

quick tutorial and exercises

May 10, 2019

Goal of the session

- 1. Understand an implementation of the DIC (or Image Registration) problem https://github.com/jcpassieux/pyxel
- 2. Implement a Tikhonov regularization based on the laplace operator
- 3. Implement an elastic regularization based on mechanical equilibrium
- 4. Perform an experimental displacement driven simulation
- 5. Validation of the above mechanical model wrt to experimental field
- 6. Identify a constitutive parameter from fullfield measurement

Let us consider an openhole glass/epoxy specimen subjected to a tensile test. The experiment is instrumented with a CCD camera.

A set of images is taken before and during the mechanical test. The corresponding images are given in folder data/dic_composite/.

1 Step by step tutorial

1.1 Start by importing some useful libraries

```
In [3]: import numpy as np
          import matplotlib.pyplot as plt
```

```
import scipy.sparse.linalg as splalg
import scipy as sp
import pyxel as px
import os
```

1.2 Naming and loading images

Here a list of 11 images named like *zoom-0053.tif*. The first one being the reference state image.

Load and plot reference image

```
In [7]: imref = imagefile % imnums[0]
    f=px.Image(imref).Load()
    f.Show()
```


Load the penultimate image

```
In [8]: imdef = imagefile % imnums[-2]
    g = px.Image(imdef).Load()
```

1.3 Mesh and associated camera model

An example with a quadrilateral ABAQUS mesh using meter (m) unit.

Calibration or **loading** the camera model parameters

Different ways to **plot the mesh**: (1) the mesh or (2) its projection on the image.

1.4 Preprocessing

Build the **connectivity** table Build the **quadrature** rule + Compute **FE basis functions** and derivatives

Optionnal multiscale initialization of the displacement field

```
In [13]: U0=px.MultiscaleInit(m,f,g,cam,3)

SCALE 3
Iter # 1 | disc/dyn=10.44 % | dU/U=1.00e+00
Iter # 2 | disc/dyn=7.54 % | dU/U=4.86e-01
Iter # 3 | disc/dyn=5.02 % | dU/U=2.41e-01
Iter # 4 | disc/dyn=3.80 % | dU/U=9.59e-02
Iter # 5 | disc/dyn=3.51 % | dU/U=3.52e-02
Iter # 6 | disc/dyn=3.45 % | dU/U=1.29e-02
Iter # 7 | disc/dyn=3.44 % | dU/U=4.88e-03
Iter # 8 | disc/dyn=3.44 % | dU/U=1.96e-03
Iter # 9 | disc/dyn=3.43 % | dU/U=8.36e-04
```

```
Iter # 10 | disc/dyn=3.43 % | dU/U=3.80e-04
Iter # 11 | disc/dyn=3.43 % | dU/U=1.84e-04
Iter # 12 | disc/dyn=3.43 % | dU/U=9.48e-05
Iter # 13 | disc/dyn=3.43 % | dU/U=5.10e-05
Iter # 14 | disc/dyn=3.43 % | dU/U=2.83e-05
Iter # 15 | disc/dyn=3.43 % | dU/U=1.60e-05
Iter # 16 | disc/dyn=3.43 % | dU/U=9.12e-06
SCALE 2
Iter # 1 | disc/dyn=4.89 % | dU/U=6.09e-02
Iter # 2 | disc/dyn=4.11 % | dU/U=1.53e-02
Iter # 3 | disc/dyn=4.07 % | dU/U=5.11e-03
Iter # 4 | disc/dyn=4.06 % | dU/U=1.90e-03
Iter # 5 | disc/dyn=4.06 % | dU/U=7.52e-04
Iter # 6 | disc/dyn=4.06 % | dU/U=3.10e-04
Iter # 7 | disc/dyn=4.06 % | dU/U=1.32e-04
Iter # 8 | disc/dyn=4.06 % | dU/U=5.71e-05
Iter # 9 | disc/dyn=4.07 % | dU/U=2.53e-05
Iter # 10 | disc/dyn=4.07 % | dU/U=1.14e-05
Iter # 11 | disc/dyn=4.07 % | dU/U=5.18e-06
SCALE 1
Iter # 1 | disc/dyn=3.68 % | dU/U=3.89e-02
Iter # 2 | disc/dyn=3.00 % | dU/U=5.69e-03
Iter # 3 | disc/dyn=2.99 % | dU/U=1.15e-03
Iter # 4 | disc/dyn=2.99 % | dU/U=2.86e-04
Iter # 5 | disc/dyn=2.99 % | dU/U=8.02e-05
       6 \mid disc/dyn=2.99 \% \mid dU/U=2.44e-05
Iter #
Iter # 7 | disc/dyn=2.99 % | dU/U=7.87e-06
```

Plot the coarse initialization

In [14]: m.Plot(UO,30)

1.5 DIC Solver without regularization

Initialization of U and DIC engine. Assembly and factorization of DIC operator H.

```
In [15]: U=U0.copy()
         dic=px.DICEngine()
         H=dic.ComputeLHS(f,m,cam)
                                                    # DIC operator assembly
         H_LU=splalg.splu(H)
                                                    # LU Decomposition
   Gauss-Newton iterations (without regularization)
In [16]: for ik in range(0,30):
             [b,res]=dic.ComputeRHS(g,m,cam,U)
                                                    # DIC rhs assembly
             d=H_LU.solve(b)
                                                    # Forward and backward substitution
             U+=d
                                                    # Displacement update
             err=np.linalg.norm(d)/np.linalg.norm(U)
             print("Iter # %2d | disc/dyn=%2.2f %% | dU/U=%1.2e" % (ik+1
                                                              ,np.std(res)/dic.dyn*100,err))
             if err<1e-3:
                 break
Iter # 1 | disc/dyn=1.22 % | dU/U=1.49e-02
Iter # 2 | disc/dyn=0.96 % | dU/U=1.45e-03
Iter # 3 | disc/dyn=0.96 \% | dU/U=2.07e-04
```

1.6 Postprocessing

Visualization: Scaled deformation of the mesh

Visualization: displacement fields

```
In [18]: m.PlotContourDispl(U)
```


Visualization: strain fields

In [19]: m.PlotContourStrain(U)

Plot deformed Mesh on deformed state image

In [20]: px.PlotMeshImage(g,m,cam,U)

2 Exercises

2.1 Time resolved DIC analysis

Perform the measurement for each time steps and plot the corresponding displacement fields.

```
In [22]: U=np.zeros(m.ndof)
#TODO
```

2.2 DIC with Tikhonov regularization

Reminder: a regularization term is added to the DIC functionnal $j(\mathbf{d})$. The regularized problem becomes:

$$\widetilde{j}(\mathbf{d}) = j(\mathbf{d}) + \frac{\alpha}{2} \mathbf{u}^T \mathbf{A} \mathbf{u}$$

with $\mathbf{u} = \mathbf{u}_0 + \mathbf{q}$, the running approximation \mathbf{u}_0 being fixed. The parameter α can be interpreted as a filter cut-off. Many techniques exists to define a "good" value. For the sake of simplicity, try to find a value by trial and error. The stationnarity of the regularized functionnal with respect to displacement correction \mathbf{q} reads:

$$\mathbf{H} \mathbf{d} = \mathbf{b}$$
 \Rightarrow $(\mathbf{H} + \alpha \mathbf{A}) \mathbf{d} = \mathbf{b} - \alpha \mathbf{A} \mathbf{u}_0$

```
In [23]: imdef = imagefile % imnums[-2]
    g = px.Image(imdef).Load()
    U=U0.copy()
    A=m.Tikhonov()
#TODO
```

2.3 DIC with Elastic Regularization

Same technique as before, but with a different regularization operator A:

$$\mathbf{A} = \mathbf{K}^T \mathbf{D} \; \mathbf{K} \qquad with \qquad \mathbf{D} = \begin{bmatrix} \mathbf{I}_{ni} & 0 \\ 0 & \mathbf{0}_{nb} \end{bmatrix}$$

D is a diagonal matrix with null diagonal term for non-free boundary nodes and a one instead. Define **Stiffness/Hooke tensor** (ortotropic in this case)

Assemble stiffness matrix

```
In [28]: K=m.Stiffness(hooke)
```

Select or load the non-free boundary nodes (here two lines)

FE-DIC with elastic regularization

In []: #TODO

2.4 Experimental displacement driven simulation

Here, the goal is to perform a FE simulation on the same domain (same mesh) with measured boundary conditions. Find displacement **v** such that:

$$\mathbf{K} \mathbf{v} = \mathbf{0}$$
 with $\mathbf{v}|_{\partial_u \Omega} = \mathbf{u}|_{\partial_u \Omega}$

In []: #TODO

2.5 Model Validation

Plot the distance map between simulated and measured displacements fields. When using the same FE basis for both simulation and measurement, it simply consists in comparing displacement dof-by-dof:

$$dis = abs(\mathbf{u} - \mathbf{v})$$

In [31]: #TODO

2.6 Constitutive parameter identification

For the sake of simplicity, let's try to identify only the Poisson's ratio v_{tl} using a very basic FEMU approach. The functionnal reads:

$$\mathcal{J}^{\textit{femu}} = \frac{1}{2} \|\mathbf{u} - \mathbf{v}(\mathbf{p})\|^2$$

 ${\bf u}$ being the experimental displacement and ${\bf v}$ the simulated displacement fields that depends on the vector of constitutive parameters ${\bf p}$

To linearize the problem, the parameter \mathbf{p} is sought in the form of $\mathbf{p} = \mathbf{p}_0 + \mathbf{q}$, the running approximation \mathbf{p}_0 begin fixed. The stationnarity of the above functionnal with respect to constitutive parameter update \mathbf{q} reads:

$$\frac{\partial \mathbf{v}}{\partial \mathbf{p}}^T \frac{\partial \mathbf{v}}{\partial \mathbf{p}} \ \mathbf{q} = -\frac{\partial \mathbf{v}}{\partial \mathbf{p}}^T (\mathbf{u} - \mathbf{v}(\mathbf{p}_0))$$

The sensitivities $\frac{\partial v}{\partial p}$ (derivative of the displacement with respect to the parameter) is computed numerically by finite differences.

In [30]: #TODO (may require more time than is available...)