PROPORTIONNALITÉ

I) RECONNAÎTRE DEUX GRANDEURS PROPORTIONNELLES

1) Définition

Deux grandeurs sont proportionnelles lorsque les valeurs de l'une peuvent être obtenues en multipliant les valeurs de l'autre par un nombre fixe appelé **coefficient de proportionnalité**.

Ex: Les grandeurs suivantes sont-elles proportionnelles?

- Le nombre de pièces de 1 € et la hauteur de la pile formée
- La durée d'ouverture du robinet et le volume d'eau qui a coulé
- L'âge d'un homme et sa taille

2) Tableau de proportionnalité

Ex 1 : Voici le prix de l'essence en fonction du volume dans une station service.

Volume d'essence (L)	5	20	30	50	
Prix (€)	6,5	26	39	65	ر_

On remarque que $\frac{6,5}{5}$ =

Le prix payé est proportionnel au volume d'essence.

Le tableau ci-dessus est un tableau de proportionnalité et le coefficient de proportionnalité est : €/L

Ex 2 : Voici la distance parcourue par un marcheur en fonction du temps lors d'une balade en montagne.

Temps (min)	3	5	12	25
Distance (m)	100	150	300	400

On remarque que

La distance parcourue n'est pas ici proportionnelle au temps de marche. Le tableau ci-dessus n'est pas un tableau de proportionnalité.

Sans calculatrice:

p122: 4, 5

p123: 6, 7, 9, 10

p130: 68

3) Graphique

Représentons les données ci-dessus par des graphiques :

Propriété:

Lorsque les points représentant deux grandeurs sont alignés et que la droite formée passe par l'origine du repère, ces deux grandeurs sont proportionnelles.

Propriété réciproque :

Lorsque deux grandeurs sont proportionnelles, les points représentant ces deux grandeurs sont alignés et la droite formée passe par l'origine du repère.

Faire les ex. ci-dessous à l'aide d'un graphique (et non avec des calculs!):

p123: 6, 7

II) DÉTERMINER UNE « 4ÈME PROPORTIONNELLE »

1) En utilisant la proportionnalité des lignes

Ex: 12 m de tissus coûtent 4 €. Combien coûtent 30 m?

Appelons x le prix cherché en \in .

Longueur de tissus (m)		
Prix (€)		لد

 $\chi =$

30 m de tissus coûtent donc

2) En utilisant la proportionnalité des colonnes

Ex: 11 kg de bananes coûtent 13 €. Combien coûtent 22 kg?

Appelons x le prix cherché en \in .

Masse de bananes (kg)	
Prix (€)	
	 4

x =

22 kg de bananes coûtent donc

Sans calculatrice:

p124: 15, 17

p125: 21, 22

p126: 29, 30

p127: 35

p131: 73, 74, 75, 78, 80

3) En additionnant deux colonnes

Ex : D'après le tarif ci-dessous, combien une famille de 7 personnes doitelle payer pour entrer dans le musée ?

Appelons x le prix cherché en \in .

Nombre de personnes	2	5	7
Prix (€)	4,6	11,5	X
x =	`.	+	1

Une famille de 7 personnes doit donc payer

4) Et quand aucune des méthodes précédentes ne donne des calculs simples...

On utilise quand même les méthodes 1 ou 2! La seule différence est que le coefficient multiplicateur va être une fraction et que les calculs seront donc plus compliqués...

Ex : Pour faire 250 g de confiture, il faut 130 g de fruits. Combien faut-il de fruits pour faire 400 g de confiture ?

Appelons x la masse de fruits cherchée en g.

Masse de fruits (g)	
Masse de confiture (g)	
	1

x =

Pour faire 400 g de confiture, il faut donc

g de fruits.

Sans calculatrice:

p125: 26

p126: 32

p133: 86

p135:97

III) APPLICATIONS

1) Pourcentages

Travailler avec des pourcentages revient à compléter des tableaux de proportionnalité.

a) Calculer un pourcentage

Ex : Dans une classe de 25 élèves, 15 étudient l'anglais. Quel est le pourcentage d'élèves étudiant l'anglais ?

Appelons x % ce pourcentage

	<u> 8 </u>	
Nombre d'élèves étudiant l'anglais		
Nombre total d'élèves		
		4

 $\chi =$

Il y a donc % d'élèves faisant de l'anglais dans cette classe.

b) Appliquer un pourcentage

Ex : Dans une classe de 30 élèves, 40 % sont des filles. Combien y a-t-il de filles ?

Appelons x le nombre de filles

Nombre de filles		7
Nombre total d'élèves		ノ

x =

Il y a donc filles dans cette classe.

Sans calculatrice:

p128: 44, 45, 46, 47, 48, 49

p129: 55

Avec calculatrice:

p129: 58, 59

2) Échelle d'un plan

Sur un plan à l'échelle, les distances sur le plan sont proportionnelles aux distances réelles.

Définition:

L'échelle d'un plan est le coefficient de proportionnalité :

distance sur le plan
distance réelle

distance réelle

Ex:

Un microbe est représenté sur un livre par un cercle de diamètre 10 mm. Le schéma est à l'échelle $\frac{10000}{1}$. Quel est le diamètre réel du microbe ?

Appelons x le diamètre réel du microbe en mm.

Diamètre sur le livre (mm)	
Diamètre réel (mm)	
	1

 $\chi =$

Le microbe mesure donc mm de diamètre.

Par oral : p126: 28

Sans calculatrice:

p126: 34

p127: 38

3) Conversions de durées

Appelons h son heure d'arrivée : h=

Ex: Une séance de cinéma commence à 17h30 et se termine à 20h12. 1) Déterminer la durée du film en heures minutes. 2) Convertissez cette durée en heures décimales, puis en minutes.
1) Appelons d la durée du film : $d =$
2) Conversion en heures décimales : d=
Conversion en minutes : $d =$
Ex: Pierre a fait un marathon en 4,17h. Le départ était à 13h52. A quelle heure est-il arrivé? (On exprimera le résultat en heures, minutes et secondes)
Appelons d la durée de sa course : $d =$