Seminar on Moduli Theory Lecture 18

Neeraj Deshmukh

January 15, 2021

Last Time

• Flattening Stratification

Flattening stratification

Theorem

Let $\mathcal F$ be a coherent sheaf on $\mathbb P^n_S$ with S a Noetherian scheme. Then the set I of Hilbert polynomials of $\mathcal F$ on the fibers of $\mathbb P^n_S \to S$ is a finite set. Moreover, for each $f \in I$, there exists a locally closed subscheme $S_f \subset S$ such that the following conditions hold:

- **1** $|S| = \coprod_f |S_f|$, set-theoretically;
- ② Fix an $f \in \mathbb{Q}[\lambda]$. For any morphism $\phi : T \to S$ the pullback $\phi^* \mathcal{F}$ is flat on \mathbb{P}^n_T with Hilbert polynomial f if and only if $\phi : T \to S$ factors through S_f .

Semi-continuity theorem

Theorem

Let $\pi: X \to S$ be a projective morphism with S Noetherian. Let \mathcal{F} be a coherent sheaf on X which is flat over \mathcal{O}_S . Then the following hold:

- **1** The function $s \mapsto h^i(X_s, \mathcal{F}_s)$ is upper semi-continuous on S.
- ② The function $s \mapsto \sum_i (-1)^i h^i(X_s, \mathcal{F}_s)$ is locally constant.
- ③ If for some integer i, there is some $d \ge 0$ such that $h^i(X_s, \mathcal{F}_s) = d$ for all $s \in S$, then $R^i\pi_*\mathcal{F}$ is locally free of rank d and $(R^{i-1}\pi_*\mathcal{F})_s \to H^{i-1}(X,\mathcal{F}_s)$ is an isomorphism for all $s \in S$.

Semi-continuity theorem

Theorem

Let $\pi: X \to S$ be a projective morphism with S Noetherian. Let \mathcal{F} be a coherent sheaf on X which is flat over \mathcal{O}_S . Then the following hold:

• If $(R^i\pi_*\mathcal{F})_s \to H^i(X,\mathcal{F}_s)$ is surjective for some integer i and some $s \in S$, then there is a open neighbourhood $U \subset S$ of s such that for any quasi-coherent sheaf \mathcal{G} , the natural homomorphism

$$(R^i\pi_*\mathcal{F}_{X_U})\otimes_{\mathcal{O}_U}\mathcal{G}\to R^i\pi_{U*}(\mathcal{F}_{X_U}\otimes_{\mathcal{O}_{X_U}}\pi_U^*\mathcal{G})$$

is an isomorphism. In particular, $(R^i\pi_*\mathcal{F})_{s'} \to H^i(X_{s'},\mathcal{F}_{s'})$ is an isomorphism for all $s' \in U$.

Semi-continuity theorem

Theorem

Let $\pi: X \to S$ be a projective morphism with S Noetherian. Let \mathcal{F} be a coherent sheaf on X which is flat over \mathcal{O}_S . Then the following hold:

- **⑤** If for some integer i and some point $s \in S$, the map $(R^i\pi_*\mathcal{F})_s \to H^i(X_s, \mathcal{F}_s)$ is surjective, the following two conditions are equivalent:
 - (a) $(R^{i-1}\pi_*\mathcal{F})_s \to H^{i-1}(X_s,\mathcal{F}_s)$ is surjective.
 - (b) The sheaf $R^i\pi_*\mathcal{F}$ is locally free in a neighbourhood of $s \in S$.

Castelnuovo Mumford regularity

Definition

Let $\mathcal F$ be a coherent sheaf on $\mathbb P^n_k$. Let m be an integer. $\mathcal F$ is said to be m-regular if we have

$$H^i(\mathbb{P}^n_k, \mathcal{F}(m-i)) = 0$$
 for each $i \geq 1$.

Theorem (Mumford)

Given any non-negative integers p and n, there exists a polynomial $F_{p,n}$ in n+1-variables with the following property:

If $\mathcal{F}\subset \oplus^p\mathcal{O}_{\mathbb{P}^n_k}$ is any coherent subsheaf with Hilbert polynomial

$$\chi(\mathcal{F},r) = \sum_{i=0}^{n} a_i \begin{pmatrix} r \\ i \end{pmatrix},$$

then \mathcal{F} is $F_{p,n}(a_0,\ldots,a_n)$ -regular.

Theorem (Altman-Kleiman)

Let S be a Noetherian scheme and V a vector bundle on S. Let $\pi: X \to S$ be a closed subscheme of $\mathbb{P}(V)$ and $L := \mathcal{O}_{\mathbb{P}(V)}|_X$. Let W be a vector bundle on S and ν an integer. Consider a coherent quotient $\pi^*(W)(\nu) \to E$. Then for any $\Phi \in \mathbb{Q}[\lambda]$, the quot functor $\mathfrak{Quot}_{E/X/S}^{\Phi}$ is representable by a scheme.

Moreover, this scheme can be embedded in $\mathbb{P}(F)$ for some vector bundle F over S.

Reduction to the case of $\mathfrak{Quot}^{\Phi}_{\pi^*W/\mathbb{P}(V)/S}$

Use of m-regularity

Use of semi-continuity

Functor to Grassmannian

Use of flattening stratification

Properness