AMENDMENTS TO THE SPECIFICATION:

Please delete paragraph [0001] in its entirety.

Please replace paragraph [0005] with the following new paragraph:

[0005] General chemical compositions for groups of oxide materials with simple perovskite structures are $(A_{1-x}M_x)BO_3$, $(A_{1-x}M_x)(B'B'')O_3$ or $A(B_{1-x}M_x)O_3$, (where A can be 1^+ , 2^+ and 3^+ ions; B can be 5^+ , 4^+ , 3^+ ions; B' and B" can be 2^+ , 3^+ , 4^+ , 5^+ and 6^+ ions, M is a magnetic ion dopant). Specific examples are $(A_{1-x}M_x)TiO_3$, $(A_{1-x}M_x)ZrO_3$, $(A_{1-x}M_x)SnO_3$, $(A_{1-x}B_x)HfO_3$, $La(Mo_{1-x}M_x)O_3$, $Sr(Ti_{1-x}M_x)O_3$ where A=Ca, Sr, Ba, Pb, Cd and M= Fe, Ni, Co, Mn with 0 < x < 0.15.

Please replace paragraph [0007] with the following new paragraph:

[0007] Figure 2 illustrates plots of magnetization (μ_B /Fe) measured as a function of magnetic field at a temperature of 300K by SQUID magnetometer for a series of (Ba_{1-x}Fe_x)TiO₃ with x =0.01, 0.02, 0.03, 0.05, 0.07, and 0.1.

Please replace paragraph [0008] with the following new paragraph:

[0008] Figure 3 illustrates plots of magnetization (μ_B/mol) measured as a function of magnetic field at a temperature of 300K by SQUID magnetometer for a series of ($Ba_{0.95}M_{0.05}$)TiO₃ with M=Fe, Co, and Ni.

Please replace paragraph [0009] with the following new paragraph:

[0009] Figure 4 illustrates plots of magnetization (μ_B/mol) measured as a function of magnetic field at a temperature of 300K by SQUID magnetometer for a series of ($Ca_{0.95}M_{0.05}$)TiO₃ with M=Fe, Co, and Ni.

Please replace paragraph [0010] with the following new paragraph:

[0010] Figure 5 illustrates plots of magnetization (μ_B /mol) measured as a function of magnetic field at a temperature of 300K by SQUID magnetometer for a series of (Ba_{0.95}Fe_{0.05})BO₃ with B=Ti, Zr, and Hf.

Please replace paragraph [0011] with the following new paragraph:

[0011] Figure 6 illustrates plots of magnetization (μ_B /mol) measured as a function of magnetic field at a temperature of 300K by SQUID magnetometer for a series of (Ca_{0.95}Fe_{0.05})BO₃ with B=Ti, Zr, and Hf.

Please replace paragraph [0013] with the following new paragraph:

[0013] Figures 8A and 8B depict hysteresis loops of $(Ba_{0.94}Fe_{0.05})TiO_3$ and $(Ca_{0.94}Fe_{0.05})TiO_3$ measured at 5K and 300K by a SQUID magnetometer.

Please replace paragraph [0016] with the following new paragraph:

[0016] The invention includes general chemical compositions of the forms

 $(A_{1-x}M_x)BO_3$ $(A_{1-x}M_x)(B'B'')O_3$ $A(B_{1-x}M_x)O_3$

where A can be 1^+ , 2^+ and 3^+ ions; B can be 5^+ , 4^+ , 3^+ ions; B' and B" can be 2^+ , 3^+ 4^+ , 5^+ and 6^+ ions, M is a magnetic ion dopant such as Fe, Co, Ni and Mn.

Please replace Table 1 with the following new Table 1

Table 1

Magnetic Properties of (Ba_{0.95}Fe_{0.05})MO₃ and (Ca_{0.95}Fe_{0.05})MO₃ (M=Ti, Zr, Hf)

	Hc(300K)	Mr(300K)x10 ⁻⁴	Hc(5K)	Mr(5K) x10 ⁻⁴
	(Oe)	μB/Mol	(Oe)	μB/Mol
(Ba _{0.95} Fe _{0.05})TiO ₃	16	3.84	26	7.55
(Ca _{0.95} Fe _{0.05})TiO ₃	12	2.7	26	5.96
$(Ba_{0.95}Fe_{0.05})ZrO_3$	25	4.6	51	9.6
$(Ca_{0.95}Fe_{0.05})ZrO_3$	4.5	2.3	103	3.4
(Ba _{0.95} Fe _{0.05})HfO ₃	20	4.5	51	11
(Ca _{0.95} Fe _{0.05})HfO ₃	7	2.3	68	16