Notes du cours XIII (à compléter)

Mathématiques générales (MAT0339)

28 novembre 2018

a.

Droites et plans

Position relative de deux droites, dans un espace de dimension 2.

Associer le nom, le symbole (s'il y a lieu), la définition et le dessin.

			_	
1. Parallèles	\perp	 i. Droites dont l'intersection forment un angle droit. 	b.	/
2. Perpendiculaires		ii. Droites qui se coupent en		
3. Sécantes	//	un point. iii. Droites qui n'ont aucune intersection.	c.	/
Remarque 1. Deux droit	tes	sont aussi		
Remarque 2. On appelle se coupent en une infinit		deux droites qu nts. Hors, ces deux droites sont en fa		-
Les relations entre les d ces droites sont l'orienta		orrespondent aussi aux relations e	ntre le	s vecteurs dont

Distance entre deux droites

Méthode pour trouver un vecteur perpendiculaire. Un vecteur (a,b) est perpendiculaire
au vecteur (c,d) si
Exemple 3. Trouver un vecteur \vec{u} parallèle à $\vec{v} = (4,7)$.
Définition 4. La distance entre deux droites sécantes est
La distance entre deux droites parallèles est la d'un compris entre les deux droites.
Pour la trouver, on prend deux droites <i>D</i> et <i>E</i> , puis :
1. On trouve un vecteur \vec{u} dont l'orientation est celle de D (ou E , puisque les droites ont la même orientation).
2. On trouve un point a sur la droite D et un point b sur E .
3. On trouve le vecteur \vec{v} de a à b .
4. Le de \vec{u} et \vec{v} donne l'aire du parallélogramme formé par ces vecteurs. La base est le vecteur \vec{u} .
5. La est donnée par la formule
Exemple 5. Calculer la distance entre les droites D , dont l'équation est $y = x$, et E , donnée $par y = x + 2$.
Distance d'un point à une droite
Définition 6. La distance entre un point et une droite est la d'un
formé par un segment de la droite et un segment compris
entre la droite et

Pour trouver la distance entre un point a et une droite D :
1. On trouve un vecteur \vec{u} dont l'orientation est celle de D .
2. On trouve un point b sur la droite D et on calcule le vecteur \vec{v} de a à b .
3. Le de \vec{u} et \vec{v} donne l'aire du parallélogramme formé par ces vecteurs. La base est le vecteur \vec{u} .
4. La est donnée par la formule
Exemple 7. Calculer la distance entre la droite D dont l'équation est $y = 2x - 3$ et le point $(5,8)$.
Position relative de deux droites, dans un espace de dimension 3 Définition 8. Dans un espace de dimension 3, deux droites peuvent être ni parallèles, ni sécantes. On dit alors qu'elles sont
Exemple 9. Déterminer si les droites D et E ci-dessous sont parallèles, sécantes ou gauches.
$D = \{k(1,1,1), \ k \in \mathbb{R}\}, \qquad E = \{k(1,0,0) + (0,0,1), \ k \in \mathbb{R}\}.$
Position relative de deux plans
Définition 10. Un plan est déterminé par deux et est constitué de tous les points a pour lesquels il existe
k et l (réels) tels que .

Associer la relation, la définition et le dessin.

i. Plans qui n'ont aucun point en commun.

2. Plans sécants

ii. Plans dont l'intersection est une droite.

Remarque 11. Pour déterminer si deux plans sont parallèles, on utilisera leur vecteur normal, défini plus loin (Définition 15).

Produit vectoriel et vecteur normal

Problème 12. Étant donné deux vecteurs \vec{u} et \vec{v} en dimension 3 qui ne sont pas parallèles, comment trouver un vecteur orthogonal à \vec{u} et à \vec{v} ?

Par exemple, trouver un vecteur orthogonal à (1,2,3) et à (-3,1,5), après avoir vérifié qu'ils ne sont pas parallèles.

Définition 13. Le produit vectoriel ______ de 2 vecteurs $\vec{u} = (a, b, c)$ et $\vec{v} = (d, e, f)$ est le vecteur \vec{w} tel que

avec $\vec{i} = (1,0,0)$, $\vec{j} = (0,1,0)$ et $\vec{k} = (0,0,1)$.

Exemple 14. Le produit vectoriel de (1,2,3) et de (-3,1,5) est

de ce plan.	in est un vecteur orthogonal a tous les vecteurs				
•	aux à un plan, mais leur				
est la même pour tous. Leur changent.	et leur				
Le résultat du produit vectoriel $u \wedge v$ est un vecteur normal du plan qui contient les vecteurs .					
Proposition 16. Deux plans sontmaux.	s'ils ont les mêmes vecteurs nor-				
Angle entre deux plans					
Définition 17. L'angle entre de	eux plans P et Q est l'angle				
61.1°	Exemple 18. Quel est l'angle entre les plans P et Q, si P contient les vecteurs (1,3,5) et (-2,2,1) et Q est déterminé par (0,0,1) et (3,-4,6).				