2023-2024 Polytech Lyon, MAM3A,

> Analyse Numérique (AN) Travaux Tutorés 1 (TT1)

Exercice 1.

Soit $\Omega =]a,b[$ un ouvert borné dans \mathbb{R} , avec $a,b \in \mathbb{R}$, a < b. On considère aussi T > 0et on pose $S = \Omega \times]0, T[\subset \mathbb{R}^2$. On se donne aussi une fonction $f \in C(\bar{S})$ et une autre function $g \in C(\Omega)$.

On se propose de donner une approximation numérique de l'EDP suivant appelé l'équation de la chaleur d'évolution en dimension 1:

trouver $u: S \to \mathbb{R}$ avec $u \in C^2(S) \cap C(\bar{S})$ solution du système suivant:

(1)
$$\frac{\partial u}{\partial t}(x,t) - \frac{\partial^2 u}{\partial x^2}(x,t) = f(x,t), \quad \forall (x,t) \in S$$

avec

(2)
$$u(a,t) = u(b,t) = 0, \quad \forall t \in [0,T]$$

et

(3)
$$u(x,0) = g(x), \quad \forall x \in \bar{\Omega}.$$

L'équation (1) est l'équation principale, ensuite (2) représentent les conditions au limite et (3) c'est la condition initiale; nous considérons $x \in \Omega$ comme la variable de l'espace et $t \in]0,T[$ comme la variable du temps.

Dans la suite de l'exercice on fixe $M,N\in\mathbb{N}$ avec $M,N\geq 3$ assez grands, on pose $h = \frac{b-a}{N+1}$ (c'est le pas de discrétisation en espace) et $\tau = \frac{T}{M+1}$ (c'est le pas de discrétisation

On pose $x_i = a + ih$ pour tout $i \in \{0, 1, \dots N + 1\}$ et $t_j = j\tau$ pour tout $j \in \{0, 1, \dots M + 1\}$ et on note par $U_{i,j}$ une approximation de $u(x_i, t_j)$.

Les conditions au limites (2) nous donnent

$$U_{0,j} = U_{N+1,j} = 0, \quad \forall j \in [[0, M+1]].$$

Nous introduisons alors pour tout $j \in [0, M+1]$ le vecteur $U^{(j)}$ tel que $(U^{(j)})_i = U_{i,j}$ pour tout $i \in [[1, N]]$.

Pour tout $j \in [[1, M+1]]$ et $i \in [[1, N]]$ on va approcher en (1)

 $\frac{\partial u}{\partial t}(x_i,t_j) \text{ par } \frac{1}{\tau}(U_{i,j}-U_{i,j-1}) \text{ et } \frac{\partial^2 u}{\partial x^2}(x_i,t_j) \text{ par } \frac{1}{h^2}(U_{i-1,j}-2U_{i,j}+U_{i+1,j}).$ Comme u(x,0) est connue (égale à g(x)) pour tout $x\in\Omega$ il est naturel de considérer le vecteur $U^{(0)}$ comme vecteur connu avec

$$(U^{(0)})_i = g(x_i), \quad \forall i \in [[1, N]].$$

a) Ecrire une approximation de (1) en (x_i, t_j) comme une relation de récurrence qui permet de trouver le vecteur $U^{(j)}$ en fonction du vecteur $U^{(j-1)}$, ceci pour tout j de 1 à M+1. Montrer que cette relation de récurrence s'écrit sous la forme

$$AU^{(j)} = \alpha U^{(j-1)} + b$$

avec $\alpha \in \mathbb{R}$, $A \in \mathcal{M}_N(\mathbb{R})$ et $b \in \mathbb{R}^N$ à trouver.

b) Montrer que A est une matrice SDP.

Exercice 2.

On se donne $\alpha, \beta \in \mathbb{R}$ avec $\alpha \neq 0$, $n \in \mathbb{N}$ avec $n \geq 2$ et on considère la matrice $A \in \mathcal{M}_n(\mathbb{C})$ définie par

 $\begin{cases} A_{ii} = \beta, & \forall i = 1, \dots n \\ A_{i+1,i} = A_{i,i+1} = \alpha, & \forall i = 1, \dots n-1. \end{cases}$

Partie I). Le but de cette partie est de montrer qu'on peut trouver n valeurs propres réelles distinctes (et donc une base en \mathbb{R}^n des vecteurs propres) de A.

On cherchera un vecteur propre arbitraire $x=\begin{pmatrix} x_1\\x_2\\\dots\\x_n\end{pmatrix}\in\mathbb{R}^n$ de A sous la forme

(4)
$$x_k = \sin\left(\frac{km\pi}{n+1}\right), \quad \forall \ k = 1, 2, \dots n$$

avec $m \in \{1, 2, \dots n\}$. On observe alors que tout revient à trouver $\lambda \in \mathbb{R}$ tel que

(5)
$$\alpha x_{k-1} + \beta x_k + \alpha x_{k+1} = \lambda x_k, \quad \forall \ k = 1, 2, \dots n$$

où on étend la définition (4) de x_k à k=0 et k=n+1.

Ia) Montrer que pour tout $m \in \{1, 2, \dots n\}$ on a une valeur propre $\lambda \in \mathbb{R}$ (qu'on notera λ_m) donnée par

$$\lambda_m = \beta + 2\alpha \cos\left(\frac{m\pi}{n+1}\right)$$

Ib) Montrer que les expressions de Ia) nous donnent exactement n valeurs propres distinctes de A; peut-il y en avoir d'autres?

Partie II). On suppose ici en plus $\beta \geq 2|\alpha|$. Montrer que A est une matrice symétrique et définie positive (matrice SDP).