774	-	-	 -	-		-		-7
SRN								

PES University, Bengaluru (Established under Karnataka Act No. 16 of 2013)

UE20EE101

APRIL 2021: END SEMESTER ASSESSMENT (ESA) B TECH I SEMESTER UE20EE101 – Elements of Electrical Engineering

Time: 3 Hrs		3 Hrs	Answer All Questions Max Marks: 1		
1	a)	Find the c	Furrent in the 6 Ω resistor in the network shown using Superposition Theorem. 10Ω $10V$ $+$ $5A$ 6Ω $+$ $12V$	6M	
	b)	With projection	per nomenclature, derive how a delta connected set of resistors is transformed to an	6M	
	c)		magnitude and direction of current in the branch BD in the network shown below evenin's Theorem. $ \begin{array}{cccccccccccccccccccccccccccccccccc$	8M	
2	a)	supply. I	El RLC circuit has $R=23~\Omega$, $L=1~mH~\&~C=100~\mu F$ connected across 230 V, 50 Hz Determine Admittance of each branch Active power drawn	4M	
	b)	A series & the over i) Fii) I	RLC circuit draws 400 W from a 200 V, 50 Hz supply. If the overall resistance is 4 Ω crall circuit behaves as inductive type, determine Power factor of the network. Inductance in the network if capacitance is 1mF What must be the value of capacitance to bring the circuit into resonance?	8M	

The following table gives average consumption hours for various loads in a typical household: c)

SRN

S.No.	Name of the Appliance	Wattage	Average consumption hours per day
1.	Four LED Bulbs	20 W per bulb	8 hours each
2.	LED TV	60 W	6 hours
3.	Air conditioner	2000 W	2 hours
4.	Refrigerator	100 W	24 hours
5.	Water Pump	750 W	30 minutes
6.	3 Ceiling Fans	75 W per fan	10 hours each

Considering a 30 day month, Determine

- the total number of units consumed in a month.
- ii) Monthly bill for the above consumption units considering a domestic connection of 5 kW sanctioned load with the tariff details listed in a table below

S.No.	Type of Charges	Tariff Details
1.	Fixed Charges for sanctioned load	Rs. 70/- for first kW
		Rs. 80/- for every additional kW
2.	Energy Consumption Charges	0 to 30 units Rs. 4/- per unit 31 to 100 units Rs. 5.45/- per unit 101 to 200 units Rs. 7/- per unit Above 200 units Rs. 8.05/- per unit
3.	Fuel Adjustment Charges	8 paisa per unit
4.	Tax only on Energy consumption charges	@ 9%

brding to Star : Ra + Rb Page 3 since they are equivalent, Ra+ Rb = Rab (Rbc + Rca) - 0 Rab + Rbc + Rca imilarly, = Rbc (Rab + Rca) - 2 Rb + Rc Rab + Rbc + Rca = Rca (Rab + Rbc) - 3 Rc + Ra Rab + Rbc + Rca $\frac{1-2+3}{2} \Rightarrow R_a = \frac{R_{ab}R_{ca}}{R_{ab}+R_{bc}+R_{ca}} - 4$ ilasily,

= $\frac{R_{bc}R_{ab}}{R_{ab}+R_{bc}+R_{ca}}$ - $\frac{R_{ca}R_{bc}}{R_{ab}+R_{bc}+R_{ca}}$ - $\frac{R_{ca}R_{bc}}{R_{ab}+R_{bc}+R_{ca}}$ 3,6 represent delta to Star transformation To find VTH : 201 B 800 AJH VH C $I_1 = SA \times 70$ 17.02= ·2·059A 302 D 11402 → Ig = 5 - I = 2448 2-941A

KVL in the path ABDA $-2I_1 - V_{TH} + 3I_2 = 0$ $V_{TH} = 4.705 V$

To find RTH:

$$R_{TH} = \begin{bmatrix} 2\Omega + 3\Omega \\ 1/1 \end{bmatrix}$$

$$\begin{bmatrix} 8\Omega + 4\Omega \end{bmatrix}$$

$$= 3.53.\Omega$$

Page 4

Therenin's Equivalent Circuit:

$$R_{TH} = 3.53\Omega$$

$$R_{TH} = 6\Omega$$

$$R_{TH} = 6\Omega$$

$$I_{6\Omega} = \frac{V_{TH}}{R_{TH} + R_L}$$
$$= 0.493A$$

current in the branch BD is 0.493A & flows from B to D.

) Parallel RLC Circuit

Page 5

i)
$$Y = G = \frac{1}{R} = 0.04350$$

$$\frac{\partial}{\partial t} = -j_{BL} = -j_{3.183}$$

$$\frac{1}{8} = + i B_{C} = + i 0.0314 \text{ T}$$

a) Active Power drawn,
$$P = \frac{V^2}{R} = 2.3 \text{ KW}$$

26)

$$R \cdot = 4\Omega$$

$$P = I^2 R \Rightarrow I = IOA$$

$$\Rightarrow |Z| = \frac{V}{I} = 20-\Omega$$

°)
$$PF = \frac{R}{|Z|} = 0.2 \text{ Lag}$$

$$(i) X_{T} = \sqrt{Z^{2} - R^{2}} = 19.59 \Omega = X_{L} - X_{C}$$

$$X_{c} = \frac{1}{2\pi f c} = 3.183 \Omega$$

$$X_L = X_T T C$$
 $X_L = X_T T C$
 $X_L = X_L T C$
 X_L

6M

- R', Y' & B' are connected together to form the 'Neutral' point of the system denoted by 'N'.
 - e_{RN}, e_{YN} & e_{BN} represent phase voltages.

Line current = Phase current

$$i_1 = i_R$$

$$i_2 = i_Y$$

$$i_3 = i_B$$
By KVL $e_{RY} = e_{RN} - e_{YN}$

$$\overline{E_{RN}} = \overline{E_{RN}} - \overline{E_{YN}}$$

$$\overline{E_{RN}} = \frac{E_m}{\sqrt{2}} \angle 0^\circ = E_{ph} \angle 0^\circ$$

$$\overline{E_{NN}} = \frac{E_m}{\sqrt{2}} \angle -120^\circ = E_{ph} \angle -120^\circ$$

$$\overline{E_{BN}} = \frac{E_m}{\sqrt{2}} \angle -240^\circ = E_{ph} \angle -240^\circ$$

$$\overline{E_{RY}} = E_{ph} \angle 0^\circ - E_{ph} \angle -120^\circ$$

$$= E_{ph} (1 - (\cos 120^\circ - j\sin 120^\circ))$$

$$= E_{ph} (\frac{3}{2} + j\frac{\sqrt{3}}{2})$$

$$\overline{E_{YB}} = \overline{E_{YN}} - \overline{E_{BN}} = \sqrt{3}E_{ph} \angle -90^\circ$$

$$\overline{E_{RN}} = \overline{E_{NN}} - \overline{E_{NN}} = \sqrt{3}E_{ph} \angle -210^\circ$$

A balanced delta connected load consumes 4 KW of power when connected to a three phase, 415 V, 50Hz supply. The same load when connected to a three phase 200 V, 50 Hz supply, draws a current of 5 A at a lagging power factor. Determine the load power factor and resistance and inductance per phase.

6M

30

resistance and inductance per phase.

$$P_{3}\phi = 4000 \text{ M}$$
 $delta \Rightarrow V_{ph} = V_{t} = 415 \text{ V}$
 $3 V_{ph} I_{ph} (08 \phi) = 4000$
 $3 V_{ph} I_{ph} R = 4000$
 $2 I_{t} = 5 A$
 $I_{ph} = I_{t} I_{t} = 2.89 A$
 $I_{ph} = I_{t} I_{t} = 37.168 \Omega$
 $I_{t} = 37.168 \Omega$

i) Line and Phase currents

ii) Power factor of the Load

iii) Total Active, Reactive & Apparent Powers

$$Z = (6 + j 8) \Omega$$

 $1Z1 = 10 \Omega$. Phase = 53.13 $Q_3 \phi = \sqrt{3} (W_0 - W_1)$
 $V_{Ph} = V_L = 400 V$ $Q_3 \phi = 38.398 \text{ KVA}$

 $\Phi = \Phi_m sin(\omega t)$ where Φ_m represents maximum value of flux.

This time varying flux linking with the primary winding induces a self-induced EMF in itself given by,

$$e_1 = N_1 \frac{d\Phi}{dt}$$
 -----(1) as per Faraday's Law

substituting for Φ in equation (1),

$$e_1 = N_1 \Phi_m \omega \cos(\omega t)$$
 Volts

RMS Value of primary induced EMF,

$$E_1 = e_1/\sqrt{2} = 4.44 f \Phi_m N_1 \text{ Volts} --- (2)$$

(c)	A 10 KW, 220 V, DC shunt Machine has armature and field resistances of 0.5Ω and $110~\Omega$ respectively. It takes 4A when running as motor on no load (when running light) at rated	10M
	voltage and speed. Determine	
	i) Constant Losses ii) Efficiency while running as Generator supplying 10KW output	
	III) ESS along white manifes on Motor described 10V W input	
	Ra=0.5 R _k = 110 \(\Omega\) \(\Ta\) \	1 002 02
1 5	1 V 30 NV= 1125.97 N W	2003.7+
	Ty = V & A (Mg = 83.31%)	
	I = 4-2=2A (iii) 1 = Pim - losses	
	Total 000 - VT (32) (0.5)	- 0
	= (4x220) - 2 In=Iz=43.45 A	
	(i)[Wc = 878W] B Wv = 944.45 W	
	(ii) n = Po (Mm = 81.78%)	
	(ii) $N_g = \frac{P_0}{P_0 + Losses}$.	
	Po= 10 KW	
	T _L = 10 KM 220= 45-45 A	
-		

Write a short note on the following:	6M	1
i) RCCB (Quy)	-	
It detects the earth leakage current		1
Protects the humans and other living beings from Electric shock.		
Protects the electrical appliances from arc-over.		
It consists of sensing coil, secondary coil, primary coil wherein the difference in		
current between line and neutral is sensed by sensing coil and the signal is sent to		1
relay to trip the circuit. ii) Fuse		
A fuse is an electric / electronic device, which is used to protect circuits from over	r	
current, overload and make sure the protection of the circuit.		
The principle of a fuse is based on the heating effect of the electric current.		
It is always placed in series with the circuit.		
Rated Current (or) current rating		
Fusing current Fusing surrent		
• Fusing Factor = Fusing current (>1)		
iii) Oil Pressure cables		
In case of oil filled cables, channels or ducts are provided in the cable for oil circulation		
Oil under pressure is constantly supplied to the channels by means of external		
reservoirs		
Oil under pressure compresses the layers of insulation and avoids voids		
The load connected across a single-phase AC supply consists of a heating load of 1.5kW, a	6M	
motor load of 2kVA at a power factor 0.6 lag and a load of 2kW at a power factor 0.8 lag.		
Calculate the total power drawn from the supply in kW & kVA and the overall power factor of the system.		
the system.		
What must be the KVAR rating of a capacitor to bring the power factor of the above system to	1 . 1	
unity?		73
(i) Load 1 = 7.5 KW = P, \ Q3 = P3 tan \$\partial 3		
	-	
$\cos \phi = 1$ = 1.5 KVAR		- 107
Q = 0. Total real Power		
2 4.7 KW		
(ii) Sa= 2 KVA Total reactive Power.		
(08 \$\phi_2 = 0.6 lag \ \frac{1}{2} \ 3.1 KVAR		
De sit i Sala apparent jour		
P = S cos of = 1.2 KW Total apparent fourt	I-P	0.
1 - 11 + 21 1 1		4
$Q_2 = S_2 = \frac{1.4 \times 10^{-10}}{4.7 \times 10^{-10}}$ $Q_3 = S_2 = \frac{1.4 \times 10^{-10}}{4.7 \times 10^{-10}}$ $Q_4 = S_2 = \frac{1.4 \times 10^{-10}}{4.7 \times 10^{-10}}$	1 -	le
93 9 19 1 10 10 10 10 10 10 10 10 10 10 10 10 1	1	
	1	
	K I	
capaciter o	3 91	
capaciter o		
= 100 MAIII		

S.No.	Name of the Appliance	Wattage	Average consumption hours per day	Number of Units/day
1.	Four LED Bulbs	20 W per bulb	8 hours each	640 Whor
2.	LED TV	60 W	6 hours	360 WhoL
3.	Air conditioner	2000 W	2 hours	4000 Who
4.	Refrigerator	100 W	24 hours	2400 Who
5.	Water Pump	750 W	30 minutes	375 Whr
6.	3 Ceiling Fans	75 W per fan	10 hours each	2250 Who

S.No.	Type of Charges	Tariff Details	Tariff
1.	Fixed Charges for sanctioned load	Rs. 70/- for first KW Rs. 80/- for every additional KW	70×13=390/-80×4
2.	Energy Consumption Charges	0 to 30 units Rs. 4/- per unit 31 to 100 units Rs. 5.45/- per unit 101 to 200 units Rs. 7/- per unit Above 200 units Rs. 8.05/- per unit	30x4 + 70x5.45 + 100x7 + 100.75 x8.05 = 2012.54/
3.	Fuel Adjustment Charges	8 paisa per unit	24.06/-
4.	Tax only on Energy consumption charges	@ 9%	181.13/-
		Total	2607.73/-