Математический анализ, Коллоквиум 3

Балюк Игорь

@lodthe, GitHub

Дата изменения: 2020.02.25 в 22:46

Содержание

1	Выпуклые и вогнутые функции. Выпуклость в терминах производной. Неравенство Йенсена. Примеры.	3
		3
	1.2 Неравенство Йенсена	4
	1.3 Пример	4
2	Первообразная и неопределенный интеграл. Линейность интеграла, формула интегри- рования по частям и замены переменной.	. 4
	рования по частям и замены переменной. 2.1 Первообразная и неопределенный интеграл	4
	2.2 Линейность интеграла, формула интегрирования по частям и замены переменной	5
3	Вычисление интеграла от рациональной функции. Примеры сведения интеграла к	
	интегралу от рациональной функции.	5
	3.1 Представление интеграла от рациональной функции	5
	3.2 Вычисление интеграла каждого типа	5 6
4	Интегралы Римана: определение, примеры интегрируемых и неинтегрируемых функ- ций, линейность и монотонность интеграла, ограниченность интегрируемой функции.	
	ции, линеиность и монотонность интеграла, ограниченность интегрируемой функции. 4.1 Определение интеграла по Риману	6
	4.1 Определение интеграла по гиману	7
	4.3 Ограниченность интегрируемых функций	7
	4.4 Линейность интеграла	7
	4.5 Монотонность интеграла	7
5	Нижние и верхние суммы Дарбу. Критерий Дарбу интегрируемости ограниченной	i
	функции.	8
	5.1 Нижние и верхние суммы Дарбу	8
	5.2 Критерий Дарбу	8
6	Переформулировка критерия Дарбу в терминах колебаний. Интегрируемость модуля и произведения интегрируемых функций. Интегрируемость на подотрезке, аддитив-	
	ность интеграла.	9 9
	6.1 Переформулировка критерия Дарбу в терминах колебаний. 6.2 Интегрируемость модуля и произведения интегрируемых функций. Интегрируемость на	9
	подотрезке.	9
	6.3 Аддитивность интеграла	10
7	Интегрируемость монотонных функций. Равномерная непрерывность. Примеры. Рав- номерная непрерывность непрерывной на отрезке функции. Интегрируемость непре-	
	рывных функций.	10
	7.1 Интегрируемость монотонных функций	10
	7.2 Равномерная непрерывность	10
	7.9 Примори	10

	7.4 Равномерная непрерывность непрерывной на отрезке функции 7.5 Интегрируемость непрерывных функций	10 11
8	Формула Ньютона-Лейбница и интегрирование по частям. Интеграл с переменным верхним пределом, его свойства. Наличие первообразной у непрерывной функции. Формула замены переменной. 8.1 Формула Ньютона-Лейбница и интегрирование по частям 8.2 Интеграл с переменным верхним пределом, его свойства 8.3 Формула замены переменной	
9	Формула Тейлора с остаточным членом в интегральной форме. Ряд Тейлора для функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^p$ (обоснование сходимости для e^x и $\ln(1+x)$). Площадь криволинейной трапеции и длина кривой. 9.1 Формула Тейлора с остаточным членом в интегральной форме 9.2 Ряд Тейлора для функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^p$ (обоснование сходимости для e^x и $\ln(1+x)$)	12 12
10	Формула Стирлинга. 10.1 Формула Стирлинга	13 13 14
11	Несобственный интеграл Римана: определение и примеры. Регулярность и линейность несобственного интеграла, независимость сходимости интеграла от его «начала». Формула интегрирования по частям и замены переменной для несобственного интеграла. 11.1 Несобственный интеграл Римана: определение 11.2 Примеры 11.3 Площадь криволинейной трапеции и длина кривой 11.4 Регулярность и линейность несобственного интеграла, независимость сходимости интеграла от его «начала» 11.5 Формула интегрирования по частям и замены переменной для несобственного интеграла	
12	Абсолютная и условная сходимость несобственных интегралов. Пример функции, интеграл от которой сходится условно. Исследования сходимости интеграла от неотрицательной функции с помощью неравенств и эквивалентности. Признаки Дирихле-Абеля сходимости несобственного интеграла. 12.1 Абсолютная и условная сходимость несобственных интегралов. 12.2 Примеры 12.3 Признак Дирихле-Абеля	

Предварительная дата проведения коллоквиума — 29 февраля.

Оригинальный список вопросов

Огромное спасибо Егору Косову: большая часть документа состоит из его материалов.

1 Выпуклые и вогнутые функции. Выпуклость в терминах производной. Неравенство Йенсена. Примеры.

1.1 Выпуклые и вогнутые функции и их связь с производной

Определение. Функция f на интервале I называется **выпуклой**, если $\forall x, y \in I$ и для каждого $t \in [0;1]$ выполнено $f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)$.

Функция f на интервале I называется **вогнутой**, если функция -f — выпуклая.

Лемма. Функция f на интервале I выпукла тогда и только тогда, когда для всех точек x < z < y из этого интервала выполенно

$$\frac{f(z) - f(x)}{z - x} \leqslant \frac{f(y) - f(z)}{y - z}$$

Доказательство. Зафиксируем $t \in [0;1]$. Пусть z = tx + (1-t)y. Тогда $t = \frac{y-z}{y-x}$ и выпуклость f равносильна выполнению неравенства:

$$f(z) = f(tx + (1-t)y) \le tf(x) + (1-t)f(y) = \frac{y-z}{y-x}f(x) + \frac{z-x}{y-x}f(y)$$

Так как y - x = y - z + z - x, полученное неравенство равносильно неравенству из формулировки леммы:

$$f(z) \leqslant \frac{y-z}{y-x} f(x) + \frac{z-x}{y-x} f(y)$$

$$f(z) \cdot (y-z+z-x) \leqslant (y-z) f(x) + (z-x) f(y)$$

$$yf(z) - zf(z) + zf(z) - xf(z) \leqslant yf(x) - zf(x) + zf(y) - xf(y)$$

$$yf(z) - zf(z) - yf(x) + zf(x) \leqslant zf(y) - xf(y) - zf(z) + xf(z)$$

$$(f(z) - f(x)) \cdot (y-z) \leqslant (f(y) - f(z)) \cdot (z-x)$$

$$\frac{f(z) - f(x)}{z-x} \leqslant \frac{f(y) - f(z)}{y-z}$$

Теорема. Дифференцируемая функция f на интервале I выпукла тогда и только тогда, когда f' — неубывает.

 ${\it Доказательство}.$ Если f выпукла, то по предыдущей лемме для x < y выполнено

$$f'(x) \leqslant \frac{f(y) - f(x)}{y - x} \leqslant f'(y).$$

Первая часть неравенства выполняется, если в лемме приближать z к x справа. Вторая часть неравенства выполняется, если значение z из леммы приближать к y слева. Полученное неравенство означает неубывание f'.

Наоборот, пусть теперь f' неубывает. По теореме Лагранжа для всех точек x < z < y найдутся точки $\xi_1 \in (x;z)$ и $\xi_2 \in (z;y)$ для которых

$$\frac{f(z) - f(x)}{z - x} = f'(\xi_1), \quad \frac{f(y) - f(z)}{y - z} = f'(\xi_2)$$

Так как $f'(\xi_1) \leqslant f'(\xi_2)$, то по предыдущей лемме получаем выпуклость f.

Заметим, что дважды дифференцируемая функция f на интервале I выпукла тогда и только тогда, когда $f''(x) \geqslant 0 \forall x \in I$.

1.2 Неравенство Йенсена

Теорема (Неравенство Йенсена) Пусть функция f выпукла на интервале I. Тогда для всех точек $x_1, \ldots, x_n \in I$ и для всех чисел $t_1 \geqslant 0, \ldots, t_n \geqslant 0$, для которых $t_1 + \cdots + t_n = 1$, выполнено $f(t_1x_1 + \cdots + t_nx_n) \leqslant t_1f(x_1) + \cdots + t_nf(x_n)$.

 \mathcal{A} оказательство. Докажем утверждение индукцией по n.

База: n = 2, по определению выпуклости.

Пусть утверждение выполнено для n точек. Проверим, что оно выполнено для n+1 точки. Пусть $t:=t_1+\cdots+t_n$. Так как $\frac{t_1}{t}x_1+\cdots+\frac{t_n}{t}x_n\in I$ (проверяется подстановкой во все t_i минимального/максимального из t), то

$$f(t_1x_1 + \dots + t_nx_n + t_{n+1}x_{n+1}) \leqslant tf\left(\frac{t_1}{t}x_1 + \dots + \frac{t_n}{t}x_n\right) + t_{n+1}f(x_{n+1})$$

$$\leqslant t\left(\frac{t_1}{t}f(x_1) + \dots + \frac{t_n}{t}f(x_n)\right) + t_{n+1}f(x_{n+1}) = t_1f(x_1) + \dots + t_{n+1}f(x_{n+1})$$

Первое неравенство верно из определения выпуклости, второе — воспользовались предположением индукции для n.

1.3 Пример

С помощью неравенства Йенсена докажем неравенство о средних. Пусть $x_1, \ldots, x_n > 0$. Тогда $\sqrt[n]{x_1 \times \cdots \times x_n} \leqslant \frac{x_1 + \cdots + x_n}{n}$.

Доказательство. Действительно, рассмотрим функцию $f(x) = e^x$. Так как $f''(x) = e^x \geqslant 0$, то f — выпуклая функция. Теперь заметим, что

$$\sqrt[n]{x_1 \times \dots \times x_n} = f\left(\frac{1}{n}\ln x_1 + \dots + \frac{1}{n}\ln x_n\right) \leqslant \frac{1}{n}f(\ln x_1) + \dots + \frac{1}{n}f(\ln x_n) = \frac{x_1 + \dots + x_n}{n}$$

2 Первообразная и неопределенный интеграл. Линейность интеграла, формула интегрирования по частям и замены переменной.

2.1 Первообразная и неопределенный интеграл

Определение. Функция F называется **первообразной** функции f на некотором интервале I, если F дифференцируема на I и $F'(x) = f(x) \forall x \in I$.

Лемма. Любые две первообразные F_1 и F_2 функции f на интервале I отличаются на константу.

Доказательство. По теореме Лагранжа, применимой к функции $F:=F_1-F_2$, для произвольных точек $x,y\in I$ выполнено $F(x)-F(y)=F'(\xi)(x-y)=0$. Что означает, что для двух первообразных, для каждой пары точек из интервала, их разность равна.

$$F'(\xi)(x-y)=0$$
, так как $F'(\xi)=F_1'(\xi)-F_2'(\xi)=f(\xi)-f(\xi)=0$.

Определение. Множество всех первообразных функции f на некотором заданном интервале I называется **неопределенным интегралом** от f и обозначается $\int f(x) \, dx$.

Если F — некоторая первообразная функции f на некотором интервале I, то $\int f(x) \, dx = F + C$, где C — константа.

2.2 Линейность интеграла, формула интегрирования по частям и замены переменной

Теорема (Свойства неопределенного интеграла)

1. (Линейность)
$$\int (\alpha f(x) + \beta g(x)) dx = \alpha \int f(x) dx + \beta \int g(x) dx + C$$

2. (Формула интегрирования по частям) $\int f(x)g'(x)\,dx = f(x)g(x) - \int f'(x)g(x)\,dx$

$$3.$$
 (Формула замены переменной) $\int f(x)\,dx = [x=\phi(t)] = \int f(\phi(t))\phi'(t)\,dt$

Доказательство.

1. Пусть F и G — первообразные f и g соответственно. Тогда $\alpha F + \beta G$ — первообразная функции $\alpha f + \beta g$, то есть $\int \left(\alpha f(x) + \beta g(x) \right) dx = \alpha F + \beta G + C$.

В то же время

$$\alpha \int f(x) dx + \beta \int g(x) dx = \alpha F + \alpha C_1 + \beta G + \beta C_2 = \alpha F + \beta G + C$$

2. Так как (fg)' = f'g + fg', то по линейности интеграла

$$\int f'(x)g(x) dx + \int f(x)g'(x) dx = f(x) \cdot g(x) + C.$$

3. Если F — первообразная для f, то $(F(\phi(t)))' = F'(\phi(t))\phi'(t)$.

3 Вычисление интеграла от рациональной функции. Примеры сведения интеграла к интегралу от рациональной функции.

3.1 Представление интеграла от рациональной функции

Теорема. Пусть P и Q два многочлена. Тогда первообразная функции $\frac{P}{Q}$ выражается в элементарных функциях.

Доказательство. Пусть $Q(x) = (x-x_1)^{k_1} \cdot \dots \cdot (x-x_s)^{k_s} \cdot (x^2+p_1x+q_1)^{m_1} \cdot \dots \cdot (x^2+p_nx+q_n)^{m_n}$. Из курса алгебры известно (доказывать не требуется), что

$$\frac{P(x)}{Q(x)} = p(x) + \sum_{j=1}^{s} \sum_{k=1}^{k_j} \frac{a_{j,k}}{(x - x_j)^k} + \sum_{j=1}^{n} \sum_{k=1}^{m_j} \frac{b_{j,k}x + c_{j,k}}{(x^2 + p_j x + q_j)^k},$$

где p — многочлен, а коэффициенты $a_{i,j}, b_{i,j}, c_{i,j}$ — рациональные числа. То есть частное от деления рациональных многочленов представляется суммой неприводимых дробей (знаменатель имеет степень 1 или 2, числитель имеет степень на единицу меньше) и многочлена.

По линейности нам надо научиться интегрировать каждое слагаемое отдельно. Выделяя у интеграла $\int \frac{bx+c}{(x^2+px+q)^k}\,dx$ в знаменателе целую часть (выделяем полный квадрат) и делая линейную замену приводим его к виду $\int \frac{b'u+c'}{(u^2+a^2)^k}\,du.$

3.2 Вычисление интеграла каждого типа

Перейдем к вычислению интеграла каждого типа.

1.

$$\int \frac{dx}{(x-a)^k} = \begin{cases} \frac{1}{1-k} (x-a)^{1-k} + C, & k \neq 1, \\ \ln|x-a| + C, & k = 1. \end{cases}$$

2.

$$\int \frac{u}{(u^2 + a^2)^k} du = \frac{1}{2} \int \frac{d(u^2 + a^2)}{(u^2 + a^2)^k} = \begin{cases} \frac{1}{2(1-k)} (u^2 + a^2)^{1-k} + C, & k \neq 1, \\ \frac{1}{2} \ln(u^2 + a^2) + C, & k = 1. \end{cases}$$

3.

$$\begin{split} I_k &= \int \frac{du}{(u^2 + a^2)^k} = \frac{u}{(u^2 + a^2)^k} + 2k \int \frac{u^2 du}{(u^2 + a^2)^{k+1}} \\ &= \frac{u}{(u^2 + a^2)^k} + 2k \int \frac{du}{(u^2 + a^2)^k} - 2ka^2 \int \frac{du}{(u^2 + a^2)^{k+1}} \\ &= \frac{u}{(u^2 + a^2)^k} + 2kI_k - 2ka^2I_{k+1} \end{split}$$

Решая рекуррентное уравнение, находим

$$I_{k+1} = \frac{1}{2ka^2} \cdot \frac{u}{(u^2 + a^2)^k} + \frac{2k - 1}{2ka^2} I_k, \quad I_1 = \int \frac{du}{u^2 + a^2} = a^{-1} \operatorname{arctg} \frac{u}{a} + C$$

3.3 Пример

Пример. Пусть $t=\operatorname{tg}\frac{x}{2},\,dx=\frac{2\,dt}{1+t^2}.$ Заметим, что

$$\cos x = \frac{1 - \lg^2 \frac{x}{2}}{1 + \lg^2 \frac{x}{2}} = \frac{1 - t^2}{1 + t^2}, \quad \sin x = \frac{2\lg \frac{x}{2}}{1 + \lg^2 \frac{x}{2}} = \frac{2t}{1 + t^2}$$

Тем самым, интегралы от функций $R(\cos x, \sin x)$, где R — рациональная функция, сводятся заменой к интегралам от рациональных функций.

4 Интегралы Римана: определение, примеры интегрируемых и неинтегрируемых функций, линейность и монотонность интеграла, ограниченность интегрируемой функции.

4.1 Определение интеграла по Риману

Определение.

Разбиением \mathbb{T} отрезка [a;b] называется набор точек $a = x_0 < x_1 < \dots < x_n = b$.

Отрезки $\Delta_k := [x_{k-1}; x_k]$ называются **отрезками разбиения**.

Число $\lambda(\mathbb{T}):=\max_{1\leqslant k\leqslant n}|\Delta_k|:=x_k-x_{k-1},$ называется масштабом разбиения.

Отмеченным разбиением (\mathbb{T},ξ) отрезка [a;b] называется пара, состоящая из разбиения \mathbb{T} отрезка [a;b] и набора точек $\xi=(\xi_1,\ldots,\xi_n),\,\xi_k\in\Delta_k.$

Интегральной суммой функции f, соответствующей отмеченному разбиению (\mathbb{T},ξ) , называется выражение $\sigma(f,\mathbb{T},\xi):=\sum_{k=1}^n f(\xi_k)\cdot |\Delta_k|.$

Определение. Функция f называется интегрируемой по Риману на отрезке [a;b] и число I называется её интегралом, если $\forall \varepsilon > 0 \; \exists \delta > 0: \; \forall$ отмеченного разбиения (\mathbb{T},ξ) с $\lambda(\mathbb{T}) < \delta$ выполнено $|\sigma(f,\mathbb{T},\xi) - I| < \varepsilon$.

Число
$$I$$
 обозначают $\int\limits_a^b f(x)\,dx.$

4.2 Примеры

Пример.

1.
$$\int_{a}^{b} 1 \, dx = b - a$$

2. Функция Дирихле не интегрируема по Риману:

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \cup [0, 1], \\ 0 & otherwise, \end{cases}$$

так как её верхняя и нижняя суммы Дарбу (будет в следующих параграфах) равны 1 и 0 соответственно.

4.3 Ограниченность интегрируемых функций

Предложение. Если функция f интегрируема по Риману на отрезке [a;b], то она ограничена на этом отрезке.

Доказательство. Так как f интегрируема, то для некоторого разбиения \mathbb{T} для произвольного выбора отмеченных точек $\xi = (\xi_1, \dots, \xi_n)$ выполнено

$$\int_{a}^{b} f(x) dx - 1 < \sum_{k=1}^{n} f(\xi_k) \cdot |\Delta_k| < \int_{a}^{b} f(x) dx + 1.$$

Если бы f оказалась неограниченной на отрезке [a;b], она была бы неограниченной на каком-то из отрезков разбиения Δ_{k_0} , что в силу произвольности выбора $\xi_{k_0} \in \Delta_{k_0}$ и противоречит неравенству выше («зажали» бесконечность с двух сторон)

4.4 Линейность интеграла

Предложение. (Линейность интеграла). Пусть f и g интегрируемы по Риману на отрезке [a;b]. Тогда произвольных чисел α . β функция $\alpha f + \beta g$ интегрируема по Риману на отрезке [a;b] и $\int_{-\infty}^{b} (\alpha f(x) + \beta g(x)) dx$:

для произвольных чисел α, β функция $\alpha f + \beta g$ интегрируема по Риману на отрезке [a;b] и $\int\limits_a^b \left(\alpha f(x) + \beta g(x)\right) dx = 0$

$$\alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx.$$

Доказательство. Заметим, что $\sigma(\alpha f + \beta g, \mathbb{T}, \xi) = \alpha \sigma(f, \mathbb{T}, \xi) + \beta \sigma(g, \mathbb{T}, \xi)$. Кроме того, для произвольного $\varepsilon > 0$ найдется $\delta > 0$ для которого

$$\left| \sigma(f, \mathbb{T}, \xi) - \int_{a}^{b} f(x) \, dx \right| < \varepsilon; \quad \left| \sigma(g, \mathbb{T}, \xi) - \int_{a}^{b} g(x) \, dx \right| < \varepsilon$$

для каждого отмеченного разбиения (\mathbb{T},ξ) с масштабом $\lambda(\mathbb{T})<\delta$. Тем самым, для таких разбиений

$$\left| \sigma(\alpha f + \beta g, \mathbb{T}, \xi) - \alpha \int_{a}^{b} f(x) \, dx - \beta \int_{a}^{b} g(x) \, dx \right| < (|\alpha| + |\beta|) \cdot \varepsilon$$

4.5 Монотонность интеграла

Предложение. (Монотонность интеграла). Пусть f и g интегрируемы по Риману на отрезке [a;b].

Если
$$f(x) \leqslant g(x) \forall x \in [a;b]$$
, то $\int_{a}^{b} f(x) dx \leqslant \int_{a}^{b} g(x) dx$.

Доказательство. В силу линейности достаточно доказать данное утверждение только для $f\equiv 0$ (иначе прибавим к обеим частям одинаковую функцию, знак неравенства не изменится). В этом случае $\sigma(g,\mathbb{T},\xi)\geqslant 0$ для произвольного отмеченного разбиения (\mathbb{T},ξ) . Так как интеграл приближается интегральными суммами с любой точностью, то и сам интеграл неотрицателен.

5 Нижние и верхние суммы Дарбу. Критерий Дарбу интегрируемости ограниченной функции.

5.1 Нижние и верхние суммы Дарбу

Определение. Для ограниченной на отрезке [a;b] функции f и разбиения $\mathbb T$ определим **нижнюю**

$$s(f, \mathbb{T}) := \sum_{k=1}^{n} \inf_{x \in \Delta_k} f(x) \cdot |\Delta_k|$$

и верхнюю

$$S(f, \mathbb{T}) := \sum_{k=1}^{n} \sup_{x \in \Delta_k} f(x) \cdot |\Delta_k|$$

суммы Дарбу.

Нижним интегралом Дарбу называется число $\underline{I} = \sup_{\mathbb{T}} s(f, \mathbb{T})$ (обратите внимание, что черта снизу), а **верхним интегралом Дарбу** называется число $\overline{I} = \inf_{\mathbb{T}} S(f, \mathbb{T})$.

Лемма.

1.
$$s(f, \mathbb{T}) \leqslant \inf_{\xi} \sigma(f, \mathbb{T}, \xi) \leqslant \sigma(f, \mathbb{T}, \xi) \leqslant \sup_{\xi} \sigma(f, \mathbb{T}, \xi) \leqslant S(f, \mathbb{T})$$

2. Если
$$\mathbb{T} \subseteq \mathbb{T}'$$
, то $s(f,\mathbb{T}) \leqslant s(f,\mathbb{T}')$ и $S(f,T') \leqslant S(f,\mathbb{T})$

3.
$$s(f, \mathbb{T}_1) \leqslant s(f, \mathbb{T}_1 \cup \mathbb{T}_2) \leqslant S(f, \mathbb{T}_1 \cup \mathbb{T}_2) \leqslant S(f, \mathbb{T}_2)$$

Доказательство.

- 1. Рассмотрим первое неравенство, так как последнее аналогично ему, а те, что между ними, следуют из определения. Логика здесь такая: пусть мы нашли инфинум справа и соответствующий ему ξ . Но тогда при подсчете слева мы могли брать те же ξ , поэтому получим сумму не больше правой.
- 2. Рассмотрим на примере первого неравенства. Пусть между какими-то двумя точками из Т появилось несколько точек из Т'. Значение, равное инфинуму функции на этом отрезке умноженному на длину отрезка, будет не больше сумме инфинумов на каждом из подотрезков умноженных на их длины.
- 3. Рассмотрим первое неравенство. На самом деле, это верно из предыдущего пункта: пускай $\mathbb{T} = \mathbb{T}_1$, а $\mathbb{T}' = \mathbb{T}_1 \cup \mathbb{T}_2$.

Лемма. $\forall \varepsilon > 0 \; \exists \delta > 0 : \; \forall \mathbb{T} : \lambda(\mathbb{T}) < \delta \implies \underline{I} \leqslant s(f,\mathbb{T}) + \varepsilon \; \text{и} \; \overline{I} \geqslant S(f,\mathbb{T}) - \varepsilon.$

Доказательство. Докажем только первую часть.

Для каждого ε найдется такое разбиение \mathbb{T}_{ε} , для которого $\underline{I} \leqslant s(f,\mathbb{T}_{\varepsilon}) + \frac{\varepsilon}{2} \leqslant s(f,\mathbb{T}_{\varepsilon} \cup \mathbb{T}) + \frac{\varepsilon}{2}$ для произвольного разбиения \mathbb{T} . Первое неравенство выполняется, так как можно в \mathbb{T}_{ε} подставить разбиение \mathbb{T} , которое было выбрано для супремума в \underline{I} . Второе неравенство выполняется по третьему пункту из предыдущей леммы.

Заметим, что среди отрезков, порожденных разбиением $\mathbb{T}_{\varepsilon} \cup \mathbb{T}$ не более чем $2|\mathbb{T}_{\varepsilon}|$ отрезков, не порожденных разбиением \mathbb{T} (худший случай, когда в каждый отрезок, порожденный \mathbb{T} , попадает одна точка из \mathbb{T}_{ε} , тем самым порождая 2 новых отрезка). Поэтому $s(f,\mathbb{T}_{\varepsilon} \cup \mathbb{T}) \leqslant s(f,\mathbb{T}) + 2|\mathbb{T}_{\varepsilon}| \cdot 2 \sup_{x \in [a:b]} |f(x)| \cdot \lambda(\mathbb{T})$.

Взяв теперь $\delta>0$ так, чтобы $4|\mathbb{T}_{\varepsilon}|\sup_{x\in[a;b]}|f(x)|\cdot\delta<\frac{\varepsilon}{2},$ получаем требуемую оценку.

5.2 Критерий Дарбу

Теорема. Ограниченная функция f интегрируема по Риману на отрезке [a;b] тогда и только тогда, когда $I=\overline{I}$.

Доказательство. Если функция f интегрируема, то $\forall \varepsilon>0$ $\exists \delta>0$: для любого отмеченного разбиения

$$(\mathbb{T},\xi)$$
 с $\lambda(\mathbb{T})<\delta$ выполнено $I-\varepsilon\leqslant\sigma(f,\mathbb{T},\xi)\leqslant I+\varepsilon$, где $I:=\int\limits_{-\infty}^{\delta}f(x)\,dx$.

Тем самым, $I - \varepsilon \leqslant s(f, \mathbb{T}) \leqslant \underline{I} \leqslant \overline{I} \leqslant S(f, \mathbb{T}) \leqslant I + \varepsilon$. В силу произвольности ε выполнено равенство

$$\underline{I} = \overline{I} = I = \int_{a}^{b} f(x) dx$$

Обратно: пусть $I=\underline{I}=\overline{I}$. По предыдущей лемме, $\forall \varepsilon>0\ \exists \delta>0$: для любого отмеченного разбиения (\mathbb{T},ξ) с $\lambda(\mathbb{T})<\delta$ выполнено

$$I-\varepsilon \leqslant s(f,\mathbb{T}) \leqslant \sigma(f,\mathbb{T},\xi) \leqslant S(f,\mathbb{T}) \leqslant I+\varepsilon$$

Это и означает, что f интегрируема по Риману на [a;b] и I её интеграл.

6 Переформулировка критерия Дарбу в терминах колебаний. Интегрируемость модуля и произведения интегрируемых функций. Интегрируемость на подотрезке, аддитивность интеграла.

6.1 Переформулировка критерия Дарбу в терминах колебаний

Определение. Назовём **колебанием** функции f на отрезке [a;b] число

$$\omega(f, [a; b]) = \sup_{\xi', \xi'' \in [a; b]} |f(\xi') - f(\xi'')| = \sup_{[a; b]} f(x) - \inf_{[a; b]} f(x)$$

Следствие. Ограниченная функция f интегрируема по Риману на отрезке [a;b] тогда и только тогда, когда $\forall \varepsilon > 0$ найдется разбиение \mathbb{T} , для которого $\sum_k \omega(f,\Delta_k) \cdot |\Delta_k| < \varepsilon$.

 \mathcal{A} оказательство. Заметим, что $\overline{I}=\underline{I}\iff \forall \varepsilon>0$ найдется разбиение \mathbb{T} , для которого $S(f,\mathbb{T})-s(f,\mathbb{T})<\varepsilon$

Требует пояснения только импликация \Longrightarrow , так как обратное следует из выбора \mathbb{T} : для инфинума и супремума в \overline{I} и I соответственно будет выбрано то самое \mathbb{T} .

Если $\overline{I}=\underline{I}$, то $\forall \varepsilon>0$ найдутся разбиения \mathbb{T}_1 и \mathbb{T}_2 : $S(f,\mathbb{T}_1)-s(f,\mathbb{T}_2)<\overline{I}-\frac{\varepsilon}{2}-(\underline{I}-\frac{\varepsilon}{2})=\varepsilon$ (так как можно взять \mathbb{T}_1 и \mathbb{T}_2 равные выбранным в \overline{I} и \underline{I} соответственно).

Кроме того, $S(f, \mathbb{T}_1 \cup \mathbb{T}_2) - s(f, \mathbb{T}_1 \cup \mathbb{T}_2) \leqslant S(f, \mathbb{T}_1) - s(f, \mathbb{T}_2)$ (по свойствам для сумм Дарбу).

Остается лишь заметить, что верно равенство
$$S(f,\mathbb{T})-s(f,\mathbb{T})=\sum_k\omega(f,\Delta_k)\cdot |\Delta_k|.$$

6.2 Интегрируемость модуля и произведения интегрируемых функций. Интегрируемость на подотрезке.

Следствие. Если f интегрируема по Риману на отрезке [a;b], то |f| и f^2 интегрируемы по Риману на отрезке [a;b] и для любого $[c;d] \subseteq [a;b]$ функция f интегрируема по Риману на отрезке [c;d].

Доказательство. Интегрируемость |f| и f^2 следует из оценок

$$\omega(|f|, \Delta) \leqslant \omega(f, \Delta)$$
$$\omega(f^2, \Delta) \leqslant 2 \sup_{x \in \Delta} |f(x)| \cdot \omega(f, \Delta)$$

Интегрируемость на подотрезке доказывается следующим образом. Для каждого $\varepsilon > 0$ найдутся разбиение $\mathbb T$ отрезка [a;b] для которого $S_{[a;b]}(f,\mathbb T) - s_{[a;b]} < \varepsilon$. Но

$$S_{[c;d]}(f, (\mathbb{T} \cup \{c,d\}) \cap [c;d]) - s_{[c;d]}(f, (\mathbb{T} \cup \{c,d\}) \cap [c;d])$$

$$\leq S_{[a;b]}(f, \mathbb{T} \cup \{c,d\}) - s_{[a;b]}(f, \mathbb{T} \cup \{c,d\}) \leq S_{[a;b]}(f, \mathbb{T}) - s_{[a;b]}(f, \mathbb{T}),$$

где $S_{[c;d]}, \, s_{[c;d]}, \, S_{[a;b]}$ и $s_{[a;b]}$ обозначают верхние и нижние суммы Дарбу на отрезках [c;d] и [a;b] соответственно.

Следствие. Если f и g интегрируемы на [a;b], то и $f \cdot g$ интегрируема на [a;b].

Доказательство. Действительно,
$$f\cdot g=\frac{1}{4}\cdot \left[(f+g)^2-(f-g)^2\right]$$

6.3 Аддитивность интеграла

Следствие. Если f интегрируема по Риману на отрезке $[a;b], c \in [a;b]$, то f интегрируема на отрезках [a;c] и [c;b] и верно равенство

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Доказательство. Интегрируемость на подотрезках уже доказано. А равенство следует из того, что при вычислении интеграла можно использовать интегральные суммы, соответствующие разбиениям, содержащим точку c (выберем \mathbb{T} , в котором будет точка c).

7 Интегрируемость монотонных функций. Равномерная непрерывность. Примеры. Равномерная непрерывность непрерывной на отрезке функции. Интегрируемость непрерывных функций.

Интегрируемость монотонных функций

Следствие. Если f монотонна на [a;b], то f интегрируема по Риману на [a;b].

Доказательство. Заметим, что $\omega(f, \Delta_k) = |f(x_k) - f(x_{k-1})|$. В таком случае,

$$\sum_{k} \omega(f, \Delta_k) \cdot |\Delta_k| \leqslant \lambda(\mathbb{T}) \cdot \sum_{k} |f(x_k) - f(x_{k-1})| = \lambda(\mathbb{T}) \cdot |f(b) - f(a)|.$$

Тем самым, при
$$\lambda(\mathbb{T})<rac{arepsilon}{|f(b)-f(a)|}$$
 получаем $\sum_k\omega(f,\Delta_k)\cdot |\Delta_k|$

7.2Равномерная непрерывность

Определение. Функция f называется равномерно непрерывной на множестве X, если $\forall \varepsilon > 0 \ \exists \delta > 0$, для которого из неравенства $|x-y| < \delta$ следует $|f(x) - f(y)| < \varepsilon$.

7.3Примеры

Пример.

- 1. Функция $f(x) := \sin x$ равномерно непрерывна на \mathbb{R} , так как по теореме Лагранжа $|\sin x \sin y| =$ $|\cos \xi| \cdot |x - y| \le |x - y|.$
- 2. Функция $f(x) = \frac{1}{x}$ не равномерно непрерывна на (0;1), так как $f\left(\frac{1}{2n}\right) f\left(\frac{1}{n}\right) = n$, а $\left|\frac{1}{n} \frac{1}{2n}\right| = n$ $\frac{1}{2n} \to 0.$

Равномерная непрерывность непрерывной на отрезке функции

Теорема. Если функция f непрерывна на отрезке [a;b], то f равномерно непрерывна на [a;b].

Доказательство. Если f не равномерно непрерывна, то найдется такое число $\varepsilon>0$, что для $\forall n\ \exists x_n,y_n\in \mathbb{R}$ $[a;b]: |x_n-y_n|<rac{1}{n}$ и $|f(x_n)-f(y_n)|\geqslant arepsilon$ (записали отрицание условия равномерной непрерывности). В силу ограниченности последовательности x_n , у неё есть сходящаяся подпоследовательность $x_{n_k} o$

 $x \in [a;b]$. Заметим, что $y_{n_k} \to x$. Но f непрерывна в точке x по условию, что противоречит оценке

$$|f(x_{n_h}) - f(x)| + |f(x) - f(y_{n_h})| \ge |f(x_{n_h}) - f(y_{n_h})| \ge \varepsilon.$$

7.5 Интегрируемость непрерывных функций

Следствие. Пусть f непрерывна на [a;b]. Тогда f интегрируема по Риману на [a;b].

Поэтому, $\forall \varepsilon>0 \; \exists \delta>0: \omega(f,\Delta_k)<\varepsilon \; \forall k$ для произвольного разбиения $\mathbb T$ с $\lambda(\mathbb T)<\delta$. Для такого разбиения

$$\sum_{k} \omega(f, \Delta_k) \cdot |\Delta_k| < \varepsilon \cdot |b - a|.$$

8 Формула Ньютона-Лейбница и интегрирование по частям. Интеграл с переменным верхним пределом, его свойства. Наличие первообразной у непрерывной функции. Формула замены переменной.

8.1 Формула Ньютона-Лейбница и интегрирование по частям

Теорема (Формула Ньютона-Лейбница) Пусть F дифференцируема на [a;b] и ее производная F' интегрируема по Риману на [a;b]. Тогда

$$\int_{a}^{b} F'(x) \, dx = F(b) - F(a) = F(x) \bigg|_{a}^{b}$$

Доказательство. Для разбиения $\mathbb T$ по тореме Лагранжа $F(x_k) - F(x_{k-1}) = F'(\xi_k) \cdot |\Delta_k|$. Поэтому

$$F(b) - F(a) = \sum_{k=1}^{n} (F(x_k) - F(x_{k-1})) = \sum_{k=1}^{n} F'(\xi_k) \cdot |\Delta_k| = \sigma(f, \mathbb{T}, \xi).$$

При достаточно малом масштабе $\lambda(\mathbb{T})$ интегральная сумма близка к интегралу от F'.

Следствие. Пусть f, g — непрерывно дифференцируемы на отрезке [a; b] функции. Тогда

$$\int_{a}^{b} f(x)g'(x) \, dx = f(b)g(b) - f(a)g(a) - \int_{a}^{b} f'(x)g(x) \, dx$$

$$\int_{a}^{b} (f(x)g(x))' dx = f(b)g(b) - f(a)g(a)$$

и правило Лейбница: (fg)' = f'g + fg'.

Далее будем использовать соглашение: при b>a по определению $\int\limits_{b}^{a}f(x)\,dx=-\int\limits_{a}^{b}f(x)\,dx.$

8.2 Интеграл с переменным верхним пределом, его свойства

Теорема. Пусть f интегрируема по Риману на [a;b]. Тогда функция

$$F(x) := \int_{a}^{x} f(x) \, dx$$

непрерывна на [a;b]. Кроме того, если f непрерывна в точке $x_0 \in [a;b]$, то F дифференцируема в точке x_0 и $F'(x_0) = f(x_0)$.

11

Доказательство. Для $x,y \in [a;b]$ выполнено $|F(x)-f(y)| \leqslant \sup_{z \in [a;b]} |f(z)| \cdot |x-y|$, что влечет непрерывность F. Пусть f непрерывна в точке x_0 . Тогда

$$\forall \varepsilon > 0 \ \exists \delta > 0 : f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$$

для каждой точки x, для которой $|x-x_0|<\delta$.

Так как $F(X)-F(x_0)=\int\limits_{x_0}^x f(t)\,dt$, то для точек x, для которых $|x-x_0|<\delta$, выполнено

$$f(x_0) - \varepsilon < \frac{F(x) - F(x_0)}{x - x_0} < f(x_0) + \varepsilon,$$

что и дает второе утверждение теоремы.

Следствие. Пусть f непрерывна на [a;b], тогда у f существует первообразная.

8.3 Формула замены переменной

Следствие. Пусть f — непрерывна на $[a;b], \phi: [\alpha,\beta] \to [a;b]$ — непрерывно дифференцируемая функция. Тогда

$$\int_{\phi(\alpha)}^{\phi(\beta)} f(x) dx = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t) dt$$

Доказательство. Пусть F — первообразная f. Тогда $F(\phi(t))$ — первообразная функция $f(\phi(t))\phi'(t)$. По формуле Ньютона-Лейбница:

$$\int_{\phi(\alpha)}^{\phi(\beta)} f(x) dx = F(\phi(\beta)) - F(\phi(\alpha)) = \int_{\alpha}^{\beta} f(\phi(t)) \phi'(t) dt$$

- 9 Формула Тейлора с остаточным членом в интегральной форме. Ряд Тейлора для функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^p$ (обоснование сходимости для e^x и $\ln(1+x)$). Площадь криволинейной трапеции и длина кривой.
- 9.1 Формула Тейлора с остаточным членом в интегральной форме

Теорема. Если f непрерывно дифференцируема m+1 раз на отрезке [a;x], то

$$f(x) = f(a) + f'(a)(x - a) + \dots + \frac{1}{m!} \cdot f^{(m)}(a)(x - a)^m + \frac{1}{m!} \int_a^x (x - t)^m f^{(m+1)}(t) dt$$

Доказательство. Заметим, что

$$\frac{1}{m!} \int_{a}^{x} (x-t)^m f^{(m+1)}(t) dt = -\frac{1}{m!} (x-a)^m \cdot f^{(m)}(a) - \frac{1}{m!} \int_{a}^{x} -m(x-t)^{m-1} f^{(m)}(t) dt.$$

Чтобы получить интегральную формулу, воспользовались интегрированием по частям. Если начать раскрывать эти интегралы до конца $(m-1\ \mathrm{pas})$, и сложить с посчитанными членами в ряде Тейлора, то получится

$$f(x) = f(a) + \int_{a}^{x} f'(t) dt = f(a) + f(x) - f(a) = f(x)$$

9.2 Ряд Тейлора для функций e^x , $\sin x$, $\cos x$, $\ln(1+x)$, $(1+x)^p$ (обоснование сходимости для e^x и $\ln(1+x)$)

Следствие. Справедливы следующие равенства:

•
$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}, x \in \mathbb{R}$$

•
$$\sin x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2x+1)!}, x \in \mathbb{R}$$

•
$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n+1)!}, x \in \mathbb{R}$$

•
$$\ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^n}{n}, x \in (-1;1]$$

•
$$(1+x)^p = 1 + \sum_{n=1}^{\infty} \binom{p}{n} x^n$$
, где $\binom{p}{n} := \frac{p(p-1)\dots(p-n+1)}{n!}, x \in (-1;1)$

Доказательство. Имеем

$$\left| e^x - \sum_{n=0}^m \frac{x^n}{n!} \right| = \frac{1}{m!} \left| \int_0^x (x-t)^m e^t dt \right| \leqslant \frac{|x|^m \cdot e^x}{m!} \xrightarrow[m \to \infty]{} 0$$

Функции sin и cos рассматриваются аналогично. Для $\ln(1+x)$ имеем

$$\left| \ln(1+x) - \sum_{n=1}^{m} \frac{(-1)^{n-1}x^n}{n} \right| = \left| \int_{0}^{x} (x-t)^m (1+t)^{-m-1} dt \right|.$$

Если x>0, то последнее выражение оценивается через $\frac{1}{m+1}$, а если x<0, то $|x-t|=|x|\cdot(1-tx^{-1})\leqslant |x|\cdot(1-|t|)=|x|\cdot(1+t)$, поэтому

$$\left| \int_{0}^{x} (x-t)^{m} \cdot (1+t)^{-m-1} dt \right| \leqslant \frac{|x|^{m}}{1+x} \xrightarrow[m \to \infty]{} 0$$

Ряд для функции $(1+x)^p$ рассматривается похожим образом.

10 Формула Стирлинга.

10.1 Формула Стирлинга

Теорема. Для некоторой числовой постоянно c выполнено $N! \sim c\sqrt{N}(N/e)^N$ Доказательство. Пусть $f(x) := \ln x$. В силу вогнутости $\forall a,b \geqslant 1$

$$\frac{f(a) + f(b)}{2} \leqslant \frac{1}{b - a} \int_{a}^{b} f(x) \, dx \leqslant f\left(\frac{a + b}{2}\right).$$

Также отметим, что по Теореме Лагранжа найдутся точки $\xi_1 \in \left(a; \frac{a+b}{2}\right)$ и $\xi_2 \in \left(\frac{a+b}{2}; b\right)$, для которых

$$f\left(\frac{a+b}{2}\right) - f(a) = f'(\xi_1) \cdot \left(\frac{a+b}{2} - a\right)$$
$$f\left(\frac{a+b}{2}\right) - f(b) = f'(\xi_2) \cdot \left(\frac{a+b}{2} - b\right)$$

Складываем оба равенства, делим на 2:

$$f\left(\frac{a+b}{2}\right) - \frac{f(a) + f(b)}{2} = \frac{b-a}{4}(f'(\xi_1) - f'(\xi_2)) = \frac{b-a}{4}f''(\xi) \cdot (\xi_1 - \xi_2) \leqslant \frac{(b-a)^2}{4} \max_{x \in [a,b]} |f''(x)|.$$

В нашем случае,

$$\frac{\ln(n-1) + \ln n}{2} \leqslant \int_{n-1}^{n} \ln x \, dx \leqslant \frac{\ln(n-1) + \ln n}{2} + \frac{1}{4(n-1)^2}.$$

Таким образом, последовательность

$$S_N := \int_{1}^{N} \ln x \, dx - \sum_{n=2}^{N} \ln n + \frac{1}{2} \ln N$$

монотонна и ограничена, а значит имеет предел. Тем самым, предел существует и у последовательности

$$e^{-S_N} = \frac{N!}{(N/e)^N \sqrt{N}}$$

10.2 Вычисление константы в формуле Стирлинга

Теорема. Число c в формуле Стирлинга равно $\sqrt{2\pi}$.

Доказательство. Пусть

$$I_k = \int_{0}^{\pi/2} \sin^k x \, dx.$$

Легко проверить, что

$$I_{2n} = \frac{2n-1}{2n}I_{2n-2} = \frac{\pi}{2} \cdot \frac{(2n-1)!!}{(2n)!!}; \quad I_{2n+1} = \frac{2n}{2n+1}I_{2n-1} = \frac{(2n)!!}{(2n+1)!!}.$$

Кроме того,

$$1 \geqslant \frac{I_{2n+1}}{I_{2n}} \geqslant \frac{2n}{2n+1}.$$

Тем самым,

$$\lim_{n \to \infty} \frac{((2n)!!)^2}{(2n+1)!!(2n-1)!!} = \frac{\pi}{2}.$$

Но

$$\frac{((2n)!!)^2}{(2n+1)!!(2n-1)!!} = \frac{((2n)!!)^4}{(2n+1)((2n)!)^2} = \frac{(2^n n!)^4}{(2n+1)((2n)!)^2} \sim \frac{2^{4n} c^4 n^2 (n/e)^{4n}}{c^2 (2n+1) 2n((2n)/e)^{4n}}.$$

Таким образом,

$$\lim_{n \to \infty} \frac{c^2 n}{2(2n+1)} = \frac{\pi}{2},$$

откуда следует нужное равенство.

11 Несобственный интеграл Римана: определение и примеры. Регулярность и линейность несобственного интеграла, независимость сходимости интеграла от его «начала». Формула интегрирования по частям и замены переменной для несобственного интеграла.

11.1 Несобственный интеграл Римана: определение

Определение. Пусть f интегрируема на каждом отрезке [a;x] при $x < b \ (b \in (-\infty;+\infty])$. Говорят, что несобственный интеграл

$$\int_{a}^{b} f(t) dt$$

сходится, если существует предел

$$\lim_{x \to b-0} \int_{a}^{x} f(t) dt.$$

В этом случае значение несобственного интеграла полагают равным значению данного предела. В противном случае (если предела не существует) говорят, что несобственный интеграл расходится.

Аналогично определяется несобственный интеграл с особенностью в нижнем пределе интегрирования.

11.2 Примеры

Рассмотрим функци $f_p(x) := \frac{1}{x^p}$. Тогда,

$$\int_{1}^{x} f_{p}(t) dt = \begin{cases} \frac{1}{1-p} \cdot (x^{1-p} - 1), & p \neq 1, \\ \ln x, & p = 1. \end{cases}$$

Предел при $x \to \infty$ существует тогда и только тогда, когда p > 1. С другой стороны,

$$\int_{x}^{1} f_p(t) dt = \begin{cases} \frac{1}{1-p} \cdot (1-x^{1-p}), & p \neq 1, \\ -\ln x, & p = 1. \end{cases}$$

Предел при $x \to 0$ существует тогда и только тогда, когда p < 1 (т.к. иначе из-за x^{1-p} появляется произведение бесконечно большой последовательности на ограниченную).

11.3 Площадь криволинейной трапеции и длина кривой

Пусть $f\geqslant 0$ на [a;b]. И пусть $S(\alpha,\beta)$ площадь под графиком функции f на отрезке $[\alpha;\beta]\subseteq [a;b]$. Разумные требования на S — это

- 1. аддитивность: $S(\alpha, \gamma) = S(\alpha, \beta) + S(\beta, \gamma)$ при $a \leqslant \alpha < \beta < \gamma \leqslant b$
- 2. монотонность по включению: $\inf_{x \in [\alpha;\beta]} f(x) \cdot (\beta \alpha) \leqslant S(\alpha,\beta) \leqslant \sup_{x \in [\alpha;\beta]} f(x) \cdot (\beta \alpha)$

Предложение. Пусть f интегрируема по Риману на [a;b]. При выполнении выше описанных условий $S(a,b) = \int\limits_{-b}^{b} f(x)\,dx.$

 \mathcal{L} оказательство. Для произвольного разбиения \mathbb{T} выполнено

$$\sum_{k=1}^{n} \inf_{x \in \Delta_k} f(x) \cdot |\Delta_k| \leqslant S(a,b) \leqslant \sum_{k=1}^{n} \sup_{x \in \Delta_k} f(x) \cdot |\Delta_k|.$$

Слева и справа стоят нижняя и верхняя суммы Дарбу, которые при малом масштабе разбиения близки к интегралу. ■

Пусть $\gamma:[a;b]\to\mathbb{R}^3$ — гладкая кривая, те. $\gamma(t)=(x(t),y(t),z(t))$ и функции $x,y,z\in C^1([a;b])$ (принадлежность функции C^1 означает, что первяа производная непрерывна). Пусть l(a,b)— длина пути, соответствующая отрезку [a;b]. Тогда естественными требованиями будут

- 1. $l(\alpha, \gamma) = l(\alpha, \beta) + l(\beta, \gamma)$ при $a \leq \alpha < \beta < \gamma \leq b$
- $2. \inf_{t \in [\alpha;\beta]} |v(t)| \cdot (\beta \alpha) \leqslant l(\alpha,\beta) \leqslant \sup_{t \in [\alpha;\beta]}, \ \text{где} \ v(t) = (x'(t),y'(t),z'(t))$

Аналогично получаем, $l(a,b)=\int\limits_a^b|v(t)|\,dt$, где $|v(t)|=\sqrt{(x'(t))^2+(y'(t))^2+(z'(t))^2}.$

11.4 Регулярность и линейность несобственного интеграла, независимость сходимости интеграла от его «начала»

Теорема. Пусть f, g интегрируемы на каждом отрезке [a;x] при x < b и пусть для них определены несобственные интегралы на промежутке [a;b). Тогда

- 1. если $b \in \mathbb{R}$ и f интегрируема на [a;b], то значение несобственного интеграла на промежутке [a;b) совпадает со значение обычного интеграла Римана по отрезку [a;b].
- 2. функция $\alpha f + \beta g$ интегриуема в несобственном смысле на промежутке [a;b) и

$$\int_{a}^{b} (\alpha f + \beta g) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

3. если $c \in [a; b)$, то

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Замечание. Последнее в частности означает, что интегралы

$$\int_{a}^{b} f(x) dx$$
и $\int_{c}^{b} f(x) dx$

сходятся или расходятся одновременно.

11.5 Формула интегрирования по частям и замены переменной для несобственного интеграла

Теорема. Пусть f непрерывна на $[a;b),\phi:[\alpha;\beta)\to[a;b)$ — непрерывно дифференцируемое отображение, $\phi(\alpha)=a,\phi(t)\to b$ при $t\to\beta$. Тогда функция $t\mapsto f(\phi(t))\phi'(t)$ интегрируема в несобственном смысле на промежутке $[\alpha;\beta)$ и

$$\int_{a}^{b} f(x) dx = \int_{\alpha}^{\beta} f(\phi(t))\phi'(t) dt$$

 \mathcal{A} оказаmельcтво. По формуле замены переменной для произвольного $T<\beta$ выполнено

$$\int_{0}^{T} f(\phi(t))\phi'(t) dt = \int_{0}^{\phi(T)} f(x) dx$$

//TODO: Добавить нормальное пояснение

Теорема. Пусть f, g непрерывно дифференцируемы на [a; b) и существует предел

$$\lim_{x \to b-0} f(x)g(x).$$

Тогда функции f'g и fg' одновременно интегрируемы или не интегрируемы в несобственном смысле на [a;b), и в случае интегрируемости

$$\int_{a}^{b} f(t)g'(t) dt = \lim_{x \to b-0} f(x)g(x) - f(a)g(a) - \int_{a}^{b} f(t)g'(t) dt.$$

Доказательство. Утверждение следует из формулы интегрирования по частями для обычного интеграла Римана.

Заметим, что сходимость интеграла от функции f на промежутке [a;b) равносильна существованию предела для функции

$$F(X) := \int_{a}^{x} f(t) dt$$

при $x \to b - 0$.

Тем самым, для сходимости интеграла верен критерий Коши: пусть f интегрируема на каждом отрезке [a;x] при x < b. Тогда интеграл

$$\int_{a}^{b} f(t) dt$$

сходится тогда и только тогда, когда $\forall \varepsilon > 0 \; \exists x_0 : \forall x_1, x_2 \in (x_0, b)$ выполнено

$$\left| \int_{x_1}^{x_2} f(t) \, dt \right| < \varepsilon.$$

- 12 Абсолютная и условная сходимость несобственных интегралов. Пример функции, интеграл от которой сходится условно. Исследования сходимости интеграла от неотрицательной функции с помощью неравенств и эквивалентности. Признаки Дирихле-Абеля сходимости несобственного интеграла.
- 12.1 Абсолютная и условная сходимость несобственных интегралов

Определение. Говорят, что несобственный интеграл $\int\limits_a^b f(t)\,dt$ сходится **абсолютно**, если сходится интеграл $\int\limits_a^b |f(t)|\,dt$.

Замечание. В силу критерия Коши ясно, что абсолютно сходящийся интеграл сходится. //TODO: разобраться и пояснить.

Замечание. Исследования абсолютной сходимости сводится к исследования сходимости интеграла от неотрицательной функции. В случае неотричательной функции f функциия F оказывается монотонной, поэтому сходимость интеграла от неотрицательной функции равносильна ограниченности F на [a;b).

Предложение. Пусть f, g интегрируемы на каждом отрезке [a;x] при x < b и $0 \leqslant f(x) \leqslant g(x)$ при $x \in [a;b)$. Тогда из сходимости интеграла для g следует сходимость интеграла для f, а из расходимости интеграла для f следует расходимость интеграла для g.

Доказательство. Следует из оценки

$$\int_{a}^{x} f(t) dt \leqslant \int_{a}^{x} g(t) dt$$

при $x \in [a; b)$ и неотрицательности обеих функций.

Следствие. Если $f\geqslant 0$ и $f(x)\sim g(x)$ при $x\to b-0$, то интегралы от функций f и g сходятся или расходятся одновременно.

Доказательство. Найдется такое число $x_0 \in [a;b)$, что $\frac{1}{2}g(x) \leqslant f(x) \leqslant \frac{3}{2}g(x)$ при $x \in (x_0;b)$.

Определение. Говорят, что несобственный интеграл $\int\limits_a^b f(t)\,dt$ сходится условно, если сам интеграл сходится, но не сходится абсолютно.

12.2 Примеры

$$\int_{1}^{\infty} \frac{\sin x}{x} \, dx = -\frac{\cos x}{x} \bigg|_{1}^{\infty} - \int_{1}^{\infty} \frac{\cos x}{x^2} \, dx,$$

последний интеграл сходится абсолютно. В то же время,

$$\int_{1}^{\infty} \left| \frac{\sin x}{x} \right| dx \geqslant \int_{1}^{\infty} \frac{\sin^{2} x}{x} dx = \int_{1}^{\infty} \left(\frac{1}{2x} - \frac{\cos 2x}{2x} \right) dx,$$

где первый интеграл не сходится, а второй сходится, а значит и интеграл от суммы сходиться не может.

12.3 Признак Дирихле-Абеля

Теорема. Пусть f и g интегрируемы на каждом отрезке [a;x] при x < g, f — непрерывная функция, g — монотонная, непрерывно дифференцируемая функция. Пусть

1. функция
$$F(x) := \int\limits_a^x f(t)\,dt$$
 ограничена, а $g(x) \to 0$ при $x \to b-0$

или

2. интеграл
$$\int\limits_a^b f(t)\,dt$$
 сходится, а g — ограниченная функция

Тогда интеграл
$$\int_{a}^{b} f(x)g(x) dx$$
 сходится.

Доказательство. Заметим, что

$$\int_{x_1}^{x_2} f(t)g(t) dt = (F(x_2) - F(x_1))g(x_2) - \int_{x_1}^{x_2} (F(t) - F(x_1))g'(t) dt.$$

Тогда

$$\left| \int_{x_1}^{x_2} f(t)g(t) dt \right| \le |g(x_2)| \cdot |F(x_2) - F(x_1)| + \sup_{t \in [x_1; x_2]} |F(t) - F(x_1)| \cdot \int_{x_1}^{x_2} |g'(t)| dt.$$

Так как
$$\int\limits_{x_1}^{x_2} |g'(t)| \, dt = |g(x_2) - g(x_1)|,$$
 то

$$\left| \int_{x_1}^{x_2} f(t)g(t) dt \right| \le (2 \cdot |g(x_2)| + |g(x_1)|) \cdot \sup_{t \in [x_1; x_2]} |F(t) - F(x_1)|.$$

При каждом из наших предположений, последнее выражение мало при больших x_1, x_2 .