

School of Computing Third CIA Exam – June 2023

Course Code: CSE209 **Course Name:** Data Structures & Algorithms Duration: 90 minutes Max Marks: 50

PART A

Answer all the questions

 $(10 \times 2 = 20)$

1. Find the complexity of the following algorithm:

```
Algorithm GE(A,n)
1. for k = 1 to n - 1
2.
      for i = k + 1 to n
3.
         if A[k,k] \neq 0
4.
            r = A[i,k]/A[k,k]
           for j = k \text{ to } n + 1
5.
               A[i,j] = A[i,j] - r * A[k,j]
6.
           end for
7.
8.
         end if
9.
      end for
10.end for
11.return
```

$$T(n) = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} \sum_{j=k}^{n+1} 1 = \sum_{k=1}^{n-1} \sum_{i=k+1}^{n} (n-k+2) = \sum_{k=1}^{n-1} (n-k+2)(n-k)$$

$$= (n+1)(n-1) + (n(n-2)) + (n-1)(n-3) + \dots + (3)(1)$$

$$= \sum_{i=1}^{n-1} i * (i+2) = \sum_{i=1}^{n-1} i^2 + 2 \sum_{i=1}^{n-1} i \in O(n^3)$$

2. Trace the algorithm and find the return value when x=2 and y=5:

 $Algorithm\ Compute(x,y)$

- 1. if x == 0
- 2. return 0
- 3. if y == 1
- 4. return x
- 5. $term = Compute(x, \lfloor y/2 \rfloor)$
- 6. $if \ y\%2 == 0$
- 7. return term * term
- 8. else
- 9. return term * term * x

Ans. 32

3. Define Ω -Notation.

It is an asymptotic notation to represent the lower bound of a function. For algorithms, it specifies the best case time complexity.

4. Evaluate the following postfix expression when a=7, b=18, c=3, d=10 using stack: abc/+d*. Write the contents of stack at each step of evaluation.

Stack Contents:

a	b	c	/	+	d	*
Push 7	Push 18	Push 3	Divide	Add	Push 10	Multiply
		3				
	18	18	6		10	
7	7	7	7	13	13	130

5. Represent the following polynomial using singly linked list:

$$P = x^{10} - 3x^{8} + 17x^{4} + 6x^{3} - 7x + 20$$

$$P \xrightarrow{} 1 | 10 | \xrightarrow{} -3 | 8 | \xrightarrow{} 17 | 4 | \xrightarrow{} 6 | 3 | \xrightarrow{} -7 | 1 | \xrightarrow{} 20 | 0 | /$$

- 6. Write an algorithm to search for the position of a given element x in a singly linked list Algorithm SEARCH_SLL(FIRST, x)
 - 1. p = 1
 - 2. T = FIRST
 - 3. while $T \neq NULL$ and $T \rightarrow data \neq x$
 - 4. p = p + 1
 - 5. $T = T \rightarrow link$
 - 6. end while
 - 7. if T = NULL
 - 8. return 1
 - 9. else
 - 10. return p
 - 11. *end if*
- 7. Draw the general tree whose parenthetical representation is:

(1(2(3(45)6)7(8(9)10)11(121314(1516)17)))

8. Search for 26 in the following splay tree and draw the resultant tree after splaying.

9. Represent the following graph as adjacency matrix.

Adjacency Matrix:

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0			0		0
3	0	0	0	0	1	
4	0	0	1	0	1	0
5	0	0		0	0	1
6	0	0	0	0	0	0

10.Perform first three iterations of selection sort on the following input sequence: 15, 12, 25, 17, 20, 9, 11, 8, 10, 4

Pass 1: Swap 15 and 4

4	12	25	17	20	9	11	8	10	15
---	----	----	----	----	---	----	---	----	----

Pass 2: Swap 12 and 8

4	8	25	17	20	9	11	12	10	15

Pass 3: Swap 25 and 9

			wap						
4	8	9	17	20	25	11	12	10	15

11. Write the algorithm for converting infix expression into postfix using stack.

```
Algorithm Infix_to_Postfix(Infix)

 createStack(S)

2. j = 1
3. for i = 1 to length(Infix)
      x = Infix[i]
4.
5.
      if x is operand
6.
         Postfix[j] = x
7.
         j = j + 1
      else if x is '('
8.
9.
         Push(S, top, x)
10.
      else if x is ')'
        while Peek(S, top) \neq '('
11.
12.
           t = Pop(S, top)
           Postfix[j] = t
13.
14.
           j = j + 1
        end while
15.
16.
        Pop(S, top)
17. else
       while Priority(Peek(S, top)) \ge Priority(x)
18.
            t = Pop(S, top)
19.
           Postfix[j] = t
20.
21.
           j = j + 1
22.
       end while
23.
       Push(S, top, x)
24. end if
25. while not is Empty(S, top)
26.
           t = Pop(S, top)
27.
           Postfix[j] = t
28.
           j = j + 1
29. end while
30. Postfix[i] = ' \setminus 0'
31. return Postfix
```

12. Write the algorithms to perform insertion, deletion, and search operations in an ordered doubly linked list.

```
Algorithm\ INSERT\_ODLL(FIRST, LAST, x)
```

```
1. T = GETNODE()

2. T \rightarrow data = x

3. T \rightarrow prev = T \rightarrow next = NULL

4. temp = FIRST

5. while \ temp \neq NULL \ and \ temp \rightarrow data < x

6. temp = temp \rightarrow next
```

```
7.
        end while
  8.
        T \rightarrow next = temp
  9.
        if temp = NULL
                                                 // insert at end
  10.
           T \rightarrow prev = LAST
  11.
          LAST \rightarrow next = T
          LAST = T
  12.
  13. else
  14.
         T \rightarrow prev = temp \rightarrow prev
  15.
        if\ temp \rightarrow prev = NULL
                                             // Insert at begining
  16.
              FIRST = T
  17. else
  18.
             temp \rightarrow prev \rightarrow next = T
  19. endif
  20. temp \rightarrow prev = T
  21. end if
  22. return
Algorithm DELETE\_ODLL(FIRST, LAST, x)
  1.
        temp = FIRST
  2.
        while temp \neq NULL and temp \rightarrow data < x
  3.
             temp = temp \rightarrow next
  4.
        end while
  5.
        if temp = NULL \text{ or } temp \rightarrow data > x
  6.
             print "Element not present in the list"
  7.
             return
  8.
        end if
        if temp \rightarrow prev \neq NULL
  9.
  10.
             temp \rightarrow prev \rightarrow next = temp \rightarrow next
  11. else
                                                 //delete at begining
             FIRST = FIRST \rightarrow next
  12.
  13. end if
  14. if temp \rightarrow next \neq NULL
  15.
             temp \rightarrow next \rightarrow prev = temp \rightarrow prev
  16. else
                                                 //delete at end
  17.
             LAST = LAST \rightarrow prev
  18. end if
  19. RETNODE(temp)
  20. return
Algorithm SEARCH_ODLL(FIRST, LAST, x)
  1.
       p = 1
  2.
        T = FIRST
        while T \neq NULL and T \rightarrow data < x
  3.
            p = p + 1
  4.
  5.
            T = T \rightarrow next
  6.
        end while
       if T = NULL or T \rightarrow data > x
  7.
  8.
         return – 1
  9.
       else
  10.
          return p
  11. end if
```

13. Construct an AVL tree for the following input sequence: 25, 32, 64, 11, 78, 50, 9, 3, 61, 75, 47, 39

Final Tree

PART - C

Answer all the questions

 $(1 \times 10 = 10)$

14.(i) Represent the following graph as adjacency list and perform breadth first traversal.

(6 Marks)

Breadth First Search:

Name	dist	Visitod	Parent	adiple
1	40	181	-1	1-121-13/
2	41	71	*1	-ALL-MAIN
3	\$1	91	XI	- III-IEV
4	42	01	12	101-121-121-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
5	12	91	×3	13 + 14 FE
6	\$3	18	x4]	The state of the s
7	13	91	-×4	1941-151-151-151-151-151-151-151-151-151-1
8	A 4	1011	*7	14 561 38

Let S=1 Queue

$$u = 4$$
 $v = 2,3$
2. dist = 1. dist +1 = 0 +1 = 1 2. parent=1
3. dist = 1. dist +1 = 0 +1 = 1 3. parent=1

$$u = 2$$
 $v = 1/4$
 $4 \cdot dist = 2 \cdot dist + 1 = 1 + 1 = 2 \cdot 4 \cdot parent = 2$

$$N=1.5$$

5-dist = 3-dist +1 = 1+1=2 5-percent = 3

$$u=4$$
 $v=2,8,6,7$
6. dist = 4. dist +1 = 2+1=3 6. perent=4
7. dist = 4. dist +1 = 2+1=3 7. perent=4

$$u=5$$
 $v=8.4.8$
 $u=6$ $v=4.9.7$
 $u=7$ $v=1.8.8$
 $v=1.8.8$
 $v=1.8.8$
 $v=1.8.8$
 $v=1.8.8$
 $v=1.8.8$
 $v=1.8.8$
 $v=1.8.8$

Breadth Fixe

(ii) Sort for the following input sequence using heap sort: 5, 41, 34, 7, 56, 12, 81, 56, 60 (4 Marks)

