Assignment2-R

February 12, 2020

1 Assignment 2 - Simple and Multiple Linear Regression (I)

1.1 Overview of the steps

- 1. Load the data and get an overview of the data
- 2. Perform simple linear regressions
- 3. Use the simple linear regression models
- 4. Perform multiple linear regressions
- 5. Use the multiple linear regression model

1.2 Steps in detail

1.2.1 Load the data and get an overview of the data

Load the data file Boston.rda or Boston.csv.

In R the dataframe comes with the MASS library. We save the dataframe ones in csv and rda files for later use.

```
[47]: library(MASS)

#write.csv(Boston,"../ISLR/data/Boston.csv", row.names = TRUE)

#save(Boston,file="../ISLR/data/Boston.rda")
```

Display the number of predictors (including the response medv) and their names:

```
[48]: dim(Boston)[2]
names(Boston)
```

14

1. 'crim' 2. 'zn' 3. 'indus' 4. 'chas' 5. 'nox' 6. 'rm' 7. 'age' 8. 'dis' 9. 'rad' 10. 'tax' 11. 'ptratio' 12. 'black' 13. 'lstat' 14. 'medy'

Print a statistic summary of the predictors and the response medv:

[49]: summary(Boston)

crim	zn	indus	chas	
Min. : 0.00632	Min. : 0.00	Min. : 0.46	Min. :0.00000	
1st Qu.: 0.08204	1st Qu.: 0.00	1st Qu.: 5.19	1st Qu.:0.00000	
Median : 0.25651	Median: 0.00	Median: 9.69	Median :0.00000	
Mean : 3.61352	Mean : 11.36	Mean :11.14	Mean :0.06917	

```
3rd Qu.: 3.67708
                    3rd Qu.: 12.50
                                      3rd Qu.:18.10
                                                        3rd Qu.:0.00000
                            :100.00
                                                               :1.00000
Max.
       :88.97620
                    Max.
                                      Max.
                                              :27.74
                                                        Max.
                                                           dis
     nox
                        rm
                                         age
Min.
                                           : 2.90
                                                     Min.
                                                             : 1.130
       :0.3850
                  Min.
                          :3.561
                                   Min.
                                   1st Qu.: 45.02
                                                      1st Qu.: 2.100
1st Qu.:0.4490
                  1st Qu.:5.886
Median :0.5380
                  Median :6.208
                                   Median : 77.50
                                                     Median : 3.207
Mean
       :0.5547
                  Mean
                          :6.285
                                   Mean
                                           : 68.57
                                                     Mean
                                                             : 3.795
3rd Qu.:0.6240
                  3rd Qu.:6.623
                                   3rd Qu.: 94.08
                                                     3rd Qu.: 5.188
Max.
       :0.8710
                          :8.780
                                   Max.
                                           :100.00
                                                     Max.
                  Max.
                                                             :12.127
     rad
                       tax
                                      ptratio
                                                         black
Min.
       : 1.000
                          :187.0
                                   Min.
                                           :12.60
                                                            : 0.32
                  Min.
                                                    Min.
1st Qu.: 4.000
                  1st Qu.:279.0
                                   1st Qu.:17.40
                                                     1st Qu.:375.38
Median : 5.000
                  Median :330.0
                                   Median :19.05
                                                    Median :391.44
Mean
       : 9.549
                          :408.2
                  Mean
                                   Mean
                                           :18.46
                                                    Mean
                                                            :356.67
3rd Qu.:24.000
                  3rd Qu.:666.0
                                   3rd Qu.:20.20
                                                     3rd Qu.:396.23
Max.
       :24.000
                  Max.
                          :711.0
                                           :22.00
                                                            :396.90
                                   Max.
                                                    Max.
    lstat
                      medv
Min.
       : 1.73
                        : 5.00
                 Min.
1st Qu.: 6.95
                 1st Qu.:17.02
Median :11.36
                 Median :21.20
Mean
       :12.65
                 Mean
                        :22.53
3rd Qu.:16.95
                 3rd Qu.:25.00
Max.
       :37.97
                 Max.
                        :50.00
```

Display the number of data points:

[50]: dim(Boston)[1]

506

Display the data in a table (subset of rows is sufficient):

[51]: Boston

		crim	zn	indus	chas	nox	m rm	age	dis	rad
		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<int></int>
_	1	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1
	2	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2
	3	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2
	4	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3
	5	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3
	6	0.02985	0.0	2.18	0	0.458	6.430	58.7	6.0622	3
	7	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5
	8	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5
	9	0.21124	12.5	7.87	0	0.524	5.631	100.0	6.0821	5
	10	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5
	11	0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5
	12	0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5
	13	0.09378	12.5	7.87	0	0.524	5.889	39.0	5.4509	5
	14	0.62976	0.0	8.14	0	0.538	5.949	61.8	4.7075	4
	15	0.63796	0.0	8.14	0	0.538	6.096	84.5	4.4619	4
	16	0.62739	0.0	8.14	0	0.538	5.834	56.5	4.4986	4
	17	1.05393	0.0	8.14	0	0.538	5.935	29.3	4.4986	4
	18	0.78420	0.0	8.14	0	0.538	5.990	81.7	4.2579	4
	19	0.80271	0.0	8.14	0	0.538	5.456	36.6	3.7965	$\overline{4}$
	20	0.72580	0.0	8.14	0	0.538	5.727	69.5	3.7965	$\overline{4}$
	21	1.25179	0.0	8.14	0	0.538	5.570	98.1	3.7979	$\overline{4}$
	$\overline{22}$	0.85204	0.0	8.14	0	0.538	5.965	89.2	4.0123	$\overline{4}$
	23	1.23247	0.0	8.14	0	0.538	6.142	91.7	3.9769	4
	$\frac{23}{24}$	0.98843	0.0	8.14	0	0.538	5.813	100.0	4.0952	4
	$\frac{21}{25}$	0.75026	0.0	8.14	0	0.538	5.924	94.1	4.3996	4
	26	0.84054	0.0	8.14	0	0.538	5.599	85.7	4.4546	4
	$\frac{20}{27}$	0.67191	0.0	8.14	0	0.538	5.813	90.3	4.6820	4
	28	0.95577	0.0	8.14	0	0.538	6.047	88.8	4.4534	4
	29	0.77299	0.0	8.14	0	0.538	6.495	94.4	4.4547	4
A data.frame: 506×14	30	1.00245	0.0	8.14	0	0.538	6.674	87.3	4.2390	4
	00	1.00210	0.0	0,11		0.000	0.0.1	00	1.2000	-
	477	4.87141	0	18.10	0	0.614	6.484	93.6	2.3053	24
	478	15.02340	0	18.10	0	0.614	5.304	97.3	2.1007	24
	479	10.23300	0	18.10	0	0.614	6.185	96.7	2.1705	24
	480	14.33370	0	18.10	0	0.614	6.229	88.0	1.9512	24
	481	5.82401	0	18.10	0	0.532	6.242	64.7	3.4242	24
	482	5.70818	0	18.10	0	0.532	6.750	74.9	3.3317	24
	483	5.73116	0	18.10	0	0.532	7.061	77.0	3.4106	24
	484	2.81838	0	18.10	0	0.532	5.762	40.3	4.0983	24
	485	2.37857	0	18.10	0	0.583	5.871	41.9	3.7240	24
	486	3.67367	0	18.10	0	0.583	6.312	51.9	3.9917	24
	487	5.69175	0	18.10	0	0.583	6.114	79.8	3.5459	24
	488	4.83567	0	18.10	0	0.583	5.905	53.2	3.1523	24
	489	0.15086	0	27.74	0	0.609	5.454	92.7	1.8209	4
	490	0.18337	0	27.74	0	0.609	5.414	98.3	1.7554	4
	491	0.20746	0	27.74	0	0.609	5.093	98.0	1.8226	4
	492	0.10574	0	27.74	0	0.609	5.983	98.8	1.8681	4
	493	0.11132	0 3	27.74	0	0.609	5.983	83.5	2.1099	4
	494	0.17331	0	9.69	0	0.585	5.707	54.0	2.3817	6
	495	0.27957	0	9.69	0	0.585	5.926	42.6	2.3817	6
	496	0.17899	0	9.69	0	0.585	5.670	28.8	2.7986	6

Plot some predictors (at least two) against the response values. We choose lstat, rm, and age. In R, we need to download and install a library first.

```
[52]: install.packages("ggpubr") library("ggpubr")
```

The downloaded binary packages are in /var/folders/ct/4pcck8t94sdfc73rhymq4t140000gp/T//Rtmp8vvlYk/downloaded_packages

The R function ggscatter even displays a regression line, confidence intervals, the Pearson coefficient of correlation, and the p value. This is not necessary at this stage.

1.2.2 Perform simple linear regressions

Ó

25

Fit a simple linear regression model, with medv as the response and some (at least two) predictors individually. We choose lstat, rm, and age.

50

average age of houses

75

100

```
-15.168 -3.990 -1.318 2.034 24.500
     Coefficients:
                Estimate Std. Error t value Pr(>|t|)
     (Intercept) 34.55384
                            0.56263 61.41
                                              <2e-16 ***
     lstat
                -0.95005
                            0.03873 -24.53 <2e-16 ***
     Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
     Residual standard error: 6.216 on 504 degrees of freedom
     Multiple R-squared: 0.5441, Adjusted R-squared: 0.5432
     F-statistic: 601.6 on 1 and 504 DF, p-value: < 2.2e-16
[59]: lm.fit=lm(medv~rm ,data=Boston)
     summary(lm.fit)
     lm(formula = medv ~ rm, data = Boston)
     Residuals:
                                 3Q
         Min
                 1Q Median
                                        Max
     -23.346 -2.547 0.090 2.986 39.433
     Coefficients:
                Estimate Std. Error t value Pr(>|t|)
     (Intercept) -34.671
                              2.650 -13.08
                                              <2e-16 ***
                   9.102
                              0.419
                                      21.72
                                              <2e-16 ***
     rm
     Signif. codes: 0 '***, 0.001 '**, 0.01 '*, 0.05 '., 0.1 ', 1
     Residual standard error: 6.616 on 504 degrees of freedom
     Multiple R-squared: 0.4835, Adjusted R-squared: 0.4825
     F-statistic: 471.8 on 1 and 504 DF, p-value: < 2.2e-16
[60]: lm.fit=lm(medv~age ,data=Boston)
     summary(lm.fit)
     Call:
     lm(formula = medv ~ age, data = Boston)
     Residuals:
         Min
                 1Q Median
                                        Max
                                 3Q
     -15.097 -5.138 -1.958 2.397 31.338
```

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.527 on 504 degrees of freedom Multiple R-squared: 0.1421, Adjusted R-squared: 0.1404 F-statistic: 83.48 on 1 and 504 DF, p-value: < 2.2e-16

Interprete the results. Your interpretation of the results goes here!

Obtain a confidence interval for the coefficient estimates for the indivisual models.

```
[62]: lm.fit=lm(medv~lstat ,data=Boston) confint(lm.fit)
```

```
A matrix: 2 \times 2 of type dbl (Intercept) 33.448457 35.6592247 1stat -1.026148 -0.8739505
```

```
A matrix: 2 \times 2 of type dbl (Intercept) -39.876641 -29.464601 rm 8.278855 9.925363
```

Interprete the results. Your interpretation of the results goes here!

1.2.3 Use the simple linear regression models

Predict the medv response values for some selected predictor values. Calculate the prediction intervals for these values.

		fit	lwr	upr
A matrix, 2 × 2 of type db	1	29.80359	17.565675	42.04151
A matrix: 3×3 of type dbl	2	25.05335	12.827626	37.27907
	3	20.30310	8.077742	32.52846

```
[69]: lm.fit=lm(medv~rm,data=Boston) predict(lm.fit,data.frame(rm=c(5,6.5,8)), interval ="prediction")
```

```
A matrix: 3 \times 3 of type dbl \begin{bmatrix} 1 & 10.83992 & -2.214474 & 23.89432 \\ 2 & 24.49309 & 11.480391 & 37.50578 \\ 3 & 38.14625 & 25.058353 & 51.23415 \end{bmatrix}
```

```
[70]: lm.fit=lm(medv~age,data=Boston) predict(lm.fit,data.frame(age=c(25,50,75)), interval ="prediction")
```

```
A matrix: 3 \times 3 of type dbl \begin{bmatrix} & & \text{lwr} & \text{upr} \\ 1 & 27.89961 & 11.090368 & 44.70885 \\ 2 & 24.82054 & 8.043748 & 41.59734 \\ 3 & 21.74147 & 4.971031 & 38.51192 \end{bmatrix}
```

Interprete the results. Your interpretation of the results goes here!

1.2.4 Perform multiple linear regressions

Fit medvas response with the predictors selected before altogether.

```
[72]: lm.fit=lm(medv~lstat+rm+age ,data=Boston) summary(lm.fit)
```

Call:

lm(formula = medv ~ lstat + rm + age, data = Boston)

Residuals:

```
Min 1Q Median 3Q Max -18.210 -3.467 -1.053 1.957 27.500
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.175311
                       3.181924 -0.369
                                           0.712
lstat
           -0.668513
                       0.054357 -12.298
                                          <2e-16 ***
            5.019133
                       0.454306 11.048
                                          <2e-16 ***
rm
            0.009091
                       0.011215
                                  0.811
                                           0.418
age
```

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1

Residual standard error: 5.542 on 502 degrees of freedom Multiple R-squared: 0.639, Adjusted R-squared: 0.6369 F-statistic: 296.2 on 3 and 502 DF, p-value: < 2.2e-16

Interprete the results. Your interpretation of the results goes here!

Fit medvas response with all available predictors altogether.

```
[73]: lm.fit=lm(medv~.,data=Boston)
     summary(lm.fit)
     Call:
     lm(formula = medv ~ ., data = Boston)
     Residuals:
         Min
                  1Q Median
                                  3Q
                                         Max
     -15.595 -2.730 -0.518
                               1.777
                                      26.199
     Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
     (Intercept) 3.646e+01 5.103e+00 7.144 3.28e-12 ***
                 -1.080e-01 3.286e-02 -3.287 0.001087 **
     crim
                  4.642e-02 1.373e-02
                                        3.382 0.000778 ***
     zn
     indus
                  2.056e-02 6.150e-02
                                        0.334 0.738288
     chas
                  2.687e+00 8.616e-01 3.118 0.001925 **
     nox
                 -1.777e+01 3.820e+00 -4.651 4.25e-06 ***
                 3.810e+00 4.179e-01 9.116 < 2e-16 ***
     rm
                  6.922e-04 1.321e-02 0.052 0.958229
     age
                 -1.476e+00 1.995e-01 -7.398 6.01e-13 ***
     dis
                 3.060e-01 6.635e-02 4.613 5.07e-06 ***
     rad
                 -1.233e-02 3.760e-03 -3.280 0.001112 **
     ptratio
                 -9.527e-01 1.308e-01 -7.283 1.31e-12 ***
     black
                  9.312e-03 2.686e-03
                                        3.467 0.000573 ***
                 -5.248e-01 5.072e-02 -10.347 < 2e-16 ***
     lstat
     Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
     Residual standard error: 4.745 on 492 degrees of freedom
     Multiple R-squared: 0.7406, Adjusted R-squared: 0.7338
     F-statistic: 108.1 on 13 and 492 DF, p-value: < 2.2e-16
     Interprete the results. Your interpretation of the results goes here!
[90]: install.packages("corrplot")
     source("http://www.sthda.com/upload/rquery cormat.r")
```

The downloaded binary packages are in

/var/folders/ct/4pcck8t94sdfc73rhymq4t140000gp/T//Rtmp8vvlYk/downloaded_packages

Check the correlation between the predictors.

In R, we need to download and install a library and an external function first.

```
[92]: rquery.cormat(Boston)
```

```
$r
        ptratio lstat
                          age indus
                                            crim
                                                      rad
                                                             tax
                                                                   chas black
                                      nox
ptratio
              1
           0.37
lstat
                      1
age
           0.26
                   0.6
                            1
indus
           0.38
                   0.6
                         0.64
nox
           0.19
                  0.59
                         0.73
                               0.76
crim
           0.29
                  0.46
                         0.35
                               0.41
                                     0.42
                                                1
                                    0.61
rad
           0.46
                  0.49
                         0.46
                                0.6
                                            0.63
                                                        1
tax
           0.46
                  0.54 0.51
                              0.72 0.67
                                            0.58
                                                     0.91
                                                               1
          -0.12 -0.054 0.087 0.063 0.091 -0.056 -0.0074 -0.036
chas
                -0.37 -0.27 -0.36 -0.38
black
          -0.18
                                           -0.39
                                                    -0.44
                                                          -0.44
                                                                  0.049
                                                                             1
          -0.36
                -0.61 -0.24 -0.39 -0.3
                                           -0.22
                                                    -0.21
                                                                  0.091
rm
                                                          -0.29
                                                                          0.13
          -0.51 -0.74 -0.38 -0.48 -0.43
medv
                                           -0.39
                                                    -0.38 -0.47
                                                                   0.18
                                                                          0.33
zn
          -0.39 -0.41 -0.57 -0.53 -0.52
                                            -0.2
                                                    -0.31
                                                          -0.31 -0.043
                                                                          0.18
                  -0.5 -0.75 -0.71 -0.77
                                           -0.38
                                                    -0.49 -0.53 -0.099
dis
          -0.23
                                                                          0.29
          rm medv
                    zn dis
ptratio
lstat
age
indus
nox
crim
rad
tax
chas
black
rm
           1
         0.7
medv
        0.31 0.36
zn
        0.21 0.25 0.66
dis
$p
        ptratio
                  lstat
                             age
                                   indus
                                               nox
                                                      crim
                                                                rad
                                                                         tax
ptratio
              0
lstat
          3e-18
        2.3e-09 2.8e-51
                               0
age
indus
        3.8e-19 1.4e-51 8.4e-61
                   6e-49 7.5e-86 7.9e-98
nox
        1.9e-05
        2.9e-11 2.7e-27 2.9e-16 1.5e-21
                                          3.8e-23
                                                         0
crim
        1.8e-28 9.9e-32 2.4e-27 8.4e-50
                                          3.3e-53 2.7e-56
rad
        5.7e-28 2.6e-40 2.6e-34
                                          1.1e-66 2.4e-47 4.1e-195
                                   3e-82
                                                                           0
tax
         0.0062
                    0.23
                           0.052
                                    0.16
                                              0.04
                                                      0.21
                                                               0.87
chas
          6e-05 1.7e-17 3.9e-10 1.2e-16
                                                            6.6e-26 1.4e-25
black
                                          7.8e-19 2.5e-19
        1.6e-16
                   1e-53 4.5e-08 5.3e-20
                                          3.8e-12 6.3e-07
                                                            1.9e-06 2.1e-11
rm
medv
        1.6e-34 5.1e-88 1.6e-18 4.9e-31
                                          7.1e-24 1.2e-19
                                                            5.5e-19 5.6e-29
        5.3e-20 2.9e-22 7.6e-45 1.3e-38 7.2e-36 5.5e-06
                                                              7e-13 4.4e-13
zn
        1.2e-07 6.4e-33 9.9e-92 3.6e-78 4.2e-100 8.5e-19 1.4e-32
dis
                                                                       1e-38
```

```
chas
                  black
                                    medv
                                               zn dis
                              rm
ptratio
lstat
age
indus
nox
crim
rad
tax
chas
              0
           0.27
black
                       0
           0.04 0.0039
rm
        7.4e-05 1.3e-14 2.5e-74
medv
           0.34 7.2e-05 6.9e-13 5.7e-17
zn
          0.026 2.3e-11 3.2e-06 1.2e-08 9.7e-66
dis
$sym
        ptratio lstat age indus nox crim rad tax chas black rm medv zn dis
ptratio 1
lstat
                1
age
indus
nox
                                 1
crim
                                     1
rad
tax
                                               1
                                                   1
chas
black
rm
medv
                                                                  1
zn
                                                                       1
dis
                                                                          1
attr(,"legend")
[1] 0 ' ' 0.3 '.' 0.6 ', ' 0.8 '+' 0.9 '*' 0.95 'B' 1
```


Interprete the results. Your interpretation of the results goes here!

1.2.5 Use the multiple linear regression model

Predict the medv response values for some selected predictor values. Calculate the prediction intervals for these values.

```
[93]: lstatC=c(5,10,15)
    rmC=c(5,6.5,8)
    selected_predictor_values = expand.grid(lstat = lstatC, rm = rmC)
    selected_predictor_values
```

	lstat	m rm
	<dbl $>$	<dbl $>$
•	5	5.0
	10	5.0
	15	5.0
A data.frame: 9×2	5	6.5
	10	6.5
	15	6.5
	5	8.0
	10	8.0
	15	8.0

Predict the medv response values for some selected predictor values. Calculate the prediction intervals for these values.

		fit	lwr	upr
		110	1W1	upr
	1	20.90388	9.889729	31.91802
	2	17.69208	6.722152	28.66202
	3	14.48029	3.537875	25.42271
A matrix, 0 × 2 of type dbl	4	28.54606	17.635923	39.45619
A matrix: 9×3 of type dbl	5	25.33427	14.437027	36.23150
	6	22.12247	11.221204	33.02374
	7	36.18824	25.225479	47.15100
	8	32.97645	21.995024	43.95787
	9	29.76466	18.747835	40.78148

Interprete the results. Your interpretation of the results goes here!