

ใบเนื้อหา	หน้าที่ 1
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5
4	

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

หน่วยที่ 5 การแปลงสัญญาณ A/D และ D/A การแปลงสัญญาณ A/D และ D/A

1. การแปลงสัญญาณอนาล็อกเป็นดิจิทัล (Analog to Digital Converter : ADC)

การเกิดขึ้นของปริมาณทางกายภาพของธรรมชาติในโลกเป็นค่าแบบอนาล็อก ซึ่งสัญญาณแบบอนาล็อกเป็น การเปลี่ยนแปลงแบบต่อเนื่อง เช่น ปรอทในหลอดเทอร์โมมิเตอร์เมื่ออุณหภูมิเพิ่มขึ้น ปรอทจะมีการขยายตัวแบบ อนาล็อกอย่างต่อเนื่องสัมพันธ์กับมาตราส่วนองศาที่ใช้ในการวัดค่าของอุณหภูมิ ส่วนในระบบดิจิทัลมีการทำงานที่ค่า ดิจิทัลที่ไม่ต่อเนื่องซึ่งใช้แทนค่าปริมาณของจำนวน ตัวอักษร หรือสัญลักษณ์ ที่ค่าระหว่างสภาวะของการทำงานที่ค่า ON และ OFF เขียนแทนด้วย 0 และ 1 ตัวอย่างของเทอร์โมมิเตอร์แบบอนาล็อกที่มีการแสดงค่าอุณหภูมิที่ 35 องศา สามารถที่จะแทนค่าของตัวเลขด้วยค่าการเรียงกันของระดับแรงดัน ON และ OFF ได้ที่ระดับแรงดันรูปแบบดิจิทัลที่ ค่า 00010011 ด้วยคุณลักษณะของการใช้ระดับค่าของแรงดันแบบ ON และ OFF นี้เมื่อนำมาใช้กับวงจรดิจิทัลทำให้ สามารถจัดการหรือเก็บบันทึกข้อมูลเหล่านี้ได้ง่ายขึ้นด้วยการแทนค่าของระดับอนาล็อกทั้งหมดในช่วงที่จำกัดของ แรงดัน ON และ OFF โดยปกติที่ค่า +5V = ON และ 0V = OFF ดังนั้นจึงต้องมีอุปกรณ์ที่ใช้แปลงค่าทางกายภาพที่ มีการตอบสนองอย่างต่อเนื่องเป็นค่าการเปลี่ยนแปลงทางสัญญาณไฟฟ้าแบบอนาล็อก และใช้อุปกรณ์ที่ทำการแปลง สัญญาณอนาล็อกเป็นดิจิตอล (A/D Converter) เพื่อนำคาปริมาณทางกายภาพต่าง ๆ ในธรรมชาติมาใช้กับระบบ ดิจิทัลเพื่อนำมาใช้ในประมวลผล การวิเคราะห์หรือการแสดงค่าที่มีความละเอียดและเที่ยงตรงขึ้น

1.1 วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบสัญญาณลาดเอียง

วงจรการแปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบสัญญาณลาดเอียง เป็นวงจรพื้นฐานดังแสดงในรูปที่ 1.1 ทางด้านอินพุตรับแรงดันอนาล็อกค่าแรงดันตั้งแต่ 0 – 3 V แล้วแปลงแรงดันเป็นสัญญาณดิจิทัลขนาด 4 บิต

รูปที่ 1.1 วงจรพื้นฐานการแปลงสัญญาณอนาล็อกเป็นดิจิทัลขนาด 4 บิต

ใบเนื้อหา	หน้าที่ 2
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5
al	

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

ซึ่งมีส่วนประกอบด้วยกัน 4 ส่วนดังนี้

- 1. วงจรเปรียบเทียบ (Comparator) ทำหน้าที่เปรียบเทียบแรงดันอนาล็อกอินพุตที่จุด A กับแรงดัน ป้อนกลับที่จุด B เพื่อส่งสัญญาณลอจิกไปควบคุมสัญญาณนาฬิกา
 - 2. วงจรแอนด์เกต (AND Gate) ทำหน้าที่ เปิด- ปิด สวิตช์สัญญาณนาฬิกา เพื่อป้อนเข้าวงจรนับ
- 3. วงจรนับบีซีดี (BCD Counter) เป็นวงจรนับขนาด 4 บิต เพื่อแสดงผลการนับตามจำนวนสัญญาณ นาฬิกาที่แอนด์เกตจ่ายออกมา แล้วส่งสัญญาณดิจิทัลไปยังวงจร D/A
- 4. วงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อก(D/A) ทำหน้าที่แปลงรหัสดิจิทัลที่แสดงผลทางไบนารีเอาต์พุต ให้เป็นแรงดันอนาล็อก เพื่อป้อนกลับไปที่อินพุต B ซึ่งแรงดันนี้จะเป็นลักษณะลาดเอียง

1.2 วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบแฟลช

วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบแฟลช เป็นวงจรแปลงสัญญาณที่มีความเร็วกว่าแบบลาด เอียง และถ้าวงจรแบบแฟลชมีจานวนบิตที่มาก ๆ ขนาดของวงจรจะใหญ่กว่าแบบอื่น ๆ เช่น ถ้าวงจรแปลงสัญญาณ อนาล็อกเป็นดิจิทัลที่มีเอาต์พุตขนาด 8 บิต จะมีวงจรเปรียบเทียบแรงดันถึง 255 (28 - 1) วงจร โดยในรูปที่ 1.2 เป็น วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลขนาด 3 บิต จะต้องใช้วงจรเปรียบเทียบแรงดันเท่ากบั 23 - 1 = 7 วงจร

รูปที่ 1.2 วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบแฟลชพื้นฐาน

ใบเนื้อหา	หน้าที่ 3
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5
	·

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

แรงดันอินพุต	l	เอาต์พุตของวงจรเปรียบเทียบ					ดิจิต	าอลเอา	เต์พุต	
Vin	C1	C2	C3	C4	C5	C6	C7	U	В	Α
0 - 1V	1	1	1	1	1	1	1	0	0	0
1 - 2V	0	1	1	1	1	1	1	0	0	1
2 – 3V	0	0	1	1	1	1	1	0	1	0
3 – 4V	0	0	0	1	1	1	1	0	1	1
4 – 5V	0	0	0	0	1	1	1	1	0	0
5 – 6V	0	0	0	0	0	1	1	1	0	1
6 – 7V	0	0	0	0	0	0	1	1	1	0
> 7V	0	0	0	0	0	0	0	1	1	1

รูปที่ 1.3 รูปตารางการแปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบแฟลชพื้นฐาน

1.3 วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลด้วยการประมาณค่าต่อเนื่อง

วิธีการอื่น ๆ ของการแปลงสัญญาณ A/D ด้วยการใช้วงจรนับขึ้น /ลง และตัวแปลงสัญญาณการรวม ความชั้น (Integrating slope converters) ในการติดตามอินพุตอนาล็อก ด้วยวิธีการนี้ถูกใช้ในวงจรรวมใหม่ที่สุด ซึ่ง วงจร ADC นี้เรียกว่า การประมาณค่าต่อเนื่อง (successive-approximation) และมีความคล้ายกันกับวงจรการ แปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบสัญญาณลาดเอียง ยกเว้นวิธีการของการทำให้แคบลงของสัญญาณอินพุต อนาล็อกที่ไม่ทราบค่าเป็นการปรับปรุงมากขึ้นในการแทนค่าของการนับขึ้นจาก 0 และเปรียบเทียบเอาต์พุตของวงจร DAC ของค่าแรงดันอินพุตแต่ละขั้นแบบการประมาณค่าต่อเนื่องข้อมูลที่บันทึก (Successive-approximation register) ใช้ตัวย่อว่า SAR นี้ถูกใช้งานในวงจรตามรูปที่ 1.4

รูปที่ 1.4 วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลด้วยการประมาณค่าต่อเนื่องข้อมูลที่บันทึก (SAR)

ใบเนื้อหา	หน้าที่ 4
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

ข้อดีของวงจรแปลงสัญญาณ A/D แบบ SAR คือ การทำงานเป็นแบบความเร็วสูง วงจรแปลงสัญญาณใน รูปที่ 1.4 มีการแปลงสัญญาณที่สมบูรณ์ใน 8 คาบเวลาของสัญญาณนาฬิกาเท่านั้น ซึ่งเป็นการปรับปรุงที่มากขึ้นจาก วิธีการของวงจรการแปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบสัญญาณลาดเอียง

1.4 วงจรรวมชนิดแปลงสัญญาณอนาล็อกเป็นดิจิทัล

วงจรรวมชนิดแปลงสัญญาณอนาล็อกเป็นดิจิทัล (ADC) มีใช้งานกันอย่างแพร่หลายในท้องตลาดไม่น้อย กว่า 300 เบอร์ ที่มีคุณสมบัติที่แตกต่างกัน วงจรรวมชนิด ADC แบ่งออกได้ 2 กลุ่มตามการใช้งานคือ (1) วงจรรวม ADC ชนิดเอาต์พุตเป็น BCD และ (2) วงจรรวม ADC ชนิดเอาต์พุตเป็นเลขฐาน 2 แต่ถ้าแบ่งชนิดของวงจรรวม ADC ตามการต่อใช้งานสามารถแบ่งออกได้เป็น 2 กลุ่มคือ (1) วงจรรวม ADC ชนิดข้อมูลเอาต์พุตเป็นสัญญาณรูปแบบขนาน และ (2) วงจรรวม ADC ชนิดข้อมูลเอาต์พุตเป็นสัญญาณรูปแบบอนุกรม โดยวงจรรวมชนิด ADC ได้แก่เบอร์ ADC0804, ADC0832, LTC1298, CS5550 เป็นต้น

ไอซีวงจรรวมเบอร์ ADC0804

ไอซีวงจรรวมเบอร์ ADC0804 เป็นไอซีแปลงสัญญาณ แอนาลอกเป็นดิจิตอลขนาด 8 บิต ซึ่งตำแหน่งขา ต่าง ๆ ของ ADC0804 แสดงดังรูปที่ 1.5 มีความไวในการแปลงสัญญาณแต่ละรอบเท่ากับ 100us แบบต่อเนื่อง และ รับแรงดันอนาล็อกอินพุตได้ในย่าน 0 ถึง +5V จะได้ค่าความแยกชัดต่อบิต (Resolution) คือ 19.6mV เมื่อ VCC = +5V ดังนั้น 1 LSB = (5V/255) = 19.6mV การกำหนดแรงดันอ้างอิงสามารถกำหนดได้ที่ขา 9 (Vref/2V) การ กำหนดแรงดันอินพุตและความแยกชัดของไอซีวงจรรวมเบอร์ ADC0804 แสดงได้ดังรูปตารางที่ 1.6

รูปที่ 1.5 วงจรแปลงอนาล็อกเป็นดิจิทัลโดยไอซีเบอร์ ADC0804

ใบเนื้อหา	หน้าที่ 5
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

Vref/2V	แรงคันอินพุต(V)	ค่าความแยกชัค(mV)
เปิดวงจร	0-5.0	19.6
2.25	0-4.5	17.6
2.00	0-4.0	15.7
1.50	0-3.0	11.8

รูปที่ 1.6 รูปตารางการกำหนดแรงดันอ้างอิงและค่าความแยกชัด (Resolution)

สัญญาณนาฬิกาที่ใช้กับวงจรนี่ทำได้ 2 ทางคือ ใช้สัญญาณนาฬิกาจากภายนอกความถี่ 100kHz ถึง 800kHz ป้อนเข้าที่ขา 4 (CLK IN) อีกวิธีหนึ่งคือใช้สัญญาณนาฬิกาจากภายในจากขา 19 โดยสามารถกาหนดความถี่ ของสัญญาณนาฬิกาได้จากวงจรตัวต้านทาน และตัวเก็บประจุจากภายนอก โดยค่าความถี่หาได้จากสมการที่ 1.1

$$f = 1/(1.1RC)$$
 (1.1)

เมื่อ f = ความถี่เอาต์พุตมีหน่วยเป็น Hz

 $\mathsf{R} = \mathsf{P}$ ความต้านทานมีหน่วยเป็น Ω

C = ค่าตัวเก็บประจุมีหน่วยเป็น F

ขา 5 ของไอซี ADC0804 เป็นขา INTR หรือบางทีเรียกว่าขา EOC (end of conversion) จะให้ เอาต์พุตที่เป็นลอจิก '0' เมื่อการแปลงเสร็จสิ้นสมบูรณ์

การควบคุมให้ไอซีสามารถทำงานอย่างต่อเนื่องนั้น ขา \overline{CS} และขา \overline{RD} จะต้องต่อลงกราวด์ ส่วนขา \overline{WR} จะต่องต่อเข้า กับขา \overline{INTR} ดังรูปที่ 1.5 การต่อแบบนี้ทำให้เมื่อขา \overline{INTR} อยู่ในสภาวะลอจิก '0' ขา \overline{WR} ก็จะ เป็นลอจิก '0' ด้วยทำให้ไอซีถูกรีเซต และขา \overline{INTR} กลับมาอยู่ในสภาวะลอจิก '1' อีกครั้ง ขา \overline{WR} ก็จะเป็นลอจิก '1' ตามไปด้วย การแปลงสัญญาณก็จะเริ่มขึ้นอีกครั้ง บางครั้งกระบวนการแปลงสัญญาณอาจจะไม่ทำงานเมื่อเริ่ม จ่ายไฟเลี้ยงก็ได้ จึงต้องป้อนพัลส์ลบเข้าทางขา \overline{WR} เพื่อเป็นการกระตุ้นให้ไอซีเริ่มทำงาน

2. การแปลงสัญญาณดิจิทัลเป็นอนาล็อก (Digital to Analog Converter : DAC)

การแปลงสัญญาณดิจิทัลเป็นอนาล็อก (Digital to Analog Converter : DAC) หมายถึง การแปลง น้ำหนักของเลขฐานสองผ่านวงจรแปลงสัญญาณทางดิจิทัลให้เป็นระดับแรงดัน โดยสามารถแสดงได้ดังรูปที่ 1.7 ซึ่ง เป็นวงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อกขนาด 4 บิต ให้เป็นระดับแรงดันทางด้านเอาต์พุต ส่วนตารางแสดงการ ทำงานของวงจรแปลงสัญญาณดิจิทัลเป็นสัญญาณอนาล็อกขนาด 4 บิต แสดงได้ดังรูปตารางที่ 1.8

ใบเนื้อหา	หน้าที่ 6
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5
ชื่อหน่วย การแปลงสัญญาณ A/D และ D/A	

00/12 00 11 1000 001 401 00 00 100 7 7 2 0001

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

รูปที่ 1.7 แสดงบล็อกไดอะแกรมของวงจรการแปลงสัญญาณดิจิทัลเป็นอนาล็อก

			1	
	DIGITA	L INPUT		ANALOG OUTPUT
D	С	В	A	Vout
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

รูปที่ 1.8 รูปตารางแสดงระดับแรงดันที่แปลงจากสัญญาณดิจิทัลเป็นสัญญาณอนาล็อก

ใบเนื้อหา	หน้าที่ 7
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

วงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อกแบบโครงข่ายตัวต้านทาน เป็นวงจรที่มีพื้นฐานมาจากวงจรขยาย สัญญาณแบบกลับเฟสของอุปกรณ์ออปแอมป์ โดยวงจรพื้นฐานของการแปลงสัญญาณดิจิทัลเป็นสัญญาณอนาล็อก ประกอบไปด้วยวงจร 2 ส่วนคือวงจรแปลงดิจิทัลเป็นสัญญาณอนาล็อก 4 บิต และวงจรขยายผลรวมของสัญญาณ ดัง รูปที่ 1.10

รูปที่ 1.9 บล็อกไดอะแกรมวงจรแปลงสัญญาณดิจิทัลเป็นแอนาลอกแบบโครงข่ายตัวต้านทาน

รูปที่ 1.10 วงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อกแบบโครงข่ายตัวต้านทาน

วงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อกโดยใช้ออปแอมป์ประกอบเป็นวงจรขยายผลรวมของสัญญาณ (Summing Amplifier) ซึ่งสามารถคำนวณหาค่าแรงดันที่เอาต์พุตได้จากสูตร

$$V_{out} = -\left(V_D + \frac{V_C}{2} + \frac{V_B}{4} + \frac{V_A}{8}\right)$$
(1.2)

จากวงจรและสมการหาค่าแรงดันเอาต์พุตของวงจร DAC จะสรุปได้ว่าวงจร DAC แบบโครงข่ายตัว ต้านทานจะใช้หลักการทำงานของวงจรรวมสัญญาณที่สร้างจากไอซีออปแอมป์ โดยอินพุตของวงจรจะประกอบด้วย ตัวต้านทานที่มีค่าเป็นสัดส่วนกัน เช่นวงจร DAC ขนาด 4 บิตจะใช้ตัวต้านทานอินพุต 4 ตัว โดยตัวแรกจะต้องมีค่า เท่ากับตัวต้าน Rf ส่วนตัวต้านทานตัวที่ 2 จะมีค่าเท่ากับตัวต้านทานตัวแรกคูณ 2 ส่วนตัวต้านทานตัวที่ 3 จะมีค่า เท่ากับตัวต้านทานตัวแรกคูณ 4 และตัวต้านทานตัวที่ 4 จะมีค่าเท่ากับตัวต้านทานตัวแรกคูณ 8 เป็นต้น

ใบเนื้อหา	หน้าที่ 8
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

วิธีการสำหรับการแปลงสัญญาณดิจิทัลเป็นอนาล็อกที่พบมากที่สุดคือวงจร R/2R แลดเดอร์ (R/2R Ladder) เนื่องจากในวงจรนี้มีตัวต้านทาน 2 ค่าเท่านั้นที่ถูกใช้ ซึ่งด้วยวิธีการนี้ใช้ได้อย่างดีในการสร้างเป็นของวงจร D/A ที่มีความละเอียดของ 8, 10, หรือ 12 บิต และค่าสูงกว่านี้ ดังแสดงในรูปที่ 1.11

รูปที่ 1.11 วงจรแปลงค่าน้ำหนักเลขฐานสอง D/A แบแ R/2R แลดเดอร์

ในรูปที่ 1.11 ข้อมูลดิจิตอล 4 บิต ถูกเปลี่ยนเป็นอนาล็อกที่ถูกป้อนมาที่สวิตช์ D_0 ถึง D_3 โดยการทำงาน ของวงจร เมื่อสวิตช์มีการเคลื่อนตำแหน่งไปที่ +5V ('1') หรือ 0V ('0') ทำให้มีกระแสไหลผ่านไปที่ตัวต้านทาน R_9 ซึ่งจะเป็นไปตามสัดส่วนของค่าสมมูลย์ของเลขฐานสอง (ตามลำดับของสวิตช์มีค่าเป็นสองเท่าของตัวที่อยู่ก่อนหน้า) ค่าแรงดันเอาต์พุตจากความเป็นไปได้ 16 ค่า ในการรวมกันของสวิตช์แต่ละตัว ซึ่งแสดงไว้ในรูปตารางที่ 1.12 และรูป ที่ 1.13 แสดงค่าของอินพุตดิจิทัลที่มีการแปลงเป็นค่าแรงดันอนาล็อกที่ค่าต่าง ๆ

D_3	D ₂	D_1	D ₀	V _{out} (–V)	D_3	D ₂	D_1	D ₀	V _{out} (–V)
0	0	0	0	0.000	1	0	0	0	-5.000
0	0	0	1	-0.625	1	0	0	1	-5.625
0	0	1	0	-1.250	1	0	1	0	-6.250
0	0	1	1	-1.875	1	0	1	1	-6.875
0	1	0	0	-2.500	1	1	0	0	- 7.500
0	1	0	1	-3.125	1	1	0	1	-8.125
0	1	1	0	-3.750	1	1	1	0	-8.750
0	1	1	1	-4.375	1	1	1	1	-9.375

รูปที่ 1.12 รูปตารางค่าอินพุตดิจิทัลกับค่าแรงดันเอาต์พุตอนาล็อกของวงจรการแปลง D/A

ใบเนื้อหา	หน้าที่ 9
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

รูปที่ 1.13 ค่าดิจิทัลที่ถูกแปลงเป็นค่าแรงดันอนาล็อกที่ค่าต่าง ๆ

ตัวอย่างของการคำนวณค่าแรงดันเอาต์พุต V_{out} ตลอดการทำงานของวงจร R/2R แลดเดอร์ โดย 3 สภาวะความแตกต่างจากการรวมกันของสวิตช์ว่ามีวิธีการทำงานอย่างไร

1. สำหรับที่อินพุต $D_0=0$, $D_1=0$, $D_2=0$ และ $D_3=1$ มีการคำนวณดังนี้ R_1 ต่อขนานกับ R_5 มีค่า เท่ากับ $10k\Omega$ และค่าความต้านทาน 1 $k\Omega$ นี้จะต่ออนุกรมกับ R_6 มีค่าเท่ากับ $20k\Omega$ และค่าความต้านทาน $20k\Omega$ นี้ จะต่อขนานกับ R_2 มีค่าเท่ากับ $10k\Omega$ และคำนวณแบบนี้ตลอดจน R_7 , R_3 และ R_8 วงจรสมมูลย์แสดงในรูปที่ 1.14

รูปที่ 1.14 วงจรสมมูลย์ของวงจร R/2R แลดเดอร์สำหรับการคำนวณหาค่าแรงดันเอาต์พุต เมื่อ $D_0=0,\,D_1=0,\,D_2=0$ และ $D_3=1$

2. สำหรับที่อินพุต $D_0 = 0$, $D_1 = 0$, $D_2 = 0$ และ $D_3 = 0$ จะมีวงจรสมมูลย์แสดงได้ดังรูปที่ 1.15 ซึ่งจะ คล้ายคลึงกับรูปที่ 1.14 ยกเว้นที่อินพุต $D_3 = 0$

ใบเนื้อหา	หน้าที่ 10
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

รูปที่ 1.15 วงจรสมมูลย์ของวงจร R/2R แลดเดอร์สำหรับการคำนวณหาค่าแรงดันเอาต์พุต

3. สำหรับที่อินพุต $D_0 = 0$, $D_1 = 0$, $D_2 = 1$ และ $D_3 = 0$ สวิตช์ทั้งหมดจะต่อกับกราวด์ยกเว้นเพียงอินพุต D_2 ดังนั้นวงจรสมมูลย์จะเป็นดังรูปที่ 1.16 ซึ่งวงจรยากที่จะคำนวณหาค่า V_{out} ในรูปแบบปกติจะต้องใช้วงจรเธวินิน พิจารณาที่จุด A เพื่อลดรูปวงจรให้เป็นดังรูป 1.17 เพื่อใช้ในการคำนวณหาค่าแรงดันเอาต์พุต

รูปที่ 1.16 วงจรสมมูลย์ของวงจร R/2R แลดเดอร์สำหรับการคำนวณหาค่าแรงดันเอาต์พุต

รูปที่ 1.17 วงจรสมมูลย์ของวงจร R/2R แลดเดอร์สำหรับการคำนวณหาค่าแรงดันเอาต์พุต เมื่อ $D_0=0$, $D_1=0$, $D_2=1$ และ $D_3=0$ และใช้วงจรเธวินินพิจารณาที่จุด A เพื่อลดรูปวงจร ซึ่งวงจรให้ผลลัพธ์ออกมาไม่ว่าการรวมกันของตำแหน่งสวิตช์ตัวไหนถูกใช้สำหรับช่วยทำให้เกิดค่าขนาด ของแรงดันเอาต์พุต โดยการสับสวิตช์ที่ D_3 ที่ +5V ('1') จะมีค่าเท่ากับ $2 V_{ref}/2$, ที่สวิตช์ D_2 มีค่าเท่ากับ $2 V_{ref}/4$, ที่สวิตช์ D_1 มีค่าเท่ากับ $2 V_{ref}/8$, ที่สวิตช์ D_0 มีค่าเท่ากับ $2 V_{ref}/16$

ใบเนื้อหา	หน้าที่ 11
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

จากข้างต้นสรุปได้ว่าวงจร DAC แบบ R/2R แลดเดอร์จะใช้หลักการทำงานของวงจรรวมสัญญาณที่สร้าง จากไอซีออปแอมป์ โดยอินพุตของวงจรจะประกอบด้วยตัวต้านทานที่ต่อกันเป็นเน็ตเวิร์กและจะใช้ตัวต้านทานเพียง 2 ค่าเท่านั้น คือ R และ 2R ถึงแม้ว่าวงจร DAC จะมีอินพุตกี่บิตก็ตาม ซึ่งจะแตกต่างจากวงจร DAC แบบโครงข่ายตัว ต้านทานที่ยิ่งมีสัญญาณอินพุตมากเท่าใดจะต้องใช้ค่า R ที่แตกต่างกันเท่านั้น

2.3 วงจรรวมชนิดแปลงสัญญาณดิจิทัลเป็นอนาล็อก

วงจรรวมชนิดแปลงสัญญาณดิจิทัลเป็นอนาล็อก (DAC) ที่นิยมใช้กันอย่างแพร่หลายแบ่งตามโครงสร้าง ของวงจรรวมได้ 2 ชนิด คือ ชนิดซีมอส และไบโพลาร์ แต่ถ้าแบ่งตามการต่อใช้งานจะสามารถแบ่งออกเป็น 2 ชนิด คือการต่อใช้งานแบบขนาน และการต่อใช้งานแบบอนุกรม โดยวงจรรวมชนิด DAC ได้แก่เบอร์ MC144110, MC1408, DAC0804, DAC0808, AD558 เป็นต้น

ไอซีวงจรรวมเบอร์ DAC0808

ไอซีวงจรรวมเบอร์ DAC0808 เป็นไอซี D/A ที่มีความละเอียดขนาด 8 บิต ใช้แรงดันไบอัสได้ในย่าน ระหว่าง \pm 4.5V ถึง \pm 18V การต่อวงจร DAC0808 เพื่อใช้งานแปลงสัญญาณดิจิตอลเป็นอนาล็อกในย่านแรงดัน เอาต์พุต 0 -10V ที่แรงดัน Vref = \pm 10V จะต้องต่อวงจรดังรูปที่ 1.18 และค่าแรงดันเอาต์พุตสูงสุดที่ \pm 10V เมื่อ อินพุตเป็น 111111112 และเมื่อแรงดันเอาต์พุตต่ำสุด 0V เมื่ออินพุตเป็น 000000002

รูปที่ 1.18 วงจร DAC0808 ขนาด 8 บิต

ให้กระแสสูงสุดทางด้านเอาต์พุตที่ 2mA เมื่ออินพุตเป็น 11111111₂ และให้กระแสเอาต์พุตต่ำสุดที่ 0mA เมื่ออินพุตเป็น 00000000₂ จากวงจรที่ 1.18 แรงดันเอาต์พุตหาได้จากสมการที่ 1.3

ใบเนื้อหา	หน้าที่ 12
ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5
d	

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A

สิ่งสำคัญที่บ่งบอกถึงความสามารถของวงจร ADC และ DAC คือ

- 1. ค่าความแยกชัด หรือค่าความละเอียดในการแปลงสัญญาณ ที่เรียกว่าค่า K หรือค่า Step Size ซึ่งเป็น ค่าที่บ่งบอกถึงความสามารถในการแปลงสัญญาณ 1 บิตต่อการเปลี่ยนแปลงของแรงดันกี่โวลท์
- 2. ค่าความเร็วในการแปลงสัญญาณจะมีหน่วยเป็น mS หรือ uS ถ้าใช้เวลาในการแปลงสัญญาณยิ่งมีค่า น้อยแสดงว่าวงจรมีประสิทธิภาพสูง

แบบฝึกหัด หน้าที่ 1 ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004 หน่วยที่ 5

ชื่อหน่วย การแปลงสัญญาณ A/D และ D/A

ชื่อเรื่อง	การแปลงสัญญาณ	A/D	และ	D/A
	מ מ			

ชื่อเรื่อง การแปลงสัญญาณ A/D และ D/A
<u>คำสั่ง</u> จงตอบคำถามต่อไปนี้ให้ถูกต้อง
1. ให้อธิบายหน้าที่ของวงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัล
2. ให้อธิบายหน้าที่ของวงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อก
2. ได้ของ เป็นสามาของวง วัง อาการเกิด เห็นกานเกาะ เพื่อสามาของ เกาะ เกาะ เกาะ เกาะ เกาะ เกาะ เกาะ เกาะ
. v
3. วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลมีกี่ประเภทอะไรบ้าง
4. วงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อกมีกี่ประเภทอะไรบ้าง
5. วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลด้วยการประมาณค่าต่อเนื่องมีข้อดีอย่างไร
6. วงจรแปลงสัญญาณอนาล็อกเป็นดิจิทัลแบบใดที่ใช้ออปแอมป์ในการแปลงสัญญาณมากที่สุด
0. 14.4 ระกุญ ขยถิเกิ เซล หายถู่แยก เหม แยะกาก เมนะ กุล การพบารหนาระการเกี่ยวิ เเซช นามเย่ม
7. วงจรแปลงสัญญาณดิจิทัลเป็นอนาล็อกเป็นแบบใดยิ่งจำนวนบิตของสัญญาณอินพุตมาก ตัวต้านทานที่ใช้ต้องมาก
ค่าตาม

หน้าที่ 2 แบบฝึกหัด

ever a series	ชื่อวิชา ดิจิทัลและไมโครคอนโทรลเลอร์ รหัสวิชา 30127-2004	หน่วยที่ 5		
TOTAL EDUCATION COM	ชื่อหน่วย การแปลงสัญญาณ A/D และ D/A			
ชื่อเรื่อง การแปลงสัญญา	ณ A/D และ D/A			
8. ค่า K หรือค่าความแยก	ชัด ใช้สำหรับการบ่งบอกถึงความสามารถอะไรของวงจร ADC หรือ DA	C		
9. ให้อธิบายถึงความสามา	รถของไอซีวงจรรวม ADC0804			
10 % 20 20 20 20 20 20 20 20 20 20 20 20 20	22000 N officerost DAC0000			
10. เหออบายถงความสาม	ารถของไอซีวงจรรวม DAC0808			