Turing Machines

Turing Machines

A Turing Machine is an accepting device which accepts the languages (recursively enumerable set) generated by type 0 grammars. It was invented in 1936 by Alan

Type-0

Type-1

Type-2

Type-3

Unristricted Grammar

(Recognized by Turing Machine)

Context Sesitive

Grammar (Accepted by Linear Bound Automata)

Context Free Grammar (Accepted by Push Down Automata)

Regular Grammar (Accepted By Finite Automata)

Turing.

The Language Hierarchy

Languages accepted by Turing Machines

 $a^nb^nc^n$

WW

Context-Free Languages

 a^nb^n

 WW^R

Regular Languages

*a**

a*b*

A Turing Machine

Tape

Read-Write head

Control Unit

Definition

- A Turing Machine (TM) is a mathematical model which consists of an infinite length tape divided into cells on which input is given.
- It consists of a head which reads the input tape. A state register stores the state of the Turing machine.
- After reading an input symbol, it is replaced with another symbol, its internal state is changed, and it moves from one cell to the right or left.
- If the TM reaches the final state, the input string is accepted, otherwise rejected.

The Tape

No boundaries -- infinite length

Read-Write head

The head moves Left or Right

Read-Write head

The head at each transition (time step):

- 1. Reads a symbol
- 2. Writes a symbol
- 3. Moves Left or Right

Example:

- 1. Reads a
- 2. Writes k
- 3. Moves Left

- 1. Reads b
- 2. Writes f
- 3. Moves Right

The Input String

Head starts at the leftmost position of the input string

States & Transitions

Example:

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_2
\end{array}$$

Example:

Time 1

Example:

Time 1

$$\begin{array}{c|c}
 & \Diamond \to g, R \\
\hline
 & q_1
\end{array}$$

Determinism

Turing Machines are deterministic

Allowed

Not Allowed

No lambda transitions allowed

Partial Transition Function

Example:

<u>Allowed:</u>

No transition for input symbol c

Halting

The machine *halts* in a state if there is no transition to follow

Halting Example 1:

No transition from q_1 HALT!!!

Halting Example 2:

No possible transition from q_1 and symbol c HALT!!!

Accepting States

- ·Accepting states have no outgoing transitions
- The machine halts and accepts

Acceptance

Accept Input string

If machine halts in an accept state

Reject Input string

If machine halts
in a non-accept state
or
If machine enters
an infinite loop

Observation:

In order to accept an input string, it is not necessary to scan all the symbols in the string

Turing Machine Example

Input alphabet
$$\Sigma = \{a, b\}$$

Accepts the language: a*

Rejection Example

No possible Transition Halt & Reject

Infinite Loop Example

A Turing machine for language a*+b(a+b)*

Time 3

Time 4

Time 5

37

Because of the infinite loop:

·The accepting state cannot be reached

The machine never halts

·The input string is rejected

Another Turing Machine Example

Turing machine for the language $\{a^nb^n\}$ $n \ge 1$

Basic Idea:

Match a's with b's:

Repeat:

replace leftmost a with x
find leftmost b and replace it with y
Until there are no more a's or b's

If there is a remaining a or b reject

Halt & Accept

Observation:

If we modify the machine for the language $\{a^nb^n\}$

we can easily construct a machine for the language $\{a^nb^nc^n\}$

Formal Definitions for Turing Machines

Transition Function

$$\begin{array}{ccc}
 & a \rightarrow b, R \\
 & q_1
\end{array}$$

$$\delta(q_1, a) = (q_2, b, R)$$

Transition Function

$$\delta(q_1,c) = (q_2,d,L)$$

Turing Machine:

Configuration

Instantaneous description: $ca q_1 ba$

A Move:

$$q_2 xayb > x q_0 ayb$$

(yields in one move)

$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$

$$q_2 xayb \succ x q_0 ayb \succ xx q_1 yb \succ xxy q_1 b$$

Equivalent notation: $q_2 xayb \succ xxy q_1 b$

Input string

The Accepted Language

For any Turing Machine M

If a language L is accepted by a Turing machine M then we say that L is:

Turing Recognizable

Other names used:

- ·Turing Acceptable
- ·Recursively Enumerable

Computing Functions with Turing Machines

A function

f(w)

has:

A function may have many parameters:

Example: Addition function

$$f(x,y) = x + y$$

Integer Domain

Decimal: 5

Binary: 101

Unary: 11111

We prefer unary representation:

easier to manipulate with Turing machines

Definition:

A function f is computable if there is a Turing Machine M such that:

Initial configuration

Final configuration

For all $w \in D$ Domain

In other words:

A function f is computable if there is a Turing Machine M such that:

$$q_0 \ w \ \succ \ q_f \ f(w)$$
 Initial Final Configuration

For all $w \in D$ Domain

Example

The function
$$f(x,y) = x + y$$
 is computable

x, y are integers

Turing Machine:

Input string: x0y unary

Output string: xy0 unary

The 0 is the delimiter that separates the two numbers

The 0 here helps when we use the result for other operations

Turing machine for function f(x,y) = x + y

Execution Example:

Time 0

$$x = 11$$
 (=2)

$$y = 11$$
 (=2)

Final Result

Time 3

Time 5

Time 8

Another Example

$$f(x) = 2x$$

The function f(x) = 2x is computable

is integer

Turing Machine:

Input string:

 \mathcal{X}

unary

Output string:

 $\chi\chi$

unary

Turing Machine Pseudocode for f(x) = 2x

- Replace every 1 with \$
- · Repeat:
 - Find rightmost \$, replace it with 1

· Go to right end, insert 1

Until no more \$ remain

Turing Machine for f(x) = 2x

Example

Finish

Another Example

The function
$$f(x,y) = \begin{cases} 1 & \text{if } x > y \\ 0 & \text{if } x \leq y \end{cases}$$
 is computable

Input:
$$x0y$$

Output: 1 or 0

Turing Machine Pseudocode:

Repeat

Match a 1 from x with a 1 from y

Until all of x or y is matched

• If a 1 from x is not matched erase tape, write 1 (x > y) else

erase tape, write 0

 $(x \leq y)$

Combining Turing Machines

Block Diagram

$$f(x,y) = \begin{cases} x+y & \text{if } x > y \\ 0 & \text{if } x \le y \end{cases}$$

