Kaggle | Google

5-Day Gen AI Intensive Course with Google 2025

Whitepaper Companion Podcast (Notes): Solving Domain-Specific Problems Using LLMs: Cybersecurity and Medicine

Introduction to LLMs and Domain Specialization

- Large Language Models (**LLMs**) are now being used to solve complex problems in specialized fields^[1].
- Fine-tuning LLMs for specific areas yields significant results and opens new possibilities^[1].
- The whitepaper explores the challenges and opportunities of specialized data, technical language, and sensitive use cases in cybersecurity and medicine^[1].

Cybersecurity Challenges and SecLM

- Cybersecurity faces challenges such as limited public data, diverse technical concepts, and rapidly changing threats^[1].
- Sensitive use cases like malware analysis require specific model development considerations^[1].
- **SecLM** is a security-focused language model paired with supporting techniques for threat identification and risk analysis^[1].

Pressures in Cybersecurity

- Constant emergence of new and sophisticated attacks^[1].
- Operational toil for security teams^[1].
- Shortage of skilled professionals^[1].

LLMs as AI Assistants in Cybersecurity

- LLMs can act as AI assistants to handle tedious tasks, freeing experts for strategic work^[1].
- Examples of LLM applications:
 - o Translating natural language into complex guery languages.
 - o Automating investigation and categorization of alerts^[1].
 - o Generating personalized remediation plans^[1].
 - o Reverse engineering and understanding malicious software [1].
 - o Generating summaries of the threat landscape^[1].
 - o Providing insights into potential attack pathways and preventative measures^[1].
 - o Identifying critical areas for security testing and generating secure code snippets^[1].

Layered Approach in Cybersecurity

- Existing security tools provide data and context^[1].
- A specialized model API, such as SecLM, is in the middle^[1].
- Authoritative security intelligence and human expertise underpin the entire system^[1].

SecLM as a Central Resource

- SecLM is envisioned as a central resource for security questions^[1].
- It aims to be a one-stop shop where users can ask questions in plain language and receive answers based on internal data sources^[1].

Standards for SecLM

- Timeliness: Keeping the model up to date with the rapidly changing threat landscape^[1].
- Data Sensitivity: Analyzing sensitive user data without risk of exposure^[1].
- Deep Security Knowledge: Understanding security concepts and terminology^[1].
- Multi-Step Reasoning: Combining different data sources and models to solve problems.

Reasons General-Purpose LLMs Fall Short

- Limited publicly available, high-quality security data^[1].
- The breadth and depth of security knowledge required^[1].
- Sensitive use cases like analyzing malware^[1].

Creating Specialized SecLMs: Targeted Training Approach

- Start with a strong general-purpose foundation model with multilingual capabilities^[1].
- Pre-training on cybersecurity-specific content (blogs, threat reports, detection rules, IT security textbooks)^[1].
- Supervised fine-tuning on tasks that mirror real-world security expert activities:
 - o Analyzing potentially malicious groups^[1].
 - o Explaining command-line instructions^[1].
 - o Interpreting security event logs[1].
 - o Summarizing complex threat reports^[1].
 - o Generating queries for security management platforms^[1].
- Focus on privacy, keeping user-specific data separate^[1].

Evaluating Performance of Specialized Models

- For tasks with clear answers, use standard classification metrics^[1].
- For open-ended tasks, compare the model's output to expert-provided answers using metrics like Rouge and BERTScore^[1].
- Use larger LLMs for automated side-by-side comparisons^[1].
- Human evaluators play a crucial role in judging the models' performance^[1].

Techniques to Help Models

• **In-context learning:** Adapting to new security platforms by providing examples^[1].

- **Parameter Efficient Tuning (PET):** Customizing the model with user-specific data without retraining the entire model^[1].
- **Retrieval Augmented Generation (RAG):** Keeping the model up to date with the latest threat intelligence by pulling information from external sources in real-time^[1].

Flexible Planning and Reasoning Framework

- Illustrative example: Responding to a security analyst's high-level question about the AP41 threat group^[1].
- The SecLM API orchestrates a series of steps:
 - o Retrieving information about AP41^[1].
 - o Extracting key TTPs and IOCs^[1].
 - o Translating that into a query^[1].
 - o Running the query against the user's SIEM system^[1].
- The sequence of actions can be predefined or generated in real-time^[1].
- Automation can save analysts hours of work^[1].

SecLM Applications

- Interacting with external security tools using RAG^[1].
- Employing specialized models for specific analytical tasks^[1].
- ullet Utilizing a form of long-term memory to remember user preferences and context^[1].

Ultimate Goal for SecLM

- To become a central platform that transforms how cybersecurity is practiced^[1].
- Significantly reduce the daily burden on security professionals^[1].

Healthcare and Med-PaLM

LLMs can transform medical question answering^[1].

• **Med-PaLM** is an LLM adapted from Google's PaLM family, focused on improving health outcomes^[1].

Potential Uses of GenAI in Healthcare

- Patients can ask questions about their medical history and receive personalized quidance^[1].
- AI systems can triage patient messages to the right clinicians^[1].
- Revolutionize patient intake^[1].
- Provide real-time feedback during consultations^[1].
- AI consultant with access to a vast body of medical knowledge^[1].

Responsible Innovation in Medicine

- The paper emphasizes the importance of responsible innovation, especially where patient safety is paramount^[1].
- Rigorous validation is needed through retrospective analysis and prospective studies^[1].

Shift in Scientific Approach

- The vision is to create more human-centered AI systems that can interact with people in a more natural way^[1].
- It's about language, empathy, and understanding the human element $^{[1]}$.
- Med-PaLM is presented as a first step towards this vision, starting with question answering^[1].

Med-PaLM Progress

- Med-PaLM was the first AI to surpass the passing score on USMLE-style medical license exams^[1].
- Med-PaLM 2 achieved expert-level performance on those exams^[1].
- It also showed improvements in the quality and depth of its long-form answers^[1].

Measuring AI's Medical Knowledge: Evaluation Strategy

- Combine quantitative metrics with qualitative assessments^[1].
- Use USMLE-style questions as a benchmark^[1].
- Qualitative assessments look at factual correctness, appropriate use of medical knowledge, helpfulness, potential biases, and the potential for harm^[1].

Human Evaluations

- Med-PaLM and teams of physicians answer the same medical questions independently^[1].
- Responses are given to expert raters who compare them side by side^[1].
- The focus is on the substance of the answer^[1].

Areas for Improvement

- Models still need to improve, and scoring well on datasets doesn't guarantee real-world performance^[1].
- A progression of studies is needed^[1].

Task-Specific vs. Broad Domain Models

- Med-PaLM's success shows the value of domain specialization^[1].
- Each application needs to be carefully validated and adapted^[1].
- The multimodal nature of medicine requires integrating information from images, EHRs, sensor data, and genomics^[1].

Applications Beyond Patient Care

• Scientific discovery (identifying genes associated with specific traits)^[1].

Med-PaLM as a Suite of Commercially Available Models

• Built on Med-PaLM 2, this will allow healthcare organizations to build their own GenAI solutions^[1].

Med-PaLM 2 Training

- Builds upon the base LLM PaLM 2^[1].
- Fine-tuned using a lot of medical question answering data^[1].
- Uses prompting techniques for multiple-choice questions (few-shot prompting, Chain of Thought prompting)^[1].
- Self-consistency helps improve accuracy^[1].
- Ensemble refinement is a technique where the model takes into account its own generated explanations^[1].

Conclusion

- LLMs show incredible potential in cybersecurity and healthcare^[1].
- In cybersecurity, SecLM can automate tasks, address the talent shortage, and revolutionize security practices^[1].
- In healthcare, Med-PaLM is tackling the complexity of medical data and improving healthcare delivery^[1].
- Collaboration with clinicians and careful real-world evaluation are crucial.
- The development of vertical-specific foundation models points to a future where AI is deeply integrated into healthcare^[1].