Exercises on orthogonal vectors and subspaces

January 11, 2017

14.1

We can observe that if we have $y_1 = 1$, $y_2 = 1$ and $y_3 = -1$, then on the left hand, the sum of all equations is 0 because they cancel out, while on the right we get 1.

This is because we can rewrite the second part of Fredholm'sAlternative:

 $y^Tb = 1 = y^T(Ax) = 0$ when there is no solution x

14.2

- (a) Since N(A) is perpendicular to $C(A^T)$, we have $r^T n = 0$. Since $C(A^T)$ is perpendicular to $N(A^T)$, we have $c^T l = 0$. Also, since these vectors are all nonzero vectors while we know that $N(A) + C(A^T) = N(A^T) + C(A) = m = n = 2$ in this case, it leads to m = n = 1.
- (b) c is the basis for columns of A and r is the basis for rows of A. Therefore, A is in the form of cr^T .