TMT4110 KJEMI

ØVING NR. 7, VÅR 2015

Veiledning: Mandag 23.02.2015 kl. 16-18

Innleveringsfrist: Onsdag 25.02.2015 kl. 1215

Løsningsforslag legges ut på it's learning

OPPGAVE 1 (Kap. 9)

- a) Formuler termodynamikkens første lov.
- b) Hva betyr det at entalpi er en tilstandsfunksjon?
- c) Forklar kort Hess' lov, og vis med et eksempel hvordan den virker.
- d) Forklar begrepet entalpiendring (f.eks. for et stoff som varmes opp).
- e) Hva mener vi med entalpiendringen (ΔH) for en reaksjon?
- f) Finn ΔH° for reaksjonen ved 25 °C: $SO_2 + \frac{1}{2}O_2 + H_2O(1) \rightarrow H_2SO_4$
- g) Finn ΔH (= $C_P \times \Delta T$) for oppvarming av reaktantene fra 25 °C til 100 °C.
- h) Du skal beregne ΔH° ved 100 °C for reaksjonen: $SO_2 + \frac{1}{2}O_2 + H_2O(1) \rightarrow H_2SO_4$

Benytt kretsprosessen:

$$SO_{2} + \frac{1}{2}O_{2} + H_{2}O(l) (100 °C) \rightarrow H_{2}SO_{4} (100 °C)$$

$$\uparrow \qquad \qquad \downarrow$$

$$SO_{2} + \frac{1}{2}O_{2} + H_{2}O(l) (25 °C) \rightarrow H_{2}SO_{4} (25 °C)$$
Vis at $\Delta H^{\circ} (100 °C) = \Delta H^{\circ} (25 °C) + \Delta C^{\circ}_{P} \times 75 K$

$$((\Delta C^{\circ}_{P} = \Sigma C_{P}(produkter) - \Sigma C_{P}(reaktanter))$$

i) Hvor mye endres ΔH° når T øker fra 25 °C til 100 °C? Hvor stor er endringen i prosent?

OPPGAVE 2 (Kap. 8)

- a) Hvor mange gram jern(III)hydroksid er det mulig å løse i 1,00 L vann?
- b) Bariumsulfat er tungt løselig i vann, men løses i en løsning som inneholder karbonationer. Hvorfor?

OPPGAVE 3 (fra eksamen 2009)

Et riktig svar pr. oppgave:

i) 1	Fra hvilken reaksjon beskrives gitterentalpien (ΔH_L^o) for et krystallsystem?	
	$A^{+}(s) + B^{-}(s) \rightarrow AB(s)$	
	$A(s) + B(s) \rightarrow AB(s)$	
_	$A(g) + B(g) \rightarrow AB(s)$	
d)	$A^{+}(g) + B^{-}(g) \rightarrow AB(s) \dots \square$	-
::\	Hva sier Hess lov?	
	Summen av ΔH for et sett delreaksjoner = ΔH for totalreaksjonen	_
	Summen av partialtrykk til gassene i en gassblanding = totaltrykket	
	Partialtrykket er lik molbrøk ganger totaltrykket	
	Aktiviteten er lik partialtrykket delt på et referansetrykk	
_		
	Hva sier termodynamikkens første lov?	
a)	Energien i universet er konstant	-
	Entropien til en perfekt krystall er null ved 0 K	
	Entropien i universet er konstant	
d)	Entropien i universet øker	-
. 、	W. 11 (1 1 1 1 1 1 1 1 1 1	
	Ved konstant volum; hvilket uttrykk er riktig? $\Delta E = q - P\Delta V$	_
_	$\Delta E = q - F\Delta V$	
_	$\Delta H = q$	
	Ingen av disse	
,		
v)	Hvilken er ikke en tilstandsfunksjon?	
_	Gibbs fri energi	
_	Entropi	
_	Entalpi	
d)	Arbeid	-
ΩI	PPGAVE 4 (Kap. 9)	
.	(imp.)	
a)	Finn fra SI dannelsesentalpien, $\Delta H_{\rm f}^{\circ}$ for O ₂ (g), H ₂ (g), H ₂ O (l), H ₂ O (s), C(s), HCl (g),	
	$HCl(aq), Cl^{-}(aq), OH^{-}(aq), H^{+}(aq), O_{3}(g)$	
b)	Hvilke av disse verdier var det unødvendig å slå opp? Hvorfor?	
2)	Hva er ΔH° for reaksjonen $O_3(g) \rightarrow \frac{3}{2}O_2(g)$?	
d)	Hva er ΔH° for reaksjonen 2 O ₃ (g) \rightarrow 3 O ₂ (g)?	
	Hvilken vei går en reaksjon hvis ΔH er negativ?	
f)	Hvilken reaksjon går lettest, c) eller d)?	
_	Hva er ΔH° for reaksjonen H ₂ O (s) \rightarrow H ₂ O (l)? Hvilken reaksjon er dette?	
-	Dette svaret skal stemme med ΔH° (smelting). (I SI er betegnelsen $\Delta_{\text{fus}}H^{\circ}$.) Hvorfor?	
,	Hvorfor er det avvik?	
i)	Hva er ΔH° for reaksjonen HCl (g) \rightarrow HCl (aq)?	
	Hya forteller dette om løseligheten av HCl i vann?	

k) Hvilket fortegn vil du vente for ΔH° for reaksjonen $H_2O \rightarrow H^+ + OH^-$? Finn ΔH° .

OPPGAVE 5 (Kap. 9)

n mol ideell gass befinner seg i en lukket stålsylinder (vi antar konstant volum). n mol av den samme gassen fylles også i en gummiballong (konstant trykk). Vi hever temperaturen fra T_1 til T_2 både for sylinderen og ballongen.

Vil vi bruke mer, mindre eller lik varmemengde for å heve temperaturen i sylinderen? Vi antar at de spesifikke molare varmekapasiteter C_v og C_p er konstante i temperaturintervallet $T_1 \rightarrow T_2$.

(Hint: Hva blir den tilførte energien brukt til i de to tilfellene?)

OPPGAVE 6 (Kap. 9 og Kap. 10)

- a) Beregn ΔH° , ΔS° og ΔG° for følgende reaksjoner ved 25 °C:
 - (1) $2 \text{ Al (s)} + \text{Cr}_2\text{O}_3 \text{ (s)} = \text{Al}_2\text{O}_3 \text{ (s)} + 2 \text{ Cr (s)}$
 - (2) $\operatorname{CaO}(s) + \operatorname{SO}_3(g) = \operatorname{CaSO}_4(s)$

Er reaksjonene (1) og (2) endoterme eller eksoterme?

b) Beregn ΔH° ved 200 °C, dvs. ΔH_{473}° , for reaksjon (1). Hvilken viktig antagelse har du gjort for å løse oppgaven?

Fasit:

1f) -231 kJ

1g) 9,7 kJ

1h) -230kJ

 $2a) 2,1 \cdot 10^{-16} g$

4c) -143 kJ

4d) -286 kJ

4i) -75 kJ

5. Mindre

6a) (1) -536 kJ, -38 J/K, -525 kJ

6b) $\Delta H_{473}^{\circ} = -543 \text{ kJ}$