

CHEMICAL
RESEARCH,
-DEVELOPMENT &
ENGINEERING
CENTER

CRDEC-TR-87010

MASS SPECTRAL INVESTIGATIONS ON TOXINS

II. SIMULTANEOUS DETECTION AND QUANTIFICATION OF ULTRA-TRACE LEVELS OF SIMPLE TRICHOTHECENES IN ENVIRONMENTAL AND FERMENTATION SAMPLES BY GAS CHROMATOGRAPHIC/NEGATIVE ION CHEMICAL IONIZATION-MASS SPECTROMETRIC TECHNIQUES

by Thaiya Krishnamurthy, Ph. D.
Michael B. Wasserman
Emory W. Sarver, Ph. D.
RESEARCH DIRECTORATE

January 1987

Aberdeen Proving Ground, Maryland 21010-5423

This describes has been exproved for product of decrease and soles in decrease and soles in decreases.

Disclaimer

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorizing documents.

Distribution Statement

Approved for public release; distribution is unlimited.

ECHIPITY CLA		

SECURITY CLA	SSIFICATION O	r INI) PAGE	REPORT DOCUM	MENTATION	PAGF	•	
1. REPORT C	ECURITY CLASS	IFICATION	TOTAL DOCUM	1b. RESTRICTIVE			
UNCLASSIF				i i i i i i i i i i i i i i i i i i i			
2a. SECURITY	CLASSIFICATIO	N AUTHORITY		3. DISTRIBUTION Approved	/AVAILABILITY OF	REPORT	distribution
2b. DECLASSI	FICATION / DOW	VNGRADING SCHEDU	LE	is unlimi		,	
4. PERFORMIN	IG ORGANIZAT	ION REPORT NUMBE	R(S)	5. MONITORING	ORGANIZATION RE	PORT NUMB	ER(S)
CRDEC-TR-	87010						
6a. NAME OF	PERFORMING	ORGANIZATION	66 OFFICE SYMBOL	7a. NAME OF M	ONITORING ORGAN	IZATION	
CRDEC			(If applicable) SMCCR=RSL				
6c. ADDRESS (City, State, and	d ZIP Code)	<u> </u>	7b. ADDRESS (Cit	ty, State, and ZIP C	ode)	
		round, MD 21		0.0000	T INSTRUMENT IDE	NTIEICATION	NU IRADED
8a. NAME OF ORGANIZA	FUNDING/SPO TION	NSORING	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMEN	I INDIKUMENI IOE	N I I FICATION	HOMBEN
CRDEC			SMCCR-RSL				
8c. ADDRESS (City, State, and	ZIP Code)		10 SOURCE OF	FUNDING NUMBERS	TASK	WORK UNIT
				ELEMENT NO	NO	NO.	ACCESSION NO.
		round, MD 21	.010-5423		1L161101	A91A	TA 3-A
11. TITLE (Incl	ude Security C	lassification)				•	į
Mass Spec	tral Inve	stigations or	Toxins		(Conti	nued on	reverse)
12. PERSONAL Krishnamu	AUTHOR(S)	iya, Ph.D.; k	lasserman, Micha	el B.; and	Sarver, Emor	y W., Ph	n.D.
13a. TYPE OF Technical	REPORT	136. TIME CO FROM 82	NOV TO 84 Jan		ORT (Year, Month, D January	ay) 15 PA 47	GE COUNT
16. SUPPLEME	NTARY NOTAT	TION	-		ann an Yass	Sactro	ot my and
		ras presented 1983, Bostor	at the 31st Anr	iuai contere	nce on mass	Spectron	letry and
17.	COSATI	CODES	18. SUBJECT TERMS (C	Continue on revers	e if necessary and	identify by	block number)
FIELD 15	GROUP 02	SUB-GROUP	Toxins Trichothecenes	Derivatiz Negative			atography trometry
1			Mycotoxins	Chemical	ionization (
			and identify by block n			/ 00 111	
			gas chromatogr antifying sever				
			loped. The met				
			orobutyrl (HFB)				
			es. The deriva				
			ns formed durin				
			presence by the				· .
			ifirmed either b Leoxyverrucarol				Two
			standards for c				
nounds.	Femtogram	ns and low pic	ogram quantitie	es (1-5 pa)	of these com	pounds o	ould be OV
poundo			4	(1 0 F3)			d on reverse)
				T			
		ILITY OF ABSTRACT FED SAME AS F	RPT. DTIC USERS	21. ABSTRACT SE UNCLASSI	ECLRITY CLASSIFICA FIED	TION	
22a NAME O	F RESPONSIBLE	INDIVIDUAL		226. TELEPHONE	(Include Area Code)		
IIMUII	HY E. HAME	TUN		(301) 67	1-6914	ا كار	CCR-SPS-T

SECURITY CLASSIFICATION OF THIS PAGE

- 11. Title (Continued)
- II. Simultaneous Detection and Quantification of Ultra-Trace Levels of Simple Trichothecenes in Environmental and Fermentation Samples by Gas Chromatographic/Negative Ion Chemical Ionization-Mass Spectrometric Techniques
- 18. Subject Terms (Continued)

Quantification Analysis Detection limits

19. Abstract (Continued)

detected and confirmed, respectively, by this procedure. A short cleanup procedure using silica-gel SEP-PAK cartridges was developed and used for the accurate analysis of real-world samples. Several spike and a few real-world samples were analyzed by this method with excellent sensitivity and precision. Requests:

PREFACE

The work described in this report was authorized under Project No. 1L161101A91A, In-House Laboratory Independent Research, Technical Area 3-A. This work was started in November 1982 and completed in January 1984.

The use of trade names or manufacturers' names in this report does not constitute an official endorsement of any commercial products. This report may not be cited for purposes of advertisement.

Reproduction of this document in whole or in part is prohibited except with permission of the Commander, U.S. Army Chemical Research, Development and Engineering Center, ATTN: SMCCR-SPS-T, Aberdeen Proving Ground, Maryland 21010-5423. However, the Defense Technical Information Center and the National Technical Information Service are authorized to reproduce the document for U.S. Government purposes.

This report has been approved for release to the public.

Acknowledgments

The authors gratefully acknowledge Professor Bruce Jarvis of the University of Maryland (College Park, MD) for the generous supply of trichothecene standards and samples, and Dr. Sanford Markey of the National Mental Institute, National Institute of Health (Bethesda, MD), Marguerite Brooks and Dr. Dennis Reutter of the U.S. Army Chemical Research, Development and Engineering Center (Aberdeen Proving Ground, MD) for their continued interest and valuable suggestions throughout this investigation.

		- Eden
Acces	sion For	
NTIS	GRA&I	dr.
DTIC	TAB	45
Unann	iounced	
Justi	rication_	
¦		
Ву		
Dista	ilution/	
Avai	Intility	Codes
	Aveil and	/or
Dist	Special	
1	1	
A-1		
	<u> </u>	

Blank

CONTENTS

		Page
1.	INTRODUCTION	7
2.	EXPERIMENTAL	9
2.1	Derivatization Procedure	9
2.3	Samples	10 10
3.	RESULTS AND DISCUSSION	10
4.	CONCLUSIONS	36
	LITERATURE CITED	45
	LIST OF FIGURES	
Figure		
1	RIC of HFB Derivatives of Simple Trichothecenes	12
2	RIC of HFB Esters of Fusarium Trichothecenes	13
3	RIC of Fermentation Product AHIVP93 (HFB)	37
4	Screening of Bee Pollen Fermentation Product	38
5	Confirmation of T-2 in Bee Pollen Fermentation Product by TIM	39
6	Confirmation of HT-2 in Bee Pollen Fermentation Product by TIM	40
7	Confirmation of $T-2$ in Fermentation Broth by SIM .	41
8	Confirmation of HT-2 in Fermentation Broth by SIM	42
	LIST OF TABLES	
Table		
1	Simple Trichothecenes and Related Compounds	8
2	Electron Impact Mass Spectra	1 4
3	Positive Ion Chemical Ionization Mass Spectra	17
4	Negative Ion Chemical Ionization Mass Spectra	19

5	Instrumental Conditions for Screening the Simple Trichothecenes	24
6	Stability Data of HFB Esters of Trichothecenes	25
7	Minimum Detectable and Confirmable Limits for the HFB Esters	28
8	Linear Regression Analysis Data of the Derivatives	30
9	Stability of Simple Trichothecenes	32
10	Recovery Data of Spiked Samples	34
11	Recovery of Simple Trichothecenes from Leaf Sample after Prolonged Exposure	35
12	Sample Analysis	37

MASS SPECTRAL INVESTIGATIONS ON TOXINS

II. SIMULTANEOUS DETECTION AND QUANTIFICATION OF ULTRA-TRACE LEVELS OF SIMPLE TRICHOTHECENES IN ENVIRONMENTAL AND FERMENTATION SAMPLES BY GAS CHROMATOGRAPHIC/NEGATIVE ION CHEMICAL IONIZATION-MASS SPECTROMETRIC TECHNIQUES

1. INTRODUCTION

Trichothecene mycotoxins, products of several genera of imperfect fungi, are toxic, chemically stable compounds with a characteristic tetracyclic 12,13-trichothec-9-ene ring structure. 1-6 Numerous trichothecenes have been isolated and well characterized. Based on their structural features, mycotoxins have been divided into two major groups. The two groups, depending upon their structures, 1 are designated as simple or macrocyclic trichothecenes. The simple trichothecenes possess hydroxyl, acetyl, and/or other ester groups. A keto group will be present at position 8 in some compounds (Table 1). The molecules of the other type are di-, or triesters of fusarium trichothecenes. These molecules are characterized by large ester bridges and called macrocyclic trichothecenes. 2

The health hazards associated with these fungal metabolites pose serious problems for animals and humans throughout the world. 2-14 Agricultural scientists have reported crop losses due to the damage arising from molds and animal losses due to farm animals consuming infested feed materials. 15-18 Monitoring farm and dairy products to detect these toxins and prevent economic losses has become very essential and routine in agricultural industries. 17-20 Intense research on the chemistry, chemical reactions, analysis, and toxicity of these compounds has resulted in several review articles and books being published. 5,13,21-26

Recently, the alleged threat to humans in various parts of the world by induced trichothecenes (yellow rain) has been brought to the general public's attention. 27,28 Articles published in technical journals confirm the presence of some fusarium trichothecenes in yellow rain samples and samples of blood from attack victims. 29,30

Thus, the threat to humans and animals due to these toxins, whether from natural or induced sources, has been clearly documented and demonstrated. Hence, to detect the trichothecenes and prevent natural and/or induced catastrophies, fast, specific, sensitive, accurate, and reliable methods for detecting and quantifying these toxins in various sample matrices need to be developed.

After careful review and evaluation of the available gas chromatographic/mass spectrometric (GC/MS) analytical methodologies, we pursued a different approach and developed a simple,

Table 1. Simple Trichothecenes and Related Compounds

COMPOUND ABBREVIATION	MOLECULAR WEIGHT	R ₁	R ₂	R ₃	R ₄	R ₅	R ₆	R ₇
4-DEOXYVERRUGARGL (DOVE)	760	н	н	ОН	H	н	н	н
VERRUCAROL (VER)	264	H	ОН	ОН	H	н	н	н
SCIRPENTRIOL (3a HOVER)	282	ОН	ОН	ОН	H	н	н	н
€o~HYDRÖXYVERRUCARÖL (8o HÖVER)	282	н	ЭН	ОН	н	ОН	н	н
#3-HYDROXYVERRUCAROL (BB HOVER)	28.2	н	ОН	ОН	H	H	ОН	н
16-HYDROXYVERRUCAROL (16 HOVER)	262	н	ОН	ОН	н	н	н	0+
9, 10-EPOXYVERRUCAROL (EPVER)	202	H	ОН	ОН	н	н	H	н
S-KETOVERRUCAROL (B KEVER)	280	н	ОН	ОН	н	0		н
DEOXYNIVALENOL (DON)	296	Он	H	ЭН	Он	- 0		н
FUSARINON-X (FUSX)	364	он	OAc	ОН	0#	- 0	H	н
MONOACETOXYSCIRPENOL (MAS)	324	ОН	ОН	H ₃	н	н .	н	н
DIACETOXYSCIRPENOL (DAS)	364	ОН	OAc	OAc	н	н	н	н
⇔ τ−2	424	ОН	ОН	OAc	н	м _э снсн _э со	н	۲
T-2	. 486	ОН	OAc	OAc	н	о м _э снсн ₂ с—о	н	н

reproducible, and sensitive method. This method uses high resolution gas chromatographic/negative ion chemical ionization-mass spectrometric (HRGC/NICI-MS) techniques for simultaneously detecting, confirming, and quantifying these fusarium trichothecenes and related molecules. The method converts samples containing mixtures of polar, simple trichothecenes and related compounds into their volatile heptafluorobutyryl (HFB) esters and analyzes them by the GC/NICI-MS techniques. The observed trichothecenes would be quantified using molecules structurally similar to naturally occurring compounds as internal standards. Ultra-trace levels [0.2-5.0 picogram (pg)] of simple trichothecenes were detected, confirmed, and quantified using this procedure.

We investigated two semisynthetic trichothecenes [deoxyverrucarol (DOVE) and 16-hydroxyverrucarol (HOVER)] and found them adequate for use as internal standards for detecting and quantifying simple trichothecenes in real-world samples. The developed procedures have been used successfully for the accurate, quantitative analyses of several matrix spiked (blind) samples and some environmental ones. In this report, we describe a simple, fast, reliable GC/NICI-MS procedure for routinely analyzing samples in a mass spectrometric (MS) laboratory with limited available instrumentation.

2. EXPERIMENTAL

All the GC/MS measurements were made using a Hewlett-Packard (HP) 5985-B MS. Fused silica capillary columns from J&W Associates (Ventura, CA) were used throughout the investigations. Ultra-pure solvents (Burdick & Jackson, Muskegon, MI), derivatizing agents (Regis Chemical Company, Chicago, IL), micro glassware (Supelco, Incorporated, Supelco Park, PA), and SEP-PAK cartridges (Waters Associates, Incorporated, Milford, MA) were used. Several of the fusarium trichothecene standards including DOVE and HOVER were generously provided by Professor Bruce Jarvis (University of Maryland, College Park, MD). Scirpentriol and fusarinon-X were obtained from Professor Chester Mirocha (University of Minnesota, Minneapolis, MN).

The trichothecene standard stock solutions were made at 2 °C in methanol in reacti-vials (Supelco, Incorporated) fitted with mininert valves. Diluted standard solutions were prepared using microsyringes. Standard solutions containing all trichothecenes in concentrations of 1 ng/ μ l and 10 ng/ μ l were frequently made and used immediately. Internal standards (10 ng/ μ l) (DOVE and HOVER) were also made frequently, and the same solutions were used for each series of experiments. Under appropriate conditions, a solvent wash or air column technique was followed to accurately transfer standards by microsyringes.

2.1 Derivatization Procedure.

Solutions [1-1000 nanogram (ng)] of standard mixture and internal standards (100 ng) were transferred into a 1.5-ml vial with

a Teflon-lined screw cap. The solvent evaporated under nitrogen, and the residue was treated with 0.5 ml of 10% acetonitrile/toluene and HFB imidazole (HFBI, 0.25-0.5 μ l). The reaction mixture was shaken well once and kept in a heating block at 110 °C for 15 min. After cooling, the mixture was washed twice with 0.4 ml of 5% NaHCO3 solution and 0.5 ml of distilled water. After each washing, the aqueous layer was removed using a disposable pipette. The organic layer containing the HFB esters was kept in the freezer at -4 °C until used. Samples were also derivatized under the same conditions using a slight excess of HFBI for an assured total derivatization.

2.2 Extraction and Cleanup of Spiked or Real Samples.

Samples were extracted with methanol (3 x 20 ml), and combined extracts were evaporated under nitrogen at 50 °C. The residue was dissolved using a minimum amount of 5% methanol/methylene chloride. The SEP-PAK cartridge was washed once with the same solvent, and the washings were discarded. The sample solution was passed through the cartridge, and the eluant was collected. The cartridge was washed twice more with 10 ml of the solvent. The combined eluants were evaporated in a 3.5-ml vial under nitrogen at 50 °C, and the residue was derivatized and stored as mentioned earlier in this report.

2.3 Analysis of HFB Esters.

Using the solvent (toluene - 1 µl) wash technique, 1 µl of the derivative mixture was injected into the HP gas chromatograph fitted with a grob injector in the splitless mode. A DB-5 fused silica (30 m, 0.25-mm i.d., 0.25 micron film thickness) capillary column, directly interfaced to the ionization source, was used throughout this investigation. An SE-54 fused silica capillary column with the same dimensions as those for the DB-5 capillary was also adequate when it was similarly used. The GC column heating was programmed from 150 °C (held for 1 min) to 300 °C (held for 10 min). The resolved esters were introduced into the source and subjected to chemical ionization (CI) at 100 °C using methane (0.5-1.0 torr) as the CI reagent gas. The MS was controlled and operated by the data system during monitoring of either total or selected ions. The ion currents or the area of the peaks due to specific ions were measured and used.

3. RESULTS AND DISCUSSION

Some of the trichothecenes listed in Table 1 are products of the cultures of fusarium fungi. The others are either hydrolytic products of macrocyclic trichothecenes or semisynthetic compounds. Scirpentriol (3α-HOVER), deoxynivalenol (DON), fusarinon-X (FUSX), monoacetoxyscirpenol (MAS) and diacetoxyscirpenol (DAS), HT-2, and T-2 are naturally occurring toxins. Verrucarol and the substituted verrucarols are the hydrolytic products of the corresponding macrocyclic trichothecenes. DOVE is a semisynthetic product derived from either

verrucarol or DAS.³¹ HOVER is one of the hydrolytic products of 16-hydroxyverrucarin A, which, in turn, is obtained by the allylic oxidation of naturally occurring verrucarin A using selenium dioxide³² or microbial transformation of verrucarin A.³³ We investigated these two synthetically obtained, simple trichothecenes for use as potential internal standards for identifying and quantifying simple trichothecenes and related molecules.

Optimum conditions for converting fusarium trichothecenes into their corresponding HFB esters were determined by varying the reaction temperature and time, the concentration of acetonitrile, and the quantity of the derivatizing agent (HFBI). The number of derivatives formed was determined by the negative ion chemical ionization (NICI) mode during the GC/MS analysis which monitored single characteristic ions for each molecule. relative intensities of these ions with respect to m/z 426 (DOVE) were used as the criteria to determine the extent of the derivati-The HFB esters were effectively formed by heating the trichothecenes with HFBI in 10% acetonitrile/toluene at 100 °C for 15 min. The clear solution containing the derivatives, obtained after repeatedly washing the reaction mixture with 5% aqueous NaHCO3 solutions and distilled water, was adequate for the GC/MS analysis. The mixture containing the HFB esters was injected into the gas chromatograph, and the chromatographically separated derivatives were analyzed by mass spectrometry. Along with the chromatographic conditions, the reconstructed total ion chromatograms are indicated in Figures 1 and 2. The electron impacts of the chromatograms [(EI) 200 °C], positive ion chemical ionization (PICI), and NICI (methane) (100 °C, 0.5-1.0 torr) spectra were recorded and characterized. To monitor the higher mass ions with increased sensitivity, only the mass spectra of the esters in the mass range of m/z 200-950 were recorded. Sixteen of the ions with higher relative abundances were selected for tabulating. In this selection, preference was given to higher mass ions whenever the number of higher intensity ions exceeded 16. These partial mass spectra are indicated in Tables 2-4.

As expected, the partial EI spectra provide only limited structural information on the HFB derivatives. The verrucarols seem to form ions by removing one or more heptafluorobutyric acid (HFBH) molecules and other neutral molecules such as $\text{CH}_2=\text{C}=\text{O}$. Similar fragmentations were also noted in T-2 and HT-2 toxins.

In the PICI spectra of FUSX and DON, the most abundant ion seemed to come from the protonated HFBH ions formed by hydrogen rearrangement in the protonated molecules. This observation agrees with the one Munson and Field 34 made of esters. In verrucarol and DOVE, the most abundant ions were formed by the removal of the HF molecule; in MAS and DAS, by the removal of CH3COOH; and in T-2 and HT-2, by the removal of isovaleric acid and CH3COOH. In all cases, the $(M+C_2H_5)^+$ and $(M+C_3H_5)^+$ adducts were noted along with ions formed by the removal of HFBH(s), CO, CH2=CH2, CH3COOH, and isovaleric acid from the quasimolecular ions.

Figure 1. RIC of HFB Derivatives of Simple Trichothecenes. [DB-5 Fused Silica Capillary Column (0.25 mm x 30 m, 0.25 \mu). Splitless injection; column temperature - held at 150 °C for 1 min, heated at 10 degrees/min for 10 min, heated to 300 °C at 25 degrees/min, held for 10 min]

Figure 2. RIC of HFB Esters of Fusarium Trichothecenes. [SE-54 Fused Silica Capillary Column (30 m x 0.25 mm i.d., 0.25 mm). Splitless injection; column temperature - held at 150 °C for 2 min, heated at 10 degrees/min for 10 min, heated to 300 °C at 25 degrees/min, held for 10 min]

Table 2. Electron Impact Mass Spectra

	Molecular	Base Peak	Significant lons (Relative Abundance)
Compound	Weight	(m/z)	(m/z)
4-Deoxyverrucarol (HFB)	446	. 504	446(31.3), 432(19.2), 431(88.5), 417(3.2),
			403(4.8), 390(2.7), 347(6.2), 335(4.1),
			318(3.0), 305(2.0), 281(6.5), 232(60.6),
			217(15.0), 205(19.9), 201(14.7)
Verrucarol (HFB) ₂	658	318	658(19.9), 643(61.5), 445(56.1), 444(77.2),
			429(14.3), 416(37.9), 403(13.0), 361(21.1),
			345(20.5), 331(53.4), 321(32.5), 305(60.0),
			292(42.7), 281(36.9), 231(44.5), 215(41.8)
Scripentriol (HFB)3	87	318	885(10.8), 656(62.4), 628(31.5), 443(14.7),
·t.			415(23.4), 399(12.9), 396(16.5), 385(11.1),
			368(15.7), 359(14.4), 343(11.8), 337(17.5),
			335(26.3), 331(17.5), 304(32.0), 253(24.3)
8 a-Hydroxyverrucarol (HFB)3	870	317	657(10.5), 656(9.1), 443(12.3), 429(8.9),
	 		387(2.6), 361(2.0), 345(3.0), 331(9.7), 318(16.2),
		-	309(10.1), 292(13.3), 281(5.2), 267(2.6), 229(8.7),
			• • • • • • • • • • • • • • • • • • • •

215(11.4), 201(11.8)

Table 2. Electron Impact Mass Spectra (Continued)

	Molecular	Base Peak	Significant lons (Relative Abundance)
Compound	Weight	(m/z)	(m/z)
8 8-Hydroxyverrucarol (HFB)3	870	317	657(99.0), 444(18.9), 443(86.1), 429(76.7),
			416(17.1), 387(17.1), 375(12.6), 361(14.2),
			347(25.8), 331(25.1), 321(20.8), 305(37.0),
			293(23.1), 280(32.4), 229(58.4), 215(70.8)
16-Hydroxyverrucarol (HFB)3	870	317	658(13.8), 657(66.2), 656(94.2), 443(11.8),
			429(10.4), 415(7.4), 387(10.1), 345(17.8),
			331(27.7), 321(16.6), 305(35.5), 292(15.6),
			281(22.3), 229(39.8), 215(78.3), 205(1.9)
Deoxynivalenol (HFB) ₃	884	294	884(23.8), 670(5.0), 651(5.0), 643(9.6),
			615(7.3), 573(11.9), 457(8.4), 377(10.0),
** vy.			359(67.4), 347(14.2), 333(72.0), 331(80.8),
			305(54.8), 253(31.8), 213(19.9), 207(21.5)
Fusarinone-X (HFB)3	942	294	942(4.3), 701(3.4), 670(7.9), 669(33.0),
	, = 3		627(13.4), 589(10.4), 413(14.3), 385(12.6),
	<i>3</i> " -		375(23.7), 357(26.7), 347(21.1),333(40.3),
	<u>.</u>		321(66.1), 320(26.9), 267(17.5), 253(16.4)
Monacetoxyscirpenol (HFB)2	716	959	673(3.1), 657(26.4), 641(13.7), 628(15.3),
			443(34.3), 429(43.9), 415(37.0), 396(14.7),
			385(17.0), 368(19.8), 304(33.5), 291(11.3),

267(14.5), 239(10.0), 229(42.8), 201(51.2)

Table 2. Electron Impact Hass Spectra (Continued)

	Bolecular	Base Peak	Significant lons (Relative Abundance)
Сомроина	Weight	(m/z)	(Z/E)
Diacetoxyscirpenol (HFB)	295	502	503(22.4), 474(11.5), 459(12.4), 430(10.2),
			429(43.2), 415(11.8), 396(10.5), 368(9.6),
			321(20.9), 317(13.0), 304(13.0), 289(11.5),
			216(13.8), 229(57.0), 217(41.3), 205(58.3)
HT-2(HFB) ₂	816	502	672(1.3), 655(3.9), 654(2.0), 441(2.1),
-2			427(2.8), 371(1.3), 320(2.1), 304(1.7),
The service of the se			281(2.0), 267(6.0), 264(3.8), 253(2.7),
			245(2.3), 227(7.3), 213(9.9), 201(9.6)
Т-2(НFВ)	. 299	205	578(1.3), 560(1.0), 518(3.5), 501(8.2),
			427(6.9), 397(2.0), 381(5.2), 320(11.0),
			267(10.1), 264(10.9), 245(14.9), 227(31.2),
	=		215(15.9), 213(24.0), 207(40.6), 201(29.0)

Table 3. Positive Ion Chemical Ionization Mass Spectra

	Molecular	Base Peak	Significant Ions (Relative Abundance)
Compound	Weight	(z/w)	(m/z)
4-Deoxyverrucarol (HFB)	445	233	487(3.3), 475(3.3), 448(15.0), 447(98.8),
			446(13.1), 429(13.0), 417(4.6), 411(1.6),
			401(2.7), 399(2.4), 277(1.7), 249(17.1),
·			234(17.7), 219(1.4), 215(27.0), 203(7.0)
Verrucarol (HFB) ₂	658	445	659(14.0), 641(2.9), 501(1.0), 489(1.4),
			461(12.8), 446(22.7), 429(2.0), 427(6.0),
			417(8.5), 323(2.9), 301(1.8), 293(1.5),
			247(19.0), 233(6.3), 231(28.7), 215(29.2)
Scripentriol (HFB)3	870	215	911(1.3), 899(1.2), 871(22.7), 853(7.8),
ng.			841(3.4), 673(4.9), 657(92.2), 639(6.9),
	. •		627(2.7), 535(13.7), 461(5.3), 443(25.2),
	المعدد ال		425(4.7), 415(4.0), 337(6.4), 233(14.0)
8 a-Hydroxyverrucarol (HFB) ₂	870	215	871(2.5), 853(1.0), 657(50.7), 461(3.4),
	g° →	:	445(13.2), 443(9.7), 425(2.6), 339(1.4),
	, .		318(3.2), 277(1.5), 261(2.1), 249(3.9),
			243(7.0), 233(12.1), 229(19.6), 207(3.0)

Table 3. Positive Ion Chemical Ionization Mass Spectra

Gospound				
942 215 970 215 970 215 970 215 970 215		Molecular	Base Peak	Significant lons (Relative Abundance)
942 215 942 215 716 657	Compound	Weight	(m/z)	(m/z)
942 215 942 215 716 657	8 g-Hydroxyverrucarol (HFB) ₃	870	215	899(1.0), 871(7.1), 673(2.5), 659(7.0),
942 215 970 215 716 657				658(21.1), 675(76.5), 639(1.7), 619(1.3),
942 215 970 215 716 657				461(2.7), 445(8.6), 443(16.7), 339(3.2),
942 215 970 215 716 657				247(6.7), 243(8.0), 233(1.0), 229(14.6)
942 215	16-Hydroxyverrucarol (IIFB) ₃	870	215	871(5.0), 657(60.1), 639(3.0), 627(1.4),
942 215	-			461(2.4), 459(3.2), 445(10.3), 443(17.7),
942 215				427(2.3), 425(3.0), 415(2.0), 323(2.0),
942 215				319(1.9), 247(4.0), 243(8.0), 233(15.1)
942 215	Deoxynivalenol (HFB) ₃	884	215	925(2.0), 913(2.2), 886(12.2), 885(37.2),
942 215				672(4.9), 671(7.5), 643(1.6), 499(2.3),
942 215				487(2.9), 459(24.7), 334(1.1), 291(1.4),
942 215	and age			263(1.3) 245(5.2), 233(11.5), 229(6.1)
716 657	Fursarinon-X (HFB) ₃	942	215	943(38.7), 883(1.5), 730(5.1), 661(1.1),
716 657		v4		745(1.7), 517(18.9), 459(1.5), 445(1.6),
716 657		**************************************	•	321(1.1), 303(1.4), 273(1.8), 261(2.4),
716 657		, s ^a r -		247(2.8), 243(4.9), 233(8.5), 229(12.1)
685(2.8), 568(26.9), 639(10.3), 619(2.6), 563(1.7), 535(2.5), 503(15.5), 485(2.8), 465(2.4), 443(8.2), 425(4.3), 289(8.2)	Monoacetoxyscirpenol (HFB) ₂	716	259	757(7.6), 745(6.8), 717(81.0), 699(5.4),
563(1.7), 535(2.5), 503(15.5), 485(2.8), 465(2.4), 443(8.2), 425(4.3), 289(8.2)		• · · · ·	,	685(2.8), 568(26.9), 639(10.3), 619(2.6),
465(2.4), 443(8.2), 425(4.3), 289(8.2)	•			563(1.7), 535(2.5), 503(15.5), 485(2.8),
				465(2.4), 443(8.2), 425(4.3), 289(8.2)

Table 4. Negative Ion Chemical Ionization Mass Spectra

	Molecular	Basc Peak	Significant lons (Relative Abundance)
Compound	Weight	(m/z)	(w/ s)
4-Deoxyverrucarol (HFB)	446	426	446(0.5), 428(3.5), 427(20.5), 408(1.0), 213(1.6)
Verrucarol(NFB) ₂	658	638	660(1.9), 659(9.9), 658(35.3), 640(5.8), 639(25.3),
-			621(1.1), 620(3.2), 618(1.9), 441(2.3), 440(9.3),
			213(19.1)
Scirpenetriol(HFB)3	870	870	872(6.6), 871(28.2), 852(4.9), 851(20.6), 850(51.4),
			832(7.9), 814(1.2), 682(1.4), 674(5.1), 654(1.1),
			638(2.2), 637(5.6), 618(3.1), 440(3.6), 233(2.3),
			213(53.8)
8 a-Hydroxyverrucard1(HFB)3	870	870	871(31.9), 851(20.2), 832(3.3), 670(2.6), 658(18.5),
M.			654(8.0), 638(42.6), 620(3.2), 563(1.4), 544(14.2),
	. •		440(1.4), 434(2.1), 404(3.3), 375(2.0), 216(57.3),
	٠ بھي .		213(57.3)
8 R-Hydroxyverrucarol(HFB)3	870	870	871(21.3), 851(15.7), 850(59.8), 658(17.5), 656(12.1)
	, ·		652(3.5), 638(42.8), 636(24.9), 618(5.4), 471(2.6),
	-		463(2.4), 442(13.1), 440(12.3), 422(22.8). 402(15.4),

213(97.1)

Table 4. Negative Ion Chemical Ionization Nass Spectra (Continued)

	Polecular	Base Peak	Significant lons (Relative Abundance)
Compound	Weight	(z/w)	(m/z)
16-Hydroxyverrucarol(HFR)3	870	870	871(29.5), 851(14.9), 850(49.3), 830(3.7),
			810(3.5), 696(1.0), 674(2.9), 659(2.4),
			658(9.2), 652(2.2), 638(18.3), 602(1.6),
			478(2.9), 440(2.6), 404(1.2), 213(62.8)
9,10-Epoxverrucarol(HFB)2	870	654	675(6.4), 684(17.8), 656(4.8), 655(26.3),
			636(2.6), 635(1.4), 634(4.5), 476(1.0),
			440(2.4), 436(1.2), 216(1.0), 214(1.7),
			213(1.0)
8-Ketoverrucarol(HFB) ₂	672	652	672(11.5), 654(8.1), 653(28.7), 633(7.0),
			632(13.8), 613(3.9), 438(20.2), 420(4.2),
	. <u>-</u> - v		213(25.0)
000(11FB)2	774	213	775(3.2), 774(9.5), 754(1.6), 585(1.4),
	, af		581(5.0), 580(13.7), 577(1.0), 560(3.8),
	·		540(2.7), 520(12.0), 425(1.7), 362(1.3),
	. • .		244(1.3), 233(1.6), 216(25.7), 204(2.2)

Table 4. Negative Ion Chemical Ionization Mass Spectra (Continued)

	Holecular	Base Peak	Significant lons (Relative Abundance)
Compound	Weight	(Z/W)	(z/w)
Deoxynivalenol(HFB)3	844	844	885(27.8), 864(2.4), 844 (1.3), 688 (1.2),
			672(9.6), 670(4.9), 651(3.6), 632(2.5),
			630(1.3), 460(2.8), 459(12.6), 458(57.5),
			438(2.6), 420(1.7), 262(1.4), 213(48.5)
Fusarinon-X (HFB)3	942	942	943(31.1), 922(2.1), 902(1.3), 870(3.9),
			816(11.9), 730(12.0), 728(4.7), 716(5.4),
			699(1.6), 658(2.5), 638(5.9), 517(13.5),
			516(53.2), 458(26.1), 320(2.2), 213(39.0)
Monoacetoxyscirpenol(MFB)2	716	716	718(5.6), 717(26.1), 698(2.1), 697(3.2),
*			696(7.5), 679(1.6), 678(6.7), 660(1.0),
	. •		518(1.0), 483(1.0), 233(5.4), 216(2.9),
	ا هور		214(2.7), 213(43.0)
Diacetoxyscirpenol(HFB)	29\$	480	562(1.8), 544(2.2), 543(11.9), 542(41.4),
	^ ~		524(1.9), 523(2.0), 522(6.9), 495(1.1),
			484(1.7), 483(5.1), 482(5.6), 481(23.1),
			436(3,5), 364(1.0), 237(7.5), 213(6.4)

Table 4. Negative Ion Chemical Ionization Hass Spectra (Continued)

•	Weight 816	(m/z) (m/z) 816	Significant fons (Refacine Abundance) 802(1.2), 796(9.6), 778(3.1), 733(1.4), 716(18.3), 696(3.9), 678(5.2), 662(5.2), 642(24.6), 622(3.5), 600(1.7), 582(6.1), 580(78.3), 542(2.6), 536(2.4), 213(53.2)	i
	299	580	662(4.8), 643(6.0), 642(23.7), 622(4.4), 581(31.2), 562(1.8), 542(4.7), 540(2.1), 536(3.3), 522(1.4), 502(1.0), 498(4.8), 480(9.1), 436(1.9), 237(1.9), 213(7.8)	

The NICI spectra of these molecules indicate that in most instances, the most abundant ions were either M⁻ or (M-HF)⁻ ions with the exception of DAS and T-2 when (M-CH₃COOH)⁻ ions were the most predominant. The other commonly observed ions were formed by the removal of HF(s), HFBH(s), and H₂O. As expected, there are fewer ions, and the higher mass ions are predominant in NICI spectra of all the derivatives. Hence, we pursued our investigation and developed a method for simultaneously analyzing and quantifying several ultra-trace levels of trichothecenes by NICI.

A mixture containing 100 ng of the trichothecenes and 100 ng of the internal standards was derivatized and analyzed periodically over 18 days to determine the stability of the derivatives under the planned experimental conditions. The derivatives were analyzed by the selected ion monitoring (SIM) mode, monitoring a single ion for each molecule. The MS was tuned specifically to enhance the higher mass ions. No other distinct quality control steps were taken during the tuning. The instrumental operational conditions adapted during the analysis are listed in Table 5. The classification of groups was based on the elution times of the molecules and the intensities of their corresponding More time was given to monitor less intense ions. derivatives were stored in the freezer (-4 °C) at all times except during analysis. The 1-µl solution containing the HFB esters of analytes and internal standards was analyzed by the SIM mode at least four consecutive times, and the intensities of all the ions were measured. The average of the relative intensities of the individual ions with respect to DOVE (m/z 426) and HOVER (m/z 870) were calculated, and these values are shown in Table 6. Under the chromatographic conditions used for this investigation, the adsorption of the derivatives on the DB-5 fused silica capillary GC column was nil. A similar phenomenon was also noted while using SE-54 fused silica capillary columns. Hence, the difference between the observed relative intensities of the first and second measurements was negligible while using either column.

Despite the changes in relative intensities due to variances in their stabilities over a period of time, the measured relative intensities of various HFB esters and the observed standard deviations in the measurements indicate that these values could be obtained with excellent precision. The stabilities of the derivatives with the exception of scirpentriol are comparable with those of the DOVE(HFB) over 4 days. This internal standard seems adequate over 18 days for all trichothecenes except 3α -HOVER, 8 β -Hydroxyverrucarol, and FUSX. The relative intensities of these trichothecenes with respect to HOVER(HFB)3 could also be measured with good accuracy within 48 hr. Beyond this period, the introduced error in these measurements is at least 15% or more for 3α -HOVER, 8β -HOVER, DON, FUSX, and DAS. The variation in these values seemed to be higher when HOVER(HFB) was used as the internal standard. At this point, it is not clear whether the variation is due to the instability of the derivatives or to the

Table 5. Instrumental Conditions for Screening the Simple Trichothecenes

Group	Start Time (min)	Run Time (min)	Compounds Monitored	Mass (Dwell Time) m/z (msec)
1	7.0	1.6	Dove	462.2 (50)
			Scirpentriol	870.3 (50)
	·		88-HOVER	870.3 (50)
			DON	884.3 (50)
2	8.6	2.2	Verrucarol	638.3 (50)
			8a-HOVER	870.3 (50)
			HOVER	870.3 (50)
			FUSX	942.3 (50)
3	10.8	0.7	DAS	480.2 (150)
4	11.5	1.3	HT-2	816.3 (150)
5	12.8	1.0	T-2	580.2 (150)

Table 6. Stability Data of HFB Esters of Trichothecenes

			RELATIVE INTENSITIES*	(SITIES*			
	DAY	DAY	DAY	DAY	DAY	DAY	DAY
COMPOUND	o	-	m	◀	7	10	18
1. DOVE. HFB	0.86±0.06	0.75±0.13	0.75±0.08	0.75±0.10	0.91±0.90	0.46±0.00	0.53±0.05
2. VER. (HFB),	1.67±0.14	0.70±0.10	1.38±0.12	1.60±0.12	1.43±0.04	1.70±0.00	2.40±0.13
·	(1.43±0.12)	(1.28±0.07)	(1.17±0.07)	(1.49±0.10)	(1,30±0.03)	(0.78*0.00)	(1.26±0.05)
3. 3 _{\alpha} HOVER(HFB) ₃	1.80±0.09	1.88±0.11	1.22±0.13	1,30±0.12	0.71±0.07	0.92±0.01	0.85±0.05
	(1.54±0.08)	(1.41±0.09)	(0.87±0.08)	(0.87±0.10)	(0.64±0.06)	(0.42±0.01)	(0.42±0.02)
4 By HOVER(HFB)	0.19±0.01	0.20±0.03	0,16±0,12	0.19±0.04	0.13±0.01	0.24±0.03	0.26±0.03
	(0.16±0.06)	(0.15±0.02)	(0.12±0.02)	(0.13±0.02)	(0.12±0.01)	(0.12*0.03)	(0.14±0.12)
S B HOVER(HFR).	1.05±0.07	1.14±0.15	0.90±0.12	1.06±0.10	0.71±0.04	1.27±0.01	1,64±0.23
	(90.90±0.06)	(0.86±0.12)	(0.67±0.05)	(0.72±0.08)	(0.64±0.04)	(0.59±0.01)	(0.86±0.06)
6. HOVER(HFB) ₃	1.17±0.07	1.33±0.17	1,35±0,14	1,39±0.17	1.10±0.10	1.98±0.27	1.91±0.17
	3.90±0.80	4.30±0.48	4.03±0.56	3.96±0.64	2.22±0.13	3,59±6.01	3,59±0.01
	(3.34±0.09)	(3.16±0.36)	(5.91±0.19)	(2.85±0.20)	(2.01±0.12)	(1.65±0.00)	(1.68±0.05)
10. FUSX(HFB),	1.13:0.06	1.38±0.19	1.24±0.25	1.21±0.19	0.44±0.04	0.60±0.01	0.27±0.16
n	(0.97±0.05)	(1,04±0,14)	(0.85±0.12)	(0.83*0.07)	(0.40±0.03)	(0.28±0.00)	(0.14±0.01)

Table 6. Stability Data of HFB Esters of Trichothecenes (Continued)

				RELATIVE INTENSITIES*	TIES*		
	DAY	DAY	DAY	DAY	DAY	DAY	DAY
СОМРОИИВ	0	-	e	च		10	18
11. MAS(HFB) 2	0.45±0.02	0.47±0.05	0.39±0.04	0.40±0.05	0.33±0.03	0.37±0.00	0.40±0.05
.	(0.39±0.02)	(0.35±0.04)	(0.29±0.04)	(0.29±0.03)	(0.30±0.02)	(0.17±0.00)	(0.21±0.01)
12. DAS(HFB)	0.68±0.04	0.77*0.06	0.86±0.08	0.91±0.10	0.90*0.03	0.90±0.16	0.80±0.05
	(0.59±0.03)	(0.58±0.04)	(0.65±0.10)	(0.66±0.08)	(0.81±0.03)	(0.44±0.03)	(0.42±0.01)
13. HT-2(HFB).	1,04±0.08	1,51±0,19	1.46±0.24	1.39±0.14	1.04±0.08	1.69±0.40	1.30±0.18
3	(0.89±0.07)	(1,13±0,15)	(1.08±0.08)	(1.08±0.13)	(0.82±0.07)	(0.82±0.12)	(0.67±0.06)
14 T-2(HFR)	0.40±0.09	0.54±0:07	0.58±0.06	0.53±0.08	0.50±0.06	0.91±0.00	0.57±0.06
	(0.35±0.05)	(0.41±0.05)	(0.43±0.04)	(0.38±0.04)	(0.45±0.05)	(0.45±0.01)	(0.29±0.01)

* Values with respect to DOVE (HFB) 3 and HOVER(HFB)3. The latter values are listed in parenthesis.

adsorption of the HOVER. For an extended period, DOVE(HFB) proved to be a better internal standard over HOVER(HFB)3. Readers should note that both internal standards seem adequate for all molecules studied for at least 48 hr after the derivatization. Thus, DOVE and HOVER (the two semisynthetic, structurally similar molecules with different polarities) could be used as internal standards for analyzing simple trichothecenes with varied polarities. In both cases, despite the error due to the uncontrolled MS tuning conditions, the relative intensities of most molecules over 2 weeks were measured with errors not exceeding 50%. This measurement is more than adequate for measurements of analytes present in low nanogram quantities. All the above results are clearly indicated in Table 6.

After establishing the optimum conditions for the synthesis, stability, and analysis of these derivatives, we conducted experiments to establish the minimum detectable and confirmable limits for each analyte. One characteristic ion for each derivative was monitored under the conditions listed in Table 5 for routinely monitoring samples to detect trichothecene presence. However, six specific ions were monitored for each compound to confirm trichothecene presence. During these SIM measurements, less intense ions were monitored with more dwell time to enhance their sensitivity. Along with their detectable and confirmable limits, the specific ions and their dwell times used to confirm trichothecene presence are listed in Table 7.

The following experiments were conducted to establish the concentration range in which the intensities of the observed ion currents vary linearly with the amount of the analytes. Varied amounts of trichothecene mixtures (2.5-250 ng) along with DOVE (50 ng) and HOVER (50 ng) were converted into their HFB The resulting derivative mixtures contained 5-500 pg/ul of the trichothecene esters and 100 pg/µl of the internal standards. A 1-µl aliquot of the products was analyzed immediately by GC/NICI-MS under the conditions specified in Table 5. The ion currents of all the ions in various mixtures were measured. The ions' relative intensities with respect to both internal standards were calculated and plotted versus the ions' relative amounts. The constants obtained from the linear regression analysis of the data are shown in Table 8. In all instances, linearity existed between the relative intensities of the ions formed and the relative amounts of the esters analyzed. amount of analyte analyzed exceeded the 500-pg level, especially for DON, VER, and HT-2, the relative intensities of the ions detected did not follow the linear relationships with their relative amounts. When the values for 5-10 pg of concentration were removed from the linear regression analysis, better values for correlation coefficients and intercepts were obtained. the linear concentration range for all these derivatives has been established as 20-500 pg, and both internal standards seem to be adequate for the quantification. In addition, standard calibration curves were obtained with 100-500 pg/ul of DOVE and

Table 7. Minimum Detectable and Confirmable Limits for the HFB Esters

	lons for Confirmation	Detection*	Confirmation
СОИРОИМО	m/z (dwell time in millisecond)	(bd)	(6d)
DOVE (HFB)	447.2(300), 446.2(300), 427.2(50), 426.2(50)	1.0	2
	213.2(5)		
VER(HFB)2	559.3(50), 658.3(50), 639.3(50), 638.5(5),	0.25	-
	440.2(150), 213.2(50)		
SCIR(HFB)3	871.3(50), 870.3(50), 851.3(50), 8%0.3(50)	0.2	-
	832.3(150), 657.3(150), 637.3(150)		
88-HOVER(HFB)3	871.3(50), 870.3(50), 850.3(50), 658.3(150)	9.0	2
	638.5(50)		
8 HOVER(HFB)3	871.3(50), \$70.3(50), 851.3(50), 850.3(50),	0.4	-
	658.3(150), 638(50)		
16 HOVER(HFB) ₃	871.3(50), 870.3(50), 871.3(50), 850.3(50),	0.2	-
	658(150), 638(50)		
DON(HFB)3	885.3(50), 884.3(50), 864.3(150), 651.3(150),	0.1	-
	672.3(150), 458.2(150)		
FUSX(HFB)3	943.3(50), 942.3(50), 922.3(150), 902.3(150),	0.2	2
	870.3(150), 728.3(150)		

Table 7. Minimum Detectable and Confirmable Limits for the HFB Esters (Continued)

COMPOUND	Ions for Confirmation m/z (dwell time in millisecond)	Detection* (pg)	Confirmation (pg)
MAS(HFB)2	717.3(50), 716.3(50), 697.3(150), 696.3(150).	0.5	~
DAS(HFB)	678.3(150), 603.3(150) 562.2(200), 543.2(150), 542.2(150), 522.2(150).	2.0	ග
HT-2(HFB)2	481.2(50), 480.2(50) 817.3(50), 816.3(50), 797.3(200), 796.8(200).	0.5	8
T-2(HFB)	778.3(200), 716.3(100) 662.3(200), 642.3(200), 622.3(200), 581.2(50),	2.0	ss.
*Conditions as	\$80.2(50), 536.2(400) + Conditions as listed in Table 5.		

Table 8. Linear Regression Analysis Data of the Derivatives

URINOUNCE	E	ž	RRT	ANALYZED AHOUNT	CORRE COEFF	CORRELATION	SLOPE			INTERCEPT	RESPONSE FACTOR
CUMPOUND (HFB ESTERS)	(min)	1	2	(bd)	-	2	-	2	-	•	3
Scirpenetriol	8.2	0.988	0.781	9-500	0.9981	0.9980	2.665	1.573	-0.244	-0.204	-0.204 2.23±0.38 1.31±0.23
DOVE	8.3	1.000	0.790	•							
Denxynivalenol	80.	1.012	0.800	•	0.9965	0.9969	4.469	2.668	0.040	-0.068	4.15±0.42 2.21±0.31
Cart Anna Common	ν. «	1.036	0.819	•	0.9989	0.9909	1.594	1.179	-0.175	-0.383	-0.383 1,34±0.23 0.74±0.17
(s-n) and opposite the second		180	0.857		0.9993	0.9987	2.329	1.378	-0.145	-0.144	-0.144 2.11:0.19 1.13:0.17
		96	0.867	•	0.9987	0.9991	0.359	0.213	-0.126	-0.085	0.25±0.08 0.15±0.04
A -hydroxyverrocerol	- ;		9		6966	0.9990	1.343	0.800	-0.053		-0.053 1.24±0.14 0.66±0.13
Fusarinon-X	4.9	3	9	,		0 0073	0.780	0.468	-0.053	-0.030	-0.030 0.77±0.08 0.42±0.37
Monoacetoxyscirpenol(MAS)	9.9	1.193	0.942		0.9976	0.3376			5		1.87±0.20
16-Hydroxyverrucarol	10.5	1.264	1.000	•	0.9976	• .	2.455	•	505.0-		
	5	1386	1.095	. •	0.9992	0.9976	0.849	0.499	-0.042	-0.054	
				. -	0.9975	0.9966	2.302	1.360	-0.195	-0.168	3 2.19±0.16 1.13±0.14
HI-2 I-2	13.4	1.614	1.276	ا المانية •	0.9984	0.9985	0.632	0.377	-0.058	-0.054	\$ 0.53±0.07 0.30±0.06
	1-DOVE (1S)	5)		2-HOVER(IS)							

100-250 pg/ μ l of HOVER. Varying the amount of internal standards had no adverse effect in the observed linearity. Most of the following investigations were conducted with internal standards concentrations of 100 pg/ μ l to minimize consumption of the standard materials.

The response factors of all these derivatives were calculated with respect to DOVE(HFB) and HOVER(HFB); the values are listed in Table 8. Each reported response factor value resulted from 35 to 40 measurements of 10 solutions of different concentrations. The consistency in the response factor values measured and the precision of the measurements indicated by the low standard deviation values clearly establish the adequacy of the chosen internal standards and the stability of the synthesized derivatives.

Prior to developing the extraction and cleanup procedures for these fusarium trichothecenes, their stability after prolonged exposure to ambient conditions was checked. Solutions containing 25-100 ng of mixtures of trichothecene standards were exposed at room temperature in different 250-ml Erlenmeyer flasks for 7 days. The flasks were rinsed with hot methanol (3 x 10 ml), and the combined washings were transferred step-wise into a 2.5-ml vial and evaporated under nitrogen at 50 °C. The residues were treated with internal standards, derivatized, and analyzed. The amounts of individual trichothecenes were calculated by extrapolating their observed relative intensities into their corresponding calibration curves. The average of the six different observed recovery percentages for an individual trichothecene in a non-matrix situation are listed in Table 9. The recoveries, except for VER and MAS and the high standard deviations for DON and FUSX, were reasonably good.

Six residues containing the same amounts indicated in the previous experiments were dissolved in 5% methanol/methylene chloride (10-20 ml) and passed through a silica-gel SEP-PAK cartridge previously washed with the same solvent. The cartridge was washed again with the solvent (2 x 10 ml), and the combined washings were evaporated in a 2.5-ml vial. The residues with the internal standards were derivatized and analyzed, and the recovery percentages of individual compounds after the extraction and cleanup procedures were calculated as usual. The average values of measured efficiencies were consistent and are listed in Table 9. The same amounts of trichothecenes were exposed at room temperature for 7 days as before, extracted, cleaned up, and analyzed, and the recovery percentages are also listed in Table 9. These values seem to be lower than the recovery percentages of the unexposed samples. The loss of analyte due to adsorption during exposure, extraction, and cleanup processes is probably responsible for these low values. However, both values for each molecule were consistent, and with a correction factor, they could be easily analyzed with reasonable accuracy in real-world samples.

Table 9. Stability of Simple Trichothecenes

	AMOUNT ANALYZED	% RECOVERY AFTER	% EXTRACTION &	EXTRACTION & CLEAN-UP EFFICIENCY (DAYS)
COMPUNIO	(bu)	7 DAYS	0	7
3 a -Hydroxyverrucarol	25-100	75±11	79±9	77±30
(Scirpenetriol)				
8 ß-Hydroxyverrucarol	ε	73±9	6∓85	29±0.0
8 a -Hydroxyverrucarol	=	70±14	71±12	47*
16-Hydroxyverrucarol	=	83±13	46±13	42±18
Verrucarol	=	36±14	9∓85	35±5
Deoxynivalenol	.	73±30	86±10	14±18
Fusarinon-X	= - \$\frac{1}{2}	75±20	70±22	ı
Monoacetoxyscirpenol	. E	46±12	9∓99	29±13
Diacetoxyscirpenol	:	97±3	72±11	1±67
HT-2	•	54±7	64±16	20 *
1-2	=	9:98	65±15	32*

*One value

Several spike (blank) experiments were conducted after establishing the optimum conditions for the extraction and cleanup of the trichothecenes and synthesis and analysis of their HFB esters.

Twelve commercial pollen samples, which were free from trichothecenes, were weighed (0.25 + 0.01 gm) in 20-ml vials. samples were then spiked with 10, 20, 40, 60, 80, or 100 ng ofstandards in duplicate, left exposed at room temperature for 24 hr, and then extracted with warm methanol (3 x 10 ml). The combined extracts were evaporated and cleaned up using silica-gel SEP-PAK The residues were treated with internal standards, cartridges. derivatized, and analyzed. A blank experiment was conducted along with the one with spiked samples. The results from the blank experiment confirmed that the commercial bee pollen was free from trichothecenes. The average recovery percentage of each trichothecene with respect to each internal standard was calculated from the results obtained with the 12 samples and is listed in Table 10. When HOVER was used as the internal standard, the values were much higher. The presence of derivatizable impurities in the pollen extract, despite cleanup, is probably responsible for reducing the efficiency in forming HOVER(HFB). In this case, DOVE was the better standard. However, a rigorous cleanup procedure is required for more accurate values when HOVER is used as the standard. The extraordinarily high values (over 200% in most instances) for T-2 in spiked bee pollen samples were due to interferences in the pollen. However, the identity of the interferents is presently unknown.

A dried papaya leaf was treated with 10 ml of warm methanol, kept immersed overnight, and decanted. A 50-µl aliquot was cleaned up, derivatized, analyzed, and found to be free of fusarium trichothecenes. Six different 50-µl aliquots of the extract were spiked with 10-100 ng of trichothecenes, cleaned up, and analyzed. These results are indicated in Table 10. All the trichothecenes, except DON, were recovered. Since the recoveries were consistent, with an introduced correction factor, the values could be applied for true samples. Both internal standards were considered adequate.

Similar experiments with spiked (blind) bee excrements were also conducted. The recovery percentages were calculated using the calibration data obtained from known spiked bee excrement samples. The measured recovery values of analytes in the blind samples were measured with at least 50% error and are probably due to insufficient cleanup of the samples.

Known amounts of DON, DAS, and T-2 were spiked on a blank (trichothecene-free) papaya leaf and left exposed in a bottle for 1 year. At the end of the year, the leaf was extracted with methanol. A $50-\mu 1$ aliquot was cleaned up, derivatized, and analyzed. The same amount was also derivatized and analyzed without cleanup. The results from the experiment are indicated in Table 11. Since the spiking was done elsewhere and the exact

Table 10. Recovery Data of Spiked Samples

			PERCENT RECOVERIES	COVERIES	
	Spike Range		LEAF		POLLEN
СОМРОИИВ	(ng)	DOVE	16-HOVER	DOVE	16-HOVER
3 _α -Hydroxyverrucarol	20-100	46	33	43	29
(Scirpenetriol)					
8в -Hydroxyverrucarol	:	51	38	98	153
8α -Hydroxyverrucarol	r	43	12	126	203
Verrucarol	=	20	34	79	. 140
Deoxynivalenol	=	*	•	88	153
Fasarinon-X	= .	54	42	66	164
Monoacetoxyscirpenol	₹ 	73	29	88	160
Diacetoxyscirpenol	=	22	27	127	205
HT-2 .	=	.63	48	47	72
1-2		6.2	41	*	* *
		W ings			

*Less than 2%

extremely higher value due to interferences.

Table 11. Recovery of Simple Trichothecenes from Leaf Sample after Prolonged Exposure

	Amount Spiked*	Amount Detected (µg)	ected (µg)
COMPOUND	(bn)	Unextracted	Extracted
Deoxynivalenol	lo ug	21.64	67.90
Diacetoxyscirpenol	ĸ	1.24	3.80
1-2	un.	2.36	8.18
HT-2	· .	0.12	99.0

*Given value. Exact spike amount unknown.

amount of spiking was unknown, the only helpful information obtained from this experiment was that even after a prolonged exposure period, trichothecenes could be recovered from samples and identified using developed analytical procedures.

Several blind samples were received.* Some of them were hydrolysates of the samples, expected to contain macrocyclic trichothecenes, and the others were fusarium fermentation products. A few representative examples are shown in Table 12. The samples were cleaned up over silica gel cartridges. The eluants were evaporated and the residues were dissolved in 1 ml of methanol. 1 to 2-µl aliquot of each of the samples was evaporated and treated with 100 ng of DOVE, derivatized as usual, and analyzed. quantification values of the analytes corroborated the other results* obtained by either isolating the compounds from larger amounts of samples or by measuring the toxicity of the samples.*

The chromatograms of the sample labeled AHIVP93 are indicated in Figure 3. The relative retention times (DOVE) of the identified compounds in the sample agreed with those of the standards. Cultures of fusarium fungi (Bristol Laboratories. Strain 37410-90) grown on bee pollen* (Figure 4) contained T-2 and HT-2 toxins. Their presence was confirmed by recording their NICI (scan range, m/z 200-960) mass spectra (Figures 5 and 6). Another fermentation product* also contained low amounts of T-2 and HT-2 toxins. Quantification was not made for this sample since it was not requested.* A confirmation run as shown in Table 7 was made, and the presence of T-2 was established unequivocally (Figure 7). However, the presence of HT-2 could not confirmed by observing at least five characteristic ions (Figure 8). Hence, it was concluded that the presence of HT-2 toxin in this sample is suspected but not confirmed.

4. CONCLUSIONS

The experiments indicate that several naturally occuring trichothecenes and related compounds could be detected simultaneously and analyzed by the GC/NICI-MS method with excellent sensitivity and precision. Femtogram quantities of fusarium mycotoxins could be detected by the SIM mode. Low quantities (1-5 pg) of these analytes were sufficient to definitively identify and confirm trichothecene presence by this process. The investigated internal standards (DOVE and HOVER) were adequate for detecting and quantifying the toxins, even in low picogram quantities. Over a range of 6 orders of magnitude, the relative intensities of these trichothecenes varied linearly with their intensities' relative amounts with respect to the internal standard. The silica-gel SEP-PAK cleanup procedure used seemed adequate in certain cases. With added cleanup steps specific for various matrices, this method could become highly

^{*}Personal communication with B. Jarvis of the University of Maryland (College Park, MD), 1983.

Table 12. Sample Analysis

Amount Sample	Compounds detected	Fraction derivatized	Amounts detected in		
			Analyzed volume (pg)	Derivatized volume (ng)	Total sample (µg)
AHIVP93 (50 ml)	Scirpentriol 8¤-Hydroxyverrucarol 16-Hydroxyverrucarol	1/1000	21.0 312.0 24.0	10.5 156.0 12.0	10.5 156.0 12.0
MV3116 (50 ml) Bee pollen fermentation	Verrucarol Verrucarol T-2 toxin	1/1000 1/2000	2418.0 18.0 2320.0	1209.0 9.0 1160.0	1209.0 9.0 2320.0
mixture (5 g) P8 (2.5 g)	HT-2 toxin 8B-Hydroxyverrucarol Verrucarol 9,10-Epoxyverrucarol	1/1000	90.0 42.0 14.0 34.0	45.5 21.0 7.0 17.0	90.0 21.0 7.0 17.0

Figure 3. RIC of Fermentation Product AHIVP93 (HFB)

Figure 4. Screening of Bee Pollen Fermentation Product

Figure 5. Confirmation of T-2 in Bee Pollen Fermentation Product by TIM $\frac{2}{2}$

Figure 6. Confirmation of HT-2 in Bee Pollen Fermentation Product by TIM

Figure 7. Confirmation of T-2 in Fermentation Broth by SIM

Figure 8. Confirmation of HT-2 in Fermentation Broth by SIM

beneficial for routinely analyzing real-world samples. The unknown samples are screened by SIM to detect 14 different simple trichothecenes simultaneously. When the analytes present are insufficient for confirmation by TIM, their presences are confirmed by the SIM mode, detecting at least five specific ions for each molecule. When combined with a cleanup procedure, this NICI method is a powerful tool for unambiguously identifying simple trichothecene mycotoxins and accurately quantifying real samples.

i valoritationi Liveritationi

Blank

LITERATURE CITED

- 1. Ishi, K. 4-Trichothecenes, Chemical, Biological and Tox-icological Aspects. Dev. Food Sci. 4, 7-19 (1983).
- 2. Jarvis, B. 4-Trichothecenes, Chemical, Biological and Toxicological Aspects. Dev. Food Sci. 4, 20-38 (1983).
- 3. Bamburg, J.R. In Microbial Toxins. p 207. S. Kadis, et. al., Eds. Academic Press, New York. 1971.
- 4. Cole, R.J., and Cox, R.H. Handbook of Toxic Fungal Metabolites. Academic Press, NY. 1981.
- 5. Rodrick, J.V., Hessestine, C.W., and Mehlman, M.A. Mycotoxins in Human and Animal Health. pp 189-340. 1st Edition. Pathotox Publishers, Park Forest, IL. 1977.
- 6. Steyn, P.S. Some New Mycotoxins. Pure Appl. Chem. <u>49</u>, 1771-1778 (1977).
- 7. Sarkisov, A.Ch., and Kuashrina, E.S. Publ. Min. Agric., Moscow (1948).
- 8. Bilar', V.I., and Pidoplisko, N.M. Toxigenic Microscopical Fungi. Naukova, Kiev. 1970.
- 9. Sarkisov, A.Ch. In Mycotoxicoses. p 216. Govt. Edit. Agric. Lit., Moscow (1972).
- 10. Bordon, W.L. Can. J. Bot. 30, 209 (1952).
- 11. Naumov, N.A. Tr. Biuro Mik Fitopat, Petrograd, USSR, 12, 1-216 (1916).
- 12. Wollenweber, H.W., and Reinking, O.A. Die Fusarien-ihre Beschreibung, Schadwirkung and Bekampfung. Paul Parey, Berlin, Germany. 1935.
- 13. Ueno, Y. Historical Background of Trichothecene Problems. Dev. Food Sci. 4, 1-6 (1983).
- 14. Ueno, Y. 4-Trichothecenes, Chemical, Biological and Toxicological Aspects. Dev. Food Sci. 4, 135-301 (1983).
- 15. Forsyth, D.M., Yoshizawa, T., Morooka, N., and Tuite, J. Emetic and Refusal Activity of Deoxy Nivalenol to Swine. Appl. Environ. Microbiol. 34, 547-552 (1977).
- 16. Burmeister, H.R., Vesonder, R.F., and Kwolek, W.F. Mouse Bioassay for Fusarium Metabolites: Rejection or Acceptance When Dissolved in Drinking Water. Appl. Environ. Microbiol. 39, 957-961 (1980).

- 17. Scott, P.M., Lau, P., and Kanhere, S.R. Gas Chromatography with Electron Capture and Mass Spectrometric Detection of Deoxynivalenol in Wheat and Other Grains. J. Assoc. Off. Anal. Chem. 64, 1364-1371 (1981).
- 18. Bennett, G.A., and Shotwell, O.L. J. Am. Oil. Chem. Soc. 56, 812-819 (1979).
- 19. Stahr, H.M., Lerdal, D., Hyde, W., and Pfeiffer, R. Analysis of Animal Feeds for Trichothecene Mycotoxins. pp 277-286. Proc. Annu. Meet. Am. Asso. Vet. Lab. Diagn. 24th Annual Proceedings. 1981.
- 20. Plattner, R.D., and Bennett, Glenn A. Rapid Detection of Fusarium Mycotoxins in Grains by Quadrupole Mass Spectrometry/Mass Spectrometry. J. Assoc. Off. Anal. Chem. 66, 1470-1477 (1983).
- 21. Ciegler, A., Kadis, S., and Ajl, S.J., Eds. Microbial Toxins. Volume 7. Academic Press, New York. 1971.
- 22. Purchase, I.F.H., Ed. Mycotoxins. Elsevier. 1974.
- 23. Palti, J. Toxigenic Fusaria, Their Distribution and Significance as Causes of Disease in Animals and Man. Paul Parey, Berlin, Germany. 1978.
- 24. Eaker, D., and Wadstrom, T., Eds. Natural Toxins. Plenum. 1980.
- 25. Riemann, H., ed. Food-Borne Infections and Intoxications. Academic Press, New York. 1979.
- 26. Scott, P.M. Assessment of Quantitative Methods for Determination of Trichothecenes in Grains and Grain-Products. J. Assoc. Off. Anal. Chem. 65, 876 (1982).
- 27. Haig, A.M. U.S. Department of State Special Report No. 98. Chemical Warfare in Southeast Asia and Afghanistan. Washington, D.C. March 1982.
- 28. Shultz, G.P. U.S. Department of State Special Report No. 104. Chemical Warfare in Southeast Asia and Afganistan: An Update. Washington, D.C. November 1982.
- 29. Rosen, R.T., and Rosen, J.D. Presence of Four Fusarium Mycotoxins and Synthetic Material in Yellow Rain. Evidence for the Use of Chemical Weapons in Laos. Biomed. Mass Spectrom. 9, 443-450 (1982).
- 30. Mirocha, C.J., Pawlosky, R.A., Chaherjee, K., Watson, S., and Hayes, W. Analysis for Fusarium Toxins in Various Samples Implicated in Biological Warfare in Southeast Asia. J. Assoc. Off. Anal. Chem. 66, 1485-1491 (1983).

- 31. Schuda, P.F., Potlock, S.J., and Wannemacher, R.W., Jr. Trichothecenes. 1: The Synthesis of 4-Deoxyverrucarol from Verrucarol and Diacetoxyscirpenol. J. Nat. Prod. 47 (3), 514-519 (1984).
- 32. Jarvis, B.B., Stahly, G.P., and Pavanasasivam, G. Antileukemic Compounds Derived from the Chemical Modification of Macrocyclic Trichothecenes. 7. Derivatives of Verrucarin A. Med. Chem. 23, 1054-1058 (1980).
- 33. Jarvis, B.B., and Pavanasasivam, G. Appl. Environ. Microbio. $\underline{46}(2)$, 480-483 (1983).
- 34. Munson, M.S., and Field, F.H. J. Amer. Chem. Soc. <u>88</u>, 4337 (1966).