Automatic Network Protection Scenarios Using NetFlow

Vojtěch Krmíček, Jan Vykopal

{krmicek|vykopal}@ics.muni.cz

FloCon 2012 January 9-12, Austin, Texas

Part I

Flow-based Network Protection

Goals and Components

Goals of Network Protection

- Using NetFlow data to protect network.
- Defending perimeter against attacks from outside.
- Automated attack detection.
- Suitable for high speed networks (10 Gbps+).

System Parts

- Sensors (\Rightarrow NetFlow data).
- Control center (\Rightarrow commands).
- Active network components (⇒ blocking/filtering).
- HAMOC platform both sensor and active component.

General Architecture of Network Protection

NfSen/NFDUMP Collector Toolset Architecture

- NfSen NetFlow Sensor http://nfsen.sf.net/
- NFDUMP NetFlow display http://nfdump.sf.net/

Methods for Data Analysis

TCP SYN scanning detection

• Simple, effective general method, low false positive rate.

Honeypot monitoring

- Uses subnet allocated for high- and low-interaction honeypots.
- Eliminates false positives, mainly catches hosts from outside.

Brute force attack detection

- Similar flows may be symptoms of this attack.
- Suitable even for encrypted services such as SSH.

Round trip time anomaly detection

- (D)DOSes overwhelm servers and increase response time.
- Abrupt increase of RTT may point to attack/misconfiguration.

HAMOC Hardware Platform

Features

- Traffic distribution among multiple CPU cores.
- Network applications with hardware acceleration.
- Capable of concurrent monitoring/blocking/filtering/etc.
- Low-speed networks SW alternative (NetFlow/iptables).

Network Protection – Deployment Scenarios

Scenarios

- NetFlow probes + control center + RTBH¹ filtering
- HAMOC as NetFlow probe and firewall
- HAMOC as redirection to quarantine (phishing)
- HAMOC as NetFlow probe and active attack tool
- HAMOC as NetFlow probe and traffic limiter

¹Remote Triggered Black Hole

Part II

Network Protection Scenarios

NetFlow Probes + Control Center + RTBH Filtering

HAMOC as NetFlow Probe and Firewall

HAMOC as Redirection to Quarantine (Phishing)

HAMOC as NetFlow Probe and Active Attack Tool

HAMOC as NetFlow Probe and Traffic Limiter

Part III

Network Protection Use Case: SSH Dictionary Attack and HAMOC Firewall

I. Attacker Performs SSH Horizontal Scan

II. Attacker Starts SSH Dictionary Attack

III. Center Detects Attack/Inserts Blocking Rule

IV. New SSH Attack, Blocked at the Border

V. Regular User Can Access Network, Attacker Not

Part IV

Conclusion

Conclusion

Role of IP Flow Monitoring in High Speed Networks

- Flow-based monitoring suitable for large networks.
- Observe and automatically inspect 24x7 network data.
- Possible future deployment in 10Gbps/40Gbps/100Gbps networks.

Automatic Network Protection

- Class of attacks can be detected automatically.
- Automatic network protection supports operators.
- Detect and block attacks before hosts are infected.
- Not usable in every situation limitations.

Thank you for your attention!

Vojtěch Krmíček et al.

{krmicek|vykopal}@ics.muni.cz

Project CYBER

http://www.muni.cz/ics/cyber

Automatic Network Protection Scenarios Using NetFlow

This material is based upon work supported by the Czech Ministry of Defence under Contract No. OVMASUN200801.