Finite Boolean Algebra

Lecture 8
Discrete Mathematical
Structures

Finite Boolean Algebra

- Part I: Finite Boolean Algebra
 - ☐ Boolean algebra: a special type of lattice
 - ☐ Substitution rule for Boolean algebra
- Part II: Logical Design
 - ☐ Boolean expressions
 - □ Circuit Design

Lattice $(P(S),\subseteq)$

- For a finite set *S*:
 - □ The power set of S, P(S), is a finite set of $2^{|S|}$ elements.
 - \square Set inclusion is a partial order on P(S).
 - $\square(P(S),\subseteq)$ is a lattice
 - For any subsets of S, S_1 and S_2 , $S_1 \cup S_2$ is the (unique) least upper bound of S_1 and S_2 ; and $S_1 \cap S_2$ is the (unique) greatest lower bound of S_1 and S_2

Isomorphism of Finite Lattices

- If $S_1 = \{x_1, x_2, ..., x_n\}$ and $S_2 = \{y_1, y_2, ..., y_n\}$ are any two finite sets with the same number of elements, then $(P(S_1), \subseteq)$ and $(P(S_2), \subseteq)$ are isomorphic.
- Proof:
 - \square A one-to-one correspondence: $f(x_i)=y_i$ for i=1,2,...,n.
 - \square A one-to-one correspondence from $P(S_1)$ to $P(S_2)$: f(A)
 - For any subsets A,B of S_1 , $A \subseteq B$ iff. $f(A) \subseteq f(B)$

Hasse Diagrams of Isomorphic Lattices

Lattice B_n

- \blacksquare B_n has 2^n elements.
- Each element is labeled by a sequence of 0's and 1's of length *n*.
- For any elements $x=a_1a_2...a_n$, $y=b_1b_2...b_n$, in B_n (each a_i,b_i is 0 or 1):
 - $\square x \leq y \text{ iff. } a_k \leq b_k \text{ for } k=1,2,...,n.$
 - $x \land y = c_1 c_2 ... c_n$, where $c_k = \min\{a_k, b_k\}$
 - $= x \lor y = d_1 d_2 ... d_n, \text{ where } d_k = \max\{a_k, b_k\}$

B_n as Product of n B's

- $\blacksquare B_1$, ({0,1}, \land , \lor ,1,0,'), is denoted as B.
- For any $n \ge 1$, B_n is the product $B \times B \times ... \times B$ of B, n factors, where $B \times B \times ... \times B$ is given the product partial order.

Product partial order:

 $x \le y$ if and only if $x_k \le y_k$ for all k.

Hasse Diagrams of B_n

Boolean Algebra

- A finite lattice isomorphic with B_n is called a Boolean Algebra.
- \blacksquare An example, D_6
 - \square The set of D_6 is all positive integer divisors of 6
 - \square The partial order with D_6 is divisibility
 - $\square D_6$ is isomorphic with B_2

$$f: D_6 \rightarrow B_2: f(1)=00, f(2)=10, f(3)=01, f(6)=11$$

B_n is distributive and Complemented

- For any x in B_n, x has a complement $x' = z_1 z_2 ... z_n$, where $z_k = 1$ if $x_k = 0$, and $z_k = 0$ if $x_k = 1$.
- For any elements $x=a_1a_2...a_n$, $y=b_1b_2...b_n$, $z=c_1c_2...c_n$, in B_n , (each a_i,b_i,c_i is 0 or 1):
 - $x \wedge (y \vee z) = (\min\{a_1, \max\{b_1, c_1\}\})) (\min\{a_2, \max\{b_2, c_2\}\}) ...$ $(\min\{a_n, \max\{b_n, c_n\}\}) = (\max\{\min\{a_1, b_1\}, \min\{a_1, c_1\}\})$ $(\max\{\min\{a_2, b_2\}, \min\{a_2, c_2\}\}) ... (\max\{\min\{a_n, b_n\}, \min\{a_n, c_n\}\}) = (x \wedge z) \vee (y \wedge z)$
 - \square Similarly, $x \lor (y \land z) = (x \lor z) \land (y \lor z)$
 - \square So, B_n is distributive.

A General Definition of Boolean Algebra

A distributive and complemented lattice is called a Boolean Algebra.

■ This definition is equivalent to the previous one.

Some Examples

 D_n is the poset of all positive divisors of n with the partial order

"divisibility".

 D_{20} is not a Boolean algebra

D_n as Boolean Algebra

- Let $n=p_1p_2...p_k$, where the p_i are distinct primes. Then D_n is a Boolean algebra.
- Sketch of proof:
 - □ Let $S=\{p_1,p_2,...p_k\}$, and for any subset T of S, a_T is the product of the primes in T.
 - □ Note: any divisor of n must be some a_T . And we have $a_T|n$ for any T.
 - □ For any subsets V,T, $V \subseteq T$ iff. $a_V | a_T$, and $a_V \land a_T = GCD(a_V, a_T)$ and $a_V \lor a_T = LCM(a_V, a_T)$.
 - $\Box f: P(S) \rightarrow D_n$ given by $f(T) = a_T$ is an isomorphism from P(S) to D_n .

D_n as Boolean Algebra (cont.)

If *n* is a positive integer and $p^2|n$, where *p* is a prime number, then D_n is not a Boolean algebra.

■ Proof:

- □ Since $p^2|n$, $n=p^2q$ for some positive integer q. Note that p is also a element of D_n , then if D_n is a Boolean algebra, p must have a complement p, which means GCD(p,p')=1 and LCM(p,p')=n. So, pp'=n, which leads to p'=pq. So, GCD(p,p')=GCD(p,pq)=p, contradiction.
- So, D_n is a Boolean algebra if and only if $n=p_1p_2...p_k$, where the p_i are distinct primes.

Operation Correspondence

■ Any formula involving \cup or \cap that holds for arbitrary subsets of a set S will continue to hold for arbitrary elements of a Boolean algebra L if \wedge is substituted for \cap and \vee for \cup .

$$(x')'=x \Leftrightarrow \overline{(A)}=A$$

$$(x \wedge y)'=x' \vee y' \Leftrightarrow \overline{(A \cap B)}=\overline{A} \cup \overline{B}$$

$$(x \vee y)'=x' \wedge y' \Leftrightarrow \overline{(A \cup B)}=\overline{A} \cup \overline{B}$$

$$x \leq y \text{ iff. } x \vee y = y \Leftrightarrow A \subseteq B \text{ iff. } A \cup B = B$$

$$x \leq y \text{ iff. } x \wedge y = x \Leftrightarrow A \subseteq B \text{ iff. } A \cap B = A$$

$$x \vee 0 = x, x \wedge 0 = 0 \Leftrightarrow A \cup \phi = A, A \cap \varphi = \phi$$

$$x \vee 1 = 1, x \wedge 1 = x \Leftrightarrow A \cup S = S, A \cap S = A$$

Proof of Non-Boolean Algebra

For a given poset, if any of the formula satisfied by set operations can't be satisfied, the poset is not a Boolean algebra.

For $\rho(S)$, every element A has a unique complement $\sim A$, such that:

$$A \cup \sim A = S$$
 and $A \cap \sim A = \phi$

For *L*, every element *x* has a unique complement *x*', such that:

$$x \lor x' = 1$$
 and $x \land x' = 0$

Boolean Polynomials

- $x_1, x_2, \dots x_n$ are all Boolean polynomials (expressions).
- The symbols 0 and 1 are Boolean Polynomials.
- If $p(x_1,x_2,...x_n)$ and $q(x_1,x_2,...x_n)$ are two Boolean polynomials, then so are:

$$p(x_{1},x_{2},...x_{n}) \lor q(x_{1},x_{2},...x_{n})$$

$$p(x_{1},x_{2},...x_{n}) \land q(x_{1},x_{2},...x_{n})$$

$$(p(x_{1},x_{2},...x_{n}))'$$

There are no Boolean polynomials in the variables x_k other than those that can be obtained by repeated use of the rules above.

Interpreting Boolean Polynomials

- Boolean polynomials may be interpreted as representing Boolean computations with unspecified elements of B, that is, with 0's and 1's.
- Boolean polynomials are subject to the rules of Boolean algebra.
- Two Boolean polynomials are considered equivalent if one can be turned into the other with Boolean manipulations.
 - □ Or equivalently, two Boolean polynomials are equivalent if they have the truth tables with the same structure.

Truth Table

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Truth Table: an Example

 $p(x_1,x_2,x_3) = (x1 \land x2) \lor (x1 \lor (x2 \land x3))$

x_1	x_2	x_3	$(x_1 \land x_2) \lor (x_1 \lor (x_2' \land x_3))$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1
		Miles.	

re.

Logic Diagrams for Boolean Polynomials

Basic components:

or gate

and gate

inverter

Logic Diagrams for Boolean

Polynomials

y

$$f(x,y,z) = (x \wedge y) \vee (y \wedge z')$$

Subset of B_n Mapping to 1

- If $f:B_n \to B$, define $S(f) = \{b | b \in B_n, \text{ and } f(b) = 1\}$, then, for three functions from B_n to B, f, f_1, f_2 , we have:
 - \square If $S(f)=S(f_1)\cup S(f_2)$, the $f(b)=f_1(b)\vee f_2(b)$ for all b in B_n .
 - \square If $S(f)=S(f_1)\cap S(f_2)$, the $f(b)=f_1(b)\wedge f_2(b)$ for all b in B_n .
- Proof:
 - \square For any b in B_n , if $b \in S(f)$, then f(b)=1. Either b is in $S(f_1)$ or in

the line in truth table with value 1

- $S(f_2)$, or both. In either cases $f_1(b) \lor f_2(b) = 1$. \square On the other hand, if $b \notin S(f)$, then f(b) = 0. Since neither $b \in S(f_1)$
- On the other hand, if $b \notin S(f)$, then f(b)=0. Since neither $b \in S(f_1)$ nor $b \in S(f_2)$, so, $f_1(b) \lor f_2(b)=0$.
- \square Thus, for all $b \in B_n$, $f(b) = f_1(b) \lor f_2(b)$.
- ☐ Same for the second part.

Minterm

\mathcal{X}	y	f(x,y)	
0	0	0	
0	1	1	$x' \wedge y$
1	0	0	x / y
1	1	0	

Minterm expression:

For
$$b = (c_1, c_2, ..., c_n) \in B_n$$
,
 $E_b = \overline{x_1} \wedge \overline{x_2} \wedge ... \wedge \overline{x_n}$, where
 $\overline{x_k} = x_k$ if $c_k = 1$, $\overline{x_k} = x_k$ if $c_k = 0$

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0 1	0	$\begin{array}{c} 0 \\ \frac{1}{0} x, \forall x \neq z, \end{array}$
0	$\begin{array}{ c c }\hline 1\\0 \end{array}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 0
1 1	0	1 0	0
1	1	1	0

All Functions Expressible

- Any function $f: B_n \rightarrow B$ can be produced by a Boolean expression
 - Union of minterms.
 - □ Proof:
 - For any given boolean function $f: B_n \rightarrow B$, let $S(f) = \{b_1, b_2, ..., b_k\}$
 - For each i=1,2,...,k, define function f_i : $B_n \rightarrow B$, as, $f(b_i)=1$ and f(b)=0 for any other b.
 - Then $S(f_i)=\{b_i\}$, so, $S(f)=S(f_1)\cup...\cup S(f_n)$.
 - So, $f = f_1 \lor f_2 \lor ..., \lor f_n$, which is produced by the union of all minterms E_{bi}

Karnaugh Map of *f* for *n*=2

$$f: B_2 \rightarrow B$$

Basic positions

00	01
10	11

$$f(x,y)=(x'\wedge y')\vee(x'\wedge y)$$

X	У	f(x,y)
0	0	1
0	1	1
1	0	0
1	1	0

However, we know

Simplifying Using Karnaugh Map

$$f: B_2 \rightarrow B$$

Basic positions

00	01	
10	11	

$$f(x,y) = (x' \land y') \lor (x' \land y) \lor (x \land y')$$

$$\begin{array}{c|cccc}
x & y & f(x,y) \\
\hline
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

$$\begin{array}{c|cccc}
x & y & f(x,y) \\
\hline
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}$$

$$f(x,y) = x' \vee y'$$

Karnaugh Map with *n*=3

	00	01	11	10
0	0 0 0	0 0 1	0 1 1	010
1	100	1 0 1	111	110

Simplifying 3-Variable Expression

X	У	z	f(x,y,z)
0 0 0 0 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0	1 0 1 0 1 0 1 0
1	1	1	1

$$(x' \land y' \land z') \lor (x' \land y \land z') \lor (x \land y' \land z') \lor (x \land y \land z') \lor (x \land y \land z)$$

So,
$$z$$
' $\vee(x \wedge y)$

Logic Circuit at Work

For each try in a contest of weight lifting, it is assumed success only if at least 2 of 3 referees decide it a success. Design a logic circuit for use in the situation.

The function: f(x,y,z)=1 iff. there are at least 2 one's in x,y,z

$$(x' \land y \land z) \lor (x \land y' \land z) \lor (x \land y \land z') \lor (x \land y \land z)$$

\mathcal{X}	у	z	f(x,y,z)
0 0 0 0 1 1 1	0 0 1 1 0 0 1 1	0 1 0 1 0 1	0 0 0 1 0 1 1

The Circuit

Too complecated!

$$(x' \land y \land z) \lor (x \land y' \land z) \lor (x \land y \land z') \lor (x \land y \land z)$$

Make it Simpler

X	у	z	f(x,y,z)
0	0	0	0
0	$\begin{vmatrix} 0 \\ 1 \end{vmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
0 1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
1 1	0	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	1
1	1	1	1 1

$$(y \land z) \lor (x \land z) \lor (x \land y)$$

Looks Better

the expression: $(y \land z) \lor (x \land z) \lor (x \land y)$

K-map of 4-Variable Expressions

An Example

	00	01	11	10
00	0000	0001	0011	0010
01	0100	0101	0111	0110
11	1100	1101	1111	1110
10	1000	1001	1011	1010

$$(W \wedge y)$$
 $(W \wedge y')$

So,
$$(w \land y) \lor (w' \land y')$$

Another Example

Same, or Different

The same Boolean function may take different forms, and,...

The same circuit can implement different Boolean functions, maybe with some exchanges on inputs.

м

Home Assignments

To be checked

□ Ex.6.4: 6, 8, 10, 16-21, 27, 29, 32

□ Ex.6.5: 11-14, 18-23

□ Ex.6.6: 8, 12, 14, 16, 24, 25-26

Experiment 6