$8_{11} (K8a_9)$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{10} - u^9 + 3u^8 - 3u^7 + 5u^6 - 5u^5 + 4u^4 - 4u^3 + 3u^2 - 2u + 1 \rangle$$

$$I_2^u = \langle u^3 + u + 1 \rangle$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 13 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{10} - u^9 + 3u^8 - 3u^7 + 5u^6 - 5u^5 + 4u^4 - 4u^3 + 3u^2 - 2u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{3} \\ u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{6} - u^{4} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} \\ u^{5} + u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{5} - 2u^{3} + u^{2} - u + 1 \\ -u^{9} - 3u^{7} - 4u^{5} + u^{4} - u^{3} + 2u^{2} + 1 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^9 + 4u^8 8u^7 + 8u^6 8u^5 + 12u^4 + 4u^2 4u 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{10} - u^9 + 3u^8 - 3u^7 + 5u^6 - 5u^5 + 4u^4 - 4u^3 + 3u^2 - 2u + 1$
c_2, c_4	$u^{10} - 2u^9 - u^8 + 5u^7 - 3u^6 - 4u^5 + 12u^4 - 13u^3 + 5u^2 - u + 2$
c_3, c_7, c_8	$u^{10} - u^9 + 5u^8 - 5u^7 + 9u^6 - 9u^5 + 6u^4 - 6u^3 + u^2 + 1$
c_6	$u^{10} + 5u^9 + 13u^8 + 19u^7 + 17u^6 + 7u^5 - 2u^3 + u^2 + 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{10} + 5y^9 + 13y^8 + 19y^7 + 17y^6 + 7y^5 - 2y^3 + y^2 + 2y + 1$
c_2, c_4	$y^{10} - 6y^9 + \dots + 19y + 4$
c_3, c_7, c_8	$y^{10} + 9y^9 + 33y^8 + 59y^7 + 41y^6 - 21y^5 - 44y^4 - 6y^3 + 13y^2 + 2y + 1$
<i>c</i> ₆	$y^{10} + y^9 + 13y^8 + 11y^7 + 45y^6 + 35y^5 + 12y^4 + 2y^3 + 9y^2 - 2y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.584958 + 0.771492I	4.93719 - 2.31006I	0.86369 + 3.52133I
u = -0.584958 - 0.771492I	4.93719 + 2.31006I	0.86369 - 3.52133I
u = 0.248527 + 0.782547I	-0.448055 + 1.231690I	-4.90177 - 5.44908I
u = 0.248527 - 0.782547I	-0.448055 - 1.231690I	-4.90177 + 5.44908I
u = 0.761643 + 0.208049I	2.41360 - 3.47839I	-0.80497 + 2.79515I
u = 0.761643 - 0.208049I	2.41360 + 3.47839I	-0.80497 - 2.79515I
u = -0.449566 + 1.164790I	-4.87665 - 4.14585I	-8.98134 + 3.97600I
u = -0.449566 - 1.164790I	-4.87665 + 4.14585I	-8.98134 - 3.97600I
u = 0.524355 + 1.163410I	-0.38115 + 8.28632I	-4.17560 - 6.14881I
u = 0.524355 - 1.163410I	-0.38115 - 8.28632I	-4.17560 + 6.14881I

II.
$$I_2^u = \langle u^3 + u + 1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u+1 \\ -1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -u \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -u - 1 \\ -u^2 + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u-1 \\ -u^{2}+u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{2}+1 \\ u^{2}+u \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
$c_1, c_3, c_5 \ c_7, c_8$	$u^3 + u + 1$
c_2, c_4	$(u+1)^3$
c_6	$u^3 + 2u^2 + u - 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_5 c_7, c_8	$y^3 + 2y^2 + y - 1$
c_{2}, c_{4}	$(y-1)^3$
c_6	$y^3 - 2y^2 + 5y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.341164 + 1.161540I	-1.64493	-6.00000
u = 0.341164 - 1.161540I	-1.64493	-6.00000
u = -0.682328	-1.64493	-6.00000

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5	$(u^3 + u + 1)(u^{10} - u^9 + \dots - 2u + 1)$
c_2, c_4	$((u+1)^3)(u^{10}-2u^9+\cdots-u+2)$
c_3, c_7, c_8	$(u^3 + u + 1)(u^{10} - u^9 + 5u^8 - 5u^7 + 9u^6 - 9u^5 + 6u^4 - 6u^3 + u^2 + 1)$
c_6	$(u^3 + 2u^2 + u - 1)$ $\cdot (u^{10} + 5u^9 + 13u^8 + 19u^7 + 17u^6 + 7u^5 - 2u^3 + u^2 + 2u + 1)$

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_5	$(y^3 + 2y^2 + y - 1)$ $\cdot (y^{10} + 5y^9 + 13y^8 + 19y^7 + 17y^6 + 7y^5 - 2y^3 + y^2 + 2y + 1)$
c_2, c_4	$((y-1)^3)(y^{10}-6y^9+\cdots+19y+4)$
c_3, c_7, c_8	$(y^3 + 2y^2 + y - 1)$ $\cdot (y^{10} + 9y^9 + 33y^8 + 59y^7 + 41y^6 - 21y^5 - 44y^4 - 6y^3 + 13y^2 + 2y + 1)$
c_6	$(y^3 - 2y^2 + 5y - 1)$ $\cdot (y^{10} + y^9 + 13y^8 + 11y^7 + 45y^6 + 35y^5 + 12y^4 + 2y^3 + 9y^2 - 2y + 1)$