Math 231a Problem Set 1

Lev Kruglyak

September 22, 2022

Problem 1. Let Δ be the category of totally ordered finite sets with weakly order preserving maps, and let $\Delta_{\rm inj}$ be the subcategory of Δ with injective order preserving maps. Show the following equivalences of categories:

```
1. \mathbf{sSet} \cong \operatorname{Fun}(\Delta^{\operatorname{op}}, \mathbf{Set}).
```

2. $\mathbf{ssSet} \cong \operatorname{Fun}(\Delta_{\operatorname{inj}}^{\operatorname{op}}, \mathbf{Set}).$

Recall that a simplicial set is a sequence of sets $\{K_i\}_{i\geq 0}$ with face/degeneracy maps s_i, d_j . Given some contravariant functor $F: \Delta \to \mathbf{Set}$, consider the simplicial set $\{F([i])\}_{i=0}$ with face/degeneracy maps $F(d_i)$ and $F(s_i)$, where d_i is the order preserving map skipping i and s_i is the order preserving map doubling up on i. Note that contravariance sends $d_i: [n] \to [n+1]$ to $F(d_i): K_{n+1} \to K_n$ and similarly for s_i . Since F preserves composition, Problem 1 on Problem Set 1 shows that the maps $F(d_i)$ and $F(s_i)$ follow the axioms of a simplicial set. So $\operatorname{Fun}(\Delta^{\operatorname{op}}, \mathbf{Set}) \subset \mathbf{sSet}$. Natural transformations of two functors $F, D: \Delta \to \mathbf{Set}$. Correspond to maps of simplicial sets in the following way: For each i, consider the map $F([i]) \to D([i])$ given by the natural transformation. This is a simplicial set basically by definition.

Conversely, given a simplicial set $\{K_i\}_{i\geq 0}$, we can consider the contravariant functor $F: \Delta \to \mathbf{Set}$ which sends [n] to K_n , sends the face and degeneracy maps to d_i and s_i respectively. Since every order preserving map factors uniquely as a composition of a d_i and an s_i , this fully defines a set map for every order preserving map $[n] \to [m]$. Again, the identities are preserved on both sides, so this gives us a unique functor. Thus $\mathbf{sSet} \cong \mathrm{Fun}(\Delta^{\mathrm{op}}, \mathbf{Set})$.

The same thing happens for $\mathbf{ssSet} \cong \operatorname{Fun}(\Delta_{\operatorname{inj}}^{\operatorname{op}}, \mathbf{Set})$.

Problem 2. Let $\pi_0(X)$ denote the set of path components of a space X. Prove that there is a natural isomorphism $\mathbb{Z}\pi_0(X) \xrightarrow{\sim} H_0(X)$.

For any space X, lets define the map $\phi_X: \mathbb{Z}\pi_0(X) \to H_0(X)$ by sending any path component X_i to $[c_{x_i}^0]$ for any $x_i \in X_i$. Clearly this is well defined, since if $y_i \in X_i$ is any other point in the same path component, with $\gamma: \Delta^1 \to X_i$ a path connecting them, them $d\gamma = c_{x_i}^0 - c_{y_i}^0$ in $H_0(X)$ and so $[c_{x_i}^0] = [c_{y_i}^0]$ in $H_0(X)$. We can define the map on all of $\mathbb{Z}\pi_0(X)$ by extending linearly in the natural way. This map is clearly injective since Δ^1 is connected, and surjective because the inverse image of any c_x^0 is the path component of X.

Now suppose $f: X \to Y$ is a continuous map. We have a natural induced map $\mathbb{Z}\pi_0(f): \mathbb{Z}\pi_0(X) \to \mathbb{Z}\pi_0(Y)$, which sends the path component of x to the path component of f(x). To prove naturality, notice that $H_0(f)(\phi_X(x)) = H_0(f)([c_x^0]) = [f \circ c_x^0] = [c_{f(x)}^0]$. On the other side, we have $\phi_Y(\mathbb{Z}\pi_0(f)(x)) = \phi_Y(f(x)) = [c_{f(x)}^0]$. This means that extended linearly, the maps must be equal and so the transformation is natural.

Problem 3. Let X be a path-connected space and let $x \in X$. We will show a natural isomorphism

$$\pi_1(X,x)^{\mathrm{ab}} \xrightarrow{\sim} H_1(X).$$

Given a path $f: I \cong \Delta^1 \to X$, let $[f] \in S_1(X)$ denote the corresponding singular 1-chain.

- (a) Let $f, g: I \to X$ denote two paths with f(0) = g(0) and f(1) = g(1). Suppose that $f \simeq g$ rel ∂I , i.e. there is a homotopy $h: I \times I \to X$ between f and g which is constant on $\{0\} \times I$ and $\{1\} \times I$. Prove that $[f] \equiv [g] \mod B_1(X)$.
- (b) Given two paths f, g such that f(1) = g(0), prove that $[f * g] \equiv [f] + [g] \mod B_1(X)$, where f * g is the composition of f and g. Conclude that there is a group homomorphism

$$\phi_* : \pi_1(X, x)^{\text{ab}} \to H_1(X)$$

sending the homotopy class of a loop f to [f].

(c) For each point $y \in X$, fix a path λ_y from x to y. Define a map

$$\psi: S_1(X) \to \pi_1(x,x)^{\mathrm{ab}}$$

by sending [f] to the image of the homotopy class of $\lambda_{f(0)} * f * \overline{\lambda_{f(1)}}$ in the abelianization. Here, $\overline{\lambda_{f(1)}}$ is the reverse of the path $\lambda_{f(1)}$. Prove that ψ sends all elements of $B_1(X)$ to the identity element, so that ψ induces a map:

$$\psi_*: H_1(X) \to \pi_1(X, x)^{ab}.$$

- (d) Prove that $\psi_* \circ \phi_* = \mathrm{id}_{\pi_1(X,x)^{\mathrm{ab}}}$ and $\phi_* \circ \psi_* = \mathrm{id}_{H_1(X)}$, so that ϕ_* and ψ_* are inverse isomorphisms.
- (a) Let $v_0 = f(0)$ and $v_1 = f(1)$. Consider the simplex $\sigma \in S_2(h(I \times I))$ given by the triangulation

Then $d\sigma = [f] - [g] + c_{v_0}^1 + c_{v_1}^1$. But note that any 1-simplex is a boundary because $dc_x^2 = c_x^1 - c_x^1 + c_x^1 = c_x^1$. This means that $0 \equiv d\sigma \equiv [f] - [g] + c_{v_0}^1 + c_{v_1}^1 \equiv [f] - [g] \mod B_1(X)$ and so $[f] \equiv [g] \mod B_1(X)$ as desired.

(b) Consider the simplex $\sigma \in S_2(X)$ given by

More explicitly, the map can be given by

$$\sigma(x,y) = \begin{cases} f(x+y) & x < y \\ g(x+y) & x \ge y \end{cases}.$$

2

This map is clearly continuous, and in particular note that $\sigma(0,t) = f(t)$, $\sigma(t,0) = g(t)$, and $\sigma(t,(1-t)) = (f*g)(t)$, as shown in the diagram. So $d\sigma = [f] - [f*g] + [g]$ and so $[f*g] \equiv [f] + [g] \mod B_1(X)$. Thus, we have a well defined map ϕ_* from $\pi_1(X,x)^{\mathrm{ab}} \to H_1(X)$ since every loop $f*g*\overline{f}*\overline{g} \in [\pi_1(X,x),\pi_1(X,x)]$ maps to [f] + [g] - [f] - [g] = 0.

(c) Let $\sigma: \Delta^2 \to X$ be a 2-simplex with vertices $x_0, x_1, x_2 \in X$ and edges $e_0, e_1, e_2: \Delta^1 \to X$ respectively. Then

$$\begin{split} \psi(d\sigma) &= \psi(e_0 - \overline{e_1} + e_2) = \psi(e_0 + e_2 - \overline{e_1}) = \psi(e_0) * \psi(e_2) * \overline{\psi(\overline{e_1})} \\ &= [\lambda_{x_0} * e_0 * \overline{\lambda_{x_1}}] * [\lambda_{x_1} * e_2 * \overline{\lambda_{x_2}}] * \overline{[\lambda_{x_0} * \overline{e_1} * \overline{\lambda_{x_2}}]} \\ &= [\lambda_{x_0} * e_0 * \overline{\lambda_{x_1}} * \lambda_{x_1} * e_2 * \overline{\lambda_{x_2}} * \lambda_{x_2} * e_1 * \overline{\lambda_{x_0}}] \\ &= [\lambda_{x_0} * e_0 * e_2 * e_1 * \overline{\lambda_{x_0}}]. \end{split}$$

Since $e_0 * e_2 * e_1$ is homotopic to a constant map, this is zero, so ψ sends $B_1(X)$ to the identity class. This gives us our induced map.

(d) For any loop $f \in \pi_1(X, x)$, we have $(\psi_* \circ \phi_*)(f) = [\lambda_{f(0)} * f * \overline{\lambda_{f(1)}}] \equiv [f] \mod [\pi_1(X, x), \pi_1(X, x)]$ and so $\psi_* \circ \phi_* = \operatorname{id}_{\pi_1(X, x)^{\operatorname{ab}}}$. Conversely for any 1-simplex $f \in H_1(X)$, we have $(\phi_* \circ \psi_*)(f) = \lambda_{f(0)} + f - \lambda_{f(1)} = f$ so we are done.

Problem 4. Let A_* be a chain complex. It is *acyclic* if $H_*(A_*) = 0$, and *contractible* if it is chain-homotopy-equivalent to the trivial chain complex.

- (a) Prove that a chain complex is contractible if and only if it is acyclic and the inclusion $Z_*(A_*) \to A_*$ is a split monomorphism.
- (b) Give an example of an acyclic chain complex that is not contractible.
- (a) Suppose first that A_* is a contractible chain complex; i.e. there is a chain homotopy $h: A_* \to A_*$ between 0 and id. This means h satisfies dh + hd = id. Since chain homotopy equivalence preserves homology, it's clear that A_* is acyclic, since it is chain homotopy equivalent to a trivial chain complex, which has trivial homology groups. To prove that $Z_*(A_*) \to A_*$ is a split monomorphism, note that we have a map $f: A_* \to Z_*(A_*)$ which sends a to dh(a) = a hd(a). This is clearly a homomorphism, and we have

$$Z_*(A_*) \longrightarrow A_* \longrightarrow Z_*(A_*).$$

Observe that for any cycle σ , $f(\sigma) = dh(\sigma) = \sigma - hd(\sigma) = \sigma$, so f is a left inverse to the inclusion and we are done. Now conversely suppose that A_* is acyclic and $f: A_* \to Z_*(A_*)$ is a left inverse to the inclusion $Z_*(A_*) \to A_*$. We'll construct a chain homotopy to the trivial chain as follows: for any chain $\sigma \in A_*$, $f(\sigma) \in Z_*(A_*)$ is a cycle. Since the homology groups are trivial, it must also be a boundary. So let $f(\sigma) = d\beta_{\sigma}$. Let's define h as sending σ to β_{σ} . Then $hd(\sigma) - dh(\sigma) = \sigma - d\beta_{\sigma} = \sigma$, so h is a homotopy to identity and thus the chain complex is contractible.

(b) Consider the short exact sequence

$$0 \longleftarrow \mathbb{Z}/2 \longleftarrow \mathbb{Z} \longleftarrow 2\mathbb{Z} \longleftarrow 0.$$

We can consider this a chain complex with higher degree terms set to 0. Since this is an exact sequence, it must be acyclic since $\ker \partial = \operatorname{Im} \partial$ implies that $H_n = \ker \partial / \operatorname{Im} \partial = 1$. Then it cannot be contractible, since otherwise, by the preceding part we would have a split monomorphism $2\mathbb{Z} \to \mathbb{Z}$. This is impossible, since a composition $2\mathbb{Z} \to \mathbb{Z} \to 2\mathbb{Z}$ which is the identity must have $2 \mapsto 2$ so if $1 \mapsto 2n$ in the second half, we get $2 \mapsto 4n$, a contradiction.