МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Санкт-Петербургский государственный технологический институт (технический университет)» (СПбГТИ(ТУ))

Кафедра математики

Н.М. Климовицкая, А.А. Груздков

Интегралы функций одной переменной

Методические указания

Санкт-Петербург 2013 Климовицкая, Н. М. Интегралы функций одной переменной: методические указания / Н. М. Климовицкая, А.А. Груздков.— СПб.: СПбГТИ(ТУ), 2013.-56 с.

В методических указаниях разъясняются основные приёмы и методы нахождения неопределённых и определённых интегралов.

Методические указания предназначены для студентов первого курса всех специальностей и могут быть использованы при подготовке к контрольной работе и выполнении индивидуального задания по теме «Интегралы».

Методические указания соответствуют следующим компетенциям подготовки бакалавров: ОК-1, ПК-1 специальности 240700 — «Биотехнология»; ОК-1, ПК-1, ПК-8, ПК-9, ПК-21 специальности 240100 — «Химическая технология»; ОК-1, ОК-10 специальности 230100 — «Информатика и вычислительная техника»; ОК-1, ОК-10, ПК-1, ПК-2 специальности 220400 — «Управление в технических системах»; ОК-1, ОК-9, ПК-21 специальности 151000 — «Технологические машины и оборудование»; ОК-1, ПК-1 специальности 150100 — «Материаловедение и технологии материалов»; ОК-1, ПК-1,ПК-2 специальности 270800 — «Строительство».

Рецензент: Г. В. Никитенко, доцент кафедры высшей математики Государственной полярной академии, канд. физикоматематических наук, доцент

Утверждены на заседании учебно-методической комиссии факультета информационных технологий и управления 20.05.2013.

Рекомендованы к изданию РИС
о СПбГТИ(ТУ)

1 Неопределённый интеграл

1.1 Краткие сведения

1.1.1 Определения

Определение. Функция F называется **первообразной** функции f, если

$$\forall x \quad F'(x) = f(x). \tag{1}$$

Определение. *Неопределённым интегралом* функции f называется класс всех её первообразных. Неопределённый интеграл обозначается следующим образом: $\int f(x) dx$.

Можно показать, что для нахождения неопределённого интеграла достаточно найти одну из его первообразных. Все остальные первообразные получаются добавлением произвольной постоянной, т. е.

$$\int f(x)dx = F(x) + C,$$
(2)

где F — одна из первообразных f, C — произвольная постоянная.

1.1.2 Свойства неопределённых интегралов

1.
$$\int dF(x) = F(x) + C.$$

$$2. \left(\int f(x) \, dx \right)' = f(x).$$

3.
$$\int (f_1(x) \pm f_2(x)) dx = \int f_1(x) dx \pm \int f_2(x) dx$$
.

4.
$$\int cf(x) dx = c \int f(x) dx.$$

1.1.3 Таблица неопределённых интегралов

1.
$$\int x^p dx = \frac{x^{p+1}}{p+1} + C$$
, $(p \neq -1)$.

$$2. \int \frac{\mathrm{d}x}{x} = \ln|x| + C, \quad x \neq 0.$$

3.
$$\int e^x dx = e^x + C$$
, $\int a^x dx = \frac{a^x}{\ln a} + C$, $(a > 0, a \ne 1)$.

4.
$$\int \cos x \, \mathrm{d}x = \sin x + C.$$

$$5. \int \sin x \, \mathrm{d}x = -\cos x + C.$$

$$6. \int \frac{\mathrm{d}x}{\cos^2 x} = \operatorname{tg} x + C.$$

7.
$$\int \frac{\mathrm{d}x}{\sin^2 x} = -\cot x + C.$$

8.
$$\int \frac{\mathrm{d}x}{x^2 + 1} = \arctan x + C$$
, $\int \frac{\mathrm{d}x}{x^2 + a^2} = \frac{1}{a}\arctan \frac{x}{a} + C$, $a \neq 0$.

9.
$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$$
, $\int \frac{dx}{\sqrt{a^2-x^2}} = \arcsin \frac{x}{a} + C$, $a \neq 0$.

10.
$$\int \frac{\mathrm{d}x}{x^2 - 1} = \frac{1}{2} \ln \left| \frac{x - 1}{x + 1} \right| + C$$
, $\int \frac{\mathrm{d}x}{x^2 - a^2} = \frac{1}{2a} \ln \left| \frac{x - a}{x + a} \right| + C$, $a \neq 0$.

11.
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 \pm a^2}} = \ln \left| x + \sqrt{x^2 \pm a^2} \right| + C.$$

Кроме того, полезно запомнить некоторые другие интегралы, например,

$$\int \operatorname{tg} x \, dx = -\ln|\cos x| + C,$$

$$\int \operatorname{ctg} x \, dx = \ln|\sin x| + C.$$

1.2 Основные методы интегрирования

1.2.1 Непосредственное интегрирование (метод разложения)

Метод заключается в преобразовании данного неопределённого интеграла к табличным с помощью тождественных преобразований подынтегральной функции и свойств (3) и (4).

1.
$$I = \int \frac{11x^3 - 13x\sqrt{x} + 2}{6\sqrt[3]{x}} \, dx.$$

Решение:

$$I = \frac{11}{6} \int x^{\frac{8}{3}} dx - \frac{13}{6} \int x^{\frac{7}{6}} dx + \frac{1}{3} \int x^{-\frac{1}{3}} dx = x^{\frac{11}{3}} - x^{\frac{13}{6}} + \frac{1}{2} x^{\frac{2}{3}} + C.$$

$$2. \quad I = \int \operatorname{ctg}^2 x \, dx.$$

Решение:

$$I = \int \frac{1 - \sin^2 x}{\sin^2 x} \, dx = \int \frac{dx}{\sin^2 x} - \int dx = -\cot x - x + C.$$

3.
$$I = \int \frac{x^2}{x^2 + 4} dx$$
.

Решение:

$$I = \int \frac{(x^2 + 4) - 4}{x^2 + 4} dx = \int \frac{x^2 + 4}{x^2 + 4} dx - 4 \int \frac{dx}{x^2 + 4} = x - \arctan \frac{x}{2} + C.$$

4.
$$I = \int \frac{2^x \cdot 3^x + 12^x}{6^x} dx$$
.

Решение:

$$I = \int \frac{6^x}{6^x} dx + \int \frac{12^x}{6^x} dx = \int dx + \int 2^x dx = x + \frac{2^x}{\ln 2} + C.$$

Задачи для самостоятельного решения

1.
$$\int \frac{1-3x+4x^2}{x} dx;$$

2.
$$\int \frac{13\sqrt[5]{x^4} - 7x\sqrt[4]{x} + 4}{\sqrt{x}} dx;$$

3.
$$\int (1-x) (2+\sqrt{x}) dx$$
;

4.
$$\int \frac{dx}{\sqrt{7-3x^2}};$$

5.
$$\int \frac{\sqrt{x^2 - 3} - \sqrt{x^2 + 3}}{\sqrt{x^4 - 9}} \, dx;$$

$$6. \int \frac{2^x \cdot 5^x}{e^x} \, dx;$$

7.
$$\int \frac{1 - \cos 2x}{\sin x} \, dx;$$

8.
$$\int tg^2 x dx$$
;

9.
$$\int \frac{\sqrt{4+x^2}-3\sqrt{4-x^2}}{\sqrt{16-x^4}} dx;$$

10.
$$\int \frac{2+x^2}{1+x^2} dx$$
.

Ответы:

1.
$$\ln|x| - 3x + 2x^2 + C$$
;

2.
$$10x^{\frac{13}{10}} - 4x^{\frac{7}{4}} + 8x^{\frac{1}{2}} + C$$
:

3.
$$2x - x^2 + \frac{2}{3}\sqrt{x^3} - \frac{2}{5}\sqrt{x^5} + C;$$

4.
$$\frac{1}{\sqrt{3}}\arcsin\frac{\sqrt{3}}{\sqrt{7}}x+C;$$

5.
$$\ln \left| \frac{x + \sqrt{x^2 + 3}}{x + \sqrt{x^2 - 3}} \right| + C;$$

6.
$$\left(\frac{10}{e}\right)^x \frac{1}{\ln 10 - 1} + C;$$

7.
$$-2\cos x + C$$
:

8.
$$tg x - x + C$$
;

9.
$$\arcsin \frac{x}{2} - 3 \ln \left| x + \sqrt{x^2 + 4} \right| + C;$$

10.
$$x + \arctan x + C$$
.

Задачи для самоконтроля

$$1. \int (x+1) dx;$$

2.
$$\int (3x^2 - x + 1) dx;$$

3.
$$\int \left(\frac{x^4}{4} - \frac{x^{11}}{12} + \frac{x}{3}\right) dx;$$

4.
$$\int (\sqrt{x} + 1) dx;$$

5.
$$\int (\sqrt[3]{x} - 3\sqrt[4]{x}) dx$$
;

6.
$$\int \left(\frac{1}{\sqrt{x}} - x^3\right) dx;$$

7.
$$\int \left(\frac{3}{\sqrt{x}} + \frac{2}{\sqrt[3]{x}} - 1\right) dx;$$

8.
$$\int \left(x^{\frac{3}{4}} - 4\frac{1}{\sqrt[3]{x}}\right) dx;$$

9.
$$\int \left(\sqrt[3]{x} - 7 \cdot \frac{1}{x^4} + 3\right) dx;$$

10.
$$\int \left(\frac{1}{\sqrt{\frac{1}{x^7}}} - 13 \frac{x}{\sqrt[3]{x}} + 2x \right) dx;$$

11.
$$\int \frac{x^3 - 2x}{3x} \, dx$$
;

12.
$$\int \frac{x^3 - 2x}{\sqrt{4x}} dx$$
;

13.
$$\int \frac{\sqrt{x} - 7x}{x} dx;$$

14.
$$\int \frac{x^{\frac{3}{2}} + x^{\frac{2}{3}}}{x^3} dx;$$

15.
$$\int \frac{x^2 + 1}{x} dx;$$
24.
$$\int \frac{5 \cos^2 x - 4}{\cos^2 x} dx;$$
16.
$$\int \frac{x^3 + 3x + 5}{x} dx;$$
25.
$$\int \frac{3 - 4 \cos^2 x}{\sin^2 x} dx;$$
17.
$$\int \frac{x^3 - 5x^{\frac{3}{2}}}{3x^4} dx;$$
26.
$$\int \left(\frac{1}{\sqrt{9 - x^2}} + \frac{1}{9 + x^2}\right) dx;$$
18.
$$\int \frac{t^2 + 4t + 2}{3t} dt;$$
27.
$$\int \left(3\sqrt{x} - \frac{1}{\sqrt{1 + x^2}}\right) dx;$$
28.
$$\int \left(\frac{5}{\sqrt{x^2 - 1}} + \frac{3}{x} - 2e^x\right) dx;$$
20.
$$\int \left(\frac{1}{\sqrt{x}} - 3e^x\right) dx;$$
29.
$$\int \frac{3 - 4\sqrt{1 - x^2}}{2\sqrt{1 - x^2}} dx;$$
21.
$$\int (5x^3 - 4^x) dx;$$
22.
$$\int (7^x - \sqrt[3]{x}) dx;$$
31.
$$\int \frac{3 + 2x^2}{1 + x^2} dx;$$
23.
$$\int (4 \sin x - 3 \cos x) dx;$$
32.
$$\int \left(\frac{4 - x^2}{x^2 - 1} + 5 \cos x\right) dx.$$

1.2.2 Интегрирование заменой переменной

Простейшим случаем замены переменной является применение равенства

$$\int f(\varphi(x)) \varphi'(x) dx = \int f(t) dt, \tag{3}$$

где $t=\varphi(x),\ \varphi'(x)\ dx=d\varphi(x)=dt,$ причём интеграл в правой части равенства (3) является табличным.

Иногда формулу (3) удобнее применять, не прибегая к явной замене переменной:

$$\int f(\varphi(x))\varphi'(x) dx = \int f(\varphi(x)) d\varphi(x) = F(\varphi(x)) + C.$$
 (4)

В этом случае метод интегрирования называется подведением под знак $\partial u \phi \phi$ еренциала. В частном случае линейной функции, т. е. когда $\varphi(x) = ax + b$, имеем

$$\int f(ax+b) dx = \frac{1}{a}F(ax+b) + C.$$
 (5)

Вычислить интегралы.

1.
$$I = \int \sqrt[5]{1 - 2x} \, dx$$
.

Решение: по формуле (5) получаем (ax + b = -2x + 1, a = -2, b = 1):

$$I = \int (1 - 2x)^{\frac{1}{5}} dx = -\frac{1}{2} \int (1 - 2x)^{\frac{1}{5}} d(1 - 2x) = -\frac{1}{2} \frac{(1 - 2x)^{\frac{6}{5}}}{\frac{6}{5}} + C =$$
$$= -\frac{5}{12} \sqrt[5]{(1 - 2x)^6} + C.$$

При вычислении этого интеграла можно произвести явную замену переменной:

$$1 - 2x = t$$
, $x = \frac{-t+1}{2}$, $dx = -\frac{1}{2}dt$.

$$I = \int t^{\frac{1}{5}} \cdot \frac{-1}{2} dt = -\frac{1}{2} \frac{t^{\frac{6}{5}}}{\frac{6}{5}} + C = -\frac{5}{12} t^{\frac{6}{5}} + C.$$

Возвращаясь к исходной переменной, получаем

$$I = -\frac{5}{12}\sqrt[5]{(1-2x)^6} + C.$$

Как показывает этот пример, вводить новую переменную не всегда выгодно.

2.
$$I = \int \frac{x}{x^2 + a^2} dx$$
.

Решение:

а) Так как $x dx = \frac{1}{2}(2x) dx = \frac{1}{2}(x^2)' dx = \frac{1}{2}d(x^2 + a^2)$, то по формуле (4) получаем

$$I = \frac{1}{2} \int \frac{d(x^2 + a^2)}{x^2 + a^2} = \frac{1}{2} \ln(x^2 + a^2) + C.$$

б) Воспользуемся заменой переменной по формуле (3):

$$x^{2} + a^{2} = t$$
, $2x dx = dt$, $xdx = \frac{1}{2}dt$

$$I = \frac{1}{2} \int \frac{dt}{t} = \frac{1}{2} \ln|t| + C = \frac{1}{2} \ln(x^2 + a^2) + C.$$

При возвращении к исходной переменной x знак абсолютной величины опущен, т. к. $x^2 + a^2 > 0$.

3.
$$I = \int \frac{dx}{\cos^2 x \sqrt[3]{3 + 2 \lg x}}$$
.

Решение:

а) Поскольку $\frac{1}{\cos^2 x} dx = (\operatorname{tg} x)' dx = d \operatorname{tg} x$, по формуле (4) получаем

$$I = \int \frac{1}{\sqrt[3]{3 + 2 \lg x}} \cdot \frac{1}{\cos^2 x} \, dx = \int (3 + 2 \lg x)^{-\frac{1}{3}} \, d \lg x =$$

$$= \frac{1}{2} \int (3 + 2 \operatorname{tg} x)^{-\frac{1}{3}} d(3 + 2 \operatorname{tg} x) = \frac{1}{2} \frac{(3 + 2 \operatorname{tg} x)^{\frac{2}{3}}}{\frac{2}{3}} + C = \frac{3}{4} \sqrt[3]{(3 + 2 \operatorname{tg} x)^{2}} + C.$$

б) Воспользуемся формулой (3):

$$3 + 2 \operatorname{tg} x = t, \quad \frac{2dx}{\cos^2 x} = dt, \quad \frac{dx}{\cos^2 x} = \frac{1}{2} dt,$$

$$I = \frac{1}{2} \int t^{-\frac{1}{3}} dt = \frac{1}{2} \cdot \frac{3}{2} \cdot t^{\frac{3}{2}} + C = \frac{3}{4} \sqrt[3]{(3 + 2 \operatorname{tg} x)^2} + C.$$

4.
$$I = \int \frac{dx}{(4+x)\sqrt{x}}$$
.

Решение:

а) Поскольку

$$\frac{dx}{\sqrt{x}} = 2 \cdot \frac{1}{2\sqrt{x}} \cdot dx = 2(\sqrt{x})' dx = 2d(\sqrt{x}) \text{ if } 4 + x = 4 + (\sqrt{x})^2,$$

по формуле (4) получаем:

$$I = \int \frac{2d(\sqrt{x})}{4 + (\sqrt{x})^2} = 2 \int \frac{d(\sqrt{x})}{2^2 + (\sqrt{x})^2} = \frac{2}{2} \arctan \frac{\sqrt{x}}{2} + C = \arctan \frac{\sqrt{x}}{2} + C.$$

б) При решении этого примера целесообразно сразу воспользоваться заменой переменной:

$$\sqrt{x} = t$$
, $\frac{1}{2\sqrt{x}}dx = dt$, $\frac{dx}{\sqrt{x}} = 2dt$ или $x = t^2$, $dx = 2tdt$.

Получаем

$$I = \int \frac{2dt}{t^2 + 4} = \operatorname{arctg} \frac{t}{2} + C = \operatorname{arctg} \frac{\sqrt{x}}{2} + C.$$

$$5. I = \int e^{\cos x} \sin x \, dx.$$

Решение:

а) Т. к. $\sin x dx = -(\cos x)' dx = -d\cos x$, по формуле (4) получаем:

$$I = \int e^{\cos x} \left(-d\cos x \right) = -\int e^{\cos x} d\cos x = -e^{\cos x} + C.$$

б) Воспользуемся заменой переменной

$$\cos x = t$$
, $d\cos t = dt$, $-\sin x dx = dt$, $\sin x dx = -dt$,

$$I = \int e^t(-dt) = -\int e^t dt = -e^t + C = -e^{\cos x} + C.$$

Задачи для самостоятельного решения

1.
$$\int \cos\left(5x + \frac{\pi}{4}\right) dx;$$

2.
$$\int e^{-2x+3} dx;$$

$$3. \int xe^{x^2}dx;$$

$$4. \int \frac{\sqrt[4]{\ln^3 x}}{x} dx;$$

$$5. \int \frac{x}{\sqrt{4-x^2}} \, dx;$$

$$6. \int \frac{\sqrt[3]{\operatorname{arctg} x}}{1+x^2} dx;$$

$$7. \int \frac{dx}{3-5x};$$

8.
$$\int \frac{5^{\sqrt{x}}}{\sqrt{x}} dx;$$

9.
$$\int \frac{e^x}{\sqrt{e^{2x}+5}} dx;$$

$$10. \int x^2 \sin x^3 dx;$$

11.
$$\int \frac{\cos \ln x}{x} dx;$$

12.
$$\int \sqrt{1-\sin x}\cos x\,dx;$$

13.
$$\int \frac{\arcsin x - 3}{\sqrt{1 - x^2}} dx;$$

14.
$$\int \frac{xdx}{x^4 + 9}$$
;

15.
$$\int \cos \frac{1}{x} \frac{dx}{x^2};$$

16.
$$\int e^{3x^2 + \ln x} dx;$$

17.
$$\int \frac{dx}{x\sqrt{4-\ln^2 x}};$$

18.
$$\int \frac{5^{\ln(x+1)} + 2}{x+1} dx.$$

Ответы:

1.
$$\frac{1}{5}\sin\left(5x + \frac{\pi}{4}\right) + C;$$

2.
$$-\frac{1}{2}e^{-2x+3}+C$$
;

3.
$$\frac{1}{2}e^{x^2} + C;$$

4.
$$\frac{4}{7}\sqrt[4]{\ln^7 x} + C;$$

5.
$$-\sqrt{4-x^2}+C$$
;

6.
$$\frac{3}{4}\sqrt[3]{\arctan x} + C;$$

7.
$$-\frac{1}{5}\ln|5x-3|+C$$
;

8.
$$\frac{2}{\ln 5} 5^{\sqrt{x}} + C;$$

9.
$$\ln\left(e^x + \sqrt{e^{2x} + 5}\right) + C;$$

10.
$$-\frac{1}{3}\cos x^3 + C$$
;

11.
$$\sin(\ln x) + C$$
;

12.
$$-\frac{2}{3}\sqrt{(1-\sin x)^3}+C$$
;

13.
$$\frac{1}{2}\arcsin^2 x - 3\arcsin x + C;$$

14.
$$\frac{1}{6} \arctan \frac{x^2}{3} + C;$$

15.
$$-\sin\frac{1}{x} + C;$$

16.
$$\frac{1}{6}e^{3x^2} + C;$$

17.
$$\arcsin\left(\frac{\ln x}{2}\right) + C;$$

18.
$$\frac{5^{\ln(x+1)}}{\ln 5} + 2\ln(x+1) + C$$
.

Задачи для самоконтроля

1.
$$\int (3x-2)^7 dx$$
;

$$2. \int \frac{dx}{(5x-2)^6};$$

$$3. \int \sqrt{3x-7} \, dx;$$

4.
$$\int \sqrt[3]{6X-5} \, dx;$$

5.
$$\int \frac{1}{\sqrt[4]{2-3x}} dx;$$

6.
$$\int \frac{1}{\sqrt[3]{(2x-5)^2}} dx;$$

$$7. \int \left(e^{4x} + \frac{2}{x-4}\right) dx;$$

8.
$$\int \left(\frac{5}{x+4} - e^{-5x+1}\right) dx;$$

9.
$$\int \cos 5x \, dx;$$
20. $\int \frac{e^{\arctan x} + x}{x^2 + 1} \, dx;$
10. $\int \sin\left(\frac{3x}{2}\right) dx;$
21. $\int \frac{\cos \ln x}{x} dx;$
22. $\int x^3 \cos\left(2x^4 - 1\right) dx;$
23. $\int \frac{5^2 \arcsin x - 4x}{\sqrt{1 - x^2}} \, dx;$
24. $\int \frac{dx}{\sqrt{x(1 + x)}};$
25. $\int \frac{\sqrt{\ln x + 1}}{x} dx;$
26. $\int \frac{e^x}{e^x + 1} \, dx;$
27. $\int e^x \sin\left(e^x - 3\right) dx;$
28. $\int \frac{dx}{\sqrt{x^2 + 2x + 2}};$
29. $\int \frac{\sqrt{x}}{x + 9} dx;$
20. $\int \frac{e^{\arctan x}}{x} dx;$
21. $\int \frac{\cos \ln x}{x} dx;$
22. $\int x^3 \cos\left(2x^4 - 1\right) dx;$
23. $\int \frac{5^2 \arcsin x - 4x}{\sqrt{1 - x^2}} \, dx;$
24. $\int \frac{dx}{\sqrt{x(1 + x)}};$
25. $\int \frac{\sqrt{\ln x + 1}}{x} \, dx;$
26. $\int \frac{e^x}{e^x + 1} \, dx;$
27. $\int e^x \sin\left(e^x - 3\right) dx;$
28. $\int \frac{dx}{x \ln^5 x};$
29. $\int \frac{\sqrt{x}}{x + 9} \, dx;$
29. $\int \frac{\sqrt{x}}{x + 9} \, dx;$
30. $\int \frac{dx}{x \sqrt[5]{\ln x - 1}}.$

1.2.3 Интегрирование по частям

Метод интегрирования по частям заключается в применении формулы:

$$\int u(x)dv(x) = u(x)v(x) - \int v(x)du(x) \tag{6}$$

ИЛИ

$$\int u(x)v'(x)dx = u(x)v(x) - \int v(x)u'(x)dx \tag{7}$$

в случаях, когда интеграл в правой части проще для вычисления, чем исходный.

Алгоритм применения формул (6,7) состоит в последовательном выполнении следующих шагов.

Шаг 1. Из исходного интеграла выбираем u и dv, после чего вычисляем v и du:

$$du(x) = u'(x)dx, \quad v = \int dv = \int v'(x)dx = I_1(x),$$

при этом интеграл $I_1(x)$ должен вычисляться.

Шаг 2. Осуществляем преобразование по формуле (6) или (7):

$$\int u dv = u(x)v(x) - \underbrace{\int I_1(x)du(x)}_{I_2(x)},$$

при этом интеграл $I_2(x)$ должен вычисляться или, по крайней мере проще исходного.

Замечание. На промежуточном этапе, при вычислении $I_1(x)$, значение произвольной постоянной можно взять любым, поэтому постоянная C обычно опускается.

Таким образом, метод интегрирования по частям состоит в последовательном («по частям») интегрировании двух (или более) интегралов, вычисление которых проще исходного.

В частности, интегрирование по частям применяется в случаях (P(x)) обозначает некоторый многочлен):

a)
$$\int P(x) \cdot \left\{ \begin{array}{c} a^{kx} \\ e^{kx} \end{array} \right\} dx, \qquad P(x) = u(x)$$
 (8)

6)
$$\int P(x) \cdot \left\{ \begin{array}{c} \sin kx \\ \cos kx \end{array} \right\} dx, \qquad P(x) = u(x) \tag{9}$$

B)
$$\int P(x) \cdot \left\{ \begin{array}{l} \log_a x \\ \ln x \end{array} \right\} dx, \qquad \left\{ \begin{array}{l} \log_a x = u(x) \\ P(x) dx = dv \end{array} \right\}$$
 (10)

$$\Gamma \int P(x) \cdot \begin{Bmatrix} \arcsin x \\ \arccos x \\ \arctan x \\ \arctan x \end{Bmatrix} dx, \qquad P(x)dx = dv. \tag{11}$$

д)
$$\int e^{ax} \cdot \left\{ \begin{array}{c} \sin bx \\ \cos bx \end{array} \right\} dx, \tag{12}$$

в последнем случае повторное интегрирование по частям (при том же выборе u и dv) позволяет свести вычисления к решению алгебраического уравнения относительного исходного интеграла (см. пример на странице 15).

Вычислить интегралы:

1.
$$I = \int (x^2 - x + 2) e^{\frac{x}{3}} dx$$
.

Решение: Имеем случай (8). Применяя интегрирование по частям получаем:

$$x^{2} - x + 2 = u \longrightarrow du = (2x - 1)dx$$

$$e^{\frac{x}{3}}dx = dv \longrightarrow v = \int e^{\frac{x}{3}}dx = 3e^{\frac{x}{3}} = I_{1}(x)$$

$$I = 3(x^{2} - x + 2)e^{\frac{x}{3}} - 3\underbrace{\int (2x - 1)e^{\frac{x}{3}}dx}_{I_{2}(x)}.$$

В результате применения формулы интегрирования по частям (6) степень многочлена под знаком интеграла понизилась на единицу, поэтому получившийся интеграл $I_2(x)$ проще исходного интеграла І. Применим к интегралу I_2 формулу интегрирования по частям:

$$2x - 1 = u \longrightarrow du = 2dx$$

$$e^{\frac{x}{3}}dx = dv \longrightarrow v = 3e^{\frac{x}{3}}$$

$$I_2(x) = 3(2x - 1)e^{\frac{x}{3}} - 2 \cdot 3 \int e^{\frac{x}{3}}dx = 3(2x - 1)e^{\frac{x}{3}} - 18e^{\frac{x}{3}} + C.$$

Окончательно:

$$I = 3\left(x^2 - x + 2\right)e^{\frac{x}{3}} - 3\left(3(2x - 1)e^{\frac{x}{3}} - 18e^{\frac{x}{3}}\right) + C =$$

$$= 3\left(x^2 - x + 2\right)e^{\frac{x}{3}} - 9(2x - 1)e^{\frac{x}{3}} + 54e^{\frac{x}{3}} + C =$$

$$= e^{\frac{x}{3}}\left(3x^2 - 21x + 69\right) + C.$$
2. $I = \int \arctan 4x \, dx.$

Решение: Данный интеграл соответствует случаю (11).

$$\arctan 4x = u \longrightarrow du = \frac{4}{1 + 16x^2} dx$$

$$dx = dv \longrightarrow v = x$$

$$I = x \cdot \arctan 4x - 4 \int \frac{x dx}{1 + 16x^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int \frac{d(4x)^2}{1 + (4x)^2} = x \cdot \arctan 4x - \frac{2}{16} \int$$

$$= x \arctan 4x - \frac{1}{8} \arctan 4x + C.$$

Для вычисления последнего интеграла мы применили подведение под знак дифференциала:

$$4xdx = 2(2x)dx = 2 \cdot (x^2)' dx = 2dx^2 = \frac{2}{16}d(16x^2).$$

$$3. I = \int \frac{\ln x}{\sqrt[5]{x}} dx.$$

Решение: Данный интеграл относится к случаю (10).

$$I = \left\| \frac{\ln x = u}{dx} \longrightarrow du = \frac{1}{x} dx \right\|_{\frac{1}{\sqrt[5]{x}}} = dv \longrightarrow v = \int x^{-\frac{1}{5}} dx = \frac{5}{4} x^{\frac{4}{5}} \left\| = \frac{5}{4} x^{\frac{4}{5}} \ln x - \frac{5}{4} \int \frac{x^{\frac{4}{5}}}{x} dx = \frac{5}{4} x^{\frac{4}{5}} \ln x - \frac{5}{4} \int x^{-\frac{1}{5}} dx = \frac{5}{4} x^{\frac{4}{5}} \ln x - \frac{25}{16} x^{\frac{4}{5}} + C.$$

4.
$$I = \int (x+1)\sin 2x \, dx$$
.

Решение: Данный интеграл относится к случаю (9).

$$x + 1 = u \longrightarrow du = dx
\sin 2x \, dx = dv \longrightarrow v = \int \sin 2x \, dx = \frac{1}{2} \int \sin 2x \, d(2x) = -\frac{1}{2} \cos 2x.$$

$$I = -\frac{1}{2}(x+1)\cos 2x + \frac{1}{2} \int \cos 2x \, dx = -\frac{1}{2}(x+1)\cos 2x + \frac{1}{4}\sin 2x + C.$$

5.
$$I = \int e^{2x} \cos 4x \, dx$$
.

Решение: Данный интеграл относится к случаю (12).

$$e^{2x} = u \qquad \longrightarrow du = 2e^{2x} dx$$

$$\cos 4x \, dx = dv \longrightarrow v = \int \cos 4x \, dx = \frac{1}{4} \sin 4x$$

$$I = \frac{1}{4} e^{2x} \sin 4x - \frac{1}{2} \underbrace{\int e^{2x} \sin 4x \, dx}_{I_1(x)}.$$

Интеграл $I_1(x)$ по структуре аналогичен исходному интегралу. Применяя ещё раз интегрирование по частям, на этот раз к интегралу $I_1(x)$, получаем

$$I_{1}(x) = \int e^{2x} \sin 4x dx = \left\| \begin{array}{l} e^{2x} = u & \longrightarrow du = 2e^{2x} dx \\ \sin 4x dx = dv & \longrightarrow v = \int \sin 4x dx = -\frac{1}{4} \cos 4x \end{array} \right\| =$$

$$= -\frac{1}{4} e^{2x} \cos 4x + \frac{1}{2} \int e^{2x} \cos 4x dx.$$

Полученный интеграл совпадает с исходным, поэтому можно записать

$$I_1(x) = -\frac{1}{4}e^{2x}\cos 4x + \frac{1}{2}I.$$

Теперь для исходного интеграла можно составить алгебраическое уравнение:

$$I = \frac{1}{4}e^{2x}\sin 4x - \frac{1}{2}I_1(x) = \frac{1}{4}e^{2x}\sin 4x - \frac{1}{2}\left(-\frac{1}{4}e^{2x}\cos 4x + \frac{1}{2}I\right) \Longrightarrow$$

$$I = \frac{1}{4}e^{2x}\sin 4x + \frac{1}{8}e^{2x}\cos 4x - \frac{1}{4}I \Longrightarrow$$

$$\frac{5}{4}I = \frac{1}{4}e^{2x}\sin 4x + \frac{1}{8}e^{2x}\cos 4x$$

$$I = \frac{1}{5}e^{2x}\sin 4x + \frac{1}{10}e^{2x}\cos 4x + C.$$

Задачи для самостоятельного решения

Вычислить интегралы

$$1. \int \left(\frac{x}{3} - 1\right) 4^x dx$$

$$2. \int x \ln^2 x \, dx$$

3.
$$\int \arcsin 2x \, dx$$

$$4. \int x^2 \sin 2x \, dx$$

$$5. \int e^{2x} \sin \frac{x}{3} \, dx$$

6.
$$\int \arctan \sqrt{x} \, dx$$
 10.
$$\int x \operatorname{tg}^2 x \, dx$$

$$7. \int x^2 e^{-x} \, dx$$

8.
$$\int \frac{\arctan e^x}{e^x} dx$$

5.
$$\int e^{2x} \sin \frac{x}{3} dx$$
 9. $\int (x^2 + x) \ln(x+1) dx$

$$10. \int x \operatorname{tg}^2 x \, dx$$

7.
$$\int x^2 e^{-x} dx$$
 11. $\int \ln(1+x^2) dx$

12.
$$\int x^3 e^{-x^2} dx$$
.

Ответы:

1.
$$\left(\frac{x}{3}-1\right)\frac{4^x}{\ln 4}-\frac{4^x}{3\ln^2 4}+C;$$

2.
$$\frac{x^2}{2} \left(\ln^2 x - \ln x + \frac{1}{2} \right) + C;$$

3.
$$x \arcsin 2x + \frac{1}{2}\sqrt{1 - 4x^2} + C$$
;

4.
$$-\frac{1}{2}x^2\cos 2x + \frac{x}{2}\sin 2x + \frac{1}{4}\cos 2x + C;$$

5.
$$\frac{3e^{2x}}{37}\left(6\sin\frac{x}{3} - \cos\frac{x}{3}\right) + C;$$

6.
$$-\sqrt{x} + (1+x) \arctan \sqrt{x} + C;$$

7.
$$-e^x(x^2+2x+2)+C$$
;

8.
$$x - \frac{1}{2} \ln (1 + e^{2x}) - e^{-x} \operatorname{arctg} e^x + C;$$

9.
$$\frac{1}{6} (2x^3 + 3x^2 - 1) \ln|x + 1| - \frac{1}{9}x^3 - \frac{1}{12}x^2 + \frac{1}{6}x + C;$$

10.
$$x \operatorname{tg} x - \frac{x^2}{2} + \ln|\cos x| + C;$$

11.
$$x \ln (1+x^2) - 2x + 2 \arctan x + C$$
;

12.
$$-\frac{x^2+1}{2}e^{-x^2}+C$$
.

Задачи для самоконтроля

1.
$$\int xe^{2x}dx;$$

2.
$$\int (x^2 - x + 1) e^{-x} dx$$
;

3.
$$\int e^x \cos x \, dx;$$

4.
$$\int x \cos x \, dx;$$

$$5. \int \frac{x}{\cos^2 x} \, dx;$$

6.
$$\int \cos(\ln x) \ dx;$$

7.
$$\int e^{\cos x} \sin 2x \, dx;$$

8.
$$\int (2x-1)\sin x \, dx$$
;

9.
$$\int (x^2 - 2x + 3) \cos x \, dx$$
;

10.
$$\int x \ln x \, dx;$$

11.
$$\int x^2 \ln x \, dx;$$

12.
$$\int x \ln^3 x \, dx;$$

13.
$$\int x5^x dx;$$

14.
$$\int (x+1)2^{-x} dx;$$
 17. $\int \frac{\ln x}{x^2} dx;$ 15. $\int \ln^2 x dx;$ 16. $\int x \arctan x dx;$ 18. $\int \arccos 2x dx;$

1.3 Классы интегрируемых функций

1.3.1 Рациональные дроби

Определение. *Рациональной дробью* называется отношение двух многочленов:

$$R(x) = \frac{P_n(x)}{Q_m(x)} = \frac{a_n x^n + a_n x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_m x^{m-1} + \dots + b_1 x + b_0}.$$
 (13)

Определение. Рациональная дробь называется *правильной*, если степень числителя строго меньше степени знаменателя, и *неправильной* в противном случае.

Любая неправильная дробь представима в виде суммы многочлена и правильной дроби:

$$R(x) = \frac{P_n(x)}{Q_m(x)} = F_k(x) + \frac{R_l(x)}{Q_m(x)}, \qquad (k < m),$$

где $n\geqslant m,\ k=n-m,\ 0\leqslant l< m.\ F_k(x)$ называется целой частью рациональной дроби R(x).

Простейшими правильными дробями называются дроби следующих четырёх типов:

1 тип:
$$\frac{A}{x-a}$$
;
2 тип: $\frac{A}{(x-a)^k}$;
3 тип: $\frac{Mx+N}{x^2+px+q}$;
4 тип: $\frac{Mx+N}{(x^2+px+q)^k}$,

где $k \in \mathbb{N}, k > 1, D = p^2 - 4q < 0.$

Утверждение. Любая правильная рациональная дробь представима в виде суммы простейших.

Пусть R(x) — правильная рациональная дробь, знаменатель которой разложен на неприводимые сомножители:

$$Q_n(x) = (x - a_1) \cdot \ldots \cdot (x - a_l) (x - b_1)^{k_1} \cdot \ldots \cdot (x - b_s)^{k_s} (x^2 + p_1 x + q_1) \cdot \ldots \cdot (x^2 + p_u x + q_u).$$

Тогда R(x) можно представить в виде

$$R(x) = \frac{A_1}{x - a_1} + \dots + \frac{A_l}{x - a_l} + \dots + \frac{B_{11}}{x - b_1} + \frac{B_{12}}{(x - b_1)^2} + \dots + \frac{B_{1k_1}}{(x - b_1)^{k_1}} + \dots + \frac{B_{s1}}{x - b_s} + \frac{B_{s2}}{(x - b_s)^2} + \dots + \frac{B_{sk_s}}{(x - b_s)^{k_s}} + \dots + \frac{M_1 x + N_1}{x^2 + p_1 x + q_1} + \frac{M_u x + N_u}{x^2 + p_u x + q_u}.$$

Коэффициенты, стоящие в числителях простейших дробей, могут быть найдены методом неопределённых коэффициентов.

Интегрирование простейших рациональных дробей

Интегрирование простейших дробей первого типа

$$\int \frac{A}{x-a} \, dx = A \ln|x-a| + C.$$

Интегрирование простейших дробей второго типа

$$\int \frac{A}{(x-a)^k} \, dx = A \frac{(x-a)^{-k+1}}{-k+1} + C.$$

Интегрирование простейших дробей третьего типа

$$I = \int \frac{Mx + N}{x^2 + px + q} \, dx.$$

Замена:

$$t = \frac{1}{2} (x^2 + Px + q)', \quad t = x + \frac{p}{2}, \quad dx = dt.$$

Выделение полного квадрата:

$$x^{2} + px + q = \left(x + \frac{p}{2}\right)^{2} + q - \frac{p^{2}}{4}.$$

Учитывая, что

$$q - \frac{p^2}{4} = -\frac{p^2 - 4q}{4} = -\frac{D}{4} > 0,$$

обозначим

$$q - \frac{p^2}{4} = \omega^2.$$

Получим: $x^2 + px + q = t^2 + \omega^2$.

$$I = \int \frac{M(t - \frac{p}{2}) + N}{t^2 + \omega^2} dt = M \int \frac{t dt}{t^2 + \omega^2} + \left(N - \frac{p}{2}\right) \int \frac{dt}{t^2 + \omega^2} =$$

$$= \frac{M}{2} \ln(t^2 + \omega^2) + \frac{N - \frac{p}{2}}{\omega} \arctan \frac{t}{\omega} + C =$$

$$\frac{M}{2} \ln(x^2 + px + q) + \frac{N - \frac{p}{2}}{\sqrt{q - \frac{p^2}{4}}} \arctan \frac{x + \frac{p}{2}}{\sqrt{q - \frac{p^2}{4}}} + C.$$

Интегрирование простейших дробей четвёртого типа

$$\int \frac{Mx+N}{(x^2+px+q)^m} dx = \frac{M}{2(1-m)} \cdot \frac{1}{(x^2+px+q)^{m-1}} + \frac{2N-Mp}{2} \cdot I_m,$$

где $I_m = \int \frac{dx}{(x^2 + px + q)^m}$. Интеграл I_m может быть найден по рекуррентной формуле

$$I_{m+1} = \frac{1}{2m\omega^2} \frac{x + \frac{p}{2}}{(x^2 + px + q)^m} + \frac{2m - 1}{2m\omega^2} I_m,$$

$$I_1 = \int \frac{dx}{x^2 + px + q} = \int \frac{dx}{(x + \frac{p}{2})^2 + \omega^2} = \frac{1}{\omega} \arctan \frac{x + \frac{p}{2}}{\omega} + C.$$

1.
$$I = \int \frac{x^3 + x^2 + 5}{x^2 + 3} dx$$
.

Решение. Под знаком интеграла стоит неправильная рациональная дробь. Для выделения целой части и правильной дроби поделим с остатком числитель на знаменатель:

$$\begin{array}{c|ccccc}
x^3 + x^2 & +5 & x^2 + 3 \\
x^3 & +3x & x + 1 \\
\hline
x^2 - 3x + 5 & x^2 & +3 \\
\hline
-3x + 2 & & & \\
\end{array}$$

Таким образом, подынтегральная функция может быть представлена в виде

$$\frac{x^3 + x^2 + 5}{x^2 + 3} = x + 1 + \frac{-3x + 2}{x^2 + 3}.$$

Вычисляем интеграл, разбивая его на слагаемые:

$$I = \int (x+1) dx - \int \frac{3x-2}{x^2+3} dx = \frac{(x+1)^2}{2} - \frac{3}{2} \int \frac{d(x^2+3)}{x^2+3} + 2 \int \frac{dx}{x^2+3} = \frac{(x+1)^2}{2} - \frac{3}{2} \ln(x^2+3) + \frac{2}{\sqrt{3}} \arctan \frac{x}{\sqrt{3}} + C.$$

2.
$$I = \int \frac{xdx}{x^2 - 3x + 2}$$
.

Под знаком интеграла — правильная рациональная дробь, знаменатель которой раскладывается на простые множители. Находим корни знаменателя

$$x^2 - 3x + 2 = 0 \Longrightarrow x_1 = 1, \quad x_2 = 2.$$

Получаем:

$$x^2 - 3x + 2 = (x - 1)(x - 2).$$

Таким образом подынтегральная функция раскладывается в сумму простейших дробей первого типа:

$$\frac{x}{(x-1)(x-2)} = \frac{A}{x-1} + \frac{B}{x-2}.$$

Найдём неопределённые коэффициенты, приводя дроби в правой части равенства к общему знаменателю и приравнивая числители получающихся дробей:

$$A(x-2) + B(x-1) = x.$$

Полученное тождество должно быть справедливо для всех значений x. Подставляя значения x=1 и x=2, находим неопределённые коэффициенты A и B:

$$x = 1 \Rightarrow -A = 1 \Rightarrow A = -1;$$
 $x = 2 \Rightarrow B = 2.$

Окончательно:

$$I = \int \frac{-dx}{x-1} + \int \frac{2dx}{x+2} = 2\ln|x+2| - \ln|x-1| + C.$$

3.
$$I = \int \frac{2x^2 - 3x + 3}{x^3 - 2x^2 + x} dx$$
.

Решение. Знаменатель имеет простой корень x=0 и корень x=1, имеющий кратность 2:

$$x^{3} - 2x^{2} + x = x(x^{2} - 2x + 1) = x(x - 1)^{2}$$
.

Разложение дроби на простейшие, следовательно, имеет вид

$$\frac{2x^2 - 3x + 3}{x^3 - 2x^2 + x} = \frac{A}{x} + \frac{C}{x - 1} + \frac{B}{(x - 1)^2}.$$

Приводя правую часть к общему знаменателю, получаем

$$A(x-1)^{2} + Cx(x-1) + Bx = 2x^{2} - 3x + 3.$$

Применим метод частных значений (см. предыдуий пример) и принцип тождества двух многочленов (равенство коэффициентов при одинаковых степенях):

$$x = 0$$
: $A + 0 + 0 = 3$;

$$x = 1$$
: $0 + 0 + B = 2 - 3 + 3 = 2$.

Остаётся найти C. Приравнивая коэффициенты при x^2 , получаем

$$A + C = 2 \Longrightarrow 3 + C = 2 \Longrightarrow C = -1.$$

Окончательно:

$$I = \int \frac{3}{x} dx - \int \frac{dx}{x - 1} + \int \frac{2}{(x - 1)^2} dx = 3 \ln|x| - \ln|x - 1| - \frac{2}{x - 1} + C.$$

4.
$$I = \int \frac{2x-3}{x^2+4x+10} dx$$
.

Решение. Дискриминант квадратного трёхчлена в знаменателе отрицателен (D=16-40<0), поэтому знаменатель не имеет вещественных корней. Под знаком интеграла простейшая дробь третьего типа. Выделим в знаменателе полный квадрат:

$$x^{2} + 4x + 10 = x^{2} + 4x + 4 + 6 = (x + 2)^{2} + 6.$$

Выполним замену x + 2 = t, x = t - 2, dx = dt:

$$I = \int \frac{2(t-2)-3}{t^2+6} dt = \int \frac{2tdt}{t^2+6} - 7 \int \frac{dt}{t^2+6} = \int \frac{d(t^2+6)}{t^2+6} - \frac{7}{\sqrt{6}} \operatorname{arctg} \frac{t}{\sqrt{6}} =$$
$$= \ln(t^2+6) - \frac{7}{\sqrt{6}} \operatorname{arctg} \frac{t}{\sqrt{6}} + C = \ln(x^2+4x+10) - \frac{7}{\sqrt{6}} \operatorname{arctg} \frac{x+2}{\sqrt{6}} + C.$$

5.
$$I = \int \frac{(x^3+3) dx}{(x+1)(x^2+1)}$$
.

Решение. Дробь, стоящая под знаком интеграла, является неправильной, поэтому сначала выделим целую часть:

$$(x+1)(x^{2}+1) = x^{3} + x^{2} + x + 1, \qquad \underbrace{\begin{array}{c|c} x^{3} & +3 & x^{3} + x^{2} + x + 1 \\ \hline x^{3} + x^{2} + x + 1 & 1 \\ \hline -x^{2} - x + 2 & 1 \end{array}}_{}$$

Получаем

$$I = \int dx - \int \frac{x^2 + x - 2}{(x+1)(x^2+1)} dx.$$

Знаменатель правильной дроби имеет один простой вещественный корень x=-1, второй сомножитель не имеет вещественных корней (имеет мнимые корни $\pm i$). Разложение в сумму простейших ищем в виде

$$\frac{x^2 + x - 2}{(x+1)(x^2+1)} = \frac{A}{x+1} + \frac{Mx + N}{x^2 + 1}.$$

Получаем:

$$A(x^{2}+1) + Mx(x+1) + N(x+1) = x^{2} + x - 2.$$
(14)

Подставляя в (14) значение x = -1, находим:

$$A(1+1) + 0 + 0 = 1 - 1 - 2 \Longrightarrow A = -1.$$

Приравнивая в соотношении (14) коэффициенты при x^2 , находим:

$$A + M = 1 \Longrightarrow M = 1 - A \Longrightarrow M = 2.$$

Приравнивая в (14) свободные члены (или, что тоже самое, подставляя x=0), получаем:

$$A + N = -2 \Longrightarrow N = -2 - A \Longrightarrow N = -1.$$

Коэффициенты M и N можно также найти, подставляя в (14) x=i:

$$Mi(i+1) + N(i+1) = i^2 + i - 2 \Longrightarrow (-M+N) + i(M+N) = -3 + i,$$

откуда

$$\begin{cases} N-M &= -3 \\ N+M &= 1 \end{cases} \implies \begin{cases} 2N=-2 \\ 2M=4 \end{cases} \implies N=-1, M=2.$$

Поскольку разложение дроби в сумму простейших произведено, интегрированием простейших дробей завершаем вычисление интеграла:

$$I = \int \frac{-1}{x+1} dx + \int \frac{2x-1}{x^2+1} dx = -\ln|x+1| + \int \frac{d(x^2+1)}{x^2+1} - \int \frac{dx}{x^2+1}.$$

Окончательно

$$I = -\ln|x+1| + \ln(x^2+1) - \arctan x + C.$$

$$6. \quad I = \int \frac{x dx}{x^3 + 1} \,.$$

Решение. Подынтегральная дробь является правильной. Знаменатель имеет один вещественный корень:

$$x^{3} + 1 = (x+1)(x^{2} - x + 1),$$

второй сомножитель имеет отрицательный дискриминант. Раскладываем в сумму простейших:

$$\frac{x}{x^3+1} = \frac{A}{x+1} + \frac{Mx+N}{x^2-x+1} \Longrightarrow$$

$$A(x^{2}-x+1) + Mx(x+1) + N(x+1) = x.$$

Коэффициенты находим, подставляя x=-1 и приравнивая коэффициенты при x^2 и x^0 :

$$\begin{array}{c|c} x = -1 & 3A = -1 & \Longrightarrow A = -\frac{1}{3}, \\ x^2 & A + M = 0 & \Longrightarrow M = -\frac{1}{3}, \\ x^0 & A + N = 0 & \Longrightarrow N = -\frac{1}{3}. \end{array}$$

$$I = -\frac{1}{3} \int \frac{dx}{x+1} - \frac{1}{3} \int \frac{x+1}{\left(x - \frac{1}{2}\right)^2 + \frac{3}{4}} dx,$$

учитывая, что $x^2 - x + 1 = x^2 - 2x\frac{1}{2} + 1 + \frac{1}{4} - \frac{1}{4} = \left(x - \frac{1}{2}\right)^2 + \frac{3}{4}$. Делаем замену переменной во втором интеграле:

$$x - \frac{1}{2} = t, \quad dx = dt, \quad t^2 + \frac{3}{4} = x^2 - x + 1.$$

$$I = -\frac{1}{3} \ln|x+1| - \frac{1}{3} \int \frac{t + \frac{1}{2} + 1}{t^2 + \frac{3}{4}} dt = -\frac{1}{3} \ln|x+1| - \frac{1}{6} \int \frac{d(t^2 + \frac{3}{4})}{t^2 + \frac{3}{4}} - \frac{1}{2} \int \frac{dt}{t^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = -\frac{1}{3} \ln|x+1| - \frac{1}{6} \ln(x^2 - x + 1) - \frac{1}{\sqrt{3}} \arctan \frac{2x - 1}{\sqrt{3}} + C.$$

Задачи для самостоятельного решения

1)
$$\int \frac{x^3 - 2x^2 - 4x + 7}{x^2 + x - 2} \, dx;$$

$$2) \int \frac{2x^2 - 1}{x^3 - 5x^2 + 6x} \, dx$$

3)
$$\int \frac{x^3+2}{x^3-4x} \, dx;$$

4)
$$\int \frac{3x^2 + 2x - 1}{(x - 1)^2(x + 2)} dx;$$

5)
$$\int \frac{2x+1}{(x-2)^3(x+5)} \, dx;$$

6)
$$\int \frac{3x-1}{4x^2-4x+17} \, dx;$$

7)
$$\int \frac{(x^2+1)}{(x+2)(x^2+4)} dx;$$

8)
$$\int \frac{x}{x^3 - 1} \, dx;$$

9)
$$\int \frac{dx}{(x^2+1)(x^2+4)}$$
;

10)
$$\int \frac{dx}{(x+1)^2 (x^2+1)}.$$

Ответы

1)
$$\frac{x^2}{2} - 3x + \frac{1}{3} \ln |x^2 + x - 2| + C;$$

2)
$$-\frac{1}{6}\ln|x| - \frac{7}{2}\ln|x - 2| + \frac{17}{13}\ln|x - 3| + C;$$

3)
$$x - \frac{1}{2} \ln|x| - \frac{3}{4} \ln|x+2| + \frac{5}{4} \ln|x-2| + C;$$

4)
$$-\frac{4}{3(x-1)} + \frac{20}{9} \ln|x-1| + \frac{7}{9} \ln|x+2| + C;$$

5)
$$\frac{9}{343} \ln \left| \frac{x+5}{x-2} \right| - \frac{9}{49(x-2)} - \frac{5}{14(x-2)^2} + C;$$

6)
$$\frac{3}{8}\ln\left(4x^2-4x+17\right)+\frac{1}{16}\arctan\frac{2x-1}{4}+C;$$

7)
$$\frac{5}{8}\ln|x+2| + \frac{3}{16}\ln(x^2+4) - \frac{3}{8}\arctan\frac{x}{2} + C;$$

8)
$$\frac{1}{3} \ln \frac{|x-1|}{\sqrt{x^2+x+1}} + \frac{1}{\sqrt{3}} \operatorname{arctg} \frac{2x+1}{\sqrt{3}} + C;$$

9)
$$\frac{1}{3} \operatorname{arctg} x - \frac{1}{6} \operatorname{arctg} \frac{x}{2} + C;$$

10)
$$\frac{1}{2}\ln|x+1| - \frac{1}{4}\ln(x^2+1) - \frac{1}{2(x+1)} + C.$$

Задачи для самоконтроля

Вычислить интегралы:

1.
$$\int \frac{2x^2 - 4x + 3}{x^2 - 4} \, dx;$$

2.
$$\int \frac{3x^2 - 3x + 1}{x - 3} dx$$
;

3.
$$\int \frac{2x+1}{x^2-3x+2} dx$$
;

4.
$$\int \frac{x}{x^2 + x - 6} \, dx;$$

5.
$$\int \frac{x^3 - 4x + 7}{x(x^2 - 4)} \, dx;$$

6.
$$\int \frac{x^3 - 3x^2 - 7}{x^3 + 2x^2 + x} \, dx;$$

7.
$$\int \frac{2x+3}{x^4-2x^2+1} dx$$
;

8.
$$\int \frac{x-3}{x^4-9x^2} dx$$
;

9.
$$\int \frac{x^2 + x - 1}{x^3 + 2x^2 - 8x} \, dx;$$

10.
$$\int \frac{x^2 + 6}{x^4 + 5x^3 + 6x^2} \, dx;$$

1.3.2 Интегрирование тригонометрических выражений

Рассмотрим интегралы вида

$$\int R(\sin x, \cos x) \, dx,$$

где R — рациональная функция своих аргументов. Разберём частные случаи введения новой переменной.

1.
$$\int \sin^m x \cos^n x \, dx, \qquad n, \ m \in \mathbb{Z}, \quad m, \ n \geqslant 0.$$

а) Если среди m и n есть нечётное число, то следует сделать замену переменной:

если
$$m = 2k + 1$$
, то $\cos x = t$, если $n = 2r + 1$, то $\sin x = t$.

б) Если оба показателя степени чётные, следует понизить степень, пользуясь формулами

$$\sin^2 x = \frac{1 - \cos 2x}{2}$$
, $\cos^2 x = \frac{1 + \cos 2x}{2}$.

2. В случаях

$$\int R(\operatorname{tg} x) \, dx$$
 и $\int \sin^m x \cos^n x \, dx$ при $m+n=2k, \ k<0$

следует применять подстановку $t = \operatorname{tg} x$.

3. Универсальная подстановка:

$$tg \frac{x}{2} = t, \quad x = 2 \arctan x, \quad dx = \frac{2dt}{t^2 + 1}.$$

$$\sin x = \frac{2t}{1 + t^2}, \quad \cos x = \frac{1 - t^2}{1 + t^2}, \quad tg x = \frac{2t}{1 - t^2}.$$
(15)

Примеры.

$$1. \quad I = \int \frac{\sin^3 x \, dx}{\sqrt[3]{\cos x}}$$

Решение. Используя нечётность показателя степени у синуса, сделаем замену переменной $t = \cos x$:

$$I = \int \frac{\sin^2 x \sin x \, dx}{\left(\cos x\right)^{\frac{1}{3}}} = \int \frac{\left(1 - \cos^2 x\right) \left(-\cos x\right)' \, dx}{\left(\cos x\right)^{\frac{1}{3}}} = -\int \frac{\left(1 - t^2\right) \, dt}{t^{\frac{1}{3}}} =$$

$$= \int \left(t^{\frac{5}{3}} - t^{-\frac{1}{3}}\right) dt = \frac{t^{\frac{8}{3}}}{\frac{8}{3}} - \frac{t^{\frac{2}{3}}}{\frac{2}{3}} + C = \frac{3}{8}\sqrt[3]{\cos^8 x} - \frac{3}{2}\sqrt[3]{\cos^2 x} + C.$$

$$2. \quad I = \int \sin 4x \cos 5x \, dx.$$

Решение. Произведение функций под знаком интеграла преобразуется в сумму по известной тригонометрической формуле

$$\sin \alpha \cos \beta = \frac{1}{2} \left(\sin(\alpha + \beta) + \sin(\alpha - \beta) \right).$$

$$I = \frac{1}{2} \int \left(\sin 9x + \sin(-x) \right) dx = -\frac{1}{2} \frac{\cos 9x}{9} + \frac{1}{2} \cos x + C.$$

3.
$$I = \int \sin^2 x \cos^2 x \, dx.$$

Решение. Показатели степени являются чётными, понизим степень перейдя к кратному углу:

$$I = \int (\sin x \cos x)^2 dx = \int \left(\frac{1}{2}\sin 2x\right)^2 dx = \frac{1}{4} \int \sin^2 2x \, dx =$$

$$= \frac{1}{4} \int \frac{1 - \cos 4x}{2} \, dx = \frac{1}{8} \int dx - \frac{1}{8} \cdot \frac{1}{4} \int \cos 4x \, d(4x) = \frac{x}{8} - \frac{\sin 4x}{32} + C.$$

$$4. \quad I = \int \operatorname{ctg}^3 x \, dx.$$

Решение. Интеграл относится к случаю 2. Сделаем более подходящую в данном случае замену

$$\cot x = t, \quad x = \operatorname{arcctg} t, \quad dx = -\frac{dt}{t^2 + 1}.$$

$$I = -\int \frac{t^3}{t^2 + 1} dt = -\int \frac{t^3 + t - t}{t^2 + 1} dt = -\int \frac{t(t^2 + 1)}{t^2 + 1} dt + \int \frac{tdt}{t^2 + 1} =$$

$$= -\int tdt + \frac{1}{2} \int \frac{d(t^2 + 1)}{t^2 + 1} = -\frac{t^2}{2} + \frac{1}{2} \ln(t^2 + 1) + C =$$

$$= -\frac{\operatorname{ctg}^2 x}{2} + \frac{1}{2} \ln(\operatorname{ctg}^2 x + 1) + C = -\frac{\operatorname{ctg}^2 x}{2} + \frac{1}{2} \ln \frac{1}{\sin^2 x} + C =$$

$$= -\frac{\operatorname{ctg}^2 x}{2} - \ln|\sin x| + C.$$

$$5. \quad I = \frac{dx}{5 - 3\cos x}.$$

Решение. Универсальной подстановкой (15) интеграл приводится к интегралу от рациональной функции.

$$I = \int \frac{\frac{2dt}{1+t^2}}{5 - 3 \cdot \frac{1-t^2}{1+t^2}} = \int \frac{2dt}{5(1+t^2) - 3(1-t^2)} = 2\int \frac{dt}{2+8t^2} =$$
$$= \frac{1}{4} \int \frac{dt}{t^2 + \frac{1}{4}} = \frac{1}{4} \cdot 2 \arctan(2t) + C = \frac{1}{2} \arctan\left(2 \operatorname{tg} \frac{x}{2}\right) + C.$$

Примечание. Данное преобразование является стандартным для всех интегралов вида

$$\int \frac{dx}{a\cos x + b\sin x + c} \, .$$

Задачи для самостоятельного решения

Вычислить интегралы

$$1. \int \frac{dx}{5 + \sin x + 3\cos x};$$

$$2. \int \frac{dx}{1 - \sin x};$$

$$3. \int \sin^5 x \, dx;$$

$$4. \int \frac{\cos^3 x dx}{\sin^6 x};$$

5.
$$\int \sin^4 x \, dx;$$

$$6. \int \cos^6 x \, dx;$$

7.
$$\int \frac{dx}{1 + \lg x};$$

8.
$$\int \operatorname{tg}^7 x \, dx;$$

9.
$$\int \cos x \cos 3x \, dx;$$

$$10. \int \frac{dx}{\cos^4 x};$$

$$11. \int \frac{dx}{1 + \cos 4x};$$

$$12. \int \frac{dx}{\sin^2 x + \sin 2x}.$$

Ответы

1.
$$\frac{2}{\sqrt{15}} \arctan\left(\frac{1 + 2 \tan \frac{x}{2}}{\sqrt{15}}\right) + C;$$

2.
$$-\frac{2}{\lg\frac{x}{2}-1}+C;$$

3.
$$-\cos x + \frac{2}{3}\cos^3 x - \frac{1}{5}\cos^5 x + C;$$

4.
$$\frac{1}{3\sin^3 x} - \frac{1}{5\sin^5 x} + C;$$

5.
$$\frac{3}{8}x - \frac{1}{4}\sin 2x + \frac{1}{32}\sin 4x + C;$$

6.
$$\frac{5x}{16} + \frac{1}{4}\sin 2x + \frac{3}{64}\sin 4x - \frac{1}{48}\sin^3 x + C;$$

7.
$$\frac{1}{2}(x + \ln|\sin x + \cos x|) + C;$$

8.
$$\frac{1}{6} \operatorname{tg}^6 x - \frac{1}{4} \operatorname{tg}^4 x + \frac{1}{2} \operatorname{tg}^2 x + \ln|\cos x| + C;$$

9.
$$\frac{1}{8}\sin 4x + \frac{1}{4}\sin 2x + C$$
;

10.
$$tg x + \frac{1}{3} tg^3 x + C;$$

11.
$$\frac{1}{4} \operatorname{tg} 2x + C;$$

12.
$$\ln \left| \frac{\sin x}{\sin x + \cos x} \right| + C$$
.

Задачи для самоконтроля

1.
$$\int \frac{dx}{5 - 4\sin x + 3\cos x};$$

$$2. \int \frac{dx}{1+\sin^2 x};$$

3.
$$\int \frac{dx}{4\sin^2 x + \cos^2 x};$$

4.
$$\int \sin^3 x \cos x \, dx;$$

5.
$$\int \cos^2 x \sin x \, dx;$$

6.
$$\int \sin^2 x \cos^3 x \, dx;$$

7.
$$\int \cos^3 x \sin 2x \ dx;$$

8.
$$\int \frac{\sin x}{3 - \cos x} dx;$$

9.
$$\int \sin^2 x \, dx;$$

10.
$$\int \cos^2 2x \, dx;$$

11.
$$\int \sin^4 x \cos^2 x \, dx;$$

$$12. \int \sin^6 x \, dx.$$

1.3.3 Интегрирование иррациональных функций

1. Интегралы вида

$$\int R\left(x, \sqrt[n_1]{(ax+b)^{m_1}}, \dots, \sqrt[n_p]{(ax+b)^{m_p}}\right) dx$$

сводятся к интегралу от рациональной функции заменой $ax+b=t^k$, где k — общий знаменатель дробей $\frac{m_j}{n_i}$ $(j=1,\ldots,p)$. Очевидно, что

$$x = \frac{1}{a}(t^{k} - 1), \qquad dx = \frac{k}{a}t^{k-1}dt.$$

2. Интегралы вида

$$\int \frac{Ax+B}{\sqrt{ax^2+bx+c}} \, dx$$

приводятся к интегралу от рациональной функции заменой

$$t = \frac{1}{2} \left(x^2 + \frac{b}{a}x + \frac{c}{a} \right)' = x + \frac{b}{2a}, \quad dt = dx.$$
$$ax^2 + bx + c = at^2 - \frac{b^2 - 4ac}{4a}.$$

3. Тригонометрические подстановки:

a)
$$\int R\left(x^{2k}, \sqrt{a^2 - x^2}\right) dx,$$

$$x = a \sin t, \quad dx = a \cos t \, dt, \quad a^2 - x^2 = a^2 \cos^2 t.$$
(16)
$$b) \quad \int R\left(x^{2k}, \sqrt{a^2 + x^2}\right) dx,$$

$$x = a \operatorname{tg} t, \quad dx = \frac{a dt}{\cos^2 t}, \quad a^2 + x^2 = \frac{a^2}{\cos^2 t}.$$
(17)
$$c) \quad \int R\left(x^{2k}, \sqrt{x^2 - a^2}\right) dx,$$

$$x = \frac{a}{\cos t}, \quad dx = \frac{a \sin t}{\cos^2 t} dt, \quad x^2 - a^2 = a^2 \operatorname{tg}^2 t.$$

Примеры.

1.
$$I = \int \frac{x + \sqrt[3]{x^2} + \sqrt[6]{x}}{x(1 + \sqrt[3]{x})} dx$$
.

Решение. Общий знаменатель дробей $\frac{2}{3}$, $\frac{1}{6}$ и $\frac{1}{3}$ равен 6, поэтому делаем замену

$$x = t^{6}, \quad t = \sqrt[6]{x}, \quad dx = 6t^{5}dt.$$

$$I = 6 \int \frac{t^{6} + t^{4} + t}{t^{6}(1 + t^{2})} dt = 6 \int \frac{t^{5} + t^{3} + 1}{t^{2} + 1} dt = 6 \int \frac{t^{3}(t^{2} + 1) + 1}{t^{2} + 1} dt =$$

$$= 6 \left(\int t^{3}dt + \int \frac{dt}{t^{2} + 1} \right) = \frac{6t^{4}}{4} + \operatorname{arctg} t + C = \frac{3}{2}\sqrt[3]{x^{2}} + 6 \operatorname{arctg} \sqrt[6]{x} + C.$$

$$2. \quad I = \int \frac{x dx}{\sqrt[3]{7x+3}} \, .$$

Решение. Сделаем замену

$$7x + 3 = t^{3}, \quad x = \frac{1}{7} (t^{3} - 3), \quad dx = \frac{3}{7} t^{2} dt, \quad t = \sqrt[3]{7x + 3}.$$

$$I = \int \frac{\frac{1}{7} (t^{3} - 3) \frac{3}{7} t^{2} dt}{t} = \frac{3}{49} \int (t^{4} - 3t) dt = \frac{3}{49} \left(\frac{t^{5}}{5} - \frac{3t^{2}}{2}\right) + C =$$

$$= \frac{3}{49} \left(\frac{1}{5} \sqrt[3]{(7x + 3)^{5}} - \frac{3}{2} \sqrt[3]{(7x + 3)^{2}}\right) + C = \frac{3}{490} \sqrt[3]{(7x + 3)^{2}} (14x - 9) + C.$$

3.
$$I = \int \frac{x dx}{\sqrt{1 - 7x - x^2}}$$
.

Решение. Выделим полный квадрат в подкоренном выражении, сделав замену переменной:

$$t = \frac{1}{2} \left(-x^2 - 7x + 1 \right)' = -x - \frac{7}{2},$$

$$dx = -dt, \quad x = -t - \frac{7}{2}, \quad -x^2 - 7x + 1 = \frac{53}{4} - t^2.$$

$$I = \int \frac{-\left(t + \frac{7}{2}\right)\left(-dt\right)}{\sqrt{\frac{53}{4} - t^2}} = \int \frac{t + \frac{7}{2}}{\sqrt{\frac{53}{4} - t^2}} dt = -\frac{1}{2} \int \frac{d\left(\frac{53}{4} - t^2\right)}{\sqrt{\frac{53}{4} - t^2}} + \frac{7}{2} \arcsin\frac{2t}{\sqrt{53}} = -\sqrt{\frac{53}{4} - t^2} + \frac{7}{2} \arcsin\frac{2t}{\sqrt{53}} + C = -\sqrt{1 - 7x - x^2} - \frac{7}{2} \arcsin\frac{2x + 7}{\sqrt{53}} + C.$$

4.
$$I = \int \sqrt{1 - x^2} \, dx$$
.

Решение. Воспользуемся тригонометрической подстановкой (16):

$$x = \sin t, \quad t = \arcsin x, \quad dx = \cos t dt, \quad \sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t.$$

$$I = \int \cos t \, (\cos t dt) = \int \cos^2 t dt = \int \frac{1 + \cos 2t}{2} \, dt = \frac{1}{2} t + \frac{1}{4} \sin 2t + C = \frac{1}{2} t + \frac{1}{4} \cdot 2 \sin t \cos t + C = \frac{1}{2} \arcsin x + \frac{1}{2} \cdot x \sqrt{1 - x^2} + C.$$

5.
$$I = \frac{dx}{\sqrt{(4+x^2)^3}}$$
.

Решение. Воспользуемся тригонометрической подстановкой (17):

$$x = 2 \operatorname{tg} t, \quad \operatorname{tg} t = \frac{x}{2}, \quad t = \operatorname{arctg} \frac{x}{2}, \quad dx = \frac{2dt}{\cos^2 t}$$

$$4 + x^2 = 4 + 4 \operatorname{tg}^2 t = \frac{4}{\cos^2 t} \Longrightarrow \sqrt{4 + x^2} = \frac{2}{\cos t}.$$

$$I = \int \frac{\frac{2}{\cos^2 t} dt}{\left(\frac{2}{\cos t}\right)^3} = \frac{1}{4} \int \cos t dt = \frac{1}{4} \sin t + C = \frac{1}{4} \frac{\operatorname{tg} t}{\sqrt{1 + \operatorname{tg}^2 t}} + C =$$

$$= \frac{1}{4} \frac{\frac{x}{2}}{\sqrt{1 + \left(\frac{x}{2}\right)^2}} + C = \frac{x}{4\sqrt{4 + x^2}} + C.$$

Задачи для самостоятельного решения

$$1. \int \frac{dx}{\sqrt[3]{x} + \sqrt{x}};$$

$$2. \int \frac{xdx}{\sqrt{3x+2}+1};$$

3.
$$\int \frac{2}{(2-x)^2} \sqrt[3]{\frac{2-x}{2+x}} dx;$$

$$4. \int \frac{dx}{\sqrt{x^2 - x - 1}};$$

$$5. \int \frac{(3x+2)dx}{x^2+x+2};$$

6.
$$\int \frac{5x+3}{\sqrt{5+4x-x^2}} \, dx;$$

7.
$$\int \sqrt{a^2 - x^2} \, dx;$$

$$9. \int \frac{dx}{x\sqrt{4+x^2}};$$

$$8. \int \frac{x^2 dx}{\sqrt{x^2 - 2}};$$

10.
$$\int \frac{dx}{x\sqrt{x^2-9}}$$
.

Ответы:

1.
$$6\left(\frac{\sqrt{x}}{3} - \frac{\sqrt[3]{x}}{2} + \sqrt[6]{x} - \ln\left(1 + \sqrt[6]{x}\right)\right) + C;$$

2.
$$\frac{2}{27}\sqrt{(3x+2)^3} - \frac{1}{9}(3x+2) - \frac{2}{9}\sqrt{3x+2} + \frac{2}{9}\ln\left(\sqrt{3x+2} + 1\right) + C;$$

3.
$$\frac{3}{4}\sqrt[3]{\left(\frac{2+x}{2-x}\right)^2} + C;$$

4.
$$\ln \left| x - \frac{1}{2} + \sqrt{x^2 - x - 1} \right| + C;$$

5.
$$3\sqrt{x^2+x+2}+\frac{1}{2}\ln\left|x+\frac{1}{2}+\sqrt{x^2+x+2}\right|+C;$$

6.
$$-5\sqrt{6+4x-x^2}+13\arcsin\frac{x-2}{3}+C;$$

7.
$$\frac{x}{2}\sqrt{a^2-x^2} + \frac{a^2}{2}\arcsin\frac{x}{2a} + C;$$

8.
$$\frac{x}{2}\sqrt{x^2-2} + \ln\left|x+\sqrt{x^2-2}\right| + C;$$

9.
$$\frac{1}{2} \ln \left| \frac{\sqrt{4 + x^2} - 2}{x} \right| + C;$$

10.
$$-\frac{1}{3}\arcsin\frac{3}{x} + C$$
.

Задачи для самоконтроля

1.
$$\int \frac{dx}{1+\sqrt{x}};$$

$$3. \int \frac{dx}{\sqrt[3]{x} \left(\sqrt[3]{x} - 1\right)};$$

3.
$$\int \frac{dx}{\sqrt[3]{x}(\sqrt[3]{x}-1)};$$
 5. $\int \frac{dx}{1+\sqrt{x+1}};$

$$2. \int \frac{\sqrt{x} \, dx}{x^2 + x};$$

$$4. \int \frac{dx}{\sqrt{x} + \sqrt[4]{x}};$$

$$6. \int \frac{x^2}{\sqrt{x-1}} \, dx.$$

1.3.4 Интегрирование различных функций (итоговое повторение)

1.
$$\int \frac{xdx}{\sqrt{5+x-x^2}};$$

2.
$$\int \frac{(x^3+2) dx}{x^2+4x+5}$$
;

$$3. \int \frac{2^x dx}{\sqrt{4-4^x}};$$

4.
$$\int \frac{dx}{3 + \cos x};$$

$$5. \int \frac{\sin 2x \, dx}{\sqrt{3 - \cos^2 x}};$$

6.
$$\int x \arctan x \, dx;$$

7.
$$\int \frac{5x^3 + 9x^2 - 22x - 8}{x^3 - 4x} \, dx;$$

$$8. \int \frac{\cos^5 x \, dx}{\sqrt{\sin x}};$$

9.
$$\int x \sin^2(x^2) dx;$$

$$10. \int \frac{dx}{\sqrt{x} - \sqrt[4]{x}};$$

11.
$$\int x^2 \sqrt{x^2 - 1} \, dx$$
;

12.
$$\int \frac{5x+3}{\sqrt{3-x^2}} \, dx;$$

$$13. \int \frac{e^{\arctan x} dx}{1 + 9x^2};$$

14.
$$\int (x^2 - 2x + 3) \sin 2x \, dx$$
;

15.
$$\int \frac{\log_2 x \, dx}{x^2};$$

16.
$$\int (1-\cos 2x)^2 dx$$
.

Ответы:

1.
$$-\sqrt{5+x-x^2}+\frac{1}{2}\arcsin\frac{2x-1}{\sqrt{21}}+C;$$

2.
$$\frac{x^2}{2} - 4x + \frac{11}{2} \ln (x^2 + 4x + 5) + C;$$

3.
$$\frac{1}{\ln 2} \arcsin (2^{x-1}) + C;$$

4.
$$\frac{\sqrt{2}}{2}$$
 arctg $\left(\frac{\sqrt{2}}{2} \operatorname{tg} \frac{x}{2}\right) + C$;

5.
$$2\sqrt{3-\cos^2 x}+C$$
;

6.
$$\frac{x^2+1}{2}$$
 arctg $x-\frac{x}{2}+C$;

7.
$$5x + \ln(x^2(x+2)^4|x-2|^3) + C$$
;

8.
$$2\sqrt{\sin x} - \frac{4}{5}\sqrt{\sin^5 x} + \frac{2}{9}\sqrt{\sin^9 x} + C;$$

9.
$$\frac{x^2}{4} - \frac{\sin 2x^2}{8} + C;$$

10.
$$4\left(\frac{\sqrt{x}}{2} + \sqrt[4]{x} + \ln\left|\sqrt[4]{x} - 1\right|\right) + C;$$

11.
$$-\frac{1}{8}\ln\left|x+\sqrt{x^2-1}\right|+\frac{1}{8}x\left(2x^2-1\right)\sqrt{x^2-1}+C;$$

12.
$$-5\sqrt{3-x^2}+3\arcsin\frac{x}{\sqrt{3}}+C;$$

13.
$$\frac{1}{3}e^{\arctan 3x} + C;$$

14.
$$-\frac{1}{2}(x^2-2x+3)\cos 2x+\frac{1}{2}(x-1)\sin 2x+\frac{1}{4}\cos 2x+C;$$

15.
$$-\frac{\log_2 x}{x} - \frac{1}{x \ln 2} + C;$$

16.
$$\frac{3}{2}x - \sin 2x + \frac{1}{8}\sin 4x + C$$
.

1.4 Типовые варианты контрольной работы

Вариант 1

1.
$$\int \frac{dx}{x\sqrt{\ln^2 x + 6}};$$

2.
$$\int \frac{xdx}{\sin^2 x};$$

3.
$$\int \frac{(x+1)dx}{\sqrt{1-x-x^2}};$$

$$4. \qquad \int \frac{dx}{\mathsf{tg}^3 \, x};$$

$$5. \int \frac{xdx}{(x^2+2)(x-1)}.$$

Вариант 2

1.
$$\int 2^{-x^3} x^2 dx$$
;

$$2. \quad \int \arccos 3x \, dx;$$

$$3. \int \frac{x^4 dx}{x^3 + 3x^2};$$

$$4. \quad \int \frac{dx}{2\sin x + 3\cos x + 2};$$

5.
$$\int \frac{\sqrt{x+1}+1}{\sqrt{x+1}-1} dx$$
.

Ответы:

Вариант 1

1.
$$\ln \left| \ln x + \sqrt{\ln^2 x + 6} \right| + C;$$

2.
$$-x\operatorname{ctg} x + \ln|\sin x| + C$$
;

3.
$$-\sqrt{1-x-x^2}+\frac{1}{2}\arcsin\frac{2x+1}{\sqrt{5}}+C;$$

4.
$$-\ln|\sin x| - \frac{1}{2}\operatorname{ctg}^2 x + C;$$

5.
$$\frac{1}{3}\ln|x-1| - \frac{1}{6}\ln(x^2+2) + \frac{\sqrt{2}}{3}\arctan\frac{x}{\sqrt{2}} + C$$
.

Вариант 2

1.
$$-\frac{2^{-x^3}}{3\ln 2} + C;$$

2.
$$x \arccos 3x - \frac{1}{3}\sqrt{1 - 9x^2} + C;$$

3.
$$\frac{x^2}{2} - 3x + 9 \ln|x+3| + C;$$

4.
$$\frac{1}{3} \ln \left| \frac{\operatorname{tg} \frac{x}{2} + 1}{\operatorname{tg} \frac{x}{2} - 5} \right| + C;$$

5.
$$x+1+4\sqrt{x+1}+4\ln\left|\sqrt{x+1}-1\right|+C$$
.

2 Определённый интеграл

2.1 Основные теоретические сведения

2.1.1 Понятие определённого интеграла

Пусть функция f определена на отрезке [a;b]. Рассмотрим разбиение отрезка на части:

$$a = x_0 < x_1 < x_2 < \dots < x_{n-1} < x_n = b.$$

На каждой части отрезка выбирается по точке: $\xi_k \in [x_{k-1}; x_k]$. Мелкость разбиения характеризуется рангом разбиения:

$$\lambda = \max_{1 \le k \le n} \left(x_k - x_{k-1} \right).$$

Определённым интегралом функции f по отрезку [a;b] называется предельное значение интегральных сумм Римана:

$$\int_{a}^{b} f(x) dx = \lim_{\lambda \to 0} \sum_{k=1}^{n} f(\xi_{k}) (x_{k} - x_{k-1}).$$

2.1.2 Геометрический смысл интеграла

Если функция f непрерывна на отрезке [a;b] и

$$\forall x \in [a; b] \quad f(x) \geqslant 0,$$

то определённый интеграл функции f по отрезку [a;b] равен площади фигуры, ограниченной линиями

$$x = a$$
, $x = b$, $y = 0$, $y = f(x)$

(«криволинейной трапеции»).

2.1.3 Основные свойства определённого интеграла

$$1. \quad \int\limits_0^d x = b - a.$$

2.
$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$
.

3.
$$\int_{a}^{b} k \cdot f(x) dx = k \cdot \int_{a}^{b} f(x) dx.$$

4.
$$\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx.$$

$$5. \quad \int_{a}^{a} f(x)dx = 0.$$

6.
$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx \quad (аддитивность).$$

7.
$$\forall x \in [a; b]$$
 $f(x) \leq g(x) \Longrightarrow \int_{a}^{b} f(x) dx \leq \int_{a}^{b} g(x) dx$

(монотонность).

8.
$$\forall x \quad f(-x) = -f(x) \quad (\text{нечётность}) \Longrightarrow \int_{-a}^{a} f(x)dx = 0.$$

9.
$$\forall x \quad f(-x) = f(x) \quad (чётность) \Longrightarrow \int_{-a}^{a} f(x)dx = 2 \int_{0}^{a} f(x)dx = 0.$$

Теорема о среднем.

$$f$$
 непрерывна на $[a;b]\Longrightarrow\exists\xi\in[a;b]:$ $\int\limits_a^bf(x)dx=f(\xi)(b-a).$

Величина

$$\frac{1}{b-a} \int_{a}^{b} f(x)dx \tag{18}$$

называется $cpe \partial ним$ значением функции f на отрезке [a;b].

2.2 Методы вычисления определённого интеграла

2.2.1 Формула Ньютона-Лейбница

$$\int_{a}^{b} f(x)dx = F(x)\Big|_{a}^{b} = F(b) - F(a), \quad \text{где} \quad F'(x) = f(x).$$
 (19)

Вычислить интегралы, применяя формулу (19).

1.
$$\int_{-1}^{2} x^{2} dx = \frac{x^{3}}{3} \Big|_{-1}^{2} = \frac{1}{3} \left(2^{3} - (-1)^{3} \right) = 3.$$

2.
$$\int_{1}^{4} \frac{1+\sqrt{x}}{x^{2}} dx = \int_{1}^{4} \left(x^{-2} + x^{-\frac{3}{2}}\right) dx = \left(-\frac{1}{x} - \frac{2}{\sqrt{x}}\right) \Big|_{1}^{4} =$$
$$= -\left(\frac{1}{4} - 1\right) - 2\left(\frac{1}{\sqrt{4}} - 1\right) = \frac{3}{4} + 1 = 1\frac{1}{4}.$$

3.
$$\int_{0}^{\frac{\pi}{4}} \cos^{2} x dx = \int_{0}^{\frac{\pi}{4}} \frac{1 + \cos 2x}{2} dx = \frac{1}{2} \left(x + \frac{1}{2} \sin 2x \right) \Big|_{0}^{\frac{\pi}{4}} = \frac{1}{2} \left(\frac{\pi}{4} + \frac{1}{2} \left(\sin \frac{\pi}{2} - \sin 0 \right) \right) = \frac{\pi}{8} + \frac{1}{4}.$$

4.
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^3 x \, dx = 0,$$

т. к. функция $f(x) = \sin^3 x$ является нечётной.

5.
$$\int_{0}^{1} \sqrt{2+3x} \, dx = \frac{1}{3} \int_{0}^{1} (2+3x)^{\frac{1}{2}} d(3x+2) = \frac{1}{3} \frac{(2+3x)^{\frac{3}{2}}}{\frac{3}{2}} \Big|_{0}^{1} = \frac{2}{9} \left(5\sqrt{5} - 2\sqrt{2} \right).$$

6. Найти среднее значение издержек функции $f(x) = 3x^2 + 3x + 1$, если объём продукции x меняется в диапазоне [0;4]. Указать объём продукции ξ , при котором издержки принимают среднее значение.

Решение. Среднее значение функции на отрезке определяется формулой (18).

$$f(\xi) = \frac{1}{4-0} \int_0^4 (3x^2 + 3x + 1) dx = \frac{1}{4} \left(x^3 + \frac{3}{2}x^2 + x \right) \Big|_0^4 =$$
$$= \frac{1}{4} (64 + 24 + 4) = 23.$$

Среднее значение найдено. Для того, чтобы найти точку, в которой оно достигается нужно решить уравнение $f(\xi) = 23$:

$$3\xi^2 + 3\xi + 1 = 23 \Longrightarrow 3\xi^2 + 3\xi - 22 = 0.$$

Выбираем положительное значение корня получаем $\xi = \frac{\sqrt{273} - 3}{6}$ (единиц продукции).

Задачи для самостоятельного решения

1.
$$\int_{0}^{3} e^{2x} dx$$
;

2.
$$\int_{0}^{3} \frac{dy}{9+y^2}$$
;

3.
$$\int_{1}^{2} (x^2 - 2x + 3) dx$$
;

8.
$$\int_{-1}^{7} \sqrt{3x+4} \, dx;$$

$$4. \int_{0}^{1} \frac{dx}{x^2 + 4x + 5};$$

9.
$$\int_{0}^{16} \frac{dz}{\sqrt{z-9} - \sqrt{z}};$$

5.
$$\int_{0}^{8} \left(\sqrt{2x} + \sqrt[3]{x}\right) dx;$$

10.
$$\int_{1}^{4} \frac{1+t}{\sqrt{t}} dt;$$

$$\mathbf{6.} \int\limits_{0}^{3\pi} \sin^2\frac{x}{3} \, dx;$$

11.
$$\int_{0}^{2} \frac{x+3}{x^2+4} dx;$$

7.
$$\int_{0}^{2\pi} (1-\cos x)^2 dx$$
;

12.
$$\int_{-\pi}^{\pi} x^2 \sin^7$$
.

Ответы:

4.
$$arctg 3 - arctg 2$$
;

1.
$$\frac{1}{2}(e^6-1)$$
;

5.
$$33\frac{1}{3}$$
;

10.
$$6\frac{2}{3}$$
;

2.
$$\frac{\pi}{12}$$
;

6.
$$\frac{3}{2}\pi$$

11.
$$\frac{3}{8}\pi + \frac{\ln 2}{2}$$
;

3.
$$\frac{7}{3}$$
;

6.
$$\frac{3}{2}\pi$$
;
7. 3π ;
8. $\frac{248}{9}$;

Задачи для самоконтроля

1.
$$\int_{1}^{2} (x^2 + 1) dx$$
;

$$4. \int\limits_{0}^{3} \left(\frac{1}{\sqrt{x}} - 3x \right) dx;$$

7.
$$\int_{1}^{2} \frac{dx}{4-x}$$
;

2.
$$\int_{0}^{1} (2x-3)dx;$$
 5. $\int_{0}^{\frac{\pi}{6}} \cos 3x dx;$ 8. $\int_{0}^{\sqrt{3}} \frac{dx}{1+x^2};$

$$\mathbf{5.} \int_{0}^{\frac{\pi}{6}} \cos 3x dx;$$

8.
$$\int_{0}^{\sqrt{3}} \frac{dx}{1+x^2}$$

3.
$$\int_{0}^{1} (2\sqrt{x} - 3) dx;$$
 6. $\int_{0}^{\pi} \sin \frac{x}{3} dx;$

$$\mathbf{6.} \int\limits_{0}^{\pi} \sin \frac{x}{3} dx;$$

9.
$$\int_{0}^{1} \frac{dx}{1-x^2}$$
.

10) Вычислить среднее значение функции на указанном промежутке

d)
$$f(x) = e^{2x}$$
, $[0; \ln 3]$;

a)
$$f(x) = x^2$$
, [1;4];

b)
$$f(x) = x^3 - 3x$$
, $[-1; 1]$;

$$e) \quad f(x) = \frac{1}{\sqrt{x}}, \quad [1; 4];$$

c)
$$f(x) = \frac{1}{x}$$
, [1;2];

$$f) \quad f(x) = \cos x, \quad [0; 1].$$

2.2.2 Замена переменной в определённом интеграле

Теорема. Пусть f непрерывна на отрезке [a;b]. Тогда, если

- 1. функция $x=\varphi(t)$ дифференцируема на $[\alpha;\beta]$ и $\varphi'(t)$ непрерывна на $[\alpha;\beta];$
- 2. множеством значений функции $x = \varphi(t)$ является отрезок [a; b].
- 3. $\varphi(\alpha) = a$ и $\varphi(\beta) = b$,

то справедлива формула замены переменной

$$\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t)dt.$$
 (20)

Замечание 1. Замену пределов интегрирования удобно записывать в виде таблицы

$$\begin{array}{c|cc}
x & a & b \\
t & \alpha & \beta
\end{array}$$

Замечание 2. При вычислении определённого интеграла нет необходимости возвращаться к первоначальной переменной. Результат вычисления определённого интеграла — число, которое не зависит от вида переменной. При этом необходимо производить соответствующую замену значений в пределах интегрирования.

1.
$$I = \int_{-\frac{\pi}{2}}^{-\frac{\pi}{4}} \frac{\cos^3 x}{\sqrt[3]{\sin x}} \, dx.$$

Решение. Подынтегральная тригонометрическая функция относится к классу функций вида $f(x) = \sin^m x \cos^n x$.

$$I = \int_{-\frac{\pi}{2}}^{-\frac{\pi}{4}} \frac{(1 - \sin^2 x) (\sin x)' dx}{\sqrt[3]{\sin x}}.$$

Произведём замену переменной:

$$\sin x = t$$
, $\cos x dx = dt$, $\begin{vmatrix} x & -\frac{\pi}{4} & -\frac{\pi}{2} \\ t & -1 & -\frac{\sqrt{2}}{2} \end{vmatrix}$

$$I = \int_{-1}^{-\frac{\sqrt{2}}{2}} \frac{1 - t^2}{t^{\frac{1}{3}}} dt = \int_{-1}^{-\frac{\sqrt{2}}{2}} \left(t^{-\frac{1}{3}} - t^{\frac{5}{3}} \right) dt = \frac{3}{2} \cdot t^{\frac{2}{3}} \Big|_{-1}^{-\frac{\sqrt{2}}{2}} - \frac{3}{8} \cdot t^{\frac{8}{3}} \Big|_{-1}^{-\frac{\sqrt{2}}{2}} =$$

$$= \frac{3}{2} \left(\frac{1}{\sqrt[3]{2}} - 1 \right) - \frac{3}{8} \left(\frac{1}{2\sqrt[3]{2}} - 1 \right) = \frac{3}{2} \left(\frac{1}{\sqrt[3]{2}} - \frac{1}{8\sqrt[3]{2}} + \frac{1}{4} - 1 \right) =$$

$$= \frac{3}{2} \left(\frac{7\sqrt[3]{4}}{16} - \frac{3}{4} \right) = \frac{3}{32} \left(7\sqrt[3]{4} - 12 \right) = -\frac{3}{32} \left(12 - 7\sqrt[3]{4} \right).$$

2.
$$I = \int_{5}^{1} \frac{x dx}{\sqrt{5 + 4x}}$$
.

Решение. Подынтегральная функция относится к классу

$$f(x) = R\left(x, \sqrt[m]{ax+b}\right).$$

Произведём замену

$$5 + 4x = t^2$$
, $t = \sqrt{5 + 4x}$, $dx = \frac{tdt}{2}$, $x = \frac{t^2 - 5}{4}$, $x = \frac{x + 5}{4}$

$$I = \int_{5}^{3} \frac{\frac{1}{4} (t^{2} - 5) \cdot \frac{1}{2} t dt}{t} = \frac{1}{8} \int_{5}^{3} (t^{2} - 5) dt = \frac{1}{8} \left(\frac{t^{3}}{3} - 5t \right) \Big|_{5}^{3} = \frac{1}{8} \left(\frac{1}{3} (27 - 125) - 5(3 - 5) \right) = \frac{1}{8} \left(-\frac{98}{3} + 10 \right) = -\frac{17}{6}.$$

3.
$$I = \int_{\frac{\sqrt{3}}{2}}^{1} \frac{\sqrt{1-x^2}}{x^2} dx$$
.

Решение. Подынтегральная функция относится к классу

$$f(x) = R\left(x^{2m}, \sqrt{a^2 - x^2}\right).$$

Сделаем замену

$$x = \sin t$$
, $dx = \cos t dt$, $\sqrt{1 - x^2} = \sqrt{1 - \sin^2 t} = \cos t$, $\begin{vmatrix} x & \frac{\sqrt{3}}{2} & 1 \\ t & \frac{\pi}{3} & \frac{\pi}{2} \end{vmatrix}$

$$I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\cos^2 t \, dt}{\sin^2 t} = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1 - \sin^2 t}{\sin^2 t} \, dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{\sin^2 t} \, dt - \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{1}{\sin^2 t} \, dt = \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \frac{1}{\sin^2 t}$$

$$= -\operatorname{ctg} t \Big|_{\frac{\pi}{3}}^{\frac{\pi}{2}} - t \Big|_{\frac{\pi}{3}}^{\frac{\pi}{2}} = -\operatorname{ctg} \frac{\pi}{2} + \operatorname{ctg} \frac{\pi}{3} - \frac{\pi}{2} + \frac{\pi}{3} = \frac{\sqrt{3}}{2} - \frac{\pi}{6}.$$

Задачи для самостоятельного решения

1.
$$\int_{1}^{2} \frac{e^{\frac{1}{x}}}{x^2} dx;$$

$$5. \int\limits_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \cos x};$$

5.
$$\int_{0}^{\frac{\pi}{2}} \frac{dx}{2 + \cos x}$$
; 9. $\int_{0}^{1} \frac{dx}{\sqrt{3 + 2x - x^2}}$;

2.
$$\int_{1}^{\sqrt{e}} \frac{dx}{x\sqrt{1-\ln^2 x}};$$
 6. $\int_{-1}^{0} \frac{dx}{1+\sqrt[3]{x+1}} dx;$

6.
$$\int_{-1}^{0} \frac{dx}{1 + \sqrt[3]{x+1}} \, dx;$$

10.
$$\int_{0}^{1} \sqrt{4 - x^2} \, dx;$$

$$3. \int\limits_{1}^{e^3} \frac{dx}{\sqrt{1+\ln x}};$$

3.
$$\int_{1}^{e^3} \frac{dx}{\sqrt{1+\ln x}}$$
; 7. $\int_{1}^{9} \frac{\sqrt{x}}{\sqrt{x}-1} dx$;

11.
$$\int_{1}^{\sqrt{3}} \frac{dx}{\sqrt{(1+x^2)^3}}$$
;

4.
$$\int_{0}^{\frac{\pi}{2}} \cos^5 x \sin 2x \, dx;$$
 8. $\int_{\ln 2}^{\ln 4} \frac{dx}{\sqrt{e^x - 1}};$

8.
$$\int_{\ln 2}^{\ln 4} \frac{dx}{\sqrt{e^x - 1}}$$
;

12.
$$\int_{1}^{2} \frac{\sqrt{x^2 - 1}}{x} \, dx.$$

Ответы:

1.
$$e - \sqrt{e}$$
;

2.
$$\frac{\pi}{6}$$
;

4.
$$\frac{2}{7}$$
;

5.
$$\frac{\pi\sqrt{3}}{9}$$
;

6.
$$\frac{3}{2}(\ln 4 - 1);$$

7.
$$7 + 2 \ln 2$$
;

8.
$$\frac{\pi}{6}$$
;

9.
$$\frac{\pi}{6}$$
;

10.
$$\frac{\pi}{3} + \frac{\sqrt{3}}{2}$$
;

11.
$$\frac{\sqrt{3}-\sqrt{2}}{2}$$
;

12.
$$\sqrt{3} - \frac{\pi}{3}$$
.

Задачи для самоконтроля

1.
$$\int_{0}^{3} \frac{10-3x}{\sqrt{4-x}} \, dx;$$

2.
$$\int_{0}^{8} \frac{2x-1}{\sqrt{9-x}} dx$$
;

3.
$$\int_{1}^{2} \frac{3xdx}{\sqrt{5-x^2}}$$
;

4.
$$\int_{3}^{1} \frac{6xdx}{\sqrt{10-x^2}}$$
;

5.
$$\int_{0}^{a} x^{2} \sqrt{a^{2} - x^{2}} dx;$$

6.
$$\int_{1}^{8} \frac{dx}{\sqrt[3]{8x} \left(\sqrt[3]{8x} + 1\right)} dx;$$

7.
$$\int_{0}^{\frac{\pi}{4}} \frac{dx}{3\sin^{2}x + 5\cos^{2}x} dx;$$

8.
$$\int_{1}^{8} \frac{xdx}{\sqrt[3]{8x+3}}$$
;

$$9. \int_{1}^{2} \frac{dx}{\sqrt{x} + \sqrt[3]{x}} \, dx;$$

10.
$$\int_{1}^{2} \frac{\sqrt{1+x^2}}{x^2} dx;$$

11.
$$\int_{2}^{4} \frac{dx}{\sqrt{2x-1} - \sqrt[4]{2x-1}}$$
;

12.
$$\int_{0}^{0.5} \frac{dx}{(2-x)\sqrt{1-x}}$$
;

$$13. \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{dx}{2\sin x - \cos x} \, dx;$$

14.
$$\int_{1}^{4} \frac{\sqrt{x}}{x+2} \, dx;$$

15.
$$\int_{1}^{2} \frac{1}{x^2} \sqrt{\frac{1+x}{5x}} \, dx.$$

2.2.3 Интегрирование по частям в определённом интеграле

Теорема. Если функции u(x) и v(x) дифференцируемы на отрезке [a;b] и u'(x) и v'(x) непрерывны на отрезке [a;b], то справедлива формула

$$\int_{a}^{b} u(x)dv(x) = u(x)v(x)\Big|_{a}^{b} - \int_{a}^{b} v(x)du(x)$$

$$(21)$$

(формула интегрирования по частям в определённом интеграле). Рекомендуется использовать формулы (8-12) из раздела 1.2.3.

1.
$$I = \int_{0}^{\frac{\pi}{2a}} (x+a)\sin ax \, dx.$$

Решение. Применим интегрирование по частям, т. е. формулу (21):

$$u = x + 3$$
 \longrightarrow $du = dx$
 $dv = \sin ax \, dx$ \longrightarrow $v = \int \sin ax \, dx = -\frac{1}{a} \cos ax$.

$$I = -\frac{x+3}{a} \cos ax \Big|_{0}^{\frac{\pi}{2a}} + \frac{1}{a} \int_{0}^{\frac{\pi}{2a}} \cos ax \, dx = \frac{3}{a} + \frac{1}{a^2} \sin ax \Big|_{0}^{\frac{\pi}{2a}} = \frac{3}{a^2} + \frac{1}{a^2} = \frac{3a+1}{a^2}.$$

$$2. \quad I = \int_{1}^{e} \ln x \, dx.$$

Решение. Применим формулу интегрирования по частям (21):

$$u = \ln x \longrightarrow du = \frac{dx}{x}$$

 $dv = dx \longrightarrow v = x.$

$$I = x \ln x \Big|_{1}^{e} - \int_{1}^{e} x \cdot \frac{1}{x} dx = e - x \Big|_{1}^{e} = e - e + 1 = 1.$$

$$3. \quad I = \int_{1}^{2} x e^x dx.$$

Решение.

$$\begin{array}{ccc} u = x & \longrightarrow & du = dx \\ dv = e^x dx & \longrightarrow & v = \int e^x dx = e^x. \end{array}$$

$$I = xe^{x} \Big|_{1}^{2} - \int_{1}^{2} e^{x} dx = 2e^{2} - e - e^{x} \Big|_{1}^{2} = 2e^{2} - e - e^{2} + e = e^{2}.$$

4.
$$I = \int_{0}^{1} \operatorname{arctg} x \, dx$$
.

Решение.

$$u = \operatorname{arctg} x \longrightarrow du = \frac{dx}{x^2 + 1}$$

 $dv = dx \longrightarrow v = x.$

$$I = x \operatorname{arctg} x \Big|_{0}^{1} - \int_{0}^{1} \frac{x dx}{x^{2} + 1} = \frac{\pi}{4} - \frac{1}{2} \int_{0}^{1} \frac{d(x^{2} + 1)}{x^{2} + 1} = \frac{\pi}{4} - \frac{1}{2} \ln(x^{2} + 1) \Big|_{0}^{1} = \frac{\pi}{4} - \frac{\ln 2}{2}.$$

Задачи для самостоятельного решения

1.
$$\int_{1}^{2} xe^{-2x} dx$$
;

2.
$$\int_{0}^{3} \ln(x+3) \ dx;$$

3.
$$\int_{-\pi}^{0} (x-\pi)^2 \cos 3x \, dx;$$

4.
$$\int_{0}^{\frac{1}{2}} \arcsin x \, dx;$$

5.
$$\int_{0}^{\sqrt{3}} x \arctan x \, dx;$$

7.
$$\int_{1}^{e^2} \frac{\ln x}{x^2} dx$$
.

$$\mathbf{6.} \int_{0}^{\frac{\pi}{4}} \frac{x \sin x}{\cos^3 x} \, dx;$$

Ответы:

2.
$$3(\ln 12 - 1)$$

2.
$$3(\ln 12 - 1);$$
 4. $\frac{\pi}{12} + \frac{\sqrt{3}}{2} - 1;$ **6.** $\frac{\pi}{4} - \frac{1}{2};$

6.
$$\frac{\pi}{4} - \frac{1}{2}$$
;

1.
$$\frac{e^2-3}{4e^2}$$
;

3.
$$-\frac{2\pi}{3}$$

3.
$$-\frac{2\pi}{3}$$
; 5. $\frac{2\pi}{3} - \frac{\sqrt{3}}{2}$; 7. $1 - \frac{3}{e^2}$.

7.
$$1 - \frac{3}{e^2}$$

Задачи для самоконтроля

Вычислить интегралы:

$$\mathbf{1.} \int_{\frac{\pi}{12}}^{\frac{\pi}{8}} x^2 \cos 2x \, dx;$$

$$5. \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{x}{\sin^2 x} \, dx;$$

9.
$$\int_{0}^{1} x^2 3^x dx$$
;

$$2. \int_{1}^{e} x \ln x \, dx;$$

$$\mathbf{6.} \int\limits_{0}^{1} x \arctan x \, dx;$$

10.
$$\int_{0}^{\ln 2} (x+2)e^{4x}dx;$$

$$3. \int_{0}^{\pi} x \cos x \, dx;$$

7.
$$\int_{0}^{\pi} x \sin 7x \ dx;$$

11.
$$\int_{1}^{2} (x-1)2^{x} dx;$$

4.
$$\int_{0}^{3} \frac{x+5}{e^x} dx$$
;

8.
$$\int_{1}^{4} x^2 \ln(6x) dx$$
;

12.
$$\int_{0}^{\ln 3} (5+x)e^{3x}dx.$$

Несобственные интегралы 3

3.1Краткие теоретические сведения

3.1.1Несобственные интегралы первого рода

Пусть функция задана на полупрямой $[a; +\infty)$ и интегрируема на любом отрезке $[a;b] \subset [a;+\infty)$. Несобственным интегралом первого рода называется интеграл по бесконечному промежутку:

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to +\infty} \int_{a}^{b} f(x) dx. \tag{22}$$

Если предел в правой части равенства (22) существует и конечен, то говорят, что несобственный интеграл cxodumcs, в противном случае (т. е. предел не существует или бесконечен) — pacxodumcs.

Аналогичным образом вводятся интегралы по промежуткам $(-\infty;b]$ и $(-\infty;+\infty)$:

$$\int_{-\infty}^{b} f(x) dx = \lim_{a \to -\infty} \int_{a}^{b} f(x) dx. \tag{23}$$

$$\int_{-\infty}^{+\infty} f(x) dx = \int_{-\infty}^{c} f(x) dx + \int_{c}^{+\infty} f(x) dx.$$
 (24)

Интеграл в формуле (24) считается сходящимся, если сходятся оба интеграла, стоящие в правой части равенства.

С учётом формулы Ньютона-Лейбница имеем

$$\int_{a}^{+\infty} f(x) dx = \lim_{b \to \infty} \left(F(x) \Big|_{a}^{b} \right) = \lim_{b \to \infty} \left(F(b) - F(a) \right), \quad \text{где } F'(x) = f(x).$$

Во многих случаях наибольший интерес представляет не само значение несобственного интеграла, а факт его сходимости или расходимости. Для ответа на этот вопрос удобно пользоваться эталонным интегралом:

$$\int_{a}^{+\infty} \frac{1}{x^{\alpha}} dx \quad (a > 0, \ \alpha > 0) \qquad \left[\begin{array}{c} \text{сходится, если } \alpha > 1 \\ \text{расходится, если } \alpha \leqslant 1. \end{array} \right.$$
 (25)

Зная условие сходимости эталонных интегралов, можно определить сходимость или расходимость других интегралов, используя следующие признаки сходимости.

Первый признак сходимости. Пусть

$$\forall x \geqslant a \qquad 0 \leqslant f(x) \leqslant g(x).$$

Тогда

1)
$$\int\limits_{a}^{+\infty}g(x)\,dx$$
 сходится $\Longrightarrow\int\limits_{a}^{+\infty}f(x)\,dx$ сходится;

$$2) \quad \int\limits_{a}^{+\infty} f(x) \ dx \quad \text{расходится} \Longrightarrow \int\limits_{a}^{+\infty} g(x) \ dx \quad \text{расходится}.$$

Второй признак сходимости. Пусть существует конечный и отличный от нуля предел

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} \neq 0.$$

Тогда интегралы

$$\int_{a}^{+\infty} f(x) dx \quad \text{и} \quad \int_{a}^{+\infty} g(x) dx$$

либо оба сходятся, либо оба расходятся.

Определение. Несобственный интеграл $\int_{a}^{+\infty} f(x) dx$ *сходится абсолютно*, если сходится интеграл от абсолютной величины подынтегральной функции:

$$\int_{a}^{+\infty} |f(x)| \, dx.$$

Определение. Несобственный интеграл $\int\limits_a^{+\infty} f(x) \; dx \; cxodumcs \; yсловно,$ если

$$\int\limits_{a}^{+\infty}f(x)\;dx$$
 сходится,
$$\int\limits_{a}^{+\infty}|f(x)|\;dx$$
 расходится.

3.1.2 Несобственные интегралы второго рода

Несобственным интегралом второго рода называется интеграл от функции, имеющей на отрезке интегрирования разрыв второго рода.

Пусть функция f непрерывна на промежутке [a;b) и $\lim_{x \to b-0} f(x) = \infty$. Тогда

$$\int_{a}^{b} f(x) dx = \lim_{\delta \to +0} \int_{a}^{b-\delta} f(x) dx.$$
 (26)

Несобственный интеграл второго рода cxodumcs, если существует и конечен предел в правой части формулы (26). В противном случае (т. е. если предел не существует или бесконечен) говорят, что интеграл pacxodumcs.

Из формулы Ньютона-Лейбница и равенства (26) следует, что

$$\int_{a}^{b} f(x) dx = \lim_{\delta \to +0} F(x) \Big|_{a}^{b-\delta} = \lim_{\delta \to +0} \left(F(b-\delta) - F(a) \right).$$

Аналогично определяется интеграл от функции с разрывом на левом конце отрезка:

$$\int_{a}^{b} f(x) dx = \lim_{\delta \to +0} \int_{a+\delta}^{b} f(x) dx,$$
(27)

если функция f непрерывна на промежутке (a;b] и $\lim_{x\to a+0} f(x)=\infty$. Если функция f имеет разрыв в некоторой внутренней точке отрезка

Если функция f имеет разрыв в некоторой внутренней точке отрезка $c \in (a;b)$, то

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx,$$
(28)

причём интеграл (28) считается сходящимся, если сходятся оба интеграла в правой части, понимаемые в смысле формул (27) и (27).

Для определения факта сходимости или расходимости несобственного интеграла удобно пользоваться эталонным интегралом:

$$\int_{a}^{b} \frac{dx}{(x-a)^{\alpha}} \quad (a > 0, \ \alpha > 0) \qquad \left[\begin{array}{c} \text{сходится, если } \alpha < 1 \\ \text{расходится, если } \alpha \geqslant 1. \end{array} \right.$$
 (29)

Для несобственных интегралов второго рода можно применять признаки сходимости аналогичные признакам сходимости для несобственных интегралов первого рода. Понятие абсолютной и условной сходимости также определяется по аналогии с интегралами первого рода.

3.2 Задачи на интегралы второго рода

3.2.1 Нахождение значений несобственных интегралов

$$1. \quad I = \int_{5}^{+\infty} \frac{dx}{x \ln x} \,.$$

Решение. Несобственный интеграл первого рода вычисляем по формуле 22:

$$I = \lim_{b \to +\infty} \int_{5}^{b} \frac{dx}{x \ln x} = \lim_{b \to +\infty} \int_{5}^{b} \frac{d(\ln x)}{\ln x} = \lim_{b \to +\infty} \left(\ln \ln x \Big|_{5}^{b}\right) =$$
$$= \lim_{b \to +\infty} \ln \left(\ln b\right) - \ln \ln 5 = +\infty.$$

Таким образом, интеграл I является расходящимся.

2.
$$I = \int_{-\infty}^{+\infty} \frac{dx}{x^2 + 2x + 2}$$

I является интегралом несобственным первого рода. Применим формулу (24):

$$I = \int_{-\infty}^{0} \frac{dx}{x^2 + 2x + 2} + \int_{0}^{+\infty} \frac{dx}{x^2 + 2x + 2} = \lim_{a \to -\infty} \int_{a}^{0} \frac{dx}{x^2 + 2x + 2} + \lim_{b \to +\infty} \int_{0}^{b} \frac{dx}{x^2 + 2x + 2} = \lim_{a \to -\infty} \int_{a}^{0} \frac{dx}{(x+1)^2 + 1} + \lim_{b \to +\infty} \int_{0}^{b} \frac{dx}{(x+1)^2 + 1} = \lim_{a \to -\infty} \left| \arcsin(x+1) \right|_{a}^{0} + \lim_{b \to +\infty} \left| \arctan(x+1) \right|_{0}^{b} = 0 - \left(-\frac{\pi}{2} \right) + \frac{\pi}{2} - 0 = \pi.$$

Таким образом, в этом примере несобственный интеграл является сходящимся.

$$3. \quad I = \int_{0}^{1} \frac{dx}{\sqrt{x}} \, .$$

Решение. Данный интеграл является несобственным интегралом второго рода, поскольку $f(x) = \frac{1}{\sqrt{x}} \xrightarrow[x \to +0]{} +\infty$. Применяем формулу (27):

$$I = \lim_{\delta \to +0} \int_{\delta}^{1} \frac{dx}{\sqrt{x}} = \lim_{\delta \to +0} \left(2\sqrt{x} \Big|_{\delta}^{1} \right) = 2 - \lim_{\delta \to +0} 2\sqrt{\delta} = 2.$$

4.
$$I = \int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$$
.

Решение. Поскольку $f(x) = \frac{1}{\sqrt{1-x^2}} \xrightarrow[x\to 1-0]{} +\infty$, I относится к несобственным интегралам второго рода. Применим формулу (26):

$$I = \lim_{\delta \to +0} \int_{0}^{1-\delta} \frac{dx}{\sqrt{1-x^2}} = \lim_{\delta \to +0} \left(\arcsin x \Big|_{0}^{1-\delta} \right) = \lim_{\delta \to +0} \arcsin(1-\delta) - 0 =$$
$$= \arcsin 1 = \frac{\pi}{2}.$$

3.2.2 Исследование несобственных интегралов на сходимость

Исследовать на сходимость интеграл

$$I = \int_{1}^{+\infty} \frac{dx}{x^8 + 1} \,.$$

Решение. Прямое вычисление интеграла, хотя и возможно, довольно затруднено, поскольку разложение дроби на сумму простейших оказывается достаточно непростой задачей. Однако на вопрос о сходимости интеграла можно ответить на основании признаков сходимости. Очевидно, что

$$\forall x \in [1; +\infty) \qquad \frac{1}{x^8 + 1} < \frac{1}{x^8}.$$

Согласно формуле (25) интеграл $\int_{1}^{+\infty} \frac{dx}{x^8}$ сходится ($\alpha=8>1$). Поэтому на основании первого признака сходимости заключаем, что интеграл I сходится. К такому же выводу можно было бы придти, применив второй признак сходимости.

Задачи для самостоятельного решения

Вычислить несобственные интегралы или установить их расходимость.

$$1. \int\limits_{2}^{+\infty} \frac{dx}{x\sqrt{\ln^3 x}};$$

$$4.\int\limits_{-\infty}^{+\infty}\frac{dx}{x^2+4x+9}$$

4.
$$\int_{-\infty}^{+\infty} \frac{dx}{x^2 + 4x + 9}$$
; 7. $\int_{-3}^{-1} \frac{dx}{\sqrt[3]{(x+2)^2}} dx$;

$$2. \int\limits_{2}^{+\infty} \frac{xdx}{x^2 - 1};$$

$$5. \int_{0}^{1} \frac{dx}{x};$$

8.
$$\int_{-1}^{0} \frac{x dx}{1+x}$$
.

3.
$$\int_{1}^{+\infty} \frac{dx}{\sqrt{3x+5}};$$

$$\mathbf{6.} \int_{1}^{\frac{1}{e}} \frac{dx}{x \ln^2 x};$$

Исследовать на сходимость:

9.
$$\int_{1}^{+\infty} \frac{e^{-x^2}}{x^2} dx$$
.

Ответы:

3. расходится;

6. расходится;

1.
$$\frac{2}{\sqrt{\ln 2}}$$
;

4.
$$\frac{\pi\sqrt{5}}{5}$$
;

7. 6;

2. расходится;

5. расходится;

9. сходится.

8. расходится;

Задачи для самоконтроля

$$1. \int\limits_{2}^{+\infty} \frac{dx}{x^2} \,;$$

$$4. \int_{-\infty}^{-3} \frac{dx}{x+2};$$

$$7. \int_{0}^{1} \frac{dx}{x + \sqrt{x}} \, dx;$$

$$2. \int_{0}^{+\infty} \sin 2x \ dx;$$

$$\mathbf{5.} \int\limits_{0}^{+\infty} x 2^{-x} dx;$$

$$\mathbf{8.} \int_{0}^{+\infty} \operatorname{tg} x \, dx;$$

$$3. \int_{1}^{+\infty} e^{-3x} dx;$$

$$\mathbf{6.} \int\limits_{0}^{+\infty} \frac{\arctan x}{x^2 + 1} \, dx;$$

54

9.
$$\int_{-2}^{0} \frac{dx}{(x+1)\sqrt[3]{x+1}};$$

10.
$$\int_{0}^{e} \frac{dx}{e^{x}-1}$$
;

12.
$$\int_{0}^{2} \frac{dx}{\sqrt[3]{x-1}};$$

14.
$$\int_{0}^{1} \frac{\arcsin x}{\sqrt{1-x^2}} dx;$$

11.
$$\int_{0}^{3} \frac{dx}{(x-1)^2}$$
;

13.
$$\int_{0}^{\frac{1}{2}} \frac{dx}{x \ln^2 x}$$
;

15.
$$\int_{0}^{1} x^{2} \ln x \, dx.$$

Содержание

1	Hec	пределённый интеграл	3
	1.1	Краткие сведения	3
		1.1.1 Определения	3
		1.1.2 Свойства неопределённых интегралов	3
		1.1.3 Таблица неопределённых интегралов	3
	1.2	Основные методы интегрирования	4
		1.2.1 Непосредственное интегрирование (метод разложения)	4
		1.2.2 Интегрирование заменой переменной	7
		1.2.3 Интегрирование по частям	12
	1.3	Классы интегрируемых функций	18
		1.3.1 Рациональные дроби	18
		1.3.2 Интегрирование тригонометрических выражений	26
		1.3.3 Интегрирование иррациональных функций	31
		1.3.4 Интегрирование различных функций (итоговое по-	
		вторение)	35
	1.4	Типовые варианты контрольной работы	36
2	Определённый интеграл		
	2.1	Основные теоретические сведения	37
		2.1.1 Понятие определённого интеграла	37
		2.1.2 Геометрический смысл интеграла	38
		2.1.3 Основные свойства определённого интеграла	38
	2.2	Методы вычисления определённого интеграла	39
		2.2.1 Формула Ньютона-Лейбница	39
		2.2.2 Замена переменной в определённом интеграле	42
		2.2.3 Интегрирование по частям в определённом интеграле.	46
3	Несобственные интегралы		48
	3.1	Краткие теоретические сведения	48
		3.1.1 Несобственные интегралы первого рода	48
		3.1.2 Несобственные интегралы второго рода	50
	3.2	Задачи на интегралы второго рода	52
		3.2.1 Нахождение значений несобственных интегралов	52
		3.2.2 Исследование несобственных интегралов на сходимость	53
		3.2.3 Задачи для самостоятельного решения	54

Кафедра математики

Интегралы функций одной переменной: методические указания

Климовицкая Наталия Михайловна Алексей Андреевич Груздков

Отпечатано с оригинал-макета. Формат 60×90 1/16 Печ. л. 3,75. Тираж 100 экз.

Санкт-Петербургский государственный технологический институт (Технический университет)

190013, Санкт-Петербург, Московский пр., 26

Типография изд. СПбГТИ(ТУ), тел.: 4949365