§2.8: USING DERIVATIVES TO EVALUATE LIMITS

Dr. Mike Janssen

March 3, 2021

ANNOUNCEMENTS

PREVIEW ACTIVITY DISCUSSION

MOTIVATION

Observe: the limit definition of the derivative yields an indeterminate form, $\frac{0}{0}$.

MOTIVATION

Observe: the limit definition of the derivative yields an indeterminate form, $\frac{0}{0}$. More generally, limits like

$$\lim_{x\to 0} \frac{\sin x}{x}$$

also have the form $\frac{0}{0}$.

GUILLAUME DE L'HÔPITAL

- 1661-1704
- First calculus textbook:
 Infinitesimal calculus with applications to curved lines

ANALYSE

DES

INFINIMENT PETITS.

POUR

L'INTELLIGENCE DES LIGNES COURBES.

Far M' le Marquis DE L'HOSPITAL.
SECONDE EDITION.

A PARIS.

Chez FRANÇOIS MONTALANT, Quay des Augustins,

MDCCXV.

AVEC APPROBATION ET PRIVILEGE DU ROY.

L'HÔPITAL'S RULE

Idea: replace the function with its local linearization!

L'HÔPITAL'S RULE

Idea: replace the function with its local linearization!

Theorem (L'Hôpital's Rule I)

Let f and g be differentiable at a, with f(a) = g(a) = 0 and $g'(a) \neq 0$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

L'HÔPITAL'S RULE

Idea: replace the function with its local linearization!

Theorem (L'Hôpital's Rule I)

Let f and g be differentiable at a, with f(a) = g(a) = 0 and $g'(a) \neq 0$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

Warning: you need to make sure the hypotheses of the theorem are met before applying it!

ACTIVITIES 2.8.2-2.8.3

LIMITS INVOLVING $+\infty$

Consider $f(x) = \frac{1}{x^2}$; what is happening as $x \to 0^+$?

WHAT WE MEAN

What do we mean by the statements

$$\lim_{x\to 0^+}\frac{1}{x^2}=\infty,\ \lim_{x\to \infty}\frac{1}{x^2}=0,\ \ \text{and}\ \lim_{x\to \infty}e^x=\infty?$$

end behavior

L'HÔPITAL: TO INFINITY, AND BEYOND

What should we do with $\lim_{x\to\infty}\frac{x^3+1}{e^x}$? There's no "local linearization" at infinity.

L'HÔPITAL: TO INFINITY, AND BEYOND

What should we do with $\lim_{x\to\infty}\frac{x^3+1}{e^x}$? There's no "local linearization" at infinity.

Theorem (L'Hôpital's Rule II)

If f and g are differentiable and both approach 0 or both approach $\pm \infty$ as $x \to a$ (where $-\infty \le a \le \infty$), then

$$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)},$$

provided the limit on the right exists.

ACTIVITY 2.8.4

A FINAL NOTE

Suppose $\frac{f(x)}{g(x)}$ has the form ∞/∞ as $x \to \infty$. What is meant by:

•
$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$$
?

A FINAL NOTE

Suppose $\frac{f(x)}{g(x)}$ has the form ∞/∞ as $x \to \infty$. What is meant by:

•
$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$$
?

•
$$\lim_{x\to\infty}\frac{f(x)}{g(x)}=\infty$$
?

A FINAL NOTE

Suppose $\frac{f(x)}{g(x)}$ has the form ∞/∞ as $x \to \infty$. What is meant by:

- $\lim_{x\to\infty}\frac{f(x)}{g(x)}=0$?
- $\lim_{x\to\infty}\frac{f(x)}{g(x)}=\infty$?
- $\lim_{x\to\infty}\frac{f(x)}{g(x)}=c$, where c is some finite number?