FREMU

Power spectrum emulator for f(R) gravity

Jiachen Bai - Department of Astronomy, Beijing Normal University

F(R) gravity & Large-scale structure of the Universe

$$S = \int d^4x \sqrt{-g} \left[\frac{R + f(R)}{16\pi G} + \mathcal{L}_{\rm m} \right]$$

An additional term as the deviation from GR

F(R) gravity & Large-scale structure of the Universe

GR:
$${f \nabla}^2\Phi=rac{16\pi G}{3}\delta
ho$$

F(R):
$$\boldsymbol{\nabla}^2 \Phi = \frac{16\pi G}{3} \delta \rho - \frac{1}{6} \delta R$$

F(R) gravity & Large-scale structure of the Universe

$$P(\mathbf{k}) \equiv V\langle |\delta_{\mathbf{k}}|^2 \rangle = \int d^3r \, e^{-i\mathbf{k}\cdot\mathbf{r}} \xi(\mathbf{r})$$

We can now predict linear P(k) precisely,

but non-linear effects cannot be ignored.

Simulation & Emulation

N-body simulations => Non-linear P(k)

MONEY & TIME (Months)

MCMC? IMPOSSIBLE!!!

Simulation & Emulation

Build an emulator - Data

Quijote simulations

Quijote-MG
2048 sets
SB7

Build an emulator - Targets

Parameters

Map

Power spectrum

Build an emulator - Boosts

$$B(k) = P_{f(R)}^{\rm nonlin}(k)/P_{\Lambda {\rm CDM}}^{\rm halofit}(k) \quad {\rm Halofit: Mead2020_feedback \ computed \ with \ CAMB}$$

$$P_{f(R)}(k) = P_{halofit}(k) \times B(k)$$

Fast

Fast

Focus on f(R) & M_v features

Build an emulator - Boosts

Build an emulator - PCA

7 parameters

7 parameters

Hundreds of points

30 PCA coefficients

$$B(k,z;\theta) = \mu_B(k,z) + \sum_{i=1}^{N_{pc}} \phi_i(k,z) w_i(\theta) + \epsilon$$

Build an emulator - ANN

7 Input

650 Hidden

30 Output

Linear - Sigmoid - Linear

Results

Accuracy & Application

Application MCMC!

$$\Sigma(k_1, k_2) = \left[\frac{2}{N_{k_1}} + \sigma_{\text{sys}}^2\right] P^2(k_1) \, \delta_{k_1 k_2}$$

$$\mathcal{L}(\theta \mid D) = \exp\left(-\frac{1}{2}(\mathbf{O}(D) - \mathbf{M}(\theta))^T \Sigma^{-1}(\mathbf{O}(D) - \mathbf{M}(\theta))\right)$$

Parameter	True	Small-scale	Large-scale
Ω_m	0.263	$0.2619^{+0.0091}_{-0.0093}$	$0.290^{+0.035}_{-0.035}$
Ω_b	0.053	$0.0516^{+0.0095}_{-0.0088}$	$0.049^{+0.014}_{-0.015}$
$m{h}$	0.746	$0.729^{+0.10}_{-0.097}$	$0.78^{+0.13}_{-0.14}$
n_s	0.955	$0.968^{+0.042}_{-0.042}$	$0.95^{+0.17}_{-0.17}$
σ_8	0.858	$0.860^{+0.016}_{-0.015}$	$0.898^{+0.042}_{-0.042}$
$m_ u$	0.332	$0.25^{+0.17}_{-0.17}$	$0.66^{+0.36}_{-0.44}$
$_{_}f_{R_0}$	$-4.24 \cdot 10^{-5}$	$\left(-4.22^{+0.81}_{-0.98}\right) \cdot 10^{-5}$	$\left(-52^{+51}_{-61}\right) \cdot 10^{-6}$

Thank you!

pip install fremu

Documentation: https://astrobai.github.io/codes/fremu

Source code: https://github.com/AstroBai/FREmu