- 1. find the distance of a point P(x,y) from the origin.
- 2. what is the value of $(\cos^2 67^{\circ} \sin^2 23^{\circ})$?
- 3. Given $\Delta ABC~\Delta PQR, \text{if}~\frac{AB}{PQ}{=}\frac{1}{3}$, then find $\frac{ar\Delta ABC}{ar\Delta PQR}$.
- 4. Find the ratio in which P(4, m) divides the line segment joining the points A(2,3) and B(6,-3). Hence find m .
- 5. Two different dice are tossed together. Find the probability:
 - i) of getting a doublet
 - ii) of getting a sum 10, of the numbers on the two dice.
- 6. An integer is chosen at random between 1 and 100. Find the probability that it is:
 - i) divisible by 8.
 - ii) not divisible by 8.
- 7. Find HCF and LCM of 404 and 96 and verify that $HCF \times LCM =$ product of two given numbers .
- 8. Find the zeros of the polynomial $(2x^4 9x^3 + 3x 1)$. If two of its zeros are $(2 + \sqrt{+3})$ and $(2 \sqrt{+3})$.
- 9. If A(-2,1),B(a,0),C(4,b) and D(1,2) are the vertices of a parallelogram ABCD, find the values of a and b. Hence find the length of its side.
- 10. If A(-5,7), B(-4,-5), C(-1,-6) and D(4,5) are the vertices of a quadrilateral, find the are of the quadrilateral ABCD.
- 11. If $4 \tan \theta = 3$, evaluate $(\frac{4 \sin \theta \cos \theta + 1}{4 \sin \theta + \cos \theta 1})$.
- 12. If $(\tan 2A) = \cot(A 18^{\circ})$ where (2A) is an acute angle, find the value of (A).
- 13. Find the area of the shaded region in fig 2, where areas drawn with centers A, B, C and D intersect in pair at mid-points. P, Q, R and S of the sides AB, BC, CD and DA respectively of a square ABCD of side 12cm. [$use\pi = 3.14$] .

Figure 1: square

- 14. Prove that $\frac{\sin A 2\sin^3 A}{2\cos^3 A \cos A} = \tan A$.
- 15. The diameters of the lower and upper ends of a bucket in the form of a frustum of a cone are 10cm and 30cm respectively. If its height is 24cm, find:
 - i) The area of the meta sheet used to make the bucket.
 - ii) Why we should avoid the bucket made by ordinary plastic? [$use\pi=3.14$]
- 16. As observed from the top of a 100m high light house from the sea-level, the angles of depression of two ships are 30° and 45° . If one ship is exactly behind the other on the same side of the light house, find the distance between the two ships. [$use\sqrt{3} = 1.732$].
- 17. The mean of the following distribution is 18. Find the frequency f of the c lass 19-21.

class	11-13	13-15	15-17	17-19	19-21	21-23	23-25
frequency	3	6	9	13	f	5	4

18. The following distribution gives the daily income of 50 workers of a factory:

$\mathbf{DailyIncome}(in)$	100-120	120-140	140-160	160-180	180-200	
Number of workers	12	14	8	6	10	

19.	Convert the distribution above to a less than type cumulative frequency distribution and draw its ogive.