Lecture 5

Op Amp – Part 3

Solving Circuit with Ideal Op Amp + NF

- For ideal op-amp
 - Infinite input resistance, $R_i = \infty$ = open circuit
 - Zero output resistance, $R_o = 0$ = short circuit
 - $i_i = 0$ and $i_+ = 0$
- When there is negative feedback, For ideal A as is infinitely high, for a finite output voltage v_o , $\frac{v_o}{A} = v_d = 0 \Rightarrow v_+ = v_-$. This is called virtual short circuit
- Because of these, solving ideal op-amp circuit with negative feedback is very simple

Review – Inverting Amplifier

Since v_+ is connected to ground, $v_+ = 0V$

Since there is negative feedback, from virtual short, $v_-=v_+=0V$

From Ohm's law for
$$R_1 \Rightarrow i_1 = \frac{v_i - 0V}{R_1} = v_i / R_1$$

Since ideal op-amp, $i_- = i_+ = 0$

From KCL at
$$v_-$$
, $i_1=i_-+i_2\Rightarrow i_1=i_2=v_i/R_1$

From Ohm's law for
$$R_2 \Rightarrow i_2 = \frac{v_- - v_0}{R_2} = \frac{v_i}{R_1} \Rightarrow v_o = -i_2 \times R_2 \Rightarrow v_o = -\frac{R_2}{R_1} v_i$$
 [ANS]

$$Gain = -\frac{R_2}{R_1}$$

Example – Inverting Amplifier

Since v_+ is connected to ground, $v_+ = 0V$

Since there is negative feedback, from virtual short, $v_- = v_+ = 0V$

From Ohm's law for
$$1 k\Omega \Rightarrow i_1 = \frac{2V - 0V}{1 k\Omega} = 2mA$$

Since ideal op-amp, $i_- = i_+ = 0$

From KCL at
$$v_-$$
, $i_1=i_-+i_2\Rightarrow i_1=i_2=2$ mA

From Ohm's law for
$$2 k\Omega \Rightarrow i_2 = \frac{v_- - v_0}{2 k\Omega} = 2mA \Rightarrow v_o = -i_2 \times 2 = -4V$$
 [ANS]

Gain =
$$-\frac{4V}{2V}$$
 = -2 (hence **inverting**)

Inverting Adder

Consider v_1 first, and deactivate other (v_2, v_3, v_4) sources.

It is nothing but a non-inverting amplifier.

So,
$$v_{o1} = -\frac{R_f}{R_1} v_1$$

Similarly, if we active one source and deactivate others, we will get:

$$v_{o2}=-rac{R_f}{R_2}v_2$$
 , $v_{o3}=-rac{R_f}{R_3}v_3$, $v_{o4}=-rac{R_f}{R_4}v_4$

Now, using superposition principle,

$$v_o = v_{o1} + v_{o2} + v_{o3} + v_{o4}$$

So,
$$v_o = -\frac{R_f}{R_1}v_1 - \frac{R_f}{R_2}v_2 - \frac{R_f}{R_3}v_3 - \frac{R_f}{R_4}v_4$$

Or,
$$v_o = -(\frac{R_f}{R_1}v_1 + \frac{R_f}{R_2}v_2 + \frac{R_f}{R_3}v_3 + \frac{R_f}{R_4}v_4)$$

We can use this circuit to add any 'n' number of inputs!

Implement the following function using op-amps:

$$v_0 = -(v_1 + 0 \cdot 5v_2 + v_3)$$

Solution:

Here,
$$R_f/R_1 = 1$$
, $R_f/R_2 = 0.5$, $R_f/R_3 = 1$

If
$$R_f = 1 \text{ k}\Omega$$
, $R_2 = 2 \text{ k}\Omega$, $R_3 = 1 \text{ k}\Omega$

Op Amp as Differentiator

Since v_+ is connected to ground, $v_+ = 0V$

Since there is negative feedback, from virtual short, $v_- = v_+ = 0V$

For the capacitor C,
$$\Rightarrow i_1 = C \frac{dv_C}{dt} = C \frac{d(v_i - v_-)}{dt} = C \frac{dv_i}{dt}$$

From Ohm's law for
$$R \Rightarrow i_2 = \frac{v_- - v_0}{R} = -\frac{v_o}{R}$$

Since ideal op-amp, $i_-=i_+=0$, so $i_1=i_2$

Review – Capacitor

$$\Rightarrow -\frac{v_o}{R} = C \frac{dv_i}{dt} \Rightarrow v_o = -RC \frac{dv_i}{dt} \text{ [Ans.]}$$

Op Amp as Integrator

Since v_+ is connected to ground, $v_+ = 0V$

Since there is negative feedback, from virtual short, $v_-=v_+=0V$

From Ohm's law for
$$R \Rightarrow i_1 = \frac{v_i - v_-}{R} = \frac{v_i}{R}$$

For the capacitor C,
$$\Rightarrow i_2 = C \frac{dv_C}{dt} = C \frac{d(v_- - v_o)}{dt} = -C \frac{dv_o}{dt}$$

Since ideal op-amp, $i_-=i_+=0$, so $i_1=i_2$

$$\Rightarrow \frac{v_i}{R} = -C \frac{dv_o}{dt}$$

$$= -RC \frac{dv_o}{dt}$$

$$\Rightarrow v_o = -\frac{1}{RC} \int v_i dt$$

Observe the following Figure. If $v_i = 5\sin 6t$, Find the value of v_0 .

Solution:

This is a differentiator.

So,
$$v_o = -RC \frac{dv_i}{dt} = -1 \times 10^6 \times 1 \times 10^{-6} \times \frac{d(5\sin 6t)}{dt}$$

$$\Rightarrow v_o = -1 \times (5 \times 6\cos 6t) = -30\cos 6t \text{ [Ans.]}$$

Analyze the circuit below to **find** an expression of f in terms of inputs x and y.

Solution:

$$v_{f1} = -\frac{dy}{dt}$$
; $v_{f2} = -\frac{1}{RC} \int x dt$; $v_{f3} = -v_{f1} = \frac{dy}{dt}$; $v_{o} = -(v_{f2} + v_{f3})$

Op Amp as Comparator

• A comparator compares two voltages to determine which is larger.

Figure 2: (1) Op-Amp Comparator (2) Noninverting Circuit (3) Inverting Circuit

What if noise enters the system?

- \circ As v_{in} exceeds v_{Ref} , the voltage at the output of the comparator (v_{OUT}) switches from v_L to v_H
- We want to make the system immune to noise.

Introducing double thresholds (v_{TH} and v_{TL})

- \circ As v_{in} exceeds v_{TU} , the voltage at the output of the comparator (v_{OUT}) switches from v_L to v_H
- \circ As v_{in} goes below v_{TL} , the voltage at the output of the comparator (v_{OUT}) switches from v_H to v_L

Positive feedback: Schmitt Trigger (Non-inverting)

- It is not negative feedback, v_+ and v_- are not always equal.
- $i_i = 0$ and $i_+ = 0$

(1) If
$$v_+ > v_-$$
, i.e., if $v_+ > 0$, $v_o = v_H$,

(2) If
$$v_+ < v_-$$
, i.e., if $v_+ < 0$, $v_o = v_L$

• Now v_+ is connected to v_o [positive feedback], resulting in double threshold

Positive feedback: Schmitt Trigger (Non-inverting)

$$i_1 = \frac{v_i - v_+}{R_1} = i_2 = \frac{v_+ - v_0}{R_2}$$

$$\Rightarrow \frac{v_i}{R_1} + \frac{v_0}{R_2} = v_+ \left(\frac{1}{R_2} + \frac{1}{R_1}\right) = v_+ \left(\frac{R_1 + R_2}{R_2 R_1}\right)$$

$$\Rightarrow v_{+} = \frac{R_{2}}{R_{1} + R_{2}} v_{i} + \frac{R_{1}}{R_{1} + R_{2}} v_{o}$$

To have
$$v_o = v_H$$
, $v_+ > 0$ [see (1)], $So, \frac{R_2}{R_1 + R_2} v_i + \frac{R_1}{R_1 + R_2} v_L > 0$ $\Rightarrow v_i > -\frac{R_1}{R_2} v_L$ \longleftrightarrow Upper threshold

Let's consider, initially,
$$v_o=v_H$$
 . So, $v_+=\frac{R_2}{R_1+R_2}v_i+\frac{R_1}{R_1+R_2}v_H$

To have
$$v_0 = v_L$$
, $v_+ < 0$ [see (2)], $So, \frac{R_2}{R_1 + R_2} v_i + \frac{R_1}{R_1 + R_2} v_H < 0 \implies v_i < -\frac{R_1}{R_2} v_H \iff Lower threshold$

$$\Rightarrow v_i > -\frac{R_1}{R_2} v_L \quad \longleftarrow \quad \text{Upper threshold}$$

$$(v_{TU})$$

$$\Rightarrow v_i < -\frac{R_1}{R_2} v_H \qquad \longleftarrow \quad \text{Lower threshold}$$

$$(v_{TL})$$

If
$$R_1$$
=2 k Ω , R_2 =2×2=4 k Ω , v_L = - 10V, v_H =10V

Calculate the threshold voltages and draw the transfer characteristics.

Upper threshold,
$$v_{TU} = -\frac{R_1}{R_2}v_L = -\frac{2}{4}(-10) = 5V$$

Lower threshold,
$$v_{TL} = -\frac{R_1}{R_2}v_H = -\frac{2}{4}(+10) = -5V$$

- Note that if $v_o = -10V$, it can't be +10V again until v_i is above $5V(v_{TU})$.
- Similarly, if $v_o = +10$ V, it can't be -10V again until v_i is below $-5V(v_{TL})$

Schmitt Trigger with Reference Voltage

(3) If
$$v_+ > v_-$$
, i.e., if $v_+ > v_{ref}$, $v_o = v_H$,

(4) If
$$v_+ < v_-$$
, i.e., if $v_+ < v_{ref}$, $v_o = v_L$

Let's consider, initially,
$$v_+=v_L$$
 . So, $v_+=rac{R_2}{R_1+R_2}v_i+rac{R_1}{R_1+R_2}v_L$

To have
$$v_o = v_H$$
, $v_+ > v_{ref}$ [see (3)], So , $\frac{R_2}{R_1 + R_2} v_i + \frac{R_1}{R_1 + R_2} v_L > v_{ref}$

$$\Rightarrow v_i > -\frac{R_1}{R_2} v_L + v_{ref} \frac{R_1 + R_2}{R_2} \qquad \longleftarrow \text{Upper threshold}$$

Let's consider, initially,
$$v_+=v_H$$
 . So, $v_+=\frac{R_2}{R_1+R_2}v_i+\frac{R_1}{R_1+R_2}v_H$

To have
$$v_o = v_L$$
, $v_+ < v_{ref}$ [see (4)], So , $\frac{R_2}{R_1 + R_2} v_i + \frac{R_1}{R_1 + R_2} v_H < v_{ref}$

$$\Rightarrow v_i < -\frac{R_1}{R_2} v_H + v_{ref} \frac{R_1 + R_2}{R_2}$$

 (v_{TU})

Lower threshold (v_{TL})

If
$$R_1$$
=2 k Ω , R_2 =3×2=6 k Ω , v_L = $-$ 10V, v_H =10V, v_{ref} = 2.5V

Calculate the threshold voltages and draw the transfer characteristics.

Upper threshold,
$$v_{TU}=-\frac{R_1}{R_2}v_L+v_{ref}\frac{R_1+R_2}{R_2}$$
 = 6.67 V

Lower threshold,
$$v_{TL}=-\frac{R_1}{R_2}v_H+v_{ref}\frac{R_1+R_2}{R_2}=0~V$$

- Note that if $v_o = -10V$, it can't be +10V again until v_i is above 6.67 $V(v_{TU})$.
- Similarly, if v_o =+10V, it can't be 10V again until v_i is below $0V(v_{TL})$

How can we utilize this circuit for water level detection?

