

ARM Instruction Set

By, CM Naveen Reddy.

Agenda

Caches

INDEX

- Caches
 - Non-cached system
 - cached system
 - write buffer

GLOBAL =DG=

Non-Cached system

 Main memory is accessed directly by the processor core using the datatypes supported by the processor core.

NonCached system

Cached system

 Small memory placed between processor and main memory to store recently accessed transactions and make memory

Cached system

Write Buffer

- The write buffer acts as a temporary buffer that frees available space in the cache memory.
- The cache transfers a cache line to the write buffer at high speed and then the write buffer drains it to main memory at slow speed.

Cached system

Most modern desktop and server CPUs have at least three independent caches

- Instruction cache to speed up executable instruction fetch.
- Data cache to speed up data fetch and store.
- TLB(Translation Look-aside Buffer) used to speed up virtual-to-physical address translation for both executable instructions and data.
- Data cache generally is organized as hierarchy with multiple cache levels e.g. L1/L2 etc. This is also called as multi level caches.

The instruction and data cache

IDC operation:-

- The ARM720T contains an 8KB mixed Instruction and Data Cache(IDC).
- The cache comprises four segments of 64 lines each, each line containing eight words.
- The IDC is always reloaded a line at a time. The IDC is enabled or disabled using the ARM720T Control Register and is disabled on HRESETn.
- Note:- The MMU must never be disabled when the cache is on.
- However, you can enable the two devices simultaneously with a single write to the "Control Register".

GLOBAL =DG=

Cachable bit:--

The C bit determines if data being read can be placed in the IDC and used for subsequent read operations. Typically, main memory is marked as cachable to improve system performance, and I/O space is marked as noncachable to stop the data being stored in the ARM720T cache.

Cachable reads (C=1)

A line fetch of eight words is performed when a cache miss occurs in a cachable area of memory, and it is randomly placed in a cache bank.

Note:- Memory aborts are not supported on cache line fetches and are ignored.

Uncachable reads (C=0)

An external memory access is performed and the cache is not written.

GLOBAL =DG=

Control Register

31	14	13	12	11 10	9	8	7	6	5	4	3	2	1	0
UNP/SBZ		V		UNP /SBZ	R	S	В	L	D	Р	W	С	Α	М

M Bit

MMU enable/disable:

0 = MMU disabled

1 = MMU enabled

A Bit

Alignment fault enable/disable:

- 0 = Address Alignment Fault Checking disabled
- 1 = Address Alignment Fault Checking enabled

14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

UNP/SBZ

V UNP R S B L D P W C A M

C Bit

Cache enable/disable:

0 = Instruction and/or Data Cache
(IDC) disabled

1 = Instruction and/or Data Cache
(IDC) enabled

31 UNP/SBZ V UNP R S B L D P W C A M /SBZ

W BitWrite buffer enable/disable:

0 = Write Buffer disabled 1 = Write Buffer enabled 31 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 D P W C A M R S B L UNP/SBZ V UNP /SBZ P Bit When read, returns 1.

When written, is ignored

31 13 12 11 10 9 8 7 6 5 4 3 2 1 0 14 D P W C A M R S B L UNP/SBZ V UNP /SBZ D Bit When read, returns 1.

When written, is ignored.

31 13 12 11 10 9 8 7 6 5 4 3 2 1 0 D P W C A M R S B L UNP/SBZ V UNP /SBZ L Bit When read, returns 1.

When written, is ignored.

13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 14 D P W C A M R S B L UNP/SBZ V UNP /SBZ **B** Bit Big-endian/little-endian: 0 = Little-endian operation

1 = Big-endian operation.

31 13 12 11 10 9 8 7 6 5 4 3 2 1 0 D P W C A M R S B L UNP/SBZ V UNP /SBZ S Bit

System protection: Modifies the MMU protection system.

31 13 12 11 10 9 8 7 6 5 4 3 2 1 0 14 D P W C A M R S B L UNP/SBZ V UNP /SBZ **R** Bit **ROM** protection: Modifies

the MMU protection system.

Bits 12:10
When read, this returns an
Unpredictable value.
When written, it
Should Be Zero, or a value read
from these bits on the same
processor.

V Bit

Location of exception vectors:

0 = low addresses

1 = high addresses.

The value of the V bit reflects the state of the VINITHI External input, sampled while HRESETn is LOW

Bits 31:14

When read, this returns an Unpred ictable value.

When written, it Should Be Zero, or a value read from these bits on the same processor

Thank you

Fairness

Learning

Responsibility

Innovation

Respect