kMeans

23 March 2023

Sumit Kumar Yadav

Department of Management Studies Indian Institute of Technology, Roorkee

Definition Attempt 1 - "subset of points that are closer to each other than to all other data points

Definition Attempt 1 - "subset of points that are closer to each other than to all other data points

Definition Attempt 2 - Represent a cluster by its center/mean. Points in a cluster are closer to center/mean of their own cluster than to the mean of other clusters. (Circular definition beacuse??)

- View points as union of k disjoint clusters C_1 , C_2 , ..., C_k
- Each point lies in exactly one

k-means Clustering problem

- Let the points be $x_1, x_2, ..., x_n$
- Mean of the j^{th} cluster =

$$c_j = \frac{1}{m_j} \sum_{i \in C_i} x_i$$

 m_i is the number of points in the j^{th} cluster

 Define cost of a cluster as - sum of squared distance from the points to the mean -

$$\sum_{i \in C_j} ||x_i - c_j||^2$$

• k-means problem : Partition points into k clusters so as to minimize sum of cluster costs - $\sum_{j=1}^k \sum_{i \in C_i} ||x_i - c_j||^2$

k-Means algorithm

- Maintain clusters $C_1, C_2, ..., C_k$
- Compute the cluster centers for these clusters
- Iteration For each point, assign it to the c_j that it is closest to. Update $C_1, C_2, ..., C_k$ and proceed to the next iteration

How to evaluate clustering?

Finding the value of K

Elbow Method

Finding the value of K

- Elbow Method
- DB Index Define cluster dispersion for the j^{th} cluster as -

$$d_j = \sqrt{\frac{1}{m_j} \sum_{i \in C_j} ||x_i - c_j||^2}$$

Define cluster similarity between 2 clusters j and l as -

$$S_{jl} = \frac{d_j + d_l}{||c_j - c_l||}$$

•
$$V_{DB} = \frac{1}{K} \sum_{i=1}^{K} \max_{l \neq i} S_{il}$$

Model Based Clustering

Gaussian Mixture Models

Thank you for your attention