UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Leonardo Felipe da Silva dos Santos

EU AINDA NÃO SEI PRECISO COLOCAR?

Leonardo Felipe da Silva dos Santos

EU AINDA NÃO SEI PRECISO COLOCAR?

Tese de Doutorado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica, Área de Concentração em Sistemas de Energia, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de **Doutor em Engenharia Elétrica**.

Orientador: Prof. Dr. João da Silva

Coorientadora: Prof.ª Dra. Maria da Costa

Leonardo Felipe da Silva dos Santos

EU AINDA NÃO SEI PRECISO COLOCAR?

Tese de Doutorado apresentada ao Programa de Pós-Graduação em Engenharia Elétrica, Área de Concentração em Sistemas de Energia, da Universidade Federal de Santa Maria (UFSM, RS), como requisito parcial para obtenção do grau de **Doutor em Engenharia Elétrica**.

Aprovado em 25 de setembro de 2025:
João da Silva, Dr. (AAAA) (Presidente/Orientador)
Maria da Costa, Dra. (AAAA) (Coorientadora)
Banca Um, Dr. (AAAA)

Santa Maria, RS 2025

DEDICATÓRIA

Ao fim dos tempos

AGRADECIMENTOS

A mim!

RESUMO

EU AINDA NÃO SEI PRECISO COLOCAR?

AUTOR: Leonardo Felipe da Silva dos Santos Orientador: João da Silva Coorientadora: Maria da Costa

Escreva seu resumo aqui! Você pode digitá-lo diretamente neste arquivo ou usar o comando input. O resumo deve ter apenas uma página, desde o cabeçalho até as palavras chave. Caso seu resumo seja maior, use comandos para diminuir espaçamento e fonte (até um mínimo de 10pt) no texto. Segundo a MDT, é preciso que os resumos tenham, no máximo, 250 palavras para trabalhos de conclusão de curso de graduação, pós-graduação e iniciação científica e até 500 palavras para dissertações e teses.

Palavras-chave: Palavra Chave 1. Palavra 2. Palavra 3. (...)

ABSTRACT

I DONT KNOW NEED THIS?

AUTHOR: Leonardo Felipe da Silva dos Santos ADVISOR: João da Silva CO-ADVISOR: Maria da Costa

Write your abstract here! As recomendações do resumo também se aplicam ao abstract. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Keywords: Keyword 1. Keyword 2. Keyword 3. (...)

LISTA DE FIGURAS

LISTA DE GRÁFICOS

LISTA DE ILUSTRAÇÕES

LISTA DE TABELAS

LISTA DE QUADROS

LISTA DE ABREVIATURAS

SIGLA1 Nome Completo da Sigla 1
SIGLA2 Nome Completo da Sigla 2
SIGLAMAX Nome Completo da Sigla MAX

LISTA DE SIGLAS

SIGLA1 Nome Completo da Sigla 1
SIGLA2 Nome Completo da Sigla 2
SIGLAMAX Nome Completo da Sigla MAX

LISTA DE SÍMBOLOS

 u_{st} Escala de velocidade de fricção

 w_{st} Escala de velocidade convectiva

 $(Re)^2$ Maior simbolo da lista

SUMÁRIO

1	INTRODUÇÃO	17
1.1	CONSIDERAÇÕES GERAIS	17
1.2	MOTIVAÇÃO	19
1.3	OBJETIVOS	20
1.3.1	Objetivo Geral	20
1.3.2	Objetivos Específicos	21
1.4	CONTRIBUIÇÕES DO TRABALHO	21
1.4.1	Estrutura do Trabalho	21
	REFERÊNCIAS BIBLIOGRÁFICAS	22

1 INTRODUÇÃO

1.1 CONSIDERAÇÕES GERAIS

A necessidade da energia elétrica permeia os aconteceimentos do cotidiano humano. Desde o despertar até a hora que dormimos necessitamos de energia elétrica. A viabilidade do alcance da energia elétrica se faz necessárias para todos quais os setores da sociedade. A energia elétrica é o principal fator para crescimento demográfico e também de capital da socidade. Segudo o Programa Nacional de Amostras de Domicílios (PNAD) em 2022, cerca de 12,6% da população brasileira se encontra nas areas rurais, um decaimento de 2,68% em relação a 2015.

Isso pode ser um acaso da baixa cobertura de serviços públicos, falta de investimento em infraestutura, segundo o PNAD cerca de 16,12% da população total do brasil, não tem acesso a rede de água. Grande parte dos quais não tem acesso a rede de abastecimento de água se encontra nas regiões rurais do Brasil. Segundo a (EPE, 2024) o consumo de energia pelas zonas rurais é apenas de 6,5% do total de energia elétrica consumida no Brasil. Isso pode ser um indicativo de que a energia elétrica não é um fator preponderante para o crescimento demográfico e econômico da população rural.

Desde 1980 o Brasil, vive iniciativas públicas e privadas, para implemento da energia elétrica em zonas rurais, com o intuito de promover o desenvolvimento econômico destas áreas. Dentre todas as iniciativas podemos citar, programas como Clic Rural I e II (1984/1989 e 1990); Interluz (1989/1991); PROLUZ I e II (1990/1992 e 1995/1999); PRODEEM (1994). Luz da Terra (1996/2002); Luz no Campo (1999/2003) e Luz para Todos (2003/2025).

Todos estes programas visam a universalização do acesso a energia elétrica, com o intuito de promover o desenvolvimento econômico e social das áreas rurais. Assim como também promover a inclusão social e a redução da pobreza. O programa Luz para Todos, é o maior programa de eletrificação rural do mundo, com mais de 15 milhões de pessoas atendidas, e mais de 4 milhões de ligações elétricas realizadas.

O programa Luz Para Todos, do Ministério de Minas e Energia (MME), é o programa de universalização de Energia Elétrica, tem como objetivo atender 100% da população brasileira, tanto em zonas rurais como em cidades. A universalização da energia elétrica no Brasil, Lei N°10.438/2002, define que os serviços energia elétrica, públicos e privados, devem investir na eletrificação total do Brasil de forma gratuíta e universal. Sem ônus aos solicitantes, desde que se atenda aos requisitos listados pela Agência Nacional de Energia Elétrica (ANEEL), sendo eles:

- Enquadramento no Grupo B;
- Carga instalada na unidade consumidora de até 50kW;
- Possa ser efetivada em tensão inferior a 2,3kV, ainda que necessário a extensão da rede primária de tensão igual ou inferior a 138kV, ou se necessário atendida por sistemas isolados;
- Por fim n\u00e3o existta unidade consumidora com fornecimento de energia el\u00e9trica na mesma propriedade.

Para unidades consumidoras individuais situadas em comunidades indígenas e quilombolas, a conexão elétrica pode ser gratuita, desde que satisfeitas as condições estipuladas pelas normativas nº 950 e 1000 (ANEEL, 2021)(ANEEL, 2022). A viabilidade econômica da expansão da rede para essas localidades é comprometida pela distância e pelo consumo reduzido. Caso o consumidor precise elevar sua capacidade de carga, seja pela adoção de novas tecnologias agrícolas, pecuárias ou outras, será necessária uma contrapartida financeira à distribuidora. Tal elevação da demanda geralmente implica a utilização de motores trifásicos, notórios por sua maior eficiência em relação aos monofásicos. Existem alternativas para contornar o elevado investimento exigido pelos sistemas de distribuição trifásicos (FANDI, 2013).

As maiores iniciativas da composição dos programas eram voltadas para a expansão da rede elétrica, com redes Monofásicas com Retorno por Terra (MRT). Estas redes quais tem seu fornecimento limitado ao monofásico, qual limita também a corrente e consequentemente o potência entregue ao consumidor final. Esse tipo de fornecimento mesmo que com a utilização de inversores a jusante do Transformador consumidor, para produzir tensão trifásica, não se torna viavel, pois seu limite é no transformador monofásico qual a alimenta. Pelo mundo esse tipo de rede que é conhecida por *Single Wire Earth Return* (SWER), é utilizado em regiões remotas, onde a instalação de redes trifásicas é inviável. Esse tipo de rede é utilizado na Nova Zelândia, Austrália, África do Sul e Estados Unidos.

Originárias da Nova Zelândia por volta de 1925, as redes SWER representam uma técnica hoje empregada em nações como Uganda, Brasil, Austrália e Estados Unidos, entre outras (MANDENO, 1947). Mesmo que a restrição na capacidade de potência seja um ponto negativo relevante, esta configuração de rede é uma solução frequente para a eletrificação de áreas remotas. As alternativas de fornecimento de energia elétrica para essas áreas são limitadas, e a instalação de redes monofásicas com retorno por terra é uma opção viável. Essa configuração é especialmente útil em regiões onde o custo de instalação de redes trifásicas é proibitivo, como em áreas rurais ou remotas.

O sistema trifásico a dois fios (T2F), apresentado inicialmente por Borges 2017, surge como uma alternativa para aumentar a capacidade (repotencialização) de sistemas

monofásicos MRT. Caracteriza-se por ser uma rede trifásica não convencional que emprega apenas dois condutores aéreos para a transmissão de potência, utilizando o solo como o caminho para a terceira fase. Assim, somente dois cabos aéreos são necessários ao longo da rede, e no ponto de consumo (lado da carga), a terceira fase é acessada mediante conexão com o aterramento. Esse sistema é uma solução inovadora para a eletrificação rural, pois permite a utilização de motores trifásicos em locais onde a instalação de redes convencionais é inviável. Além disso, o T2F não precisa ser utilizado em conjunto com inversores para fornecer energia elétrica a cargas trifásicas. Naturalmente apenas utilizar as estruturas existentes do MRT fazendo a repotencialização para trifásico apenas com algumas adições.

Uma colaboração em Pesquisa & Desenvolvimento (P&D) entre a Universidade Federal de Santa Maria (UFSM) e a antiga Companhia Estadual de Energia Elétrica - Distribuição (CEEE-D), hoje pertencente ao Grupo Equatorial Energia, foca na concepção de um sistema de distribuição que utiliza a topologia T2F. O projeto visa identificar os parâmetros e limitações dessa tecnologia, buscando simultaneamente reduzir o investimento inicial e o tempo de retorno do capital investido. A aplicação do T2F é direcionada à eletrificação rural, prevendo tanto o aproveitamento de estruturas monofásicas (MRT) existentes quanto a construção de redes novas, e considera fundamental a possibilidade de reutilizar postes, estruturas e ferragens preexistentes.

No sentido de tais apresentações, o trabalho consiste em demonstrar as formas de utilização da Rede T2F em sistemas de distribuição de energia elétrica, com o intuito de aumentar a capacidade de potência e a confiabilidade do sistema. Demonstrando a aplicabilidade do sistema de distribuição trifásico em um sistema teste real repotencializando alguns trechos, formalizado pelo *IEEE 34 bus* (Modelo IEEE 34 Barras), muito utilizado para testes de sistemas de distribuição. O intuito é apresentar a aplicação de fusíveis, religadores e demais formas de controle em caso de curto-circuitos.

1.2 MOTIVAÇÃO

No meio rural, as necessidades de energia variam muito entre os consumidores. Além disso, o dinheiro disponível para levar eletricidade a todos é limitado. Por isso, as companhias de energia geralmente optaram por instalar redes mais simples, chamadas monofásicas. Isso fazia sentido porque, inicialmente, o consumo era baixo, as propriedades rurais ficavam distantes umas das outras (baixa densidade de carga) e poucas usavam muita energia ao mesmo tempo. Assim, o sistema monofásico era a solução mais barata para atender essa demanda inicial.

Com programas como o "Luz para Todos", o objetivo foi garantir que ninguém ficasse sem acesso à energia elétrica. No entanto, a maioria dessas redes rurais monofásicas não foi pensada para um futuro onde o consumo aumentasse. Hoje, com a modernização da agricultura (uso de irrigação, máquinas para processar produtos, etc.), os produtores rurais precisam de mais energia. O problema é que o sistema monofásico atual limita essa capacidade, impedindo que utilizem todo o potencial de novas tecnologias.

Essa necessidade de melhoria já foi discutida publicamente. Em 2015, por exemplo, uma audiência na Assembleia Legislativa do Rio Grande do Sul debateu um programa para qualificar a energia no campo. A ideia era melhorar as redes monofásicas existentes e construir novas redes com maior capacidade (bifásicas e trifásicas). Na época, estimouse que só no RS havia cerca de 102 mil quilômetros de redes monofásicas precisando de upgrade para trifásicas, um investimento calculado em R\$ 1,6 bilhão. Isso mostra o tamanho do desafio.

É fundamental encontrar maneiras de tornar a energia trifásica (de maior capacidade) mais acessível e viável para as companhias de energia investirem no campo. Contudo, a introdução de sistemas mais potentes, especialmente se forem soluções inovadoras ou não convencionais (como o sistema T2F mencionado anteriormente), traz desafios técnicos. É crucial desenvolver formas seguras de proteger essas novas redes contra problemas como curtos-circuitos. Por isso, análises técnicas detalhadas são indispensáveis antes de implementar essas novas tecnologias em larga escala.

Atualmente a primeira rede T2F se encontra na Universidade Federal de Santa Maria, que em testes se mostra promissora. A proposta de apresentação deste trabalho é que essa rede possa ser aplicada em redes pelo Brasil inteiro, principalmente nas regiões mais remotas. Assim queremos avançar para criação de redes cabeça de série, para assim efetivamente aplica-las em larga escala, promovendo a repotencialização de redes monofásicas já existentes e também a construção de novas redes com essa nova tecnologia.

1.3 OBJETIVOS

1.3.1 Objetivo Geral

O objetivo geral deste trabalho é apresentar a aplicação do sistema de distribuição trifásico T2F em um sistema teste real, repotencializando alguns trechos do sistema, formalizado pelo *IEEE 34 bus* (Modelo IEEE 34 Barras), muito utilizado para testes de sistemas de distribuição. O intuito é apresentar a aplicação de fusíveis, religadores e demais formas de controle em caso de curto-circuitos.

1.3.2 Objetivos Específicos

- Utilzar os calculos de corrente de curto-circuito para o sistema T2F, para verificar as melhores proteções para cada caso de aplicação;
- Criar um referêncial sobre aplicabilidade do sistema de proteção do T2F;
- Investigar os procedimentos para aplicação de Religadores Monofásicos ou Bifásicos;
- Criação de curvas e equações quais possam ser utilizadas para a proteção do sistema T2F por meio de religadores;
- Criar religadores utilizando algoritmos de inteligência artificial, para que o sistema possa se auto regular em caso de curto-circuito;

1.4 CONTRIBUIÇÕES DO TRABALHO

Levar energia elétrica para áreas rurais é um processo caro e muitas vezes faltam recursos financeiros para realizar todos os investimentos necessários. Isso nos obriga a buscar soluções mais inteligentes e eficientes para os sistemas elétricos, que se adaptem melhor à forma como a energia é consumida no campo aqui no Brasil.

Dentro dessas buscas por otimização, um sistema que tem chamado de T2F, consegue fornecer energia trifásica usando apenas dois fios na rede aérea.

Este trabalho específico se dedica a estudar justamente esse sistema T2F. Utilizando métodos e conhecimentos técnicos já estabelecidos, o objetivo é entender como aplicar a rede em sistemas reais e também fornecer metodos de proteção dessa rede em casos de curto-circuitos, afim de não afetar redes adjacentes. A meta final é definir critérios claros para garantir que o sistema T2F possa operar de forma segura no dia a dia, além de poder ser aplicado em larga escala.

1.4.1 Estrutura do Trabalho

No capítulo 2 contém a revisão bibliográfica sobre métodos não tradicionais e alternativas ao sistema trifásico tais como Redes MRT, Para Raio Energizado (PRE), T2F.

No capítulo 3

O capítulo 4

No capítulo 5 é apresentada a conclusão da pesquisa e as propostas para trabalhos futuros.

REFERÊNCIAS

ANEEL. RESOLUÇÃO NORMATIVA ANEEL No 1.000, DE 7 DE DEZEMBRO DE 2021.

 $\underline{\hspace{0.3cm}}$. RESOLUÇÃO NORMATIVA ANEEL No 1.042, DE 20 DE SETEMBRO DE 2022. $\underline{\hspace{0.3cm}}$

BORGES, P. et al. Repowering rural single-phase distribution network: A non-conventional proposal using two overhead wires and the ground as the third phase. **Electric Power Systems Research**, v. 150, p. 105–117, set. 2017. ISSN 03787796. Disponível em: https://linkinghub.elsevier.com/retrieve/pii/S0378779617301876.

EPE. **Balanço Energético Nacional 2024**. 2024. Disponível em: https://www.epe.gov.br/pt/publicacoes-dados-abertos/publicacoes/balanco-energetico-nacional-2024.

FANDI, J. Sistema de Distribuição de Energia Elétrica a Dois Condutores para Atendimento a Cargas Rurais Trifásicas. 2013.

MANDENO, L. RURAL POWER SUPPLY, ESPECIALLY IN BACK COUNTRY AREAS. RURAL POWER SUPPLY, ESPECIALLY IN BACK COUNTRY AREAS, v. 33, 1947.