Análisis Matemático II

Tema 11: Cálculo de integrales simples

Regla de Barrow

2 Comparación

Integración por partes

Cambio de variable

Regla de Barrow (versión elemental)

Primitivas

En todo lo que sigue, fijamos un intervalo no trivial $J\subset\mathbb{R}$ y escribimos $\alpha=\inf J$ y $\beta=\sup J$, entendiendo que $\alpha=-\infty$ si J no está minorado y $\beta=+\infty$ si J no está mayorado Una primitiva de una función $f:J\to\mathbb{R}$ es una función $G:J\to\mathbb{R}$, derivable en J con G'(x)=f(x) $\forall x\in J$

Versión elemental de la regla de Barrow

Si $f: J \to \mathbb{R}$ es una función continua y G una primitiva de f , se tiene:

$$\int_{a}^{b} f(x) dx = G(b) - G(a) = \left[G(x) \right]_{a}^{b} \quad \forall a, b \in J$$

Cuestión previa para la versión general

Si $G: J \to \mathbb{R}$ es una función derivable, entonces G' es medible

Regla de Barrow (versión general)

Versión general de la regla de Barrow

Si $f \in \mathcal{L}_1(J)$ y $G: J \to \mathbb{R}$ es una primitiva de f ,

entonces $\,G\,$ tiene límite, tanto en $\,\alpha\,$ como en $\,\beta\,$, y se verifica que

$$\int_{\alpha}^{\beta} f(t) dt = \lim_{x \to \beta} G(x) - \lim_{x \to \alpha} G(x) = \left[G(x) \right]_{\alpha}^{\beta}$$

Consecuencia obvia, que extiende la versión elemental

Si $f \in \mathcal{L}_1^{\mathsf{loc}}(J)$ y $G: J \to \mathbb{R}$ es una primitiva de f , entonces se tiene:

$$\int_{a}^{b} f(t) dt = G(b) - G(a) \quad \forall a, b \in J$$

Criterio de integrabilidad

Dada una función $f: J \to \mathbb{R}_0^+$, sea G una primitiva de f.

Entonces $f \in \mathcal{L}_1(J)$ si, y sólo si, G tiene límite en α y β , en cuyo caso:

$$\int_{\alpha}^{\beta} f(t) dt = \left[G(x) \right]_{\alpha}^{\beta}$$

Regla de Barrow

000000

Integrabilidad de las funciones potencia

$$s \in \mathbb{R}$$
 fijo. $f_s : \mathbb{R}^+ \to \mathbb{R}^+$, $f_s(x) = x^s \quad \forall x \in \mathbb{R}^+$

Para $a, b \in \mathbb{R}^+$ si $s \neq -1$ se tiene:

$$\int_{a}^{b} x^{s} dx = \left[\frac{x^{s+1}}{s+1} \right]_{a}^{b} = \frac{b^{s+1} - a^{s+1}}{s+1}$$

mientras que:
$$\int_a^b \frac{dx}{x} = \log\left(\frac{b}{a}\right)$$

$$s<-1$$
, $c\in\mathbb{R}^+$ \Longrightarrow $f_s\notin\mathcal{L}_1\big(]0,c[\big)$ y $f_s\in\mathcal{L}_1\big(]c,+\infty[\big)$

$$\int_{c}^{+\infty} x^{s} dx = \left[\frac{x^{s+1}}{s+1} \right]_{c}^{+\infty} = -\frac{c^{s+1}}{s+1} \quad \forall c \in \mathbb{R}^{+}, \ \forall s \in]-\infty, -1[$$

$$s > -1$$
, $c \in \mathbb{R}^+$ \Longrightarrow $f_s \notin \mathcal{L}_1(]c, +\infty[)$ y $f \in \mathcal{L}_1(]0, c[)$

$$\int_{0}^{c} x^{s} dx = \left[\frac{x^{s+1}}{s+1} \right]_{0}^{c} = \frac{c^{s+1}}{s+1} \quad \forall c \in \mathbb{R}^{+}, \ \forall s \in]-1, +\infty[$$

$$s = -1$$
, $c \in \mathbb{R}^+$ \Longrightarrow $f_s \notin \mathcal{L}_1(]c, +\infty[)$ y $f_s \notin \mathcal{L}_1(]0, c[)$

Regla de Barrow

000000

Resumen que conviene recordar

Dados $s \in \mathbb{R}$ y $c \in \mathbb{R}^+$, la función $x \mapsto x^s$ es

- ullet integrable en $\,\,]\,0\,,\,c\,[\,\,$ si, y sólo si, $\,\,s>-1$
- integrable en $]c, +\infty[$ si, y sólo si, s<-1

Ejemplos anunciados anteriormente

$$f: [0,1] \to \mathbb{R}, \ f(0) = 0, \ f(t) = \frac{1}{2\sqrt{t}} \ \forall t \in]0,1]$$

 $F: [0,1] \to \mathbb{R}, \ F(x) = \int_0^x f(t) dt = \sqrt{x} \ \forall t \in [0,1]$

- ullet f es integrable en [0,1], pero no está acotada
- ullet es absolutamente continua, pero no es lipschitziana
- f es integrable en [0,1], pero f^2 no lo es
- El producto de dos funciones integrables puede no ser integrable

Funciones racionales

Regla de Barrow

000000

Integrabilidad de ciertas funciones racionales

$$x_0 \in \mathbb{R}$$
 y $k \in \mathbb{N}$ fijos. $f(x) = \frac{1}{(x - x_0)^k} \quad \forall x \in \mathbb{R} \setminus \{x_0\}$

Para $a,b \in]-\infty, x_0[$ o bien $a,b \in]x_0, +\infty[$, si k > 1 se tiene:

$$\int_{a}^{b} \frac{dx}{(x-x_0)^k} = \frac{1}{1-k} \left(\frac{1}{(b-x_0)^{k-1}} - \frac{1}{(a-x_0)^{k-1}} \right)$$

mientras que:
$$\int_a^b \frac{dx}{x - x_0} = \log \frac{|b - x_0|}{|a - x_0|}$$

I intervalo no trivial, $x_0 \in \overline{I} \implies f \notin \mathcal{L}_1(I)$

$$k > 1, \quad a,b \in \mathbb{R}, \quad b < x_0 < a \quad \Longrightarrow \quad f \in \mathcal{L}_1 \big(\big] - \infty, b \big[\big) \ \cap \ \mathcal{L}_1 \big(\big] \, a, + \infty \big[\big)$$

$$\int_{-\infty}^{b} \frac{dx}{(x-x_0)^k} = \frac{1}{(1-k)(b-x_0)^{k-1}} \quad \forall b \in]-\infty, x_0[, \ \forall k \in \mathbb{N} \setminus \{1\}]$$

$$\int_{a}^{+\infty} \frac{dx}{(x-x_0)^k} = \frac{1}{(k-1)(a-x_0)^{k-1}} \quad \forall a \in]x_0\,, +\infty[\,, \quad \forall k \in \mathbb{N} \setminus \{1\} \\ k=1\,, \quad I \quad \text{intervalo no acotado} \quad \Longrightarrow \quad f \notin \mathcal{L}_1(I)$$

Funciones exponenciales

Integrabilidad de las funciones exponenciales

$$s \in \mathbb{R}^*$$
 fijo. $f_s(x) = e^{sx} \quad \forall x \in \mathbb{R}$

$$\int_{-b}^{b} e^{sx} dx = \frac{e^{sb} - e^{sa}}{s} \quad \forall a, b \in \mathbb{R}, \quad \forall s \in \mathbb{R}^*$$

Para $c \in \mathbb{R}$ se tiene:

•
$$f_s \in \mathcal{L}_1(]-\infty, c[) \iff s>0$$

•
$$f_s \in \mathcal{L}_1(]c, +\infty[) \iff s < 0$$

$$\int_{-\infty}^{c} e^{sx} dx = \frac{e^{sc}}{s} \quad \forall c \in \mathbb{R}, \ \forall s \in \mathbb{R}^{+}$$

$$\int_{c}^{+\infty} e^{sx} dx = -\frac{e^{sc}}{s} \quad \forall c \in \mathbb{R}, \ \forall s \in \mathbb{R}^{-}$$

$$\rho \in \mathbb{R}^{+} \text{ fijo.} \quad f(x) = e^{-\rho |x|} \quad \forall x \in \mathbb{R}$$

$$f \in \mathcal{L}_{1}(\mathbb{R}) \text{ con:} \int_{-\infty}^{+\infty} e^{-\rho |x|} dx = \frac{2}{\rho}$$

Comparación mediante desigualdades

Ejemplo de comparación mediante una desigualdad

La función $x\mapsto \frac{\cos x}{x^2}$ es integrable en $]1,+\infty[$, ya que:

$$\int_{1}^{+\infty} \frac{|\cos x|}{x^2} dx \leqslant \int_{1}^{+\infty} \frac{dx}{x^2} = 1$$

Comparación usando dos desigualdades

$$0 < x < 1/2 \quad \Longrightarrow \quad \sqrt{x-x^2} = \sqrt{x} \; \sqrt{1-x} \geqslant \sqrt{x} \, / \sqrt{2} \, , \; \text{de donde}$$

$$\int_0^{1/2} |f(x)| \, dx \leqslant \int_0^{1/2} \frac{\sqrt{2}}{\sqrt{x}} \, dx = 2\sqrt{2} \, \left[\sqrt{x}\right]_0^{1/2} = 2$$

Sea $f(x) = \frac{\cos x}{\sqrt{x-x^2}} \quad \forall x \in]0,1[$

$$1/2 < x < 1 \implies \sqrt{x - x^2} \geqslant \sqrt{1 - x} / \sqrt{2}$$
 , luego

$$\int_{1/2}^{1} |f(x)| dx \leqslant \int_{1/2}^{1} \frac{\sqrt{2}}{\sqrt{1-x}} dx = -2\sqrt{2} \left[\sqrt{1-x} \right]_{1/2}^{1} = 2$$

Por tanto, f es integrable en]0,1[

Comparación por paso al límite

Criterio de comparación

Sea
$$I = [a, \beta[$$
 con $a \in \mathbb{R}$ y $a < \beta \leqslant +\infty$

y
$$f,g\in\mathcal{L}_1^{\mathrm{loc}}(I)$$
 con $g(x)\neq 0$ para todo $x\in I$

- Si $\lim_{x \to \beta} \frac{|f(x)|}{|g(x)|} = L \in \mathbb{R}^+$, entonces: $f \in \mathcal{L}_1(I) \iff g \in \mathcal{L}_1(I)$
- $\bullet \quad \mathsf{Si} \quad \lim_{x \to \beta} \frac{|f(x)|}{|g(x)|} = 0 \,, \quad \mathsf{entonces:} \quad g \in \mathcal{L}_1(I) \quad \Longrightarrow \quad f \in \mathcal{L}_1(I)$
- $\bullet \quad \text{Si } \frac{|f(x)|}{|g(x)|} \to +\infty \quad (x \to \beta)\,, \quad \text{entonces:} \quad g \notin \mathcal{L}_1(I) \implies \quad f \notin \mathcal{L}_1(I)$

En el caso $\ I =]\, \alpha \, , b\,] \ \ {\rm con} \ \ b \in \mathbb{R} \ \ {\rm y} \ \ -\infty \leqslant \alpha < b \, ,$

se verifica el resultado análogo, con $\ \alpha$ en lugar de $\ \beta$

Uso del criterio de comparación

Ciertas funciones racionales

 $P \neq 0$ y Q polinomios de grados respectivos $p, q \in \mathbb{N} \cup \{0\}$

$$Q(x) \neq 0 \quad \forall \, x \in \mathbb{R} \quad \text{ y } \quad f(x) = \frac{P(x)}{Q(x)} \quad \forall \, x \in \mathbb{R}$$

$$\lim_{x \to -\infty} |x^{q-p}| |f(x)| = \lim_{x \to +\infty} |x^{p-q}| |f(x)| = L \in \mathbb{R}^+$$
$$g(x) = x^{p-q} \quad \forall x \in \mathbb{R}^*, \quad I_1 =]-\infty, -1], \quad I_2 = [1, +\infty[$$

$$\bullet \quad q-p>1 \quad \Longrightarrow \quad f\in \mathcal{L}_1(\mathbb{R})$$

$$\bullet \quad q-p<1 \quad \Longrightarrow \quad f \quad \text{no es integrable en ningún intervalo no acotado}$$

La campana de Gauss

$$f(x) = e^{-x^2} \quad \forall x \in \mathbb{R}$$

$$g(x) = e^{-|x|} \quad \forall x \in \mathbb{R} , \quad I_1 = \mathbb{R}_0^- , \quad I_2 = \mathbb{R}_0^+$$

$$\lim_{x \to -\infty} \frac{e^{-x^2}}{e^{-|x|}} = \lim_{x \to +\infty} \frac{e^{-x^2}}{e^{-|x|}} = \lim_{x \to +\infty} e^{|x| - x^2} = 0$$

$$-\lim_{x \to +\infty} \frac{1}{e^{-|x|}} - \lim_{x \to +\infty} e = 0$$

Por tanto, $f \in \mathcal{L}_1(\mathbb{R})$

Fórmula de integración por partes (versión elemental)

Si $F,G:J\to\mathbb{R}$ son funciones de clase C^1 en J, se tiene:

Integración por partes

•0000

$$\int_{a}^{b} F(t)G'(t)dt = [F(x)G(x)]_{a}^{b} - \int_{a}^{b} F'(t)G(t)dt \quad \forall a, b \in J$$

Resultado clave para generalizarla

Dado un intervalo compacto $K \subset \mathbb{R}$.

si $F, G: K \to \mathbb{R}$ son funciones absolutamente continuas,

entonces la función producto FG también es absolutamente continua

Integración por partes (versiones generales)

Fórmula de integración por partes (primera versión general)

Dadas $F,G:J\to\mathbb{R}$, supongamos que, para cada intervalo compacto $K\subset J$

las restricciones $F|_{K}$ y $G|_{K}$ son absolutamente continuas.

Entonces, FG' y GF' son localmente integrables en J con:

$$\int_{a}^{b} F(t)G'(t)dt = \left[F(x)G(x)\right]_{a}^{b} - \int_{a}^{b} F'(t)G(t)dt \quad \forall a, b \in J$$

Fórmula de integración por partes (segunda versión general)

Sean $F, G: J \to \mathbb{R}$ dos funciones derivables en $J =]\alpha, \beta[$, tales que F'G y FG' son integrables en J.

Entonces FG tiene límite, tanto en α como en β , y se verifica que:

$$\int_{\alpha}^{\beta} F(t)G'(t)dt = \left[F(x)G(x)\right]_{\alpha}^{\beta} - \int_{\alpha}^{\beta} F'(t)G(t)dt$$

Ejemplos de integración por partes (I)

Integrales indefinidas de ciertas funciones racionales

$$F_n(x) = \int_0^x \frac{dt}{\left(1+t^2\right)^n} \quad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

$$F_{n+1}(x) = F_n(x) - \int_0^x \frac{t^2 dt}{\left(1+t^2\right)^{n+1}}$$

$$F(t) = t \quad \text{y} \quad G(t) = -\frac{1}{2n(1+t^2)^n} \quad \forall t \in \mathbb{R}$$

$$\int_0^x \frac{t^2 dt}{\left(1+t^2\right)^{n+1}} = -\frac{x}{2n\left(1+x^2\right)^n} + \frac{1}{2n}F_n(x)$$

$$F_{n+1}(x) = \frac{2n-1}{2n}F_n(x) + \frac{x}{2n\left(1+x^2\right)^n} \quad \forall x \in \mathbb{R}, \ \forall n \in \mathbb{N}$$

$$F_1(x) = \int_0^x \frac{dt}{1+t^2} = \arctan \operatorname{tg} x \quad \forall x \in \mathbb{R}$$

$$F_2(x) = \int_0^x \frac{dt}{\left(1+t^2\right)^2} = \frac{1}{2}\arctan \operatorname{tg} x + \frac{x}{2\left(1+x^2\right)} \quad \forall x \in \mathbb{R}$$

Ejemplos de integración por partes (II)

Un caso más sencillo, con las mismas funciones

$$\rho_n = \int_{-\infty}^{+\infty} \frac{dx}{\left(1+x^2\right)^n} \quad \forall n \in \mathbb{N}$$

$$\rho_{n+1} = \rho_n - \int_{-\infty}^{+\infty} \frac{x^2 dt}{\left(1+x^2\right)^{n+1}}$$

$$F(t) = t \quad \text{y} \quad G(t) = -\frac{1}{2n(1+t^2)^n} \quad \forall t \in \mathbb{R}$$

$$\int_{-\infty}^{+\infty} \frac{x^2 dt}{\left(1+x^2\right)^{n+1}} = \frac{1}{2n} \rho_n$$

$$\rho_{n+1} = \frac{2n-1}{2n} \rho_n \quad \forall n \in \mathbb{N}$$

$$\rho_n = \frac{(2n-2)! \pi}{\left((n-1)!\right)^2 4^{n-1}} \quad \forall n \in \mathbb{N}$$

 $\varphi(t) = \frac{\operatorname{sen} t}{t} \ \forall t \in \mathbb{R}^+, \ \varphi(0) = 1, \ \Phi(x) = \int_0^x \varphi(t) dt \ \forall x \in \mathbb{R}_0^+$

El criterio de integrabilidad no es válido para toda función medible

$$F(t) = 1/t \qquad \text{y} \qquad G(t) = -\cos t \qquad \forall t \in \mathbb{R}^+$$

$$\Phi(b) - \Phi(a) = \frac{\cos a}{a} - \frac{\cos b}{b} - \int_a^b \frac{\cos t}{t^2} dt \qquad \forall a, b \in \mathbb{R}^+$$

$$\left| \Phi(a) - \Phi(b) \right| \leqslant \frac{2}{\min\{a, b\}} \qquad \forall a, b \in \mathbb{R}^+$$

$$x_n \in \mathbb{R}^+ \quad \forall n \in \mathbb{N}, \quad \{x_n\} \to +\infty \implies \left\{ \Phi(x_n) \right\} \quad \text{Cauchy}$$
 Por tanto, Φ tiene límite en $+\infty$, y (obviamente) en 0
$$\int_{(k-1)\pi}^{k\pi} \frac{|\sin t|}{t} dt \geqslant \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin t| dt = \frac{2}{k\pi} \quad \forall k \in \mathbb{N}$$

$$\int_0^{+\infty} \left| \varphi(t) \right| = \sum_{k=1}^\infty \int_{(k-1)\pi}^{k\pi} \frac{|\sin t|}{t} \geqslant \frac{2}{\pi} \sum_{k=1}^\infty \frac{1}{k} = \infty$$

Cambio de variable (versión elemental)

Fórmula de cambio de variable (versión elemental)

Dados dos intervalos no triviales $I, J \subset \mathbb{R}$,

sea $\varphi: I \to J$ una función de clase C^1 en I

y $f:J\to\mathbb{R}$ una función continua. Entonces:

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt \quad \forall a, b \in I$$

Resultado previo para versiones más generales

Dado un intervalo compacto $H \subset \mathbb{R}$

sea $\, \varphi : H \to \mathbb{R} \,$ una función derivable c.p.d. en $\, H \, . \,$

Si un conjunto $\ E\subset H$ verifica que $\ \lambda \Big(\varphi(E) \Big) = 0$,

entonces $\varphi'(x) = 0$ p.c.t. $x \in E$

La versión más general de la fórmula de cambio de variable

Condición necesaria y suficiente para el cambio de variable

Dados dos intervalos compactos $H, K \subset \mathbb{R}$,

sea $\varphi: H \to K$, una función derivable c.p.d. en H .

Si $f \in \mathcal{L}_1(K)$ y $F: K \to \mathbb{R}$ es una integral indefinida de f,

las siguientes afirmaciones son equivalentes:

- ullet La función $F\circ arphi$ es absolutamente continua
- La función $(f \circ \varphi) \varphi'$ es integrable en H y se verifica que:

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt \quad \forall a, b \in H$$

Inconveniente para usar el resultado anterior

$$\varphi(t) = (t\cos(\pi/t))^2 \ \forall t \in]0,1], \ \varphi(0) = 0, \ F(x) = \sqrt{x} \ \forall x \in [0,1]$$

arphi es lipschitziana y F es absolutamente continua

$$F(\varphi(t)) = t |\cos(\pi/t)| \quad \forall t \in]0,1], \quad F(\varphi(0)) = 0$$

 $F \circ \varphi$ no es de variación acotada, luego no es absolutamente continua

Condiciones suficientes para el cambio de variable

Dos condiciones suficientes, fáciles de comprobar

Dados dos intervalos compactos $H, K \subset \mathbb{R}$,

sean $\, \varphi : H o K \,$ absolutamente continua,

$$f \in \mathcal{L}_1(K)$$
 y $F: K \to \mathbb{R}$ una integral indefinida f .

Supongamos que se verifica una de las siguientes condiciones:

- ullet Que arphi sea monótona
- Que f esté acotada en K

Entonces $F\circ \varphi$ es absolutamente continua, luego $\left(f\circ \varphi\right)\varphi'\in \mathcal{L}_1(H)$ con

$$\int_{\varphi(a)}^{\varphi(b)} f(x) \, dx = \int_{a}^{b} f\left(\varphi(t)\right) \varphi'(t) \, dt \qquad \forall a, b \in H$$

La condición suficiente más general

Fórmula de cambio de variable

Dados dos intervalos no triviales $I,J\subset\mathbb{R}$, sea $\varphi:I\to J$ tal que

$$\left.arphi
ight|_{H}$$
 es absolutamente continua, para todo intervalo compacto $H\subset I.$

Si $f:J\to\mathbb{R}$ es localmente integrable en J y verifica que $\left(f\circ\varphi\right)\varphi'$ es localmente integrable en I, entonces:

$$\int_{\varphi(a)}^{\varphi(b)} f(x) dx = \int_{a}^{b} f(\varphi(t)) \varphi'(t) dt \quad \forall a, b \in I$$

La versión que permite estudiar la integrabilidad

Teorema de cambio de variable

Dado un intervalo abierto no vacío $I \subset \mathbb{R}$,

sea $\,arphi:I
ightarrow\mathbb{R}\,$ una función de clase $\,C^{\,1}\,$ en $\,I$,

con $\varphi'(t) \neq 0$ para todo $t \in I$, y sea $J = \varphi(I)$.

Entonces, una función $f:J \to \mathbb{R}$ es integrable en J si, y sólo si,

 $\left(f\circ\varphi\right)\varphi'$ es integrable en I , en cuyo caso:

$$\int_{J} f = \int_{I} (f \circ \varphi) |\varphi'|$$

Forma en que suele usarse

$$I =]\,\alpha\,,\,\beta\,[\ \operatorname{con}\ -\infty \leqslant \alpha < \beta \leqslant +\infty\ \operatorname{y}\ J =]\,\gamma\,,\,\delta\,[\ \operatorname{con}\ -\infty \leqslant \gamma < \delta \leqslant +\infty$$

$$\{\gamma,\delta\} = \{\widetilde{\alpha}\,,\widetilde{\beta}\} \ \ \text{con} \ \ \varphi(t) \to \widetilde{\alpha} \ \ (t\to\alpha) \ \ \text{y} \ \ \varphi(t) \to \widetilde{\beta} \ \ (t\to\beta)$$

Entonces:
$$\int_{\widetilde{\alpha}}^{\widetilde{\beta}} f(x) dx = \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt$$

Ejemplos de cambio de variable (I)

Traslaciones

$$\begin{split} I &= \left] \, \alpha, \beta \, \right[\text{, con } -\infty \leqslant \alpha < \beta \leqslant +\infty \\ &\text{ fijado } c \in \mathbb{R}, \text{ tomamos } \varphi(t) = t + c \quad \forall t \in I \\ &J = \varphi(I) = \left] \, \alpha + c, \beta + c \, \right[\, , \quad f : J \to \mathbb{R} \\ &f \in \mathcal{L}_1(J) \iff t \mapsto f(t+c) \quad \text{es integrable en } I \\ &\text{en cuyo caso: } \int_{\alpha + c}^{\beta + c} f(x) \, dx = \int_{\alpha}^{\beta} f(t+c) \, dt \end{split}$$

Funciones periódicas

$$\emptyset \neq A \subset \mathbb{R}, \quad f: A \to \mathbb{R}, \quad T \in \mathbb{R}^+$$

 $f\,$ es periódica con periodo $T\,$, o abreviadamente, T-periódica, cuando

$$x \in A \implies x \pm T \in A \text{ y } f(x+T) = f(x)$$

Ejemplos de cambio de variable (II)

Traslaciones con funciones periódicas

Traslación de un número entero de periodos:

$$\begin{split} \emptyset \neq A \subset \mathbb{R} \ , \quad T \in \mathbb{R}^+ \ , \quad f : A \to \mathbb{R} \quad \text{función T-periódica,} \quad I =]\alpha , \beta [\subset A \\ k \in \mathbb{Z} \quad \Longrightarrow \quad]\alpha + kT , \beta + kT [= J \subset A \\ f \in \mathcal{L}_1(J) \quad \Longleftrightarrow \quad f \in \mathcal{L}_1(I) \, , \quad \text{en cuyo caso} \\ \int_{\alpha + kT}^{\beta + kT} f(x) \, dx = \int_{\alpha}^{\beta} f(x) \, dx \end{split}$$

Integral en un intervalo de periodo:

Si
$$a,c\in\mathbb{R}$$
 verifican que $J_a=]a$, $a+T[\subset A$ y $J_c=]c$, $c+T[\subset A$ $f\in\mathcal{L}_1(J_a)\iff f\in\mathcal{L}_1(J_c)$, en cuyo caso,
$$\int^{a+T}f(x)\,dx=\int^{c+T}f(x)\,dx$$

Ejemplos de cambio de variable (III)

Funciones pares e impare

 $\emptyset \neq A \subset \mathbb{R} \quad \text{tal que } -x \in A \quad \forall x \in \mathbb{R}, \quad f:A \to \mathbb{R}$ $f \quad \text{es una función par cuando} \quad f(-x) = f(x) \quad \forall x \in A$ $\text{mientras que } \quad f \quad \text{es impar, cuando} \quad f(-x) = -f(x) \quad \forall x \in A$

Integrales de funciones pares o impares

$$\begin{split} f:A \to \mathbb{R} \ \text{par o impar,} \quad & \Big] \, \alpha, \beta \, \Big[\subset A \ \text{con} \ -\infty \leqslant \alpha < \beta \leqslant +\infty \\ & f \in \mathcal{L}_1 \big(\big] - \beta, -\alpha \big[\big) \quad \Longleftrightarrow \quad f \in \mathcal{L}_1 \big(\big] \, \alpha, \beta \big[\big) \ , \quad \text{en cuyo caso} \\ & \int_{-\alpha}^{-\alpha} f(x) \, dx = \sigma \, \int_{-\pi}^{\beta} f(x) \, dx \quad \left(\sigma = 1 \ \text{si} \ f \ \text{par,} \ \sigma = -1 \ \text{si} \ f \ \text{impar)} \end{split}$$

Caso interesante: $A = \left] - \beta, \beta \right[\text{ con } 0 < \beta \leqslant +\infty, \ f : A \to \mathbb{R} \text{ par o impar}$ $f \in \mathcal{L}_1 \left(\left[-\beta, 0 \right] \right) \iff f \in \mathcal{L}_1 \left(\left[-\beta, \beta \right] \right)$

Si
$$f$$
 es par:
$$\int_{-\beta}^{0} f(x) dx = \int_{0}^{\beta} f(x) dx, \quad \int_{-\beta}^{\beta} f(x) dx = 2 \int_{0}^{\beta} f(x) dx$$

Si
$$f$$
 es impar:
$$\int_{-\beta}^{0} f(x) dx = -\int_{0}^{\beta} f(x) dx, \quad \int_{-\beta}^{\beta} f(x) dx = 0$$

El logaritmo

Para funciones del tipo $\; x \mapsto \mathcal{R}(e^x) \;$ donde $\; \mathcal{R} \;$ es una función racional

es útil el cambio de variable
$$arphi(t) = \log t \quad orall t \in \mathbb{R}^+$$

$$\int_{0}^{x} \frac{dt}{e^{t} + 1} = \log\left(\frac{2}{1 + e^{-x}}\right) \quad \forall x \in \mathbb{R}$$

$$\lim_{x \to +\infty} \log \left(\frac{2}{1 + e^{-x}} \right) = \log 2 \; , \quad \log \left(\frac{2}{1 + e^{-x}} \right) \to -\infty \; (x \to -\infty)$$

 $f\,$ no es integrable en ningún intervalo no minorado

$$\int_{-\infty}^{+\infty} \frac{dx}{e^x + 1} = \log\left(1 + e^{-c}\right) \quad \forall c \in \mathbb{R}$$

Ejemplos de cambio de variable (V)

El arco tangente

Para funciones del tipo $x\mapsto \mathcal{R}(\cos x, \sin x)$ donde \mathcal{R} es una función racional es útil el cambio de variable $\varphi(t)=2\arctan t$

Para $t \in \mathbb{R}$ se tiene $\varphi'(t) = \frac{2}{1+t^2}$ y si $x = \varphi(t)$, entonces

$$sen x = \frac{2t}{1+t^2}$$
 y $cos x = \frac{1-t^2}{1+t^2}$

Ejemplo:
$$f(x) = \frac{1}{2 + \cos x} \quad \forall x \in \mathbb{R}$$

$$\int_0^\pi \frac{dx}{2 + \cos x} = \int_0^{+\infty} \frac{2 dt}{3 + t^2}$$
$$= \frac{2}{3} \left[\sqrt{3} \operatorname{arctg} \left(\frac{x}{\sqrt{3}} \right) \right]_0^{+\infty} = \frac{\pi}{\sqrt{3}}$$

Ejemplos de cambio de variable (VI)

El seno

$$f(x) = \frac{x^2}{\sqrt{1-x^2}} \quad \forall x \in]-1, 1[$$

$$\varphi(t) = \operatorname{sen} t \quad \forall t \in I =]-\pi/2, \pi/2[$$

$$f(\varphi(t))\varphi'(t) = \frac{\operatorname{sen}^2 t}{\sqrt{1-\operatorname{sen}^2 t}} \cos t = \operatorname{sen}^2 t \quad \forall t \in I$$

$$\left(f \circ \varphi\right)\varphi' \in \mathcal{L}_1\big(]-\pi/2, \pi/2\big[\big) \quad \text{(continua y acotada)}$$

$$\operatorname{luego} \ f \in \mathcal{L}_1\big(]-1, 1\big[\big) \quad \text{y se tiene:}$$

$$\int_{-1}^1 \frac{x^2 dx}{\sqrt{1-x^2}} = \int_{-\pi/2}^{\pi/2} \operatorname{sen}^2 t \ dt = \int_{-\pi/2}^{\pi/2} \frac{1-\cos(2t)}{2} \ dt$$

$$= \left[\frac{t}{2} - \frac{\sin(2t)}{4}\right]_{-\pi/2}^{\pi/2} = \frac{\pi}{2}$$