04_homework_linear_regression

November 16, 2017

1 Programming assignment 4: Linear regression

1.1 Your task

In this notebook code skeleton for performing linear regression is given. Your task is to complete the functions where required. You are only allowed to use built-in Python functions, as well as any numpy functions. No other libraries / imports are allowed.

1.2 Load and preprocess the data

I this assignment we will work with the Boston Housing Dataset. The data consists of 506 samples. Each sample represents a district in the city of Boston and has 13 features, such as crime rate or taxation level. The regression target is the median house price in the given district (in \$1000's).

More details can be found here: http://lib.stat.cmu.edu/datasets/boston

```
In [3]: X , y = load_boston(return_X_y=True)

# Add a vector of ones to the data matrix to absorb the bias term
# (Recall slide #7 from the lecture)
X = np.hstack([np.ones([X.shape[0], 1]), X])
# From now on, D refers to the number of features in the AUGMENTED dataset (i.e. include
# Split into train and test
test_size = 0.2
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
```

1.3 Task 1: Fit standard linear regression

```
(Augmented) feature matrix.
            y : array, shape [N]
                Regression targets.
            Returns
            _____
            w : array, shape [D]
                Optimal regression coefficients (w[0] is the bias term).
            HHHH
            # TODO
            h1 = np.matmul(np.transpose(X), X)
            h2 = np.linalg.inv(h1)
            w = np.matmul(np.matmul(h2,np.transpose(X)),y)
            return w
1.4 Task 2: Fit ridge regression
In [5]: def fit_ridge(X, y, reg_strength):
            """ Fit ridge regression model to the data.
            Parameters
            _____
            X : array, shape [N, D]
                (Augmented) feature matrix.
            y : array, shape [N]
                Regression targets.
            reg\_strength: float
                L2 regularization strength (denoted by lambda in the lecture)
            Returns
            _____
            w : array, shape [D]
                Optimal regression coefficients (w[0] is the bias term).
            11 11 11
            # TODO
            D = np.size(X, 1)
            w1 = np.linalg.inv(np.matmul(np.transpose(X),X) + reg_strength*np.identity(D))
            w = np.matmul(np.matmul(w1,np.transpose(X)),y)
            return w
```

X : array, shape [N, D]

1.5 Task 3: Generate predictions for new data

```
In [6]: def predict_linear_model(X, w):
            """Generate predictions for the given samples.
            Parameters
            _____
            X : array, shape [N, D]
                (Augmented) feature matrix.
            w : array, shape [D]
                Regression coefficients.
            Returns
            _____
            y\_pred : array, shape [N]
                Predicted regression targets for the input data.
            11 11 11
            # TODO
            y_pred = np.matmul(X,w)
            return y_pred
```

1.6 Task 4: Mean squared error

```
In [7]: def mean_squared_error(y_true, y_pred):
            """Compute mean squared error between true and predicted regression targets.
            Reference: `https://en.wikipedia.org/wiki/Mean_squared_error`
            Parameters
            _____
            y_true : array
                True regression targets.
            y_pred : array
                Predicted regression targets.
            Returns
            _____
            mse : float
                Mean squared error.
            11 11 11
            # TODO
            mse = ((y_true-y_pred) ** 2).mean(axis=None)
            return mse
```

1.7 Compare the two models

The reference implementation produces * MSE for Least squares \approx 23.98 * MSE for Ridge regression \approx 21.05

You results might be slightly (i.e. $\pm 1\%$) different from the reference soultion due to numerical reasons.

```
In [8]: # Load the data
       np.random.seed(1234)
       X , y = load_boston(return_X_y=True)
       X = np.hstack([np.ones([X.shape[0], 1]), X])
        test size = 0.2
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size)
        # Ordinary least squares regression
        w_ls = fit_least_squares(X_train, y_train)
        y_pred_ls = predict_linear_model(X_test, w_ls)
        mse_ls = mean_squared_error(y_test, y_pred_ls)
        print('MSE for Least squares = {0}'.format(mse_ls))
        # Ridge regression
        reg_strength = 1
        w_ridge = fit_ridge(X_train, y_train, reg_strength)
        y_pred_ridge = predict_linear_model(X_test, w_ridge)
        mse_ridge = mean_squared_error(y_test, y_pred_ridge)
        print('MSE for Ridge regression = {0}'.format(mse_ridge))
MSE for Least squares = 23.984307611774046
MSE for Ridge regression = 21.051487033771537
```