Proof. If $y = A^+Au$, then

$$y = A^+ A u = U \begin{pmatrix} I_r & 0 \\ 0 & 0_{n-r} \end{pmatrix} U^\top u = U \begin{pmatrix} z \\ 0 \end{pmatrix},$$

for some $z \in \mathbb{R}^r$. Conversely, if $U^{\top}y = \begin{pmatrix} z \\ 0 \end{pmatrix}$, then $y = U \begin{pmatrix} z \\ 0 \end{pmatrix}$, and so

$$A^{+}AU\begin{pmatrix} z \\ 0 \end{pmatrix} = U\begin{pmatrix} I_{r} & 0 \\ 0 & 0_{n-r} \end{pmatrix} U^{\top}U\begin{pmatrix} z \\ 0 \end{pmatrix}$$
$$= U\begin{pmatrix} I_{r} & 0 \\ 0 & 0_{n-r} \end{pmatrix}\begin{pmatrix} z \\ 0 \end{pmatrix}$$
$$= U\begin{pmatrix} z \\ 0 \end{pmatrix} = y,$$

which shows that $y \in \text{range}(A^+A)$.

Analogous results hold for complex matrices, but in this case, V and U are unitary matrices and AA^+ and A^+A are Hermitian orthogonal projections.

If A is a normal matrix, which means that $AA^{\top} = A^{\top}A$, then there is an intimate relationship between SVD's of A and block diagonalizations of A. As a consequence, the pseudo-inverse of a normal matrix A can be obtained directly from a block diagonalization of A.

If A is a (real) normal matrix, then we know from Theorem 17.18 that A can be block diagonalized with respect to an orthogonal matrix U as

$$A = U\Lambda U^{\top},$$

where Λ is the (real) block diagonal matrix

$$\Lambda = \operatorname{diag}(B_1, \dots, B_n),$$

consisting either of 2×2 blocks of the form

$$B_j = \begin{pmatrix} \lambda_j & -\mu_j \\ \mu_j & \lambda_j \end{pmatrix}$$

with $\mu_j \neq 0$, or of one-dimensional blocks $B_k = (\lambda_k)$. Then we have the following proposition:

Proposition 23.7. For any (real) normal matrix A and any block diagonalization $A = U\Lambda U^{\top}$ of A as above, the pseudo-inverse of A is given by

$$A^+ = U\Lambda^+U^\top,$$

where Λ^+ is the pseudo-inverse of Λ . Furthermore, if

$$\Lambda = \begin{pmatrix} \Lambda_r & 0 \\ 0 & 0 \end{pmatrix},$$