Método de la Bisección.

- Aplicación del Teorema de Bolzano: funciones continuas en intervalos cerrados, con signo diferente en los extremos del intervalo.
- Estrategia: Se parte de un intervalo donde el signo cambia.

Método de la Bisección.

- Aplicación del Teorema de Bolzano: funciones continuas en intervalos cerrados, con signo diferente en los extremos del intervalo.
- Estrategia: Se divide de forma sucesiva conservando el subintervalo donde la función cambia de signo

Método de la Bisección. Implementación.

1. Establecer el intervalo (a, b) tal que $f(a) \cdot f(b) < 0$ (signo distinto)

Método de la Bisección.

Ventajas	Inconvenientes
Converge siempre *	La convergencia del método es lenta.
Fácil de implementar, muy intuitivo geométricamente.	Sólo es aplicable cuando la curva es secante al eje x.
En cada iteración la incertidumbre se divide entre dos.	En el caso de múltiples soluciones en el intervalo puede fallar.
Da una cota inferior y otra superior para la solución buscada.	

- Método de valor inicial. Se basa en aproximaciones por interpolación lineal.
- Estrategia: Se comienza con dos aproximaciones x_1 y x_2 al cero de la función.

- Método de valor inicial. Se basa en aproximaciones por interpolación lineal.
- Estrategia: Se construye la recta secante P que pasa por $(x_1, f(x_1))$ y $(x_2, f(x_2))$.

- Método de valor inicial. Se basa en aproximaciones por interpolación lineal.
- Estrategia: El siguiente punto del proceso iterativo será x_3 tal que $P(x_3)=0$.

- Método de valor inicial. Se basa en aproximaciones por interpolación lineal.
- Estrategia: El método sigue con el par x_2 , x_3 en lugar de x_1 , x_2 .

Método de la Secante. Implementación

1. Partimos del par x_1 , x_2

