1 Структурное обучение

Заданы множества \mathcal{X}, \mathcal{Y} и выборка наблюдений $(x_t, y_t)_{t=1}^n$. Задачей структурного обучения (SL) [1] является построение отображения $f: \mathcal{X} \to \mathcal{Y}$.

Рассматривается следующий класс алгоритмов решения задачи SL. Задана $\partial uckpumuhahmhas$ $\phi yhkuus$ $Q(x,y,\mathbf{w})$, где \mathbf{w} — вектор параметров. Значением отображения f является решение задачи максимизации дискриминантной функции Q по y:

$$f(x, \mathbf{w}) = \arg\max_{y \in \mathcal{Y}} Q(x, y, \mathbf{w}). \tag{1}$$

Отметим, что отображение f, определяемое уравнением (1), зависит от переменной x, а также от вектора параметров \mathbf{w} . Оптимальные параметры \mathbf{w} определяются из предположения о том, что значения отображения $f(x_t, \mathbf{w})$ на объектах обучающей выборки x_t должны быть структурно близкими к значениям переменной y_t .

Другими словами, на множестве \mathcal{Y} определена функция потерь $\Delta: \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$, где $\Delta(y,\hat{y})$ определяет значение потери предсказания \hat{y} при условии, что истинным значением является y. Для нахождения оптимальных параметров **w** рассматривается задача минимизации эмпирического риска

$$L = \sum_{i=1}^{n} \Delta(y_t, f(x_t, \mathbf{w})), \tag{2}$$

Стандартные подходы решения задачи структурного обучения. Для решения задачи (2) в [1] предлагается следующая методология. Предполагается, что дискриминантная функция линейно зависит от параметров, $Q(x,y,\mathbf{w}) = \langle \mathbf{w}, \Psi(x,y) \rangle$, где вектор $\Psi(x,y)$ является совместным признаковым описанием объекта x и целевой переменной y.

Поскольку целевая функция в (2) не является выпуклой, предлагается оптимизировать ее выпуклую верхнюю грань:

$$\Delta(y_t, f(x_t)) \le \max_{y \in \mathcal{Y}} (\Delta(y_t, y) + Q(x_t, y, \mathbf{w}) - Q(x_t, y_t, \mathbf{w})).$$

Минимизация этой функции совместно с рассмотрением линейной дискриминантной функции приводит к структурному методу опорных векторов [2].

2 Предсказание структуры суперпозиций

Структура на множестве суперпозиций. Рассматривается задача предсказания структуры суперпозиций (SSF) — задача построения отображения $f: x \mapsto y$, где целевая переменная y является композицией базисных функций $y = h_0 \circ h_{k_1} \circ ... \circ h_{k_y}$, выбранных с возвращением из множества базисных функций $\mathcal{H} = \{h_0, h_1, ..., h_r\}$. Каждой базисной функции h_k соответствует арность $a_k \geq 0$. Крайним левым элементом суперпозиции y

является функция $h_0: h_0(x) = x$, имеющая арность $a_0 = 1$. Кроме того, предполагается, что существует непустое подмножество $\mathcal{H}_0 \subset \mathcal{H}$ функций нулевой арности, называемых свободными переменными.

Поставим в соответствие целевой переменной y крашеное дерево $\Gamma = (V, E)$. На множестве вершин задана функция раскраски $h: V \to \mathcal{H}$. Цвет h(v) вершины h(v) является базисной функцией и определяет количество дочерних вершин у v: оно совпадает с арностью функции h(v). Таким образом, допустимыми деревьями являются деревья, имеющие свои корнем вершину $v_0: h(v_0) = h_0$, в листьях содержащие функции нулевой арности, а количество дочерних вершин для всех остальных элементов совпадает с соответствующими арностями.

Распределение на цветах. Рассматривается следующее предположение о распределении данных. Предполагается, что на множестве цветов-базисных функций задано распределение $\mathbf{w}, w_{ij} \equiv w(h_i, h_j)$ — вероятность наблюдать цвет h_j в виде цвета дочерней вершины для вершины с цветом h_i .

Принимается гипотеза «независимости от посторонних вершин»: вероятность того, что вершина v в дереве Γ имеет цвет h_j , зависит только от цвета родителя этой вершины $h(v_p)$: $p(h(v) = h_j \mid \Gamma \setminus v) = p(h(v_p), h(v) = h_j)$.

Для определенного таким образом распределения выпишем функцию правдоподобия дерева y, которая в силу независимости раскладывается в произведение вероятностей ребер:

$$P(y) = \prod_{(i,j)\in E} w(h(v_i), h(v_j)).$$

В качестве дискриминантной функции $Q(x,y,\mathbf{w})$ принимается правдоподобие дерева P(y):

$$Q(x, y, \mathbf{w}) = \prod_{(i,j)\in E} w(h(v_i), h(v_j)).$$

Оптимальное значение целевой переменной y задается деревом, максимизирующим дискриминантную функцию:

$$f(x, \mathbf{w}) = \arg\max_{y \in \mathcal{Y}} \prod_{(i,j) \in E} w(h(v_i), h(v_j)).$$
(3)

Для определения оптимальных параметров w_{ij} определим функцию потери $\Delta(y,\hat{y})$ в виде количества несовпадающих элементов бинарных векторов \mathbf{y} и $\hat{\mathbf{y}}$:

$$\Delta(y,\hat{y}) = \sum_{i,j} |y_{ij} - \hat{y}_{ij}|,\tag{4}$$

где элемент вектора \mathbf{y} , индексируемый y_{ij} , равен 1 в случае, если последовательность цветов (h_i,h_j) принадлежит множеству ребер E_y дерева y, и равен 0 в противном случае. Отметим, что размерность вектора \mathbf{y} равна $|\mathcal{H}|^2$ и совпадает с размерностью вектора \mathbf{w} .

Оптимальные параметры $\hat{\mathbf{w}}$ должны минимизировать функцию эмпирического риска (4). Отметим, что в случае, когда вектор \mathbf{w} совпадает с вектором \mathbf{y} , задача максимизации дискриминантной функции (3) в качестве решения содержит элемент y_i . Исходя из этих соображений, будем искать параметры w_{ij} в виде функций от элемента x: $w_{ij} = \theta_{ij}(x)$ с помощью решения задачи минимизации

$$\hat{\theta}_{ij} = \arg\min_{\theta_{ij}} \|y_{ij} - \theta_{ij}(x)\|.$$

Оценка параметров. Исходя из вышесказанного, задача прогнозирования структуры суперпозиций состоит из двух последовательных этапов.

1. Оценка параметров распределения $\hat{\mathbf{w}}$ путем минимизации отклонения параметра $w_{ij} = \theta_{ij}(x)$ от элемента вектора y_{ij} :

$$\hat{\theta}_{ij} = \arg\min_{\theta_{ij}} \|y_{ij} - \theta_{ij}(x)\|. \tag{5}$$

2. Поиск оптимального элемента f(x), максимизирующего дискриминантную функцию (3):

$$f(x, \hat{\mathbf{w}}) = \arg \max_{y \in \mathcal{Y}} \prod_{(i,j) \in E} \hat{w}(h(v_i), h(v_j)).$$

Для решения задачи (5) предлагается стандартный метод многоклассовой классификации...

Для решения задачи (3) предлагается алгоритм на основе динамического программирования. Утверждается, что алгоритм находит оптимальное решение за $O(|\mathcal{H}|^3)$ вычислений.

Алгоритм максимизации дискриминантной функции. Алгоритм основывается на принципе динамического программирования. На шаге k алгоритм хранит массив из $|\mathcal{H}|$ элементов, элемент i которого содержит стоимость оптимального дерева Γ_i^k с корнем в вершине, раскрашенной h_i , с количеством вершин не более k.

На шаге k+1 для каждой базисной функции $h_{i'}$ выполняется процедура присоединения корня $(h_{i'},\Gamma_i^k)$ для всех деревьев $\Gamma_i^k, i=1,...,|\mathcal{H}|$. Если максимальная стоимость построенных деревьев превосходит стоимость дерева $\Gamma_{i'}^k$, то происходит замена оптимального дерева $\Gamma_{i'}^k$ на дерево $\Gamma_{i'}^{k+1} \equiv (h_{i'},\Gamma_i^k)$ с максимальной стоимостью. Иначе дерево остается прежним, $\Gamma_{i'}^{k+1} \equiv \Gamma_i^k$.

Если после итерации k+1 не произошло ни одной замены дерева, то алгоритм останавливается, а его решением является наилучшее из деревьев с присоединенным корнем (h_0, Γ_i^k) . Утверждается, что количество шагов k на превосходит количество базисных функций $k \leq O(|\mathcal{H}|)$. На каждом шаге алгоритм выполняет $O(|\mathcal{H}|^2)$ проверок.

Список литературы

- [1] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hofmann, and Yasemin Altun. Large margin methods for structured and interdependent output variables. In *Journal of Machine Learning Research*, pages 1453–1484, 2005.
- [2] Chun-Nam John Yu and Thorsten Joachims. Learning structural syms with latent variables. In *Proceedings of the 26th Annual International Conference on Machine Learning*, pages 1169–1176. ACM, 2009.