CSE 392: Matrix and Tensor Algorithms for Data

Instructor: Shashanka Ubaru

University of Texas, Austin Spring 2024 Lecture 22: t-SVD, \star_M -product

Outline

1 t-SVD

 $2 \star_M$ -product

UT Austin CSE 392 Apr, 2024 3 / 27

Recall: The t-product

The t-product is defined as:

$$\mathcal{A}*\mathcal{B} = \mathtt{fold}(\mathtt{circ}(\mathcal{A}) \cdot \mathtt{unfold}(\mathcal{B})).$$

It is obvious that if \mathcal{A} is $m \times p \times n$, need \mathcal{B} to be $p \times k \times n$, and the result is $m \times k \times n$.

Kilmer, Martin, Factorization Strategies for Third-Order Tensors, LAA, 2011

UT Austin CSE 392 Apr, 2024 4/27

T-product

Block circulants block-diagonalized via 1D FFTs \Rightarrow The t-product can be computed in-place using FFTs:

- $\widehat{\mathcal{A}} \leftarrow \mathtt{fft}(\mathcal{A},[\,],3)$
- $\bullet \ \widehat{\mathcal{B}} \leftarrow \mathtt{fft}(\mathcal{B},[\,],3)$
- $\widehat{\mathcal{C}}_{:,:,i} = \widehat{\mathcal{A}}_{:,:,i} \cdot \widehat{\mathcal{B}}_{:,:,i}, i = 1, \dots, n$
- $\mathcal{C} = \mathtt{ifft}(\widehat{\mathcal{C}},[\,],3)$

Transpose and Orthogonality

 $\mathcal{A} \in \mathbb{R}^{\ell \times m \times n} \Rightarrow \mathcal{A}^{\top} \in \mathbb{R}^{m \times \ell \times n}$ is obtained by transposing each frontal slice & reversing order of transposed frontal slices 2 through n.

$$\mathcal{U} \in \mathbb{R}^{m \times m \times n}$$
 is **orthogonal** if $\mathcal{U}^{\top} * \mathcal{U} = \mathcal{I} = \mathcal{U} * \mathcal{U}^{\top}$.

Can show **Frobenius norm invariance**: $\|\mathcal{U} * \mathcal{A}\|_F = \|\mathcal{A}\|_F$.

Exercise: show
$$(\mathcal{A} * \mathcal{B})^{\top} = \mathcal{B}^{\top} * \mathcal{A}^{\top}$$

UT Austin CSE 392 Apr, 2024 6 / 27

t-SVD

Theorem: For $A \in \mathbb{R}^{m \times \ell \times n}$ there exists a full tensor-SVD

$$\mathcal{A} = \mathcal{U} * \mathcal{S} * \mathcal{V}^{\top},$$

with $m \times m \times n$ orthogonal tensor \mathcal{U} , $\ell \times \ell \times n$ orthogonal tensor \mathcal{V} , and $m \times \ell \times n$ f-diagonal tensor \mathcal{S} ordered such that the singular tubes $\mathbf{s}_i = \mathcal{S}_{i,i,:}$ have $\|\mathbf{s}_1\|_F^2 \geq \|\mathbf{s}_2\|_F^2 \geq \cdots$.

The **t-rank** is the number of non-zero tube-fibers in S.

UT Austin CSE 392 Apr, 2024 7 / 27

t-SVD

Theorem: For $A \in \mathbb{R}^{m \times \ell \times n}$ there exists a full tensor-SVD

$$\mathcal{A} = \mathcal{U} * \mathcal{S} * \mathcal{V}^{\top},$$

with $m \times m \times n$ orthogonal tensor \mathcal{U} , $\ell \times \ell \times n$ orthogonal tensor \mathcal{V} , and $m \times \ell \times n$ f-diagonal tensor \mathcal{S} ordered such that the singular tubes $\mathbf{s}_i = \mathcal{S}_{i,i,:}$ have $\|\mathbf{s}_1\|_F^2 \geq \|\mathbf{s}_2\|_F^2 \geq \cdots$.

Exercise: Prove the claim that the $\|\mathbf{s}_i\|_F^2$ are non-increasing.

UT Austin CSE 392 Apr, 2024 7 / 27

t-SVD Computation

The t-SVD can be computed efficiently (in parallel) by moving to the Fourier domain.

- Compute $\widehat{\mathcal{A}}$
- For $i=1,\ldots,n$, find matrix SVD of each frontal slice: $\widehat{\mathcal{U}}_{:,:,i}\widehat{\mathcal{S}}_{:,:,i}\widehat{\mathcal{V}}_{::,i}^H = \widehat{\mathcal{A}}_{:,:,i}$
- To get $\mathcal{U}, \mathcal{S}, \mathcal{V}$, inverse FFT along tube fibers of $\widehat{\mathcal{U}}, \widehat{\mathcal{S}}, \widehat{\mathcal{V}}$.

UT Austin CSE 392 Apr, 2024 8 / 27

t-SVD and Optimality in Truncation

 $A \in \mathbb{R}^{m \times p \times n}$. For $k < \min(m, p)$, define

$$\mathcal{A}_{\boldsymbol{k}} = \sum_{i=1}^{\boldsymbol{k}} \mathcal{U}_{:,i,:} * \left(\mathcal{S}_{i,i,:} * \mathcal{V}_{:,i,:}^{\top} \right) = \mathcal{U}_{\boldsymbol{k}} * \left(\mathcal{S}_{\boldsymbol{k}} * \mathcal{V}_{\boldsymbol{k}}^{\top} \right)$$

Then

$$\mathcal{A}_{k} = \arg\min_{\widetilde{\mathcal{A}} \in \Omega} \|\mathcal{A} - \widetilde{\mathcal{A}}\|$$

where $\Omega = \{ \mathcal{X} * \mathcal{Y} \mid \mathcal{X} \in \mathbb{R}^{m \times k \times n}, \mathcal{Y} \in \mathbb{R}^{k \times p \times n} \}$

Higher Dimensions

The t-product, and the t-SVD, generalize to higher dimensions through recursion¹.

$$\begin{bmatrix} A_{1} & A_{3} & A_{2} \\ A_{2} & A_{1} & A_{3} \\ A_{3} & A_{2} & A_{1} \end{bmatrix} * \begin{bmatrix} B_{1} \\ B_{2} \\ B_{3} \end{bmatrix}$$

Treatment of change of pose or lighting information (as motion) \rightarrow 4D.

UT Austin CSE 392 Apr, 2024 10 / 27

¹Martin, Shafer, LaRue, An Order-p Tensor Factorization with Applications in Imaging, SISC, 2013

Generalization?

Is the DFT the only possibility for defining this matrix-mimetic type of framework, or are there other possibilities?

UT Austin CSE 392 Apr, 2024 11/27

Generalization?

Is the DFT the only possibility for defining this matrix-mimetic type of framework, or are there other possibilities?

Now we will show: Whole family of options of tensor-tensor products for which this is possible! Offers the option of tailoring the product to the type of data or operator at hand!

UT Austin CSE 392 Apr, 2024 11/27

Recall Mode-3 Multiplication

 $m \times p \times n$ tensor \mathcal{A}

Let **M** be $r \times n$. To find $\mathcal{A} \times_3 \mathbf{M}$:

- Compute matrix-matrix product $\mathbf{M}\mathcal{A}_{(3)}$,
- Reshape the result to an $m \times p \times r$ tensor.

Equivalent to applying M along tube fibers.

Star-M Product

Let **M** be any invertible, $n \times n$ matrix. Then

$$\widehat{\mathcal{A}} := \mathcal{A} \times_3 \mathbf{M}$$
 so that $\mathcal{A} = \widehat{\mathcal{A}} \times_3 \mathbf{M}^{-1}$.

Definition

Given any invertible, $n \times n$ M, $A \in \mathbb{C}^{m \times p \times n}$ and $B \in \mathbb{C}^{p \times \ell \times n}$, $C = A \star_M B$ is defined via $\widehat{C}_{:::i} = \widehat{A}_{:::i}\widehat{B}_{:::i}$.

Kernfeld, Kilmer, Aeron, LAA 2015

UT Austin CSE 392 Apr, 2024 13 / 27

Special Case

If ${\bf M}$ is the (unnormalized) DFT matrix, we recover the t-product framework!

UT Austin CSE 392 Apr., 2024 14 / 27

Other Properties

Definition (Conjugate Transpose)

Given $\mathcal{A} \in \mathbb{C}^{m \times p \times n}$ its $p \times m \times n$ conjugate transpose under $\star_M \mathcal{A}^H$ is defined such that $(\widehat{\mathcal{A}}^H)^{(i)} = (\widehat{\mathcal{A}}^{(i)})^H$, $i = 1, \ldots, n$.

Definition (Unitary/Orthogonal Tensors)

 $Q \in \mathbb{C}^{m \times m \times n}$ $(Q \in \mathbb{R}^{m \times m \times n})$ is called \star_M -unitary $(\star_M$ -orthogonal) if

$$Q^{\mathrm{H}} \star_{M} Q = \mathcal{I} = \mathcal{Q} \star_{M} \mathcal{Q}^{\mathrm{H}},$$

where H is replaced by transpose for real tensors. Note that \mathcal{I} also defined under \star_M .

Kernfeld, Kilmer, Aeron, LAA 2015

UT Austin CSE 392 Apr, 2024 15 / 27

Entry-wise **M**-product

$$\mathbf{c} = \mathbf{a} \star_{M} \mathbf{b}$$

Tube fiber interpretation:

$$\begin{aligned} \mathbf{c} &= & \texttt{fold}\left((\mathbf{M}^{-1}\mathrm{diag}(\hat{\mathbf{a}})\mathbf{M})\mathtt{vec}(\mathbf{b})\right) \\ &= & \texttt{fold}\left((\mathbf{M}^{-1}\mathrm{diag}(\hat{\mathbf{b}})\mathbf{M})\mathtt{vec}(\mathbf{a})\right) \end{aligned}$$

Commutativity, and characterization using set of diagonal matrices diagonalized by ${\bf M}$ and its inverse.

UT Austin CSE 392 Apr, 2024 16 / 27

Entry-wise **M**-product

Tube fiber interpretation:

$$\begin{aligned} \mathbf{c} &= & \mathtt{fold}\left((\mathbf{M}^{-1}\mathrm{diag}(\hat{\mathbf{a}})\mathbf{M})\mathtt{vec}(\mathbf{b})\right) \\ &= & \mathtt{fold}\left((\mathbf{M}^{-1}\mathrm{diag}(\hat{\mathbf{b}})\mathbf{M})\mathtt{vec}(\mathbf{a})\right) \end{aligned}$$

Commutativity, and characterization using set of diagonal matrices diagonalized by M and its inverse.

Special Case: M is DFT \Rightarrow convolution, circulant matrices

UT Austin CSE 392 Apr, 2024 16 / 27

Matrix-mimeticity

Observation: overloading scalar products with \star_M in matrix-matrix algorithms gives product for larger dimensional tensors.

If \mathcal{A} is $m \times k \times n$ and \mathcal{B} is $k \times p \times n$, then \mathcal{C} is $m \times p \times n$, and

UT Austin CSE 392 Apr, 2024 17 / 27

Unitary Invariance

Theorem

If M a non-zero multiple of a unitary/orthogonal matrix^a

$$\|\mathcal{Q} \star_M \mathcal{A}\|_F = \|\mathcal{A}\|_F$$

^aKilmer, Horesh, Avron, Newman (2021)

Tensor-tensor SVDs

Theorem (Kilmer, Horesh, Avron, Newman)

Let \mathcal{A} be a $m \times p \times n$ tensor and \mathbf{M} a non-zero multiple of a unitary/orthogonal matrix. The (full) \star_M tensor SVD (t-SVDM) is

$$\mathcal{A} = \mathcal{U} \star_M \mathcal{S} \star_M \mathcal{V}^{\mathrm{H}} = \sum_{i=1}^{\min(m,p)} \mathcal{U}_{:,i,:} \star_M \mathcal{S}_{i,i,:} \star_M \mathcal{V}_{:,i,:}^{\mathrm{H}}$$

with \mathcal{U} , $\mathcal{V} \star_M$ -unitary, $\mathcal{E} \|\mathcal{S}_{1,1,:}\|_F^2 \geq \|\mathcal{S}_{2,2,:}\|_F^2 \geq \dots$

UT Austin CSE 392 Apr, 2024 19 / 27

Algorithm

$$\begin{split} \widehat{\mathcal{A}} &\leftarrow \mathcal{A} \times_{M} \boldsymbol{M} \\ i &= 1, \dots, n \\ [\widehat{\mathcal{U}}_{:,:,i}, \widehat{\mathcal{S}}_{:,:,i}, \widehat{\mathcal{V}}_{:,:,i}] = \operatorname{svd}(\widehat{\mathcal{A}}_{:,:,i}) \\ \mathcal{U} &= \widehat{\mathcal{U}} \times_{3} \boldsymbol{M}^{-1}, \ \mathcal{S} = \widehat{\mathcal{S}} \times_{3} \boldsymbol{M}^{-1}, \ \mathcal{V} = \widehat{\mathcal{V}} \times_{3} \boldsymbol{M}^{-1}. \end{split}$$

Perfectly (i.e. embarrassingly) parallelizable!

For face i, exist singular values $\hat{\sigma}_i^{(j)}$, $j = 1, ..., \rho_i$

UT Austin CSE 392 Apr, 2024 20 / 27

Eckart-Young

 $\mathcal{A} \in \mathbb{R}^{m \times p \times n}$. For $k < \min(m, p)$, and M as previously, define

$$\mathcal{A}_{m{k}} = \sum_{i=1}^{m{k}} \mathcal{U}_{:,i,:} \star_{M} \left(\mathcal{S}_{i,i,:} \star_{M} \mathcal{V}_{:,i,:}^{ op}
ight)$$

Then

$$\mathcal{A}_{\textit{k}} = \arg\min_{\widetilde{\mathcal{A}} \in \Omega} \lVert \mathcal{A} - \widetilde{\mathcal{A}} \rVert_F$$

where $\Omega = \{ \mathcal{X} \star_M \mathcal{T} \mid \mathcal{X} \in \mathbb{R}^{m \times k \times n}, \mathcal{T} \in \mathbb{R}^{k \times p \times n} \}$

Error: $\|A - A_k\|_F^2 = \sum_{j>k} \|S_{j,j}\|_F^2 = c \sum_{i=1}^n \sum_{j>k} \hat{\sigma}_j^{(i)}$, c depends on M.

UT Austin CSE 392 Apr., 2024 21/27

Data Comparison

In general, consider J pieces of 2D, $m \times n$ data. Storage as $mn \times J$ matrix \boldsymbol{A} or $m \times J \times n$ tensor \mathcal{A} . Which is more compressible?

UT Austin CSE 392 Apr, 2024 22 / 27

Theoretical Result

Theorem (Kilmer, Horesh, Avron, Newman (2021))

Suppose A_k is optimal k-term t-SVDM approximation to A, and let A_k is optimal k-term matrix SVD approximation to A. Then

$$\|\mathcal{A} - \mathcal{A}_k\|_F \leq \|\mathbf{A} - \mathbf{A}_k\|_F$$

where strict inequality is achievable.

- \bullet Result works for any M that is multiple of unitary (orthogonal) matrix.
- Why? Takes advantage of latent structure in data.

UT Austin CSE 392 Apr, 2024 23 / 27

t-SVDMII

Truncated t-SVDM ignores relative importance of faces.

Global approach: order $\hat{\sigma}_i^{(j)} := \widehat{\mathcal{S}}_{i,i,j}$, truncate on energy level.

Gives \mathcal{A}_{ρ} , with $\rho_i = \operatorname{rank}(\widehat{\mathcal{A}}^{(i)})$

Comparison

Implicit rank = total number of non-zero $\hat{\sigma}_i^{(j)}$.

Theorem (Kilmer, Horesh, Avron, Newman, 2021)

Let \mathcal{A}_k be the t-SVDM t-rank k approximation to \mathcal{A} , and suppose its implicit rank is r. Define $\mu = \|\mathcal{A}_k\|_F^2 / \|\mathcal{A}\|_F^2$. There exists $\gamma \leq \mu$ such that the t-SVDMII approximation, \mathcal{A}_{ρ} , obtained for this γ , has implicit rank less than or equal to the implicit rank of \mathcal{A}_k and

$$\|\mathcal{A} - \mathcal{A}_{\rho}\|_F \le \|\mathcal{A} - \mathcal{A}_k\|_F \le \|\mathbf{A} - \mathbf{A}_k\|_F.$$

UT Austin CSE 392 Apr., 2024 25 / 27

Summary

- Matrix Mimetic properties make \star_M framework desirable extensions of traditional matrix-based algorithms are possible
- Orientation dependent approach (not blackbox)
- Theoretical analysis comparing to matrix-based and other tensor based approaches is now possible, in third order.
- Algorithmic extensions to higher-order, but theory?
- Exercise Sequential t-SVD what might this look like?
- Randomized methods more directly applicable.
- M learned/tailored to data

UT Austin CSE 392 Apr, 2024 26 / 27

Matlab Demo