CHARACTERISING USER EXPERIENCE AND RITICAL PATH IN MOBILE APPLICATIO

N. Rattanavipanon 🔷 , J. Newman 🔾 A. Finamore 🖪 D. Perino 🗖 C. Soriente 🔷 , N. Vallina-Rodriguez **

♦University of California Irvine, ♠Northwestern University, ♠Telefonica Research, ♠NEC Labs Europe, ☀IM DEA Networks/ICSI

MOTIVATION: QoE in Mobile Traffic

- Users Quality of Experience (QoE) analysis is paramount for telcos to drive business, and for users to verify their SLAs with the operators.
- QoE on web traffic is "standardized" via Page-Load-Time (PLT), Google Speedy index, etc.

"What is the PLT for a generic mobile app?" "What's the impact of DNS/TLS/etc.?"

GOAL: From Bottlenecks to Solutions

- Analyze apps in different scenarios capturing all traffic and user engagement, e.g., application startup, user interaction, application background/foreground
- Build the traffic waterfall, i.e., flows pattern and content exchanged over time
- Dissect the critical path, i.e., identify which flows (if shortened) can improve QoE, and assess the impact of DNS, TCP handshake, TLS, etc., for the flows

HOW: Active and Passive On-Device Measurements

Networking Layer **W**

- 1 Use VPI APIs to study traffic on-device (internal forward to a tun interface)
- 2 Flow reassembly from raw packets to both investigate content, and extract measurements

VPN-APP Space internal routing

Analysis Layer

- 3 Passive analysis to collect per-flow & per-packet metrics
- 4 Active probing to create a comparison baseline & do root cause analysis
- 5 Supervisor to control & schedule activities, and perform analysis

Networking Layer: First Implementation

- A critical implementation detail is the extra overhead imposed by on-device traffic acquisition and processing
- Java requires to poll tun separately from the remaining sockets while using a C++ Java Native Interface (JNI) we can handle all sockets at once (with a single select() call)
- A JNI implementation reduces the kernel /user-space packets copy and processing overhead

Analysis Laver: Early Results

Fraction of critical path spent on a given activity

•	•	•	
Network Activity	App 1	App 2	App 3
DNS (%)	1 - 2	0 - 0	0 - 3
TCP handshake (%)	4 - 12	1 - 2	1 - 11
TLS handshake (%)	2 - 35	2 - 5	16 - 40

Lower bound: sum of times a given activity is alone on the critical path.

Upper bound: sum of the total time of each activity on the critical path.

