

Program Software Engineering

Syllabus of Course 10128

Object-Oriented Programming

Academic Year	2025	
No. of course hours	6.00 Semestrial hours [Lecture 3.00 + tutorial -3.00]	
Academic credits	4.50	
Prerequisites	Pre: 10016 Introduction to Computer Science	
	Pre: 10016 Introduction to Computer Science -or- 10006	
	Introduction To Computer Science	
Please note that		
The prerequisites are for	all programs, you are required to be updated on the prerequisites you need	
according to your person	al program.	
Class Attendance	Not mandatory	
Objectives	The students will learn how to design and implement an Object	
	Oriented system using Java.	
Abstract	The students will learn about classes and objects, constructors,	
	inheritance, polymorphism, and interfaces,	
	and will learn how to combine them all into an object-oriented	
	system.	
	The students will learn how to show the system also using class	
	diagrams.	

Learning outcomes related to the content of the course and show it using class diagram. The students will learn how to design an object-oriented system and show it using class diagram. The students will learn how to implement the system using Java.

Learning outcomes - Skills

Problem solving: defining problems and identifying strategies. The ability to identify one single approach to problem solving that can be applied in a specific context.

Critical thinking: explaining the issues, foundation, contexts, and taking a position. Presenting the subject based on information sources with a certain level of interpretation, evaluation and taking a position.

Integrative learning: linking to practical experience. The ability to compare practical experience and academic knowledge, in order to find differences and similarities.

Lecture topics by weeks

The order of the topics can be changed at the lecturer's discretion.

1	From Python to Java: syntax and concepts. Some of them will be self-learned.
2	Classes and objects: attributes, methods and visibility
3	Constructors and 'this reference.
4	System with association: composition and aggregation.
5	static: attributes and methods enum
6	Inheritance and class diagram
7	Polymorphism and class Object.
8	exceptions
9	interfaces written by the programmer
10	known interfaces: Comparable, Comparator and Cloneable
	Files: text and binary
11	Generics

12	Collections.
13	Analysis of an object-orients system using SOLID

Tutorials / Labs topics by weeks

The order of the topics can be changed at the lab instructor's / tutor's discretion.

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	

Course coordinator	Mrs. Kalif Keren	
Language of instruction	Hebrew	
Subjects for self-tutoring	Methods of class String and StringBuffer/Builder.	
Textbooks and Recommended Bibliography	1. John Lewis & William Loftus, Java Software	
	Solutions, Foundations of Program Design, Addison	
	Wesley, 6th Edition, 2009	
	2. Paul Deitel & Harvey Deitel, Java How to Program:	
	Late Objects Version: International Edition, 8/E,	
	Pearson, 2010.	
	3. Tony Gaddis, Introduction to Computers and Java,	
	Addison Wesley, 4th Edition, 2010.	

Course Requirements and Calculation of Final Grade

Task Type	Percentage of Final Grade
Final Exam Grade	80
Midterm Exam Grade	0
Homework Assignments	0
A project in a course where there is no Final Exam	0
A project in a course where there is a Final Exam	20
Final Grade	0

Clarification to pass the course:

In order to pass the course, students must fulfill the following conditions [excluding the English Beginners Course, Labs and Workshops]:

- 1. Final course grade of at least 60 [taking into consideration all the above course requirements].
- 2. Attendance according to the attendance requirement [see section regarding attendance].

Exam and Midterm Exam

Type of Midterm Exam

Duration of Midterm Exam

Location of Midterm exam

Duration of Final Exam 150 minutes

Location of Final exam Regular class (no computers)

Permitted Material/Tools for Exams Standard calculator

Details of permitted materials for exam

Formula Sheets Self-writing formula sheets

Number of single-sided sheets 2 double-sided pages written by the

students.