AUG 2 0 1964

NBS MONOGRAPH 25—SECTION 3

Reference book not to be taken from the library.

Standard X-ray Diffraction Powder Patterns

U.S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS

THE NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. Its responsibilities include development and maintenance of the national standards of measurement, and the provisions of means for making measurements consistent with those standards; determination of physical constants and properties of materials; development of methods for testing materials, mechanisms, and structures. and making such tests as may be necessary, particularly for government agencies; cooperation in the establishment of standard practices for incorporation in codes and specifications; advisory service to government agencies on scientific and technical problems; invention and development of devices to serve special needs of the government; assistance to industry, business, and consumers in the development and acceptance of commercial standards and simplified trade practice recommendations; administration of programs in cooperation with United States business groups and standards organizations for the development of international standards of practice; and maintenance of a clearinghouse for the collection and dissemination of scientific, technical, and engineering information. The scope of the Bureau's activities is suggested in the following listing of its four Institutes and their organizational units.

Institute for Basic Standards. Electricity. Metrology. Heat. Radiation Physics. Mechanics. Applied Mathematics. Atomic Physics. Physical Chemistry. Laboratory Astrophysics.* Radio Standards Laboratory: Radio Standards Physics; Radio Standards Engineering.** Office of Standard Reference Data.

Institute for Materials Research. Analytical Chemistry. Polymers. Metallurgy. Inorganic Materials. Reactor Radiations. Cryogenics.** Office of Standard Reference Materials.

Central Radio Propagation Laboratory.** Ionosphere Research and Propagation. Troposphere and Space Telecommunications. Radio Systems. Upper Atmosphere and Space Physics.

Institute for Applied Technology. Textiles and Apparel Technology Center. Building Research. Industrial Equipment. Information Technology. Performance Test Development. Instrumentation. Transport Systems. Office of Technical Services. Office of Weights and Measures. Office of Engineering Standards. Office of Industrial Services.

^{*}NBS Group, Joint Institute for Laboratory Astrophysics at the University of Colorado.

^{**}Located at Boulder, Colorado.

Standard X-ray Diffraction Powder Patterns

Howard E. Swanson, Marlene Cook Morris, Eloise H. Evans, and Linda Ulmer

National Bureau of Standards Monograph 25—Section 3

Issued July 31, 1964

Library of Congress Catalog Card Number: 53-61386

Contents

	Page		Page
Introduction	1	*Europium Arsenate, EuAsO ₄ (tetragonal)	32
Standard x-ray powder patterns:		*Gallium Arsenide, GaAs (cubic)	33
Aluminum 3:2 Silicate (mullite), 3Al ₂ O ₃ ·2SiO ₂		*Holmium Arsenate, HoAsO ₄ (tetragonal)	34
(orthorhombic)	3	Indium Arsenide, InAs (cubic)	35
Ammonium Fluoberyllate, (NH ₄) ₂ BeF ₄ (ortho-		*Lanthanum Arsenate, LaAsO ₄ (monoclinic)	36
rhombic)	5	*Lanthanum Niobium Titanium Oxide, LaNb-	
Ammonium Fluoborate, NH ₄ BF ₄ (orthorhombic)	6	TiO ₆ (monoclinic)	37
*Antimony Selenide, Sb ₂ Se ₃ (orthorhombic)	7	Lithium Phosphate, low form, (lithiophosphate),	
*Antimony Telluride, Sb ₂ Te ₃ (trigonal)	8	Li_3PO_4 (orthorhombic)	38
*Arsenic Trioxide, claudetite, As ₂ O ₃ (mono-		Lithium Phosphate, high form, Li ₃ PO ₄ (ortho-	
clinic)	9	` rhombic)	39
*Barium Bromide Monohydrate, BaBr ₂ ·H ₂ O		Magnesium Ammonium Phosphate Hexahydrate,	
(orthorhombic)	10	(struvite), $MgNH_4PO_4 \cdot 6H_2O$ (orthorhombic)	41
Barium Stannate, BaSnO ₃ (cubic)	11	Potassium Chlorate, KClO ₃ (monoclinic)	42
Bismuth Orthophosphate, BiPO ₄ (monoclinic)	11	*Potassium Lithium Sulfate, KLiSO ₄ (hexag-	
*Bismuth Orthophosphate, BiPO ₄ (trigonal)	13	onal)	43
*Bismuth Orthovanadate (low form), BiVO ₄		*Potassium Perchromate, K ₃ CrO ₈ (tetragonal)	44
(tetragonal)	14	*Potassium Zinc Decavanadate 16 Hydrate,	
*Bismuth Orthovanadate (high form) BiVO ₄		$\mathrm{K_{2}Zn_{2}V_{10}O_{28}\cdot16H_{2}O}$ (triclinic)	45
(monoclinic)	14	*Rubidium Chromate, Rb ₂ CrO ₄ (orthorhombic) _	46
Bismuth Telluride, (tellurobismuthite), Bi ₂ Te ₃		*Silver Antimony Telluride, AgSbTe ₂ (cubic)	47
(trigonal)	16	*Sodium Magnesium Aluminum Boron, Hydroxy	
Bismuth Trioxide, alpha (bismite), Bi ₂ O ₃ (pseudo-		Silicate, dravite, NaMg ₃ Al ₆ B ₃ Si ₆ O ₂₇ (OH) ₄ (trig-	
orthorhombic)	17	onal)	47
*Cadmium Perchlorate Hexahydrate Cd(ClO ₄) ₂ .		Sodium Trimetaphosphate, Na ₃ P ₃ O ₉ (ortho-	
6H ₂ O (trigonal)	19	rhombic)	49
Cadmium Sulfate, CdSO ₄ (orthorhombic)	20		13
Cadmium Telluride, CdTe (cubic)	21	Sodium Trimetaphosphate Monohydrate, Na ₃ -	-0
Calcium Fluoride Phosphate, (fluorapatite),		P ₃ O ₉ ·H ₂ O, (orthorhombic)	50
$Ca_5F(PO_4)_3$ (hexagonal)	22	*Stannous Fluoride, SnF ₂ (monoclinic)	51
*Cerium Niobium Titanium Oxide, (eschynite),		*Strontium 1:1 Borate, SrO·B ₂ O ₃ (orthorhombic) _	53
CeNbTiO ₆ (orthorhombic)	24	*Terbium Arsenate, TbAsO ₄ (tetragonal)	54
*Cesium Chromate, Cs ₂ CrO ₄ (orthorhombic)	25	*Thallium Chromate, Tl ₂ CrO ₄ (orthorhombic)	54
Cesium Fluoride, CsF (cubic)	26	*Thulium Arsenate, TmAsO ₄ (tetragonal)	56
*Cobalt Fluosilicate Hexahydrate, CoSiF ₆ ·6H ₂ O		Titanium Dioxide brookite, TiO ₂ (ortho-	
(trigonal)	27	rhombic)	57
*Cobalt Perchlorate Hexahydrate, Co(ClO ₄) ₂ .		Zinc Telluride, ZnTe (cubic)	58
6H ₂ O (hexagonal)	28	Cumulative index to Circular 539, Volumes 1, 2,	00
Copper Sulfate, (chalcocyanite), CuSO ₄ (ortho-	0.0		
rhombic)	29	3, 4, 5, 6, 7, 8, 9, and 10, and Monograph 25,	F O
*Dysprosium Arsenate, DyAsO ₄ (tetragonal)	30	Sections 1, 2, and 3	59
*Erbium Arsenate, ErAsO ₄ (tetragonal)	31	Cumulative mineral index	64

Errata

Circular 539

- Vol. 1, Page 50, In the pattern of Swanson and Tatge, the d-values 0.8576, 0.8557, 0.8467, 0.8412, and 0.8383 should have the following hkl values, 422, 511, $\overline{5}13$, 333, and 206.
- Vol. 2, Page 46, Lattice constants paragraph, column 1, line 3: Puma should read Pnma. This change was made in the Vol. 2 reprint.
- Vol. 3, Page 54, On the line below hkl 121 insert hkl 012; on the line below hkl 200 insert hkl 031; hkl 040 should read 211; delete hkl values 230 and 410 and all those following 421.
- Vol. 5, Page 10, Column 1, bottom line, the index of refraction should read 1.710. Page 11, In pattern of Swanson, Gilfrich, and Ugrinic, for hkl 721 d should read 2.078.
- Page 43, Reference No. 3: The fourth author's name should be F. E. Sennett. Vol. 8, Page 42, Column 1: The density should be 4.697.
- Page 65, Ti₅Si₃ should have 2 molecules per unit cell and the density 4.376.
- Vol. 9, Page 6, (NH₄)₂PtBr₆ table: Cu radiation applies to entire table.

Errata—Continued

Page 19, hkl 102 should be 012.

Page 47, The density of K₃ZrF₇ should be 3.123.

Monograph 25

Sec. 1, Page 10, Lattice constants table: headings a b c should read b c a. Page 12, The title should read: Erbium Gallium Oxide 3:5. . . .

Sec. 2, Page 1, Column 2 line 11: potassium nitroso chlororhenate should be potassium nitroso chlororuthenate.

Page 2, In the left hand column, the sentence beginning in the seventh line from the bottom should read: Factors for converting integrated intensities to peak height intensities are on the left side of the chart.

Page 8, CdWO₄ space group should be C_{2h}—P2/c (No. 13).

Page 11, Spectrographic analysis should read: 0.01 to 0.1 percent sodium and

Page 34, The intensity of the line at d=4.21 should be 61. Insert the reading: hkl=102, d=3.94, I=2.

Page 35, Reference No. 7 should read: Helen M. Ondik, to be published in Acta Cryst.

Addenda

Monograph 25

Sec. 2, Page 22, Insert this data:

hkl	d	I	a
930	1. 2843	<1	12. 184
965	1. 0225	<1	12. 184
10.8.2	. 9398	<1	12. 181
13.5.0	. 8408	<1	12. 184
14.3.3	. 8329	<1	12. 184

Sec. 2, Page 35, Add this data: The sample is optically negative and the indices of refraction are $N_{\alpha}=1.440$, $N_{\beta}=1.458$, $N_{\gamma}=1.474$, and $2V \cong 90^{\circ}$.

Standard X-ray Diffraction Powder Patterns

The eleven previous volumes in this series are available from the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C., as follows:

NBS Circular 539, Volume 1, Standard X-ray Diffraction Powder Patterns (Data for 54 inorganic substances) 45 cents

NBS Circular 539, Volume 2, Standard X-ray Diffraction Powder Patterns (Data for 30 inorganic substances) 45 cents

NBS Circular 539, Volume 3, Standard X-ray Diffraction Powder Patterns (Data for 34 inorganic substances) 45 cents

NBS Circular 539, Volume 4, Standard X-ray Diffraction Powder Patterns (Data for 42 inorganic substances) 45 cents

NBS Circular 539, Volume 5, Standard X-ray Diffraction Powder Patterns (Data for 45 inorganic substances) 45 cents

NBS Circular 539, Volume 6, Standard X-ray Diffraction Powder Patterns (Data for 44 inorganic substances) 40 cents

NBS Circular 539, Volume 7, Standard X-ray Diffraction Powder Patterns (Data for 53 substances) 40 cents

NBS Circular 539, Volume 8, Standard X-ray Diffraction Powder Patterns (Data for 61 substances) 45 cents

NBS Circular 539, Volume 9, Standard X-ray Diffraction Powder Patterns (Data for 43 substances) 40 cents

NBS Circular 539, Volume 10, Standard X-ray Diffraction Powder Patterns (Data for 40 substances) 40 cents

NBS Monograph 25, Section 1, Standard X-ray Diffraction Powder Patterns (Data for 46 substances) 40 cents

NBS Monograph 25, Section 2, Standard X-ray Diffraction Powder Patterns (Data for 37 substances) 35 cents

Send orders with remittance to Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402. Remittances from foreign countries should include an additional one-fourth of the purchase price for postage. Those wishing to be notified of future issues should send mailing address to the Government Printing Office.

STANDARD X-RAY DIFFRACTION POWDER PATTERNS

Section 3—Data for 51 Substances

Howard E. Swanson, Marlene Cook Morris,¹

Eloise H. Evans, and Linda Ulmer

Standard x-ray diffraction powder patterns are presented for the following fifty-one substances: 3A1₂O₃·2SiO₂, (mullite); (NH₄)₂BeF₄; NH₄BF₄; Sb₂Se₃*; Sb₂Te₃*; As₂O₃*, claudetite; BaBr₂·H₂O*; BaSnO₃; BiPO₄ (monoclinic); BiPO₄* (trigonal); BiVO₄* (tetragonal); BiVO₄* (monoclinic); Bi₂Te₃, (tellurobismuthite); Bi₂O₃, (bismite); Cd(ClO₄)₂·6H₂O*; CdSO₄; CdTe; Ca₅F (PO₄)₃, (fluorapatite); CeNbTiO₆*, (eschynite); Cs₂CrO₄*; CsF; CoSiF₆·-6H₂O*; Co(ClO₄)₂·6H₂O*; CuSO₄, (chalcocyanite); DyAsO₄*; ErAsO₄*; EuAsO₄*; GaAs*; HoAsO₄*; InAs; LaAsO₄*; LaNbTiO₆*; Li₃PO₄, (lithiophosphate) low form; Li₃PO₄ high form; MgNH₄PO₄·6H₂O, (struvite); KClO₃; KLiSO₄*; K₃CrO₈*; K₂Zn₂V₁₀O₂₈·16H₂O*; Rb₂-CrO₄*; AgSbTe₂*; NaMg₃Al₆B₃Si₆O₂₇(OH)₄*, dravite; Na₃P₃O₉; Na₃P₃O₉·H₂O; SnF₂*; SrO·B₂O₃*; TbAsO₄*; TlCrO₄*; TmAsO₄*; TiO₂, brookite; and ZnTe. Twenty-one are to replace patterns already given in the X-ray Powder Data File issued by the American Society for Testing and Materials, and thirty patterns indicated by asterisks are for substances not previously and Materials, and thirty patterns indicated by asterisks are for substances not previously included. The patterns were made with a Geiger counter x-ray diffractometer, using samples of high purity. When possible, the d-values were assigned Miller indices determined by comparison with calculated interplanar spacings and from space group extinctions. The densities and lattice constants were calculated, and the refractive indices were measured whenever possible.

INTRODUCTION

The X-ray Powder Data File [1] is a compilation of diffraction patterns from many sources and is used for the identification of unknown crystalline materials by matching spacing and intensity measurements. The National Bureau of Standards in its program 3 for the revision and evaluation of published x-ray data for the X-ray Powder Data File presents data in this report for 51 compounds. This compilation is the thirteenth of a series of "Standard X-ray Diffraction Patterns." The designation "Circular 539" used for the first 10 volumes has been discontinued in favor of the new series, "Monograph 25." This compilation is the third section of the new series Monograph 25. Included are patterns recommended to replace data on 26 cards now present in the File. The other patterns are for 30 compounds not included in the File. These compounds are: antimony selenide; antimony telluride; arsenic oxide, claudetite; barium bromide monohydrate; bismuth orthophosphate (trigonal); bismuth orthovanadate (tetragonal); bismuth orthovanadate (monoclinic); cadium perchlorate hexahydrate; cerium niobium titanium oxide, eschynite; cesium chromate; cobalt fluosilicate

hexahydrate; cobalt perchlorate hexahydrate; dysprosium arsenate; erbium arsenate; europium arsenate; gallium arsenide; holmium arsenate; lanthanum arsenate; lanthanum niobium titanium oxide; potassium lithium sulfate; potassium perchromate; potassium zinc decavanadate 16-hydrate; rubidium chromate; silver antimony telluride; sodium magnesium aluminum boron hydroxy silicate, dravite; stannous fluoride; strontium 1:1 borate; terbium arsenate; thallium chromate; and thulium arsenate.

The experimental procedure and general plan of this Monograph section 3 have not changed greatly from previous publications. However, the basic technique is discussed, in this section, with minor changes.

Powder data cards. Under this heading are given the Powder Data File card numbers, the three strongest lines, and the literature references for each card. Cards listed through the 1962 index to the Powder Data File are included in the table.

Additional published patterns. Literature references for patterns that have not been published as Powder Data cards are listed.

NBS sample. Many of the samples used to make NBS patterns were special preparations of high purity obtained from a variety of sources or prepared in small quantities in our laboratory by J. deGroot. Unless otherwise noted, the spectrographic analyses were done at NBS after preparation of the sample was completed. The limit of detection for the alkali elements was 0.05 percent for the spectrographic analysis. A microscopic inspection for phase purity was made on the nonopaque materials during the refractive index determination. Another check of phase purity was

¹ Research Associate at the National Bureau of Standards sponsored by the Joint Committee on Chemical Analysis by Powder Diffraction Methods.
² Figures in brackets indicate the literature references at the end of each section of this paper.
³ This project is sponsored by the Joint Committee on Chemical Analysis by Powder Diffraction Methods. This committee is composed of members from the American Society for Testing and Materials, the American Crystallographic Association, and the British Institute of Physics. Financial support is also provided by the National Bureau of Standards.
⁴ Other volumes were published as follows: Circular 539 Vol. 1 and Vol. 2, June 1953; Vol. 3, June 1954; Vol. 4, March 1955; Vol. 5, October 1955; Vol. 6, September 1956; Vol. 7, September 1957; Vol. 8, April 1959; Vol. 9, February 1960; Vol. 10, September 1960; Monograph 25 Section 1, March 1962; and Section 2, May 1963.

usually provided by the x-ray pattern itself, when it was indexed by comparison with theoretical d-values. Treating the sample by appropriate annealing, recrystallization, or heating in hydrothermal bombs improved the quality of most of the patterns. The refractive index measurements were made by grain-immersion methods in white light, using oils standardized in sodium light, and covering the range 1.40 to 2.00.

X-ray techniques. At least three patterns for intensity measurements were prepared to check reproducibility. Samples that gave satisfactory intensity patterns usually had an average particlesize smaller than 10 μ . [2]. In order to avoid the orientation effects when samples are packed or pressed, a sample holder was made that had an extended rectangular cavity open at its top face and end. To prepare the sample, a glass slide was clamped over the top face to form a temporary cavity wall. (See fig. 1.) The powdered sample was then drifted into the remaining end opening while the holder was held in a vertical position. With the sample holder returned to a horizontal position, the glass slide was carefully removed so that the sample surface could be exposed to the x-ray beam (as shown in fig. 2). To powders that did not flow readily or were prone to orient excessively, approximately 50-volume percent of finely-ground silica-gel was added as a diluent. The intensities of the diffraction lines were measured as peak heights above background and were expressed in percentages of the intensity of the strongest line. Additional patterns were obtained for d-value measurements. Specimens for these patterns were prepared by packing into a shallow holder a sample containing approximately 5-wt percent tungsten powder that served as an internal standard. When tungsten lines were found to

interfere, 25 percent silver was used in place of tungsten. If the internal standard correction varied along the length of the pattern, linear interpolations were used for the regions between the peaks of the standard. For low values of 2θ , the pattern peak was measured in the center, at a place averaging about 75 percent of the peak height. For higher values of 2θ , where the α_1 and α_2 peaks were separated, the α_1 peak was measured in the same way. The internal standard correction appropriate to each region was then applied to the measurement of 2θ . The internal standard lattice constants used were 3.1648 Å for tungsten and 4.0861 Å for silver at 25 °C. as determined by Jette and Foote [3]. All of the NBS patterns, unless otherwise noted, are made at 25 °C, using either filtered copper or cobalt radiation $(K\alpha_1)$, having the wavelengths 1.5405 Å, and 1.7889 Å, respectively.

Structural data. For cubic materials a value for the lattice constant was calculated for each d-value. However, the constant reported is that obtained by averaging the last five lines because of the greater accuracy of measurement in the large-angle region of the pattern. The unit cell values for each noncubic substance were determined by means of a least-squares calculation made on the IBM 7090, using those d-values for which only one set of Miller indices could be assigned. The number of significant figures reported for d-values in the NBS pattern is limited by the quality of each sample as indicated by residuals obtained from least squares refinement. A portion of the indexing and cell refinement calculation was performed on a Burroughs B 220 computer at the United States Geological Survey using a program developed by H. T. Evans, Jr.

FIGURE 1

FIGURE 2

D. E. Appleman, and D. Handwerker. Lattice constant errors are given only for data refined on that program and are based on least squares refinement of the variance-covariance matrix derived from the unweighted $\Delta\theta$ residuals.

Published unit cell data in kX units were converted to angstrom units using the factor 1.00202 as recommended by an international

conference of crystallographers [4].

The space groups are listed with both the Schöenflies and short Hermann-Mauguin symbols as well as the space group numbers given in the International Tables for X-ray Crystallography

Orthorhombic cell dimensions are presented according to the Dana convention [6] b>a>c.

The densities calculated from the NBS lattice constants are expressed in grams per cubic

centimeter and are computed with atomic weights based on carbon 12 [7], and the Avogadro number $(6.02252\times10^{23}).$

References

[1] Index to the X-ray Powder Data File, American Society for Testing and Materials, 1916 Race Street,

Philadelphia 3, Pa. (1962). [2] L. Alexander, H. P. Klug, and E. Kummer, Statistical factors affecting the intensity of x-rays diffracted by crystalline powders, J. Appl. Phys. 19, No. 8, 742-753 (1948).

[3] E. R. Jette and F. Foote, Precision determination of

lattice constants, J. Chem. Phys. 3, 605-616 (1935). [4] The conversion factor for kX units to angstrom units, J. Sci. Inst. 24, 27 (1947).

[5] International Tables for X-ray Crystallography, 1, 1952.

Dana's System of Mineralogy, 1, 6 (1944).

[7] International Union of Pure and Applied Chemistry, Chem. Eng. News, Nov. 20, 43 (1961).

Aluminum 3:2 Silicate (mullite)* $3Al_2O_3 \cdot 2SiO_2$ (orthorhombic)

Powder data cards

Card number	Index lines	Source
6-0258	3. 38 2. 20 3. 41	F. H. Gillery [1].
10-394	3. 41 3. 39 3. 42 2. 54	H. Scholze [2] 1955.

Additional published patterns. Norton 1925, Navias and Davey [4] 1925; Wyckoff, Grieg, and Bowen [5] 1926; Mark and Rosbaud [6] 1926; Nahmias [7] 1933; Comeforo, Fischer, and Bradley [8] 1948; and Kurylenko [9] 1952.

NBS sample. The sample of aluminum 3:2 silicate was prepared at NBS by C. Robbins. Gamma Al₂O₃ and SiO₂·nH₂O were mechanically mixed in stoichiometric proportions of 3Al₂O₃ to 2SiO₂·nH₂O. This mixture was pressed into pellets and fired at 1400 °C and 1500 °C with little reaction, then remixed and fired in an open system at 1700 °C for 24 hr. Reaction was nearly complete. It was crushed, reground in an agate mortar and refired at 1725 °C for 24 hr. Chemical analysis of the finished product showed 61.6 mole percent Al₂O₃ and 38.4 mole percent SiO₂ instead of the beginning percentages of 60 and 40 in the 3:2 mixture. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent iron, and 0.001 to 0.01 percent each of calcium, chromium, magnesium, manganese, nickel, titanium, and zirconium.

The sample was colorless and optically positive with the indices of refraction $N_{\alpha}=1.637$, $N_{\beta}=$ 1.641, and $N_{\gamma} = 1.652$.

The d-values of the three strongest lines are: 3.390, 3.428 and 2.206 A.

Structural data. Sadanaga, Tokonami, and Takéuchi [10] in 1962 determined that mullite has the space group D_{2h}^9 -Pbam (No. 55). Wyckoff, Grieg, and Bowen [5] in 1926 determined that mullite has $3/4(3Al_2O_3\cdot 2SiO_2)$ per unit cell. Several lattice constants have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		а	b	c
		Å	Å	Å
1926	Wyckoff, Grieg, and Bowen [5].	7. 52	7. 68	2. 86
1928	Taylor [11]	7. 51	7. 65	2. 88
1933	Nahmias [7]	7. 54	7. 67	2. 90
1952	Kurylenko [9]	7. 580	7. 689	2. 895
1955	Scholze [2]	7. 537	7. 671	2. 878
1960	'Agrell and Smith	7. 5582	7. 6878	2. 8843
1962	Sadanaga, Tokonami, and Takéuchi [10].	*7. 583	*7. 681	*2. 8854
1963	National Bureau of Standards at 25 °C.	7. 5456 ±. 0004	7. 6898 ±. 0005	2. 8842 ±. 0002

^{*}These values are for 2Al2O3 · SiO2.

*Some disagreement exists in the literature as to which ratio or ratios of alumina to silica should be considered for mullite (3:2, 2:1, or both).

This sample was prepared as 3:2 at the request of P. Schroth of the Armco Steel Corp. to be used as an identification, diffraction standard for mullite in refractory brick.

The density calculated from the NBS lattice constants is 3.170 g/cm³ at 25 °C.

Aluminum 3:2 Silicate (mullite) 3Al₂O₂·2SiO₂ (orthorhombic)—Continued

hkl	Internal Standard, Tungsten, $a=3.1648 \text{ Å}$ Cu, 1.5405 Å at 25 °C hkl Internal Stannard, Tungsten, $a=3.1648 \text{ Å}$ Cu, 1.5405 Å at 25 °C				
	d	I		d	I
110 200 120 210 001 220 111	Å 5. 39 3. 774 3. 428 3. 390 2. 886 2. 694 2. 542	48 8 96 100 21 40 52	112 341 440 151 122 212	Å 1. 3932 1. 3494 1. 3462 1. 3356 1. 3290 1. 3266	
111 130 310 021	2. 342 2. 428 2. 393 2. 308	13 <2 3	350 530 060 251	1. 3172 1. 3120 1. 3004 1. 2814 1. 2771	4 3 4 7 13
201 121 230 320 221	2. 292 2. 206 2. 121 2. 106 1. 969	19 61 23 7 2	222 521 600 132 312	1. 2714 1. 2630 1. 2574 1. 2396 1. 2349	6 12 <2 6 2
040 400 140 311 330	1. 923 1. 887 1. 863 1. 841 1. 7954	$ \begin{array}{c} 2 \\ 8 \\ < 2 \\ 10 \\ < 2 \end{array} $	441 260 232 531 402	1. 2199 1. 2131 1. 1924 1. 1855 1. 1457	$\begin{pmatrix} 2 \\ < 2 \\ 4 \\ 3 \\ < 2 \end{pmatrix}$
240 321 420 041 401	1. 7125 1. 7001 1. 6940 1. 5999 1. 5786	6 14 10 20 11	261 242 422 270 171	1. 1190 1. 1032 1. 0981 1. 0548 1. 0172	$\begin{bmatrix} 1 & 4 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5$
141 411 331 150 510	1. 5644 1. 5461 1. 5242 1. 5067 1. 4811	$\begin{array}{c} 2\\2\\37\\<2\\<2\\<2\end{array}$	252 370, 522	1. 0133 1. 0065	8
241 421 002 250 520	1. 4731 1. 4605 1. 4421 1. 4240 1. 4046	$ \begin{array}{c} $			

References

- [1] F. H. Gillery, The Pennsylvania State Univ., University Park, Pa.
 [2] H. Scholze, Zum Sillimanit-Mullit Problem, Ber. deut.
- keram. Ges. 32, 381-5 (1955).
- [3] J. T. Norton, An x-ray study of natural and artificial sillimanite, J. Am. Ceram. Soc. 8, 401 (1925).
 [4] L. Navias and W. P. Davey, Differentiation between mullite and sillimanite by their x-ray diffraction
- muinte and sillimanite by their x-ray diffraction patterns, J. Am. Ceram. Soc. 8, 640 (1925).

 [5] R. W. G. Wyckoff, J. W. Grieg, and N. L. Bowen, The x-ray diffraction patterns of mullite and sillimanite, Am. J. Sci. 11, 459-72 (1926).

 [6] H. Mark und P. Rosbaud, Über die Struktur der Aluminiumsilikate vom Typus Al₂SiO₅ und des Pseudobrookits, Neues Jahr. Mineral. Geol. Beilage B. 54A, 127-64 (1926).
- [7] M. E. Nahmias, Bauxites et mullites, etudiées au
- moyen des rayons X. Z. Krist. 85, 355-69 (1933).
 [8] J. E. Comeforo, R. B. Fischer, and W. F. Bradley,
 Mullitization of kaolinite, J. Am. Ceram. Soc. 31, 254-9 (1948).
- [9] C. Kurylenko, Ensayo sobre la estructura de la mullita, pR Revista cientifica 2, 107-120 (1952).
 [10] R. Sadanaga, M. Tokonami, and Y. Takéuchi, The structure of mullite, 2Al₂O₃·SiO₂ and relationship with the structures of sillimanite and andalusite,
- Acta Cryst. 15, 65 (1962).

 [11] W. H. Taylor, The structure of sillimanite and mullite, Z. Krist. 68, 503-521 (1928).

 [12] S. O. Agrell and J. V. Smith, Cell dimensions, solid solutions, polymorphism, and identification of mullite and sillimanite, J. Am. Ceram. Soc. 43, 69 (1960).

Ammonium Fluoberyllate, (NH₄)₂BeF₄ (orthorhombic)

Powder data cards

Card number	Index lines	Source
3-0885	2. 48 2. 27 4. 31	The Dow Chemical Co.

Additional published patterns.

NBS sample. The sample of ammonium fluoberyllate was obtained from K and K Laboratories, Jamaica, Long Island, N.Y. Spectrographic analysis showed the following major impurities: 0.001 to 0.01 percent each of aluminum, calcium, and silicon.

The sample was colorless, and optically negative with $N_{\alpha} = 1.397$, $N_{\beta} = 1.401$, and $N_{\gamma} = 1.403$.

The d-values of the three strongest lines are: 4.275, 2.478, and 4.312 Å.

Structural data. Hultgren [1] in 1934 determined that ammonium fluoberyllate belongs to the space group D_{2h}^{16} -Pnam (No. 62) with $4[(NH_4)_2$ -BeF4] per unit cell. The lattice constants of Mukherjee [2] have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

			1	
1934 1945	Hultgren [1] Mukherjee [2]	7. 5 7. 51	Å 10. 2 10. 41	<i>c Å</i> 5. 8 5. 90
1963	National Bureau of Standards at 25 °C.	7. 645 ±. 001	10. 450 ±. 001	5. 929 ±. 001

The density of ammonium fluoberyllate calculated from NBS lattice constants in 1.698 g/cm³ at 25 °C.

hkl	Internal S Tungsten, a Cu, 1.5405	tandard, = 3.1648 Å Å at 25 °C
	d	I
020 011 120 111 200	Å 5. 229 5. 157 4. 312 4. 275 3. 821	5 15 90 100 36
201 220 031 002 131	3. 212 3. 085 3. 003 2. 962 2. 794	
112 040 230 310 122	2. 671 2. 612 2. 575 2. 478 2. 443	23 48 15 96 69
231 202 320 311 132	2. 362 2. 342 2. 289 2. 284 2. 164	$ \begin{array}{c} 15 \\ < 2 \\ 75 \\ < 2 \\ 32 \end{array} $
321, 222 330 241 051 013, 331	2. 136 2. 056 2. 027 1. 970 1. 942	25 16 3 3 26
400 410 250 401 322	1. 911 1. 879 1. 8339 1. 8192 1. 8124	$ \begin{array}{c} 4 \\ < 2 \\ 10 \\ 2 \\ < 2 \end{array} $
411, 420 251 341 033 160	1. 7934 1. 7526 1. 7552 1. 7193 1. 6977	$\begin{pmatrix} 2 \\ 7 \\ < 2 \\ 3 \\ 4 \end{pmatrix}$
133 350 402 233 252, 351	1. 6765 1. 6168 1. 6070 1. 5668 1. 5598	$ \begin{array}{c} 4 \\ 2 \\ 5 \\ 2 \\ \end{array} $
510 323 004	1. 5124 1. 4963 1. 4821	$<_{6}^{3}$

References

- R. Hultgren, Crystal structures of ammonium beryllium fluoride, Z. Krist. (A) 88, 233-237 (1934).
 P. L. Mukherjee, Crystal structures of metallic fluoberyllates, double fluoberyllates and sulphatofluoberyllates, Indian J. of Phys. 18, 148 (1945).

Ammonium Fluoborate, NH₄BF₄ (orthorhombic)

Powder data cards.

Card number	Index lines	Source
1-0335	4. 50 3. 55 3. 18	Hanawalt, Rinn, and Frevel [2] 1938.

Additional published patterns. None.

NBS sample. The sample of ammonium fluoborate was obtained from K and K Laboratories, Jamaica, Long Island, N.Y. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent each of calcium and phosphorus and 0.001 to 0.01 percent each of iron, titanium, and strontium.

The sample was colorless and had extremely low birefringence and indices of refraction.

The d-values of the three strongest lines are: 4.482, 3.542, and 3.186 Å.

Structural data. Hoard and Blair [1] in 1935 determined that ammonium fluoborate has the space group D_{2h}-Pbnm (No. 62) and 4(NH₄BF₄) per unit cell. The cell constants of Hoard and Blair have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

of Standards $\pm .001$ $\pm .001$ $\pm .001$ at 26 °C.	1935	Hoard and Blair [1]. National Bureau of Standards	$ \begin{array}{c c} & a \\ \hline & \mathring{A} \\ & 7.24 \\ \hline & 7.272 \\ & \pm .001 \end{array} $	b Å 9. 08 9. 063 ±. 001	c Å 5. 65 5. 686 ±. 001
---	------	---	--	-------------------------------------	-------------------------------------

hkl	Internal S Tungsten, a Cu, 1.5405	=3.1648 Å	hkl	Internal S Tungsten, a Cu, 1.5405	= 3.1648 Å
	d	I		d	I
110 020 101 120 200	Å 5. 668 4. 528 4. 482 3. 844 3. 635	30 58 100 51 51	312 410 150 023 142	Å 1. 808 1. 782 1. 759 1. 749 1. 721	8 2 <1 <1 5
021 210 121 211 002, 220	3. 542 3. 376 3. 186 2. 902 2. 839	85 11 85 61 35	322 411, 123 151 213 250	1. 708 1. 701 1. 680 1. 653 1. 622	$ \begin{array}{c} 2 \\ < 1 \\ 3 \\ 19 \\ 4 \end{array} $
130 112 131 022 310	2. 792 2. 541 2. 505 2. 409 2. 341	4 45 12 12 23	242 223 430 402 060, 412	1, 593 1, 575 1, 558 1, 532 1, 510	<1 3 2 1 <1
230 122 040 202 301	2. 324 2. 286 2. 266 2. 238 2. 232	37 35 10 18	303 233 043 510 161	1. 4933 1. 4691 1. 4535 1. 4365 1. 4316	
212 311, 140 231 320 041	2. 176 2. 165 2. 151 2. 138 2. 104	} 45 11 5 11	$\begin{bmatrix} 004 \\ 260 \\ 520 \\ 441 \\ 432 \end{bmatrix}$	1, 4217 1, 3954 1, 3848 1, 3755 1, 3656	<1 <1 <1 <1 2
141 222 330 103 241	2. 022 2. 008 1. 891 1. 834 1. 821	3 3 2 2 6	521 333 062 530 413	1. 3459 1. 3381 1. 3344 1. 3104 1. 2983	$ \begin{array}{c} $

Ammonium Fluoborate, NH₄BF₄ (orthorhombic)—Continued

The density of ammonium fluoborate calculated from the NBS lattice constants is 1.858 g/cm³ at 26 °C.

References

[1] J. L. Hoard and V. Blair, The crystal structures of rubidium and ammonium fluoborates, J. Am.

Chem. Soc. 57, 1985–88 (1935).
[2] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457–512 (1938).

Antimony Selenide, Sb₂Se₃ (orthorhombic)

Powder data cards. None.

Additional published patterns. Dönges [1] 1950. NBS sample. The sample of antimony selenide was obtained from Semitronics, Inc., Winchester, Mass. It was heated in an evacuated tube at 450 °C overnight to obtain a sharper pattern. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent tellurium and 0.001 to 0.01 percent each of aluminum and

The sample was a dark gray opaque powder. The d-values of the three strongest lines are:

2.868, 3.162, and 3.253 Å.

Structural data. Dönges [1] in 1950 determined that antimony selenide has the antimony sulfide structure, the space group D_{2h}^{16} -Pbnm (No. 62), and 4(Sb₂Se₃) per unit cell.

	Internal Standard,
	Tungsten, $a = 3.1648 \text{ Å}$
hkl	Cu, 1.5405 Å at 25 °C

hkl	Internal S Tungsten, a Cu, 1.5405	= 3.1648 Å
	d	I
110 020 200 120 220	Å 8. 28 5. 89 5. 82 5. 25 4. 14	7 24 5 55 10
101	3. 76	11
130	3. 720	32
310	3. 682	15
021	3. 297	11
231	3. 253	71
211 040 400 221 301	3. 162 2. 945 2. 910 2. 868 2. 776	73 2 4 100 62
330	2. 759	10
311	2. 703	22
240	2. 629	61
420	2. 608	22
321	2. 513	31
041	2. 367	23
340	2. 345	13
430	2. 337	13
141	2. 319	35
411	2. 303	12
510	2. 282	8
331	2. 268	7
250	2. 184	35
520	2. 164	19
440	2. 070	9
431	2. 015	35
501	2. 010	31
530	2. 002	31
151	1. 998	23
002	1. 989	26

1.963

060

Lattice constants

		a	b	c
1950 1963	Dönges [1] National Bureau	Å 11. 58	Å 11. 68	Å 3. 98
1000	of Standards at 25° C	11. 633	11. 780	3. 985

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C		
	d	I	
	Å		
112	1. 938	7	
160	1. 936	7 7 7	
610	1. 913		
212	1. 861	8	
212	1. 001	0	
620	1. 841	3	
441	1. 837	4	
540	1. 826	4 3 8	
351	1. 797	8	
531	1. 788	15	
061	1 761	47	
312	1. 761 1. 752	$\frac{47}{20}$	
312 322	1. 698	13	
621	1. 672	5	
710	1. 646	5	
110	1. 010		
142	1. 632	<1	
412	1. 628	$\begin{cases} 1 \\ 1 \end{cases}$	
640	1. 619	6	
270	1. 617	8	
720	1. 600	12	
242	1, 586	17	
$\frac{1}{422}$	1. 582	10	
370	1. 544		
171	1. 568	8 5	

Antimony Selenide, Sb₂Se₃ (orthorhombic)—Continued

Reference

The density of antimony selenide calculated from NBS lattice constants is 5.843 g/cm³ at 25 °C.

[1] E. Dönges, Über Selenohalogenide des dreiwertigen Antimons und Wismuts und über Antimon (III)selenid, Z. anorg. Chem. **263**, 280–291 (1950).

Antimony Telluride, Sb₂Te₃ (trigonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of antimony telluride was obtained from Semitronics, Inc., Winchester, Mass. It was heated at 450 °C overnight in an evacuated tube to sharpen the pattern. Spectrographic analysis showed the following major impurities: 0.001 to 0.01 percent each of aluminum and silicon.

The sample was dark gray opaque powder. The d-values of the three strongest lines are:

3.157, 2.349, and 2.130 Å.

Structural data. Dönges [1] in 1951 showed that antimony telluride is isomorphous with bismuth telluride, having the space group $D_{3d}^5 - R\overline{3}m$ (No. 166), and $3(Sb_2Te_3)$ per unit hexagonal cell, or $1(Sb_2Te_3)$ per unit rhombohedral cell. The unit cell measurements reported by Semiletov [2] have been converted from kX to angstrom units for comparison with NBS values.

Lattice constants

1963 National Bureau of Stand- ards at 25 °C. 4. 262 30. 450	1951 1956 1963	Dönges [1] Semiletov [2] National Bureau of Stand- ards at 25 °C.	å 4, 25 4, 25 4, 262	c Å 30. 35 29. 92 30. 450
---	----------------------	--	-------------------------------	---------------------------------------

The density of antimony telluride claculated from NBS lattice constants is 6.513 g/cm³ at 25 °C.

References

- [1] E. Dönges, Über Chalkogenohalogenide des dreiwertigen Antimons und Wismuts. III. Über Tellurohalogenide des dreiwertigen Antimons und Wismuts und über Antimon und Wismut (III)—Tellurid und Wismut (III)—Selenid, Z. anorg. u. Allgem, Chem. 265, 56-61 (1951).
- [2] S. A. Semiletov, Electronographic determination of antimony telluride structure, Kristallografiya 1, 403-406 (1956).

hkl (hex.)		
	d	I
003 006 009 104 015	$ \stackrel{\mathring{A}}{10.16} $ 5. 08 3. 383 3. 321 3. 157	1 3 5 1 100
$\begin{array}{c} 107 \\ 018 \\ 1 \cdot 0 \cdot 10 \\ 0 \cdot 1 \cdot 11 \\ 110 \end{array}$	2. 815 2. 651 2. 349 2. 215 2. 130	
$0 \cdot 0 \cdot 15 \\ 1 \cdot 0 \cdot 13 \\ 116 \\ 0 \cdot 1 \cdot 14 \\ 119$	2. 030 1. 977 1. 964 1. 875 1. 804	4 4 1 3 2
$\begin{array}{c} 205 \\ 0 \cdot 0 \cdot 18 \\ 208 \\ 0 \cdot 1 \cdot 17 \\ 0 \cdot 2 \cdot 10 \end{array}$	1. 766 1. 692 1. 661 1. 611 1, 578	$ \begin{array}{c} 10 \\ 2 \\ < 1 \\ 2 \\ 7 \end{array} $
$\begin{bmatrix} 2 \cdot 0 \cdot 11 \\ 1 \cdot 0 \cdot 19, \ 1 \cdot 1 \cdot 15 \\ 0 \cdot 0 \cdot 21 \\ 0 \cdot 1 \cdot 20 \\ 125 \end{bmatrix}$	1, 537 1, 470 1, 450 1, 408 1, 3597	1 7 2 1 7
$ \begin{vmatrix} 1 \cdot 1 \cdot 18 \\ 0 \cdot 0 \cdot 24, \ 2 \cdot 1 \cdot 10 \\ 0 \cdot 1 \cdot 23 \\ 300 \\ 0 \cdot 2 \cdot 19 \end{vmatrix} $	1. 3249 1. 2683 1. 2462 1. 2303 1. 2102	1 5 2 1 2
$\begin{array}{c} 1 \cdot 1 \cdot 21 \\ 2 \cdot 0 \cdot 20, \ 1 \cdot 2 \cdot 14 \\ 1 \cdot 0 \cdot 25 \\ 2 \cdot 1 \cdot 16 \\ 2 \cdot 0 \cdot 23 \end{array}$	1, 1988 1, 1742 1, 1563 1, 1252 1, 0759	<1 1 <1 <1 <1
$\begin{array}{c} 220 \\ 2 \cdot 1 \cdot 19 \\ 1 \cdot 0 \cdot 28 \\ 1 \cdot 2 \cdot 20 \\ 0 \cdot 2 \cdot 25 \end{array}$	1. 0655 1. 0522 1. 0431 1. 0286 1. 0167	$ \begin{array}{c} 1 \\ < 1 \\ < 1 \\ < 1 \\ 1 \end{array} $
$\begin{array}{c} 0 \cdot 1 \cdot 29 \\ 3 \cdot 0 \cdot 18 \\ 1 \cdot 3 \cdot 10 \\ 2 \cdot 2 \cdot 15 \end{array}$	1. 0096 0. 9952 . 9704 . 9434	<1 1 1 <1

Arsenic Trioxide, claudetite, As₂O₃ (monoclinic)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of claudetite was obtained from the National Museum, No. 1737 from the San Domingo mines, Portugal. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent each of aluminum, yttrium, and zinc; 0.01 to 0.1 percent each of barium, calcium, cobalt, chromium, iron, magnesium, titanium, and tungsten.

The sample was colorless. Due to the high indices of refraction a complete optical analysis was not obtained, but partial results seemed to

confirm the data given in Dana [4].

The d-values of the three strongest lines are: 3.245, 3.454, and 2.771 . Å

Structural data. Buerger [1] in 1942 determined that claudetite has the space group $C_{2h}^5-P2_1/n$ (No. 14) and $4(As_2O_3)$ per unit cell.

The density of claudetite calculated from the NBS lattice constants is 4.186 g/cm³ at 25 °C.

References

[1] M. J. Buerger, The unit cell and space group of claude-

tite, As₂O₃, Am. Mineralogist 27, 216 (1942).
[2] K. A. Becker, K. Plieth, and I. N. Stranski, Strukturuntersuchung der monoklinen Arsenikmodifikation Claudetit, Z. anorg. allgem. Chem. 266, 293-301

[3] A. J. Frueh, The crystal structure of claudetite (monoclinic As₂O₃) Am. Mineralogist 36, 833-850 (1951).
[4] Palache, Berman, and Frondel, Dana's System of Mineralogy, 7th Ed. 1, 546 (1951).

hkl	Internal Standard Silver, $a=4.0861$ Å Cu, 1.5405 Å at 25 °C	
	d	I
020 110 011 120 021	$ \mathring{A} $ 6. 496 4. 924 4. 277 4. 118 3. 717	9 26 4 9 <3
$ \begin{array}{c} $	3. 586 3. 454 3. 356 3. 328 3. 245	14 50 20 18 100
$\begin{array}{c} 031 \\ 140 \\ 131,041 \\ 210 \\ \overline{2}11,150 \end{array}$	3. 129 2. 771 2. 640 2. 608 2, 333	5 34 15 14 7
002 051 012 221, T51 151	2. 264 2. 253 2. 231 2. 104 2. 048	$\begin{array}{c} 24 \\ 5 \\ 11 \\ 6 \\ 5 \end{array}$
$ \begin{array}{r} 112, 160 \\ 042 \\ \overline{1}42 \\ \overline{2}51, 170 \\ 071 \end{array} $	2. 005 1. 857 1. 788 1. 7514 1. 7163	<3 11 4 5 8
$egin{array}{c} \overline{1}71 \\ 080 \\ 152, \overline{2}61 \\ \underline{1}80 \\ \overline{1}13 \\ \end{array}$	1. 6477 1. 6228 1. 5988 1. 5522 1. 4716	$ \begin{array}{c} 4 \\ 3 \\ 3 \\ 7 \\ 4 \end{array} $
123 332, 091 182 213 163	1. 3915 1. 3749 1. 2937 1. 2667 1. 2220	<3 4 3 <3 <3
372, 0.11.1	1. 1423	<3

Lattice constants

		a	b	c	β
1951 1951 1963	Becker, Plieth and Stranski [2] Frueh [3] National Bureau of Standards at 25 °C			$ \stackrel{\mathring{A}}{4.53} 4.54 4.5405 \pm.0005 $	93°53′ 93°49′ 94°16. 1′ ±. 9′

Barium Bromide Monohydrate, BaBr₂·H₂O (orthorhombic)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of barium bromide monohydrate was prepared from barium bromide dihydrate obtained from City Chemical Co., New York, N.Y. The hydrate was heated overnight at 85 to 90 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of sodium and strontium; and 0.001 to 0.01 percent each of calcium, magnesium, silicon, and titanium

The color of the sample was white. The refractive index could not be determined because the sample was too fine.

The d-values of the three strongest lines are:

3.170, 2.512, and 2.999 Å.

Structural data. Vainstein and Pinsker [1] in 1950 determined that barium bromide monohydrate has the barium chloride monohydrate structure, the space group D_{2h}¹⁶-Pbnm (No. 62), and 4(BaBr₂·H₂O) per unit cell.

Lattice constants

		a	ь	c
1050	Vainstein and	Å	Å	Å
1950 1963	Pinsker [1] National Bureau	9. 41	11. 59	4. 59
	of Standards at 25 °C	9. 434 ±. 001	11. 650 ±. 001	4. 6062 ±. 0005

The density of barium bromide monohydrate calculated from the NBS lattice constants is 4.135 g/cm³ at 25 °C.

Reference

[1] B. K. Vainstein and Z. G. Pinsker, Electron diffraction study of BaBr₂· H₂O, Zhur. Fiz. Khim. **24**, 432 (1950).

hkl	Internal Standard, Tungsten, $a=3.1648$ Cu, 1.5405 Å at 25 °C	
	d	I
110 020 120 210 101	Å 7. 36 5. 83 4. 96 4. 38 4. 14	6 23 5 5 12
111 021 121 211 230	3. 91 3. 613 3. 377 3. 170 2. 999	13 8 2 100 48
040 131 140 301 231	2. 913 2. 836 2. 784 2. 596 2. 512	$ \begin{array}{r} 18 \\ 3 \\ 4 \\ 14 \\ 64 \end{array} $
041 400 002 420 022	2. 462 2. 359 2. 303 2. 189 2. 142	34 26 26 2 3
250, 122 212 510 232 042	2. 091 2. 038 1. 863 1. 827 1. 807	$ \begin{array}{c} $
061 441 402 270 611	1. 788 1. 703 1. 648 1. 569 1. 476	11 12 11 9 3
080 213, 512 442 461 081	1. 456 1. 448 1. 434 1. 425 1. 3882	3 6 2 5 4
303 532 043 323, 362 272	1. 3796 1. 3658 1. 3582 1. 3426 1. 2964	$egin{pmatrix} <2 & & & 6 & \\ <2 & <2 & & 6 & \\ & & 6 & & \\ \hline \end{pmatrix}$
343 082 571, 063	1. 2470 1. 2308 1. 2041	<2 <2 3

Barium Stannate, BaSnO₃ (cubic)

Powder data cards

Card number	Index lines	Source
3-0675	2. 91 2. 68 2. 06	H. D. Megaw, Philips Lamps Ltd.

Additional published patterns. None.

NBS sample. The sample of barium stannate was prepared at NBS from stoichiometric amounts of barium carbonate and stannic oxide, pressed into a pellet and heated at 1400 °C for 1 hr. Spectrographic analysis showed the following major impurities: 0.1 percent calcium and 0.01 to 0.1 percent each of aluminum, magnesium, silicon, and strontium.

The sample was very light gray. The indices of refraction could not be determined because the sample was too fine.

The d-values of the three strongest lines are:

2.911, 1.6805, and 2.058 Å.

Structural data. Megaw [1] in 1946 determined that barium stannate has the perovskite structure, the space group O_h¹-Pm3m (No. 221), and 1 (BaSnO₃) per unit cell.

Lattice constants

1946 1957 1958 1963	Megaw [1]	Å 4. 1168 4. 114 4. 1157 4. 1163
------------------------------	-----------	--

The density of barium stannate calculated from the NBS lattice constant is 7.238 g/cm³ at 25 °C.

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C				
	d	а			
110 111 200 211 220 310 222 321 400 411 420 332 422 510	Å 2. 911 2. 376 2. 058 1. 6805 1. 4555 1. 3017 1. 1882 1. 1002 1. 0291 0. 9702 . 9204 . 8776 . 8402 . 8073	100 4 31 35 16 13 5 13 3 7 6 5 5 15	Å 4. 117 4. 117 4. 117 4. 1164 4. 1167 4. 1168 4. 1168 4. 1164 4. 1161 4. 1162 4. 1163 4. 1163 4. 1163 4. 1164		
	Average value of last five lines 4. 1163				

References

- [1] H. D. Megaw, Crystal structure of double oxides of the perovskite type, Proc. Phys. Soc. London 58, 133 (1946).
- [2] R. S. Roth, Classification of perovskite and other ABO₃-type compounds, J. Res. NBS **58**, 75–88 (1957).
- [3] G. Wagner and H. Binder, The binary systems BaO-SnO₂ and BaO-PbO₂. II. Crystal structure determinations, **Z**. anorg. allgem. Chem. **298**, 12–21 (1958).

Bismuth Orthophosphate, BiPO₄ (monoclinic)

Powder data cards

Card number	Index lines	Source
1-0812	3. 08 2. 87 4. 20	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published patterns. Zemann [2] 1950.

NBS sample. The sample of monoclinic bismuth orthophosphate was obtained from Bios Laboratories, Inc., New York, N.Y. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent each of calcium and

sodium and 0.01 to 0.1 percent each of silver, aluminum, copper, iron, magnesium, lead, and silicon.

The color of the sample was white. The indices of refraction could not be obtained because the sample was too fine.

The d-values of the three strongest lines are:

3.066, 2.862, and 4.156 Å.

Structural data. Zemann [2] in 1950 determined that monoclinic bismuth orthophosphate has the monazite structure, the space group C_{2h}^{5} – P_{21} /n (No. 14), with 4(BiPO₄) per unit cell. According to Mooney-Slater [3] 1962, three forms of bismuth phosphate exist: a hexagonal low phase formed from precipitation at room temperature, a high monoclinic phase formed about 700 °C and the monoclinic monazite phase formed above 350 °C.

Bismuth Orthophosphate, BiPO₄ (monoclinic)—Continued

Lattice constants

		a	ь	c	β
1950 1963	Zemann [2]National Bureau of Standards at 25 °C	Å 6. 75 6. 752	Å 6. 96 6. 933	Å 6. 42 6. 468	104° 103°42. 5′

hkl	Internal S Tungsten, a Cu, 1.5405	tandard, =3.1648 Å Å at 25 °C
	d	I
T01 110 011 T11 101	Å 5. 18 4. 761 4. 655 4. 156 4. 079	8 12 50 58 22
111 020 200 002 120	3. 514 3. 466 3. 282 3. 142 3. 066	23 8 57 13 100
$\begin{array}{c} 021 \\ 210 \\ \overline{2}11 \\ 012 \\ \overline{2}02 \end{array}$	3. 036 2. 963 2. 934 2. 862 2. 597	19 19 16 73 22
$\begin{array}{c} 211 \\ \underline{112} \\ \underline{212} \\ 220 \\ 022 \end{array}$	2. 484 2. 438 2. 433 2. 382 2. 328	3 18 16 4 11
130 031 $\overline{1}03$ $\overline{3}11$ $\overline{1}31$	2. 180 2. 170 2. 150 2. 128 2. 112	3 23 23 18 23
310 131 212 301 $\overline{2}13$	2. 085 2. 013 1. 959 1. 929 1. 916	7 5 24 9 8

1		
hkl	Internal S Tungsten, a Cu, 1.5405	Standard, = 3.1648 Å Å at 25 °C
	d	I
230 231 103 032 320	Å 1. 889 1. 882 1. 872 1. 862 1. 850	5 15 6 20 13
$egin{array}{c} 023 \\ \overline{3}22 \\ 231 \\ 040 \\ 132 \\ \end{array}$	1. 794 1. 755 1. 745 1. 733 1. 729	14 21 13 14 28
$ \begin{array}{r} \hline 313 \\ 140 \\ 400 \\ \hline 402 \\ \hline 313 \end{array} $	1. 679 1. 676 1. 640 1. 620 1. 608	5 7 6 8 3
$\begin{array}{c} 410 \\ 330 \\ 312 \\ \hline 412 \\ 240 \end{array}$	1. 596 1. 589 1. 581 1. 576 1. 533	9 4 7 6 15
$ \begin{array}{c} \overline{2}14 \\ 042 \\ 411 \\ 133, 223 \\ \overline{2}42 \end{array} $	1. 530 1. 518 1. 467 1. 455 1. 442	15 3 2 6 4
$ \begin{array}{r} \hline 314 \\ 421 \\ \hline 431 \\ 303 \\ \hline 423 \\ \hline 501 \end{array} $	1. 418 1. 379 1. 363 1. 360 1. 355 1. 350	4 7 7 3 2 5

The density of monoclinic bismuth orthophosphate calculated from NBS lattice constants is 6.863 g/cm³ at 25 °C.

References

[1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-512 (1938).

Chem. Anal. Ed. 10, 457-512 (1938).

[2] J. Zemann, Beitrage zue Kristallchemie des Wismuts, Tschermaks mineralog. petrog. Mitt. 1, 361-377 (1950).

[3] R. C. L. Mooney-Slater, Polymorphic forms of bismuth phosphate, Z. Krist. 117, 371-385 (1962).

Bismuth Orthophosphate, BiPO₄ (trigonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of trigonal bismuth orthophosphate was precipitated at NBS from a mixture of bismuth nitrate and phosphoric acid. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent sodium and 0.001 to 0.01 percent silicon.

The sample was colorless. The indices of refraction could not be determined because the sample

was too fine.

The d-values of the three strongest lines are:

4.421, 3.025, and 2.854 Å.

Structural data. Mooney-Slater [1] in 1962 determined the structure of the trigonal bismuth orthophosphate; it has the space group D₃⁴-P3₁21 (No. 152) and 3 (BiPO₄) per unit cell. This form is transformed to a monoclinic monazite structure at 350 °C and to another higher temperature monoclinic form above 700 °C.

Lattice constants

		a	С
1962 1963	Mooney-Slater [1] National Bureau of	Å 6. 966	Å 6. 460
	Standards at 25 °C_	6. 9820 ± 0. 0004	6.4764 ± 0.0007

The density of trigonal bismuth orthophosphate calculated from NBS lattice constants is 5.538 g/cm³ at 25 °C.

Reference

[1] R.C.L. Mooney-Slater, Polymorphic forms of bismuth phosphate, Z. Krist. 117, 371-385 (1962).

hkl	Internal S Tungsten, a Cu, 1.5405	
	d	I
100 101 110 111 200	Å 6. 06 4. 421 3. 494 3. 073 3. 025	65 100 43 44 94
102 112 210 202 211	2. 854 2. 375 2. 286 2. 211 2. 156	82 32 12 5 61
103 300 301 212 113	2. 032 2. 016 1. 925 1. 867 1. 837	$\begin{array}{c} 6 \\ 4 \\ 22 \\ 51 \\ 6 \end{array}$
203 220 302 310 311	1. 7571 1. 7452 1. 7115 1. 6774 1. 6239	$ \begin{array}{r} 24 \\ 16 \\ 20 \\ 12 \\ 11 \end{array} $
213 104 222 400 312	1. 5693 1. 5644 1. 5368 1. 5118 1. 4892	6 11 5 5 12
114 402 321 214 322	1. 4687 1. 3698 1. 3563 1. 3206 1. 2750	$10 \\ 3 \\ 14 \\ 15 \\ 10$
105 304 403 412 501	1. 2667 1. 2624 1. 2384 1. 2217 1. 1885	5 7 2 5 5
330 331 420 502 215	1. 1639 1. 1450 1. 1425 1. 1328 1. 1267	8 3 4 5 7
413, 421 510 422 511	1. 1255 1. 0860 1. 0774 1. 0709	5 4 3 2

Bismuth Orthovanadate (low form), BiVO₄ (tetragonal)

Powder data cards. None. (Card No. 12–293) gives data for a mineral pucherite, BiVO₄, which is orthorhombic and does not compare with either of the synthetic forms of BiVO₄.)

Additional published patterns. None.

NBS sample. The sample of low form bismuth orthovanadate was obtained from City Chemical Corp., New York, N.Y. Spectrographic analysis showed the following major impurities: 0.001 to 0.01 percent each of aluminum and silicon. The sample was also precipitated at NBS from solutions of Na₃VO₄ and Bi(NO₃)₃. If the precipitate is heated below 400 °C, the tetragonal form is unchanged. Between 400 and 500 °C the changed to the stable monoclinic form occurs.

The color of the sample was orange-yellow. The indices of refraction could not be determined

because the sample was too fine.

The d-values of the three strongest lines are:

3.649, 2.738, and 1.879Å.

Structural data. The structure of low form bismuth orthovanadate has not been reported in the literature. However, because of the similarity of patterns it is thought to be isostructural with zircon, having the space group D_{4h}¹⁹-I4₁/amd (No. 141) and 4(BiVO₄) per unit cell.

Lattice constants

		a	c
1963	National Bureau	Å	Å
	of Standards at 26 °C	7. 2999	6. 4573

The density of low form bismuth orthovanadate calculated from NBS lattice constants is 6.252 g/cm³ at 26 °C.

hkl	Internal S Tungsten, c Cu, 1.5405	a 3.1648 A
	d	I
101 200 211 112 220	Å 4. 839 3. 649 2. 912 2. 738 2. 582	47 100 22 61 21
202	2. 419	3
301	2. 278	18
103	2. 065	11
321	1. 932	14
312	1. 879	48
400	1. 825	15
213	1. 797	7
411	1. 708	5
420	1. 632	11
004	1. 614	7
332	1. 5183	10
204	1. 4765	10
501	1. 4240	6
224	1. 3687	11
521	1. 3261	3
512	1. 3087	12
600	1. 2169	6
404	1. 2092	9
215	1. 2008	5
611	1. 1799	2
532	1. 1673	6
620	1. 1543	7
424	1. 1478	9

Bismuth Orthovanadate (high form), BiVO₄ (monoclinic)

Powder data cards. None. (Card No. 12–293) gives data for a mineral pucherite, BiVO₄, which is orthorhombic and does not correspond to either form of BiVO₄ which we prepared.)

Additional published patterns. None. NBS sample. The sample of high form bismuth orthovanadate was prepared by R. S. Roth at NBS by heating stoichiometric mixtures of bismuth oxide and vanadium oxide at 895 °C for 16 hr. Spectrographic analysis showed the following major impurities: 0.001 to 0.01 percent each of aluminum and silicon. The monoclinic form was also prepared from the low form which was made by precipitation from solutions of Na₃VO₄ and Bi(NO₃)₃. The low form sample is tetragonal up

to approximately 400 °C. The nonreversible change to the monoclinic form takes place between 400 and 500 °C.

The color of the sample was orange-yellow. The indices of refraction could not be determined because the sample was too fine.

The d-values of the three strongest lines are: 3.095, 3.082, and 3.120 Å.

Structural data. Roth and Waring [1] in 1963 reported that high form BiVO₄ is thought to be isostructural with fergusonite because of the similarity of patterns. Ferguson [2] in 1955 reported that the fergusonite structure is monoclinic. The probable space group is C_{2h}-I2/a (No. 15) with 4(BiVO₄) per unit cell.

Bismuth Orthovanadate (high form), BiVO₄ (monoclinic)—Continued

Lattice constants

		а	ь	c	β
1963	National Bureau of Standards at 26 °C	<i>Å</i> 5. 195	Å 11. 701	Å 5. 092	90. 38°

hkl	Internal S Silver, a= Cu, 1.5405	4.0861 Å
	d	I
	Å	
020 110 011 130 031, 121	5. 847 4. 749 4. 670 3. 120 3. 095	2 23 27 32 100
$egin{array}{c} ar{1}21 \\ 040 \\ 200 \\ 002 \\ 220 \\ \end{array}$	3. 082 2. 924 2. 598 2. 546 2. 374	96 26 12 14 1
$\begin{array}{c c} 141 \\ \overline{141}, 211 \\ \overline{2}11 \\ 112 \\ \overline{1}12 \end{array}$	2. 282 2. 277 2. 264 2. 250 2. 239	6 6 11 9 7
150 051 231 231 132	2. 133 2. 127 1. 995 1. 988 1. 976	7 11 5 3 5
$egin{array}{c} ar{1}32 \\ 060 \\ 240 \\ 042 \\ 202 \\ \end{array}$	1. 970 1. 949 1. 943 1. 920 1. 824	7 4 15 16 6
$ \begin{array}{r} $	1. 812 1. 726 1. 719 1. 717 1. 713	8 2 18 17 3
$\begin{array}{c} 013 \\ 251 \\ \overline{2}51 \\ \underline{1}52 \\ \overline{1}52 \end{array}$	1. 680 1. 648 1. 644 1. 639 1. 633	3 2 3 2 2
$ \begin{array}{r} 170 \\ 071 \\ 33\underline{0}, 321 \\ 321 \\ 123 \end{array} $	1. 591 1. 587 1. 582 1. 5757 1. 5580	4 5 10 9 8
033	1. 5562	4

The density of high form bismuth orthovanadate calculated from NBS lattice constants is 6.951 g/cm³ at 26 °C.

		
hkl	Internal Silver, a= Cu, 1.5405	4.0861 Å
	d	I
	Å	
$ \begin{array}{c c} \hline 123 \\ 062, 242 \\ \hline 242 \\ 080 \end{array} $	1. 5522 1. 5482 1. 5405 1. 4625	7 11 5 3
312 143, 213 213 053 181, 271	1. 4167 1. 4146 1. 4067 1. 3744 1. 3566	$egin{pmatrix} 2 \\ 2 \\ 1 \\ 1 \\ 2 \end{bmatrix}$
$egin{array}{c} \overline{1}72 \\ \overline{3}51 \\ 262 \\ 400 \\ 280 \\ \end{array}$	1. 3481 1. 3408 1. 3318 1. 2989 1. 2747	3 1 1 2 4
$004 \\ 082 \\ 091 \\ 361 \\ \overline{3}61$	1. 2725 1. 2683 1. 2598 1. 2566 1. 2536	4 4 2 3 4
$ \begin{array}{r} 163 \\ \overline{1}63 \\ \overline{3}52, 253 \\ 253 \\ 370 \end{array} $	1. 2447 1. 2417 1. 2175 1. 2117 1. 2028	3 3 2 1 1
$egin{array}{c} \overline{4}31 \\ 073, 323 \\ 440 \\ \overline{3}23 \\ 044 \\ \end{array}$	1. 1958 1. 1906 1. 1871 1. 1831 1. 1670	<1 2 3 4 1
402 204 282	1. 1600 1. 1461 1. 1411	<1 1 1

References

R. S. Roth and J. L. Waring, Synthesis and stability of bismutotantalite, stibiotantalite, and chemically similar ABO₄ compounds, Am. Mineralogist 48, No. 11, 12, 1348-1356 (1963).
 R. B Ferguson, The crystallography of synthetic YTaO₄ and fused fergusonite, Bull. Geol. Soc. Amer. 66, 1557 (1955)

66, 1557 (1955).

Bismuth Telluride (tellurobismuthite), Bi₂Te₃ (trigonal)

Powder data cards

Card number	Index lines	Source
8–21	3. 22 2. 37 2. 19	Thompson [1].
10–54	2. 03 3. 20 3. 25	Vasenin and Konovalov [2].

Additional published patterns. Harcourt [3] 1942.

NBS sample. The sample of bismuth telluride was obtained as a single crystal from Semitronics Inc., Winchester, Mass. Spectrographic analysis showed the following impurities: 0.0001 to 0.001 percent each of magnesium and silicon.

,	hkl (hex.)	Internal Standard, Tungsten, a=3.1648 Å Cu, 1.5405 Å at 25 °C	
		d	I
	003 006 101 104 015	Å 10. 16 5. 078 3. 767 3. 398 3. 222	3 7 3 <1 100
	018 $1 \cdot 0 \cdot 10$ $0 \cdot 1 \cdot 11$ 110 113	2. 689 2. 376 2. 238 2. 192 2. 142	2 26 4 24 1
	$0 \cdot 0 \cdot 15$ 116 $1 \cdot 0 \cdot 13$ $0 \cdot 1 \cdot 14$ 205	2. 031 2. 113 1. 995 1. 890 1. 812	5 4 2 <1 8
	$ \begin{array}{c} 1 \cdot 0 \cdot 16 \\ 0 \cdot 0 \cdot 18 \\ 0 \cdot 2 \cdot 10 \\ 2 \cdot 0 \cdot 11 \\ 1 \cdot 1 \cdot 15 \end{array} $	1. 702 1. 693 1. 611 1. 565 1. 4901	$ \begin{array}{c} 2 \\ 1 \\ 6 \\ \hline 7 \end{array} $
	$0 \cdot 2 \cdot 13$ $0 \cdot 0 \cdot 21$ $0 \cdot 1 \cdot 20$ 125 $0 \cdot 2 \cdot 16$	1. 4756 1. 4513 1. 4140 1. 3970 1. 3449	
	$1 \cdot 1 \cdot 18$ $2 \cdot 1 \cdot 10$ 300 $0 \cdot 1 \cdot 23$ $2 \cdot 1 \cdot 13$	1. 3404 1. 2986 1. 2660 1. 2514 1. 2242	$ \begin{array}{c} $
	$ \begin{array}{c} 1 \cdot 1 \cdot 21 \\ 2 \cdot 0 \cdot 20 \\ 1 \cdot 0 \cdot 25 \\ 2 \cdot 1 \cdot 16 \\ 0 \cdot 1 \cdot 26 \end{array} $	1. 2103 1. 1886 1. 1610 1. 1464 1. 1201	<1 <1 <1 <1 <1

The sample was a gray opaque powder.
The d-values of the three strongest lines are:

3.222, 2.376, and 2.192 Å.

Structural data. Lange [4] in 1939 determined that bismuth telluride has the tetradymite structure with the space group $D_{3d}^5-R\overline{3}m$ (No. 166) and $3(Bi_2Te_3)$ per unit hexagonal cell.

Lattice constants

		a	c
1940 1940 1951 1954 1963	Frondel [5]	Å 4. 39 4. 384 4. 35 4. 39 4. 3852	30. 7 30. 45 30. 3 30. 46 30. 483

The density of bismuth telluride calculated from the NBS lattice constants is 7.857 g/cm³ at 25 °C.

hkl (hex.)	Internal Standard, Tungsten, a=3.1648 Å Cu, 1.5405 A at 25 °C	
	d	I
$\begin{array}{c} 220 \\ 2 \cdot 0 \cdot 23 \\ 3 \cdot 0 \cdot 15 \\ 1 \cdot 0 \cdot 28 \\ 315 \end{array}$	Å 1. 0963 1. 0868 1. 0744 1. 0464 1. 0379	<1 <1 <1 <1 <1
$\begin{array}{c} 0 \cdot 2 \cdot 25 \\ 0 \cdot 0 \cdot 30 \\ 2 \cdot 0 \cdot 26 \\ 1 \cdot 3 \cdot 10 \\ 1 \cdot 2 \cdot 23 \end{array}$	1. 0261 1. 0163 . 9978 . 9956 . 9738	$ \begin{array}{c} $
$2 \cdot 2 \cdot 15$ $3 \cdot 0 \cdot 21$ $1 \cdot 0 \cdot 31$ $0 \cdot 2 \cdot 28$ 045	. 9649 . 9540 . 9518 . 9444 . 9382	<1 <1 <1 <1 <1
$\begin{array}{c} 2 \cdot 1 \cdot 25 \\ 0 \cdot 1 \cdot 32, 0 \cdot 0 \cdot 33 \\ 1 \cdot 2 \cdot 26, 3 \cdot 1 \cdot 17 \\ 4 \cdot 0 \cdot 10 \\ 2 \cdot 2 \cdot 21 \end{array}$. 9294 . 9238 . 9080 . 9064 . 8750	$ \begin{cases} 1 \\ 1 \\ 1 \\ 1 \end{cases} $
$2 \cdot 1 \cdot 28$ $3 \cdot 1 \cdot 20$ 235 $1 \cdot 1 \cdot 33$ $0 \cdot 1 \cdot 35$. 8673 . 8666 . 8626 . 8512 . 8488	$ \begin{array}{c} 2\\ \leq 1\\ \leq 1\\ \leq 1\\ \leq 1 \end{array} $
$\begin{array}{c} 3 \cdot 2 \cdot 10 \\ 410 \end{array}$. 8377 . 8286	≤ 1

Bismuth Telluride (tellurobismuthite), Bi₂Te₃ (trigonal)—Continued

References

[1] R. M. Thompson, The telluride minerals and their occurrence in Canada, Am. Mineralogist 34, 342-382 (1949).

[2] F. I. Vasenin and P. F. Konovalov, Ionization x-ray structure investigation of bismuth telluride, J. Tech.

Phys. 26, part 7, 1376 (1956).
[3] G. A. Harcourt, Tables for the identification of ore minerals by x-ray powder diffraction, Am. Mineralogist 27, 100 (1942).

[4] P. W. Lange, Ein vergleich zwischen Bi₂Te₃ und

Bi₂Te₂S, Naturwissenschaften 27, 133 (1939).

[5] C. Frondel, Redefinition of tellurobismuthite and vandiestite, Am. J. Sci. 238, 880-888 (1940).
[6] M. A. Peacock and L. G. Berry, Röntgenographic observations on ore minerals, Univ. Toronto Studies Geol. Ser. 44-48, 67 (1940-1943).
[7] E. Dönges, Über Chalkogenohalogenide dreiwertigen Antimons und Wismuts III. Über Tellurohalogenide des dreiwertigen Antimons und Wismuts und über Antimon und Wismut III-Tellurid und Wismut III-Selenid. Z. anorg. allgem. Chem. 265, 56 (1951).

III-Selenid, Z. anorg. allgem. Chem. 265, 56 (1951).
[8] S. A. Semiletov, An electron diffraction study of films of Bi-Se and Bi-Te prepared by evaporation, Trudy Inst. Krist. Akad. Nauk SSSR 10, 76-83 (1954).

Bismuth Trioxide (bismite), alpha Bi₂O₃ (pseudo-orthorhombic)

Powder data cards.

Card numbers	Index lines	Source
6-0294	3. 26 1. 96 1. 75	Sillén [1] 1941.
6-0307	3. 23 2. 68 1. 67	Frondel [2] 1943.

NBS sample. The sample of bismuth trioxide was obtained from Johnson, Matthey, and Co., Ltd. Their spectrographic analysis showed the following major impurities: less than 0.001 percent each of silicon aluminum, lead, silver, and sodium.

The color of the sample was light yellow. refractive indices were too high to be determined by the usual liquid-grain immersion method.

The d-values of the three strongest lines are:

3.253, 2.693, and 2.708 Å.

Structural data. Sillén [1] in 1941 determined that alpha bismuth oxide is monoclinic or pseudoorthorhombic having the monoclinic space group C_{2h}-P₂₁/c (No. 14), with 4(Bi₂O₃) per unit monoclinic cell, or 8(Bi₂O₃) per unit pseudo-orthorhombic cell. According to Sillén monoclinic indices hkl are transformed into the pseudo-orthorhombic indices h'k'l' by the following relations

$$h' = h, k' = k,$$
 (±) $l' = 2l - h$

The lattice constants reported by Sillén have been converted from kX to angstrom units for comparison with the NBS values.

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C	
	d	I
120 111 200 031 220	Å 5. 276 4. 498 4. 084 3. 622 3. 517	2 4 4 8 2
040 131 211 140 102	3. 456 3. 310 3. 253 3. 184 2. 753	19 33 100 25 6
231 022 240 122 320	2. 708 2. 693 2. 638 2. 559 2. 532	38 39 6 15 9
051 311 151 222 331	2. 499 2. 429 2. 390 2. 244 2. 176	7 6 14 6 6
142 340 251 400 260	2. 154 2. 138 2. 132 2. 041 2. 0064	5 2 8 2 5
302 242, 420 013 322 411	1, 9922 1, 9584 1, 9317 1, 9136 1, 9098	$\begin{array}{c} 4 \\ 26 \\ < 1 \\ 2 \\ 4 \end{array}$
113 071 351 171 062	1. 8787 1. 8720 1. 8409 1. 8237 1. 8087	9 17 6 7 1
033 431 162 360 133	1. 7967 1. 7790 1. 7660 1. 7590 1. 7549	

Bismuth Trioxide (bismite), alpha Bi₂O₃ (pseudo-orthorhombic)—Continued

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C		
	d	I	
213 342 180 402 262	Å 1. 7452 1. 7265 1. 6914 1. 6743 1. 6551	16 12 1 13 10	
233 422 053 280 451	1. 6431 1. 6273 1. 5935 1. 5920 1. 5815	10 2 8 10 7	
313 153, 511 442 333 531	1. 5754 1. 5632 1. 5065 1. 4994 1. 4888	3 6 6 5 5	
$091 \\ 004 \\ 104 \\ 124 \\ 282$	1. 4854 1. 4625 1. 4391 1. 4093 1. 3983	6 5 1 3 6	
073 471 551 $1 \cdot 10 \cdot 0$ 433 044	1. 3882 1. 3792 1. 3672 1. 3637 1. 3485 1. 3462	1 3 4 3 3 3	

Y		
Lattice	con	stants

		а	b	c
1941 1963	Sillén [1] National Bureau	Å 8. 16	Å 13. 81	Å 5. 84
	of Standards at 25 °C	8. 166	13. 827	5. 850

The density of alpha bismuth trioxide calculated from NBS lattice constants is 9.371 g/cm³ at 25 °C.

References

- L. G. Sillén, On the crystal structure of monoclinic α-Bi₂O₃, Z. Krist. 103, 274-290 (1941).
 C. Frondel, Mineralogy of the oxides and carbonates of bismuth, Am. Mineralogist 28, Nos. 9 and 10. 521-535 (1943).

Cadmium Perchlorate Hexahydrate, Cd(ClO₄)₂·6H₂O (trigonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of cadmium perchlorate hexahydrate was obtained from the City Chemical Corp., New York, N.Y. Spectrographic analysis showed the following major impurities: 0.0001 to 0.001 percent each of lead and silicon.

The sample was colorless and optically negative with indices of refraction $N_o=1.490$ and $N_e=$

1.479.

The d-values of the three strongest lines are:

3.995, 4.223, and 2.902Å.

Structural data. West [1] in 1935 reported that cadmium perchlorate hexahydrate is trigonal, the space group C_{3v}-P3ml (No. 156) with 1[Cd(ClO₄)₂·6H₂O] per unit cell. West reported that the structure is very similar to the hexagonal magnesium perchlorate structure. Moss, Russell, and Sharp [2] confirmed West's determinations. The value of "a" reported by West has been divided by 2 as he suggested. The unit cell values reported by West have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	c
1935 1963	West [1] National Bureau of	Å 7. 92	Å 5. 30
1905	Standards at 25 °C	7. 9939	5. 3304

The density of cadmium perchlorate hexahydrate calculated from the NBS lattice constants is 2.361 g/cm³ at 25 °C.

References

[1] C. D. West, The crystal structures of hydrated compounds. II. Structure type Mg(ClO₄)₂·6H₂O, Z. Krist. **A91**, 480–493 (1935).

[2] K. C. Moss, D. R. Russell, and D. W. A. Sharp, The lattice constants of some metal fluoroborate hexahydrates, Acta Cryst. 14, 330 (1961).

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C	
	d	I
100 001 101 110 200	Å 6. 921 5. 326 4. 223 3. 995 3. 463	25 17 75 100 4
111	3. 197	51
201	2. 902	66
002	2. 667	2
210	2. 617	1
102	2. 489	18
211	2. 350	25
300	2. 309	9
112	2. 217	7
301	2. 117	26
202	2. 1119	27
220	1. 9985	19
310	1. 9201	8
212	1. 8670	37
311	1. 8064	9
003	1. 7771	3
302	1. 7446	6
103	1. 7205	7
401	1. 6463	4
113	1. 6231	3
320	1. 5880	4
203	1. 5808	9
312	1. 5577	5
321	1. 5223	6
410	1. 5107	6
213	1. 4700	5
411	1. 4539	11
402	1. 4519	11
303	1. 4078	2
322	1. 3642	3
501	1. 3402	4
004, 330	1. 3325	4
420	1. 3082	2
313	1. 3042	5
421	1. 2705	4
114	1. 2641	4
204	1. 2438	3
403	1. 2400	3
502	1. 2287	2
511	1. 2107	5
214	1. 1872	2
323 422 600 413 512	1. 1841 1. 1743 1. 1537 1. 1510 1. 1270	3 3 3 3
224	1. 1088	3

Cadmium Sulfate, CdSO₄ (orthorhombic)

Powder data cards

Card number	Index lines	Source
3-0453	3. 30 2. 97 2. 35	Dow Chemical company.

Additional published patterns. None.

NBS sample. The sample of cadmium sulfate was prepared at NBS from cadmium carbonate treated with an excess of sulfuric acid and heated to dryness. Spectrographic analysis showed the major impurities to be 0.001 to 0.01 percent each of aluminum and silicon.

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C	
	d	I
001 110 101 020 111	Å 4. 701 3. 826 3. 329 3. 277 2. 961	17 41 100 79 68
021	2. 688	6
200	2. 358	35
002	2. 352	32
121	2. 336	37
012	2. 212	24
201	2. 1044	26
211	2. 0068	18
031	1. 9827	22
220	1. 9155	21
131	1. 8273	17
122	1. 7704	19
202	1. 6648	3
040	1. 6391	12
212	1. 6135	18
032	1. 6004	11
041	1. 5485	3
310	1. 5290	8
013	1. 5250	7
231	1. 5179	7
301	1. 4908	6
222	1. 4843	4
141	1. 4704	9
311	1. 4537	7
113	1. 4497	17
321	1. 3571	11
240	1. 3459	6
232	1. 3243	9
302, 203	1. 3059	4
142	1. 2934	8
051, 150	1. 2634	1
331	1. 2317	7
133	1. 2293	11
151	1. 2204	5

The sample was white. The indices of refraction could not be determined because the sample was too fine.

The d-values of the three strongest lines are: 3.329, 3.277, and 2.961 Å.

Structural data. Kokkoros and Rentzeperis [1] in 1961 determined cadmium sulfate is orthorhombic with the most probable space group D_{2h}^{13} Pmmn (No. 59) with 2(CdSO₄) per unit cell.

Lattice constants

1961 Kokkoros and Rentzeperis [1]. 1963 National Bureau of Standards at 25 °C.	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6. 562 6. 5590	c Å 4. 694 4. 7012
--	--	-------------------	-----------------------------

The density of cadium sulfate calculated from NBS lattice constants is 4.759 g/cm³ at 25 °C.

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C	
	d	I
322 223	$\stackrel{A}{A}$ 1. 2140 1. 2127	6 4
400	1. 1794	3
014	1. 1570	3
052	1. 1454	5
114	1. 1235	3
251	1. 1136	3
420, 303	1. 1100	3
024	1. 1062	5
341	1. 1032	4
313	1. 0943	6
060	1. 0933	5
421	1. 0798	2
124	1. 0777	2
204	1. 0519	4
412	1. 0407	7
161	1. 0387	6
252	1. 0305	3
342	1. 0221	2
134	1. 0113	3
224	1. 0016	3
260	0. 9918	3
333	. 9897	5
351, 153	. 9839	4
261	. 9702	3
440	. 9576	3
044	. 9552	4
432	. 9498	5

Reference

[1] P. A. Kokkoros and P. J. Rentzeperis, X-ray investigation of the anhydrous cadmium and mercuric sulphates, Acta Cryst. 14, 329-330 (1961).

Cadmium Telluride, CdTe (cubic)

Powder data cards

Card Number	Index Lines	Source
10–207	3. 74 2. 29 1. 95	Vaughan [1].

Additional published patterns. None.

NBS sample. The sample of cadmium telluride was obtained from Semi-Elements Inc., Saxonburg, Pa. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent silicon and 0.0001 to 0.001 percent each of barium, iron, and lead.

The sample was a black opaque powder.

The d-values of the three strongest lines are:

3.741, 2.290, and 1.954 A.

Structural data. Zachariasen [2] in 1926 determined that cadmium telluride has the zinc sulfide structure, the space group T_d²-F₄3m (No. 216), and 4(CdTe) per unit cell. The lattice constants of Zachariasen and Goldschmidt have been converted from kX to angstrom units for comparison with the NBS value.

Lattice constant

1926 Zachariasen [2]	Å 6. 477 6. 453 6. 481
----------------------	---------------------------------

The density of cadium telluride calculated from the NBS lattice constant is 5.856 g/cm³ at 25 °C.

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C		
	d	I	a
	Å		
111	3. 742	100	6. 481
220	2. 290	62	6. 479
311	1. 954	28	6.482
400	1. 619	5 9	6.476
331	1. 488	9	6. 484
422	1. 323	10	6. 482
511	1. 247	4	6. 481
440	1. 146	2	6. 480
531	1. 095	4	6. 479
620	1. 025	$\overline{4}$	6. 481
533	0. 9884		6. 481
444	. 9356	<1	6. 482
711	. 9076	2	6. 481
642	. 8661	3	6. 481
731	. 8438	3	6. 482
Average	value of last fiv	e lines	6. 481

References

[1] D. A. Vaughan, Battelle Memorial Institute, Colum-

[1] D. A. Vaughan, Battern bus, Ohio.
[2] W. H. Zaehariasen, Über die Kristallstruktur der Telluride von Beryllium, Zink, Cadmium, und Quecksilver, Z. physik Chem. 124, 277 (1926).
[3] V. M. Goldschmidt, Geochemische Verteilungsgesetze der Elements VII Die Gesetze der Krystallochemie, Striften Norske Videnskaps-Adad. Oslo, I: Mat.— Skrifter Norske Videnskaps-Adad. Oslo, I: Mat.—Naturv. Kl. No. 2 (1926).

Calcium Fluoride Phosphate (fluorapatite), Ca₅F(PO₄)₃ (hexagonal)

Powder data cards

Card number	Index lines	Source
3-0736	2. 81 2. 71 1. 84	McConnell [4] 1937.
12-261	2. 82 2. 72 2. 26	Carobbi and Mazzi [13] 1959.

Internal Standard, Tungsten, a=3.1648 Å Cu, 1.5405 Å at 25 °C hkldI \mathring{A} 100 8.12 101 5. 25 4 $<\frac{1}{8}$ 4.684 110 200 4.055 3.872 111 3.494 201 002 3.442 102 3. 167 13 3.067 210 17 211 2.800 100 112 2.772 54 2. 702 300 62 2. 624 2. 517 202 29 301 $\frac{6}{7}$ 212 2. 289 2, 250 22 310 2. 218 221 3 311 2. 140 6 2. 128 302 3 2.061 5 113 400 2.028 1 203 1.997 4 1.937 222 26 312 1. 884 14 320 1.862 4 1. 837 213 32 321 1. 797 15 1.771 13 410 1. 748 1. 722 402 13

1.684

1. 637

1.607

1. 580

1.562

1.534

1. 524

1.501

1. 497

1.468

1. 457

1.452

1.446

15

6 3

<1

5

4

4

4

8

4 7 6 Additional published patterns. Náray-Szabó

[2] 1930, Bale [6] 1940.

NBS sample. The sample of calcium fluoride phosphate was prepared at NBS by J. H. deGroot. A mixture of calcium fluoride and tricalcium orthophosphate was heated in a covered platinum dish to 1250 °C. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent each of magnesium and sodium; and 0.01 to 0.1 percent each of aluminum, barium, germanium, iron, silicon, and strontium.

17			
	hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C	
		d	I
	511 332	Å 1. 426 1. 422	5 4
	413 512 430 431 520	1. 4015 1. 3418 1. 3336 1. 3095 1. 2995	${{2}\atop{2}\atop{{1}\atop{3}\atop{2}}}$
	521 423 324 215 432	1. 2763 1. 2748 1. 2635 1. 2560 1. 2438	${ \begin{array}{c} 3 \\ 2 \\ < 1 \\ 3 \\ 2 \end{array} }$
	610 414 305 611 522	1. 2372 1. 2341 1. 2271 1. 2176 1. 2154	4 6 9 4 3
	504 315 440 334 433	1. 1805 1. 1743 1. 1709 1. 1563 1. 1532	<1 <1 1 2 3
	006 424 106 523 116	1. 1474 1. 1448 1. 1359 1. 1306 1. 1144	$ \begin{array}{c} 1 \\ 2 \\ < 1 \\ < 1 \\ 3 \end{array} $
	514 325 702, 532 710, 216 622	1. 1118 1. 1069 1. 0984 1. 0745 1. 0694	$ \begin{array}{c} 2 \\ 2 \\ 5 \\ < 1 \end{array} $
	524 703, 533 335 226 712	1. 0368 1. 0346 1. 0326 1. 0303 1. 0257	
	630, 316 800 631 614 406	1. 0221 1. 0140 1. 0110 1. 0047 0. 9986	2 1 1 1 <1

004

104

322

313

501

330

420

331

214

421 502

510

304323

Calcium Fluoride Phosphate (fluorapatite), Ca₅F(PO₄)₃ (hexagonal)—Continued

The sample was colorless and optically negative with the indices of refraction N_o=1.633 and N_e

The *d*-values of the three strongest lines are: 2.800, 2.702, and 2.772 Å.

Structural data. Hentschel [1] in 1923 determined that fluorapatite has the space group C_{6h}^2-P6/m (No. 176) and $2[Ca_5F(PO_4)_3]$ per unit cell.

The density of synthetic fluorapatite calculated from the NBS lattice constants is 3.201 g/cm³ at 25 °C.

Lattice constants

		a	c
		Å	Å
1923 1930 1931 1939 1940 1941	Hentschel [1]	9. 38 9. 38 9. 39	6. 83 6. 89 6. 89 6. 86 6. 88 6. 89
1946 1950 1952 1952 1952 1959	Beevers and MacIntyre [8]	9. 39 9. 350 9. 364 9. 395 9. 386 9. 424	6. 89 6. 870 6. 879 6. 882 6. 878 6. 888
1963	National Bureau of Standards synthetic sample described above. Sample from Durango, Mex.a	*9. 3684 9. 3923 9. 3712	*6. 8841 at 25 °C 6. 8821 at 25 °C 6. 8824 at 26 °C

*The error in these values was ±0.0003.

8.6 These samples were obtained from the National Museum; the number of the Mexican sample is 104021, of the Bolivian sample 103869. These cell con-

stants were derived from powder diffraction measurements made at the same time as those on the synthetic sample.

*This particular sample from Durango may not be typical because of its lanthanum content. Spectrographic analysis showed 1 to 4 percent of lanthanum and 0.1 to 1.0 percent each of cerium and sodium as major impurities. The error on these lattice constants was ±0.0005.

*Spectrographic analysis showed major impurities to be 0.1 to 1.0 percent of manganese and 0.01 to 0.1 percent each of iron and strontium.

References

- [1] H. Hentschel, Röntgenographische Untersuchungen am Apatit, Centr. Mineral. Geol. p. 609 (1923).
- [2] St. Náray-Szabó, The structure of apatite (CaF) Ca4 (PO₄)₃, Z. Krist. **75**, 387–398 (1930)
- [3] M. Mehmel, Beziehungen zwischen kristallstruktur und chemischer formel des apatits, Z. physik Chem.
- B15, 223-41 (1931).

 [4] D. McConnell, The substitution of SiO₄- and SO₄groups for PO₄- groups in the apatite structure;
 ellestadite, the end-member, Am. Mineralogist 22, 981 (1937)
- [5] J. Thewlis, G. E. Glock, and M. M. Murray, Chemical and x-Ray analysis of dental, mineral, and synthetic apatites, Trans. Faraday Soc. 35, 358-63 (1939).
- [6] W. F. Bale, A comparative roentgen-ray diffraction study of several natural apatites and the apatitelike constituent of bone and tooth substance, Am. J. Roentgenol. 43, 735–47 (1940).
- [7] R. Klement and P. Dihn, Isomorphe Apatitarten, Naturwissenschaften 29, 301 (1941).

- [8] C. A. Beevers and D. B. MacIntyre, The atomic structure of fluorapatite and its relation to that of tooth and bone material, Mineralog. Mag. 27, 254 (1946).
- [9] R. Wallaeys and G. Chaudron, Sur la preparation de certaines apatites mixtes, Compt. rend. 231, 355-357 (1950)
- [10] H. Brasseur, Note sur les constantes reticulaires et les indices de refraction des fluor-, chlor-, et hydroxylapatites, Proceedings of the International Symposium on the reactivity of solids, Gothenburg Part 1, 363-7 (1952).
- [11] D. McConnell, The Problem of the carbonate apatites IV, Structural substitutions involving CO₃ and OH,
- Bull. Soc. Frane. Mineral. et Crist. 75, 428 (1952).

 [12] Z. S. Altschuler, E. A. Cisney, and I. H. Barlow, X-Ray evidence of the nature of earbonate-apatite, Bull. Geol. Soc. Amer. **63**, 1230–31 (1952).
- [13] G. Carobbi and F. Mazzi, Sulla possibilita di una sostituzione parziale del calcio eon l'uranio nel reticolo dell'apatite, Atti. acead. naz. Lincei, Mem. Classe Sci. Fis. Mat. Nat. Ser. II^a [8] 5, 159-71 (1959).

Cerium Niobium Titanium Oxide (eschynite), CeNbTiO₆ (orthorhombic)

Powder data cards. None.

Additional published patterns. Komkov [1]

1959.

NBS sample. The sample of cerium niobium titanium oxide was prepared at NBS by R. S. Roth from stoichiometric mixtures of cerium oxide, niobium oxide, and titanium oxide. The sample was heated first at 1300 °C for 3 hrs. and then reheated at 1325 °C for three more hours. Spectrographic analysis showed the following major impurities: 0.001 to 0.01 percent each of aluminum, calcium, iron, magnesium, and silicon.

aluminum, calcium, iron, magnesium, and silicon.
The sample was a dark brown opaque powder.
The d-values of the three strongest lines are:

2.975, 3.024, and 3.106 Å.

Structural data. Komkov [1] in 1959 determined that cerium niobium titanium oxide has the space group D_{2h}¹⁶-Pmnb (No. 62) with 4(CeNbTiO₆) per unit cell. The lattice constants reported by Komkov have been converted from kX to angstrom units for comparison with NBS values.

Lattice constants

		a	ь	c
1959 1963	Komkov [1] National Bureau of Standards at 26°C.	Å 7. 56 7. 538	Å 10. 99 10. 958	Å 5. 43 5. 396

The density of cerium niobium titanium oxide calculated from NBS lattice constants is 5.617 g/cm³ at 26 °C.

Reference

[1] A. I. Komkov, Minerals of the series euxenite-polycrase and priorite-blomstrandite, Dokl. Akad. Nauk SSSR 126, 641-644 (1959).

hkl	Internal S Tungsten, a Cu, 1.5405	tandard, =3.1648 Å Å at 26 °C
	d	I
020 011 120 101 111	Å 5. 48 4. 841 4. 431 4. 390 4. 075	24 5 24 10 13
021	3. 847	4
200	3. 773	5
121	3. 427	4
220	3. 106	36
031	3. 024	80
211	2. 975	100
131	2. 808	22
002	2. 698	28
140	2. 574	10
112	2. 474	7
041 122 320 301 240	2. 443 2. 306 2. 283 2. 278 2. 215	7 9 8 9
032	2. 170	7
132	2. 085	8
222	2. 037	25
051	2. 031	19
151	1. 961	26
331 042 400 142 340	1. 933 1. 922 1. 885 1. 862 1. 852	11 5 22 9
060	1. 827	2
312	1. 813	2
420	1. 783	4
160, 013	1. 775	7
341, 103	1. 750	4
322	1. 744	6
242	1. 712	19
123	1. 667	6
260	1. 643	5
033	1. 614	8
213	1. 606	13
431	1. 600	22
351	1. 579	17
223	1. 556	7
440	1. 553	10
$\begin{array}{c} 252 \\ 402 \\ 412 \\ 342 \\ 043,071 \end{array}$	1. 551 1. 545 1. 528 1. 526 1. 503	10 10 3 4 7
162	1. 483	4
360	1. 477	4
143, 171	1. 474	4

Cesium Chromate, Cs₂CrO₄ (orthorhombic)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of cesium chromate was obtained from the Fairmount Chemical Co. Inc., Newark, N.J. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent rubidium; 0.01 to 0.1 percent each of potassium and sodium; and 0.001 to 0.01 percent each of aluminum, barium, calcium, and silicon.

The color of the sample was yellow and it is optically positive. The refractive indices are $N_{\alpha}=1.750$, $N_{\beta}=1.753$, and $N_{\gamma}=1.762$.

The d-values of the three strongest lines are:

3.342, 3.207, and 3.364 Å.

Structural data. Miller [1] in 1938 determined that cesium chromate has the potassium sulfate structure, the space group D_{2h}-Pnam (No. 62) with 4(Cs₂CrO₄) per unit cell.

The lattice constants reported by Miller have been converted from kX to angstrom units for

comparison with NBS values.

Lattice constants

		a	ь	c
1938 1963	Miller [1] National Bureau	Å 8. 380	$ \mathring{A} $ 11. 157	Å 6. 239
	of Standards 25°C	8. 429 ± 0. 001	$\begin{array}{c} 11.190 \\ \pm 0.001 \end{array}$	6. 302 ± 0. 001

The density of cesium chromate calculated from the NBS lattice constants is 4.266 g/cm³ at 25 °C.

Reference

[1] J. J. Miller, The structure of Cs₂CrO₄, Z. Krist. 99A, 32-37 (1938).

	T	
hkl	Internal S Tungsten, a Cu, 1.5405	=3.1648 Å
	d	I
120 111 200 210	$ \mathring{A} $ 4. 66 4. 602 4. 213	8 9 8 20
121	3. 946 3. 749	69
201 130 220 211 031	3. 505 3. 411 3. 364 3. 342 3. 207	18 21 77 100 87
002 131 221 230 310	3. 150 2. 998 2. 969 2. 794 2. 725	$66 \\ 8 \\ 17 \\ 24 \\ 34$
$\begin{array}{c} 140 \\ 122 \\ 231 \\ 311 \\ 212 \end{array}$	2. 654 2. 611 2. 554 2. 501 2. 463	11 15 6 6 17
$\begin{array}{c} 141 \\ 321, 240 \\ 132 \\ 222 \\ 330 \end{array}$	2. 449 2. 331 2. 314 2. 301 2. 244	17 13 31 29 13
241 150 051, 400 232 312	2. 186 2. 163 2. 109 2. 090 2. 062	8 15 10 15 15
113 401 340 250 420	2. 004 1. 999 1. 982 1. 977 1. 971	10 9 7 10 14
411 123 341 242 060	1. 967 1. 9152 1. 8911 1. 8743 1. 8653	8 8 26 7 6
213 430 033 332 152	1. 8542 1. 8349 1. 8308 1. 8280 1. 7833	13 6 19 8 16
431 402 161 260 143	1. 7615 1. 7521 1. 7499 1. 7060 1. 6474	$\begin{array}{c} 4 \\ 11 \\ 6 \\ 4 \\ 7 \end{array}$
441	1. 6263	6

Cesium Fluoride, CsF (cubic)

Powder data cards

Card number	Index lines	Source
1-0872	3. 00 2. 12 3. 48	Davey [1] 1923.

Additional published patterns. None.

NBS sample. The sample of cesium fluoride was obtained from Semi-Elements Inc., Saxonburg, Pa. X-ray patterns were prepared from samples maintained in dry air because of the deliquescense. Spectrographic analysis showed the following impurities: 0.1 to 1.0 percent potassium; and 0.001 to 0.01 percent each of aluminum, calcium, copper, iron, lithium, magnesium, nickel, silicon, and sodium. The amount of rubidium impurity was not determined. The sample was colorless.

The d-values of the three strongest lines are:

3.003, 3.469, and 2.125 Å.

Structural data. Posnjak and Wyckoff [2] in 1922 determined that cesium fluoride has the sodium chloride structure, the space group Oh Fm3m (No. 225), and 4(CsF) per unit cell. The unit cell measurements reported by Davey, Posnjak, and Wyckoff, have been converted from kX to angstrom units for comparison with the NBS value.

Lattice constants

1922 1923 1963	Posnjak and Wyckoff [2] Davey [1] National Bureau of Standards at 25 °C.	Å 6. 04 6. 020 6. 014
----------------------	---	--------------------------------

The density of cesium fluoride calculated from the NBS lattice constant is 4.638 g/cm³ at 25 °C.

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C		
	d	I	a
111 200 220 311 222	$egin{array}{c} \mathring{A} \\ 3.\ 469 \\ 3.\ 003 \\ 2.\ 125 \\ 1.\ 8131 \\ 1.\ 7366 \\ \end{array}$	81 100 37 25 10	Å 6. 008 6. 007 6. 011 6. 013 6. 016
400 331 420 422	1. 5036 1. 3798 1. 3446 1. 2278	7 6 10 5	6. 014 6. 014 6. 013 6. 015
511 440 531 600 620	1. 1576 1. 0630 1. 0166 1. 0024 0. 9512	4 2 3 3 4	6. 015 6. 013 6. 014 6. 014 6. 016
533 622 711 642 731	. 9173 . 9067 . 8420 . 8036 . 7830	1 2 2 1 2	6. 015 6. 014 6. 013 6. 014 6. 014
Average v	Average value of last five lines		

References

 W. P. Davey, Precision measurements of crystals of the alkali halides, Phys. Rev. 21, 143-61 (1923).
 E. Posnjak and R. W. G. Wyckoff, The crystal structures of the alkali halides II, J. Wash. Acad. Sci. **12,** 248-51 (1922).

Cobalt Fluosilicate Hexahydrate, CoSiF₆·6H₂O (trigonal)

Powder Data cards. None.

Additional published patterns. None.

NBS sample. The sample of cobalt fluosilicate hexahydrate was obtained from the City Chemical Co., New York, N.Y. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of aluminum, copper, magnesium, nickel, and sodium; and 0.001 to 0.01 percent each of calcium, iron, and manganese.

The color of the sample was pink. The indices of refraction were too low to be measured by the

usual liquid grain immersion method.

The d-values of the three strongest lines are:

4.69, 4.18, and 2.595 Å.

Structural data. Hassel and Richter-Salvesen [1] in 1927 determined that cobalt fluosilicate hexahydrate has the nickel chlorostannate structure, the space group C_{3v}-R3m (No. 160), and 1[CoSiF₆·6H₂O] per unit rhombohedral cell, or 3[CoSiF₆·6H₂O] per unit hexagonal cell. The unit cell measurements of Hassel and Richter-Salvesen have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	c
1927	Hassel and Richter-	\mathring{A}	Å
1962	Salvesen [1] National Bureau of	9. 35	9. 69
	Standards at 25 °C	9. 370	9. 732

The density of cobalt fluosilicate hexahydrate calculated from the NBS lattice constants is 2.081 g/cm³ at 25 °C.

hkl (hex.)	Internal Standard, Tungsten, $a=3.1648$ Å Co, 1.7889 Å at 25 °C		
	d	I	
110 102 202 211 113	Å 4. 69 4. 18 3. 116 2. 927 2. 668	100 63 5 11 5	
122 104 311 024 303	2. 595 2. 331 2. 193 2. 086 2. 078	$\left. egin{array}{c} 29 \\ 2 \\ 3 \\ 6 \end{array} \right.$	
312 401 214 223 042	2. 042 1. 986 1. 907 1. 900 1. 872	$\left. \begin{array}{c} <2\\ 3\\ 12\\ 5 \end{array} \right.$	
321 410 232 134 330	1, 829 1, 771 1, 738 1, 652 1, 562	$egin{pmatrix} <2\\ 4\\ 3\\ 7\\ <2 \end{pmatrix}$	
413 502 324 422 152	1. 555 1. 540 1. 479 1. 462 1. 397	$egin{pmatrix} < 2 \ < 2 \ < 2 \ < 2 \ \end{pmatrix}$	
306 600 226 520 244	1. 3916 1. 3524 1. 3335 1. 2993 1. 2969	$egin{pmatrix} 2 \\ < 2 \\ < 2 \\ 5 \\ 4 \end{pmatrix}$	
342 018 416 440 532, 072	1. 2868 1. 2028 1. 1963 1. 1712 1. 1279	$ \begin{array}{c c} 2 \\ < 2 \\ < 2 \\ < 2 \end{array} $	

Reference

[1] O. Hassel and J. Richter-Salvesen, Über den Kristallbau der trigonal kristallisierenden heteropolaren Verbindungen von der Zusammensetzung MG₆·LR₆ und MG₅D·LR₆ und MG₄D₂LR₆, Z. physik. Chem. 128, 345-361 (1927).

Cobalt Perchlorate Hexahydrate, Co(ClO₄)₂·6H₂O (hexagonal)

Powder data cards. None.

Additional published patterns. West [1] 1935. NBS sample. The sample of cobalt perchlorate hexahydrate was obtained from the City Chemical Corp., New York, N.Y. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent of nickel, and 0.001 to 0.01 percent each of copper, magnesium, and silicon.

The color of the sample was pink. It is optically negative with the indices of refraction

 $N_e = 1.492$ and $N_o = 1.512$.

The d-values of the three strongest lines are: 3.900, 4.139, and 2.840 Å.

Structural data. West [1] in 1935 determined that cobalt perchlorate hexahydrate has the magnesium perchlorate hexahydrate structure, the space group D_{6h}-P6/mmm (No. 191), and 4[Co(ClO₄)₂·6H₂O] per unit cell. The lattice constants of West have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1935 West [1] 1963 National Bureau of Standards at 26 °C.	$ \begin{array}{c} $	$\begin{array}{c} c \\ \ddot{A} \\ 5. \ 21 \\ 5. \ 2372 \\ \pm. \ 0007 \end{array}$
---	--	---

The density of cobalt perchlorate hexahydrate calculated from the NBS lattice constants is 2.199 ± 0.001 g/cm³ at 26 °C.

hkl	Internal S Silver, $a=$ Co, 1.7889	4.0861 Å
	d	I
200 101 111 201 220	Å 6. 763 4. 881 4. 345 4. 139 3. 900	3 4 3 62 100
211 311 401 002 420	3. 661 3. 052 2. 840 2. 618 2. 556	${}^{2}_{<2}\atop 60}_{8}$
202 421 600 402 601	2. 440 2. 296 2. 253 } 2. 069	3 10 3 8
440 620 422 441 621	1. 952 1. 874 } 1. 828 1. 7655	9 2 10 6
203 640 641 820 802 821	1. 6907 1. 5502 1. 4869 1. 4753 } 1. 4201	2 3 2 4 2
443 660 224	} 1. 3011 1. 2413	4 2

Reference

[1] C. D. West, The crystal structures of hydrated compounds II. Structure type Mg(ClO₄)₂·6H₂O, Z. Krist. A **91**, 480 (1935).

Copper Sulfate (chalcocyanite), CuSO₄ (orthorhombic)

Powder data cards

Card number	Index lines	Source
12-779	2. 62 4. 20 3. 55	Hanawalt, Rinn, and Frevel [1] 1938.

Additional published pattern. Pistorius [2] 1960.

NBS sample. The sample of copper sulfate was obtained from the NBS laboratories in Boulder, Colo. The sample was ground and fumed off with sulfuric acid and placed immediately in a dry atmosphere. Special care was necessary to keep it anhydrous. The sample was mounted in a holder which maintained a dry atmosphere while the patterns were run. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent silicon, and 0.001 to 0.01 percent each of aluminum, iron, magnesium, and nickel.

The sample was colorless. The indices of refraction could not be obtained because the

sample was too fine.

The d-values of the three strongest lines are:

3.549, (2.616 and 2.611), and 4.187 Å.

Structural data. Kokkoros and Rentzeperis [3] in 1958 determined that copper sulfate has the space group D_{2h}-Pmnb (No. 62) and 4(CuSO₄) per unit cell. Rama Rao [4] in 1961 made refinements on the structure.

Lattice constants

1958 1960 1963	Kokkoros & Rentzeperis [3]. Pistorius [2] National Bureau of Standards	$ \begin{array}{c} a \\ \mathring{A} \\ 6.69 \\ 6.811 \\ 6.6982 \\ \pm 0.0006 \end{array} $	$\begin{array}{c} b \\ & \mathring{A} \\ 8.39 \\ 8.391 \\ 8.3956 \\ \pm .0006 \\ \end{array}$	$ \begin{array}{c} c\\ & \mathring{A}\\ 4.83\\ 4.791\\ 4.8291\\ \pm.0004 \end{array} $
1963				

References

J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by x-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-512 (1938).

C. W. F. T. Pistorius, Lattice constants and probable

space group of anhydrous cupric sulfate (artificial chalcocyanite), Am. Mineralogist 45, 744-746 (1960).

[3] P. A. Kokkoros and P. J. Rentzeperis, The crystal structure of the anhydrous sulfates of copper and zinc, Acta Cryst. 11, 361 (1958).

[4] B. Rama Rao, A note on the crystal structure of anhydrous copper sulfate, Acta Cryst. 14, 321 (1961).

The density of copper sulfate calculated from the NBS lattice constants is 3.903 g/cm³ at 26 °C.

hkl	Internal 8 Silver, $a =$ Cu, 1.5405	
	d	I
011 101 111 200 021	Å 4. 187 3. 921 3. 549 3. 346 3. 172	77 6 100 3 4
121 220 211 031 002	2. 862 2. 616 2. 611 2. 421 2. 416	$ \begin{cases} 2 \\ 95 \\ 50 \end{cases} $
012 221 022 301 140	2. 321 2. 301 2. 093 2. 027 2. 003	10 12 7 3 4
320, 311 231 222 400 042	1. 971 1. 963 1. 7749 1. 6749 1. 5843	9 15 28 12 11
013 103 420 151 341	1. 5806 1. 5650 1. 5553 1. 5436 1. 4578	10 2 8 3 <1
251 213 060 402 422 303	1. 4330 1. 4298 1. 3996 1. 3760 1. 3073 1. 3056	22 18 4 12 }
342 313 520, 511 062 004	1. 2919 1. 2902 1. 2763 1. 2107 1. 2075	} 3 4 3 2
014 162 442 413 214	1. 1948 1. 1918 1. 1508 1. 1496 1. 1258	$\left. egin{array}{cccc} 2 & & & \\ & 3 & & \\ & & 3 & \end{array} \right.$
224 620, 611 433 371 181, 631	1. 0964 1. 0790 1. 0721 1. 0323 1. 0138	4 5 4 <1 1
244 622 462 424 282	0. 9990 . 9850 . 9812 . 9536 . 9249	3 3 4 3 2

Dysprosium Arsenate, DyAsO₄ (tetragonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of dysprosium arsenate was prepared at NBS from a water solution of dysprosium trichloride and arsenic pentoxide. The sample was dried at 110 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent antimony and 0.001 to 0.01 percent each of calcium, magnesium, lead, and silicon.

The sample is colorless. The indices of refraction could not be determined because the

sample was too fine.

The d-values of the three strongest lines are:

3.537, 2.669, and 1.8246 Å.

Structural data. Durif and Forrat [1] in 1957 determined that dysprosium arsenate has the zircon structure with the space group D_{4h}¹⁹-I4₁/amd (No. 141) and 4[DyAsO₄] per unit cell.

Lattice constants

		a	c
1957 1963	Durif and Forrat [1] National Bureau of Standards at 25 °C.	$\begin{array}{c} \mathring{A} \\ 7.09 \\ 7.0733 \\ \pm 0.0003 \end{array}$	$\begin{array}{c} \mathring{A} \\ 6.315 \\ 6.3133 \\ \pm 0.0003 \end{array}$

The density of dysprosium arsenate calculated from the NBS lattice constants is 6.338 g/cm3 at 25 °C.

Reference

[1] A. Durif and F. Forrat, Sur quelques arséniates des terres rares à structure zircon, Compt. Rend. 245, 1636-38 (1957).

hkl	Internal Standard, Silver, $a=4.0861$ Å Co, 1.7889 Å at 25 °C	
	d	I
101 200 211 112 220	Å 4. 713 3. 537 2. 828 2. 669 2. 500	15 100 3 67 22
301 103 321 312 400	2. 209 2. 017 1. 873 1. 8246 1. 7681	8 8 5 47 14
213 411 420 303 332	1. 7522 1. 6556 1. 5812 1. 5702 1. 4740	$ \begin{array}{c} 3 \\ < 3 \\ 14 \\ 4 \\ 14 \end{array} $
204 501 224 512 440	1. 4413 1. 3802 1. 3345 1. 2701 1. 2504	$\begin{array}{c} 12 \\ <3 \\ 10 \\ <3 \end{array}$
600 404 532 424 631	1. 1790 1. 1773 1. 1323 1. 1172 1. 0400	6 7 6 11 3
116 415 444 552 316	1. 0297 1. 0171 0. 9803 . 9535 . 9521	5 3 7 9 10
604 624	. 9444 . 9126	9

Erbium Arsenate, ErAsO₄ (tetragonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of erbium arsenate was prepared at NBS from a water solution of arsenic pentoxide and erbium trichloride. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of nickel and antimony and 0.001 to 0.01 percent each of aluminum, calcium, magnesium, lead, and silicon.

The sample was very pale pink. The indices of refraction could not be determined because

the sample was too fine.

The d-values of the three strongest lines are:

3.510, 2.652, and 1.812 Å.

Structural data. Durif and Forrat [1] in 1957 determined that erbium arsenate has the zircon structure with the space group D_{4h}¹⁹-I4₁/amd (No. 141) and 4(ErAsO₄) per unit cell.

Lattice constants

		a	c
1957 1963	Durif and Forrat [1] National Bureau of Standards at 25 °C.	$egin{array}{c} \mathring{A} \\ 7. \ 04 \\ 7. \ 0203 \\ \pm . \ 0002 \end{array}$	$\overset{\red}{A}$ 6. 30 6. 2761 \pm . 0004

The density of erbium arsenate calculated from the NBS lattice constants is 6.574 g/cm³ at 25 °C.

Reference

[1] A. Durif and F. Forrat, Sur quelques arséniates des terres rares à structure zircon, Compt. Rend. 245, 1636-38 (1957).

	1	
hkl	Internal S Tungsten, a Cu, 1.5405	Standard, =3.1648 Å Å at 25 °C
	d	I
101 200 211 112 220	$ \mathring{A} $ 4. 679 3. 510 2. 805 2. 652 2. 481	12 100 4 68 20
202	2. 339	2
301	2. 193	8
103	2. 005	5
321	1. 859	7
312	1. 812	52
400	1. 755	14
213	1. 741	4
411	1. 643	2
420	1. 5698	15
332	1. 4638	14
204	1. 4328	9
501	1. 3702	1
224	1. 3264	8
512	1. 2610	10
440	1. 2411	3
600, 404 532 620, 424 116 613	1. 1701 1. 1240 1. 1098 1. 0234 1. 0109	$\begin{array}{c} 7 \\ 7 \\ 12 \\ 3 \\ < 1 \end{array}$
640, 444	0. 9734	6
712, 316	. 9465	11
604	. 9380	4
624	. 9062	5
732	. 8845	5
800	. 8777	<1
820	. 8516	<1
516	. 8329	4
660	. 8274	5
752	. 7898	10

Europium Arsenate, EuAsO₄ (tetragonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of europium arsenate was prepared at NBS from a water solution of arsenic pentoxide and europium trichloride. It was dried at 110 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of antimony and silicon; 0.001 to 0.01 percent each of aluminum, calcium, iron, magnesium, and titanium.

The sample was colorless. The indices of refraction could not be determined because the

sample was too fine.

The d-values of the three strongest lines are:

3.578, 2.704, and 1.8467 Å

Structural data. No reference to the structure of europium arsenate was found but it is apparently isostructural with yttrium arsenate with the space group D_{4h}¹⁹-I₄₁/amd (No. 141) and 4(EuAsO₄) per unit cell.

Lattice Constants

		a Å	c Å
1963	National Bureau of Standards at 25 °C.	$egin{array}{c} A \\ 7.\ 1541 \\ \pm .\ 0004 \\ \end{array}$	$ \begin{array}{c c} A \\ 6.3953 \\ \pm .0004 \end{array} $

The density of europium arsenate calculated from the NBS lattice constants is 5.902 g/cm³ at 25 °C.

hkl	Internal S Tungsten, a Co, 1.7889	=3.1648 Å
	d	I
$101 \\ 200 \\ 112 \\ 220$	Å 4. 77 3. 578 2. 704 2. 530	$\begin{array}{c} 2\\ 100\\ 63\\ 17 \end{array}$
202 301	2. 386 2. 236	5
$103 \\ 321 \\ 312 \\ 400$	2. 0430 1. 8953 1. 8467 1. 7886	5 3 5 45 12
420 332 204 224	1. 5997 1. 4914 1. 4595 1. 3511	11 12 8 8 8
512 440 600, 404 532	1. 2847 1. 2646 1. 1921 1. 1455	3 7 8
$424 \\ 116 \\ 444$	1. 1308 1. 0428 0. 9919	10 5 5
$ \begin{array}{r} 316 \\ 604 \\ 624 \end{array} $. 9643 . 9557 . 9233	11 3 6

Gallium Arsenide, GaAs (cubic)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of gallium arsenide was obtained from Semitronics Inc., Winchester, Mass. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent iron, 0.01 to 0.1 percent chromium, nickel, and lead; and 0.001 to 0.01 percent each of cobalt, copper, indium, manganese, molybdenum, and silicon.

The sample was a dark gray opaque powder. The d-values of the three strongest lines are:

3.262, 1.998, and 1.704 Å.

Structural data. Goldschmidt [1] in 1927 determined that gallium arsenide has the zinc sulfide structure, the space group T_d²-F43m (No. 216), and 4(GaAs) per unit cell.

Lattice constant

1963	National Bureau of Standards at	Å 5.652
1000	25 °C	5. 652

Internal Standard, Tungsten, a=3.1648 Å Cu, 1.5405 Å at 25 °C hkldI 3. 262 5. 648 100 111 2201.998 5.650 61 311 1.704 29 5.650 1. 413 400 7 5. 648 331 1. 297 11 5.652 422 1.154 17 5. 647 1. 088 511 5. 648 5 440 0.9993 3 5.652 531 . 9557 6 5. 653 620 . 8938 6 5.652 533 . 8621 4 5.652 444 . 8159 5. 652 . 7916 5. 652 711 Average value of last five lines_____ 5.652

Reference

The density of gallium arsenide calculated from the NBS lattice constant is 5.321 g/cm³ at 25 °C.

[1] V. M. Goldschmidt, Geochemische Verteilungsgesetze VIII, Skrifter Norske Vidensk. Akad. Oslo, Math. Nat. K1. 8, 390 (1926-27).

Holmium Arsenate, HoAsO₄ (tetragonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of holmium arsenate was prepared at NBS from a water solution of arsenic pentoxide and holmium trichloride. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent antimony and 0.001 to 0.01 percent each of aluminum, calcium, iron, lead, and silicon.

The color of the sample was very pale pinkish white. The indices of refraction could not be determined because the sample was too fine.

The d-values of the three strongest lines are:

3.528, 2.668, and 1.822 Å.

Structural data. The structure of holmium arsenate was not found in the literature; however, it is apparently isostructural with erbium arsenate having the space group D_{4h}^{19} -I4₁/amd (No. 141) and 4 (HoAsO₄) per unit cell.

Lattice constants

1963 National Bureau of Standards at 25 °C.	$ \begin{array}{ c c c c c } \hline & a \\ \hline & \mathring{A} \\ & 7.0548 \\ & \pm .0003 \end{array} $	$ \begin{array}{c c} c \\ \mathring{A} \\ 6.3159 \\ \pm .0005 \end{array} $
---	---	---

The density of holmium arsenate calculated from NBS lattice constants is 6.420 g/cm³ at 25 °C.

hkl	Internal Standard, Tungsten, a=3.1648 Å Cu 1.5405 Å at 25 °C	
	d	I
101 200 211 112 220	Å 4. 709 3. 528 2. 819 2. 668 2. 494	5 100 4 67 20
202	2. 352	6
301	2. 203	7
103	2. 017	5
321	1. 868	4
312	1. 822	50
400	1. 763	16
420	1. 5774	14
332	1. 4710	15
204	1. 4411	9
501	1. 3769	1
224	1. 3339	9
413	1. 3279	4
512	1. 2670	9
440	1. 2470	3
404, 600	1. 1763	5
532	1. 1299	6
424	1. 1159	10
116	1. 0301	3
206	1. 0086	1
640	0. 9781	4
552	. 9516	7
604	. 9428	2
624	. 9110	3
732	. 8890	4
800	. 8818	<1
820	. 8556	1
516	. 8378	2
644	. 8317	3
660	. 8314	2

Indium Arsenide, InAs (cubic)

Powder data cards

Card number	Index lines	Source
8–387	1. 24 1. 02 2. 10	Liu and Peretti [1] 1953.

Additional published patterns. A. Iandelli [2] 1941.

NBS sample. The sample of indium arsenide was obtained from Semitronics, Inc., Winchester Mass. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of silver, aluminum, bismuth, chromium, iron, gallium, and titanium; and 0.001 to 0.01 percent each of barium, calcium, cobalt, magnesium, nickel, antimony, and tin.

The sample was an opaque metallic powder. The d-values of the three strongest lines are:

3.498, 2.142, and 1.8263 Å.

Structural data. Iandelli [2] in 1941 determined that indium arsenide has the zinc sulfide structure, the space group T_d^2 –F43m (No. 216), and 4(InAs) per unit cell. The unit cell measurement reported by Iandelli has been converted from kX to angstrom units for comparison with the NBS value.

Lattice constants

1941 Iandelli [2]	Å
1953 Liu and Peretti [1]	6. 048
1963 National Bureau of Standards at	6. 058
25 °C	6. 058

The density of indium arsenide calculated from NBS lattice constant is 5.668 g/cm³ at 25 °C.

hkl	Cu,	Cu, 1.5405 Å at 25 °C			
	d	I	a		
	Å		Å		
111	3. 498	100	6. 059		
200	3. 030	8	6. 060		
220	2. 142	61	6. 059		
311	1. 8263	38	6. 057		
222	1. 7489	2	6. 058		
400	1. 5145	9	6. 058		
331	1. 3895	13	6. 057		
420	1. 3544	2	6. 057		
422	1. 2366	15	6. 058		
511	1. 1658	9	6. 058		
440	1. 0707	7	6. 057		
531	1. 0241	10	6. 058		
600	1. 0097	1	6. 058		
620	0. 9578	$\overset{-}{6}$	6. 058		
533	. 9239	3	6. 058		
444	. 8745	3	6. 059		
711	. 8483	6	6. 058		
642	. 8096	15	6. 058		
731	. 7887	8	6. 058		

References

[1] T. S. Liu and E. A. Peretti, The indium-arsenic system, Trans. Am. Soc. Metals 45, 677-85 (1953).

[2] A. Iandelli, Sulla struttura dei composti, InP, InAs, e InSb, Gazz. chim. ital. 71, 58-62 (1941).

Lanthanum Arsenate, LaAsO₄ (monoclinic)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of lanthanum arsenate was prepared at NBS from a water solution of arsenic pentoxide and lanthanum trichloride. It was dried at 110 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of aluminum, iron, and silicon, and 0.001 to 0.01 percent each of calcium, magnesium, lead, and antimony.

The sample was colorless. The indices of refraction could not be determined because the sample was too fine.

The d-values of the three strongest lines are:

3.185, 2.983, and 3.391 A.

Structural data. No reference to the structure of lanthanum arsenate was found; however, it is apparently isostructural with lanthanum phosphate with the space group C_{2h}⁵-P2₁/n (No. 14) and 4(LaAsO₄) per unit cell.

Lattice constants

		a	ь	c	β
1963	National Bureau of Standards at 25 °C.	$ \stackrel{\mathring{A}}{7.0078} $ $ \pm.0007 $	$\begin{array}{c c} \mathring{A} & \\ 7.\ 212 \\ \pm .\ 001 \end{array}$	$\overset{\mathring{A}}{6.7670} \ \pm .0007$	104°29. 3′ ±. 6′

The density of lanthanum arsenate calculated from the NBS lattice constants is 5.572 g/cm³ at 25 °C.

hkl	Internal S Silver, a = Cu, 1.5405	4.0861 Å	hkl	Internal S Silver, a = Cu, 1.5405	4.0861 Å
	d	I		d	I
101 110 011 111 101	Å 5. 45 4. 95 4. 85 4. 35 4. 215	4 12 10 8 <1	$ \begin{array}{r} \hline 322 \\ 231, \overline{2}23 \\ 040 \\ 132 \\ 140, 321 \end{array} $	Å 1. 832 1. 808 1. 803 1. 795 1. 743	20 6 5 22 11
111 020 200 002 120	3. 635 3. 606 3. 391 3. 278 3. 185	7 16 60 8 100	$\begin{array}{c} 400 \\ \overline{402} \\ 410 \\ 330, \overline{1}14 \\ 004 \end{array}$	1. 696 1. 689 1. 651 1. 647 1. 638	4 7 11 11 5
$\begin{array}{c} 210 \\ 012 \\ \hline 202 \\ \hline 212 \\ 112 \\ \end{array}$	3. 068 2. 983 2. 722 2. 546 2. 527	24 87 24 22 15	$\begin{array}{r} 312 \\ \overline{2}14 \\ \overline{3}32, 240 \\ \overline{1}42 \\ \overline{1}24 \end{array}$	1. 632 1. 604 1. 593 1. 581 1. 531	4 7 8 2 6
$\begin{array}{c} 220 \\ \overline{1}22 \\ \overline{3}01 \\ \underline{0}31 \\ \overline{1}03 \\ \end{array}$	2. 471 2. 430 2. 326 2. 257 2. 252	6 8 6 11 10	$ \begin{array}{r} 322 \\ 411 \\ \hline{4}13 \\ \hline{2}42 \\ \hline{3}14 \end{array} $	1. 519 1. 516 1. 504 1. 502 1. 487	2 1 2 2 3
$\begin{array}{c} 311 \\ 221 \\ 122, 310 \\ 013, 131 \\ \hline 212 \end{array}$	2. 213 2. 185 2. 159 2. 089 2. 023	7 6 3 4 31	$\begin{array}{r} \overline{3}41, \underline{421} \\ \overline{431}, \overline{423} \\ 340 \\ 124, 043 \\ \overline{1}34 \end{array}$	1. 425 1. 416 1. 410 1. 391 1. 383	2 4 3 9 8
$\begin{bmatrix} 301\\ \overline{2}31\\ 103, \overline{1}32\\ 320\\ 023 \end{bmatrix}$	1. 991 1. 959 1. 942 1. 916 1. 868	3 5 32 14 4	$ \begin{array}{r} 332, \overline{5}11 \\ 204, 412 \\ \overline{4}14 \\ 510 \\ 052 \end{array} $	1. 374 1. 348 1. 337 1. 333 1. 320	9 4 6 3 8

Lanthanum Niobium Titanium Oxide, LaNbTiO₆ (monoclinic)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of lanthanum niobium titanium oxide was prepared at NBS by R. S. Roth from stoichiometric mixtures of the oxides of lanthanum, niobium, and titanium. The sample was first heated at 1300 °C for 3 hr and then heated at 1350 °C for 3 hr. Spectrographic analysis of the original oxides showed no impurities greater than 0.05 percent.

The sample was colorless. The refractive indices could not be determined because the sample was too fine.

The d-values of the three strongest lines are:

3.444, 3.331, and 3.306 Å.

Structural data. P. M. de Wolff [1] in 1962 determined that lanthanum niobium titanium oxide has a C-centered monoclinic lattice.

Lattice constants

		a	ь	c	β
1962 1963	de Wolff [1] National Bureau of Standards at 25 °C.	Å 11. 20 11. 196	Å 8. 85 8. 851	Å 5. 27 5. 265	115°18′ 115°16′

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C		
	d	I	
	Å		
$110 \\ 200 \\ \overline{1}11 \\ 111 \\ 220$	6. 68 5. 063 4. 523 3. 444 3. 331	22 10 10 100 100	
$ \begin{array}{r} \hline 311 \\ 021 \\ \hline 221 \\ 310 \end{array} $	3. 306 3. 241 3. 183 3. 153	94 36 16 10	
$ \begin{array}{r} 130 \\ \hline 202 \\ \hline 131 \\ 400 \\ \hline 312 \\ \end{array} $	2. 833 2. 632 2. 573 2. 531 2. 421	31 30 20 6	
421 331 311 330 511 022	2. 355 2. 273 2. 249 2. 223 2. 170 2. 096	8 14 4 10 6 9	
$ \begin{array}{c} 112 \\ 422 \\ 041 \\ \hline 241 \\ \hline 132 \end{array} $	2. 096 2. 065 2. 033 2. 006 1. 993 1. 941	12 16 10 8 8	

hkl	Internal S Tungsten, a Cu 1.5405	=3.1648 Å
	d	I
$egin{array}{c} \hline 332 \\ 202 \\ 331 \\ \hline 531 \\ 241 \\ \hline 150 \\ \hline 441 \\ 222 \\ \hline 621 \\ \hline \end{array}$	1. 916 1. 868 1. 825 1. 783 1. 761 1. 744 1. 731 1. 721 1. 715	4 10 10 31 16 10 9 10 8
$egin{array}{c} ar{1}51 \\ & 530 \\ \hline 113 \\ 042, ar{2}23 \\ & 511 \\ 620 \\ \hline 711 \\ \hline 333 \\ \hline 152 \\ 531 \\ \hline \end{array}$	1. 678 1. 669 1. 651 1. 620 1. 603 1. 579 1. 563 1. 507 1. 459 1. 427	6 9 6 10 11 4 5 9 4 4

Reference

[1] P. M. de Wolff, private communication.

Lithium Phosphate, low form (!ithiophosphate), Li3PO4 (orthorhombic)

Powder data cards

Card number	Index lines	Source
12-230	3. 98 3. 80 2. 67	Fisher [1] 1958.

A high form is obtained from samples that have been heated above approximately 500 °C.

Additional published pattern. Matias and Bon-

dareva [2] 1957.

The sample of lithium phosphate NBS sample. was obtained from the City Chemical Co., New York, N.Y. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent calcium; 0.01 to 0.1 percent each of aluminum, sodium, and strontium; and 0.001 to 0.01 percent each of barium, iron, magnesium, and silicon.

The sample was colorless. The indices of refraction could not be determined because the

sample was too fine.

The d-values of the three strongest lines are:

3.973, 3.797, and 2.640 Å.

Structural data. Zemann [3] in 1960 studied a crystal of Li₃PO₄ that had been grown in molten LiCl and determined that it has the space group D_{2h}^{16} -Pmnb (No. 62) and 4(Li₃PO₄) per unit cell. We find that the lower form apparently has the same structure with only slight changes in the lattice constants, principally in the c-direction. The cell constants of Zambonini and Laves have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		а	b	c
		Å	Å	Å
1932	Zambonini and Laves [4].	6. 08	10. 28	4. 87
1963	National Bureau of Standards at 25 °C.	6. 1155 ±. 0004	10. 467 ±. 001	4. 8452 ±. 0005

References

[1] D. J. Fisher, Note on lithiophosphate, Am. Mineralogist

43, 761-2 (1958).
[2] V. V. Matias and A. M. Bondareva, Lithiophosphate, a new mineral, Doklady Akad. Nauk S.S.S.R. 112, 124-6 (1957); an English abstract exists in Am. Mineralogist 42, 585 (1957).

[3] J. Zemann, Die Kristallstrukturvon Lithiumphosphat, Li₃PO₄, Acta Cryst. 13, 863-7 (1960).
[4] F. Zambonini and F. Laves, Über die Kristallstruktur des Li₃PO₄ und seine Beziehung Zum Strukturtyp des Olivin, Z. Krist. 83, 26-28 (1932).

The density of lithium phosphate, low form, calculated from the NBS lattice constants is 2.480 g/cm³ at 25 °C.

hkl		Standard =4.0861 Å Å at 25 °C
	d	I
020 120 101 021 121 200	Å 5. 232 3. 973 3. 797 3. 554 3. 071 3. 059	$egin{array}{c} 34 \\ 100 \\ 98 \\ 56 \\ \end{array}$
220 040 002 221 041	2. 640 2. 616 2. 423 2. 318 2. 303	64 36 47 }
022	2. 199	<1
141	2. 155	4
122	2. 070	3
320, 202	1. 899	1
301	1. 879	2
241	1. 839	4
222	1. 785	14
321	1. 769	9
142	1. 7074	1
160	1. 6777	2
061	1. 6415	1
340	1. 6083	3
161	1. 5855	2
103	1. 5616	4
023, 312	1. 5431	3
400	1. 5287	11
260	1. 5152	16
123	1. 4959	1
420	1. 4675	1
421	1. 4043	2
223	1. 3776	14
143	1. 3409	2
440	1. 3203	2
080	1. 3078	<1
402	1. 2931	4
262	1. 2848	8
053, 361	1. 2788	4
303	1. 2656	2
422	1. 2550	1
243	1. 2533	1
280	1. 2027	<1
520	1. 1909	2
501	1. 1860	2
281	1. 1676	3
442	1. 1591	2
460 343 380	1. 1498 1. 1394 1. 1014	\leq_1^1

Lithium Phosphate, high form, Li₃PO₄ (orthorhombic)

Powder data cards. None. Powder data card No. 12-230 has a pattern by Fisher [1] which seems to be for the low form. The sample is changed to the high form when it has been heated above approximately 500 °C.

Additional published patterns. Tien and Hum-

mel [2], 1961.

NBS sample. The sample of lithium phosphate was obtained from the City Chemical Co, New York, N.Y. It was heated at 800 °C for 15 min.

Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent calcium; 0.01 to 0.1 percent each of aluminum, sodium, and strontium; and 0.001 to 0.01 percent each of barium, iron, magnesium, and silicon.

The sample was colorless and optically positive, with the indices of refraction $N_{\alpha}=1.550$, $N_{\beta}=$

1.556, and $N_{\gamma} = 1.560$.

The d-values of the three strongest lines are: 3.978, 3.834 and 2.640 Å.

hkl	Internal S Tungsten, a Cu 1.5405	=3.1648 Å	Internal Standard Tungsten, $a=3.1648$ Cu 1.5405 Å at 25		a = 3.1648 Å
	d	I		d	I
020 011 120 101 021, 111	Å 5. 24 4. 46 3. 978 3. 834 3. 588	29 7 100 93 63	171 162 143 431 233		
121 200 220 040 131	3. 093 3. 058 2. 640 2. 619 2. 583	18 17 67 37 27	440 080 402 262 180, 361	1. 3198 1. 3095 1. 2984 1. 2910 1. 2806	${<}^1_5\\ {<}^5_8\\ {5}$
311 002 140 221 041	2. 521 2. 462 2. 406 2. 327 2. 313	14 47 3 3 4	313 081 323 181 333	1. 2682 1. 2651 1. 2414 1. 2390 1. 2002	$\overset{4}{\overset{2}{\overset{2}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{1$
141 122 231 051 212	2. 163 2. 095 2. 084 1. 927 1. 885	2 6 5 3 <1	520, 253 501 163 281 034	1. 1905 1. 1875 1. 1731 1. 1688 1. 1608	3 2 2 3 1
311 241 151 222 042	1. 853 1. 844 1. 838 1. 800 1. 793	5 4 4 14 5	460 182, 214 531 380 234	1. 1499 1. 1354 1. 1231 1. 1015 1. 0850	$ \begin{array}{c} $
321 060 160 331 061	1. 772 1. 745 1. 679 1. 657 1. 646	6 <1 3 4 2	522 314 154 363 064, 382	1. 0719 1. 0481 1. 0456 1. 0314 1. 0056	<1 1 <1 1 1
251 340 103 023 341, 400	1. 6305 1. 6080 1. 5848 1. 5659 1. 5285	1 3 4 5 9	$\begin{bmatrix} 2 \cdot 10 \cdot 0 \\ 391 \\ 453 \\ 472, 503, 621 \\ 481 \end{bmatrix}$	0. 9910 . 9902 . 9867 . 9805 . 9749	<1 <1 <1 <1
260 420 133 213, 332, 071 421	1. 5158 1. 4673 1. 4429 1. 4322 1. 4067	17 1 7 5 <1	283, 552 533 602, 354	. 9705 . 9442 . 9414	<1 <1 <1

Lithium Phosphate, high form, Li₃PO₄ (orthorhombic)—Continued

Structural data. Zemann [3] in 1960 studied a crystal of Li₃PO₄ that had been grown in molten LiCl and determined that it has the space group D_{2h}-Pmnb (No. 62) and 4(Li₃PO₄) per unit cell. The cell constants of Zambonini and Laves have been converted from kX to angstrom units for comparison with the NBS values.

The density of lithium phosphate, high form, calculated from the NBS lattice constants is 2.439 g/cm³ at 25 °C.

Lattice constants

		а	ь	c
		Å	Å	Å
1932 1960 1963	Zambonini and Laves [4]. Zemann [3] National Bureau of Standards at 25° C.	6. 08 6. 12 6. 1147 ±. 0005	10. 28 10. 53 10. 475 ±. 001	4. 87 4. 93 4. 9228 ±. 0005

References

- [1] D. J. Fisher, Note on lithiophosphate, Am. Mineralo-
- gist 43, 761-2 (1958).
 [2] T. Y. Tien and F. A. Hummel, Studies in lithium oxide systems: X, lithium phosphate compounds, J. Am. Ceram. Soc. 44, 206-8 (1961).
- [3] J. Zemann, Die Kristallstruktur von Lithiumphosphat, Li₃PO₄, Acta Cryst. 13, 863-7 (1960).
 [4] F. Zambonini and F. Laves, Über die Kristallstruktur des Li₃PO₄ und seine Beziehung Zum Strukturtyp des Olivin, Z. Krist. 83, 26-28 (1932).

Magnesium Ammonium Phosphate Hexahydrate (struvite), MgNH₄PO₄·6H₂O (orthorhombic)

Powder data cards

Card number	Index lines	Source
5-0316	4. 28 2. 93 2. 69	Hanawalt, Rinn and Frevel [1] 1938.

Additional published patterns. None.

NBS sample. The sample of struvite was precipitated at NBS from a solution of magnesium sulfate by adding a solution of ammonium monohydrogen orthophosphate. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent sodium, and 0.001 to 0.01 percent each of calcium, iron, and silicon.

The sample was colorless and optically positive. The indices of refraction are $N_{\alpha}=1.493$, $N_{\beta}=$

1.496, and $N_{\gamma} = 1.501$.

The d-values of the three strongest lines are:

4.257, 5.601, and 2.919 Å.

Structural data. Bland and Basinski [2] in 1959 determined that struvite has the space group C_{2v}^7 -Pm2₁n (No. 31) and 2(MgNH₄PO₄·6H₂O) per unit cell.

Lattice constants

				-
		a	b	c
1944	Palache, Berman and Frondel [3].	\mathring{A} 6. 10	$\mathring{A}_{11, 20}$	Å 6. 97
1959	Bland and Basin- ski [2]	6. 13	11. 19	6. 92
1963	National Bureau of Standards at 25 °C	6. 945 ±. 001	11. 208 ±. 002	6. 1355 ±. 0008

The density calculated from the NBS lattice constants is 1.706 g/cm³ at 25 °C.

References

[1] J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by x-ray diffraction, Ind. Eng. Chem., Anal. Ed. 10, 457-512 (1938). [2] J. A. Bland and S. J. Basinski, Crystal symmetry of

struvite (guanite), Nature 183, 1385-7 (1959).
[3] C. Palache, H. Berman, and C. Frondel, Dana's System of Mineralogy, 7th Ed. 2, 715 (1944).

hkl	Interna Tungsten Cu, 1.540	al Standard, , a=3.1648 Å 05 Å at 25 °C
	d	I
001 110 020 011 101	Å 6. 14 5. 905 5. 601 5. 378 4. 600	7 41 58 27 6
111	4. 257	100
021	4. 139	40
121	3. 557	4
200	3. 475	11
130	3. 289	27
031	3. 192	2
002	3. 067	3
201	3. 022	14
012	2. 958	23
211	2. 919	54
040	2. 802	34
112	2. 722	15
022	2. 690	50
221	2. 660	43
041	2. 548	3
122	2. 511	7
141	2. 394	5
231	2. 352	12
202	2. 300	1
212	2. 253	4
240	2. 180	4
301	2. 167	3
150	2. 133	5
222, 311	2. 127	7
042	2. 069	6
241 003 151 142 103, 232	2. 054\ 2. 046\ 2. 014 1. 983 1. 960	11 10 5 14
113	1. 932	2
023	1. 921	3
331	1. 873	5
123	1. 851	3
312	1. 822	3
052	1. 810	8
251	1. 801	14
033	1. 794	10
203	1. 762	9
133, 400	1. 737	14
341	1. 714	5
223	1. 681	4
332	1. 657	4

Potassium Chlorate, KClO₃ (monoclinic)

Powder Data cards

Card number	Index lines	Source
1-0599	3. 45 2. 79 2. 86	Hanawalt, Rinn and Frevel [1] 1938.
12-571	3. 46 2. 88 2. 80	Institute of Physics, University College, Cardiff.

Additional published patterns. None.

NBS sample. The sample of potassium chlorate was obtained from the General Chemical Co., New York, N.Y., and recrystallized to sharpen the pattern. Spectrographic analysis showed the following impurities: 0.001 to 0.01 percent each of aluminum, barium, iron, rubidium, silicon, sodium, and strontium.

The color of the sample was white. It is optically negative with the indices of refraction $\hat{N}_{\alpha}=1.408$, $N_{\beta}=1.516$, and $N_{\gamma}=1.524$; 2V was very small.

The d-values of the three strongest lines are:

3.45, 3.34, and 2.868 Å.

Structural data. Zachariasen [2] and [3] in 1928 determined that potassium chlorate has the space group $C_{2h}^2 P_{21}/m$ (No. 11) and $2[KClO_3]$ per unit cell. The unit cell measurements of Ieviņš and Ozols and Zachariasen have been converted from kX to angstrom units for comparison with the NBS values.

The density of potassium chlorate calculated from the NBS lattice constants is 2.339 g/cm³ at 26 °C.

References

J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem. Anal. Ed. 10, 457-513 (1938).
 W. H. Zachariasen, The crystal structure of sesqui-oxides and compounds of the type ABO₃, Skrifter Norske Videnskaps-Akad. Oslo I: Mat.-Naturv. Kl.

Nr. 4, 82 (1928).
[3] W. H. Zachariasen, The crystal structure of potassium chlorate, Z. Krist. 71, 501 (1929).
[4] A. Ievinš and J. Ozols, Precision determination of

lattice constants of monoclinic crystals, Doklady Akad. Nauk SSSR 91, 527-30 (1953).

hkl	Internal S Tungsten, a Cu, 1.5405	standard, = 3.1648 Å Å at 26 °C
	d	I
001 101 011 110 002	Å 6. 69 4. 41 4. 29 3. 45 3. 34	3 10 5 100 60
$egin{array}{c} ar{1}02 \\ 101 \\ 012 \\ 020 \\ 111 \\ \end{array}$	3. 234 3. 204 2. 868 2. 794 2. 779	3 4 35 33 23
$\begin{array}{c} 021 \\ \underline{120} \\ \underline{201} \\ 102 \\ \underline{211}, \overline{1}13 \end{array}$	2. 579 2. 356 2. 327 2. 309 2. 149	4 3 18 2 6
$022 \\ 112 \\ \overline{1}22 \\ 013 \\ \overline{2}03$	2. 145 2. 135 2. 115 2. 070 1. 919	7 7 17 2 5
$\begin{array}{c} 201 \\ \overline{2}13 \\ 211 \\ \overline{2}21, \overline{1}23 \\ 122 \end{array}$	1. 902 1. 815 1. 800 1. 7888 1. 7800	5 2 1 2 1
104 103 023 130 113	1. 7730 1. 7615 1. 7421 1. 7149 1. 6800	<1 <1 1 2 1
032 $\overline{1}32$ 131 014 $\overline{2}23$	1. 6279 1. 6145 1. 6111 1. 6014 1. 5820	5 2 2 3 <1
$\begin{array}{c} 221 \\ \overline{2}14 \\ 302 \\ \overline{1}24 \\ 123 \end{array}$	1. 5722 1. 5539 1. 5428 1. 4973 1. 4897	<1 <1 <1 4 4
$ \begin{array}{r} \hline 311 \\ \hline 303 \\ \hline 033 \\ \hline 313 \\ \hline 310 \end{array} $	1. 4848 1. 4700 1. 4296 1. 4213 1. 4137	$\begin{pmatrix} 4 \\ 1 \\ 1 \\ 2 \\ < 1 \end{pmatrix}$
$040 \\ 203 \\ 005, \overline{2}33 \\ \overline{2}15 \\ 213$	1. 3978 1. 3517 1. 3371 1. 3254 1. 3136	$ \begin{array}{c c} & 2 \\ & 1 \\ & 1 \\ & < 1 \\ & < 1 \end{array} $
$\overline{3}$ 23 042	1. 3009 1. 2899	$< \frac{2}{1}$

Potossium Chlorate, KCIO₃ (monoclinic)—Continued

Lattice constants

		a	b	c	β
1929 1953 1963	Zachariasen [3] Ieviņš and Ozols [4] National Bureau of Standards at 26 °C	$ \begin{array}{c} \mathring{A} \\ 4.656 \\ 4.6569 \\ \hline 4.6553 \\ \pm .0002 \end{array} $	\mathring{A} 5. 596 5. 59089 5. 5905 \pm . 0006		109°38′ 109°38.9′ 109°41.1′ ±. 3′

Potassium Lithium Sulfate, KLiSO₄ (hexagonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of potassium lithium sulfate was prepared at NBS by dissolving stoichiometric amounts of solid potassium hydroxide and lithium hydroxide in a small amount of water. When the mixture was at room temperature a drop of 1 percent bromcresol-purple was added and the mixture neutralized with H₂SO₄. The solution was evaporated to dryness and the precipitate was then heated to about 750 °C to sharpen the pattern. Spectrographic analysis showed the following impurities: 0.01 to 0.1 percent each of calcium, indium, and sodium; and 0.001 to 0.01 percent each of aluminum, rubidium, and silicon.

The sample is colorless and optically negative. The indices of refraction are $N_o = 1.471$ and N_e

The *d*-values of the three strongest lines are:

3.960, 3.099, and 2.573 A.

Structural data. Nowacki [1] in 1942 determined that potassium lithium sulfate has the space group C₆-P6/3 (No. 173) and 2(KLiSO₄) per unit cell. The lattice constants of Nowacki have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

		a	с
1942 1963	Nowacki [1] National Bureau of	Å 5. 14	Å 8. 62
1000	Standards at 26 °C	5. 1457	8. 6298

The density of potassium lithium sulfate calculated from NBS lattice constants is 2.385 g/cm³ at at 26 °C.

	1		
hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 26 °C		
	d	I	
002 101 102 110 111	Å 4. 320 3. 960 3. 099 2. 573 2. 465	12 100 70 34 16	
103 200 112 201, 004 202	2. 418 2. 225 2. 211 2. 158 1. 981	5 8 20 19 12	
113 203 210 114, 211 105	1. 919 1. 762 1. 683 1. 653 1. 6096	4 2 3 11 5	
212 204 300 213 106	1. 5690 1. 5499 1. 4852 1. 4533 1. 3687	$11 \\ 4 \\ 11 \\ 2 \\ 2$	
205 214 220 116 222	1. 3647 1. 3276 1. 2864 1. 2550 1. 2329	3 3 5 5 2	
311, 304 206 215 107, 312 313	1. 2237 1. 2081 1. 2055 1. 1880 1. 1356	6 2 3 3 1	
401, 224 216 402 108 403 306	1. 1048 1. 0939 1. 0787 1. 0484 1. 0389 1. 0335	2 1 2 1 1	

Reference

[1] W. Nowacki, Beziehungen zwischen K[AlSiO₄] ('Γief-Kaliophilit), Ba[Al₂O₄], K[LiSO₄], Na[AlSiO₄] (Nephelin) und Si₂O₄ (β -Tridymit), Naturwissenschaften **30**, 471–472 (1942).

Potassium Perchromate, K₃CrO₈ (tetragonal)

Powder data cards. None.

Additional published patterns. Wilson [1] 1941.

NBS sample. The sample of potassium perchromate was obtained from City Chemical Corp.,
New York, N.Y. Spectrographic analysis did not show any impurities greater than the range 0.0001 to 0.001 percent.

The color of the sample was deep red. The indices of refraction are $N_o = 1.774$ and $N_e = 1.730$.

It is optically negative.

The d-values of the three strongest lines are:

2.979, 2.372, and 1.856 Å. Structural data. Wilson [1] in 1941 determined that potassium perchromate has the space group D_{2d}-I42m (No. 121) and 2(K₃CrO₈) per unit cell. Potassium perchromate is used as a structure type. The unit cell measurements reported by Wilson have been converted from kX to angstrom units for comparison with NBS values.

Lattice constants

		a	c
1941 1963	Wilson [1] National Bureau of Standards at 25 °C.	Å 6. 71 6. 711	Å 7. 62 7. 641

The density of potassium perchromate calculated from NBS lattice constants is 2.869 g/cm³ at 25 °C.

Reference

[1] I. A. Wilson, X-ray analysis of potassium perchromate, K₂CrO₈ and isomorphous compounds, Arkiv. Kemi Minerali. Geol. B15, 1-7 (1941).

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1:5405 Å at 25 °C		
	d	I	
101 110 002 200 112	$ \mathring{A} $ 5. 054 4. 749 3. 822 3. 357 2. 979	42 18 1 36 100	
211	2. 795	17	
202	2. 524	5	
220	2. 372	53	
301	2. 147	5	
310	2. 121	2	
222	2. 016	7	
004	1. 911	9	
312	1. 856	47	
321	1. 808	7	
303, 400	1. 677	5	
204	1. 659	7	
330	1. 5815	5	
402	1. 5365	3	
420	1. 5004	10	
224	1. 4880	12	
332 314 413 501 404	1. 4615 1. 4198 1. 3718 1. 3219 1. 2607	$egin{pmatrix} 10 \\ < 1 \\ 2 \\ < 1 \\ 6 \end{bmatrix}$	
512	1. 2445	10	
116, 521	1. 2299	5	
440	1. 1863	4	
325	1. 1808	4	
600	1. 1183	2	
532	1. 1020	3	
316	1. 0920	2	

Potassium Zinc Decavanadate 16 Hydrate, K₂Zn₂V₁₀O₂₈·16H₂O (triclinic)

Powder data cards. None.

Additional published patterns. None. NBS sample. The sample of potassium zinc decavanadate 16 hydrate, was obtained from H. T. Evans, Jr., U.S. Geological Survey, Washington, D.C. It was prepared from a solution of potassium metavanadate and zinc acetate in water with the pH adjusted between 3 and 4 with acetic acid. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent sodium; 0.01 to 0.1 percent silicon, and 0.001 to 0.01 percent each of aluminum, barium, calcium, chromium, iron, magnesium, molybdenum, lead, and rubid-

The color of the sample was bright orange. The indices of refraction could not be determined because of imperfections in the crystals.

The d-values of the three strongest lines are:

8.18, 7.40, and 9.45 Å.

Structural data. Evans, Mrose, and Marvin [1], in 1955 determined that potassium zinc decavanadate 16 hydrate, has the space group Ci-Pl (No. 2) and 1(K₂Zn₂V₁₀O₂₈·16H₂O) per unit cell.

The density of potassium zinc decavanadate calculated from the NBS lattice constants is $2.708 \text{ g/cm}^3 \text{ at } 25 \text{ °C}.$

Reference

[1] H. T. Evans, Jr., M. E. Mrose, and R. Marvin, Constitution of the natural and artificial decayanadates, Am. Mineralogist 40, 314 (1955).

hkl	Internal S Tungsten a Cu, 1.5405	
	d	I
010 100 110 001 111	Å 10. 01 9. 45 8. 61 8. 18 7. 40	23 28 20 100 35
$egin{array}{c} \overline{1}01 \\ 0\overline{1}1 \\ 011 \\ \underline{101} \\ \overline{21}1 \end{array}$	7. 17 6. 81 5. 95 5. 52 5. 17	3 7 5 6 9
$\begin{array}{c} 020 \\ 200 \\ \overline{2}01 \\ 1\overline{1}1 \\ \overline{2}\overline{2}1 \end{array}$	5. 00 4. 72 4. 63 4. 60 4. 53	$\begin{array}{c} 14 \\ 9 \\ 4 \\ 4 \\ < 1 \end{array}$
$ \begin{array}{r} 220 \\ \hline{102} \\ 002 \\ 121 \\ 211 \end{array} $	4. 33 4. 166 4. 094 3. 960 3. 759	<1 3 16 3 4
$ \begin{array}{r} 201, \overline{222} \\ \overline{131} \\ \overline{2}02 \\ \overline{231} \\ \overline{321} \end{array} $	3. 697 3. 630 3. 580 3. 548 3. 487	7 2 3 4 8
$102 \\ 0\overline{2}2 \\ 230 \\ 030 \\ 112$	3. 448 3. 402 3. 373 3. 333 3. 279	6 3 1 4 2
$ \begin{array}{r} $	3. 229 3. 149 3. 011 2. 977 2. 951	3 5 6 3 5
$\begin{array}{c} \overline{33}2, \underline{330} \\ 0\overline{32}, \overline{123} \\ 003 \\ \overline{203} \\ \overline{242}, \overline{341} \end{array}$	2. 883 2. 778 2. 730 2. 680 2. 595	$\begin{array}{c} 3 \\ 11 \\ 14 \\ 1 \\ < 1 \end{array}$
$ \begin{array}{r} \hline 3\overline{1}3 \\ 222, \overline{1}13 \\ 420 \\ \overline{133}, \overline{43}2 \\ 103, 331 \end{array} $	2. 569 2. 557 2. 525 2. 485 2. 458	$egin{array}{c} 2 \\ 2 \\ 2 \\ 4 \\ 2 \end{array}$
$ \begin{array}{r} \hline 303 \\ 042 \\ \hline 151 \\ \hline 313 \\ \hline 532 \\ \end{array} $	2. 389 2. 278 2. 164 2. 139 2. 102	9 8 6 8 1
$ \begin{array}{r} \overline{2}04 \\ \overline{2}\overline{3}4 \\ \overline{2}\overline{3}2, \overline{15}2 \\ \overline{3}\overline{3}4 \\ \underline{14}2, 1\overline{3}3 \end{array} $	2. 085 2. 071 2. 065 2. 046 2. 006	$ \begin{array}{c} 2 \\ 1 \\ < 1 \\ 1 \\ 4 \end{array} $
$ \begin{array}{r} 530 \\ 0\overline{4}3, 033 \\ 4\overline{1}1 \\ \overline{1}33 \end{array} $	1. 987 1. 985 1. 964 1. 930	$\overset{4}{\overset{4}{\overset{4}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{$

Potassium Zinc Decavanadete 16 Hydrate, K₂Zn₂V₁₀O₂₈·16H₂O (triclinic)—Continued

Lattice constants

		a	ь	c	а	β	γ
1955 1963	Evans, Mrose and Marvin [1]. National Bureau of Standards at 25 °C.	Å 10. 76 10. 778 ±. 003	A 11. 17 11. 146 ±. 003	Å 8. 77 8. 774 ±. 003	104°50′ 104°57′ ±1′	109°29′ 109°32′ ±1′	65°05′ 65°0′ ±2′

Rubidium Chromate, Rb₂CrO₄ (orthorhombic)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of rubidium chromate was obtained from the Fairmount Chemical Co., Inc., Newark, N.J. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent potassium; 0.01 to 0.1 percent sodium; and 0.001 to 0.01 percent each of aluminum, barium, calcium, and silicon.

The color of the sample was yellow and it is optically positive. The refractive indices are $N_{\alpha}=1.715, N_{\beta}=1.725, \text{ and } N_{\gamma}=1.759.$

The d-values of the three strongest lines are:

3.207, 3.191, and 3.083 Å.

Structural data. Smith and Colby [1] in 1940 determined that rubidium chromate has the potassium sulfate structure and the space group D_{2h}-Pnam (No. 62) with 4(Rb₂CrO₄) per unit cell. The lattice constants reported by Smith and

Colby have been converted from kX to angstrom units for comparison with NBS values.

Lattice constants

		a	b	c
1940 1963	Smith and Colby [1]. National Bureau of Standards at 25° C.	Å 7. 999 8. 001 ±. 001	$ \mathring{A} $ 10. 726 10. 722 \pm . 001	$\stackrel{A}{6}$. 301 6. 074 \pm . 001

The density of rubidium chromate calculated from NBS lattice constants is 3.657 g/cm³ at 25° C.

Reference

[1] H. W. Smith, Jr. and M. Y. Colby, The crystal structure of rubidium chromate, Rb₂CrO₄, Z. Krist. **103**, 90–95 (1940).

hkl	Internal Standard, Tungsten $a=3.1648$ Å Cu, 1.5405 Å at 25 °C		
	d	I	
020 120 200 210 121	\mathring{A} 5. 365 4. 451 4. 004 3. 749 3. 593	$egin{array}{c} 1 \\ 2 \\ 6 \\ 14 \\ 36 \\ \end{array}$	
201 130 220 211 031	3. 342 3. 263 3. 207 3. 191 3. 083	16 18 100 100 95	
002 131 221 040 230	3. 037 2. 872 2. 838 2. 680 2. 664	57 4 13 12 18	
022 310 140 122 231	2. 644 2. 588 2. 541 2. 509 2. 442	$\begin{array}{c} 3 \\ 30 \\ 6 \\ 11 \\ 5 \end{array}$	
320 311 212 141 240	2. 388 2. 380 2. 359 2. 344 2. 226	$egin{array}{c} 4 \\ 14 \\ 22 \\ 14 \\ 25 \\ \end{array}$	
222 330 241 150 051	2. 205 2. 138 2. 091 2. 071 2. 021	30 11 7 12 4	
042 232 400 312 401	2. 0098 2. 0035 2. 0010 1. 9697 1. 8997	11 20 18 12 10	
340 420 411 123 341, 251	1. 8908 1. 8737 1. 8703 1. 8426 1. 8047	5 7 9 6	
060 213 033 430	1. 7859 1. 7813 1. 7621 1. 7461	6 13 15 10	

Silver Antimony Telluride, AgSbTe₂ (cubic)

Powder data cards. None.

Additional published patterns. Geller and Wer-

nick [1] 1959.

NBS sample. The sample of silver antimony telluride was obtained from Semitronics Inc., Winchester, Mass. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of aluminum, bismuth, copper, iron, indium, and tin; and 0.001 to 0.01 percent each of gold, calcium, chromium, magnesium, nickel, and titanium.

The sample was an opaque metallic gray

powder.

The d-values of the three strongest lines are:

3.042, 2.151, and 1.7554 Å.

Structural data. Geller and Wernick [1] in 1959 determined that silver antimony telluride has the sodium chloride structure, the space group O_h^5 —Fm3m (No. 225), and 2(AgSbTe₂) per unit cell.

Lattice constants

1959 Geller and Wernick [1] at National Bureau of Stand 25 °C	t 25 °C dards at 6. 080
---	-------------------------

The density of silver antimony telluride calculated from the NBS lattice constant is 7.163 g/cm³ at 25 °C.

hkl	Internal Standard, Tungsten, a=3.1648 Å Cu, 1.5405 A at 25 °C			
	d	I	a	
111 200 220 311 222	$ \mathring{A} $ 3. 511 3. 040 2. 151 1. 8332 1. 7554	1 100 65 <1 19	Å 6. 081 6. 080 6. 084 6. 080 6. 081	
400 331 420 422 511	1. 5203 1. 3946 1. 3597 1. 2411 1. 1703	9 <1 18 9 <1	6. 081 6. 079 6. 081 6. 079 6. 081	
440 531 600 620 622	1. 0748 1. 0276 1. 0133 0. 9614 . 9166	${<}^4_1\\ {4}\\ {3}\\ {2}$	6. 080 6. 079 6. 080 6. 080 6. 080	
$444 \\ 711 \\ 640 \\ 642$. 8775 . 8513 . 8433 . 8125	$< 1 \\ < 1 \\ 2 \\ 2$	6. 079 6. 079 6. 081 6. 080	
Average value of last five lines6.080				

Reference

[1] S. Geller and J. H. Wernick, Ternary semiconducting compounds with sodium chloride-like structure: AgSbSe₂, AgSbTe₂, AgBiSe₂, AgBiSe₂, Acta Cryst. **12**, 46-54 (1959).

Sodium Magnesium Aluminum Boron Hydroxy Silicate, dravite (var. of tourmaline), $NaMg_3Al_6B_3Si_6O_{27}(OH)_4$ (trigonal)

Powder Data cards. None.

Additional published patterns. None.

NBS sample. The sample of dravite is U.S. National Museum No. 103791 from Dobruva, Carinthia, Austria. This mineral sample was picked by C. R. Robbins, NBS, as a true end member representative of the magnesium rich variety of tourmaline. The chemical analysis by H. B. Wiik, Hilsingfors, Westend, Finland, showed the following: 36.99 percent SiO₂; 0.39 percent TiO₂; 32.00 percent Al₂O₃; 0.01 percent MnO; 11.58 percent MgO; 0.50 percent CaO; 0.01 percent Li₂O; 3.11 percent Na₂O; 0.08 percent K₂O; 3.08 percent H₂O⁺; 10.77 percent B₂O₃; 0.25 percent F; and 0.90 percent total Fe as FeO. The color of the sample was light brown and

The color of the sample was light brown and it is optically negative. The indices of refrac-

tion are $N_o = 1.634$ and $N_e = 1.613$.

The d-values of the three strongest lines are: 2.576, 3.985, and 2.961 Å.

Structural data. Buerger and Parrish [1] in 1937 determined the structure of the tourmalines; they have the space group $C_{3\nu}^5-R3m$ (No. 160) and $3[NaMg_3Al_6B_3Si_6O_{27}(OH)_4]$ per unit hexagonal cell.

Lattice constants

		a	c
1948 1949	Hamburger and Buerger [2] Belova and Belova [3]	Å 15. 951 16. 00	$ {A} \\ 7.24 \\ 7.24$
1951 1963	Kurylenko [4] National Bureau of Standards at 25 °C	15. 676 15. 931	7. 03 7. 197

The density of dravite calculated from NBS lattice constants is 3.019 g/cm³ at 25 °C.

$Sodium\ Magnesium\ Aluminum\ Boron\ Hydroxy\ Silicate,\ dravite\ (var.\ of\ tourmaline),\\ NaMg_3Al_6B_3Si_6O_{27}(OH)_4\ (trigonal)---Continued$

hkl (hex)	Tungsten, a	Standard 2=3.1648 Å Å at 25 °C
	d	I
101 021 300 211 220	Å 6. 377 4. 981 4. 595 4. 221 3. 985	28 25 17 66 84
012 131 401 410 122	3. 480 3. 375 3. 111 3. 008 2. 961	62 16 5 12 83
321 330 312 051 042	2. 897 2. 656 2. 622 2. 576 2. 490	$ \begin{array}{c c} 9 \\ < 1 \\ 7 \\ 100 \\ 1 \end{array} $
$241 \\ 003 \\ 232 \\ 511 \\ 600$	2. 451 2. 396 2. 376 2. 342 2. 300	1 20 19 21 5
502 431 303 422 223	2. 189 2. 163 2. 127 2. 112 2. 054	17 14 16 10 21
152 161 440 342 701	2. 040 2. 019 J. 991 1. 920 1. 901	46 7 5 34 6
413 621 710 612 104	1. 877 1. 849 1. 828 1. 817 1. 784	7 8 2 2 9

$egin{array}{c} hk l \ (hex) \end{array}$	Internal Standa Tungsten, $a=3.164$ Cu, 1.5405 Å at 25	
` , ,	d	I
333 024 532 541 262	Å 1. 781 1. 742 1. 729 1. 715 1. 690	7 5 4 2 1
603 271 550 452 811	1, 660 1, 641 1, 592 1, 586 1, 575	$\begin{array}{c c} 24 \\ 16 \\ 21 \\ < 1 \\ < 1 \end{array}$
324 461 900 722 820	1. 565 1. 5456 1. 5326 1. 5262 1. 5056	$ \begin{array}{c} $
244 514 642 015 651	1. 4807 1. 4555 1. 4485 1. 4318 1. 4178	3 19 11 8 8
$205 \\ 125 \\ 381 \\ 10.0.1 \\ 912$	1. 4091 1. 3871 1. 3746 1. 3551 1. 3416	19 2 3 9 5
921 045 660, 553 10·1·0 571	1. 3359 1. 3282 1. 3272 1. 3095 1. 3002	4 13 12 12 1
$903 \\ 505 \\ 425 \\ 155 \\ 0.11.1$	1. 2922 1. 2765 1. 2602 1. 2449 1. 2358	2 14 3 3 3
482 850	1. 2260 1. 2149	1 3

References

[1] M. J. Buerger and W. Parrish, The unit cell and space group of tourmaline (an example of the inspective equiinclination treatment of trigonal crystals), Am. Mineralogist 22, 1139-1150 (1937).

[2] G. E. Hamburger and M. J. Buerger, The structure of tourmaline, Am. Mineralogist 33, 532-540 (1948).

[3] N. V. Belova and E. N. Belova (The crystal structure of tourmaline), Dokl. Akad. Nauk SSSR 69, No. 2, 185-188 (1949).

[4] C. Kurylenko, Transformation de la dravite de Doubrova (Moravie) de 375° à 1350°, Compt. rend. Paris 232, 2109–2111 (1951).

Sodium Trimetaphosphate, Na₃P₃O₉ (orthorhombic)

Powder data cards.

Card number	Index lines	Source
11-648	3. 40 3. 86 3. 04	de Wolff, Techn. Phys. Dienst, Delft, Holland.

Additional published patterns. Corbridge and Tromans [1].

NBS sample. The sample of sodium trimetaphosphate was crystallized by heating sodium trimetaphosphate above the melting point (about 650 °C) and then cooling slowly at the rate of 5 to 10 °C an hour. Spectrographic analysis showed the following major impurities: 0.001 to 0.01 percent each of aluminum, barium, calcium, iron, potassium, magnesium, silicon, and titanium.

The sample is colorless.

·	i		
hkl	Internal Standard, Tungsten, a=3.1648 Å Cu, 1.5405 Å at 25 °C		
	d	I	
	Å		
110	6. 79	43	
011	6. 65	53	
111	5. 095	43	
021	5. 015	48	
121	4. 237	5	
200	3. 960	16	
002, 130	3. 850	63	
131	3. 444	48	
211	3. 407	100	
112	3. 351	31	
022	3. 330	37	
221	3. 110	11	
041	3. 037	55	
141	2. 837	11	
202	2. 762	41	
132	2. 723	22	
212	2. 706	10	
310	2. 591	11	
240	2. 540	35	
013	2. 522	14	
150, 051	2. 503	7	
311	2. 457	8	
241	2. 412	11	
113	2. 406	8	
151	2. 387	<1	
232, 321	2. 340	<1	
123	2. 292	2	
330	2. 267	6	
060	2. 204	8	
331	2. 175	11	

The d-values of the three strongest lines are: 3.407, 3.850, and 3.037 Å.

Structural data. Ondik and Gryder [2] in 1960

Structural data. Ondik and Gryder [2] in 1960 determined that sodium trimetaphosphate has the space group $C_{2v}^9-P2_1cn$ (No. 33) or $D_{2h}^{16}-Pmcn$ (No. 62) with $4(Na_3P_3O_9)$ per unit cell.

hkl	Internal S Tungsten a Cu, 1.5405	= 3.1648 Å
	d	I
133 213 242 152 223	Å 2. 136 2. 128 2. 121 2. 103 2. 050	8 10 8 2 10
043 341 400 143 332	2. 029 1. 994 1. 982 1. 965 1. 954	17 6 9 5 6
$004, 260 \ 252 \ 411, 420 \ 350 \ 024$	1. 927 1. 911 1. 900 1. 871 1. 849	5 8 1 13 10
170 243 153 171 402	1. 838 1. 806 1. 794 1. 781 1. 762	4 4 2 1
134 214 333 352 224	1. 723 1. 719 1. 699 1. 681 1. 675	$< \frac{1}{2} \\ \frac{5}{8}$
063, 253 $271, 044$ 441 144 234	1. 671 1. 665 1. 661 1. 629 1. 612	8 5 5 1 6
181 054 451 073 082	1. 583 1. 557 1. 554 1. 521 1. 518	2 5 7 3 2
353 371 025 531 254	1. 511 1. 507 1. 501 1. 465 1. 449	5 6 6 3 5
372 282	1. 427 1. 418	11 2

Sodium Trimetaphosphate, Na₃P₃O₉ (orthorhombic)—Continued

Lattice constants

		a	b	с
		\mathring{A}	Å	Å
1960	Ondik and Gry- der [2].	7. 93	13. 14	7. 75
1962 1963	deWolff National Bureau of Standards at 25 °C.	7. 928 7. 930	13. 22 13. 220	7. 703 7. 705

The density of sodium trimetaphosphate calculated from the NBS lattice constants is 2.515 g/cm³ at 25 °C.

References

[1] D. E. C. Corbridge and F. R. Tromans, Identification of sodium phosphates with an x-ray focusing camera, Anal. Chem. 30, 1101-1110 (1958).

[2] H. M. Ondik and J. W. Gryder, Crystal chemistry of the hydrates of sodium trimetaphosphate, J. Inorg. Nucl. Chem. 14, Nos. 3/4, 240-246 (1960).

Sodium Trimetaphosphate Monohydrate, Na₃P₃O₉·H₂O (orthohombic)

Powder data cards

Card number	Index lines	Source
1-0977	2. 84 3. 03 2. 60	New Jersey Zinc Co.
11–391	4. 96 3. 57 3. 01	Corbridge and Tromans [1] 1958.

Card number 12-10 also is called Na₃P₃O₉·H₂O; however, it contains a very different pattern, perhaps another form.

Additional published patterns. None.

NBS sample. The sample of sodium trimetaphosphate monohydrate was prepared at NBS by heating sodium dihydrogen orthophosphate for 5 hr at 530 °C. Solid sodium trimetaphosphate was salted out with NaCl and then recrystallized several times. Spectrographic analysis showed the following major impurities: 0.001 to 0.01 percent each of aluminum, barium, calcium, iron, potassium, magnesium, silicon, and titanium.

The sample is colorless and it is probably optically negative. The indices of refraction are $N_{\alpha}=1.493$, $N_{\beta}=1.502$, and $N_{\gamma}=1.504$.

The d-values of the three strongest lines are:

3.566, 2.825, and (2.605 and 2.601)Å

Structural data. Ondik and Gryder [2] in 1960 determined that sodium trimetaphosphate monohydrate has the space group C_{2v}^9 -P2₁cn (No. 33) or D_{2h}^{16} -Pmcn (No. 62) with $4(Na_3P_3O_9 \cdot H_2O)$ per unit cell.

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C		
	d	I	
110 011 111 021 121	Å 7. 144 6. 553 5. 195 4. 968 4. 289	42 38 49 60 32	
200 130 002 012 211	4. 252 3. 905 3. 778 3. 633 3. 566	5 32 17 15 100	
131 112 022 221 122	3. 469 3. 340 3. 278 3. 230 3. 060	64 60 55 8 8	
041 141 202 310 212	3. 022 2. 848 2. 825 2. 769 2. 762	73 5 100 57	
132 240 311 150 051	2. 716 2. 605 2. 601 2. 520 2. 491	$ \begin{cases} 10 \\ 75 \\ 5 \\ 18 \end{cases} $	
042 013 330 113, 232 331	2. 484 2. 474 2. 382 2. 375 2. 272	} 21 39 6 17	
123, 302 312 060 052 213	2. 266 2. 235 2. 198 2. 163 2. 139	$egin{pmatrix} 4 \\ 4 \\ 16 \\ < 2 \\ 15 \end{bmatrix}$	

Sodium Trimetaphosphate Monohydrate, Na₃P₃O₉·H₂O (orthorhombic)—Continued

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C		
	d	I	
400 133 341 420 332	Å 2. 125 2. 116 2. 067 2. 022 2. 016	17 12 8 5	
043	2. 001	12	
421, 260	1. 954	29	
143	1. 949	12	
350	1. 930	13	
252	1. 927	9	
062	1. 900	6	
261, 004	1. 889	11	
351	1. 870	9	
162, 431	1. 855	4	
170, 412	1. 840	6	
053	1. 823	9	
024	1. 817	7	
243, 323	1. 811	3	
171, 440	1. 786	11	
153	1. 781	10	
352	1. 719	16	
253	1. 674	17	
413	1. 612	10	

-		
Lattice e	ransta	nts

		a	b	c
		Å	Å	Å
1960	Ondik and Gryder [2].	8. 53	13. 21	7. 58
1963	National Bureau of Standards at 25 °C.	8. 500 ± 0. 001	13. 189 ± 0. 001	$\begin{array}{c} 7.558 \\ \pm 0.001 \end{array}$

The density of sodium trimetaphosphate monohydrate calculated from NBS lattice constants is 2.539 g/cm³ at 25 °C.

References

- D. E. C. Corbridge and F. R. Tromans, Identification of sodium phosphates with an x-ray focusing camera, Anal. Chem. 30, No. 6, 1101-1110 (1958).
 H. Ondik and J. W. Gryder, Crystal chemistry of the hydrotax of a live of the live of
- [2] H. Ondik and J. W. Gryder, Crystal chemistry of the hydrates of sodium trimetaphosphate, J. Inorg. Nucl. Chem. 14, 240-246 (1960)

Stannous Fluoride, SnF₂ (monoclinic)

Powder data cards. None

Additional published patterns. Nebergall,

Muhler, and Day [1] 1952.

NBS sample. The sample of stannous fluoride was obtained from the Indiana University School of Dentistry, Indianapolis, Ind. Spectrographic analysis showed the following major impurities: 0.001 to 0.01 percent each of calcium and silicon.

The sample was colorless. The indices of refraction were not determined because the

sample reacted with the index liquids.

The d-values of the three strongest lines are: 3.552, 3.200 and 3.379 Å.

Structural data. Bergerhoff [2] in 1962 determined that stannous fluoride has the space group C_{2h}⁶-C₂/c (No. 15) and 16 [SnF₂] per unit cell.

Difficulties in indexing the NBS pattern were overcome with the help of single crystal work done by Dr. Howard T. Evans Jr., of the U.S. Geological Survey.

Lattice constants

		a	ь	С	β
1962 1963	Bergerhoff [2] National Bureau of Standards	Å 13. 46	$\overset{\mathring{A}}{4.92}$	Å 13. 86	109°30′
1903	at 25 °C	13. 353 ±. 001	4. 9089 ±. 0004	13. 787 ±. 001	019°6.5′ ±.3′

Stannous Fluoride, SnF₂ (monoclinic)—Continued

hkl	Internal S Tungsten, c Cu, 1.5405	a = 3.1648 Å
	d	I
$egin{array}{c} ar{1}11 \\ 112 \\ 204 \\ ar{3}11 \\ 312 \\ \end{array}$	Å 4. 489 3. 552 3. 379 3. 298 3. 200	5 100 40 2 60
400 204 020 021 511	3. 155 2. 571 2. 455 2. 412 2. 327	$\begin{array}{c} 34 \\ 11 \\ 9 \\ 1 \\ 2 \end{array}$
$ \begin{array}{c} \hline 315 \\ 313 \\ \hline 602 \\ \hline 604 \\ 222 \end{array} $	2. 320 2. 315 2. 225 2. 109 2. 084	3 2 1 10 <1
$egin{array}{c} ar{1}16 \\ ar{3}16 \\ ar{2}24 \\ 512 \\ 420 \\ \end{array}$	2. 059 2. 048 1. 986 1. 954 1. 938	18 2 16 16 18
$ \begin{array}{r} \overline{5}16 \\ 602 \\ \overline{7}12, 224 \\ \overline{4}08 \\ 008 \end{array} $	1. 854 1. 833 1. 776 1. 690 1. 629	$ \begin{array}{c} 12 \\ < 1 \\ 22 \\ 2 \\ 5 \end{array} $
$egin{array}{c} \overline{1}31, 316 \\ \overline{6}24 \\ 800 \\ 132 \\ 604 \\ \end{array}$	1. 6186 1. 5997 1. 5769 1. 5594 1. 5504	6 6 4 5 3

The density of stannous fluoride calculated from the NBS lattice constants is 4.875 g/cm³ at 25 °C.

hkl	Internal Standard, Tungsten, a=3.1648 Å Cu, 1.5405 Å at 25 °C	
	d	I
332 912 428 808 028	Å 1. 5258 1. 4112 1. 3921 1. 3812 1. 3570	5 <1 4 1 2
$ \begin{array}{c} $	1. 3517 1. 3325 1. 3271 1. 3107 1. 3031	$\begin{array}{c} 2\\1\\5\\2\\<1\end{array}$
532 408 536 912 732	1. 2974 1. 2858 1. 2667 1. 2446 1. 2411	2 1 2 1 2
$egin{array}{cccccccccccccccccccccccccccccccccccc$	1. 2313 1. 2273 1. 2153 1. 2036 1. 1836	2 1 1 1 1
$\begin{array}{c} 716, \overline{10} \cdot 2 \cdot 4 \\ \overline{11} \cdot 1 \cdot 2 \\ \overline{244} \\ 0 \cdot 2 \cdot 10, \overline{7} \cdot 1 \cdot 11 \\ 440 \end{array}$	1. 1712 1. 1645 1. 1536 1. 1508 1. 1435	2 1 1 <1 <1
$\begin{array}{c} 428 \\ \overline{2} \cdot 0 \cdot 12 \end{array}$	1. 1387 1. 1335	<1 <1

References

W. H. Nebergall, J. C. Muhler, and H. G. Day, The preparation and properties of stannous fluoride, J. Am. Chem. Soc. 74, 1604 (1952).
 G. Bergerhoff, Zur Kristallstruktur des Zinn-II-fluorides, Acta Cryst. 15, 509 (1962).

Strontium 1:1 Borate, SrO·B₂O₃ (orthorhombic)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of strontium 1:1 borate was prepared at NBS by C. E. Weir. A suspension of hydrogen 3:1 borate (boric acid) and strontium carbonate was evaporated to dryness and heated at 1000 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of barium and silicon; 0.001 to 0.01 percent each of calcium and sodium.

The sample is colorless and optically negative with $N_{\alpha}=1.632$, $N_{\beta}=1.650$, and $N_{\gamma}=1.660$. The d-values of the three strongest lines are:

3.467, 6.013, and 2.688 A.

Structural data. Block, Perloff, and Weir [1] in 1963 determined that strontium 1:1 borate has the space group D_{2h}-Pnca (No. 60) and $4(SrO \cdot B_2O_3)$ per unit cell.

Lattice constants

		a	b	с
1963 1963	Block, Perloff and Weir [1]. National Bureau of Standards at 25 °C.	Å 6. 577 6. 5890 ±. 0004	Å 12. 02 12. 018 ±. 001	$ \mathring{A} $ 4. 329 4. 3373 $ \pm$. 0005

The density of strontium 1:1 borate calculated from the NBS lattice constants is 3.350 g/cm³ at 25 °C.

Reference

[1] S. Block, A. Perloff, and C. E. Weir. The crystallography of some M+2 borates, Acta Cryst. 17, 314

	Internal	Standard
hkl	Silver, a = Cu, 1.5405	4.0861 Å
	d	I
020 111 200 210 121	Å 6. 013 3. 467 3. 292 3. 176 3. 101	69 100 37 47 15
040 220 131 141 240	3. 004 2. 888 2. 688 2. 313 2. 221	37 40 67 5 30
$002 \\ 022 \\ 060, 151 \\ 241 \\ 122$	2. 169 2. 041 2. 003 1. 977 1. 948	27 21 58 9 7
311 202 212 331 222	1. 934 1. 812 1. 792 1. 760 1. 734	44 8 4 23 14
260 400 420 171, 242 430 351	1. 712 1. 647 1. 589 1. 5518 1. 5232 1. 5192	$ \begin{array}{c} 10 \\ < 2 \\ 11 \\ 21 \end{array} $
080 062 440 113 280	1. 5023 1. 4712 1. 4447 1. 4020 1. 3667	4 3 5 4 5
262 133 371 422 460	1. 3434 1. 3320 1. 2911 1. 2820 1. 2724	8 8 6 6 4
511 153 531 282, 333 2·10·0	1. 2543 1. 2174 1. 2027 1. 1564 1. 1291	$\begin{array}{c} 9 \\ 6 \\ 15 \\ 4 \\ < 2 \end{array}$
551 480 391 600 173	1. 1165 1. 1100 1. 1036 1. 0980 1. 0906	5 5 5 5 3
620 1·11·1 640 571 2·10·2 482, 373	1. 0804 1. 0461 1. 0313 1. 0161 1. 0013 0. 9879	5 <2 <2 5 3 4

Terbium Arsenate, TbAsO₄ (tetragonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of terbium arsenate was prepared at NBS from a water solution of arsenic pentoxide and terbium trichloride. It was dried at 110 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent silicon; 0.001 to 0.1 percent each of antimony, calcium, iron, magnesium, and lead.

The sample was colorless. The indices of refraction could not be determined because the

sample was too fine.

The d-values of the three strongest lines are:

3.550, 2.685, and 1.834 Å.

Structural data. No reference to the structure of terbium arsenate was found, but it is apparently isostructural with yttrium arsenate with the space group $D_{4h}^{10}-I4_1/amd$ (No. 141) and 4(TbAsO₄) per unit cell.

Lattice constants

		a	c
1963	National Bureau of Standards at 25 °C.	Å 7. 1025	Å 6. 3536

The density of terbium arsenate calculated from the NBS lattice constants is 6.172 g/cm³ at 25 °C.

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Co, 1.7889 Å at 25° C	
	d	I
101 200 112 220 202	Å 4. 736 3. 550 2. 685 2. 510 2. 367	8 100 69 22 7
301	2. 219	9
103	2. 029	8
321	1. 882	6
312	1. 834	53
400	1. 775	16
420	1. 5878	15
332	1. 4809	14
204	1. 4500	11
224	1. 3423	8
512	1. 2755	13
440	1. 2553	4
600, 404	1. 1838	8
532	1. 1373	8
424	1. 1230	12
116	1. 0364	4
444	0. 9849	5
316	. 9577	7
604	. 9495	3
624	. 9168	5

Thallium Chromate, Tl₂CrO₄ (orthorhombic)

Powder data cards. None.

Additional published patterns. Abbad and

Rivoir [1] 1947.

NBS sample. The sample of thallium chromate was prepared at NBS from solutions of thallium nitrate and sodium chromate. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent lead; 0.01 to 0.1 percent each of aluminum and silicon; and 0.001 to 0.01 percent each of barium, calcium, and antimony.

The color of the sample was yellow. The refractive indices could not be determined because

the sample was too fine.

The d-values of the three strongest lines are:

3.145, 3.060, and 3.186 Å.

Structural data. Abbad and Rivoir [1] in 1947 determined that thallium chromate has the potassium sulfate structure, the space group D_{2h}¹⁶-Pnam (No. 62), and 4(Tl₂CrO₄) per unit cell.

The lattice constants reported by Abbad and Rivoir have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1947 1963	Abbad and Rivoir [1] National Bureau	<i>a Å</i> 7. 82 7. 908	<i>b</i> 10. 70 10. 730	c Å 5. 92 5. 913
1000	of Standards at 25 °C	±. 001	±.001	±. 001

The density of thallium chromate calculated from the NBS lattice constants is 6.946 g/cm³ at 25 °C.

Thallium Chromate, Tl₂CrO₄ (orthorhombic)—Continued

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C	
	d	I
020 011 120 111 210	$ \mathring{A} $ 5. 37 5. 19 4. 45 4. 337 3. 714	5 8 12 23 15
121	3. 553	54
201	3. 290	27
130	3. 263	24
220	3. 186	57
211	3. 145	100
$031 \\ 002 \\ 221 \\ 040, 112 \\ 230$	3. 060 2. 958 2. 805 2. 685 2. 654	96 53 14 6 16
310	2. 561	28
140	2. 540	25
122	2. 461	15
320	2. 366	8
311	2. 349	13
141	2. 336	10
212	2. 314	10
240	2. 221	11
321	2. 197	15
132	2. 191	13
222	2. 167	32
330	2. 122	9
241	2. 079	17
150	2. 071	15
051	2. 017	4
440	1. 977	19
232	1. 975	16
151	1. 954	6
312	1. 936	14
142	1. 9270	13
250	1. 8863	9
401	1. 8750	12
420	1. 8553	15
322, 411	1. 8472	14
123	1. 8013	26
341 060 242 203 213	1. 7921 1. 7885 1. 7755 1. 7640 1. 7409	$egin{array}{c} 26 \\ 14 \\ 7 \\ 7 \\ 17 \\ \end{array}$

hkl	Internal Standard, Tungsten, $a=3.1648$ Å Cu, 1.5405 Å at 25 °C	
	d	I
430 033 332 152 161	\mathring{A} 1. 7305 1. 7259 1. 7235 1. 6963 1. 6726	22 19 14 15 13
431	1. 6603	9
402	1. 6434	5
260	1. 6294	5
412	1. 6250	5
252	1. 5903	6
422, 261	1. 5713	10
143	1. 5573	3
062	1. 5299	6
520	1. 5167	6
511	1. 5125	6
170	1. 5045	6
432	1. 4931	8
071	1. 4837	7
004	1. 4782	5
521	1. 4696	5
450	1. 4539	4
361	1. 4355	6
262	1. 4271	5
124, 442	1. 4020	3
403	1. 3959	4
413	1. 3842	4
540	1. 3623	6
343	1. 3602	5
522	1. 3498	5
134	1. 3462	5
$\left[\begin{array}{c} 080, 172, \\ 224 \\ 370 \\ 600 \end{array}\right]$	1. 3410 1. 3250 1. 3182	6 6 4

Reference

[1] M. Abbad and L. Rivoir, La estructura del cromato talioso, Anales Soc. españ. fís. y. quím 43, 831-836 (1947)

Thulium Arsenate, TmAsO₄ (tetragonal)

Powder data cards. None.

Additional published patterns. None.

NBS sample. The sample of thulium arsenate was prepared at NBS from a water solution of arsenic pentoxide and thulium trichloride. It was dried at 110 °C. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent each of silicon and antimony; 0.001 to 0.01 percent each of aluminum, calcium, iron, lead, and magnesium.

The sample was colorless. The indices of refraction could not be determined because the

sample was too fine.

The d-values of the three strongest lines are:

3.497, 2.644, and 1.8064 Å.

Structural data. No reference to the structure of thulium arsenate was found, but it is apparently isostructural with yttrium arsenate with the space group D_{4b}¹⁹-I4₁/amd (No. 141) and 4(TmAsO₄) per unit cell.

Lattice constants

		а	с
1963	National Bureau of Standards at 25 °C		

The density of thulium arsenate calculated from the NBS lattice constants is 6.678 g/cm³ at 25 °C.

hkl	Internal S Tungsten, a Cu, 1.5405	Standard, =3.1648 Å Å at 25 °C
	d	I
101 200 211 112 220	Å 4. 667 3. 497 2. 796 2. 644 2. 473	11 100 5 72 23
202 301 103 321 312	2. 333 2. 1851 1. 9993 1. 8524 1. 8064	5 10 7 7 7 55
400 213 420 332 204	1. 7483 1. 7354 1. 5638 1. 4584 1. 4281	16 3 15 15 14
501 224 512 440 600, 404	1. 3853 1. 3224 1. 2566 1. 2361 1. 1660	3 8 11 4 7
532 424, 620 116 415, 613 444, 640	1. 1199 1. 1060 1. 0207 1. 0073 0. 9701	$\begin{array}{c} 8 \\ 12 \\ 3 \\ < 2 \\ 5 \end{array}$
316, 552 604 624 336, 732 800	. 9433 . 9349 . 9032 . 8814 . 8743	10 2 4 5 <2
217 820 516 644 536	. 8597 . 8480 . 8304 . 8245 . 7872	<2 2 5 4 5

Titanium Dioxide, brookite, TiO₂ (orthorhombic)

Powder data cards

Card number	Index lines	Source
3-0380	3. 47 2. 90 1. 88	British Museum.

Additional published patterns. Sturdivant and

Pauling [1].

NBS sample. The sample of brookite was obtained from the U.S. National Museum. No. 97661 from Magnet Cove, Ark. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent silicon; 0.01 to 0.1 percent each of aluminum, iron, and vanadium; 0.001 to 0.01 percent magnesium.

The color of the sample was black. The indices of refraction were not determined because

they were higher than 2.00.

The d-values of the three strongest lines are:

3.512, 2.900, and 3.465 Å.

Structural data. Sturdivant and Pauling [1] in 1928 determined that brookite has the space group D 15-Pcab (No. 61) and 8(TiO2) per unit cell. Several lattice constants have been converted from kX to angstrom units for comparison with the NBS values.

Lattice constants

1928	Sturdivant and	<i>a Å</i> 5. 447	b Â 9. 185	c Å 5. 145
1928 1932 1963	Pauling [1]. Schröder [2] Phillips [3] National Bureau of Standards at 25 °C.	5. 450 5. 44 a 5. 4558 ±. 0004 b 5. 456 ±. 002	9. 154 9. 20 9. 1819 ±. 0007 9. 174 ±. 001	5. 163 5. 14

^a Sample described above. ^b Sample from the National Museum No. R2108 from von der Söule, Virven, Tyrol. Spectrographic analysis showed the following major impurities: 0.1 to 1.0 percent iron; 0.01 to 0.1 percent each of magnesium, silicon, and vana-dium; and 0.001 to 0.01 percent each of aluminum, barium, and manganese. The lattice constants given were derived from powder pattern data.

The density of brookite calculated from the NBS lattice constants (a) is 4.120 g/cm³ at 25 °C.

References

[1] J. H. Sturdivant and L. Pauling, The crystal structure of brookite, Z. Krist. 68, 239 (1928).

[2] A. Schröder, Röntgenographische Feinbauuntersuchung am Brookit und über physikalische Eigenschaften der drei Titandioxyde, Z. Krist. 66, 493 (1928).

[3] F. C. Phillips, Crystals of the head plane Min More 22, 126 120 (1932).

the basal plane, Min. Mag. 23, 126-129 (1932).

hkl	Internal S Silver, $a = \text{Cu}\lambda = 1.5405$	tandard, = 4.0861 Å Å at 25 °C
	d	I
120 111 121 200 012	Å 3. 512 3. 465 2. 900 2. 729 2. 476	100 79 91 4 23
201	2. 409	18
131	2. 370	6
220	2. 344	4
211	2. 332	4
040	2. 296	5
112	2. 254	8
022	2. 244	18
221	2. 133	16
032	1. 9685	16
231	1. 8934	28
132	1. 8514	18
212	1. 8332	3
240	1. 7568	3
320	1. 6908	21
241	1. 6617	28
151	1, 6486	5
113	1, 6098	13
232	1, 5968	2
123	1, 5408	7
052	1, 4942	10
160 312 251 203 152	1. 4729 1. 4656 1. 4609 1. 4515 1. 4415	$\begin{array}{c c} 4 & \\ 9 & \\ 12 & \\ 12 & \\ 6 & \\ \end{array}$
213	1. 4336	10
161	1. 4167	9
400	1. 3640	5
332	1. 3358	8
401	1. 3186	3
233	1. 3116	2
004	1. 2852	2
024, 171	1. 2381	10
431	1. 2107	2
124	1. 2074	1
333	1. 1552	4
080	1. 1480	2
441	1. 1432	2
044	1. 1217	4
521, 423	1. 0399	3
281	1. 0366	2
324	1. 0237	4
125	0. 9873	2
372, 254	. 9829	4

Zinc Telluride, ZnTe (cubic)

Powder data cards

Card number	Index lines	Source
1-0582	3. 50 2. 14 1. 83	New Jersey Zinc Co.

Additional published patterns. None.

NBS sample. The sample of zinc telluride was obtained from Semi-Elements, Inc., Saxonburg, Pa. Spectrographic analysis showed the following major impurities: 0.01 to 0.1 percent of silicon, and 0.001 to 0.01 percent each of aluminum, barium, iron, and magnesium.

The color of the sample was reddish-brown. The indices of refraction were too high to be determined by the usual grain-immersion method.

The *d*-values of the three strongest lines are: 3.523, 2.159, and 1.840 Å.

Structural data. Zachariasen [1] in 1925 determined that zinc telluride has the zinc sulfide structure, the space group T_d^2 -F43m (No. 216), and 4[ZnTe] per unit cell. The unit cell measurement reported by Zachariasen has been converted from kX to angstrom units for comparison with the NBS value.

Lattice constants

		Å
1925 1963	Zachariasen [1] National Bureau of Standards	6. 101
- 00	at 25 °C	6. 1026

The density of zinc telluride calculated from the NBS lattice constant is 5.639 g/cm³ at 25 °C.

hkl	T ₁	Internal Standa Tungsten, $a=3.16$ Cu, 1.5405 Å at 2				
	d	I	а			
111 200 220 311 222	Å 3. 523 3. 051 2. 159 1. 840 1. 762	100 10 81 37 3	Å 6. 102 6. 102 6. 107 6. 103 6. 102			
400 331 420 422 511	1. 526 1. 4003 1. 3645 1. 2456 1. 1745	8 13 3 10 7	6. 103 6. 104 6. 102 6. 102 6. 103			
440 531 600 620 533	1. 0789 1. 0315 1. 0171 0. 9648 . 9307	3 6 1 6 3	6. 1028 6. 1042 6. 1026 6. 1022 6. 1028			
622 444 711 642 731	. 9200 . 8808 . 8545 . 8155 . 7945	1 1 6 8 6	6. 1026 6. 1026 6. 1024 6. 1026 6. 1026			
Average v	alue of last f	ive lines	6. 1026			

Reference

[1] W. Zachariasen, The crystal structure of the tellurides of zinc, cadmium, and mercury, Norsk. geol Tidskrift 8, 302–306 (1925).

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, AND 3⁵

		Vol. or	Dese	·	Vol. or	_
	Aluminum, Al	sec.	Page 11	Antimony (III) iodide, SbI ₃	sec.	Page
Н	Aluminum antimony, AlSb	4	$\frac{.11}{72}$	Antimony (III) oxide (senarmontite), Sb ₂ O ₃	6	16
	Aluminum calcium sulfate hydrate (ettring-			(cubic)	3	31
Ш	ite), $Al_2O_3 \cdot 6CaO \cdot 3SO_3 \cdot 31H_2O$	8	3	Antimony (III) oxide, valentinite, Sb_2O_3	10	0
11	Aluminum chloride hexahydrate (chlor- aluminite), AlCl ₃ ·6H ₂ O	7	3	(orthorhombic)	10 10	6 8
	Aluminum fluosilicate, topaz,	•	· ·	Antimony (IV) oxide (cervantite), Sb ₂ O ₄ Antimony (V) Oxide, Sb ₂ O ₅	10	10
Ш	$Al_2SiO_4(F,OH)_2$	1m	4	Antimony selenide, Sb ₂ Se ₃	$3 \mathrm{m}$	7
11.	Aluminum metaphosphate, Al(PO ₃) ₃	2m	3	Antimony (III) sulfide (stibnite), Sb ₂ S ₃	5	6
11-	Alpo, (trigonal)	10	3	Antimony telluride, Sb ₂ Te ₃ Arsenic, As	$\frac{3m}{3}$	8
11	AlPO ₄ (trigonal)————————————————————————————————————	10	0	Arsenic (III) iodide, AsI ₃	6	$\begin{array}{c} 6 \\ 17 \end{array}$
11	rhombic)	10	4	Arsenic trioxide, claudetite, As ₂ O ₃ (mono-	Ü	
11	Aluminum oxide, (corundum), alpha Al ₂ O ₃	9	3	elinie)	$3 \mathrm{m}$	9
11	Aluminum oxide monohydrate (böhmite), alpha Al ₂ O ₃ ·H ₂ O	3	38	Arsenic trioxide (arsenolite), As ₂ O ₃ (cubic) _ Barium, Ba	$\frac{1}{4}$	$\frac{51}{7}$
11	Aluminum oxide monohydrate diaspore,	Ü	0,0	Barium arsenate, Ba ₃ (AsO ₄) ₂	$2^{\frac{1}{2}}$	6
п	beta $Al_2O_3 \cdot H_2O_{}$	3	41	Barium bromide monohydrate, BaBr ₂ ·H ₂ O	$3 \mathrm{m}$	10
114	Aluminum 3:2 silicate (mullite),	9	9	Barium carbonate (witherite), BaCO ₃ (ortho-	0	~ .
H	3Al ₂ O ₃ ·2SiO ₂ Ammonium aluminum sulfate dodecahy-	3m	3	rhombic)	2	54
H	drate (teschermigite), NH ₄ Al(SO ₄) ₂ ·12H ₂ O ₋	6	3	1075 °C	10	11
11	Ammonium azide, NH ₄ N ₃	9	4	1075 °CBarium fluoride, BaF ₂	1	70
1	Ammonium bicarbonate (teschemacherite),	0	-	Barlum molybdate, $BaMoO_{4}$	7	7
11	$(NH_4)HCO_3$ Ammonium bromide, NH_4Br	9	$\begin{array}{c} 5 \\ 49 \end{array}$	Barium nitrate (nitrobarite), Ba(NO ₃) ₂ Barium perchlorate trihydrate,	1	81
	Ammonium bromoosmate, (NH ₄)OsBr ₆	$\frac{2}{3}$	71	Ba(ClO ₄) ₂ ·3H ₂ O	$2 \mathrm{m}$	7
14	Ammonium bromoplatinate, (NH ₄) ₂ PtBr ₆	9	6	Barium peroxide, BaO ₂	6	18
11	Ammonium bromoselenate, (NH ₄) ₂ SeBr ₆	8	4	Barium stannate, BaSnO ₃	$3 \mathrm{m}$	11
1	Ammonium bromotelluraté, (NH ₄) ₂ TeBr ₆ Ammonium chloride (sal-ammoniac),	8	5	Barium sulfate (barite), BaSO ₄ Barium sulfide, BaS	$\frac{3}{7}$	65 8
	NH ₄ Cl	1	59	Barium titanate, BaTiO ₃	3	45
14	Ammonium chloroiridate (NH ₄) ₂ IrCl ₆	8	6	Barium tungstate, BaWO ₄	7	9
4	Ammonium chloroosmate, (NH ₄) ₂ OsCl ₆	1m	6	Barium zirconate, BaZrO ₃ Beryllium aluminum oxide (chrysoberyl),	5	8
	Ammonium chloropalladate, $(NH_4)_2$ PdCl ₆	8 6	7 6	BeAl ₂ O ₄ oxide (chrysoberyl),	9	10
1	Ammonium chloroplatinate, $(NH_4)_2$ PtCl ₆	5	3	Beryllium aluminum silicate, beryl,	3	10
11/	Ammonium chlorostannate (NH ₄) ₂ SnCl ₆	5	4	$\operatorname{Be_3Al_2}(\operatorname{SiO_3})_{6}$	9	13
4	Ammonium chlorotellurate, (NH ₄) ₂ Te Cl ₆	8	8	Beryllium chromium oxide, BeCr ₂ O ₄ Beryllium germanate, Be ₂ GeO ₄	$\frac{10}{10}$	12 13
Í	Ammonium chromium sulfate dodecahy- drate, NH ₄ Cr(SO ₄) ₂ ·12H ₂ O	6	7	Beryllium orthosilicate, phenacite, Be ₂ SiO ₄	8	11
1	Ammonium dihydrogen phosphate,			Beryllium oxide (bromellite), BeO	1	36
	NH ₄ H ₂ PO ₄	4	64	Bismuth, Bi	3	20
11	Ammonium fluoberyllate, (NH ₄) ₂ BeF ₄	$3 \mathrm{m} \\ 3 \mathrm{m}$	$\frac{5}{6}$	Bismuth fluoride, BiF ₃ Bismuth (III) iodide, BiI ₃	$\frac{1}{6}$	$\frac{7}{20}$
1	mmonium fluogermanate, (NH ₄) ₂ GeF ₆	6	8	Bismuth orthophosphate, BiPO ₄ (mono-	U	20
1 4	Ammonium fluosilicate (cryptohalite),			clinic)	$3 \mathrm{m}$	11
11	(NH ₄) ₂ SiF ₆	5	5	Bismuth orthophosphate, BiPO ₄ (trigonal)	$3 \mathrm{m}$	13
1	Ammonium gallium sulfate dodecahydrate, NH ₄ Ga(SO ₄) ₂ ·12H ₂ O	6	9	Bismuth orthovanadate, low form, BiVO ₄ (tetragonal)	$3 \mathrm{m}$	14
	Ammonium iodide, $NH_4I_{}$	$\overset{\circ}{4}$	56	(tetragonal)Bismuth orthovanadate, high form, BiVO ₄	0111	
1	Ammonium iron sulfate dodecahydrate,		1.0	(monoclinic)	3m	14
	NH ₄ Fe(SO ₄) ₂ ·12H ₂ OAmmonium metavanadate, NH ₄ VO ₃	6 8	$\frac{10}{9}$	Bismuth oxybromide, BiOBr Bismuth oxychloride (bismoclite), BiOCl	8 4	$\frac{14}{54}$
11 4	Ammonium nitrate (ammonia-niter).	8	9	Bismuth oxychloride (bismochte), BiOCI Bismuth oxyiodide, BiOI	9	$\begin{array}{c} 54 \\ 16 \end{array}$
	NH ₄ NO ₃ oxalate monohydrate (oxam-	7	4	Bismuth sulfide (bismuthinite), Bi ₂ S ₃	$\overset{\circ}{4}$	23
1	Ammonium oxalate monohydrate (oxam-	~	~	Bismuth telluride (tellurobismuthite),	0	1.0
1	mite), (NH ₄) ₂ C ₂ O ₄ ·H ₂ O ₄ . Ammonium perchlorate, NH ₄ ClO ₄ , (ortho-	7	5	Bi ₂ Te ₃ Bismuth trioxide (bismite), alpha Bi ₂ O ₃	$3\mathrm{m} \\ 3\mathrm{m}$	16 17
	rhombic)	7	6	Cadmium, Cd	3	10
4	rhombic)Ammonium perrhenate, NH ₄ ReO ₄	9	7	Cadmium bromide, CdBr ₂	9	17
1	ammonium phosphomolybdate tetrahy-	8	10	Cadmium carbonate (otavite), CdCO ₃	$\frac{7}{9}$	11
	drate, $(NH_4)_3PO_4(M_0O_3)_{12}\cdot 4H_2O_1$ Ammonium sulfate (mascagnite), $(NH_4)_2SO_4$	8	10	Cadmium chloride, CdCl ₂	9	18 8
ш	(revised)	9	8	Cadmium cyanide, $Cd(CN)_2$	6	21
1	Ammonium zirconium fluoride, (NH ₄) ₃ ZrF ₇	6	14	Cadmium oxide, CdO	2	27
1	Antimony, Sb	$\frac{3}{2\mathrm{m}}$	$\frac{14}{4}$	Cadmium perchlorate hexahydrate,	3m	19
1		2111	4	Cd(ClO ₄) ₂ ·6H ₂ O	3111 7	12
	⁶ Further work on this program is in progress, and it is additional sections will be issued. Therefore, the accumulation	anticipate	d that	Cadmium sulfate, CdSO ₄	$3 \mathrm{m}$	$\overline{20}$
	additional sections will be issued. Therefore, the accumul snot necessarily the concluding index for the project.	lative inde	x here	Cadmium sulfide (greenockite), CdS	4	15
I	m—Monograph 25.			Cadmium telluride, CdTeCadmium tungstate, CdWO ₄	$\frac{3\mathrm{m}}{2\mathrm{m}}$	21 8
	Livingiapu 20.			Cadimum sungerate, Od W O4	2111	0

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, AND 35—Continued

	Vol. or			Vol. or	
	sec.	Page		Vol. or sec.	Page
tri-Calcium aluminate, 3CaO·Al ₂ O ₃	5	10	Chromium orthophosphate, beta, CrPO ₄	9	26
Calcium aluminate 12:7, 12CaO·7Al ₂ O ₃ Calcium aluminum germanate,	9	20	Chromium (III) oxide, Cr_2O_3 Chromium silieide, Cr_3Si	5 6	$\frac{22}{29}$
$\operatorname{Ca_3Al_2}(\operatorname{GeO_4})_3$	10	15	Cobalt aluminum oxide, CoAl ₂ O ₄	9	$\frac{29}{27}$
Calcium bromide hexahydrate, CaBr ₂ ·6H ₂ O ₋	8	15	Cobalt arsenide (skutterudite), CoAs ₃	10	$\overline{21}$
Calcium carbonate (aragonite), CaCO ₃ (or-	3	5 9	Cobalt(II) carbonate (spherocobaltite),	10	9.4
thorhombic)Calcium carbonate (calcite) CaCO ₃ (hexag-	о	53	CoCO ₃ Cobalt diarsenide, CoAs ₂	$\begin{array}{c} 10 \\ 10 \end{array}$	$\frac{24}{26}$
onal)	2	51	Cobalt fluosilicate hexahydrate, CoSiF ₆ ·6H ₂ O ₋	3m	27
Calcium chromate, CaCrO ₄	7	13	Cobalt gallate, CoGa ₂ O ₄	10	27
Calcium chromium germanate,	10	16	Cobalt germanate, Co ₂ GeO ₄	$\begin{array}{c} 10 \\ 10 \end{array}$	$\begin{array}{c} 27 \\ 28 \end{array}$
Ca ₃ Cr ₂ (GeO ₄) ₃ Calcium chromium silicate (uvarovite),	10	10	Cobalt mercury thiocyanate, Co[Hg(CNS) ₄]	2m	13
$Ca_3Cr_2(S_1O_4)_3$	10	17	Cobalt(II) oxide, CoO	9	28
Calcium fluoride (fluorite), CaF ₂	1	69	Cobalt (II, III) oxide, Co ₃ O ₄ Cobalt perchlorate hexahydrate, Co(ClO ₄) ₂ ·	9	29
$C_{a_5}F(PO_4)_{3}$	$3\mathrm{m}$	22	$6\mathrm{H}_2\mathrm{O}$	3m	28
Cas F(PO ₄) ₃	8	16	6H ₂ O Cobalt sulfate, beta, CoSO ₄	2m	14
Calcium gallium germanate, Ca ₃ Ga ₂ (GeO ₄) ₃	10	18	Copper, Cu	1	15
Calcium hydroxide (portlandite), Ca(OH) ₂ Calcium iron germanate, Ca ₃ Fe ₂ (GeO ₄) ₃	$\frac{1}{10}$	58 19	Copper (I) bromide, CuBrCopper carbonate basic, azurite, Cu ₃ (OH) ₂	4	36
Calcium iron silicate (andradite),		10	$(CO_3)_2$	10	30
$\mathrm{Ca_3Fe_2Si_3O_{12}}$	9	22	Copper carbonate, basic, (malachite),	10	0.1
Calcium molybdate (powellite), $CaMoO_{4}$ Calcium nitrate, $Ca(NO_3)_{2}$	6 7	$\frac{22}{14}$	$Cu_2(OH)_2CO_3$ Copper(I) chloride (nantokite), $CuCl_{}$	$\frac{10}{4}$	31 35
Calcium oxide, CaO	í	43	Copper(I) iodide (marshite), CuI	4	38
Calcium sulfate (anhydrite), CaSO ₄	4	65	Copper(I) oxide (cuprite), Cu ₂ O	2	23
Calcium sulfide (oldhamite), CaS	$\frac{7}{6}$	15	Copper(II) oxide (tenorité), CuO	$\frac{1}{3\mathrm{m}}$	49 29
Calcium tungstate scheelite, CaWO ₄ Carbon, diamond, C	2	$\frac{23}{5}$	Copper sulfate (chalcocyanite), CuSO ₄ Copper(II) sulfide (covellite), CuS	3 m 4	13
Cerium (III) chloride, CeCl ₃	$1 \mathrm{m}$	8	Dysprosium arsenate, DyAsO ₄	3 m	30
Cerium (III) fluoride, CeF ₃	8	17	Dysprosium gallium oxide 3:5,	0	
Cerium, magnesium nitrate 24-hydrate, Ce ₂ Mg ₃ (NO ₃) ₁₂ ·24H ₂ O	10	20	$Dy_3Ga_2(GaO_4)_3$ $Dysprosium sesquioxide, Dy_2O_3$	2m 9	15 30
Cerium niobium titanium oxide (eschynite),	10	20	Erbium arsenate, ErAsO ₄	$3 \mathrm{m}$	31
CeNbTiO ₆	3m	24	Erbium gallium oxide 3:5, Er ₃ Ga ₂ (GaO ₄) ₃	1m	12
Cerium (IV) oxide (cerianite) CeO ₂ Cerium (III) vanadate, CeVO ₄	1	$\frac{56}{9}$	Erbium manganite, ErMnO ₃ Erbium phosphate, ErPO ₄	$rac{2 ext{m}}{9}$	$\begin{array}{c} 16 \\ 31 \end{array}$
Cesium aluminum sulfate dodecahydrate,	1m	Э	Erbium sesquioxide, Er ₂ O ₃	8	25
$CsAl(SO_4)_2 \cdot 12H_2O_{}$	6	25	Europium arsenate, EuAsO ₄	3m	32
Cesium bromate, CsBrO ₃	8	18	Europium (III) chloride, EuCl ₃	$rac{1 ext{m}}{2 ext{m}}$	13
Cesium bromide, CsBr Cesium bromoosmate (IV), Cs ₂ OsBr ₆	$^{3}_{2 m m}$	49 10	Europium gallium oxide 3:5, Eu ₃ Ga ₂ (GaO ₄) ₃₋ Europium oxychloride, EuOCl	1m	17 13
Cesium bromoplatinate, Cs ₂ PtBr ₆	8	19	Gadolinium fluoride, GdF ₃	1m	14
Cesium bromoselenate, Cs ₂ SeBr ₆	8	20	Gadolinium gallium oxide 3:5,	0	18
Cesium bromotelluraté, Cs ₂ TeBr ₆ Cesium chlorate, CsClO ₃	8	$\begin{array}{c} 24 \\ 20 \end{array}$	$Gd_3Ga_2(GaO_4)_3$	$2\mathrm{m} \ 1\mathrm{m}$	16
Cesium chloride, CsCl	$\overset{\circ}{2}$	44	Gadolinium oxychloride, GdOCl	1m	17
Cesium chloroosmate (IV), Cs ₂ OsCl ₆ Cesium chloroplatinate, Cs ₂ PtCl ₆	2m	11	Gallium, Ga	2	9.1
Cesium chlorostannate, Cs ₂ PtCl ₆	5 5	$\begin{array}{c} 14 \\ 16 \end{array}$	Gallium arsenide, GaAsGallium antimonide, GaSb	3m 6	33 d 30 l
Cesium chromate. Cs ₂ CrO ₄	$3 \mathrm{m}$	$\frac{10}{25}$	Gallium oxide, alpha, Ga ₂ O ₃	4	25
Cesium chromium sulfate dodecahydrate,			Gallium phosphate (\alpha-quartz type), GaPO	8	27
CsCr(SO ₄) ₂ ·12H ₂ O	8	21	Germanium, Ge. Germanium dioxide, GeO ₂ (hexagonal)	1	18
Cesium dichloroiodide, CsICl ₂	3 8	$\begin{array}{c} 50 \\ 22 \end{array}$	(low torm)	1	51
Cesium fluogermanate, Cs ₂ GeF ₆	$\overset{\circ}{5}$	17	Germanium dioxide, GeO ₂ (tetragonal)		l)
Cesium fluoplatinate, Cs2PtF6-	6	27	(nign form)	8	28
Cesium fluoride, CsF	$3\mathrm{m}$	$\frac{26}{19}$	Germanium(IV) iodide, GeI4Gold, Au	$\frac{5}{1}$	25 33
Cesium gallium sulfate dodecahydrate,	U	10	Gold antimony 1:2 (aurostibite), AuSb ₂	$\dot{\bar{7}}$	18
$CsGa(SO_4)_2 \cdot 12H_2O_{}$	8	23	Gold(I) cyanide, AuCN	10	33
Cesium iodide, CsI	4	47	Gold tin, 1:1 AuSn	$\frac{7}{3}$	19 18
CsFe(SO ₄) ₂ ·12H ₂ O	6	28	Holmium arsenate, HoAsO ₄	3m	34
Cesium nitrate, CsNO ₃ Cesium perchlorate, CsClO ₄ , (orthorhombic)_	9	25	Holmium ethylsulfate nonahydrate,		
Cesium perchlorate, CsClO ₄ , (orthorhombic)	$1 \mathrm{m}$	10	$H_0 [(C_2H)_5SO_4]_3.9H_2O_{}$	1m	$\frac{18}{32}$
Cesium sulfate Cs ₂ SO ₄	7	17	Holmium sesquioxide, H ₀₂ O ₃ Indium, In	9 3	$\frac{32}{12}$
$C_{\rm SV}({\rm SO_4})_2 \cdot 12 H_2 O_{}$	$1 \mathrm{m}$	11	Indium antimony, InSb	4	73
Chromium, Cr.	5	20	Indium arsenide, InAs	3m	35
Chromium orthophosphate, alpha, CrPO ₄ m-Monograph 25.	2m	12	Indium oxide, In_2O_3 Indium phosphate, $InPO_4$	5 8	$\frac{26}{29}$
					1

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, AND 35—Continued

	Vol. or sec.	Page		Vol. or sec.	Page
Iodic acid, HIO3	5	28	Magnesium germanate, Mg ₂ GeO ₄ (cubic)	10	37
Iodine, I ₂	3	16	Magnesium germanate, Mg ₂ GeO ₄ (ortho-	1.0	0.0
Iridium, Ir	4	$\frac{9}{3}$	rhombic)	10 6	$\frac{38}{30}$
Iron arsenide, FeAs	1m	19	Magnesium oxide (periclase), MgO	1	37
Iron arsenide (loellingite), FeAs ₂	10	34	Magnesium silicate, enstatite, MgSiO ₃	6	32
Iron sulfide (pyrite), FeS ₂	5	29	Magnesium silicate (forsterite), Mg ₂ SiO ₄	1	83
Lanthanum arsenate, LaAsO ₄ Lanthanum borate, LaBO ₃	$3\mathrm{m} \\ 1\mathrm{m}$	$\begin{array}{c} 36 \\ 20 \end{array}$	Magnesium silicate fluoride (norbergite),	10	39
Lanthanum chloride, LaCl ₃	1m	$\frac{20}{21}$	Mg ₂ SiO ₄ ·MgF ₂ . Magnesium silicate fluoride (humite),	10	อฮ
Lanthanum fluoride, LaF ₃	7	21	3Mg ₂ S1O ₄ ·MgF ₂	$1 \mathrm{m}$	30
Lanthanum magnesium nitrate 24-hydrate,	4	90	Magnesium sulfate heptahydrate (epsomite),	_	0.0
La ₂ Mg ₃ (NO ₃) ₁₂ ·24H ₂ O Lanthanum niobium titanium oxide,	1m	22	MgSO ₄ ·7H ₂ O Magnesium sulfide, MgS	7	$\frac{30}{31}$
LaNbTiO ₆	$3 \mathrm{m}$	37	Magnesium tin, Mg ₂ Sn	5	41
Lanthanum oxide, La ₂ O ₃	3	33	Magnesium titanate (geikielite), MgTiO ₃	5	43
Lanthanum oxychloride, LaOCl	7	22	Magnesium tungstate, MgWO ₄		84
Lead, Pb	1	$\begin{array}{c} 34 \\ 47 \end{array}$	Manganese aluminate (galaxite), MnAl ₂ O ₄ Manganese(II) carbonate (rhodochrosite),	9	35
Lead carbonate (cerrussite), PbCO ₃	$egin{array}{c} 2 \\ 2 \\ 2 \\ 8 \end{array}$	56	MnCO ₃	7	32
Lead chloride (cotunnite), PbCl ₂	$\bar{2}$	45	Manganese ferrite (jacobsite), MnFe ₂ O ₄	9	36
Lead formate, Pb(HCO ₂) ₂		30	Manganese(II) oxide (manganosite), MnO_	5	45
Lead fluochloride (matlockite), PbFCl	1	$\begin{array}{c} 76 \\ 31 \end{array}$	Manganese (III) oxide (partridgeite), Mn ₂ O ₃	9	37
Lead fluoride, alpha PbF ₂ (orthorhombie) Lead fluoride, beta PbF ₂ (cubic)	5 5	33	Manganese selenide, MnSe Manganese sulfide (alabandite),	10	41
Lead (II), iodide, PbI	5	34	alpha MnS	4	11
Lead molybdate (wulfenite), PbMoO ₄ Lead monoxide (litharge), PbO (red) tetrag-	7	23	Manganese(II) tungstate (huebnerite),		
	0	20	MnWO_{4}	2m	24
lead monoxide (massicot), PbO (yellow)	2	30	Mercury(I) bromide, Hg ₂ Br ₂	$\frac{7}{1}$	$\frac{33}{72}$
(orthorhombic)	2	32	Mercury(II) chloride, HgCl ₂	1	73
(orthorhombic) Lead nitrate, Pb(NO ₃) ₂	5	36	Mercury(II) cyanide, $Hg(CN)_{2}$	6	35
Lead (II, III) oxide (minium), Pb ₃ O ₄	8	32	Mercury(II) fluoride, HgF2	2m	25
Lead phosphate hydrate, Pb ₅ (PO ₄) ₃ OH Lead selenide (clausthalite), PbSe	8 5	$\frac{33}{38}$	Mercury(I) iodide, HgI	$\frac{4}{1}$	$\frac{49}{74}$
Lead sulfate (anglesite), PbSO ₄		67	Mercury(II) iodide, HgI ₂	1	14
Lead sulfide (galena), PbS	2	18	(revised)	9	39
Lead titanate, PbTiO ₃	5	39	Mercury(II) selenide (tiemannite), HgSe	7	35
Lead tungstate (stolzite), PbWO ₄	$^{7}_{2 m m}$	$\begin{array}{c} 24 \\ 19 \end{array}$	Mercury(II) sulfide (cinnabar), HgS (hexagonal)	4	17
Lithium arsenate, Li ₃ AsO ₄ Lithium bromide, LiBr	4	30	Mercury(II) sulfide (metacinnabar), HgS		17
Lithium chloride, LiCl	$\overline{1}$	62	(cubic)	4	21
Lithium fluoride, LiF	1	61	Molybdenum, Mo	1	20
Lithium iodate, LiIO ₃ Lithium molybdate, Li ₂ MoO ₄ , (trigonal)	7 1m	$\begin{array}{c} 26 \\ 23 \end{array}$	Molybdenum disulfide (molybdenite), MoS ₂		$\frac{47}{30}$
Lithium oxide, Li ₂ O (trigonal)	1m 1m	$\frac{25}{25}$	Molybdenum trioxide (molybdite), MoO ₃ Neodymium borate, NdBO ₃	1 m	$\frac{30}{32}$
Lithium nitrate, LiNO ₃	7	$\overline{27}$	Neodymium chloride, NdCl3		33
Lithium perchlorate trihydrate, LiClO ₄ ·3H ₂ O	8	34	Neodymium ethylsulfate nonahydrate,		
Lithium phosphate, low form, (lithiophos-		38	$Nd[(C_2H_5)SO_4]_3 \cdot 9H_2O_{}$ Neodymium fluoride, $NdF_3_{}$	9 8	41 36
phate), Li ₃ PO ₄ Lithium phosphate, high form, Li ₃ PO ₄	3m $3m$	39	Neodymium gallium oxide 3:5,	0	90
Lithium trimetaphosphate trihydrate,	9	•	$Nd_3Ga_2(GaO_4)_3$	1m	34
$\text{Li}_{3}\text{P}_{3}\text{O}_{9}\cdot3\text{H}_{2}\text{O}_{$	2m	20	Neodymium oxide, Nd_2O_3	4	26
Lithium tungstate, Li ₂ WO ₄ , (trigonal)	1m	25	Neodymium oxychloride, NdOCl	8 1	37
Lithium tungstate hemihydrate, Li ₂ WO ₄ ½H ₂ O	$2 \mathrm{m}$	20	Nickel, Ni Nickel aluminate, NiAl ₂ O ₄	9	$\frac{13}{42}$
Lutetium gallium oxide 3:5, $Lu_3Ga_2(GaO_4)_{3-}$		$\frac{20}{22}$	Nickel arsenic 1:2 (rammelsbergite), NiAs ₂ -	10	42
Lutetium manganite, LuMnO ₃	$2\mathrm{m}$	23	Nickel arsenic sulfide (gersdorffite), NiAsS)	1m	35
Lutetium oxide, Lu ₂ O ₃		27	Nickel (II) carbonate, NiCO ₃ (trigonal)	1m	36
Magnesium, Mg Magnesium aluminate (spinel), Mg Al ₂ O ₄		$\begin{array}{c} 10 \\ 35 \end{array}$	Nickel ferrite (trevorite), NiFe ₂ O ₄ Nickel fluosilicate hexahydrate, NiSiF ₆ ·6H ₂ O ₋	$\frac{10}{8}$	$\frac{44}{38}$
Magnesium aluminum silicate (low-cordi-		00	Nickel gallate, NiGa ₂ O ₄	10	45
erite), Mg ₂ Al ₄ Si ₅ O ₁₈ (orthorhombic)	$1\mathrm{m}$	28	Nickel germanate, Ni ₂ GeO ₄	9	43
Magnesium aluminum silicate (high-cordi-	_	90	Nickel (II) oxide (bunsenite), NiO	1 2m	47
erite), Mg ₂ Al ₄ Si ₅ O ₁₈ (hexagonal) Magnesium ammonium phosphate hexahy-	1m	29	Nickel sulfate, NiSO ₄	2m	26
drate, (struvite), MgNH ₄ PO ₄ ·6H ₂ O	3m	41	$NiSO_4 \cdot 6H_2O_{}$	7	36
Magnesium carbonate (magnesite), MgCO ₃	7	28	Nickel sulfide, millerite, NiS	1m	37
Magnesium chromite (picrochromite),	0	9.4	Nickel tungstate, NiWO ₄	2m	27
MgCr ₂ O ₄ ' Magnesium fluoride (sellaite), MgF ₂	$\frac{9}{4}$	$\begin{array}{c} 34 \\ 33 \end{array}$	Niobium silicide, NbSi ₂ Osmium, Os	8 4	$\frac{39}{8}$
Magnesium gallate, MgGa ₂ O ₄		36	Palladium, Pd.	1	$2\overline{1}$
m—Monograph 20.			Palladium oxide, PdO	4	27

CUMULATIVE INDEX TO CIRCULAR 539, VOLUMES, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, MONOGRAPH 25, SECTIONS 1, 2, AND 35—Continued

	Vol. or			Vol. or	
DI II DI	sec.	Page	Company ablant 1 C Cl	sec.	Page
Platinum, Pt Potassium aluminum sulfate dodecahydrate	1	31	Samarium chloride, SmCl ₃ Samarium fluoride, SmF ₃	1m 1m	40 41
(alum), KAI(SO ₄) ₂ ·12H ₂ O	6	36	Samarium gallium oxide 3:5, Sm ₃ Ga ₂ (GaO ₄) ₃	1m	42
Potassium borohydride, KBH ₄	9	44	Samarium oxychloride, SmOCl	$1 \mathrm{m}$	43
Potassium bromate, KBrO ₃	7	38	Scandium oxide, Sc ₂ O ₃	3	27
Potassium bromide, KBr	8	$\frac{66}{40}$	Scandium phosphate, ScPO ₄ Selenium, SeSelenium, Se	8 5	50 f
Potassium bromoplatinate, K ₂ PtBr ₆ Potassium bromoselenate, K ₂ SeBr ₆	8	41	Selenium dioxide (selenolite), SeO ₂	1	53
Potassium chlorate, KClO ₃	$3 \mathrm{m}$	42	Silicon, Si	2	6
Potassium chloride (sylvite), KCl	1	65	Silicon dioxide alpha or low quartz, SiO2	0	2.8
Potassium chloroplatinate, K ₂ PtCl ₆ Potassium chlororhenate, K ₂ ReCl ₆	$^{5}_{2 m m}$	$\begin{array}{c} 49 \\ 28 \end{array}$	(hexagonal)Silicon dioxide (alpha or low cristobalite),	3	24
Potassium chlororuthenate (IV), K ₂ RuCl ₆ .	10	46	SiO ₂ (Revised) (tetragonal)	10	48
Potassium chlorostannate, K ₂ Sn Cl ₆	6	38	Silicon dioxide (beta or high crisobalite),		Ä
Potassium chromium sulfate dodecahydrate,	_	0.0	SiO ₂ (cubic)	1	42
KCr(SO ₄) ₂ ·12H ₂ O	$\frac{6}{9}$	$\frac{39}{45}$	Silver, Ag	1 3m	23 47
Potassium cobaltinitrite, K ₃ Co(NO ₂) ₆ Potassium cyanate, KCNO	7	39	Silver antimony telluride, AgSbTe ₂ Silver arsenate, Ag ₃ AsO ₄	5	56
Potassium cyanide, KCN	i	77	Silver bromate, AgBrO ₃	$\check{5}$	57
Potassium dihydrogen arsenate, KH ₂ AsO ₄	$1 \mathrm{m}$	38	Silver bromide (bromyrite), AgBr	4	46
Potassium dihydrogen phosphate, KH ₂ PO ₄	3	69	Silver carbonate, Ag ₂ CO ₃	$1 \frac{m}{7}$	44
Potassium fluogermanate, K_2GeF_6 ————————————————————————————————————	6 6	$\frac{41}{42}$	Silver chlorate, AgClO ₃	$7 \\ 4$	44 44
Potassium fluoride, KF.	1	64	Silver iodide (iodyrite), AgI (hexagonal)	8	51
Potassium fluosilicate (hieratite), K ₂ SiF ₆	5	50	Silver iodide, gamma, AgI (cubic)	9	48
Potassium fluotitanate, K ₂ TiF ₆	7	40	Silver metaperiodate, AgIO ₄	9	49
Potassium heptafluozirconate, K ₃ ZrF ₇	9	46	Silver molybdate, Ag ₂ MoO ₄	7 5	45 ¹ 591
Potassium hydroxy-chlororuthenate, $K_4Ru_2Cl_{10}O \cdot H_2O_{}$	10	47	Silver nitrate, $AgNO_3$ Silver nitrite, $AgNO_2$	5	60
Potassium iodide, KI	1	68	Silver oxide, Ag ₂ O	1m	45
Potassium lithium sulfate, KLiSO ₄	3m	43	Silver (II) oxynitrate, Ag ₇ O ₈ NO ₃	4	61^{11}
Potassium metaperiodate, KIO ₄	$\frac{7}{3}$	41 58	Silver perrhenate, AgReO ₄	8 5	53 62
Potassium nitrate (niter), KNO ₃	o	90	Silver phosphate, Ag ₃ PO ₄ Silver selenate, Ag ₂ SeO ₄	$2\mathrm{m}$	$\frac{62}{32}$
K ₂ RuCl ₆ NO	2m	29	Silver sulfate, Ag ₂ SO ₄	7	46
Potassium perchlorate, KClO ₄	6	43	Silver sulfide (argentite), Ag ₂ S. Sodium acid fluoride, NaHF ₂	10	514
Potassium perchromate, K ₃ CrO ₈	3m	44	Sodium acid fluoride, NaHF2	5	63
Potassium permanganate, KMnO ₄	7 8	$\frac{42}{41}$	Sodium borohydride, NaBH ₄	9 5	51 65
Potassium phosphomolybdate, tetrahydrate,	O	-11	Sodium bromide, NaBr	3	47
$K_2PO_4(MoO_3)_{12} \cdot 4H_2O_2$	8	43	Sodium carbonate monohydrate (thermona-		1
Potassium sulfate (arcanite), K ₂ SO ₄	3 8	62	trite), Na ₂ CO ₃ ·H ₂ O	$\frac{8}{3}$	54
Potassium thiocynate, KCNS Potassium zinc decavanadate 16 hydrate,	8	44	Sodium chlorate, NaClO ₃ Sodium chloride (halite), NaCl	$\frac{3}{2}$	$\begin{array}{c} 51 \\ 41 \end{array}$
$K_2Z_{n_2}V_{10}O_{28}\cdot 16H_2O_{}$	3m	45	Sodium cyanate, NaCNO	2m	33
Potassium zinc fluoride, KZnF ₃	5	51	Sodium cyanide, NaCN (cubic)	1	78
Praseodymium chloride, PrCl ₃	$1 \mathrm{m}$	39	Sodium cyanide, NaCN (orthorhombic) at		me i
Prasedymium fluoride, PrF ₃	$\frac{5}{9}$	$\begin{array}{c} 52 \\ 47 \end{array}$	6 °CSodium fluoride (villiaumite), NaF	1 1	7941 63
Praseodymium oxychloride, PrOCl	$\overset{s}{2}$	13	Sodium iodate, NaIO ₃	7	47
Rhodium, Rh	3	9	Sodium iodide, NaI	4	31
Rubidium aluminum sulfate dodecahydrate,			Sodium magnesium aluminum boron hy-		
RbAl(SO ₄) ₂ ·12H ₂ O	6	$\begin{array}{c} 44 \\ 45 \end{array}$	droxy silicate, dravite,	2 m	47
Rubidium bromate, RbBrO ₃ Rubidium bromide, RbBr	8 7	43	$NaMg_3Al_6B_3Si_6O_{27}(OH)_4$ Sodium metaperiodate, $NaIO_4$	$\frac{3m}{7}$	48
Rubidium bromotellurate, Rb ₂ TeBr ₆	8	46	Sodium molybdate, Na ₂ MoO ₄	1m	46
Rubidium chlorate, RbClO ₃	8	47	Sodium nitrate (soda-niter), NaNO ₃	6	50
Rubidium chloride, RbCl.	$\frac{4}{5}$	41	Sodium nitrite, Na NO ₂	4	62
Rubidium chloroplatinate, Rb ₂ PtCl ₆ Rubidium chlorostannate, Rb ₂ SnCl ₆	5 6	$\begin{array}{c} 53 \\ 46 \end{array}$	Sodium orthotungstate (VI) dihydrate, Na ₂ WO ₄ ·2H ₂ O	2m	33
Rubidium chlorotellurate, Rb ₂ TeCl ₆	8	48	Sodium perchlorate, NaClO ₄ (orthorhombic)	7	49
Rubidium chromate, Rb ₂ CrO ₄	$3 \mathrm{m}$	46	Sodium sulfate (thenardite), Na ₂ SO ₄	2	59
Rubidium chromium sulfate dodecahydrate,			Sodium sulfite. Na ₂ SO ₃	3	60
RbCr(SO ₄) ₂ ·12H ₂ O	6	47	Sodium tetrametaphosphate tetrahydrate, alpha, Na ₄ P ₄ O ₁₂ ·4H ₂ O (monoclinic)	10	52
Rubidium fluoplatinate, Rb ₂ PtF ₆	6	48	Sodium tetrametaphosphate tetrahydrate,	10	-
Rubidium fluosilicate, Rb ₂ SiF ₆	6	$\begin{array}{c} 49 \\ 43 \end{array}$	beta, $Na_4P_4O_{12}\cdot 4H_2O$ (triclinic)	2m	35
Rubidium iodide, RbIRbClO ₄	$2 \mathrm{m}$	30	Sodium trimetaphosphate, Na ₃ P ₃ O ₉	3m	49
Rubidium periodate, RbIO ₄	2m	31	Sodium trimetaphosphate monohydrate,	3m	50
Rubidium sulfate, Rb ₂ SO ₄	8	48	Na ₃ P ₃ O ₉ ·H ₂ O	$3 \mathrm{m} \\ 1 \mathrm{m}$	47
Ruthenium, Ru	4	5	Stannous fluoride, SnF ₂	3m	51
m—Monograph 25.			Strontium arsenate, Sr ₃ (AsO ₄) ₂	2m	36
					3

MONOGRAPH 25, SECTIONS 1, 2, AND 35—Continued

	Vol. or	Родо		Vol. or	Dian
C. C. 1.1 har at a C.O.D.O.	səc.	Page 53	The lline (I) An and An The WO	sec.	Page
Strontium 1:1 borate, SrO·B ₂ O ₃ Strontium bromide hexahydrate, SrBr ₂ ·6H ₂ O ₂	$\frac{3\mathrm{m}}{4}$	60	Thallium(I) tungstate, Tl_2WO_4	$1 \mathrm{m}$	48
Strontium bromide nexallydrate, SrB12-01120- Strontium carbonate (strontianite), SrCO ₃	3	56	Thulium arsenate, TmAsO ₄	$\frac{1}{3\mathrm{m}}$	57 56
Strontium chloride, SrCl ₂	4	40	Thulium sesquioxide, Tm ₂ O ₃	9	58
Strontium chloride hexahydrate, SrCl ₂ ·6H ₂ O ₋	$\overset{1}{4}$	58	Tin, alpha, Sn (cubic)		12
Strontium fluoride, SrF ₂	$\hat{5}$	67	Tin, beta, Sn (tetragonal)	1	$\frac{12}{24}$
Strontium formate, Sr(CHO ₂) ₂	8	55	Tin(IV) iodide, SnI ₄	5	71
Strontium formate dihydrate,	Ŭ		Tin(II) oxide, SnO	$\frac{3}{4}$	28
Sr(CHO ₂) ₂ ·2H ₂ O (orthorhombic)	8	56	Tin (IV) oxide (cassiterite), SnO ₂	î	54
Strontium iodide hexahydrate, SrI ₂ ·6H ₂ O	8	58	Tin(II) telluride, SnTe	$\bar{7}$	61
Strontium molybdate, SrMoO ₄	7	50	Titanium, Ti	3	1
Strontium nitrate, $Sr(NO_3)_{2}$	1	80	Titanium, Ti Titanium dioxide (anatase), TiO ₂ (tetra-		
Strontium oxide, SrO	5	68	gonal)	1	46
Strontium peroxide, SrO ₂	6	52	Titanium dioxide, brookite, TiO ₂ (ortho-		
Strontium sulfate (celestite), SrSO ₄	2	61	rhombic)	3m	57
Strontium sulfide, SrS	7	52	Titanium dioxide (rutile), TiO ₂ (tetragonal)	1	44
Strontium titanate, SrTiO ₃	3	44	Titanium(III) oxide, TiO _{1.515}	9	59
Strontium tungstate, SrWO ₄	7	53	Titanium silicide, Ti ₅ Si ₃	8	64
Strontium zirconate, SrZrO ₃	9	51	Tungsten, W	1	28
Sulfamic acid, NH ₃ SO ₃	7	54	Tungsten sulfide (tungstenite), WS ₂	8	65
Sulfur, S	9	54	Uranium dioxide (uraninite), UO2	2	33
Tantalum, Ta	1	29	Urea, $CO(NH_2)_2$	7	61
Tantalum Silicide, TaSi2	8	59	Vanadium(V) oxide, V ₂ O ₅	8	66
Tellurium, Te	1	26	Ytterbium gallium oxide 3:5, Yb ₃ Ga ₂ (GaO ₄) ₃₋	$1 \mathrm{m}$	49
Tellurium(IV) oxide (paratellurite), TeO ₂	7	F.C.	Yttrium arsenate, YAsO ₄	2m	39
(tetragonal) Tellurium(IV) oxide, paratellurite, TeO ₂	- (56	Yttrium gallium oxide 3:5, Y ₃ Ga ₂ (GaO ₄) ₃	$1 \mathrm{m}$	50
Tellurium (1 v) oxide, paratellurite, $1eO_2$	10	55	Yttrium, oxide, Y ₂ O ₃	3	28
(tetragonal)	10	99	Yttrium phosphate (xenotime), YPO ₄	$1 \mathrm{m}$	51
rhombic)	9	57	Zine, Zn	8 1	67 16
Terbium arsenate, TbAsO ₄	$3 \mathrm{m}$	54	Zinc aluminate (gahnite), ZnAl ₂ O ₄	2	38
Thallium aluminum sulfate dodecahydrate,	0111	0.1	Zinc borate, ZnB ₂ O ₄	1	83
TlAl(SO ₄) ₂ ·12H ₂ O	6	53	Zinc carbonate smithsonite, ZnCO ₃	8	69
Thallium (I) arsenate, Tl ₃ AsO ₄	$2 \mathrm{m}$	37	Zinc cyanide, Zn(CN) ₂	5	73
Thallium(I) bromate, TlBrO ₃	8	60	Zinc, fluoride, ZnF ₂	6	60
Thallium bromide, TlBr	7	57	Zinc fluosilicate hexahydrate, ZnSiF ₆ ·6H ₂ O	8	70
Thallium(I) chlorate, TlClO ₃	8	61	Zinc germanate, Zn ₂ GeO ₄	10	56
Thallium(I) chloride, TlCl	$\overline{4}$	51	Zinc iodide, ZnÍ ₂	9	60
Thallium chloroplatinate, Tl ₂ PtCl ₆	5	70	Zinc orthosilicate (willemite), Zn ₂ SiO ₄	7	62
Thallium chlorostannate, Tl ₂ SnCl ₆	6	54	Zinc oxide (zincite), ZnO	2	25
Thallium chromate, Tl ₂ CrO ₄	3m	54	Zinc pyrosilicate hydrate, hemimorphite,		
Thallium chromium sulfate dodecahydrate,			$\operatorname{Zn_4(OH)_2Si_2O_7 \cdot H_2O}$	2	62
$TlCr(SO_4)_2 \cdot 12H_2O_{}$	6	55	Zinc selenide, ZnSe	3	23
Thallium fluosilicate, Tl ₂ SiF ₆	6	56	Zinc sulfate (zinkosite), ZnSO ₄	7	64
Thallium gallium sulfate dodecahydrate,			Zinc sulfate heptahydrate (goslarite),		
TlGa(SO ₄) ₂ ·12H ₂ O	6	57	$ZnSO_4 \cdot 7H_2O$	8	71
Thallium(I) iodate, TlIO ₃	8	62	Zinc sulfide, (wurtzite), alpha ZnS (hexag-		
Thallium(I) iodide, TlI (orthorhombic)	4	53	onal)	2	14
Thallium(I) nitrate, TlNO ₃	6	58	Zinc sulfide, (sphalerite), beta ZnS (cubic)	2	16
Thallium(III) oxide, Tl ₂ O ₃	2	28	Zinc telluride, ZnTe Zinc tungstate, (sanmartinite), ZnWO ₄	3m	58
Thallium (I) perchlorate, TlClO ₄	$2 \mathrm{m}$	38	Zinc tungstate, (sanmartinite), Zn W O ₄	2m	40
Thallium(I) phosphate, Tl ₃ PO ₄ Thallium(III) phosphate, TlPO ₄	7	58	Zirconium, alpha, Zr	2	11
Thellium (I) phosphate, TIPO ₄	6	59 50	Zirconium iodate, Zr(IO ₃) ₄	$1 \mathrm{m}$	51
Thallium(I) sulfate, Tl ₂ SO ₄ Thallium(I) thiocyanate, TlCNS	$\frac{6}{8}$	59 63	Zirconium silicate zircon, ZrSiO ₄	4	68
	0	00	Zirconium sulfate tetrahydrate,	7	aa
m-Monograph 25			$\mathrm{Zr}(\mathrm{SO_4})_2{\cdot}4\mathrm{H_2O}$	- 1	66

CUMULATIVE MINERAL INDEX

I		Vol. or sec.	Page		Vol. or sec.	Page
H	Alabandite MnS	4	11	Anglesite, PbSO ₄	3	67
j	Alum, $KAI(SO_4)_2 \cdot 12H_2O_{}$	6	36	Anhydrite, CaSO ₄	4	65
H	Ammonia-niter, NH ₄ NO ₃	7	4	Aragonite, CaCO ₃	3	53
H	Anatase, TiO ₂	1	46	Argentite, Ag ₂ S	10	51
-	Andradite, Ca ₃ Fe ₂ Si ₃ O ₁₂	9	22	Arcanite, K ₂ SO ₄	3	62

CUMULATIVE MINERAL INDEX—Continued

	Vol. or sec.	Page		Vol. or	Desir
Arsenolite, As ₂ O ₃	1	51	Massicot, PbO (yellow)	sec.	Page
Aurostibite, AuSb ₂	$\frac{1}{7}$	18	Matlockite, PbFCl	$egin{array}{ccc} 2 & & 1 & & \end{array}$	32
*Azurite, $Cu_3(OH)_2$ (CO_3) ₂	10	30	Metacinnabar, HgS	. 4	$\begin{array}{c} 76 \\ 21 \end{array}$
Barite BaSO4	3	65	*Millerite, NiS	1 m	37
Barite, BaSO ₄ Berlinite, AlPO ₄	10	3	Minium, $Pb_{\circ}O_{\bullet}$	S.	32
*Beryl, Be ₃ Al ₂ (SiO ₃) ₆	9	13	Molybdenite, MoS ₂	. 5	47
Bismite, (alpha) $B_{12}O_{3$	$3\mathrm{m}$	17	Molybuite, Mo O_3	. 3	30
Bismoclite, BiOCl.	4	54	Montroydite, HgO (revised)	9	39
Bismuthinite, Bi_2S_3	4	23	Mullite, $3Al_2O_3$. $2SiO_2$.	3m	3
Böhmite, $Al_2O_3 \cdot H_2O_2$	3	38	Nantokite, CuCl	4	35
Bromellite, BeO	1	36	Niter, KNO ₃	3	58
Bromyrite, AgBr	4 2m	46 57	Nitrobarite, Ba(NO ₃) ₂	1	81
*Brookite, TiO ₂	$\frac{3m}{6}$	30	Norbergite, Mg ₂ SiO ₄ · MgF ₂ Oldhamite, CaS	10	39
Brucite, Mg(OH) ₂ Bunsenite, NiO	1	47	Otavite, CdCO ₃	7	15 11
Calcite, CaCO ₃	$\overset{1}{2}$	51	Oxammite, $(NH_4)_2C_2O_4 \cdot H_2O$	7	5
Calomel, Hg ₂ Cl ₂	1	$7\overline{2}$	*Paratellurite. TeO ₂	10	55
Cassiterite, SnO_2	$\bar{1}$	54	Paratellurite, TeO ₂	7	56
Celestite, SrSO ₄	2	61	Partridgeite, Mn ₂ O ₃	. 9	37
Cerargyrite, AgCl	4	44	Periclase, MgO	1	37
Cerianite, CeO ₂	1	56	*Phenacite, Be ₂ SiO ₄	. 8	11
Cerrussite, PbCO ₃	2	56	Picrochromite, MgCr ₂ O ₄	. 9	34
Cervantite, Sb ₂ O ₄	10	8	Portlandite, Ca(OH) ₂	1	58
Chalcocyanite, CuSO4	3m	29	Powellite, CaMoO ₄	6	22
Chloraluminite, AlCl ₃ · 6H ₂ O	7	3	Pyrite, FeS ₂ *Quartz, SiO ₂ (alpha or low)	. 5	29
Chrysoberyl, BeAl ₂ O ₄	9	10 17	Pammalahargita Ni As	. 3	24
Cinnabar, HgS *Claudetite, As ₂ O ₃	$^{ m 4}_{ m 3m}$	9	Rammelsbergite, NiAs ₂ Retgersite, NiSO ₄ ·6H ₂ O	10	42 36
Clausthalite, PbSe	5	38	Rhodochrosite, MnCO ₃	7	32
Cordierite, Mg ₂ Al ₄ Si ₅ O ₁₈ (orthorhombic)	1m	28	Rutile, TiO ₂	1	44
Cordierite, Mg ₂ Al ₄ Si ₅ O ₁₈ · (hexagonal)	1m	$\tilde{29}$	Safflorite, CoFeAs ₄	10	28
Corundum, Al ₂ O ₃	9	3	Sal-ammoniae, NH ₄ Cl	ĭ	59
Cotunnite, PbCl ₂	2	45	Sanmartinite, $ZnWO_{4-}$	$2 \mathrm{m}$	40
Covellite, CuS	4	13	*Scheelite, $CaWO_{4$	6	23
Cristobalite, (alpha or low) SiO ₂ (revised)	10	48	Selenolite, SeO_2	. 1	53
Cristobalite, (beta or high) SiO2	1	42	Sellaite, MgF ₂	4	33
Cryptohalite, (NH ₄) ₂ SiF ₆	5	5	Senarmontite, Sb ₂ O ₃	. 3	31
Cuprite, Cu ₂ O	$\frac{2}{2}$	23	Skutterudite, CoAs ₃	10	21
*Diamond, C	$\frac{2}{3}$	$\begin{array}{c} 5 \\ 41 \end{array}$	*Smithsonite, ZnCO ₃	. 8 . 6	69 50
*Dravite, Na $Mg_3Al_6B_3Si_6O_{27}(OH)_4$	$3 \mathrm{m}$	47	Sphalerite, ZnS	2	16
*Enstatite, MgSiO ₃	6	32	Spherocobaltite, CoCO ₃	10	24
Epsomite, MgSO ₄ · 7H ₂ O	$\ddot{7}$	30	Spinel, $MgAl_2O_4$	$\overset{1}{2}$	35
Eschynite, CeNbTiO ₆ Ettringite, Al ₂ O ₃ ·6CaO·3SO ₃ ·31H ₂ O	3m	24	Stibnite, Sb_2S_3	. 5	6
Ettringite, $Al_2O_3 \cdot 6C_aO \cdot 3SO_3 \cdot 31H_2O$	8	3	Stolzite, $PbWO_{4}$. 7	24
Fluoroapatite, $Ca_5F(PO_4)_3$ Fluorite, CaF_2	3m	22	Strontianite, SrCO ₃		56
Fluorite, CaF ₂	1	69	Struvite, MgNH ₄ PO ₄ ·6H ₂ O	3m	41
Forsterite, Mg ₂ SiO ₄	1	83	Sylvite, KCI	1	65
Galaxite, MnAl ₂ O ₄	$\frac{9}{2}$	35	*Tellurite, TeO ₂	9	57 16
Galena, PbS Gahnite, ZnAl ₂ O ₄	2	$\frac{18}{38}$	Tellurobismuthite, Bi ₂ Te ₃	3m 1	49
(201 Z10 1 to 1 / 1 or 1 1 ().	5	43	Teschemacherite, NH ₄ HCO ₃	9	5
Gersdorffite, NiAsS_ Goslarite, ZnSO ₄ ·7H ₂ O	1m	35	Teschermigite, NH ₄ Al(SO ₄) ₂ · 12H ₂ O	6	5 3 59
Goslarite, ZnSO ₄ ·7H ₂ O	8	71	Thenardite. Na ₂ SO ₄	$\tilde{2}$	59
Greenockite, Cas	$\overset{\circ}{4}$	$1\overline{5}$	Thenardite, Na ₂ SO ₄ Thermonatrite, Na ₂ CO ₃ · H ₂ O	8	54
Halite, NaCl- *Hemimorphite, Zn ₄ (OH) ₂ Si ₂ O ₇ · H ₂ O	2	41	Inorianite, InO_2	1	57
*Hemimorphite, $Zn_4(OH)_2Si_2O_7 \cdot H_2O_2$	2	62	Tiemannite, HgSe	7	35
Hieratite, KoSiFa	5	50	*Topaz, $Al_2SiO_4(F,OH)_2$	1m	4
Huebnerite, MnW O_{4}	2m	$\frac{24}{2}$	Trevorite. NiFe ₂ O ₄	10	44
Humite, 3Mg ₂ SiO ₄ ·MgF ₂	$1 \mathrm{m}$	30	Tungstenite, WS ₂	8	65 33
Iodyrite, AgI	8	$\begin{array}{c} 51 \\ 36 \end{array}$	Uraninite, UO ₂	2	17
Jacobsite, MnFe ₂ O ₄	- 9 2	30 30	Uvarovite, Ca ₃ Cr ₂ (SiO ₄) ₃	10 10	6
Lithiophosphate, Li ₃ PO ₄	3m	38	Villiaumite NaF	1	63
Loellingite, FeAs ₂	10	34	*Valentinite, Sb ₂ O ₃ Villiaumite, NaF Willemite, Zn ₂ SiO ₄	7	62
Magnesite, $MgCO_3$	7	28	Whiterite, Data Os ===	$\dot{2}$	54
Malachite, $Cu_2(OH)_2CO_3$	10	31	wulfenite, $PDMOO_{4}$	7	23
Manganosite, MnO	5	45	Wurtzite, ZnS	2	14
Marshite, CuI Mascagnite, (NH ₄) ₂ SO ₄ (revised)	4	38	Xenotime, YPO ₄	8	67
Mascagnite, (NH ₄) ₂ SO ₄ (revised).	9	8	Zincite, ZnO		25
*Natural mineral.			Zinkosite, ZnSO ₄	7	64
m—Monograph 25.			*Zircon, ZrSiO ₄	4	68

