GPU Programming

Dr. Farshad Khunjush

Department of Computer Science and Engineering
Shiraz University
Fall 2021

Introduction:

The Multicore Revolution (Third software crisis and its origins and the roadmap to its solutions)

Dr. Farshad Khunjush

Acknowledgement: some slides borrowed from presentations by Jim Demel, Horst Simon, Mark D. Hill, David Patterson, Saman Amarasinghe, Richard Brunner, Luddy Harrison, Jack Dongarra Katherine Yelick, Matei Ripeanu

The Software Crisis

- □ E. Dijkstra, 1972 Turing Award Lecture
 - "To put it quite bluntly: as long as there were no machines, programming was no problem at all; when we had a few weak computers, programming became a mild problem, and now we have gigantic computers, programming has become an equally gigantic problem."

The First Software Crisis

- □ Time Frame: '60s and '70s
- Problem: Assembly Language Programming
 - Computers could handle larger more complex programs
- Needed to get Abstraction and Portability without losing Performance

Solution to the First Crisis

- High-level languages for von-Neuman machines
 - FORTRAN and C
- Provided "common language" for uniprocessors.
 - Common Properties:
 - Single Flow of Control and Single Memory Image
 - Differences:
 - ISA (Instruction Set Architecture), Register Files, and Functional Units

The Second Software Crisis (80's and 90's)

- Problem: Inability to build and maintain complex and robust applications requiring multi-million lines of code developed by hundreds of programmers
 - Computers could handle larger more complex programs
- Needed to get Composability and Maintainability
 - High-performance was not an issue → left for Moore's Law

Solution to the Second Crisis

- Object Oriented Programming
 - C++, C# and Java
- □ Also...
 - Better tools
 - Component libraries
 - Better software engineering methodology
 - Design patterns, specification, testing, code reviews

Today: Programmers are Oblivious to Processors

- Solid boundary between Hardware and Software
- Programmers don't have to know anything about the processor
 - High level languages abstract away the processors
 - Ex: Java byte code is machine independent
 - Moore's law does not require the programmers to know anything about the processors to get good speedups

Today: Programmers are Oblivious to Processors (Cont'd)

- Programs are oblivious of the processor > work on all processors
 - A program written in '70 using C still works and is much faster today
- This abstraction provides a lot of freedom for the programmers

Third Software Crisis (2005-20..?)

Origins:

- Problem: Sequential performance is left behind by Moore's law
- Needed continuous and reasonable performance improvements
 - to support new features
 - to support larger datasets
- Needed improvements while sustaining portability and maintainability without unduly increasing complexity faced by the programmer
 - → critical to keep-up with the current rate of evolution in software

Technology Trends: Microprocessor Capacity

2X transistors/Chip Every 1.5 years Called "Moore's Law"

Microprocessors have become smaller, denser, and more powerful.

Gordon Moore (co-founder of Intel) predicted in 1965 that the transistor density of semiconductor chips would double roughly every 18 months.

Slide source: Jack Dongarra

But there are limiting forces

Limit #1: Power density

Can soon put more transistors on a chip than can afford to turn on.

-- Patterson '07

Power Efficiency (Watt/Spec)

GPU Programming-Fall 2021 - Shiraz University © Farshad Khunjush

Parallelism Saves Power

Exploit explicit parallelism for reducing power

Power =
$$C * V^2 * F$$
 Performance = $Cores * F * 1$

Capacitance Voltage Frequency

- Using additional cores
 - Increase density (= more transistors = more capacitance)
 - Can increase cores (2x) and performance (2x)
 - Or increase cores (2x), but decrease frequency (1/2): same performance at ¼ the power
- Additional benefits
 - Small/simple cores → more predictable performance

Limit #2: Memory Wall

Memory Bottleneck

GPU Programming-Fall 2021 - Shiraz University © Farshad Khunjush

Memory Wall Implications

Each memory access takes hundreds of CPU cycles

Increasing clock frequency doesn't automatically improve performance anymore!

Limit #3: Hidden Parallelism Tapped Out

Application performance was increasing by 52% per year as measured by the SpecInt benchmarks here

VAX: 25%/year 1978 to 1986 RISC + x86: 52%/year 1986 to 2002

Limit #3: Hidden Parallelism Tapped

Out

- Superscalar (SS) designs were the state of the art; many forms of parallelism not visible to programmer
 - multiple instruction issue
 - dynamic scheduling: hardware discovers parallelism between instructions
 - speculative execution: look past predicted branches
 - non-blocking caches: multiple outstanding memory ops
- You may have heard of these in ADV COMP. ARCH., but you haven't needed to know about them to write software!!
- Unfortunately, these sources have been used up

Revolution is Happening Now

- Chip density is continuing increase ~2x every 2 years
 - Clock speed is not
 - Number of processor cores may double instead
- There is little or no hidden parallelism (ILP) to be found
- Parallelism must be exposed to and managed by software

Source: Intel, Microsoft (Sutter) and Stanford (Olukotun, Hammond)

Moore's Law reinterpreted

- Number of cores per chip will double every two years
- Clock speed will not increase (possibly decrease)
- Need to deal with systems with large number of concurrent threads
 - Millions for HPC systems
 - Thousands for servers
 - Hundreds for workstations and notebooks
- Need to deal with inter-chip parallelism as well as intra-chip parallelism

Why Parallelism?

- These arguments are no longer theoretical
- All major processor vendors are producing multi-core chips
 - Every machine will soon be a parallel machine
 - All programmers will be parallel programmers????
- New software model
 - Want a new feature? Hide the "cost" by speeding up the code first
 - All programmers will be performance programmers????
- Some may eventually be hidden in libraries, compilers, and high level languages
 - But a lot of work is needed to get there
- Big open questions:
 - What will be the killer apps for multicore machines
 - How should the chips be designed, and how will they be programmed?

Why writing (fast) parallel programs is hard

Principles of Parallel Computing

- Finding enough parallelism (Amdahl's Law)
- Granularity
- Locality
- Load balance
- Coordination and synchronization
- Performance modeling

All of these things makes parallel programming even harder than sequential programming.

"Automatic" Parallelism in Modern Machines

- Bit level parallelism
 - within floating point operations, etc.
- Instruction level parallelism (ILP)
 - multiple instructions execute per clock cycle
- Memory system parallelism
 - overlap of memory operations with computation
- OS parallelism
 - multiple jobs run in parallel on commodity SMPs

Limits to all of these -- for very high performance, need user to identify, schedule and coordinate parallel tasks

Amdahl's Law

- Simple software assumption
 - Fraction F of execution time perfectly parallelizable
 - No Overhead for
 - Scheduling
 - Synchronization
 - Communication, etc.
 - Fraction 1 F Completely Serial
- □ Time on 1 core = (1 F) / 1 + F / 1 = 1
- □ Time on N cores = (1 F) / 1 + F / N

Finding Enough Parallelism

Amdahl's Speedup = $\frac{1}{\frac{1-F}{1} + \frac{F}{N}}$ Implications:

- Attack the common case when introducing parallelization's: When *F* is small, optimizations will have little effect.
- Even if the parallel part speeds up perfectly performance is limited by the sequential part
 - \blacksquare As N approaches infinity, speedup is bound by 1/(1-F).
- The aspects you ignore will limit speedup

Discussion:

Can you ever obtain super-linear speedups?

Overhead of Parallelism

- Given enough parallel work, this is the biggest barrier to getting desired speedup
- Parallelism overheads include:
 - cost of starting a thread or process
 - cost of communicating shared data
 - cost of synchronizing
 - extra (redundant) computation

Overhead of Parallelism (Cont'd)

- Each of these can be in the range of milliseconds (=millions of flops) on some systems
- Tradeoff: Algorithm needs sufficiently large units of work to run fast in parallel (i.e. large granularity), but not so large that there is not enough parallel work

Locality and Parallelism

- Large memories are slow, fast memories are small
- Storage hierarchies are large and fast on average
- Parallel processors, collectively, have large, fast cache
 - the slow accesses to "remote" data we call "communication"
- Algorithm should do most work on local data GPU Programming-Fall 2021 - Shiraz University © Farshad Khunjush

Course Organization (Tentative)

- The Multicore Revolution (Third software crisis and its origin and roadmap to its solutions)
- Different Parallel Architectures & Muticore Architectures (From pipeline to Homogeneous & Heterogeneous Multi-core architectures)
- Concurrency Programming Principles
- Introduction to GPGPU Architectures
- CUDA programming Concepts
- Profiling CUDA programs
- OpenCL Programming Concepts (Maybe)
- Interesting new features

Grading (tentative)

 Assignment 1st Assignment 2nd Assignment 3rd Assignment 4th Assignment 	20% 5% 5% 5% 5%
Final ProjectReport & Presentation	35-40% 35-40%
Mid-Term ExamFinal Exam	10-15% 30%