Answers for 10/08/2015

2. The following data are indexed prices of gold and copper over a 10-year period. Assume that the indexed values constitute a random sample from a bivariate normal distribution.

X	у	$x-\overline{x}$	$y-\overline{y}$	$(x-\overline{x})^2$	$(x-\overline{x})\cdot(y-\overline{y})$	$(y-\overline{y})^2$
76	80	16	12	256	192	144
62	68	2	0	4	0	0
70	73	10	5	100	50	25
59	60	-1	-8	1	8	64
53	64	-7	-4	49	28	16
54	68	-6	0	36	0	0
55	65	-5	-3	25	15	9
58	62	-2	-6	4	12	36
57	67	-3	-1	9	3	1
56	73	-4	5	16	-20	25
600	680	0	0	500	288	320

a) Test for the existence of linear relationship between the indexed prices of the two metals. That is, test $H_0: \rho = 0$ vs. $H_1: \rho \neq 0$. Use a 5% level of significance.

$$\overline{x} = \frac{600}{10} = 60.$$
 $\overline{y} = \frac{680}{10} = 68.$ $r = \frac{288}{\sqrt{500}\sqrt{320}} = \mathbf{0.72}.$

Test Statistic:
$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{0.72 \cdot \sqrt{10-2}}{\sqrt{1-0.72^2}} = 2.9345.$$

Rejection Region: Rejects H₀ if $t < -t_{0.025}(8 \text{ df})$ or $t > t_{0.025}(8 \text{ df})$.

$$\pm t_{0.025}$$
 (8 df) = ± 2.306 . **Reject H**₀.

Since
$$t_{0.01}(8 \text{ df}) = 2.896 < 2.9345 < 3.355 = t_{0.005}(8 \text{ df}),$$

 $2 \times 0.005 = 0.01 < \text{p-value} < 0.02 = 2 \times 0.01.$ (p-value ≈ 0.01887)

$$W = \frac{1}{2} \ln \frac{1+r}{1-r} = \frac{1}{2} \cdot \ln \left(\frac{1+0.72}{1-0.72} \right) = 0.907645.$$

Under
$$H_0$$
, $\mu_W = \frac{1}{2} \ln \frac{1 + \rho_0}{1 - \rho_0} = \frac{1}{2} \cdot \ln \left(\frac{1 + 0}{1 - 0} \right) = 0$,
$$\sigma_W^2 = \frac{1}{n - 3} = \frac{1}{7}$$
.

Test Statistic:
$$z = \frac{W - \mu_W}{\sigma_W} = \frac{0.907645 - 0}{\sqrt{1/7}} = 2.40.$$

Rejection Region: Rejects H₀ if $z < -z_{0.025}$ or $z > z_{0.025}$.

$$\pm z_{0.025} = \pm 1.960.$$

Reject H₀.

P-value = $2 \times P(Z > 2.40) = 2 \times 0.0082 = 0.0164$.

b) Is there enough evidence to conclude $\rho > 0.40$. That is, test $H_0: \rho = 0.40$ vs. $H_1: \rho > 0.40$. Use a 5% level of significance. What is the p-value of this test?

$$W = \frac{1}{2} \ln \frac{1+r}{1-r} = \frac{1}{2} \cdot \ln \left(\frac{1+0.72}{1-0.72} \right) = 0.907645.$$

Under
$$H_0$$
, $\mu_W = \frac{1}{2} \ln \frac{1 + \rho_0}{1 - \rho_0} = \frac{1}{2} \cdot \ln \left(\frac{1 + 0.40}{1 - 0.40} \right) = 0.423649$,
$$\sigma_W^2 = \frac{1}{n - 3} = \frac{1}{7}$$
.

Test Statistic:
$$z = \frac{W - \mu_W}{\sigma_W} = \frac{0.907645 - 0.423649}{\sqrt{1/7}} = 1.2805.$$

Rejection Region: Rejects H_0 if $z > z_{0.05}$.

$$z_{0.05} = 1.645$$
.

Do NOT Reject H₀.

P-value = right tail = P(Z > 1.2805) = 0.10.