

Electronics Systems (938II)

Lecture 3.1

Semiconductor Memories – Basic principles

Memories

- They are another fundamental building block that is part of modern electronic systems
 - Processors need memory to work

- Most (if not almost all) memories in modern computers and electronic systems are semiconductor memories
 - They exist(ed) also magnetic and optical memories or storage devices, but they are actually outdated or used only in very few applications

(Semiconductor) Memories - Classification

- Access mode
 - Random Access Memory (RAM)
 - Sequential Access Memory (SAM)

- Supported operation(s)
 - Read-Only Memory (ROM)
 - Read and Write Memory (RWM)

(Semiconductor) Memories - Classification

- Data retention
 - Volatile
 - Non-permanent data
 - Data is lost after the memory is turned off
 - Non-volatile
 - Permanent data
 - Data is retained even when the memory is turned off

- We have already seen an example of semiconductor memory
 - D flip-flop
 - 1x D flip-flop = 1 memory bit
 - It is an example of memory which is volatile and RWM

- D flip-flops are used as memory in computers, but they are expensive in terms of cost, cost per bit, ...
 - There are memories based on semiconductor technologies (such as CMOS) that achieve lower cost per bit or, in other words, higher density per silicon area

- These specialized memory technologies enable a memory cell (1 bit) to be made at a cost of about 1 transistor
 - If you remember, a 1-bit register (or 1 D flip-flop) is made of

- These specialized memory technologies enable a memory cell (1 bit) to be made at a cost of about 1 transistor
 - If you remember, a 1-bit register (or 1 D flip-flop) is made of
 - 1x NOT gate
 - 2x D latches

- These specialized memory technologies enable a memory cell (1 bit) to be made at a cost of about 1 transistor
 - If you remember, a 1-bit register (or 1 D flip-flop) is made of

 These specialized memory technologies enable a memory cell (1 bit) to be made at a cost of about 1 transistor

• If you remember, a 1-bit register (or 1 D flip-flop) is made of

- If you remember, a 1-bit register (or 1 D flip-flop) is made of
 - 1x NOT gate
 - 2x D latches
 - Each D latch is made of
 - 4x NAND gates \rightarrow 4x (4 transistors) = 16 transistors
 - -1x NOT gate → 1x (2 transistors) = 2 transistors

- If you remember, a 1-bit register (or 1 D flip-flop) is made of
 - 1x NOT gate
 - 2x D latches
 - Each D latch is made of → 18 transistor
 - 4x NAND gates \rightarrow 4x (4 transistors) = 16 transistors
 - -1x NOT gate → 1x (2 transistors) = 2 transistors

- If you remember, a 1-bit register (or 1 D flip-flop) is made of
 - 1x NOT gate \rightarrow 1x (2 transistors) = 2 transistors
 - 2x D latches $\rightarrow 2x$ (18 transistors) = 36 transistors
 - Each D latch is made of \rightarrow 18 transistor
 - 4x NAND gates \rightarrow 4x (4 transistors) = 16 transistors
 - -1x NOT gate → 1x (2 transistors) = 2 transistors

- These specialized memory technologies enable a memory cell (1 bit) to be made at a cost of about 1 transistor
 - If you remember, a 1-bit register (or 1 D flip-flop) is made of 38 transistors!

```
■ 1x NOT gate \rightarrow 1x (2 transistors) = 2 transistors
```

- 2x D latches $\rightarrow 2x$ (18 transistors) = 36 transistors
 - Each D latch is made of \rightarrow 18 transistor

```
- 4x NAND gates \rightarrow 4x (4 transistors) = 16 transistors
```

-1x NOT gate → 1x (2 transistors) = 2 transistors

- These specialized memory technologies enable a memory cell (1 bit) to be made at a cost of about 1 transistor
 - If you remember, a 1-bit register (or 1 D flip-flop) is made of 38 transistors!
- This was an academic example
 - A real-world CMOS D flip-flop consists of fewer transistors
 - However, looking at a real-world CMOS technology (7 nm) ...

- These specialized memory technologies enable a memory cell (1 bit) to be made at a cost of about 1 transistor
 - If you remember, a 1-bit register (or 1 D flip-flop) is made of 38 transistors!
- This was an academic example
 - A real-world CMOS D flip-flop consists of fewer transistors
 - However, looking at a real-world CMOS technology (7 nm) ...
 - Area of a NAND gate $\cong 0.0768 \,\mu^2$

- These specialized memory technologies enable a memory cell (1 bit) to be made at a cost of about 1 transistor
 - If you remember, a 1-bit register (or 1 D flip-flop) is made of 38 transistors!
- This was an academic example
 - A real-world CMOS D flip-flop consists of fewer transistors
 - However, looking at a real-world CMOS technology (7 nm) ...
 - Area of a NAND gate $\cong 0.0768~\mu^2 \rightarrow$ area of 1 transistor $\cong \frac{0.0768}{4}~\mu^2 = 0.0192~\mu^2$

- These specialized memory technologies enable a memory cell (1 bit) to be made at a cost of about 1 transistor
 - If you remember, a 1-bit register (or 1 D flip-flop) is made of 38 transistors!
- This was an academic example
 - A real-world CMOS D flip-flop consists of fewer transistors
 - However, looking at a real-world CMOS technology (7 nm) ...
 - Area of a NAND gate $\cong 0.0768~\mu^2 \rightarrow$ area of 1 transistor $\cong \frac{0.0768}{4}~\mu^2 = 0.0192~\mu^2$
 - Area of a DFF $\cong 0.4032 \,\mu^2$

- These specialized memory technologies enable a memory cell (1 bit) to be made at a cost of about 1 transistor
 - If you remember, a 1-bit register (or 1 D flip-flop) is made of 38 transistors!
- This was an academic example
 - A real-world CMOS D flip-flop consists of fewer transistors
 - However, looking at a real-world CMOS technology (7 nm) ...
 - Area of a NAND gate $\cong 0.0768~\mu^2 \rightarrow$ area of 1 transistor $\cong \frac{0.0768}{4}~\mu^2 = 0.0192~\mu^2$
 - Area of a DFF $\cong 0.4032 \ \mu^2 \rightarrow \frac{0.4032}{0.0192} = 21$

- These specialized memory technologies enable a memory cell (1 bit) to be made at a cost of about 1 transistor
 - If you remember, a 1-bit register (or 1 D flip-flop) is made of 38 transistors!
- This was an academic example
 - A real-world CMOS D flip-flop consists of fewer transistors
 - However, looking at a real-world CMOS technology (7 nm) ...
 - Area of a NAND gate $\cong 0.0768~\mu^2 \rightarrow$ area of 1 transistor $\cong \frac{0.0768}{4}~\mu^2 = 0.0192~\mu^2$
 - Area of a DFF $\cong 0.4032 \ \mu^2 \rightarrow \frac{0.4032}{0.0192} = 21 \rightarrow$ One DFF is about 21 transistors

- We are going to see different types of semiconductor memories
 - All the main ones used in modern electronic systems

- We are going to see different types of semiconductor memories
 - All the main ones used in modern electronic systems

- But first, let's take a look at the outline of the architecture of semiconductor memories
 - It is common to all of them

- The architecture of semiconductor memories has a matrix shape
 - Two dimensions
 - Bi-dimensional addressing

- The architecture of semiconductor memories has a matrix shape
 - Two dimensions
 - Bi-dimensional addressing

- Why not a vector shape?
 - For two main reason

- 1. Compatibility with manufacturing process
 - Semiconductor systems/devices are fabricated by processing a circular die of silicon (typically called wafer)

- 1. Compatibility with manufacturing process
 - Semiconductor systems/devices are fabricated by processing a circular die of silicon (typically called wafer)
 - Using a matrix shape, some parts of the wafer are wasted

- 1. Compatibility with manufacturing process
 - Semiconductor systems/devices are fabricated by processing a circular die of silicon (typically called wafer)
 - If a vector shape is used, more parts of the wafer are wasted

- Suppose that L bits of address are required
 - Vector shape
 - Mono-dimensional addressing $\rightarrow 2^L$ addresses
 - Matrix shape
 - Bi-dimensional addressing
 - Assuming to split L as L = N + M
 - -2^{N} addresses for one dimension
 - -2^{M} addresses for the other dimension
 - Total: $2^N + 2^M$ addresses

- Suppose that L bits of address are required
 - Vector shape
 - Resource cost = logic resources to decode 2^L addresses
 - Matrix shape
 - Resource cost = logic resources to decode $2^N + 2^M$ addresses

• With
$$L = N + M \rightarrow 2^L = 2^{N+M} = 2^N \cdot 2^M$$

•
$$2^N \cdot 2^M > 2^N + 2^M$$
 ????

- Suppose that L bits of address are required: L = N + M
 - $2^N \cdot 2^M > 2^N + 2^M$

2. Resource cost

• Suppose that L bits of address are required: L = N + M

- Suppose that L bits of address are required: L = N + M
 - $2^N \cdot 2^M > 2^N + 2^M$
 - $2^N \cdot (2^M 1) > 2^M$

- Suppose that L bits of address are required: L = N + M

 - $2^N \cdot (2^M 1) > 2^M$

- Suppose that L bits of address are required: L = N + M
 - $2^N \cdot 2^M > 2^N + 2^M$
 - $2^N \cdot (2^M 1) > 2^M$
 - $-2^N > \frac{2^M}{(2^M-1)}$

- Suppose that L bits of address are required: L = N + M
 - $-2^N > \frac{2^M}{(2^M-1)}$
 - Some numeric examples

$$-N = M = 1 \qquad \Rightarrow 2 > \frac{2}{2-1} \qquad \Rightarrow 2 > \frac{2}{1} \qquad \Rightarrow 2 = 2 \qquad \text{(NO)}$$

$$-N = 1, M = 2 \qquad \Rightarrow 2 > \frac{4}{4-1} \qquad \Rightarrow 2 > \frac{4}{3} \qquad \Rightarrow 2 > 1.3333 \qquad \text{(YES)}$$

$$-N = 2, M = 1 \qquad \Rightarrow 4 > \frac{2}{2-1} \qquad \Rightarrow 4 > \frac{2}{1} \qquad \Rightarrow 4 > 2 \qquad \text{(YES)}$$

$$-N = 3, M = 7 \qquad \Rightarrow 8 > \frac{128}{128-1} \qquad \Rightarrow 8 > \frac{128}{127} \qquad \Rightarrow 8 > 1.008 \qquad \text{(YES)}$$

Resource cost

• Suppose that L bits of address are required: L = N + M

$$2^N > \frac{2^M}{(2^M-1)}$$

- A more realistic example:
 - 1 Mbit of memory $\cong 2^{20} \rightarrow L = 20$
 - Assume N=8 and M=12

$$-256 > \frac{4096}{4096-1} \rightarrow 256 > \frac{4096}{4095} \rightarrow 256 >> \sim 1$$

Resource cost

• Suppose that L bits of address are required: L = N + M

$$2^N > \frac{2^M}{(2^M-1)}$$

- A more realistic example:
 - 1 Mbit of memory $\cong 2^{20} \rightarrow L = 20$
 - Assume N=8 and M=12

$$-256 > \frac{4096}{4096-1} \rightarrow 256 > \frac{4096}{4095} \rightarrow 256 >> \sim 1$$

• In other words, assuming realistic examples, it happens that $2^L >> 2^N + 2^M$!!!

Resource cost

• Suppose that L bits of address are required: L = N + M

$$2^N > \frac{2^M}{(2^M-1)}$$

- A more realistic example:
 - 1 Mbit of memory $\cong 2^{20} \rightarrow L = 20$
 - Assume N=8 and M=12

$$-256 > \frac{4096}{4096-1} \rightarrow 256 > \frac{4096}{4095} \rightarrow 256 >> \sim 1$$

- In other words, assuming realistic examples, it happens that $2^L >> 2^N + 2^M$!!!
- Bi-dimensional addressing requires far fewer resources for address decoding !!!

• Draft

- Draft
 - WL_i = Word Line

- Draft
 - WL_i = Word Line
 - BL_i = Bit Line

- Draft
 - WL_i = Word Line
 - BL_i = Bit Line
 - Memory cell
 - Typically contains 1 transistor
 - Or something different, but with "similar" cost in terms of silicon area

- Draft
 - To complete the architecture, they are required
 - A row decoder (or x-decoder)
 - For decoding the Word Line address
 - A column decoder (or y-decoder)
 - For decoding the Bit Line address

• Final

- Final Read-Only Memory
 - But only for ROM
 - Just output (Q)

- Final Read-Only Memory
 - But only for ROM
 - Just output (Q)

- In case of RWM, an I/O block is required
 - And a Read/Write (R/W) signal

- Final Read-Write Memory (RWM)
 - D = input data (bit)
 - Q = output data (bit)

- The architecture shown before is the one for single-bit memories
 - Each memory cell store 1 bit
 - Read or Write of 1 bit at a time
- Multi-bit memories are built by connecting in parallel single-bit memories
 - Assuming
 - Number of memory cells = $2^L \rightarrow L = N + M$ bits of address
 - Bit length = b (bits)
 - Memory is organized as $2^L \times b$
 - Data (of b bits) is called word

- Multi-bit memory: $2^L \times b$
 - b parallel single-bit block
 - Each single bit block
 - Contains 2^L (single-bit) memory cells
 - That are arranged as a matrix of from $2^N \cdot 2^M$
 - Typically, L is an integer multiple of 10, so that ...
 - $L = 10 \rightarrow 2^{10} \rightarrow k$ (kilo)
 - $L = 20 \rightarrow 2^{20} \rightarrow M$ (Mega)
 - $L = 30 \rightarrow 2^{30} \rightarrow G$ (Giga)

- Multi-bit memory: $2^L \times b$
 - Example of a 32k x 8 memory
 - $32k = 2^5 * 2^{10} = 2^{15} \rightarrow 15$ bits for address
 - $b = 8 \rightarrow 8$ parallel single-bit-output memory blocks

Thank you for your attention

Luca Crocetti (luca.crocetti@unipi.it)