

Congratulations! You passed!

Grade received 100% Latest Submission Grade 100% To pass 80% or higher

Go to next item

1.	How do Convolutions improve image recognition? They make the image clearer They make processing of images faster They isolate features in images They make the image smaller	1/1 point
	Spot on! Additionally, a properly designed convolution layer can even make training faster.	
2.	What does the Pooling technique do to the images? Isolates features in them Combines them Reduces information in them while maintaining some features Makes them sharper	1/1 point
3.	Correct Good job! Pooling reduces information without removing all of the features. True or False. If you pass a 28x28 image through a 3x3 filter the output will be 26x26	1/1 point
	 ● True ○ False ✓ Correct Nailed it! 	
	After max pooling a 26x26 image with a 2x2 filter, the output will be 56x56 True False	1/1 point
	○ Correct Yes! The output would actually be 13x13	
5.	How does using Convolutions in our Deep neural network impact training? It makes it faster It makes it slower Its impact will depend on other factors. It does not affect training	1/1 point
	Correct Correct! Using convolutions might make your training faster or slower, and a poorly designed Convolutional layer may even be less efficient than a plain DNN!	