## GAN 0001 - Geometria Analítica Primeira Lista de Exercícios

1. Dados os vetores  $\vec{u}$  e  $\vec{v}$  da figura, mostrar, num gráfico, um representante do vetor:



- (a)  $\vec{u} \vec{v}$
- (b)  $\vec{v} \vec{u}$
- (c)  $-\vec{v} 2\vec{u}$
- (d)  $2\vec{u} 3\vec{v}$
- 2. Com base no paralelepípedo representado a seguir, determine os seguintes vetores usando  ${\cal H}$  como origem.



- (a)  $\overrightarrow{FE} + \overrightarrow{DB} + \overrightarrow{DC}$
- (b) -(G-B)+(B-A)
- 3. Dado o trapézio  $\overrightarrow{ABCD}$  em que  $\overrightarrow{AB} = \vec{b}$ ,  $\overrightarrow{CB} = \vec{a}$ ,  $\overrightarrow{DC} = 2\vec{b}$  e  $\overrightarrow{DP} = \frac{\overrightarrow{DA}}{4}$ , expressar  $\overrightarrow{BD}$  e  $\overrightarrow{CP}$  em função de  $\vec{a}$  e  $\vec{b}$ .



4. Considere o tetraedro  $\overrightarrow{ABCD}$  dado a seguir, em que  $\overrightarrow{AB} = \vec{a}$ ,  $\overrightarrow{AC} = \vec{b}$ ,  $\overrightarrow{AD} = \vec{c}$  e  $\overrightarrow{CX} = -\frac{\overrightarrow{DC}}{3}$ . Escreva o vetor  $\overrightarrow{BX}$  em função dos vetores  $\vec{a}$ ,  $\vec{b}$  e  $\vec{c}$ .



5. Na figura abaixo tem-se  $\overrightarrow{CM} = \frac{\overrightarrow{CA}}{3}$  e  $\overrightarrow{CN} = \frac{\overrightarrow{CB}}{3}$ . Prove que os segmentos  $\overline{MN}$  e  $\overline{AB}$  são paralelos, e que o comprimento do primeiro é  $\frac{1}{3}$  do comprimento do segundo.



6. Sabendo que o ângulo entre os vetores  $\vec{u}$  e  $\vec{v}$  é de 60°, determinar o ângulo formado pelos vetores:

- (a)  $\vec{u} e \vec{v}$
- (b)  $-\vec{u} \in \vec{v}$
- (c)  $-\vec{u} e \vec{v}$
- (d)  $2\vec{u} \in 3\vec{v}$

7. Determinar a extremidade do segmento que representa o vetor  $\vec{v} = (2, -5)$ , sabendo que sua origem é o ponto A(-1, 3).

8. Dados os vetores  $\vec{u}=(3,-1)$  e  $\vec{v}=(-1,2),$  determinar o vetor  $\vec{w}$  tal que

(a) 
$$4(\vec{u} - \vec{v}) + \frac{1}{3}\vec{w} = 2\vec{u} - \vec{w}$$

(b) 
$$3\vec{w} - (2\vec{v} - \vec{u}) = 2(4\vec{w} - 3\vec{u})$$

9. Dados os pontos A(-1,3), B(2,5) e C(3,-1), calcular  $\overrightarrow{OA} - \overrightarrow{AB}$ ,  $\overrightarrow{OC} - \overrightarrow{BC}$  e  $3\overrightarrow{BA} - 4\overrightarrow{CB}$ .

- 10. Dados os pontos A(-1,2,3) e B(4,-2,0), determinar o ponto P tal que  $\overrightarrow{AP} = 3\overrightarrow{AB}$
- 11. Determinar  $a \in b$  de modo que os vetores  $\vec{u} = (4, 1, -3)$  e  $\vec{v} = (6, a, b)$  sejam paralelos.
- 12. Verificar se são colineares os pontos:

(a) 
$$A(-1,-5,0)$$
,  $B(2,1,3)$  e  $C(-2,-7,-1)$ 

(b) 
$$A(2,1,-1)$$
,  $B(3,-1,0)$  e  $C(1,0,4)$ 

13. Dados os vetores  $\vec{u}=2\vec{i},\,\vec{v}=\vec{i}+\vec{j}+\vec{k}$  e  $\vec{w}=2\vec{i}+6\vec{j}+6\vec{k}$ , expresse  $\vec{w}$  como combinação linear de  $\vec{u}$  e  $\vec{v}$ .

- 14. Sejam os vetores  $\vec{u} = (2, -3, 2)$  e  $\vec{v} = (-1, 2, 4)$  em  $\mathbb{R}^3$ .
  - (a) Escrever o vetor  $\vec{w}=(7,-11,2)$  como combinação linear de  $\vec{u}$  e  $\vec{v}$ .
  - (b) Para que valor de k o vetor (-8, 14, k) é combinação linear de  $\vec{u}$  e  $\vec{v}$ ?
  - (c) Determinar uma condição entre a, b e c para que o vetor (a, b, c) seja uma combinação linear de  $\vec{u}$  e  $\vec{v}$ .
- 15. Sabendo que a distância entre os pontos A(-1,2,3) e B(1,-1,m) é 7, determine os possíveis valores de m.
- 16. Dados os vetores  $\vec{u}=(1,a,-2a-1), \ \vec{v}=(a,a-1,1)$  e  $\vec{w}=(a,-1,1),$  determinar a de modo que  $\vec{u}\cdot\vec{v}=(\vec{u}+\vec{v})\cdot\vec{w}.$
- 17. Dados os pontos A(-1,0,2), B(-4,1,1) e C(0,1,3), determinar o vetor  $\vec{x}$  tal que  $2\vec{x} \overrightarrow{AB} = \vec{x} + \left(\overrightarrow{BC} \cdot \overrightarrow{AB}\right) \overrightarrow{AC}$ .
- 18. Dados os pontos A(1,2,3), B(-6,-2,3) e C(1,2,1), determinar o versor do vetor  $3\overrightarrow{BA} 2\overrightarrow{BC}$
- 19. Determinar o valor de n para que o vetor  $\vec{v} = \left(n, \frac{2}{5}, \frac{4}{5}\right)$  seja unitário.
- 20. Seja o vetor  $\vec{v} = (m+7)\vec{i} + (m+2)\vec{j} + 5\vec{k}$ . Calcular m para que  $|\vec{v}| = \sqrt{38}$ .
- 21. Prove que o triângulo cujos vértices são A(1,2,0), B(4,0,-1) e C(2,-1,2) é equilátero.
- 22. Determine os pontos do plano xz cuja distância ao ponto A(1,1,0) é 2 e ao ponto B(2,0,1) é 3.
- 23. Obter um ponto P do eixo das abscissas eqüidistante dos pontos A(2, -3, 1) e B(-2, 1, -1).
- 24. Sabendo que o ângulo entre os vetores  $\vec{u}=(2,1,-1)$  e  $\vec{v}=(1,-1,m+2)$  é  $\frac{\pi}{3}$ , determinar m.
- 25. Determinar o vetor  $\vec{v}$  ortogonal ao vetor  $\vec{u} = (2, -3, -12)$  e colinear ao vetor  $\vec{w} = (-6, 4, -2)$ .
- 26. Provar que os pontos A(5,1,5), B(4,3,2) e C(-3,-2,1) são vértices de um triângulo retângulo.
- 27. Os ângulos diretores de um vetor são 45°, 60° e  $\gamma$ . Determinar  $\gamma$ .
- 28. Determinar o vetor projeção do vetor  $\vec{u}=(1,2,-3)$  na direção de  $\vec{v}=(2,1,-2)$ .
- 29. Qual o comprimento do vetor projeção de  $\vec{u} = (3, 5, 2)$  sobre o eixo dos x?
- 30. Os pontos A(2,1,-1), B(-1,3,1) e C(0,-1,2) formam um triângulo.
  - (a) Determine a projeção do lado AB sobre o lado CA.
  - (b) Obtenha, se possível, o valor de c para que o vetor  $\vec{v}=(3c+4,-2,9)$  seja colinear ao vetor projeção.
- 31. Mostrar que se  $\vec{u}$  e  $\vec{v}$  são vetores, tal que  $\vec{u} + \vec{v}$  é ortogonal a  $\vec{u} \vec{v}$ , então  $|\vec{u}| = |\vec{v}|$ .
- 32. Calcule o ângulo entre os vetores  $\vec{u}$  e  $\vec{v}$ , sabendo-se que  $\vec{u} + \vec{v} + \vec{w} = \vec{0}$ ,  $|\vec{u}| = 2$ ,  $|\vec{v}| = 3$  e  $|\vec{w}| = 4$ .
- 33. Calcule o ângulo entre os vetores  $\vec{a} + 2\vec{b} \vec{c}$  e  $-\vec{a} + \vec{b} 2\vec{c}$ , sabendo-se que  $|\vec{a}| = |\vec{b}| = |\vec{c}| = 1$ , e  $\vec{a}$ ,  $\vec{b}$  e  $\vec{c}$  são mutuamente ortogonais.
- 34. Calcule o valor de a para que o vetor  $\vec{v} = \left(-28, 0, -\frac{7}{2}\right)$  seja mutuamente ortogonal aos vetores  $\vec{w} = a\vec{i} + 5\vec{j} 4\vec{k}$  e  $\vec{u} = (a-1)\vec{i} + 2\vec{j} + 4\vec{k}$ .
- 35. Determine o vetor unitário ortogonal aos vetores  $\vec{u} = (2, 3, -1)$  e  $\vec{v} = (1, 1, 2)$ .
- 36. Dados os vetores  $\vec{u} = (2, -1, 1), \vec{v} = (1, -1, 0)$  e  $\vec{w} = (-1, 2, 2)$ , calcular:

- (a)  $\vec{w} \times \vec{v}$
- (b)  $\vec{v} \times (\vec{w} \vec{u})$
- (c)  $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v})$
- (d)  $(2\vec{u}) \times (3\vec{v})$
- (e)  $(\vec{u} \times \vec{v}) \cdot (\vec{u} \times \vec{v})$
- (f)  $(\vec{u} \times \vec{v}) \cdot \vec{w} \in \vec{u} \cdot (\vec{v} \times \vec{w})$
- (g)  $(\vec{u} \times \vec{v}) \times \vec{w} \in \vec{u} \times (\vec{v} \times \vec{w})$
- (h)  $(\vec{u} + \vec{v}) \cdot (\vec{u} \times \vec{w})$
- 37. Sabendo que  $|\vec{a}| = 3$ ,  $|\vec{b}| = \sqrt{2}$  e 45° é o ângulo entre  $\vec{a}$  e  $\vec{b}$ , calcular  $|\vec{a} \times \vec{b}|$ .
- 38. Calcular a área do paralelogramo definido pelos vetores  $\vec{u} = (3, 1, 2)$  e  $\vec{v} = (4, -1, 0)$ .
- 39. Calcular a área do triângulo de vértices
  - (a) A(-1,0,2), B(-4,1,1) e C(0,1,3)
  - (b) A(1,0,1), B(4,2,1) e C(1,2,0)
  - (c) A(2,3,-1), B(3,1,-2) e C(-1,0,2)
  - (d) A(-1,2,-2), B(2,3,-1) e C(0,1,1)
- 40. Calcular a área do paralelogramo que tem um vértice no ponto A(3,2,1) e uma diagonal de extremidades B(1,1,-1) e C(0,1,2).
- 41. Sendo  $\vec{u}$  e  $\vec{v}$  vetores no espaço, com  $\vec{v} \neq \vec{0}$ :
  - (a) Determinar o número real r tal que  $\vec{u} r\vec{v}$  seja ortogonal a  $\vec{v}$
  - (b) Mostrar que  $(\vec{u} + \vec{v}) \times (\vec{u} \vec{v}) = 2\vec{v} \times \vec{u}$ .
- 42. Verificar se são coplanares os seguintes vetores:
  - (a)  $\vec{u} = (3, -1, 2), \vec{v} = (1, 2, 1)$  e  $\vec{w} = (-2, 3, 4)$
  - (b)  $\vec{u} = (2, -1, 0), \vec{v} = (3, 1, 2) \text{ e } \vec{w} = (7, -1, 2)$
- 43. Para que valor de m os pontos A(m,1,2), B(2,-2,-3), C(5,-1,1) e D(3,-2,-2) são coplanares?
- 44. Considere o tetraedro ABCD, ilustrado a seguir, cujos vértices da base são: A(2,2,-1), B(3,2,1) e C(2,1,0). Calcular as coordenadas do vértice D, considerando que ele está no eixo x, de forma que o volume do tetraedro seja 8 unidades de volume.



- 45. Calcular o valor de m para que o volume do paralelepípedo determinado pelos vetores  $\vec{v_1}=2\vec{i}-\vec{j},$   $\vec{v_2}=6\vec{i}+m\vec{j}-2\vec{k}$  e  $\vec{v_3}=-4\vec{i}+\vec{k}$  seja igual a 10.
- 46. Os vetores  $\vec{a}=(2,-1,-3), \vec{b}=(-1,1,-4)$  e  $\vec{c}=(m+1,m,-1)$  determinam um paralelepípedo de volume 42. Calcular m.
- 47. Calcular o volume do tetraedro ABCD, sendo dados:

- (a) A(1,0,0), B(0,1,0), C(0,0,1) e D(4,2,7)
- (b) A(-1,3,2), B(0,1,-1), C(-2,0,1) e D(1,-2,0). Para este, calcular também a medida da altura traçada do vértice A.
- 48. Calcule a área do paralelogramo construído sobre os vetores  $2\vec{u} 3\vec{v}$  e  $\vec{w}$ , sabendo que  $|\vec{u}| = 3$ ,  $|\vec{v}| = 4$ , o ângulo formado pelos vetores  $\vec{u}$  e  $\vec{v}$  é  $\frac{\pi}{4}$  rad e que  $\vec{w}$  é a projeção do vetor  $\vec{u}$  sobre o vetor  $\vec{v}$

## Respostas dos Exercícios

## 1. Vetores:



2. (a) 
$$\overrightarrow{HF}$$

(b) 
$$\overrightarrow{HB}$$

3. 
$$\overrightarrow{BD} = -(\vec{a} + 2\vec{b}) e \overrightarrow{CP} = \frac{\vec{a} - 7\vec{b}}{4}$$

4. 
$$\overrightarrow{BX} = -\vec{a} + \frac{2}{3}\vec{b} + \frac{1}{3}\vec{c}$$

5. Dica: use soma de vetores.

7. 
$$(1, -2)$$

8. (a) 
$$\vec{w} = \left(-\frac{15}{2}, \frac{15}{2}\right)$$

(b) 
$$\vec{w} = \left(\frac{23}{5}, -\frac{11}{5}\right)$$

9. 
$$(-4,1)$$
,  $(2,5)$ ,  $(-5,-30)$ 

10. 
$$P(14, -10, -6)$$

11. 
$$a = \frac{3}{2} e b = -\frac{9}{2}$$

13. 
$$\vec{w} = -2\vec{u} + 6\vec{v}$$

14. (a) 
$$\vec{w} = 3\vec{u} - \vec{v}$$

(b) 
$$k = 12$$

(c) 
$$16a + 10b - c = 0$$

15. 
$$m = 9$$
 ou  $m = -3$ 

16. 
$$a = 2$$

17. 
$$\vec{x} = (-17, -13, -15)$$

18. 
$$\left(\frac{7}{9}, \frac{4}{9}, \frac{4}{9}\right)$$

19. 
$$n = \pm \frac{\sqrt{5}}{5}$$

20. 
$$m = -4$$
 ou  $-5$ 

21. Prove que 
$$|\overrightarrow{AB}| = |\overrightarrow{BC}| = |\overrightarrow{AC}|$$
.

22. 
$$\left(\frac{\sqrt{2}}{2}, 0, -\frac{\sqrt{2}}{2} - 1\right) e\left(-\frac{\sqrt{2}}{2}, 0, \frac{\sqrt{2}}{2} - 1\right)$$

23. 
$$P(1,0,0)$$

24. 
$$m = -4$$

25. 
$$\vec{v} = t(3, -2, 1), t \in \mathbb{R}$$

26. 
$$\overrightarrow{BA} \cdot \overrightarrow{BC} = 0$$

27. 
$$\gamma = 60^{\circ} \text{ ou } 120^{\circ}$$

28. 
$$\frac{10}{9}(2,1,-2)$$

30. (a) 
$$\left(-\frac{16}{17}, -\frac{16}{17}, \frac{24}{17}\right)$$

(b) Não existe valor de 
$$c$$
.

31. Resultado de 
$$(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v}) = 0$$

32. Aproximadamente 
$$75,52^{\circ}$$

34. 
$$a = \frac{1}{2}$$

35. 
$$\pm \left(\frac{7}{5\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{5\sqrt{3}}\right)$$

36. (a) 
$$(2, 2, -1)$$

(b) 
$$(-1-1,0)$$

(c) 
$$(-2, -2, 2)$$

(d) 
$$(6,6,-6)$$

(g) 
$$(4,-1,3)$$
 e  $(1,-4,-6)$ 

38. 
$$\sqrt{117}$$

39. (a) 
$$\sqrt{6}$$

(b) 
$$\frac{7}{2}$$

(c) 
$$\frac{9\sqrt{2}}{2}$$

- (d)  $2\sqrt{6}$
- 40.  $\sqrt{74}$
- 41. (a)  $r = \frac{\vec{u} \cdot \vec{v}}{|\vec{v}|^2}$ 
  - (b) Obtido usando as propriedades do produto vetorial.
- 42. (a) Não
  - (b) Sim
- 43. m = 4
- 44.  $D\left(\frac{51}{2},0,0\right)$  ou  $D\left(-\frac{45}{2},0,0\right)$
- 45. m = 6 ou -4
- 46. m = 2 ou  $-\frac{8}{3}$
- 47. (a) 2
  - (b) 4 e  $\frac{8}{\sqrt{10}}$
- 48. A = 9 u.a.