

PACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF COMPUTER SCIENCE

Fall, 2024

DISCRETE MATHEMATIC LEC-01:Statements and Propositions

Instructor: Ms Nguyen Thi Huong

Lecture 1

- Propositions
- Quantifiers
- Quantifiers and Negation

Propositions

A proposition is a statement which is either true or false

Examples:

- $\sqrt{3}$ is irrational
- 1+3=5
- FIT was established in Nov. 2006

Propositions

A proposition is a statement which is either true or false

Examples (NOT propositions):

- \downarrow 10 + 5
- $x^2 + 3x = 5$
- Mr. fit often visits F-IT Online. (What is "often?")
- Bill Gates is popular. (What is "popular?")

Propositions

Propositions may be joined together to form more complex statements.

- Conjunction
- Disjunction
- Negation
- Implication

Conjunction

$P \wedge Q (P \text{ "and" } Q)$

True when **both** P and Q are **True**

P	Q	$P \wedge Q$
True	True	True
True	False	False
False	True	False
False	False	False

P V **Q** (*P* "or" Q)

True when **one** of *P* or *Q* is **True**

P	Q	$P \lor Q$
True	True	True
True	False	True
False	True	True
False	False	False

P

¬ P ("not" P)

True when **P** is **False**

P	¬ P
T rue	False
False	T rue

```
P: 3 is odd
```

Q: 4 is odd

R: 5 is even

$$P \wedge R$$
 $P \vee R$

$$P \lor \neg P$$
 (tautology)
 $P \land \neg P$
(contradiction)

A tautology is a proposition that's always TRUE.

A contradiction is a proposition that's always FALSE.

р	_ p	<i>p</i> ▶ △ <i>p</i>	<i>p</i> 4 △ <i>p</i>
Т	F	Т	F
F	Т	Т	F

$$P = > Q (P "implies" Q)$$

False only when P is True and Q is False

Examples:

- If you stand in the rain, then you'll get wet.
- If you got 6.0 in IELTS, you didn't have to take the test again

Implication

P = > Q (P "implies" Q)

False only when P is True and Q is False

P	Q	P =>Q
True	True	True
True	False	False
False	T rue	T rue
False	False	True

P	Q	P => Q
True	True	True
True	False	False
False	T rue	True
False	False	True

P=>Q is always true when P is false (vacuously true)

- If pigs can fly, then horses can read
- If 14 is odd then 1 + 2 = 18
- If fishes lay eggs on tree, then I will marry you

R O 0 0

P

Implication

- P=>Q
- (1) If P, then Q
- (2) Q if P
- (3) P only if Q
- (4) P is sufficient for Q
- (5) Q is necessary for P

Implication

P=>Q is true Q=>P is true P if and only if Q P iff Q

Examples:

- P: "3 is odd", R: "6 is even"
- P if and only if R (logically equivalent)

Contrapositive

$$\neg Q => \neg P$$

Example:

If you got 6.0 in IELTS, you didn't have to take the test again

Contrapositive:

If you had to take IELTS again, you didn't get 6.0 in IELTS

Converse

$$Q => P$$

Example:

If you got 6.0 in IELTS, you didn't have to take the test again

Converse:

If you didn't have to take the test again, you must have got 6.0 in IELTS

Remark

Contrapositives: p ≡ q and ¬q ≡ ¬p

• $\mathcal{E}\chi$. "If it is noon, then I am hungry."

"If I am not hungry, then it is not noon."

Converses: $p \equiv q$ and $q \equiv p$

• $\mathcal{E}\chi$. "If it is noon, then I am hungry."

"If I am hungry, then it is noon."

Inverses: p = q and p = q

• Ex. "If it is noon, then I am hungry."

"If it is not noon, then I am not hungry."

Converse Contr	ap	1051	uve
----------------	----	------	-----

Р	Q	¬P	¬Q	$P \rightarrow Q$	$\mathbf{Q} \rightarrow \mathbf{P}$	$\neg Q \to \neg P$	P ↔ Q
Т	Т	F	F	Т	Т	Т	Т
Т	F	F	Т	F	Т	F	F
F	Т	Т	F	Т	F	Т	F
F	F	Т	Т	Т	Т	Т	Т

The **contrapositive** of $P \rightarrow Q$ has the same truth values, while the **converse** does not.

Distributivity:

$$p \blacktriangleright (q \blacktriangleleft r) \quad (p \blacktriangleright q) \blacktriangleleft (p \blacktriangleright r)$$

p	q	r	q∢r	p	194	r)	p▶q	p▶r	(p ▶	q) ((o ▶ r)
Т	Т	Т	Т		Т		Т	Т		T	
Т	Т	F	F		Т		Т	Т		Т	
Т	F	Т	F		Т		Т	Т		Т	
T	F	F	F		Т		Т	Т		Т	
F	Т	Т	Т		Т		Т	Т		Т	
F	Т	F	F		F		Т	F		F	
F	F	Т	F		F		F	Т		F	
F	F	F	F		F		F	F		F	

Application: Digital Logic Circuits

Switches "in series"
(a)

Swit	ches	Light Bulb
P	$\boldsymbol{\varrho}$	State
closed	closed	on
closed	open	off
open	closed	off
open	open	off

Switches "in parallel" (b)

Swit	ches	Light Bulb
P	Q	State
closed	closed	on
closed	open	on
open	closed	on
open	open	off

Quantifiers

Universal quantifier

(For all)

Example:

$$\forall n \in \mathbb{Z}^+, (n^2 + n + 41) \text{ is prime}$$

Quantifiers

Existential quantifier

(There exists)

Example:

 $\exists x \in \mathbb{Z}, x < 0$

Quantifiers and Negation

$$\neg(\forall x, P(x)) \equiv \exists x, \neg P(x)$$
$$\neg(\exists x, P(x)) \equiv \forall x, \neg P(x)$$

Example:

$$\neg((\forall x < 3), x^2 \le 2) \equiv (\exists x < 3), x^2 > 2$$

Question and Answer

This proposition is true or false?

$$2 + 3 \ge 5$$

Question and Answer

- If a is in [5,10], then a is greater than or equal to 5.
- Is 5 in [5,10]?
- 5 is greater than or equal to 5
- 5 is greater than 5 OR 5 is equal to 5

Question and Answer

Contruct the truth table for the following proposition:

$$(p \rightarrow q) \land (\neg p \rightarrow r)$$

Homework

Problem set 1