Conway's Game of Life

Valentino Bergamotto

31.01.2024

Einleitung

- Lebende Zellen mit weniger als 2 lebenden Nachbarn sterben.
- Lebende Zellen mit 2 oder 3 lebenden Nachbarn überleben.
- Lebende Zellen mit mehr als 3 lebenden Nachbarn sterben.
- Tote Zellen mit genau 3 lebenden Nachbarn werden lebendig.

Struktur

- Dateistruktur wie die Vorlage in src, examples und test unterteilt.
- Das README und eine Lizenz sind auch im "main"-Ordner

- install_packages.jl, installiert alle notwendigen Packages
- cell.jl, enthält eine struct "Cell" und verschiedene Funktionen, für diese
- gameboard.jl, enthält eine struct "Gameboard" und eine Funktion update_game()
- options.jl, enthält eine Funktion get_option(), um die Startkonfiguration zu bestimmen und ein paar Unterfunktionen, die verschiede Konfigurationen zurückgeben
- main.jl, führt alles wichtige aus und implementiert den letzten Schritt für die Interaktivität

Cell

- Cell speichert alle wichtigen Informationen, die eine Zelle braucht, sowie Funktionen, die diese verändern und aufrufen können
- Dazu gehören neighbours, alive, update und button
- Informationen, wie die Anzahl lebender Nachbarn werden über Hilfsfunktionen in der Datei bestimmt

Gameboard

- Gameboard speichert eine Matrix von Zellen und implementiert die Visualisierung dieser
- Für die Visualisierung wurde GLMakie verwendet
- Die Initialisierung wird mit einer Matrix mit 0 und 1 ausgeführt, alle Zellen erhalten dann ihre relevanten Informationen
- Die Reihenfolge, in welcher man einer Zelle ihre Nachbarn zuweist, ist sehr wichtig. Deswegen sieht der Algorithmus dafür sehr komisch aus

Festlegen von Nachbarn

Resultate

- Ursprüngliche Initialisierung hat Komplexität $O(y \cdot x)$ (40x40 braucht ca. 90 Sekunden)
- Danach ist jeder Schritt auch für große Matrizen sehr schnell (für 40x40 sofort fertig)

Resultate

Fazit

- Mit einer anderen Visualisierungsmöglichkeit, kann man die Initialisierung vermutlich stark verbessern. Dabei geht aber die Interaktivität verloren.
- Conway's Game of Life kann mit vier sehr simplen Regeln, sehr komplexe Gebilde erschaffen
- Deswegen ist es auch noch nach über 50 Jahren eins der beliebtesten "Programmierspiele" und viele Menschen suchen nach neuen Gebilden

Einleitung Struktur des Projekts Resultate Fazit

Vielen Dank für eure Aufmerksamkeit