Dynamic Programming Algorithms Max Weight Interval Scheduling

CS 336: Design and Analysis of Algorithms Konstantin Makarychev

Weighted Scheduling

- Fig. 6 Given: a set of jobs J. Each job has a start time s_j , finish time f_i , and weight w_i .
- ➤ Goal: schedule a subset $S \subset J$ of jobs on a single machine so as to maximize the total weight of scheduled jobs: $\sum_{j \in S} w_j$.

Weighted Scheduling

- Fig. 6 Given: a set of jobs J. Each job has a start time s_j , finish time f_i , and weight w_i .
- ➤ Goal: schedule a subset $S \subset J$ of jobs on a single machine so as to maximize the total weight of scheduled jobs: $\sum_{i \in S} w_i$.

Weighted Scheduling

- Fig. Given: a set of jobs J. Each job has a start time s_j , finish time f_i , and weight w_i .
- ➤ Goal: schedule a subset $S \subset J$ of jobs on a single machine so as to maximize the total weight of scheduled jobs: $\sum_{i \in S} w_i$.

Weighted Scheduling

- Fig. Given: a set of jobs J. Each job has a start time s_j , finish time f_i , and weight w_i .
- ➤ Goal: schedule a subset $S \subset J$ of jobs on a single machine so as to maximize the total weight of scheduled jobs: $\sum_{i \in S} w_i$.

Dynamic Programming

■ 1st step: Define a subproblem. Subproblem j: Maximum number of scheduled jobs in the set

$$\{1,2,...,j\}$$

- 2^{nd} step: Define the ordering. Let's schedule jobs from left to right. Sort all jobs by f_i as we did before.
- Assume:

$$f_1 \le \dots \le f_n$$

Dynamic Programming for Interval Scheduling

Subproblem j: Maximum number of scheduled jobs in the set

$$\{1,2,\dots,j\}$$

Subproblems

- Let I_j be the optimal schedule for $\{1, ..., j\}$.
- Let OPT_i be the value of I_i .
- Find the optimal solutions for the first j-1 subproblems.

Solve subproblem j

Consider two options: $j \notin I_i$ and $j \in I_i$.

If j is **not** scheduled in the optimal solution i.e., $j \notin I_j$, then

$$ightharpoonup I_j = ?$$

Solve subproblem j

Consider two options: $j \notin I_i$ and $j \in I_i$.

If j is **not** scheduled in the optimal solution i.e., $j \notin I_j$, then

$$I_i = ?$$

Solve subproblem j

Consider two options: $j \notin I_j$ and $j \in I_j$.

If j is **not** scheduled in the optimal solution i.e., $j \notin I_j$, then

$$ightharpoonup I_j = I_{j-1}$$

Weighted Scheduling for first *j* jobs

If j is scheduled in the optimal solution i.e., $j \in I_j$, then

- $> I_i = ?$
- \triangleright Remove all jobs that overlap with j.

Weighted Scheduling for first j jobs

If j is scheduled in the optimal solution i.e., $j \in I_j$, then

- $> I_i = ?$
- Remove all jobs that overlap with j. Let q(j) be the last job that finishes before j starts.

Weighted Scheduling for first j jobs

If j is scheduled in the optimal solution i.e., $j \in I_j$, then

- $I_j = I_{q(j)} \cup \{j\}$
- Remove all jobs that overlap with j. Let q(j) be the last job that finishes before j starts.

DP for Max Weight Interval Scheduling

Sort jobs by f_j

For each j: let q(j) be the last job that finishes before j starts.

$$q(j) = \max\{j' \in J: f_{i'} \le s_i\}$$

For j = 1 **to** n:

Let I_j be the best of two solutions: $\{j\} \cup I_{q\{j\}}$ and I_{j-1} . Let OPT_i be the value of that solution.

Return I_n .

DP for Max Weight Interval Scheduling

Sort jobs by f_j // $O(n \log_2 n)$ instructions For each j: let q(j) be the last job that finishes before j starts.

$$q(j) = \max\{j' \in J: f_{j'} \le s_j\}$$
 // O(?) operations

For j = 1 to n: // O(n) instructions for the entire loop.

Let I_j be the best of two solutions: $\{j\} \cup I_{q\{j\}}$ and I_{j-1} . Let OPT_j be the value of that solution.

Return I_n .

Computing q_i

$$q(j) = \max\{j' \in J: f_{j'} \le s_j\}$$

q(j) is the last job that finishes before job j starts.

Use binary search!

Running time:

 $O(\log n)$ instructions per each computation of q(j).