Sistemas de Tempo Real:

Escalonamento Baseado em Prioridades Fixas

Rômulo Silva de Oliveira

Departamento de Automação e Sistemas - DAS – UFSC

romulo@das.ufsc.br http://www.das.ufsc.br/~romulo

Escalonamento Baseado em Prioridades Fixas

- Caracterização
- Rate Monotonic
- Análise da Utilização
- Análise do Tempo de Resposta
- Deadline Monotonic
- Release Jitter
- Bloqueios

Escalonamento Baseado em Prioridades Fixas

- Aplicação composta por tarefas (processos)
- Estados de uma tarefa:
 - Liberada (pronta para executar, apta, ready)
 - Suspensa esperando por evento ou passagem do tempo
 - Bloqueada
- Em geral escalonamento é preemptivo
- Tarefas possuem **prioridade fixa** definida em projeto
- Garantia exige
 - Tarefas periódicas ou esporádicas
 - Tempo máximo de computação conhecido
 - Teste de escalonabilidade apropriado

Teste de Escalonabilidade

- Teste de Escalonabilidade pode ser
 - Suficiente
 - Exato
 - Necessário

escalonável

Conjunto de todos os sistemas

não escalonável

Rate Monotonic

- Quanto menor o período, maior a prioridade
- Ótimo quando
 - Tarefas são periódicas
 - Deadline é sempre igual ao período
- Exemplo:

Ta	arefas	T1	T2	T3
– Ре	eríodos	P1=30	P2=40	P3=50
- Pr	rioridades	p1=1	p2=2	p3=3

- Cuidado!
 - Número menor indica prioridade maior
 - Muitas vezes é o contrário

Análise da Utilização

- Utilização de uma tarefa:
 - Tempo máximo de computação dividido pelo período
 - T1 tem C1=12 e P1=50, então U1 = 12 / 50 = 0.24
- Teste para Rate Monotonic, sistema é escalonável se:

$$\sum_{i=1}^{N} \left(\frac{C_i}{P_i}\right) < N(2^{1/N} - 1)$$

- Para N=1 utilização máxima é 100%
- Para N=10 utilização máxima é 71.8%
- Para N grandes utilização máxima tende para 69.3%
- Baseado no conceito de Instante Crítico
- Teste é suficiente mas não necessário

Análise da Utilização

• Exemplo:

T1

T2

T3

Períodos

P1=16

P2=40

P3=80

Computação

C1=4

C2=5

C3=32

Utilização

U1=0.250

U2=0.125

U3=0.400

Prioridades

p1=1

p2 = 2

p3=3

• Utilização total é 0.775, abaixo do limite 0.780

- Limitações da análise baseada em Utilização
 - Não é exata
 - Aplicável apenas a modelos de tarefas muito simples
- Análise baseada em Tempo de Resposta
 - Abordagem analítica calcula tempo de resposta no pior caso
 - Tempo de resposta de cada tarefa
 é comparado com o deadline da tarefa

- Como calcular o tempo de resposta de cada tarefa?
- Para a tarefa mais prioritária temos R1 = C1
- Demais tarefas sofrem Interferência das tarefas com prioridade maior
- Neste caso, Ri = Ci + Ii
- Interferência é máxima a partir do Instante Crítico
 - Todas as tarefas são liberadas simultaneamente
 - Suposto instante zero na análise

- Seja Tj uma tarefa com prioridade maior que Ti
- Quantas vezes Tj pode acontecer durante a execução de Ti?

$$\begin{bmatrix} R_i \\ P_j \end{bmatrix}$$

• Qual a interferência total de Tj sobre Ti?

$$\left[\frac{R_{i}}{P_{j}}\right] \times C_{j}$$

• Qual a interferência total sobre Ti?

$$\sum_{j \in hp(i)} \left| \frac{R_i}{P_j} \right| \times C_j$$

O tempo máximo de resposta de Ti é Ri = Ci + Ii

$$R_{i} = C_{i} + \sum_{j \in hp(i)} \left[\frac{R_{i}}{P_{j}} \right] \times C_{j}$$

- Equação é recursiva
- Calculada através de iterações sucessivas, até:
 - Tempo de resposta passar do deadline
 - Resultado convergir, iteração x+1 igual a iteração x

$$\mathbf{w}_{i}^{x+1} = \mathbf{C}_{i} + \sum_{j \in hp(i)} \left[\frac{\mathbf{w}_{i}^{x}}{\mathbf{P}_{j}} \right] \times \mathbf{C}_{j} \qquad \mathbf{w}_{i}^{0} = \mathbf{C}_{i}$$

• Exemplo:

T1 T2 T3

Períodos

- P1=7 P2=12 P3=20
- Computação
- C1=3 C2=3 C3=5

- Prioridades

p1=1 p2=2 p3=3

• R1 = C1 = 3

Análise da tarefa T2:

$$w_2^0 = C_2 = 3$$

$$\mathbf{w}_{2}^{1} = \mathbf{C}_{2} + \left[\frac{\mathbf{w}_{2}^{0}}{\mathbf{P}_{1}}\right] \times \mathbf{C}_{1} = 3 + \left[\frac{3}{7}\right] \times 3 = 6$$

$$\mathbf{w}_{2}^{2} = \mathbf{C}_{2} + \left[\frac{\mathbf{w}_{2}^{1}}{\mathbf{P}_{1}} \right] \times \mathbf{C}_{1} = 3 + \left[\frac{6}{7} \right] \times 3 = 6$$

• Análise da Tarefa T3:

$$w_3^0 = C_3 = 5$$

$$\mathbf{w}_{3}^{1} = \mathbf{C}_{3} + \sum_{\mathbf{j} \in \text{hp}(3)} \left| \frac{\mathbf{w}_{3}^{0}}{\mathbf{P}_{\mathbf{j}}} \right| \times \mathbf{C}_{\mathbf{j}} = 5 + \left\lceil \frac{5}{7} \right\rceil \times 3 + \left\lceil \frac{5}{12} \right\rceil \times 3 = 11$$

$$|w|_{3}^{2} = 5 + \left\lceil \frac{11}{7} \right\rceil \times 3 + \left\lceil \frac{11}{12} \right\rceil \times 3 = 14 \qquad |w|_{3}^{3} = 5 + \left\lceil \frac{14}{7} \right\rceil \times 3 + \left\lceil \frac{14}{12} \right\rceil \times 3 = 17$$

$$w_{3}^{4} = 5 + \left\lceil \frac{17}{7} \right\rceil \times 3 + \left\lceil \frac{17}{12} \right\rceil \times 3 = 20 \quad w_{3}^{5} = 5 + \left\lceil \frac{20}{7} \right\rceil \times 3 + \left\lceil \frac{20}{12} \right\rceil \times 3 = 20$$

• Exemplo:

- **T**1
- T2
- T3

Períodos

- P1=7
- P2=12
- P3=20

- Computação
- C1=3
- C2=3
- C3=5

Prioridades

- p1=1
- p2=2
- p3=3

- Tempo Máximo de Resposta
- R1=3
- R2=6
- R3=20

- Teste de escalonabilidade **exato**
- Deadline pode ser menor que o período
 - Basta comparar o tempo de resposta com o deadline
- Deadline maior que o período exige análise mais complexa
 - Tarefa pode interferir com ela mesma
- Tarefas esporádicas podem ser tratadas como periódicas
 - Intervalo mínimo entre ativações é usado como período
- A forma como prioridades são atribuidas NÃO é importante
 - Funciona pois "hp(i)" sempre indica as tarefas mais prioritárias do que a tarefa "i"

Deadline Monotonic

- Quanto menor o deadline, maior a prioridade
- Ótimo quando deadline é menor ou igual ao período
- Exemplo:

_	Tarefas	T1	T2	T3	T4
_	Períodos	P1=20	P2=15	P3=10	P4=20
_	Tempo máximo de computação Deadline Prioridades	C1=3 D1=5 p1=1	C2=3 D2=7 p2=2	C3=4 D3=10 p3=3	
_	Tempo máximo de resposta	R1=3	R2=6	R3=10	R4=20
_	Caso fosse RM	R1=10	R2=7	R3=4	R4=20

Release Jitter

- Suponha uma tarefa esporádica liberada por evento externo
 - Eventos podem ser amostrados periodicamente
 - Sinalização do evento pode ter atraso variável

• Release Jitter: Atraso máximo na liberação da tarefa

$$w_{i} = C_{i} + \sum_{j \in hp(i)} \left\lceil \frac{w_{i} + J_{j}}{P_{j}} \right\rceil \times C_{j}$$

Bloqueios

- Podem ocorrer bloqueios devido a relações de exclusão mútua
 - Estruturas de dados compartilhadas
 - Dispositivos compartilhados
- Suponha T1 e T2, T1 com maior prioridade
- Se T2 fica bloqueada, esperando por T1
 - Ok, T1 tem mesmo prioridade superior
- Se T1 fica bloqueada, esperando por T2
 - Cálculo do tempo de resposta deve incluir a espera máxima Bi

$$w_{i} = C_{i} + B_{i} + \sum_{j \in hp(i)} \left\lceil \frac{w_{i} + J_{j}}{P_{j}} \right\rceil \times C_{j}$$

$$R_{i} = J_{i} + w_{i}$$

Resumo

- Cada tarefa recebe uma prioridade fixa
- Teste é desenvolvido para examinar a escalonabilidade
- Dois tipos de análise
- Análise da Utilização
 - Utiliza o valor C/P
- Análise do Tempo de Resposta
 - Tenta calcular o tempo de resposta no pior caso