

Universidade Federal de Santa Catarina

Centro de Ciências Físicas e Matemáticas Curso de Matemática - Licenciatura

Fundamentos da Aritmética Lista III — Divisibilidade nos naturais

Professor: Prof. Paulinho Demeneghi
Tutor: Profa. Karina Gomez Pacheco
Aluno: João Lucas de Oliveira
Data: 08 de Setembro de 2025

Questão 1 – Prove que as seguintes sentenças são verdadeiras:

(a) 5 é mínimo do conjunto $S = \{44, 12, 27, 5\}.$

Resposta:

- 5 é o mínimo do conjunto, pois:
 - $-5 \le 12$, pois 12 = 5 + 7.
 - -5 < 27, pois 27 = 5 + 22.
 - -5 < 44, pois 44 = 5 + 39.
- (b) 44 não é mínimo do conjunto $S = \{44, 12, 27, 5\}.$

Resposta:

• $\neg (44 \le 12)$, pois $12 \ne 44 + x$.

Questão 2 — Dados S um subconjunto de \mathbb{N} e m um elemento de S quaisquer, dizemos que m é um máximo de S caso a seguinte sentença seja verdadeira:

Dados S um subconjunto de $\mathbb N$ e m um elemento de S quaisquer, dizemos que m é um máximo de S caso a seguinte sentença seja verdadeira:

Resposta:

- (a) Unicidade: suponha que m e m' sejam máximos de S. Como m é máximo, para todo $x \in S$ vale $x \le m$; em particular, $m' \le m$. Analogamente, de m' ser máximo, obtemos $m \le m'$. Logo, m = m'. Portanto, pela propriedade antissimétrica, temos que m = m'.
- (b) Exemplo sem máximo: $S = \{x, y \in \mathbb{N} \mid x = 2 \cdot y + 0\}$ apenas os pares.

Questão 3 – Explique por que 5 é um divisor de 30.

Resposta: Pela definição, $5 \mid 30$ se existe $k \in \mathbb{N}$ tal que 30 = 5k. Como $30 = 5 \cdot 6$, basta tomar k = 6. Logo, $5 \mid 30$.

Questão 4 – Explique por que 3 não divide 5.

Dica: Verifique que $3 \mid 3$ e que 2 < 3 combinado ao fato de que 5 = 3 + 2.

Resposta: Se $3 \mid 5$, então existiria $k \in \mathbb{N}$ tal que 5 = 3k. Pela divisão euclidiana, $5 = 3 \cdot 1 + 2$ com resto $2 \neq 0$, logo tal k não existe. Equivalentemente, de 5 = 3 + 2 e do fato de que múltiplos de 3 são fechados por soma, concluiríamos que 2 seria múltiplo de 3, o que é falso pois 0 < 2 < 3. Portanto, $3 \nmid 5$.

Questão 5 – Decida o valor lógico de cada uma das sentenças abaixo, apresentando demonstrações que suportem suas conclusões.

- (a) 0 é múltiplo de 16.
- (b) 16 divide 0.
- (c) 0 é divisor de 16.
- (d) 16 não é divisível por 0.

Resposta:

- (a) Verdadeiro. Por definição, 0 é múltiplo de 16 pois $0 = 16 \cdot 0$.
- (b) Verdadeiro. Temos 16 | 0 porque $0 = 16 \cdot 0$.
- (c) Falso. Dizer $0 \mid 16$ significaria existir $k \in \mathbb{N}$ com $16 = 0 \cdot k$, o que é impossível.
- (d) Verdadeiro. Não existe $k \in \mathbb{N}$ tal que $16 = 0 \cdot k$; logo 16 não é divisível por 0.

Questão 6 – Para quaisquer números naturais a e b, se a|b e $a \neq 0$, então existe um único número natural c de modo que b = ac.

Observação: repare que a existência de um tal número natural c é dada pela definição de a|b. O "novo" aqui é a unicidade.

Resposta (unicidade): Se b = ac e também b = ad com $c, d \in \mathbb{N}$ e $a \neq 0$, então ac = ad. Pela lei do cancelamento em \mathbb{N} (ou, equivalentemente, como não há divisores de zero em \mathbb{N}), conclui-se que c = d. Logo, tal c é único.

Questão 7 – Escreva uma demonstração para cada uma das seguintes proposições.

- (a) **Proposição.** Para qualquer número natural a, se a é divisível por 18, então a é divisível por 3.
- (b) **Proposição.** Para quaisquer números naturais a, b e c, se a|b, então a|(bc).
- (c) **Proposição.** Para quaisquer números naturais a, b e c, se a|b e a|c, então para quaisquer números naturais x e y tem-se que a|(bx+cy).

Resposta:

- (a) Se 18 | a, então existe k com $a = 18k = (3 \cdot 6)k = 3(6k)$; logo $3 \mid a$.
- (b) Se $a \mid b$, escreva b = ak. Então bc = a(kc), isto é, $a \mid bc$.
- (c) Se $a \mid b$ e $a \mid c$, existem k, ℓ tais que b = ak e $c = a\ell$. Para quaisquer x, y, temos $bx + cy = a(kx) + a(\ell y) = a(kx + \ell y)$; portanto, $a \mid (bx + cy)$.

Questão 8 – Se um número natural é divisor de um produto, podemos afirmar que ele é também divisor dos fatores? Justifique.

Resposta: Não, apenas nos casos de números primos onde temos o Lema de Euclides:

Se
$$p$$
 é primo e $p \mid (ab)$, então $p \mid a$ ou $p \mid b$.

Mas se ele não for primo pode falhar, como no caso do

$$2 \mid (3 \cdot 4)$$
 onde $3 \cdot 4 = 12$, e $2 \mid 12$.

Mas

Questão 9 — Se um número natural é divisor de uma soma, podemos afirmar que ele é também divisor das parcelas? Justifique.

Resposta: Não, em geral não podemos afirmar isso. Exemplo:

$$4 \mid (6+2)$$
 pois $6+2=8$ e $4 \mid 8$,

 ${\operatorname{mas}}$

$$4 \nmid 6$$
 e $4 \nmid 2$.

Portanto, se $a \mid (b+c)$, não podemos concluir que $a \mid b$ nem que $a \mid c$. A única afirmação verdadeira é a seguinte:

Se
$$a \mid b \in a \mid c$$
, então $a \mid (b+c)$.

Ou seja, a recíproca não é válida.