MODERN PHYSICS

PRACTICE FINAL EXAM

NA	AME:							
	rite your name. Yo rite your answer o			_	-		1.	
1.	An elementary particle is moving from the upper atmosphere toward the surface of the Earth at a speed of 0.999978 c. Take that the height of the atmosphere in the reference frame of the Earth is 100 km. Then, the apparent height of the atmosphere in the reference frame of the particle is about							
	A) 6. D) 4.				3) 469 m E) 663m	C) 0.	660m	
2.	-	a rocket ship of rest length 100 m is moving at speed 0.8 c past a timing device that records the time interval between the passage of the front and back ends of the ship. This time interval is:						
	_ A) 0.20 μ	s	Β) 0.25 με	s C	C) 0.33 µs	D) 0.52 μs	E) 0	.69 μs
3.	A particle of res measured in the			s at a spe	eed 0.80 c v	with respect to a	a rest frame	. Its mass, as
	A) 0.80 m ₀		B) m ₀	C) 1.6	7 m ₀	D) 0.33 m ₀	E) 0.	25 m ₀
4.	How much is the	e mome	entum of a	proton n	noving at a	speed of $v = 0.7$	76 c?	
	A) 3.8 × 10 D) 2.6 × 10	_			$5.8 \times 10^{-19} \text{ k}$ $1.8 \times 10^{-19} \text{ k}$	-	C) 1.7 × 1	10 ⁻¹⁰ kg·m/s
5.	A distant star is radiating heat and light at the rate of 3.9×10^{26} W. At what rate is the star losing mass due to this release of energy?							
		_			_	$4.3 \times 10^9 \text{ kg/s}$ adiation and the		_
6.	The work funct corresponding th					netal 2 is Φ_2 =	$2 \cdot \Phi_1$. The	ratio of the
	A) 0.5·h I	3) 2·h	C) 0.5	D) 2	E) Not en	nough informati	on to solve	the problem

7.	When x-rays scatter from free electrons, the x-ray's I) wavelength is conserved. II) momentum is conserved. III) energy is conserved. Which of the above is correct?							
	_ A) I, II, and III	B) I and II	C) III only	D) II	& III	E) none		
8.	A photon in light bear their momenta is:	n A has twice th	ne energy of a	photon in lig	ht beam B.	The ratio p_A/p_B of		
	_ A) 1/2	B) 1/4	C) 1	D) 2	E) 4			
9.	Which of the followin	g is a <u>correct</u> sta	atement:					
	electron moves ba B) It is possible to velocity is larger the C) ψ(x) = 5 sin(ks) D) A Bohr atom vertical momentum. E) In order to turn than the barrier with	have the group han the speed of x), for $0 \le x \le x$ violates the Heis hel through a po	velocity large f light. $\pi/2$, cannot be senberg's Unce	er than the spe e a solution of ertainty Relat	f the Schrödionship for	dinger equation. position and		
10	Photons are scattering can occur is:	from stationary	free electron	s. The largest	change in	wavelength that		
		10 ⁻¹² m B) 4 10 ⁻⁹ m E) d	$4.85 \times 10^{-12} \text{ m}$ dependent on t		*			
11	. If the difference between angular frequency ω (in A) 1.1x10 ¹	n rad/s) is about:						
12	. The longest waveleng	th of the Pasche	n series corre	sponds to the	following	transition:		
	A) from n = 3 to D) from n = 4 to r	· ·	from $n = 3$ to om $n = 3$ to n		from $n = \infty$	\circ to $n = 3$		
13	to a state with an ener process. The momentu	rgy of 3.2 eV a	bove the grou	nd state ener	_			
	A) $1.4 \times 10^{-8} \text{ kg}$ D) $1.1 \times 10^{-24} \text{ kg}$		$2.3 \times 10^{-27} \text{ kg} \cdot 2.3 $		C) 3.4×10^{-6} the inform	•		

14. Of the following sets of quantum numbers for an electron in a hydrogen atom, which is possible?							
A) $n = 5, 1 = 3, m_l = -3$ D) $n = 3, 1 = 2, m_l = -3$		= -2 C) $n = 5$, $l = -3$, $m_l = 2$ = -2					
15. The lifetime of a certain excited state in an atom is about 1.5×10 ⁻⁸ s, i.e., the electron takes about 1.5×10 ⁻⁸ s to emit a photon and complete the transition to a lower state. What is the energy uncertainty of such an excited state? A) 1.4×10 ⁻⁷ J B) 4.9×10 ⁻²⁴ J C) 3.5×10 ⁻²⁷ J D) 2.2×10 ⁻⁸ J E) 2.2×10 ⁻²⁶ J							
16. An electron is confined with is about:							
A) zero D) 7.3×10 ⁶ m/s	B) 10^{10} m/s E) 5.5×10^{5} m/s	C) 6.6×10 ⁻²⁹ m/s					
17. The group velocity of the de Broglie waves, associated with a body whose angular frequency depends on the wave number as $\omega = 3k^2$							
is equal to							
A) 1/λ B) 3k	C) 6k	D) ω/k E) $3k^2$					
18. A hydrogen atom is in its second excited state, i.e., two states above the ground state. Its energy in this state is -1.51 eV. What is the longest wavelength which will be able to ionize this excited atom?							
in this state is -1.51 eV. What is							
• •	the longest wavelength B) 31.4 nm						
in this state is -1.51 eV. What is atom? A) 1.41 nm D) 8.21×10 ² nm 19. X-rays with an initial waveleng	the longest wavelength B) 31.4 nm E) 7.4×10 ⁴ nm	which will be able to ionize this excited					
in this state is -1.51 eV. What is atom? A) 1.41 nm D) 8.21×10 ² nm	the longest wavelength B) 31.4 nm E) 7.4×10 ⁴ nm	which will be able to ionize this excited C) 4.1×10^2 nm					
in this state is -1.51 eV. What is atom? A) 1.41 nm D) 8.21×10 ² nm 19. X-rays with an initial waveleng The new wavelength is A) 0.0800 nm D) 0.0024 nm 20. An electron moves in the x dire say the following about the election A) The electron's y coor B) The electron's y coordinates.	the longest wavelength B) 31.4 nm E) 7.4×10 ⁴ nm th of 0.0824 nm scatter B) 0.0824 nm E) 0.0776 nm ction. We can measure tron's motion in the y component vy is known to a proyecomponent vy is known to a prodinate is known to a prodinate is known to a prodinate is known to a product of the component vy is known to a pr	which will be able to ionize this excited C) 4.1×10^2 nm from free electrons at an angle of 90^0 . C) 0.0848 nm its speed to a precision of 1%. We can direction: ecision of 1%. wn to a precision of 1%.					
in this state is -1.51 eV. What is atom? A) 1.41 nm D) 8.21×10 ² nm 19. X-rays with an initial waveleng The new wavelength is A) 0.0800 nm D) 0.0024 nm 20. An electron moves in the x dire say the following about the elector A) The electron's y coor B) The electron's velocit C) The electron's velocit D) The electron's velocit D	B) 31.4 nm E) 7.4×10 ⁴ nm th of 0.0824 nm scatter B) 0.0824 nm E) 0.0776 nm ction. We can measure tron's motion in the y of dinate is known to a procy component v _y is known to a one-dimension	which will be able to ionize this excited C) 4.1×10^2 nm from free electrons at an angle of 90° . C) 0.0848 nm its speed to a precision of 1%. We can lirection: ecision of 1%. wn to a precision of 1%. wn to a precision of 1%. ecision of $\hbar/\Delta x$. wn to a precision of 100%.					

A	Broglie wavele) 3.0×10 ⁻¹⁰ m 7.1×10 ⁻²¹ m	B) 1	with a proto .8×10 ⁻¹¹ m .6×10 ⁻¹⁵ m	on of kinetic	energy 2.6 eV C) 7.6×10 ⁻¹⁰ r	is about: n	
	•	ates exist in the $n = 2$ and $l = 1$		tom for an e	electron in the sl	nell specified by	
_	A) 4	B) 6	C) 2	D) 8			
24. A collection of hydrogen atoms in the first excited state is illuminated with ultraviolet light of wavelength 59.0 nm. The kinetic energy of the emitted electrons is about:							
A)	7.40 eV	B) 21.0 eV	C) 13	.6 eV	D) 17.6 eV	E) 3.37 eV	
25. At one i	nstant of time	the wavefunction	on of a partic	cle is			
		$\psi(\mathbf{x}) = \mathbf{A} \cdot \mathbf{e}$	-b x , for	$r - \infty < x$	<+∞		
Constan	t A is given by	:					
	A) 0	B) \sqrt{b}	C) $\frac{1}{\sqrt{b}}$	D) $\frac{1}{b}$	E) b		
26. Which of the following processes can occur in an atom in its ground state? I) emission II) absorption							
	A) I only	B) II only	<i>y</i> (C) I & II	D) nei	ther I nor II	
27. A system consists of two particles with masses 2m _e and 4m _e , where m _e is the mass of an electron. The reduced mass of the system is:							
	A) 6m _e	B) $4m_e/3$	C	C) 2m _e	D) $3m_e/4$		
28. The frequency of a wave described with a formula $y = 3 \cdot \sin (4t - 5x)$ is about							
	A) 0.64	B) 5	C) 25	D) 4	E) 1.3		
_		an infinite one-ory of the proton		well of widt	h 0.132 nm. The	e proton is in the	
A)	46.5 eV	B) 1.18 eV	C) 0.1	2 eV	D) 85.2 keV	E) 2160 eV	
30. The ground state energy of a harmonically oscillating electron is 1.24 eV. The energy that must be added to the electron to move it to the fourth excited state is:							
A)	0.390 eV B) (0.696 eV C	c) 9.92 eV	D) 4.96	eV E) 2.4	8 eV	