Conceitos iniciais de probabilidade

Gilberto Pereira Sassi

Universidade Federal da Bahia Instituto de Matemática e Estatística Departamento de Estatística

Objetivo

Apresentar a teoria matemática para avaliar/estimar/decidir usando as Informações disponíveis.

Definição

- Fenômeno aleatório: situações ou acontecimentos que não podem ser previstos com certeza. Por exemplo: condições climáticas em dois dias;
- Espaço amostral: conjunto de todos os resultados possíveis de um fenômeno aleatório.
 - Por exemplo: $\Omega = \{cara, coroa\}$ no lançamento de uma moeda;
- **③** Os elementos de Ω são denominados de **pontos amostrais** e usamos a letra grega ω para representá-lo;
- **Eventos**: subconjuntos de Ω . Representamos eventos por letras do alfabeto latino em maiúsculas.
 - Por exemplo: Em um lançamento de dado, o espaço amostral é $\Omega = \{1, 2, 3, 4, 5, 6\}$ e podemos considerar o evento $A = \{A \text{ face \'e par}\}.$

Eventos

Operação com eventos

- **1 União**: $A \cup B = \{\omega \in \Omega \mid \omega \in A \text{ ou } \omega \in B\};$
- **1** Intersecção: $A \cap B = \{\omega \in \Omega \mid \omega \in A \text{ e } \omega \in B\};$
- **©** Complementação: $A^c = \{\omega \in \Omega \mid \omega \notin A\};$
- Se $A \cap B = \emptyset$, então A e B são disjuntos;
- Se $A \cap B = \emptyset$ e $A \cup B = \Omega$, então A e B são complementares.

Probabilidade de eventos

O objetivo da teoria de probabilidade é atribuir um valor entre 0 e 1 que corresponde a chance do evento A ocorrer. Este valor é chamado de probabilidade e é denotado por P(A).

Probabilidade

Definição

Uma função $P(\cdot)$ é denominada de probabilidade se satisfaz as seguintes condições:

- **1** $0 \le P(A) \le 1$ para todos os eventos $A \subset \Omega$;
- **1** $P(\Omega) = 1 e P(\emptyset) = 0;$

Observação: Note que *n* em iii. pode ser infinito.

Observação

Note que $A \cup A^c = \Omega$ e $A \cap A^c = \emptyset$, então, usando o item iii. da definição de probabilidade, temos que

$$P(\Omega) = 1 = P(A \cup A^c) = P(A) + P(A^c)$$

e, consequentemente, $P(A^c) = 1 - P(A)$.

Princípio da equiprobabilidade

Princípio da equiprobabilidade

Quando as características de um fenômeno aleatório sugerem N resultados possíveis, todos com igual probabilidade de ocorrer, a probabilidade de um evento A, com n pontos amostrais, é dada por

$$P(A)=\frac{n}{N}.$$

Exemplo

Fenômeno aleatório: Lançamento de dados junto. Então

- espaço amostral: $\Omega = \{1, 2, 3, 4, 5, 6\}$;
- **Evento**: $A = \{ \text{face par} \} = \{ 2, 4, 6 \};$
- Usando o princípio da equiprobabilidade, temos que $P(A) = \frac{3}{6} = 0, 5$.

Probabilidade frequentista

Probabilidade frequentista

Considere um evento A de um fenômeno aleatório e assuma que podemos realizar várias vezes esse fenômeno. Sejam

- N Número de repetições do fenômenos aleatório;
- n Número de vezes que o evento A foi resultado do fenômeno aleatório.

Então, a probabilidade do evento $A \in P(A) = \frac{n}{N}$.

Exemplo

- Fenômeno aleatório: lançamento de um dado;
- Suponha que um indivíduo repetiu esse fenômeno aleatório 100.000 vezes

Face	Frequência	Proporção	Porcentagem
1 2 3 4	16665 16622 16835 16545	0,1666 0,1662 0,1683 0,1655	16,66% 16,62% 16,83% 16,54%
5 6 Total	16631 16702 100.000	0,1663 0,1670	16,63% 16,70% 100,00%

$$P(A) = \frac{16.622 + 16.545 + 16.702}{100.000} = \frac{49.869}{100.000} = 0,4987, \text{ em que } A = \{\text{face par}\} = \{2,4,6\}.$$

Probabilidade subjetiva

Probabilidade subjetiva

O pesquisador utiliza sua experiência, seu conhecimento e sua cognição para determinar a probabilidade de um evento ocorrer.

Exemplo

Um especialista em conflitos armados pode atribuir um valor entre 0 e 1 para a tensão entre a Irã e os Estados Unidos se escalar até a guerra total.

Exemplo

Um médico pode atribuir uma medida entre 0 e 1 para a plausibilidade de um paciente se recuperar completamente.

Suposição teórica

Suposição teórica

Supomos um modelo matemático para a probabilidade dos eventos de um fenômeno aleatório com notação matemática $P_{\theta}(\cdot)$, em que θ é um valor real inferido usando a amostra, como veremos nas próximas aulas.

Regra da adição de probabilidades

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Exemplo

Considere os calouros de engenharia divididos em duas turmas:

Sexo	Turma		Total
	Α	В	
F M	21 5	16 8	37 13
Total	26	24	50

- Fenômeno aleatório: Selecione ao acaso um calouro;
- Eventos: F = {Calouro do sexo feminino} e {Calouro da turma B}
- Usando princípio da equiprobabilidade: $P(F) = \frac{37}{50}$, $P(B) = \frac{24}{50}$ e $P(F \cap B) = \frac{16}{50}$;
- Usando a regra da adição:

$$P(F \cup B) = P(B) + P(F) - P(B \cap F) = \frac{37 + 24 - 16}{50} = 0, 9.$$

- (□)(部)(注)(注) 注 り((

Probabilidade condicional e independência

Ideia

Alguns fenômenos aleatórios podem acontecer ou ser estudados em etapas. A informação do que ocorreu em um determinada etapa pode influenciar nas probabilidades de ocorrência das etapas sucessivas.

Definição

- Se P(B) > 0, então $P(A \mid B) = \frac{P(A \cap B)}{P(B)}$;
- Se P(B) = 0, então $P(A \mid B) = P(A)$.

Observação

Pela definição de probabilidade condicional, temos que $P(A \cap B) = P(A \mid B)P(B) = P(B \mid A)P(A)$.

Exemplo - continuação

Sabendo que o calouro de engenharia é do sexo feminino, qual a probabilidade dele ser da turma *A*?

Resposta:

- **Eventos**: $F = \{ \text{Calouro do sexo feminino} \} \text{ e } A = \{ \text{Calouro da turma A} \}.$
- Usando o princípio da equiprobabilidade, temos que $P(A \cap F) = \frac{21}{50}$ e $P(F) = \frac{37}{50}$.
- Usando probabilidade condicional, temos que

$$P(A \mid F) = \frac{P(A \cap F)}{P(F)} = \frac{\frac{21}{50}}{\frac{37}{50}} = \frac{21}{37} = 0,57.$$

Exemplo

Um restaurante oferece apenas três opções de pratos: salada Caesar, prato executivo com carne e prato executivo com peixe. O proprietário sabe que 25% dos clientes preferem salada Caesar, 40% dos clientes preferem o prato executivo com carne e 60% dos clientes são homens. Qual a probabilidade de um cliente escolher um prato executivo com peixe? Sabendo que entre os clientes que preferem o prato executivo com peixe 56% são mulheres, qual a probabilidade de um homem escolher o prato executivo com peixe?

Exemplo - Resposta

- **Eventos:** $S = \{ \text{Cliente prefere salada Caesar} \},$
 - $C = \{ Cliente prefere executivo com carne \},$
 - $P = \{\text{Cliente prefere prato executivo com peixe}\},$
 - $F = \{\text{Cliente do sexo feminino}\},\$
 - $M = \{\text{Cliente do sexo masculino}\};$
- Usando a propriedade iii. da definição de probabilidade, temos que

$$P(\Omega) = 1 = P(S) + P(C) + P(P) = 0.25 + 0.4 + P(P)$$

e, então,
$$P(P) = 1 - 0,65 = 0,35$$
.

Usando probabilidade condicional, temos que

$$P(P \mid M) = \frac{P(P \cap M)}{P(M)} = \frac{P(M \mid P)P(P)}{P(M)} = \frac{0,44 \cdot 0,35}{0,6} = 0,25.$$

Independência de eventos

Ideia

As vezes, a acorrência (ou não) do evento *B* de um fenômeno aleatório não afeta a ocorrência (ou não) de evento *A* de um fenômeno aleatório seguinte. Quando isso ocorre, dizemos que os eventos são independentes.

Definição

Dois eventos são independentes se a informação da ocorrência (ou não) do evento B não altera a probabilidade de A, ou seja,

$$P(A \mid B) = P(A).$$

Observação

Se A e B são independentes, então

$$P(A \mid B)P(B) = P(A)P(B) = P(A \cap B)$$

е

$$P(B \mid A) = \frac{P(A \cap B)}{P(A)} = \frac{P(A)P(B)}{P(A)} = P(B).$$

Exemplo

Uma empresa produz peças em duas máquinas ($I \in II$) que podem apresentar desajustes com probabilidade 0,05 e 0,10, respectivamente. No início do dia de operação, um teste é realizado e, caso a máquina esteja desajustada, ela ficará sem operar nesse dia passando por revisão técnica. Suponha que as duas não sofrem interferência uma da outra. Qual a probabilidade de pelo menos uma máquina funcionar? Qual a probabilidade das duas máquinas precisarem de ajuste no mesmo dia?

Exemplo - solução

- Eventos: O₁ = {Máquina I está desajustada} e
 O₂ = {Máquina II está desajustada};
- **Probabilidade**: $P(O_1) = 0.05 \text{ e } P(O_2) = 0.1;$
- O evento pelo menos uma máquina funciona é descrito por $O_1^c \cup O_2^c$, isto é,

$$\begin{split} P[O_1^c \cup O_2^c)] &= P(O_1^c) + P(O_2^c) - P(O_1^c \cap O_2^c) \\ &= (1 - P(O_1)) + (1 - P(O_2)) - P(O_1^c) P(O_2^c) \\ &= (1 - 0,05) + (1 - 0,1) - (1 - 0,05) \cdot (1 - 0,1) = 0,995. \end{split}$$

Note que

$$P(\Omega) = 1 = P\left(\left(O_1^c \cup O_2^c\right) \bigcup \left(O_1^c \cup O_2^c\right)^c\right)$$
$$= P\left(\left(O_1^c \cup O_2^c\right)\right) + P\left(\left(O_1 \cap O_2\right)\right)$$

e, então, $P(O_1 \cap O_2) = 1 - 0,995 = 0,005$.

Partição

Os eventos C_1, \ldots, C_k formam uma partição do espaço amostral Ω se

- **0** $C_i \cap C_j = \emptyset$ se $i \neq j$, ou seja, C_i e C_j são disjuntos;

Figura 1: Ilustração de uma partição.

Teorema da probabilidade total

Considere C_1, C_2, \ldots, C_k uma partição de Ω e o eventos $A \subset \Omega$, então

$$P(A) = P(A \mid C_1)P(C_1) + P(A \mid C_2)P(C_2) + \cdots + P(A \mid C_k)P(C_k).$$

Figura 2: Ilustração – Teorema de probabilidade total.

Exemplo

Suponha que um fabricante de sorvetes recebe 20% de todo o leite que utiliza fazenda F_1 , 30% da fazenda F_2 e 50% da fazenda F_3 . A ANVISA inspecionou as fazendas de surpresa e observou que 20% do leite produzido por F_1 estava adulterado com água, enquanto que F_2 e F_3 essa era de 5% e 2%, respectivamente. Na planta industrial da fabricante de sorvetes, os galões de leite são armazenados sem identificação de origem. Para um galão escolhido ao acaso, qual a probabilidade do leite estar adulterado?

Exemplo - solução

- Eventos: A = {Galão adulterado}, F₁ = {Galão da fazenda F₁},
 F₂ = {Galão da fazenda F₂} e F₃ = {Galão da fazenda F₃};
- Probabilidades:

$$P(A \mid F_1) = 0,2$$
 $P(F_1) = 0,2$
 $P(A \mid F_2) = 0,05$ $P(F_1) = 0,3$
 $P(A \mid F_3) = 0,02$ $P(F_3) = 0,5$

Usando o teorema da probabilidade total, temos que

$$P(A) = P(A \mid F_1)P(F_1) + P(A \mid F_2)P(F_2) + P(A \mid F_2)P(F_3)$$

= 0, 2 \cdot 0, 2 + 0, 05 \cdot 0, 3 + 0, 02 \cdot 0, 5
= 0, 065.

Teorema de Bayes

Ideia

Conhecendo as probabilidades $P(A \mid B)$, P(A) e P(B), desejamos calcular a probabilidade $P(B \mid A)$. Interpretação: se A é um sintoma e B é um doença, um médico deseja calcular a probabilidade do paciente ter a doença B se o paciente tem o sintoma A, isto é, $P(B \mid A)$.

Teorema de Bayes

Considere C_1, C_2, \ldots, C_k uma partição do espaço amostral Ω e seja $A \subset \Omega$ um evento. Assuma que conhecemos as probabilidades $P(A \mid C_1), P(A \mid C_2), \ldots, P(A \mid C_k), P(C_1), P(C_2), \ldots, P(C_k)$. Então,

$$P(C_j \mid A) = \frac{P(A \mid C_j)P(C_j)}{P(A \mid C_1)P(C_1) + P(A \mid C_2)P(C_2) + \cdots + P(A \mid C_k)P(C_k)}$$

em que $j = 1, \ldots, k$.

Interpretação

Suponha que C_1, \dots, C_k , são defeitos ou falhas que apresentam o mal funcionamento A de um determinado equipamento. Assuma que conhecemos as probabilidades do equipamento com o defeito C_i ter o mal funcionamento A: $P(A \mid C_1), \dots, P(A \mid C_k)$ e a probabilidade do equipamento ter o defeito C_i : $P(C_1), \dots, P(C_k)$. Entiao, se o equipamento tem o mal funcionamento A, ele tem o defeito C_i :or probabilidade

$$P(C_i \mid A) = \frac{P(A \mid C_i)P(C_i)}{P(A \mid C_1)P(C_1) + P(A \mid C_2)P(C_2) + \cdots + P(A \mid C_k)P(C_k)}$$

para $i = 1, \ldots, k$.

Exemplo

Suponha que um fabricante de sorvetes recebe 20% de todo o leite que utiliza fazenda F_1 , 30% da fazenda F_2 e 50% da fazenda F_3 . A ANVISA inspecionou as fazendas de surpresa e observou que 20% do leite produzido por F_1 estava adulterado com água, enquanto que F_2 e F_3 essa porcentagem era de 5% e 2%, respectivamente. Na planta industrial da fabricante de sorvetes, os galões de leite são armazenados sem identificação de origem. A equipe do controle de qualidade testou um galão e verificou que ele está adulterado, qual a probabilidade dele ser proveniente da fazenda F_1 ?

Solução:

- Eventos: A = {Galão adulterado}, F₁ = {Galão da fazenda F₁}, F₂ = {Galão da fazenda F₂} e
 F₃ = {Galão da fazenda F₃};
- Probabilidades:

$$\begin{array}{c|cccc} P(A \mid F_1) = 0, 2 & & P(F_1) = 0, 2 \\ P(A \mid F_2) = 0, 05 & & P(F_1) = 0, 3 \\ P(A \mid F_3) = 0, 02 & & P(F_3) = 0, 5 \end{array}$$

Usando o Teorema de Bayes, temos que

$$\begin{split} P(F_1 \mid A) &= \frac{P(A \mid F_1)P(F_1)}{P(A \mid F_1)P(F_1) + P(A \mid F_2)P(F_2) + P(A \mid F_3)P(F_3)} \\ &= \frac{0, 2 \cdot 0, 2}{0, 2 \cdot 0, 2 + 0, 05 \cdot 0, 3 + 0, 02 \cdot 0, 5} = 0, 62. \end{split}$$