AD-B132 565

BISTATIC ACOUSTIC SCATTERING: COMPARISON BETHEEN THEORY AND EXPERIMENT(U) NAVAL SURFACE HARFARE CENTER SILVER USGO SPRING HD R S HEBBERT ET AL. 10 MAY 88 NSHC/TR-88-142 CONT

UNCLASSIFIED

END
FILMED
G-89
D71c

AD-B132 565

(3)

BISTATIC ACOUSTIC SCATTERING--COMPARISON BETWEEN THEORY AND EXPERIMENT

BY R. S. HEBBERT AND L. T. BARKAKATI UNDERWATER SYSTEMS DEPARTMENT

10 MAY 1988

Distribution authorized to U.S. Government agencies and their contractors only; critical technology (10 May 1988). Other requests shall be referred to NSWC (Code U25), Silver Spring, MD 20903-5000)

DESTRUCTION NOTICE — For classified documents, follow procedures as outlined in Chapter 17 of OPNAVINST 5510.1H. For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

NAVAL SURFACE WARFARE CENTER

Dahlgren, Virginia 22448-5000 • Silver Spring, Maryland 20903-5000

UNCLASSIFIED

SECURITY	CLASSI	FICATION	OF THIS	PAGE

		REPORT DO	CUMENTATION	PAGE		
1. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MAI	RKINGS			
2a. SECURITY CLASSIFICATION AUTHORITY		and the second second	3. DISTRIBUTION/AVAILABILITY OF REPORT Distribution is authorized to U.S. Government agencies and their contractors; critical technology (10 May 1988). Other requests shall be referred to NSWC (Code U25), Silver Spring, MD 20903 5000.			
2b, DECLASSIFICATION/DOWNGRADING SCHEDULE						
	RGANIZATION REPORT NUMBER	R(S)	S. MDNITDRING ORG	ANIZATION REPORT N	UMBER(S)	
NSWC TR 88-142 6a. NAME OF PERFORMING DRGANIZATION 6b. OFFICE SYMBOL		7a. NAME DF MONIT	ORING ORGANIZATIDI	N		
	face Warfare Cent	(If applicable)		72. NAME OF MONITORING SAGARIZATION		
White Oak	State, and ZIP Code) k Laboratory w Hampshire Aven ing, MD 20903-500	ue 00	7b. ADDRESS (City, S	tate, and ZIP Code)		
a. NAME OF FUND ORGANIZATIDI	DING/SPD NSORING N	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT IN	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER		
c. ADDRESS (City.	, State, and ZIP Code)		10. SOURCE DF FUND	DING NOS.		
			PROGRAM ELEMENT ND.	PROJECT ND.	TASK NO.	WORK UNIT NO.
Pinal 16. SUPPLEMENTA	RY NOTATION	FROM TO	1900	3, May, 10		31
17.	COSATI CODES	1B. SUBJECT TER				
		177 100001 117	MS (Continue on reverse if neces	sary and identity by b	lock number)	
FIELD 20	GRDUP 01	SUB. GR. Acoustic	agnetic waves		approxima	tion
20		SUB. GR. Acoustic Electrom Scatterin	agnetic waves	Kirchhoff	approxima	tion
20 Thi underwate prescribed sphere and Kirchhoff dimension examples	on tinue on reverse if necessary. Is report presents the result of the first of the sent of the sent of the scatterer. of all three approach	SUB. GR. Acoustic Electrom Scatterin	the problem of acous olution to the wave erer). This can be ree second approach is ne wavelength of soutake measurements ular, it is found that	Kirchhoff Scalar Wa stic scattering equation that eadily obtaine to use a techr nd is small co when this is p	from deter matches the d only for a sique called inpared to cossible. In l and conica	ministic ne cylinder or I the the this report
20 Thi underwate prescribed sphere and Kirchhoff dimension examples most of the control of the c	on tinue on reverse if necessary. Is report presents the result of the first of the sent of the sent of the scatterer. of all three approach	Acoustic Electrom Scatterin scatteri	the problem of acous olution to the wave erer). This can be ree second approach is the wavelength of sou take measurements ular, it is found that the forward direction	Kirchhoff Scalar Wa stic scattering equation that eadily obtaine to use a techr and is small co when this is p for spherical	from deter matches the d only for a sique called inpared to cossible. In l and conica	ministic ne cylinder or I the the this report

DD FORM 1473, 84 MAR

83 APR edition may be used until exhausted All other editions are obsolete

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE		
SECURITY CLASSIFICATION OF THIS PAGE		
		- 1
	THIS PAGE IS INTENTIONALLY BLANK	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

FOREWORD

This tutorial report should help others in the laboratory to understand and to use the Kirchhoff technique in analyzing sound scattered by underwater bodies. The technique is well documented in the existing literature, but this thorough presentation of its use in the context of underwater acoustic scattering makes the report valuable.

Approved by:

C. A. KALIVRETENOS, Head

Sensors and Electronics Division

Accession For	
NTIS GRARI	
DTIC TAB	
Unamnounced	Ö
Justification	
Distribution, Availability	Codes
Avail a	
Dist Speci	
2	

CONTENTS

Section		Page
1	INTRODUCTION	
2	EXPERIMENTAL SETUP	3
3	RESULTS	5
4	CONCLUSIONS	7
	DISTRIBUTION	(1)
Appendi:	x	Page
A	EXACT SOLUTION FOR SCATTERING FROM A LIQUID SPHERE	A-1
В	THE KIRCHHOFF SCATTERING APPROXIMATION	B-1

ILLUSTRATIONS

Figure				<u>Page</u>
1	BISTATIC, MONOSTATIC, AND FORWARD SCATTERING	•	•	9
2	GEOMETRY OF THE EXPERIMENT	•	•	10
3	MEASUREMENT OF SCATTERING FROM A SPHERE AT 50 KHZ			10
4	MEASUREMENT OF SCATTERING FROM A SPHERE AT 125 KHZ	•	•	10
5	PREDICTED MEASUREMENT FROM THE KIRCHHOFF	Ť	Ť	
	APPROXIMATION AND FROM THE EXACT SOLUTION FOR THE SPHERE AT 50 KHZ	•		10
6	MEASUREMENT OF SCATTERING FROM A CONE AT			
7	50 KHZ	•	•	11
,	APPROXIMATION FOR THE CONE AT 50 KHZ			11
8	EXACT SOLUTION FOR SOFT SPHERES OF RADII	·	Ĭ	
	2λ AND 4λ	•	•	11
9	EXACT SOLUTION FOR RIGID SPHERES OF RADII 2λ AND 4λ		•	11
10	EXACT SOLUTION FOR LIQUID SPHERES OF RADII 2\(\lambda\) AND 4\(\lambda\) WITH A SMALL IMPEDANCE MISMATCH .			11
11	EXACT SOLUTION FOR LOSSY SPHERES OF RADII			
	2λ AND 4λ	•	•	11
12	SCATTERING FROM A CYLINDER WITH HEMISPHERICAL END CAPS BY THE KIRCHHOFF METHOD			12
13	SCATTERING FROM A SOFT SPHERE AND A SPHERICAL	•	•	12
	SHELL OF ALUMINUM AT ITS RESONANT FREQUENCY			12
14	SCATTERING FROM A SOFT SPHERE AND A SPHERICAL			
	SHELL OF ALUMINUM AT FREQUENCY 10% HIGHER			10
15	THAN ITS RESONANT FREQUENCY	•	•	12
	SHELL OF ALUMINUM AT FREQUENCY 10% LOWER			
	THAN ITS RESONANT FREQUENCY	•	•	12
16	BACK SCATTER AMPLITUDE VERSUS FREQUENCY FOR			1.3
B-1	THE SPHERICAL SHELL	•	•	13
D-1	SCATTERING FROM A HALF-PLANE			B-8

SECTION 1

INTRODUCTION

Active detection and tracking of underwater targets requires knowledge of how they reflect sound waves. For this reason, the Navy has a continuing interest in acoustic scattering. Acoustic or sound wave scattering refers to the way a pressure wave bounces off obstacles in its path. We consider a source, a scatterer, and a receiver which monitor the direct signal and the signal scattered from the obstacle. There are two types of scattering depending on where the sound waves are observed. If the source and the observation points are one and the same, the problem is one of monostatic scattering. Radars (in the electromagnetic case) and active sonars usually operate this way. When the source and the observation points are not coincident, we call it bistatic scattering (see Figure 1). Monostatic scattering is simply a special case of the bistatic problem. When the target lies close to the line joining the source and the observation points, the problem is one of forward scattering. In this report we will consider the general case of bistatic scattering and in certain sections emphasize forward scattering.

Unlike electromagnetic waves, the acoustic pressure waves are scalar and their study is somewhat simpler than that of their electromagnetic counterpart. The exact solution to the problem of scattering of a scalar wave from a sphere was obtained as early as 1863 by Clebsch. By 1890, the scattering from ellipsoids was solved as well. These shapes were tractable because they are amenable to the technique of separation of variables which involves using a coordinate frame where the field can be expressed as a product of functions that depend on individual coordinates. However, no other bounded shape allows the use of this technique. All subsequent solution techniques rely on approximations and series expansions of various kinds.

The approximations are based on the interrelationship of the parameters of the scattering problem: the wavelength of the sound wave, the maximum physical dimension of the scatterer and the distances of the source and observation points from the scatterer. Typically, the source and

observation points are assumed to be located far (compared to the wavelength) from the scatterer.

We will next describe the experimental setup used to obtain the measurements of scattered field. We will then explain the validation of the measurements by using the sphere as an example. We will also present theoretical as well as measured results for scattering from several interesting bodies.

The theoretical derivations appear in two appendices. In Appendix A, we derive the exact solution to the problem of acoustic scattering from a liquid sphere. Appendix B contains the derivation of Kirchhoff approximation applied to bistatic scattering of scalar waves. Using the sphere as an example, we have elaborated the conditions under which the Kirchhoff approximation holds well.

SECTION 2

EXPERIMENTAL SETUP

The experiment was conducted in the Naval Surface Warfare Center (NSWC) Hydroacoustic Facility which uses a tank 20-feet deep and 30-feet in diameter. The source, scatterer, and receiver were placed at a depth of 10 feet. Two E27 transducers were used as the source and the receiver. The actual geometry of the experiment is shown in Figure 2. The source emits a long pulse with a duration of 1 to 2 msec, i.e., 5 to 10 feet in length. A time gate was used to observe both direct and scattered pulses. This, in effect, gives a continuous wave system but without reflections from the walls of the tank.

The experiment was done on two styrofoam objects: a frustum of a cone with its axis oriented vertically and a sphere. The styrofoam sphere was 4 inches in diameter. The frustum of the cone was 6-inches high, with diameters of 0.75 inch at one end and 2.5 inches at the other. The measurements were made at two frequencies: 50 kHz and 125 kHz.

Validation of Measurements

The experiment was validated by comparing the measurements for scattering from the soft styrofoam sphere with the exact solution for this problem. As shown in Figures 3 and 4, the experimental results match well with the theoretical values.

SECTION 3

RESULTS

The measurements from the NSWC Hydroacoustic Facility, shown in Figures 3, 4, and 6, display the total received power (in dB) in a polar plot. The total received power is the magnitude of the complex sum of the direct and scattered waves at the receiver. In the polar plots, the angle corresponds to the angular location of the receiver relative to the line joining the source and the scatterer.

Figure 3 shows the scattering at 50 kHz from a styrofoam sphere with a diameter of 4 inches. Figure 4 shows measurements for the same sphere at 125 kHz. At 125 kHz, the transducer generates a very narrow beam so the pattern drops off rapidly as we move out of the -30° to +30° zone in azimuth. However, within this zone the experimental results agree well with the theory. Figure 5 displays the predicted results for the sphere from both the exact solution and the Kirchhoff approximation. Note that the discrepancy in the forward direction is exaggerated because of an approximation we used when evaluating the field predicted by the Kirchhoff approach.

Figures 6 and 7, respectively, show measurements from the frustum of a cone and the values predicted by the Kirchhoff approximation. The computation of the field predicted by the Kirchhoff approximation was handled properly in this case. Hence, the discrepancy is reduced in the forward direction between the measured and predicted fields.

The next two figures show polar plots for calculated bistatic scattering from spheres of radii 2 and 4 wavelengths. Figure 8 is for soft spheres and Figure 9 for rigid spheres. Figures 10 and 11 show calculated bistatic scattering from liquid spheres containing a fluid whose density is the same as that of the fluid outside. In Figure 10, the speed of sound inside the sphere is slightly less than that in the surrounding medium. In Figure 11, the density as well as the speed of sound are the same inside and out, but the interior fluid has a small loss (a black sphere).

Figure 12 shows the calculated results of bistatic scattering from a cylinder with hemispherical end caps as calculated by the Kirchhoff method. The cylinder is 12wavelengths long by 2- wavelengths in diameter. concentric circles represent 10db steps. The forward peak is normalized with respect to the outer circle. Note that the specular reflection (at 30°) is about 10db down from the forward scattered power. Calculations were also made for bistatic scattering from cylindrical and spherical metal It is well known that these structures show resonances in the backscattered amplitude. However, these resonances are much less pronounced in the forward scattered field. In fact, the forward scatter for spheres and cylinders with thin shells is very similar to that for a soft scatterer. Figure 13 shows the calculated results of scattering from a spherical shell of aluminum with thickness 0.01 times the radius at the resonant frequecy. On the same figure, we also show the scattering from a soft sphere to emphasize the similarity in forward scatter from the two scatterers. Figures 14 and 15 displays the calculated results for the same problem at frequencies 10 percent higher and 10 percent lower than the resonant frequency. Figure 16 shows the backscatter amplitude versus frequency for the same spherical shell of aluminum.

SECTION 4

CONCLUSIONS

In this report, we described the use of the Kirchhoff approximation technique to solve for the forward acoustic scattering from several shapes. We found that regardless of the composition of the scatterer, soft, rigid, or resonant shell, there is always a strong forward scatter signal. In the $\pm 30^{\circ}$ azimuthal zone, the shape of this forward scatter pattern can be computed, with good accuracy, by using the Kirchhoff approximation to solve the Helmholtz integral equation subject to the appropriate boundary conditions. We also found that the backward scattering can be reduced at some frequencies; however, the forward scatter energy also exists at all frequency.

FIGURE 1. BISTATIC, MONOSTATIC, AND FORWARD SCATTERING

FIGURE 2. GEOMETRY OF THE EXPERIMENT

FIGURE 3. MEASUREMENT OF SCATTERING FROM A SPHERE AT 50HZ

FIGURE 4. MEASUREMENT OF SCATTERING FROM A SPHERE AT 125HZ

FIGURE 5. PREDICETED MEASUREMENT FROM THE KIRCHHOFF APPROXIMATION AND FROM THE EXACT SOLUTION FOR THE SPHERE AT 50HZ

- Marine Marine

FIGURE 6. MEASUREMENT OF SCATTERING FROM A CONE AT 50HZ

FIGURE 7. PREDICATED MEASUREMENT FROM THE KIRCHHOFF APPROXIMATION FOR THE CONE AT 50HZ

FIGURE 8. EXACT SOLUTION FOR SOFT SPHERES OF RADII 2 λ AND 4 λ

FIGURE 9. EXACT SOLUTION FOR RIGID SPHERES OF RADII 2 λ AND 4 λ

FIGURE 10. EXACT SOLUTION FOR LIQUID SPHERES

OF RADII 2λ AND 4λ WITH A SMALL

IMPEDANCE MISMATCH

FIGURE11. EXACT SOLUTION FOR LOSSY SPHERES OF RADII 2 λ AND 4 λ

FIGURE 12. SCATTERING FROM A CYLINDER WITH HEMISPHERICAL END CAPS BY THE KIRCHHOFF METHOD

FIGURE 13. SCATTERING FROM A SOFT SPHERE AND
A SPHERICAL SHELL OF ALUMINUM AT
RESONANT FREQUECY

FIGURE 14. SCATTERING FROM A SOFT SPHERE AND A SPHERICAL SHELL OF ALUMINUM AT FREQUENCY 10% HIGHER THAN ITS RESONANT FREQUENCY

FIGURE 15. SCATTERING FROM A SOFT SPHERE AND
A SPHERICAL SHELL OF ALUMINUM AT
FREQUENCY 10% LOWER THAN ITS
RESONANT FREQUENCY

FIGURE 16. BACK SCATTER AMPLITUDE VERSUS FREQUENCY FOR THE SPHERICAL SHELL

APPENDIX A

EXACT SOLUTION FOR SCATTERING FROM A LIQUID SPHERE

Consider a plane wave propagating along the z-axis. Suppose this wave impinges on a liquid sphere of radius a at the origin. Let the point of observation be at (R,θ) in spherical coordinates. Let ψ , ψ_I and ψ_S be the total field, the incident field and the scattered field, respectively. Thus, we have

$$\psi = \psi_I + \psi_S$$

Since the incident plane wave is propagating along the z-axis, we get (see Reference A-1)

$$\psi_{I} = e^{ikz} = e^{ikr\cos\theta}$$

$$= \sum_{n=0}^{\infty} a_{n} j_{n}(kr) P_{n}(\cos\alpha)$$
(A-1)

where $j_n(x) = \sqrt{\frac{\pi}{2x}}J_q(x)$, $q = n + \frac{1}{2}$, $J_q(x)$ is the Bessel function, and $P_n(\cos\alpha)$ is the Legendre polynomial.

A-1
Stratton, J. A., <u>Electromagnetic Theory</u>, McGraw-Hill Book Co.,
Inc., New York, NY, 1941, pp. 408-409.

Multiplying both sides of Equation (A-1) by $\text{P}_{\text{i}}\left(\cos\alpha\right)\sin\alpha$ and integrating with respect to α , we get

$$\frac{2}{2i+1} a_{i} j_{i}(kr) = \int_{0}^{\pi} e^{ikr\cos\alpha} P_{i}(\cos\alpha) \sin\alpha d\alpha \qquad (A-2)$$

If we let $x \equiv kr$, we can show that

$$\left(\frac{d^{n}j_{n}(x)}{dx^{n}}\right)_{x=0} = \frac{2^{n}(n!)^{2}}{(2n+1)!}$$

and hence,

$$\frac{2^{n} (n!)^{2}}{(2n+1)!} a_{n} = \frac{2n+1}{2} i^{n} \int_{0}^{\pi} \cos^{n}\alpha P_{n}(\cos\alpha) \sin\alpha d\alpha \qquad (A-3)$$

Let $I_n = \int_0^{\pi} \cos^n \alpha \ P_n(\cos \alpha) \sin \alpha \ d\alpha$. Then, integrating I_n

by parts, we get

$$nI_n = -(n+1)I_n + nI_{n-1}$$

 $I_n = \frac{n}{2n+1}I_{n-1}$

Substituting the value of \mathbf{I}_0 , \mathbf{I}_1 , \mathbf{I}_2 ..., and using induction we get

$$I_n = \frac{2^{n+1}(n!)^2}{(2n+1)!}$$

Therefore,

$$a_n = (2n+1)i^n$$

$$\psi_{I} = \sum_{n=0}^{\infty} i^{n} (2n+1) j_{n}(kr) P_{n}(\cos \alpha)$$
 (A-4)

Since the scattered field outside the sphere consists of outgoing waves at distances far from the sphere, we write

$$\psi_{S} = \sum_{n=0}^{\infty} c_{n} h_{n}^{(1)} (kr) P_{n} (\cos \alpha)$$
 (A-5)

where $h_n^{(1)} = j_n + iy_n$. Inside the sphere, the field is

$$\psi = \psi_S = \sum_{n=0}^{\infty} b_n j_n (kr) P_n (\cos \alpha)$$

At the boundary of the sphere, the pressure inside must be equal to the pressure outside. Therefore,

$$\sum_{n=0}^{\infty} [i^{n}(2n+1)j_{n}(ka) + c_{n}h_{n}^{(1)}(ka)] P_{n}(\cos\alpha)$$

$$= \sum_{n=0}^{\infty} b_{n}j_{n}(ka)P_{n}(\cos\alpha)$$
(A-6)

or,

$$[i^{n}(2n+1)j_{n}(ka)) + c_{n}h_{n}^{(1)}(ka)] = b_{n}j_{n}(ka)$$
 (A-7)

Let ρ_1 and k_1 , respectively, be the density and the propagation constant inside the sphere. Let ρ_2 and k_2 be the corresponding quantities outside the sphere. Let $V(r)^{(1)}$ and $V(r)^{(2)}$, respectively, be the radial velocities inside and outside the sphere. Applying the boundary conditions for the radial velocities, we obtain

$$V(a)^{(1)} = V(a)^{(2)}$$
 and $V(r) = \frac{1}{i\omega\rho} \frac{\partial p}{\partial r}$

Hence,

$$\frac{k_1}{\rho_1} b_n j_n'(ka) = \frac{k_2}{\rho_2} [i^n(2n+1)j_n'(ka)) + c_n h_n^{(1)}'(ka)]$$

or,

$$c_{n} = \frac{i^{n}(2n+1) \left[z_{1}j'_{n}(x_{1})j_{n}(x_{2})-z_{2}j_{n}(x_{1})j'_{n}(x_{2})\right]}{z_{2}j_{n}(x_{1})h'_{n}(x_{2})-z_{1}j'_{n}(x_{1})h_{n}(x_{2})}$$
(A-8)

where $z_1 = k_1 \rho_2$, $z_2 = k_2 \rho_1$, $x_1 = k_1 a$, and $x_2 = k_2 a$. Note that the propagation constant need not be real inside the sphere. When the propagation constant, k_1 , is complex, we say that the sphere is lossy.

For a soft sphere, ρ_2 = 1 and ρ_1 = 0. In this case, we get

$$c_n = -i^n (2n+1) \frac{j_n(x_2)}{h_n(x_2)}$$
 (A-9)

For a rigid sphere, $\frac{\rho_2}{\rho_1} \rightarrow 0$. In this case,

$$c_n = i^n (2n+1) \frac{j_n'(x_2)}{h_n'(x_2)}.$$
 (A-10)

APPENDIX B

THE KIRCHHOFF SCATTERING APPROXIMATION

In this section we will apply the Kirchhoff approximation to acoustic scattering. First, we will derive the integral form of the wave equation by using the divergence theorem. Then we will show how to obtain an approximate solution of the integral equation by using the Kirchhoff approximation.

The divergence theorem states that

$$\int_{V} dv \nabla \cdot \mathbf{f} = \int_{S} da \mathbf{f} \cdot \mathbf{n}$$
 (B-1)

provided \underline{f} has no singularies within v. Here, ∇ is the divergence of a vector and \underline{n} is the outward normal to the surface.

Now consider a system with a unity source at \underline{a} , a scatterer bounded by surface S_S , and a point of observation \underline{r} . The source may be described by

$$\frac{e^{ik|r-a|}}{|r-a|}.$$

We wish to find $\phi(\underline{r})$ where $\nabla^2 \phi + k^2 \phi = 0$ and appropriate boundary conditions are satisfied on S_s .

Let us define an auxilary function $G \equiv \frac{e^{ik|\mathbf{r'} - \mathbf{r}|}}{|\mathbf{r'} - \mathbf{r}|}$ and $\mathbf{f} \equiv G\nabla \phi - \phi \nabla G$. Note that G satisfies the wave equation except at $\mathbf{r'} = \mathbf{r}$.

We will now apply the divergence theorem on f

$$\nabla \cdot \mathbf{f} = \nabla G \cdot \nabla \phi + G \nabla^2 \phi - \nabla \phi \cdot \nabla G - \phi \nabla^2 G$$

$$= -k^2 G \phi + k^2 G \phi = 0$$
(B-2)

Therefore,

$$\int_{\mathbf{v}} d\mathbf{v} \nabla \cdot \mathbf{f} = 0 = \int_{\mathbf{S}} d\mathbf{a} \mathbf{f} \cdot \mathbf{n}$$
 (B-3)

Since V must be a volume free of singularities, we must exclude the singularities at the source position \underline{a} and the observation position \underline{r} from the volume. Let V be the interior to surface S_{∞} , a sphere whose radius is indefinitely large and exterior to S_{S} , S_{a} , S_{r} , where S_{a} and S_{r} are spheres of indefinitely small radius, centered at the source \underline{a} and the observation point \underline{r} , respectively.

Then from Equation (B-3), we get

$$\int_{s_{1}} da\underline{f}.\underline{n} + \int_{s_{a}} da\underline{f}.\underline{n} + \int_{s_{r}} da\underline{f}.\underline{n} + \int_{s_{s}} da\underline{f}.\underline{n} = 0$$
 (B-4)

$$\mathbf{f}.\mathbf{n} = G\nabla\varphi.\,\mathbf{n} - \varphi\nabla G.\,\mathbf{n} = G\frac{\partial\varphi}{\partial\mathbf{n}} - \varphi\frac{\partial G}{\partial\mathbf{n}}$$
(B-5)

Over the spheres S_a and S_r the positive normal is directed radially towards the center, or, out of the volume V. Therefore

$$\frac{\partial \phi}{\partial n} = -\frac{\partial \phi}{\partial r} .$$

Hence,

$$\underline{\mathbf{f}}.\underline{\mathbf{n}} = -\frac{e^{i\mathbf{k}|\mathbf{r}'} - \mathbf{r}|}{|\mathbf{r}' - \mathbf{r}|} \frac{\partial \phi}{\partial \mathbf{r}} - \phi \frac{\partial}{\partial \mathbf{n}} \left\{ \frac{e^{i\mathbf{k}|\mathbf{r}'} - \mathbf{r}|}{|\mathbf{r}' - \mathbf{r}|} \right\}$$
(B-6)

Now consider

$$\int_{s_a} da \underline{f}.\underline{n} = -\int_{|\underline{r}'-\underline{r}|} \frac{e^{i\underline{k}|\underline{r}'-\underline{r}|}}{|\underline{r}'-\underline{r}|} \frac{\partial \phi}{\partial \underline{r}} - \phi \frac{\partial}{\partial \underline{n}} \left\{ \frac{e^{i\underline{k}|\underline{r}'-\underline{r}|}}{|\underline{r}'-\underline{r}|} \right\}$$
(B-7)

where G and $\frac{\partial G}{\partial n}$ are bounded over S_a , and φ is the sum of the scattered field and the source field. The scattered field is also bounded. The source is of the order $\frac{1}{r}$ and $\frac{\partial \varphi}{\partial n}$ is of the order $\frac{1}{r^2}$. The surface area of S_a is $4\pi r^2$. As r, the radius of S_a , is allowed to vanish, the contribution of the sphere to right hand side of Equation (B-7) is

$$\int_{s_a} da \underline{f} . \underline{n} = 4\pi r^2 \frac{e^{ik|\underline{r} - \underline{a}|}}{|\underline{r} - \underline{a}|} \frac{1}{r^2} = 4\pi \frac{e^{ik|\underline{r} - \underline{a}|}}{|\underline{r} - \underline{a}|}$$

Similarly with $\int_{S_r} da\underline{f.n}$, ϕ and $\frac{\partial \phi}{\partial r}$ are bounded over S_r . G is of the order $\frac{1}{r}$ and $\frac{\partial G}{\partial n}$ is of the order $\frac{1}{r^2}$. Hence,

$$\int_{S_r} da \underline{f} . \underline{n} = -4\pi \phi (\underline{r})$$

On $S_{\infty},$ let the radius $\mbox{R} \to \infty.$ The area of $S_{\infty} \; \mbox{is} \; 4\pi \mbox{R}^2$,

 $G\frac{\partial \phi}{\partial n}$ and $G\frac{\partial G}{\partial n}$ can be written as

$$G\frac{\partial \Phi}{\partial n} = \frac{a}{r^2} + \frac{b}{r^3} + \dots$$

$$\Phi\frac{\partial G}{\partial n} = \frac{a}{r^2} + \frac{c}{r^3} + \dots$$

Hence,

$$\int_{\mathbf{S}_{\infty}} da\underline{\mathbf{f}}.\underline{\mathbf{n}} \rightarrow 0 \text{ as } R \rightarrow \infty.$$

Thus, collecting terms, we obtain

$$\int da\underline{f}.\underline{n} = 0 = 4\pi \frac{e^{ik|\underline{r} - \underline{a}|}}{|\underline{r} - \underline{a}|} - 4\pi\phi(\underline{r}) + \int_{S_S} da\underline{f}.\underline{n}$$

$$s_{\infty} + s_{r} + s_{a} + s_{S}$$
(B-8)

$$\phi(\mathbf{r}) = \frac{e^{i\mathbf{k}|\mathbf{r} - \mathbf{a}|}}{|\mathbf{r} - \mathbf{a}|} + \frac{1}{4\pi} \int_{s_s} d\mathbf{a} \mathbf{f} \cdot \mathbf{n}$$
 (B-9)

Here $\underline{\mathbf{n}}$ is the inward normal. If we replace this with the usual outward normal, we get

$$\phi(\underline{r}) = \frac{e^{ik|\underline{r} - \underline{a}|}}{|\underline{r} - \underline{a}|} - \frac{1}{4\pi} \int_{S_S} daG \frac{\partial \phi}{\partial n} - \phi \frac{\partial G}{\partial n}$$
(B-10)

This is referred to as Helmholtz's second theorem. While formally correct, it is an integral equation for ϕ and not useful for computation without certain approximations.

The Kirchhoff approximation to the Helmholtz integral assumes that the radius of curvature at every point on the surface is large compared to the wavelength. The scatterer itself can be either soft or rigid. To apply the Kirchhoff approximation, we have to derive the boundary conditions for φ and $\frac{\partial \varphi}{\partial n}$ when the radius of curvature of the surface becomes large compared to the wavelength. This is the same as the boundary conditions for scattering from the half plane. We derive these boundary conditions next.

Let $\phi_{\rm I}$, $\phi_{\rm R}$ and $\phi_{\rm T}$ be the incident, reflected and transmitted fields (see Figure B-1), respectively, given by

$$\phi_{I} = e^{ik_{1}(x\cos\theta + y\sin\theta)}$$

$$\phi_{R} = \alpha e^{ik_{1}(-x\cos\theta + y\sin\theta)}$$

$$\phi_{T} = \beta e^{ik_{2}(x\cos\eta + y\sin\eta)}$$

At x = 0 we have

$$\phi_{\rm I} + \phi_{\rm R} = \phi_{\rm T} \tag{B-11}$$

Hence,

$$(1+\alpha)e^{ik_1y\sin\theta} = \beta e^{ik_2y\sin\eta}$$

or,

$$\beta = (1+\alpha)$$
 and $k_1 \sin \theta = k_2 \sin \eta$

The velocity also has to match at the boundary, x=0, thus,

$$\frac{1}{i\omega\rho_2}\frac{\partial\phi_T}{\partial x} = \frac{1}{i\omega\rho_1}\frac{\partial\phi_I}{\partial x} + \frac{1}{i\omega\rho_1}\frac{\partial\phi_R}{\partial x}$$
(B-12)

$$\frac{\partial \phi_{I}}{\partial x} = i\beta k_{2} \cos \eta e^{ik_{2} y \sin \eta}$$
 (B-13)

$$\frac{\partial \phi_{I}}{\partial x} + \frac{\partial \phi_{R}}{\partial x} = ik_{1}\cos\theta (1-\alpha)e^{ik_{1}y\sin\theta}$$
 (B-14)

Combining Equations (B-11), (B-12), and (B-13), we get

$$\frac{k_1}{\rho_1} \cos\theta (1-\alpha) e^{ik_1 y \sin\theta} = \frac{k_2}{\rho_2} \beta \cos\eta e^{ik_2 y \sin\eta}$$

or,

$$\beta = \left(\frac{k_1}{k_2}\right) \left(\frac{\rho_1}{\rho_2}\right) \frac{\cos\theta}{\cos\eta} (1-\alpha)$$

$$= \left(\frac{k_1}{k_2}\right) \left(\frac{\rho_1}{\rho_2}\right) \frac{\cos\theta}{\sqrt{k_2^2 - k_1^2 \sin^2\theta}} (1-\alpha)$$

or,

$$\alpha = \frac{\rho_2 k_1 \cos \theta - \rho_1 \sqrt{k_2^2 - k_1^2 \sin^2 \theta}}{\rho_2 k_1 \cos \theta + \rho_1 \sqrt{k_2^2 - k_1^2 \sin^2 \theta}}$$

At x = 0, ϕ_T = $(1+\alpha)\phi_I$. Since for soft scatterer, $\rho_2 \to 0$, $\alpha \to -1$, and for rigid scatterer, $\rho_2 \to \infty$, $\alpha \to 1$.

Hence,

 ϕ_T = 0 for an infinitely soft scatterer, and ϕ_T = 2 ϕ_I for an infinitely rigid scatterer.

At
$$x = 0$$
, $\frac{\partial \phi_T}{\partial n} = (1-\alpha) \frac{\partial \phi_I}{\partial n}$

Hence,

$$\frac{\partial \phi_{T}}{\partial n} = 2 \frac{\partial \phi_{I}}{\partial n} \text{ for soft scatterer}$$

$$\frac{\partial \phi_{T}}{\partial n} = 0 \text{ for rigid scatterer}$$

These boundary conditions, when used on the Helmholtz equation, constitute the Kirchhoff approximation.

FIGURE B-1. INCIDENT, REFLECTED AND TRANSMITTED WAVES IN SCATTERING FROM A HALF-PLANE

DISTRIBUTION

Copies		Copies
Commander Naval Ocean Systems Center Attn: Technical Library 1 San Diego, CA 92152	Internal Distribution: E231 E232 U202 (T. Ballard) U04 (M. Stripling)	2 15 1
Commanding Officer Naval Underwater Systems Center New London Laboratory Attn: Technical Library 1 New London, CT 06320	U042 (J. Bilmanis) U05 (R. Stevenson) U25 (L. Barkakati) U25 (S. Hebbert) U25 (J. Arvelo) U25 (M. Williams)	1 5 5 1
Defense Technical Information Center Cameron Station Alexandria, VA 22304-6145 2	U25 (P. Jackins)	1

6-89 DTIC