AMS 761 Nonlinear Optimization I

FALL 2023

Lecture 3: September 5

Lecturer: Mateo Díaz Scribe: Hans Harck Tønning

3.1 Optimality conditions (Continued)

Theorem 3.1 (1st order sufficient condition) Assume $f : \mathbb{R}^d \to \mathbb{R}$ is convex and differentiable. Then x^* is a global minimizer $\iff \nabla f(\bar{x}^*) = 0$.

Proof: " ⇒ ": Follows from the 1st order necessary condition.

" $\Leftarrow =$ ": Let $\bar{y} \in \mathbb{R}^d \setminus \{x^*\}$. Define $\psi(t) = f(\bar{x}^* + t(\bar{y} - \bar{x}^*))$. By the chain rule $\psi'(0) = \nabla f(\bar{x}^*)(\bar{y} - \bar{x}^*) = 0$.

For any $t \in (0,1]$:

$$\frac{f(\bar{x}^* + t(\bar{y} - \bar{x}^*)) - f(\bar{x}^*)}{t} \le \frac{(1 - t)f(\bar{x}^*) + tf(\bar{y}) - f(\bar{x}^*)}{t} = f(\bar{y}) - f(\bar{x}^*).$$

Thus, by taking the limit as t goes to zero, we get $0 = \psi'(0) \le f(\bar{y}) - f(\bar{x}^*)$, and we have that $f(\bar{x}^*) \le f(\bar{y})$.

Theorem 3.2 (2nd order necessary condition) Suppose that $f : \mathbb{R}^d \to \mathbb{R}$ is twice differentiable. If \bar{x}^* is a local minimizer, then $\nabla f(\bar{x}^*) = 0$ and $\nabla^2 f(\bar{x}^*) \succeq 0$.

Note that $\nabla^2 f(\bar{x}^*) \geq 0$, means for all $\bar{s} \in \mathbb{R}^d \setminus \{0\}$ we have that $\bar{s}^\top \nabla^2 f(\bar{x}^*) \bar{s} \geq 0$.

Proof: Seeking contradiction, assume $\nabla f(\bar{x}^*) = 0$ and there exists a $bars \in \mathbb{R}^d \setminus \{0\}$ s.t. $\bar{s}^\top \nabla^2 f(\bar{x}^*) \bar{s} < 0$ and $||\bar{s}|| = 1$.

Define $\psi(t) = f(\bar{x}^* + t\bar{s})$. Then

$$0 > \frac{1}{2}\psi''(0) = \lim_{t \to 0} \frac{\psi(t) - \psi(0)}{t^2}.$$

For small enough t>0, we have that $\frac{\psi(t)-\psi(0)}{t^2}\leq \frac{1}{4}\psi''(0)<0$. But this means that $f(\bar{x}^*+t\bar{s})<\frac{\phi(0)}{f(\bar{x}^*)}$, which is a contradiction.

Theorem 3.3 (2nd order sufficient condition) Suppose that $f: \mathbb{R}^d \to \mathbb{R}$ is twice differentiable. We have that \bar{x}^* is a strict local minimizer if $\nabla f(\bar{x}^*) = 0$ and $\nabla^2 f(\bar{x}^*) \succ 0$.

Proof:

Suppose \bar{x}^* satisfies the assumptions $(\nabla f(\bar{x}^*) = 0 \text{ and } \nabla^2 f(\bar{x}^*) \succ 0)$. Take $\bar{U} \in \mathbb{R}^d$ s.t. $||\bar{l}|| = 1$. Let $\psi(t) = f(\bar{x}^* + t\bar{U})$.

By the Fundamental Theorem of Calculus (FTC), we have that:

$$\phi(s) = \phi(0) + \int_0^s \phi'(\alpha) d\alpha.$$

Applying FTC again to $\phi'(\alpha)$:

$$\phi(s) = \phi(0) + \int_0^s \phi'(\alpha) + \int_0^\alpha \phi''(\beta) \ d\beta d\alpha. \tag{3.1}$$

Since $\nabla^2 f(\bar{x})$ is continuous and $\lambda_{\min}(\nabla^2 f(\bar{x}^*)) > 0$. For all \bar{y} close to \bar{x}^* , we have that $\lambda_{\min}(\nabla^2 f(\bar{y})) \geq \lambda > 0$ where λ is some positive constant.

From (3.1) we have that

$$\phi(s) = \phi(0) + \phi'(0)s + \int_0^s \int_0^\alpha \bar{U}^\top \nabla^2 f(\bar{x}^* + \beta \bar{U}) \bar{U} d\beta \ d\alpha \geq \phi(0) + \lambda \int_0^s \int_0^\alpha 1 d\beta \ d\alpha = f(\bar{x}^*) + \frac{\lambda}{2} s^2.$$

Note that the above theorem is not an if and only if, as can be seen with the following counter example.

Example 3.4 Let $f(x) = x^4$. Then x = 0 is clearly a global minimizer, but $f''(0) = \nabla^2 f(0) = 0$.

Figure 3.1: Plot of $f(x) = x^4$.

3.2 Basic Convexity

Definition 3.5 A set $C \subseteq \mathbb{R}^d$ is <u>convex</u> if for all $\bar{y} \in C$ and $t \in [0,1]$:

$$t\bar{x} + (1-t)\bar{y} \in C$$
.

I.e. the straight line between any two points in C must be entirely within C.

Figure 3.2: An example of a non-convex set in \mathbb{R}^2 .

Definition 3.6 Given any function $f : \mathbb{R}^d \to \mathbb{R}$ its <u>epigraph</u> is given by:

$$epi f = \{(\bar{x}, t) \mid f(\bar{x}) \le t\}.$$

I.e. all points that are on or above the graph of f(x).

Figure 3.3: The epigraph of $f(x) = x \sin(x) + 1$.

Theorem 3.7 A function f is convex iff the epigraph epif is convex.

Proof: Homework exercise. Follows easily from the definitions.

Lemma 3.8 Let $C_1, C_2 \subseteq \mathbb{R}^d$ be convex sets. Then $C_1 \cap C_2$ is also convex.

Proof: Let $x, y \in C_1 \cap C_2$, let $t \in [0, 1]$. Since C_1 is convex $t\bar{x} + (1 - t)\bar{y} \in C_1$, and since C_2 is convex $t\bar{x} + (1 - t)\bar{y} \in C_2$. Thus $t\bar{x} + (1 - t)\bar{y} \in C_1 \cap C_2$.