DHS 2023 Year 6 H2 Mathematics Prelim Paper 1 Solutions and Comments

Qn	Suggested Solution	
1	$\int_0^a \left 2x^2 - 3x - 2 \right \mathrm{d}x$	
	$= \int_0^2 -(2x^2 - 3x - 2) dx + \int_2^a (2x^2 - 3x - 2) dx$	
	$= \left[\frac{2}{3}x^3 - \frac{3}{2}x^2 - 2x\right]_2^0 + \left[\frac{2}{3}x^3 - \frac{3}{2}x^2 - 2x\right]_2^a$	
	$= (\frac{14}{3}) + (\frac{2}{3}a^3 - \frac{3}{2}a^2 - 2a + \frac{14}{3})$	
	$= \frac{2}{3}a^3 - \frac{3}{2}a^2 - 2a + \frac{28}{3}$	
	$=\frac{1}{6}(4a^3-9a^2-12a+56)$	

(b)
$$\frac{x^2 - 3x + 3}{1 - x} = kx$$

$$x^2 - 3x + 3 = kx(1 - x)$$

$$(1 + k)x^2 - (3 + k)x + 3 = 0$$
For two points of intersection, discriminant > 0.
$$(3 + k)^2 - 4(1 + k)(3) > 0$$

$$9 + 6k + k^2 - 12 - 12k > 0$$

$$k^2 - 6k - 3 > 0$$

$$(k - 3)^2 - 12 > 0$$

$$k < 3 - 2\sqrt{3} \text{ or } k > 3 + 2\sqrt{3}$$

$$y = \frac{x^2 - 3x + 3}{1 - x} = 2 - x + \frac{1}{1 - x}$$
Consider the oblique asymptote of the curve C is $y = 2 - x$, for two points of intersection between the curve and the line, the set of values of k is
$$\{k \in \mathbb{R} : k < 3 - 2\sqrt{3} \text{ or } k > 3 + 2\sqrt{3}, k \neq -1\}.$$

Qn	Suggested Solution	
3(a)	By Conjugate Root Theorem, another root is $z = 1 - ai$.	
(b)	Let $z^3 - 2z + k = (z - [1 + ai])(z - [1 - ai])(z - c)$ where c is a real constant. $z^3 - 2z + k$ $= ([z - 1] - ai)([z - 1] + ai)(z - c)$ $= ([z - 1]^2 - [ai]^2)(z - c)$ $= (z^2 - 2z + [1 + a^2])(z - c)$ Comparing the coefficients of z^2 : $-c - 2 = 0 \implies c = -2$ Comparing the coefficients of z : $a^2 + 1 + 2c = -2 \implies a = 1 \text{ since } a > 0$ So, $k = -c(1 + a^2) = 4$	
(c)	Area = $\frac{1}{2}(2)(3) = 3$ square units	

Qn	Suggested Solution	·
4(a)	$\frac{2 - i\sin 2\alpha}{1 + 2i\sin 2\alpha} \times \frac{1 - 2i\sin 2\alpha}{1 - 2i\sin 2\alpha}$	
	$=\frac{(2-i\sin 2\alpha)(1-2i\sin 2\alpha)}{1+4\sin^2 2\alpha}$	
	$=\frac{2-2\sin 2\alpha - 5i\sin 2\alpha}{1+4\sin^2 2\alpha}$	
	Since the expression is real,	
	$\frac{-5i\sin 2\alpha}{1+4\sin^2 2\alpha} = 0$	
	$-5i\sin 2\alpha = 0$	
	$\sin 2\alpha = 0$	
	$3\ln 2\alpha = 0$ $2\alpha = k\pi, \ k \in \mathbb{Z}$	
	$\alpha = \frac{k\pi}{2}$	
	2	
	$\therefore \left\{ \alpha \in \mathbb{R} \mid \alpha = \frac{k\pi}{2} \right\}$	
(b)	3(w-z)	
	$\left \frac{3(w-z)}{1-z^*w} \right $	
	$=3\left \frac{(w-z)}{1-z^*w}\right $	
	$= 3 \left \frac{(w-z)}{w^* w - z^* w} \right (\because w^* w = w ^2 = 1)$	
	$=3\left \frac{\left(w-z\right)}{w\left(w^*-z^*\right)}\right $	
	$=\frac{3}{ w }\frac{ (w-z) }{ (w-z)^* }$	
	$=3\frac{ w-z }{ w-z } \left(\because \left \left(w-z\right)^*\right = \left w-z\right \right)$	
	= 3	
	Alternative 1	
	Let $z = re^{i\theta}$, $w = re^{i\phi}$,	

$$\left| \frac{3(w-z)}{1-z^*w} \right| = 3 \left| \frac{e^{i\phi} - re^{i\theta}}{1 - re^{-i\theta}e^{i\phi}} \right|$$

$$= 3 \left| \frac{e^{i\phi}(1 - re^{i(\theta-\phi)})}{1 - re^{-i(\theta-\phi)}} \right|$$

$$= 3 \left| e^{i\phi} \right| \left| \frac{1 - re^{i(\theta-\phi)}}{(1 - re^{i(\theta-\phi)})^*} \right|$$

$$= 3$$
Alternative 2
$$\left| \frac{3(w-z)}{1-z^*w} \right|$$

$$= 3 \left| \frac{w(1-zw^*)}{1-z^*w} \right|$$

$$= 3 |w| \left| \frac{(\because w^*w = |w|^2 = 1, \text{ so } \frac{1}{w} = w^*)}{1-z^*w} \right|$$

$$= 3 |w| \left| \frac{(1-z^*w)}{1-z^*w} \right|$$

$$= 3 |w| \left| \frac{(1-z^*w)}{1-z^*w} \right|$$

$$= 3 |w| \left| \frac{(1-z^*w)}{1-z^*w} \right|$$

Qn	Suggested Solution
5(a)	Since A, B and C are collinear
	$\overrightarrow{BC} // \overrightarrow{AB} = \mathbf{b} - \mathbf{a}$
	$\overrightarrow{BC} = 3\mathbf{b} - \mu \mathbf{a} = 3(\mathbf{b} - \mathbf{a})$
	$\therefore \mu = 3$
	$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$
	$= \mathbf{b} + (3\mathbf{b} - 3\mathbf{a})$
	$=4\mathbf{b}-3\mathbf{a}$
(b)	\mathbf{a} $O = \begin{bmatrix} A \\ 1 \\ B \end{bmatrix}$ $O = \begin{bmatrix} A \\ 1 \\ 1 \end{bmatrix}$ C
	Given $\overrightarrow{OQ} = t\overrightarrow{OC}$ Using RT:
	$\overrightarrow{OP} = \frac{\lambda \overrightarrow{OQ} + \overrightarrow{OA}}{1 + \lambda}$
	$= \frac{1}{1+\lambda} \left[\lambda t \ \overrightarrow{OC} + \mathbf{a} \right]$
	$= \frac{1}{1+\lambda} \left[\lambda t \ \overrightarrow{OC} + \mathbf{a} \right]$ $= \frac{1}{1+\lambda} \left[\lambda t \left(\mathbf{4b} - 3\mathbf{a} \right) + \mathbf{a} \right]$
	$= \frac{1}{1+\lambda} \Big[4\lambda t \mathbf{b} + (1-3\lambda t) \mathbf{a} \Big]$
	Since $\overrightarrow{OP}//$ b
	$1 - 3\lambda t = 0$
	$\therefore \lambda t = \frac{1}{3}$
(c)	When $\lambda = 5$
	$\overrightarrow{OP} = \frac{1}{1+\lambda} \left[4\lambda t \right] \mathbf{b} = \frac{1}{1+5} \left[\frac{4}{3} \right] \mathbf{b} = \frac{2}{9} \mathbf{b}$
	$\therefore OP: PB = \frac{2}{9}: \frac{7}{9} = 2:7$

6(a) $\sin 3x = (3x) - \frac{(3x)^3}{3!} + \dots = 3x - \frac{9x^3}{2} + \dots$ $f(x) = e^{\sin 3x} = 1 + (\sin 3x) + \frac{(\sin 3x)^2}{2!} + \frac{(\sin 3x)^3}{3!} + \dots$ $= 1 + (3x - \frac{9x^3}{2} + \dots) + \frac{1}{2}(3x - \frac{9x^3}{2} + \dots)^2 + \frac{1}{6}(3x - \frac{9x^3}{2} + \dots)^3 + \dots$ $= 1 + 3x - \frac{9x^3}{2} + \frac{1}{2}[(3x)^2] + \frac{1}{6}[(3x)^3] + \dots$ $= 1 + 3x + \frac{9}{2}x^2 + 0x^3 (\text{independent of } x^3)$ Alternative (by differentiation) $\text{let } y = e^{\sin 5x}$ $\frac{dy}{dx} = 3\cos 3x \cdot e^{\sin 3x} = 3\cos 3x \cdot y$ $\frac{d^3y}{dx^3} = 3\cos 3x \cdot \frac{d^3y}{dx^2} - 9\sin 3x \cdot \frac{dy}{dx} - 9\sin 3x \cdot \frac{dy}{dx} - 27\cos 3x \cdot y$ When $x = 0$, $y = 1, \frac{dy}{dx} = 3, \frac{d^3y}{dx^2} = 9, \frac{d^3y}{dx^3} = 0$ $\therefore y = 1 + 3x + \frac{9}{2}x^3 + 0x^3 + \dots$ (b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $-x^{-1} + 3\ln x + \frac{9}{2}x + C \text{where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 (4 \text{ d.p.})$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 (4 \text{ d.p.})$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected. Alternative:	Qn	Suggested Solution	
$f(x) = e^{\sin 3x} = 1 + (\sin 3x) + \frac{(\sin 3x)^2}{2!} + \frac{(\sin 3x)^3}{3!} + \dots$ $= 1 + (3x - \frac{9x^3}{2} + \dots) + \frac{1}{2}(3x - \frac{9x^3}{2} + \dots)^2 + \frac{1}{6}(3x - \frac{9x^3}{2} + \dots)^3 + \dots$ $= 1 + 3x - \frac{9x^3}{2} + \frac{1}{2}[(3x)^2] + \frac{1}{6}[(3x)^3] + \dots$ $= 1 + 3x + \frac{9}{2}x^2 + 0x^3 \text{(independent of } x^3 \text{)}$ Alternative (by differentiation) $\text{let } y = e^{\sin 3x}$ $\frac{dy}{dx} = 3\cos 3x \cdot e^{\sin 3x} = 3\cos 3x \cdot y$ $\frac{d^2y}{dx^2} = 3\cos 3x \cdot \frac{dy}{dx} - 9\sin 3x \cdot y$ $\frac{d^3y}{dx^3} = 3\cos 3x \cdot \frac{d^2y}{dx^2} - 9\sin 3x \cdot \frac{dy}{dx} - 9\sin 3x \cdot \frac{dy}{dx} - 27\cos 3x \cdot y$ When $x = 0$, $y = 1, \frac{dy}{dx} = 3, \frac{d^2y}{dx^2} = 9, \frac{d^3y}{dx^3} = 0$ $\therefore y = 1 + 3x + \frac{9}{2}x^2 + 0x^3 + \dots$ (b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C \text{where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 (4 \text{ d.p.})$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 (4 \text{ d.p.})$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.	6(a)		
$= 1 + (3x - \frac{9x^3}{2} +) + \frac{1}{2}(3x - \frac{9x^3}{2} +)^2 + \frac{1}{6}(3x - \frac{9x^3}{2} +)^3 +$ $= 1 + 3x - \frac{9x^3}{2} + \frac{1}{2}[(3x)^2] + \frac{1}{6}[(3x)^3] +$ $\approx 1 + 3x + \frac{9}{2}x^2 + 0x^3 \text{ (independent of } x^3\text{)}$ Alternative (by differentiation) $\text{let } y = e^{\sin 3x}$ $\frac{dy}{dx} = 3\cos 3x \cdot e^{\sin 3x} = 3\cos 3x \cdot y$ $\frac{d^3y}{dx^2} = 3\cos 3x \frac{dy}{dx} - 9\sin 3x \cdot y$ $\frac{d^3y}{dx^3} = 3\cos 3x \frac{d^3y}{dx^2} - 9\sin 3x \frac{dy}{dx} - 9\sin 3x \cdot \frac{dy}{dx} - 27\cos 3x \cdot y$ When $x = 0$, $y = 1, \frac{dy}{dx} = 3, \frac{d^3y}{dx^2} = 9, \frac{d^3y}{dx^3} = 0$ $\therefore y = 1 + 3x + \frac{9}{2}x^2 + 0x^3 +$ (b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C \text{ where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.1}$ $= 30.1178 \text{ (4d.p.)}$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 \text{ (4d.p.)}$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		3! 2	
$= 1 + 3x - \frac{9x^3}{2} + \frac{1}{2}[(3x)^2] + \frac{1}{6}[(3x)^3] + \dots$ $\approx 1 + 3x + \frac{9}{2}x^2 + 0x^3 \text{ (independent of } x^3)$ Alternative (by differentiation) $\text{lct } y = e^{\sin 3x}$ $\frac{dy}{dx} = 3\cos 3x \cdot e^{\sin 3x} = 3\cos 3x \cdot y$ $\frac{d^2y}{dx^2} = 3\cos 3x \frac{dy}{dx} - 9\sin 3x \cdot y$ $\frac{d^3y}{dx^3} = 3\cos 3x \frac{d^2y}{dx^2} - 9\sin 3x \frac{dy}{dx} - 9\sin 3x \cdot \frac{dy}{dx} - 27\cos 3x \cdot y$ When $x = 0$, $y = 1, \frac{dy}{dx} = 3, \frac{d^2y}{dx^2} = 9, \frac{d^3y}{dx^2} = 0$ $\therefore y = 1 + 3x + \frac{9}{2}x^2 + 0x^3 + \dots$ (b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C \text{where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 (4 \text{ d.p.})$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 (4 \text{ d.p.})$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		$f(x) = e^{\sin 3x} = 1 + (\sin 3x) + \frac{(\sin 3x)^2}{2!} + \frac{(\sin 3x)^3}{3!} + \dots$	
$\approx 1 + 3x + \frac{9}{2}x^2 + 0x^3 \text{ (independent of } x^3\text{)}$ Alternative (by differentiation) $\text{let } y = e^{\sin 3x}$ $\frac{dy}{dx} = 3\cos 3x \cdot e^{\sin 3x} = 3\cos 3x \cdot y$ $\frac{d^2y}{dx^2} = 3\cos 3x \frac{dy}{dx} - 9\sin 3x \cdot y$ $\frac{d^3y}{dx^3} = 3\cos 3x \frac{d^2y}{dx^2} - 9\sin 3x \frac{dy}{dx} - 9\sin 3x \cdot \frac{dy}{dx} - 27\cos 3x \cdot y$ When $x = 0$, $y = 1, \frac{dy}{dx} = 3, \frac{d^2y}{dx^2} = 9, \frac{d^3y}{dx^3} = 0$ $\therefore y = 1 + 3x + \frac{9}{2}x^2 + 0x^3 + \dots$ (b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C \text{where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 (4 \text{ d.p.})$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 (4 \text{ d.p.})$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		$=1+(3x-\frac{9x^3}{2}+)+\frac{1}{2}(3x-\frac{9x^3}{2}+)^2+\frac{1}{6}(3x-\frac{9x^3}{2}+)^3+$	
Alternative (by differentiation) let $y = e^{\sin 3x}$ $\frac{dy}{dx} = 3\cos 3x \cdot e^{\sin 3x} = 3\cos 3x \cdot y$ $\frac{d^2y}{dx^2} = 3\cos 3x \cdot \frac{dy}{dx} - 9\sin 3x \cdot y$ $\frac{d^3y}{dx^3} = 3\cos 3x \cdot \frac{d^2y}{dx^2} - 9\sin 3x \cdot \frac{dy}{dx} - 9\sin 3x \cdot \frac{dy}{dx} - 27\cos 3x \cdot y$ When $x = 0$, $y = 1, \frac{dy}{dx} = 3, \frac{d^2y}{dx^2} = 9, \frac{d^3y}{dx^3} = 0$ $\therefore y = 1 + 3x + \frac{9}{2}x^2 + 0x^3 + \dots$ (b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C \text{where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 (4 \text{ d.p.})$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 (4 \text{ d.p.})$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		\mathcal{L} \mathcal{L} \mathcal{L}	
let $y = e^{\sin 3x}$ $\frac{dy}{dx} = 3\cos 3x \cdot e^{\sin 3x} = 3\cos 3x \cdot y$ $\frac{d^2y}{dx^2} = 3\cos 3x \frac{dy}{dx} - 9\sin 3x \cdot y$ $\frac{d^3y}{dx^3} = 3\cos 3x \frac{d^2y}{dx^2} - 9\sin 3x \frac{dy}{dx} - 9\sin 3x \cdot \frac{dy}{dx} - 27\cos 3x \cdot y$ When $x = 0$, $y = 1$, $\frac{dy}{dx} = 3$, $\frac{d^2y}{dx^2} = 9$, $\frac{d^3y}{dx^3} = 0$ $\therefore y = 1 + 3x + \frac{9}{2}x^2 + 0x^3 + \dots$ (b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C$ where C is an arbitrary constant $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178$ (4 d.p.) (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995$ (4 d.p.) (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		$\approx 1 + 3x + \frac{9}{2}x^2 + 0x^3$ (independent of x^3)	
$\frac{d^2y}{dx^2} = 3\cos 3x \frac{dy}{dx} - 9\sin 3x \cdot y$ $\frac{d^3y}{dx^3} = 3\cos 3x \frac{d^2y}{dx^2} - 9\sin 3x \frac{dy}{dx} - 9\sin 3x \cdot \frac{dy}{dx} - 27\cos 3x \cdot y$ When $x = 0$, $y = 1, \frac{dy}{dx} = 3, \frac{d^2y}{dx^2} = 9, \frac{d^3y}{dx^3} = 0$ $\therefore y = 1 + 3x + \frac{9}{2}x^2 + 0x^3 + \dots$ (b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C \text{ where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 (4 d.p.)$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 (4 d.p.)$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		· ·	
$\frac{d^3y}{dx^3} = 3\cos 3x \frac{d^2y}{dx^2} - 9\sin 3x \frac{dy}{dx} - 9\sin 3x \cdot \frac{dy}{dx} - 27\cos 3x \cdot y$ When $x = 0$, $y = 1, \frac{dy}{dx} = 3, \frac{d^2y}{dx^2} = 9, \frac{d^3y}{dx^3} = 0$ $\therefore y = 1 + 3x + \frac{9}{2}x^2 + 0x^3 + \dots$ (b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C \text{ where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 (4 \text{ d.p.})$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 (4 \text{ d.p.})$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3\cos 3x \cdot \mathrm{e}^{\sin 3x} = 3\cos 3x \cdot y$	
When $x = 0$, $y = 1$, $\frac{dy}{dx} = 3$, $\frac{d^2y}{dx^2} = 9$, $\frac{d^3y}{dx^3} = 0$ $\therefore y = 1 + 3x + \frac{9}{2}x^2 + 0x^3 +$ (b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C \text{where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 (4 \text{ d.p.})$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 (4 \text{ d.p.})$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = 3\cos 3x \frac{\mathrm{d}y}{\mathrm{d}x} - 9\sin 3x \cdot y$	
$y = 1, \frac{dy}{dx} = 3, \frac{d^2y}{dx^2} = 9, \frac{d^3y}{dx^3} = 0$ $\therefore y = 1 + 3x + \frac{9}{2}x^2 + 0x^3 + \dots$ (b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C \text{where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 (4 \text{ d.p.})$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 (4 \text{ d.p.})$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		di di di	
(b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C \text{ where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 \text{ (4 d.p.)}$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 \text{ (4 d.p.)}$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.			
(b) $\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$ $= -x^{-1} + 3\ln x + \frac{9}{2}x + C \text{ where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3\ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 \text{ (4 d.p.)}$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 \text{ (4 d.p.)}$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		$y = 1$, $\frac{dy}{dx} = 3$, $\frac{dy}{dx^2} = 9$, $\frac{dy}{dx^3} = 0$	
$= -x^{-1} + 3 \ln x + \frac{9}{2}x + C \text{where } C \text{ is an arbitrary constant}$ $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3 \ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 (4 \text{ d.p.})$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 (4 \text{ d.p.})$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		$\therefore y = 1 + 3x + \frac{9}{2}x^2 + 0x^3 + \dots$	
$\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$ $= 4[-x^{-1} + 3 \ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 \text{ (4 d.p.)}$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 \text{ (4 d.p.)}$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.	(b)	$\int \frac{e^{\sin 3x}}{x^2} dx \approx \int (x^{-2} + 3x^{-1} + \frac{9}{2}) dx$	
$= 4[-x^{-1} + 3 \ln x + \frac{9}{2}x]_{0.1}^{0.2}$ $= 30.1178 (4 \text{ d.p.})$ (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995 (4 \text{ d.p.})$ (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		$=-x^{-1}+3\ln x +\frac{9}{2}x+C$ where C is an arbitrary constant	
= 30.1178 (4 d.p.) (c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995$ (4 d.p.) (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		$\int_{0.1}^{0.2} \left(\frac{2}{x}\right)^2 e^{\sin 3x} dx = \int_{0.1}^{0.2} \frac{4e^{\sin 3x}}{x^2} dx$	
(c) Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995$ (4 d.p.) (d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.		$=4[-x^{-1}+3\ln x+\frac{9}{2}x]_{0.1}^{0.2}$	
(d) The approximation is accurate as the values of x (between 0.1 and 0.2) are close to 0 for the magnitude of x ⁴ and higher powers of x to be neglected.		= 30.1178 (4 d.p.)	
and 0.2) are close to 0 for the magnitude of x^4 and higher powers of x to be neglected.	(c)	Using GC, $\int_{0.1}^{0.2} (\frac{2}{x})^2 e^{\sin 3x} dx = 29.9995$ (4 d.p.)	
Alternative:	(d)	and 0.2) are close to 0 for the magnitude of x^4 and higher powers	
		Alternative:	

% error = $\frac{ 30.1178 - 29.9995 }{29.9995} \times 100 = 0.3943\%$ Since percentage error is small, approximation is accurate.	

Qn	Suggested Solutions
7(a)	<i>y</i> ▲ .
	2
	' '
(b)	At $(6,8)$, $t=2$.
	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2t$ and $\frac{\mathrm{d}y}{\mathrm{d}t} = 3t^2$
	$\frac{dy}{dy} = \frac{1}{3} \cdot \frac{3}{4}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3t^2 \times \frac{1}{2t} = \frac{3}{2}t$
	When $t = 2$, $\frac{dy}{dx} = 3$
	Equation of tangent is $y-8=3(x-6)$
	i.e., $y = 3x - 10$
(c)	Since tangent to C at the point $(6,8)$ meets the curve C
	again at point P , $t^3 = 3(t^2 + 2) - 10$
	$t^3 - 3t^2 + 4 = 0$
	Using GC,
	t=2 or $t=-1$
	(Point(6,8))
	Alt
	$(t-2)(t^2-t-2)=0$
	(t-2)(t-2)(t+1) = 0
	t=2 or $t=-1$
	At $t = -1$, $x = 3$ and $y = -1$.
	The coordinates of point P are $(3,-1)$.
(d)	At $t = m$, the normal to the curve is
	$y - m^3 = -\frac{2}{3m} \left(x - m^2 - 2 \right)$
	i.e., $y = -\frac{2}{3m}x + \frac{2m}{3} + \frac{4}{3m} + m^3$
	When $x = 0$, $y = \frac{2m}{3} + \frac{4}{3m} + m^3$ (Point R)
	When $y = 0$, $x = \frac{3m^4}{2} + m^2 + 2$ (Point Q)

	The mid-point F is $\left(\frac{3m^4}{4} + \frac{m^2}{2} + 1, \frac{m}{3} + \frac{2}{3m} + \frac{m^3}{2}\right)$.	
	4 2 3 3m 2)	
Qn	Suggested Solutions	
8(a)	$S_n = 3n(n+2)$	
	$u_n = S_n - S_{n-1}$	
	=3n(n+2)-3(n-1)(n+1)	
	=6n+3	
	$u_n - u_{n-1} = 6n + 3 - (6(n-1) + 3)$	
	=6n+3-6n+3	
	= 6 (constant)	
	Since the difference between two consecutive terms is a constant, the series is an arithmetic progression. The common difference is 6.	
(b)	$v_1 = u_2 = 6(2) + 3 = 15$	
	$v_2 = u_7 = 6(7) + 3 = 45$	
	common ratio, $r = \frac{45}{15} = 3$	
	$v_3 = 15(3)^2 = 135$	
	The m^{th} term of the series in (i),	
	135 = 6(m) + 3	
	$m = \frac{135 - 3}{6} = 22$	
	Since $r = 3$ does not lie within $-1 < r < 1$, the sum to infinity of v_n does not exist.	
(c)	common ratio = $\frac{w_n}{w_n}$	
	w_{n-1} $e^{5+nx(x+1)}$	
	$=\frac{e}{e^{5+(n-1)x(x+1)}}$	
	$e^{5}e^{nx(x+1)}$	
	$= \frac{e^{5}e^{(n-1)x(x+1)}}{e^{5}e^{(n-1)x(x+1)}}$	
	$= e^{nx(x+1)-(n-1)x(x+1)}$	
	$= e^{x(x+1)}$	
	For the series to converge, $\left e^{x(x+1)} \right < 1$, $x(x+1) < 0$	
	The range of values of x is $-1 < x < 0$.	

From the graph, the least value of n is 3.

2.28

Alternative (table method)

Qn	Suggested Solution	
9(a)	$\int_0^p \sin^{-1} \frac{t}{3} dt = \left[t \sin^{-1} \frac{t}{3} \right]_0^p - \int_0^p t \cdot \frac{\frac{1}{3}}{\sqrt{1 - \left(\frac{1}{3}t\right)^2}} dt$	
	$= \left[t \sin^{-1} \frac{t}{3} \right]_0^p - \int_0^p t \cdot \frac{1}{\sqrt{9 - t^2}} dt$	
	$= p \sin^{-1} \frac{p}{3} + \frac{1}{2} \int_{0}^{p} \frac{-2t}{\sqrt{9 - t^{2}}} dt$	
	$= p \sin^{-1} \frac{p}{3} + \frac{1}{2} \left[\frac{\sqrt{9 - t^2}}{\left(\frac{1}{2}\right)} \right]_0$	
	$= p\sin^{-1}\frac{p}{3} + \left[\sqrt{9 - p^2} - \sqrt{9}\right]$	
	$= p \sin^{-1} \frac{p}{3} + \sqrt{9 - p^2} - 3 \text{(Shown)}$	
(b)	When $x = \sqrt{\frac{\pi}{8}}$, on the curve $y = x^2$, $y = \left(\sqrt{\frac{\pi}{8}}\right)^2 = \frac{\pi}{8}$.	
	on the curve $y = 3\sin(2x^2)$,	
	$y = 3\sin\left[2\left(\sqrt{\frac{\pi}{8}}\right)^2\right] = 3\sin\left(\frac{\pi}{4}\right) = \frac{3\sqrt{2}}{2}.$	
	Also, $y = 3\sin(2x^2) \Rightarrow \sin(2x^2) = \frac{y}{3} \Rightarrow x^2 = \frac{1}{2}\sin^{-1}\frac{y}{3}$	
	Volume generated by region R rotated about the y-axis	
	$= \pi \left(\sqrt{\frac{\pi}{8}}\right)^2 \left(\frac{3\sqrt{2}}{2} - \frac{\pi}{8}\right) + \pi \int_0^{\frac{\pi}{8}} y dy - \pi \int_0^{\frac{3\sqrt{2}}{2}} \frac{1}{2} \sin^{-1} \frac{y}{3} dy$	
	$= \frac{\pi^2}{8} \left(\frac{3\sqrt{2}}{2} - \frac{\pi}{8} \right) + \pi \left[\frac{y^2}{2} \right]_0^{\frac{\pi}{8}} - \frac{\pi}{2} \int_0^{\frac{3\sqrt{2}}{2}} \sin^{-1} \frac{y}{3} dy$	
	$= \frac{\pi^2}{8} \left(\frac{3\sqrt{2}}{2} - \frac{\pi}{8} \right) + \frac{\pi}{2} \left(\frac{\pi}{8} \right)^2 - \frac{\pi}{2} \left[\frac{3\sqrt{2}}{2} \sin^{-1} \frac{\left(\frac{3\sqrt{2}}{2} \right)}{3} + 3\sqrt{1 - \frac{1}{9} \left(\frac{3\sqrt{2}}{2} \right)^2} - 3 \right]$	
	$= \frac{3\sqrt{2}\pi^2}{16} - \frac{\pi^3}{64} + \frac{\pi^3}{128} - \frac{\pi}{2} \left[\frac{3\sqrt{2}}{2} \sin^{-1} \left(\frac{\sqrt{2}}{2} \right) + 3\sqrt{1 - \frac{1}{9} \left(\frac{9}{2} \right)} - 3 \right]$	
	$= \frac{3\sqrt{2}\pi^2}{16} - \frac{\pi^3}{128} - \frac{\pi}{2} \left[\frac{3\sqrt{2}}{2} \left(\frac{\pi}{4} \right) + 3\sqrt{\frac{1}{2}} - 3 \right]$	
	$= \frac{3\sqrt{2}\pi^2}{16} - \frac{\pi^3}{128} - \frac{3\sqrt{2}\pi^2}{16} - \frac{3\sqrt{2}\pi}{4} + \frac{3\pi}{2} = \frac{3\pi}{2} \left(1 - \frac{\sqrt{2}}{2}\right) - \frac{\pi^3}{128} \text{ cubic metres}$	

Area of region
$$Q$$

$$= \int_0^1 \left(\frac{8\sqrt{x}}{1+x^3} - 4x^{\frac{7}{2}} \right) dx = 3.299901526 = 3.3 \text{ (1 d.p.) square metres}$$

Volume of main structure =
$$\frac{3\pi}{2} \left(1 - \frac{\sqrt{2}}{2} \right) - \frac{\pi^3}{128} \text{ m}^3$$

Mass of main structure

$$= \left\lceil \frac{3\pi}{2} \left(1 - \frac{\sqrt{2}}{2} \right) - \frac{\pi^3}{128} \right\rceil \times 1463.46 = 1665.403197 \text{ kg}$$

Let *h* m be the thickness of the prism base.

Volume of prism base =
$$3.299901526h \text{ m}^3$$

Mass of prism structure = $3.299901526h \times 2550 = 8414.748892h$ kg

Total mass =
$$(8414.748892h + 1665.403197)$$
 kg

Expected weight per square metre of the monument

$$=\frac{\left(8414.748892h+1665.403197\right)\times\frac{9.81}{1000}}{3.299901526}$$

$$= 25.0155h + 4.950937242$$

$$25.0155h + 4.950937242 \le 20$$

$$h \leq 0.60159$$

Hence, only if the thickness of the prism base is less than 60.159 cm, then no special foundation will be needed. Should it be between 60.159 cm and 70 cm, a special foundation is needed. Hence, the engineer's claim is not correct.

Alternative method (find total mass using thickness 70cm)

Suggested Solution	
$\frac{dy}{dx} = -ay$, a positive	
dt	
$v^2 + v^2 - 8^2$	
$2x + 2y \frac{dy}{1} = 0$	
$\frac{dx}{dt} = \frac{dx}{dy} \times \frac{dy}{dt}$	
$=-\frac{y}{x}(-ay)$	
$= {x} = {x} $ (shown)	
$\frac{\mathrm{d}y}{\mathrm{d}t} = -ky$	
G.	
$2x\frac{dt}{dt} + 2y\frac{dy}{dt} = 0$	
$\frac{dx}{dx}$ v $k(64-x^2)$	
$\frac{d}{dt} = -\frac{y}{x}(-ky) = \frac{x}{x}$	
$\frac{\mathrm{d}x}{\mathrm{d}x} = \frac{3(64 - x^2)}{2}$	
$\frac{x}{1+x^2} = 3$	
$\int \frac{x}{64 r^2} dx = \int 3 dt$	
_	
$x = \sqrt{64 - Ae^{-6t}}$	
$4 = \sqrt{64 - A}$	
A = 48	
$x = \sqrt{64 - 48e^{-6t}}$	
When $y = 3$, $x = \sqrt{64 - 3^2} = \sqrt{55}$	

(c)	$\sqrt{55} = \sqrt{64 - 48e^{-6t}}$ $e^{-6t} = \frac{9}{48}$ $t = 0.279 = 0.3 \text{ s (1 d.p.)}$	
	$x = \sqrt{64 - 48e^{-6t}}$ 0 t	
(d)	Based on Jim's conjecture, the rod will never be flat on the ground; thus not appropriate.	

Qn	Suggested Solution	
11(a)	$f(x) = a + \frac{3a}{(x+3)(x-1)}$	
	$f'(x) = \frac{-3a[1(x-1)+1(x+3)]}{[(x+3)(x-1)]^2} = \frac{-3a[2x+2]}{[(x+3)(x-1)]^2}$	
	At stationary point,	
	f'(x) = 0	
	$\frac{-6a[x+1]}{[(x+3)(x-1)]^2} = 0 \Rightarrow x = -1$	

