МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ имени М.В. ЛОМОНОСОВА МЕХАНИКО-МАТЕМАТИЧЕСКИЙ ФАКУЛЬТЕТ

А. В. Чашкин ЛЕКЦИИ

ПО ДИСКРЕТНОЙ МАТЕМАТИКЕ Учебное пособие

Содержание

1 Линейные коды

2

1 Линейные коды

Код G называется линейным (n, k)-кодом, если он является k-мерным линейным подпространством пространства \mathbb{B}^n . Справедлива следующая теорема о кодовом расстоянии линейного кода.

Теорема 1.1 B каждом линейном коде G кодовое расстояние d равно весу его минимального ненулевого элемента:

$$d = \min_{\mathbf{g} \neq 0, \mathbf{g} \in G} ||\mathbf{g}||.$$

ДОКАЗАТЕЛЬСТВО. Так как нулевой набор всегда принадлежит линейному коду, то, очевидно, что кодовое расстояние не превосходит веса минимального ненулевого элемента. Допустим, что $d < min||\mathbf{g}||$. В этом случае в G найдутся два элемента $\mathbf{g_1}$ и $\mathbf{g_2}$, расстояние между которыми меньше d. Следовательно,

$$||\mathbf{g}_1 \oplus \mathbf{g}_2|| = d(\mathbf{g}_1, \mathbf{g}_2) < d.$$

С другой стороны, сумма $\mathbf{g}_1 \oplus \mathbf{g}_2$ обязательно приналежит G. Поэтому $||\mathbf{g}_1 \oplus \mathbf{g}_2|| \geq d$. Пришли к противоречию. Теорема доказана.

Теорема 1.1 является частным случаем следующего более общего утверждения об ошибках, исправляемых линейными кодами

Теорема 1.2 В линейном коде множества исправляемых ошибок всех элементов совпадают.

ДОКАЗАТЕЛЬСТВО. Допустим, что теорема не верна, и в каком-нибудь линейном коде G найдутся такие два элемента \mathbf{g}_1 и \mathbf{g}_2 , что вектор с принадлежит множествуисправляемых ошибок элемента \mathbf{g}_2 . Тогда для вектора $\mathbf{g}_1 \oplus \mathbf{c}$ ближайшим элементом кода будет \mathbf{g}_1 , а для вектора $\mathbf{g}_2 \oplus \mathbf{c}$ найдется элемент кода \mathbf{g}_3 , расстояние до которого не меньше, чем до \mathbf{g}_2 . Следовательно, существует вектор \mathbf{c}' такой, что $\mathbf{g}_2 \oplus \mathbf{c} \oplus \mathbf{c}' = \mathbf{g}_3$ и $||\mathbf{c}'|| \leq ||\mathbf{c}||$. Но тогда вектор $\mathbf{c} \oplus \mathbf{c}' = \mathbf{g}_2 \oplus \mathbf{g}_3 = \mathbf{g}_4$ является элементом кода G. Поэтому расстояние от вектора $\mathbf{g}_1 \oplus \mathbf{c} = \mathbf{g}_1 \oplus \mathbf{g}_4 \oplus \mathbf{c}$ до элемента $\mathbf{g}_1 \oplus \mathbf{g}_4$ не меньше, чем расстояние до \mathbf{g}_1 , т. е. вектор \mathbf{c} не принадлежит множествуисправляемых ошибок элемента \mathbf{g}_1 . Полученное противоречие показывает, что множества исправляемых ошибок всех элементов совпадают. Теорема доказана.

Теорема 1.2 позволяет говорить о множестве ошибок, исправляемых линейным кодом. Пусть линейный код G исправляет ошибки из множества C. Повторяя доказательство теоремы 1.2, нетрудно показать, что

$$\mathbf{c}_i \oplus \mathbf{c}_j \not\in G$$
 для всех $\mathbf{c}_i, \mathbf{c}_j$ из C . (1.1)

Действительно, если в C найдутся такие \mathbf{c}_i и \mathbf{c}_j , что $\mathbf{c}_i \oplus \mathbf{c}_j \in G$, то для каждого из этих векторов найдется по крайней мере два ближайших элемента кода — нулевой и $\mathbf{c}_i \oplus \mathbf{c}_j$.

Булева (k, n)-матрица G называется *порождающей* матрицей линейного кодаG, если линейная оболочка $\langle \mathbf{g}_1, \dots, \mathbf{g}_k \rangle$ строк матрицы G совпадает с G. При помощи порождающей матрицы G очень просто выполняется процедура кодирования: для преобразования информационного вектора \mathbf{a} длины k в кодовое слово \mathbf{g} длины n достаточно вычислить произведение $\mathbf{a}G$.

Булева (n-k,n)-матрица \mathbf{H} называется проверочной матрицей линейного кода G, если $\mathbf{Hg}=\mathbf{0}$ для каждого $\mathbf{g}\in G$ и $\mathbf{Hx}\neq \mathbf{0}$ для каждого $\mathbf{x}\not\in G$. Вектор \mathbf{Hx} называется синдромом вектора \mathbf{x} и обозначается символом S. Нетрудно видеть, что $\mathbf{Hc_i}\neq \mathbf{Hc_j}$ для любых исправляемых кодом G ошибок $\mathbf{c_i}$ и $\mathbf{c_j}$, так как в противном случае $\mathbf{H}(\mathbf{c_i}\oplus \mathbf{c_j})=\mathbf{0}$ и, следовательно, $\mathbf{c_i}\oplus \mathbf{c_j}\in G$, что, очевидно, невозможно. Таким образом, справедлива следующая теорема.

Теорема 1.3 Для того, чтобы матрица **H** была проверочной матрицей кода, исправляющего ошибки из множества C, необходимо и достаточно, чтобы $\mathbf{Hc_i} \neq \mathbf{Hc_j}$ для любых ошибок $\mathbf{Hc_i}$ и $\mathbf{Hc_i}$ из C.

Отметим, что

$$\mathbf{H}(\mathbf{g} \oplus \mathbf{c}) = \mathbf{H}(\mathbf{g}) \oplus \mathbf{H}(\mathbf{c}) = \mathbf{H}(\mathbf{c})$$

для любого элемента кода ${\bf g}$ и любого вектора ошибок ${\bf c}$. Поэтому вычисление синдрома может существенно упростить декодирование по сравнению с общим нелинейным случаем. Для декодирования набора ${\bf x}$ надо вычислить его синдром и затем сравнить полученный результат с заранее вычисленными синдромами векторов ошибок. Такое декодирование называется синдромным и его сложность (без учета сложности вычисления синдрома) есть $n2^n-k$. Эту величину можно значительно уменьшить при помощи метода согласования, успешно работающего в различных ситуациях. Опишем этот метод.

Пусть линейный (n,k)-код G исправляет t ошибок. Допустим, что при передаче вектора ${\bf g}$ произошло не более t ошибок, и был получен вектор ${\bf x}$. Пусть ${\bf c}$ — вектор ошибок, т. е. ${\bf g} \oplus {\bf c} = {\bf x}$. Пусть A — множество синдромов $S({\bf c}_l)$ всех векторов ошибок ${\bf c}_l$, вес которых не превосходит $\lceil t/2 \rceil$, В — множество попарных сумм синдрома $S({\bf x})$ принятого вектора ${\bf x}$ и синдромов $S({\bf c}_m)$ всех векторов ошибок ${\bf c}_m$, вес которых не превосходит $\lceil t/2 \rceil$. Так как любой вектор, вес которого не превосходит t, можно представить в виде суммы двух векторов, вес первого из которых не превосходит $\lceil t/2 \rceil$, а второго — $\lceil t/2 \rceil$, то, очевидно, что найдутся такие векторы ${\bf c}_i$ и ${\bf c}_l$, что ${\bf c} = {\bf c}_i \oplus {\bf c}_j$, где $||{\bf c}_i|| \leq \lceil t/2 \rceil$ и $||{\bf c}_j|| \leq \lceil t/2 \rceil$. Поэтому в силу линейности синдрома

$$S(\mathbf{x}) = S(\mathbf{c}) = S(\mathbf{c}_i \oplus \mathbf{c}_j) = S(\mathbf{c}_i) \oplus S(\mathbf{c}_j)$$

Переписав последнее равенство в виде $S(\mathbf{x}) = S(\mathbf{c}_i) \oplus S(\mathbf{c}_j)$, заключаем, что существует непустое пересечение множеств A и B, и если в этих множествах найти пару одинаковых элементов, то по этой паре можно будет восстановить вектор ошибок. Найти такую пару можно следующим образом. Сначала вычислим все синдромы из множества A и все суммы из множества B. Затем упорядочим множество A. После этого последовательно для каждого элемента из B попробуем найти равный ему элемент из A. Если такой элемент есть, то его можно найти, выполнив не более $\lceil log_2|A| \rceil$ сравнений текущего элемента из B с элементами из A. Сначала элемент из B сравнивается со средним элементом из A. Если элемент из B окажется меньше, то далее поиск ведется в первой половине A, если больше — во второй половине A. Если в A есть элемент, равный текущему элементу из B, то он будет обнаружен во время одного из сравнений. Нетрудно видеть, что для декодирования вектора \mathbf{x} достаточно выполнить

$$\mathcal{O}(|B|\log_2|A|) = \mathcal{O}\left(\left(\sum_{i=0}^{\lfloor t/2\rfloor} \binom{n}{i}\right) \log_2 \sum_{i=0}^{\lceil t/2\rceil} \binom{n}{i}\right) = \mathcal{O}\left(2^{nH(t/2n)}nH(t/2n)\right)$$
(1.2)

операции над векторами длины n-k.

В следующей теореме устанавливается фундаментальное свойство линейных кодов, лежащее в основе подавляющего числа конструкций этих кодов.

Теорема 1.4 Для того, чтобы матрица \mathbf{H} была проверочной матрицей линейного кода с кодовым расстоянием не меньшим d необходимо и достаточно, чтобы любые d-1 столбцов матрицы \mathbf{H} были линейно независимы.

ДОКАЗАТЕЛЬСТВО. Установим необходимость. Пусть \mathbf{H} — проверочная матрица кода G с расстоянием d. Если в матрице \mathbf{H} сумма столбцов с номерами i_1,\ldots,i_l равна нулевому вектору, то произведение $\mathbf{H}\mathbf{v}$ матрицы \mathbf{H} и вектора \mathbf{v} , у которого единичные компоненты имеют номера i_1,\ldots,i_l , также будет равно нулевому вектору. Следовательно, вектор \mathbf{v} принадлежит G, и, поэтому, $l \geq d$. С другой стороны, если любые d-1 столбцов матрицы \mathbf{H} линейно независимы, то и произведение матрицы \mathbf{H} и любого вектора \mathbf{v} с не более чем d-1 единичными компонентами не равно нулевому вектору, и в силу теоремы 1.1 нулевое пространство матрицы \mathbf{H} будет кодом с расстоянием не меньшим d. Теорема доказана.

Докажем нижнюю оценкудля мощности максимальных линейных кодов, исправляющих данное число ошибок. Эта оценка называется неравенством Варшамова-Гилберта.

Теорема 1.5 Если числа n, m и d удовлетворяют неравенству

$$2^{n-m} > \sum_{i=0}^{d} -2 \binom{n-1}{i},$$

то существует линейный (n,m)-код с расстоянием d.

ДОКАЗАТЕЛЬСТВО. Допустим, что найдется матрица \mathbf{H}_k из n-m строк и k столбцов, у которых любые d-1 столбцов линейно независимы. Тогда существует не более $\sum_{i=0}^{d-2} \binom{k}{i}$ различных линейных комбинации столбцов этой матрицы, в каждую из которых входит не более чем d-2 ненулевых слагаемых. Если $2^{n-m} > \sum_{i=0}^{d} -2 \binom{k}{i}$, то найдется хотя бы один ненулевой вектор \mathbf{h} длины n-m, не совпадающий ни с одной из этих линейных комбинации. Нетрудно видеть, что в матрице $\mathbf{H}_k+1=(\mathbf{H}_k\mathbf{h})$, составленной из столбцов матрицы \mathbf{H}_k и вектора \mathbf{k} , любые d-1 столбцов линейно независимы, и в силу теоремы 1.4 эта матрица будет проверочной матрицей кода с расстоянием d. Теорема доказана.

Так как синдромы всех исправляемых линейными (n,m)-кодом ошибок различны, то неравенство $n-m \geq \lceil log_2 \sum_{i=0}^t \binom{n}{i} \rceil$ справедливо для любого такого кода, исправляющего t ошибок. Объединив это неравенство с границей Варшамова–Гилберта, для мощности максимального линейного (n,m)-кода G, исправляющего t ошибок, получим двойное неравенство

$$\frac{2^n}{\sum_{i=0}^{2t-1} \binom{n}{i}} \le |G| = 2^m \le 2^{n-\lceil \log_2 \sum_{i=0}^t \binom{n}{i} \rceil} \le \frac{2^n}{\sum_{i=0}^t \binom{n}{i}}$$
(1.3)

являющееся аналогом неравенства (13.7) для произвольных кодов. Заметим, что нижняя оценка в 1.3 немного усиливает нижнюю оценку в (13.7). Однако это усиление не столь велико, чтобы существенно улучшить оценки скорости линейных кодов по сравнению с аналогичными оценками (13.8) и (13.9). Как и в случае произвольных кодов нетрудно показать, что для скорости максимального линейного кода длины n, исправляющего t ошибок, справедливы неравенства

$$1 - H\left(\frac{2t}{n}\right) \le R \le 1 - H\left(\frac{t}{n}\right) + \mathcal{O}\left(\frac{\log_2 n}{n}\right) \tag{1.4}$$

и что при помощи линейных кодов по двоичному симметричному каналу с вероятностью ошибки p можно передавать информацию с близкой к нулю вероятностью неправильного декодирования и скоростью

$$1 - H((1+\delta)2p) \le R \le 1 - H((1+\delta)p) \tag{1.5}$$

где δ — сколь угодно малое положительное число, удовлетворяющее неравенству $1-H((1+\delta)2p)\leq 1/2$