WOJEWÓDZKI KONKURS PRZEDMIOTOWY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA ŚLĄSKIEGO W ROKU SZKOLNYM 2015/2016

MATEMATYKA

Informacje dla ucznia

- **1.** Na stronie tytułowej arkusza w wyznaczonym miejscu wpisz swój kod ustalony przez komisję.
- 2. Sprawdź, czy arkusz konkursowy zawiera 8 stron oraz 24 zadania.
- 3. Czytaj uważnie wszystkie teksty i zadania.
- **4.** Rozwiązania zapisuj długopisem lub piórem. Nie używaj korektora.
- 5. W zadaniach od 2. do 16. podane są cztery odpowiedzi: A, B, C, D. Wybierz tylko jedną odpowiedź i zaznacz ją znakiem "X" bezpośrednio na arkuszu.
- **6.** W zadaniach od 17. do 20. postaw "X" przy prawidłowym wskazaniu PRAWDY lub FAŁSZU.
- 7. Staraj się nie popełniać błędów przy zaznaczaniu odpowiedzi, ale jeśli się pomylisz, błędne zaznaczenie otocz kółkiem ⊗ i zaznacz inną odpowiedź znakiem "X".
- **8.** Rozwiązania zadań otwartych zapisz czytelnie w wyznaczonych miejscach. Pomyłki przekreślaj.
- **9.** Przygotowując odpowiedzi na pytania, możesz skorzystać z miejsc opatrzonych napisem *Brudnopis*. Zapisy w brudnopisie nie będą sprawdzane i oceniane.
- 10. Nie wolno Ci korzystać z kalkulatora.

KOD	UCZNIA

Etap rejonowy

Czas pracy: 90 minut

WYPEŁNIA KOMISJA KONKURSOWA

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	Razem
Liczba punktów możliwych do zdobycia	6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	4	4	4	3	4	4	2	4	50
Liczba punktów uzyskanych przez uczestnika konkursu																									

Liczba punktów umożliwiająca kwalifikację do kolejnego etapu: 42

Podpisy członków komisji:

- 1. Przewodniczący
- 2. Członek komisji sprawdzający pracę
- 3. Członek komisji weryfikujący pracę

W puste, białe pola "liczbowej krzyżówki" wstaw liczby tak, aby wszystkie działania były poprawne.

13	+		•	2	=	13
_		•		_		
6	+	6	:		=	4
_		+		+		
	+		-		=	5
=		=		=		
9				3		

W zadaniach od 2. do 16. tylko jedna odpowiedź jest poprawna. Zadanie 2. (0-1)

Janek przeszedł 5 km i wtedy zauważył, że przebył już $\frac{2}{3}$ całej trasy.

Ile kilometrów liczy cała trasa?

- **A.** $3\frac{1}{3}$
- **B.** $5\frac{1}{3}$
- **C.** 6,5
- **D.** 7,5

Zadanie 3. (0-1)

Dzieląc pewną liczbę przez 34 otrzymano 33 i reszty 29. Jaka to liczba?

- **A.** 1151
- **B.** 1122
- **C.** 1019
- **D.** 1093

Zadanie 4. (0-1)

Patryk ma 15 złotówek, 9 dwuzłotówek, 12 dwudziestogroszówek

i 14 pięciogroszówek. Ile pieniędzy ma Patryk?

- **A.** 36,10
- **B.** 42,40
- **C.** 57,70
- **D.** 33,94

Zadanie 5. (0-1)

Ile razy liczba 24² jest większa od liczby 12²?

- **A.** 2
- **B.** 4
- **C.** 8
- **D.** 12

Zadanie 6. (0-1)

Ile jest trzycyfrowych liczb naturalnych?

- **A.** 899
- **B.** 900
- **C.** 901
- **D.** 999

Zadanie 7. (0-1)

Jaki jest najmniejszy możliwy obwód trójkąta, który jest nierównoramienny, a długości jego boków są liczbami pierwszymi?

- **A.** 10
- **B.** 12
- **C.** 14
- **D.** 15

Zadanie 8. (0-1)

Pierwszego stycznia panował czterostopniowy mróz, a każdego kolejnego dnia temperatura powietrza spadała o pół stopnia. Jaka była temperatura 9 stycznia?

- $A. -9^{\circ}C$
- **B.** -8.5° C
- $\mathbf{C} \cdot -8^{\circ}\mathbf{C}$
- **D.** $-4,5^{\circ}$ C

Zadanie 9. (0-1)

Masa akwarium o kształcie prostopadłościanu napełnionego wodą do połowy wynosi 28 kg, a napełnionego całkowicie – 49 kg. Jaką masę ma puste akwarium?

- **A.** 4 kg
- **B.** 5 kg
- **C.** 6 kg
- **D.** 7 kg

Zadanie 10. (0-1)

Ile najwięcej osób może zmieścić się na placu w kształcie kwadratu o boku długości 200 metrów, jeżeli na każdym metrze kwadratowym powierzchni mieszczą się 4 osoby?

- **A.** 16 tys.
- **B.** 160 tys.
- **C.** 100 tys.
- **D.** 10 tys.

Zadanie 11. (0-1)

Dziesiątą cyfrą po przecinku w rozwinięciu dziesiętnym ułamka $4\frac{5}{37}$ jest

- **A.** 5
- **B.** 4
- **C.** 3
- **D.** 1

Zadanie 12. (0-1)

W prostokącie kąt ostry między przekątnymi prostokąta wynosi 60°,

a długość krótszego boku wynosi 14 cm. Długość przekątnej tego prostokąta wynosi:

A. 28 cm

B. 21 cm

C. 14 cm

D. 7 cm

Zadanie 13. (0-1)

Szlak prowadzący na szczyt góry ma 900 metrów długości. Turysta, który pokonuje każde 180 metrów tej trasy w ciągu 5 minut, znajdzie się na szczycie po upływie

A.
$$\frac{1}{4}$$
 godziny.

B.
$$\frac{5}{12}$$
 godziny.

C.
$$\frac{1}{2}$$
 godziny.

D.
$$\frac{5}{6}$$
 godziny.

Zadanie 14. (0-1)

Uczestnicy biegu startowali co 3 minuty. Pierwszy zawodnik wystartował o 9:27, a ostatni – o 11:06. W biegu uczestniczyło

A. 33 zawodników.

B. 34 zawodników.

C. 68 zawodników.

D. 99 zawodników.

Zadanie 15. (0-1)

Każdy uczeń klasy VI należy do koła matematycznego lub polonistycznego. 16 uczniów należy do koła matematycznego, 16 uczniów do polonistycznego, a do jednego i drugiego koła należy 6 uczniów. Ilu uczniów jest w tej klasie?

A. 20

B. 23

C. 26

D. 32

Zadanie 16. (0-1)

Wynikiem działania $-2^2 + (-2)^2 \cdot \frac{1}{4} + \frac{3}{4} - 1$ jest liczba

A.
$$-3\frac{1}{4}$$

B.
$$-1$$

D.
$$-4\frac{1}{4}$$

W zadaniach od 17. do 20. oceń, czy podane zdania są prawdziwe czy fałszywe. Zaznacz właściwą odpowiedź.

Zadanie 17. (0-4)

z tych liczb jest równa 1. Jedną z tych liczb jest $\frac{11}{6}$, więc suma dwóch		□ FAŁSZ
pozostałych jest ujemna. II. Iloczyn trzech liczb jest równy –1. Jedną z tych liczb jest –0,75, więc iloczyn dwóch pozostałych jest ujemny.		□ FAŁSZ
III. Iloraz dwóch liczb o tych samych znakach jest zawsze liczba dodatnią.	□ PRAWDA	□ FAŁSZ
IV. Odwrotność iloczynu trzech liczb ujemnych jest liczbą dodatnią.	□ PRAWDA	□ FAŁSZ
Zadanie 18. (0-4)		
I. W każdym równoległoboku przekątne przecinają się w punkcie, który jest środkiem każdej z nich.	□ PRAWDA	□ FAŁSZ
II. Kwadrat to taki równoległobok, który ma wszystkie boki równej długości.	□ PRAWDA	□ FAŁSZ
III. Przekątna równoległoboku zawsze dzieli go na dwa trójkąty o równych polach.	□ PRAWDA	□ FAŁSZ
IV. Istnieją równoległoboki, w których przekątne są prostopadłe.	□ PRAWDA	□ FAŁSZ
Zadanie 19. (0-4). Obwód pewnego równoległoboku jest równy 180 cm². Jedna z jego wysokości ma długość		pole
I. Suma długości dwóch sąsiednich boków równoległoboku wynosi 50 cm.	□PRAWDA	□ FAŁSZ
II. Jeden z boków równoległoboku ma długość 2 dm.	□ PRAWDA	□ FAŁSZ
III. Długość jednego z boków równoległoboku jest o 20 cm większa od długości krótszego boku.	□ PRAWDA	□ FAŁSZ
IV. Druga z wysokości równoległoboku ma długość 0,6 dm.	□ PRAWDA	□ FAŁSZ

Zadanie 20. (0-3). Suma długości krawędzi wychodzących z jednego wierzchołka sześcianu wynosi 12 cm.

I.	Objętość tego sześcianu wynosi 216 cm ³ .	□ PRAWDA	□ FAŁSZ
II.	Pole powierzchni tego sześcianu wynosi 96 cm ² .	□ PRAWDA	□ FAŁSZ
III	 Zwiększając dwukrotnie długość każdej krawędzi tego sześcianu, zwiększymy dwukrotnie jego objętość. 	□ PRAWDA	□ FAŁSZ

Zadanie 21. (0-4)

Ania, Adrian, Basia i Tomek mają razem 1022 zł. Ania i Basia mają w sumie tyle samo pieniędzy, co Adrian i Tomek razem. Ania ma o 11 zł więcej niż Basia, a Tomek – o 113 zł mniej niż Adrian. Ile pieniędzy ma każde z nich? Zapisz obliczenia.

Zadanie 22. (0-4)

Obwód trapezu równoramiennego wynosi 36 cm. Krótsza podstawa jest dwa razy dłuższa od ramienia, a wysokość stanowi $\frac{1}{4}$ dłuższej podstawy. Różnica długości podstaw jest równa 6 cm. Oblicz pole trapezu.

Zadanie 23. (0-2)

Naczynie ma kształt prostopadłościanu. Krawędzie jego podstawy mają długości 4 dm i 3,2 dm. Do naczynia nalano wody do połowy jego wysokości. Następnie na dnie naczynia postawiono metalowy sześcian, który całkowicie zanurzył się w wodzie. Poziom wody w naczyniu podniósł się o 1,2 cm. Oblicz objętość tego sześcianu.

Janek wybrał się na pieszą wycieczkę. Gdy przeszedł $\frac{1}{3}$ drogi, była

godzina 9:50. W połowie trasy, o godzinie 10:15, zatrzymał się na odpoczynek, który trwał do godziny 10:40. Przyjmując, że przez całą drogę Janek szedł z taką samą prędkością, oblicz o której godzinie wyruszył na trasę i o której godzinie doszedł do celu.

