Ph.D. Defense

Meta-Reinforcement Learning with Imaginary Tasks

Suyoung Lee

Advisor: Youngchul Sung

Smart Information Systems Research Lab (SISReL) School of Electrical Engineering, KAIST

Introduction

- Deep reinforcement learning (RL) faces critical challenges, including the issues of overfitting and a limited generalization capability when encountering unseen test tasks.
- Meta-reinforcement learning (meta-RL) aims to solve these problems by training agents across a variety of tasks, enabling them to learn to infer the underlying dynamics of new tasks and to rapidly adapt their policies accordingly.
 - Nonetheless, conventional meta-RL methods rely on a restricted training task distribution, which limits adaptability to out-of-distribution (OOD) test tasks.
- This thesis introduces two meta-RL algorithms that train the policy on imaginary tasks generated by a learned dynamics model, enhancing the ability to generalize to unseen distribution of tasks.

Figure 1: Comparison of standard RL and meta-RL.

Outline and Contributions

Meta-Reinforcement Learning with Imaginary Tasks

- 1. Introduction to Meta-Reinforcement Learning: A running example on Gridworld
- 2. Latent Dynamics Mixture (LDM)¹
 - Addresses parametric task variability (Gridworld, MuJoCo).
 - Trains a policy on imaginary tasks generated from interpolations of latent beliefs.
 - Enhances generalization to unseen out-of-distribution (OOD) tasks with simple parametric variations.
- 3. Subtask Decomposition and Virtual Training (SDVT)²
 - Addresses non-parametric task variability (Meta-World).
 - Learns to decompose each non-parametric task into a set of shared elementary subtasks.
 - Trains a policy on imaginary tasks composed of imaginary compositions of learned elementary subtasks.

¹Suyoung Lee and Sae-Young Chung, "Improving Generalization in Meta-RL with Imaginary Tasks from Latent Dynamics Mixture," NeurIPS 2021.

²Suyoung Lee, Myungsik Cho, and Youngchul Sung, "Parametrizing Non-Parametric Meta-Reinforcement Learning Tasks via Subtask Decomposition," NeurIPS 2023.

Meta-Reinforcement Learning

- ullet Assume a finite task space: $\mathcal{M} = \{M^{(1)}, \dots, M^{(m)}\}.$
- Meta-reinforcement learning (Meta-RL) aims to learn to adapt to a set of Markov Decision Processes (MDPs) with diverse reward and transition dynamics.

$$M^{(i)} = (\mathcal{S}, \mathcal{A}, R^{(i)}, T^{(i)}, T_0^{(i)}, \gamma, H). \tag{1}$$

- ullet At the start of a meta-episode, an MDP $M^{(i)} \sim \mathbb{P}(\mathcal{M})$ is sampled from the pool of tasks \mathcal{M} .
- ullet Each MDP $M^{(i)}$ has unique dynamics:
 - Reward dynamics: $R^{(i)}\left(r_{t+1}\mid s_t, a_t, s_{t+1}\right)$ or $r_{t+1}=R^{(i)}\left(s_t, a_t, s_{t+1}\right)$ (deterministic case)
 - (State) Transition dynamics: $T^{(i)}\left(s_{t+1} \mid s_t, a_t\right)$
 - Initial state distribution: $T_0^{(i)}(s_0)$
- ullet A meta-episode consists of N rollout episodes, each with a horizon H.
 - A new task $M^{(i)}$ is sampled only at the start of each meta-episode (every $H^+:=NH$ steps).
 - After each rollout episode, the state is reset to an initial state (every H steps).

$$s_{kH} \sim T_0^{(i)}(\cdot), \quad k = 0, 1, \dots, N - 1.$$
 (2)

Meta-Reinforcement Learning

• A belief is defined as a posterior distribution over the reward and state transition functions given the current meta-episode's trajectory $\tau_{:t} = (s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_{t-1}, a_{t-1}, r_t, s_t)$.

$$b_t\left(R^{(i)}, T^{(i)}\right) := \mathbb{P}_{R,T}\left(R^{(i)}, T^{(i)} \mid \tau_{:t}\right), \quad i = 1, \dots, m.$$
 (3)

- The optimization of meta-RL typically consists of two stages.
 - Task Inference: Learn to infer the current task by constructing a belief.
 - Policy Optimization: Learn the optimal policy conditioned on the inferred belief.
- The objective is to optimize the belief encoder $b_t = q_{\phi}(\tau_{:t})$ and the policy $\pi_{\psi}\left(a_t \mid s_t, b_t\right)$ that maximize the expected return across all MDPs.

$$J(\phi, \psi) = \mathbb{E}_{M^{(i)} \sim \mathbb{P}(\mathcal{M})} \left[\mathbb{E}_{T_0^{(i)}, T^{(i)}, \pi} \left[\sum_{t=0}^{H^+ - 1} \gamma^t R^{(i)}(s_t, a_t, s_{t+1}) \right] \right]. \tag{4}$$

Running Example

• Gridworld navigation task (3×3) without obstacles.

Figure 2: 3×3 Gridworld navigation task $M^{(7)}$ with an unknown goal position \times .

- $-\mathcal{M} = \{M^{(1)}, \dots, M^{(8)}\}.$
- $-\mathcal{S} = \{x_0, \dots x_8\}$ and $\mathcal{A} = \{\text{'up,' 'down,' 'left,' 'right,' 'stay'}\}.$
- All $M^{(i)}$'s share the same standard Gridworld transition $T^{(i)}=T$.
- All $M^{(i)}$'s start from the same initial state x_0 . i.e., $T_0^{(i)}(x_0)=T_0(x_0)=1$.
- Each task $M^{(i)}$ assigns a reward of 1 only when the agent reaches x_i .

$$R^{(i)}(s_t, a_t, s_{t+1}) = \begin{cases} 1 & \text{if } s_{t+1} = x_i \\ 0 & \text{otherwise} \end{cases}$$
 (5)

-N=2 rollout episodes, H=10 steps.

Running Example

• Meta-episode 1: Suppose $M^{(7)}$ is sampled for the first meta-episode.

Figure 3: Example trajectory in meta-episode 1 within $M^{(7)}$.

• Meta-episode 2: After $H^+ = NH = 2 \times 10$ steps, a new task $M^{(5)}$ is sampled.

Figure 4: Example trajectory in meta-episode 2 within $M^{(5)}$.

• Belief Update: The process of refining the agent's understanding of the current task using observed transitions and rewards.

Rollout step 0					
Rollout epi. 1	<i>X</i> ₆	× X ₇	<i>X</i> ₈		
	<i>X</i> 3	X ₄	<i>X</i> ₅		
Solle	\$ 0				
_	X_0	$ X_1 $	<i>X</i> ₂		

Figure 5: Initial belief state in a meta-episode on task $M^{(7)}$, t=0.

• Assume that we are inferring the current task's information as a posterior belief given the current meta-episode's trajectory $\tau_{:t} = (s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_{t-1}, a_{t-1}, r_t, s_t)$.

$$b_t\left(R^{(i)}\right) := \mathbb{P}_R\left(R^{(i)} \mid \tau_{:t}\right) \quad \text{for } i = 1, \dots, 8.$$

$$(6)$$

- \bullet For example, assume that the current meta-episode is on the task $M^{(7)}$.
- ullet (t=0) We start with a uniform prior, which we have to learn as well to match $\mathbb{P}(\mathcal{M})$.

$$\left\{b_0\left(R^{(i)}\right)\right\}_{i=1}^8 = \left\{\frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}, \frac{1}{8}\right\}. \tag{7}$$

• Belief update example of a perfectly trained meta-RL agent.

Figure 6: A meta-episode on task $M^{(7)}$. The first rollout episode until t=2.

• (t=1) Assume we take action $a_0=$ 'right' at s_0 . We observe $s_1=x_1$ and since the current meta-episode's task is $M^{(7)}$, we observe $r_1=0$, implying $\mathbb{P}_R(R^{(1)}|\tau_{:1})=0$.

$$\left\{b_1\left(R^{(i)}\right)\right\}_{i=1}^8 = \left\{0, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}\right\}. \tag{8}$$

• (t=2) Continuing with action $a_1 =$ 'right' at s_1 , observing $s_2 = x_2$ and $r_2 = 0$ refines the belief further.

$$\left\{b_2\left(R^{(i)}\right)\right\}_{i=1}^8 = \left\{0, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right\}. \tag{9}$$

• Belief update example of a perfectly trained meta-RL agent.

Figure 7: A meta-episode on task $M^{(7)}$. The first rollout episode until t=5.

• (t=4) Taking action $a_3=$ 'up' at s_3 leads to $s_4=x_8$ and $r_4=0$, refining the belief.

$$\left\{b_4\left(R^{(i)}\right)\right\}_{i=1}^8 = \left\{0, 0, \frac{1}{4}, \frac{1}{4}, 0, \frac{1}{4}, \frac{1}{4}, 0\right\}. \tag{10}$$

• (t=5) Finally, the action $a_4=$ 'left' at s_4 leads to the goal, observing $s_5=x_7$ and $r_5=1$.

$$\left\{b_5\left(R^{(i)}\right)\right\}_{i=1}^8 = \left\{0, 0, 0, 0, 0, 0, 1, 0\right\}. \tag{11}$$

- We confirm that the current task of this meta-episode is certainly $M^{(7)}$.
- This conclusive belief remains for the rest of the meta-episode until a new task is sampled.

• Belief update example of a perfectly trained meta-RL agent.

Figure 8: A meta-episode on task $M^{(7)}$. The second rollout episode.

- After the end of the first rollout episode (H=10 steps), the state is reset to the initial state $s_H=x_0$.
- ullet However, since the agent is in the same meta-episode, it is still in $M^{(7)}$, keeping the belief.

$$\left\{b_t\left(R^{(i)}\right)\right\}_{i=1}^8 = \{0, 0, 0, 0, 0, 0, 1, 0\}, \quad \text{for } 5 \le t < H^+.$$
 (12)

- The policy can exploit the belief inferred from the first rollout episode.
- After the meta-episode terminates (i.e., $H^+ = 20$ steps), a new task is sampled for the next-meta-episode. Also, the belief is reset to the prior b_0 .

Bayes-Adaptive Meta-RL

- To learn $b_t\left(R^{(i)},T^{(i)}\right):=\mathbb{P}_{R,T}\left(R^{(i)},T^{(i)}\mid\tau_{:t}\right)$, we need to learn the prior and posterior update.
 - Prior: $b_0\left(R^{(i)}, T^{(i)}\right) := \mathbb{P}_{R,T}\left(R^{(i)}, T^{(i)} \mid s_0\right)$.
 - Posterior update upon taking a_t from s_t and observing s_{t+1} and r_{t+1} for all $t = 0, \dots, H^+ 1$.

$$b_{t+1}\left(R^{(i)}, T^{(i)}\right) = \frac{\mathbb{P}\left(s_{t+1}, r_{t+1} \mid s_t, a_t, R^{(i)}, T^{(i)}\right)}{\sum_{k=1}^{m} \mathbb{P}\left(s_{t+1}, r_{t+1} \mid s_t, a_t, R^{(k)}, T^{(k)}\right) b_t\left(R^{(k)}, T^{(k)}\right)} b_t\left(R^{(i)}, T^{(i)}\right), \quad (13)$$

where the likelihood $\mathbb{P}(s_{t+1}, r_{t+1} \mid s_t, a_t, R^{(i)}, T^{(i)}) = R^{(i)}(r_{t+1} \mid s_t, a_t, s_{t+1})T^{(i)}(s_{t+1} \mid s_t, a_t)$. Details in the Appendix (Eq. 27)

- The Bayes-adaptive policy $\pi(a_t \mid s_t, b_t)$ is trained to maximize the return conditioned on the belief.
- The posterior update requires a tractable task space and knowledge of the reward and transition functions.

Motivation

Figure 9: An example of test trajectory that is trained on $\mathcal{M}_{\text{train}} = \left\{M^{(i)}\right\}_{i=1}^{8} - M^{(4)}$ and tested on $\mathcal{M}_{\text{test}} = M^{(4)}$.

• Traditional meta-RL methods operate under the assumption that training and test tasks are drawn from the same distribution.

$$\mathcal{M} = \mathcal{M}_{ ext{train}} = \mathcal{M}_{ ext{test}}.$$

• This research is prompted by the following motivating question.

What if we evaluate the agent on out-of-distribution (OOD) test tasks?

$$\mathcal{M} = \mathcal{M}_{\mathrm{train}} \cup \mathcal{M}_{\mathrm{test}}$$
 and $\mathcal{M}_{\mathrm{train}} \cap \mathcal{M}_{\mathrm{test}} = \emptyset$.

Is it possible for the agent to effectively explore and exploit these previously unseen tasks?

Improving Generalization in Meta-RL with Imaginary Tasks from Latent Dynamics Mixture

Suyoung Lee and Sae-Young Chung Presented at NeurlPS 2021

Introduction

- Similar to the Gridworld example, most conventional meta-RL methods assume the same distribution of training and test tasks: $(\mathcal{M} = \mathcal{M}_{train} = \mathcal{M}_{test})$.
- This research delves into OOD scenarios where the training and test tasks are made completely disjoint: $\mathcal{M} = \mathcal{M}_{train} \cup \mathcal{M}_{test}$ and $\mathcal{M}_{train} \cap \mathcal{M}_{test} = \emptyset$.

Table 1: Set of training and test parameters for OOD MuJoCo tasks. Here, $k \in \{0, 1, 2, 3\}$.

	Ant-direction Ant-goal		Half-cheetah-velocity	
	heta	r	θ	v
$\overline{\mathcal{M}_{ ext{train}}}$	$90^{\circ} \times k$	$[0.0, 1.0) \cup [2.5, 3.0)$	$[0^{\circ}, 360^{\circ})$	$\boxed{[0.0, 0.5) \cup [3.0, 3.5)}$
$\mathcal{M}_{ ext{test}}$	$90^{\circ} \times k + 45^{\circ}$	[1.0, 2.5)	$[0^{\circ}, 360^{\circ})$	[0.5, 3.0)

Figure 10: Illustrative examples of OOD MuJoCo tasks.

Latent Dynamics Mixture: Key Idea

- Step 1. Encode the dynamics of each MDP into a latent space representation, z.
- Step 2. Mix these latent embeddings from multiple training tasks to form a mixture embedding \tilde{z} .
- Step 3. Decode this combined latent vector to synthesize an *imaginary* MDP, \tilde{M} , which is then used for training the policy network.

Figure 11: Conceptual flow of the Latent Dynamics Mixture (LDM) algorithm.

Variational Bayes-Adaptive Deep RL

- We need an encoder and decoder to infer (parameterize) the task dynamics and to learn the dynamics model to generate an imaginary MDP.
- VariBAD³ addresses the challenge of posterior updates, which are often computationally infeasible, by leveraging variational inference within meta-RL. The framework is structured as follows:
 - A Variational AutoEncoder (VAE) with a recurrent network $q_{\phi}(\tau_{:t})$ that encodes the trajectory $\tau_{:t}$ into a latent representation.
 - The decoders p_{θ_R} and p_{θ_T} that reconstruct the reward and transition dynamics.
 - A separate policy network $\pi_{\psi}(a_t|s_t,b_t)$ conditioned on the inferred belief from the encoder.

Figure 12: VariBAD architecture.

³Zintgraf, et al., "VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning," ICLR 2020.

Variational Bayes-Adaptive Deep RL

- The latent mean $\mu_{\phi_z}(h_t)$ and variance $\sigma_{\phi_z}^2(h_t)$ of the VAE are neural network outputs given the context of the current meta-episode, $h_t = q_{\phi}(\tau_{:t})$.
- The belief $b_t = \left(\mu_{\phi_z}(h_t), \sigma_{\phi_z}^2(h_t)\right)$ is expected to contain the inferred task dynamics until time t.
- As t grows and the agent explores the task space,
 - the uncertainty $\sigma_{\phi_z}^2(h_t)$ about the current meta-episode's task diminishes.
 - the converged mean $\mu_{\phi_z}(h_t)$ represents the inferred parametrization of the current task.

Figure 13: VariBAD's belief update example on the Ant-direction task. The latent beliefs are 5-dimensional.

- Multiple workers with shared networks.
 - All workers jointly train a shared policy network and a latent dynamics network.
 - Unlike VariBAD, we use two separate encoders q_{ϕ_p} and q_{ϕ_v} .
 - The policy part is optimized with PPO, and the VAE is trained to maximize ELBO.

Figure 14: Imaginary task generation from Latent Dynamics Mixture (LDM).

• Step 1. Each normal worker $W^{(i)}$ encodes its belief for $M^{(i)}$ sampled from $\mathbb{P}(\mathcal{M}_{\text{train}})$

• Step 2. A mixture worker computes a mixture latent belief $\tilde{z}_t = \sum_{i=1}^n \alpha^{(i)} z_t^{(i)}$, where

$$\left(\alpha^{(1)}, \dots, \alpha^{(n)}\right) \sim \beta \cdot \text{Dirichlet}(\mathbb{1}_n) - \frac{\beta - 1}{n}.$$
 (14)

- The weights satisfy $\sum_{i=1}^n \alpha^{(i)} = 1$, $\mathbb{E}\left[\alpha^{(i)}\right] = 1/n$.
- The hyperparameter β controls the extrapolation level. If $\beta = 1$, $0 \le \alpha^{(i)} \le 1$.

• Step 3. Given \tilde{z}_t , the mixture worker \tilde{W} generates an imaginary MDP \tilde{M} with imaginary rewards $\tilde{r}_t \sim p_{\theta_R}(\cdot|s_t,a_t,s_{t+1};\tilde{z}_t)$. But the states are from a real training MDP $M^{(k)} \sim \mathbb{P}(\mathcal{M}_{\text{train}})$.

$$\tilde{\mathbf{M}} = \left(\mathcal{S}, \mathcal{A}, \tilde{\mathbf{R}}, T^{(k)}, T_0^{(k)}, \gamma, H\right). \tag{15}$$

— The trajectories from $ilde{M}$ are only used to train the policy part: q_{ϕ_p} and π_{ψ} , not the VAE part.

Dropout on Decoder Input

- The decoder easily overfits the state and action observations, ignoring the latent belief z_t .
- States that are unseen during training may be assigned low rewards regardless of the mixture latent belief \tilde{z}_t (e.g., the dotted states in Figure 15).
- Therefore we apply dropout to all inputs of the decoder except the latent belief when training and generating with the decoder.

Figure 15: Applying dropout to the decoder input.

Experiments – Setup

• We evaluate LDM and baselines on Gridworld and MuJoCo tasks, where we strictly divide the entire task distribution into disjoint training and test tasks.

Gridworld

- -7×7 Gridworld task with N=4 rollout episodes of horizon H=30 each.
- Number of tasks: $|\mathcal{M}_{train}| = 18$ and $|\mathcal{M}_{test}| = 27$.

Figure 16: Gridworld example. (a) Training MDPs \mathcal{M}_{train} . (b) Test MDPs \mathcal{M}_{test} . A goal is located at one of the shaded positions.

MuJoCo

- We evaluate over three OOD MuJoCo tasks introduced in Figure 10 with N=2 and H=200.

Experiments – Gridworld

- We report the results at the last rollout episode in terms of
 - the mean returns in $\mathcal{M}_{\mathrm{train}}$ and $\mathcal{M}_{\mathrm{test}}$.
 - the number of tasks in $\mathcal{M}_{\text{test}}$ in which the agent fails to reach the goal (out of 27 tasks).
- The oracle methods, that are trained on the entire task set $\mathcal{M} = \mathcal{M}_{train} \cup \mathcal{M}_{test}$ including the test tasks, are evaluated for reference.

Figure 17: Gridworld results.

Experiments – Gridworld

- We provide an empirical analysis to confirm that LDM successfully generates appropriate imaginary tasks that contribute to solving the test tasks.
- The dropout applied to the next state input of the decoder plays a critical role here.
 - Dropout $(p_{\text{drop}} = 0.7)$ leads the decoder to attribute high rewards to certain goals in $\mathcal{M}_{\text{test}}$.

Figure 18: Examples of mixture tasks generated by LDM. **First row**: Mixture weights $(\alpha^{(i)})$ multiplied to the latent beliefs $(z_{H^+}^{(i)})$. **Second row** (reward map): decoder output for each next state conditioned on the mixture weights from the first row. × denotes the state yielding the maximum reward.

Experiments – Gridworld

- We demonstrate that LDM's applicability is not confined to target tasks within the interpolation of training tasks with the following experiment on Gridworld-extrapolation task.
 - Recall: $(\alpha^{(1)}, \ldots, \alpha^{(n)}) \sim \beta \cdot \text{Dirichlet}(\mathbb{1}_n) \frac{\beta 1}{n}$.
 - For lower β settings such as $\beta = 1.0$ and $\beta = 1.5$, LDM concentrates on $\mathcal{M}_{\text{test}1}$.
 - As β increases, we observe a decline in returns for tasks in $\mathcal{M}_{\text{test}1}$, accompanied by an increase for tasks in $\mathcal{M}_{\text{test}2}$.

Figure 19: Gridworld-extrapolation task, that consists of two separate task regions, $\mathcal{M}_{\text{test1}}$ and $\mathcal{M}_{\text{test2}}$.

Figure 20: Extrapolation results. Returns of LDM for different extrapolation level β on the Gridworld-extrapolation task.

Experiments – MuJoCo

- We evaluate our method and baselines on three OOD meta-RL benchmarks: Ant-direction, Ant-goal, and Half-cheetah-velocity.
- ullet The mean test returns in $\mathcal{M}_{\mathrm{eval}}$, which is a fixed subset of $\mathcal{M}_{\mathrm{test}}$, are illustrated in Figure 21.
- LDM surpasses the performance of non-oracle baselines.

Figure 21: MuJoCo results. Mean returns at the last rollout episode in \mathcal{M}_{eval} .

Experiments – MuJoCo

ullet We demonstrate the sample trajectories of the agents in $\mathcal{M}_{\mathrm{eval}}$ at the last rollout episode.

Figure 22: Sampled trajectories of the agents in $\mathcal{M}_{\text{eval}}$. The targets of $\mathcal{M}_{\text{eval}}$ are indicated as dashed lines or cross marks

(a) Ant-goal: sample tasks.

Analysis on Task Embedding

- We have conducted empirical tests that affirm the latent models effectively reflect the structure of the test task, although not trained in $\mathcal{M}_{\text{test}}$, which supports the efficacy of LDM.
 - We sample 48 tasks in Ant-goal as in Figure 23a. 32 tasks from \mathcal{M}_{train} and 16 from \mathcal{M}_{test} .
 - For each task, We evaluate latent beliefs z_{H^+} at the end of each meta-episode.

Figure 23: Latent belief distributions. Latent dynamics network's learned latent models on Gridworld and Ant-goal. The red numbers denote the tasks that belong to $\mathcal{M}_{\text{test}}$.

(b) Ant-goal: t-SNE plot of test-time latent belief z_{H^+} .

Limitation

• Parametric task variability

- LDM requires the tasks to exhibit simple parametric variations, such as the goal position, target direction, and target velocity, that could be easily modeled by the latent embedding.
- If the task distribution is more complex, we can not expect the test tasks to be represented as the interpolations of the latent embedding of the training tasks.

Interpolation

- LDM can generalize to test tasks that are within the convex hull of the training tasks' latent embeddings.
- The extrapolation achieved by the hyperparameter β is limited.

Tasks with varying reward dynamics

- LDM prepares for test tasks that exhibit unseen reward dynamics.
- It uses states from the real training tasks, therefore unable to prepare for OOD tasks with varying state transition dynamics.

Parameterizing Non-Parametric Meta-Reinforcement Learning Tasks via Subtask Decomposition

Suyoung Lee, Myungsik Cho, and Youngchul Sung To be presented at NeurIPS 2023

Introduction

- Conventional Meta-RL methods and LDM are evaluated on tasks with variations that can be expressed in a shared parametric form representing the task dynamics (Figure 24a and 24b).
- Now, we explore a more general meta-RL framework that addresses generalization in more qualitatively distinct tasks, namely with non-parametric task variability⁴.
 - For example, training on the task "Pick-place" and testing on "Sweep-into" from Meta-World (Figure 24c).

(a) "Pick-place" in standard indistribution meta-RL setup.

(b) "Pick-place" in out-of-distribution meta-RL setup.

(c) Non-parametric task variation between "Pick-place" and "Sweep-into."

Figure 24: Illustrating different meta-RL scenarios. o: object, ×: goal.

⁴Yu, et al., "Meta-World: A Benchmark and Evaluation for Multi-Task and Meta Reinforcement Learning," CoRL 2019.

Motivation

- Despite the complex non-parametric task variability, tasks may share common elementary subtasks.
 - "Pick-place" = "grip-object" + "place-object"
 - "Sweep-into" = "grip-object" + "push-object"
- Our primary strategy is to

Decompose each non-parametric task into a set of shared elementary subtasks,

which allows to parameterize a task with embeddings representing the subtask composition along with the conventional parametric variations.

Figure 25: Meta-World ML-10 robotic manipulation benchmark. There are 10 training tasks and 5 test tasks with non-parametric task variability. Within each task, there are 50 parametric variations.

Subtask Decomposition and Virtual Training: Key Idea

- For example, we want
 - Embedding("Pick-place") = (0.5, 0.5, 0.0)
 - Embedding("Sweep-into") = (0.0, 0.5, 0.5)
 - Where each dimension of the embedding corresponds to the weights for the following subtasks: "place-object," "grip-object," and "push-object".
- The key problem is to learn the
 - Basis: the set of elementary subtasks
 - Coefficients: the decomposition of each task given the set of elementary subtasks.
- We employ meta-learning for the subtask decomposition (**SD**) process using a Gaussian mixture variational autoencoder (GMVAE) that encodes the trajectory up to the current timestep into
 - Compositional information: latent categorical contexts
 - Parametric variability information: latent Gaussian contexts.
- To further enhance generalization to unseen compositions of learned elementary subtasks, we propose a virtual training (**VT**) process similar to that of LDM.

Subtask Decomposition

- The proposed architecture of SDVT incorporates three main components: encoder, decoder, and policy, similar to the VariBAD architecture.
- The major difference is that the encoder involves a categorical latent variable y_t .

Figure 26: SDVT architecture.

Subtask Decomposition

- Encoder: $q_{\phi}\left(y_t, z_t | h_t\right) = q_{\phi_y}(y_t | h_t) q_{\phi_z}(z_t | h_t, y_t)$
 - A recurrent network encodes the past trajectory $au_{:t}$ into a hidden embedding $h_t = q_{\phi_h}\left(au_{:t}
 ight)$.
 - The categorical encoder $q_{\phi_y}(y_t|h_t)$: $\mathrm{Cat}\left(\omega_{\phi_y}(h_t)\right)$ samples y_t , where $\omega_{\phi_y}(h_t) \in \Delta^K$.
 - Then the multivariate Gaussian encoder $q_{\phi_z}(z_t|h_t,y_t): \mathcal{N}\left(\mu_{\phi_z}(h_t,y_t),\sigma^2_{\phi_z}(h_t,y_t)\right)$ samples a continuous latent context z_t .
 - $-z_t$ contains the compositional information of the current task and the parametric information of the subtasks.

Figure 27: SDVT encoder.

Learned Subtask Compositions

- Learned subtask compositions on ML-10.
 - Each column denotes the tasks in ML-10 (\mathcal{M}_{train} : $1 \sim 10$, \mathcal{M}_{test} : $11 \sim 15$).
 - Each row number represents the index of the elementary subtask.
- We find that such learned subtask compositions $y_{H^+} \in \triangle^K$ are shared by qualitatively similar tasks.
 - (3) "Pick-place," (7) "Peg-insert-side," (10) "Basketball"
 - -(1) "Reach," (5) "Drawer-close," (8) "Window-open"

Figure 28: Learned subtask compositions on ML-10 by SDVT-LW with K=5, $\alpha_c=0.5$.

GMVAE Objectives

• The objective of the GMVAE is to maximize the evidence lower bound (ELBO), for $t=0,\ldots,H^+$ and for the trajectory distribution $d(M^{(k)},\tau_{:H^+})$ at MDP $M^{(k)}$, induced by the policy π_{ψ} .

$$ELBO_t(\phi, \theta) = \mathbb{E}_{d(M^{(k)}, \tau_{:H^+})} \left[\mathbb{E}_{q_{\phi}(y_t, z_t | h_t)} \mathcal{J}_{GMVAE} \right], \tag{16}$$

$$\mathcal{J}_{\text{GMVAE}} = \alpha_R \mathcal{J}_{\text{R-rec}} + \alpha_T \mathcal{J}_{\text{T-rec}} + \alpha_g \mathcal{J}_{\text{reg}} + \alpha_c \mathcal{J}_{\text{cat}}. \tag{17}$$

Reconstruction objectives

$$\mathcal{J}_{\text{R-rec}} = \sum_{j=0}^{H^+ - 1} \log p_{\theta_R}(r_{j+1}|s_j, a_j, s_{j+1}; z_t), \tag{18}$$

$$\mathcal{J}_{\text{T-rec}} = \sum_{j=0}^{H^+-1} \log p_{\theta_T}(s_{j+1}|s_j, a_j; z_t).$$
 (19)

— The reconstruction objectives are computed for all timesteps in the meta-episode, including the future (j > t) and past (j < t) (same as VariBAD and LDM).

GMVAE Objectives

• The objective of the GMVAE is to maximize the evidence lower bound (ELBO), for $t=0,\ldots,H^+$ and for the trajectory distribution $d(M^{(k)},\tau_{:H^+})$ at MDP $M^{(k)}$, induced by the policy π_{ψ} .

$$ELBO_t(\phi, \theta) = \mathbb{E}_{d(M^{(k)}, \tau_{:H^+})} \left[\mathbb{E}_{q_{\phi}(y_t, z_t | h_t)} \mathcal{J}_{GMVAE} \right], \tag{20}$$

$$\mathcal{J}_{\text{GMVAE}} = \alpha_R \mathcal{J}_{\text{R-rec}} + \alpha_T \mathcal{J}_{\text{T-rec}} + \alpha_g \mathcal{J}_{\text{reg}} + \alpha_c \mathcal{J}_{\text{cat}}.$$
 (21)

• Regularization objective

$$\mathcal{J}_{\text{reg}} = \log \frac{p_{\theta_z}(z_t|y_t)}{q_{\phi_z}(z_t|h_t, y_t)}.$$
 (22)

- Unlike the standard VAE that assumes a standard normal prior, we learn K distinct Gaussian priors conditioned on y_t and minimize the KL divergence to the learned posterior $q_{\phi_z}(z_t|h_t,y_t)$.
- Categorical objective

$$\mathcal{J}_{\text{cat}} = \log \frac{p(y_t)}{q_{\phi_y}(y_t|h_t)}.$$
 (23)

- The categorical objective \mathcal{J}_{cat} maximizes the conditional entropy of y_t given h_t .
- We use a fixed uniform prior $p(y_t)$.
- We set the coefficient α_c large enough to penalize one-hot subtask compositions.

Occupancy Regularization

- The number of underlying subtasks K (i.e., dimension of y_t) is a crucial hyperparameter that should be determined based on the number of training tasks N_{train} and their similarities.
- We assume $K^* < N_{\text{train}}$, otherwise each task will be classified into a separate subtask with one-hot label, preventing learning shareable subtasks.
- ullet We start with a sufficiently large $K=N_{\mathrm{train}}$ and regularize ELBO objective with the following occupancy regularization to progressively reduce the number of effective subtasks.

$$\mathcal{J}_{\text{occ}} = -\log K\left(e^{-K+1}, e^{-K+2}, \dots, e^{-1}, e^{0}\right) \cdot y_{t}. \tag{24}$$

Figure 29: Occupancy ablation. Learned subtask compositions of SDVT $(K = 10, \alpha_c = 1.0)$ for different occupancy coefficients.

Virtual Training

- LDM's task generation is limited to parametric variations.
- Now, using our GMVAE, we can condition the decoder on an imaginary composition of subtasks \tilde{y} .

$$\tilde{\boldsymbol{y}} \sim \text{Dirichlet}(\bar{y}),$$
 (25)

where \bar{y} is the empirical running mean of y_t aggregated during training.

- ullet $ilde{y}$ is fixed for a meta-episode, while $ilde{z}_t$ varies over time.
- We train the policy to maximize the sum of generated rewards $\tilde{r}_{t+1} \sim p_{\theta_R}(\cdot|s_t, a_t, s_{t+1}; \tilde{z}_t)$.

Figure 30: Generation of imaginary rewards with the decoder conditioned on a fixed imaginary subtask composition \tilde{y} .

Virtual Training

- Generated imaginary tasks result in diverse trajectories.
- We evaluate the same policy conditioned on different subtask compositions \tilde{y} .
- All states are from the Meta-World "Reach." Red rods: gripper and blue circles: object.

Figure 31: Trajectories on generated tasks.

A Brief Summary

- SDVT = Subtask Decomposition (SD) and Virtual Training (VT).
- SDVT without a GMVAE and with a single Gaussian VAE reduces to LDM.
- LDM without virtual training reduces to VariBAD.
- VariBAD without a dynamics decoder reduces to RL².

Figure 32: Schematic overview of proposed algorithms and baselines.

Experiments – Setup

• The Meta-World V2 benchmark

- A benchmark with 50 qualitatively distinct robotic manipulation tasks.
- ML-10 benchmark: $N_{\text{train}} = 10$ training tasks and $N_{\text{test}} = 5$ test tasks.
- ML-45 benchmark: $N_{\text{train}} = 45$ training tasks and $N_{\text{test}} = 5$ test tasks.

Our methods

- SDVT: subtask decomposition and virtual training.
- SD: subtask decomposition without virtual training.
- SDVT-LW and SD-LW (Light Weight variants): ours without the occupancy regularization $(\alpha_o=0)$, assuming that we know the optimal number of elementary subtasks $K^*=5$. The default setup is $K=N_{\text{train}}$ with occupancy regularization $(\alpha_o=1)$.

Evaluation metric

- -N=10 rollout episodes, H=500 steps per rollout episode.
- We evaluate the performance at the last rollout episode in terms of the success rate and the episode return.

Experiments – Result

- On the test tasks, SDVT and SDVT-LW substantially outperform all baselines.
- SDVT's gain over LDM is attributed to our virtual training process, which is specifically designed for test tasks involving non-parametric variability.

Table 2: Meta-World V2 success rates and returns. We report the final success rates (%) and returns of our methods and baselines averaged across training tasks and test tasks of the ML-10 and ML-45 benchmarks. All results are reported as the mean success rate \pm 95% confidence interval of 8 seeds.

		Succes	s Rate		Return						
	ML	<u>-10</u>	MI	ML-45		L-10	ML-45				
Methods	Train	Test	Train	Test	Train	Test	Train	Test			
SDVT	$77.2{\pm}3.0$	32.8±3.9	55.6 ± 4.2	28.1±3.2	$3656{\pm}62$	1225±160	2379 ± 214	839±74			
SDVT-LW	62.1 ± 4.1	$\textbf{33.4} {\pm} \textbf{5.0}$	50.4 ± 4.1	$31.2 {\pm} 1.2$	3454 ± 137	$1527{\pm}214$	2294 ± 202	$894{\pm}27$			
SD	77.0 ± 5.9	30.8 ± 7.7	$61.0{\pm}1.7$	23.0 ± 5.1	3630 ± 241	1112 ± 190	$2672{\pm}79$	786 ± 69			
SD-LW	75.5 ± 5.5	26.2 ± 8.7	56.7 ± 1.5	25.4 ± 2.9	3525 ± 297	1043 ± 234	2578 ± 64	793 ± 49			
RL^2	67.4±4.4	15.1±2.7	58.0 ± 0.4	11.8±3.2	1159±83	715±33	1411±22	663±100			
MAML	42.2 ± 4.5	3.9 ± 3.7	32.0 ± 1.4	19.8 ± 6.3	1822 ± 136	439 ± 78	1388 ± 104	658 ± 96			
PEARL	23.2 ± 1.9	0.8 ± 0.5	10.3 ± 2.4	6.7 ± 3.3	1081 ± 77	340 ± 54	597 ± 121	506 ± 122			
VariBAD	58.2 ± 8.9	14.1 ± 6.1	57.0 ± 1.2	22.1 ± 3.5	3055 ± 466	919 ± 143	2492 ± 47	762 ± 40			
LDM	56.7 ± 12.3	19.8 ± 6.0	54.1 ± 0.9	24.8 ± 2.9	2963 ± 626	1166 ± 264	2515 ± 67	768 ± 63			

Experiments – Result

- Our methods achieve the highest success rates across all test tasks on the ML-10 benchmark.
- However all methods are challenged by the tasks "Shelf-place" and "Lever-pull".
 - They include unseen objects not included in the raw observation.
 - These tasks cannot be decomposed into previously seen subtasks but rather require new elementary subtasks.
- Link to demo videos: https://sites.google.com/view/sdvt-neurips.

Table 3: Meta-World V2 ML-10 success rates on test tasks.

Index. Task	SDVT	SDVT-LW	SD	SD-LW	RL^2	MAML	PEARL	VariBAD	LDM
11. Drawer-open	$65.0 {\pm} 19.9$	30.5 ± 12.9	48.8 ± 23.4	45.0 ± 24.0	2.2 ± 1.9	15.8 ± 19.3	1.5 ± 1.1	12.8 ± 12.8	21.8±12.0
12. Door-close	7.5 ± 9.0	$81.2 {\pm} 19.0$	33.8 ± 25.4	18.8 ± 24.1	8.2 ± 7.3	3.2 ± 6.0	1.2 ± 1.5	27.0 ± 21.8	30.2 ± 28.2
13. Shelf-place	0.0 ± 0.0	$\boldsymbol{1.0 {\pm} 1.2}$	0.0 ± 0.0	0.0 ± 0.0	0.2 ± 0.2	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0	0.0 ± 0.0
14. Sweep-into	$90.0{\pm}8.5$	51.2 ± 18.9	71.2 ± 14.9	55.0 ± 21.6	64.5 ± 8.3	0.0 ± 0.0	0.8 ± 1.0	30.5 ± 22.0	46.5 ± 21.8
15. Lever-pull	1.2 ± 2.3	3.2 ± 2.7	0.0 ± 0.0	$12.5{\pm}10.2$	0.5 ± 0.8	0.5 ± 0.9	0.5 ± 0.9	0.2 ± 0.5	0.5 ± 0.9
Test mean	32.8 ± 3.9	$33.4{\pm}5.0$	30.8 ± 7.7	26.2 ± 8.7	15.1 ± 2.7	3.9 ± 3.7	0.8 ± 0.5	14.1 ± 6.1	19.8 ± 6.0

Limitation

- Test tasks involving entirely novel subtasks
 - SDVT can prepare for unseen compositions of seen subtasks.
 - However, SDVT does not prepare for unseen compositions of unseen subtasks.
- Limited to scenarios with varying rewards
 - SDVT does not consider setups where transition dynamics, action, and state space may vary.
- No temporal information of subtasks
 - Currently the subtask composition is a belief about how the current meta-episode's task is decomposed into.
 - It does not consider temporal information of subtasks, such as the ordering or start and termination of subtasks.

Conclusion

- 1. Latent Dynamics Mixture (LDM): Parametric task variability
 - A robust meta-RL algorithm that effectively prepares for potential out-of-distribution test tasks.
 - LDM pretrains the policy on imaginary tasks generated from mixtures of latent beliefs on training tasks.
 - LDM effectively enhances generalization to unseen tasks without additional test-time training.
- 2. Subtask Decomposition and Virtual Training (SDVT): Non-parametric task variability
 - SDVT generalizes LDM for scenarios with non-parametric task variability.
 - SDVT employs a Gaussian mixture VAE to meta-learn the set of elementary subtasks and the composition of each task.
 - SDVT extends the idea of virtual training from LDM to generate tasks with unseen compositions of subtasks.
- 3. Both methods demonstrate the efficacy of virtual training with generated imaginary tasks.
 - We may extend the ideas to more general scenarios with varying transition dynamics, state space, or action space.
 - We may combine it with orthogonal strategies such as offline RL or test-time adaptation techniques.

Thank you!

Appendix

Bayes-Adaptive Belief Update

Posterior belief update

$$b_{t+1}\left(R^{(i)}, T^{(i)}\right) = \frac{\mathbb{P}\left(s_{t+1}, r_{t+1} \mid s_t, a_t, R^{(i)}, T^{(i)}\right)}{\sum_{k=1}^{m} \mathbb{P}\left(s_{t+1}, r_{t+1} \mid s_t, a_t, R^{(k)}, T^{(k)}\right) b_t\left(R^{(k)}, T^{(k)}\right)} b_t\left(R^{(i)}, T^{(i)}\right). \tag{26}$$

$$\mathbb{P}\left(s_{t+1}, r_{t+1} \mid s_{t}, a_{t}, R^{(i)}, T^{(i)}\right) b_{t}\left(R^{(i)}, T^{(i)}\right) = \mathbb{P}\left(s_{t+1}, r_{t+1} | \tau_{:t}, R^{(i)}, T^{(i)}\right) \mathbb{P}\left(R^{(i)}, T^{(i)} \mid \tau_{:t}\right) \\
= \frac{\mathbb{P}\left(s_{t+1}, r_{t+1}, \tau_{:t}, R^{(i)}, T^{(i)}\right)}{\mathbb{P}\left(R^{(i)}, T^{(i)}, \tau_{:t}\right)} \frac{\mathbb{P}\left(R^{(i)}, T^{(i)}, \tau_{:t}\right)}{\mathbb{P}\left(\tau_{:t}\right)} \tag{28}$$

$$= \frac{\mathbb{P}\left(\tau_{:t+1}, R^{(i)}, T^{(i)}\right)}{\mathbb{P}\left(\tau_{:t}\right)} \tag{29}$$

$$= \mathbb{P}\left(R^{(i)}, T^{(i)} \mid \tau_{:t+1}\right) \frac{\mathbb{P}\left(\tau_{:t+1}\right)}{\mathbb{P}\left(\tau_{:t}\right)}$$
(30)

$$= b_{t+1} \left(R^{(i)}, T^{(i)} \right) \mathbb{P} \left(s_{t+1}, r_{t+1} \mid \tau_{:t} \right). \tag{31}$$

SDVT ELBO Derivation

GMVAE ELBO Derivation

$$\log p_{\theta}(\tau_{:H^{+}}) = \log \mathbb{E}_{q_{\phi}(y_{t}, z_{t}|h_{t})} \left[\frac{p_{\theta}(\tau_{:H^{+}}, y_{t}, z_{t})}{q_{\phi}(y_{t}, z_{t}|h_{t})} \right]$$
(32)

$$\geq \mathbb{E}_{q_{\phi}(y_t, z_t | h_t)} \left[\log \frac{p_{\theta}(\tau_{:H^+}, y_t, z_t)}{q_{\phi}(y_t, z_t | h_t)} \right]$$
(33)

$$= \mathbb{E}_{q_{\phi}(y_{t}, z_{t}|h_{t})} \left[\log \frac{p_{\theta}(\tau_{:H^{+}}|y_{t}, z_{t})p_{\theta}(z_{t}|y_{t})p(y_{t})}{q_{\phi}(y_{t}|h_{t})q_{\phi}(z_{t}|h_{t}, y_{t})} \right]$$
(34)

$$= \mathbb{E}_{q_{\phi}(y_{t}, z_{t}|h_{t})} \left[\log p_{\theta}(\tau_{:H^{+}}|z_{t}) + \log \frac{p_{\theta}(z_{t}|y_{t})}{q_{\phi}(z_{t}|h_{t}, y_{t})} + \log \frac{p(y_{t})}{q_{\phi}(y_{t}|h_{t})} \right]. \tag{35}$$

Equation (35) is equivalent to the ELBO objective in Equation (17) without weighting coefficients. We assume that the reconstruction $\tau_{:H^+}$ is conditionally independent of the subtask composition y_t given z_t .

Dropout Ablation – LDM

Dropout rate of LDM

- Upward trajectory in test performance in correlation with an increase in the dropout rate.
- However, this trend reverses when the rate approaches its upper limit, specifically at $p_{\rm drop}=0.9$.

Figure 33: Varying dropout rate. Results of LDM with different dropout rates on Gridworld task.

Dropout Ablation – Baselines

- We assess the performance of both RL² dropout and VariBAD dropout,
 - Dropout destabilizes policy training with multi-step policy gradient loss
 - Dropout on the decoder input improves generalization due to the relatively simpler single-step regression loss with the buffer updates.

Figure 34: Dropout ablation. Results of LDM, RL², and VariBAD trained with and without dropout on Gridworld task.

SDVT Ablation

- The default setup of our methods are
 - SDVT: K = 10, $\alpha_c = 1.0$, $\alpha_0 = 1.0$,
 - SDVT-LW: K = 5, $\alpha_c = 0.5$, $\alpha_0 = 0.0$.
- ullet When α_c is too small, task classification collapses into a few one-hot subtasks.
- When α_c is too large, all tasks return a uniform probability distribution over subtasks.

Figure 35: Learned subtask compositions on ML-10 with different hyperparameters.

SDVT Ablation

- We report the mean success rates by changing hyperparameters from the default SDVT-LW $(K=5,\alpha_c=0.5,\alpha_o=0.0)$ on ML-10.
- We report the difference caused by the changes in parenthesis.

Table 4: Ablation results of SDVT-LW. Performance measured as test success rate (%) on ML-10.

SDVT-LW	wit	thout		K		$lpha_c$			
SD VI LVV	Dropout	Dispersion	3	7	10	0.1	1.0	2.0	
ML-10 Train	65.6	73.0	60.1	69.5	70.8	59.8	70.3	66.3	
	(+3.5)	(+10.9)	(-2.0)	(+7.4)	(+8.7)	(-2.3)	(+8.2)	(+4.2)	
ML-10 Test	16.5	21.5	25.0	22.0	21.1	20.5	16.1	17.9	
WIL-10 Test	(-16.9)	(-11.9)	(-8.4)	(-11.4)	(-12.3)	(-12.9)	(-17.3)	(-15.5)	

SDVT Learned Compositions – Different Seeds

- Decomposition processes differ among random seeds due to varying initialization and sample tasks during meta-training.
- One subtask can be interpreted as a combination of multiple subtasks on other seeds.
- We rarely have a collapse to a single Gaussian.

Figure 36: Subtask compositions of all seeds. We visualize the subtask compositions of SDVT-LW on ML-10 after 250M training steps.

Learned Compositions – Over Time

- Learned compositions over the course of training (0M \sim 250M steps).
- The composition starts with a uniform distribution for all tasks.
- As training progresses, the agent learns to merge similar tasks.

Figure 37: Subtask compositions learned over training. SDVT-LW $(K = 5, \alpha_c = 0.5, \alpha_o = 0.0)$ on ML-10.

Number of Parameters

- We report the number of parameters used by our methods and baselines.
- We demonstrate that our gain is not mainly from the increased capacity.
 - VariBAD (hidden $\times 2$) with hidden dimensions of 512 possesses more parameters than SDVT.
 - We add MLP layers with hidden sizes of [1600, 256] into the encoder and [128] into the policy. The decoder's hidden size is increased from [64, 64, 32] to [128, 256, 160] to match the capacities of VariBAD (matched) and SDVT-LW.

Table 5: Number of parameters and success rates on ML-10.

	N	Number of	ML-10 Success Rate (%)			
Methods	Encoder	Decoder	Policy	Sum	Train	Test
SDVT-LW	1,047,455	174,821	235,401	1,457,677	62.1	33.4
SD-LW	1,047,455	$25,\!637$	235,401	1,308,493	75.5	26.2
LDM	502,580	$25,\!577$	202,249	730,406	56.7	19.8
LDM (matched)	2,144,692	$175,\!593$	267,401	2,587,686	64.2	22.0
VariBAD	251,290	$25,\!577$	202,249	$479,\!116$	58.2	14.1
$VariBAD (hidden \times 2)$	894,362	$25,\!577$	663,305	1,583,244	62.4	12.0
VariBAD (matched)	1,072,346	175,593	267,401	1,515,340	67.6	17.2

Computational Complexity

- We report the total wall-clock time required to generate the results for the Half-cheetah-velocity.
 - LDM requires more time than RL^2 , due to more complex architecture that involves the simultaneous training of both the policy network and an independent latent dynamics network.

Table 6: Computation complexity on Half-cheetah-velocity.

	LDM	Mixreg	RL^2	VariBAD	ProMP	E-MAML	PEARL
Half-cheetah-velocity Runtime (hours)	31	28	25	10	2	2	25

- We report the total wall-clock time required to generate the results for the ML-10,
 - Despite incorporating the GMVAE and virtual training, our method's computational demand does not substantially surpass that of VariBAD.

Table 7: Computational complexity on ML-10.

	SDVT	SDVT-LW	SD	SD-LW	RL^2	MAML	PEARL	VariBAD	LDM
Wall-clock time (hours)	142	140	138	135	192	17	258	126	131