 1.1 Fermionen
 - 1.2 Bosonen
- 2. Teilchenbeschleuniger
- 3. Wirkungsquerschnitt
- 4. Phasenraumintegration

Woraus besteht Materie?

Elementarteilchen

- Teilchenzoo
- Standartmodell der Teilchen
- kleinsten unteilbaren Bestandteile von Materie
- Fermionen und Bosonen
- Durchmesser Null

Abbildung: Standardmodell

Durchmesser Null

Fermionen

- Grundlage der Materie
- halbzahliger Spin
- magnetische Spinquantenzahl
- Helizität
- Masse
- Ladung
- Zustandsvektor $|\psi_1\rangle$
- Pauliprinzip

Antisymmetrische Wellenfunktion

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(|\psi_1\rangle \otimes |\psi_2\rangle - |\psi_2\rangle \otimes |\psi_1\rangle \right)$$

Wenn:
$$|\psi_1\rangle=|\psi_2\rangle$$

$$\Rightarrow |\Psi\rangle = 0$$

Quarks

Abbildung: Neutron

Abbildung: Proton

	1. Generation	2. Generation	3.Generation
	Up	Charm	Тор
Ladung in e	$+\frac{2}{3}$	$+\frac{2}{3}$	$+\frac{2}{3}$
Masse in MeV	$2,16 \pm 0,07$	$1273,0 \pm 4,6$	172570 ± 290
	Down	Strange	Bottom
Ladung in e	$-\frac{1}{3}$	$-\frac{1}{3}$	$-\frac{1}{3}$
Masse in MeV	$4,7 \pm 0,07$	$93,5 \pm 0,8$	4183 ± 290

Tabelle: Quarks

Baryonen

• 3 Quarks

Baryonenzahl

Jedem Baryonen wird die Baryonenzahl 1 und jedem Antibaryonen die Zahl -1 zugeordnet

- Erhaltungsprinzip
- Bsp. $n \rightarrow p + e^- + av_e$

Abbildung: Neutron

Leptonen

	1. Generation	2. Generation	3.Generation
	Elektron	Myon	Tauon
Ladung in e	-1	-1	-1
Masse in MeV	0,511	105,66	1777
Lebensdauer	stabil	$2,197*10^{-6}$	$2,9*10^{-13}$
	Elektron-Neutrino	Myon-Neutrino	Tauon-Neutrino
Ladung in e	0	0	0
Masse in MeV	$<9*10^{-7}$	< 0,17	< 15, 5
Lebensdauer	stabil	stabil	stabil

Myonen

- 200 mal größere Masse als ein Elektron
- entstehen bei Höhenstrahlung
- instabil Lebensdauer 2,2 Mikrosekunden
- spezielle Relativitätstheorie

Abbildung: Höhenstrahlung

Neutrino

- Antwort auf die fehlende Energie beim Betazerfall
- ungeladen und sehr leicht
- kaum Reaktion
- werden von Sternen abgestrahlt

Abbildung: Supernova

Antiteilchen

Jedes Fermion hat ein Antiteilchen

Dirac-Gleichung

$$(i\hbar\gamma^{\mu}\partial_{\mu}-\mathbf{m})\,\psi=0$$

Hierbei sind:

- ħ das reduzierte Plancksche Wirkungsquantum,
- γ^{μ} die Gamma-Matrizen,
- ∂_{μ} der kovariante Ableitungsoperator,
- m die Masse des Teilchens,
- ψ der Dirac-Feldvektor.

Abbildung: Positron

Feynman Diagramme

Fermion	
Antifermion	
Photon	~~~~~~
W-,Z-Boson	~~~~~~
Gluon	
Skalarboson	

Tabelle: Symbole im Feynmandiagramm

Feynman Diagramme

Fermion	
Antifermion	
Photon	~~~~~~
W-,Z-Boson	~~~~~~
Gluon	الالالالالالالالالا
Skalarboson	

 e^+ e^+ $e^ e^ e^-$

Tabelle: Symbole im Feynmandiagramm

Bosonen Überblick

Spin von Bosonen

Bosonen haben immer einen ganzzahligen Spin (0, 1, 2, ...)

Arten von Bosonen

- Mesonen (Zusammengesetze Teilchen)
- Elementarteilchen (siehe Abb.)

Abbildung: Bosonen Überblick

Mesonen

- Untergruppe der Hardonen
- instabile Teilchen
- Baryonenzahl = 0

Beispiele für Mesonen

- Pion (siehe Abb.)
- Tetraquarks
- Psion

Abbildung: Pion

Eichbosonen

Definition

Vermittelung der fundamentalen Wechselwirkungen (außer Gravitation) Spin: s=1

Boson	Photon γ	W^{\pm} - $/Z^{0}$ -Boson	Gluon g
Wechselwirkung	Elektromagn.	Schwache	Starke
Eichgruppe	U(1)	SU(2)	<i>SU</i> (3)
Bosonenanzahl	1	3	8
Ladung	elek. Ladung	schacher Isospin	Farbladung

Tabelle: Eichbosonen

Symmetriegruppen

- $U(1)_Y \rightarrow Schwache Hyperladung$
- $SU(2)_L \rightarrow Flavour$
- $SU(3)_C \rightarrow Farbladung$

Symmetriegruppen

 $U(1)_Y o \mathsf{Schwache} \; \mathsf{Hyperladung} \; | \; SU(2)_L o \mathsf{Flavour} \; | \; SU(3)_C o \mathsf{Farbladung} \;$

Generatoren

- jede Gruppe besitzt Generatoren
- Anzahl der Generatoren =
 Anzahl der Fichbosonen

Symmetriegruppen

 $U(1)_Y o \mathsf{Schwache} \; \mathsf{Hyperladung} \; | \; SU(2)_L o \mathsf{Flavour} \; | \; SU(3)_C o \mathsf{Farbladung} \;$

Generatoren

- jede Gruppe besitzt Generatoren
- Anzahl der Generatoren = Anzahl der Eichbosonen

Starke Wechselwirkung

- $= SU(3)_C$
 - 8 Generatoren (Oktett)

Symmetriegruppen

 $U(1)_Y \to \text{Schwache Hyperladung} \mid SU(2)_L \to \text{Flavour} \mid SU(3)_C \to \text{Farbladung}$

Generatoren

- jede Gruppe besitzt Generatoren
- Anzahl der Generatoren = Anzahl der Eichbosonen

Starke Wechselwirkung

- $= SU(3)_C$
 - 8 Generatoren (Oktett)

Elektroschwache Wechselwirkung

$$= SU(2)_L \times U(1)_Y$$

Elektromagnetismus

- $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$
- $Q = T_3 + \frac{1}{2}Y_W$
- 1 Generator (Singlet)

Schwache Wechselwirkung

• 3 Generatoren (Triplett)

Photon

Korrespondierende Ladung

Elektromagnetische Ladung

$$Q = T_3 + \frac{1}{2}Y_W$$

- Ruhemasse: $m_0 = 0$
- Geschwindigkeit: $c = 3 \cdot 10^8 \frac{\textit{m}}{\textit{s}}$

Entstehung

- Synchrotonstrahlung
- Energieniveau-Übergang
- Annihilation

Photon

Korrespondierende Ladung

Elektromagnetische Ladung

$$Q = T_3 + \frac{1}{2}Y_W$$

- Ruhemasse: $m_0 = 0$
- Geschwindigkeit: $c = 3 \cdot 10^8 \frac{m}{s}$

Entstehung

- Synchrotonstrahlung
- Energieniveau-Übergang
- Annihilation

Teilchen der elektromagn. Strahlung

Abbildung: Elektromagnetische Strahlung

Photon: Feynman-Diagramme

Abbildung: Abstoßung von 2 Elektronen

Photon: Feynman-Diagramme

Abbildung: Abstoßung von 2 Elektronen

Abbildung: Annihilation von einem Elektron und Positron

W- und Z-Bosonen

Korrespondierende Ladung

Schwacher Isospin T_3

- Teilchen: W^+ , W^- , Z^0
- W[±] übertragen elek. Ladung
- hohe Masse: $m_0 > 80 \frac{GeV}{c^2}$ \implies geringe Reichweite

Vorkommen

- W[±]: Beta+/- Zerfall
- Z^0 : elastische Neutrino Streuung

W- und Z-Bosonen

Korrespondierende Ladung

Schwacher Isospin T_3

- Teilchen: *W*⁺, *W*⁻, *Z*⁰
- W[±] übertragen elek. Ladung
- hohe Masse: $m_0 > 80 \frac{GeV}{c^2}$ \implies geringe Reichweite

Vorkommen

- W[±]: Beta+/- Zerfall
- Z^0 : elastische Neutrino Streuung

	Rechtshändig	Linkshändig
Helizität	positiv	negativ
Spinrichtung	in \overrightarrow{p} Richtung	entgegen \overrightarrow{p}
Interaktion	Antiteilchen	Teilchen

Left-handed:

Abbildung: Helizität eines Teilchen

W- und Z-Bosonen: Feynman-Diagramme

 $Abbildung:\ Beta-Minus-Zerfall$

W- und Z-Bosonen: Feynman-Diagramme

Abbildung: Beta-Minus-Zerfall

Abbildung: Neutrino-Elektron-Interaktion via Z^0 Boson

Gluon

Korrespondierende Ladung

Farbladung C

- als masselos angenommen
- es gibt 8 Gluonen mit verschiedenen Farbzuständen
- Gluonen besitzen immer eine Farbe und Antifarbe
- sie übertragen Farbladung
- Experimenteller Nachweis (1979): PETRA am Desy (3-Jet-Struktur)

Abbildung: Farbladung

Gluon: Feynman-Diagramme

Abbildung: Gluon Austausch

Gluon: Feynman-Diagramme

Abbildung: Gluon Austausch

Higgs-Boson

Funktion

Elementarteilchen erhalten ihre Masse durch Interaktion mit dem Higgs-Feld

Eigenschaften

- Spin: $s = 0 \implies$ Skalarboson
- hohe Masse: $m_0 = 124.97 \frac{GeV}{c^2}$
- \implies spontane Symmetrie Brechung bei der elektro-schwachen WW wodurch W^\pm, Z^0 Masse erhalten

Higgs-Boson

Funktion

Elementarteilchen erhalten ihre Masse durch Interaktion mit dem Higgs-Feld

Eigenschaften

- Spin: $s = 0 \implies$ Skalarboson
- hohe Masse: $m_0 = 124.97 \frac{GeV}{c^2}$

 \implies spontane Symmetrie Brechung bei der elektro-schwachen WW wodurch W^\pm, Z^0 Masse erhalten

Entdeckung

- 1964: Theorie: Higgs-Mechanismus
- 1984: Bau des LHC am CERN
- 2008: Inbetriebnahme des LHC
- 2010: Datensammlung durch ATLAS und CMS startet
- 2011: Hinweise auf Higgs-Boson bei $125\frac{GeV}{c^2}$ gefunden
- **2012**: Higgs-Entdeckung mit 5σ bestätigt
- 2013: Nobelpreis: Higgs, Englert

Higgs-Boson: Feynman-Diagramme

Abbildung: Erzeugung eines Higgs-Bosons durch 2 Gluonen

Higgs-Boson: Feynman-Diagramme

Abbildung: Erzeugung eines Higgs-Bosons durch 2 Gluonen

Abbildung: Zerfall eines Higgs-Bosons in 4 Leptonen

Standardmodell

Abbildung: Standardmodell

Fundamentale Wechselwirkungen

Wechselwirkung	Reichweite	relative Stärke	Austauschteilchen	
Starke (QCD)	$\sim 10^{-15} \mathit{m}$	1	Gluonen	
Elektromagnetische (QED)	∞	10^{-2}	Photonen	
Schwache	$\sim 10^{-18} \mathit{m}$	10^{-15}	W- und Z-Bosonen	
Gravitative	∞	10^{-41}	Graviton (hypothetisch)	

Tabelle: Fundamentale Wechselwirkungen

Fundamentale Wechselwirkungen

Wechselwirkung	Quarks	Leptonen ohne Neutrinos	Neutrinos
Starke (QCD)	~	×	×
Elektromagnetische (QED)	V	✓	X
Schwache	V	✓	V
Gravitative	V	✓	V

Tabelle: Fundamentale Wechselwirkungen

Theory of Everything?

Streuexperimente

Abbildung: Streuung am Goldkern

Abbildung: Steuung an Quarks

Teilchenbeschleuniger

- annähernd Lichtgeschwindigkeit
- Spurendetektor Ionisation am Halbleiter
- Kalorimeter
- Identifikation
- Rekonstruktion

Abbildung: Synchrotron

Wirkungsquerschnitt

- Maß für Wahrscheinlichkeit für Wechselwirkung
- Dimension einer Fläche
- Einheit Barn $1b = 10^{-28} cm^2$
- $w = \sigma \frac{N_T}{F}$. \Longrightarrow $\sigma = w \frac{F}{N_T}$

Abbildung: Wirkungsquerschnitt

Wirkungsquerschnitt

- Versuch am Petra Beschleuniger
- Elektron + Positron zu Myon Paar
- differentielle Wirkungsquerschnitt $\frac{d\sigma}{d\Omega}$
- Vergleich mit Standartmodell

Abbildung: Daten Petra Beschleuniger

Phasenraum

Definition

Der Phasenraum beschreibt alle möglichen Zustände eines physikalischen Systems

Phasenraum in der Teilchenphysik

- umfasst die Impulse \vec{p} und Energien E der beteiligten Teilchen
- Integration zur Berechung physikalischer Größen

Phasenraum

Definition

Der Phasenraum beschreibt alle möglichen Zustände eines physikalischen Systems

Phasenraum in der Teilchenphysik

- umfasst die Impulse \vec{p} und Energien E der beteiligten Teilchen
- Integration zur Berechung physikalischer Größen

System von n Teilchen im Endzustand

$$d\Phi_{\textit{n}} = \prod_{i=1}^{\textit{n}} \frac{d^3p_i}{(2\pi)^3 2\textit{E}_i} \cdot (2\pi)^4 \delta^4 \left(p_{\text{initial}} - \sum_{i=1}^{\textit{n}} p_i \right),$$

 $d\Phi_n$: differentielles Phasenraumelement $p_i = (E_i, \overrightarrow{p}_i)$: Viererimplus des *i*-ten Teilches

Phasenraum: Beispiel

Abbildung: Phasenraum eines Fadenpendels ohne Energieverluste

Phasenraumintegration

Integration über den Viererimpuls $p_i = (E_i, \overrightarrow{p}_i)$ von n Teilchen

Verwendung

Berechnung physikalischer Größen

- Wirkungsquerschnitte (σ) für Streuprozesse
- Zerfallsraten (Γ) für Teilchenzerfälle

<u>M</u>ethoden

Analytische Integration

- für einfache Prozesse
- z.B. Zwei-Teilchen-Zerfall

Numerische Methoden

- für komplexe Prozesse
- mit mehreren Endzustandsteilchen
- z.B. mit Monte-Carlo-Integration

Monte-Carlo Methode

Beispiel: Nährung von π

- 1. Generation zufälliger Punkte (x, y) in einem Quadrat mit Seitenlänge 1
- 2. Prüfe, ob der Punkt innerhalb des Viertelkreises liegt: $x^2 + y^2 \le 1$.
- 3. Verhältnis der Punkte im Kreis zu allen generierten Punkten entspricht $\pi/4$.

Monte-Carlo Methode

Beispiel: Nährung von π

- 1. Generation zufälliger Punkte (x, y) in einem Quadrat mit Seitenlänge 1
- 2. Prüfe, ob der Punkt innerhalb des Viertelkreises liegt: $x^2 + y^2 \le 1$.
- 3. Verhältnis der Punkte im Kreis zu allen generierten Punkten entspricht $\pi/4$.

Übertragung auf die Teilchenphysik

- Integration über den Phasenraum mit zufälligen Proben
- \implies effizientes Lösen von Mehrteilchen-Endzuständen

Heutige Forschung

Myon-G-2 Experiment

- Messung des anomalen magnetischen Moments des Myons
- Abweichung vom Standardmodell
- Hinweis auf neue Physik

Abbildung: Myon magnetisches Moment

Literaturverzeichnis I

Bopp, F. W. (1997).

Kerne, Hadronen und Elementarteilchen.

Vieweg+Teubner Verlag, Wiesbaden.

LEIFIphysik (n.d.).

Streuexperiment - grundwissen.

https://www.leifiphysik.de/kern-teilchenphysik/kernphysik-grundlagen/grundwissen/streuexperiment.

Zugriff am 25. Januar 2025.

Maheria, V. (2022).

Semi- and Fully-Inclusive Phase-Space Integrals at Four Loops.

PhD thesis, Universität Hamburg.

Abgerufen: 2025-01-27.

Literaturverzeichnis II

Philipsen, O. (n.d.).

Quantum field theory 1 - lecture notes.

Abgerufen: 2025-01-27.

Quarks.de (2025).

Was du über elementarteilchen wissen musst.

Abgerufen am 26. Januar 2025.

Schleper, G. (2015).

Teilchenphysik, kapitel 4a.

Abgerufen am 26. Januar 2025.

Schleper, P. (2013).

Teilchenphysik für fortgeschrittene - vorlesungsskript.

Abgerufen: 2025-01-27.

Literaturverzeichnis III

Uwer, P. (n.d.).

Physik v vorlesungsskript: Kapitel iic.

https://physi.uni-heidelberg.de/~uwer/lectures/PhysikV/Vorlesung/Kapitel-IIc.pdf.

Zugriff am 25. Januar 2025.