(11) Publication number :

11-145558

(43) Date of publication of application: 28.05.1999

(51) Int. CI.

H01S 3/18 G02B 6/12

(21) Application number : 09-302854

(71)Applicant : HITACHI LTD

NIPPON TELEGR & TELEPH CORP <NTT>

(22) Date of filing:

05.11.1997

(72) Inventor: NAOE KAZUHIKO

AOKI MASAHIRO SATO HIROSHI

TOMORI YUICHI

(54) SEMICONDUCTOR OPTICAL ELEMENT, TRANSMITTING-RECEIVING MODULE, AND OPTICAL COMMUNICATION SYSTEM

(57) Abstract:

PROBLEM TO BE SOLVED: To improve the mounting yield of a

semiconductor optical element.

SOLUTION: After a multiple quantum well active layer 102 and a ridge waveguide 105 have been formed successively on a semiconductor substrate 101, clad layers 701 are formed on both sides of the waveguide 105 and planarized layers 702 are formed in both side sections of the waveguide 105. Then a silicon oxide film 106 is formed on both sidewalls of the waveguide 105, clad layers 710, and planarized layers 702 and an upper electrode 107 connected with the waveguide 105 is formed on the oxide film 106. Thereafter, a solder layer 110 is formed on the electrode 107, and projecting sections 703 are formed on both sides of a stripe-like projecting section 111, so that the distance between the projecting surface of the section 703 and the surface of the substrate 101 is nearly equal to that between the projecting surface of the stripe-like projecting section 111 and the surface of the substrate 101.

LEGAL STATUS

[Date of request for examination]

03.04.2001

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-145558

(43)公開日 平成11年(1999)5月28日

(51) Int.Cl. ⁶	
---------------------------	--

G02B

識別記号

FΙ

H01S 3/18

6/12

H01S

G 0 2 B 6/12

3/18

J

審査請求 未請求 請求項の数11 OL (全 11 頁)

(21)	出題番目	ł

特顯平9-302854

(22)出顧日

平成9年(1997)11月5日

(71)出顧人 000005108

株式会社日立製作所

東京都千代田区神田駿河台四丁目6番地

(71)出願人 000004226

日本電信電話株式会社

東京都新宿区西新宿三丁目19番2号

(72)発明者 直江 和彦

神奈川県横浜市戸塚区戸塚町216番地 株

式会社日立製作所情報通信事業部内

(72)発明者 青木 雅博

東京都国分寺市東恋ケ窪一丁目280番地

株式会社日立製作所中央研究所内

(74)代理人 弁理士 中村 純之助

最終頁に続く

(54) 【発明の名称】 半導体光素子、送受信モジュールおよび光通信システム

(57)【要約】

【課題】 半導体光素子の実装歩留まりを良好にする。 【解決手段】 半導体基板101上に多重量子井戸活性 層102を形成し、多重量子井戸活性層102上にリッ ジ導波路105を形成し、リッジ導波路105の両側に クラッド層701を形成し、クラッド層701のリッジ 導波路105の両側部に平坦化層702を形成し、リッ ジ導波路105の両側壁上、クラッド層701上および 平坦化層702上にシリコン酸化膜106を形成し、シ リコン酸化膜106上にリッジ導波路105と接続され た上部電極107を形成し、上部電極107上にソルダ 110を形成し、ストライプ状凸部111の両側に凸形 状部703を形成し、凸形状部703の突起面の半導体 基板101表面からの距離とストライプ状凸部111の 突起面の半導体基板101表面からの距離とをほぼ同等 とする。

図 1

101・・・半導体基板

111・・・ストライプ状凸部 702・・・平坦化層

703…凸形状部

【特許請求の範囲】

【請求項1】半導体基板に複数の層が形成され、中央部にストライプ状凸部を有する半導体素子において、上記ストライプ状凸部の両側に凸形状部を形成し、上記凸形状部の突起面の上記半導体基板表面からの距離を上記ストライプ状凸部の突起面の上記半導体基板表面からの距離とほぼ同等としあるいは上記凸形状部の突起面の上記半導体基板表面からの距離を上記ストライプ状凸部の突起面の上記半導体基板表面からの距離よりも大きくしたことを特徴とする半導体光素子。

【請求項2】上記凸形状部の面積を全体の面積の30%以上としたことを特徴とする請求項1に記載の半導体光素子。

【請求項3】上記凸形状部を平坦化層により形成し、上 記平坦化層として半導体結晶からなるのものを用いたこ とを特徴とする請求項1または2に記載の半導体光素 子。

【請求項4】上記凸形状部を平坦化層により形成し、上 記平坦化層としてメタルからなるのものを用いたことを 特徴とする請求項1または2に記載の半導体光素子。

【請求項5】上記凸形状部を平坦化層により形成し、上 記平坦化層として絶縁膜からなるのものを用いたことを 特徴とする請求項1または2に記載の半導体光素子。

【請求項6】上記凸形状部を平坦化層により形成し、上 記平坦化層としてポリイミド樹脂からなるのものを用い たことを特徴とする請求項1または2に記載の半導体光 素子。

【請求項7】上記凸形状部を平坦化層により形成し、上 記平坦化層としてソルダからなるのものを用いたことを 特徴とする請求項1または2に記載の半導体光素子。

【請求項8】リッジ導波路を形成したリッジ導波路型の 半導体レーザであり、上記リッジ導波路の両側の側壁を (111) A結晶面としたことを特徴する請求項1から 7のいずれかに記載の半導体光素子。

【請求項9】スポット拡大機能を有する光導波路をモノリシック集積化したことを特徴とする請求項1から7のいずれかに記載の半導体光素子。

【請求項10】光導波路または光ファイバが設けられた 実装基板上に請求項1から9のいずれかに記載の半導体 光素子が実装されていることをことを特徴とする送受信 モジュール。

【請求項11】請求項10に記載の送受信モジュールを 用いたことを特徴とする光通信システム。

【発明の詳細な説明】

[0001]

【発明に属する技術分野】本発明は光通信用モジュールなどに用いられる半導体光素子、半導体光素子を有する送受信モジュールおよび送受信モジュールを有する光通信システムに関するものである。

[0002]

【従来の技術】光通信用モジュールなどに用いられる半導体光素子としては、光加入者系モジュールに実装される出射ビームスポットを拡大した機能を有する波長1.30μm帯のリッジ導波路型の半導体レーザなどがある。

【0003】図9は従来のリッジ導波路型の半導体レー ザを示す概略斜視図、図10は図9のB-B断面図、図 11は図9、図10に示した半導体レーザを示す図で、 図11(a)は概略斜視図、図11(b)は図11(a)のC 部詳細図、図11(c)は図11(a)のD部詳細図、図1 1(d)は図11(a)のE部詳細図である。図に示すよう に、n型(100) InPからなる半導体基板101上 に多重量子井戸活性層102が形成されている。この多 重量子井戸活性層102は厚さ0.15μmのInGa AsP(組成波長1.10 μm)からなる下側光ガイド 層、厚さ6. OnmのInGaAsP (組成波長1.3 7μm) からなる井戸層と厚さ10nmのInGaAs P(組成波長1.10μm)からなる障壁層とを7周期 積層した多重量子井戸構造および厚さ0.05 mmの I nGaAsP(組成波長1.10μm)からなる上側光 ガイド層で構成され、出射部の多重量子井戸活性層10 2の層厚は薄く形成され、多重量子井戸活性層102の 入射部の層厚は約0.5μm程度である。また、多重量 子井戸活性層102上に(111)A面を側壁にもつ逆 メサ断面形状のリッジ導波路105が形成され、リッジ 導波路105の前方下部の幅は7μm、リッジ導波路1 05の後方下部の幅は2μmである。また、リッジ導波 路105の両側に厚さ4.0μmのp型InPからなる クラッド層104が形成され、リッジ導波路105の両 側壁上およびクラッド層104上に厚さ0.5µmのシ リコン酸化膜106が形成され、シリコン酸化膜106 上にリッジ導波路105と接続された上部電極107が 形成され、リッジ導波路105とクラッド層104との 間にポリイミド樹脂108が充填され、上部電極107 上に厚さ2. 4μmのAuSnからなるソルダ110が 形成され、半導体基板101の裏面に下部電極109が 形成されている。

【0004】この半導体レーザにおいては、出射部の多重量子井戸活性層102の層厚は薄く形成され、またリッジ導波路105の前方下部の幅は7μm、リッジ導波路105の後方下部の幅は2μmであるから、出射ビームスポットを拡大することができる。

【0005】つぎに、図12により図9~図11に示した半導体レーザの製造方法を説明する。まず、図12(a)に示すように、半導体基板101上に選択成長用酸化膜マスク(図示せず)を形成し、公知の選択成長法により多重量子井戸活性層102を形成したのち、厚さ0.05μmのp型InPからなるキャップ層(図示せず)を形成し、選択成長用酸化膜マスクを除去する。する。つぎに、図12(b)に示すように、厚さ0.05μ

mのp型InPからなるキャップ層の除去等の処理をし たのち、結晶成長によりクラッド層104、厚さ0.2 μmのp型 InGaAsからなるキャップ層(図示せ ず)、厚さ0.1µmのp型InPからなるキャップ層 113を順次形成する。つぎに、図12(c)に示すよう に、キャップ層113を除去したのち、臭化水素酸と燐 酸との混合水溶液によるウェットエッチングを行ない、 リッジ導波路105を形成する。つぎに、図12(d)に 示すように、厚さ0.2μmのp型InGaAsからな るキャップ層を除去したのち、熱CVD法によりウェハ 全面に厚さ0.5μmのシリコン酸化膜106を形成す る。つぎに、図12(e)に示すように、シリコン酸化膜 除去マスク用のポリイミド樹脂 (図示せず)を塗布し、 エッチングバック法によりリッジ導波路105の上部の ポリイミド樹脂を除去し、リッジ導波路105の上部の シリコン酸化膜106のみを除去したのち、前記ポリイ ミド樹脂も除去する。つぎに、リッジ導波路105の側 壁にも電極が形成されるように、斜め蒸着法により上部 電極107を形成したのち、ポリイミド樹脂108を回 転塗布し、エッチングバック法を用いてリッジ導波路1 05の両脇の溝部以外のポリイミド樹脂108を除去す る。 つぎに、 図12(f)に示すように、 上部電極107 を形成し、半導体基板101の裏面を研磨したのち、下 部電極109を形成する。つぎに、電極アロイ等の工程 を経たのち、上部電極107上にソルダ110を蒸着法 にて形成する。これらの工程を経た後、ウェハを400 μmキャビティのバー状に劈開し、劈開面に反射保護膜 を形成したのち、単体の素子すなわちリッジ導波路型の 半導体レーザに分離する。

【0006】図13は従来の送受信モジュールを示す概略斜視図、図14は図13のF-F断面図である。図に示すように、シリコンからなる実装基板401にV型溝402が設けられ、V型溝402内に光ファイバ403が設けられ、実装基板401上に図9~図11に示したリッジ導波路型の半導体レーザ404がソルダ110によりジャンクションダウンにて位置合わせのみで搭載され、半導体レーザ404と光ファイバ403との結合(パッシブアライメント)が行なわれ、実装基板401上に導波路型の受光素子405が搭載されている。

【0007】この送受信モジュールにおいては、実装基板401上にリッジ導波路型の半導体レーザ404がジャンクションダウンにて位置合わせのみにより搭載されているから、製造コストが安価である。

[0008]

【発明が解決しようとする課題】このような送受信モジュールにおいては、半導体レーザ404の出力をダイレクトに光ファイバ403と結合させるから、半導体レーザ404と光ファイバ403との高さ方向の搭載精度は、±0.5μm以内が要求される。この搭載精度を出すため、半導体レーザ404のソルダ110の量が実装

に必要最小限の量に設計されている。ところが、多重量 子井戸活性層102を形成する際に、多重量子井戸活性 層102の両端が0.1~0.2μm程度の角型に盛り 上がった角部103 (図12(a)) が形成され、上部電 極107、ソルダ110を形成したのちにおいても、ス トライプ状凸部111が形成されるとともに、ストライ プ状凸部111の両端に角部103による角部112 (図12(f)) が形成される。このため、中心部にのみ ストライプ状凸部111がある半導体レーザ404をパ ッシブアライメントにて実装した場合、ストライプ状凸 部111の部分のみが実装基板401と接触し、ストラ イプ状凸部111のソルダ110のみが接合に寄与し、 ストライプ状凸部111の両側つまり半導体基板101 の平面を基準としてストライプ状凸部111より低くな っている部分に付けられたソルダ110は実装基板40 1と接触せず、この部分のソルダ110は接合に寄与し ない。そして、ストライプ状凸部111の幅は半導体レ ーザ404の全体の幅の約10%程度であるから、半導 体レーザ404の実装時に困難が生じ、十分な強度で確 実に実装することができず、機械的に不安定に実装され る。また、図15に示すように、実装基板401上で半 導体レーザ404が傾いて実装されることもある。この ため、半導体レーザ404の実装基板401への実装歩 留まりが良好ではない。

【0009】本発明は上述の課題を解決するためになされたもので、半導体光素子の実装歩留まりが良好である半導体光素子、送受信モジュール、光通信システムを提供することを目的とする。

[0010]

【課題を解決するための手段】この目的を達成するため、本発明においては、半導体基板に複数の層が形成され、中央部にストライプ状凸部を有する半導体素子において、上記ストライプ状凸部の両側に凸形状部を形成し、上記凸形状部の突起面の上記半導体基板表面からの距離を上記ストライプ状凸部の突起面の上記半導体基板表面からの距離とほぼ同等としあるいは上記凸形状部の突起面の上記半導体基板表面からの距離を上記ストライプ状凸部の突起面の上記半導体基板表面からの距離よりも大きくする。

【0011】この場合、上記凸形状部の面積を全体の面積の30%以上とする。

【0012】これらの場合、上記凸形状部を平坦化層により形成し、上記平坦化層として半導体結晶からなるのものを用いる。

【0013】また、上記凸形状部を平坦化層により形成し、上記平坦化層としてメタルからなるのものを用いる。

【0014】また、上記凸形状部を平坦化層により形成 し、上記平坦化層として絶縁膜からなるのものを用い る。 【0015】また、上記凸形状部を平坦化層により形成し、上記平坦化層としてポリイミド樹脂からなるのものを用いる。

【0016】また、上記凸形状部を平坦化層により形成し、上記平坦化層としてソルダからなるのものを用いる

【0017】また、リッジ導波路を形成したリッジ導波路型の半導体レーザとし、上記リッジ導波路の両側の側壁を(111)A結晶面とする。

【0018】また、スポット拡大機能を有する光導波路をモノリシック集積化する。

【0019】また、送受信モジュールにおいて、光導波路または光ファイバが設けられた実装基板上に上記の半導体光素子を実装する。

【0020】また、光通信システムにおいて、上記の送 受信モジュールを用いる。

[0021]

【発明の実施の形態】図2は本発明に係るリッジ導波路 型の半導体レーザを示す概略斜視図、図1は図2のA-A断面図である。図に示すように、リッジ導波路105 の両側に厚さ4. Oμmのp型InPからなるクラッド 層701が形成され、クラッド層701のリッジ導波路 105の両側部に厚さ0.5µmの結晶InPからなる 平坦化層702が形成され、リッジ導波路105の両側 壁上、クラッド層701上および平坦化層702上に厚 さ0.5µmのシリコン酸化膜106が形成され、シリ コン酸化膜106上にリッジ導波路105と接続された 上部電極107が形成され、リッジ導波路105とクラ ッド層104との間にポリイミド樹脂108が充填さ れ、上部電極107上に厚さ2. 4μmのAuSnから なるソルダ110が形成されている。そして、ストライ プ状凸部111の両側に平坦化層702により凸形状部 703が形成され、凸形状部703の突起面の半導体基 板101表面からの距離はストライプ状凸部111の突 起面の半導体基板101表面からの距離とほぼ同等であ る。すなわち、凸形状部703の突起面の半導体基板1 01表面からの距離とストライプ状凸部111の突起面 の半導体基板101表面からの距離との差は、半導体レ ーザを実装基板に実装した場合における搭載の高さ方向 における精度の範囲内たとえば±0.3µm以内であ る。また、凸形状部703の面積は全体の面積の30% 以上たとえば70%である。

【0022】つぎに、図3により図1、図2に示したリッジ導波路型の半導体レーザの製造方法を説明する。まず、図3(a)に示すように、半導体基板101上に多重量子井戸活性層102を形成したのち、厚さ0.05μmのp型InPからなるキャップ層(図示せず)を形成し、選択成長用酸化膜マスクを除去する。つぎに、図3(b)に示すように、厚さ0.05μmのp型InPからなるキャップ層の除去等の処理をしたのち、結晶成長に

よりクラッド層701、厚さ0.2μmのp型InGa Asからなるキャップ層(図示せず)、平坦化層702 を順次形成する。この場合、クラッド層701に角部1 03に起因する角部114が形成される。つぎに、図3 (c)に示すように、多重量子井戸活性層102の両側部 にレジストマスク (図示せず)を通常のホトリソグラフ ィ工程により形成し、臭化水素酸と燐酸との混合水溶液 によるウェットエッチングを用いて平坦化層702のエ ッチングを行なう。このエッチングのエッチング時間を 平坦化層702が完全にエッチングされる時間より数十 秒程度長くし (オーバーエッチング) 、レジストマスク に対してサイドエッチングを行なうことにより、角部1 14を除去する。つぎに、レジストマスクを除去する。 つぎに、図3(d)に示すように、臭化水素酸と燐酸との 混合水溶液によるウェットエッチングを用いてリッジ導 波路105を形成する。この時、平坦化層702がエッ チングされないようにその領域をレジストマスク(図示 せず)にて保護する。つぎに、熱CVD法によりウェハ 全面にシリコン酸化膜106を形成し、図12で説明し た方法と同様にポリイミド樹脂を用いた工程を経てリッ ジ導波路105上部のシリコン酸化膜106のみを除去 する。つぎに、図3(e)に示すように、斜め蒸着法によ り上部電極107を形成し、ポリイミド樹脂108を塗 布し、溝部以外のポリイミド樹脂108を除去 (エッチ ングバック法) する。 つぎに、 図3(f)に示すように、 上部電極107を形成し、半導体基板101の裏面を研 磨したのち、下部電極109を形成する。 つぎに、電極 アロイ等の工程を経たのち、上部電極107上にソルダ 110を蒸着法にて形成する。これらの工程を経た後、 ウェハを400μmキャビティのバー状に劈開し、劈開 面に反射保護膜を形成したのち、単体の素子すなわちり ッジ導波路型の半導体レーザに分離する。

【0023】図4は本発明に係る送受信モジュールを示す概略断面図である。図に示すように、実装基板401上に図1、図2に示したリッジ導波路型の半導体レーザ901がソルダ110によりジャンクションダウンにて位置合わせのみで搭載されている。

【0024】図1、図2に示したリッジ導波路型の半導体レーザ、その半導体レーザを有する送受信モジュールにおいては、ストライプ状凸部111の両側に凸形状部703が形成されているから、半導体レーザ901を実装基板401上にジャンクションダウンにて搭載したとき、凸形状部703(最上面はソルダ110)が実装基板401と接する。このため、実装時に実装基板401と接する凸形状部703の面積が増加するから、半導体レーザ901と実装基板401の実装面の接地面積が確保されるので、十分な強度で確実に実装することができ、機械的に安定した実装が可能になり、実装基板401に対して半導体レーザ901が傾くことない。この結果、半導体レーザ901の実装歩留まりを飛躍的に向上

させることができる。また、凸形状部703の面積を全 体の面積の30%以上としているから、対素子面積比に おいて従来技術に比べて約10%から40%以上たとえ ば80%程度に増加するから、半導体レーザ901と実 装基板401の実装面の接地面積が十分に確保され、半 導体レーザ901に形成したソルダ110のほぼ全体が 接合に寄与するので、機械的に極めて安定した実装が可 能になり、実装基板401に対して半導体レーザ901 が傾くのを有効に防止することができる。また、結晶I nPからなる平坦化層702を用いているから、工程的 に容易に製造することができる。また、リッジ導波路1 05の両側の側壁を(111)A結晶面としているか ら、電流を効率的に注入することができるので、少ない 電流で高出力を得ることができる。また、スポット拡大 機能を有するリッジ導波路105をモノリシック集積化 しているから、製造が容易となるので、製造コストが安 価になる。

【0025】また、図3で説明したリッジ導波路型の半導体レーザの製造方法においては、平坦化層702のエッチングを行なう際にオーバーエッチングを行ない、角部114を除去しているから、凸形状部703の突起面の半導体基板101表面からの距離とストライプ状凸部111の突起面の半導体基板101表面からの距離とを確実に等しくすることができる。また、ウェハに熱履歴を加えることなく凸形状部703を形成することができ、新たに生じる工程はホトリソグラフィ工程およびウエットエッチング工程のみであるから、製造工程時間をそれほど増やすことなく凸形状部703の形成が可能であり、半導体レーザ901の実装歩留まりを向上させかつより安定な実装を実現することができる。

【0026】また、光通信システムにおいて、図4に示した送受信モジュールを用いたときには、半導体レーザ901の実装歩留まりを飛躍的に向上させることができる。

【0027】なお、本実施の形態においては、平坦化層702をストライプ状凸部111とほぼ同じ厚さの0.5μmとしたが、実装された半導体レーザ901のヒートシンクなどに悪影響が特にない場合には、この平坦化層702を0.6μm程度あるいはそれ以上にすることにより、凸形状部703の突起面の半導体基板101表面からの距離をストライプ状凸部111の突起面の半導体基板101表面からの距離よりも大きくしても、同様の効果が得られることはいうまでもない。

【0028】つぎに、図5により本発明に係る他のリッジ導波路型の半導体レーザの製造方法を説明する。まず、図5(a)に示すように、半導体基板101上に多重量子井戸活性層102を形成したのち、結晶成長によりクラッド層104、厚さ0.2μmのp型InGaAsからなるキャップ層(図示せず)、キャップ層113を順次形成する。つぎに、図5(b)に示すように、キャッ

プ層113を除去したのち、臭化水素酸と燐酸との混合 水溶液によるウェットエッチングを用いてリッジ導波路 105を形成したのち、熱CVD法によりウェハ全面に シリコン酸化膜106を形成し、図12で説明した方法 と同様にポリイミド樹脂を用いた工程を経てリッジ導波 路105上部のシリコン酸化膜106のみを除去する。 つぎに、図5(c)に示すように、斜め蒸着法により上部 電極107を形成し、ポリイミド樹脂108を塗布し、 溝部以外のポリイミド樹脂108を除去する。つぎに、 図5(d)に示すように、上部電極107上にホトレジス トにより所望のパターニングマスク (図示せず)を形成 したのち、Ti/Pt/Auを厚さ5000~6000 A程度追加蒸着し、リフトオフ技術により所望のパター ンを形成して、平坦化層1001を形成する。この場 合、平坦化層1001における最上層の材料および厚さ は上部電極107と同様(厚さの1000ÅのAu)と する。 つぎに、 図5(e)に示すように、 下部電極109 を形成し、上部電極107、平坦化層1001上にソル ダ110を蒸着法にて形成する。これらの工程を経た 後、ウェハを400μmキャビティのバー状に劈開し、 劈開面に反射保護膜を形成したのち、単体の素子すなわ ちリッジ導波路型の半導体レーザに分離する。この時点 において、凸形状部703の突起面の半導体基板101 表面からの距離とストライプ状凸部111の突起面の半 導体基板101表面からの距離とは等しいか、あるいは 凸形状部703の突起面の半導体基板101表面からの 距離はストライプ状凸部111の突起面の半導体基板1 01表面からの距離よりも0.1 µm以内で高い。

【0029】このリッジ導波路型の半導体レーザにおいては、半導体レーザを実装基板上にジャンクションダウンにて搭載する場合においても、凸形状部703が実装基板と接する凸形状部703(最上面はソルダ110)の面積が増加し、図1、図2に示した半導体レーザと同様の効果が得られる。また、Ti/Pt/Auからなる平坦化層1001を用いているから、メタル蒸着という半導体製造技術としては比較的確立された方法により平坦化層1001を形成することができるので、安定して製造することができ、また結晶成長の仕様に関わらず対策が可能である。

【0030】つぎに、図6により本発明に係る他のリッジ導波路型の半導体レーザの製造方法を説明する。まず、図6(a)に示すように、半導体基板101上に多重量子井戸活性層102を形成したのち、結晶成長によりクラッド層104、厚さ0.2μmのp型InGaAsからなるキャップ層(図示せず)、キャップ層113を順次形成する。つぎに、図6(b)に示すように、キャップ層113を除去したのち、熱CVD法により厚さ0.5~0.6μmのシリコン酸化膜からなる平坦化層1101を形成する。つぎに、図6(c)に示すように、レジ

ストマスク (図示せず) を通常のホトリソグラフィ工程 により形成し、HFとNH4Fとの比が1:6の混合液 によるウェットエッチングを用いて平坦化層1101の エッチングを行ない、レジストマスクを除去する。つぎ に、図6(d)に示すように、臭化水素酸と燐酸との混合 水溶液によるウェットエッチングを行ない、リッジ導波 路105を形成する。つぎに、熱CVD法によりウェハ 全面にシリコン酸化膜106を形成し、図12で説明し た方法と同様にポリイミド樹脂を用いた工程を経てリッ ジ導波路105上部のシリコン酸化膜106のみを除去 する。つぎに、図6(e)に示すように、斜め蒸着法によ り上部電極107を形成し、ポリイミド樹脂108を塗 布し、溝部以外のポリイミド樹脂108を除去する。 つ ぎに、図6(f)に示すように、下部電極109を形成 し、上部電極107、平坦化層1101上にソルダ11 0を蒸着法にて形成する。これらの工程を経た後、ウェ ハを400μmキャビティのバー状に劈開し、劈開面に 反射保護膜を形成したのち、単体の素子すなわちリッジ 導波路型の半導体レーザに分離する。この時点におい て、凸形状部703の突起面の半導体基板101表面か らの距離とストライプ状凸部111の突起面の半導体基 板101表面からの距離とは等しいか、あるいは凸形状 部703の突起面の半導体基板101表面からの距離は ストライプ状凸部111の突起面の半導体基板101表 面からの距離よりも0.1 μm以内で高い。

【0031】このリッジ導波路型の半導体レーザにおいては、半導体レーザを実装基板上にジャンクションダウンにて搭載する場合においても、凸形状部703が実装基板と接するから、半導体レーザの実装時に実装基板と接する凸形状部703(最上面はソルダ110)の面積が増加し、図1、図2に示した半導体レーザと同様の効果が得られる。また、シリコン酸化膜からなる平坦化層1101を用いているから、熱CVD法という半導体製造技術としては比較的確立された方法により平坦化層1101を形成することができるので、安定して製造することができ、また結晶成長の仕様に関わらず対策が可能である。

【0032】つぎに、図7により本発明に係る出射ビームスポットを拡大した機能を有する波長1.30μm帯半導体埋込型の半導体レーザの製造方法を説明する。まず、図7(a)に示すように、半導体基板101上に多重量子井戸活性層102、活性層1200を形成したのち、MOVPE法により厚さ3.6μmのp型InPからなるクラッド層1201、厚さ0.5μmのp型InGaAsからなるキャップ層1202を形成する。つぎに、図7(b)に示すように、キャップ層1202を除去したのち、多重量子井戸活性層102上方部にシリコン酸化膜からなる幅8.5μmのストライプ部1203を形成し、ストライプ部1203をマスクとし、臭素メタノール溶液を用いてクラッド層1201をウエットエッ

チングしてメサストライプ1205を形成したのち、F e添加のInPからなる埋め込み層1204でメサスト ライプ1205を埋め込む。つぎに、図7(c)に示すよ うに、ストライプ部1203を除去したのち、T-CV D法によりウェハ全面に厚さ0.50μmのシリコン酸 化膜106を形成し、メサストライプ1205の上部の シリコン酸化膜106のみに窓を形成したのち、上部電 極107を形成する。つぎに、図7(d)に示すように、 上部電極107上にTi/Pt/Auからなる平坦化層 1001を形成する。つぎに、図7(e)に示すように、 下部電極109を形成し、上部電極107、平坦化層1 001上にソルダ110を蒸着法にて形成する。これら の工程を経た後、ウェハを400μmキャビティのバー 状に劈開し、劈開面に反射保護膜を形成したのち、単体 の素子すなわち埋込型の半導体レーザに分離する。この 時点において、凸形状部703の突起面の半導体基板1 01表面からの距離とストライプ状凸部111の突起面 の半導体基板101表面からの距離とは等しいか、ある いは凸形状部703の突起面の半導体基板101表面か らの距離はストライプ状凸部111の突起面の半導体基 板101表面からの距離よりも0.1 m m 以内で高い。 【0033】この埋込型の半導体レーザにおいては、半 導体レーザを実装基板上にジャンクションダウンにて搭 載する場合においても、凸形状部703が実装基板と接 するから、半導体レーザの実装時に実装基板と接する凸 形状部703(最上面はソルダ110)の面積が増加 し、図1、図2に示した半導体レーザと同様の効果が得 られる。

【0034】なお、本実施の形態においては、平坦化層 1001としてTi/Pt/Auからなるのものを用いるが、平坦化層として半導体結晶、他のメタル、絶縁 膜、ポリイミド樹脂、ソルダ等からなるのものを用いてもよい。また、本実施の形態においては、出射ビームスポットを拡大した機能を有する波長1.30μm帯半導体埋込型の半導体レーザに適用した例を示したが、同様に選択結晶成長を行ないストライプ状凸部が形成される他の半導体光素子、例えば電界吸収型変調器集積半導体レーザなどに適用しても、同様の効果が得られる。

【0035】図8は本発明に係るビームスポット拡大器が集積化された波長1.3μm帯埋込型の半導体レーザを示す概略断面図である。図に示すように、p型(100)InPからなる半導体基板1300上に多重量子井戸活性層102上にメサストライプ1306が形成され、多重量子井戸活性層102上にメサストライプ1306が形成され、半導体基板1300上にp型InPからなる半導体層1302、n型InPからなる半導体層1304が形成され、半導体層1302~1304によりメサストライプ1306が埋め込まれている。また、半導体層1304上にn型InP、n型InGaAsPからなるコンタクト層130

5が形成され、コンタクト層1305上にシリコン酸化膜106が形成され、シリコン酸化膜106上にコンタクト層1305と接続された上部電極107が形成され、上部電極107上にTi/Pt/Auからなる平坦化層1001が形成され、上部電極107、平坦化層1001上にソルダ110が形成されている。また、半導体基板1300の裏面に下部電極109が形成されている。

【0036】つぎに、図8に示した半導体レーザの製造 方法について説明する。まず、出射ビームスポット拡大 器を集積化するために、半導体基板1300上に選択成 長用酸化膜マスクを形成し、公知の選択成長法により多 重量子井戸活性層102、活性層1301を形成する。 つぎに、シリコン熱酸化膜をエッチングマスクとして、 ウエットエッチングによりメサストライプ1306を形 成する。つぎに、シリコン熱酸化膜をマスクとして半導 体層1302~1304による埋め込み成長を公知の結 晶成長技術を用いて行なったのち、マスクとして用いた シリコン熱酸化膜を除去し、結晶成長によりコンタクト 層1305を形成する。つぎに、熱CVD法によシリコ ン酸化膜106の形成し、上部電極107を形成したの ち、平坦化層1001を形成する。つぎに、下部電極1 09を形成し、上部電極107、平坦化層1001上に ソルダ110を蒸着法にて形成する。これらの工程を経 た後、ウェハを400µmキャビティのバー状に劈開 し、劈開面に反射保護膜を形成したのち、単体の素子す なわち埋込型の半導体レーザに分離する。この時点にお いて、凸形状部703の突起面の半導体基板1300表 面からの距離とストライプ状凸部111の突起面の半導 体基板 1300表面からの距離とは等しいか、あるいは 凸形状部703の突起面の半導体基板1300表面から の距離はストライプ状凸部111の突起面の半導体基板 1300表面からの距離よりも0.1μm以内で高い。 【0037】この埋込型の半導体レーザにおいては、半 導体レーザを実装基板上にジャンクションダウンにて搭 載する場合においても、凸形状部703が実装基板と接 するから、半導体レーザの実装時に実装基板と接する凸 形状部703(最上面はソルダ110)の面積が増加 し、図1、図2に示した半導体レーザと同様の効果が得 られる。

【0038】なお、上述実施の形態においては、半導体レーザについて説明したが、他の半導体光素子に本発明を適用できることは明らかである。また、上述実施の形態においては、平坦化層として結晶InPからなる平坦化層702、Ti/Pt/Auからなる平坦化層1001、シリコン酸化膜からなる平坦化層1101を用いたが、他の半導体結晶、他のメタル、他の絶縁膜、ポリイミド樹脂、ソルダからなるのものを用いてもよく、平坦化層としてポリイミド樹脂からなるのものを用いたときには、平坦化層を形成するための工程時間を短縮するこ

とができ、また平坦化層としてソルダからなるのものを 用いたときには、ソルダ形成という半導体製造技術とし ては比較的確立された方法により平坦化層を形成するこ とができるので、安定して製造することができ、また半 導体光素子を搭載することが容易となる。

[0039]

【発明の効果】本発明に係る半導体光素子、送受信モジュール、光通信システムにおいては、半導体光素子を十分な強度で確実に実装することができ、機械的に安定した実装が可能になり、また実装基板に対して半導体光素子が傾くことないから、半導体光素子の実装歩留まりが良好である。

【0040】また、凸形状部の面積を全体の面積の30%以上としたときには、半導体光素子と実装基板との接地面積が十分に確保されるから、機械的に極めて安定した実装が可能になり、また実装基板に対して半導体光素子が傾くのを有効に防止することができる。

【0041】また、凸形状部を平坦化層により形成し、 平坦化層として半導体結晶からなるのものを用いたとき には、工程的に容易に製造することができる。

【0042】また、凸形状部を平坦化層により形成し、 平坦化層としてメタルからなるのものを用いたときに は、メタル蒸着という半導体製造技術としては比較的確 立された方法により平坦化層を形成することができるの で、安定して製造することができる。

【0043】また、凸形状部を平坦化層により形成し、 平坦化層として絶縁膜からなるのものを用いたときに は、絶縁膜形成という半導体製造技術としては比較的確 立された方法により平坦化層を形成することができるの で、安定して製造することができる。

【0044】また、凸形状部を平坦化層により形成し、 平坦化層としてポリイミド樹脂からなるのものを用いた ときには、平坦化層を形成するための工程時間を短縮す ることができる。

【0045】また、凸形状部を平坦化層により形成し、 平坦化層としてソルダからなるのものを用いたときに は、ソルダ形成という半導体製造技術としては比較的確 立された方法により平坦化層を形成することができるの で、安定して製造することができ、また半導体光素子を 搭載することが容易となる。

【0046】また、リッジ導波路を形成したリッジ導波路型の半導体レーザとし、リッジ導波路の両側の側壁を(111) A結晶面としたときには、電流を効率的に注入することができるから、少ない電流で高出力を得ることができる。

【0047】また、スポット拡大機能を有する光導波路をモノリシック集積化したときには、製造が容易となるから、製造コストが安価になる。

【図面の簡単な説明】

【図1】図2のA-A断面図である。

【図2】本発明に係るリッジ導波路型の半導体レーザを 示す概略斜視図である。

【図3】図1、図2に示した半導体レーザの製造方法の 説明図である。

【図4】本発明に係る送受信モジュールを示す概略断面 図である。

【図5】本発明に係る他のリッジ導波路型の半導体レーザの製造方法の説明図である。

【図6】本発明に係る他のリッジ導波路型の半導体レーザの製造方法の説明図である。

【図7】本発明に係る埋込型の半導体レーザの製造方法 の説明図である。

【図8】本発明に係る他の埋込型の半導体レーザを示す 概略断面図である。

【図9】従来のリッジ導波路型の半導体レーザを示す概略斜視図である。

【図10】図9のB-B断面図である。

【図11】図9、図10に示した半導体レーザを示す図である。

【図12】図9~図11に示した半導体レーザの製造方法の説明図である。

【図13】従来の送受信モジュールを示す概略斜視図である。

【図14】図13のF-F断面図である。

【図15】従来の送受信モジュールを示す概略断面図である。

【符号の説明】

101…半導体基板

111…ストライプ状凸部

401…実装基板

403…光ファイバ

702…平坦化層

703…凸形状部

901…半導体レーザ

1001…平坦化層

1101…平坦化層

1300…半導体基板

【図1】

703 105 111 703 106 111 703 107 702 106 701 101 109

101・・・・半導体基板

111・・・ストライプ状凸部 702・・・平坦化層

703…凸形状部

【図4】

101···半導体基板

111・・・ストライプ状凸部 401・・・実装基板

702…平坦化層

703…凸形状部 901…半導体レーザ 【図2】

図2

【図8】

⊠8

111…ストライプ状凸部

703···凸形状部

1300・・・・半導体基板

【図12】

フロントページの続き

(72)発明者 佐藤 宏 東京都国分寺市東恋ケ窪一丁目280番地 株式会社日立製作所中央研究所内 (72) 発明者 東盛 裕一 東京都新宿区西新宿三丁目19番 2 号 日本 電信電話株式会社内