Latent Dirichlet Allocation

CPSC 503 - Pedagogical Project Final Presentation

Nazlı Özüm Kafaee

Outline

Latent Dirichlet Allocation (LDA)

- 1. What is LDA?
- 2. The Posterior Distribution for LDA

Approximate Posterior Inference

- 1. Gibbs Sampling
- 2. Variational Inference

Probabilistic Topic Modelling

- 1. Treat data as observations that arise from a generative process that includes hidden variables
- 2. Infer the hidden structure using posterior inference \rightarrow topics
- Situate new data into the estimated model

The intuition behind LDA

Each document is a random mixture of corpus-wide topics.

Each word is drawn from one of those topics.

Source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77. https://doi.org/10.1145/2133806.2133826

The intuition behind LDA

In reality,

we only <u>observe the documents</u>

and

aim to infer the topic structure.

Source: Blei, D. M. (2012). Probabilistic topic models. Communications of the ACM, 55(4), 77. https://doi.org/10.1145/2133806.2133826

Graphical Model for LDA

Source: Topic Model lecture by David Blei on http://videolectures.net/mlss09uk_blei_tm/

Approximate Posterior Inference

There are various methods of algorithms for this purpose:

- Mean field variational methods (Blei et al., 2001, 2003)
- Expectation propagation (Minka and Lafferty, 2002)
- Collapsed Gibbs Sampling (Griffiths and Steyvers, 2002)
- Collapsed variational inference (Teh et al., 2006)

Applications in Informations Systems (IS)

Evaluation of LDA

References