

PASSENGER SATISFACTION

Today, I'm going to present you how to predict passenger satisfaction on their overall journey

Summary:

- 1) Context of the dataset
- 2) Cleaning the dataset
- 3) Tableau visualizations
- 4) SQL analyse
- 5) Results

1) Context of the dataset

- US Airline 2015 passengers satisfaction with their flight
- The number of rows and columns:
 - before cleaning: 103 904 rows and 25 columns
 - after cleaning: 75 119 rows and 24 columns

2) Cleaning the dataset

- Normalizing the columns' name
- Cleaning rows from 1 column: "arrival_delay_in_minutes"
- Checking for duplicates
- Removing outliers from the following columns:
 - flight_distance
 - o departure_delay_in_minutes
 - o arrival_delay_in_minutes
- Saving the cleaned dataset to a new CSV file

3) Tableau visualizations

Average score regarding to the satisfaction

Average scores about online services

Average score regarding to passenger's gender

Average scores about airport's

Average scores about online services

4) SQL analyse

```
query = ""
    SELECT satisfaction, gender, count(id)
    FROM data
    group by satisfaction, gender
""

data = pd.read_sql_query(query, engine)
data.head()
```

	satisfaction	gender	count(id)
0	neutral or dissatisfied	Male	20024
1	satisfied	Female	16960
2	neutral or dissatisfied	Female	21137
3	satisfied	Male	16998

5) Results

Model	Score	Results	
Logistic Regression	0,97	As we can see, the score is really high. I checked through a matrix, to understand better this score. This matrix shows that 97,7% of the preditions are "True" and 2,3% are "False".	
Random Forest	0,97	This is obtained with a max_depth = 1 as a parameter. The main paramters are the following : random_state=0, max_depth=1, max_features='sqrt', min_samples_leaf=5, min_samples_split=5, n_estimators=250	
	0,99	This is obtained with a max_depth = 2 as a parameter.	
	1	This is obtained with a max_depth = 3 as a parameter. After 3, the score is always 1.	

I would like to thank
Abhi and his team for
this incredible
experience full of
learning and enjoy!

