2018 年全国各地高考数学试题及解答分类汇编大全

(10平面向量)

一、选择题

- 1. **(2018 浙江)** 已知 a, b, e 是平面向量,e 是单位向量。若非零向量 a 与 e 的夹角为 $\frac{\pi}{3}$,向量 b 满足 $b^2-4e \cdot b+3=0$,则|a-b|的最小值是() A. $\sqrt{3}-1$ B. $\sqrt{3}+1$ C. 2 D. $2-\sqrt{3}$
- 1.答案: A

解答: 设 $\vec{e} = (1,0)$, $\vec{b} = (x, y)$,

則
$$\vec{b}^2 - 4\vec{e} \cdot \vec{b} + 3 = 0 \Rightarrow x^2 + y^2 - 4x + 3 = 0 \Rightarrow (x - 2)^2 + y^2 = 1$$

如图所示, $\vec{a} = \overrightarrow{OA}$, $\vec{b} = \overrightarrow{OB}$,(其中 A 为射线 OA 上动点,B 为圆 C 上动点, $\angle AOx = \frac{\pi}{3}$.)

$$\therefore |\vec{a} - \vec{b}|_{\min} = |CD| - 1 = \sqrt{3} - 1. \quad (\sharp + CD \perp OA.)$$

2. (2018 天津文) 在如图的平面图形中,

已知 OM = 1.ON = 2, $\angle MON = 120^{\circ}$,

$$\overrightarrow{BM} = 2\overrightarrow{MA}, \overrightarrow{CN} = 2\overrightarrow{NA}, 则 \overrightarrow{BC} \overrightarrow{OM}$$
 的值为(
(A) -15 (B) -9 (C) -6 (D) 0

2. 【答案】C

【解析】如图所示,连结 MN ,由 $\overrightarrow{BM} = 2\overrightarrow{MA}$, $\overrightarrow{CN} = 2\overrightarrow{NA}$

可知点M, N分别为线段AB, AC上靠近点A的三等分点,则 $\overrightarrow{BC} = 3\overrightarrow{MN} = 3(\overrightarrow{ON} - \overrightarrow{OM})$,

由题意可知: $\overrightarrow{OM}^2 = 1^2 = 1$, $\overrightarrow{OM} \cdot \overrightarrow{ON} = 1 \times 2 \times \cos 120^\circ = -1$, 结合数量积的运算法则可得:

 $\overrightarrow{BC} \cdot \overrightarrow{OM} = 3(\overrightarrow{ON} - \overrightarrow{OM}) \cdot \overrightarrow{OM} = 3\overrightarrow{ON} \cdot \overrightarrow{OM} - 3\overrightarrow{OM}^2 = -3 - 3 = -6$. $2\overrightarrow{OM} \cdot \overrightarrow{OM} = 3\overrightarrow{OM} \cdot \overrightarrow{OM} = 3\overrightarrow{$

- 3. (2018 天津理)如图,在平面四边形 ABCD中, $AB \perp BC$, $AD \perp CD$, $\angle BAD = 120^{\circ}$, AB = AD = 1. 若点 E 为边 CD 上的动点,则 $AE \cdot BE$ 的最小值为

 - (A) $\frac{21}{16}$ (B) $\frac{3}{2}$ (C) $\frac{25}{16}$

3. 【答案】A

【解析】建立如图所示的平面直角坐标系,

$$\mathbb{N} A \left(0, -\frac{1}{2} \right), \quad B \left(\frac{\sqrt{3}}{2}, 0 \right), \quad C \left(0, \frac{3}{2} \right), \quad D \left(-\frac{\sqrt{3}}{2}, 0 \right),$$

第(8)题图

点 E 在 CD 上,则 $\overrightarrow{DE} = \lambda \overrightarrow{DC} (0 \le \lambda \le 1)$,设 E(x, y),则:

$$\left(x + \frac{\sqrt{3}}{2}, y\right) = \lambda \left(\frac{\sqrt{3}}{2}, \frac{3}{2}\right), \quad \text{RI} \begin{cases} x + \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2}\lambda \\ y = \frac{3}{2}\lambda \end{cases},$$

据此可得
$$E\left(\frac{\sqrt{3}}{2}\lambda - \frac{\sqrt{3}}{2}, \frac{3}{2}\lambda\right)$$
, 且 $\overrightarrow{AE} = \left(\frac{\sqrt{3}}{2}\lambda - \frac{\sqrt{3}}{2}, \frac{3}{2}\lambda + \frac{1}{2}\right)$, $\overrightarrow{BE} = \left(\frac{\sqrt{3}}{2}\lambda - \sqrt{3}, \frac{3}{2}\lambda\right)$,

$$\overrightarrow{AE} \cdot \overrightarrow{BE} = \left(\frac{\sqrt{3}}{2}\lambda - \frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\lambda - \sqrt{3}\right) + \frac{3}{2}\lambda \times \left(\frac{3}{2}\lambda + \frac{1}{2}\right),$$

整理可得: $\overrightarrow{AE} \cdot \overrightarrow{BE} = \frac{3}{4} (4\lambda^2 - 2\lambda + 2) (0 \le \lambda \le 1)$,

结合二次函数的性质可知,当 $\lambda = \frac{1}{4}$ 时, $\overrightarrow{AE} \cdot \overrightarrow{BE}$ 取得最小值 $\frac{21}{16}$,故选 A.

- 4. (2018 全国新课标 I 文、理) 在 \triangle ABC 中,AD 为 BC 边上的中线,E 为 AD 的中点,则 \overrightarrow{EB} = (
 - A. $\frac{3}{4}\overrightarrow{AB} \frac{1}{4}\overrightarrow{AC}$ B. $\frac{1}{4}\overrightarrow{AB} \frac{3}{4}\overrightarrow{AC}$ C. $\frac{3}{4}\overrightarrow{AB} + \frac{1}{4}\overrightarrow{AC}$ D. $\frac{1}{4}\overrightarrow{AB} + \frac{3}{4}\overrightarrow{AC}$

4. 答案: A

解答:

曲题可知
$$\overrightarrow{EB} = \overrightarrow{EA} + \overrightarrow{AB} = -\frac{1}{2}\overrightarrow{AD} + \overrightarrow{AB} = -\frac{1}{2}[\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})] + \overrightarrow{AB} = \frac{3}{4}\overrightarrow{AB} - \frac{1}{4}\overrightarrow{AC}$$
.

- (2018 全国新课标Ⅱ文、理)已知向量a, b满足|a|=1, $a \cdot b$ =-1, 则 $a \cdot (2a b)$ = (B. 3 C. 2
- 5. 【答案】B

【解析】因为 $a\cdot(2a-b)=2a^2-a\cdot b=2|a|^2-(-1)=2+1=3$,所以选B.

D. 0

二、填空

- (2018 北京文) 设向量a = (1,0),b = (-1,m),若 $a \perp (ma b)$,则 $m = \underline{\hspace{1cm}}$.
- 【答案】-1

【解析】: a = (1,0), b = (-1, m), : ma - b = (m,0) - (-1, m) = (m+1, -m),

 $\boxplus a \perp (ma-b) \not\models$, $a \cdot (ma-b) = 0$, $\therefore a \cdot (ma-b) = m+1=0$, $\boxplus m = -1$.

2. (2018上海) 在平面直角坐标系中, 已知点 A (-1, 0), B (2, 0), E, $F \neq y$ 轴上的两个动点,且 |EF|=2,则 $AE \cdot BF$ 的最小值为_____

【答案】-3

【知识点】平面向量数量积

【考查能力】运算求解能力

【解析】设E(0,m),F(0,m+2),则 $\overline{AE} \cdot \overline{BF} = (m+1)^2 - 3$,最小值为 - 3

- 3. (**2018 江苏**) 在平面直角坐标系 xOy 中,A 为直线 l: y = 2x 上在第一象限内的点, B(5,0) ,以 AB为直径的圆 C 与直线 l 交于另一点 D. 若 $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$,则点 A 的横坐标为 \triangle .
- 3. 【答案】3

【解析】设A(a,2a)(a>0),则由圆心C为AB中点得 $C\left(\frac{a+5}{2},a\right)$,

易得C:(x-5)(x-a)+y(y-2a)=0,与y=2x联立解得点D的横坐标 $x_D=1$,所以

$$D(1,2)$$
. $\overrightarrow{MB} = (5-a,-2a)$, $\overrightarrow{CD} = \left(1-\frac{a+5}{2},2-a\right)$,

曲 $\overrightarrow{AB} \cdot \overrightarrow{CD} = 0$ 得 $(5-a)\left(1-\frac{a+5}{2}\right)+(-2a)(2-a)=0$

 $a^2-2a-3=0$, a=3 或 a=-1, 因为 a>0, 所以 a=3.

- 4. (2018 全国新课标Ⅲ文、理)已知向量a=(1,2),b=(2,-2), $c=(1,\lambda)$.若c $/\!\!/ (2a+b)$,则
- 4. 答案: $\frac{1}{2}$

解答: $2\vec{a} + \vec{b} = (4,2)$, $\vec{c} / (2\vec{a} + \vec{b})$, $\therefore 1 \times 2 - \lambda \times 4 = 0$, 解得 $\lambda = \frac{1}{2}$

三、解答题(无)