Aufgabe 1 (2+2+2 Punkte)

Seien X_1, X_2 reellwertige i.i.d. Zufallsvariablen über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P)$ mit $P(X_1 = -1) = P(X_1 = +1) = 1/2$. Außerdem sei $X_3 = X_1 \cdot X_2$.

(a) Bestimmen Sie die Verteilung der Zufallsvariable $Z = (X_1, X_3)$ (A) $P(X_1, X_3) = P(X_1) \cdot P(X_3)$? Initialization! $P(X_1, X_3) = P(X_1, X_3) \cdot P(X_2, X_3) = P(X_1, X_3) \cdot P(X_2, X_3) \cdot P(X_2, X_3) \cdot P(X_3, X_3) \cdot P(X$

4.14 4.15

(c) Untersuchen Sie, ob die Familie $(X_i)_{i\in I}$ für $I=\{1,2,3\}$ stochastisch unabhängig

Aufgabe 2 (4+2 Punkte)

annuich 24 31

Sei X eine reellwertige Zufallsvariable über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P)$ $\operatorname{mit} X \sim U(0,3)$ replace valeiding

(a) Berechnen und skizzieren Sie die zugehörige Verteilungsfunktion F_X .

(b) Berechnen Sie $P(|X-2| \ge 1)$. = 3/4 t(x)=30

U(0,3)

Aufgabe 3 (4+4+2 Punkte)

Seien $A = [-1, +1]^2$ und Z = (X, Y) eine 2-dimensionale Zufallsvariable über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P)$ mit der durch

$$f_Z(x,y) = 4^{-1}(1+x\cdot y) \cdot \mathbf{1}_A(x,y), \ (x,y) \in \mathbb{R}^2,$$

definierten (2-Dicht). Außerdem sei $Z^* = (X^2, Y^2)$.

- (a) Zeigen Sie, dass die Wahrscheinlichkeitsverteilung P^X eine λ^1 -Dichte besitzt.
- (b) Berechnen Sie die zu Z^* gehörige Verteilungsfunktion F_{Z^*} .
- (c) Untersuchen Sie, ob X^2 und Y^2 stochastisch unabhängig sind. 4.14.45

Hinweis zu (c): Satz 6.31

Aufgabe 4 (4+2 Punkte)

Seien $k \in \mathbb{N}$ und X eine reellwertige Zufallsvariable über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P)$ mit $P(X = -1) = P(X = +1) = (2 \cdot k^2)^{-1}$ und $P(X = 0) = 1 - k^{-2}$.

(a) Berechnen Sie E(X) und Var(X).

> Siene

(b) Berechnen Sie $P(|X - \mu| \ge k \cdot \sigma)$ mit $\mu = \mathbb{E}(X)$ sowie $\sigma^2 = \text{Var}(X)$ und schätzen Sie außerdem diese Wahrscheinlichkeit mit der Tschebyschev-Ungleichung ab.

Aufgabe 5 (6 Punkte)

Seien $n \in \mathbb{N}$ und X_1, \ldots, X_n reellwertige stochastisch unabhängige Zufallsvariablen über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P)$ mit $E(X_i) = 0$ und $E(|X_i|^3) < \infty$, i = 0 $1, \ldots, n$. Berechnen Sie $\mathbb{E}((\sum_{i=1}^{n} X_i)^3)$.

Aufgabe 6 (4 Punkte)

Seien $n \in \mathbb{N}$ und X eine reellwertige Zufallsvariable über einem Wahrscheinlichkeitsraum $(\Omega, \mathfrak{S}, P)$ mit der durch $f(x) = n \cdot x^{n-1} \cdot \mathbf{1}_{(0,1)}(x), \ x \in \mathbb{R}$, definierten λ^1 -Dichte. Berechnen Sie alle Anfangsmomente $m_k = \mathbb{E}(X^k), k \in \mathbb{N}.$