Latent Variable Models

Neil Lawrence

GPRS 14th February 2014

Outline

Motivation

Outline

Motivation

- ▶ 3648 Dimensions
 - 64 rows by 57 columns

- ▶ 3648 Dimensions
 - 64 rows by 57 columns
 - Space contains more than just this digit.

- ▶ 3648 Dimensions
 - 64 rows by 57 columns
 - Space contains more than just this digit.
 - Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

- ▶ 3648 Dimensions
 - 64 rows by 57 columns
 - Space contains more than just this digit.
 - Even if we sample every nanosecond from now until the end of the universe, you won't see the original six!

MATLAB Demo

```
demDigitsManifold([1 2], 'all')
```

MATLAB Demo

demDigitsManifold([1 2], 'all')

MATLAB Demo

demDigitsManifold([1 2], 'sixnine')

Low Dimensional Manifolds

Pure Rotation is too Simple

- ► In practice the data may undergo several distortions.
 - *e.g.* digits undergo 'thinning', translation and rotation.
- ► For data with 'structure':
 - we expect fewer distortions than dimensions;
 - we therefore expect the data to live on a lower dimensional manifold.
- Conclusion: deal with high dimensional data by looking for lower dimensional non-linear embedding.

Existing Methods

Spectral Approaches

- Classical Multidimensional Scaling (MDS) (Mardia et al., 1979).
 - Uses eigenvectors of similarity matrix.
 - Isomap (Tenenbaum et al., 2000) is MDS with a particular proximity measure.
 - Kernel PCA (Schölkopf et al., 1998)
 - Provides a representation and a mapping dimensional expansion.
 - Mapping is implied throught he use of a kernel function as a similarity matrix.
 - Locally Linear Embedding (Roweis and Saul, 2000).
 - Looks to preserve locally linear relationships in a low dimensional space.

Iterative Methods

- Multidimensional Scaling (MDS)
 - ► Iterative optimisation of a stress function (Kruskal, 1964).
 - ► Sammon Mappings (Sammon, 1969).
 - Strictly speaking not a mapping similar to iterative MDS.
- NeuroScale (Lowe and Tipping, 1997)
 - Augmentation of iterative MDS methods with a mapping.

Probabilistic Approaches

- ► Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)
 - A linear method.

Probabilistic Approaches

- Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)
 - A linear method.
- Density Networks (MacKay, 1995)
 - Use importance sampling and a multi-layer perceptron.

Probabilistic Approaches

- Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)
 - ► A linear method.
- Density Networks (MacKay, 1995)
 - Use importance sampling and a multi-layer perceptron.
- Generative Topographic Mapping (GTM) (Bishop et al., 1998)
 - Uses a grid based sample and an RBF network.

Probabilistic Approaches

- Probabilistic PCA (Tipping and Bishop, 1999; Roweis, 1998)
 - A linear method.
- Density Networks (MacKay, 1995)
 - ► Use importance sampling and a multi-layer perceptron.
- ► Generative Topographic Mapping (GTM) (Bishop et al., 1998)
 - Uses a grid based sample and an RBF network.

Difficulty for Probabilistic Approaches

 Propagate a probability distribution through a non-linear mapping.

The New Model

A Probabilistic Non-linear PCA

- ► PCA has a probabilistic interpretation (Tipping and Bishop, 1999; Roweis, 1998).
- ▶ It is difficult to 'non-linearise'.

Dual Probabilistic PCA

- ► We present a new probabilistic interpretation of PCA (Lawrence, 2005).
- ► This interpretation can be made non-linear.
- ► The result is non-linear probabilistic PCA.

Notation

q— dimension of latent/embedded spacep— dimension of data spacen— number of data points

centred data,
$$\mathbf{Y} = [\mathbf{y}_{1,:}, \dots, \mathbf{y}_{n,:}]^{\top} = [\mathbf{y}_{:,1}, \dots, \mathbf{y}_{:,p}] \in \mathfrak{R}^{n \times p}$$
 latent variables, $\mathbf{X} = [\mathbf{x}_{1,:}, \dots, \mathbf{x}_{n,:}]^{\top} = [\mathbf{x}_{:,1}, \dots, \mathbf{x}_{:,q}] \in \mathfrak{R}^{n \times q}$ mapping matrix, $\mathbf{W} \in \mathfrak{R}^{p \times q}$

 $\mathbf{a}_{i,:}$ is a vector from the *i*th row of a given matrix \mathbf{A} $\mathbf{a}_{:,j}$ is a vector from the *j*th row of a given matrix \mathbf{A}

Reading Notation

X and Y are design matrices

- ► Covariance given by $n^{-1}\mathbf{Y}^{\mathsf{T}}\mathbf{Y}$.
- ► Inner product matrix given by **YY**^T.

Linear Dimensionality Reduction

Linear Latent Variable Model

- ► Represent data, **Y**, with a lower dimensional set of latent variables **X**.
- Assume a linear relationship of the form

$$\mathbf{y}_{i,:} = \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\epsilon}_{i,:},$$

where

$$\epsilon_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^2 \mathbf{I}\right).$$

Probabilistic PCA

 Define linear-Gaussian relationship between latent variables and data.

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:}, \sigma^{2}\mathbf{I})$$

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Standard Latent variable approach:

$$p(\mathbf{Y}|\mathbf{X},\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Standard Latent variable approach:
 - Define Gaussian prior over *latent space*, X.

$$p\left(\mathbf{Y}|\mathbf{X},\mathbf{W}\right) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

$$p(\mathbf{X}) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:}|\mathbf{0},\mathbf{I}\right)$$

Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Standard Latent variable approach:
 - Define Gaussian prior over *latent space*, X.
 - Integrate out latent variables.

$$p\left(\mathbf{Y}|\mathbf{X},\mathbf{W}\right) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

$$p\left(\mathbf{X}\right) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{x}_{i,:}|\mathbf{0},\mathbf{I}\right)$$

$$p\left(\mathbf{Y}|\mathbf{W}\right) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{0}, \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}\right)$$

Computation of the Marginal Likelihood

$$\mathbf{y}_{i,:} = \mathbf{W}\mathbf{x}_{i,:} + \boldsymbol{\epsilon}_{i,:}, \quad \mathbf{x}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right), \quad \boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$$

Computation of the Marginal Likelihood

$$\mathbf{y}_{i,:} = \mathbf{W} \mathbf{x}_{i,:} + \boldsymbol{\epsilon}_{i,:}, \quad \mathbf{x}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{I}\right), \quad \boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \sigma^{2} \mathbf{I}\right)$$

$$\mathbf{W}\mathbf{x}_{i,:} \sim \mathcal{N}(\mathbf{0}, \mathbf{W}\mathbf{W}^{\mathsf{T}}),$$

$$\mathbf{y}_{i,:} = \mathbf{W} \mathbf{x}_{i,:} + \boldsymbol{\epsilon}_{i,:}, \quad \mathbf{x}_{i,:} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\mathbf{W}\mathbf{x}_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{W}\mathbf{W}^{\top}\right),$$

$$\mathbf{W}\mathbf{x}_{i,:} + \epsilon_{i,:} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}\right)$$

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{0}, \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I})$$

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{0},\mathbf{C}), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}$$

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{0},\mathbf{C}), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{W}) = -\frac{n}{2}\log|\mathbf{C}| - \frac{1}{2}\operatorname{tr}\left(\mathbf{C}^{-1}\mathbf{Y}^{\mathsf{T}}\mathbf{Y}\right) + \operatorname{const.}$$

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{0},\mathbf{C}), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}$$

$$\log p\left(\mathbf{Y}|\mathbf{W}\right) = -\frac{n}{2}\log|\mathbf{C}| - \frac{1}{2}\operatorname{tr}\left(\mathbf{C}^{-1}\mathbf{Y}^{\mathsf{T}}\mathbf{Y}\right) + \operatorname{const.}$$

If \mathbf{U}_q are first q principal eigenvectors of $n^{-1}\mathbf{Y}^{\top}\mathbf{Y}$ and the corresponding eigenvalues are $\mathbf{\Lambda}_q$,

Probabilistic PCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{0},\mathbf{C}), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}$$

$$\log p\left(\mathbf{Y}|\mathbf{W}\right) = -\frac{n}{2}\log|\mathbf{C}| - \frac{1}{2}\mathrm{tr}\left(\mathbf{C}^{-1}\mathbf{Y}^{\mathsf{T}}\mathbf{Y}\right) + \mathrm{const.}$$

If \mathbf{U}_q are first q principal eigenvectors of $n^{-1}\mathbf{Y}^{\top}\mathbf{Y}$ and the corresponding eigenvalues are $\mathbf{\Lambda}_q$,

$$\mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{R}^{\mathsf{T}}, \quad \mathbf{L} = \left(\mathbf{\Lambda}_q - \sigma^2 \mathbf{I}\right)^{\frac{1}{2}}$$

where \mathbf{R} is an arbitrary rotation matrix.

Dual Probabilistic PCA

 Define linear-Gaussian relationship between latent variables and data.

$$p(\mathbf{Y}|\mathbf{X},\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I})$$

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable approach:

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:}, \sigma^{2}\mathbf{I})$$

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable approach:
 - Define Gaussian prior over parameters, W.

$$p\left(\mathbf{Y}|\mathbf{X},\mathbf{W}\right) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

$$p(\mathbf{W}) = \prod_{i=1}^{p} \mathcal{N}\left(\mathbf{w}_{i,:}|\mathbf{0},\mathbf{I}\right)$$

Dual Probabilistic PCA

- Define linear-Gaussian relationship between latent variables and data.
- Novel Latent variable approach:
 - Define Gaussian prior over parameters, W.
 - ► Integrate out parameters.

$$p\left(\mathbf{Y}|\mathbf{X},\mathbf{W}\right) = \prod_{i=1}^{n} \mathcal{N}\left(\mathbf{y}_{i,:}|\mathbf{W}\mathbf{x}_{i,:},\sigma^{2}\mathbf{I}\right)$$

$$p(\mathbf{W}) = \prod_{i=1}^{p} \mathcal{N}(\mathbf{w}_{i,:}|\mathbf{0},\mathbf{I})$$

$$p\left(\mathbf{Y}|\mathbf{X}\right) = \prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:,j}|\mathbf{0},\mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I}\right)$$

$$\mathbf{y}_{:,j} = \mathbf{X}\mathbf{w}_{:,j} + \boldsymbol{\epsilon}_{:,j}, \quad \mathbf{w}_{:,j} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\mathbf{y}_{:,j} = \mathbf{X}\mathbf{w}_{:,j} + \boldsymbol{\epsilon}_{:,j}, \quad \mathbf{w}_{:,j} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\mathbf{X}\mathbf{w}_{:,j} \sim \mathcal{N}(\mathbf{0}, \mathbf{X}\mathbf{X}^{\mathsf{T}}),$$

$$\mathbf{y}_{:,j} = \mathbf{X}\mathbf{w}_{:,j} + \boldsymbol{\epsilon}_{:,j}, \quad \mathbf{w}_{:,j} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}), \quad \boldsymbol{\epsilon}_{i,:} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

$$\mathbf{X}\mathbf{w}_{:,j} \sim \mathcal{N}(\mathbf{0}, \mathbf{X}\mathbf{X}^{\mathsf{T}}),$$

$$\mathbf{X}\mathbf{w}_{:,j} + \epsilon_{:,j} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I}\right)$$

Dual Probabilistic PCA Max. Likelihood Soln (Lawrence, 2004, 2005)

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I}\right)$$

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^{p} \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K}), \quad \mathbf{K} = \mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I}$$

PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$p\left(\mathbf{Y}|\mathbf{X}\right) = \prod_{j=1}^{p} \mathcal{N}\left(\mathbf{y}_{:,j}|\mathbf{0},\mathbf{K}\right), \quad \mathbf{K} = \mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I}$$

$$\log p\left(\mathbf{Y}|\mathbf{X}\right) = -\frac{p}{2}\log|\mathbf{K}| - \frac{1}{2}\mathrm{tr}\left(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\top}\right) + \mathrm{const.}$$

PPCA Max. Likelihood Soln

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^{p} \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K}), \quad \mathbf{K} = \mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{X}) = -\frac{p}{2}\log |\mathbf{K}| - \frac{1}{2}\mathrm{tr}(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\top}) + \mathrm{const.}$$

If \mathbf{U}_q' are first q principal eigenvectors of $p^{-1}\mathbf{Y}\mathbf{Y}^{\top}$ and the corresponding eigenvalues are $\mathbf{\Lambda}_q$,

PPCA Max. Likelihood Soln

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^{p} \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K}), \quad \mathbf{K} = \mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I}$$

$$\log p\left(\mathbf{Y}|\mathbf{X}\right) = -\frac{p}{2}\log|\mathbf{K}| - \frac{1}{2}\mathrm{tr}\left(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\top}\right) + \mathrm{const.}$$

If \mathbf{U}_q' are first q principal eigenvectors of $p^{-1}\mathbf{Y}\mathbf{Y}^{\top}$ and the corresponding eigenvalues are $\mathbf{\Lambda}_q$,

$$\mathbf{X} = \mathbf{U}_q' \mathbf{L} \mathbf{R}^{\mathsf{T}}, \quad \mathbf{L} = (\mathbf{\Lambda}_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{R} is an arbitrary rotation matrix.

Dual PPCA Max. Likelihood Soln (Lawrence, 2004, 2005)

$$p(\mathbf{Y}|\mathbf{X}) = \prod_{j=1}^{p} \mathcal{N}(\mathbf{y}_{:,j}|\mathbf{0}, \mathbf{K}), \quad \mathbf{K} = \mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{X}) = -\frac{p}{2}\log |\mathbf{K}| - \frac{1}{2}\operatorname{tr}\left(\mathbf{K}^{-1}\mathbf{Y}\mathbf{Y}^{\top}\right) + \text{const.}$$

If \mathbf{U}_q' are first q principal eigenvectors of $p^{-1}\mathbf{Y}\mathbf{Y}^{\top}$ and the corresponding eigenvalues are $\mathbf{\Lambda}_q$,

$$\mathbf{X} = \mathbf{U}_q' \mathbf{L} \mathbf{R}^{\mathsf{T}}, \quad \mathbf{L} = (\mathbf{\Lambda}_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where \mathbf{R} is an arbitrary rotation matrix.

PPCA Max. Likelihood Soln (Tipping and Bishop, 1999)

$$p(\mathbf{Y}|\mathbf{W}) = \prod_{i=1}^{n} \mathcal{N}(\mathbf{y}_{i,:}|\mathbf{0},\mathbf{C}), \quad \mathbf{C} = \mathbf{W}\mathbf{W}^{\top} + \sigma^{2}\mathbf{I}$$

$$\log p(\mathbf{Y}|\mathbf{W}) = -\frac{n}{2}\log|\mathbf{C}| - \frac{1}{2}\mathrm{tr}\left(\mathbf{C}^{-1}\mathbf{Y}^{\mathsf{T}}\mathbf{Y}\right) + \mathrm{const.}$$

If \mathbf{U}_q are first q principal eigenvectors of $n^{-1}\mathbf{Y}^{\top}\mathbf{Y}$ and the corresponding eigenvalues are $\mathbf{\Lambda}_q$,

$$\mathbf{W} = \mathbf{U}_q \mathbf{L} \mathbf{R}^{\mathsf{T}}, \quad \mathbf{L} = (\mathbf{\Lambda}_q - \sigma^2 \mathbf{I})^{\frac{1}{2}}$$

where **R** is an arbitrary rotation matrix.

Equivalence of Formulations

The Eigenvalue Problems are equivalent

► Solution for Probabilistic PCA (solves for the mapping)

$$\mathbf{Y}^{\mathsf{T}}\mathbf{Y}\mathbf{U}_{q} = \mathbf{U}_{q}\mathbf{\Lambda}_{q} \qquad \mathbf{W} = \mathbf{U}_{q}\mathbf{L}\mathbf{R}^{\mathsf{T}}$$

 Solution for Dual Probabilistic PCA (solves for the latent positions)

$$\mathbf{Y}\mathbf{Y}^{\mathsf{T}}\mathbf{U}_{q}' = \mathbf{U}_{q}'\mathbf{\Lambda}_{q} \qquad \mathbf{X} = \mathbf{U}_{q}'\mathbf{L}\mathbf{R}^{\mathsf{T}}$$

Equivalence is from

$$\mathbf{U}_q = \mathbf{Y}^{\mathsf{T}} \mathbf{U}_q' \mathbf{\Lambda}_q^{-\frac{1}{2}}$$

References I

- C. M. Bishop, M. Svensén, and C. K. I. Williams. GTM: the Generative Topographic Mapping. Neural Computation, 10(1):215–234, 1998. [DOI].
- J. B. Kruskal. Multidimensional scaling by optimizing goodness-of-fit to a nonmetric hypothesis. Psychometrika, 29 (1):1–28, 1964. [DOI].
- N. D. Lawrence. Gaussian process models for visualisation of high dimensional data. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems, volume 16, pages 329–336, Cambridge, MA, 2004. MIT Press.
- N. D. Lawrence. Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research, 6:1783–1816, 11 2005.
- D. Lowe and M. E. Tipping. Neuroscale: Novel topographic feature extraction with radial basis function networks. In M. C. Mozer, M. I. Jordan, and T. Petsche, editors, *Advances in Neural Information Processing Systems*, volume 9, pages 543–549, Cambridge, MA, 1997. MIT Press.
- D. J. C. MacKay. Bayesian neural networks and density networks. Nuclear Instruments and Methods in Physics Research, A, 354(1):73–80, 1995. [DOI].
- K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate analysis. Academic Press, London, 1979. [Google Books].
- S. T. Roweis. EM algorithms for PCA and SPCA. In M. I. Jordan, M. J. Kearns, and S. A. Solla, editors, Advances in Neural Information Processing Systems, volume 10, pages 626–632, Cambridge, MA, 1998. MIT Press.
- S. T. Roweis and L. K. Saul. Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500): 2323–2326, 2000. [DOI].
- J. W. Sammon. A nonlinear mapping for data structure analysis. IEEE Transactions on Computers, C-18(5):401–409, 1969. [DOI].
- B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998. [DOI].
- J. B. Tenenbaum, V. de Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323, 2000. [DOI].
- M. E. Tipping and C. M. Bishop. Probabilistic principal component analysis. *Journal of the Royal Statistical Society, B*, 6 (3):611–622, 1999. [PDF]. [DOI].