CS201: Discrete Math for Computer Science 2024 Spring Semester Written Assignment #2

Due: 23:55 on Apr. 1th, 2024, please submit through Blackboard Please answer questions in English. Using any other language will lead to a zero point.

- **Q. 1.** Consider sets A and B. Prove or disprove the following.
 - (1) $\mathcal{P}(A \times B) = \mathcal{P}(B \times A)$.
 - (2) $(A \oplus B) \oplus B = A$, where $A \oplus B$ denotes the set containing those elements in either A or B, but not both.
 - (3) For any function $f: A \to B$, $f(S \cap T) = f(S) \cap f(T)$, for any two sets $S, T \subseteq A$.
 - (4) For function $f: A \to B$, suppose its inverse function f^{-1} exists. $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$, for any $S, T \subseteq B$.
- **Q. 2.** Let A, B and C be sets. Prove the following using set identities.
 - (1) $(B-A) \cup (C-A) = (B \cup C) A$
 - (2) $(A \cap B) \cap \overline{(B \cap C)} \cap (A \cap C) = \emptyset$
- **Q. 3.** Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$ if and only if $A \subseteq B$.
- **Q. 4.** Let $f_1: \mathbf{R} \to \mathbf{R}^+$ and $f_2: \mathbf{R} \to \mathbf{R}^+$. Let $g: \mathbf{R} \to \mathbf{R}$, and $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$.
 - (a) Prove that $f_1(x) + f_2(x)$ is $\Theta(g(x))$.
 - (b) Suppose we change the range of functions $f_1(x)$ and $f_2(x)$ to the set of real numbers, i.e., $f_1: \mathbf{R} \to \mathbf{R}$ and $f_2: \mathbf{R} \to \mathbf{R}$. Prove or disprove that $f_1(x) + f_2(x)$ is always $\Theta(g(x))$.
- **Q. 5.** Let $f_1: \mathbf{Z}^+ \to \mathbf{R}^+$, and $f_2: \mathbf{Z}^+ \to \mathbf{R}^+$. Let $g: \mathbf{Z}^+ \to \mathbf{R}$, and suppose $f_1(x)$ and $f_2(x)$ are both $\Theta(g(x))$.
 - (a) Prove or disprove that $(f_1 f_2)(x)$ is $\Theta(g(x))$.
 - (b) Prove or disprove that $(f_1f_2)(x)$ is $\Theta(g^2(x))$, where $g^2(x) = (g(x))^2$.

- **Q. 6.** Prove or disprove that there exists an infinite set A such that $|A| < |\mathbf{Z}^+|$.
- **Q. 7.** Let x be a real number. Show that $\lfloor 3x \rfloor = \lfloor x \rfloor + \lfloor x + \frac{1}{3} \rfloor + \lfloor x + \frac{2}{3} \rfloor$.
- **Q. 8.** Derive the formula for $\sum_{k=1}^{n} k^3$.
- **Q. 9.** For each set defined below, determine whether the set is <u>countable</u> or <u>uncountable</u>. Explain your answers. Recall that $\mathbf N$ is the set of natural numbers and $\mathbf R$ denotes the set of real numbers.
 - (a) The set of all subsets of students in CS201
 - (b) $\{(a,b)|a, b \in \mathbf{N}\}$
 - (c) $\{(a,b)|a \in \mathbf{N}, b \in \mathbf{R}\}$
- **Q. 10.** Show that the set $\mathbf{Z}^+ \times \mathbf{Z}^+$ is countable by showing that the polynomial function $f: \mathbf{Z}^+ \times \mathbf{Z}^+ \to \mathbf{Z}^+$ with f(m,n) = (m+n-2)(m+n-1)/2+m is one-to-one and onto.
- **Q. 11.** Assume that |S| denotes the cardinality of the set S. Show that if |A| = |B| and |B| = |C|, then |A| = |C|.
- **Q. 12.** (5 points) Suppose that f(x), g(x) and h(x) are functions such that f(x) is $\Theta(g(x))$ and g(x) is $\Theta(h(x))$. Show that f(x) is $\Theta(h(x))$.
- **Q. 13.** Consider **Horner's method**. This pseudocode shows how to use this method to find the value of $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ at x = c.

Algorithm 1 Horner $(c, a_0, a_1, \ldots, a_n)$: real numbers)

```
y := a_n

for i := 1 to n do

y := y * c + a_{n-i}

end for

return y \{ y = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0 \}
```

Exactly how many multiplications and additions are used by this algorithm to evaluate a polynomial of degree n at x=c? (Do not count additions used to increment the loop variable.)