Dans ce cours, G = (S, A) est un graphe non-orienté, n = |S| et p = |A|.

I Couplage

Définition : Couplage

• Un couplage de G est un ensemble d'arêtes $M \subset A$ tel qu'aucun sommet ne soit adjacent à 2 arêtes de M, c'est-à-dire

$$\forall e_1, e_2 \in M, e_1 \neq e_2 \implies e_1 \cap e_2 = \emptyset$$

• Un sommet $v \in S$ est couvert par M s'il appartient à une arête de M. Sinon, v est libre pour M.

Un couplage dans un graphe (en rouge)

Exercice 1. Écrire une fonction est_couplage : int array array -> (int*int) list -> bool déterminant si un forme un couplage d'un graphe.	ensemble d'arêtes

Définition: Couplage maximum, parfait

- La taille de M, notée |M|, est son nombre d'arêtes.
- M est un couplage maximum s'il n'existe pas d'autre couplage de taille strictement supérieure.
- M est un couplage parfait si tout sommet de G appartient à une arête de M.

Exercice 2. M est un couplage maximal s'Il n'existe pas de couplage M' tel que $M \subsetneq M'$. Quelle(s) implication(s) a t-on entre couplage maximum et couplage maximal ?

Exercice 3.

1. Le couplage ci-dessous est-il parfait ?

3. Le graphe ci-dessous admet-il un couplage parfait ?

II Chemin augmentant

Définition: Couplage maximum, parfait

- La taille de M, notée |M|, est son nombre d'arêtes.
- \bullet M est un couplage maximum s'il n'existe pas d'autre couplage de taille strictement supérieure.
- M est un couplage parfait si tout sommet de G appartient à une arête de M.

Exemple: 3-0-1-2-5-4 est un chemin M-augmentant pour le couplage ci-dessous.

Définition : Différence symétrique

Si A et B sont des ensembles, $A\Delta B = (A \setminus B) \cup (B \setminus A)$.

Théorème

Soit M un couplage de G et P un chemin M-augmentant dans G. Alors $M\Delta P$ est un couplage de G.

Preuve:

Exercice 4.

Dessiner $M\Delta P$ pour le couplage ci-dessous et le chemin P=3-0-1-4.

Théorème

Soit M un couplage d'un graphe G.

Alors M est un couplage maximum de G si et seulement s'il n'existe pas de chemin M-augmentant dans G.

<u>Preuve</u> :			

On en déduit l'algorithme suivant :

Couplage maximum par chemin augmentant

Entrée : Graphe G = (V, E)

Sortie : Couplage maximum M de ${\cal G}$

 $M \leftarrow \emptyset$

Tant que il existe un chemin M-augmentant P dans G:

III Graphe biparti

On se restreint aux graphes bipartis dans lesquels il est plus facile de trouver un chemin augmentant.

Définition : Graphe biparti

Un graphe G = (S, A) est biparti s'il existe une partition $S = X \sqcup Y$ telle que toute arête de A a une extrémité dans X et une extrémité dans Y.

Exercice 5.

Montrer que le graphe ci-dessous est biparti, en donnant une partition de ses sommets.

Définition : Coloration

On appelle k-coloration de G une fonction $c: S \longrightarrow \{1, 2, \dots, k\}$ telle que pour tout arc $(u, v) \in A$, on a $c(u) \neq c(v)$.

Théorème

Les propositions suivantes sont équivalentes :

- G est biparti.
- ullet G admet une 2-coloration.
- G n'a pas de cycle de longueur impair.

T2		C
r/xe	rcice	n

Exercice o.									
Écrire une fonction	est_biparti	: int 1	list arra	y -> b	ool pour	déterminer	si un graphe	e est biparti,	en complexité
linéaire.									
-									

Pour trouver un chemin M-augmentant dans un graphe biparti G:

- 1. Partir d'un sommet libre.
- 2. Se déplacer en alternant entre des arêtes de M et des arêtes de $G \setminus M$, sans revenir sur un sommet visité (avec un parcours de graphe).
- 3. Si on arrive à un sommet libre, alors on a trouvé un chemin M-augmentant.

Exemple de recherche d'un couplage maximum par chemin augmentant dans un graphe biparti :

Complexité de l'algorithme de couplage maximum par chemin augmentant dans un graphe biparti :

- Chaque recherche d'un chemin M-augmentant se fait par DFS en O(n+p).
- Il y a au plus p d'itération du « Tant que », car on ajoute une arête au couplage à chaque fois.

D'où une complexité totale O(p(n+p)).