

Machine Learning

Problem formulation

Example: Predicting movie ratings

User rates movies using one to five stars

		7619			->	
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	→	****
Love at last	5	5	0	6	L	
Romance forever	5	34.5	(3)0	0	$\rightarrow n_{c}$	u = no. users
Cute puppies of love	?5	4	0	(3)0		n = no. movies
Nonstop car chases	0	07	13	4	r(t, j)	j) = 1 if user j has rated movie i
Swords vs. karate	0	0	5	(7)4-	$y^{(i,j)}$. \
		_				user j to movie i
nu =	4	$n_m = 5$,	L	(defined only if
于是 我们开发一个推荐系统			去 能够帮我们自家	动地 6,	., 5	r(i, j) = 1)

填上这些缺失的数值 这样我们就能 比方说 看一下 用户还没看过哪些电影 然后向用户 推荐新电影 你试图预测 还有什么电影可能会让一位用户感兴趣 这些就是推荐系统问题的正式表述

Machine Learning

Content-based recommendations

Content-based recommender systems

Swords vs. karate

截距项,都是1

rating movie
$$(\theta \hat{W}) h x^{(i)}$$

Dave (4)

> For each user
$$j$$
, learn a parameter $\underline{\theta^{(j)}} \in \mathbb{R}^3$. Predict user j as rating movie $\underline{(\theta w)}$ h stars. $\underline{\ }$ $\underline{\ }$

仍然用 n 表示特征变量数 不包括截距項 这样 n就等于2

中的θ, 是學習出來的, 我們根据θx的值來預測電影的評分

Andrew Ng

Problem formulation

記憶: movie中有字母i

 $\rightarrow r(i,j) = 1$ if user j has rated movie i (0 otherwise)

 \rightarrow For user j, movie i, predicted rating: $(\theta^{(j)})^T(x^{(i)})$

- $y^{(i,j)} = rating by user j on movie i (if defined)$
- $\rightarrow \theta^{(j)}$ = parameter vector for user j
- \rightarrow $x^{(i)}$ = feature vector for movie i
- $\rightarrow \underline{m^{(j)}}$ = no. of movies rated by user j

To learn $\theta^{(j)}$:

$$((o^{(i)})^{T}(x^{(i)}) - y^{(i)})^{2} + \frac{\lambda}{2\lambda^{2}}$$
 $(o^{(i)})^{T}(x^{(i)}) - y^{(i)})^{2}$ $(o^{(i)})^{T}(x^{(i)})$ $(o^{(i)})^{T}(x^{(i)}) - y^{(i)})^{2}$ $(o^{(i)})^{T}(x^{(i)})$ $(o^{(i)})^{T}(x^{(i)}) - y^{(i)})^{2}$ $(o^{(i)})^{T}(x^{(i)}) - y^{(i)})^{2}$

不改变θ(i)的 最优化结果

Optimization objective:

後面我會拿它跟 求x^(i) 比較

To $learn(\theta^{(j)})$ (parameter for user j):

$$\implies \min_{\theta^{(j)}} \frac{1}{2} \sum_{i:r_{\zeta}(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{k=1}^n (\theta_k^{(j)})^2$$

r(i, j)的定義見上頁

To learn $\theta^{(1)}, \theta^{(2)}, \dots, \theta^{(n_u)}$:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n} (\theta_k^{(j)})^2$$

Optimization algorithm:

$$\min_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} \left((\theta^{(j)})^T x^{(i)} - y^{(i,j)} \right)^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

Gradient descent update:

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} \text{ (for } k = 0)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right) \text{ (for } k \neq 0)$$

2(0(1) (Na))

Machine Learning

Collaborative filtering

Problem motivation

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	x_1 (romance)	x_2 (action)
Love at last	5	5	0	0	0.9	0
Romance forever	5	?	?	0	1.0	0.01
Cute puppies of love	?	4	0	?	0.99	0
Nonstop car chases	0	0	5	4	0.1	1.0
Swords vs. karate	0	0	5	?	0	0.9

在这段视频中 我们要讲 一种构建推荐系统的方法 叫做collaborative filtering 有一个值得一提的 特点 那就是它能实现 对features的学习 我的意思是 这种算法能够 自行学习所要使用的features

假如我们 有某一个数据集 我们并不知道特征的值是多少 所以比如我们得到一些 关于电影的数据 不同用户对电影的评分 我们并不 知道每部电影 到底有多少浪漫的成分 也不知道到底每部电影里面动作成分是多少 于是我把所有的问题都打上问号 **Problem motivation** 如果我们能够从用户那里 得到这些 θ 参考值 那么我们理论上就能 推测出每部电影的 x1 以及 x2 的值

Carol (3)

Movie

Romance forever

Cute puppies of love

> Nonstop car chases

Swords vs. karate

Alice的θ

Alice (1)

評分

Bob (2)

0

0

Bob的θ

假如 Alice 告诉我们 她十分喜欢 爱情电影 于是 Alice 的特征 x1 对应的值就是5

假设 Alice 告诉我们 她非常不喜欢动作电影 于是这一个特征就是0

60)

5

Dave (4)

 x_1

(romance)

11.0

10.0

 x_2

(action)

(B), x(,, x (0)

Andrew Ng

Optimization algorithm

Given
$$\theta^{(1)}, \dots, \theta^{(n_u)}$$
, to learn $x^{(i)}$:

 $= \min_{x^{(i)}} \frac{1}{2} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{k=1}^n (x_k^{(i)})^2$
注意是對 x 和 (p6中求θ時.

(p6中求θ時, 是對i求和)

Given $\theta^{(1)}, \dots, \theta^{(n_u)}$, to learn $x^{(1)}, \dots, x^{(n_m)}$:

$$\min_{x^{(1)},...,x^{(n_m)}} \frac{1}{2} \sum_{i=1}^{n_m} \sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{i=1}^{n_m} \sum_{k=1}^n (x_k^{(i)})^2$$

我们之前 这个视频中讲的是 如果用户愿意 为你提供参数 那么你就 可以为不同的电影估计特征

Collaborative filtering

如果我们能知道 θ 就能学习到 x 如果我们知道 x 也会学出 θ 来

Given $\underline{x^{(1)},\dots,x^{(n_m)}}$ (and movie ratings), can estimate $\underline{\theta^{(1)},\dots,\theta^{(n_u)}}$

ع (ربر) ه (ربر)

Given $\underline{\theta^{(1)},\ldots,\theta^{(n_u)}}$, can estimate $x^{(1)},\ldots,x^{(n_m)}$

Gruen 6 > x > 0 > x > 0 > x >

而这样一来 你能做的 就是 如果这真的可行的话 实际上你能做的就是 随机猜 θ 的值

基于你一开始随机 猜测出的 θ 的值 继你可以继续下去 运用我们刚刚讲到的 步骤 我们可以学习出 不同电影的特征

给出已有的一些电影的 原始特征 你可以运用 我们在上一个视频中讨论过的 第一种方法 可以得到 对参数 θ 的更好估计

这样就会为用户提供更好的参数 θ 集 我们就可以用这些 得到更好的 特征集或者其他数据

然后我们可以继续 迭代 不停重复 优化 $\theta \times \theta \times \theta$ 这非常有效 如果你 这样做的话 你的算法将会收敛到 一组合理的电影的特征 以及一组对合理的 对不同用户参数的估计

这就是基本的协同过滤算法. 这实际并不是最后. 下一个视频中,我们将改进这个算法 让其在计算时更为高效

Collaborative filtering algorithm

你可以做的事 是不停地重复这些计算 或许是随机地初始化这些参数 然后解出 θ 解出 x 解出 θ 解出 x 但实际上呢 存在一个更有效率的算法 Machine Learning 让我们不再需要再这样不停地 计算 x 和 θ 而是能够将 x 和 θ 同时计算出来

Collaborative filtering optimization objective

$$\rightarrow$$
 Given $x^{(1)}, \dots, x^{(n_m)}$, estimate $\theta^{(1)}, \dots, \theta^{(n_u)}$:

Given
$$x^{(1)}, \dots, x^{(n_m)}$$
, estimate $\theta^{(1)}, \dots, \theta^{(n_u)}$:
$$= \sum_{\theta^{(1)}, \dots, \theta^{(n_u)}} \frac{1}{2} \sum_{j=1}^{n_u} \sum_{i: r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)})^2 + \frac{\lambda}{2} \sum_{j=1}^{n_u} \sum_{k=1}^{n_u} (\theta_k^{(j)})^2$$

$$\theta^{(1)}, \dots, \theta^{(n_u)}$$

$$j=1 i: r(i,j)=1$$

Collaborative filtering algorithm

- \rightarrow 1. Initialize $x^{(1)}, \dots, x^{(n_m)}, \theta^{(1)}, \dots, \theta^{(n_u)}$ to small random values.
- ⇒ 2. Minimize $J(x^{(1)}, \ldots, x^{(n_m)}, \theta^{(1)}, \ldots, \theta^{(n_u)})$ using gradient descent (or an advanced optimization algorithm). E.g. for every $j = 1, \ldots, n_u, i = 1, \ldots, n_m$:

every
$$j = 1, \dots, n_u, i = 1, \dots, n_m$$
:
$$x_k^{(i)} := x_k^{(i)} - \alpha \left(\sum_{j:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) \theta_k^{(j)} + \lambda x_k^{(i)} \right)$$

$$\theta_k^{(j)} := \theta_k^{(j)} - \alpha \left(\sum_{i:r(i,j)=1} ((\theta^{(j)})^T x^{(i)} - y^{(i,j)}) x_k^{(i)} + \lambda \theta_k^{(j)} \right)$$

3. For a user with parameters $\underline{\theta}$ and a movie with (learned) features \underline{x} , predict a star rating of $\underline{\theta}^T \underline{x}$.

$$\left(\bigcirc^{(i)} \right)^{\mathsf{T}} \left(\times^{(i)} \right)$$

XOCI XER, OER

Machine Learning

Vectorization:
Low rank matrix
factorization

Collaborative filtering

Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)
Love at last	5	5	0	0
Romance forever	5	?	?	0
Cute puppies of love	,	4	0	?
Nonstop car chases	0	0	5	4
Swords vs. karate	0	0	5	?
	1	^	^	1

nm=	2
Nu=	4

這裡面的問號就是r(i, j)不為1的.

$$Y = \begin{bmatrix} 5 & 5 & 0 & 0 \\ 5 & ? & ? & 0 \\ 2 & 4 & 0 & ? \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 5 & 0 \end{bmatrix}$$

是第j個人的 $, θ^{(j)}$ 也是個向量 **Collaborative filtering** (iii) _ Predicted ratings: $\dots \qquad (\theta^{(n_u)})^T(x^{(1)}) \\ \dots \qquad (\theta^{(n_u)})^T(x^{(2)})$ $(\theta^{(2)})^T(x^{(n_m)})$... $(\theta^{(n_u)})^T(x^{(n_m)})$

Andrew Ng

某部电影 i 的时候 如果你想找5部 与电影 非常相似的电影 为了能给用户推荐 5部新电影 你需要做的是 找出电影 i SAFINDENT 与我们要找的电影 i 的距离最小 这样你就能给你的用户推荐几部不同的电影了 Finding related movies

For each product i, we learn a feature vector $\underline{x}^{(i)} \in \mathbb{R}^n$.

How to find
$$\underline{\text{movies } j}$$
 related to $\underline{\text{movie } i}$?

Small $|| \times^{(i)} - \times^{(j)} || \rightarrow \underline{\text{movie } i}$ and \bar{i} are "similar"

5 most similar movies to movie i:

Find the 5 movies j with the smallest $||x^{(i)} - x^{(j)}||$.

Machine Learning

Recommender Systems

Implementational detail: Mean normalization

到目前为止 你已经了解到了 推荐系统算法或者 协同过滤算法的所有要点 在这节视频中 我想分享最后一点实现过程中的细节 这一点就是均值归一化 有时它可以让算法 运行得更好 Users who have not rated any movies

	我现在加上了	第五个用户	Eve 她没有给	任何电影评分	_ \				
Movie	Alice (1)	Bob (2)	Carol (3)	Dave (4)	Eve (5)	Г~	_ ,		
→ Love at last	_5	5	0	0	5 0	$\begin{bmatrix} 5 \\ 5 \end{bmatrix}$	5 () ()	? ?/
Romance forever	5	?	,	0	<u>ې</u> ک	$V = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$	4 (. 0	9
Cute puppies of love	?	4	0	?	5 <mark>۵</mark>	$Y = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	4 (5 4	; ?
Nonstop car chases	0	0	5	4	S □		0 0	0 4 5 0	?
Swords vs. karate	0	0	5	?	Ş D	 所以影响 θ^(5) 值	的唯一一项	,	这就是说
対用户 Eve 来说 没有电影 满场 所以这第一项 完全不影响 $ heta$ $^{\circ}$			$(x^{(i,j)})^2$	$+\frac{\lambda}{2}\sum_{i=1}^{n_m}\sum_{k=1}^n$	$(x_k^{(i)})^2 +$	我们想选一个向量 $\lambda \sum_{j=1}^{n} \sum_{k=1}^{n} (\theta_k^{(j)})$		导最后的正见 可能地小	则化项
N=5	D	ر اهر		1 - ~ 1	口果我们预测 戈们还是没有(X ((S)) ² Eve 会给所有电任何好方法来把	电影推荐	给她	\
		(0)	_ ' ~		9值归一化的。 下面介绍它是如	想法可以让我们的 如果工作的	胜	可越	Andrew Ng

Mean Normalization:

For user j, on movie i predict:

User 5 (Eve):

然后再加上 μ i 所以如果 θ (5) 等于0的話,所以用戶5对电影i 的评分 我们最终会预测为 μ i

得到的数据

如果 Eve 没给任何电影评分 我们就对这个新用户 Eve 一无所知 我们要做的就是预测 她对每个电影的评分 就是这些 电影所得的平均评分

1.75

当然这些问号没变

-2.5

如果有些电影是没有评分的 你可以对不同的列 进行归一化 使得它们的均值为0 o 如果你 真的有个电影没有评分 可能不管怎么说 你就不该把这个电影 推荐给任何人