Propriétés des transformées de Fourier

Quelques démonstrations. Le reste des propriétés peut être démontré de façons analogues.

Autres notations dans les transformées de Fourier:

En posant $\omega = 2\pi f$:

$$TF[g(t)] = G(f) = \int_{-\infty}^{\infty} g(t)e^{-i2\pi ft}dt \quad \to \quad G(\omega) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt$$

ω=2πf, dω=2πdf → df=dω/2π:

$$g(t) = TF^{-1}(G(f)) = \int_{-\infty}^{\infty} G(f)e^{i2\pi ft}df \rightarrow g(t) = \int_{-\infty}^{\infty} G(\omega)e^{i\omega t}d\omega / 2\pi = \frac{1}{2\pi}\int_{-\infty}^{\infty} G(\omega)e^{i\omega t}d\omega$$

Linéarité:

$$a_1g_1(t) + a_2g_2(t) \leftrightarrow a_1G_1(f) + a_2G_2(f)$$

$$TF[a_1g_1(t) + a_2g_2(t)] = \int_{-\infty}^{\infty} [a_1g_1(t) + a_2g_2(t)]e^{-i2\pi yt}dt$$

$$=\int_{-\infty}^{\infty}a_{1}g_{1}(t)e^{-i2\pi ft}dt+\int_{-\infty}^{\infty}a_{2}g_{2}(t)e^{-i2\pi ft}dt=a_{1}G_{1}(f)+a_{2}G_{2}(f)$$

Symétrie:

$$g(t) = \int_{-\infty}^{\infty} G(f)e^{i2\pi ft}df.$$
 Changer $t \leftrightarrow -t \Rightarrow g(-t) = \int_{-\infty}^{\infty} G(f)e^{-i2\pi ft}df$

En interchangeant t et f:
$$g(-f) = \int_{0}^{\infty} G(t)e^{-i2\pi jt}dt = TF(G(t))$$

Échelle du temps:

$$g(at) = \frac{1}{|a|} G\left(\frac{f}{a}\right)$$
 avec $a \in \mathbb{R}^*$.

$$TF[g(at)] = \int_{-\infty}^{\infty} g(at)e^{-i2\pi ft}dt \qquad x = at \Rightarrow dx = adt \Rightarrow dt = dx/a$$

Si a > 0:
$$FT[g(at)] = \frac{1}{a} \int_{a}^{\infty} g(x)e^{-i2\pi fx/a} dx = \frac{1}{a}G(f/a)$$

C'est l'argument de l'exponentiel qui donne l'argument de G.

Si a < 0:
$$FT[g(at)] = \frac{1}{a} \int_{-\infty}^{-\infty} g(x)e^{-i2\pi fx/a} dx = \frac{1}{-a} \int_{-\infty}^{\infty} g(x)e^{-i2\pi fx/a} dx = \frac{1}{|a|}G(f/a)$$

$$FT[g(at)] = \frac{1}{|a|}G(f/a)$$

Parité:

G(ω) est la transformée de Fourier de g(t)

Si g(t) est réelle et paire \Rightarrow G(ω) est réelle et paire

Si g(t) est réelle et impaire \Rightarrow G(ω) est imaginaire et impaire

Si $G(\omega)$ est réelle et positive \Rightarrow elle fait un angle 0 avec l'axe des réels \Rightarrow la phase vaut zéro $(\phi(\omega) = 0)$.

Si G(ω) est réelle et négative \Rightarrow elle fait un angle de $\pm \pi$ avec l'axe des réels \Rightarrow la phase vaut $\pm \pi$ ($\phi(\omega) = \pm \pi$).

TABLE 8.8 Fourier Transform Properties and Theorems

Property	f(t)	F (ω)
Linearity	$a_1 f_1(t) + a_2 f_2(t) + \dots$	$a_1F_1(\omega) + a_2F_2(\omega) + \dots$
Symmetry	F(t)	$2\pi f(-\omega)$
Time Scaling	f(at)	$\frac{1}{ a }F\left(\frac{\omega}{a}\right)$
Time Shifting	$f(t-t_0)$	$F(\omega)e^{-j\omega t_0}$
Frequency Shifting	$e^{j\omega_0 t}f(t)$	$F(\omega - \omega_{\theta})$
Time Differentiation	$\frac{d^n}{dt^n}f(t)$	$(j\omega)^n F(\omega)$
Frequency Differentiation	$(-jt)^n f(t)$	$\frac{d^n}{d\omega^n}F(\omega)$
Time Integration	$\int_{-\infty}^{t} f(\tau) d\tau$	$\frac{F(\omega)}{j\omega} + \pi F(\theta)\delta(\omega)$
Conjugate Functions	f*(t)	F*(-ω)
Time Convolution	$f_1(t)*f_2(t)$	$F_1(\omega) \cdot F_2(\omega)$
Frequency Convolution	$f_1(t) \cdot f_2(t)$	$\frac{1}{2\pi}F_1(\omega)*F_2(\omega)$
Area under f(t)	$F(0) = \int_{-\infty}^{\infty} f(t)dt$	
Area under F(w)	$f(0) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) d\omega$	
Parseval's Theorem	$\int_{-\infty}^{\infty} f(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) ^2 d\omega$	

La fonction de Dirac δ

La fonction de Dirac δ peut être définie comme la dérivée de la fonction de Heaviside qui est définie comme:

$$H(t) = u(t) = \begin{cases} 0 & si \ t < 0 \\ \frac{1}{2} & si \ t = 0 \\ 1 & si \ t > 0 \end{cases}$$

et $\delta(x)$ est définie comme:

$$S(x) = \begin{cases} \infty & \text{si } x = 0 \\ 0 & \text{si } x \neq 0 \end{cases} \qquad \left(S \text{ de Kronecker } S_{ij} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j \end{cases} \right)$$

Figure. Fonction de Dirac δ .

Les propriétés de $\delta(x)$:

$$\int_{-\infty}^{\infty} \delta(x)dx = 1$$

$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0)$$

$$\int_{-\infty}^{\infty} f(x)\delta(x-a)dx = f(a)$$

$$\delta(ax) = \frac{1}{|a|}\delta(x)$$

Le peigne de Dirac ou train d'impulsions:

$$\delta_T(t) = \sum_{n = -\infty}^{\infty} \delta(t - nT)$$

Figure. Peigne de Dirac ou train d'impulsions.

Transformées de Fourier généralisées

Certaines fonctions ne sont pas de carrés intégrables:

$$\int_{-\infty}^{\infty} |g(t)|^2 dt = \infty$$

c'est le cas des fonctions périodiques comme le sinus et le cosinus, la fonction de Heaviside, une constante etc....

Fonction de Heaviside:
$$H(t) = u(t) = \begin{cases} 0 & si \ t < 0 \\ \frac{1}{2} & si \ t = 0 \\ 1 & si \ t > 0 \end{cases}$$

Par définition, une fonction généralisée à progrès lent g(t) est une fonction associée à une fonction symbolique $\phi(t)$ qui décroît rapidement:

$$\langle g(t), \phi(t) \rangle = \int_{-\infty}^{\infty} g(t)\phi(t)dt$$

Pour calculer les transformées de Fourier de fonctions généralisées, on utilise la formule de Parseval.

La formule de Parseval

$$\int_{-\infty}^{\infty} f(x)G(x)dx = \int_{-\infty}^{\infty} F(x)g(x)dx$$

Celle-ci peut être démontrée de la façon suivante, en utilisant les transformées de Fourier:

$$F(y) = \int_{-\infty}^{\infty} f(x)e^{-ixy}dx$$

$$G(x) = \int_{-\infty}^{\infty} g(y)e^{-ixy}dy$$

$$\int_{-\infty}^{\infty} f(x)G(x)dx = \int_{-\infty}^{\infty} f(x) \left[\int_{-\infty}^{\infty} g(y)e^{-ixy}dy \right] dx$$

$$\int_{-\infty}^{\infty} f(x)G(x)dx = \int_{-\infty}^{\infty} g(y) \left[\int_{-\infty}^{\infty} f(x)e^{-ixy}dx \right] dy$$

$$\int_{-\infty}^{\infty} f(x)G(x)dx = \int_{-\infty}^{\infty} g(y)F(y)dy$$

et en changeant la variable y en x:

$$\int_{-\infty}^{\infty} f(x)G(x)dx = \int_{-\infty}^{\infty} g(x)F(x)dx$$

Cette équation peut se rapporter aux transformées de Fourier comme suit, en intégrant sur ω :

$$\int_{-\infty}^{\infty} f(\omega) TF[g(t)] d\omega = \int_{-\infty}^{\infty} TF[f(t)]g(\omega) d\omega$$

ou bien, en intégrant sur t:

$$\int_{-\infty}^{\infty} TF^{-1}[F(\omega)]G(t)dt = \int_{-\infty}^{\infty} F(t)TF^{-1}[G(\omega)]dt$$

Dans les deux cas, nous avons conservé la même variable ω ou t pour f et F et pour g et G.

Exemple 1:

Trouver la TF d'une constante, soit g(t) = 1.

g(t) = 1 est à progrès lent.

En utilisant la formule de Parseval avec la fonction rapidement décroissante $\phi(t)$:

Soit la formule de Parseval:
$$\int_{-\infty}^{\infty} G(x)\phi(x)dx = \int_{-\infty}^{\infty} g(x)\Phi(x)dx$$

qui devient:

$$\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = \int_{-\infty}^{\infty} g(t)\Phi(t)dt$$

$$\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = \int_{-\infty}^{\infty} \Phi(t)dt = \left[\int_{-\infty}^{\infty} \Phi(t)e^{-i\omega t}dt\right]_{\omega=0}$$

$$\left[\int_{-\infty}^{\infty} \Phi(t)e^{-i\omega t}dt\right]_{\omega=0} = TF[\Phi(t)]_{\omega=0}$$

et par la propriété de la symétrie:

$$TF[\Phi(t)]_{\omega=0} = [2\pi\phi(-\omega)]_{\omega=0} = 2\pi\phi(0)$$

Par la propriété de
$$\delta(\mathbf{x})$$
:
$$\int_{-\infty}^{\infty} f(x)\delta(x)dx = f(0)$$

$$2\pi\phi(0) = 2\pi \int_{-\infty}^{\infty} \delta(\omega)\phi(\omega)d\omega$$

Finalement, en reprenant l'équation de départ $\int\limits_{-\infty}^{\infty}G(\omega)\phi(\omega)d\omega=\int\limits_{-\infty}^{\infty}g(t)\Phi(t)dt$ et en

remplaçant le second membre par le résultat précédent qui est $2\pi\int\limits_{-\infty}^{\infty}\delta(\omega)\phi(\omega)d\omega$

$$\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = 2\pi \int_{-\infty}^{\infty} \delta(\omega)\phi(\omega)d\omega$$

et en identifiant le contenu des intégrales des deux membres de l'équation:

$$\mathsf{TF}[\mathsf{g}(\mathsf{t})] = \mathsf{G}(\omega) = 2\pi\delta(\omega)$$

Noter que dans cet exemple nous avons conservé ω pour simplifier les écritures au lieu de travailler avec $2\pi f$.

Exemple 2:

Calculer la TF de $\delta(t)$.

 $\delta(t)$ est une fonction généralisée à progrès lent.

Par définition:
$$\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = \int_{-\infty}^{\infty} g(t)\Phi(t)dt$$

soit
$$\int_{-\infty}^{\infty} G(\omega)\phi(\omega)d\omega = \int_{-\infty}^{\infty} \delta(t)\Phi(t)dt = \Phi(0)$$

aussi
$$\Phi(0) = TF[\phi(t)]_{\omega=0} = \left[\int_{-\infty}^{\infty} \phi(t)e^{-i\omega t}dt\right]_{\omega=0} = \int_{-\infty}^{\infty} \phi(t)dt = \int_{-\infty}^{\infty} \phi(\omega)d\omega$$
 par changement de

variable $t \rightarrow \omega$.

ainsi
$$\int\limits_{-\infty}^{\infty}G(\omega)\phi(\omega)d\omega=\int\limits_{-\infty}^{\infty}1\phi(\omega)d\omega$$

et par identification:

$$FT[\delta(t)] = G(\omega) = 1$$

On aurait pu faire le calcul directement :
$$\mathrm{FT}[\delta(t)] = \int\limits_{-\infty}^{\infty} \delta(t) e^{-i\omega t} dt = e^{-i\omega t} \Big|_{t=0} = 1$$

En conclusion, la TF d'une constante est une fonction δ , et la TF d'une fonction δ est une constante.

Exemple 3:

Calculer la TF de g(t)=exp(i ω_{o} t)

g(t) peut être réécrite sous la forme g(t)=f(t)exp(i ω_0 t). Par la propriété du décalage de la fréquence: TF[f(t)exp(i ω_0 t)] = F(ω - ω_0). Et comme f(t) = 1, et de l'exemple 1 ci-dessus: TF[1] = $2\pi\delta(\omega)$ \rightarrow TF[exp(i ω_0 t)] = $2\pi\delta(\omega-\omega_0)$. C'est un décalage de fréquence de la fonction δ .

Exemple 4:

Calculer la TF de $cos(\omega_o t)$ et $sin(\omega_o t)$. $cos(\omega_o t) = (exp(i\omega_o t) + exp(-i\omega_o t))/2$ TF[$cos(\omega_o t)$] = TF[$(exp(i\omega_o t) + exp(-i\omega_o t))/2$] = $\pi\delta(\omega-\omega_o) + \pi\delta(\omega+\omega_o)$

Pour le sinus : TF[$\sin(\omega_0 t)$] = $-i\pi\delta(\omega-\omega_0)$ + $i\pi\delta(\omega+\omega_0)$

Quelques fonctions courantes et leur transformée de Fourier

TABLE 8.9 Common Fourier transform pairs

f(t)	F (ω)	
$\delta(t)$	1	
$\delta(t-t_0)$	$e^{-j\omega t_0}$	
1	2πδ(ω)	
$e^{-j\omega t_0}$ exp(jw0t)	$2\pi\delta(\omega-\omega_0)$	
sgn(t)	2/(jω)	
$u_0(t)$	$\frac{1}{j\omega} + \pi\delta(\omega)$	
$\cos \omega_0 t$	$\pi[\delta(\omega-\omega_{\theta})+\delta(\omega+\omega_{\theta})]$	
$sin\omega_0 t$	$-j\pi[\delta(\omega-\omega_{\theta})-\delta(\omega+\omega_{\theta})]$	
$e^{-at}u_0(t)$ $a>0$	$\frac{1}{j\omega + a}$ $a > 0$	
$te^{-at}u_0(t)$ $a > 0$	$\frac{1}{(j\omega + a)^2}$ $a > 0$	
$e^{-at}\cos\omega_0 t u_0(t)$ $a > 0$	$\frac{j\omega + a}{(j\omega + a)^2 + \omega^2}$ $a > 0$	
$e^{-at}sin\omega_0 t u_0(t)$ $a > 0$	$\frac{\omega}{(j\omega + a)^2 + \omega^2}$ $a > 0$	
$A[u_0(t+T)-u_0(t-T)]$	$2AT\frac{\sin\omega T}{\omega T}$	

Transformée de Fourier à deux dimensions

Si l'on remplace $2\pi f$ par ω , la paire de Fourier s'écrit:

$$G(\omega) = FT(g(t)) = \int_{-\infty}^{\infty} g(t)e^{-i\omega t}dt$$

$$g(t) = FT^{-1}(G(\omega)) = \int_{-\infty}^{\infty} G(\omega)e^{i\omega t}df$$

Par analogie, on détermine les paires en 2 dimensions (2D):

$$G(u,v) = TF(g(x,y)) = \int_{-\infty-\infty}^{\infty} g(x,y)e^{-i(ux+vy)}dxdy$$

$$g(x,y) = TF^{-1}(G(u,v)) = \frac{1}{(2\pi)^2} \int_{-\infty-\infty}^{\infty} G(u,v)e^{i(ux+vy)} dudv$$

Exercices:

- 1. Calculer la TF de $\delta(t-t_0)$.
- 2. Calculer la TF de $\delta(t+t_0)$.
- 3. Montrer que TF[$\delta(t+t_0) + 2\delta(t) + \delta(t-t_0)$] = $4\cos^2(\omega t_0/2)$.

Notes extra de démonstrations faites en classe

— La fonction porte $f(t) = \Pi(t)$ est définie comme :

$$\Pi(t) = \begin{cases} 1 & -0.5 \le t \le 0.5 \\ 0 & \text{ailleurs} \end{cases}$$

Sa TF est F(w) = sinc(w/2). Le sinc est le sinus cardinal défini comme

$$\operatorname{sinc}(x) = \frac{\sin(x)}{x}$$

— Étant donnée une fonction Gaussienne :

$$g(t) = \exp(-t^2/(2\sigma^2))$$

Telle que vue en classe, à l'aide de la complétion de carré, sa TF est

$$G(f) = \sqrt{2\sigma^2\pi} \exp(-2\pi^2\sigma^2 f^2)$$

Il est important de noter la définition de la TF utilisée ici. Rappelez-vous qu'il y a 2 définition de la TF, une avec la fréquence f, et une avec la fréquence angulaire ω . Ici, quand j'utilise la variable f, on utilise la définition de la TF qui a un 2π dans l'équation et qui est souvent celle implémentée dans les logiciels et librairies (python, matlab, ...). Par exemple, voir https://mathworld.wolfram.com/FourierTransformGaussian.html.

— Quelques exemples faits en classe de propriétés de la TF. Il faut faire attention aux changements de variables et ordre des propriétés.

..