Polynomial optimization on finite sets.

Mauricio Velasco Universidad Católica del Uruguay (UCU)

RECO2023
Pontificia Universidad Católica

LECTURE 3: Symmetry in Sums of squares.

Assume n is an even integer and let $X := \{-1,1\}^n$. In this lecture we will prove lower bounds on the degree needed to represent a nonnegative quadratic function in $\mathbb{R}[X]$ as a sum-of-squares.

Assume n is an even integer and let $X := \{-1,1\}^n$. In this lecture we will prove lower bounds on the degree needed to represent a nonnegative quadratic function in $\mathbb{R}[X]$ as a sum-of-squares.

Theorem. (Blekherman, Gouveia, Pfeiffer (2016))

The quadratic function

$$f := \left(-2 + \sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} x_i\right)$$

is nonnegative and cannot be expressed as a sum-of-squares of functions of degree strictly less than n/2 + 1 in $\mathbb{R}[X]$.

Assume n is an even integer and let $X := \{-1,1\}^n$. In this lecture we will prove lower bounds on the degree needed to represent a nonnegative quadratic function in $\mathbb{R}[X]$ as a sum-of-squares.

Theorem. (Blekherman, Gouveia, Pfeiffer (2016))

The quadratic function

$$f := \left(-2 + \sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} x_i\right)$$

is nonnegative and cannot be expressed as a sum-of-squares of functions of degree strictly less than n/2 + 1 in $\mathbb{R}[X]$.

It follows that $0 = f_{\min} > f_{(n/2)}$

Assume n is an even integer and let $X := \{-1,1\}^n$. In this lecture we will prove lower bounds on the degree needed to represent a nonnegative quadratic function in $\mathbb{R}[X]$ as a sum-of-squares.

Theorem. (Blekherman, Gouveia, Pfeiffer (2016))

The quadratic function

$$f := \left(-2 + \sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} x_i\right)$$

is nonnegative and cannot be expressed as a sum-of-squares of functions of degree strictly less than n/2 + 1 in $\mathbb{R}[X]$.

It follows that $0 = f_{\min} > f_{(n/2)}$ so the smallest degree where equality holds for every quadratic f is at least n/2 + 1.

Theorem. (Blekherman, Gouveia, Pfeiffer (2016))

The quadratic function

$$f := \left(-2 + \sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} x_i\right)$$

is nonnegative and cannot be expressed as a sum-of-squares of functions of degree strictly less than n/2 + 1 in $\mathbb{R}[X]$.

Theorem. (Blekherman, Gouveia, Pfeiffer (2016))

The quadratic function

$$f := \left(-2 + \sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} x_i\right)$$

is nonnegative and cannot be expressed as a sum-of-squares of functions of degree strictly less than n/2 + 1 in $\mathbb{R}[X]$.

 The function f is invariant under all permutations of the coordinates.

Theorem. (Blekherman, Gouveia, Pfeiffer (2016))

The quadratic function

$$f := \left(-2 + \sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} x_i\right)$$

is nonnegative and cannot be expressed as a sum-of-squares of functions of degree strictly less than n/2 + 1 in $\mathbb{R}[X]$.

- The function f is invariant under all permutations of the coordinates.
- The proof [due to G.Blekherman (unpublished)] characterizes all possible **invariant sums-of-squares in** $\mathbb{R}[X]$ of degree $\leq r$.

Theorem. (Blekherman, Gouveia, Pfeiffer (2016))

The quadratic function

$$f := \left(-2 + \sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} x_i\right)$$

is nonnegative and cannot be expressed as a sum-of-squares of functions of degree strictly less than n/2 + 1 in $\mathbb{R}[X]$.

- The function f is invariant under all permutations of the coordinates.
- The proof [due to G.Blekherman (unpublished)] characterizes all possible **invariant sums-of-squares in** $\mathbb{R}[X]$ of degree $\leq r$.
- The key tool for this characterization will be the relationship between representation theory and sums-of-squares [Gatermann-Parrilo (2004)].

Plan for Lecture 3:

- A primer on representation theory.
- 2 Invariant sums-of-squares.
- Application: Invariant sums-of-squares in the hypercube.

Part 1:

A primer on representation theory.

Let G be a finite group

Definition.

A representation of G is a pair (V, ρ) where

- 1 V is a finite-dimensional vector space.
- ② $\rho: G \to GL(V)$ is a group homomorphism.

Let G be a finite group

Definition.

A representation of G is a pair (V, ρ) where

- ① V is a finite-dimensional vector space.
- \circ $\rho: G \to GL(V)$ is a group homomorphism.

A representation ρ makes each element g of the abstract group G into a concrete matrix $\rho(g)$.

Let G be a finite group

Definition.

A representation of G is a pair (V, ρ) where

- 1 V is a finite-dimensional vector space.
- **2** $\rho: G \to GL(V)$ is a group homomorphism.

A representation ρ makes each element g of the abstract group G into a concrete matrix $\rho(g)$.

Definition.

A morphism between two representations (V_1, ρ_1) and (V_2, ρ_2) of G is a linear map $T: V_1 \to V_2$ satisfying

$$T \circ \rho_1(g) = \rho_2(g)$$
 for all $g \in G$.

Let $S_2 := \{id, \tau\}$ where $\tau = (12)$.

Let $S_2:=\{id,\tau\}$ where $\tau=(12)$. For $V=\mathbb{R}^2$ define $\rho:S_2\to GL(V)$ by $\rho(id)=\left(\begin{array}{cc}1&0\\0&1\end{array}\right)\qquad \rho(\tau)=\left(\begin{array}{cc}0&1\\1&0\end{array}\right)$ (V,ρ) is a representation of S_2 .

Let $S_2 := \{id, \tau\}$ where $\tau = (12)$. For $V = \mathbb{R}^2$ define $\rho : S_2 \to GL(V)$ by

$$\rho(id) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \rho(\tau) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

 (V, ρ) is a representation of S_2 .

Remark.

Representations are the way in which abstract groups become concrete symmetries of a space.

$$\tau^2 = id \text{ so } \rho(\tau)\rho(\tau) = \rho(id)$$

Let (V, ρ) be a representation of G.

Definition.

A vector subspace $W \subseteq V$ is a **stable subspace** of V if

$$\forall w \in W \ \forall g \in G (\rho(g)(w) \in W).$$

Definition.

The representation (V, ρ) is **irreducible** if its only stable subspaces are $\{0\}$ and V.

The representation (V, ρ) of S_2 has two nontrivial stable subspaces

The representation (V, ρ) of S_2 has two nontrivial stable subspaces

The representation (V, ρ) is NOT irreducible.

Why does this matter?

Representation Theory is important because of at least two reasons:

Why does this matter?

Representation Theory is important because of at least two reasons:

Representations appear everywhere.

Why does this matter?

Representation Theory is important because of at least two reasons:

- **1** Representations appear **everywhere**. For instance if (V_1, ρ_1) and (V_2, ρ_2) are two representations of G then $(V_1 \oplus V_2, \rho_1 \oplus \rho_2)$, $(V_1 \otimes V_2, \rho_1 \otimes \rho_2)$, $(\operatorname{Hom}(V_1, V_2), \rho_1^* \otimes \rho_2)$ are representations of G.
- There is an effective, complete and rather rigid classification of the representations of G, summarized in the following two slides...

Let G be a finite group. We have

Theorem. (Irreducible representations)

The following statements hold:

- There exists finitely many non-isomorphic irreducible representations of G. We denote them $V^{(1)}, V^{(2)}, \ldots, V^{(c)}$ where c is the number of conjugacy classes of G.
- 2 The morphisms between irreducible representations satisfy

$$\operatorname{Hom}_{\mathrm{G}}(\mathrm{V}^{(\mathrm{i})},\mathrm{V}^{(\mathrm{j})})\cong \begin{cases} 0, \ \text{if } i\neq j \\ \mathbb{C}, \ \text{if } i=j. \end{cases}$$

Let G be a finite group. We have

Theorem. (Irreducible representations)

The following statements hold:

- There exists finitely many non-isomorphic irreducible representations of G. We denote them $V^{(1)}, V^{(2)}, \ldots, V^{(c)}$ where c is the number of conjugacy classes of G.
- 2 The morphisms between irreducible representations satisfy

$$\operatorname{Hom}_{\mathrm{G}}(\mathrm{V}^{(\mathrm{i})},\mathrm{V}^{(\mathrm{j})})\cong egin{cases} 0,\ \textit{if}\ \textit{i}\neq\textit{j} \ \mathbb{C},\ \textit{if}\ \textit{i}=\textit{j}. \end{cases}$$

The irreducible representations serve as building blocks of all other representations...

Let (W, ρ) be any representation of a finite group G and let \langle , \rangle be a G-invariant inner product on W $(\langle u, v \rangle = \langle \rho_W(g)u, \rho_W(g)v \rangle)$.

Theorem.

There exist mutually orthogonal stable subspaces of W:

$$V_1^{(1)}, \dots, V_{m_1}^{(1)}, V_1^{(2)}, \dots, V_{m_2}^{(2)}, \dots, V_1^{(c)}, \dots, V_{m_c}^{(c)} \subseteq W$$

Such that:

• The restriction of W to $V_i^{(i)}$ is isomorphic to $V^{(i)}$

2

$$W = \left(\bigoplus_{i_1=1}^{m_1} V_{i_1}^{(1)}\right) \oplus \left(\bigoplus_{i_2=1}^{m_2} V_{i_2}^{(2)}\right) \oplus \cdots \oplus \left(\bigoplus_{i_c=1}^{m_c} V_{i_c}^{(c)}\right)$$

3 The integers m_1, \ldots, m_c and the isotypical components

$$W_j := \left(igoplus_{i_j=1}^{m_j} V_{i_j}^{(j)}
ight) \; ext{ for } j=1,\ldots,c$$

are uniquely determined.

The takehome message is:

Example:

Example:

With respect to bases adapted to the stable subspaces we have

$$\rho(\textit{id}) := \frac{\textit{triv}}{\textit{sgn}} \left(\begin{array}{cc} \textit{triv} & \textit{sgn} \\ 1 & 0 \\ 0 & 1 \end{array} \right) \quad \rho(\tau) := \frac{\textit{triv}}{\textit{sgn}} \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right)$$

Example:

With respect to bases adapted to the stable subspaces we have

$$ho(\mathit{id}) := egin{array}{ccc} \mathit{triv} & \mathit{sgn} & \mathit{triv} & \mathit{sgn} \ & 1 & 0 \ & 0 & 1 \ \end{pmatrix} \quad
ho(au) := egin{array}{ccc} \mathit{triv} & 1 & 0 \ & 0 & -1 \ \end{pmatrix}$$

Both matrices became simultaneously diagonal.

Example:

With respect to bases adapted to the stable subspaces we have

$$ho(\mathit{id}) := egin{array}{ccc} \mathit{triv} & \mathit{sgn} & \mathit{triv} & \mathit{sgn} \ & 1 & 0 \ & 0 & 1 \ \end{pmatrix} \quad
ho(au) := egin{array}{ccc} \mathit{triv} & 1 & 0 \ & 0 & -1 \ \end{pmatrix}$$

Both matrices became simultaneously diagonal. In general the matrices will become simultaneously block-diagonal.

Part 2: Invariant sums of squares.

Let $X \subseteq \mathbb{R}^n$ be a finite set and let G be a subgroup of permutations of X. The ring $\mathbb{R}[X]$ is naturally a representation of G.

Definition.

The contragradient representation $(\mathbb{R}[X], \rho^*)$ is the representation defined for $f \in \mathbb{R}[X]$ and $g \in G$ by the formula

$$[\rho^*(g)f](y) := f\left(g^{-1}(y)\right)$$

Let $X \subseteq \mathbb{R}^n$ be a finite set and let G be a subgroup of permutations of X. The ring $\mathbb{R}[X]$ is naturally a representation of G.

Definition.

The contragradient representation $(\mathbb{R}[X], \rho^*)$ is the representation defined for $f \in \mathbb{R}[X]$ and $g \in G$ by the formula

$$[\rho^*(g)f](y) := f\left(g^{-1}(y)\right)$$

This representation contains an important subring, the **ring of invariants** of X,

$$\mathbb{R}[X]^G := \{ f \in \mathbb{R}[X] : \forall g \in G \left(\rho^*(g)(f) = f \right) \}.$$

it is the isotypical component of the trivial representation.

$$\Sigma_{\leq r}^G := \Sigma_{\leq r} \cap \mathbb{R}[X]^G$$
.

$$\Sigma_{\leq r}^{\mathcal{G}} := \Sigma_{\leq r} \cap \mathbb{R}[X]^{\mathcal{G}}.$$

This set contains the sums of invariant squares, that is the elements of the form $s_1^2 + \cdots + s_m^2$ with $s_j \in \mathbb{R}[X]_{\leq r}^G$. Typically this inclusion is strict.

$$\Sigma_{\leq r}^{\mathsf{G}} := \Sigma_{\leq r} \cap \mathbb{R}[X]^{\mathsf{G}}.$$

This set contains the sums of invariant squares, that is the elements of the form $s_1^2 + \cdots + s_m^2$ with $s_j \in \mathbb{R}[X]_{\leq r}^G$. Typically this inclusion is strict.

Example:

Consider the action of S_2 in $\mathbb{R}[x,y]$ by coordinate permutations.

$$\Sigma_{\leq r}^{\mathsf{G}} := \Sigma_{\leq r} \cap \mathbb{R}[X]^{\mathsf{G}}.$$

This set contains the sums of invariant squares, that is the elements of the form $s_1^2 + \cdots + s_m^2$ with $s_j \in \mathbb{R}[X]_{\leq r}^G$. Typically this inclusion is strict.

Example:

Consider the action of S_2 in $\mathbb{R}[x,y]$ by coordinate permutations. The polynomial $x^2 + y^2$ is invariant but x, y are not.

$$\Sigma_{\leq r}^{\mathsf{G}} := \Sigma_{\leq r} \cap \mathbb{R}[X]^{\mathsf{G}}.$$

This set contains the sums of invariant squares, that is the elements of the form $s_1^2 + \cdots + s_m^2$ with $s_j \in \mathbb{R}[X]_{\leq r}^G$. Typically this inclusion is strict.

Example:

Consider the action of S_2 in $\mathbb{R}[x,y]$ by coordinate permutations. The polynomial x^2+y^2 is invariant but x,y are not.

However

$$x^{2} + y^{2} = \left(\frac{x+y}{\sqrt{2}}\right)^{2} + \left(\frac{x-y}{\sqrt{2}}\right)^{2}$$

The s_i are not invariant but do live in a fixed isotypical component.

Definition.

The averaging operator is the map $A : \mathbb{R}[X] \to \mathbb{R}[X]$ given by

$$\mathcal{A}(f) := \frac{1}{|G|} \sum_{g \in G} \rho^*(g)(f)$$

The following properties hold:

- For every $f \in \mathbb{R}[X]$ the image $\mathcal{A}(f) \in \mathbb{R}[X]^G$.
- ② $\mathcal{A}(f) = f$ if and only if $f \in \mathbb{R}[X]^G$
- It does not respect the product.

Definition.

The averaging operator is the map $A : \mathbb{R}[X] \to \mathbb{R}[X]$ given by

$$\mathcal{A}(f) := \frac{1}{|G|} \sum_{g \in G} \rho^*(g)(f)$$

The following properties hold:

- For every $f \in \mathbb{R}[X]$ the image $\mathcal{A}(f) \in \mathbb{R}[X]^G$.
- ② $\mathcal{A}(f) = f$ if and only if $f \in \mathbb{R}[X]^G$
- It does not respect the product.

Main result:

Assume $\mathbb{R}[X]_{\leq r}$ is a stable subspace of $\mathbb{R}[X]$ as a representation of the group G.

Theorem. (Invariant sums-of-squares)

If $\mathbb{R}[X]_{\leq r} = W_1 \oplus \cdots \oplus W_c$ is the isotypical decompostion of $\mathbb{R}[X]_{\leq r}$ then the following equality holds

$$\Sigma_{\leq r}^{G} = \mathcal{A}\left(\Sigma_{W_{1}}\right) + \dots + \mathcal{A}\left(\Sigma_{W_{c}}\right)$$

Proof

Suppose $f = s_1^2 + \cdots + s_N^2$ is an invariant sum of squares.

$$f = \mathcal{A}(f) = \sum_{i=1}^{N} \mathcal{A}(s_i^2)$$

Any summand $s = s_i \in \mathbb{R}[X]_{\leq r}$ has an isotypical decomposition

$$s = w_1 + \cdots + w_c$$

$$\mathcal{A}(s^2) = \mathcal{A}\left(w_1^2 + \cdots + w_c^2 + 2\sum_{i < j} w_i w_j\right)$$

Since the W_i are distinct isotypical components $A(w_i w_j) = 0$ for $i \neq j$ (**Exercise**) and we conclude

$$\mathcal{A}(s^2) = \mathcal{A}(w_1^2) + \cdots + \mathcal{A}(w_c^2)$$

Collecting similar terms we prove the statement.

Part 3:

Invariant sums of squares on the hypercube.

For *n* even let $X = \{-1,1\}^n$, $G = S_n$ and $\ell(x_1,\ldots,x_n) := \sum_{i=1}^n x_i$

Theorem. (Blekherman)

- Every function $f \in \mathbb{R}[X]_{\leq n}^G$ can be written uniquely as a univariate polynomial in $\overline{\ell}$.
- **a** If $f \in \Sigma_{\leq n/2}^G$ then $f(\ell) = \sum_{i=0}^{n/2} p_i(\ell) s_i(\ell)$ where

$$p_i(\ell) = \prod_{j=1}^i \left((2(n+1-j))^2 - \ell^2 \right)$$

and s_i is a sum-of-squares of terms of degree $\leq n/2 - i$ in ℓ .

For n even let $X = \{-1,1\}^n$, $G = S_n$ and $\ell(x_1,\ldots,x_n) := \sum_{i=1}^n x_i$

Theorem. (Blekherman)

- Every function $f \in \mathbb{R}[X]_{\leq n}^G$ can be written uniquely as a univariate polynomial in $\overline{\ell}$.
- ① If $f \in \Sigma_{\leq n/2}^G$ then $f(\ell) = \sum_{i=0}^{n/2} p_i(\ell) s_i(\ell)$ where

$$p_i(\ell) = \prod_{j=1}^i \left((2(n+1-j))^2 - \ell^2 \right)$$

and s_i is a sum-of-squares of terms of degree $\leq n/2 - i$ in ℓ .

As a consequence:

• Every function $f(\ell) \in \Sigma_{\leq n/2}^{G}$ must be nonnegative in the **real** interval [-2,2] and thus

For n even let $X = \{-1,1\}^n$, $G = S_n$ and $\ell(x_1,\ldots,x_n) := \sum_{i=1}^n x_i$

Theorem. (Blekherman)

- Every function $f \in \mathbb{R}[X]_{\leq n}^G$ can be written uniquely as a univariate polynomial in $\overline{\ell}$.
- ① If $f \in \Sigma_{\leq n/2}^G$ then $f(\ell) = \sum_{i=0}^{n/2} p_i(\ell) s_i(\ell)$ where

$$p_i(\ell) = \prod_{j=1}^i \left((2(n+1-j))^2 - \ell^2 \right)$$

and s_i is a sum-of-squares of terms of degree $\leq n/2 - i$ in ℓ .

As a consequence:

- Every function $f(\ell) \in \Sigma_{\leq n/2}^{G}$ must be nonnegative in the **real** interval [-2,2] and thus
- The function $\ell(\ell-2)$ is NOT in $\Sigma^{G}_{\leq n/2}$ proving...

The function $\ell(\ell-2)$ is NOT in $\Sigma^G_{\leq n/2}$ proving...

Theorem. (Blekherman, Gouveia, Pfeiffer (2016))

The nonnegative quadratic function

$$f := \left(-2 + \sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} x_i\right)$$

cannot be expressed as a sum-of-squares of functions of degree strictly less than n/2 + 1 in $\mathbb{R}[X]$.

Decomposing the hypercube:

 $\mathbb{R}[X]$ where $X = \{-1, 1\}^8$ as S_8 representation:

d	basis	Isot	decomp			
0	1	<i>S</i> ⁽⁸⁾				
1	x_1, \dots	$S^{(7,1)}$	S ⁽⁸⁾			
2	x_1x_2,\ldots	<i>S</i> ^(6,2)	$S^{(7,1)}$	S ⁽⁸⁾		
3	$x_1x_2x_3,\ldots$	$S^{(5,3)}$	$S^{(6,2)}$	$S^{(7,1)}$	S ⁽⁸⁾	
4	$x_1x_2x_3x_4,\ldots$	S ^(4,4)	$S^{(5,3)}$	$S^{(6,2)}$	$S^{(7,1)}$	<i>S</i> ⁽⁸⁾
5	$x_1x_2x_3x_4x_5,$	$S^{(5,3)}$	$S^{(6,2)}$	$S^{(7,1)}$	S ⁽⁸⁾	
6	$x_1x_2x_3x_4x_5x_6,$	$S^{(6,2)}$	$S^{(7,1)}$	<i>S</i> ⁽⁸⁾		
7	$x_1x_2x_3x_4x_5x_6x_7,$	$S^{(7,1)}$	<i>S</i> ⁽⁸⁾			
8	<i>x</i> ₁ <i>x</i> ₈	<i>S</i> ⁽⁸⁾				

Invariant sums-of-squares on the hypercube

Let
$$\ell(x_1,\ldots,x_n):=\sum x_i$$
.

Lemma.

The following statements hold:

② The isotypical component of $\mathbb{R}[C]^G$ corresponding to the representation $S^{(n-k,k)}$ is given by

$$W_{(n-k,k)}:=\left\{\sum_{j=0}^{n-2k}\ell^jf_j:f_j\in S^{(n-k,k)}\subseteq\mathbb{R}[C]_k
ight\}$$

for
$$0 \le k \le n/2$$
.

Our Theorem on invariant sums-of-squares applied to the above isotypical decomposition implies Blekherman's characterization.