CPE301 – SPRING 2019

MIDTERM I

Student Name: Rocky Yasuaki Gonzalez

Student #: 5003229733

Student Email: gonzar14@unlv.nevada.edu

Primary Github address: https://github.com/rockyg1995/ihswppdar

Directory: https://github.com/rockyg1995/ihswppdar/tree/master/Midterms/Midterm_I

Submit the following for all Labs:

1. In the document, for each task submit the modified or included code (only) with highlights and justifications of the modifications. Also, include the comments.

- 2. Use the previously create a Github repository with a random name (no CPE/301, Lastname, Firstname). Place all labs under the root folder ESD301/Midterm, sub-folder named LABXX, with one document and one video link file for each lab, place modified asm/c files named as LabXX-TYY.asm/c.
- 3. If multiple asm/c files or other libraries are used, create a folder LabXX-TYY and place these files inside the folder.
- 4. The folder should have a) Word document (see template), b) source code file(s) and other include files, c) text file with youtube video links (see template).

1. COMPONENTS LIST AND CONNECTION BLOCK DIAGRAM w/ PINS

```
Atmega328PB Xplained Mini
Micro USB Cable (Power Supply)
Wire Connectors
LM35
ESP01
```

2. INITIAL/MODIFIED/DEVELOPED CODE

```
* MIDTERM_I.c
* Created: 4/7/2019 11:11:38 PM
* Author: rocky
#define F_CPU 16000000UL // Frequency of Xplained Mini (16MHz)
#include <avr/interrupt.h> // AVR library containing interrupt functions
#include <util/delay.h> // AVR library containing _delay_ms() function
#define BAUDRATE 115200 // Baudrate in Bits per second (bps)
#define BAUD PRESCALLER ((F CPU / (BAUDRATE * 16UL)) - 1) // Baudrate Prescaler
#define MAX 1s 15624
                   // 1s delay: OCR1A = (16MHz*1000ms/prescaler) -1
//Declaration of our functions
void read_adc(void);
                             // Function to read temp received from ADC
volatile float adc_temp;
                             // Stores ADC Value representing Temperature
char outs[20];
                              // 'outs[]' to store values into array of chars
int main(void) {
    USART_putstring("Connected!\r\n"); // Pass 'Connected!' to function to send chars
                             // Wait a bit
     _delay_ms(125);
                              // to store ADC Fahrenheit Temperature
     float adc_tempf;
     USART_putstring("AT+CWJAP=\"WIFI_NAME_HERE\",\"WIFI_PASSWORD_HERE\"");//Login WiFi
```

```
read_adc(); // Read value of ADC Towns and Towns and Towns are the second secon
            while (1) {
                        if (TCNT1 == OCR1A) {
                                   adc\_tempf = (ADCH << 8) + ADCL; // T(C)=Vout/10mV, TOS=ADC - T(C)
                                   adc_tempf = (9/5)*adc_tempf + 32; // Converts Celsius to Fahrenheit
                                   snprintf(outs, sizeof(outs), "%3f\r\n", adc tempf);// Stores integer
                                                                                              // 'adc temp' in string 'outs'
                                   USART_putstring("AT+CIPSTART=\"TCP\",\"api.thingspeak.com\",80");
                                   // Connect API KEy
                                   USART putstring("AT+CIPSEND=51");
                                   // Send Serial Data
                                   USART_putstring("GET /update?key=YR8DHQMB2YJS3AAX&field1=outs\r\n");
                                   // Send Value
                                   USART_putstring("AT+CIPCLOSE");
                                   // Close Data
                       }
            }
            return 0;
TCCR1A = (0 < COM1A1) | (0 < COM1A0); // Normal Operation, Disconnected OC1A COM1A1:0
            TCCR1A = (0<<COM1B1)|(0<<COM1B0); // Normal Operation, Disconnected OC1B COM1B1:0
           }
ISR(TIMER1_COMPA_vect) {      // Function to Truncate Timer1 to delay properly for 1 second
           TCNT1 = 0;  // Restart Timer1 from the Beginning
return;  // Resume code from where interrupt left off
}
UBRRØH = (uint8_t)(BAUD_PRESCALLER >> 8); // Store Upper Baudrate values in UBRRØH
           UCSR0C = (3 << UCSZ00);
                                                                                  // Set UCSZ02:1 as 8-bit character data
}
while (!(UCSR0A & (1 << RXC0))); // Checking until RXC0 is 'High' to break loop</pre>
            return UDR0;
                                                                      // Return received serial into char data
}
void USART send(unsigned char data) {
                                                                     // Function to transmit ASCII value into UDR0
            while (!(UCSR0A & (1 << UDRE0))); // Check until UDRE0 'High' to break loop</pre>
                                                                       // Store unsigned char serial data into UDR0
            UDR0 = data;
}
void USART putstring(char* StringPtr) { // break string into chars, then USART send()
            USART send(*StringPtr);
                                                                     // Send char value pointed by the string pointer
                       StringPtr++;
                                                                      // Increment pointer to next char array location
            }
```

```
}
void adc_init(void) {
      ADMUX = (0<<REFS1)|(1<<REFS0)| // Reference Selection Bits, AVcc Ext cap AREF
                                                // ADC Left Adjust Result
      (0<<ADLAR)
      (0<<MUX3)|(1<<MUX2)|(0<<MUX1)|(1<<MUX0); // Analog Channel Select Bits 'ADC5'
      ADCSRA = (1 < < ADEN)
                                               // ADC Enable
      (0<<ADSC)
                                               // ADC Start Conversion
      (0<<ADATE)
                                               // ADC Auto Trigger Enable
                                               // ADC Interrupt Flag
      (0<<ADIF)
                                               // ADC Interrupt Enable
       (0<<ADIE)
      (1<<ADPS2) | (0<<ADPS1) | (1<<ADPS0);
                                               // ADC Prescaler Select Bits '32'
}
void read_adc(void) {
      unsigned char i = 4;
                                               // Set 'i' for iterations
      adc_temp = 0;
                                               // set float 'adc temp'
      while (i--) {
                                               // Decrement 'i' until 4 samples take
             ADCSRA |= (1<<ADSC);
                                               // If ADSC is high (ADC Start Conversion)
             while (ADCSRA & (1<<ADSC)); // Start the ADC Conversion
             adc_temp += ADC;
                                               // Store analog value of current adc_temp
             _delay_ms(50);
                                               // delay 50ms for sampling
      adc_temp = (adc_temp/4);
                                              // Average 4 samples taken into adc_temp
}
```

3. SCHEMATICS

Figure 1 – Schematic Setup of ESP01 Module

4. SCREENSHOTS OF EACH TASK OUTPUT (ATMEL STUDIO OUTPUT)

Figure 2 – Output through ThingSpeak Temperature Reading

5. SCREENSHOT OF EACH DEMO (BOARD SETUP)

Figure 3 – Board Setup for ESP01 Modul and Atmega328PB w/ Temperature Sensor

6. VIDEO LINKS OF EACH DEMO

N/A

7. GITHUB LINK OF THIS DA

https://github.com/rockyg1995/ihswppdar/tree/master/Midterms/Midterm_I

Student Academic Misconduct Policy

http://studentconduct.unlv.edu/misconduct/policy.html

"This assignment submission is my own, original work".

Rocky Yasuaki Gonzalez