Control Theory Intro: Home Assignment #7

November 1, 2021

Yogev Hadadi

Introduction

The purpose of this home assignment is to be base your understanding and to gain experience with the Nyquist plot.

Your solutions should be presented in a PDF (not Word!) file. You should submit also a .m file. The first line should print your ID.

 $>> {\rm disp}({\rm 'ID_STUDENT_1~ID_STUDENT_2'})~\%~{\rm disp}({\rm 'ID_STUDENT_1'})$ if only one student is submitting.

For clarity of the script, you can separate the different sections of the script with a %%. This will automatically create a block in your script. In order to run specifically this block of code press 'Ctrl+Enter'. To run the entire script press 'F5'.

Main required function:

nyquist

1 Nyquist plot

1.1 Draw the Nyquist plot for the following systems:

For a positive parameter $\tau > 0$ draw Nyquist plot of:

1.
$$GH(s) = \frac{1}{s+\tau}$$

2.
$$GH(s) = \frac{1}{s - \tau}$$

1.2 Draw the Nyquist plot for the following systems:

1.
$$GH\left(s\right) = \frac{s+8}{3s^2+s+4}$$

$$GH\left(s\right) = \frac{s+3}{s^{2}}$$

3.
$$GH(s) = \frac{15 + 5s}{s^2 - 4s + 8}$$

4.
$$GH\left(s\right) =\frac{2s+1}{s^{3}+2.5s^{2}+5s+8}$$

1.3 Stability:

For the following systems, draw the Nyquist plot and find for which k the close loop systems are stable:

1.
$$GG_{C}(s) = \frac{1}{10} \frac{1}{s^{3} + 7s^{2} + 4s + -12}$$

2.
$$GG_{C}\left(s\right)=\frac{s+5}{s^{4}+3s^{3}-s^{2}+27s-90}$$

Figure 1: