PROBABILITY THEORY AND RANDOM PROCESSES (MA225)

Properties of PDF

①
$$f_X(x) \ge 0$$
 for all $x \in \mathbb{R}$.

Theorem: Suppose a real valued function $g : \mathbb{R} \to \mathbb{R}$ satisfies the following conditions:

- ① $g(x) \ge 0$ for all $x \in \mathbb{R}$.

Then $g(\cdot)$ is a probability density function of some continuous random variable.

RV which is neither discrete nor continuous

Consider the random variable \boldsymbol{X} whose distribution function is given by

$$F_X(x) = \begin{cases} 0 & \text{if} & x < -1 \\ x+1 & \text{if} & -1 \le x < -1/2 \\ 1 & \text{if} & x \ge -1/2. \end{cases}$$

Observe that $F_X=1/2F_1+1/2F_2$ where F_1 and F_2 are distribution functions given by

$$F_1(x) = \begin{cases} 0 & \text{if } x < -1 \\ 2(x+1) & \text{if } -1 \le x < -1/2 \\ 1 & \text{if } x \ge -1/2. \end{cases}$$

$$F_2(x) = \begin{cases} 0 & \text{if } x < -1/2 \\ 1 & \text{if } x \ge -1/2. \end{cases}$$

Expectation of DRV

Def: Let X be a discrete RV with PMF $f_X(\cdot)$ and support S_X . The expectation or mean of X is defined by

$$E(X) = \sum_{x \in S_X} x f_X(x)$$
 provided $\sum_{x \in S_X} |x| f_X(x) < \infty$.

- \blacktriangleright E(X) is the weighted average of the values taken by X.
- ▶ If $\sum_{x \in S_X} |x| f_X(x) = \infty$ then we say that expectation does not exist.

Example 1: X = outcome of a roll of a fair die. What is E(X)?

Example 2: $X \sim Bin(n, p)$. What is E(X)?

Example 3: $X \sim Geo(p)$. What is E(X) ?

Example 4: $X \sim Poi(\lambda)$. What is E(X) ?

Example 5:

$$f_X(x) = egin{cases} rac{c}{n^2}, & x \in \mathbb{N}, & ext{where} & c = \left(\sum_{n=1}^{\infty} rac{1}{n^2}
ight)^{-1} \ 0 & ext{otherwise} \ . \end{cases}$$

Let X be a DRV having the above PMF, then E(X) does not exist.

Expectation of CRV

Def: Let X be a CRV with PDF $f_X(.)$. The expectation of X is defined by

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$
 provided $\int_{-\infty}^{\infty} |x| f_X(x) dx < \infty$.

```
Example 1: X \sim U(a,b), what is E(X) ?

Example 2: X \sim Exp(\lambda), what is E(X) ?

Example 3: X \sim N(\mu, \sigma^2), what is E(X) ?

Example 4: Let X be a CRV having PDF f_X(x) = \frac{1}{\pi(1+x^2)}, \forall x \in \mathbb{R}.

What is E(X) ?
```