

SU 0853089
AUG 1981

61005 E/29 H01 Q49 BORE = 29.11.79
BOREHOLE REINF INST *SU -853-089
29.11.79-SU-844451 (07.08.81) E21b-29/10
Casing patch liner for wells - is reduced in perimeter in centre so
expanding stress is kept clear of casing when liner is expanded in situ

29.11.79 as 844451 (28MI)
The blank consists of a corrugated piece of metal pipe reduce
stress in the casing etc at damage site, the perimeter of the patch
liner (4) in the centre part which is reduced in diameter by the specified
amount so that the difference between casing and liner centre
sizes is not more than 3mm. The corrugated patch is run and
followed down by an expander which closes it to the walls of the
casing at both ends. The expanding action in the centre part of the
liner means that stresses are locked up in the liner rather than
affecting the casing either side of this.

BEST AVAILABLE COPY

Союз Советских
Социалистических
Республик

Государственный комитет
СССР
по делам изобретений
и открытий

ОПИСАНИЕ ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(11) 853089

(61) Дополнительное к авт. свид-ву —

(22) Заявлено 29.11.79 (21) 2844451/22-03

(51) М. Кл.³
Е 21B 29/10

с присоединением заявки № —

(23) Приоритет —

(43) Опубликовано 07.08.81. Бюллетень № 29 (53) УДК 622.245.4
(088.8)

(45) Дата опубликования описания 07.08.81

(72) Авторы
изобретения

В. И. Мишин, С. Ф. Петров и М. Л. Кисельман

(71) Заявитель

Всесоюзный научно-исследовательский институт по креплению
скважин и буровым растворам

(54) ЗАГОТОВКА ПЛАСТЫРЯ ДЛЯ РЕМОНТА ОБСАДНЫХ ТРУБ

1

Изобретение относится к буровой технике, а именно к устройствам для ремонта обсадных колонн в скважине.

Известна заготовка пластиря для перекрытия интервала повреждения или очаговой коррозии в обсадных трубах, выполненная из пластмассовой оболочки [1].

Недостатком этой заготовки пластиря является слабое сцепление ее со стенками обсадной колонны.

Наиболее близкой к изобретению по технической сущности и достигаемому результату является заготовка пластиря для ремонта обсадных труб, выполненная из металлической продольной гофрированной трубы [2].

Недостатком заготовки является то, что она не обеспечивает нужного качества и надежности ремонта в интервале больших продольных трещин, так как ремонтируемые трубы могут быть дополнительно нарушены в результате действия на них радиальных сил при установке пластиря.

Цель изобретения — повышение качества и надежности ремонта путем снижения напряжений в теле ремонтируемой трубы в местах повреждения.

Это достигается тем, что продольно гофрированная труба выполнена в средней части с периметром, равным или меньшим на

2

величину до 3 л. мм внутреннего периметра ремонтируемой обсадной трубы.

На фиг. 1 изображена заготовка пластиря; на фиг. 2 — разрез А—А фиг. 1.

Заготовка пластиря представляет собой продольно гофрированную трубу 1, изготовленную из тонкостенной стальной трубы путем протяжки через специальную оправку. Условный наружный диаметр гофрированной трубы 1 выбирается на 1—3 мм больше внутреннего диаметра ремонтируемого участка обсадной трубы 2. Эта разность называется условным натягом между пластирем и трубой 2 с повреждением 3. В средней части 4 гофрированная труба 1 выполнена с периметром, равным или меньшим на величину до 3 л. мм внутреннего периметра трубы 2. При этом разность между внутренним диаметром трубы 2 и условным наружным диаметром средней части трубы 1 составляет не более 3 мм.

Гофрированную трубу 1 вместе с расширителем опускают в интервал, где находится повреждение 3 трубы 2. После этого расширитель протягивается внутри гофрированной трубы 1 гидравлическим толкателем или с помощью талевой системы по всей длине трубы 1. При этом концевые 30 верхняя и нижние части пластиря плотно

прижимаются к стенкам ремонтируемой трубы 2, создавая напряженную систему «ластырь — обсадная труба» и не вызывая разрушения трубы 2, так как зоны напряжения приходятся на неповрежденный участок трубы 2. В зоне повреждения 3 напряжения в теле обсадной трубы 2 возникают незначительные, потому что радиальные усилия расширителя расходуются в основном только на приданье цилиндрической формы гофрированной трубы 1, длина которой выбирается в зависимости от размеров и характера повреждения 3 обсадной трубы 2.

Применение предложенной заготовки пластиря повышает надежность ремонта коррозированных труб, труб с продольными трещинами и т. д.

Формула изобретения

Заготовка пластиря для ремонта обсадных труб, выполненная из металлической 5 продольной гофрированной трубы, отличающаяся тем, что, с целью повышения качества и надежности ремонта путем снижения напряжений в теле ремонтируемой трубы в местах повреждения, продольно 10 гофрированная труба выполнена в средней части с периметром, равным или меньшим на величину до 3 π мм внутреннего периметра ремонтируемой обсадной трубы.

Источники информации,

- 15 принятые во внимание при экспертизе
 1. Патент США № 3111991, кл. 166—14,
 опублик. 1963.
 2. Патент США № 3179168, кл. 166—14,
 опублик. 1965 (прототип).

Фиг.1

Фиг.2

Составитель Н. Панин

Редактор С. Титова

Техред М. Гайдмак

Корректор Е. Осипова

Заказ 1811/8

Изд. № 498

Тираж 634

Подписанное

НПО «Поиск» Государственного комитета СССР по делам изобретений и открытий
113035, Москва, Ж-35, Раушская наб., д. 4/5

Типография, пр. Сапунова, 2

BEST AVAILABLE COPY

[see English abstract-separate page]

Union of Soviet Socialist Republics	SPECIFICATION OF INVENTOR'S CERTIFICATE	(11) 853089
[state seal]	(61) Inventor's certificate of addition — (22) Applied November 29, 1979 (21) 2844451/22-03 with the attachment of application No. - (23) Priority - (43) Published August 7, 1981 - Bulletin No. 29 (45) Publication date of specification August 7, 1981	(51) Int. Cl. ³ E 21B 29/10
USSR State Committee on Inventions and Discoveries		(53) UDC 622.245.4 (088.8)
(72) Inventors (71) Applicant	V. I. Mishin, S. F. Petrov, and M. L. Kiselman All-Union Scientific-Research Institute of Well Casing and Drilling Muds	

(54) PATCH BLANK FOR CASING REPAIR

1

The invention relates to drilling technology, and specifically to devices for repair of casings in a well.

A patch blank is known for sealing off a damaged interval or spot corrosion in casings that is made from a plastic sleeve [1].

A disadvantage of this patch blank is its weak bonding with the casing walls.

The device closest to the invention in technical essence and achievable result is a patch blank for casing repair that is made from a longitudinally corrugated metallic tube [2].

A disadvantage of the blank is that it does not provide the required repair quality and reliability in an interval of large longitudinal cracks, since the pipes to be repaired may be additionally damaged as a result of the action of radial forces on them during placement of the patch.

The aim of the invention is to improve the repair quality and reliability by reducing stresses in the body of the pipe to be repaired at the locations of the damage.

This is achieved by the fact that the longitudinally corrugated tube is implemented in the middle portion with a perimeter equal to or up to 3π mm less than

the inner perimeter of the casing to be repaired.

Fig. 1 depicts the patch blank; Fig. 2 shows the A-A section of Fig. 1.

The patch blank is a longitudinally corrugated tube 1 made from thin-walled steel tubing by pulling a special mandrel through it. The nominal outer diameter of corrugated tube 1 is selected to be 1-3 mm larger than the inner diameter of the section of casing 2 to be repaired. This difference is called the nominal allowance between the patch and pipe 2 with damage 3. In the middle portion 4, corrugated tube 1 is implemented with a perimeter equal to or up to 3π mm less than the inner perimeter of pipe 2. In this case, the difference between the inner diameter of pipe 2 and the nominal outer diameter of the middle portion of tube 1 is no more than 3 mm.

Corrugated tube 1 together with the expander is lowered to the interval where damage 3 is located in pipe 2. Then the expander is pulled inside corrugated tube 1 by a hydraulic pusher or using a block-and-tackle system, through the entire length of tube 1. The terminal upper and lower portions of the patch are thereby tightly

squeezed against the walls of pipe 2 to be repaired, creating a stressed "patch—casing" system without damaging pipe 2, since the stress zones are in the undamaged section of pipe 2. Insignificant stresses appear in the body of casing 2 in damaged zone 3 because the radial forces exerted by the expander are absorbed mainly only in giving a cylindrical shape to corrugated tube 1, the length of which is selected depending on the dimensions and nature of damage 3 to casing 2.

Use of the proposed patch blank improves the reliability of repair for corroded pipes, pipes with longitudinal cracks, etc.

Claim

A patch blank for repair of casings that is made from a longitudinally corrugated metallic tube, distinguished by the fact that, with the aim of improving the repair quality and reliability by reducing stresses in the body of the pipe to be repaired at the locations of damage, the longitudinally corrugated tube is implemented in the middle portion with a perimeter equal to or up to 3π mm less than the inner perimeter of the casing to be repaired.

Information sources considered in the examination

1. US Patent No. 3111991, cl. 166-14, published 1963.
2. US Patent No. 3179168, cl. 166-14, published 1965. (prototype).

[see source for figures]

[see Russian original for figure]

[see Russian original for figure]

Fig. 1

Fig. 2

Editor S. Titova

Compiler N. Panin
Tech. Editor M. Gaydmak

Proofreader E. Osipova

Order 1811/8 Pub. No. 498 Run 634

Subscription edition

Poisk Scientific-Industrial Association of the USSR State Committee on Inventions and Discoveries
4/5 Raushskaya nab., Zh-35, Moscow 113035

Printing Office, 2 pr. Sapunova

TRANSUPERFECT | TRANSLATIONS

AFFIDAVIT OF ACCURACY

I, Kim Stewart, hereby certify that the following is, to the best of my knowledge and belief, true and accurate translations performed by professional translators of the following patents from Russian to English:

ATLANTA RU2016345 C1
BOSTON RU2039214 C1
BRUSSELS RU2056201 C1
CHICAGO RU2064357 C1
DALLAS RU2068940 C1
DETROIT RU2068943 C1
FRANKFURT RU2079633 C1
HOUSTON RU2083798 C1
LONDON RU2091655 C1
LOS ANGELES RU2095179 C1
MIAMI RU2105128 C1
MINNEAPOLIS RU2108445 C1
NEW YORK RU21444128 C1
PARIS SU1041671 A
PHILADELPHIA SU1051222 A
SAN DIEGO SU1086118 A
SAN FRANCISCO SU1158400 A
SEATTLE SU1212575 A
WASHINGTON, DC SU1250637 A1
SU1295799 A1
SU1411434 A1
SU1430498 A1
SU1432190 A1
SU 1601330 A1
SU 001627663 A
SU 1659621 A1
SU 1663179 A2
SU 1663180 A1
SU 1677225 A1
SU 1677248 A1
SU 1686123 A1
SU 001710694 A
SU 001745873 A1
SU 001810482 A1
SU 001818459 A1
350833
SU 607950
SU 612004
620582
641070
853089
832049
WO 95/03476

Page 2
TransPerfect Translations
Affidavit Of Accuracy
Russian to English Patent Translations

Kim Stewart

Kim Stewart
TransPerfect Translations, Inc.
3600 One Houston Center
1221 McKinney
Houston, TX 77010

Sworn to before me this
23rd day of January 2002.

Maria A. Serna

Signature, Notary Public

Stamp, Notary Public

Harris County

Houston, TX