Q1 Accumulator

4 Points

You can find the lecture slides for todays lecture here!

You can access the YouTube playlist here!

Q1.1 Which of the following are true?

4 Points

work because we had no way to initialize S to 0
⊙ True
O False
One reason our naïve attempt at an accumulator (shown above) didn' work because we had no way to control the next iteration of the for loop
• True
O False
One reason our na $"$ ive attempt at an accumulator (shown above) didn' work because we had no way to send different values of X_i in
O True
• False
T disc
We fixed our naïve attempt at an accumulator by using a register to hold the current value of S
• True
O False

Q2 Register Details Flip-flops

4 Points

One reason our naïve attempt at an accumulator (shown above) didn't

Q2.1 Which of the following are true?

4 Points

A n-bit-wide flip-flop is made up of n 1-bit-wide registers

O True

False

They call them flip-flops because they were invented in San Diego

O True

False

We'll mostly only consider rising edge flip-flops in this course

True

O False

The three values that are part of the spec of a flip-flop are the "clock-to-q" delay, the "stable" time, and the "unstable" time.

O True

False

Q3.1 Which of the following are true?

4 Points

 S_{i-1} holds the results of the $i^{th}-1$ iteration

- True
- O False

It's ok that S_i is temporarily wrong for a brief time

- True
- O False

It's ok that S_{i-1} is temporarily wrong for a brief time

- O True
- False

 X_i can vary at any time within the window of a clock signal as long as its frequency is identical to the clock rate

- O True
- False

Q4 Pipelining for Performance

4 Points

Q4.1 Which of the following are true?

4 Points

The Max delay of the circuit above is a function of $t_{clock-to-q}$

- True
- O False

The Max delay of the circuit above is a function of $t_{\it setup}$

- True
- O False

The Max delay of the circuit above is a function of t_{hold}

O True

False

We often pipeline circuits with a large t_{CL} delay to allow us to increase the clock frequency

True

O False

Q5 Finite State Machines

4 Points

Q5.1 Assuming we start at S0, the circuit below detects 4 Points

- O The occurrence of 2 consecutive ones (and after that repeatedly 2 consecutive ones)
- O The occurrence of 2 consecutive ones (and after that repeatedly 3 consecutive ones)
- The occurrence of 3 consecutive ones (and after that repeatedly 2 consecutive ones)
- O The occurrence of 3 consecutive ones (and after that repeatedly 3 consecutive ones)

Lecture 15 - State, State Machines

GRADED

STUDENT

Somya Mohindra

TOTAL POINTS

20 / 20 pts

QUESTION 1

Accumulator 4 / 4 pts

QUESTION 2

Register Details Flip-flops	4 / 4 pts
2.1 Which of the following are true?	4 / 4 pts
OUTSTION 2	
QUESTION 3	
Accumulator revisited	4 / 4 pts
3.1 Which of the following are true?	4 / 4 pts
QUESTION 4	
Pipelining for Performance	4 / 4 pts
4.1 Which of the following are true?	4 / 4 pts
QUESTION 5	
Finite State Machines	4 / 4 pts
5.1 Assuming we start at S0, the circuit below detects	4 / 4 pts