Отчет по лабораторной работе No.6

Дисциплины: Архитектура компьютера

Нджову Нелиа

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	19
Сп	исок литературы	20

Список иллюстраций

5.1	РИС І	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
3.2	Рис 2																																		7
3.3	Рис 3																																		8
3.4	Рис 4																																		8
3.5	Рис 5																																		9
3.6	Рис 6			•								•			•							•	•				•	•		•					9
3.7	Рис 7																																		9
3.8	Рис 8			•								•			•							•	•				•	•		•					10
3.9	Рис 9																																		10
3.10	Рис 10																																		11
3.11	Рис 11																																		11
3.12	Рис 12																																		11
3.13	Рис 13																																		12
3.14	Рис 14																																		12
3.15	Рис 15																																		13
3.16	Рис 16																																		13
3.17	Рис 17																																		13
3.18	Рис 18																																		14
3.19	Рис 19																																		14
3.20	Рис 20																																		15
3.21	Рис 21																																		16
3.22	Рис 22																																		16
3.23	Рис 23																																		17

Список таблиц

1 Цель работы

Целью данной работы является освоение арифметических инструкций на языке ассемблера NASM.

2 Задание

- 1. Символьные и численные данные в NASM
- 2. Выполнение арифметических операций в NASM
- 3. Выполнение заданий для самостоятельной работы

3 Выполнение лабораторной работы

1. Символьные и численные данные в NASM

Я создам каталог для программ лабораторных работ 6 с помощью команды mkdir, зайду в него с помощью команды cd и создам файл lab6-1.asm с помощью команды touch(рис 1)

Рис. 3.1: Рис 1

Я скопирую файл in_out.asm в текущий каталог с помощью команды ср, потому что буду использовать его в программах(рис 2)

```
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ cp /home/nelianjovu/work/arch-pc/lab05/in_out.asm ~/work/arch-pc/lab06
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ls
in_out.asm lab6-1.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$
```

Рис. 3.2: Рис 2

Открою созданный файл lab6-1.asm и скопирую в него программу вывода значения регистра eax(рис 3)

Рис. 3.3: Рис 3

Я создам исполняемый файл программы и запущу его. Программа выведет символ j, поскольку программа выводит символ, соответствующий сумме ASCII двоичных кодов символов 4 и 6(рис 4)

```
in_out.asm lab6-1.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-
1 lab6-1.o
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ./lab6-1
j
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$
```

Рис. 3.4: Рис 4

Я заменю символы '6' и '4' в тексте программы на цифры 6 и 4(рис 5)

Рис. 3.5: Рис 5

Я создам новый исполняемый файл программы и запущу его. Теперь отображается символ с кодом 10, это символ перевода строки(рис 6)

```
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$ nasm -f elf lab6-1.asm nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-1 lab6-1.o nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$ ./lab6-1 nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$
```

Рис. 3.6: Рис 6

Я создам новый файл lab6-2.asm в каталоге ~/work/arch-pc/lab06 с помощью команды touch(рис 7)

```
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ touch lab6-2.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$
```

Рис. 3.7: Рис 7

Я открою вновь созданный файл и скопирую в него заданный текст програм-

мы(рис 8)

Рис. 3.8: Рис 8

Я создаю и запускаю исполняемый файл lab6-2. Теперь на выходе будет число 106, поскольку функция iprintLF позволяет программе выводить точное число вместо символа ASCII(рис 9)

```
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-
2 lab6-2.o
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ./lab6-2
106
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$
```

Рис. 3.9: Рис 9

Теперь я заменю символы '6' и '4' в тексте программы на цифры 6 и 4(рис 10)

Рис. 3.10: Рис 10

Как и ранее, я создаю и запускаю исполняемый файл lab6-2. Вывод равен 10, поскольку функция iprintLF позволяет программе выводить точное число вместо символа ASCII(рис 11)

```
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$ nasm -f elf lab6-2.asm
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-
2 lab6-2.o
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$ ./lab6-2
10
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$
```

Рис. 3.11: Рис 11

2. Выполнение арифметических операций в NASM

Я создам еще один файл lab6-3.asm в каталоге ~/work/arch-pc/lab06 с помощью команды touch(рис 12)

```
10
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$ touch lab6-3.asm
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$
```

Рис. 3.12: Рис 12

В созданный файл ввожу текст программы для вычисления значения выражения f(x) = (5 * 2 + 3)/3 (рис 13)

Рис. 3.13: Рис 13

Создаю исполняемый файл и запускаю его(рис 14)

```
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-3 lab6-3.o nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ./lab6-3 Результат: 4
Остаток от деления: 1 nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$
```

Рис. 3.14: Рис 14

Я изменю программу так, чтобы она вычисляла значение выражения f(x) = (4 *6 + 2)/5 (рис 15)

Рис. 3.15: Рис 15

Теперь я создаю исполняемый файл и запускаю его(рис 16)

```
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ nasm -f elf lab6-3.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-
3 lab6-3.o
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ./lab6-3
Результат: 5
Остаток от деления: 1
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$
```

Рис. 3.16: Рис 16

Я создам файл variant.asm в каталоге ~/work/arch-pc/lab06 с помощью команду touch(рис 17)

```
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$ touch variant.asm
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$
```

Рис. 3.17: Рис 17

Скопирую текст программы в файл для расчета варианта задания по студенческому билету(рис 18)

Рис. 3.18: Рис 18

Я создам и запущу исполняемый файл. Ввожу с клавиатуры номер студенческого билета, программа показывает, что мой вариант-14(рис 19)

```
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ nasm -f elf variant.asm
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ld -m elf_i386 -o varia
nt variant.o
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ./variant
Введите No студенческого билета:
1032239033
Ваш вариант: 14
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$
```

Рис. 3.19: Рис 19

2.1 Ответы на вопросы по программе

1.mov eax,rem call sprint

2.mov есх,х — используется для помещения адреса входной строки x в регистр есх.

mov edx,80 — записывает длину входной строки в регистр edx

call sread — вызов подпрограммы из внешнего файла, позволяющей ввести сообщение с клавиатуры

3.call atoi используется для преобразования ascii-кода символа в целое число и записи результата в регистр eax

4.xor edx,edx

mov ebx,20

div ebx

inc edx

5. Остаток от деления записывается в регистр edx

6.Инструкция inc edx увеличивает значение регистра edx на 1

7.mov eax,edx

call iprintLF

3. Выполнение заданий для самостоятельной работы

Я создам файл lab6-4.asm с помощью команды touch(рис 20)

Рис. 3.20: Рис 20

Созданный файл открою для редактирования, введу в него текст программы для вычисления значения выражения (8*x-6)/2 (рис. 4.24). Это выражение было под вариантом 12(рис 21)

```
*lab6-4.asm (-/work/arch-pc/lab06) — □ S

File Edit View Search Tools Documents Help

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □

*lab6-Nelia.report.md × □ lab6-3.asm × □ variant.asm × □ *lab6-4.asm × □ *lab6-4.
```

Рис. 3.21: Рис 21

Я создам и запущу исполняемый файл. Когда вы вводите значение 1, выход 1(рис 22)

```
nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ nasm -f elf lab6-4.asm nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ld -m elf_i386 -o lab6-4 lab6-4.o nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$ ./lab6-4 Введите значение х:
1 результат: 1
Остаток от деления: 0 nelianjovu@nelianjovu-Aspire-57556:~/work/arch-pc/lab06$
```

Рис. 3.22: Рис 22

Я запускаю исполняемый файл еще раз, чтобы проверить работу программы с другим входным значением, на этот раз я буду использовать 5, а на выходе

должно быть 17. Программа работала корректно(рис 23)

```
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$ ./lab6-4
Введите значение х:
5
результат: 17
Остаток от деления: 0
nelianjovu@nelianjovu-Aspire-5755G:~/work/arch-pc/lab06$
```

Рис. 3.23: Рис 23

Листинг 3.1. Программа для вычисления значения выражения $(8x - 6)/2^*$

```
%include 'in_out.asm'
SECTION .data
msg: DB 'Введите значение х: ',0
div: DB 'результат: ',0
rem: DB 'Остаток от деления: ',0
SECTION .bss
x: RESB 80
SECTION .text
GLOBAL _start
_start:
mov eax, msg
call sprintLF
mov ecx, x
mov edx, 80
call sread
mov eax,x ; EAX=x
call atoi
mov ebx,8 ; EBX=8
mul ebx ; EAX=EAX*EBX
add eax,-6; EAX=EAX+(-6)
xor edx,edx; обнуляем EDX для корректной работы div
```

mov ebx,2; EBX=2

div ebx ; EAX=EAX/2, EDX=остаток от деления

mov edi,eax ; запись результата вычисления в 'edi'

mov eax,div ; вызов подпрограммы печати

call sprint ; сообщения 'Результат: '

mov eax,edi ; вызов подпрограммы печати значения

call iprintLF ; из 'edi' в виде символов

mov eax,rem; вызов подпрограммы печати

call sprint ; сообщения 'Остаток от деления: '

mov eax,edx ; вызов подпрограммы печати значения

call iprintLF; из 'edx' (остаток) в виде символов

call quit ; вызов подпрограммы завершения

4 Выводы

При выполнении данной лабораторной работы я освоила арифметические инструкции языка ассемблера NASM.

Список литературы

- 1. Архитектура ЭВМ
- 2. Таблица ASCII