- Interested in Credit Card Balances (y)
- Suspect it may be related to Gender or Ethnicity

Modeling with just Gender

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is female} \\ 0 & \text{if } i \text{th person is male} \end{cases}$$

$$y_i = \beta_0 + \beta_1 \underline{x_i} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is female} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person is male.} \end{cases}$$

Modeling with Ethnicity (more than 2 Levels)

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person is } \underline{\text{Asian}} \\ 0 & \text{if } i \text{th person is not Asian} \end{cases}$$

$$x_{i2} = \begin{cases} 1 & \text{if } i \text{th person is Caucasian} \\ 0 & \text{if } i \text{th person is not Caucasian} \end{cases}$$

$$y_i = \beta_0 + \beta_1 \underline{x_{i1}} + \beta_2 \underline{x_{i2}} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if ith person is AA.} \end{cases}$$

if ith person is AA.

Data

<u>Ones</u>	Ethnicity	
1	AA	
1	Asian	
1	Asian	
1	Caucasian	
1	AA	
1	AA	
1	Asian	
1	Caucasian	
1	AA	

Recode Design Matrix

<u>Ones</u>	<u>Asian</u>	Caucasian		
1	0	0		
1	1	0		
1	1	0		
1	0	1		
1	0	0		
1	0	0		
1	1	0		
1	0	1		
1	0	0		

- β0 as average credit card balance for AA
- β1 as <u>difference</u> in average balance between Asian and AA
- β2 as difference in average balance between Caucasian and AA

So what if $\beta 1 = -23.1$?

Card_Balance ~ Age + Years_of_Education + Gender + Ethnicity +

- Intercept β0 loses nice interpretation
- Now what's it mean if β1 = -23.1?
- What if you wanted to compare groups to Caucasians as a baseline?

$$y_i = \beta_0 + \beta_1 \underline{x_{i1}} + \beta_2 \underline{x_{i2}} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if ith person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if ith person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if ith person is AA.} \end{cases}$$

Card_Balance ~ Age + Years_of_Education + Gender + Ethnicity +

- Intercept β0 loses nice interpretation
- Now what's it mean if β1 = -23.1?
 - ✓ Still interpret as difference between Asian and AA...holding all other predictors constant. Again, beware of interpretation.
- What if you wanted to compare groups to Caucasians as a baseline?

Varying Intercepts

- 2 Formulations
 - Baseline and alternative
 - Individual fit

Education (x_4)

Interactions

Interacting **student** (qualitative) and **income** (quantitative)

No Interaction $balance_i = \beta_0 + \beta_1 * income_i + \beta_2 * student_i$

balance_i
$$\approx \beta_0 + \beta_1 \times \text{income}_i + \begin{cases} \beta_2 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$$

$$\beta_0 + \beta_2 & \text{if } i \text{th person is a student}$$

 $= \underline{\beta_1} \times \mathbf{income}_i + \begin{cases} \underline{\beta_0 + \beta_2} & \text{if } i \text{th person is a student} \\ \underline{\beta_0} & \text{if } i \text{th person is not a student.} \end{cases}$

With Interaction balance_i = $\beta_0 + \beta_1 * income_i + \beta_2 * student_i + \beta_3 * income_i * student_i$

$$\begin{array}{lll} \mathbf{balance}_i & \approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 + \beta_3 \times \mathbf{income}_i & \text{if student} \\ 0 & \text{if not student} \end{cases} \\ & = & \begin{cases} \frac{(\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \mathbf{income}_i & \text{if student} \\ \beta_0 + \beta_1 \times \mathbf{income}_i & \text{if not student} \end{cases} \end{array}$$

Varying Slopes

- 2 Formulations
 - Baseline and alternative
 - Individual fit

Education (x_4)

Interactions

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \underline{\beta_3} \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

Results:

	Coefficient	Std. Error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${\tt TV}{ imes{\tt radio}}$	0.0011	0.000	20.73	< 0.0001

The coefficient estimates in the table suggest that an increase in TV advertising of \$1,000 is associated with increased sales of

$$(\hat{\beta}_1 + \hat{\beta}_3 \times \text{radio}) \times 1000 = 19 + 1.1 \times \text{radio}$$
 units.

Non-linear Features

Non-linear Features

Y-variable Transform

Potential Transformations

Method	Transformation(s)	Regression equation	Predicted value (ŷ)
Standard linear regression	None	$y = b_0 + b_1 x$	$\hat{y} = b_0 + b_1 x$
Exponential model	Dependent variable = log(y)	$\log(y) = b_0 + b_1 x$	$\hat{y} = 10^{b_0 + b_1 x}$
Quadratic model	Dependent variable = sqrt(y)	$sqrt(y) = b_0 + b_1x$	$\hat{y} = (b_0 + b_1 x)^2$
Reciprocal model	Dependent variable = 1/y	$1/y = b_0 + b_1 x$	$\hat{y} = 1 / (b_0 + b_1 x)$
Logarithmic model	Independent variable = log(x)	$y=b_0+b_1\log(x)$	$\hat{y} = b_0 + b_1 log(x)$
Power model	Dependent variable = log(y) Independent variable = log(x)	$\log(y) = b_0 + b_1 \log(x)$	$\hat{y} = 10^{b_0 + b_1 \log(x)}$

Standard Errors

 $\widehat{\operatorname{se}}(\widehat{b}) = \sqrt{\frac{n\widehat{\sigma}^2}{n\sum x_i^2 - (\sum x_i)^2}}.$

The denominator can be written as

$$n\sum_{i}(x_i-\bar{x})^2$$

Thus,

$$\widehat{\operatorname{se}}(\widehat{b}) = \sqrt{\frac{\widehat{\sigma}^2}{\sum_i (x_i - \bar{x})^2}}$$

With

$$\hat{\sigma}^2 = \frac{1}{n-2} \sum_{i} \hat{\epsilon}_i^2$$