习题 8.6

- 1. 计算下列函数在指定点 M_0 处沿指定方向l的方向导数:
 - (1) $z = x^2 + y^2$, $M_0(1,2)$, $l = i + \sqrt{3}j$;
 - (2) $u = \sqrt{x^2 + y^2 + z^2}$, $M_0(1,0,1)$, l = i + 2j + 2k;
 - (3) $u = x \arctan \frac{y}{z}$, $M_0(1, 2, -2)$, l = (1, 1, -1);
 - (4) u = xy + yz + zx, $M_0(2,1,3)$, l 为从点 M_0 到点(5,5,15)的方向.
- 2. 计算下列函数的梯度:
 - (1) $u = x^2 y^3 z^4$;
 - (2) $u = 3x^2 2y^2 + 3z^2$;

(3)
$$u = z^2 \sqrt{x^2 + 2y^2}$$
, $\notin \left[1, \frac{\sqrt{2}}{2}, 1\right]$.

- 3. 数量场 $u = x^2 2yz + y^2$ 在点 M(-1,2,1) 处
 - (1) 沿哪个方向的方向导数最大? 最大值为多少?
 - (2) 沿哪个方向的方向导数最小? 最小值为多少?
- **4.** 证明: grad u 为常向量的充要条件是 u 为线性函数,即 u = ax + by + cz + d (a,b,c,d 为 常数).