1 Basics

1.1 List Of Games

- Büchi
- Staiger-Wagner
- weak Parity
- Reachability (E-condition)
- Safety (A-condition)
- Muller
- Parity
- Rabin
- Streett

1.2 List Of Properties

- Determined
 - For every node v, either player has a winning strategy.
- Positionally Determined For every node v, either player has a positional winning strategy.
- Prefix Independent $\forall x \in C^*, \alpha \in C^\omega : \alpha \in \mathrm{Win} \leftrightarrow x\alpha \in \mathrm{Win}$

1.3 Definitions

Definition 1. A game graph / arena is a tuple $G = (V_0, V_1, E, c)$ where $V_0 \cap V_1 = \emptyset$, $E \subseteq V \times V$ where $V = V_0 \cup V_1$, and $c : V \to C$ for a finite set of colors C.

A game is a pair $\mathcal{G} = (G, Win)$ where G is an arena and $Win \subseteq C^{\omega}$.

A strategy for player i is a function $\sigma: V^*V_i \to V$ with $(u,v) \in E$ for all $\sigma(xu) = v$. σ is a winning strategy from $v \in V$, if all plays from v that are according to σ are won by player i. σ is positional if for all $x, y \in V^*$, $v \in V$: $\sigma(xv) = \sigma(yv)$.

2 Memory & Reductions

Definition 2. A strategy automaton for player 0 in a game \mathcal{G} is a tuple $\mathcal{A} = (M, C, m_{in}, \sigma^u, \sigma^n)$ with $\sigma^n : M \times V_0 \to V$ and $\sigma^u : M \times C \to M$. The automaton defines a strategy $\sigma_{\mathcal{A}}(xv) = \sigma^n(m, v)$ where $m = (\sigma^u)^*(m_{in}, x)$.

Definition 3. Let \mathcal{G} and \mathcal{G}' be games. \mathcal{G} reduces to \mathcal{G}' with memory m if there is an f_{in} : $V \to V'$ such that a player wins from $v \in V$ iff that player wins from $f_{in}(v) \in V'$. For a winning strategy with memory n from $f_{in}(v)$, one can compute a winning strategy with memory $n \cdot m$ from v.

Definition 4. Let $\mathcal{G} = (V_0, V_1, E, c, Win)$ be a game and let $\mathcal{A} = (Q, C, q_0, \delta, Acc)$ be a finite automaton with $L(\mathcal{A}) = Win$. The **product game** is defined as $\mathcal{G} \times \mathcal{A} = (V'_0, V'_1, E', c', Acc)$ with

- $V_0' = V_0 \times Q$
- $V_1' = V_1 \times Q$
- $E' = \{((u, p), (v, q) \in (V \times Q)^2 \mid (u, v) \in E \text{ and } q = \delta(p, c(u))\}$
- c'(v,q) = q

Theorem 1. \mathcal{G} reduces to $\mathcal{G} \times \mathcal{A}$ with memory |Q|.

Example Let $\mathcal{A} = (Q, C, q_0, \delta, F)$ be a DFA and let $\mathcal{G} = (G, C^*L(\mathcal{A}C^{\omega}))$. Then \mathcal{G} is a reachability game. Hence, $\mathcal{G} \times \mathcal{A}$ is determined with memory size |Q|.

3 Prefix Dependent Games

3.1 Reachability & Safety

 $F \subseteq C$ and Win = C^*FC^{ω} (reachability) or Win = $(C \setminus F)^{\omega}$ (safety)

Theorem 2. Reachability games and safety games are positionally determined. The winning regions and winning strategies can be computed in $\mathcal{O}(|G|)$.

??

3.2 Weak Parity

 $C \subseteq \mathbb{N}$ and Win = $\{\alpha \in C^{\omega} \mid \max \operatorname{Occ}(\alpha) \text{ is even}\}.$

Theorem 3. Weak parity games are positionally determined. The winning regions and winning strategies can be computed in $\mathcal{O}(|C| \cdot |G|)$.

3.3 Staiger-Wagner

 $\mathcal{F} \subseteq 2^C$ and Win = $\{\alpha \in C^\omega \mid \operatorname{Occ}(\alpha) \in \mathcal{F}\}.$

Theorem 4. Staiger-Wagner games can be reduced to weak parity games with memory $2^{|C|}$.

Proof. Similar to proof from SWA to WDBA.

Theorem 5. For every n > 0, there is an arena G_n with $|G_n| \in \mathcal{O}(n)$ and a set $\mathcal{F}_n \subseteq 2^C$ with $|\mathcal{F}_n| \in \mathcal{O}(n)$ such that player 0 has a winning strategy in (G_n, \mathcal{F}_n) but every winning strategy requires memory of size 2^n .

4 Prefix Independent Games

4.1 Büchi Games

 $F \subseteq C$ and Win = $\{\alpha \in C^{\omega} \mid Inf(\alpha) \cap F \neq \emptyset\}$.

Theorem 6. Büchi games are positionally determined. The winning regions and winning strategies can be computed in polynomial time in |G|.

??