Dedicated Storage Assignment (DSAP)

- The assignment of items to slots is termed slotting
 - With randomized storage, all items are assigned to all slots
- DSAP (dedicated storage assignment problem):
 - Assign N items to slots to minimize total cost of material flow
- DSAP solution procedure:
 - 1. Order Slots: Compute the expected cost for each slot and then put into nondecreasing order
 - 2. Order Items: Put the flow density (flow per unit of volume) for each item i into nonincreasing order

$$\frac{f_{[1]}}{M_{[1]}s_{[1]}} \ge \frac{f_{[2]}}{M_{[2]}s_{[2]}} \ge \dots \ge \frac{f_{[N]}}{M_{[N]}s_{[N]}}$$

3. Assign Items to Slots: For i = 1, ..., N, assign item [i] to the first slots with a total volume of at least $M_{[i]}s_{[i]}$

1-D Slotting Example

		Α	В	С
Max units	M	4	5	3
Space/unit	S	1	1	1
Flow	f	24	7	21
Flow Density	f/(M x s)	6.00	1.40	7.00

Flow Density		1-	-D Slot A	ssignments	;				Expected Distance	Flow	Total Distance
$\frac{21}{3} = 7.00$	1/O C C	c 3							2(0) + 3 = 3 ×	21 =	63
$\frac{24}{4} = 6.00$	I/O	0	A A	A 4					2(3) + 4 = 10 ×	24 =	240
$\frac{7}{5} = 1.40$	I/O			B 0	В	В	В	В 5	2(7) + 5 = 19 ×	7 =	133
	0 C C	C A 3	A A	A B	В	В	В	B 12			436

1-D Slotting Example (cont)

			Dedicate	ed	Random	C	Class-Based		
		Α	В	С	ABC	AB	AC	вс	
Max units	М	4	5	3	9	7	7	8	
Space/unit	S	1	1	1	1	1	1	1	
Flow	f	24	7	21	52	31	45	28	
Flow Density	f/(M x s)	6.00	1.40	7.00	5.78	4.43	6.43	3.50	

1-D Slot Assignments										Total Distance	Total Space				
Dedicated (flow density)	I/O	С	С	С	Α	Α	Α	Α	В	В	В	В	В	436	12
Dedicated (flow only)	I/O	Α	Α	Α	Α	С	С	С	В	В	В	В	В	460	12
Class-based	I/O	С	С	С	АВ	AB	АВ	АВ	АВ	АВ	АВ			466	10
Randomized	I/O	ABC				468	9								

2-D Slotting Example

		Α	В	С
Max units	M	4	5	3
Space/unit	S	1	1	1
Flow	f	24	7	21
Flow Density	f/(M x s)	6.00	1.40	7.00

Distance from I/O to Slot

Original Assignment (TD = 215)

Optimal Assignment (TD = 177)

DSAP Assumptions

- 1. All SC S/R moves
- 2. For item *i*, probability of move to/from each slot assigned to item is the same
- 3. The factoring assumption:
 - Handling cost and distances (or times) for each slot are identical for all items
 - b. Percent of S/R moves of item stored at slot *j* to/from I/O port *k* is identical for all items
- Depending of which assumptions not valid, can determine assignment using other procedures

$$(c_{i}x_{ij}) DSAP \subset LAP \subset LP \subset QAP (c_{ijkl}x_{ij}x_{kl})$$

$$(c_{ij}x_{ij}) \qquad TSP$$

Example 5: 1-D DSAP

- What is the change in the minimum expected total distance traveled if dedicated, as compared to randomized, block stacking is used, where
 - a. Slots located on one side of 10-foot-wide down aisle
 - b. All single-command S/R operations
 - c. Each lane is three-deep, four-high
 - d. 40×36 in. two-way pallet used for all loads
 - e. Max inventory levels of SKUs A, B, C are 94, 64, and 50
 - f. Inventory levels are uncorrelated and retrievals occur at a constant rate
 - g. Throughput requirements of A, B, C are 160, 140, 130
 - h. Single I/O port is located at the end of the aisle

Example 5: 1-D DSAP

• Randomized:

$$M = \left\lfloor \frac{M_A + M_B + M_C}{2} + \frac{1}{2} \right\rfloor = \left\lfloor \frac{94 + 64 + 50}{2} + \frac{1}{2} \right\rfloor = 104$$

$$L_{rand} = \left\lceil \frac{M + NH\left(\frac{D-1}{2}\right) + N\left(\frac{H-1}{2}\right)}{DH} \right\rceil$$

$$= \left| \frac{104 + 3(4)\left(\frac{3-1}{2}\right) + N\left(\frac{4-1}{2}\right)}{3(4)} \right| = 11 \text{ lanes}$$

$$X = xL_{rand} = 3(11) = 33 \text{ ft}$$

$$d_{SC} = X = 33 \text{ ft}$$

$$TD_{rand} = (f_A + f_B + f_C)X = (160 + 140 + 130)33 = 14,190 \text{ ft}$$

Example 5: 1-D DSAP

• Dedicated:

$$\frac{f_A}{M_A} = \frac{160}{94} = 1.7, \frac{f_B}{M_B} = \frac{140}{64} = 2.19, \frac{f_C}{M_C} = \frac{130}{50} = 2.6 \implies C > B > A$$

$$L_A = \left\lceil \frac{M_A}{DH} \right\rceil = \left\lceil \frac{94}{3(4)} \right\rceil = 8, L_B = \left\lceil \frac{M_B}{DH} \right\rceil = \left\lceil \frac{64}{3(4)} \right\rceil = 6, L_C = \left\lceil \frac{M_C}{DH} \right\rceil = \left\lceil \frac{50}{3(4)} \right\rceil = 5$$

$$X_C = xL_C = 3(5) = 15, X_B = xL_B = 3(6) = 18, X_A = xL_A = 3(8) = 24$$

$$d_{SC}^C = X_C = 3(5) = 15 \text{ ft}$$

$$d_{SC}^B = 2(X_C) + X_B = 2(15) + 18 = 48 \text{ ft}$$

$$d_{SC}^A = 2(X_C + X_B) + X_A = 2(15 + 18) + 24 = 90 \text{ ft}$$

$$TD_{ded} = f_A d_{SC}^A + f_B d_{SC}^B + f_C d_{SC}^C = 160(90) + 140(48) + 130(15) = 23,070 \text{ ft}$$