Knowledge Graphs

G. Falquet

Source:

Hogan, A., Blomqvist, E., Cochez, M., d'Amato, C., de Melo, G., Gutierrez, C., Gayo, J. E. L., Kirrane, S., Neumaier, S., Polleres, A., Navigli, R., Ngomo, A.-C. N., Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda, J., Staab, S., & Zimmermann, A. (2022). Knowledge Graphs. *ACM Computing Surveys*, *54*(4), 1–37. https://doi.org/10.1145/3447772

Contents

Hogan, A. et al. (2022). Knowledge Graphs. *ACM Computing Surveys*, *54*(4), 1–37. https://doi.org/10.1145/3447772

- Definitions
- Data models and query languages
- Representations of schema, identity, and context
- Quality dimensions by which a knowledge graph can be assessed
- Deduction in KG
- Induction in KG
 - Graph analytics
 - Graph embeddings
 - Graph neural networks
 - Symbolic learning: rule and axiom mining

Definitions

A knowledge graph as a graph of data intended to accumulate and convey knowledge of the real world, whose nodes represent entities of interest and whose edges represent relations between these entities.

- Knowledge may be composed of simple statements,
 - "Santiago is the capital of Chile",
- or quantified statements
 - "all capitals are cities".
- Simple statements can be accumulated as edges in the data graph.
- Quantified statements require a more expressive way to represent knowledge – such as ontologies or rules

Data models and query languages

- Directed edge-labelled graphs
 - e.g. RDF
- Graph datasets
 - e..g RDF datasets
- Property graphs
 - property-value pairs
 - on nodes
 - on edges
 - typed nodes and edges

Hogan et al. (2022)

■ Translation without loss of information DELG → PG

Schema

Semantic schema

e.g. RDF Schema

Table 1. Definitions for sub-class, sub-property, domain and range features in semantic schemata

Feature	Definition	Condition	Example
Subclass	\widehat{c} -subc. of $\longrightarrow \widehat{d}$	(x) -type \rightarrow (c) implies (x) -type \rightarrow (d)	City—subc. of → Place
Subproperty	p -subp. of $\rightarrow q$	$(x)-p \rightarrow (y)$ implies $(x)-q \rightarrow (y)$	venue − subp. of → (location)
Domain	p -domain $\rightarrow c$	$(x)-p \rightarrow (y)$ implies (x) -type $\rightarrow (c)$	venue — domain → Event
RANGE	p—range— c	$(x)-p \rightarrow (y)$ implies (y) -type $\rightarrow (c)$	venue—range—Venue

Hogan et al. (2022)

Schema

Validating schema

- to represent diverse, incomplete data at large-scale → OWA
- in some scenarios → guarantee that (part of) the data graph is "complete".
- UML class diagram
- SHACL shapes

Schema

Emergent schema

Quotient graph

- partition node set into equivalence classes
 - based on their context
- replace node x by its class [x], keep the edges
 - simulation $(s p o) \Rightarrow [s] p [o]$
 - bisimulation $(s \ p \ o) \Rightarrow [s] \ p \ [o] \ \text{iff} \ \forall x \in [s] \exists z \in [o] : (x \ p \ z)$

Context

- Facts considered true with respect to a context (scope of truth)
 - temporal
 - geographic
 - provenance

Often left implicit, e.g. temporal context = now

- Representation
 - direct (with TIME, PROV, ... ontologies)
 - reification
 - higher arity
 - annotation

UNIGE - G. Falquet Knowledge graphs

Reification techniques

Hogan et al. (2022)

Higher-arity: RDF*

<<:Santiago :flight :Arica>> :valid_from 1956

Remark

```
<<:Taylor :spouse :Burton>> :from 1968 ; to 1978 .  
<<:Taylor :spouse :Burton>> :from 1981 ; to 1983 .  
\rightarrow  
<<:Taylor :spouse :Burton>> :from 1968 ; from 1981 ; to 1978 ; to 1983 .
```

UNIGE - G. Falquet Knowledge graphs

Higher-arity

Hogan et al. (2022)

DEDUCTIVE KNOWLEDGE

- Ontologies
 - Interpretation
 - Data graph (nodes, edges) \rightarrow Domain graph (entities, relations)

Hogan et al. (2022)

Hogan et al. (2022)

INDUCTIVE KNOWLEDGE

- Graph Analytics
- Knowledge Graph Embeddings
- Graph Neural Networks
- Symbolic Learning

Graph Analytics

- Discovering interesting patterns
- Techniques
 - Centrality computation
 - PageRank, ...
 - Community detection
 - Connectivity
 - Node similarity

Knowledge Graph Emdeddings

- Predicting new edges
- Identifying erroneous edges
- Machine learning techniques \rightarrow Numeric input as vectors
 - How to encode graphs as numeric vectors?
- Graph embedding
 - entity embedding: node → d-dimensional vector
 - relation embedding: edge \rightarrow d-dimensional vector

- $(s p o) \rightarrow (es rp eo)$
 - define a plausibility function for the edge
 - goal: find embeddings that
 - maximize the plausibility of positive edges (in the graph)
 - minimize the plausibility of negative edges (not in the graph)
- Tasks
 - assign a confidence level to edges
 - complete edges with missing labels
 - a basis for similarity measures
 - duplicate detection
 - recommendation

Translational model

- TransE (edges as transformers)
 - from (s p o) learn es, rp, eo
 - goal:
 - on positive examples: es + rp close to eo
 - on negative example: es + rp far from eo

UNIGE - G. Falquet Knowledge graphs 2(

(b) Relation embeddings

(c) Entity embeddings

Hogan et al. (2022)

- Limitations
 - transforms everything
 - (s p o1) (s p o2) \rightarrow tend to define eo1 = eo2
 - cyclical relations \rightarrow 0

- Improvements
 - separate hyperplanes for different relations, ...

Language models for embeddings

Leverage proven approaches for language embeddings

word \rightarrow vector

- RDF2Vec
 - build "sentences" by performing random walks in the graph
 - input to word2vec

Graph Neural Networks

- Classical NN: homogeneous topology (layers)
- GNN: topology of the data graph
- node → feature vector (fixed)
- node → state vector
 - parametric transition function, input = neighbour nodes information
 - output function
- execution until a fixpoint is reached
- the function are implemented using neural networks
 - learn the parameters to best approximate the results for the supervised nodes

example

$$\mathbf{h}_{x}^{(t)} \coloneqq \sum_{y \in \mathbf{N}(x)} f_{\mathbf{w}}(\mathbf{n}_{x}, \mathbf{n}_{y}, \mathbf{a}_{yx}, \mathbf{h}_{y}^{(t-1)})$$

$$\mathbf{o}_{x}^{(t)} \coloneqq g_{\mathbf{w}'}(\mathbf{h}_{x}^{(t)}, \mathbf{n}_{x})$$

$$\mathbf{h}_{1}^{(t)} \coloneqq f_{\mathbf{w}}(\mathbf{n}_{1}, \mathbf{n}_{3}, \mathbf{a}_{31}, \mathbf{h}_{3}^{(t-1)})$$

$$+ f_{\mathbf{w}}(\mathbf{n}_{1}, \mathbf{n}_{4}, \mathbf{a}_{41}, \mathbf{h}_{4}^{(t-1)})$$

$$\mathbf{o}_{1}^{(t)} \coloneqq g_{\mathbf{w}'}(\mathbf{h}_{1}^{(t)}, \mathbf{n}_{1})$$
...

Hogan et al. (2022)

Symbolic Learning

- Learn rules or axioms
- Based on standard data mining techniques
 - support
 - confidence

OTHER TOPICS

- 1. Creation and enrichment of knowledge graphs from external sources.
- 2. Quality dimensions by which a knowledge graph can be assessed.
- Techniques for knowledge graph refinement.
- Principles and protocols for publishing knowledge graphs.