

Microarray Layout and the Quadratic Assignment Problem

Sérgio A. de Carvalho Jr. 1,2,3 Sven Rahmann 1,2

¹Algorithms and Statistics for Systems Biology, Genome Informatics, Technische Fakultät, Universität Bielefeld, Germany

²International NRW Graduate School in Bioinformatics and Genome Research

³Graduiertenkolleg Bioinformatik

German Conference on Bioinformatics, 2006

Outline

- 1 Introduction to Microarray Layout
- Conflict Index Model
- 3 New Approach: Quadratic Assignment Problem (QAP)

Outline

Introduction

•0000

- Introduction to Microarray Layout

High-Density Oligonucleotide Microarrays

Introduction

00000

Source: Affymetrix, Inc.

Actual strand = 25 base pairs

Probe Synthesis with Photolitographic Masks

- Probes are synthesized on the chip in a series of steps
- Each step appends a particular nucleotide to selected regions
- Selection occurs by exposure to light directed by a mask

ρ_1	p ₂	p_3
ACT	CTG	GAT
p_4	p ₅	p_6
TCC	GAC	GCC
p_7	<i>p</i> ₈	p_9
TAC	CGT	AAT

```
ACGTACGTACGT
8 9
```

QAP Formulation

ρ_1	p_2	p_3
ACT	CTG	GAT
<i>p</i> ₄	p_5	p_6
TCC	GAC	GCC
P ₇	P ₈	p ₉

```
S = ACGTACGTACGT
```

P ₁ ACT	p ₂	P ₃ GAT
P ₄	P ₅ GAC	P ₆ GCC
P ₇	P ₈	P ₉ AAT

```
S = ACGTACGTACGT
```

P ₁ ACT	P ₂ CTG	p ₃ GAT
P ₄ TCC	P ₅ GAC	G CC
P ₇	P ₈	P ₉ AAT

```
S = ACGTACGTACGT
\mathcal{E}_1 = A - - - - - -
\varepsilon_2 = -C -----
\mathcal{E}_3 = --G------
\mathcal{E}_{4} = ------
\mathcal{E}_{5} = --G------
\varepsilon_6 = --G-----
\mathcal{E}_{R} = -CG-----
\mathcal{E}_{9} = A - - - - - - -
```

p_1	p ₂	p ₃
ACT	CTG	GAT
ρ_4	p_5	p_6
TCC	GAC	GCC
<i>p</i> ₇	<i>p</i> ₈	p_9
TAC	CGT	AAT

```
S = ACGTACGTACGT
\mathcal{E}_1 = A - - - - - - -
\varepsilon_2 = -C -----
\varepsilon_3 = --G-----
\mathcal{E}_4 = ---T
\mathcal{E}_{5} = --G-----
\varepsilon_6 = --G------
\mathcal{E}_7 = ---T
\varepsilon_8 = -CGT - - - - -
\mathcal{E} \circ = \Delta - - - - - - -
```

ρ_1	p_2	p_3
ACT	CTG	GAT
p_4	p_5	p_6
TCC	GAC	GCC
p_7	p_8	p_9

P ₁ ACT	p ₂ CTG	p ₃ GAT
P ₄ TCC	p ₅ GAC	p ₆ GCC
ρ ₇ TAC	p ₈	P ₉ AAT

```
S = ACGTACGTACGT
\varepsilon_1 = A - - - C - T - - - -
\varepsilon_2 = -C - - - T - G -
\mathcal{E}_3 = --G-A--T---
\varepsilon_4 = ---T-C---C--
\mathcal{E}_5 = --G-A----C--
\varepsilon_6 = --G - -C - - -C - -
\mathcal{E}_7 = ---TAC-----
\varepsilon_8 = -CGT - - - - -
\xi_9 = A - - A - - - - T
```

$$\mathcal{E}'_9 = A - - - - A - T$$
Right-most: $\mathcal{E}''_9 = - - - A - - A - T$
Left-most: $\mathcal{E}''_9 = A - - A - T - - -$

Unintended Illumination Problem

- Untargeted spots can be accidentally activated
 - Diffraction of light
 - Internal reflection
- Production of defective probes
- More likely near the borders between masked and unmasked spots: border conflict

Border Length Minimization Problem (Hannenhalli et al., 2002)

Find arrangement of the probes and embeddings with minimum number of border conflicts over all masks

Outline

- Introduction to Microarray Layout
- Conflict Index Model
- 3 New Approach: Quadratic Assignment Problem (QAP)

Motivation

- Border Length measures the quality of a particular mask
 - We are more interested in a per-probe measure
- Practical considerations:
 - a) Stray light might damage probes as far as three cells away from the targeted spot
 - b) Imperfections in the middle of a probe are more harmful than in its extremities

ATGACTACCATGCAGTACAACATAC

Definition

Introduction

Conflict Index of a probe p

$$\mathcal{C}(p) := \sum_{t=1}^T \Bigl(\omega(p,t) \sum_{\mathit{nbs.p'}} \delta(p,p',t) \Bigr)$$

Distance-dependent weights

$$\delta(p, p', t) := \begin{cases} (d(p, p'))^{-2} & \text{if } p' \text{ is unmasked at step } t, \\ 0 & \text{otherwise,} \end{cases}$$

where d(p, p') is the Euclidean distance between the spots of p and p'.

0.06	0.08	0.10	0.11	0.10	0.08	0.06
0.08	0.13	0.20	0.25	0.20	0.13	0.08
0.10	0.20	0.50	1.00	0.50	0.20	0.10
0.11	0.25	1.00	р	1.00	0.25	0.11
0.10	0.20	0.50	1.00	0.50	0.20	0.10
0.08	0.13	0.20	0.25	0.20	0.13	0.08
0.06	0.08	0.10	0.11	0.10	0.08	0.06

Definition

Conflict Index of a probe p

$$\mathcal{C}(p) := \sum_{t=1}^{T} \left(\omega(p,t) \sum_{p'} \delta(p,p',t) \right)$$

Position-dependent weights

$$\omega(p,t) := \left\{ egin{array}{ll} c \cdot \exp\left(\theta \cdot \lambda(p,t)\right) & \text{if } p \text{ is masked at step } t, \\ 0 & \text{otherwise,} \end{array} \right.$$

where

$$\lambda(p,t) := 1 + \min(b_{p,t}, \ell_p - b_{p,t}),$$

 $b_{p,t}$ denotes the number of nucleotides synthesized up to and including step t, ℓ_p is the length of probe p, c>0 and $\theta>0$ are constants.

Border Length and Conflict Index

Redefine δ and ω as

$$\delta(p,p',t) := \left\{ \begin{array}{l} 1 \quad \text{if } p' \text{ is a direct neighbor of } p \\ \quad \text{and is unmasked at step } t, \\ 0 \quad \text{otherwise} \end{array} \right.$$

$$\omega(p,t) := \left\{ \begin{array}{l} 1/2 \quad \text{if } p \text{ is masked at step } t, \\ 0 \quad \text{otherwise} \end{array} \right.$$

- Then $\sum_{p} C(p) = \sum_{t=1}^{T} \mathcal{B}_{t}$
- \bullet Border length and conflict indices are equivalent for this choice of δ and ω
- For our choices, they are not equivalent but still correlated
 - A good layout has low border lengths and conflict indices

New Problem

Conflict Index Minimization Problem

Find placement of the probes and embeddings such that

$$\sum_{p} \mathcal{C}(p) o \mathsf{min}$$

Outline

- 3 New Approach: Quadratic Assignment Problem (QAP)

Previous Work: Place and Re-embed

The problem has been traditionally approached in two phases:

- 1) Placement of probes given a fixed embedding
- 2) Re-embedding of probes once a placement is fixed

Placement: Row-epitaxial (Kahng et al., 2003)

- Spots are filled in a pre-defined order
 - Select probe from a list Q such that conflicts with filled spots are minimized
- Restrict the maximum size of Q (e.g. Q = 20000)

Re-embedding: several algorithms (Kahng et al., 2002, 2003)

- Based on the Optimum Single Probe Embedding (OSPE)
 - Re-embed a probe optimally in regards to its neighbors
 - Dynamic programming, like a sequence alignment

Previous Work: Partitioning

- The placement problem can be partitioned
 - Divide the chip into sub-regions; assign sub-sets of probes to each sub-region
 - Sub-regions are processed independently, and can be recursively partitioned
 - A placement algorithm is called on each final sub-region

Pivot Partitioning (Carvalho & Rahmann, 2006)

- Alternate horizontal and vertical partitions
- Allow sub-regions to have different sizes

Quadratic Assignment Problem

Definition

- Given $n \times n$ real-valued matrices $F = (f_{ii}) \ge 0$ and $D=(d_{kl})\geq 0$
- Find a permutation π of $\{1, 2, ..., n\}$ such that

$$\sum_{i=1}^n \sum_{j=1}^n f_{ij} \cdot d_{\pi(i)\pi(j)} \to \min$$

Example: Facility Location Problem

- Assign n facilities to n locations
- f_{ii} : flow of materials from facility i to j
- d_{kl} : distance between locations k and l
- \bullet π : one-to-one assignment with minimum cost

QAP Formulation of Placement Problem

Goal: find a placement with

$$\sum_k \mathcal{C}(k) \to \min$$

"Flow" f_{ii} : distance between spots i and j

$$f_{ij} := \begin{cases} (d(i,j))^{-2} & \text{if spot } j \text{ is "near" spot } i, \\ 0 & \text{otherwise} \end{cases}$$

"Distance" d_{kl} : conflicts between probes k and l

$$d_{kl} := \sum_{t=1}^{l} d_{klt},$$

 $d_{klt} := \left\{ egin{array}{ll} c \cdot \exp(heta \cdot \lambda(k,t)) & ext{if k is masked and l unmasked in step t,} \\ 0 & ext{otherwise} \end{array}
ight.$

QAP Heuristics

- The placement problem can be modeled as a QAP
- But QAP is known to be NP-hard
 - Generally impossible to solve (to optimallity) for $n \ge 20$
- Several heuristics exist.

GRASP (Li, Pardalos and Resende, 1994)

- Greedy Randomized Adaptive Search Procedure
- Comprised of two phases
 - 1) Construction: buids a random feasible solution
 - 2) Local search: search a local optimum in the neighborhood
- GRASP with Path-Relinking (Oliveira et al., 2004)

Results on Small Artificial Chips

Introduction

Border Length minimization Random Row-epitaxial GRASP with Path-Relinking Time Dim Cost Cost Red. Time Cost Red. 6×6 1 989.20 1714.60 13.80 0.01 1672.20 15.94 2.73 0.02 7×7 2783.20 2354.60 15.40 2332.60 16.19 6.43 8×8 3721.20 3123.80 16.05 0.03 3099.13 16.72 12.49 4762.00 16.53 0.05 3 967.20 16.69 9×9 3 974.80 25.96 10×10 5 985.20 4895.60 18.20 0.06 4911.40 17.94 47.57 11×11 7 288 40 5 954 40 18.30 0.10 5 990.73 17.80 87.48 12×12 8714.00 7 086.20 18.68 0.117 159.80 17.84 152.42

Dim: chip dimension Cost: total border length Red.: reduction in %

Time: running time in seconds

Results on Small Artificial Chips

Conflict Index minimization

	Random	Row-epitaxial			GRASP	with Path	-Relinking
Dim	Cost	Cost	Red.	Time	Cost	Red.	Time
6×6	524.28	495.15	5.56	0.05	467.08	10.91	3.68
7×7	558.25	521.90	6.51	0.07	489.32	12.35	8.84
8×8	590.51	551.84	6.55	0.09	515.69	12.67	19.48
9×9	613.25	568.62	7.28	0.11	533.79	12.96	38.83
10×10	628.50	576.49	8.28	0.11	539.69	14.13	73.09
$11{ imes}11$	642.72	588.91	8.37	0.12	551.41	14.21	145.67
12×12	656.86	598.21	8.93	0.12	561.21	14.56	249.19

Dim: chip dimension

Cost: average conflict index

Red.: reduction in %

Time: running time in seconds

- QAP is good for small regions...
 - But not feasible for an entire microarray chip

- QAP is good for small regions...
 - But not feasible for an entire microarray chip
- Two applications:
 - 1) Combine it with a partitioning algorithm

- QAP is good for small regions...
 - But not feasible for an entire microarray chip
- Two applications:
 - Combine it with a partitioning algorithm
 - Use it as a post-placement optimization inside a sliding-window

- QAP is good for small regions...
 - But not feasible for an entire microarray chip
- Two applications:
 - Combine it with a partitioning algorithm
 - Use it as a post-placement optimization inside a sliding-window

Summary

- Conflict Index
 - New model for evaluating microarray layouts
- New approach to placement
 - Based on the Quadratic Assignment Problem
- Challenges
 - Faster or better heuristics?
 - Adapt QAP for post-placement optimization
 - Formulation considering all embeddings

Auf Wiedersehen!

Introduction

More info on

http://gi.cebitec.uni-bielefeld.de/assb/chiplayout

QAPLIB

http://www.seas.upenn.edu/gaplib

- Thanks to Peter Hahn (University of Pennsylvania, USA)
- And thank you for your attention!