Devoir maison 1 - Algèbre linéaire

On considère un K-espace vectoriel noté E, et on note $S(E) = \{u \in \mathcal{L}(E)/u^3 = u^2\}$.

1. Soit l'endomorphisme f de \mathbb{R}^3 défini par :

$$\forall (x, y, z) \in \mathbb{R}^3, \ f(x, y, z) = (0, x, z)$$

- **a.** Montrer que $f \in \mathcal{S}(\mathbb{R}^3)$. $f^2(x, y, z) = f^3(x, y, z) = (0, 0, z)$ donc $f \in \mathcal{S}(\mathbb{R}^3)$.
- **b.** Déterminer $Ker(f) = Vect\{(0;1;0)\}\ et\ Im(f) = Vect\{(0;1;0);(0;0;1)\}.$
- **2.** On considère maintenant un endomorphisme u de $\mathcal{S}(E)$.
 - a. Montrer que u est inversible si, et seulement si $u = \mathrm{Id}_E$. Si $u = \mathrm{Id}_E$, u est inversible. Réciproquement, si u est inversible, sachant que $u^3 = u^2$ ce qui équivaut à $u^2 \circ (u - \mathrm{Id}_E) = 0$, en composant deux fois à gauche par u^{-1} , on obtient $u - \mathrm{Id}_E = 0$ d'où $u = \mathrm{Id}_E$.
 - b. Soit $\lambda \in \mathbb{K} \{0; -1\}$. Montrer que l'endomorphisme $v = u + \lambda \operatorname{Id}_E$ est inversible. On a $u = v - \lambda \operatorname{Id}_E$, et comme $u^3 = u^2$, on a : $(v - \lambda \operatorname{Id}_E)^3 = (v - \lambda \operatorname{Id}_E)^2$; v et Id_E commutent, on peut donc appliquer la formule du binôme et on obtient : $v^3 + (-3\lambda - 1)v^2 + (3\lambda^2 + 2\lambda)v - (\lambda^3 + \lambda)\operatorname{Id}_E = 0_{\mathcal{L}(E)}$. $\lambda \notin \{0; -1\}$ donc $\lambda^3 + \lambda \neq 0$; on en déduit que v est inversible et $v^{-1} = \frac{1}{\lambda^3 + \lambda}(v^2 + (-3\lambda - 1)v + (3\lambda^2 + 2\lambda)\operatorname{Id}_E)$.
 - **c.** Montrer que si $\operatorname{Ker}(u) = \operatorname{Ker}(u^2)$, alors u est un projecteur. Soit $x \in E$; comme $u^3(x) = u^2(x)$, on a : $u^2(u(x) - x) = 0$ donc $u(x) - x \in \operatorname{Ker}(u^2)$. Comme $\operatorname{Ker}(u^2) = \operatorname{Ker}(u)$, on a $u(x) - x \in \operatorname{Ker}(u)$ et donc $u^2(x) = u(x)$. On en déduit que u, endomorphisme de E, est un projecteur.
- **3.** On suppose dans cette question que u n'est pas injectif et que $\operatorname{Ker}(u) \neq \operatorname{Ker}(u^2)$.
 - a. Déterminer u^n pour $n \ge 3$. Comme $u^3 = u^2$, une récurrence immédiate donne $u^n = u^2, \forall n \ge 3$.
 - **b.** En déduire que $\operatorname{Ker}(u^2) \oplus \operatorname{Im}(u^2) = E$. D'après la question précédente, on a en particulier $u^4 = u^2$; ainsi u^2 est un projecteur donc $\operatorname{Ker}(u^2) \oplus \operatorname{Im}(u^2) = E$.
 - c. Montrer que $\operatorname{Im}(u^2)$ est stable par u, et déterminer la restriction de u à $\operatorname{Im}(u^2)$. Soit $y \in \operatorname{Im}(u^2)$; il existe $x \in E$ tel que $y = u^2(x)$, alors $u(y) = u^2(u(x))$ donc $u(y) \in \operatorname{Im}(u^2)$. De plus, $u(y) = u^3(x) = u^2(x) = y$ donc la restriction de u à $\operatorname{Im}(u^2)$ est $\operatorname{Id}_{\operatorname{Im}(u^2)}$.
 - **d.** Soit v la restriction de u à $\operatorname{Ker}(u^2)$. Montrer que v est nilpotent (c'est-à-dire : $\exists p \in \mathbb{N}/v^p = 0_{\mathcal{L}(\operatorname{Ker}(u^2))}$). Soit $x \in \operatorname{Ker}(u^2)$; $v^2(x) = u^2(x) = 0$; ainsi $v^2 = 0_{\mathcal{L}(\operatorname{Ker}(u^2))}$, donc v est nilpotent.