

Date: 05 Mar 2020 1 of 8

Indicated Contraindicated

Sample Information

Patient Name: 尹正文

Gender: M

ID No.: \$120840506 History No.: 44215761

Age: 51

Ordering Doctor: DOC6273E 葉雲凱

Ordering REQ.: 0APXGTT Signing in Date: 2020/03/05

Path No.: \$109-99206 **MP No.:** F2002

Assay: Oncomine Focus Assay

Sample Type: FFPE Block No.: \$109-06420A Percentage of tumor cells: 60%

Note:

Sample Cancer Type: Non-Small Cell Lung Cancer

Table of Contents	Page	Report Highlights
Variant Details	2	2 Clinically Significant Biomarkers
Biomarker Descriptions	3	1 Therapies Available
Relevant Therapy Summary	4	28 Clinical Trials
Relevant Therapy Details	5	

Relevant Non-Small Cell Lung Cancer Findings

Gene	Finding	Gene	Finding
ALK	Not detected	MET	Not detected
BRAF	Not detected	NTRK1	Not detected
EGFR	Not detected	NTRK3	Not detected
ERBB2	ERBB2 exon 20 insertion	RET	Not detected
KRAS	Not detected	ROS1	Not detected

Clinically Significant Biomarkers

Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
ado-trastuzumab emtansine	None	24
	(In this cancer type)	(In this cancer type) (In other cancer type)

Sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tel: 02-2875-7449

Date: 05 Mar 2020 2 of 8

Indicated Contraindicated

Clinically Significant Biomarkers (continued)

Relevant Therapies (In this cancer type)	Relevant Therapies (In other cancer type)	Clinical Trials
None	None	4

MYC proto-oncogene, bHLH transcription factor

Tier: IIC

Genomic Alteration

MYC amplification

Sources included in relevant therapies: FDA1, NCCN, EMA2, ESMO

Tier Criteria Met

Genomic Alteration	Tier Classification for Non-Small Cell Lung Cancer
ERBB2 exon 20 insertion Tier: IA	IA: Biomarker is included in NCCN or ESMO guidelines that predict response or resistance to therapies in this cancer typeIIC: Biomarker is an inclusion criteria for clinical trials
MYC amplification Tier: IIC	IIC: Biomarker is an inclusion criteria for clinical trials

Reference: Li et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017 Jan;19(1):4-23.

Variant Details

DNA Sequence Variants Allele Gene **Amino Acid Change** Variant ID Variant Effect Coverage Coding Locus Transcript Frequency c.2324_2325insATAC COSM20959 FRBB2 p.(E770_A771insAYV chr17:37880981 NM_004448.3 28.34% nonframeshift 1976 **GTGATGGC** Insertion JAK1 p.(=)c.2199A>G chr1:65310489 47.34% NM_002227.3 synonymous 1996 ALK p.(D1529E) c.4587C>G chr2:29416366 100.00% NM_004304.4 missense 1999 ALK p.(I1461V) c.4381A>G chr2:29416572 99.85% NM_004304.4 missense 1997 ALK chr2:29445458 NM 004304.4 c.3375C>A 100.00% 1994 p.(=)svnonvmous FGFR3 c.1953G>A chr4:1807894 99.80% NM_000142.4 1994 p.(=)synonymous **PDGFRA** p.(=)c.939T>G chr4:55133726 18.73% NM_006206.5 synonymous 1997 p.(=)chr4:55141055 1998 **PDGFRA** c.1701A>G 99.85% NM 006206.5 synonymous **PDGFRA** p.(=)c.2472C>T chr4:55152040 20.15% NM_006206.5 synonymous 2000 FGFR4 p.(P136L) 1999 c.407C>T chr5:176517797 99.50% NM_213647.2 missense FGFR4 p.(G544R) c.1630G>A chr5:176522441 28.86% NM_213647.2 missense 1999 **EGFR** p.(=)c.2361G>A chr7:55249063 51.80% NM_005228.4 synonymous 2000 1999 c.2307G>T chr10:43613843 49.12% NM_020975.4 RET p.(=)synonymous

Disclaimer: The data presented here is a result of the curation of published data sources, but may not be exhaustive. The data version is 2019.12(005).

Tel: 02-2875-7449

Date: 05 Mar 2020 3 of 8

Variant Details (continued)

DNA Sequence Variants (continued)

			Allele					
Gene	Amino Acid Change	Coding	Variant ID	Locus	Frequency	Transcript	Variant Effect	Coverage
RET	p.(=)	c.2712C>G		chr10:43615633	49.55%	NM_020975.4	synonymous	1998

Copy Number V	ariations	
Gene	Locus	Copy Number
MYC	chr8:128748885	6.22

Biomarker Descriptions

ERBB2 (erb-b2 receptor tyrosine kinase 2)

Background: The ERBB2 gene encodes the erb-b2 receptor tyrosine kinase 2, a member of the human epidermal growth factor receptor (HER) family. Along with ERBB2/HER2, EGFR/ERBB1/HER1, ERBB3/HER3, and ERBB4/HER4 make up the HER protein family¹. All ERBB/HER proteins encode transmembrane receptor tyrosine kinases. However, ERBB2/HER2 is an orphan receptor with no known ligand. ERBB2 preferentially binds other ligand bound ERBB/HER family members to form hetero-dimers resulting in the activation of ERBB2 tyrosine kinase activity and subsequent activation of the PI3K/AKT/MTOR and RAS/RAF/MAPK/ERK signaling pathways which promote cell proliferation, differentiation, and survival². Recurrent focal amplification of the ERBB2 gene leads to increased expression in several cancer types. ERBB2 over-expression in immortalized cell lines is oncogenic and leads to ERBB2 homo-dimerization and activation without ligand binding³.4.5.

Alterations and prevalence: ERBB2 gene amplification occurs in 10-20% of breast, esophageal, and gastric cancers, 5-10% of bladder, cervical, pancreas, and uterine cancers, and 1-5% of colorectal, lung, and ovarian cancers^{6,7,8,9,10,11,12,13}. Recurrent somatic activating mutations in ERBB2/HER2 occur at low frequencies (<1%) in diverse cancer types^{13,14,15}. In breast, bladder, and colorectal cancers, the most common recurrent ERBB2 activating mutations include kinase domain mutations L755S and V777L and the extracellular domain mutation S310F. In lung cancer, the most common recurrent ERBB2 activating mutations include in-frame exon 20 insertions, particularly Y772_A775dup.

Potential clinical relevance: The discovery of ERBB2/HER2 as an important driver of breast cancer in 1987¹⁶ led to the development of trastuzumab, a humanized monoclonal antibody with specificity to the extracellular domain of HER2¹⁷. Trastuzumab¹⁸ was FDA approved for the treatment of HER2 positive breast cancer in 1998, and subsequently in HER2 positive metastatic gastric and gastroesophageal junction adenocarcinoma in 2010. Additional monoclonal antibody therapies have been approved by the FDA for HER2-positive breast cancer including pertuzumab¹⁹ (2012), a humanized monoclonal antibody that inhibits HER2 dimerization, and ado-trastuzumab emtansine²⁰ (2013), a conjugate of trastuzumab and a potent antimicrotubule agent. The combination of pertuzumab, trastuzumab, and a taxane is the preferred front-line regimen for HER2-positive metastatic breast cancer²¹. In addition to monoclonal antibodies, the small molecule inhibitor lapatinib²², with specificity for both EGFR and ERBB2, was FDA approved (2007) for the treatment of patients with advanced HER2-positive breast cancer who have received prior therapy including trastuzumab. In 2017, the FDA approved the use of neratinib²³, an irreversible kinase inhibitor of EGFR, ERBB2/HER2, and ERBB4, for the extended adjuvant treatment of adult patients with early stage HER2-positive breast cancer. The novel bispecific antibody ZW25 has been granted fast-track designation (2019) by the FDA for patients with HER2-overexpressing gastroesophageal adenocarcinoma (GEA)²⁴. Certain activating mutations have been observed to impart sensitivity to neratinib, afatinib, lapatinib, and trastuzumab, or dacomitinib in early and ongoing clinical studies^{25,26,27,28,29}. Additionally, acquired HER2 mutations in ER+ breast cancer have been shown to confer resistance to hormone therapy³⁰. However, this was shown to be overcome by neratinib in combination with therapies targeting ER³⁰.

MYC (MYC proto-oncogene, bHLH transcription factor)

<u>Background</u>: The MYC gene encodes the MYC proto-oncogene (c-MYC), a basic helix-loop-helix transcription factor that regulates the expression of numerous genes that control cell cycle progression, apoptosis, metabolic pathways, and cellular transformation^{31,32,33,34}.

Tel: 02-2875-7449

Date: 05 Mar 2020 4 of 8

Biomarker Descriptions (continued)

MYC is part of the MYC oncogene family that includes related transcription factors MYCN and MYCL that regulate transcription in 10-15% of promoter regions³⁵. MYC functions as a heterodimer in complex with the transcription factor MAX^{32,36}.

Alterations and prevalence: Recurrent somatic alterations are observed in both solid and hematological cancers. Recurrent somatic mutations in MYC, including codon T58, are infrequent and hypothesized to increase the stability of the MYC protein^{37,38}. MYC gene amplification is particularly common in diverse solid tumors. MYC amplification is observed in 30% of serous ovarian cancer, 20% of uterine serous carcinoma, 15% of esophageal and breast cancers, and is common (1-10%) in numerous other cancer types^{13,39,40}. MYC is the target of the t(8;14)(q24;32) chromosomal translocation in Burkitt's lymphoma that places MYC coding sequences adjacent to immunoglobulin region regulatory sequences, which results in increased MYC expression^{41,42}.

Potential clinical relevance: Currently, no therapies are approved for MYC aberrations. Due to the high frequency of somatic MYC alterations in cancer, many approaches are being investigated in clinical trials including strategies to disrupt complex formation with MAX, including inhibition of MYC expression and synthetic lethality associated with MYC overexpression^{31,43,44,45}.

Relevant Therapy Summary

FRRR2 evon 20 insertion

In this cancer type In other cancer type	In this cancer type and other cancer types	Ontraindicated	Both for use and contraindicated	X No evidence
--	--	----------------	----------------------------------	---------------

ERBB2 exon 20 insertion					
Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
ado-trastuzumab emtansine	×	•	×	×	(II)
afatinib	×	×	×	×	(II)
chemotherapy, pertuzumab, trastuzumab	×	×	×	×	(II)
chemotherapy, targeted therapy	×	×	×	×	(II)
lapatinib	×	×	×	×	(II)
neratinib, trastuzumab	×	×	×	×	(II)
pertuzumab + trastuzumab	×	×	×	×	(II)
pertuzumab, trastuzumab	×	×	×	×	(II)
poziotinib	×	×	×	×	(II)
pyrotinib	×	×	×	×	(II)
RC-48	×	×	×	×	(II)
sintilimab	×	×	×	×	(II)
tarloxotinib	×	×	×	×	(II)
trastuzumab deruxtecan	×	×	×	×	(II)
anlotinib hydrochloride, CBT-502	×	×	×	×	(1/11)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Tel: 02-2875-7449

Date: 05 Mar 2020 5 of 8

Relevant Therapy Summary (continued)

In this cancer type O In other cancer type

In this cancer type and other cancer types

Contraindicated

A Both for use and contraindicated

X No evidence

ERBB2 exon 20 insertion (continued)

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
DZD-9008	×	×	×	×	(/)
TAK788	×	×	×	×	(I/II)
everolimus + neratinib, neratinib + palbociclib, neratinib + trametinib	×	×	×	×	• (1)
pirotinib	×	×	×	×	(I)

MYC amplification

Relevant Therapy	FDA	NCCN	EMA	ESMO	Clinical Trials*
prexasertib	×	×	×	×	(II)
VX-970	×	×	×	×	(II)
entinostat, nivolumab	×	×	×	×	(/)
BMS-986158	×	×	×	×	(1)

^{*} Most advanced phase (IV, III, II/III, II, I/II, I) is shown and multiple clinical trials may be available.

Relevant Therapy Details

Current NCCN Information

In this cancer type and other cancer types

Contraindicated

Not recommended

Resistance

NCCN information is current as of 2019-08-15. For the most up-to-date information, search www.nccn.org. For NCCN International Adaptations & Translations, search www.nccn.org/global/international_adaptations.aspx.

ERBB2 exon 20 insertion

ado-trastuzumab emtansine

Variant class: ERBB2 mutation Cancer type: Non-Small Cell Lung Cancer

NCCN Recommendation category: 2A

Population segment (Line of therapy):

Non-Small Cell Lung Cancer; Emerging targeted agents

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 7.2019]

Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 05 Mar 2020 6 of 8

ERBB2 exon 20 insertion (continued)

afatinib

Cancer type: Non-Small Cell Lung Cancer Variant class: ERBB2 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"The NCCN NSCLC Panel does not recommend single-agent therapy with trastuzumab or afatinib (both for HER2 mutations), because response rates are lower and treatment is less effective when these agents are used for patients with HER2 mutations."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 7.2019]

trastuzumab

Cancer type: Non-Small Cell Lung Cancer Variant class: ERBB2 mutation

Summary:

NCCN Guidelines® include the following supporting statement(s):

"The NCCN NSCLC Panel does not recommend single-agent therapy with trastuzumab or afatinib (both for HER2 mutations), because response rates are lower and treatment is less effective when these agents are used for patients with HER2 mutations."

Reference: NCCN Guidelines® - NCCN-Non-Small Cell Lung Cancer [Version 7.2019]

Signatures

Testing Personnel:	
Laboratory Supervisor:	
Pathologist:	

Tel: 02-2875-7449

Date: 05 Mar 2020 7 of 8

References

- 1. King et al. Amplification of a novel v-erbB-related gene in a human mammary carcinoma. Science. 1985 Sep 6;229(4717):974-6. PMID: 2992089
- 2. Gutierrez et al. HER2: biology, detection, and clinical implications. Arch. Pathol. Lab. Med. 2011 Jan;135(1):55-62. PMID: 21204711
- 3. Di et al. erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science. 1987 Jul 10;237(4811):178-82. PMID: 2885917
- 4. Hudziak et al. Increased expression of the putative growth factor receptor p185HER2 causes transformation and tumorigenesis of NIH 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 1987 Oct;84(20):7159-63. PMID: 2890160
- Lonardo et al. The normal erbB-2 product is an atypical receptor-like tyrosine kinase with constitutive activity in the absence of ligand. New Biol. 1990 Nov;2(11):992-1003. PMID: 1983208
- 6. Ciriello et al. Comprehensive Molecular Portraits of Invasive Lobular Breast Cancer. Cell. 2015 Oct 8;163(2):506-19. PMID: 26451490
- 7. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202-9. doi: 10.1038/nature13480. Epub 2014 Jul 23. PMID: 25079317
- 8. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature. 2014 Mar 20;507(7492):315-22. doi: 10.1038/nature12965. Epub 2014 Jan 29. PMID: 24476821
- 9. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012 Jul 18;487(7407):330-7. PMID: 22810696
- 10. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014 Jul 31;511(7511):543-50. doi: 10.1038/nature13385. Epub 2014 Jul 9. PMID: 25079552
- 11. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011 Jun 29;474(7353):609-15. PMID: 21720365
- 12. Weinstein et al. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013 Oct;45(10):1113-20. PMID: 24071849
- 13. Cerami et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012 May;2(5):401-4. PMID: 22588877
- 14. Petrelli et al. Clinical and pathological characterization of HER2 mutations in human breast cancer: a systematic review of the literature. Breast Cancer Res. Treat. 2017 Nov;166(2):339-349. PMID: 28762010
- 15. Bose et al. Activating HER2 mutations in HER2 gene amplification negative breast cancer. Cancer Discov. 2013 Feb;3(2):224-37. doi: 10.1158/2159-8290.CD-12-0349. Epub 2012 Dec 7. PMID: 23220880
- 16. Slamon et al. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987 Jan 9;235(4785):177-82. PMID: 3798106
- 17. Hudis. Trastuzumab--mechanism of action and use in clinical practice. N. Engl. J. Med. 2007 Jul 5;357(1):39-51. PMID: 17611206
- 18. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/103792s5345lbl.pdf
- 19. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/125409s123lbl.pdf
- 20. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/125427s105lbl.pdf
- 21. NCCN Guidelines® NCCN-Breast Cancer [Version 3.2019]
- 22. https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/022059s024lbl.pdf
- 23. https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/208051s004lbl.pdf
- 24. HER2-Targeted Antibody ZW25 Earns FDA Fast Track Designation in GEA. https://www.targetedonc.com/news/her2targeted-antibody-zw25-earns-fda-fast-track-designation-in-gea
- 25. Ma et al. Neratinib Efficacy and Circulating Tumor DNA Detection of HER2 Mutations in HER2 Nonamplified Metastatic Breast Cancer. Clin. Cancer Res. 2017 Oct 1;23(19):5687-5695. PMID: 28679771
- 26. De et al. Clinical activity of afatinib (BIBW 2992) in patients with lung adenocarcinoma with mutations in the kinase domain of HER2/neu. Lung Cancer. 2012 Apr;76(1):123-7. PMID: 22325357

Taipei Veterans General Hospital

Department of Pathology and Laboratory Medicine No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, R.O.C.

Tel: 02-2875-7449

Date: 05 Mar 2020 8 of 8

References (continued)

- 27. Kris et al. Targeting HER2 aberrations as actionable drivers in lung cancers: phase II trial of the pan-HER tyrosine kinase inhibitor dacomitinib in patients with HER2-mutant or amplified tumors. Ann. Oncol. 2015 Jul;26(7):1421-7. PMID: 25899785
- 28. Falchook et al. Non-small-cell lung cancer with HER2 exon 20 mutation: regression with dual HER2 inhibition and anti-VEGF combination treatment. J Thorac Oncol. 2013 Feb;8(2):e19-20. PMID: 23328556
- 29. David et al. Neratinib in HER2- or HER3-mutant solid tumors: SUMMIT, a global, multi-histology, open-label, phase 2 'basket' study. AACR 2017. Abstract CT001
- 30. Nayar et al. Acquired HER2 mutations in ER+ metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat. Genet. 2019 Feb;51(2):207-216. PMID: 30531871
- 31. Chen et al. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct Target Ther. 2018 Feb 23;3:5. doi: 10.1038/s41392-018-0008-7. eCollection 2018. PMID: 29527331
- 32. Dang. MYC on the path to cancer. Cell. 2012 Mar 30;149(1):22-35. PMID: 22464321
- 33. Dominguez-Sola et al. Non-transcriptional control of DNA replication by c-Myc. Nature. 2007 Jul 26;448(7152):445-51. PMID: 17597761
- 34. Wahlström et al. Impact of MYC in regulation of tumor cell metabolism. Biochim. Biophys. Acta. 2015 May;1849(5):563-9. PMID: 25038584
- 35. Dang et al. The c-Myc target gene network. Semin. Cancer Biol. 2006 Aug;16(4):253-64. PMID: 16904903
- 36. Blackwood et al. Myc and Max function as a nucleoprotein complex. Curr. Opin. Genet. Dev. 1992 Apr;2(2):227-35. PMID: 1638116
- 37. Chakraborty et al. A common functional consequence of tumor-derived mutations within c-MYC. Oncogene. 2015 Apr 30;34(18):2406-9. PMID: 24998853
- 38. Xu-Monette et al. Clinical and Biologic Significance of MYC Genetic Mutations in De Novo Diffuse Large B-cell Lymphoma. Clin. Cancer Res. 2016 Jul 15;22(14):3593-605. PMID: 26927665
- 39. Kalkat et al. MYC Deregulation in Primary Human Cancers, Genes (Basel), 2017 May 25:8(6), PMID: 28587062
- 40. Beroukhim et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010 Feb 18;463(7283):899-905. doi: 10.1038/nature08822. PMID: 20164920
- 41. Taub et al. Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7837-41. PMID: 6818551
- 42. Ott et al. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Hematology Am Soc Hematol Educ Program. 2013;2013:575-83. PMID: 24319234
- 43. Posternak et al. Strategically targeting MYC in cancer. F1000Res. 2016;5. PMID: 27081479
- 44. Carabet et al. Therapeutic Inhibition of Myc in Cancer. Structural Bases and Computer-Aided Drug Discovery Approaches. Int J Mol Sci. 2018 Dec 29;20(1). PMID: 30597997
- 45. Shahbazi et al. The Bromodomain Inhibitor JQ1 and the Histone Deacetylase Inhibitor Panobinostat Synergistically Reduce N-Myc Expression and Induce Anticancer Effects. Clin. Cancer Res. 2016 May 15;22(10):2534-44. PMID: 26733615