Abstract homomorphisms of non-quasi-split special unitary groups

Joshua Ruiter

November 5, 2024

Contents

1	Generalizing the construction of Kassabov and Sapir		
	1.1	Original construction	2
	1.2	Replace SL_3 with arbitrary group	3
	1.3	Replace some notation	4
	1.4	Generalize commutator relation	7
2 Generalizing Chevalley construction		10	

1 Generalizing the construction of Kassabov and Sapir

1.1 Original construction

Example 1. Let k be a field. For $1 \le i \ne j \le 3$, let $e_{ij} : k \to \mathrm{SL}_3(k)$ be the map which takes $u \in k$ to the transvection matrix $e_{ij}(u)$. For example,

$$e_{13}: k \to \mathrm{SL}_3(k)$$
 $e_{13}(u) = \begin{pmatrix} 1 & u \\ & 1 \\ & & 1 \end{pmatrix}$

Note that e_{ij} is a group homomorphism from (k, +) into $SL_3(k)$, i.e. $e_{ij}(u) \cdot e_{ij}(v) = e_{ij}(u + v)$. Let $U_{ij} = e_{ij}(k)$, so e_{ij} gives an isomorphism between (k, +) and U_{ij} . Let

$$w_{12} = \begin{pmatrix} & -1 \\ 1 & & \\ & & 1 \end{pmatrix} \qquad w_{23} = \begin{pmatrix} 1 & & \\ & & 1 \\ & -1 & \end{pmatrix}$$

and note that

$$w_{12} \cdot e_{13}(u) \cdot w_{12}^{-1} = e_{23}(u) \tag{1}$$

$$w_{23} \cdot e_{13}(u) \cdot w_{23}^{-1} = e_{12}(u) \tag{2}$$

Let K be an algebraically closed field, and let

$$\rho: \mathrm{SL}_3(k) \to \mathrm{GL}_m(K)$$

be a group homomorphism (not necessarily well-behaved with respect to any kind of geometric structure). Let $U = e_{13}(k)$, so e_{13} is an isomorphism between (k, +) and U.

Let $V = \rho(U)$ and let $A = \overline{V}$ be the Zariski closure of V. Since V is a subgroup of $GL_m(K)$, so is A. That is, A is closed under matrix multiplication. We define another binary operation on A as follows:

$$\mu_{\rho}: A \times A \to GL_m(K)$$
 $\mu_{\rho}(a,b) = \left[\rho(w_{23}) \cdot a \cdot \rho(w_{23})^{-1}, \rho(w_{12}) \cdot b \cdot \rho(w_{12}^{-1})\right]$

A calculation involving the relations (1), (2), and the commutator relation

$$\left[e_{12}(u), e_{23}(v)\right] = e_{13}(uv)$$

shows that

$$\mu_{\rho}\Big(\rho\big(e_{13}(u)\big),\rho\big(e_{13}(v)\big)\Big)=e_{13}(uv)$$

From this, it follows that μ_{ρ} maps the subset $V \times V$ (a dense subset of $A \times A$) to V. Since μ_{ρ} is continuous, it follows that μ_{ρ} maps $A \times A$ to A.

1.2 Replace SL_3 with arbitrary group

Definition 1. Let k be a field and K be an algebraically closed field. Let G be an algebraic k-group, and let

$$\rho: G(k) \to \mathrm{GL}_m(K)$$

be a group homomorphism. Suppose we have functions $e_{12}, e_{13}, e_{23}: k \to G(k)$ such that

$$\left[e_{12}(u), e_{23}(v)\right] = e_{13}(uv)$$

and suppose have elements $w_{12}, w_{23} \in G(k)$ such that

$$w_{12} \cdot e_{13}(u) \cdot w_{12}^{-1} = e_{23}(u)$$

$$w_{23} \cdot e_{13}(u) \cdot w_{23}^{-1} = e_{12}(u)$$

Let $U = e_{13}(k)$ and let $V = \rho(U)$ and let $A = \overline{V}$. Note that V and A are abelian subgroups of $GL_m(K)$. Define

$$\mu_{\rho}: A \times A \to GL_m(K)$$
 $\mu_{\rho}(a,b) = \left[\rho(w_{23}) \cdot a \cdot \rho(w_{23})^{-1}, \rho(w_{12}) \cdot b \cdot \rho(w_{12}^{-1}) \right]$

Note that μ_{ρ} is continuous, since it is defined purely in terms of matrix multiplication and inversion of a, b, and some fixed elements $\rho(w_{23})$ and $\rho(w_{12})$ in $GL_m(K)$.

Lemma 1.
$$\mu_{\rho} \Big(\rho \circ e_{13}(u), \rho \circ e_{13}(v) \Big) = \rho \circ e_{13}(uv)$$

Proof.

$$\mu_{\rho}\Big(\rho \circ e_{13}(u), \rho \circ e_{13}(v)\Big) = \Big[\rho(w_{23}) \cdot \rho(e_{13}(u)) \cdot \rho(w_{23})^{-1}, \rho(w_{12}) \cdot \rho(e_{13}(v)) \cdot \rho(w_{12}^{-1})\Big]$$

$$= \rho\Big[w_{23} \cdot e_{13}(u) \cdot w_{23}^{-1}, w_{12} \cdot e_{13}(v) \cdot w_{12}^{-1}\Big]$$

$$= \rho\Big[e_{12}(u), e_{23}(v)\Big]$$

$$= \rho \circ e_{13}(uv)$$

Corollary 1. $\mu_{\rho}(V \times V) \subseteq V$, and consequently $\mu_{\rho}(A \times A) \subseteq A$

Proof. The first inclusion is immediate from Lemma 3. The second inclusion follows from this as μ_{ρ} is continuous and V is dense in A.

Proposition 1. A is a commutative unital algebraic ring under the two binary operations of matrix multiplication and μ_{ρ} .

Proof. Immediate from Lemma 3.2 from *Linear representations of Chevalley groups over commutative rings.* \Box

1.3 Replace some notation

Definition 2. Let k be a field and K be an algebraically closed field. Let G be an algebraic k-group, and let

$$\rho: G(k) \to \operatorname{GL}_m(K)$$

be a group homomorphism. Suppose we have functions $e_{\alpha}, e_{\beta}, e_{\gamma}: k \to G(k)$ such that

$$\left[e_{\alpha}(u), e_{\beta}(v)\right] = e_{\gamma}(uv)$$

and suppose have elements $w_{\gamma \to \beta}, w_{\gamma \to \alpha} \in G(k)$ such that

$$w_{\gamma \to \beta} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \beta}^{-1} = e_{\beta}(u)$$
$$w_{\gamma \to \alpha} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \alpha}^{-1} = e_{\alpha}(u)$$

Let $U = e_{\gamma}(k)$ and let $V = \rho(U)$ and let $A = \overline{V}$. Note that V and A are abelian subgroups of $GL_m(K)$. Define

$$\mu_{\rho}: A \times A \to \mathrm{GL}_m(K)$$
 $\mu_{\rho}(a,b) = \left[\rho(w_{\gamma \to \alpha}) \cdot a \cdot \rho(w_{\gamma \to \alpha})^{-1}, \rho(w_{\gamma \to \beta}) \cdot b \cdot \rho(w_{\gamma \to \beta}^{-1}) \right]$

Note that μ_{ρ} is continuous, since it is defined purely in terms of matrix multiplication and inversion of a, b, and some fixed elements $\rho(w_{\gamma \to \alpha})$ and $\rho(w_{\gamma \to \beta})$ in $GL_m(K)$.

Lemma 2.
$$\mu_{\rho}\Big(\rho \circ e_{\gamma}(u), \rho \circ e_{\gamma}(v)\Big) = \rho \circ e_{\gamma}(uv)$$

Proof.

$$\begin{split} \mu_{\rho}\Big(\rho\circ e_{\gamma}(u),\rho\circ e_{\gamma}(v)\Big) &= \Big[\rho(w_{\gamma\to\alpha})\cdot\rho\circ e_{\gamma}(u)\cdot\rho(w_{\gamma\to\alpha})^{-1},\rho(w_{\gamma\to\beta})\cdot\rho\circ e_{\gamma}(v)\cdot\rho(w_{\gamma\to\beta}^{-1})\Big] \\ &= \rho\Big[w_{\gamma\to\alpha}\cdot e_{\gamma}(u)\cdot w_{\gamma\to\alpha}^{-1},w_{\gamma\to\beta}\cdot e_{\gamma}(v)\cdot w_{\gamma\to\beta}^{-1}\Big] \\ &= \rho\Big[e_{\alpha}(u),e_{\beta}(v)\Big] \\ &= \rho\circ e_{\gamma}(uv) \end{split}$$

Corollary 2. $\mu_{\rho}(V \times V) \subseteq V$, and consequently $\mu_{\rho}(A \times A) \subseteq A$

Proof. The first inclusion is immediate from Lemma 3. The second inclusion follows from this as μ_{ρ} is continuous and V is dense in A.

Proposition 2. A is a commutative unital algebraic ring under the two binary operations of matrix multiplication and μ_{ρ} .

Proof. Immediate from Lemma 3.2 from *Linear representations of Chevalley groups over commutative rings.* \Box

Example 2. Let $G = \operatorname{SL}_n$ and let $e_{\alpha} = e_{12}$ and $e_{\beta} = e_{23}$ and $e_{\gamma} = e_{13}$. Then we have

$$[e_{\alpha}(u), e_{\beta}(v)] = e_{\gamma}(uv)$$

Then with

$$w_{\gamma \to \beta} = w_{12}$$
$$w_{\gamma \to \alpha} = w_{23}$$

we have

$$w_{\gamma \to \beta} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \beta}^{-1} = e_{\beta}(u)$$
$$w_{\gamma \to \alpha} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \alpha}^{-1} = e_{\alpha}(u)$$

(a) Suppose $k = K = K^{\text{alg}}$ and ρ is the inclusion $\operatorname{SL}_n(k) \hookrightarrow \operatorname{GL}_n(k)$. Then $U = V = e_{13}(k)$, and V is already closed so A = V = U (technically U is a subset of a different group than V = A, but whatever). As an abelian group (under the operation of matrix multiplication), A is isomorphic to (k, +). Since ρ is just inclusion, Lemma 3 says that

$$\mu_{\rho}\Big(e_{\gamma}(u), e_{\gamma}(v)\Big) = e_{\gamma}(uv)$$

i.e. e_{γ} is a ring isomorphism $(k, +, \cdot) \to (A, \cdot, \mu_{\rho})$.

(b) Suppose $k = K = \mathbb{C}$ and $\rho : \mathrm{SL}_n(\mathbb{C}) \to \mathrm{GL}_n(\mathbb{C})$ is the composition of inclusion with entrywise complex conjugation. As in the previous example, A = V = U. Also as above, A is isomorphic to (k, +) as an abelian group under matrix multiplication. Now Lemma 3 tells us

$$\mu_{\rho}\Big(e_{\gamma}(\overline{u}), e_{\gamma}(\overline{v})\Big) = e_{\gamma}(\overline{u}\overline{v})$$

i.e. the map

$$f: \mathbb{C} \to A$$
 $f(u) = e_{\gamma}(\overline{u})$

is a ring isomorphism.

(c) Let k be any field, let $k^{\rm alg}$ be the algebraic closure, and fix an embedding $k \hookrightarrow k^{\rm alg}$. Let $\sigma: k \to k$ be a field automorphism. Let $\rho: \mathrm{SL}_n(k) \to \mathrm{GL}_n(K)$ be the composition of inclusion and entrywise application of σ . Then again A = V = U, though technically $U = e_{13}(L) \subseteq \mathrm{SL}_n(k)$, and $A = V = e_{13}(k) \subseteq \mathrm{GL}_n(K)$. As abelian groups, $(k, +) \cong (A, \cdot)$. Lemma 3 says

$$\mu_{\rho}\Big(e_{\gamma}(\sigma u), e_{\gamma}(\sigma v)\Big) = e_{\gamma}\Big(\sigma(uv)\Big)$$

so the map

$$f: L \to A$$
 $f(u) = e_{\gamma}(\sigma u)$

gives a ring isomorphism $(k, +, \cdot) \cong (A, \cdot, \mu_{\rho})$.

(d) Let k be any field, let $k^{\rm alg}$ be the algebraic closure, and fix an embedding $k \hookrightarrow k^{\rm alg}$. Let $\tau: k^{\rm alg} \to k^{\rm alg}$ be a field automorphism. Let $\rho: \mathrm{SL}_n(k) \to \mathrm{GL}_n(K)$ be the composition of inclusion and entrywise application of σ . Then

$$U = e_{\gamma}(k) \subseteq \operatorname{SL}_{n}(k)$$
$$V = e_{\gamma}(\tau k) \subseteq \operatorname{GL}_{n}(K)$$
$$A = V$$

As above, $(k, +, \cdot) \cong (A, \cdot \mu_{\rho})$ via the map $k \to A, u \mapsto e_{\gamma}(\tau u)$.

Example 3. Let $G = \operatorname{SL}_n$ and let $T \subset G$ be the diagonal torus. Let $\Phi = \Phi(G, T)$ be the associated root system, of type A_{n-1} . Concretely,

$$\Phi = \{\alpha_{ij} : 1 \le i \ne j \le n\}$$

where $\alpha_{ij} = \alpha_i - \alpha_j$ and $\alpha_i : T \to k^{\times}$ is the character that picks off the *i*th diagonal entry. Let $\alpha, \beta \in \Phi$ such that $\alpha + \beta = \gamma \in \Phi$. That is, $\alpha = \alpha_{ij}$ and $\beta = \alpha_{j\ell}$ and $\gamma = \alpha_{i\ell}$ for some three distinct i, j, ℓ . There are maps $e_{\alpha}, e_{\beta}, e_{\gamma} : k \to \mathrm{SL}_n(k)$ such that $e_{\alpha}(k)$ is the root subgroup

$$e_{\alpha}(k) = \left\{ x \in \operatorname{SL}_n(k) : txt^{-1} = \alpha(t)x, \forall t \in T(k) \right\}$$

Concretely, $e_{\alpha_{ij}}(u)$ is the matrix with 1's on the diagonal and u in the (i, j) entry and the set of all such matrices is the root subgroup associated to the root α_{ij} . Because $\alpha + \beta = \gamma$, we have a commutator relation

$$\left[e_{\alpha}(u), e_{\beta}(v)\right] = e_{\gamma}(\pm uv)$$

If the sign is negative, just reverse the roles of α and β so that the sign is positive, so we may assume that

$$\left[e_{\alpha}(u), e_{\beta}(v)\right] = e_{\gamma}(uv)$$

Also, there are "Weyl group elements" $w_{\gamma \to \alpha}, w_{\gamma \to \beta} \in \mathrm{SL}_n(k)$ so that

$$w_{\gamma \to \beta} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \beta}^{-1} = e_{\beta}(u)$$

$$w_{\gamma \to \alpha} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \alpha}^{-1} = e_{\alpha}(u)$$

I put "Weyl group elements" in quotation marks because technically the Weyl group is the quotient $N_G(T)/Z_G(T) = N_G(T)/T$, and so elements of the Weyl group are not in G(k). The elements above are, literally speaking, elements of the normalizer $N_G(T)$, representing elements of the quotient which is the Weyl group.

1.4 Generalize commutator relation

Definition 3. Let k be a field and K be an algebraically closed field. Let G be an algebraic k-group, and let

$$\rho: G(k) \to \mathrm{GL}_m(K)$$

be a group homomorphism. Suppose we have functions $e_{\alpha}, e_{\beta}, e_{\gamma}: k \to G(k)$ such that

$$\left[e_{\alpha}(u), e_{\beta}(v)\right] = e_{\gamma}\left(N_{\alpha\beta}(u, v)\right)$$

and suppose we have an element $h_{\gamma} \in G(k)$ such that

$$h_{\gamma} \cdot e_{\gamma} \Big(N_{\alpha\beta}(u, v) \Big) \cdot h_{\gamma}^{-1} = e_{\gamma}(uv)$$

and suppose we have elements $w_{\gamma \to \beta}, w_{\gamma \to \alpha} \in G(k)$ such that

$$w_{\gamma \to \beta} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \beta}^{-1} = e_{\beta}(u)$$
$$w_{\gamma \to \alpha} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \alpha}^{-1} = e_{\alpha}(u)$$

Let $U = e_{\gamma}(k)$ and let $V = \rho(U)$ and let $A = \overline{V}$. Note that V and A are abelian subgroups of $GL_m(K)$. Define

$$\mu_{\rho}: A \times A \to \mathrm{GL}_{m}(K) \qquad \mu_{\rho}(a,b) = \rho(h_{\gamma}) \cdot \left[\rho(w_{\gamma \to \alpha}) \cdot a \cdot \rho(w_{\gamma \to \alpha})^{-1}, \rho(w_{\gamma \to \beta}) \cdot b \cdot \rho(w_{\gamma \to \beta}^{-1}) \right] \cdot \rho(h_{\gamma})^{-1}$$

Note that μ_{ρ} is continuous, since it is defined purely in terms of matrix multiplication and inversion of a, b, and some fixed elements $\rho(w_{\gamma \to \alpha})$ and $\rho(w_{\gamma \to \beta})$ in $\mathrm{GL}_m(K)$.

Lemma 3.
$$\mu_{\rho}\Big(\rho \circ e_{\gamma}(u), \rho \circ e_{\gamma}(v)\Big) = \rho \circ e_{\gamma}(uv)$$

Proof.

$$\mu_{\rho}\Big(\rho \circ e_{\gamma}(u), \rho \circ e_{\gamma}(v)\Big) = \rho(h_{\gamma}) \cdot \Big[\rho(w_{\gamma \to \alpha}) \cdot \rho \circ e_{\gamma}(u) \cdot \rho(w_{\gamma \to \alpha})^{-1}, \rho(w_{\gamma \to \beta}) \cdot \rho \circ e_{\gamma}(v) \cdot \rho(w_{\gamma \to \beta}^{-1})\Big] \cdot \rho(h_{\gamma})^{-1}$$

$$= \rho\Big(h_{\gamma} \cdot \Big[w_{\gamma \to \alpha} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \alpha}^{-1}, w_{\gamma \to \beta} \cdot e_{\gamma}(v) \cdot w_{\gamma \to \beta}^{-1}\Big] \cdot h_{\gamma}^{-1}\Big)$$

$$= \rho\Big(h_{\gamma} \cdot \big[e_{\alpha}(u), e_{\beta}(v)\big] \cdot h_{\gamma}^{-1}\Big)$$

$$= \rho\Big(h_{\gamma} \cdot e_{\gamma}\big(N_{\alpha\beta}(u, v)\big) \cdot h_{\gamma}^{-1}\Big)$$

$$= \rho\Big(e_{\gamma}(uv)\Big)$$

$$= \rho \circ e_{\gamma}(uv)$$

Corollary 3. $\mu_{\rho}(V \times V) \subseteq V$, and consequently $\mu_{\rho}(A \times A) \subseteq A$

Proof. The first inclusion is immediate from Lemma 3. The second inclusion follows from this as μ_{ρ} is continuous and V is dense in A.

Proposition 3. A is a commutative unital algebraic ring under the two binary operations of matrix multiplication and μ_o .

Proof. Immediate from Lemma 3.2 from Linear representations of Chevalley groups over commutative rings. \Box

Example 4. Split special orthogonal group, where h is needed INCOMPLETE

Example 5. Quasi-split special unitary group, where h is needed INCOMPLETE

In the following definition, an algebraic k-group is a functor from the category of k-algebras to the category of groups. So if G is an algebraic k-group, then G is not literally a group, but G(k) is a group, called the group of k-rational points. A morphism of algebraic groups is a natural transformation $G \to H$, which comes with literal group homomorphisms $G(R) \to H(R)$ for every k-algebra R.

Definition 4. Let G be an isotropic¹ reductive algebraic k-group, and let \mathfrak{g} be the Lie algebra of G. Let $S \subseteq G$ be a maximal² k-split torus. A **character** of S is a morphism of algebraic groups $S \to \mathbb{G}_m$. The set of characters is denoted X(S). For $\alpha \in X(S)$, let

$$\mathfrak{g}_{\alpha}(k) = \{ X \in \mathfrak{g}(k) : s \cdot X = \alpha(s)X, \forall s \in S(k) \}$$

For every $\alpha \in X(S)$, $\mathfrak{g}_{\alpha}(k)$ is a Lie subalgebra of $\mathfrak{g}(k)$. If k is algebraically closed and characteristic zero, then $\dim(\mathfrak{g}_{\alpha}(k))$ is always zero or one, but for an arbitrary field k it may have larger dimension. Let

$$d_{\alpha} = \dim_{k}(\mathfrak{g}_{\alpha}(k))$$
$$V_{\alpha} = (\mathbb{G}_{a})^{d_{\alpha}}$$

We may think of $V_{\alpha}(k)$ as a k-vector space with dimension d_{α} . In fact, as a vector space, $V_{\alpha}(k) \cong \mathfrak{g}_{\alpha}(k)$, though we do not think of $V_{\alpha}(k)$ as being a subset of the Lie algebra $\mathfrak{g}(k)$ or having any kind of Lie algebra structure. When k is algebraically closed and characteristic zero, V_{α} is just $\{0\}$ or k, but in general it may have larger dimension.

The relative root system of G with respect to S is

$$\Phi=\Phi(G,S)=\{\alpha\in X(S):\mathfrak{g}_{\alpha}(k)\neq 0\}=\{\alpha\in X(S):d_{\alpha}>0\}$$

The Weyl group of (G, S) is $W = N_G(S)/Z_G(S) = N_G(S)/S$. Usually, the functorial perspective on W is unnecessary and we just care about the group of k-points, $W(k) = N_{G(k)}(S(k))/S(k)$. Actually, most of the time we only care about the groups of k-points of all of this stuff.

Definition 5. Let Φ be a (possibly non-reduced) root system. For $\alpha, \beta \in \Phi$, let

$$(\alpha, \beta) = \{ i\alpha + j\beta \in \Phi : i, j \in \mathbb{Z}_{\geq 1} \}$$

Lemma 4. Let G, k^3, S, Φ be as in Definition 4. Let $\alpha, \beta \in \Phi$ so that $\gamma = \alpha + \beta \in \Phi$ and α, β are not proportional⁴. There exist

- Maps $e_{\alpha}: V_{\alpha}(k) \to G(k)$ and $e_{\beta}: V_{\beta}(k) \to G(k)$
- For each element of (α, β) a function $e_{i\alpha+j\beta}: k \to G(k)$

¹Isotropic just means it contains a torus of some positive dimension.

 $^{{}^{2}}S$ is maximal among k-split tori, not necessarily maximal among all tori

³Probably need to assume k is characteristic zero, or at least not characteristic 2 or 3.

⁴A relative root system may not be reduced, and we do not want $\alpha = \beta$ even though 2α may be a root.

• For each element of (α, β) a function⁵ $N_{ij}^{\alpha\beta}: V_{\alpha}(k) \times V_{\beta}(k) \to V_{i\alpha+j\beta}(k)$

such that for all $u \in V_{\alpha}(k)$ and $v \in V_{\beta}(k)$ we have

$$\left[e_{\alpha}(u), e_{\beta}(v)\right] = \prod_{(\alpha,\beta)} e_{i\alpha+j\beta} \left(N_{ij}^{\alpha\beta}(u,v)\right)$$

Proof. INCOMPLETE

Lemma 5. Let G, k, S, Φ be as in Definition 4. Let $\alpha, \gamma \in \Phi$ be roots of the same length. There exist

- An element⁶ $w_{\gamma \to \alpha} \in G(k)$
- A function⁷ $\varphi_{\gamma \to \alpha} : V_{\gamma}(k) \to V_{\alpha}(k)$

such that for all $u \in V_{\alpha}(k)$ we have

$$w_{\gamma \to \alpha} \cdot e_{\gamma}(u) \cdot w_{\gamma \to \alpha}^{-1} = e_{\alpha} \Big(\varphi_{\gamma \to \alpha}(u) \Big)$$

Proof. INCOMPLETE

Lemma 6. Let G, k, S, Φ be as in Definition 4. Let $\alpha, \beta \in \Phi$ so that $\gamma = \alpha + \beta \in \Phi$ and α, β are not proportional, and let $N_{ij}^{\alpha\beta}$ be the function from Lemma 4. For every $u \in V_{\alpha}(k)$ and $v \in V_{\beta}(k)$, there exists an element $h \in G(k)$ such that

$$h_{\gamma}(u,v) \cdot \left(\prod_{(\alpha,\beta)} e_{i\alpha+j\beta} \left(N_{ij}^{\alpha\beta}(u,v) \right) \right) \cdot h_{\gamma}(u,v)^{-1} = INCOMPLETE$$

Proof. I'm not even sure what the right hand side of the equation above is supposed to be **INCOMPLETE**

 $^{{}^5}N_{ij}^{\alpha\beta}$ should be homogeneous of degree i in the first input and homogeneous of degree j in the second input, but I am not sure if this is actually needed in any way for the construction.

⁶The element $w_{\gamma \to \alpha}$ should be in $N_{G(k)}(S(k))$ and satisfy $w^2 = 1$, but I am not sure if this is necessary to the calculation.

⁷I am pretty sure $\varphi_{\gamma \to \alpha}$ should be an isomorphism of vector spaces.

2 Generalizing Chevalley construction

If Φ is a reduced irreducible root system, and R is a commutative ring, then the construction of Chevalley gives a procedure for obtaining a group $G(\Phi, R)$ which is the group of R-points of a functor $G(\Phi, -)$ which is a split, semisimple algebraic group. Concretely, the construction describes $G(\Phi, R)$ as a group of automorphisms of a vector space as generated by elements $x_{\alpha}(r)$ where $\alpha \in \Phi$ and $r \in R$.

What I want is a generalization of this which is generalized in at least two ways:

- Allow for Φ to be non-reduced
- The construction should produce non-split groups

Definition 6. Let V be a \mathbb{Q} -vector space with an inner product (-,-). Define

$$\langle -, - \rangle : V \times V \to V \qquad \langle \beta, \alpha \rangle = \frac{2(\alpha, \beta)}{(\alpha, \alpha)}$$

and note that $\langle -, - \rangle$ is only linear in the first argument. For $\alpha \in V$, the reflection across the hyperplane perpendicular to α is the map

$$\sigma_{\alpha}: V \to V$$
 $\sigma_{\alpha}(\beta) = \beta - \langle \beta, \alpha \rangle \alpha = \beta - \frac{2(\alpha, \beta)}{(\alpha, \alpha)} \alpha$

A root system (in V) is a set $\Phi \subset V$ such that

- Φ is finite
- $0 \notin \Phi$
- For any $\alpha, \beta \in \Phi$, $\langle \beta, \alpha \rangle \in \mathbb{Z}$
- For any $\alpha \in \Phi$, Φ is preserved (set-wise) by the reflection σ_{α} . (In particular, $-\alpha \in \Phi$ because $\sigma_{\alpha}(\alpha) = -\alpha$.)

A root $\alpha \in \Phi$ is **multipliable** if $n\alpha \in \Phi$ for some n > 1. In other words, a root is not multipliable if $\mathbb{Q}\alpha \cap \Phi = \{\pm \alpha\}$. A root system is **reduced** if $\mathbb{Q}\alpha \cap \Phi = \{\pm \alpha\}$ for all $\alpha \in \Phi$, i.e. Φ is reduced if there are no multipliable roots.

The **rank** of Φ is the dimension of the subspace of V spanned by Φ . Φ is **reducible** if there exist subsets Φ_1, Φ_2 such that $\Phi = \Phi_1 \cup \Phi_2$ and $(\alpha, \beta) = 0$ for all $\alpha \in \Phi_1, \beta \in \Phi_2$. Φ is **irreducible** if it is not reducible.

The next lemma shows that even a multipliable root is severly limited in what multiples of it may occur in the root system.

Lemma 7. Let α be a multipliable root of a root system Φ . Then $\mathbb{Q}\alpha \cap \Phi = \{\pm \alpha, \pm 2\alpha\}$.

Definition 7. Let Φ be a root system. The **Weyl group** of Φ is the subgroup of $\operatorname{Aut}(V)$ generated by σ_{α} for $\alpha \in \Phi$.

$$W(\Phi) = \langle \sigma_{\alpha} : \alpha \in \Phi \rangle \subset \operatorname{Aut}(V)$$

Example 6. Type A, B, C, BC root systems **INCOMPLETE**