

Method

Towards Pose Invariant Face Recognition in the Wild

Jian Zhao^{1,2}, Yu Cheng³, Yan Xu⁴, Lin Xiong⁴, Jianshu Li¹, Fang Zhao¹, Karlekar Jayashree⁴, Shengmei Shen⁴, Junliang Xing⁵, Shuicheng Yan^{1,6}, and Jiashi Feng¹ ¹National University of Singapore, ²National University of Defense Technology, ³Nanyang Technological University

⁴Panasonic R&D Center Singapore, ⁵National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, ⁶Qihoo 360 Al Institute {zhaojian90, jianshu}@u.nus.edu, chengyu996@gmail.com, {yan.xu, lin.xiong, karlekar.jayashree, sugiri.pranata, shengmei.shen}@sg.panasonic.com ilxing@nlpr.ia.ac.cn, {eleyans, elefjia}@nus.edu.sg

Abstract

Pose variation is one key challenge in face recognition. As opposed to current techniques for pose invariant face recognition, which either directly extract pose invariant features for recognition, or first normalize profile face images to frontal pose before feature extraction, we argue that it is more desirable to perform both tasks jointly to allow them to benefit from each other. To this end, we propose a Pose Invariant Model (PIM) for face recognition in the wild, with three distinct novelties. First, PIM is a novel and unified deep architecture, containing a Face Frontalization sub-Net (FFN) and a Discriminative Learning sub-Net (DLN), which are jointly learned from end to end. Second, FFN is a well-designed dual-path Generative Adversarial Network (GAN) which simultaneously perceives global structures and local details, incorporated with an unsupervised cross-domain adversarial training and a "learning to learn" strategy for high-fidelity and identity-preserving frontal view synthesis. Third, DLN is a generic Convolutional Neural Network (CNN) for face recognition with our enforced cross-entropy optimization strategy for learning discriminative yet generalized feature representation. Qualitative and quantitative experiments on both controlled and in-the-wild benchmarks demonstrate the superiority of the proposed model over the state-of-the-arts.

Fig. 1. Pose invariant face recognition in the wild. Each row shows a distinct identity under different poses along with other unconstrained factors (like expression, illumination, etc.), recovered frontal faces and learned facial representations (smoothed for better visualization, with blue indicting zero values) with our proposed PIM. The representations are extracted from the penultimate layer of PIM. The ground truth frontal face images are provided in the right-most column. These examples indicate that the facial representations learned by PIM are robust to pose variance, and the recovered frontal face images retain the intrinsic global structures and local details. Best viewed in color.

Contributions

- 1. We propose a Pose Invariant Model (PIM) for face recognition in the wild. PIM is a novel and unified deep neural network containing a Face Frontalization sub-Net (FFN) and a Discriminative Learning sub-Net (DLN) that jointly learn in an end-to-end way to allow them to mutually boost each other.
- 2. FFN is a carefully designed dual-path (i.e., simutaneously perceving global structures and local details) Generative Adversarial Network (GAN) incorporating unsupervised cross-domain adversarial training and a "learning to learn" strategy using siamese discriminator with dynamic convolution for high-fidelity and identitypreserving frontal view synthesis.
- 3. DLN is a generic Convolutional Neural Network (CNN) for face recognition with our proposed enforced cross-entropy optimization strategy for learning discriminative yet generalized feature representations with large intra- class affinity and inter-class separability.
- 4. We develop effective and novel training strategies for FFN, DLN and the whole deep architecture, which generate powerful face representations.
- 5. As a by-product, the recovered frontal face images by PIM can also be utilized by conventional descriptors and learning algorithms so as to eliminate the negative effects from unconstrained conditions.

Based on the above model innovations and technical contributions, we present a high-performance pose invariant face recognition system. It achieves state-of-the-art performance on Multi-PIE, CFP and LFW benchmark datasets.

Face Frontalization Sub-Net Discriminative Learning Sub-Net (a) Overview of the proposed PIM framework.

Fig. 2. Pose Invariant Model (PIM) for face recognition in the wild. The PIM contains an Face Frontalization sub-Net (FFN) and a Discriminative Learning sub-Net (DLN) that jointly learn end-to-end. FFN is a dual-path (i.e., simultaneously perceiving global structures and local details) GAN augmented by (1) unsupervised crossdomain (i.e., I_{tr} and I_{te}) adversarial training and (2) a siamese discriminator with a "learning to learn" strategy — convolutional parameters (i.e., W_d) dynamically predicted by the "learner" D_L of the discriminator and transferred to D_M . DLN is a generic Convolutional Neural Network (CNN) for face recognition optimized by the proposed enforced cross-entropy optimization. It takes in the frontalized face images from FFN and outputs learned pose invariant facial representations Towards Pose Invariant Face Recognition in the Wild

Results

i	Method	$\pm 90^{\circ}$	$\pm 75^{\circ}$	$\pm 60^{\circ}$	$\pm 45^{\circ}$	$\pm 30^{\circ}$	$\pm 15^{\circ}$										E . 1 D . C1			E . 1 E . 1	
	L1	10.00	62.00	02.20	00.20	00.20	00.40								Method	Frontal-Profile			Frontal-Frontal		
i	DI	18.80	63.80	92.20	98.30	99.20	99.40		0		0			0	Mediod	Acc	EER	AUC	Acc	EER	AUC
i	b2	33.00	76.10	95.20	97.90	99.20	99.80	Method	$\pm 90^{\circ}$	$\pm 75^{\circ}$	$\pm 60^{\circ}$	$\pm 45^{\circ}$	$\pm 30^{\circ}$	$\pm 15^{\circ}$	EV DIG COAL	50 47 1 2 51	20 54 1 50	(5.54 2.02	01.10 1.04	0.60 1.10	07.25 0.60
i '	CPF [37]	347			71.65	81.05	89.45	1.1	15.50	55.10	05.00	07.10	00.40	00.60	FV+DML [24]	58.47 ± 3.51	38.54 ± 1.59	65.74 ± 2.02	91.18 ± 1.34	8.62 ± 1.19	97.25 ± 0.60
		-	-					DI	15.50	55.10	85.90	97.10	98.40	98.60	LBP+Sub-SML [24]	70.02 ± 2.14	29.60 ± 2.11	77.98 ± 1.86	83.54 ± 2.40	16.00 ± 1.74	91.70 ± 1.55
	Hassner [14]	-	-	44.81	74.68	89.59	96.78	b2	27.10	68.70	91.40	97.70	98.60	99.10	HoG+Sub-SML [24]	77.31 ± 1.61	22.20 ± 1.18	85.97 ± 1.03	88.34 ± 1.33	11.45±1.35	94.83±0.80
i i	FV [26]	24.53	45.51	68.71	80.33	87.21	93.30	FIP [39]	•	-	45.90	64.10	80.70	90.70	FV+Sub-SML [24]	80.63 ± 2.12	19.28 ± 1.60	88.53 ± 1.58	91.30 ± 0.85	8.85 ± 0.74	96.87 ± 0.39
	HPN [9]	29.82	47.57	61.24	72.77	78.26	84.23	MVP [40]	-	-	60.10	72.90	83.70	92.80	Deep Features [24]	84.91 ± 1.82	14.97±1.98	93.00 ± 1.55	96.40 ± 0.69	3.48 ± 0.67	99.43±0.31
!	FIP_40 [39]	31.37	49.10	69.75	85.54	92.98	96.30	CPF [37]	-	-	61.90	79.90	88.50	95.00	Triplet Embedding [22]	89.17±2.35	8.85 ± 0.99	97.00 ± 0.53	96.93 ± 0.61	2.51 ± 0.81	99.68 ± 0.16
	c-CNN [36]	47.26	60.66	74.38	89.02	94.05	96.97	DR-GAN [32]	-	-	83.20	86.20	90.10	94.00	Chen et al. [5]	91.97 ± 1.70	8.00 ± 1.68	97.70 ± 0.82	98.41±0.45	1.54 ± 0.43	99.89 ± 0.06
i	TP-GAN [17]	64.03	84.10	92.93	98.58	99.85	99.78	TP-GAN [17]	64.64	77.43	87.72	95.38	98.06	98.68	Light CNN-29 [35]	92.47±1.44	8.71 ± 1.80	97.77 ± 0.76	99.64±0.32	0.57 ± 0.40	99.92±0.15
Ī	PIM1	71.60	92.50	97.00	98.60	99.30	99.40	PIM1	81.30	92.70	96.60	97.30	98.40	98.80	PIM (Light CNN-29 [35])	93.10 ± 1.01	7.69 ± 1.29	97.65 ± 0.62	99.44 ± 0.36	0.86 ± 0.49	99.92 ± 0.10
!	PIM2	75.00	91.20	97.70	98.30	99.40	99.80	PIM2	86.50	95.00	98.10	98.50	99.00	99.30	Human	94.57±1.10	5.02 ± 1.07	98.92 ± 0.46	96.24±0.67	5.34 ± 1.79	98.19±1.13

Tab. 3. Rank-1 recognition rates (%) Tab. 2. Rank-1 recognition rates (%) across views, illuminations and sessions across views, illuminations and sessions under Multi-PIE Setting-2. under Multi-PIE Setting-2

Acknowledgement

The work of Jian Zhao was partially supported by China Scholarship Council (CSC) grant 201503170248.

The work of Junliang Xing was partially supported by the National Science Foundation of Chian 61672519.

The work of Jiashi Feng was partially supported by NUS startup R-263-000-C08-133, MOE Tier-I R-263-000-C21-112, NUS IDS R-263-000-C67-646 and ECRA R-263-000-C87-133

Tab. 1. Rank-1 recognition rates (%) across

views, minor expressions and illuminations

under Multi-PIE Setting-1.