Assigned: 27 August

Homework #1

EE 503: Fall 2024

Instructions: Write your solutions to these homework problems. Submit your work to Brightspace by the due date. Show all work and box answers where appropriate. Do not guess.

Due: Tuesday, 03 September at 12:00.

- 1. Consider the integer function $f:\mathbb{Z}\to\mathbb{Z}$ such that $f(n)=n^2+5$ for any integer n in the set of integers \mathbb{Z} . Define the range subsets $A=\{5,6,14,21\}\subset\mathbb{Z}$ and $B=\{9,14\}\subset\mathbb{Z}$. Define the pullback or inverse image set $f^{-1}(S)$ as the set of pre-images $z\in\mathbb{Z}$ of S under the mapping $f:f^{-1}(S)=\{z\in\mathbb{Z}:f(z)\in S\}$.
 - (a) Find $f^{-1}\left(A\right)$, $f^{-1}\left(B\right)$, $f^{-1}\left(A\cup B\right)$, and $f^{-1}\left(A\cap B\right)$.
 - (b) Verify the commutations $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$ and $f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$.
 - (c) Is it also true that $f(A \cup B) = f(A) \cup f(B)$ and $f(A \cap B) = f(A) \cap f(B)$?
- 2. Prove or disprove the following statements. You must prove *any* set theoretic theorems that you use. That includes set associativity, commutativity, distributivity, De Morgan's law, *etc*.
 - (a) $A \subset B$ if and only if $A B = \emptyset$.
 - (b) $A \cap (B \Delta C) = (A \cap B) \Delta (A \cap C)$, where the symmetric difference $A \Delta B = (A B) \cup (B A)$.
- 3. For all functions f and all sets A and B prove or disprove the following statements.
 - (a) $f(A \cup B) = f(A) \cup f(B)$.
 - (b) $f^{-1}(A) \subset f^{-1}(B)$ if $A \subset B$.
 - (c) $f^{-1}(A \Delta B) = f^{-1}(A) \Delta f^{-1}(B)$.
- 4. Let $X=\{N,W,S,E\}$. Find the power set 2^X . How many possible set collections $\mathcal{A}\in 2^X$ are there? How many sigma-algebras can we define on X? Produce all of them. Produce a set collection that is not a sigma-algebra and then show how to minimally augment it to make it a sigma-algebra.
- 5. Let $X=\{w,x,y,z\}$. Find the power set 2^X . How many possible set collections $\mathcal{A}\in 2^X$ are there? Produce four set collections $\mathcal{A}\subset 2^X$ that are *not* sigma-algebras. Show how to minimally augment these four set collections so that they are sigma-algebras.