Cache: desempenho e associatividade

Desempenho da cache

Tempo de CPU:

$$tempo_{execução} = (ciclos_{CPU} + ciclos_{stall}) \times T$$

• Ciclos de "stall":

$$ciclos_{stall} = ciclos_{stall}$$
 (leitura) + $ciclos_{stall}$ (escrita)

Desempenho da cache

• Ciclos de "stall" devidos à leitura:

$$ciclos_{stall}$$
 (leitura) = $\frac{leituras}{programa} \times mr$ (leitura) × penalidade (leitura)

• Ciclos de "stall" devidos à escrita:

(Para "write buffers" suficientemente grandes ou "write-back")

$$ciclos_{stall} (escrita) = \frac{escritas}{programa} \times mr (escrita) \times penalidade (escrita)$$

$$+ ciclos_{stall} (write buffer)$$

Desempenho da cache

- Combinando escrita e leitura
 - Supondo penalidades idênticas
 - Taxa de fracasso (mr) combinada

$$ciclos_{stall}(mem\'{o}ria) = \frac{acessos}{programa} \times mr \times penalidade$$

OU

$$ciclos_{stall}(memória) = \frac{instruções}{programa} \times \frac{fracassos}{instrução} \times penalidade$$

Cache: exemplo de impacto no CPI

- Dado um programa, suponha
 - mr (I) = 2% e mr (D) = 4%
 - CPI = 2 para cache ideal (não gera "stalls")
 - Penalidade = 100 ciclos
 - Loads + stores = 36% (SPECInt2000)
- Objetivo
 - Comparar o desempenho de duas configurações:
 - » CPU com cache ideal (mr=0)
 - » CPU com cache real (mr≠0)

Comparação ideal x real

• "Stalls"p/ fracasso no acesso a instruções:

$$I \times 2\% \times 100 = 2 \times I$$

"Stalls" p/ fracasso no acesso a dados:

$$(I \times 36\%) \times 4\% \times 100 = 1,44 \times I$$

CPI c/ "stalls":

$$CPI_{total} = 2 + 3,44 = 5,44$$

Razão dos tempos de execução:

$$\frac{\text{tempo}_{\text{execução}} \text{ (real)}}{\text{tempo}_{\text{execução}} \text{ (ideal)}} = \frac{I \times \text{CPI}_{\text{real}} \times T}{I \times \text{CPI}_{\text{ideal}} \times T} = \frac{5,44}{2} = 2,72$$

Impacto com redução do CPI

- O que aconteceria com a aceleração da CPU ?
 - Por exemplo: CPI = $2 \rightarrow 1$;
 - Sistema de memória permanece o mesmo
- CPI com "stalls":

$$CPI_{total} = 1 + 3,44 = 4,44$$

• Razão dos tempos de execução:

$$\frac{\text{tempo}_{\text{execução}} \text{ (real)}}{\text{tempo}_{\text{execução}} \text{ (ideal)}} = \frac{I \times CPI_{\text{real}} \times T_r}{I \times CPI_{\text{ideal}} \times T_r} = \frac{4,44}{1} = 4,44$$

Comparação CPI = 2 → 1

- Em relação à ideal:
 - 2,72 mais lenta → 4,44 mais lenta
- Porcentagem do tempo gasto com "stalls":

$$\frac{3,44}{5,44} = 63\%$$
 \longrightarrow $\frac{3,44}{4,44} = 77\%$

- Conclusão:
 - Quanto menor o CPI, maior o impacto dos "stalls".
- Tendência:
 - Superescalares: CPI ↓
- Desempenho: compromisso entre pipeline e cache.

Impacto com aumento de f

- Dado um programa, suponha
 - mr (I) = 2% e mr (D) = 4%
 - CPI = 2 para cache ideal (não gera "stalls")
 - Loads + stores = 36% (SPECInt2000)
 - Freqüência 2 vezes maior
 - Velocidade da MP não é alterada
 - \rightarrow Penalidade = 2 x 100 = 200 ciclos
- Número total de ciclos de "stall" por instrução

$$2\% \times 200 + 36\% \times 4\% \times 200 = 6.88$$

Impacto com aumento de f

Razão dos tempos de execução

$$\frac{\text{tempo}_{\text{execução}} \text{ (lento)}}{\text{tempo}_{\text{execução}} \text{ (rápido)}} = \frac{I \times \text{CPI}_{\text{lento}} \times T}{I \times \text{CPI}_{\text{rápido}} \times T/2} = \frac{5,44}{8,88 \times 1/2} = 1,23$$

- O computador tem o dobro da freqüência
 - Mas seu desempenho é apenas 1,2 vezes maior
 - » Devido aos fracassos na cache
- Conclusão:
 - Quanto maior a f, maior o impacto dos "stalls".
- Tendência
 - Freqüência da CPU aumenta
 - Mas velocidade da MP não aumenta na mesma proporção
- Desempenho: compromisso entre pipeline e cache.

Melhoria de desempenho

- Redução de fracassos
 - Posicionamento mais flexível
 - Associatividade
 - » Mapeamento direto
 - » Memória associativa por conjunto
 - » Memória totalmente associativa
- Redução da penalidade
 - Múltiplos níveis de cache

Mapeamento direto

- Bloco da MP → única posição da cache
- Consequência: para procurar um bloco
 - Uma única posição é pesquisada.
 - Requer 1 comparador/cache.

Cache totalmente associativa

- Bloco da MP → qualquer posição da cache
- Conseqüência: para procurar um bloco
 - Todas as posições precisam ser pesquisadas.
 - Requer 1 comparador/posição da cache.

Cache associativa por conjunto

- Bloco da MP → número fixo de posições da cache
 - Qualquer posição dentro de um único conjunto
 - » Cache associativa por conjunto de ordem n
 - » "n-way set-associative cache"
- Consequência: Para procurar um bloco na cache
 - Um único conjunto é pesquisado.
 - Todas as posições do conjunto precisam ser pesquisadas.
 - Requer 1 comparador/posição do conjunto
- Mapeamento: E modulo S
 - E: endereço do bloco
 S: número de conjuntos na cache

Tipos de posicionamento na cache

• Exemplo: bloco de memória cujo endereço é 12

Exemplo de estrutura

One-way set associative ☐ (direct mapped)

Two-way set associative

Grau de associatividade↑

Taxa de fracassos↓

Four-way set associative

Set	Tag	Data	Tag	Data	Tag	Data	Tag	Data
0								
1								

Eight-way set associative (fully associative)

Tag	Data														

- Cache
 - 4 blocos de uma palavra
- Alternativas
 - totalmente associativa,
 - 2-way
 - mapeamento direto
- Sequência de endereços de bloco
 - -0, 8, 0, 6, 8
- Objetivo
 - Computar o número de fracassos para cada alternativa

Mapeamento direto

Bloco de	Bloco da
memória	cache
0	(0 modulo 4) = 0
6	(6 modulo 4) = 2
8	(8 modulo 4) = 0

Bloco da memória	F ou S	BI. 0	BI. 1	BI. 2	BI. 3
0	F	Mem[0]			
8	F	Mem[8]			
0	F	Mem[0]			
6	F	Mem[0]		Mem[6]	
8	F	Mem[8]		Mem[6]	

5 fracassos!

• 2-way

Bloco de	Bloco da			
memória	cache			
0	(0 modulo 2) = 0			
6	(6 modulo 2) = 0			
8	(8 modulo 2) = 0			

Bloco da memória	F ou S	Conj. 0	Conj. 0	Conj. 1	Conj. 1
0	F	Mem[0]			
8	F	Mem[0]	Mem[8]		
0	S	Mem[0]	Mem[8]		
6	F	Mem[0]	Mem[6]		
8	F	Mem[8]	Mem[6]		

4 fracassos!

Cache totalmente associativa

Bloco da memória	F ou S	BI. 0	BI. 1	BI. 2	BI. 3
0	F	Mem[0]			
8	F	Mem[0]	Mem[8]		
0	S	Mem[0]	Mem[8]		
6	F	Mem[0]	Mem[8]	Mem[6]	
8	S	Mem[0]	Mem[8]	Mem[6]	

3 fracassos!

O impacto da associatividade

- Cache de dados do Intrinsity FastMATH (16 KB)
- SPEC2000 benchmarks
- Associatividade: de 1 a 8

Associativity	Data miss rate
1	10,3%
2	8,6%
4	8,3%
8	8,1%

Organização de uma Cache n-way

Luiz C. V. dos Santos, INE/CTC/UFSC