

Department of Artificial Intelligence and Machine Learning

Date: 05.06.2025	Test -2	Max. Marks: $50+10$ Duration: $1\frac{1}{2}$ Hrs + $\frac{1}{2}$ Hr	
Semester: VI	UG		
Course Title: N Transformers	tural Language Processing and	Course Code: AI363IA	

Dont A

SI No	Questions	B.F	Da	00
1.	Which combined POS tagger is expected to yield higher accuracy: one that uses unigram, bigram, and trigram taggers, or another that uses unigram, bigram, trigram, and quad gram taggers? Justify your answer in one line.	M 2	BT 4	1
2.	What is the purpose of feature templates in BRILL -based tagging?	2	2	1
3.	Write a Python function to implement a default POS tagger with a specified default tag as Noun(NN)	2	3	2
4.	What is Transformation-Based Learning (TBL) in POS tagging?	2	2	1
5.	What does the following Hugging Face code return? from transformers import pipeline pipe = pipeline("text-classification") pipe("This course is amazing!")	2	2	3

Part B SI Questions M BT CO No How does a unigram POS tagger work? Illustrate with an example. 1.a 5 4 2 You are designing a Chabot that needs to understand long user queries quickly 5 3 and respond efficiently Which architecture would you choose: An Encoder-Decoder model with RNNs and attention mechanism or a Transformer based model? Justify your answer with necessary block diagram Differentiate between Hidden Markov Model (HMM)-based taggers and 2.a 5 1 Maximum Entropy (ME) taggers. 2.b Write a simple NLTK-based Python program that: 5 3 1. Uses a regular expression tagger to assign POS tags based on suffix patterns. 2.Uses Backoff to a default tagger (e.g., tag everything as NN) when no pattern matches. Apply it to the sentence: "Kohli was angrily smashing and dancing while fielders were sleepwalking."

3.a	Write Python code to:	5	3	5 .
	1. Train a custom classifier-based POS tagger using Classifier Based POS Tagger from NLTK.			
	2.Do not use the default classifier — instead, define and pass a custom one (e.g., NaiveBayesClassifier from nltk.classify). Train on train_sents and evaluate on test_sents.			
3.b	Write Python code to perform the below task. Use the backoff_tagger() function to create a chain tagging system(Default Tagger, Unigram, Bigram and Trigram Tagger). Train it using train_sents and evaluate it using test_sents. and print the accuracy	5	2	5
4.a	Explain the Brill tager with neat block diagaram	5	2	1
4.b	Imagine you're building an auto-commentator for cricket. You want it to guess what role a word usually plays—for example how the word "run" is most often used as a noun in match reports. Write a function that builds a model for the 200 most common words in your cricket corpus, assigning the most frequent POS tag seen with each word.	5	3	5
5	List and explain any five applications of Transformers in Natural Language Processing (NLP). For each application, provide a brief description and a code snippet using Hugging Face Transformers that demonstrates how the task is performed.	10	3	5