BEL301: BIOPRO'CESS ENGINEERING

MAJOR Sem-I 2008-09: November 24, 2008, 10:30 - 12:30 am in II-378 (Total Marks = 50)

NOTE: Answer Part-A and Part-B in separate answer books

Part A: Dr. J. Gomes (25 Marks)

- 1. The data for the batch production of L-lysme is given in Fig. 1 below. It is suggested that the rate of formation of L-lysine may be described by the Lucdeking-Piret model for product formation. You will need to develop a method to determine approximately the coefficients of the model.
 - a. State your assumptions, describe the method and compute the values of the Lucdeking-Piret model coefficients.
 - b. What are the values of the coefficients $Y_{P/S}$ and $Y_{X/S}$?

Figure 1. Data for L-tyshoc production

(6+3 marks)

1

- 2. A certain bioprocess is carried out in the following way. It is first carried out in batch mode and then in the fed-batch mode. The process is described in terms of the cells mass concentration (x) and substrate concentration (s). The growth follows Monod kinetics
 - $\mu(s) = \frac{\mu_{\text{max}} s}{K_M + s}$, the yield coefficient is $Y_{x \mapsto s}$ the maintenance coefficient is m_S and the

reactor volume is denoted by V. At the beginning of the fed-batch process $x=x_0$, $s=s^*$ and $V=V_0$. The substrate feed rate is F and the substrate concentration in the feed is s_F . During the fed-batch mode of operation, it is desirable to maintain the bioprocess at a constant at $\mu=\mu(s^*)$. Determine the flow rate F(t) for achieving this. (3 marks)

- 3 From a Biochemical Engineering perspective discuss the following
 - a. Balanced growth
 - b. Psoudo steady state in fed-batch reactors
 - c. Structured model intracellular metabolities
 - d. Influence of gene regulation on product synthesis.

Part-B: Dr. Vikram Sahai (25-Marks):

Note: Use notation symbols as given in lecture classes.

- Q.1 Define pseudoplastic behavior of a fermentation broth in terms of rheogram. How do you calculate the apparent viscosity for such broths? (2+2-marks)
- Q.2 Dimensions of a bioreactor equipped with two sets of standard flat blade turbine impellers and four baffled plate as per standard notations are: D_t=3m: D_i=1.5m: W_b=0.3 m: H_L=5m. The fermentor is used for a specific fermentation, where ρ=1,200 kg/m³ and μ=0.02 kg/ (m sec). Agitator rotational speed (n) is 60 rpm and aeration rate is 0.4 vvm. Calculate the following:
 - (a) Un-gassed power input (P), HP, assuming correction factor on account of geometrical dissimilarities, to be 0.86
 - (b) Superficial space velocity of air (v_s), m/h
 - (c) Aeration Number

(3+3+3=9 marks)

- Q.3 A fermentation process bench scale fermentor (V=80L) is to be scaled-up to a large scale fermentor (V=10,000 L) on the basis of equal Reynold's number. Calculate the following for the 'large scale fermentor' taking their values to be unity for the bench scale fermentor:
 - (a) Energy input/Volume, (P₂/V₂)
 - (b) Impeller shear rate, (n₂Di₂),
 - (c) Pumping rate of impeller, (Q_2/V_2) .

(3+3+3=9 marks)

Q4. Describe the three mechanism of collection of air borne contaminating microorganism by a single fiber. Do not give expressions for collection efficiency. What happens to the collection efficiency of the individual mechanisms with increase in upstream air velocity?

(3 marks)