Тема:

Хроматические многочлены

Сергей Витальевич Рыбин svrybin@etu.ru

СПбГЭТУ «ЛЭТИ», кафедра «Алгоритмической математики»

25 июня 2023 г.

Основные понятия

 $oldsymbol{0}$ Пусть $oldsymbol{G}=(oldsymbol{V},oldsymbol{E})$ — некоторый граф, $\{1,2,...,k\}$ — множество «цветов». Отображение $f:oldsymbol{V} o \{1,2,...,k\}$ называют вершинной k-раскраской графа $oldsymbol{G}$.

Основные понятия

- $oldsymbol{1}$ Пусть $oldsymbol{G}=(oldsymbol{V},oldsymbol{E})$ некоторый граф, $\{1,2,...,k\}$ множество «цветов». Отображение $f:oldsymbol{V} o \{1,2,...,k\}$ называют вершинной k-раскраской графа $oldsymbol{G}$.
- 2 Такую k-раскраску называют **правильной**, если для любого ребра $(v_1, v_2) \in E$ справедливо $f(v_1) \neq f(v_2)$, т. е. смежные вершины получают различную окраску.

Основные понятия

- $oldsymbol{1}$ Пусть $oldsymbol{G}=(oldsymbol{V},oldsymbol{E})$ некоторый граф, $\{1,2,...,k\}$ множество «цветов». Отображение $f:oldsymbol{V} o \{1,2,...,k\}$ называют вершинной k-раскраской графа $oldsymbol{G}$.
- 2 Такую k-раскраску называют **правильной**, если для любого ребра $(v_1, v_2) \in E$ справедливо $f(v_1) \neq f(v_2)$, т. е. смежные вершины получают различную окраску.
- ③ Пусть G = (V, E) некоторый граф и t заданное число цветов. Число способов правильной вершинной t-раскраски графа G называется его хроматическим многочленом и обозначается P(G, t).

Основные понятия

- $oxed{1}$ Пусть $oldsymbol{G}=(oldsymbol{V}, oldsymbol{E})$ некоторый граф, $\{1,2,...,k\}$ множество «цветов». Отображение $f:oldsymbol{V} o \{1,2,...,k\}$ называют вершинной k-раскраской графа $oldsymbol{G}$.
- 2 Такую k-раскраску называют **правильной**, если для любого ребра $(v_1, v_2) \in E$ справедливо $f(v_1) \neq f(v_2)$, т. е. смежные вершины получают различную окраску.
- $oldsymbol{3}$ Пусть $oldsymbol{G} = (oldsymbol{V}, oldsymbol{E})$ некоторый граф и $oldsymbol{t}$ заданное число цветов. Число способов правильной вершинной $oldsymbol{t}$ -раскраски графа $oldsymbol{G}$ называется его хроматическим многочленом и обозначается $oldsymbol{P}(oldsymbol{G},t)$.

Основные свойства

 \bigcirc Пусть **G** — граф из одной изолированной вершины. Тогда

$$P(G,t) = t. (1)$$

Основные понятия

- $oldsymbol{1}$ Пусть $oldsymbol{G} = (oldsymbol{V}, oldsymbol{E})$ некоторый граф, $\{1, 2, ..., k\}$ множество «цветов». Отображение $f: oldsymbol{V} o \{1, 2, ..., k\}$ называют вершинной k-раскраской графа $oldsymbol{G}$.
- 2 Такую k-раскраску называют **правильной**, если для любого ребра $(v_1, v_2) \in E$ справедливо $f(v_1) \neq f(v_2)$, т. е. смежные вершины получают различную окраску.
- $oldsymbol{3}$ Пусть $oldsymbol{G} = (oldsymbol{V}, oldsymbol{E})$ некоторый граф и $oldsymbol{t}$ заданное число цветов. Число способов правильной вершинной $oldsymbol{t}$ -раскраски графа $oldsymbol{G}$ называется его хроматическим многочленом и обозначается $oldsymbol{P}(oldsymbol{G},t)$.

Основные свойства

 \bigcirc Пусть G — граф из одной изолированной вершины. Тогда

$$P(G,t) = t. (1)$$

 \bigcirc Пусть C_n — цикл, состоящий из n вершин. Тогда

$$P(C_n\,,\,t)=(t-1)^n+(-1)^n(t-1). \tag{2}$$

Основные понятия

- $oxed{1}$ Пусть $oldsymbol{G}=(oldsymbol{V},oldsymbol{E})$ некоторый граф, $\{1,2,...,k\}$ множество «цветов». Отображение $f:oldsymbol{V} o \{1,2,...,k\}$ называют вершинной k-раскраской графа $oldsymbol{G}$.
- 2 Такую k-раскраску называют **правильной**, если для любого ребра $(v_1, v_2) \in E$ справедливо $f(v_1) \neq f(v_2)$, т. е. смежные вершины получают различную окраску.
- (3) Пусть G = (V, E) некоторый граф и t заданное число цветов. Число способов правильной вершинной t-раскраски графа G называется его хроматическим многочленом и обозначается P(G, t).

Основные свойства

 ${\color{orange} {\bf 1}}$ Пусть ${{m G}}$ — граф из одной изолированной вершины. Тогда

$$P(G,t) = t. (1)$$

 \square Пусть C_n — цикл, состоящий из n вершин. Тогда

$$P(C_n\,,\,t)=(t-1)^n\,+(-1)^n\,(t-1). \tag{2}$$

Пусть в графе G есть висячая вершина v. Обозначим через G_1 граф, полученный удалением из исходного графа вершины v и инцидентного ей ребра. Тогда

$$P(\boldsymbol{G}, t) = (t - 1)P(\boldsymbol{G}_1, t) \tag{3}$$

Основные понятия

- $oxed{1}$ Пусть $oldsymbol{G}=(oldsymbol{V},oldsymbol{E})$ некоторый граф, $\{1,2,...,k\}$ множество «цветов». Отображение $f:oldsymbol{V} o \{1,2,...,k\}$ называют вершинной k-раскраской графа $oldsymbol{G}$.
- 2 Такую k-раскраску называют **правильной**, если для любого ребра $(v_1, v_2) \in E$ справедливо $f(v_1) \neq f(v_2)$, т. е. смежные вершины получают различную окраску.
- ③ Пусть G = (V, E) некоторый граф и t заданное число цветов. Число способов правильной вершинной t-раскраски графа G называется его хроматическим многочленом и обозначается P(G, t).

Основные свойства

Пусть G — граф из одной изолированной вершины. Тогда

$$P(G,t) = t. (1)$$

 \bigcirc Пусть C_n — цикл, состоящий из n вершин. Тогда

$$P(C_n\,,\,t)=(t-1)^n+(-1)^n(t-1). \tag{2}$$

П Пусть в графе G есть висячая вершина v. Обозначим через G_1 граф, полученный удалением из исходного графа вершины v и инцидентного ей ребра. Тогда

$$P(\boldsymbol{G},t) = (t-1)P(\boldsymbol{G}_1,t) \tag{3}$$

Пусть в графе G есть вершина u : $\deg(u)=2$ и смежные с u вершины смежны между собой (образуют «треугольник»). Обозначим через G_1 граф, полученный удалением из исходного графа вершины u и обоих инцидентных ей ребер. Тогда

$$P(G, t) = (t - 2)P(G_1, t)$$
 (4)

Основные понятия

- Пусть $m{G} = (m{V}, m{E})$ некоторый граф, $\{1, 2, ..., k\}$ множество «цветов». Отображение $f: m{V} \to \{1, 2, ..., k\}$ называют вершинной kраскраской графа G.
- Такую k-раскраску называют **правильной**, если для любого ребра $(v_1, v_2) \in E$ справедливо $f(v_1) \neq f(v_2)$, т. е. смежные вершины получают различную окраску.
- $oxed{3}$ Пусть $oldsymbol{G}=(oldsymbol{V},oldsymbol{E})$ некоторый граф и $oldsymbol{t}$ заданное число цветов. Число способов правильной вершинной $oldsymbol{t}$ -раскраски графа $oldsymbol{G}$ называется его **хроматическим многочленом** и обозначается P(G, t).

Основные свойства

Пусть G — граф из одной изолированной вершины. Тогда

$$P(G,t) = t. (1)$$

Пусть C_n — цикл, состоящий из n вершин. Тогда

$$P(C_n\,,\,t)=(t-1)^n+(-1)^n(t-1). \tag{2}$$

Пусть в графе G есть висячая вершина v. Обозначим через G_1 граф, полученный удалением из исходного графа вершины v и инцидентного ей ребра. Тогда

$$P(\boldsymbol{G},t) = (t-1)P(\boldsymbol{G}_1,t) \tag{3}$$

Пусть в графе G есть вершина $u : \deg(u) = 2$ и смежные с u вершины смежны между собой (образуют «треугольник»). Обозначим через G_1 граф, полученный удалением из исходного графа вершины u и обоих инцидентных ей ребер. Тогда

$$P(G, t) = (t - 2)P(G_1, t)$$
 (4)

Соотношения (1), (2), (3) и (4) в некоторых случаях существенно упрощают вычисление хроматического многочлена

1 Используем соотношение (3) для висячих вершин v_1 , v_4 , v_5 , v_8 графа G. Удаляя вершины и ребра получаем граф G_1 .

- 1) Используем соотношение (3) для висячих вершин v_1 , v_4 , v_5 , v_8 графа G. Удаляя вершины и ребра получаем граф G_1 .
- 2 $P(G, t) = P(G_1, t)(t-1)^4$

- \blacksquare Используем соотношение (3) для висячих вершин v_1 , v_4 , v_5 , v_8 графа G . Удаляя вершины и ребра получаем граф G_1 .
- 2 $P(G, t) = P(G_1, t)(t-1)^4$

- (1) Используем соотношение (3) для висячих вершин v_1 , v_4 , v_5 , v_8 графа ${m G}$. Удаляя вершины и ребра получаем граф ${m G}_1$.
- 2 $P(G, t) = P(G_1, t)(t-1)^4$
- 3 Используем соотношение (4) для «треугольника» v_6 , v_2 , v_7 (с вершиной треугольника v_6) графа G_1 . Удаляя вершину треугольника и ребра, смежные с ней, получаем граф G_2 .
- 4 $P(G, t) = P(G_1, t)(t-1)^4 = P(G_2, t)(t-1)^4(t-2)$

- 1 Используем соотношение (3) для висячих вершин v_1 , v_4 , v_5 , v_8 графа G. Удаляя вершины и ребра получаем граф G_1 .
- **2** $P(G, t) = P(G_1, t)(t-1)^4$
- 3 Используем соотношение (4) для «треугольника» v_6 , v_2 , v_7 (с вершиной треугольника v_6) графа G_1 . Удаляя вершину треугольника и ребра, смежные с ней, получаем граф G_2 .
- **4** $P(G, t) = P(G_1, t)(t-1)^4 = P(G_2, t)(t-1)^4(t-2)$
- ф. Используем соотношение (4) для «треугольника» v_3 , v_7 , v_2 (с вершиной треугольника v_7). Удаляя вершину треугольника и ребра, смежные с ней, получаем граф G_3 .

- 1 Используем соотношение (3) для висячих вершин v_1,v_4,v_5,v_8 графа ${m G}$. Удаляя вершины и ребра получаем граф ${m G}_1$.
- 2 $P(G, t) = P(G_1, t)(t-1)^4$
- 3 Используем соотношение (4) для «треугольника» v_6 , v_2 , v_7 (с вершиной треугольника v_6) графа G_1 . Удаляя вершину треугольника и ребра, смежные с ней, получаем граф G_2 .
- 4 Используем соотношение (4) для «треугольника» v_3 , v_7 , v_2 (с вершиной треугольника v_7). Удаляя вершину треугольника и ребра, смежные с ней, получаем граф G_3 .

- 1 Используем соотношение (3) для висячих вершин v_1 , v_4 , v_5 , v_8 графа G. Удаляя вершины и ребра получаем граф G_1 .
- 2 $P(G, t) = P(G_1, t)(t-1)^4$

- 4 Используем соотношение (4) для «треугольника» v_3 , v_7 , v_2 (с вершиной треугольника v_7). Удаляя вершину треугольника и ребра, смежные с ней, получаем граф G_3 .
- $\textbf{5} \ \ P(\boldsymbol{G},t) = P(\boldsymbol{G}_1,t)(t-1)^4 = P(\boldsymbol{G}_2,t)(t-1)^4(t-2) = P(\boldsymbol{G}_3,t)(t-1)^4(t-2)^2$

- і Используем соотношение (3) для висячих вершин v_1 , v_4 , v_5 , v_8 графа G. Удаляя вершины и ребра получаем граф G_1 .
- **2** $P(G, t) = P(G_1, t)(t-1)^4$
- 3 Используем соотношение (4) для «треугольника» v_6, v_2, v_7 (с вершиной треугольника v_6) графа G_1 . Удаляя вершину треугольника и ребра, смежные с ней, получаем граф G_2 .
- ① Используем соотношение (4) для «треугольника» v_3 , v_7 , v_2 (с вершиной треугольника v_7). Удаляя вершину треугольника и ребра, смежные с ней, получаем граф G_3 .
- $\textbf{5} \ \ P(\boldsymbol{G},\,t) = P(\boldsymbol{G}_1\,,\,t)(t\,-\,1)^4 = P(\boldsymbol{G}_2\,,\,t)(t\,-\,1)^4(t\,-\,2) = P(\boldsymbol{G}_3\,,\,t)(t\,-\,1)^4(t\,-\,2)^2$
- Окончательно получаем

$$P(G, t) = t(t-1)^5(t-2)^2$$
.

Используем соотношение (3) для висячих вершин B,C,G,J графа ${m G}$. Удаляя вершины и ребра получаем граф G_1 .

- 2 $P(G, t) = P(G_1, t)(t-1)^4$

- 2 $P(G, t) = P(G_1, t)(t-1)^4$

- 2 $P(G, t) = P(G_1, t)(t-1)^4$
- 3 Используем соотношение (3) для вершины F, которая стала висячей после удаления вершины J. Удаляя вершину и ребро получаем граф G_2 .
- 4 $P(G, t) = P(G_1, t)(t-1)^4 = P(G_2, t)(t-1)^5$

- і Используем соотношение (3) для висячих вершин B,C,G,J графа ${m G}$. Удаляя вершины и ребра получаем граф ${m G}_1$.
- 2 $P(G, t) = P(G_1, t)(t-1)^4$
- f 3 Используем соотношение (3) для вершины F, которая стала висячей после удаления вершины J. Удаляя вершину и ребро получаем граф G_2 .
- **4** $P(G, t) = P(G_1, t)(t-1)^4 = P(G_2, t)(t-1)^5$
- Применим формулу (4) для «треугольников» A, D, E и K, H, L с вершинами в A и K. Удаляя вершины треугольников и ребра, смежные с ними, получаем граф G_3 .

- 2 $P(G, t) = P(G_1, t)(t-1)^4$
- f 3 Используем соотношение (3) для вершины F, которая стала висячей после удаления вершины J. Удаляя вершину и ребро получаем граф G_2 .
- 4 $P(G, t) = P(G_1, t)(t-1)^4 = P(G_2, t)(t-1)^5$
- f 5 Применим формулу (4) для «треугольников» A, D, E и K, H, L с вершинами в A и K. Удаляя вершины треугольников и ребра, смежные с ними, получаем граф G_3 .
- 6 $P(G,t) = P(G_1,t)(t-1)^4 = P(G_2,t)(t-1)^5 = P(G_3,t)(t-1)^5(t-2)^2$

- 2 $P(G, t) = P(G_1, t)(t-1)^4$
- 3 Используем соотношение (3) для вершины F, которая стала висячей после удаления вершины J. Удаляя вершину и ребро получаем граф G_2 .
- **4** $P(G, t) = P(G_1, t)(t-1)^4 = P(G_2, t)(t-1)^5$
- Применим формулу (4) для «треугольников» A, D, E и K, H, L с вершинами в A и K. Удаляя вершины треугольников и ребра, смежные с ними, получаем граф G_3 .
- Применим соотношение (3) для вершины L, которая станет висячей после удаления вершины треугольника K, получаем граф G_4 .

- 2 $P(G, t) = P(G_1, t)(t-1)^4$
- f 3 Используем соотношение (3) для вершины F, которая стала висячей после удаления вершины J. Удаляя вершину и ребро получаем граф G_2 .
- 4 $P(G, t) = P(G_1, t)(t-1)^4 = P(G_2, t)(t-1)^5$
- Применим формулу (4) для «треугольников» A, D, E и K, H, L с вершинами в A и K. Удаляя вершины треугольников и ребра, смежные с ними, получаем граф G_3 .
- **6** $P(G, t) = P(G_1, t)(t 1)^4 = P(G_2, t)(t 1)^5 = P(G_3, t)(t 1)^5(t 2)^2$
- \overline{O} Применим соотношение (3) для вершины L, которая станет висячей после удаления вершины треугольника K, получаем граф G_4 .
- **B** $P(G, t) = P(G_A, t)(t-1)^6(t-2)^2$

- 1 Используем соотношение (3) для висячих вершин B,C,G,J графа G. Удаляя вершины и ребра получаем граф G_1 .
- 2 $P(G, t) = P(G_1, t)(t-1)^4$
- 3 Используем соотношение (3) для вершины F, которая стала висячей после удаления вершины J. Удаляя вершину и ребро получаем граф G_2 .
- **4** $P(G, t) = P(G_1, t)(t-1)^4 = P(G_2, t)(t-1)^5$
- Применим формулу (4) для «треугольников» A, D, E и K, H, L с вершинами в A и K. Удаляя вершины треугольников и ребра, смежные с ними, получаем граф G_3 .
- **6** $P(G, t) = P(G_1, t)(t 1)^4 = P(G_2, t)(t 1)^5 = P(G_3, t)(t 1)^5(t 2)^2$
- \overline{l} Применим соотношение (3) для вершины L, которая станет висячей после удаления вершины треугольника K, получаем граф G_4 .
- 8 $P(G, t) = P(G_4, t)(t-1)^6(t-2)^2$
- $\textcircled{0}\;\;$ Для оставшегося четырехвершинного цикла $D\to E\to I\to H\to D$ используем свойство (2).

- 1 Используем соотношение (3) для висячих вершин B,C,G,J графа G. Удаляя вершины и ребра получаем граф G_1 .
- **2** $P(G, t) = P(G_1, t)(t-1)^4$
- f 3 Используем соотношение (3) для вершины F, которая стала висячей после удаления вершины J. Удаляя вершину и ребро получаем граф G_2 .
- **4** $P(G, t) = P(G_1, t)(t-1)^4 = P(G_2, t)(t-1)^5$
- [5] Применим формулу (4) для «треугольников» A, D, E и K, H, L с вершинами в A и K. Удаляя вершины треугольников и ребра, смежные с ними, получаем граф G_3 .
- $\textbf{6} \quad P(\boldsymbol{G},\,t) = P(\boldsymbol{G}_1\,,\,t)(t-1)^4 = P(\boldsymbol{G}_2\,,\,t)(t-1)^5 = P(\boldsymbol{G}_3\,,\,t)(t-1)^5(t-2)^2$
- Применим соотношение (3) для вершины L, которая станет висячей после удаления вершины треугольника K, получаем граф G_4 .
- 8 $P(G, t) = P(G_4, t)(t-1)^6(t-2)^2$
- $\textcircled{0}\;\;$ Для оставшегося четырехвершинного цикла $D\to E\to I\to H\to D$ используем свойство (2).
- 10 Окончательно получаем

$$P(\boldsymbol{G},\,t) = (t-1)^6(t-2)^2\left((t-1)^4 + (t-1)\right) = t(t-1)^7(t-2)^2\left(t^2 - 3t + 3)\right).$$