Machine Learning: Assignment #2 Name:杨朔柳 Stu ID:21721078

1. A Walk Through Linear Models

(a) Perceptron

(i)

	Train error	Test error
nTrain= 10, nTest = 1000	0	0.111
nTrain = 100 ,nTest =1000	0	0.014

(ii)

	Average Iterations
nTrain = 10	10
nTrain = 100	452

(iii)

The algorithm won't stop.

(1)100 train samples and 1000 test sample (2)10 train samples and 1000 test sample

(b) Linear Regreesion

(i)

	Test error
nTrain = 100 nTest = 100	0.048

	Training error	Test error
nTrain = 100 nTest = 100	0.136	0.149

(iv)After trainsformation

	Training error	Test error
nTrain = poly_train,nTest =	0.05	0.066
poly_tset		

(C)Logistic Regression

(i)

Training error Test error

nTrain = 100 nTest = 100

0.228

0.2464

(d)Support Vector Machine

(i)

	Train error	Test error
nTrain = 30 ,nTest = 100	0	0.03187

2. Regularization and Cross-Validation

(a)

(i)lambda = 100

```
(ii) | |w| | = 1.025064 when lambda = 0
```

nTrain = 100, nTest = 1000

In Ridge Regression, when lambda = 0.001000, $E_{val} = 106.723834$ wTw = 1.024248.

2.676

In Ridge Regression, when lambda = 0.010000, E_val = 106.602073 wTw = 1.022136.

In Ridge Regression, when lambda = 0.100000, E_val = 105.415992 wTw = 1.001634.

In Ridge Regression, when lambda = 0.000000, E_val = 106.737399 wTw = 1.024483.

In Ridge Regression, when lambda = 1.000000, E_val = 96.007857 wTw = 0.843664.

In Ridge Regression, when lambda = 10.000000, E_val = 66.866969 wTw = 0.407475. In Ridge Regression, when lambda = 100.000000, E_val = 46.491760 wTw = 0.133258.

In Ridge Regression, when lambda = 1000.000000, E_val = 63.829109 wTw = 0.033679.

Ridge Regression lambda chosed by LOOCV is 100.000000

when lambda = 0. wTw = 1.025604

(iii)

<u>\'</u> ''')		
	Train error	Test error
Lambda = 100,nTrain =	0	0.059
200,nTest = 1991		
Lambda = 0 nTrain =	0	0.126067
200,nTest = 1991		

(b)

	Train error	Test error
Lambda=0.01,nTrain=200,nTest=1991	0.025	0.1160
Lambda=0,nTrain=200,nTest=1991	0.51	0.1145

Lambda = 0.01

```
In logistic Regression with Reg,when lambda = 0.001000, E_val = 20.000000 In logistic Regression with Reg,when lambda = 0.010000, E_val = 19.000000 In logistic Regression with Reg,when lambda = 0.100000, E_val = 21.000000 In logistic Regression with Reg,when lambda = 0.000000, E_val = 20.000000 In logistic Regression with Reg,when lambda = 1.000000, E_val = 21.000000 In logistic Regression with Reg,when lambda = 10.000000, E_val = 25.000000 In logistic Regression with Reg,when lambda = 100.000000, E_val = 84.000000 In logistic Regression with Reg,when lambda = 1000.000000, E_val = 107.000000 Logistic:lambda chosed by LOOCV is 0.010000
```

(best lambda floats among 0.01~0.0)

3. Bias Variance Trade-off

(a)

- (i) False. If adding more training example, the test error will decrease first and then increase.
- (ii)False. Model with high variance is overfitting. It works badly on test samples, which is more important for our task.
- (iii)True. Model with more parameters could be a very complicated, and it is more prone to overfitting
- (iv)False. Regularization is aim at working well on test dataset, not training dataset.
- (v)False. Large λ will lead to underfitting. On the contrary, Small λ will lead to overfitting, (vi)False. Too Small or too large λ won't benefit our model.