Phonology has an Early Influence on Sound Change

Josef Fruehwald, NELS 43 Model Description

1 Data

y is F1.

$$y_{1,2...n} \tag{1}$$

J is a vector of speaker indices.

$$J_{1,2...n} \tag{2}$$

$$J_{1,2...n} (2)$$

$$j = J_i (3)$$

K is a vector of context indices.

$$k = 1$$
 Surface /d/
 $k = 2$ Surface /t/
 $k = 3$ Flapped /d/
 $k = 4$ Flapped /t/

$$K_{1,2...n} \tag{4}$$

$$K_{1,2...n} (4)$$

$$k = K_i (5)$$

W is a vector of word indices.

$$W_{1,2...n} \tag{6}$$

$$W_{1,2...n} \tag{6}$$

$$m = W_i \tag{7}$$

D is a vector of durations. Original msec measures have been log2 transformed and centered around the median.

$$D_{1,2...n} \tag{8}$$

$$d = D_i \tag{9}$$

(10)

B is a vector of dates of birth for each speaker.

$$B_{1,2,\dots,max(J)} \tag{11}$$

$$B_{1,2...max(J)}$$

$$b = B_j$$

$$(11)$$

$$(12)$$

(13)

Figure 1: b-spline basis

x is the b-spline basis represented in Figure 1.

$$x_{1...max(B),1...4}$$
 (14)

The Model $\mathbf{2}$

The change over time is modeled with the b-spline basis by multiplying it by a matrix of weighting coefficients, β .

$$\beta_{1\dots 4,1\dots max(K)} \tag{15}$$

$$\beta_{1...4,1...max(K)}$$

$$\gamma_{bk} = x \times \beta$$
(15)
(16)

We want to fit the following model represented in Figure 2 for every speaker.

Figure 2: Speaker Model

$$\gamma_{jk}^s \sim \mathcal{N}(\gamma_{bk}, \sigma_k)$$
 (17)

$$\mu_{jk=1}^{s} = \gamma_{jk=1}^{s}$$

$$\mu_{jk=2}^{s} = \gamma_{jk=1}^{s} + \gamma_{jk=2}^{s}$$

$$\mu_{jk=3}^{s} = \gamma_{jk=1}^{s} + \gamma_{jk=3}^{s}$$

$$(18)$$

$$(19)$$

$$(20)$$

$$\mu_{jk=2}^{s} = \gamma_{jk=1}^{s} + \gamma_{jk=2}^{s} \tag{19}$$

$$\mu_{ik=3}^{s} = \gamma_{ik=1}^{s} + \gamma_{ik=3}^{s} \tag{20}$$

$$\mu_{jk=4}^{s} = \gamma_{jk=1}^{s} + \gamma_{jk=2}^{s} + \gamma_{jk=4}^{s}$$
(21)

We also want to estimate word-level effects.

$$\mu_m^w \sim \mathcal{N}(0, \sigma^w)$$
 (22)

We'll also estimate a duration effect, β^d , and speaker-level duration effects, β^{ds}_j .

$$\beta_j^{ds} \sim \mathcal{N}(\beta^d, \sigma^d)$$
 (23)

Finally, the data is estimated as,

$$y_i \sim \mathcal{N}(\mu_{jk}^s + \mu_m^w + (\beta_j^{ds} \times d), \sigma_j^s)$$
 (24)

Where, σ_j^s is a speaker specific dispersion parameter.

Any parameters for which a prior has not been explicitly defined in this description was either given a $\sim U(0, 100)$ in the case of variance parameters, or $\sim \mathcal{N}(0, 1000)$ for all others.

3 **Implementation**

This model was estimated by Hamiltonian Monte Carlo, using Stan.

Phonology Has an Early Influence

Josef Fruehwald

on Sound Change

University of Pennsylvania

Which comes first?

phonological change the accumulation of gradient Does gradient phonetic change feed subsequent categorical phonological change? Is apparent phonetic errors in production or perception?

Test Case: /ay/ Raising

Normalized F1

/ay/ raises in Philadelphia before voiceless consonants only, and exhibits opacity in contemporary speech.

Data and Model

References

well converged.

differences are observed, they run counter to predictions At all times in the change, /ay/ raising has occured to a degree proportionate to the underlying voicing of the following segment, not proportionate to the phonetic properties of its context. based on phonetic bias.

A model where /ay/ raising began due to phonetic biases, then generalized along phonological lines is not supported. Rather, the phonological generalization appears to be concurrent with the phonetic shift.