Differential- und Integralrechnung, Wintersemester 2020-2021

2. Vorlesung

Th2 (Rechenregeln für konvergente Folgen)

Sind $(a_n)_{n\in\mathbb{N}}$ und $(b_n)_{n\in\mathbb{N}}$ konvergente Folgen, dann gelten:

$$\lim_{n\to\infty} (a_n + b_n) = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n,$$

$$\lim_{n\to\infty} (t \cdot a_n) = t \cdot \lim_{n\to\infty} a_n, \ \forall \ t \in \mathbb{R},$$

$$\lim_{n\to\infty} (a_n \cdot b_n) = (\lim_{n\to\infty} a_n) \cdot (\lim_{n\to\infty} b_n),$$

$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{\lim_{n\to\infty} a_n}{\lim_{n\to\infty} b_n}, \text{ falls } \lim_{n\to\infty} b_n \neq 0.$$

Die Addition betreffend

- $\forall x \in \mathbb{R}$: $x + \infty = \infty + x = \infty$.
- $\forall x \in \mathbb{R}$: $x + (-\infty) = (-\infty) + x = -\infty$,
- $\infty + \infty = \infty$, $(-\infty) + (-\infty) = -\infty$.

$$\infty + (-\infty), \quad (-\infty) + \infty.$$

Die Multiplikation betreffend

•
$$x \cdot \infty = \infty \cdot x = \begin{cases} \infty, \text{ falls } x \in (0, \infty) \\ -\infty, \text{ falls } x \in (-\infty, 0), \end{cases}$$

•
$$x \cdot (-\infty) = (-\infty) \cdot x = \begin{cases} -\infty, \text{ falls } x \in (0, \infty) \\ \infty, \text{ falls } x \in (-\infty, 0), \end{cases}$$

•
$$\infty \cdot \infty = \infty$$
, $(-\infty) \cdot (-\infty) = \infty$,

•
$$\infty \cdot (-\infty) = (-\infty) \cdot \infty = -\infty$$
.

$$0 \cdot \infty$$
, $\infty \cdot 0$, $0 \cdot (-\infty)$, $(-\infty) \cdot 0$.

Die Division betreffend

- $\forall x \in \mathbb{R}$: $\frac{x}{\infty} = \frac{x}{-\infty} = 0$,
- $\frac{1}{0+} = \infty$, $\frac{1}{0-} = -\infty$.

$$\frac{\infty}{\infty}$$
, $\frac{-\infty}{-\infty}$, $\frac{\infty}{-\infty}$, $\frac{-\infty}{\infty}$

Potenzen betreffend

•
$$x^{\infty} = \begin{cases} \infty, \text{ falls } x \in (1, \infty) \\ 0, \text{ falls } x \in [0, 1), \end{cases}$$

•
$$x^{-\infty} = \begin{cases} 0, \text{ falls } x \in (1, \infty) \\ \infty, \text{ falls } x \in (0, 1), \end{cases}$$

•
$$(\infty)^x = \begin{cases} \infty, \text{ falls } x \in (0, \infty) \\ 0, \text{ falls } x \in (-\infty, 0), \end{cases}$$

•
$$\infty^{\infty} = \infty$$
, $\infty^{-\infty} = 0$.

$$1^{\infty}$$
, 0^0 , ∞^0 , $1^{-\infty}$.

Teilfolgen

Def.: Sei $(x_n)_{n\in\mathbb{N}}$ eine Folge. Ist $(n_k)_{k\in\mathbb{N}}$ eine streng wachsende Folge natürlicher Zahlen (d.h. $n_0 < n_1 < \cdots < n_k < \cdots$), dann nennt man $(x_{n_k})_{k\in\mathbb{N}}$ eine *Teilfolge* von $(x_n)_{n\in\mathbb{N}}$.

Bsp.: $(x_{2n})_{n\in\mathbb{N}}=(x_0,x_2,x_4,\dots)$ ist die Teilfolge von $(x_n)_{n\in\mathbb{N}}$, die den geraden Indizes, und $(x_{2n+1})_{n\in\mathbb{N}}=(x_1,x_3,x_5,\dots)$ die Teilfolge, die den ungeraden Indizes entspricht.

Th3 (Teilfolgen und Grenzwerte)

Hat die Zahlenfolge $(x_n)_{n\in\mathbb{N}}$ den Grenzwert $x\in\overline{\mathbb{R}}$, so hat auch jede Teilfolge von $(x_n)_{n\in\mathbb{N}}$ den Grenzwert x.

Bem.: **Th3** kann verwendet werden, um zu begründen, dass bestimmte Folgen keinen Grenzwert haben. Z. B.: $((-1)^n)_{n\in\mathbb{N}}$ hat keinen Grenzwert, weil die Teilfolgen $((-1)^{2n})_{n\in\mathbb{N}}$ und $((-1)^{2n+1})_{n\in\mathbb{N}}$ verschiedene Grenzwerte haben.