

Workshop 2 - SAM Register Transfer Architecture

Discuss and answer the following questions about the SAM Register Transfer Architecture (RTA).

- 1. List all the elements in the SAM RTA machine state. This is the list of all storage elements in the SAM datapath.
- 2. Fill in the following table with the register transfer sequences for each of the SAM instructions. Circle the active control signals in each RT action.

Control Code Action							Action					
Instr		Pc	Inc	Amux			Ir	Dmux	Acc	Out	Sub	f(src) -> dst
Lda	1	0	1	0	1	0	0	-	0	0	-	PC -> MAR; INC(PC)
	2		0	-	0	0	1	-	0	0	-	MemcMAR) →IR
	3		00	1	1	0	00	-	0	0	-	IR->MAR
		10	0		0	0	0			0		Mem(MAR) → ACC
Add	1	10	1	0	1	0	6	-	U	0	-	PC->MAR; INC(PC)
Auu	2	0	0	-	0	0	1	-	0	0	-	Mem(MAR) → IR IR → MAR
	3	100000	0	1	1	0	0	-	0	0	0	
	4	10	0	TI	0	0	0	0	1	0	0	Add (ACC, Mem (MAR)) → ACC
- 1	1	10	1	0	1	0	0	-	0	0	-	PC-> MAR; inc(PC)
Sub	1 2	0	0	-	0	0	1	-	0	0	-	Mem(MAR) → IR
	3	0	0	1	!	0	0	-	0	0	-	IR->MAR
	4	0	0	-	0	0	0	0	1	0	1	Sub(ACC, Mem(MAR)) -> ACC
133		0	1	0	1	0	0	-	0	0	-	, PC -> MAR; inc(PC)
Sta	1 2	0	0	-	0	0	1	-	0	0	-	Mem(MAR) → IR
	3	0	0	1	1	0	0	-	0	0	1-	IR-> MAR
	4	0	0	-/	0	1	0	-	0	0		ACC → Mem (MAR)
			,		1	0	0	-	0	0	-	,PC > MAR; inc(PC)
Jmp	1 2	00	10	0	0	0	1	-	0	0	-	Mem(MAR) → IR
	3	1	0	-	0	0	0	-	0	0	-	IR[3:0] → PC
	41	0	0	-	0	0	0	-	0	0	-	Nop
	1	1000	2000		-11		0	-	0	0	-	. PC -> MAR; inc(pc)
Jaz	1	0	1	0	1	00	1	-	0	0	-	Mem(MAR) -> IR
	2 3	0	0	1	00	0	0	-	0	0	1-	IRE3:0] -> PC, if ACC =0
	4	0	Ð	1	0	0	0	-	0	0	-	Nop
		111	B			The same of			0	0		PC->MAR; inc(PC)
Out	11	0	1	0	1	0	0-	-	0	0	-	Mem(MAR) > IR
	2	0	0	-	0	0						ACC -> OUT
	3 4	00	00	-	00	0	00	=	0	0	-	Nop
		1	9		0		3		-	0		
Hlt	11	0	1	0	1	0	0	-	0	0	-	PC -> MAR; inc(PC)
nic	2	0	0	1	0	0	1	-	0	0	1	mem(mar) IR
	3											NOP
	4										1	Nop
											100	
				la threat								

Sam Log. L High Control Signal Table

	Justif	etch	Instr Exec		
Instr	14	t ₂	t ₃	t.a.	
••	Inc	Ir	Amux	Dmux	
Lda	Mar	. 11	Mar	ACC	
Add	Inc	Ir	Amux	ACC	
	Mar	Na Viellan	Mor		
Sub	Inc	Ir	Amux	ACC	
	Mar		Mar	Sub	
Sta	Inc	Ir	Amux	Mst	
	Mar		Mar		
. Smp	Inc	Ir	PC		
	Mar		- 40%		
502	Inc	Ir	PC		
	Mar				
Out	Inc	Ir	001		
	Mar				
1114	Inc	Ir	HIT		
	Mar	73.49.			

that are logic 1 in the box
for each instrepristate

Control Signal Logic for SAM Control Signals

Pc = t3 N (Jmp V Jaz)

VInc = ti

VAmux = t3 1 (Lda v Add v Sub V Sta)

V Mar = to V(to A(Lday Add v SubV Sta)

V Mst = t41 (Sta)

VIV = to

V Dmny = tan (lda)

VALL = tan (Add V Sub)

Vout = t3/(out)

V Sub = tal (Sub)

HIT = t3 1(H/+)