Proof of Belief Convergence and Other Discoveries

Weakly Connected - Classic Update

Bernardo Amorim

Universidade Federal de Minas Gerais

May 21, 2020

U F <u>m</u> G

min^t and max^t definition

Definition

Let's call min^t and max^t the minimum and maximum of the beliefs in time t over all agents, respectively. Thus:

$$min^t = \min_{a_i \in A} Bel_p^t(a_i)$$
 and $max^t = \max_{a_i \in A} Bel_p^t(a_i)$

Useful lemmas

Lemma

$$\forall t$$
, $min^{t+1} \geq min^t$ and $max^{t+1} \leq max^t$

Useful lemmas

Lemma

$$\forall t, \min^{t+1} \geq \min^t \text{ and } \max^{t+1} \leq \max^t$$

• This means that both *min* and *max* are monotonic, and since those are also bounded, according to the Monotonic Convergence Theorem, this implies that they converge.

Useful lemmas

Lemma

$$\forall t, \min^{t+1} \geq \min^t \text{ and } \max^{t+1} \leq \max^t$$

• This means that both *min* and *max* are monotonic, and since those are also bounded, according to the Monotonic Convergence Theorem, this implies that they converge.

Lemma

$$\lim_{t\to\infty} \min^t = L \text{ and } \lim_{t\to\infty} \max^t = U \text{ for some } L, \ U \in [0,1].$$

Proof main idea

• Our proof relies on the fact that all beliefs converge to the same value if and only if L=U.

Proof main idea

- Our proof relies on the fact that all beliefs converge to the same value if and only if L=U.
- Thus must show that L=U, otherwise a situation like this could occur:

Proof main idea

- Our proof relies on the fact that all beliefs converge to the same value if and only if L=U.
- Thus must show that L = U, otherwise a situation like this could occur:

Definition

Let's denote by $P(a_i o a_j)$ a path from a_i to a_j and let's call $|P(a_i o a_j)|$ the size of this path.

Definition

Let's denote by $P(a_i o a_j)$ a path from a_i to a_j and let's call $|P(a_i o a_j)|$ the size of this path.

Definition

Let's call a_*^t an agent that holds the belief min^t in the time t.

Definition

Let's denote by $P(a_i o a_j)$ a path from a_i to a_j and let's call $|P(a_i o a_j)|$ the size of this path.

Definition

Let's call a_*^t an agent that holds the belief min^t in the time t.

Theorem

 $\forall t \text{ and } \forall a_i \in A$:

$$Bel_p^{t+|P(a_*^t o a_i)|}(a_i) \leq max^t - \delta^t$$
, with $\delta^t = \left(\frac{In_{min}}{|A|}\right)^{|P(a_*^t o a_i)|}.(U-L).$

• The theorem states that the influence exerted by a_*^t guarantees that, by the time $t + |P(a_*^t, a_i)|$, the belief of any agent a_i is smaller than max^t by a factor of at least δ^t .

• The theorem states that the influence exerted by a_*^t guarantees that, by the time $t + |P(a_*^t \to a_i)|$, the belief of any agent a_i is smaller than max^t by a factor of at least δ^t .

• The theorem states that the influence exerted by a_*^t guarantees that, by the time $t + |P(a_*^t, a_i)|$, the belief of any agent a_i is smaller than max^t by a factor of at least δ^t .

• The theorem states that the influence exerted by a_*^t guarantees that, by the time $t + |P(a_*^t, a_i)|$, the belief of any agent a_i is smaller than max^t by a factor of at least δ^t .

• The theorem states that the influence exerted by a_*^t guarantees that, by the time $t + |P(a_*^t, a_i)|$, the belief of any agent a_i is smaller than max^t by a factor of at least δ^t .

One problem

ullet We now know that every agent is influenced by a factor of δ^t .

One problem

- We now know that every agent is influenced by a factor of δ^t .
- But it does not convey us much information, because each one of them is influenced in a different time.

One problem

- We now know that every agent is influenced by a factor of δ^t .
- But it does not convey us much information, because each one of them is influenced in a different time.
- To solve this we can use two important pieces of information to acquire an idea about the agents belief in the same time step.

Lemma

$$\forall a_i, a_j \in A, |P(a_i \rightarrow a_j)| \leq |A| - 1.$$

Lemma

$$\forall a_i, a_j \in A, |P(a_i \rightarrow a_j)| \leq |A| - 1.$$

• Thus, any agent a_i will be influenced by a_*^t in |A|-1 steps maximum.

• An agent is influenced by what it believed in the past.

- An agent is influenced by what it believed in the past.
- Thus, although every agent receives the influence of a_*^t in a different time step, all of them are still influenced by it at time t + |A| 1.

- An agent is influenced by what it believed in the past.
- Thus, although every agent receives the influence of a_*^t in a different time step, all of them are still influenced by it at time t + |A| 1.

Definition

$$\textit{In}_{\textit{min}} = \min_{\substack{a_i, a_j \in A \ \land \ \textit{In}(a_i, a_j) \neq 0}} \textit{In}(a_i, a_j)$$

Definition

$$In_{min} = \min_{\substack{a_i, a_j \in A \ \land \ In(a_i, a_j) \neq 0}} In(a_i, a_j)$$

Theorem

$$\forall a_i \in A: max^t - \epsilon \geq Bel_p^{t+|A|-1}(a_i), with \epsilon = \left(\frac{ln_{min}}{|A|}\right)^{|A|-1}.(U-L).$$

Definition

$$\textit{In}_{\textit{min}} = \min_{\substack{a_i, a_j \in A \ \land \ \textit{In}(a_i, a_j) \neq 0}} \textit{In}(a_i, a_j)$$

Theorem

$$orall a_i \in A: \ max^t - \epsilon \geq Bel_p^{t+|A|-1}(a_i), \ with \ \epsilon = \left(rac{ln_{min}}{|A|}
ight)^{|A|-1}.(U-L).$$

Intuition:

Definition

$$In_{min} = \min_{\substack{a_i, a_j \in A \ \land \ In(a_i, a_j) \neq 0}} In(a_i, a_j)$$

Theorem

$$orall a_i \in A: \ max^t - \epsilon \geq Bel_p^{t+|A|-1}(a_i), \ with \ \epsilon = \left(rac{ln_{min}}{|A|}
ight)^{|A|-1}.(U-L).$$

- Intuition:
 - Every agent a_i was influenced by a_*^t in some time step between t and t + |A| 1.

Definition

$$In_{min} = \min_{\substack{a_i, a_j \in A \ \land \ In(a_i, a_j) \neq 0}} In(a_i, a_j)$$

Theorem

$$orall a_i \in A: \; max^t - \epsilon \geq Bel_p^{t+|A|-1}(a_i), \; with \; \epsilon = \left(rac{In_{min}}{|A|}
ight)^{|A|-1}.(U-L).$$

- Intuition:
 - ▶ Every agent a_i was influenced by a_*^t in some time step between t and t + |A| 1.
 - Since every agent influences itself throughout time, we can find an *constant* ϵ which is a common factor of influence of a_*^t over every agent in the time t + |A| 1.

$$\epsilon = \left(\frac{\ln_{min}}{|A|}\right)^{|A|-1}.(U-L)$$

$$\epsilon = \left(\frac{In_{min}}{|A|}\right)^{|A|-1}.(U-L)$$

• Intuition:

$$\epsilon = \left(\frac{In_{min}}{|A|}\right)^{|A|-1}.(U-L)$$

- Intuition:
 - In the worst case, a_*^t influences by the smallest amount possible, which is In_{min} .

$$\epsilon = \left(\frac{\ln_{min}}{|A|}\right)^{|A|-1}.(U-L)$$

- Intuition:
 - In the worst case, a_*^t influences by the smallest amount possible, which is In_{min} .
 - ▶ In a larger society, an agent alone has less influence over other agents belief or even on its own, and $\frac{1}{|A|}$ represents that.

$$\epsilon = \left(\frac{\ln_{min}}{|A|}\right)^{|A|-1}.(U-L)$$

Intuition:

- In the worst case, a_*^t influences by the smallest amount possible, which is In_{min} .
- ▶ In a larger society, an agent alone has less influence over other agents belief or even on its own, and $\frac{1}{|A|}$ represents that.
- ▶ The maximum an influence must travel to reach an agent is |A|-1 which is the exponent in the formula.

$$\epsilon = \left(\frac{\ln_{min}}{|A|}\right)^{|A|-1}.(U-L)$$

- Intuition:
 - ► The influence is proportional to the difference between the limits of max and min, named U and L.

$$\epsilon = \left(\frac{\ln_{min}}{|A|}\right)^{|A|-1}.(U-L)$$

Intuition:

- ► The influence is proportional to the difference between the limits of max and min, named U and L.
- Even when min_t is closer to max_t (which happens when $min_t = L$ and $max_t = U$), a_*^t still influences the agent that holds the belief max_t .

What is ϵ ?

$$\epsilon = \left(\frac{\ln_{min}}{|A|}\right)^{|A|-1}.(U-L)$$

Intuition:

- ► The influence is proportional to the difference between the limits of max and min, named U and L.
- ▶ Even when min_t is closer to max_t (which happens when $min_t = L$ and $max_t = U$), a_*^t still influences the agent that holds the belief max_t .
- ightharpoonup This is the "worst case scenario", thus this ϵ that holds in every case.

Corollary 4

• Every agent is influenced, after |A|-1 time steps, by a factor of ϵ .

Corollary 4

- Every agent is influenced, after |A|-1 time steps, by a factor of ϵ .
- $max_{t+|A|-1}$ must be one of these beliefs, thus:

Corollary 4

- Every agent is influenced, after |A|-1 time steps, by a factor of ϵ .
- $max_{t+|A|-1}$ must be one of these beliefs, thus:

Corollary

$$\max^t - \epsilon \geq \max^{t+|A|-1}$$
.

• An observation is sufficient to end our proof.

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.
- But this leads us to a contradiction:

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.
- But this leads us to a contradiction:
 - ▶ We can reduce *max* until it gets smaller than 0.

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.
- But this leads us to a contradiction:
 - ▶ We can reduce *max* until it gets smaller than 0.
 - ▶ Which contradicts the definition of belief.

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.
- But this leads us to a contradiction:
 - ▶ We can reduce max until it gets smaller than 0.
 - Which contradicts the definition of belief.
- Denoting by a_{**}^t an agent who holds the belief \max_t in the time t, n=|A|-1 and $m=\left(\left\lceil\frac{1}{\epsilon}\right\rceil+1\right)$:

- An observation is sufficient to end our proof.
- Assuming that $L \neq U$ implies that ϵ is positive.
- But this leads us to a contradiction:
 - ▶ We can reduce max until it gets smaller than 0.
 - ▶ Which contradicts the definition of belief.
- Denoting by a_{**}^t an agent who holds the belief max_t in the time t, n=|A|-1 and $m=\left(\left\lceil\frac{1}{\epsilon}\right\rceil+1\right)$:

• Since assuming $L \neq U$ led us to a contradiction: L = U.

• Since assuming $L \neq U$ led us to a contradiction: L = U.

Theorem

$$\underset{t \to \infty}{\lim} \max^t = \underset{t \to \infty}{\lim} \min^t$$

Theorem

$$\forall a_i, a_j \in A : \lim_{t \to \infty} Bel_p^t(a_i) = \lim_{t \to \infty} Bel_p^t(a_j)$$

Theorem

$$\forall a_i, a_j \in A : \lim_{t \to \infty} Bel_p^t(a_i) = \lim_{t \to \infty} Bel_p^t(a_j)$$

Proof.

For every a_i : $\lim_{t\to\infty} \min^t \leq \lim_{t\to\infty} Bel_p^t(a_i) \leq \lim_{t\to\infty} \max^t$.

Theorem

$$\forall a_i, a_j \in A : \lim_{t \to \infty} Bel_p^t(a_i) = \lim_{t \to \infty} Bel_p^t(a_j)$$

Proof.

For every a_i : $\lim_{t\to\infty} \min^t \leq \lim_{t\to\infty} Bel_p^t(a_i) \leq \lim_{t\to\infty} \max^t$.

We can then use the Squeeze Theorem to show that for every a_i : $\lim_{t\to\infty} Bel_p^t(a_i)=U$.

• I tried changing this proof so it also holds for confirmation-bias.

- I tried changing this proof so it also holds for confirmation-bias.
- When $0 \neq f_{confbias}$ the proof is basically the same but with a new constant, f_{cbmin} .

- I tried changing this proof so it also holds for confirmation-bias.
- When $0 \neq f_{confbias}$ the proof is basically the same but with a new constant, f_{cbmin} .
- \bullet This constant has the same role as In_{min} in the proof showed above.

• Although when $f_{confbias} \neq 0$ the proofs are pretty similar, there are corner cases we must address:

- Although when $f_{confbias} \neq 0$ the proofs are pretty similar, there are corner cases we must address:
 - ▶ Case 1: Every agent has belief either 0 or 1 in time t = 0.

- Although when $f_{confbias} \neq 0$ the proofs are pretty similar, there are corner cases we must address:
 - ▶ Case 1: Every agent has belief either 0 or 1 in time t = 0.
 - ★ In this case beliefs converge trivially, but not to the same value.

- Although when $f_{confbias} \neq 0$ the proofs are pretty similar, there are corner cases we must address:
 - ▶ Case 1: Every agent has belief either 0 or 1 in time t = 0.
 - ★ In this case beliefs converge trivially, but not to the same value.
 - ▶ Case 2: Exits some agent a_k that has belief $B \neq 0$ and $B \neq 1$.

- Although when $f_{confbias} \neq 0$ the proofs are pretty similar, there are corner cases we must address:
 - ▶ Case 1: Every agent has belief either 0 or 1 in time t = 0.
 - ★ In this case beliefs converge trivially, but not to the same value.
 - ▶ Case 2: Exits some agent a_k that has belief $B \neq 0$ and $B \neq 1$.
 - ★ We can use same technique used with a_* in the proof above.

- Although when $f_{confbias} \neq 0$ the proofs are pretty similar, there are corner cases we must address:
 - ▶ Case 1: Every agent has belief either 0 or 1 in time t = 0.
 - ★ In this case beliefs converge trivially, but not to the same value.
 - ▶ Case 2: Exits some agent a_k that has belief $B \neq 0$ and $B \neq 1$.
 - ★ We can use same technique used with a_* in the proof above.
 - ★ Tracing the influence of a_k to every agent guarantees that no longer exists $f_{confbias} = 0$, and then we fall on the general case.

Generalizing: All graphs

• I have some ideas for generalizing this proof for <u>all graphs</u>, although there are many parts missing.

Generalizing: All graphs

- I have some ideas for generalizing this proof for <u>all graphs</u>, although there are many parts missing.
- The idea is, for short, to use the proof showed above in weakly connected subgraphs and thus guaranteeing conversion of each subgraph.

Generalizing: Backfire-Effect

• Unfortunately, I think that none of what was used above can also be used for the backfire-effect.

Generalizing: Backfire-Effect

- Unfortunately, I think that none of what was used above can also be used for the backfire-effect.
- Experiments showed that, under the backfire-effect update function, *min* and *max* are not monotonic.

Generalizing: Backfire-Effect

- Unfortunately, I think that none of what was used above can also be used for the backfire-effect.
- Experiments showed that, under the backfire-effect update function, *min* and *max* are not monotonic.
- Since this property is crucial for the proof showed above, I don't think that this is the way to prove convergence in this case.

• In a clique, the sum of the beliefs does not change throughout time under the classic update function. (proved)

- In a clique, the sum of the beliefs does not change throughout time under the classic update function. (proved)
- In a clique, the beliefs of the agents converge to their average under the classic update function. (proved)

- In a clique, the sum of the beliefs does not change throughout time under the classic update function. (proved)
- In a clique, the beliefs of the agents converge to their average under the classic update function. (proved)
- In a clique, under the classic update function, the speed of convergence is directly proportional to the influence. (proved)

- In a clique, the sum of the beliefs does not change throughout time under the classic update function. (proved)
- In a clique, the beliefs of the agents converge to their average under the classic update function. (proved)
- In a clique, under the classic update function, the speed of convergence is directly proportional to the influence. (proved)
- In some graphs, the initial belief of some agents does not affect their own belief in the limit. (found via experiments).

- In a clique, the sum of the beliefs does not change throughout time under the classic update function. (proved)
- In a clique, the beliefs of the agents converge to their average under the classic update function. (proved)
- In a clique, under the classic update function, the speed of convergence is directly proportional to the influence. (proved)
- In some graphs, the initial belief of some agents does not affect their own belief in the limit. (found via experiments).
- In the graph "unrelenting influencers" the belief in the limit seems to be equal to the average of the beliefs of the influencers weighted by it's influence (found via experiments).