Laboratorium

Modele propagacyjne w sieciach bezprzewodowych.

Modele propagacyjne

Model propagacyjny to wzór matematyczny, który z pewnym przybliżeniem opisuje propagacje fal radiowych uwzględniając takie czynniki jak częstotliwość, odległość czy wysokość zawieszenia anteny.

Możemy wyróżnić kilka modeli propagacyjnych:

a) Tłumienie w swobodnej przestrzeni

W przypadku projektowania sieci bezprzewodowych w hali lub tylko w jednym pomieszczeniu można posłużyć się modelem tłumienia w swobodnej przestrzeni, który to jest funkcją dwóch zmiennych – odległości i częstotliwości.

$$L = -27,55 + 20 \cdot log_{10}(f) + 20 \cdot log_{10}(d)$$

gdzie:

L – tłumienie swobodnej przestrzeni (dB)

f – częstotliwość pracy systemu (MHz)

d – odległość pomiędzy antenami (m)

Wyniki tłumienia uzyskane z modelu swobodnej przestrzeni mogą posłużyć jako wyniki odniesienia w przypadku porównywania różnych modeli propagacyjnych.

b) ITU-R P.1238

Organizacja ITU-R stworzyła model propagacyjny, który uwzględnia podstawowe czynniki propagacyjne mające wpływ na tłumienie fali w środowisku wewnątrz budynkowym, a są nimi: częstotliwość, odległość i tłumienie przeszkód.

$$L = 20 \cdot \log(f) + N \cdot \log(d) + L_f(n) - 28$$

gdzie:

L – tłumienie propagacyjne pomiędzy antenami [dB]

f – częstotliwość pracy systemu [MHz]

N – odległościowy współczynnik tłumienia

d – odległość pomiędzy antenami [m] (d > 1 m)

 L_f – współczynnik tłumienia stropów [dB]

n – ilość pięter pomiędzy urządzeniami

Parametry N i L_f określane są eksperymentalnie, przy czym ITU podaje pomocnicze wartości tych parametrów, które przedstawione zostały w tabeli nr 1 i 2.

TABELA 1 WARTOŚCI ODLEGŁOŚCIOWEGO WSPÓŁCZYNNIKA TŁUMIENIA ZALECANE PRZEZ ITU-T

Częstotliwość	Bud. mieszkalny	Bud. biurowy	Bud. komercyjny
900 MHz	-	33	20
1,2 – 1,3 GHz	-	32	22
1,8 – 2 GHz	28	30	22
4 GHz	-	28	22
5,2 GHz	-	31	-
60 GHz	-	22	17
70 GHz	-	22	-

TABELA 2 WARTOŚĆI WSPÓŁCZYNNIKA TŁUMIENIA STROPÓW ZALECANE PRZEZ ITU-T

Częstotliwość	Bud. mieszkalny	Bud. biurowy	Bud. komercyjny
900 MHz	-	9 (1 piętro) 19 (2 piętra) 24 (3 piętra)	-
1,8 – 2 GHz	4n	15 + 4(n - 1)	6 + 3(n-1)
5,2 GHz	-	16 (1 piętro)	-

c) Model One-Slope

Jednym z najprostszych modeli propagacyjnych jest model One-Slope, zwany inaczej modelem jednościeżkowym, ponieważ nie uwzględnia on istotnych elementów środowiska wewnątrz budynkowego – ścian, stropów i materiałów z jakich zostały one wykonane.

$$L = L_0 + 10\gamma log(d)$$

gdzie:

L – tłumienie propagacyjne pomiędzy antenami [dB]

L₀ – tłumienie odniesienia w odległości 1 m [dB]

γ – indeks odległościowego zaniku mocy

d – odległość pomiędzy antenami [m]

Model jednościeżkowy zależy przede wszystkim od odległości pomiędzy urządzeniami. Indeks γ dobiera się eksperymentalnie, jednak typowa wartość dla swobodnej przestrzeni wynosi $\gamma=2$, natomiast dla środowiska wewnątrz budynkowego γ zawiera się w przedziale od 3,5 do 6. Tłumienie odniesienia w odległości 1 m od anteny nadawczej dobiera się w sposób empiryczny lub gdy nie jest to możliwe można posłużyć się modelem swobodnej przestrzeni (wzór Z modelu a)) Model ten wykorzystywany jest przede wszystkim do oszacowania tłumienia propagacyjnego w obrębie tej samej kondygnacji lub pomieszczenia.

d) Model Motleya-Keenana

Model Motleya-Keenana jest modelem rozbudowany, ponieważ uwzględnia on propagacje fali radiowej przez kolejne ściany i stropy budynku.

$$L = L_{FS} + n_w \cdot L_w + n_f \cdot L_f$$

gdzie:

L – tłumienie propagacyjne pomiędzy antenami [dB]

L_{FS} – tłumienie swobodnej przestrzeni pomiędzy nadajnikiem i odbiornikiem [dB]

n_w – liczba ścian na drodze propagacji

 L_w – tłumienie ściany [dB]

 n_f – liczba stropów na drodze propagacji

 L_f – tłumienie stropu [dB]

Model ten choć uwzględnia tłumienie ścian i stropów jest bardzo uproszczony, ponieważ zakłada jedną kategorię tych przeszkód. Problemem może być brak znajomości tłumienia ścian i stropów. W takiej sytuacji warto dobrać zalecane wartości. W tabeli nr 3 przedstawiono tłumienie poszczególnych elementów w paśmie 2,4 GHz.

TABELA 3 TŁUMIENIE POSZCZEGÓLNYCH CHARAKTERYSTYCZNYCH ELEMENTÓW W ŚRODOWISKU WEWNĄTRZBUDYNKOWYM W PAŚMIE 2,4 GHz [7]

Nazwa elementu	Materiał	Grubość [cm]	Tłumienie
Ściana wewnętrzna	Cegła	10	7 dB
Ściana zewnętrzna	Cegła	30	9 dB
Ściana działowa	Rigips i welna szklana	7	2 dB
Strop	Beton	30	11 dB
Okno	Szkło	2 x szyba + 1 cm przerwy	4,5 dB
Drzwi	Drewno	4	2,5 dB

e) Model Multi-Wall

Najpopularniejszym i obecnie najczęściej używanym modelem empirycznym dla omawianego środowiska jest Multi-Wall. Model Multi-Wall jest niejako połączeniem dwóch poprzednio opisywanych modeli – One-Slope i Motleya-Keenana, uwzględnia on tłumienie ścian i stropów przy czym przeszkody te podzielone są na odpowiednie kategorie (np. ściana zewnętrza, działowa, itp.). Zapis decybelowy liniowego modelu Multi-Wall wygląda następująco:

$$L = L_0 + 10\gamma \log(d) + \sum_{i=1}^{I} k_{wi} \cdot L_{wi} + \sum_{j=1}^{J} k_{fj} \cdot L_{fj}$$

gdzie:

L – tłumienie propagacyjne pomiędzy antenami [dB]

L₀ – tłumienie odniesienia w odległości 1 m [dB]

γ – indeks odległościowego zaniku mocy

d – odległość pomiędzy antenami [m]

k_{wi} – liczba ścian kategorii i

 L_{wi} – tłumienie ściany kategorii i k_{fj} – liczba stropów kategorii j L_{fj} – tłumienie stropu kategorii j

Model Multi-Wall ze względu na uwzględnienie różnych kategorii przeszkód, które charakteryzują się różnym tłumieniem fali radiowej powinien teoretycznie dawać wyniki najbardziej zbliżone do rzeczywistych w porównaniu z innymi modelami empirycznymi dla środowiska wewnątrz budynkowego.

Bilans energetyczny

Powyższe modele określają jedynie tłumienie w pewnej odległości, zmierzony poziom sygnału uwzględnia także zyski anten oraz moc sygnału nadawanego.

Równanie opisujące powyższe zależności to bilans energetyczny:

Po = Pn + Gn + Go - L - A

gdzie:

Po- moc sygnału odbieranego [dBm]

Pn- moc sygnału nadawanego [dBm]

Gn-zysk anteny nadawczej [dB]

Go-zysk anteny odbiorczej [dB]

L – tłumienie fali radiowej w środowisku propagacyjnym [dB]

A – tłumienie kabli i złączy [dB]

Zadania

- 1. Dla podanych modeli propagacyjnych napisz funkcje realizujące obliczenia.
- 2. Dokonaj 12 pomiarów sieci bezprzewodowych wykorzystując dowolne oprogramowanie na urządzeniu mobilnym
- 3. Porównaj dokonane pomiary z wynikami modeli propagacyjnych

Pomiary powinny być wykonane w różnych warunkach:

- wewnątrz budynku x3
- pomiędzy ścianami x3
- pomiędzy piętrami x3
- na zewnątrz x3

Jeżeli nie znasz wartości wzmocnienia anten ani mocy sygnału własnego AP oraz to przyjmij, że moc nadawcza i wzmocnienie anten oraz tłumienie kabli wynosi 20 dBm

Literatura:

Łukasz Jasiński, "Analiza i porównanie modeli propagacyjnych dla środowiska wewnątrzbudynkowego"