Time Series Analytics

Naren Ramakrishnan

Recap

- Supervised learning
 - Classification, Regression
- Unsupervised learning
 - Clustering, Dimensionality Reduction

Today

- Time series analytics
 - Has connections to both supervised and unsupervised learning
 - Methods fine tuned for the temporal nature of data
- What is a time series?
 - A continuous-valued variable indexed by time (either discrete or continuous)

Product Demand over Time

Product Demand over Time

What we can do with time series

- Forecast the next time point
 - Autoregression (AR)
 - Moving Average (MA)
 - Autoregressive Moving Average (ARMA)
- Extract key characteristics
 - Cycles (e.g., seasonality), Trends (e.g., growth)
- Cluster time series
 - What is a good similarity/distance measure?

Naive Approach

- Value in next period is the same as value in most recent period
 - May sales = 48 → June forecast = 48
- Usually leads to atrocious predictions

Simple Moving Average

- Assumes that an average is a good estimator of future behavior
 - Used if little or no trend
 - Used for smoothing

$$F_{t+1} = \frac{A_t + A_{t-1} + A_{t-2} + \dots + A_{t-n+1}}{n}$$

```
F<sub>t+1</sub> = Forecast for the upcoming period, t+1
n = Number of periods to be averaged
A<sub>t</sub> = Actual occurrence in period t
```

Simple Moving Average

You are a manager in an electronics store. You aim to forecast iPod sales for months 4-6 using a 3-period moving average.

Month	Sales
1	4
2	6
3	5
4	?
5	?
6	?

Simple Moving Average

Month	Sale	es	Moving Average (n=3)
1	4 '		, NA
2	6		NA
3	5 .		> NA
4	?		\longleftrightarrow (4+6+5)/3=5
5	?		
6	?		

Reality hits

Month	Sales	Moving Average (n=3)
1	4	NA
2	6	NA
3	5	NA
4	3	5
5	?	
6	?	

Forecast for Month 5

Month	Sales	Moving Average (n=3)
1	4	NA
2	6)	NA
3	5	NA
4	3 J	5
5	?	\longleftrightarrow (6+5+3)/3=4.667
6	?	

Reality hits again

Month	Sales	Moving Average (n=3)
1	4	NA
2	6	NA
3	5	NA
4	3	5
5	7	4.667
6	?	

Reality again

Month	Sale	S	Moving Average (n=3)
1	4		NA
2	6		NA
3	5		NA
4	3	<i>)</i>	5
5	7		3 4.667
6	?		(5+3+7)/3=5

Weighted Moving Average

Gives more emphasis to recent data

$$F_{t+1} = w_1 A_t + w_2 A_{t-1} + w_3 A_{t-2} + ... + w_n A_{t-n+1}$$

- Weights
 - decrease for older data
 - -sum to 1.0

Weighted Moving Average: 3/6, 2/6, 1/6

Month	Sales	Weighted
		Moving
		Average
1	4)	NA
2	6	NA
3	5	NA
4	?-	31/6 = 5.167
5	?	
6	?	

Next iteration

Month	Sales	Weighted
		Moving
		Average
1	4	NA
2	6	NA
3	5	NA
4	3	31/6 = 5.167
5	7	→ 25/6 = 4.167
6		32/6 = 5.333

Exponential Smoothing

- Assumes that the most recent observations have the highest predictive value
 - gives more weight to recent time periods

$$F_{t+1} = F_t + \alpha (A_t - F_t)$$

$$e_t$$

 F_{t+1} = Forecast value for time t+1

 A_t = Actual value at time t

 α = Smoothing constant

Need initial forecast F_t to start.

i Ai

Week	Demand
1	820
2	775
3	680
4	655
5	750
6	802
7	798
8	689
9	775
10	

Given the weekly demand data what are the exponential smoothing forecasts for periods 2-10 using α =0.10?

Assume F₁=D₁

i	Ai	Fi		
Week	Demand	α = 0.1		
1	820	820.00		
2	775			
3	680	$F_2 = F_1 + \alpha(A$	$A_1 - F_1$	=820+.1(820-820)
4	655			=820
5	750			
6	802			
7	798			
8	689			
9	775			
10				

i	Ai	Fi	
Week	Demand	α = 0.1	
1	820	820.00	
2	775	820.00	
3	680	$F_3 = F_2 + \alpha(A)$	$A_2 - F_2$) =820+.1(775–820)
4	655	1 3 1 2 3 (1	
5	750		=815.5
6	802		
7	798		
8	689		
9	775		
10			

i	Ai	Fi
Week	Demand	α = 0.1
1	820	820.00
2	775	820.00
3	680	815.50
4	655	
5	750	
6	802	
7	798	
8	689	
9	775	
10		

This process continues through week 10

i	Ai	Fi	
Week	Demand	α = 0.1	α = 0.6
1	820	820.00	820.00
2	775	820.00	820.00
3	680	815.50	793.00
4	655	801.95	725.20
5	750	787.26	683.08
6	802	783.53	723.23
7	798	785.38	770.49
8	689	786.64	787.00
9	775	776.88	728.20
10		776.69	756.28

What if the α constant equals 0.6?

Exponential Smoothing

- How to choose
 - depends on the emphasis you desire to place on the most recent data
- Increasing a makes forecast more sensitive to recent data

Effect of Smoothing Constant α

or
$$F_{t+1} = F_t + \alpha \left(A_t - F_t \right)$$

$$F_{t+1} = \alpha A_t + \alpha \left(1 - \alpha \right) A_{t-1} + \alpha \left(1 - \alpha \right)^2 A_{t-2} + \dots$$

$$W_1 \qquad W_2 \qquad W_3$$
Weights
$$\alpha = \begin{array}{c|c} & \text{Weights} & \text{3 periods ago} \\ & \alpha & \alpha (1 - \alpha) & \alpha (1 - \alpha)^2 \end{array}$$

$$\alpha = 0.10 \qquad 10\% \qquad 9\% \qquad 8.1\%$$

Autoregression

Just like regression

- Independent variables are older response variables (times t-1, t-2, ...)
- Dependent variable is the current response variable (at time t)
- Setup a simple supervised learning scenario

Year	Y_{i}	Y_{i-1}	Y_{i-2}	
92	4			
93	3	4		
94	2	3	4	
95	3	2	3	
96	2	3	2	
97	2	2	3	
98	4	2	2	
99	6	4	2	

ARMA

- Has elements of both
 - Autoregression (AR)
 - Moving average (MA)
- These methods are ideal for
 - Trend identification
 - (But restricted to linear methods so far)
 - Can be extended to non-linear relationships as well

Example of ARMA

Modeling seasonality

- Create new independent variables
 - E.g., denoting season, or calendar month

Applying a forecasting method

- Collect historical data
- Select a model
 - Moving average methods
 - Select n (number of periods)
 - For weighted moving average: select weights
 - Exponential smoothing
 - Select a
 - Autoregression
 - Define past lookup period, independent variables, seasonality
 - ...but how do you evaluate a forecast?

Evaluating forecasting methods

a. MAD = Mean Absolute Deviation

$$MAD = \sum_{t=1}^{n} \frac{|A_t - Ft|}{n}$$

b. MSE = Mean Squared Error

$$MSE = \sum_{t=1}^{n} \frac{(A_t - Ft)^2}{n}$$

c. RMSE = Root Mean Squared Error RMSE = \sqrt{MSE}

When do we use which method?

- AR or ES or MA or ARMA?
 - Depends on the stationarity properties of the time series
- Typically
 - Step changes, outliers are removed at the outset along with some smoothing
 - Many such transformations abound
 - The residuals are then subject to time series modeling
 - Under the assumption that they are stationary
 - Defining the time series itself is a creative activity!

Example: differencing

Example from electronic medical records

Clustering time series data

- Recap clustering algorithms
 - K-means
 - Hierarchical clustering
 - => All of them require a distance or similarity function
- Use MAD and MSE functions given earlier
 - And apply these algorithms as if you are applying them to points

Example of time series clustering

Rise and fall patterns of memes on social media

"you can put lipstick on a pig"

Time (hours)

Key clusters identified

- Modeling popularity across different social media channels
 - four classes on YouTube [Crane et al. '08]
 - six classes on Meme [Yang et al. '11]

Recap

- Given time series data
 - How do we extend it? (Forecasting)
 - How do we identify salient aspects of it?
 (Trend, seasonality identification)
 - How do we group them (Clustering)