$f(x; \theta) = f(x | \theta)$ - p.d.f. (or p.m.f.) of x for given θ .

 $\pi(\theta)$ – prior distribution of θ .

 $f(x, \theta) = f(x \mid \theta) \times \pi(\theta)$ – joint p.d.f. of x and θ .

f(x) – marginal p.d.f. of x.

 $\pi(\theta \mid x) = \frac{f(x, \theta)}{f(x)} = \frac{f(x \mid \theta) \times \pi(\theta)}{f(x)} - \text{posterior distribution of } \theta, \text{ given } x.$

1. Let $X_1, X_2, ..., X_n$ be a random sample from the distribution with the probability density function

$$f(x;\lambda) = 2\lambda^2 x^3 e^{-\lambda x^2}, \qquad x > 0, \qquad \lambda > 0.$$

Let the prior p.d.f. of λ be Gamma (α, θ) .

Recall: The maximum likelihood estimator of λ is $\hat{\lambda} = \frac{2n}{\sum_{i=1}^{n} X_i^2}$.

a) Find the posterior distribution of λ , given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.

$$f(x_{1}, x_{2}, ... x_{n} | \lambda) = f(x_{1}; \lambda) f(x_{2}; \lambda) ... f(x_{n}; \lambda)$$

$$= \prod_{i=1}^{n} \left(2\lambda^{2} x_{i}^{3} e^{-\lambda x_{i}^{2}} \right)$$

$$= 2^{n} \lambda^{2n} \left(\prod_{i=1}^{n} x_{i}^{3} \right) e^{-\lambda \sum_{i=1}^{n} x_{i}^{2}}.$$

$$f(x_1, x_2, \dots x_n, \lambda) = f(x_1, x_2, \dots x_n | \lambda) \times \pi(\lambda)$$

$$= 2^n \lambda^{2n} \left(\prod_{i=1}^n x_i^3 \right) e^{-\lambda \sum_{i=1}^n x_i^2} \times \frac{1}{\Gamma(\alpha) \theta^{\alpha}} \lambda^{\alpha - 1} e^{-\lambda / \theta}$$

$$= \dots \lambda^{2n + \alpha - 1} e^{-\lambda \left(\sum_{i=1}^n x_i^2 + \frac{1}{\theta} \right)}.$$

 \Rightarrow the posterior distribution of λ , given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$,

is **Gamma** with New
$$\alpha = 2n + \alpha$$
 and New $\theta = \frac{1}{\sum_{i=1}^{n} x_i^2 + \frac{1}{\theta}}$.

b) Find the conditional mean of λ , given $X_1 = x_1$, $X_2 = x_2$, ..., $X_n = x_n$. Show that it is a weighted average of the maximum likelihood estimate $\hat{\lambda}$ and the prior mean $\alpha \theta$.

(conditional mean of
$$\lambda$$
, given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$)

=
$$(\text{New } \alpha) \times (\text{New } \theta) = \frac{2n + \alpha}{\sum_{i=1}^{n} x_i^2 + \frac{1}{\theta}}.$$

$$\frac{2n+\alpha}{\sum_{i=1}^{n}x_{i}^{2}+\frac{1}{\theta}} = \frac{2n}{\sum_{i=1}^{n}x_{i}^{2}} \cdot \frac{\sum_{i=1}^{n}x_{i}^{2}}{\sum_{i=1}^{n}x_{i}^{2}+\frac{1}{\theta}} + \alpha\theta \cdot \frac{\frac{1}{\theta}}{\sum_{i=1}^{n}x_{i}^{2}+\frac{1}{\theta}}$$

$$= \hat{\lambda} \cdot \frac{\sum_{i=1}^{n} x_{i}^{2}}{\sum_{i=1}^{n} x_{i}^{2} + \frac{1}{\theta}} + \alpha \theta \cdot \frac{\frac{1}{\theta}}{\sum_{i=1}^{n} x_{i}^{2} + \frac{1}{\theta}}.$$

c) Use part (a) to construct a $(1 - \gamma)100$ % credible interval for λ , given that $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.

That is, construct an interval estimate for λ with posterior probability $(1 - \gamma)$.

$$2\left(\sum_{i=1}^{n} x_{i}^{2} + \frac{1}{\theta}\right) \left(\lambda \mid x_{1}, x_{2}, ..., x_{n}\right) \text{ has a } \chi^{2}(4n + 2\alpha) \text{ distribution.}$$

$$P(\chi_{1-\gamma/2}^{2}(4n+2\alpha) < 2\left(\sum_{i=1}^{n}x_{i}^{2}+\frac{1}{\theta}\right)(\lambda|x_{1},x_{2},...,x_{n}) < \chi_{\gamma/2}^{2}(4n+2\alpha)) = 1-\gamma.$$

$$P\left(\frac{\chi_{1-\gamma/2}^{2}(4n+2\alpha)}{2\left(\sum_{i=1}^{n}x_{i}^{2}+\frac{1}{\theta}\right)}<\left(\lambda \mid x_{1},x_{2},...,x_{n}\right)<\frac{\chi_{\gamma/2}^{2}(4n+2\alpha)}{2\left(\sum_{i=1}^{n}x_{i}^{2}+\frac{1}{\theta}\right)}\right)=1-\gamma.$$

$$\Rightarrow \left(\begin{array}{c} \frac{\chi_{1-\gamma/2}^{2}(4n+2\alpha)}{2\left(\sum_{i=1}^{n}x_{i}^{2}+\frac{1}{\theta}\right)}, & \frac{\chi_{\gamma/2}^{2}(4n+2\alpha)}{2\left(\sum_{i=1}^{n}x_{i}^{2}+\frac{1}{\theta}\right)} \end{array}\right)$$

is a $(1-\gamma)$ 100% credible interval for λ , given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$.

Suppose n = 5, and $x_1 = 0.6$, $x_2 = 1.1$, $x_3 = 2.7$, $x_4 = 3.3$, $x_5 = 4.5$.

$$x_1 = 0.6$$
, $x_2 = 1.1$, $x_3 = 2.7$, $x_4 = 3.3$, $x_5 = 4.5$.
$$\sum_{i=1}^{n} x_i^2 = 40.$$

$$\hat{\lambda} = \frac{2n}{\sum_{i=1}^{n} x_i^2} = 0.25.$$

Let
$$\alpha = 4$$
, $\theta = 0.50$.

prior mean
$$= \alpha \theta = 2$$
.

(conditional mean of
$$\lambda$$
, given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$) = $\frac{2n + \alpha}{\sum_{i=1}^n x_i^2 + \frac{1}{\theta}} = \frac{1}{3}$.

95% credible interval for λ , given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$:

$$\left(\frac{15.31}{84}, \frac{44.46}{84}\right) = (0.182, 0.529).$$

Let X have a Binomial (n, p) distribution. Let p have a prior p.d.f. which is Beta with parameters α and β .

Recall: the maximum likelihood estimator of p is $\hat{p} = \frac{X}{n}$.

a) Find the posterior distribution of p, given X = x.

$$f(x \mid p) = \binom{n}{x} p^{x} (1-p)^{n-x}.$$

$$f(x,p) = f(x | p) \times \pi(p)$$

$$= \binom{n}{x} p^{x} (1-p)^{n-x} \times \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

$$= \dots p^{x+\alpha-1} (1-p)^{n-x+\beta-1}.$$

 \Rightarrow the posterior distribution of p, given X = x,

is **Beta** with New $\alpha = x + \alpha$ and New $\beta = n - x + \beta$.

b) Find the conditional mean of p, given X = x. Show that it is a weighted average of the maximum likelihood estimate \hat{p} and the prior mean.

$$\Rightarrow$$
 (conditional mean of β , given $X_1 = x_1, X_2 = x_2, \dots, X_n = x_n$)

$$= \frac{(\operatorname{New} \alpha)}{(\operatorname{New} \alpha) + (\operatorname{New} \beta)} = \frac{x + \alpha}{n + \alpha + \beta}.$$

$$\frac{x+\alpha}{n+\alpha+\beta} = \frac{x}{n} \cdot \frac{n}{n+\alpha+\beta} + \frac{\alpha}{\alpha+\beta} \cdot \frac{\alpha+\beta}{n+\alpha+\beta}.$$

$$= \hat{p} \cdot \frac{n}{n+\alpha+\beta} + (\text{prior mean}) \cdot \frac{\alpha+\beta}{n+\alpha+\beta}.$$