全國高級中等學校專業群科 113 年專題實作及創意競賽「創意組」作品說明書

群 別:電機與電子群

參賽作品名稱:新時代農舍 AI 幫手

關鍵詞:農藥、人工智慧、太陽能

目錄

摘要:	1
壹、創意動機及目的	1
貳、作品特色及創意特質	2
參、創意發想與研究過程	2
肆、設計相關原理	3
一、氣味訓練方法	3
二、使用材料及程式	5
伍、作品功用與操作方式	10
一、作品功用	10
二、操作方式	10
陸、製作歷程說明	12
一、多通道空氣感測器的 AI 資料集	12
二、安裝 UV 與 DHT 模組	13
三、撰寫程式	14
四、測試結果並撰寫報告	16
柒、附錄:作品分工表	17
捌、附錄:競賽日誌	17

圖目錄

啚	1	熱傷害介紹	1
圖	2	紫外線等級比較	2
圖	3	搭配 edge impulse,收集農藥味道	3
圖	4	進行分類	3
圖	5	特徵轉換:神經網路(Neural Network)與深度學習(Deep Learning)	3
置	6	產生特徵值	4
置	7	設定神經網路層	4
置	8	放入測試資料,驗證此模型可用程度	4
圖	9	打包上傳硬體,並進行 AI 判讀,檢測吸入農藥是否超標	4
置	10	Wio Terminal	5
圖	11	鋰電池擴充盒	5
圖	12	多通道氣體感測器	6
置	13	溫溼度感測器	6
圖	14	紫外線感測器	6
圖	15	繼電器模組	7
圖	16	水洗機	7
圖	17	小型抽風扇	7
圖	18	太陽能控制器	8
圖	19	太陽能版	8
圖	20	延長線	8
圖	21	ArduinoIDE	9
圖	22	Node-red	9
圖	23	MQTT	9
圖	24	LINE Notify	.10
圖	25	UV 值讀取顯示	.10
圖	26	溫溼度讀取顯示	.10
圖	27	四種氣體讀取顯示	.11
圖	28	判讀農藥狀態顯示	.11

圖	29	水洗機與風扇按鈕	.11
圖	30	顯示水洗機與風扇啟動	.11
圖	31	LINE 通知顯示	.12
圖	32	農藥一	.12
啚	33	農藥二	.12
啚	34	農藥三	.12
啚	35	上傳 Ede impulse 網站訓練	.13
啚	36	取得資料下載到 wio terminal	.13
圖	37	安裝 DHT 模組	.13
圖	38	安裝 UV 模組	.13
圖	39	MQTT 定時連線	.14
圖	40	判斷 Node-red dashboard 水洗機、風扇開闢按鈕是否按下	.14
圖	41	判斷溫度過高風扇自動啟動	.15
圖	42	判斷紫外線照度(UV值)過高自動啟動警報	.15
圖	43	農藥數據推論程市段	.15
圖	44	顯示多通道感測器數值部分程式	.16
圖	45	數據查看	.16
圖	46	傳送通知	.16

摘要:

新時代農舍 AI 幫手主要在應對農藥與除草劑對人體健康的危害。透過紫外線與溫度檢測功能,我們能夠評估農地的紫外線強度,同時監測空氣中的溫度,提醒農民合理安排工作時間。搭配人工 (AI) 智慧技術,機器即時檢測農藥、除草劑含量,結果顯示於螢幕上,並啟動警報以通知農民。同時,繼電器啟動風扇與空氣水洗機,避免農藥吸入並淨化空氣,提供全方位的農業安全保障。

壹、創意動機及目的

當農民使用農藥噴灑農作物時,殘留在空氣中的農藥可能會隨著風向,吹往住宅,然而我們卻無法感知到。這些殘留在空氣中的農藥,如果長期由皮膚接觸或者吸入到體內,將會有中毒的危險,甚至對人體健康會造成長期的危害,如癌症、生殖系統以及肝、腦和身體其他部位損害。

且由於農民多在無遮蔽物的農田工作,不僅需要面對炎熱潮濕的天氣,還會受到紫外線的照射。長期待在高溫狀態,可能導致心肌梗塞或腦中風,或是多重器官衰竭死亡,而中暑的死亡率則超過30%。當紫外線數值超過6後,將會導致人體的傷害,如曬傷、皮膚癌等等。

因此在這樣的情境下,我們需要創新的解決方案,以保障農民的健康和提高農業生產效率。

圖1 熱傷害介紹

	UVA	UVB
短波UVA:320-340nm 長波UVA:340-400nm		290-320nm
到達地表 的比例	95%	5%
傷害力	能量可穿透至 皮膚的真皮層	到達皮膚的表皮層
	 引起光老化現象:細紋、皺 紋產生及皮膚鬆弛 	造成皮膚曬傷、曬紅造成皮膚曬黑
	造成皮膚曬黑、形成斑點、 色素沉著	
	• 造成皮膚敏感,耐受力下降	
	傷害皮膚時不會有灼熱感, 因此很容易被忽略	• UVB對皮膚的傷害集中於 早上10點到下午2點
	可穿透雲層及玻璃,即使陰 天或室內仍會受到傷害	
	· 從早到晚UVA的能量都很高	

圖 2 紫外線等級比較

貳、作品特色及創意特質

一、人工智慧技術

結合了人工智慧技術,能夠即時檢測農藥、除草劑含量並將檢測結果 即時顯示於螢幕上。

二、農藥警報提醒

當機器檢測到農藥超標,可以立即發起警報,警示周遭有超標農藥掺雜在空氣中的危險,讓農民可以即時做出反應,預防農藥與除草劑的潛在危害。

三、紫外線與溫度提醒

透過紫外線與溫度檢測功能,裝置評估農地的紫外線強度,同時監測空氣中的溫度。

四、螢幕顯示

監測的同時顯示在機器的 TFT 螢幕與電腦 dashboard,能讓農舍得成員不用出門便能知道附近狀況,減少危險因子。

多、創意發想與研究過程

當初想要製作這個作品的原因是,因為發現住在農田附近的居民日常生活中,不管是身體還是呼吸都是直接暴露在帶有超標農藥的空氣中,長期以來對身體是一中極大的負擔。溫度與紫外線也是危險因子,所以我們增加了溫度、紫外線的偵測與報警功能,超標時會啟動風扇與水洗機,減少對於身體的危害。太陽能板提供綠能充電,提升能源的使用效率。

肆、設計相關原理

一、氣味訓練方法

(一) Wio terminal 上傳單筆資料到 Edge Impulse, 並把資料整理到不同類別, 反覆操作。

圖 3 搭配 edge impulse,收集農藥味道

圖 4 進行分類

(二)設計 Impulse:資料處理、定義模型。測試神經網路效能、修改、重複。

圖 5 特徵轉換:神經網路(Neural Network)與深度學習(Deep Learning)

圖6 產生特徵值

圖7 設定神經網路層

圖8 放入測試資料,驗證此模型可用程度

(三)接著匯出神經網路檔案,再透過 Arduino IDE 燒錄至 Wio terminal,最後讓 Wio terminal 執行離線推論。

圖 9 打包上傳硬體,並進行 AI 判讀,檢測吸入農藥是否超標

二、使用材料及程式

(一) 硬體

1、Wio Terminal: Wio Terminal 開發板 與 Arduino 和 MicroPython 兼容,是基於 ATSAMD51 的微控制器,具有通過 RealtekRTL8720D N支持的藍牙和 Wi-Fi 連接。集成了 2.4 英寸液晶顯示屏,板載 IM U,麥克風,蜂鳴器,microSD 卡插槽,光傳感器,紅外發射器 (IR 940nm)。Wio Terminal 是一款專門用於 IoT 與 TinyML 的多功能開發板包含了 ATSAMD51P19 晶片並以 ARM Cortex-M4F 為核心 (20MHz),已支援多種針對微控制器的 ML 推論框架。

圖 10 Wio Terminal

2、鋰電池擴充盒:內置 650mAH 鋰電池,和 6個 Grove 接口,是 Wio Terminal 的必備擴展板,以便增加更多附件。USB Type-C 充電, 4個 Grove 模擬/數字端口,1個 Grove I2C 端口,1個 Grove UART端口,磁鐵隱藏在外殼內,因此可以將其點貼在白板上。

圖 11 鋰電池擴充盒

3、多通道氣體感測器:用於檢測空氣中的有毒物質,能夠同時檢測除乙醇(C2H5CH)、一氧化碳(CO)、二氧化氮(NO2)、揮發性有機化合物(VOC)等氣體。每個測量單元對各種氣體均敏感,因此可以在同時間獲取到四組氣味數據。並判斷出不同種類的氣體。此模塊中使用的氣體傳感器基於 MEMS 技術。不僅體積小,還能穩定測量,比定性測量更適合定性測量。

圖 12 多通道氣體感測器

4、溫溼度感測器:用於測量周圍環境的溫度和濕度水平。傳感器採用 DHT11,濕度測量範圍:20%-95%(0度-50度範圍)濕度測量 誤差:+-5%,溫度測量範圍:0度-50度溫度測量誤差:+-2度,工作電壓3.3V-5V,輸出形式數字輸出,設有固定螺栓孔,方便安裝,小板 PCB 尺寸:3.2cm*1.4cm,每套重量約為8g。

圖13 溫溼度感測器

5、紫外線感測器:監視 UV 光量的應用,輸出校準的模擬電壓,基於反射率,紅外接近,紫外線指數和環境光感測器具有 I2C 數位介面和可程式設計事件中斷輸出。提供優良的寬動態範圍和各種光源包括陽光直射。隨 UV 光強度而變化,能夠檢測周圍環境中的紫外線輻射水平,通常用於監測日照強度、警示皮膚曝曬過度等。

圖14 紫外線感測器

6、繼電器模組:用較小的電流去控制較大電流的一種「自動開關」。 由鐵芯、線圈、銜鐵、接點簧片等組成的。只要在線圈兩端加上 一定的電壓,線圈中就會流過一定的電流,從而產生電磁效應。

圖 15 繼電器模組

7、水洗機:如偵測到空氣中的農藥濃度超標,水洗機則會自動開啟 並且吹散空氣中的有毒物質的濃度,防止附近人群吸入過多有毒 物質危害身體。

圖16 水洗機

8、小型抽風扇:如偵測到空氣中的農藥濃度超標,風扇則會自動開啟並且吹散空氣中的有毒物質,達到降低濃度,防止吸入過多危害身體。

圖 17 小型抽風扇

9、太陽能充電控制器:與12V和24V系統相容。完全4級PWM充電(增強、ABS、均衡、浮動)、12V(780W)/24V(1560W)輸入,雙USB能為電子產品提供5V2A。直觀的LCD顯示屏,能清楚地顯示狀態和數據,能夠切換模式和參數配置,適用於家庭、工業、商業等。具有短路保護、開路保護、反向保護、過載保護,提高系統效率並延長電池的使用壽命。

圖18 太陽能控制器

10、太陽能板:轉換效率可達到 20.9%,最高輸出功率可達 380/385 瓦,9柵線技術,可有效地限制電池隱裂範圍,提高可靠度,擁有抗高濕、抗鹽霧的高耐候模組,優異抗強風能力,IP-68 頂級 封膠接線盒及 MC4 EVO2 原廠連接器。

圖19 太陽能版

11、延長線:提供裝置所需要的電力。

圖20 延長線

(二)、軟體

1、Arduino IDE:是一個開源嵌入式硬體平臺,用來供使用者製作可 互動式的嵌入式專案。此外也是一個開源硬體和開源軟體的公 司,同時兼有專案和使用者社群。該公司負責設計和製造 Arduino 電路板及相關附件。

圖 21 ArduinoIDE

2、Node-red: Node-RED 是一個物聯網程式設計工具,它以新穎和有趣的方式,將硬體設備、應用介面和線上服務連接到一起。提供了一個基於流覽器的程式設計環境和豐富的節點類型,使流程的創建變得非常容易,而且還為流程的運行提供了運行環境,實現了一鍵部署的能力

圖 22 Node-red

3、MQTT:是一種以標準為基礎的訊息傳遞協定或規則集,用於機器 對機器的通訊。智慧型感應器、可穿戴裝置和其他物聯網(IoT)裝 置,通常須透過頻寬有限的資源受限網路來傳輸以及接收資料。I oT 裝置使用 MQTT 進行資料傳輸,因為它易於實作並且能有效地 傳輸 IoT 資料。MQTT 支援裝置到雲端和雲端到裝置間的訊息傳 遞。

圖 23 MQTT

4、LINE Notify:是一個能與網站服務連動完成後,透過 LINE 所提供的官方帳號「LINE Notify」傳送通知。不僅可與 GitHub、IFTT T、Mackerel 等多個服務連動,也可透過 LINE 群組接收通知。只要與 LINE Notify 連動,LINE 用戶就能輕鬆地接收來自其他服務的通知。

伍、作品功用與操作方式

一、作品功用

新時代農舍 AI 幫手主要是用於檢測農藥、氣溫、紫外線。觀察數據的方式也很簡單明瞭,並且太陽能板也能夠提供機台再生能源。當問遭環境有危害時,會發出警報通知農民,讓農民可以即時得知,並開啟風扇和水洗機,也可以手動或使用語音開啟風扇及水洗機。

二、操作方式

(一)1、UV值讀取顯示

圖25 UV 值讀取顯示

(二) 溫溼度讀取顯示

圖26 溫溼度讀取顯示

(三) 四種氣體讀取顯示

圖27 四種氣體讀取顯示

(四) 判讀農藥狀態顯示

圖28 判讀農藥狀態顯示

(五)顯示水洗機與風扇啟動

圖29 水洗機與風扇按鈕

圖30 顯示水洗機與風扇啟動

(六) LINE 通知顯示

圖31 LINE 通知顯示

陸、製作歷程說明

一、多通道空氣感測器的 AI 資料集

(一)手動收集三種農藥數據

(二)上傳 Ede impulse 網站訓練

圖 35 上傳 Ede impulse 網站訓練

(三)取得資料下載到 wio terminal

圖 36 取得資料下載到 wio terminal

二、安裝 UV 與 DHT 模組

圖 37 安裝 DHT 模組

圖 38 安裝 UV 模組

三、撰寫程式

圖 39 MQTT 定時連線

圖 40 判斷 Node-red dashboard 水洗機、風扇開關按鈕是否按下

圖 41 判斷溫度過高風扇自動啟動

圖 42 判斷紫外線照度(UV值)過高自動啟動警報

```
void eiinfer()
 ei_printf("Edge Impulse standalone inferencing (Arduino)\n");
      ei_impulse_result_t result = { 0 };
      signal_t features_signal;
features_signal.total_length = sizeof(features) / sizeof(features[0]);
      features_signal.get_data = &raw_feature_get_data;
EI_IMPULSE_ERROR res = run_classifier(&features_signal, &result, false /* debug */);
      ei_printf("run_classifier returned: %d\n", res);
if (res != 0) return;
      ei_printf("Predictions ");
      ei_printf("(DSP: %d ms., classification: %d ms., Anomaly: %d ms.)",
| result.timing.dsp, result.timing.classification, result.timing.anomaly);
      ei_printf(": \n");
ei_printf("[");
el_printf("[");
    for (size t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
        ei_printf("%.5f", result.classification[ix].value);
#if EI_CLASSIFIER_HAS_ANOMALY == 1
        ei_printf(", ");</pre>
            if (ix != EI_CLASSIFIER_LABEL_COUNT - 1) {
                ei_printf(", ");
 #endif
#if EI_CLASSIFIER_HAS_ANOMALY == 1
| ei_printf("%.3f", result.anomaly);
#endif
      ei_printf("]\n");
      // human-readable predictions
for (size_t ix = 0; ix < EI_CLASSIFIER_LABEL_COUNT; ix++) {
    ei_printf(" %s: %.5f\n", result.classification[ix].label, result.classification[ix].value);
    v[ix] = result.classification[ix].value;
    strcpy(S[ix],result.classification[ix].label);</pre>
             if(result.classification[ix].value > Infer)
               Infer = result.classification[ix].value ;
                guessnum = Infer;
                Rank = ix ;
 void ei_printf(const char *format, ...) {
    static char print_buf[1024] = { 0 };
       va_start(args, format);
int r = vsnprintf(print_buf, sizeof(print_buf), format, args);
        va_end(args);
       if (r > 0) {
              Serial.write(print_buf);
```

圖 43 農藥數據推論程市段

```
399
          tft.fillRect(0, 0, TFT_HEIGHT,TFT_WIDTH, TFT_BLACK);
400
          //spr.fillSprite(TFT_WHITE);
401
          tft.setTextColor(TFT_WHITE)
          tft.drawString("SMELL DATA" Loading...
402
403
          tft.setTextColor(TFT_WHITE);
          tft.drawString("NO2:",20,60,2);
404
405
          tft.drawNumber(features[0] ,200 ,60,2);
          tft.setTextColor(TFT_YELLOW);
406
407
          tft.drawString("C2H5CH:",20,90,2);
408
          tft.drawNumber(features[1] ,200 ,90,2);
409
          tft.setTextColor(TFT_RED);
          tft.drawString("VOC:",20,120,2);
410
          tft.drawNumber(features[2] ,200 ,120,2);
411
412
          tft.setTextColor(TFT_GREEN);
          tft.drawString("CO:",20,150,2);
413
414
          tft.drawNumber(features[3] ,200 ,150,2);
```

圖 44 顯示多通道感測器數值部分程式

四、測試結果並撰寫報告

在 Wio Terminal 上傳檢測的資料後,我們可以很清楚的察看數據變化,當紫外線超標時,會發出警報提醒,當開啟電風扇與水洗機時,也會傳送通知至 LINE 群。

圖 45 數據查看

圖 46 傳送通知

柒、附錄:作品分工表

参賽學生	工作任務		
A	收集資料、設計外型、影片拍攝、撰寫報告		
В	收集資料、設計外型、程式設計、影片拍攝、撰寫報告		
С	收集資料、設計外型、程式設計、影片剪輯		

捌、附錄:競賽日誌

年	月	日	進度	紀錄	工作分配
112	11	25~31	討論方案、收集 資料	地點:學校 器材:電腦 時間:14小時	同學 A:查資料、討論 同學 B:查資料、討論 同學 C:查資料、討論
112	12	01~06	討論方案、收集 資料、購買材料	地點:學校 器材:電腦 時間:8小時	同學 A:查資料、討論、 購買材料 同學 B:查資料、討論、 購買材料 同學 C:查資料、討論、 購買材料
112	12	07~31	討論方案、收集 資料、設計外 型、設計外型、 組裝機台	地點:學校 器材:電腦 時間:42小時	同學 A:查資料、討論 同學 B:設計外型、討論 同學 C:設計外型、討論
113	01	01~19	討論內容、收集 資料、設計外 型、組裝機台、 撰寫程式	地點:學校 器材:電腦 時間:40 小時	同學 A:討論內容、收集資料 同學 B:討論內容、收集資料、組裝機台 同學 C:設計外型、組裝機 台、撰寫程式
113	01		討論內容、收集 資料、組裝機 台、撰寫程式、 撰寫報告	地點:學校 器材:電腦 時間:52 小時	同學 A:討論內容、收集資料、組裝機台、撰寫報告同學 B:討論內容、收集資料、組裝機台、撰寫程式同學 C:討論內容、收集資料、組裝機台、撰寫程式料、組裝機台、撰寫程式

					同學 A:討論內容、收集資
			討論內容、收集		料、撰寫報告、拍攝影片
			資料、撰寫程	地點:學校	同學 B:討論內容、收集資
113	02	01~18	式、撰寫報告、	器材:電腦	料、撰寫報告、撰寫程式、
			拍攝影片、影片	時間:46小時	拍攝影片
			剪輯		同學 C:討論內容、收集資
					料、撰寫程式、影片剪輯