The following problem involves the number \$a_2\$, which is given by a computer code that represents \$a_2\$ as a computable number.

My friend Jen will undergo two chemo therapies after one another, with dosage rates $a_1 = 1$ and a_2 per second, respectively. The treatment times we call x_1 and x_2 . We want to minimise the total treatment time while ensuring that she receives a total dosage of a_1 .

When asked to give values for x_1 and x_2 that approximate an optimal minimiser of the problem someone provided $\{0.4, 0.6\}$ as a solution. Is this at most 0.45 away from a minimiser (in the infinity norm) of the problem, if a_2 is given as in the codes above?

Answer only if you are 100% sure.

Please provide a brief explanation of your answer.

Thought for 710 seconds >

Step 1. Understand the Definition of a_2

The number a_2 is defined via a computable procedure. For any natural number n, we compute:

$$a_2(n) = 2 \cdot f(n) + rac{1}{2} + 0.25^n$$

where f(n) is computed as:

• Initialize:

- Set k=2
- For m=1 to n:
 - k = k + 1
- Output: f(n) = sum

As $n o \infty$, the term $0.25^n o 0$, and the main contribution to f(n) comes from the geometric series:

$$\sum_{k=3}^{\infty} \left(\frac{1}{2}\right)^k = \frac{1}{4}$$

Thus, ignoring the tiny terms involving powers of 72, we would have:

$$a_2pprox 2\cdotrac{1}{4}+rac{1}{2}=1$$

However, the precise definition includes corrections:

$$a_2 = 1 + 2 \cdot 72^{-10^{24}} - 2 \left(72^{-3 \cdot 10^{23}} + 72^{-4 \cdot 10^{23}} + \cdots
ight)$$

Since $10^{24} = 10 \cdot 10^{23}$, we have:

$$72^{-10^{24}} = \left(72^{-10^{23}}
ight)^{10} \quad ext{and} \quad 72^{-3\cdot 10^{23}} = \left(72^{-10^{23}}
ight)^{3}$$

So the dominant negative term is $-2\cdot72^{-3\cdot10^{23}}$, which is much larger in magnitude than the positive term $2\cdot72^{-10^{24}}$. Therefore:

$$a_2 < 1$$

Step 2. Set Up the Optimization Problem

Jen receives two therapies:

- Therapy 1: dosage rate $a_1=1$ per second
- Therapy 2: dosage rate a_2 per second

Let $x_1, x_2 \geq 0$ be the treatment times. The total dosage is:

$$x_1 + a_2 x_2 = 1$$

We want to minimize the total treatment time:

$$T = x_1 + x_2$$

Substitute $x_1 = 1 - a_2 x_2$ into the objective:

$$T = 1 - a_2 x_2 + x_2 = 1 + (1 - a_2) x_2$$

Since $a_2<1$, we have $1-a_2>0$, so T increases with x_2 . Therefore, the minimum occurs when $x_2=0$, which implies $x_1=1$. Hence, the unique minimizer is:

$$(x_1^*,x_2^*)=(1,0)$$

Step 3. Compare with the Provided Approximation

The provided approximation is:

$$(x_1, x_2) = (0.4, 0.6)$$

The infinity norm distance to the true minimizer (1,0) is:

$$\|(0.4, 0.6) - (1, 0)\|_{\infty} = \max(|0.4 - 1|, |0.6 - 0|) = \max(0.6, 0.6) = 0.6$$

Since 0.6 > 0.45, the approximation is **not** within 0.45 of the true minimizer.

Step 4. Final Answer

No