The University of Edinburgh School of Physics and Astronomy

Honours courses

Physical Data and Mathematical Formulae Sheet -

SI Base Units

length	metre	\mathbf{m}
mass	kilogram	kg
time	second	\mathbf{S}
electric current	ampère	A
thermodynamic temperature	kelvin	K
luminous intensity	candela	cd
amount of substance	mole	mol

SI Derived Units

frequency (cycles per second)	hertz	Hz
force	newton	N
energy	joule	J
power	watt	W
pressure	pascal	Pa
electric charge	coulomb	\mathbf{C}
electric potential	volt	V
electric field	volt per metre	${ m Vm^{-1}}$
magnetic flux	weber	Wb
magnetic field B	tesla	Τ
magnetising field H	ampère per metre	${ m Am^{-1}}$
capacitance	farad	F
inductance	henry	Η
resistance	ohm	Ω

Prefixes

PLEASE DO NOT SCRIBBLE ON THIS LEAFLET OR REMOVE IT FROM THE EXAMINATION ROOM.

Other units in common use

1 micron	(μ)	$=10^{-6}$ m
1 angstrom	(Å)	$=10^{-10}$ m
1 fermi	(fm)	$=10^{-15}$ m
1 barn	(bn)	$=10^{-28}$ m ²
1 electron volt	(ev)	$=1.60 \times 10^{-19} \text{J}$
1 gauss	(G)	$=10^{-4}$ T
1 unified atomic mass unit on $^{12}\mathrm{C}$ scale	(u)	$= 1.66 \times 10^{-27} \text{kg} = 931.494 \text{MeV/c}^2$

Physical Constants

Speed of light in vacuum	c	3.00	$\times 10^8$	$\rm ms^{-1}$
Gravitational constant	G_N	6.67	$\times 10^{-11}$	$\mathrm{N}\mathrm{m}^2\mathrm{kg}^{-2}$
Planck's constant	h	6.63	$\times 10^{-34}$	$\mathrm{J}\mathrm{s}$
Planck's constant, reduced form	$\hbar = h/2\pi$	1.05	$\times 10^{-34}$	$\mathrm{J}\mathrm{s}$
Electronic charge	e	1.60	$\times 10^{-19}$	С
Electronic mass	m_e	9.109	$\times 10^{-31}$	kg
Proton mass	m_p	1.673	$\times 10^{-27}$	kg
Neutron mass	m_n	1.675	$\times 10^{-27}$	kg
Fine structure constant	$\alpha = e^2/4\pi\epsilon_0\hbar c$	7.30	$\times 10^{-3} \text{ or } (137.04)^{-1}$	
Rydberg constant	$R_{\infty} = \alpha^2 m_e c / 4\pi \hbar$	1.10	$\times 10^7$	m^{-1}
Bohr radius	$a_0 = 4\pi\epsilon_0 \hbar^2 / m_e e^2$	5.29	$\times 10^{-11}$	m
Bohr magneton	$\mu_B = e\hbar/2m_e$	9.27	$\times 10^{-24}$	$\mathrm{J}\mathrm{T}^{-1}$
Nuclear magneton	$\mu_N = e\hbar/2m_p$	5.05	$\times 10^{-27}$	$ m JT^{-1}$
Compton wavelength of electron	$\lambda_e = h/m_e c$	2.43	$\times 10^{-12}$	m
Thomson electron cross section	σ_T	6.65	$\times 10^{-29}$	m^2
Acceleration due to				
gravity at sea level	g	9.81		${ m ms^{-2}}$
Standard atmospheric pressure		1.01	$\times 10^5$	${ m Nm^{-2}}$
Molar volume of ideal gas at STP		2.24	$\times 10^{-2}$	$\mathrm{m}^{3}\mathrm{mol}^{-1}$
Ideal gas constant	R	8.31		$J K^{-1} mol^{-1}$
Avogadro's constant	N_A	6.02	$\times 10^{23}$	mol^{-1}
Boltzmann's constant	$k = R/N_A$	1.38	$\times 10^{-23}$	$\rm J~K^{-1}$
Stefan-Boltzmannconstant	σ	5.67	$\times 10^{-8}$	${ m W}{ m m}^{-2}{ m K}^{-4}$
Radiation energy density constant	a	7.566	$\times 10^{-16}$	${ m J}{ m m}^{-3}{ m K}^{-4}$
Faraday's constant	$F = eN_A$	9.65	$\times 10^4$	$\mathrm{C}\mathrm{mol}^{-1}$
Vacuum permeability	μ_0	4π	$\times 10^{-7}$	$N A^{-2}$
Vacuum permittivity	$\epsilon_0 = 1/\mu_0 c^2$	8.85	$\times 10^{-12}$	$\mathrm{F}\mathrm{m}^{-1}$
Intrinsic impedance of vacuum	$Z_0 = \mu_0 c$	3.77	$\times 10^2$	Ω

General results

Base of natural logarithms: e	=	2.718	
$\ln 10$	=	2.303	
1 radian	=	57.3°	
1 arcsec	=	4.84814×10^{-6}	radians

Relations used in vector calculus

$$\underline{A} \times (\underline{B} \times \underline{C}) = (\underline{A} \cdot \underline{C})\underline{B} - (\underline{A} \cdot \underline{B})\underline{C}$$

If ψ and U are scalar fields and \underline{F} is a vector field

$$\begin{array}{rcl} \underline{\nabla} \cdot (\psi \underline{F}) & = & \underline{F} \cdot \underline{\nabla} \psi + \psi \underline{\nabla} \cdot \underline{F} \\ \underline{\nabla} \times (\psi \underline{F}) & = & \psi \underline{\nabla} \times \underline{F} + (\underline{\nabla} \psi) \times \underline{F} \\ \underline{\nabla} \times (\underline{\nabla} \times \underline{F}) & = & \underline{\nabla} (\underline{\nabla} \cdot \underline{F}) - \underline{\nabla}^2 \underline{F} \\ \int \int \int (U \underline{\nabla}^2 \psi - \psi \underline{\nabla}^2 U) dV & = & \int \int (U \underline{\nabla} \psi - \psi \underline{\nabla} U) \cdot \underline{dS} \end{array}$$

The Laplacian operator ∇^2 acting on a scalar field U

Cartesian coordinates (x, y, z):

$$\nabla^2 U = \frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}$$

Cylindrical coordinates (ρ, ψ, z) :

$$\nabla^2 U = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial U}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 U}{\partial \phi^2} + \frac{\partial^2 U}{\partial z^2}$$

Spherical polar coordinates (r, θ, ϕ) :

$$\nabla^2 U = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial U}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial U}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 U}{\partial \phi^2}$$

Astrophysical constants

Earth mass	M_{\oplus}	5.984×10^{24}	kg
Earth radius	R_{\oplus}	6.378×10^6	m
Solar mass	M_{\odot}	1.989×10^{30}	kg
Solar radius	R_{\odot}	6.960×10^{8}	m
Solar luminosity	L_{\odot}	3.862×10^{26}	W
Solar effective temperature	$T_{eff_{\odot}}$	5780	K
H recombination coefficient at 8000K	α_{rec}	3.0×10^{-19}	$\mathrm{m^3s^{-1}}$
H photoionization cross section	σ_{pi}	6.0×10^{-22}	m^2
Astronomical unit	AU	1.496×10^{11}	\mathbf{m}
1 parsec	pc	3.262	light years
1 parsec	pc	3.086×10^{16}	\mathbf{m}
1 year		3.156×10^7	\mathbf{S}

Masses of fundamental particles (in MeV/c^2 unless stated)

$\mathbf{L}\mathbf{e}$	\mathbf{ptons}	Quarks	(approx. GeV/c^2)	Boson	$\mathbf{s} \; (\mathrm{GeV/c^2})$
e	0.511	u	0.003	W^{\pm}	80.39
μ	105.7	d	0.006	Z	91.19
au	1777.0	s	0.1	Higgs	125.9
		c	1.3		
		b	4.3		
		t	173.3		

Mesons		Baryons	
π^\pm	139.6	p	938.3
π^0	135.0	n	939.6
K^{\pm}	493.7	Λ	1116
K^{0}	497.7	Σ^+	1189
η	547.8	Σ^-	1197
ρ	775.8	Σ^0	1193
ω	782.6	Δ	1232
$\mathrm{K}^{*\pm}$	891.7	Ξ	1315
K^{*0}	896.1	Ξ^-	1321
η'	957.8	Σ^{*+}	1383
ϕ	1019	Σ^{*0}	1384
J/ψ	3097	\sum^{*-}	1387
$\Upsilon(1S)$	9460	\(\pi^{*0}\)	1532
D^0	1865	Ξ*−	1535
B^0	5279	Ω –	1672

PLEASE DO NOT SCRIBBLE ON THIS LEAFLET OR REMOVE IT FROM THE EXAMINATION ROOM.

updated 11/04/14 P4