Билет 100

Автор1, ..., Aвтор<math>N

22 июня 2020 г.

Содержание

0.1	билет 100: лемма про дизъюнктное ооъединение множеств. Кольцо и полукольцо.	
	Теорема о свойствах элементов полукольца	L

0.1. Билет 100: Лемма про дизъюнктное объединение множеств. Кольцо и полукольцо. Теорема о свойствах элементов полукольца.

Лемма.

$$\bigcup_{k=1}^{n} A_k = \bigsqcup_{k=1}^{n} A_k \setminus (\bigcup_{j=1}^{k-1} A_j)$$

$$\bigcup_{k=1}^{\infty} A_k = \bigsqcup_{k=1}^{\infty} A_k \setminus (\bigcup_{j=1}^{k-1} A_j)$$

Доказательство.

Рассмотрим $B_k := A_k \setminus (\bigcup_{j=1}^{k-1} A_j)$

Заметим, что $B_k \subset A_k$, поэтому если i < k, то $B_k \cap A_i = \emptyset \implies B_k \cap B_i = \emptyset$

 $\implies B_k$ –дизъюнктны.

А ещё из того, что $B_k \subset A_k$, следует

$$\bigcup_{k=1}^? B_k \subset \bigcup_{k=1}^? A_k$$

где ? означает либо n, если хотим доказать для конечного, либо ∞ , если хотим доказать для счетного.

обратное включение:

Возьмем $x \in \bigcup_{k=1}^{?} A_k$. Надо доказать, что он лежит и в объединении B. Для этого рассмотрим такой самый первый номер m, что $x \in A_m$. Но тогда он не лежит в $A_1, ... A_{m-1}$, но именно эти мн-ва мы исключаем в B_m . Поэтому, x будет лежать в B_m

Определение 0.1.

 \mathcal{R} – кольцо, если $\forall A, B \in \mathcal{R}$

$$\implies A \cap B, \ A \cup B, \ A \setminus B \in \mathcal{R}$$

Замечание.

Любая алгебра является кольцом. Это видно из определений. У кольца оно более слабое.

Замечание.

Если в кольце есть X, то это алгебра. Действительно, тогда берём любое B из алгебры и A=X, получаем, что X/B лежит \Longrightarrow симметричность. Пустое тоже есть, т.к. симметрично X.

Таким образом, алгебра от кольца отличается только наличием X.

Определение 0.2.

 \mathcal{P} – полукольцо, если

- 1. $\varnothing \in \mathcal{P}$
- 2. $\forall A, B \in \mathcal{P} \implies A \cap B \in \mathcal{P}$
- 3. $A,B\in\mathcal{P}\Longrightarrow$ существует конечное число дизъюнктных множеств $C_1,...,C_n$ из $\mathcal{P},$ т.ч. $A\setminus B=\bigsqcup_{k=1}^n C_k.$

1

Билет 100 СОДЕРЖАНИЕ

Пример.

1. Возьмём прямую и полуинтервалы на ней $X=\mathbb{R}$ $\mathcal{P}=\{[a,b):a\leqslant b,\ a,b\in\mathbb{R}\}$

 \mathcal{P} – полукольцо.

Действительно, пересечение полуинтервалов - полуинтервал. А вот разность может дать два полуинтервала (если один вложен в другой). Но третье условие нам как раз такое и разрешает.

- 2. Аналогично, но точки рациональные. Не знаю, зачем Храбров дал этот пример, у Ани его нет. Док-во что полукольцо 1 в 1.
- 3. $X = \mathbb{R}^2$ $\mathcal{P} = \{[a, b) \times [c, d) : a \leq b, c \leq d, a, b \in \mathbb{R}\}$

Пересечение двух прямоугольников - прямоугольник. А вот с разностью не так очевидно, если один прямоугольник лежит внутри другого. Но в этом случае можно продлить сторны одного до пересечения с другим и на получившиеся прямоугольники и разбить.

Теорема 0.1.

1.
$$P_1, ..., P_n, P \in \mathcal{P} \implies \exists Q_1, ..., Q_m \in \mathcal{P},$$
т.ч.

$$P \setminus \bigcup_{k=1}^{n} P_k = \bigsqcup_{k=1}^{m} Q_k$$

2.
$$P_1, P_2, ..., P_n \in \mathcal{P} \implies \exists Q_{ik} \in \mathcal{P}$$
, т.ч.

$$\bigcup\limits_{k=1}^n P_k = \coprod\limits_{j=1}^n \coprod\limits_{k=1}^m Q_{jk},$$
 причем $Q_{jk} \subset P_j$

3. аналогично для $n = +\infty$.

Доказательство.

1. Индукция по *n*. База – определение полукольца.

Переход $n \to n+1$:

$$P \setminus \bigcup_{k=1}^{n+1} P_k = (P \setminus \bigcup_{k=1}^{n} P_k) \setminus P_{n+1} = (\bigsqcup_{k=1}^{m} Q_k) \setminus P_{n+1} = \bigsqcup_{k=1}^{m} Q_k \setminus P_{n+1} = \bigsqcup_{k=1}^{m} \bigsqcup_{j=1}^{m} Q_{kj}$$

Первый знак равно - св-ва объединения. Второй - применяем индукционное предположение (в скобках). Третий - скобки можно снять. Четвёртый - третье условие в определении полукольца.

2. Применим лемму о дизъюнктных объединениях (см. начало билета) и уже доказанный первый пункт: $\bigcup_{k=1}^n P_k = \coprod_{k=1}^n P_k \setminus (\bigcup_{j=1}^{k-1} P_j) = \coprod_{k=1}^n \coprod_{j=1}^{m_k} Q_{kj}$

Осталось понять, что $Q_{kj}\subset P_k$. Но это верно, так как $Q_{kj}\subset P_k\setminus (\bigcup_{j=1}^{k-1}P_j)$

3. Аналогично, но используем лемму о дизъюнктных объединениях в форме для бесконечного числа множеств.