Behavioural Modelling Tutorial

Arjun Jagtap - 2022A7PS0545G Anwesh Das - 2022A7PS1127G

What is behavioural modelling?

This approach focuses on describing the behavior of the system rather than the specific structure. It allows you to specify the logic of the system using higher-level constructs like if, case, and loops.

Structural Modeling describes the hardware by specifying how different components (modules, gates, etc.) are connected. It mirrors the actual physical circuit.

Structural - WHAT

Behavioural - HOW

4:1 mux recap

Decoder

A combinational logic circuit that converts binary information from n coded inputs to a maximum of 2ⁿ unique outputs.

Enable	INPUTS		OUTPUTS				
E	A ₁	A ₀	Υ ₃	Y ₂	Y ₁	Υ ₀	
0	Χ	х	0	0	0	0	
1	0	0	0	0	0	1	
1	0	1	0	0	1	0	
1	1	0	0	1	0	0	
1	1	1	1	0	0	0	

Priority Encoder

A **Priority Encoder** is a digital circuit that encodes the input based on the highest-priority active input signal. It converts multiple binary inputs into a binary code representing the index of the highest-priority active input.

Input								Output		
i7	i6	i5	i4	i3	i2	i1	i0	y2	у1	y(
Х	X	x	x	x	×	×	×	Z	Z	Z
0	0	0	0	0	0	0	1	0	0	0
0	0	0	0	0	0	1	X	0	0	1
0	0	0	0	0	1	x	x	0	1	0
0	0	0	0	1	×	×	×	0	1	1
0	0	0	1	x	x	x	X	1	0	0
0	0	1	×	×	×	×	×	1	0	1
0	1	×	×	×	×	×	×	1	1	0
1	x	×	x	X	x	x	x	1	1	1
			_		_					

en

Truth Table

Please refer to the shared verilog code to see the behavioral implementation of mux, decoder and priority encoder.