GLA University, Mathura

Department of Computer Engineering & Applications

Course: B. Tech CSE Year: 3rd Section: A and B Faculty: Dr. Sandeep Rathor

Assignment questions for II-Module

Note:

- 1. You have to submit your assignment on university portal along with your class roll no and name in each page.
- 2. At the last of assignment some solved questions are given for practice purpose.
- 1. Explain why the given grammar is ambiguous. $S \rightarrow 0A \mid 1B A \rightarrow 0AA \mid 1S \mid 1B \rightarrow 1BB \mid 0S \mid 0$
- 2. Given the following ambiguous context free grammar $S \to Ab \mid aaB A \to a \mid Aa \mid B \to b$ (a)Find the strings generated by the grammar that has two leftmost derivations. Show the derivations.
 - (b) Show the two derivation trees for the strings.
- 3. State and prove pumping lemma for CFG. Prove that the given language is not context free:
 - i) L= $\{a^ib^jc^id^j/i,j\geq 0\}$
 - ii) L= $\{a^ib^ic^i/i\geq 1\}$

```
4. Eliminate null productions

i) S -> aSb/aAb/ab/a

A -> \varepsilon

ii) S->aXbX

X->aY/bY/\varepsilon

Y->X/d

5. Eliminate null productions

S -> AB

A -> aAA/\varepsilon

B -> bBB/\varepsilon
```

6. Prove that given grammar is ambiguous

```
S->0s/1AA
```

A->0/1A/0B

B->1/0BB for string 0100110

- 7. For the grammar S->aAS/a, A->SbA/SS/ba. To generate the string aabaaabbaaa find:
- a. LMD

b.	RMD	
c.	Parse tree	
8.	Reduce the given CFG into CNF	
	S->~S/[SX]/p/q (S being only variable)	
9.	Reduce the given CFG into CNF	
	i)	S->bA/aB
		A->bAA/aS/a
		B->aBB/bS/b
	ii)	S->ASA/bA
		A->B/S
		B->a
10.	Convert the grammar into GNF	
	i)	S->AB
		A->BS/a
		B->SA/b
	ii)	S->ABb/a
		A->aaA
		B->bAb
11.	Eliminate unit production from the given grammar and convert it into GNF.	
		E->E+T/T
		T->T*F/F
		F->(E)/a
12.	Elimina	te unit production from the given grammar
	S->AB,	A->a, B->C/b, C->D, D->E E->a
13.	Remove the useless symbol from the given context free grammar: S->aB/bX A->BAd/bSX/a B->aSB/bBX X->SBD/aBx/ad	
14.	Consider a context free grammar G with the following productions:	
	S->1S1 / T	
	T->1 X 1 / X	
	X->0 X 0 / 1.	
	i)	Write four strings of L(G).

- ii) Give an example of a string $w \in \{0,1\}^+$ such that |w| > 7 and $w \notin L(G)$.
- 15. Give a CFG for the language $L=\{x\in\{a,b\}^*/x \text{ starts and ends with different symbols}\}$.

Some solved questions for (for study / Practice purpose only)

1. Give context-free grammars that generate the following languages. (a) { $w \in \{0, 1\}^* \mid w$ contains at least three 1s }

Answer: G = (V, Σ , R, S) with set of variables V = {S, X}, where S is the start variable; set of terminals Σ = {0, 1}; and rules S \rightarrow X1X1X1X X \rightarrow 0X | 1X | ϵ

(b) $\{ w \in \{0, 1\}^* \mid w = wR \text{ and } |w| \text{ is even } \}$

Answer: G = (V, Σ , R, S) with set of variables V = {S}, where S is the start variable; set of terminals Σ = {0, 1}; and rules S \rightarrow 0S0 | 1S1 | ϵ

(c) { $w \in \{0, 1\}^*$ | the length of w is odd and the middle symbol is 0 }

Answer: G = (V, Σ , R, S) with set of variables V = {S}, where S is the start variable; set of terminals Σ = {0, 1}; and rules S \rightarrow 0S0 | 0S1 | 1S0 | 1S1 | 0

(d) $\{a^i b^j c^k \mid i, j, k \ge 0, \text{ and } i = j \text{ or } i = k\}$

Answer: $G = (V, \Sigma, R, S)$ with set of variables $V = \{S, W, X, Y, Z\}$, where S is the start variable; set of terminals $\Sigma = \{a, b, c\}$; and rules $S \rightarrow XY \mid W, X \rightarrow aXb \mid \epsilon, Y \rightarrow cY \mid \epsilon, W \rightarrow aW c \mid Z, Z \rightarrow bZ \mid \epsilon$ (e) $\{a^i b^j c^k \mid i, j, k \ge 0 \text{ and } i + j = k\}$

Answer: G = (V, Σ , R, S) with set of variables V = {S, X}, where S is the start variable; set of terminals Σ = {a, b, c}; and rules S \rightarrow aSc | X, X \rightarrow bXc | ϵ

2. Eliminate null production (λ) and find equivalent grammar

```
S -> ABCd
A -> BC
B -> bB | λ
C -> cC | λ
```

```
Sol. S -> ABCd | ABd | ACd | BCd | Ad | Bd | Cd | d

A -> BC | B | C

B -> bB | b

C -> cC | c
```

3. Eliminate unit production and find equivalent grammar

```
S -> Aa | B
A -> b | B
```

B -> A | a

Sol.

S -> Aa | b | a A -> b | a B -> a | b

4. Let any set of production rules in a CFG be

 $X \rightarrow X+X \mid X*X \mid X \mid a$, over an alphabet $\{a\}$.

The leftmost derivation for the string "a+a*a" may be –

$$X \rightarrow X+X \rightarrow a+X \rightarrow a+X*X \rightarrow a+a*X \rightarrow a+a*a$$

The stepwise derivation of the above string is shown as below –

The rightmost derivation for the above string "a+a*a" may be –

$$X \rightarrow X^*X \rightarrow X^*a \rightarrow X+X^*a \rightarrow X+a^*a \rightarrow a+a^*a$$

The stepwise derivation of the above string is shown as below -

Step 1:

Step 2:

