PRÁCTICO: Máquinas de Turing

Mauricio Velasco

- a) Diseñe y escriba una máquina de Turing que escanea hacia la derecha hasta que encuentra dos a's consecutivas y luego se detiene.
 El alfabeto de la máquina debe ser Σ = {a, b, ∪, Δ} y debe dar la descripción de la máquina en completo detalle (como 5-tupla).
 - b) Escriba las configuraciones que ocurren al ejecutar su máquina con input $\cup bbabaa$.
- 2. Dé un ejemplo de una máquina de Turing sobre el alfabeto $\{a\}$ con un solo halting state h que cumpla:
 - a) Si la máquina se inicia con la palabra aaaaaa...a donde la a aparece un número par de veces y la cabeza lectora en el vacío inicial entonces la máquina se detiene en estado h con la cabeza en el vacío inicial.
 - b) Si la máquina se inicia con la palabra aaaaaa...a donde la a aparece un número impar de veces y la cabeza lectora en el vacío inicial entonces la máquina NO se detiene (es decir continua realizando operaciones y movimientos y nunca llega al estado h).

Demuestre que su máquina cumple las características pedidas.

- 3. Construya una máquina de Turing (usando, si quiere, la notación de máquinas de Turing jerárquicas) que calcule la funcion $f:\{a,b\}^* \to \{a,b\}^*$ dada por $f(w)=ww^R$ donde w^R significa la palabra reversa a w. Muestre la ejecución de la misma en una cadena representativa. (nota: Puede asumir que la cinta inicia con la palabra w y que la cabeza lectora se encuentra en el vacío inicial).
- 4. Describa una máquina de Turing que semidecida el lenguaje a^*ba^*b .
- 5. Utilice máquinas de Turing no deterministas para demostrar que:
 - a) La clase de lenguajes recursivos esta cerrada bajo unión, concatenación y estrella de Kleene.

b) La clase de lenguajes recursivamente enumerables esta cerrada bajo unión, concatenación y estrella de Kleene.