- 1. (___ /2 pts) Consider $f, g : \mathbb{N} \to \mathbb{R}^+$ such that $\lim_{n\to\infty} f(n)/g(n) = 1$. Circle all that are true: f = O(g), $f \neq o(g)$, g = O(f), and $g \neq o(f)$.
- 2. Consider the proof, from homework, of Theorem 7.11: Every t(n) time non-deterministic TM has an equivalent $2^{O(t(n))}$ time deterministic TM.
 - (a) ($_$ /1 pts) Let N be such a nondeterministic machine. In N's computational tree, $_$ is the maximum length path from root to leaf.
 - (b) (___ /1 pts) If every node in N's computational tree has at most b children, the tree has at most b (b) nodes.
- 3. (__ /2 pt) Provide definitions for the classes P and NP using TIME.

otherwise, reject.

4. (__ /2 pts) Let SUBSUM = $\{\langle S, t \rangle \mid \exists R \subseteq S, \sum_{r \in R} r = t\}$. Prove that SUBSUM \in NP by constructing a polynomial time verifier.

On input $\langle \langle 5, t \rangle, c \rangle$:

Scan c to check furnet: O(n)1.) Test if c is set of numbers \Rightarrow Sum c bit-wise : $O(n^3)$ Summing to t.

2.) Test if $C \subseteq S$ \Rightarrow Scan back-and-furth : $O(n^2)$ 3.) If both pess, accept;

5. ($_$ /2 pts) Prove that NP is closed under the star operation.

Let AENP. Consider the following

NTM decider for A*. On ipput w:

1.) Divide w= x1 x2... xk rundeter.

2.) Guess all possible certificates

for each xi to check xi EA.

3.) If all xi EA, accept;

Also raifier

Run wifeer

O(n.t(n)).