

ARPA-E: The Importance of Sensor System Innovations to Energy Infrastructure

Dr. Bob Ledoux, Program Director

November 19, 2024

"If you can't measure it, you can't manage it."

Peter Drucker

If you can't manage it, you can't improve it

Importance of Sensors in Nuclear Power

- ▶ Performance
 - High Temperature
 - Radiation Damage
- ► Cost
 - Sensors significant cost
- Power and Connectivity
 - Difficult in core
- Modeling
 - Sensor placement critical
 - Digital Twin for O&M

Program Director: Bob Ledoux

LARGE-AREA QUANTITATIVE MONITORING OF H₂ EMISSIONS

Accurate, sensitive, low-cost H₂ sensors will maximize the climate benefits of the growing H₂ economy

Motivation:

- H₂ production is projected to increase 4-8x globally by 2050
- H₂ is an indirect GHG with 2x the global warming potential of CH₄
- H₂ leaks are likely across multiple use cases

Goal: Develop technologies to detect, quantify (\leq 10 kg/hr), and locate H₂ releases across large area (100 m x 100 m) outdoor environments.

To mitigate emissions from H_2 production, storage and transportation infrastructure, new technologies must integrate three core components:

- Highly sensitive sensors
- Dynamic sampling modalities
- Advanced H₂ emission modeling

Wireless Hydrogen Integrated Sensing via PiezoElectric Resonators and Switches (WHISPERS)

Matteo Rinaldi, Northeastern University (Boston, MA)

Technology Summary

- A network of wireless, always-on nodes to monitor background H₂ concentration for over 5 years
- Dual sensor node: 1) zero-power wake-up switch for activation of the network (10 ppm threshold) 2) Resonant H₂ concentration sensor (10-10,000 ppm range)
- Integration of H₂ concentration with wind measurements to generate a map of H₂ leak through co-variance analysis.

Proposed Specifications

Metric	SoA	Proposed
Cost	\$300 - \$1300	\$50
Power	0.1 - 10 W	$< 10~\mu W$
Size	>1000 cm ³	$< 30 \text{ cm}^3$

Low-cost, miniaturized, and long-lasting sensing network for affordable and large-area H_2 leak detection

Thank You!

February 7, 2025