Метод распараллеливания алгоритма замощения по изображению деталей

Студент: Оберган Татьяна Максимовна

Группа: ИУ7-85Б

Руководитель: старший преподаватель кафедры ИУ-7

Строганов Юрий Владимирович

Цель и задачи работы

Цель – разработать метод замощения поверхности, предложить способ его ускорения за счет параллельных вычислений.

Задачи:

- провести анализ способов решения задач замощения
- провести анализ подходов к ускорению
- разработать метод решения задачи о замощении
- разработать метод распараллеливания алгоритма замощения
- реализовать и протестировать разработанные методы

Анализ существующих решений

Критерий выбора \ Решение	Объекты произвольно й формы	Контейнеры произвольной формы	Автоматическое размещение	Свободный доступ к ПО
Эвристики для одномерной и двумерной упаковки	Нет	Нет	Да	Да
Симплекс метод MS Excel	Нет	Нет	Да	Да
REDCAFE	Да	Нет контейнеров как таковых	Нет	Бесплатная демо версия
T-FLEX CAD	Да	Нет	Да	Нет

Существующие подходы к решению задачи замощения

• Полный перебор

- + Гарантировано будет найден наилучший результат, если он есть
- Время поиска

• Эвристики

- + Ускорение решения задачи, когда точное решение не может быть найдено
- Зависимость о входных данных

• Генетические алгоритмы

- + Скорость
- Сложность представления фигур произвольной формы

Использование функциональности Prolog

Будет реализована модификация метода полного перебора — метод ветвей и границ

Дерево решений пролога имеет большой потенциал к распараллеливанию.

Реализации:

- SWI-Prolog
- SICStus
- DataLog

Различные представления фигур

Пиксельное

- Память
- Скорость перебора

Опорные точки

- + Отсечение размещения до полной подстановки
- Не самодостаточно

Ү-группы

+ Улучшение по памяти и скорости

Масштабирование

Происходит итеративное увеличение размера с использованием результатов размещения меньших размеров.

- Представление у-группами
- Ускоряет поиск
- Граничные пиксели требуют детального рассмотрения

Метод размещения деталей

Поиск подходящего размещения

Описание случаев конфигурации

Идеальный случай

- Большая фигура
- Размещение на одном листе

Хороший случай

- Средние и маленькие фигуры
- Размещение на одном листе

Приемлемый случай

- Средние и маленькие фигур
- Размещение на нескольких листах

Нет решений

- Комбинация фигур не помещается на листе
- За время таймаута не найдено решение

Сравнение SWI-Prolog и SICStus пролога

Пиксельное представление

Подходы к распараллеливанию

Кластеры

Стандартизированный АРІ для обеспечения переносимости программы между кластерами. Нагрузку распределяет программист.

Grid-системы

Совместное использование большого числа ресурсов. Распределение вычислений между ними.

GPU

Задача должна быть приводима к SIMD виду. Выделяется целый блок ядер.

Структура программы

Менеджер серверов управляет запросами.

Каждый из серверов:

- Независим
- Docker контейнер
- Развертывание в Microsoft Azure

Сравнение обычной и параллельной реализации

Заключение

Был разработан метод замощения поверхности, предложен способ его ускорения за счет параллельных вычислений.

Были решены следующие задачи:

- проведен анализ способов решения задач замощения
- проведен анализ подходов к ускорению
- разработан метод решения задачи о замощении
- разработан метод распараллеливания алгоритма замощения
- реализованы и протестированы разработанные методы

Дальнейшее развитие

- Поддержка контейнеров произвольной формы
- Использование вычислений на видеокарте (NVIDIA Quadro RTX $8000-48~\mathrm{GB}~2021$)
- Комбинирование предложенных методов ускорения