Designing catalysts for chemical production by density functional theory modeling

Bryan R. Goldsmith

Catalysts make the world go round

Computational modeling can be used to understand

and design catalysts

Qiang Fu et. al. Science **328**, 1141 (2010)

Reuter, K., Frenkel, D. & Scheffler, M. Phys. Rev. Lett. 93, 116105 (2004).

Accuracy vs. cost of modeling approaches

Electronic accuracy

DFT is extremely popular and successful: See most cited papers in APS (from 1893)

	Journal	# cites	Title	Author(s)
1	PRB (1988)	39190	Development of the Colle-Salvetti Correlation-Energy	Lee, Yang, Parr
2	PRL (1996)	25452	Generalized Gradient Approximation Made Simple	Perdew, Burke, Ernzerhof
3	PRA (1988)	22904	Density-Functional Exchange-Energy Approximation	Becke
4	PR (1965)	20142	Self-Consistent Equations Including Exchange and Correlation	Kohn and Sham
5	PRB (1996)	13731	Efficient Iterative Schemes for Ab Initio Total-Energy	Kresse and Furthmuller
6	PRB (1976)	13160	Special Points for Brillouin-Zone Integrations	Monkhorst and Pack
7	PRB (1992)	10876	Accurate and Simple Analytic Representation of the Electron	Perdew and Wang
8	PRB (1999)	10007	From Ultrasoft Pseudopotentials to the Projector Augmented	Kresse and Joubert
9	PRB (1990)	9840	Soft Self-Consistent Pseudopotentials in a Generalized	Vanderbilt
10	PR (1964)	9789	Inhomogeneous Electron Gas	Hohenberg and Kohn
11	PRB (1981)	9787	Self-Interaction Correction to Density-Functional Approx	Perdew and Zunger
12	PRB (1992)	9786	Atoms, Molecules, Solids, and Surfaces - Applications of the	Perdew, Chevary,
13	PRB (1986)	9313	Density-Functional Approx. for the Correlation-Energy	Perdew
14	PR (1934)	9271	Note on an Approximation Treatment for Many-Electron Systems	Moller and Plesset
15	PRB (1994)	9100	Projector Augmented-Wave Method	Bloch
16	PRL (1980)	7751	Ground-State of the Electron-Gas by a Stochastic Method	Ceperley and Alder
17	PRL (1987)	7663	Inhibited Spontaneous Emission in Solid-State Physics	Yablonovitch
18	PRL (1986)	7589	Atomic Force Microscope	Binnig, Quate, Gerber
19	PRB (1991)	7425	Efficient Pseudopotentials for Plane-Wave Calculations	Troullier and Martins
20	PRB (1993)	6925	Ab initio Molecular Dynamics for Liquid Meta Name: (Last, Fit	rst)

Most cited physicists

Effects of Configuration Interaction on Intens

Theory of Superconductivity

PR (1961)

PR (1957)

21

22

6467

6260

Name: (Last, First)	3			
Perdew, John P.				
Smalley, Richard E.				
Becke, Axel Dieter				
Witten, Edward				
Heeger, Alan J.				

Sum of Times Cited 65,757

63,354 62,581

59,157

56,364

Hohenberg-Kohn Theorem (1964)

Assume two different external potentials give same electron density, $\rho(\vec{r}) = N \int \cdots \int \left| \Psi(\vec{x}_1, \vec{x}_2, ..., \vec{x}_N) \right|^2 ds_1 d\vec{x}_2 \dots d\vec{x}_N$

$$\begin{array}{c|c} \hat{V}_{\text{ext}} \\ \downarrow \\ \hat{H} = \hat{T} + \hat{V}_{\text{ee}} + \hat{V}_{\text{ext}} \\ \Rightarrow \Psi \Rightarrow \rho(\vec{r}) \leftarrow \Psi' \leftarrow \hat{H}' = \hat{T} + \hat{V}_{\text{ee}} + \hat{V}'_{\text{ext}} \\ \downarrow \\ E_0 & \neq & E'_0 \\ \end{array}$$

Impossible

$$\longrightarrow$$
 $E_0 + E'_0 < E'_0 + E_0 \text{ or } 0 < 0.$

∴ The ground state density uniquely specifies the external potential

$$\rho_0 \Rightarrow \{N, Z_A, R_A\} \Rightarrow \hat{H} \Rightarrow \Psi_0 \Rightarrow E_0$$
 (and all other properties).

The electron density contains all the information and is more tractable than using the wave function

[1] http://www.magmat.org/theory/dft/

Exploring the potential energy surface is critical to compute system properties

Common energy minimization algorithms

Gradient only methods

Example: Conjugate gradient

$$x_{k+1} = x_k + \alpha p_k$$

Second derivative based-methods

Example: Newton-Raphson

$$\Delta \varepsilon = E - E_o = g^t \Delta x + 1/2 \Delta x^t H \Delta x$$

$$\partial \Delta \varepsilon / \partial \Delta x = g + H \Delta x = 0$$

$$\Delta x = -H^{-1}g$$

Common transition state search methods

"Doubled-ended" searches

"Single-ended" searches

Example: Nudged elastic band

Example: min-mode following

$$X = (\Lambda - H)^{-1} g$$

while the second seco

Olefin epoxidation plays a key role in chemical industry

Methyltrioxorhenium is an active olefin epoxidation catalyst

Water-catalyzed activation of H₂O₂ by CH₃ReO₃ in aqueous acetonitrile

T. Hwang,* B. R. Goldsmith,* B. Peters, and S. L. Scott, Inorg. Chem. 52, 13904 (2013).

Structure-property relationships in amorphous catalysts

Amorphous catalysts are extremely difficult to model

B. R. Goldsmith, E. D. Sanderson, D. Bean, B. Peters, J. Chem. Phys. 138, 204105 (2013).

B. R. Goldsmith, A. Fong, and B. Peters (2013). *Reaction Rate Constant Computations*, Royal Society Chemistry.

Our approach

 $min_{\mathbf{x}_p} E_{red}^A(\mathbf{x}_p)$ subject to $\Delta E^{\ddagger}(\mathbf{x}_p) = \Delta E^{\ddagger}$

Molybdenum/amorphous SiO₂ + C₂H₄

Molybdenum/amorphous SiO₂ + C₂H₄

Activation Energy (kJ/mol)

Predicting nanoparticle disintegration

Rh, Pd, or Pt nanoparticles supported on TiO₂(110) In the presence of CO

B. R. Goldsmith, E. D. Sanderson, R. Ouyang, and W.-X. Li, J. Phys. Chem. C 118, 9588 (2014).

Density functional theory is a powerful method for helping to design new catalysts

Compute reaction mechanisms
Structure-property relationships
Understand synthesis of catalysts

 $min_{\mathbf{x}_p} E_{red}^A(\mathbf{x}_p)$ subject to $\Delta E^{\ddagger}(\mathbf{x}_p) = \Delta E^{\ddagger}$

Questions?

Acknowledgements

Prof. Baron Peters

Prof. Susannah Scott

Prof. Wei-Xue Li

Prof. Matthias Scheffler

Dr. Taeho Hwang

Colin Gardner

Evan D. Sanderson

Stefan Seritan

Chris Yuan

The Peters Group

