Monday, February 12: Peer review and introduction to congruences

Learning Objectives. By the end of class, students will be able to:

- Prove basic facts about modular arithmetic.
- Understand gaps in argument and writing of proof of Exercise 83. Give classmates useful feedback on their proofs. .

Proposition and examples of \pmod{m} (30 minutes)

Definition $(a \equiv b \pmod{m})$. Let $a, b, m \in \mathbb{Z}$ with m > 0. From Friday, we have the following equivalent definitions of congruence modulo m:

- (a) $a \equiv b \pmod{m}$ if and only if $m \mid b-a$ (standard definition, generalizing even/odd based on divisibility)
- (b) $a \equiv b \pmod{m}$ if and only if a and b have the same remainder with divided by m. That is, there exists unique $q_1, q_2, r \in \mathbb{Z}$ such that $a = mq_1 + r$, $b = mq_2 + r$, $0 \le r < m$. (definition generalizing even/odd based on remainder)
- (c) $a \equiv b \pmod{m}$ if and only if a and b differ by a multiple of m. That is, b = a + mk for some $k \in \mathbb{Z}$. (arithmetic progression definition)

Different statements of the definition will be useful in different situations

Proposition 1 (Restatement of Propositions 2.1, 2.4, and 2.5). Let $a, b, c, d, m \in \mathbb{Z}$ with m > 0, then:

- (a) $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$ implies $a \equiv c \pmod{m}$
- (b) $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ implies $a + c \equiv b + d \pmod{m}$
- (c) $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$ implies $ac \equiv bd \pmod{m}$.
- (d) $a \equiv b \pmod{m}$ and $d \mid m, d > 0$ implies $a \equiv b \pmod{d}$
- (e) $a \equiv b \pmod{m}$ implies $ac \equiv bc \pmod{mc}$ for c > 0.

Proof Let $a, b, c, d, m \in \mathbb{Z}$ with m > 0.

(a) Assume $a \equiv b \pmod{m}$ and $b \equiv c \pmod{m}$. Then using the second definition of equivalence, there exists $q_1, q_2, q_3, r \in \mathbb{Z}$ such that

$$a = mq_1 + r,$$
 $0 \le r < m,$
 $b = mq_2 + r,$ $0 \le r < m,$
 $c = mq_3 + r,$ $0 \le r < m.$

Thus, a and c have the same remainder when divided by m, so $a \equiv c \pmod{m}$.

¹all definitions are if and only if

2/3. Assume $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$. Then by the third definition of equivalence, there exists $j, k \in \mathbb{Z}$ such that b = a + mj and d = c + mk. Thus,

$$b+d=a+c+m(j+k), \qquad \text{and}$$

$$bd=ac+m(ak+cj+mjk).$$

Thus, $a + c \equiv b + d \pmod{m}$ and $ac = bd \pmod{m}$.

- (d) Assume $a \equiv b \pmod{m}$, and d > 0 with $d \mid m$. From the first definition of equivalence modulo m, $m \mid b a$. Since division is transitive, $d \mid b a$, so $a \equiv b \pmod{d}$.
- (e) Assume $a \equiv b \pmod{m}$, and c > 0. From the third definition of equivalence modulo m, there exists $k \in \mathbb{Z}$ such that b = a + mk. Thus, bc = ac + mck, so $ac \equiv bc \pmod{mc}$.

Example 1. Note that $2 \equiv 5 \pmod{3}$. Then $4 \equiv 10 \pmod{3}$ by Proposition 1 (c), since $2 \equiv 2 \pmod{3}$. From part (e), $4 \equiv 10 \pmod{6}$, but $2 \not\equiv 5 \pmod{6}$.

Peer review Chapter 1 Exercise 83 (20 minutes)

Wednesday, February 14: More congruence facts

Learning Objectives. By the end of class, students will be able to:

• Prove that $\{0, 1, \dots, m-1\}$ is a complete residue system modulo m.

Basic facts of working modulo m (35 minutes)

Definition (complete residue system). Let $a, m \in \mathbb{Z}$ with m > 0. We call the set of all $b \in \mathbb{Z}$ such that $a \equiv b \pmod{m}$ the equivalence class of a. A set of integers such that every integer is congruent modulo m is called a *complete residue system modulo* m.

Proposition (Consequence 2.2, rephrased). Let m be a positive integer. Then equivalence modulo m partition the integers. That is, every integer is in exactly one equivalence class modulo m.

Proof This is an immediate consequence of the fact that equivalence modulo m is an equivalence relation.

Notice that this arguments also simplifies the proof the $\{0, 1, \dots, m-1\}$ is a complete residue system modulo m.

Proposition (Proposition 2.3). The set $\{0,1,\ldots,m-1\}$ is a complete residue system modulo m.

Proof Let $a, m \in \mathbb{Z}$ with m > 0. By the Division Algorithm, there exist unique $q, r \in \mathbb{Z}$ such that a = qm + r with $0 \le r < m$. In fact, since $0 \le r < m$, we know $r = 0, 1, \ldots, m - 2$, or m - 1. Therefore, every integer is in the equivalence class of $0, 1, \ldots, m - 2$ or m - 1 modulo m. Since every integer is in exactly one equivalence class modulo m, and the remainder from the division algorithm is unique, it is not possible for a to be equivalent to any other element of $\{0, 1, \ldots, m - 1\}$.

In-class Problem 1 Practice: addition and multiplication tables modulo 3, 4, 5, 6, 7. I am adding 9 to include an odd composite.

$\mathbf{Modulo}\ 3$

_ +	[0]	[1]	[2]
[0]	[0]	[1]	[2]
[1]	[1]	[2]	[0]
[2]	[2]	[0]	[1]

*	[0]	[1]	[2]
[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]
[2]	[0]	[2]	[1]

Modulo 4

+	[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]
[1]	[1]	[2]	[3]	[0]
[2]	[2]	[3]	[0]	[1]
[3]	[3]	[0]	[1]	[2]

*	[0]	[1]	[2]	[3]
[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]
[2]	[0]	[2]	[0]	[2]
[3]	[0]	[3]	[2]	[1]

Modulo 5

_+	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[1]	[2]	[3]	[4]
[1]	[1]	[2]	[3]	[4]	[0]
[2]	[2]	[3]	[4]	[0]	[1]
[3]	[3]	[4]	[0]	[1]	[0]
[4]	[4]	[0]	[1]	[2]	[3]

*	[0]	[1]	[2]	[3]	[4]
[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	$\boxed{[4]}$
[2]	[0]	[2]	[4]	[1]	[3]
[3]	[0]	[3]	[1]	[4]	[2]
[4]	[0]	[4]	[3]	[2]	[1]

Modulo 6

_+	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

*	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]
[2]	[0]	[2]	[4]	[0]	[2]	[4]
[3]	[0]	[3]	[0]	[3]	[0]	[3]
[4]	[0]	[4]	[2]	[0]	[4]	[2]
[5]	[0]	[5]	[4]	[3]	[2]	[1]

Modulo 7

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[0]	[1]	[2]	[3]	[4]	[5]

*	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[2]	[0]	[2]	[4]	[6]	[1]	[3]	[5]
[3]	[0]	[3]	[6]	[2]	[5]	[1]	[4]
[4]	[0]	[4]	[1]	[5]	[2]	[6]	[3]
[5]	[0]	[5]	[3]	[1]	[6]	[4]	[2]
[6]	[0]	[6]	[5]	[4]	[3]	[2]	[1]

Modulo 8

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[0]	[1]	[2]
$\overline{[4]}$	[4]	[5]	[6]	[7]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[0]	[1]	[2]	[3]	[4]	[5]	[6]

*	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]
[2]	[0]	[2]	[4]	[6]	[0]	[2]	[4]	[6]
[3]	[0]	[3]	[6]	[1]	[4]	[7]	[2]	[5]
[4]	[0]	[4]	[0]	[4]	[0]	[4]	[0]	[4]
[5]	[0]	[5]	[2]	[7]	[4]	[1]	[6]	[3]
[6]	[0]	[6]	[4]	[2]	[0]	[6]	[4]	[2]
[7]	[0]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

Modulo 9

+	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[1]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]
[2]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]
[3]	[3]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]
[4]	[4]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]
[5]	[5]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]
[6]	[6]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]
[7]	[7]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]
[8]	[8]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]

*	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]	[0]
[1]	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]
[2]	[0]	[2]	[4]	[6]	[0]	[1]	[3]	[5]	[7]
[3]	[0]	[3]	[6]	[0]	[3]	[6]	[0]	[3]	[6]
[4]	[0]	[4]	[8]	[3]	[7]	[2]	[6]	[1]	[5]
[5]	[0]	[5]	[1]	[6]	[2]	[7]	[3]	[8]	[4]
[6]	[0]	[6]	[3]	[0]	[6]	[3]	[0]	[6]	[3]
[7]	[0]	[7]	[5]	[3]	[1]	[8]	[6]	[4]	[2]
[8]	[0]	[8]	[7]	[6]	[5]	[4]	[3]	[2]	[1]

Friday, February 16: Linear congruences in one variable

Learning Objectives. By the end of class, students will be able to:

- Prove when a linear congruence in one variable has a solution
- Find all solutions to a linear congruence given a particular solution
- \bullet Find the number of incongruent solutions to a linear congruence .

Paper 1 due

Quiz (10 min)

Linear congruences in one variable (40 min)

Remark. Let $a, b, m \in \mathbb{Z}$ with m > 0. Every row/column of addition modulo m contains $\{0, 1, \ldots, m - 1\}$. We can also say that $a + x \equiv b \pmod{m}$ always has a solution, since $x \equiv b - a \pmod{m}$.

Theorem (Strayer Theorem 2.6 and Porism 2.7). Let $a, b, m \in \mathbb{Z}$ with m > 0, and d = (a, m). The linear congruence in one variable $ax \equiv b \pmod{m}$ has a solution if and only if $d \mid b$. When $d \mid b$, there are exactly d incongruent solutions modulo m corresponding to the congruence classes

$$x_0, x_0 + \frac{m}{d}, \dots, x_0 + \frac{(d-1)m}{d} \pmod{m}.$$

Proof Let $a, b, m \in \mathbb{Z}$ with m > 0, and d = (a, m). From the definition of congruence modulo m, $ax \equiv b \pmod{m}$ if and only if $m \mid (ax - b)$. That is, $ax \equiv b \pmod{m}$ if and only if my = ax - b for some $y \in \mathbb{Z}$ from the definition of divisibility. Sine ax - my = b is a linear Diophantine equation, Theorem 6.2 says solutions exist if and only if $(a, -m) = d \mid b$.

In the case that solutions exist, let x_0, y_0 be a particular solution to the linear Diophantine equation. Then x_0 is also a solution to the linear congruence in one variable, since $ax_0 - my_0 = b$, implies $ax_0 \equiv b \pmod{m}$. From Theorem 6.2, all solutions have the from $x = x_0 + \frac{mn}{d}$ for all $n \in \mathbb{Z}$. We need to show that these solutions are in exactly d distinct congruence classes modulo m.

Consider the solutions $x_0 + \frac{mi}{d}$ and $x_0 + \frac{mj}{d}$ for some integers i and j. Then $x_0 + \frac{mj}{d} \equiv x_0 + \frac{mk}{d} \pmod{m}$ if and only if $m \mid \left(\frac{mi}{d} - \frac{mj}{d}\right)$. That is, if and only if there exists $k \in \mathbb{Z}$ such that $mk = \frac{mi}{d} - \frac{mj}{d}$.

Rearranging this equation, we get that $x_0 + \frac{mj}{d} \equiv x_0 + \frac{mk}{d} \pmod{m}$ if and only if dk = i - j. Thus, $i \equiv j \pmod{m}$ by definition of equivalence modulo d. Thus, the incongruent solutions to $ax \equiv b \pmod{m}$ are the congruence classes

$$x_0, x_0 + \frac{m}{d}, \dots, x_0 + \frac{(d-1)m}{d} \pmod{m}.$$

Example 2. Let's consider several linear congruences modulo 12.

- The linear congruence $2x \equiv 1 \pmod{12}$ has no solutions, since $2 \nmid 1$.
- The linear congruence $8x \equiv b \pmod{12}$ has a solution if and only if $4 \mid b$. Considering the least nonnegative residues, the options for b are:
 - $-8x \equiv 0 \pmod{12}$. The incongruent solutions are $0, 3, 6, 9 \pmod{12}$.
 - $-8x \equiv 4 \pmod{12}$. The incongruent solutions are 2,5,8,11 (mod 12). Notice we cannot divide across the equivalence, since $2x \equiv 1 \pmod{12}$ has no solutions.
 - $-8x \equiv 8 \pmod{12}$. The incongruent solutions are 1, 4, 7, 10 (mod 12).
- The linear congruence $5x \equiv 1 \pmod{12}$ has solution $x \equiv 5 \pmod{12}$. Since (5,12) = 1, the solution is unique.
- The linear congruence $5x \equiv 7 \pmod{12}$ has solution $x \equiv -1 \equiv 11 \pmod{12}$. Since (5,12) = 1, the solution is unique. Note that instead of 12 + 5(-1) = 7, we could have done

$$5(5x) \equiv 5(7) \equiv 11 \pmod{12}.$$

Linear congruences in one variable (40 min)