Imperial College London

Materials and Manufacturing

Composites

Dr. Billy Wu
Module leader
Reader (Associate Professor)
billy.wu@imperial.ac.uk

Dyson School of Design Engineering

Last time on M&M...

Ceramics and glasses

- Mechanical properties Flexural strength
- Types of ceramics
 - Glasses
 - Clays
 - Refractories
 - Abrasives
 - Cements
 - Advanced ceramics

Learning objectives

- Describe what composites are and be able to give examples and applications
- Define core concepts around composites including the matric and fibre phases and the interactions
- Explain what is meant by the critical fibre length and be able to determine this value
- Evaluate the mechanical properties of a fibre reinforced composite given properties of its individual phases

Why is it important?

With a knowledge of the various types of composites, as well as an understanding of the dependence of their behaviors on the characteristics, relative amounts, geometry/distribution, and properties of the constituent phases, it is possible to design materials with property combinations that are **better** than those found in the metal alloys, ceramics, and polymeric materials

Why is it important?

Tennis balls

- Nanocomposites use nanosized particles in a matrix
- Air permeation through the walls of the ball is inhibited by a factor of two due to the presence of a flexible and very thin (10 to 50 μm) nanocomposite barrier coating that covers the inner core
- Vermiculite platelets (natural clay material) act as barriers for gas diffusion and butyl rubber retains elasticity
- Helps to keep the bounce in tennis balls

Types of composites?

Particle reinforced composites

- Divided into large particle and dispersion-strengthened composites
- Classification is based on the strengthening mechanism

Large particle

- The term large is used to indicate that particle-matrix interactions cannot be treated on the atomic level but rather using continuum mechanics
- Most of the time the particulate phase is harder and stiffer than the matrix phase
- Particles retrain movement of matrix
- Matrix transfers some of the load to the particle

Dispersion-strengthened

- Particles are much smaller (~10-100 nm)
- Particle-matrix interactions that lead to strengthening occur at the atomic or molecular level
- Similar to precipitation hardening
- Matrix takes the majority of the load and the dispersion hinders dislocation movement

Large-particle composites

- For effective reinforcement, the particles should be small and evenly distributed throughout the matrix
- Mechanical properties are enhanced with increasing particulate content

• The rule of mixtures predicts the upper and lower bounds of the

Young's modulus

$$E_c(u) = E_m V_m + E_p V_p$$
$$E_c(l) = \frac{E_m E_p}{V_m E_p + V_p E_m}$$

E = Young's modulus
V = Volume fraction
Subscript
m = Matrix phase
p = Particulate phase
c = Composite phase

Cermets

- Cermets (ceramic-metal composites) is an example of a large-particle composite
- The most common cermet is cemented carbide
- Composed of extremely hard particles of refractory carbides
 - Tungsten carbide or titanium carbide
- These are embedded into a metal matrix
 - · Typically cobalt or nickel
- Used extensively for cutting tools
- Hard carbides provide the current surface but are too brittle
- Toughness is enhanced by their inclusion into a more ductile metal matrix
 - Matrix isolates the carbide particles to prevent particle-to-particle crack propagation
- No single material could possibly provide the combination of properties possessed by a cermet

Dispersion-strengthened composites

- Metals and metal alloys may be strengthened and hardened by the uniform dispersion of several volume percent of fine particles of a very hard and inert material
- The dispersed phase may be metallic or nonmetallic; oxide materials are often used
- Strengthening mechanism involves reducing mobility of slip planes
- Dispersion strengthening effect is not as pronounced as with precipitation hardening
- Strengthening is retained at elevated temperatures and for extended time periods because the dispersed particles are chosen to be unreactive with the matrix phase
- Precipitation-hardened alloys, the increase in strength may disappear upon heat treatment as a consequence of precipitate growth or dissolution of the precipitate phase

Polymer-matrix composites

- Polymer-matrix composites (PMCs) consist of a polymer resin as the matrix, with fibers as the reinforcement medium
- Most popular of the composites
 - Easy to make, relatively low cost and room temperature properties
- Glass fiber-reinforced polymer (GFRP) composites
 - · Very high specific strength, easy to make and chemically inert
 - · Not as stiff as some materials
 - Limited to less than 200°C Polymer starts to flor at higher temperature
 - Used in: boats, pipes, storage containers etc
- Carbon fiber-reinforced polymer (CFRP) composites
 - Carbon fibers have the highest specific modulus and specific strength of all reinforcing fiber materials
 - · Retain strength at high temperatures
 - Used in fishing rods, golf cubs, pressure vessels, aircraft structures, helicopters etc
- Aramid fiber-reinforced polymer composites
- Most of the time polyesters and vinyl esters are used as the matrix due to low cost
- Epoxies and polyimide resins are better but more expensive

Fiber-reinforced composites

- Technologically, the most important composites are those in which the dispersed phase is in the form of a fiber
- Design goals of fiber-reinforced composites often include high strength and/or stiffness on a weight basis
- Can be affected by a range of factors
 - Concentration, size, shape, distribution and orientation of fibers
 - · Direction that the load is applied

Critical fiber length

- The mechanical characteristics of a fiber-reinforced composite depend not only on the properties of the fiber, but also on the degree to which an applied load is transmitted to the fibers by the matrix phase
- Under an applied stress, this fiber-matrix bond ceases at the fiber ends
 - · There is no load transmittance from the matrix at each fiber extremity

 $l_c = \frac{\sigma_f^* d}{2\tau_c}$

 I_c = Critical fiber length σ_f^* = Tensile strength of fiber τ_c = Fiber-matrix bond strength

Critical fiber length

- Fibers for which $l > l_c$ (normally $l > 15l_c$) are called **continuous**
- Discontinuous or short fibres are shorter than this
- Force transmittance is low and very little strengthening
- The fibres are effectively just particulates

 $l_c = \frac{\sigma_f^* d}{2\tau_c}$

 I_c = Critical fiber length σ_f^* = Tensile strength of fiber τ_c = Fiber-matrix bond strength

Continuous and aligned fibres

- The properties of a composite having its fibers aligned are highly anisotropic
- Consider the stress-strain behaviour where stress and fiber alignment is longitudinal
- · Normally fiber is stiff and brittle
- Matrix is ductile

 σ_f^* , ϵ_f^* = fracture stress and strain of fibre σ_m^* , ϵ_m^* = fracture stress and strain of matrix

Normally

$$\sigma_f^* > \sigma_m^* < \epsilon_f^* < \epsilon_m^*$$

- Stage I = Elastic deformation (linear)
- Stage II = Matrix yields plastically, fibers yield elastically (linear)
 - · Fibers take much more of the load
 - Composite failures at fiber failure strain
 - · Matrix still exists after fiber failure

Elastic behaviour-Longitudinal loading

- Assume continuous and oriented fibers with longitudinal loading
- Assume fiber-matrix bond is very good (same deformation **isostrain**)

Load is equally split

$$F_c = F_m + F_f$$

$$F = \sigma A$$

$$\sigma_c A_c = \sigma_m A_m + \sigma_f A_f$$
 Divide by A_c

$$\sigma_c = \sigma_m \frac{A_m}{A_c} + \sigma_f \frac{A_f}{A_c}$$

$$\frac{A_m}{A_c}$$
 = Area fraction of matrix

$$\sigma_c = \sigma_m \frac{A_m}{A_c} + \sigma_f \frac{A_f}{A_c}$$

$$\frac{A_m}{A_c} = \text{Area fraction of matrix}$$

$$\frac{A_f}{A_c} = \text{Area fraction of fiber}$$

Assume composite, matrix and fiber phases are equal $\frac{A_m}{A_c} = V_m$ and $\frac{A_f}{A_c} = V_c$

$$\sigma_c = \sigma_m V_m + \sigma_f V_f$$

$$\epsilon_c = \epsilon_m = \epsilon_f$$

$$\frac{\sigma_c}{\epsilon_c} = \frac{\sigma_m}{\epsilon_m} V_m + \frac{\sigma_f}{\epsilon_f} V_f$$

$$E_{cl} = E_m V_m + E_f V_f$$

$$E_{cl} = E_m(1 - V_f) + E_f V_f$$

- Thus, E_{cl} is equal to the volume-fraction weighted average of the moduli of elasticity of the fiber and matrix phases.
- Other properties, including density, also have this dependence on volume fractions

Elastic behaviour-Transverse loading

- · Assume continuous and oriented fibers with transverse loading
- This time assume the stresses are the same (<u>isostress</u>)

$$\sigma_{c} = \sigma_{m} = \sigma_{f} = \sigma$$

$$\epsilon_{c} = \epsilon_{m} V_{m} + \epsilon_{f} V_{f}$$

$$\epsilon = \sigma / E$$

$$\frac{\sigma}{E_{ct}} = \frac{\sigma}{E_{m}} V_{m} + \frac{\sigma}{E_{f}} V_{f}$$

Divide by σ

$$\frac{1}{E_{ct}} = \frac{1}{E_m} V_m + \frac{1}{E_f} V_f$$

$$E_{ct} = \frac{E_m E_f}{V_m E_f + V_f E_m} = \frac{E_m E_f}{(1 - V_f) E_f + V_f E_m}$$

- Equivalent to lower bound of Young's modulus
- Previous expression equivalent to upper bound

Summary

- Describe what composites are and be able to give examples and applications
- Define core concepts around composites including the matric and fibre phases and the interactions
- Explain what is meant by the critical fibre length and be able to determine this value
- Evaluate the mechanical properties of a fibre reinforced composite given properties of its individual phases

Next time on M&M...

