Grundbegriffe des maschinellen Lernens

Neuronale Netze

Besondere Lernleistung im Fach Informatik

Clemens Dautermann

25. Januar 2020

Inhaltsverzeichnis

1	Was	s ist maschinelles Lernen?	3						
	1.1	Klassifizierungsprobleme	3						
	1.2	Regressionsprobleme	4						
	1.3	Gefahren von maschinellem Lernen	5						
		1.3.1 Die Daten	5						
		1.3.2 Overfitting	6						
2	Vers	schiedene Techniken maschinellen Lernens	7						
	2.1	Überwachtes Lernen	7						
	2.2	Unüberwachtes Lernen	7						
	2.3	Bestärkendes Lernen	7						
3	Neu	ronale Netze	7						
	3.1	Maschinelles Lernen und menschliches Lernen	7						
	3.2	Der Aufbau eines neuronalen Netzes	8						
	3.3	Berechnung des Ausgabevektors	8						
	3.4	Der Lernprozess	11						
	3.5	Fehlerfunktionen	12						
		3.5.1 MSE – Durchschnittlicher quadratischer Fehler	12						
		3.5.2 MAE – Durchschnitztlicher absoluter Fehler	12						
		3.5.3 Kreuzentropiefehler	13						
	3.6	Gradientenverfahren und Backpropagation	14						
		3.6.1 Lernrate	15						
	3.7	Verschiedene Layerarten	16						
		3.7.1 Convolutional Layers	16						
		3.7.2 Pooling Layers	18						
4	РуТ	orch	21						
	4.1	Datenvorbereitung							
	4.2	Definieren des Netzes							
	4.3	Trainieren des Netzes							
5	Fall	beispiel I:							
	Ein	Klassifizierungsnetzwerk für handgeschriebene Ziffern	21						
	5.1	Aufgabe	21						
	5.2	Der MNIST Datensatz	21						
	5.3	Fragmentbasierte Erkennung							
	5.4	Ergebnis	21						
6		beispiel II:							
	Eine	e selbsttrainierende KI für Tic-Tac-Toe	21						
	6.1	Das Prinzip	21						
	6.2	Chance-Tree Optimierung							
	6.3	Lösung mittels eines neuronalen Netzes	21						
	6.4	Vergleich	21						

TX	TTT	A T	TCI	ZED	701	CHNIS	
יוו	VН.	ΑI	.1.5	$V \vdash K$	Z.F.I	(HNIS)	

INHALTSVERZEICHNIS

7 Schlusswort 21

1 Was ist maschinelles Lernen?

Die wohl bekannteste und am häufigsten zitierte Definiton des maschinellen Lernens stammt von Arthur Samuel aus dem Jahr 1959. Er war Pionier auf diesem Gebiet und rief den Begriff "machine learning" ins Leben. So sagte er:

[Machine learning is the] field of study that gives computers the ability to learn without being explicitly programmed[1].

-Arthur Samuel, 1959

Beim maschinellen lernen werden Computer also nicht mit einem bestimmten Algorythmus programmiert um eine Aufgabe zu lösen, sondern lernen eigenständig diese Aufgabe zu bewältigen. Dies geschieht zumeist, indem das Programm aus einer großen, bereits "gelabelten", Datenmenge mit Hilfe bestimmter Methoden, die im Folgenden weiter erläutert werden sollen, lernt, gewisse Muster abzuleiten um eine ähnliche Datenmenge selber "labeln" zu können. Als Label bezeichent man in diesem Fall die gewünschte Ausgabe des Programmes. Dies kann beispielsweise eine Klassifikation sein. Soll das Programm etwa handgeschriebene Ziffern erkennen können, so bezeichnet man das (bearbeitete) Bild der Ziffer als "Input Verctor" und die Information welche Ziffer der Copmputer hätte erkennen sollen, als "Label". Soll jedoch maschinell erlernt werden, ein simuliertes Auto zu fahren, so bestünde der Input Vector aus Sensorinformationen und das Label würde aussagen, in welche Richtung das Lenkrad hätte gedreht werden sollen, wie viel Gas das Programm hätte geben sollen oder andere Steuerungsinformationen. Der Input Vector ist also immer die Eingabe, die der Computer erhält um daraus zu lernen und das Label ist die richtige Antwort, die vom Programm erwartet wurde. Für maschinelles Lernen wird also vor allem eins benötigt: Ein enormer Datensatz, der bereits gelabelt wurde, damit das Programm daraus lernen kann.

Natürlich werden für maschinelles Lernen trotzdem Algorythmen benötigt. Diese Algorythmen sind jedoch keine problemspezifischen Algorythmen, sondern Algorythmen für maschinelles Lernen. Eine der populärsten Methoden des maschinellen Lernens ist das sogenannte "Neuronale Netz". Dies wird für die zwei Hauptproblemklassen, die man unterscheidet, verwendet. Klassifizierungs und Regressionsprobleme.

1.1 Klassifizierungsprobleme

Als Klassifizierfung bezeichnet man das Finden einer Funktion, die eine Menge von Eingabevariablen zu einer diskreten Menge von Ausgabevariablen, die auch als Klassen oder Labels bezeichnet werden, zuordnet. Dies kann beispielsweise das Erkennen von Mail Spam sein. Die Eingabevariablen sind die E-Mails und sie sollen den zwei Klassen "Spam" und "nicht Spam" zugeortnet werden.

Das in Dieser Arbeit gegebene Beispiel ist auch ein Klassifizierungsproblem. Die gegebenen Bilder von Ziffern sollen den zehn Klassen "0 bis 9" zugeordnet werden. Die Bilder sind hier die Eingabevariablen und die Klassen null bis neun beschreibt die endliche Menge diskreter Labels.

Das Erste Beispiel würde man als "Binärklassifizierung" bezeichnen, da zwei Klassen

unterschieden werden. Letzteres wird als "Multiklassenklassifizierung" bezeichnet, da mehr als zwei Klassen unterschieden werden. Die Binärklassifizierung ist in Abbildung 1 verbildlicht.

Abbildung 1: Binärklassifizierung

Die zwei Klassen wären hier "grün" und "blau". Die Linie stellt die Klassengrenze dar, die die zwei Klassen unterscheidet. Es sind außerdem einige Ausreißer in den Daten vorhanden.

1.2 Regressionsprobleme

Als Regressionsproblem hingegen bezeichnet man das Finden einer Funktion, die eine Menge von Eingabevariablen einer Stetigen Menge von Ausgabevariablen zuordnet. Wenn beispielsweise ein Bild eines Menschen gegeben ist, könnte ein Regressionsproblem sein, seine Höhe oder sein Gewicht zu bestimmen. Auch eine Wettervorhersage ist ein typisches Regressionsproblem. Ein Beispiel eines Regressionsproblemens wird in dieser Arbeit nicht behandelt werden. Wie Regression verbildlicht dargestellt werden kann, ist in Abbildung 2 gezeigt.

Abbildung 2: Regression

Die Kurve stellt hier Keine Grenze, sondern die Funktion, die die Werte approximiert, dar. Die Punkte repräsentieren die Eingabedaten, in denen auch hier einige Ausreißer erkennbar sind.

1.3 Gefahren von maschinellem Lernen

Maschinelles Lernen kann eine mächtige Technologie sein. Eine Vielzahl von Problemen lässt sich damit lösen, alle jedoch nicht. Man sollte sich bevor man maschinelles Lernen nutzt also Fragen: Lässt sich dieses Problem nicht einfacher auf konventionelle Weise lösen? Außerdem sollte man sich stets bewusst sein, dass maschinelles Lernen im Gegensatz zu den meißten Algorythmen, keine Technologie ist, die eine Treffsicherheit von 100% aufweist. In Systemen, wo eine korrekte Antwort kritisch ist, sollte man also nicht alleine auf maschinelles Lernen setzen.

Auch ist für maschinelles Lernen stets eine enorme Datenmenge nötig. Diese Daten müssen erst gesammelt werden. Hier stellt sich natürlich sofort eine ethische Frage: Welche Daten können guten Gewissens gesammelt und ausgewertret werden? Dabei sollte das Persönlichkeitsrecht und das Recht auf Privatsphäre eine zentrale Rolle spielen. Niemals sollte der Nutzen der Technologie über die Rechte der Nutzer gestellt werden. Betrachtet man hier beispielsweise den Flukhafen von Peking, sind erschreckende Tendenzen festzustellen. Dort wird beim Check-In via Gesichtserkennung die Identität der Person mit ihrem Gesicht verknüpft. Danach läuft alles vom Ticketkauf bis hin zum Duty-free-shop mit Hilfe von Gesichtserkennung ab [4].

Die zentralen Gefahren maschinellen Lernens sind also die eventuelle Unsicherheit im Ergebnis, der hohe Trainingsaufwand, der gegebenenfalls mit klassischen Algorythmen vermieden werden kann und die Verletzung von Rechten durch das Auswerten persönlicher Daten.

1.3.1 Die Daten

Wie bereits erwähnt sind die Datensätze oft der limitierende Faktor beim maschinellen Lernen. Das gravierendste Problem ist, überhaupt einen passenden Datensatz für das Problem zu finden oder generieren zu können. Dabei muss man beachten, dass man in den alle für das Problem relevanten Faktoren berücksichtigt. Möchte man beispielsweise Gesichter jeglicher Art erkennen, genügt es nicht den Algorythmus auf einem Datensatz von Gesichtern hellhäutiger Menschen zu trainieren, da dieser zum Erkennen von Gesichtern dunkelhäuitiger Menschen dann nutzlos wäre. Dass dies kein theoretisches, sondern auch ein praktisch auftretendes Phänomen ist, zeigt eine Studie des National Institute for Standards and Technology (NIST)[5]. Diese hat ergeben, dass beispielsweise ein in den USA entwickelter und dort sehr populärer Algorythmus eine extrem hohe Fehlerquote für afroamerikanische Frauen hat. Da dieses System unter anderem von der Polizei in den USA verwendet wird, haben afroamerikanische Frauen eine wesentlich höhere Chance fälschlicherweise einer Straftat beschuldigt zu werden.

Man sollte außerdem beachten, dass der Datensatz gut ausgeglichen ist. Das bedeutet, dass alle Trainingsdaten gleichmäßig verteilt sind. Möchte man beispielsweise Eingabedaten in 4 verschiedene Klassen klassifizieren, so sollten etwa 25% der Daten

zu Klasse A gehören, 25% zu Klasse B und so weiter. Der in dieser Arbeit später verwendete MNIST Datensatz hat einen Umfang von 60000 handgeschriebenben Ziffern von 0 bis 9. Den größten Anteil haben einsen mit rund 11%, den niedrigsten haben Fünfen mir 9%. Damit kann der Datensatz als ausgeglichen betrachtet werden. Eine genaue Definition, ab wann ein Datensatz nicht mehr ausgeglichen ist, existiert nicht.

Datensätze müssen ausgeglichen sein, da das Netz sonst den Fehler minimiert, indem es öfter die Klasse mit dem höhsten Anteil als Antwort liefert. Es erkennt, dass die höhste Trefferquote vorliegt, wenn es diese Antwort gibt, da so die Wahrscheinlichkeit eines Treffers maximal ist¹.

1.3.2 Overfitting

Overfitting ist ein häufig auftretendes Problem bei Klassifizierungsaufgaben. Die Klassengrenzen werden dabei zu genau aber falsch definiert. In Abbildung 3 ist dies dargestellt.

Abbildung 3: Overfitting

Overfitting tritt auf, wenn man ein neuronales Netz zu lange auf einem Datensatz trainiert. Das Netz lernt dann die Daten auswendig, da es so einen Fehler von 0 erreichen kann. Dadurch wurden aber keine wirklichen Klassengrenzen erlernt. Um Overfitting entgegenzuwirken reicht es oftmals den Trainingsdatensatz in der

¹In diesem Fall wird dann in der Fehlerfunktion ein lokales Minnimum gefunden. Dazu mehr unter Abschnitt 3.6, Gradientenverfahren und Backpropagation

Reihenfolge zu randomisieren. Dadurch kann das Netz diese gar nicht auswendig lernen.

2 Verschiedene Techniken maschinellen Lernens

- 2.1 Überwachtes Lernen
- 2.2 Unüberwachtes Lernen
- 2.3 Bestärkendes Lernen

3 Neuronale Netze

bei Neuronalen Netzen handelt es sich um eine programminterne Struktur, die für das maschinelle Lernen genutzt wird. Wie der Name bereits vermuten lässt, ist diese Methode ein Versuch das menschliche Lernen nachzuahmen.

3.1 Maschinelles Lernen und menschliches Lernen

Das menschliche Gehirn ist aus sogenannten "Neuronen" aufgebaut. Ein Neuron ist eine Nervenzelle, die elektrische oder chemische Impulse annimmt, und gegebenenfalls einen elektrischen oder chemischen Impuls weitergibt. Die Nervenzellen berühren sich nicht direkt sondern sind nur über die sogenannten Synnapsen verbunden, über die diese Signale übertragen werden, sodass sich ein hoch komplexes Netzwerk von milliarden von Neuronen ergibt.² Ein neuronales Netz ist ähnlich aufgebaut. Es

Abbildung 4: Ein Neuron wie es im Gehirn vorliegt

besteht aus "Neuronen", die eine theoretisch beliebige Anzahl von Eingaben annehmen können und mit einer entsprechenden Ausgabe reagieren, sowie Verbindungen

²Diese Definition ist stark vereinfacht. Sie enthält ausschließlich die wesentlichen Komponenten um das menschliche Gehirn mit einem neuronalen Netz vergleichen zu können.

zwischen den Neuronen. Auch das Lernprinzip entspricht dem eines Menschen. Das Netz nimmt immer Zahlen zwischen 0 und 1 als Eingabe an und berechnet eine entsprechende Ausgabe. Es erhält anschließend die Information, wie die richtige Lösung gelautet hätte und lernt dann aus seinen Fehlern, indem es gewisse Werte, die in die Berechnung einfließen, anpasst. Analog lernt ein Mensch, indem er ausprobiert, gegebenenfalls scheitert, anschließend die richtige Antwort durch eine externe Quelle erhält und somit aus seinem Fehler lernt. Im Menschlichen Gehirn verknüpfen sich Dabei oft genutzte neuronale Verbindungen stärker und weniger benutzte Verbindungen bauen sich ab[2]. Die Verstärkung und der Abbau entsprechen dem Ändern der Gewichtung einer Verbindung im neuronalen Netz. Die Gewichtung ist eine Eigenschaft der Verbindung, die eine zentrale Rolle in der Berechnung spielt und soll im folgenden weiter erläutert werden. Diese Ähnlichkeiten sind kein Zufall, sondern viel mehr Intention. Ein neuronales Netz ist nämlich der gezielte Versuch das menschliche Lernen nachzuahmen um maschinelles Lernen zu ermöglichen.

3.2 Der Aufbau eines neuronalen Netzes

Ein neuronales Netz besteht aus Neuronen und Verbindungen zwischen diesen. Es gibt einen sogenannten "Input Layer", der die Daten, den sogenannten "Input Vector", annimmt, eine beliebige Anzahl von sogenannten "Hidden Layers", in denen das eigentliche Lernen statt findet, und einen sogenannten "Output Layar", der für die Datenausgabe verantwortlich ist. Die Anzahl der Neuronen ist nach oben nicht begrenzt, wird jedoch zumeist der Aufgabe angepasst. Im Input Layer ist meißt ein Neuron pro Pixel des Eingabebildes vorhanden und im Output Layer ein Neuron pro möglicher Ausgabe. Sollen also 28×28 Pixel große Bilder handgeschriebener Ziffern klassifiziert werden, so gibt es 784 Eingabeneuronen, da jedes Bild 784 Pixel groß ist, und 10 Ausgabeneuronen, da es 10 Ziffern gibt. Jedes Neuron hat außerdem eine sogenannte Aktivierungsfunktion, die sich von Neuron zu Neuron unterscheiden kann, und jede Kante eine asoziierte Gewichtung und einen Bias. Ein neuronales Netz besteht also aus:

- Neuronen mit gegebenenfalls verschiedenen Aktivierungsfunktionen, aufgeteilt in ein Input-, beliebig viele Hidden- und ein Output-Layer.
- 2. Verbindungen zwischen diesen Neuronen, die jeweils einen eigenen Bias und eine Gewichtung besitzen.

Sind alle Neuronen eines Layers jeweils mit allen Neuronen des nächsten Layers verbunden, wird das Layer als "fully connected layer" bezeichnet.

3.3 Berechnung des Ausgabevektors

Der Ausgabevektor wird berechnet, indem:

1. Alle Ausgaben aus der vorherigen Schicht mit der Gewichtung der korrespondierenden Kante multipliziert werden

Abbildung 5: Ein einfaches neuronales Netz

- 2. Alle gewichteten Eingabewerte summiert werden
- 3. Der Bias des Neurons hinzuaddiert wird
- 4. Die Aktivierungsfunktion auf diesen Wert angewandt wird

Die Aktivierungsfunktion hat dabei die Rolle die Werte zu normieren. Sie sorgt also dafür, dass alle Werte innerhalb des Netzes im Intervall [0, 1] bleiben. Es gibt eine Vielzahl von Aktivierungsfunktionen. Die häufigste ist die sogenannte "Sigmoid" Funktion:

Im Gegensatz dazu haben Gewichtungen typischerweise etwa den doppelten Wert der Eingaben. Alle Were werden jedoch automatisch im Lernprozess angepasst. Der Begriff Eingabe- und Ausgabevektor lassen bereits vermuten, dass es sich bei Neuronalen Netzen um Objekte aus dem Bereich der linearen Algebra handelt. Daher wird im Folgenden auch die Notationsweise mit Hilfe von linearer Algebra verwendet. Betrachtet man eine Ausgabe eines Neurons wird diese als $a_{neuron}^{(layer)}$ bezeichnet.

Abbildung 6: Der Plot der Sigmoid Funktion $\sigma(x) = \frac{e^x}{e^x + 1}$

Den Ausgabevektor des Input Layers würde man also folgendermaßen schreiben:

$$\begin{bmatrix} a_0^0 \\ a_1^0 \\ a_2^0 \\ \vdots \\ a^0 \end{bmatrix}$$

Die Gewichtungen w der jeweiligen Kanten werden notiert als $w_{(zu\ Neuron,von\ Neuron)}^{(von\ Layer)}$ "von Layer" bezeichnet dabei das Layer in dem das Neuron liegt, das die Information ausgibt. "zu Neuron" ist der Index des Neurons im nächsten Layer, das die Information annimmt und "von Neuron" der Index des Neurons, das die Information abgibt. Die Gewichtung der Kante, die das zweite Neuron im ersten Layer mit dem dritten Neuron im zweiten Layer verebindet würde also als $w_{3,2}^0$ bezeichnet werden. Dabei wird bei null begonnen zu zählen, sodass das erste Layer und das erste Neuron den Index 0 erhält.

Die Gewichtungen aller Verbindungen eines Layers zum nächsten können also als folgende Matrix geschrieben werden:

$$\begin{bmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \end{bmatrix}$$

Dabei ist n hier die selbe Zahl wie n im Ausgabevektor, da genau so viele Ausgaben vorhanden sein müssen, wie Neuronen in diesem Layer vorhanden sind, da jedes Neuron einen Wert ausgibt. Der Bias Vektor wird genau so wie der Ausgabevektor

³Es existieren auch Neuronen, die Daten verwerfen. Diese kommen im hier betrachteten Typ von neuronalem Netz allerdings nicht vor und werden daher der Einfachheit halber außenvor gelassen.

bezeichnet.

$$\begin{bmatrix} b_0^0 \\ b_1^0 \\ b_2^0 \\ \vdots \\ b_n^0 \end{bmatrix}$$

Beachtet man jetzt noch, dass bei jedem Neuron die Aktivierungsfunktion angewandt werden muss ergibt sich folgende Gleichung für die Berechnung des Ausgabevektors \vec{o} aus einem Einbagevektor \vec{d} durch eine Schicht von Neuronen:

$$\vec{o} = \sigma \begin{pmatrix} \begin{bmatrix} w_{0,0} & w_{0,1} & \cdots & w_{0,n} \\ w_{1,0} & w_{1,1} & \cdots & w_{1,n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{k,0} & w_{k,1} & \cdots & w_{k,n} \end{bmatrix} \begin{bmatrix} a_0^0 \\ a_1^0 \\ a_2^0 \\ \vdots \\ a_n^0 \end{bmatrix} + \begin{bmatrix} b_0^0 \\ b_1^0 \\ b_2^0 \\ \vdots \\ b_n^0 \end{bmatrix}$$

Abbildung 7: Formel zur Berechnung eines Ausgabevektors aus einem Eingabevektor durch ein Layer Neuronen.

Zur Vereinfachung wurde die Funktion hier auf den gesamten Ausgabevektor angewandt. Dies ist korrekt, sofern alle Neuronen eines Layers die selbe Aktivierungsfunktion aufweisen. Dies muss natürlich nicht immer so sein. Sind die Aktivierungsfunktionen der Neuronen eines Layers verschieden, so wird die Aktivierungsfunktion des jeweiligen Neurones separat auf das korrespondierende Element des Vektors $W \cdot \vec{a} + \vec{b}$ angewandt.

3.4 Der Lernprozess

Der Lernprozess gliedert sich in wenige wesentliche Schritte. Zuerst wird unter Verwendung des oben beschriebenen Prozesses aus einem Eingabevektor ein Ausgabevektor berechnet. Diese Berechnung wird im Lernprozess extrem oft durchgeführt, weshalb sich neuronale Netze besonders schnell auf Grafikkarten trainieren lassen. Diese sind für mathematische Operationen im Bereich der linearen Algebra, wie Matritzenmultiplikation oder Addition optimiert und werden daher auch als Vektorprozessoren bezeichnet.

Dieser Ausgabevektor wird nun, mit Hilfe einer Fehlerfunktion, mit dem erwarteten Ausgabevektor verglichen. Je größer dabei die Differenz zwischen erwartetem Ausgabevektor und tatsächlichem Ausgabevektor ist, desto größer ist der Wert der Fehlerfunktion. Der Ausgabewert dieser Fehlerfunktion wird als "Fehler" oder auch als "Kosten" bezeichnet. Wenn also das Minimum dieser Fehlerfunktion bestimmt wird, wird der Fehler minimiert und die tatsächliche Ausgabe des Netzes nähert sich der korrekten Ausgabe immer weiter an.

Eine Methode, die hier erläutert werden soll, dieses Minimum zu finden ist das Gradientenverfahren. Nachdem mit Hilfe dieses Verfahrens der Fehler mimnimiert wurde,

werden die Parameter, also die Gewichtungen und Biases, des neuronalen Netzes entsprechend angepasst. Diesen Prozess der Fehlerminimierung mittels des Gradientenverfahrens und der anschließenden Anpassung der Werte bezeichnet man auch als "Backpropagation". Es existieren auch noch andere Verfahren zur Fehlerminimierung, der Einfachheit halber soll hier aber nur Backpropagation erläutert werden.

3.5 Fehlerfunktionen

Es existiert eine Vielzahl von Fehlerfunktionen, die alle für unterschiedliche Anwendungsgebiete unterschiedlich passend sind. Im Groben lassen sich allerdings Fehlerfunktionen, die für Klassifizierungsprobleme geeignet sind von solchen unterscheiden, die für Regressionsprobleme geeignet sind.

3.5.1 MSE – Durchschnittlicher quadratischer Fehler

Der sogenannte durchschnittliche quadratische Fehler ist eine häufig genutzte Fehlerfunktion für Regressionsprobleme. Die englische Bezeichnung lautet "Mean squared error", woraus sich auch die Abkürzung "MSE loss" ergibt. Sie ist wie in Abbildung 8 dargestellt, definiert.

$$MSE = \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n}$$

Abbildung 8: Die Gleichung für den durchschnittlichen quadratischen Fehler

Wie der Name vermuten lässt, gibt diese Fehlerfunktion den Durchschnitt der quadrierten Differenzen zwischen dem vorausgesagten und dem tatsächlichen Ergebnis an. Aufgrund der Quadrierung des Fehlers, werden durch diese Funktion stark abweichende Werte wesentlich stärker gewichtet, als weniger stark abweichende Werte. Ihr Gradient ist außerdem einfach berechenbar, was für das Gradientenverfahren später relevant ist.[3]

3.5.2 MAE – Durchschnitztlicher absoluter Fehler

Bei dem durchschnittlichen absoluten Fehler handelt es sich ebenfalls um eine Fehlerfunktion, die für Regressionsprobleme eingesetzt wird. Die englische Bezeichnung lautet "Mean absolute error". Sie ist ähnlich wie der durchschnittliche quadratische Fehler definiert.

$$MAE = \frac{\sum_{i=1}^{n} |y_i - \hat{y}_i|}{n}$$

Abbildung 9: Die Gleichung für den durchschnittlichen absoluten Fehler

Auch hier wird die "Richtung" des Fehlers, in diesem Fall durch die Normierung, verworfen. Außerdem ist diese Fehlerfunktion nicht so anfällig gegenüber Ausreißern in den Daten, da dieser Fehler nicht quadriert wird. Ein Nachteil des durchschnittlichen absoluten Fehlers ist allerdings die höhere Komplexität zur Berechnung des Gradienten.[3]

3.5.3 Kreuzentropiefehler

Der Kreuzentropiefehler ist die am häufigsten verwendete Fehlerfunktion für Klassifizierungsprobleme. Sie gibt den Fehler für eine Klassifizierung an, die den gegebenen Klassen Wahrscheinlichkeiten im Intervall I=[0;1] zuordnet. Dabei steigt der Fehler stärker, je weiter sich die Vorhersage vom tatsächlichen Wert entfernt. Wie aus Abbildung 10 hervorgeht, wird also sicheren, aber falschen Vorhersagen der höhste Fehlerwert zugeordnet.

Abbildung 10: Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche Label 1 ist

Der Fehler steigt also mit zunehmender Abweichung der Vorhersage zum tatsächlichen Label rapide an.

Mathematisch ist der Kreuzentropiefehler nach der Funktion in Abbildung 11 definiert, wobei y einen Binärindikator darstellt, der angibt ob das zu klassifizierende Objekt tatsächlich zur Klasse gehört (dann ist er 1) und p die vorausgesagte Wahrscheinlichkeit ob das Objekt zur Klasse gehört, beschreibt.

Hier fällt auf, dass, falls das Label 0 ist, der linke Teil der Gleichung weg fällt und falls es 1 ist, der Rechte. Wenn berechnetes und tatsächliches Label identisch sind, ist der Fehler stets 0.

$$CrossEntropyLoss = -(yln(p) + (1 - y)ln(1 - p))$$

Abbildung 11: Die Gleichung für den Kreuzentropiefehler

Existieren mehr als 2 Klassen, handelt es sich also nicht mehr um eine Binärklassifizierung, müssen die Fehler nach der Gleichung in Abbildung 12 summiert werden.

$$CrossEntropyLoss(M) = -\sum_{c=1}^{M} y_{o,c} ln(p_{o,c})$$

Abbildung 12: Die Gleichung für den durchschnittlichen absoluten Fehler

Dabei gibt M die Anzahl der Klassen an, c das Label für die Klasse und o die berechnete Klassifizierung für diese Klasse.

3.6 Gradientenverfahren und Backpropagation

Das Gradientenverfahren ist ein Verfahren um das Minimum einer Funktion zu finden. Die Funktion, deren Minimum gefunden werden soll ist in diesem Fall die Fehlerfunktion. Diese ist von allen Gewichtungen und Biases des Netzwerkes abhängig, da sie direkt vom Ausgabevektor des Netzes abhängig ist. Der Gradient dieser Funktion ist in Abbildung 13 dargestellt.

$$\nabla C(w_1, b_1, \dots, w_n, b_n) = \begin{bmatrix} \frac{\partial C}{\partial w_1} \\ \frac{\partial C}{\partial b_1} \\ \vdots \\ \frac{\partial C}{\partial w_n} \\ \frac{\partial C}{\partial b_n} \end{bmatrix}$$

Abbildung 13: Die Gleichung für den Gradienten der Fehlerfunktion

Um also das Ergebnis "richtiger" zu machen, müssen alle Gewichtungen und Biases negativ zu diesem Gradienten angepasst werden, da der Gradient ja den Hochpunkt angibt. Diese Anpassung erfolgt, indem das Netz vom Ausgabelayer an, deshalb heißt das Verfahren Backpropagation, durchgegangen wird, und die Gewichtungen und Biases angepasst werden.

Oft wird zur Verbildlichung des Gradientenverfahrens die Analogie eines Balles verwendet, der einen Hügel hinunter rollt. Er findet den Tiefpunkt indem er hinab rollt und dabei immer automatisch eine Kraft nach unten wirkt.

3.6.1 Lernrate

Eine wichtige Rolle dabei spielt die sogenannte "Lernrate" η , mit der die Änderung nach der Formel in Abbildung 14 berechnet wird.

$$w_{neu}^n = w_{alt}^n - \eta \times \frac{\partial C}{\partial w^n}$$

Abbildung 14: Die Gleichung für die Anpassung eines einzelnen Parameters

Diese Lernrate ist notwendig um nicht über das Minimum "hinweg zu springen". Sollte sie zu groß sein, passiert genau dies, da die Anpassungen der Parameter in zu großen Schritten erfolgt. Sollte sie hingegen zu klein sein, lernt das Netz sehr langsam. Typische Werte sind abhängig von der zu erlernenden Aufgabe, liegen jedoch in der Regel bei etwa 0.01 bis 0.0001 ⁴.

Abbildung 15: η ist hier zu groß gewählt

Abbildung 15 stellt dar, wieso das Minimum nicht erreicht werden kann, falls die Lernrate zu groß gewählt wurde. Es ist zu sehen, dass der Parameter immer gleich viel geändert wird und dabei das Minimum übersprungen wird, da die Lernrate konstant zu groß ist. Dieses Problem kann behoben werden indem eine adaptive Lernrate verwendet wird. Dabei verringert sich die Lernrate im Laufe des Lernprozesses, sodass zu Beginn die Vorzüge des schnellen Lernens genutzt werden können und am Ende trotzdem ein hoher Grad an Präzision erreicht werden kann.

⁴Dies ist ein bloßer Erfahrungswert. Maschinelles Lernen erfordert oft sehr viele Versuche, weshalb nicht genau festgelegt werden kann, wann welche Lernrate optimal ist.

3.7 Verschiedene Layerarten

Mit Hilfe von maschinellem Lernen lassen sich eine Vielzahl von Aufgaben bewältigen. Entsprechend komplex müssen Neuronale Netze aber auch sein. Demzufolge ist es notwendig, Neuronen zu entwickeln, die andere Fähigkeiten aufweisenl, als das einfache oben im sogenannten "Linear Layer" verwendete Neuron. Da man in der Regel nur eine Art von Neuron in einem Layer verwendet, wird das gesamte Layer nach der verwendeten Neuronenart benannt. Die unten beschriebenen Layerarten werden vor allem in einer Klasse von neuronalen Netzen verwendet, die als "Convolutional neural networks" bezeichnet werden. Sie werden meißt im Bereich der komplexen fragmentbasierten Bilderkennung eingesetzt, da sie besonders gut geeignet sind um Kanten oder gewisse Teile eines Bildes, wie zum Beispiel Merkmale eines Gesichtes, zu erkennen.

3.7.1 Convolutional Layers

Convolutional Layers weisen eine fundamental andere Funktionsweise als lineare Layers auf. Sie nehmen zwar ebenfalls rationale Zahlen an und geben rationale Zahlen aus 5 , berechnen die Ausgabe jedoch nicht nur mit Hilfe einer Aktivierungsfunktion sondern unter der Verwendung sogenannter "Filter". Diese Filter sind eine $m \times n$ große Matrix, die auch als "Kernel" bezeichnet wird. Der Kernel wird dabei über die Eingabematrix bewegt (daher der Name convolution) und erzeugt eine Ausgabematrix. Dafür wird der betrachtete Abschnitt der Eingabematrix A und des Kernels B skalar multipliziert wobei das Skalarprodukt als Frobenius-Skalarprodukt, also als

$$\langle A, B \rangle = \sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij} b_{ij}$$

definiert ist. Die Matritzen werden also Komponentenweise multipliziert und diese Produkte dann summiert.

Dies ist in Abbildung 16 verbildlicht.

Abbildung 16: Eine Verbildlichung der Vorgänge in einem convolutional Layer. Das blaue Raster stellt die Eingabe dar, das grüne die Ausgabe.

⁵Im Folgenden werden 2 Dimensionale convolutional Layers betrachtet, da diese einfacher vorstellbar sind. Sie nehmen dann eine Matrix rationaler Zahlen an und geben auch eine Matrix rationaler Zahlen aus. Dies korrespondiert mit dem Anwendungsbereich der Erkennung von schwarz weiß Bildern.

Ein Filter kann ganz verschiedene Werte aufweisen. So können Filter der Form

beispielsweise zur einfachen Kantenerkennung genutzt werden. Zur Veranschaulichung wurden diese Filter auf das Beispielbild in Abbildung 21 angewandt. Das Ergebnis ist in Abbildung 22 dargestellt.

Abbildung 21: Das Beispielbild aus dem Mnist Datensatz

Abbildung 22: Die jeweils oben stehenden Filter wurden auf das Beispielbild angewandt.

Der jeweils dunkel dargestellte Bereich kann als das identifiziert werden, was vom convolutional Layer als Kante erkannt wurde. Hier werden eindeutige Limitationen deutlich: Es kann nur als Kante erkannt werden, was auch eindeutig senkrecht oder waagerecht ist. Außerdem kann es zu Fehlentscheidungen kommen.

NEURONALE NETZE

Die Kernels werden natürlich nicht per Hand initialisiert und angepasst, sondern setzen sich aus Parameternm zusammen, die im Laufe des Lernprozesses durch das Netz anpassbar sind. Das Netz kann also die Filtermatrix selber verändern. Die Filter werden meißt mit Zufallswerten initialisiert und dann während des Lernens angepasst. Ferner muss ein Kernel auch nicht immer drei Einheiten breit sein, sondern kann jede Größe ≥ 2 annehmen. Je nachdem, wie sich der Kernel über die Eingabematrix bewegt, ist außerdem ein sogenanntes "Padding" nötig, da gegebenenfalls Werte betrachtet werden müssten, die nicht in der Eingabematrix liegen. In der Regel werden daher alle Werte, die nicht in der Eingabematrix vorhanden sind durch 0 ersetzt. Das Padding ist in Abbildung 16 als weiß in der Eingabematrix dargestellt. Es ist eine Art "Rand aus Nullen", der um dasd Bild gelegt wird.

Hintereinander können convolutional Layers auch ganze Elemente eines Bildes erkennen. Erkennt das erste Layer wie oben gezeigt beispielsweise Kanten, so kann das Layer darauf Kombinationen aus diesen, wie beispielsweise Ecken oder Winkel, erkennen. Wie gefilterte Bilder für sogenannte "High-Level-Features" aussehen können ist in Abbilldung 23 dargestellt. Die Ausgabebilder von Convolutional Layers werden als "Feature map" bezeichnet.

Abbildung 23: Beispiele für low- mid- und high-level Features in Convolutional Neural Nets

Das bemerkenswerte an Convolutional Layers ist vor allem, dass duch ähnliche Optimierungsalgorytmen auch hier maschinelles lernen möglich ist, dass sich ein neuronales Netz diese Filter also selbstständig beibringen kann.

3.7.2 Pooling Layers

Pooling Layers werden ebenfalls hauptsächlich in Convolutional Neural Networks verwendet. Sie werden nach Convolutional Layers genutzt um das Ausgabebild herunterzutakten, also verlustbehaftet zu Komprimieren. Dabei wird die Feature Map im wesentlichen zusammengefasst um die Datenmenge, die das Folgende Convolutional

Layer erhält zu reduzieren und sie Verschiebungen im Originalbild gegenüber immuner zu machen. Das ist deshalb notwendig, da die Convolutional Layers die Features lokal sehr begrenzt erkennen und daher eine kleine Verschiebung des Originalbildes zur Folge haben kann, dass im Folgenden Convolutional Layer die Kombination der Features gegebenenfalls nicht richtig erkannt wird. Das Pooling Layer kann diesem Effekt entgegenwirken, indem es die Features zusammenfasst. So kann aus einer ganzen Kante beispielsweise ein einziger Pixel werden.

Es werden im Wesentlichen zwei Techniken zum Pooling eingesetzt.

- 1. Max Pooling (Abbildung 24)
- 2. Average Pooling (Abbildung 25)

Sie unterscheiden sich darin, wie die zu komprimierenden Werte mit einander verrechnet werden, sind ansonsten jedoch identisch.

Beim Pooling wird die Eingabematrix in Submatritzen partitioniert⁶. Jede Submatrix stellt später einen Pixel in der Ausgabematrix dar. Hier unterscheiden sich jetzt Maxund Avarage- Pooling. Beim Max Pooling ist der neue Wert der höhste Wert aus dieser Submatrix, beim Avarage Pooling wird der Durchschnitt aller Werte Der Submatrix gebildet und als Neuer Wert verwendet.

Abbildung 24: Max Pooling mit 2 × 2 großen Submatritzen

Abbildung 25: Average Pooling mit 2 × 2 großen Submatritzen

⁶Hier ist die Mengenteorethische Partitionierung gemeint. Eine Menge wird in nicht leere Teilmengen unterteilt, sodass jedes Element der Ausgangsmenge in genau einer der Teilmengen enthalten ist.

Die Dimension der Submatritzen beträgt meißt 2×2 . In Abbildung 26 ist dargestellt, wie Pooling konkret auf das im letzten Abschnitt beschriebene Bild abgewandt aussieht. Dafür sind in der ersten Zeile die 28×28 Pixel großen Bilder dargestellt, die das Convolutional Layer mit Hilfe der Kantenerkennungsfilter berechnet hat. In Zeile zwei wurde auf die jeweils darüber stehenden Bilder Max Pooling angewandt, in Zeile drei auf die selben Bilder Average Pooling. Die Bilder sind nach dem Pooling 14×14 Pixel groß.

Abbildung 26: Gegenüberstellung von Max und Average Pooling

4 PyTorch

- 4.1 Datenvorbereitung
- 4.2 Definieren des Netzes
- 4.3 Trainieren des Netzes
- 5 Fallbeispiel I:

Ein Klassifizierungsnetzwerk für handgeschriebene Ziffern

- 5.1 Aufgabe
- 5.2 Der MNIST Datensatz
- 5.3 Fragmentbasierte Erkennung
- 5.4 Ergebnis
- 6 Fallbeispiel II:

Eine selbsttrainierende KI für Tic-Tac-Toe

- 6.1 Das Prinzip
- 6.2 Chance-Tree Optimierung
- 6.3 Lösung mittels eines neuronalen Netzes
- 6.4 Vergleich
- 7 Schlusswort

Literatur

[1]	Hands-On Machine Learning with Scikit-Learn and TensorFlow von Aurélien Géron Veröffentlicht: March 2017 O'Reilly Media, Inc ISBN: 9781491962282
[2]	Die Logistik des Lernens eine Studie der LMU München Quelle: www.uni-muenchen.de/forschung/news/2013/ f-71-13_kiebler_nervenzellen.html -abgerufen am 16.11.2019
[3]	Common Loss functions in machine learning Von Ravindra Parmar Veröffentlicht am 02.09.2018, abgerufen am 07.01.2020 Quelle: https://towardsdatascience.com/common-loss-functions-in-machine-learning-46af0ffc4d23
[4]	Facial Recognition Is Everywhere at China's New Mega Airport Bloomberg, 11. Dezember 2019 https://www.bloomberg.com/news/articles/2019-12-11/face-recognition-tech- is-everywhere-at-china-s-new-mega-airport Abgerufen am 23.01.2020
[5]	A US government study confirms most face recognition systems are racist 20.12.2019 MIT technology review https://www.technologyreview.com/f/614986/ai-face-recognition-racist-us-government-nist-study/ Abgerufen am 23.01.2019

Abbildungsverzeichnis

1	Binärklassifizierung	4
2	Regression	4
3	Overfitting	6
4	Neuron	
	Quelle: simple.wikipedia.org/wiki/File:Neuron.svg	
	Copyright: CC Attribution-Share Alike von Nutzer Dhp1080,	
	bearbeitet	7
5	Ein einfaches neuronales Netz	9
6	Der Plot der Sigmoid Funktion $\sigma(x) = \frac{e^x}{e^x + 1}$	10
7	Formel zur Berechnung eines Ausgabevektors aus einem Eingabevek-	
	tor durch ein Layer Neuronen	11
8	Die Gleichung für den durchschnittlichen quadratischen Fehler	12
9	Die Gleichung für den durchschnittlichen absoluten Fehler	12
10	Der Graph der Kreuzentropie Fehlerfunktion wenn das tatsächliche	
	Label 1 ist	13
11	Die Gleichung für den Kreuzentropiefehler	14

ABBILDUNGSVERZEICHNIS

12	Die Gleichung für den durchschnittlichen absoluten Fehler	14			
13	Die Gleichung für den Gradienten der Fehlerfunktion	14			
14	Die Gleichung für die Anpassung eines einzelnen Parameters	15			
15	η ist hier zu groß gewählt	15			
16	Eine Verbildlichung der Vorgänge in einem convolutional Layer				
	Aus einer Animation von				
	$https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md$				
	Vincent Dumoulin, Francesco Visin - A guide to convolution arithme-				
	tic for deep learning (BibTeX)	16			
17	Erkennt obere horizontale Kanten	17			
18	Erkennt linke vertikale Kanten	17			
19	Erkennt untere horizontale Kanten	17			
20	Erkennt rechte vertikale Kanten	17			
21	Das Beispielbild aus dem Mnist Datensatz	17			
22	Die jeweils oben stehenden Filter wurden auf das Beispielbild ange-				
	wandt	17			
23	Beispiele für low- mid- und high-level Features in Convolutional Neural				
	Nets				
	Quelle: https://tvirdi.github.io/2017-10-29/cnn/	18			
24	Max Pooling mit 2×2 großen Submatritzen				
	Quelle: https://computersciencewiki.org/index.php/Max-pooling_/_Pool	ing			
	CC BY NC SA Lizenz	19			
25	Average Pooling mit 2×2 großen Submatritzen				
	Aus: Dominguez-Morales, Juan Pedro. (2018). Neuromorphic audio				
	processing through real-time embedded spiking neural networks. Ab-				
	bildung 33	19			
26	Gegenüberstellung von Max und Average Pooling	20			