MATH-UA 349: Homework 2

James Pagan, February 2024

Professor Kleiner

Contents

1	Problem 1	2
2	Problem 2	2
3	Problem 3	3
4	Problem 4	4
5	Problem 5	4
6	Problem 6	5
7	Problem 7	6
8	Problem 8	7
9	Problem 9	7
10	Problem 10	8

1 Problem 1

Let α be algebraic, and suppose n is the smallest integer for which there exist $b_n, \ldots, b_0 \in \mathbb{C}$ such that

$$b_n(\alpha)^n + \dots + b_1(\alpha) + b_0 = 0.$$

Consider the complex vector space $\mathbb{C}[\alpha]/(b_n(\alpha)^n + \cdots + b_1(\alpha) + b_0)$. We claim that all polynomials $p \in \mathbb{C}[\alpha]$ with $\deg p \geq n$ are equivalent to some $p \in \mathbb{C}[\alpha]$, which is either zero or has degree smaller than n. We prove this via the division algorithm: there exists polynomials q and r such that

$$p = q(b_n(\alpha)^n + \dots + b_1(\alpha) + b_0) + r$$

$$\cdot = q(0) + r$$

$$= r.$$

where r = 0 or $\deg r < n$. Thus the elements of $\mathbb{C}[\alpha] / (b_n(\alpha)^n + \cdots + b_1(\alpha) + b_0)$ are of the form

$$c_{n-1}(\alpha)^{n-1} + \cdots + c_1(\alpha) + c_0$$

for $c_{n-1}, \ldots, c_0 \in \mathbb{C}$. None of these polynomials are zero by the minimality of n. It is clear that this space is spanned the linearly independent list $1, \alpha, \ldots, \alpha^{n-1}$ — thus it has dimension n.

The proof ends here, since the finite-dimensional vector space $\mathbb{C}[\alpha]/(b_n(\alpha)^n+\cdots+b_1(\alpha)+b_0)$ is spanned by $\{\alpha_n\}_{n\geq 0}$.

2 Problem 2

Part (a)

Proof. Let \mathfrak{a} and \mathfrak{b} be ideals of R. Let us verify the conditions that $\mathfrak{a} + \mathfrak{b}$ is an ideal:

- 1. **Additive**: Since (R, +) is an Abelian group with subgroups $(\mathfrak{a}, +)$ and $(\mathfrak{b}, +)$, $\mathfrak{a} + \mathfrak{b}$ is an additive subgroup of R.
- 2. **Multiplicative**: Let $r \in R$ and $a + b \in \mathfrak{a} + \mathfrak{b}$ (with $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$). Then $ra \in \mathfrak{a}$ and $rb \in \mathfrak{b}$, so $r(a + b) = ra + rb \in \mathfrak{a} + \mathfrak{b}$.

We conclude that $\mathfrak{a} + \mathfrak{b}$ is an ideal of R. To see that $\mathfrak{a} \cap \mathfrak{b}$ is an ideal, we have the following:

1. Additive: Since (R, +) is an Abelian group with subgroups $(\mathfrak{a}, +)$ and $(\mathfrak{b}, +)$, $\mathfrak{a} \cap \mathfrak{b}$ is an additive subgroup of R.

2. Multiplicative: Let $r \in R$ and $x \in \mathfrak{a} \cap \mathfrak{b}$. Then $x \in \mathfrak{a}$ and $x \in \mathfrak{b}$, so $rx \in \mathfrak{a}$ and $rx \in \mathfrak{b}$. We deduce that $rx \in \mathfrak{a} \cap \mathfrak{b}$.

Hence, $\mathfrak{a} \cap \mathfrak{b}$ is an ideal of R.

Part (b)

Proof. Suppose $\mathfrak{a}=(a)$ and $\mathfrak{b}=(b)$ are ideals of R. We claim that $\mathfrak{ab}=(ab)$ by the following:

- 1. Suppose $x \in \mathfrak{ab}$; then $x = a_0b_0$ for some $a_0 \in (a)$ and $b_0 \in (b)$. In turn, $a_0 = ra$ and $b_0 = sb$ for some $r, s \in R$. Hence x = rsab, so $x \in (ab)$. We deduce that $\mathfrak{ab} \subseteq (ab)$.
- 2. Suppose $x \in (ab)$; then x = rab for some $r \in R$. Since $ra \in (a)$ and $b \in (b)$, we see that $x = (ra)(b) \in \mathfrak{ab}$. We deduce that $(ab) \subseteq \mathfrak{ab}$.

Hence $\mathfrak{ab} = (ab)$, so \mathfrak{ab} is an ideal. This result is false in general: consider the product of ideals

$$(x,y) \times (z) \subseteq \mathbb{Z}[x,y,z]$$
.

It is clear that z(x+y) and $z^2(x)$ lie in $(x,y)\times(z)$. However, their sum has the factorization

$$z(x + y) + z^{2}(x) = z(zx + x + y),$$

which does not belong to $(x,y) \times (z)$ since no factor lies in (x,y). We conclude that $(x,y) \times (z)$ is not an ideal.

3 Problem 3

Part (a)

Proof. Select $x \in [0,1]$ arbitrarily. Define F as the set containing the sets $S_a \stackrel{\text{def}}{=} \{f \in \mathcal{C}([0,1]) \mid f(0) = a\}$ for all $a \in \mathbb{R}$, endowed with the following operations:

$$S_a + S_b = S_{a+b}$$
 and $S_a S_b = S_{ab}$.

It is trivial that F is a field under these operations. The nontrivial properties of this verification are elaborated upon below:

1. Additive Conditions: The additive identity is clearly S_0 , and the additive inverse of S_a for $a \in \mathbb{R}$ is S_{-a} .

- 2. Multiplicative Conditions: The multiplicative identity is clearly S_1 , and the multiplicative inverse of S_a for nonzero $a \in \mathbb{R}$ is $S_{1/a}$.
- 3. **Distributive Laws**: The distributive laws on F follow from those on \mathbb{R} .

Thus F is a field. Define a mapping $\phi : \mathcal{C}([0,1]) \to F$ by $\phi(f) = S_{f(x)}$. Observe that for all $f, g \in \mathcal{C}([0,1])$, we have

$$\phi(f+g) = S_{f(x)+g(x)} = S_{f(x)} + S_{g(x)} = \phi(f) + \phi(g)$$
$$\phi(fg) = S_{f(x)g(x)} = S_{f(x)}S_{g(x)} = \phi(f)\phi(g).$$

Noting that $\phi(1) = S_1$, yields that ϕ is a homomorphism. The kernel of ϕ is I_x : all $f \in \mathcal{C}([0,1])$ such that f(x) = 0. Thus I_x is an ideal of $\mathcal{C}([0,1])$, and

$$\mathcal{C}([0,1])/I_x \cong F$$

is an isomorphism. Thus $\mathcal{C}(0,1)/I_x$ is a field, so I_x must be maximal.

4 Problem 4

Proof. It is clear that $\alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1 = 0$, so

$$\alpha^5 - 1 = (\alpha - 1)(\alpha^4 + \alpha^3 + \alpha^2 + \alpha + 1) = (\alpha - 1)(0) = 0$$

and $\alpha^5 = 1$. Therefore,

$$(\alpha^3 + \alpha^2 + \alpha)(\alpha^5 + 1) = (\alpha^3 + \alpha^2 + \alpha)2 = 2\alpha^3 + 2\alpha^2 + 2\alpha$$

5 Problem 5

Part (a)

Proof. Suppose that $\beta \in \overline{R}$ has the representation $\beta = r_n \alpha^n + \cdots + r_1 \alpha + r_0$ for some $r_0, \ldots, r_n \in R$. Then

$$a^n \beta = r_n(a^n \alpha^n) + \dots + r_1(a^n \alpha) + r_0(a^n) \tag{1}$$

$$= r_0 a_n + r_1 a^{n-1} + \dots + r_n, \tag{2}$$

which is a constant polynomial. Then there exists b such that \bar{b} is the expression (2), which is $a^n\beta$. We conclude that $\beta=\alpha^n\bar{b}$.

Part (b)

Proof. A clear corollary of Part (a) is that $\phi(b) = \alpha^k \bar{b}$ for some integer k. Therefore,

$$\phi(b) = 0 \iff \alpha^k b = 0 \text{ for some } k$$
$$\iff \alpha^k b(a^{2k}) = 0(a^{2k}) = 0 \text{ for some } k$$
$$\iff a^k b = 0 \text{ for some } k,$$

as desired.

Part (c)

Proof. Using the result from Part (b), we utilize the following chain of equivalencies: for all $b \in R$,

$$\phi(b) = 0$$
 for all $b \in R \iff a^k b = 0$ for all $b \in R$ and some $k \iff a^k(1) = 0$ for some $k \iff a$ is nilpotent.

This completes the proof.

6 Problem 6

Part (a)

Proof. Suppose that \mathfrak{a} and \mathfrak{b} are disjoint relateively prime ideals of R. We claim that

$$R \cong (R/\mathfrak{b}) \times (r/\mathfrak{a})$$

by the following isomorphism: if $x \in R$ and x = a + b for $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$, then $\phi(a + b) = (a, b)$.

Claim 1. ϕ is a homomorphism.

Proof. We are ready to prove the two homomorphism identities. If we let $x = a_1 + b_1$ and $y = a_2 + b_2$, we have

$$\phi(x+y) = \phi(a_1 + a_2 + b_1 + b_2)$$

$$= (a_1 + a_2, b_1 + b_2)$$

$$= (a_1, b_1) + (a_2, b_2)$$

$$= \phi(x) + \phi(y).$$

As for the multiplicative condition, observe that $a_1b_2 \in \mathfrak{a}$ and $a_1b_2 \in \mathfrak{b}$, so $a_1b_2 = 0$. Similarly $b_1a_2 = 0$, so

$$\phi(xy) = \phi((a_1 + b_1)(a_2 + b_2))$$

$$= \phi(a_1a_2 + a_1b_2 + b_1a_2 + b_1b_2)$$

$$= \phi(a_1a_2 + b_1b_2)$$

$$= (a_1a_2, b_1b_2)$$

$$= (a_1, b_1)(a_2, b_2)$$

$$= \phi(x)\phi(y).$$

Since the unital condition is trivial, we conclude that ϕ is a homomorphism.

It is clear that ϕ is surjective: for all $(a,b) \in (R/\mathfrak{b}) \times (R/\mathfrak{a})$, we have $\phi(a+b) = (a,b)$. Injectivity follows from the fact the representation x = a + b is unique. Suppose we set $x = a_1 + b_1 = a_2 + b_2$ (for $a_1, a_2 \in \mathfrak{a}$ and $b_1, b_2 \in \mathfrak{b}$). Then $a_1 - a_2 = b_1 - b_2$ thus each side must be zero, implying $a_1 = a_2$ and $b_1 = b_2$. We deduce that ϕ is the desired isomorphism.

Part (b)

Proof. The idempotents that generate $(R/\mathfrak{b}) \times (R/\mathfrak{a})$ are the elements (0,1) and (1,0) — which if we let a+b=1, are $\boxed{b \text{ and } a}$,

or equivalently 1-a and 1-b. This may be verified by a quick computation.

7 Problem 7

Part (a)

Proof. Let \mathfrak{a} and \mathfrak{b} be two ideals of R such that $\mathfrak{a} + \mathfrak{b} = R$. We make two claims:

- 1. Suppose $ab \in \mathfrak{ab}$ for $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$. Then as \mathfrak{a} is an ideal, $ab \in \mathfrak{a}$; likewise, $ab \in \mathfrak{b}$. We deduce that $ab \in \mathfrak{a} \cap \mathfrak{b}$, so $\mathfrak{ab} \subseteq \mathfrak{a} \cap \mathfrak{b}$.
- 2. Suppose $x \in \mathfrak{a} \cap \mathfrak{b}$; then $x \in \mathfrak{a}$ and $x \in \mathfrak{b}$. If we define $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$ such that a + b = 1, we obtain $xa \in \mathfrak{ba}$ and $xb \in \mathfrak{ab}$. Thus $x = xa + xb \in \mathfrak{ab}$, so $\mathfrak{a} \cap \mathfrak{b} \subseteq \mathfrak{ab}$.

We conclude that $\mathfrak{ab} = \mathfrak{a} \cap \mathfrak{b}$.

Part (b)

Proof. Suppose $\mathfrak{a} + \mathfrak{b} = R$, and $c, d \in R$. Let a + b = 1 (where $a \in \mathfrak{a}$ and $b \in \mathfrak{b}$); we claim ad + bc lies in $c + \mathfrak{a}$ and $d + \mathfrak{b}$. For the first relation, we have

$$ad + bc \equiv bc \equiv (1 - a)c \equiv c \pmod{\mathfrak{a}}$$

and for the second relation, we have

$$ad + bc \equiv ad \equiv (1 - b)d \equiv d \pmod{\mathfrak{b}}.$$

This completes the proof.

8 Problem 8

Proof. The answer is $\lfloor \text{false} \rfloor$; there are no integral domains of order 15. Suppose for contradiction that such an ring R exists. We utilze the following claim:

Claim 2. All finite domains are fields.

Proof. Let R be a finite domain. Then for nonzero $a \in R$, consider the set

$${a, a^2, \dots, a^{|R|+1}}.$$

By the Pigeonhole Principle, two elements of this set must be equal: $a^i = a^j$ for $i, j \in \{1, ..., n\}$ with i < j. Then $a^{i-j} = 1$ and $a^{i-j-1} = a^{-1}$, so all nonzero elements of R are invertible. We conclude that R is a field.

Thus, R is a field. We attain the desired contradiction noting that no finite field of order 15 exists.

9 Problem 9

Proof. Let R be a ring of order 10. The additive group (R, +) is a finite Abelian group of order ten, of which there is one possibility: C_{10} . Then R has four additive generators — namely, elements of order 10.

Claim 3. The multiplicative identity e of R has additive order 10.

Proof. Let $g \in R$ have additive order 10. Lagrange's Theorem ensures that the additive order of e must divide ten; if e has order 2, then

$$0 \neq g + g = g(e + e) = e(0) = 0$$

a contradiction. Assuming that e has order 5 yields similar nonsense:

$$0 \neq g + g + g + g + g + g = g(1 + 1 + 1 + 1 + 1) = g(0) = 0.$$

We conclude that e must have additive order 10.

Then we can define an isomorphism $R \cong \mathbb{Z}_{10}$ that maps the additive identity to 0 and the multiplicative identity to 1. Hence all rings of order 10 are isomorphic to \mathbb{Z}_{10} .

10 Problem 10

Proof. The elements of the commutative ring $\mathbb{Z}_2[x]/(x^3+x+1)$ are precisely the eight polynomials in $\mathbb{Z}_2[x]$ of degree 2 or smaller, as ensured by the Division Algorithm. We must demonstrate that the seven nonzero polynomials are units: we have that

- 1. $1 \times 1 = 1$.
- 2. $x(x^2+1) = x^3 + x = 1$.
- 3. $(x+1)(x^2+x) = x^3+2x^2+x = x^3+x = 1$.

4.
$$(x^2 + x + 1)(x^2) = x^4 + x^3 + 1 = (x + 1)(x^3 + x + 1) - 2x - 1 = 1$$
.

We conclude that $\mathbb{Z}_2[x]/(x^3+x+1)$ is a field. Likewise, $\mathbb{Z}_3[x]/(x^3+x+1)$ consists of polynomials of degree two or smaller — however,

$$(x-1)(x^2+x-1) = x^3-2x+1 = x^3+x+1 = 0.$$

Thus $\mathbb{Z}_3[x]/(x^3+x+1)$ is not an integral domain, so it cannot be a field.