清华大学本科生考试试题专用纸

考试课程: 基础物理学(1) 2021 年 4 月 15 日

姓名: 学号: 班级:

一、选择题 (共 24 分)

1. (本题 3 分)

质点沿半径为 R 的圆周作匀速率运动,每 T 秒转一圈. 在 2T 时间间隔中,其平均速度大小与平均速率大小分别为

- (A) $2\pi R/T$, $2\pi R/T$;
- (B) 0, $2\pi R/T$;
- (C) 0, 0;
- (D) $2\pi R/T$, 0.

2. (本题 3 分)

如图所示,一陀螺由两个质量均为m、高为h、转动惯量为 I_0 的圆锥对称地粘接而成. 当自转角速度为 ω 时,其转轴与竖直方向夹角为 θ ,则其旋进角速度的大小为

(B)
$$\frac{mgh}{I_0\omega}$$

(C)
$$\frac{mgh\sin\theta}{2I_0\omega}$$
.

(D)
$$\frac{2I_0\omega}{mh}$$

3. (本题 3 分)

一运动质点在某瞬时位于位矢量 $\vec{r}(x,y)$ 的端点处,其速度大小为

- (A) $\frac{dr}{dt}$.
- (B) $\frac{d\vec{r}}{dt}$.
- (C) $\frac{d|\vec{r}|}{dt}$.

(D)
$$\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2}$$
.

4. (本题 3 分)

如图所示,一质量为 m 的匀质细杆 AB,A 端靠在粗糙的竖直墙壁上,B 端置于粗糙水平地面上而静止,杆身与竖直方向成 θ 角,则 A 端对墙壁的压力大小

- (A) 为 $\frac{1}{4}mg\cos\theta$
- (B) 为 $\frac{1}{2}mgtg\theta$
- (C) 为 mgsinθ
- (D) 不能确定

5. (本题 3 分)

质点的质量为 m,置于光滑球面的顶点 A 处 (球面固定不动),如图所示,当它由静止开始下滑到球面上 B 点时,它的加速度的大小为

- (A) $a = 2g(1 \cos\theta)$.
- (B) $a = g \sin \theta$.
- (C) a = g.
- (D) $a = \sqrt{4g^2(1-\cos\theta)^2 + g^2\sin^2\theta}$.
- (E) 以上结果都不对。

6. (本题 3 分)

将细绳绕在一个具有水平光滑轴的飞轮边缘上,现在在绳端挂一质量为m的重物,飞轮的角加速度为 α 。如果以拉力2mg代替重物拉绳时,飞轮的角加速度将

- (A) 小于 α。
- (B) 大于α, 小于 2α。
- (C) 大于 2α。
- (D) 等于 2α。

7. (本题 3 分)

物体的转动惯量与下列哪一条没有关系

- (A) 物体的转动轴;
- (B) 物体的形状:
- (C) 物体的质量分布;
- (D) 物体的线速度.

8. (本题 3 分)

质量为 m 的铁锤竖直落下,打在木桩上面后静止下来。若打击时间为 Δt ,碰前铁锤的速度大小为 v,则在打击木桩的时间内铁锤所受的平均合外力 的大小为

(A)
$$\frac{mv}{\Delta t} - mg$$
. (B) $\frac{mv}{\Delta t}$. (C) $\frac{mv}{\Delta t} + mg$. (D) $\frac{2mv}{\Delta t}$

(B)
$$\frac{mv}{\Delta t}$$
.

(C)
$$\frac{mv}{\Delta t} + mg$$

(D)
$$\frac{2mv}{\Delta t}$$

二、填空题 (共 27 分)

9. (本题 3 分)

如图所示,一斜面倾角为 θ ,用与斜面成 α 角的恒 力 \vec{F} 将一质量为 m 的物体沿斜面拉升了高度 h,物体 与斜面间的摩擦系数为 μ。摩擦力在此过程中所作的功

10. (本题 3 分)

一根质量为 m,在水平地面上被匀速拉动的绳子,如果它与地面的摩擦系 数为 μ,则施加在该绳前端的拉力为 _____,而绳后端的张力为____。

11. (本题 3 分)

如图所示,在一半径为 R,质量面密度为 σ 的 均匀圆盘上距离圆心 d 处挖空一个半径为 r 的小圆 盘 (d > r),则挖掉小圆盘后系统的质心在圆盘中心 o 与挖空小圆盘中心 o' 连线上距 o 的距离 为 _____。

12. (本题 3 分)

一滑冰者开始张开手臂绕自身竖直轴旋转,其动能为 E_0 ,转动惯量为 I_0 ,若他将手臂收拢,其转动惯量变为 $I_0/2$,则其动能将变为 。(摩擦不计)

13. (本题 3 分)

一质点从高度为h 处静止自由下落。同时,另一质点同时从地面以一定 初速度 v_0 上抛。若两个质点在离地面高度为 h/3 处相遇,则相遇的时间应为____。

14. (本题 3 分)

一匀质球与一匀质圆柱体的质量相等,前者的半径与后者的横截面半径相等。在同一斜面上从同一高度由静止无滑动地滚下。经过相同时间后,两者滚过的路程的比(S_{R} / S_{L})=

15. (本题 3 分)

如右图所示为一个质点在其中作一维运动的系统的势能函数 U(x)。(a) 按照质点力的大小,由大到小将区域 AB、BC 和 CD 排序

16. (本题 3 分)

如右图所示,一个球从一个竖直墙面无任何速率改变弹回的俯视图。若球的线动量的改变为 $\Delta \vec{p}$: (a) Δp_x 是_____(仅填正、负或零),(b) Δp_y 是_____(仅填正、负、或零),(c) $\Delta \vec{p}$ 方向为 _____。

17. (本题 3 分)

质量为 M 的车沿光滑的水平轨道以速度 v_0 前进,车上的人质量为 m,开始时人相对于车静止,后来人以相对于车的速度 v 向前走,此时车速变成 V,则车与人系统沿轨道方向动量守恒的方程应写为______.

18. (本题 3 分)

如图所示. 均匀柱体的半径为 R,在圆柱体上 F_1 施以垂直于其轴线的水平力 F_1 和 F_2 , F_2 作用 在中心轴上, F_1 通过绕在半径为 r 的凸起圆盘(圆盘质量忽略不计)盘周的绳作用于柱体. 若使该柱体在水平面上作纯滚动,则圆柱体受到的静摩擦力为______(以 F_1 的方向为正方向).

三、计算题 (共 49 分)

19. (本题 10 分)

如图所示,质量为 M 半径为 R 的 1/4 圆周的光滑弧形滑块,静止在光滑桌面上。今有质量为 m 的物体由弧的上端 A 点静止滑下,试求当 m 滑到最低点 B 时: 1) m 相对于 M 的速度 v Q M 对地的速度 V:2 M 对 m 的作用力 N。

20. (本题 10 分)

具有固定自转角速度为 ω 的地球,其表面 θ 纬度上有一质量为 m 的质点。如果该质点具有与球表面相切、大小恒定的水平速度 \vec{v} ,忽略其它水平力,试画出质点速度与地球自转角速度在地球表面的矢量图,并证明该质点在北半球相同纬度附近的水平方向作顺时针圆周运动,在南半球作逆时针运动。

21. (本题 10 分)

如图所示,倾角为 α 的斜面上放置一个质量为 m_1 、半径为 R 的均匀圆柱体。有一轻细绳绕在此圆柱体的边缘上,并跨过轻质量滑轮与质量为 m_2 的重物相连。圆柱体与斜面的静摩擦系数为 μ 。求若使得 m_1 与 m_2 能够平衡,在给定 α 角的条件下,质量与摩擦系数两者应满足的条件。

22. (本题 10分)

如图所示,有一质量为 *M*、长度为 *l* 的均匀细棒,其一端固结一个质量也为 *M* 的小球,可绕通过另一端且垂直于细棒的水平光滑固定轴自由转动。最初棒自然下垂。现有一质量为 *m* 的子弹,在垂直于轴的平面内以水平速度 *v* 射穿小球,子弹穿过小球时速率减为 *v*/2,要使棒能绕轴作完整的一周转动,子弹入射时的速率至少必须为多大?

23. (本题 9 分)

质量为 m 作平面平行运动的刚体(或它的延伸体)上一定存在一个瞬心 P,其绝对速度为零。证明对于该瞬心 P,有瞬心系 K' 的角动量定理

$$\overrightarrow{M}'_{fh} - r'_{C} \times (m\overrightarrow{a}_{P}) = \frac{d\overrightarrow{J}'}{dt}$$

这里, r_c' 为质心在 K' 系中的位矢量。