Preferences under Uncertainty

- Frequently, the consequences of a decision are not deterministic but stochastic.
 - The agent chooses a "lottery ticket" rather than an alternative.
- Defining preferences over lotteries is not straightforward.
- Which lottery would you prefer?
 - L₁: €1million guaranteed
 - L₂: €3million with 98% probability
- Which lottery would you prefer?
 - L₃: €1million with 5% probability
 - L₄: €3million with 4.9% probability

Lotteries

We denote the set of all lotteries over a finite set of alternatives $x_1, ..., x_k$ by

$$\mathcal{L}(\{x_1,\ldots,x_k\}) = \{p \in [0,1]^k \mid \sum_{i=1}^k p_i = 1\}.$$

- Lotteries
 - Simple lotteries $L = [p_1 : x_1, ..., p_k : x_k]$
 - A simple lottery is degenerate if it puts probability 1 on one alternative.
- Lotteries over lotteries
 - Compound lotteries $L = [p_1 : L_1, ..., p_k : L_k]$
 - Compound lotteries can be simplified to simple lotteries by multiplying probabilities ("Consequentialist premise")
 - Example: $L=[0.5:L_1, 0.5:L_2], L_1=[1:a], L_2=[0.5:b, 0.5:c]$ L=[0.5:a, 0.5:[0.5:b, 0.5:c]] = [0.5:a, 0.25:b, 0.25:c]

Preferences over Lotteries

- Obviously the set of lotteries is infinite (whenever |A|>1).
- Preferences over lotteries may involve many different factors such as
 - most likely outcomes
 (e.g., the most likely outcome of which lottery is preferred?),
 - most desirable and/or least desirable outcomes
 (e.g., the probability of the least desirable outcome of which lottery is lower?),
 - uniformity of probabilities,
 - size of support (i.e., the set of alternatives with positive probability),
 - expected utility (requires the existence of a utility function),
 - etc.
- Let us employ the axiomatic method to get a clearer picture of preferences over lotteries.

Continuity and Independence

- Two important axioms are continuity and independence.
- Continuity:

```
For all L_1 > L_2 > L_3, there is some p \in (0,1) such that L_2 \sim [p : L_1, (1-p) : L_3].
```

- Alternatively, one can demand that for all $L_1 > L_2 > L_3$, there is some $\varepsilon \in (0,1)$ such that $[(1-\varepsilon): L_1, \varepsilon: L_3] > L_2 > [(1-\varepsilon): L_3, \varepsilon: L_1]$.
- Independence:

```
For all L_1, L_2, L_3 and all p \in (0,1),

L_1 \ge L_2 \Leftrightarrow [p : L_1, (1-p) : L_3] \ge [p : L_2, (1-p) : L_3]
```

also known as Savage's sure thing principle

vNM Utility Functions

- ► Theorem (von Neumann & Morgenstern, 1947):
 - A preference relation \geq on $\mathscr{L}(A)$ is rational, continuous, and independent iff there exists a utility function u on A such that for two lotteries $L_1 = [p_1 : x_1, ..., p_k : x_k]$ and $L_2 = [q_1 : x_1, ..., q_k : x_k]$:

$$L_1 \succsim L_2 \iff \sum_{i=1}^k p_i u(x_i) \ge \sum_{i=1}^k q_i u(x_i).$$

- This theorem provides an axiomatic foundation of expected utility theory.
- For every positive affine transformation $f(x)=\alpha x+\beta$ with $\alpha>0$, $f(u(\cdot))$ is a new vNM utility function which represents the same preference relation.
 - comparable to temperature, which can, for example, be measured in Celsius, Fahrenheit, or Kelvin.

Risk Aversion

- Utility can be very different from monetary value.
 - Which lottery would you prefer?
 - $L_1 = [1: \in 1 \text{ million}]$
 - $L_2 = [0.5: €2million, 0.5: nothing]$
- People buy insurances because their utility is concave in value. They are risk-averse.
 - Insurance premium is higher than expected loss.
- People buy lottery tickets because their utility is convex in value. They are risk-seeking.
 - Lottery ticket price is higher than expected gain.
- Expected utility theory is compatible with both notions by appropriately defining utility functions.

Allais Paradox (1979)

Maurice Allaid

- Recall the introductory example from today's lecture.
 - Which lottery would you prefer?
 - $L_1 = [1: €1million]$
 - $L_2 = [0.98: €3million, 0.02: nothing]$
 - Which lottery would you prefer?
 - $L_3 = [0.050: €1million, 0.950: nothing]$
 - $L_4 = [0.049: €3million, 0.951: nothing]$
- Numerous experiments have shown that most people prefer L_1 to L_2 and L_4 to L_3 .
 - These preferences cannot be explained by expected utility!
 - Let $L_0 = [1: €0]$. Then, $L_3 = [0.05: L_1, 0.95: L_0]$ and $L_4 = [0.05: L_2, 0.95: L_0]$.

The independence axiom implies that $L_1 > L_2 \Leftrightarrow L_3 > L_4$.

Conclusion on Utility Representations

- Expected utility maximization is the predominant model in economic theory for decision-making under uncertainty.
- We will assume throughout this course that preference relations can be represented by utility functions and that agents are expected utility maximizers.
- In other words, we assume that the preferences of agents satisfy
 - completeness and transitivity, and
 - continuity and independence (in stochastic settings).

Dice Game

- ▶ The are four dice *A*, *B*, *C*, *D* with six faces each:
 - A 4,4,4,0,0
 - B 3,3,3,3,3,3
 - C 6,6,2,2,2,2
 - D 5,5,5,1,1,1
 - You get to pick a dice, then I have to pick one.
 - Whoever rolls a higher number with his dice wins.
- I can guarantee that I will win twice as often as you!
 - p(A > B) = p(B > C) = p(C > D) = p(D > A) = 2/3
 - These dice are known as Efron's dice or non-transitive dice.
 - Max. winning probability with n dice approaches 3/4.
 - Max. winning probability with 3 non-transitive lotteries: 1/φ~0.62

Normal-form Games

- A natural and very general way to represent strategic interaction are games in normal form.
 - players choose actions simultaneously and independently
 - Interactions with sequential moves can be brought into the normal form by defining actions as *plans* that take every possible contingency into account.
 - utility defined for every combination of actions
- ▶ A *normal-form game* is a tuple (N, (A_i) $_{i \in N}$, (u_i) $_{i \in N}$) where $N = \{1, ..., n\}$ is a set of players, $A_i = \{a_{i1}, ..., a_{ik}\}$ are sets of actions, and $u_i : A \rightarrow \mathbb{R}$ are utility (or payoff) functions.
 - Set of action profiles: $A = A_1 \times ... \times A_n$
 - $A_{-i} = A_1 \times ... \times A_{i-1} \times A_{i+1} \times ... \times A_n$
 - Utility vectors ($u_1(a)$, ..., $u_n(a)$) are sometimes called outcomes.
 - We focus on games with a finite number of actions.

Bimatrix Representation

- Normal-from games are typically represented using payoff matrices.
 - Two-player games are also called bimatrix games.

	a_{2}^{1}	a_{2}^{2}
	$u_2(a_1^1,a_2^1)$	$u_2(a_1^1,a_2^2)$
a_{1}^{1}		
	$u_1(a_1^1,a_2^1)$	$u_1(a_1^1,a_2^2)$
	$u_2(a_1^2,a_2^1)$	u ₂ (a ₁ ² ,a ₂ ²)
a ₁ ²		
	$u_1(a_1^2,a_2^1)$	$u_1(a_1^2, a_2^2)$

Prisoner's Dilemma

- perhaps the most famous normal-form game
 - formulated by members of the <u>RAND corporation</u> in 1950
- Two guilty suspects are interrogated separately.
- There is insufficient evidence.
 - If both remain silent, they are put in short-term pre-trial custody.
 - If one testifies against the other, he will be released immediately and the silent accomplice receives a 10-year sentence.
 - If both betray each other, each suspect receives a 5-year sentence.

Prisoner's Dilemma (ctd.)

Verdict	Utility
10 years	0
5 years	1
1 week	2
Freedom	3