intro

- foreshadowing/context: under all prob computations are sample spaces
- rarely work with sample spaces directly, unless they're simple (heads/tails)
 - (so, we start here)

lec 1

- what is prob?
 - objective prob: long run freq of occurrence (eg heads in coin flip)
 - often called frequentist/classical methods.
 - used more often in undergrad CMU
 - subjective prob: a possibly informed belief in rate of occurrence of event
 - can called bayesian
- set notation
 - $A\supset B, A\subset B, A\cup B, A\cap B, \overline{A}$ aka A^C
 - let the set of all experimental outcomes $\Omega = A \cup \overline{A}$
 - $A \cap B = \emptyset \Longrightarrow A$ and B are mutually exclusive aka disjoin
 - ► distributive/associative laws
 - de morgan's $(\overline{A \cup B} = \overline{A} \cap \overline{B}, \text{ etc})$
- experiments
 - passive
 - ► active
- sample space (Ω)
 - two coins tossed? $\Omega = \{HH, HT, TH, TT\}$
 - HH is simple event
 - TH is compound event ("at least one tail")
 - free throws until miss? $\Omega = \{M, HM, HHM, ...\}$
 - ► relative freqs of above? don't know! need more info