Section 1.6

Equations and Inequalities Involving Absolute Valves

THEOREM

If a is a positive real number and if u is any algebraic expression, then

$$|u| = a$$
 is equivalent to $u = a$ or $u = -a$

Solving an Equation Involving Absolute Value

Solve the equations:

a)
$$|x-3| = 10$$

$$x-3=10$$
 or $x-3=-10$

$$x = 13$$
 or $x = -7$

The solution set is $\{-7,13\}$.

b)
$$|2x+1|-3=7$$

 $|2x+1|=10$
 $2x+1=10$ or $2x+1=-10$
 $2x=9$ or $2x=-11$

$$x = \frac{9}{2}$$
 or $x = -\frac{11}{2}$

The solution set is $\left\{-\frac{11}{2}, \frac{9}{2}\right\}$.

Solving an Inequality Involving Absolute Value

Solve the inequality: $|x| \le 3$

$$-3 \le x \le 3$$
 or [-3,3]

THEOREM

If a is a positive number and if u is an algebraic expression, then

$$|u| < a$$
 is equivalent to $-a < u < a$ (2)

$$|u| \le a$$
 is equivalent to $-a \le u \le a$ (3)

In other words, |u| < a is equivalent to -a < u and u < a.

Solving an Inequality Involving Absolute Value

Solve the inequality: $|3x-1| \le 5$. Graph the solution set.

$$-5 \le 3x - 1 \le 5$$

$$-5+1 \le 3x-1+1 \le 5+1$$

$$-4 \le 3x \le 6$$

$$\frac{-4}{3} \le \frac{3x}{3} \le \frac{6}{3}$$

$$-\frac{4}{3} \le x \le 2$$

The solution set is $\left\{x \middle| -\frac{4}{3} \le x \le 2\right\}$ or $\left[-\frac{4}{3}, 2\right]$.

$$-6$$
 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

Solving an Inequality Involving Absolute Value

Solve the inequality: |3-2x| < 4. Graph the solution set.

$$-4 < 3 - 2x < 4
-4 - 3 < 3 - 2x - 3 < 4 - 3$$

$$-7 < -2x < 1$$

$$-7 < -2x < 1$$

$$\frac{-7}{-2} > \frac{-2x}{-2} > \frac{1}{-2}$$

$$\frac{7}{2} > x > -\frac{1}{2}$$

The solution set is $\left\{x \middle| -\frac{1}{2} < x < \frac{7}{2}\right\}$ or $\left(-\frac{1}{2}, \frac{7}{2}\right)$.

Solving an Inequality Involving Absolute Value

Solve the inequality: |x| > 2

$$x < -2 \text{ or } x > 2$$
 $(-\infty, -2) \cup (2, \infty)$

THEOREM

If a is a positive number and u is an algebraic expression, then

$$|u| > a$$
 is equivalent to $u < -a$ or $u > a$ (4)

$$|u| \ge a$$
 is equivalent to $u \le -a$ or $u \ge a$ (5)

Solving an Inequality Involving Absolute Value

Solve the inequality: |3x-2| > 7. Graph the solution set.

$$3x-2 < -7$$
 or $3x-2 > 7$
 $3x < -5$ or $3x > 9$
 $x < -\frac{5}{3}$ or $x > 3$

The solution set is $\left\{x \middle| x < -\frac{5}{3} \text{ or } x > 3\right\}$. $\left(-\infty, -\frac{5}{2}\right) \cup (3, \infty)$

$$-6$$
 -5 -4 -3 -2 -1 0 1 2 3 4 5 6