CS 291A: Deep Learning for NLP

Neural Networks: NN Tips and Seq2Seq

William Wang
UCSB Computer Science
william@cs.ucsb.edu

Slides adapted from V. Chen.

HW2: Fake News Detection Competition

The handout of HW2 was out on Piazza.

The deadline is in about two weeks (Due Monday 02/26, 23:59pm PT):

- You will be given a real-world dataset of short statements.
- The task is to predict the truthfulness label of each statement.
- You may design or use any machine learning or NLP algorithms or toolkits.
- However, you are not allowed to use additional training data.
- Use test data for training, or touching / searching / labeling test data is a violation of honor code and academic integrity.
- If you are not sure, ask questions on Piazza.

Agenda Today

- 1. Additional tips for designing DNNs.
- 2. Neural Machine Translation
- sequence-to-sequence models.

Additional tips for designing DNNs

Data Preprocessing

Activation Function

Loss Function

Optimization

Generalization

- Early Stopping
- Regularization
- Dropout

If you are not using embeddings as input... Standardization is common.

The means of all dimensions are 0, and the variances are all 1

Input Normalization

Normalizing training and testing data in the same way

Outline

Data Preprocessing

Activation Function

Loss Function

Optimization

- Adagrad
- Momentum

Generalization

- Early Stopping
- Regularization
- Dropout

Activation Function

Sigmoid
$$f(x) = \frac{1}{1 + e^{-x}}$$

$$f'(x) = f(x)(1 - f(x))$$

Tanh
$$f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$f'(x) = 1 - f(x)^2$$

tanh is just a rescaled and shifted sigmoid, but better for many models

- Initialization: values close to 0
- Convergence: faster in practice
- Nice derivative (similar to sigmoid)

Variants

Rectified Linear Unit (ReLU)

Rectified Linear Unit (ReLU)

Reason

- 1. Fast to compute
- 2. Biological reason
- Solution for vanishing/exploding gradient

Piazza Poll: Sigmoid Issue

Sigmoid activation is more likely to have which of the following issue during DNN training:

- a) Vanishing gradient.
- b) Exploding gradient.
- c) It depends.
- d) Both.

Sigmoid Issue

Derivative of the sigmoid function is always smaller than 1

Vanishing Gradient Problem

The error signal is getting smaller and smaller due to $\sigma'(z) < 1$ \rightarrow vanishing gradient

 $\sigma(z)$

 $\sigma(z)$

 $\sigma(z)$

ReLU — Forward Pass

ReLU – Backward Pass

Variant ReLU

Leaky ReLU

Parametric ReLU

α is also learned by gradient descent

Maxout

Piazza Poll: what's the relationship between ReLU and Maxout?

ReLU is a special case of Maxout

Maxout – ReLU is a special case

Maxout - Training

Given training data x, we decide z for maxout

Maxout - Training

Given training data x, we decide z for maxout

Training this sparse network

Outline

Data Preprocessing

Activation Function

Loss Function

Optimization

- Adagrad
- Momentum

Generalization

- Early Stopping
- Regularization
- Dropout

Loss Function – Square Error

Softmax

Softmax layer as the output layer

Ordinary Output layer

$$z_1^{\mathrm{L}} \longrightarrow \sigma \qquad \qquad y_1 = \sigma(z_1^{\mathrm{L}})$$

$$z_2^L \longrightarrow \sigma \qquad \qquad y_2 = \sigma(z_2^L)$$

$$z_3^L \longrightarrow \sigma \longrightarrow y_3 = \sigma(z_3^L)$$

Softmax

Softmax layer as the output layer

Softmax Layer

Training labels indicate positive and negative samples in stead of the actual values

Outline

Data Preprocessing

Activation Function

Loss Function

Optimization

- Adagrad
- Momentum

Generalization

- Early Stopping
- Regularization
- Dropout

Learning Rate

The proper learning rate is important to find the optimal point

Learning Rate

Idea: reduce the learning rate every few epochs

- At the beginning, we are far from the destination, so we use a larger learning rate
- After several epochs, we are close to the destination, so we reduce the learning rate

Manually set learning rate

- 1) Reduce by 0.5 when validation error stops improving
- 2) 1/t decay: $\eta^t = \eta/\sqrt{t+1}$ due to theoretical convergence guarantees

Learning rate cannot be one-size-fits-all
 → different parameters have different learning rates

Outline

Data Preprocessing

Activation Function

Loss Function

Optimization

- Adagrad
- Momentum

Generalization

- Early Stopping
- Regularization
- Dropout

Generalization

Practical tricks

- find the right network structure and implement and optimize it properly
- 2) prevent overfitting
 - Reduce the model size by lowering the number of units and layers/hyperparameters
 - Early stopping
 - Standard L1 or L2 regularization
 - Sparsity constraint

Outline

Data Preprocessing

Activation Function

Loss Function

Optimization

- Adagrad
- Momentum

Generalization

- Early Stopping
- Regularization
- Dropout

Early Stopping

Error

Number of parameter updates

Check performance on validation set to prevent training too many iterations

Outline

Data Preprocessing

Activation Function

Loss Function

Optimization

- Adagrad
- Momentum

Generalization

- Early Stopping
- Regularization
- Dropout

Regularization

Idea: the parameters closer to zero are preferred

Training data:

$$\{(x,\hat{y}),\ldots\}$$

Testing data:

$$\{(x', \hat{y}), \ldots\}$$
$$x' = x + \varepsilon$$

$$x \begin{cases} x_1 & w_1 \\ x_2 & w_2 \\ \vdots & w_i \end{cases} \qquad \sigma(z) \rightarrow \hat{y}$$

$$x_i & z = w \cdot x$$

$$\vdots & z' = w \cdot (x + \varepsilon)$$

$$= w \cdot x + w \cdot \varepsilon$$

$$= z + w \cdot \varepsilon$$

To minimize the effect of noise, we want w close to zero.

Regularization

Idea: optimize a new cost function to find a set of weight that 1) minimizes original cost and 2) is close to zero

$$C'(\theta) = C(\theta) + \lambda \frac{1}{2} \|\theta\|^2 \longrightarrow \text{regularization term}$$

$$\theta = \{W^1, W^2, ...\}$$

original cost

(e.g. minimize square error, cross entropy ...)

Regularization

Idea: optimize a new cost function to find a set of weight that 1) minimizes original cost and 2) is close to zero

$$C'(\theta) = C(\theta) + \lambda \frac{1}{2} \|\theta\|^{2} \qquad \text{Gradient: } \frac{\partial C'}{\partial w} = \frac{\partial C}{\partial w} + \lambda w$$

$$\text{Update: } w^{t+1} \to w^{t} - \eta \frac{\partial C'}{\partial w^{t}} = w^{t} - \eta \left(\frac{\partial C}{\partial w^{t}} + \lambda w^{t} \right)$$

$$= \underbrace{\left(1 - \eta \lambda\right)}_{\text{Smaller and smaller}} \frac{\partial C}{\partial w^{t}}$$

Outline

Data Preprocessing

Activation Function

Loss Function

Optimization

- Adagrad
- Momentum

Generalization

- Early Stopping
- Regularization
- Dropout

Dropout

For each iteration of training,

 $^{\circ}$ each neuron has p% to be removed

Dropout

For each iteration of training,

- \circ each neuron has p% to be removed
- training using the new network

Training:
$$\theta^{i+1} \leftarrow \theta^i - \eta \nabla_{\theta} C(\theta^i)$$

Dropout

Train a bunch of networks with different structures

Dropout – Ensemble

Ensemble

Concluding Remarks

Data Preprocessing: Input Normalization

Activation Function: ReLU, Maxout

Loss Function: Softmax

Optimization

Generalization

- Early Stopping: avoid too many iterations from overfitting
- Regularization: minimize the effect of noise
- Dropout: leverage the benefit of ensemble

Machine Translation

MT in the real world

Machine Translation

Automatically translate one natural language into another.

Mary didn't slap the green witch.

Maria no dió una bofetada a la bruja verde.

Word Alignment

Shows mapping between words in one language and the other.

Mạry dịdn't slap the green witch.

Maria no dió una bofetada a la bruja verde.

MT Pyramid

Statistical MT

Manually encoding comprehensive bilingual lexicons and transfer rules is difficult.

SMT acquires knowledge needed for translation from a *parallel corpus* or *bitext* that contains the same set of documents in two languages.

The Canadian Hansards (parliamentary proceedings in French and English) is a well-known parallel corpus.

First align the sentences in the corpus based on simple methods that use coarse cues like sentence length to give bilingual sentence pairs.

Picking a Good Translation

A good translation should be **faithful** and correctly convey the information and tone of the original source sentence.

A good translation should also be *fluent*, grammatically well structured and readable in the target language.

Final objective:

$$T_{best} = \underset{T \in Target}{\operatorname{argmax}}$$
 faithfulness (T, S) fluency (T)

Noisy Channel Model

Based on analogy to information-theoretic model used to decode messages transmitted via a communication channel that adds errors.

Assume that source sentence was generated by a "noisy" transformation of some target language sentence and then use Bayesian analysis to recover the most likely target sentence that generated it.

Translate foreign language sentence $F=f_1, f_2, ..., f_m$ to an English sentence $\hat{E}=e_1, e_2, ..., e_l$ that maximizes $P(E \mid F)$

Bayesian Analysis of Noisy Channel

$$\hat{E} = \underset{E \in English}{\operatorname{argmax}} P(E \mid F)$$

$$= \underset{E \in English}{\operatorname{argmax}} \frac{P(F \mid E)P(E)}{P(F)}$$

$$= \underset{E \in English}{\operatorname{argmax}} P(F \mid E)P(E)$$

$$= \underset{E \in English}{\operatorname{Translation Model}}$$
Language Model

A decoder determines the most probable translation \hat{E} given F

Neural Machine Translation

Let's forget about designing features and Bayes rules.

We are going to design a neural network for end-to-end MT.

Piazza Poll:

Can NMT use this Deep Bidirectional RNN?

X would be input in foreign language, and Y would be output in English

Neural Machine Translation

Sequence-to-sequence model (seq2seq) Sutskever et al., 2014 **Awesome** sauce Cho et al., 2014 Red: encoder. Blue: decoder. h_2 W W \boldsymbol{x}_1 X_2 X_3 Encoder and decoder can share weights or, as is more common, use a different set of parameters. dicke **Echt Kiste**

Neural Machine Translation

Group discussion:

Is there an issue with this plain seq2seq model?

