CONTEXT FREE GRAMMAR

Faculty: Nabila Sabrin Sworna

- Three areas of theory of computation
 - Automata
 - Computability
 - Complexity
- Linked by the question
 - What are the fundamental capabilities and limitations of computers?

- Automata
 - Automaton a machine made in imitation of a human being
 - DFA, NFA
 - Context-free grammar (CFG), pushdown automata (PDA)
- Computability
 - Decidability
 - What can or cannot be solved
- Complexity
 - Tractability
 - What can or cannot be solved "efficiently"
 - Time complexity: P, NP, NP-complete, NP-hard
 - Space complexity: PSPACE

- Finite Automata
 - DFA, NFA
 - Limited amount of memory
 - Applications in compilers, control units of hardware
- Context-free grammar
 - More expressive than finite automata
 - Applications in compilers, Al
- Turing Machine
 - Even more powerful
 - Can simulate a computer!
 - Problems Turing machine cannot solve are beyond theoretical limits of computation

Regular Languages

- Regular languages
 - Languages recognized by finite automata DFA, NFA
 - Languages described by regular expressions
- Limitations
 - Finite number of states
 - Hence finite amount of memory
- An example of a non-regular language
 - $B = \{0^n 1^n | n \ge 0\}$

Context-free Languages

- Context-Free Languages
 - Languages described by context-free grammars (CFG)
 - Languages recognized by pushdown automata (PDA)
- Extensively used in compilers (parsers)
- First used in study of human languages

An Informal Example

- Language of palindromes
- Palindrome
 - A string that reads the same backward and forward
 - 0110, 11011, ε
- Recursive definition for palindromes (over binary alphabet)
 - \bullet 0, 1 and ϵ are palindromes
 - if w is a palindrome, then 0w0 and 1w1 are palindromes

An Informal Example

- A CFG for palindromes
 - ullet $P
 ightarrow \epsilon$
 - P → 0
 - P → 1
 - \bullet $P \rightarrow 0P0$
 - P → 1P1

Linked Terminals

 Terminals may be linked to one another in that they have the same number of occurrences (or a related number).

• Example 1: $\{0^n1^n \mid n \ge 0\}$

CFG ?

• $S \rightarrow 0 S 1 \mid \epsilon$

Linked Terminals

- Example 1: $\{0^n1^{2n} \mid n \ge 0\}$
- CFG ?
- \blacksquare S \rightarrow 0 S 11 | 011

Banalnced Paranthesis

- { w | w is a string of balanced parentheses } over w = { (,) }
- Base Case: the empty string is balanced
- Recursive Step: Find out the closing parenthesis that matches the first opening parenthesis. Removing the first parenthesis and the matching parenthesis forms two new strings of balanced parentheses.

$$S \rightarrow (S)S \mid \epsilon$$
 or,
$$S \rightarrow SS \mid (S) \mid \epsilon$$

CFG Practice

```
L = any string
                            S \rightarrow 0S | 1S | \epsilon
L = any string with only even no of 1's and no 0's
                            S → 1S1 | ε
L = { w | w contains 100 as substring }
                            S \rightarrow P100P
                            P \rightarrow 0P \mid 1P \mid \epsilon
L = all strings that start and end with the same symbol
                            S \to 0P0 | 1P1 | 0 | 1
                            P \rightarrow 0P \mid 1P \mid \epsilon
L = { w | the length of w is even }
                            S → 0S0 | 0S1 | 1S0 | 1S1 | E
L = { w | the length of w is odd and its middle symbol is a 0 }
                            S → 0 | 0S0 | 1S0 | 0S1 | 1S1
L = { w | w is a palindrome }
                            S \rightarrow \varepsilon | 0 | 1 | 0S0 | 1S1
```

Practice

```
• L = \{ 0* \}
              S \rightarrow 0S \mid \epsilon
• L = \{ 0*1 \}
              S \rightarrow 0 S \mid 1
• L = \{ 0^n 1^n | n >= 0 \}
              \text{S} \rightarrow \text{OS1} \ | \ \epsilon
• L = \{0^n 1^n \mid n \ge 1\}
               S \rightarrow 0S1 \mid 01
• L = \{0^{2n}1^{3n} | n > = 0\}
              S \rightarrow 00S111 \mid \epsilon
```

Converting DFA to CFG

- For each state q_i in the DFA, create a variable R_i for your CFG
- For each transition rule $\delta(qi, a) = q_k$ in your DFA, add the rule $R_i \rightarrow aR_k$ to your CFG
- For each accept state q_a in your DFA, add the rule $R_a \rightarrow \varepsilon$
- If q₀ is the start state in your DFA, then R₀ is the starting variable in your CFG.

CFG rules:

$$R_1 \rightarrow 0 R_3 | 1 R_2$$

 $R_2 \rightarrow 0 R_1 | 1 R_3 | \epsilon$
 $R_3 \rightarrow 0 R_3 | 1 R_3$

Example: DFA to CFG

L(M) = { w | w ends with 01 }

CFG rules:

$$Q_0 \rightarrow 0 \ Q_1 \ | \ 1 \ Q_0$$
 $Q_1 \rightarrow 0 \ Q_1 \ | \ 1 \ Q_2$
 $Q_2 \rightarrow 0 \ Q_1 \ | \ 1 \ Q_0 \ | \ \epsilon$

DFA to CFG Practice

• L(M) = { $a^n b^m c^l | n, m, l \ge 0$ }

Let's try it

DFA to CFG Practice

 L(M2) = { All binary strings with both an even number of zeros and an even number of ones }

Let's try it

