Sortieralgorithmen

ΟV

Dr. Günter Kolousek

Einführung

- zugrundeliegendes Problem
 - Sequenz von Daten (z.B. ein Array mit ganzen Zahlen)
 - nach einem bestimmten Kriterium zu sortieren
 - ▶ Meist: Schlüssel k und Nutzdaten
- aufsteigend vs. absteigend
 - ▶ je zwei Schlüssel müssen vergleichbar sein bzgl. < bzw. >
- ► Sequenz S von Datensätzen (items): $S = s_0, s_1, ..., s_{n-1}$
- Gesucht ist eine Sequenz $S' = s_{\pi(0)}, s_{\pi(1)}, ..., s_{\pi(n-1)}$
 - für die gilt, dass die Schlüssel $k_{\pi(i)}$ aufsteigend sortiert sind:

$$k_{\pi(0)} \le k_{\pi(1)} \le \dots \le k_{\pi(n-1)}$$

wobei π eine Permutation der Zahlen 0 bis n-1 sein soll.

Kriterien

- Ort der Daten
 - passt in Hauptspeicher: wahlfreier Zugriff
 - oder nicht (z.B. Band): seq. Zugriff (ext. Sortierverfahren)
- Anzahl der zu sortierenden Datensätze
- Operation
 - Müssen die Datensätze pyhsisch bewegt werden oder
 - Information berechnen, sodass sortiertes Durchlaufen

Kriterien - 2

- Speicherplatzbedarf
 - zusätzlicher Speicher zum Sortieren nötig? wieviel?
- ▶ Stabilität
 - Veränderung der Reihenfolge von Elementen mit gleichem Schlüssel (nicht stabil) oder nicht (stabil)?
- Laufzeitverhalten
 - ▶ bei steigender Anzahl der Datensätze?
 - bzgl. der Anordnung (zufällig, vorsortiert, gegenteilig)?

- ▶ Idee
 - 1. Beginne vorne.
 - 2. Vergleiche jeweils 2 benachbarte Zahlen und vertausche diese, wenn diese nicht in der richtigen Reihenfolge sind.
 - Danach ist sicher die größte Zahl am rechten Ende, aber alle anderen Zahlen sind unsortiert.
 - 3. Beginne deshalb wieder von vorne
- Name
 - Jeweils größtes Element steigt wie Blase an Oberfläche
- Beispiel
 - ▶ [15, 2, 43, 17, 47, 8, 4]
 - ▶ [2, 15, 43, 17, 47, 8, 4]
 - ▶ [2, 15, 43, 17, 47, 8, 4]
 - ▶ [2, 15, 17, 43, 47, 8, 4]
 - **...**

► Prinzip

```
für jedes x der Liste bis zum Vorletzten:
für jedes y der Liste bis zum Vorletzten:
wenn y größer ist als dessen Nachfolger:
vertausche y mit seinem Nachfolger
```

Algorithmus

- Verbesserungsmöglichkeit?
 - Warum beim inneren Durchlauf die Liste nochmals bis zum "Ende" durchlaufen, wenn das letzte Element sicher schon richtig ist?

▶ Prinzip

```
für jedes El. top vom Letzten zum Ersten:
für jedes y bis zum Vorletzten (vor top):
wenn y größer ist als dessen Nachfolger:
vertausche y mit seinem Nachfolger
```

Algorithmus

- Verbesserungsmöglichkeit?
 - ▶ Wenn die Daten schon weitgehend sortiert sind, wie in z.B. in [1, 9, 2, 3, 4, 5]? Ein Durchgang reicht und die Liste ist schon sortiert.

- Prinzip
 - Wenn sich offensichtlich in einem weiteren Durchgang nichts ändert, dann kann die äußere Schleife abbrechen.
- Algorithmus

```
def bubble_sort3(lst):
  for i_top in range(len(lst)-1, 0, -1):
    changed = False
    for j in range(i top):
      if lst[j] > lst[j + 1]:
        lst[i], lst[i+1] = lst[i+1], lst[i]
        changed = True
    if not changed:
      break
  return lst
```

- Verbesserungsmöglichkeit?
 - Warum beim inneren Durchlauf bis zum jeweils letzten Element durchlaufen, wenn die letzte Änderung beim vorhergehenden Durchlauf schon früher stattgefunden hat.

- Verbesserungsmöglichkeit?
 - Warum beim inneren Durchlauf bis zum jeweils letzten Element durchlaufen, wenn die letzte Änderung beim vorhergehenden Durchlauf schon früher stattgefunden hat.
- Prinzip
 - Kombination der letzten beiden Optimierungen: Heruntersetzen der oberen Grenze, auf die letzte Position an der noch eine Vertauschung stattgefunden hat. Damit wird keine Vertauschung mehr durchgeführt, wenn diese obere Grenze der "Anfang" ist.

```
def bubble sort4(lst):
  n = len(lst)
  while True:
    new n = 1
    for y in range(n - 1):
      if lst[y] > lst[y + 1]:
        lst[y], lst[y + 1] = lst[y + 1], lst[y]
        new_n = y + 1
    n = new_n
    if n == 1:
      break
  return lst
```

- Bewertung Warum ist dieser Algorithmus denn eigentlich so schlecht?
 - ► Weil bei n Elemente größenordnungsmäßig n² Vergleiche und Vertauschoperationen notwendig sind,
 - da zwei verschachtelte Schleifen jeweils für (fast) alle Elemente durchlaufen werden.
- Vorteil: nur 3 Zeilen Code (je nach Programmiersprache)
- Noch schlechtere Algorithmen?
 - ▶ Bilde alle Permutationen und finde geordnete Liste
 - maximale Speicherplatzverschwendung
 - Solange Liste nicht sortiert, vertausche 2 beliebige Elemente
 - maximales Glücksspiel

Selection-Sort

▶ Idee

- 1. Lege neue Ergebnisliste an
- 2. Finde das kleinste Element in der Liste.
- 3. Hänge dieses Element an die Ergebnisliste
- 4. entferne es aus der Liste
- wenn die Liste noch nicht leer ist, gehe zu Schritt 1) zurück.

Name

- Auswahl des jeweils kleinstem Elementes aus der Liste
- ▶ Beispiel
 - ▶ [15, 2, 43, 17, 47, 8, 4]
 - ▶ [2],[15, 43, 17, 47, 8, 4]
 - ▶ [2, 4], [15, 43, 17, 47, 8]
 - ▶ ...

Selection-Sort – 2

Prinzip

- 1. Finde Position j_0 des kleinsten Elementes von a[0], ..., a[n-1] und verstausche a[0] mit $a[j_0]$.
- 2. Finde Position j_1 des kleinsten Elementes von a[1], ..., a[n-1] und vertausche a[1] mit $a[j_1]$.
 - das ist das Element mit dem zweitkleinstem Schlüssel unter allen n Elementen
- 3. Das wird solange durchgeführt bis alle Elemente an ihrem richtigen Platz stehen.
- ► Frage: Wo ist da die Ergebnisliste?
 - Geht auch mit Ergebnisliste
 - je nach Programmiersprache mit Array (je nach Aufgabenstellung: effizienter)

Selection-Sort – 3

► Algorithmus

```
def selection sort(seq):
  n = len(seq)
  for i in range(n - 1): # i von 0 bis n-2
    min = i
    # j von i + 1 bis n - 1
    for j in range(i + 1, n):
      if seq[j] < seq[min]:</pre>
        min = i
    seq[min], seq[i] = seq[i], seq[min]
  return seq
```

Aufgabe: schreibe eine rekursive Variante rec_selection_sort

Insertion-Sort – 1

- ▶ Idee
 - 1. Lege eine neue Ergebnisliste mit dem ersten Element der zu sortierenden Liste an.
 - 2. Gehe alle Elemente der zu sortierenden Liste von Position 1 bis zum Ende durch und füge das aktuelle Element in der Ergebnisliste an der richtigen Position ein.
- Name
 - Einfügen in Ergebnisliste
- ▶ Beispiel
 - ▶ [15, 2, 43, 17, 47, 8, 4]
 - ▶ [15],[2, 43, 17, 47, 8, 4]
 - ▶ [2, 15], [43, 17, 47, 8, 4]
 - ▶ [2, 15, 43], [17, 47, 8, 4]
 - ▶ ...

Insertion-Sort – 2

▶ Prinzip

```
Für jede Position i von 1 bis zur Letzten:
 Wert val mit dem Wert von i belegen
 Index j mit i belegen
  Endlosschleife
   Wenn j == 0, dann Schleife beenden
   Wenn Wert an j-1 <= val
      dann Schleife beenden
    Element an Pos. j mit Pos. j-1 belegen
   i dekrementieren
  Liste an der Position j mit val belegen
```

Insertion-Sort – 3

Algorithmus

```
def insertion_sort(seq):
  # vom zweiten Element bis zum letzten El.
  for i in range(1, len(lst)):
    val = lst[i]
    i = i
    while True:
      if j == 0 or lst[j - 1] <= val:
        break
      lst[i] = lst[i - 1]
      i -= 1
    lst[j] = val
  return lst
```

Aufgabe: schreibe eine rekursive Variante rec_insertion_sort

Quick-Sort

- Idee
 - 1. sortiere grob in 2 Teile, indem ein Trennwert gewählt wird
 - Partition!
 - Heuristik: letzten Wert in Sequenz als Trennwert nehmen
 - 2. sortiere den ersten Teil
 - 3. sortiere den zweiten Teil
 - 4. setze die Teile zusammen
- ▶ Name...
- ▶ Beispiel
 - ▶ [15, 2, 43, 17, 4, 8, 47] \rightarrow Pivot: 47
 - ▶ [15, 2, 43, 17, 4, 8], [] \rightarrow Pivot: 8
 - ▶ $[2, 4], [17, 15, 43] \rightarrow Pivot: 4 \text{ und } 43$
 - **▶** [2],[]
 - ▶ $[17, 15], [] \rightarrow Pivot: 15$
 - ▶ [], [17]

Quick-Sort – 2

Algorithmus - 1 def partition(lst, left, right): pivot = lst[right] i = left - 1i = right while True: i += 1 while i <= right and lst[i] < pivot:</pre> i += 1 i -= 1 while j >= left and lst[j] > pivot: i -= 1 **if** i < j: lst[i], lst[i] = lst[i], lst[i] else: break lst[i], lst[right] = lst[right], lst[i] return i

Quick-Sort – 3

```
Algorithmus-2
def quicksort_(lst, start, end):
    if start < end:
        p = partition(lst, start, end)
        quicksort_(lst, start, p - 1)
        quicksort_(lst, p + 1, end)

def quicksort(lst):
    quicksort_(lst, 0, len(lst) - 1)</pre>
```

Quick-Sort – 4

- ▶ Ordnung: $n \log(n)$
 - ▶ im schlechtesten Fall: *n*²
 - wenn Pivot-Element schlecht gewählt: wenn letztes Element und sortierter Liste
- rekursiver Algorithmus kann in iterativen umformuliert werden
 - ▶ Rekursionen können gespart werden, wenn bei Teillisten mit Länge ≤ 5 Insertion-Sort verwendet wird.

Laufzeitvergleiche

- ▶ 1000, 2000, 4000 Zahlen auf einem Subnotebook
 - Zeit in Sekunden, gerundet auf 4 Nachkommastellen
 - ► Abhängig von: hauptsächlich CPU, Speicher, aktuelle Auslastung, aktuellen Daten (zufällige Zahlen!).

bubble1	0.6176	2.5324	10.1482
bubble2	0.3845	1.6154	6.4617
bubble3	0.4020	1.6620	6.6788
bubble3/sortiert	0.0004	0.0009	0.0018
selection	0.1787	0.7077	2.8736
selection/sortiert	0.1763	0.7098	2.8491
insertion	0.2134	0.8688	3.5896
insertion/sortiert	0.0011	0.0018	0.0009
quicksort	0.0087	0.0188	0.0412
quicksort/sortiert	0.3945	1.5862	6.3666

 $quicksort \rightarrow sys.setrecursionlimit(5000)$