Зміст

1	Мік	роекономіка	2
	1.1	Введення у математичні методи економічного аналізу	2
		1.1.1 Додадньовизначенні матриці	2
	1.2	Якась задача	5
	1.3	Задача №2. Економічний зміст множника Лагранджа λ^*	5
		1.3.1 Задача №3	5
	1.4	Література	5
	Ε	Викладач:Подладчиков Володимир Миколайович	
Ел	ектро	онна адреса:ipodlad@gmail.com	

Розділ 1

Мікроекономіка

Основні теми курсу:

13.02.2014

- Теорія потреб;
- Теорія фірми;
- Теорія ринкових структур;
- Макроекономічні системи;
- Макроекономічна система Кейнса;

1.1 Введення у математичні методи економічного аналізу

Додадньовизначенні матриці 1.1.1

Розкладемо деяку функцію f(x) в ряд Тейлора:

$$f(x+h) = f(x) + hf'(x) + h^2 f''(x)$$
(1.1.1)

Якщо x точка мінімуму, то $f(x+h) - f(x) = h^2 f''(x) > 0$

$$x \in \mathbb{R}^n, f: \mathbb{R}^n \to \mathbb{R}^n$$

$$\vec{f}\left(\vec{x}+\vec{h}\right)=\vec{f}\left(\vec{x}\right)+
abla^Tf\cdot h+\vec{h}_t\cdot A\cdot h$$
 Якщо x точка мінімуму, то $f(x+h)-f(x)=h^T\cdot A\cdot h>0$

Властивості доданьовизначенної матриці

Теорема 1. Для доданьовизначенної матриці A виконується:

$$e_i^t A e_i = a_i i$$

Теорема 2. Для усіх λ_i , які є власними числами додатньовизначенної матриці A виконується: $\lambda_i > 0$.

Доведення.
$$Ax = \lambda x$$

$$x^T A x = \lambda x^T x$$

$$x^{T}Ax = \lambda x^{T}x$$

$$\lambda = \frac{x^{T}Ax}{x^{T}x} > 0$$

Задача цариці Додони

Постановка задачі: Є одна шкура вівці. Порізавши її на довгу нитку, потрібно обвести максимальну по площі ділянку біля моря.

$$\max xy \tag{1.1.2}$$

$$2 \cdot x + y = a \tag{1.1.3}$$

Розв'яжемо цю задачу за допомогою фуункції Лагранджа: $L = x \cdot y + \lambda \left(a - 2x - y \right)$ Після диференціювання отримали систему:

$$\begin{cases} \frac{\partial L}{\partial x} = y - 2\lambda = 0\\ \frac{\partial L}{\partial y} = x - \lambda = 0 \end{cases}$$
 (1.1.4)

Отримали з неї:

$$\begin{cases} y = 2\lambda \\ x = \lambda \end{cases} \tag{1.1.5}$$

Розв'яжемо отримане рівняння $2\lambda + 2\lambda = 4$.

Отримали:
$$\lambda = \frac{a}{4} \Rightarrow y = \frac{a}{2}, x = \frac{a}{4}$$

Матрична арифметика

$$x \in \mathbb{R}^n : C_{m \times p} = A_{m \times n} \cdot L_{n \times p}$$
 $(\vec{x}_t, vx)_{1 \times 1}, (\vec{x}, \vec{x}_t)_{n \times n}$ xA Ax $\phi_1(x) = C^T x = C_1 x_1 + \ldots + C_n x_n$ $\frac{\partial \phi_1}{\partial x} = C$ $\phi_2 = \vec{x}_t A \vec{x} = (\vec{x}, A \vec{x}) = (\vec{x} \vec{x}_t A)^\mathsf{T}$ $\frac{\partial \phi_2}{\partial x} = 2A \vec{x}$ $\frac{\partial \phi(A)}{\partial A} = \frac{\partial \phi}{\partial a_{ij}}$ Зробити дома: $\frac{\partial \det A}{\partial A} = ?$

Ортогональні матриці

Матриця A називається ортогональною, якщо $AA^{\rm T}=I$ Розглянемо деякі вектори $\vec{y}=A\vec{x}$. При яких матрицях A співпадають $||\vec{x}||=||\vec{y}||?$ $||\vec{y}||^2=\vec{y}_t\vec{y}=\vec{x}_tA^{\rm T}A\vec{x}=\vec{x}_t\vec{x}$ Якщо A ортогональна, то $A^{-1}=A^{\rm T}$ $\det(A)=\pm 1$

$$|\lambda(A)|=1$$
 $C=A\cdot B$ - добуток ортогональний також ортогональна. $C^{\mathrm{T}}\cdot C=B^{\mathrm{T}}\cdot A^{\mathrm{T}}\cdot A\cdot B=B^{\mathrm{T}}\cdot B=I$

Приклад 1 (матриця Якобі).
$$A = \frac{\cos\phi}{\sin\phi} - \frac{\sin\phi}{\cos\phi}$$
 det $A = 1$ X арактеристичне рівняння: $\lambda^2 - 2\cos\phi\lambda + 1$ $\lambda_{\pm} = \cos\phi \pm \sqrt{\cos^2\phi - 1} = -\cos\phi \pm i\sin\phi$

Власні числа

Знайти екстремальну точку кривої другого порядку.

$$\min \vec{x}_t A \vec{x} \tag{1.1.6}$$

$$\vec{x}_t \vec{x} = 1 \tag{1.1.7}$$

Складемо функцію Лагранджа:
$$L=\vec{x}_tA\vec{x}+\lambda\left(1-\vec{x}_t\vec{x}\right)$$
 $\frac{\partial L}{\partial x}=2A\vec{x}-\lambda\cdot 2\vec{x}=0$ Отримали: $A\vec{x}=\lambda\vec{x}$

Функції від матриць

$$\lambda_1 \dots 0$$
 $A = T \vdots \vdots \vdots T$
 $0 \dots \lambda_n$
 $A^2 = T\Lambda TT\Lambda T = T\Lambda^2 T$
 $f(\lambda_1) \dots 0$
 $f(A) = T \vdots \vdots T$
 $0 \dots f(\lambda_n)$
 $e_1^{\lambda} \dots 0$
 $e^A = T \vdots \vdots T$
 $0 \dots e_n^{\lambda}$
 $\det e^A = e^{\lambda_1 + \dots + \lambda_n}$
 $\lambda_1 + \dots + \lambda_n = A^{\mathsf{T}}$
 $\lambda_1 \dots \lambda_n = \det A$
Отримали: $\det e^A = e^{A^{\mathsf{T}}}$

Теорема Гамільтона-Кері

Приклад 2.
$$\phi(\lambda)=\lambda^2+k_1\lambda+k_2$$
 $\phi\left(A\right)=A^2+k_1A+k_2I\equiv 0$

Через це можна виразити:

$$A^{2} = -k_{1}A - k_{2}I$$

$$A^{3} = A^{2} \cdot A$$

$$A^{n} = \alpha_{1}A + \alpha_{2}I$$

$$\lambda^{n} = \alpha_{1}\lambda + \alpha_{2}$$

Якась задача 1.2

27.02.2014

$$\max U(\vec{x}), \vec{x} \in \mathbb{R}^n \tag{1.2.1}$$

$$D - p\vec{x} = 0 \tag{1.2.2}$$

$$L = u(x) + \lambda(D - \mp p\vec{x}) \tag{1.2.3}$$

$$\frac{\partial L}{\partial x} = \frac{\partial u}{\partial x} + \lambda p \tag{1.2.4}$$

$$x^* = x^*(p, D) (1.2.5)$$

$$u^*(x^*(p,D))$$
 (1.2.6)

 u^* - це **непряма функція корисності**. Одиниця виміру юділь (udil).

$$\tilde{H} = \begin{pmatrix} 0 & -p \\ -p & H \end{pmatrix} \tag{1.2.7}$$

$$\det \tilde{H} = -(pH^{-1}p) \det H \neq 0 \tag{1.2.8}$$

Задача №2. Економічний зміст множника Ла-1.3 гранджа λ^*

$$\lambda^* > 0 \tag{1.3.1}$$

$$\lambda^* > 0 \tag{1.3.1}$$

$$\frac{\partial u^*}{\partial D} = \frac{\partial}{\partial D} (u^* (D, p)) \tag{1.3.2}$$

Економічний зміст множника Лагранджа - він визначає граничну корисність грошей.

1.3.1 Задача №3

Довести, що непряма функція корисності є чимось. О боги, як мене бісить ця

Безкоштовних сніданків не буває.

Література 1.4