АНТЕННЫ

Лекция 2.

ИЗЛУЧЕНИЕ ЭЛЕМЕНТА ГЮЙГЕНСА, ПАРАМЕТРЫ АНТЕНН: ДИАГРАММА НАПРАВЛЕННОСТИ, ПОЛЯРИЗАЦИОННАЯ ХАРАКТЕРИСТИКА;

Сложение полей электрического и магнитного диполей - элемент Гюйгенса

Рассмотрим комбинацию из электрического диполя с током I^e , ориентированного вдоль оси X, и магнитного диполя - вдоль оси Y, токи которых связаны соотношением: $I^m = W_0 I^e$. Для вычисления полей излучения этой комбинации опять воспользуемся формулами общедоступного материала:

$$\boldsymbol{E}_{\Sigma} \doteq -(\cos\vartheta + 1)\cos\varphi\,\boldsymbol{e}_{\vartheta} + (1 + \cos\vartheta)\sin\varphi\,\boldsymbol{e}_{\varphi} = (1 + \cos\vartheta)(-\cos\varphi\,\boldsymbol{e}_{\vartheta} + \sin\varphi\,\boldsymbol{e}_{\varphi})$$

Магнитное поле элемента Гюйгенса:

$$\boldsymbol{H} = [\boldsymbol{e}_{R}, \boldsymbol{E}] \doteq (1 + \cos \vartheta) [\boldsymbol{e}_{R}, -\cos \varphi \, \boldsymbol{e}_{\vartheta} + \sin \varphi \, \boldsymbol{e}_{\varphi}] = -(1 + \cos \vartheta) (\cos \varphi \boldsymbol{e}_{\varphi} + \sin \varphi \boldsymbol{e}_{\vartheta})$$

Амплитуда этого поля зависит только от угла $\vartheta: |E_{\Sigma}| = |1 + \cos \vartheta|$, она максимальна в положительном направлении оси Z и обращается в нуль в противоположном направлении.

Диаграмма направленности горизонтального элемента Гюйгенса

Линии направлений поля электрического вектора элемента Гюйгенса на поверхности сферы

Общие сведения о параметрах антенн.

В курсе антенн будет предполагаться, что все рассматриваемые устройства линейные и взаимные. Это позволяет передающие и приёмные антенны характеризовать одинаковыми параметрами.

Основной параметр, который не встречался на предыдущих курсах, - это диаграмма направленности антенн. Известно, что форма радиоволны вдали от излучающих объектов всегда сферическая, независимо от формы излучателей. Поэтому радиоволну в дальней зоне можно характеризовать зависимостью поля от угловых сферических координат — диаграммой направленности.

В диаграмме направленности можно выделить области главного луча и боковых лепестков. Пунктиром на рис.1 показана интенсивность излучения, в том случае, если бы антенна излучала изотропно - изотропная диаграмма направленности. (На самом деле, изотропная диаграмма направленности принципиально невозможна. Мы это обсудим, когда будем изучать поляризационную структуру излучения). Поэтому для любой антенны интенсивность в направлении максимального излучения всегда больше, чем при изотропном излучении - максимальное излучение всегда больше, чем среднее. Это характеризуется коэффициентом направленного действия (КНД).

$$KH \mathcal{I} = \frac{S_{\text{MAKC}}}{S_{cp}}; \quad S = 0.5 \left| \text{Re} \left[\mathbf{E}, \mathbf{H}^* \right] \right| = \frac{\left| \mathbf{E} \right|^2}{2W_0}; \tag{2-1}$$

S - величина вектора Пойнтинга. Излучённая мощность на расстоянии R выражается:

$$P_{u3n} = 4\pi R^2 S_{cp} = R^2 \iint_{c\phi epa} S(\vartheta, \phi) \sin \vartheta d\vartheta d\phi,$$

Поэтому
$$KHД = 4\pi R^2 S_{\text{макс}} / P_{\text{изл}} = \frac{\left| \mathbf{E} \right|_{\text{max}}^2}{\frac{1}{4\pi} \iint_{\text{chepa}} \left| \mathbf{E} \left(\vartheta, \varphi \right) \right|^2 \sin \vartheta d\vartheta d\varphi}.$$
 (2-2)

Диаграмму направленности обычно нормируют к максимальному излучению. Вот примеры нормированных диаграмм направленности рассмотренных нами излучателей и их КНЛ:

Упражнение 2.1 Вычислите по формуле (2-2) КНД электрического диполя, магнитного диполя, турникетной антенны и элемента Гюйгенса

Поле излучения произвольной антенны в дальней зоне можно представить в следующей форме.

$$\boldsymbol{E} = \boldsymbol{F} \left(\vartheta, \boldsymbol{\varphi} \right) \frac{e^{-ikR}}{R} + \Delta \boldsymbol{E} \left(R, \vartheta, \boldsymbol{\varphi} \right);$$

В этой формуле электрическое поле представлено в виде двух слагаемых. Первое описывает сферическую волну, второе, несущественное для нас слагаемое, убывает при удалении от антенны на большое расстояние как $1/R^2$, то есть, убывает также, как статическое поле. Символически это записывается в виде соотношения: $\Delta E(R, \vartheta, \varphi) = O(1/R^2)$;

В дальней зоне достаточно ограничиться знанием только электрического вектора поля, потому что в этой зоне электрическое и магнитное поля однозначно связаны

$$H = \frac{1}{W_0} [e_R, E]; \quad S = \frac{0.5 |E|^2}{W_0} = \frac{0.5}{W_0} \frac{|F(\vartheta, \varphi)|^2}{R^2};$$

Сравнивая с формулой (2-1) получаем следующее выражение КНД:

В этом выражении диаграмма направленности определена с точностью до постоянного множителя, например, она может быть нормирована к максимальному значению.

При расчёте КНД учитывается только излучённая мощность. Но излучается не вся мощность, подведённая к антенне, часть её превращается в тепло, нагревая тракты антенны и элементы конструкций, ещё часть — отражается от антенны из-за рассогласования. Для практики интересно, чтобы максимальная интенсивность излучения антенны сравнивалась не с излучённой, а с полной мощностью, подведённой к антенне. Такой параметр эффективности называется коэффициентом усиления (КУ) антенны, связанным с :КНД:

$$Ky = \eta KH \mathcal{I} = \frac{4\pi R^2 S_{MAKC}}{P_{\Sigma}}$$
, где $\eta = \frac{P_{U3R}}{P_{\Sigma}}$ (2-3)

Ещё один важный параметр антенны — её поляризационная характеристика. Поле в сферической волне (вектор \boldsymbol{F} в формуле (1.4)) поляризовано по касательной к сфере - электромагнитная волна в дальней зоне поперечная.

$$F(\vartheta,\varphi) = E_{\vartheta}(\vartheta,\varphi)e_{\vartheta} + E_{\varphi}(\vartheta,\varphi)e_{\varphi}$$
 (2-5)

Скалярные комплексные функции $E_{\vartheta}(\vartheta, \varphi), E_{\varphi}(\vartheta, \varphi)$ можно представить в виде произведения амплитудного и фазового множителей:

 $E_{\vartheta u n u \ \varphi}(\vartheta, \varphi) = \left| E_{\vartheta u n u \ \varphi}(\vartheta, \varphi) \right| e^{i\Phi_{\vartheta u n u \ \varphi}(\vartheta, \varphi)}$ Фазовый множитель характеризует отличие волнового фронта излучённой волны от сферического. Если фазовый множитель на сфере не зависит от (ϑ, φ) , центр такой сферы называют **фазовым центром антенны**. Но строго говоря, точного фазового центра нет у антенны. Обычно за фазовый центр принимают центр сферы, аппроксимирующей фазовый фронт в некотором секторе направлений. Особенно важно знать положение фазового центра облучателя зеркальной антенны.

Диаграммы направленности изображают в полярной и декартовой системе координат.

Рис. 2. Вид диаграммы направленности (по мощности) в полярной и декартовой системах координат

На рис. 2 показано плоское сечение диаграммы направленности по мощности в двух системах координат — полярной и декартовой. На диаграмме в декартовой системе координат показана ширина диаграммы направленности по половинной мощности (или по уровню 3 дБ). Это соответствует уровню поля ~0.707 от максимума ДН. На практике (в

технике зеркальных антенн) иногда используют другой стандарт – ширину ДН по уровню 10 дБ.

На следующем рисунке показана пространственная диаграмма направленности:

Посмотрим на диаграмму направленности электрического диполя, ориентированного вдоль оси Z:

$$\frac{1}{\text{Диполь}}$$
 (вибратор)
$$E\left(\vartheta,\varphi\right) = I_z^e W_0 \sin \vartheta \frac{e^{-ikR}}{R} \boldsymbol{e}_\vartheta + O\left(1/R^2\right); \quad \boldsymbol{F}\left(\vartheta,\varphi\right) = \sin \vartheta \boldsymbol{e}_\vartheta;$$

Может так оказаться, что в некоторой плоскости, проходящей через начало сферической системы координат, лежат исключительно векторы Е электрического поля излучения данной антенны, а векторы магнитного поля Н, ортогональные векторам Е, её пересекают. Такую плоскость в технике антенн называют плоскостью Е для данной антенны. И наоборот, если в плоскости лежат исключительно векторы Н магнитного поля излучения, а векторы Е её пересекают, такая плоскость называется плоскостью Н антенны. Для электрического диполя, ориентированного вдоль оси Z, векторы поля E поляризованы вдоль единичного вектора \mathbf{e}_{i3} , значит все они лежат в плоскостях, проходящих через ось диполя. Все эти плоскости – это плоскости Е электрического диполя. Соответственно, векторы Н поля излучения электрического диполя ортогональны этому диполю, поляризованы вдоль единичного вектора $\mathbf{e}_{_{\sigma}}$, следовательно лежат в ортогональной плоскости, диполю. Эта плоскость называется плоскостью электрического диполя.

У турникетной антенны плоскость ${\bf E}$ совпадает с плоскостью, в которой расположены вибраторы, а плоскостей ${\bf H}$ нет.

У элемента Гюйгенса плоскости **E**, проходят через нуль диаграммы направленности (см. начало лекции); плоскости **H**, также проходят через нуль диаграммы направленности

и образуются из соответствующих плоскостей вектора Е поворотом на 90 градусов вокруг оси элемента Гюйгенса.

Конец вектора E в плоскости, касательной к сфере, в зависимости от времени, в общем случае, в каждом направлении ϑ, φ описывает эллипс (поляризации), который в некоторых направлениях (или во всех) может вырождаться в отрезок прямой линии или в круг. С этим связано доказательство невозможности изотропного излучения. В каждый момент времени и в каждой точке ϑ, φ вектор электрического поля направлен по касательной к сфере и непрерывно меняется при изменении ϑ, φ . Но в топологии известна теорема, согласно которой непрерывное векторное поле, касательное к сфере, в обязательном порядке хотя бы в одной точке обращается в нуль. Поэтому изотропная диаграмма направленности невозможна.

Поляризация антенны характеризуется распределением направления вектора $F\left(\vartheta,\phi\right)$ в диаграмме направленности. Антенны бывают линейно поляризованные, поляризованные по кругу и эллиптически поляризованные. В дальнейшем мы с вами это подробно обсудим.

Ещё один важный параметр антенны — входное сопротивление. Оно описывается частотной зависимостью комплексного импеданса, его активной и реактивной части:

Возможность согласования входного сопротивления зависит от пределов изменения его в рабочей полосе частот. Как известно, скорость передачи информации определяется шириной полосы частот, занимаемой радиосигналом. Поэтому для передачи большого потока информации важно, чтобы активное входное сопротивление мало менялось в широкой полосе частот, а реактивное было бы мало. Обычно за меру ширины полосы

частот принимают её отношение к величине несущей частоты $\frac{\Delta \! f}{f_{cp}}$. По

широкополосности различают антенны, работающие, например, в 5-ти процентной полосе частот, или же в двукратной полосе.

Различные выражения поляризационных характеристик

Разберёмся более подробно с поляризационными характеристиками. В формуле (2-6)

$$E = \left(E_{\vartheta}(\vartheta, \varphi)e_{\vartheta} + E_{\varphi}(\vartheta, \varphi)e_{\varphi}\right) \frac{e^{-ikR}}{R}$$
 (2-6)

поляризационный множитель полей излучения представлен в виде разложения комплексной амплитуды по ортам сферической системы координат. Ограничимся рассмотрением поляризационной характеристики электрического поля., поскольку из соотношения $\boldsymbol{H} = W_0^{-1} [\boldsymbol{e}_R, \boldsymbol{E}]$ следует, что поляризационная характеристика магнитного

поля отличается от характеристики электрического поля только поворотом на 90° против часовой стрелки, если смотреть в сторону бесконечности.

Разложение комплексных амплитуд по ортогональному базису однозначно связано с годографом вещественного электрического вектора в плоскости, натянутой на векторы $\boldsymbol{e}_{\vartheta}$ и \boldsymbol{e}_{φ} .. Годограф - это кривая, представляющая собой геометрическое место концов вектора \boldsymbol{E} , значения которого в разные моменты времени отложены от общего начала. Функции декартовых составляющих вектора электрического поля от времени обозначим $\tilde{E}_{\vartheta}(t), \tilde{E}_{\varphi}(t)$. Для них справедливы зависимости:

$$\tilde{E}_{\vartheta}(t) = \sqrt{2}Re\left(E_{\vartheta}e^{i\omega t}\right) = \sqrt{2}\left|E_{\vartheta}\right|\cos\left(\alpha_{\vartheta} + \omega t\right)$$

$$\tilde{E}_{\varpi}(t) = \sqrt{2}Re\left(E_{\varpi}e^{i\omega t}\right) = \sqrt{2}\left|E_{\varpi}\right|\cos\left(\alpha_{\varpi} + \omega t\right)$$
(2-7)

Модули и аргументы комплексных амплитуд определяют, соответственно, величину и начальную фазу составляющих вещественного электрического вектора. Коэффициент $\sqrt{2}\,$ добавлен из условия нормировки усреднённой мощности по периоду колебаний T :

$$\frac{1}{T} \int_{0}^{T} \left(\sqrt{2} \cos \left(\alpha + \omega t \right) \right)^{2} dt = 1.$$

Любой двумерный вещественный вектор может быть представлен комплексным числом, поэтому временную зависимость электрического вектора можно записать в следующем виде:

$$\tilde{E}(t) = \tilde{E}_{\vartheta}(t) + i\tilde{E}_{\varphi}(t) = \sqrt{2} \left(\left| E_{\vartheta} \right| \cos(\alpha_{\vartheta} + \omega t) + i \left| E_{\varphi} \right| \cos(\alpha_{\varphi} + \omega t) \right)$$
 (2-8)

(Следует заметить, что комплексные числа в этой записи и в комплексных амплитудах имеют разный физический смысл - аргумент комплексного числа в записи (3-3) определяет пространственное положение вектора, тогда как в комплексной амплитуде временную фазу.) Выразим в (2-8) косинусы через экспоненты по формуле Эйлера: $\cos \alpha = \left(e^{i\alpha} + e^{-i\alpha}\right)/2$, и соберём подобные члены при экспонентах:

$$\tilde{E}(t) = \frac{1}{\sqrt{2}} \left(E_{\vartheta} + i E_{\varphi} \right) e^{i\omega t} + \frac{1}{\sqrt{2}} \left(E_{\vartheta} - i E_{\varphi} \right)^* e^{-i\omega t}. \tag{2-9}$$

(Звёздочка у скобки обозначает комплексное сопряжение содержимого скобки.) Мы получили представление электрического вектора в некотором направлении излучения в виде суммы двух векторов, вращающихся с одинаковой круговой частотой, но в разные стороны. Экспоненты определяют вращающиеся единичные векторы, а множители перед ними дают длину и начальное положение слагаемых векторов. Вектор, соответствующий первому слагаемому с течением времени вращается по часовой стрелке, если смотреть в направлении от источника в сторону бесконечности, и определяет поле правой круговой поляризации. Второе слагаемое соответствует вектору, вращающемуся против часовой стрелки, и отвечает левой круговой поляризации. Сумма двух вращающихся в противоположном направлении векторов определяет эллипс поляризации (рис.1). Большая ось эллипса соответствует моменту времени, когда направления вращающихся векторов совпадают, а малая – когда они противоположны.

Рис. 1. Эллипс поляризации, образованный суммой волн круговой поляризации правого и левого направления вращения

Множители при экспонентах в (2-9) выражают комплексные амплитуды правой и левой круговых поляризаций через комплексные амплитуды декартовых составляющих:

$$E_r = \frac{1}{\sqrt{2}} \left(E_{\vartheta} + i E_{\varphi} \right); E_l = \frac{1}{\sqrt{2}} \left(E_{\vartheta} - i E_{\varphi} \right) \tag{2-10}$$

На рис. 1 видно, что большая полуось эллипса равна сумме длин векторов E_r и E_l , малая — разности, а коэффициент эллиптичности, как отношение полуосей эллипса, может быть выражен формулой:

$$k_{el} = \frac{|E_r| - |E_l|}{|E_r| + |E_l|} \tag{2-11}$$

Обращаясь к рис. 1 и формулам (2-9) и (2-10), найдём α - направление большой оси эллипса поляризации. Для этого представим комплексные амплитуды E_r и E_l в экспоненциальной форме:

$$E_r = |E_r|e^{i\alpha_r}; \quad E_l = |E_l|e^{i\alpha_l}$$

Углы α_r и α_l соответствуют угловому положению векторов на рис.1 в начальный момент времени t=0. Направление α большой оси эллипса соответствует совпадению направлений векторов, вращающихся в противоположные стороны. Приравнивание углов поворота приводит к уравнениям:

$$\alpha = \alpha_r + \omega t;$$

$$\alpha = -\alpha_l - \omega t;$$
(2-12)

Складывая уравнения, получим угол наклона большой оси эллипса:

$$\alpha = (\alpha_r - \alpha_l)/2 \tag{2-13}$$

Мы выяснили, как найти ориентацию и форму эллипса поляризации, зная коэффициенты разложения комплексной амплитуды вектора электрического поля $E_{\vartheta}(\vartheta, \varphi), E_{\varphi}(\vartheta, \varphi)$ по ортам сферической системы координат. А можно ли этот эллипс «увидеть» в процессе эксперимента? Известны несколько способов измерения поляризационной характеристики. В одном из этих способов измерение осуществляются при приёме сигнала излучения на механически вращающийся диполь, или другую антенну линейной поляризации. Ось вращения совпадает с направлением излучения, в котором мы

хотим узнать поляризационную характеристику. Измерительная установка показана на рис. 5.

Рис. 5. Измерительная установка для измерения диаграмм направленности антенны и поляризационных характеристик

Как же будет меняться сигнал в процессе вращения измерительной антенны линейной поляризации? Получим ли мы эллипс, откладывая амплитуду принимаемого сигнала в зависимости от угла поворота?

Пусть большая ось эллипса ориентирована горизонтально. Уравнение эллипса с полуосями a и b в декартовых координатах имеет вид:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1; (2-14)$$

Выразим x и y через радиальную координату, зависящую от угла поворота ϕ и пропорциональную силе сигнала, и подставим эти выражения в уравнение (2-14)

$$x = r\cos\varphi; \ y = r\sin\varphi; \Rightarrow r^2 \left(\frac{\cos^2\varphi}{a^2} + \frac{\sin^2\varphi}{b^2}\right) = 1;$$

$$r = \frac{1}{\sqrt{\frac{\cos^2\varphi}{a^2} + \frac{\sin^2\varphi}{b^2}}};$$
(2-15)

Получили уравнение эллипса в полярных координатах (рис.6). А какую же зависимость мы получим при измерении на установке рис. 5?

Рис. 6. Эллипс поляризации

Сигналы вдоль малой и большой осей эллипса сдвинуты по фазе на $\pi/2$. Полный комплексный сигнал, который наводится в повёрнутом по углу φ положении измерительной антенны, пропорционален

$$U = a\cos\varphi + ib\sin\varphi \tag{2-16}$$

Амплитуда этого сигнала определяется выражением:

$$|U| = \sqrt{\left(a\cos\varphi\right)^2 + \left(b\sin\varphi\right)^2} \tag{2-17}$$

которое отличается от выражения эллипса в полярных координатах. (2-15). График выражения (3-12) имеет вид «гантельной» кривой, показанной на рис. 7. На этом же рисунке показан соответствующий эллипс. График экспериментальной поляризационной характеристики часто называют «поляризационной диаграммой».

Рис. 7. Поляризационная диаграмма и эллипс поляризации

2.2. Краткий обзор типов антенн.

Будем изучать следующие главные типы антенн:

- 1. Малые антенны с размерами много меньше длины волны,
- 2 Резонансные антенны с размерами порядка длины волны,
- 3. Диапазонные антенны, верхняя граница рабочей полосы частот которых в несколько раз превышает нижнюю границу,
- 4. Апертурные антенны, с размерами много больше длины ваолны,
- 5. Антенные решётки, составленные из комплекса совместно работающих нескольких антенн (иногда, нескольких тысяч). Элементами антенных решёток могут служить любые из перечисленных выше типов.

2.3 Поле излучения смещённого источника

До сих пор мы вычисляли выражения полей излучения источников, сосредоточенных в одной точке, в качестве которой мы выбирали **начало координат**. Как изменятся эти выражения, если точечный источник расположен в **произвольной** точке пространства? На рис.5 источник находится в точке, определяемой вектором \boldsymbol{r} , исходящим из начала координат. Вектор \boldsymbol{R} , начинающийся в точке источника, и \boldsymbol{R}_0 , исходящий из начала координат, направлены в одну и ту же точку на бесконечности. Выполнены соотношения:

$$R_0 = r + R; \quad R_0 = R_0 e_R; \quad R = R e_R;$$
 (2-18)

Как это скажется на электрического поля излучения?

Следующие вычисления показывают, что в дальней зоне добавится только фазовый множитель, зависящий от расположения источника.

$$R = (\mathbf{R}, \mathbf{e}_{R}) = (\mathbf{R}_{0} - \mathbf{r}, \mathbf{e}_{R}) = (\mathbf{R}_{0}, \mathbf{e}_{R}) - (\mathbf{r}, \mathbf{e}_{R}) = R_{0} - (\mathbf{r}, \mathbf{e}_{R});$$

$$\frac{e^{-ikR}}{R} = \frac{e^{-ikR}}{R_{0} - (\mathbf{r}, \mathbf{e}_{R})} = \frac{e^{-ik(R_{0} - (\mathbf{r}, \mathbf{e}_{R}))}}{R_{0}(1 - (\mathbf{r}, \mathbf{e}_{R})/R_{0})} \approx$$

$$\approx \frac{e^{-ik(R_{0} - (\mathbf{r}, \mathbf{e}_{R}))}}{R_{0}} (1 + (\mathbf{r}, \mathbf{e}_{R})/R_{0}) \approx \frac{e^{-ik(R_{0} - (\mathbf{r}, \mathbf{e}_{R}))}}{R_{0}} = \frac{e^{-ikR_{0}}}{R_{0}} e^{ik(\mathbf{r}, \mathbf{e}_{R})};$$
(2-19)

Рис. 8. Источник в произвольной точке

Выпишем результирующее выражение для электрического поля от элементарных источников - электрического и магнитного диполей, помещённых в точку, отклонённую от начала координат на вектор \boldsymbol{r} .

$$\boldsymbol{E} = \frac{e^{-ikR_0}}{R_0} \left(W_0 C^e \left[\left[\boldsymbol{e}_I^e, \boldsymbol{e}_R \right], \boldsymbol{e}_R \right] - C^m \left[\boldsymbol{e}_I^m, \boldsymbol{e}_R \right] \right) e^{ik(\boldsymbol{r}, \boldsymbol{e}_R)}; C^e = i \frac{I^e k l^e}{4\pi}; C^m = i \frac{I^m k l^m}{4\pi}; \quad (2-20)$$

Это выражение может быть использовано для вычисления поля излучения в дальней зоне нескольких источников, расположенных в разных точках, а также различающихся величиной и направлением токов. Для этого достаточно просуммировать векторы электрического поля.

В следующей лекции будет рассмотрено несколько примеров с суммированием полей разнесённых источников.

Контрольные вопросы.

- 1. Что такое «диаграмма направленности» антенны?
- 2. Что такое «коэффициент направленного действия» и «коэффициент усиления» антенны?
- 3. Как связаны между собой излучённая и подводимая к антенне мощности? Как в этом случае применить закон сохранения энергии? На что влияет входное сопротивление антенны?
- 4. Какие формы может принимать годограф вектора электрического поля?
- 5. Как вычисляются комплексные амплитуды правой и левой круговых поляризаций.
- 6. Как можно найти коэффициент эллиптичности и направление большой оси эллипса поляризации?
- 7. Как изменится выражение поля источника в дальней зоне при выносе его из начала координат?