Flip-Flops, Registers, Counters, and a Simple Processor

Chapter7

Chapter Objectives

000

- Logic circuits that can store information
- Flip-flops, which store a single bit
- Registers, which store multiple bits
- Shift registers, which shift the contents of the register
- Counters of various types

000

Contents

- Basic Latch
- Gated SR Latch
- 3. Gated D Latch
- 4. Master-Slave and Edge-Triggered D Flip-Flops
- 5. T Flip-Flop
- 6. JK Flip-Flop
- Summary of Terminology

Contents

- 8. Registers
- Counters
- 10. Reset Synchronization
- 11. Other types of Counters

Need for Memory

Figure 7.1. Control of an alarm system.

The circuit requires a memory element to remember that the alarm has to be active until the Reset signal arrives.

Simple Memory Element

Figure 7.2. A simple memory element.

This circuit is not useful, because it lacks some practical means for changing its state.

A controlled memory element

Figure 7.3. A controlled memory element.

A controlled memory element

A controlled memory element

Load = 0

Load = 1

Load

BASIC LATCH

Amemory element with NOR gates

NOR gate

x	y	(x+y)'
0	0	1
0	1	0
1	0	0
1	1	0

Truth table

$$Q \quad 0 \rightarrow 0 \rightarrow 1 \rightarrow 0 \rightarrow 0 \rightarrow 1 \rightarrow 1$$

Figure 7.4. A memory element with NOR gates.

A latch built with NOR gates

Figure 7.5. A latch built with NOR gates.

A latch built with NOR gates

Figure 7.5. A latch built with NOR gates.

A latch built with NOR gates

(c) Timing diagram

Figure 7.5. A latch built with NOR gates.

GATED SR LATCH

Gated SR latch

 $Clk \ S$ R Q(t + 1)

 0
 \times \times Q(t) (no change)

 1
 0
 0
 Q(t) (no change)

 1
 0
 1
 0

 1
 1
 0
 1

 1
 1
 1
 \times

(a) Circuit

(b) Truth table

Figure 7.6. Gated SR latch.

00

Gated SR latch

Clk	S	R	Q(t+1)
0	×	×	Q(t) (no change)
1	0	0	Q(t) (no change)
1	0	1	0
1	1	0	1
1	1	1	★ (inhibited)

(a) Circuit

$$x \longrightarrow x$$

(b) Truth table

$$R' = R, S' = S$$

Figure 7.6. Gated SR latch.

Gated SR latch

(d) Graphical symbol

Figure 7.6. Gated SR latch.

Gated SR latch with NAND gates

Figure 7.7. Gated SR latch with NAND gates.

Gated SR latch with NAND gates

Figure 7.7. Gated SR latch with NAND gates.

GATED D LATCH

00

Gated D latch

Clk D	Q(t+1)			
0 ×	Q(t) (no change)			
1 0	0			
1 1	1			
(b) Characteristic table				

	Clk	S	R	Q(t+1)
	0	×	×	Q(t) (no change)
	1	0	0	Q(t) (no change)
ſ	1	0	1	0
į	1	1	0	1
•	1	1	1	×

Figure 7.8. Gated D latch.

(d) Graphical symbol

Gated D latch

(c) Timing diagram

Figure 7.8. Gated D latch.

Setup and hold times

The minimum time that the D signal must be stable prior to the negative edge of the clock signal is called the setup time t_{su} of the latch.

The minimum time that the D signal must remain stable after the negative edge of the clock signal is called the hold time t_h of the latch.

Figure 7.9. Setup and hold times.

Flip-flop Characteristics

Propagation delay time is specified for the rising and falling outputs. It is measured between the 50% level of the clock to the 50% level of the output

The typical propagation delay time for the 74AHC family (CMOS) is 4 ns. Even faster logic is available for specialized applications.

Flip-flop Characteristics

Another **propagation delay time** specification is the time required for an *asynchronous* input to cause a change in the output. Again it is measured from the 50% levels. The 74AHC family has specified delay times under 5 ns.

Flip-flop Characteristics

Set-up time and **hold time** are times required before and after the clock transition that data must be present to be reliably clocked into the flip-flop.

Setup time is the minimum time for the data to be present *before* the clock.

CLK Set-up time, t_s t_{su}

Hold time is the minimum time for the data to *remain* after the clock.

000

MASTER-SLAVE AND EDGE-TRIGGERED D FLIP-FLOPS

(b) Timing diagram

(b) Timing diagram

(b) Timing diagram

Figure 7.10. Master-slave D flip-flop.

Figure 7.10. Master-slave D flip-flop.

(c) Graphical symbol

Positive edge triggered D flip-flop

(a) Circuit

A positive-edge-triggered D flip-flop

It requires only six NAND gates and fewer transistors

Figure 7.11. A positive-edge-triggered D flip-flop.

Level-Sensitive versus Edge-Triggered Storage Elements

Figure 7.12. Comparison of level-sensitive and edgetriggered D storage elements.

Level-Sensitive versus Edge-Triggered Storage Elements

Figure 7.12. Comparison of level-sensitive and edge-triggered D storage elements.

OD flip-flop with *Clear* and *Preset*OO

Figure 7.13. Master-slave D flip-flop with Clear and Preset.

• • D flip-flop with *Clear* and *Preset*• •

(b) Graphical symbol

Synchronous reset for a D flip-flop

Figure 7.15. Synchronous reset for a D flip-flop.

O O O T FLIP-FLOP

$$\begin{array}{c|c} D & Q(t+1) \\ \hline 0 & 0 \\ 1 & 1 \\ \hline Q(t+1) = D \end{array}$$

(b) Truth table

(c) Graphical symbol

$$Q(t+1)$$
: Next state

$$Q(t)$$
: Present state

T	Q(t+1)		
0	Q(t)		
1	Q'(t)		

$$Q(t+1) = T'Q(t) + TQ(t)'$$

(c) Graphical symbol

(a) Circuit

(a) Circuit

(d) Timing diagram

JK FLIP-FLOP

JK flip-flop

_	J	K	Q(t+1)	
	0	0	Q(t)	No change
	0	1	0	
	1	0	1	
	1	1	Q'(t)	Toggle
Q	(t +	- 1) =	= J'K'Q(t) -	+JK'+JKQ(t)'

(b) Truth table

(c) Graphical symbol

T-F/F

00

JK flip-flop

$$Q(t+1) = J'K'Q(t) + JK' + JKQ'(t)$$
$$JK' = JK'Q'(t) + JK'Q(t)$$

$$Q(t+1) = K'Q(t) + JQ'(t)$$

00

JK flip-flop

(a) Circuit

SUMMARY OF TERMINOLOGY

OOO Summary of Terminology

- Basic latch is a feedback connection of two NOR gates or two NAND gates.
- Gated latch a basic latch that includes input gating and a control signal.
 - Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to o.
 - Gated D latch uses the D input to force the latch into a state that has the same logic value as the D input
- A flip-flop: Output state can be changed only on the edge of the controlling clock signal
 - Edge-triggered flip-flop is affected only by the input values present when the active edge of the clock occurs.
 - Master-slave flip-flop is built with two gated latches.

O O O REGISTERS

00

Shift Register

When a set of n flip-flops is used to store n bits of information, such as n-bit number, we refer to these flip-flops as a register.

(a) Circuit

A register that provides the ability to shift its contents is called a shift register.

00

Shift Register

Input data	
------------	--

(b) A sample sequence

Parallel-access shift register

Figure 7.19. Parallel-access shift register.

Parallel-access shift register

Figure 7.19. Parallel-access shift register.

O Parallel-access shift register O O

Figure 7.19. Parallel-access shift register.

O Parallel-access shift register O O

Figure 7.19. Parallel-access shift register.

COUNTERS

Up-Counter with T Flip-Flops

(a) Circuit

(b) Timing diagram

(b) Timing diagram

Figure 7.20. A three-bit up-counter.

00

Down-Counter with T Flip-Flops

(a) Circuit

00

Down-Counter with T Flip-Flops

Asynchronous counters are simple but not very fast

(b) Timing diagram

Synchronous Counter with T Flip-Flops

	Clock cycle	Q_2	Q_1	Q_0	
$T_0 = 1$ $T_1 = Q_0$ $T_2 = Q_0 Q_1$ $T_3 = Q_0 Q_1 Q_2$ \vdots $T_n = Q_0 Q_1 \cdots$	0 1 2 3 4 Q_{n-1} 5 6 7	$egin{array}{cccccccccccccccccccccccccccccccccccc$	Q ₁ 0 0 1 1 0 1 1 1	Q ₀ 0 1 0 1 0 1 1 1 1	Q_1 changes $Q_2 \text{ changes}$ $T_n Q_n$ Q'_n
	8	0	0	0	J

Table 7.1. Derivation of the synchronous up-counter.

A four-bit synchronous up-counter

A four-bit synchronous up-counter

Figure 7.22. A four-bit synchronous up-counter.

Enable and Clear Capability

Enable control signal controls directly the T input of the first flip-flop.

If Enable = o, then all T inputs will be equal to o.

If Enable = 1, then the counter operates as expected.

To start with the count equal to zero, the clear inputs on all flip-flops can be tied together and driven by a Clear control input.

Figure 7.23. Inclusion of Enable and Clear capability.

Synchronous counter with D flip-flops

Figure 7.24. A four-bit counter with D flip-flops.

A counter with parallel-load capability

Load = 0Enable Q_0 D_0 Q_1 D_1 Q_2 D_2 Q_3 D_3

igure 7.25. A counter with parallel-load capability.

Output carry

A counter with parallel-load capability

Load = 1

Figure 7.25. A counter with parallel-load capability.

RESET SYNCHRONIZATION

Amodulo-6 counter with synchronous reset

(a) Circuit

Amodulo-6 counter with synchronous reset

A modulo-6 counter with asynchronous reset

(a) Circuit

A modulo-6 counter with asynchronous reset

OTHER TYPES OF COUNTERS

BCD counter

Figure 7.28. A two-digit BCD counter.

Ring counter

Initial state of n-bit counter: $Q_0Q_1\cdots Q_{n-1}=10\cdots 0$ (a) An n-bit ring counter

Ring counter

(b) A four-bit ring counter

Johnson counter

Initial state of n-bit Johnson counter: $Q_0Q_1\cdots Q_{n-1}=00\cdots 0$

Cycle of n-bit Johnson counter: 2n

DESIGN EXAMPLES

 $R1_{in}$, $R2_{in}$, $\cdots Rk_{in}$: control signals when data is loaded into each register

 $R1_{out}, R2_{out}, \cdots Rk_{out}$: only one of tri-state buffer enable control signal is asserted at a given time.

Figure 7.55. A digital system with k registers

Bus Structure

 $R1_{in} = 0$: Remain present state

 $R1_{in} = 1$: Read data bus

 $R1_{out} = 0$: disconnect bus

 $R1_{out} = 1$: connect bus and

push present state into bus

Figure 7.56. Details for connecting registers to a bus

TIMING ANALYSIS OF FLIP-FLOP CIRCUITS

Setup and hold times

The minimum time that the D signal must be stable prior to the positive edge of the clock signal is called the setup time t_{su} of the latch.

The minimum time that the D signal must remain stable after the positive edge of the clock signal is called the hold time t_h of the latch.

Figure 7.9. Setup and hold times.

Timing Analysis of Flip-Flop Circuits

We wish to calculate the Maximum clock frequency: F_{max}

Assume that the flip-flop timing parameters

$$t_{su} = 0.6 \ ns$$
, $t_h = 0.4 \ ns$ and $0.8 \le t_{cQ} \le 1.0 \ ns$

Maximum period of clock signal $T_{min} = 1/F_{max}$

$$T_{min} = t_{cO} + t_{NOT} + t_{su} = 1.0 + 1.1 + 0.6 = 2.7 \text{ ns}$$

$$F_{max} = \frac{1}{2.7} ns = 370.37 MHz$$

Assume that logic gate propagation delay= 1+0.1k, where k is the number of inputs.

Timing Analysis of Flip-Flop Circuits

We wish to calculate the maximum clock frequency for the counter.

EXAMPLES OF SOLVED PROBLEMS

Problem: Consider the circuit in Figure 7.82a. Assume that the input C is driven by a square wave signal with a 50% duty cycle. Draw a timing diagram that shows the waveforms at points A and B. Assume that the propagation delay through each Gate is Δ seconds.

(b) Timing Diagram

Problem: Consider the circuit in Figure 7.82a. Assume that the input C is driven by a square wave signal with a 50% duty cycle. Draw a timing diagram that shows the waveforms at points A and B. Assume that the propagation delay through each Gate is Δ seconds.

(b) Timing Diagram

Problem: Determine the functional behavior of the circuit in Figure 7.83. Assume that Input w is driven by a square wave signal.

(b) Truth table

Time		FF()				
interval	$J_0(Q_1'$	K_0	Q_0	$J_1(Q_0)$) <i>K</i> ₁	Q_1	ting
Clear	1	1	0 —	0	1	0	ung
t_1	1	1	1	1	1	0	
t_2	0	1	0	0	1	1	
t_3	1	1	0	0	1	0	
t_4	1	1	1	1	1	0	

Example 7.15

Problem: Figure 7.70 shows a circuit that generates four timing control signals T_0 , T_1 , T_2 , and T_3 . Design a circuit that generates six signals T_0 to T_5 .

Figure 7.70 A port of the control for the processor

Modulo 6 Counter

Example 7.15

Alternative design: 3-bit Johnson counter

Clock Cycle	Q_0	Q_1	Q_2	Control signal
0	0	0	0	$T_0 = Q'_0 Q'_2$ $T_1 = Q_0 Q'_1$ $T_2 = Q_1 Q'_2$ $T_3 = Q_0 Q_2$ $T_4 = Q'_0 Q_1$ $T_5 = Q'_1 Q_2$
1	1	0	0	
2	1	1	0	
3	1	1	1	
4	0	1	1	
5	0	0	1	

 $T_0 = Q_0' Q_1' Q_2'$

010, 101: don't care term

Example 7.15

Q_0Q) ₁	$T_0 =$	$Q_0'Q_2'$		Q_0Q	1	$T_1 =$	Q_0Q_1'		Q_0Q	1	$T_2 =$	Q_1Q_2'	
Q_2	00	01	11	10	Q_2	00	01	11	10	Q_2	00	01	11	10
0	1	d	0	0	0	0	d	0	1	0	0	d	1)	0
1	0	0	0	d	1	0	0	0	d	1	0	0	0	d

Q_0Q	1	$T_3 =$	Q_0Q_2		Q_0Q	1	$T_4 =$	$Q_0'Q_1$		Q_0Q	1
Q_2	00	01	11	10	Q_2	00	01	11	10	Q_2	_
0	0	d	0	0	0	0	d	0	0	0	
1	0	0	1	d	1	0	1	0	d	1	

Q_0Q	1	$T_5 =$	$Q_1'Q_2$	2	
Q_2	00	01	11	10	_
0	0	d	0	0	
1	1	0	0	d	

Example 7.15

00

Alternative design: 6-bit Ring counter

Clock Cycle	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5	Control signal
0 1 2	1 0	1	0		0	0 0	$T_0 = Q_0$ $T_1 = Q_1$ $T_2 = Q_2$
3	0	0	0	0 1	0 0	0	$T_3 = Q_3$
4 5	0	0	0	0	1 0	0 1	$T_4 = Q_4$ $T_5 = Q_5$

Alternative design: 6-bit Ring counter

Problem: Design a circuit that can be used to control a vending machine. The circuit has Five inputs: Q (quarter), D (dime), N (nickel), Coin, and Resetn. When a coin is deposited In the machine, a coin-sensing mechanism generates a pulse on the appropriate input (Q, D, or N). To signify the occurrence of the event, the mechanism also generates a pulse on the line Coin. The circuit is reset by using the Resetn signal (active low). When at least 30 cents has been deposited, the circuit activates the output, Z. No change is given if the amount exceeds 30 cents.

Design the required circuit by using the following components: a six-bit adder, a six-bit register, and any number of AND, OR, and NOT gates.

Problem: In section 7.15 we presented a timing analysis for the counter circuit in Figure 7.81. Redesign this circuit to reduce the logic delay between flip-flops, so that the circuit can operate at a higher maximum clock frequency.

Timing Analysis of Flip-Flop Circuits

We wish to calculate the maximum clock frequency for the counter.

Example 7.18

Red line from Q_0 to Q_3 shows the longest path.

$$F_{max} = \frac{1}{4.2ns} = 238.1 \, MHz$$

Summary

- Basic latch is a feedback connection of two NOR gates or two NAND gates.
- Gated latch a basic latch that includes input gating and a control signal.
 - Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to o.
 - Gated D latch uses the D input to force the latch into a state that has the same logic value as the D input
- A flip-flop: Output state can be changed only on the edge of the controlling clock signal
 - Edge-triggered flip-flop is affected only by the input values present when the active edge of the clock occurs.
 - Master-slave flip-flop is built with two gated latches.

Summary

- When a set of n flip-flops is used to store n bots of information, such as n-bit number is referred as a register.
- A register that provides the ability to shift its contents is called a shift register.
- Counters are circuits that can increment or decrement by 1, and are used in digital systems for many purposes.
- Asynchronous counters are simple, but not very fast.
- Counters have the capability with Enable, Clear, and Load.

Summary

- When the counter is reset on the active edge of the clock, this type of counter has a reset synchronous reset.
- There are other types of counters including BCD counter (Modulo 10 counter), ring counter, and Johnson counter.
- In the bus structure, each register is connected to the bus through an n-bit tri-state buffer.
- As timing analysis of flip-flop circuits, the maximum clock frequency is investigated based on the timing parameters such as set-up time, hold time, clock edge to the Q output time, and logic gate delay.

