M		3	[G	3	1
*			2	7	
	3	10	7	Č.	
	÷	á			
1	0/5	1	•		

I. E. S. " SAN ISIDRO "

 (£)	: 4
	ıciór

Asignatura			Fecha	
Alumno/a			Curso	
	Apellidos	Nombre		

2- Demvestra que si la senie Zon converge y largents d = 1 entonces la serie converge absolutamente.

Sabemos que una serie de nimeros complejos converge si y solo si convergen su parte real y su park imaginaria. Por tanto, Z Re(cn) y Z Im(cn) convergen. Ademais $arg(c_n) \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. (omo Cn = |Cn/. (&os(arg(cn)) + i sen(arg(cn))) = Re(cn) + i Im(cn) yel cos x >0 si xe(-及)型) => Re(cn) > 0

Por tambo Z Re(cn) converge absolutamente Por otro todo $\frac{Im(c_n)}{Re(c_n)} = tg(arg(c_n)) \Rightarrow Jm(c_n) = tg(arg(c_n)) Re(c_n)$

| Im (cn) = | tg(arg(cn)) | | Re(cn) = tg(larg(cn)) . Re(cn) < tg(x). Re(cn) $S_{i \times e\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)} | t_{g \times i}| = \begin{cases} t_{g \times i} \times e\left(0, \frac{\pi}{2}\right) \\ -t_{g \times i} \times e\left(-\frac{\pi}{2}, 0\right) \end{cases} = t_{g \times i}$ $t_{g \times i} \times e\left(-\frac{\pi}{2}, 0\right) | t_{g \times i}$ $t_{g \times i} \times e\left(-\frac{\pi}{2}, 0\right) | t_{g \times i}$ fg(x) arecreate