

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 4:
C08L 27/06, 08/10, 31/06
C08L 33/04, 33/08, 33/12
C08L 33/20, 33/26, 51/04
C08L 55/02

(11) International Publication Number: WO 89/ 05836
A1
(43) International Publication Date: 29 June 1989 (29.06.89)

(21) International Application Number: PCT/US87/03311 Pt

(22) International Filing Date: 14 December 1987 (14.12.87)

(71) Applicant: THE DOW CHEMICAL COMPANY [US/ US]; 2030 Dow Center, Abbott Road, Midland, MI 48640 (US).

(72) Inventor: HENTON, David, E.; 5409 Woodview Pass, Midland, MI 48640-1967 (US).

(74) Agent: MACLEOD, Roderick, B.; The Dow Chemical Company, P.O. Box 1967, Midland, MI 48641-1967 (US).

(81) Designated States: AT (European patent), BE (European patent), CH (European patent), DE (European patent), FR (European patent), GB (European patent), IT (European patent), JP, LU (European patent), NL (European patent), SE (European patent).

Published

With international search report.

(54) Title: ABS-COMPOSITIONS HAVING TRIMODAL RUBBER PARTICLE DISTRIBUTIONS

(57) Abstract

Rubber-modified styrene-acrylonitrile polymers (ABS) having three different types of rubber particles. One type is a small, emulsion-produced particle. The second is a large emulsion-produced particle. The third is a large, mass-produced particle containing from 10 to 85 percent by weight graft and occlusions based on total particle weight. Such compositions exhibit good combinations of toughness and gloss.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT AU BB BE BG BJ BR CF CG CH CM	Austria Australia Barbados Belgium Bulgaria Benin Brazil Central African Republic Congo Switzerland Cameroon	FR GA GB HU IT JP KP	France Gabon United Kingdom Hungary Italy Japan Democratic People's Republic of Korea Republic of Korea Liechtenstein Sri Lanka	ML MR MW NL NO RO SD SE SN SU TD	Mali Mauritania Malawi Netherlands Norway Romania Sudan Sweden Senegal Cohed

ABS COMPOSITIONS HAVING TRIMODAL RUBBER PARTICLE DISTRIBUTIONS

It is well known in the art that various relatively rigid and/or brittle interpolymers of monovinylidene aromatic monomers with ethylenically 5 unsaturated nitrile monomers can be made more impact resistant by the inclusion of amounts of various types of elastomeric materials (rubbers) into a matrix or continuous phase of said interpolymer material. 10 Usually, the elastomeric materials are in the form of discrete particles, such particles having amounts of the matrix interpolymer, or an inter- or homopolymer similar thereto, graft-polymerized to the particles. These types of rubber-modified, impact-resistant 15 polymeric compositions are commonly known and referred to as graft copolymers or polyblends. Among the best known of these types of compositions are the ABS or ABS-type compositions. Compositionally, ABS or ABStype compositions generally comprise a combination of 20 an elastomer usually containing polymerized butadiene, with a rigid interpolymer of monovinylidene aromatic monomer with ethylenically unsaturated nitrile monomer. Structurally, ABS or ABS-type compositions usually 25 consist of the rigid, matrix or continuous phase having

20

25

30

35

dispersed therein particles of the elastomer, such particles usually having grafted thereto amounts of the rigid interpolymer or a similar inter- or homopolymer.

It is also well known in the art that the physical properties of these types of compositions are greatly affected by the relative amounts of elastomer particles having different sizes and particle structures. Larger rubber particles having diameters greater than about 0.5 micron (μ) contribute greatly to 10 impact resistance but tend to reduce the gloss of articles formed or molded from compositions containing them especially in the case of the below-described mass particles. On the other hand, when smaller modifying-15 rubber particles are used in polymer compositions, articles formed therefrom tend to be glossier but are less impact resistant than if the same amount of rubber was used in the form of larger particles.

Furthermore, concerning the structures of the individual rubber particles (i.e., rubber particle morphology) there are well-known advantages and disadvantages accompanying the use of either of the two main rubber-particle types in rubber-modified polymer compositions. It is generally believed that grafted rubber particles containing occlusions of matrix. polymer therein, one of the two main rubber-particle types, provide more impact resistance than the same amount of rubber in the form of similarly grafted, solid rubber particles, the other main particle type. Such grafted, occlusion-containing rubber particles are usually formed and grafted in a mass-type or masssuspension-type polymerization process where a previously-produced rubber is dissolved in an amount of polymerizable monomer or in a mixture or solution of

polymerizable monomer(s) with optional diluents, which monomer(s) are thereafter polymerized. Occlusion—containing particles, produced in such mass, mass—solution or mass—suspension processes or variations of these processes are hereafter referred to as "mass particles". It is difficult, however, using available types of rubber and mass process equipment to produce groups of mass particles having average diameters less than 0.5µ.

10

15

20

25

5

particles present in rubber-modified polymeric compositions can have a very detrimental effect on the gloss of articles formed therefrom. In spite of the disadvantages of mass particles, however, they are a very desirable constituent of rubber-modified polymer compositions. One basis for their desirability is that, probably due to their occluded structure, they provide a great deal of impact resistance for the amount of rubber which is actually included. Other desirable facets of including mass particles in rubber-modified polymer compositions include the ability to utilize a wide variety of rubber compositions and types and the economy and efficiency of the mass-type processes by which they are formed.

The other main type of rubber particle morphology (i.e., the above-mentioned "solid" or non-occluded rubber particles) is usually achieved via emulsion polymerization of the rubber in an aqueous latex. After the rubber is made, monomers which are polymerizable and graftable (e.g., styrene and acrylonitrile) are usually added to the rubber-containing latex and polymerized to form the graft portion as well as amounts of matrix polymer. The non-

10

15

occluded type of rubber particles, produced via emulsion polymerization process, are hereinafter referred to as "emulsion-particles". When these emulsion particles have been grafted with a different, relatively rigid polymer, but still have a high rubber concentration, at least about 30 weight percent or so, these compositions are very suitable for blending with additional amounts of the same or different rigid polymer, optionally containing additional amounts of rubber, to achieve desired rubber contents in the resultant compositions. Such blendable intermediates are often referred to as "grafted rubber concentrates" or "GRC's" and can be used to produce a wide variety of rubber-modified polymer compositions.

Under most circumstances, however, emulsion polymerization techniques are generally economically feasible for the production of rubber particles having diameters less than about 0.25µ or so. Such particles 20 must usually be agglomerated or coagulated in some way before, during and/or after grafting in order to achieve rubber particles having diameters greater than about 0.5µ. Agglomerating and coagulating techniques 25 are well known in the art. See, for example, U.S. Patents 3,551,370; 3,666,704; 3,956,218 and 3,825,621; all of which are included herein by reference. A particularly desirable technique for the controlled agglomeration of the particles of an emulsion-prepared 30 rubber in an aqueous dispersion is taught in U.S. Patent Application Serial No. 350,849, filed February 2, 1982, entitled "Particle Agglomeration in Rubber Latices" by D. E. Henton and T. M. O'Brien, which application is incorporated herein by reference. 35

As is obvious from the above discussion, and well known in the art, emulsion polymerization techniques are well-suited for preparation of smaller rubber particles while mass-type processes or agglomeration of smaller, emulsion particles can be used to achieve large particle sizes.

5

10

15

20

As is also generally known in the art, there are other individual characteristics of rubber particles, once the desired size has been determined, which can be conveniently and separately controlled to optimize certain properties of the rubber-modified polymer compositions to which they are added. Some parameters which are subject to quite wide variation to affect the physical properties of the resultant compositions include the molecular weight of the mass rubber, the degree to which either mass or emulsion rubber is cross-linked and the amounts and types of different polymers which are grafted to the particles.

In view of these phenomena observed in the production of ABS and ABS-type compositions, a great deal of effort has gone into achieving optimized physical properties by tailoring the rubber particle 25 distributions (i.e., the sizes and types of rubber particles and the amounts of different size and/or type rubber particles) in the ABS and ABS-type compositions. See, for example, representative U.S. Patents 3,509,237; 3,576,910; 3,652,721; 3,663,656; 3,825,621; 30 3,903,199; 3,903,200; 3,928,494; 3,928,495; 3,931,356; 4,009,226; 4,009,227; 4,017,559; 4,221,883; 4,224,419; 4,233,409; 4,250,271 and 4,277,574; wherein various "bimodal" particle size distributions are disclosed. As 35 used in the art and herein, a composition having a "bimodal" particle size distribution contains two

distinct groups of rubber particles, each group having a different average particle size.

The teachings of most of these patents can be broadly characterized as teaching that gloss and impact 5 resistance are inversely related and that a gain in one is usually achieved only with a loss in the other. Most of them teach that a substantial percentage of the rubber particles must be of the small, emulsion-10 produced type to yield satisfactory, glossy, impactresistant ABS and ABS-type compositions. important, however, is the fact that none of them teach or suggest that small, emulsion-prepared particles can advantageously be combined with both mass-produced 15 large particles and agglomerated, emulsion-produced large particles to produce compositions having improved impact resistance and good gloss.

20 provide rubber-modified polymeric compositions, comprising mass rubber particles, having good combinations of gloss and impact-resistance. Another object of the present invention is to provide rubber-modified polymeric compositions having improved toughness without a large sacrifice of gloss. It is also an object to provide rubber-modified polymer compositions having very high gloss and good toughness. It would also be desirable to have rubber-modified polymer compositions wherein good toughness could be obtained while gloss is minimized.

These objects and other advantages are achieved in an improved rubber-modified, impact-resistant polymeric composition comprising:

(a) a matrix comprising an interpolymer comprising monovinylidene aromatic monomer and ethylenically unsaturated nitrile monomer polymerized therein; and

5

10

15

- (b) dispersed in such matrix in the form of discrete particles, from about 5 to about 40 weight percent, based on weight polymeric composition, of elastomeric material (rubber), wherein the improvement comprises the dispersed rubber comprising the following three rubber components:
- (1) a small-particle rubber component being from about 1 to about 94 weight percent of the rubber, the particles of this component having a volume average diameter of from about 0.05 to about 0.25 microns (µ);
- (2) a large emulsion particle rubber component being from about 1 to about 80 weight percent of the rubber, the particles of this component having a volume average diameter of from about 0.4 to about 2µ; and
 - (3) a large mass particle rubber component being from about 5 to about 95 weight percent of the rubber, the particles of this component having a volume average diameter of from about 0.5 to about 10µ.

The present invention comprises two essential elements: (a) the monovinylidene aromatic/ethylenically unsaturated nitrile interpolymer in the matrix or continuous phase and (b) the particulate elastomeric material (rubber) dispersed in the matrix, the elastomeric material in turn comprising three components. In addition, there is generally an amount of so-called "superstrate" polymer, be it interpolymer or homopolymer, graft polymerized or grafted onto the

rubber particles or substrate. There is also an amount of polymer occluded within the mass particles in addition to the amounts grafted thereto. It should be noted that as used herein the terms "polymer" and "polymerization" are generic, and can include either or both of the more specific cases of "homo- and interpolymer" and "homo- and interpolymerization", respectively.

10 The matrix or continuous phase of the present invention (i.e. the non-elastomeric, non-grafted and non-occluded portion) consists at least principally of an interpolymer comprising polymerized therein monovinylidene aromatic monomer and ethylenically unsatu-15 rated nitrile monomer. Since the most common example of these interpolymers is poly(styrene-acrylonitrile), also known as SAN, these compositions are generically known as SAN-type compositions or more simply as SAN. In general, the matrix portion of the present invention 20 comprises at least about 50 percent by weight, preferably at least about 65 percent by weight, more preferably at least about 90 percent by weight of the interpolymer comprising monovinylidene aromatic and 25 ethylenically unsaturated nitrile monomers polymerized The balance of the matrix volume can be made up of (1) comonomers interpolymerized into the interpolymer comprising monovinylidene aromatic and ethylenically unsaturated nitrile monomers polymerized 30 therein; (2) additional non-elastomeric polymeric material combined therewith and/or (3) other fillertype materials.

As is well known in the art, as the molecular weight of matrix polymer (as well as that of the grafted polymer) increases, the toughness of the

resultant rubber-modified polymer composition increases while the gloss and flow tend to be decreased.

It has been found that the weight average molecular weight (Mw) of all of the matrix (ungrafted) 5 polymer, from all sources should be from about 40,000 to about 300,000, preferably from about 70,000 to about 200,000. In other words, the Mw's of the ungrafted, unoccluded polymer included in the present rubber-10 modified polymer compositions; which amounts of polymer (a) can be produced during the grafting of the small particles, (b) can be produced during the grafting of the large emulsion particles, (c) can be produced during the grafting of the large mass particles and/or 15 (d) can be from other sources of ungrafted matrix polymer; will average out to be within the desired range.

Exemplary of the monovinylidene aromatic hydro-20 carbons which, in polymerized form, may be included in compositions according to the present invention are styrene; alpha-alkyl monovinylidene monoaromatic compounds (e.g., alpha-methylstyrene, alphaethylstyrene, alpha-methylvinyltoluene, alpha-methyl 25 dialkylstyrenes, etc.); ring-substituted alkyl styrenes (e.g., ortho-, meta-, and paravinyl toluene; oethylstyrene; p-ethylstyrene; 2,4-dimethylstyrene; ptertiarybutyl styrene; etc.); halostyrenes (e.g., ochlorostyrene, p-chlorostyrene, o-bromostyrene, 2,4-30 dichlorostyrene, etc.); haloalkylstyrenes (e.g., 2chloro-4-methylstyrene, 2,6-dichloro-4-methylstyrene, etc.); vinyl naphthalene; vinyl anthracene, etc. The alkyl substituents generally have 1 to 4 carbon atoms 35 and may include isopropyl and isobutyl groups. If so

desired, mixtures of such monovinylidene aromatic monomers may be employed.

be included are acrylonitrile, methacrylonitrile, ethacrylonitrile, and mixtures thereof. The unsaturated nitrile is generally employed in the matrix interpolymer in an amount of from about 5 to about 50, preferably from about 15 to about 35 weight percent based on the total weight of monovinylidene aromatic monomer and ethylenically unsaturated nitrile monomer employed in preparing the interpolymer containing those two monomers.

15 In addition to monovinylidene aromatic monomers and ethylenically unsaturated nitrile monomers, various additional monomers may be desirably included, in polymerized form, in the rubber-modified polymer .. compositions according to the present invention. 20 Exemplary of such additional monomers are conjugated 1,3 dienes (e.g., butadiene, isoprene, etc.); alpha- or beta-unsaturated monobasic acids and derivatives thereof (e.g., acrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, 25 methacrylic acid and the corresponding esters thereof such as methyl methacrylate, etc., acrylamide, methacrylamide); vinyl halides such as vinyl chloride, vinyl bromide, etc.; vinylidene chloride, vinylidene 30 bromide, etc.; vinyl esters such as vinyl acetate, vinyl propionate, etc.; dialkyl maleates or fumarates such as dimethyl maleate, diethyl maleate, dibutyl maleate, the corresponding fumarates, etc. As is known in the art, the amount of these comonomers which may be 35 included will vary as the result of various factors. The amount of such monomers employed will generally be less than about 10 weight percent based on the total weight of the monomers employed in preparing the non-rubber, polymeric portions of the rubber-reinforced product.

5

10

The various includable monomers can be incorporated into compositions according to the present invention in any or all of several ways. For example, one or more of the additional monomers may be interpolymerized into monovinylidene aromatic/ethylenically unsaturated nitrile interpolymer. One or more of the includable monomers can be graft polymerized onto, and in the case of mass particles, polymerized and occluded within, the rubber particles. In addition, one or more of the includable monomers can be otherwise polymerized into polymeric components which can be combined into rubber-modified polymer compositions according to the present invention.

20

25

15

In one embodiment of the present invention, it has been found that methyl methacrylate can advantageously be included in compositions according to the present invention, in polymerized form, in any or all of the above-described manners in amounts of from about 1 to about 40 weight percent based on the total weight of the polymerized monovinylidene aromatic, ethylenically unsaturated nitrile and methyl methacrylate monomers present therein in matrix, grafted and/or occluded polymer.

30

It may also be desirable to include in the present ABS or ABS-type compositions amounts of other polymers and/or copolymers such as polymers and/or

copolymers of phenylene oxide, polycarbonates and polyester polycarbonates.

As will be readily appreciated, superstrate polymer, grafted to the rubber particles and 5 interpolymer present in the matrix can have the same or different compositions as long as they are compatible. For the purposes of the present invention, an interpolymer in the matrix and a different graft 10 polymer are considered compatible if a blend of the graft polymer with the matrix interpolymer would displace the glass transition temperature (Tg) of the matrix interpolymer. Preferentially, a blend of a graft interpolymer with a compatible matrix 15 interpolymer exhibits a single Tg. For example, it has been found that both polymethylmethacrylate and poly(methyl methacrylate-ethyl acrylate) are suitably compatible with SAN and SAN-type polymers. The Tg of a composition is advantageously measured using a 20 differential scanning calorimeter. With this in mind, the grafted polymer can be prepared from one or more of the monomers which are described above as suitable for inclusion into compositions according to the present 25 invention. Preferably, however, said grafted polymer is an interpolymer compositionally similar to the matrix interpolymer.

The various techniques suitable for producing
matrix polymer and the desired grafted (and occluded)
polymer are well known in the art. Examples of these
known polymerization processes include mass, masssolution, mass-suspension, suspension and emulsion
polymerization processes as well as other modifications
and/or combinations of such processes. See, for
example, U.S. Patents 3,509,237; 3,928,494; 4,239,863;

4,243,765; and 4,250,271; which are incorporated herein by reference and teach such processes. As is obvious and well known in the art, the same reaction that is grafting homo- or interpolymer onto one or more of the rubber components can advantageously be used to produce 5 all or part of a corresponding ungrafted homo- or interpolymer for the matrix portion. It should be noted that any production of grafted polymer, in most cases, inherently produces small amounts of ungrafted 10 (i.e. matrix) polymer. Advantageously (1) the small, preferably emulsion, particles and large emulsion particles are grafted at the same time with monovinylidene aromatic and ethylenically unsaturated nitrile monomers and produce at the same time a small 15 amount of ungrafted SAN or SAN-type interpolymer; (2) the grafting of the mass particles is done with the same or different mono-vinylidene aromatic and ethylenically unsaturated nitrile monomers in a different, separate process and produces a portion of 20 the total ungrafted SAN or SAN-type interpolymer desired for the matrix of the final composition; (3) the balance of the ungrafted SAN or SAN-type interpolymer desired for the matrix of the rubber-25 modified polymer composition is produced separately; and (4) the three ingredients combined. Advantageously, the separately produced SAN or SAN-type interpolymer is produced in an economical mass or masssolution type of polymerization process. 30

In graft polymerization reactions, as is well known in the art, the desired polymerizable monomers are combined with the preformed rubber substrate and the monomers then polymerized to chemically combine or graft at least a portion of the forming polymer upon

the rubber substrate. Depending upon the ratio of monomers to rubber substrate and the polymerization conditions, it is possible to achieve both the grafting of the desired amount of polymer onto the rubber substrate and the polymerization of ungrafted polymer to provide all or a portion of the matrix at the same time.

Various substrate rubbers (onto which the

superstrate polymer may be grafted during
polymerization in the presence of such rubber) are
utilizable as the small, large emulsion and large mass
particles. These rubbers include diene rubbers,
ethylene propylene rubbers, ethylene propylene diene
(EPDM) rubbers, acrylate rubbers, polyisoprene rubbers,
halogen-containing rubbers and mixtures thereof as well
as interpolymers of rubber-forming monomers with other
copolymerizable monomers.

20 The preferred rubbers are diene rubbers or mixtures of diene rubbers, i.e., any rubbery polymers (a polymer having a second transition temperature not higher than 0°C, preferably not higher than -20°C, of one or more conjugated 1,3-dienes, e.g., butadiene, 25 isoprene, piperylene, chloroprene, etc. Such rubbers include homopolymers and interpolymers of conjugated 1,3-dienes with up to an equal amount by weight of one or more copolymerizable monoethylenically unsaturated 30 monomers, such as monovinylidene aromatic hydrocarbons (e.g., styrene; a ring-substituted alkylstyrene, such as the o-, m-, and p-vinyl toluene, 2,4-dimethylstyrene, the ring-substituted ethylstyrenes, p-tertbutylstyrene, etc.; an alpha-alkylstyrene, such as 35 alpha-methylstyrene, alpha-ethylstyrene, alpha-methylp-methylstyrene, etc.; vinyl naphthalene, etc.); halo-

substituted monovinylidene aromatic hydrocarbons (e.g., the o-, m-, and p-chlorostyrenes, 2,4-dibromostyrene, 2-methyl-4-chlorostyrene, etc.); acrylonitrile; methacrylonitrile; alkyl acrylates (e.g., methyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, etc.); the corresponding alkyl methacrylates; acrylamides (e.g., acrylamide, methacrylamide, N-butyl acrylamide, etc.); unsaturated ketones (e.g., methyl vinyl ketone, methyl isopropenyl ketone, etc.); alpha-olefins (e.g., 10 ethylene, propylene, etc.); pyridines; vinyl esters (e.g., vinyl acetate, vinyl stearate, etc.); vinyl and vinylidene halides (e.g., the vinyl and vinylidene chlorides and bromides, etc.); and the like.

5

35

15 Although the rubber may contain up to about 2 percent of a cross-linking agent, based on the weight of the rubber-forming monomer or monomers, crosslinking may present problems in dissolving the rubber in the monomers for the graft polymerization reaction, 20 particularly for a mass or suspension polymerization In addition, excessive cross-linking can result in loss of the rubbery characteristics. cross-linking agent can be any of the agents conventionally employed for cross-linking diene rubbers, for 25 example, divinylbenzene, diallyl maleate, diallyl fumarate, diallyl adipate, allyl acrylate, allyl methacrylate, diacrylates and dimethylacrylates of polyhydric alcohols (e.g., ethylene glycol 30 dimethacrylate, etc.), and the like.

A preferred group of rubbers are those consisting essentially of 70 to 100 percent by weight of butadiene and/or isoprene and up to 30 percent by weight of monomer selected from the group consisting of monovinylidene aromatic hydrocarbons (e.g., styrene)

٠.

and unsaturated nitriles (e.g., acrylonitrile) or mixtures thereof. Particularly advantageous substrates are butadiene homopolymer or an interpolymer of 90 to 97 percent by weight butadiene and 3 to 10 percent by weight of acrylonitrile and/or styrene.

Various techniques are customarily employed for polymerizing rubber monomers including Ziegler-Natta, anionic and free radical polymerization. Free radical emulsion polymerization can be used to produce a latex emulsion which is useful as the base for emulsion polymerization of the graft polymer. See, for example, U.S. Patent 4,243,765 which has been incorporated herein by reference.

15

20

10

5

In general, in compositions according to the present invention, it is desirable to have dispersed therein in the form of particles, from about 5 to about 40 weight percent rubber, based on total rubber-modified polymer composition weight, preferably from about 9 to about 23 weight percent.

the particulate rubber dispersed in the interpolymeric
matrix comprises three different components. It has
been found especially desirable for the dispersed
particulate rubber to consist essentially of the three
particle components. By the term "rubber particle
component", it is meant a group of rubber particles of
the same rubber particle type and having about the same
particle size. As discussed above, the two main rubber
particle types are (1) the occluded particles usually
made in a mass-type process and (2) the solid,
non-occluded particles usually made in an emulsion

polymerization process. Each rubber component can then

30

35

be characterized by the combination of the average size of the particles and the process by which they are formed. The average particle size of a rubber particle component, as used herein, refers to the volume average diameter of the group of particles making up the rubber component or particle type. In most cases, the volume average diameter of a group of particles is the same as the weight average. In the case of the emulsionproduced particles, the average particle diameter 10 measurement is made before any of the interpolymer is grafted onto the rubber particles, while in the case of the mass particles, the size includes the polymer grafted to the rubber particles and occlusions of polymer within the particles. The volume average 15 diameters of emulsion particle groups having average particle diameters of less than about 1 micron can be conveniently determined, as can the number average diameters and the particle size distributions, by hydrodynamic chromatography (HDC). Hydrodynamic 20 chromatography is explained in U.S. Patent No. 3,865,717. In the case of groups of mass particles and groups of emulsion particles having average particle diameters of more than about 1 micron, the volume . 25 average diameters, number average diameters and particle size distributions can be determined by the analysis of transmission electron micrographs of the compositions containing the particles.

It is recognized, of course, that the various rubber particle components comprise particles having a range of sizes, such components not consisting of particles of only one size. The above analysis techniques indicate, however, that the particles of a particular rubber particle component generally have a

fairly narrow range of particle sizes. By this it is meant that the ratio of the volume average particle diameter of a particle group to the number average particle diameter of the same particle group is generally in the range of from about 1 to about 3.5, except in the case of groups of large mass particles (e.g., groups having volume average diameters greater than about 3µ) where broader distributions may be desirable.

10

15

20

. 25

30

5

One of the rubber components in the present invention, hereinafter referred to as the small particle component, has a relatively small average particle size, the particles thereof having an average particle diameter of from about 0.05 to about 0.25µ, based on volume. As discussed above, these small-sized particles are most conveniently prepared by emulsion polymerizing a mixture of rubber-forming monomers to form a dispersion of uniformly sized particles of the desired size, as is well known in the art. See, for example, U.S. Patents 3,509,237; 3,928,494; 4,243,769; and 4,250,271 which have been incorporated herein by reference and teach suitable processes. It has been found that this component advantageously has an average particle size of from about 0.08 to about 0.20µ.

The small particle component typically makes up from about 1 to about 94 weight percent of the rubber in the present invention. However, it has been found preferable to use from about 5 to about 75 weight. percent while from about 25 to about 50 weight percent is especially preferable. Within these ranges, the amount of small particle rubber helps to control the gloss of the resultant polymeric composition. constant rubber content, increasing the amount of small

particle rubber increases the gloss. Reducing the percentage of small particle rubber will produce tougher resultant compositions with the loss of some gloss if such properties are desired.

5

10

It is usually desirable in grafting polymer onto the particles of this component to achieve a graft-to-rubber ratio of at least about 0.3 and preferably from about 0.3 to about 2 in order to achieve desired gloss and impact resistance in the resultant ABS or ABS-type product.

Another rubber component essentially included in the present rubber-modified compositions is referred to as the large emulsion particle component. This component has an average particle size of from about 0.4 to about 2.0µ, preferably from about 0.7 to about 1.4µ.

20

15

This first larger particle component typically makes up from about 1 to about 80 weight percent of the dispersed rubber, preferably from about 5 to about 50 weight percent and most preferably from about 10 to about 40 weight percent.

25

30

35

It has been found most desirable in this particle component to use emulsion polymerized rubber. Since, as mentioned above, most emulsion polymerization processes do not inherently produce particles this large at an economical rate, the particles of this component can be produced by agglomerating or coagulating emulsion-produced dispersions of smaller rubber particles, either before, during or after the particles are grafted. See, for example, U.S. Patents 3,551,370; 3,666,704; 3,956,218; and 3,825,621 which

WO 89/05836 LC1/0201/03311

-20-

have been incorporated herein and teach suitable processes.

5

15

20

25

30

_ . . –

35

As discussed above, within the ranges of particle types and amounts specified for this component, the use of the larger particles in this component or the larger percentages of this component will usually result in better impact-resistance in the resultant polymer composition, holding the other 10 variables constant.

It is usually desirable to graft enough polymer onto the particles of this component to achieve a graft-to-rubber ratio of at least about 0.05 in order to balance gloss and impact properties in the resultant ABS or ABS-type composition.

The final rubber component essential to the present improved rubber-modified, impact-resistant polymer compositions is referred to as the large mass particle component. This component has an average particle size of from about 0.5 to about 10µ, preferably from about 0.6 to about 4 and for a high gloss product from about 0.6 to about 1.5µ.

This second large particle component typically makes up from about 5 to about 95 weight percent of the rubber, preferably from about 10 to about 80 and most preferably from about 10 to about 50 weight percent.

It has been found most desirable for this component to use particles resulting from a mass-type or mass-suspension-type grafting process which produces: particles having grafted thereto and occluded therein amounts of a desired superstrate polymer, preferably SAN or SAN-type polymer. Such mass processes, as is

well known in the art, can be very satisfactorily employed to produce rubber particles having appropriate sizes for utilization in this component. See, for example, U.S. Patents 3,509,237 and 4,239,863 which have been incorporated herein by reference and teach suitable processes.

5

10

In general, it is usually desirable to have from about 10 to about 85, preferably from about 30 to 75, weight percent of the mass particles consist of grafted and occluded polymer, the balance being the rubber.

Within the above-described ranges, the use of this mass rubber particle component to substantially 15 improve the impact-resistance of the resultant polymer compositions is not accompanied by the expected loss of gloss properties. In fact, compositions according to the present invention exhibit a surprising combination 20 of gloss and impact-resistance for the sizes of the particles and the amount of rubber they contain. By slight variations in the relative amounts and/or the average particle sizes of the three rubber components, compositions can be produced having better combinations 25 of gloss and impact-resistance than prior art compositions having similar amounts of rubber. above teachings therefore are easily adaptable to provide compositions according to the present invention having certain desired properties optimized without much, if any, sacrifice of the other as compared to what is taught in the art.

For example, rubber-modified polymer compositions having high gloss and very good toughness can be

25

30

35

prepared according to the present invention comprising as the modifying rubber therein:

- (a) from about 20 to about 75, preferably from about 20 to about 40, weight percent small particles, 5 preferably emulsion particles, having a volume average diameter of from about .08 to about 0.25µ, preferably from about .08 to about 0.2µ,
- (b) from about 10 to about 50, preferably from 10 about 10 to about 25, weight percent large emulsion particles, preferably resulting from the agglomeration of smaller particles, having a volume average diameter of from about 0.4 to about 1.5µ, preferably from about 15 0.7 to about 1.3μ , and
 - (c) from about 5 to about 70, preferably from about 50 to about 70, weight percent large mass particles having a volume average diameter of from about 0.6 to about 4µ, preferably from about 0.6 to about 0.9µ.

On the other hand compositions in which very high gloss is desired to be combined with good toughness would comprise as the modifying rubber:

- (a) from about 25 to about 35 weight percent small particles, preferably emulsion particles, having a volume average diameter of from about .08 to about 0.2u.
 - (b) from about 25 to about 35 weight percent large emulsion particles, preferably resulting from the agglomeration of smaller particles, having a volume average diameter of from 0.6 to about 1.3u, and

(c) from about 35 to about 50 weight percent large mass particles having a volume average diameter of from about 0.6 to about 0.9µ.

In some situations where it is desired to have a controlled, low amount of gloss (i.e., a matte finish) this can be achieved by increasing both the amount and average particle size of the large mass particle component. Such compositions generally comprise as the modifying rubber:

- (a) from about 5 to 40 weight percent small particles having a volume average diameter of from about .08 to about 0.25µ,
- (b) from about 5 to about 40 weight percent large emulsion particles, preferably resulting from the agglomeration of smaller particles, having a volume average diameter of from about 0.6 to about 2.0µ, and
 - (c) from about 25 to about 80 weight percent large mass particles having a volume average diameter of from about 1.0 to about 8.0µ.
- 25 For some applications, it is very desirable to use relatively large amounts of rubber and produce polymer compositions having very good toughness. Such compositions can be achieved according to the present invention comprising from about 15 to about 25 weight percent rubber based on total composition weight, the rubber consisting of:
 - (a) from about 10 to about 20 weight percent small particles, preferably emulsion particles, having

. . .

20

- a volume average diameter of from about .08 to about 0.2µ,
- (b) from about 10 to about 20 weight percent large emulsion particles, preferably resulting from the agglomeration of smaller particles, having a weight average diameter of from about 0.7 to about 1.3µ, and
- (c) from about 70 to about 80 weight percent large mass particles having a weight average diameter of from about 0.65 to about 1.4µ.

Examples

35

- The below examples of ABS compositions

 according to the present invention are prepared by
 blending together various separately prepared elements.

 Though many of the following examples (some of which
 are not examples of the present invention) are prepared
 in this manner, there are many variations and
 modifications of such techniques and many other
 different techniques by which compositions according to
 the present invention can be prepared.
- When molded samples are required for the various following physical property evaluations, the compositions are injected molded on a 2 ounce Negri Bossi injection molding machine from a barrel having a temperature of from about 375° to 400°F into a mold at a temperature of about 80°F.

Various ASTM (American Society for Testing Materials) test methods are used to evaluate the physical properties of the various following constituents and example compositions. The notched Izod impact strength (Izod) values are determined

according to ASTM D-256 at 73°F. Tensile strengths at yield and rupture (T_y and T_r , respectively) and percent elongation (%E) are determined according to ASTM D-638 at 0.2 in/min. Gardner gloss values are determined according to ASTM D-523. Melt flow rates are determined according to ASTM D-1238 under Condition I.

5

10

15

20

Gardner dart impact resistance test data is obtained for some compositions. In this test, a 3.63 kg drop weight with a fixed dart is dropped onto a round sample two inches in diameter and an eighth inch thick resting on a circular 3.2 cm opening. The dart is 1.59 cm long, the point or tip having a radis of curvature of 0.795 cm. The weight is dropped from various heights until the dart breaks through the sample. The force in inch-pounds at which the sample breaks is then determined, the maximum force achievable with the testing apparatus being 320 inch-pound. In some cases, the samples tested did not break at this maximum force and their dart impact resistance is shown at 320+.

In some of the below tables the "% gel" for

some of the compositions is given. This is the percentage of the total rubber-modified polymer
composition which is rubber plus polymer grafted to and
occluded within the rubber. The weight of gel in a
composition is determined by dissolving away the

ungrafted, matrix polymer with a 50/50 mixture of
toluene and methyl ethyl ketone. The weight of the
remaining gel is then compared to the weight of the
composition sample from which it was recovered.

In the below tables, the swelling index is given for some rubber compositions and indicates the

10

15

20

relative degree of cross-linking in the rubber. As is well known, the swelling index is a measure of the amount of solvent a rubber can imbibe, more cross-linking in the rubber preventing the imbibing of as much solvent as a lesser cross-linked rubber could imbibe. In the case of mass particle components, the gel is recovered as described above by dissolving the matrix polymer using a 50/50 mixture of toluene and methyl ethyl ketone, then removing the solvent and dissolved polymer by centrifuging. The weight of the solvent swollen gel is determined before the solvent is removed from the gel using a vacuum oven. The swelling index is the ratio of the weight of the solvent swollen gel to the dry weight of the gel.

The process is essentially the same for emulsion produced rubber except that it is done before the rubber is grafted and the solvent used is toluene. It should be noted that some additional cross-linking occurs later during the grafting of the emulsion rubber, which cross-linking is not reflected in the swelling index.

In some cases the ratio of the weight of the grafted SAN polymer to the weight of the rubber substrate, the ratio referred to as g/r, is given. In determining this ratio, matrix (ungrafted) polymer and occluded polymer are separated from the rubber and grafted polymer using multiple acetone extractions, then knowing the amount of rubber in the starting sample, the g/r ratio can be determined.

In general, the example compositions as listed 35 below are prepared by blending together two or more of

the following constituents, depending on the particle system desired to be achieved.

(a) Constituent A - Mass Rubber Particles

5 A mass particle constituent is prepared by dissolving one of the below-specified rubber compositions in a mixture of styrene, acrylonitrile and ethylbenzene, polymerizing the monomers while agitating and/or otherwise shearing to achieve the desired rubber 10 particle size. During the polymerization some forming interpolymer is grafted to the rubber while some does not graft, but forms matrix interpolymer. process, as in all grafting processes, varying amounts of matrix interpolymer can be formed (in addition to 15 the grafted portion) depending on the amounts of monomers supplied. This constituent is then extruded, pelletized and blended with the other constituents to achieve the desired rubber particle distributions and 20 rubber concentrations.

The different constituents containing mass rubber particles which are blended in with other constituents to achieve the desired final compositions are identified in Table I below.

25

Table I

Mass Rubber Particle Constituent Characteristics

Shir	, w	*	4	000 15,000	12,000	000'09 000	000 75,000
SÃ	M 6	*	*	164,000	149,000	187,000	152,000
	ANA	25	25	27	. · · · · · · · · · · · · · · · · · · ·	25	78
	Swelling Index ³	*	*	14	12	41	13
Rubber	Composition	Solprene 308 [©] brand Rubberl4	Solprene 308 [®] brand Rubberl4	Solprene 308 [®] brand Rubberl4	Anionically polymer- ized polybutadiene having a 5% solution viscosity in styrene of 31 centipoise	Solprene 308 [©] brand Rubberl4	Anionically polymer- ized polybutadiene having a 5% solution viscosity in styrene of 31 centipoise
	Rubber Particle Size ²	0.5	o. s	0.55	0.58	0.62	6.
	8 Rubber ¹	16.1	16.2	11.7	10.6	12	6
	Constituent <u>No.</u>	A-1	A-2	A-3	A-4	A-5	9- V

Table I (Continued)

			Rubber			SAN	
Constituent <u>No.</u>	8 Rubber ¹	Rubber Particle <u>Size</u> ²	Composition	Swelling <u>Index</u> 3	8 AN ⁴	X S	M e
A-7	12	0.65	Solprene 308 [®] brand Rubber ¹⁴	#	*	150,000	*
A-8	r	0.7	50/50 blend of Solprene 308 [®] and Diene 55 [®] brands Rubber 14, 15	*	78	171,000	62,000
6- K	16.1	0.86	Solprene 308 [®] brand Rubber ¹⁴	*	25	*	*
A-10	0.6	1.4	Diene 55 [®] brand Rubber ¹⁵	*	20	*	*
A-11	8.0	4.0	An anionically polymerized polybutadiene rubber. These particles have a g/r ratio of 0.92.	7	30	182,000	*
A-12	10.7	8.0	Diene 55 [©] brand Rubber ¹⁵	14	22	136,000	* .

Constituent <u>No.</u>	T _y 7	E 2	6 8	Izod10	<u> </u>	Gardner <u>Dart 12</u>	MFR 13
A-1	0089	5400	10	1.6	(F)	20	2.8
A-2	7300	5700	13	1.0	24	20	2,5
A-3	7170	5700	26	1.3	70	#	*
A-4	6830	5830	m	2.7	69	*	2.6
A-5	1900	*	*	7.8	75	42	*
A-6	6780	5330	9	3.5	61	*	2.4
A-7	8200	* .	*	2.0	*	*	3,3
A-8	8355	5770	25	2.3	34	320	2.2
A-9	5880	*	15	6.5	* *	41	2,5
A-10	6252	5122	89	3.2	*	318	2.0
A-11	3300	4600	33	1.5	*	*	1.0
A-12	4000	4300	37	2.0	#	*	4.0

Table I (Continued)

Table I (Continued)

Notes:

Not measured.

Weight percent of rubber in the constituent.

Particle size in microns (µ).

Determined using as a swelling solvent a 50/50 blend of toluene and methyl ethyl ketone.

Weight percent of An in the SAN.

Weight average molecular weight of the ungrafted SAN.

Number average molecular weight of the ungrafted SAN.

9

Tensile strength at yield in pounds per square inch.

Tensile strength at rupture in pounds per square inch.

Percent elongation.

10

Notched Izod impact strength in foot pounds per inch of notch.

Gardner gloss taken at 60°, in percent.

Gardner dart impact resistance in inch-pounds.

Melt flow rate in grams per 10 minutes.

Solprene 308 $^{\oplus}$ is commercially available from the Phillips Petroleum Company.

Diene 550 is commercially available from the Firestone Synthetic Rubber and Latex Co. 15

Ξ

. = ..

TABLE II

Small Emulsion Particle Constituent Characteristics

SAN

Rubber

	<u>81/5</u>	09.0	
	8 Ge1 7	78	
	M. 6	100,000	
	AN 5	28	
	Swelling Index	22	
	Composition	Free radically poly- merized butadiene/- styrene/acrylonitrile (93/5/2) rubber	1 Weight percent of rubber in this constituent. 2 Volume average particle size in microns $\{u\}$.
	Size2	0.1	ober in ele size
•	8 Rubber Size	6	ant of rul
	Constituent <u>No.</u>	æ	1 Weight perce 2 Volume avers

Ratio of the weight of grafted and occluded polymer to the weight of the rubber substrate to and in Percent by weight of the composition that the rubber and grafted and occluded polymer make up. Weight average molecular weight of the ungrafted SAN. which it is grafted and occluded. 450

Determined using toluene as a swelling solvent.

Percent by weight of acrylonitrile in the SAN.

(c) Constituent C - Combination of Small and Large Emulsion Particles

of butadiene-styrene-acrylonitrile rubber (93-5-2) is added about 0.75 weight percent based on weight rubber of an agglomerating agent consisting of a polybutadiene core with a shell of ethyl acrylate-methacrylic acid (92-8) copolymer. A portion of the particles agglomerate to give a bimodal particle size distribution of large particles and small particles. This latex is then grafted and recovered in the same manner as Constituent B, above.

When both small and large emulsion particles are desired in the resultant composition, all or part of both the small particle component and the large emulsion particle component are incorporated into ABS compositions via inclusion therein of amounts of the constituents listed in Table III, below. In examples where an increased ratio of small-to-large particles is desired in the resultant composition, amounts of Constitutent B are added in addition to amounts of Constitutent C in order to achieve desired sample compositions.

The two agglomerated particle constituents used herein are identified in Table III, below, where various characteristics of the constituents are given.

30

TABLE III

		G/R ^B	0.60	0.72
		8 Gel 7	73	7.7
San		3 9 X	100,000	100,000
		AN S	28	8
		Swelling index	23	*
		Rubber <u>Composition</u>	Free radically polymierzed butadiene/-acrylonitrile (93/5/2) rubber	Free radically polym, erized butadiene/- styrene/- acrylonitrile (93/5/2) rubber
Rubber	ge	% of Rubber	4	ए ए
RI	Lar Parti	Size ²	1.0	0.78
	Small Particles	% of Rubber	36	9
	Sme	Size ²	0.1	0.1
		8 Rubber	45.9	4 8.
	•	Constituent No.	C-1	C-2

Not measured.

Weight percent of rubber in this constituent.

Volume average particle size in microns (μ) .

Percent by weight of the total rubber in the constituent that particle component makes up.

Determined using toluene as a swelling solvent.

Percent by weight of acrylonitrile in the SAN.

rercent by weight of acrysonitrile in the SAN. Weight average molecular weight of the ungrafted SAN.

Ratio of the weight of grafted and occluded polymer to the weight of the rubber substrate to and Percent by weight of the composition that the rubber and grafted and occluded polymer make up.

in which it is grafted and occluded.

(d) Constituent D - Additional Matrix SAN Interpolymer

Amounts of mass-polymerized poly(styreneacrylonitrile) (SAN) interpolymer in the form of extruded pellets, are added to sample compositions to achieve the desired rubber concentrations in the final The two SAN constituents used herein are identified in Table IV, below, where various characteristics of these constituents are given.

10

20

- 25

5

TABLE IV Matrix SAN Constituents

	Constituent No.	M ¹ w	$^{M^2}n$	Percent AN3	
15	D-1	85,000	34,000	28	
	D-2	155,000	*	25 -	

Not measured.

Weight average molecular weight.

Number average molecular weight.

Percent by weight of acrylonitrile in the SAN.

The necessary constituents and amounts thereof to achieve the desired rubber concentrations and rubber particle distributions in the resultant ABS composition are selected, the powders and/or pellets tumble: blended, then fed into and compounded in a 0.8 inch twin-screw Welding Engineers compounder, then extruded 30 in the form of pellets of ABS. The following tables will indicate for various ABS compositions the amounts of the various above-identified constituents which are used to make the composition and the percentage of the -total rubber that each particle type makes up as well

(b) Constituent B - Small Emulsion Particles

An aqueous latex containing 0.1 particles of butadiene-styrene-acrylonitrile rubber (93-5-2) is heated while the graftable monomers (styrene and 5 acrylonitrile), mercaptan, persulfate initiator and emulsifying agent are supplied. The latex, containing the SAN-grafted rubber particles as well as some ungrafted SAN is freeze coagulated, thawed, centrifuged, then air dried to reduce the water content 10 below about 1 percent in the resultant powdery polymer composition. The small particle constitutent used herein is hereinafter referred to as Constituent B and has the following characteristics as listed in 15 Table II, below.

20

25

as the physical properties achieved in the resultant compositions.

Examples 1-5 - The Effect of Varying Particle Sizes and Types

In Table V, below, Examples 1, 2, 3 and 4 illustrate the effects of varying the relative amounts of large and small emulsion particles in ABS compositions while Example 5 shows the effect of using large mass particles in place of large emulsion particles in those bimodal ABS compositions.

				-3	8-	
Constitutents Used to Prepare	Compositions 5	358 B, 658 D-1	218 B. 158 C-1. 648 D-1	8% B, 29% C-1, 63% D-1	378 C-1, 638 D-1	53% A-9, 17% B, 30% D-1
Properties	% of Rubber	96	6	92	69	15
Prope	Izoq3	0.43	1.7	9.6	6	ຄຸກ
Large Mass Particle Component	% of Rubber 2	ı	1	1 .	ı	50
Large	Sizel	1	ı	i .	ı	0.86
Large Emulsion Particle <u>Component</u>	% of Rubber 2	1	25	20	64	t
Large Par Comp	Sizel	ı	1.0	1.0	1.0	i
11 Particle Rubber <u>Component</u>	% of Rubber 2	100	75	20	36	20
Small Particl Rubber <u>Component</u>	Sizel	0.1	0.1	0.1	0.1	0.1
% Rubber	in ABS	17	11	17	11	17
Example Composition	No.	* 1	8	m	e	ភេ

Indicates comparative example, not an example of the present invention.

l Particle size in microns (µ).

Percent by weight of the total rubber in the composition that particle component makes up. Notched Izod impact strength in foot pounds per inch of notch

Gardner gloss taken at 60°, in percent.

Constituents, as identified in Tables I-IV above, and percentages by weight thereof

in the Example compositions.

In Comparative Examples 1, 2, 3 and 4, having small particles combined with varying amounts of large emulsion particles, as the percentage of small particles decreases, the Izod goes up while gloss decreases slightly. In Example 5, when 50 percent of the particles are mass particles, the gloss is much reduced while the Izod is high.

Examples 6 and 7 - Trimodal vs. Bimodal Particle
10 Distributions

In Table VI, below, Comparative Examples 3 and 5 reproduced from Table V above, show the effect of replacing all of the large emulsion particles with large mass particles holding the small emulsion 15 particles constant. Examples 6 and 7 are ABS compositions having trimodal particle size distributions. In Example 6, the small particle component is the same as in Examples 3 and 5 and half 20 of the large emulsion particles are replaced with large mass particles. In Example 7, the large mass particle component is the same as in Example 5 while some of the small particles have been replaced with large emulsion particles. 25

30

-=

_ = _

Table VI
The Effect of Particle Size and Types

Constitutents Used to Prepare Example	Compositions 5	88 B, 298 C-1; 638 D-1	53% A-9, 17% B, 30% D-1	26% A-9, 13% B, 14% C-1, 47% D-1	53% A-9, 18% C-1 29% D-1
Properties	Gloss	8 6	15	92	
Prope	Izod3	0°E	5,3	ດ ຕ	93
Large Mass Particle Component	% of Rubber 2	1	20		-4.6
Larg Par Comp	Sizel	1	. 86	ı	ı
Large Emulsion Particle Component	% of Rubber 2	20	i	20	. 0
Large Par Com	Size	1.0	t	1.0	1.0
Small Particle Rubber Component	% of Size Rubber 2	20	20	20	36
Small 1 Rul Com	Size	0.1	0.1	0.1	0.1
3-6	Rubber in ABS	11	1.7	17	11
Екапрје	Composition No.	* 69	ស	vo	٢

Indicates comparative example, not an example of the present invention.

l Particle size in microns (µ).

Percent by weight of the total rubber in the composition that particle component makes up. Notched Izod impact strength in foot pounds per inch of notch.

Constituents, as identified in Tables I-IV above, and percentages by weight thereof Gardner gloss taken at 60°, in percent.

in the Example compositions.

* 1 2 2 4 5

Table VI, above, shows the result of replacing part of the particles of a bimodal particle distribution with a third particle component. . of increases in either gloss or Izod, accompanied by a loss in the other, as would be expected in view of 5 trends shown in Table V, above, and as taught in the prior art, Examples 6 and 7 do not exhibit mere tradeoffs of gloss and Izod. Example 6 exhibits better gloss than Example 5 without the accompanying loss of 10 Izod which might be expected when large mass particles are replaced by large emulsion particles. On the other hand, comparing Example 5 to Example 7, the Izod improves without loss of gloss, in spite of replacing small particles with large ones. 15

<u>Examples 8 and 9</u> - Trimodal vs. Bimodal Particle Distribution

In Table VII, below, Comparative Examples 2 and 9 show the effect of replacing all of the large emulsion particles with large mass particles having an average diameter of 0.62µ, holding the small particle component constant. In Example 8, an example of the present invention, both large mass and large emulsion particles are combined with the small particles in a 17 percent rubber ABS composition.

Table VII The Effect of Particle Size and Types

Constitutents Used to Prepare Example	Compositions 5	21% B, 15% C-1, 64% D-1	14% A-5, 23% B, 9% C-1, 54% D-1	35% A-5, 26% B, 39% D-1
Properties	Gloss4	66	87	75
Prope	Izod3	11	21	2.1
Large Mass Particle Component	% of Rubber 2	ı	10	25
Large Part Comp	Sizel	25	0.62	0.62
Large Emulsion Particle <u>Component</u>	% of Rubber 2	20	15	ı
Large Par	Sizel	1.0	1.0	t
Small Particle Rubber <u>Component</u>	\$ of Size Rubber 2	75	75	75
Small P Rub Comp	Sizel	0.1	0.1	0.1
% Rubber	in ABS	17	17	17
Example Composítion	No.	* 2	& .	* 61

Indicates comparative example, not an example of the present invention. Particle size in microns (µ).

Percent by weight of the total rubber in the composition that particle component makes up.

Notched Izod impact strength in foot pounds per inch of notch.

Constituents, as identified in Tables I-IV above, and percentages by weight thereof Gardner gloss taken at 60°, in percent.

in the Example compositions.

Example 8 in Table VII, above, again shows that the combination of large mass and large emulsion particles with small particles in an ABS composition give a good combination of gloss and toughness, compared to Examples 2 and 9 having only one type of large particle.

Examples 10-17 - Various ABS Compositions

Table VIII, below, gives the physical pro-10 perties of several types of ABS compositions. the compositions (Examples 10, 12, 14 and 16) are bimodal ABS compositions, combining the various mass components with small particle components to achieve 17 percent rubber in the ABS. Some of the compositions 15 (Examples 11, 13, 15 and 17) are examples of the present invention, combining the various mass components with small and large emulsion particles. These examples show the improvements obtained in the 20 practice of the present invention. It should be noted that Example compositions 5 and 7 have been re-numbered 16 and 17 and included in Table VIII for purposes of comparison.

25

5

30

Table VIII
The Effect of Particle Size and Types

	•									
		MFR ⁸	3.8	4.4	2.6	2.9	12	2.1	3.3	4.1
		Gloss 4	44	49	51	55	36	37	15	15
	<u>Properties</u>	Izod ³	1.5	4.6	1.2	4.6	6.9	8.6	5.3	6.9
	Prope	%E9	29	35	21	40	28	20	33	55
		T.T.	5100	5700	5300	5200	5100	5200	2000	2100
s ad K		\overline{x}^6	6400	6200	0099	5400	6400	6100	6300	9100
BILECT OF FRICICIE SIZE AND TYPES	Large Mass Particle <u>Component</u>	% of Rubber 2	20	20	20	20	31	31	20	09
AF C 1 C T E	Larg Par Comp	Sizel	0.5	0.5	0	0.5	0.7	1.0	86	86
ובפנר סו אל	Large Emulsion Particle <u>Component</u>	% of Rubber 2	ı	32	t	32	ı	44	ı	32
The Er	Large F Part	Sizel	ī	1.0	ı	1.0	ŧ	1.0	1	1.0
	Small Particle Rubber <u>Component</u>	% of Rubber 2	20	18	20	18	69	25	20	18
	Small P Rub Comp	Sizel	0.1	0.1	0.1	0.1	0.1	1.0	0.1	0.1
	% Rubber	in ABS	17	11	11	11	1.7	11	11	17
	Example No.	, o	10	11	12	E 4	14	15	16	17

Table VIII - Continued

Constituents Used	to Prepare Example	Compositions ³
	Erampre No	

53% A-1, 17% B, 30% D-1

10

538 A-1, 188 C-1, 298 D-1

1

538 A-2, 178 B, 308 D-1 12

538 A-1, 188 C-1, 298 D-1 748 A-8, 248 B, 28 D-1 13 14

748 A-8, 268 C-1 15 538 A-9, 178 B, 308 D-1 16

538 A-9, 188 C-1, 298 D-1 17 Indicates comparative example, not an example of the present invention. Particle size in microns (µ). Percent by weight of the total rubber in the composition that particle component makes up.

Notched Izod impact strength in foot pounds per inch of notch. Gardner gloss taken at 60°, in percent.

Tensile strength at yield in pounds per square inch.

Tensile strength at rupture in pounds per square inch.

Melt flow rate in grams per 10 minutes.

Percent elongation.

Constituents, as identified in Tables I-IV above, and percentages by weight thereof in the Example compositions.

Examples 18-22 - Various 14% Rubber ABS Compositions

Examples 18 through 22 in Table IX, below, show various bimodal and trimodal ABS compositions with 14 percent rubber, illustrating the benefits of the present invention at that rubber level.

10

5

15

20

25

30

The Effect of Particle Size and Types Table IX

Constitutents Used to Prepare	Compositions 5	85% A-5, 8% B, 7% D-1	30% C-1, 70% D-1	29% A-5, 23% C-1, 48% D-1	84% A-5, 9% C-1, 7% D-1	128 A-11, 288 C-1 598 D-1
Properties	Gloss ⁴	49	92	83	4.0	6.5
Prope	Izod ³	3.6	1.7	3.6	4.7	2.4
Large Mass Particle <u>Component</u>	% of Rubber ²	73	t	25	72	7
Large Part Compo	Sizel	0.62	ı	0.62	0.62	4.0
Large Emulsion Particle <u>Component</u>	% of Rubber 2	Í	64	48	18	09
Large F Part Comp	Sizel	ı	1.0	1.0	1.0	1.0
Small Particle Rubber <u>Component</u>	% of Rubber 2	27	36	27	10	33
Small P Rub Comp	Size	0.1	0.1	0.1	0.1	0.1
% Rubber	in ABS	14	14	14	. 14	14
Ежамр1е мо		18*	19*	20	21	22

Indicates comparative example, not an example of the present invention.

Particle size in microns (µ).

Percent by weight of the total rubber in the composition that particle component makes up. Notched Izod impact strength in foot pounds per inch of notch. Gardner gloss taken at 60°, in percent.

Constituents, as identified in Tables I-IV above, and percentages by weight thereof

in the Example compositions.

5

In Table IX, above, Examples 18* and 19* show that when all of the large mass particles in a 14 percent rubber bimodal ABS composition are replaced with large emulsion particles, the toughness is decreased and the gloss is improved. Example 20, however, shows that when only part of the mass particles of Example 18 are replaced with large emulsion particles, the toughness is maintained at the same good level while the gloss is increased signifi-10 cantly. On the other hand, Example 21 shows that replacing part of the small particles of Example 18 with large emulsion particles improves the toughness without a decrease in the gloss. Example 22 shows that good combinations of toughness and gloss can be 15 achieved at 14 percent rubber levels with 4µ large mass particles.

Examples 23-29 - Additional Trimodal ABS Compositions

20 Examples 23 through 29, as shown in Table X, below, illustrate that the SAN interpolymer (ungrafted) produced in the preparation of the grafted mass particles can have various molecular weights. molecular weights shown in Table X are conveniently 25 determined by Gel Permeation Chromatography (GPC) a molecular weight determination technique well known in the art.

Table X, below, illustrates the desirable 30 characteristics of the various trimodal ABS compositions, (i.e., toughness, gloss and processability). Toughness is shown by tensile

strengths, percent elongation, notched Izod impact resistance and Gardner Dart Impact Resistance. Gloss is shown by Gardner gloss measurements. Processability is shown by melt flow rates.

	Mass Component	8 of Rubber 2	50	50	25	50	25	33	30
	Large Mass Particle Component	Sizel	0.55	0.58	0.58	0.64	0.64	0,65	1.4
	ulsion Component	% of Rubber 2	32	32	48	32	8	30	40
	Large Emulsion Particle Component	Sizel	۵٠۲	1.0	1.0	1.0	1.0	8.0	8.0
TABLE X	rticle omponent	% of Rubber 2	18	18	27	18	27	37	50
T	Small Particle Rubber Component	Sizel	0.1	0,1	0.1	0.1	0.1	0.1	0.1
	Molecular Weight of	the Rigid Phase II	164,000	149,000	149,000	152,000	152,000	150,000	180.000
	3 2	Rubber in ABS	17	17	17	14	14	17	17
		Example No.	23	24	25	26		28	29

TABLE X - Continued

Contract of South Standard	Example Compositions ⁵	738 A-3, 188 C-1, 98 D-1	80% A-4, 18% C-1, 1% D-1	40% A-4, 28% C-1, 32% D-1	70% A-6, 15% C-1, 14% D-1	35% A-6, 23% C-1, 42% D-1	478 A-7, 258 C-1, 288 D-1	19% A-10, 33% C-2, 48% D-1
	Gardner <u>Dart</u> lû	320+	320+	320+	320+	320+	ı	ı
	MFR ⁸	2.3	2.0	3.4	2.8	4.8	ı	ı
les	Gloss ⁴	20	58	82	19	82	. 80	61
Properties	12003	4.4	7.2	6.0	5.3	9.8	4.6	4.5
	6년 6년	15	11	15	12	24	42	30
	Tr.7	5200	2100	2000	5300	5200	5260	5040
	<u>T</u> 26	0099	6200	6100	0099	6500	7015	6590
G G	No.	23	24	25	26	27	28	29

Thirties the section of the section

TABLE X - Continued

Average particle size of the component in microns (μ) .

Percent by weight of the total rubber in the composition that the component makes up.

Notched Izod impact strength in foot pounds per inch notch.

Gardner gloss taken at 60°, in percent.

Constituents, as identified in Tables I-IV above, and percentages by weight thereof

5 in the Example Compositions.

Tensile strength at yield in pounds per square inch.

Tensile strength at rupture in pounds per square inch.

Melt flow rate in grams per 10 minutes.

Percent elongation.

10 Gardner Dart Impact Resistance in inch-pounds.

Molecular weight of the rigid phase (ungrafted) SAN produced in grafting the I

mass rubber particles, as determined by gel permeation chromatography.

Examples 30 and 31 - Controlled Gloss ABS

For some uses, ABS materials having a matte finish (i.e., low gloss) are desired. In these cases, compositions according to the present invention can be satisfactorily utilized, in that they exhibit improved toughness at low gloss levels as well as high gloss. The gloss is greatly affected by amount and size of the large mass particle, and the trimodal particle distri-10 bution provides good toughness. Table XI below shows the benefit of trimodal ABS at low gloss levels.

15

5

20

25

30

TABLE XI

Low Gloss ABS

Constituents Used	to Prepare Example Compositions	408 A-12, 268 B, 348 D-2	2.4 40% A-12, 28% C-1, 32% D-2
	MFR ⁸	۲ . 8	2.4
	Dart 10	160	180
Properties	Izod ³ Gloss ⁴	11	11
Prope	Izod 3	7.5	8.1
Large Mass Particle Component	% of Size Rubber 2	20	50
	Sizel	8.0	0.8
Large Emulsion <u>Particle</u> Component	% of Rubber 2	ı	32
Large F Part Comp	Sizel	1	۵٠،۲
Small Particle Rubber Component	% of Size Rubber 2	20	18
Small Rubber	Sizel	0.1	0.1
යව	Rubber In ABS	11	17
-	Example No.	30*	31

Indicates comparative example, not an example of the present invention.

Particle size in microns (µ).

Percent by weight of the total rubber in the composition that the component makes up.

Notched Izod impact strength in foot pounds per inch notch.

Gardner gloss taken at 60°, in percent.

Constituents, as identified in Tables I-IV above, and percentages by weight thereof in the Example compositions. ខា

Melt flow rate in grams per 10 minutes.

10 Gardner Dart Impact Resistance in inch-pounds.

As shown above in Examples 30* and 31 of Table XI, replacing part of the small particles of a low gloss bimodal ABS with large emulsion particles gives improved toughness at the same low gloss level.

As is apparent from the foregoing specification, the present invention is susceptible of being embodied with various changes and modifications to achieve various desired characteristics in the final compositions. For this reason it is to be understood that all of the foregoing is intended to be merely illustrative and not restricting or otherwise limiting the scope of the present invention except as it is set forth and defined in the following claims.

CLAIMS :

- 1. An improved rubber-modified, impact-resistant polymeric composition comprising:
- (a) a matrix comprising an interpolymer comprising monovinylidene aromatic monomer and ethylenically unsaturated nitrile monomer polymerized therein; and
- (b) dispersed in such matrix in the form of discrete particles, from 5 to 40 weight percent, based on total polymeric composition weight, of an elastomeric material (rubber), comprising the following three components:
 - (1) a small emulsion particle rubber component being from 1 to 94 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.05 to 0.25 microns;
- (2) a large emulsion particle rubber

 15 component being from 1 to 80 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.4 to 2 microns produced by emulsion polymerization; and
 - (3) a large mass particle rubber component

5

providing from 5 to 95 weight percent of the rubber in the polymeric composition, the particles of this component having a volume average diameter of from 0.5 to 10 microns produced by mass, mass-solution or mass-suspension polymerization and comprising from 10 to 85 percent by weight graft and occlusions.

5

10

- 2. The composition according to Claim 1 wherein the rubber particles of component (3) comprise from 30 to 70 percent by weight graft and occlusions.
- 3. The composition according to Claim 1 wherein the rubber particles of component (3) have a graft to rubber ratio (G/R) of greater than 0.5.
- 4. The composition according to Claim 1 wherein the rubber particles of component (3) have a graft to rubber ratio (G/R) of from 0.5 to 0.75.
- 5. A polymeric composition according to Claim 1 wherein rubber component (1) has a volume average diameter of from 0.8 to 0.25μ and is from 25 to 75 weight percent of the rubber; rubber component (2) has a volume average diameter of from 0.4 to 1.5μ and is from 10 to 50 weight percent of the rubber; and rubber component (3) has a volume average diameter of from 0.6 to 1.5μ and is from 5 to 50 weight percent of the rubber.
- 30 6. The polymeric composition according to Claim 1 comprising at least about 65 percent by weight of an interpolymer comprising monovinylidene aromatic monomer and ethylenically unsaturated nitrile monomer polymerized therein, the interpolymer comprising from 15 to 35 weight percent ethylenically unsaturated nitrile monomer polymerized therein based on the weight

9

_ : :

monovinylidene aromatic monomer plus ethylenically unsaturated nitrile monomer.

- 7. The polymeric composition according to

 Claim 6 wherein the monovinylidene aromatic monomer is styrene and the ethylenically unsaturated nitrile monomer is acrylonitrile.
- 8. The polymeric composition according to
 10 Claim 7 comprising from about 1 to about 40 weight
 percent methyl methacrylate polymerized therein based
 on weight styrene, acrylonitrile and methyl
 methacrylate monomers polymerized therein.
- 9. The composition according to Claim 1 wherein rubber component (1) is produced via an emulsion polymerization process, rubber component (2) is an agglomerate of smaller, emulsion-produced particles and rubber component (3) is anionically polymerized rubber.
 - 10. The composition according to Claim 1 wherein the dispersed rubber consists essentially of:
- (1) a small particle rubber component being 25 from 20 to 40 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.08 to 0.2 microns (µ) and consisting of emulsion produced rubber;
- (2) a large emulsion particle rubber component being from 10 to 25 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.7 to 1.3µ, such particles resulting from the agglomeration of smaller emulsion-produced rubber particles; and
 - (3) a large mass particle rubber component

being from 50 to 70 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.6 to 0.9 μ .

11. The composition according to Claim 1 wherein the dispersed rubber consists essentially of:

5

10

15

25

30

- (1) a small particle rubber component being from 25 to 35 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.08 to 0.2 microns (µ) and consisting of emulsion produced rubber;
- (2) a large emulsion particle rubber component being from 25 to 35 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.6 to 1.3µ, such particles resulting from the agglomeration of smaller emulsion-produced rubber particles; and
- (3) a large mass particle rubber component

 being from 35 to 50 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.6 to 0.9µ.
 - 12. The composition according to Claim 1 wherein a matte finish is desired, the dispersed rubber consisting essentially of:
 - (1) a small particle rubber component being from 5 to 40 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.08 to 0.25 microns (µ) and consisting of emulsion-produced rubber;
 - (2) a large emulsion particle rubber component being from 5 to 40 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.6 to 2µ, such particles resulting from the agglomeration of smaller emulsion-produced

5

10

15

20

25

30

: . .

35

rubber particles; and

- (3) a large mass particle rubber component being from 25 to 80 weight percent of the rubber, the particles of this component having a volume average diameter of from 1 to 8μ .
- 13. The composition according to Claim 1 comprising from 15 to 25 weight percent rubber, wherein the dispersed rubber consists essentially of:
- (1) a small particle rubber component being from 10 to 20 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.08 to 0.2 microns (μ) and consisting of emulsion-produced rubber;
- (2) a large emulsion particle rubber component being from 10 to 20 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.7 to 1.3µ, such particles resulting from the agglomeration of smaller emulsion-produced rubber particles; and
- (3) a large mass particle rubber component being from 70 to 80 weight percent of the rubber, the particles of this component having a volume average diameter of from 0.65 to 1.4µ.
- 14. The composition according to Claim 1 wherein the particles of the large mass particle rubber component have a number average particle size less than 0.5µ.
- 15. The composition according to Claim 14 wherein the particles of the large mass particle rubber component have a number average particle size from 0.1µ to 0.4µ.

	16.	The	composit	ion acc	ording	to	Claim	1	
wherein	the	mass	particle	rubber	compon	ent	conta	ins	up
to 15.0	per	cent b	by weight	rubber	•				

5 17. The composition according to Claim 1 wherein the mass particle rubber component contains up to 12.0 percent by weight rubber.

18. The composition according to Claim 1
wherein the mass particle rubber component contains up to 9.0 percent by weight rubber.

International Application No.

PCT/US87/03311

I. CLASSIFICATIO	N OF SUBJECT MATTER (if several classification symbols apply, indicate all) 6
According to Internation 27/06, 08 US. CL.	onal Patent Classification (IPC) or to both National Classification and IPC INT (155/0208L), 10; 31/06; 33/04, 08, 12, 20, 26; 51/04; 55/0208L 525/70,71,75,76,77,78,80,81,82,83,84,85
II. FIELDS SEARCH	ED
	Minimum Documentation Searched 7
Classification System	Classification Symbols
US	525/70,71,75,76,77,78,80,81,82,83,84,85

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched 8

ategory *	Citation of Document, 11 with indication, where appropriate, of the relevant passages 12	Relevant to Claim No. 13
Х	US, A, 4,430,478 (SCHMITT ET AL), 07 FEBRUARY 1984, SEE COLUMNS 1-4.	1-18
x	US, A, 4,510,287 (WU), 09 APRIL 1985, SEE COLUMNS 1, 2, 5, 6, 9.	1-18
x	US, A, 4,559,386 (WU), 17 DECEMBER 1985, SEE COLUMNS 1, 2, 5, 6, 9.	1-18

- Special categories of cited documents: 10
- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed
- "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step
- "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- "4" document member of the same patent family

Date of the Actual Completion of the International Search O 6 OCTOBER 1988 International Searching Authority ISA/US Date of Mailing of this International Search Report 1 8 NOV 1988 Signature of Authorized Officer JACOB ZIEGLER