and write

$$\rho = \sqrt{\alpha^2 + \beta^2},$$

then

$$\Gamma = \rho \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

which corresponds to a similarity. Observe that h is an involution, that is, $h^2 = \mathrm{id}$ iff $\theta = \pi/2$.

(2) Parabolic homographies. In this case, we must have $(a+d)^2 - 4(ad-bc) = 0$. The matrix A is not diagonalizable and it has a Jordan form of the form

$$\Gamma = \begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix}.$$

In the affine line y = 1, a parabolic homography behaves like the translation by $1/\lambda$.

(3) Hyperbolic homographies. In this case, $(a+d)^2 - 4(ad-bc) > 0$, so A has two distinct nonzero reals eigenvalues λ and μ , and in a basis of eigenvectors it is represented by the diagonal matrix

$$\Gamma = \begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}.$$

If P and Q are the distinct fixed points of the homography h, it is not hard to show that for every $M \in \mathbb{RP}^1$ such that $M \neq P, Q$, we have

$$[P,Q,M,h(M)]=k$$

where $k = \lambda/\mu$. For example, see Sidler [161] (Chapter 3, Proposition 3.3.1), and Berger [11] (Lemma 6.6.3). It can also be shown that h is an involution ($h^2 = \mathrm{id}$) with two distinct fixed points P and Q iff a + d = 0 iff k = -1 in the above equation; see Sidler [161] (Chapter 3, Proposition 3.3.2), and Samuel [142] (Section 2.4).

We now classify the homographies of \mathbb{RP}^2 . Since the characteristic polynomial of a 3×3 real matrix A has degree 3 and since every real polynomial of degree 3 has at least one real zero, A has some real eigenvalue. Since $\mathbb C$ is algebraically closed, every complex polynomial of degree 3 has three zeros (counted with multiplicity), in which case, all three eigenvalues of a 3×3 complex matrix A belong to $\mathbb C$. Thus we have the following useful fact.

Proposition 26.22. Every homography of the real projective plane \mathbb{RP}^2 or of the complex projective plane \mathbb{CP}^2 has at least one fixed point.

Here is the classification of the homographies of \mathbb{RP}^2 based on the real Jordan form of a 3×3 matrix. Most details are left as exercises. We denote by Γ the 3×3 matrix representing the real Jordan form of the matrix of the linear map representing the homography h.