

Eyad Tarek Nagy

Digital IC design and Verification.

ABOUT ME

I am passionate about Digital IC Design and Verification, with a strong foundation in RTL design, logic synthesis, and verification methodologies. I enjoy solving complex hardware design challenges and ensuring reliable, high-performance circuits through simulation and testing. My goal is to contribute to developing innovative and efficient digital systems.

Why Me?

Because i have make hardware implementation by three main HDL language (VHDL, Verilog, System Verilog) and because I combine a solid foundation in Digital IC Design and Verification with strong problem-solving skills and attention to detail.

Education

Ain Shams University

Bachelor, Computer and System engineering 2022 - 2027

SKILL

- Strong background in Logic Design & Computer Architecture.
- RTL Design & Verification expertise (VHDL/Verilog/SystemVerilog).
- Experience with Simulation and Synthesis tools(ModelSim,Vivado).
- Solid problem solving skills.
- Strong time management and meeting deadlines.

Work Experience

National Telecommunication Institute - NTI Digital Design Using FPGA,

02. Udemy
System Programming in Linux,

Offered Services

Service 1

RTL Design (Verilog / VHDL): Developing efficient and optimized digital circuits.

Service 3

Digital System Simulation: Using industry tools (ModelSim, Questa, Vivado) for accurate performance analysis.

Service 2

Functional Verification (SystemVerilog): Building robust testbenches to ensure design correctness.

Service 4

Synthesis & Timing Analysis: Ensuring designs meet timing and power requirements.

Service 5

Documentation & Reports: Clear design specifications, test plans, and verification reports.

Projects

8-bit Microprocessor using VHDL

Digital Lock Circuits

CONT.Projects

Pharmacy Management System

I2C Master Communication Protocol

```
1 ∨ module i2c master core (
         input wire clk,
         input wire rst_n,
         // I2C physical lines
         output reg scl o,
         output reg scl oe,
         input wire scl i,
         output reg sda_o,
         output reg sda oe,
10
         input wire sda i,
11
12
13
         // CPU Master Interface
         input wire
                            m start i,
14
         input wire
                            m_stop_i,
15
                            m read nwrite i,
         input wire
16
                            m_slave_addr_i,
17
         input wire [6:0]
         input wire [7:0]
                            m_data_i,
18
                            m data o,
19
         output reg [7:0]
                            m_data_valid_o,
20
         output reg
21
         output reg
                            m busy o,
22
         output reg
                            m error o
     );
23
```


My Contact

- **+20-1229336144**
- eyadnagy78@gmail.com
- 18 Khaled ebn el waleed ST., Dar El Salam , Cairo

Thank You