INDEX

- 1. 선형대수 소개
 - 2. 기본 개념
- 3. 선형방정식과 선형결합
 - 4. 선형변환
- 5. 선대, 딥러닝을 만나다

선형성

함수 f는 선형이다

가산성

임의의 수 x와 y에 대해 f(x + y) = f(x) + f(y)

동차성

임의의 수 x와 상수 a에 대해 f(ax) = a • f(x)

기본개념

행렬의 종류

행렬 A의 <mark>행과 열을 교환</mark>하여 얻은 행렬 A^T

행과 열의 개수가 같은 정사각형 행렬

정방행렬 중 주대각선 이외의 값이 0인 행렬

정방행렬의

전치행렬은

주대각선을

기준으로

대칭

대각행렬 중 주대각성분이 1인 행렬 (I)

역행렬

선형방정식과 선형결합

▮ Ax = b 판별 및 해 구하기

문자의 개수가 많거나 일반화된 해를 찾기 힘들 때 행렬과 벡터를 이용한 선형방정식의 꼴로 만들어 해결할 수 있다!

Gauss-Jordan Elimination

Carl Friedrich Gauss Wilhelm Jordan

계수만으로 행렬을 생성한 후 Elementary Row Operation을 이용하여 Row Echelon Form으로 만들어 연립선형방정식의 해를 구함

선형방정식과 선형결합

span의 공간적 이해

2차원 벡터공간 내 모든 벡터는 기저벡터인 (0, 1)과 (1, 0)의 span(조합)을 통해 표현할 수 있음 '선형' 변환의 의미 (2) 공간적 의미

선형변환으로 역행렬 이해하기

역행렬이 있는 경우

$$A = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix}$$

$$A^{-1} = \begin{bmatrix} 2/5 & -1/5 \\ 1/5 & 2/5 \end{bmatrix}$$

정방행렬 A의 <mark>역행렬이 존재</mark>한다

- Ax = b가 유일한 해를 갖는다(unique)
- 특정 x를 선형변환한 Ax가 유일하다

선대, 딥러닝을 만나다

Affine과 딥러닝

활성화 함수로 예측값 계산

손실함수로 예측과 실제의 오차 측정

손실함수를 바탕으로 가중치 업데이트

sigmoid, tanh, ···· 비선형 활성화 함수를 이용하는 이유

선형함수 f(x) = kx를 이용해 n번 층을 쌓음

 $k^n x$

즉, k^n 을 한 번 적용하는 것과 같아 여러 hidden layer을 쌓으며 가중치를 업데이트하는 이점이 없음

!다음주 예고!

다음주에는

- ☼ 공간개념 이해하기 ☼
 부분공간, 기저, Rank
 - ♡ 직교와 투영벡터 ♡
- 🧽 선대, 회귀를 만나다 🐨