Ps2

November 3, 2020

```
[53]: import pandas as pd
import matplotlib.pyplot as plt
import math
import numpy as np
from tabulate import tabulate
import seaborn as sns
```

1 Założenie: próbki oznaczają wagę mężczyzn

- 1.1 Wygenerowano po 1000 próbek dla każdego z rozkładu
- 1.2 Przy rozkładzie normalnym określono następujące parametry:
- 1.2.1 μ: 90 (średnia)
- 1.2.2 : 10 (odchylenie standardowe)
- 1.3 Dla rozkładu jednostajnego określono następujące parametry:
- 1.3.1 minimum: 60
- 1.3.2 maksimum: 130

```
[54]: mu, sigma = 90, 10
s = np.random.normal(mu, sigma, 1000)
```

1.4 Wygenerowana próbka z rozkładu normalnego:


```
[56]: s2 = np.random.uniform(60,130,1000)
```

1.5 Wygenerowana próbka z rozkładu jednostajnego:

```
[57]: x = np.arange(31, dtype=float)
  count, bins, ignored = plt.hist(s2, 30, density=True)
  plt.plot(bins, np.full_like(x, 1/(130-60)), linewidth=2, color='r')
  plt.show()
```



```
[58]: df = pd.DataFrame(s, columns = ["Rozkład normalny"])
df2 = pd.DataFrame(s2, columns= ["Rozkład jednostajny"])
```

1.6 Statystyki opisowe wygenerowanych próbek:

```
[59]: df_both = pd.concat([df,df2], axis=1)
df_working_copy = df_both.copy()
df_both.describe()
```

```
[59]:
             Rozkład normalny Rozkład jednostajny
                  1000.000000
                                        1000.000000
      count
      mean
                    90.517546
                                          94.007779
      std
                                          20.132000
                     9.640677
      min
                    60.519264
                                          60.151003
      25%
                    84.275147
                                          76.444585
      50%
                    90.183994
                                          93.852006
      75%
                    96.241508
                                         110.731056
                                         129.897715
      max
                   125.412710
```

```
[60]: sample_to_drop = df_working_copy.sample(frac=0.1)
df90 = df_working_copy.drop(sample_to_drop.index)
```

```
[61]: def print_statistics(data_, label):
    i = 100
    for d in data_:
        i = i-10
```

1.7 Statystyki opisowe próbek po usunięciu 10 - 80% rekordów:

```
[62]: df80 = df90.drop(df90.sample(100).index)
df70 = df80.drop(df80.sample(100).index)
df60 = df70.drop(df70.sample(100).index)
df50 = df60.drop(df60.sample(100).index)
df40 = df50.drop(df50.sample(100).index)
df30 = df40.drop(df40.sample(100).index)
df20 = df30.drop(df30.sample(100).index)
df_dropped = [df90, df80, df70, df60, df50, df40, df30, df20]
print_statistics(df_dropped, "%")
```

Tabela 90%

Nazwa	Rozkład normalny	Rozkład jednostajny
count	900	900
mean	90.6096	94.3302
std	9.73085	20.061
min	60.5193	60.151
25%	84.2894	76.7611
50%	90.4489	94.3554
75%	96.4081	111.523
max	125.413	129.898

Tabela 80%

Nazwa	Rozkład normalny	Rozkład jednostajny
count	800	800
mean	90.7955	94.4233
std	9.74853	20.1902

min	60.5193	60.151
25%	84.4716	76.6586
50%	90.5511	94.4796
75%	96.5397	112.074
max	125.413	129.898

Tabela 70%

Nazwa	Rozkład normalny	Rozkład jednostajny
count	700	700
mean	90.7584	94.3424
std	9.82311	20.3718
min	60.5193	60.151
25%	84.2817	76.4446
50%	90.6049	94.1678
75%	96.5953	113.567
max	125.413	129.898

Tabela 60%

Nazwa	Rozkład normalny	Rozkład jednostajny
count	600	600
mean	90.7072	94.0353
std	9.84407	20.2966
min	60.5193	60.151
25%	84.2817	76.5701
50%	90.4631	93.7959

75%	96.4656	112.408
max	125.413	129.898
Tabela 50%		
Nazwa	Rozkład normalny	Rozkład jednostajny
count	500	500
mean	90.5267	94.2719

std 9.69796 min 60.5193

25% 84.2764 77.0106

20.3429

60.151

50% 90.1324 93.3846

75% 96.2903 113.031

max 125.413 129.898

Tabela 40%

Nazwa	Rozkład normalny	Rozkład jednostajny
count	400	400
mean	90.4849	94.4709
std	9.61411	20.6616
min	62.3961	60.151
25%	84.2817	76.7662
50%	90.1324	93.9196
75%	96.1228	113.703
max	125.413	129.208

Tabela 30%

Nazwa	Rozkład normalny	Rozkład jednostajny
count	300	300
mean	90.2622	94.1199
std	9.43267	20.2322
min	62.3961	60.151
25%	84.3921	77.7568
50%	90.4631	93.2399
75%	96.0113	112.164
max	125.413	129.208

Tabela 20%

Nazwa	Rozkład normalny	Rozkład jednostajny
count	200	200
mean	90.1493	92.736
std	9.13639	20.4798
min	62.3961	60.151
25%	84.2764	75.2329
50%	90.4752	89.9639
75%	95.8012	111.614
max	125.413	128.802

```
'Rozkład jednostajny': np.

→full(1000-len(data_),data_['Rozkład jednostajny'].mean())
})
```

1.8 Statystyki opisowe próbek po uzupełnieniu brakujących rekordów średnią wyliczoną z pozostałych danych:

Tabela 90% + uzupełnienie średnią

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.6096	94.3302
std	9.23099	19.0305
min	60.5193	60.151
25%	85.2751	79.496
50%	90.6096	94.3302
75%	95.6735	109.515
max	125.413	129.898

Tabela 80% + uzupełnienie średnią

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000

mean	90.7955	94.4233
std	8.71826	18.0564
min	60.5193	60.151
25%	86.2099	81.8611
50%	90.7955	94.4233
75%	94.907	107.247
max	125.413	129.898

Tabela 70% + uzupełnienie średnią

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.7584	94.3424
std	8.21684	17.0406
min	60.5193	60.151
25%	87.0143	84.217
50%	90.7584	94.3424
75%	94.0713	103.273
max	125.413	129.898

Tabela 60% + uzupełnienie średnią

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.7072	94.0353
std	7.62264	15.7165
min	60.5193	60.151

25%	88.7388	87.8699
50%	90.7072	94.0353
75%	92.6479	97.7185
max	125.413	129.898

Tabela 50% + uzupełnienie średnią

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.5267	94.2719
std	6.85406	14.3774
min	60.5193	60.151
25%	90.1378	93.4242
50%	90.5267	94.2719
75%	90.5267	94.2719
max	125.413	129.898

Tabela 40% + uzupełnienie średnią

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.4849	94.4709
std	6.07593	13.0577
min	62.3961	60.151
25%	90.4849	94.4709
50%	90.4849	94.4709
75%	90.4849	94.4709

max 125.413 129.208

Tabela 30% + uzupełnienie średnią

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.2622	94.1199
std	5.16045	11.0687
min	62.3961	60.151
25%	90.2622	94.1199
50%	90.2622	94.1199
75%	90.2622	94.1199
max	125.413	129.208

Tabela 20% + uzupełnienie średnią

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.1493	92.736
std	4.07773	9.14049
min	62.3961	60.151
25%	90.1493	92.736
50%	90.1493	92.736
75%	90.1493	92.736
max	125.413	128.802

1.9 Statystyki opisowe próbek po uzupełnieniu brakujących rekordów medianą wyliczoną z pozostałych danych:

```
df90_median = fill_df_with_median(df90)
df80_median = fill_df_with_median(df80)
df70_median = fill_df_with_median(df70)
df60_median = fill_df_with_median(df60)
df50_median = fill_df_with_median(df50)
df40_median = fill_df_with_median(df40)
df30_median = fill_df_with_median(df30)
df20_median = fill_df_with_median(df20)
df_median = [df90_median, df80_median, df70_median, df60_median, df50_median,

df40_median, df30_median, df20_median]
print_statistics(df_median, "% + uzupełnienie medianą")
```

Tabela 90% + uzupełnienie medianą

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.5935	94.3327
std	9.23111	19.0305
min	60.5193	60.151
25%	85.2751	79.496
50%	90.4489	94.3554
75%	95.6735	109.515
max	125.413	129.898

Tabela 80% + uzupełnienie medianą

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.7466	94.4345
std	8.7188	18.0564
min	60.5193	60.151
25%	86.2099	81.8611
50%	90.5511	94.4796
75%	94.907	107.247
max	125.413	129.898

Tabela 70% + uzupełnienie medianą

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.7124	94.29
std	8.21714	17.0408
min	60.5193	60.151
25%	87.0143	84.217
50%	90.6049	94.1678
75%	94.0713	103.273
max	125.413	129.898

Tabela 60% + uzupełnienie medianą

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.6096	93.9396

std	7.62358	15.7169
min	60.5193	60.151
25%	88.7388	87.8699
50%	90.4631	93.7959
75%	92.6479	97.7185
max	125.413	129.898

Tabela 50% + uzupełnienie medianą

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.3296	93.8283
std	6.85689	14.3842
min	60.5193	60.151
25%	90.1298	93.3649
50%	90.1324	93.3846
75%	90.1351	93.4044
max	125.413	129.898

Tabela 40% + uzupełnienie medianą

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.2734	94.1401
std	6.07839	13.0605
min	62.3961	60.151
25%	90.1324	93.9196

50%	90.1324	93.9196
75%	90.1324	93.9196
max	125.413	129.208

Tabela 30% + uzupełnienie medianą

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.4028	93.5039
std	5.16127	11.0761
min	62.3961	60.151
25%	90.4631	93.2399
50%	90.4631	93.2399
75%	90.4631	93.2399
max	125.413	129.208

Tabela 20% + uzupełnienie medianą

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.41	90.5184
std	4.07981	9.20757
min	62.3961	60.151
25%	90.4752	89.9639
50%	90.4752	89.9639
75%	90.4752	89.9639
max	125.413	128.802

- 1.10 Statystyki opisowe próbek po uzupełnieniu brakujących rekordów losowymi wartościami w zależności od rozkładu:
- 1.10.1 dla rozkładu normalnego wykorzystano średnią i odchylenie standardowe z pozostałych danych
- 1.10.2 dla rozkładu jednostajnego wykorzystano minimum i maksimum z pozostałych wartości

Tabela 90% + uzupełnienie losowymi wartościami

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.5947	94.2611
std	9.63551	19.9211
min	60.5193	60.151
25%	84.4036	76.9682

50%	90.2067	93.9196
75%	96.288	111.486
max	125.413	129.898

Tabela 80% + uzupełnienie losowymi wartościami

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.845	94.4663
std	9.85393	20.0891
min	51.3768	60.151
25%	84.4036	76.7611
50%	90.6702	94.3242
75%	96.9038	111.819
max	127.847	129.898

Tabela 70% + uzupełnienie losowymi wartościami

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.737	94.4413
std	9.64445	20.1627
min	60.4427	60.151
25%	84.2817	77.1376
50%	90.7872	94.2547
75%	96.9313	112.324
max	125.413	129.898

Tabela 60% + uzupełnienie losowymi wartościami

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.8999	93.7277
std	9.87884	19.9196
min	60.5193	60.151
25%	84.2764	76.95
50%	90.8531	93.9196
75%	96.9126	110.499
max	125.413	129.898

Tabela 50% + uzupełnienie losowymi wartościami

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.9137	94.869
std	9.7827	20.399
min	60.5193	60.151
25%	84.2764	78.3305
50%	90.6018	93.9196
75%	97.2032	113.16
max	128.979	129.898

Tabela 40% + uzupełnienie losowymi wartościami

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000

mean	90.0425	94.3912
std	9.29198	19.7403
min	57.5652	60.151
25%	83.6639	78.3742
50%	90.0547	93.4746
75%	96.127	111.663
max	125.413	129.208

Tabela 30% + uzupełnienie losowymi wartościami

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.1438	93.8035
std	9.47528	19.6188
min	62.3961	60.151
25%	83.3591	78.0086
50%	90.424	93.5938
75%	96.3192	109.63
max	127.624	129.208

Tabela 20% + uzupełnienie losowymi wartościami

Nazwa	Rozkład normalny	Rozkład jednostajny
count	1000	1000
mean	90.1717	93.7929
std	9.12936	19.9163
min	60.7273	60.151

```
50%
                          89.8313
                                                   93.266
       75%
                          95.9705
                                                  110.536
      max
                         125.413
                                                  128.802
[69]: def get mean std normal(data):
          data_mean = [d['Rozkład normalny'].mean() for d in data_]
          data mean.reverse()
          data_mean.append(df_both['Rozkład normalny'].mean())
          data_std = [d['Rozkład normalny'].std() for d in data_]
          data_std.reverse()
          data_std.append(df_both['Rozkład normalny'].std())
          return data_mean, data_std
[70]: def get_mean_std_uniform(data_):
          data_mean = [d['Rozkład jednostajny'].mean() for d in data_]
          data mean.reverse()
          data_mean.append(df_both['Rozkład jednostajny'].mean())
          data std = [d['Rozkład jednostajny'].std() for d in data ]
          data std.reverse()
          data_std.append(df_both['Rozkład jednostajny'].std())
          return data_mean, data_std
[71]: x = ['20', '30', '40', '50', '60', '70', '80', '90', '100']
      df_dropped_mean, df_dropped_std = get_mean_std_normal(df_dropped)
      df_mean_mean, df_mean_std = get_mean_std_normal(df_mean)
      df_median_mean, df_median_std = get_mean_std_normal(df_median)
      df_random_mean, df_random_std = get_mean_std_normal(df_random)
      f = plt.figure(figsize=(15,15))
      ax = f.add_subplot(211)
      ax2 = f.add_subplot(212)
      ax.plot(x, df_dropped_mean, label = "Oryginal")
      ax.plot(x, df mean mean, label = "Uz. Średnia")
      ax.plot(x, df_median_mean, label = "Uz. Mediana")
      ax.plot(x, df_random_mean, label = "Uz. Los. Wart.")
      ax.set_xlabel("Wielkość orginalnego zbioru [%]")
      ax.set ylabel("Średnia")
      ax.set_ylim([89,97])
      ax.legend()
```

76.5908

25%

83.8166

```
ax2.plot(x, df_dropped_std, label = "Oryginał")
ax2.plot(x, df_mean_std, label = "Uz. Średnią")
ax2.plot(x, df_median_std, label = "Uz. Medianą")
ax2.plot(x, df_random_std, label = "Uz. Los. Wart.")
ax2.set_xlabel("Wielkość orginalnego zbioru [%]")
ax2.set_ylabel("Odchylenie standardowe")
ax2.set_ylim([4,22])
ax2.legend()
```

[71]: <matplotlib.legend.Legend at 0x2208ed30f10>

- 1.11 Im większe braki w zbiorze danych, tym bardziej statystyki różnią się w porównaniu do danych oryginalnych, gdy danych brakuje więcej niż około 30% różnice na wykresie średniej stają się dużo bardziej zauważalne.
- 1.12 Na wykresie opisującym zachowanie oddchylenia standardowego w zależności od procentowej ilości braku danych najsłabiej zachowuje się uzupełnienie danych medianą oraz średnią.
- 1.13 Im większe braki, tym odchylenie standardowe odbiega od oryginalnej wartości (jest mniejsze dzieje się tak, ponieważ uzupełniona część rekordów leży w środkowej części, co powoduje zmiejszanie się wartości odchylenia). Na tym polu wypełnianie braków wartościami losowymi wypada bardzo dobrze.
- 1.14 Patrząc na wykres średniej wszystkie 3 sposoby prezetują się stosunkowo podobnie.

```
[72]: x = ['20', '30', '40', '50', '60', '70', '80', '90', '100']
      df_dropped mean, df_dropped std = get mean std_uniform(df_dropped)
      df_mean_mean, df_mean_std = get_mean_std_uniform(df_mean)
      df_median_mean, df_median_std = get_mean_std_uniform(df_median)
      df_random_mean, df_random_std = get_mean_std_uniform(df_random)
      f = plt.figure(figsize=(15,15))
      ax = f.add subplot(211)
      ax2 = f.add_subplot(212)
      ax.plot(x, df_dropped_mean, label = "Oryginal")
      ax.plot(x, df_mean_mean, label = "Uz. Średnia")
      ax.plot(x, df_median_mean, label = "Uz. Mediana")
      ax.plot(x, df_random_mean, label = "Uz. Los. Wart.")
      ax.set_xlabel("Wielkość orginalnego zbioru [%]")
      ax.set_ylabel("Średnia")
      ax.set_ylim([89,97])
      ax.legend()
      ax2.plot(x, df_dropped_std, label = "Oryginal")
      ax2.plot(x, df mean std, label = "Uz. Średnia")
      ax2.plot(x, df_median_std, label = "Uz. Mediana")
      ax2.plot(x, df_random_std, label = "Uz. Los. Wart.")
      ax2.set_xlabel("Wielkość orginalnego zbioru [%]")
      ax2.set_ylabel("Odchylenie standardowe")
      ax2.set_ylim([4,22])
      ax2.legend()
```

[72]: <matplotlib.legend.Legend at 0x2208ede1ca0>

- 1.15 Im większe braki w zbiorze danych, tym bardziej statystyki różnią się w porównaniu do danych oryginalnych, gdy danych brakuje więcej niż około 30-35% różnice na wykresie średniej stają się dużo bardziej zauważalne.
- 1.16 Na wykresie opisującym zachowanie oddchylenia standardowego sytuacja jest identyczna jak w przypadku rozkładu normalnego.
- 1.17 Patrząc na wykres średniej można zauważyć, że w sytuacji, gdy mamy jedynie 20% danych, a resztę uzupełniamy, losowanie wartości dało efekt najbliższy oryginałowi.

```
[73]: df_mean_normal = [df_['Rozkład normalny'].copy() for df_ in df_mean]
for df_ in df_mean_normal:
    df_.index = range(1, len(df_) + 1)

df_mean_normal.reverse()
df_mean_normal_merged = pd.concat(df_mean_normal, axis = 1)
df_mean_normal_merged.columns = ['20', '30', '40','50','60','70','80','90']
ax = df_mean_normal_merged.boxplot(column = ['20', '30', \underset]
    \underset '40','50','60','70','80','90'], figsize = [15,12])
ax.set_xlabel("Wielkość orginalnego zbioru [%] z uzupełnieniem średnią")
```

[73]: Text(0.5, 0, 'Wielkość orginalnego zbioru [%] z uzupełnieniem średnią')

[74]: Text(0.5, 0, 'Wielkość orginalnego zbioru [%] z uzupełnieniem medianą')


```
[75]: df_random_normal = [df_['Rozkład normalny'].copy() for df_ in df_random] for df_ in df_random_normal: df_.index = range(1, len(df_) + 1)
```

```
df_random_normal.reverse()
df_random_normal_merged = pd.concat(df_random_normal, axis = 1)
df_random_normal_merged.columns = ['20', '30', '40', '50', '60', '70', '80', '90']
ax = df_random_normal_merged.boxplot(column = ['20', '30', \

→'40', '50', '60', '70', '80', '90'], figsize = [15,12])
ax.set_xlabel("Wielkość orginalnego zbioru [%] z uzupełnieniem wartościami \

→losowymi")
```

[75]: Text(0.5, 0, 'Wielkość orginalnego zbioru [%] z uzupełnieniem wartościami losowymi')


```
[76]: df_mean_uniform = [df_['Rozkład jednostajny'].copy() for df_ in df_mean]
for df_ in df_mean_uniform:
    df_.index = range(1, len(df_) + 1)

df_mean_uniform.reverse()
df_mean_uniform_merged = pd.concat(df_mean_uniform, axis = 1)
df_mean_uniform_merged.columns = ['20', '30', '40', '50', '60', '70', '80', '90']
```

```
ax = df_mean_uniform_merged.boxplot(column = ['20', '30', 

→'40', '50', '60', '70', '80', '90'], figsize = [15,12])
ax.set_xlabel("Wielkość orginalnego zbioru [%] z uzupełnieniem średnią")
```

[76]: Text(0.5, 0, 'Wielkość orginalnego zbioru [%] z uzupełnieniem średnią')


```
[77]: df_median_uniform = [df_['Rozkład jednostajny'].copy() for df_ in df_median]
for df_ in df_median_uniform:
    df_.index = range(1, len(df_) + 1)

df_median_uniform.reverse()
df_median_uniform_merged = pd.concat(df_median_uniform, axis = 1)
df_median_uniform_merged.columns = ['20', '30', '40','50','60','70','80','90']
ax = df_median_uniform_merged.boxplot(column = ['20', '30', \docsarrow 40','50','60','70','80','90'], figsize = [15,12])
ax.set_xlabel("Wielkość orginalnego zbioru [%] z uzupełnieniem medianą")
```

[77]: Text(0.5, 0, 'Wielkość orginalnego zbioru [%] z uzupełnieniem medianą')

[78]: Text(0.5, 0, 'Wielkość orginalnego zbioru [%] z uzupełnieniem wartościami losowymi')

- 1.18 Zarówno dla rozkładu normalnego jak i jednostajnego sytuacja ma się w zasadzie identycznie.
- 1.19 Po uzupełnieniu braków zarówno średnią jak i medianą wykresy skrzynkawąsy widać wyraźnie, że gdy ilość danych, które uzupełniamy rośnie następuje spłaszczenie skrzynek większa liczba danych mieści się w samym środku (lub średniej), a sam wykres wydaje się zdecydowanie odbiegający od rzeczywistoci. Jedynie uzupełniając dane wartościami losowymi otrzymujemy wyniki sprawiające wrażenie, że mogłyby być rzeczywiste mamy niewielką ilość danych odstających, skrzynki mają podobne wielkości niezależnie od tego ile danych pozostało nam uzupełnić.