NCTU EELAB Fall	
<u>區段分數</u> 0/0	
Class *	
O DEE222	
● DEE320	
Student ID *	
0710127	
Name *	
李奕萱	

Q1. Find out the node combinations with the same voltage level on the breadboard below. *multiple choice

區段分數 30/30

!

Q2. Answer the following questions about resistors.

區段分數 20/30

Color Code Table						
Color	Digit/ Multiplier	Tolerance	Color	Digit/ Multiplier	Tolerance	
Black	0		Blue	6	±0.25%	
Brown	1	±1%	Purple	7	±0.1%	
Red	2	±2%	Gray	8	±0.05%	
Orange	3		White	9		
Yellow	4		Gold	-1	±5%	
Green	5	±0.5%	Silver	-2	±10%	

(1) According the color code, identify the value of resistance. *

10/10

From left to right: gray.brown.orange.silver

 $\mathbf{(Ax10+B)x10}^{\mathrm{C}}\mathbf{\pm D\%}$

- \bigcirc 810 $\Omega \pm 5\%$
- \bigcirc 8.1 k Ω ± 5%
- 8.1 kΩ ± 10%

 \times (2) Given a 1 Ω resistor with 5% error, what is the color code? 0/10 \star

(a,b,c) = (black, brown, black)

×

- \bigcirc (a,b,c) = (black, brown, red)
- (a,b,c) = (brown, black, black)
- (a,b,c) = (brown, black, gold)

正確答案

(a,b,c) = (brown, black, gold)

 \checkmark (3) In Lab1, we'll measure resistors in an unusual way, i.e., parallel 1 Ω, 1 kΩ, 1 MΩ with human body. Make a guess that which resistor will have the largest difference between nominal value and measured value.

Hint: you can measure human body resistance with your multimeter while answering.

- (1 Ω
- \bigcirc 1 k Ω
- 1 MΩ

~

Q3. Answer the following questions about multimeters with pictures (a) to (f).

區段分數 30/30

√ (1) How do you measure a resistor? *

10/10

- (a) (d)
- (a) (e)
- (b) (f)
- (c) (d)

✓ (2) How do you measure voltage? *

- (a) (d)
- (a) (f)
- (b) (e)
- (c) (f)

√ (3) How do you measure current? *	10/10
(b) (d)	
(a) (e)	
(b) (e)	✓
(c) (f)	

Q4. Which description is NOT the reason why we need to limit the current of voltage source.

區段分數 10/10

✓ ★ 10/10

- Protect measuring instruments or loading.
- Avoid large current flowing through the system and burning the elements.
- Test the limitation of instruments.

/

這份表單是在國立交通大學中建立。 - 服務條款

Google 表單