

ARIMA-UCM-ML MODELS

Luca Porcelli 853189

Data & Goal

Data

The dataset consists of three columns: date (yyyy-mm-dd), weekday, and ave_days. It contains 3009 observations, each representing a day starting from 2007-01-04.

Outline

1 Pre-processing

General data analysis, checking for null values and outliers.

2 Stationary Analysis & Transformation

Verification with two tests and logarithmic transformation.

3 Models

SARIMA, UCM, ML models and optimization with optimal parameter search.

4 Forecasting

Forecasts from 2015-04-01 to 2015-11-07.

O1 → Pre-processing →

General data analysis, checking for null values and outliers

Exploratory Analysis

Trend

An increasing trend from 2008 to 2012, followed by a decreasing trend from 2012 to 2014, with a recovery in 2015.

Outliers

Presence of high outliers that deviate from the mean.

Missing values & Outliers

Missing values

Presence of 202 null values out of 3009 (6.71%):

• Monday: 4.65%

• Thursday: 0.93%

Wednesday: 0.00%

• Tuesday: 0.23%

• Friday: 0.93%

• Saturday: 1.40%

Sunday: 38.84%

Outliers

The outliers represent 3.39% of the entire dataset. To address the outlier issue, it was decided to set a maximum threshold for the ave_days value at 100.

O2 Stationary Analysis & Transformation

Verification with two tests and logarithmic transformation.

Stationary Analysis

Two tests were applied, ADF and KPSS:

- The ADF test obtained a p-value of 0.0049, rejecting the null hypothesis.
- The KPSS test obtained a p-value of 0.01, accepting the null hypothesis Presence of weekly seasonality.

Transformation

- To reduce the variance of the time series and improve outlier handling.
- The ADF and KPSS tests showedidentical values to those obtained with the original time series.
- The logarithmic transformation did not resolve the issue of seasonality.
- There are no longer any significant spikes, and the overall variability of the series has been reduced.

03 +

Models

SARIMA, UCM, ML models and optimization with optimal parameter search

SARIMA

To optimize the model's performance using a grid search technique. All possible combinations of these parameters ranging from 0 to 3.

- SARIMA(1,1,0)(1,1,2)[7]
- MAE: 16.97

Tends to rise correctly but has difficulty predicting extreme values.

The combination of all components is performed: level, trend (deciding whether to use it or not), seasonal component (7), and stochastic properties, including level, trend, and seasonality.

- Smooth trend component and 7 sinusoids
- MAE: 16.94

The obtained values are higher compared to the forecasts of the SARIMA model.

Data

Additional information, including Italian holidays.

Holidays:

New Year's Day, Epiphany, Liberation Day, Labour Day, Republic Day, mid-August, All Saints' Day, Immaculate, Christmas Day, and St. Stephen's Day.

Dataset 1 **Original Dataset** Dataset 2 Dataset Original Dataset Holiday presence Dataset 3 Original Dataset Holiday presence divided into columns

ML

To optimize the model's performance using a grid search technique.

- Xgboost
- Random Forest
- SVR

	Dataset1	Dataset2	Dataset3
Xgboost	22.44	21.80	22.13
RF	21.97	21.94	21.78
SVR	22.85	22.74	22.80

04 ♦ Forecasting

Forecasts from 2015-04-01 to 2015-11-07

SARIMA Forecast

Best model of SARIMA

Trend: Decrease

UCM Forecast

Best model of UCM

Trend: Stable

RF Forecast

Best model of RF

Trend: Stable and slight increase

Best model for each family

Do you have any questions?