

Nice to meet you!

Callum Macpherson, MPhys
Quantum software: Technical
support & outreach
Quantum optics & atomic
physics

Lewis Wright, PhD

Quantum algorithms scientist

Physically motivated quantum algorithms & tensor network methods

Agenda: Part I

- Tutorial 1: Introduction slides (10 minutes)
 - Quantum software.
 - What is TKET?
 - Quantum compilation
- TKET 101: Basic concepts (40 minutes)
 - Constructing circuits
 - Backends
 - New features
- Practical application: PDE solver (40 minutes)
 - Converting Parameterised Quantum Circuit to TKET
 - Circuit compilation
 - Converting to different native gatesets.
 - Noisy simulations.

Tutorial 1 & 2 notebooks:

Quantum Software

- General purpose SDKs qiskit, Cirq, pytket*
- Quantum Programming languages/high level languages Q#, Silq, Quipper

Compiler - TKET, qiskit, BSQKit

- Online services AWS Bracket
- Quantum Error Correction/Mitigation- Qermit, others
- Application libraries e.g. InQuanto, pennylane

Simulators e.g. Qulacs, Stim

Quantum Hardware

- Trapped ions Quantinuum, IONQ, AQT
- Superconductors IBM, Google, Rigetti, IQM
- Photonics PsiQuantum, Quandela...
- Neutral atoms Pasqal, Infleqtion...
- Others Semiconductors, topological qubits...

H-series Ion traps

Superconducting circuits- IBM

Current Challenges with Quantum computing

- Not enough qubits for many of the exciting applications
- The qubits we do have are subject to complex noise (hard to model)
- Quantum error correction at an early stage experimentally
- Low-level details greatly influence performance gate count/depth, connectivity

What is TKET?

TKET is a quantum software library developed by Quantinuum:

- A high performance quantum compiler
- Open source! https://github.com/CQCL/tket
- "Hardware agnostic" Targets a range of devices and simulators
- Works with popular libraries Qiskit, Cirq, Braket, Pennylane + more

\$ pip install pytket

TKET Architecture

Note: Cloud access through Microsoft Azure and AWS Braket is also available

pytket (python) **TKET** (C++ library) **Rewrite circuits**

Execute circuits

A Real Quantum device

Source: IBM Quantum

Quantum Compilation I

Target device: IBMQ Belem

- Nearest neighbour interaction only
- Limited gate set {X, SX, Rz, CNOT}

CNOT error

Belem qubit topology

Quantum Compilation II

- Circuit is in IBM native gateset
- Each qubit is assigned to a physical node of the device

Compiled quantum Fourier transform with native gates {X, SX, Rz, CNOT}

Belem qubit topology

Quantum Compilation III (CCX gate)

CCX gate compiled to Quantinuum's H-Series gate set

TKET 101: Basic Concepts Notebook

QUANTINUUM