MATERIAL DIDÁCTICO INGENIERÍA

18

PROBLEMAS DE RESISTENCIA DE MATERIALES: Nivel básico

Eduardo Martínez de Pisón Ascacíbar

PROBLEMAS DE RESISTENCIA DE MATERIALES Nivel básico

Ingeniería Agrícola

MATERIAL DIDÁCTICO

Ingenierías

nº 18

Eduardo Martínez de Pisón Ascacibar

PROBLEMAS DE RESISTENCIA DE MATERIALES Nivel básico

Ingeniería Agrícola

Problemas de resistencia de materiales. Nivel básico.

Ingeniería Agrícola

de Eduardo Martínez de Pisón Ascacíbar (publicado por la Universidad de La Rioja) se encuentra bajo una Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 3.0 Unported.

Permisos que vayan más allá de lo cubierto por esta licencia pueden solicitarse a los titulares del copyright.

- © El autor
- © Universidad de La Rioja, Servicio de Publicaciones, 2011 publicaciones.unirioja.es E-mail: publicaciones@unirioja.es

ISBN: 978-84-694-0677-3

PRESENTACIÓN

Problemas de Resistencia de Materiales, Nivel Básico, reúne un conjunto de ejercicios resueltos que completa el libro de teoría, Resistencia de Materiales, Nivel Básico, que publicó la Universidad de la Rioja en el año 1999.

En primer lugar es justo pedir disculpas por las erratas que el lector haya podido encontrar en el libro de teoría y las que pueda encontrar en este. Espero que puedan ser corregidas en una segunda edición y de las cuales, como su autor, me hago totalmente responsable. Espero que el lector sepa disculparme y comprenda que escribir un libro de estas características y que una sola persona se ocupe de su entera elaboración dificulta en gran medida el resultado del mismo.

Ya en el libro de teoría, se explicó la problemática de esta asignatura en los nuevos planes de estudio de las ingenierías. Se resume en una carga docente insuficiente lo que obliga a sintetizar los contenidos y prescindir de muchos de ellos que pueden ser importantes para la formación del estudiante.

En Problemas de Resistencia de Materiales, Nivel Básico, se presentan ejercicios resueltos dirigidos al diseño elemental de vigas y de forma práctica en acero según la NBE-EA-95, Norma Básica de la Edificación "Estructuras de acero en edificación". También aparecen diseños en otros metales y hormigón. Sin embargo, en el caso del hormigón se plantea algún ejercicio sin aplicar los conceptos tecnológicos de la normativa actual la EHE, "Instrucción de Hormigón Estructural", por lo que son meramente ilustrativos desde el punto de vista de la Resistencia de Materiales y se le asumen unas propiedades al hormigón que si bien se pueden asemejar en algún caso a su comportamiento no corresponden a la realidad tecnológica. La razón de esto último es que el diseño en estructura de hormigón es excesivamente complejo para poder ilustrarlo convenientemente en estas pocas lecciones.

Los problemas presentados siguen las lecciones del libro de teoría y corresponden a los contenidos de la asignatura, por ello no me extenderé más en desglosar los objetivos y contenidos remitiéndome a la publicación mencionada.

Todas las lecciones cuentan con sus ejercicios salvo la primera que es de repaso y la última, correspondiente al potencial interno que se aplica en el resto de lecciones y se introdujo como complemento. Además, cada lección de ejercicios incluye una presentación con la formulación básica de la lección. En esta formulación se han corregido algunos errores detectados en la teoría y en alguna lección se han incluido figuras que faltaban en la edición del libro de teoría, e incluso se han ampliado algunos contenidos. Respecto a los ejercicios presentados, aquellas lecciones que se consideran más relevantes cuentan con un mayor número de problemas, o bien, aunque sean pocos son completos y ampliamente desarrollados.

Las figuras que aparecen en los ejercicios se han numerado con un primer dígito referente a la lección, un segundo al ejercicio. Si el ejercicio cuenta con varias figuras se distinguen añadiendo a la numeración una letra.

Presentación.

También se añaden los anexos con tablas, incluyendo las tablas de perfiles que recoge la NBE EA 95.

Lo mismo que se dijo en la presentación del libro de teoría, que estas lecciones se dedican a los estudiantes con el ánimo de que se esfuercen y trabajen para ser unos buenos profesionales.

Logroño Noviembre del año 2000

Eduardo Martínez de Pisón Ascacíbar

CAPÍTULO I Introducción a la Resistencia de Materiales

LECCIÓN 1

Concepto y Situación de la Resistencia de Materiales

Introducción: Esta lección es introductoria y no incluye ejercicios.

Objetivos de la lección: Situar la Resistencia de Materiales como disciplina dentro de la Mecánica. Repaso de conceptos elementales de la Física.

Contenidos de los problemas: Repaso de las unidades en los sistemas: SI (Sistema Internacional) y en el SM (Sistema Métrico), que se aplicarán en la asignatura en las lecciones sucesivas.

Problemas resueltos: No se han incluido al ser una lección de repaso.

Fórmulas básicas:

Segunda ley de Newton

$$\vec{F} = \vec{m} \cdot \vec{a}$$

Ley de la Gravitación Universal.

$$\overrightarrow{F} = G \frac{m_1 \cdot m_2}{r^2} \mathring{r}$$

LECCIÓN 2

Fundamentos de Resistencia de Materiales

Objetivos de la lección: Conseguir que el estudiante comprenda y maneje correctamente los conceptos y contenidos de la lección que son la base de la asignatura.

Contenidos de los problemas: Introducir los conceptos básicos de la Resistencia de Materiales como son la introducción al concepto de sólido deformable, distinción entre acciones y esfuerzos, resistencia mecánica y rigidez, modelo del sólido elástico, planteamiento de las ecuaciones de equilibrio elástico y obtención de los esfuerzos, análisis de las reacciones en vigas e introducción al concepto de isostatismo e hiperestatismo en vigas.

Problemas resueltos: Los problemas se pueden separar en varios grupos:

- i) Cálculo de esfuerzos en secciones concretas de vigas planas de vital importancia, dado que la mayoría de los casos que se estudian en la asignatura y muchos de los casos reales se pueden estudiar como problemas planos. Además de los contenidos señalados, el estudiante se familiariza con el estudio de acciones de tipo puntual, uniformemente repartido y triangular.
- ii) Cálculo de esfuerzos en secciones concretas de elementos tridimensionales con cargas sencillas para no complicar excesivamente los ejercicios.
- iii) Determinación de esfuerzos en estructuras planas sencillas en determinadas secciones por aplicación del método de las secciones que en estructuras se denomina método de Ritter

Formulación básica:

Segunda ley de Newton

$$\left. \sum \stackrel{\rightarrow}{F} \right|_{EXT} = m \cdot \stackrel{\rightarrow}{a}_{G}$$

$$\left. \sum \stackrel{\rightarrow}{M_G} \right|_{\rm EYT} = I_G \cdot \stackrel{\rightarrow}{\alpha}$$

Ecuaciones de equilibrio estático

$$\sum \overrightarrow{F} \Big|_{\text{EXT}} = \overrightarrow{0}$$

$$\left. \sum \overrightarrow{M}_{G} \right|_{EYT} = \overrightarrow{0}$$

desarrolladas

$$\sum F_{x} \Big|_{EXT} = 0$$
 $\sum F_{y} \Big|_{EXT} = 0$ $\sum F_{z} \Big|_{EXT} = 0$

$$\sum \mathbf{M}_{Gx} \Big|_{EXT} = 0$$
 $\sum \mathbf{M}_{Gy} \Big|_{EXT} = 0$ $\sum \mathbf{M}_{Gz} \Big|_{EXT} = 0$

Ecuaciones de equilibrio elástico

$$\sum \overrightarrow{F} = \overrightarrow{0}$$

$$\sum \stackrel{\rightarrow}{M}_G = \stackrel{\rightarrow}{0}$$

se diferencian de las de equilibrio estático en que las primeras solo incluyen acciones y las incógnitas suelen ser las reacciones, mientras que en estas por aplicación del método de las secciones incluyen los esfuerzos que suelen ser las incógnitas del problema.

NOTA: En el cálculo de esfuerzos los signos pueden salir cambiados dependiendo de la elección del tramo, o del criterio de signos empleados, ejes usados, etc. En temas sucesivos se interpretarán los valores y signos de los esfuerzos. Esta nota es extensible a todos los ejercicios y problemas de esta lección.

Aclaraciones al método de Ritter

El método de Ritter es el método de las secciones aplicado a estructuras. Se puede aplicar a cualquier estructura obteniendo los esfuerzos en las vigas que interese. Sin embargo, no siempre permite obtener todos los esfuerzos de la estructura.

En esta lección se aplica a estructuras planas con disposiciones triangulares de barras y cargas puntuales en los nudos, de forma que los momentos en los mismos se desprecian pudiéndose considerar que la estructura trabaja con nudos articulados, y las vigas con esfuerzo normal exclusivamente.

Si al aplicar el método se aísla un nudo, se podrá resolver cuando confluyan dos barras, y si confluyen más cuando solo se tengan dos incógnitas planteando el equilibrio de fuerzas en el nudo. Se puede cortar la estructura aislando más de un nudo, siempre que las incógnitas sean tres y aplicando las ecuaciones de equilibrio de fuerzas y momentos.

Figura 2.1a

1.- Para la viga cargada y apoyada según la figura 2.1a. Determinar los esfuerzos en las secciones con posiciones x = 1, x = 4, x = 5 y x = 7. Tomar el origen de x el extremo A y ejes x horizontal, y vertical.

En la figura 2.1b se ha representado un diagrama de sólido libre de la viga. La acción del pasador en A se representa mediante las componentes de fuerza H_A y V_A .

Figura 2.1b

La acción del apoyo en B está representada por la fuerza V_B , la cual actúa perpendicularmente a la superficie horizontal en B. Para determinar las reacciones la carga distribuida de 3000 N/m puede representarse en el diagrama de sólido libre por una resultante ficticia R que sea estáticamente equivalente, y que se sitúa en la mitad de la carga distribuida. Así pues, $R = A = 3000 \cdot 2 = 6000$ N a una distancia $x = 6,3 + \frac{1}{2}$ (2) = 7,3 m.

La resultante R debería dibujarse a trazos en el diagrama a fin de indicar que puede utilizarse solamente para calcular los efectos exteriores (reacciones). Para determinar los esfuerzos deberá utilizarse la carga distribuida real. La viga está sometida a un sistema coplanario de fuerzas paralelas al eje y; por tanto, $H_A=0$. De las dos ecuaciones de equilibrio restantes se pueden despejar V_A y V_B .

Determinación de V_B:

$$\sum \overrightarrow{M}_{A} = \overrightarrow{0}; \rightarrow V_{B} \cdot 8,3 + 1250 - 4000 \cdot 4,3 - 6000 \cdot 7,3 = 0 \rightarrow V_{B} = +7199N; V_{B} = 7199 N \uparrow$$

Determinación de V_A:

$$\sum \vec{M}_{R} = \vec{0}; \rightarrow -V_{A} \cdot 8,3 + 1250 + 4000 \cdot 4 + 6000 \cdot 1 = 0$$

$$\sum \overrightarrow{M}_{A} = \overrightarrow{0}; \rightarrow V_{A} = +2800N; \qquad V_{A} = 2800 N \uparrow$$

Alternativamente (o como comprobación):

$$\sum F_y = 0; \rightarrow V_A - 4000 - 6000 + 7200 = 0 \rightarrow V_A = +2801N; \ \rightarrow V_A = 2800 \ N \uparrow 1000 + 10000$$

Resueltas las reacciones se pueden evaluar los esfuerzos. Se aplica el método de las secciones

Figura 2.1c

En x = 1:

$$\sum \overrightarrow{F} = \overrightarrow{0} \longrightarrow \qquad V_A + T_1 = 0 \ \longrightarrow T_1 = \text{-} \ V_A = \text{-} \ 2800 \ N$$

$$\left. \sum \overrightarrow{M} \right|_S = \stackrel{\rightarrow}{0} \rightarrow \qquad V_A \cdot x_1 - M_1 = 0 \rightarrow M_1 = x_1 \cdot V_A = 1 \\ m \cdot 2800 \\ N \rightarrow M_1 = 2800 \\ N \cdot m = 1 \\ N \cdot M_1 = 1 \\ N \cdot M_2 = 1 \\ N \cdot M_1 = 1 \\ N \cdot M_2 = 1 \\ N \cdot M_2 = 1 \\ N \cdot M_3 = 1 \\$$

En x = 4:

$$\sum \vec{F} = \vec{0} \rightarrow V_A + T_2 = 0 \rightarrow T_2 = -V_A = -2800 \text{ N}$$

$$\sum \vec{M} \Big|_{S} = \vec{0} \rightarrow V_{A} \quad x_{2} - 1250 - M_{2} = 0 \rightarrow M_{2} = V_{A} \quad x_{2} - 1250 \quad \rightarrow M_{2} = 4.2800 - 1250 = 0$$

 $M_2 = 9950 \text{ N} \cdot \text{m}$

En x = 5:

$$\sum \vec{F} = \vec{0} \rightarrow V_A + T_3 - 4000 = 0 \rightarrow T_3 = 4000 - V_A = 1200 \text{ N}$$

$$\sum \vec{M} \bigg|_{S} = \vec{0} \rightarrow V_{A} \cdot x_{3} - 1250 - (5 - 4,3) \cdot 4000 - M_{3} = 0 \rightarrow$$

$$M_3 = V_A \cdot x_3 - 1250 - 0.7 \cdot 4000 = 9950 \text{ N} \cdot \text{m}$$

En x = 7:

$$\sum \vec{F} = \vec{0} \rightarrow V_A - 4000 - (7 - 6,3) \cdot 3000 + T_4 = 0$$

$$V_A - 4000 - 2100 + T_4 = 0 \rightarrow T_4 = -V_A + 4000 + 2100 \rightarrow T_4 = 3300 \text{ N}$$

NOTA: En el cálculo de esfuerzos los signos pueden salir cambiados dependiendo de la elección del tramo, o del criterio de signos empleado, ejes usados, etc. En temas sucesivos se interpretará los valores y signos de los esfuerzos. Esta nota es extensible a todos los ejercicios y problemas de esta lección.

Figura 2.2a

2.- Una viga está cargada y apoyada según se indica en la figura 2.2a. Determinar los esfuerzos en las secciones con posiciones x = 1, x = 2, x = 3 y x = 4. Tomar el origen de x el extremo A, ejes x horizontal, y vertical.

En la figura 2.2b se ha representado un diagrama de sólido libre de la viga. La acción que soporta del pasador en A se representa por las componentes de fuerza H_A y V_A . La acción del apoyo en B está representada por la fuerza V_B , la cual actúa perpendicularmente a la superficie horizontal en B. Por ahora, en el diagrama de sólido libre, las cargas distribuidas pueden representarse por resultantes ficticias R_1 , R_2 y R_3 cuyas rectas soporte (las que tienen dirección de la carga y pasan por el centro de masas) se hallan a distancias x_1 , x_2 y x_3 respectivamente, del apoyo de la izquierda.

$$R_1 = \frac{1}{2} \cdot 6 \cdot 3 = 9 \text{ kN};$$
 $x_1 = (\frac{2}{3}) \cdot 3 = 2 \text{ m}$

$$R_2 = \frac{1}{2} \cdot 3 \cdot 3 = 4,50 \text{ kN};$$
 $x_2 = 3 + (\frac{1}{3}) \cdot 3 = 4 \text{ m}$

$$R_3 = 3.3 = 9 \text{ kN};$$
 $x_3 = 3 + \frac{1}{2}(3) = 4.5 \text{ m}$

La viga está sometida a un sistema coplanario de fuerzas paralelas al eje y; por lo tanto, $H_A = 0$. De las dos ecuaciones de equilibrio restantes se pueden despejar V_A y V_B .

Figura 2.2b

Determinación de V_B:

$$\sum \vec{M}_{A} = \vec{0}; \rightarrow V_{B} \cdot 6 - 9 \cdot 2 - 4,50 \cdot 4 - 9 \cdot 4,5 = 0$$

$$V_B = + 12,75 \text{ kN}$$
 $V_B = 12,75 \text{ kN} \uparrow$

Determinación de V_A:

$$\sum \vec{M}_{_B} = \vec{0}; \rightarrow \text{-V}_A \cdot 6 + 9 \cdot 4 + 4, 5 \cdot 2 + 9 \cdot 1, 5 = 0$$

$$V_A = +9,75 \text{ kN}$$
 $V_A = 9,75 \text{ kN} \uparrow$

Alternativamente (o como comprobación):

$$\sum F_v = 0$$
: $V_A - 9 - 4.5 - 9 + 12.75 = 0$

$$V_A = +9,75 \text{ kN}$$
 $V_A = 9,75 \text{ kN} \uparrow$

Antes de plantear los esfuerzos es conveniente obtener el valor de la carga trapezoidal para cualquier posición. Como en el futuro se tomarán las x a partir de un extremo, casi siempre A, pues lo hacemos así. La carga distribuida triangular entre 0<x<3 también conviene conocer su distribución, sin embargo, es más sencillo.

Figura 2.2c

Carga triangular: Por semejanza de triángulos:

$$\frac{q_1(x)}{x} = \frac{q}{a} \implies q_1(x) = \frac{q}{a}x = \frac{6}{3}x = 2 \cdot x$$

Carga trapezoidal: Es suma de una triangular y una uniforme. La uniforme vale q'. La triangular tiene una altura q-q', así por semejanza de triángulos:

$$\frac{q-q'}{b} = \frac{q_2(x)-q'}{(a+b-x)} \implies q_2(x)-q' = \frac{q-q'}{b}(a+b-x); q_2(x)-3 = \frac{6-3}{3}(3+3-x)$$

$$q_2(x)=3+(6-x)$$
 $q_2(x)=9-x$

Ahora, conocidas las distribuciones para $\forall x$ se pueden calcular los esfuerzos:

En x = 1:

$$\sum \vec{F} = \vec{0} \rightarrow V_A - \frac{1}{2} \cdot q_1(1) \cdot x_1 + T_{y1} = 0 \quad \rightarrow \quad 9,75 - \frac{1}{2} \cdot 2 \cdot 1 + T_{y1} = 0$$

$$T_v \cdot 1 = -9,75 + 1 = -8,75 \text{ kN}$$

$$\sum \vec{M} \bigg|_{s} = \vec{0} \rightarrow x_{1} \cdot V_{A} - 1/3 \cdot x_{1} (\sqrt{2} \cdot q_{1}(1) \cdot x_{1}) - M_{1} = 0$$

$$M_1 = x_1 \cdot V_A - 1/6 \cdot q_1 \cdot x_1^2 = 1 \cdot 9,75 - (1/6) \cdot 2 \cdot 1^2 = 9,75 - 1/3 = 9,42 \text{ kN}$$

En x = 2:

$$\sum \vec{F} = \vec{0} \rightarrow V_A + T_{y2} - \frac{1}{2} \cdot q_1(2) \cdot x_2 = 0 \rightarrow 9,75 + T_{y2} - \frac{1}{2} \cdot 4 \cdot 2 = 0$$

$$T_{v2} = -9,75 + 4 = -5,75 \text{ kN}$$

$$\sum \vec{M} \bigg|_{S} = \vec{0} \rightarrow x_2 \cdot V_A - (1/3) \cdot x_2 \cdot [\frac{1}{2} \cdot q_1(2) \cdot x_2] - M_2 = 0$$

$$M_2 = x_2 \cdot V_A - (1/6) \cdot q_1(2) \cdot x_2^2 = 2 \cdot 9,75 - (1/6) \cdot 4 \cdot 2^2 = 16,83 \text{ m kN}$$

En x = 3:

$$\sum \vec{F} = \vec{0} \rightarrow V_A + T_{y3} - \frac{1}{2} \cdot q \cdot x_3 = 0 \rightarrow T_{y3} = -9,75 + 9 = -0,75 \text{ kN}$$

$$\sum \vec{M} \bigg|_{s} = \vec{0} \rightarrow \ x_{3} \cdot V_{A} - (1/6) \cdot q \cdot x_{3}^{2} - M_{3} = 0 \ \rightarrow \ M_{3} = \ 3 \cdot 9,75 - (1/6) \cdot 6 \cdot 3^{2}$$

$$M_3 = 20,25 \text{ kN}$$

En x = 4:

$$\sum \vec{F} = \overset{\rightarrow}{0} \to V_A + T_{y4} - \frac{1}{2} \cdot q \cdot x_3 - q_2(4) \cdot (x_4 - x_3) - \frac{1}{2} \cdot [q - q_2(4)] \cdot (x_4 - x_3) = 0$$

$$9,75 + T_{y4} - \frac{1}{2} \cdot 6 \cdot 3 - 5 \cdot (4 - 3) - \frac{1}{2} \cdot (6 - 5) \cdot (4 - 3) = 0 \rightarrow 9,75 + T_{y4} - (18/2) - 5 \cdot 1 - \frac{1}{2} = 0$$

$$T_{v4} = -9,75 + 9 + 5 + 0,5 = 4,75 \text{ kN}$$

Figura 2.2d Método de las secciones en la viga

$$\begin{split} \sum \overrightarrow{M} \bigg|_{S} &= \overset{\rightarrow}{0} \to \ x_4 \cdot V_A - (x_4 - (2/3) \cdot x_3) \cdot \frac{1}{2} \cdot q \cdot x_3 - \frac{1}{2} \cdot q_2(4) \cdot (x_4 - x_3)^2 - (2/3) \cdot (x_4 - x_3) \cdot \frac{1}{2} \cdot [q - q_2(4)] \cdot (x_4 - x_3) - M_4 = 0 \to x_4 \ V_A - (x_4 - (2/3) \cdot x_3) \cdot \frac{1}{2} \cdot q \cdot x_3 - \frac{1}{2} \cdot (x_4 - x_3) \cdot q_2(4) \cdot (x_4 - x_3) - (1/3) \cdot [q - q_2(4)] \cdot (x_4 - x_3)^2 - M_4 = 0 \end{split}$$

$$\begin{aligned} M_4 &= x_4 \cdot V_A - (x_4 - (2/3) \cdot x_3) \cdot \sqrt[4]{2} \cdot q \cdot x_3 - \sqrt[4]{2} \cdot (x_4 - x_3) \cdot q_2(4) \cdot (x_4 - x_3) &- (1/3) \cdot [q - q_2(4)] \\ (x_4 - x_3)^2 \end{aligned}$$

$$M_4 = 4.9,75 - (6/2)\cdot 3\cdot (4 - (2/3)\cdot 3) - (5/2)\cdot (4 - 3)^2 - (1/3)\cdot (6 - 5)\cdot (4 - 3)^2 = 39 - 18 - (5/2) - 1/3$$

 $M_4 = 18,17 \text{ kN} \cdot \text{m}$

Figura 2.3a

3.- La estructura de la figura 2.3a está cargada y apoyada según se indica. Determinar las reacciones en los apoyos A y B. Determinar también los esfuerzos para la barra AB a una distancia de 2 m de A.

En la figura 2.3b se ha representado un diagrama de sólido libre del entramado. La acción del pasador en A está representada por las componentes de fuerza H_A y V_A . La acción del rodillo de apoyo en B está representada por la fuerza V_B , que actúa perpendicularmente a la superficie horizontal en B. La carga distribuida puede representarse, por ahora, en el diagrama de sólido libre, por una resultante R, cuya recta soporte se haya a una distancia y por encima del apoyo A. Así pues:

$$R = \frac{1}{2} \cdot (2,25) \cdot (2) = 2,25 \text{ kN};$$
 $y = 1 + (2/3) \cdot (2) = 2,33 \text{ m}$

Como el entramado está sometido a un sistema de fuerzas coplanarias, disponemos de tres ecuaciones para despejar H_A, V_A y V_B.

Determinación de V_B:

$$\sum \vec{M}_{A} = \vec{0}; \rightarrow V_{B} \cdot 3,25 - 2,25 \cdot 2,3 + 1 \cdot 2,6 - 1,5 \cdot 2 = 0 \ V_{B} = +1,715 \ kN \uparrow$$

Determinación de H_A:

$$\sum F = 0 \ \rightarrow H_A + 2,25 + 1,5 = 0 \rightarrow H_A = -3,75 \text{ kN} \rightarrow H_A = 3,75 \text{ kN} \leftarrow$$

Determinación de V_A:

$$\sum \vec{M}_{B} = \vec{0}; \rightarrow -V_{A} \cdot 3,25 - 2,25 \cdot 2,3 - 1 \cdot 0,65 - 1,5 \cdot 2 = 0$$

$$V_A = -2,715 \text{ kN}$$

Figura P-2.3b

La reacción en el apoyo A es:

$$R_A = \sqrt{(H_A)^2 + (V_A)^2} = \sqrt{(3,75)^2 + (2,75)^2} = 4,650 \text{kN}$$

la dirección la da el ángulo

$$\theta = \operatorname{arctg} \frac{V_A}{H_A} = \operatorname{arctg} \frac{2,75}{3,75} = 36^{\circ}$$

para la posición tomando a partir del eje x negativo. Si el ángulo se toma desde el eje positivo de x (que es la referencia habitual por convenio) será de $180^{\circ} + 36^{\circ} = 216^{\circ}$.

Figura 2.3c Método de las Secciones

Si se corta la barra en x = 2 y seleccionando la parte de la derecha ver figura 2.3c, para las orientaciones dibujadas se tiene:

$$\sum \overrightarrow{F} = \overrightarrow{0} \rightarrow T_y = V_B = 1,715 \text{ kN}$$

$$\left. \sum \overrightarrow{M} \right|_{S} = \stackrel{\rightarrow}{0} \rightarrow M - V_{B} \ 1,25 = 0 \rightarrow M = 1,25 \ V_{B} = 1,25 \ 1,715 = 2,144 \ kN \cdot m \right.$$

Figura 2.4a

4.- La barra de la figura 2.4a pesa 1250 N está soportada por un poste y un cable según se indica en la figura. Se suponen lisas todas las superficies. Determinar la fuerza del cable y las fuerzas que se ejercen sobre la barra en las superficies de contacto. Establecer a una distancia del extremo A de 2 metros los esfuerzos en la barra.

En la figura 2.4a también se ha representado un diagrama de sólido libre de la barra. Como todas las superficies son lisas, la reacción en A será una fuerza vertical A y la reacción en C será una fuerza C perpendicular a la barra. El cable ejerce sobre la barra una tracción F en la dirección del cable. Como la barra se halla sometida a un sistema coplanario de fuerzas, se dispone de tres ecuaciones de equilibrio de las cuales se pueden despejar las incógnitas que son los módulos de las fuerzas V_A , R_C y F.

Determinación de F:

La determinación de la tracción F del cable se puede simplificar tomando momentos respecto al punto de concurso (exterior a la barra) de las fuerzas V_A y R_C . Así

$$\sum \vec{M}_D = \vec{0}; \rightarrow F [2,4/\text{sen } 50^\circ - 0,6\cdot\text{sen} 50^\circ] - 1250\cdot1,8\cdot\cos 50^\circ = 0$$

$$F = +541 \text{ N} \qquad F = 541 \text{ N} \rightarrow$$

Determinación de A:

$$\begin{split} \sum \vec{M}_B &= \vec{0}; \rightarrow & -V_A \cdot 2, 4 \cdot \cos 50^\circ + F \cdot 1, 8 \cdot \sin 50^\circ + 1250 \cdot 0, 6 \cdot \cos 50^\circ = 0 \\ & -V_A \cdot 2, 4 \cdot \cos 50^\circ + 541 \cdot 1, 8 \cdot \sin 50^\circ + 1250 \cdot 0, 6 \cdot \cos 50^\circ = 0 \\ & V_A &= +796 \text{ N} & V_A &= 796 \text{ N} \uparrow \end{split}$$

Determinación de C:

$$\sum \vec{M}_{B} = \vec{0}; \rightarrow -F \cdot 0, 6 \cdot \text{sen} 50^{\circ} - 1250 \cdot 1, 8 \cdot \cos 50^{\circ} + V_{C} \cdot 2, 4 = 0$$
$$-541 \cdot 0, 6 \cdot \sin 50^{\circ} - 1250 \cdot 1, 8 \cdot \cos 50^{\circ} + C \cdot 2, 4 = 0$$
$$V_{C} = +822 \text{ N} \text{ a } 140^{\circ} \text{ respecto la x positiva.}$$

Figura 2.4b Método de las Secciones

Para determinar los esfuerzos, se parte por x = 2 m según la dirección de la barra. Me quedo con la parte inferior. Puedo calcular vectorialmente o escalarmente.

Vectorialmente:

$$\overrightarrow{V}_A = 796 \text{ N } \stackrel{\widehat{}}{j} \qquad \overrightarrow{F} = 541 \text{ N } \stackrel{\widehat{}}{i} \qquad \overrightarrow{F}_{1250} = -1250 \stackrel{\widehat{}}{j}$$

$$\stackrel{\rightarrow}{r}_{AS} = -2 \cdot (\cos 50^{\circ} \hat{i} + \sin 50^{\circ} \hat{j})$$

$$\vec{r}_{FS} = -1,4 (\cos 50^{\circ} \hat{i} + \sin 50^{\circ} \hat{j})$$

$$\vec{r}_{1250S} = -0.2 (\cos 50^{\circ} \hat{i} + \sin 50^{\circ} \hat{j})$$

$$\sum \vec{F} = \vec{0} \qquad \vec{F}_{S} + \vec{V}_{A} + \vec{F} + \vec{F}_{1250} = \begin{cases} F_{S}^{x} \\ F_{S}^{y} \end{cases} + \begin{cases} 0 \\ 796 \end{cases} + \begin{cases} 541 \\ 0 \end{cases} + \begin{cases} 0 \\ -1250 \end{cases} = \vec{0}$$

x)
$$F_S^x + 541 = 0$$
 $F_S^x = -541 \text{ N}$

y)
$$F_S^y + 796 - 1250 = 0$$
 $F_S^y = 1250 - 796 = 454$ N

$$\sum \overrightarrow{M} \bigg|_{S} = \overrightarrow{0} \rightarrow \overrightarrow{M}_{S} + \overrightarrow{r}_{AS} \wedge \overrightarrow{V}_{A} + \overrightarrow{r}_{FS} \wedge \overrightarrow{F} + \overrightarrow{r}_{1250S} \wedge \overrightarrow{F}_{1250} =$$

$$M_{s}^{z}+(-2) \begin{Bmatrix} \cos 50 \\ \sin 50 \end{Bmatrix} \wedge \begin{Bmatrix} 0 \\ 796 \end{Bmatrix} + (-1,4) \begin{Bmatrix} \cos 50 \\ \sin 50 \end{Bmatrix} \wedge \begin{Bmatrix} 541 \\ 0 \end{Bmatrix} + (-0,2) \begin{Bmatrix} \cos 50 \\ \sin 50 \end{Bmatrix} \wedge \begin{Bmatrix} 0 \\ -1250 \end{Bmatrix} = 0$$

x)
$$M_S^z + (-2) \cdot 796 \cdot \cos 50^\circ - 1,4 (-\sin 50^\circ) \cdot 541 - 0,2 \cdot \cos 50^\circ \cdot (-1250) = 0$$

$$M_S^z - 1023,32 + 580,2 + 160,7 = 0$$
 $M_S^z = 282,42 \text{ N} \cdot \text{m}$

Figura 2.4c

¿Cuales son los esfuerzos normales y cortantes?

$$\vec{F}_{s} = \begin{cases} -541 \\ 454 \end{cases}$$

Para determinar el esfuerzo normal y el cortante hay que proyectar la fuerza interna $\vec{F_s}$ dada para los ejes x, y sobre los ejes de la sección.

x')
$$T = F_s^x \cdot sen50^\circ - F_s^y \cdot cos50^\circ$$

$$y'$$
) $N = F_S^x \cdot \cos 50^o + F_S^y \cdot \sin 50^o$

$$T = (-541) \cdot \text{sen} 50^{\circ} - 454 \cdot \cos 50^{\circ} = -706,26 \text{ N}$$

$$N = (-541) \cdot \cos 50^{\circ} - 454 \cdot \sin 50^{\circ} = 0,04 \text{ N}$$

prácticamente nula. La barra trabaja fundamentalmente a flexión y cortadura.

Figura 2.5a

5.- Para la estructura del ejemplo figura 2.5a determinar los esfuerzos según los ejes para la sección situada en (150, 200) mm.

En la figura 2.5a se ha representado un diagrama de sólido libre del entramado. La acción del pasador en A está representada por la fuerza R_A de dirección conocida (ya que la barra AC es un miembro de dos fuerzas) definida por el ángulo $\theta_A = \arctan(200/300) = 33,69^{\circ}$.

La acción del pasador en B está representada por las componentes de fuerza H_B y V_B . Como el entramado se halla sometido a un sistema general de fuerzas coplanarias, se dispondrá de tres ecuaciones de equilibrio para despejar las incógnitas que son los módulos de las fuerzas R_A , H_B y V_B .

Determinación de R_A:

$$\sum \vec{M}_{R} = \vec{0}$$
 - R_A·sen33,69°·(0,6) + 400·0,16 + 600·0,1= 0 \rightarrow R_A = 372,6 N

Determinación de H_B y V_B.

$$\sum \vec{F} = \vec{0} \rightarrow x) \quad R_A \cdot \cos 33,69^o + H_B - 600 = 0 \rightarrow 372,6 \cdot \cos 33,69^o + H_B - 600 = 0 \rightarrow H_B = 290 \text{ N}$$

$$\sum \vec{M}_A = \vec{0} \rightarrow V_B \cdot 0.6 - 400 \cdot 0.44 + 600 \cdot 0.1 = 0 \rightarrow V_B = 193.3 \text{ N}$$

La reacción en el apoyo B es

$$R_B = \sqrt{(H_B)^2 + (V_B)^2} = \sqrt{(290)^2 + (193.3)^2} = 348.5$$

$$\theta_B = arctgV_B/H_B = 33,69^{\circ}$$

Para determinar los esfuerzos se corta por (150, 200) mm y se elige la parte izquierda. Aquí los esfuerzos normales no son nulos.

$$\sum \vec{F} = \vec{0}$$

x) N + 373·cos33,69° = 0 \rightarrow N = - 373·cos33,69° \rightarrow N = - 310,36 N (compresión)

y)
$$T + 373 \cdot \text{sen}33,69^{\circ} = 0 \rightarrow T = -373 \cdot \text{sen}33,69^{\circ} \rightarrow T = -206,9 \text{ N (cortante)}$$

$$\sum \vec{M} \Big|_{S} = \vec{0} \rightarrow 373 \cdot \text{sen} 33,69^{\circ}(x_{AS}) - 373 \cos 33,69 (y_{AS}) - M = 0$$

$$M = 206,9.0,15 - 310,36.0,2 = -31,037 \text{ N} \cdot \text{m}$$

Figura 2.5b Método de las Secciones

6.- El eje de la figura 2.6a transmite el movimiento con dos poleas de pesos 136 kp y 82 kp y radios de 50 cm y 40 cm, respectivamente. Los extremos del eje son apoyos que no transmiten momentos. Determinar los esfuerzos en x = 80 cm.

Figura 2.6a

$$\begin{split} \sum \vec{F}_{EXT} &= \vec{0} & \vec{R}_H + \vec{R}_J + \vec{F}_A + \vec{F}_B + \vec{F}_C + \vec{F}_D + \vec{F}_E + \vec{F}_J = \vec{0} \\ \sum \vec{M}_{EXT} \bigg|_H &= \vec{0} \\ \vec{T}_M + \vec{A} \vec{H} \wedge \vec{F}_A + \vec{B} \vec{H} \wedge \vec{F}_B + \vec{C} \vec{H} \wedge \vec{F}_C + \vec{D} \vec{H} \wedge \vec{F}_D + \vec{E} \vec{H} \wedge \vec{F}_E + \vec{F} \vec{H} \wedge \vec{F}_F + \vec{J} \vec{H} \wedge \vec{R}_J = \vec{0} \\ \vec{A} \vec{H} &= \begin{cases} 0,229 \\ 0,5 \end{cases} & \vec{B} \vec{H} = \begin{cases} 0,229 \\ 0 \\ 0 \end{cases} & \vec{C} \vec{H} = \begin{cases} 0,229 \\ 0 \\ -0,5 \end{cases} & \vec{D} \vec{H} = \begin{cases} 0,915 \\ -0,4 \\ 0 \end{cases} & \vec{E} \vec{H} = \begin{cases} 0,915 \\ 0 \\ 0 \end{cases} \\ \vec{R}_H = \begin{cases} 0 \\ R_H^y \\ R_H^z \end{pmatrix} & \vec{R}_J & \vec{F}_A = \begin{cases} 0 \\ -408 \\ 0 \end{cases} & \vec{F}_B = \begin{cases} 0 \\ -136 \\ 0 \end{cases} & \vec{F}_C = \begin{cases} 0 \\ -136 \\ 0 \end{cases} \\ \vec{F}_D = \begin{cases} 0 \\ 0 \\ -204 \end{cases} & \vec{F}_E = \begin{cases} 0 \\ -82 \\ 0 \end{cases} & \vec{F}_F = \begin{cases} 0 \\ 0 \\ -544 \end{cases} \\ \vec{F}_H = \begin{cases} 0,915 \\ 0 \\ 0 \end{cases} & \vec{F}_D = \begin{cases} 0,915 \\ 0 \\ 0 \end{cases} & \vec{F}_D = \begin{cases} 0,915 \\ 0 \\ 0 \end{cases} & \vec{F}_D = \begin{cases} 0 \\ -136 \\ 0 \end{cases} & \vec{F}_D = \begin{cases} 0 \\ 0 \\ -544 \end{cases} \\ \vec{F}_D = \begin{cases} 0,915 \\ 0 \\ 0 \end{cases} & \vec{F}_D = \begin{cases} 0,9$$

 $\overrightarrow{T_M} \Rightarrow Es$ el par del motor o momento de torsión en el eje X; $\overrightarrow{T_M} = \overrightarrow{T_M}$ i que acciona el eje, puede ser nulo si está en equilibrio en algún instante del movimiento.

$$\begin{array}{l} \overrightarrow{T_{\mathrm{M}}} + \left\{ \begin{matrix} 0,229 \\ 0 \\ 0,5 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ -408 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,229 \\ 0 \\ 0 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ -136 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,229 \\ 0 \\ 0,5 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ -136 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,915 \\ -0,4 \\ 0 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ 0 \\ -204 \end{matrix} \right\} + \left\{ \begin{matrix} 0,915 \\ 0 \\ 0 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ -82 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,915 \\ 0 \\ 0 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ -82 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,915 \\ 0 \\ 0 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ -82 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,915 \\ 0 \\ 0 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,915 \\ 0 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,915 \\ 0 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,915 \\ 0 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,915 \\ 0 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,915 \\ 0 \end{matrix} \right\} \wedge \left\{ \begin{matrix} 0 \\ 0 \end{matrix} \right\} + \left\{ \begin{matrix} 0,915 \\ 0 \end{matrix} \right\} + \left\{$$

Figura 2.6b Diagrama del cuerpo libre

$$T_{M} \vec{i} + \begin{bmatrix} 0,5 \cdot 408 - 0,5 \cdot 136 + 0,4 \cdot 204 - 0,4 \cdot 544 \\ 0,915 \cdot 204 + 0,915 \cdot 544 - 1,144 \cdot R_{J}^{z} \\ -0,229 \cdot 408 - 0,229 \cdot 136 - 0,229 \cdot 136 - 0,915 \cdot 82 + 1,144 \cdot R_{J}^{y} \end{bmatrix} = \overset{\rightarrow}{0}$$

$$T_M = (136 - 408) \cdot 0.5 + (544 - 204) \cdot 0.4 = 0$$

$$R_J^z = \frac{0.915 \cdot (204 + 544)}{1.144} = 598.3 \text{ kp}$$

$$R_{J}^{y} = \frac{0.229 \cdot (408 + 136 + 136) + 0.91582}{1.144} \cong 201.7 \text{ kp}$$

$$\sum \overrightarrow{F}_{EXT} = \overrightarrow{0}$$

$$\begin{bmatrix} 0 \\ R_{H}^{y} \\ R_{H}^{z} \end{bmatrix} + \begin{bmatrix} 0 \\ 201,7 \\ 598,3 \end{bmatrix} + \begin{bmatrix} 0 \\ -408 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -136 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ -136 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -204 \end{bmatrix} + \begin{bmatrix} 0 \\ -82 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -544 \end{bmatrix} = \vec{0}$$

$$R_{H}^{y} = -201,7 + 408 + 136 + 136 + 82 = 560,3 \text{ kp}$$

$$R_{H}^{z} = -598.3 + 204 + 544 = 149.7 \text{ kp}$$

Reacciones

$$\vec{R}_{H} = \begin{cases} 0 \\ 560,3 \\ 149,7 \end{cases} \qquad \vec{R}_{J} = \begin{cases} 0 \\ 201,7 \\ 598,3 \end{cases}$$

Figura 2.6c Método de las secciones

En x = 80 cm. Seleccionando la parte izquierda.

$$\sum \vec{F} = \vec{0} \qquad \vec{F}_S + \vec{F}_H + \vec{F}_A + \vec{F}_B + \vec{F}_C = \vec{0}$$

$$\vec{F}_S = -\left\{\vec{F}_H + \vec{F}_A + \vec{F}_B + \vec{F}_C\right\} = -\left\{560, 3 - 408 - 136 - 136\right\} = \left\{119, 7\right\}$$

$$149, 7$$

Momentos:

$$\begin{split} \sum \vec{M}\big|_{S} &= \vec{0} & \vec{M}_{S} + \vec{A}\vec{S} \wedge \vec{F_{A}} + \vec{B}\vec{S} \wedge \vec{F_{B}} + \vec{C}\vec{S} \wedge \vec{F_{C}} + \vec{H}\vec{S} \wedge \vec{R}_{H} = \vec{0} \\ \vec{A}\vec{S} &= \begin{cases} -0.571 \\ 0 \\ 0.5 \end{cases} & \vec{B}\vec{S} = \begin{cases} -0.571 \\ 0 \\ 0 \end{cases} & \vec{C}\vec{S} = \begin{cases} -0.571 \\ 0 \\ -0.5 \end{cases} & \vec{H}\vec{S} = \begin{cases} -0.8 \\ 0 \\ 0 \end{cases} \\ \vec{M}_{S} &= -\left\{ \begin{cases} -0.571 \\ 0 \\ 0.5 \end{cases} \wedge \begin{cases} 0 \\ -408 \\ 0 \end{cases} + \begin{cases} -0.571 \\ 0 \\ 0 \end{cases} \wedge \begin{cases} 0 \\ -136 \\ 0 \end{cases} + \begin{cases} -0.571 \\ 0 \\ -0.5 \end{cases} \wedge \begin{cases} 0 \\ -136 \\ 0 \end{cases} + \begin{cases} -0.8 \\ 0 \\ 0 \end{cases} \wedge \begin{cases} 0 \\ 560.3 \\ 149.7 \end{cases} \right\} = \\ -\left\{ \begin{cases} 0.571 408 + 0.571136 + 0.571136 - 0.8560.3 \end{cases} \right\} = \begin{cases} -136 \\ 119.76 \\ 59.96 \end{cases} \text{ kp m} \end{split}$$

Figura 2.7a

7.- El árbol de dos palancas, figura 2.7a, soporta una fuerza P que lo mantiene en equilibrio. En A hay un cojinete de bolas y en B uno de empuje. Los cojinetes no ejercen momentos de reacción sobre el árbol. Calcular los esfuerzos en la sección situada a 200 mm de A, indicando como trabaja.

Se consideran los ejes x según la barra, y vertical y z. El origen en A. Las fuerzas:

$$\vec{R_{A}} = \begin{cases} 0 \\ R_{A}^{y} \\ R_{A}^{z} \end{cases} \qquad \vec{R_{B}} = \begin{cases} R_{B}^{x} \\ R_{B}^{y} \\ R_{B}^{z} \end{cases} ; \qquad \vec{P} = -P\hat{j} ; \qquad \vec{F_{750}} = -750\hat{k}$$

$$\sum \overrightarrow{F}_{EXT} = \overrightarrow{0} \rightarrow \overrightarrow{R}_{A} + \overrightarrow{R}_{B} + \overrightarrow{P} + \overrightarrow{F}_{750} = \overrightarrow{0} \rightarrow \begin{cases} 0 \\ R_{A}^{y} \\ R_{A}^{z} \end{cases} + \begin{cases} R_{B}^{x} \\ R_{B}^{y} \\ R_{B}^{z} \end{cases} + \begin{cases} 0 \\ -P \\ 0 \end{cases} + \begin{cases} 0 \\ 0 \\ -750 \end{cases} = \overrightarrow{0}$$

**
$$\Rightarrow$$
 $R_{A}^{y} + R_{B}^{y} - P = 0 \Rightarrow R_{B}^{y} = P - R_{A}^{y} = 750 - 519 = 231 \text{ N}$
 $R_{A}^{z} + R_{B}^{z} - 750 = 0 \Rightarrow R_{B}^{z} = 750 - R_{A}^{z} = 750 - 231 = 519 \text{ N}$

$$\sum \overrightarrow{M}_{EXT} \bigg|_{B} \overrightarrow{r_{750}}_{B} \wedge \overrightarrow{F_{750}} + \overrightarrow{r_{PB}} \wedge \overrightarrow{P} + \overrightarrow{r_{AB}} \wedge \overrightarrow{R}_{A} = \overrightarrow{0}$$

$$\vec{r}_{750\,B} = \begin{cases} -0.2 \\ 0.2 \\ 0 \end{cases} \qquad \vec{r}_{PB} = \begin{cases} -0.45 \\ 0 \\ 0.2 \end{cases} \qquad \vec{r}_{AB} = \begin{cases} -0.65 \\ 0 \\ 0 \end{cases}$$

Figura 2.7b

$$\begin{cases} -0.2 \\ 0.2 \\ 0 \end{cases} \land \begin{cases} 0 \\ 0 \\ -750 \end{cases} + \begin{cases} -0.45 \\ 0 \\ 0.2 \end{cases} \land \begin{cases} 0 \\ -P \\ 0 \end{cases} + \begin{cases} -0.65 \\ 0 \\ 0 \end{cases} \land \begin{cases} 0 \\ R_A^y \\ R_A^z \end{cases} = \vec{0}$$

$$\begin{cases}
0,2(-750) \\
-0,2(750) \\
0
\end{cases} + \begin{cases}
-0,2(-P) \\
0 \\
-0,45(-P)
\end{cases} + \begin{cases}
0 \\
-(-0,65)R_A^z \\
-0,65R_A^z
\end{cases} = \stackrel{\rightarrow}{0}$$

$$-150 + 0.2 P = 0 \rightarrow P = \frac{150}{0.2} = 750 N \rightarrow -0.2750 + 0.65 R_A^z = 0 \rightarrow R_A^z = \frac{0.2750}{0.65} = 231 N$$

$$0,45 P - 0,65 R_A^y = 0$$
 $R_A^y = \frac{0,45}{0,65} P = 519 N$

Ahora sustituimos en **; obteniendo \Rightarrow R_B^y = 231 N R_B^z = 519 N

$$\vec{R_A} = \begin{cases} 0\\519\\231 \end{cases} \qquad \vec{R_B} = \begin{cases} 0\\231\\519 \end{cases} \qquad \vec{P} = \begin{cases} 0\\-750\\0 \end{cases}$$

En el punto x = 200 mm = 0.2 m, debido a que la carga P está en dicha coordenada se produce una discontinuidad para los esfuerzos. Se considera $x \le 0.2 \text{ m}$ y $x \ge 0.2 \text{ m}$ para obtener los dos valores.

Para $x \le 0,2$ m:

$$\sum \vec{F} = \vec{0} \rightarrow \vec{R_A} + \vec{F_S} = \vec{0} \rightarrow \vec{F_S} = -\vec{R_A} = \begin{cases} 0 \\ -519 \\ -231 \end{cases} \rightarrow T_y = -519 \text{ N Cortante} \rightarrow T_z = -231 \text{ N Cortante}.$$

$$\sum \vec{M} = \vec{0} \qquad \vec{M}_{S} + \vec{r}_{AS} \wedge \vec{R}_{A} = \vec{0}$$

$$\begin{cases} M_S^x \\ M_S^y \\ M_S^z \\ \end{cases} + \begin{cases} -0.2 \\ 0 \\ 0 \end{cases} \land \begin{cases} 0 \\ 519 \\ 231 \end{cases} = \stackrel{\rightarrow}{0} \begin{cases} M_S^x \\ M_S^y \\ M_S^z \\ \end{cases} + \begin{cases} 0 \\ 0.2 \ 231 \\ -0.2 \ 519 \end{cases} = \stackrel{\rightarrow}{0} \quad M_S^y = -0.2 \cdot 231 = -4.62 \ \text{N} \cdot \text{m} \\ M_S^z = 0.2 \cdot 519 = 103.8 \ \text{N} \cdot \text{m} \end{cases}$$

8.- En la barra de la figura 2.8a los cojinetes permiten el desplazamiento según el eje z y no transmiten momentos a la barra. El extremo C apoya sobre una placa en forma de L según los planos yz y xy. Determinar

- A) Reacciones en los apoyos
- B) Esfuerzos en el codo E como
 - 1) Sección perteneciente a DE
 - 2) Sección perteneciente a FE
 - 3) Esfuerzo en el codo F como perteneciente a la barra EF = AF = EB

Figura 2.8a

Las reacciones son $\overrightarrow{R}_A = (R_A^x, R_A^y, 0); \overrightarrow{R}_B = (R_B^x, R_B^y, 0); \overrightarrow{R}_C = (\overrightarrow{R}_C^x, 0, \overrightarrow{R}_C^z)$

A) Equilibrio estático

$$\sum \overrightarrow{F}_{\text{EXT}} = \overrightarrow{0} \qquad \overrightarrow{R}_{\text{A}} + \overrightarrow{R}_{\text{B}} + \overrightarrow{R}_{\text{B}} + \overrightarrow{F}_{\text{A}} = \overrightarrow{0} \ ; \begin{cases} R_{\text{A}}^{x} \\ R_{\text{A}}^{y} \\ 0 \end{cases} + \begin{cases} R_{\text{B}}^{x} \\ R_{\text{B}}^{y} \\ 0 \end{cases} + \begin{cases} R_{\text{C}}^{x} \\ 0 \\ R_{\text{C}}^{y} \end{cases} + \begin{cases} -400 \\ 300 \\ -200 \end{cases} = \overrightarrow{0}$$

$$\sum \left| \overrightarrow{M}_{\text{EXT}} \right|_{C} = \stackrel{\rightarrow}{0} \quad \stackrel{\rightarrow}{\text{TAC}} \wedge \stackrel{\rightarrow}{R}_{\text{A}} + \stackrel{\rightarrow}{\text{TBC}} \wedge \stackrel{\rightarrow}{R}_{\text{B}} + \stackrel{\rightarrow}{\text{TAC}} \wedge \stackrel{\rightarrow}{F}_{\text{A}} = \stackrel{\rightarrow}{0}$$

$$\overrightarrow{r}_{AC} = (0,3 -0.25 \ 0.3); \overrightarrow{r}_{BC} (0,3 -0.25 \ 0.5); \overrightarrow{r}_{AC} = (0,3 \ 0.2 \ 0.7)$$

$$\begin{cases} 0.3 \\ -0.25 \\ 0.3 \end{cases} \land \begin{bmatrix} R_A{}^x \\ R_A{}^y \\ 0 \end{bmatrix} + \begin{cases} 0.3 \\ -0.25 \\ 0.5 \end{cases} \land \begin{bmatrix} R_B{}^x \\ R_B{}^y \\ 0 \end{bmatrix} + \begin{cases} 0.3 \\ 0.2 \\ 0.7 \end{cases} \land \begin{bmatrix} -400 \\ 300 \\ -200 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{cases} -0.3 \cdot R_{A}^{y} \\ 0.3 \cdot R_{A}^{x} \\ 0.3 \cdot R_{A}^{y} + 0.25 \cdot R_{A}^{x} \end{cases} + \begin{cases} -0.5 \cdot R_{B}^{y} \\ 0.5 \cdot R_{B}^{x} \\ 0.3 \cdot R_{B}^{y} + 0.25 \cdot R_{B}^{x} \end{cases} + \begin{cases} 0.2 \cdot (-200) - 0.7 \cdot (300) \\ 0.3 \cdot (200) - 0.7 \cdot (400) \\ 0.3 \cdot (300) + 0.2 \cdot (400) \end{cases} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

1)
$$-0.3 \cdot R_A^y - 0.5 \cdot R_B^y - 250$$

2)
$$0.3 \cdot R_A^x + 0.5 \cdot R_B^x - 220$$

$$\begin{cases} 1) & -0.3 \cdot R_{A}^{y} - 0.5 \cdot R_{B}^{y} - 250 \\ 2) & 0.3 \cdot R_{A}^{x} + 0.5 \cdot R_{B}^{x} - 220 \\ 3) & 0.3 \cdot R_{A}^{y} + 0.25 \cdot R_{A}^{x} + 0.3 \cdot R_{B}^{y} + 0.25 \cdot R_{B}^{x} + 170 = 0 \end{cases}$$

4)
$$R_A^x + R_B^x + R_C^x = 400$$

5)
$$R_{A}^{y} + R_{B}^{y} = 300 \rightarrow R_{B}^{y} = -300 - R_{A}^{y} \rightarrow 1. \rightarrow -0.3 \cdot R_{A}^{y} - 0.5 \cdot (-300 - R_{A}^{y}) - 250 = 0.00$$

$$\begin{cases}
4) R_{A}^{x} + R_{B}^{x} + R_{C}^{x} = 400 \\
5) R_{A}^{y} + R_{B}^{y} = 300 \rightarrow R_{B}^{y} = -300 - R_{A}^{y} \rightarrow 1. \rightarrow -0.3 \cdot R_{A}^{y} - 0.5 \cdot (-300 - R_{A}^{y}) - 250 = 0 \\
6) R_{C}^{z} = 200 + 0.3 \cdot R_{A}^{y} + 150 + 0.5 \cdot R_{A}^{y} - 250 = 0 \rightarrow 0.2 \cdot R_{A}^{y} - 100 = 0
\end{cases}$$

Añadimos las del equilibrio de fuerzas

 $\vec{R}_A = (-1900 \ 500 \ 0); \ \vec{R}_B = (1580 \ -800 \ 0); \ \vec{R}_C = (720 \ 0 \ 200)$

B) Esfuerzos en el codo E: Los esfuerzos a nivel numérico valen lo mismo.

$$\begin{split} R_{A}^{\ \ y} &= 500 \text{ N}; \quad 5. \rightarrow R_{B}^{\ \ y} = -300 - R_{A}^{\ \ y} = -300 - 500 = -800 \text{ N} \\ 2. \rightarrow 0.3 \cdot R_{A}^{\ \ x} + 0.5 \cdot R_{B}^{\ \ x} - 220 = 0 \quad 3. \rightarrow 0.3 \cdot R_{A}^{\ \ y} + 0.25 \cdot R_{A}^{\ \ x} + 0.3 \cdot R_{B}^{\ \ y} + 0.25 \cdot R_{B}^{\ \ x} + 170 = 0 \\ 0.3 \cdot 500 + 0.25 \cdot R_{A}^{\ \ x} + 0.3 (-800) + 0.25 \cdot R_{B}^{\ \ x} + 170 = 0; \quad 80 + 0.25 \cdot R_{A}^{\ \ x} + 0.25 \cdot R_{B}^{\ \ x} = 0 \rightarrow \\ R_{B}^{\ \ x} &= -80/0.25 \quad - R_{A}^{\ \ x} = -320 - R_{A}^{\ \ x} \rightarrow \\ 0.3 \cdot R_{A}^{\ \ x} + 0.5 (-320 - R_{A}^{\ \ x}) - 220 = 0; \quad 0.3 \cdot R_{A}^{\ \ x} - 160 - 0.5 \cdot R_{A}^{\ \ x} - 220 = 0; \quad -0.2 \cdot R_{A}^{\ \ x} = 380 \\ R_{A}^{\ \ x} &= -1900; \quad R_{B}^{\ \ x} = -320 + 1900 = 1580; \quad R_{C}^{\ \ x} = 400 - R_{A}^{\ \ x} - R_{B}^{\ \ x} = \\ R_{C}^{\ \ x} &= 400 + 1900 - 1580 = 720 \end{split}$$

Se considere E € DE o E € EF, lo único que cambia es su interpretación.

Si nos quedamos con las secciones a la derecha de E, es decir tramo ED \rightarrow

$$\overrightarrow{F}_{E} = \begin{cases} 400 \\ -300 \\ 200 \end{cases} \mathbf{N} \quad \overrightarrow{M}_{E} = \begin{cases} 90 \\ 0 \\ -180 \end{cases} \mathbf{N} \cdot \mathbf{m}$$

i) E € ED

Fuerzas en la sección

Momentos en la sección

En la figura se expresan los esfuerzos positivos al dibujarse con su orientación correcta. Esto indica que trabajan así:

$$F_E{}^X = 400 \text{ N} \rightarrow \text{ Cortante } T_X = 400 \text{ N} \text{ Momento flector } M_E{}^X = 90 \text{ N} \cdot \text{m}$$
 $M_x = 90 \text{ N} \cdot \text{m}$ $F_E{}^Y = -300 \text{ N} \rightarrow \text{ Tracción } N = 300 \text{ N} \text{ Momento torsor nulo } M_E{}^Y = 0 \text{ M}_T = 0$ $F_E{}^Z = 200 \text{ N} \rightarrow \text{ Cortante } T_Z = 200 \text{ N} \text{ Momento flector } M_E{}^Z = -180 \text{ N} \cdot \text{m}$ $M_z = -180 \text{ N} \cdot \text{m}$

Esfuerzos en la barra EF

Para que sea de EF por la igualdad de esfuerzos internos

$$F_E^{'} = \overrightarrow{F}_E$$
; $F_E^{'} = -M_E$
 $F_E^{X'} = +300 \text{ N}$ $\rightarrow T_Y = 300 \text{ N}$ cortante

 $F_E^{Y'} = +400 \text{ N}$ $\rightarrow T_X = -400 \text{ N}$ cortante

 $F_E^{Z'} = -200 \text{ N}$ $\rightarrow N = -200 \text{ N}$ compresión

 $M_E^{X'} = -90 \text{ N} \cdot \text{m}$ $\rightarrow M_X = -90 \text{ N} \cdot \text{m}$ momento flector

 $M_E^{Y'} = 0$ $\rightarrow M_Y = 0$ momento flector

$$M_E^Z = 180 \text{ N} \cdot \text{m}$$
 $\rightarrow M_Z = 180 \text{ N} \cdot \text{m}$ momento torsor

iii) por el método de las secciones es más fácil considerar el tramo FC→

$$\sum \overrightarrow{F} = \overrightarrow{0} \longrightarrow \overrightarrow{F}_{F} + \overrightarrow{R}_{C} = \overrightarrow{0} ; \overrightarrow{F}_{F} = \overrightarrow{-R}_{C} = - \begin{cases} 720 \\ 0 \\ 200 \end{cases} = \begin{cases} -720 \\ 0 \\ -200 \end{cases}$$

$$\sum \overset{\rightarrow}{M_{_{S}}} = \overset{\rightarrow}{0} \quad \rightarrow \quad \overset{\rightarrow}{M_{F}} + \vec{r} \operatorname{cs} \wedge \vec{R} \operatorname{c} = \overset{\rightarrow}{0} \quad \rightarrow \overset{\rightarrow}{M_{F}} = -\vec{r} \operatorname{cs} \wedge \vec{R} \operatorname{c}$$

$$\overrightarrow{r}_{CS} = \left\{ \begin{array}{c} -0.3 \\ 0.25 \\ -0.2 \end{array} \right\};$$

$$\overrightarrow{M}_{F} = \overrightarrow{R}_{C} \wedge \overrightarrow{r}_{CF} = \begin{cases} 720 \\ 0 \\ 200 \end{cases} \wedge \begin{cases} -0.3 \\ 0.25 \\ -0.2 \end{cases} = \begin{cases} -0.25 \cdot 200 \\ 0.2 \cdot 720 - 0.3 \cdot 200 \\ 0.25 \cdot 720 \end{cases} = \overrightarrow{M}_{F} = \begin{cases} -50 \\ 84 \\ 180 \end{cases};$$

Para que sea de la barra EF→

$$\overrightarrow{F}_{F} + \overrightarrow{F}_{F} = \overrightarrow{0} \rightarrow \overrightarrow{F}_{F} = -\overrightarrow{F}_{F} = \begin{bmatrix} 720 \\ 0 \\ 200 \end{bmatrix} \qquad \overrightarrow{M}_{F} = -\overrightarrow{M}_{F} = \begin{bmatrix} 50 \\ -84 \\ 180 \end{bmatrix}$$

Así para la sección \in EF \rightarrow

$$F_E^{'}=0$$
 cortante $T_Y=0$

$$F_E^{\prime} = 200$$
 compresión $N = -200 \text{ N}$

$$M_F^{\prime} = 50 \text{ N} \cdot \text{m}$$
 momento flector $M_X = 50 \text{ N} \cdot \text{m}$

$$M_F^X = 0$$
 momento flector $M_Y = 0$
 $M_F^X = 180 \text{ N} \cdot \text{m}$ momento torsor $M_Z = 180 \text{ N} \cdot \text{m}$

9.- Determinar los esfuerzos para la figura 2.9a en x=1 m, x=3m, x=5m y x=7m desde el extremo inferior, teniendo en cuenta el peso propio. Datos: El material es acero de densidad $\gamma=8$ kg/dm³, áreas $\Omega_2=325$ cm², $\Omega_1=2\cdot\Omega_2$, $\Omega_1=3\cdot\Omega_3$.

Figura 2.9a

Primero se debe valorar el efecto del peso. Para ello, se calcula el peso de cada tramo. Para una densidad $\gamma=8~kg/dm^3$ le corresponde un peso específico de $\rho=8~kp/dm^3$

$$\begin{split} P_1 &= \rho \cdot \Omega_1 \cdot L_1 = 8 (kp/dm^3) \cdot 2 \cdot 325 \ (cm^2) \cdot 2 \ (m) = 8 \cdot 10^{\text{-}3} (kp/cm^3) \cdot 650 (cm^2) \cdot 200 \cdot (cm) \\ &= 1040 \ kp = 1,04 \ t \end{split}$$

$$P_2 = \rho \cdot \Omega_2 \cdot L_2 = 8 (kp/dm^3) \cdot 325 (cm^2) \cdot 4(m) = 8 \cdot 10^{-3} (kp/cm^3) \cdot 325 \cdot (cm^2) \cdot 400 (cm) = 1040 \ kp = 1,04 \ t$$

$$P_3 = \rho \cdot \Omega_3 \cdot L_3 = 8(kp/dm^3) \cdot 2 \cdot 325/3(cm^2) \cdot 2(m) =$$

$$8 \cdot 10^{-3} \cdot (\text{kp/cm}^3) \cdot 216,7 \cdot (\text{cm}^2) \cdot 200(\text{cm}) = 347 \text{ kp} = 0,347 \text{ t}$$

Está claro que los pesos son significativos.

Ahora se calcula por el método de las secciones el valor de los esfuerzos que en este caso es claro que sólo son esfuerzos normales.

En x = 1 solución: el esfuerzo normal vale $N_1 = 2,17$ t

En x = 3 solución: el esfuerzo normal vale $N_2 = 2,607$ t

En x = 5 solución: el esfuerzo normal vale $N_3 = 2,127$ t

En x = 7 Resolución:

Se plantea el equilibrio elástico para la figura 2.9aa) así sólo se necesita una sola ecuación:

$$N_4 = P_1^* + P_2 + P_3 + 2 t - 1 t$$

donde P₁* es el peso de la porción del tramo superior, P₂ y P₃ los pesos de los tramos inferiores, calculados anteriormente. Así:

$$P_1*= P_1/2 = 1.04/2 t = 0.52 t$$

o bien

$$P_1^* = \rho \cdot \Omega_1 \cdot L_1^* = 8(kp/dm^3) \cdot 2 \cdot 325(cm^2) \cdot 1(m) = 8 \cdot 10^{-3}(kp/cm^3) \cdot 650(cm^2) \cdot 100(cm) = 1040 \text{ kp} = 0,52 \text{ t}$$

así se obtiene que:

$$N_4 = 0.52 t + 1.04 t + 0.347 t + 2 t - 1 t = 2.907 t$$

Figura 2.10a

10.- Determinar los esfuerzos para la figura 2.10a en x = 1 m, x = 3 m y x = 5 m desde el extremo superior, teniendo en cuenta el peso propio de la viga si es imprescindible.

Datos: El material es acero de densidad $\gamma = 8 \text{ kg/dm}^3$, área $\Omega = 20 \text{ cm}^2$

El peso de la viga es:

$$P = \rho \cdot \Omega \cdot L = 8kp/dm^3 \cdot 20cm^2 \cdot 6m = 8 \cdot 10^{-3} kp/cm^3 \cdot 20cm^2 \cdot 600cm = 96 kp = 0,096 t$$

que a todas luces es despreciable frente a las cargas del problema. No considerar el peso simplifica los cálculos. Así, si no se considera el peso los esfuerzos normales (no hay otros esfuerzos) valen:

En x = 1 solución: el esfuerzo normal vale $N_1 = -7.5$ t

En x = 3 solución: el esfuerzo normal vale $N_2 = -6.5$ t

En x = 5 Resolución:

Se plantea el equilibrio elástico para la figura 2.10ab), así se necesita una sola ecuación:

$$N_3 = -6 t + 4 t - 6 t - q \cdot 5m = -8 + 1,5 \cdot (t/m) \cdot 5m = -15,5 t$$

Figura 2.11a

11.- Determinar los esfuerzos para la figura 2.11a1 en x = L/4 y x = 3 L/4, el peso propio es despreciable.

Datos: L = 3m; F = 4t; q = 5t/m

Lo primero es determinar las reacciones. A partir de las ecuaciones de equilibrio:

$$\sum F_{\text{EXT}}|_{X} = 0 \Rightarrow H_{\text{A}} = 0$$

$$\sum F_{\text{EXT}}|_{Y} = 0 \Rightarrow V_{\text{A}} + V_{\text{B}} = q \cdot L + P = 15 + 4 = 19$$

$$\sum M_{\rm EXT}\Big|_z^{\rm A}=0 \Rightarrow q\cdot L\cdot \frac{L}{2} + P\cdot \frac{L}{2} - V_B\cdot L=0; \ 15\cdot \frac{3}{2} + 4\cdot \frac{3}{2} - V_B\cdot 3=0 \Rightarrow V_B=\frac{19}{2}t$$

y por tanto $V_A = 19$ - $V_B = \frac{19}{2}t$. Para determinar las reacciones bastaba una sola ecuación ya que hay simetría de geometría y carga respecto al plano medio de la viga por lo que $V_A = V_B$.

En x = L/4 Resolución:

En la figura 2.11a2 se muestra la viga seccionada en x = L/4. Los esfuerzos en la viga son el cortante T_y y el momento flector M_z . Eligiendo la parte de la izquierda y planteando el equilibrio los esfuerzos y para los ejes de la figura se obtiene:

$$T_y + V_A - q \cdot \frac{L}{4} = 0 \Rightarrow T_y = -\frac{23}{4} t$$

$$M_z$$
 - $V_A \cdot \frac{L}{4} + q \cdot \frac{L}{4} \cdot \frac{L}{8} = 0 \Rightarrow M_z = \frac{183}{32} t$

si se aplica para la parte derecha los esfuerzos que se obtienen son del mismo valor pero con sentido contrario de forma que se anulan.

En x = 3.L/4 Solución:
$$T_y = \frac{23}{4} t$$
; $M_z = \frac{183}{32} t \cdot m$

12.- Determinar los esfuerzos para la figura 2.12a en x = 1, x = 3 y x = 5, el peso propio es despreciable. Datos: a = b = c = 2 m; $M_z^1 = 6$ t·m; P = 3 t; q = 2 t/m

Figura 2.12a

Lo primero es determinar las reacciones. A partir de las ecuaciones de equilibrio:

$$\sum F_{\text{EXT}}|_{X} = 0 \Rightarrow H_{\text{A}} = 0$$

$$\Sigma F_{\text{EXT}}|_{Y} = 0 \Rightarrow V_{\text{A}} + V_{\text{B}} = q \cdot b + P = 2 \cdot 2 + 3 = 7$$

$$\sum M_{\rm EXT}\big|_{\rm Z}^{\rm A}=0 \Rightarrow \text{M-} \ q\cdot b\cdot \frac{b}{2} \ - \ P\cdot (b+c) \ + \ V_{\rm B}\cdot b=6 - 2\cdot 2\cdot 2/2 - 3\cdot (2+2) \ + \ V_{\rm B}\cdot 2=0 \Rightarrow V_{\rm B}=5 \ t$$

y por tanto $V_A = 7 - V_B = 2 t$.

En
$$x = 1$$
 Solución: $T_y = 0$ t; $M_z = -6$ t·m

En x = 3 Resolución:

En la figura 2.12c se muestra la viga seccionada en x = 3. Los esfuerzos en la viga son el cortante T_y y el momento flector M_z . Eligiendo la parte de la izquierda y planteando el equilibrio los esfuerzos y para los ejes de la figura se obtiene:

$$\Sigma F|_{Y} = 0 \Rightarrow -T_{y} + V_{A} - q \cdot \frac{b}{2} = 0 \Rightarrow T_{y} = 0 t$$

$$\sum M\Big|_z^A = 0 \Rightarrow M_z + M - V_A \cdot (3-a) + q \cdot (3-a) \cdot (3-a) \cdot (2-a) \cdot (2-a) = 0 \Rightarrow M_z = -5 \text{ t} \cdot \text{m}$$

En
$$x = 5$$
 Solución: $T_y = -3 t$; $M_z = 3 t \cdot m$

Figura 2.12b

13.- Determinar los esfuerzos para la figura 2.13 en x = L/8, x = 3 L/8, x = 5 L/8 y x = 7 L/8. El peso propio es despreciable.

Datos: a = b = c = d; L = 4m; P = 6t; q = 3t/m; $M_z^1 = 2t \cdot m$; $M_x^1 = 3t \cdot m$

Lo primero es determinar las reacciones. A partir de las ecuaciones de equilibrio:

$$\sum F_{\text{EXT}} \Big|_{X} = 0 \Longrightarrow H_{\text{A}} = 0$$

$$\begin{split} & \sum F_{EXT} \Big|_{Y} = 0 \Rightarrow V_A + V_B = Q + P; \text{ siendo } Q \text{ la carga neta triangular } y \text{ cuyo valor es:} \\ & Q = \frac{1}{2} \cdot q \cdot \frac{L}{2} = \frac{1}{2} \cdot 3 \cdot \frac{4}{2} = 3 \text{ t} \Rightarrow V_A + V_B = 3 \text{ t} + 6 \text{ t} = 9 \text{ t} \end{split}$$

 $\sum M_{EXT}\Big|_X^A = 0 \Rightarrow M_X^1 - M_X^1 = 0$; se equilibran y por tanto se puede estudiar como caso plano considerando esos momentos torsores en el eje x.

$$\sum_{Z} \mathbf{M}_{EXT} \Big|_{Z}^{A} = 0 \Rightarrow \mathbf{M}_{Z}^{1} + \frac{2}{3} \cdot \frac{\mathbf{L}}{2} \cdot \mathbf{Q} + \mathbf{P} \cdot \frac{\mathbf{L}}{4} - \mathbf{V}_{B} \cdot \mathbf{L} = 2 + \frac{2}{3} \cdot \frac{4}{2} \cdot \mathbf{Q} + 6 \cdot \frac{4}{4} - \mathbf{V}_{B} \cdot 4 = 0 \Rightarrow \mathbf{V}_{B}$$

$$= 3 \text{ t}$$

y por tanto $V_A = 9 - V_B = 6 t$.

En x = L/8 = 1/2 Resolución:

Se aplica el método de las secciones y seleccionando la parte de la izquierda. Los esfuerzos en la viga son el cortante T_y y el momento flector M_z . Planteando el equilibrio los esfuerzos y para los ejes de la figura se obtiene:

 $\Sigma F|_{Y} = 0 \Rightarrow T_{y} + V_{A} - Q' = 0$; siendo Q' la carga triangular que queda a la izquierda de la sección y de valor $Q' = \frac{1}{2} \cdot q(x = \frac{L}{8} = \frac{1}{2}) \cdot \frac{L}{2}$; la función $q(x) = \frac{2 \cdot q}{L} \cdot x \Rightarrow q(\frac{1}{2}) = \frac{3}{4}$;

$$Q' = \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{1}{2} = \frac{3}{16} \Rightarrow T_y + 6 - \frac{3}{16} = 0 \Rightarrow T_y = -\frac{93}{16} t$$

$$\sum M \Big|_{z}^{A} = 0 \Rightarrow M_{z} - V_{A} \cdot \frac{L}{8} + Q' \cdot \frac{1}{3} \cdot \frac{L}{8} = 0 \Rightarrow M_{z} = \frac{93}{32}$$

En x = 3 L/8 = 3/2 Solución:

 $T_y = \frac{27}{16}$ t; $M_T = 3$ t·m; $M_z = \frac{165}{32}$ t·m; el resto nulos.

En x = 5.L/8 = 5/2 Solución:

 $T_y = 3 t$; $M_T = 3 t \cdot m$; $M_z = 4.5 t \cdot m$; el resto nulos.

En x = 7.L/8 = 7/2 Solución:

 $T_v = 3 t$; $M_z = 1.5 t \cdot m$; el resto nulos.

Figura 2.14a

14.- Para la estructura de las figuras 2.14a establecer los esfuerzos en todas las barras por aplicación del método de Ritter

En primer lugar se calculan las reacciones:

 $\sum F_{\text{EXT}}|_{x} = 0 \Rightarrow H_{\text{A}} = 0$; las componentes de las cargas en el eje x se anulan.

$$\sum F_{\text{EXT}} \Big|_{Y} = 0 \Rightarrow V_{\text{A}} + V_{\text{D}} = (2 \cdot P + 4 \cdot \frac{P}{2}) \cos 30^{\circ} = 4 \cdot P \cdot \frac{\sqrt{3}}{2} = 2 \cdot P \cdot \sqrt{3}$$

Como hay simetría respecto al plano medio de la estructura, tanto de carga como de geometría se puede asegurar: $V_A = V_D$ no siendo necesario el planteamiento de la ecuación de momentos. Así, las fuerzas en las barras que son simétricas respecto a este plano medio, también serán iguales.

En la segunda figura 2.14a se muestran cuatro cortes que permiten resolver la estructura por el método de Ritter. Con estos cortes se aísla cada nudo y basta aplicar el equilibrio de fuerzas. El cuarto corte sólo sirve de comprobación. Analizando estos cortes.

Corte I (figura 2.14b1):

$$\Sigma F|_{X} = 0 \Rightarrow N_1 + N_7 \cdot \cos 30^\circ + \frac{P}{2} \cdot \sin 30^\circ = 0$$

$$\begin{split} & \Sigma \left. F \right|_Y = 0 \Longrightarrow V_A + N_7 \cdot sen 30^\circ - \frac{P}{2} \cdot cos 30^\circ = 0. \text{ Resolviendo se obtienen: } N_1 = 2 \cdot P; \, N_7 \\ & = -\frac{3 \cdot \sqrt{3} \cdot P}{2} \end{split}$$

Corte II (figura 2.14b2):

En este caso se puede proyectar sobre los ejes x', y' dando ecuaciones más sencillas.

$$\Sigma F|_{X'} = 0 \Rightarrow N_6 = N_7 = -\frac{3 \cdot \sqrt{3} P}{2}$$

$$\sum \mathbf{F}|_{\mathbf{Y}'} = 0 \Rightarrow \mathbf{N}_8 = -\mathbf{P}$$

Corte III (figura 2.14b3):

Primero debe conocerse el ángulo. Si H es la altura de la cercha se cumple que:

$$tg\beta = \frac{H}{L/4}$$
 además $tg30^{\circ} = \frac{H}{L/2} \Rightarrow tg\beta = 2 \cdot tg30^{\circ} \Rightarrow \beta = 49,106605^{\circ}$

$$\Sigma F|_{x} = 0 \Rightarrow N_8 \cdot sen 30^{\circ} + N_1 - N_9 \cdot cos \beta - N_2 = 0$$

$$\Sigma F|_{Y} = 0 \Rightarrow N_8 \cdot \cos 30^\circ + N_9 \cdot \sin \beta = 0 \rightarrow \text{Resolviendo se obtienen: } N_2 = \frac{3 \cdot P}{4}; N_9 = 1,1456439 \cdot P$$

Figura 2.14b

Corte IV (figura 2.14b4):

La ecuación en el eje y sirve de comprobación, se debe tener en cuenta que hay simetría y que por tanto $N_5=N_6;\,N_{10}=N_9$

$$\Sigma F|_{Y} = 0 \Rightarrow 2 \cdot \frac{P}{2} \cdot \cos 30^{\circ} + 2 \cdot N_{6} \cdot \sin 30^{\circ} + 2 \cdot N_{9} \cdot \sin \beta = 0$$
?

sustituyendo los valores se comprueba: $2 \cdot \frac{P}{2} \cdot \cos 30^{\circ} + 2 \cdot N_6 \cdot \sin 30^{\circ} + 2 \cdot N_9 \cdot \sin \beta = \frac{\sqrt{3}}{2} \cdot P - \frac{3 \cdot \sqrt{3} \cdot P}{2} + 2 \cdot 1,1456439 \cdot P \cdot 0,7559289 = 0$ comprobado.

15.- Para la estructura de la figura 2.15a establecer los esfuerzos en las barras GF, FB y BC por aplicación del método de Ritter

Figura 2.15a

Este ejemplo sirve para ver otra aplicación del método de Ritter cortando tres barras a la vez, de forma que se debe aplicar también la ecuación de momentos para la resolución. Para determinar los esfuerzos en dichas barras se puede cortar directamente (figura 2.15a) al ser tres barras y, por tanto; tres esfuerzos las incógnitas. Para resolver se necesitan tres ecuaciones, como es un caso plano; con las dos de fuerzas y una de momentos basta.

Así se aplica el método de Ritter o de las secciones en estructuras como se muestra en la figura 2.15b. Se elige el corte izquierdo por ser más sencillo. Por comodidad se numeran las barras como en el ejercicio anterior.

Para poder resolver primero se deben calcular las reacciones. Esto se hizo en el ejemplo anterior por lo que no se repite aquí.

Se plantean las ecuaciones de equilibrio para el corte:

$$\sum F\Big|_{X} = 0 \Rightarrow N_2 + N_6 \cdot \cos 30^\circ + N_9 \cdot \cos 49, 1^\circ + P \cdot sen 30^\circ + \frac{P}{2} \cdot sen 30^\circ = 0$$

$$\Sigma F|_{Y} = 0 \Rightarrow N_6 \cdot \text{sen} 30^\circ + N_9 \cdot \text{sen} 49, 1^\circ + V_A - P \cdot \cos 30^\circ - \frac{P}{2} \cdot \cos 30^\circ = 0$$

Los momentos se toman en B por ser más fácil.

$$\sum M \Big|_{Z}^{B} = 0 \Rightarrow V_{A} \cdot AB - \frac{P}{2} \cdot AG + N_{6} \cdot BG = 0$$
 la geometría que se necesita es:

BG =
$$\frac{L}{4} \text{ sen } 30^{\circ} = \frac{L}{8}$$
; AG = $\frac{L}{4} \cdot \text{cos } 30^{\circ} = \frac{\sqrt{3}}{8} \cdot \text{L}$; AB = $\frac{L}{4}$

Figura 2.15b

Resolviendo la ecuación de momentos

$$V_A \cdot \frac{L}{4} - \frac{P}{2} \cdot \frac{\sqrt{3}}{8} L + N_6 \cdot \frac{L}{8} = 0$$
 $N_6 = -\frac{3 \cdot \sqrt{3} \cdot P}{2}$ que coincide con el ejercicio anterior.

Las ecuaciones de fuerzas:

$$\left. \sum F \right|_{x} = 0 \Rightarrow N_{2} - \frac{3 \cdot \sqrt{3} \cdot P}{2} \cdot \frac{\sqrt{3}}{2} + N_{9} \cdot \cos 49, 1^{\circ} + P \cdot \frac{1}{2} + \frac{P}{2} \cdot \frac{1}{2} = 0$$

$$\Sigma \mathbf{F}|_{\mathbf{Y}} = 0 \Rightarrow -\frac{3\cdot\sqrt{3}\cdot\mathbf{P}}{2}\cdot\frac{1}{2} + \mathbf{N}_{9}\cdot\mathbf{sen49}, \mathbf{1}^{\circ} + 2\cdot\sqrt{3}\cdot\mathbf{P} - \mathbf{P}\cdot\frac{\sqrt{3}}{2} - \frac{\mathbf{P}}{2}\cdot\frac{\sqrt{3}}{2} = 0$$

Se resuelve:

 $N_9 = 1,146 \cdot P$ $N_2 = \frac{3 \cdot P}{4}$ valores que coinciden con los del ejercicio anterior.

Figura 2.16

16.- La figura 2.16 es una viga en cruz que está empotrada en O. Establecer los esfuerzos en la sección media del tramo OB. Datos: OB = 40 cm, AB = BC = 30 cm.

El planteamiento del método de las secciones se realiza en un caso tridimensional con esfuerzos en el centro de masas de la sección de cálculo.

Aplicar el método de las secciones es dividir por la sección de cálculo y considerar una parte, bien la de la derecha o la de la izquierda. Si en este caso se considera la parte izquierda sería necesario calcular las reacciones en el empotramiento, lo que no es

necesario si tomamos la parte derecha. En la figura 2.16a de se muestra la situación elegida para el cálculo de esfuerzos.

En la sección de corte se toman las acciones internas cuyas resultantes son \overrightarrow{F} y \overrightarrow{M} para fuerzas y momentos respectivamente. Se resuelve planteando directamente el equilibrio elástico.

i) Equilibrio de fuerzas:

$$\sum \overrightarrow{F} = \overrightarrow{0} \Longrightarrow \overrightarrow{F_A} + \overrightarrow{F_B} + \overrightarrow{F_C} + \overrightarrow{F} = \overrightarrow{0}$$

$$\vec{F_A} = (150\ 100\ 0); \ \vec{F_B} = (0\ 250\ -200); \ \vec{F_C} = (0\ 0\ 300); \ \Rightarrow \ \vec{F} = -\ \vec{F_A} - \ \vec{F_B} - \ \vec{F_C} = -\ (150\ 100\ 0) - (0\ 250\ -200) - (0\ 0\ 300) = (-150\ -350\ -500) = -150\ \hat{i} - 350\ \hat{j} - 100\ \hat{k} \Rightarrow F_x = -150\ kN, F_y = -350\ kN; F_z = -100\ kN$$

Si se identifican los esfuerzos se tiene para los ejes absolutos:

Esfuerzo normal:
$$N = F_y = -350 \text{ kN}; \ \overrightarrow{N} = -350 \text{ kN} \ \hat{j}$$

Esfuerzos cortantes: $T_x = F_x = -150$ kN; $T_z = F_z = -100$ kN $\Longrightarrow \vec{T} = -150$ kN $\overset{\hat{i}}{i} - 100$ kN $\overset{\hat{k}}{k}$

ii) Equilibrio de Momentos:

Se toma en la sección

$$\sum \vec{M} = \overset{\rightarrow}{0} \Longrightarrow \overset{\rightarrow}{R_{_{A}}} \wedge \overset{\rightarrow}{F_{_{A}}} + \overset{\rightarrow}{R_{_{B}}} \wedge \overset{\rightarrow}{F_{_{B}}} + \overset{\rightarrow}{R_{_{C}}} \wedge \overset{\rightarrow}{F_{_{C}}} + \vec{M} = \overset{\rightarrow}{0}$$

$$\vec{R}_{A} = (0.3 \ 0.2 \ 0); \ \vec{R}_{B} = (0.02 \ 0); \ \vec{R}_{C} = (-0.3 \ 0.2 \ 0)$$

$$\vec{R_A} \wedge \vec{F_A} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0'3 & 0'2 & 0 \\ 150 & 100 & 0 \end{vmatrix} = (0,3 \cdot 100 - 0, 2 \cdot 150) \hat{k} = \vec{0}$$

$$\vec{R_B} \wedge \vec{F_B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 0'2 & 0 \\ 0 & 250 & -200 \end{vmatrix} = (0,2 \cdot -200) \hat{i} = -40 \hat{i}$$

$$\vec{R_C} \wedge \vec{F_C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -0'3 & 0'2 & 0 \\ 0 & 0 & 300 \end{vmatrix} = 0,2 \cdot 300 \ \hat{i} - (-0,3) \cdot 300 \ \hat{j} = 60 \ \hat{i} + 90 \ \hat{j}$$

$$\begin{split} \sum \vec{M} = \vec{0} \implies \vec{M} &= -(\vec{R_A} \land \vec{F_A} + \vec{R_B} \land \vec{F_B} + \vec{R_C} \land \vec{F_C}) = -(-40 \ \hat{i} \) - (60 \ \hat{i} + 90 \ \hat{j}) = -20 \\ \hat{i} - 90 \ \hat{j} &= M_x \ \hat{i} + M_y \ \hat{j} + M_z \ \hat{k} \implies M_x = -20; \ M_y = -90; \ M_z = 0. \end{split}$$

Si se identifican los esfuerzos se tiene;

Momento Torsor: $\overrightarrow{M}_T = M_y \stackrel{\land}{j} = -90 \text{ kN} \cdot \text{m} \stackrel{\land}{j}$

Momento Flector: $\stackrel{\rightarrow}{M_F} = = M_x \stackrel{\hat{i}}{i} + M_z \stackrel{\hat{k}}{k} = -20 \text{ kN} \cdot \text{m} \stackrel{\hat{i}}{i}$

Figura 2.17a

17.- Determinar las fuerzas, para la estructura de la figura 2.17a, que soportan las barras BC, BE y EF. Todas las barras tienen longitud 2 m.

Aplicando el método de Ritter y cortando por las tres barras se elige la parte superior. Ver figura 2.17a.

Se aplican las ecuaciones de equilibrio.

$$\begin{split} \Sigma \vec{F} = \overset{\rightarrow}{0} \implies & \Sigma F_x = 0 \quad N_{BC} \cdot \cos 60^\circ + N_{BE} + N_{EF} \cdot \cos 60^\circ = 0 \\ & \Sigma F_y = 0 \quad N_{BC} \cdot \sin 60^\circ + N_{EF} \cdot \sin 60^\circ + 15 + 20 = 0 \\ \Sigma \vec{M}_E = \overset{\rightarrow}{0} \implies 15 \cdot \text{CE} \cdot \cos 60^\circ - 20 \cdot \text{ED} \cdot \cos 60^\circ + N_{BC} \cdot \text{CE} \cdot \sin 60^\circ = 0 \\ 15 \cdot 2 \cdot \frac{1}{2} - 20 \cdot 2 \cdot \frac{1}{2} + N_{BC} \cdot 2 \cdot \frac{\sqrt{3}}{2} = 0 \end{split}$$

$$N_{BC} = \frac{20 - 15}{\sqrt{3}} = \frac{5}{\sqrt{3}} = \frac{5 \cdot \sqrt{3}}{3} \text{ kN} \quad N_{BC} = \frac{5 \cdot \sqrt{3}}{3}$$

Figura 2.17b

Sustituyendo en las ecuaciones de las fuerzas

$$\frac{5.\sqrt{3}}{3} \cdot \cos 60^{\circ} + N_{BE} + N_{EF} \cdot \cos 60^{\circ} = 0 \Rightarrow \frac{5.\sqrt{3}}{3} \cdot \frac{1}{2} + N_{BE} + N_{EF} \cdot \frac{1}{2} = 0$$

$$\frac{5\cdot\sqrt{3}}{3}\cdot \text{sen } 60 + \text{N}_{\text{EF}}\cdot \text{sen} 60^{\circ} + 35 = 0 \Rightarrow \frac{5\cdot\sqrt{3}}{3}\cdot \frac{\sqrt{3}}{2} + \text{N}_{\text{EF}}\cdot \frac{\sqrt{3}}{2} + 35 = 0 \Rightarrow \frac{5\cdot\sqrt{3}}{6} + \text{N}_{\text{BE}} + \text{N}_{\text{EF}}\cdot \frac{1}{2} = 0$$

$$\frac{5}{2} + N_{EF} \cdot \frac{\sqrt{3}}{2} + 35 = 0 \rightarrow N_{EF} = \frac{-70 - 5}{\sqrt{3}} = \frac{-75}{\sqrt{3}} \rightarrow N_{EF} = \frac{-75 \cdot \sqrt{3}}{3}$$

$$\frac{5 \cdot \sqrt{3}}{6} + N_{BE} - \frac{-75 \cdot \sqrt{3}}{3} \frac{1}{2} = 0 \rightarrow \frac{5\sqrt{3}}{6} - \frac{-75 \cdot \sqrt{3}}{6} + N_{BE} = 0 - \frac{70\sqrt{3}}{6} + N_{BE} = 0$$

$$N_{BE} = \frac{70 \cdot \sqrt{3}}{6}$$

Solución:
$$N_{BC} = \frac{5 \cdot \sqrt{3}}{3} \text{ kN}$$
 $N_{EF} = \frac{-75 \cdot \sqrt{3}}{3} \text{ kN } N_{BE} = \frac{70 \cdot \sqrt{3}}{6} \text{ kN}$

Figura 2.18a

18.- El puente de la figura 2.18a se va a diseñar para las cargas marcadas. Determinar por Ritter los esfuerzos en todas las barras.

En los nudos A y E sólo hay reacciones verticales V_A y V_E.

Como hay simetría en la geometría y en la carga respecto al plano medio se puede escribir $V_A = V_E \to$

$$V_A + V_E = 5 + 10 + 5 = 20 t \rightarrow V_A = V_E = 10 t$$

Por simetría se verifica.

Figura 2.18b

$$N_{AB} = N_{DE}$$
; $N_{BC} = N_{CD}$; $N_{BF} = N_{DM}$; $N_{EF} = N_{EH}$; $N_{CF} = N_{CH}$

Hacemos el primer corte. Nudo A. Por equilibrio de fuerzas. El ángulo $\alpha = 45^{\circ}$

$$\Sigma \ F_x = 0 \qquad N_{AB} + N_{AF} \cdot cos \ 45^o = 0$$

$$\Sigma F_y = 0$$
 $N_{AF} \cdot sen 45^{\circ} - V_A = 0$

$$N_{AF} = \frac{V_A}{\sin 45^\circ} = \frac{10}{\sqrt{2}/2} = \frac{20}{\sqrt{2}} = \frac{20 \cdot \sqrt{2}}{2} = 10 \cdot \sqrt{2} t$$

$$N_{AB} = -N_{AF} \cdot \cos 45^{\circ} = -N_{AF} \cdot \frac{\sqrt{2}}{2} = -10 \sqrt{2} \cdot \frac{\sqrt{2}}{2} = -10 t$$

$$N_{AF} = \ 10 \ \sqrt{2} \ t \qquad N_{AB} = \ \text{-} \ 10 \ t$$

La barra BF es inmediata por equilibrio en el nudo B. $N_{BF} = -5t$.

Hacemos 2° corte. El ángulo
$$\beta=21.8$$
°. tg $\beta=\frac{2}{5}\to\beta=21.8$ °

Aplicamos el equilibrio:

$$\Sigma F_x = 0$$
 $N_{BC} + N_{CF} \cdot \cos 45^{\circ} + N_{EF} \cdot \cos 21, 8^{\circ} = 0$

$$\Sigma F_v = 0 - 5 + V_A + N_{CF} \cdot sen 45^{\circ} - N_{EF} \cdot sen 45^{\circ} - N_{EF} \cdot sen 21, 8^{\circ} = 0$$

$$\Sigma M_F = 0$$
 $V_A \cdot 5 + N_{BC} \cdot 5 = 0 \rightarrow N_{BC} = -V_A = -10 t$

$$-10 + N_{CF} \cdot \frac{\sqrt{2}}{2} + N_{EF} \cdot 0.93 = 0 \rightarrow N_{EF} = \frac{10 - N_{CF} \cdot \frac{\sqrt{2}}{2}}{0.93} \rightarrow -5 + 10 + N_{CF} \cdot \frac{\sqrt{2}}{2} - N_{EF} \cdot 0.37 = 0 \rightarrow 5 + N_{CF} \cdot \frac{\sqrt{2}}{2} - 0.37 \cdot (10.75 - 0.76 \cdot N_{CF}) \rightarrow 1.02 + 0.99 \cdot N_{CF} = 0 \rightarrow N_{CF} = -\frac{1.02}{0.99} = 0$$

$$-1.03 \rightarrow N_{CF} = -1.03 \rightarrow N_{EF} = 10.75 - 0.76 \cdot (1.03) = 11.53$$

Falta la barra CE. Equilibrio en el nudo E.

$$N_{EF} \cdot sen\beta + N_{EH} \cdot sen\beta + N_{CE} = 0 \rightarrow N_{EF} = N_{EH}$$

$$2 \cdot N_{EF} \cdot sen \beta + N_{CE} = 0$$
 $\rightarrow N_{CE} = -2 \cdot N_{EF} \cdot sen$ $\beta = -2 \cdot 11,53 \cdot 0,37 = -8,53$ $\rightarrow N_{CE} = -8,53$

En resumen:
$$N_{AB} = N_{DE} = -10 \text{ t}$$

$$N_{BC} = N_{CA} = -10 \text{ t}$$

$$N_{BF} = N_{DH} = -5 \text{ t}$$

$$N_{EF} = N_{EH} = 11,53 \text{ t}$$

$$N_{CF} = N_{CH} = -1,03 \text{ t}$$

$$N_{AF} = N_{EH} = 10 \cdot \sqrt{2} t$$

$$N_{CE} = -8,53 t$$

LECCIÓN 3

Geometría de masas. Secciones planas

Introducción: En el estudio de la mecánica de los cuerpos es de vital importancia conocer en profundidad sus propiedades como son la masa, los centros de masa, sus inercias, etc., para poder analizar sus movimientos y, si es el caso, puedan diseñarse con la mayor fiabilidad posible.

En la teoría se estudia la geometría de masas tanto de los cuerpos como de las secciones planas. El estudio de las secciones planas es fundamental en el diseño de los elementos estructurales para que el diseñador de estructuras las optimice en todos sus aspectos como pueden ser la resistencia mecánica, la rigidez, estabilidad, economía, etc.

En este curso de Resistencia de Materiales se insiste el estudio de las secciones planas evitando la geometría de masas de los cuerpos, con la finalidad de no recargar los contenidos.

Objetivos de la lección: Conseguir que el estudiante aprenda a calcular las propiedades fundamentales de las secciones de los elementos estructurales y métodos de obtención de las mismas, con el objetivo de que los diseños que realice sean adecuados.

Contenidos de los problemas: Cálculo de áreas, centroides, momentos estáticos, momentos de inercia, radios de giro, etc., por los métodos directos del cálculo o por la aplicación del teorema de Steiner. Además se estudian los teoremas de Pappus y Guldinus para el cálculo de áreas y volúmenes.

Problemas resueltos: Los problemas se pueden separar en varios grupos:

- i) Determinación de las propiedades de las secciones por los métodos de cálculo tradicionales.
- ii) Determinación de las propiedades de las secciones por descomposición en secciones de propiedades conocidas y con la aplicación del teorema de Steiner.
 - iii) Cálculo de áreas y volúmenes con los teoremas de Pappus y Guldinus.

Formulación básica:

Momentos estáticos de masas, volúmenes, secciones y longitudes, como sistemas discretos y continuos:

Masa m:
$$s_M = \sum_{i=1}^n r_i \cdot m_i$$
 $s_M = \int_m r \cdot dm$

Volumen V:
$$s_V = \sum_{i=1}^n r_i \cdot V_i \qquad s_V = \int_V r \cdot dV$$

Área
$$\Omega$$
:
$$s_{\Omega} = \sum_{i=1}^n r_i \cdot \Omega_i \qquad s_{\Omega} = \int_{\Omega} r \cdot d\Omega$$

$$\label{eq:longitud_L: s_L = s_L =$$

Centroides de volúmenes

$$\overline{x} = \frac{\int_{V} x \cdot dV}{V}$$
 $\overline{y} = \frac{\int_{V} y \cdot dV}{V}$ $\overline{z} = \frac{\int_{V} z \cdot dV}{V}$

Centroides de superficies

$$\overset{-}{x} \; = \; \frac{\int_{\Omega} x \cdot d\Omega}{\Omega} \qquad \overset{-}{y} \; = \; \frac{\int_{\Omega} y \cdot d\Omega}{\Omega} \qquad \qquad \overset{-}{z} \; = \; \frac{\int_{\Omega} z \cdot d\Omega}{\Omega}$$

Centroides de líneas

Centroides de secciones compuestas

$$\overset{-}{x} = \frac{1}{\Omega} \underset{i=1}{\overset{n}{\sum}} \Omega_i \cdot \overline{x}_i \qquad \quad \overset{-}{y} = \frac{1}{\Omega} \underset{i=1}{\overset{n}{\sum}} \Omega_i \cdot \overline{y}_i$$

Teoremas de Pappus y Guldinus

Primer teorema:

En general:
$$\Omega = \theta \cdot \overline{z} \cdot L \text{ con } \overline{z} = \frac{\int z \cdot dL}{L}$$
 $\cos \theta = 2 \cdot \pi \rightarrow \Omega = 2 \cdot \pi \cdot \overline{z} \cdot L$

Segundo teorema:

En general:
$$V = \theta \cdot \overline{z} \cdot \Omega \text{ con } \overline{z} = \frac{\int_{\Omega} z \cdot d\Omega}{\Omega}$$
 $\operatorname{con} \theta = 2 \cdot \pi \to V = 2 \pi \cdot \overline{z} \cdot \Omega$

Momentos de inercia de una superficie Ω

$$I_x = \int_{\Omega} y^2 \cdot d\Omega \qquad \qquad I_y = \int_{\Omega} x^2 \cdot d\Omega$$

Momentos de inercia polar de una superficie Ω

$$I_P = \int_{\Omega} r^2 \cdot d\Omega = \int_{\Omega} (x^2 + y^2) \cdot d\Omega = \int_{\Omega} x^2 \cdot d\Omega + \int_{\Omega} y^2 \cdot d\Omega = I_y + I_x$$

Teorema de Steiner o de los ejes paralelos

Respecto a un eje paralelo a x: $I_{x'} = I_{xC} + \overline{y}^2 \cdot \Omega$

Respecto al eje polar z: $I_{z'} = I_{zC} + \left(\overline{x}^2 + \overline{y}^2\right) \cdot \Omega = I_{zC} + \overline{d}^2 \cdot \Omega$

Radio de giro de una superficie

$$I_x = \int_{\Omega} y^2 \cdot d\Omega \, = \Omega \cdot {i_x}^2 \! \to \qquad \qquad i_x = \sqrt{\frac{I_x}{\Omega}} \label{eq:ix}$$

$$I_{y} = \int_{\Omega} x^{2} \cdot d\Omega = \Omega \cdot i_{y}^{2} \rightarrow i_{y} = \sqrt{\frac{I_{y}}{\Omega}}$$

$$I_z = I_P = \int_{\Omega} r^2 \cdot d\Omega = \Omega \cdot {i_z}^2 \rightarrow \qquad i_z = \sqrt{\frac{I_z}{\Omega}}$$

$$i_z^2 = i_x^2 + i_y^2$$

Teorema de Steiner para los radios de giro

$$i_{x'}^2 = i_{xC}^2 + \overline{y}^2$$
 $i_{y'}^2 = i_{yC}^2 + \overline{x}^2$ $i_{z'}^2 = i_{zC}^2 + (x^2 + y^2) = i_{zC}^2 + \overline{d}^2$

Momentos de inercia de superficies compuestas

$$I = I_1 + ... + I_i, +... + I_n \ = \ \sum_{i=1}^n I_i$$

Productos de inercia de una superficie

$$I_{xy} = \int_{\Omega} x \cdot y \cdot d\Omega$$

Teorema de Steiner para productos de inercia de una superficie

$$I_{x'y'} = I_{xyC} + \ \overline{x} \cdot \overline{y} \cdot \Omega$$

Momentos de inercia respecto a un eje 1 girado un ángulo θ respecto al eje x.

$$I_1 = I_x \cdot cos^2\theta + I_y \cdot sen^2\theta - 2 \cdot I_{xy} \cdot sen\theta \cdot cos\theta$$

Momentos principales de inercia de una superficie

$$I_{1,2} = \frac{I_x + I_y}{2} \pm \{(\frac{I_x - I_y}{2})^2 + I_{xy}^2\}^{1/2}$$

 $\tan(2\cdot\theta) = -\frac{2\cdot I_{xy}}{(I_x - I_y)}$ siendo θ el ángulo que sitúa los ejes principales de inercia.

1.- Para el rectángulo de la figura 3.1a1 determinar:

- a) Centroide de la sección.
- b) Momentos estáticos de la sección respecto a los ejes x e y.
- c) Momentos de inercia por integración respecto a los ejes x e y, el momento polar de inercia y los productos de inercia.
- d) Momentos estáticos y de inercia por integración respecto al centroide de la sección. Comprobarlos por el teorema de Steiner según lo obtenido en c).
- e) Determinar el momento de inercia respecto a la diagonal por integración. Comprobarlo con la fórmula de transformación del momento de inercia para un eje girado un ángulo θ .

Figura 3.1a

a) La simetría del sistema exige que el centroide de una superficie rectangular se encuentre en el centro del rectángulo. Así pues, en el caso de la superficie rectangular representada en la figura 3.1a1, $\bar{x} = b/2$ y $\bar{y} = h/2$. Para obtener estos resultados por integración, se opera de la manera siguiente: para el elemento de superficie representado en la figura P-3.1a2, d Ω =b·dy. El elemento d Ω esta a una distancia y del eje x; por tanto, el momento de la superficie respecto al eje x será:

$$s_x = \iint_{\Omega} y \, d\Omega = \int_0^h y (b \, dy) = b \left[\frac{y^2}{2} \right]_0^h = \frac{b h^2}{2}$$

De las ecuaciones:

$$\overline{y} = \frac{s_x}{\Omega} = \frac{b \cdot h^2}{b \cdot h} = \frac{h}{2}$$

De manera análoga, utilizando un elemento de superficie de área $d\Omega = h \cdot dx$, el momento de la superficie respecto al eje y será:

$$s_y = \iint_{\Omega} x d\Omega = \int_0^b x (h dx) = b \left[\frac{x^2}{2} \right]_0^b = \frac{h b^2}{2}$$

De las ecuaciones:

$$\overline{x} = \frac{s_y}{\Omega} = \frac{b \cdot h^2 / 2}{b \cdot h} = \frac{b}{2}$$

El elemento de superficie $d\Omega = b \cdot dy$, utilizado para calcular s_x no se ha utilizado para calcular s_y porque las distintas partes de la franja horizontal se hallan a diferentes distancias x del eje y. En este ejemplo, vemos que $\overline{x} = b/2$ para el elemento de superficie $d\Omega = b \cdot dy$ representado en la figura 3.1a2.

- b) Se calculó en a).
- c) Aplicando las definiciones integrales de los momentos de inercia se calcula siguiendo la figura 3.1a2, el I_x como sigue:

$$I_{x} = \iint_{\Omega} y^{2} \cdot d\Omega = \int_{0}^{h} y^{2} \cdot (b \cdot dy) = b \left[\frac{y^{3}}{3} \right]_{0}^{h} = \frac{b \cdot h^{3}}{3}$$

De forma análoga siguiendo la figura 3.1a3, el I_v como sigue:

$$I_y = \iint_{\Omega} x^2 \cdot d\Omega = \int_0^b x^2 \cdot (h \, dx) = h \left[\frac{x^3}{3} \right]_0^b = \frac{h \, b^3}{3}$$

Para el producto de inercia I_{xy} siguiendo la figura 3.1a4, se hace como sigue:

$$I_{xy} = \iint_{\Omega} x \cdot y \cdot d\Omega = \iint_{\Omega} x \cdot y \cdot dx \cdot dy = \int_{0}^{h} y \left(\int_{0}^{b} x \cdot dx \right) dy = \int_{0}^{h} y \left[\frac{x^{2}}{2} \right]_{0}^{b} \cdot dy = \frac{b^{2}}{2} \int_{0}^{h} y \, dy$$

$$I_{xy} = \frac{b^2}{2} \left[\frac{y^2}{2} \right]_0^h = \frac{b^2 \cdot h^2}{4}$$

El momento polar se obtiene fácilmente:

$$I_{P} = I_{x} + I_{y} = \frac{b \cdot h}{3} \cdot (h^{2} + b^{2})$$

d) Si se hace igual que en c) pero para las figuras figura 3.1a5 y figura 3.1a6.

$$s_{xC} = \iint_{\Omega} y \, d\Omega = \int_{-h/2}^{h/2} y (b \, dy) = b \left[\frac{y^2}{2} \right]_{-h/2}^{h/2} = 0$$

$$s_{yC} = \iint_{\Omega} x d\Omega = \int_{-b/2}^{b/2} x (b dx) = b \left[\frac{x^2}{2} \right]_{-b/2}^{b/2} = 0$$

este resultado era de esperar ya que el momento estático de una sección respecto a un eje de simetría es nulo.

Los momentos de inercia:

$$I_{x} = \iint_{\Omega} y^{2} \cdot d\Omega = \int_{-h/2}^{h/2} y^{2} \cdot (b \, dy) = b \left[\frac{y^{3}}{3} \right]_{-h/2}^{h/2} = \frac{b \, h^{3}}{12}$$

$$I_{y} = \iint_{\Omega} x^{2} \cdot d\Omega = \int_{-b/2}^{b/2} x^{2} \cdot (h \, dx) = h \left[\frac{x^{3}}{3} \right]_{-b/2}^{b/2} = \frac{h \, b^{3}}{12}$$

$$I_{xy} = \iint_{\Omega} x \cdot y \cdot d\Omega = \iint_{\Omega} x \cdot y \cdot dx \cdot dy = \int_{-h/2}^{h/2} y \bigg(\int_{-b/2}^{b/2} x \cdot dx \bigg) dy = 0$$

también era de esperar ya que los ejes de simetría de una sección plana son direcciones principales de inercia, es decir; el producto de inercia es nulo.

El momento polar se obtiene fácilmente:

$$I_P = I_x + I_y = \frac{b \cdot h}{12} \cdot (h^2 + b^2)$$

La comprobación por el teorema de Steiner se deja como ejercicio dada la sencillez del caso.

e) Para determinar el momento de inercia respecto al eje d, figura 3.1a7; se puede girar la figura, figura 3.1a8; y se definen las distancias.

Como el triángulo por encima del eje tiene la misma área y a igual distancia que el triángulo inferior, basta calcular el momento de inercia del triángulo superior y multiplicarlo por dos para obtener el del rectángulo respecto a la diagonal.

Ahora el triángulo superior se divide en dos triángulos rectángulos, cada uno con un cateto en el eje. De esta forma, basta calcular de forma general el momento de inercia de un triángulo rectángulo, según la figura 3.1a9; y particularizar para ambos obteniendo el momento de inercia como suma de los dos.

Primero se define la geometría según la figura 3.1a8:

$$D = \sqrt{h^2 + b^2}$$
; $a = \sqrt{-D_1^2 + h^2} = \sqrt{-D_2^2 + b^2}$; $D_1 = \frac{h^2}{D}$; $D_2 = \frac{b^2}{D} \rightarrow a = \frac{h \cdot b}{D}$

Ahora se puede calcular para el triángulo rectángulo respecto al eje t según la figura 3.1a9:

$$I_t = \int\!\!\int_{\Omega}\!\!r^2\cdot d\Omega = \int_0^R r^2\cdot \bigg(\int_t^T dt\bigg) dr = \int_0^R r^2\cdot (T-t)\cdot dr =$$

La relación geométrica es $t = r \cdot \frac{T}{R}$ que sustituyendo en la integral:

$$I_t = \int_0^R r^2 \cdot (T - r \frac{T}{R}) \cdot dr = \left[\frac{r^3 \cdot T}{3} - \frac{r^4 \cdot T}{4R} \right]_0^R = \frac{T \cdot R^3}{12}$$

Este resultado se puede verificar en las tablas de momentos de inercia.

Con esto para el triángulo rectángulo de la izquierda se tiene:

$$I_{\Delta 1} = \frac{D_1 \cdot a^3}{12} = \frac{h^5 \cdot b^3}{12 \cdot D^4}$$

y para el de la derecha:

$$I_{\Delta 2} = \frac{D_2 \cdot a^3}{12} = \frac{h^3 \cdot b^5}{12 \cdot D^4}$$

el momento de inercia total del rectángulo será:

$$I = 2 \cdot I_{\Delta 1} + 2 \cdot I_{\Delta 2} = \frac{h^3 \cdot b^3}{6 \cdot (b^2 + h^2)}$$

Este resultado se puede comprobar en las tablas.

El momento de inercia para una sección girada un ángulo θ .

$$I = I_x \cdot cos^2\theta + I_y \cdot sen^2\theta - 2 \cdot I_{xy} \cdot sen\theta \cdot cos\theta$$

$$\begin{split} &I_{x} = \frac{b \cdot h^{3}}{3} \; ; \; I_{y} \; = \; \frac{h \cdot b^{3}}{3} \; ; \; I_{xy} = \; \frac{b^{2} \cdot h^{2}}{4} \; ; \; cos\theta = \; \frac{b}{D} \; ; \; sen\theta = \; \frac{h}{D} \\ &I = \; \frac{b \cdot h^{3}}{3} \cdot \frac{b^{2}}{h^{2} + b^{2}} \; + \; \frac{h \cdot b^{3}}{3} \cdot \frac{h^{2}}{h^{2} + b^{2}} \; - \; 2 \cdot \frac{b^{2} \cdot h^{2}}{4} \cdot \frac{h}{\sqrt{h^{2} + b^{2}}} \cdot \frac{b}{\sqrt{h^{2} + b^{2}}} \; = \; \frac{h^{3} \cdot b^{3}}{6 \cdot (b^{2} + h^{2})} \end{split}$$

2.- Determinar el momento de inercia respecto del eje x del rectángulo de la figura 3.2a aplicando el teorema de Steiner. Como ejercicio determinarlo por integración

Figura 3.2a

Como dato se conoce que respecto al centroide de un rectángulo de base a y altura b el momento de inercia vale $I_{xc} = a \cdot (b^3/12)$.

Aplicando el teorema de Steiner se obtiene de forma rápida.

$$I_x = I_{xc} + \delta_x^2 \cdot \Omega_x$$

$$I_{xc} = h \cdot \frac{v^3}{12}$$

$$\delta_{xc} = s + \frac{v}{2}; \ \delta_{xc}^2 = (\frac{2 \cdot s + v}{2})^2 = \frac{(2 \cdot s + v)^2}{4}; \Omega_x = h \cdot v$$

$$I_x = \frac{h \cdot v^3}{12} + \frac{(2 \cdot s + v)^2}{4} h \cdot v$$

Figura 3.3

3.- Determinar el momento de inercia respecto del eje y del triángulo de la figura 3.3 por integración. Comprobarlo por el teorema de Steiner.

El camino más rápido es la doble integración.

$$\begin{split} I_y &= \iint x^2 \cdot d\Omega; d\Omega = dx \cdot dy \\ I_y &= \iint x^2 \cdot dx \cdot dy; \ y = a \cdot x + b \\ 0 &= a \cdot 2 \cdot d + b \\ d &= a \cdot d + b \longrightarrow a = 1 \longrightarrow b = 2 \cdot d \end{split}$$

 $y = -x + 2 \cdot d$; $x = 2 \cdot d - y$

$$\begin{split} I_x &= \int_y^t (\int_a^{2d-y} x^2 \cdot dx) \cdot dy = \int_d^t \left[\frac{x^3}{3} \right]_d^{2d-y} \cdot dy = \int_d^t \left(\frac{(2d-y)^3}{3} - \frac{d^3}{3} \right) dy = -\frac{(2d-y)^4}{12} - \frac{d^3}{3} y \Big|_0^d = \\ & \frac{-(2d-d)^4}{12} + \frac{(2d-0)^4}{12} - \frac{d^4}{3} = \frac{-d^4}{62} + \frac{(2d)^4}{12} - \frac{d^4}{3} = \frac{-d^4}{12} + \frac{16}{12} d^4 - \frac{4d^4}{12} = \frac{11}{12} d^4 \\ & I_y = \frac{11}{12} d^4 \end{split}$$

Comprobando por Steiner:

Para un triángulo
$$I_{yc} = \frac{h \cdot b^3}{36}$$
 (Tablas) \Rightarrow Para este caso $I_{yc} = \frac{d^4}{36}$

$$I_v = I_{vc} + \Omega \cdot x_c^2 =$$

$$\frac{d^4}{36} + \frac{1}{2}d^2\left(d + \frac{1}{3}d\right)^2 = \frac{d^4}{36} + \frac{d^4}{2}\left(\frac{4}{3}\right)^2 = d^4\left(\frac{1}{36} + \frac{16}{18}\right) = d^4\left(\frac{1}{36} + \frac{32}{36}\right) = \frac{33}{36}d^4 = \frac{11}{12}d^4$$

- 4.- Para el cuadrante circular de la figura 3.4a determinar:
- a) Centroide y los momentos estáticos de la sección respecto a los ejes x e y por los métodos integrales estudiados.
- b) Momentos de inercia por integración respecto a los ejes x e y, según los métodos integrales conocidos.
- c) El momento polar de inercia
- d) Los productos de inercia por doble integración.
- e) Los radios de giro.
- f) Determinar las propiedades de los apartados anteriores en el centroide por el teorema de Steiner.
- g) Determinar las direcciones principales de inercia y los momentos principales de inercia respecto al centroide.

Figura 3.4a1

a) Para resolver este problema se utilizarán cuatro elementos diferentes.

MÉTODO 1: Integral doble en coordenadas rectangulares

Para el elemento representado en la figura 3.4a2, $d\Omega = dy \cdot dx$. El elemento $d\Omega$ está a una distancia y del eje x por tanto, el momento de la superficie respecto al eje x es:

$$\begin{split} s_x &= \iint_{\Omega} y \cdot d\Omega = \\ & \int_0^R \int_0^{\sqrt{r^2 - x^2}} y \, dy \, dx = \int_0^R \left[\frac{y^2}{2} \right]_0^{\sqrt{r^2 - x^2}} dx = \int_0^R \frac{R^2 - x^2}{2} dx = \left[\frac{R^2 \cdot x}{2} - \frac{x^3}{6} \right]_0^R = \frac{R^3}{3} \end{split}$$

De las ecuaciones:

$$\overline{y} = \frac{s_x}{\Omega} = \frac{r^3/3}{\pi \cdot r^2/4} = \frac{4 \cdot R}{3 \cdot \pi}$$

MÉTODO 2: Integral simple utilizando una franja horizontal

De otra manera, se puede seleccionar el elemento de superficie en la forma que se indica en la figura 3.4a3. Para este elemento, que se halla a una distancia y del eje x, $d\Omega = x \cdot dy = \sqrt{r^2 - y^2} \cdot dy$. Por tanto, el momento de la superficie respecto al eje x será

$$s_x = \iint_{\Omega} y \cdot d\Omega = \int_0^R y \sqrt{R^2 - y^2} \cdot dy = \left[\frac{\left(R^2 - y^2\right)^{3/2}}{3} \right]_0^R = \frac{R^3}{3}$$

De las ecuaciones:

$$\overline{y} = \frac{s_x}{\Omega} = \frac{r^3/3}{\pi \cdot r^2/4} = \frac{4 \cdot R}{3 \cdot \pi}$$

MÉTODO 3: Integral simple utilizando una franja vertical

El elemento de superficie podrá también tomarse según se indica en la figura 3.4a4. para este elemento, $d\Omega = y \cdot dx = \sqrt{r^2 - x^2} \cdot dx$, pero ahora todas las partes del elemento se hallan a diferentes distancias y del eje x. Para este tipo de elemento, se puede utilizar momento ds_x , de una franja rectangular que puede integrarse para tener el momento s_x , así pues,

$$ds_{x} = \frac{y}{2} d\Omega = \frac{y}{2} y dx = \frac{y^{2}}{2} dx = \frac{r^{2} - x^{2}}{2} dx$$

$$s_{x} = \int_{\Omega} ds_{x} = \int_{0}^{R} \frac{R^{2} - x^{2}}{2} dx = \left[\frac{R^{2} \cdot x}{2} - \frac{x^{3}}{6} \right]_{0}^{r} = \frac{R^{3}}{3}$$

De las ecuaciones:

$$\overline{y} = \frac{s_x}{\Omega} = \frac{r^3/3}{\pi \cdot r^2/4} = \frac{4 \cdot R}{3 \cdot \pi}$$

MÉTODO 4: Integral doble utilizando coordenadas polares

Por último, se pueden utilizar coordenadas polares para localizar el centroide del cuadrante circular. Con las coordenadas polares, el elemento de superficie es $d\Omega$ =

 $r \cdot d\theta \cdot dr$ y la distancia al eje x del elemento es $y = r \cdot sen\theta$ según puede verse en la figura 3.4a5. Así pues:

$$s_{x} = \iint_{\Omega} y \cdot d\Omega = \int_{0}^{R} \int_{0}^{\frac{\pi}{2}} r^{2} \cdot \sin \theta \, d\theta \, dr = \int_{0}^{R} r^{2} \cdot \left[-\cos \theta \right]_{0}^{\frac{\pi}{2}} \cdot dr = \int_{0}^{R} r^{2} \cdot dr = \left[\frac{r^{3}}{3} \right]_{0}^{R} = \frac{R^{3}}{3}$$

De las ecuaciones:

$$\overline{y} = \frac{s_x}{\Omega} = \frac{r^3/3}{\pi \cdot r^2/4} = \frac{4 \cdot R}{3 \cdot \pi}$$

De manera análoga, se obtendría para la coordenada x del centroide

$$\overline{x} = \frac{s_y}{\Omega} = \frac{r^3/3}{\pi \cdot r^2/4} = \frac{4 \cdot R}{3 \cdot \pi}$$

b) Se emplearán los mismos métodos señalados en el apartado anterior.

Para el cuadrante circular se cumple $\,\overline{x}=\,\overline{y}\,,\,s_x=s_y,\,I_x=I_y.$

MÉTODO 1: Integral doble en coordenadas rectangulares

Para el elemento representado en la figura 3.4a2, $d\Omega = dy \cdot dx$. El elemento $d\Omega$ está a una distancia y del eje x por tanto, el momento de inercia de la superficie respecto al eje x es:

$$I_{x} = \iint_{\Omega} y^{2} \cdot d\Omega = \int_{0}^{R} \int_{0}^{\sqrt{R^{2} - x^{2}}} y^{2} \cdot dy \, dx = \int_{0}^{R} \left[\frac{y^{3}}{3} \right]_{0}^{\sqrt{R^{2} - x^{2}}} dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left(R^{2} - x^{2} \right)^{3/2} \cdot dx = \frac{1}{3} \int_{0}^{R} \left($$

$$\frac{1}{3} \left[\frac{x \cdot (R^2 - x^2)^{3/2}}{4} + \frac{3 \cdot R^2 \cdot x \cdot \sqrt{R^2 - x^2}}{8} + \frac{3}{8} \cdot R^4 \cdot \text{sen}^{-1} \frac{x}{R} \right]_0^R = \frac{3}{8} \cdot R^4 \cdot \text{sen}^{-1} 1 = \frac{\pi \cdot R^4}{16}$$

MÉTODO 2: Integral simple utilizando una franja horizontal

Como se hizo anteriormente para el elemento de superficie en la forma que se indica en la figura 3.4a3. Para este elemento, que se halla a una distancia y del eje x, $d\Omega = x \cdot dy = \sqrt{R^2 - y^2} \cdot dy.$ Por tanto, el momento de inercia de la superficie respecto al eje x será

$$I_{x} = \int_{0}^{R} y^{2} \cdot \sqrt{R^{2} - y^{2}} \cdot dy = \frac{y \cdot \left(R^{2} - y^{2}\right)^{3/2}}{4} + \frac{3 \cdot R^{2} \cdot y \cdot \sqrt{R^{2} - y^{2}}}{8} + \frac{3}{8} \cdot R^{4} \cdot sen^{-1} \frac{y}{R} = \frac{\pi \cdot R^{4}}{16}$$

MÉTODO 3: Integral simple utilizando una franja vertical

El elemento de superficie se puede tomar según se indica en la figura 3.4a4. para este elemento, $d\Omega = y \cdot dx = \sqrt{R^2 - x^2} \cdot dx$, pero ahora todas las partes del elemento se

hallan a diferentes distancias y del eje x. Para este tipo de elemento, se puede utilizar momento dI_x , de una franja rectangular que puede integrarse para tener el momento de inercia I_x , así pues:

$$dI_{x} = \frac{y^{2}}{3} \cdot d\Omega = \frac{y^{2}}{3} \cdot y \cdot dx = \frac{y^{3}}{3} \cdot dx$$

que al integrar se obtiene la misma integral que en el método 1.

MÉTODO 4: Integral doble utilizando coordenadas polares

Por último, se pueden utilizar coordenadas polares para localizar el centroide del cuadrante circular. Con las coordenadas polares, el elemento de superficie es $d\Omega = r \cdot d\theta \cdot dr$ y la distancia al eje x del elemento es $y = r \cdot sen\theta$ según puede verse en la figura 3.4a5. Así pues:

$$I_{x} = \iint_{\Omega} y^{2} \cdot d\Omega = \int_{0}^{R} \int_{0}^{\pi/2} r^{2} \cdot \sin^{2}\theta \, r \cdot d\theta \, dr = \int_{0}^{R} r^{3} \cdot \left[\frac{\theta}{2} - \frac{\sin 2 \cdot \theta}{4} \right]_{0}^{\pi/2} \cdot dr = \frac{R^{4}}{8} \cdot \frac{\pi}{2} = \frac{\pi R^{4}}{16}$$

c) El momento polar se obtiene fácilmente:

$$I_{P} = I_{x} + I_{y} = 2 \cdot I_{x} = \frac{\pi \cdot R^{4}}{8}$$

d) Para el producto de inercia I_{xy} siguiendo la figura 3.4°5, se hace como sigue:

$$\begin{split} I_{xy} &= \iint_{\Omega} x \cdot y \cdot d\Omega \, = \, \iint_{\Omega} x \cdot y \cdot dx \cdot dy \, = \, \int_{0}^{R} x \left(\, \int_{0}^{\sqrt{R^{2} - x^{2}}} y \, dy \right) dx \, = \, \int_{0}^{R} x \cdot \left[\frac{y^{2}}{2} \right]_{0}^{\sqrt{R^{2} - x^{2}}} \cdot dx \, = \\ &\frac{1}{2} \int_{0}^{R} x \cdot (R^{2} - x^{2}) \cdot dx \, = \frac{1}{2} \cdot \left[\frac{x^{2} \cdot R^{2}}{2} - \frac{x^{4}}{4} \right]_{0}^{R} = \frac{R^{4}}{8} \end{split}$$

e) Se verifica también que $i_x = i_y$.

Por definición:

$$i_x = \sqrt{\frac{I_x}{\Omega}} = \frac{R}{2}$$

$$i_P^2 = i_x^2 + i_y^2 = \frac{R}{\sqrt{2}}$$

f) Aplicando el teorema de Steiner:

$$I_x = I_{xC} + \ \overline{y}^2 \cdot \Omega \ \rightarrow \ I_{xC} = I_x - \ \overline{y}^2 \cdot \Omega = \frac{(9 \cdot \pi^2 - 64) \cdot R^4}{144 \cdot \pi}$$

$$I_{vC} = I_{xC}$$

$$\begin{split} I_{xyC} &= I_{x'y} - \overline{x} \cdot \overline{y} \cdot \Omega = \frac{(9 \cdot \pi - 32) \cdot R^4}{72 \cdot \pi} \\ I_P &= I_{PC} + \overline{d}^2 \cdot \Omega \rightarrow I_{PC} = \frac{(27 \cdot \pi^2 - 128) \cdot R^4}{144 \cdot \pi} \\ i_x^2 &= i_{xC}^2 + \overline{y}^2 \rightarrow i_{xC} = \frac{R \cdot \sqrt{9 \cdot \pi^2 - 64}}{6 \cdot \pi} \\ i_P^2 &= i_{PC}^2 + \overline{d}^2 \rightarrow i_{PC} = \frac{R \cdot \sqrt{9 \cdot \pi^2 - 64}}{3 \cdot \sqrt{2} \cdot \pi} \end{split}$$

g) Las direcciones principales de inercia vienen dadas por la ecuación: $\tan(2\cdot\theta)$ = $-\frac{2\cdot I_{xy}}{(I_x-I_y)}$ siendo θ el ángulo que sitúa los ejes principales de inercia. En este caso el denominador es nulo, o lo que es igual la tangente del ángulo doble se hace infinita. Esto ocurre para dos valores del ángulo $2\cdot\theta$ que son: $2\cdot\theta=\frac{\pi}{2}$ y $2\cdot\theta=\frac{3\cdot\pi}{2}$. Así las direcciones principales de inercia son los ángulos de 45° y 135°.

Los momentos principales de inercia se obtienen de la ecuación:

$$I_{1,2} = \frac{I_x + I_y}{2} \pm \{(\frac{I_x - I_y}{2})^2 + I_{xy}^2\}^{1/2}$$

que en este caso queda reducida:

$$I_{1,2} = I_x \pm I_{xy}$$

que sustituyendo valen:

$$I_{1} = \frac{(9 \cdot \pi^{2} + 9 \cdot \pi - 98) \cdot R^{4}}{144 \cdot \pi}$$

$$I_{2} = \frac{(9 \cdot \pi^{2} - 9 \cdot \pi - 32) \cdot R^{4}}{144 \cdot \pi}$$

- 5.- Para el área de la figura 3.5a1 limitada por la función cosx determinar:
- a) Centroide y los momentos estáticos de la sección respecto a los ejes x e y con integrales simples.
- b) Momentos de inercia respecto a los ejes x e y, con integrales simples.
- c) El momento polar de inercia.
- d) Los productos de inercia con integrales simples.
- e) Verificar los apartados anteriores con la integral doble.
- f) Los radios de giro.
- g) Determinar las propiedades de los apartados anteriores en el centroide por el teorema de Steiner.
- h) Determinar las direcciones principales de inercia y los momentos principales de inercia respecto al centroide.

Figura 3.5a

a) Para resolver este problema en primer lugar se calculará el área de la sección. Para ello se utilizará la integral simple a partir de una banda vertical, según se indica en la figura 3.5a2. En dicho caso $d\Omega = y \cdot dx$. Si se integra:

$$\Omega = \int_0^{\pi/2} y \, dx = \int_0^{\pi/2} \cos x \, dx = |\sin x|_0^{\pi/2} = 1$$

Ahora se calculan los momentos estáticos de la sección. Para este tipo de elemento, se puede utilizar momento ds_x , de una franja rectangular que puede integrarse para tener el momento s_x , así pues:

$$ds_{x} = \frac{y}{2}d\Omega = \frac{y}{2}ydx = \frac{y^{2}}{2}dx = \frac{\cos^{2}x}{2}dx \rightarrow s_{x} = \int_{0}^{\pi/2} \frac{\cos^{2}x}{2}dx = \frac{1}{4}\left[\sin x \cos x + x\right]_{0}^{\pi/2}$$

$$s_{x} = \frac{\pi}{8}$$

$$s_y = \int_0^{\pi/2} ds_y = \int_0^{\pi/2} x \cdot y \cdot dx = \int_0^{\pi/2} x \cos x \cdot dx = [\cos x + x \cdot \sin x]_0^{\pi/2} = \frac{\pi}{2} - 1$$

De las ecuaciones:

$$\overline{x} = \frac{s_y}{\Omega} = s_y = \frac{\pi}{2} - 1$$

$$\overline{y} = \frac{s_x}{\Omega} = s_x = \frac{\pi}{8}$$

b) Se calculan los momentos de inercia. Para este tipo de elemento, se puede utilizar momento dI_x , de una franja rectangular que puede integrarse para tener el momento de inercia I_x . Como el momento de inercia para un rectángulo de base b y alto h respecto a la base vale:

$$I_{x} = \frac{b \cdot h^{3}}{3}$$

por analogía para el elemento diferencial de base dx y altura y vale:

$$dI_{x} = \frac{y^{3}}{3} \cdot dx$$

que al integrar se obtiene:

$$I_{x} = \int_{0} dI_{x} = \int_{0}^{\pi/2} \frac{\cos^{3} x}{3} dx = \frac{1}{3} \left[\frac{1}{3} (\sin x) \cdot (\cos^{2} x + 2) \right]_{0}^{\pi/2} = \frac{2}{9}$$

$$I_{y} = \int_{\Omega} x^{2} d\Omega = \int_{0}^{\pi/2} x^{2} y dx = \int_{0}^{\pi/2} x^{2} \cos x dx = \left[2 x \cos x + (x^{2} - 2) \cdot \sin x \right]_{0}^{\pi/2} = \frac{\pi^{2}}{4} - 2$$

c)
$$I_p = I_x + I_y = \frac{2}{9} + \frac{\pi^2}{4} - 2$$

d) Para un rectángulo de base b y altura h el producto de inercia vale:

$$I_{xy} = \frac{b^2 \cdot h^2}{4}$$

si se expresa para el elemento diferencial:

$$dI_{xy} = \frac{x \cdot y^2}{2} \cdot dx$$

$$I_{xy} = \int_0^{\pi/2} x \cdot \frac{y^2}{2} \cdot dx = \int_0^{\pi/2} x \cdot \frac{\cos^2 x}{2} \cdot dx = \frac{1}{2} \cdot \left[\frac{x^2}{4} + \frac{x \cdot \sin 2x}{4} + \frac{\cos 2x}{8} \right]_0^R = \frac{\pi^2 - 4}{32}$$

e) se deja como ejercicio.

f)
$$i_x = \sqrt{\frac{I_x}{\Omega}} = \sqrt{\frac{2}{9}} \ i_y = \sqrt{\frac{I_y}{\Omega}} = \sqrt{\frac{\pi^2}{4} - 2}$$

$$i_P^2 = i_x^2 + i_y^2 \rightarrow i_P = \sqrt{\frac{2}{9} + \frac{\pi^2}{4} - 2}$$

g) Aplicando el teorema de Steiner:

$$\begin{split} I_x &= I_{xC} + \ \overline{y}^2 \cdot \Omega \to \ I_{xC} = I_x - \ \overline{y}^2 \cdot \Omega = \frac{2}{9} - \frac{\pi^2}{64} \\ I_y &= I_{yC} + \ \overline{x}^2 \cdot \Omega \to I_{yC} = I_y - \ \overline{x}^2 \cdot \Omega = \pi - 1 \\ I_{xyC} &= I_{x \hat{\ } y} - \ \overline{x} \cdot \overline{y} \cdot \Omega = \frac{\pi^2 - 4}{32} - \left(\frac{\pi}{2} - 1\right) \cdot \frac{\pi}{8} \cdot 1 = \frac{-\pi^2 - 4 + 4 \cdot \pi}{32} \\ I_P &= I_{PC} + \ \overline{d}^2 \cdot \Omega \to I_{PC} = I_P - \ \overline{d}^2 \cdot \Omega = \frac{2}{9} + \frac{\pi^2}{4} - 2 - \left(\left(\frac{\pi}{2} - 1\right)^2 + \frac{\pi^2}{64}\right) \cdot 1 = -\frac{7}{9} - \pi - \frac{\pi^2}{64} \\ i_x^2 &= i_{xC}^2 + \ \overline{y}^2 \cdot \Omega \to i_{xC} = \sqrt{\frac{2}{9} - \frac{\pi^2}{64}} \\ i_y^2 &= i_{yC}^2 + \ \overline{x}^2 \cdot \Omega \to i_{yC} = \sqrt{\left(\frac{\pi^2}{4} - 1\right)^2 - \left(\frac{\pi}{2} - 1\right)^2} \\ i_P^2 &= i_{PC}^2 + \ \overline{d}^2 \to i_{PC} = \sqrt{\frac{2}{9} + \frac{\pi^2}{4} - 2 + \left(\frac{\pi}{2} - 1\right)^2 + \frac{\pi^2}{64}} \end{split}$$

h) Las direcciones principales de inercia vienen dadas por la ecuación: $\tan(2\cdot\theta)$ = $-\frac{2\cdot I_{xy}}{(I_x-I_y)}$ siendo θ el ángulo que sitúa los ejes principales de inercia. Para los ejes que pasan por el centroide:

$$\begin{split} I_{xC} &= \frac{2}{9} - \frac{\pi^2}{64} = 0,068 \iff I_{yC} = \pi - 1 = 2,141 \iff I_{xyC} = \frac{-\pi^2 - 4 + 4 \cdot \pi}{32} = -0,041 \\ \tan(2 \cdot \theta) &= -\frac{2 \cdot I_{xy}}{(I_x - I_y)} = -\frac{2 \cdot (-0,041)}{(0,068 - 2,141)} = -0,04 \implies 2 \cdot \theta = -2,27^{\circ} \end{split}$$

Las direcciones principales serán: -1.14° y 178,86°, o lo que es igual 178,86 y 358,86.

Los momentos principales de inercia se obtienen de la ecuación:

$$\begin{split} I_{1,2} &= \frac{I_x + I_y}{2} \pm \{(\frac{I_x - I_y}{2})^2 + I_{xy}^2\}^{1/2} = = \frac{0,068 + 2,141}{2} \pm \{(\frac{0,068 - 2,141}{2})^2 + 0,041^2\}^{1/2} = (I_1 = 0,067 \ I_2 = 2,155) \end{split}$$

6.- Una viga se ha construido con perfiles UPN 300 según la figura 3.6. Para comprobar el diseño es necesario determinar las propiedades de la sección en el centroide. Se pide determinar dichas propiedades.

Figura 3.6

Consultando las tablas de perfiles de la norma EA-95 "Estructuras de acero en la edificación" se obtienen las propiedades geométricas del perfil UPN, ver la figura derecha de la figura 3.6.

$$\Omega = 58.8 \text{ cm}^2$$
; $I_{xC} = 8030 \text{ cm}^4$; $I_{yC} = 495 \text{ cm}^4$; $i_{xC} = 11.7 \text{ cm}$; $i_{yC} = 2.9 \text{ cm}$; $c = 2.7 \text{ cm}$; $e = 1 \text{ cm}$.

Para la figura formada por los cuatro perfiles:

$$\Omega_{viga} = 4.58, 8 = 235, 2 \text{ cm}^2$$

$$I_x = I_{x1} + I_{x2} + I_{x3} + I_{x4}$$

$$I_{x1} = I_{x4} = I_{yC,UPN} + y_{1C}^{2} \cdot \Omega = 495 + 13,3^{2} \cdot 58,8 = 10896 \text{ cm}^{4}$$

con $y_{1C} = h/2 + e - c = 13,3$ cm, la distancia respecto al eje x que pasa por el centroide de la viga.

$$I_{x2} = I_{x3} = I_{xC,UPN} = 8030 \text{ cm}^4$$

$$I_x = 2 \cdot I_{x1} + 2 \cdot I_{x2} = 37852 \text{ cm}^4$$

$$I_v = I_{v1} + I_{v2} + I_{v3} + I_{v4}$$

$$I_{y1} = I_{y4} = I_{xC,UPN} = 8030 \ cm^4$$

$$I_{v2} = I_{v3} = I_{vC,UPN} + c^2 \cdot \Omega = 495 + 2.7^2 \cdot 58.8 = 924 \text{ cm}^4$$

$$I_y = 2 \cdot I_{y1} + 2 \cdot I_{y2} = 17908 \text{ cm}^4$$

$$I_P = I_x + I_y = 37852 + 17908 = 55760 \text{ cm}^4$$

$$i_{xC} = \sqrt{\frac{I_x}{\Omega}} = \sqrt{\frac{37852}{235,2}} = 12,69 \text{ cm}; i_{yC} = \sqrt{\frac{I_y}{\Omega}} = \sqrt{\frac{17908}{235,2}} = 8,73 \text{ cm}$$

Los productos de inercia son nulos ya que al haber simetría para los ejes que pasan por el centroide son direcciones principales de inercia.

7.- En la figura 3.7 se muestra un perfil en L con una geometría genérica. Para el diseño de vigas con perfil en L se necesita conocer sus propiedades geométricas básicas. Se pide determinar las siguientes propiedades en función de la geometría: situación del centroide, momentos de inercia respecto a los ejes x e y que pasan por el centroide.

Para determinar las propiedades, se partirá de las propiedades geométricas de los rectángulos, ampliamente conocidas. En este caso la figura se ha dividido en dos rectángulos, según la figura 3.7.

La posición del centroide se localiza en función de las posiciones de los centroides de los rectángulos:

$$\overline{\mathbf{x}} = \frac{\overline{\mathbf{x}}_1 \cdot \mathbf{\Omega}_1 + \overline{\mathbf{x}}_2 \cdot \mathbf{\Omega}_2}{\mathbf{\Omega}_1 + \mathbf{\Omega}_2} \qquad \overline{\mathbf{y}} = \frac{\overline{\mathbf{y}}_1 \cdot \mathbf{\Omega}_1 + \overline{\mathbf{y}}_2 \cdot \mathbf{\Omega}_2}{\mathbf{\Omega}_1 + \mathbf{\Omega}_2}$$

siendo las áreas $\Omega_1 = b \cdot e$, y $\Omega_2 = (h-e) \cdot e$. Los centroides de los rectángulos respecto a los ejes x' e y 'valen:

$$\overline{x}_1 = \frac{b}{2}$$
 $\overline{x}_2 = \frac{e}{2}$ $\overline{y}_1 = \frac{e}{2}$ $\overline{y}_2 = \frac{h+e}{2}$

Los momentos de inercia respecto a los ejes x e y que pasan por el centroide serán la suma de los de cada rectángulo. Así:

$$I_x = I_{x1} + I_{x2} \qquad \qquad I_y = I_{y1} + I_{y2}$$

Los momentos de inercia respecto a los ejes x e y para cada rectángulo los determinamos por el teorema de Steiner a partir del momento de inercia del rectángulo respecto a un eje horizontal que pasa por su centroide, que vale si tiene base B y altura

H,
$$\frac{B \cdot H^3}{12}$$
. Así:

$$\begin{split} &I_{x1} = I_{x1C} + d_1{}^2 \cdot \Omega_1 = \frac{b \cdot e^3}{12} + (\overline{y} - \overline{y}_1)^2 \cdot b \cdot e \\ &I_{x2} = I_{x2C} + d_2{}^2 \cdot \Omega_2 = \frac{e \cdot (h - e)^3}{12} + (\overline{y} - \overline{y}_2)^2 \cdot (h - e) \cdot e \\ &I_x = I_{x1} + I_{x2} = \frac{b \cdot e^3}{12} + (\overline{y} - \overline{y}_1)^2 \cdot b \cdot e + \frac{e \cdot (h - e)^3}{12} + (\overline{y} - \overline{y}_2)^2 \cdot (h - e) \cdot e \\ &I_{y1} = I_{y1C} + d_3{}^2 \cdot \Omega_1 = \frac{e \cdot b^3}{12} + (\overline{x} - \overline{x}_1)^2 \cdot b \cdot e \\ &I_{y2} = I_{y2C} + d_4{}^2 \cdot \Omega_2 = \frac{e^3 \cdot (h - e)}{12} + (\overline{x} - \overline{x}_2)^2 \cdot (h - e) \cdot e \\ &I_y = I_{y1} + I_{y2} = \frac{e \cdot b^3}{12} + (\overline{x} - \overline{x}_1)^2 \cdot b \cdot e + \frac{e^3 \cdot (h - e)}{12} + (\overline{x} - \overline{x}_2)^2 \cdot (h - e) \cdot e \end{split}$$

no se sustituyen los valores para no recargar las fórmulas.

8.- Los pilares de una nave industrial son del tipo HEB 300, ver figura 3.8. Para que la transmisión de las cargas al terreno sea apropiada, se apoya sobre una placa de acero de 20 mm de espesor y de dimensiones 600·600 mm². Para el diseño correcto de la placa se requiere que la sección resistente de la placa que coincide con la cara del pilar tenga un módulo resistente de 600 cm³ respecto al eje horizontal. El módulo resistente W = I/r, siendo I el momento de inercia respecto a un eje que pasa por el centroide, y r la distancia máxima al extremo de la sección y perpendicular al eje. Para que resista la placa, es decir; tenga un W mayor a 600 cm³, se refuerza la unión con cartelas de igual espesor que la placa y soldadas como marca la figura. Se pide la altura h de las cartelas para que la unión sea resistente y en unidades de centímetros.

Figura 3.8

En la figura 3.8 quedan representadas las vistas y planta del pilar seccionado y según los ejes x,y de la nave, los espesores de placa y cartela se muestran exagerados para una mejor comprensión.

Lo primero será verificar que la placa sola no resiste. En el caso de una sección rectangular el módulo resistente vale $W = \frac{a \cdot b^2}{6}$ siendo la base a y b su altura. Así para la sección de la placa de dimensiones en $60 \cdot 2$ cm², el módulo resistente vale $W = \frac{60 \cdot 2^2}{6}$ = 40 cm², que es muy inferior al buscado.

Ahora se deben determinar las características de la sección de cálculo para comprobar el diseño de la base. Es necesario calcular el módulo resistente W_C en el centroide y por tanto el momento de inercia I_C de la sección. En primer lugar se debe calcular la posición del centroide C que al haber simetría esta sobre el eje z y bastará dar su posición z_C . Para ello se consideran los tres rectángulos con centroides C_1 , C_2 y C_3 . Si Ω_1 , Ω_2 y Ω_3 son las áreas de dichos rectángulos el centroide respecto al valor z=0 que está en la base del rectángulo que representa la placa base será:

$$z_{C} = \frac{z_{C1} \cdot \Omega_{1} + z_{C2} \cdot \Omega_{2} + z_{C3} \cdot \Omega_{3}}{\Omega_{1} + \Omega_{2} + \Omega_{3}} = \frac{z_{C1} \cdot \Omega_{1} + 2 \cdot z_{C2} \cdot \Omega_{2}}{\Omega_{1} + 2 \cdot \Omega_{2}}$$

en este caso los valores son: $\Omega_1=D\cdot t;~~\Omega_2=t\cdot h;~z_{C1}=t/2;~z_{C2}=t+h/2;$ que sustituyendo se obtiene:

$$z_{c} = \frac{D \cdot t \cdot t/2 + 2 \cdot t \cdot h(t+h/2)}{D \cdot t + 2 \cdot t \cdot h} = \frac{D \cdot t/2 + 2 \cdot h(t+h/2)}{D + 2 \cdot h}$$

Ahora para determinar el momento de inercia respecto a un eje horizontal e que pase por el centroide, se aplica el teorema de Steiner en función de los momentos de inercia de una sección rectangular que pasen por el centroide del rectángulo. El momento de inercia de un rectángulo de base a y altura b vale $I = \frac{a \cdot b^3}{12}$.

El momento de inercia total para el eje e que pasa por el centroide de la pieza es la suma de los momentos de inercia de las piezas por separado, respecto al mismo eje, es decir:

$$I_e = I_{e1} + I_{e2} + I_{e3} = I_{e1} + 2 \cdot I_{e2}$$

El momento de inercia en el eje horizontal del centroide del conjunto de cualquiera de los rectángulos, se puede escribir según el teorema de Steiner:

$$I_{ei} = I_{ci} + d^2 \cdot \Omega$$

Así, se pueden determinar los momentos de inercia de cada uno de los rectángulos.

$$I_{ei} = I_{ci} + d^2 \cdot \Omega$$

$$I_{el} = \frac{D \cdot t^3}{12} + (z_C - \frac{t}{2})^2 \cdot D \cdot t$$

$$I_{e2} = I_{e3} = \frac{t \cdot h^3}{12} + (\frac{h}{2} + t - z_C)^2 \cdot t \cdot h$$

de donde:

$$I_{e} = I_{e1} + 2 \cdot I_{e2} = \frac{D \cdot t^{3}}{12} + (z_{c} - \frac{t}{2})^{2} \cdot D \cdot t + \frac{t \cdot h^{3}}{6} + 2 \cdot (\frac{h}{2} + t - z_{c})^{2} \cdot t \cdot h$$

El módulo resistente vale:

$$W_e = \frac{I_e}{r}$$

donde $r = m \acute{a} x imo \{t + h - z_C, z_C\}$

Sustituimos los valores en las ecuaciones anteriores y se tiene:

$$z_{C} = \frac{60 \cdot 2/2 + 2 \cdot h(2 + h/2)}{60 + 2 \cdot h} = \frac{60 + 4 \cdot h + h^{2}}{60 + 2 \cdot h}$$

$$I_{e} = \frac{60 \cdot 2^{3}}{12} + (z_{C} - 1)^{2} \cdot 60 \cdot 2 + \frac{2 \cdot h^{3}}{6} + 2 \cdot (\frac{h}{2} + 2 - z_{C})^{2} \cdot 2 \cdot h$$

$$=40+(z_{\rm C}-1)^2\cdot120+\frac{2\cdot h^3}{6}+4\cdot h\cdot (\frac{h}{2}+2-z_{\rm C})^2$$

$$r = m \acute{a} ximo \{2 + h - z_C, z_C\}$$

se deja z_C sin sustituir para no extender las ecuaciones.

El problema se resuelve igualando el módulo resistente obtenido al valor mínimo necesario, es decir $W_e = 600~{\rm cm}^3$. Sin embargo dado que las ecuaciones son complejas de resolver, aquí se hace por tanteo.

Se prueba h=10 cm, obteniendo: $z_C=2.5$ cm; $I_e=1453.3$. cm⁴; r=9.5 cm y así $W_e=153$ cm³. NO SIRVE.

Se prueba h=20 cm, obteniendo: $z_C=5,4$ cm; $I_e=11181,3$. cm⁴; r=16,6 cm y así $W_e=673,6$ cm³. SI SIRVE.

La solución anterior es válida. Sin embargo queda la duda de si con valores de h menores, se obtiene una cartela que resista y sea más económica. Para ello se prueba el valor siguiente más pequeño dado que el valor obtenido no es muy alejado del buscado.

Se prueba h = 19 cm, obteniendo: z_C = 5,07 cm; I_e = 7456,31 cm⁴; r = 15,93 cm y así W_e = 468 cm³. NO SIRVE.

La solución es h = 20 cm.

- 9.- Para el área limitada por la curva $5 \cdot y = x^2$, el eje de abscisas y un eje paralelo al de ordenadas a 5 cm del origen, ver figura 3.9 se pide:
- a) Propiedades geométricas fundamentales de la sección respecto a los ejes x e y.
- b) Aplicando el teorema de Steiner obtener las propiedades, que permita el mismo, a partir de las obtenidas en a) para los ejes paralelos a x e y que pasen por el centroide.

Figura 3.9

a) Para resolver este problema se utilizará el método de la integral doble en coordenadas rectangulares.

En primer lugar, se calcula que para x = 5 cm, el valor de y = 5 cm. Para el elemento representado en la figura 3.9, $d\Omega = dx \cdot dy$. Si se integra el valor de Ω es:

$$\Omega = \iint_{\Omega} d\Omega = \int_{0}^{6} \int_{0}^{x^{2}/5} dy \cdot dx = \int_{0}^{6} \left[y \right]_{0}^{x^{2}/5} dx = \int_{0}^{6} \frac{x^{2}}{5} dx = \left[\frac{x^{3}}{15} \right]_{0}^{5} = \frac{25}{3} \text{ cm}^{2}$$

Los momentos estáticos valen:

$$s_{x} = \iint_{\Omega} y \cdot d\Omega = \int_{0}^{5} \int_{0}^{x^{2}/5} y \, dy \, dx = \int_{0}^{5} \left[\frac{y^{2}}{2} \right]_{0}^{x^{2}/5} dx = \int_{0}^{5} \frac{x^{4}}{50} dx = \frac{1}{50} \left[\frac{x^{5}}{5} \right]_{0}^{5} = \frac{3125}{250} = 12,5$$
cm³

$$s_{y} = \iint_{\Omega} x \, d\Omega = \int_{0}^{5} \int_{0}^{x^{2}/5} x \, dy \, dx = \int_{0}^{5} x \left[y \right]_{0}^{x^{2}/5} dx = \int_{0}^{5} \frac{x^{3}}{5} dx = \left[\frac{x^{4}}{20} \right]_{0}^{5} = \frac{625}{20} = 31,25 \text{ cm}^{3}$$

De las ecuaciones se obtiene el centroide:

$$\overline{x} = \frac{s_y}{\Omega} = \frac{31,25}{25/3} = 3,75 \text{ cm}$$

$$\overline{y} = \frac{s_x}{\Omega} = \frac{12.5}{25/3} = 1.5 \text{ cm}$$

Los momentos de inercia de la superficie valen:

$$I_{x} = \iint_{\Omega} y^{2} \cdot d\Omega =$$

$$\int_{0}^{5} \int_{0}^{x^{2}/5} y^{2} \cdot dy \, dx = \int_{0}^{5} \left[\frac{y^{3}}{3} \right]_{0}^{x^{2}/5} dx = \frac{1}{3} \int_{0}^{5} \frac{x^{6}}{5^{3}} dx = \frac{1}{375} \left[\frac{x^{7}}{7} \right]_{0}^{5} = \frac{78125}{2625} = 29,76 \text{ cm}^{4}$$

$$I_{y} = \iint_{\Omega} x^{2} \cdot d\Omega = \int_{0}^{5} \int_{0}^{x^{2}/5} x^{2} \cdot dy \, dx = \int_{0}^{5} x^{2} \cdot [y]_{0}^{x^{2}/5} dx = \int_{0}^{5} \frac{x^{4}}{5} dx = \left[\frac{x^{5}}{25}\right]_{0}^{5} = 125 \, \text{cm}^{4}$$

$$I_{xy} = \iint_{\Omega} x \cdot y \cdot d\Omega = \int_{0}^{5} \int_{0}^{x^{2}/5} x \, y \, dy \, dx = \int_{0}^{5} x \cdot \left[\frac{y^{2}}{2} \right]_{0}^{x^{2}/5} dx = \int_{0}^{5} \frac{x^{5}}{50} dx = \left[\frac{x^{6}}{300} \right]_{0}^{5} = 52,08 \, \text{cm}^{4}$$

$$I_P = I_x + I_y = 154,76 \text{ cm}^4.$$

Por definición:

$$i_x = \sqrt{\frac{I_x}{\Omega}} = 1,89 \text{ cm}$$
 $i_y = \sqrt{\frac{I_y}{\Omega}} = 3,87 \text{ cm}$

$$i_P^2 = i_x^2 + i_y^2 \rightarrow i_P = 4.31 \text{ cm}$$

b) Aplicando el teorema de Steiner:

$$\begin{split} I_x &= I_{xC} + \ \overline{y}^2 \cdot \Omega \to \ I_{xC} = I_x - \ \overline{y}^2 \cdot \Omega = 29,76 - 1,5^2 \cdot 25/3 = 11,01 \ cm^4 \\ I_y &= I_{yC} + \ \overline{x}^2 \cdot \Omega \to \ I_{yC} = I_y - \ \overline{x}^2 \cdot \Omega = 125 - 3,75^2 \cdot 25/3 = 7,81 \ cm^4 \\ I_{xyC} &= I_{x'y} - \ \overline{x} \cdot \overline{y} \cdot \Omega = 52,08 - 3,75 \cdot 1,5 \cdot 25/3 = 5,2 \ cm^4 \\ I_P &= I_{PC} + \ \overline{d}^2 \cdot \Omega \to I_{PC} = 154,76 - (1,5^2 + 3,75^2) \cdot 25/3 = 18,82 \ cm^4 \\ i_x^2 &= i_{xC}^2 + \ \overline{y}^2 \to i_{xC} = 1,15 \ cm \\ i_y^2 &= i_{yC}^2 + \ \overline{x}^2 \to i_{yC} = 0,96 \ cm \\ i_P^2 &= i_{PC}^2 + \ \overline{d}^2 \to i_{PC} = 1,5 \ cm \end{split}$$

10.- La curva de la figura 3.10 engendra un volumen de revolución tipo cónico, al girar en torno al eje x. Determinar por los teoremas de Pappus y Guldinus, la superficie exterior (no se incluye la base) y el volumen.

Figura 3.10

La superficie por los teoremas de Pappus y Guldinus vale:

$$\Omega = 2 \cdot \pi \cdot \overline{y} \cdot L$$

En primer lugar se calcula L.

$$L = \int dL = \int \sqrt{dx^2 + dy^2}$$

como $2 \cdot y \cdot dy = dx$, se sustituye:

$$L = \int_{0}^{1} \sqrt{4 y^{2} \cdot dy^{2} + dy^{2}} = \int_{0}^{1} \sqrt{4 y^{2} + 1} dy = 2 \int_{0}^{1} \sqrt{y^{2} + \frac{1}{4}} dy$$

La integral:

$$\int \sqrt{x^2 + a^2} \cdot dx = \frac{x \cdot \sqrt{x^2 + a^2}}{2} + \frac{a^2}{2} \cdot Ln(x + \sqrt{x^2 + a^2})$$

así:

$$L=2\left[\frac{y\sqrt{y^2+\frac{1}{4}}}{2}+\frac{1}{4}Ln(y+\sqrt{y^2+\frac{1}{4}})\right]_0^1=\sqrt{1+\frac{1}{4}}+\frac{1}{4}Ln2(1+\sqrt{1+\frac{1}{4}})=1,48m$$

Para la curva la posición \overline{y} del centroide vale:

$$\bar{y} = \frac{s_x}{L} = \frac{\int y \cdot dL}{L} \rightarrow s_x = \int y \cdot dL = 2 \int y \sqrt{y^2 + \frac{1}{4}} dy = \left[\frac{2\left(y^2 + \frac{1}{4}\right)}{3} \right]_0^1 = 0.85 \text{ m}$$

$$\overline{y} = \frac{s_x}{L} = \frac{0.85}{1.48} = 0.574 \,\text{m}$$

Así la superficie exterior vale:

$$\Omega = 2 \cdot \pi \cdot 0,574 \cdot 1,48 = 5,34 \text{ m}^2.$$

El volumen por los teoremas de Pappus y Guldinus vale:

$$V=2{\cdot}\pi{\cdot}\,\overline{y}\,{\cdot}\Omega$$

En primer lugar se calcula Ω que es el área entre la curva y el eje.

$$\Omega = \iint_{\Omega} d\Omega = \iint_{\Omega} dx \, dy = \int_{0}^{1} x \, dy = \int_{0}^{1} y^{2} \, dy = \left[\frac{y^{3}}{3} \right]_{0}^{1} = 0.33 \text{ m}^{2}.$$

Ahora:

$$\overline{y} = \frac{s_x}{\Omega} =$$

El momento estático vale:

$$s_x = \iint_{\Omega} y \, d\Omega = \iint_{\Omega} y \, dx \, dy = \int_0^1 x \, y \, dy = \int_0^1 y^3 \, dy = \left[\frac{y^4}{4} \right]_0^1 = 0.25 \, \text{m}^3$$

$$\overline{y} = \frac{0.25}{0.33} = 0.76 \,\mathrm{m}$$

$$V = 2 \cdot \pi \cdot 0,76 \cdot 0,33 = 1,57 \text{ m}^3.$$

11.- La curva de la figura 3.11 engendra un paraboloide de revolución al girar en torno al eje y. Determinar por los teoremas de Pappus y Guldinus, la superficie exterior (no se incluye la base) y el volumen.

Figura 3.11

La superficie por los teoremas de Pappus y Guldinus vale:

$$\Omega = 2 \cdot \pi \cdot \overline{x} \cdot L = 2 \cdot \pi \cdot s_v$$

En primer lugar se calcula L. El valor se calculó en el problema 10, dado que es la misma curva.

Para la curva la posición \bar{x} del centroide vale:

$$\overline{x} = \frac{s_y}{L} = \frac{\int x \cdot dL}{L} \rightarrow s_y = \int x \cdot dL = 2 \int_0^1 x \sqrt{y^2 + \frac{1}{4}} \, dy = 2 \int_0^1 y^2 \cdot \sqrt{y^2$$

La integral:

$$\int x^2 \cdot \sqrt{x^2 + a^2} = \frac{x \cdot (x^2 + a^2)^{3/2}}{4} - \frac{a^2 \cdot x \cdot \sqrt{x^2 + a^2}}{8} - \frac{a^4}{8} \operatorname{Ln}(x + \sqrt{x^2 + a^2})$$

así:

$$s_{y} = 2 \int y^{2} \sqrt{y^{2} + \frac{1}{4}} = 2 \left[\frac{y(y^{2} + \frac{1}{4})^{3/2}}{4} - \frac{\frac{1}{4}y\sqrt{y^{2} + \frac{1}{4}}}{8} - \frac{\frac{1}{16}}{8} Ln(y + \sqrt{y^{2} + \frac{1}{4}}) \right]_{0}^{1} =$$

$$s_{y} = \frac{(1 + \frac{1}{4})^{3/2}}{2} - \frac{\sqrt{1 + \frac{1}{4}}}{16} - \frac{1}{64} \operatorname{Ln}(1 + \sqrt{1 + \frac{1}{4}}) + \frac{1}{64} \operatorname{Ln}(\sqrt{\frac{1}{4}}) = 0,606 \,\mathrm{m}^{2}$$

$$\Omega = 2 \cdot \pi \cdot s_y = 2 \cdot \pi \cdot 0,606 = 3,81 \text{ m}^2$$

El volumen por los teoremas de Pappus y Guldinus vale:

$$V = 2 \cdot \pi \cdot s_y$$

El momento estático vale:

$$s_y = \iint_{\Omega} x d\Omega = \iint_{\Omega} x dx dy = \int_{\Omega} \frac{x^2}{2} dy = \frac{1}{2} \int_{\Omega} y^4 dy = \left[\frac{y^5}{10} \right]_{0}^{1} = 0.1 \text{ m}^3$$

$$V = 2 \cdot \pi \cdot 0, 1 = 0,63 \text{ m}^3.$$

12.- En la figura 3.12 se muestra la geometría de un depósito. Determinar por los teoremas de Pappus y Guldinus, la superficie exterior y el volumen.

Figura 3.12

La superficie por los teoremas de Pappus y Guldinus vale tomando los ejes x e y vertical y horizontal del deposito proyectado en el plano:

$$\Omega = 2 \cdot \pi \cdot \overline{x} \cdot L = 2 \cdot \pi \cdot s_v$$

Los parámetros buscados se calcularán como suma de los engendrados por cada línea o superficie.

Primero se calculan las longitudes. Se calculan las longitudes de los tres perímetros que componen la figura. Así la longitud de la parte cónica es la hipotenusa del triangulo y vale $L_1 = \sqrt{3^2 + 1,5^2} = 3,354$ m, $L_2 = 5$ m y L_3 es la longitud de un cuadrante de círculo, o sea la cuarta parte su longitud, así: $L_3 = \frac{\pi \cdot r}{2} = 2,356$ m.

Los centroides de estas longitudes son: $\overline{x}_1 = 0.75$; $\overline{x}_2 = 1.5$; y \overline{x}_3 que hay que calcular integrando.

Para la curva la posición \overline{x}_3 del centroide vale:

$$\overline{x}_{3} = \frac{s_{y}}{L_{3}} = \frac{\int_{.3} x_{3} \cdot dL_{3}}{L_{3}} \rightarrow s_{y} = \int_{.3} x_{3} \cdot dL_{3} = \int_{0}^{\pi/2} r^{2} \cdot \sin \theta \cdot dr = \left[-r^{2} \cdot \cos \theta \right]_{0}^{\pi/2} = r^{2}$$

siendo dL = $r \cdot d\theta$; x = $r \cdot sen\theta$

así:

$$\overline{x}_3 = \frac{s_y}{L_3} = \frac{r^2}{\pi \cdot r/2} = \frac{2 \cdot r}{\pi} = \frac{2 \cdot 1.5}{\pi} = 0.955 \,\mathrm{m}$$

Las superficies engendradas:

$$\Omega_1 = 2 \cdot \pi \cdot \overline{x}_1 \cdot L_1 = 2 \cdot \pi \cdot 0,75 \cdot 3,354 = 15,8 \text{ m}^2$$

$$\Omega_2 = 2 \cdot \pi \cdot \overline{x}_2 \cdot L_2 = 2 \cdot \pi \cdot 1, 5 \cdot 5 = 47, 1 \text{ m}^2$$

$$\Omega_3 = 2 \cdot \pi \cdot \overline{x}_3 \cdot L_3 = 2 \cdot \pi \cdot 0,955 \cdot 2,356 = 14,1 \text{ m}^2$$

La superficie total $\Omega=\Omega_1+\Omega_2+\Omega_3=15.8+47.1+14.1=77~m^2$

El volumen por los teoremas de Pappus y Guldinus vale:

$$V = \Omega = 2 \cdot \pi \cdot \overline{x} \cdot \Omega$$

$$V = V_1 + V_2 + V_3$$

$$\overline{x}_1 = \frac{1}{3} \cdot 1,5 = 0,5 \text{ m}$$
 $\Omega_1 = \frac{1}{2} \cdot 3 \cdot 1,5 = 2,25 \text{ m}^2.$

$$\overline{x}_2 = \frac{1.5}{2} = 0.75 \text{ m}$$
 $\Omega_2 = 5.1.5 = 7.5 \text{ m}^2.$

$$\overline{x}_3 = \frac{s_y}{\Omega_3} = \frac{1,125}{1,77} = 0,636 \text{ m}$$
 $\Omega_3 = \frac{\pi \cdot r^2}{4} = \frac{\pi \cdot 1,5^2}{4} = 1,77 \text{ m}^2$

$$s_{y} = \iint_{\Omega} x \, d\Omega = \iint_{\Omega} x \, dx \, dy = \iint_{\Omega} r \sin \theta \, r \, d\theta \, dr = \int_{0}^{\pi/2} \sin \theta \, d\theta \int_{0}^{R} r^{2} \, dr = \left[\frac{-R^{3}}{3} \cos \theta \right]_{0}^{\pi/2}$$

$$s_{y} = \frac{R^{3}}{3} = \frac{1.5^{3}}{3} = 1.125 \, \text{m}^{3}$$

$$V = 2 \cdot \pi \cdot (\overline{x}_1 \cdot \Omega_1 + \overline{x}_2 \cdot \Omega_2 + \overline{x}_3 \cdot \Omega_3) = 2 \cdot \pi \cdot (0.5 \cdot 2.25 + 0.75 \cdot 7.5 + 0.636 \cdot 1.77)$$
$$= 49.5 \text{ m}^3.$$

13.- En la figura 3.13 se muestra la geometría de un cuerpo de revolución. Determinar por los teoremas de Pappus y Guldinus, la superficie exterior y el volumen sin tener en cuenta la base.

Figura 3.13

La superficie por los teoremas de Pappus y Guldinus vale tomando los ejes x e y vertical y horizontal del cuerpo proyectado en el plano:

$$\Omega = 2 \cdot \pi \cdot \overline{x} \cdot L = 2 \cdot \pi \cdot s_v$$

Los parámetros buscados se calcularán como suma de los engendrados por cada línea o superficie.

Primero se calculan las longitudes. Se calculan las longitudes de los dos perímetros que componen la figura. Así la longitud del cuadrante se obtuvo anteriormente y vale:

$$L_1 = \frac{\pi \cdot r}{2} = 1{,}571 \text{ m. La parte cónica vale } L_2 = \sqrt{\left(1 - 0{,}5\right)^2 + 1^2} = 1{,}12 \text{ m.}$$

Los centroides de estas longitudes son: $\overline{x}_1 = \frac{2 \cdot r}{\pi} = \frac{2 \cdot l}{\pi} = 0,637 \, \text{m}$; $\overline{x}_2 = 0,75$.

Las superficies engendradas:

$$\Omega_1 = 2 \cdot \pi \cdot \overline{x}_1 \cdot L_1 = 2 \cdot \pi \cdot r^2 = 6,28 \text{ m}^2$$

$$\Omega_2 = 2 \cdot \pi \cdot \overline{x}_2 \cdot L_2 = 2 \cdot \pi \cdot 0,75 \cdot 1,12 = 5,28 \text{ m}^2$$

La superficie total $\Omega = \Omega_1 + \Omega_2 + \Omega_3 = 6,28 + 5,28 = 11,56 \text{ m}^2$

El volumen por los teoremas de Pappus y Guldinus vale:

$$V = 2 \cdot \pi \cdot s_v$$

El volumen por los teoremas de Pappus y Guldinus vale:

$$V = \Omega = 2 \cdot \pi \cdot \overline{x} \cdot \Omega$$

$$V = V_1 + V_2$$

$$\overline{x}_1 = \frac{4 \cdot r}{3}$$
 $\Omega_1 = \frac{\pi \cdot r^2}{4}$

$$V_1 = 2 \cdot \pi \cdot \frac{4 \cdot r}{3} \cdot \frac{\pi \cdot r^2}{4} = 2,09 \text{ m}^3.$$

Para V_2 el área es de un trapecio. Para el trapecio de altura b y bases a_1 y a_2 , el centroide y el área valen:

$$\overline{x}_2 = \frac{b}{2} \cdot (a_1 \cdot a_2 + \frac{a_1^2}{3}) = 0,389 \text{ m.}$$
 $\Omega_2 = \frac{1}{2} \cdot (a_1 - a_2) \cdot b = 0,75 \text{ m}^2.$

$$V_2 = 2 \cdot \pi \cdot 0.389 \cdot 0.75 = 1.83 \text{ m}^3.$$

$$V = V_1 + V_2 = 2,09 + 1,83 = 3,92 \text{ m}^3.$$

LECCIÓN 4

Caracterización estática de los materiales

Introducción: Otro de los aspectos importantes del diseño mecánico es el conocimiento de los materiales con los que se van a diseñar. El estudio de las propiedades de los mismos, solo es posible mediante la práctica experimental. En esta lección se estudia el ensayo por excelencia, que es el ensayo de tracción. A partir de este se determinan las propiedades mecánicas más importantes. En la teoría se presentaron otros ensayos, sin embargo el ensayo que realmente se utiliza es el primero. En estos ejercicios se estudiará exclusivamente el ensayo de tracción

Para su estudio, se presentan ejercicios a partir de los datos obtenidos de normativas, tablas, etc., que se utilizan para el diseño en un afán de que sean lo más prácticos y reales posibles. El problema es que esta documentación, por lo general; sólo presenta las propiedades más importantes sin que se tenga una información mayor sobre los diagramas del ensayo. Para tener una idea de cómo son los diagramas, en la mayoría de los casos se recurrirá a la interpolación lineal, más como método didáctico que como método científico ya que al utilizar poca información las propiedades obtenidas difieren ligeramente de las reales.

Objetivos de la lección: Aprender las propiedades y características de los materiales obtenidas en el ensayo de tracción, así como su comportamiento mecánico.

Contenidos de los problemas: Estudio de las propiedades y diagramas del ensayo de tracción.

Problemas propuestos: Se incluyen ejercicios propuestos a los anteriores como repaso.

Formulación básica:

Valor de la tensión:

$$\sigma = \frac{N}{\Omega_{\Omega}}$$

Valor de la deformación:

$$\varepsilon = \frac{\Delta L}{L_{\rm o}}$$

Ley de Hooke, y relaciones de comportamiento elástico:

$$\sigma_x = E \cdot \varepsilon_x$$

$$\epsilon_{\text{y}} = -\mu \cdot \frac{\sigma_{\text{x}}}{E} \qquad \quad \epsilon_{\text{z}} = -\mu \cdot \frac{\sigma_{\text{x}}}{E} \label{epsilon}$$

Deformación en un punto i de la zona plástica:

$$\epsilon_i = \epsilon_e + \epsilon_{ip}$$

Valores de la Ductilidad:

El alargamiento que se denota por

$$A(\%) = \frac{L_{\rm U} - L_{\rm O}}{L_{\rm O}} 100$$

donde L_{U} es la longitud entre puntos a rotura y L_{O} la longitud inicial.

La reducción de área se denota por:

$$RA(\%) = \frac{\Omega_{O} - \Omega_{U}}{\Omega_{O}} 100$$

- 1.- De un acero A-42 solo se conocen los siguientes valores obtenidos de la Norma Básica de la Edificación NBE-EA-95 y son: $\sigma_e = 2600~kp/cm^2$, $\sigma_{máx} = 4200~kp/cm^2$ (La tensión de rotura se considera igual a la resistencia a la tracción, $\sigma_{máx}$), el alargamiento A=24%. Si la probeta de ensayo es cilíndrica con diámetro d=20~mm y la longitud inicial entre puntos $L_O=50~mm$. Para los cálculos considerar que se toma $E=2\cdot 10^6~kp/cm^2$ y que todas las zonas son líneas rectas. No hay bandas de Lüders. Se pide:
- a) Representar las gráficas F-DL y $\sigma\text{-}\epsilon$ para este material representando los puntos característicos.
 - b) Repetir el apartado anterior si la probeta tuviese d = 15 mm.
- c) Determinar las deformaciones elástica y permanente para los puntos de deformación $\varepsilon=0,0005,\,\varepsilon=0,1,\,\varepsilon_r.$
- d) Calcular la longitud final L_U , y los valores de la ductilidad si el área final Ω_U = 0,8 Ω_O . Indicar si el material es dúctil o frágil.
 - e) Calcular la tensión verdadera de rotura
- f) Calcular la Resiliencia, la Tenacidad, la energía elástica máxima que absorbe el material y la energía total hasta rotura.
 - g) Dar los valores de las tensiones en MPa y las energías en el SI.

a) Con los escasos datos que se dan se representa el diagrama de tensiones, con dos únicos tramos, el I la zona elástica y el II la zona plástica. Se podía haber utilizado un valor de $\sigma_p = 0.8 \cdot \sigma_e$, según la DIN-4114, o bien el valor de 2160 kp/cm² que se encuentra en la bibliografía para este material. Aquí como primer ejercicio se plantea sólo con los del enunciado. La representación con líneas rectas muestra una gráfica que no se ajusta a la realidad del ensayo, pero que da una idea aproximada del mismo.

En la zona elástica la tensión vale $\sigma = E \cdot \varepsilon$.

La deformación elástica máxima es ϵ_e = $\frac{\sigma_e}{E}$ = $\frac{2600}{2\cdot 10^6}$ = 0,0013. El ΔL_e = $\epsilon_e \cdot L_O$ = 0,065 mm.

La fuerza de límite elástico que hace la máquina vale $F_e = \sigma_e \cdot \Omega_O$; siendo $\Omega_O = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot 2^2}{4} = \pi \text{ cm}^2$, entonces $F_e = 2600 \cdot \pi = 8168 \text{ kp}$.

Para la rotura, la deformación se calcula a partir del alargamiento, y este a partir de la longitud final entre marcas de la probeta rota. Como el alargamiento, según el enunciado, es A = 24%, la deformación plástica a rotura es $\epsilon_{rp} = 0.24$, por tanto en el diagrama la deformación de rotura vale $\epsilon_r = \epsilon_e + \epsilon_{rp} = 0.2413$ y de esta forma el $\Delta L_r = \epsilon_r \cdot L_O = 12,065$ mm. La fuerza de rotura se calcula $F_r = \sigma_r \cdot \Omega_O$; entonces $F_r = 4200 \cdot \pi = 13195$ kp.

Con estos resultados se pueden representar las gráficas de la figura 4.1a.

b) La gráfica tensión-deformación es igual ya que son propiedades que no dependen de la geometría de la probeta. La gráfica fuerza-alargamiento cambia en los valores de las fuerzas ya que ahora la máquina no necesita hacer tanta fuerza por ser la sección más pequeña.

Ahora
$$\Omega_O = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot 1.5^2}{4} = 1,767 \, \text{cm}^2$$
, entonces $F_e = 2600 \cdot 1,767 = 4595 \, \text{kp}$. La fuerza de rotura vale $F_r = 4200 \cdot 1,767 = 7422 \, \text{kp}$.

La gráfica se muestra en la figura P-4.1b.

c) Para $\varepsilon = 0,0005$ como está en la zona elástica la deformación plástica ε_p es nula y todo es deformación elástica.

Para $\epsilon=0,1$ se está en zona de deformación plástica, así la parte elástica es el valor de $\epsilon_e=0,0013$ y la parte plástica será la diferencia $\epsilon_p=\epsilon$ - $\epsilon_e=0,1$ - 0,0013=0,0987

Para la rotura se obtuvo
$$\epsilon_e=0{,}0013,\,\epsilon_{rp}=0{,}24$$
 y $\epsilon_r=\epsilon_e+\epsilon_{rp}=0{,}2413.$

d) Los valores de la ductilidad son el alargamiento A, que es dato y la reducción de área RA, que se puede calcular con los datos del enunciado.

$$RA = \frac{\Omega_O - \Omega_U}{\Omega_O} \cdot 100 = \frac{\Omega_O - 0.8\Omega_O}{\Omega_O} \cdot 100 = 20\%$$

El material es dúctil, los aceros son materiales dúctiles.

e) La tensión de rotura verdadera es:

$$\sigma_{\rm rv} = \frac{F_{\rm r}}{\Omega_{\rm II}} = \frac{13195}{0.8 \cdot \pi} = 5250 \, \text{kp/cm}^2$$
.

f) Resiliencia = energía elástica por unidad de volumen = área de la zona elástica de la gráfica tensión-deformación.

Resiliencia =
$$\frac{1}{2} \cdot \sigma_e \cdot \varepsilon_e = \frac{1}{2} \cdot 2600 \cdot 0,0013 = 1,69 \text{ kp/cm}^2.$$

Tenacidad = energía total que absorbe la probeta durante el ensayo de tracción.

$$\begin{split} \text{Tenacidad} &= \frac{1}{2} \cdot \sigma_e \cdot \epsilon_e + \sigma_e \cdot (\epsilon_r - \epsilon_e) + \frac{1}{2} \cdot (\sigma_r - \sigma_e) \cdot (\epsilon_r - \epsilon_e) = 1,69 + 2600 \cdot (0,24) + \\ &\frac{1}{2} \cdot (4200 - 2600) \cdot 0,24 = 817,69 \text{ kp/cm}^2. \end{split}$$

Energía elástica total = es la energía elástica total que absorbe la probeta = $\frac{1}{2} \cdot F_e \cdot \Delta L_e = \frac{1}{2} \cdot 8168 \cdot 0,065 = 265,46 \text{ kp·mm}.$

Energía total = es la energía que absorbe la probeta hasta que rompe = $\frac{1}{2} \cdot F_e \cdot \Delta L_e + F_e \cdot (\Delta L_r - \Delta L_e) + \frac{1}{2} \cdot (F_r - F_e) \cdot (\Delta L_r - \Delta L_e) = 265,46 + 8168 \cdot (12) + \frac{1}{2} \cdot (13195 - 8168) \cdot 12 = 128433,46 \text{ kp·mm}.$

g) Se utiliza para pasar a unidades del S.I el valor de $g = 9.8 \text{ m/s}^2$.

$$\sigma_e = 2600 \text{ kp/cm}^2 = 2600.9, 8.10^4 \text{ N/m}^2 = 254,8 \text{ MPa}.$$

$$\sigma_r = 4200 \text{ kp/cm}^2 = 4200.9, 8.10^4 \text{ N/m}^2 = 411,6 \text{ MPa}.$$

Resiliencia =
$$1,69 \text{ kp/cm}^2 = 1,69 \cdot 9,8 \cdot 10^4 \text{ N/m}^2 = 156,8 \cdot 10^3 \cdot \text{N/m}^2 = 156,8 \cdot 10^3 \cdot \text{N/m}^2 = 160 \cdot 10^3 \cdot \text{N/m}^2 = 160 \cdot 10^3 \cdot 10$$

Resiliencia =
$$156.8 \cdot 10^3 \cdot Js/m^3$$
.

Tenacidad =
$$817,69 \text{ kp/cm}^2 = 817,69.9,8.10^4 \text{ N/m}^2 = 80,13362.10^6 \text{ N/m}^2 (\text{J/m}^3)$$
.

Energía elástica total =
$$265,46 \text{ kp} \cdot \text{mm} = 265,46 \cdot 9,8 \cdot 10^{-3} \text{ N} \cdot \text{m} \approx 2,6 \text{ Js (N} \cdot \text{m})$$

Energía total =
$$128433,46 \text{ kp} \cdot \text{mm} = 128433,46 \cdot 9,8 \cdot 10^{-3} \text{ N} \cdot \text{m} \approx 1254,4 \text{ Js (N} \cdot \text{m)}$$

2.- Se han ensayado dos fundiciones en un ensayo de tracción. La probeta de ensayo es cilíndrica con diámetro d = 20 mm y la longitud inicial entre puntos $L_{\rm O}$ = 50,8 mm. Para los cálculos se considera que todas las zonas son líneas rectas. Se obtuvo que E = 170 GPa. Además se obtuvieron los siguientes resultados.

Fundición 1: $\sigma_f=290$ MPa obtenida al 0,2% de deformación permanente especificada. $\sigma_m=480$ MPa. El alargamiento es A=1%.

Fundición 2: $\sigma_f=276$ MPa obtenida al 0,2% de deformación permanente especificada. $\sigma_m=414$ MPa. El alargamiento es A=18%.

Se pide:

- a) Representar las gráficas F- Δ L y σ - ϵ para ambas fundiciones. Considerar que la tensión elástica vale igual a la de fluencia.
- b) Calcular la Resiliencia, la Tenacidad, la energía elástica máxima que absorbe el material y la energía total hasta rotura.
- c) Discutir la ductilidad, tenacidad de ambas, y comparar los resultados con los del acero del ejercicio 1.

Figura 4.2a

a) Con los datos que se dan se representa el diagrama de tensiones, se pueden considerar tres tramos tomando $\sigma_e = \sigma_r$, el I la zona elástica, el II la zona elastoplástica y el III la zona plástica. La representación con líneas rectas muestra una gráfica que no se ajusta a la realidad del ensayo, pero que nos da una idea aproximada del mismo.

Fundición 1:

En la zona elástica la tensión vale $\sigma = E \cdot \varepsilon$.

La deformación elástica máxima es ϵ_e = $\frac{\sigma_e}{E}$ = $\frac{290\cdot10^6}{170\cdot10^9}$ = 0,0017. El ΔL_e = $\epsilon_e\cdot L_O$ = 0,08636 mm.

La fuerza de límite elástico que hace la máquina vale $F_e = \sigma_e \cdot \Omega_O$; siendo $\Omega_O = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot 0.02^2}{4} = \pi \cdot 10^{-4} \, \text{m}^2$, entonces $F_e = 290 \cdot \pi \cdot 10^{-4} = 91,106 \, \text{kN}$.

Se asume que la tensión de fluencia coincide con la tensión elástica salvo que tiene una deformación permanente del 0,2%. Así $\epsilon_f = \epsilon_e + 0,002 = 0,0037$. $\Delta L_f = \epsilon_{f^*} L_O = 0,18796$ mm.

El punto de rotura se ha considerado con un valor igual a la σ_m . Es habitual encontrar en la bibliografía el valor de σ_m y no el de σ_r , dado que este último al romper la probeta puede ser erróneo o difícil de obtener. Admitir que $\sigma_m = \sigma_r$ en estos casos es apropiado, basta recordar que en la realidad la tensión crece hasta la rotura con valores ligeramente mayores a σ_m , y que los valores de σ_r del diagrama son menores que σ_m por que se divide por el área inicial y no por la real.

Así $\sigma_r=480$ MPa. Para la rotura, la deformación se calcula a partir del alargamiento obtenido a partir de la longitud final entre marcas de la probeta rota. Como el alargamiento, según el enunciado, es A=1%, la deformación plástica a rotura es $\epsilon_{rp}=0.01$, por tanto en el diagrama la deformación de rotura vale $\epsilon_r=\epsilon_e+\epsilon_{rp}=0.0117$ y de esta forma el $\Delta L_r=\epsilon_r\cdot L_O=0.59436$ mm. La fuerza de rotura se calcula $F_r=\sigma_r\cdot \Omega_O$; , entonces $F_r=480\cdot\pi\cdot10^{-4}=150.7968$ kN.

Fundición 2:

La deformación elástica máxima es $\epsilon_e = \frac{\sigma_e}{E} = \frac{276\cdot10^6}{170\cdot10^9} = 0,0016$. El $\Delta L_e = \epsilon_e \cdot L_O = 0,08128$ mm.

La fuerza de límite elástico que hace la máquina vale $F_e = \sigma_e \cdot \Omega_O$; siendo $\Omega_O = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot 0.02^2}{4} = \pi \cdot 10^{-4} \, \text{m}^2$, entonces $F_e = 276 \cdot \pi \cdot 10^{-4} = 86,708 \, \text{kN}$.

El punto de fluencia es igual que el punto elástico salvo que tiene una deformación permanente del 0,2%. Así $\epsilon_f = \epsilon_e + 0,002 = 0,0036$. $\Delta L_f = \epsilon_f \cdot L_O = 0,18288$ mm.

El punto de rotura se ha considerado con un valor igual a la σ_m . Así $\sigma_r=414$ MPa. Como el alargamiento, según el enunciado, es A=18% lo que supone que la deformación plástica a rotura es $\epsilon_{rp}=0.18$, por tanto en el diagrama la deformación de rotura vale $\epsilon_r=\epsilon_e+\epsilon_{rp}=0.1816$ y de esta forma el $\Delta L_r=\epsilon_r\cdot L_O=9.22528$ mm. La fuerza de rotura se calcula $F_r=\sigma_r\cdot\Omega_O$; , entonces $F_r=414\cdot\pi\cdot10^{-4}=130.062$ kN.

Con estos resultados se pueden representar las gráficas de la figura P-4.2.

b) Resiliencia = energía elástica por unidad de volumen = área de la zona elástica de la gráfica tensión-deformación.

Fundición 1:

$$Resiliencia = \frac{1}{2} \cdot \sigma_e \cdot \epsilon_e = \frac{1}{2} \cdot 290 \cdot 10^6 \cdot 0,0017 = 2,465 \cdot 10^5 \text{ J/m}^3.$$

Tenacidad = energía total que absorbe la probeta durante el ensayo de tracción.

$$\begin{split} \text{Tenacidad} \ = \ \frac{1}{2} \cdot \sigma_e \cdot \epsilon_e \ + \ \sigma_e \cdot (\epsilon_r \ - \ \epsilon_e) \ + \ \frac{1}{2} \cdot (\sigma_r \ - \ \sigma_f) \cdot (\epsilon_r \ - \ \epsilon_f) \ = \ 2,465 \cdot 10^5 \ + \\ 290 \cdot 10^6 \cdot (0,01) + \ \frac{1}{2} \cdot (480 - 290) \cdot 10^6 \cdot (0,0117 - 0,0037) = 3,907 \cdot 10^6 \, \text{J/m}^3. \end{split}$$

Energía elástica total = es la energía elástica total que absorbe la probeta = $\frac{1}{2} \cdot F_e \cdot \Delta L_e = \frac{1}{2} \cdot 91106 \cdot 0,08636 \cdot 10^{-3} = 3,934 \text{ J}$

Energía total = es la energía que absorbe la probeta hasta que rompe = $\frac{1}{2} \cdot F_e \cdot \Delta L_e + F_e \cdot (\Delta L_r - \Delta L_e) + \frac{1}{2} \cdot (F_r - F_f) \cdot (\Delta L_r - \Delta L_f) = 3,934 + 91106 \cdot (0,59436 - 0,08636) \cdot 10^{-3} + \frac{1}{2} \cdot (150796,8 - 91106) \cdot (0,59436 - 0,18796) \cdot 10^{-3} = 62,345 \text{ J}.$

Fundición 2:

Resiliencia =
$$\frac{1}{2} \cdot \sigma_e \cdot \varepsilon_e = \frac{1}{2} \cdot 276 \cdot 10^6 \cdot 0,0016 = 2,208 \cdot 10^5 \text{ J/m}^3.$$

Tenacidad = energía total que absorbe la probeta durante el ensayo de tracción.

$$\begin{split} \text{Tenacidad} \ = \ \frac{1}{2} \cdot \sigma_e \cdot \epsilon_e \ + \ \sigma_e \cdot (\epsilon_r \ - \ \epsilon_e) \ + \ \frac{1}{2} \cdot (\sigma_r \ - \ \sigma_f) \cdot (\epsilon_r \ - \ \epsilon_f) \ = \ 2,208 \cdot 10^5 \ + \\ 276 \cdot 10^6 \cdot (0,18) + \ \frac{1}{2} \cdot (414 - 276) \cdot 10^6 \cdot (0,1816 - 0,0036) = 62,183 \cdot 10^6 \, \text{J/m}^3. \end{split}$$

Energía elástica total = es la energía elástica total que absorbe la probeta = $\frac{1}{2} \cdot F_e \cdot \Delta L_e = \frac{1}{2} \cdot 86708 \cdot 0,08128 \cdot 10^{-3} = 3,524 \text{ J}.$

Energía total = es la energía que absorbe la probeta hasta que rompe = $\frac{1}{2} \cdot F_e \cdot \Delta L_e + F_e \cdot (\Delta L_r - \Delta L_e) + \frac{1}{2} \cdot (F_r - F_f) \cdot (\Delta L_r - \Delta L_f) = 3,524 + 86708 \cdot (9,22528 - 0,08128) \cdot 10^{-3} + \frac{1}{2} \cdot (130062 - 86708) \cdot (9,22528 - 0,18288) \cdot 10^{-3} = 992,394 \text{ J}.$

c) Si se observan las gráficas, la fundición 1 rompe con pequeñas deformaciones plásticas, al contrario que la fundición 2. Además, los parámetros de la ductilidad

confirman este hecho. Así, la fundición 1 tiene un comportamiento frágil, mientras la 2 es dúctil.

La fundición 2 tiene valores de tenacidad mayores, unas 16 veces mayor que la 1. Si se compara con lo obtenido para el acero A-42 del problema anterior, aunque los resultados son aproximados, se ve que la fundición 2 es menos dúctil y tenaz que el acero, muestra valores similares.

Conviene resaltar que la Resiliencia es similar en las fundiciones, algo mayor la frágil, y algo inferior en el acero. Esto indica que la capacidad de deformación elástica de un material no tiene nada que ver con el comportamiento dúctil y tenaz. Son propiedades distintas.

- 3.- Una probeta de aleación de titanio con sección circular de d = 20 mm se ha ensayado para caracterizar el material. Con L_O = 50,8 mm se obtuvieron los valores: σ_f = 850 MPa para la deformación permanente especificada del 0,2%, $\sigma_{m\acute{a}x}$ = 950 MPa y ϵ_m = 0,098, A = 10%, sección de rotura Ω_U = 0,8 Ω_O . Se estimó que la σ_r = 900 MPa. Con los valores E = 110 GPa, G = 40 GPa, μ = 0,33. Se pide:
- a) Representar las gráficas F- Δ L y σ - ϵ para este material representando los puntos característicos. Dar la tensión verdadera de rotura también.
- b) A partir de los datos y resultados anteriores hacer a) para d = 15 mm y d = 25 mm.
 - c) Determinar las deformaciones plásticas para las tensiones σ_f , $\sigma_{m\acute{a}x}$ y σ_r .
 - d) Estudiar la Ductilidad del material.
- e) Determinar para σ_f los valores $\epsilon_y,\,\epsilon_z.$ Se considera σ_f coincidente con la de límite elástico.
- f) Calcular la Resiliencia, la Tenacidad, tomando los tramos como rectos y considerando la tensión de rotura verdadera.

Figura 4.3a

a) Con los datos que se dan se representa el diagrama de tensiones de la figura 4.3a1, se pueden considerar tres tramos, el I la zona elástica, el II la zona elastoplástica y el III la zona plástica. La representación con líneas rectas muestra una gráfica que no se ajusta a la realidad del ensayo, pero que nos da una idea aproximada del mismo.

Se considerará como en ejercicios anteriores una tensión de límite elástica, igual a la de fluencia.

En la zona elástica la tensión vale $\sigma = E \cdot \epsilon$.

La deformación elástica máxima es $\epsilon_e = \frac{\sigma_e}{E} = \frac{850\cdot10^6}{110\cdot10^9} = 0,007727$. El $\Delta L_e = \epsilon_e \cdot L_O = 0,3925454$ mm.

La fuerza de límite elástico que hace la máquina vale $F_e = \sigma_e \cdot \Omega_O$; siendo $\Omega_O = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot 0.02^2}{4} = \pi \cdot 10^{-4} \, \text{m}^2$, entonces $F_e = 850 \cdot 10^6 \cdot \pi \cdot 10^{-4} = 267,035 \, \text{kN}$.

En el punto de fluencia es igual que el punto elástico salvo que tiene una deformación permanente del 0,2%. Así $\epsilon_f = \epsilon_e + 0,002 = 0,009727$. $\Delta L_f = \epsilon_f \cdot L_O = 0,4941316$ mm.

El valor de σ_m = 950, con ϵ_m = 0,098. F_m = 950·10⁶· π ·10⁻⁴ = 298,452 kN. ΔL_m = ϵ_m · L_0 = 4,9784 mm.

Para $\sigma_r=900$ como dato. Con este dato se puede determinar $F_r=\sigma_r\cdot\Omega_O$; entonces $F_r=900\cdot\pi\cdot10^{-4}=282,744$ kN. Ahora se puede calcular la tensión verdadera de rotura, ya que $\Omega_U=0.8~\Omega_O$, luego $\sigma_{rv}=F_r/\Omega_U=\sigma_r/0.8=1125$ MPa.

Para la rotura, la deformación se calcula a partir del alargamiento obtenido a partir de la longitud final entre marcas de la probeta rota. Como el alargamiento, según el enunciado, es A = 10%, la deformación plástica a rotura es $\epsilon_{rp}=0,1,$ por tanto en el diagrama la deformación de rotura vale $\epsilon_r=\epsilon_e+\epsilon_{rp}=0,107727$ y de esta forma el $\Delta L_r=\epsilon_r\cdot L_O=5,4725316$ mm.

b) En la figura 4.3a2, se han representado de forma genérica las curvas para cada probeta. Sólo se muestra la gráfica F- Δ L, ya se dijo que la gráfica σ - ϵ es la misma para cualquier probeta.

Los cálculos ha realizar son:

$$\mathbf{d} = 15 \text{ mm} \rightarrow \Omega_{O} = \frac{\pi \cdot d^{2}}{4} = \frac{\pi \cdot 0.015^{2}}{4} = 1.7671 \cdot 10^{-4} \text{ m}^{2}$$

$$F_e = F_f = \sigma_f \cdot \Omega_O = 850 \cdot 10^6 \cdot 1,7671 \cdot 10^{-4} = 150,2074 \ kN.$$

$$F_m = \sigma_m \cdot \Omega_O = 950 \cdot 10^6 \cdot 1,7671 \cdot 10^{-4} = 167,87886 \ kN.$$

$$F_r = \sigma_f \cdot \Omega_O = 900 \cdot 10^6 \cdot 1,7671 \cdot 10^{-4} = 159,04313 \text{ kN}.$$

$$\mathbf{d} = 25 \text{ mm} \rightarrow \Omega_{O} = \frac{\pi \cdot d^{2}}{4} = \frac{\pi \cdot 0.025^{2}}{4} = 4.9087 \cdot 10^{-4} \text{ m}^{2}$$

$$F_e = F_f = \sigma_f \cdot \Omega_O = 850 \cdot 10^6 \cdot 1,7671 \cdot 10^{-4} = 417,24277 \text{ kN}.$$

$$F_m = \sigma_m \cdot \Omega_O = 950 \cdot 10^6 \cdot 1,7671 \cdot 10^{-4} = 466,33016 \text{ kN}.$$

$$F_r = \sigma_f \cdot \Omega_O = 900 \cdot 10^6 \cdot 1,7671 \cdot 10^{-4} = 441,78647 \text{ kN}.$$

c) Para la fluencia $\epsilon_{fP}=0{,}002$ dato del ejercicio. Para $\sigma_m\to\epsilon_{mP}=\epsilon_m$ - $\epsilon_e=0{,}098-0{,}007727=0{,}090273$. Para la rotura $\epsilon_{rP}=0{,}1$.

d)
$$A = 10\%$$
, $RA = (1 - 0.8) \cdot 100 = 20\%$

Los valores representan un material dúctil con una deformación plástica significativa.

e)
$$\varepsilon_{ve} = \varepsilon_{ze} = -\mu \cdot \varepsilon_{xe} = -0.33 \cdot 0.007727 = 0.00255$$
.

f) Resiliencia = energía elástica por unidad de volumen = área de la zona elástica de la gráfica tensión-deformación.

$$Resiliencia = \frac{1}{2} \cdot \sigma_e \cdot \epsilon_e = \frac{1}{2} \cdot 850 \cdot 10^6 \cdot 0,007727 = 3,285 \cdot MN/m^2 \text{ (MPa)}.$$

Tenacidad = energía total por unidad de volumen que absorbe la probeta durante el ensayo de tracción.

$$\begin{split} \text{Tenacidad} &= \frac{1}{2} \cdot \sigma_e \cdot \epsilon_e + \sigma_e \cdot (\epsilon_f - \epsilon_e) + \frac{1}{2} \cdot (\sigma_m + \sigma_f) \cdot (\epsilon_m - \epsilon_f) + \frac{1}{2} \cdot (\sigma_r + \sigma_m) \cdot (\epsilon_r - \epsilon_m) = \\ 3,285 + 850 \cdot (0,002) + \frac{1}{2} \cdot (950 + 850) \cdot (0,098 - 0,009727) + \frac{1}{2} \cdot (1125 - 950) \cdot (0,10773 - 0,098) \\ &= 94,52 \text{ MPa.} \end{split}$$

Los valores obtenidos con la σ_{rv} deben considerarse con cautela ya que dicho corresponde al diagrama de tensión-deformación verdadera.

- 4.- El acero A-42 se utiliza en la Edificación y sus características aproximadas son: $\sigma_p = 2160 \text{ kp/cm}^2$, $\sigma_f = 2600 \text{ kp/cm}^2$ (al 0,2% de deformación permanente especificada), $\sigma_r = 4200 \text{ kp/cm}^2$, el alargamiento A = 24%. Si la probeta de ensayo es cilíndrica con diámetro d = 20 mm y la longitud inicial entre puntos $L_O = 50$ mm. Para los cálculos considerar que se toma $E = 2,1 \cdot 10^6 \text{ kp/cm}^2$ y todas las zonas son líneas rectas. No se consideran las bandas de Lüders y la tensión de límite elástico σ_e se supone coincide con σ_p . Se pide:
 - a) Representar las gráficas F- ΔL y σ - ϵ para este material representando los puntos característicos.
 - b) Repetir el apartado anterior si la probeta tuviese d = 15 mm. (0.5 puntos)
- c) Determinar las deformaciones elástica y permanente para los puntos de deformación $\epsilon=0,0005,\,\epsilon=0,1,\,\epsilon_r.$
- d) Calcular la longitud final L_U , y los valores de la ductilidad si el área final Ω_U = 0,8 Ω_O . Indicar si el material es dúctil o frágil.
 - e) Calcular la tensión verdadera de rotura.
- f) Calcular la Resiliencia, y la energía total que absorbe el material hasta rotura para la probeta inicial.
- g) Dar los valores de las tensiones en MPa y de las energías en el SI para la probeta inicial.

a) Con los datos que se dan se representa el diagrama de tensiones de la figura 4.4a1, se pueden considerar tres tramos, el I la zona elástica, el II la zona elastoplástica y el III la zona plástica. La representación con líneas rectas muestra una gráfica que no se ajusta a la realidad del ensayo, pero que nos da una idea aproximada del mismo.

En la zona elástica la tensión vale $\sigma = E \cdot \varepsilon$.

La deformación elástica máxima es $\epsilon_e = \frac{\sigma_e}{E} = \frac{2600}{2,1\cdot 10^6} = 0,00103$. El $\Delta L_e = \epsilon_e \cdot L_O = 0,0515$ mm.

La fuerza de límite elástico que hace la máquina vale $F_e = \sigma_e \cdot \Omega_O$; siendo $\Omega_O = \frac{\pi \cdot d^2}{4} = \frac{\pi \cdot 2^2}{4} = \pi \text{ cm}^2$, entonces $F_e = 6786 \text{ kp}$.

En el punto de fluencia tiene una deformación permanente del 0,2%. Así $\epsilon_f = \epsilon_e + 0,002 = 0,00303$. $\Delta L_f = \epsilon_f \cdot L_O = 0,1515$ mm. La fuerza en el punto de fluencia vale $F_f = \sigma_f \cdot \Omega_O = 8168$ kp.

Para $\sigma_r=4200$ como dato. Con este dato se puede determinar $F_r=\sigma_r\cdot\Omega_O=13195$ kp. La deformación se calcula a partir del alargamiento obtenido a partir de la longitud final entre marcas de la probeta rota. Como el alargamiento, según el enunciado, es A=24%, la deformación plástica a rotura es $\epsilon_{rp}=0.24$, por tanto en el diagrama la deformación de rotura vale $\epsilon_r=\epsilon_e+\epsilon_{rp}=0.24103$ y de esta forma el $\Delta L_r=\epsilon_r\cdot L_O=12.0515$ mm.

b) En la figura 4.4a2, se han representado de forma genérica las curvas para cada probeta. Sólo se muestra la gráfica F- Δ L, ya se dijo que la gráfica σ - ϵ es la misma para cualquier probeta.

Los cálculos ha realizar son:

$$\mathbf{d} = 15 \text{ mm} \rightarrow \Omega_{O} = \frac{\pi \cdot d^{2}}{4} = \frac{\pi \cdot 1.5^{2}}{4} = 1,767 \text{ c m}^{2}$$

$$F_e = F_p = \sigma_p \cdot \Omega_O = 2160 \cdot 1,767 = 3817 \text{ kp.}$$

$$F_f = \sigma_f \cdot \Omega_O = 2600 \cdot 1,767 = 4595 \text{ kp.}$$

$$F_r = \sigma_f \cdot \Omega_O = 4200 \cdot 1,767 = 7422 \text{ kp.}$$

c) La deformación elástica máxima es $\varepsilon_e = 0.00103$. Así:

 $\epsilon=0{,}0005 \to todo$ es deformación elástica al ser $\epsilon<\epsilon_e.$ La componente plástica es nula.

 $\epsilon=0,1\to est\'a en zona plástica luego <math display="inline">\epsilon^e=\epsilon_e=0,\!00103,$ la componente plástica $\epsilon^p=\epsilon$ - $\epsilon^e=0,\!1-0,\!00103=0,\!09897$

En la rotura ya se obtuvo: $\varepsilon_{rp} = 0.24$, $\varepsilon_{e} = 0.00103$, $\varepsilon_{r} = \varepsilon_{e} + \varepsilon_{rp} = 0.24103$.

d) A=24%, se obtuvo $\Delta L_r=\epsilon_r\cdot L_O=12,0515$ mm. La longitud L_U , es la longitud entre marcas una vez rota la probeta, luego se puede obtener a partir del incremento de longitud plástica en la rotura, o sea: $\Delta L_{rp}=\Delta L_r-\Delta L_e=\epsilon_e\cdot L_O=12,0515-0,0515=12$ mm. Luego $L_U=\Delta L_{rp}+L_O=62$ mm.

La reducción de área $RA = (1 - 0.8) \cdot 100 = 20\%$

Los valores representan un material dúctil con una deformación plástica significativa.

e)
$$\sigma_{rv} = 4200/0.8 = 5250 \text{ kp/cm}^2$$
.

f) Resiliencia = energía elástica por unidad de volumen = área de la zona elástica de la gráfica tensión-deformación.

Resiliencia =
$$\frac{1}{2} \cdot \sigma_e \cdot \varepsilon_e = \frac{1}{2} \cdot 2160 \cdot 0,00103 = 1,11 \cdot \text{kp/cm}^2$$
.

Energía total que absorbe la probeta durante el ensayo de tracción = $\frac{1}{2} \cdot F_e \cdot \Delta L_e$ +

$$\frac{1}{2}\cdot(F_f+F_e)\cdot(\Delta L_f-\Delta L_e)+\frac{1}{2}\cdot(F_r+F_f)\cdot(\Delta L_r-\Delta L_f)=174,74+747,7+127109,85=128032,29\ kp\cdot mm$$

g) En el S.I con $g = 9.8 \text{ m/s}^2$:

$$\sigma_e$$
= 211,68 MPa, σ_f = 254,8 MPa, σ_r = 411,6 MPa.

Resiliencia: 108,78 J/m³ (Pa) Energía total: 1254,72 J.

5.- Un acero F-1110 se suministra en barras laminadas. Se ensayan a tracción tres probetas de este material con las siguientes características. La probeta A se mecaniza a partir de una barra en estado de recepción. La probeta B ha sido sometida a un tratamiento térmico de recocido. La probeta C es sometida a un tratamiento de Fase-Dual a 760° C. Las probetas tienen un diámetro de 10 mm en la zona calibrada y los resultados se obtuvieron con un extensómetro con $L_{O}=25$ mm. Los resultados que se suministran son:

Probeta A:

La curva crece hasta la rotura sin que aparezca la zona de Lüders.

Límite elástico: $F_e = 45560 \text{ N}, \Delta L_e = 0,069 \text{ mm}.$

Límite de fluencia (al 0,2%) $F_f = 49558 \text{ N}, \Delta L_f = 0,119 \text{ mm}.$

Fuerza máxima: $F_m = 50916 \text{ N}, \Delta L_m = 1,1897 \text{ mm}.$

Fuerza de rotura: El valor máximo de la fuerza se mantiene hasta la rotura.

Alargamiento: A = 16%

Reducción de área: RA = 57,8%

Probeta B:

La fuerza crece linealmente hasta la fluencia que se detecta fácilmente al aparecer un pico claramente diferenciado, seguido de las bandas de Lüders características de estos materiales. El límite elástico no se detecta con claridad.

Límite de fluencia: $F_f = 25846 \text{ N}, \Delta L_f = 0,0546 \text{ mm}.$

Para ese punto de fluencia la fuerza cae verticalmente hasta un valor aproximado de $F_L=22000$ N, considerándose la zona elastoplástica a fuerza constante con dicho valor hasta un alargamiento de $\Delta L_L=0,5144$ mm. Luego la curva crece hasta el valor máximo de fuerza.

Fuerza máxima: $F_m = 33538 \text{ N}, \Delta L_m = 5,3736 \text{ mm}.$

Fuerza de rotura: El valor máximo de la fuerza se mantiene hasta la rotura.

Alargamiento: A = 36,4%

Reducción de área: RA = 65,2%

Probeta C: La curva crece hasta la rotura sin que aparezca la zona de Lüders. No se detectó claramente la fuerza elástica $F_{\rm e}$ admitiéndose un valor igual al de la fuerza de fluencia.

Límite de fluencia (al 0,2%) $F_f = 32756 \text{ N}, \Delta L_f = 0,1034 \text{ mm}.$

Fuerza máxima: $F_m = 57735 \text{ N}, \Delta L_m = 2,4598 \text{ mm}.$

Fuerza de rotura: El valor máximo de la fuerza se mantiene hasta la rotura.

Alargamiento: A = 17%

Reducción de área: RA = 43,8%

Con los datos dados y uniendo todos los tramos con rectas se pide:

- a) Representar las gráficas F- ΔL y σ - ϵ para este material representando los puntos característicos.
 - b) Calcular la Resiliencia y Tenacidad de cada ensayo.
 - c) Calcular la tensión verdadera de rotura.
- d) Calcular la Resiliencia y Tenacidad de cada ensayo, pero si se corrige la zona plástica no uniforme al tomar la tensión de rotura verdadera en lugar de la habitual. Esta situación es un supuesto, ya que para hacerlo correctamente se debiera representar el diagrama tensión-deformación verdadera.
- a) Para establecer los diagramas se deben determinar los valores de fuerzas, alargamientos, tensiones y deformaciones de los puntos conocidos. Así:

Diagramas Fuerza-Alargamiento

Diagramas Tensión-Deformación

Figura 4.5

Probeta A:

$$\sigma_{e} = \frac{F_{e}}{\Omega_{O}} = 580,1 \text{ MPa}; \ \sigma_{f} = \frac{F_{f}}{\Omega_{O}} = 631 \text{ MPa}, \ \sigma_{m} = \frac{F_{m}}{\Omega_{O}} = 648,3 \text{ MPa},$$

$$\sigma_{r} = \sigma_{m} \cdot \epsilon_{e} = \frac{\Delta L_{e}}{L_{O}} = 0,00276 \; ; \; \epsilon_{f} = \frac{\Delta L_{f}}{L_{O}} = 0,00476 \; ; \; \epsilon_{m} = \frac{\Delta L_{m}}{L_{O}} = 0,047588 \; ;$$

$$\epsilon_r\!=\epsilon_e+\epsilon_{rp}\!=0,\!16276.~\Delta L_r=\epsilon_r\!\cdot\! L_O\!=4,\!069$$
 mm.

Probeta B:

$$\sigma_{\rm f} = \frac{F_{\rm f}}{\Omega_{\rm O}} = 329,1 \text{ MPa}, \ \sigma_{\rm L} = \frac{F_{\rm L}}{\Omega_{\rm O}} = 305,6 \text{ MPa}, \ \sigma_{\rm m} = \frac{F_{\rm m}}{\Omega_{\rm O}} = 427 \text{ MPa},$$

$$\sigma_{\rm r} = \sigma_{\rm m} \cdot \varepsilon_{\rm f} = \frac{\Delta L_{\rm f}}{L_{\rm O}} = 0.002184$$
;

$$\varepsilon_{L} = \frac{\Delta L_{L}}{L_{O}} = 0.020576 \; ; \varepsilon_{m} = \frac{\Delta L_{m}}{L_{O}} = 0.214944 \; ;$$

$$\varepsilon_r = \varepsilon_e + \varepsilon_{rp} = 0.002184 + 0.364 = 0.366184.$$

Se ha asumido en este caso $\epsilon_e=\epsilon_f.~\Delta L_r=\epsilon_r \cdot L_O=9,1546~mm.$

Probeta C:

$$\sigma_{\rm f} = \frac{F_{\rm f}}{\Omega_{\rm O}} = 417.1 \text{ MPa} = \sigma_{\rm e}; \ \sigma_{\rm m} = \frac{F_{\rm m}}{\Omega_{\rm O}} = 735.1 \text{ MPa}, \ \sigma_{\rm r} = \sigma_{\rm m} \cdot$$

$$\varepsilon_{\rm f} = \frac{\Delta L_{\rm f}}{L_{\rm o}} = 0.004136 \; ;$$

$$\varepsilon_{\rm f} = \frac{\Delta L_{\rm f}}{L_{\rm O}} = 0.004136 \ \varepsilon_{\rm e} = \frac{\Delta L_{\rm e}}{L_{\rm O}} = 0.002136 \ ; \varepsilon_{\rm m} = \frac{\Delta L_{\rm m}}{L_{\rm O}} = 0.098392 \ ;$$

$$\epsilon_r = \epsilon_e + \epsilon_{rp} = 0.172136$$
. $\Delta L_r = \epsilon_r \cdot L_O = 4.3034$ mm.

b) Resiliencia = energía elástica por unidad de volumen = área de la zona elástica de la gráfica tensión-deformación.

Tenacidad = energía total por unidad de volumen que absorbe la probeta durante el ensayo de tracción.

Probeta A:

$$Resiliencia = \frac{1}{2} \cdot \sigma_e \cdot \epsilon_e = \frac{1}{2} \cdot 580, 1 \cdot 0,00276 = 0,8 \ MPa.$$

$$\begin{split} \text{Tenacidad} &= \frac{1}{2} \cdot \sigma_e \cdot \epsilon_e + \frac{1}{2} \cdot (\sigma_e + \sigma_f) \cdot (\epsilon_f - \epsilon_e) + \frac{1}{2} \cdot (\sigma_f + \sigma_m) \cdot (\epsilon_m - \epsilon_f) + \sigma_r \cdot (\epsilon_r - \epsilon_m) = \\ 0.8 &+ \frac{1}{2} \cdot (580.1 + 631) \cdot (0.002) + \frac{1}{2} \cdot (631 + 648.3) \cdot (0.047588 - 0.00476) + 648.3 \cdot (0.16276 - 0.047588) = 0.8 + 1.212 + 27.395 + 74.666 = 104 \text{ MPa.} \end{split}$$

Probeta B:

Resiliencia = $\frac{1}{2} \cdot \sigma_f \cdot \varepsilon_f = \frac{1}{2} \cdot 329, 1 \cdot 0,002184 = 0,36$ MPa. Este cálculo es aproximado dado que se desconoce el valor del límite elástico.

$$\begin{split} \text{Tenacidad} &= \frac{1}{2} \cdot \sigma_e \cdot \epsilon_e + \sigma_e \cdot (\epsilon_L - \epsilon_f) + \frac{1}{2} \cdot (\sigma_L + \sigma_m) \cdot (\epsilon_m - \epsilon_L) + \sigma_r \cdot (\epsilon_r - \epsilon_m) = 0,36 + \\ 305,6 \cdot (0,0020576 - 0,002184) + \frac{1}{2} \cdot (305,6 + 427) \cdot (0,214944 - 0,020576) + 427 \cdot (0,366184 - 0,214944) = 0,36 + 5,62 + 71,2 + 64,58 = 141,76 \text{ MPa}. \end{split}$$

Probeta C:

Resiliencia =
$$\frac{1}{2} \cdot \sigma_e \cdot \varepsilon_e = \frac{1}{2} \cdot 417, 1 \cdot 0,002136 = 0,46$$
 MPa.

$$\begin{split} \text{Tenacidad} &= \frac{1}{2} \cdot \sigma_e \cdot \epsilon_e + \sigma_e \cdot (\epsilon_f - \epsilon_e) + \frac{1}{2} \cdot (\sigma_f + \sigma_m) \cdot (\epsilon_m - \epsilon_f) + \sigma_r \cdot (\epsilon_r - \epsilon_m) = 0.46 + 417.1 \cdot (0.002) + \frac{1}{2} \cdot (417.1 + 735.1) \cdot (0.098392 - 0.004136) + 735.1 \cdot (0.172136 - 0.098392) \\ &= 0.46 + 0.83 + 54.3 + 54.2 = 109.8 \text{ MPa}. \end{split}$$

c)
$$\sigma_{rvA} = \sigma_{rA}/\Omega_U$$
; RA = 57,8%. $\Omega_U = 0.422 \cdot \Omega_O \rightarrow \sigma_{rvA} = 1536,3$ MPa.

$$\sigma_{rvB}=\sigma_{rB}/\Omega_{U};\,RA=65,2\%$$
 . $\Omega_{U}=0,348\cdot\Omega_{O}\rightarrow\sigma_{rvB}=1227$ MPa.

$$\sigma_{rvC} = \sigma_{rC}/\Omega_U$$
; RA = 43,8%. $\Omega_U = 0,562 \cdot \Omega_O \rightarrow \sigma_{rvB} = 1308$ MPa.

d) Para calcular la tenacidad corregida TC basta quitar el último término $\sigma_r \cdot (\epsilon_r - \epsilon_m)$ y cambiarlo por $\frac{1}{2} \cdot (\sigma_m + \sigma_{rv}) \cdot (\epsilon_r - \epsilon_m)$

Probeta A:

$$TC = 104 - 74,666 + \frac{1}{2} \cdot (\sigma_m + \sigma_{rv}) \cdot (\varepsilon_r - \varepsilon_m) = 104 - 74,666 + \frac{1}{2} \cdot (648,3 + 1536,3) \cdot (0,115172) = 104 - 74,666 + 125,8 = 155,94 \text{ MPa.}$$

Probeta B:

$$TC = 141,76 - 64,58 + \frac{1}{2} \cdot (\sigma_m + \sigma_{rv}) \cdot (\varepsilon_r - \varepsilon_m) = 77,18 + \frac{1}{2} \cdot (427 + 1227) \cdot (0,15124)$$
$$= 202,3 \text{ MPa}.$$

Probeta C:

$$TC = 109.8 - 54.2 + \frac{1}{2} \cdot (\sigma_m + \sigma_{rv}) \cdot (\epsilon_r - \epsilon_m) = 55.6 + \frac{1}{2} \cdot (735.1 + 1308) \cdot (0.172136 - 0.098392) = 55.6 + 73.33 = 130.93 \text{ MPa}.$$

Como se dijo anteriormente estos valores deben tomarse con cautela ya que la tensión de rotura verdadera corresponde al diagrama de tensión-deformación verdadera.

CAPÍTULO II Fundamentos de Resistencia de Materiales

LECCIÓN 5

Principios y bases del diseño en Resistencia de Materiales

Introducción: En el capítulo anterior se estudió conceptualmente la Resistencia de Materiales y se situó dentro de la Ciencia. Se introdujeron los fundamentos básicos de la Mecánica en los que gravita esta disciplina. Dado que su objetivo fundamental es el diseño de elementos mecánicos se estudiaron las propiedades mecánicas de los materiales y las características geométricas de las secciones.

Ya se comentó que la Resistencia de Materiales sacrifica el rigor matemático de la Teoría de la Elasticidad, basándose en un conjunto de principios e hipótesis simplificativas razonables que la convierten en un instrumento válido y operativo para el diseño de máquinas y estructuras. Algunos de estos principios ya se han planteado, como por ejemplo la consideración del modelo de sólido elástico. Sin embargo, ahora es necesario analizar todos aquellos que han quedado sin estudiar. En esta lección se analizan de forma general estos principios que son de aplicación en la mayoría de los diseños que plantea la Resistencia de Materiales, estableciendo a su vez sus límites de aplicación.

Los ejercicios siguientes están orientados a la comprensión de estos principios de forma breve, clara y sencilla. Estos se aplicarán en adelante en todas las lecciones que se traten, por lo que los ejercicios de esta lección se verán ampliados por los de las lecciones sucesivas.

Objetivos de la lección: Comprender los principios y bases que plantea la asignatura.

Contenidos de los problemas: Estudio del principio de rigidez relativa, el principio de superposición, el principio de Saint Venant, seguridad del diseño mecánico, criterios de resistencia y los teoremas del potencial interno.

En cuanto a los criterios de resistencia, se da exclusivamente el de Von Mises, por su amplia aceptación, para poderlo aplicar en el diseño en elementos mecánicos. Su estudio detallado se hace en la lección 15, donde además se estudian otros criterios.

Respecto a los teoremas del potencial interno, se omiten los ejercicios relativos a los teoremas de Castigliano y Menabrea ya que se planteará su uso en lecciones sucesivas cuando se tenga un conocimiento mayor de la asignatura. A estos teoremas se dedica la lección última dada su importancia.

Problemas resueltos: Exclusivamente ejercicios referentes a los contenidos establecidos.

Formulación básica:

Formulación estudiada en lecciones anteriores.

Seguridad en el diseño de elementos mecánicos. Tensión admisible.

Método de los coeficientes de seguridad

$$\sigma_{ADM} = \frac{\sigma_{LIM}}{n}$$
 $\sigma_{CO} \le \sigma_{ADM}$

Método de los coeficientes de ponderación

$$\sigma_{ADM} = \frac{\sigma_{LIM}}{\gamma} \quad \sigma_{CO} * \leq \sigma_{ADM}$$

Criterios de Resistencia. Criterio de Von Mises

$$\sigma_{co} = \sqrt{\sigma_x^2 + 3(\tau_y^2 + \tau_z^2)}$$

Para los casos particulares se tiene:

<u>Tracción pura</u>: $\sigma_{co} = \sigma_x$; por las tensiones cortantes nulas

Cortadura pura: $\sigma_{co} = \sqrt{3} \cdot \tau$; siendo nula la tensión normal y $\tau = \sqrt{\tau_y^2 + \tau_z^2}$; la resultante de las tensiones cortantes.

Teoría del potencial interno. Teoremas energéticos

$$\Phi = \frac{1}{2} \sum F_{i} \cdot \delta_{i}$$

Teorema de Maxwell-Betti

$$\sum_{i} F_{i} \cdot s_{i}^{*} = \sum_{j} G_{j} \cdot r_{j}^{*}$$

Teorema de Castigliano

$$\delta_{\rm i} = \frac{\partial \Phi}{\partial F_{\rm i}}$$

Teorema de Menabrea

$$0 = \frac{\partial \Phi}{\partial X_1}$$
; $0 = \frac{\partial \Phi}{\partial X_2}$; ...; $0 = \frac{\partial \Phi}{\partial X_n}$

Estructuras articuladas planas

El grado de hiperestaticidad vale $GH = b - (2 \cdot n - c)$, siendo b = número de barras, n = número de nudos y c = número de reacciones.

- 1.- Las vigas de la figura 5.1a se muestran sin deformar. Si se aplican las cargas y teniendo en cuenta que son sólidos elásticos, se pide:
- a) Indicar si es posible aplicar el principio de rigidez relativa.
- b) Indicar si se puede aplicar el principio de superposición.

Figura 5.1a

a) En las figuras 1, 2 y 4, no es posible aplicar el principio de rigidez relativa, ya que al aplicar la carga de compresión y deformar la viga los esfuerzos en la sección cambian. Entonces, la fuerza F provoca, además de la compresión, flexión. Así el momento flector aumenta una cantidad F·d, siendo d la distancia ortogonal desde la sección a la línea de acción de F. Esto provoca un estado de tensiones y deformaciones distinto al que sería de considerar el estado indeformado, si se aplicase el principio de rigidez relativa y en concreto las deformaciones pueden aumentar entrando en un sistema de grandes deformaciones alejándose de las condiciones del principio de rigidez relativa y pudiendo colapsar la viga. Además, siempre que hay una carga compresiva puede aparecer el fenómeno de pandeo, que se estudiará en lecciones sucesivas, por el que dependiendo: de la geometría de la viga, de cómo se aplique la carga, etc., la carga compresiva puede provocar flexiones que hagan que las deformaciones aumenten progresivamente hasta el fracaso del sistema. Esto independientemente de que existan otras cargas que provoquen la flexión.

El resto de vigas cumplen el principio de rigidez relativa, ya que las deformaciones al ser dentro del comportamiento elástico son pequeñas y el estado de esfuerzos no cambia sustancialmente al considerar el sistema deformado o indeformado.

b) Aquellas vigas en las que no se cumpla el principio de rigidez relativa, no cumplen el principio de superposición, ya que las causas y los efectos dejan de ser independientes entre sí, y por tanto, no puede representarse el sistema global como suma de estados individuales e independientes.

- 2.- En una resistencia eléctrica de valor R, pasa una intensidad I. Recordando que el voltaje vale $V = R \cdot I$ y la potencia vale $P = R \cdot I^2$, se pide:
- a) ¿ Se podría calcular el voltaje V que pasa por la resistencia como suma de los voltajes V_1 y V_2 correspondientes a las intensidades I_1 y I_2 tal que $I = I_1 + I_2$?. ¿ Y la potencia como suma de $P_1 = R \cdot I_1^2$ y $P_2 = R \cdot I_2^2$?.
 - b) Demostrarlo matemáticamente.
- a) El voltaje SI, la potencia NO; ya que el primero tiene una relación causa-efecto lineal y el segundo no.
- b) $V = R \cdot I_1$; $\rightarrow V_1 = R \cdot I_1$; $V_2 = R \cdot I_2$; si se cumple el principio de superposición se debe verificar que $V = V_1 + V_2$; siendo $I = I_1 + I_2$. Así $V = V_1 + V_2 = R \cdot I_1 + R \cdot I_2 = R \cdot (I_1 + I_2)$ por lo que se verifica.

Para la potencia $P = R \cdot I^2 \rightarrow P_1 = R \cdot I_1^2$ y $P_2 = R \cdot I_2^2$; de cumplir el principio de superposición se debe verificar que $P = P_1 + P_2$; siendo $I = I_1 + I_2$. Así $P = P_1 + P_2 = R \cdot I_1^2 + R \cdot I_2^2 = R \cdot (I_1^2 + I_2^2)$ que no es igual que $P = R \cdot I^2 = R \cdot (I_1 + I_2)^2$, por lo que no cumple.

- 3.- Un fenómeno físico relaciona una función Y con una variable X según la ecuación de una línea recta $Y = a \cdot X + b$, donde a es la pendiente y b una constante. Se pide:
 - a) ¿ Se podría aplicar el principio de superposición?
 - b) Demostrarlo matemáticamente.
- a) En principio sí, ya que el sistema es lineal.
- b) Supóngase que se desea determinar $Y = Y_1 + Y_2$; siendo $Y_1 = a \cdot X_1 + b$, $Y_2 = a \cdot X_2 + b$, y se verifica que $X = X_1 + X_2$. Si se hace $Y = Y_1 + Y_2 = a \cdot X_1 + b + a \cdot X_2 + b = a \cdot (X_1 + X_2) + 2 \cdot b = a \cdot X + 2 \cdot b$, que es distinto que $Y = a \cdot X + b$. Aunque aparentemente no se cumple, físicamente sí. Para verificarlo basta representar la función con origen en Y = b, de forma que quedaría como $Y' = a \cdot X$, y en este caso se verifica.
- 4.- En las vigas de la figura 5.4a sustituir las cargas distribuidas por una carga puntual, de forma que el sistema sea estáticamente equivalente indicando en que tramos de la misma se verifica el principio de Saint-Venant.

Un sistema es estáticamente equivalente si para idéntica geometría, las nuevas acciones cumplen las ecuaciones de equilibrio estático. Basta entonces sustituir cada acción por otra con valor igual e igual momento.

Si se sustituye cada carga por su carga puntual equivalente se obtienen los sistemas de la figura 5.4b.

Cuando la carga es uniforme se sustituye por su valor neto q·L en el centroide, o sea en la mitad. Una carga distribuida como triángulo rectángulo tiene un valor neto de 1/2·q·L y el centroide es el del triángulo que está a 1/3·L del ángulo recto.

Figura 5.4b

Estos sistemas deben cumplir $\sum \vec{F}_{\text{EXT}} = \vec{0}$ y $\sum \vec{M}_{\text{EXT}} = \vec{0}$, de esta forma se obtienen las reacciones y para ambos sistemas serán las mismas. Si al extremo izquierdo se le llama A y al derecho B, las reacciones son:

- 1) Para esta viga son verticales de valores $V_A = 5/4 \cdot q \cdot a$, y $V_B = 3/4 \cdot q \cdot a$, de esta forma los esfuerzos son idénticos en la zona donde no figura la carga distribuida, es decir, salvo el tramo central los otros dos. Estos esfuerzos provocarán idénticas tensiones.
- 2) Para esta viga son verticales de valores $V_A = V_B = q \cdot L/2$, de esta forma los esfuerzos son idénticos en la zona donde no figura la carga distribuida, en el tramo izquierdo. Estos esfuerzos provocarán idénticas tensiones.
- 3) Para esta viga hay uno vertical de valor $V_A = q \cdot L/2$, y $M_A = 5/6 \cdot q \cdot L^2$, de esta forma los esfuerzos son idénticos en la zona donde no figura la carga distribuida, en el tramo izquierdo. Estos esfuerzos provocarán idénticas tensiones.

4) Esta es una viga sometida a esfuerzo normal exclusivamente, en este caso no hay momentos y la carga estáticamente equivalente es la misma pero situada en cualquier punto del tramo dando una reacción R=F - $q\cdot a$ según la horizontal positiva. Los esfuerzos son idénticos en la zona donde no figura la carga distribuida, en el tramo derecho. Estos esfuerzos provocarán idénticas tensiones

Figura 5.5a

5.- La nave industrial a cuatro aguas de la figura 5.5a, se construye con pórticos paralelos formados por dos cerchas y tres pilares. Se estudia la estructura como plana, con las cargas siguientes: cada cercha soporta una acción neta horizontal H_i y una vertical V_i que se sitúan en el centroide de la misma. A su vez en el lado izquierdo hay una presión q y en el derecho una succión q que son cargas distribuidas a lo largo del pilar y que pueden representar las cargas de viento, o más en general; cualquier carga distribuida uniformemente, ver figura 5.5a.

Cuando no se contaba con la potencia de la informática, este tipo de casos se estudiaba separando por un lado los pilares y por otro las cerchas, y se establecian los diagramas de cuerpo libre, ver figura 5.5b. Un cálculo aproximado consiste en considerar que la cercha no transmite momentos a los pilares de forma que en los nudos de unión con los mismos sólo se consideran empujes horizontales y verticales.

Si se entiende que las cerchas no transmiten momentos o que son despreciables, se pueden determinar los empujes horizontales y verticales que hay entre cercha y pilar por el principio de superposición.

Para ello se dibujan los diagramas del cuerpo libre de las cerchas y de los pilares por separado, dejando constancia de los empujes mutuos, que son las incógnitas del problema, ver figura 5.5b. Conociendo que el extremo de una viga en voladizo para una carga distribuida p sufre un desplazamiento por flexión en el

extremo libre de $\delta=\frac{p{\cdot}L^4}{8{\cdot}E{\cdot}I}$, y que para una carga F el desplazamiento vale $\delta=$

 $\frac{F \cdot L^3}{3 \cdot E \cdot I}$, siendo L la longitud de la viga, E el módulo elástico e I el momento de inercia, se pueden calcular los empujes horizontales entre los pilares y la cercha, que no es posible calcular con las condiciones de equilibrio estático. Para ello se

considera que los desplazamientos que sufren los extremos del pilar debidos a otros esfuerzos son despreciables y que todos pilares se desplazan igual en su extremo superior, por indeformabilidad de las cerchas. Así, se pide resolver el problema por superposición y calcular el desplazamiento del extremo superior de cada pilar.

En la figura 5.5b se muestran las fuerzas que actúan al dibujar los diagramas del cuerpo libre. Notar que se han omitido las fuerzas verticales en los nudos que unen las cerchas a los pilares, ya que se calculan directamente por equilibrio en cada cercha y no resultan problemáticas.

Para resolver el problema se necesitan cuatro ecuaciones ya que las incógnitas son los cuatro empujes representados X_1 , X_2 , X_3 , X_4 . Si se aplican a cada elemento las ecuaciones de equilibrio, aparecerán nuevas incógnitas que son las reacciones. Así se tratará de utilizar las ecuaciones aprovechables.

Como las incógnitas son esos empujes horizontales, se buscan ecuaciones que los relacionen. Las dos primeras son las de equilibrio de fuerzas horizontales en las cerchas.

1)
$$X_1 + X_2 + H_1 = 0$$
 $X_2 = -H_1 - X_1$

2)
$$X_3 + X_4 + H_2 = 0$$
 $X_4 = -H_2 - X_3$

Se necesitan dos ecuaciones más, en este caso la igualdad de desplazamientos de los extremos de los pilares, así se puede escribir:

3)
$$\delta_A = \delta_B$$

4)
$$\delta_{\rm B} = \delta_{\rm C}$$

de donde:

$$\delta_{A} = \frac{\mathbf{q} \cdot \mathbf{h}^{4}}{8 \cdot \mathbf{E} \cdot \mathbf{I}} - \frac{\mathbf{X}_{1} \cdot \mathbf{h}^{3}}{3 \cdot \mathbf{E} \cdot \mathbf{I}} \qquad \delta_{B} = -\frac{(\mathbf{X}_{2} + \mathbf{X}_{3}) \cdot \mathbf{h}^{3}}{3 \cdot \mathbf{E} \cdot \mathbf{I}} \qquad \delta_{C} = \frac{\mathbf{q}' \cdot \mathbf{h}^{4}}{8 \cdot \mathbf{E} \cdot \mathbf{I}} - \frac{\mathbf{X}_{4} \cdot \mathbf{h}^{3}}{3 \cdot \mathbf{E} \cdot \mathbf{I}}$$

así se tiene:

3)
$$\frac{\mathbf{q} \cdot \mathbf{h}^4}{8 \cdot \mathbf{E} \cdot \mathbf{I}} - \frac{\mathbf{X}_1 \cdot \mathbf{h}^3}{3 \cdot \mathbf{E} \cdot \mathbf{I}} = -\frac{(\mathbf{X}_2 + \mathbf{X}_3) \cdot \mathbf{h}^3}{3 \cdot \mathbf{E} \cdot \mathbf{I}}$$

4)
$$-\frac{(X_2 + X_3) \cdot h^3}{3 \cdot E \cdot I} = \frac{q' \cdot h^4}{8 \cdot E \cdot I} - \frac{X_4 \cdot h^3}{3 \cdot E \cdot I}$$

este sistema se resuelve, por ejemplo sustituyendo dos de las incógnitas en función de las otras dos y entonces:

1')
$$\frac{\mathbf{q} \cdot \mathbf{h}^4}{8 \cdot \mathbf{E} \cdot \mathbf{I}} - \frac{\mathbf{X}_1 \cdot \mathbf{h}^3}{3 \cdot \mathbf{E} \cdot \mathbf{I}} = -\frac{(\mathbf{X}_2 + \mathbf{X}_3) \cdot \mathbf{h}^3}{3 \cdot \mathbf{E} \cdot \mathbf{I}} \rightarrow \frac{\mathbf{q} \cdot \mathbf{h}^4}{8 \cdot \mathbf{E} \cdot \mathbf{I}} - \frac{\mathbf{X}_1 \cdot \mathbf{h}^3}{3 \cdot \mathbf{E} \cdot \mathbf{I}} = \frac{(\mathbf{H}_1 + \mathbf{X}_1 - \mathbf{X}_3) \cdot \mathbf{h}^3}{3 \cdot \mathbf{E} \cdot \mathbf{I}}$$

$$2') - \frac{(X_2 + X_3) \cdot h^3}{3 \cdot E \cdot I} = \frac{q' \cdot h^4}{8 \cdot E \cdot I} + \frac{(H_2 + X_3) \cdot h^3}{3 \cdot E \cdot I} \rightarrow \frac{(H_1 + X_1 - X_3) \cdot h^3}{3 \cdot E \cdot I} = \frac{q' \cdot h^4}{8 \cdot E \cdot I} + \frac{(H_2 + X_3) \cdot h^3}{3 \cdot E \cdot I}$$

2')
$$\rightarrow H_1 + X_1 - 2 \cdot X_3 - H_2 - \frac{3 \cdot q' \cdot h}{8} = 0$$

$$1') \to X_3 = 2 \cdot X_1 + H_1 - \frac{3 \cdot q' \cdot h}{8} \to H_1 + X_1 - 2 \cdot (2 \cdot X_1 + H_1 - \frac{3 \cdot q' \cdot h}{8}) - H_2 - \frac{3 \cdot q' \cdot h}{8} = 0 \to 0$$

$$X_1 = -\frac{(H_1 + H_2)}{3} + \frac{h}{8} (2 \cdot q - q')$$
; obteniéndose todas las incógnitas y así:

$$X_1 = -\frac{(H_1 + H_2)}{3} + \frac{h}{8} (2 \cdot q - q')$$

$$X_2 = -\frac{(2 \cdot H_1 - H_2)}{3} - \frac{h}{8} (2 \cdot q - q')$$

$$X_3 = \frac{(H_1 - H_2)}{3} + \frac{h}{8} (q - 2 \cdot q')$$

$$X_4 = -\frac{(H_1 + 2 \cdot H_2)}{3} - \frac{h}{8} (q - 2 \cdot q')$$

6.- Para la viga de la figura 5.6a1 comprobar el teorema de Maxwell-Betti. Se sabe que el desplazamiento y para una viga con carga concentrada vale en cada tramo:

$$0 \le x \le a \Rightarrow \mathbf{E} \cdot \mathbf{I}_z \cdot \mathbf{y}_1 = \frac{\mathbf{P} \cdot \mathbf{b}}{6 \cdot \mathbf{L}} \mathbf{x}^3 + \frac{\mathbf{P} \cdot \mathbf{b}}{6 \cdot \mathbf{L}} (\mathbf{b}^2 - \mathbf{L}^2) \cdot \mathbf{x}$$

$$\mathbf{a} \le \mathbf{x} \le \mathbf{a} + \mathbf{b} \Rightarrow \mathbf{E} \cdot \mathbf{I}_{\mathbf{z}} \cdot \mathbf{y}_{2} = \frac{\mathbf{P} \cdot \mathbf{b}}{6 \cdot \mathbf{L}} \mathbf{x}^{3} + \frac{\mathbf{P} \cdot \mathbf{b}}{6 \cdot \mathbf{L}} (\mathbf{b}^{2} - \mathbf{L}^{2}) \cdot \mathbf{x} - \frac{\mathbf{P} \cdot (\mathbf{x} - \mathbf{a})^{3}}{6}$$

Figura 5.6a

Si se aplica la fuerza Q el desplazamiento en x = 1 punto de aplicación de F vale:

$$y_{1Q} = \frac{1}{E \cdot I_z} \left\{ \frac{Q \cdot 2}{6 \cdot 5} 1^3 + \frac{P \cdot 2}{6 \cdot 5} (2^2 - 5^2) \cdot 1 \right\} = \frac{-4 \cdot Q}{3 \cdot E \cdot I_z}$$

Cuando actúa F el desplazamiento en x = 3 punto de aplicación de Q vale:

$$y_{2F} = \frac{F \cdot 4}{6 \cdot 5} 3^3 + \frac{F \cdot 4}{6 \cdot 5} (4^2 - 5^2) \cdot 3 - \frac{F \cdot (3 - 1)^3}{6} = \frac{-4 \cdot F}{3 \cdot E \cdot I_A}$$

se debe verificar:

$$F \cdot y_{1O} = Q \cdot y_{2F}$$

que fácilmente se comprueba al ser $F \cdot y_{1Q} = F \cdot \frac{-4 \cdot Q}{3 \cdot E \cdot I_z} = Q \cdot y_{2F} = Q \cdot \frac{-4 \cdot F}{3 \cdot E \cdot I_z}$.

7.- Para las vigas de la figura 5.7a determinar por el teorema de Maxwell-Betti., los desplazamientos debidos a la carga aplicada en 1 en el punto 2 si se conoce el desplazamiento de 1 debido a la carga aplicada en 2.

Para la figura 5.7a1, la carga aplicada en el extremo que puede llamarse P, provoca una deformación para una sección situada en x desde el vuelo de:

$$y = \frac{1}{E \cdot I_x} \left\{ -\frac{P}{6}x^3 + \frac{P \cdot L^2}{2}x - \frac{P \cdot L^3}{3} \right\}$$

con lo que para P=2 t, en $x=1 \rightarrow y_{2P}=-\frac{5}{3 \cdot E \cdot I_z}$ y entonces aplicando el teorema de

Maxwell-Betti y llamando F a la carga de 3 t, F = 3 t se tiene:

$$F \cdot y_{2P} = P \cdot y_{1F}$$

despejando se obtiene:

$$y_{1F} = -\frac{5}{3 \cdot E \cdot I_z} \cdot \frac{P}{F} = -\frac{5}{3 \cdot E \cdot I_z} \cdot \frac{3}{2} = -\frac{5}{2 \cdot E \cdot I_z}$$

Para la figura 5.7a2, el par M provoca una deformación en el extremo:

$$\delta_{_{1M}} = \frac{M b(2a+b)}{2 \cdot E \cdot I_{a}}$$

según el teorema de Maxwell-Betti se puede calcular el desplazamiento en 1, que será el giro lo que se podrá buscar, ya que la igualdad dimensional obliga, para que se cumpla el teorema, que:

$$P \cdot \delta_{1M} = M \cdot \theta_{2P}$$

despejando θ_{1P} se tiene:

$$\theta_{2P} = \frac{P b(2a+b)}{2 \cdot E \cdot I_z}$$

Para la figura 5.7a3, el par M provoca una deformación en 1:

$$\delta_{1M} = \frac{2 \,\mathrm{Ma}^2}{9 \cdot \mathrm{E} \cdot \mathrm{I}_z}$$

según el teorema de Maxwell-Betti el giro en 2:

$$F{\cdot}\delta_{2M}=M{\cdot}\theta_{1F}$$

despejando θ_{1F} se tiene:

$$\theta_{2F} = \frac{2 \cdot F \cdot a^2}{9 \cdot E \cdot I_z}$$

8.- Una probeta de acero A-42 sometida a tracción deforma elásticamente hasta una tensión de 10 kp/mm² y luego se libera. En segundo lugar se somete a 13 kp/mm² y se libera. Calcular en cada caso la deformación elástica y la energía elástica por unidad de volumen o potencial interno por unidad de volumen. Si se somete la probeta a una tensión de 23 kp/mm² ¿Se podría calcular por superposición de los estados anteriores la deformación?. ¿Y la energía elástica?. Comprobarlo.

$$\sigma = E \cdot \varepsilon \to E = 2,1 \cdot 10^6 \text{ kp/cm}^2 \to \varepsilon_1 = \frac{\sigma_1}{E} = \frac{1000}{2,1 \cdot 10^6} = 0,00047619$$

$$\varepsilon_2 = \frac{\sigma_2}{E} = \frac{1300}{2.1 \cdot 10^6} = 0,000619047$$

El potencial interno $\Phi = 1/2 \cdot F_i \cdot \delta_i = 1/2 \cdot \sigma_i \cdot \Omega_O \cdot \varepsilon_i \cdot l_O = 1/2 \cdot \sigma_i \cdot \varepsilon_i \cdot V_O \rightarrow \phi = \Phi/V_O = 1/2 \cdot \sigma_i \cdot \varepsilon_i$ es el potencial interno por unidad de volumen. Así;

$$\phi_1 = 1/2 \cdot \sigma_1 \cdot \epsilon_1 = 1/2 \cdot 1000 \cdot 0,00047619 = 0,238095 \text{ kp/cm}^2 = 23333,31 \text{ N/m}^2 \text{ (J/m}^3)$$

$$\varphi_2 = 1/2 \cdot \sigma_2 \cdot \epsilon_2 = 1/2 \cdot 1300 \cdot 0,000619047 = 0,402381 \; kp/cm^2 = 39433,29 \; N/m^2 \; (J/m^3)$$

Para el caso de la tensión de 23 kp/mm², si es posible calcularlo como suma porque se cumple la ley de Hooke, que es lineal. La $\varepsilon_3 = \frac{\sigma_3}{E} = \frac{2300}{2,1\cdot 10^6} = 0,001095238$. Como $\sigma_3 = \sigma_1 + \sigma_2$ y el sistema es lineal por superposición $\varepsilon_3 = \varepsilon_1 + \varepsilon_2 = 0,00047619 + 0,000619047 = 0,001095237$ que vale igual.

El potencial interno por unidad de volumen, que es energía elástica por unidad de volumen no cumple, se comprueba:

$$\phi_3 = 1/2 \cdot \sigma_3 \cdot \epsilon_3 = 1/2 \cdot 2300 \cdot 0,001095238 = 1,259524 \text{ kp/cm}^2 = 123433,35 \text{ N/m}^2 \text{ (J/m}^3)$$

$$\phi_3 \neq \phi_1 + \phi_2 = 23333,31 + 39433,29 = 62766,6 \text{ N/m}^2 \text{ (J/m}^3)$$

que es diferente como era de esperar por no tener relación lineal.

9.- Una probeta cilíndrica de acero A-52 se ensaya en una máquina de tracción de 25 toneladas. Si se desea que no aparezcan nunca deformaciones plásticas con una seguridad de n = 1,3; determinar el diámetro d de la zona calibrada.

 $\sigma_e=3600~kp/cm^2\rightarrow\sigma_{ADM}=\sigma_e/n=3600/1,3;$ la tensión en este caso es $\sigma=N/\Omega$ con $N=25~t\rightarrow$ según el criterio de resistencia empleado $\sigma_{CO}=\sigma\leq\sigma_{ADM}\rightarrow25000/\Omega\leq3600/1,3\rightarrow\Omega\geq1,3\cdot25000/3600\approx9,03~cm^2.$ La sección de una probeta cilíndrica vale $\pi\cdot r^2=9,03~cm^2\rightarrow r=1,7~cm$ luego el diámetro d=3,4~cm.

Figura 5.10a

10.- Diseñar la estructura de la figura 5.10a cuando $P_1 = 2000 \text{ kp}$, $P_2 = 3000 \text{ kp}$, $c_1 = 2 \text{ y}$ $c_2 = 1,5$, a = 2 m, y el material es acero A-37. No hay pandeo, el sistema trabaja elásticamente y todas las barras son de igual sección.

En primer lugar se resuelve la geometría que claramente queda expuesta en la figura 5.10a2. El triángulo ACD es equilátero, tendrá lados iguales.

Para resolver el problema por el método de los coeficientes de ponderación, se determinan las reacciones en función de las acciones ponderadas $P_1^* = c_1 \cdot P_1$ y $P_2^* = c_2 \cdot P_2$.

Planteando las ecuaciones de equilibrio estático, figura 5.10a3:

$$\sum \overrightarrow{F}_{EXT} = \overrightarrow{0}$$

$$(x) \rightarrow H_A - P_1^* = 0 \rightarrow P_1^* = c_1 \cdot P_1 = 2 \cdot 2000 = 4000 \text{ kp}$$

y)
$$\rightarrow$$
 V_A + V_C = P₂* = c₂·P₂ = 1,5·3000 = 4500 kp

$$\sum \overrightarrow{M}_{\text{EXT}} \bigg|_{A} = \overset{\rightarrow}{0} \rightarrow a \cdot P_2 * - 2 \cdot a \cdot V_C + a \cdot sen60^{\circ} \cdot P_1 * = 0 \rightarrow V_C = \frac{P_2 * + P_1 * \cdot sen60^{\circ}}{2}$$

$$V_C = 3982 \text{ kp} \rightarrow V_A = 4500 - 3982 = 518 \text{ kp}$$

Conocidas las reacciones se pueden calcular los esfuerzos en la estructura, que se puede considerar articulada por formar un sistema triangulado con acciones aplicadas en los nudos. En la figura 5.10a3 se muestran los nudos aislados con las acciones y los esfuerzos buscados. Para resolver el problema basta plantear el equilibrio de fuerzas en cada nudo y en el orden de izquierda a derecha de la figura. Así:

En el nudo C:

$$\sum_{F=0}^{\rightarrow} \vec{F} = \vec{0}$$

$$(x) \rightarrow N_2 + N_3 \cdot \cos 30^\circ = 0$$

y)
$$\rightarrow$$
 V_C - N₃·cos30° = P₂* = c₂·P₂ = 1,5·3000 = 4500 kp \rightarrow N₃ = 7964 kp \rightarrow

$$N_2 = -6897 \text{ kp}$$

En el nudo B:

$$\sum \vec{F} = \vec{0}$$

$$(x) \rightarrow N_2 - N_1 - N_5 \cdot \cos 60^\circ = 0$$

y)
$$\rightarrow P_2^* + N_5 \cdot \text{sen} 60^\circ = 0 \rightarrow N_5 = -5196 \text{ kp} \rightarrow N_1 = -4299 \text{ kp}.$$

En el nudo D:

$$\sum_{F=0}^{\rightarrow}$$

x)
$$\rightarrow$$
 - P_1 * - N_4 · $\cos 60^\circ$ + N_5 · $\cos 60^\circ$ + N_3 · $\cos 30^\circ$ = $0 \rightarrow N_4$ = -598 kp

La ecuación en y) se puede emplear como comprobación.

En resumen los esfuerzos valen:

$$N_1 = -4299 \text{ kp } N_2 = -6897 \text{ kp } N_3 = 7964 \text{ kp } N_4 = -598 \text{ kp } N_5 = -5196 \text{ kp}$$

Hasta lecciones posteriores en las que se estudie la posibilidad de pandeo, y la repercusión que puede tener el que un esfuerzo normal sea positivo (tracción según el convenio aceptado) o negativo (de compresión), los esfuerzos normales máximos serán los de mayor valor absoluto.

La tensión máxima estará en la barra 3 al considerar que todas las barras tienen igual sección, así:

$$\begin{split} &\sigma_{m\acute{a}x}=N_{m\acute{a}x}/\Omega=7964~kp/\Omega\\ &\sigma_{ADM}=\sigma_{LIM}/\gamma=\sigma_{LIM}=\sigma_{e}=2400~kp/cm^{2}~para~el~acero~A-37.\\ &\sigma_{m\acute{a}x}\leq\sigma_{ADM}\rightarrow7964/\Omega=2400\rightarrow\Omega=7964/2400=3,32~cm^{2}. \end{split}$$

11.- La estructura de la figura 5.11 se va a diseñar por el método de los coeficientes de ponderación. La carga P=10 t puede tener coeficientes $c_P=1,5$ o $c_P=1,0$. La carga $V=3\cdot\sqrt{3}$ t puede tener coeficientes $c_V=1,5$ o $c_V=0,0$. Determinar para cada barra la combinación crítica de coeficientes que determinan su diseño, para un acero A-52, no hay pandeo. Diseñar las barras con perfiles tubulares rectangulares considerando que la empresa que los suministra sigue la normativa y tiene una variedad de perfiles con diámetros exteriores de 4, 4'5, 5, 5'5, 6, 6'5, 7, 7'5, 8 y 9 expresados en cm, y espesores de 2, 3 y 4 expresados en mm.

El estudio de la estructura es sencillo ya que puede considerarse como articulada, de forma que los únicos esfuerzos en las barras, son los esfuerzos normales.

Para el diseño, según el método los coeficientes de ponderación y poder valorar las hipótesis o los coeficientes a adoptar en el cálculo, se pueden tomar directamente las cargas ponderadas. Así se conocerá de forma directa como afectan al diseño de la estructura cada una de las acciones, cuando se determinan las tensiones que provocan.

La condición que impone el enunciado que no se considera pandeo simplifica el cálculo. Esto supone que los esfuerzos normales de tracción y compresión afectan a la estructura exclusivamente por su valor absoluto. Esta hipótesis es necesaria ya que el problema de pandeo no ha sido analizado en profundidad y aún su estudio no es un objetivo prioritario.

En una estructura articulada plana el grado de hiperestaticidad vale:

$$GH = b - (2 \cdot n - c) = 5 - (2 \cdot 4 - 3) = 0$$

La estructura es isostática y se puede resolver con los métodos estudiados hasta ahora.

Planteando las ecuaciones de equilibrio estático, figura 5.11:

$$\begin{split} \sum \overrightarrow{F}_{EXT} &= \overrightarrow{0} \\ x) \rightarrow V_A + V_B = P^* \\ y) \rightarrow H_A + 2 \cdot V^* &= 0 \\ \sum \overrightarrow{M}_{EXT} \bigg|_A &= \overrightarrow{0} \rightarrow AC_y \cdot V^* - AD_y \cdot V^* + AC_x \cdot P^* - (AC_x + BC_x) \cdot V_B = 0 \end{split}$$

Figura 5.11

Las distancias valen:

$$AC_{x} = BC_{x} = 1 \cdot \cos 30^{\circ} = \frac{\sqrt{3}}{2} \text{ m; } AC_{y} = 1 \cdot \sin 30^{\circ} = 0,5 \text{ m; } AD_{y} = AC_{x} \cdot tg60^{\circ} = 1,5 \text{ m}$$

$$\sum \overrightarrow{M}_{EXT} \Big|_{A} = \overrightarrow{0} \rightarrow 0,5 \cdot V^{*} - 1,5 \cdot V^{*} + 0,5 \cdot P^{*} - \sqrt{3} \cdot V_{B} = 0$$

Ahora se sustituirá el valor de las acciones ponderadas en función del valor de la carga y el coeficiente de ponderación genérico. Así:

$$P^* = c_p \cdot P = c_p \cdot 10 t$$
, $V^* = c_v \cdot 3 \cdot \sqrt{3} t$

Operando se obtiene:

$$V_A = 5 \cdot c_p + 3 \cdot c_v$$
; $V_B = 5 \cdot c_p - 3 \cdot c_v$; $H_A = -6 \cdot \sqrt{3} c_v$

El siguiente paso es determinar los esfuerzos en las barras, para eso se aíslan los nudos como muestra la figura 5.11. En cada nudo se plantea el equilibrio de fuerzas obteniendo:

Nudo A:

$$\sum \stackrel{\rightarrow}{F} = \stackrel{\rightarrow}{0}$$

x)
$$N_1 \cdot \cos 30^\circ + H_A + N_4 \cdot \cos 60^\circ = 0 \rightarrow N_1 \cdot \frac{\sqrt{3}}{2} - 6 \cdot \sqrt{3} c_v + N_4 \cdot 0,5 = 0$$

y)
$$V_A + N_1 \cdot sen 30^{\circ} - N_4 \cdot sen 60^{\circ} = 0 \rightarrow 5 \cdot c_p + 3 \cdot c_v + N_1 \cdot 0, 5 - N_4 \cdot \frac{\sqrt{3}}{2} = 0$$

x)
$$N_1 \cdot \sqrt{3} - 12 \cdot \sqrt{3} c_v + N_4 = 0$$

y)
$$10 \cdot c_p + 6 \cdot c_v + N_1 - N_4 \cdot \sqrt{3} = 0$$

Resolviendo:

$$N_1 = 2.5 \cdot (-c_p + 3 \cdot c_v)$$
 $N_4 = \sqrt{3} \cdot (2.5 \cdot c_p + 4.5 \cdot c_v)$

Nudo C:

$$\sum_{F=0}^{\rightarrow}$$

x)
$$V^* + N_2 \cdot \cos 30^\circ - N_1 \cdot \cos 30^\circ = 0 \rightarrow V^* + N_2 \cdot \frac{\sqrt{3}}{2} - N_1 \cdot \frac{\sqrt{3}}{2} = 0$$

y)
$$P^* + N_2 \cdot \text{sen} 30^\circ + N_1 \cdot \text{sen} 30^\circ + N_5 = 0 \rightarrow P^* + N_2 \cdot 0.5 + N_1 \cdot 0.5^\circ + N_5 = 0$$

$$x) \; c_v \cdot 3 \cdot \sqrt{3} \; + \; N_2 \cdot \frac{\sqrt{3}}{2} \; - \; 2, \\ 5 \cdot (\; - \; c_p + \; 3 \cdot c_v \;) \cdot \frac{\sqrt{3}}{2} \; = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 2, \\ 5 \cdot c_p + \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow \; N_2 = - \; 1, \\ 5 \cdot c_v = 0 \\ \longrightarrow$$

y)
$$10 \cdot c_p + N_2 \cdot 0.5 + N_1 \cdot 0.5^\circ + N_5 = 0 \rightarrow N_5 = -15 \ c_p - 9 \cdot c_v$$

En resumen:

$$N_2 = -2.5 \cdot c_p + 1.5 \cdot c_v$$
 $N_5 = -15 c_p - 9 \cdot c_v$

Nudo B:

$$\sum \vec{F} = \vec{0}$$

x)
$$N_2 \cdot \cos 30^\circ + N_3 \cdot \cos 60^\circ = 0 \rightarrow N_3 = -N_2 \cdot \sqrt{3}$$

y) N_2 ·sen30° - N_3 ·sen30° + $V_B = 0 \rightarrow$ Esta ecuación sirve como verificación.

En resumen:

$$N_1 = -2.5 \cdot c_p + 7.5 \cdot c_v$$

$$N_2 = -2.5 \cdot c_p + 1.5 \cdot c_v$$

$$N_3 = \sqrt{3} \cdot (2.5 \cdot c_p - 1.5 \cdot c_v)$$

$$N_4 = \sqrt{3} \cdot (2.5 \cdot c_p + 4.5 \cdot c_v)$$

$$N_5 = -15 c_p - 9 \cdot c_v$$

Para el diseño se debe cumplir en cada barra que $\sigma_{CO} \le \sigma_{ADM}$. La tensión de cálculo σ_{CO} en cada barra será para un valor máximo del esfuerzo normal, independientemente del signo, por no considerar pandeo. Este criterio establece los coeficientes a emplear, así los valores máximos de los esfuerzos y los coeficientes para los que aparecen son:

$$\begin{split} N_{1M\text{\'AX}} &= -2.5 \cdot 1 + 7.5 \cdot 1.5 = 8.75 \ \text{con} \ c_p = 1 \ c_v = 1.5 \\ N_{2M\text{\'AX}} &= -2.5 \cdot 1.5 + 1.5 \cdot 0 = -3.75 \ \text{t} \ \text{con} \ c_p = 1.5 \ c_v = 0 \\ N_{3M\text{\'AX}} &= \sqrt{3} \cdot (2.5 \cdot 1.5 - 1.5 \cdot 0) = 6.5 \ \text{t} \ \text{con} \ c_p = 1.5 \ c_v = 0 \\ N_{4M\text{\'AX}} &= \sqrt{3} \cdot (2.5 \cdot 1.5 + 4.5 \cdot 1.5) = 18.19 \ \text{t} \ \text{con} \ c_p = 1.5 \ c_v = 1.5 \\ N_{5M\text{\'AX}} &= -15 \cdot 1.5 - 9 \cdot 1.5 = -36 \ \text{t} \ \text{con} \ c_p = 1.5 \ c_v = 1.5 \end{split}$$

Hay que significar que para cada barra puede ser crítica una hipótesis diferente a las demás, como muestran los resultados.

Ahora basta con determinar las secciones.

 $\sigma_{CO} \le \sigma_{ADM} \to \sigma_{CO} = N_{M\acute{A}X}/\Omega$; $\sigma_{ADM} = \sigma_e/\gamma = \sigma_e$, ya que en los aceros comerciales como el A-52 la normativa indica que σ_e está garantizada, siendo $\gamma = 1$. Para el A-52, $\sigma_e = 3600 \text{ kp/cm}^2 = 3,6 \text{ t/cm}^2$. Así la sección buscada valdrá $\Omega \ge N_{M\acute{A}X}/\sigma_{ADM}$, las secciones para cada barra valen:

$$\Omega_1 = 2,43 \text{ cm}^2$$
, $\Omega_2 = 1,04 \text{ cm}^2$, $\Omega_3 = 1,81 \text{ cm}^2$, $\Omega_4 = 5,05 \text{ cm}^2$, $\Omega_5 = 10 \text{ cm}^2$.

Si se desea diseñar con perfil tubular según indica el enunciado, el área en dicho caso vale $\Omega = 2 \cdot \pi \cdot r \cdot t$ siendo r el radio medio y t el espesor, así los radios medios necesarios para cada barra serían:

Para
$$t = 0.2 \text{ cm} \rightarrow r_1 = 1.93 \text{ cm}, r_2 = 0.83 \text{ cm}, r_3 = 1.44 \text{ cm}, r_4 = 4.02 \text{ cm}, r_5 = 7.96 \text{ cm}.$$

Los radios exteriores serán $r_e = r + t$:

$$r_{e1} = 2,13 \text{ cm}, r_{e2} = 1,03 \text{ cm}, r_{e3} = 1,64 \text{ cm}, r_{e4} = 4,22 \text{ cm}, r_{e5} = 8,16 \text{ cm},$$

los diámetros exteriores serán:

$$d_{e1} = 4,26 \text{ cm}, d_{e2} = 2,06 \text{ cm}, d_{e3} = 3,28 \text{ cm}, d_{e4} = 8,44 \text{ cm}, d_{e5} = 16,32 \text{ cm},$$

con estos diámetros se pueden diseñar las barras 1, 2, 3 y 4 dentro de las que suministra la empresa que tiene diámetro menor o igual a 90 mm. La barra 5 necesita de mayor espesor, teniendo que utilizar el de t=0.4 cm que da un valor de $r_5=3.98$ cm $\rightarrow r_{e5}=4.38$ cm y $d_{e5}=8.76$ cm,

Los perfiles comerciales según la normativa se designan \emptyset d.t, siendo \emptyset el símbolo del diámetro, d su valor en mm y t el espesor en mm. Con esto, los perfiles necesarios para hacer el pedido se muestran en la siguiente tabla. Destacar que estos perfiles son válidos, pero que podrían encontrarse algunos otros igualmente válidos pero menos pesados, si se juega adecuadamente con la variedad de espesores y diámetros reduciendo así el coste de la estructura.

Barra 1	Barra 2	Barra 3	Barra 4	Barra 5
Ø 45.2	Ø 40.2	Ø 40.2	Ø 90.2	Ø 90.4

CAPÍTULO III Análisis de Esfuerzos Normales

LECCIÓN 6

Tracción y compresión monoaxial isostática

Introducción: En las lecciones sucesivas se estudiarán los esfuerzos en una sección recta, pero de forma individualizada. Se comienza en este capítulo por el estudio del esfuerzo normal, luego el cortante, después los momentos flectores y se finaliza con el momento torsor. También se verán los casos más habituales en los que los esfuerzos se combinan entre sí.

Ya se estudió el método de las secciones aplicado a secciones concretas. El diseño de una viga exige el conocimiento de su estado tensionado y deformado en todas las secciones. Se aprenderá ha determinar las leyes de esfuerzos y desplazamientos para toda la viga y se representarán en diagramas que permiten una rápida localización de los puntos críticos de diseño.

Las lecciones de este capítulo y posteriores, están dirigidas al diseño final de las vigas, en estructura metálica y aplicando el método de los coeficientes de seguridad salvo casos excepcionales. Se realizan preferentemente diseños en estructura metálica porque simplifica los problemas por su comportamiento elástico. En el caso de otros materiales como el hormigón armado se requiere de un estudio más profundo del que se puede dar en este curso. Sólo se emplearán materiales no metálicos cuando se asuman leyes de comportamiento sencillas.

Respecto a la lección que nos ocupa, se estudia el esfuerzo normal en vigas sencillas y tratando sólo unos pocos problemas muy elementales. La Resistencia de Materiales estudia en profundidad muchos otros problemas importantes donde el esfuerzo normal es predominante como son: problemas térmicos, con concentración de tensiones, problemas de cables, etc. Estos no se tratan dada la sencillez de este curso y confiando que los conocimientos que se dan son suficientes para que el alumno pueda abordarlos por su cuenta.

Destacar que en los diseños que se realizan en esta lección se considera que el problema de pandeo no aparece, dado que hasta la lección 11 no se planteará. Se ha de esperar hasta dicha lección ya que las lecciones previas son necesarias para estudiar el problema con garantías.

Objetivos de la lección: Aprender el diseño de vigas y estructuras sometidas a esfuerzos normales.

Contenidos de los problemas: Diseño de vigas sometidas a esfuerzo normal, problemas del peso propio, y aplicación de los teoremas del potencial interno, especialmente de Castigliano y Menabrea, para la determinación de los desplazamientos.

Problemas resueltos: Exclusivamente ejercicios referentes a los contenidos establecidos.

Formulación básica:

Formulación estudiada en lecciones anteriores.

Esfuerzo normal.

$$N = \iint_{\Omega} \sigma \cdot d\Omega$$

donde Ω es el área de la sección, y σ la tensión normal.

Tensiones y deformaciones en tracción y compresión monoaxial.

$$\sigma_x = E \cdot \varepsilon_x$$
 $\varepsilon_x = \frac{du}{dx}$ $\varepsilon_y = -\mu \frac{\sigma_x}{E}$ $\varepsilon_z = -\mu \frac{\sigma_x}{E}$

$$\varepsilon_{x} = \frac{du}{dx} = \frac{\sigma_{x}}{E} \Rightarrow u(x) = \int_{0}^{x} \frac{\sigma_{x}}{E} dx = \int_{0}^{x} \frac{N}{E \cdot \Omega} dx$$

Sólido de igual resistencia.

$$\Omega(x) = \frac{F}{\sigma} e^{\frac{\gamma \cdot x}{\sigma}}$$

Potencial interno en tracción y compresión monoaxial por unidad de volumen

$$\phi = \frac{\Phi}{V} = \frac{\sigma^2}{2 \cdot E}$$

Ecuación diferencial del potencial interno en tracción y compresión monoaxial

$$d\Phi = \phi \cdot dV$$

Ecuación integral del Potencial Interno en tracción y compresión monoaxial

$$\Phi = \int \frac{\sigma^2}{2 \cdot E} dV$$

Figura 6.1a

- 1.- Para la viga de la figura 6.1a determinar sin considerar el peso propio:
 - a) Las reacciones.
 - b) Esfuerzos normales y su diagrama.
 - c) Tensiones normales y su diagrama, tomar $\Omega = 10 \text{ cm}^2$.
 - d) Longitud que se ha alargado la viga.
- e) Si el material es un acero A-42, ρ = 7,85 kp/cm² ¿Hubiera sido necesario considerar el peso propio?
 - f) Calcular la sección mínima si n=1,5 como coeficiente de seguridad.
 - g) Hacer el ejercicio b) pero quedándose con el otro lado de la viga.
- a) Ecuaciones de equilibrio estático

$$\sum \overrightarrow{F} = \overrightarrow{0} \rightarrow 2 + Q = R$$

 $Q=\int_0^L q(x)dx$; $q(x)=a\cdot x+b,$ tomando x desde abajo es más sencillo

$$x = 0 \rightarrow q(x) = 0; x = L = 3 \text{ m} \rightarrow q(x) = 3 \rightarrow ; 0 = a \cdot 0 + b \rightarrow b = 0; 3 = a \cdot 3 \rightarrow a = 1; q(x) = x$$

Figura 6.1b Carga Triangular

Figura 6.1c Método de las secciones

$$Q = \int_0^L x dx = \frac{x^2}{2} \Big|_0^L = \frac{L^2}{2} = 4,5 \text{ t}$$

$$R = 2 + Q = 2 + 4,5 = 6,5$$

b) Equilibrio elástico, cálculo de N(x). Si no se considera el peso propio $P_1(x) = 0$

$$0 < x < 1 \rightarrow N_1(x) = \int_0^x q(x) dx = \int_0^x x \cdot dx = \frac{x^2}{2}$$

$$1 < x < 3 \rightarrow N_2(x) = 2 + \int_0^x q(x) dx = 2 + \frac{x^2}{2}$$

c) Cálculo de tensiones

$$0 < x < 1 \rightarrow \sigma_1(x) = \frac{N_1}{\Omega_1} = \frac{N_1}{\Omega} = \frac{x^2}{2 \cdot 10} = \frac{x^2}{20} (\frac{t}{cm^2})$$

$$1 < x < 3 \rightarrow \sigma_2(x) = \frac{N_2}{\Omega_2} = \frac{N_2}{\Omega} = \frac{(2 + \frac{x^2}{2})}{\Omega} = (\frac{2}{\Omega} + \frac{x^2}{2 \cdot \Omega}) = \frac{2}{10} + \frac{x^2}{20} = 0.2 + 0.05 \cdot x^2$$

d)
$$\varepsilon = \frac{du}{dx} = \frac{\sigma}{E} \rightarrow du = \frac{\sigma}{E} \cdot dx \rightarrow \Delta l = \int \frac{\sigma}{E} \cdot dx$$

$$\Delta l_1 = \int_0^1 \frac{N_1(x)}{E \cdot \Omega} dx = \frac{1}{E \cdot \Omega} \int_0^1 \frac{x^2}{2} dx = \frac{1}{E \cdot \Omega} \left. \frac{x^3}{6} \right|_0^1 = \frac{1}{6 \cdot E \cdot \Omega}$$

$$\Delta l_2 = \int_1^3 \frac{N_2(x)}{E \cdot \Omega} dx = \frac{1}{E \cdot \Omega} \int_1^3 (2 + \frac{x^2}{2}) dx = \frac{1}{E \cdot \Omega} (2 \cdot x + \frac{x^3}{6}) \Big|_1^3 = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1^3) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3^3 - 1) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3 - 1) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3 - 1) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3 - 1) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3 - 1) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3 - 1) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3 - 1) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3 - 1) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3 - 1) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3 - 1) + \frac{1}{6} (3 - 1) \right] = \frac{1}{E \cdot \Omega} \left[2 \cdot (3$$

$$= \frac{1}{E \cdot \Omega} \left[4 + \frac{1}{6} \cdot (27 - 1) \right] = \frac{1}{E \cdot \Omega} \left[4 + \frac{26}{6} \right] = \frac{1}{6 \cdot E \cdot \Omega} (24 + 26) = \frac{50}{6 \cdot E \cdot \Omega}$$

$$\Delta l_{total} = \frac{51}{6 \cdot E \cdot \Omega}$$
 con las siguientes unidades $E(\frac{t}{m^2})$ y $\Omega(m^2) \rightarrow \Delta l_{total}(m)$

e) Si se valora el peso propio, en las figuras del método de las reacciones, se muestra $P_1(x)$, hay que añadirlo ahora y vale $P_1(x) = \rho \cdot \Omega \cdot x$; $\rho = 7.85 \frac{kp}{dm^3} = 7.8510^{-3} \frac{t}{dm^3}$

$$P_1(x) = 7.85 \cdot 10^{-3} \cdot \frac{t}{dm^3} \cdot 10cm^2 \cdot x = 7.85 \cdot \frac{10^{-2}}{1000} \cdot \frac{t}{cm} \cdot x$$

Mejor se expresa la x en metros

$$P_1(x) = \frac{7.85 \cdot 10^{-6} \text{ t}}{10^{-2} \text{ m}} \cdot x = 7.85 \cdot 10^{-4} (\frac{\text{t}}{\text{m}} \text{ m})$$
; a falta de sustituir $x \rightarrow$

$$N_1(x) = Q(x) + P_1(x) = \frac{x^2}{2} + 0,000785 \cdot x \cong \frac{x^2}{2}$$
; el peso propio es despreciable

 $N_2(x) = Q(x) + 2 + P_1(x) = 2 + \frac{x^2}{2} + 0,000785 \cdot x = 2 + \frac{x^2}{2}$; también el peso propio es despreciable.

Figura 6.1d Diagramas de esfuerzos y tensiones normales

f) Toda la viga trabaja a tracción. Para no superar límite elástico

$$\sigma_{ADM} = \frac{\sigma_{LIM}}{n} = \frac{\sigma_e}{n} = \frac{2600}{1.5} = 1733,3 \frac{kp}{cm^2}$$

$$\sigma_{\text{MAX}} = 0.65 \frac{\text{t}}{\text{cm}^2} = 0.65 10^3 \frac{\text{kp}}{\text{cm}^2} \rightarrow \text{antes aguantaba } \sigma_{\text{MAX}} = 650 \frac{\text{kp}}{\text{cm}^2} < \sigma_{\text{ADM}}$$

Ahora la sección mínima

$$\sigma_{\text{MAX}} = \frac{N_{\text{MAX}}}{\Omega} \le 1733,3 \quad \frac{6,5t}{\Omega} \le 1733,3 \rightarrow \frac{6500 \text{kp}}{1733,3 \frac{\text{kp}}{\text{cm}^2}} \le \Omega \rightarrow \Omega \ge 3,75 \text{ cm}^2;$$

$$\rightarrow \Omega_{\rm MIN} = 3.75 \, {\rm cm}^2$$

g) Cálculo de la sección

$$\sum \vec{F} = \vec{0} \to 0 < x' < 1 \to R - N_1' - Q'(x') = 0 \ N_1' = R - Q'(x')$$
$$q'(x') = a \cdot x' + b \to q'(0) = 3 = a \cdot 0 + b \to b = 3$$

$$q'(3) = 0 = a \cdot 3 + 3 \rightarrow a = \frac{-3}{3} = -1$$

$$q'(x') = -x' + 3$$

$$Q'(x') = \int_0^{x'} q'(x') dx' = \int_0^{x'} (3 - x') dx' = 3 \cdot x' - \frac{x'^2}{2} = \frac{6 \cdot x' - x'^2}{2}$$

$$N_1' = 6.5 - \frac{6 \cdot x' - x'^2}{2} = \frac{13 - 6 \cdot x' + x'^2}{2}$$

$$\sum \vec{F} = \vec{0} \rightarrow -2 + R - N_2' - Q'(x') = 0 \rightarrow N_2' = 6,5 - 2 - Q'(x')$$

$$N_2' = 4.5 - \frac{6 \cdot x' - x'^2}{2} = \frac{9 - 6 \cdot x' + x'^2}{2}$$

Nota: Los cortes de las secciones y la gráfica se dejan como ejercicio

Figura 6.2a Estaca anclada en el terreno

2.- En la figura 6.2a se muestra una estaca de madera que se ha introducido en el terreno arcilloso hasta una profundidad "a" y tiene un área Ω constante y longitud L. La estaca soporta una carga vertical P que es[P11] equilibrada por una fuerza de rozamiento, que actúa sobre su superficie, y cuya expresión por unidad de longitud es $q = k \cdot x$, siendo el origen de x el terreno.

Determinar:

- a) Esfuerzos y tensiones normales en la estaca
- b) Dibujar los diagramas para el apartado a)
- c) Acortamiento de la estaca. El módulo de elasticidad longitudinal es E.

Figura 6.2b Método de las secciones

a) La situación de equilibrio:

$$\sum \vec{F} = \vec{0}$$

$$P - \int_0^a q \cdot dx = 0 \to P - \int_0^a k \cdot dx = 0 \to P - k \cdot \frac{x^2}{2} \int_0^a = 0 \to k \cdot \frac{x^2}{2} = P \to k = \frac{2P}{a^2}$$

La zona exterior al terreno $N_1 = -P \rightarrow \sigma_1 = \frac{-P}{\Omega}$

Zona interior al terreno

$$N_2 = -P + \int_0^x q \cdot dx = -P + \int_0^x k \cdot dx = -P + \frac{1}{2} \cdot k \cdot x^2 = -P + \frac{P}{a^2} \cdot x^2$$

$$N_2 = P \frac{(x^2 - a^2)}{a^2}$$
 $\sigma_2 = P \frac{(x^2 - a^2)}{a^2 \cdot \Omega}$

b) Los diagramas de esfuerzos se muestran en la figura 6.2c.

c)
$$\sigma = E \cdot \varepsilon = \frac{du}{dx} \rightarrow du = \varepsilon \cdot dx = \frac{\sigma}{E} dx \rightarrow L = \int \frac{\sigma}{E} dx$$

Figura 6.2c. Diagramas de esfuerzos y tensiones normales

Para este caso:

 $\Delta L = \Delta L_{TE} + \Delta L_{TI}$; siendo TE = exterior al terreno, TI = interior al terreno

$$\Delta L_{TE} = \frac{N_1 \cdot L}{E \cdot \Omega} = \frac{-P \cdot (L - a)}{E \cdot \Omega}$$

$$\Delta L_{TI} = \int_0^a \frac{N_2 \cdot dx}{E \cdot \Omega} = \frac{1}{E \cdot \Omega} \int_0^a (-P + \frac{P}{a^2} \cdot x^2) \cdot dx = \frac{1}{E \cdot \Omega} (-P \cdot a + \frac{P}{3 \cdot a^2} a^3) = \frac{-3 \cdot P \cdot a + P \cdot a}{3 \cdot E \cdot \Omega} = \frac{-2 \cdot P \cdot a}{3 \cdot E \cdot \Omega}$$

$$\Delta L = \frac{-P}{E\Omega}(L-a) - \frac{2Pa}{3E\Omega} = \frac{-PL}{E\Omega} + \frac{Pa}{E\Omega} - \frac{2Pa}{3E\Omega} = \frac{-PL}{E\Omega} + \frac{Pa}{3E\Omega} = \frac{P}{E\Omega}(-L + \frac{a}{3}) = \frac{P}{E\Omega}(-3L + a)$$

$$\Delta l = \frac{P}{3E\Omega}(-3L + a)$$

3.- La viga de la figura 6.3a está construida de hormigón que deforma linealmente y elásticamente hasta la rotura y con unas tensiones de rotura de σ_t = 20 kp/cm² a tracción y σ_c = 120 kp/cm² a compresión. La densidad del hormigón son γ = 2,3 t/m³

Se pide:

- a) Calcular el valor de la sección para $\,$ que ninguno de los tramos alcance la rotura con un coeficiente de seguridad n=1,2 y teniendo en cuenta el peso propio de la viga
 - b) Dibujar los diagramas de esfuerzos y tensiones normales
 - c) Determinar el aumento o disminución de longitud del conjunto.
- a) 0 < x < 20 cm

$$N_1 = -10 \text{ kN} - \gamma \cdot \Omega \cdot x$$
 $\sigma_1 = \frac{-10 \text{ kN} - \gamma \cdot \Omega \cdot x}{\Omega} = \frac{10 \text{ kN}}{\Omega} - \gamma \cdot x$

b) 20 cm < x < 60 cm

$$N_2 = -10 \text{ kN} + 20 \text{ kN} - \gamma \cdot \Omega \cdot x = 10 \text{ kN} - \gamma \cdot \Omega \cdot x \rightarrow$$

Figura 6.3a

$$\sigma_2 = \frac{10 \text{ kN}}{\Omega} - \frac{\gamma \cdot \Omega \cdot x}{\Omega} = \frac{10 \text{ kN}}{\Omega} - \gamma \cdot x$$

c) 60 cm < x < 100 cm

$$N_3 = -10 \text{ kN} + 20 \text{ kN} - 30 \text{ kN} - \gamma \cdot \Omega \cdot x = -20 \text{ kN} - \gamma \cdot \Omega \cdot x \rightarrow \sigma_3 = \frac{-20}{\Omega} - \gamma \cdot x$$

Diseño. Unidades N y cm

$$\sigma_{ADMt} = 163.3 \text{ N/cm}^2 \ \sigma_{ADMc} = \frac{\sigma_c}{n} = \frac{120}{1.2} = 100 \text{ kp/cm}^2 = 980 \text{ N/cm}^2$$

Tramo 1: 0 < x < 20 cm

$$\begin{split} &\sigma_{c}^{1} = -\frac{10000}{\Omega} - 20 \cdot \gamma \leq \sigma_{ADMc} = -980 \, \text{N/cm}^{2} \rightarrow \left| \frac{-10000}{\Omega} - 20 \cdot \gamma \right| \leq \left| -980 \right| \\ &\frac{10000}{\Omega} \leq 980 - 20 \cdot \gamma = 980 - 0,9508 \approx 979,05 \rightarrow \Omega = \frac{10000}{979,05} = 10,21 \text{cm}^{2} \end{split}$$

Figura 6.3b Método de las secciones

Tramo 2: 20 cm < x < 60 cm

$$\sigma_2 = \frac{10 \text{ kN}}{\Omega} - \gamma \cdot x = \frac{1000 \text{ kN}}{\Omega} - \gamma \cdot x \rightarrow \text{la sección crítica es en } x = 20 \text{ cm}$$

$$\sigma_{maxt} = \frac{10000}{\Omega} - 0.02254 \cdot x \le 163, 3 \rightarrow \frac{10000}{\Omega} \le 163,784 \approx 164$$

$$A = 61.05 \approx 62 \text{ cm}^2$$

En este tramo no trabaja a compresión.

Tramo 3: 60 cm < x < 100 cm

Todo a compresión

$$\sigma_{3} = \frac{-20000}{\Omega} - \gamma \cdot x \le \sigma_{ADMc} = -980 \rightarrow \sigma_{3max} = \frac{-20000}{\Omega} - \gamma \cdot 100 \le -980$$

$$\left| \frac{-20000}{\Omega} - 2,254 \right| \le \left| -980 \right| \rightarrow \Omega = \frac{20000}{977746} \rightarrow \Omega \approx 21 \text{cm}^{2}$$

Así el valor de la sección para que no falle es $A = 62 \text{ cm}^2$, por ser el mayor.

Si se considera el peso los esfuerzos quedan con unidades en N y cm:

$$N_1 = -10000 - 0.02254 \cdot 62 \cdot x = -10000 - 1.4 \cdot x$$

$$20 \text{ cm} < x < 60 \text{ cm}$$

$$N_2 = 10000 - 0.02254.62 \cdot x = 10000 - 1.4 \cdot x$$

$$60 \text{ cm} < x < 100 \text{ cm}$$

$$N_3 = -20000 - 0.02254 \cdot 62 \cdot x = -20000 - 1.4 \cdot x$$

Las tensiones normales

$$0 < x < 20 \text{ cm}$$

$$\sigma_1 = -161,3 - 0,02254 \cdot x$$

$$20 \text{ cm} < x < 60 \text{ cm}$$

$$\sigma_2 = 161,3 - 0,02254 \cdot x$$

$$60 \text{ cm} < x < 100 \text{ cm}$$

$$\sigma_3 = -322.6 - 0.02254 \cdot x$$

b) Los diagramas están representados en la figura 6.3c.

Figura 6.3c Diagramas de esfuerzos y tensiones normales

c)
$$\Delta L = \int_0^{20} \frac{\sigma_1}{E} dx + \int_{20}^{60} \frac{\sigma_2}{E} dx + \int_{60}^{100} \frac{\sigma_3}{E} dx =$$

$$\frac{1}{E} \int_0^{20} (-161, 3 - 0,02254x) \cdot dx + \int_0^{60} (161, 3 - 0,02254 \cdot x) \cdot dx + \int_{60}^{100} (-322, 6 - 0,02254x) \cdot dx$$

$$= \frac{1}{E} \left(\int_0^{20} -161.3 dx + \int_{20}^{60} 161.3 dx + \int_{60}^{100} -322.6 dx - \int_0^{100} 0.02254 x dx \right) =$$

$$\frac{1}{E} \left[\left| -161, 3 \cdot x \right|_{0}^{20} + \left| 161, 3 \cdot x \right|_{20}^{60} + \left| -322, 6 \cdot x \right|_{60}^{100} - \left| 0,02254 \cdot \frac{x^{2}}{2} \right|_{0}^{100} \right] =$$

$$= \frac{1}{E} \left[-161,3.20 + 161,3.(60 - 20) - 322,6.(100 - 60) - \frac{0,02254}{2}100^{2} \right]$$

$$= \frac{1}{E}(161,3\cdot20 - 322,6\cdot40 + \frac{0,02254}{2}\cdot100^{2}) = \frac{-9790,7}{E} \frac{N}{cm}$$

$$E = 1.9 \cdot 10^{5} \frac{kp}{cm^{2}} = 1.910^{5} \cdot 9.8 \frac{N}{m^{2}} = 1862000 \frac{N}{cm^{2}}$$

$$\Delta L = \frac{-9790.7}{1862000} = -5.258163265 \cdot 10^{-3} \, \text{cm}$$

Figura 6.4a

4.- La viga de la figura 6.4a es de un aluminio cuyas características son: E=75 GPa, $\sigma_e=400$ MPa, $\sigma_r=500$ MPa. Con una seguridad de n=1,3 y despreciando el peso propio determinar:

- a) El valor de la sección para que la viga trabaje elásticamente.
- b) Diagrama de tensiones.
- c) Alargamiento o acortamiento de la viga.

Figura 6.4b Método de las secciones

a) 0 < x < a

$$N_1 = 10 - q \cdot x = 10 - 5 \cdot x$$
 $\sigma_1 = \frac{10 - 5 \cdot x}{\Omega}$

$$a < x < 2 \cdot a$$

$$N_2 = 10 + 10 - q \cdot x = 20 - 5 \cdot x$$
 $\sigma_2 = \frac{20 - 5 \cdot x}{\Omega}$

TRAMO 1

$$\sigma_1 (x = 0) = \frac{10}{\Omega} ; \sigma_2 (x = 1) = \frac{5}{\Omega} ;$$

$$\sigma_{MAX} = \frac{10}{\Omega} \quad Tracción \rightarrow \frac{10}{\Omega} \le \sigma_{ADM} = \frac{400 \, MPa}{n = 1.3} \approx 308 \, MPa$$

TRAMO 2

$$\sigma_3(x=1) = \frac{20-5 \cdot x}{\Omega} = \frac{20-5}{\Omega} = \frac{15}{\Omega} \sigma_4(x=2) = \frac{20-52}{\Omega} = \frac{10}{\Omega}$$

$$\sigma_{\text{MAX}} = \frac{15}{\Omega}$$

Como el área $\,\Omega\,$ es cte, en los dos tramos $\,\to\,\sigma_{MAX}=\frac{15}{\Omega}$ para toda la viga.

$$\sigma_{ADM} = 308 \text{ MPa} = \frac{30810^6 \text{ kp}}{9.810^4 \text{ cm}^2} \cong 3143 \text{ kp/cm}^2$$

$$\sigma_{MAX} \leq \! \sigma_{ADM} \! \rightarrow \! \! \frac{15000 \, kp}{\Omega} \leq \! 3143 \; kp/cm^2 \, \rightarrow \; \; \Omega \geq \frac{15000}{3143} \approx 4.8 \; cm^2$$

b)
$$\sigma_1 = \frac{10 - 5 \cdot x}{4,8}$$
 t/cm² (x en metros)

$$\sigma_2 = \frac{20 - 5 \cdot x}{4.8} \quad t/cm^2 \quad (x \text{ en metros})$$

c)
$$\overset{\rightarrow}{\sigma} = E \overset{\rightarrow}{\varepsilon} = E \cdot \frac{\overset{\rightarrow}{du}}{dx}; \rightarrow \frac{\sigma}{E} = \frac{du}{x}$$

$$du = \int \!\! \frac{\sigma dx}{E} \Longrightarrow \ \Delta L = \int_0^2 \!\! \frac{\sigma}{E} \cdot dx = \int_0^1 \!\! \frac{\sigma_{_1}}{E} \cdot dx + \int_1^2 \!\! \frac{\sigma_{_2}}{E} \cdot dx =$$

$$\int_{0}^{1} \frac{\left(10 - 5 \cdot x\right) 10^{4}}{4.8 \cdot E} \cdot dx + \int_{1}^{2} \frac{\left(20 - 5 \cdot x\right) 10^{4}}{4.8 \cdot E} \cdot dx = (el\ 10^{4}\ es\ para\ pasar\ \sigma\ de\ t/cm^{2}\ a\ t/m^{2})$$

$$\Delta L = \frac{10^4}{4.8 \, \text{E}} \left(10 \cdot \text{x} - 5 \cdot \frac{\text{x}^2}{2} \right|_0^1 + 20 \cdot \text{x} - 5 \cdot \frac{\text{x}^2}{2} \bigg|_1^2 \right) = \frac{10^4}{4.8 \cdot \text{E}} \left(10 - \frac{5}{2} + 40 - 10 - 20 + \frac{5}{2}\right) = \frac{20 \cdot 10^4}{4.8 \cdot \text{E}}$$

E =
$$75 \cdot 10^9$$
 N/m² = $75 \cdot \frac{10^9}{9.8} \cdot 10^{-3} = \frac{75 \cdot 10^6}{9.8}$ t/m² $\approx 7.7 \cdot 10^{-6}$ t/m²

$$\Delta L = \frac{2010^4}{4.8 \cdot 7.7 \cdot 10^6} = 5,4112510^{-3} \,\mathrm{m} \approx 5,4 \,\mathrm{mm}.$$

Figura 6.4c Diagrama de tensiones

5.- Construir para la figura 6.5a el diagrama de tensiones normales, calcular la variación absoluta de la longitud de la barra y la energía potencial de la deformación acumulada en la barra si el material es acero, $E = 2 \cdot 10^6 \text{ kp/cm}^2$. Datos L = 1 m, $\Omega = 2 \text{ cm}^2$, F = 2 t, q = 1 t/m.

Figura 6.5a

Primero se calcula la reacción de la viga en su empotramiento. Planteando la situación de equilibrio, se tiene:

$$\sum F_{ext} = 0$$
 \Rightarrow $V_A = F + q \cdot 0.5 = 2.5 t$

Figura 6.5b. Método de las secciones

Para los esfuerzos y tensiones normales, se debe seccionar en dos partes la barra por medio de un corte transversal ya que no será la misma expresión del esfuerzo normal en toda la barra. Seleccionando la parte superior:

$$\begin{split} 0 < & x < 0.5 \\ N_1(x) = V_A - q \cdot x = 2.5 - x \\ \sigma_1 = & N_1/\Omega_1 = (2.5 - x)/(2 \cdot 10^{-4}) = 1250 - 500 \cdot x \;\; kp/cm^2 \\ 0.5 < & x < 1 \\ N_2(x) = & V_A - q \cdot L/2 = 2.5 - 0.5 = 2 \; t = 2000 \; kp \\ \sigma_2 = & N_2/\Omega_2 = 2000/2 = 1000 \;\; kp/cm^2 \end{split}$$

Figura 6.5c Diagrama de tensiones

La variación de la longitud de la barra viene dada por:

$$\begin{split} \Delta L &= \int_0^L \frac{N}{E \cdot \Omega} dx \ = \int_0^{L/2} \frac{N_1}{E \cdot \Omega_1} dx \ + \int_{L/2}^L \frac{N_2}{E \cdot \Omega_2} dx \ = \frac{1}{E\Omega} \left(\int_0^{L/2} N_1 \cdot dx + \int_{L/2}^L N_2 \cdot dx \ = \\ &= \frac{1}{E \cdot \Omega} \Biggl(\left[2.5 \cdot x - \frac{x^2}{2} \right]_0^{L/2} + \left[2 \cdot x \right]_{L/2}^L \Biggr) = 0.53125 \ mm \end{split}$$

La energía potencial de la deformación viene dada por la expresión:

$$\begin{split} & \Phi = \int_0^{L/2} \frac{N_1^2}{2 \cdot E \cdot \Omega} dx + \int_{L/2}^L \frac{N_2^2}{2 \cdot E \cdot \Omega} dx = \frac{1}{2 \cdot E \cdot \Omega} \left[\int_0^{L/2} (2.5 - x)^2 \cdot dx + \int_{L/2}^L 2^2 \cdot dx \right] = \\ & = \frac{1}{2 \cdot E \cdot \Omega} \left[-\frac{(2.5 - x)^3}{3} \right]_0^{L/2} + \left[4 x \right]_{L/2}^L = 5.67708 \cdot 10^{-4} \text{ t·m} = 556.35 \text{ J} \end{split}$$

Figura 6.6a

6.- Construir para el caso de la figura 6.6a el diagrama de tensiones normales, calcular la variación absoluta de la longitud de la barra y la energía potencial de la deformación acumulada en la barra si el material es acero, $E = 2 \cdot 10^6 \text{ kp/cm}^2$. Datos $\Omega = 3 \text{ cm}^2$, L = 3 m.

La carga neta q(x) en cualquier zona de la barra va a venir dada por la expresión:

$$Q(x) = \int_0^x q(x) dx = \int_0^x \frac{2 \cdot x}{3} dx = \frac{2}{3} \int_0^x x \cdot dx = \frac{x^2}{3}$$

Considerando que el peso de la barra es despreciable, el esfuerzo normal en cualquier sección de la barra va a tener la misma expresión. Para calcularla se hace un corte transversal en la barra eligiendo la parte de abajo:

Planteando las ecuaciones de equilibrio se tiene:

$$\Sigma F = 0 \rightarrow y N + Q(x) - P = 0 \rightarrow$$

$$N = P - Q(x) = \frac{9 - x^2}{3}$$
 (t)

En este caso la tensión normal será:

$$\sigma = \frac{N}{\Omega} = \frac{\frac{9 - x^2}{3}}{3} = \frac{9 - x^2}{9} = 1 - \frac{x^2}{9}$$
 (t/cm²)

Representando la tensión en una gráfica resulta la siguiente curva de la figura 6.6b

La variación de longitud de la barra viene dada por:

$$\Delta L = \int_0^L \frac{N}{E \cdot \Omega} dx = \frac{1}{E \cdot \Omega} \cdot \int_0^L N \cdot dx = \frac{1}{E \cdot \Omega} \cdot \int_0^L \frac{9 - x^2}{3} dx = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{1}{E \cdot \Omega} \cdot \left[3 \cdot x - \frac{x^3}{9} \right]_0^L = \frac{x^3}{2} \cdot$$

$$\frac{L}{E \cdot \Omega} (3 - \frac{L^2}{9}) = \frac{300}{2 \cdot 10^3 \cdot 3} \left(3 - \frac{9}{9} \right) = 0.1 \text{ cm} = 1 \text{ mm}$$

La energía potencial de la deformación vendrá dada por la expresión:

$$\Phi = \int_0^L \frac{N^2}{2 \cdot E \cdot \Omega} \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L N^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (3 - \frac{x^2}{3})^2 \cdot dx = \frac{1}{2 \cdot E \cdot \Omega$$

$$\frac{1}{2 \cdot E \cdot \Omega} \cdot \int_0^L (9 + \frac{x^4}{9} - 2 \cdot x^2) \cdot dx = \frac{1}{2 \cdot E \cdot \Omega} \left[9 \cdot x + \frac{x^5}{45} - \frac{2 \cdot x^3}{3} \right]_0^L = \frac{L}{2 \cdot E \cdot \Omega} (9 + \frac{L^4}{45} - \frac{2 \cdot L^2}{3})$$

$$= \frac{300}{2 \cdot 2 \cdot 10^3 \cdot 3} (9 + \frac{81}{45} - 6) = 0.12 \text{ t·cm} = 120 \text{ kp·cm} = 120 \cdot 9.8 \cdot 1 \cdot 10^{-2} = 11.76 \text{ J}$$

Figura 6.6b. Diagrama de tensiones

Figura 6.7a

- 7.- Las vigas de la figura 6.7a están construidas de hormigón que deforma linealmente y elásticamente hasta la rotura y con unas tensiones de $\sigma_t = 20 \text{ kp/cm}^2$ a tracción y $\sigma_c = 120 \text{ kp/cm}^2$ a compresión. La densidad del hormigón es $\gamma = 2,3$ t/m³. Se pide:
- a) Calcular el valor de A para que ninguno de los dos tramos alcance la rotura con un coeficiente de seguridad n=1,4 teniendo en cuenta el peso propio de la viga.
 - b) Dibujar los diagramas de esfuerzos y tensiones normales.
 - c) Determinar el aumento o disminución de longitud del conjunto.
- a) Para 0 < x < 6:

$$N_1 = \gamma \cdot \Omega \cdot x - 2000$$

$$N_1 = 2300 \text{ kp/m}^3 \cdot \Omega \cdot x - 2000$$

Para 6 < x < 14:

$$N_2 = (4-2)\cdot 1000 + 2300\cdot \Omega \cdot 6 + 2300\cdot (1'2)\cdot \Omega \cdot (x-6)$$

Figura 6.7b Método de las secciones

$$N_1 = 2300 \cdot \Omega \cdot x - 2000$$

$$N_2 = 2000 + 13800 \cdot \Omega + 2760 \cdot \Omega \cdot (x - 6) = 2000 + 13800 \cdot \Omega - 16560 \cdot \Omega + 2760 \cdot \Omega \cdot x + 27$$

$$N_2 = 2000 - 2760 \cdot \Omega + 2760 \cdot \Omega \cdot x$$

$$N_1 = 2' \cdot 3 \cdot \Omega \cdot x - 2$$

$$N_2 = 2 - 2'76 \cdot \Omega + 2'76 \cdot \Omega \cdot x = 2 + 2'76 \cdot \Omega \cdot (x - 1)$$

$$\sigma_1 = \frac{2'3 \cdot \Omega x - 2}{\Omega} \le \sigma_{ADM}$$

$$\sigma_t = 20 \text{ kp/cm}^2 = 200 \text{ t/m}^2 \text{ y } \sigma_c = -120 \text{ kp/cm}^2 = -1200 \text{ t/m}^2.$$

$$\sigma_1 = 2 \cdot 3 \cdot x - \frac{2}{\Omega}$$
 \rightarrow el valor máximo a compresión está en $x = 0$ y es $\sigma_1 = -\frac{2}{\Omega}$

el valor máximo a tracción está en x = 6 y es
$$\sigma_1$$
 = 2'3·6 - $\frac{2}{\Omega}$

$$x = 0 \rightarrow \sigma_1 = -\frac{2}{\Omega} \le \sigma_{ADM} = \frac{\sigma_c}{n} = \frac{-1200}{1'4} = -857'14286 \text{ t/m}^2 \rightarrow \Omega = \frac{2}{857'14286} = 23'33 \text{ cm}^2$$

$$x = 6 \rightarrow \sigma_1 = 13'8 - \frac{2}{\Omega} \le \sigma_{ADM} = \frac{\sigma_t}{n} = \frac{200}{1'4} = 142'86 \text{ t/m}^2 \Rightarrow -\frac{2}{\Omega} \le 129'06$$

esta última desigualdad no es posible al comparar un termino negativo con otro positivo, luego en dicho tramo no trabajará a tracción.

En el segundo tramo:

$$\sigma_{2} = \frac{N_{2}}{1'2 \cdot \Omega} = \frac{2 + 2'76 \cdot \Omega \cdot (x - 1)}{1'2 \cdot \Omega} \le \sigma_{ADM} = \frac{2}{1'2 \cdot \Omega} + 2'3 \cdot (x - 1) \le \sigma_{ADM}$$

en este intervalo x > 1 siempre, por lo que siempre trabajará a tracción.

$$\begin{split} x &= 14 \text{m} \rightarrow \sigma_{2\text{max}} = \frac{N_2}{1'2 \cdot \Omega} = \frac{2}{1'2 \cdot \Omega} + 2'3 \cdot (14 - 1) \leq \sigma_{\text{ADM}} = \frac{2}{1'2 \cdot \Omega} + 29'9 \leq \sigma_{\text{ADM}} \\ \rightarrow \sigma_{2\text{max}} &= \frac{2}{1'2 \cdot \Omega} + 29'9 \leq \frac{\sigma_t}{n} \rightarrow \frac{\sigma_t}{n} = \frac{200}{1'4} = 142'85714 \rightarrow \frac{2}{1'2 \cdot \sigma} \leq 142'85714 - 29'9 \\ &= 112'957 \rightarrow \Omega \geq \frac{2}{1'2 \cdot (112'957)} = 0'0147548 \text{m}^2 \rightarrow \Omega = 147'54859 \text{ cm}^2 \\ &\text{El valor de } \Omega = 147'54 \approx 148 \text{ cm}^2 = 0'0148 \text{ m}^2 \\ &0 < x < 6 \\ &N_1(x) = 2'3 \cdot 0'0148 \cdot x - 2 = 0'03404 \cdot x - 2 \\ &6 < x < 14 \\ &N_2(x) = 2 + 2'76 \cdot 0'0148 \cdot (x - 1) = 2 + 0'040848 \cdot (x - 1) \\ &0 < x < 6 \\ &\sigma_1 = \frac{N_1(x)}{\Omega} = 2'3 \cdot x - \frac{2}{\Omega} = 2'3 \cdot x - 135'13514 \\ &6 < x < 14 \\ &\sigma_2 = \frac{N_2(x)}{1'2 \cdot \Omega} = \frac{2}{1'2 \cdot \Omega} = 2'76 \cdot \frac{\Omega}{1'2 \cdot \Omega} (x - 1) = 112'61261 + 2'3 \cdot (x - 1) \end{split}$$

b) Los diagramas de esfuerzos se representan en la figura 6.7c y los de tensiones en la figura 6.7d.

Figura 6.7c Diagrama de esfuerzos normales

c) Longitud que ha aumentado o disminuido

$$\sigma = E \varepsilon \xrightarrow{\sigma} \frac{du}{dx} \xrightarrow{} L = \int_0^L \frac{\sigma}{E} dx \xrightarrow{} L = \int_0^6 \frac{\sigma_1}{E} dx + \int_6^{14} \frac{\sigma_2}{E} dx$$

Figura 6.7d Diagrama de tensiones normales

8.- Determinar los esfuerzos normales y las tensiones normales en la barra compuesta de la figura 6.8a, indicando si son de tracción o compresión. Dibujar los diagramas correspondientes. Calcular la longitud de la barra para las cargas aplicadas. Dato: $E=2\cdot10^6~kp/cm^2,~\Omega_a=10~cm^2,\Omega_b=20~cm^2$. Comprobar la longitud final aplicando el teorema de Castigliano.

Este ejercicio se puede resolver más fácilmente empezando a cortar por la parte de abajo. Sin embargo, como ejemplo se comienza por la parte de arriba.

Cálculo de reacciones: En la figura 6.8a se muestra el sistema y se ha dibujado la reacción R, que actúa en el empotramiento. El resto de reacciones en el empotramiento son nulas. Planteando las ecuaciones de equilibrio.

$$\sum F_{EXT} = 0 \rightarrow R + 60 t = 20 t \rightarrow R = -40 t$$

Esfuerzos normales: Para evaluar los esfuerzos normales en las barras, que son fuerzas internas, se toman tantas secciones como sean necesarias para la resolución del problema. En este caso, basta considerar dos: la primera en la zona de área mayor y la segunda en la zona de área menor. Se toma como eje coordenado el x con origen en el empotramiento. Así para:

0 < x < b: tomando una sección como muestra la figura de abajo, el esfuerzo normal N_b se puede escribir por el equilibrio de fuerzas en el eje x:

 $N_b(x) = R = -40$ t; a **compresión** al considerar el esfuerzo a tracción y salir con el signo negativo.

b < x < a + b: de igual manera el esfuerzo N_a se puede escribir:

$$N_a(x) = R + 60 t = -40 + 60 = 20 t$$
, a **tracción**.

Figura 6.8

Tensiones normales: al ser para cada tramo el área constante, basta dividir los esfuerzos normales por el área para obtener los vectores tensión. Así:

$$0 < x < b$$
: $\sigma_b = \frac{N_b}{\Omega_b} = -\frac{40}{20} = -2 \text{ t/cm}^2$, tensión **compresión**.

$$b < x < a + b$$
: $\sigma_a = \frac{N_a}{\Omega_a} = \frac{20}{10} = 2 \text{ t/cm}^2$, tensión a **tracción**.

Cálculo de la longitud: la longitud del conjunto se puede expresar como la suma de la longitud inicial, L_0 ; y la variación de la longitud del conjunto δ . Sí L es la longitud final, entonces: $L = L_0 + \delta = 3 + \delta$. Por otro lado $\delta = \delta_a + \delta_b$; donde δ_a y δ_b son las variaciones de longitud de cada tramo, respectivamente. El incremento de longitud

de una viga sometida a un esfuerzo normal es
$$\Delta L = \frac{N \cdot L_0}{\Omega \cdot E} = \frac{\sigma}{E} \cdot L_0 \Rightarrow \delta_b = \frac{\sigma_b}{E} \cdot b = \frac{\sigma_b}{E} \cdot b$$

$$-\frac{2000}{210^6}$$
 · 2 = -2·10⁻³ m. negativo, ya que al estar a compresión dicho tramo se acorta. Del

mismo modo
$$\delta_a=\frac{\sigma_a}{E}$$
 a = $\frac{2000}{2.10^6}$ ·3 = $3\cdot10^{-3}$ m. En este caso se alarga. Así: $\delta=\delta_a+\delta_b=3$ $10^{-3}+(-2\cdot10^{-3})=10^{-3}$ m. El conjunto se alarga. La longitud total será: $L=L_0+\delta=3+10^{-3}=3,001$ m

Diagramas:

Se muestran en la figura 6.8 los diagramas de esfuerzos normales y de tensiones normales.

Aplicación del teorema de Castigliano:

Cuando los esfuerzos son constantes en un sistema de barras, el potencial interno se puede escribir: $\Phi = \sum_{i=1}^{n} \frac{N_{i}^{2} \cdot L_{i}}{2 \cdot E_{i} \Omega_{i}}.$ El teorema de Castigliano establece que el desplazamiento en sentido de la fuerza vale $\delta_{i} = \frac{\partial \Phi}{\partial F_{i}}, \text{ así en el tramo } 0 < x < b \text{ se puede escribir} \quad \delta_{b} = \frac{\partial \Phi_{b}}{\partial N_{b}} \quad \text{con} \quad \Phi_{b} = \frac{N_{b}^{2} \cdot b}{2 \cdot E_{b} \cdot \Omega_{b}} \quad y \quad \delta_{b} = \frac{\partial \Phi_{b}}{\partial N_{b}} \quad = \frac{2 \cdot N_{b} \cdot b}{2 \cdot E_{b} \Omega_{b}} \quad = \frac{N_{b} \cdot b}{E_{b} \cdot \Omega_{$

Figura 6.9a

Figura 6.9b

- 9.- La barra escalonada de la figura 6.9a está cargada con fuerzas dirigidas a lo largo de su eje: $P_a = 120 \text{ kN}$; $P_b = 60 \text{ kN}$; $P_c = 20 \text{ kN}$. Las longitudes de los tramos son a = 0.2 m; b = 0.4 m; c = 0.8 m. En cada tramo las áreas de las secciones son constantes y valen $\Omega_a=15~cm^2;~\Omega_{b_z}=10~cm^2;~\Omega_{c}=5~cm^2.$ El módulo de elasticidad del material de la barra es $E = 2.10^5$ MPa. Determinar:
- a) Los esfuerzos y tensiones normales en cada tramo y el diagrama correspondiente. Indicar que tramos han traccionado y cuales se han comprimido.
 - b) El aumento o disminución de longitud de cada tramo, así como la del conjunto.

Esfuerzos Normales

Tensiones Normales

Figura 6.9c

a) Reacciones:

$$\sum F_{\text{EXT}} = 0 \Longrightarrow R = P_a - P_b + P_c$$

Esfuerzos Normales:

$$N_a = -R = -P_a + P_b - P_c = -120 \text{ kN} + 60 \text{ kN} - 20 \text{ kN} = -80 \text{ kN}$$

$$a < x < a + b$$

$$N_b = -R + P_a = P_b - P_c = 60 \text{ kN} - 20 \text{ kN} = 40 \text{ kN}$$

$$a + b < x < a+b+c$$

$$N_c = -R + P_a - P_b = -P_c = -20 \text{ kN}$$

Tensiones normales:

$$\sigma_a = \frac{N_a}{\Omega_a} = -\frac{80 kN}{15 \cdot 10^{-4} m^2} = -53,3 \text{ MN/m}^2 = -53,3 \text{ MPa trabaja a compresión}.$$

$$a < x < a + b$$

$$\sigma_b = \frac{N_b}{\Omega_b} = \frac{40 \, kN}{10 \cdot 10^{-4} \, m^2} = 40 \, MN/m^2 = \, 40 \, MPa \, \, \, trabaja \, a \, tracción$$

$$a + b < x < a + b + c$$

$$\sigma_c = \frac{N_c}{\Omega_c} = -\frac{20 \text{ kN}}{5 \cdot 10^{-4} \text{ m}^2} = -40 \text{ MN/m}^2 = -40 \text{ MPa trabaja a compresión}$$

b)
$$\varepsilon = \frac{\Delta L}{L} = \frac{\sigma}{E}$$

$$\Delta l_a = \frac{\sigma_a \cdot L_a}{E} = -\frac{53,3 \cdot 0,2}{2 \cdot 10^5} = -5,3 \cdot 10^{-5} \text{ m. acortamiento}$$

$$\Delta l_b = \frac{\sigma_b \cdot L_b}{E} = \frac{40 \cdot 0.4}{2 \cdot 10^5} = 8 \cdot 10^{-5} \text{ m. alargamiento}$$

$$\Delta l_c = \frac{\sigma_c \cdot L_c}{E} = -\frac{40 \cdot 0.8}{2 \cdot 10^5} = -1.6 \cdot 10^{-4} \text{ m. alargamiento}$$

 $\Delta l_{TOTAL} = \Delta l_a + \Delta l_b + \Delta l_c = -5,3\cdot 10^{-5} + 8\cdot 10^{-5}$ -1,6·10⁻⁴ = - 13,3·10⁻⁵ m. El conjunto se ha **comprimido**

Figura 6.10a

10.- La viga de la figura 6.10 está constituida por un material que deforma hasta la rotura según la ley de Hooke. La tensión de rotura a compresión es $\sigma_{rc}=120$ kp/cm² y la de tracción $\sigma_{rt}=50$ kp/cm², su densidad es $\gamma=2,3$ t/m³ y $E=1,9\cdot10^6$ kp/cm².

Se pide:

- a) Calcular el valor A para que no rompa si el coeficiente de seguridad n=1,4, se considera el peso propio. Las áreas de las secciones son $\Omega_1=1,3\cdot A$ y $\Omega_2=A$.
- b) Dibujar los diagramas de esfuerzos y tensiones.
- c) Determinar el aumento o disminución de longitud del conjunto.

Si se corta por abajo no es necesario calcular las reacciones. Lo primero que se debe hacer es valorar el valor de la carga q_x , que es lo que vale la carga triangular distribuida para un valor de x. Con una simple regla de tres $q_x = \frac{q}{6} \cdot x = \frac{2}{6} \cdot x = \frac{1}{3} \cdot x$ (t/m).

a) Esfuerzos normales:

Corte 1: 0 < x < 3

Se denomina P_{1x} al peso total de viga del corte 1 para la sección en x, y Q_x a la carga neta triangular para la sección de corte en x

$$\sum F = 0 \rightarrow N_1 - P_{1x} - Q_x = 0$$

valorando las fuerzas $Q_x = \frac{1}{2} \cdot q_x \cdot x = \frac{1}{6} \cdot x^2$; $P_{1x} = \gamma \cdot \Omega \cdot x = 2, 3 \cdot A \cdot x$; que sustituyendo:

$$N_1 = P_{1x} + Q_x = 2,3 \cdot A \cdot x + \frac{1}{6} \cdot x^2$$

Corte 2: 3 < x < 6

Se denomina P_{2x} al peso total de viga del corte 2 para la sección en x, y Q_x a la carga neta triangular para la sección de corte en x

$$\sum F = 0 \to N_1 - P_{2x} - Q_x + 2 = 0$$

valorando las fuerzas $Q_x = \frac{1}{2} \cdot q_x \cdot x = \frac{1}{6} \cdot x^2$; $P_{2x} = \gamma \cdot \Omega \cdot x = 2, 3 \cdot A \cdot x$; que sustituyendo

$$N_2 = P_{2x} + Q_x = 2,3 \cdot A \cdot x + \frac{1}{6} \cdot x^2 - 2$$

Corte 3: 6 < x < 14

Se denomina P_3 al peso total de viga de sección A, P_3 * a la porción de viga de sección 1,3·A del corte 3 por x, y Q es la carga neta triangular.

$$\sum F = 0 \rightarrow N_3 - P_3 - P_3^* - Q + 2 - 4 = 0$$

valorando las fuerzas $Q=\frac{1}{2}\cdot q\cdot 6=6$ t; $P_3=\gamma\cdot \Omega\cdot 6=2,3\cdot A\cdot 6=13,8\cdot A$; $P_3*=\gamma\cdot \Omega\cdot (x-6)=\gamma\cdot 1,3\cdot A$ (x-6) que sustituyendo:

 $N_3 = P_3 + P_3* + Q - 2 + 4 = 13,8 \cdot A + \gamma \cdot 1,3 \cdot A(x - 6) + 6 - 2 + 4 = 8 - 4,14 \cdot A + 2,99 \cdot A \cdot x$

Cálculo de las tensiones normales:

Corte 1: 0 < x < 3

$$\sigma_1 = \frac{N_1}{\Omega_1} = 2.3 \cdot x + \frac{x^2}{6 \cdot A}$$
 trabaja siempre a **tracción**.

Corte 2: 3 < x < 6

$$\sigma_2 = \frac{N_2}{\Omega_2} = 2.3 \cdot x + \frac{x^2}{6 \cdot A} - \frac{2}{A}$$
 puede trabajar a **tracción** y a **compresión**.

Corte 3: 6 < x < 14

$$\sigma_3 = \frac{N_3}{\Omega_3} = \frac{8}{1,3 \cdot A} - \frac{4,14}{1,3} + \frac{2,99 \cdot x}{1,3}$$
 siempre trabaja a **tracción**.

Determinación de A:

La condición de diseño es que $\sigma_{CO} \le \sigma_{ADM}$.

Corte 1: 0 < x < 3

$$\sigma_{CO} = \sigma_{máx} = \sigma_1(x = 3) = 6.9 + \frac{9}{6.A}$$

$$\sigma_{ADM} = \frac{\sigma_{rt}}{n} = \frac{50 \text{ kp}}{1.4 \text{ cm}^2} = \frac{50 \cdot 10^{-3} \text{ t}}{1.4 \cdot 10^{-4} \text{ m}^2} = 357,14 \text{ t/m}^2$$

$$6.9 + \frac{9}{6.A} \le 357.14 \rightarrow A \ge \frac{9}{6.350.24} = 4.283 \cdot 10^{-3} \text{ m}^2 = 42.83 \text{ cm}^2$$

Corte 2: 3 < x < 6

Si el valor crítico es de tracción

$$\sigma_{CO} = \sigma_{tm\acute{a}x} = \sigma_2(x=6) = 13.8 + \frac{36}{6 \cdot A} - \frac{2}{A} = 13.8 + \frac{4}{A}$$

$$\sigma_{ADM} = \frac{\sigma_{rt}}{n} = \frac{50 \,\text{kp}}{1.4 \,\text{cm}^2} = \frac{50 \cdot 10^{-3} \,\text{t}}{1.4 \cdot 10^{-4} \,\text{m}^2} = 357,14 \,\text{t/m}^2$$

$$13.8 + \frac{4}{A} \le 357.14 \rightarrow A \ge \frac{4}{343.34} = 11.65 \cdot 10^{-3} \text{ m}^2 = 116.5 \text{ cm}^2$$

Si el valor crítico es de compresión

$$\sigma_{CO} = \sigma_{cm\acute{a}x} = \sigma_2(x=3) = 6.9 + \frac{9}{6 \cdot A} - \frac{2}{A} = 13.8 - \frac{1}{2 \cdot A}$$

$$\sigma_{ADM} = \frac{\sigma_{ct}}{n} = -\frac{120 \text{ kp}}{1.4 \text{ cm}^2} = -\frac{120 \cdot 10^{-3} \text{ t}}{1.4 \cdot 10^{-4} \text{ m}^2} = -857,14 \text{ t/m}^2$$

13,8 -
$$\frac{1}{2 \cdot A}$$
 ≤ .857,14 → A ≥ $\frac{1}{2 \cdot 870.94}$ = 0,5741 10⁻³ m² = 5,741 cm²

Corte 3: 6 < x < 14

$$\sigma_{\text{CO}} = \sigma_{\text{máx}} = \sigma_3(x=14) = \frac{8}{1,3 \cdot A} - \frac{4,14}{1,3} + \frac{2,99 \cdot 14}{1,3} = \frac{8}{1,3 \cdot A} + 29,02$$

$$\sigma_{ADM} = \frac{\sigma_{rt}}{n} = \frac{50 \text{ kp}}{1.4 \text{ cm}^2} = \frac{50 \cdot 10^{-3} \text{ t}}{1.4 \cdot 10^{-4} \text{ m}^2} = 357,14 \text{ t/m}^2$$

$$\frac{8}{1,3 \cdot A} + 29,02 \le 357,14 \rightarrow A \ge \frac{8}{1,3 \cdot 328,12} = 18,755 \cdot 10^{-3} \text{ m}^2 = 187,55 \text{ cm}^2$$

Selección de A:

El valor de A válido debe ser el mayor, ya que sirve para todos los tramos sin que rompa. Así la solución es A = 187,55 cm². Para dicho valor se tienen las siguientes ecuaciones.

Ecuaciones finales:

Esfuerzos normales:

Corte 1: 0 < x < 3

$$N_1 = 2.3 \cdot A \cdot x + \frac{1}{6} \cdot x^2 = 0.0431 \cdot x + \frac{1}{6} \cdot x^2$$

Corte 2: 3 < x < 6

$$N_2 = 0.0431 \cdot x + \frac{1}{6} \cdot x^2 - 2$$

Corte 3: 6 < x < 14

$$N_3 = 7.9224 + 0.0561 \cdot x$$

Tensiones normales

Corte 1 0 < x < 3

 $\sigma_1 = 2.3 \cdot x + 8.8865 \cdot x^2$; trabaja siempre a **tracción**

Corte 2 3 < x < 6

 $\sigma_2 = 2.3 \cdot x + 8.8865 \cdot x^2 - 106.6382$; trabaja a **tracción** y a **compresión**.

Corte 3 6 < x < 14

 $\sigma_3 = 324,9518 + 2,3 \cdot x$ siempre trabaja a **tracción**

b) Representación gráfica:

Unas y otras se pueden representar gráficamente como muestra la figura 6.10b.

c) Cálculo de la variación de longitud del conjunto:

La variación de longitud del conjunto se puede escribir como

$$\Delta L = \frac{1}{E} \left\{ \int_0^3 \sigma_1 \cdot dx + \int_3^6 \sigma_2 \cdot dx + \int_6^{14} \sigma_3 \cdot dx \right\} =$$

$$\frac{1}{E} \left\{ \int_0^3 (2,3 \cdot x + 8,8865 \cdot x^2) dx + \int_3^6 (2,3 \cdot x + 8,8865 \cdot x^2 - 106,6382) dx + \int_6^{14} (324,9518 + 2,3 \cdot x) dx \right\} =$$

$$1 \left\{ \left(-x^2 - x^2 - x^3 \right)^3 + \left(-x^2 - x^3 - x^3$$

$$\frac{1}{E} \left\{ \left(2, 3 \cdot \frac{x^2}{2} + 8,8865 \cdot \frac{x^3}{3} \right)_0^3 + \left(2, 3 \cdot \frac{x^2}{2} + 8,8865 \cdot \frac{x^3}{3} - 106,6382 \cdot x \right)_3^6 + \left(2, 3 \cdot \frac{x^2}{2} + 324,9518 \cdot x \right)_6^{14} \right\} = 0$$

$$\frac{1}{E} \left\{ \left(2, 3 \cdot \frac{x^2}{2} \right)_0^{14} + \left(8,8865 \cdot \frac{x^3}{3} \right)_0^6 + \left(-106,6382 \cdot x \right)_3^6 + \left(324,9518 \cdot x \right)_6^{14} \right\} =$$

$$\frac{1}{E} \left\{ \left(2, 3 \cdot \frac{14^2}{2} \right) + \left(8,8865 \cdot \frac{6^3}{3} \right) - 106,6382 \cdot (6-3) + 324,9518 \cdot x \cdot (14-6) \right\} =$$

$$E = 1.9 \cdot 10^6 \text{ kp/cm}^2 = 1.9 \cdot 10^7 \text{ t/m}^2$$

$$\Delta L = \frac{1}{1,910^{7}} \left\{ 225,4 + 639,828 - 319,9146 + 2599,6144 \right\} = \frac{3144,9278}{1,9 \cdot 10^{7}} = 1,6552210^{-4} \,\mathrm{m}$$

 $\Delta L = 0.165522 \text{ mm}$

Figura 6.10b Diagramas de esfuerzos y de tensiones normales

Figura 6.11a

11.- Determinar para las estructura de las figura P-6.11

- a) los esfuerzos normales indicando si son de tracción o compresión.
- b) dimensionar la estructura si P = 5 t, el acero es el A-52 y el coeficiente de seguridad n = 1,5.
- a) **Determinar el sistema:** En primer lugar hay que ver si el sistema es isostático o hiperestático. Para ello se evalúa $GH = b (2 \cdot n c) = 11 (2 \cdot 7 3) = 11 14 + 3 = 0$. El sistema es isostático.

Cálculo de las reacciones:

El nudo A es un apoyo articulado fijo, por tanto tiene dos reacciones; la primera horizontal H_A y la segunda vertical V_A . El nudo D es un apoyo articulado móvil con una sola reacción, en este caso, vertical V_D .

Para evaluar las reacciones se plantean las ecuaciones de equilibrio:

$$\sum \vec{F}_{EXT} = \vec{0} \rightarrow \sum F_{EXT}^{X} = 0 \rightarrow H_{A} = 0;$$

$$\sum F_{\text{EXT}}^{Y} = 0 \longrightarrow 3 \cdot P + 2 \cdot \frac{P}{2} \ = 4 \cdot P = V_{A} + V_{D}$$

 $\sum \vec{M}_{EXT} \Big|_{P} = \vec{0}$; tomando el punto A para el cálculo de momentos se tiene: $\sum \vec{M}_{EXT} \Big|_{A} = \vec{0}$.

Para calcular el sumatorio de momentos respecto al punto A se debe conocer previamente la distancia r, proyección de AE en el eje x.

Así:
$$r = |AE| \cdot \cos 30^{\circ} = a \cdot \cos 30^{\circ} \cdot \cos 30^{\circ} = a \cdot \cos^{2} 30^{\circ} = \frac{3}{4} \cdot a$$

$$\sum \overrightarrow{M}_{EXT} \Big|_{A} = \overrightarrow{0} \rightarrow P \cdot \frac{3}{4} \cdot a + P \cdot (a + \frac{a}{2}) + P \cdot (3 \cdot a - \frac{3}{4} \cdot a) + \frac{P}{2} \cdot 3 \cdot a = V_{D} \cdot 3 \cdot a \rightarrow V_{D} = 2 \cdot P; \ y$$
 como $V_{A} + V_{D} = 4 \cdot P$, entonces $V_{A} = 2 \cdot P$

Nota: En este problema al determinar que la reacción horizontal es nula se observa que el sistema tiene simetría de carga y de geometría respecto a un plano perpendicular que pase por el nudo G. Esto indica que las fuerzas simétricas deben ser iguales por lo que no era necesario usar la ecuación de momentos, ya que de inmediato se intuye que $V_{\rm A} = V_{\rm D}$.

Figura 6.11b Equilibrio en los nudos

Cálculo de los esfuerzos en las barras:

Para analizar la estructura de la figura 6.11a que corresponde a una cercha Polonceau sencilla se planteará el equilibrio en los nudos. Para denominar los esfuerzos en las barras lo primero será numerarlas como muestra la misma figura. Se dibujarán las fuerzas saliendo de nudo de forma que están consideradas a tracción por lo que sus signos se corresponden con el criterio adoptado en este curso, es decir positivo de

tracción y negativo de compresión. Se debe tener cuidado al pintar los esfuerzos sobre el nudo, ya que cada esfuerzo asociado a una barra a su vez está asociado a dos nudos y por tanto si en uno se pinta el esfuerzo entrando en el otro también debe entrar y si en uno se pinta saliendo en el otro también debe salir. Además, para evitar errores, los esfuerzos se deben pintar en el cuadrante en que está la barra, tomando como origen coordenado el nudo y ejes x,y. Habitualmente x se toma como eje horizontal, e y como eje vertical.

Para comenzar el análisis se debe partir de un nudo que tenga menos de dos incógnitas o esfuerzos desconocidos, es decir que las barras que concurren de las que se desconocen sus esfuerzos sean dos o menos. En este caso los nudos son dos: el A y el D. Escogiendo el nudo A.

$$\sum F_{\text{EXT}}^{\text{X}} = 0 \rightarrow N_7 \cdot \cos 30^{\circ} = -N_1$$

$$\sum F_{\text{EXT}}^{\text{Y}} = 0 \rightarrow -N_7 \cdot \text{sen} 30^{\circ} + \frac{P}{2} = 2 \cdot P \rightarrow N_7 = -3 \cdot P \rightarrow N_1 = \frac{3 \cdot \sqrt{3}}{2} \cdot P$$

Para el nudo E, se hace más rápido si se plantea el equilibrio de fuerzas para los ejes x´y´, perpendiculares entre sí y que contienen a las barras AE, EG y EB. Así:

$$\sum F_{EXT}^{X} = 0 \rightarrow N_8 = -P \cos 30^{\circ} = -P \frac{\sqrt{3}}{2}; N_8 = -P \frac{\sqrt{3}}{2}$$

$$\sum F_{\text{EXT}}^{\text{Y}} = 0 \rightarrow -\text{P} \cos 60^{\circ} + \text{N}_6 = \text{N}_7 = -3 \text{ P} \rightarrow -\frac{\text{P}}{2} + \text{N}_6 = -3 \text{ P} \rightarrow \text{N}_6 = -\frac{5}{2} \text{ P.}$$
 (Como ejercicio comprobar que proyectando en los ejes xy se obtiene el mismo resultado).

Figura 6.11c

En el nudo B las fuerzas normales N_1 y N_8 son conocidas. Antes se debe evaluar el ángulo α . De la geometría (figura 6.11c se obtiene:

$$\cos 30^{\circ} = \frac{\frac{3}{2} \cdot a}{|AG|} \rightarrow |AG| = \frac{\frac{3}{2} \cdot a}{\frac{\sqrt{3}}{2}} \cdot \sqrt{3 \cdot a} ; \text{ por otro lado sen} 30^{\circ} = \frac{1}{2} = \frac{|G'G|}{|AG|} = \frac{|G'G|}{a \cdot \sqrt{3}};$$

 $|G'G| = \frac{\sqrt{3}}{2} \cdot a; \ tg\alpha = \frac{|G'G|}{|BG'|} = \sqrt{3} \rightarrow \alpha = arctg\sqrt{3} \rightarrow \alpha = 60^{\circ}.$ Ahora planteando las

ecuaciones de equilibrio:

$$\sum F_{\text{EXT}}^{\text{X}} = 0 \longrightarrow \frac{\sqrt{3}}{2} \cdot \text{P-sen30}^{\circ} = \frac{3 \cdot \sqrt{3}}{2} \cdot \text{P-N}_{9} \cdot \cos 60^{\circ} - \text{N}_{2}$$

$$\sum F_{\text{EXT}}^{\text{Y}} = 0 \ \rightarrow \ N_8 \cdot \text{cos} 30^\circ = \ N_9 \cdot \text{sen} 60^\circ \rightarrow \ \frac{\sqrt{3}}{2} \cdot P \cdot \frac{\sqrt{3}}{2} = \ N_9 \cdot \frac{\sqrt{3}}{2} \rightarrow N_9 = \frac{\sqrt{3}}{2} \cdot P; \ y$$
 sustituyendo en la ecuación anterior $\rightarrow \frac{\sqrt{3}}{2} \cdot P \cdot \frac{1}{2} = \frac{3 \cdot \sqrt{3}}{2} \cdot P - \frac{\sqrt{3}}{2} \cdot P \cdot \frac{1}{2} - N_2 \rightarrow N_2 = \sqrt{3} \cdot P.$

No es necesario continuar con el análisis ya que al haber simetría las fuerzas que faltan son iguales a sus simétricas. Así: $N_1=N_3;\ N_7=N_4;\ N_6=N_5;\ N_8=N_{11};\ N_9=N_{10}.$

Ahora se trata de evaluar que esfuerzos están a tracción y cuales a compresión.

Figura 6.11dEquilibrio Barra-Nudo

Cuando el esfuerzo entra en el nudo, en la barra también entra por equilibrio de fuerzas internas. Entonces se ha dibujado a compresión y por tanto: si N>0 la fuerza es compresiva y si N<0 la fuerza es de tracción. Si se ha dibujado el esfuerzo saliente del nudo, también sale de la barra. Entonces se ha dibujado a tracción de forma que si N>0 es de tracción y si N<0 es de compresión, ver figura 6.11d. En nuestro caso como todas se han dibujado a tracción el signo que lleven nos dará directamente su estado, o sea, si es positivo estará a tracción y negativo a compresión. Los esfuerzos quedan según el criterio como muestra la tabla siguiente.

b)
$$|N_{\text{max}}| = 3 \cdot P = 15000 \text{ kg} \rightarrow \sigma_{\text{co}} = \frac{|N_{\text{max}}|}{\Omega} \le \sigma_{\text{ADM}} = \frac{3600}{1.5} \rightarrow \Omega = \frac{15000 \cdot 1.5}{3600} = 6.25 \text{ cm}^2$$

ESFUERZOS	TRACCIÓN	COMPRESIÓN	Comentario
$N_1 = N_3$	$\frac{3\cdot\sqrt{3}}{2}\cdot P$		Barras AB y CD se estiran.
$N_7 = N_4$		-3·P	Barras AE y DF se acortan
$N_6 = N_5$		$-\frac{5}{2}$ ·P	Barras EG y FG se acortan
$N_8 = N_{11}$		$-\frac{\sqrt{3}}{2}\cdot P$	Barras BE y CF se acortan
$N_9 = N_{10}$	$\frac{\sqrt{3}}{2}$ ·P		Barras BG y CG se estiran
N_2	$\sqrt{3}\cdot P$		Barra BC se estira

Figura 6.12a

- 12.- Dada la estructura de la figura 6.12a en que todos los miembros son de acero de sección $\Omega=50~\text{cm}^2$ y tensión admisible $\sigma_{ADM}=1400~\text{kp/cm}^2$. Determinar:
 - a) La carga máxima F.
 - b) El desplazamiento del punto A y del punto C para la máxima F.

Módulo de elasticidad longitudinal $E = 2 \cdot 10^6 \text{ kp/cm}^2$.

$$tg \alpha_1 = \frac{100}{75} \rightarrow \alpha_1 \approx 53,13^{\circ} \rightarrow sen \alpha_1 = 0,8 ; cos \alpha_1 = 0,6$$

$$\operatorname{tg}\alpha_2 = \frac{75}{75} = 1 \rightarrow \alpha_2 = 45^{\circ} \rightarrow \operatorname{sen}\alpha_2 = \cos\alpha_2 = \frac{\sqrt{2}}{2}$$

Se plantea el ejercicio como uno solo, es decir se harán el apartado a) y b) en uno. Para ello tomando las fuerzas ficticias necesarias para calcular el apartado b) por el teorema de Castigliano.

Figura 6.12b

Para el nudo A:

$$\sum \overrightarrow{F} = \overrightarrow{0}$$

$$\begin{array}{c} x) \ Q_{A}^{x} - N_{1} \cdot sen\alpha_{1} - N_{2} \cdot sen\alpha_{2} = 0 \\ y) - F - N_{1} \cdot cos\alpha_{1} - N_{2} \cdot cos\alpha_{2} = 0 \\ \end{array} \Rightarrow \begin{array}{c} Q_{A}^{x} - 0.8 \cdot N_{1} - \frac{\sqrt{2}}{2} \cdot N_{2} = 0 \\ \end{array} \Rightarrow \\ y) - F - N_{1} \cdot cos\alpha_{1} - N_{2} \cdot cos\alpha_{2} = 0 \\ \Rightarrow N_{2} = \left(-F - 0.6 \cdot N_{1} \right) \cdot \frac{2}{\sqrt{2}} = -\left(F + 0.6 \cdot N_{1} \right) \cdot \sqrt{2} \Rightarrow Q_{A}^{x} - 0.8 \cdot N_{1} - \frac{\sqrt{2}}{2} \\ \left\{ -\left(F + 0.6 \cdot N_{1} \right) \cdot \sqrt{2} \right\} = 0 \end{array}$$

$$Q_{A}^{x} - 0.8 \cdot N_{1} + F + 0.6 \cdot N_{1} = 0 \qquad 0.2 \cdot N_{1} = F + Q_{A}^{x} \; ; \quad N_{1} = \frac{F + Q_{A}^{x}}{0.2} = 5 \cdot \left(F + Q_{A}^{x}\right)$$

$$N_2 = -\sqrt{2} \cdot (F + 0.6 \cdot (5 \cdot F + 5 \cdot Q_A^x)) = -(F + 3 \cdot F + 3 \cdot Q_A^x) \sqrt{2} = -(4 \cdot F + 3 \cdot Q_A^x) \sqrt{2}$$

Para el nudo C:

$$\sum \overrightarrow{F} = \overrightarrow{0}$$

$$x) Q_c^x + N_2 \cdot \operatorname{sen}\alpha_2 - N_3 = 0$$

$$N_{3} = Q_{C}^{x} + N_{2} \cdot \frac{\sqrt{2}}{2} = Q_{C}^{x} + \frac{\sqrt{2}}{2} \cdot \left(-\sqrt{2} \cdot \left\{4 \cdot F + 3 \cdot Q_{A}^{x}\right\}\right) = Q_{C}^{x} - 4 \cdot F - 3 \cdot Q_{A}^{x}$$

$$y) Q_C^y + N_2 \cdot \cos \alpha_2 - N_6 = 0$$

$$N_{6} = Q_{C}^{y} + N_{2} \cdot \cos \alpha_{2} = Q_{C}^{y} + \frac{\sqrt{2}}{2} \cdot \left(-\left\{ 4 \cdot F + 3 \cdot Q_{A}^{x} \right\} \sqrt{2} \right) \; ; \; N_{1} = Q_{C}^{y} - 4 \cdot F - 3 \cdot Q_{A}^{x} + \frac{1}{2} \cdot Q_{C}^{x} +$$

Para el nudo B:

$$\sum \overrightarrow{F} = \overrightarrow{0}$$

$$x) N_1 \cdot sen \alpha_1 + N_3 + N_7 \cdot cos 45^\circ = 0$$

$$\begin{split} &N_{7} \cdot \frac{\sqrt{2}}{2} = -N_{1} \cdot \operatorname{sen}\alpha_{1} - N_{3} \rightarrow N_{7} = \frac{2}{\sqrt{2}} \cdot \left(-0.8 \cdot \left\{ 5 \cdot F + 5 \cdot Q_{A}^{x} \right\} - Q_{C}^{x} + 4 \cdot F + 3 \cdot Q_{A}^{x} \right) = \\ &= \frac{2}{\sqrt{2}} \cdot \left(-4 \cdot F - 4 \cdot Q_{A}^{x} - Q_{C}^{x} + 4 \cdot F + 3 \cdot Q_{A}^{x} \right) = \sqrt{2} \cdot \left(-Q_{A}^{x} - Q_{C}^{x} \right) = -\sqrt{2} \cdot \left(Q_{A}^{x} + Q_{C}^{x} \right) \end{split}$$

$$y)N_1 \cdot \cos\alpha_1 - N_7 \cdot \sin 45^\circ - N_4 = 0$$

$$\begin{split} &N_{1}\cdot0.6-\frac{\sqrt{2}}{2}\cdot N_{7}-N_{4}=0\ ;\ N_{4}=0.6\cdot N_{1}-\frac{\sqrt{2}}{2}\cdot N_{3}\\ &N_{4}=0.6\cdot5\cdot \left(F+Q_{A}^{x}\right)-\frac{\sqrt{2}}{2}\cdot \left(-\sqrt{2}\cdot \left\{Q_{A}^{x}+Q_{C}^{x}\right\}\right)=3\cdot F+3\cdot Q_{A}^{x}+Q_{A}^{x}+Q_{C}^{x}\\ &N_{4}=3\cdot F+4\cdot Q_{A}^{x}+Q_{C}^{x} \end{split}$$

Para el nudo D:

$$\sum \overrightarrow{F} = \overrightarrow{0}$$

x) $N_5 + H_A = 0$; $N_5 = -H_A$; H_A se obtiene de la ecuación de equilibrio estático:

$$\sum \overrightarrow{Fext} = \overrightarrow{0} \implies H_A + Q_A^x + Q_C^x = 0$$

$$H_D = -Q_A^x - Q_C^x$$

$$N_5 = Q_A^x + Q_C^x$$

En resumen:

$$\begin{split} N_1 &= 5 \cdot \left(F + Q_A^x \right) \; ; \; \; N_2 = - \sqrt{2} \cdot \left(4 \cdot F + 3 \cdot Q_A^x \right) \; ; \; \; N_3 = Q_C^x - 4 \cdot F - 3 \cdot Q_A^x \\ N_4 &= 3 \cdot F + 4 \cdot Q_A^x + Q_C^x \quad ; \; \; N_5 = Q_A^x + Q_C^x \; \; ; \; N_6 = Q_C^y - 4 \cdot F - 3 \cdot Q_A^x \\ N_7 &= - \sqrt{2} \cdot \left(Q_A^x + Q_C^x \right) \end{split}$$

Apartado a) El valor máximo será para el esfuerzo máximo cuando las fuerzas ficticias son nulas.

$$Q_A^x = Q_C^x = Q_C^y = 0$$

En ese caso:

$$\begin{aligned} N_1 = 5 \cdot F \; ; \; N_2 = -4 \cdot \sqrt{2} \cdot F \; ; \; N_3 = -4 \cdot F \; ; \; N_4 = 3 \cdot F \; ; \; N_5 = 0 \; ; \; N_6 = 4 \cdot F \; ; \; N_7 = 0 \\ N_{\text{max}} = N_2 = -4 \cdot \sqrt{2} \cdot F \; ; \quad \sigma_{\text{max}} = \frac{N_{\text{max}}}{\Omega} \leq \sigma_{\text{ADM}} = 1400 \, \text{kp/cm}^2 \; \rightarrow \text{El signo -, es por ser} \\ \text{de compresión y para el acero y otros materiales dúctiles se toman idénticos valores a los de tracción.} \end{aligned}$$

Así:

$$\frac{-4\cdot\sqrt{2}\cdot F}{50} = -1400 \implies F = \frac{1400\cdot 50}{4\cdot\sqrt{2}} = 12374,369 \text{ kp}$$

Apartado b) : Según Castigliano:

$$\delta_{X} = \frac{\partial \Phi}{\partial X}$$

En este caso se han usado de ayuda las fuerzas ficticias.

La expresión del potencial interno será:

$$\Phi = \sum_{i=1}^{n} \frac{N_{i}^{2} \cdot l_{i}}{2 \cdot E_{i} \Omega_{i}} \rightarrow \frac{\partial}{\partial X} = \sum_{i=1}^{n} \frac{2 \cdot N_{i} \cdot l_{i}}{2 \cdot E_{i} \cdot \Omega_{i}} \frac{\partial N_{i}}{\partial X}$$

→ X es la fuerza según la que se mide el desplazamiento.

Así:

$$\delta_{x} = \frac{\partial \Phi}{\partial X} = \sum_{i=1}^{n} \frac{N_{i} \cdot l_{i}}{E_{i} \cdot \Omega_{i}} \frac{\partial N_{i}}{\partial X} \; ; \quad \text{que cuando} \; : \; \; E_{1} \cdot \Omega_{1} = E_{2} \cdot \Omega_{2} = ... = E_{n} \cdot \Omega_{n}$$

$$\text{por ser} \quad E_{_1} = \ldots = E_{_n} \quad ; \quad \Omega_{_1} = \ldots = \Omega_{_n} \quad ; \quad \rightarrow \quad E_{_i} \cdot \Omega_{_i} = E \cdot \Omega$$

Queda:

$$\delta_{x} = \frac{1}{E \cdot \Omega} \sum N_{i} \cdot l_{i} \cdot \frac{\partial N_{i}}{\partial X}$$

Ahora se aplica para el enunciado.

El desplazamiento del nudo A:

$$\delta_{A}^{x} = \frac{1}{E \cdot \Omega} \sum_{i=1}^{7} N_{i} \cdot l_{i} \cdot \frac{\partial N_{i}}{\partial Q_{A}^{x}} \Bigg|_{Fmax(Ficticias\ nulas)} = \frac{1}{E \cdot \Omega} \Bigg(N_{1} \cdot l_{1} \cdot \frac{\partial N_{1}}{\partial Q_{A}^{x}} + ... + N_{7} \cdot l_{7} \cdot \frac{\partial N_{7}}{\partial Q_{A}^{x}} \Bigg) \Big|_{F=12374,37\ Kp(F\ ficticias\ nulas.)}$$

$$\begin{split} \frac{\partial N_1}{\partial Q_A^x} &= 5 \; ; \; \frac{\partial N_2}{\partial Q_A^x} = -3 \cdot \sqrt{2} \; ; \; \frac{\partial N_3}{\partial Q_A^x} = -3 \; ; \; \frac{\partial N_4}{\partial Q_A^x} = 4 \; ; \; \frac{\partial N_5}{\partial Q_A^x} = 1 \; ; \; \frac{\partial N_6}{\partial Q_A^x} = -3 \; ; \; \frac{\partial N_7}{\partial Q_A^x} = -\sqrt{2} \\ N_1 &= 5 \cdot F \; ; \; N_2 = -4 \cdot \sqrt{2} \cdot F \; ; \; N_3 = -4 \cdot F \; ; \; N_4 = 3 \cdot F \; ; \; N_5 = 0 \; ; \; N_6 = -4 \cdot F \; ; \; N_7 = 0 \\ l_1 &= \frac{25}{\cos \alpha_1} = \frac{25}{0.6} = 125 \; ; \; l_2 = \frac{75}{\cos \alpha_2} = \frac{75}{\sqrt{2}/2} = 75 \cdot \sqrt{2} \; ; \; l_3 = l_4 = l_5 = l_6 = 25 \\ l_7 &= \frac{25}{\cos 45^\circ} = \frac{25}{\sqrt{2}/2} = 25 \cdot \sqrt{2} \; . \end{split}$$

Sustituvendo.

$$\begin{split} \delta_{A}^{x} &= \frac{1}{E \cdot \Omega} \Big[5 \cdot F \cdot 125 \cdot 5 + (-4 \cdot \sqrt{2} \cdot F) \cdot 75 \cdot \sqrt{2} \cdot (-3 \cdot \sqrt{2}) + (-4 \cdot F) \cdot 25 \cdot (-3) + (3 \cdot F) \cdot 25 \cdot 4 + 0 + (-4 \cdot F) \cdot 25 \cdot (-3) + 0 \Big]_{F=12374,37} = \\ &= \frac{F}{E \cdot \Omega} \Big[3125 + 1800 \cdot \sqrt{2} + 300 + 300 + 300 \Big] = \frac{12374,37 \cdot (6570,5844)}{2 \cdot 10^6 \cdot 50} \cong 0,8130684 \cong 0,813 cm \\ \delta_{A}^{y} &= \frac{1}{E \cdot \Omega} \sum_{i=1}^{7} N_{i} \cdot l_{i} \cdot \frac{\partial N_{i}}{\partial F} \Big|_{F=Fmx(Ficticias \ nlas)} = \frac{1}{E \cdot \Omega} \Bigg(N_{1} \cdot l_{1} \cdot \frac{\partial N_{1}}{\partial F} + ... + N_{7} \cdot l_{7} \cdot \frac{\partial N_{7}}{\partial F} \Bigg) \Big|_{F=Fmax \ (Fictcias \ nulas)} \\ \frac{\partial N_{1}}{\partial F} &= 5 \ ; \ \frac{\partial N_{2}}{\partial F} = -4 \cdot \sqrt{2} \ ; \ \frac{\partial N_{3}}{\partial F} = -4 \ ; \ \frac{\partial N_{4}}{\partial F} = 3 \ ; \ \frac{\partial N_{5}}{\partial F} = 0 \ ; \ \frac{\partial N_{6}}{\partial F} = -4 \ ; \ \frac{\partial N_{7}}{\partial F} = 0 \end{split}$$

Notar que el signo - , obedece que el teorema de Castigliano da el desplazamiento según la dirección y sentido de la fuerza.

El desplazamiento del nudo C:

$$\begin{split} &\delta_{\mathrm{C}}^{x} = \frac{1}{E \cdot \Omega} \sum_{i=1}^{7} N_{i} \cdot l_{i} \frac{\partial N_{i}}{Q_{\mathrm{C}}^{x}} \bigg|_{\mathrm{Fmax}(\mathrm{Ficticias} \, \mathrm{nulas})} = \frac{1}{E \cdot \Omega} \Bigg(N_{1} \cdot l_{1} \cdot \frac{\partial N_{1}}{\partial Q_{\mathrm{C}}^{x}} + \ldots + N_{7} \cdot l_{7} \cdot \frac{\partial N_{7}}{\partial Q_{\mathrm{C}}^{x}} \Bigg) \bigg|_{\mathrm{Fmax}(\mathrm{Fic.} \, \mathrm{nulas})} = \\ &= \frac{1}{E \cdot \Omega} \Big[\Big(-4 \cdot F \Big) \cdot 25 \cdot 1 + (3 \cdot F) \cdot 25 + 0 + 0 \Big] = \frac{-F \cdot 25}{E \cdot \Omega} = -\frac{12374, 37 \cdot 25}{2 \cdot 10^{6} \cdot 80} = -3, 1 \cdot 10^{-3} \, \mathrm{cm} \\ &\delta_{\mathrm{C}}^{y} = \frac{1}{E \cdot \Omega} \sum_{i=1}^{7} N_{i} \cdot l_{i} \cdot \frac{\partial N_{i}}{\partial Q_{\mathrm{C}}^{y}} \bigg|_{\mathrm{Fmax}(\mathrm{Fic.} \, \mathrm{nulas})} = \frac{1}{E \cdot \Omega} \Bigg(N_{1} \cdot l_{1} \cdot \frac{\partial N_{1}}{\partial Q_{\mathrm{C}}^{y}} + \ldots + N_{7} \cdot l_{7} \cdot \frac{\partial N_{7}}{\partial Q_{\mathrm{C}}^{y}} \Bigg) \bigg|_{\mathrm{Fmax}(\mathrm{Fic.} \, \mathrm{nulas})} \\ &\frac{\partial N_{1}}{\partial Q_{\mathrm{C}}^{y}} = \frac{\partial N_{2}}{\partial Q_{\mathrm{C}}^{y}} = \frac{\partial N_{3}}{\partial Q_{\mathrm{C}}^{y}} = \frac{\partial N_{5}}{\partial Q_{\mathrm{C}}^{y}} = \frac{\partial N_{7}}{\partial Q_{\mathrm{C}}^{y}} = 0 \quad ; \quad \frac{\partial N_{6}}{\partial Q_{\mathrm{C}}^{y}} = 1 \\ &\delta_{\mathrm{C}}^{y} = \frac{1}{E \cdot \Omega} \Bigg(N_{6} \cdot l_{6} \cdot \frac{\partial N_{6}}{\partial Q_{\mathrm{C}}^{y}} \Bigg) = \frac{-4 \cdot F \cdot 25 \cdot 1}{E \cdot \Omega} = \frac{-100 \cdot F}{E \cdot \Omega} = \frac{-100 \cdot 12374, 37}{2 \cdot 10^{6} \cdot 50} = -0,0123743 \approx \\ &-12,4 \cdot 10^{-3} \, \mathrm{cm} \\ &\delta_{\mathrm{C}} \cong -0.0031 \, \dot{1} - 0.0124 \, \dot{1} \, \mathrm{cm} \end{aligned}$$

LECCIÓN 7

Tracción y compresión monoaxial hiperestática

Introducción: En esta lección se tratará el problema de la hiperestaticidad en tracción y compresión monoaxial hiperestática, en casos sencillos y prácticos.

Objetivos de la lección: Llegar a comprender el problema hiperestático en el diseño de vigas y estructuras sometidas a esfuerzos normales, así como los mecanismos para resolverlo.

Contenidos de los problemas: Diseño de vigas y estructuras hiperestáticas sometidas a esfuerzo normal con la aplicación de los teoremas del potencial interno, especialmente de Castigliano y Menabrea.

Problemas resueltos: Exclusivamente ejercicios referentes a los contenidos establecidos.

Formulación básica:

Formulación estudiada en lecciones anteriores, especialmente en la lección 6.

- 1.- La viga de la figura 7.1a está hecha de hierro fundido con valores E=100 GPa, $\sigma_F=200$ MPa (tracción) y $\sigma_{MAX}=500$ MPa (compresión). A compresión el material deforma elásticamente hasta σ_{MAX} . El peso específico es $\gamma=7200$ kp/m³. Datos a=2 m, q=6 t/m. Tomar una seguridad n=2.
- a) Calcular la sección Ω considerando el peso propio. ¿Se podría despreciar el peso propio?.
 - b) Establecer los diagramas de esfuerzos y tensiones normales.

Figura 7.1a

a)
$$\Sigma \overrightarrow{Fext} = \overrightarrow{0} \rightarrow R_A + R_B = 3 \cdot \gamma \cdot \Omega \cdot a - q \cdot a$$

Hiperestático de grado uno, la ecuación adicional es $\Delta l = 0$. Si se aplica el método de las secciones y cortando desde el extremo superior los esfuerzos valen:

$$0 < x < a = 2 \rightarrow N_1 = R_A + q \cdot a - \gamma \cdot \Omega \cdot x$$

 $a < x < 2 \cdot a = 4 \to N_2 = R_A + q \cdot a - \gamma \cdot \Omega \cdot a - \gamma \cdot \Omega \cdot 2 \cdot (x - a) = R_A + q \cdot a - \gamma \cdot \Omega \cdot a - 2 \cdot \gamma \cdot \Omega \cdot x + 2 \cdot \gamma \cdot \Omega \cdot a$

$$= R_A + q \cdot a + \gamma \cdot \Omega \cdot a - 2 \cdot \gamma \cdot \Omega \cdot x$$

$$\Delta l = 0 \rightarrow$$

$$\Delta l = \int_0^a \frac{N_1 \cdot dx}{E \cdot \Omega} + \int_a^{2a} \frac{N_2}{E \cdot 2 \cdot \Omega} \cdot dx = \int_0^a \frac{R_A + q \cdot x - \gamma \cdot \Omega \cdot x}{E \cdot \Omega} \cdot dx + \int_a^{2a} \frac{R_A + q \cdot a + \gamma \cdot \Omega \cdot a - 2 \cdot \Omega \cdot \gamma \cdot x}{E \cdot 2 \cdot \Omega} \cdot dx$$

=

$$=\frac{1}{E\cdot\Omega}\left\{\left(R_A\cdot x+\left(q-\gamma\cdot\Omega\right)\cdot\frac{x^2}{2}\right)_0^a+\frac{1}{2}\left[\left(R_A+q\cdot a+\gamma\cdot\Omega\cdot a\right)\cdot x-2\cdot\Omega\cdot\gamma\frac{x^2}{2}\right]_a^{2a}\right\}=0$$

$$=\frac{1}{E\cdot\Omega}\left[\left(R_A\cdot a+\left(q-\gamma\cdot\Omega\right)\cdot\frac{a^2}{2}+\frac{1}{2}\left[\left(R_A+q\cdot a+\gamma\cdot\Omega\cdot a\right)\left(2\cdot a-a\right)-\Omega\cdot\gamma\cdot\left(\left(2\cdot a\right)^2-a^2\right)\right]=0$$

$$= \left(R_A \cdot a + \frac{1}{2} \cdot a \cdot R_A\right) + \left(q \cdot \frac{a^2}{2} + \frac{q \cdot a^2}{2}\right) + \left(-\frac{\gamma \cdot \Omega \cdot a^2}{2} + \frac{\gamma \cdot \Omega \cdot a^2}{2} - \frac{\Omega \gamma}{2} \cdot 3 \cdot a^2\right) = 0$$

$$0 = \frac{3}{2} \cdot R_A \cdot a + q \cdot a^2 - \frac{3}{2} \cdot \gamma \cdot \Omega \cdot a^2 \; ; \quad \frac{\frac{3}{2} \cdot \Omega \cdot \gamma \cdot a^2 - q \cdot a^2}{\frac{3}{2} \cdot a} = R_A \longrightarrow R_A = \gamma \cdot \Omega \cdot a - \frac{2}{3} \cdot q \cdot a$$

$$R_B = 3 \cdot \gamma \cdot \Omega \cdot a - q \cdot a - R_A = 3 \cdot \gamma \cdot \Omega \cdot a - q \cdot a - \gamma \cdot \Omega \cdot a + \frac{2}{3} \cdot q \cdot a = 2 \cdot \gamma \cdot \Omega \cdot a - \frac{1}{3} \cdot q \cdot a$$

$$R_{\rm B} = 2 \cdot \gamma \cdot \Omega \cdot 3 \cdot a - \frac{q \cdot a}{3}$$

Sustituyendo y trabajando con metros (m) y toneladas (t)

$$N_1 = R_A + q \cdot x - \gamma \cdot \Omega \cdot x = \gamma \cdot \Omega \cdot a - \frac{2}{3} \cdot q \cdot a + q \cdot x - \gamma \cdot \Omega \cdot x = \Omega \cdot a \cdot 7, 2 - \frac{2}{3} \cdot 6 \cdot 2 + 6 \cdot x - 7, 2 \cdot \Omega \cdot x$$

$$= 14.4 \cdot \Omega - 8 + 6 \cdot x - 7.2 \cdot \Omega \cdot x$$

$$\sigma_1 = \frac{N_1}{\Omega} = 14.4 - \frac{8}{\Omega} + \frac{6 \cdot x}{\Omega} - 7.2 \cdot x = \left(14.4 - \frac{8}{\Omega}\right) + x \cdot \left(\frac{6}{\Omega} - 7.2\right)$$

DISEÑO

Las funciones son líneas rectas con valores extremos en los extremos del intervalo, o sea en: x = 0 y x = a.

 $x=0 \rightarrow \sigma_1(0)=14,4-\frac{8}{\Omega}$; valores que pueden ser de tracción o de compresión, según el valor de la Ω . Así $\sigma_1(0) \leq \sigma_{ADM} = \frac{\sigma_{LIM}}{n} \Rightarrow$ dos valores posibles $\sigma_{LIM} = \sigma_{LIMT}$ (tensión límite a tracción) o $\sigma_{LIM} = \sigma_{LIMC}$ (tensión límite a compresión).

$$\sigma_{LIMT} = \sigma_F = 200 \text{ MPa} = 200 \cdot 10^6 \frac{N}{m^2} = \frac{200 \cdot 10^6 \cdot 10^{-3} \text{ t}}{9.8 \text{ m}^2} = 20408,163 \text{ t/m}^2$$

$$\sigma_{\text{LIMC}} = -500 \text{ MPa} = -500 \cdot 10^6 \frac{\text{N}}{\text{m}^2} = \frac{-50010^6 \cdot 10^{-3} \text{ t}}{9.8 \,\text{m}^2} = -51020,408 \text{ t/m}^2$$

(el signo es por estar a compresión)

Así
$$\sigma_1(0) \le \sigma_{ADMT} = \frac{20408,163}{n=2} = 10204,082 \text{ t/m}^2 \rightarrow 14,4 - \frac{8}{\Omega} \le 10204,082 \rightarrow 14,4 - \frac{8}{\Omega} \ge 10204,082 \rightarrow 14,4 -$$

 $-\frac{8}{\Omega} \leq 10204,082 - 14,4 \rightarrow \Omega \text{ saldría negativa, luego no puede ser, esto indica que}$ $\sigma_1(0) \text{ será a compresión} \rightarrow \sigma_1(0) \leq \sigma_{ADMC} = \frac{51020,408}{2} = -25510,204 \text{ t/m}^2 \implies$

$$14,4 - \frac{8}{\Omega} \le -25510,204 \rightarrow -\frac{8}{\Omega} \le -25510,204 - 14,4 \rightarrow \frac{8}{25510,204 + 14,4} \le \Omega \rightarrow \frac{8}{2500,204 +$$

$$\Omega \ge 3{,}13423 \cdot 10^{-4} \,\text{m}^2 = 3{,}1342308 \,\,\text{cm}^{\,2} \approx 3{,}13 \,\,\text{cm}^{\,2}$$

x = a

 $\sigma_1(a=2 \text{ m}) = \left(14,4-\frac{8}{\Omega}\right) + 2\left(\frac{6}{\Omega}-7,2\right) = 14,4-\frac{8}{\Omega} + \frac{12}{\Omega} - 14,4 = \frac{4}{\Omega} \text{ siempre será a tracción.}$

$$\sigma_{1} (a) = \frac{4}{\Omega} \le \sigma_{ADMT} = 10204,082 \rightarrow \Omega \ge \frac{4}{10204,082} = 3,91999 \cdot 10^{-4} \text{ m}^{2};$$

 $\Omega \ge 3.92$ cm²

$$N_2 = 2 \cdot \gamma \cdot \Omega \cdot a + \frac{q \cdot a}{3} - 2 \cdot \gamma \cdot \Omega \cdot x$$

$$\sigma_2 = \frac{N_2}{2 \cdot \Omega} = \gamma \cdot (a - x) + \frac{q \cdot a}{6 \cdot \Omega} \Rightarrow \text{Los valores extremos en } x = a, \ y \ x = 2 \cdot a$$

$$\sigma_2(a) = \frac{q \cdot a}{6 \cdot \Omega}$$
 Tracción $\rightarrow \sigma_2 (a = 2) = \frac{62}{6 \cdot \Omega} \le \sigma_{ADMT} \rightarrow \frac{2}{\Omega} \le 10204,082$

$$\Omega \ge 1,95999 \cdot 10^{-4} \text{ m}^2 \approx 1,96 \text{ cm}^2 \quad \Omega = 1,96 \text{ cm}^2$$

$$\sigma_2(2 \cdot a = 4) = \gamma \cdot (a - 2 \cdot a) + \frac{q \cdot a}{6 \cdot \Omega} = -\gamma \cdot a + \frac{q \cdot a}{6 \cdot \Omega} = -7,22 + \frac{62}{6 \cdot \Omega} = -14,4 + \frac{2}{\Omega}$$

o es de tracción o de compresión.

$$\sigma_2(4) \le \sigma_{ADMT} = 10204,082 \rightarrow -14,4 + \frac{2}{\Omega} \le 10204,082 \rightarrow$$

$$\frac{2}{\Omega} \le 10204,082 + 14,4 = 10218,482 \rightarrow \Omega \ge \frac{2}{10218,482} = 1,9572310^{-4} \text{ cm}^2$$

$$\approx \Omega \ge 1,96 \text{ cm}^2$$

 σ_2 (4) = σ_{ADMC} = -25510,204 \rightarrow 14,4 + $\frac{2}{\Omega}$ \leq 25510,204 está claro que tomando correctamente los signos Ω sale negativa, y esto no puede ser .

Así ya queda resuelto el problema.

La solución será el valor mayor, así $\Omega = 3.92 \text{ cm}^2$

b)
$$N_1 = 14,4 \cdot \Omega - 8 + 6 \cdot x - 7,2 \cdot \Omega \cdot x = 14,4 \cdot 3,92 \cdot 10^{-4} \cdot 8 + 6 \cdot x - 27,2 \cdot 3,92 \cdot 10^{-4} \cdot x$$

 $N_1 = -7,9943552 + 5,9971776 \cdot x$

$$N_2 = 2 \cdot \gamma \cdot \Omega \cdot a + \frac{q \cdot a}{3} - 2 \cdot \gamma \cdot \Omega \cdot x = 2 \cdot \gamma \cdot \Omega \cdot (a - x) + \frac{q \cdot a}{3} = 27, 2 \cdot 3, 92 \cdot 10^{-4} \cdot (a - x) + \frac{6 \cdot 2}{3} = 5,6448 \cdot 10^{-3} \cdot 5,6448 \cdot 10^{-3} \cdot (a - x) + 4$$

$$\sigma_1 = \frac{N_1}{\Omega} = \frac{N_1}{3,92 \cdot 10^{-4}} = \left(14,4 - \frac{8}{3,92 \cdot 10^{-4}}\right) + x\left(\frac{6}{3,92 \cdot 10^{-4}} - 7,2\right) =$$

$$= -20393,763 + 15298,922 \cdot x$$

$$\sigma_2 = \gamma \cdot (a - x) + \frac{q \cdot a}{6 \cdot \Omega} = 7, 2 \cdot (2 - x) + \frac{6 \cdot 2}{6 \cdot 3.92 \cdot 10^{-4}} = 7, 2 \cdot (2 - x) + 5102,0408$$

Falta contestar. ¿Se podría despreciar el peso propio?

Lo normal es que las cargas externas superen a las de peso propio, sin embargo, esto no implica que siempre se pueda despreciar. En este problema se ve que sí, si se eliminan los términos de peso propio (los que están multiplicando a Ω en los esfuerzos) se tiene que valen prácticamente lo mismo \rightarrow

$$N_{1} = -8 + 6 \cdot x; \ N_{2} = 4; \ \sigma_{1} = \frac{-8 + 6 \cdot x}{\Omega}; \ \sigma_{2} = \frac{4}{2 \cdot \Omega} = \frac{2}{\Omega}$$

En la figura 7.1b se muestran los diagramas de esfuerzos y tensiones tanto considerando el peso propio como si no. Se observa que la diferencia es mínima y por tanto el peso propio sí se puede despreciar.

Diagramas de Esfuerzos y Tensiones Normales considerando el peso de la viga

Diagramas de Esfuerzos y Tensiones Normales SIN considerar el peso de la viga

Figura 7.1b Valoración del peso propio de la viga

2.- Determinar los esfuerzos en las barras de la figura 7.2 de materiales elásticos que soportan una barra rígida de peso Q. Hacer la aplicación numérica si las barras 1 son de acero con E_1 =2,1·10⁶ kp/cm²; Ω_1 = 1,3 cm² y la barra 2 es de bronce con E_2 =1,05·10⁶ kp/cm²; Ω_2 = 1,6 cm². Datos L = 1 m, a = 30 cm.

Figura 7.2

Al ser simétrica la estructura, se verifica que las fuerzas en las barras exteriores son iguales. Así el equilibrio de fuerzas da: $2 \cdot N_1 + N_2 = Q$. Esta ecuación resume las ecuaciones de equilibrio estático de fuerzas en el eje vertical y momentos. Las fuerzas horizontales son nulas.

Existen dos incógnitas por lo que el problema es hiperestático de grado 1, se necesita una ecuación adicional que no es otra que la de desplazamientos: $\Delta l_1 = \Delta l_2 \rightarrow$

$$\frac{N_1 \cdot l_1}{E_1 \cdot \Omega_1} = \frac{N_2 \cdot l_2}{E_2 \cdot \Omega_2} \rightarrow l_1 = l_2 \rightarrow \frac{N_1}{E_1 \Omega_1} = \frac{N_2}{E_2 \cdot \Omega_2} \rightarrow N_2 = \frac{E_2 \cdot \Omega_2}{E_1 \cdot \Omega_1} N_1 \rightarrow$$

$$2 \cdot N_1 + \frac{E_2 \cdot \Omega_2}{E_1 \cdot \Omega_1} \cdot N_1 = Q \rightarrow N_1 = \frac{Q}{2 + \frac{E_2 \cdot \Omega_2}{E_1 \cdot \Omega_1}} = \frac{E_1 \cdot \Omega_1 \cdot Q}{2 \cdot E_1 \cdot \Omega_1 + E_2 \cdot \Omega_2} \rightarrow$$

$$N_2 = \frac{E_2 \cdot \Omega_2 \cdot Q}{2 \cdot E_1 \cdot \Omega_1 + E_2 \cdot \Omega_2}$$

Si se hace la aplicación numérica sale N_1 = 1147 kp y N_2 = 706 kp

Figura 7.3a

3.- Resolver la celosía de la figura 7.3a

Determinar el sistema: En primer lugar hay que ver si el sistema es isostático o hiperestático. Para ello se evalúa $GH = b - (2 \cdot n - c) = 6 - (2 \cdot 4 - 3) = 6 - 8 + 3 = 1$. El sistema es hiperestático. Es necesario añadir una ecuación a las de equilibrio para resolver el sistema.

Planteamiento de las ecuaciones de equilibrio estático:

$$\begin{split} & \sum \vec{F}_{\text{EXT}} = \vec{0} \\ & \sum F_{\text{EXT}}^{\text{X}} = 0 \rightarrow H_{\text{A}} = 0 \\ & \sum F_{\text{EXT}}^{\text{Y}} = 0 \rightarrow V_{\text{A}} + V_{\text{B}} = 2 \cdot P \Rightarrow V_{\text{A}} = V_{\text{B}} \end{split}$$

ya que al ser nulas las fuerzas horizontales, el sistema presenta simetría de carga y de geometría. Por tanto no es necesario plantear la ecuación de momentos. La estructura es hiperestática interna.

Figura 7.3b

Cálculo de los esfuerzos en las barras:

Para analizar la estructura se numeran las barras como en la figura inicial.

Como el sistema es hiperestático de grado 1, los esfuerzos se pondrán en función de una única incógnita. Se elige, por ejemplo, como incógnita en exceso el esfuerzo en la barra 6. Se comienza el análisis por el nudo A.

$$\sum F_{\text{EXT}}^{\text{X}} = 0 \rightarrow N_5 \cdot \cos 45^{\circ} + N_1 = 0; N_5 = N_6 \text{ por simetria.}$$

$$\sum F_{EXT}^Y = 0 \rightarrow N_5 \cdot sen45^\circ + N_4 + P = 0; \ N_4 = N_2 \ por \ simetria. \ Asi \ de \ ambas \ se$$
 obtiene: $N_1 = -N_6 \cdot \frac{\sqrt{2}}{2}$; y $N_4 = -P - N_6 \cdot \frac{\sqrt{2}}{2}$.

Para el nudo D:

$$\sum F_{\rm EXT}^{\rm X} = 0 \rightarrow N_3 + N_6 \cdot \cos 45^{\circ} = 0 \rightarrow N_3 = -N_6 \cdot \frac{\sqrt{2}}{2};$$

$$\sum F_{\rm EXT}^{\rm Y} = 0 {\longrightarrow} \ N_6 {\cdot} sen 45^o + N_4 + P = 0; \ no \ aporta \ nada \ nuevo.$$

Como el sistema es hiperestático de grado uno, es necesario aportar una ecuación más. En este caso es posible aplicar el teorema de Menabrea $\rightarrow \frac{\partial \Phi}{\partial X} = 0$; siendo Φ el potencial interno de conjunto y X_i cualquiera de las incógnitas hiperestáticas. Para una barra de sección constante y del mismo material el potencial interno se expresa: Φ =

$$\frac{N^2 \cdot l}{2 \cdot E \cdot \Omega} \text{ ; para un sistema de barras } \Phi = \sum_{i=1}^n \frac{N_i^2 \cdot l}{2 \cdot E \cdot \Omega}$$

$$\Phi = \frac{N_1^2 \cdot l}{2 \cdot E \cdot \Omega} + \frac{N_2^2 \cdot l}{2 \cdot E \cdot \Omega} + \frac{N_3^2 \cdot l}{2 \cdot E \cdot \Omega} + \frac{N_4^2 \cdot l}{2 \cdot E \cdot \Omega} + \frac{N_5^2 \cdot l}{2 \cdot E \cdot \Omega} + \frac{N_6^2 \cdot l}{2 \cdot E \cdot \Omega}$$

sustituyendo en función de la incógnita hiperestática elegida se tiene:

$$\Phi = \frac{(-N_6 \cdot \frac{\sqrt{2}}{2})^2 \cdot a}{2 \cdot E \cdot \Omega} + \frac{(-P - N_6 \cdot \frac{\sqrt{2}}{2})^2 \cdot a}{2 \cdot E \cdot \Omega} + \frac{(-N_6 \cdot \frac{\sqrt{2}}{2})^2 \cdot a}{2 \cdot E \cdot \Omega} + \frac{(-P - N_6 \cdot \frac{\sqrt{2}}{2})^2 \cdot a}{2 \cdot E \cdot \Omega} + \frac{N_6^2 \cdot \sqrt{2} \cdot a}{2 \cdot E \cdot \Omega} + \frac{N_6^2 \cdot \sqrt{2} \cdot a}{2 \cdot E \cdot \Omega}$$

aplicando el teorema:

$$\begin{split} \frac{\partial \Phi}{\partial X_{_{j}}} &= 0 \rightarrow \frac{\partial \Phi}{\partial N_{_{6}}} = 0 \rightarrow \frac{\partial \Phi}{\partial N_{_{6}}} = \frac{2 \cdot (-N_{_{6}} \cdot \frac{\sqrt{2}}{2}) a}{2 \cdot E \cdot \Omega} \cdot (-\frac{\sqrt{2}}{2}) \ + \ \frac{2 (-P - N_{_{6}} \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} \cdot (-\frac{\sqrt{2}}{2}) \ + \\ \frac{2 \cdot (-N_{_{6}} \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} \cdot (-\frac{\sqrt{2}}{2}) \ + \ \frac{2 \cdot N_{_{6}} \cdot \sqrt{2} \cdot a}{2 \cdot E \cdot \Omega} \ + \frac{2 \cdot N_{_{6}} \cdot \sqrt{2} \cdot a}{2 \cdot E \cdot \Omega} \ ; \\ \text{operando se obtiene que } N_{_{6}} = -\frac{\sqrt{2} \cdot P}{2 \cdot (1 + \sqrt{2})} \text{; como todas las fuerzas se dibujaron} \end{split}$$

salientes de nudo, es decir actuando a tracción en las barras, el signo se corresponde con el convenio adoptado. Haciendo los cálculos se obtienen los valores de la tabla.

ESFUERZOS	TRACCIÓN	COMPRESIÓN	Comentario
$N_1 = N_3$	$\frac{P}{2 \cdot (1 + \sqrt{2})}$		Barras AB y CD se estiran
$N_2 = N_4$		$-\frac{P\cdot(1+2\sqrt{2})}{2\cdot(1+\sqrt{2})}$	Barras AD y BC se acortan
$N_6 = N_5$		$-\frac{\sqrt{2} \cdot P}{2 \cdot (1 + \sqrt{2})}$	Barras CB y AC se acortan

En este caso se ha aplicado el teorema de Menabrea. [JMP1] También, aplicando el teorema energético de Castigliano se puede determinar el sistema. El teorema dice que para una carga aplicada X el desplazamiento según la dirección de aplicación es $\delta = \frac{\partial \Phi}{\partial X_j}$; En este caso se libera el sistema de la barra 6 y en su lugar se coloca una

fuerza X como si fuera una carga externa aplicada (ver figura 7.3a). Ahora para este sistema el potencial interno vale:

$$\Phi = \frac{N_1^2 \cdot l}{2 \cdot E \cdot Q} + \frac{N_2^2 \cdot l}{2 \cdot E \cdot Q} + \frac{N_3^2 \cdot l}{2 \cdot E \cdot Q} + \frac{N_4^2 \cdot l}{2 \cdot E \cdot Q} + \frac{N_5^2 \cdot l}{2 \cdot E \cdot Q}$$

y ahora poniendo los esfuerzos normales en función de X (basta cambiar N_6 por X en lo obtenido anteriormente) el potencial interno queda:

$$\Phi = \frac{(-X \cdot \frac{\sqrt{2}}{2})^2 \cdot a}{2 \cdot E \cdot \Omega} + \frac{(-P - X \cdot \frac{\sqrt{2}}{2})^2 \cdot a}{2 \cdot E \cdot \Omega} + \frac{(-X \cdot \frac{\sqrt{2}}{2})^2 \cdot a}{2 \cdot E \cdot \Omega} + \frac{(-P - X \cdot \frac{\sqrt{2}}{2})^2 \cdot a}{2 \cdot E \cdot \Omega} + \frac{X^2 \cdot \sqrt{2} \cdot a}{2 \cdot E \cdot \Omega}$$

y por tanto el desplazamiento

$$\begin{split} \delta = & \frac{\partial \Phi}{\partial \, X} = \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} \cdot (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-P - X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (X \cdot \sqrt{2} \cdot a)}{2 \cdot$$

como se sabe que para la barra 6 el desplazamiento es $\delta_6 = \frac{X \cdot \sqrt{2} \cdot a}{E \cdot \Omega}$ y como $\delta = -\delta_6 \rightarrow$ igualando las ecuaciones se obtiene:

$$\delta = \frac{\partial \Phi}{\partial X} = \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} \cdot (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-P - X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2 \cdot (-X \cdot \frac{\sqrt{2}}{2}) \cdot a}{2 \cdot E \cdot \Omega} (-\frac{\sqrt{2}}{2}) + \frac{2$$

 $X = -\frac{\sqrt{2 \cdot P}}{2 \cdot (1 + \sqrt{2})}$. Resolviendo se obtienen los mismos valores del cuadro anterior.

Figura 7.4a

4.- Determinar el valor del desplazamiento del nudo D de la figura 7.4a según el eje horizontal y en función de L, la carga P, el módulo elástico E y el área Ω . Todas las barras tienen la misma sección.

$$GH = b - (2 \cdot n - c) \rightarrow b = 5; n = 4; c = 4$$
 $GH = 5 - (2 \cdot 4 - 4) = 5 - (8 - 4) = 1$

$$\sum \text{Fext}\big|_{x} = 0 \to H_{A} + H_{C} = -P \qquad H_{C} = -P - H_{A}$$

$$\sum \text{Fext}\big|_{y} = 0 \to R_{A} + R_{C} = 0$$

$$\sum\! M_{\rm EXT} \Big|_A = 0 \rightarrow P \cdot L - 2 \cdot L \cdot R_C = 0$$

Figura 7.4b

x)
$$H_A + N_1 + N_3 \cdot \cos 45^\circ = 0$$

$$y) N_3 \cdot \text{sen} 45^{\circ} + R_A = 0$$

$$\begin{split} N_{3} &= \frac{-R_{A}}{\text{sen45}^{\circ}} = \frac{\frac{P}{2}}{\frac{\sqrt{2}}{2}} = \frac{2 \cdot P}{\sqrt{2} \cdot P} = \frac{P}{\sqrt{2}} = N_{3}; \qquad N_{3} = \frac{P}{\sqrt{2}} \\ N_{1} &= -H_{A} - N_{3} \cdot \frac{\sqrt{2}}{2} = -H_{A} - \frac{\sqrt{2}}{2} \cdot \frac{P}{\sqrt{2}} = -\left(H_{A} + \frac{P}{2}\right) = N_{1}; \quad N_{1} = -\left(H_{A} + \frac{P}{2}\right) \end{split}$$

$$(x)P + N_5 \cdot \cos 45^\circ - N_3 \cdot \cos 45^\circ = 0 \rightarrow P + N_5 \cdot \frac{\sqrt{2}}{2} - \frac{P}{\sqrt{2}} \cdot \frac{\sqrt{2}}{2} = 0 \rightarrow \frac{P}{2} + N_5 \cdot \frac{\sqrt{2}}{2} = 0$$

$$N_5 = -\frac{P}{2} \cdot \frac{2}{\sqrt{2}} = -\frac{P}{\sqrt{2}} \quad N_5 = -\frac{P}{\sqrt{2}}$$

y)
$$N_2 \cdot \text{sen } 45^{\circ} + N_4 + N_5 \cdot \text{sen } 45^{\circ} = 0$$
;

$$\frac{P}{\sqrt{2}} \cdot \frac{\sqrt{2}}{2} + N_4 + \left(\frac{-P}{\sqrt{2}} \cdot \operatorname{sen} 45^{\circ}\right) = 0 \qquad N_4 = 0$$

$$N_1 = N_2$$

Comprobación:

$$(x) N_1 + N_5 \cdot \cos 45^\circ = H_C$$

$$y) N_5 \cdot \sin 45^{\circ} + R_C = 0$$

$$(x) - \left(H_A + \frac{P}{2}\right) + \left(\frac{-P}{\sqrt{2}}\right) \cdot \frac{\sqrt{2}}{2} = H_C \quad ; \quad -H_A - P = H_C$$

y)
$$\left(\frac{-P}{\sqrt{2}}\right)$$
sen 45°+ $\frac{P}{2}$ =0; $\left(\frac{-P}{\sqrt{2}},\frac{\sqrt{2}}{2},\frac{P}{2}\right)$ =0 Comprobado.

En principio:

$$N_1 = -\left(H_A + \frac{P}{2}\right); \quad N_1 = N_2; \quad N_3 = \frac{P}{\sqrt{2}}; \quad N_4 = 0; \quad N_5 = \frac{-P}{\sqrt{2}}$$

$$\Phi = \frac{N_1^2 \cdot l}{2 \cdot E \cdot \Omega} + \frac{N_2^2 \cdot l}{2 \cdot E \cdot \Omega} + \frac{N_3^2 \cdot l}{2 \cdot E \cdot \Omega} + \frac{N_4^2 \cdot l}{2 \cdot E \cdot \Omega} + \frac{N_5^2 \cdot l}{2 \cdot E \cdot \Omega} = \frac{N_1^2 \cdot l}{E \cdot \Omega} + \frac{N_3^2 \cdot l}{2 \cdot E \cdot \Omega} + \frac{N_5^2 \cdot l}{2 \cdot E \cdot \Omega}$$

$$\frac{\left(\mathbf{H}_{\mathbf{A}} + \frac{\mathbf{P}}{2}\right)^{2}}{\mathbf{E} \cdot \mathbf{\Omega}} \mathbf{l}_{1} + \frac{1}{2} \frac{\left(\frac{\mathbf{P}}{\sqrt{2}}\right)^{2} \cdot \mathbf{l}_{3}}{\mathbf{E} \cdot \mathbf{\Omega}} + \frac{1}{2} \frac{\left(\frac{-\mathbf{P}}{\sqrt{2}}\right)^{2} \cdot \mathbf{l}_{5}}{\mathbf{E} \cdot \mathbf{\Omega}} =$$

$$= \frac{\left(H_{A} + \frac{P}{2}\right)^{2} \cdot L}{E \cdot \Omega} + \frac{\left(\frac{P}{\sqrt{2}}\right)^{2} \cdot \sqrt{2}}{E \cdot \Omega} \cdot L = \frac{\left(H_{A} + \frac{P}{2}\right)^{2} \cdot L}{E \cdot \Omega} + \frac{\left(\frac{P^{2}}{\left(\sqrt{2}\right)^{2}}\right) \cdot L}{E \cdot \Omega \cdot \sqrt{2}}$$

$$\frac{\partial \Phi}{\partial H_A} = 0 \; ; \; \frac{2 \cdot \left(H_A + \frac{P}{2} \right) \cdot L}{E \cdot \Omega} = 0 \qquad H_A = \frac{-P}{2}$$

$$\Phi = \frac{\frac{P^2}{\sqrt{2^2}}}{E \cdot \Omega \cdot \sqrt{2}} \cdot L = \frac{P^2 \cdot L}{E \cdot \Omega \cdot \sqrt{2}} \qquad \frac{\partial \Phi}{\partial P} = \frac{2 \cdot P \cdot L}{E \cdot \Omega \cdot \sqrt{2}} = \frac{P \cdot L \cdot \sqrt{2}}{E \cdot \Omega} = \delta_D$$

Figura 7.5

- 5.- Las barras de la figura 7.5 tienen secciones de $\Omega_1 = 2.5 \text{ cm}^2$, $\Omega_2 = 4 \text{ cm}^2$, $\Omega_3 = 3 \text{ cm}^2$. Si la carga es P = 5 t y el material tiene curva del ensayo de tracción como la de la figura. Determinar:
 - a) Valor de todos los esfuerzos en las barras
- b) Coeficientes de seguridad mínimos si se diseña considerando, la estructura falla con las primeras deformaciones permanentes.

$$L_1 = 3 \text{ m}, L_2 = 2,4 \text{ m}, L_3 = 4 \text{ m}.$$

$$\cos \beta = \frac{L_2}{L_3} = 0.6$$
; $\sin \beta = 0.8$; $\cos \alpha = \frac{L_2}{L_1} = \frac{2.4}{3} = 0.8$; $\sin \alpha = 0.6$

$$a) \quad \sum \overrightarrow{F} = \overrightarrow{0} \qquad x) \quad N_1 \cdot cos\alpha + N_2 + N_3 \cdot cos\beta = P$$

y)
$$N_1 \cdot \text{sen}\alpha - N_3 \cdot \text{sen}\beta = 0 \rightarrow N_1 = N_3 \frac{\text{sen}\beta}{\text{sen}\alpha} = A \cdot N_3 \text{ siendo } A = \frac{0.8}{0.6} = 1.3$$

El sistema es hiperestático y se supone que trabaja elásticamente. Se pueden determinar en ese caso las incógnitas con el teorema de Menabrea.

$$\frac{\partial \Phi}{\partial X} = 0 \rightarrow \Phi = \frac{1}{2} \sum \frac{N_i^2 \cdot L_i}{E \cdot \Omega}$$
; tomando N_3 , comoincógnita hiperestatica.

$$\Phi = \frac{1}{2} \frac{N_1^2 \cdot L_1}{E_1 \cdot \Omega_1} + \frac{1}{2} \frac{N_2^2 \cdot L_2}{E_2 \cdot \Omega_2} + \frac{1}{2} \frac{N_3^2 \cdot L_3}{E_3 \cdot \Omega_2}; E_1 = E_2 = E_3$$

$$\frac{\partial \Phi}{\partial N_3} = \frac{N_1 \cdot L_1}{E_1 \cdot \Omega_1} \cdot \frac{\partial N_1}{\partial N_3} + \frac{N_2 \cdot L_2}{E_2 \cdot \Omega_2} \cdot \frac{\partial N_2}{\partial N_3} + \frac{N_3 \cdot L_3}{E_3 \cdot \Omega_3} \cdot \frac{\partial N_3}{\partial N_3} = 0$$

 $N_1=A\cdot N_3,\ N_2=P-N_1\cdot cos\alpha$ - $N_3\cdot cos\beta=P-A\cdot N_3\cdot cos\alpha$ - $N_3\cdot cos\beta=P-N_3\cdot (A\cdot cos\alpha+cos\beta)$

$$\frac{\partial N_1}{\partial N_3} = A; \frac{\partial N_2}{\partial N_3} = -(A \cdot \cos\alpha + \cos\beta); A \cdot \cos\alpha + \cos\beta = 1, 3 \cdot 0, 8 + 0, 6 \approx 1,67$$

Sustituyendo

$$\frac{A \cdot N_3 \cdot L_1}{\Omega_1} \cdot A + \frac{\left[P - N_3 \cdot (A \cdot \cos \alpha + \cos \beta)\right] \cdot L_2}{\Omega_2} \cdot \left(-A \cdot \cos \alpha - \cos \beta\right) + \frac{N_3 \cdot L_3}{\Omega_3} = 0$$

$$\frac{P \cdot L_2}{\Omega_2} \cdot (A \cdot \cos \alpha + \cos \beta) = \left[\frac{L_2}{\Omega_2} \cdot (A \cdot \cos \alpha + \cos \beta)^2 + \frac{A^2 \cdot L_1}{\Omega_1} + \frac{L_3}{\Omega_3} \right] \cdot N_3$$

$$N_{3} = \frac{\frac{P \cdot L_{2}}{\Omega_{2}} \cdot (A \cdot \cos \alpha + \cos \beta)}{\left[\frac{L_{2}}{\Omega_{2}} \cdot (A \cdot \cos \alpha + \cos \beta)^{2} + \frac{A^{2} \cdot L_{1}}{\Omega_{1}} + \frac{L_{3}}{\Omega_{3}}\right]} = \frac{\frac{5 \cdot 2, 4}{3} \cdot 1,67}{1,67^{2} \cdot \frac{2, 4}{3} + \frac{1,3^{2} \cdot 3}{2} + \frac{4}{2,4}} \approx 1,038 \text{ t} \approx 1038 \text{ kp.}$$

$$N_3 = 1038 \text{ kp} \rightarrow \sigma_3 = 346 \text{ kp/cm}^2$$
.

$$N_2 = 5000 - 1038 \cdot 1,67 = 3267 \text{ kp} \rightarrow \sigma_2 = 816,75 \text{ kp/cm}^2$$
.

$$N_1 = 1.3 \cdot N_3 = 1384 \text{ kp} \rightarrow \sigma_1 = 553.6 \text{ kp/cm}^2$$
.

Los valores de las tensiones ratifican el comportamiento elástico.

Como se vio en teoría
$$\sigma_{CO} \le \sigma_{ADM} = \frac{\sigma_e}{n} \rightarrow n = \frac{\sigma_e}{\sigma_{CO}} \rightarrow \sigma_e = 400 \text{ MPa} \approx 4082 \text{ kp/cm}^2 \rightarrow n = \frac{4082}{816.75} \approx 5.$$

Figura 7.6

6.- La viga escalonada de la figura 7.6 está formada por dos tramos de longitudes a = b = 1 m, y compuestos de diferentes materiales. El tramo superior está construido de aluminio y tiene una sección $\Omega_b = 2 \cdot \Omega$, $\Omega = 0.16$ cm². El tramo inferior está construido de acero y tiene una sección $\Omega_a = \Omega$. En la separación entre los dos tramos se encuentra un carga P = 1 t, como muestra la figura 7.6. Otros datos son:

Aluminio

$$E_b = 7 \cdot 10^5 \text{ kp/cm}^2$$
, $\gamma_b = 2700 \text{ kg/m}^3$, tensión de fluencia $\sigma_{fb} = 2.5 \cdot 10^3 \text{ kp/cm}^2$.

Acero

$$E_a = 2.1 \cdot 10^5$$
 MPa, $\gamma_a = 7800$ kg/m³, tensión de fluencia $\sigma_{fa} = 2 \cdot 10^3$ kp/cm².

Con estos datos se pide determinar, considerando que trabaja elásticamente hasta la fluencia, los diagramas de esfuerzos y tensiones normales para lo que se considerará el peso propio. Se discutirá la posibilidad de despreciar el peso propio. Verificar que se trabaja por debajo de la fluencia. Determinar las longitudes finales de cada tramo.

Lo primero que se va a hacer es pasar todos los datos a las mismas unidades. En este caso se utilizarán kilopondios kp, y metros m.

$$\begin{split} E_b &= 7 \cdot 10^5 \text{ kp/cm}^2 = 7 \cdot 10^9 \text{ kp/m}^2, \, \sigma_{fb} = 2,5 \cdot 10^3 \text{ kp/cm}^2 = 2,5 \cdot 10^7 \text{ kp/m}^2 \\ E_a &= 2,1 \cdot 10^5 \text{ MPa} = 2,1 \cdot 10^5 \cdot 10^6 \text{ N/m}^2 \text{ (Pa)} \approx 2,1 \cdot 10^{10} \text{ kp/m}^2, \, \sigma_{fa} = 2 \cdot 10^7 \text{ kp/m}^2. \end{split}$$

Se ha utilizado un valor aproximado de 10 para pasar de N a kp, en vez del valor habitual de 9.8.

Cálculo de reacciones: Lo primero será valorar el peso de cada tramo. Denominando al peso total con la letra G y vale $G_i = \rho_i \cdot L_i \cdot \Omega_i$; donde ρ_i es el valor del peso específico, L_i es la longitud del tramo en cuestión y $\cdot \Omega_i$ el valor de la sección. El valor de ρ_i en kp/m^3 coincide con el valor de la densidad dado en kg/m^3 . Se comprueba: el peso es $G = m \cdot g = \gamma \cdot V \cdot g = \rho \cdot V$, donde m es la masa, g la gravedad y V el volumen. Así $\rho = \gamma \cdot g$, que en el S.I la densidad se expresa en kg/m^3 y $g \approx 10$ m/s². Así el valor para una densidad de 1 vale $\rho \approx kg/m^3 \cdot 10 \cdot m/s^2 \approx 10$ N/m³, que si se pasa el S.T la unidad de fuerza es el kp y basta dividir por el valor de kp0, quedando kp1 este modo la densidad expresada en el kp3. I tiene el mismo valor numérico que el del peso específico expresado en el kp3. Volviendo al problema

$$\begin{split} G_b &= \rho_b \cdot b \cdot \Omega_b = 2700 \cdot 1 \cdot 2 \cdot 0, 16 = 864 \text{ kp}. \\ G_a &= \rho_a \cdot a \cdot \Omega_a = 7800 \cdot 1 \cdot 0, 16 = 1248 \text{ kp}. \\ P &= 1000 \text{ kp}. \end{split}$$

El peso propio es importante, dado que tiene un orden de magnitud similar al de la carga aplicada.

En la figura 7.6 se muestra el sistema con las reacciones. Planteando las ecuaciones de equilibrio.

$$\sum F_{\text{EXT}} = 0 \rightarrow R_1 + R_2 = G_a + G_b + P = 864 + 1000 + 1248 = 3112 \text{ kp.}$$

El sistema es hiperestático de grado 1, por lo que se necesita una ecuación más para poder resolverlo. Como los extremos de la viga son fijos la condición que permitirá determinar los esfuerzos es $\Delta L = 0$; la variación de longitud de los dos tramos es nula.

Para determinar esta ecuación es necesario plantear los esfuerzos en las barras en función de la incógnita hiperestática. Para evaluar los esfuerzos normales en las barras, se toman tantas secciones como sean necesarias para la resolución del problema. En este caso, basta considerar dos: la primera en la zona de área mayor y la segunda en la zona de área menor. Se toma como eje coordenado el x con origen en el empotramiento superior. Así para:

0 < x < b: tomando una sección como muestra la figura, el esfuerzo normal N_b se puede escribir por el equilibrio de fuerzas en el eje x:

$$N_b(x) = R_1 - G_{bx} = R_1 - \rho_b \cdot x \cdot \Omega_b = R_1 - 864 \cdot x$$

b < x < a + b: de igual manera el esfuerzo N_a se puede escribir:

$$\begin{split} N_a(x) &= R_1 - G_b - G_{ax} - P = R_1 - 864 - \rho_b \cdot (x - b) \cdot \Omega_b = R_1 - 864 - 7800 \cdot (x - 1) \cdot 0, 16 - 1000 = R_1 - 1248 \cdot x + 1248 - 1864 = R_1 - 1248 \cdot x - 616 \end{split}$$

Conocidos los esfuerzos se determina $\Delta L = 0$.

$$\Delta l = 0 \rightarrow$$

$$\begin{split} \Delta l &= \int_0^b \frac{N_b \cdot dx}{E_b \cdot 2 \cdot \Omega} + \int_b^{b+a} \frac{N_a}{E_a \cdot \Omega} \cdot dx = \int_0^b \frac{R_1 - 864 \cdot x}{7 \cdot 10^9 \cdot 2 \cdot 0.16} \cdot dx + \int_a^{2a} \frac{R_1 - 1248 \cdot x - 616}{2.1 \cdot 10^{10} \cdot 0.16} \cdot dx = \\ &= \frac{1}{2.24 \cdot 10^9} \left(R_1 \cdot x - 864 \cdot \frac{x^2}{2} \right)_0^1 + \frac{1}{3.36 \cdot 10^9} \left(R_1 \cdot x - 1248 \cdot \frac{x^2}{2} - 616 \cdot x \right)_1^2 = 0 \\ &= \frac{1}{2.24 \cdot 10^9} R_1 \cdot 1 - 864 \cdot \frac{1^2}{2} + \frac{1}{3.36 \cdot 10^9} R_1 \cdot (2 - 1) - 1248 \cdot \frac{2^2 - 1^2}{2} - 616 \cdot (2 - 1) = 0 \end{split}$$

despejando R_1 se obtiene:

$$R_1 = 1254,4 \text{ kp}$$
 y $R_2 = 1857,6 \text{ kp}$.

Así las leyes de esfuerzos normales quedan:

$$N_b(x) = 1254,4 - 864 \cdot x$$
 (kp cuando x está en m)

b < x < a + b:

$$N_a(x) = 638.4 - 1248 \cdot x$$
 (kp cuando x está en m)

Las tensiones normales se obtienen dividiendo por la sección en cada tramo. Así:

 $0 < x < b \text{: } \sigma_b = \frac{N_b}{\Omega_b} = 3920 - 2700 \cdot x \text{ (kp/m}^2 \text{ cuando } x \text{ está en m), trabajando a}$ tracción en todo el tramo.

 $b < x < a + b : \sigma_a = \frac{N_a}{\Omega_a} = 3990 - 7800 \cdot x \text{ (kp/m}^2 \text{ cuando } x \text{ está en m), trabajando a}$ compresión en todo el tramo.

Ahora basta representarlas gráficamente como muestra la figura inicial.

Las longitudes de cada tramo se determinan.

$$\Delta l_b = \int_0^b \frac{N_b \cdot dx}{E_b \cdot 2 \cdot \Omega} = \int_0^b \frac{R_1 - 864 \cdot x}{7 \cdot 10^9 \cdot 2 \cdot 0.16} \cdot dx = \frac{1}{2.24 \cdot 10^9} \left(R_1 \cdot x - 864 \cdot \frac{x^2}{2} \right)_0^1 = \frac{1}{2.24 \cdot 10^9}$$

$$1254.4 \cdot 1 - 864 \cdot \frac{1^2}{2} = 3.67142 \cdot 10^{-7} \text{ m}$$

así
$$l_b = 1 + 3,67142 \cdot 10^{-7} = 1,000000367142$$
 m y $l_a = 2 - 1,000000367142 = 0,9999996$ m.

7.- Un pilar de sección cuadrada de hormigón armado debe soportar una carga centrada de P=187,5 t. Calcular las secciones de acero y hormigón de modo que la sección de acero tenga una cuantía del w=0,8% de la de hormigón. Datos: $E_a=2,1\cdot10^6~kp/cm^2$, $E_h=1,9\cdot10^5~kp/cm^2$, $\sigma_{fh}=250~kp/cm^2$, coeficiente de minoración de la resistencia del hormigón $\gamma_C=1,5$, y el de mayoración de esfuerzos $\gamma_f=1,6$.

En primer lugar se supone que la adherencia entre el acero y el hormigón es perfecta, de tal manera que las deformaciones son idénticas.

$$\varepsilon_a = \varepsilon_b \rightarrow \sigma_a/E_a = \sigma_b/E_b \rightarrow \sigma_a = E_a \cdot \sigma_b/E_b \rightarrow k = E_a/E_b \approx 11$$

El esfuerzo que soportan ambos materiales es el esfuerzo normal que vale P en todo el pilar. Así:

$$P = \sigma_a \cdot \Omega_a + \sigma_h \cdot \Omega_h = \sigma_h \cdot \Omega_h (1 + k \cdot \Omega_a / \Omega_h) = \sigma_h \cdot \Omega_h (1 + k \cdot w)$$

donde w es la cuantía mecánica del acero. Despejando y ponderando el esfuerzo:

$$\Omega_h = \gamma_f \cdot P/\sigma_h \cdot (1 + k \cdot \Omega_a/\Omega_h)$$

en el caso de máximo aprovechamiento de la capacidad resistente del hormigón. Ésta es la situación más lógica ya que el acero se incluye para las tracciones y al trabajar a compresión el diseño apropiado es que el hormigón trabaje en la situación límite a su máxima capacidad. Así $\sigma_h = \sigma_{fh}/\gamma_C = 250/1,5 = 166,7 \text{ kp/cm}^2$. Sustituyendo se tiene:

$$\Omega_h = 1,6 \cdot 187500/166, 7 \cdot (1 + 11 \cdot 0,008) = 1654 \text{ cm}^2$$

luego será una sección cuadrada de lado a = 40,67 cm. Ω_a = 0,008· Ω_h = 13,23 cm². Suponiendo una barra en cada extremo que exige el diseño de pilares de hormigón

como mínimo. $4 \cdot \pi \cdot d^2/4 = 13,23 \text{ cm}^2$. El diámetro $d \approx 2,05 \text{ cm}$, se podría dar como válido un valor de 2 al incluir seguridades en el diseño. El pilar estará armado con 2ϕ 20, el 20 indica el valor del diámetro en milímetros.

Figura 7.8a.

8.- En la estructura de la figura 7.8a, hallar el descenso vertical de los puntos de aplicación de las cargas.

Determinar el sistema:

$$GH = b - (2 \cdot n - c) \rightarrow b = 10; n = 6; c = 3 \rightarrow GH = 10 - (2 \cdot 6 - 3) = 10 - 9 = 1$$

Cálculo de reacciones:

$$\sum \text{Fext} \Big|_{X} = 0 \rightarrow H_A = 0$$

 \sum Fext $\Big|^{Y} = 0 \rightarrow 2 \cdot P = V_A + V_B$; no hace falta aplicar momentos al ser la estructura simétrica respecto al plano medio (tanto de carga como de geometría).

Por ser
$$H_A = 0 \rightarrow 2P = 2V_A \rightarrow V_A = V_B = P$$

Método de nudos. Cálculo de esfuerzos en las barras:

Comenzando por un nudo con dos incógnitas, por ejemplo el F:

$$\sum \text{Fext}|_{x}^{x} = 0 \rightarrow N_{6} \cos 45^{\circ} + N_{5} = 0 \rightarrow N_{6} \cdot \frac{\sqrt{2}}{2} + N_{5} = 0$$

$$\sum \text{Fext}|^{Y} = 0 \rightarrow N_{6} \text{ sen } 45^{\circ} + P = 0 \rightarrow N_{6} = -\frac{P}{\sqrt{2}/2} = -\frac{2P}{\sqrt{2}} = -\sqrt{2}P$$

$$N_5 = -\frac{\sqrt{2}}{2} \cdot N_6 = -\frac{\sqrt{2}}{2} \cdot \left(-\frac{2 \cdot P}{\sqrt{2}}\right) = P$$

Por simetría
$$N_3 = N_5$$
; $N_2 = N_6$; $N_3 = N_5 = P$; $N_2 = N_6 = -\sqrt{2} \cdot P$

Ahora el resto de nudos tienen más de dos incógnitas, al tener GH=1 se tiene una incógnita en exceso. Calculando los esfuerzos de las barras en función de uno de ellos. En este caso tomamos N_1 .

Figura 7.8b.

En el nudo A:

$$\sum \text{Fext}|_{x} = 0 \rightarrow N_1 + N_8 \cos 45^\circ = N_6 \cos 45^\circ$$

$$\sum \text{Fext}|_{1}^{Y} = 0 \rightarrow N_{6} \cdot \text{sen } 45^{\circ} + N_{7} + N_{8} \cdot \text{sen } 45^{\circ} + P = 0$$

En x
$$\rightarrow$$
 N₁ + N₈ $\cdot \frac{\sqrt{2}}{2} = N_6 \cdot \frac{\sqrt{2}}{2} = -\sqrt{2} \cdot P \cdot \frac{\sqrt{2}}{2} = -P$

En y
$$\rightarrow N_6 \cdot \frac{\sqrt{2}}{2} + N_7 + N_8 \cdot \frac{\sqrt{2}}{2} + P = 0 \rightarrow -\sqrt{2}P \frac{\sqrt{2}}{2} + N_7 + N_8 \frac{\sqrt{2}}{2} + P = 0$$

En x
$$\rightarrow$$
 N₁ + N₈ $\frac{\sqrt{2}}{2}$ = -P \rightarrow N₈ = (-P - N₁) $\cdot \frac{2}{\sqrt{2}}$ = -(P + N₁) $\cdot \sqrt{2}$

En y
$$\rightarrow N_7 = -N_8 \cdot \frac{\sqrt{2}}{2} = -\frac{\sqrt{2}}{2} \cdot [-(P + N_1)] \cdot \sqrt{2} = P + N_1$$

$$N_8 = N_9 = -(P + N_1) \cdot \sqrt{2}$$
; $N_7 = N_{10} = P + N_1$

En el nudo E:

$$\sum \text{Fext}|_{x} = 0 \rightarrow P = N_4 + N_9 \cos 45^{\circ}$$

$$\sum \text{Fext}|_{1}^{Y} = 0 \rightarrow N_7 + N_9 \cdot \text{sen } 45^\circ = 0 \rightarrow \text{No aporta nada nuevo.}$$

En x
$$\rightarrow$$
 P = N₄ - (P + N₁) $\cdot \sqrt{2} \cdot \frac{\sqrt{2}}{2}$

$$N_4 = P + P + N_1 = 2 \cdot P + N_1 \Rightarrow N_4 = 2 \cdot P + N_1$$

Obteniendo todos los esfuerzos en función de la incógnita hiperestática, ahora se deben obtener las ecuaciones de compatibilidad.

$$N_2 = N_6 = -\sqrt{2} \cdot P;$$
 $N_3 = N_5 = P;$ $N_4 = 2 \cdot P + N_1;$

$$N_7 = N_{10} = P + N_1;$$
 $N_8 = N_9 = -(P + N_1) \cdot \sqrt{2}$

La ecuación de compatibilidad se puede obtener del teorema de Menabrea.

El potencial interno es:

$$\Phi = \sum_{i=1}^{n=10} \frac{N_i^2 \cdot l_i}{2 \cdot E_i \cdot \Omega_i};$$

todas tienen la misma E y Ω

$$\Phi = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_2 + N_3^2 \cdot l_3 + N_4^2 \cdot l_4 + N_5^2 \cdot l_5 + N_6^2 \cdot l_6 + N_7^2 \cdot l_7 + N_8^2 \cdot l_8 + N_9^2 \cdot l_9 + N_{10}^2 \cdot l_{10} \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_2 + N_3^2 \cdot l_3 + N_4^2 \cdot l_4 + N_5^2 \cdot l_5 + N_6^2 \cdot l_6 + N_7^2 \cdot l_7 + N_8^2 \cdot l_8 + N_9^2 \cdot l_9 + N_{10}^2 \cdot l_{10} \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_2 + N_3^2 \cdot l_3 + N_4^2 \cdot l_4 + N_5^2 \cdot l_5 + N_6^2 \cdot l_6 + N_7^2 \cdot l_7 + N_8^2 \cdot l_8 + N_9^2 \cdot l_9 + N_{10}^2 \cdot l_{10} \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_2 + N_3^2 \cdot l_3 + N_4^2 \cdot l_4 + N_5^2 \cdot l_5 + N_6^2 \cdot l_6 + N_7^2 \cdot l_7 + N_8^2 \cdot l_8 + N_9^2 \cdot l_9 + N_{10}^2 \cdot l_{10} \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_2 + N_3^2 \cdot l_3 + N_4^2 \cdot l_4 + N_5^2 \cdot l_5 + N_6^2 \cdot l_6 + N_7^2 \cdot l_7 + N_8^2 \cdot l_8 + N_9^2 \cdot l_9 + N_{10}^2 \cdot l_{10} \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_2 + N_3^2 \cdot l_3 + N_4^2 \cdot l_4 + N_5^2 \cdot l_5 + N_6^2 \cdot l_6 + N_7^2 \cdot l_7 + N_8^2 \cdot l_8 + N_9^2 \cdot l_9 + N_{10}^2 \cdot l_{10} \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_2 + N_3^2 \cdot l_3 + N_3^2 \cdot l_8 + N_9^2 \cdot l_9 + N_{10}^2 \cdot l_9 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_2 + N_3^2 \cdot l_3 + N_3^2 \cdot l_9 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_3 + N_3^2 \cdot l_9 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_3 + N_3^2 \cdot l_9 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_3 + N_3^2 \cdot l_9 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 + N_3^2 \cdot l_9 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 + N_3^2 \cdot l_9 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 + N_3^2 \cdot l_1 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 + N_3^2 \cdot l_1 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 \right) = \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot l_1 + N_2^2 \cdot l_1 \right)$$

$$= \frac{1}{2 \cdot E \cdot \Omega} \left(N_1^2 \cdot L + 2 \cdot N_2^2 \cdot \sqrt{2} \cdot L + 2 \cdot N_3^2 \cdot L + N_4^2 \cdot L + 2 \cdot N_7^2 \cdot L + 2 \cdot N_8^2 \cdot \sqrt{2} \cdot L \right)$$

$$l_1 = l_3 = l_4 = l_5 = l_7 = l_{10} = L$$

Por el teorema de Menabrea.

$$l_2 = l_6 = l_8 = l_9 = \sqrt{2} \cdot L$$

$$\frac{\partial N^{1}}{\partial \Phi} = 0 \rightarrow$$

$$2 \cdot \mathbf{N}_{1} \cdot \mathbf{L} + 4 \cdot \sqrt{2} \cdot \mathbf{L} \cdot \mathbf{N}_{2} \cdot \frac{\partial \mathbf{N}_{2}}{\partial \mathbf{N}_{1}} + 4 \cdot \mathbf{N}_{3} \cdot \mathbf{L} \cdot \frac{\partial \mathbf{N}_{3}}{\partial \mathbf{N}_{1}} + 2 \cdot \mathbf{N}_{4} \cdot \mathbf{L} \cdot \frac{\partial \mathbf{N}_{4}}{\partial \mathbf{N}_{1}} + 4 \cdot \mathbf{N}_{7} \cdot \mathbf{L} \cdot \frac{\partial \mathbf{N}_{7}}{\partial \mathbf{N}_{1}} + 4 \cdot \mathbf{N}_{8} \cdot \mathbf{L} \cdot \frac{\partial \mathbf{N}_{8}}{\partial \mathbf{N}_{1}} = 0$$

$$\frac{\partial \mathbf{N}_{2}}{\partial \mathbf{N}_{1}} = 0; \frac{\partial \mathbf{N}_{3}}{\partial \mathbf{N}_{1}} = 0; \frac{\partial \mathbf{N}_{4}}{\partial \mathbf{N}_{1}} = 1; \frac{\partial \mathbf{N}_{8}}{\partial \mathbf{N}_{1}} = 1; \frac{\partial \mathbf{N}_{8}}{\partial \mathbf{N}_{1}} = -\sqrt{2}$$

$$2 \cdot N_1 + 2 \cdot (2 \cdot P + N_1) + 4 \cdot (P + N_1) + 4 \cdot \sqrt{2} \left[-(P + N_1) \cdot \sqrt{2} \right] - (\sqrt{2}) = 0$$

$$\begin{aligned} N_1 + 2 P + N_1 + 2 (P + N_1) + 4 \sqrt{2} (P + N_1) &= 0 \rightarrow 4 N_1 + 4 \sqrt{2} N_1 + 4 P + 4 \sqrt{2} P = 0 \\ N_1 &= -P; \ N_6 = N_2 = -\sqrt{2} \cdot P; N_3 = N_5 = P; N_4 = 2 \cdot P + N_1 = P; N_{10} = N_7 = N_8 = N_9 = 0 \end{aligned}$$

El desplazamiento de los nudos de aplicación se puede calcular por el teorema de Castigliano.

$$\Phi(P) = \sum_{i=1}^{n=10} \frac{N_i^2 \cdot l_i}{2 \cdot E_i \cdot \Omega_i} = \frac{1}{2 \cdot E \cdot \Omega} \cdot (-P)^2 \cdot L + \frac{(-\sqrt{2} \cdot P)^2}{2 \cdot E \cdot \Omega} \cdot \sqrt{2} \cdot L \cdot 2 + \frac{2 \cdot P^2 \cdot L}{2 \cdot E \cdot \Omega} + \frac{P^2 \cdot L}{2 \cdot E \cdot \Omega} = \frac{1}{2 \cdot E \cdot \Omega} \cdot \frac{1}{2 \cdot$$

$$= \frac{P^2 \cdot L}{2 \cdot E \cdot \Omega} + \frac{2 \cdot P^2 \cdot \sqrt{2} \cdot L \cdot 2}{2 \cdot E \cdot \Omega} + \frac{P^2 \cdot L}{E \cdot \Omega} + \frac{P^2 \cdot L}{2 \cdot E \cdot \Omega} = \frac{2 \cdot P^2 \cdot L}{E \cdot \Omega} (1 + \sqrt{2})$$

El desplazamiento, según el teorema, del nudo de aplicación según la dirección de la carga externa es: $2\cdot\delta p = \frac{\partial\Phi}{\partial P} = \frac{4\cdot P\cdot L}{E\cdot\Omega}\cdot(1+\sqrt{2})$, ya que el potencial interno calculado corresponde al de dos cargas P simétricas y en nudos simétricos, luego para un nudo será la mitad. Así:

$$\delta p = \frac{2 \cdot P \cdot L}{E \cdot \Omega} (1 + \sqrt{2})$$

9.- La estructura de la figura 7.9 corresponde a una pasarela que se diseña como estructura plana formada por un pilar rígido y una viga horizontal, rígida también, que soporta una carga uniformemente distribuida. La unión entre las vigas es una articulación perfecta. Para mantener el equilibrio se disponen tres barras elásticas de longitudes L_1 , L_2 y L_3 , según la figura. Se pide resolver los esfuerzos que soportan las barras en función de L y q. Los ángulos verifican: sen $\alpha = 0.6$ y sen $\beta = 0.8$. Las barras serán de la misma sección y del mismo material.

Figura 7.9a

En primer lugar se resuelve la geometría.

$$\cos\alpha = 0.8 \text{ y } \cos\beta = 0.6; \text{ h} = 1.33 \cdot \text{L}; \text{ a} = 0.78 \cdot \text{L}; \text{ L}_1 = 2.22 \cdot \text{L}; \text{ L}_1 = 1.67 \cdot \text{L}.$$

Para resolver el problema se plantea el diagrama del cuerpo libre de la barra horizontal, figura 7.9a2, donde se muestran los esfuerzos en las barras N₁, N₂ y N₃ y las reacciones en la articulación. El problema presenta 5 incógnitas y tres ecuaciones lo que supone 2 incógnitas en exceso. Para determinar los esfuerzos en las barras basta plantear la ecuación de momentos en la articulación, teniendo una ecuación y tres incógnitas, de forma que las incógnitas en exceso son las mismas.

$$\sum \overset{\rightarrow}{M_0} = \overset{\rightarrow}{0} \rightarrow N_1 \cdot \ sen \alpha \cdot 1,78 \cdot L + N_2 \cdot sen \beta \cdot L - N_3 \cdot \ sen \beta \cdot L - q \cdot 2,78 \cdot 0,39 \cdot L = 0$$

Sustituyendo los valores y simplificando:

$$N_1 \cdot 0.6 \cdot 1.78 + N_2 \cdot 0.8 - N_3 \cdot 0.8 - 1.08 \cdot q \cdot L = 0$$

Para resolver las incógnitas se estudia el sistema deformado como muestra la figura 7.9a3, que muestra el sistema deformado exagerado para visualizar la geometría correctamente. Así se obtienen las relaciones:

$$\Delta L_1 = AA' \cdot sen\alpha = 0.6 \cdot AA'; \Delta L_2 = BB' \cdot sen\beta = 0.8 \cdot BB'; BB' = CC'.$$

También por semejanza de arcos se obtiene $AA'/(1,78\cdot L) = BB'/L \rightarrow AA' = BB'\cdot 1,78$.

De las relaciones anteriores:

$$AA' = \Delta L_1/0, 6 = BB' \cdot 1,78 = 1,78 \cdot \Delta L_2/0, 8 \rightarrow \Delta L_1 = 1,33 \cdot \Delta L_2$$

Como:

$$\begin{split} \Delta L_1 &= \frac{N_1 \cdot L_1}{E_1 \cdot \Omega_1} = 1{,}33 \cdot \Delta L_2 = 1{,}33 \cdot \frac{N_2 \cdot L_2}{E_2 \cdot \Omega_2} \ \ y \ como \ E_1 = E_2 = E_3 \ \ y \ \Omega_1 = \Omega_2 = \Omega_3 \rightarrow \\ N_1 \cdot L_1 &= 1{,}33 \cdot N_2 \cdot L_2 \rightarrow N_1 \cdot 2{,}22 \cdot L = 1{,}33 \cdot N_2 \cdot 1{,}67 \cdot L \rightarrow N_1 = N_2. \end{split}$$

Además, como $\Delta L_2 = -\Delta L_3$ ya que son barras iguales, se obtiene que $N_2 = -N_3$.

Sustituyendo ahora en la ecuación de momentos:

 $N_1\cdot 1,067 + N_2\cdot 0,8 - N_3\cdot 0,8 - 1,08\cdot q\cdot L = 0 \rightarrow N_1\cdot 1,067 + N_1\cdot 0,8 + N_1\cdot 0,8 - 1,08\cdot q\cdot L = 0 \rightarrow que$ despejando se obtiene:

$$N_1 = N_2 = 0.405 \cdot q \cdot L$$
; $N_3 = -0.405 \cdot q \cdot L$.

Este mismo resultado se obtiene aplicando el teorema de Menabrea. El teorema dice que si X es una incógnita hiperestática. Así:

El potencial interno es:

$$\Phi = \sum_{i=1}^{n=3} \frac{N_i^2 \cdot l_i}{2 \cdot E_i \cdot \Omega_i}$$

Por el teorema de Menabrea.

$$\frac{\partial N^1}{\partial \Phi} = 0 \rightarrow$$

$$N_1 \cdot L_1 \frac{\partial N_1}{\partial N_1} + N_2 \cdot L_2 \cdot \frac{\partial N_2}{\partial N_1} + N_3 \cdot L_3 \cdot \frac{\partial N_3}{\partial N_1} = 0$$

omitiéndose los valores de E y Ω por ser los mismos.

A partir de la ecuación de momentos se tiene:

$$N_1 \cdot 1,067 + N_2 \cdot 0,8 - N_3 \cdot 0,8 - 1,08 \cdot q \cdot L = 0 \rightarrow N_3 = 1,33 \cdot N_1 + N_2 - 1,35 \cdot q \cdot L$$

Ahora se tiene que: $\partial N_1/\partial N_1=1$, $\partial N_2/\partial N_1=0$ y $\partial N_3/\partial N_1=1,33$.

$$\frac{\partial \Phi}{\partial N_1} = 0 \rightarrow N_1 \cdot L_1 + N_3 \cdot L_3 \cdot 1,33 = 0 \rightarrow N_1 \cdot 2,22 \cdot L + (1,33 \cdot N_1 + N_2 - 1,35 \cdot q \cdot L)$$
$$) \cdot 1,67 \cdot L_3 \cdot 1,33 = 0 \rightarrow 5,1852 \cdot N_1 + 2,22 \cdot N_2 = 3 \cdot q \cdot L$$

Del mismo modo:

$$\frac{\partial \Phi}{\partial N_2} = 0 \rightarrow$$

$$N_1 \cdot L_1 \frac{\partial N_1}{\partial N_2} + N_2 \cdot L_2 \cdot \frac{\partial N_2}{\partial N_2} + N_3 \cdot L_3 \cdot \frac{\partial N_3}{\partial N_2} = 0$$

Ahora se tiene que: $\partial N_1/\partial N_2 = 0$, $\partial N_2/\partial N_2 = 1$ y $\partial N_3/\partial N_2 = 1$

$$\frac{\partial \Phi}{\partial N_1} = 0 \rightarrow N_2 \cdot L_2 \cdot 1 + N_3 \cdot L_3 \cdot 1 = 0 \rightarrow N_2 = -N_3$$

sustituyendo en la ecuación de momentos $N_3 = -N_2 = 1,33 \cdot N_1 + N_2 - 1,35 \cdot q \cdot L \rightarrow 1,33 \cdot N_1 + 2 \cdot N_2 = 1,35 \cdot q \cdot L$ que es la ecuación que faltaba. Con estas ecuaciones obtenidas se obtienen los mismos valores, así:

$$5,1852 \cdot N_1 + 2,22 \cdot N_2 = 3 \cdot q \cdot L$$

$$1,33 \cdot N_1 + 2 \cdot N_2 = 1,35 \cdot q \cdot L$$

despejando:

$$N_1 = N_2 = 0.405 \cdot q \cdot L; N_3 = -0.405 \cdot q \cdot L.$$

CAPÍTULO IV Análisis de la Cortadura Pura

LECCIÓN 8

Cortadura pura

Introducción: Se vio en la teoría que la cortadura pura en la que el esfuerzo cortante es el único en la sección, suele ser un hecho aislado. La cortadura pura se suele admitir en el cálculo de elementos de unión, como tornillos, remaches o cordones de soldadura. Esto es aceptable porque, en estos elementos las tensiones y deformaciones debidas al esfuerzo cortante son mucho mayores que las debidas a otros esfuerzos. No es un objetivo prioritario de esta asignatura el diseño de los mencionados elementos, por eso se presentan unos pocos ejercicios a modo de ejemplo que ayuden al estudiante a comprender mejor los esfuerzos cortantes.

Objetivos de la lección: Familiarizar al estudiante con el esfuerzo cortante para que sirva de base para ampliar conocimientos en el diseño de elementos de unión.

Contenidos de los problemas: Cálculo de uniones sencillas a cortadura pura.

Problemas resueltos: Referentes a los contenidos establecidos.

Formulación básica:

Formulación estudiada en lecciones anteriores.

Criterio de signos:

Figura 1 Cortadura pura.

181

Tensión cortante: $\tau_y = \frac{T}{O}$

Ley de Hooke a cortadura:
$$\tau = G \cdot \gamma \rightarrow \gamma = \frac{\tau}{G} = \frac{T}{G \cdot \Omega}$$

Potencial interno y teorema de Castigliano:

$$d\Phi = dx \iint_{\Omega} \frac{\tau^2}{2 \cdot G \cdot \Omega} dy \cdot dz = dx \iint_{\Omega} \frac{T^2}{2 \cdot G \cdot \Omega^2} dy \cdot dz = \frac{T^2}{2 \cdot G \cdot \Omega} \cdot dx$$

$$\delta = \frac{d(d\Phi)}{dT} = \frac{T}{G\Omega}dx \rightarrow \gamma = \frac{\delta}{dx} = \frac{T}{G\Omega}$$

Figura 8.1

1.- Para la figura 8.1 determinar el diámetro "d" del tornillo si la fuerza F=3000~kp, la tensión de límite elástico del acero es $\sigma_e=2400~kp/cm^2~y$ el coeficiente de seguridad es n=1,5. Para ello aplicar:

a) El criterio de Von Mises

b) El criterio de Tresca que establece que la relación entre la tensión cortante y la de tracción es $\sigma = 2 \cdot \tau$

El criterio de Von Mises es $\sigma_{co} = \sqrt{\sigma^2 + 3\,\tau^2}$ que para cortadura pura $\sigma = 0$ luego $\sigma_{co} = \sqrt{3\,\tau^2} = \sqrt{3} \cdot \tau \le \sigma_{ADM} = \frac{\sigma_{Lim}}{n} = \frac{\sigma_e}{n} = \frac{2400}{1,5} = 1600 \text{ kp/cm}^2 \rightarrow \tau \le \frac{\sigma_{ADM}}{\sqrt{3}} = \frac{1600}{\sqrt{3}}$ = 924 kp/cm² el cortante en la sección vale aproximadamente $\tau = \frac{F}{\Omega} = \frac{3000}{\Omega} \le 924 \rightarrow \Omega \ge \frac{3000}{924} = 3,25 \text{ cm}^2$ se observa que las secciones del tornillo, que van a soportar la carga F, son las de los extremos de la pieza interior (basta aplicar el método de las secciones) siendo el área calculada dos veces la del círculo $\Omega = 2 \cdot \pi \frac{d^2}{4} = 3,25 \rightarrow d = \sqrt{2\frac{3,25}{\pi}} = 1,44 \text{ cm}$ solución d = 1,55 cm

Figura 8.2

2.- Dimensionar los elementos de la figura 8.2 sabiendo que es acero A-42, la fuerza $F=5000~\rm kp$ y el coeficiente de seguridad vale n=1,3 para todos los esfuerzos. Datos s=e y b=3 cm.

Las dos piezas 1 y 2 tienen idénticas secciones. En ambas piezas existen secciones que trabajan a tracción y cortadura despreciándose toda flexión. Las secciones críticas tienen área $\Omega = e \cdot b$ y se puede considerar que unas trabajan a tracción y otras a cortadura pero ninguna de las secciones críticas soporta ambas situaciones a la vez. Dicho esto basta diseñar para que las secciones críticas soporten dichos esfuerzos.

A TRACCIÓN

Según Von Mises la tensión de comprobación es $\sigma_{co} = \sqrt{\sigma^2 + 3\,\tau^2} \le \sigma_{ADM}$. Como solo trabaja a tracción $\sigma_{co} = \sigma \le \sigma_{ADM} = \frac{\sigma_e}{n} = \frac{2600}{1,3} = 2000 \text{ kp/cm}^2$. Como $\sigma = \frac{F}{\Omega} = \frac{5000}{e\,b} = 2000 \text{ kp/cm}^2 \rightarrow e \cdot b = \frac{5}{2} \rightarrow e = \frac{5}{6} = 0,83 \text{ cm}$

A CORTADURA

Para la pieza 1 las secciones A y B son las que van a soportar todo el cortante y en la pieza 2 las C y D. Como todas ellas soportan una carga de $\frac{F}{2}$ y al ser s = e tienen la misma sección, de tal forma que el cálculo es el mismo para todas.

El criterio de Von Mises la tensión de comprobación es $\sigma_{co} = \sqrt{\sigma^2 + 3\tau^2} \le \sigma_{ADM}$. Para cortadura pura $\sigma_{co} = \sqrt{3\tau^2} = \sigma_{co} = \sqrt{3} \cdot \tau \le \sigma_{ADM} = \frac{\sigma_e}{n} = \frac{2600}{1,3} = 2000 \text{ kp/cm}^2 \rightarrow \tau \le \frac{\sigma_{ADM}}{\sqrt{3}} = \frac{2000}{\sqrt{3}} = 1155 \text{ kp/cm}^2$. El cortante en la sección vale aproximadamente $\tau = \frac{F/2}{\Omega} = \frac{5000/2}{e \text{ b}} = 1155 \rightarrow e \cdot b = \frac{2500}{1155} = 216 \rightarrow e = 0,72$.

Por tanto el valor de diseño correcto será el mayor, o sea e = 0,83

3.- En la figura 8.3 se representa una unión a tope con doble fila de roblones. Las chapas principales resisten una carga de 1000 kp/cm. El paso de los roblones es de p=7 cm, y el diámetro de los mismos es de d=20 mm, el espesor de las chapas principales es de t=12 mm y el espesor de los cubrejuntas es de e=9 mm. Las tensiones de rotura son: de tracción $\sigma_{rt}=36$ kp/mm², de compresión $\sigma_{rc}=65$ kp/mm² y de cortadura $\tau_r=30$ kp/mm². Determinar el coeficiente de seguridad de

Una hilera soporta P = 1000.7 = 7000 kp

la unión basado en las tensiones de rotura.

Para el diseño de la unión de deben hacer las comprobaciones

1°.- Fallo por cortadura de los roblones

Cada roblón soporta una carga de $P^*=P/2=3500$ kp. La tensión cortante en cada roblón se reparte entre dos superficies y por tanto vale $\tau=\frac{P^*}{2\Omega}=\frac{3500}{2314}=5,6$ kp/mm² al

$$\operatorname{ser} \Omega = \pi \cdot \frac{d^2}{4} = \pi \cdot \frac{20^2}{4} = 314 \text{ mm}^2$$
. En el diseño se debe verificar que $\tau \le \tau_{ADM} = \frac{\tau_r}{n} \to 0$

$$n = \frac{\tau_{r}}{\tau_{ADM}} = \frac{30}{5.6} = 5.4$$

2°.- Fallo por rotura a tracción de la chapa principal y el cubrejuntas

La chapa principal tiene 12 mm de espesor y el cubrejuntas 9 mm. Pero el cubrejuntas está formado de dos piezas por lo que su espesor efectivo es de 18 mm. La rotura a tracción se produciría por desgarramiento de la chapa principal.

Así la tensión de rotura vale
$$\sigma_t = \frac{N}{\Omega} = \frac{P}{(p-d) \cdot t} = \frac{7000}{(70-20) \cdot 12} = 11,7 \text{ kp/mm}^2$$

En el diseño se debe verificar que
$$\sigma_t \le \sigma_{ADM} = \frac{\sigma_{rt}}{n} \to n = \frac{\sigma_{rt}}{\sigma_{rt}} = \frac{36}{9} = 4$$

3°.- Fallo por rotura a compresión de la chapa principal o el cubrejuntas

La chapa principal y el cubrejuntas pueden fallar también por aplastamiento en la zona de contacto con los roblones. La tensión de compresión vale $\sigma_c = \frac{N}{\Omega} = \frac{P^*}{d \, t}$ $= \frac{7000}{2012} = 13 \; kp/mm^2$

En el diseño se debe verificar que
$$\sigma_c \le \sigma_{ADM} = \frac{\sigma_{rc}}{n} \to n = \frac{\sigma_{rc}}{\sigma_{ADM}} = \frac{65}{11,7} = 5,6$$

Por tanto la unión tiene una seguridad de n = 4 ya que con un valor mayor de n no se cumple la condición de diseño 2° .

CAPÍTULO V Análisis de la Flexión

LECCIÓN 9

Flexión simple

Introducción: En esta lección se estudia la flexión simple que es la base para el diseño de elementos a flexión, de los que trata este capítulo V.

Dado que la mayoría de los problemas que plantea este curso son de diseño de vigas y estructuras sencillas en el plano, la flexión es vital para su resolución.

Los métodos de cálculo que plantea el análisis de la flexión son diversos, son muchos y de diversa índole los problemas que estudia la Resistencia de Materiales, de tal forma que su estudio requiere de un tratamiento amplio y detallado. Como se dijo en el libro de teoría, las lecciones que se estudian han de ser sencillas y dar una base muy elemental, dadas las características de este curso. Por ello, se estudian los métodos y problemas, que según nuestro criterio, se adaptan mejor a este curso.

Objetivos de la lección: Preparar al estudiante para el diseño de elementos estructurales sometidos a flexión simple y que sirva de base para comprender las lecciones posteriores que plantean el problema de la flexión.

Contenidos de los problemas: Diseño de vigas sometidas a flexión simple planteando todos los contenidos de la lección de teoría. El diseño se centraliza en elementos de acero, dado que elementos de hormigón requieren de un estudio más profundo que se da en las lecciones de estructuras.

Problemas resueltos: Exclusivamente ejercicios referentes a estos contenidos...

Formulación básica:

Criterio de signos

Figura 9.1 Criterio de signos para esfuerzos cortantes y momentos flectores.

Ley de Navier y Tensión normal máxima

$$\sigma = -\frac{M_F}{I_z} y \rightarrow \sigma_{max} = -\frac{M_F}{W_z}$$

Relación entre el esfuerzo cortante y el momento flector

$$T = \frac{dM}{dx}$$

Ecuación diferencial aproximada de la línea elástica

$$E \cdot I_z \cdot y'' = M_z$$

Fórmula de Colignon

$$\tau = \frac{\mathbf{T} \cdot \mathbf{s}}{\mathbf{b} \cdot \mathbf{I}_{\tau}}$$

Expresión diferencial del potencial interno en flexión simple

$$d\Phi = \frac{M_z^2}{2 \cdot E \cdot I_z} dx + \frac{T^2}{2 \cdot G \cdot \Omega^*} dx$$

siendo
$$\frac{1}{\Omega^*} = \int_{1_a^2 \cdot b}^{s^2 \cdot dy}$$
, donde a Ω^* se le denomina **sección reducida**.

Diseño de vigas a flexión

- 1°.- Diseño resistente: Se debe verificar que la tensión máxima equivalente $\sigma_{CO} \le \sigma_{ADM}$. En general, para vigas normales se puede despreciar la tensión cortante frente a las tensiones normales debidas al momento flector. Así, de la ecuación de Von Mises $\sigma_{CO} \approx \sigma_{,}$ y por tanto el módulo resistente será: W $\ge M/\sigma_{ADM}$. Elegido el perfil que verifique dicha desigualdad, se comprobará la ecuación de Von Mises incluyendo las tensiones cortantes, hasta que verifique $\sigma_{CO} \le \sigma_{ADM}$.
- 2°.- Comprobación de la rigidez: Se debe verificar que la flecha $f \le f_{ADM}$, con las cargas sin ponderar en ningún caso. Las flechas admisibles para estructura de acero son:

Vigas o viguetas de cubierta	L/250
Vigas con $L \le 5$ m y viguetas de forjado, que no soporten muros de fábrica	L/300
Vigas con L > 5 m, que no soporten muros de fábrica	L/400
Vigas y viguetas de forjado, que soporten muros de fábrica	L/500
Ménsulas o voladizos con flecha medida en el extremo libre	L/300

- 1.- Dada la viga de la figura 9.1a calcular para los siguientes datos; a = 2 m, b = 3 m, c = 1 m, d = 2 m, F = 4 t, q = 0.4 t/m, M = 11 m t:
- a) Esfuerzos cortantes y momentos flectores, así como dibujar sus diagramas.
- b) Ecuaciones de ángulos y de la deformada a partir de la ecuación diferencial aproximada de la elástica. Calcular también la flecha y dibujar la deformada multiplicada por la rigidez a flexión E·I.
- c) Determinar el perfil triangular equilátero de lado a, en unidades de centímetro. Se empleará un acero A-42, con un coeficiente de seguridad n=1,5 y una flecha admisible de $f_{\rm ADM}=L/300$.
- d) Para el perfil obtenido determinar la distribución de tensiones normales y tangenciales en la sección de diseño.
- e) Determinar el potencial interno para la viga triangular y comparar los términos debidos a la flexión con los debidos al esfuerzo cortante.
- f) Normalmente los perfiles llenos son poco utilizados, salvo en hormigón, para el diseño de vigas sometidas a flexión, y si son más empleados los tipo doble T, H, tipo tubo, etc. Explicar la razón y diseñar la viga según c) pero con perfil HEB y dar algún razonamiento a lo anterior verificándolo con los resultados numéricos.

Figura 9.1a

a) En primer lugar se van ha determinar las reacciones.

$$\sum F_{\text{ext}}^{\ \ y} = 0 \quad V_A + V_B = F + q \cdot (a+b) = 2 + \frac{2}{5}(2+3) = 4 + 2 = 6 \cdot V_A + V_B = 6 \text{ t}$$

$$\sum M_{\text{ext}} \Big|_A^Z = 0 \rightarrow 0 = F \cdot a + q \cdot (a+b) \cdot \frac{(a+b)}{2} + M_0 - V_B \cdot (a+b+c+d) = 0 = 4 \cdot 2 + \frac{2}{5} \cdot (2+b+c+d) = 0 = 4 \cdot 2 +$$

Figura 9.1b

a) Cálculo de cortantes y momentos flectores.

En este caso los tramos donde las leyes de esfuerzos cambian están bien diferenciados. Hay cuatro tramos a distinguir, los de distancia a, b, c y d. Se numeran sobre la viga.

Los criterios de signos adoptados de signos son los que siguen tanto para T como M.

Esto permite determinar las leyes en los distintos tramos.

Tramo 1: 0 < x < a

$$T_1(x) = V_A - q \cdot x = 3 - \frac{2}{5} \cdot x \text{ (toneladas)}$$

Figura 9.1c

$$M_1(x) = V_A \cdot x - q \cdot x \cdot \frac{x}{2} = 3 \cdot x - \frac{2}{5} \cdot \frac{x^2}{2} = 3 \cdot x - \frac{x^2}{5}; \quad \text{se cumple además } T_1(x) = \frac{d \ M_1}{dx}$$

Tramo 2: a < x < a + b

$$T_2(x) = V_A - q \cdot x - F = 3 - \frac{2}{5} \cdot x - 4 = -1 - \frac{2}{5} \cdot x = -(1 + \frac{2}{5} \cdot x)$$

$$M_2(x) = V_A \cdot x - q \cdot x \cdot \frac{x}{2} - F \cdot (x - a) = 3 \cdot x - \frac{2}{5} \cdot \frac{x^2}{2} - 4 \cdot (x - 2) = 3 \cdot x - \frac{x^2}{5} - 4 \cdot x + 8 = 8 - x - \frac{x^2}{5}$$

$$T_2(x) = -\left(1 + \frac{2}{5} \cdot x\right)$$

$$M_2(x) = 8 - x - \frac{x^2}{5}$$
 y cumple $T_2(x) = \frac{d M_2}{dx}$

Tramo 3: a + b < x < a + b + c

$$T_3(x) = V_A - q \cdot (a+b) - F = 3 - \frac{2}{5} (2+3) - 4 = 3 - 2 - 4 = -3 t$$

$$M_3(x) = V_A \cdot x - q \cdot (a+b) \cdot (x - \frac{(a+b)}{2}) - F \cdot (x-a) = 3 \cdot x - \frac{2}{5} \cdot (2+3) \left(x - \frac{(2+3)}{2}\right) - 4 \left(x - 2\right) = 3 \cdot x - 2 \cdot x + 5 - 4 \cdot x + 8 = -3 \cdot x + 13$$

$$T_3(x) = -3 t$$

$$M_3(x) = -3 \cdot x + 13$$
 y cumple $T_3(x) = \frac{d M_3}{dx}$

Tramo 4: a + b + c < x < a + b + c + d

$$T_4(x) = V_A - q \cdot (a+b) - F = 3 - \frac{2}{5} \cdot (2+3) - 4 = 3 - 2 - 4 = -3 t$$

$$\begin{split} M_4(x) &= V_A \cdot x - q \cdot (a+b) \cdot (x - \frac{(a+b)}{2}) - F \cdot (x-a) + M_0 = 3 \cdot x - \frac{2}{5} \cdot (2+3) \cdot (x - \frac{(2+3)}{2}) - 4 \cdot (x-2) + 11 = 3 \cdot x - 2 \cdot x + 5 - 4 \cdot x + 8 + 11 = -3 \cdot x + 24 \end{split}$$

$$T_4(x) = -3 t$$

$$M_4(x) = -3 \cdot x + 24$$

Diagramas

Se trata simplemente de representar las funciones a lo largo de la viga. Es decir, no es más que un problema de análisis de funciones. En general, para los problemas que se estudian basta con una representación aproximada. En estos casos con las consideraciones siguientes suele ser suficiente:

Las funciones están restringidas a un intervalo por lo que sólo sirve el análisis dentro de su intervalo.

Si las funciones son rectas los máximos y mínimos están en los extremos de su intervalo

Si son funciones curvas (polinomios grado o más) se evalúan los máximos y mínimos con la derivada, es decir para f(x) el máximo o mínimo está en x_0 y si $\frac{d^2 f(x_0)}{dx^2} > 0$ es mínimo o $\frac{d^2 f(x_0)}{dx^2} < 0$ (por lo general no es necesario comprobar la derivada segunda).

La curvatura se busca tomando algún punto fácil de encontrar, una vez conocida la gráfica de dibuja a estima indicando valores extremos y máximos y mínimos.

Figura 9.1d

Diagrama de cortantes

En la figura adjunta se representa el diagrama T(x) de fuerzas cortantes, en este caso como la función en los distintos tramos es una línea recta entonces no hay problema y se representa fácilmente.

Para evaluar la ecuación de momentos es necesario un examen más exhaustivo. Analizamos tramo a tramo.

En el tramo 1 la ecuación es $M_1(x)=3\cdot x-\frac{x^2}{5}$; ecuación polinómica. En x=0 $M_1(0)=0$; en x=2, $M_1(2)=5,2$ t·m. Calculando máximos y mínimos: $\frac{d\,M_1}{dx}=0=$ $T_1(x)\to 3-\frac{2}{5}\cdot x=0\to x=15/2=7,5$ que no está en el tramo 1, luego no hay máximos ni mínimos. Para ver la curvatura tomamos en x=1 y sale $M_1(1)=2,8$ t·m lo que indica que tiene curvatura aunque casi no se aprecia en la gráfica.

En el tramo 2, la ecuación es $M_2(x)=8-x-\frac{x^2}{5}$, ecuación polinómica de grado dos. Operando como antes. Extremos $M_2(2)=5,2$ t·m (lógico hay continuidad en la aplicación de momentos); $M_2(5)=-2$ t·m, como es función continua tiene que tener alguna raíz. Así $8-x-\frac{x^2}{5}=0 \rightarrow x^2+5\cdot x$ $-40=0 \rightarrow x=\frac{-5\pm\sqrt{25+4\cdot40}}{2}=\frac{-5\pm13,6}{2}=4,3$ y -9,3 valiendo sólo 4,3,ya que pertenece al intervalo. Así en $x=4,3\rightarrow M_2(4,3)=0$. Los máximos y mínimos: $\frac{d\,M_2}{dx}=0$ $T_1(x)=0$ $1+\frac{2}{5}\cdot x=0$ x=-5/2 que no pertenece al intervalo. Luego en dicho tramo no hay máximos ni mínimos. La curvatura va a ser, esto se ve porque al tener marcados los extremos y otro punto, en este caso x=4,3 $M_2(4,3)=0$ si unimos los extremos con una regla queda por encima de la recta (Estos métodos no son aplicables en general para dibujar curvas).

Los tramos 3 y 4 son rectas, luego es sencillo simplemente con saber los valores extremos basta.

$$M_3(5) = -2 \text{ t·m}$$
 $M_3(6) = -5 \text{ t·m}$; $M_4(6) = 6 \text{ t·m}$ $M_4(8) = 0$

La gráfica está realizada sin gran exactitud pero para un análisis práctico reúne toda la información necesaria, como son los valores máximos y mínimos y el signo de M(x)

en cada punto. El análisis de esta gráfica permite saber como ha deformado la viga y dibujarla a estima.

b) Determinación de las ecuaciones de ángulos, deformada y de la flecha.

La ecuación de la elástica va a dar la deformada. La ecuación es: $E \cdot I_z \cdot y'' = M_z(x)$; en este caso se ha omitido z, así; $E \cdot I \cdot y'' = M(x)$. Al integrar esta ecuación una vez $E \cdot I \cdot y' = \int M(x) \ dx + A$; A = constante de la ecuación. $y'(x) = \theta(x)$; ecuación de ángulos. Una segunda integración dará $E \cdot I \cdot y = \int M(x) \ dx + A \cdot x + B$; y(x) es la elástica y nos da la posición que se ha desplazado la línea neutra, B = s una nueva constante. Las constantes A y B = s valoran a partir del problema físico, es decir el problema matemático tiene infinitas soluciones por lo que a determinar las constantes se ajusta a fenómeno físico. Estas constantes se calculan a partir de condiciones de contorno, es decir, a partir de valores concretos de $y(x) y \theta(x)$ que se conocen a priori o que se pueden determinar. Se deben encontrar tantas como constantes a determinar. El número de constante será 2 por tramo ya que cada tramo tiene su propia deformada. Analizando previamente las condiciones de contorno. A cada tramo i le corresponde una ecuación $y_i(x) y \text{ otra} \theta_i(x)$. Las condiciones de contorno que se pueden establecer son:

1°)
$$y_1(0) = 0$$
; ya que $x = 0$ es un apoyo y no se desplaza según el eje y

 2°) $y_1(2) = y_2(2)$; en x = a punto de separación de los tramos 1 y 2 el valor de la elástica debe ser igual.

3°) $y_1'(2) = y_2'(2)$ o $\theta_1(2) = \theta_2(2)$; en x = a el ángulo girado por la sección debe ser el mismo para un tramo o el otro ya que la viga es continua, la viga es una.

$$4^{\circ}$$
) $y_2(5) = y_3(5)$; igual que 2°

5°)
$$y_2'(5) = y_3'(5)$$
; igual que 3°

$$6^{\circ}$$
) $y_3(6) = y_4(6)$; igual que 2°

7°)
$$y_3'(6) = y_4'(6)$$
; igual que 3°

8°)
$$y_4(8) = 0$$
; igual que 1°

Se tienen 8 ecuaciones ya que son 8 las constantes que se deben obtener al ser 4 tramos. Al tener 8 ecuaciones y 8 incógnitas se puede resolver el problema. Ahora se calculan las ecuaciones:

Tramo 1:

E·I·y₁"(x) = M₁(x); E·I·y₁" = 3·x -
$$\frac{x^2}{5}$$
; E·I·y₁'(x) = $3 \cdot \frac{x^2}{2} - \frac{x^3}{15} + A_1$

$$E \cdot I \cdot y_1(x) = 3 \cdot \frac{x^3}{6} - \frac{x^4}{60} + A_1 \cdot x + B_1 = A_1 \cdot x + B_1 + \frac{x^3}{2} - \frac{x^4}{60}$$

Tramo 2:

$$E \cdot I \cdot y_2 \text{"}(x) = M_2(x); \ E \cdot I \cdot y_2 \text{"}(x) = 8 - x - \frac{x^2}{5}; \ E \cdot I \cdot y_2 \text{'}(x) = 8 \cdot x - \frac{x^2}{2} - \frac{x^3}{15} + A_2$$

$$E \cdot I \cdot y_2(x) = 8 \cdot \frac{x^2}{2} - \frac{x^3}{6} - \frac{x^4}{60} + A_2 \cdot x + B_2 = B_2 + A_2 \cdot x + 4 \cdot x^2 - \frac{x^3}{6} - \frac{x^4}{60}$$

Tramo 3:

E·I·y₃"(x) = M₃(x); E·I·y₃"(x) = -3·x + 13; E·I·y₃′(x) = -3·
$$\frac{x^2}{2}$$
 + 13·x + A₃

E·I·y₃ (x) = -3·
$$\frac{x^3}{6}$$
 + 13· $\frac{x^2}{2}$ + A₃·x + B₃ = B₃ + A₃·x + $\frac{13}{2}$ ·x² - $\frac{x^3}{2}$

Tramo 4:

$$E \cdot I \cdot y_4$$
"(x) = M_4 (x); $E \cdot I \cdot y_4$ "(x) = $-3 \cdot x + 24$; $E \cdot I \cdot y_4$ "(x) = $-3 \cdot \frac{x^2}{2} + 24 \cdot x + A_4$

E·I·y₄(x) = -3·
$$\frac{x^3}{6}$$
 + 24· $\frac{x^2}{2}$ + A₄·x + B₄ = B₄+ A₄·x + 12·x² - $\frac{x^3}{2}$

Ahora se deben evaluar las constantes a partir de las condiciones de contorno.

Cálculo de las constantes: De las condiciones de contorno se obtiene

1°)
$$y_1(0) = 0 \rightarrow E \cdot I \cdot y_1(0) = 0 = B_1 + A_1 \cdot 0 + \frac{0^3}{2} - \frac{0^4}{60} \rightarrow B_1 = 0$$

2°)
$$y_1(2) = y_2(2) \rightarrow B_1 + A_1 \cdot 2 + \frac{2^3}{2} - \frac{2^4}{60} = B_2 + A_2 \cdot 2 + 4 \cdot 2^2 - \frac{2^3}{6} - \frac{2^4}{60}$$

$$2 \cdot A_1 + 4 = B_2 + A_2 \cdot 2 + 16 - \frac{4}{3} \rightarrow 2 \cdot A_1 - B_2 - A_2 \cdot 2 - 12 + \frac{4}{3} = 0; \ 2 \cdot (A_1 - A_2) - B_2 - \frac{32}{3} = 0$$

3°)
$$y_1'(2) = y_2'(2) \rightarrow 3 \cdot \frac{2^2}{2} - \frac{2^3}{15} + A_1 = 8 \cdot 2 - \frac{2^2}{2} - \frac{2^3}{15} + A_2 \rightarrow A_1 - A_2 - 8 = 0$$

$$4^{o}) \ y_{2}(5) = y_{3}(5) \rightarrow B_{2} + A_{2} \cdot 5 + 4 \cdot 5^{2} - \frac{5^{3}}{6} - \frac{5^{4}}{60} = B_{3} + A_{3} \cdot 5 + \frac{13}{2} \cdot 5^{2} - \frac{5^{3}}{2}$$

$$B_2 - B_3 + A_2 \cdot 5 - A_3 \cdot 5 - 31,25 = 0$$

5°)
$$y_2'(5) = y_3'(5) \rightarrow 8.5 - \frac{5^2}{2} - \frac{5^3}{15} + A_2 = -3.\frac{5^2}{2} + 13.5 + A_3 \rightarrow A_2 - A_3 - \frac{25}{3} = 0$$

$$6^{\circ}$$
) $y_3(6) = y_4(6) \rightarrow B_3 + A_3 \cdot 6 + \frac{13}{2} \cdot 6^2 - \frac{6^3}{2} = B_4 + A_4 \cdot 6 + 12 \cdot 6^2 - \frac{6^3}{2} \rightarrow B_3 - B_4 + (A_3 - A_4) \cdot 6 - 198 = 0$

7°)
$$y_3'(6) = y_4'(6) \rightarrow -3 \cdot \frac{6^2}{2} + 13 \cdot 6 + A_3 = -3 \cdot \frac{6^2}{2} + 24 \cdot 6 + A_4 \rightarrow A_3 - A_4 - 66 = 0$$

8°)
$$y_4(8) = 0 \rightarrow E \cdot I \cdot y_4(x) = B_4 + A_4 \cdot 8 + 12 \cdot 8^2 - \frac{8^3}{2} \rightarrow B_4 + A_4 \cdot 8 + 512 = 0$$

Ahora se puede resolver:

$$A_4 = A_3 - 66 \rightarrow 8^{\circ}$$
) $B_4 = -512 - A_4 \cdot 8 = -512 - (A_3 - 66) \cdot 8 = -512 - 8 \cdot A_3 + 528$

$$B_4 = -8 \cdot A_3 + 16 \rightarrow 6^{\circ}) B_3 - (-8 \cdot A_3 + 16) + (A_3 - (A_3 - 66)) \cdot 6 - 198 = 0$$

$$B_3 + 8 \cdot A_3 - 16 + 6 \cdot A_3 - 6 \cdot A_3 + 396 - 198 = 0 \rightarrow B_3 + 8 \cdot A_3 + 182 = 0$$

5°)
$$A_3 = A_2 - \frac{25}{3} \rightarrow 6$$
°) $B_3 + 8 \cdot (A_2 - \frac{25}{3}) + 182 = 0 \rightarrow B_3 + 8 \cdot A_2 - \frac{200}{3} + 182 = 0$

$$B_3 + 8 \cdot A_2 + \frac{346}{3} = 0 \rightarrow B_3 = -\frac{346}{3} - 8 \cdot A_2 \rightarrow 4^{\circ}) B_2 - (-\frac{346}{3} - 8 \cdot A_2) + A_2 \cdot 5 - 5 \cdot (A_2 - A_2) + A_3 \cdot 5 - 5 \cdot (A_3 - A_3) + A_3 \cdot 5 - 5 \cdot$$

$$\frac{25}{3}$$
) - 31,25 = 0 \rightarrow B₂ + $\frac{346}{3}$ + 8·A₂ + 5· $\frac{25}{3}$ - 31,25 = 0 \rightarrow B₂ + 8·A₂ + 125,75 = 0 \rightarrow

3°)
$$A_2 = A_1 - 8 \rightarrow 2$$
°) $2 \cdot (A_1 - (A_1 - 8) - B_2 - \frac{32}{3}) = 0 \rightarrow 16 - B_2 - \frac{32}{3} = 0 \rightarrow B_2 = 16 - \frac{32}{3}$

$$\rightarrow$$
 B₂ = $\frac{16}{3}$

4°)
$$A_2 = \frac{-125,75 - B_2}{8} = \frac{-125,75}{8} - \frac{16}{3.8} = \frac{-377,25 - 16}{24} = \frac{-1573}{96} = A_2$$

$$6^{\text{o}}) \ B_3 = - \ \frac{346}{3} - 8 \cdot A_2 = - \ \frac{346}{3} - 8 \cdot (\frac{-1573}{96}) = - \ \frac{346}{3} + \frac{1573}{12} \rightarrow B_3 = \frac{189}{12} = \frac{63}{4} \ de \ 6^{\text{o}})$$

$$B_3 + 8 \cdot A_3 + 182 = 0 \rightarrow 8 \cdot A_3 = -182 - B_3 = -182 - \frac{63}{4} \rightarrow A_3 = \frac{-182}{8} - \frac{63}{4 \cdot 8} = \frac{-791}{32}$$

8°)
$$B_4 = -8 \cdot A_3 + 16 = 8 \cdot \frac{791}{32} + 16 = \frac{855}{4}$$

7°)
$$A_4 = A_3 - 66 = \frac{-791}{32} - 66 = \frac{-2903}{32} \rightarrow 3$$
°) $A_1 = A_2 + 8 = \frac{-1573}{96} + \frac{768}{96} = \frac{-805}{96}$

Las constantes valen:

$$A_1 = \frac{-805}{96}$$
 $A_2 = \frac{-1573}{96}$ $A_3 = \frac{-791}{32}$ $A_4 = \frac{-2903}{32}$

$$B_1 = 0$$
 $B_2 = \frac{16}{3}$ $B_3 = \frac{63}{4}$ $B_4 = \frac{855}{4}$

Así las ecuaciones quedan:

Ecuaciones de ángulos

Estas corresponden a $\theta(x) = y'(x) = \frac{dy}{dx}$;

Para el tramo 1:

$$E \cdot I \cdot y_1'(x) = A_1 + 3 \cdot \frac{x^2}{2} - \frac{x^3}{15} = \frac{-805}{96} + 3 \cdot \frac{x^2}{2} - \frac{x^3}{15} = \frac{-4025}{480} + \frac{720 \cdot x^2}{480} - \frac{32 \cdot x^3}{480}$$
$$y_1'(x) = \frac{1}{480 \cdot E \cdot I} \left(-4025 + 720 \cdot x^2 - 32 \cdot x^3 \right)$$

Para el tramo 2

$$E \cdot I \cdot y_2'(x) = A_2 + 8 \cdot x - \frac{x^2}{2} - \frac{x^3}{15} = \frac{-1573}{96} + 3 \cdot x - \frac{x^2}{2} - \frac{x^3}{15} = \frac{-7865}{480} + \frac{3840}{480} \cdot x - \frac{240 \cdot x^2}{480} - \frac{32 \cdot x^3}{480}$$

$$y_2'(x) = \frac{1}{480 \cdot E \cdot I} (-7865 + 3840 \cdot x - 240 \cdot x^2 - 32 \cdot x^3)$$

Para el tramo 3

$$E \cdot I \cdot y_3'(x) = A_3 + 13 \cdot x - 3 \cdot \frac{x^2}{2} = A_3 + 13 \cdot x - 3 \cdot \frac{x^2}{2} = \frac{-791}{32} + 13 \cdot x - 3 \cdot \frac{x^2}{2}$$
$$y_3'(x) = \frac{1}{32 \cdot E \cdot I} (-791 + 416 \cdot x - 48 \cdot x^2)$$

Para el tramo 4

$$E \cdot I \cdot y_4'(x) = A_4 + 24 \cdot x - 3 \cdot \frac{x^2}{2} = \frac{-2903}{32} + 24 \cdot x - 3 \cdot \frac{x^2}{2} = \frac{-2903}{32} + \frac{768}{32} \cdot x - \frac{48 \cdot x^2}{32}$$
$$y_4'(x) = \frac{1}{32 \cdot F \cdot I} (-2903 + 768 \cdot x - 48 \cdot x^2)$$

ECUACIONES DE DESPLAZAMIENTO O ELÁSTICA

Los valores de y(x) para cada tramo.

Para el tramo 1

$$\begin{split} E \cdot I \cdot y_1(x) &= B_1 + A_1 \cdot x + \frac{x^3}{2} - \frac{x^4}{60} = 0 + \frac{-805}{96} + \frac{x^3}{2} - \frac{x^4}{60} = \frac{-4025}{480} \cdot x + \frac{240}{480} \cdot x^3 + \frac{8}{480} \cdot x^4 \\ y_1(x) &= \frac{1}{480 \cdot E \cdot I} \cdot (-4025 \cdot x - 240 \cdot x^3 + 8 \cdot x^4) \end{split}$$

Para el tramo 2

$$\begin{split} E \cdot I \cdot y_2(x) &= B_2 + A_2 \cdot x + 4 \cdot x^2 - \frac{x^3}{6} - \frac{x^4}{60} = \frac{16}{3} + \frac{-1573}{96} \cdot x + 4 \cdot x^2 - \frac{x^3}{6} - \frac{x^4}{60} = \\ \frac{2560}{480} - \frac{7865}{480} \cdot x + \frac{1920}{480} \cdot x^2 - \frac{80}{480} \cdot x^3 - \frac{8}{480} \cdot x^4 \\ y_2(x) &= \frac{1}{480 \cdot E \cdot I} \ (2560 - 7865 \cdot x + 1920 \cdot x^2 - 80 \cdot x^3 - 8 \cdot x^4) \end{split}$$

Para el tramo 3

$$\begin{split} E \cdot I \cdot y_3(x) &= B_3 + A_3 \cdot x + \frac{13}{2} \cdot x^2 - \frac{x^3}{2} = \frac{63}{4} + \frac{-791}{32} \cdot x + \frac{13}{2} \cdot x^2 - \frac{x^3}{2} = \\ \frac{504}{32} - \frac{791}{32} \cdot x + \frac{208}{32} \cdot x^2 - \frac{16}{32} \cdot x^3 \\ y_3(x) &= \frac{1}{32 \cdot E \cdot I} (504 - 791 \cdot x + 208 \cdot x^2 - 16 \cdot x^3) \end{split}$$

Para el tramo 4

$$\begin{split} E \cdot I \cdot y_4 \cdot (x) &= B_4 + A_4 \cdot x + 12 \cdot x^2 - \frac{x^3}{2} = \frac{855}{4} + \frac{-2903}{32} \cdot x + 12 \cdot x^2 - \frac{x^3}{2} = \\ \frac{6840}{32} - \frac{2093}{32} \cdot x + \frac{384}{32} \cdot x^2 - \frac{16}{32} \cdot x^3 \\ y_4 (x) &= \frac{1}{32 \cdot E \cdot I} (6840 - 2093 \cdot x + 384 \cdot x^2 - 16 \cdot x^3) \end{split}$$

En resumen las ecuaciones de ángulos o giros y desplazamientos o elástica son para los tramos:

TRAMO 1

ECUACIÓN DE ÁNGULOS:
$$\theta_1(x) = y_1'(x) = \frac{1}{480 \cdot E \cdot I} \cdot (-4025 + 720 \cdot x^2 - 32 \cdot x^3)$$

ECUACIÓN DE LA ELÁSTICA:
$$y_1(x) = \frac{1}{480 \cdot E \cdot I} \cdot (-4025 \cdot x - 240 \cdot x^3 + 8 \cdot x^4)$$

TRAMO 2

ECUACIÓN DE ÁNGULOS:
$$\theta_2(x) = y_2'(x) = \frac{1}{480 \cdot E \cdot I} (-7865 + 3840 \cdot x - 240 \cdot x^2 - 32 \cdot x^3)$$

ECUACIÓN DE LA ELÁSTICA:
$$y_2(x) = \frac{1}{480 \cdot E \cdot I} (2560-7865 \cdot x+1920 \cdot x^2-80 \cdot x^3-8 \cdot x^4)$$

TRAMO 3

ECUACIÓN DE ÁNGULOS:
$$\theta_3(x) = y_3'(x) = \frac{1}{32 \cdot E \cdot I} \cdot (-791 + 416 \cdot x - 48 \cdot x^2)$$

ECUACIÓN DE LA ELÁSTICA:
$$y_3(x) = \frac{1}{32 \cdot E \cdot I} (504 - 791 \cdot x + 208 \cdot x^2 - 16 \cdot x^3)$$

TRAMO 4

ECUACIÓN DE ÁNGULOS:
$$\theta_4(x) = y_4'(x) = \frac{1}{32 \cdot E \cdot I} \cdot (-2903 + 768 \cdot x - 48 \cdot x^2)$$

ECUACIÓN DE LA ELÁSTICA:
$$y_4(x) = \frac{1}{32 \cdot E \cdot I} (6840 - 2093 \cdot x + 384 \cdot x^2 - 16 \cdot x^3)$$

CÁLCULO DE LA FLECHA

La flecha es la deformación máxima. Ese máximo se haya con y'(x) = 0

Tramo 1:
$$y_1'(x) = 0 = -4025 + 720 \cdot x^2 - 32 \cdot x^3$$
, se va a obtener por inspección. $4025 = 720 \cdot x^2 - 32 \cdot x^3$; en el punto $x = 0$, $y_1'(0) = -4025$; en $x = 2$ $y_1'(2) = \frac{-1401}{480 \cdot E \cdot I}$

La función $y_1'(x)$ no se hace cero en dicho intervalo, ya que todos los valores son negativos, luego no tiene máximo ni mínimo en el intervalo.

Tramo 2:
$$y_2'(x) = 0 = -7865 + 3840 \cdot x - 240 \cdot x^2 - 32 \cdot x^3$$
; en $x = 2 \rightarrow y_2'(2) = \frac{-1401}{480 \cdot E \cdot I} < 0$; $y_2'(5) = \frac{1335}{480 \cdot E \cdot I} > 0$ luego como es una función continua al menos tiene

$240 \cdot x^2 - 32 \cdot x^3$; y se dan valores en la tabla siguiente.							
X	f(x)	X	f(x)	X	f(x)	X	f(x)
				I			

una raíz en el intervalo. Calculando por inspección; tomo $f(x) = -7865 + 3840 \cdot x$

X	f(x)	X	f(x)	X	f(x)	X	f(x)
2,5	-265	2,7	123,5	2,64	11,1	2,634	-0,335
2,6	-66	2,65	30,1	2,63	-7,98		

En x = 2,634 f(x) = -0,355 que se aproxima bastante a cero. La elástica será en x =
$$2,634 \rightarrow y_2 \ (2,634) = \frac{1}{480 \cdot E \cdot I} \ (2560 - 7865 \cdot 2,634 + 1920 \cdot 2,634^2 - 80 \cdot 2,634^3 - 8 \cdot 2,634^4) = \frac{-13,922047}{E \cdot I}$$
.

Las unidades usadas han sido toneladas y metros. Por la curvatura del momento flector M> 0, se sabe que es un mínimo, de todas formas se comprueba (para ello si x₀ es un extremo de una función, en este caso y(x) entonces si $y''(x_0) > 0$ es mínimo y si

$$y"(x_0) < 0 \text{ es máximo, } y_2"(x) = \frac{3840 \cdot x - 240 \cdot 2 \cdot x^2 - 32 \cdot 3 \cdot x^3}{480 \cdot E \cdot I} \rightarrow y_2"(2,634) = \frac{17}{E \cdot I} > 0$$

luego es un mínimo y por tanto una posible flecha o desplazamiento máximo.

Tramo 3:
$$y_3'(x) = 0 \rightarrow -791 + 416 \cdot x - 48 \cdot x^2 = 0$$

$$x = \frac{-768 \pm \sqrt{768^2 - 4(-48)(-2903)}}{-2.48} = \frac{416 \pm 146}{-96} = \begin{cases} x_1 = 2.8 \\ x_2 = 5.85 \end{cases}$$

 x_1 = 2,8 no vale \notin al intervalo (5,6) o tramo 3, x_2 = 5,85 que \in (5,6) por lo que hay un máximo o mínimo. Así; $y_3''(x) = \frac{416 - 96 \cdot x}{32 \cdot \text{F.I}}$; en x =extremo, $y_3''(x) = \frac{416 - 965,85}{32 \cdot \text{E} \cdot \text{I}} = \frac{-145,6}{32 \cdot \text{E} \cdot \text{I}} < 0$ luego es máximo, su valor es $y_3(5,85) =$ $\frac{-208}{32 \cdot \text{E.I}} = \frac{-6.5}{\text{E.I}}$ un máximo.

Tramo 4:

$$y_4'(x) = 0 -2903 + 768 \cdot x - 48 \cdot x^2 = 0$$

$$x = \frac{-768 \pm \sqrt{768^2 - 4(-48)(-2093)}}{-2.48} = \frac{-768 \pm \sqrt{768^2 - 557376}}{-96}$$

$$= \frac{-768 \pm 180,1}{-96} \begin{cases} x_1 = 6,12 \in \text{ al intervalo } (6,8) \\ x_2 = 9,88 \notin \text{ al intervalo } (6,8) \end{cases}$$

$$y_4$$
"(x) = $\frac{768-96 \cdot x}{32 \cdot E \cdot I} \rightarrow y_4$ "(6,12) = $\frac{5,64}{E \cdot I}$ es un mínimo, entonces vale, y_4 (6,12) = $\frac{1}{32 \cdot E \cdot I}$ (6840 – 2093·6,12 + 384·6,12² – 16·6,12³) = $\frac{-6,6}{32 \cdot E \cdot I}$

Con esta información se puede dibujar a estima la deformada (sin aplicar las fórmulas y métodos de representación exacta de la función), a partir del diagrama de los momentos flectores y conociendo la flecha. Tomando algún punto más $y_1(0) = 0$; $y_1(2)$

$$= y_2(2) = \frac{-13,0375}{\text{E} \cdot \text{I}}, y_2(5) = y_3(5) = \frac{-7,84375}{\text{E} \cdot \text{I}}; y_3(6) = y_4(6) = \frac{-6,5625}{\text{E} \cdot \text{I}}; y_4(8) = 0$$

La deformada se dibuja a estima fácilmente a partir del diagrama de momentos flectores. Para el criterio de signos si M(x) > 0 la viga toma la forma convexa en el intervalo, si es M(x) < 0 cóncava, los puntos de separación entre M(x) > 0 y M(x) < 0 son puntos de inflexión de la deformada. Sabemos además que y(x) < 0 en toda la viga y que y(0) = y (8)= 0

Analizando cada tramo:

Tramo 0 < x < 4.3:

M>0 forma cóncava, y tiene un punto mínimo en x=2,634 además es el máximo desplazamiento o flecha y vale $f=\frac{-13,922047}{E\cdot I}$. En el punto x=4,3 inflexión.

Tramo 4.3 < x < 6:

M < 0 forma convexa, máximo en x = 5.85.

Tramo 6 < x < 8: M > 0 forma cóncava, mínimo en x = 6,12.

Ahora se puede dibujar la deformada

Figura 9.1f

c) En un problema de flexión simple en el que el espesor de la viga es comparable al resto de dimensiones de la sección, las tensiones producidas por la fuerza cortante son despreciables frente a las tensiones producidas por el momento flector, por tanto, si se desea encontrar la sección de cálculo que es la sometida a tensión máxima, entonces

dicha sección será la que tenga un valor del momento, en módulo mayor. Osea $\left|M(x)\right|_{max}=6$ t·m es en nuestro caso y el punto o mejor dicho la sección está situada en $x_0=6$ m.

La tensión normal según la ley de Navier $\sigma = \frac{\left|M(x)_{max}\right|}{W_z}$; en la que luego se interpreta el signo de σ según el criterio que adoptado, o bien se escribe según el criterio adoptado $\sigma = \frac{-M(x_0)}{W_z}$; donde x_0 es la posición de la sección crítica de cálculo. En este caso: $\sigma = \frac{-6 \text{ m} \cdot \text{t}}{I_z}$ y; $I_z = a \cdot h^3/36$ para una sección triangular, siendo a la base y h la altura. Para un triángulo equilátero de lado a, $h = \frac{\sqrt{3}}{2} \cdot a \rightarrow I_z = \frac{\sqrt{3} \cdot a^4}{96} \rightarrow W_z = I_z/y_{máx} \rightarrow y_{máx} = \frac{2}{3} \cdot h = \frac{1}{\sqrt{3}} \cdot a \rightarrow W_z = \frac{3 \cdot a^3}{96} = a^3/32$.

La tensión de cálculo en cualquier punto es $\sigma_{CO}=\sqrt{\sigma^2+3\cdot\tau^2}\approx\sigma$ por ser despreciables las tensiones cortantes. En el diseño siempre se han de tener en cuenta dos aspectos, el primero la resistencia mecánica o diseño resistente, y segundo, la rigidez o comprobación de la deformación.

Diseño Resistente:

Consiste en dimensionar la viga a partir de los valores de las tensiones y de la resistencia del material. Se debe verificar que $\sigma_{CO} \leq \sigma_{ADM}$. $\sigma_{ADM} = \sigma_{lim}/n = \sigma_e/n$, siendo n el coeficiente de seguridad. La tensión límite, es σ_e ya que se considera que la viga siempre trabaja elásticamente. Así: $\sigma_{CO} = \sigma \leq \sigma_{ADM} = \sigma_{lim}/n = \sigma_e/n$, siendo σ el valor de la tensión máxima para que el diseño sea correcto. Entonces, $\sigma = M_{máx}/W_z \leq \sigma_e/n$, luego:

$$W_z \ge n \cdot M_{máx} / \sigma_e = 1,5 \cdot 6 \cdot 10^5 / 2600 = 346,15 \text{ cm}^3$$

como para el triángulo equilátero, $W_z=a^3/32 \rightarrow a=22,3$ cm. Se redondea de forma que a=23 cm. Ahora $W_z=23^3/32=380,2$ cm $^3 \rightarrow I_z \approx 5049$ cm 4 .

Comprobación de la deformación:

En vigas a flexión las normativas recomiendan unos límites de flecha o máximo desplazamiento que no se deben superar para el estado de cargas sin ponderar.

Se debe verificar que la flecha $f \le f_{ADM}$, que en este caso vale L/300. Así $f_{ADM} = 2,67$ cm. Como $f = \frac{-13,922047}{E \cdot I} = \frac{-13,922047}{2,1 \cdot 10^7 \cdot 5049 \cdot 10^{-8}} = 0,0013$ m = 1,3 cm, luego es válido el diseño, al verificar $f \le f_{ADM}$.

d) Las tensiones normales siguen la ley de Navier, que en el caso de la sección crítica valen: $\sigma = \frac{-6 \cdot 10^5}{5049} \, \text{y} = -118,48 \cdot \text{y} \, (\text{kp/cm}^2)$ cuando y está en cm. Las tensiones normales extremas son para y = $2 \cdot \text{h/3} \rightarrow \sigma_1 = -1578 \, \text{kp/cm}^2$., y para y = $-\text{h/3} \rightarrow \sigma_2 = 789 \, \text{kp/cm}^2$. La distribución de tensiones normales se muestra en la figura 9.1G.

Para obtener las tensiones cortantes se aplicará la fórmula de Colignon. Como no se obtuvo, en la teoría, la tensión cortante para una sección triangular se hace ahora. Se plantea en la figura.9.1G el caso general para un triángulo de base a y altura h.

La tensión de Colignon:

$$\tau = \frac{\mathbf{T} \cdot \mathbf{s}}{\mathbf{b} \cdot \mathbf{I}_{z}}$$

siendo T = -3 t = -3000 kp, $I_z \approx 5049$ cm⁴. El resto de parámetros se deben determinar. El momento estático para una sección variable a una distancia y de la línea neutra, ver figura 9.1g:

$$s = \int_{-h/3}^{2h/3} y \, d\Omega =$$

donde el ancho de banda $b = \frac{a}{h} \cdot (\frac{2 \cdot h}{3} - y)$ luego:

$$s = \int_{y}^{2h/3} y \frac{a}{h} (\frac{2h}{3} - y) dy = \frac{a}{h} \int_{y}^{2h/3} y (\frac{2h}{3} - y) dy = \frac{a}{h} \int_{y}^{2h/3} (\frac{2h}{3} y - y^{2}) dy =$$

$$s = \frac{a}{h} \cdot \left(\frac{2 \cdot h}{3} \cdot \frac{y^2}{2} - \frac{y^3}{3}\right) \Big|_{y}^{2h/3} = \frac{a}{h} \cdot \left(\frac{4 \cdot h^3}{27} - \frac{h}{3} \cdot y^2 - \frac{8 \cdot h^3}{27} + \frac{y^3}{3}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{4 \cdot h^3}{27}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{h}{3}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{h}{3}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{h}{3}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{h}{3}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{h}{3}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{h}{3}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{h}{3}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^2 - \frac{h}{3}\right) = \frac{a}{h} \cdot \left(\frac{y^3}{3} - \frac{h}{3} \cdot y^3 - \frac{h}{3}\right) = \frac{a}{h} \cdot \left(\frac{h}{3} - \frac{h}{3}\right) = \frac{h}{h} \cdot$$

$$s = {a \over 3 \cdot h} \cdot ({2 \cdot h \over 3} - y)^2 \cdot ({h \over 3} + y) = {b \over 3} \cdot ({2 \cdot h \over 3} - y) \cdot ({h \over 3} + y)$$

esta expresión sirve para cualquier triángulo. Aplicando Colignon:

$$\tau = \frac{T \cdot \frac{b}{3} \cdot (\frac{2 \cdot h}{3} - y) \cdot (\frac{h}{3} + y)}{b \cdot \frac{a \cdot h^3}{36}} = \frac{6 \cdot T \cdot (\frac{2 \cdot h}{3} - y) \cdot (\frac{h}{3} + y)}{h^2 \cdot \Omega}$$

que en nuestro caso, particularizando:

$$\Omega = a \cdot h/2 = a \cdot \frac{\sqrt{3}}{4} \cdot a = \frac{\sqrt{3}}{4} \cdot a^2 = \frac{\sqrt{3}}{4} \cdot 23^2 = 229,06 \text{ cm}^2, h = 17,32 \text{ cm. Asi:}$$

$$\tau = \frac{6 \cdot (-3000) \cdot (\frac{2 \cdot 17,32}{3} - y) \cdot (\frac{17,32}{3} + y)}{300 \cdot \Omega} = 0,26 \cdot (11,55 - y) \cdot (5,77 + y) \text{ en kp/cm}^2. \text{ Su}$$

representación se puede ver en la figura.9.1G. La tensión máxima se calcula haciendo $\partial \tau/\partial y=0 \rightarrow 0,26\cdot(-1)\cdot(y+5,77)+0,26\cdot(11,55-y)\cdot 1=0 \rightarrow y=2,89$ cm, y $\tau_{máx}=19,49$ kp/cm².

Figura 9.1g

e) El cálculo del potencial interno de la viga se hará como suma del debido a la flexión y al del cortante, calculados por separado.

$$\Phi = \Phi_{M} + \Phi_{T} = \int \frac{M_{z}^{2}}{2 \cdot E \cdot I_{z}} dx + \int \frac{T^{2}}{2 \cdot G \cdot \Omega^{*}} dx$$

como la viga es de sección recta constante, los denominadores salen de la integral.

$$\Phi = \Phi_{M} + \Phi_{T} = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{z} M_{z}^{2} \cdot dx + \frac{1}{2 \cdot G \cdot \Omega^{*}} \cdot \int_{z} T^{2} \cdot dx$$

Calculando primero $\Phi_{\rm M}$

$$\Phi_{M} = \frac{1}{2EI_{z}} \left(\int_{0}^{2} M_{1}^{2} \cdot dx + \int_{2}^{5} M_{2}^{2} \cdot dx + \int_{5}^{6} M_{3}^{2} \cdot dx + \int_{6}^{8} M_{4}^{2} \cdot dx \right) = I_{1} + I_{2} + I_{3} + I_{4}$$

$$I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx = \frac{1}{2 E I_{z}} \int_{0}^{2} (9 x^{2} - \frac{6 x^{3}}{5} + \frac{x^{4}}{25}) \cdot dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}{5})^{2} \cdot dx \right) dx = I_{1} = \frac{1}{2 E I_{z}} \left(\int_{0}^{2} (3 x - \frac{x^{2}}$$

$$\frac{1}{2 \cdot \mathbf{E} \cdot \mathbf{I}_{z}} \cdot (3 \cdot \mathbf{x}^{3} - \frac{6 \cdot \mathbf{x}^{4}}{20} + \frac{\mathbf{x}^{5}}{125} \Big|_{0}^{2}) = \frac{1}{2 \cdot \mathbf{E} \cdot \mathbf{I}_{z}} \cdot (24 - 4.8 + 0.256) = \frac{19.456}{2 \cdot \mathbf{E} \cdot \mathbf{I}_{z}}$$

$$I_{2} = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \left(\int_{2}^{5} (8 - x - \frac{x^{2}}{5})^{2} \cdot dx = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{2}^{5} (64 - 16 \cdot x - \frac{11 \cdot x^{2}}{5} + \frac{2 \cdot x^{3}}{5} + \frac{x^{4}}{25}) \cdot dx = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{2}^{5} (64 - 16 \cdot x - \frac{11 \cdot x^{2}}{5} + \frac{2 \cdot x^{3}}{5} + \frac{x^{4}}{25}) \cdot dx = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{2}^{5} (64 - 16 \cdot x - \frac{11 \cdot x^{2}}{5} + \frac{2 \cdot x^{3}}{5} + \frac{x^{4}}{25}) \cdot dx = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{2}^{5} (64 - 16 \cdot x - \frac{11 \cdot x^{2}}{5} + \frac{2 \cdot x^{3}}{5} + \frac{x^{4}}{25}) \cdot dx = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{2}^{5} (64 - 16 \cdot x - \frac{11 \cdot x^{2}}{5} + \frac{2 \cdot x^{3}}{5} + \frac{x^{4}}{25}) \cdot dx = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{2}^{5} (64 - 16 \cdot x - \frac{11 \cdot x^{2}}{5} + \frac{2 \cdot x^{3}}{5} + \frac{x^{4}}{25}) \cdot dx = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{2}^{5} (64 - 16 \cdot x - \frac{11 \cdot x^{2}}{5} + \frac{2 \cdot x^{3}}{5} + \frac{x^{4}}{25}) \cdot dx = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{2}^{5} (64 - 16 \cdot x - \frac{11 \cdot x^{2}}{5} + \frac{2 \cdot x^{3}}{5} + \frac{x^{4}}{25}) \cdot dx = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{2}^{5} (64 - 16 \cdot x - \frac{11 \cdot x^{2}}{5} + \frac{2 \cdot x^{3}}{5} + \frac{x^{4}}{25}) \cdot dx = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{2}^{5} (64 - 16 \cdot x - \frac{11 \cdot x^{2}}{5} + \frac{2 \cdot x^{3}}{5} + \frac{x^{4}}{25}) \cdot dx = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{2}^{5} (64 - 16 \cdot x - \frac{11 \cdot x^{2}}{5} + \frac{2 \cdot x^{3}}{5} + \frac{x^{4}}{25} + \frac{x^{4}}{$$

$$\begin{split} \frac{1}{2\cdot E\cdot I_z}\cdot (64\cdot x - 8\cdot x^2 - \frac{11\cdot x^3}{15} + \frac{x^4}{10} + \frac{x^5}{125}\bigg|_5^5) &= \frac{1}{2\cdot E\cdot I_z}\cdot (192 - 168 - 85, 5 + 60, 9 + 24, 744) = \frac{23,844}{2\cdot E\cdot I_z} \\ I_3 &= \frac{1}{2\cdot E\cdot I_z}\cdot \left(\int_5^6 (-3\cdot x + 13)^2\cdot dx = \frac{1}{2\cdot E\cdot I_z}\cdot \int_0^2 (9\cdot x^2 - 78\cdot x + 169)\cdot dx = \\ I_3 &= \frac{1}{2\cdot E\cdot I_z}\cdot (3\cdot x^3 - 39\cdot x^2 + 169\cdot x\bigg|_5^6) &= \frac{1}{2\cdot E\cdot I_z}\cdot (273 - 429 + 169) = \frac{13}{2\cdot E\cdot I_z} \\ I_4 &= \frac{1}{2\cdot E\cdot I_z}\cdot \left(\int_6^8 (-3\cdot x + 24)^2\cdot dx = \frac{1}{2\cdot E\cdot I_z}\cdot \int_0^2 (9\cdot x^2 - 144\cdot x + 576)\cdot dx = \\ I_4 &= \frac{1}{2\cdot E\cdot I_z}\cdot (3\cdot x^3 - 72\cdot x^2 + 576\cdot x\bigg|_5^6) &= \frac{1}{2\cdot E\cdot I_z}\cdot (88,8 - 2016 + 1152) = \frac{24}{2\cdot E\cdot I_z} \end{split}$$

$$\Phi_M &= \frac{80,3}{2\cdot E\cdot I_z}\cdot \text{todo en toneladas y metros. Para nuestro caso:}$$

 $\Phi_{\rm M} = \frac{80.3}{2.{\rm F.I.}}$, todo en toneladas y metros. Para nuestro caso:

$$\Phi_{M} = \frac{80,3}{2 \cdot E \cdot I_{z}} = \frac{80,3}{2 \cdot 2,1 \cdot 10^{7} \cdot 5049 \cdot 10^{-8}} = 0,038055429 \text{ t·m} \approx 373 \text{ julios.}$$

Para los cortantes:

$$\Phi_{T} = \frac{1}{2 \cdot G \cdot \Omega^{*}} \cdot \int T^{2} \cdot dx$$

Calculando Φ_T

$$\Phi_{\rm T} = \frac{1}{2 \cdot \Omega \cdot *} \left(\int_0^2 T_1^2 \cdot dx + \int_2^5 T_2^2 \cdot dx + \int_5^6 T_3^2 \cdot dx + \int_6^8 T_4^2 \cdot dx \right)$$

Primero se calculará la sección reducida. Para ello sirve la figura 9.1g

$$\frac{1}{\Omega^*} = \int \frac{s^2 \cdot dy}{I_z^2 \cdot b} = \int_{-h/3}^{2h/3} \frac{\frac{1}{9} b^2 \cdot (\frac{2h}{3} - y)^2 \cdot (\frac{h}{3} + y)^2}{\frac{a^2 \cdot h^6}{36^2} b} dy = \frac{144}{a \cdot h^7} \int_{-h/3}^{2h/3} (\frac{2h}{3} - y)^3 \cdot (\frac{h}{3} + y)^2 \cdot dy$$

Operando se obtiene:

$$A = \left(\frac{2 \cdot h}{3} - y\right)^{3} \cdot \left(\frac{h}{3} + y\right)^{2} = -y^{5} + \frac{4 \cdot h \cdot y^{4}}{3} - \frac{h^{2} \cdot y^{3}}{9} - \frac{10 \cdot h^{3} \cdot y^{2}}{27} + \frac{4 \cdot h^{4} \cdot y}{81} + \frac{8 \cdot h^{5}}{243}$$

$$\frac{1}{\Omega^{*}} = \frac{144}{2 \cdot h^{7}} \int_{h/3}^{2h/3} \left(-y^{5} + \frac{4 \cdot h \cdot y^{4}}{3} - \frac{h^{2} \cdot y^{3}}{9} - \frac{10 \cdot h^{3} \cdot y^{2}}{27} + \frac{4 \cdot h^{4} \cdot y}{81} + \frac{8 \cdot h^{5}}{243}\right) \cdot dy =$$

$$\frac{1}{\Omega^*} = \frac{144}{a \cdot h^7} \cdot \left(-\frac{y^6}{6} + \frac{4 \cdot h \cdot y^5}{15} - \frac{h^2 \cdot y^4}{36} - \frac{10 \cdot h^3 \cdot y^3}{81} + \frac{4 \cdot h^4 \cdot y^2}{162} + \frac{8 \cdot h^5}{243} \cdot y\right) \Big|_{-h/3}^{2h/3} =$$

$$\frac{1}{\Omega^*} = \frac{144}{a \cdot h^7} \cdot \left(-\frac{1}{6} \cdot \left[\left(\frac{2 \cdot h}{3}\right)^6 - \left(-\frac{h}{3}\right)^6 \right] + \frac{4 \cdot h}{15} \cdot \left[\left(\frac{2 \cdot h}{3}\right)^5 - \left(-\frac{h}{3}\right)^5 \right] - \frac{h^2}{36} \cdot \left[\left(\frac{2 \cdot h}{3}\right)^4 - \left(-\frac{h}{3}\right)^4 \right]$$

$$-\frac{10 \cdot h^3}{81} \cdot \left[\left(\frac{2 \cdot h}{3}\right)^3 - \left(-\frac{h}{3}\right)^3 \right] + \frac{4 \cdot h^4}{162} \cdot \left[\left(\frac{2 \cdot h}{3}\right)^2 - \left(-\frac{h}{3}\right)^2 \right] + \frac{8 \cdot h^5}{243} \cdot \left[\left(\frac{2 \cdot h}{3}\right) - \left(-\frac{h}{3}\right) \right] \right) \approx \frac{2.4}{a \cdot h}$$

como la sección vale $\Omega = \frac{a \cdot h}{2} \rightarrow \Omega^* = \frac{5}{6} \cdot \Omega$

Con este resultado se puede valorar Φ_{T} .

$$\Phi_{\rm T} = \frac{1}{2 \, {\rm G} \, \Omega^*} \left(\int_0^2 (3 - \frac{2 \, x}{5})^2 \cdot {\rm d}x + \int_2^5 (1 + \frac{2 \, x}{5})^2 \cdot {\rm d}x + \int_5^6 3^2 \cdot {\rm d}x + \int_6^8 3^2 \cdot {\rm d}x \right) =$$

$$\Phi_{\rm T} = \frac{1}{2 \, {\rm G} \, \Omega^*} \left(\int_0^2 (9 - 2 \, x + \frac{4 \, x^2}{25}) \cdot \, dx + \int_2^5 (1 + \frac{4 \, x}{5} + \frac{4 \, x^2}{25}) \cdot \, dx + \int_5^8 9 \, dx \right) =$$

$$\Phi_{T} = \frac{1}{2 \cdot G \cdot \Omega^{*}} \cdot \{ (9 \cdot x - x^{2} + \frac{4 \cdot x^{3}}{125}) \Big|_{0}^{2} + (x + \frac{4 \cdot x^{2}}{5} + \frac{4 \cdot x^{3}}{125}) \Big|_{2}^{5} + 9 \cdot x \Big|_{5}^{8} \} = \frac{67.3}{G \cdot \Omega^{*}}$$

sustituyendo los valores $G = 0.81 \cdot 10^7 \text{ t/m}^2$, $\Omega = 0.022906 \text{ m}^2$, $\Omega^* = 0.019088 \text{ m}^2$.

 $\Phi_T = 0.000435266 \text{ t} \cdot \text{m} = 4.27 \text{ julios}$

Así el potencial interno total $\Phi = \Phi_M + \Phi_T = 377,3$ julios donde $\Phi_T << \Phi_M$.

f) Los perfiles llenos tienen el problema de tener la masa concentrada cerca del centroide de la sección, lo que hace que su resistencia al giro sea reducida al tener bajos momentos de inercia, y por tanto salen perfiles muy pesados. Los perfiles doble T y huecos tienen mejor distribuida la masa mejorando sus inercia y siendo más ligeros.

Así si se toma un perfil HEB, se necesita un W_z < 346 cm³. El perfil HEB 180 tiene un W_z = 426 cm³ y I_z = 3831 cm⁴. Como el I_z es menor que el calculado se deberá verificar la flecha. Esta vale f = 1,7 cm por lo que es válida. El peso del HEB 180 es de 51,2 kp/m y por tanto la viga pesará 51,2·8 = 409,6 kp. La viga triangular obtenida pesaba Q = ρ · Ω ·L = 7,85·10³(kp/m³)·0,022906(m²)·8 = 1438,5 kp, por lo que el ahorro es importante y se confirma el comentario anteriormente hecho.

- 2.- Dada la viga de la figura 9.2a determinar para $M_0=\frac{q\cdot L^2}{3}$, q vertical hacia abajo, L, E, I, d o r:
- a) Ecuaciones y diagramas de esfuerzos.
- b) Ecuaciones de ángulos y de la deformada a partir de la ecuación diferencial aproximada de la elástica. Calcular también la flecha y dibujar las ecuaciones de ángulos y deformada multiplicadas por la rigidez a flexión E·I.
- c) Para el perfil hexagonal de la figura 9.2a, determinar la distribución de tensiones normales y tangenciales en la sección de diseño y en la de cortante máximo.
- d) Determinar el potencial interno para la viga, separando los términos debidos al cortante y al momento flector.
- e) Dimensionar la viga cuando q=1 t/m, L=3 m, el acero un A-37, con un coeficiente de seguridad n=1,2 y una flecha admisible de $f_{ADM}=L/500$ en el tramo primero y de $f_{ADM}=L/300$ en el vuelo. Hacer lo mismo para un perfil IPE y comparar los resultados.
- f) Para el perfil hexagonal obtenido en e) comparar los valores del potencial interno debidos al cortante y al momento flector.

Figura 9.2a

a) Cálculo de cortantes y momentos flectores: En primer lugar se van ha determinar las reacciones, que serán verticales en los apoyos.

$$\begin{split} \sum F_{\text{ext}}^{\quad y} &= 0 \quad V_A + V_B = 1/2 \cdot q \cdot L \\ \sum M_{\text{ext}} \Big|_A^Z &= 0 \rightarrow 0 = V_B \cdot L - \frac{1}{2} \cdot q \cdot L \cdot \frac{2 \cdot L}{3} + M_0 \rightarrow V_B \cdot L - \frac{1}{3} \cdot q \cdot L^2 + \frac{1}{3} \cdot q \cdot L^2 \rightarrow V_B = 0 \\ \rightarrow V_A &= 1/2 \cdot q \cdot L \end{split}$$

Ahora se determinarán los esfuerzos.

Figura 9.2b

Esto permite determinar las leyes en los distintos tramos, según la figura 9.2b.

Tramo 1: 0 < x < L

$$\begin{split} T_1(x) - V_A + 1/2 \cdot q_x \cdot x &= 0 \rightarrow \frac{q}{L} = \frac{q_x}{x} \rightarrow q_x = \frac{q \cdot x}{L} \rightarrow T_1(x) = V_A - 1/2 \cdot q_x \cdot x = 1/2 \cdot q \cdot L \\ - 1/2 \cdot \frac{q \cdot x}{L} \cdot x &= \frac{q}{2 \cdot L} \cdot (L^2 - x^2) \end{split}$$

$$\begin{split} M_1(x) - V_A \cdot x + 1/3 \cdot x \cdot 1/2 \cdot q_x \cdot x &= 0 \to M_1(x) = V_A \cdot x - 1/6 \cdot q_x \cdot x^2 = 1/2 \cdot q \cdot L \cdot x - \frac{q \cdot x^3}{6 \cdot L} &= \frac{q}{6 \cdot L} \cdot (3 \cdot L^2 \cdot x - x^3) \quad \text{se cumple además } T_1(x) = \frac{d \ M_1}{dx} \end{split}$$

Tramo 2: $L < x < 3/2 \cdot L$

$$T_2(x) - V_A + 1/2 \cdot q \cdot L = 0 \to T_2(x) = V_A - 1/2 \cdot q \cdot L = 1/2 \cdot q \cdot L - 1/2 \cdot q \cdot L = 0$$

$$\begin{split} M_2(x) - V_A \cdot x \, + \, \frac{q \cdot L}{2} \cdot (x - \frac{2}{3} \cdot L) \, = \, 1/2 \cdot q \cdot L \cdot x \, - \, \frac{q \cdot L}{2} \cdot (x - \frac{2}{3} \cdot L) \, = \, \frac{q \cdot L^2}{3} \, = \, M_0 \text{ como era} \\ \text{ya que el valor de } M_0 \text{ se identifica rápido si al cortar se elige el trozo derecho. Además} \\ \text{se cumple } T_2(x) = \frac{d \, M_2}{dx} \end{split}$$

Diagramas

Diagrama de esfuerzos cortantes: La representación es sencilla, en el primer tramo es un polinomio de grado dos, con un punto máximo en x=0, que verifica $\frac{d\,T_1}{dx}=0$. El segundo tramo es nulo. Se representa con estos datos a estima en la figura 9.2c.

Diagrama de momentos flectores: En el primer tramo es un polinomio de grado tres, con un punto máximo en x=L, que verifica $\frac{d\,M_1}{dx}=T_1=0$. El segundo tramo es constante y vale M_0 . Se representa con estos datos a estima en la figura 9.2c.

Figura 9.2c

b) Determinación de las ecuaciones de ángulos, deformada y de la flecha.

Tramo 1:

$$\begin{split} E \cdot I \cdot y_1 ''(x) &= M_1(x) = \frac{q}{6 \cdot L} \cdot (3 \cdot L^2 \cdot x - x^3) \\ E \cdot I \cdot y_1 '(x) &= \frac{q}{6 \cdot L} \cdot (3 \cdot L^2 \cdot \frac{x^2}{2} - \frac{x^4}{4}) + A_1 = \frac{q}{6 \cdot L} \cdot (3 \cdot L^2 \cdot \frac{x^2}{2} - \frac{x^4}{4}) + A_1 \\ E \cdot I \cdot y_1(x) &= \frac{q}{6 \cdot L} \cdot (3 \cdot L^2 \cdot \frac{x^3}{6} - \frac{x^5}{20}) + A_1 \cdot x + B_1 = \frac{q}{12 \cdot L} \cdot (L^2 \cdot x^3 - \frac{x^5}{10}) + A_1 \cdot x + B_1 \end{split}$$

Tramo 2:

$$E \cdot I \cdot y_2 \text{ } \text{''}(x) = M_0(x) = M_0 \rightarrow E \cdot I \cdot y_2 \text{'}(x) = M_0 \cdot x + A_2 \rightarrow E \cdot I \cdot y_2(x) = M_0 \cdot \frac{x^2}{2} + A_2 \cdot x + B_2$$

Ahora se deben evaluar las constantes a partir de las condiciones de contorno.

Cálculo de las constantes: De las condiciones de contorno se obtiene

1°)
$$y_1(0) = 0 \rightarrow E \cdot I \cdot y_1(0) = 0 \rightarrow B_1 = 0$$

2°)
$$y_1(L) = 0 \rightarrow \frac{q}{12 \cdot L} \cdot (L^2 \cdot L^3 - \frac{L^5}{10}) + A_1 \cdot L + B_1 = 0 \rightarrow A_1 = -\frac{3 \cdot q \cdot L^3}{40}$$

3°)
$$y_2(L) = 0 \rightarrow M_0 \cdot \frac{L^2}{2} + A_2 \cdot L + B_2 = 0$$

$$3^{\circ}) \ y_{1}'(L) = y_{2}'(L) \rightarrow \frac{q}{6 \cdot L} \cdot (\frac{3 \cdot L^{2}}{2} \cdot L^{2} - \frac{L^{4}}{4}) + A_{1} = M_{0} \cdot L + A_{2} \rightarrow A_{2} = \frac{5 \cdot q \cdot L^{3}}{24} - \frac{3 \cdot q \cdot L^{3}}{40} - \frac{q \cdot L^{3}}{40} - \frac{q \cdot L^{3}}{5}$$

$$M_{0} \cdot L = \frac{5 \cdot q \cdot L^{3}}{24} - \frac{3 \cdot q \cdot L^{3}}{40} - \frac{q \cdot L^{3}}{3} = -\frac{q \cdot L^{3}}{5}$$

Ahora de 3°)
$$\rightarrow \frac{q \cdot L^2}{3} \cdot \frac{L^2}{2} - \frac{q \cdot L^3}{5} \cdot L + B_2 = 0 \rightarrow B_2 = \frac{q \cdot L^4}{30}$$

Las constantes valen:

$$A_1 = -\frac{3 \cdot q \cdot L^3}{40}$$
 $A_2 = -\frac{q \cdot L^3}{5}$ $B_1 = 0$ $B_2 = \frac{q \cdot L^4}{30}$

Así las ecuaciones quedan:

Ecuaciones de ángulos

Estas corresponden a
$$\theta(x) = y'(x) = \frac{dy}{dx}$$
;

Para el tramo 1:

$$E \cdot I \cdot y_1'(x) = \frac{q}{6 \cdot L} \cdot (3 \cdot L^2 \cdot \frac{x^2}{2} - \frac{x^4}{4}) - \frac{3 \cdot q \cdot L^3}{40}$$

Para el tramo 2

$$E \cdot I \cdot y_2'(x) = \frac{q \cdot L^2}{3} \cdot x - \frac{q \cdot L^3}{5}$$

ECUACIONES DE DESPLAZAMIENTO O ELÁSTICA

Los valores de y(x) para cada tramo.

Para el tramo 1

$$E \cdot I \cdot y_1(x) = \frac{q}{12 \cdot L} \cdot (L^2 \cdot x^3 - \frac{x^5}{10}) - \frac{3 \cdot q \cdot L^3}{40} \cdot x$$

Para el tramo 2

$$E \cdot I \cdot y_2(x) = \frac{q \cdot L^2}{3} \cdot \frac{x^2}{2} - \frac{q \cdot L^3}{5} \cdot x + \frac{q \cdot L^4}{40}$$

En resumen las ecuaciones de ángulos o giros y desplazamientos o elástica son para los tramos:

TRAMO 1

ECUACIÓN DE ÁNGULOS:
$$\theta_1(x) = y_1'(x) = \frac{q}{E \cdot I} \cdot (-\frac{x^4}{24 \cdot L} + L \cdot \frac{x^2}{4} - \frac{3 \cdot L^3}{40})$$

ECUACIÓN DE LA ELÁSTICA:
$$y_1(x) = \frac{q}{E \cdot I} \cdot \left(-\frac{x^5}{120 \cdot L} + L \cdot \frac{x^3}{12} - \frac{3 \cdot L^3}{40} \cdot x \right)$$

TRAMO 2

ECUACIÓN DE ÁNGULOS:
$$\theta_2(x) = y_2'(x) = \frac{q \cdot L^2}{E \cdot I} \cdot (\frac{x}{3} - \frac{L}{5})$$

ECUACIÓN DE LA ELÁSTICA:
$$y_2(x) = \frac{q \cdot L^2}{E \cdot I} \cdot (\frac{x^2}{6} - \frac{L}{5} \cdot x + \frac{L^2}{30})$$

CÁLCULO DE LA FLECHA

La flecha es la deformación máxima. Ese máximo se haya con y'(x) = 0

Tramo 1: $y_1'(x) = 0 \rightarrow \frac{q}{E \cdot I} \cdot (-\frac{x^4}{24 \cdot L} + L \cdot \frac{x^2}{4} - \frac{3 \cdot L^3}{40}) \rightarrow x^4 - 6 \cdot L^2 \cdot x^2 + 1,8 \cdot L^4 = 0,$ haciendo $z = x^2$, queda una ecuación cuadrática $z^2 - 6 \cdot L^2 \cdot z + 1,8 \cdot L^4 = 0 \rightarrow dos$ soluciones $z_1 = 5,7 \cdot L^2$ y $z_2 = 0,317 \cdot L^2 \rightarrow cuatro$ soluciones de $x, x_1 = \sqrt{5,7} \cdot L$ no válida al no pertenecer al tramo 1, $x_2 = -\sqrt{5,7} \cdot L$ no válida al no pertenecer al tramo 1, $x_3 = \sqrt{0,317} \cdot L = 0,563 \cdot L$ válida y $x_4 = -\sqrt{0,317} \cdot L = -0,563 \cdot L$ no válida al no pertenecer al tramo 1. El valor de la flecha en el tramo 1 será:

$$f_1 = y_1(0,563 \cdot L)$$

$$f_1 = \frac{q}{E \cdot I} \cdot \left(-\frac{(0,563 \cdot L)^5}{120} + L \cdot \frac{(0,563 \cdot L)^3}{12} - \frac{3 \cdot L^3}{40} \cdot (0,563 \cdot L) \right) = \frac{-0,02783 \cdot q \cdot L^4}{E \cdot I}$$

Tramo 2: $y_2'(x) = 0 = \frac{q \cdot L^2}{E \cdot I} \cdot (\frac{x}{3} - \frac{L}{5}) = 0 \rightarrow x = \frac{3 \cdot L}{5}$ que no pertenece a dicho tramo. Como el signo de $y_2''(x)$ es el mismo que el de M_2 y es > 0, la curvatura de y_2 es constante y crece hasta el extremo del vuelo donde estará la flecha. Así:

$$f_2 = y_2 (1,5 \cdot L) = \frac{q \cdot L^2}{F \cdot I} \cdot (\frac{1,5^2}{6} - \frac{L}{5} \cdot 1,5 + \frac{L^2}{30}) = \frac{0,483 \cdot q \cdot L^4}{F \cdot I}$$

La representación gráfica se puede hacer fácilmente sin muchos cálculos. La ecuación de ángulos en el primer tramo es un polinomio con punto extremo en x=0 ya que $\theta'=y''$, que se hace nula donde lo hace M, ver diagrama de momentos. Se hace $\theta=0$ en $x_3=0.563\cdot L$ que es la posición de la flecha. La curvatura se ve con $\theta''=y'''=T>0$ siendo cóncava, que es contante en todo el tramo, por lo que con conocer los puntos extremos se puede representar con sus puntos significativos.

La deformada se representa fácil ya que se conoce que es cóncava todo el rato ya que M > 0, se conocen los puntos de valor nulo y las flechas en cada tramo, por lo que se representa según la figura 9.2d. Se representan ambas multiplicadas por la rigidez a flexión E·I, así lo valores son mayores y la representación está en una escala mayor.

Figura 9.2d

c) Tensiones normales y tangenciales: La sección crítica corresponde a la de momento máximo, en dicha sección las tensiones cortantes son nulas al ser nulo el cortante. Las tensiones normales se regirán por la ley de Navier. En la sección de cortante máximo, las tensiones normales son nulas por serlo el momento flector. Las tensiones cortantes las rige la ecuación de Colignon.

La tensión normal según la ley de Navier y para el criterio de signos adoptado $\sigma = -\frac{M_z(x)}{I_z} \cdot y \text{. El momento en la sección crítica vale } M_0 = \frac{q \cdot L^2}{3} \text{, y el momento de inercia se puede obtener por cualquiera de los métodos estudiados. En este caso se obtuvo a partir del momento de inercia de un trapecio, respecto a un eje que pasa por la base mayor. Dicho momento vale <math display="block"> I_B = \frac{h^3 \cdot (3 \cdot a + b)}{12} \text{; donde } \mathbf{h} \text{ es la altura, } \mathbf{b} \text{ es la base mayor y } \mathbf{a} \text{ la base menor. Si se particulariza para el hexágono regular de altura } \mathbf{d} \text{ y lado} \mathbf{r}, \text{ que verifica d} = \frac{\sqrt{3}}{2} \cdot \mathbf{r} \text{, se tiene que h} = d, \text{ que a} = r \text{ y b} = 2 \cdot r. \text{ Sustituyendo } I_B = \frac{d^3 \cdot (3 \cdot r + 2 \cdot r)}{12} = \frac{5 \cdot d^3 \cdot 2 \cdot d}{12 \cdot \sqrt{3}} = \frac{5 \cdot d^4}{6 \cdot \sqrt{3}} \text{. Como } I_z = 2 \cdot I_B = \frac{5 \cdot d^4}{3 \cdot \sqrt{3}} \text{. Las tensiones normales serán: } \sigma = -\frac{M_z(x)}{I_z} \cdot y = -\frac{\sqrt{3} \cdot q \cdot L^2}{5 \cdot d^4} \cdot y \text{.}$

Estas se representan en la figura 9.2e con valores extremos $\sigma = \frac{\sqrt{3} \cdot q \cdot L^2}{5 \cdot d^3}$.

Para obtener las tensiones cortantes se aplicará la fórmula de Colignon. Como no se obtuvo, en la teoría, la tensión cortante para una sección hexagonal se hace ahora. Se plantea en la figura.9.2e el caso general para un hexágono regular de lados r y altura d.

La tensión de Colignon:

$$\tau = \frac{\mathbf{T} \cdot \mathbf{s}}{\mathbf{b} \cdot \mathbf{I}_z}$$

siendo $T = 1/2 \cdot q \cdot L$ en la sección de cortante máximo que está en x = 0. El resto de parámetros se deben determinar. El momento estático para una sección variable a una distancia y de la línea neutra, ver figura 9.2e:

$$s_z = \int_v^d y d\Omega =$$

donde el ancho de banda $b = \frac{4 \cdot d - 2 \cdot y}{\sqrt{3}}$ luego:

$$s_z = \int_y^d y \frac{4 d - 2 y}{\sqrt{3}} dy = \frac{2}{\sqrt{3}} \int_y^d (2 d y - y^2) dy = \frac{2}{\sqrt{3}} (d y^2 - \frac{y^3}{3}) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_y^d = \frac{2}{\sqrt{3}} \left(d y^2 - \frac{y^3}{3} \right) \Big|_$$

$$s_z = \frac{2}{3 \cdot \sqrt{3}} \cdot (2 \cdot d^3 - 3 \cdot d \cdot y^2 + y^3) = \frac{2}{3 \cdot \sqrt{3}} \cdot (d - y) \cdot (2 \cdot d^2 + 2 \cdot d \cdot y - y^2)$$

Para que sirva de ejemplo se calcula también por división del área en un rectángulo y dos triángulos. Así se puede escribir:

$$s_z = \sum_{i=1}^{3} \overline{y}_i \cdot \Omega_i = 2 \cdot \overline{y}_T \cdot \Omega_T + \overline{y}_R \cdot \Omega_R$$

haciendo referencia el subíndice T a los triángulos y R al rectángulo.

Los centroides de los triángulos valen $\overline{y}_T = \frac{2 \cdot y + d}{3}$, y el del rectángulo $\overline{y}_R = \frac{y + d}{2}$. Los valores de las secciones son: $\Omega_T = \frac{(d - y)^2}{2 \cdot \sqrt{3}}$; $\Omega_R = \frac{2 \cdot d \cdot (d - y)}{\sqrt{3}}$, sustituyendo se tiene:

$$\begin{split} s_z &= 2 \cdot \frac{2 \cdot y + d}{3} \cdot \frac{(d-y)^2}{2 \cdot \sqrt{3}} \ + \ \frac{y + d}{2} \cdot \frac{2 \cdot d \cdot (d-y)}{\sqrt{3}}, \text{ que operando se obtiene el mismo} \\ valor \ s_z &= \frac{2}{3 \cdot \sqrt{3}} \cdot (d-y) \cdot (2 \cdot d^2 + 2 \cdot d \cdot y - y^2). \end{split}$$

Aplicando Colignon:

$$\tau = \frac{T \cdot \frac{2}{3 \cdot \sqrt{3}} \cdot (d - y) \cdot (2 \cdot d^2 + 2 \cdot d \cdot y - y^2)}{\frac{4 \cdot d - 2 \cdot y}{\sqrt{3}} \cdot \frac{5 \cdot d^4}{3 \cdot \sqrt{3}}} = \frac{3 \cdot q \cdot L \cdot (d - y) \cdot (2 \cdot d^2 + 2 \cdot d \cdot y - y^2)}{10 \cdot \sqrt{3} \cdot (2 \cdot d - y) \cdot d^4} =$$

esta función vale cero en los extremos y tiene un máximo a una distancia aproximada de 0,19·d de la fibra neutra. Se ha representado de forma aproximada en la figura 9.2f.

Figura 9.2f

d) El cálculo del potencial interno de la viga se hará como suma del debido a la flexión y al del cortante, calculados por separado.

$$\Phi = \Phi_{M} + \Phi_{T} = \int_{L} \frac{M_{z}^{2}}{2 \cdot E \cdot I_{z}} \cdot dx + \int_{L} \frac{T^{2}}{2 \cdot G \cdot \Omega^{*}} \cdot dx$$

como la viga es de sección recta constante, los denominadores salen de la integral.

$$\Phi = \Phi_{M} + \Phi_{T} = \frac{1}{2 \cdot E \cdot I_{z}} \cdot \int_{L} M_{z}^{2} \cdot dx + \frac{1}{2 \cdot G \cdot \Omega^{*}} \cdot \int_{L} T^{2} \cdot dx$$

Calculando primero Φ_{M}

$$\begin{split} &\Phi_{M} = \frac{1}{2 E I_{z}} (\int_{0}^{L} M_{1}^{2} \cdot dx + \int_{L}^{1.5 L} M_{2}^{2} \cdot dx) = I_{1} + I_{2} \\ &I_{1} = \frac{q^{2}}{2 E I_{z} \cdot 6^{2} \cdot L^{2}} (\int_{0}^{L} (3 L^{2} \cdot x - x^{3})^{2} \cdot dx = \frac{q^{2}}{72 E I_{z} \cdot L^{2}} \int_{0}^{L} (9 L^{4} \cdot x^{2} - 6 L^{2} \cdot x^{4} + x^{6}) \cdot dx = \\ &\frac{q^{2}}{72 E I_{z} \cdot L^{2}} (3 L^{4} \cdot x^{3} - \frac{6 L^{2} \cdot x^{5}}{5} + \frac{x^{7}}{7} \bigg|^{L}) = \frac{q^{2}}{72 E I_{z} \cdot L^{2}} (3 L^{7} - \frac{6 L^{7}}{5} + \frac{L^{7}}{7}) = \frac{17 q^{2} \cdot L^{5}}{630 E I} \end{split}$$

$$I_2 = \frac{M_0^2}{2EI_x} \left(\int_L^{1.5L} dx = \frac{M_0^2 \cdot L}{4EI_x} = \frac{q^2 \cdot L^5}{36EI_x} \right)$$

$$\Phi_{\rm M} = \frac{{\rm q}^2 \cdot {\rm L}^5}{{\rm E} \cdot {\rm I}_z} \cdot (\frac{17}{630} + \frac{1}{36})$$

Para los cortantes:

$$\Phi_{\rm T} = \frac{1}{2 \cdot G \cdot \Omega^*} \cdot \int T^2 \cdot dx$$

Calculando Φ_{T}

$$\Phi_{\rm T} = \frac{1}{2 \, \mathbf{G} \, \Omega^*} \int_0^L T_1^2 \, \mathrm{d}x$$

Primero se calculará la sección reducida.

$$\frac{1}{\Omega^*} = \int \frac{s^2 \cdot dy}{I_z^2 \cdot b} = 2 \cdot \int_0^d \left[\frac{2}{3 \cdot \sqrt{3}} \cdot (d - y) \cdot (2 \cdot d^2 + 2 \cdot d \cdot y - y^2) \right]^2 \cdot dy = \frac{4 \cdot d - 2 \cdot y}{\sqrt{3}} \cdot \left[\frac{5 \cdot d^4}{3 \cdot \sqrt{3}} \right]^2$$

$$\frac{1}{\Omega^*} = \frac{4 \cdot \sqrt{3}}{25 \cdot d^8} \cdot \int_0^d \frac{\left[(d-y) \cdot (2 \cdot d^2 + 2 \cdot d \cdot y - y^2) \right]^2}{2 \cdot d - y} \cdot dy = \frac{4 \cdot \sqrt{3}}{25 \cdot d^8} \cdot A$$

la expresión $[(d-y)\cdot(2\cdot d^2+2\cdot d\cdot y-y^2)]^2=(y-2\cdot d)\cdot(y^5-4\cdot d\cdot y^4+d^2\cdot y^3+6\cdot d^3\cdot y^2)+4\cdot d^6$. De esta forma la integral A se puede expresar de forma más comoda:

$$A = -\int_0^d (y^5 - 4 \cdot d \cdot y^4 + d^2 \cdot y^3 + 6 \cdot d^3 \cdot y^2) \cdot dy + \int_0^d \frac{4 \cdot d^6}{2 \cdot d - y} \cdot dy =$$

$$-\left[\frac{y^6}{6} - \frac{4 \cdot d \cdot y^5}{5} + \frac{d^2 \cdot y^4}{4} + 2 \cdot d^3 \cdot y^3\right]_0^d - \left[4 \cdot d^6 \cdot Ln(2 \cdot d - y)\right]_0^d =$$

$$-\frac{d^6}{6} + \frac{4 \cdot d^6}{5} - \frac{d^6}{4} - 2 \cdot d^6 + 4 \cdot d^6 \cdot Ln2 = \frac{d^6}{60} \cdot (-10 + 48 - 15 - 120 + 240 \cdot Ln2) \approx 1,1559221 \cdot d^6$$

Operando se obtiene:

$$\frac{1}{\Omega^*} = \frac{4 \cdot \sqrt{3}}{25 \cdot d^8} \cdot 1,1559221 \cdot d^6 = 0,3203385/d^2$$

como la sección vale $\Omega=\frac{6\cdot d^2}{\sqrt{3}}\to\Omega=0,3203385\cdot\frac{6}{\sqrt{3}}\cdot\Omega^*=1,1096851\to\Omega^*=0,9011565\cdot\Omega\approx0,9\cdot\Omega$

Con este resultado se puede valorar Φ_{T} .

$$\begin{split} &\Phi_T = \frac{1}{2\,G\,\Omega^*} \frac{q^2}{4\,L^2} (\int_0^L (L^2 - x^2)^2 \cdot dx) = \frac{q^2}{8\,G\,\Omega^* \cdot L^2} (\int_0^L (L^4 - 2\,L^2 \cdot x^2 + x^4) \cdot dx) = \\ &\Phi_T \ \frac{q^2}{8 \cdot G \cdot \Omega^* \cdot L^2} \cdot (L^4 \cdot x - 2 \cdot L^2 \cdot \frac{x^3}{3} + \frac{x^5}{5})_0^L = \frac{q^2}{8 \cdot G \cdot \Omega^* \cdot L^2} \cdot (L^5 - \frac{2 \cdot L^5}{3} + \frac{L^5}{5}) = \frac{8 \cdot q^2 \cdot L^3}{120 \cdot G \cdot \Omega^*} \\ &\Phi = \frac{q^2 \cdot L^5}{E \cdot I_z} \cdot (\frac{17}{630} + \frac{1}{36}) + \frac{q^2 \cdot L^3}{15 \cdot G \cdot \Omega^*} = \end{split}$$

e) Lo primero será hacer el diseño resistente: Se debe verificar que $\sigma_{CO} \le \sigma_{ADM}$. $\sigma_{ADM} = \sigma_{lim}/n = \sigma_e/n$, siendo n el coeficiente de seguridad. La tensión límite $\sigma_e = 2400 \text{ kp/cm}^2$ para el acero A-37. Así: $\sigma_{CO} = \sigma \le \sigma_{ADM} = \sigma_{lim}/n = \sigma_e/n = 2400/1, 2 = 2000 \text{ kp/cm}^2$, siendo σ el valor de la tensión máxima para que el diseño sea correcto. Entonces, $\sigma = M_{máx}/W_z \le 2000$, luego para los datos $M_{máx} = \frac{q \cdot L^2}{3} = 10 \cdot 300^2/3 = 300 \cdot 10^3 \text{ kp·cm}$, $\rightarrow W_z \ge 300 \cdot 10^3 / 2000 = 150 \text{ cm}^3$. Para la sección dada $W = I/y_{máx} = \frac{5 \cdot d^3}{3 \cdot \sqrt{3}} = 150 \rightarrow d = 5,38$ cm. Con estos resultados $\Omega = \frac{6 \cdot d^2}{\sqrt{3}} = 100,34 \text{ cm}^2$, $I_z = 807,28 \text{ cm}^4$.

Comprobación de la deformación:

En el primer tramo se exige $f \le f_{ADM} = L/500 = 300/500 = 0,6$ cm. En el segundo tramo se exige $f \le f_{ADM} = L/300 = 150/300 = 0,5$ cm. Se obtuvo:

$$f_1 = \frac{-0.02783 \cdot q \cdot L^4}{E \cdot I} = \frac{-0.02783 \cdot 10 \cdot 300^4}{2.1 \cdot 10^6 \cdot 807.28} = 1.33 \text{ cm. No vale.}$$

$$f_2 = \frac{0.483 \cdot q \cdot L^4}{E \cdot I} = \frac{0.483 \cdot 10 \cdot 300^4}{2.1 \cdot 10^6 \cdot 807.28} = 23 \text{ cm. No vale.}$$

La flecha más conflictiva es la segunda. Para que verifique la flecha se hace $\frac{0,483\cdot q\cdot L^4}{E\cdot I}=0,5\rightarrow I=37286~cm^4\rightarrow d=10,66~cm\rightarrow \Omega=393,65~cm^2\rightarrow \Omega^*=354,29~cm^2,~W=3497,75~cm^3,~f_1=0,029~cm~y~f_2=0,5~cm$

El perfil IPE necesario sería un IPE 500 con I = 48200 cm^4 , W = 1930 cm^3 , Ω = 116 cm^2 , peso p = 90.7 kp/m. El perfil anterior no sirve. Este perfil puede ser excesivo, sin embargo en comparación con el hexagonal su peso es P = $90.7 \cdot 4.5 = 408.15 \text{ kp}$. El

peso del hexagonal será $P=\rho\cdot\Omega\cdot l=7,85\cdot 3,9365\cdot 45=1390,57$ kp. La diferencia es importante.

f) Valoración del potencial interno: Sustituyendo

$$\begin{split} &\Phi = \frac{q^2 \cdot L^5}{E \cdot I_z} \cdot (\frac{17}{630} + \frac{1}{36}) + \frac{q^2 \cdot L^3}{15 \cdot G \cdot \Omega^*} = \frac{10^2 \cdot 300^5}{2,1 \cdot 10^6 \cdot 37286} \cdot (\frac{17}{630} + \frac{1}{36}) + \frac{8 \cdot 10^2 \cdot 300^3}{120 \cdot 0,81 \cdot 10^6 \cdot 354,29} \\ &= 256 \text{ kp} \cdot \text{cm} + 9,41 \text{ kp} \cdot \text{cm} = 25,1 \text{ julio} + 0,92 \text{ julios} = 26 \text{ julios}. \text{ Se ve que el cortante tiene un efecto poco significativo en la energía elástica cuando hay flexión, } \Phi_T << \Phi_M. \end{split}$$

- 3.- En la vida de la figura 9.3a todas las cargas van hacia abajo, se pide determinar para los datos p = 17 kN/m, P = 25 kN, q = 68 kN/m y $M_0 = 13.5 \text{ kN·m}$:
- a) Ecuaciones y diagramas de esfuerzos.
- b) Leyes de tensiones normales y tangenciales para un perfil IPE genérico. En la sección de diseño.
- c) Ecuaciones de ángulos y de la deformada a partir de la ecuación diferencial aproximada de la elástica. Calcular también la flecha.
- d) Dimensionar la viga para un perfil IPE con un acero A-42, con coeficiente de seguridad n = 1,2 y una flecha admisible de $f_{ADM} = L/500$.

Figura 9.3a

a) Cálculo de cortantes y momentos flectores: Se deben establecer las reacciones \rightarrow

$$\sum \overrightarrow{F}_{EXT} = \overrightarrow{0} \rightarrow x) H_A = 0$$

$$y) V_A + V_B - p \cdot l_p - P - \frac{1}{2} \cdot q \cdot l_p = 0$$

$$V_{A+} V_B = p \cdot l_p + P + \frac{1}{2} \cdot q \cdot l_p = 17 \cdot 2 + 25 + \frac{1}{2} \cdot 68 \cdot 1 = 93 \text{ KN}$$

$$\sum \overrightarrow{M}_{EXT}\Big|_{A} = \overrightarrow{0} \quad M - P \cdot d_{p} + V_{B} \cdot d_{B} - \frac{1}{2} \cdot q \cdot l_{p} \cdot (d_{B} + \frac{1}{3} \cdot l_{q}) = 0 \rightarrow V_{B} \cdot d_{B} = P \cdot d_{p} + \frac{1}{2} \cdot q \cdot l_{p} \cdot (d_{B} + \frac{1}{3} \cdot l_{q}) - M;$$
 La carga p genera un momento que se anula en $x = 1$ donde está

$$V_B \cdot 3 = 25 \cdot 2 + \frac{1}{2} \cdot 68 \cdot 1 \cdot (3 + \frac{1}{3} \cdot 1) - 13,5 \rightarrow V_B \cdot 3 = 149,83 \rightarrow V_B = \frac{149,83}{3} = 49,94$$

$$V_A = 93 - V_B = 93 - 49,94 \approx 43,06 \text{ kN}; \quad V_A = 43,06 \text{ kN} \quad V_B = 49,94 \text{ kN}$$

Se analizan ahora los esfuerzos tomando x desde la izquierda.

0 < x < 1

$$\sum \overrightarrow{F} = \overrightarrow{0} \rightarrow p \cdot x + T_1 = 0 \rightarrow T_1 = -p \cdot x = -17 \cdot x \rightarrow T_1 = -17 \cdot x$$

$$\sum \overrightarrow{M}_{\Omega} = \overrightarrow{0} \rightarrow p \cdot x \cdot \frac{x}{2} + M_1 = 0 \rightarrow M_1 = -\frac{p}{2} \cdot x^2 \rightarrow T_1 = \frac{dM_1}{dx} \rightarrow M_1 = -8.5 \cdot x^2$$

1 < x < 2

$$\sum \vec{F} = \vec{0} \rightarrow p \cdot x + T_2 - V_A = 0 \qquad T_2 = V_A - p \cdot x = 43,06 - 17 \cdot x \qquad T_2 = 43,06 - 17 \cdot x$$

$$\sum \overrightarrow{M} = \overrightarrow{0} \rightarrow p \cdot x \cdot \frac{x}{2} + M_2 - V_A \cdot (x-1); M_2 = V_A \cdot (x-1) - \frac{p}{2} \cdot x^2$$

$$M_2 = 43,06 \cdot (x-1) - 8,5 \cdot x^2 = -43,06 + 43,06 \cdot x - 8,5 \cdot x^2$$

$$M_2 = -43,06 + 43,06 \cdot x - 8,5 \cdot x^2$$

2 < x < 3

$$\sum \vec{F} = \vec{0} \quad p \cdot l_p + T_3 - V_A = 0 \rightarrow T_3 = V_A - p \cdot l_p = 43,06 - 17 \cdot 2 = 43,06 - 34 = 9,06$$

$$T_3 = 9,06 \text{ kN}$$

$$\sum \overrightarrow{M} = \overrightarrow{0} \rightarrow p \cdot l_p \cdot (x-1) + M_3 - V_A \cdot (x-1) = 0 \rightarrow M_3 = V_A \cdot (x-1) - p \cdot l_p \cdot (x-1) = 0$$

$$= (x-1) - 34 \cdot (x-1) = 9,06 \cdot (x-1) \rightarrow M_3 = 9,06 \cdot (x-1)$$

3 < x < 4

$$\sum \vec{F} = \vec{0} \rightarrow p \cdot l_p + T_4 + P - V_A = 0 \rightarrow T_4 = V_A - p \cdot l_p - P$$

$$T_4 = 43,06 - 17 \cdot 2 - 25 = -15,94 \rightarrow T_4 = -15,94$$

Ejercicios de Resistencia de Materiales. Ejercicios de Resistencia de Materiales.
$$\sum \vec{M} = \vec{0} \rightarrow p \cdot l_{p'}(x-1) - V_{A'}(x-1) + M + P \cdot (x-3) + M_{4} = 0$$

$$M_{4} = V_{A'}(x-1) - p \cdot l_{p'}(x-1) - M - P \cdot (x-3) = 43.06 \cdot (x-1) - 17 \cdot 2 \cdot (x-1) - 13.5 - 25 \cdot (x-3) = 9.06 \cdot x - 9.06 - 13.5 - 25 \cdot x + 75 = 52.44 - 15.94 \cdot x \rightarrow M_{4} = 52.44 - 15.94 \cdot x \rightarrow M_{4} = 52.44 - 15.94 \cdot x \rightarrow M_{4} = 52.44 - 15.94 \cdot x \rightarrow M_{5} = 0$$
 Calculando $q' \rightarrow \frac{q'}{5-x} = \frac{q}{1} \rightarrow q' = q \cdot (x-4) + \frac{1}{2} \cdot (q-q') \cdot (x-4) - V_{B} = 0$
$$Calculando \quad q' \rightarrow \frac{q'}{5-x} = \frac{q}{1} \rightarrow q' = q \cdot (5-x)$$

$$T_{5} = V_{A} + V_{B} - P - p \cdot l_{p} - q' \cdot (x-4) - \frac{1}{2} \cdot (q-q') \cdot (x-4);$$

$$T_{5} = 93 \cdot 25 - 17 \cdot 2 - q' \cdot (x-4) - \frac{1}{2} \cdot (q-q') \cdot (x-4) = 34 - q' \cdot (x-4) - \frac{1}{2} \cdot (q-q') \cdot (x-4) = 34 - q' \cdot (5-x) \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q \cdot (5-x) \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q \cdot (5-x) \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q \cdot (5-x) \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q \cdot (5-x) \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q \cdot (5-x) \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q \cdot (5-x) \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q \cdot (5-x) \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q \cdot (5-x) \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q \cdot (5-x) \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q' \cdot (5-x) \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q' \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q' \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q' \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q' \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = 34 - \frac{1}{2} \cdot q' \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = \frac{1}{2} \cdot q' \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = \frac{1}{2} \cdot q' \cdot (x-4) - \frac{1}{2} \cdot q' \cdot (x-4) = \frac{1}{2} \cdot q' \cdot (x-4) + \frac{1}{2} \cdot q' \cdot (x-4) +$$

$$\begin{split} M_5 &= V_A \cdot (x - 1) - p \cdot l_p \cdot (x - 1) - M - P \cdot (x - 3) + V_B \cdot (x - 4) - \frac{q^{'}}{2} \cdot (x - 4)^2 - \frac{1}{3} \cdot (q - q^{'}) \cdot (x - 4)^2 = \\ &= 52,44 - 15,94 \cdot x + 49,94 \cdot (x - 4) - \frac{q^{'}}{2} \cdot (x - 4)^2 - \frac{1}{3} \cdot (q - q^{'}) \cdot (x - 4)^2 = \end{split}$$

$$= -147,32 + 34 \cdot x - \frac{1}{6} \cdot q' \cdot (x-4)^2 - \frac{q}{3} \cdot (x-4)^2 = -147,32 + 34 \cdot x - \frac{q}{6} \cdot (5-x) \cdot (x-4)^2 - \frac{q}{3} \cdot (x-4)^2 = -147,32 + 34 \cdot x - q \cdot (x-4)^2 \cdot \left(\frac{5}{6} + \frac{1}{3}\right) + \frac{q}{6} \cdot x \cdot (x-4)^2 = -147,32 + 34 \cdot x - \frac{7}{6} \cdot q \cdot (x-4) + \frac{q \cdot x}{6} \cdot (x-4)^2 = -147,32 + 34 \cdot x - \frac{476}{6} \cdot (x^2 - 8 \cdot x + 16) + \frac{68}{6} (x^3 - 8 \cdot x^2 + 16 \cdot x) = -147,32 + 34 \cdot x - \frac{476}{6} \cdot x^2 + \frac{3808}{6} \cdot x - \frac{7616}{6} + \frac{68}{6} \cdot x^3 - \frac{544}{6} \cdot x^2 + \frac{1088}{6} \cdot x = \frac{1088}{6} \cdot x - \frac{1088}{6}$$

$$= \frac{-883,92 + 204 \cdot x - 476 \cdot x^{2} + 3808 \cdot x - 7616 + 68 \cdot x^{3} - 544 \cdot x^{2} + 1088 \cdot x}{6} =$$

$$= \frac{-8499,92}{6} + 850 \cdot x - 170 \cdot x^{2} + \frac{68}{6} \cdot x^{3} = -1416,65 + 850 \cdot x - 170 \cdot x^{2} + 11,33 \cdot x^{3}$$

$$M_5 = -1416,65 + 850 \cdot x - 170 \cdot x^2 + 11,33 \cdot x^3 \rightarrow \frac{dM_5}{dx} = T_5$$

$$M_1 = -8.5 \cdot x^2 \rightarrow \frac{dM_1}{dx} = 0 = T_1 \rightarrow x = 0 \text{ MÁXIMO} \quad M_1(0) = 0 \quad M_1(1) = -8.5$$

$$M_2$$
 = - 43,06 $+$ 43,06·x - 8,5·x²; no hay extremos $T_2 \neq 0 \ \forall \ x$; $M_2(1)$ = -8,5 ;

$$M_2(2) = 9.06$$

43,06 - 43,06·x + 8,5·x² = 0
$$\frac{dM_2}{dx}$$
 = 43,06 −17·x; $\frac{d^2M_2}{dx^2}$ = - 17 → curvatura convexa ∩

 $x = \frac{43,06 \pm \sqrt{43,06^2 - 4.43,06 \cdot 8,5}}{2.85}$

= $1.37 \rightarrow \text{corta}$ al eje en x = 1.37

 $M_3 = 9.06 \cdot (x-1)$; no hay extremos; línea recta $\rightarrow M_3(2) = 9.06$ $M_3(3) = 18.12$

$$M_4 = 52,44 - 15,94 \cdot x$$
; línea recta $\rightarrow M_4$ (3) = 46,2; M_4 (4) = -11,32; M_4 = 0

$$x = \frac{52,44}{15.94} = 3,29$$

$$M_5 = -1416,65 + 850 \cdot x - 170 \cdot x^2 + 11,33 \cdot x^3 \rightarrow \frac{dM_5}{dx} = T_5$$
; en $x = 5$ $T_5 = 0 \rightarrow$ extremo

$$\frac{d^2M_5}{dx^2}$$
 = -340 + 68·x < 0 en todo el intervalo \rightarrow Máximo \cap

Diagramas

Con los resultados anteriores se representan fácilmente los diagramas de esfuerzos, ver figura 9.3b.

Figura 9.3b

b) Distribución de tensiones

La sección crítica es la de momento máximo, este valor es $M_{máx} = 18,12$ kN·m. El cortante en dicha sección presenta una discontinuidad, por la carga aplicada. El valor a tener en cuenta será el de módulo mayor, en este caso T = -15,92 kN.

Las tensiones normales se regirán por la ley de Navier. Las tensiones cortantes las rige la ecuación de Colignon.

La tensión normal según la ley de Navier y para el criterio de signos adoptado $\sigma = -\frac{M_z(x)}{I_z} \cdot y \;. \; \text{De momento se deja así indicado} \; \sigma = -\frac{M_{\text{máx}}}{I_z} \cdot y \; \text{que da una recta de valores superior} \; \sigma_1 \; \text{negativo, de compresión y} \; \sigma_2 \; \text{positivo, de tracción en las fibras de abajo ya que el momento es positivo. Con esto se representa en la figura 9.3c.}$

Para obtener las tensiones cortantes se aplicará la fórmula de Colignon. Como no se obtuvo, en la teoría, la tensión cortante para una sección doble T como es el caso del

IPE se hace ahora. En la figura 9.3a se muestra la geometría de un perfil IPE según la Normativa Básica de la Edificación, NBE EA-95, "Estructuras de acero en edificación". En la figura 9.3c, se muestra la geometría para el cálculo de las tensiones cortantes en en el ala y en el alma, además de la distribución de tensiones normales y la de cortantes.

La tensión de Colignon:

$$\tau = \frac{\mathbf{T} \cdot \mathbf{s}}{\mathbf{b} \cdot \mathbf{I}_{a}}$$

Para que sirva como ejercicio y como comprobación, se obtendrán los parámetros geométricos como sumatorios de las áreas y por métodos integrales.

En primer lugar se obtiene I_z.

Como sumatorio: se conoce que para un rectángulo el valor de I respecto al eje horizontal que pasa por el centriode, vale $I=\frac{1}{12}\cdot(x\cdot y^3)$, siendo x la base e y la altura. Así, por suma y resta de rectángulos se obtiene el momento de inercia para el IPE como; $I_z=\frac{1}{12}\cdot(b\cdot h^3)-\frac{2}{12}\cdot(\frac{b}{2}-\frac{e}{2})\cdot(h-2\cdot e_1)^3=\frac{1}{12}[b\cdot h^3-(b-e)\cdot(h-2\cdot e_1)^3].$ Integrando se obtiene lo mismo.

Integrando:

$$\begin{split} I_z &= \left. \int_{\Omega} y^2 \cdot d\Omega = 2 \cdot \int_0^{(h/2) - e_1} y^2 \cdot d\Omega + 2 \cdot \int_{(h/2) - e_1}^{h/2} y^2 \cdot d\Omega = \left. 2 \cdot e \cdot \frac{y^3}{3} \right|_0^{(h/2) - e_1} + 2 \cdot b \cdot \frac{y^3}{3} \right|_{(h/2) - e_1}^{h/2} \\ &= \frac{2}{3} \cdot \left[b \cdot \frac{h^3}{8} - b \cdot (\frac{h}{2} - e_1)^3 + e \cdot (\frac{h}{2} - e_1)^3 \right] = \frac{1}{12} \left[b \cdot h^3 - (b - e) \cdot (h - 2 \cdot e_1)^3 \right] \end{split}$$

Ahora calculando el momento estático, para el Ala y por sumatorio:

$$s_z = \sum_1^n \overline{y}_i \cdot \Omega_i = \overline{y}_R \cdot \Omega_R = \frac{1}{2} \cdot (\frac{h}{2} + y) \cdot b \cdot (\frac{h}{2} - y) = \frac{b}{8} \cdot (h^2 - 4 \cdot y^2)$$

que se obtiene igual integrando:

$$s_z = \int_y^{h/2} y d\Omega = b \frac{y^2}{2} \Big|_y^{h/2} = \frac{b}{2} (\frac{h^2}{4} - y^2) = \frac{b}{8} (h^2 - 4 \cdot y^2)$$

Así el cortante vale:

$$\tau = \frac{T \cdot \frac{b}{8} \cdot (h^2 - 4 \cdot y^2)}{b \cdot \frac{1}{12} \cdot \left[b \cdot h^3 - (b - e) \cdot (h - 2 \cdot e_1)^3 \right]} = \frac{3 \cdot T \cdot (h^2 - 4 \cdot y^2)}{2 \cdot \left[b \cdot h^3 - (b - e) \cdot (h - 2 \cdot e_1)^3 \right]}$$

Se calcula ahora el momento estático, para el Alma y por sumatorio:

$$\begin{split} s_z &= \sum_1^n \overline{y}_i \cdot \Omega_i \ = \ \overline{y}_{R1} \cdot \Omega_{R1} \ + \ \overline{y}_{R2} \cdot \Omega_{R2} = \ \frac{h - e_1}{2} \cdot b \cdot e_1 \ + \ \frac{1}{2} \cdot (\frac{h}{2} - e_1 + y) \cdot e \cdot (\frac{h}{2} - e_1 - y) = \\ \frac{b - e}{2} \cdot (h \cdot e_1 - e_1^2) + \frac{e}{8} \cdot (h^2 - 4 \cdot y^2) \end{split}$$

que se obtiene igual integrando:

$$s_{z} = \int_{y}^{(h/2)-e_{1}} y d\Omega + \int_{(h/2)-e_{1}}^{h/2} y d\Omega = e \frac{y^{2}}{2} \Big|_{y}^{(h/2)-e_{1}} + b \frac{y^{2}}{2} \Big|_{y}^{(h/2)-e_{1}} = \frac{b-e}{2} \cdot (h \cdot e_{1} - e_{1}^{2}) + \frac{e}{8} \cdot (h^{2} - 4 \cdot y^{2})$$

Así el cortante vale:

$$\tau = \frac{T \cdot \left[\frac{b - e}{2} \cdot (h \cdot e_1 - e_1^2) + \frac{e}{8} \cdot (h^2 - 4 \cdot y^2) \right]}{b \cdot \frac{1}{12} \cdot \left[b \cdot h^3 - (b - e) \cdot (h - 2 \cdot e_1)^3 \right]} = \frac{3 \cdot T \cdot \left[4 \cdot (b - e) \cdot (h \cdot e_1 - e_1^2) + e \cdot (h^2 - 4 \cdot y^2) \right]}{2 \cdot \left[b \cdot h^3 - (b - e) \cdot (h - 2 \cdot e_1)^3 \right]}$$

esta función vale cero en los extremos y tiene su máximo en la línea neutra. Se representa en la figura 9.3c.

Figura 9.3c

c) Determinación de las ecuaciones de ángulos, deformada y de la flecha.

Para ello se deben establecer las condiciones de contorno.

$$x = 1 \rightarrow 1^a$$
) $y_1'(1) = y_1'(1)$
 2^a) $y_1(1) = 0$

$$3^{a}$$
) $y_{2}(1) = 0$

$$x = 2 \rightarrow 4^a$$
) $y_2'(2) = y_3'(2)$

$$5^{a}$$
) $y_2(2) = y_3(3)$

$$x = 3 \rightarrow 6^a$$
) $y_3'(3) = y_4'(3)$

$$7^{a}$$
) $y_{3}(3) = y_{4}(3)$

$$x = 4 \rightarrow 8^a$$
) $y_4'(4) = y_5'(4)$

$$9^a$$
) $y_4(4) = 0$

$$10^{a}$$
) $v_{5}(4) = 0$

Hay 10 ecuaciones igual a 10 incógnitas que son las ctes. Se puede resolver

$$E \cdot I \cdot y_1 = M_1(x) \rightarrow E \cdot I \cdot y_1 = -8.5 \cdot x^2$$
;

E. Ángulos
$$\rightarrow$$
 E·I·y₁' = -8,5· $\frac{x^3}{3}$ + A₁

E. de la deformada o elástica \rightarrow E·I·y₁ = -8,5· $\frac{x^4}{4\cdot3}$ + A₁·x + B₁

$$E \cdot I \cdot y_2 = M_2(x) = -43,06 + 43,06 \cdot x - 8,5 \cdot x^2 \rightarrow$$

E. Ángulos
$$\rightarrow$$
 E·I·y₂' = -43,06·x + 43,06· $\frac{x^2}{2}$ -8,5· $\frac{x^3}{3}$ + A₂

E. de la deformada o elástica \rightarrow E·I·y₂ = -43,06· $\frac{x^2}{2}$ +43,06· $\frac{x^3}{6}$ - $\frac{8,5}{12}$ ·x⁴ + A₂·x + B₂

$$E \cdot I \cdot y_3 = M_3(x) = 9.06 \cdot (x-1);$$

E. Ángulos
$$\rightarrow$$
 E·I·y₃' = 9,06· $\frac{(x-1)^2}{2}$ + A₃;

E. de la deformada o elástica \rightarrow E·I·y₃ = 9,06· $\frac{(x-1)^3}{6}$ + A₃·x + B₃

$$E \cdot I \cdot y_4 = M_4(x) = 52,44 - 15,94 \cdot x$$

E. Ángulos
$$\rightarrow$$
 E·I·y₄' = 52,44·x - 15,94· $\frac{x^2}{2}$ + A₄

E. de la deformada o elástica
$$\rightarrow$$
 E·I·y₄ = 52,44· $\frac{x^2}{2}$ - $\frac{15,94 \cdot x^3}{6}$ + A₄·x + B₄

$$E \cdot I \cdot y_5 = M_5(x) = -1416,65 + 850 \cdot x - 170 \cdot x^2 + 11,33 \cdot x^3$$

E. Ángulos
$$\rightarrow$$
 E·I·y₅′ = -1416,65·x +850· $\frac{x^2}{2}$ -170· $\frac{x^3}{3}$ +11,33· $\frac{x^4}{4}$ + A₅

E. de la deformada
$$\rightarrow$$
 E·I·y₅ = -1416,65· $\frac{x^2}{2}$ +850· $\frac{x^3}{6}$ -170· $\frac{x^4}{12}$ +11,35· $\frac{x^5}{20}$ + A₅·x + B₅

Planteando las condiciones de contorno se tiene:

$$x = 1 \rightarrow y_1'(1) = y_2'(1) \frac{-8.5 \cdot 1^3}{3} + A_1 = -43.06 \cdot 1 + \frac{43.06}{2} \cdot 1^2 - \frac{8.5}{2} \cdot 1^3 + A_2 \rightarrow$$

$$A_1$$
- A_2 = -21,53

$$y_1(1) = 0 \frac{-8.5}{12} \cdot 1^4 + A_1 \cdot 1 + B_1 = 0 \rightarrow A_1 + B_1 = \frac{8.5}{12} = 0.7083333;$$

$$A_1 + B_1 = 0,7083$$

$$x = 2 \rightarrow y_2'(2) = y_3'(2) - 43,06 \cdot 2 + \frac{43,06 \cdot 2^2}{2} - \frac{8,5 \cdot 2^3}{3} + A_2 =$$

$$\frac{9,06}{2}(2-1)^2 + A_3 \rightarrow A_2 - A_3 = 27,196667$$

$$y_2(2) = y_3(2) \rightarrow -43,06 \cdot \frac{2^2}{2} + \frac{43,06 \cdot 2^3}{6} - \frac{8,5 \cdot 2^4}{12} + 2 \cdot A_2 + B_2 = 9,06 (2-1)^3 + A_3 \cdot 2 + B_3 \rightarrow 2 \cdot A_2 + B_2 - 2 A_3 - B_3 = 41,55$$

$$x = 3 \rightarrow y_3'(3) = y_4'(3) \rightarrow \frac{9,06}{2}(3-1)^2 + A_3 = 52,44 \cdot 3 - \frac{15,94}{2}3^2 + A_4 \rightarrow$$

$$A_3 - A_4 = 67.47$$

$$y_3(3) = y_4(3) \rightarrow \frac{9,06}{6}(3-1)^3 + A_3 \cdot 3 + B_3 = \frac{52,44}{2} \cdot 3^2 - \frac{15,94}{6} \cdot 3^3 + A_4 \cdot 3 + B_4$$

$$3 \cdot A_3 + B_3 - 3A_4 - B_4 = 152,17$$

$$x = 4 \rightarrow y_4'(4) = y_5'(4) \rightarrow 52,44 \cdot 4 - \frac{15,94}{2} \cdot 4^2 + A_4 =$$

$$-1416,65 \cdot 4 + \frac{850}{2} \cdot 4^2 - \frac{170}{3} \cdot 4^3 + 11,33 \cdot \frac{4^4}{4} + A_5 \rightarrow A_4 - A_5 = -1850,3867$$

$$y_4(4) = 0 \rightarrow 52,44 \cdot \frac{4^2}{2} - \frac{15,94}{3} \cdot 4^3 + 4 \cdot A_4 + B_4 = 0 \rightarrow 4 \cdot A_4 + B_4 = -249,49333$$

$$4 \cdot A_4 + B_4 = -249,49333$$

$$y_5(4) = 0 \rightarrow \frac{-1416,65}{2} \cdot 4^2 + \frac{850}{6} \cdot 4^3 - 170 \cdot \frac{4^4}{12} + 11,35 \cdot \frac{4^5}{20} + 4 \cdot A_5 + B_5 = 0$$

$$4 \cdot A_5 + B_5 = 5312,08$$

El sistema de ecuaciones se resuelve obteniendo (Se ha resuelto con un programa Matricial).

$$A_1 = -4,521$$
; $B_1 = 5,227$; $A_2 = 17,009$; $B_2 = -1,948$; $A_3 = -10,187$; $B_3 = 10,896$

$$A_4 = -77,677$$
; $B_4 = 61,136$; $A_5 = 1773$; $B_5 = -1779$

Las ecuaciones quedan:

0 < x < 1:

E. Ángulos: E·I·y₁' = -8,5·
$$\frac{x^3}{3}$$
 - 4,521

E. de la deformada o elástica: E·I·y₁ = -8,5· $\frac{x^4}{4\cdot3}$ -4,521·x + 5,227

1 < x < 2:

E. Ángulos: E·I·y₂' = -43,06·x + 43,06·
$$\frac{x^2}{2}$$
 - 8,5· $\frac{x^3}{3}$ +17,009

E. de la deformada:
$$E \cdot I \cdot y_2 = -43,06 \cdot \frac{x^2}{2} + 43,06 \cdot \frac{x^3}{6} - \frac{8,5}{12} \cdot x^4 + 17,009 \cdot x - 1,948$$

$$2 < x < 3$$
:

E. Ángulos: E·I·y₃′ =
$$9.06 \cdot \frac{(x-1)^2}{2} - 10.187$$

E. de la deformada o elástica:
$$E \cdot I \cdot y_3 = 9,06 \cdot \frac{(x-1)^3}{6} - 10,187 \cdot x + 10,896$$

3 < x < 4:

E. Ángulos: E·I·y₄′ = 52,44·x - 15,94·
$$\frac{x^2}{2}$$
 - 77,677

E. de la deformada o elástica:
$$E \cdot I \cdot y_4 = 52,44 \cdot \frac{x^2}{2} - \frac{15,94 \cdot x^3}{6} - 77,677 \cdot x + 61,136$$

4 < x < 5:

E. Ángulos: E·I·y₅' =
$$-1416,65 \cdot x + 850 \cdot \frac{x^2}{2} - 170 \cdot \frac{x^3}{3} + 11,33 \cdot \frac{x^4}{4} + 1773$$

E. de la deformada:
$$E \cdot I \cdot y_5 = -1416,65 \cdot \frac{x^2}{2} + 850 \cdot \frac{x^3}{6} - 170 \cdot \frac{x^4}{12} + 11,35 \cdot \frac{x^5}{20} + 1773 \cdot x - 1779$$

Ahora se trata de dibujar la deformada: La ecuación de momentos flectores nos da la siguiente información:

Si M >0 \rightarrow \cup . Si M < 0 \rightarrow \cap esto por criterio de signos, pero recordar que M es proporcional a $\frac{d^2y}{dx^2}$, o sea M da los intervalos de concavidad y convexidad.

- Además M = 0 =
$$\frac{d^2y}{dx^2}$$
 = 0 \rightarrow puntos de inflexión

con los datos anteriores se puede representar la deformada a estima, sin necesidad de dar muchos puntos, aunque siempre es necesario contar con algún punto conocido para atinar. Para dibujar la elástica correctamente se sigue operando.

0 < x < 1:

Extremos:
$$\rightarrow y_1' = 0 \rightarrow \frac{-8.5}{3} \cdot x^3 - 4.521 = 0 \rightarrow x = \sqrt[3]{\frac{-4.521 \cdot 3}{8.5}} = -1.17 \text{ no } \in \text{ al}$$

intervalo. En $x = 1 \rightarrow y_1 = 0$; el valor en $x = 0 \rightarrow y_1 = \frac{5,227}{E \cdot I} > 0$ luego con esta información y sabiendo que $M < 0 \rightarrow \cap$ se puede representar ese tramo.

1 < x < 2:

Extremos
$$\rightarrow y_2' = 0 \rightarrow f(x) = -43,06 \cdot x + \frac{43,06}{2} \cdot x^2 - \frac{8,5}{3} \cdot x^3 + 17,009 = 0$$
? La

función no se anula en el intervalo, inspeccionando con los valores f(1) = -7,3543333, f(1,5) = -8,701, f(2) = -5,6576667 se asegura que f(x) es negativa luego no hay extremos (se hace así para no resolver la función).

Inflexión
$$\rightarrow \frac{d^2y}{dx^2} = 0 \rightarrow M = 0 \rightarrow \text{punto } x = 1,37 \rightarrow y_2 (1,37) \cong \frac{-3,1}{\text{E-I}}$$

Valores $y_2(1) = 0$; $y_2(2) = \frac{-7.97}{\text{E-I}} \rightarrow \text{Con esto prácticamente se puede dibujar.}$

2 < x < 3:

Extremos:
$$\rightarrow y_3' = 0$$
, $\frac{9,06}{2}(x-1)^2 - 10,187 = 0 \rightarrow 4,53 \cdot (x^2 - 2 \cdot x + 1) - 10,187 = 0$

$$4,53 \cdot x^2 - 9,06 \cdot x + 4,53 - 10,187 = 4,53 \cdot x^2 - 9,06 \cdot x - 5,657 = 0$$

$$x = \frac{9,06 \pm \sqrt{9,06^2 + 4 \cdot 4,53 \cdot 5,657}}{2 \cdot 4,53}; \ x = \frac{9,06 \pm 13,59}{2 \cdot 4,53}$$

 \rightarrow (-) no vale \rightarrow (+) $x = 2,4995952 \approx 2,5$, en x = 2,5 hay un extremo que será un mínimo al ser $M = \frac{d^2y}{dx^2} > 0$ en dicho punto. No hay más extremos.

En dicho punto
$$y_3(2,5) = \frac{-9,475}{E \cdot I}$$
; y_3 $(x = 2) = y_2$ $(x = 2) = \frac{-7,97}{E \cdot I}$; y_3 $(x = 3) = \frac{-7,585}{E \cdot I}$

3 < x < 4:

Extremos: \rightarrow y₄′ = 0 \rightarrow 52,44·x - 7,97·x² - 77,677 = 0 \rightarrow -7,97·x² + 52,44·x - 77,677 = 0

$$x = \frac{-52,44 \pm \sqrt{52,44^2 - 4 \cdot 7,97 \cdot 77,677}}{-2 \cdot 7.97} = \frac{-52,44 \pm 16,84}{-2 \cdot 7.97} =$$

 $x=4,33 \rightarrow \not\in \text{ al intervalo } \}; \ x=2,25 \rightarrow \not\in \text{ al intervalo } \} \rightarrow x=4, \text{ vale cero, o sea}$ $y_4(4)=0; \ y_4(x=3)=y_3(x=3)=\frac{-7,585}{\text{E}\cdot\text{I}}, \text{ entonces crece de valores negativos a}$ positivos: $y_4(3,29)=\frac{-5,22}{\text{E}\cdot\text{I}}$

4 < x < 5:

Extremos:
$$y_5' = 0 \rightarrow -1416,65 \cdot x + \frac{850}{2} \cdot x^2 - \frac{170}{3} \cdot x^3 + \frac{11,33}{4} \cdot x^4 + 1773 = 0$$

Se investiga por inspección y se ve que para $\forall x$, $y_5'>0$, luego es creciente en todo el intervalo, no hay extremos. Con algún punto más, y_5 (4) = 0, $y_5(5) \cong \frac{2,35}{E \cdot I}$. Así se puede dibujar la flecha $f = \frac{-9,475}{E \cdot I}$.

En la figura 9.3d se representa la deformada multiplicada por el valor de la rigidez a flexión, de esta forma los valores se representan en una escala aceptable. Como es lógico, al representarla así, la deformada aparece exagerada en sus trazos.

Figura 9.3d

d) Lo primero será hacer el **diseño resistente**: Se debe verificar que $\sigma_{CO} \leq \sigma_{ADM}$. $\sigma_{ADM} = \sigma_{lim}/n = \sigma_e/n$, siendo n el coeficiente de seguridad. La tensión límite $\sigma_e = 2600 \text{ kp/cm}^2$ para el acero A-42. Así, como las tensiones cortantes son nulas en las fibras extremas donde las tensiones debidas al momento flector son máximas, $\sigma_{CO} = \sigma \leq \sigma_{ADM} = \sigma_{lim}/n = \sigma_e/n = 2600/1,2 \approx 2167 \text{ kp/cm}^2$, siendo σ el valor de la tensión máxima para que el diseño sea correcto. Entonces, $\sigma = M_{máx}/W_z \leq 2167$, luego para los datos $M_{máx} = 18,12 \text{ kN·m} = 18,12 \cdot 1000/9,8 \text{ kp·m} = 1848,9796 \text{ kp·m} \approx 1849 \text{ kp·m} \rightarrow W_z \geq 1849 \cdot 10^2/2167 = 85,33 \text{ cm}^3$. Para la sección buscada según las tablas de perfiles se necesita un IPE 160 con $\Omega = 20,1 \text{ cm}^2$, $I_z = 869 \text{ cm}^4$, $W_z = 109 \text{ cm}^3$. Las tensiones serán ligeramente inferiores a las de cálculo al tener el perfil un W_z algo mayor que el necesario.

Comprobación de la deformación:

Se exige $f \le f_{ADM} = L/500 = 300/500 = 0.6$ cm. Se obtuvo con unidades en m y kN:

$$f = \frac{-9,475}{\text{E} \cdot \text{I}} = \frac{-9,475}{2.1 \cdot 10^6 \cdot 869 \cdot 10^{-8}} = 5,298 \cdot 10^{-3} \text{ m} = 0,53 \text{ cm}. \text{ Si vale.}$$

siendo $E = 2.1 \cdot 10^6 \text{ kp/cm}^2 = 2.1 \cdot 10^6 \cdot 9.8/10^{-4} \text{ N/m}^2 = 2.058 \cdot 10^8 \text{ kN/m}^2$. $I_z = 869 \text{ cm}^4 = 869 \cdot 10^{-8} \text{ m}^4$, h = 160 mm, b = 82 mm, e = 5 mm, $e_1 = 7.4 \text{ mm}$.

Como aplicación se obtienen los valores para el perfil IPE 160 de las tensiones. El momento de inercia $I_z=\frac{1}{12}[b\cdot h^3-(b-e)\cdot (h-2\cdot e_1)^3]=\frac{1}{12}[0,082\cdot 0,16^3-0,77\cdot (0,16-b)\cdot (h-2\cdot e_1)^3]$

 $2\cdot0,0074)^3$] = 834,63 cm³. Este valor difiere ligeramente, ya que no se han tenido en cuenta el cálculo los redondeos de esquinas. Básicamente el valor es el mismo.

Las tensiones normales valdrán: $\sigma=(M_{m\acute{a}x}/I_z)\cdot y=18,12/(869\cdot 10^{-8})=2,0851554\cdot 10^6\cdot y$, de forma que las tensiones máximas valen $\sigma_1=-166,6$ MN/m $^3=-1702,$ 2 kp/cm 2 , $\sigma_2=166,6$ MN/m $^3=1702,$ 2 kp/cm 2 .

Los cortantes con la fórmula obtenida y en la sección crítica:

$$\tau = \frac{3 \cdot (-15,94) \cdot (0,16^2 - 4 \cdot y^2)}{2 \cdot [0,082 \cdot 0,16^3 - 0,077 \cdot (0,16 - 2 \cdot 0,0074)^3]} = -238,72954 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2)$$

así en la fibra $y = h/2 \rightarrow \tau = 0$, y en $y = (h/2) - e_1 = 0,0726$ m $\rightarrow \tau = -1078,33$ kN/m² ≈ -11 kp/cm².

$$\tau = \frac{3 \cdot (-15,94) \cdot \left[4 \cdot (0,77) \cdot (0,16 \cdot 0,0074 - 0,0074^2) + 0,005 \cdot (0,16^2 - 4 \cdot y^2) \right]}{2 \cdot \left[0,082 \cdot 0,16^3 - 0,077 \cdot (0,16 - 2 \cdot 0,0074)^3 \right]} = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 14,556679 \cdot 10^3 \cdot (0,16^2 - 4 \cdot y^2) = -1012,5798 + 1012,57$$

con valores en la fibra $y=(h/2)-e_1=0.0726~m \rightarrow \tau=$ - 1078,33 kN/m² \approx -11 kp/cm². coincide con el anterior, y en $y=0 \rightarrow \tau=$ - 1385,2308 kN/m² \approx -14,14 kp/cm².

4.- En la figura 9.4a se muestra una viga en voladizo sometida a una carga triangular hacia abajo. Determinar el desplazamiento vertical y el giro en la sección extrema, mediante los teoremas energéticos.

Figura 9.4a

Para aplicar los teoremas del potencial interno se debe resolver la viga. Para calcular el desplazamiento se debe utilizar el teorema de Castigliano. Así el teorema dice que el desplazamiento vale:

$$\delta = \frac{\partial \Phi}{\partial X}$$

siendo X la acción y δ el desplazamiento según el sentido de X. Como el potencial interno a flexión simple vale:

$$\Phi = \Phi_{M} + \Phi_{T} = \int_{L} \frac{M_{z}^{2}}{2 E I_{z}} dx + \int_{L} \frac{T_{y}^{2}}{2 G \Omega^{*}} dx$$

para determinar los desplazamientos se necesitan conocer las leyes de esfuerzos. Además, como se pide el desplazamiento vertical y el giro del extremo, es necesario utilizar cargas ficticias para el teorema. Así, según la figura derecha se emplearán dos cargas ficticias, F para el desplazamiento y M para el giro. Se deberán obtener los esfuerzos según estas cargas y las cargas propias de la viga.

Para determinar los esfuerzos en este caso se elige el corte que queda a la izquierda, así primero se necesita determinar las reacciones.

$$\sum F_{ext}^{\ \ y} = 0 \quad \ V_A \text{ - } F = 1/2 \cdot q \cdot L \rightarrow V_A = 1/2 \cdot q \cdot L + F$$

$$\sum_{\text{ext}} \left| = 0 \rightarrow \text{F} \cdot \text{L} + \frac{1}{2} \cdot \text{q} \cdot \text{L} \cdot \frac{2 \cdot \text{L}}{3} + \text{M}_{\text{A}} - \text{M} = 0 \rightarrow \text{M}_{\text{A}} = - \text{F} \cdot \text{L} - \frac{1}{3} \cdot \text{q} \cdot \text{L}^{2} + \text{M} \rightarrow \text{V}_{\text{A}} = \frac{1}{2} \cdot \text{q} \cdot \text{L}$$

Ahora se determinarán los esfuerzos. Si se hace un corte, ver figura 9.4b a una distancia x del empotramiento y para el criterio de signos empleado se obtienen los siguientes esfuerzos:

Figura 9.4b

Esto permite determinar las leyes en los distintos tramos, según la figura 9.4b.

Tramo único: 0 < x < L

$$\begin{split} T_1 - V_A + 1/2 \cdot q_x \cdot x &= 0 \rightarrow \frac{q}{L} = \frac{q_x}{x} \rightarrow q_x = \frac{q \cdot x}{L} \rightarrow T_1 = V_A - 1/2 \cdot q_x \cdot x = F + 1/2 \cdot q \cdot L - \\ 1/2 \cdot \frac{q \cdot x}{L} \cdot x &= \frac{q}{2 \cdot L} \cdot (L^2 - x^2) + F \end{split}$$

$$\begin{split} -\; M_1 + V_A \cdot x \; - \; 1/3 \cdot x \cdot q_x \cdot x/2 \; + \; M_A &= 0 \; \Longrightarrow \; M_1 = \; M_A \; + \; V_A \cdot x \; - \; 1/6 \cdot q_x \cdot x^2 = (-F \cdot L \; - \; \frac{1}{3} \cdot q \cdot L^2 \\ + \; M) \; + \; (1/2 \cdot q \cdot L \; + \; F) \cdot x \; - \; \frac{q \cdot x^3}{6 \cdot L} \; \; \Longrightarrow \; M_1 = \; M \; + \; F \cdot (x \; -L) \; + \; 1/2 \cdot q \cdot L \cdot x \; - \; \frac{q \cdot L^2}{3} \; \; - \; \frac{q \cdot x^3}{6 \cdot L} \; \; . \end{split}$$

Se cumple además
$$T_1 = \frac{d M_1}{dx}$$

Ahora aplicando el teorema de Castigliano, $\delta=\frac{\partial\Phi}{\partial X}$. El desplazamiento vertical del punto B será:

$$\begin{split} &\delta_B = \left. \frac{\partial \Phi}{\partial F} \right|_{F=0,M=0} = \{ \left. \frac{\partial}{\partial F} \left[\left. \int_L \frac{M_z^2}{2 \, E \, I_z} dx \right. \right. + \left. \int_L \frac{T_y^2}{2 \, G \, \Omega^*} dx \right. \right] \}_{F=0,M=0} \\ &\delta_B = \{ \left. \frac{1}{2 \, E \, I_z} \int_L 2 \, M_z \cdot \frac{\partial M_z}{\partial F} dx \right. + \left. \frac{1}{2 \, G \, \Omega^*} \int_L 2 \, T_y \cdot \frac{\partial T_y}{\partial F} dx \right. \}_{F=0,M=0} \\ &\delta_B = \left. \frac{1}{E \, I} \int_L M_z \right|_{F=0,M=0} \cdot \frac{\partial M_z}{\partial F} dx \right. + \left. \frac{1}{G \, \Omega^*} \int_L T_y \right|_{F=0,M=0} \cdot \frac{\partial T_y}{\partial F} dx \end{split}$$

Cuando F = 0 y M = 0 ya que son cargas de ayuda que no están en la viga. Los desarrollos anteriores llevan a la simplificación matemática, ya que en las expresiones finales se pueden sustituir los esfuerzos con F = 0 y M = 0, es decir, los esfuerzos reales, con un ahorro importante de operaciones.

Se computan ahora las derivadas parciales: $\frac{\partial M_1}{\partial F} = x - L, \ \frac{\partial T_1}{\partial F} = 1, \ \text{los esfuerzos}$ $\text{con } F = 0 \ \text{y M} = 0 \ \text{valen:} \ M_1 = \frac{q \cdot L \cdot x}{2} - \frac{q \cdot L^2}{3} - \frac{q \cdot x^3}{6 \cdot L} \ , \ T_1 = \frac{q}{2 \cdot L} \cdot (L^2 - x^2) \ .$

Sustituyendo:

$$\begin{split} &\delta_B = \frac{1}{E\,I_z} \int_L (\frac{q\,L\,x}{2} - \frac{q\,L^2}{3} - \frac{q\,x^3}{6\,L}) \cdot (x - L)\,dx \ + \frac{1}{G\,\Omega^*} \int_L \frac{q}{2\,L} (L^2 - x^2) \cdot dx = \\ &\delta_B = \frac{1}{E\,I_z} \int_0^L (\frac{q\,L\,x^2}{2} - \frac{q\,L^2 \cdot x}{3} - \frac{q\,x^4}{6\,L} - \frac{q\,L^2 \cdot x}{2} + \frac{q\,L^3}{3} + \frac{q\,x^3}{3}) \cdot dx \\ &+ \frac{1}{G\,\Omega^*} \int_0^L \frac{q}{2\,L} (L^2 - x^2) \cdot dx = \\ &\delta_B = \frac{q}{E\,I_z} \int_0^L (\frac{L\,x^2}{2} - \frac{5\,L^2 \cdot x}{6} - \frac{x^4}{6\,L} + \frac{L^3}{3} + \frac{x^3}{6}) \cdot dx + \frac{q}{2\,L\,G\,\Omega^*} \int_0^L (L^2 - x^2) \cdot dx = \\ &\delta_B = \frac{q}{E\,I_z} \cdot (\frac{L \cdot x^3}{6} - \frac{5 \cdot L^2 \cdot x^2}{12} - \frac{x^5}{30 \cdot L} + \frac{L^3 \cdot x}{3} + \frac{x^4}{24}) \bigg|_0^L + \frac{q}{2 \cdot L \cdot G \cdot \Omega^*} \cdot (L^2 \cdot x - \frac{x^3}{3}) \bigg|_0^L = \\ &\delta_B = \frac{q \cdot L^4}{E\,I_z} \cdot (\frac{1}{6} - \frac{5}{12} - \frac{1}{30} + \frac{1}{3} + \frac{1}{24}) + \frac{q \cdot L^2}{2 \cdot G \cdot \Omega^*} \cdot (1 - \frac{1}{3}) = \frac{11 \cdot q \cdot L^4}{120 \cdot E\,I_z} + \frac{q \cdot L^2}{3 \cdot G \cdot \Omega^*} \end{split}$$

este valor coincide con el obtenido con la ecuación aproximada de la elástica que da la teoría, que vale $\frac{11 \cdot q \cdot L^4}{120 \cdot E \cdot I_z}$, salvo la parte del cortante. Como se ha visto en distintas aplicaciones, en este tipo de vigas los desplazamientos de cortante son despreciables frente a los debidos al momento flector.

Calculando el giro en el punto B:

$$\theta_{B} = \frac{\partial \Phi}{\partial M} \bigg|_{F=0,M=0} = \left\{ \frac{\partial}{\partial M} \left[\int_{L} \frac{M_{z}^{2}}{2 E I_{z}} dx + \int_{L} \frac{T_{y}^{2}}{2 G \Omega^{*}} dx \right] \right\}_{F=0,M=0}$$

$$\theta_{B} = \left\{ \frac{1}{2 E I_{z}} \int_{L} 2 M_{z} \cdot \frac{\partial M_{z}}{\partial M} dx + \frac{1}{2 G \Omega^{*}} \int_{L} 2 T_{y} \cdot \frac{\partial T_{y}}{\partial M} dx \right\}_{F=0, M=0}$$

$$\theta_{B} = \frac{1}{E I_{z}} \int_{L} M_{z} \Big|_{F=0,M=0} \cdot \frac{\partial M_{z}}{\partial M} dx + \frac{1}{G \Omega^{*}} \int_{L} T_{y} \Big|_{F=0,M=0} \cdot \frac{\partial T_{y}}{\partial M} dx$$

Ahora si se computan ahora las derivadas parciales: $\frac{\partial M_1}{\partial M} = 1$, $\frac{\partial T_1}{\partial M} = 0$, los esfuerzos con F = 0 y M = 0 valen lo mismo.

Sustituyendo:

$$\theta_{B} = \frac{1}{E I_{z}} \int_{L} (\frac{q L x}{2} - \frac{q L^{2}}{3} - \frac{q x^{3}}{6 L}) dx = \frac{1}{E I_{z}} \int_{0}^{L} (\frac{q L x}{2} - \frac{q L^{2}}{3} - \frac{q x^{3}}{6 L}) \cdot dx$$

$$\theta_{B} = \frac{q}{E \cdot I_{z}} \cdot \left(\frac{L \cdot x^{2}}{4} - \frac{L^{2} \cdot x}{3} - \frac{x^{4}}{24 \cdot L}\right) \Big|_{0}^{L} = \frac{q \cdot L^{3}}{E \cdot I_{z}} \cdot \left(\frac{1}{4} - \frac{1}{3} - \frac{1}{24}\right) = -\frac{q \cdot L^{3}}{8 \cdot E \cdot I_{z}}$$

este valor coincide con el obtenido con la ecuación aproximada de la elástica, el signo menos indica que el giro se produce en sentido contrario al par ficticio M aplicado, como era de esperar.

5.- En la figura 9.5 se muestra una viga en voladizo sometida a una carga q uniforme hacia arriba en un primer tramo de longitud a. En el extremo se sitúa un par $M = \frac{q \cdot a^2}{2}$ según la figura. Determinar el desplazamiento vertical y el giro en la sección extrema, mediante los teoremas energéticos.

Figura 9.5

Para aplicar los teoremas del potencial interno se debe resolver la viga. Para calcular el desplazamiento se debe utilizar el teorema de Castigliano. Así el teorema dice que el desplazamiento vale:

$$\delta = \frac{\partial \Phi}{\partial X}$$

siendo X la acción y δ el desplazamiento según el sentido de X. Como el potencial interno a flexión simple vale:

$$\Phi = \Phi_{M} + \Phi_{T} = \int_{L} \frac{M_{z}^{2}}{2 E I_{z}} dx + \int_{L} \frac{T_{y}^{2}}{2 G \Omega^{*}} dx$$

para determinar los desplazamientos se necesitan conocer las leyes de esfuerzos. Además, como se pide el desplazamiento vertical y el giro del extremo, es necesario utilizar cargas ficticias para el teorema. Así, según la figura derecha se empleará una carga ficticia, F para el desplazamiento y se utilizará la propia carga M para el giro.

Para determinar los esfuerzos en este caso se elige el corte que elige el corte que queda a la derecha, ahora no se necesita determinar las reacciones. Se toma la x como origen en el empotramiento para que correspondan las ecuaciones obtenidas en la teoría con las que aquí se plantearán.

En el primer corte y según la figura 9.5, para el intervalo a < x < L, se tiene:

$$T_1 = F$$
 $M_1 = -M - F \cdot (L-x)$

En el segundo corte y según la figura, para el intervalo 0 < x < a, se tiene:

$$T_2 = F - q \cdot (a-x)$$
 $M_2 = -M - F \cdot (L-x) + \frac{q \cdot (a-x)^2}{2}$

Ahora aplicando el teorema de Castigliano, $\delta=\frac{\partial\Phi}{\partial X}$. El desplazamiento vertical del punto B será:

$$\delta_{B} = \left. \frac{\partial \Phi}{\partial F} \right|_{F=0,M} = \left. \frac{1}{E \, I_{z}} \int_{L} M_{z} \right|_{F=0,M} \cdot \frac{\partial M_{z}}{\partial F} dx \right. \\ \left. + \left. \frac{1}{G \, \Omega^{*}} \int_{L} T_{y} \right|_{F=0,M} \cdot \frac{\partial T_{y}}{\partial F} dx \right.$$

Cuando F = 0 y $M = \frac{q \cdot a^2}{2}$ que son los valores de las cargas. Se computan ahora las derivadas parciales: $\frac{\partial M_1}{\partial F} = (x-L)$, $\frac{\partial T_1}{\partial F} = 1$, $\frac{\partial M_2}{\partial F} = (x-L)$, $\frac{\partial T_2}{\partial F} = 1$, los esfuerzos con los valores de las cargas F = 0 y $M = \frac{q \cdot a^2}{2}$ valen:

$$M_1 = - \; \frac{q \cdot a^2}{2} \; , \; T_1 = 0 , \; M_2 = - \; \frac{q \cdot a^2}{2} \; + \; \frac{q \cdot (a-x)^2}{2} \; = - q \cdot a \cdot x \; + \; \frac{q \cdot x^2}{2} \; , \; T_2 = - \; q \cdot (a-x)$$

Sustituyendo:

$$\delta_{B} = \frac{1}{E I_{z}} \left(\int_{a}^{L} \frac{q a^{2}}{2} (L - x) \cdot dx + \int_{0}^{a} q \left(\frac{x^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \int_{0}^{a} q (a - x) \cdot dx = \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot (x - L) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot dx - \frac{1}{G \Omega^{*}} \left(\frac{a^{2}}{2} - a x \right) \cdot d$$

$$\delta_{B} = \frac{q}{E \cdot I_{z}} \cdot \left(\left[\frac{-a^{2} \cdot (L-x)^{2}}{4} \right]_{a}^{L} + \frac{q}{E \cdot I_{z}} \cdot \left(\left[\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right]_{a}^{L} + \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot (a-x)^{2} \right|_{0}^{a} = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\left[\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right]_{a}^{L} + \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot (a-x)^{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\left[\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right]_{a}^{L} + \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot (a-x)^{2} \right]_{0}^{a} = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{(2 \cdot a + L) \cdot x^{3}}{6} + \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{a \cdot x^{2} \cdot L}{2} \right) = \frac{q}{2 \cdot G \cdot \Omega^{*}} \cdot \left(\frac{x^{4}}{8} - \frac{x^{4}$$

$$\delta_B = \frac{q}{E \cdot I_z} \cdot (\frac{a^2 \cdot (L - a)^2}{4} + \frac{a^4}{8} - \frac{(2 \cdot a + L) \cdot a^3}{6} + \frac{a^3}{2} \cdot L) - \frac{q \cdot a^2}{2 \cdot G \cdot \Omega^*} =$$

$$\delta_B = \frac{q \cdot a^2}{24 \cdot E \cdot I_z} \cdot (6 \cdot L^2 + a^2 - 4 \cdot a \cdot L) - \frac{q \cdot a^2}{2 \cdot G \cdot \Omega^*}$$

Calculando el giro en el punto B:

$$\delta_{B} = \left. \frac{\partial \Phi}{\partial M} \right|_{F=0,M} = \left. \frac{1}{E I_{z}} \int_{L} M_{z} \right|_{F=0,M} \cdot \frac{\partial M_{z}}{\partial M} dx + \left. \frac{1}{G \Omega^{*}} \int_{L} T_{y} \right|_{F=0,M} \cdot \frac{\partial T_{y}}{\partial M} dx$$

Ahora si se computan ahora las derivadas parciales: $\frac{\partial M_1}{\partial M} = \frac{\partial M_2}{\partial M} = -1$, $\frac{\partial T_1}{\partial M} = \frac{\partial T_2}{\partial M} = 0$, los esfuerzos con F = 0 y M = $\frac{q \cdot a^2}{2}$ valen lo mismo.

Sustituyendo:

$$\theta_{B} \; = \; \frac{1}{E \cdot I_{z}} \cdot (\; \int_{0}^{a} (\; -q \cdot a \cdot x \; + \; \frac{q \cdot x^{\; 2}}{2}) \cdot (-1) \cdot dx \; + \; \int_{a}^{L} (\; -\frac{q \cdot a^{\; 2}}{2}) \cdot (-1) \cdot dx \; = \;$$

$$\theta_{B} = \frac{q}{E \cdot I_{z}} \cdot (\frac{a \cdot x^{2}}{2} - \frac{x^{3}}{6}) \Big|_{0}^{a} + \frac{q \cdot a^{2}}{2 \cdot E \cdot I_{z}} \cdot (L - a) = \frac{q \cdot a^{2}}{2 \cdot E \cdot I_{z}} \cdot (L - \frac{a}{3})$$

LECCIÓN 10

Flexión desviada y flexión compuesta

Introducción: En esta lección se estudian dos casos más de flexión, como son la **flexión desviada** en la que el momento flector no recae según una dirección principal de inercia, y la **flexión compuesta** en la que además de la flexión aparecen esfuerzos normales. En el caso de esta última, si el esfuerzo normal es de compresión se considerará que no hay pandeo.

Estos tipos de flexiones son habituales en el diseño estructural, como son los casos de diseño de correas, dinteles, perfiles sin simetría, pilares, jacenas, en general cualquier viga de una estructura puede mostrar este tipo de problemas.

Se plantean casos sencillos y buscando el diseño práctico básicamente en estructura metálica. No se profundiza en exceso, y se emplean métodos prácticos para la resolución de problemas reales. Tiene una importancia especial la aplicación del principio de superposición en la resolución de los problemas.

En esta lección no se aplica el potencial interno y sus teoremas, ya que se considera suficientemente ilustrado en la lección anterior. Se deja como una herramienta alternativa para el cálculo de desplazamientos.

Se estudian en esta lección unos pocos casos, dado que este tipo de diseños aparecerá en las lecciones siguientes.

Objetivos de la lección: Preparar al estudiante para el diseño de elementos estructurales sometidos a flexión desviada y compuesta.

Contenidos de los problemas: Diseño de vigas sometidas a flexión desviada y compuesta, con la determinación de las tensiones máximas, deformaciones críticas, línea neutra y el dimensionamiento de los perfiles.

Problemas resueltos: Exclusivamente ejercicios referentes a estos contenidos.

Formulación básica:

Fórmulas de las lecciones precedentes

Leyes de tensiones en flexión desviada

$$\sigma = -\frac{M_z}{I_z} \cdot y + \frac{M_y}{I_y} \cdot z$$

Ecuación de la línea neutra en flexión desviada

$$-\frac{M_z}{I_z}y + \frac{M_y}{I_y}z = 0$$

Ángulo que forma la línea neutra con el eje z

$$tg\phi = \frac{I_z}{I_y} tg\theta \rightarrow con tg\theta = \frac{M_y}{M_z}$$

Figura 1 Tensiones a partir de la línea neutra en flexión desviada

Distancia d respecto a la línea neutra de cualquier punto P(y,z)

$$d = \pm \frac{-\frac{M_{z}}{I_{z}}y + \frac{M_{y}}{I_{y}}z}{\sqrt{\left(\frac{M_{z}}{I_{z}}\right)^{2} + \left(\frac{M_{y}}{I_{y}}\right)^{2}}}$$

Tensión σ respecto a la línea neutra de cualquier punto P(y,z)

$$\sigma = k \cdot d \rightarrow k = \sqrt{\left(\frac{M_z}{I_z}\right)^2 + \left(\frac{M_y}{I_y}\right)^2}$$

Tensiones de Colignon

La tensión cortante $\overset{\rightarrow}{\tau}$ con componentes τ_{xy} y τ_{xz} : $\tau_{xy} = \frac{T_y \cdot s_z}{b \cdot I_z}$; $\tau_{xz} = \frac{T_z \cdot s_y}{c \cdot I_y}$

Expresión integrada del potencial interno en flexión desviada:

$$\Phi = \int_{0}^{L} \frac{M_{y}^{2}}{2 E I_{y}} dx + \int_{0}^{L} \frac{M_{z}^{2}}{2 E I_{z}} dx + \int_{0}^{L} \frac{T_{y}^{2}}{2 G \Omega_{y}^{*}} dx + \int_{0}^{L} \frac{T_{z}^{2}}{2 G \Omega_{z}^{*}} dx$$

siendo las secciones reducidas $\frac{1}{\Omega_{_{y}}^{^{*}}} = \frac{1}{I_{_{z}}^{^{2}}} \int_{b}^{s_{_{z}}^{2}} dy \leftrightarrow \frac{1}{\Omega_{_{z}}^{^{*}}} = \frac{1}{I_{_{y}}^{^{*}}} \int_{c}^{s_{_{y}}^{2}} dz$

Desplazamiento en flexión desviada por superposición de dos flexiones simples:

$$\delta = \sqrt{{\delta_{_y}}^2 + {\delta_{_z}}^2}$$

Flexión compuesta

$$\sigma = \frac{N}{\Omega} - \frac{M_z}{I_z} y + \frac{M_y}{I_y} z$$

Ecuación de la línea neutra en flexión compuesta

$$\frac{N}{\Omega} - \frac{M_z}{I_z} y + \frac{M_y}{I_z} z = 0$$

Expresión integrada del potencial interno en flexión compuesta

$$\Phi = \int_{0}^{L} \frac{N^{2}}{2 \cdot E \cdot \Omega} dx + \int_{0}^{L} \frac{M_{y}^{2}}{2 \cdot E \cdot I_{y}} dx + \int_{0}^{L} \frac{M_{z}^{2}}{2 \cdot E \cdot I_{z}} dx + \int_{0}^{L} \frac{T_{y}^{2}}{2 \cdot G \Omega_{y}^{*}} dz + \int_{0}^{L} \frac{T_{z}^{2}}{2 \cdot G \cdot \Omega_{z}^{*}} dx$$

Momentos máximos en vigas continuas con vanos iguales

Se pueden considerar los momentos máximos aproximados siguientes:

Viga continua con carga uniforme: $M_{m\acute{a}x}=0.1{\cdot}p{\cdot}L^2$

Viga continua con carga puntual en medio del vano: $M_{máx} = 0.17 \cdot P \cdot L$

Flechas en vigas continuas con dos vanos iguales

Se pueden determinar de forma aproximada a partir de la flecha de una viga biapoyada, con idéntica carga entre vanos. Así las flechas valen:

Viga continua con carga uniforme:
$$f = 0.415 \cdot f_{BA} \rightarrow f_{BA} = \frac{-5 \cdot p \cdot L^4}{384 \cdot E \cdot I}$$

Viga continua con carga puntual en medio del vano: $f = 0.56 \cdot f_{BA} \rightarrow f_{BA} = -\frac{P \cdot L^3}{48 \cdot E \cdot I}$

Nota: En general se admitirá esta relación de flechas para vigas continuas con mas vanos.

1.- En el diseño de una nave industrial se ha estimado para diseñar las correas de una cubierta de 16.7° de inclinación, una carga uniformemente distribuida y ponderada $p^* = 130$ kp/m lineal de correa. La separación entre pórticos es de s = 5 m. Las correas se diseñan como vigas continuas con momento crítico en el segundo apoyo $M_{m\acute{a}x} = 0.107 \cdot p \cdot L^2$, siendo p la carga uniformemente distribuida y L la longitud entre vanos iguales de la viga continua. En estos casos la flecha se considera que es 0.415 veces la flecha de una viga con longitud L e igual carga pero biapoyada. Se pide diseñar la viga en acero A-42 y perfil IPN, tener en cuenta un coeficiente promedio de ponderación de esfuerzos c = 1.415.

En el diseño de esta viga se da el valor de la carga y en este tipo de vigas continuas, el valor crítico para el momento y su sección que es el segundo apoyo. En este caso, como hay dos momentos, por estar en flexión desviada, el segundo apoyo pudiera ser diferente ya que la sustentación puede ser distinta en una dirección que en otra. En este caso este problema no existe, ya que se entiende que las vigas apoyan en los pórticos de igual forma en todas las direcciones, no habiendo otras uniones posibles con el resto de la estructura que pudieran hacer suponer otros apoyos, dando otras posibles secciones críticas. Aquí, por tanto, solo se tiene una sección crítica que es el segundo apoyo.

La carga de cálculo es $p^* \cong 130$ kp/m, que es la carga ponderada de metro lineal de correa.

Figura 10.1a Correa con carga uniforme que produce flexión desviada.

Diseño Resistente:

Para el cálculo, la carga p* se proyectará según la normal al faldón y según la dirección del faldón. Así se tienen dos proyecciones:

$$\begin{split} &p_y^* = p^* \cdot cos\theta \to p_y^* = 130 \text{ kp/m} \cdot cos16,7^o = 124,52 \text{ kp/m} \cong 125 \text{ kp/m}. \\ &p_z^* = p^* \cdot sen\theta \to p_z^* = 130 \text{ kp/m} \cdot sen16,7^o = 37,36 \text{ kp/m} \cong 38 \text{ kp/m}. \end{split}$$

Las correas son vigas continuas cuyos momentos más desfavorables se producen en el segundo apoyo y valen:

$$\begin{split} M_y &= 0,107 \cdot p_z^* \cdot L^2 = 0,107 \cdot 38 \cdot 5^2 = 101,65 \text{ kp} \cdot m \\ M_z &= 0,107 \cdot p_y^* \cdot L^2 = 0,107 \cdot 125 \cdot 5^2 = 334,37 \text{ kp} \cdot m \end{split}$$

Así despreciando fuerzas cortantes, la tensión de comprobación es:

$$\sigma^* = \frac{{M_y}^*}{{W_y}} + \frac{{M_z}^*}{{W_z}} \le \sigma_{ADM} = 2600 \, k \, p/cm^2 \, para \, el \, acero \, A-42.$$

Ahora se debe elegir un perfil que resista. Para ello según las tablas de perfiles de la NBE-EA-95, para perfiles IPN; el perfil IPN 120 tiene un $W_z = 54.7 \text{ cm}^3 \text{ y } W_y = 7.41 \text{ cm}^3$, $I_z = 328 \text{ cm}^4$, $I_y = 21.5 \text{ cm}^4$. Notar que el perfil se dispone para un mayor aprovechamiento, ya que se podía tomar girado 90°, pero entonces se necesitaría un perfil mayor.

Para este perfil sustituyendo:

$$\sigma^* = \frac{10165}{7,41} + \frac{33437}{54,7} \cong 1983 \,\mathrm{k} \,\mathrm{p/cm^2} \le 2600 \,\mathrm{k} \,\mathrm{p/cm^2}$$

luego vale al ser menor que la tensión admisible para el acero A-42.

Comprobación de la deformación:

Ahora se debe comprobar la flecha, que para una viga de cubierta la flecha admisible vale, $f_{ADM} = \frac{L}{250}$.

En el caso de vigas continuas las flechas son un 60% menores que el caso de vigas simplemente apoyadas. Así, el enunciado nos da un valor en que la flecha es 0,415 veces la de una biapoyada. Este valor se obtiene de la relaciones para el cálculo de flechas a flexión simple que da la NBE-EA-95.

La flecha para una viga con carga uniformemente repartida y biapoyada vale:

$$f = \frac{-5 \cdot p \cdot L^4}{384 \cdot F \cdot I}$$

las comprobaciones de flecha se hacen con la carga sin ponderar. Así:

$$p_y = p_y^*/c \cong 125/1,415 \cong 88,34 \text{ kp/m}.$$

$$p_z = p_z^*/c \cong 38/1,415 \cong 26,86 \text{ kp/m}.$$

Así se pueden obtener los desplazamientos en cada dirección, se emplean unidades m y kp:

$$f_y = \frac{-5 \cdot p_y \cdot L^4}{384 \cdot E \cdot I_z} = \frac{-588,345^4}{384 \cdot 2,1 \cdot 10^{10} \cdot 328 \cdot 10^{-8}} = -0,0103 \text{ m} = -1,03 \text{ cm}$$

$$f_z = \frac{-5 \cdot p_z \cdot L^4}{384 \cdot E \cdot I_y} = \frac{-526,865^4}{384 \cdot 2,1 \cdot 10^{10} \cdot 21,5 \cdot 10^{-8}} = -0,0484 \text{ m} = -4,84 \text{ cm}$$

La flecha resultante por superposición vale:

$$f = \sqrt{f_y^2 + f_z^2} = \sqrt{1.03^2 + 4.84^2} = 4.95 \text{ cm}$$

esto para la viga biapoyada, para la viga continua $f_C = 0.415 \cdot 4.95 = 2.05$ cm. Así $f_C \le f_{ADM} = L/250 = 500/250 = 2$ cm, por lo que no se cumple, pero el diseño se toma como válido ya que el valor es prácticamente el mismo y si se tiene en cuenta que para mas de dos vanos la flecha será algo menor.

2.- En el diseño de una nave industrial se ha estimado para diseñar las correas de una cubierta de 20° de inclinación, una carga puntual ponderada en medio del vano $P^*=1$ t. La separación entre pórticos es de s=4 m. Las correas se diseñan como vigas biapoyadas. Se pide diseñar la viga en acero A-42 y perfil UPN, tener en cuenta un coeficiente promedio de ponderación de esfuerzos c=1,4. Determinar el ángulo que forma la línea neutra con la horizontal y verificar los valores de las tensiones máximas. Dimensionar las correas si se construyen como vigas continuas cuyo $M_{m\acute{a}x}=0,171\cdot P\cdot L$ y flecha un valor de 0,56 la de la viga biapoyada.

En el diseño de esta viga se da el valor de la carga. Para una viga biapoyada con carga puntual el momento máximo vale $M_{m\acute{a}x}=P\cdot L/4$, con esto ya se puede comenzar el diseño. En la figura 10.2 se muestra la situación, como viga biapoyada y como viga continua.

Figura 10.2 Correa con carga puntual que produce flexión desviada.

Diseño Resistente:

Para el cálculo, la carga P^* se proyectará según la normal al faldón y según la dirección del faldón. Así se tienen dos proyecciones:

$$P_y^{\ *} = P^*{\cdot}cos\theta \rightarrow P_y^{\ *} = 1000 \ kp{\cdot}cos20^{\circ} \cong 940 \ kp.$$

$$P_z^* = P^* \cdot sen\theta \rightarrow P_z^* = 1000 \text{ kp} \cdot sen20^\circ \cong 342 \text{ kp}.$$

Las correas tendrán momentos críticos en medio de los vanos y de valores:

$$M_v^* = P_z^* \cdot L/4 = 342 \text{ kp} \cdot \text{m}$$

$$M_z^* = P_v^* \cdot L/4 = 940 \text{ kp} \cdot \text{m}$$

Así despreciando las tensiones cortantes, la tensión de comprobación es:

$$\sigma^* = \frac{M_y^*}{W_y} + \frac{M_z^*}{W_z} \le \sigma_{ADM} = 2600 \,\text{kp/cm}^2 \text{ para el acero A-42.}$$

Ahora se debe elegir un perfil que resista. Para ello según las tablas de perfiles de la NBE-EA-95, para perfiles UPN; el perfil UPN-180 tiene un $W_z = 150 \text{ cm}^3 \text{ y } W_y = 22,4 \text{ cm}^3$, $I_z = 1350 \text{ cm}^4$, $I_y = 114 \text{ cm}^4$. Como en el ejercicio anterior se dispone para un mayor aprovechamiento. La selección se hace mediante prueba y error, en este caso se probó primero el UPN-140 y se vio que no servía.

Para el perfil IPN-180 sustituyendo:

$$\sigma^* = \frac{34200 \text{ k p cm}}{22.4 \text{ cm}^3} + \frac{94000 \text{ k p cm}}{150 \text{ cm}^3} \cong 2153.5 \text{ k p/cm}^2 \le 2600 \text{ kp/cm}^2$$

luego vale al ser menor que la tensión admisible para el acero A-42.

Comprobación de la deformación:

Ahora se debe comprobar la flecha, que para una viga de cubierta la flecha admisible vale, $f_{ADM} = \frac{L}{250}$.

En el caso de una viga biapoyada con carga puntual en el medio la flecha vale:

$$f = -\frac{P \cdot L^3}{48 \cdot F \cdot I}$$

las comprobaciones de flecha se hacen con la carga sin ponderar. Así:

$$P_y = P_y^*/c \cong 940/1, 4 \cong 671,43 \text{ kp/m}.$$

$$P_z = P_z^*/c \cong 342/1, 4 \cong 244, 3 \text{ kp/m}.$$

Así se pueden obtener los desplazamientos en cada dirección, se emplean unidades m y kp:

$$f_y = -\frac{P_y \cdot L^3}{48 \cdot E \cdot I_z} = \frac{-671,43 \cdot 400^3}{48 \cdot 2,1 \cdot 10^6 \cdot 1350} = -0,316 \text{ cm}$$

$$f_z = -\frac{P_z \cdot L^3}{48 \cdot E \cdot I_y} = \frac{-244,3 \cdot 400^3}{48 \cdot 2,1 \cdot 10^6 \cdot 114} = -1,36 \text{ cm}$$

La flecha resultante por superposición vale:

$$f = \sqrt{f_y^2 + f_z^2} = \sqrt{0.316^2 + 1.36^2} = 1.4 \text{ cm}$$

esto para la viga biapoyada. Así $f \le f_{ADM} = L/250 = 400/250 = 1,6$ cm, por lo que se cumple y el diseño es válido.

El ángulo que forma la línea neutra es:

$$tg\phi = \frac{I_z}{I_y} tg\theta = \frac{1350}{114} tg20^\circ \approx 4 \to \phi = arctg4 = 75,93^\circ$$

Para verificar las tensiones máximas para esta inclinación los puntos son los que muestra la figura 10.2 para tensiones máximas σ_1 y σ_2 . El eje y está a una distancia c = 1,92 cm del lateral del alma del perfil. El ala tiene una anchura de 7 cm y la altura de perfil son 18 cm, así las coordenadas del punto 1 son (9, -1'92) y del punto 2 son (-9, 5,08) obteniendo las tensiones críticas:

$$\sigma = -\frac{M_z}{I_z} \cdot y + \frac{M_y}{I_y} \cdot z \rightarrow \sigma_1 = -\frac{94000}{1350} \cdot 9 + \frac{34200}{114} \cdot (-1,92) = -1212 \text{ kp/cm}^2.$$

$$\sigma_2 = -\frac{94000}{1350} \cdot (-9) + \frac{34200}{114} \cdot (5,08) = 2150,7 \text{ kp/cm}^2$$

Si se emplea una viga continua $M_{m\acute{a}x}=0.171\cdot P\cdot L$, o sea basta multiplicar por 4 y por 0,171 los valores de los momentos.

$$M_y^* = 0.171 \cdot 4.342 = 234 \text{ kp} \cdot \text{m}$$

$$M_z^* = 0.171 \cdot 4.940 = 643 \text{ kp} \cdot \text{m}$$

Ahora el perfil UPN 140 con $W_z = 86.4 \text{ cm}^3 \text{ y } W_y = 14.8 \text{ cm}^3, I_z = 605 \text{ cm}^4, I_y = 62.7 \text{ cm}^4.$

$$\sigma^* = \frac{23400 \text{ kpcm}}{14,8 \text{ cm}^3} + \frac{64300 \text{ kpcm}}{86,4 \text{ cm}^3} \cong 2325,3 \text{ kp/cm}^2 \le 2600 \text{ kp/cm}^2$$

si que sirve a resistencia.

La flecha ahora vale:

$$f_y = -\frac{P_y \cdot L^3}{48 \cdot E \cdot I_z} = \frac{-671,43 \cdot 400^3}{48 \cdot 2,1 \cdot 10^6 \cdot 605} = -0,70 \text{ cm}$$

$$f_z = -\frac{P_z \cdot L^3}{48 \cdot E \cdot I_v} = \frac{-244,3 \cdot 400^3}{48 \cdot 2,1 \cdot 10^6 \cdot 62,7} = -2,47 \text{ cm}$$

La flecha resultante por superposición vale:

$$f = \sqrt{f_y^2 + f_z^2} = \sqrt{0.70^2 + 2.47^2} = 2.57 \text{ cm}$$

la flecha de la viga continua es $fc = 0.56 \cdot f = 1.44$ cm, por lo que sirve.

El perfil UPN 180 pesa 22 kp/m y el perfil UPN 140 pesa 16 kp/m. El ahorro es de un 27% por metro lineal, lo que es importante tanto en peso como económicamente. Se debe pensar que el ahorro en peso repercute también en el resto de la estructura, que soporta estás vigas. Así, simplemente modificando el tipo de unión se puede ahorrar al utilizar vigas continuas.

3.- En el diseño de una nave industrial se ha estimado para diseñar las correas de una cubierta de 30° de inclinación, una carga uniformemente distribuida p* = 0,2 t/m. La separación entre pórticos es de s = 6 m. Las correas se diseñan como vigas biapoyadas. Se pide diseñar la viga en acero A-52 y perfil IPE, con un coeficiente de seguridad n = 2. Determinar el ángulo que forma la línea neutra con la horizontal y verificar los valores de las tensiones máximas. Dimensionar nuevamente las correas si se usan vigas continuas cuyo $M_{máx} \approx 0,107 \cdot p \cdot L^2$ y flecha un valor de 0,415 la de la viga biapoyada.

En una viga biapoyada el momento crítico vale: $M_{\text{máx}} = 0,125 \cdot p \cdot L^2$.

Diseño Resistente:

Para el cálculo, la carga p se proyectará según la normal al faldón y según la dirección del faldón. Así se tienen dos proyecciones:

$$p_v = p \cdot \cos\theta \Rightarrow p_v = 200 \text{ kp/m} \cdot \cos 30^\circ = 173.2 \text{ kp/m}.$$

$$p_z = p \cdot sen\theta \Rightarrow p_z = 200 \text{ kp/m} \cdot sen30^\circ = 100 \text{ kp/m}.$$

Las correas como vigas biapoyadas tendrán el momento crítico con componentes:

$$M_y = 0.125 \cdot p_z \cdot L^2 = 0.125 \cdot 100 \cdot 6^2 = 450 \text{ kp} \cdot \text{m}$$

$$M_z\!=0,\!125\!\cdot\! p_y\!\cdot\! L^2=0,\!125\!\cdot\! 173,\!2\!\cdot\! 6^2=778,\!5\ kp\!\cdot\! m$$

Así despreciando fuerzas cortantes, la tensión de comprobación es:

$$\sigma = \frac{M_y}{W_y} + \frac{M_z}{W_z} \le \sigma_{ADM} = \frac{\sigma_e}{n} = \frac{3600}{2} = 1800 \text{ kp/cm}^2 \text{ para el acero A-52.}$$

Ahora se debe elegir un perfil que resista. Para ello según las tablas de perfiles de la NBE-EA-95, para perfiles IPE; el perfil IPE 220 tiene un $W_z = 252 \text{ cm}^3 \text{ y } W_y = 37,3 \text{ cm}^3$, $I_z = 2770 \text{ cm}^4$, $I_y = 205 \text{ cm}^4$. La selección se hace mediante prueba y error. Para el perfil IPE -220 sustituyendo:

$$\sigma = \frac{45000 \text{ k p·cm}}{37.3 \text{ cm}^3} + \frac{77850 \text{ k p·cm}}{252 \text{ cm}^3} \cong 1515,36,5 \text{ kp/cm}^2 \le 1800 \text{ kp/cm}^2$$

luego vale al ser menor que la tensión admisible para el acero A-52.

Comprobación de la deformación:

Ahora se debe comprobar la flecha, que para una viga de cubierta la flecha admisible vale, $f_{ADM} = \frac{L}{250}$.

La flecha para una viga con carga uniformemente repartida y biapoyada vale:

$$f = \frac{-5 \cdot p \cdot L^4}{384 \cdot E \cdot I}$$

Así se pueden obtener los desplazamientos en cada dirección, se emplean unidades m y kp:

$$f_y = \frac{-5 \cdot p_y \cdot L^4}{384 \cdot E \cdot I_a} = \frac{-5 \cdot 173, 2 \cdot 6^4}{384 \cdot 2.1 \cdot 10^{10} \cdot 2770 \cdot 10^{-8}} = -0,00502 \text{ m} = -0,502 \text{ cm}$$

$$f_z = \frac{-5 \cdot p_z \cdot L^4}{384 \cdot E \cdot I_y} = \frac{-5 \cdot 100 \cdot 6^4}{384 \cdot 2 \cdot 1 \cdot 10^{10} \cdot 205 \cdot 10^{-8}} = -0.0392 \text{ m} = -3.92 \text{ cm}$$

La flecha resultante por superposición vale:

$$f = \sqrt{f_y^2 + f_z^2} = \sqrt{0.502^2 + 3.92^2} = 3.952 \text{ cm}$$

esto para la viga biapoyada, debiéndose cumplir $f \le f_{ADM} = L/250 = 600/250 = 2,4$ cm, por lo que NO se cumple y el diseño debe ser valorado para la rigidez. Para solucionar el problema se busca un perfil algo mayor que cumplirá a resistencia, como es lógico, y se le obliga a que cumpla la flecha. Eligiendo el IPE 270 con $W_z = 429$ cm³ y $W_y = 62,2$ cm³, $I_z = 5790$ cm⁴, $I_y = 420$ cm⁴, se verifica la flecha:

$$f_y = \frac{-5 \cdot p_y \cdot L^4}{384 \cdot E \cdot I_z} = \frac{-5 \cdot 173, 2 \cdot 6^4}{384 \cdot 2, 1 \cdot 10^{10} \cdot 5790 \cdot 10^{-8}} = -0,0024 \text{ m} = -0,24 \text{ cm}$$

$$f_z = \frac{-5 \cdot p_z \cdot L^4}{384 \cdot E \cdot I_v} = \frac{-5 \cdot 100 \cdot 6^4}{384 \cdot 2 \cdot 1 \cdot 10^{10} \cdot 420 \cdot 10^{-8}} = -0.0191 \text{ m} = -1.91 \text{ cm}$$

La flecha resultante por superposición vale:

$$f = \sqrt{f_v^2 + f_z^2} = \sqrt{0.24^2 + 1.91^2} = 1.925 \text{ cm}$$

que sirve y cumple tanto a resistencia como a rigidez...

El ángulo que forma la línea neutra es:

$$tg\phi = \frac{I_z}{I_y} tg\theta = \frac{5790}{420} tg30^\circ \approx 7,96 \rightarrow \phi = arctg7,967 = 82,84^\circ$$

Para verificar las tensiones máximas para esta inclinación, como el ala tiene b = 13.5 cm y la altura del perfil son h = 27 cm, los puntos para tensiones máximas σ_1 y σ_2 . tienen coordenadas: punto 1, (13′5, -6′75) y del punto 2 son (-13′5, +6′75) obteniendo las tensiones críticas:

$$\sigma_1 = -\frac{77850}{5790} \cdot (13,5) + \frac{45000}{420} \cdot (-6,75) = -904,73 \text{ kp/cm}^2.$$

$$\sigma_2 = -\frac{77850}{5790} \cdot (-13,5) + \frac{45000}{420} \cdot (6,75) = 904,73 \text{ kp/cm}^2$$

Si se toma como viga continua:

$$M_y = 0.107 \cdot p_z \cdot L^2 = 0.107 \cdot 100 \cdot 6^2 = 385.2 \text{ kp} \cdot \text{m}$$

$$M_z = 0.107 \cdot p_y \cdot L^2 = 0.107 \cdot 173.2 \cdot 6^2 = 666.4 \text{ kp} \cdot \text{m}$$

Ahora se debe elegir un perfil que resista. Como el momento ha bajado ligeramente se comprueba un perfil menor al anterior, en este caso el anterior de la serie que es el perfil IPE 200 que tiene un $W_z = 194 \text{ cm}^3 \text{ y } W_y = 28,5 \text{ cm}^3, I_z = 1940 \text{ cm}^4, I_y = 142 \text{ cm}^4$. Para el perfil IPE 200 sustituyendo:

$$\sigma = \frac{38520 \text{ k p cm}}{28,5 \text{ cm}^3} + \frac{66640 \text{ k p cm}}{194 \text{ cm}^3} \cong 1695 \text{ k p/cm}^2 \le 1800 \text{ kp/cm}^2$$

que vale.

Ahora se verifica la flecha que para el caso de viga biapoyada vale:

$$f_y = \frac{-5 \cdot p_y \cdot L^4}{384 \cdot E \cdot I_z} = \frac{-5 \cdot 173, 2 \cdot 6^4}{384 \cdot 2, 1 \cdot 10^{10} \cdot 1940 \cdot 10^{-8}} = -0,0072 \text{ m} = -0,72 \text{ cm}$$

$$f_z = \frac{-5 \cdot p_z \cdot L^4}{384 \cdot E \cdot I_y} = \frac{-5 \cdot 100 \cdot 6^4}{384 \cdot 2 \cdot 1 \cdot 10^{10} \cdot 142 \cdot 10^{-8}} = -0,0565 \text{ m} = -5,65 \text{ cm}$$

La flecha resultante por superposición vale:

$$f = \sqrt{f_v^2 + f_z^2} = \sqrt{0.72^2 + 5.65^2} = 5.7 \text{ cm}$$

como la viga continua tiene un valor de $f_C = 0.415 \cdot f = 2.37$ cm que vale justo. El peso del IPE 200 son 22,4 kp/m y el del IPE 270 son 36,1 kp/m, el ahorro supone un 37,95% al tomar las vigas unidas.

4.- El muro hastial de una nave industrial se construye con nueve pilares, ver figura 10.4, separados una distancia igual. Los dinteles forman un ángulo de 30° con la horizontal siguiendo la inclinación de la cubierta. La distancia entre la unión pilar-dintel es de 2 metros, lo que supone que la nave tiene una luz de 13,86 metros. Las correas apoyan en medio de los vanos de 2 m que hay entre los nudos de unión pilar-dintel. La carga que transmiten estas correas es vertical y vale P = 0,5 t en cada apoyo correa-dintel. Esta carga está ponderada con un coeficiente promedio de c = 1,4. Admitiendo que el dintel se comporta como una viga continua, que no existe problema de pandeo y que las flexiones excéntricas son despreciables (comprobarlo una vez diseñado el perfil), determinar el perfil tipo tubular rectangular apropiado en acero A-52.

Figura 10.4 Dintel con cargas puntuales en los vanos produciendo flexión compuesta

Realmente los dinteles forman parte de toda la estructura, y lo más correcto sería hacer un análisis completo de la misma, y así diseñar el dintel. Sin embargo, como se verá en lecciones sucesivas, este tipo de estructuras requieren de métodos de cálculo potentes, e incluso del uso del ordenador.

Un calculo aproximado del dintel sería hacer la aproximación que establece el enunciado.

Diseño Resistente:

Para el cálculo, la carga P* se proyectará según la normal al faldón, dirección y, y según la dirección del faldón, dirección x. Así se tienen dos proyecciones:

$$P_y^{\ *} = P^*{\cdot}cos\theta \rightarrow P_y^{\ *} = 500 \ kp{\cdot}cos30^o \cong 866 \ kp.$$

$$P_x^* = P^* \cdot sen\theta \rightarrow P_z^* = 500 \text{ kp} \cdot sen30^\circ \cong 250 \text{ kp}.$$

Estas cargas producen los siguientes esfuerzos:

 $P_v^* \rightarrow$ produce una flexión con valor $M_{m\acute{a}x}^* \approx 0.17 \cdot P_v^* \cdot L = 0.17 \cdot 866 \cdot 2 = 294,44 \text{ kp·m}.$

 $P_x^* \rightarrow$ produce un esfuerzo normal máximo de compresión $N_{máx}^{*}$ = - $4 \cdot P_x^{*}$ = - $4 \cdot 250~0~1000~kp$.

Además, P_x^* produce flexión por la excentricidad, ya que las correas apoyan sobre la fibra superior del perfil. Sin embargo, dicha flexión puede despreciarse frente a la que produce P_y^* , además la contrarresta, por lo que no considerarla da seguridad al diseño.

Es de esperar, que el esfuerzo más crítico sea la flexión, ya que cuando se considera que no hay pandeo los esfuerzos de compresión no son importantes.

Así despreciando las tensiones cortantes, la tensión de comprobación es:

$$\sigma^* = \frac{N_{max}^*}{\Omega} + \frac{M_{max}^*}{W_z} \le \sigma_{ADM} = 3600 \, \text{kp/cm}^2 \text{ para el acero A-52.}$$

Si se hace un primer cálculo, despreciando la compresión:

$$\sigma^* \approx \frac{M_{\text{máx}}^*}{W_z} = \frac{29444}{W_z} \le \sigma_{\text{ADM}} = 3600 \,\text{k p/cm}^2 \to W_z > 8,18 \,\text{cm}^3.$$

Se necesita un perfil 1000 70.40.3 con valores de $I_z = 36,4$ cm², $W_z = 10,4$ cm³ y $\Omega = 5,93$ cm². Ahora se comprueba si vale o no:

$$\sigma^* = \frac{1000}{5,93} + \frac{294440}{10,4} = 3000 \le \sigma_{ADM} = 3600 \,\text{kp/cm}^2$$

luego es válido.

Comprobación de la deformación:

Ahora se debe comprobar la flecha, que para una viga de cubierta la flecha admisible vale, $f_{ADM} = \frac{L}{250}$.

En el caso de una viga biapoyada con carga puntual en el medio la flecha vale:

$$f = -\frac{P \cdot L^3}{48 \cdot E \cdot I}$$

las comprobaciones de flecha se hacen con la carga sin ponderar. Así:

$$P_y = P_y^*/c \cong 866/1,4 \cong 618,6 \text{ kp/m}.$$

Así se pueden obtener los desplazamientos, se emplean unidades cm y kp:

$$f_y = -\frac{P_y \cdot L^3}{48 \cdot E \cdot I_z} = \frac{-618,6200^3}{48 \cdot 2,1 \cdot 10^6 \cdot 36,4} = -1,35 \text{ cm}$$

esto para la viga biapoyada. Como viga continua es aún menor $f_C = 0.56 \cdot f = -0.76$ cm. Así $f \le f_{ADM} = L/250 = 200/250 = 0.8$ cm, por lo que se cumple y el diseño es válido.

Ahora solo queda verificar que el momento debido a la excentricidad de $P_x^*=250$ kp, es despreciable. Como el perfil elegido tiene una altura de 140 mm, el par que produce P_x^* es $M=0.07\cdot250=17.5$ kp·m que es mucho menor que 294,44 kp·m, por lo que el supuesto es correcto.

- 5.- En la figura 10.5a, se muestra un pilar de hormigón de altura L y sección Ω = $a_0 \cdot b_0$. El pilar está empotrado a una zapata excéntrica de dimensiones $a \cdot b \cdot h$. En el extremo superior se considera una carga puntual P y excéntrica. Para los datos que se dan se pide:
- a) Determinar un valor de a aceptable para el diseño.
- b) Determinar los esfuerzos en el pilar y en la zapata para que puedan ser diseñados dichos elementos.

Datos: L = 6 m, h = 1 m, b = 1 m, $a_0 = b_0 = 0.4$ m, P = 30 t, tensión admisible del terreno $\sigma_{tADM} = 2 \text{ kp/cm}^2$, peso específico del hormigón $\rho_h = 2.5 \text{ t/m}^3$.

Figura 10.5a Pieza compuesta de pilar y zapata excéntricos

- a) El primer paso es estudiar las condiciones de sustentación.
- 1°) **Comprobación de hundimiento:** Se debe verificar que el terreno es capaz de soportar todas las cargas verticales que recibe de la cimentación. En este caso es la propia carga P y los pesos Q_p del pilar y Q_z de la zapata. $Q_p = \rho_h \cdot a_0 \cdot b_0 \cdot L = 2,5 \cdot 0,4 \cdot 0,4 \cdot 6 = 2,4$ t, $Q_z = \rho_h \cdot a \cdot b \cdot h = 2,5 \cdot a \cdot 1 \cdot 1 \cdot 1 \cdot 2,5 \cdot a$. Así la carga vertical total vale:

$$V = P + Q_p + Q_z = 30 + 2,4 + 2,5 \cdot a$$

que para que no se hunda se debe verificar que $V/(a \cdot b) \le \sigma_{tADM}$. Así: $(30 + 2,4 + 2,5 \cdot a)/(a \cdot 1) \le 20 \text{ t/m}^2 \rightarrow a \ge 1,745 \text{ m}$, este valor se redondea y queda a = 1,8, de forma que se obtiene un primer valor de a. Ahora V = 36,9 t

2°) **Estabilidad al vuelco:** En una segunda comprobación se debe dimensionar la zapata para que no vuelque. En este caso se estima que los momentos de las acciones y esfuerzos verticales deben superar a los de los esfuerzos cortantes y momentos flectores que recibe la zapata del pilar, con un coeficiente de seguridad de 1,5. Los esfuerzos que produce el pilar en su base y que transmite a la zapata valen, el cortante T = 0, y el momento M = 30.0, 2 = 6 t·m. Así tomando como origen de momentos el extremo inferior izquierdo de la zapata, la condición de estabilidad será:

$$P \cdot a + Q_p \cdot (a - a_0/2) + Q_z \cdot (a/2) \ge 1,5 \cdot M \rightarrow 30 \cdot 1,8 + 2,4 \cdot 1,6 + 4,5 \cdot 1,8 = 61,89 \text{ t·m} \ge 1,5 \cdot 6 = 9 \text{ t·m}$$
. Se verifica.

- 3°) Comprobación al deslizamiento: La transmisión de esfuerzos cortantes a los cimientos por parte de la estructura requiere de esta comprobación, para evitar deslizamientos. En este caso al ser T=0 no es necesaria.
- 4°) **Presiones del terreno:** Para seguir con el diseño se necesitan conocer las presiones que ejerce el terreno sobre la pieza. Estas presiones son de diversa índole, si bien, los casos reales se aproximan a tres tipos de leyes, como son la uniforme, la triangular y la trapezoidal. En el caso de excentricidades, como es el caso, la ley que predomina es la triangular admitiéndose que las presiones extremas excedan en un 25% las del terreno.

En este caso la ley de presiones prevista es la de la figura 10.5a con un valor máximo de σ_t y una longitud c a determinar. Para ello se plantean las condiciones de equilibrio estático del conjunto. Planteando el equilibrio de fuerzas.

$$\sum_{c} F_{ext}^{y} = 0 \quad V = 1/2 \cdot \sigma_{t} \cdot c \cdot b \cdot h \rightarrow 36.9 = 1/2 \cdot \sigma_{t} \cdot c \rightarrow \sigma_{t} \cdot c = 73.8 \text{ t}$$

y ahora el de momentos respecto al extremo inferior derecho de la zapata:

$$\begin{split} \sum M_{ext} & \left| = 0 \rightarrow Q_p \cdot a_0 / 2 + Q_z \cdot (a / 2) = (1 / 2 \cdot \sigma_t \cdot c \cdot b \cdot h) \cdot c / 3 \rightarrow 4,53 = (73,8 / 2) \cdot c \rightarrow c = \\ 0,37 \text{ m} \rightarrow \sigma_t & = 20 \text{ t/m}^2, \text{ como se admite hasta } 1,25 \cdot \sigma_{tADM} = 25 \text{ t/m}^2 \text{ resulta } \sigma_t = 20 \text{ t/m}^2 \\ & < 1,25 \cdot \sigma_{tADM} = 25 \text{ t/m}^2, \text{ por lo que la dimensión } a = 1,8 \text{ es satisfactoria.} \end{split}$$

En principio no se requieren más comprobaciones.

c) Una vez que se conocen todas las acciones exteriores sobre el sistema se pueden determinar los esfuerzos en cualquier sección.

En el pilar: Si se hace un corte a una distancia y desde el extremo superior los esfuerzos valen para toda la viga:

$$N = -30 \text{ t}$$
, $T = 0$, $M = 6 \text{ t}$ ·m

se está en flexión compuesta, donde la tensión máxima en valor absoluto valdrá:

$$\sigma = \frac{N_{\text{máx}}}{\Omega} + \frac{M_{\text{máx}}}{W_{\text{a}}} \le \sigma_{\text{ADM}}$$

En la zapata: La zapata trabaja a flexión simple en las secciones cortadas por los planos paralelos a los yz, xy dado que la carga que recibe del terreno es superficial. Si se corta por un plano paralelo al xz trabajará a compresión excéntrica, provocando flexión en la dirección z de la sección. Lo habitual es dimensionar según las secciones en yz o xy, ya que las secciones en xz tienen dimensiones muy grandes, en este caso a·b = 1.8 m^2 , frente a las otras. Aquí la sección en xy tiene las mismas dimensiones a·h = 1.8 m^2 , mientras la sección en yz tiene dimensiones b·h = 1 m^2 . Además, en el caso en que los esfuerzos transmitidos por el pilar están en el plano xy, el momento importante recae sobre el eje z de la sección en yz, siendo los esfuerzos para los otros planos inferiores.

Se determinan los esfuerzos en la zapata como viga con directriz según el eje x desde la izquierda de la pieza, y sección en yz.

$$0 \le x \le 1.43$$
:

La única carga existente es el peso. En los diseños de elementos de cimentación, se suele eliminar el efecto del peso, ya que cuando el hormigón está fraguando se produce un equilibrio hidrostático entre las presiones del terreno y la cimentación. Sin embargo, aquí se va a valorar, ver figura 10.5b:

$$\begin{split} T_1 &= -\rho_h \cdot x \cdot b \cdot h = -2, 5 \cdot x \\ M_1 &= -(\rho_h \cdot x \cdot b \cdot h) \cdot x/2 = -1, 25 \cdot x^2. \\ 1.43 &\leq x \leq 1.8 : \end{split}$$

En este caso actúan las tensiones del terreno. Se debe calcular el valor de la tensión σ_x , correspondiente a la sección de corte, para poder valorar los esfuerzos de esta carga triangular. Por semejanza de triángulos:

$$\frac{\sigma_x}{x-1.43} = \frac{\sigma_t}{0.37} \rightarrow \sigma_x = 54.05 \cdot (x-1.43)$$

Los esfuerzos en este caso valen:

$$T_2 = -\rho_h \cdot x \cdot b \cdot h + \frac{\sigma_x}{2} \cdot (x - 1,43) = -2,5 \cdot x + 27,025 \cdot (x - 1,43)^2$$

$$M_2 = -(\rho_h \cdot x \cdot b \cdot h) \cdot x/2 + \frac{\sigma_x}{2} \cdot (x - 1,43) \cdot \frac{(x - 1,43)}{3} = -1,25 \cdot x^2 + 9 \cdot (x - 1,43)^3$$

Si se calculan los esfuerzos para las secciones con directriz en z y en el plano xy, basta con un solo corte, en dicho caso los esfuerzos contando con el peso valen:

$$T = -\rho_h \cdot z \cdot a \cdot h + \frac{\sigma_t}{2} \cdot c \cdot z = -4, 5 \cdot z + 3, 5 \cdot z = 0, 8 \cdot z$$

$$M = -(\rho_h \cdot z \cdot a \cdot h) \cdot z/2 + \frac{\sigma_t}{2} \cdot c \cdot z \cdot \frac{z}{3} = (-2,25 + 1,23) \cdot z^2 = -1,02 \cdot z^2$$

Los esfuerzos para las secciones con directriz el eje y, y contenidas en xz, se reducen a un esfuerzo normal correspondiente a la carga vertical y la flexión producida por la excentricidad de la carga y los pesos. Como el pilar soporta dichas cargas, aún más lo hace la zapata por lo que no se suele valorar, ya que los pesos que aporte la zapata no repercuten sustancialmente en la resistencia que ofrecen sus dimensiones.

Decir también que en las secciones rectas puede parecer que los momentos de unas producen torsión en las otras, sin embargo notar que en cada corte, el momento neto correspondiente a las otras secciones es nulo por equilibrio.

Esfuerzos en el pilar

Esfuerzos en la zapata

Figura 10.5b Cortes para el cálculo de esfuerzos.

- 6.- En la figura 10.6a, se muestra un muro de hormigón con zapata corrida formando una sola pieza. Las dimensiones que muestra la figura son apropiadas. El muro soporta el empuje lateral del terreno cuyo valor depende de la profundidad y que se traduce en una carga triangular distribuida que vale 2/3 t/m por cada metro de altura. Se estima que el terreno ejerce una presión triangular como la de la figura. Para el diseño considerado determinar con los datos que se dan:
- a) Verificar que el diseño responde.
- b) Determinar los esfuerzos en el muro y en la zapata para que puedan ser diseñados dichos elementos.

Datos: tensión admisible del terreno $\sigma_{tADM}=2$ kp/cm², peso específico del hormigón $\rho_h=2,5$ t/m³.

Figura 10.6a Muro con zapata corrida.

- a) El primer paso es estudiar las condiciones de sustentación.
- 1°) **Comprobación de hundimiento:** Se debe verificar que el terreno es capaz de soportar todas las cargas verticales que recibe de la cimentación. En este caso son los pesos Q_m del muro y Q_z de la zapata. $Q_m = \rho_h \cdot a_0 \cdot b_0 \cdot L = 2,5 \cdot 1 \cdot 1 \cdot 4 = 10$ t, $Q_z = \rho_h \cdot a \cdot b \cdot h = 2,5 \cdot 2 \cdot 1 \cdot 1 \cdot 1 = 2,5 \cdot 2 = 7,5$. Así la carga vertical total vale:

$$V = Q_m + Q_z = 10 + 5 = 15$$

que para que no se hunda se debe verificar que $V/(a \cdot b) \le \sigma_{tADM}$. Así: $15/(3) = 5 \le 20$ t/m^2 , por lo que el diseño queda comprobado a hundimiento.

- 2°) **Estabilidad al vuelco:** Dada la geometría del muro, los pesos propios y la carga producen un par en la misma dirección que será compensada por las tensiones del terreno. En este caso se entiende que la estabilidad está asegurada mientras no ceda el terreno.
- 3°) Comprobación al deslizamiento: La fuerza horizontal debe ser contrarrestada por el rozamiento con el terreno. La fuerza horizontal es $(\frac{1}{2})\cdot 10/3\cdot 5=8,33$ t, correspondiente a la carga de empuje del terreno. El margen de seguridad de 1,5 hace que la carga considerar será de 12,5 t. Como la fuerza de rozamiento es directamente proporcional a la fuerza vertical, que vale 15 t, no parece que sea suficiente, ya que la proporcionalidad viene dada por coeficientes menores a 1, que pueden estar en torno a 0,5. La normativa de cargas establece diferencias entre suelos cohesivos y no cohesivos, sin embargo no es objeto de esta lección tratar esto aquí. El problema se puede solucionar mediante anclajes, o bien variando las dimensiones del muro. En este caso se mantendrán las dimensiones y se dispondrán anclajes.
- 4°) **Presiones del terreno:** En este caso la ley de presiones prevista es la de la figura 10.6a con un valor máximo de σ_t y una longitud c a determinar. Para ello se plantean las condiciones de equilibrio estático del conjunto. Planteando el equilibrio de fuerzas.

$$\sum F_{\rm ext}^{\ \ y} = 0 \quad \ V = 15 = 1/2 \cdot \sigma_t \cdot c \rightarrow \sigma_t \cdot c = 30 \ t. \label{eq:fext}$$

y ahora el de momentos respecto al extremo inferior derecho de la zapata:

 $\sum M_{ext} \left| = 0 \to Q_m \cdot a_0 / 2 + Q_z \cdot (a / 2) + (\frac{1}{2}) \cdot (10 / 3) \cdot 5 \cdot 5 / 3 \right. \\ \left. \left(\frac{1}{2} \cdot \sigma_t \cdot c \cdot b \cdot h \right) \cdot (a - c / 3) \to 10 \cdot 0, 5 + 5 \cdot 1 + 13,89 = 23,89 = (15) \cdot (2 - c / 3) \to c = 1,222 \text{ m} \to \sigma_t = 24,55 \text{ t/m}^2, \text{ como se admite hasta } 1,25 \cdot \sigma_{tADM} = 25 \text{ t/m}^2 \text{ resulta } \sigma_t = 24,55 \text{ t/m}^2 < 1,25 \cdot \sigma_{tADM} = 25 \text{ t/m}^2. \text{ Las dimensiones son satisfactorias.}$

En principio no se requieren más comprobaciones.

c) Una vez que se conocen todas las acciones exteriores sobre el sistema se pueden determinar los esfuerzos en cualquier sección.

En la pared del muro: Si se hace un corte a una distancia y desde el extremo superior los esfuerzos valen para toda la pared del muro:

N = -2,5·y, T =
$$-\frac{y^2}{3}$$
, M = $-\frac{y^3}{9}$

siendo la carga distribuida en la sección de corte $q_y=\frac{2\cdot y}{3}$. Estado de flexión compuesta.

En la zapata: En la zapata se determinarán los esfuerzos en las secciones cortadas por los planos paralelos a los yz. El resto se dejan como ejercicio.

Se determinan los esfuerzos en la zapata como viga con directriz según el eje x desde la izquierda de la pieza, y sección en yz.

 $0 \le x \le 1,222$:

$$T_1 = (\frac{1}{2}) \cdot (\sigma_t + \sigma_x) \cdot x \cdot b - \rho_h \cdot x \cdot b \cdot h = (\frac{1}{2}) \cdot (24,55 + 20,1 \cdot x) \cdot x \cdot 1 - 2,5 \cdot x = 12,3 \cdot x + 17,6 \cdot x^2$$
.

$$\begin{split} M_1 &= \sigma_x \cdot x \cdot b \cdot (1\!\!/\!2) \cdot x + (1\!\!/\!2) \cdot (\sigma_t - \sigma_x) \cdot x \cdot b \cdot (2\!\!/\!3) \cdot x - (\rho_h \cdot x \cdot b \cdot h) \cdot x/2 = 10,\!05 \cdot x^3 + 8,\!18 \cdot x^2 - 6,\!7 \cdot x^3 \\ &- 1,\!25 \cdot x^2 = 3,\!3 \cdot x^3 + 6,\!93 \cdot x^2. \end{split}$$

El valor σ_x se obtuvo por semejanza de triángulos:

$$\frac{\sigma_x}{x} = \frac{\sigma_t}{c} \rightarrow \sigma_x = 20.1 \cdot x$$

 $1,222 \le x \le 2$:

$$T_2 = (1\!\!/\!2) \cdot \sigma_t \cdot c \cdot b - \rho_h \cdot x \cdot b \cdot h = 15 - 2,5 \cdot x$$

$$M_2 = (1\!\!/2) \cdot \sigma_t \cdot c \cdot (x - c/3) - (\rho_h \cdot x \cdot b \cdot h) \cdot x/2 = 10,05 \cdot x^3 + 8,18 \cdot x^2 - 6,7 \cdot x^3 - 1,25 \cdot x^2 = 12,5 \cdot x - 6,11$$

Esfuerzos en el pilar

Esfuerzos en la zapata

Figura 10.6b Cortes para el cálculo de esfuerzos

LECCIÓN 11

Flexión lateral. Pandeo

Introducción: En esta lección se estudia el problema de la flexión lateral o Pandeo que aparece en vigas comprimidas. El conocimiento del problema es importante para el diseño de cualquier estructura. Este estudio permitirá un diseño más real de los elementos, ya que hasta ahora el estudio de vigas comprimidas se hizo con el supuesto que no había pandeo.

Se plantean casos sencillos y buscando el diseño práctico básicamente en estructura metálica. En estas circunstancias tiene especial relevancia el método de los coeficientes ω, que de forma sencilla permite el diseño de las estructuras de acero.

Objetivos de la lección: Preparar al estudiante para el diseño de cualquier elemento estructural en que pueda aparecer el pandeo.

Contenidos de los problemas: Básicamente dos tipos, estudio de la carga crítica de Euler y diseño de vigas por el método de los coeficientes ω.

Problemas propuestos: Se incluyen ejercicios propuestos a los anteriores como repaso.

Formulación básica:

Fórmulas de las lecciones precedentes

Carga crítica de Euler

$$P_{CR} = \frac{\pi^2 \cdot E \cdot I_{min}}{L_p^2} = \frac{\pi^2 \cdot E \cdot \Omega \cdot i_{min}^2}{L_p^2} = \frac{\pi^2 \cdot E \cdot \Omega}{\lambda^2}$$

siendo $\lambda = \frac{L_p}{i_{\min}}$ la esbeltez mecánica de la viga y L_p la longitud de pandeo.

Longitudes de pandeo típicas para la carga crítica de Euler

$$P_{CR} = \frac{\pi^2 \cdot E \cdot I_{min}}{{L_p}^2}, \text{ donde } L_p = \beta \cdot L, \text{ siendo } \beta \text{ el coeficiente de pandeo que depende}$$
 del tipo de sustentación y cuyos valores habituales se muestran en la tabla 11.1.

Esbeltez crítica para la aplicación de la fórmula de Euler en el trabajo elástico:

$$\lambda_{LIM} = \sqrt{\frac{E \cdot \pi^2}{\sigma_e}}$$

en el caso de que las esbelteces sean menores no es aplicable la fórmula de Euler.

Desde el punto de vista riguroso, si el comportamiento lineal sólo se considera hasta σ_p , tensión de límite proporcional la ecuación anterior será más restrictiva quedando:

$$\lambda_{LIM} = \sqrt{\frac{E \cdot \pi^2}{\sigma_p}}$$

Tabla 11.1 Coeficiente de pandeo β según el tipo de enlaces en los extremos									
CASO	1	2	3	4	5	6			
Representación gráfica									
Valores de β	1	2	0,5	1	0,7	2			

Cálculo según el método de los coeficientes ω

En el diseño mecánico de elementos de acero, se incluye el coeficiente $\omega(\lambda)$ obtenido de las tablas de la teoría o de la normativa NBE-EA-95. El coeficiente multiplica al esfuerzo normal, de esta forma la normativa actual presenta una serie de casos con sus fórmulas de aplicación. Sin embargo, para simplificar se usará el siguiente procedimiento teniéndose en cuenta que no cumple todos los casos de la normativa actual pero que aquí se tendrá como válido.

En normativas anteriores se proponía una fórmula aproximada para el diseño y que era:

$$\sigma = \frac{N}{\Omega} \cdot \omega + \frac{M_y}{W_y} + \frac{M_z}{W_z}$$

que se puede considerar como la superposición de los distintos esfuerzos. Notar que cuando hay tracción $\omega=1$, pudiendo generalizarse esta fórmula en el diseño de flexión compuesta. Esta fórmula también la contempla la normativa actual con ciertas restricciones.

Para el uso de la fórmula anterior se deberá tener en cuenta todas las situaciones críticas que pueda presentar la pieza y que pueda aparecer pandeo. La pieza se diseñará para la situación de cálculo más desfavorable.

La fórmula es válida tanto para el método de los coeficientes de seguridad como el de los de ponderación. En el método de los coeficientes de seguridad para que no aparezca el pandeo se toma un valor de n=1,71 para los aceros estructurales. Si se aplica el método de los coeficientes de ponderación, no es habitual incluir el coeficiente de seguridad a pandeo, dado que en este caso las acciones están ponderadas.

Otra consideración a tener en cuenta es que la NBE-EA-95, admite en el caso de celosía un valor de $\beta=1$, excepto cuando las barras son interiores y flexionan en el plano de la celosía, es decir, según la dirección ortogonal a dicho plano, en ese caso vale 0.8.

Tabl	Tabla 11.2 Coeficientes de pandeo ω según la NBE-EA-95 para los distintos aceros									
Coeficiente ω de pandeo para el acero A-37 (A 33) en función de la esbeltez λ										
λ	0	1	2	3	4	5	6	7	8	9
20	1,01	1,02	1,02	1,02	1,02	1,02	1,02	1,03	1,03	1,03
30	1,03	1,04	1,04	1,04	1,05	1,05	1,05	1,06	1,06	1,06
40	1,07	1,07	1,08	1,08	1,08	1,09	1,09	1,10	1,10	1,11
50	1,12	1,12	1,13	1,14	1,14	1,15	1,16	1,17	1,17	1,18
60	1,19	1,20	1,21	1,22	1,23	1,24	1,25	1,26	1,28	1,29
70	1,30	1,31	1,33	1,34	1,36	1,37	1,39	1,40	1,42	1,44
80	1,45	1,47	1,49	1,51	1,53	1,55	1,57	1,59	1,61	1,63
90	1,65	1,67	1,70	1,72	1,74	1,77	1,79	1,82	1,84	1,87
100	1,89	1,92	1,95	1,97	2,00	2,03	2,06	2,09	2,12	2,15
110	2,18	2,21	2,24	2,27	2,30	2,33	2,37	2,40	2,43	2,47
120	2,50	2,53	2,57	2,60	2,64	2,68	2,71	2,75	2,78	2,82
130	2,86	2,90	2,94	2,97	3,01	3,05	3,09	3,13	3,17	3,21
140	3,25	3,29	3,33	3,38	3,42	3,46	3,50	3,55	3,59	3,63
150	3,68	3,72	3,77	3,81	3,86	3,90	3,95	4,00	4,04	4,09
160	4,14	4,18	4,23	4,28	4,33	4,38	4,43	4,48	4,53	4,58
170	4,63	4,68	4,73	4,78	4,83	4,88	4,94	4,99	5,04	5,09
180	5,15	5,20	5,26	5,31	5,36	5,42	5,48	5,53	5,59	5,64
190	5,70	5,76	5,81	5,87	5,93	5,99	6.05	6,11	6,16	6,22
200	6,28	6,34	6,40	6,46	6,53	6,59	6,65	6,71	6,77	6,84
210	6,90	6,96	7,03	7,09	7,15	7,22	7,28	7,35	7,41	7,48
220	7,54	7,61	7,67	7,74	7,81	7,88	7,94	8,01	8,08	8,15
230	8,22	8,29	8,36	8,43	8,49	8,57	8,64	8,71	8,78	8,85
240	8,92	8,99	9,07	9,14	9,21	9,29	9,36	9,43	9,51	9,58
250	9,66									

Tabla 11.2 Coeficientes de pandeo ω según la NBE-EA-95 para los distintos aceros										
Coeficiente ω de pandeo para el acero A-42 en función de la esbeltez λ										
λ	0	1	2	3	4	5	6	7	8	9
20	1,02	1,02	1,02	1,02	1,02	1,03	1,03	1,03	1,03	1,04
30	1,04	1,04	1,04	1,05	1,05	1,05	1,06	1,06	1,07	1,07
40	1,07	1,08	1,08	1,09	1,09	1,09	1,09	1,10	1,10	1,11
50	1,13	1,14	1,14	1,15	1,16	1,15	1,16	1,17	1,17	1,18
60	1,22	1,23	1,24	1,25	1,26	1,27	1,29	1,30	1,31	1,33
70	1,34	1,36	1,37	1,39	1,40	1,42	1,44	1,46	1,47	1,49
80	1,51	1,53	1,55	1,57	1,60	1,62	1,64	1,66	1,69	1,71
90	1,74	1,76	1,79	1,81	1,84	1,86	1,89	1,92	1,95	1,98
100	2,01	2,03	2,06	2,09	2,13	2,16	2,19	2,22	2,25	2,29
110	2,32	2,35	2,39	2,42	2,46	2,49	2,53	2,56	2,60	2,64
120	2,67	2,71	2,75	2,79	2,82	2,86	2,90	2,94	2,98	3,02
130	3,06	3,11	3,15	3,19	3,23	3,27	3,32	3,36	3,40	3,45
140	3,49	3,54	3,58	3,63	3,67	3,72	3,77	3,81	3,86	3,91
150	3,96	4,00	4,05	4,10	4,15	4,20	4,25	4,30	4,35	4,40
160	4,45	4,51	4,56	4,61	4,66	4,72	4,77	4,82	4,88	4,93
170	4,99	5,04	5,10	5,15	5,21	5,26	5,32	5,38	5,44	5,49
180	5,55	5,61	5,67	5,73	5,79	5,85	5,91	5,97	6,03	6,09
190	6,15	6,21	6,27	6,34	6,40	6,46	6.53	6,59	6,65	6,72
200	6,78	6,85	6,91	6,98	7,05	7,11	7,18	7,25	7,31	7,38
210	7,45	7,52	7,59	7,66	7,72	7,79	7,86	7,93	8,01	8,08
220	8,15	8,22	8,29	8,36	8,44	8,51	8,58	8,66	8,73	8,80
230	8,88	8,95	9,03	9,11	9,18	9,26	9,33	9,41	9,49	9,57
240	9,64	9,72	9,80	9,88	9,96	10,04	10,12	10,20	10,28	10,36
250	10,44									

Tabla 11.2 Coeficientes de pandeo ω según la NBE-EA-95 para los distintos aceros										
Coeficiente ω de pandeo para el acero A-52 en función de la esbeltez λ										
λ	0	1	2	3	4	5	6	7	8	9
20	1,02	1,02	1,03	1,03	1,03	1,04	1,04	1,04	1,05	1,05
30	1,05	1,06	1,06	1,07	1,07	1,08	1,08	1,09	1,10	1,10
40	1,11	1,12	1,13	1,13	1,14	1,15	1,16	1,17	1,18	1,19
50	1,20	1,22	1,23	1,24	1,25	1,27	1,28	1,30	1,31	1,33
60	1,35	1,37	1,39	1,41	1,43	1,45	1,47	1,49	1,51	1,54
70	1,56	1,59	1,61	1,64	1,66	1,69	1,72	1,75	1,78	1,81
80	1,84	1,87	1,90	1,94	1,97	2,01	2,04	2,08	2,11	2,15
90	2,18	2,22	2,26	2,30	2,34	2,38	2,42	2,46	2,50	2,54
100	2,59	2,63	2,67	2,72	2,76	2,81	2,85	2,90	2,95	2,99
110	3,04	3,09	3,14	3,19	3,24	3,29	3,34	3,39	3,44	3,49
120	3,55	3,60	3,65	3,71	3,76	3,82	3,87	3,93	3,98	4,04
130	4,10	4,16	4,22	4,27	4,33	4,39	4,45	4,52	4,58	4,64
140	4,70	4,76	4,83	4,89	4,95	5,02	5,08	5,15	5,22	5,28
150	5,35	5,42	5,48	5,55	5,62	5,69	5,76	5,83	5,90	5,97
160	6,04	6,12	6,19	6,26	6,34	6,41	6,48	6,56	6,63	6,71
170	6,79	6,86	6,94	7,02	7,09	7,17	7,25	7,33	7,41	7,49
180	7,57	7,65	7,73	7,82	7,90	7,98	8,07	8,15	8,24	8,32
190	8,40	8,49	8,58	8,66	8,75	8,84	8,93	9,02	9,10	9,19
200	9,28	9,37	9,47	9,56	9,65	9,74	9,83	9,92	10,02	10,11
210	10,21	10,30	10,40	10,49	10,59	10,69	10,78	10,88	10,98	11,08
220	11,18	11,27	11,38	11,48	11,57	11,68	11,78	11,88	11,98	12,09
230	12,19	12,29	12,40	12,50	12,61	12,72	12,82	12,93	13,03	13,14
240	13,25	13,36	13,47	13,58	13,69	13,80	13,91	14,02	14,13	14,25
250	14,36									

- 1.- En la figura 11.1a, se muestra una viga sometida a una carga P de compresión sin excentricidad. Se desea dimensionar la viga en acero A-37. Se pide:
- a) Obtener el valor de la carga crítica de Euler para la longitud de la viga L y la geometría.
- b) Establecer la esbeltez mínima para aplicar Euler si se considera que la tensión crítica de Euler no debe superar la tensión σ_p del acero que se considera según la DIN-4114 que vale $\sigma_p = 0.8 \cdot \sigma_e$.
- c) Dimensionar la viga por el método de los coeficientes ω con un perfil tipo IPE, una carga de P = 30 t, L = 3 m y que el acero trabaje elásticamente con la seguridad habitual en pandeo.

Figura 11.1a Viga comprimida empotrada-apoyo móvil.

a) En primer lugar se debe determinar P_{CR}.

El equilibrio da:

$$H_A=P,\ V_A+V_B=0,\ V_B=-V_A,\ M_A=V_B{\cdot}L.$$

Los esfuerzos valen:

$$N = -H_A = -P$$
, $T = V_A$, $M = M_A - H_A \cdot y + V_A \cdot x = -P \cdot y + V_A \cdot (x-L)$

La ecuación de la elástica:

$$E \cdot I \cdot y'' = -P \cdot y + V_A \cdot (x-L)$$

Cuya solución es del tipo:

$$y = A \cdot sen(k \cdot x) + B \cdot cos(k \cdot x) + C \cdot (x - L) \rightarrow y ^{\prime \prime} = -A \cdot k^2 \cdot sen(k \cdot x) - B \cdot k^2 \cdot cos(k \cdot x)$$

de donde para que se cumpla que $k=\sqrt{\frac{P}{E \cdot I}}~$ se hace $C=\frac{V_A}{P}~$ quedando:

$$y = A \cdot sen(\sqrt{\frac{P}{E \cdot I}} \cdot x) + B \cdot cos(\sqrt{\frac{P}{E \cdot I}} \cdot x) + \frac{V_A}{P} \cdot (x - L)$$

Para obtener los resultados se aplican las condiciones de contorno, que son:

$$y'(0) = 0 = A \cdot k \cdot cos0 - B \cdot k \cdot sen0 + \frac{V_A}{P} = 0 \longrightarrow A \cdot k + \frac{V_A}{P} = 0$$

$$y(0) = 0 = A \cdot sen0 + B \cdot cos0 - \frac{V_A}{P} \cdot L = 0 \rightarrow B - \frac{V_A}{P} \cdot L = 0$$

$$y(L) = 0 = A \cdot sen(k \cdot L) + B \cdot cos(k \cdot L) = 0$$

resolviendo se obtiene: $V_A = -P \cdot A \cdot k$, $V_B = \frac{V_A}{P} \cdot L = -L \cdot A \cdot k \rightarrow sen(k \cdot L) = k \cdot L \cdot cos(k \cdot L)$ $\rightarrow tg(k \cdot L) = k \cdot L$ que se resuelve gráficamente. La primera solución se tiene para valores $k \cdot L = 4,493$ y por tanto $\sqrt{\frac{P}{E \cdot I}} \cdot L = 4,493 \rightarrow P = \frac{4,493^2 \cdot E \cdot I}{L^2}$, que si se relaciona con el valor de la viga biarticulada $\frac{4,493^2 \cdot E \cdot I}{L^2} = \frac{\pi^2 \cdot E \cdot I}{L_p^2} \rightarrow \frac{4,493^2}{L^2} = \frac{\pi^2}{L_p^2} = \frac{\pi^2}{(\beta \cdot L)^2} \rightarrow \beta^2 = \frac{\pi^2}{4,493^2} \rightarrow \beta = 0,7$ de tal forma que la $P_{CR} = \frac{\pi^2 \cdot E \cdot I_{min}}{(0,7 \cdot L)^2}$, luego la carga crítica equivale a la de una viga biarticulada de longitud $0,7 \cdot L$.

Figura 11.1b Solución a la ecuación $tg(k \cdot L) = k \cdot L$

b) $\lambda_{\text{LIM}} = \sqrt{\frac{E \cdot \pi^2}{\sigma_p}} \rightarrow$ el acero A-37 tiene un valor de $\sigma_e = 2400 \text{ kp/cm}^2$. Con esto queda:

$$\lambda_{LIM} = \sqrt{\frac{2,1 \cdot 10^6 \cdot \pi^2}{0,8 \cdot 2400}} = 103,9$$

c) En el diseño por el método indicado, las deformaciones son pequeñas, con lo que se entiende que los esfuerzos debidos al desplazamiento en y son despreciables, es decir; sólo existe en este caso esfuerzo normal N = -P. Así:

$$\sigma = \frac{N}{\Omega} \cdot \omega \le \sigma_{ADM} = \frac{\sigma_e}{n} = \frac{2400}{1.71} = 1404 \text{ kp/cm}^2.$$

N = - 30000 kp, el signo por ser de compresión. En este caso se sustituirá en módulo ya que la tensión admisible también se tomo positiva.

En la ecuación para el dimensionamiento resistente, hay dos variables, el coeficiente de pandeo ω y la sección. Ambos definirán el perfil necesario. Para valorar ω , se calcula por inspección $\lambda = \frac{L_p}{i_{min}}$, y se entra en las tablas que muestra la teoría.

Se probaron los siguientes perfiles y en este orden hasta seleccionar el apropiado:

IPE 200 con:
$$\Omega = 33.5 \text{ cm}^2$$
, $i_{min} = 1.87 \text{ cm}$, $\lambda \approx 113$, $\omega(113) = 2.27 \rightarrow \text{NO VALE}$

IPE 270 con:
$$\Omega = 45.9 \text{ cm}^2$$
, $i_{min} = 3.02 \text{ cm}$, $\lambda \approx 70$, $\omega(113) = 1.3 \rightarrow \text{VALE}$ en exceso

IPE 240 con:
$$\Omega = 39.1 \text{ cm}^2$$
, $i_{min} = 2.69 \text{ cm}$, $\lambda \approx 78$, $\omega(78) = 1.42 \rightarrow \text{VALE}$ en exceso

IPE 220 con: $\Omega = 33.4 \text{ cm}^2$, $i_{min} = 2.48 \text{ cm}$, $\lambda \approx 85$, $\omega(85) = 1.55 \rightarrow \text{VALE}$, este perfil es el más apropiado al ser el más económico, la tensión que se obtiene es:

$$\sigma = \frac{30000}{33.4} \cdot 1,55 = 1392 \le \sigma_{ADM} = \frac{\sigma_e}{n} = \frac{2400}{1,71} = 1404$$

por lo que es válido con bastante aproximación.

La carga crítica para el método de los coeficientes ω para dicho perfil será:

$$P_{CR} = \sigma_{CR} \cdot \Omega = \frac{\sigma_{ADM}}{\omega} \cdot \Omega = 30254 \text{ kp.}$$

La carga crítica para la fórmula de Euler será:

$$P_{CR} = \frac{\pi^2 \cdot 2.1 \cdot 10^6 \cdot 205}{(0.7 \cdot 300)^2} = 96346 \text{ kp.}$$

siendo $I_{min} = 205 \text{ cm}^4$.

- 2.- Con la sustentación del ejercicio anterior se tiene una viga tubular de radio r = 5 cm y espesor t = 5 mm. La viga es de acero A-42. Se pide:
- a) Establecer la longitud mínima para aplicar Euler, se considera que la tensión crítica de Euler no debe superar la tensión σ_p del acero que se considera según la DIN-4114 que vale $\sigma_p = 0.8 \cdot \sigma_e$.
- b) Si la longitud de la viga es 1,25 veces la obtenida en el apartado anterior determinar σ_{CR} y P_{CR} de la fórmula de Euler.
- c) Para la longitud de la viga del apartado anterior y una carga mitad de la crítica obtenida, verificar si el diseño vale por el método de los coeficientes ω para que no se supere el valor de σ_e .
- d) Explicar las características del método de Euler y las del método de los coeficientes ω indicando su idoneidad para el diseño.

a)
$$\lambda_{\text{LIM}} = \sqrt{\frac{E \cdot \pi^2}{\sigma_p}} \rightarrow$$
 el acero A-42 tiene un valor de $\sigma_e = 2600 \text{ kp/cm}^2$. Con esto queda

$$\lambda_{\text{LIM}} = \sqrt{\frac{2,1 \cdot 10^6 \cdot \pi^2}{0,8 \cdot 2600}} = 99,82 \rightarrow \lambda = \frac{L_{\text{P}}}{i_{\text{min}}} = \frac{0,7 \cdot L}{i_{\text{min}}}, \ y \ i_{\text{min}} = \sqrt{\frac{I_{\text{min}}}{\Omega}} \ \text{como en una sección}$$

circular los momentos de inercia valen igual para todas las direcciones del plano, se tiene, $\Omega = 2 \cdot \pi \cdot r \cdot t = 2 \cdot \pi \cdot 5 \cdot 0,5 = 15,7 \text{ cm}^2$, $I = \pi \cdot r^3 \cdot t = \pi \cdot 5^3 \cdot 0,5 = 196,35 \text{ cm}^4 \rightarrow$

$$i_{min} = \sqrt{\frac{\pi \cdot r^3 \cdot t}{2 \cdot \pi \cdot r \cdot t}} = \sqrt{\frac{r^2}{2}} = \sqrt{\frac{5^2}{2}} = 3,54 \text{ cm} \rightarrow L = \frac{\lambda \cdot i_{min}}{0,7} = \frac{99,82 \cdot 3,54}{0,7} = 504,804 \text{ cm}.$$

$$124.8 \rightarrow \sigma_{CR} = \frac{\pi^2 \cdot 2.1 \cdot 10^6}{(124.8)^2} = 1330.73 \text{ kp/cm}^2 \rightarrow P_{CR} = \sigma_{CR} \cdot \Omega = 1330.73 \cdot 15.7 = 20892,$$

5 kp

c)
$$P = \frac{20892,5}{2} = 10446,25 \text{ kp.}$$

Verificando el diseño por el método de los coeficientes $\omega \rightarrow$

$$\sigma = \frac{N}{\Omega} \cdot \omega \le \sigma_{ADM} = \frac{\sigma_e}{n} = \frac{2600}{1,71} = 1520,5 \text{ kp/cm}^2.$$

N = - 10446,25 kp, el signo por ser de compresión. En este caso se sustituirá en módulo ya que la tensión admisible también se tomo positiva.

Para el valor de
$$\lambda=124.8\approx125\rightarrow\omega(125)=2.86\rightarrow\sigma=\frac{10446.25}{15.7}\cdot2.86=1903>$$
 σ_{ADM} , por lo que no sirve este perfil.

d) La cuestión está en que el método de los coeficientes ω es el que se debe aplicar para el diseño de perfiles de acero estructural, ya que está basado en la experiencia real.

El método de Euler se obtuvo a partir de la ecuación aproximada de la elástica y debe verificar, la ley de Hooke, que sean pequeñas deformaciones, que los cortantes sean despreciables pudiendo aplicar la hipótesis de Bernoulli.

Todas estas hipótesis carecen de validez en un problema de pandeo, por lo que la fórmula de Euler carece de rigor matemático. Sin embargo, si que aporta un estudio sobre el problema obteniendo un conocimiento y valores prácticos para el diseño, además la carga crítica de Euler es un valor indicativo de carga que no se debe superar.

- 3.- En la teoría se estudió el caso de un voladizo con carga excéntrica. Para ese caso con P = 30 t, e = 20 cm y L = 3 m, se desea diseñar la viga en acero A-52. Se pide:
- a) Determinar el perfil HEB necesario por el método de los coeficientes ω para que no aparezcan deformaciones plásticas.
- b) En el caso de que sea aplicable al diseño anterior la fórmula de Euler, determinar la carga crítica. Se considera que la tensión crítica de Euler no debe superar la tensión σ_p del acero que se considera según la DIN-4114 que vale $\sigma_p = 0.8 \cdot \sigma_e$.
- a) Se debe verificar por el método de los coeficientes ω que:

$$\sigma = \frac{N}{\Omega} \omega + \frac{M_{\text{máx}}}{W_{\text{a}}} \le \sigma_{\text{ADM}} = \frac{\sigma_{\text{e}}}{n} = \frac{3600}{1,71} = 2105 \text{ kp/cm}^2.$$

Los valores de los esfuerzos son inmediatos, N=30000 kp, y $M_{m\acute{a}x}=P{\cdot}e=30{\cdot}0{,}2=6~m{\cdot}t=6{\cdot}10^5$ kp·m.

Para un precálculo supóngase que los esfuerzos normales son poco importantes frente la flexión, esto indica que se necesita un módulo resistente de $W_z \ge M_{máx}/\sigma_{ADM} = 285 \text{ cm}^3$, en dicho caso se necesitaría un perfil HEB 160 con $W_z = 311 \text{ cm}^3 \text{ y } \Omega = 54,3$

cm²,
$$i_{min} = 4,05$$
 cm, $\lambda = \frac{L_P}{i_{min}} = \frac{2 \cdot L}{i_{min}} = 148$, $\omega(148) = 5,22 \rightarrow$

$$\sigma = \frac{30000}{54,3} \cdot 5,22 + \frac{6 \cdot 10^5}{311} = 4813 \text{ kp/cm}^2 \rightarrow \text{NO VALE}.$$

Se probaron los siguientes perfiles:

HEB 180: Ω = 65,3 cm², W_z = 426 cm³, i_{min} = 4,57 cm, λ ≈ 132, ω (132) = 4,16 \rightarrow σ = 3320 kp/cm². NO VALE.

HEB 200: Ω = 78,1 cm², W_z = 570 cm³, i_{mín} = 5,07 cm, $\lambda \approx 119$, ω(119) = 3,49 \rightarrow σ = 2393 kp/cm². NO VALE.

HEB 220: $\Omega = 91~\text{cm}^2$, $W_z = 736~\text{cm}^3$, $i_{\text{min}} = 5{,}59~\text{cm}$, $\lambda \approx 108$, $\omega(108) = 2{,}95 \rightarrow \sigma = 1788~\text{kp/cm}^2$. VALE.

La flecha vale $f = \frac{P \cdot L^2 \cdot e}{2 \cdot E \cdot I_z}$, en este caso $I_z = 8091$ cm⁴. $f = \frac{P \cdot L^2 \cdot e}{2 \cdot E \cdot I_z} = \frac{30000 \cdot 300^2 \cdot 20}{2 \cdot 2,1 \cdot 10^6 \cdot 8091} = 1,6$. La flecha admisible vale $f_{ADM} = L/300 = 1$ cm, luego NO CUMPLE, se necesita un perfil mayor. Despejando $\rightarrow I_z = \frac{P \cdot L^2 \cdot e}{2 \cdot E \cdot f_{ADM}} = \frac{30000 \cdot 300^2 \cdot 20}{2 \cdot 2,1 \cdot 10^6 \cdot 1} = 12857$ cm⁴. El primer perfil que cumple es el HEB 260 con $I_z = 12857$ cm⁴.

b) Para que sea aplicable
$$\lambda_{LIM} = \sqrt{\frac{E \cdot \pi^2}{\sigma_p}} \rightarrow$$
 el acero A-52 tiene un valor de $\sigma_e = 3600$ kp/cm². Con esto queda $\lambda_{LIM} = \sqrt{\frac{2,1 \cdot 10^6 \cdot \pi^2}{0,8 \cdot 3600}} = 84,83 \rightarrow \lambda = \frac{L_p}{i_{min}} = \frac{2 \cdot 300}{6,58} = 91,18$, por lo que si es aplicable la fórmula de Euler.

La carga crítica de Euler vale:

$$P_{CR} = \frac{\pi^2 \cdot E \cdot I_z}{4 \cdot L^2} = \frac{\pi^2 \cdot 2,1 \cdot 10^6 \cdot 14919}{4 \cdot 300^2} = 858927 \text{ kp.}$$

4.- En la figura 11.4a, se muestra una viga sometida a una carga P de compresión sin excentricidad y un par M_0 en el extremo. Discutir el hecho de que la carga crítica sea la misma para este problema que cuando la carga es excéntrica, tanto sea $M_0=0$ como $M_0\neq 0$. Se considera que la tensión crítica de Euler no debe superar la tensión σ_p del acero que se considera según la DIN-4114 que vale $\sigma_p=0.8\cdot\sigma_e$.

Dimensionar la viga por el método de los coeficientes ω con un perfil tipo IPE, una carga de P=30 t, L=3 m y que el acero trabaje elásticamente con la seguridad habitual en pandeo.

Figura 11.4a

Es evidente que la carga crítica es la misma. Si $M_0 = 0$, e = 0 basta sustituir en las ecuaciones que se obtuvieron en la teoría, y en las condiciones de contorno se obtiene, $C_2 = -f$, $f = -f \cdot cos(k \cdot L) + f \rightarrow cos(k \cdot L) = 0$ que es la misma condición que se obtuvo.

Si $M_0 \neq 0$, e=0 se plantean las ecuaciones para la viga deformada los esfuerzos valen con las reacciones, $H_A=P$, $V_A=0$, $M_A=M_0+P\cdot f \to N=-H_A=-P$; T=0; $M=M_0-H_A\cdot y=M_0+P\cdot f-P\cdot y$. La ecuación aproximada de la elástica $E\cdot I\cdot y''=M_0+P\cdot f-P\cdot y$. La solución a esta ecuación es: $y=A\cdot sen(k\cdot x)+B\cdot cos(k\cdot x)+\frac{M_0+P\cdot f}{P}$. Las condiciones de contorno son:

$$y(0) = 0 \rightarrow B + \frac{M_0 + P \cdot f}{P} = 0$$

$$y'(0) = 0 \to A = 0$$

$$\begin{split} y(L) &= f \rightarrow f = B \cdot cos(k \cdot L) + \frac{M_0 + P \cdot f}{P} = -\frac{M_0 + P \cdot f}{P} \cdot cos(k \cdot L) + \frac{M_0 + P \cdot f}{P} \rightarrow 0 = -\frac{M_0 + P \cdot f}{P} \cdot cos(k \cdot L) + \frac{M_0}{P} \rightarrow -\frac{M_0}{P} \cdot cos(k \cdot L) + \frac{M_0}{P} = f, \text{ con valor } \frac{M_0}{P} \cdot (1 - cos(k \cdot L)) = f. \end{split}$$

Si los valores de la carga son pequeños $f \approx \frac{M_0}{P} \cdot \frac{P \cdot L^2}{2 \cdot E \cdot I} = \frac{M_0 \cdot L^2}{2 \cdot E \cdot I}$ que es la flecha obtenida para M_0 , sin embargo si P crece la flecha alcanza el máximo con $\cos(k \cdot L) = 0$, obteniendo el mismo valor de la carga crítica, $P_{CR} = \frac{\pi^2 \cdot E \cdot I_z}{4 \cdot L^2}$. En definitiva el caso es el mismo, solo que antes el par era $P \cdot e$ y ahora es M_0 .

5.- En la figura 11.5a, se muestra una cercha de una nave industrial de 10 m de luz y 40 de profundidad. La altura es de 13 m y la separación entre pórticos es s = 5 m. Se desea diseñar la cercha, que es de tipo inglés, con una inclinación de 40° . Se ha establecido la armadura con un número de correas de 7 por vertiente, ver figura, y de forma que los nudos de los pares se colocan cada dos correas quedando una en medio, entre nudo y nudo. Las cargas, una vez ponderadas, se han estimado de un valor total de $Q^* = 7704$ kp, verticales. Se pide diseñar la estructura en acero A-42, con perfiles 2L para las barras exteriores y L para las interiores. Se considerará que los pares son una sola viga de sección constante, los tirantes igual, y las barras interiores se pondrán iguales por un lado las de tracción y por otro las de compresión. Se asume una ponderación promedio de c = 1,4.

Figura 11.5a Geometría de la cercha.

En la figura 11.5a se muestra la cercha que se desea diseñar con su distribución geométrica. Esta estructura es simétrica, tanto en su geometría como en su distribución de cargas, por lo que bastará analizar la mitad de la misma. Para ello se han numerado las barras mínimas y se han designado con letras los nudos de análisis.

En primer lugar se debe tener en cuenta que esta estructura se podrá considerar de nudos articulados, por su diseño triangulado. Como en los pares existen momentos flectores importantes, se tendrán en cuenta en el diseño final utilizando algun método aproximado. Así para el diseño se seguirán los siguientes pasos.

- 1°) Se determinarán los esfuerzos normales en todas las barras por el método de Ritter o el de nudos, al considerar que la estructura es articulada.
- 2°) Se dimensionarán las vigas a resistencia, para ello se considerará que los pares trabajan a flexión compuesta y que actúan como una viga continua con carga en medio de los vanos.
- 3°) Se comprobarán las flechas en los pares con las aproximaciones realizadas en el caso de vigas continuas, modificando el diseño si es preciso.

[A1]Lo primero que hay que hacer es calcular la geometría de la estructura.

Cálculo de la geometría:

La longitud del faldón es
$$L_f = \frac{Luz}{2 \cdot \cos 40^{\circ}} = 6,53 \text{ m}.$$

Teniendo 7 correas la separación entre ellas será $a = L_f/6 = 6,53/6 \approx 1,09 \text{ m}.$

La altura de la cercha es $h = L_{f} \cdot \text{sen} 40^{\circ} = 4,20 \text{ m}$.

Las longitudes de las diferentes vigas que forman la cercha son, para la mitad izquierda, tener en cuenta que la estructura es simétrica:

Longitudes de los pares: $L_4 = L_5 = L_6 = 2 \cdot a = 2 \cdot 1,09 = 2,18 \text{ m}$

Tirantes: $L_1 = 2 \cdot L_2 \rightarrow L_2 = 2,18 \cdot \cos 40^\circ = 1,67 \text{ m} \rightarrow L_1 = 3,34 \text{ m}.$

Barras interiores: $L_3 = h = 4,20 \text{ m}, L_8 = 4 \cdot a \cdot \text{sen} 40^\circ = 2,80 \text{ m}, L_7 = L_6 = 2,18 \text{ m}$

$$L_9 = L_8/sen\beta \to tg\beta = L_8/L_2 = 2,8/1,67 = 1,68 \to \beta = 59,19^o \to L_9 = L_8/sen\beta = 3,26 \ m.$$

Distribución de las cargas: Para el cálculo se deberán distribuir las cargas en dos situaciones distintas. La primera para aplicar el método de nudos, donde se llevarán las cargas a los nudos. En el segundo, para determinar el diseño de los pares, que se llevarán a las correas. En la figura 11.5b se muestran dichas distribuciones.

Figura 11.5b Distribución de las cargas en la cercha.

En el primer caso se distribuyen en los nudos, ver figura, de forma que se tiene que $7 \cdot P$ = $Q \rightarrow P = 7704/7 = 1284$ kp. P/2 = 642 kp y P/4 = 321 kp. Se ha omitido el * por comodidad en la notación, pero se ha de entender que la carga está ponderada.

Cálculo de los esfuerzos normales: Los esfuerzos normales se calculan por el equilibrio en los nudos. En primer lugar se determina el grado de hiperestaticidad:

GH = b -
$$(2 \cdot n - c) = 17 - (2 \cdot 10 - 3) = 0$$
, el sistema es isostático.

Ahora se determinan las reacciones:

Eje X)
$$H_A = 0$$

Eje Y)
$$V_A + V_A' - Q = 0$$

Siendo V_A ´ la reacción en vertical en el nudo simétrico a A. Por simetría geométrica y de carga $V_A=V_A$ ´ = $\frac{Q}{2}=3852$ kp.

Ahora se determinarán los esfuerzos normales en las barras. Basta analizar la mitad de la estructura al haber simetría.

Figura 11.5c Cargas en los nudos de la cercha

Calculo de esfuerzos normales: Se plantean los equilibrios en los nudos.

NUDO A

Eje X)
$$N_6 \cdot \cos 40^\circ + N_1 = 0$$

Eje Y)
$$V_A + N_6 \cdot \text{sen} 40 - P/2 = 0 \rightarrow N_6 = \frac{-3852 + 642}{\text{sen} 40^{\circ}} = -4994 \text{ kp}$$

$$N_1 = -N_6 \cdot cos 40^o = - (-4994) \cdot cos 40^o = +3826 \ kp$$

NUDO B

Eje X)
$$(N_5 - N_6 + N_7) \cdot \cos 40^\circ = 0 \rightarrow N_7 = -N_5 + 4994$$

Eje Y)
$$(N_5 - N_6 - N_7) \cdot \text{sen} 40^\circ - P = 0 \rightarrow (N_5 - (-4994) + N_5 - 4994) \cdot \text{sen} 40^\circ - 1284 = 0 \rightarrow N_5 = 999 \text{ kp} \rightarrow N_7 = -999 + 4994 = 3995 \text{ kp}.$$

NUDO F

Eje X)
$$N_2 - N_7 \cdot \cos 40^\circ - N_1 = 0 \rightarrow N_2 = N_7 \cdot \cos 40^\circ + N_1 = 3995 \cdot \cos 40^\circ + 3826 = 6886$$
 kp.

Eje Y)
$$N_8 + N_7 \cdot \text{sen} 40^\circ = 0 \rightarrow N_8 = N_7 \cdot \text{sen} 40^\circ = -2568 \text{ kp.}$$

NUDO C

Eje X)
$$N_4 \cdot \cos 40^\circ + N_9 \cdot \cos 59,19^\circ - N_5 \cdot \cos 40^\circ = 0$$

Eje Y)
$$N_4$$
·sen $40^{\circ} + N_9$ ·sen $59,19^{\circ} - N_5$ ·sen $40^{\circ} - N_8 - P = 0$

Eje X)
$$N_4 \cdot \cos 40^\circ + N_9 \cdot \cos 59,19^\circ - 999 \cdot \cos 40^\circ = 0$$

Eje Y)
$$N_4 \cdot \text{sen} 40^\circ + N_9 \cdot \text{sen} 59,19^\circ - 999 \cdot \text{sen} 40^\circ - (-2568) - 1284 = 0$$

Eje X)
$$N_4 \cdot \cos 40^\circ + N_9 \cdot \cos 59,19^\circ - 765 = 0$$

Eje Y)
$$N_4 \cdot \text{sen} 40^\circ + N_9 \cdot \text{sen} 59,19^\circ + 642 = 0$$

Resolviendo
$$N_4 = 332 \text{ kp}$$
, $N_9 = 332 \text{ kp}$

$$N_{14} = -2 \cdot (-3018) \cdot \cos 50 - 1284 = 997 \text{ kp}$$

NUDO E

Basta aplicar la coordenada y

Eje Y)
$$2 \cdot N_9 \cdot \text{sen} 59,19^\circ + N_3 = 0 \rightarrow N_3 = -1713 \text{ kp}.$$

NUDO D

Se aplica como comprobación. Aplicando la ecuación en y \rightarrow

Eje Y) $P + N_3 + 2 \cdot N_4 \cdot sen 40^\circ = 0? \rightarrow 1284 - 1713 + 2 \cdot 332 \cdot sen 40^\circ = -2,2$, casi 0, la diferencia está por los redondeos en unidades. La solución se considera comprobada.

TRACCIÓN	COMPRESIÓN						
PARES							
$N_4 = 332 \text{ kp}$	$N_6 = -4994 \text{ kp}$						
$N_5 = 999 \text{ kp}$							
TIRANTES							
$N_1 = 3826 \text{ kp}$							
$N_2 = 6886 \text{ kp}$							
BARRAS INTERIORES							
$N_7 = 3995 \text{ kp}$	$N_3 = -1713 \text{ kp}$						
$N_9 = 997 \text{ kp}$	$N_8 = -2568 \text{ kp}$						

Diseño de las barras:

Pares: Como es habitual y lógico, los pares serán una sóla barra. En este caso la carga crítica es $N_6 = -4999$ kp, por tener el valor mayor, ser de compresión y tener todas las barras idéntica longitud.

Además, estas barras trabajan a flexión, con una carga puntual en medio del vano de 642 kp, como muestra la figura 11.5a. En una viga continua con tres vanos el momento máximo vale $M_{m\acute{a}x}=0,175\cdot P\cdot L=0,175\cdot 642\cdot cos40^{\circ}\cdot 2,18=18800$ kp·m. Las tensiones normales máximas son:

$$\sigma = \frac{N}{\Omega} \omega + \frac{M_{\text{máx}}}{W_z} \le \sigma_{\text{ADM}} = \frac{\sigma_e}{n} = 2600 \text{ kp/cm}^2$$

en este caso al estar ponderada la carga el coeficiente de seguridad n = 1.

Inspeccionando perfiles se eligió el $2 \cdot L$ 60.6 con valores $W_z = 2 \cdot 6.89 = 13,78$ cm³, $\Omega = 13.8$ cm², $I_z = 45.6$ cm⁴, $I_y = 84.9$ cm⁴, $i_z = 1.82$ cm, $i_y = 2.48$ cm. Con estos valores se vé que la posibilidad de pandeo está en la dirección z, provocando la flexión en el plano del pórtico, por dos razones: la primera porque es la dirección de inercia mínima, y segunda, porque la longitud de pandeo es a, mientras que para la otra dirección sería a/2 ya que las correas hacen de apoyo.

Así para el pandeo en z se tiene:

$$\lambda = \frac{L_p}{i_z} = \frac{\beta L}{i_z} = \frac{1a}{i_z} = \frac{218}{1,82} = 120$$
, el coeficiente de pandeo en estas estructuras y para dicho plano es 1 para barras exteriores y 0,8 para barras interiores según la NBE-EA-95.

Así
$$\omega(120) = 2,67 \rightarrow \sigma = \frac{4994}{13,8} \cdot 2,67 + \frac{18800}{13,78} = 2331 \text{ kp/cm}^2$$
. Luego vale a resistencia.

Ahora se debe comprobar la flecha, que para una viga de cubierta la flecha admisible vale, $f_{ADM} = \frac{L}{250}$.

En el caso de una viga biapoyada con carga puntual en el medio la flecha vale:

$$f = -\frac{P \cdot L^3}{48 \cdot E \cdot I}$$

las comprobaciones de flecha se hacen con la carga sin ponderar. Así:

$$P_y = P_y^*/c \cong (642 \cdot \cos 40^\circ)/1, 4 \cong 351,3 \text{ kp}$$

Así se pueden obtener los desplazamientos en cada dirección, se emplean unidades m y kp:

$$f_y = -\frac{P_y \cdot L^3}{48 \cdot E \cdot I_z} = \frac{-351,3 \cdot 218^3}{48 \cdot 2,1 \cdot 10^6 \cdot 45,6} = -0.8 \text{ cm}$$

esto para la viga biapoyada, admitiendo una flecha del 50% inferior $f_y = -0.4$ cm, por ser viga continua. Así $f \le f_{ADM} = L/250 = 218/250 = 0.87$ cm, por lo que se cumple y el diseño es válido.

Tirantes: Trabajan todos a tracción con un valor máximo de $N_2 = 6886$ kp, como se diseña como una sola viga, igual que antes, el cálculo es inmediato, ya que:

$$\sigma = \frac{N}{\Omega} \le \sigma_{ADM} = \frac{\sigma_e}{n} = 2600 \rightarrow \Omega = 6886/2600 = 2,65 \text{ cm}^2. \text{ El más ligero el } 2 \cdot \text{L40.4}$$
 tiene $\Omega = 6,16 \text{ cm}^2.$ Este sirve.

Barras interiores:

Las barras a tracción, con perfil L tienen un $N_{m\acute{a}x}=3995$ kp. En perfiles L no simétricos, para dar seguridad por el problema de la tracción excéntrica se multiplica para el diseño la tensión de cálculo por 1,25. Así:

$$\sigma = \frac{N}{\Omega}$$
1,25 $\leq \sigma_{ADM} = \frac{\sigma_e}{n} = 2600 \rightarrow \Omega = 1,25(3995/2600) = 1,92 \text{ cm}^2$. El más ligero el L40.4 tiene $\Omega = 3,08 \text{ cm}^2$. Este sirve.

Las barras a compresión deben considerarse por separado cada una dado que tienen diferentes longitudes. En este caso se puede tomar $\beta=0.8$. La primera barra es $N_3=-1713$ con L=420 cm. Para el perfil L, $i_z=i_y$. Inspeccionando se obtuvo el perfil L 60.6,

$$\Omega = 6.91 \text{ cm}^2, i_z = i_y = 1.82 \text{ cm. Así } \lambda = \frac{L_p}{i_z} = \frac{\beta \cdot L}{i_z} = \frac{0.8 \cdot 420}{1.82} = 185, \ \omega(185) = 5.85 \rightarrow 0.00$$

$$\sigma = \frac{N}{\Omega} \cdot \omega = \frac{1713}{6,91} \cdot 5,85 = 1450 \le \sigma_{ADM} = \frac{\sigma_e}{n} = 2600, \text{ por lo que vale. Para la barra } N_8 = -1000 \cdot 1000 \cdot$$

2568 kp y L = 280 cm, se comprobó el mismo perfil, dado que se pondrán iguales,

obteniendo:
$$\lambda = 150$$
, $\omega(150) = 3.96 \rightarrow \sigma = \frac{N}{\Omega} \cdot \omega = \frac{2568}{6.91} \cdot 3.96 = 1472 \le \sigma_{ADM} = \frac{\sigma_e}{n} = 2600$,

luego vale. El diseño final se muestra en la figura 11.5d.

Figura 11.5d Geometría final de la cercha

LECCIÓN 12

Flexión Hiperestática

Introducción: Esta lección se dedica al estudio de vigas hiperestáticas. La mayoría de los sistemas reales se comportan como hiperestáticos, de ahí la importancia de su estudio. Ejemplos típicos que se estudian en Resistencia de Materiales son: el cálculo de vigas continuas como jacenas, zunchos perimetrales, forjados, etc., y cálculo de pórticos. En esta lección se estudiarán los casos sencillos de vigas y vigas continuas.

Se presentan unos pocos ejercicios que parecen suficientes para la comprensión de la lección. En la lección de teoría se estudiaron también algunos ejemplos. Además esta lección se complementa con la siguiente en la que se estudian pórticos hiperestáticos. En la lección siguiente se estudia el método de las fuerzas que se puede aplicar también para resolver vigas hiperestáticas.

Objetivos de la lección: Preparar al estudiante para la resolución de problemas hiperestáticos de vigas sometidas a flexión.

Contenidos de los problemas: Ejercicios en los que se diseñan vigas en las que se han determinado las incógnitas hiperestáticas por los métodos estudiados en teoría. También se hace el diseño de dichas vigas.

Problemas resueltos: Exclusivamente ejercicios referentes a estos contenidos.

Formulación básica:

Fórmulas de las lecciones precedentes

Empleo de la ecuación de la elástica en la resolución de vigas hiperestáticas

Consultar lecciones anteriores y las aplicaciones hechas en el libro de teoría.

Método de superposición en la resolución de vigas hiperestáticas.

Se determinan las incógnitas hiperestáticas al descomponer el problema en la superposición de problemas resueltos en tablas.

Utilización del teorema de Menabrea

El teorema de Menabrea establece que la derivada del potencial interno respecto a las incógnitas hiperestáticas.

$$0 = \frac{\partial \Phi}{\partial X_1}$$
; $0 = \frac{\partial \Phi}{\partial X_2}$; ...; $0 = \frac{\partial \Phi}{\partial X_n}$

Se suele aplicar:
$$\frac{\partial \Phi}{\partial V} \cong \frac{1}{E I} \int M \frac{\partial M}{\partial X} ds$$

Figura 12.1a

- 1.- a) Resolver la viga de la figura 12.1a1 hiperestática por los distintos métodos estudiados, son datos P, M_0, a, L, E, I .
- b) Diseñar las viga con perfil IPE si $P=3\,t$, $M_0=2\,t\cdot m$, $L=4\,m$ y $a=2\,m$. Se utilizará un acero A-42 y una seguridad de n=1,7. La viga no soporta muro de fábrica.
- a) 1°.- Con la ecuación aproximada de la elástica:

$$\sum F_{ext}^{x} = 0 \quad H_A = 0$$

$$\sum F_{ext}^{\ \ y} = 0 \quad \ V_A + V_B = P$$

$$\sum M_{\rm ext} \left|_{\rm A}^{\rm Z} = 0 \rightarrow 0 = M_{\rm A} + M_0 - V_{\rm B} \cdot L + P \cdot a = 0 \rightarrow M_{\rm A} = V_{\rm B} \cdot L - P \cdot a - M_0 \right|$$

El GH = 4 - 3 = 1, se elige V_B como incógnita hiperestática. En la figura 12.1a2 se muestran los cortes para determinar los esfuerzos.

Ahora se determinarán los esfuerzos.

Tramo 1: 0 < x < a

$$T_1 = P - V_B$$

$$M_1 = -P \cdot (a - x) - M_0 + V_B \cdot (L - x)$$

Tramo 2: a < x < L

$$T_2 = -V_B$$

$$M_2 = V_B \cdot (L - x)$$

Determinación de las ecuaciones de ángulos, deformada y de la flecha.

Tramo 1:

$$E \cdot I \cdot y_1^{"} = M_1 = -P \cdot (a - x) - M_0 + V_B \cdot (L - x)$$

$$E \cdot I \cdot y_1' = \frac{P \cdot (a - x)^2}{2} - M_0 \cdot x - V_B \cdot \frac{(L - x)^2}{2} + A_1$$

$$E \cdot I \cdot y_1 = \frac{P \cdot (a - x)^3}{6} - M_0 \cdot \frac{x^2}{2} + V_B \cdot \frac{(L - x)^3}{6} + A_1 \cdot x + B_1$$

Tramo 2:

$$E \cdot I \cdot y_2 = M_2 = V_B \cdot (L - x)$$

$$E \cdot I \cdot y_2' = -V_B \cdot \frac{(L-x)^2}{2} + A_2$$

$$E \cdot I \cdot y_2 = V_B \cdot \frac{(L - x)^3}{6} + A_2 \cdot x + B_2$$

Ahora se deben evaluar las incógnitas a partir de las condiciones de contorno.

Cálculo de las constantes: De las condiciones de contorno se obtiene:

1°)
$$y_1'(0) = 0 \rightarrow 0 = \frac{P \cdot a^2}{2} - \frac{V_B \cdot L^2}{2} + A_1 \rightarrow A_1 = -\frac{P \cdot a^2}{2} + \frac{V_B \cdot L^2}{2}$$

2°)
$$y_1(0) = 0 \rightarrow -\frac{P \cdot a^3}{6} + \frac{V_B \cdot L^3}{6} + B_1 = 0 \rightarrow B_1 = \frac{P \cdot a^3}{6} - \frac{V_B \cdot L^3}{6}$$

3°)
$$y_2(L) = 0 \rightarrow A_2 \cdot L + B_2 = 0 \rightarrow B_2 = -A_2 \cdot L$$

$$4^{o}) \ y_{1}(a) = y_{2}(a) \rightarrow -M_{0} \cdot a - \frac{V_{B} \cdot (L-a)^{2}}{2} + A_{1} = -\frac{V_{B} \cdot (L-a)^{2}}{2} + A_{2} \rightarrow -M_{0} \cdot a + A_{1} = A_{2}$$

5°)
$$y_1(a) = y_2(a) \rightarrow -\frac{M_0 \cdot a^2}{2} + V_B \cdot \frac{(L-a)^3}{6} + A_1 \cdot a + B_1 = V_B \cdot \frac{(L-a)^3}{6} + A_2 \cdot a + B_2$$

Resolviendo el sistema de ecuaciones se obtiene:

$$V_{B} = \frac{3 \cdot M_{0} \cdot a \cdot (2 \cdot L - a) + P \cdot a^{2} \cdot (3 \cdot L - a)}{2 \cdot I^{3}}$$

2°.- Aplicando superposición:

Se puede resolver el problema como superposición de los estados que muestra la figura 12.1b. El desplazamiento del extremo B será nulo y suma de los debidos a los tres estados de carga. Por superposición se tiene:

$$\delta_B=\delta_B^{1}+\delta_B^{2}+\delta_B^{3}=0$$

que es la ecuación de compatibilidad que permite obtener V_B y complementa a las ecuaciones de equilibrio.

Figura 12.1b

Así consultando las tablas se tiene:

$$\delta_{\rm B}^{-1} = \frac{{\rm Pa}^2 \cdot (3{\rm L} - {\rm a})}{6{\rm EI}}$$
 hacia abajo

$$\delta_{\rm B}^2 = \frac{M_0 \cdot a(2L-a)}{2EI}$$
 hacia abajo

$$\delta_{\rm B}^{\ 3} = \frac{{\rm V_B \cdot L^3}}{3 \, {\rm B \, I}}$$
 hacia arriba

Por superposición:

$$\frac{P\,a^2\!\cdot\!(3\,L-a)}{6\,E\,I}\,-\,\frac{M_0\!\cdot\! a(2\,L-a)}{2\,E\,I}\,+\,\,\frac{V_B\!\cdot\! L^3}{3\,E\,I}\,=\,0$$

que despejando se obtiene el valor de antes.

3°.- Por Menabrea:

$$\begin{split} &\frac{\partial \Phi}{\partial V_B} = 0 \rightarrow \frac{\partial \Phi}{\partial V_B} = \frac{1}{E \, I} \int M \, \frac{\partial M}{\partial V_B} \, dx = 0 \rightarrow \int_0^a M_1 \cdot \frac{\partial M_1}{\partial V_B} \cdot dx + \int_a^L M_2 \cdot \frac{\partial M_2}{\partial V_B} \cdot dx = 0 \\ &\frac{\partial M_1}{\partial V_B} = \frac{\partial M_2}{\partial V_B} = (L - x) \\ &\int_0^a \left[-P \cdot (a - x) - M_0 + V_B \cdot (L - x) \right] \cdot (L - x) \cdot dx + \int_a^L V_B \cdot (L - x)^2 \cdot dx = 0 \end{split}$$

$$\int_{0}^{a} \left[-P \cdot (a-x) \cdot (L-x) \right] \cdot dx + \frac{M_{0} \cdot (L-x)^{2}}{2} \bigg|_{0}^{a} - \frac{V_{B} \cdot (L-x)^{3}}{3} \bigg|_{0}^{a} - \frac{V_{B} \cdot (L-x)^{3}}{3} \bigg|_{a}^{a} = 0$$

$$\int_0^a \left[-P \cdot (a \cdot L - x \cdot L - a \cdot x + x^2) \right] \cdot dx + \frac{M_0 \cdot \left[(L - a)^2 - L^2 \right]}{2} - \frac{V_B \cdot (L - x)^3}{3} \bigg|_0^L = 0$$

$$-PaLx\Big|_{0}^{a}+PL\frac{x^{2}}{2}\Big|_{0}^{a}+Pa\frac{x^{2}}{2}\Big|_{0}^{a}-PL\frac{x^{3}}{3}\Big|_{0}^{a}+\frac{M_{0}\left[(L^{2}-2La+a^{2}-L^{2})\right]}{2}+\frac{V_{B}L^{3}}{3}=0$$

$$= -P \cdot L \cdot a^2 + P \cdot L \cdot \frac{a^2}{2} + P \cdot \frac{a^3}{2} - P \cdot \frac{a^3}{3} + \frac{M_0}{2} \cdot (L^2 - 2 \cdot a \cdot L + a^2 - L^2) + V_B \cdot \frac{L^3}{3} = 0$$

que despejando se obtiene el mismo valor anterior.

b) Con los datos se obtiene:

$$V_B = {322(8-2)+32^2\cdot(12-2) \over 24^3} = 1,5 t = 1500 \text{ kp}$$

Para el diseño resistente se desprecian los cortantes, los momentos flectores valen:

Tramo 1: 0 < x < a

$$M_1 = - \ P \cdot (a - x) - M_0 + V_B \cdot (L - x) = -3 \cdot (2 - x) - 2 + 1, \\ 5 \cdot (4 - x) = -2 + 1, \\ 5 \cdot x - 2 +$$

Tramo 2: a < x < L

$$M_2 = V_B \cdot (L - x) = 1,5 \cdot (4-x) = 6 - 1,5 \cdot x$$

El valor del momento máximo es $M_{\text{máx}} = 3 \text{ t·m} = 3 \cdot 10^5 \text{ kp·cm}.$

El diseño resistente implica que: $\sigma^* \le \sigma_{ADM}$. La tensión de calculo vale: $\sigma = \frac{M}{W} \rightarrow$

$$W \ge \frac{M}{\sigma_{ADM}} \to \sigma_{ADM} = \frac{\sigma_e}{n} = 1529,4 \to W \ge \frac{310^5}{1529,4} \approx 196,2 \text{ cm}^3$$
. Para el que se necesita un IPE 220 con $W_x = 252 \text{ cm}^3$ e $I_x = 2770 \text{ cm}^4$.

Ahora se debe estudiar la rigidez para los que partiendo de la ecuación de la elástica:

Tramo 1:

$$E \cdot I \cdot y_1' = \frac{P \cdot (a - x)^2}{2} - M_0 \cdot x - V_B \cdot \frac{(L - x)^2}{2} + A_1$$

$$E \cdot I \cdot y_1 = -\frac{P \cdot (a - x)^3}{6} - M_0 \cdot \frac{x^2}{2} + V_B \cdot \frac{(L - x)^3}{6} + A_1 \cdot x + B_1$$

Tramo 2:

$$E \cdot I \cdot y_2' = -V_B \cdot \frac{(L-x)^2}{2} + A_2$$

$$E \cdot I \cdot y_2 = V_B \cdot \frac{(L - x)^3}{6} + A_2 \cdot x + B_2$$

Se obtienen los valores de las constantes sustituyendo los valores:

$$A_1 = -\frac{32^2}{2} + \frac{1,54^2}{2} = 6 \iff B_1 = \frac{32^3}{6} - \frac{1,54^3}{6} = -12 \iff A_2 = -2.2 + 6 \iff B_2 = -2.4 = -8$$

Así sustituyendo los valores:

Tramo 1:

E·I·y₁' =
$$\frac{3(2-x)^2}{2}$$
 - 2x - 1,5 $\frac{(4-x)^2}{2}$ + 6

E·I·y₁ =
$$-\frac{3(2-x)^3}{6} - 2\frac{x^2}{2} + 1,5\frac{(4-x)^3}{6} + 6x - 12$$

Tramo 2:

$$E \cdot I \cdot y_2' = -1.5 \frac{(4-x)^2}{2} + 2$$

E·I·y₂ =
$$1.5 \frac{(4-x)^3}{3} + 2x - 8$$

La flecha está en y = 0, así:

Tramo 1:

 $\begin{array}{l} y_1 = 0 \rightarrow 3 \cdot (2 - x)^2 - 4 \cdot x - 1, \\ 5 \cdot (4 - x)^2 + 12 = 0 \rightarrow 3 \cdot (4 - 4 \cdot x + x^2) - 4 \cdot x - 1, \\ 5 \cdot (16 - 8 \cdot x + x^2) + 12 = 0 \rightarrow 12 - 12 \cdot x + 3 \cdot x^2 - 4 \cdot x - 24 + 12 \cdot x - 1, \\ 5 \cdot x^2 + 12 = 0 \rightarrow 1, \\ 5 \cdot x^2 - 4 \cdot x = 0 \\ \rightarrow \text{ en } x = 0 \text{ y } x = 4/1, \\ 5 = 2, \\ 7 \text{ la función tiene extremos, el primero es máximo al ser } \\ y_1 = 0 \rightarrow 1, \\ 7 \cdot x - 1, \\ 7 \cdot x -$

Tramo 2:

$$y_2' = 0 \rightarrow -1.5 \frac{(4-x)^2}{2} + 2 = 0 \rightarrow -1.5 \cdot (16 - 8 \cdot x + x^2) + 4 = 0 \rightarrow -24 + 12 \cdot x - 1.5 \cdot x^2 + 4 = 0 \rightarrow -1.5 \cdot x^2 + 12 \cdot x - 20 = 0$$
 cuyas raíces son $x = 5.63$ y $x = 2.367$. El primero no sirve al estar fuera del intervalo y el segundo sí. El valor de la flecha es:

$$E \cdot I \cdot y_2(2,367) = 1,5 \frac{(4-2,367)^3}{3} + 22,367 - 8 = -1,088 \rightarrow f = \frac{-1,088}{EI}$$
 donde las

unidades se deben sustituir en m y t. $E \cdot I = 2,1 \cdot 10^6 \cdot 2770 \text{ kp} \cdot \text{cm}^2 = 581,7 \text{ t} \cdot \text{m}^2 \rightarrow \frac{-1,088}{581.7}$

= -1,8721· 10^{-3} m = -0,18721 cm. Como la viga tiene menos de 5 m y no soporta muro de fábrica se considera una flecha admisible de $f_{ADM} = L/400 = 1,3$ cm por lo que vale el diseño.

Figura 12.2a

- 2.- a) Resolver la viga de la figura 12.2a hiperestática por los distintos métodos estudiados, son datos P, L, E, I.
 - b) Determinar los diagramas de esfuerzos.
- c) Determinar la deformada y obtener la relación que existe entre la flecha y la flecha de una viga biapoyada con carga P en medio y longitud L.
- d) Diseñar las viga con perfil IPE si $P=5\,t$, $L=2\,m$. Se utilizará un acero A-37 y una seguridad de n=2.
- a) 1º.- Con la ecuación aproximada de la elástica:

$$\sum F_{\text{ext}}^{x} = 0 \quad H_{\text{A}} = 0$$

$$\sum F_{ext}^{y} = 0 \quad V_A + V_B + V_B = 2 \cdot P$$

por simetría $V_A = V_C$ por lo que no es necesario aplicar la ecuación de momentos.

Para determinar las leyes de momentos basta analizar el primer vano ya que hay simetría.

Fácilmente se obtiene:

Tramo 1:
$$0 < x < L/2 \rightarrow M_1 = V_A \cdot x$$

Tramo 2:
$$L/2 < x < L \rightarrow M_2 = V_A \cdot x - P \cdot (x - L/2) = V_A \cdot x + P \cdot (L/2 - x)$$

Determinación de las ecuaciones de ángulos, deformada y de la flecha.

Tramo 1:

$$E \cdot I \cdot y_1 = M_1 = V_A \cdot x \iff E \cdot I \cdot y_1 = V_A \cdot \frac{x^2}{2} + A_1 \iff E \cdot I \cdot y_1 = V_A \cdot \frac{x^3}{6} + A_1 \cdot x + B_1$$

Tramo 2:

$$E \cdot I \cdot y_2 = M_2 = V_A \cdot x + P \cdot (L/2 - x) \iff E \cdot I \cdot y_2 = V_A \cdot \frac{x^2}{2} - P \cdot \frac{(L/2 - x)^2}{2} + A_2$$

$$E \cdot I \cdot y_2 = V_A \cdot \frac{x^3}{6} + P \cdot \frac{(\frac{1}{2} - x)^3}{6} + A_2 \cdot x + B_2$$

Ahora se deben evaluar las incógnitas a partir de las condiciones de contorno.

Cálculo de las constantes: De las condiciones de contorno se obtiene:

1°)
$$y_1(0) = 0 \rightarrow B_1 = 0$$

2°)
$$y_1'(L/2) = y_2'(L/2) \rightarrow \frac{V_A \cdot L^2}{8} + A_1 = \frac{V_A \cdot L^2}{8} + A_2 \rightarrow A_1 = A_2$$

3°)
$$y_1(L/2) = y_2(L/2) \rightarrow \frac{V_A \cdot L^3}{48} + A_1 \cdot \frac{L}{2} = \frac{V_A \cdot L^3}{48} + A_2 \cdot \frac{L}{2} + B_2 \rightarrow B_2 = 0$$

4°)
$$y_2'(L) = 0 \rightarrow V_A \cdot \frac{L^2}{2} - P \cdot \frac{(L_2' - L)^2}{2} + A_2 = 0 \rightarrow 4 \cdot V_A \cdot L^2 - P \cdot L^2 + 8 \cdot A_2 = 0$$

5°)
$$y_2(L) = 0 \rightarrow V_A \cdot \frac{L^3}{6} - P \frac{L^3}{48} + A_2 \cdot L = 0 \rightarrow A_2 = -V_A \cdot \frac{L^2}{6} + P \frac{L^2}{48}$$

que si se resuelve se obtiene:

$$V_{A} = \frac{5}{16}P \iff V_{B} = \frac{11}{8}P \iff A_{1} = A_{2} = -\frac{PL^{2}}{32}$$

2°.- Aplicando superposición:

Se puede resolver el problema como superposición de los estados que muestra la figura 12.2b1. El desplazamiento del extremo B será nulo y suma de los debidos a los tres estados de carga. Por superposición se tiene:

$$\delta_B = \delta_B^{\ 1} + \delta_B^{\ 2} + \delta_B^{\ 3} = 0$$

que es la ecuación de compatibilidad que permite obtener V_B y complementa a las ecuaciones de equilibrio.

En la teoría se obtuvo para una viga como la de la figura 12.b2 que la elástica valía:

$$0 \le x \le a \rightarrow E \cdot I_z \cdot y_1 = \frac{P \cdot b}{6 \cdot L} x^3 + \frac{P \cdot b}{6 \cdot L} (b^2 - L^2) \cdot x$$

$$a \le x \le a + b \rightarrow E \cdot I_z \cdot y_2 = \frac{P \cdot b}{6 \cdot L} x^3 + \frac{P \cdot b}{6 \cdot L} (b^2 - L^2) \cdot x - \frac{P \cdot (x - a)^3}{6}$$

El desplazamiento en B debido los casos 1 y 2 es el mismo. Así $\delta_B^{\ 1} = \delta_B^{\ 2}$. El desplazamiento $\delta_B^{\ 1}$ se puede obtener con la ecuación de la elástica en el intervalo $a \le x \le a + b$. En este caso la viga tiene longitud $2 \cdot L$, a = L/2, $b = (3/2) \cdot L$ y B está en x = L. Así:

$$\delta_{\rm B}^{\ 1} = \frac{-11\,{\rm P\,L}^3}{96\,{\rm E\,I}} = \delta_{\rm B}^2 \qquad {\rm hacia\ abajo}$$

Por otro lado para una carga puntual en medio la flecha está también en medio y vale $f = \frac{PL^3}{48EI}$, que en este caso se tendrá:

$$\delta_{\rm B}^{\ 3} = \frac{{\rm V_B \cdot L}^3}{6 \, {\rm E \, I}}$$
 hacia arriba

Por superposición:

$$-2\frac{-11PL^{3}}{96EL} + \frac{V_{B} \cdot L^{3}}{6EL} = 0$$

que despejando se obtienen los valores de antes para VA y VB.

3°.- Por Menabrea:

Se elige como incógnita hiperestática V_A . Como hay simetría y el efecto de cortantes se desprecia al aplicar el teorema, basta considerar el primer vano ya que el potencial interno será dos veces el del primer vano. Si Φ_1 y Φ_2 son los potenciales internos de los dos tramos en que quedó dividido el primer vano para la ecuación de momentos, se puede expresar el potencial interno $\Phi = 2 \cdot (\Phi_1 + \Phi_2)$. Así el teorema de Menabrea se puede expresar:

$$\frac{\partial \Phi}{\partial V_A} = 2(\frac{\partial \Phi_1}{\partial V_A} + \frac{\partial \Phi_2}{\partial V_A}) = 0 \rightarrow \frac{\partial \Phi_1}{\partial V_A} + \frac{\partial \Phi_2}{\partial V_A} = 0$$

$$\frac{\partial \Phi_1}{\partial V_A} = \frac{1}{E \cdot I} \cdot \int M_1 \cdot \frac{\partial M_1}{\partial V_A} \cdot dx = \frac{1}{E \cdot I} \cdot \int_0^{L/2} V_A \cdot x^2 \cdot dx = \frac{V_A \cdot x^3}{3 \cdot E \cdot I} \bigg|_0^{L/2} = \frac{V_A \cdot L^3}{24 \cdot E \cdot I}$$

$$\frac{\partial \Phi_{2}}{\partial V_{A}} = \frac{1}{E \cdot I} \cdot \int M_{2} \cdot \frac{\partial M_{2}}{\partial V_{A}} \cdot dx = \frac{1}{E \cdot I} \cdot \int_{L/2}^{L} \{V_{A} \cdot x^{2} + P(\frac{L}{2} - x)\} \cdot x \cdot dx = \frac{V_{A} \cdot x^{3}}{3 \cdot E \cdot I} \bigg|_{L/2}^{L} + \frac{P \cdot L \cdot x^{2}}{4 \cdot E \cdot I} \bigg|_{L/2}^{L} - \frac{P \cdot x^{3}}{3 \cdot E \cdot I} \bigg|_{L/2}^{L}$$

$$\rightarrow \frac{\partial \Phi_2}{\partial V_A} = \frac{L^3}{EI} \left(\frac{7 \cdot V_A}{24} - \frac{5 \cdot P}{48} \right) \rightarrow \frac{\partial \Phi_1}{\partial V_A} + \frac{\partial \Phi_2}{\partial V_A} = \frac{V_A \cdot L^3}{24 \cdot EI} + \frac{L^3}{EI} \left(\frac{7 \cdot V_A}{24} - \frac{5 \cdot P}{48} \right) = 0$$

que despejando se obtiene el mismo valor de V_A, quedando resuelta la hiperestaticidad.

b) Al existir simetría de carga y geométrica respecto al plano medio de la viga con conocer los esfuerzos en el primer vano se pueden representar. Basta recordar que los cortantes son asimétricos y los momentos flectores simétricos.

Esfuerzos Cortantes:

Tramo 1:
$$0 < x < L/2 \rightarrow T_1 = V_A = \frac{5}{16} P$$

Tramo 2: L/2 < x < L
$$\rightarrow$$
 T₂ = V_A - P = $-\frac{11}{16}$ P

Momentos Flectores:

Tramo 1:
$$0 < x < L/2 \rightarrow M_1 = V_A \cdot x = \frac{5}{16} P \cdot x$$

Tramo 2: L/2 < x < L
$$\rightarrow$$
 M₂ = V_A·x + P·(L/2 - x) = $\frac{5}{16}$ P·x + P·(L/2 - x) = P·($\frac{L}{2} - \frac{11L}{16}$)

La representación es prácticamente inmediata, figura 12.2c, al ser líneas rectas. Basta obtener los valores en los extremos de los intervalos: $M_1(0) = 0 \leftrightarrow M_1(L/2) = \frac{5PL}{32} \leftrightarrow M_2(L/2) = \frac{5PL}{32}$ como era de esperar, $M_2(L) = -\frac{3PL}{16}$. El corte con el eje en 22 L.

el primer vano es con $M_1 = 0 \rightarrow x = \frac{22 L}{16} = 0,727 \cdot L$

c) Se obtiene la deformada a partir de la ecuación de la elástica aproximada que se obtuvo:

Tramo 1:

$$E \cdot I \cdot y_1' = V_A \cdot \frac{x^2}{2} + A_1 = \frac{5 P x^2}{32} - \frac{P L^2}{32}$$

$$E \cdot I \cdot y_1 = V_A \cdot \frac{x^3}{6} + A_1 \cdot x + B_1 = \frac{5 P x^3}{96} - \frac{P L^2}{32} \cdot x$$

Tramo 2:

$$E \cdot I \cdot y_2' = V_A \cdot \frac{x^2}{2} - P \frac{\left(\frac{L_2'}{2} - x\right)^2}{2} + A_2 = \frac{5P x^2}{32} - P \frac{\left(\frac{L_2'}{2} - x\right)^2}{2} - \frac{P L^2}{32}$$

$$E \cdot I \cdot y_2 = V_A \cdot \frac{x^3}{6} + P \frac{(\frac{1}{2} - x)^3}{6} + A_2 \cdot x + B_2 = \frac{5Px^3}{96} + P \frac{(\frac{1}{2} - x)^3}{6} - \frac{PL^2}{32} \cdot x$$

Ahora se deben calcular los extremos que se obtienen con y´= 0. En el primer tramo el extremo estará en x = $\sqrt{\frac{1}{5}} \cdot L = 0,447 \cdot L$ con un desplazamiento de $y_1(\sqrt{\frac{1}{5}} \cdot L) = -\frac{PL^3}{48\sqrt{5} EI}$. En el segundo tramo y_2 ´= 0 es una ecuación cuadrática con soluciones x = $L = 0,414 \cdot L$. Sólo es válida la primera y tiene desplazamiento nulo. La flecha por tanto es:

$$f = -\frac{PL^3}{48\sqrt{5}EI}$$

La relación con una viga biapoyada se obtiene al saber que la flecha en dicho caso es $f=-\frac{P\,L^3}{48\,E\,I}$, así para la viga con dos tramos el valor es $\frac{1}{\sqrt{5}}$ veces, es decir aproximadamente 0,4472. La norma de acero establece un valor de 0,448.

d) Para el diseño resistente se desprecian los cortantes.

El diseño resistente implica que: $\sigma^* \leq \sigma_{ADM}$. La tensión de calculo vale: $\sigma = \frac{M}{W} \rightarrow W \geq \frac{M}{\sigma_{ADM}}$ con $M = M_{máx} = \frac{3 \, P \, L^2}{16} = 187500 \, \text{kp·cm} \rightarrow \sigma_{ADM} = \frac{\sigma_e}{n} = 1200 \, \text{kp/cm}^2 \rightarrow W \geq \frac{187500}{1200} \approx 156,25 \, \text{cm}^3$. Para el que se necesita un IPE 200 con $W_x = 194 \, \text{cm}^3$ e $I_x = 1940 \, \text{cm}^4$.

Ahora se debe estudiar la rigidez. Para una flecha de:

$$f = -\frac{PL^3}{48\sqrt{5}EI} = -\frac{5000200^3}{48\sqrt{5}2,110^6\cdot1940} = 0,091 \text{ cm}$$

Se considera una flecha admisible de $f_{ADM} = L/500 = 0.4$ cm por lo que vale el diseño. Se ha tomado este valor al ser el crítico que da la NBE-EA-95 y desconocer el tipo de viga que es, aunque por la longitud de los vanos se podría tomar un valor inferior.

Figura 12.3a

3.- Resolver las vigas de la figura 12.3a por los distintos métodos estudiados, son datos P, q, L, E, I. Las distancias entre apoyos son siempre L. La carga q va hacia abajo.

En cada viga se determinarán las incógnitas hiperestáticas por métodos diferentes, dejando como ejercicio que se comprueben con los otros.

Viga 1.- Por Menabrea:

Dado que hay simetría las reacciones verticales simétricas son iguales. El grado de hiperestaticidad es 1. Se elige como incógnita hiperestática V_1 . Como hay simetría y el efecto de cortantes se desprecia al aplicar el teorema, basta considerar el primer vano y el segundo ya que el potencial interno será dos veces el del primer vano (por ser igual que el tercero) mas el del segundo. Si Φ_1 y Φ_2 son los potenciales internos de cada vano, se puede expresar el potencial interno $\Phi = 2 \cdot \Phi_1 + \Phi_2$. Así el teorema de Menabrea se escribe:

$$\frac{\partial \Phi}{\partial V_1} = 2 \frac{\partial \Phi_1}{\partial V_1} + \frac{\partial \Phi_2}{\partial V_1} = 0$$

Las reacciones por equilibrio de fuerzas son:

$$2 \cdot V_1 + 2 \cdot V_2 = 3 \cdot q \cdot L \rightarrow V_2 = \frac{3}{2} \cdot q \cdot L - V_1$$

Tomando el corte a una distancia x desde el extremo izquierdo los momentos valen:

$$0 < x < L$$
: $M_1 = V_1 \cdot x - \frac{q x^2}{2}$

$$\begin{split} L < x < 2 \cdot L: & \qquad M_2 = V_1 \cdot x - \frac{q \, x^2}{2} + V_2 \cdot (x - L) = V_1 \cdot x - \frac{q \, x^2}{2} + (\frac{3}{2} \cdot q \cdot L - V_1) \cdot (x - L) \\ \\ M_2 = V_1 \cdot L - \frac{q \, x^2}{2} + \frac{3}{2} \cdot q \cdot L \cdot x - \frac{3 \, q \, L^2}{2} \end{split}$$

$$\frac{\partial \Phi_1}{\partial V_1} = \frac{1}{E \cdot I} \cdot \int M_1 \cdot \frac{\partial M_1}{\partial V_1} \cdot dx = \frac{1}{E \cdot I} \cdot \int_0^L (V_1 \cdot x - \frac{q \cdot x^2}{2}) \cdot x \cdot dx = \frac{V_1 \cdot x^3}{3 \cdot E \cdot I} - \frac{q \cdot x^4}{8 \cdot E \cdot I} \bigg|_0^L = \frac{V_1 \cdot L^3}{3 \cdot E \cdot I} - \frac{q \cdot L^4}{8 \cdot E \cdot I}$$

$$\frac{\partial \Phi_1}{\partial V_1} = \frac{1}{E \cdot I} \cdot \int M_2 \cdot \frac{\partial M_2}{\partial V_1} \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x^2}{2} + \frac{3 \cdot q \cdot L \cdot x}{2} - \frac{3 \cdot q \cdot L^2}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x^2}{2} + \frac{3 \cdot q \cdot L \cdot x}{2} - \frac{3 \cdot q \cdot L^2}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x^2}{2} + \frac{3 \cdot q \cdot L \cdot x}{2} - \frac{3 \cdot q \cdot L \cdot x}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x^2}{2} + \frac{3 \cdot q \cdot L \cdot x}{2} - \frac{3 \cdot q \cdot L \cdot x}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x^2}{2} + \frac{3 \cdot q \cdot L \cdot x}{2} - \frac{3 \cdot q \cdot L \cdot x}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x^2}{2} + \frac{3 \cdot q \cdot L \cdot x}{2} - \frac{3 \cdot q \cdot L \cdot x}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x^2}{2} + \frac{3 \cdot q \cdot L \cdot x}{2} - \frac{3 \cdot q \cdot L \cdot x}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x^2}{2} + \frac{3 \cdot q \cdot L \cdot x}{2} - \frac{3 \cdot q \cdot L \cdot x}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x^2}{2} + \frac{3 \cdot q \cdot L \cdot x}{2} - \frac{3 \cdot q \cdot L \cdot x}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x^2}{2} + \frac{3 \cdot q \cdot L \cdot x}{2} - \frac{3 \cdot q \cdot L \cdot x}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x}{2} + \frac{q \cdot x}{2} - \frac{q \cdot x}{2} - \frac{q \cdot x}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \int_L^{2L} (V_1 \cdot L - \frac{q \cdot x}{2} + \frac{q \cdot x}{2} - \frac{q \cdot x}{2} -$$

$$\frac{\partial \Phi_1}{\partial V_1} = \frac{1}{EI} \left[V_i L^2 x - \frac{q x^3 L}{6} + \frac{3q L^2 x^2}{4} - \frac{3q L}{2} x \right]_L^{2L} = \frac{1}{EI} (V_i L^3 - \frac{5q L}{12})$$

el resultado se obtuvo después de una serie de operaciones.

Ahora.

$$\frac{\partial \Phi}{\partial V_1} = 2 \frac{\partial \Phi_1}{\partial V_1} + \frac{\partial \Phi_2}{\partial V_1} = \frac{2 V_{\dot{1}} L^3}{3 E I} - \frac{q L^4}{4 E I} + \frac{1}{E I} (V_{\dot{1}} L^3 - \frac{5 q L^4}{12}) \rightarrow$$

$$V_1 = \frac{2}{5} q L = 0.4 \cdot q \cdot L \leftrightarrow V_2 = \frac{11}{10} q L = 1.1 \cdot q \cdot L$$

Viga 2.- Con la ecuación aproximada de la elástica:

El grado de hiperestaticidad es 2. Para determinar las reacciones basta cortar desde la derecha y obtener las ecuaciones de los momentos flectores para la ecuación de la elástica. Así:

Tramo 1:
$$0 < x < L$$
 $\rightarrow M_1 = -P \cdot x$

Tramo 2:
$$L < x < 2 \cdot L$$
 $\rightarrow M_2 = -P \cdot x + V_1 \cdot (x - L)$

Tramo 3:
$$2 \cdot L < x < 3 \cdot L \rightarrow M_3 = -P \cdot x + V_1 \cdot (x - L) + V_2 \cdot (x - 2 \cdot L)$$

Determinación de las ecuaciones de ángulos, deformada y de la flecha.

Tramo 1:

$$E \cdot I \cdot y_1 = M_1 = -P \cdot x \iff E \cdot I \cdot y_1 = -P \cdot \frac{x^2}{2} + A_1 \iff E \cdot I \cdot y_1 = -P \cdot \frac{x^3}{6} + A_1 \cdot x + B_1$$

Tramo 2:

$$E \cdot I \cdot y_2 = M_2 = -P \cdot x + V_1 \cdot (x - L) \iff E \cdot I \cdot y_2 = -P \frac{x^2}{2} - V_1 \cdot \frac{(x - L)^2}{2} + A_2$$

$$E \cdot I \cdot y_2 = -P \cdot \frac{x^3}{6} - V_1 \cdot \frac{(x - L)^3}{6} + A_2 \cdot x + B_2$$

Tramo 3:

$$E{\cdot}I{\cdot}y_{3}{''} = M_{3} = {-}P{\cdot}x \ + V_{1}{\cdot}(x-L) + V_{2}{\cdot}(x-2{\cdot}L)$$

$$E \cdot I \cdot y_3' = -P \frac{x^2}{2} + V_1 \cdot \frac{(x-L)^2}{2} + V_2 \cdot \frac{(x-2L)^2}{2} + A_3$$

$$E \cdot I \cdot y_3 = -P \frac{x^3}{6} + V_1 \frac{(x-L)^3}{6} + V_2 \frac{(x-2L)^3}{6} + A_3 x + B_3$$

Ahora se deben evaluar las incógnitas a partir de las condiciones de contorno. Se necesitan 8 ya que 6 son las constantes de integración y 2 son las incógnitas hiperestáticas.

Cálculo de las constantes: De las condiciones de contorno se obtiene:

1°)
$$y_1(L) = 0 \rightarrow -P \frac{L^3}{6} + A_1 L + B_1 = 0$$

2°)
$$y_2(L) = 0 \rightarrow -P \frac{L^3}{6} + A_2 \cdot L + B_2 = 0$$

3°)
$$y_1'(L) = y_2'(L) \rightarrow -\frac{P L^2}{2} + A_1 = -\frac{P L^2}{2} + A_2 \rightarrow A_1 = A_2$$

$$4^{\circ}) \ y_{2}'(2 \cdot L) = y_{3}'(2 \cdot L) \rightarrow -2 P L^{2} + \frac{V_{1} \cdot L^{2}}{2} + A_{2} = -2 P L^{2} + \frac{V_{1} \cdot L^{2}}{2} + A_{3} \rightarrow A_{2} = A_{3}$$

5°)
$$y_2(2 \cdot L) = 0 \rightarrow -\frac{8 P L^2}{6} + \frac{V_1 L^3}{6} + 2 L A_2 + B_2 = 0$$

6°)
$$y_3(2\cdot L) = 0 \rightarrow -\frac{8PL^3}{6} + \frac{V_1L^3}{6} + 2LA_3 + B_3 = 0$$

7°)
$$y_3'(3\cdot L) = 0 \rightarrow -\frac{9 P L^2}{2} + 2 V_1 L^2 + \frac{V_2 L^2}{2} + A_3 = 0$$

8°)
$$y_3(3 \cdot L) = 0 \rightarrow -\frac{27 \cdot P \cdot L^3}{6} + \frac{8 \cdot V_1 \cdot L^3}{6} + 3 \cdot L \cdot A_3 + B_3 = 0$$

Resolviendo estas ecuaciones se obtiene:

$$V_1 = \frac{11}{7}P \leftrightarrow V_2 = \frac{9}{14}P$$

Viga 3.- Aplicando superposición:

Se puede resolver el problema como superposición de los estados que muestra la figura 12.3a3. El desplazamiento en el apoyo será nulo y suma de los debidos a los dos estados de carga. Por superposición se tiene:

$$\delta = \delta^V + \delta^P = 0$$

Para un viga de longitud L, carga aplicada desde el empotramiento a una distancia a y con b = L - a, con la x tomada desde el extremo libre se tiene que la ecuación aproximada de la elástica vale:

$$E \cdot I_z \cdot y_1 = \frac{-P}{6} (L - x)^2 \cdot (2 \cdot a - b + x)$$

para una viga de longitud 2·L será:

$$E \cdot I_z \cdot y_1 = \frac{-P}{6} (2L - x)^2 \cdot (2 \cdot a - b + x)$$

El desplazamiento δ^V se obtiene para los valores a=b=x=L. Este vale:

$$\delta^V = \frac{V}{3 \, E \, I}$$

Con la misma ecuación δ^P se obtiene para $a = 2 \cdot L$, b = 0 y x = L, obteniéndose:

$$\delta^P = \frac{-5P}{6EI}$$

así que por superposición:

$$\delta = \delta^{V} + \delta^{P} = \frac{V}{3EI} + \frac{-5P}{6EI} = 0 \rightarrow V = \frac{5P}{2}$$

LECCIÓN 13

Cálculo de pórticos planos

Introducción: En esta lección se estudiara la resolución de pórticos planos, isostáticos e hiperestáticos.

En la teoría se estudiaron dos métodos de cálculo de las incógnitas hiperestáticas como son el Teorema de Menabrea y el Método de las Fuerzas. Se emplearán dichos métodos en la resolución de los pórticos hiperestáticos. Una vez conocidas las incógnitas hiperestáticas el problema se resuelve igual que un problema isostático.

Para el estudio de la rigidez se ha considerado exclusivamente el Teorema de Castigliano. Sin embargo, no es muy apropiado para el cálculo, especialmente el hecho a mano, ya que requiere un gran número de operaciones y cálculos complejos. Para un mejor desarrollo se recomienda recurrir a los métodos que estudia la Teoría de Estructuras y especialmente el uso de programas diseñados para el cálculo con ordenador, siempre que estén suficientemente contrastados.

Es oportuno comentar, que estos métodos de cálculo no son los únicos que aporta la Resistencia de Materiales pero que por las características de este curso se ha preferido no incluir más. Lo mismo que con la rigidez, estos métodos no son los mejores para el cálculo manual, haciéndose la misma recomendación que en el párrafo anterior.

A pesar de estas dificultades, los métodos propuestos permiten al estudiante profundizar en el cálculo y diseño de estas estructuras obteniendo un cierto grado de preparación que les permita ampliar los escasos conocimientos que se pueden obtener en este curso.

Los problemas están orientados al diseño resistente de estructuras metálicas siguiendo la NBE-EA-95. El diseño según los principios de la rigidez no se aborda dada la dificultad del método empleado, aunque se plantea el cálculo de desplazamientos de algunas de las secciones de los pórticos.

Objetivos de la lección: Preparar al estudiante en la resolución de estructuras basándose en los métodos estudiados para la resolución de pórticos planos.

Contenidos de los problemas: Cálculo y diseño de pórticos planos. Cálculo de desplazamientos por el Teorema de Castigliano. Diseño resistente de los mismos según la NBE-EA-95.

Problemas resueltos: Exclusivamente ejercicios referentes a estos contenidos.

Formulación básica:

Fórmulas de las lecciones precedentes

Grado de hiperestaticidad de un sistema

El grado de hiperestaticidad GH será: GH = GHE + GHI

siendo GHE el grado de hiperestaticidad externo y GHI el interno. Para determinar el grado de hiperestaticidad interno GHI:

$$GHI = 3 \cdot C - A$$

donde C es el número de contornos cerrados y A el número de articulaciones, tomando cada una de ellas como el valor del número de barras menos una que concurran en la misma.

Cálculo de pórticos con los teoremas del potencial interno

En este caso, el potencial interno para una barra i se puede expresar:

$$\Phi_i = \int_0^L \frac{N^2}{2 \cdot E \cdot \Omega} dx + \int_0^L \frac{M_z^2}{2 \cdot E \cdot I_z} dx + \int_0^L \frac{T_y^2}{2 \cdot G \cdot \Omega_y^*} dz$$

para una estructura de n barras el potencial interno se expresa:

$$\Phi = \sum_{i=1}^{n} \Phi_{i}$$

Para el estudio de la rigidez, en este caso, se aplicará el teorema de Castigliano que establece:

$$\delta = \frac{\partial \Phi}{\partial F}$$

siendo δ el desplazamiento del punto de aplicación de la fuerza F en el sentido de la misma. Cuando en la sección, no exista una fuerza F en el sentido deseado, se puede tomar una ficticia, calcular Φ en función de ella, derivar haciendo $\frac{\partial \Phi}{\partial F}$, y sustituir el valor de F=0. Así se obtendrá dicho desplazamiento.

Los cálculos se pueden simplificar dado que en este tipo de estructuras, los desplazamientos debidos a los esfuerzos cortantes y normales son despreciables frente a los que produce el momento flector.

De esta forma se puede escribir:

$$\frac{\partial \Phi}{\partial F} = \frac{\partial}{\partial F} \left[\sum_{i=1}^{n} \int_{0}^{Li} \frac{M_{i}^{2}}{2 \cdot E_{i} \cdot I_{i}} dx \right]$$

para calcular el desplazamiento de una sección de un pórtico según el sentido de F.

La hiperestatitidad de los pórticos hiperestáticos se resuelve con el teorema de Menabrea que se expresa:

$$\frac{\partial \Phi}{\partial X_i} = 0 \text{ con } i = 1,...n$$

siendo X_i las incógnitas hiperestáticas.

Así el teorema de Menabrea considerando despreciables la contribución de los esfuerzos normales y cortantes se puede escribir:

$$\frac{\partial \Phi}{\partial X} = \frac{\partial}{\partial X} \left[\sum_{i=1}^{n} \int_{0}^{Li} \frac{M_{i}^{2}}{2 \cdot E_{i} \cdot I_{i}} dx \right] = 0$$

Método de las fuerzas para resolver estructuras hiperestáticas

Si se tienen n incógnitas hiperestáticas X_i, se obtendrán n ecuaciones:

$$\delta_{11} \cdot X_1 + \delta_{12} \cdot X_2 + ... + \delta_{1n} \cdot X_n + \Delta_{1P} = 0$$

$$\delta_{21} \cdot X_1 + \delta_{22} \cdot X_2 + ... + \delta_{2n} \cdot X_n + \Delta_{2P} = 0$$

.....

$$\delta_{n1}\cdot X_1 + \delta_{n2}\cdot X_2 + \dots + \delta_{nn}\cdot X_n + \Delta_{nP} = 0$$

Las ecuaciones de este sistema reciben el nombre de **ecuaciones canónicas** del método de las fuerzas. Se pueden expresar matricialmente de la siguiente forma:

$$\left[\mathbf{D}\right] \cdot \left[\mathbf{X}\right] + \left[\mathbf{D}_{\mathbf{p}}\right] = 0$$

$$\begin{bmatrix} \mathbf{D} \end{bmatrix} = \begin{bmatrix} \delta_{11} & \delta_{12} & \dots & \delta_{1n} \\ \delta_{21} & \delta_{22} & \dots & \delta_{2n} \\ \dots & \dots & \dots & \dots \\ \delta_{n1} & \delta_{n2} & \dots & \delta_{nn} \end{bmatrix}; \ \begin{bmatrix} \mathbf{X} \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \\ \dots \\ \mathbf{X}_n \end{bmatrix}; \ \begin{bmatrix} \mathbf{D}_{\mathbf{P}} \end{bmatrix} = \begin{bmatrix} \Delta_{1\mathbf{P}} \\ \Delta_{2\mathbf{P}} \\ \dots \\ \Delta_{n\mathbf{P}} \end{bmatrix}$$

Los coeficientes δ_{ij} de las incógnitas se pueden calcular, en caso de barras rectas o curvas de pequeña curvatura según la ecuación:

$$\delta_{ij} = \sum \int\!\! \frac{M_{zi}\!\cdot\! M_{zj}}{E\!\cdot\! I_z} ds + \sum \int\!\! \frac{N_i\!\cdot\! N_j}{E\!\cdot\! \Omega} ds \ + \ \sum \int\!\! \frac{T_{yi}\!\cdot\! T_{yj}}{G\!\cdot\! \Omega^*} ds$$

siendo:

 M_{zi} , N_i , T_{yi} , las leyes de momentos flectores, esfuerzos normales y esfuerzos cortantes, respectivamente, del sistema base sometido a la fuerza $X_i = 1$.

 M_{zj} , N_j , T_{yj} , las leyes de momentos flectores, esfuerzos normales y esfuerzos cortantes, respectivamente, del sistema base sometido a la fuerza $X_j = 1$.

Por otra parte, los desplazamientos Δ_{iP} , términos independientes de las ecuaciones canónicas, se calculan de igual forma:

$$\Delta_{iP} = \sum \int \frac{M_{zi} \cdot M_{zP}}{E \cdot I_z} ds + \sum \int \frac{N_i \cdot N_P}{E \cdot \Omega} ds + \sum \int \frac{T_{yi} \cdot T_{yP}}{G \cdot \Omega^*} ds$$

siendo:

 M_{zi} , N_i , T_{yi} , las leyes de momentos flectores, esfuerzos normales y esfuerzos cortantes, respectivamente, en el sistema base sometido a la carga aplicada al sistema $X_i = 1$.

Lo mismo que en el epígrafe anterior, los desplazamientos debidos a esfuerzos normales y cortantes es despreciable frente a los de momentos flectores reduciéndose las expresiones a:

$$\delta_{ij} = \sum \int \frac{M_{zi} \cdot M_{zj}}{E \cdot I_{z}} ds \iff \Delta_{iP} = \sum \int \frac{M_{zi} \cdot M_{zP}}{E \cdot I_{z}} ds$$

Coeficiente de pandeo para pilares en pórticos planos de una altura según la NBE-EA-95:

Para los pilares de pórticos planos de una altura y con posibilidad de pandeo exclusivamente en el plano se recomienda consultar el articulo 3.2.4.3 de la citada normativa.

En los diseños presentados con dos pilares con apoyos articulados se tomará el valor crítico de $\beta \approx 4.8$.

Convenio de signos:

Se mantendrá el criterio de signos para los esfuerzos en una sección. En todos los problemas se planteará dicho criterio para los pórticos vistos desde su interior.

1.- Dada la estructura de la figura13.1a se pide:

- a) Diagramas de esfuerzos en el pórtico plano, las cargas son de presión.
- b) Diseñar a resistencia las vigas y pilares en acero A-52, en el supuesto que las acciones corresponden a una hipótesis crítica de cálculo y por tanto, están ponderadas. El pórtico sólo pandea en el plano de la estructura.

a) La estructura es isostática.

Las ecuaciones de la estática:

$$\sum F_x = 0 \rightarrow H_A + 15 = 50 \rightarrow H_A = 35 \text{ t}$$

CORTE A-C

Figura 13.1b1

CORTE C-D

Figura 13.1b2

$$\sum F_{y} = 0 \rightarrow V_{A} + V_{B} = 20$$

$$\sum M_A = 0 \ \to 1,5 \cdot 15 + 20 \cdot 4 - 2,5 \cdot 50 - V_B \cdot 6 = 0 \ \to V_B = -3,75 \ t \ \to V_A = 23,75 \ t$$

Ahora se determinan las ecuaciones de esfuerzos. Se aplica el método de las secciones y se establecen los cortes según las figuras 13.1b.

Corte A-C:

$$N = -V_A = -23,75$$

$$T = -H_A - 5 \cdot x = -35 - 5 \cdot x$$

$$M = -H_A \cdot x - 5 \cdot x^2/2 = -35 \cdot x - 5 \cdot x^2/2$$

Se analiza la ecuación de momentos para su representación. Los máximos y mínimos se obtienen $\to \frac{dM}{dx}$ =T=0 \to - 35 - 5·x = 0 \to x = -7. No hay puntos

extremos. La curvatura se obtiene con $\frac{d^2M}{dx^2}$ <0 , luego es zona de máximos.

Corte C-D:

CORTE B-F

$$N = -V_A = -23,75$$

$$T = -H_A - 5.3 = -35 - 15 = -50$$

$$M = -H_A \cdot x - 5 \cdot 3(x - 1.5) = 22.5 - 50 \cdot x$$

Corte D-E:

$$N = -H_A - 5.3 = -35 - 15 = -50$$

$$T = V_A = 23,75$$

$$M = -H_A \cdot 5 - 5 \cdot 3 \cdot 3.5 + V_A \cdot x = -227.5 + 23.75 \cdot x$$

Corte E-F:

$$N = -10.5 = -50$$

$$T = -V_B = 3,75$$

$$M = -10.5.5/2 + V_B \cdot x = -125 - 3,75 \cdot x$$

Corte B-F:

$$N = -V_B = 3,75$$

$$T = 10 \cdot x$$

$$M = -10 \cdot x^2/2 = -5 \cdot x^2$$

Los máximos y mínimos se obtienen $\rightarrow \frac{dM}{dx} = T = 0 \rightarrow -5 \cdot x = 0 \rightarrow x = 0$. En esa sección hay un extremo. La curvatura se obtiene con $\frac{d^2M}{dx^2} < 0$, luego es zona de máximos. Es un máximo.

Ahora se representan los diagramas de esfuerzos para el pórtico. Se muestran en la figura 13.1.c

El diseño resistente implica que: $\sigma^* \leq \sigma_{ADM}$. La tensión ponderada vale: $\sigma^* = \frac{N^*}{\Omega} \cdot \omega + \frac{M^*}{W}$. Para una primera aproximación se hace $\sigma^* \approx \frac{M^*}{W} \to W \geq \frac{M^*}{\sigma_{ADM}}$.

Para el pilar AD \rightarrow $M^* = M_{m\acute{a}x} = 22750000$ kp·cm. El acero A-52 tiene $\sigma_e = 3600$ kp/cm² y como el método empleado es el de los coeficientes de ponderación se tiene que $\sigma_{ADM} = \sigma_e \rightarrow W \geq \frac{22750000}{3600} \approx 6319$ cm³. Para el que se necesita un perfil HEM

Esfuerzos Cortantes

Momentos Flectores

Figura 13.1c

550 con Ω = 354,4 cm², $W_x = 6920$ cm³ e $i_x = 23,6$ cm, supone que $\lambda = \frac{\beta L}{i_x} = \frac{4,8500}{23,6}$ = 102 \rightarrow ω(102) = 2,67. Se ha tomado $\beta = 4,8$ como se indicó en el formulario.

$$\sigma^* = \frac{23750 \cdot 2,67}{354,4} \cdot 2,67 + \frac{22750000}{6920} = 3467 \text{ kp/cm}^2$$
 que es válido.

Para el dintel DF, se tomará el perfil anterior al soportar el mismo momento máximo. Se comprueba con $\lambda = \frac{\beta L}{i_x} = \frac{1600}{23,6} = 25,4 \rightarrow \omega(26) = 1,04$. Se ha tomado $\beta = 1,04$.

1 del lado de la seguridad como si fuese una viga biapoyada, ya que se debe tener en cuenta que los nudos son elásticos y no totalmente rígidos, por lo que considerar la viga como biempotrada con $\beta = 0.5$ se estima insuficiente.

$$\sigma^* = \frac{50000}{354.4} 1,04 + \frac{22750000}{6920} = 3434,3 \text{ kp/cm}^2$$

El pilar FB trabaja a tracción. N* = 3,75 t y M* = $M_{máx}$ = 12500000 kp·cm. Así: W $\geq \frac{12500000}{3600} \approx 3472,2$ cm³. Para el que se necesita un perfil HEM 300 (h = 340) con Ω = 303,1 cm², W_x = 3480 cm³ que comprobando:

Figura 13.2a

$$\sigma^* = \frac{3750}{303.1} + \frac{12500000}{3480} = 3604 \text{ kp/cm}$$

que se admite.

- 2.- Diseñar el pórtico de la figura 13.2a resistencia suponiendo que las cargas corresponden a una hipótesis crítica de carga y están ponderadas. Utilizar un acero A-37. Obtener además el desplazamiento vertical en el punto medio de la barra D-E.
- b) La estructura es isostática.

Las ecuaciones de la estática:

$$\sum F_x = 0 \ \rightarrow H_A + 10 \cdot sen30^{\circ} - \ \frac{1}{2} \cdot 10 \cdot 4 = 0 \ \rightarrow H_A = 15 \ t$$

$$\sum F_{_{\boldsymbol{y}}} = 0 \, \rightarrow V_{\boldsymbol{A}} + V_{\boldsymbol{I}} - 10 \cdot cos30^{\text{o}} \text{ - } 5 \cdot \frac{4}{\cos 20^{\circ}} \text{ - } 7 = 0$$

$$\sum M_A = 0 \rightarrow 6 + 5 \cdot 10 \cdot sen30^{\circ} + 5 \cdot \frac{4}{\cos 20^{\circ}} 2 + 7 \cdot 6 - \frac{1}{2} \cdot 10 \cdot 4 \cdot 4 \cdot \frac{2}{3} - V_I \cdot 8 = 0 \rightarrow V_I = 7,780 \text{ t} \rightarrow V_A = 29,164 \text{ t}$$

Ahora se determinan las ecuaciones de esfuerzos. Se aplica el método de las secciones y se establecen los cortes según las figuras 13.2b.

Corte A-B:

$$N = -V_A = -29,164$$

$$T = -H_A = -15$$

$$M = -H_A \cdot x = -15 \cdot x$$

Se analiza la ecuación de momentos para su representación. Es una línea recta por

lo que basta con dar los valores extremos. M(0) = 0 y M(3) = -45 t·m

Corte B-C:

$$N = -V_A = -29,164 t$$

$$T = -H_A = -15 t$$

$$M = -H_A \cdot x + 6 = -15 \cdot x + 6$$

Los valores extremos son: M(3) = -39 t·m y M(5) = -69 t·m.

Corte C-D:

$$N = -V_A + 10 \cdot \cos 30^\circ = -20,505 t$$

$$T = -H_A + 10 \cdot sen 30^\circ = -20 t$$

$$M = -H_A \cdot x + 6 - 10 \cdot sen 30^{\circ} \cdot (x-5) = -15 \cdot x + 6 - 10 \cdot sen 30^{\circ} \cdot (x-5) = -20 \cdot x + 31$$

Los valores extremos son: M(5) = -69 t/m y M(6) = -89 t/m

Corte D-E:

$$N = -29,164 \cdot \text{sen} \cdot 20^{\circ} - 15 \cdot \cos 20^{\circ} - 10 \cdot \cos 80^{\circ} + 5 \cdot x_{1} \cdot \text{sen} \cdot 20^{\circ} =$$

$$N = -25,807 + 1,71 \cdot x_1$$

Los valores extremos son N(0) = -25,807 t y N(4,26) = -18,522 t

$$T = 29,164 \cdot \cos 20^{\circ} - 15 \cdot \sin 20^{\circ} - 10 \cdot \sin 80^{\circ} - 5 \cdot x_{1} \cdot \cos 20^{\circ} = 12,427 - 4,698 \cdot x_{1}$$

$$T(0) = 12,427 \text{ t y } T(4,26) = -7586 \text{ t}, T = 0 \rightarrow x_1 = 2,645 \text{ m}.$$

$$M = 29,164 \cdot cos 20^{\circ} \cdot x_{1} - 15 \cdot (6 + x_{1} \cdot sen 20^{\circ}) + 6 - 10 \cdot sen 80^{\circ} \cdot (x_{1} + 0,5) - 2,5 \cdot cos 20^{\circ} \cdot {x_{1}}^{2} = -2,349 \cdot {x_{1}}^{2} + 12,427 \cdot x_{1} - 89$$

Los máximos y mínimos se obtienen $\rightarrow \frac{dM}{dx}$ =T=0 \rightarrow en x_1 = 2,645 m hay un extremo. La curvatura se obtiene con $\frac{d^2M}{dx^2}$ <0, luego es zona de máximos y en x_1 = 2,645 m habrá un máximo de valor M(2,645) = -72,564 t·m. En los extremos del intervalo se tiene M(0) = -89 t·m y M(4,26) = -78,685 t·m

Corte I-H:

Si se hace un corte por x_2 , el valor de la carga en la sección es $2,5 \cdot x_2$, en t/m.

$$N = -7.78 t$$

$$T = -\frac{1}{2} \cdot 2.5 \cdot x_2^2$$

$$M = (-\frac{1}{2} \cdot 2, 5 \cdot x_2^2) \cdot \frac{1}{3} \cdot x_2 = -\frac{1}{6} \cdot 2, 5 \cdot x_2^3$$

$$M(0) = 0$$
, $M(4) = -26,667$ t·m, no hay extremos.

Corte H-G:

$$N = -7,78 t$$

$$T = -20 t$$

$$M = -20 \cdot (x_2 - \frac{8}{3}) = -20 \cdot x_2 + 53{,}333$$

$$M(4) = -26,667 \text{ t·m}, M(6) = -66,667 \text{ t·m}.$$

Corte G-F:

$$N = -20 \cdot \cos 20^{\circ} + 7,78 \cdot \sin 20^{\circ} = -21,454 t$$

$$T = -20 \cdot \text{sen} 20^{\circ} + 7,78 \cdot \cos 20^{\circ} = -0,47 \text{ t}$$

$$M = -20 \cdot (2 + \frac{4}{3} + x_3 \cdot \text{sen} \cdot 20^\circ) + 7,78 \cdot \cos 20^\circ \cdot x_3 = 0,47 \cdot x_3 - 66,667$$

$$M(0) = 0 \text{ t·m}, M(2,13) = -65,666 \text{ t·m}.$$

Corte F-E:

$$N = -21,454 + 7 \cdot \text{sen} 20^{\circ} = -19,06 \text{ t}$$

$$T = -0.47 + 7 \cdot \cos 20^{\circ} = 6.108 t$$

$$M = -20 \cdot (2 + \frac{4}{3} + x_3 \cdot sen20^{\circ}) + 7,78 \cdot cos20^{\circ} \cdot x_3 - 7 \cdot cos20^{\circ} \cdot (x_3 - 2,13) = 6,108 \cdot x_3 - 52,656$$

$$M(2,13) = -65,666 \text{ t·m y } M(4,26) = -78,685 \text{ t·m},$$

A continuación en la figura 13.2d se representan los diagramas de esfuerzos. En algunos de ellos se han invertido los ejes coordenados solidarios a las barras para una mayor claridad del dibujo.

Figura 13.2d.- Diagramas de esfuerzos

El diseño resistente implica que: $\sigma^* \leq \sigma_{ADM}$. La tensión ponderada vale: $\sigma^* = \frac{N^*}{\Omega} \cdot \omega + \frac{M^*}{W}$. Para una primera aproximación se hace $\sigma^* \approx \frac{M^*}{W} \to W \geq \frac{M^*}{\sigma_{ADM}}$.

Para el pilar A-D \rightarrow M* = $M_{m\acute{a}x}$ = 8900000 kp·cm. El acero A-37 tiene σ_e = 2400 kp/cm² y como el método empleado es el de los coeficientes de ponderación se tiene que σ_{ADM} = σ_e . Esto supone que $W \ge \frac{8900000}{2400} \approx 3708,3$ cm³. Para el que se necesita un perfil HEB 500 con Ω = 238,6 cm², W_x = 4290 cm³ e i_x = 21,2 cm, supone que $\lambda = \frac{\beta \cdot L}{i_x} = \frac{4,8\cdot600}{21,2} = 136 \rightarrow \omega(136) = 3,09$. Se ha tomado β = 4,8 que es el valor crítico para pórticos articulados según la NBE-EA-95 asumiendo que no pandea en el otro plano según el artículo 3.2.4.3.

$$\sigma^* = \frac{29165}{238.6} \cdot 3,09 + \frac{8900000}{4290} = 2452 \text{ kp/cm}^2$$

que es válido.

El dintel DE requiere el mismo perfil que el anterior por la flexión.

Para la barra EG, se tomará $\beta=1$ con seguridad por ser los nudos elásticos. La NBE-EA-95 para cargas a compresión variables y de valores en los extremos N y N' establece que $\beta=\sqrt{\frac{1+c\cdot N'_N}{k}}$ que si es biarticulada da c=0.88, k=1.88 obteniéndose con N = 25,807 y N'= 18,522 el valor $\beta=0.93$. Se considera 1 como cuando el esfuerzo es constante. Un primer cálculo: $W \ge \frac{7868500}{2400} \approx 3278 \text{ cm}^3$ para lo que se necesita un perfil HEB 450 con $\Omega=218 \text{ cm}^2$, $W_x=3550 \text{ cm}^3$ e $i_x=19.1 \text{ cm} \rightarrow \lambda = \frac{\beta L}{i_x} = \frac{1426}{19.1} = 22 \rightarrow \omega(22) = 1,02$. Se comprueba:

$$\sigma^* = \frac{25807}{218} \cdot 1,02 + \frac{7868500}{3550} = 2337 \text{ kp/cm}^2$$

por lo que es válido.

El pilar IG \rightarrow M* = $M_{máx}$ = 6666700 kp·cm. Esto supone que $W \ge \frac{6666700}{2400} \approx 2778 \text{ cm}^3$. Para el que se necesita un perfil HEB 400 con Ω = 198 cm², W_x = 2880 cm³ e i_x = 17,1 cm, supone que $\lambda = \frac{\beta \cdot L}{i_x} = \frac{4,8\cdot600}{17,1} = 169 \rightarrow \omega(169) = 4,58$, comprobando el perfil:

$$\sigma^* = \frac{7779 \cdot 2,67}{198} \cdot 4,58 + \frac{6666700}{2880} = 2495 \text{ kp/cm}^2$$

que es válido.

Figura 13.2e

Para determinar el desplazamiento vertical en medio de la barra DE se aplicará el teorema de Castigliano. Para ello se aplicará una carga P vertical en el centro de la barra $\,y\,$ hacia abajo, con lo que el desplazamiento vertical δ_V en la dirección y sentido de la sección será:

$$\delta_{\rm V} = \frac{\partial \Phi}{\partial \rm P} \Big|_{\rm P=0}$$

$$\frac{\partial \Phi}{\partial P} = \sum_{i=1}^{n} \frac{\partial \Phi_{i}}{\partial P} \approx \sum_{i=1}^{n} \frac{1}{E \cdot I_{:}} \cdot \int_{a}^{b} M_{1} \cdot \frac{\partial M_{1}}{\partial P} \cdot ds$$

donde el subíndice i corresponde a la barra o tramo de la

barra en el que se determina la ley de momentos flectores. Se ha despreciado el efecto del resto de esfuerzos por ser despreciable como se ha comentado reiteradamente en este curso.

Ahora basta determinar nuevamente las leyes de momentos flectores con la carga P. Dado que se calcularon dichas leyes en el caso de las cargas reales, se determinarán los momentos flectores como si sólo actuase P y por superposición se añadirán a las leyes ya obtenidas.

Si se parte de la estructura de la figura 13.2e, en primer lugar se determinarán las reacciones:

Las ecuaciones de la estática:

$$\sum F_x = 0 \rightarrow H_A = 0$$

$$\sum F_{_{y}}=0\, \longrightarrow V_{A}+V_{I}=P$$

$$\sum M_A = 0 \rightarrow 2 \cdot P - 8 \cdot V_I = 0 \rightarrow V_I = P/4 \rightarrow V_A = 3 \cdot (P/4)$$

Manteniendo los criterios de signos y los mismos cortes de referencia, se tiene que:

Para todo el pilar AD:

$$\mathbf{M} = \mathbf{0}$$

Para el tramo entre el punto D y la carga P:

$$M = V_A \cdot x_1 \cdot \cos 20^\circ = (\frac{3}{4} \cdot P \cdot \cos 20^\circ) \cdot x_1$$

Para el tramo la carga P y el punto E:

$$M = V_A \cdot x_1 \cdot \cos 20^\circ - P \cdot (x_1 \cdot \cos 20^\circ - 2) = P \cdot (2 - \frac{1}{4} \cdot x_1 \cdot \cos 20^\circ)$$

Barra EG:

$$M = V_1 \cdot x_3 \cdot \cos 20^\circ = \frac{1}{4} \cdot P \cdot x_3 \cdot \cos 20^\circ$$

Barra IG:

$$\mathbf{M} = \mathbf{0}$$

Ahora basta sumarlo a las leyes de momentos obtenidas anteriormente. Se puede simplificar rápidamente ya que en los tramos que $\frac{\partial M_1}{\partial P} = 0$ no intervienen en la ecuación, por lo que sólo se sumarán los tramos en los que interviene P.

Para el tramo entre el punto D y la carga P con $0 < x_1 < 2,13$:

$$M = -2.349 \cdot x_1^2 + 12.427 \cdot x_1 - 89 + (\frac{3}{4} \cdot P \cdot \cos 20^\circ) \cdot x_1$$

Para el tramo la carga P y el punto E con $2,13 < x_1 < 4,26$:

$$M = -2.349 \cdot x_1^2 + 12.427 \cdot x_1 - 89 + P \cdot (2 - \frac{1}{4} \cdot x_1 \cdot \cos 20^\circ)$$

Barra EG, tramo GF con $0 < x_3 < 2,13$:

$$M = 0.47 \cdot x_3 - 66.667 + \frac{1}{4} \cdot P \cdot x_3 \cdot \cos 20^\circ$$

Barra EG, tramo GF con $2,13 < x_3 < 4,26$:

$$M = 6,108 \cdot x_3 - 52,656 + \frac{1}{4} \cdot P \cdot x_3 \cdot \cos 20^\circ$$

El teorema de Castigliano se puede escribir:

$$\delta_{\mathrm{V}} = \frac{\partial \Phi}{\partial \mathrm{P}} \bigg|_{\mathrm{P}=0} = \sum_{i=1}^{n} \frac{\partial \Phi_{i}}{\partial \mathrm{P}} \bigg|_{\mathrm{P}=0} \approx \sum_{i=1}^{n} \frac{1}{E \cdot I_{i}} \cdot \int_{a}^{b} M_{1} \bigg|_{\mathrm{P}=0} \cdot \frac{\partial M_{1}}{\partial \mathrm{P}} \cdot ds$$

En la figura 13.2e se ha denotado a la barra DE con el 1 y la EG con el 2, así se puede escribir ya directamente:

$$\begin{split} &\delta_{\mathrm{V}} = & \frac{1}{E \cdot I_{1}} \cdot \left(\int_{0}^{2,13} \mathbf{M} \Big|_{P=0} \cdot \frac{\partial \mathbf{M}}{\partial P} \cdot d\mathbf{x} + \int_{2,13}^{4,26} \mathbf{M} \Big|_{P=0} \cdot \frac{\partial \mathbf{M}}{\partial P} \cdot d\mathbf{x} \right) + \frac{1}{E \cdot I_{2}} \cdot \left(\int_{0}^{2,13} \mathbf{M} \Big|_{P=0} \cdot \frac{\partial \mathbf{M}}{\partial P} \cdot d\mathbf{x} \right) \\ &+ \int_{2,13}^{4,26} \mathbf{M} \Big|_{P=0} \cdot \frac{\partial \mathbf{M}}{\partial P} \cdot d\mathbf{x} \right) = \end{split}$$

que sustituyendo:

$$\begin{split} &\delta_{\mathrm{V}} = \frac{1}{\mathrm{E} \cdot \mathrm{I}_{1}} \cdot \{ \int_{0}^{2.13} (-2,349 \cdot \mathrm{x}_{1}^{2} + 12,427 \cdot \mathrm{x}_{1} - 89) \cdot \frac{3}{4} \cdot \mathrm{x}_{1} \cdot \cos 20^{\circ} \cdot \mathrm{dx}_{1} + \\ &\int_{2,13}^{4,26} (-2,349 \cdot \mathrm{x}_{1}^{2} + 12,427 \cdot \mathrm{x}_{1} - 89) \cdot (2 - \frac{1}{4} \cdot \mathrm{x}_{1} \cdot \cos 20^{\circ}) \cdot \mathrm{dx}_{1} \} + \\ &\frac{1}{\mathrm{E} \cdot \mathrm{I}_{2}} \cdot \{ \int_{0}^{2,13} (0,47 \cdot \mathrm{x}_{3} - 66,667) \cdot \frac{1}{4} \cdot \mathrm{x}_{3} \cdot \cos 20^{\circ} \cdot \mathrm{dx}_{3} + \\ &\int_{2,13}^{4,26} (6,108 \cdot \mathrm{x}_{3} - 52,656) \cdot \frac{1}{4} \cdot \mathrm{x}_{3} \cdot \cos 20^{\circ} \cdot \mathrm{dx}_{3} \} = \end{split}$$

$$\delta_{V} = \frac{1}{E I_{1}} \left\{ \left[-1,656 \frac{x_{1}^{4}}{4} + 8,758 \frac{x_{1}^{3}}{3} - 62,724 \frac{x_{1}^{2}}{2} \right]_{0}^{2,13} + \left[-4,698 \frac{x_{1}^{3}}{3} + 24,854 \frac{x_{1}^{2}}{2} - 178 x_{1} \right]_{2,13}^{4,26} \right.$$

$$\left[0,552 \frac{x_{1}^{4}}{4} - 2,919 \frac{x_{1}^{3}}{3} + 20,908 \frac{x_{1}^{2}}{2} \right]_{2,13}^{4,26} \right\} + \frac{1}{E I_{2}} \left\{ \left[0,11 \frac{x_{3}^{3}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E I_{2}} \left[0,11 \frac{x_{3}^{2}}{3} - 15,662 \frac{x_{3}^{2}}{2} \right]_{0}^{2,13} + \frac{1}{E$$

$$\left[1,435\frac{x_3^3}{3}-12,37\frac{x_3^2}{2}\right]_{2,13}^{4,26}\} = \frac{-319,454}{EI_1} + \frac{-86,999}{EI_2} =$$

Para el diseño obtenido se obtuvo que la barra 1 era un perfil HEB 500 con I_1 = 107176 cm⁴ = $107176\cdot10^{-8}$ m⁴ y 2 era un perfil HEB 450 con I_1 = 79887 cm⁴ = $79887\cdot10^{-8}$ m⁴, E = $2,1\cdot10^6$ kp/cm² = $2,1\cdot10^7$ t/m². Para determinar el desplazamiento correctamente se deben sustituir las rigideces a flexión en unidades t/m². Así: E· I_1 = 22506,96 t/m² y E· I_2 = 16776,27 t/m². Por tanto:

$$\delta_V = \frac{-319,\!454}{22506,\!96} + \frac{-86,\!999}{16776,\!27} = -0,\!01938 \; m = -1,\!938 \; cm$$

el signo menos indica que el sentido es contrario al de P por lo que se desplazará hacia arriba.

- 3.- Dada la estructura de la figura 13.3a se pide:
- c) Obtener las reacciones, son datos q de presión, L, I.
- d) Diseñar las vigas a resistencia con perfil IPE si q = 3 t/m y L = 5 m. Se considerará que las cargas corresponden a una hipótesis crítica de cálculo estando ya ponderadas. Se utilizará un acero A-52.

a) La estructura es hiperestática de grado 2. Se va a resolver por dos métodos distintos. En primer lugar se aplicará el teorema de Menabrea y luego se comprobará por el método de las fuerzas.

Por Menabrea:

$$\frac{\partial \Phi}{\partial X_i} = 0$$

siendo X_i las incógnitas hiperestáticas. La contribución de los esfuerzos normales y cortantes en la ecuación es despreciable frente a la de los momentos flectores. Por tanto, se puede expresar la ecuación anterior de forma simplificada:

$$\frac{\partial \Phi}{\partial X_i} = \frac{1}{EI} \int M \frac{\partial M}{\partial X_i} ds$$

Las ecuaciones de la estática:

$$\sum F_{x} = 0 \rightarrow H_{A} + H_{B} = 0$$

$$\sum F_v = 0 \rightarrow V_A + V_B = q \cdot L$$

$$\sum M_A = 0 \rightarrow M_A - q \cdot \frac{L^2}{2} + V_B \cdot L - H_B \cdot L = 0$$

Tomando H_B y V_B como incógnitas hiperestáticas se obtienen los momentos flectores según las figuras 13.3b y 13.3c cuyos valores son:

$$M_1 = - q \cdot \frac{L^2}{2} + V_B \cdot L - H_B \cdot x$$

$$M_2 = -q \cdot \frac{x^2}{2} + V_B \cdot x$$

Se debe verificar que $\frac{\partial \Phi}{\partial H_B} = 0$ y $\frac{\partial \Phi}{\partial V_B} = 0$

$$\frac{\partial \Phi}{\partial H_{R}} = \frac{\partial \Phi_{1}}{\partial H_{R}} + \frac{\partial \Phi_{2}}{\partial H_{R}} = 0$$

$$\frac{\partial \Phi_{1}}{\partial H_{B}} = \frac{1}{E \cdot I} \cdot \int_{0}^{L} M_{1} \cdot \frac{\partial M_{1}}{\partial H_{B}} \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x \right) \cdot (-x) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L \right) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} + V_{B} \cdot L \right) \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{L} \left(-q \cdot \frac{L^{2}}{2} +$$

$$\frac{1}{E \cdot I} \cdot \left(-q \cdot \frac{L^2}{4} \cdot x^2 - V_B \cdot L \cdot \frac{x^2}{2} + H_B \cdot \frac{x^3}{3} \right) \Big|_0^L = \frac{q \cdot \frac{L^4}{4} - V_B \cdot \frac{L^3}{2} + H_B \cdot \frac{L^3}{3}}{E I}$$

$$\frac{\partial \Phi_{2}}{\partial H_{B}} = \frac{1}{E \cdot I} \cdot \int_{0}^{L} M_{2} \cdot \frac{\partial M_{2}}{\partial H_{B}} \cdot dx = 0$$

$$\frac{\partial \Phi}{\partial H_B} = 0 \rightarrow \frac{3 \cdot q \cdot L^4 - 6 \cdot V_B \cdot L^3 + 4 \cdot H_B \cdot L^3}{12 \cdot E \cdot I} \rightarrow 3 \cdot q \cdot L - 6 \cdot V_B + 4 \cdot H_B = 0$$

$$\frac{\partial \Phi}{\partial V_{B}} = \frac{\partial \Phi_{1}}{\partial V_{B}} + \frac{\partial \Phi_{2}}{\partial V_{B}} = 0$$

$$\frac{\partial \Phi_{_{1}}}{\partial V_{_{B}}} = \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} M_{_{1}} \cdot \frac{\partial M_{_{1}}}{\partial V_{_{B}}} \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L - H_{_{B}} \cdot x \) \cdot L \cdot dx \ = \ \frac{1}{E \cdot I} \cdot \int_{_{0}}^{L} (-q \cdot \frac{L^{2}}{2} + V_{_{B}} \cdot L -$$

$$\frac{1}{E \cdot I} \left(-q \cdot \frac{L^{3}}{2} \cdot x + V_{B} \cdot L^{2} \cdot x - H_{B} \cdot L \cdot \frac{x^{2}}{2} \right) \Big|_{0}^{L} = \frac{-q \cdot \frac{L^{4}}{2} + V_{B} \cdot L^{3} - H_{B} \cdot \frac{L^{3}}{2}}{E \cdot I}$$

$$\begin{split} \frac{\partial \Phi_2}{\partial V_B} = & \frac{1}{E \cdot I} \cdot \int_0^L M_2 \cdot \frac{\partial M_2}{\partial V_B} \cdot dx = \frac{1}{E \cdot I} \cdot \int_0^L (-q \cdot \frac{x^2}{2} + V_B \cdot x) \cdot x \cdot dx = \frac{1}{E \cdot I} \left(-q \cdot \frac{x^4}{8} + V_B \cdot \frac{x^3}{3} \right) \bigg|_0^L \\ = & -\frac{q \cdot L^4}{8 \cdot E \cdot I} + \frac{V_B \cdot L^3}{3 \cdot E \cdot I} \end{split}$$

$$\frac{\partial \Phi}{\partial V_{B}} = 0 \rightarrow \frac{-q \frac{L^{4}}{2} + V_{B} \cdot L^{3} - H_{B} \cdot \frac{L^{3}}{3}}{EI} - \frac{q L^{4}}{8EI} + \frac{V_{B} \cdot L^{3}}{3EI} = 0$$

Simplificando queda:

$$-12\cdot q\cdot L - 12\cdot H_B + 24\cdot V_B - 3\cdot q\cdot L + 8\cdot V_B = 0$$

reuniendo términos:

$$-15 \cdot q \cdot L - 12 \cdot H_B + 32 \cdot V_B = 0$$

Así las ecuaciones son:

$$3 \cdot q \cdot L - 6 \cdot V_B + 4 \cdot H_B = 0$$

$$-15 \cdot q \cdot L - 12 \cdot H_B + 32 \cdot V_B = 0$$

cuyo resultado es:
$$H_B = \frac{-39 \text{ q L}}{28} \text{ y } V_B = \frac{3 \text{ q L}}{7}$$

El otro método que se emplea es el de las fuerzas. En la figura 13.3b1 se muestran las acciones de la estructura y en la 13.3b2 la descomposición para la aplicación del método.

En este caso las ecuaciones canónicas son:

$$\delta_{11} \cdot X_1 + \delta_{12} \cdot X_2 + \Delta_1 q = 0$$

$$\delta_{21}{\cdot}X_1+\delta_{22}{\cdot}X_2+\Delta_2q=0$$

Se determinan ahora los diagramas de momentos flectores para el método:

$$\begin{split} \text{Barra 1} &\to M_{z1} = -x \leftrightarrow M_{z2} = L \leftrightarrow M_{zq} = -q \frac{L^2}{2} \\ \text{Barra 2} &\to M_{z1} = 0 \leftrightarrow M_{z2} = x \leftrightarrow M_{zq} = -q \frac{x^2}{2} \\ \delta_{11} &= \int_s \frac{M_{z1} \cdot M_{z1}}{\text{EI}} \cdot dx = \int_0^L \frac{x^2}{\text{EI}} \cdot dx + 0 = \frac{L^3}{3 \, \text{EI}} \\ \delta_{12} &= \int_s \frac{M_{z1} \cdot M_{z2}}{\text{E:I}} \cdot dx = \int_0^L \frac{(-x) \cdot L}{\text{E:I}} \cdot dx + 0 = \frac{-L^3}{2 \cdot \text{E:I}} = \delta_{21} \\ \delta_{22} &= \int_s \frac{M_{z2} \cdot M_{z2}}{\text{E:I}} \cdot dx = \int_0^L \frac{L^2}{\text{E:I}} \cdot dx + \int_0^L \frac{x^2}{\text{E:I}} \cdot dx = \frac{L^3 + \frac{L^3}{3}}{\text{E:I}} = \frac{4 \cdot L^3}{3 \cdot \text{E:I}} \\ \delta_{1q} &= \int_s \frac{M_{z1} \cdot M_{zq}}{\text{E:I}} \cdot dx = \int_0^L \frac{(-x) \cdot (-q \cdot L^2/2)}{\text{E:I}} \cdot dx = \frac{q \cdot L^2 \cdot (x^2/2)_0^L}{2 \cdot \text{E:I}} = \frac{q \cdot L^4}{4 \cdot \text{E:I}} \end{split}$$

 $\Delta_{2q} = \int_{0}^{L} \frac{M_{z2} \cdot M_{zq}}{E \cdot L} \cdot dx = \int_{0}^{L} \frac{L \cdot (-q \cdot L^{2}/2)}{E \cdot L} \cdot dx + \int_{0}^{L} \frac{x \cdot (-q \cdot L^{2}/2)}{E \cdot L} \cdot dx = -\frac{q \cdot L^{4}}{2 \cdot E \cdot L} - \frac{q \cdot (x^{4}/4)^{L}}{2 \cdot E \cdot L} = \frac{-5 \cdot q \cdot L^{4}}{2 \cdot E \cdot L}$

Sustituyendo:

$$1^{\circ}. \to \frac{L^{3}}{3 \cdot E \cdot I} \cdot X_{1} - \frac{L^{3}}{2 \cdot E \cdot I} \cdot X_{2} + \frac{q \cdot L^{4}}{4 \cdot E \cdot I} = 0 \to 4 \cdot X_{1} - 6 \cdot X_{2} + 3 \cdot q \cdot L = 0$$

$$2^{\circ}. \to -\frac{L^{3}}{2 \cdot E \cdot I} \cdot X_{1} + \frac{4 \cdot L^{3}}{3 \cdot E \cdot I} \cdot X_{2} - \frac{5 \cdot q \cdot L^{4}}{8 \cdot E \cdot I} = 0 \to -12 \cdot X_{1} + 32 \cdot X_{2} - 15 \cdot q \cdot L = 0$$

que son las mismas ecuaciones que se obtuvieron, si $X_1 = H_B = \frac{-39 \cdot q \cdot L}{28}$ y $X_2 = V_B = \frac{3 \cdot q \cdot L}{7}$ quedando comprobada la solución obtenida.

b) Para el diseño resistente se desprecian los esfuerzos cortantes frente a los momentos flectores y los esfuerzos normales.

Empezando por los momentos flectores se vio que valían:

$$M_{1} = -q \cdot \frac{L^{2}}{2} + V_{B} \cdot L - H_{B} \cdot x = q \cdot L \cdot \left(-\frac{L}{14} + \frac{39}{28} \cdot x \right)$$

$$M_{2} = -q \cdot \frac{x^{2}}{2} + V_{B} \cdot x = q \cdot \left(-\frac{x^{2}}{2} + \frac{3}{7} \cdot L \cdot x \right)$$

para la barra 1 es una línea recta y para la barra 2 un polinomio de grado dos que tiene un máximo en $x=\sqrt[3]{r}\cdot L$ y cuyo valor es $M_{máx}=\sqrt[9]{s}\cdot q\cdot L^2$.

Se pueden representar los diagramas de momentos para el pórtico como muestra la figura 13.3c.

Figura 13.3c

Para el diseño resistente también es necesario determinar los esfuerzos normales. En la barra 1 el esfuerzo normal $N_1 = -V_A = -(q \cdot L - V_B) = -\frac{4}{7} \cdot q \cdot L$, está a compresión. En la barra 2 vale $N_2 = H_B = -\frac{39}{28} \cdot q \cdot L$.

El diseño resistente implica que: $\sigma^* \leq \sigma_{ADM}$. La tensión ponderada vale: $\sigma^* = \frac{N^*}{\Omega} \cdot \omega + \frac{M^*}{W}$. Para una primera aproximación se hace $\sigma^* \approx \frac{M^*}{W} \to W \geq \frac{M^*}{\sigma_{ADM}}$.

Para la barra $1 \to M^* = M_{m\acute{a}x} = \sqrt[37]{28} \cdot q \cdot L^2 \approx 9910715 \text{ kp·cm}$. Se debe notar que la carga q ya está ponderada por lo que no se ha incluido ningún coeficiente de ponderación. Esto supone que $W \ge \frac{9910715}{3600} \approx 2753 \text{ cm}^3$. Para el que se necesita un IPE 600. Si se estima con la fórmula completa y para un valor de $\beta = 0.7$ en ambos planos al considerar que en el extremo superior de la barra 1 el giro no está del todo restringido. Con estas consideraciones se inspecciona y se ve que para el perfil IPE 600 con $\Omega = 155 \text{ cm}^2$, $W_x = 3070 \text{ cm}^3$ e $i_{min} = 4.66 \text{ cm}$, supone que $\lambda = \frac{\beta \cdot L}{i_{min}} = \frac{0.7 \cdot 500}{4.66} = 76$

$$\sigma^* = \frac{8572}{155} \cdot 1,72 + \frac{9910715}{3070} = 3324 \text{ kp/cm}^2$$

 $\rightarrow \omega(76) = 1,72 \text{ y entonces como N}_1 = -8572 \text{ kp}$:

que es válido.

Para la barra 2, $M^* = M_{m\acute{a}x} = \%_8 \cdot q \cdot L^2 \approx 688776$ kp·cm. Esto supone que $W \ge \frac{688776}{3600} \approx 192$ cm³. Para el que se necesita un IPE 200. Sin embargo, si se estima

con la fórmula completa y para un valor de $\beta=1$ en ambos planos considerando el extremo izquierdo que el giro no está del todo restringido. Con estas consideraciones se inspecciona y se ve que se necesita un perfil IPE 300 con $\Omega=53.8~\text{cm}^2$, $W_x=557~\text{cm}^3$ e

i_{min} = 3,35 cm. Esto supone que
$$\lambda = \frac{\beta \cdot L}{i_{min}} = \frac{1.500}{3,35} = 150 \rightarrow \omega(150) = 5,35$$
 y entonces como N₂ = -20893 kp:

$$\sigma^* = \frac{20893}{53.8} \cdot 5.35 + \frac{688776}{557} = 3314 \text{ kp/cm}^2$$

que es válido.

- 4.- Dada la estructura de la figura 13.4a se pide:
- a) Obtener las reacciones, son datos q de presión, L, I. P = q·L
- b) Diseñar las vigas a resistencia con perfil IPE si $q=2\,t/m\,y\,L=8\,m$. Se considerará que las cargas corresponden a una hipótesis crítica de cálculo estando ya ponderadas. Se utilizará un acero A-42.

a) La estructura es hiperestática de grado 1. El GH = GHE + GHI = GHE = Reacciones – Ecuaciones = 4-3=1.

Se va a resolver por dos métodos distintos. En primer lugar se aplicará el teorema de Menabrea y luego se comprobará por el método de las fuerzas.

Por Menabrea:

$$\frac{\partial \Phi}{\partial X_i} = 0$$

siendo X_i las incógnitas hiperestáticas. La contribución de los esfuerzos normales y cortantes en la ecuación es despreciable frente a la de los momentos flectores. Por tanto, se puede expresar la ecuación anterior de forma simplificada:

$$\frac{\partial \Phi}{\partial X_i} = \frac{1}{EI} \int M \frac{\partial M}{\partial X_i} ds$$

Las ecuaciones de la estática:

$$\sum F_x = 0 \rightarrow H_A + P = 0 \rightarrow H_A = -P = -q \cdot L$$

$$\sum F_v = 0 \rightarrow V_A + V_D = q \cdot L$$

$$\sum M_{A} = 0 \to M_{A} - q \cdot \frac{L^{2}}{2} + V_{D} \cdot L - P \cdot \frac{L}{4} = 0 \to M_{A} = q \cdot \frac{3L^{2}}{4} - V_{D} \cdot L$$

Tomando V_D como incógnita hiperestática se obtienen los momentos flectores según las figura 13.4a2 cuyos valores son:

Pilar 1:

$$0 < x < L/4$$
: $M_1 = -M_A - H_A \cdot x = -q \cdot \frac{3L^2}{4} + V_D \cdot L + q \cdot L \cdot x$

$$L/4 < x < L/2$$
: $M_2 = -M_A - H_A \cdot x - P \cdot (x - L/4) = -q \cdot \frac{L^2}{2} + V_D \cdot L$

Dintel 2:

$$0 < x < L$$
: $M = -q \cdot \frac{x^2}{2} + V_D \cdot x$

Pilar 3: Los momentos flectores son nulos. No se representa el corte en la figura 13.4a2.

Se debe verificar que $\frac{\partial \Phi}{\partial V_D} = 0$

$$\frac{\partial \Phi}{\partial V_{D}} = \frac{\partial \Phi_{1}}{\partial V_{D}} + \frac{\partial \Phi_{2}}{\partial V_{D}} + \frac{\partial \Phi_{3}}{\partial V_{D}} = 0$$

$$\frac{\partial \Phi_{1}}{\partial V_{D}} = \frac{1}{E \cdot I} \cdot \left(\int_{0}^{L/4} M_{1} \cdot \frac{\partial M_{1}}{\partial V_{D}} \cdot dx + \cdot \int_{L/4}^{L/2} M_{2} \cdot \frac{\partial M_{2}}{\partial V_{D}} \cdot dx \right) = \frac{1}{E \cdot I} \cdot \left(\int_{0}^{L/4} (V_{D} \cdot L - q \cdot \frac{3 \cdot L^{2}}{4} + q \cdot L \cdot x) \cdot L \cdot dx \right)$$

$$\frac{1}{E \cdot I} \cdot \left(\int_{L/4}^{L/2} (V_D \cdot L - q \cdot \frac{L^2}{2}) \cdot L \cdot dx = \frac{1}{E \cdot I} \cdot \left(V_D \cdot L^2 \cdot x - q \cdot \frac{3 \cdot L^3}{4} \cdot x + q \cdot L^2 \cdot \frac{x^2}{2} \right) \Big|_0^{L/4} + \frac{1}{E \cdot I} \left(V_D \cdot L^2 \cdot x - q \cdot \frac{L^3}{2} \cdot x \right) \Big|_{L/4}^{L/2} = \frac{L^2}{2 \cdot E \cdot I} \left(V_D - \frac{9 \cdot q \cdot L}{16} \right)$$

$$\frac{\partial \Phi_{2}}{\partial V_{D}} = \frac{1}{E \frac{1}{2}} \int_{0}^{L} M_{2} \cdot \frac{\partial M_{2}}{\partial V_{D}} \cdot dx = \frac{1}{E \cdot \frac{1}{2}} \cdot \int_{0}^{L} (-q \cdot \frac{x^{2}}{2} + V_{D} \cdot x) \cdot x \cdot dx = \frac{1}{E \cdot \frac{1}{2}} \cdot (-q \cdot \frac{x^{4}}{8} + V_{D} \cdot \frac{x^{3}}{3}) \Big|_{0}^{L}$$

$$= \frac{L^{3}}{12 E I} (8 V_{D} - 3 q L)$$

$$\frac{\partial \mathbf{V}^{\mathrm{D}}}{\partial \mathbf{\Phi}^{3}} = 0$$

$$\frac{\partial \Phi}{\partial V_{D}} = 0 \rightarrow \frac{L^{2}}{2 E I} (V_{D} - \frac{9 q L}{16}) + \frac{L^{3}}{12 E I} (8 V_{D} - 3 q L) = 0$$

Despejando queda:
$$V_D = \frac{51 \text{ q L}}{112}$$

El otro método que se emplea es el de las fuerzas. En la figura 13.4b1 se muestran las acciones de la estructura y en la 13.4b2 la descomposición para la aplicación del método.

En este caso sólo hay una ecuación canónica que es:

$$\delta_{11} \cdot X_1 + \Delta_{1P} + \Delta_{1} q = 0$$

Se determinan ahora los diagramas de momentos flectores para el método:

Barra 1:

En
$$0 < x < L$$
: $M_{z1} = -L$; En $0 < x < L/4$: $M_{zP} = -P \cdot x = -q \cdot L \cdot x$; En $0 < x < L$: $M_{zq} = -q \frac{L^2}{2}$

Barra 2:

En
$$0 < x < L$$
: $M_{z1} = x$; En $0 < x < L/4$: $M_{zP} = 0$; En $0 < x < L$: $M_{zq} = -q \frac{x^2}{2}$

Barra 3:

En 0 < x < L: $M_{z1} = 0$; En 0 < x < L/4: $M_{zP} = 0$; En 0 < x < L: $M_{zq} = 0$

$$\delta_{11} = \int_{s} \frac{M_{z1} \cdot M_{z1}}{E \cdot I} \cdot dx = \int_{0}^{L} \frac{L^{2}}{E \cdot I} \cdot dx + \int_{0}^{L} \frac{x^{2}}{E \cdot I/2} \cdot dx = \frac{L^{2} \cdot (x) \Big|_{0}^{L/2} + 2 \cdot (x^{3}/3) \Big|_{0}^{L}}{E \cdot I} = \frac{7 \cdot L^{3}}{6 \cdot E \cdot I}$$

$$\Delta_{1P} = \int_{s} \frac{M_{z1} \cdot M_{zP}}{F \cdot I} \cdot dx = \int_{0}^{L} \frac{L \cdot (-q \cdot L \cdot x)}{F \cdot I} \cdot dx = \frac{-q \cdot L^{2} \cdot (x^{2}/2) \Big|_{0}^{L/4}}{F \cdot I} = \frac{-q \cdot L^{4}}{32 \cdot F \cdot I}$$

$$\Delta_{1q} = \int_{s} \frac{M_{z1} \cdot M_{zq}}{E \cdot I} \cdot dx = \int_{0}^{L/2} \frac{L \cdot (-q \cdot L^{2}/2)}{E \cdot I} \cdot dx + \int_{0}^{L} \frac{x \cdot (-q \cdot x^{2}/2)}{E \cdot I/2} \cdot dx = -\frac{q \cdot L^{4}}{4 \cdot E \cdot I} - \frac{q \cdot (x^{4}/4)_{0}^{L}}{E \cdot I} = \frac{-q \cdot L^{4}}{2 \cdot E \cdot I}$$

Sustituyendo:

$$\frac{7L^3}{6EI}X_1 - \frac{qL^4}{32EI} - \frac{qL^4}{2EI} = 0 \rightarrow X_1 = V_D = \frac{51 \cdot q \cdot L}{112}$$

quedando comprobada la solución obtenida.

b) Para el diseño resistente se desprecian los esfuerzos cortantes frente a los momentos flectores y los esfuerzos normales.

Empezando por los momentos flectores se vio que valían:

Pilar 1:

$$0 < x < L/4$$
: $\rightarrow M_1 = V_D \cdot L - q \cdot \frac{3L^2}{4} + q \cdot L \cdot x = -q \cdot \frac{33L^2}{112} + q \cdot L \cdot x$

$$L/4 < x < L/2$$
: $\rightarrow M_2 = V_D \cdot L - q \cdot \frac{L^2}{2} = -\frac{5 q L^2}{112}$

Dintel 2:

$$0 < x < L$$
: $\rightarrow M = V_D \cdot x - q \cdot \frac{x^2}{2} = \frac{51 \cdot q \cdot L}{112} \cdot x - q \cdot \frac{x^2}{2}$

en $x = 0 \rightarrow M = 0$, en $x = L \rightarrow M = -\frac{5 q L^2}{112} \approx 0.045 \cdot q \cdot L$. Se calculan los extremos con

 $\frac{dM}{dx}$ =0 \rightarrow hay un extremo en $x \approx 0,46\cdot L$, si se hace $\frac{d^2M}{dx^2}$ <0 \rightarrow es un máximo. Su valor es $M \approx 0,1058\cdot q\cdot L$.

Se pueden representar los diagramas de momentos para el pórtico como muestra la figura 13.4c.

Figura 13.4c

Para el diseño resistente también es necesario determinar los esfuerzos normales. En la barra 1 el esfuerzo normal $N_1 = -V_A = -(q \cdot L - V_D) = -\frac{5}{112} \cdot q \cdot L$, está a compresión. En la barra 2 vale $N_2 = 0$. En la 3 el esfuerzo normal vale $N_3 = -V_D = -\frac{51}{112} \cdot q \cdot L$.

El diseño resistente implica que: $\sigma^* \leq \sigma_{ADM}$. La tensión ponderada vale: $\sigma^* = \frac{N^*}{\Omega} \cdot \omega + \frac{M^*}{W}$. Para una primera aproximación se hace $\sigma^* \approx \frac{M^*}{W} \to W \geq \frac{M^*}{\sigma_{ADM}}$.

Para el pilar $1 \to M^* = M_{m\acute{a}x} = {}^{33}\!\!/_{112} \cdot q \cdot L^2 \approx 3772000 \text{ kp·cm}$. Se debe notar que la carga q ya está ponderada por lo que no se ha incluido ningún coeficiente de ponderación. Esto supone que $W \ge \frac{9910715}{2600} \approx 1451 \text{ cm}^3$. Para el que se necesita un IPE 450. Si se estima con la fórmula completa y para un valor de $\beta = 0.7$ en ambos planos al considerar que en el extremo superior de la barra 1 el giro no está del todo restringido. Con estas consideraciones se inspecciona y se ve que para el perfil IPE 450 con $\Omega = 98.8 \text{ cm}^2$, $W_x = 1500 \text{ cm}^3 \text{ e i}_{min} = 4.12 \text{ cm}$ ya que puede pandear en cualquier dirección, supone que $\lambda = \frac{\beta L}{i_{min}} = \frac{0.77400}{4.12} = 68 \to \omega(68) = 1.31 \text{ y entonces como N}_1 = 714 \text{ kp}$:

$$\sigma^* = \frac{714}{98.8} 1{,}31 + \frac{3772000}{1500} = 2525 \text{ kp/cm}^2$$

que es válido.

Para el dintel 2, $M^* = M_{m\acute{a}x} = 0,1058 \cdot q \cdot L^2 \approx 1354240 \text{ kp} \cdot \text{cm}$. Esto supone que $W \ge \frac{1354240}{2600} \approx 521 \text{ cm}^3$. Para el que se necesita un IPE 300, $W_x = 557$ que es válido.

El pilar 3 solo trabaja a compresión. $N_3 = -\frac{51}{112} \cdot q \cdot L = -7,29 \text{ t. Ahora } \sigma^* = \frac{N^*}{\Omega} \omega$.

La norma estima que $\lambda \le 200$ para elementos principales. Dado que el apoyo es articulado se asume $\beta = 1$ en ambos planos al considerar que en el extremo superior de la barra 1 el giro no está del todo restringido. Haciendo $\lambda = \frac{\beta L}{i_{min}} = \frac{400}{i_{min}} = 200 \rightarrow i_{mín} = \frac{1}{200}$

2. Se toma un perfil IPE 180 con Ω = 23,9 cm² e i_{min} = 2,05 cm, supone que λ = 196 y $\omega(196)$ = 6,53, así:

$$\sigma^* = \frac{7290}{23.9} 6,53 = 1992 \text{ kp/cm}^2$$

que es válido.

- 5.- Dada la estructura de la figura 13.5a se pide utilizando los teoremas energéticos:
- a) Obtener las reacciones.
- b) Determinar el desplazamiento horizontal de B.

Datos: q de presión, F, P en medio del dintel, E, I y L.

a) La estructura es hiperestática de grado 1. Se va a resolver por el teorema de Menabrea.

Por Menabrea:

$$\frac{\partial \Phi}{\partial X_i} = 0$$

siendo X_i las incógnitas hiperestáticas. La contribución de los esfuerzos normales y cortantes en la ecuación es despreciable frente a la de los momentos flectores. Por tanto, se puede expresar la ecuación anterior de forma simplificada:

$$\frac{\partial \Phi}{\partial X_i} = \frac{1}{E \cdot I} \cdot \int M \cdot \frac{\partial M}{\partial X_i} \cdot ds$$

Las ecuaciones de la estática:

$$\sum F_x = 0 \ \rightarrow H_A + H_B = \text{-} \ q \cdot L - F \rightarrow H_A = \text{-} \ q \cdot L - F \text{-} \ H_B$$

$$\sum F_y = 0 \rightarrow V_A + V_B = P$$

$$\sum M_A = 0 \rightarrow q \cdot \frac{L^2}{2} + F \cdot L + P \cdot L - V_B \cdot 2 \cdot L = 0$$

Tomando H_B como incógnita hiperestática se obtienen los momentos flectores según las figuras 13.5a2 cuyos valores son:

Barra 1:

$$0 < x < L \qquad \qquad \rightarrow M_1 = - \; H_A \cdot x - q \cdot \frac{x^2}{2} = (q \cdot L + F + H_B) \cdot x - q \cdot \frac{x^2}{2}$$

Barra 2:

$$0 < x < L \\ \hspace*{2cm} \rightarrow M_2{}^a = V_B \cdot x + H_B \cdot (x \cdot tg\alpha + \sqrt[3]{\epsilon} \cdot L) = V_B \cdot x + H_B \cdot (x/8 + \sqrt[3]{\epsilon} \cdot L)$$

$$L < x < 2 \cdot L \qquad \rightarrow M_2^b = V_B \cdot x + H_B \cdot (x \cdot tg\alpha + \frac{3}{4} \cdot L) - P \cdot (x - L) = M_2^a - P \cdot (x - L)$$

Barra 3:

$$0 < x < \frac{3}{4} \cdot L \rightarrow M_3 = H_R \cdot x$$

Aplicando el teorema de Menabrea se debe verificar que $\frac{\partial \Phi}{\partial H_{\scriptscriptstyle B}} = 0$

$$\frac{\partial \Phi}{\partial H_{\rm B}} = \frac{\partial \Phi_{\rm 1}}{\partial H_{\rm B}} + \frac{\partial \Phi_{\rm 2}}{\partial H_{\rm B}} + \frac{\partial \Phi_{\rm 3}}{\partial H_{\rm B}} = 0$$

$$\frac{\partial \Phi_1}{\partial H_B} = \frac{1}{E \cdot I} \cdot \int_0^L M_1 \cdot \frac{\partial M_1}{\partial H_B} \cdot dx = \frac{1}{E \cdot I} \cdot \int_0^L (-H_A \cdot x - \frac{q \cdot x^2}{3}) \cdot x \cdot dx = \frac{1}{E \cdot I} \cdot (-H_A \cdot \frac{x^3}{3} - q \cdot \frac{x^4}{8}) \Big|_0^L$$

$$= \frac{-L^3}{E \cdot I} \cdot (\frac{H_A}{3} + \frac{q \cdot L}{8})$$

$$\frac{\partial \Phi_2}{\partial H_B} = \frac{1}{E \cdot \frac{1}{2}} \left(\int_0^L M_2^a \cdot \frac{\partial M_2^a}{\partial H_B} \cdot dx + \int_L^{2L} M_2^b \cdot \frac{\partial M_2^b}{\partial H_B} \cdot dx \right) =$$

$$\frac{\partial \Phi_{2}}{\partial H_{B}} = \frac{2}{E \cdot I} \cdot \left(\int_{0}^{2L} M_{2}^{a} \cdot \frac{\partial M_{2}^{a}}{\partial H_{B}} \cdot dx - \int_{L}^{2L} P \cdot (x - L) \cdot \frac{\partial M_{2}^{b}}{\partial H_{B}} \cdot dx \right) =$$

$$\frac{\partial M_{2}^{a}}{\partial H_{B}} = \frac{\partial M_{2}^{b}}{\partial H_{B}} = \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right)$$

$$\frac{\partial \Phi_2}{\partial H_B} = \frac{2}{E \cdot I} \cdot \left(\int_0^{2L} \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \right] \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx - \int_L^{2L} P \cdot (x - L) \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right) = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \cdot dx \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot x \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot x \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot x \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot x \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot x \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot x \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot x \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot x \right] = \frac{2}{2} \cdot \left[V_B \cdot x + H_B \cdot$$

$$\frac{\partial \Phi_{2}}{\partial H_{B}} = \frac{2}{E \cdot I} \left\{ V_{B} \cdot \frac{x^{3}}{24} + 3 \cdot V_{B} \cdot L \cdot \frac{x^{2}}{8} + \frac{8}{3} \cdot H_{B} \cdot \left(\frac{x}{8} + \frac{3 \cdot L^{3}}{4} \right) \right\} \Big|_{0}^{2L} - P \cdot \left(\frac{x^{3}}{24} + 3 \cdot L \cdot \frac{x^{2}}{8} - L \cdot \frac{x^{2}}{16} - \frac{3 \cdot L^{2}}{4} \cdot x \right) \Big|_{L}^{2L} = \frac{2}{8} \cdot \left[\frac{x^{2}}{16} - \frac{3 \cdot L^{2}}{16} \cdot \frac{x^{2}}{16} - \frac{3 \cdot L^{2}}{16} \cdot \frac{x^{2}}{16} \right] = \frac{2}{8} \cdot \left[\frac{x^{2}}{16} - \frac{x^{2}}{16} \cdot \frac{x^{2}}{16} - \frac{x^{2}}{1$$

$$= \frac{L^3}{3 \cdot F \cdot I} \cdot (11 \cdot V_B + 16 \cdot H_B + \frac{23 \cdot P}{8})$$

$$\frac{\partial \Phi_{3}}{\partial H_{B}} = \frac{1}{E \cdot I} \cdot \int_{0}^{3L/4} M_{3} \cdot \frac{\partial M_{3}}{\partial H_{B}} \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{3L/4} (H_{B} \cdot x) \cdot x \cdot dx = \frac{1}{E \cdot I} \cdot (H_{B} \cdot \frac{x^{3}}{3}) \Big|_{0}^{3L/4} = \frac{9 \cdot H_{A} \cdot L^{3}}{64 \cdot E \cdot I}$$

Así:

$$\frac{\partial \Phi}{\partial H_B} = \frac{\partial \Phi_1}{\partial H_B} + \frac{\partial \Phi_2}{\partial H_B} + \frac{\partial \Phi_3}{\partial H_B} = 0 \rightarrow$$

$$\frac{-L^{3}}{E \cdot I} \cdot (\frac{H_{A}}{3} + \frac{q \cdot L}{8}) + \frac{L^{3}}{3 \cdot E \cdot I} \cdot (11 \cdot V_{B} + 16 \cdot H_{B} + \frac{23 \cdot P}{8}) + \frac{9 \cdot H_{A} \cdot L^{3}}{64 \cdot E \cdot I} = 0$$

Sustituyendo y operando se obtiene:

$$H_{B} = \frac{-216 \cdot q \cdot L - 416 \cdot F - 536 \cdot P}{1115}$$

b) Para determinar el desplazamiento horizontal de B se aplicará el teorema de Castigliano. Como en B está aplicada la fuerza horizontal F basta hacer:

$$\delta_{\scriptscriptstyle B}^{\scriptscriptstyle X} = \frac{\partial \Phi}{\partial F} = \frac{\partial \Phi_{\scriptscriptstyle 1}}{\partial F} + \frac{\partial \Phi_{\scriptscriptstyle 2}}{\partial F} + \frac{\partial \Phi_{\scriptscriptstyle 3}}{\partial F}$$

$$\frac{\partial \Phi_1}{\partial F} = \frac{1}{F \cdot I} \cdot \int_0^L M_1 \cdot \frac{\partial M_1}{\partial F} \cdot dx$$

$$M_1 = (q \cdot L + F + H_B) \cdot x - q \cdot \frac{x^2}{2} = \frac{899}{1115} \cdot q \cdot L \cdot x + \frac{699}{1115} \cdot F \cdot x - \frac{536}{1115} \cdot P \cdot x - q \cdot \frac{x^2}{2}$$

$$\frac{\partial M_1}{\partial F} = \frac{699}{1115} \cdot x$$

$$\begin{split} &\frac{\partial \Phi_1}{\partial F} = \frac{1}{E \cdot I} \int_0^L (\frac{899}{1115} \cdot q \cdot L \cdot x + \frac{699}{1115} \cdot F \cdot x - \frac{536}{1115} \cdot P \cdot x) - q \cdot \frac{x^2}{2}) \cdot \frac{699}{1115} \cdot x \cdot dx \\ &= \frac{699}{EI} \left\{ (\frac{899}{1115^2} \cdot q \cdot L + \frac{699}{1115^2} \cdot F - \frac{536}{1115^2} \cdot P) \cdot \frac{x^3}{3} - q \cdot \frac{x^4}{8920} \right\}_0^L \rightarrow \text{operando:} \\ &\frac{\partial \Phi_1}{\partial F} = \frac{L^3}{E \cdot I} \cdot (0,0901235 \cdot q \cdot L + 0,1310036 \cdot F - 0,1004548 \cdot P) \\ &\frac{\partial \Phi_2}{\partial F} = \frac{1}{E \cdot \frac{1}{2}} \cdot \left(\int_0^L M_2^a \cdot \frac{\partial M_2^a}{\partial F} \cdot dx + \int_L^{2L} M_2^b \cdot \frac{\partial M_2^b}{\partial F} \cdot dx \right) = \\ &\frac{\partial \Phi_2}{\partial F} = \frac{2}{E \cdot I} \cdot \left(\int_0^{2L} M_2^a \cdot \frac{\partial M_2^a}{\partial F} \cdot dx - \int_L^{2L} P \cdot (x - L) \cdot \frac{\partial M_2^b}{\partial F} \cdot dx \right) = \\ &M_2^a = V_B \cdot x + H_B \cdot \left(\frac{1}{8} \cdot x + \frac{3}{4} \cdot L \right) \leftrightarrow M_2^b = M_2^a - P \cdot (x - L) \\ &\frac{\partial M_2^a}{\partial F} = \frac{\partial M_2^b}{\partial F} = \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \\ &\frac{\partial \Phi_2}{\partial F} = \frac{2}{E \cdot I} \cdot \left(\int_0^{2L} \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \right] \cdot \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx - \int_L^{2L} P \cdot (x - L) \cdot \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx \right) = \\ &\frac{\partial \Phi_2}{\partial F} = \frac{2}{E \cdot I} \cdot \left(\int_0^{2L} \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \right] \cdot \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx - \int_L^{2L} P \cdot (x - L) \cdot \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx \right) = \\ &\frac{\partial \Phi_2}{\partial F} = \frac{2}{E \cdot I} \cdot \left(\int_0^{2L} \left[V_B \cdot x + H_B \cdot \left(\frac{x}{8} + \frac{3 \cdot L}{4} \right) \right] \cdot \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx - \int_L^{2L} P \cdot (x - L) \cdot \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx \right) = \\ &\frac{\partial \Phi_2}{\partial F} = \frac{2}{E \cdot I} \cdot \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx - \int_L^{2L} P \cdot (x - L) \cdot \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx \right) = \\ &\frac{\partial \Phi_2}{\partial F} = \frac{2}{E \cdot I} \cdot \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx - \int_L^{2L} P \cdot (x - L) \cdot \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx \right) = \\ &\frac{\partial \Phi_2}{\partial F} = \frac{2}{E \cdot I} \cdot \left(\frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx - \frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx - \frac{4044 \cdot x - 2496 \cdot L}{8920} \cdot dx - \frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx - \frac{4044 \cdot x - 2496 \cdot L}{8920} \cdot dx - \frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx - \frac{4044 \cdot x - 2496 \cdot L}{8920} \cdot dx - \frac{4044 \cdot x - 2496 \cdot L}{8920} \right) \cdot dx - \frac{4044 \cdot x$$

$$\frac{1}{4460 \cdot E \cdot I} \cdot (\int_{0}^{2L} \left[4044 \cdot V_{B} \cdot x^{2} - 2496 \cdot V_{B} \cdot x \cdot L + 505, 5 \cdot H_{B} \cdot x^{2} - 312 \cdot H_{B} \cdot x \cdot L + 3033 \cdot H_{B} \cdot L \cdot x - 1872 \cdot H_{B} \cdot L^{2} \right] dx + 20 \cdot I_{B} \cdot I_$$

$$\frac{1}{4460 \cdot E \cdot I} \cdot (-P \cdot \int_{L}^{2L} (4044 \cdot x^{2} - 2496 \cdot x \cdot L - 4044 \cdot x \cdot L + 2496 \cdot L^{2}) \cdot dx =$$

$$\frac{1}{4460 \cdot \text{E} \cdot \text{I}} \cdot \left\{ V_{\text{B}} \cdot \frac{4044 \cdot x^{3}}{3} - 2496 \cdot V_{\text{B}} \cdot L \cdot \frac{x^{2}}{2} + 505, 5 \cdot H_{\text{B}} \cdot \frac{x^{3}}{3} - 312 \cdot H_{\text{B}} \cdot L \cdot \frac{x^{2}}{2} + 3033 \cdot H_{\text{B}} \cdot L \cdot \frac{x^{2}}{2} - 1872 \cdot H_{\text{B}} \cdot L^{2} \cdot x \right\} \Big|_{0}^{2L} + \frac{P}{4460 \cdot \text{E} \cdot \text{I}} \cdot \left(\frac{4044 \cdot x^{3}}{3} - 6540 \cdot L \cdot \frac{x^{2}}{2} + 2496 \cdot L^{2} \cdot x \right) \Big|_{L}^{2L} \rightarrow \text{operando se obtione:}$$

$$\frac{\partial \Phi_2}{\partial F} = \frac{L^3}{E \cdot I} \cdot (0.1923593 \cdot q \cdot L + 0.394519 \cdot F - 0.154768 \cdot P)$$

$$\frac{\partial \Phi_{3}}{\partial F} = \frac{1}{E \cdot I} \cdot \int_{0}^{3L/4} M_{3} \cdot \frac{\partial M_{3}}{\partial F} \cdot dx = \frac{1}{E \cdot I} \cdot \int_{0}^{3L/4} (H_{B} \cdot x) \cdot (\frac{-416 \cdot x}{1115}) \cdot dx = \frac{-416}{1115 \cdot E \cdot I} \cdot (H_{B} \cdot \frac{x^{3}}{3}) \Big|_{0}^{3L/4}$$

siendo $M_3 = H_B \cdot x \rightarrow \frac{\partial M_3}{\partial F} = \frac{-416 \cdot x}{1115}$. Si se opera y sustituyen los valores se obtiene:

$$\frac{\partial \Phi_3}{\partial F} = \frac{L^3}{F \cdot I} \cdot (0.0101638 \cdot q \cdot L + 0.0195748 \cdot F + 0.0252215 \cdot P)$$

Así el desplazamiento vale:

$$\delta_{\scriptscriptstyle B}^{\scriptscriptstyle X} = \frac{\partial \Phi}{\partial F} = \frac{\partial \Phi_{\scriptscriptstyle 1}}{\partial F} + \frac{\partial \Phi_{\scriptscriptstyle 2}}{\partial F} + \frac{\partial \Phi_{\scriptscriptstyle 3}}{\partial F} = \frac{L^{\scriptscriptstyle 3}}{E \cdot I} \cdot \{0,0901235 \cdot q \cdot L + 0,1310036 \cdot F - 0,1004548 \cdot P + 0,1004548$$

$$\begin{split} &0,\!1923593\cdot q\cdot L + 0,\!394519\cdot F - 0,\!154768\cdot P + 0,\!0101638\cdot q\cdot L + 0,\!0195748\cdot F + 0,\!0252215\cdot P \} \\ &= \frac{L^3}{E\cdot I} \cdot \{0,\!2926466\cdot q\cdot L + 0,\!5450974\cdot F - 0,\!2300013\cdot P \} \end{split}$$

En este ejercicio se ve la laboriosidad del método.

CAPÍTULO VI Análisis de la Torsión

LECCIÓN 14

Análisis de la torsión en problemas elementales

Introducción: En esta lección se estudia el problema de torsión especialmente en el caso de ejes y arboles o ejes de potencia. Se pretende familiarizar al estudiante con este tipo de esfuerzos y las tensiones que produce, para que pueda abordar con garantías problema real. Sin embargo, se debe considerar que en este tipo de elementos de máquinas aparecen esfuerzos y efectos dinámicos, que no son objeto de este curso. Así, los problemas que se plantean están dentro del diseño estático aunque algunos de los coeficientes que se den para los diseños emulen a los que se obtienen cuando se consideran dichos efectos dinámicos. En cuanto al diseño se hará exclusivamente resistente, aunque se determinarán en algunos casos los desplazamientos importantes, como los de flexión, para tener cierta idea de la rigidez los elementos diseñados.

Ampliando un poco sobre el problema dinámico, decir que la dificultad que se plantea es que al girar el árbol las tensiones alternan en las distintas fibras entre valores positivos y negativos de forma que debe tenerse en cuenta en la formulación y además que puede provocar fatiga. No se entra en este tipo de problemas que se estudian en la asignatura de Diseño de Máquinas y parece suficiente para cumplir con los objetivos que se estudien los problemas como estáticos.

El estudio se centra en el diseño de secciones circulares, dada la sencillez del mismo y de la uniformidad de las tensiones cortantes que aparecen.

Sin embargo, no se olvida el estudio de otros tipos de secciones habituales en el diseño estructural.

El diseño está dirigido especialmente al diseño de elementos metálicos.

Objetivos de la lección:

Preparar al estudiante para el diseño de cualquier elemento estructural en que pueda aparecer la torsión.

Contenidos de los problemas:

Diseño resistente de ejes y árboles de sección circular fundamentalmente y algunos ejemplos de cálculo con secciones no circulares.

Problemas resueltos:

Exclusivamente ejercicios referentes a estos contenidos.

Formulación básica:

Fórmulas de las lecciones precedentes

Criterios de signos a torsión

Figura 14.1 Convenio de signos para los momentos torsores.

Tensión cortante en función de la deformación angular

$$\tau = G{\cdot}\gamma$$

Tensión cortante en secciones circulares

$$\tau = \frac{M_{_T}}{I_{_P}} r$$

$$\tau_{\text{max}} = \frac{M_{\text{T}}}{I_{\text{p}}} \cdot R = \frac{M_{\text{T}}}{W_{\text{p}}} \cdot R$$

Potencia transmitida por un árbol

La potencia se expresa como:

 $P_0 = \overrightarrow{F} \cdot \overrightarrow{v}$ cuando el trabajo es lineal

 $P_0 = \overrightarrow{M}_T \cdot \overrightarrow{\omega}$ cuando el trabajo es de giro

$$P_0(C.V) = \frac{F \cdot v}{75} \quad P_0(CV) = \frac{M_T \cdot \omega}{75} \quad P_0(CV) = \frac{M_T \cdot n}{716} (M_T \text{ en kp·m, } \omega \text{ rad/s, n en r.p.m.})$$

El momento torsor:

$$M_{T} = \frac{4500}{2 \cdot \pi \cdot n} P_{0} \text{ [kp·m]} = \frac{225000}{\pi \cdot n} P_{0} \text{ [kp·cm]}$$

Expresión diferencial del potencial interno en torsión pura

$$d\Phi = \frac{dx}{2 \cdot G} \iint_{\Omega} \frac{M_{T}^{2}}{I_{P}^{2}} r^{2} d\Omega = dx \frac{M_{T}^{2}}{2 \cdot G \cdot I_{P}^{2}} \iint_{\Omega} r^{2} \cdot d\Omega = \frac{M_{T}^{2}}{2 \cdot G \cdot I_{P}} dx$$

Expresión diferencial del potencial interno en torsión pura

$$\Phi = \frac{1}{2} \int_0^L \frac{{M_{_T}}^2}{G \cdot I_{_P}} dx$$

Diseño resistente a carga estática. Generalidades

- Normales:
$$\sigma_x = \frac{N}{\Omega} + \frac{M_F}{W}$$
 según el eje del árbol

- Cortantes:
$$\tau_{_{xy}} = \frac{M_{_{T}}}{W_{_{T}}}$$

Como se sabe que para una sección circular de diámetro d se tiene:

$$A = \pi \cdot \frac{d^2}{4}; \qquad W = \frac{\pi \cdot d^3}{32}; \qquad W_T = \frac{\pi \cdot d^3}{16}$$

Las tensiones valen:

$$\sigma_{x} = \frac{32 \cdot M_{F}}{\pi \cdot d^{3}} + \frac{4 \cdot N}{\pi \cdot d^{2}}; \qquad \tau_{xy} = \frac{16 \cdot M_{T}}{\pi \cdot d^{3}}$$

$$\sigma_{\text{CO}} = \sqrt{\sigma_{x}^{2} + 3 \cdot \tau_{xy}^{2}} \le \sigma_{\text{ADM}} = \frac{\sigma_{e}}{n}$$

Sustituyendo:

$$\sigma_{\text{CO}} = \sqrt{\left(\frac{4 \cdot \text{N}}{\pi \cdot \text{d}^2} + \frac{32 \cdot \text{M}_{\text{F}}}{\pi \cdot \text{d}^3}\right)^2 + 3 \cdot \left(\frac{16 \cdot \text{M}_{\text{T}}}{\pi \cdot \text{d}^3}\right)^2} \le \frac{\sigma_{\text{e}}}{n} \quad \text{que se puede escribir como}$$

$$\sigma_{\mathrm{CO}} = \frac{4}{\pi \cdot d^{3}} \cdot \sqrt{\left(d \cdot N + 8 \cdot M_{F}\right)^{2} + 48 \cdot M_{T}^{2}} \leq \frac{\sigma_{e}}{n}$$

Cuando N = 0

$$d \ge \left[\frac{16 \cdot n}{\pi \cdot \sigma_e} \sqrt{4 \cdot M_F^2 + 3 \cdot M_T^2} \right]^{1/3}$$

Figura 14.2 Torsión no circular en secciones no circulares. Barra de sección rectangular

Torsión en secciones rectas no circulares

Figura 14.3 Distintas secciones de barras que soportan torsión

Torsión de una barra rectangular ancha

$$\tau_{\text{max}} = \frac{M_{\text{T}}}{0.333 \cdot b \cdot c^2}$$

$$\theta_1 = \frac{M_T}{0,333 \cdot G \cdot b \cdot c^3}$$

$$\tau_{max} = G{\cdot}c{\cdot}\theta_1$$

Torsión de barras rectangulares, caso general

$$\tau = \frac{M_{_T}}{\alpha_{_1} \cdot b \cdot c^{^2}} \text{ para el punto A}_1, \text{ figura 14.3b)}.$$

$$\tau = \frac{M_T}{\alpha_2 \cdot b \cdot c^2}$$
 para el punto A₂, figura 14.3b).

$$\theta_1 = \frac{M_T}{\beta \cdot G \cdot b \cdot c^3}$$
 radianes por cm de longitud.

Se han calculado los valores de las constantes α_1 , α_2 , β para diversas relaciones b/c, y se muestran en la tabla 14.1.

Tabla 14.1 Constantes para torsión de barras rectangulares													
b/c	1,00	1,20	1,50	1,75	2,00	2,50	3,00	4,00	5,00	6,00	8,00	10,0	8
α_1	0,208	0,219	0,231	0,239	0,246	0,256	0,267	0,282	0,291	0,299	0,307	0,312	0,333
α_2	0,208	0,235	0,269	0,291	0,309	0,336	0,355	0,378	0,392	0,402	0,414	0,421	
β	0,1406	0,166	0,196	0,214	0,229	0,249	0,263	0,281	0,291	0,299	0,307	0,312	0,333

Secciones compuestas

La analogía de la membrana indica que el momento de torsión soportado por una sección transversal compuesta por un número de figuras sencillas unidas es igual a la suma de los momentos torsores de las partes separadas. El ángulo θ_1 es aplicable a cada una de las partes así como a la sección total. Por ello el par total para la sección transversal de la figura 14.4 es igual a la suma de los torsores M_{T1} , M_{T2} , M_{T3} para las partes separadas 1, 2, 3 respectivamente. Por lo tanto:

Momento torsor en la parte 1: $M_{T1} = \theta_1 \cdot G \cdot \beta' \cdot b_1 \cdot c_1^3$

Momento torsor en la parte 2: $M_{T2} = \theta_1 \cdot G \cdot \beta^{"} \cdot b_2 \cdot c_2^3$

Momento torsor en la parte 3: $M_{T3} = \theta_1 \cdot G \cdot \beta''' \cdot b_3 \cdot c_3^3$

Sumando $M_T = \theta_1 \cdot G \ (\beta' \cdot b_1 \cdot c_1^3 + \cdot \beta'' \cdot b_2 \cdot c_2^3 + \cdot \beta''' \cdot b_3 \cdot c_3^3)$

Figura 14.4

Aquí β' , β''' , son los valores de β para las partes 1, 2, 3, respectivamente. Debe observarse que el segundo miembro de la ecuación b) contiene también términos como rectángulos se consideren en la sección transversal en estudio.

El valor máximo de la tensión cortante se produce en la barra de mayor anchura. Supóngase que esta barra es el número 1 de la figura 14.4. Por lo tanto se deduce:

$$\tau_1 = \frac{\mathbf{M}_T}{\alpha_1 \cdot \mathbf{b}_1 \cdot \mathbf{c}_1^2} = \frac{\mathbf{\theta}_1 \cdot \mathbf{G} \cdot \boldsymbol{\beta}' \cdot \mathbf{c}_1}{\alpha_1}$$

Eliminando θ_1 ·G entre las ecuaciones b y c se obtiene:

$$\tau_{1} = \frac{M_{T} \cdot \beta' \cdot c_{1}}{\alpha_{1} (\beta' \cdot b_{1} \cdot c_{1}^{3} + \beta'' \cdot b_{2} \cdot c_{2}^{3} + \beta''' \cdot b_{3} \cdot c_{3}^{3} +)}$$

La deformación angular por centímetro de longitud se encuentra a partir de la ecuación b:

$$\theta_{1} = \frac{M_{T}}{G \cdot (\beta' \cdot b_{1} \cdot c_{1}^{3} + \beta'' \cdot b_{2} \cdot c_{2}^{3} + \beta''' \cdot b_{3} \cdot c_{3}^{3} +)}$$

Como antes se indicó, existe una concentración de tensiones en los ángulos entrantes de las secciones compuestas. Este coeficiente depende de la razón entre el radio de la superficie y el espesor del miembro. En la tabla 14.2 se dan los valores para angulares, figura 14.3d, y en el b) para tubo de sección cuadrada y pared delgada.

Tabla 14.2 Coeficiente de concentración de tensiones K_t, para angulares y tubos de sección cuadrada de pared delgada 0,125 1,70 0,50 0,75 1,25 r/c 1,00 1,50 Angular 2,72 2,00 1,63 1,57 1,56 1,57 1,60 Tubo de 2,46 0,25 1,4 1,25 1,14 1,25 1,07 sección cuadrada

Torsión en perfiles delgados

En una barra o perfil no circular, el ángulo de torsión por unidad de longitud se expresa:

$$\theta_1 = \frac{M_T}{G \cdot I_{\cdot}}$$

donde I_t es el denominado **módulo de torsión** y el producto $G \cdot I_t$ se denomina **rigidez a** la torsión.

Los perfiles delgados son cerrados y abiertos. Los cerrados pueden ser simples o compuestos. Los perfiles abiertos pueden ser sin ramificar o ramificados.

En cualquiera de los casos, la línea media se denomina al lugar geométrico de los puntos medios de los espesores en una sección recta. Cualquier punto se definirá por su abscisa s medida a partir de un origen O definido sobre la línea media arbitrariamente.

Figura 14.5 Perfil delgado cerrado simple

Perfiles cerrados simples

Son perfiles cerrados con un solo hueco formando una sola celda. la tensión cortante viene dada por la fórmula de Bredt:

$$\tau = \frac{M_T}{2 \cdot A \cdot c}$$

donde A es el área encerrada por la línea media L y c el espesor. El valor máximo se encontrará para el menor espesor c_{min} .

El ángulo queda:

$$\theta = \frac{M_T}{4 \cdot G \cdot A^2} \int_{T} \frac{ds}{c}$$

Figura 14.6 Sección compuesta de múltiples celdas

Perfiles cerrados compuestos

Sea el perfil de la figura 14.6, compuesto de un conjunto de celdas. Cada celda es un perfil cerrado con flujo de cortadura $t=\tau\cdot c$ constante en todo segmento perpendicular a la línea media de la sección recta. Para una celda genérica i denominamos t_i al flujo de cortadura en las paredes que rodean a la celda i, $t_{i,j}$ el flujo de cortadura en la pared común a las celdillas i y j. Si se analiza el flujo en el nudo común de la figura, se verifica:

$$t_i{\cdot}dx \text{ - } t_{i+1}{\cdot}dx \text{ - } t_{i,i+1}{\cdot}dx = 0 \longrightarrow t_i \text{ - } t_{i+1} \text{ - } t_{i,i+1} = 0$$

ecuación de continuidad de flujo que permite obtener el flujo en las paredes entre celdas. De otra forma se puede escribir:

$$t_{i,i+1} = t_{i+1} - t_i$$

Serán incógnita del problemas los flujos t_1 , t_2 , \cdots , t_i , \cdots , t_n en las paredes superior e inferior, ya que los flujos entre celdas se determinan en función de estos a partir de la ecuación anterior.

Además se debe cumplir la condición de equilibrio estático:

$$M_T = 2 \cdot t_1 \cdot A_1 + 2 \cdot t_2 \cdot A_2 + \cdots + 2 \cdot t_n \cdot A_n$$

siendo A_i el área encerrada por la línea media de la celda i. El problema es de hiperestaticidad n-1, necesitando n-1 ecuaciones de compatibilidad obtenidas a partir de las ecuaciones de ángulos de torsión por unidad de longitud.

$$\theta_1 = \theta_2 = \cdots = \theta_n$$

Como para un perfil simple se obtuvo:

$$\theta = \frac{M_T}{4 \cdot G \cdot A^2} \int_{1}^{1} \frac{ds}{c} = \frac{t}{2 \cdot G \cdot A} \int_{1}^{1} \frac{ds}{c}$$

para la celda i se obtiene:

$$\theta_{i} = \frac{1}{2 \cdot G \cdot A_{i}} (-t_{i-l,i} \cdot \int_{s_{i-l}} \frac{ds}{c} + t_{i} \cdot \int_{s_{i}} \frac{ds}{c} - t_{i,i+l} \cdot \int_{s_{i+l}} \frac{ds}{c})$$

siendo s_{i-1} , s_i y s_{i+1} los perímetros colindantes con la celda i de los flujos de t_{i-1} , t_i y t_{i+1} , respectivamente. Así, con la ecuación de equilibrio estático, las n-1 ecuaciones de igualdad de ángulos y las ecuaciones de flujo, se resuelve el problema.

Perfiles abiertos sin ramificar

En la figura 14.7a) se muestra un perfil abierto sin ramificar. En la figura 14.7b) se ha aplicado la analogía de la membrana obteniendo una superficie parabólica al cortar por un plano vertical según el espesor c. La tensión tangencial es proporcional a la pendiente de la curva y por tanto lineal con valores máximos en los extremos como muestra la figura 14.7c).

De la experiencia de la analogía de la membrana se observa que las deformaciones y las tensiones, en perfiles delgados, prácticamente no dependen de la curvatura de forma que se pueden aplicar las ecuaciones para perfiles rectangulares, y en particular cuando $\rm s/c > 10$ se tiene:

Figura 14.7 Sección abierta sin ramificar

$$\tau_{\text{max}} = \frac{M_{\text{T}}}{0.333 \cdot \text{s} \cdot \text{c}^2} = \frac{3 \cdot M_{\text{T}}}{\text{s} \cdot \text{c}^2}$$

La rotación relativa de dos secciones transversales por unidad de longitud viene dada por la ecuación:

$$\theta = \frac{M_T}{0.333 \cdot G \cdot s \cdot c^3} = \frac{3 \cdot M_T}{G \cdot s \cdot c^3}$$

Figura 14.8 Sección abierta ramificada

Perfiles abiertos ramificados

En la figura 14.8 se muestra un ejemplo de perfil abierto ramificado. En este caso no se puede asumir la configuración rectangular por las ramificaciones. Si se aplica la analogía de la membrana se tienen cilindros a lo largo de las generatrices s_i , salvo en los extremos y las uniones, como es lógico. Como aproximación, se desprecia el efecto en dichos puntos y con el supuesto $s_i/c_i > 10$ para cada elemento i se tiene:

$$\tau_{i,max} = \frac{3 \cdot M_{T_i}}{s_i \cdot c_i^{2}}; \theta_i = \frac{3 \cdot M_{T_i}}{G \cdot s_i \cdot c_i^{3}}$$

siendo M_{Ti} el momento torsor que absorbe la parte de la sección rectangular. El momento total es la suma de todos los momentos parciales teniendo:

$$M_{T} = \sum_{i=1}^{n} M_{T_{i}} = \frac{G \cdot \theta}{3} \sum_{i=1}^{n} s_{i} \cdot c_{i}^{3}$$

despejando el ángulo por unidad de longitud:

$$\theta = \frac{3 \cdot M_T}{G \cdot \sum_{i=1}^{n} s_i \cdot c_i^3}$$

La tensión cortante máxima en un tramo i será:

$$\tau_{i,max} = \frac{3 \cdot M_{T_i}}{s_i \cdot c_i^{\ 2}} = \frac{3 \cdot M_T}{\sum_{i=1}^{n} s_i \cdot c_i^{\ 3}} c_i$$

de la que se deduce que las tensiones tangenciales son mayores al crecer el espesor, y por tanto, las secciones críticas son las de mayor espesor en contra de lo que se podía esperar.

Figura 14.1a

1.- En la figura 14.1a se muestra una viga en cruz que está empotrada en O. Establecer el diseño resistente de cada tramo, si se calcula en acero A-52 con un coeficiente de seguridad n = 2. Todas las secciones son circulares. Datos: OB = 40 cm, AB = BC = 30 cm.

Si se hace un corte a una distancia y desde O y se plantean los esfuerzos $\overrightarrow{F_s}$ y $\overrightarrow{M_s}$ en la sección Ω , así con las ecuaciones de equilibrio elástico.

i) Equilibrio de fuerzas:

$$\sum \vec{F} = \vec{0} \rightarrow \vec{F_A} + \vec{F_B} + \vec{F_C} + \vec{F_S} = \vec{0}$$

$$\vec{F_A} = (150\ 100\ 0); \ \vec{F_B} = (0\ 250\ -200); \ \vec{F_C} = (0\ 0\ 300); \ \Rightarrow \ \vec{F_S} = -\ \vec{F_A} - \ \vec{F_B} - \ \vec{F_C} = - (150\ 100\ 0) - (0\ 250\ -200) - (0\ 0\ 300) = (-150\ -350\ -500) = -150\ \hat{i} - 350\ \hat{j} - 100\ \hat{k} \Rightarrow F_x = -150\ kN, \ F_y = -350\ kN; \ F_z = -100\ kN$$

Si se identifican los esfuerzos se tiene para los ejes absolutos:

Esfuerzo normal:
$$N = F_y = -350 \text{ kN}; \overrightarrow{N} = -350 \text{ kN} \stackrel{\wedge}{j}$$

Esfuerzos cortantes: $T_x = F_x = -150$ kN; $T_z = F_z = -100$ kN $\Longrightarrow \vec{T} = -150$ kN $\overset{\circ}{i} - 100$ kN $\overset{\circ}{k}$

ii) Equilibrio de Momentos:

Se toma en la sección

$$\sum \overrightarrow{M} | \stackrel{\rightarrow}{=0} \rightarrow \overrightarrow{R}_{A} \wedge \overrightarrow{F}_{A} + \overrightarrow{R}_{B} \wedge \overrightarrow{F}_{B} + \overrightarrow{R}_{C} \wedge \overrightarrow{F}_{C} + \overrightarrow{M}_{S} = \stackrel{\rightarrow}{0}$$

$$\overrightarrow{R}_{A} = (0'3, 0'4 - y, 0); \ \overrightarrow{R}_{B} = (0, 0'4 - y, 0); \ \overrightarrow{R}_{C} = (-0'3, 0'4 - y, 0)$$

$$\vec{R_A} \wedge \vec{F_A} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0'3 & 0'4 - y & 0 \\ 150 & 100 & 0 \end{vmatrix} = (0,3 \cdot 100 - (0'4 - y) \cdot 150) \cdot \hat{k} = (-30 + 150 \cdot y) \cdot \hat{k}$$

$$\vec{R}_{B} \wedge \vec{F}_{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 0'4 - y & 0 \\ 0 & 250 & -200 \end{vmatrix} = (0'4 - y) \cdot (-200) \cdot \hat{i} = (-80 + 200 \cdot y) \cdot \hat{i}$$

$$\vec{R_C} \wedge \vec{F_C} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -0'3 & 0'4 - y & 0 \\ 0 & 0 & 300 \end{vmatrix} = (0'4 - y) \cdot 300 \cdot \hat{i} - (-0,3) \cdot 300 \cdot \hat{j} = (120 - 300 \cdot y) \cdot \hat{i} + 90 \cdot \hat{j}$$

$$\begin{split} \sum \vec{M} \bigg|_{\Omega} = \stackrel{\rightarrow}{0} \rightarrow \vec{M}_S &= -(\vec{R_A} \wedge \vec{F_A} + \vec{R_B} \wedge \vec{F_B} + \vec{R_C} \wedge \vec{F_C}) \\ = -[(-30 + 150 \cdot y) \cdot \hat{k} + (-80 + 200 \cdot y) \cdot \hat{i} + (120 - 300 \cdot y) \cdot \hat{i} + 90 \cdot \hat{j}] \\ = -(40 - 100 \cdot y) \cdot \hat{i} - 90 \cdot \hat{j} + (30 - 150 \cdot y) \cdot \hat{k} \\ = M_x \cdot \hat{i} + M_y \cdot \hat{j} + M_z \cdot \hat{k} \Rightarrow M_x = -40 + 100 \cdot y; M_y = -90; M_z = 30 - 150 \cdot y. \end{split}$$

Si se identifican los esfuerzos se tiene para los ejes absolutos;

Momento Torsor: $\overrightarrow{M}_T = \overrightarrow{M}_y \cdot \hat{j} = -90 \cdot \hat{j} \text{ kN} \cdot \text{m}$

$$\label{eq:momento_flector:} \stackrel{\rightarrow}{M_F} = = M_x \stackrel{\hat{i}}{i} + M_z \stackrel{\hat{k}}{k} = (\text{-}40 + 100 \cdot \text{y}) \cdot \stackrel{\hat{i}}{i} + (30 - 150 \cdot \text{y}) \cdot \stackrel{\hat{j}}{j} \text{ kN} \cdot \text{m}.$$

Representando en la figura 14.1b los diagramas de esfuerzos en función del sistema de coordenadas absolutos se tiene:

Figura 14.1b Diagramas de esfuerzos según los ejes absolutos

En la figura 14.1b se muestran los diagramas de esfuerzos necesarios para el diseño resistente. Las tensiones máximas las van a producir los momentos flectores y el momento torsor. Éstas se producen en las fibras más extremas de la sección crítica. Como el momento torsor es constante, la sección crítica es la O ya que tiene momento flector máximo. El esfuerzo normal también es constante por lo que no se necesita analizar su repercusión en dichas tensiones al ser idéntica en todas las secciones. Los esfuerzos cortantes producen tensiones nulas en las fibras extremas, según Colignon. Así para el diseño resistente se debe verificar:

$$\sigma_{\rm CO} = \frac{4}{\pi \cdot d^3} \cdot \sqrt{\left(d \cdot N + 8 \cdot M_{\rm F}\right)^2 + 48 \cdot M_{\rm T}^2} \le \frac{\sigma_{\rm e}}{n}$$

En la sección O, los esfuerzos con unidades de kp y cm, son N = 35714,29 kp de tracción, M_T = - 918370 kp·cm y M_F = $\sqrt{40^2+30^2}$ = 50 kN·m = 510204 kp·cm. Sustituyendo:

$$\sigma_{\rm CO} = \frac{4}{\pi \cdot d^3} \cdot \sqrt{\left(d \cdot 35714,29 + 8.510204\right)^2 + 48 \cdot 918370^2} \le \frac{3600}{2} = 1800$$

en este caso, se comprueba la tensión para el valor d = 17.8 cm obtenido por tanteo, así:

$$\sigma_{\text{CO}} = \frac{4}{\pi \cdot 17.8^{3}} \cdot \sqrt{(17.8 \cdot 35714.29 + 8.510204)^{2} + 48.918370^{2}} = 1788 \le 1800$$

que vale, y por tanto no es necesario resolver la ecuación.

También se deben diseñar los tramos BC y BA. Para BC, si se hace un corte a una distancia x de C, los esfuerzos según los ejes absolutos son: $T_z = 300$ kN, $M_y = 300 \cdot x$, que es de flexión y su valor máximo en x = 30 cm da la máxima tensión. $M_{máx} = 300 \cdot 30 \cdot 1000/9, 8 = 918367, 35$ kp·cm. Sustituyendo:

$$\sigma_{\text{CO}} = \frac{32 \cdot \text{M}_{\text{máx}}}{\pi \cdot \text{d}^3} = \frac{32 \cdot 918367,35}{\pi \cdot \text{d}^3} = 1800 \rightarrow \text{d} = 17, 32 \text{ cm, para el tramo BC.}$$

Para BA, si se hace un corte a una distancia x de A, los esfuerzos según los ejes absolutos son: N = 150 kN = 10204,082 kp, $T_y = -100 \text{ kN}$, $M_z = 100 \cdot x$, que es de flexión y su valor máximo en x = -30 cm da la máxima tensión. $M_{\text{máx}} = 100 \cdot 30 \cdot 1000/9,8 = 306122,45 \text{ kp·cm}$. Sustituyendo:

$$\sigma_{CO} = \frac{4}{\pi \cdot d^3} \cdot (d \cdot N + 8 \cdot M_F)^2 = \frac{4}{\pi \cdot d^3} \cdot (d \cdot 10204,082 + 8 \cdot 306122,45)^2 \le \frac{\sigma_e}{n} = 1800$$

que por inspección se obtiene fácilmente un resultado válido que calculado exácto vale d = 12, 21 cm.

Para que el diseño sea correcto se debiera analizar la rigidez, que se deja como ejercicio.

Figura 14.2a

2.- Diseñar el eje de la figura 14.2a en acero de alta resistencia con $\sigma_e=7000~\rm kp/cm^2$ y coeficiente de seguridad n = 4. Considerar que los efectos dinámicos han quedado incluidos en el coeficiente n y se desprecian en las flechas. El eje gira a 1000 rpm y transmite el movimiento con dos poleas de pesos 136 kp y 82 kp y radios de 50 cm y 40 cm, respectivamente. Los extremos del eje son apoyos que no transmiten momentos. Determinar también la potencia que transmiten las poleas y el ángulo de torsión.

Este problema se planteó en la lección 2, calculándose las reacciones en los cojinetes. Estas valían en kp:

$$\vec{R}_{H} = \begin{cases} 0 \\ 560,3 \\ 149,7 \end{cases} \qquad \vec{R}_{J} = \begin{cases} 0 \\ 201,7 \\ 598,3 \end{cases}$$

Ahora se representa el diagrama del cuerpo libre para el eje en la figura 14.2b.

Figura 14.2b Diagrama del sólido libre

En este caso para la determinación de los esfuerzos, se hará por planos, dejando los momentos torsores a parte. El cálculo de esfuerzos se puede hacer también vectorialmente como se hizo en las lección 2, solo que ahora se tomaría la posición de la sección a una distancia **x** variable.

En la figura 4.2c se representan las fuerzas para los planos xy, xz y el momento torsor a parte en el espacio.

Figura 14.2c Diagrama de cargas por planos

En función de las cargas para cada plano se obtienen las leyes de esfuerzos.

En el plano xy:

$$0 < x < 0,229 \text{ m}$$

$$T_{y1} = 560,3$$

$$M_{z1} = 560,3 \cdot x$$

$$0,229 \text{ m} < x < 0,915 \text{ m}$$

$$\begin{split} T_{y2} &= 560, 3 - 680 = -119, 7 \\ M_{z2} &= 560, 3 \cdot x - 680 \cdot (x - 0, 229) = 155, 72 - 119, 7 \cdot x \\ 0,915 \text{ m} &< x < 1,144 \text{ m} \\ T_{y3} &= 560, 3 - 680 - 82 = -201, 7 \\ M_{z3} &= 560, 3 \cdot x - 680 \cdot (x - 0, 229) - 82 \cdot (x - 0, 915) = -201, 7 \cdot x + 230, 75 \end{split}$$

En el plano zx:

Se utilizan los ejes $y^* = -z$ y $z^* = -y$ para aplicar el criterio de signos acordado y evitar equívocos

$$0 < x < 0.915 \text{ m}$$

$$T_{y*1} = -149.7$$

$$M_{z*1} = -149.7 \cdot x$$

$$0.915 \text{ m} < x < 1.144 \text{ m}$$

$$T_{y*2} = -149.7 \cdot x + 748 = 598.3$$

$$M_{z*2} = -149.7 \cdot x + 748 \cdot (x-0.915) = 598.3 \cdot x - 684.42$$

Momento torsor:

El momento torsor es constante en el tramo 0,229 m < x < 0,915 m, con un valor para el corte de M_T = -13600 kp·cm.

Para el diseño resistente es de gran ayuda dibujar los diagramas de esfuerzos. En este caso dado que los esfuerzos cortantes producen tensiones nulas en las fibras extremas, por lo que no aparecen en el cálculo, se omitirán sus diagramas. El momento torsor al ser constante en dicho tramo tampoco es necesario representarlo.

Figura 14.2d Diagramas de momentos flectores.

Para el diseño resistente se deben localizar las secciones críticas. En este caso la más crítica es la E con valores máximos de M_F y M_T .

Antes de realizar el diseño se debe considerar que la flexión no es estática ya que los momentos van alternando en las fibras de un valor negativo a otro positivo provocando tensiones alternadas y efectos como el de fatiga. Como se dijo en la introducción, el diseño que se presenta es estático aunque se asemeja al diseño real del árbol. Lo que se pretende es familiarizar al estudiante con este tipo de cálculos.

Los momentos en dicha sección valen $M_y = 13698 \text{ kp\cdot cm}$, $M_z = 4620 \text{ kp\cdot cm}$ y $M_T = -13698 \text{ kp\cdot cm}$. El momento flector resultante M_F vale: $M_F = \sqrt{13698^2 + 4620^2} = 14456,13 \text{ kp\cdot cm}$.

Cuando N = 0, se tiene.

$$\sigma_{\rm CO} = \sqrt{\left(\frac{32 \cdot M_{\rm F}}{\pi \cdot {\rm d}^3}\right)^2 + 3 \cdot \left(\cdot \frac{16 \cdot M_{\rm T}}{\pi \cdot {\rm d}^3}\right)^2} \le \frac{\sigma_{\rm e}}{n} \to d \ge \left[\frac{16 \cdot n}{\pi \cdot \sigma_{\rm e}} \sqrt{4 \cdot M_{\rm F}^2 + 3 \cdot M_{\rm T}^2}\right]^{1/3} = 0$$

$$d \ge \left[\frac{16 \cdot 4}{\pi \cdot 7000} \sqrt{4.14456,13^2 + 3.13600^2} \right]^{1/3} = 4,77 \text{ cm}.$$

Ahora se va a analizar la rigidez desde el punto de vista estático. Para ello se deben determinar las deformaciones y especialmente las debidas a la flexión. Una medida de estas es el estudio de la flecha. Estudiando la ecuación de la elástica para cada plano:

En el plano xy, los desplazamientos según y a partir de la ecuación de la elástica:

$$0 < x < 0.229 \text{ m}$$

$$\begin{array}{c} E \cdot I_z \cdot y_1 \, \widetilde{} = M_{z1} \to E \cdot I_z \cdot y_1 \, \widetilde{} = 560, \\ 3 \cdot x \to E \cdot I_z \cdot y_1 \, \widetilde{} = 560, \\ 3 \cdot (x^2/2) + A_1 = 280, \\ 15 \cdot x^2 + A_1 \to E \cdot I_z \cdot y_1 = 560, \\ 3 \cdot (x^3/6) + A_1 \cdot x + B_1 \end{array}$$

$$0,229 \text{ m} < x < 0,915 \text{ m}$$

$$\begin{split} & E \cdot I_z \cdot y_2 \, ^{\prime \prime} = M_{z2} \rightarrow E \cdot I_z \cdot y_2 \, ^{\prime \prime} = 155,72 - 119,7 \cdot x \rightarrow E \cdot I_z \cdot y_2 \, ^{\prime} = 155,72 \cdot x - 119,7 \cdot (x^2/2) \\ & + A_2 = 155,72 \cdot x - 59,85 \cdot x^2 + A_2 \rightarrow E \cdot I_z \cdot y_2 = 155,72 \cdot (x^2/2) \, - 119,7 \cdot (x^3/6) + A_2 \cdot x + B_2 \end{split}$$

$$0.915 \text{ m} < x < 1.144 \text{ m}$$

$$\begin{array}{l} E \cdot I_z \cdot y_3 \, ^{\prime \prime} = M_{z3} \to E \cdot I_z \cdot y_3 \, ^{\prime \prime} = 230,75 - 201,7 \cdot x \to E \cdot I_z \cdot y_3 \, ^{\prime} = 230,75 \cdot x - 201,7 \cdot (x^2/2) \\ + A_3 = 230,75 \cdot x - 100,85 \cdot x^2 + A_3 \to E \cdot I_z \cdot y_3 = 230,75 \cdot (x^2/2) - 201,7 \cdot (x^3/6) + A_3 \cdot x + B_3 = 115,4 \cdot x^2 - 33,62 \cdot x^3 + A_3 \cdot x + B_3 \end{array}$$

Condiciones de contorno:

$$y_1(0) = 0 \rightarrow B_1 = 0$$

$$y_1(0,229) = y_2(0,229) \rightarrow 1,12 + A_1 \cdot 0,229 + B_1 = 3,84 + A_2 \cdot 0,229 + B_2$$

$$y_1'(0,229) = y_2'(0,229) \rightarrow 14,69 + A_1 = 35,66 - 3,14 + A_2$$

$$y_2(0,915) = y_3(0,915) \rightarrow 65,19 - 15,28 + A_2 \cdot 0,915 + B_2 = 96,59 - 25,74 + A_3 \cdot 0,915 + B_3$$

$$y_2'(0.915) = y_3'(0.915) \rightarrow 142.48 - 50.11 + A_2 + B_2 = 211.14 - 84.43 + A_3$$

$$y_3(1,144) = 0 \rightarrow 151,03 - 50,33 + A_3 \cdot 1,144 + B_3 = 0$$

En resumen las ecuaciones quedan:

1) -
$$2.72 + A_1 \cdot 0.229 - A_2 \cdot 0.229 - B_2 = 0$$

$$(2) - 17.83 + A_1 - A_2 = 0$$

3)
$$-20.94 + A_2 \cdot 0.915 + B_2 - A_3 \cdot 0.915 - B_3 = 0$$

$$4) - 34,34 + A_2 - A_3 = 0$$

5)
$$100.7 + A_3 \cdot 1.144 + B_3 = 0$$

Resolviendo las constantes se obtiene aproximadamente:

$$A_1 = -46,23$$
; $A_2 = -64,06$; $B_2 = 1,36$; $A_3 = -98,4$; $B_3 = 11,84$

Así las ecuaciones quedan:

$$0 < x < 0.229 \text{ m}$$

Ecuación de ángulos
$$\rightarrow$$
 E·I_z· $\theta_1 = 280,15 \cdot x^2 - 46,23$

Ecuación de la deformada
$$\rightarrow$$
 E·I_z·y₁ = 93,4·x³ – 46,23·x

$$0,229 \text{ m} < x < 0,915 \text{ m}$$

Ecuación de ángulos
$$\rightarrow$$
 E·I_z· $\theta_2 = -59.85 \cdot x^2 + 155.72 \cdot x - 64.06$

Ecuación de la deformada \rightarrow E·I_z·y₂ = -19,95·x³ + 77,86·x² - 64,06·x + 1,36

$$0.915 \text{ m} < x < 1.144 \text{ m}$$

Ecuación de ángulos
$$\rightarrow$$
 E·I_z· $\theta_3 = -100,85 \cdot x^2 + 230,75 \cdot x - 98,4$

Ecuación de la deformada
$$\rightarrow$$
 E·I_z·y₃ = -33,62·x³ + 115,4·x² - 98,4·x + 11,84

Ahora se estudia la flecha en este plano. Esto supone que su valor está para $\theta=0$. Así analizando cada tramo se tiene:

$$E \cdot I_z \cdot \theta_1 = 280,15 \cdot x^2 - 46,23 = 0 \rightarrow x = 2,46 \text{ m}$$
, fuera del intervalo.

 $\begin{array}{l} E \cdot I_z \cdot \theta_2 = -59,85 \cdot x^2 + 155,72 \cdot x - 64,06 \rightarrow \text{dos soluciones en } x_1 = 2,09 \text{ m y en } x_2 = 0,51 \text{ m, sólo esta última pertenece al intervalo y es una solución posible. La flecha vale en dicha sección } f = -\frac{13,71}{E \cdot I_z} \;. \end{array}$

 $\text{E-I}_z \cdot \theta_3 = -100,85 \cdot \text{x}^2 + 230,75 \cdot \text{x} - 98,4 = 0 \rightarrow \text{dos soluciones en } x_1 = 1,72 \text{ m y en } x_2 = 0,57 \text{ m, y en este caso ninguna pertenece al intervalo.}$

En conclusión, para el plano xy la flecha vale en x = 0,51 m f =
$$-\frac{13,71}{\text{E} \cdot \text{I}_z}$$
.

Para el estudio de la deformada en el plano xz, los desplazamientos son en z, que se tomaron como el eje y* para que utilizar correctamente el criterio de signos que se adoptó en flexión. El caso de una carga puntual está resuelto en la teoría por lo que se emplearán aquí los resultados obtenidos. Se obtuvo que una viga biapoyada que soporta una carga P a una distancia b del apoyo derecho su deformación máxima es:

$$y_{max}^* = f = -\frac{P \cdot b}{9 \cdot \sqrt{3} \cdot L \cdot E \cdot I_{7^*}} \sqrt{(L^2 - b^2)^3}$$
 en $x_f = \sqrt{\frac{L^2 - b^2}{3}}$

en este caso P = 748 kp, b = 0,229 m y L = 1,144 m. Esto da un valor de
$$f = -\frac{748 \cdot 0,229}{9 \cdot \sqrt{3} \cdot 1,144 \cdot E \cdot I_{Z^*}} \sqrt{(1,144^2 - 0,229^2)^3} = -\frac{13,53}{E \cdot I_{Z^*}} \rightarrow f_z = \frac{13,53}{E \cdot I_{Z^*}} \text{ en } x \approx 0,65 \text{ m}.$$

Conocida la flecha en cada plano, es de esperar que cualquiera de las dos secciones dé una flecha total bastante representativa de la real.

Así en x = 0.51 se tienen:

$$y(0,51) = f_y = -\frac{13,71}{E \cdot I_z} \;, \; z(0,51) \; \text{se calcula conociendo que para la carga puntual}$$
 entre $0 \le x \le L - b \; \to E \cdot I_z \cdot y_1^* = \frac{P \cdot b}{6 \cdot L} x^3 + \frac{P \cdot b}{6 \cdot L} (b^2 - L^2) \cdot x \;, \; \text{luego } y_1^*(0,51) = -\frac{12,68}{E \cdot I_{z^*}}$ $\to z(0,51) = \frac{12,68}{E \cdot I_y} \;. \; \text{Con esto la flecha total en 0,51 vale por ser } I_y = I_z \; \text{en una sección}$ circular: $f_T = \sqrt{y^2 + z^2} = \frac{1}{E \cdot L} \cdot \sqrt{13,71^2 + 12,68^2} = \frac{18,67}{E \cdot L}$

Y en x = 0.65 se tienen:

$$y_2(0,65) = -\frac{12,86}{E \cdot I_z} \,, \quad z(0,65) = - \quad y_1 * (0,51) = f_z = \frac{13,53}{E \cdot I_{z^*}} \, \to f_T = \\ \sqrt{y^2 + z^2} = \frac{1}{E \cdot I} \cdot \sqrt{12,86^2 + 13,53^2} = \frac{18,67}{E \cdot I} \quad \text{que vale igual que antes por lo que la flecha real rondará por dicho valor.}$$

El momento de inercia es $I = \frac{\pi \cdot d^4}{64} = 25,412 \text{ cm}^4 \rightarrow \text{E} \cdot \text{I} = 2,1 \cdot 10^6 \cdot 25,412 = 53,37 \cdot 10^6 \text{ kp} \cdot \text{cm}^2 = 5336,58 \text{ kp} \cdot \text{m}^2.$

Así la flecha toral será
$$f_T = \frac{18,67}{5336,58} = 3,5\cdot10^{-3} \text{ m} = 0,35 \text{ cm}$$

En el caso de la NBE-EA-95 las flechas admisibles vienen dadas por la expresión: $f_{ADM} = L/k$, siendo k una constante como se vio en la lección 9. Si se iguala $f_T = L/k \rightarrow$

 $k \approx 327$ que da un valor que puede ser aceptable según la lista que se muestra en la lección 9. Sin embargo, se debe recordar que no se ha tenido en cuenta ningún efecto dinámico.

Por otro lado el ángulo de torsión es: $\phi = \frac{M_T \cdot L_i}{G \cdot I_p} = \frac{13600 \cdot 68,6}{0.81 \cdot 10^6 \cdot \pi^{\cdot 4.77^4/32}} = 0.023 \text{ rad} = 1.32^\circ.$

La potencia es:
$$P_o(C.V) = \frac{M_T \cdot n}{716} = \frac{136 \cdot 1000}{716} = 190 \text{ C.V}$$

Figura 14.3a

- 3.- En la figura 14.3a se muestra un eje de dos palancas que se quiere diseñar con acero de alta resistencia con $\sigma_e = 6000 \text{ kp/cm}^2 \text{ y } n = 3,5$. Se pide:
- a) Diseñar el eje a resistencia estática.
- b) Analizar los desplazamientos según la NBE-EA-95.
- c) Calcular el ángulo de torsión y la potencia que transmite una palanca si el eje gira a 700 rpm.
- a) En la lección 2 se obtuvieron las reacciones de este ejercicio, que según los ejes valen: $R_{Ay} = 519 \text{ N}$, $R_{Az} = 213 \text{ N}$, $R_{By} = 213 \text{ N}$, $R_{Az} = 519 \text{ N}$, la carga P = 750 N.

Para diseñar el eje a resistencia se deben determinar los esfuerzos. En primer lugar, el momento torsor que es constante y vale $M_T = 750 \cdot 0,2 = 150 \text{ N} \cdot \text{m} = 15,31 \text{ kp} \cdot \text{m}$. Éste actúa sólo en el tramo central, siendo nulo en el resto.

Para analizar el resto de esfuerzos se plantean las cargas por planos según la figura 14.3b.

Si se observa el estado de carga, es el mismo en ambos planos salvo que en el plano xy la carga esta a 0,2 metros del cojinete A y en el plano xz está a 0,2 del B. Esto indica que basta analizar los esfuerzos y deformaciones en uno de ellos y por comparación se obtienen los resultados necesarios en el otro.

Figura 14.3b Estado de carga desglosado por planos

De los resultados obtenidos en la teoría se tiene que para una viga biapoyada con carga puntual a una distancia a del extremo izquierdo y b desde el derecho, el momento máximo se encuentra en la sección en la que está la carga y vale: $M_{máx} = \frac{P \cdot a \cdot b}{L} = \frac{750 \cdot 0.2 \cdot 0.45}{0.65} = 103.85 \text{ N·m}$. Así se tendrá $M_{máxy} = 103.85 \text{ N·m}$ en 0,2 m y $M_{máxz} = 103.85 \text{ N·m}$ en 0,45 m, tomadas las distancias desde la izquierda y en módulo. Así cualquiera de las dos secciones es válida para el diseño. Se elige la de 0,2, el momento en el primer tramo viene dado por $M_1 = \frac{P \cdot b}{L}$ x que valorándolo para el plano xz se tiene en 0,2 que: $M_z(0,2) = \frac{750 \cdot 0.2}{0.65} \cdot 0.2 = 46.15 \text{ N·m}$, luego el momento flector de diseño es $M_F = \sqrt{103.85^2 + 46.15^2} = 113.64 \text{ N·m}$. Si se pasa a kp·cm se tiene redondeando $M_F = 1160 \text{ kp·cm}$ y el $M_T = 1531 \text{ kp·cm}$.

Cuando N = 0, y despreciando los esfuerzos cortantes se tiene:

$$d \ge \left[\frac{16 \cdot n}{\pi \cdot \sigma_e} \sqrt{4 \cdot M_F^2 + 3 \cdot M_T^2} \right]^{1/3} \to d \ge \left[\frac{16 \cdot 3.5}{\pi \cdot 6000} \sqrt{4 \cdot 1160^2 + 3 \cdot 1531^2} \right]^{1/3} = 2,19 \text{ cm}.$$

Para el estudio de la deformada se estudia en el plano xy, y por analogía se obtendrán los resultados de xz. Se obtuvo que una viga biapoyada que soporta una carga P a una distancia b del apoyo derecho su deformación máxima es:

$$f = -\frac{P \cdot b}{9 \cdot \sqrt{3} \cdot L \cdot E \cdot I_{7*}} \sqrt{(L^2 - b^2)^3}$$
 en $x_f = \sqrt{\frac{L^2 - b^2}{3}}$

cm.

en este caso P = 76,53 kp, b = 45 cm y L = 65 cm, I = $\frac{\pi \cdot d^4}{64}$ = 1,13 cm⁴ \rightarrow E·I = 2,1·10⁶·1,13 = 2,373·10⁶ kp·cm².

Esto da un valor de
$$f = -\frac{76,53.45}{9.\sqrt{3}.65.2,373.10^6} \sqrt{(65^2 - 45^2)^3} = 0,148 \text{ cm en } x \approx 27,1$$

La flecha en z será idéntica solo que en la sección x = 65 - 27,1 = 37,9 cm. Se determina el desplazamiento z(0,271 m). Se calcula conociendo que para la carga puntual en el primer tramo:

$$E \cdot I \cdot z_1 = \frac{P \cdot b}{6 \cdot L} x^3 + \frac{P \cdot b}{6 \cdot L} (b^2 - L^2) \cdot x = \frac{76,53 \cdot 20}{6 \cdot 65} 27,1^3 + \frac{76,53 \cdot 20}{6 \cdot 65} (20^2 - 65^2) \cdot 27,1 = \frac{1}{100} \frac{1}{100$$

= - 328706,12, luego z(0,271m) = $-\frac{328706,12}{2,373\cdot10^6}$ = - 0,139 cm. Con esto la flecha total en 0,271 vale por ser $I_v = I_z$ en una sección circular:

$$f_T = \sqrt{y^2 + z^2} = \sqrt{0.148^2 + 0.139^2} = 0.203 \,\text{cm}$$

En el caso de la NBE-EA-95 las flechas admisibles vienen dadas por la expresión: $f_{ADM} = L/k$, siendo k una constante como se vio en la lección 9. Si se iguala $f_T = L/k \rightarrow k \approx 320$ que da un valor que puede ser aceptable según la lista que se muestra en la lección 9. Sin embargo, se debe recordar que no se ha tenido en cuenta ningún efecto dinámico.

c) Por otro lado el ángulo de torsión es: $\phi = \frac{M_{\rm T} \cdot L_{\rm i}}{G \cdot I_{\rm p}} = \frac{1531 \cdot 25}{0.81 \cdot 10^6 \cdot \pi^{\cdot 2.19^4/_{32}}} = 0.021 \text{ rad} = 1.2^{\circ}.$

La potencia es:
$$P_O(C.V) = \frac{M_T \cdot n}{716} = \frac{15,31 \cdot 700}{716} = 14,97 \text{ C.V}$$

4.- Diseñar a resistencia el tramo torsionado del eje de la figura 14.4 en las mismas condiciones del ejercicio salvo que la sección ahora es rectangular de base c y altura b y con una relación $b = k \cdot c$, siendo k una constante. Hacerlo para k = 1,5 y k = 3.

Las tensiones en una sección serán:

$$\sigma = \frac{N}{\Omega} + \frac{M_F}{W} \iff \tau = \frac{T \cdot s}{e \cdot I} + \frac{M_T}{W_p}$$

debiéndose verificar:

Figura 14.4
$$\sigma_{CO} = \sqrt{\sigma_x^2 + 3 \cdot \tau_{xy}^2} \le \sigma_{ADM} = \frac{\sigma_e}{n}$$

Para la sección rectangular se pueden dar dos fibras críticas cuando hay torsión, como muestra la figura adjunta.

En 1:

$$\sigma = \frac{N}{\Omega} = \frac{N}{k c^2} y \tau = \frac{3T}{2\Omega} + \frac{M_T}{\alpha_1 b c^2} = \frac{3T}{2k c^2} + \frac{M_T}{\alpha_1 k c^3}$$

donde en las tensiones normales la contribución de la flexión es nula y en las cortantes el valor de la tensión de Colignon es máxima y la contribución de la torsión es la que corresponde a la estudiada en la teoría. Así para la fibra 1 se debe verificar:

$$\sigma_{_{CO}} = \sqrt{(\frac{N}{k\,c^{^{2}}})^{^{2}} + 3(\frac{3\,T}{2\,k\,c^{^{2}}} + \frac{M_{_{T}}}{\alpha_{_{1}}\cdot k\,c^{^{3}}})^{^{2}}} \leq \sigma_{_{ADM}} = \frac{\sigma_{_{e}}}{n}$$

En 2:

$$\sigma = \frac{N}{\Omega} + \frac{M_F}{W} = \frac{N}{k c^2} + \frac{M_F}{c b_6^2} = \frac{N}{k c^2} + \frac{6 M_F}{k^2 c^3} \quad y \quad \tau = \frac{M_T}{W_p} = \frac{M_T}{\alpha_2 \cdot b c^2} = \frac{M_T}{\alpha_2 \cdot b c^3}$$

donde la componente de Colignon es nula para dicha fibra. Así para la fibra 2 se debe verificar:

$$\sigma_{_{\rm CO}} = \sqrt{(\frac{N}{k\,c^{^2}} \!+\! \frac{6\,M_{_{\rm F}}}{k^{^2}\!\cdot\! c^{^3}})^{^2} + 3\,\frac{M_{_{\rm T}}}{\alpha_{_2}\!\cdot\! k\,c^{^3}})^{^2}} \leq \sigma_{_{ADM}} = \frac{\sigma_{_e}}{n}$$

Ahora se trata de hacer el diseño.

Para la fibra 1 y con k = 1,5 $\rightarrow \alpha_1 = 0,231$. Resolver la ecuación:

$$\sigma_{\rm CO} = \sqrt{(\frac{N}{k\,c^2})^2 + 3(\frac{3\,T}{2\,k\,c^2} + \frac{M_{\,T}}{\alpha_{\rm I}\!\cdot\!k\,c^3})^2} \le \sigma_{\rm ADM} = \frac{\sigma_{\rm e}}{n}$$

es un problema. Por lo general la contribución de N y T es pequeña, por lo que se hace un primer tanteo despreciando dichos valores y así:

$$\frac{\sqrt{3} M_{T}}{\alpha_{1} \cdot k c^{3}} \le \sigma_{ADM} = \frac{\sigma_{e}}{n} \to c = \sqrt[3]{\frac{\sqrt{3} M_{T}}{\alpha_{1} \cdot k \sigma_{ADM}}} = \sqrt[3]{\frac{\sqrt{3} 918370}{0.2311,51800}} = 13,6626 \text{ cm}.$$

Ahora se redondea a 13,7 cm que parece una buena medida para las dimensión de c con precisión en mm. Así se verifica la ecuación general con los valores N = 35714,29 kp, T = 18395,67 kp, $M_T = 918370$ kp·cm:

$$\sigma_{\text{CO}} = \sqrt{(\frac{35714,29}{1,513,7^2})^2 + 3(\frac{318395,67}{21,513,7^2} + \frac{918370}{0,2311,513,7^3})^2} = 1955 > 1800$$

luego no cumple. Basta elevar ligeramente el valor de c por tanteo hasta c = 14,2 cm y da menor de 1800.

Para la fibra 2 y con k = 1,5 \rightarrow α_2 = 0,269. Resolver la ecuación:

$$\sigma_{\text{CO}} = \sqrt{(\frac{N}{k c^2} + \frac{6 M_F}{k^2 \cdot c^3})^2 + 3(\frac{M_T}{\alpha_2 \cdot k c^3})^2} \le \sigma_{\text{ADM}} = \frac{\sigma_e}{n}$$

es un problema. Por lo general la contribución de N es pequeña, por lo que se hace un primer tanteo despreciando dicho valor y así:

$$\sigma_{\text{CO}} = \sqrt{\left(\frac{6\,\text{M}_{\text{F}}}{\text{k}^2 \cdot \text{c}^3}\right)^2 + 3\left(\frac{\text{M}_{\text{T}}}{\alpha_2 \cdot \text{k} \, \text{c}^3}\right)^2} \le \sigma_{\text{ADM}} = \frac{\sigma_{\text{e}}}{\text{n}} \rightarrow$$

$$c = \sqrt[3]{\frac{1}{\sigma_{\mathrm{ADM}}} \left[(\frac{6\,M_{\mathrm{F}}}{k^2})^2 + 3(\frac{M_{\mathrm{T}}}{\alpha_2 \cdot k})^2 \right]^{1/2}} = \sqrt[3]{\frac{1}{1800} \left[(\frac{6510204}{1.5^2})^2 + 3(\frac{918370}{0.2691.5})^2 \right]^{1/2}} = 13$$

cm

como se obtuvo 14,2 para 1 se verifica con la ecuación total:

$$\sigma_{\text{CO}} = \sqrt{\left(\frac{35714,29}{1,514,2^2} + \frac{6510204}{1,5^2 \cdot 14,2^3}\right)^2 + 3\left(\frac{918370}{0,2691,514,2^3}\right)^2} = 1710 \le 1800 \text{ cumple.}$$

Para k=3 se opera igual solo que ahora $\alpha_1=0,267$ y $\alpha_2=0,355$. Se deja como ejercicio.

5.- Una viga en voladizo y de 2 m de longitud se desea diseñar en un perfil elíptico hueco de base mayor exterior 2·a y base menor exterior 2·b, tal que a = 2·b, el espesor es t=0.01·a. Si la viga soporta una flexión dada por $M_z=6$ t·m y una torsión con $M_T=6$ t·m en el extremo. Diseñar el perfil en acero A-42 y con una seguridad de n=1.3. Calcular el ángulo torsionado.

Figura 14.5

La viga está torsionada y flexionada con los valores del enunciado y el cortante T=0. En este caso no se consideran signos, ya que para el diseño no son necesarios.

Es de esperar que para soportar correctamente la flexión se coloque la base mayor vertical, ya que le da mayor inercia, ver figura adjunta. El cortante producido por la torsión sigue la fórmula de Bredt y es igual en todas las fibras.

Para el diseño resistente se debe verificar.

$$\sigma_{_{CO}} = \sqrt{\sigma^2 + 3\,\tau^2} \le \sigma_{_{ADM}} = \frac{\sigma_{_e}}{n}$$

siendo en este caso:

 $\sigma = \frac{M_z}{W_z}$ tensión normal máxima de Navier, y

 $\tau = \frac{M_T}{2 \text{ Ac}}$ tensión tangencial de la fórmula de Bredt.

En primer lugar se debe conocer la geometría de la sección. Se comienza por W_z.

El momento de inercia I_{ze} para una sección elíptica de bases $2 \cdot a$ y $2 \cdot b$ tiene un valor de $I_{ze} = \frac{\pi \, b \, a^3}{4}$, de igual modo para la sección elíptica interior con bases $2 \cdot a_0$ y $2 \cdot b_0$ el

momento de inercia será $I_{z0}=\frac{\pi\,b_0\cdot\,a_0^{-3}}{4}$. Relacionando la geometría se tiene: $a=2\cdot b,\ a_0=a-t=1,8\cdot b$ y $b_0=b-t=0,8\cdot b$. Sustituyendo en función de b que será la dimensión buscada y que dará solución al resto se tiene:

$$I_{ze} = 2 \pi b^4 \iff I_{z0} = \frac{\pi 0.8 b(1.8 b)^3}{4} = 1.1664 \pi b^4$$

así el momento de inercia de la sección será la resta: $I_z = I_{ze}$ - $I_{z0} = \pi \cdot b^4 \cdot (2 - 1,1664) = 0,8336 \cdot \pi \cdot b^4$. Así el módulo resistente $W_z = 0,4168 \cdot \pi \cdot b^3$.

Ahora falta encontrar las relaciones geométricas de las fórmula de Bredt. El valor A es el área formada por el contorno de la línea media del espesor. Dicho contorno será una elipse de semibases a $= a - 0.005 \cdot a = 0.995 \cdot a = 1.99 \cdot b$ y $= b - 0.005 \cdot a = 0.995 \cdot b$. El

valor es $A = \pi \cdot b^2 \cdot (1,99 \cdot 0,99) = 1,9701 \cdot \pi \cdot b^2$. El valor de c es el menor espesor que será c $= t = 0,01 \cdot a = 0,02 \cdot b$. Con estos datos se tiene:

$$\sigma = \frac{M_z}{W_z} = \frac{M}{0.4168 \,\pi \, b^3} = \frac{2.4 \,M}{\pi \, b^3} \iff \tau = \frac{M_T}{2 \,A \cdot c} = \frac{M}{21,9701 \,\pi \, b^2 \cdot 0.02 \, b} = \frac{12.69 \,M}{\pi \, b^3}$$

lo que supone una contribución mayor de la torsión que de la flexión. Sustituyendo:

$$\sigma_{\text{CO}} = \sqrt{(\frac{2,4 \text{ M}}{\pi \text{ b}^3})^2 + 3(\frac{12,69 \text{ M}}{\pi \text{ b}^3})^2} \le \sigma_{\text{ADM}} = \frac{\sigma_e}{n}$$

despejando se tiene:

$$b = \sqrt[3]{\frac{M}{\sigma_{ADM}} \cdot \pi} \left[2.4^2 + 3(12.69)^2 \right]^{1/2} = \sqrt[3]{\frac{600000}{2000 \, \pi} \left[2.4^2 + 3(12.69)^2 \right]^{1/2}} = 12.83 \, \text{cm}$$

las unidades empleadas en cm y kp.

El ángulo torsionado es:

$$\theta = \frac{M_T}{4 \cdot G \cdot A^2} \int_{1}^{1} \frac{ds}{c}$$

donde s es el perímetro de la línea media y vale: $s = \pi \cdot [1,5(a'+b') + \sqrt{a' \cdot b'}] = 11,232 \cdot b = 144,107$ cm. Así:

$$\theta = \frac{600000144,107}{40,8110^6 \cdot (1,9701\pi12,83)^2 \cdot 0,0212,83} = 0,0165 \text{ rad} = 0,945 \text{ °}.$$

6.- determinar la relación que existe entre las áreas de las secciones rectangular con relación b/c = k y la sección circular de diámetro d, que sometidas al mismo momento torsor producen la misma tensión cortante máxima.

En una sección circular la tensión máxima está en la fibra externa. En la sección rectangular la tensión mayor corresponde al punto 1, ver figura 14.4.

Así basta igualar los valores máximos de la tensión cortante en ambos casos:

$$\frac{16 \cdot M_{T}}{\pi \cdot d^{3}} = \frac{M_{T}}{\alpha_{1} \cdot b \cdot c^{2}} \rightarrow \frac{16}{\pi \cdot d^{3}} = \frac{1}{\alpha_{1} \cdot k \cdot c^{3}} \rightarrow d = c \cdot \sqrt[3]{\frac{16 \cdot \alpha_{1} \cdot k}{\pi}}$$

La relación entre las áreas es:

$$\frac{\Omega_{R}}{\Omega_{C}} = \frac{b \cdot c}{\pi \cdot \frac{d^{2}}{4}} = \frac{4 \cdot k \cdot c^{2}}{\pi \cdot d^{2}} = \frac{4 \cdot k}{\pi \cdot (\frac{16 \cdot \alpha_{1} \cdot k}{\pi})^{2/3}} = \sqrt[3]{\frac{k}{4 \cdot \pi \cdot \alpha_{1}^{2}}}$$

7.- Una viga biempotrada de 4 m está sometida a un par de torsión uniforme m = 3 t. Se desea diseñar con un perfil multicelular como el de la figura 14.7. Conocido el valor de a = 10 cm se debe determinar el espesor c si se construye en un acero A-37 y con una seguridad de 2. Determinar también el momento de inercia equivalente.

Figura 14.7

En este caso se tiene:

$$\theta_{i} = \frac{1}{2 \cdot G \cdot A_{i}} (-t_{i-1,i} \cdot \int_{s_{i-1}} \frac{ds}{c} + t_{i} \cdot \int_{s_{i}} \frac{ds}{c} - t_{i,i+1} \cdot \int_{s_{i+1}} \frac{ds}{c})$$

Como todas las celdas son iguales, los flujos son iguales, así:

$$t_1 = t_2 = t_3 = t_4 \leftrightarrow A_1 = A_2 = A_3 = A_4$$

$$M_T = 4 \cdot (2 \cdot t_1 \cdot A_1) = 8 \cdot t_1 \cdot A_1$$

El momento de torsión crítico es:

$$M_T = m \cdot (L/2) = 3 \cdot 4/2 = 6 \text{ t·m} = 8 \cdot t_1 \cdot a^2 \rightarrow t_1 = \frac{M_T}{8 \cdot a^2} = \frac{6 \cdot 10^5 \text{ kp·cm}}{8 \cdot 100 \text{ cm}^2} = 750 \text{ kp/cm}.$$

Así la $\tau_{máx} = t_1/c$ que sustituyendo en la tensión de Von Mises:

$$\sigma_{\rm CO} = \sqrt{3 \cdot \tau^2} = \sqrt{3 \cdot (\frac{t_1}{c})^2} \le \sigma_{\rm ADM} = \frac{\sigma_e}{n} \ \to \ c \ge \frac{\sqrt{3} \cdot t_1}{\sigma_{\rm ADM}} = \frac{\sqrt{3} \cdot 750}{2400/2} = 1,08 \ cm.$$

$$I_{t} = \frac{M_{T}}{G \cdot \theta_{i}}$$

$$\theta_1 = \frac{1}{2 \cdot G \cdot A_1} \cdot (2 \cdot t_1 \cdot \frac{2 \cdot a}{c} - t_{12} \cdot \frac{a}{c} - t_{13} \cdot \frac{a}{c}) = \frac{t_1}{G \cdot a \cdot c}$$

$$I_t = \frac{M_T \cdot a \cdot c}{t_1} = \frac{6 \cdot 10^5 \cdot 10 \cdot 1,08}{750} = 8640 \text{ cm}^4$$

8.- Una viga en voladizo está torsionada con un momento uniforme m=3 t y una longitud L=2 m. Diseñar la viga si el espesor c=1 cm, se emplea un acero A-42 con una seguridad n=2,5. Calcular la rigidez a torsión.

En este caso se tiene:

$$\theta_1 = \frac{1}{2 \cdot \mathbf{c} \cdot \mathbf{G} \cdot \mathbf{A}_1} \cdot (\mathbf{t}_1 \cdot (\mathbf{a} + \frac{2 \cdot \mathbf{a}}{3}) - \mathbf{t}_{12} \cdot \mathbf{a})$$

Las celdas 1 y 3 son iguales, por lo que:

$$t_1 = t_3 \leftrightarrow \theta_1 = \theta_3$$

Por otro lado.

$$\theta_2 = \frac{1}{2 \cdot \mathbf{c} \cdot \mathbf{G} \cdot \mathbf{A}_2} \cdot (\mathbf{t}_2 \cdot (\frac{2 \cdot \mathbf{a}}{3}) - \mathbf{t}_{12} \cdot \mathbf{a} - \mathbf{t}_{13} \cdot \mathbf{a})$$

Escribiendo todo en función de t₁ y t₂ se tiene:

$$\theta_1 = \frac{1}{2 \cdot \mathbf{c} \cdot \mathbf{G} \cdot \mathbf{A}_1} \cdot (\mathbf{t}_1 \cdot \frac{5 \cdot \mathbf{a}}{3} - \mathbf{t}_2 \cdot \mathbf{a}) \longleftrightarrow \theta_2 = \frac{1}{2 \cdot \mathbf{c} \cdot \mathbf{G} \cdot \mathbf{A}_2} \cdot (\mathbf{t}_2 \cdot \frac{2 \cdot \mathbf{a}}{3} - 2 \cdot \mathbf{t}_1 \cdot \mathbf{a})$$

Como se verifica que $\theta_1 = \theta_2$ y $A_1 = A_2$:

$$t_1 \cdot \frac{5 \cdot a}{3} - t_2 \cdot a = t_2 \cdot \frac{2 \cdot a}{3} - 2 \cdot t_1 \cdot a \rightarrow t_1 = \frac{5 \cdot t_2}{11}$$

Como $t_2 > t_1$, se debe verificar que $\tau_{m\acute{a}x} = t_2/c$ que sustituyendo en la tensión de Von Mises:

$$\sigma_{\text{CO}} = \sqrt{3 \cdot \tau^2} = \sqrt{3 \cdot (\frac{t_2}{c})^2} \le \sigma_{\text{ADM}} = \frac{\sigma_{\text{e}}}{n} \rightarrow t_2 \le \frac{\sigma_{\text{ADM}} \cdot c}{\sqrt{3}} = \frac{{}^{2600}\!/{}_{2,5} \cdot 1}{\sqrt{3}} = 600,44 \text{ kp/cm}.$$

Entonces
$$t_1 = \frac{5 \cdot t_2}{11} = 272,93 \text{ kp/cm}.$$

Por otro lado:

$$M_T = 2 \cdot t_1 \cdot A_1 + 2 \cdot t_2 \cdot A_2 + 2 \cdot t_3 \cdot A_3 = 4 \cdot t_1 \cdot A_1 + 2 \cdot t_2 \cdot A_2 = \frac{4 \cdot t_1 \cdot a^2}{3} + \frac{2 \cdot t_2 \cdot a^2}{3}$$

El momento de torsión crítico es:

$$M_T = m \cdot L = 6 \cdot 10^5 \text{ kp·cm} = \frac{4 \cdot t_1 \cdot a^2}{3} + \frac{2 \cdot t_2 \cdot a^2}{3} = \frac{20 \cdot t_2 \cdot a^2}{33} + \frac{2 \cdot t_2 \cdot a^2}{3} = \frac{42 \cdot t_2 \cdot a^2}{33}$$

$$\rightarrow a = \sqrt{\frac{33 \cdot M_T}{42 \cdot t_2}} = \sqrt{\frac{33 \cdot 6 \cdot 10^5}{42 \cdot 600,44}} = 28,02 \text{ cm}.$$

La rigidez a torsión $K_T = G \cdot I_t = \frac{M_T}{\theta_i}$

$$\theta_{1} = \frac{1}{2 \cdot c \cdot G \cdot A_{1}} \cdot (t_{1} \cdot \frac{5 \cdot a}{3} - t_{2} \cdot a) = \theta_{1} = \frac{1}{2 \cdot c \cdot G \cdot \frac{a^{2}}{3}} \cdot (t_{1} \cdot \frac{5 \cdot a}{3} - t_{2} \cdot a)$$

$$\theta_1 = \frac{1}{2 \cdot 1 \cdot 0.81 \cdot 10^6 \cdot 28.02^2 / 3} \cdot (272.93 \cdot \frac{5 \cdot 28.02}{3} - 600.44 \cdot 28.02) = -9.62 \cdot 10^{-6} \text{ rad} = -5.51 \cdot 10^{-4} \text{ o}$$

$$K_T = \frac{6 \cdot 10^5}{9.62 \cdot 10^{-6}} = 0.6237 \cdot 10^{10} \text{ cm}^2 \cdot \text{kp el valor de } I_t = 7700 \text{ cm}^4.$$

9.- Calcular las relaciones entre las rigideces a torsión de las secciones cerradas de mismo espesor cuyas líneas medias se dan en la figura 14.9.

La unicelular tiene una rigidez:

$$K_{\rm U} = \frac{M_{\rm T}}{\theta}$$

y la multicelular:

$$K_{\rm M} = \frac{M_{\rm T}}{\theta_{\rm i}}$$

así la razón $K_U / K_M = = \frac{\theta_i}{\theta}$

$$\theta = \frac{M_T}{4 \cdot G \cdot A^2} \int_L \frac{ds}{c} = \frac{M_T \cdot (2 \cdot a + 2 \cdot \pi \cdot a)}{4 \cdot G \cdot A^2 \cdot c}$$

con A = $a^2 + \pi \cdot (a^2/4)$:

$$\theta = \frac{M_T \cdot (2 \cdot a + 2 \cdot \pi \cdot a)}{4 \cdot G \cdot (a^2 + \pi \cdot a^2/4)^2 \cdot c} = \frac{8 \cdot M_T \cdot (1 + \pi)}{G \cdot a^3 \cdot (4 + \pi)^2 \cdot c} \rightarrow K_U = \frac{G \cdot a^3 \cdot (4 + \pi)^2 \cdot c}{8 \cdot (1 + \pi)}$$

Para la multicelular:

$$\theta_1 = \frac{1}{2 \cdot c \cdot G \cdot (\pi \cdot a^2/8)} \cdot (t_1 \cdot \pi \cdot a - t_{12} \cdot a)$$

Las celdas 1 y 3 son iguales, por lo que:

355

$$t_1 = t_3 \leftrightarrow \theta_1 = \theta_3$$

Por otro lado.

$$\theta_2 = \frac{1}{2 \cdot \mathbf{c} \cdot \mathbf{G} \cdot \mathbf{a}^2} \cdot (\mathbf{t}_2 \cdot 2 \cdot \mathbf{a} - \mathbf{t}_{12} \cdot \mathbf{a} - \mathbf{t}_{13} \cdot \mathbf{a})$$

Escribiendo todo en función de t₁ y t₂ se tiene:

$$\theta_1 = \frac{4}{c \cdot G \cdot \pi \cdot a^2} \cdot (t_1 \cdot \pi \cdot a - t_2 \cdot a) \longleftrightarrow \theta_2 = \frac{1}{2 \cdot c \cdot G \cdot a^2} \cdot (t_2 \cdot 2 \cdot a - t_1 \cdot 2 \cdot a)$$

Como se verifica que $\theta_1 = \theta_2$:

$$4(t_1 - \frac{t_2}{\pi}) = (t_2 - t_1) \rightarrow t_1 = t_2 \cdot \frac{(4 + \pi)}{5 \cdot \pi}$$

La rigidez a torsión de la multicelular $K_M = \frac{M_T}{\theta_i}$

$$\theta_1 = \frac{4}{c \cdot G \cdot \pi \cdot a^2} \cdot (t_1 \cdot \pi \cdot a - t_2 \cdot a) = \theta_1 = \frac{4 \cdot t_2}{5 \cdot c \cdot G \cdot \pi \cdot a} \cdot (\pi - 1)$$

$$M_T = 2 \cdot t_1 \cdot A_1 + 2 \cdot t_2 \cdot A_2 + 2 \cdot t_3 \cdot A_3 = 4 \cdot t_1 \cdot A_1 + 2 \cdot t_2 \cdot A_2 = 4 \cdot t_2 \cdot \frac{(4 + \pi)}{5 \cdot \pi} \cdot \frac{\pi \cdot a^2}{8} + 2 \cdot t_2 \cdot a^2 = 4 \cdot t_3 \cdot A_3 = 4 \cdot t_3$$

$$\begin{split} M_{T} &= t_{2} \cdot a^{2} \cdot (\frac{(4+\pi)}{10} + 2) &= t_{2} \cdot a^{2} \cdot (\frac{(16+\pi)}{10}) & \rightarrow t_{2} &= \frac{10 \cdot M_{T}}{(16+\pi) \cdot a^{2}} \\ \rightarrow \theta_{1} &= \frac{40 \cdot M_{T} \cdot (\pi - 1)}{c \cdot G \cdot \pi \cdot a^{3} \cdot (16 + \pi)} \end{split}$$

$$K_{M}/K_{U} = = \frac{\theta_{i}}{\theta} = \frac{40 \cdot M_{T} \cdot (\pi - 1)}{c \cdot G \cdot \pi \cdot a^{3} \cdot (16 + \pi)} \cdot \frac{G \cdot a^{3} \cdot (4 + \pi)^{2} \cdot c}{8 \cdot M_{T} \cdot (1 + \pi)} = \frac{5 \cdot (\pi - 1) \cdot (4 + \pi)^{2}}{\pi \cdot (16 + \pi) \cdot (1 + \pi)} = 2,19$$

10.- Dado un perfil 100.8 L de acero se pide determinar $M_{\rm T}$ para que el giro sea 4º por metro. Calcular la tensión cortante máxima.

$$M_T = \sum_{i=1}^{n} M_{T_i} = \frac{G \cdot \theta}{3} \sum_{i=1}^{n} s_i \cdot c_i^3$$

$$\theta = 4^{\circ} = \frac{4 \cdot \pi}{100 \cdot 180} = 6,981317 \cdot 10^{-4} \text{ rad/cm}.$$

$$M_T = \frac{0.81 \cdot 10^6 \cdot 6.981317 \cdot 10^{-4}}{3} \cdot \left[(10 - 0.4) \cdot 0.8^3 + (10 - 0.4) \cdot 0.8^3 \right] = 1853 \text{ kp\cdotcm}.$$

$$\tau_{\text{máx}} = \frac{M_{\text{T}} \cdot t_{\text{máx}}}{I_{\text{.}}} = G \cdot \theta \cdot t_{\text{máx}} = 0.81 \cdot 10^{6} \cdot 6.981317 \cdot 10^{-4} \cdot 0.8 = 452.39 \text{ kp/cm}^{2}$$

Figura 14.11

11.- Diseñar la sección a resistencia si soporta un $M_T=3$ t·m y determinar el ángulo de torsión. Datos A-52 y n = 3.

$$\sigma_{CO} = \sqrt{3} \cdot \tau_{m\acute{a}x} \le \sigma_{ADM} = \sigma_{e}/n \, \rightarrow \, \tau_{m\acute{a}x} \le \frac{\sigma_{ADM}}{\sqrt{3}} = \frac{^{3600/3}}{\sqrt{3}}$$

$$\tau_{\text{máx}} = 692,82 \text{ kp/cm}^2.$$

En este caso el perfil se considera delgado

$$\tau_{\text{máx}} = \frac{M_{\text{T}} \cdot t_{\text{máx}}}{I_{\text{t}}} \rightarrow I_{\text{t}} = \frac{\sum_{i=1}^{n} s_{i} \cdot c_{i}^{3}}{3} \rightarrow$$

$$I_{t} = \frac{9 \cdot t \cdot t^{3} + (7 \cdot t + 0, 5 \cdot t + t) \cdot t^{3} + 18 \cdot t \cdot (2 \cdot t)^{3}}{3} = 164, 5 \cdot t^{4} \rightarrow \tau_{máx} = \frac{3 \cdot 10^{5} \cdot 2 \cdot t}{164, 5 \cdot t^{4}} = 692, 82 \rightarrow 0.5 \cdot t^{4} + 0.5 \cdot t^{4} = 0.05 \cdot t^{4} + 0.05 \cdot t^{4} = 0.05 \cdot t$$

$$t = 1,74 \text{ cm} \rightarrow \theta = \frac{\tau_{max}}{G \cdot t_{max}} = \frac{692,82}{0.81 \cdot 10^6 \cdot 2 \cdot 1,74} = 2,46 \cdot 10^{-4} \text{ rad} = 0,014^\circ.$$

CAPÍTULO VII Análisis General del Problema Elástico

LECCIÓN 15

Tensiones y deformaciones generalizadas

Introducción: El estudio generalizado de tensiones y deformaciones se estudia en profundidad en la Teoría de la Elasticidad. La Teoría de la Elasticidad es la base de la Resistencia de Materiales. Sin embargo, dado el rigor que la primera requiere, presenta una gran dificultad para el estudiante. Por esta razón esta lección se ha puesto al final, ya que por las circunstancias especiales de esta asignatura parece más razonable. Esto está en contra con la idea moderna de que el sacrificio inicial que supone el estudio de la Teoría de la Elasticidad se ve claramente recompensado al pasar al estudio de la Resistencia de Materiales.

Como es lógico, en una sola lección sólo se dan unas pinceladas del problema elástico. Sin embargo, los objetivos son poco ambiciosos dadas las dificultades que se tienen en este curso. Aun así, dichos objetivos son importantes, ya que dejan una puerta abierta para que el estudiante pueda profundizar en el estudio de la Teoría de la Elasticidad si luego su profesión lo requiere.

Objetivos de la lección: Prepara al estudiante en el problema generalizado de tensiones y deformaciones para que sea capaz de afrontar diseños de mayor complejidad, y además profundice en el conocimientos del problema elástico.

Contenidos de los problemas: Cualquier tipo de problema dentro de la Teoría de la Elasticidad aunque dentro de los conceptos estudiados en la lección de teoría. Especialmente se trata con mayor detalle el estudio de la elasticidad plana.

Problemas resueltos: Exclusivamente ejercicios referentes a estos contenidos.

Formulación básica:

Fórmulas de las lecciones precedentes

Tensión y deformación

Tensión:

$$\vec{F}_{S} = \int_{\Omega} d\vec{f}$$

$$\vec{M}_{\rm S} = \int_{\Omega}^{\rightarrow} \wedge \, d \, \vec{f}$$

$$\vec{\sigma} = \lim_{\Delta\Omega \to 0} \frac{\Delta \vec{f}}{\Delta\Omega} = \frac{d \vec{f}}{d\Omega}$$

Componentes intrinsecas: $\overset{\rightarrow}{\sigma_n}$ llamada **tensión normal** según la normal al plano de la sección y otra $\overset{\rightarrow}{\tau}$ llamada **tensión tangencial** situada en el plano de la sección. Así:

$$\overset{\rightarrow}{\sigma} = \overset{\rightarrow}{\sigma}_{\rm n} + \overset{\rightarrow}{\tau}$$

Figura 15.1 Representación del vector tensión

Tensión plana

Figura 15.2 Elementos en tensión plana

Teorema de reciprocidad de las tensiones tangenciales: $\tau_{xy} = \tau_{yx}$ para el caso plano.

Vector tensión en el plano: $\overset{\rightarrow}{\sigma}=(\sigma_x,\,\sigma_y)$, y para una dirección general θ , se puede expresar de forma matricial:

$$\vec{\sigma} = \begin{pmatrix} \sigma_{x} \\ \sigma_{y} \end{pmatrix} = \begin{bmatrix} \sigma_{nx} & \tau_{xy} \\ \tau_{xy} & \sigma_{ny} \end{bmatrix} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix}$$

$$\overset{\rightarrow}{\sigma} = [T] \cdot \vec{u}$$

Componentes intrísecas de la tensión: $\overset{\rightarrow}{\sigma} = (\sigma_n, \tau)$

$$\sigma_{n} = \frac{\sigma_{nx} + \sigma_{ny}}{2} + \frac{\sigma_{nx} - \sigma_{ny}}{2} \cos 2\theta + \tau_{xy} \cdot \sin 2\theta$$

$$\tau = -\frac{\sigma_{nx} - \sigma_{ny}}{2} \operatorname{sen}(2\theta) + \tau_{xy} \cdot \cos(2\theta)$$

Figura 15.3 a) Tensiones. b) Fuerzas internas

matricialmente, se obtienen estos valores de forma inmediata haciendo:

$$\begin{split} \sigma_n &= \stackrel{\rightarrow}{\sigma} \cdot \stackrel{\rightarrow}{u} = \frac{\sigma_{nx} + \sigma_{ny}}{2} + \frac{\sigma_{nx} - \sigma_{ny}}{2} \cos 2\theta + \tau_{xy} \cdot \sin 2\theta \\ \tau &= \stackrel{\rightarrow}{\sigma} \cdot \stackrel{\rightarrow}{u'} = \tau = -\frac{\sigma_{nx} - \sigma_{ny}}{2} \sin(2\theta) + \tau_{xy} \cdot \cos(2\theta) \\ donde \stackrel{\rightarrow}{u'} &= \begin{pmatrix} -\sin\theta \\ \cos\theta \end{pmatrix} = \begin{pmatrix} -\beta \\ \alpha \end{pmatrix}, \text{ es la dirección tangencial.} \end{split}$$

Tensiones principales y tensiones cortantes máximas:

Orientación tensiones principales máximas: $tan(2 \cdot \theta_p) = \frac{2 \cdot \tau_{xy}}{\sigma_{nx} - \sigma_{ny}}$

Tensiones principales en el plano:
$$\sigma_{1,2} = \frac{\sigma_{nx} + \sigma_{ny}}{2} \pm \sqrt{\left(\frac{\sigma_{nx} - \sigma_{ny}}{2}\right)^2 + {\tau_{xy}}^2}$$

Orientación tensiones tangenciales máximas: $tan(2 \cdot \theta_s) = \frac{\sigma_{nx} - \sigma_{ny}}{2 \cdot \tau_{xy}}$

Tensiones cortantes máximas:
$$\tau_{max} = \pm \sqrt{\left(\frac{\sigma_{nx} - \sigma_{ny}}{2}\right)^2 + \tau_{xy}^2} = \frac{\sigma_1 - \sigma_2}{2}$$

Tensión media (correspondiente a los planos de tensión máxima): $\sigma_m = \frac{\sigma_{nx} + \sigma_{ny}}{2}$

Figura 15.4 Planos principales para un elemento en tensión plana

Tratamiento matricial:

Todos los desarrollos anteriores resultan más sencillos desde el punto de vista matricial. Se trata de ver los planos para los que el vector tensión es perpendicular a ellos, es decir; solo hay tensiones normales. Esto se hace como sigue*:

* El desarrollo que se realiza se puede extender al caso tridimensional.

$$\overset{\rightarrow}{\sigma} = \begin{bmatrix} T \end{bmatrix} \cdot \vec{u} = \sigma \cdot \vec{u} \to \begin{bmatrix} T - \sigma \cdot I \end{bmatrix} \cdot \vec{u} = \overset{\rightarrow}{0}$$

siendo [I] la matriz unidad, y σ un escalar. Esto se puede escribir en función de los cosenos directores α y β , se obtiene:

$$\begin{bmatrix} \sigma_{nx} - \sigma & \tau_{xy} \\ \tau_{xy} & \sigma_{ny} - \sigma \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

sistema homogéneo de 2 ecuaciones y 2 incógnitas cuya condición de compatibilidad es:

$$\begin{vmatrix} \sigma_{nx} - \sigma & \tau_{xy} \\ \tau_{xy} & \sigma_{ny} - \sigma \end{vmatrix} = 0$$

cuyas raíces son las tensiones principales y sus direcciones correspondientes son las principales. Así, la resolución de las tensiones y direcciones principales, no es mas que resolver un problema de valores propios de la matriz de tensiones*.

* Aquí se da un nivel básico, no se trata esto en profundidad. Para ello, consultar las referencias 1 y 2 de L. Ortíz Berrocal.

Circulo de Mohr para tensión plana:

Figura 15.5 Círculo de Mohr para tensión plana

.

Figura 15.6 Deformaciones $\epsilon_x,\,\epsilon_y,\,\epsilon_z$

Ley de Hooke para tensión plana:

Figura 15.7 Deformación angular γ_{xy}

$$\epsilon_{x} = \frac{1}{E} \, \left(\sigma_{nx} - \mu \cdot \sigma_{ny} \right) \Longleftrightarrow \epsilon_{y} = \frac{1}{E} \, \left(\, \sigma_{ny} - \mu \cdot \sigma_{nx} \right) \Longleftrightarrow \, \epsilon_{z} = - \, \frac{\mu}{E} \, \left(\sigma_{nx} + \sigma_{ny} \right)$$

$$\gamma_{xy} = \tau_{xy}/G$$

$$\sigma_{nx} \; = \frac{E}{1 \cdot \mu^2} \; \left(\epsilon_x + \mu {\cdot} \epsilon_y \right) \label{eq:sigma_nx}$$

$$\sigma_{ny} = \frac{E}{1 - \mu^2} (\epsilon_y + \mu \cdot \epsilon_x)$$

$$\tau_{xy} = G{\cdot}\gamma_{xy}$$

$$G = \frac{E}{2(1+\mu)}.$$

Depósitos y anillos

Se plantea el problema de elementos de pequeño espesor que trabajan a tracción y compresión.

Depósitos

Se supone un depósito cerrado cuya superficie es de revolución y se encuentra sometido a una presión interna p. Ver figura. Si el espesor t de la pared es pequeño frente a los radios de curvatura, la pared se comporta como un elemento cuyas tensiones carecen de componente radial y se distribuyen uniformemente a través del espesor. Para el estudio de las tensiones se aplica el método de las secciones tomando un elemento diferencial de la superficie delimitado horizontalmente por dos paralelos infinitamente próximos y verticalmente por dos meridianos infinitamente próximos también. La presión interna p se equilibre con las tensiones normales, dado que la simetría asegura que las tensiones cortantes son nulas.

Si se toma como sentido la normal a la superficie n, las fuerzas debidas a las tensiones normales son:

$$dF_1 = -2 \cdot \sigma_1 \cdot ds_2 \cdot t \cdot sen(d\theta_1/2)$$

$$dF_2 = -2 \cdot \sigma_2 \cdot ds_1 \cdot t \cdot sen(d\theta_2/2)$$

La fuerza que produce la presión p sobre la superficie ds₁·ds₂ es:

$$dF_3 = p \cdot ds_1 \cdot ds_2$$

La condición de equilibrio impone:

Figura 15.8

$$-2 \cdot \sigma_1 \cdot ds_2 \cdot t \cdot sen(d\theta_1/2) - 2 \cdot \sigma_2 \cdot ds_1 \cdot t \cdot sen(d\theta_2/2) + p \cdot ds_1 \cdot ds_2 = 0$$

que siendo r_1 y r_2 los radios de curvatura, al sustituir los valores $ds_1 = r_1 \cdot d\theta_1$ y $ds_2 = r_2 \cdot d\theta_2$, se obtiene:

$$\frac{\sigma_1}{r_1} + \frac{\sigma_2}{r_2} = \frac{p}{t}$$

Entre las paredes interior y exterior del depósito la tensión σ_3 va desde 0 hasta –p, pero para pequeños espesores son despreciables frente a σ_1 y σ_2 .

Esta ecuación general si se aplica al caso de un depósito esférico se tiene $r_1 = r_2 = r$, y en el caso de un cilindro se tiene $r_1 = r$, $r_2 = \infty$.

Recipientes esféricos y cilíndricos sometidos a presión (tensión biaxial):

Figura 15.9 Tensión en un recipiente esférico a presión

Recipientes esféricos sometidos a presión:

$$\sigma = (p \cdot r)/(2 \cdot t)$$

Figura 15.10

En la superficie exterior: las tensiones principales son: $\sigma_1 = \sigma_2 = \frac{p \cdot r}{2 \cdot t}$

La tensión cortante máxima: en el plano es cero.

En el espacio: $\tau_{max} = \frac{\sigma}{2} = \frac{p \cdot r}{4 \cdot t}$ según se obtuvo de las ecuaciones anteriores.

En la superficie interior: las tensiones principales: $\sigma_1 = \sigma_2 = \frac{p \cdot r}{2 \cdot t} \leftrightarrow \sigma_3 = -p$

La tensión cortante máxima: en el plano es cero.

en el espacio:
$$\tau_{\text{max}} = \frac{\sigma + p}{2} = \frac{p \cdot r}{4 \cdot t} + \frac{p}{2}$$

Figura 15.11 Tensiones en un recipiente cilíndrico circular sometido a presión

Recipientes cilíndricos sometidos a presión:

Superficie exterior: tensión circunferencial: $\sigma_1 = \frac{p \cdot r}{t}$

tensión longitudinal:
$$\sigma_2 = \frac{p \cdot r}{2 \cdot t} \rightarrow \sigma_2 = \sigma_1/2$$

Figura 15.12 Tensiones en un recipiente cilíndrico circular a) en la superficie exterior, b) en la superficie interior

Las tensiones cortantes máximas:

$$\left(\tau_{\text{max}}\right)_{z} = \frac{\sigma_{1} - \sigma_{2}}{2} = \frac{\sigma_{1}}{4} = \frac{p \cdot r}{4 \cdot t} \iff \left(\tau_{\text{max}}\right)_{x} = \frac{\sigma_{1}}{2} = \frac{p \cdot r}{4t} \iff \left(\tau_{\text{max}}\right)_{y} = \frac{\sigma_{2}}{2} = \frac{p \cdot r}{4t}$$

En la superficie interior:

Las tensiones normales principales son: $\sigma_1 = \frac{p \cdot r}{t} \leftrightarrow \sigma_2 = \frac{p \cdot r}{2 \cdot t} \leftrightarrow \sigma_3 = -p$

Las tres tensiones cortantes máximas:

$$\left(\tau_{\text{max}}\right)_{x} = \frac{\sigma_{1} + p}{2} = \frac{p \cdot r}{2 \cdot t} + \frac{p}{2} \iff \left(\tau_{\text{max}}\right)_{y} = \frac{\sigma_{2} + p}{2} = \frac{p \cdot r}{4 \cdot t} + \frac{p}{2} \iff \left(\tau_{\text{max}}\right)_{z} = \frac{\sigma_{1} + \sigma_{2}}{2} = \frac{p \cdot r}{4}$$

Anillos:

Un anillo es el caso de un cilindro de pequeño espesor t pero con las bases abiertas. En este caso σ_2 es nulo ya que eran originadas por las bases. Así.

Figura 15.12

$$\sigma_1 = \frac{p}{t} \cdot r$$

siendo r el radio interior.

Estas tensiones se distribuyen uniformemente a lo largo del anillo y originan una deformación lineal:

$$\varepsilon_1 = \frac{\sigma_1}{E} - \frac{\mu}{E} (\sigma_2 + \sigma_3) = \frac{p \cdot r}{E \cdot t}$$

En el caso de que la presión sea exterior las ecuaciones son las mismas, solo que ahora el anillo está comprimido y el radio r es exterior.

Otro caso es cuando el anillo gira con una velocidad angular ω , de forma que se produce una fuerza centrifuga aproximada considerada sobre la superficie media:

$$F = m \cdot \omega^2 \cdot r$$

Siendo m la masa, g la gravedad y r el radio medio. Si t es el espesor, L la altura y γ el peso específico, la presión aproximada ejercida sobre dicha superficie media es:

$$p = \frac{F}{A} = \frac{\frac{\gamma}{g} \cdot 2 \cdot \pi \cdot r \cdot L \cdot t \cdot \omega^{2} \cdot r}{2 \cdot \pi \cdot r \cdot L} = \frac{\gamma}{g} \cdot t \cdot \omega^{2} \cdot r$$

así las tensiones y deformaciones valen:

$$\sigma_1 = \frac{p}{t} \cdot r = \frac{\gamma}{g} \cdot \omega^2 \cdot r$$

$$\varepsilon_1 = \frac{\gamma}{g \cdot E} \cdot \omega^2 \cdot r$$

en cualquier de los casos estudiados la deformación lineal es constante a lo largo del anillo y, por tanto, las fibras circulares de radio r experimentan una variación relativa de longitud:

$$\varepsilon_1 = \frac{\Delta L}{L} = \frac{\Delta (2 \cdot \pi \cdot r)}{2 \cdot \pi \cdot r} = \frac{\Delta r}{r}$$

donde r vale tanto para el radio interior como al radio exterior.

Figura 15.13 Elemento en estado de tensión triaxial

Tensión triaxial

Las tensiones cortantes máximas:

$$\left(\tau_{\text{max}}\right)_{z} = \pm \frac{\sigma_{x} - \sigma_{y}}{2} \iff \left(\tau_{\text{max}}\right)_{x} = \pm \frac{\sigma_{y} - \sigma_{z}}{2} \iff \left(\tau_{\text{max}}\right)_{y} = \pm \frac{\sigma_{x} - \sigma_{z}}{2}$$

Ley de Hooke para tensión triaxial:

Deformaciones en función de las tensiones:

$$\varepsilon_{x} = \frac{\sigma_{nx}}{E} - \frac{\mu}{E} \left(\sigma_{ny} + \sigma_{nz}\right) \longleftrightarrow \varepsilon_{y} = \frac{\sigma_{ny}}{E} - \frac{\mu}{E} \left(\sigma_{nx} + \sigma_{nz}\right) \longleftrightarrow \varepsilon_{z} = \frac{\sigma_{nz}}{E} - \frac{\mu}{E} \left(\sigma_{nx} + \sigma_{ny}\right)$$

Las tensiones en función de las deformaciones:

$$\sigma_{nx} = \frac{E}{(1+\mu)(1-2\cdot\mu)} ((1-\mu)\varepsilon_x + \mu(\varepsilon_y + \varepsilon_z))$$

$$\sigma_{\rm ny} = \frac{E}{(1+\mu)(1-2\cdot\mu)} ((1-\mu)\epsilon_{\rm y} + \mu(\epsilon_{\rm x} + \epsilon_{\rm z}))$$

$$\sigma_{nz} = \frac{E}{(1+\mu)(1-2\cdot\mu)} ((1-\mu)\epsilon_z + \mu(\epsilon_x + \epsilon_y))$$

Ambos grupos de ecuaciones representan la ley de Hooke para tensión triaxial.

Cambio unitario de volumen:

volumen inicial es $V_0=1$ y su volumen final es: $V_f=(1+\epsilon_x)(1+\epsilon_y)(1+\epsilon_z)$

El cambio unitario de volumen, dilatación o deformación volumétrica:

$$e = (1 + \epsilon_x) (1 + \epsilon_y) (1 + \epsilon_z) - 1 = \epsilon_x + \epsilon_y + \epsilon_z + \epsilon_x \epsilon_y + \epsilon_x \epsilon_z + \epsilon_y \epsilon_z + \epsilon_x \epsilon_y \epsilon_z$$

Deformación volumétrica para pequeñas deformaciones:

$$e = \varepsilon_x + \varepsilon_y + \varepsilon_z = \frac{1 - 2 \cdot \mu}{E} (\sigma_{nx} + \sigma_{ny} + \sigma_{nz})$$

Expresiones de la densidad de energía de deformación:

$$\begin{split} & \varphi = \frac{1}{2} \Big(\sigma_{nx} \cdot \epsilon_x + \sigma_{ny} \cdot \epsilon_y + \sigma_{nz} \cdot \epsilon_z \Big) \\ & \varphi = \frac{1}{2 \cdot E} \Big(\sigma_{nx}^2 + \sigma_{ny}^2 + \sigma_{nz}^2 \Big) - \frac{\mu}{E} \Big(\sigma_{nx} \cdot \sigma_{ny} + \sigma_{nx} \cdot \sigma_{nz} + \sigma_{ny} \cdot \sigma_{nz} \Big) \\ & \varphi = \frac{E}{(1 + \mu)(1 - 2\mu)} \Big[(1 - \mu) \Big(\epsilon_x^2 + \epsilon_y^2 + \epsilon_y^2 \Big) + 2\mu \Big(\epsilon_x \cdot \epsilon_y + \epsilon_x \cdot \epsilon_z + \epsilon_y \cdot \epsilon_z \Big) \Big] \end{split}$$

Al realizar cálculos con estas expresiones se deben sustituir las tensiones y deformaciones con sus propios signos algebraicos.

Tensión esférica

$$\sigma_{nx}=\sigma_{ny}=\sigma_{nz}=\sigma_{o}$$

Las deformaciones normales: $\varepsilon_0 = \frac{\sigma_o}{E} (1 - 2 \cdot \mu)$, todas iguales

$$e = \frac{\Delta V}{V} = \frac{3(1 - 2 \cdot \mu)\sigma_o}{E} = 3 \cdot \epsilon_o$$

módulo volumétrico de elasticidad o módulo de elasticidad de volumen: $k = \frac{E}{3(1-2\cdot\mu)}$

$$e = \frac{\sigma_o}{k} \rightarrow k = \frac{\sigma_o}{e}$$

Figura 15.14 Tensión esférica

Tensión tridimensional

Principio de reciprocidad de las tensiones tangenciales:

$$\tau_{xy} = \tau_{yx} \iff \tau_{xz} = \tau_{zx} \quad \Longleftrightarrow \ \tau_{yz} = \tau_{zy}$$

Tensiones principales son las raíces de la ecuación:

$$\sigma^3 - A \cdot \sigma^2 + B \cdot \sigma - C = 0$$

Invariantes:

$$A = \sigma_{nx} + \sigma_{ny} + \sigma_{nz}$$

$$B = \sigma_{nx} \cdot \sigma_{ny} + \sigma_{nx} \cdot \sigma_{nz} + \sigma_{ny} \cdot \sigma_{nz} - \tau_{xy}^2 - \tau_{xz}^2 - \tau_{yz}^2$$

$$C = \sigma_{nx} \cdot \sigma_{ny} \cdot \sigma_z + 2 \cdot \tau_{xy} \cdot \tau_{xz} \cdot \tau_{yz} - \sigma_{nx} \cdot \tau_{yz}^2 - \sigma_{ny} \cdot \tau_{xz}^2 - \sigma_{nz} \cdot \tau_{xy}^2$$

Figura 15.15 Tensión tridimensional, sólo se muestran las tensiones en las caras vistas Las tres tensiones cortantes máximas son:

$$\left(\tau_{\text{max}}\right)_{3} = \pm \frac{\sigma_{1} - \sigma_{2}}{2} \iff \left(\tau_{\text{max}}\right)_{2} = \pm \frac{\sigma_{1} - \sigma_{3}}{2} \iff \left(\tau_{\text{max}}\right)_{1} = \pm \frac{\sigma_{2} - \sigma_{3}}{2}$$

Ley de Hooke generalizada o ley de Hooke para tensión tridimensional:

Deformaciones en función de las tensiones:

$$\begin{split} & \epsilon_{x} = \frac{\sigma_{nx}}{E} - \frac{\mu}{E} \left(\sigma_{ny} + \sigma_{nz} \right) \\ & \epsilon_{y} = \frac{\sigma_{ny}}{E} - \frac{\mu}{E} \left(\sigma_{nx} + \sigma_{nz} \right) \\ & \epsilon_{z} = \frac{\sigma_{nz}}{E} - \frac{\mu}{E} \left(\sigma_{nx} + \sigma_{ny} \right) \end{split}$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G} \iff \gamma_{xz} = \frac{\tau_{xz}}{G} \iff \gamma_{yz} = \frac{\tau_{yz}}{G}$$

Tensiones en función de las deformaciones:

$$\begin{split} &\sigma_{nx} = \frac{E}{(1+\mu)(1-2\cdot\mu)} \big((1-\mu)\epsilon_x + \mu \big(\epsilon_y + \epsilon_z \big) \big) \\ &\sigma_{ny} = \frac{E}{(1+\mu)(1-2\cdot\mu)} \big((1-\mu)\epsilon_y + \mu \big(\epsilon_x + \epsilon_z \big) \big) \\ &\sigma_{nz} = \frac{E}{(1+\mu)(1-2\cdot\mu)} \big((1-\mu)\epsilon_z + \mu \big(\epsilon_x + \epsilon_y \big) \big) \\ &\tau_{xy} = G \cdot \gamma_{xy} \leftrightarrow \tau_{xz} = G \cdot \gamma_{xz} \leftrightarrow \tau_{yz} = G \cdot \gamma_{yz} \end{split}$$

Finalmente la expresión para la densidad de energía de deformación es:

$$\phi = \frac{1}{2} \left(\sigma_{nx} \cdot \varepsilon_{x} + \sigma_{ny} \cdot \varepsilon_{y} + \sigma_{nz} \cdot \varepsilon_{z} + \tau_{xy} \cdot \gamma_{xy} + \tau_{xz} \cdot \gamma_{xz} + \tau_{yz} \cdot \gamma_{yz} \right)$$

Sustituyendo términos quedará:

Figura 15.16 Deformaciones en el plano ε_x , ε_y , γ_{xy}

Deformación plana

Condiciones:

$$\varepsilon_z = 0 \leftrightarrow \gamma_{xz} = 0 \leftrightarrow \gamma_{yz} = 0$$

Figura 15.17 Deformación plana a) $\epsilon_x,\,b)$) $\epsilon_y,\,c)\,\gamma_{xy}$

La deformación normal:

$$\epsilon_{n} = \epsilon_{x} \cdot \cos^{2}\theta + \epsilon_{y} \cdot \sin^{2}\theta + \gamma_{xy} \cdot \sin\theta \cdot \cos\theta = \frac{\epsilon_{x} + \epsilon_{y}}{2} + \frac{\epsilon_{x} - \epsilon_{y}}{2} \cdot \cos 2\theta + \frac{\gamma_{xy}}{2} \cdot \sin 2\theta$$

Figura 15.18 Deformación angular γ

$$\frac{\gamma}{2} = -\frac{\varepsilon_x - \varepsilon_y}{2} \operatorname{sen}(2\theta) + \frac{\gamma_{xy}}{2} \cos(2\theta)$$

Las deformaciones principales: $tan(2 \cdot \theta_p) = \gamma_{xy}/(\epsilon_x - \epsilon_y)$

Las deformaciones principales se calculan a partir de la ecuación:

$$\varepsilon_{1,2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$$

Las deformaciones angulares máximas: $\frac{\gamma_{max}}{2} = \pm \sqrt{\left(\frac{\epsilon_x - \epsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$

Figura 15.19.- Círculo de Mohr para deformación plana

Criterios de resistencia. Tensión equivalente

Se considera que las tensiones principales σ_1 , σ_2 y σ_3 verifican $\sigma_1 > \sigma_2 > \sigma_3$. Las **tensiones equivalentes**, σ_{co} (o de comprobación) valen según los distintos criterios los valores que a continuación siguen.

1. Criterio de la tensión principal máxima o de Rankine

Si
$$\sigma_1 > 0$$
 y $|\sigma_1| > |\sigma_3|$ la tensión equivalente es: $\sigma_{co} = \sigma_1$

En la práctica, cuando $|\sigma_3| > \sigma_1$, el cálculo de la resistencia por este criterio se hace imponiendo las siguientes condiciones simultaneas:

$$\sigma_1 \le \sigma_{et}$$
 y $|\sigma_3| \le |\sigma_{ec}|$

2. Criterio de la tensión tangencial máxima o de Tresca

Según este criterio:
$$\sigma_{co} = 2 \cdot \tau_{max} = \sigma_1 - \sigma_3$$

este criterio es razonablemente aceptable para materiales dúctiles sometidos a estados de tensión en los que se presentan tensiones tangenciales relativamente grandes.

3. Criterio de la deformación longitudinal máxima o de Saint Venant

La tensión equivalente es: $\sigma_{co} = E \cdot \varepsilon_1 = \sigma_1 - \mu (\sigma_1 + \sigma_3)$

siendo ε_1 , como se sabe, la deformación principal positiva de mayor módulo.

Este criterio, al igual que el de la tensión principal máxima, es aplicable fundamentalmente en materiales en los que el fallo es frágil, normalmente por rotura. Recordar que los materiales frágiles, normalmente, rompen cuando aparecen las primeras deformaciones permanentes, es decir, casi todo su comportamiento se puede asumir elástico.

4. Criterio de la energía de distorsión o de Von Mises

Este criterio coincide con el de las tensiones octaédricas.

$$\sigma_{\rm co} = \sqrt{\frac{1}{2} \left[\left(\sigma_{\scriptscriptstyle 1} - \sigma_{\scriptscriptstyle 2}\right)^2 + \left(\sigma_{\scriptscriptstyle 2} - \sigma_{\scriptscriptstyle 3}\right)^2 + \left(\sigma_{\scriptscriptstyle 3} - \sigma_{\scriptscriptstyle 1}\right)^2 \right]}$$

y que se considera el valor más apropiado para establecer la aparición de deformaciones permanentes en materiales dúctiles. Por esta razón es el criterio que desde un principio se ha elegido en el diseño de secciones. Hasta ahora, los casos que se presentaron eran de secciones planas con estado tensional de tensión normal σ_{nx} , y dos tensiones cortantes τ_{xy} , τ_{xz} ; en cada eje. La tensión equivalente σ_{co} es como se indicó en las primeras lecciones.

$$\sigma_{\rm co} = \sqrt{\sigma_{\rm n\,x}^2 + 3(\tau_{\rm x\,y}^2 + \tau_{\rm xz}^2)}$$

5. Criterio de los estados límites de Mohr

Este criterio es el más general, y aplicable tanto en el caso de materiales frágiles como dúctiles. Obtiene la expresión de la tensión equivalente al imponer la condición, de que dicha tensión es la que existe en la probeta del mismo material sometida a tracción, y tal que el coeficiente de seguridad entre el estado tensional dado y el de la probeta fuera el mismo. La tensión equivalente es:

$$\sigma_{co} = \sigma_1 - k \cdot \sigma_3$$

siendo $k = \sigma_{et}/\sigma_{ec}$, el cociente entre las tensiones elásticas de tracción y compresión del material.

Ecuaciones de Lamé

Expresan las tensiones en función de las deformaciones. Son las siguientes:

$$\sigma_{nx} = \lambda \cdot e + 2 \cdot G \cdot \varepsilon_x \longleftrightarrow \sigma_{ny} = \lambda \cdot e + 2 \cdot G \cdot \varepsilon_y \longleftrightarrow \sigma_{nz} = \lambda \cdot e + 2 \cdot G \cdot \varepsilon_z$$

$$\tau_{xy} = G \cdot \gamma_{xy} \longleftrightarrow \tau_{yz} = G \cdot \gamma_{yz} \longleftrightarrow \tau_{xz} = G \cdot \gamma_{xz}$$

siendo:

$$\lambda = \frac{\mu E}{(1+\mu)\cdot(1-2\mu)} \longleftrightarrow G = \frac{E}{2(1+\mu)}$$

 $\lambda\,y\,G$ son las llamadas constantes de Lamé.

1.- Se somete a la barra cilíndrica de la figura a un esfuerzo de tracción de 30 t. Suponiendo que su sección transversal tiene un diámetro de 6 cm, se piden: Las tensiones normales y tangenciales en el plano que forma 20° con la dirección axial de la barra, así como las que existen en las caras perpendiculares a él.

Figura 15.1a

La barra traccionada tiene una tensión normal σ_x :

$$\sigma_{x} = \frac{30000}{\pi \cdot 3^{2}} = 1061 \text{ kp/cm}^{2}$$

En la dirección y la tensión es nula siendo x e y direcciones principales de inercia. Tomando como diámetro del círculo de Mohr σ_x (ver figura 15.1a). El punto P_1 (σ_x , $\tau=0$) define el estado tensional de la sección normal de la barra. A partir de P_1 se toma un ángulo $2 \cdot \theta = 2 \cdot 20^\circ = 40^\circ$ y en sentido antihorario quedando definido el punto D que representa la σ y la τ en la cara buscada:

$$\tau_D = -\frac{1591,5}{2} \cdot \text{sen } 40^\circ = -341 \,\text{kp/cm}^2$$

$$\sigma_{\rm nD} = OC + CD \cdot \cos 40^{\circ} = \frac{1061}{2} + \frac{1061}{2} \cdot \cos 40^{\circ} = 937 \text{ kp/cm}^2$$

Las tensiones correspondientes a las caras normales a la dirección n vienen definidas por el punto D' del círculo:

$$\tau_{D'} = 341 \text{ kg/cm}^2$$

$$\sigma_{\text{nD'}} = \text{OC} - \text{CD} \cdot \cos 40^{\circ} = \frac{1061}{2} - \frac{1061}{2} \cdot \cos 40^{\circ} = 124 \text{ kp/cm}^2$$

- 2.- El elemento puntual de la figura 15.2a perteneciente a la superficie de un eje de acero está sometido a tracción biaxial, con una $\sigma_v = 1700 \text{ kp/cm}^2 \text{ y } \sigma_X = 1200 \text{ kp/cm}^2$. Se pide:
 - a) Representación del círculo de Mohr.
- b) Estado tensional para un plano (θ = 45°).

Figura 15.2a

- c) Valor de la tensión tangencial máxima en la superficie.
- a) Para dibujar el círculo de Mohr, se toma sobre el eje de abscisas el segmento OP₁ = $\sigma_{ny} = 1700 \text{ kg/cm}^2$, (se puede tomar a escala y medir los resultados sobre el círculo), así como, $OP_2 = \sigma_{nx} = 1200 \text{ kp/cm}^2$. Los puntos P_1 y P_2 representan el estado tensional de las caras ab y bc respectivamente. El segmento P₁P₂ define un círculo de Mohr.
- b) El plano definido por $\theta = 45^{\circ}$ nos da en el círculo de Mohr el punto D; por lo tanto:

$$\tau_D = -\frac{\sigma_1 - \sigma_2}{2} = \frac{1700 - 1200}{2} = 250 \,\mathrm{kp/cm^2}$$

$$\sigma_{\text{nD}} = \text{CD} = \frac{\sigma_1 + \sigma_2}{2} = \frac{1700 + 1200}{2} = 1450 \,\text{kp/cm}^2$$

$$\tau_{D^{'}} = \text{-} \ \tau_{D} = \text{-} \ 250 \ \text{kp/cm}^2 \longleftrightarrow \sigma_{nD^{'}} = \sigma_{nD}$$

3) La
$$\tau_{m\acute{a}x}=\frac{\sigma_{1}-\sigma_{2}}{2}=\frac{1700-1200}{2}=250\,kp/cm^{2}$$
, en la superficie.

Figura 15.2b

- 3.- En el interior de acero estructural A-42 existe el estado tensional plano indicado en la figura 15.3a, estando expresadas las tensiones en kp/cm².
- a) Determinar analíticamente las direcciones y tensiones principales, representándolas gráficamente.
- b) Calcular el vector tensión que corresponde al plano de la sección ab.
- c) Hallar la máxima deformación transversal unitaria indicando la dirección a la que corresponde.

a) Para el sistema de ejes indicado en la misma figura, los datos son:

$$\sigma_{\,nx} = 400 \; kp/cm^2 \; ; \qquad \sigma_{\,ny} = \text{-} \; 500 \; kp/cm^2 \; ; \qquad \quad \tau_{\,xy} = \text{-} \; 200 \; kp/cm^2 \; \label{eq:sigma_nx}$$

según el criterio de signos empleado.

Los valores de las tensiones principales se obtienen, analíticamente, aplicando las ecuaciones.

$$\sigma_1 = \frac{400 - 600}{2} + \sqrt{\left(\frac{400 + 600}{2}\right)^2 + 300^2} = 483.1 \text{ kp/cm}^2$$

$$\sigma_2 = \frac{400 - 600}{2} - \sqrt{\left(\frac{400 + 600}{2}\right)^2 + 300^2} = -683,1 \text{kp/cm}^2$$

Las direcciones principales, según la ecuación vienen dadas por:

$$tg \ 2 \cdot \theta = \frac{2 \cdot \tau_{xy}}{\sigma_{nx} - \sigma_{ny}} = \frac{-600}{400 + 600} = -0.6$$

de donde: $2 \cdot \theta = -30,96^{\circ} \rightarrow \theta = -15,48^{\circ}$; es decir, las direcciones principales forman con la dirección positiva del eje x ángulos cuyos valores son: $\theta_1 = -15,48^{\circ}$ y $\theta_2 = 74,52^{\circ}$.

Se representan gráficamente en la figura 15.3b.

b) Con los datos dados se puede construir el círculo de Mohr (figura 15.3b) que, como se ve, permite calcular gráficamente los valores de las tensiones principales.

Las componentes intrínsecas del vector tensión correspondiente al plano cuya traza es ab (figura 15.3b) se pueden obtener analíticamente por aplicación de las ecuaciones teniendo en cuenta que $\theta = -60^{\circ}$.

$$\sigma_{\rm D} = \frac{\sigma_{\rm nx} + \sigma_{\rm ny}}{2} + \frac{\sigma_{\rm nx} - \sigma_{\rm ny}}{2} \cos 2\theta + \tau_{\rm xy} \cdot \sin 2\theta \leftrightarrow \tau = \frac{\sigma_{\rm ny} - \sigma_{\rm nx}}{2} \cdot \sin 2\cdot\theta + \tau_{\rm xy} \cdot \cos 2\cdot\theta$$

$$\sigma_{\rm D} = \frac{400 - 600}{2} + \frac{400 + 600}{2} \cos(-120) - 300 \sin(-120) = -90,19 \text{ kp/cm}^2$$

$$\tau = \frac{-600 - 400}{2} \cdot \sin(-120) + 300 \cdot \cos(-120) = 583,01 \text{ kp/cm}^2$$

$$\sigma_{\rm D'} = \frac{400 - 600}{2} + \frac{400 + 600}{2} \cos(-300) - 300 \sin(-300) = -109,1 \text{kp/cm}^2$$

o bien, gráficamente, mediante el círculo de Mohr, como se indica en la figura 15.3b.

c) La deformación transversal unitaria máxima corresponde a las direcciones coincidentes con las bisectrices de los ejes principales correspondientes a las tensiones σ_1 y σ_2 . Del círculo de Mohr se deduce:

$$|\tau_{\text{max}}| = \frac{\sigma_1 - \sigma_2}{2} = 583,1 \,\text{kp/cm}^2$$

Por la ley de Hooke:

$$\left(\frac{1}{2}\gamma\right)_{max} = \frac{\tau_{max}}{2G}$$

y como:

$$G = \frac{E}{2 \cdot (1 + \mu)} = \frac{2,1 \cdot 10^6}{2 \cdot (1 + 0,3)} = 8,1 \cdot 10^5 \text{ kp/cm}^2$$

Tomándose los valores de E y μ que establece la NBE-EA-95 para los aceros como el A-42.

Sustituyendo estos valores queda:

$$\left(\frac{1}{2}\gamma\right)_{\text{max}} = \frac{583.1}{2\cdot8.1\cdot10^5} \text{ rad} = 0.36\cdot10^{-3} \text{ rad}$$

Se obtiene el mismo resultado calculando las deformaciones principales por aplicación de las leyes de Hooke y, posteriormente, la deformación transversal unitaria a partir del círculo de Mohr de deformaciones.

$$\epsilon_1 = \frac{1}{E} \cdot (\sigma_1 - \mu \cdot \sigma_2) = \frac{1}{2.1 \cdot 10^6} \cdot (483.1 + 0.3 \cdot 683.1) = 0.32763 \cdot 10^{-3}$$

$$\varepsilon_2 = \frac{1}{E} \cdot (\sigma_2 - \mu \cdot \sigma_1) = \frac{1}{2,1 \cdot 10^6} \cdot (-683,1 - 0,3 \cdot 483,1) = -0,3943 \cdot 10^{-3}$$

$$\left(\frac{1}{2}\gamma\right)_{\text{max}} = \frac{\varepsilon_1 - \varepsilon_2}{2} = \frac{0.32763 + 0.3943}{2} \cdot 10^{-3} \text{ rad} = 0.36 \cdot 10^{-3} \text{ rad}$$

Figura 15.3b

4.- En un punto de un sólido elástico, figura 15.4a, en el que existe un estado tensional plano,la matriz de tensiones, referida a un sistema de ejes cartesianos ortogonales, es:

$$[T] = \begin{bmatrix} -200 & 25 \\ 25 & -300 \end{bmatrix}$$

estando expresados sus componentes en kp/cm². Se pide, en ese punto:

- a) Determinar analítica y gráficamente las tensiones y direcciones principales.
- b) Calcular las deformaciones principales.
- c) Calcular la variación angular experimentada por la dirección a la que corresponde la deformación transversal unitaria máxima, dándola en grados, e indicar la dirección o direcciones correspondientes.

Datos: módulo de elasticidad E = 2,1·10 6 kp/cm 2 ; coeficiente de Poisson μ = 0,25

a) De la matriz de tensiones se dibuja el estado tensional indicado en la figura 15.4a.

Cálculo de las tensiones principales:

1°.- Analíticamente, aplicando las ecuaciones

Figura 15.4a

$$\sigma_1 = \frac{-200 - 300}{2} + \sqrt{\left(\frac{-200 + 300}{2}\right)^2 + (25)^2} = -194.1 \text{kp/cm}^2$$

$$\sigma_2 = \frac{-200 - 300}{2} - \sqrt{\left(\frac{-200 + 300}{2}\right)^2 + (25)^2} = -305,9,1 \text{ kp/cm}^2$$

Como la dirección ortogonal a estas dos es principal de inercia, esto supone que al ser ambas negativas la tensión principal mayor positiva tiene valor nulo, por lo que para seguir la notación respetamos el orden y las tensiones principales las designamos como:

$$\sigma_1 = 0 \text{ kp/cm}^2 \leftrightarrow \sigma_2 = -194,1 \text{ kp/cm}^2 \leftrightarrow \sigma_3 = -305,9 \text{ kp/cm}^2$$

2°.- Gráficamente, mediante el círculo de Mohr que se muestra en la figura P.-15.4.

Cálculo de las direcciones principales. Vienen determinadas por los ángulos θ que verifican:

$$tg2\cdot\theta = \frac{2\cdot\gamma_{xy}}{\sigma_{nx} - \sigma_{ny}} = \frac{2\cdot25}{-200 + 300} = 0,5 \rightarrow 2\cdot\theta = 26,565^{\circ} \rightarrow \theta = 13,283^{\circ}$$

es decir:
$$\theta_2 = 13,283^{\circ} \rightarrow \theta_3 = 103,283^{\circ}$$

Se ha representado gráficamente en al figura 15.4a

b) Aplicando las leyes de Hooke, los alargamientos unitarios principales son:

$$\varepsilon_2 = \frac{1}{E}(\sigma_2 - \mu \cdot \sigma_3) = \frac{1}{2.1 \cdot 10^6}(-194,1 + 0,25 \cdot 305,9) = -5,6 \cdot 10^{-5}$$

$$\varepsilon_2 = \frac{1}{E}(\sigma_3 - \mu \cdot \sigma_2) = \frac{1}{2,1 \cdot 10^6}(-305,9 + 0,25 \cdot 194,1) = -1,226 \cdot 10^{-4}$$

$$\varepsilon_3 = \frac{-1}{E}\mu(\sigma_2 + \sigma_3) = \frac{0.25}{2.1 \cdot 10^6}(194.1 + 305.9) = 5.952 \cdot 10^{-5}$$

c) La deformación transversal unitaria máxima, es: $\left(\frac{1}{2}\gamma\right)_{max} = \frac{\tau_{max}}{2G}$

siendo $|\tau_{\text{max}}| = \frac{|\sigma_3|}{2} = 152,95 \,\text{kg/cm}^2$ según se deduce del círculo de Mohr. Por otro lado:

G =
$$\frac{E}{2 \cdot (1 + \mu)}$$
 = $\frac{2,1 \cdot 10^6}{2 \cdot (1 + 0,25)}$ = 8,4.10⁵ kp/cm².

Luego:
$$\left(\frac{1}{2} \cdot \gamma\right)_{\text{max}} = \frac{152,95}{2 \cdot 8,4 \cdot 10^5} \text{ rad} = 5,21 \cdot 10^{-3} \text{ o}$$

Como se trata de ángulos muy pequeños, la variación angular que experimenta la dirección a la que corresponde la deformación transversal máxima coincide con ella.

Las direcciones correspondientes coinciden con las bisectrices de los ejes principales 1 y 3. En este caso, la dirección principal que corresponde a la tensión principal mayor ($\sigma = 0$) es perpendicular al plano director.

5.- Un bloque de acero A-37 está sometido a un estado tensional plano. En un punto P, el vector tensión correspondiente a un plano perpendicular al plano director, como el indicado en la figura 15.5a, tiene de módulo $|\overrightarrow{\sigma}| = 100 \text{ kp/cm}^2 \text{ y}$

forma un ángulo α , tal tg $\alpha = 0.75$. Sabiendo que éste ángulo que forma el vector tensión correspondiente a un plano de los del haz de vértice P con su normal es máximo, se pide:

- a) Cálcular los valores de las tensiones principales.
- b) Deformación transversal unitaria máxima, en grados.
- c) Hallar el valor de la dilatación cúbica unitaria.
- a) Las componentes intrínsecas del vector tensión sobre el plano considerado son:

$$\sigma_n = \sigma \cdot cos\alpha = 100 \cdot 0.8 = 80 \text{ kp/cm}^2 \\ \leftrightarrow \tau = \sigma \cdot sen\alpha = 100 \cdot 0.6 = 60 \text{ kp/cm}^2$$

Estos valores permiten situar el punto D(80,60) en el diagrama de Mohr. De la condición de ser máximo el ángulo α se deduce que la recta OD es tangente al círculo de Mohr, por lo que el centro C de dicho círculo, situado sobre el eje de abscisas, se obtendrá trazando por D una perpendicular a OD.

Las tensiones principales valen:

$$\sigma_1 = OB + BC + CP_1 = 80 + 60 \cdot tg\alpha + 100 \cdot tg\alpha = 200 \text{ kp/cm}^2.$$

$$\sigma_2 = OB + BC - CP_1 = 80 + 60 \cdot tg\alpha - 100 \cdot tg\alpha = 50 \text{ kp/cm}^2$$
.

La deformación transversal unitaria máxima según la ley de Hooke es:

$$\left(\frac{1}{2}\cdot\gamma\right)_{\text{max}} = \frac{\tau_{\text{max}}}{2\cdot G} = \frac{100}{2\cdot 8.1\cdot 10^{-3}} = 6.173\cdot 10^{-5} \text{ rad} = 3.537\cdot 10^{-3} \text{ o}$$

b) La dilatación cúbica unitaria:

$$\frac{\Delta V}{V} = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 = \frac{1 - 2 \cdot \mu}{E} (\sigma_1 + \sigma_2)$$

con $E=2,1\cdot 10^6$ y $\mu=0,3$ para los aceros estructurales. Así:

$$\frac{\Delta V}{V} = \frac{1 - 2.0.3}{2.1 \cdot 10^6} (200 + 50) = 4.762 \cdot 10^{-5}$$

6.- Para los ejercicios 4 y 5 escribir la ecuación analítica de la elipse de tensiones.

La elipse de tensiones se representa fácilmente a partir de las tensiones principales y su ecuación es de la forma:

$$\frac{x^2}{\sigma_1^2} + \frac{y^2}{\sigma_2^2} = 1$$

en el ejercicio 4 será: $\frac{x^2}{194,1^2} + \frac{y^2}{305,9^2} = 1$ en el ejercicio 5 será: $\frac{x^2}{200^2} + \frac{y^2}{50^2} = 1$

- 7.- En la placa de aluminio AL 6061-T6 rectangular, figura 15.7a, existe el estado tensional plano indicado en la figura. Los alargamientos unitarios en las direcciones de los ejes x e y son respectivamente $-5\cdot10^{-3}$ y $-1\cdot10^{-3}$.
 - a) Calcular los valores de las tensiones principales.
- b) Hallar las componentes intrínsecas del vector tensión correspondiente al plano de traza ab, perpendicular al plano director. Los valores de $E=26~GPa~y~\mu=0,33$.

Figura 15.7a

a) De las leyes de Hooke generalizadas se obtienen σ_{nx} y σ_{ny} teniendo en cuenta que $\sigma_{nx} = 0$ por tratarse de un estado tensional plano:

$$\epsilon_{_{x}} = \frac{1}{E} \cdot (\sigma_{_{nx}} - \mu \cdot \sigma_{_{ny}}) \, ; \; \epsilon_{_{y}} = \frac{1}{E} \cdot (\sigma_{_{ny}} - \mu \cdot \sigma_{_{nx}}) \, ; \; \sigma_{_{nx}} = \frac{E \cdot (\epsilon_{_{x}} + \mu \cdot \epsilon_{_{y}})}{1 - \mu^{2}} \, ; \; \sigma_{_{ny}} = \frac{E \cdot (\epsilon_{_{y}} + \mu \cdot \epsilon_{_{x}})}{1 - \mu^{2}}$$

Sustituyendo valores:

$$\sigma_{nx} = \frac{2,6530612 \cdot 10^5 \cdot (-5 - 0,33 \cdot 1) \cdot 10^{-3}}{1 - 0,33^2} = -1587 \text{ kp/cm}^2$$

$$\sigma_{ny} = \frac{2,6530612 \cdot 10^5 \cdot (-1 - 0,33 \cdot 5) \cdot 10^{-3}}{1 - 0.33^2} = -789 \text{ kp/cm}^2$$

que son también las tensiones principales pues sus caras correspondientes carecen de tensiones tangenciales.

$$\sigma_2 = -789 \text{ kp/cm}^2 \leftrightarrow \sigma_3 = -1587 \text{ kp/cm}^2$$

b) La normal exterior n al plano, cuya traza es ab, forma con la dirección principal 1 un ángulo $\theta = -60^{\circ}$, ver figura 15.7a.

Si se determinan a partir del círculo de mohr se tiene:

$$|\sigma_n| = OC + AC \cdot \cos(180 - 2 \cdot \theta) \leftrightarrow |\tau| = AC \cdot \sin(180 - 2 \cdot \theta),$$

las distancias todas positivas.

OC =
$$\frac{|\sigma_2| + |\sigma_3|}{2} = \frac{789 + 1587}{2} = 1188 \text{ kp/cm}^2$$

$$AC = \frac{-|\sigma_2| + |\sigma_3|}{2} = \frac{-789 + 1587}{2} = 399 \text{ kp/cm}^2$$

$$|\sigma_n| = 1188 + 399 \cdot \cos 60 = 1387,5 \rightarrow \sigma_n = -1387,5 \text{ kp/cm}^2$$

$$|\tau| = 399 \cdot \text{sen} 60 = 345,54$$

- 8.- En el interior de una pieza de acero A-52 está definido un estado de deformación plana. Las deformaciones unitarias en dos direcciones ortogonales paralelas al plano director, que se tomarán como ejes de un sistema de referencia cartesiano ortogonal, son: $\varepsilon_x = 2 \cdot 10^{-4}$ y en la dirección n que forma un ángulo $\theta = 30^{\circ}$ con el eje x: $\varepsilon_n = 0$. Se pide calcular:
 - a) Las tensiones y direcciones principales.
- b) Componentes intrínsecas del vector deformación unitaria correspondiente a un plano perpendicular al plano director y cuya normal forma 45° con el eje de las x.
- a) Las direcciones principales de la matriz de deformaciones coinciden, con las correspondientes a la matriz de tensiones. Dos de las direcciones principales son paralelas al plano director; la tercera es perpendicular al mismo.

Hay que tener en cuenta la analogía entre las matrices de tensiones y de deformaciones. En virtud de esta analogía se tiene para las deformaciones, un conjunto de fórmulas análogas a las de las tensiones. Así, para un plano cuya normal exterior n forma un ángulo θ con la dirección del semieje positivo x, la ecuación que nos da la deformación longitudinal en la dirección n, análoga para tensiones, será:

$$\varepsilon_{n} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \frac{\varepsilon_{x} - \varepsilon_{y}}{2} \cdot \cos 2 \cdot \theta + \frac{1}{2} \cdot \gamma_{xy} \cdot \sin 2 \cdot \theta$$

Sustituyendo los valores dados, de esta ecuación se obtiene el valor de la deformación angular $\frac{1}{2} \gamma_{xy}$

$$0 = 10^{-4} + 10^{-4} \cdot \frac{1}{2} + \frac{1}{2} \cdot \gamma_{xy} \cdot \frac{\sqrt{3}}{2} \Rightarrow \frac{1}{2} \gamma_{xy} = -\sqrt{3} \cdot 10^{-4}$$

El signo - indica que la deformación angular se produce en el sentido de aumentar el ángulo inicialmente recto de lados paralelos a los ejes coordenados.

Las direcciones principales se obtendrán aplicando la ecuación:

$$tg \ 2 \cdot \theta = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y} = \frac{-2 \cdot \sqrt{3} \cdot 10^{-4}}{2 \cdot 10^{-4}} = -\sqrt{3} \implies 2 \cdot \theta = -60^{\circ}$$

Por tanto:
$$\theta_1 = -30^\circ \leftrightarrow \theta_3 = 90^\circ - 30^\circ = 60^\circ$$

Los alargamientos unitarios principales se pueden obtener, analíticamente, por medio de las ecuaciones:

$$\varepsilon_{1} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} + \sqrt{\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \frac{1}{4}\gamma_{xy}^{2}} \longleftrightarrow \varepsilon_{3} = \frac{\varepsilon_{x} + \varepsilon_{y}}{2} - \sqrt{\left(\frac{\varepsilon_{x} - \varepsilon_{y}}{2}\right)^{2} + \frac{1}{4}\gamma_{xy}^{2}}$$

así:

$$\epsilon_1 = 10^{-4} + 10^{-4} \cdot \sqrt{1+3} = 3 \cdot 10^{-4} \iff \epsilon_3 = 10^{-4} - 2 \cdot 10^{-4} = -10^{-4}$$

Los valores de las tensiones principales se obtienen aplicando las ecuaciones de Lamé. Los parámetros $\lambda y G$ así como la dilatación cúbica unitaria tienen, para el material elástico que se considera, los siguientes valores

$$\lambda = \frac{\mu \cdot E}{(1 + \mu)(1 - 2 \cdot \mu)} = \frac{0.3 \cdot 2.1 \cdot 10^6}{1.3 \cdot 0.4} = 1.212 \cdot 10^6 \text{ kp/cm}^2$$

G =
$$\frac{E}{2 \cdot (1 + \mu)}$$
 = $\frac{2,1 \cdot 10^6}{2 \cdot 1,3}$ = 1,212 \cdot 10^6 kp/cm²

$$e=\epsilon_x+\epsilon_y=2{\cdot}10^{\text{-}4}$$

con $\varepsilon_z = 0$, por tratarse de un estado de deformación plana. Las ecuaciones de Lamé:

$$\sigma_1 = \lambda \cdot e + 2 \cdot G \cdot \varepsilon_1 = 727 \,\mathrm{kp/cm^2}$$

$$\sigma_2 = \lambda \cdot e + 2 \cdot G \cdot \varepsilon_2 = 162 \,\mathrm{kp/cm^2}$$

$$\sigma_3 = \lambda \cdot e + 2 \cdot G \cdot \varepsilon_3 = 81 \text{kp/cm}^2$$

2°. Aplicando las fórmulas análogas a las de las tensiones para $\theta = 45^{\circ}$, se obtienen las componentes intrínsecas pedidas.

$$\varepsilon_{\rm n} = (1 - \sqrt{3})10^{-4} \leftrightarrow \frac{1}{2} \cdot \gamma_{\rm n} = -10^{-4}$$

También se podía resolver usando el círculo de Mohr para deformaciones.

- Figura 15.8a
- 9.- Partiendo del estado tensional de la figura 15.9a para una acero $E=2,1\cdot10^6$ kp/cm²; $\mu=0,25$ determinar:
- a) El valor de las tensiones tangenciales máximas (τ_1, τ_2, τ_3) .
- b) σ_{β} y τ_{β} en un plano paralelo al eje 1 para $\beta=45^{\circ}$.
- c) $\sigma_{\alpha} \, y \, \tau_{\alpha}$ en un plano paralelo al eje 2 para $\alpha = 60^{\circ}$.
- d) $\sigma_{\chi} \, y \, \tau_{\chi}$ en un plano paralelo al eje 3 para $\chi = 30^{\circ}$.
- e) Las deformaciones lineales principales $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$.
- f) Variación unitaria de volumen.
- g) Tensión ortoédrica normal σ_{vm} ó valor medio de las tensiones principales.

Módulo de elasticidad volumétrico o cúbico (E_v).

a) Como las tensiones principales son conocidas: $\sigma_1 = 200 \text{ kp/cm}^2$, $\sigma_2 = -70 \text{ kp/cm}^2$ y $\sigma_3 = -300 \text{ kp/cm}^2$, los valores máximos de las tensiones tangenciales se obtienen inmediatamente(ver figura 15.9a).

$$\tau_1 = \pm \frac{\sigma_2 - \sigma_3}{2} = \pm \frac{-70 + 300}{2} = \pm 115 \text{ kp/cm}^2$$

$$\tau_2 = \pm \frac{\sigma_1 - \sigma_3}{2} = \pm \frac{200 + 300}{2} = \pm 250 \text{ kp/cm}^2$$

$$\tau_2 = \pm \frac{\sigma_1 - \sigma_2}{2} = \pm \frac{200 + 70}{2} = \pm 135 \text{ kp/cm}^2$$

b) En los planos paralelos al eje 1, las σ y τ se determinan:

$$\begin{split} &\sigma_{\beta}=\sigma_2\cdot\cos^2\!\beta+\sigma_3\cdot\sin^2\!\beta=-70\cdot\cos^2\!45-300\cdot\sin^2\!45=185\;kp/cm^2\\ &\tau_{\beta}=\frac{\sigma_2-\sigma_3}{2}\cdot\sin2\beta=\frac{-70+300}{2}\cdot\sin90=115\,kp/cm^2 \end{split}$$

c) En los planos paralelos al eje 2:

$$\begin{split} &\sigma_{\alpha}=\sigma_{1}\cdot\cos^{2}\alpha+\sigma_{3}\cdot\sin^{2}\alpha=200\cdot\cos^{2}60-300\cdot\sin^{2}60=-175\text{ kp/cm}^{2}\\ &\tau_{\alpha}=\frac{\sigma_{1}-\sigma_{3}}{2}\cdot\sin2\alpha=\frac{200+300}{2}\cdot\sin120=1083\text{ kp/cm}^{2} \end{split}$$

d) En los planos paralelos al eje 3:

$$\begin{split} &\sigma_{\chi} = \sigma_{1} \cdot \cos^{2}\chi + \sigma_{2} \cdot \text{sen}^{2}\chi = 200 \cdot \cos^{2}30 - 70 \cdot \text{sen}^{2}30 = -132,5 \text{ kp/cm}^{2} \\ &\tau_{\chi} = \frac{\sigma_{1} - \sigma_{2}}{2} \cdot \text{sen} \ 2\chi = \frac{200 - 70}{2} \cdot \text{sen} \ 60 = 56,3 \text{ kp/cm}^{2} \end{split}$$

e) Las deformaciones lineales principales:

$$\begin{split} &\epsilon_1 = \frac{1}{E} \big[\sigma_1 - \mu \cdot (\sigma_2 + \sigma_3) \big] = \frac{1}{2,1 \cdot 10^6} \big[200 - 0,25 \cdot (-70 - 300) \big] = 139 \cdot 10^{-4} \\ &\epsilon_2 = \frac{1}{E} \big[\sigma_2 - \mu \cdot (\sigma_3 + \sigma_1) \big] = \frac{1}{2,1 \cdot 10^6} \big[-70 - 0,25 \cdot (-300 + 200) \big] = -0,21 \cdot 10^{-4} \\ &\epsilon_3 = \frac{1}{E} \big[\sigma_3 - \mu \cdot (\sigma_1 + \sigma_2) \big] = \frac{1}{2,1 \cdot 10^6} \big[300 - 0,25 \cdot (200 - 70) \big] = -1,58 \cdot 10^{-4} \end{split}$$

f) La variación unitaria de volumen e:

$$e = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 = 10^{-4} \cdot (139 - 0.21 - 1.58) = -0.4 \cdot 10^{-4}$$

f) El valor medio de las tensiones principales (σ_m):

$$\sigma_{\rm m} = \frac{1}{3} (\sigma_1 + \sigma_2 + \sigma_3) = \frac{1}{3} (200 - 70 - 300) = -567$$

g) Módulo de elasticidad volumétrico E_v:

$$E_{v} = \frac{\sigma_{m}}{e} = \frac{E}{3(1 - 2 \cdot \mu)}$$

puede obtenerse bien a partir de la 1a. igualdad 1a o bien a partir de la 2ª.

$$E_{v} = \frac{-56.6}{-0.4 \cdot 10^{-4}} = 1,415 \cdot 10^{6} \iff E_{v} = \frac{2,1 \cdot 10^{6}}{3 \cdot (1 - 2 \cdot 0.25)} \approx 1,415 \cdot 10^{6}$$

- 10.- Un depósito esférico de radio r y espesor t soporta una presión interior uniforme p. Determinar:
- a) Las variaciones de superficie, volumen de la pared y el volumen o capacidad del depósito. Datos: $p, r, t, E y \mu$.
- b) Diseñar el depósito a resistencia según los criterios conocidos, si está presurizado a 20 atm y se requiere una seguridad de n = 3. Datos: Acero A-42, r = 6 m.
- a) La variación de superficie se puede escribir:

$$\frac{\Delta S}{S} = e_S = \varepsilon_1 + \varepsilon_2$$

con

$$\varepsilon_1 = \frac{\sigma_1}{F} - \frac{\mu}{F} (\sigma_2 + \sigma_3) \leftrightarrow \varepsilon_2 = \frac{\sigma_2}{F} - \frac{\mu}{F} (\sigma_1 + \sigma_3) \leftrightarrow \varepsilon_3 = \frac{\sigma_3}{F} - \frac{\mu}{F} (\sigma_2 + \sigma_3)$$

en los desarrollos teóricos se obtuvo:

 $\sigma_{1} = \sigma_{2} = \frac{p \cdot r}{2 \cdot t} \rightarrow \sigma_{3}$ nula o despreciable frente a las otras.

$$\varepsilon_1 = \frac{\mathbf{p} \cdot \mathbf{r}}{2 \cdot \mathbf{t} \cdot \mathbf{E}} - \mu \cdot \left(\frac{\mathbf{p} \cdot \mathbf{r}}{2 \cdot \mathbf{t} \cdot \mathbf{E}} \right) = \frac{\mathbf{p} \cdot \mathbf{r}}{2 \cdot \mathbf{t} \cdot \mathbf{E}} \cdot (1 - \mu) = \varepsilon_2 \iff \varepsilon_3 = -\frac{\mu \cdot \mathbf{p} \cdot \mathbf{r}}{\mathbf{t} \cdot \mathbf{E}}$$

$$e_S = \frac{p \cdot r}{t \cdot E} \cdot (1 - \mu) \ \rightarrow S = 4 \cdot \pi \cdot r^2 \rightarrow \Delta S = \frac{4 \cdot \pi \cdot p \cdot r^3}{t \cdot E} \cdot (1 - \mu)$$

La variación de volumen de la pared se puede escribir:

$$\frac{\Delta V}{V} = \epsilon_1 + \epsilon_2 + \epsilon_3 = \frac{p \cdot r}{t \cdot E} \cdot (1 - 2 \cdot \mu)$$

$$con \ V = 4 \cdot \pi \cdot r^2 \cdot t \longrightarrow \Delta V = \frac{4 \cdot \pi \cdot p \cdot r^3}{E} \cdot (1 - \mu)$$

$$\epsilon_{\scriptscriptstyle 1} = \frac{\sigma_{\scriptscriptstyle 1}}{E} - \frac{\mu}{E} (\sigma_{\scriptscriptstyle 2} + \sigma_{\scriptscriptstyle 3}) \leftrightarrow \epsilon_{\scriptscriptstyle 2} = \frac{\sigma_{\scriptscriptstyle 2}}{E} - \frac{\mu}{E} (\sigma_{\scriptscriptstyle 1} + \sigma_{\scriptscriptstyle 3}) \leftrightarrow \epsilon_{\scriptscriptstyle 3} = \frac{\sigma_{\scriptscriptstyle 3}}{E} - \frac{\mu}{E} (\sigma_{\scriptscriptstyle 2} + \sigma_{\scriptscriptstyle 3})$$

en los desarrollos teóricos se obtuvo:

 $\sigma_{1} = \sigma_{2} = \frac{p \cdot r}{2 \cdot t} \rightarrow \sigma_{3}$ nula o despreciable frente a las otras.

$$\varepsilon_1 = \frac{\mathbf{p} \cdot \mathbf{r}}{2 \cdot \mathbf{t} \cdot \mathbf{E}} - \mu \cdot \left(\frac{\mathbf{p} \cdot \mathbf{r}}{2 \cdot \mathbf{t} \cdot \mathbf{E}} \right) = \frac{\mathbf{p} \cdot \mathbf{r}}{2 \cdot \mathbf{t} \cdot \mathbf{E}} \cdot (1 - \mu) = \varepsilon_2 \iff \varepsilon_3 = -\frac{\mu \cdot \mathbf{p} \cdot \mathbf{r}}{\mathbf{t} \cdot \mathbf{E}}$$

La capacidad
$$C = \frac{4 \cdot \pi \cdot r^3}{3} \rightarrow \Delta C = 4 \cdot \pi \cdot r^2 \cdot \Delta r$$
, así se obtiene: $\frac{\Delta C}{C} = \frac{3 \cdot \Delta r}{r}$

si se evalúa
$$\frac{\Delta L}{L} = \frac{\Delta 2 \cdot \pi \cdot r}{2 \cdot \pi \cdot r} = \frac{\Delta r}{r} = \varepsilon_1$$
, así:

$$\frac{\Delta C}{C} = 3 \cdot \varepsilon_1 = \frac{3 \cdot p \cdot r}{2 \cdot t \cdot E} \cdot (1 - \mu) \rightarrow \Delta C = \frac{3 \cdot p \cdot r}{2 \cdot t \cdot E} \cdot (1 - \mu) \cdot \frac{4 \cdot \pi \cdot r^3}{3} = \frac{2 \cdot p \cdot r^4}{t \cdot E} \cdot (1 - \mu)$$

Considerando 1 atm ≈ 1 kp/cm², a continuación se diseña el depósito según los criterios de resistencia estudiados.

$$1^{\circ}. \ Rankine: \ \sigma_{1} \leq \sigma_{et} \rightarrow \sigma_{co} = \sigma_{1} \leq \sigma_{ADM} = \sigma_{e}/n \rightarrow \frac{p \cdot r}{2 \cdot t} \leq \sigma_{ADM} \rightarrow t \geq \frac{p \cdot r}{2 \cdot \sigma_{ADM}} \rightarrow t \leq \frac{p \cdot$$

$$t \ge \frac{20.600}{2.2600/3} = 6,92$$
 cm. Notar que la tensión σ_3 se ha despreciado en el diseño.

2°. Tresca: $\sigma_{co} = 2 \cdot \tau_{máx} = \sigma_1 - \sigma_3 = \sigma_1$. Coincide con el anterior salvo que se considere σ_3 aunque su efecto es despreciable.

3°. Saint Venant:

$$\sigma_{\mathrm{co}} = E \cdot \epsilon_1 = \ \frac{p \cdot r}{2 \cdot t} \cdot (1 - \mu) \leq \sigma_{\mathrm{ADM}} \rightarrow t \geq \ \frac{p \cdot r}{2 \cdot \sigma_{\mathrm{ADM}}} \cdot (1 - \mu) = \frac{20 \cdot 600}{2 \cdot 2600 / 3} \cdot (1 - 0.3) = 4.85 \ cm.$$

4°. Von Mises:

$$\sigma_{\rm co} = \sqrt{\frac{1}{2} \left[\left(\sigma_1 - \sigma_2\right)^2 + \left(\sigma_2 - \sigma_3\right)^2 + \left(\sigma_3 - \sigma_1\right)^2 \right]} = \sigma_1, \text{ coincide con los anteriores.}$$

5°. Criterio de los estados límites de Mohr

$$\sigma_{co} = \sigma_1 - k \cdot \sigma_3 = \sigma_1$$
, coincide con los anteriores.

Nota: Se podría discutir la conveniencia de unos criterios u otros según el material que es dúctil. Se deja como ejercicio.

11.- Un depósito cilíndrico de radio r, longitud L y espesor t soporta una presión interior uniforme p. Determinar:

- a) Las variaciones de superficie, volumen de la pared y el volumen o capacidad del depósito. Datos: p, r, L, t, E y μ.
- c) Diseñar el depósito a resistencia según los criterios conocidos, si está presurizado a 20 atm y se requiere una seguridad de n = 2,5. Datos: Material de σ_e = 2500 kp/cm² y μ = 0,2; r = 4 m; L = 3 m.
- a) La variación de superficie se puede escribir:

$$\frac{\Delta S}{S} = e_S = \varepsilon_1 + \varepsilon_2$$

con

$$\varepsilon_1 = \frac{\sigma_1}{E} - \frac{\mu}{E} (\sigma_2 + \sigma_3) \leftrightarrow \varepsilon_2 = \frac{\sigma_2}{E} - \frac{\mu}{E} (\sigma_1 + \sigma_3)$$

en los desarrollos teóricos se obtuvo:

$$\sigma_1 = \frac{p \cdot r}{t}$$
 y $\sigma_2 = \frac{p \cdot r}{2 \cdot t} \rightarrow \sigma_3$ nula o despreciable frente a las otras.

$$\varepsilon_1 = \frac{\mathbf{p} \cdot \mathbf{r}}{\mathbf{t} \cdot \mathbf{E}} \cdot (1 - \frac{\mu}{2}) \iff \varepsilon_2 = \frac{\mathbf{p} \cdot \mathbf{r}}{\mathbf{t} \cdot \mathbf{E}} \cdot (\frac{1}{2} - \mu)$$

$$e_S = \frac{3 \cdot p \cdot r}{2 \cdot t \cdot E} \cdot (1 - \mu) \ \rightarrow S = 2 \cdot \pi \cdot r \cdot L \ \rightarrow \Delta S = \frac{3 \cdot \pi \cdot p \cdot r^2 \cdot L}{t \cdot E} \cdot (1 - \mu)$$

La variación de volumen de la pared se puede escribir:

$$\frac{\Delta V}{V} = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 = \frac{(1 - 2 \cdot \mu)}{E} \cdot (\sigma_1 + \sigma_2 + \sigma_3) = \frac{3 \cdot p \cdot r}{2 \cdot t \cdot E} \cdot (1 - 2 \cdot \mu)$$

$$con~V = 2 \cdot \pi \cdot r \cdot L \rightarrow \Delta V = \frac{3 \cdot p \cdot \pi \cdot r^2 \cdot L}{E} \cdot (1 - 2 \cdot \mu)$$

La capacidad $C=\pi\cdot r^2\cdot L\to \Delta C=2\cdot\pi\cdot r\cdot L\cdot \Delta r+\pi\cdot r^2\cdot \Delta L$, así se obtiene: $\frac{\Delta C}{C}=\frac{2\cdot\Delta r}{r}+\frac{\Delta L}{L}=2\cdot\epsilon_1+\epsilon_2\text{ , así :}$

$$\frac{\Delta C}{C} = \frac{p \cdot r}{t \cdot E} \cdot (\frac{5}{2} - 2 \cdot \mu) \ \rightarrow \Delta C \ = \ \frac{p \cdot \pi \cdot r^3 \cdot L}{t \cdot E} \cdot (\frac{5}{2} - 2 \cdot \mu)$$

Considerando 1 atm ≈ 1 kp/cm², a continuación se diseña el depósito según los criterios de resistencia estudiados.

$$1^{o}. \ Rankine: \ \sigma_{1} \leq \sigma_{et} \rightarrow \sigma_{co} = \sigma_{1} \leq \sigma_{ADM} = \sigma_{e}/n \rightarrow \frac{p \cdot r}{t} \leq \sigma_{ADM} \rightarrow t \geq \frac{p \cdot r}{\sigma_{ADM}} \rightarrow t \leq \frac{p \cdot r}{\sigma_{ADM}} \rightarrow t$$

 $t \ge \frac{20.400}{1000} = 8$ cm. Notar que la tensión σ_3 se ha despreciado en el diseño.

- 2°. Tresca: $\sigma_{co} = 2 \cdot \tau_{max} = \sigma_1 \sigma_3 = \sigma_1$. Coincide con el anterior salvo que se considere σ_3 aunque su efecto es despreciable.
 - 3°. Saint Venant:

$$\sigma_{co} = E \cdot \varepsilon_1 = \frac{p \cdot r}{t} \cdot (1 - \frac{\mu}{2}) \le \sigma_{ADM} \to t \ge \frac{p \cdot r}{\sigma_{ADM}} \cdot (1 - \frac{\mu}{2}) = \frac{20 \cdot 400}{1000} \cdot (1 - \frac{0.2}{2}) = 7.2 \text{ cm}.$$

4°. Von Mises:

$$\begin{split} &\sigma_{co} \,=\, \sqrt{\frac{1}{2} \Big[\! \big(\sigma_1 \! - \! \sigma_2^{} \big)^2 \! + \! \big(\sigma_2 \! - \! \sigma_3^{} \big)^2 \! + \! \big(\sigma_3 \! - \! \sigma_1^{} \big)^2 } \Big] \,=\, \sqrt{3} \cdot \! \sigma_2^{} \,\to\, \frac{\sqrt{3} \cdot \! p \cdot r}{t}^{} \! \leq \, \sigma_{ADM}^{} \,\to\, t \\ \geq & \frac{\sqrt{3} \cdot \! p \cdot r}{2 \cdot \! \sigma_{ADM}^{}} = \frac{\sqrt{3} \cdot \! 20 \cdot \! 400}{2 \cdot \! 1000} = 6,93 \text{ cm} \end{split}$$

5°. Criterio de los estados límites de Mohr

 $\sigma_{co} = \sigma_1 - k \cdot \sigma_3 = \sigma_1$, coincide con los anteriores.

12.- Un depósito cilíndrico está lleno de un líquido de peso específico γ y se encuentra suspendido por articulaciones de la parte superior. Su dimensiones son: radio r, longitud L y espesor t. Determinar:

- a) Tensiones máximas y la variación de superficie. Datos: γ , r , t, L, E y μ .
- b) Diseñar el depósito a resistencia según los criterios conocidos y si se requiere una seguridad de n = 2. Datos: Material acero A-37; r = 3 m; L = 5 m.

Figura 15.12a

a) Se deben tener en cuenta dos tipos de tensiones. Si se hace un corte vertical las fibras circulares soportan la presión.

$$p = \gamma \cdot y$$

la tensión:

$$\sigma_1 = \frac{\gamma \cdot \mathbf{r}}{\mathbf{t}} \cdot \mathbf{y}$$

que es máxima en x = L, y vale:

$$\sigma_1 = \frac{\gamma \cdot r}{t} \cdot L$$

La tensión σ_2 soporta el peso del líquido. Se desprecia el peso propio del depósito.

Por equilibrio de fuerzas se tiene: $\sigma_2 \cdot 2 \cdot \pi \cdot r \cdot t = \gamma \cdot \pi \cdot r^2 \cdot L \rightarrow$

$$\sigma_2 = \frac{\gamma \cdot \mathbf{r} \cdot \mathbf{L}}{2 \cdot \mathbf{t}}$$

La variación de superficie se puede escribir:

$$e_S = \frac{dS' - dS}{dS} = \frac{\Delta dS}{dS} = \varepsilon_1 + \varepsilon_2$$

El valor dS es aproximadamente dS = $2 \cdot \pi \cdot \text{rdy} \rightarrow \Delta \text{dS} = e_S \cdot \text{dS} \rightarrow$

$$\Delta S = \int_{C} e_{S} \cdot dS = \int_{C} (\epsilon_{1} + \epsilon_{2}) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot (1 - \mu) \cdot 2 \cdot \pi \cdot r \cdot dy = \int_{C} \frac{\sigma_{1} + \sigma_{2}}{F} \cdot r \cdot dy = \int_{C}$$

$$\Delta S = \int_0^L \frac{\gamma \cdot r}{F \cdot t} \cdot (1 - \mu) \cdot (y + \frac{L}{2}) \cdot 2 \cdot \pi \cdot r \cdot dy = \frac{\gamma \cdot r^2}{F \cdot t} \cdot 2 \cdot \pi \cdot (1 - \mu) \int_0^L (y + \frac{L}{2}) \cdot dy = \frac{2 \cdot \pi \cdot \gamma \cdot r^2 \cdot L^2}{F \cdot t} \cdot (1 - \mu)$$

b) En la sección donde las tensiones son máximas estará la condición de diseño.

1°. Rankine:
$$\sigma_1 \le \sigma_{et} \to \sigma_{co} = \sigma_1 \le \sigma_{ADM} = \sigma_e/n \to \sigma_1 = \frac{\gamma \cdot r}{t} \cdot L \le \sigma_{ADM} \to t \ge \frac{\gamma \cdot r \cdot L}{\sigma_{ADM}}$$
.

$$\sigma_{ADM} = 2400/2 = 1200 \text{ kp/cm}^2 \text{ y } \gamma = 1 \text{ kp/dm}^3 = 10^{-3} \text{ kp/cm}^3 \rightarrow t \ge \frac{10^{-3} \cdot 300 \cdot 500}{1200} = 0,125 \text{ cm}.$$

2°. Tresca: $\sigma_{co} = 2 \cdot \tau_{max} = \sigma_1 - \sigma_3 = \sigma_1$. Coincide con el anterior.

3°. Saint Venant:

$$\begin{split} &\sigma_{co} = E \cdot \epsilon_1 = \sigma_1 - \mu \cdot \left(\sigma_2 + \sigma_3\right) = \frac{\gamma \cdot r}{t} \cdot L - \mu \cdot \frac{\gamma \cdot r}{2 \cdot t} \cdot L = \frac{\gamma \cdot r}{t} \cdot L \cdot (1 - 0.5 \cdot \mu) \le \sigma_{ADM} \rightarrow \\ &t \ge \frac{\gamma \cdot r \cdot L}{\sigma_{ADM}} \cdot (1 - 0.5 \cdot \mu) = \frac{10^{-3} \cdot 300 \cdot 500}{1200} \cdot (1 - 0.15) = 0.106 \text{ cm}. \end{split}$$

4°. Von Mises:

$$\begin{split} &\sigma_{co} \ = \ \sqrt{\frac{1}{2} \Big[\! \big(\sigma_1 \! - \! \sigma_2 \ \big)^2 + \! \big(\sigma_2 \! - \! \sigma_3 \ \big)^2 + \! \big(\sigma_3 \! - \! \sigma_1 \ \big)^2 \, \Big]} \ = \ \sqrt{3} \cdot \! \sigma_2 \ \to \ \frac{\sqrt{3} \cdot \! \gamma \cdot \! r \cdot \! L}{2 \cdot t} \! \le \ \sigma_{ADM} \ \to \ t \\ & \geq \! \frac{\sqrt{3} \cdot \! \gamma \cdot \! r \cdot \! L}{2 \cdot \! \sigma_{ADM}} = \frac{\sqrt{3} \cdot \! 10^{-3} \cdot \! 300 \cdot \! 500}{2 \cdot \! 1200} = 0,\! 108 \ cm \end{split}$$

5°. Criterio de los estados límites de Mohr

$$\sigma_{co} = \sigma_1 - k \cdot \sigma_3 = \sigma_1$$
, coincide con los anteriores.

13.- Un depósito cónico está lleno de un líquido de peso específico γ y se encuentra suspendido por articulaciones de la parte superior. Sus dimensiones son las de la figura. Determinar las tensiones máximas. Datos: γ , θ , L, E y μ .

A partir de los resultados de la teoría se resuelve el problema. En este caso $r_2 = \infty$, $tg\theta = \frac{r_1 \cdot \cos \theta}{L - y} \rightarrow r_1 = \frac{tg \, \theta}{\cos \theta} \cdot (L - y) \rightarrow \sigma_1 = \frac{p \cdot r_1}{t} \rightarrow la$ presión vale: $p = \gamma \cdot y \rightarrow \sigma_1 = \frac{\gamma \cdot tg \, \theta}{t \cdot \cos \theta} \cdot (L - y) \cdot y$

Si se hace un corte en y se tiene que la parte inferior soporta todo el peso de la columna. Así el equilibrio de fuerzas verticales: $\sigma_2 \cdot A \cdot \cos\theta = P_1 + P_2 \rightarrow \sigma_2 \cdot (2 \cdot \pi \cdot [L-y] \cdot tg\theta \cdot t) \cdot \cos\theta =$

$$\gamma \cdot (\pi \cdot [L \cdot y]^2 \cdot tg^2 \theta \cdot \frac{\left[L - y\right]}{3} \quad + \quad \gamma \cdot (\pi \cdot [L \cdot y]^2 \cdot tg^2 \theta \cdot y \quad \rightarrow \quad$$

$$\begin{aligned} 2 \cdot \sigma_2 \cdot t \cdot \cos\theta &= \gamma \cdot tg\theta \cdot \frac{\left[L - y\right]^2}{3} + \gamma \cdot \left[L - y\right] \cdot tg\theta \cdot y \\ \rightarrow \sigma_2 \cdot t \cdot \cos\theta &= \gamma \cdot tg\theta \cdot \left[(L^2 - 2 \cdot L \cdot y + y^2) + 3 \cdot L \cdot y - 3 \cdot y^2\right] \\ \rightarrow \sigma_2 \cdot \cos\theta &= \gamma \cdot tg\theta \cdot \left[L^2 - L \cdot y - 2 \cdot y^2\right] \\ \rightarrow \sigma_2 &= \frac{\gamma \cdot tg\theta}{6 \cdot t \cdot \cos\theta} \cdot (L^2 + L \cdot y - 2 \cdot y^2) \end{aligned}$$

Las tensiones máximas se calculan para $\frac{d\sigma_1}{dy} = 0$ y $\frac{d\sigma_2}{dy} = 0$.

$$\sigma_{1max} \rightarrow \ \frac{d(L-y) \cdot y}{dy} = 0 \ \rightarrow \ y = L/2 \rightarrow \sigma_{1max} = \sigma_1(L/2) = \frac{\gamma \cdot tg \ \theta}{4 \cdot t \cdot cos \ \theta \cdot L^2}$$

$$\sigma_{2\text{max}} \rightarrow \ \frac{d(L^2-2\cdot L\cdot y+y^2)}{dy} = 0 \ \rightarrow y = L/4 \rightarrow \sigma_{2\text{max}} = \sigma_2(L/4) = \frac{3\cdot \gamma\cdot tg\ \theta\cdot L^2}{16\cdot t\cdot \cos\theta}$$

14.- Un anillo de acero ajusta perfectamente en el interior de un anillo de aluminio, se pide determinar:

- a) Las tensiones cuando se aplica una presión p exterior al anillo
- b) Las tensiones si se produce un descenso en la temperatura Δt .

Datos: Acero E_A , t_A , α_A ; Aluminio E_{Al} , t_{Al} α_{Al} ; p; Δt ; y la geometría de la figura.

Figura 15.14a

a) En la figura 15.14a1 se muestra el diagrama del cuerpo libre de los anillos con una presión x mutua.

El diámetro común (exterior del acero e interior del Al) experimenta la misma variación. $\Delta D_A = \Delta D_{Al} \rightarrow \epsilon_1{}^A = \epsilon_1{}^{Al} \rightarrow \epsilon_1{}^A = \frac{\sigma_1{}^A}{E_A} = \frac{-x \cdot r_1}{t_A \cdot E_A} = \epsilon_1{}^{Al} = \frac{x \cdot r_1}{t_{Al} \cdot E_{Al}} - \frac{p \cdot r_2}{t_{Al} \cdot E_{Al}} \rightarrow$

$$x = \frac{r_2 \cdot p \cdot t_A \cdot E_A}{r_1 \cdot (t_{Al} \cdot E_{Al} + t_A \cdot E_A)} \rightarrow \sigma_1^A = \frac{-r_2 \cdot p \cdot E_A}{(t_{Al} \cdot E_{Al} + t_A \cdot E_A)} \rightarrow \sigma_1^{Al} = \frac{-r_2 \cdot p \cdot E_{Al}}{(t_{Al} \cdot E_{Al} + t_A \cdot E_A)}$$

b) En la figura 15.14a2 se muestra el diagrama del cuerpo libre de los anillos con una presión x mutua.

Al igual que antes:
$$\epsilon_1^A = \epsilon_1^{Al} \rightarrow \epsilon_1^A = \frac{-x \cdot r_l}{t_A \cdot E_A} - \alpha_A \cdot \Delta t = \epsilon_1^{Al} = \frac{x \cdot r_l}{t_{Al} \cdot E_{Al}} - -\alpha_{Al} \cdot \Delta t \rightarrow \epsilon_1^{Al} = \frac{x \cdot r_l}{t_{Al} \cdot E_{Al}} - \alpha_{Al} \cdot \Delta t \rightarrow \epsilon_1^{Al} = \epsilon_1^{Al} = \epsilon_1^{Al} + \epsilon_1^{Al} = \epsilon_1^{Al} = \epsilon_1^{Al} + \epsilon_1^{Al} = \epsilon_1^{Al} =$$

$$x = \frac{(\alpha_{Al} - \alpha_{A}) \cdot t_{A} \cdot E_{A} \cdot t_{Al} \cdot E_{Al}}{r_{l} \cdot (t_{Al} \cdot E_{Al} + t_{A} \cdot E_{A})} \cdot \Delta t \rightarrow$$

$$\sigma_{1}^{A} = -\frac{(\alpha_{AI} - \alpha_{A}) \cdot E_{A} \cdot t_{AI} \cdot E_{AI}}{(t_{AI} \cdot E_{AI} + t_{A} \cdot E_{A})} \cdot \Delta t \rightarrow \sigma_{1}^{AI} = \frac{(\alpha_{AI} - \alpha_{A}) \cdot t_{A} \cdot E_{A} \cdot E_{AI}}{(t_{AI} \cdot E_{AI} + t_{A} \cdot E_{A})} \cdot \Delta t$$

15.- La matriz de tensiones en un punto interior de un acero A-37, referido a un sistema cartesiano ortogonal Oxyz, es:

$$[T] = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -3 & -4 \\ 0 & -4 & 1 \end{pmatrix}$$

estando expresadas sus componentes en N/mm². Se pide:

- a) Determinar las tensiones y direcciones principales.
- b) Determinar las tensiones cortantes máximas.
- c) Determinar analítica y gráficamente las componentes intrínsecas del vector tensión correspondiente al plano de vector unitario $\hat{n} = (0.5, \frac{1}{\sqrt{2}}, 0.5)$.
- d) Matriz de deformaciones para x, y, z; así como las deformaciones principales y sus direcciones.
 - e) Deformaciones angulares máximas.
- f) Determinar analítica y gráficamente las componentes intrínsecas del vector deformación correspondiente al plano de vector unitario $\hat{n} = (0'5, \frac{1}{\sqrt{2}}, 0, 5)$.
- a) De la matriz de tensiones dada se deduce la ecuación característica

$$\begin{vmatrix} 5 - \sigma & 0 & 0 \\ 0 - 3 - \sigma - 4 \\ 0 - 4 & 1 - \sigma \end{vmatrix} = 0 \rightarrow (5 - \sigma) \cdot (-3 - \sigma) \cdot (1 - \sigma) - 16 \cdot (5 - \sigma) = 0 \rightarrow (5 - \sigma) \cdot [-(3 + \sigma) \cdot (1 - \sigma) - 16] = 0 \rightarrow (5 - \sigma) \cdot [(3 + \sigma) \cdot (1 - \sigma) + 16] = 0 \rightarrow (5 - \sigma) \cdot (\sigma^2 + 2 \cdot \sigma - 19) = 0$$

cuyas raices son las tensiones principales

$$\sigma_1 = 5 \text{ N/mm}^2$$
; $\sigma_2 = -1 + \sqrt{20} \text{ N/mm}^2$; $\sigma_3 = -1 - \sqrt{20} \text{ N/mm}^2$

se podía obtener igual con las fórmulas:

$$\sigma^3 - A \cdot \sigma^2 + B \cdot \sigma - C = 0$$

Invariantes:

$$A = \sigma_{nx} + \sigma_{ny} + \sigma_{nz}$$

$$B = \sigma_{nx} \cdot \sigma_{ny} + \sigma_{nx} \cdot \sigma_{nz} + \sigma_{ny} \cdot \sigma_{nz} - \tau_{xy}^2 - \tau_{xz}^2 - \tau_{yz}^2$$

$$C = \sigma_{nx} \cdot \sigma_{ny} \cdot \sigma_z + 2 \cdot \tau_{xy} \cdot \tau_{xz} \cdot \tau_{yz} - \sigma_{nx} \cdot \tau_{yz}^2 - \sigma_{ny} \cdot \tau_{xz}^2 - \sigma_{nz} \cdot \tau_{xy}^2$$

Las direcciones principales se obtienen al resolver la ecuación:

$$([T] - \sigma \cdot [I]) \cdot \vec{u} = \overset{\rightarrow}{0}$$

para cada una de las tensiones principales, siendo $\overrightarrow{u} = (\alpha, \beta, \chi) y \alpha$, $\beta y \chi$ los cosenos directores. Se debe tener en cuenta también que $\alpha^2 + \beta^2 + \chi^2 = 1$.

Para $\sigma_1 = 5 \rightarrow \vec{u}_1 = (1,0,0)$, la simple observación de la matriz de tensiones se deduce que el eje x es dirección principal:

Para las otras dos las ecuaciones son:

$$(5-\sigma)\cdot\alpha=0$$

$$-(3+\sigma)\cdot\beta - 4\cdot\chi = 0$$

$$-4\cdot\beta$$
 - $(1-\sigma)\cdot\chi=0$

y además $\alpha^2 + \beta^2 + \chi^2 = 1$.

Para
$$\sigma_2 = -1 + \sqrt{20}$$
 $\rightarrow \alpha = 0$
 $\rightarrow -(3 - 1 + \sqrt{20}) \cdot \beta - 4 \cdot \chi = 0 \rightarrow -(2 + \sqrt{20}) \cdot \beta - 4 \cdot \chi = 0$
 $\rightarrow -4 \cdot \beta + (2 - \sqrt{20}) \cdot \chi = 0 \rightarrow -4 \cdot \beta + (2 - \sqrt{20}) \cdot \chi = 0$

y además $\beta^2 + \chi^2 = 1$, que es necesaria dado que las ecuaciones 2^a y 3^a son equivalentes. Si se resuelve se obtiene: $\vec{u}_2 = (0,0.526,-0.851)$.

Para
$$\sigma_3 = -1 - \sqrt{20}$$
 $\rightarrow \alpha = 0$
$$\rightarrow (3 - 1 - \sqrt{20}) \cdot \beta - 4 \cdot \chi = 0 \rightarrow (2 - \sqrt{20}) \cdot \beta - 4 \cdot \chi = 0$$

$$\rightarrow -4 \cdot \beta + (2 + \sqrt{20}) \cdot \chi = 0$$

y además $\beta^2 + \chi^2 = 1$, que es necesaria dado que las ecuaciones 2^a y 3^a son equivalentes.

Si se resuelve se obtiene: $\overrightarrow{u}_3 = (0,0.851,0.526)$.

En resumen:

$$\sigma_1 = 5$$
, $\sigma_2 = -1 + \sqrt{20}$, $\sigma_3 = -1 - \sqrt{20}$
 $\overrightarrow{u}_1 = (1,0,0)$, $\overrightarrow{u}_2 = (0,\pm 0.526, \mu.0.851)$, $\overrightarrow{u}_3 = (0,\pm 0.851,\pm 0.526)$

b) Las tensiones tangenciales máximas:

$$\tau_{\text{max}3} = \pm \frac{\sigma_1 - \sigma_2}{2} = \pm \frac{5 - (-1 + \sqrt{20})}{2} = \pm 0,764 \text{ N/mm}^2$$

$$\tau_{\text{max}2} = \pm \frac{\sigma_1 - \sigma_3}{2} = \pm \frac{5 - (-1 - \sqrt{20})}{2} = \pm 5,236 \text{ N/mm}^2$$

$$\tau_{\text{max}1} = \pm \frac{\sigma_2 - \sigma_3}{2} = \pm \frac{(-1 + \sqrt{20}) - (-1 - \sqrt{20})}{2} = \pm 4,472 \text{ N/mm}^2$$

c) El vector tensión correspondiente al plano definido por $\hat{n} = (0.5, \frac{1}{\sqrt{2}}, 0.5)$, será:

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \begin{bmatrix} T \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{pmatrix} 5 & 0 & 0 \\ 0 & -3 - 4 \\ 0 & -4 & 1 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/\sqrt{2} \\ 1/2 \end{pmatrix} = \begin{pmatrix} 2.5 \\ -4.121 \\ -2.328 \end{pmatrix} \rightarrow \sigma = 5.353$$

del que fácilmente se deducen los valores de las componentes intrínsecas

$$\sigma_{n} = \stackrel{\rightarrow}{\sigma} \stackrel{\rightarrow}{n} = \begin{pmatrix} 2.5 \\ -4.121 \\ -2.328 \end{pmatrix} \begin{pmatrix} 1/2 \\ 1/\sqrt{2} \\ 1/2 \end{pmatrix} = -2.828 \text{ N/mm}^{2}$$

$$\tau = \sqrt{\sigma^2 - \sigma_n^2} = \sqrt{5,353^2 - 2,828^2} = 4,545 \text{ N/mm}^2$$

Para resolver el problema gráficamente se deben calcular previamente las componentes de $\stackrel{\rightarrow}{n}$ respecto de la terna Oxyz coincidente con las direcciones principales.

La matriz del cambio de coordenadas de Oxyz a O123 es:

$$\begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0,526 & -0,851 \\ 0 & 0,851 & 0,526 \end{bmatrix}$$

Por tanto, las componentes de n respecto de O123 serán:

$$\begin{bmatrix} \vec{u} \\ \vec{u} \end{bmatrix} = \begin{bmatrix} R \end{bmatrix} \begin{bmatrix} \vec{n} \\ \vec{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.526 & -0.851 \\ 0 & 0.851 & 0.526 \end{bmatrix} \begin{bmatrix} 1/2 \\ 1/\sqrt{2} \\ 1/2 \end{bmatrix} = \begin{bmatrix} 0.5 \\ -0.054 \\ 0.865 \end{bmatrix} \rightarrow$$

de donde se deduce que los ángulos que \overrightarrow{n} forma con los ejes 123 son:

$$\hat{\alpha} = \arccos 0.5 = 60^{\circ}; \hat{\beta} = \arccos \beta = 93.07^{\circ}; \hat{\chi} = \arccos \chi = 30.15^{\circ}$$

Con estos datos la resolución gráfica es inmediata. En la figura 15.15a, se muestra el desarrollo teórico general. Para el caso general se procede de la siguiente forma:

Por $B(\sigma_3, 0)$, y formando un ángulo $\overline{\alpha}$ con el eje de abscisas positivo, se traza una semirrecta que corta en D a C_2 . Por $A(\sigma_1, 0)$, se traza otra semirecta que forma un

ángulo $\hat{\chi}$ con el eje de abscisas negativo y corta en E a C_2 . Con centro en O_1 y radio $\overline{O_1D}$ se traza la circunferencia concéntrica con C_1 ; y con centro en O_3 y radio $\overline{O_3E}$ la circunferencia concéntrica con C_3 . La intersección de ambas circunferencias es el punto M, solución del problema.

En la figura 15.15a2 se muestra la solución al problema. En este caso los puntos D y E prácticamente coinciden, coincidiendo M con ellos, estando prácticamente sobre el círculo C_2 . Los puntos sobre C_2 son representativos del haz de planos que contienen a la segunda dirección principal.

Se comprueba que los valores de las componentes intrínsecas del vector tensión correspondiente al plano considerado, a los que se llega gráficamente, coinciden con los valores obtenidos de forma analítica.

d) Para determinar las deformaciones basta aplicar las fórmulas siguientes:

$$\begin{split} & \epsilon_{x} = \frac{\sigma_{nx}}{E} - \frac{\mu}{E} \Big(\sigma_{ny} + \sigma_{nz} \Big) \longleftrightarrow \epsilon_{y} = \frac{\sigma_{ny}}{E} - \frac{\mu}{E} \Big(\sigma_{nx} + \sigma_{nz} \Big) \longleftrightarrow \epsilon_{z} = \frac{\sigma_{nz}}{E} - \frac{\mu}{E} \Big(\sigma_{nx} + \sigma_{ny} \Big) \\ & \gamma_{xy} = \frac{\tau_{xy}}{G} \longleftrightarrow \gamma_{xz} = \frac{\tau_{xz}}{G} \longleftrightarrow \gamma_{yz} = \frac{\tau_{yz}}{G} \end{split}$$

Para un acero estructural la NBE-EA-95 establece los valores de $E = 2.1 \cdot 10^6$ kp/cm² y $G = 0.81 \cdot 10^6$ kp/cm² que expresados en N/mm² valen: E = 2142.86 N/mm² y G = 826.53 N/mm². El valor de $\mu = 0.3$. Con esto se obtiene:

$$\varepsilon_{x} = \frac{5}{2142,86} - \frac{0,3}{2142,86} (-3+1) = 2,6133 \cdot 10^{-3}$$

$$\varepsilon_{y} = \frac{-3}{2142,86} - \frac{0,3}{2142,86} (5+1) = -2,24 \cdot 10^{-3}$$

$$\varepsilon_{z} = \frac{1}{2142,86} - \frac{0,3}{2142,86} (5-3) = 1,867 \cdot 10^{-4}$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G} = 0 \leftrightarrow \gamma_{xz} = \frac{\tau_{xz}}{G} = 0 \leftrightarrow \gamma_{yz} = \frac{-4}{826,53} = -4,84 \cdot 10^{-3}$$

La matriz de deformación es:

$$[D] = \begin{bmatrix} \varepsilon_x & \frac{\gamma_{xy}}{2} & \frac{\gamma_{xz}}{2} \\ \frac{\gamma_{xy}}{2} & \varepsilon_y & \frac{\gamma_{yz}}{2} \\ \frac{\gamma_{xz}}{2} & \frac{\gamma_{yz}}{2} & \varepsilon_z \end{bmatrix} = \begin{bmatrix} 2,61310^{-3} & 0 & 0 \\ 0 & -2,2410^{-3} & -2,4210^{-3} \\ 0 & -2,4210^{-3} & 0,8710^{-3} \end{bmatrix}$$

Las direcciones principales se obtienen:

$$\begin{vmatrix} 2,61310^{-3} & 0 & 0 \\ 0 & -2,2410^{-3} & -2,4210^{-3} \\ 0 & -2,4210^{-3} & 0,8710^{-3} \end{vmatrix} = 0 \rightarrow$$

$$(2,613\cdot10^{-3} - \epsilon)\cdot(-2,24\cdot10^{-3} - \epsilon)\cdot(1,87\cdot10^{-3} - \epsilon) - (2,613\cdot10^{-3} - \epsilon)\cdot(2,42\cdot10^{-3}) = 0 \rightarrow$$

$$\epsilon_{1} = 2,613\cdot10^{-3}$$

$$(2,24\cdot10^{-3} + \epsilon)\cdot(1,87\cdot10^{-3} - \epsilon) + (2,42\cdot10^{-3}) = 0 \rightarrow \epsilon^{2} + 2,053\cdot10^{-3}\cdot\epsilon - 6,275\cdot10^{-6} = 0$$

$$\epsilon_{2} = 1,681\cdot10^{-3} \leftrightarrow \epsilon_{3} = -3,734\cdot10^{-3}$$

y las direcciones principales se obtienen de resolver:

$$([D] - \varepsilon \cdot [I]) \cdot \vec{u} = \overset{\rightarrow}{0}$$

para cada una de las tensiones principales, siendo $\vec{u} = (\alpha, \beta, \chi) y \alpha$, $\beta y \chi$ los cosenos directores. Se debe tener en cuenta también que $\alpha^2 + \beta^2 + \chi^2 = 1$.

Para $\varepsilon_1 = 2,613 \cdot 10^{-3} \rightarrow \overset{\rightarrow}{u_1} = (1,0,0)$, la simple observación de la matriz de deformaciones se deduce que el eje x es dirección principal:

Para las otras dos las ecuaciones son:

$$(2,613\cdot10^{-3} - \epsilon)\cdot\alpha = 0$$
$$-(2,24\cdot10^{-3} + \epsilon)\cdot\beta - 2,42\cdot10^{-3}\cdot\chi = 0$$
$$-2,42\cdot10^{-3}\cdot\beta + (1,87\cdot10^{-4} - \epsilon)\cdot\chi = 0$$

y además $\alpha^2 + \beta^2 + \chi^2 = 1$.

Para
$$\varepsilon_2 = 1,681 \cdot 10^{-3}$$
 $\rightarrow \alpha = 0$
$$\rightarrow -(2,24 \cdot 10^{-3} + 1,681 \cdot 10^{-3}) \cdot \beta - 2,42 \cdot 10^{-3} \cdot \chi = 0$$

$$\rightarrow -2,42 \cdot 10^{-3} \cdot \beta + (1,87 \cdot 10^{-4} - 1,681 \cdot 10^{-3}) \cdot \chi = 0$$

y además $\beta^2 + \chi^2 = 1$, que es necesaria dado que las ecuaciones 2^a y 3^a son equivalentes.

Si se resuelve se obtiene: $\overrightarrow{u}_2 = (0, -0.525, 0.851)$.

Para
$$\varepsilon_3 = -3,1734 \cdot 10^{-3}$$
 $\rightarrow \alpha = 0$
 $\rightarrow -(2,24 \cdot 10^{-3} - 3,1734 \cdot 10^{-3}) \cdot \beta - 2,42 \cdot 10^{-3} \cdot \chi = 0$
 $\rightarrow -2,42 \cdot 10^{-3} \cdot \beta + (1,87 \cdot 10^{-4} + 3,1734 \cdot 10^{-3}) \cdot \chi = 0$

y además $\beta^2 + \chi^2 = 1$, que es necesaria dado que las ecuaciones 2^a y 3^a son equivalentes.

Si se resuelve se obtiene: $\overrightarrow{u}_3 = (0,0.851,0.525)$.

En resumen:

$$\epsilon_1 = 2,613 \cdot 10^{-3} \iff \epsilon_2 = 1,681 \cdot 10^{-3} \iff \epsilon_3 = -3,1734 \cdot 10^{-3}$$

$$\overset{\rightarrow}{u_1} = (1,0,0) \leftrightarrow \overset{\rightarrow}{u_2} = (0, \mu \ 0.525, \pm \ 0.851) \leftrightarrow \overset{\rightarrow}{u_3} = (0, \pm \ 0.851, \pm 0.525)$$

que coinciden con las de tensiones salvo el sentido.

e) Las deformaciones transversales máximas:

$$\frac{\gamma_3}{2} = \pm \frac{\varepsilon_1 - \varepsilon_2}{2} = \pm \frac{2,61310^{-3} - 1,68110^{-3}}{2} = \pm 0,466 \cdot 10^{-3}$$

$$\frac{\gamma_2}{2} = \pm \frac{\varepsilon_1 - \varepsilon_3}{2} = \pm \frac{2,61310^{-3} + 3,73410^{-3}}{2} = \pm 3,174 \cdot 10^{-3}$$

$$\frac{\gamma_1}{2} = \pm \frac{\varepsilon_2 - \varepsilon_3}{2} = \pm \frac{1,68110^{-3} + 3,73410^{-3}}{2} = \pm 2,708 \cdot 10^{-3}$$

f) El vector deformación correspondiente al plano definido por $\hat{n} = (0.5, \frac{1}{\sqrt{2}}, 0.5)$, será:

$$\begin{bmatrix} \vec{\epsilon} \end{bmatrix} = \begin{bmatrix} D \end{bmatrix} \begin{bmatrix} \vec{n} \end{bmatrix} = \begin{bmatrix} 2,61310^{-3} & 0 & 0 \\ 0 & -2,2410^{-3} & -2,4210^{-3} \\ 0 & -2,4210^{-3} & 0,8710^{-3} \end{bmatrix} \begin{pmatrix} 1/2 \\ 1/\sqrt{2} \\ 1/2 \end{pmatrix} = \begin{pmatrix} 1,30710^{-3} \\ -0,37410^{-3} \\ -1,61810^{-3} \end{pmatrix}$$

del que fácilmente se deducen los valores de las componentes intrínsecas:

$$\varepsilon_{n} = \stackrel{\rightarrow}{\varepsilon} \stackrel{\rightarrow}{n} = \begin{pmatrix} 1,307 \cdot 10^{-3} \\ -0,374 \cdot 10^{-3} \\ -1,618 \cdot 10^{-3} \end{pmatrix} \cdot \begin{pmatrix} 1/2 \\ 1/\sqrt{2} \\ 1/2 \end{pmatrix} = -0,419 \cdot 10^{-3}$$

$$\frac{\gamma}{2} = \sqrt{\epsilon^2 - \epsilon_n^2} = \sqrt{(23,59610^{-6} - 0,17610^{-6})} = \pm 9,679 \cdot 10^{-3}$$

siendo
$$\varepsilon^2 = \varepsilon_1^2 + \varepsilon_2^2 + \varepsilon_3^2 = 23,596 \cdot 10^{-6}$$

Para resolver el problema gráficamente se deben calcular previamente las componentes de $\stackrel{\rightarrow}{n}$ respecto de la terna Oxyz coincidente con las direcciones principales.

La matriz del cambio de coordenadas de Oxyz a O123 es:

$$\begin{bmatrix} R \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -0.525 & 0.851 \\ 0 & 0.851 & 0.526 \end{bmatrix}$$

Por tanto, las componentes de n respecto de O123 serán:

$$\begin{bmatrix} \overrightarrow{u} \end{bmatrix} = \begin{bmatrix} R \end{bmatrix} \begin{bmatrix} \overrightarrow{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -0.525 & 0.851 \\ 0 & 0.851 & 0.526 \end{bmatrix} \begin{pmatrix} 1/2 \\ 1/\sqrt{2} \\ 1/2 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 0.054 \\ 0.864 \end{pmatrix} \rightarrow$$

de donde se deduce que los ángulos que n forma con los ejes 123 son:

$$\hat{\alpha} = \arccos 0.5 = 60^{\circ}; \hat{\beta} = \arccos \beta = 86.9^{\circ}; \hat{\chi} = \arccos \chi = 30.2^{\circ}$$

La resolución gráfica por los círculos de Mohr es equivalente a la realizada para las tensiones.

- 16.- Un sólido elástico de línea rectilínea y sección recta constante está sometido a flexión y torsión combinadas. En un punto P del sólido elástico, se pide:
 - a) Determinar la matriz de tensiones.
 - b) Calcular las tensiones principales.
- c) Hallar las relaciones que tienen que verificar las componentes de la matriz de tensiones para que el material del prisma en el punto P no se plastifique si se toma como criterio:
 - 1º) el criterio de la tensión principal máxima.
 - 2º) el criterio de Tresca.
 - 3°) el criterio de Von Mises.
- a) Tomando un sistema de referencia del eje x coincidente con la línea media y ejes y,z los principales de inercia de la sección en la que se encuentra situado el punto P, el momento flector, que, en general, tendrá componentes M_y , M_z , dará lugar a tensiones σ_{nx} , τ_{xy} , τ_{xz} sobre las caras de un entorno elemental que envuelva al punto O, (ver libro de teoría). El valor de la primera vendrá dada por la ley de Navier; las otras dos, por la fórmula de Colignon.

El momento torsor, por su parte, dará lugar a tensiones $\, \tau_{xy}^{}, \tau_{xz}^{} \, . \,$

En virtud del principio de superposición, la matriz de tensiones será:

$$[T] = \begin{bmatrix} \sigma_{nx} & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & 0 & 0 \\ \tau_{xz} & 0 & 0 \end{bmatrix}$$

b) De la matriz de tensiones se deduce la ecuación característica

$$\begin{vmatrix} \sigma_{nx} - \sigma & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & -\sigma & 0 \\ \tau_{xz} & 0 & -\sigma \end{vmatrix} = 0 \rightarrow -\sigma_3 + \sigma_{nx}\sigma^2 + (\tau_{xy}^2 + \tau_{xz}^2)\sigma = 0$$

de la que se obtienen las tensiones principales:

$$\sigma_1 = \frac{\sigma_{nx}}{2} + \sqrt{\left(\frac{\sigma_{nx}}{2}\right)^2 + \tau_{xy}^2 + \tau_{xz}^2}$$

$$\sigma_2 = 0$$

$$\sigma_3 = \frac{\sigma_{nx}}{2} - \sqrt{\left(\frac{\sigma_{nx}}{2}\right)^2 + \tau_{xy}^2 + \tau_{xz}^2}$$

c) 1°.- Según el criterio de la tensión principal máxima el valor de ésta tiene que ser menor que el límite elástico $\sigma_{\rm e}$

$$\sigma_{_{1}} < \sigma_{_{e}} \Rightarrow \sigma_{_{nx}} + \sqrt{\sigma_{_{nx}}^2 + 4 \cdot (\tau_{_{xy}}^2 + \tau_{_{xz}}^2)} < 2\sigma_{_{e}}$$

2°.- Si se aplica el criterio de Tresca se tiene que verificar

$$\tau_{max} = \frac{\sigma_1 - \sigma_3}{2} < \frac{\sigma_e}{2} \Rightarrow \sigma_{nx}^2 + 4 \cdot (\tau_{xy}^2 + \tau_{xz}^2) < \sigma_e^2$$

3°.- Según el criterio de Von Mises:

$$(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2 < 2 \cdot \sigma_e^2$$

Sustituyendo las expresiones de las tensiones principales anteriormente obtenidas y simplificando se obtiene:

$$\sigma_{nx}^2 + 3 \cdot (\tau_{xy}^2 + \tau_{xz}^2) < \sigma_e^2$$

LECCIÓN 16

Teoría del potencial interno

Introducción: Se ha estudiado el **potencial interno**, a lo largo del curso en los casos sencillos de vigas de sección recta, y se ha visto la importancia que tiene su estudio por las aplicaciones que se derivan de él y de los teoremas, que en sus principios se basan.

En esta lección se trata de profundizar un poco más en el estudio del potencial interno, y sirve de complemento teórico a las lecciones anteriores en las que ya se ha aplicado de manera reiterada.

Con la finalidad de no extender excesivamente esta obra y, dado que ya se han visto ejemplos a lo largo del curso no se presenta ningún ejercicio en esta lección.

Sin embargo sí que se incluye un resumen la formulación que aparece en el libro de teoría.

Objetivos de la lección: Como complemento a las lecciones anteriores, hacer un estudio completo de la Teoría del Potencial Interno que de un mayor contenido conceptual a lo estudiado.

Problemas resueltos: No se presentan.

Formulación básica:

Fórmulas de las lecciones precedentes

Expresiones del potencial interno

En función de las acciones:

$$\Phi = \frac{1}{2} \sum_{i=1}^{n} F_i \cdot \delta_i$$

que es la expresión del potencial interno debida a Clapeyron

En función de los desplazamientos:

$$\Phi = \frac{1}{2} \sum_{j} F_{j} \cdot \delta_{j} = \frac{1}{2} \sum_{j} \delta_{j} \sum_{k} b_{jk} \cdot \delta_{k} = \frac{1}{2} \sum_{j,k} b_{jk} \cdot \delta_{j} \cdot \delta_{k}$$

que es la expresión del potencial interno debida a **Clapeyron** para desplazamientos.

En función de las componentes de la matriz de tensiones y de deformación:

Ecuación diferencial del potencial interno para tensiones y deformaciones:

$$d\Phi = \frac{1}{2} \left(\sigma_{nx} \cdot \varepsilon_x + \sigma_{ny} \cdot \varepsilon_y + \sigma_{nz} \cdot \varepsilon_z \right) dx \cdot dy \cdot dz + \frac{1}{2} \left(\tau_{xy} \cdot \gamma_{xy} + \tau_{xz} \cdot \gamma_{xz} + \tau_{yz} \cdot \gamma_{yz} \right) dx \cdot dy \cdot dz$$

Ecuación integral del potencial interno para tensiones y deformaciones:

$$\Phi = \frac{1}{2} \iiint_{v} \left(\sigma_{nx} \cdot \epsilon_{x} + \sigma_{ny} \cdot \epsilon_{y} + \sigma_{nz} \cdot \epsilon_{z} \right) dx \cdot dy \cdot dz + \frac{1}{2} \iiint_{v} \left(\tau_{xy} \cdot \gamma_{xy} + \tau_{xz} \cdot \gamma_{xz} + \tau_{yz} \cdot \gamma_{yz} \right) dx \cdot dy \cdot dz$$

Ecuación integral del potencial interno en función de las tensiones:

$$\begin{split} &\Phi = \frac{1}{2 \cdot E} \iiint_{V} \left(\sigma_{nx}^{-2} + \sigma_{ny}^{-2} + \sigma_{nz}^{-2} \right) \! dx \cdot dy \cdot dz - \frac{\mu}{E} \iiint_{V} \left(\sigma_{nx} \cdot \sigma_{ny} + \sigma_{nx} \cdot \sigma_{nz} + \sigma_{ny} \cdot \sigma_{nz} \right) \! dx \cdot dy \cdot dz + \\ &+ \frac{1}{2 \cdot G} \iiint_{V} \left(\tau_{xy}^{-2} + \tau_{xz}^{-2} + \tau_{yz}^{-2} \right) \! dx \cdot dy \cdot dz \end{split}$$

Ecuación integral del potencial interno en función de las deformaciones:

$$\Phi = \frac{1}{2} \iiint_{V} \left[\lambda \cdot e^{2} + 2 \cdot G \left(\epsilon_{x}^{2} + \epsilon_{y}^{2} + \epsilon_{z}^{2} \right) \right] dx \cdot dy \cdot dz + \frac{1}{2} \iiint_{V} G \left(\gamma_{xy}^{2} + \gamma_{xz}^{2} + \gamma_{yz}^{2} \right) dx \cdot dy \cdot dz$$

Teoremas que derivan del potencial interno:

Su formulación elemental figura en la lección 5.

ANEXOS

Anexo 1.- Propiedades de las secciones planas

$$\begin{array}{c|c}
 & y \\
\hline
 & \overline{x} \\
 & C \\
\hline
 & D \\
\hline
 & D \\
\end{array}$$

$$A = bh \bar{x} = \frac{b}{2} \bar{y} = \frac{h}{2}$$

$$C | \bar{y} | x I_x = \frac{bh^3}{12} I_y = \frac{hb^3}{12}$$

$$I_x = \frac{bh^3}{12} \qquad I_3$$

$$I_y = \frac{hb^3}{12}$$

$$I_{xy} = 0$$
 $I_{\rho} = \frac{bh}{12}(h^2 + b^2)$

$$I_x = \frac{bh^3}{3} \qquad I_y = \frac{hb^3}{3}$$

$$I_{xy} = \frac{b^2 h^2}{4}$$

$$I_{x} = \frac{bh^{3}}{3} \qquad I_{y} = \frac{hb^{3}}{3}$$

$$I_{xy} = \frac{b^{2}h^{2}}{4} \qquad I_{p} = \frac{bh}{3}(h^{2} + b^{2}) \qquad I_{BB} = \frac{b^{3}h^{3}}{6(b^{2} + h^{2})}$$

$$A = \frac{bh}{2} \qquad \bar{x} = \frac{b+c}{3} \qquad \bar{y} = \frac{h}{3}$$

$$I_x = \frac{bh^3}{36}$$
 $I_y = \frac{bh}{36}(b^2 - bc + c^2)$

$$I_{xy} = \frac{bh^2}{72}(b-2c)$$
 $I_p = \frac{bh}{36}(h^2 + b^2 - bc + c^2)$

$$I_{x} = \frac{bh^{3}}{12} \qquad I_{y} = \frac{bh}{12} (3b^{2} - 3bc + c^{2})$$

$$I_{xy} = \frac{bh^{2}}{24} (3b - 2c) \qquad I_{BB} = \frac{bh^{3}}{4}$$

$$I_{xy} = \frac{bh^2}{24} (3b - 2\epsilon)$$
 $I_{BB} = \frac{bh^3}{4}$

$$A = \frac{bh}{2} \qquad \bar{x} = \frac{b}{2} \qquad \bar{y} = \frac{h}{3}$$

$$I_x = \frac{bh^3}{36}$$
 $I_y = \frac{hb^3}{48}$ $I_{xy} = \frac{hb^3}{48}$

$$I_p = \frac{bh}{144} (4h^2 + 3b^2)$$
 $I_{BB} = \frac{bh^3}{12}$

$$A = \frac{bh}{2} \qquad \bar{x} = \frac{b}{3} \qquad \bar{y} = \frac{h}{3}$$

$$A = \frac{bh}{2} \qquad \bar{x} = \frac{b}{3} \qquad \bar{y} = \frac{h}{3}$$

$$I_x = \frac{bh^3}{36} \qquad I_y = \frac{hb^3}{36} \qquad I_{xy} = -\frac{b^2h^2}{72}$$

$$I_p = \frac{bh}{36}(h^2 + b^2)$$
 $I_{BB} = \frac{bh^3}{12}$

Anexo 1.- Propiedades de las secciones planas

$$I_{x} = \frac{bh^{3}}{12} \qquad I_{y} = \frac{hb^{3}}{12} \qquad I_{xy} = \frac{b^{2}h^{2}}{24}$$

$$I_{p} = \frac{bh}{12}(h^{2} + b^{2}) \qquad I_{BB} = \frac{bh^{3}}{4}$$

$$I_p = \frac{bh}{12}(h^2 + b^2)$$
 $I_{BB} = \frac{bh^3}{4}$

$$A = \frac{h(a+b)}{2} \qquad \bar{y} = \frac{h(2a+b)}{3(a+b)}$$

$$\bar{y} = \frac{h^3(a^2+4ab+b^2)}{36(a+b)} \qquad I_{BB} = \frac{h^3(3a+b)}{12}$$

$$A = \pi r^{2} = \frac{\pi d^{2}}{4} \qquad I_{x} = I_{x} = \frac{\pi r^{4}}{4} = \frac{\pi d^{4}}{64}$$

$$I_{xy} = 0 \qquad I_{p} = \frac{\pi r^{4}}{2} = \frac{\pi d^{4}}{32} \qquad I_{BB} = \frac{5\pi r^{4}}{4} = \frac{5\pi d^{4}}{64}$$

$$d = 2r A = 2\pi rt = \pi dt I_x = I_y = \pi r^3 t = \frac{\pi d^3 t}{8}$$

$$I_{xy} = 0 I_p = 2\pi r^3 t = \frac{\pi d^3 t}{4}$$

$$I_{xy} = 0$$
 $I_p = 2\pi r^3 t = \frac{\pi d^3 t}{4}$

$$A = \pi ab \qquad I_{x} = \frac{\pi ab^{3}}{4} \qquad I_{y} = \frac{\pi ba^{3}}{4}$$

$$I_{xy} = 0 \qquad I_{p} = \frac{\pi ab}{4} (b^{2} + a^{2})$$

$$I_{xy} = 0$$
 $I_p = \frac{\pi ab}{4} (b^2 + a^2)$

Anexo 2.- Algunas propiedades de los materiales

Material	E (GPa)	G (GPa)	μ	σ _f (MPa)	σ _m (MPa)	A (%)	γ (kp/m ³)	α (10 ⁻⁶ /°C)
Aluminio (Al) puro	70	26	0,33	20	70	60	2710	23
Aleaciones de Al	70-79	26-30	0,33	35-500	100-550	1-45	2600-2800	23
Al 2014-T6	73	28	66	410	480	13	2800	66
Al 6061-T6	70	26	**	270	310	17	2700	**
Al 7075-T6	72	27	66	480	550	11	2800	66
Latón	96-110	36-41	0,34	70-550	200-620	4-60	8400-8800	18-21
Ladrillo (compresión)	10-24				7-70		1800-2200	5-7
Fundición (tracción)	83-170	32-69	0,2-0,3	120-290	69-480	0-1	7000-7400	9,9-12
Fundición gris	97	39	0,25	120	140-410	"	66	10
Fundición (tracción)	83-170	32-69	0,2-0,3		340-1400		7000-7400	9,9-12
Hormigón (compresión)	18-30		0,1-0,2		10-70		2300-2400	7-14
Cobre-Berilio duro	120	47	0,36	760	830	4	8900	17
Monel (67%Ni, 30%Cu)	170	66	0,32	170-1100	450-1200	2-50	8800	14
Niquel	210	80	0,31	140-620	310-760	2-50	8800	13
Aceros	190-210	75-80	0,27-0,3				7850	10-18
Alta resistencia				340-1000				
Aceros estructurales	210	81	0,3				66	12
A-37				220-240	370-450	23-26	"	
A-42				240-260	420-500	21-24	"	
A-52				340-360	520-620	19-22	**	
Piedra (compresión)			0,2-0,3					5-9
Granito	40-70		**		70-280		2600	
Piedra caliza			**		20-200		2000-2900	
Mármol			**		50-180		2600-2900	
Cuarzo			**				2600	
Titanio (puro)	110	40	0,33	400	500	25	4500	8-10
Aleaciones	100-120	39-44	"	760-900	900-970	10	••	
Tugteno	340-380	140-160	0,2		1400-4000	0-4	1900	4,3
Madera (flexión)	10-14			30-70	50-100		480-720	
Madera (compresión)	10-14			30-50	30-70		480-720	
Hierro forjado	190	75	0,3	210	340		7400-7800	12

Anexo 3.- Desplazamientos y giros en los extremos de algunas vigas a flexión para el cálculo de vigas hiperestáticas por superposición.

	δ_{A}	θ_{A}	δ_{B}	θ_{B}	Flecha
q 	0	0	$\frac{q \cdot L^4}{8 \cdot E \cdot I}$	$\frac{\mathbf{q} \cdot \mathbf{L}^3}{6 \cdot \mathbf{E} \cdot \mathbf{I}}$	δ_{B}
A B B	0	0	$\frac{P \cdot L^3}{3 \cdot E \cdot I}$	$\frac{P \cdot L^2}{2 \cdot E \cdot I}$	$\delta_{ m B}$
A B B	0	0	$\frac{M_0 \cdot L^2}{2 \cdot E \cdot I}$	$\frac{M_0 \cdot L}{E \cdot I}$	$\delta_{ m B}$
$\begin{array}{c c} q \\ \hline A & B \\ \hline & B \\ \hline \end{array}$	0	0	$\frac{47 \mathrm{q}\mathrm{L}^4}{384 \mathrm{E}\mathrm{I}}$	$\frac{13 \mathrm{q}\mathrm{L}^3}{192 \mathrm{EI}}$	$\delta_{ m B}$
$\begin{array}{c c} q \\ \hline \\ A & B \\ \hline \\ & L/2 \\ \hline \end{array}$	0	0	$\frac{41 \cdot q \cdot L^4}{384 \cdot E \cdot I}$		δ_{B}
q A B L	0	0	<u>q·L⁴</u> 30·E·I	$\frac{q \cdot L^3}{24 \cdot E \cdot I}$	$\delta_{ m B}$

Anexo 3.- Desplazamientos y giros en los extremos de algunas vigas a flexión para el cálculo de vigas hiperestáticas por superposición.

	δ_{A}	θ_{A}	δ_{B}	θ_{B}	Flecha
$\begin{array}{c c} & & & & & & & \\ \hline A & & & & & & \\ & & & & & & \\ & & & & &$	0	0	11·q·L⁴ 120·E·I	$\frac{\mathbf{q} \cdot \mathbf{L}^3}{8 \cdot \mathbf{E} \cdot \mathbf{I}}$	δ_{B}
$\begin{array}{c c} & q \\ \hline \\ A & $	0	$\frac{q \cdot L^3}{24 \cdot E \cdot I}$	0	$\frac{q \cdot L^3}{24 \cdot E \cdot I}$	5qL ⁴ 384 E I
$\begin{array}{c c} P & L/2 \\ \hline A & D \\ L & D \end{array}$	0	$\frac{P \cdot L^2}{16 \cdot E \cdot I}$	0	$\frac{P \cdot L^2}{16 \cdot E \cdot I}$	$\frac{P \cdot L^3}{48 \cdot E \cdot I}$
A L B	0	$\frac{M_0 \cdot L}{3 \cdot E \cdot I}$	0	$\frac{M_0 \cdot L}{6 \cdot E \cdot I}$	$\frac{M_0 \cdot L^2}{9\sqrt{3} \cdot E \cdot I}$ $x = 0.423 \cdot L$
$\begin{array}{c c} & q \\ & & L/2 \\ \hline A & & L \\ \hline \end{array}$	0	$\frac{3 \cdot q \cdot L^3}{128 \cdot E \cdot I}$	0	$\frac{7 \cdot q \cdot L^3}{384 \cdot E \cdot I}$	-
A L B	0	$\frac{7 \cdot q \cdot L^3}{360 \cdot E \cdot I}$	0	$\frac{q \cdot L^3}{45 \cdot E \cdot I}$	0,00652 \frac{q L^4}{E I}

^{*} Los valores dados son en módulo, fácilmente se adivina el sentido de desplazamientos y giros.

^{**} Las cargas distribuidas van hacia abajo.

Anexo 4. Tablas de perfiles según la NBE-EA-95

Parte 2 (Anejos)

Anejo 2.A1

Productos laminados.

Productos utilizados:

Con carácter indicativo se describen los productos laminados que se fabrican usualmente para su empleo en estructuras de edificación.

En la columna de suministro de las tablas, las indicaciones P existencia permanente, o C consulta previa, corresponden a las condiciones normales del mercado.

Perfil IPN

Su sección tiene forma de doble T. Las caras exteriores de las alas son perpendiculares al alma y las interiores presentan una inclinación del 14% respecto a las exteriores, por lo que las alas tienen espesor decreciente hacia los bordes. Las uniones entre las caras del alma y las caras interiores de las alas son redondeadas. Las alas tienen el borde con arista exterior viva e interior redondeada.

Las dimensiones y los términos de sección de los perfiles IPN se detallan en la tabla 2.Al.l y coinciden con los de la norma UNE 36 521.

Perfil IPE

Su sección tiene forma de doble T. Las caras exteriores e interiores de las alas son paralelas entre sí y perpendiculares al alma, y así las alas tienen espesor constante. Las uniones entre las caras del alma y las caras interiores de las alas son redondeadas. Las alas tienen el borde con aristas exteriores e interiores vivas. La relación entre la anchura de las alas y la altura del perfil se mantiene menor que 0,66.

Las dimensiones y los términos de sección de los perfiles IPE se detallan en la tabla 2.Al.2 y coinciden con los de la norma UNE 36 526.

Perfil HE

Su sección tiene forma de doble T. Las caras exteriores e interiores de las alas son paralelas entre sí y perpendiculares al alma, y así las alas tienen espesor constante. Las uniones entre las caras del alma y las caras interiores de las alas son redondeadas. Las alas tienen el borde con aristas exteriores e interiores vivas.

Los perfiles HE comprenden las tres series siguientes, cuyas dimensiones y los términos de sección se detallan en la tabla 2.A1.3.

Serie normal: HEB

Serie ligera: HEA

Serie pesada: HEM

y coinciden respectivamente con los de las normas UNE 36527, UNE 36528 y UNE 36529.

Perfil UPN

Su sección tiene forma de U. Las caras exteriores de las alas son perpendiculares al alma y las interiores presentan una inclinación del 8% respecto a las exteriores, por lo que las alas tienen espesor decreciente hacia los bordes. Las uniones entre la cara interior del alma y las caras interiores de las alas son redondeadas. Las alas tienen el borde con arista exterior viva e interior redondeada.

Las dimensiones y los términos de sección de los perfiles UPN se detallan en la tabla 2.Al.4 y coinciden con los de la norma UNE 36 522.

Perfil L

Su sección tiene forma de ángulo recto, con las alas de igual longitud. Las caras de cada ala son paralelas y la unión de las caras interiores está redondeadas. Las alas tienen el borde exterior con aristas vivas y el interior redondeado.

Las dimensiones y los términos de sección de los perfiles L se detallan en la tabla 2.Al.5 y coinciden con los de la norma UNE 36531.

Perfil LD

Su sección tiene forma de ángulo recto, con las alas de distinta longitud. Las caras de cada ala son paralelas y la unión de las caras interiores es redondeada. Las alas tienen el borde exterior con aristas vivas y el interior redondeado.

Las dimensiones y los términos de sección de los perfiles LD se detallan en la tabla 2.Al.6 y coinciden con los de la norma UNE 36532.

Perfil T

Su sección tiene forma de T. El extremo del ala es redondeado, así como las uniones de la misma con las caras interiores de las alas y las aristas interiores de éstas. Las caras interiores de las alas están inclinadas un 2% respecto a las exteriores y las del alma un 2 por 100 respecto a su eje.

Las dimensiones y los términos de sección de los perfiles T se detallan en la tabla 2.Al.7 y coinciden con los de la norma UNE 36 533.

Redondo

Su sección es circular, de diámetro comprendido entre 6 mm y 50 mm: Las dimensiones y los términos de sección de los redondos se detallan en la tabla 2.Al.8 y coinciden con los de la norma UNE 36541.

Cuadrado

Su sección es cuadrada, de lado comprendido entre 6 mm y 5 mm. Las dimensiones y los términos de sección de los cuadrados se detallan en la tabla 2.Al.9 y coinciden con los de la norma UNE 36542.

Rectangular

Producto laminado plano de sección rectangular de anchura no mayor que 500 mm. Pueden obtenerse por laminación directa (UNE 36543) o por corte de chapa, en cuyo caso las tolerancias aplicables son las indicadas en las normas UNE 36553, UNE 36559 y UNE 36560 según los procesos de laminación.

Las medidas de los rectangulares más utilizados, con sus correspondientes áreas y pesos, se detallan en la tabla 2.A1.10.

Chapa

Producto laminado plano de anchura mayor que 500 mm. Según su espesor se clasifica en:

Chapa fina: menor que 3 mm.

Chapa media: igual o mayor que 3 mm hasta 4,75 mm.

Chapa gruesa: mayor que 4,75 mm.

La chapa suele emplearse solamente como materia prima para la obtención por corte de elementos planos. Los espesores, en mm, de las chapas más usuales son los siguientes: 4, 5, 6, 7, 8, 9,10,11, 12,14,15,18, 20, 22, 25, 30, 35,40,45 y 50. Las tolerancias de las chapas se especifican en las normas UNE 36559 y UNE 36560.

Tabla 2.A1.1.- PERFILES IPN

- A = Area de la sección
- S_x = Momento estático de media sección, respecto a X
- $I_x = Momento de inercia de la sección, respecto a X$
- W_x = 2I_x: h. Módulo resistente de la sección, respecto a X $i_x = \sqrt{I_x : A}$. Modulo resistence de la sección, respecto a X $I_y = M$ omento de inercia de la sección, respecto a Y
- $W_y = 2l_y : b$. Módulo resistente de la sección, respecto a Y $l_y = \sqrt{l_y : A}$. Radio de giro de la sección, respecto a Y
- I, = Módulo de torsión de la sección
- I_a = Módulo de alabeo de la sección
- u = Perímetro de la sección
- a = Diámetro del agujero del roblón normal w = Gramil, distancia entre ejes de agujeros
- h₁ = Altura de la parte piana del alma
- e₂ = Espesor del ala en el eje del agujero
- p = Peso por m

				Dir	nensi	ones				Términos de sección										Agujeros			Γ
Perfi	.	h mm		mm e≕r		r _t mm	h, mm	u mm	A cm²	${\rm S_x} \atop {\rm cm}^3$	$I_{\rm x}$ cm ⁴	W _x	i _x cm	I _y c m 4 ·	W_{y} cm ³	i _y cm	$I_{t} \\ \text{cm}^{4}$	I _a cm ⁶	w mm	a mm	e ₂ mm	p kp/m	
IPN	80	80	42	3.9	5.9	2.3	59	304	7.58	11.4	77.8	19.5	3.20	6.29	3.00	0.91	0.93	87.5	22	_	4.43	5.95	С
IPN 1	100	100	50	4.5	6.8	2.7	75	370	10.60	19.9	171.0	34.2	4.01	12.20	4.88	1.07	1.72	268.0	28	_	5.05	8.32	Р
	120	120	58	5.1	7.7	3.1	92	439	14.20	31.8	328.0	54.7	4.81	21.50		1.23	2.92	685.0	32	_	5.67	11.20	Р
	140	140	66	5.7	8.6	3.4	109	502	18.30	47.7	573.0	81.9	5.61	35.20	10.70		4.66	1540.0	34	11	6.29	14.40	P
	160	160	74	6.3	9.5		125	575	22.80	68.0	935.0	117.0	6.40	54.70	14.80		7.08	3138.0	40	11	6.91	17.90	P
IPN :	180	180	82	6.9	10.4	4.1	142	640	27.90	93.4	1450.0	161.0	7.20	81.30	19.80	1.71	10.30	5924.0	44	13	7.53	21.90	Р
IPN 2	200	200	90	7.5	11.3	4.5	159	709	33.50	125.0	2140.0	214.0	8.00	117.00	26.00	1.87	14.60	10520,0	48	13	8.15	26.30	Р
	220	220	98	8.1	12.2	4.9	175	775	39.60	162.0	3060.0	278.0	8.80	162.00	33.10		20.10	17760.0	52	13	8.77	31.10	Р
	240	240	106	8.7		5.2	192	844	46.10	206.0	4250.0	354.0	9.59	221.00	41.70		27.00	28730.0	56	17	9.39	36.20	Р
	260	260	113	9.4			208	906	53.40	257.0	5740.0	442.0	10.40	288.00	51.00		36.10	44070.0	60	17	10.15	41.90	P
IPN 2	280	280	119	10.1	15.2	6.1	225	966	61.10	316.0	7590.0	542.0	11.10	364.00	61.20	2.45	47.80	64580.0	62	17	11.04	48.00	P
IPN 3	300	300	125	10.8	16.2	6.5	241	1030	69.10	381.0	9800.0	653.0	11.90	451.00	72.20	2.56	61.20	91850.0	64	21	11.83	54.20	Р
IPN (320	320	131	11.5	17.3	6.9	257	1090	77.80	457.0	12510.0	782.0	12.70	555.00	84.70	2.67	78.20	128800.0	70	21	12.72	61.10	Р
IPN 3	340.	340	137	12.2	18.3	7.3	274	1150	86.80	540.0	15700.0	923.0	13.50	674.00	98.40	2.80	97.50	176300.0	74		13.51	68.10	Р
IPN (360	360	143		19.5		290	1210	97.10	638.0	19610.0	1090.0	14.20	818.00	114.00		123.00	240100.0	76	23	14.50		Р
IPN 3	380	380	149	13.7	20.5	8.2	306	1270	107.00	741.0	24010.0	1260.0	15.00	975.00	131.00	3.02	150.00	318700.0	82	23	15.29	84.00	P
IPN 4	400	400	155	14.4	21.6	8.6	323	1330	118.00	857.0	29210.0	1460.0	15.70	1160.00	149.00	3.13	183.00	419600.0	86	23	16.18	92.60	Р
IPN 4	450	450	170	16.2	24.3	9.7	363	1478	147.00	1200.0	45850.0	2040.0	17.70	1730.00	203.00	3.43	288.00	791100.0	94	25	18.35	115.00	Р
IPN 5	500	500	185	18.0	27.0	10.8	404	1626	180.00	1620.0	68740.0	2750.0	19.60	2480.00	268.00	3.72	449.00	1403000.0	100	28	20.53	141.00	P
IPN 5	550	550	200	19.0	30.0	11.9	445	1787	213.00	2120.0	99180.0	3610.0	21.60	3490.00	349.00	4.02	618.00	2389000.0	110	28	23.00	167.00	Р
IPN 6	600	600	215	21.6	32.4	13.0	485	1924	254.00	2730.0	139000.0	4630.0	23.40	4670.00	434.00	4.30	875.00	3821000.0	120	28	24.88	199.00	Р

Tabla 2.A1.2.- PERFILES IPE

- A = Area de la sección
- S_x = Momento estático de media sección, respecto a X
- $\hat{l_x}$ = Momento de inercia de la sección, respecto a X
- $\hat{W_x} = 2l_x$: h. Módulo resistente de la sección, respecto a X
- $i_x = \sqrt{I_x : A}$. Radio de giro de la sección, respecto a X $I_y = M$ omento de inercia de la sección, respecto a Y
- $W_y = 2l_y : b$. Módulo resistente de la sección, respecto a Y $l_y = \sqrt{l_y : A}$. Radio de giro de la sección, respecto a Y
- $I_t = Módulo de torsión de la sección$
- Ia = Módulo de alabeo de la sección
- u = Perímetro de la sección
- a = Diámetro del agujero del roblón normal
- w = Gramil, distancia entre ejes de agujeros
- h₁ = Altura de la parte plana del alma
- p = Peso por m

				- C:								T ,											\top
Pe	rfil			Dimensiones						Términos de sección									Agujeros			Peso	
		· h	b mm	e mm	e ₁ mm	r mm	h ₁ mm	u mm	A cm²	S _x cm ³	I _x cm⁴	W _x	i _x cm	I _y cm⁴	Cm ³	i _y cm	I _t cm ⁴	I _a	w mm	a mm	e ₂ mm	p kp/m	
IPE	80	80	46	3.8	5.2	5	60	328	7.64	11.6	80.1	20.0	3.24	8.49	3.69	1.05	0.721	118	-	_	3.8	6.00	c
IPE IPE IPE IPE IPE	100 120 140 160 180	100 120 140 160 180	55 64 73 82 91	4.1 4.4 4.7 5.0 5.3	5.7 6.3 6.9 7.4 8.0	7 7 7 9	75 93 112 127 146	400 475 551 623 698	10.30 13.20 16.40 20.10 23.90	19.7 30.4 44.2 61.9 83.2	171.0 318.0 541.0 869.0 1320.0	34.2 53.0 77.3 109.0 146.0	4.07 4.90 5.74 6.58 7.42	15.90 27.70 44.90 68.30 101.00	5.79 8.65 12.30 16.70 22.20	1.24 1.45 1.65 1.84 2.05	1.140 1.770 2.630 3.640 5.060	351 890 1981 3959 7431	35 40 44 48	- 11 13 13	4.1 4.4 4.7 5.0 5.3	8.10 10.40 12.90 15.80 18.80	CCCPP
IPE IPE IPE IPE	200 220 240 270	200 220 240 270	100 110 120 135	5.6 5.9 6.2 6.6	8.5 9.2 9.8 10.2	12 15	159 178 190 220	788 848 922 1040	28.50 33.40 39.10 45.90	110.0 143 183 242	1940.0 2770 3890 5790	194.0 252 324 429	8.26 9.11 9.97 11.20	142.00 205 284 420	28.50 37.3 47.3 62.2	2.24 2.48 2.69 3.02	6.670 9.15 12.00 15.40	12990 22670 37390 70580	52 58 65 72	13 17 17 21	5.6 5.9 6.2 6.6	22.40 26.20 30.70 36.10	P P P
IPE IPE IPE	300 330 360	300 330 360	150 160 170	7.1 7.5 8.0	10.7 11.5 12.7	15 18 18	249 271 2 9 9	1160 1250 1350	53,80 62.60 72.70	314 402 510	8360 11770 16270	557 713 904	12.50 13.70 15.00	604 788 1040	80.5 98.5 123.0	3.35 3.55 3.79	20.10 26.50 37.30	125900 199100 313600	80 85 90	23 25 25	7.1 7.5 8.0	42.20 49.10 57.10	P P
IPE IPE IPE IPE IPE	400 450 500 550 600	400 450 500 550 600	180 190 200 210 220	8.6 9.4 10.2 11.1 12.0	13.5 14.6 16.0 17.2 19.0	21 21 24	331 379 426 468 514	1470 1610 1740 1880 2010	84.50 98.80 116.00 134.00 155.00	654 851 1100 1390 1760	23130 33740 48200 67120 92080	1160 1500 1930 2440 3070	16.50 18.50 20.40 22.30 24.30	1320 1680 2140 2670 3390	146.0 176.0 214.0 254.0 308.0	3.95 4.12 4.31 4.45 4.66	48.30 65.90 91.80 122.00 172.00	490000 791000 1249000 1884000 2846000	95 100 110 115 120	28 28 28 28 28	8.6 9.4 10.2 11.1 12.0	66.30 77.60 90.70 106.00 122.00	P P C C

Tabla 2.A1.3.- PERFILES HEB, HEA y HEM

A = Area de la sección

S_x = Momento estático de media sección, respecto a X

 $S_x = \frac{1}{L_x}$ Momento de inercia de la sección, respecto a X $W_x = 2l_x \cdot h$. Módulo resistente de la sección, respecto a X $l_x = \frac{1}{L_x} \cdot h$. Radio de giro de la sección, respecto a X $l_y = \frac{1}{L_y} \cdot h$. Momento de inercia de la sección, respecto a Y

 $W_y' = 2l_y : b$. Módulo resistente de la sección, respecto a Y $l_y = \sqrt{l_y \cdot A}$. Radio de giro de la sección, respecto a Y

 $I_t = Módulo de torsión de la sección$

Ia = Módulo de alabeo de la sección

u = Perímetro de la sección

a = Diámetro del agujero del roblón normal w = Gramil, distancia entre ejes de agujeros

h₁ = Altura de la parte plana del alma p = Peso por m

			Dir	nensi	ones						Té	rminos	de sec	ción				Ag	ujero)S	Peso	
Perfil	h mm	b mm	e mm	e ₁ mm	r mm	h ₁ mm	u mm	A cm²	S _x cm ³	I _x cm ⁴	W _x	i _x cm	I _y cm⁴	W _y cm ³	i _y cm	I _t cm ⁴	I _a	w	w ₁ mm	a mm	p kp/m	
HEB 100 HEB 120 HEB 140 HEB 160 HEB 180	100 120 140 160 180	100 120 140 160 180	6.5 7.0 8.0	10.0 11.0 12.0 13.0 14.0	12 12 15	56 74 92 104 122	567 686 805 918 1040	26.0 34.0 43.0 54.3 65.3	52.1 82.6 123.0 177.0 241.0	450 864 1509 2492 3831	90 144 216 311 426	4.16 5.04 5.93 6.78 7.66	167 318 -550 889 1363		2.53 3.06 3.58 4.05 4.57	9.34 14.90 22.50 33.20 46.50	3375 9410 22480 47940 93750	55 65 75 85 100		13 17 21 23 25	20.4 26.7 33.7 42.6 51.2	P P P P
HEB 200 HEB 220 HEB 240 HEB 260 HEB 280	200 220 240 260 280	220 240 260	9.5 10.0 10.0	15.0 16.0 17.0 17.5 18.0	18 18 21 24 24	134 152 164 177 196	1150 1270 1380 1500 1620	78.1 91.0 106.0 118.4 131.4	321.0 414.0 527.0 641.0 767.0	5696 8091 11259 14919 19270		8.54 9.43 10.30 11.20 12.10	2003 2843 3923 5135 6595	258 327	5.07 5.59 6.08 6.58 7.09	63.40 84.40 110.00 130.00 153.00	171100 295400 486900 753700 1130000	110 120 90 100 110	 35 40 45	25 25 25 25 25 25	61.3 71.5 83.2 93.0 103.0	PPPP
HEB 300 HEB 320 HEB 340 HEB 360 HEB 400	300 320 340 300 400	300 300 300	11.5 12.0 12.5	19.0 20.5 21.5 22.5 24.0	27 27 27	208 225 243 261 298	1730 1770 1810 1850 1930	170.9 180.6	934.0 1070.0 1200.0 1340.0	43193	1930 2160 2400	13.80 14.60 15.50	8563 9239 9690 10140	646 676	7.58 7.57 7.53 7.49	192.00 241.00 278.00 320.00	1688000 2069000 2454000 2883000	120 120 120 120	50 50 50 50	25 25 25 25 25	117.0 127.0 134.0 142.0	P P P
HEB 400 HEB 500 HEB 550 HEB 600	450 500 550	300 300 300	14.0 14.5 15.0	26.0 28.0 29.0 30.0	27 27 27	344 390 438 486	2030 2120 2220 2320	218.0 238.6 254.1	2800.0		3550 4290 4970	19.10 21.20	11721 12624 13077	781 842 872	7.40 7.33 7.27 7.17 7.08		3817000 5258000 7018000 8856000 10965000	120 120 120 120 120	50 50 45 45 45	25 28 28 28 28	155.0 171.0 187.0 199.0 212.0	POCC
HEA 100 HEA 120 HEA 140 HEA 150 HEA 180	114 133	100 120 140 160 180	5.0 5.0 5.5 6.0 6.0	8.0 8.0 8.5 9.0 9.5	12 12 12 15 15	56 74 92 104 122	561 677 794 906 1020	21.2 25.3 31.4 38.8 45.3	41.5 59.7 86.7 123.0 162.0	349 606 1033 1673 2510	73 106 155 220 294	4.06 4.89 5.73 6.57 7.45	134 231 389 616 925	38	2.51 3.02 3.52 3.98 4.52	4.83 5.81 8.22 11.30 14.70	2581 6472 15060 31410 60210	55 65 75 85 100	_ _ _ _	13 17 21 23 25	16.7 19.9 24.7 30.4 35.5	00000
HEA 200 HEA 220 HEA 240 HEA 260 HEA 280	190 210 230 250 270		7.0 7.5 7.5	10.0 11.0 12.0 12.5 13.0	18 18 21 24 24	134 152 164 177 196	1140 1260 1370 1480 1600	53.8 64.3 76.8 86.8 97.3	215.0 284.0 372.0 460.0 556.0	3692 5410 7763 10455 13673	836	8.28 9.17 10.10 11.00 11.90	1336 1955 2769 3668 4763		4.98 5.51 6.00 6.50 7.00	19.20 28.00 39.40 47.80 58.30	108000 193300 328500 516400 785400	110 120 90 100 110	- 35 40 45	25 25 25 25 25	42.3 50.5 60.3 68.2 76.4	00000
HEA 300 HEA 320 HEA 340 HEA 360 HEA 400	290 310 330 350 390		9.0 9.5 10.0	14.0 15.5 16.5 17.5	27 27 27 27 27	208 225 243 261 298	1720 1760 1790 1830 1910		692.0 814.0 925.0 1040.0 1280.0	18263 22928 27693 33090 45069	1480 1680 1890	13.60 14.40 15.20	6310 6985 7436 7887 8564	466 496 526	7.49 7.49 7.46 7.43 7.34	77.70 105.00 127.00 152.00 197.00	1200000 1512000 1824000 2177000 2942000	120 120 120 120 120	50 50 50 50	25 25 25 25 25	88.3 97.6 105.0 112.0	00000
HEA 450 HEA 500 HEA 550 HEA 600 HEM100 HEM120	440 490 540 590 120	300 300 300 300 106	11.5 12.0 12.5 13.0 12.0	21.0 23.0 24.0 25.0	27 27 27 27 27 12	344 390 438 486 56 74	2010 2110 2210 2310 619 738	178.0 197.5	1610.0 1970.0 2310.0	63722 86975 111932 141208 1143 2018	2900 3550	18.90 21.00	9465 10367 10819 11271 399 703	631 691 721 751 75	7.29 7.24 7.15 7.05 2.74 3.25	265.00 347.00 398.00 454.00 78.90 109.00	4148000 5643000 7189000 8978000 9925 24790	120 120 120 120 120 55 65	50 45 45 45 -	25 28 28 28 28 13	140.0 155.0 166.0 178.0 41.8 52.1	000000
HEM140 HEM160 HEM180 HEM200	180 200	166 186	14.5	23.0	12 15 15 18	92 104 122 134	835 970 1090 1200	80.6 97.1 113.3 131.3	247.0 337.0 442.0 568.0	3291 5098 7483 10620	411 566 748 967	6.39 7.25 8.13 9.00	1144 1759 2580 3651		3.77 4.26 4.77 5.27	145.00 190.00 241.00 301.00	54330 108100 199300 346300	73 85 95 105	_ _ _	21 23 25 25	63.2 76.2 88.9 103.0	0000
HEM220 HEM240 HEM260 HEM280	270 290 310	248 268 288	18.0 18.0 18.5	32.5 33.0	21 24 24	177 196	1320 1460 1570 1690	219.6 240.2	710.0 1060.0 1260.0 1480.0	14605 24289 31307 39547	2160 2550	11.90 12.80	10449 13163	657 780 914	5.79 6.39 6.90 7.40	848.00 957.00	2520000	115 90 100 110		25 25 25 25	117.0 157.0 172.0 189.0	0000
HEM300 HEM300 HEM320 HEM340 HEM360	340 359 377	310 309 309	21.0 21.0 21.0	29.0 39.0 40.0 40.0 40.0	27 27 27	208 225	1780 1830 1870 1900 1930	303.1 312.0 315.8	1460.0 2040.0 2220.0 2360.0 2490.0	68135 76372	3480 3800 4050	14.00 14.80 15.60	19403 19709 19711	1252 1280 1280	7.95 7.90	1810.00 1820.00	2903000 4386000 5004000 5585000 6137000	120 120 120 120 120 120	50 50 50	25 25 25 25 25	177.0 238.0 245.0 248.0 250.0	00000
HEM400 HEM450 HEM500 HEM550 HEM600	478 524 572	307 306 306	21.0 21.0 21.0	40.0 40.0 40.0 40.0 40.0	27 27 27	344 390 438	2000 2100 2180 2280 2370	335.4 344.3 354.4	3170.0 3550.0 3970.0	131484 161929 197984	5500 6180 6920	19.80 21.70 23.60	19339 19155 19158	1260 1250 1250	7.59 7.46 7.35	1850.00 1860.00 1880.00	7410000 9252000 11187000 13516000 15908000	120 120 120 120 120 120	50 50	25 25 28 28 28	256.0 263.0 270.0 278.0 285.0	

Tabla 2.A1.4.- PERFILES UPN

A = Area de la sección

 $S_x = Momento$ estático de media sección, respecto a X

c = Posición del eje Y

 $I_r = Módulo de torsión de la sección$

I_x = Momento de inercia de la sección, respecto a X

m = Distancia al centro de esfuerzos cortantes

 $W_x = 2l_x \cdot h$. Módulo resistente de la sección, respecto a X u = 0 Diámetro del agujero del roblón normal u = 0 Momento de inercia de la sección, respecto a X u = 0 Momento de inercia de la sección, respecto a Y u = 0 Momento de inercia de la sección, respecto a Y u = 0 Altura de la parte plana del alma

 $W_y' = I_y$: (b - c). Mínimo módulo resistente de la sección, p = Peso por m

respecto a Y $i_y = \sqrt{I_y : A}$. Radio de giro de la sección, respecto a Y

u = Perímetro

D (1)			Dii	mensio	nes						٦	érmin	os de s	ección					Aguj	eros	Peso	
Perfil	h mm	b mm	e mm	$e_1 = r$ mm	r ₁ mm	h ₁ mm	u mm	A cm²	S _x cm ³	I _x cm⁴	W_x cm ³	i _x cm	I _y cm⁴	W _y cm³	i _y cm	$\overset{I_{\text{I}}}{\text{cm}^{\text{4}}}$	cm	m cm	w mm	a mm	p kp/m	
UPN 80	80	45	6.0	8.0	4.0	46	312	11.0	15.9	106	26.5	3.10	19.4	6.36	1.33	2.24	1.45	2.67	25	13	8.64	Ī
UPN 100	100	50	6.0	8.5	4.5	64	372	13.5	24.5	206	41.2	3.91	29.3	8.49	1.47	2.96	1.55	2.93	30	13	10.60	
UPN 120	120	55	7.0	9.0	4.5	82	434	17.0	36.3	364	60.7	4.62	43.2	11.10	1.59	4.30	1.60	3.03	30	17	13.40	ŀ
UPN 140	140	60	7.0	10.0	5.0	98	489	20.4	51.4	605	86.4	5.45	62.7	14.80	1.75	6.02	1.75	3.37	35	17	16.00	ı
UPN 160	160	65	7.5	10.5	5.5	115	546	24.0	68.8	925	116.0	6.21	85.3	18.30	1.89	7.81	1.84	3.56	35	21	18.80	
UPN 180	180	70	8.0	11.0	5.5	133	611	28.0	89.6	1350	150.0	6.95	114.0	22.40	2.02	9.98	1.92	3.75	40	21	22.00	1
UPN 200	200	75	8.5	11.5	6.0	151	661	32.2	114.0	1910	191.0	7.70	148.0	27.00	2.14	12.60	2.01	3.94	40	23	25.30	
UPN 220	220	80	9.0	12.5	6.5	167	718	37.4	146.0	2690	245.0	8.48	197.0	33.60	2.30	17.00	2.14	4.20	45	23	29.40	ŀ
UPN 240	240	85	9.5	13.0	6.5	184	775	42.3	179.0	3600	300.0	9.22	248.0	39.60	2.42	20.80	2.23	4.39	45	25	33.20	
UPN 260	260	90	10.0	14.0	7.0	200	834	48.3	221.0	4820	371.0	9.99	317.0	47.70	2.56	23.70	2.36	4.66	50	25	37.90	ı
UPN 280	280	95	10.0	15.0	7.5	216	890	53.3	266.0	6280	448.0	10.90	399.0	57.20	2.74	33.20	2.53	5.02	50	25	41.80	
UPN 300	300	100	10.0	16.0	8.0	232	950	58.8	316.0	8030	535.0	11.70	495.0	67.80	2.90	40.60	2.70	5.41	55	25	46.20	١

Tabla 2.A1.5.- PERFILES L

Tabla 2.A1.6.- PERFILES LD

	1		Dimer	nsione	es			P	osició	on del	centi	ro					Té	rminos	de secció	n ·					Peso	
Perfil	a mm	b mm	e mm	r mm	r ₁ mm	u mm	C _x	C _y	w' cm	w [*]	Cm Cm	V" cm	V" cm	A cm ²	I _x cm ⁴	I _y cm⁴	I _⟨ cm⁴	I, cm⁴	$W_{\rm x}$ cm ³	W _y cm³	i _x cm	i _y cm	iς cm	cm	p kp/m	
L 40. 25. 4 L 40. 25. 5 L 45. 30. 5 L 60. 30. 5 L 60. 40. 5 L 60. 40. 6 L 60. 40. 6 L 60. 50. 5 L 65. 50. 5 L 65. 50. 7 L 65. 50. 7 L 65. 50. 6 L 75. 50. 6 L 75. 50. 6	40 40 45 45 60 60 60 60 65 65 65 65 75 75 75	25 25 30 30 30 40 40 40 50 50 50 50 50 50 50 50 50 50 50 50 50	mm 45 45 56 56 7 8 56 7 8	4 4 4 4 6 6 6 6 6 6 6 6 7 7 7 7 7	2.0 2.0 2.0 3.0 3.0 3.0 3.0 3.5 3.5 3.5 3.5	mm 127 127 147 147 175 175 195 195 225 225 225 244 244 244		0.6 0.7 0.7 0.6 0.7 0.9 1.0 1.2 1.3 1.3 1.1 1.2 1.2 1.2	2.6 2.6 3.0 3.8 3.8 4.1 4.0 4.5 4.5 4.5 5.1 5.1 5.0	1.9 1.9 2.3 2.7 2.7 3.0 3.0 3.6 3.6 3.6 3.7 3.8 3.8 3.8	1.0 1.1 1.2 1.3 1.2 1.6 1.7 1.7 2.0 2.1 2.1 2.2 2.0 2.1 2.1	1.3 1.3 1.5 1.5 1.7 2.1 2.0 2.3 2.3 2.3 2.3 2.6 2.6 2.6	0.6 0.7 0.8 0.8 0.7 0.7 1.1 1.1 1.5 1.5 1.5 1.3 1.3 1.3 1.4	2.46 3.02 2.86 3.52 4.29 5.08 4.79 5.68 6.55 5.54 6.58 7.60 8.60 6.05 7.19 8.31 9.41	3.89 4.69 5.77 6.98 15.60 18.20 17.20 20.10 22.90 23.20 27.20 31.10 34.80 34.40 40.50 46.40	cm ⁴ 1.16 1.39 2.05 2.47 2.60 3.02 6.11 7.12 8.07 11.90 14.00 15.90 17.70 12.30 14.40 16.50 18.40	cm4 4.35 5.23 6.63 8.00 16.50 19.20 19.80 23.10 26.30 28.80 33.80 33.80 38.50 43.00 39.60 46.60 53.30 59.70	0.70 0.85 1.19 1.45 1.70 1.99 3.54 4.15 4.75 6.32 7.43 8.51 9.56 7.11 8.36 9.56 9.10 9.80			1.26 1.25 1.42 1.41 1.90 1.89 1.89	0.69 0.68 0.85 0.84 0.78 0.77 1.13	1.33 1.32 1.52 1.51 1.96 1.95 2.03 2.02 2.00 2.28 2.27 2.25 2.24 2.56 2.55 2.53	0.53 0.53 0.65 0.64 0.63		00 00 00000 0000 0000
L 80. 40. 5 L 80. 40. 6 L 80. 40. 7 L 80. 60. 6 L 80. 60. 6 L 80. 60. 8 L 100. 50. 6 L 100. 50. 7 L 100. 50. 10 L 100. 65. 7 L 100. 65. 7 L 100. 65. 10 L 100. 75. 10	80 80 80 80 80 80 100 100 100 100 100 10	40 40 40 60 60 50 50 50 65 65 75 75	56 78 67 8 67 8 10 7 8 10	7 7 7 7 8 8 8 9 9 9 9 9 10 10 10 10	3.5 3.5 3.5 4.0 4.0 4.5 4.5 5.0 5.0 5.0 5.0	234 234 234 273 273 273 273 292 292 292 292 292 321 321 321 341 341	2.8 2.9 2.4 2.5 3.4 3.5 3.6 3.2 3.3 3.1 3.1	0.8 0.9 0.9 1.4 1.5 1.5 1.0 1.1 1.2 1.5 1.6 1.8 1.9	5.2 5.2 5.1 5.5 5.5 5.5 6.5 6.4 6.8 6.8 6.9 6.9	3.5 3.6 3.6 3.8 3.8 4.4 4.4 4.5 4.9 5.0 5.4 5.4	1.5 1.6 1.6 2.5 2.5 2.5 1.9 2.0 2.6 2.6 2.7 3.1 3.2	2.4 2.3 2.3 2.9 2.9 2.9 2.9 2.9 2.9 2.9 3.4 3.4 3.6 3.6	0.9 0.8 0.9 1.0 1.7 1.8 1.1 1.1 1.2 1.7 1.7 1.7 1.7 2.1 2.2	5.80 6.89 7.96 9.01 8.11 9.38 10.60 8.73 10.10 11.40 14.10 11.20 12.70 15.60 13.50 16.60	38.20 44.90 51.40 57.60 51.40 59.00 66.30 89.70 116.00 141.00 113.00 127.00 154.00 162.00	6.49 7.59 8.63 9.61 24.80 28.40 31.80 15.30 17.40 19.50 23.40 57.60 42.20 51.00 64.10 77.60	40.50 47.60 54.40 60.90 62.80 72.00 80.80 95.10 109.00 123.00 149.00 128.00 144.00 175.00 163.00 197.00	4.19 4.92 5.64 6.33 13.40 15.40 17.30 9.85 11.30 12.70 15.40 22.00 24.80 30.10 34.60 42.20	7.35 8.73 10.10 11.40 9.29 10.70 12.20 13.80 16.60 18.10 22.20 16.60 18.90 23.20 23.20	2.06 2.44 2.81 3.16 5.49 6.34 7.16 3.85 4.46 5.04 6.17 7.53 8.54 10.50 11.40 14.00	2.56 2.55 2.54 2.53 2.52 2.51 2.50 3.21 3.20 3.18 3.16 3.17 3.16 3.14	1.06 1.08 1.04 1.03 1.75 1.74 1.73 1.32 1.31 1.29 1.83 1.83 1.81 2.18	2.64 2.63 2.61 2.60 2.78 2.77 2.76 3.30 3.29 3.25 3.39 3.37 3.35 3.47	0.85 0.85 0.84 0.84 1.29 1.28 1.27 1.06 1.05 1.05 1.40 1.39 1.60 1.59	4.56 5.41 6.25 7.07 6.37 7.36 8.34 6.85 7.93 8.99 11.10 8.77 9.94 12.30 12.30 13.00	
L 100. 75. 12 L 120. 80. 8 L 120. 80. 12 L 130. 65. 8 L 130. 65. 10 L 130. 75. 10 L 150. 90. 10 L 150. 90. 12 L 150. 90. 12 L 150. 90. 12 L 150. 90. 15 L 200. 100. 10 L 200. 100. 12 L 200. 100. 15 L 200. 150. 15 L 200. 150. 15 L 200. 150. 15 L 200. 150. 18	100 120 120 130 130 130 150 150 150 150 200 200 200 200 200 200 200 200	75 80 80 65 65 75 75 75 75 90 90 100 150 150 150	12 8 10 12 8 10 12 9 10 12 15 10 12 15 10 12 15 10 12 15 10 12 15 10 12 15 10 11 15 10 10 11 10 10 10 10 10 10 10 10 10 10	10 11 11 11 11 11 11 11 11 12 12 15 15 15 15 15 15	5.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5	341 391 391 381 381 381 441 441 470 470 470 587 587 687 687 687	3.2 3.8 3.9 4.0 4.5 5.3 5.5 5.0 5.2 6.9 7.0 7.1 5.9 6.0 6.2 6.3	2.1 2.2 2.0 2.1 2.2 3.5 3.6 3.7	13.9	5.5 6.0 6.0 5.8 5.8 5.9 6.6 6.6 6.9 7.1 7.2 8.1 8.2 10.8 10.9	3.3 3.2 3.3 3.4 2.4 2.5 2.9 2.9 3.1 3.6 3.7 3.8 3.9 5.9 6.0 6.2 6.4	3.6 4.2 4.2 3.9 3.8 4.5 4.4 4.4 5.0 6.0 6.0 5.9 7.3 7.3 7.3	2.2 1.4 1.5 1.6 1.7 1.7 1.8 1.9 2.2 2.3 4.5 4.1 3.9	34.80 43.00 34.20 40.80 50.50	189.00 226.00 276.00 323.00 323.00 325.00 456.00 501.00 589.00 761.00 1220.00 1440.00 1400.00 1400.00 2020.00 2380.00	247.00 299.00 680.00 803.00 979.00	230.00 260.00 317.00 278.00 339.00 339.00 397.00 484.00 521.00 624.00 754.00 591.00 695.00 1290.00 1290.00 1530.00 2030.00 2480.00 2900.00	49.50 46.60 56.80 66.60 28.90 35.20 41.20 50.40 55.30 64.90 78.80 88.20 104.00 126.00 135.00 159.00 194.00 364.00 430.00 526.00	28.00 27.60 34.10 40.40 31.10 38.40 45.40 46.90 61.40 75.30 63.30 77.70 93.20 111.00 137.00 99.60 147.00 174.00	16.50 13.20 16.20 19.10 8.20 10.70 12.70 13.20 14.6 17.2 21.0 21.0 24.8 30.4 26.3 31.3 38.4	3.10 3.82 3.80 3.77 4.17 4.15 4.81 4.79 4.75 4.80 4.77 4.74 6.46 6.43 6.36 6.36 6.36	2.14 2.28 2.26 2.24 1.72 1.71 1.69 2.00 1.99 1.97 1.94 2.49 2.49 2.46 2.67 2.64 4.44 4.40	3.42 4.10 4.07 4.04 4.30 4.27 4.96 4.93 5.05 5.02 4.98 6.65 6.63 6.58 7.07 7.05 7.00	1.59 1.73 1.72 1.71 1.38	15.40 12.20 15.00 17.80 11.80 14.60 17.30 15.4 17.0 20.2 24.8 18.2 26.6 23.0 27.3 33.7 26.9 32.0 39.6	P PPP 000 0000000 0000000

Tabla 2.A1.7.- PERFILES T

- A = Area de la sección
- I_x = Momento de inercia de la sección, respecto al eje X
- $W_x = I_x : (a-z)$. Módulo resistente de la sección respecto al eje X
- $i_x = \sqrt{I_x : A}$. Radio de giro de la sección, respecto a X
- I_v = Momento de inercia de la sección, respecto a Y
- W_y = 2l_y : b Módulo resistente de la sección, respecto a Y.
- $$\label{eq:iy} \begin{split} \mathbf{i_y} = & \quad \sqrt{\mathbf{I_y} \cdot \mathbf{A}} \; \; \text{Radio de giro, de la sección,} \\ & \quad \text{respecto a Y}. \end{split}$$
- u = Perímetro de la sección
- p = Peso por m
- I_t = Módulo de torsión de la sección

Dorfil		Dir	nensior	nes		Posición del centro			Tér	minos	de secc	ión			Aguj	eros	Peso	
Perfil	a = b mm	e = r mm	r ₁ mm	r ₂ mm	u mm	z cm	A cm	$I_{\rm x}$ cm ⁴	W_x cm ³	i _x cm	I _y cm⁴	$\mathrm{W_{y}}$ cm ³	i _y cm	I_t cm ⁴	w mm	a mm	p kp/m	
T 40 5	40	. 5	2.5	1.0	153	1.12	3.77	5.28	1.84	1.18	2.58	1.29	0.83	0.350	21	6.4	2.96	COC
T 50 6	50	6	3.0	1.5	191	1.39	5.66	12.10	3.36	1.46	6.06	2.42	1.03	0.757	30	6.4	4.44	
T 60 7	60	7	3.5	2.0	229	1.66	7.94	23.80	5.48	1.73	12.20	4.07	1.24	1.450	34	8.4	6.23	
T 70 8	70	8	4.0	2.0	268	1.94	10.60	44.50	8.79	2.05	22.10	6.32	1.44	2.520	38	11.0	8.32	COC
T 80 9	80	9	4.5	2.0	307	2.22	13.60	73.70	12.80	2.33	37.00	9.25	1.65	4.110	45	11.0	10.70	
T 100 11	100	11	5.5	3.0	383	2.74	20.90	179.00	24.60	2.92	88.30	17.70	2.05	9.380	60	13.0	16.40	

Tabla 2.A1.8.- PERFILES Redondos

- A = Area de la sección
- I_x = Momento de inercia de la sección
- $\hat{W_x} = 2I_x$: d. Módulo resistente de la sección
- $i_x = \sqrt{I_x : A}$. Radio de giro de la sección
- u = Perímetro de la sección
- p = Peso por m

Producto	Dimer d mm	nsiones u mm	A cm ²	érminos I _x cm ⁴	de secci W _x cm ³	ón i _x cm	Peso p kp/m		Producto	Dimer d mm	u mm	Té A cm²	érminos I _x cm ⁴	de secci W _x cm ³	ón i _x cm	Peso p kp/m	
Ø 6 Ø 7 Ø 8 Ø 10 Ø 12	6 7 8 10 12	18.8 22.0 25.1 31.4 37.7	0.283 0.385 0.503 0.785 1.130	0.006 0.012 0.020 0.049 0.102	0.021 0.034 0.050 0.098 0.170	0.150 0.175 0.200 0.250 0.300	0.222 0.302 0.395 0.617 0.888	PCPPP	Ø 22 Ø 25 Ø 28 Ø 30 Ø 32	22 25 28 30 32	69.1 78.5 88.0 94.2 101.0	3.80 4.91 6.16 7.07 8.04	1.15 1.92 3.02 3.98 5.15	1.05 1.53 2.16 2.65 3.22	0.550 0.625 0.700 0.750 0.800	2.98 3.85 4.83 5.55 6.31	CPCCP
Ø 14 Ø 16 Ø 18 Ø 20	14 16 18 20	44.0 50.3 56.5 62.8	1.540 2.010 2.550 3.140	0.189 0.322 0.515 0.785	0.269 0.402 0.573 0.785	0.350 0.400 0.450 0.500	1.210 1.580 2.000 2.470	PPCP	Ø 36 Ø 40 Ø 45 Ø 50	36 40 45 50	113.0 126.0 141.0 157.0	10.20 12.60 15.90 19.60	8.24 12.60 20.20 30.70	4.58 6.28 8.95 12.30	0.900 1.000 1.120 1.250	7.99 9.86 12.50 15.40	CPPP

Tabla 2.A1.9.- PERFILES Cuadrados

- A = Area de la sección
- $I_{\mathbf{x}} = I_{\mathbf{z}}$. Momento de inercia de la sección
- $W_x = -2I_x$: d. Módulo resistente de la sección, respecto al eje X
- $W_z = \sqrt{2}\,I_x$: d. Módulo resistente de la sección, respecto al eje Z
- $i_x = Radio de giro de la sección$
- u = Perímetro
- $\mathbf{p} = \text{ Peso por m}$

Producto	Dimen d mm	siones u mm	A cm²	Térmir $I_x = I_z$ cm ⁴	nos de s W _x cm ³	ección W _z cm³	i _x cm	Peso p kp/m		Producto	Dimer d mm	siones u mm	A cm²	$\begin{array}{c} \text{T\'ermin} \\ \text{I}_{x} = \text{I}_{z} \\ \text{cm}^{4} \end{array}$	os de s W _x cm ³	ección W _z cm³	i _x cm	Peso p kp/m	
≠ 6 ≠ 7 ≠ 8 ≠ 10 ≠ 12	6 7 8 10 12	24 28 32 40 48	0.360 0.490 0.640 1.000 1.440	0.0200 0.0341	0.0572 0.0853 0.1670	0.0404 0.0603 0.1180	0.175 0.202 0.230 0.288 0.347	0.283 0.385 0.502 0.785 1.130	P P P P	≠ 22 ≠ 25 ≠ 28 ≠ 30 ≠ 32	22 25 28 30 32	88 100 112 120 128	4.84 6.25 7.84 9.00 10.20	1.95 3.26 5.12 6.75 8.74	1.77 2.60 3.66 4.50 5.46	1.25 1.84 2.59 3.18 3.86	0.635 0.722 0.808 0.866 0.926	3.80 4.91 6.15 7.07 8.04	CPPCP
≠ 14 ≠ 16 ≠ 18 ≠ 20	14 16 18 20	56 64 72 80	1.960 2.560 3.240 4.000	0.5460	0.6830	0.3230 0.4830 0.6870 0.9430	0.404 0.463 0.520 0.577	1.540 2.010 2.540 3.140	P P P	≠ 36 ≠ 40 ≠ 45 ≠ 50	36 40 45 50	144 160 180 200	13.00 16.00 20.30 25.00	14.00 21.30 31.20 52.10	7.78 10.60 15.10 20.90	5.50 7.54 10.70 14.70	1.040 1.150 1.300 1.440	10.20 12.60 15.90 19.60	C P C P

Tabla 2.A1.10.- Rectangulares

					†d	-			A =	: Are	a (de la s	ecció	n					
+		b		+	•				p =	Pes	0	por m							
b · d	A cm²	p kp/m	-	b · d	A cm ²	p kp/m		mm mm	A cm²	p kp/m		b∙d mmmm	A cm ²	p kp/m		b ⋅ d mm mm	A cm ²	p kp/m	
20.4	0.80	0.628	С	45.4	1.80	1.41	С	70.4	2.80	2.20	С	100.4	4.00	3.14	С	160.8	12.8	10.0	
20.5	1.00	0.785	С	45.5	2.25	1.77	C	70.5	3.50	2.75	P	100.5	5.00	3.93		160.10	16.0	12.6	С
20.6	1.20	0.942	С	45.6	2.70	2.12	С	70.6	4.20	3.30	Ρ	100.6	6.00	4.71	C	160.12	19.2	15.1	С
20.8	1.60	1.260	С	45.8	3.60	2.83	С	70.8	5.60	4.40	Ρ	100.8	8.00	6.23	Ρ	160.15	24.0	18.8	С
20.10	2.00	1.570	С	45.10	4.50	3.53	С	70.10	7.00	5.50	P	100.10	10.00	7.85	Ρ	1 .	32.0	25.1	
20.12	2.40	1.880	С	45.12	5.40	4.24	С	70.12	8.40	6.59	Р	100.12	12.00	9.42	P		40.0	31.4	
20.15	3.00	2.360	C	45.15	6.75	5.30	С	70.15	10.50	8.24	Р	100.15	15.00	11.80	Ρ		48.0	37.7	
25.4	1.00	0.785	С	45.20	9.00	7.07	С	70.20	14.00	11.00	Ρ	100.20	20.00	15.70	Ρ	1 00 40	56.0	44.0	C
25.5	1.25	0.981	C	45.25	11.20	8.83	С	70.25	17.50	13.70		100.25	25.00	19.60	Ρ	i .	64.0	50.2	С
25.6	1.50	1.180	C	45.30	13.50	10.60	С	70.30	21.00	16.50		100.30	30.00	23.60	С	1100.0	14.4	11.3	С
25.8	2.00	1.570	C	45.35	15.80	12.40	С	70.35	24.50	19.20		100.35	35.00	27.50	C	180.10	18.0	14.1	С
25.10	2.50	1.960	C	45.40	18.00	14.10	С	70.40	28.00	22.00	C	100.40	40.00	31.40	С	180.12	21.6	17.0	С
25.12	3.00	2.360	С	50.4	2.00	1.57	Ρ	75.4	3.00	2.36	С	110.4	4.40	3.45	С	180.15	27.0	21.2	С
25.15	3.75	2.940	С	50.5	2.50	1.96	P	75.5	3.75	2.94	C	I	5.50	4.32	C	180.20	36.0	28.3	
25.20	5.00	3.930	С	50.6	3.00	2.36	P	75.6	4.50	3.53	C	1	6.80	5.18	C	180.25	45.0	35.3	
	1.00	0.040	0	50.8	4.00	3.14	p	75.8	6.00	4.71		110.8	8.80	6.91	C	180.30	54.0	42.4	
30.4	1.20	0.942	P P	50.10	5.00	3.93	P	75.10	7.50	5.89	Č		11.00	8.64	C	180.35	63.0	49.5	
30.5	1.50	1.180	P	50.12	6.00	4.71	C	75.12	9.00	7.07		110.12	13.20	10.40	C	180.40	72.0	56.5	С
30.6 30.8	1.80 2.40	1.410 1.880	C	50.15	7.50	5.89	Č	75.15	11.20	8.83			16.50	13.00	C	200.8	16.0	12.6	С
30.10	3.00	2.360	C	50.20	10.00	7.85	Ç	75.20	15.00	11.80	С		22.00	17.30	С	1	20.0	15.7	
30.10	3.60	2.830	C	50.25	12.50	9.81	C	75.25	18.80	14.70	С			21.60	С		24.0	18.8	
30.12	4.50	3.530	С	50.30	15.00	11.80	С	75.30	22.50	17.70	C	110.30	33.00	25.90	C	1	30.0	23.6	
30.20	6.00	4.710	C	50.35	17.50	13.70	С	75.35	26.20	20.60	С	110.35	38.50	30.20	C	200.20	40.0	31.4	С
30.25	7.50	5.890	C	50.40	20.00	15.70	С	75.40	30.00	23.60	C	110.40	44.00	34.50	С	200.25	50.0	39.2	С
				55.4	0.00	4.70	_	00.4	0.00	0.54	_	100.4	4.00	0.77	_	200.30	60.0	47.1	
35.4	1.40	1.100	С	55.4	2.20	1.73	C	80.4	3.20	2.51	0	L	4.80	3.77	C	200.55	70.0	55.0	C
35.5	1.75	1.370	С	55.5	2.75	2.16	C		4.00	3.14	C	l	6.00	4.71	C	200.70	80.0	62.8	С
35.6	2.10	1.650	C	55.6	3.30 4.40	2.59 3.45	C	80.6 80.8	4.80 6.40	3.77 5.02	P P		7.20 9.60	5.65 7.54	C		20.0	15.7	C
35.8	2.80	2.200	C	55.8 55.10	5.50	4.32	C		8.00	6.28		120.0	12.00	9.42	P		25.0	19.6	
35.10	3.50	2.750	C	55.12	6.60	5.18	C	1	9.60	7.54	P	1	14.40	11.30		250.12	30.0	23.6	
35.12	4.20	3.300	C	1	8.25	6.48	C		12.00	9.42	P		18.80	14.10	p	250.15	37.5	29.4	
35.15	5.25	4.120	C	l	11.00	8.64	C	I	16.00	12.60	P		24.00	18.80	þ	250.20	50.0	39.2	-
35.20	7.00	5.500	C	55.25	13.80	10.80	C	I	20.00	15.70	P		30.00	23.60	p	100000	62.5	49.1	C
35.25	8.75	6.870	C	55.30	16.50	13.00	C	I	24.00	18.80		120.30	36.00	28.50	C	LACA OA	75.0	58.9	С
35.30	10.50	8.240	С	55.35	19.30	15.10	C	I	28.00	22.00		120.35	42.00	33.00	C	1000 00	87.5	68.7	С
40.4	1.60	1.26	Ρ	55.40	22.00	17.30	C	1	32.00	25.10			48.00	37.70	C	LOCO 40	100.0	78.5	С
40.5	2.00	1.57	Р					1				l				300.8	24.0	18.8	C
40.6	2.40	1.88	Р		2.40	1.88	С		3.60	2.85		140.8	11.2	8.79	C	1200 10	30.0	23.6	
40.8	3.20	2.51	Ρ	ı	3.00	2.36	P	1	4.50	3.53		140.10		11.00	C	1200 12	36.0	28.3	
40.10	4.00	3.14	C		3.60	2.83	P		5.40	4.24		140.12		13.20	P	200.15	45.0	35.3	
40.12	4.80	3.77	С		4.80	3.77	Р	1	7.20	5.85		140.15	21.0	16.50	P	300.30	60.0	47.1	
40.15	6.00	4.71	С		6.00	4.71	P	l	9.00	7.07		140.20	28.0	22.00	Р	200 25	75.0	58.9	
40.20	8.00	6.28	C		7.20	5.65	Р		10.80	8.48		140.25	35.0	27.50	P	300.30	90.0	70.6	
40.25	10.00	7.85	C		9.00	7.07	P		13.50	10.60		140.30	42.0	33.00	C	1300.35	105.0	82.4	С
40.30	12.00	9.42	C		12.00	9.42	P	l .	18.00	12.10		140.35	49.0	38.50	C	1.3007.40	120.0	94.2	С
40.35	14.00	11.00	_ C		15.00	11.80	P	!	22.50	17.70	(140.40	56.0	44.00	С	1	20.0	OF 4	^
			_	60.30	18.00	14.10	0	1	27.00 31.50	21.20 24.70	(12.0	9.42	C	400.8	32.0 40.0	25.1 31.4	
				60.35 60.40	21.00 24.00	16.50 18.80	C	1 .	36.00	28.30	(115010	15.0	11.80	C	1400 10	40.0	37.7	
				00.40	24.00	10.00	C	30.40	JU.UU	۷٥.۵0	٠	150.12	18.0	14.10	C	1400.12	60.0	47.1	
												150.15		17.70	C	1400.10	80.0	62.8	
												150.20	30.0	23.60	C	400.25	100.0	78.5	
												150.25	37.5	29.40	C	400.30	120.0	94.2	
												150.30	45.0	35.30	C	400.35	140.0	110.0	
												150.35		41.20	C	400.40	160.0	126.0	
												150.40	60.0	47.10	C) 			

Anejo 2.A2

Perfiles huecos

Perfiles huecos utilizados: En las tablas de este Anejo figuran, a título informativo, datos sobre perfiles huecos conformados en frío que se utilizan usualmente.

Perfil hueco redondo

Tiene sección anular de diámetro exterior d y espesor e no mayor que 0,1·d ni menor que 0,025·d. Las dimensiones y los términos de sección se detallan en la tabla 2.A2.l.

Perfil hueco cuadrado

Tiene sección cuadrada hueca, de lado a y espesor e no mayor que 0, la ni menor que 0,025·a con aristas redondeadas. Las dimensiones y los términos de sección se detallan en la tabla 2.A2.2.

Perfil hueco rectangular

Tiene sección rectangular hueca de lados a>b y espesor e, no mayor que 0,1·b ni menor que 0,025·a con aristas redondeadas. Las dimensiones y los términos de sección se detallan en la tabla 2.A2.3.

Tabla 2.A2.1.- Huecos redondos

u = Perímetro A = Area de la sección

S = Momento estático de media sección, respecto a un eje baricéntrico

 $\begin{array}{ll} \text{Momento estance de Interia sección, respecto a un eje baricentrico} \\ \text{I} = & \text{Momento de inercia de la sección, respecto a un eje baricentrico} \\ \text{W} = & 2\text{I} : \underline{d}. \text{ Módulo resistente de la sección, respecto a un eje baricéntrico} \\ \text{i} = & \sqrt{\text{I} : A}. \text{ Radio de giro de la sección, respecto a un eje baricéntrico} \\ \text{I}_1 = & \text{Módulo de torsión de la sección} \\ \end{array}$

	Di	imension	es		٦	Γérminos d	e secciór	``````````````````````````````````````		Peso	
Perfil	d mm	e mm	u mm	A cm²	S cm ³	I cm ⁴	W cm ³	i cm	I₁ cm⁴	p kp/m	
Ø 40.2	40	2	126	2.39	1.44	4.33	2.16	1.35	8.66	1.88	P
Ø 40.3	40	3	126	3.49	2.05	6.01	3.00	1.31	12.00	2.74	P
Ø 40.4	40	4	126	4.52	2.60	7.42	3.71	1.28	14.80	3.55	C
Ø 45.2	45	2	141	2.70	1.85	6.26	2.78	1.52	12.50	2.12	P
Ø 45.3	45	3	141	3.96	2.65	8.77	3.90	1.49	17.50	3.11	P
Ø 45.4	45	4	141	5.15	3.37	10.90	4.84	1.45	21.80	4.04	C
Ø 50.2 Ø 50.3 Ø 50.4	50 50 50	2 3 4	157 157 157	3.02 4.43 5.78	2.30 3.31 4.23	8.70 12.20 15.40	3.48 4.91 6.16	1.69 1.66 1.63	17.40 24.50 30.80	2.37 3.47 4.53	Р Р
Ø 55.2	55	2	173	3.33	2.81	11.70	4.25	1.87	23.40	2.61	000
Ø 55.3	55	3	173	4.90	4.06	16.60	6.04	1.84	33.20	3.85	
Ø 55.4	55	4	173	6.41	5.21	21.00	7.64	2.01	42.00	5.03	
Ø 60.2	60	2	188	3.64	3.36	15 30	5.11	2.05	30.60	2.86	Р
Ø 60.3	60	3	188	5.37	4.87	21.80	7.29	2.01	43.70	4.21	Р
Ø 60.4	60	4	188	7.04	6.27	27.70	9.24	1.98	55.40	5.52	Р
Ø 65.2	65	2	204	3.96	3.97	19.70	6.06	2.23	39.40	3.11	000
Ø 65.3	65	3	204	5.84	5.78	28.10	8.65	2.19	56.20	4.58	
Ø 65.4	65	4	204	7.67	7.46	35.80	11.60	2.16	71.60	6.02	
Ø 70.2	70	2	220	4.27	4.62	24.70	7.05	2.41	49.40	3.35	P
Ø 70.3	70	3	220	6.31	6.73	35.50	10.10	2.37	71.00	4.95	P
Ø 70.4	70	4	220	8.29	8.72	45.30	12.90	2.34	90.60	6.51	C
Ø 75.2	75	2	236	4.58	5.33	30.50	8.15	2.58	61.10	3.60	P
Ø 75.3	75	3	236	6.78	7.78	44.00	11.70	2.54	88.00	5.32	P
Ø 75.4	75	4	236	8.92	10.10	56.30	15.00	2.51	113.00	7.00	P
Ø 80.2	80	2	251	4.90	6.09 .	37.30	9.33	2.76	74.60	3.85	000
Ø 80.3	80	3	251	7.26	8.90	53.90	13.50	2.72	108.00	5.70	
Ø 80.4	80	4	251	9.55	11.60	69.10	17.30	2.69	138.00	7.50	
Ø 90.3	90	3	283	8.19	11.40	77.60	17.30	3.07	155.00	6.43	P
Ø 90.4	90	4	283	10.80	14.80	100.00	22.30	3.04	200.00	8.48	P
Ø 90.5	90	5	283	13.40	18.10	121.00	26.90	3.01	242.00	10.50	P
Ø 100.3	100	3	314	9.14	14.10	108.00	21.50	3.43	215.00	7.17	P
Ø 100.4	100	4	314	12.10	18.40	139.00	27.80	3.39	278.00	9.47	P
Ø 100.5	100	5	314	14.90	22.60	169.00	33.80	3.36	238.00	11.70	P
Ø 100.6	100	6	314	17.70	26.50	196.00	39.30	3.33	393.00	13.90	C
Ø 125.4	125	4	393	15.20	29.30	279.00	44.60	4.28	557.00	11.90	CCC
Ø 125.5	125	5	393	18.80	36.00	340.00	54.40	4.24	680.00	14.80	
Ø 125.6	125	6	393	22.40	42.50	398.00	63.70	4.21	796.00	17.60	
Ø 155.5	155	5	487	23.60	56.20	663.00	85.50	5.30	1330.00	18.50	C
Ø 155.6	155	6	487	28.10	66.60	781.00	101.00	5.27	1560.00	22.10	C
Ø 155.8	155	8	487	36.90	86.50	1000.00	129.00	5.21	2000.00	29.00	C
Ø 175.5	175	5	550	26.70	72.30	966.00	110.00-	6.01	1330.00	21.00	CCC
Ø 175.6	175	6	550	31.90	85.70	1140.00	130.00	5.98	2280.00	25.00	
Ø 175.8	175	8	550	42.00	112.00	1470.00	168.00	5.92	2940.00	33.00	
Ø 200.5 Ø 200.6 Ø 200.8	200 200 200	5 6 8	628 628 628	30.60 36.60 48.30	95.10 113.00 148.00	1460.00 1720.00 2230.00	146.00 172.00 223.00	6.91 6.86 6.79	2920.00 3440.00 4460.00	24.00 28.70 37.90	С С

Tabla 2.A2.2.- Huecos cuadrados

- r = Radio exterior de redondeo
- u = Perímetro
- A = Area de la sección
- A = Area de la sección S = Momento estático de media sección, respecto al eje X o Y I = Momento de inercia de la sección, respecto al eje X o Y W = 2l : d. Módulo resistente de la sección, respecto al eje X o Y y = Módulo de torsión de la sección

<u> </u>		Dimon	siones				férminos d	la secciór			Peso	_
Perfil	a mm	e mm	r mm	u mm	A cm²	S cm ³	I cm ⁴	W cm³	i cm	I _t cm⁴	p kp/m	
# 40.2 # 40.3 # 40.4	40 40 40	2 3 4	5 8 10	151 147 143	2.90 4.13 5.21	2.04 2.80 3.40	6.60 9.01 10.50	3.40 4.51 5.26	1.53 1.48 1.42	11.3 15.6 18.9	2.28 3.24 4.09	P P P
# 45.2 # 45.3 # 45.4	45 45 45	2 3 4	5 8 10	171 167 163	3.30 4.73 6.01	2.63 3.65 4.49	9.94 13.40 15.90	4.42 5.95 7.07	1.74 1.68 1.63	16.3 22.9 28.2	2.59 3.71 4.72	CCC
# 50.2 # 50.3 # 50.4	50 50 50	2 3 4	5 8 10	191 187 183	3.70 5.33 5.81	3.30 4.62 5.73	13.90 19.00 22.90	5.57 7.59 9.15	1.94 1.89 1.83	22.7 32.0 39.9	2.91 4.18 5.35	P P P
# 55.2 # 55.3 # 55.4	55 55 55	2 3 4	5 8 10	211 207 203	4.10 5.93 7.61	4,04 5.70 7.12	18.90 25.90 31.60	6.86 9.43 11.50	2.14 2.09 2.04	30.5 43.4 54.5	3.22 4.66 5.97	CCC
# 60.2 # 60.3 # 60.4 # 60.5	60 60 60 60	2 3 4 5	5 8 10 13	231 227 223 219	4.50 6.53 8.41 10.10	4.86 6.89 8.66 10.20	24,80 34.40 42.30 48.50	8.28 11.50 14.10 16.20	2.35 2.30 2.24 2.19	39.9 57.1 72.2 85.2	3.53 5.13 6.60 7.96	P P P C
# 70.2 # 70.3 # 70.4 # 70.5	70 70 70 70	2 3 4 5	5 8 10 13	271 267 263 259	5.30 7.73 10,00 12.10	6.71 9.60 12,20 14.50	40.30 56.60 70,40 82.00	11.50 16.20 20,10 23.40	2.76 2.71 2,65 2.60	64.1 92.6 118,0 141.0	4.16 6.07 7.86 9.53	P P P
# 80.3 # 80.4 # 80.5 # 80.6	80 80 80 80	3 4 5 6	8 10 13 15	307 303 299 294	8.93 11.60 14.10 16.50	12.80 16.30 19.50 22.40	86.60 108.80 128.00 144.00	21.70 27.20 32.00 36.00	3.11 3.06 3.01 2.95	140.0 180.0 217.0 250.0	7.01 9.11 11.10 13.00	P P C
# 90.3 # 90.4 # 90.5	90 90 90	3 4 5	8 10 13	347 343 339	10.10 13.20 16.10	16.40 21.10 25.30 29.20	126.00 159.00 189.00 214.00	37.90 35.40 41.90 47.60	3.52 3.47 3.42 3.36	202.0 281.0 316.0 366.0	7.95 10.40 12.70 14.90	P P P
# 90.6 #100.3 #100.4 #100.5	90 100 100 100	6 3 4 5	15 8 10 13	334 387 383 379	18,90 11.30 14.80 18.10	20.10 26.40 31.90	175.00 223.00 266.00	35.00 44.60 53.10	3.93 3.88 3.83	279.0 363.0 440.0	8.89 11.60 14.20	Р Р Р
#100.6 #120.4 #120.5 #120.6	100 120 120 120 120	6 4 5 6	15 10 13 15	374 463 459 454	21.30 18.00 22.10 26.10	37.00 38.90 47.20 55.10	304.00 397.00 478.00 551.00	60.70 66.20 79,60 91.80	3.77 4.70 4.64 4.59	513.0 638.0 780.0 913.0	16.70 14.10 17,40 20.50	P P P C
#140.5 #140.6 #140.8	140 140 140	5 6 8	13 15 20	539 534 526	26.10 30.90 40.00	65.60 76.80 97.50	780.00 905.00 1130.00	111.00 129.00 161.00	5.46 5.41 5.30	260.0 480.0 890.0	20.50 24.30 31.40	P P P
#160.5 #160.6 #160.8	160 160 160	5 6 8	13 15 20	619 614 609	30.10 35.70 46.40	86.90 102.00 131.00	1190.00 1390.00 1740.00	149.00 173.00 218.00	6.28 6.23 6.12	1901.0 2240.0 2890.0	23.70 28.00 36.50	P P P
#170.5 #170.6 #170.8	170 170 170	5 6 8	13 15 20	659 654 646	32.10 38.10 49.60	98.70 116.00 149.00	1440.00 1680.00 2120.00	169.00 198.00 249.00	6.69 6.64 6.53	2290.0 2710.0 3410.0	25.20 29.90 39.00	C C P

Tabla 2.A2.3.- Huecos rectangulares

- r = Radio exterior de redondeo u = Perímetro A = Area de la sección

- $S_x = Momento estático de media sección,$ respecto al eje X
- respecto al eje X

 I_x = Momento de inercia de la sección, respecto al eje X

 W_x = 2I_x : a. Módulo resistente de la sección, respecto al eje Y

 respecto al eje Y
- $i_x = \sqrt{I_x : A}$. Radio de giro de la sección, respecto al eje X
- S_y = Momento estático de media sección, respecto al eje Y
- I_y = Momento de inercia de la sección, respecto al eje Y W_y = 2I_y: b. Módulo resistente de la sección, respecto al eje Y
- i_y = √i_y : A. Radio de giro de la sección, respecto al eje Y
 I₁ = Módulo de torsión de la sección

a mm	Di b	mensio	nes												1	
	h		.00					Tér	minos d	e sección					Peso	
	mm	e mm	r mm	u m²/m	A cm²	S _x cm ³	I _x cm ⁴	W _x cm ³	i _x cm	S _y cm³	I _y cm⁴	W _y cm³	i _y cm	I _t cm⁴	p kp/m	
60	40	2	5	191	3.70	3.70	18.1	6.03	2.21	2.80	9.69	4.85	1.62	20.7	2.91	F
60	40 40	4	10	187	5.33 6.81	5.18 6.42	24.7 29.7	8.23 9.91	2.15	3.91 4.84	13.10 15.70	6.56 7.86	1.57 1.52	29.2 36.1	4.18 5.35	F
70 70	40	2	5	211	4.10	4.67	26.4	7.55	2.54	3.18	11.10	5.57	1.65	25.8	3.22	
70	40	4	10	203	7.61	8.23	36.4 44.3	12.60	2.48	4.47 5.56	18.30	7.59 9.16	1.55	36.4 45.3	5.97	0
70 70	50 50	2	5	231	4.50 6.53	5.35	31.1	8.87	2.63	4.26	18.50	7.42	2.03	37.5	3.53	
70	50	4	10	223	8.41	9.55	53.0	15.10	2.51	7.57	25.60 31.40	12.50	1.98	53.6 67.6	6.60	0
80	40 40	3	8	227	6.53	8.15	51.0	12.80	2.79	5.02	17.20	8.62	1.62	43.8	5.13	F
80	40	5	13	219	10.14	12.00	71.6	17.90	2.73	7.33	23.70	11.90	1.58	54.7 63.6	7.96	Ċ
80 80	60 60	3	8	267 263	7.73	10.50	68.8 85.7	17.20	2.98	8.60	44.20	14.70	2.39	88.5	6.07	F
80	60	5	13	259	12.10	15.80	99.8	25.00	2.87	12.90	63.70	21.20	2.34	134.0	9.53	F
100	50 50	3 4	8 10	287 283	8.33	13.10 16.80	105.0	20.90	3.54	8.13	35.60	14.20	2.07	88.6	6.54	F
100	50	5	13	279	13.10	20.00	153.0	30.60	3.41	12.20	51.10	20.40	1.97	134.0	10.31	F
																C
100	60	5	13	299	14.10	22.40	175.0	35.10	3.52	15.70	78.90	26.30	2.36	187.0	11.10	c
																C
100	80	5	13	339	16.10	27.10	221.0	44.10	3.70	23.30	156.00	39.00	3.11	307.0	12.67	F
120	60	-	10												l .	F
120	60	5	13	339	16.10	30.00	279.0	46.50	4.16	18.40	94.00	31.40	2.41	241.0	12.67	P
120	80	4	10													P
120	80 80	5	13	379	18.10	35.70	345.0	57.60	4.36	27.00	184.00	46.10	3.19	402.0	14.24	P
120	100	4	10	423	16.40	34.20	343.0	57.20		30.20						P
120	100	5	13 15	419	20.10	41.50	412.0	68.60	4.52	36.60	311.00	62.20	3.93	583.0	15.81	c
140	60	4	10	383	14.80	32.00	349.0	49.80	4.46	17.60	92.60	30.90	2.50	247.0	11.63	
140 140	60 60	5 6	13 15	379 374	18.10 21.30	38.60	415.0 474.0	59.30 67.70	4.78	21.20	109.00	36.40	2.45	297.0	14.24	0
140	80	4	10	423	16.40	37.40	423.0	60.40	5.08	25.40	178.00	44.60	3.30	412.0	12.88	F
140 140	80 80	5 6	13 15	419 414	20.10	45.30 52.70	506.0	72.40	5.01	30.80	212.00	53.10	3.25	500.0	15.81	F
140	100	4	10	463	18.00	42.80	497.0	71.00	5.25	34.10	297.00	59.30	4.06	601.0	14.14	F
140 140	100	5 6	13 15	459 454	22.10 26.10	52.10	598.0	85.40	5.20	41.40	356.00	71.20	4.01	733.0	17.38	P
	70 70 70 70 70 70 70 70 70 80 80 80 80 80 80 100 100 100 100 100	60 40 70 40 70 40 70 40 70 50 70 50 70 50 80 40 80 40 80 60 80 60 80 60 100 50 100 50 100 60 100 60 100 60 100 80 120 60 120 60 120 60 120 60 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80 120 80	60 40 3 60 40 4 70 40 2 70 40 3 70 40 4 70 50 2 70 50 3 70 50 4 80 40 3 80 40 4 80 40 5 80 60 3 100 50 3 100 50 4 100 50 6 100 60 6 100 80 4 100 80 5 100 80 6 120 60 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6 120 80 6	60 40 3 8 60 40 4 10 70 40 2 5 70 40 3 8 70 40 4 10 70 50 2 5 70 50 3 8 70 50 4 10 80 40 3 8 80 40 4 10 80 40 5 13 80 60 3 8 80 60 4 10 80 60 5 13 100 50 4 10 100 50 5 13 100 50 6 15 100 80 6 15 100 80 6 15 120 60 6 15 120 60 6 15 120 80 6 15 140 80 6 15 140 80 6 15 140 80 6 15 140 80 6 15	60 40 3 8 187 60 40 4 10 183 70 40 2 5 211 70 40 3 8 207 70 50 2 5 231 70 50 2 5 231 70 50 4 10 223 80 40 3 8 227 80 40 4 10 223 80 40 4 10 223 80 60 3 8 227 80 60 3 8 267 80 60 4 10 263 80 60 5 13 259 100 50 3 8 287 100 50 4 10 283 100 50 4 10 283 100 <td>60 40 3 8 187 5.33 60 40 4 10 183 6.81 70 40 2 5 211 4.10 70 40 3 8 207 5.93 70 40 4 10 203 7.61 70 50 2 5 231 4.50 70 50 4 10 223 8.41 80 40 3 8 227 6.53 70 50 4 10 223 8.41 80 40 4 10 223 8.41 80 40 5 13 219 10.14 80 60 3 8 267 7.73 80 60 4 10 263 10.00 80 60 5 13 259 12.10 100 50 3</td> <td>60 40 3 8 187 5.33 5.18 60 40 4 10 183 6.81 6.42 70 40 2 5 211 4.10 4.67 70 40 3 8 207 5.93 6.59 70 40 4 10 203 7.61 8.23 70 50 2 5 231 4.50 5.35 70 50 3 8 227 6.53 7.59 70 50 4 10 223 8.41 9.55 80 40 3 8 227 6.53 8.15 80 40 4 10 223 8.41 10.20 80 60 3 8 267 7.73 10.50 80 60 3 8 267 7.73 10.50 80 60 4 10</td> <td>60 40 3 8 187 5.33 5.18 24.7 60 40 4 10 183 6.81 6.42 29.7 70 40 2 5 211 4.10 4.67 26.4 70 40 4 10 203 7.61 8.23 44.3 70 50 2 5 231 4.50 5.35 31.1 70 50 3 8 227 6.53 7.59 43.1 70 50 4 10 223 8.41 9.55 53.0 80 40 3 8 227 6.53 7.59 43.1 70 50 4 10 223 8.41 10.20 62.6 80 40 3 8 267 7.73 10.50 62.8 80 60 3 8 267 7.73 10.50 68.8</td> <td>60 40 3 8 187 5.33 5.18 24.7 8.23 60 40 4 10 183 6.81 6.42 29.7 9.91 70 40 2 5 211 4.10 4.67 26.4 7.55 70 40 3 8 207 5.93 66.59 36.4 10.40 70 50 4 10 203 7.61 8.23 44.3 12.60 70 50 3 8 227 6.53 7.59 43.1 12.30 70 50 4 10 223 8.41 9.55 53.0 15.10 80 40 3 8 227 6.53 8.15 51.0 12.80 80 40 4 10 223 8.41 10.20 62.6 15.60 80 60 3 8 267 7.73 10.50 68.8</td> <td>60 40 3 8 187 5 33 5 18 24.7 8 23 2.15 60 40 4 10 183 681 6 42 29.7 9.91 2.09 70 40 2 5 211 4.10 4.67 26.4 7.55 2.54 70 40 4 10 203 7.61 8.23 44.3 12.60 2.48 70 50 2 5 231 4.50 5.35 31.1 8.87 263 70 50 3 8 227 6.53 7.59 43.1 12.30 257 70 50 4 10 223 8.41 9.55 53.0 15.10 2251 80 40 3 8 267 7.73 10.50 68.8 17.20 2.98 80 40 3 8 267 7.73 10.50 68.8 17.20 2.98<</td> <td>60 40 3 8 187 5.33 5.18 24.7 8.23 2.15 3.91 60 40 4 10 183 6.81 6.42 29.7 9.91 2.09 4.84 70 40 2 5 211 4.10 4.67 26.4 7.55 2.54 3.18 70 40 4 10 203 7.61 8.23 44.3 12.60 2.41 5.56 70 50 2 5 231 450 5.35 31.1 8.87 2.63 426 70 50 3 8 227 6.53 7.59 43.1 12.30 2.57 6.03 80 40 3 8 227 6.53 8.15 51.0 12.80 2.79 5.02 80 40 3 8 267 7.73 10.50 68.8 17.20 2.98 8.60 80 <t< td=""><td>60 40 3 8 187 5.33 5.18 24.7 8.23 2.15 3.91 13.10 60 40 4 10 183 6.81 6.42 2.97 9.91 2.09 4.84 15.70 70 40 2 5 211 4.10 4.67 2.64 7.55 2.54 3.18 11.10 70 40 4 10 203 7.61 8.23 44.3 12.60 2.41 5.56 18.30 70 50 2 5 231 4.50 5.35 31.1 8.87 2.63 4.26 18.50 70 50 4 10 223 8.41 9.55 53.0 15.10 2.51 7.57 31.40 80 40 4 10 223 8.41 10.20 62.6 15.60 2.73 6.28 20.90 80 40 5 13 219 10.1</td><td>60 40 3 8 187 5.33 518 24.7 8.23 2.15 3.91 13.10 6.56 70 40 2 2 211 410 467 26.4 29.7 9.91 2.09 4.84 15.70 7.59 70 40 2 2 211 410 467 26.4 7.55 25.4 3.18 11.10 55.7 70 40 4 10 203 7.61 823 44.3 12.60 2.41 5.56 18.30 9.16 70 50 2 5 231 4.50 5.35 31.1 8.87 2.63 4.26 18.50 7.42 70 50 3 8 22.7 6.53 7.59 43.1 12.30 2.57 6.03 25.60 10.30 70 50 3 8 22.77 6.53 8.15 510 12.80 2.79 5.02 <t></t></td><td> 60</td><td>60 40 3 8 187 533 5.18 24,7 823 2.15 3.91 13.10 6.66 1.57 292 70 40 4 10 183 6.81 6.42 29,7 9.91 2.09 4.84 15.70 7.86 1.52 361. 70 40 3 8 207 593 6.59 36.4 10.40 2.48 4.47 15.20 7.59 1.60 36.5 70 40 4 10 203 7.61 8.23 4.13 12.60 2.41 5.56 18.30 9.6 1.55 45.3 70 50 3 8 227 6.53 3.11 8.87 2.63 4.26 18.50 7.742 2.03 3.75 70 50 3 8 227 6.53 8.15 510 15.10 2.57 7.31 10.50 18.36 6.66 15.80 2.79 5.02<!--</td--><td>60 40 3 8 187 533 518 247 8.23 2.15 3.91 13.10 6.58 1.57 29.22 4.18 70 40 2 5 211 4.10 4.67 26.4 7.55 2.54 3.18 11.10 5.57 1.65 2.58 3.22 70 40 3 8 207 5.93 6.69 36.4 1.040 2.48 4.47 15.20 7.59 1.60 36.4 4.66 70 40 4 10 203 7.61 8.23 44.3 12.60 2.41 5.56 18.30 9.16 1.55 45.3 5.97 70 50 2 5 231 4.50 5.35 33.1 8.87 2.63 4.26 18.50 9.74 2.23 3.75 3.53 70 50 3 8 227 6.53 8.15 5.10 12.80 2.97 5.02</td></td></t<></td>	60 40 3 8 187 5.33 60 40 4 10 183 6.81 70 40 2 5 211 4.10 70 40 3 8 207 5.93 70 40 4 10 203 7.61 70 50 2 5 231 4.50 70 50 4 10 223 8.41 80 40 3 8 227 6.53 70 50 4 10 223 8.41 80 40 4 10 223 8.41 80 40 5 13 219 10.14 80 60 3 8 267 7.73 80 60 4 10 263 10.00 80 60 5 13 259 12.10 100 50 3	60 40 3 8 187 5.33 5.18 60 40 4 10 183 6.81 6.42 70 40 2 5 211 4.10 4.67 70 40 3 8 207 5.93 6.59 70 40 4 10 203 7.61 8.23 70 50 2 5 231 4.50 5.35 70 50 3 8 227 6.53 7.59 70 50 4 10 223 8.41 9.55 80 40 3 8 227 6.53 8.15 80 40 4 10 223 8.41 10.20 80 60 3 8 267 7.73 10.50 80 60 3 8 267 7.73 10.50 80 60 4 10	60 40 3 8 187 5.33 5.18 24.7 60 40 4 10 183 6.81 6.42 29.7 70 40 2 5 211 4.10 4.67 26.4 70 40 4 10 203 7.61 8.23 44.3 70 50 2 5 231 4.50 5.35 31.1 70 50 3 8 227 6.53 7.59 43.1 70 50 4 10 223 8.41 9.55 53.0 80 40 3 8 227 6.53 7.59 43.1 70 50 4 10 223 8.41 10.20 62.6 80 40 3 8 267 7.73 10.50 62.8 80 60 3 8 267 7.73 10.50 68.8	60 40 3 8 187 5.33 5.18 24.7 8.23 60 40 4 10 183 6.81 6.42 29.7 9.91 70 40 2 5 211 4.10 4.67 26.4 7.55 70 40 3 8 207 5.93 66.59 36.4 10.40 70 50 4 10 203 7.61 8.23 44.3 12.60 70 50 3 8 227 6.53 7.59 43.1 12.30 70 50 4 10 223 8.41 9.55 53.0 15.10 80 40 3 8 227 6.53 8.15 51.0 12.80 80 40 4 10 223 8.41 10.20 62.6 15.60 80 60 3 8 267 7.73 10.50 68.8	60 40 3 8 187 5 33 5 18 24.7 8 23 2.15 60 40 4 10 183 681 6 42 29.7 9.91 2.09 70 40 2 5 211 4.10 4.67 26.4 7.55 2.54 70 40 4 10 203 7.61 8.23 44.3 12.60 2.48 70 50 2 5 231 4.50 5.35 31.1 8.87 263 70 50 3 8 227 6.53 7.59 43.1 12.30 257 70 50 4 10 223 8.41 9.55 53.0 15.10 2251 80 40 3 8 267 7.73 10.50 68.8 17.20 2.98 80 40 3 8 267 7.73 10.50 68.8 17.20 2.98<	60 40 3 8 187 5.33 5.18 24.7 8.23 2.15 3.91 60 40 4 10 183 6.81 6.42 29.7 9.91 2.09 4.84 70 40 2 5 211 4.10 4.67 26.4 7.55 2.54 3.18 70 40 4 10 203 7.61 8.23 44.3 12.60 2.41 5.56 70 50 2 5 231 450 5.35 31.1 8.87 2.63 426 70 50 3 8 227 6.53 7.59 43.1 12.30 2.57 6.03 80 40 3 8 227 6.53 8.15 51.0 12.80 2.79 5.02 80 40 3 8 267 7.73 10.50 68.8 17.20 2.98 8.60 80 <t< td=""><td>60 40 3 8 187 5.33 5.18 24.7 8.23 2.15 3.91 13.10 60 40 4 10 183 6.81 6.42 2.97 9.91 2.09 4.84 15.70 70 40 2 5 211 4.10 4.67 2.64 7.55 2.54 3.18 11.10 70 40 4 10 203 7.61 8.23 44.3 12.60 2.41 5.56 18.30 70 50 2 5 231 4.50 5.35 31.1 8.87 2.63 4.26 18.50 70 50 4 10 223 8.41 9.55 53.0 15.10 2.51 7.57 31.40 80 40 4 10 223 8.41 10.20 62.6 15.60 2.73 6.28 20.90 80 40 5 13 219 10.1</td><td>60 40 3 8 187 5.33 518 24.7 8.23 2.15 3.91 13.10 6.56 70 40 2 2 211 410 467 26.4 29.7 9.91 2.09 4.84 15.70 7.59 70 40 2 2 211 410 467 26.4 7.55 25.4 3.18 11.10 55.7 70 40 4 10 203 7.61 823 44.3 12.60 2.41 5.56 18.30 9.16 70 50 2 5 231 4.50 5.35 31.1 8.87 2.63 4.26 18.50 7.42 70 50 3 8 22.7 6.53 7.59 43.1 12.30 2.57 6.03 25.60 10.30 70 50 3 8 22.77 6.53 8.15 510 12.80 2.79 5.02 <t></t></td><td> 60</td><td>60 40 3 8 187 533 5.18 24,7 823 2.15 3.91 13.10 6.66 1.57 292 70 40 4 10 183 6.81 6.42 29,7 9.91 2.09 4.84 15.70 7.86 1.52 361. 70 40 3 8 207 593 6.59 36.4 10.40 2.48 4.47 15.20 7.59 1.60 36.5 70 40 4 10 203 7.61 8.23 4.13 12.60 2.41 5.56 18.30 9.6 1.55 45.3 70 50 3 8 227 6.53 3.11 8.87 2.63 4.26 18.50 7.742 2.03 3.75 70 50 3 8 227 6.53 8.15 510 15.10 2.57 7.31 10.50 18.36 6.66 15.80 2.79 5.02<!--</td--><td>60 40 3 8 187 533 518 247 8.23 2.15 3.91 13.10 6.58 1.57 29.22 4.18 70 40 2 5 211 4.10 4.67 26.4 7.55 2.54 3.18 11.10 5.57 1.65 2.58 3.22 70 40 3 8 207 5.93 6.69 36.4 1.040 2.48 4.47 15.20 7.59 1.60 36.4 4.66 70 40 4 10 203 7.61 8.23 44.3 12.60 2.41 5.56 18.30 9.16 1.55 45.3 5.97 70 50 2 5 231 4.50 5.35 33.1 8.87 2.63 4.26 18.50 9.74 2.23 3.75 3.53 70 50 3 8 227 6.53 8.15 5.10 12.80 2.97 5.02</td></td></t<>	60 40 3 8 187 5.33 5.18 24.7 8.23 2.15 3.91 13.10 60 40 4 10 183 6.81 6.42 2.97 9.91 2.09 4.84 15.70 70 40 2 5 211 4.10 4.67 2.64 7.55 2.54 3.18 11.10 70 40 4 10 203 7.61 8.23 44.3 12.60 2.41 5.56 18.30 70 50 2 5 231 4.50 5.35 31.1 8.87 2.63 4.26 18.50 70 50 4 10 223 8.41 9.55 53.0 15.10 2.51 7.57 31.40 80 40 4 10 223 8.41 10.20 62.6 15.60 2.73 6.28 20.90 80 40 5 13 219 10.1	60 40 3 8 187 5.33 518 24.7 8.23 2.15 3.91 13.10 6.56 70 40 2 2 211 410 467 26.4 29.7 9.91 2.09 4.84 15.70 7.59 70 40 2 2 211 410 467 26.4 7.55 25.4 3.18 11.10 55.7 70 40 4 10 203 7.61 823 44.3 12.60 2.41 5.56 18.30 9.16 70 50 2 5 231 4.50 5.35 31.1 8.87 2.63 4.26 18.50 7.42 70 50 3 8 22.7 6.53 7.59 43.1 12.30 2.57 6.03 25.60 10.30 70 50 3 8 22.77 6.53 8.15 510 12.80 2.79 5.02 <t></t>	60	60 40 3 8 187 533 5.18 24,7 823 2.15 3.91 13.10 6.66 1.57 292 70 40 4 10 183 6.81 6.42 29,7 9.91 2.09 4.84 15.70 7.86 1.52 361. 70 40 3 8 207 593 6.59 36.4 10.40 2.48 4.47 15.20 7.59 1.60 36.5 70 40 4 10 203 7.61 8.23 4.13 12.60 2.41 5.56 18.30 9.6 1.55 45.3 70 50 3 8 227 6.53 3.11 8.87 2.63 4.26 18.50 7.742 2.03 3.75 70 50 3 8 227 6.53 8.15 510 15.10 2.57 7.31 10.50 18.36 6.66 15.80 2.79 5.02 </td <td>60 40 3 8 187 533 518 247 8.23 2.15 3.91 13.10 6.58 1.57 29.22 4.18 70 40 2 5 211 4.10 4.67 26.4 7.55 2.54 3.18 11.10 5.57 1.65 2.58 3.22 70 40 3 8 207 5.93 6.69 36.4 1.040 2.48 4.47 15.20 7.59 1.60 36.4 4.66 70 40 4 10 203 7.61 8.23 44.3 12.60 2.41 5.56 18.30 9.16 1.55 45.3 5.97 70 50 2 5 231 4.50 5.35 33.1 8.87 2.63 4.26 18.50 9.74 2.23 3.75 3.53 70 50 3 8 227 6.53 8.15 5.10 12.80 2.97 5.02</td>	60 40 3 8 187 533 518 247 8.23 2.15 3.91 13.10 6.58 1.57 29.22 4.18 70 40 2 5 211 4.10 4.67 26.4 7.55 2.54 3.18 11.10 5.57 1.65 2.58 3.22 70 40 3 8 207 5.93 6.69 36.4 1.040 2.48 4.47 15.20 7.59 1.60 36.4 4.66 70 40 4 10 203 7.61 8.23 44.3 12.60 2.41 5.56 18.30 9.16 1.55 45.3 5.97 70 50 2 5 231 4.50 5.35 33.1 8.87 2.63 4.26 18.50 9.74 2.23 3.75 3.53 70 50 3 8 227 6.53 8.15 5.10 12.80 2.97 5.02

Anejo 2.A·3

Perfiles y placas conformados

Perfiles conformados utilizados: Con carácter indicativo se describen los perfiles y placas conformados de acero que se fabrican usualmente para su empleo en estructuras de edificación. En la columna de suministro de las tablas, las indicaciones P existencia permanente, o C consulta previa corresponden a las condiciones normales de mercado.

Perfil conformado L

Su sección tiene forma de ángulo recto con alas de igual longitud y vértice redondeado. Las dimensiones y los términos de sección se detallan en la tabla 2.A3.1.

Perfil conformado LD

Su sección tiene forma de ángulo recto con alas de distinta longitud y vértice redondeado. Las dimensiones y los términos de sección se detallan en la tabla 2.A3.2.

Perfil conformado U

Su sección tiene forma de U con alas de igual longitud y vértices redondeados. Las dimensiones y los términos de sección se detallan en la tabla 2.A3.3.

Perfil conformado C

Su sección es un rectángulo con uno de sus lados más largos parcialmente abierto y vértices redondeados. Las dimensiones y los términos de sección se detallan en la tabla 2.A3.4.

Perfil conformado Ω (omega)

Su sección tiene forma de U con alas hacia afuera y vértices redondeados, con cierta semejanza a la letra griega omega mayúscula. Las dimensiones y los términos de sección se detallan en la tabla 2.A3.5.

Perfil conformado Z

Su sección consta de un alma y en sus extremos alas perpendiculares en sentidos opuestos, con labios rigidizadores en sus lados y vértices redondeados. Las dimensiones y los términos de sección se detallan en la tabla 2.A3.6.

Placa ondulada

Su sección está constituida por ondas de perfil curvilíneo. Las dimensiones más usuales y sus términos de sección se detallan en la tabla 2.A3.7.

Placa grecada

Su sección está constituida por ondas de perfil trapecial con bordes redondeados. Las dimensiones más usuales y sus términos de sección se detallan en la tabla 2.A3.8.

Placa nervada

Su sección está formada por trapecios desiguales con bordes redondeados y a veces con acanaladuras en los lados largos. No constituyen series por la variedad de formas y dimensiones con que se fabrican, que figuran junto con sus términos de sección en los catálogos de los fabricantes.

Placa agrafada

Es una placa nervada, uno de cuyos bordes tiene una grafa, pliegue que se introduce en el borde liso de la placa contigua y se aplasta para mejorar la estanqueidad. Los datos de las placas figuran en los catálogos de los fabricantes.

Panel

Es un elemento constituido por chapas conformadas de acero, enlazadas en fábrica o en obra, con material aislante intermedio. Los datos de los paneles figuran en los catálogos de los fabricantes.

Tabla 2.A3.1.- Perfiles conformados L

u = Perimetro $A = I_x =$ Area de la sección

I_y. Momento de inercia de la sección, respecto a x ó y Momento centrífugo de la sección, respecto a x, y

 $I_x = I_y$. Momento de inercia de la sección, resp $I_{xy} = Momento centrífugo de la sección, resp$ $<math>I_y = Momento de inercia de la sección, resp$ $<math>I_y = Momento de inercia de la sección, resp$ $<math>W_x = W_y$. Módulo resistente, respecto a x ó y Momento de inercia de la sección, respecto a ζ Momento de inercia de la sección, respecto a n

 $\hat{W_{\zeta}} = Modulo resistente, respecto a \zeta$

 $\begin{array}{ll} W_{\eta} = & \text{M\'odulo resistente, respecto a } \eta \\ i_{\chi} = & i_{\gamma} & \text{Radio de giro, respecto a } x \circ y \\ i_{\zeta} = & \text{Radio de giro, respecto a } \zeta \\ i_{\eta} = & \text{Radio de giro, respecto a } \eta \end{array}$

		Dimer	nsiones	3	Pos	sición d	e los e	jes			•••		Términ	os de sec	ción					Peso	Г
Perfil	a mm	e mm	r mm	u mm	c cm	v ₁ cm	v ₂ cm	w cm	A cm ²	I _x cm⁴	I _{xy} cm⁴	I _ζ cm⁴	Լղ cm⁴	W _x cm ³	W _ζ cm³	W _η cm ³	i _x cm	i _ç cm	cm cm	P kg/m	
LF 40.2	40	2	2.5	157	1.10	1.36	1.42	2.83	1.53	2.44	1.51	3.96	0.928	0.841	1.40	0.653	1.26	1.61	0.779	1.20	P
LF 40.3	40	3	3.0	156	1.14	1.36	1.43	2.83	2.25	3.51	2.20	5.71	1.320	1.230	2.02	0.920	1.25	1.59	0.765	1.77	C
LF 40.4	40	4	6.0	153	1.20	1.28	1.41	2.83	2.90	4.43	2.89	7.32	1.550	1.580	2.59	1.090	1.24	1.59	0,730	2.28	C
LF 50.2	50	2	3.0	197	1.35	1.70	1.77	3.54	1.93	4,85	3.00	7.85	1.850	1.330	2.22	1.050	1.59	2.02	0.980	1.51	P
LF 50.3	50	3	6.0	194	1.41	1.62	1.76	3.54	2.81	6.97	4.44	11.40	2.520	1.940	2.23	1.440	1.57	2.01	0.947	2.21	C
LF 50.4	50	4	8.0	191	1.46	1.57	1.75	3.54	3,67	8.92	5.82	14.70	3.090	2.520	4.17	1.770	1.56	2.01	0.919	2.88	C
LF 60.3	60	3	6.0	234	1.66	1.97	2.11	4.24	3.41	12.30	7.74	20.00	4.540	2.830	4.72	2.150	1.90	2.42	1.150	2.68	P
LF 60.4	60	4	8.0	231	1.71	1.92	2.10	4.24	4.47	15.80	10.20	26.00	5.660	3.690	6.13	2.690	1.88	2.41	1.130	3.51	C
LF 60.5	60	5	10.0	229	1.77	1.88	2.10	4.24	5.48	19.10	12.50	31.70	6.590	4.520	7.47	3.140	1.87	2.40	1.100	4.30	C
LF 80.4	80	4	8.0	311	2.21	2.63	2.81	5.66	6.07	38.80	24.50	63.30	14.300	6.700	11.20	5.090	2.53	3.23	1.540	4.76	P
LF 80.5	80	5	10.0	309	2.26	2.58	2.81	5.66	7.48	47.30	30.30	77.60	17.100	8.250	13.70	6.070	2.51	3.22	1.510	5.87	C
LF 80.6	80	6	12.0	307	2.32	2.53	2.80	5.66	8.85	55.40	35.90	91.30	19.400	9.750	16.10	6.940	2.50	3.21	1.480	6.95	C
LF 100.5	100	5	6.0	391	2.75	3.35	3.54		9.52	95.10	59.40	155.00	35.700	13.100	21.90	10.100	3.16	4.03	1.940	7.48	P
LF 100.6	100	6	10.0	389	2.80	3.30	3.53		11.30	112.00	70.70	183.00	41.200	15.600	25.80	11.700	3.15	4.02	1.910	8.87	C
LF 100.7	100	7	12.0	387	2.86	3.25	3.53		13.00	128.00	81.80	210.00	46.200	17.900	29.70	13.100	3.13	4.01	1.880	10.20	C
LF 120.5 LF 120.6 LF 120.7	120 120 120	5 6 7	8.0 10.0 12.0	471 469 467	3.25 3.30 3.36	4.05 4.01 3.96	4.25 4.24 4.24	8.49	11.50 13.70 15.80		104.00 123.00 143.00	270.00 320.00 369.00	63.400 73.800 83.400	19.100 22.700 26.200	31.90 37.80 43.50	14.900 17.400 19.700	3.61 3.79 3.78	4.84 4.84 4.83	2.350 2.320 2.290	9.05 10.80 12.40	P C C

Tabla 2.A3.2.- Perfiles conformados L D

u = Perímetro

Area de la sección

Momento de inercia de la sección, respecto a x Momento de inercia de la sección, respecto a y

 $\frac{y}{k}$ = Momento centrífugo de la sección, respecto a x, $\frac{y}{k}$ = Momento de inercia de la sección, respecto a $\frac{y}{k}$ = Momento de inercia de la sección, respecto a $\frac{y}{k}$ Momento centrífugo de la sección, respecto a x, y $\vec{l_\eta} = Momento de inercia de la sección, respecto a <math>\eta$ $W_x = Modulo resistente, respecto a x$

 $\begin{array}{ll} W_y = & \text{M\'odulo resistente, respecto a y} \\ W_t = & \text{M\'odulo resistente, respecto a } \zeta \\ W_\eta = & \text{M\'odulo resistente, respecto a } \eta \\ i_x = & \text{Radio de giro, respecto a } x \end{array}$

 $i_y = Radio de giro, respecto a y i_{\xi} = Radio de giro, respecto a { } {i_{\eta}} = Radio de giro, respecto a <math>\eta$

			Din	nensio	nes				Posi	ción (de los e	jes								Térmir	nos de s	ección							Peso
Pe	erfil	a mm	b mm	e mm	r mm	u mm	C ₁	cm	v ₁ cm	v ₂	v ₃ cm	w ₁ cm	₩ ₂ cm	tgα	A cm²	$_{\rm cm^4}^{\rm l_x}$	$I_{\rm y}$ cm ⁴	I _{xy} cm⁴	Į _ų cm⁴	Լ _ղ cm⁴	W _x cm ³	W _y cm³	W _ζ cm³	W _n cm³	i _x cm	i _y cm	į, cm	i, cm	p kg/m
	40.20.2 40.20.3	40 40	20 20	2		117 116		0.421 0.462	0.697 0.714		0.491 0.531	2.57 2.53			1.13 1.65	1.90 2.71	0.344 0.480	0.487 0.693	2.05 2.91	0.204 0.282		0.218 0.312	0.796 1.150	0.174 0.246		0.552 0.539		0.425 0.413	0.887 1.300
	50.25.2 50.25.3	50 50	25 25	2	2.5 3.0			0.504 0.545			0.592 0.632				1.43 2.10	3.81 5.48	0.692 0.980	0.969 1.390	4.09 5.88	0.415 0.583	1.180 1.730	0.347 0.501	1.260 1.840	0.279 0.399		0.696 0.683		0.559 0.527	1.120 1.650
	60.30.3 60.30.4	60 60	30 30	3 4				0.629 0.679	1.050 1.040		0.733 0.786				2.55 3.30	9.69 12.30	1.740 2.200	2. 46 0 3.220	10.40 13.20	1.050 1.260		0.735 0.948	2.690 3.480	0.590 0.736					2.000 2.590
	80.40.4 80.40.5	80 80	40 40	4 5			_,_,	0.845 0.893	1.380 1.380	2.34 2.20					4.50 5.52	30.30 36.60	5.490 6.590	7.840 9.620	32.60 39.40	3.220 3.770	5.950 7.290	1.740 2.120	6.3 6 0 7.770	1.380 1.650	2.60 2.57			0.848 0.828	3.530 4.340
LF 10	00.50.5 00.50.6	100 100	50 50	5 6	8.0 10.0		3.64 3.71	1.060 1.110		2.91 2.86				0.290 0.293	7.02 8.30	73.90 86.20	13.400 15.600		79.50 92.90	7.810 8.900		0.000			3.24 3.22	1.380 1.370			5.510 6.520
	20.60.5 20.60.6	120 120	60 60	5 6	0.0		4.30 4.37		2.060 2.060		1.440 1.490	-		0.299 0.291						14.000 16.100			18.100 21.400	3.970 4.630		1.670 1.660			6.690 7.930

Tabla 2.A3.3.- Perfiles conformados U

u = Perímetro c = Posición del eje y

m = Distancia al centro de esfuerzos cortantes
A = Area de la sección
I_x = Momento de inercia de la sección, respecto a x
I_y = Modulo de torsión de la sección,
I_x = Módulo de torsión de la sección

I_a = Módulo de alabeo de la sección

 $\begin{array}{ll} W_x = & \text{M\'odulo resistente, respecto a x} \\ W_y = & \text{M\'odulo resistente, respecto a y} \\ i_x = & \text{Radio de giro, respecto a x} \\ i_y = & \text{Radio de giro, respecto a y} \end{array}$

D (1)		Di	mensior	nes						Térmir	os de sec	ción					Peso
Perfil	h mm	b mm	e mm	r mm	u mm	c cm	m cm	A cm²	I_x cm ⁴	$_{\rm cm^4}^{\rm I_y}$	I, cm⁴	I _a cm ⁶	W _x cm ³	W _y cm³	i _x cm	i _y cm	p kp/m
UF 60.3	60	30	3	3	226	0.890	1.85	3.30	17.5	2.85	0.0991	14.8	5.85	1.35	2.31	0.93	2.59
UF 60.4	60	30	4	6	218	0.954	1.85	4.20	21.1	3.51	0.2240	15.8	7.03	1.72	2.24	0.91	3.30
UF 80.3	80	40	3	3	306	1.140	2.48	4.50	43.9	7.03	0.1350	69.0	11.00	2.46	3.12	1.25	3.53
UF 80.4	80	40	4	6	298	1.200	2.49	5.80	54.3	8.88	0.3100	79.3	13.60	3.17	3.06	1.24	4.55
UF 80.5	80	40	5	8	292	1.260	2.48	7.04	63.4	10.50	0.5870	85.7	15.90	3.84	3.00	1.22	5.52
UF 100.3	100	50	3	3	386	1.390	3.10	5.70	88.4	14.10	0.1710	223.0	17.70	3.90	3.94	1.57	4.48
UF 100.4	100	50	4	6	378	1.450	3.12	7.40	111.0	18.00	0.3950	226.0	22.20	5.07	3.88	1.56	5.81
UF 100.5	100	50	5	8	372	1.510	3.12	9.04	132.0	21.60	0.7540	299.0	26.40	6.19	3.82	1.55	7.09
UF 120.4	120	60	4	6	458	1.700	3.75	9.00	198.0	31.90	0.4800	702.0	33.10	7.42	4.70	1.88	7.06
UF 120.5	120	60	5	8	452	1.750	3.75	11.00	238.0	38.60	0.9210	808.0	39.60	9.08	4.64	1.87	8.66
UF 120.6	120	60	6	10	446	1.810	3.75	13.00	273.0	44.80	1.5600	886.0	45.50	10.70	4.58	1.86	10.20
UF 140.4	140	70	4	6	538	1.950	4.38	10.60	322.0	51.60	0.5660	1580.0	46.00	10.20	5.51	2.21	8.32
UF 140.5	140	70	5	8	532	2.000	4.38	13.00	388.0	62.70	1.0900	1850.0	55.50	12.50	5.46	2.19	10.20
UF 140.6	140	70	6	10	526	2.060	4.38	15.40	449.0	73.10	1.8500	2060.0	64.20	14.80	5.40	2.18	12.10

Tabla 2.A3.4.- Perfiles conformados C

u = Perimetro

c = Posición del eje y

m = Distancia al centro de esfuerzos cortantes

A = Area de la sección

 $I_x = Momento de inercia de la sección, respecto a x$

I_x = Momento de inercia de la sección, respecto a x
 I_y = Momento de inercia de la sección, respecto a y
 I_t = Módulo de torsión de la sección

Ia = Módulo de alabeo de la sección

 $\begin{array}{ll} W_x = & \text{M\'odulo resistente, respecto a x} \\ W_y = & \text{M\'odulo resistente, respecto a y} \\ i_x = & \text{Radio de giro, respecto a x} \\ i_y = & \text{Radio de giro, respecto a y} \end{array}$

		† -																r	
		[Dimer	nsione	es						Térmi	nos de s	ección					Peso	
Perfil	h mm	b mm	a mm	e mm	r mm	u mm	c cm	m cm	A cm²	I _x cm⁴	I _y cm⁴	I₁ cm⁴	I _a cm ⁶	W _x cm ³	W _y cm³	i _x cm	i _y cm	p kp/m	
CF 60.2.0 CF 60.2.5 CF 60.3.0	60 60 60	40 40 40	15 15 15	2.0 2.5 3.0	2.5 2.5 3.0	316 312 307	1.63 1.63 1.63	3.72 3.62 3.45	3.12 3.84 4.50	17.8 21.5 24.6	7.16 8.56 9.71	0.0416 0.0800 0.1350	74.9 90.4 109.0	5.93 7.16 8.22	3.03 3.62 4.10		1.52 1.49 1.47	2.45 3.01 3.53	P C C
CF 80.2.0 CF 80.2.5 CF 80.3.0	80 80 80	40 40 40	15 15 15	2.0 2.5 3.0	2.5 2.5 3.0	356 352 347	1.46 1.46 1.46	3.40 3.31 3.17	3.52 4.34 5.10	34.9 42.4 49.0	8.00 9.57 10.90	0.0469 0.0904 0.1530	122.0 148.0 179.0	8.74 10.60 12.30	3.15 3.77 4.28	3.13	1.51 1.49 1.46	2.76 3.40 4.00	P C C
CF 100.2.0 CF 100.2.5 CF 100.3.0	100 100 100	40 40 40	15 15 15	2.0 2.5 3.0	2.5 2.5 3.0	396 392 387	1.32 1.32 1.32	3.14 3.06 2.94	3.92 4.84 5.70	59.2 72.1 83.6	10.40	0.0523 0.1010 0.1710	189.0 228.0 275.0	11.80 14.40 16.70	3.24 3.87 4.40	3.86	1.49 1.46 1.44	3.08 3.80 4.48	P C C
CF 120.2.0 CF 120.2.5 CF 120.3.0	120	50 50 50	20 20 20	2.0 2.5 3.0	2.5 2.5 3.0	496 492 487	1.72 1.72 1.72	4.22 4.14 4.02	4.92 6.09 7.20	109.0 133.0 156.0	17.90 21.70 25.00	0.0656 0.1270 0.2160	547.0 668.0 808.0	18.10 22.20 25.90	6.47 6.61 7.61	4.68	1.91 1.89 1.86	3.86 4.78 5.65	P C C
CF 140.2.0 CF 140.2.5 CF 140.3.0		50 50 50	20 20 20	2.0 2.5 3.0	2.5 2.5 3.0	536 532 527	1.60 1.60 1.60	3.97 3.89 3.78	5.32 6.59 7.80	156.0 192.0 225.0	18.90 22.90 26.30	0.0709 0.1370 0.2340	751.0 917.0 1105.0	22.30 27.40 32.10	5.56 6.72 7.74	5.40	1.89 1.86 1.84	4.17 5.17 6.13	P C C
CF 160.2.0 CF 160.2.5 CF 160.3.0	160 160 160	60 60	20 20 20	2.0 2.5 3.0	2.5 2.5 3.0	616 612 607	1.86 1.86 1.86	4.62 4.54 4.43	6.12 7.59 9.00	240.0 295.0 346.0	30.50 37.00 42.90	0.0816 0.1580 0.2700	1493.0 1627.0 2192.0	30.00 36.80 43.30	7.37 8.95 10.40	6.23	2.23 2.21 2.18	4.80 5.95 7.07	P C C
CF 180.2.0 CF 180.2.5 CF 180.3.0	180 180 180	60 60	20 20 20	2.0 2.5 3.0	2.5 2.5 3.0	656 652 647	1.75 1.75 1.75	4.40 4.35 4.22	6.52 8.09 9.60	316.0 389.0 458.0	31.7 38.5 44.50	0.0869 0.1690 0.2880	1930.0 2360.0 2825.0	35.1 43.2 50.90	7.46 9.06 10.50	6.94	2.20 2.18 2.15	5.12 6.35 7.54	P C C
CF 200.2.0 CF 200.2.5 CF 200.3.0	200 200 200	60 60	20 20 20	2.0 2.5 3.0	2.5 2.5 3.0	696 692 687	1.66 1.66 1.66	4.20 4.13 4.04	6.92 8.59 10.20	406.0 500.0 588.0	32.70 39.70 46.00	0.1790	2438.0 2981.0 3561.0	40.60 50.00 58.80	7.53 9.15 10.60	7.63	2.17 2.15 2.12	5.43 6.74 8.01	P C C

Tabla 2.A3.4.- Perfiles conformados C (continua)

5 //		C	Dimen	sione	es						Térmi	inos de s	sección					Peso	Γ
Perfil	h mm	b mm	a mm	e mm	r mm	u mm	c cm	m cm	A cm²	l _x cm ⁴	I_y cm ⁴	I, cm4	I _a	cm ³	W_{y} cm ³	i _x cm	i _y cm	p kp/m	
CF 225.2.5 CF 225.3.0 CF 225.4.0		80 80 80	25 25 25	2.5 3.0 4.0	2.5 3.0 6.0	842 837 819	2.38	5.96 5.86 5.53	10.50 12.50 16.20	806.0 953.0 1213.0		0.2180 0.3740 0.8650	8320.0 9970.0 14057.0	71.70 84,70 108.00	16.20 18.90 23.30	8.78 8.75 8.66		8.21 9.78 12.70	1 -
CF 250.2.5 CF 250.3.0 CF 250.4.0		80 80 80	25 25 25	2.5 3.0 4.0	2.5 3.0 6.0	892 887 869	2.25 2.25 2.23	5.70 5.60 5.30	11.10 13.20 17.20	1083.0 1222.0 1559.0	93.80 110.00 136.00	0.3960	15028.0 12601.0 17607.0	82.60 97.70 125.00	16.30 19,10 23.50		2.88	8.70 10.40 13.50	C
CF 275.2.5 CF 275.3.0 CF 275.4.0	275	80 80 80	25 25 25	2.5 3.0 4.0	2.5 3.0 6.0	942 937 912	2.14 2.14 2.12	6.47 5.37 5.09	11.70 14.00 18.20	1259.0 1532.0 1959.0	113.00		13061.0 15611.0 21655.0	94.10 111.00 142.00	19.20	10.50 10.50 10.40	2.84	9.19 11.00 14.30	C
CF 300.2.5 CF 300.3.0 CF 300.4.0	300	80 80 80	25 25 25	2.5 3.0 4.0	2.5 3.0 6.0	992 987 969	2.04 2.04 2.02	5.25 5.16 4.89	14.70	1592.0 1885.0 2415.0	116.00		15931.0 19017.0 26216.0	126.00	19.40	11.30	2.80	9.68 11.50 15.10	C

Tabla 2.A3.5.- Perfiles conformados omega

- u = Perímetro c = Posición del eje y

- m = Distancia al centro de esfuerzos cortantes

 A = Area de la sección

 I_x = Momento de inercia de la sección, respecto a x

 I_y = Momento de inercia de la sección, respecto a y

 I_t = Módulo de torsión de la sección
- Módulo de alabeo de la sección

W_x = Módulo resistente, respecto a x

 $W_y = M$ ódulo resistente, respecto a y $i_x = R$ adio de giro, respecto a x $i_y = R$ adio de giro, respecto a y

5 ([Dimer	nsione	s						Térmi	nos de s	ección					Peso	
Perfi	il	h mm	b mm	a mm	e mm	r mm	u mm	c cm	m cm	A cm²	I _x cm⁴	$\overset{I_{y}}{\text{cm}^{4}}$	$\overset{I_{t}}{\text{cm}^{\text{4}}}$	I _a cm ⁶	W _x cm³	W _y cm³	i _x cm	i _y cm	p kp/m	
OF 40 OF 50 OF 50 OF 50 OF 60 OF 60 OF 80).2.0).2.5).3.0).2.0).2.5).3.0).2.5).3.0).2.5).3.0	40 40 40 50 50 50 60 60 60 80 80	40 40 40 50 50 50 40 40 40 50 50	15 15 15 17 17 17 17 20 20 20 25 25 30	2.0 2.5 3.0 2.0 2.5 3.0 2.5 3.0 2.5 3.0 2.5 3.0	2.5 2.5 3.0 2.5 2.5 3.0 2.5 3.0 2.5 3.0 2.5 3.0	272 267 261 340 335 329 372 367 361 487 481	2.14 2.14 2.14 2.73 2.73 2.73 3.00 3.00 4.00 4.00 4.83	3.46 3.42 3.39 4.38 4.34 4.31 5.19 5.15 5.12 6.95 6.92	2.72 3.34 3.91 3.40 4.19 4.93 3.72 4.59 5.41 6.09 7.21	6.08 7.24 8.17 12.00 14.40 16.50 18.20 22.00 25.30 52.60 61.00	45.00	0.0956 0.1620 0.1268 0.2160	10.5 12.0 12.9 33.2 38.8 42.7 43.0 50.6 56.1 198.0 225.0	2.84 3.38 3.81 4.40 5.29 6.04 6.08 7.34 8.44 13.10 15.30	2.98 3.61 4.17 4.72 5.76 6.70 4.01 4.89 5.68 8.17 9.57	2.19 2.16 2.94 2.91	2.33 2.30 2.03 2.00 1.97 2.52 2.50	2.13 2.62 3.07 2.67 3.29 3.87 2.92 3.60 4.25 4.78 5.66	00 000 000 00
OF 100		100	50	30	3.0	3.0	587 581	4.83	8.48 8.45	7.34 8.71	96.90 113.00	50.70 59.00	0.1529 0.2610	471.0 539.0	18.80 21.90	9.66 11.30	3.63 3.61	2.60	5.76 6.94	P C

Tabla 2.A3.6.- Perfiles conformados Z

 $\begin{array}{lll} u = & \text{Perimetro} \\ A = & \text{Area de la sección} \\ I_x = & \text{Momento de inercia de la sección, respecto a x} \\ I_y = & \text{Momento de inercia de la sección, respecto a y} \\ I_{xy} = & \text{Momento centrifugo de la sección, respecto a x, y} \\ I_\zeta = & \text{Momento de inercia de la sección, respecto a } \zeta \\ I_\eta = & \text{Momento de inercia de la sección, respecto a } \eta \\ W_x = & \text{Módulo resistente, respecto a x} \end{array}$

 $\begin{array}{lll} W_y = & \text{M\'odulo resistente, respecto a y} \\ W_\zeta = & \text{M\'odulo resistente, respecto a } \zeta \\ W_\eta = & \text{M\'odulo resistente, respecto a } \eta \\ i_z = & \text{Radio de giro, respecto a x} \\ i_y = & \text{Radio de giro, respecto a y} \\ i_\zeta = & \text{Radio de giro, respecto a } \zeta \\ i_\eta = & \text{Radio de giro, respecto a } \eta \\ \end{array}$

D. (2)			[Dimer	nsione	es					Posic	ión d	e los ej	es							Térm	inos de	e secci	ón						Peso	Γ
Perfil	h mm	b ₁ mm	b ₂ mm	a ₁ mm	a ₂ mm	e mm	r mm	u mm	c ₁	c ₂	v ₁ cm	v ₂ cm	w ₁ cm	w ₂ cm	tgα	A cm²	l _x cm ⁴	l _y cm⁴	[xy CM4	cm,	in cm⁴	W _x cm ³	W _y cm ³	W _ζ cm³	W _n cm ³	cm ₃	i _y cm	ίς cm	ίη CM	p kp/m	
ZF 100.2.0 ZF 100.2.5 ZF 100.3.0	100 100 100	60 60 60	53 53 53	20 20 20	17 17 17	2.0 2.5 3.0	2.5 2.5 3.0	476 472 467	4.81 4.81 4.81	0.15	2.80	2.54	6.95 6.91 6.85	7.14	0.867 0.662 0.657	4.72 5.84 6.91	76.4 93.5 109.0	40.8 49.3 56.8	42.8 52.0 60.3	128	12.3 14.9 17.2	14.7 18.0 21.0	7.25 8.81 10.20	14.6 17.9 21.0	3.94 4.78 5.51	4.02 4.00 3.97		4.72 4.68 4.64	1.60	3.70 4.58 5.42	C
ZF 120.2.0 ZF 120.2.5 ZF 120.3.0	120 120 120	60 60 60	53 53 53	20 20 20	17 17 17	2.0 2.5 3.0	2.5 2.5 3.0	516 512 507	5.79 5.79 5.79	0.13 0.11	2.78 2.75	2.51 2.48	7.53 7.47	7.82 7.77	0.510 0.505 0.501	5.12 6.34 7.51	117.0 143.0 167.0	40.8 49.3 56.8	52.2 63.5 73.8	175 204	14.2 17.2 19.9		8.78	18.2 22.4 26.3	4.29 5.21 6.01	4.77 4.75 4.72	2.79	5.29 5.25 5.21	1.65	4.02 4.98 5.89	С
ZF 140.2.0 ZF 140.2.5 ZF 140.3.0	140 140 140	60 60 60	53 53 53	20 20 20	17 17 17	2.0 2.5 3.0	2.5 2.5 3.0	556 552 547	6.77 6.77 6.77	0.11 0.09	2.72 2.69	2.45 2.42	8.27 8.23 8.19	8.58 8.54	0.407 0.404 0.400	5.52 6.84 8.11	167.0 205.0 240.0	40.8 49.4 56.9	61.7 75.1 87.2	235 275	15.7 19.1 22.0		7.21 8.76 10.10	22.3 27.4 32.2	4.56 5.54 6.39	5.50 5.48 5.44	2.69 2.65	5.90 5.87 5.83	1.67 1.65	4.33 5.37 6.36	
ZF 160.2.0 ZF 160.2.5 ZF 160.3.0	160 160 160	60 60 60	53 53 53	20 20 20	17 17 17	2.0 2.5 3.0	2.5 2.5 3.0	596 592 587	7.75 7.75 7.75	0.10 0.07	2.64 2.62	2.38 2.36	9.04 2.38 8.96	9.40 9.36	0.336 0.333 0.329	5.92 7.34 8.71	281.0 330.0	40.9 49.4 56.9	71.1 86.6 101.0	310 363	20.6 23.8			26.8 32.9 38.8	4.78 5.80 6.70	6.21 6.19 6.15	2.59 2.56	6.53 6.50 6.45	1.67 1.65	4.65 5.76 6.84	С
ZF 180.2.0 ZF 180.2.5 ZF 180.3.0	180 180 180	60 60 60	53 53 53	20 20 20	17 17 17	2.0 2.5 3.0	2.5 2.5 3.0	636 632 627	8.73 8.73 8.73	0.08 0.06	2.56 2.54	2.31 2.29	9.82 9.78	10.20	0.281 0.278	6.32 7.84 9.31	302.0 371.0 436.0	40.9 49.4 56.9	80.6 98.1 114.0	399 468	18.0 21.9 25.3		7.18 8.72 10.10	31.6 38.9 45.8	4.95 6.01 6.94	6.88 6.85	2.47	7.17 7.13 7.09	1.67 1.65	4.96 6.15 7.31	C
ZF 200.2.0 ZF 200.2.5 ZF 200.3.0	200 200 200	80 80 80	70 70 70	25 25 25	22 22 22	2.0 2.5 3.0	2.5 2.5 3.0	770 766 761	9.68 9.68	0.18 0.15	3.57 3.54	3.22 3.19	11.50 11.50	12.00 12.00	0.366 0.364 0.361		688.0	119.0 138.0	159.0 195.0 228.0	654 770	39.1 47.8 55.8	56.5 66.6		64.4	8.39 10.30 12.00	7.83 7.80	3.53 3.49	8.32 8.29 8.25	2.24	6.01 7.47 8.88	С
ZF 225.2.5 ZF 225.3.0 ZF 225.4.0	225 225 225	80 80 80	70 70 70	25 25 25	22 22 22	2.5 3.0 4.0	2.5 3.0 6.0	816 811 792	10.90 10.90	0.13	3.44 3.34	3.10 3.00	12.50 12.40	12.90	0.304 0.299		1155.0	138.0 169.0	258.0 323.0	987 1251		78.3 99.5	15.60 18.30 22.50	75.8 97.0	10.60 12.40 15.20	8.71 8.67 8.58	3.38 3.29	9.08 9.04 8.93	2.22 2.16	7.96 9.47 12.30	1
ZF 250.2.5 ZF 250.3.0 ZF 250.4.0	250 250 250	80 80 80	70 70 70	25 25 25	22 22 22	2.5 3.0 4.0	2.5 3.0 6.0	866 861 842		0.12 0.06	3.34 3.25	3.01 2.92	13.50 13.40	14.10 14.00	0.256	12.80 16.70	1166.0 1486.0	138.0 169.0	361.0	1579	62.6 76.9	90.7 115.0		88.0 113.0	15.70	9.44	3.28 - 3.19	9.72	2.21 2.15	13.10	C
ZF 275.2.5 ZF 275.3.0 ZF 275.4.0	275 275 275	80 80 80	70 70 70	25 25 25	22 22 22	2.5 3.0 4.0	2.5 3.0 6.0	916 911 892	13.40 13.40	0.10 0.05	3.25 3.16	2.93 2.84	14.60 14.50	15.20 15.10	0.228 0.223	13.60 17.70	1869.0	138.0 170.0	319.0 399.0	1536 1958	65.4 80.4	104.0 132.0		101.0 129.0	16.10	10.40 10.30	3.19 3.10	10.60 10.50	2.20 2.13	10.70 13.90	Č
ZF 300.2.5 ZF 300.3.0 ZF 300.4.0	300 300 300	80 80 80	70 70 70	25 25 25	22 22 22	2.5 3.0 4.0	25 30 60	966 961 942	14.60 14.60 14.60	0.09	3.16	2.84			0.201	14.30	1524.0 1804.0 2306.0	138.0	349.0		67.9	117.0		114.0		11.20	3.11	11.40	2.48	11.20	С

Tabla 2.A3.7.- Placa ondulada

u = Perímetro de la sección

A = Area de la sección

I = Momento de inercia

W = Módulo resistente

i = 1 : A. Radio de giro

	Dimer	nsiones		Términos	de sección		Peso	
Placa G.0.5 G.0.6	e mm	u mm	A cm ²	I cm ⁴	W cm³	i cm	p kp/m²	
G.0.5	0.5	2300	5.25	11.9	6.28	1.51	5.89	
G.0.6	0.6	2300	6.30	14.3	7.53	1.51	7.07	
G.0.8	0.8	2300	8.40	19.0	9.94	1.51	9.42	
G.1.0	1.0	2300	10.50	23.7	12.30	1.50	11.80	
G.1.2	1.2	2300	12.60	28.4	14.70	1.50	14.10	

Tabla 2.A3.8.- Placa grecada

u = Perímetro de la sección

A = Area de la sección

I = Momento de inercia

W = Módulo resistente

i = 1: A. Radio de giro

	Dimer	nsiones		Términos	de sección		Peso	
Placa	e mm	u mm	A cm²	I cm ⁴	W cm³	i cm	p kp/m²	
O.0.5	0.5	2000	5.00	2.00	2.22	0.63	4.38	С
0.0.6	0.6	2000	6.00	2.38	2.64	0.63	5.20	C
8.0.O	0.8	2000	8.00	3.70	4.11	0.68	7.00	C
0.1.0	1.0	2000	10.00	4.65	5.16	0.68	8.77	C
0.1.2	1.2	2000	12.00	5.60	6.22	0.68	10.50	С

BIBLIOGRAFÍA

Bibliografía recomendada

- 1.- Ortiz Berrocal, L, "Resistencia de Materiales", McGraw-Hill.
- 2.- Ortiz Berrocal, L, "Elasticidad", E.T.S.I.I-UPM, Madrid
- 3.- Timoshenko, Stephen, "Resistencia de Materiales", Espasa-Calpe, S.A
- 4.- Vázquez, M, "Resistencia de Materiales" E.T.S.I.I-UPM, Madrid

Bibliografía

- 5.- Goded Echevarría, F. Ortiz Berrocal, L, "Unidades Didácticas de Elasticidad y Resistencia de Materiales", U.N.E.D
- 6.- Rodríguez Avial, M., "Addenda de resistencia de materiales", U.N.E.D
- 7.- Rodríguez Avial Azcunaga, F, "Resistencia de Materiales", Bellisco.
- 8.- Rodríguez Avial, M; Zubizarreta, V y Anza J.J, "Problemas de resistencia de materiales", E.T.S.I.I-UPM, Madrid.
- 9.- Miroliubov y otros, "Problemas de resistencia de materiales", Mir, Moscú.
- 10.- Rodríguez Avial Azcunaga, F, "Problemas resueltos de resistencia de materiales", Bellisco.
- 11.- Timoshenko y Young, "Teoría de las Estructuras", Urmo.

ÍNDICE

PRESENTACIÓN	I
CAPÍTULO I. INTRODUCCIÓN A LA RESISTENCIA DE MATERIALES	
Lección 1. Concepto y situación de la Resistencia de Materiales	1
Lección 2. Fundamentos de Resistencia de Materiales	3
Lección 3. Geometría de masas. Secciones planas	43
Lección 4. Caracterización estática de los materiales	75
CAPÍTULO II. FUNDAMENTOS DE RESISTENCIA DE MATERIALES	
Lección 5. Principios y bases del diseño en Resistencia de Materiales	97
CAPÍTULO III. ANÁLISIS DE ESFUERZOS NORMALES	
Lección 6. Tracción y compresión monoaxial isostática	117
Lección 7. Tracción y compresión monoaxial hiperestática	155
CAPÍTULO IV. ANÁLISIS DE LA CORTADURA PURA	
Lección 8. Cortadura pura	181
CAPÍTULO V. ANÁLISIS DE LA FLEXIÓN	
Lección 9. Flexión simple	189
Lección 10. Flexión desviada y flexión compuesta	239
Lección 11. Flexión lateral. Pandeo	259
Lección 12. Flexión hiperestática	279
Lección 13. Cálculo de pórticos	295

CAPÍTULO VI. ANÁLISIS DE LA TORSIÓN

Lección 14. Análisis de la torsión en problemas elementales				
CAPÍTULO VII.				
ANÁLISIS GENERAL DEL PROBLEMA ELÁSTICO				
Lección 15. Tensiones y deformaciones generalizadas	361			
Lección 16. Teoría del potencial interno	409			
ANEXOS				
Anexo 1. Propiedades de las secciones planas	413			
Anexo 2. Alguna propiedades de los materiales	415			
Anexo 3. Desplazamientos y giros en los extremos de algunas vigas a flexión para el cálculo de problemas hiperestáticos por superposición	417			
Anexo 4. Tablas de perfiles según la NBE-EA-95	419			
BIBLIOGRAFÍA				
Bibliografía recomendada	441			
Bibliografía complementaria	441			

Servicio de Publicaciones Biblioteca Universitaria C/Piscinas, s/n 26006 Logroño (La Rioja) Teléfono: 941 299 187

http://publicaciones.unirioja.es www.unirioja.es