

Context Free Language Part-2

gradeup

Context Free Language Part-2

Content:

- 1. Conversion of FA to CFG
- 2. Conversion of CFG to FA
- 3. Semi-word
- 4. Word
- 5. Null Production
- 6. Unit Production
- 7. Chomsky Normal Form(CNF)
- 8. Greibach Normal Form (GNF)

Conversion of FA to CFG:-

 $S \rightarrow aX / bS$

 $X \rightarrow aY / bX$

 $Y \rightarrow aX /bY / \Lambda$

Conversion of CFG to FA:

 $S \rightarrow aX/bS$

 $X \rightarrow aY / bX$

 $Y \rightarrow aX/bY/\Lambda$

Semi-word: The production rule in which ending symbol is always non-terminal & there is only one non-terminal i.e. there is one and only one terminal which is at the end

N.T.
$$\rightarrow$$
 (T)(T)(T)(T)(T)....(NT)

Word:- String of terminal

$$NT \rightarrow (T)(T)(T)(T)....(T)$$

Null Production :- Production rule to form

NT → Null

OR

 $NT \rightarrow \wedge$

Unit Production:-

A production of the form

Non-terminal → One non-terminal

$$(NT) \rightarrow (NT)$$

That is a production of the form $A \to B$ (where A and B, both are non-terminals) is called unit production. Unit production increase the cost of derivation in a grammar.

Following algorithm can be used to eliminate the unit production.

Algorithm: Removal of unit production →

While (there exist a unit production, $A \rightarrow B$)

{

Select a unit production A \rightarrow B, such that there exist a production B \rightarrow α , where α is a terminal.

For (every non-unit production, B \rightarrow α)

Add production A $\rightarrow \alpha$ to the grammar

Elimination $A \rightarrow B$ from the grammar.

.Example: Consider the context free grammar G.

 $S \rightarrow AB$

 $A \rightarrow a$

 $B \rightarrow C/b$

 $\mathsf{C}\,\to\,\mathsf{D}$

 $D \rightarrow E$

Remove the unit production.

Solution: Given CFG

$$S \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow C/b$$

$$C \rightarrow D$$

$$\mathsf{D}\,\to\,\mathsf{E}$$

$$\mathsf{E}\,\to\,\mathsf{a}$$

Contain three unit productions

$$\mathsf{B}\,\to\,\mathsf{C}$$

$$\mathsf{C}\,\to\,\mathsf{D}$$

$$D \rightarrow E$$

Now to remove unit production $B \to C$, we see if there exists a production whose left side has C and right side contains a terminal (i.e. $C \to a$), but there is no such productions in G. similar things holds for production $C \to D$. now we try to remove unit production $D \to E$, before there is a production $E \to a$. therefore, eliminate $D \to E$ and introduction $E \to a$ and $E \to a$ a

$$\mathsf{S}\,\to\,\mathsf{AB}$$

$$A\,\rightarrow\,a$$

$$B \rightarrow C/b$$

$$C \rightarrow D$$

$$D \rightarrow a$$

$$\mathsf{E}\,\to\,\mathsf{a}$$

Now we can remove $C \to D$ by using $D \to a$, we get

$$\mathsf{S}\,\to\,\mathsf{AB}$$

$$A \rightarrow a$$

$$B \rightarrow C/b$$

$$C \rightarrow a$$

$$D \rightarrow a$$

$$E \rightarrow a$$

Similarly, we can remove B \rightarrow C by using C \rightarrow a, we obtain

$$S \rightarrow AB$$

$$A \rightarrow a$$

$$\begin{array}{c} \mathsf{B} \to \mathsf{a}/\mathsf{b} \\ \mathsf{C} \to \mathsf{a} \\ \mathsf{D} \to \mathsf{a} \end{array}$$

$$E \rightarrow a$$

Now it can be easily seen that production $C \to a$, $D \to a \to a$ are useless because if we start deriving from S, these productions will never be used. Hence eliminating them gives,

$$S \rightarrow AB$$

$$A \rightarrow a$$

$$B \rightarrow a/b$$

Which is completely reduced grammar.

CHOMSKY NORMAL FORM

If CFG has only production of the form

Non-terminal → string of exactly two non-terminal or of the form

i.e. $(NT) \rightarrow (NT)(NT)$

Non-terminal → one terminal

i.e.

 $(NT) \rightarrow (T)$

Is said to be Chomsky normal form or CNF.

Example:

$$S \rightarrow XY$$

A→ a

Q. Change the following grammar in to CNF.

 $S \rightarrow abSb/a/aAb$

 $A \rightarrow bS/aAAb$.

Q. Convert CFG which is given below in to CNF form.

 $S \rightarrow bA/aB$

 $A \rightarrow bAA/aS/a$

 $B \rightarrow aBB/bS/b$.

GREIBACH NORMAL FORM(GNF)

Tips

For every context free language L without \in , there exist a grammar in which every production is of the form A \rightarrow aV, where 'A' is a variable, 'a' is exactly one terminal and 'V' is the string of none or more variables, clearly V \in V*n.

"In other words if every production of the context free grammar is of the form A \rightarrow aV/a, then it is in Greibach Normal Form".

Greibach normal form will be used to construct a push down automata that recognize the language generated by a context free grammar.

To convert a grammar to GNF we start with a production in which the left side has a higher numbered variable than first variable in the right side and make replacements in right side.

Production Rules:

Single Terminal String of NT

2. NT \rightarrow one terminal

Ex: $S \rightarrow aXYZ$

A→b

gradeup

Q.

$$S \rightarrow S_1S_2$$
 $S_1 \rightarrow aS_1c/S_2/\lambda$

$$S_2 \rightarrow aS_2b/\lambda$$
 $S_3 \rightarrow aS_3b/S_4/\lambda$

Gradeup UGC NET Super Superscription

Features:

- 1. 7+ Structured Courses for UGC NET Exam
- 2. 200+ Mock Tests for UGC NET & MHSET Exams
- 3. Separate Batches in Hindi & English
- 4. Mock Tests are available in Hindi & English
- 5. Available on Mobile & Desktop

Gradeup Super Subscription, Enroll Now