Data visualization and pre-processing

Assignment Date	26 September 2022
Student Name	Deepa.S
Student Roll Number	820419106009
Maximum Marks	2 Marks

1.Download Data set

2.Load the dataset

3. Perform Below Visualizations.

Univariate Analysis

30

```
In [48]: sns.histplot(data, x="Balance")
```

Out[48]: <AxesSubplot:xlabel='Balance', ylabel='Count'>


```
• Bi - Variate Analysis

In [51]: sns.displot(data, x="Balance", y="Age")

Out[51]: <seaborn.axisgrid.FacetGrid at 0x181064ebd60>

90

80

70

40
```


4. Perform descriptive statistics on the dataset.

central Tendancy

In [5]: data.mean()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/531903386.py:1: FutureWarning: Dropping of nuisan ce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.mean()

Out[5]: RowNumber 5.000500e+03 CustomerId 1.569094e+07 6.505288e+02 CreditScore Age Tenure 3.892180e+01 5.012800e+00 Balance 7.648589e+04 NumOfProducts 1.530200e+00 HasCrCard 7.055000e-01 IsActiveMember 5.151000e-01 EstimatedSalary 1.000902e+05 Exited 2.037000e-01 dtype: float64

In [6]: data.median()

 $\verb| C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/4184645713.py:1: Future \verb| Warning: Dropping of nuisa| | Particular Partic$ nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.median()

5.000500e+03 Out[6]: RowNumber CustomerId 1.569074e+07 CreditScore 6.520000e+02 3.700000e+01 Age 5.000000e+00 Tenure Balance 9.719854e+04 NumOfProducts 1.000000e+00 HasCrCard 1.000000e+00 IsActiveMember 1.000000e+00 EstimatedSalary 1.001939e+05 Exited 0.000000e+00 dtype: float64

In [7]: data.mode()

	RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard
0	1	15565701	Smith	850.0	France	Male	37.0	2.0	0.0	1.0	1.0
1	2	15565706	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
2	3	15565714	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	Nah
3	4	15565779	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
4	5	15565796	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
	111	***		***		100	***	***	***	111	
995	9996	15815628	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
996	9997	15815645	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
997	9998	15815656	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
998	9999	15815660	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
999	10000	15815690	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

4

In [8]: data.skew()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/1188251951.py:1: FutureWarning: Dropping of nuisa nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction. data.skew()

Out[8]: RowNumber

0.000000 CustomerId 0.001149 CreditScore -0.071607 1.011320 Age Tenure 0.010991 Balance -0.141109 NumOfProducts 0.745568 HasCrCard -0.901812 IsActiveMember -0.060437 0.002085 EstimatedSalary Exited 1.471611 dtype: float64

In [9]: data.kurt()

C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/2907027414.py:1: FutureWarning: Dropping of nuisa nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version thi s will raise TypeError. Select only valid columns before calling the reduction. data.kurt()

Out[9]: RowNumber

-1.200000 CustomerId -1.196113 -0.425726 CreditScore 1.395347 Age Tenure -1.165225 Balance -1.489412 NumOfProducts 0.582981 HasCrCard -1.186973 IsActiveMember -1.996747 EstimatedSalary -1.181518 Exited 0.165671 dtype: float64

```
In [10]: data.var()
         C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/445316826.py:1: FutureWarning: Dropping of nuisan
         ce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this
         will raise TypeError. Select only valid columns before calling the reduction.
          data.var()
                          8.334167e+06
Out[10]: RowNumber
         CustomerId
                           5.174815e+09
                         9.341860e+03
         CreditScore
         Age
                          1.099941e+02
                           8.364673e+00
         Tenure
         Balance
                           3.893436e+09
         NumOfProducts
                           3.383218e-01
         HasCrCard
                           2.077905e-01
         IsActiveMember
                            2.497970e-01
         EstimatedSalary
                           3.307457e+09
         Exited
                           1.622225e-01
         dtype: float64
```

```
In [11]: data.std()
           C:\Users\welcome\AppData\Local\Temp/ipykernel_11976/2723740006.py:1: FutureWarning: Dropping of nuisa
           nce columns in DataFrame reductions (with 'numeric_only=None') is deprecated; in a future version this will raise TypeError. Select only valid columns before calling the reduction.
            data.std()
Out[11]: RowNumber
                                  2886.895688
                            71936.186123
           CustomerId
                                  96.653299
10.487806
           CreditScore
           Age
           Tenure
                                      2.892174
                               62397.405202
           Balance
           NumOfProducts 0.581654
HasCrCard 0.455840
           HasCrCard
IsActiveMember
                                      0.499797
           EstimatedSalary
                                57510.492818
           Exited
                                     0.402769
           dtype: float64
```

5. Handle the Missing values.

6. Find the outliers and replace the outliers


```
In [64]: import numpy as np
data['Age']=np.where(data['Age']>50,20,data['Age']) #replacing

In [68]: import seaborn as sns
sns.boxplot(data['Age'])

C:\Users\welcome\anaconda3\lib\site-packages\seaborn\_decorators.py:36: FutureWarning: Pass the follo
wing variable as a keyword arg: x. From version 0.12, the only valid positional argument will be 'dat
a', and passing other arguments without an explicit keyword will result in an error or misinterpretat
ion.
warnings.warn(

Out[68]: <AxesSubplot:xlabel='Age'>
```

7. Check for Categorical columns and perform encoding

In [56]: data.tail()#Gender categorical column

Out[56]:

	RowNumber	Customerid	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCa
9995	9996	15606229	Obijaku	771	France	Male	39	- 6	0.00	2	
9996	9997	15569692	Johnstone	516	France	Male	35	10	57369.61	1	
9997	9998	15584532	Liu	709	France	Female	36	7	0.00	1	
9998	9999	16682366	Sabbatini	772	Germany	Male	42	3	75075.31	2	
9999	10000	15628319	Walker	792	France	Female	28	4	130142.79	1	

Encoding

In [57]: data['Gender'].replace({'Female':1,'Male':0},inplace=True)
 data.tail()

Out[57]:

		RowNumber	Customerld	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCa
	9995	9996	15606229	Obljaku	771	France	0	39	5	0.00	2	
	9996	9997	15569892	Johnstone	516	France	0	35	10	57369.61	1	
	9997	9998	15584532	Liu	709	France	1	36	7	0.00	1	
	9998	9999	15682355	Sabbatini	772	Germany	0	42	3	75075.31	2	
	9999	10000	15628319	Walker	792	France	1	28	4	130142.79	1	
4												-

In [58]: data_main-pd.get_dummies(data,columns=['Geography'])
data_main

Out[58]:

	RowNumber	Customerid	Burname	CreditBcore	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActive
0	1	15634602	Hargrave	619	1	42	2	0.00	1	1	
1	2	15647311	Hill	608	1	41	1	83807.86	1	0	
2	3	15619304	Onio	502	1	42	8	159660.80	3	1	
3	4	15701354	Boni	600	1	39	1	0.00	2	0	
4	5	15737888	Mitchell	850	1	43	2	125510.82	1	1	
***	***	***	-	-		***		100	111	***	
9995	9996	15606229	Obljaku	771	0	39	6	0.00	2	1	
9996	9997	15569892	Johnstone	516	0	35	10	57369.61	1	1	
9997	9998	15584532	Liu	709	1	36	7	0.00	1	0	
9998	9999	15682355	Sabbatini	772	0	42	3	75075.31	2	1	
9999	10000	15628319	Walker	792	1	28	4	130142.79	1	1	

10000 rows × 16 columns

4

8. Split the data into dependent and independent variables.

9. Scale the independent variables In [61]: x=data_main.drop(columns=['Surname',],axis=1) x.head() Out[61]: RowNumber Customerld CreditScore Gender Age Tenure Balance NumOfProducts HasCrCard IsActiveMember Estim 0 1 15634602 619 1 42 2 0.00 15647311 1 41 1 83807.86 3 15619304 502 1 42 8 159660.80 0 2 3 15701354 000 1 39 ò 4 6 15737888 850 1 43 2 125510.82 In [62]: from sklearn.preprocessing import scale

10. Split the data into training and testing

```
In [63]: from sklearn.model_selection import train_test_split

In [64]: x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)

In [65]: x_train.shape

Out[65]: (8000, 15)

In [66]: x_test.shape

Out[66]: (2000, 15)

In [67]: y_train.shape

Out[67]: (8000,)

In [98]: y_test.shape

Out[98]: (2000,)
```