Evaluation Metrics

For Classification and Regression

What will be covered today

- What are evaluation metrics?
- Why are there different ones?
- Bias and Variance
- Overfitting vs underfitting
- Classification
 - Accuracy
 - False positives and negatives
 - o roc-auc
 - Precision
 - Recall
 - o Confusion matrix
 - Fscore
- Regression
 - o MAE
 - MSE
 - o RMSE
 - o RMSLE
 - o R
 - R2- coefficient of determination
- Mini Project 3

Goal for today

- To develop a shared vocabulary that empower us to talk about the performance of our models
- To talk about that math of the major methods, when to use each one, and the code for each method

Why can machine learning models perform badly?

- What do you think?
- Write ideas down on whiteboard

There are two ways models can perform badly

- They can have too much
 - Bias
 - Variance
- Let's talk about these.

What does it mean for a model to have bias?

- What do you think?
- Write down thoughts on whiteboard

Bias

- Having high bias means the model has assumptions that do not match the data
 - Ex: if you assume it is linear, but the function you're predicting is nonlinear
 - Ex: if you manually remove columns from the training set, including them may actually improve performance
 - Ex: Dataset only includes partial data
 - Only male patients for medical study

Visual Example

How do you know a model is biased?

- Any thoughts on how we can mathematically evaluate how biased a model is?
- In other words, how can we tell if a model does not properly understand the pattern in the data?

How do you know a model is biased?

- By seeing how accurate the model is at making predictions from the training set
- If the model performs badly, that means it has not understood the pattern that is in the data OR the model is not capable of understanding the pattern

Underfitting

High bias means the model is underfitting

Underfitting

- The model is too simple
- The model does not understand the underlying pattern

There are two ways models can perform badly

- They can have too much
 - Bias
 - Variance

Variance

- High variance means that the model is sensitive to using different subsets of the data to train.
 - Let's say you split the training set into 2 buckets, and train model 1 on bucket 1 and model 2 on bucket 2.If the models are otherwise the same but their predictions are very different, then there is high variance.

Variance and overfitting

- Models with high variance overfit the data
- Model is too sensitive to small changes in the training data

High Bias (Underfitting)

 $\theta_0 + \theta_1 x$

Low Bias, Low Variance (Goodfitting)

 $\theta_0 + \theta_{1}x + \theta_{2}x^2 + \theta_{3}x^3 + \theta_{4}x^4$

High Variance (Overfitting)

High Variance means Overfitting

How do you know your model is overfitting?

- The model performs well when you test its predictions of the training set. BUT
- The model performs badly when you test its predictions on the testing set.

Why would your model overfit some data?

• What do you think?

Why would your model overfit some data?

- Spent too much time training on the same bit of data
- The model is too complex
- Model is using too many features
- There is too much noise in the training set and the model learned that noise

How to reduce Variance and Overfitting?

- Get more training data
- Simplify your model
- Make multiple machine learning models and combine their results (average, voting)
 - Called ensemble learning
- Feature selection
 - Mathematical techniques to choose what features to use
- Cross Validation- try splitting your training/testing data in multiple ways to see what combination results in the best model

Summary

- Models that do not understand the pattern that is in the data are biased and underfit the data
- Models that depend too much on the training data and does not understand the general pattern has too much variance and overfits the data.

Thought Experiment

- Neural networks can have as many layers and as many nodes as you want.
- More nodes means the network can understand more complicated models.
- Why not just have all networks have tons of layers and nodes?
- How do you know how many are the right amount?

Thought Experiment

- Data is king for training models
- It can be expensive and time consuming to get more data
- What if we have a small dataset, and I just copy that data a thousand times and used it to train my models? The underlying pattern is still there, but I got a thousand times more data for free!
- What do you think of this?

How to know if our model sucks?

- Must evaluate it!
- This is done with evaluation metrics

What are evaluation metrics?

- Well, they are different ways of evaluating how good your machine learning models are!
- Documentation
- Google sklearn evaluation metrics
- We've used accuracy for classification and R squared for regression

Classification

- Your model predicts what "class" or "label" should be applied to a prediction
- Ex:
 - Did they purchase a house or not?
 - Does this image have a picture of a cat, dog, or horse?
 - What disney princess are you?

Accuracy

$$Accuracy = \frac{No. \text{ of correct predictions}}{Total \text{ number of input samples}}$$

- Grade between 0-1
- Advantages
 - Easy and intuitive
- Disadvantages
 - We do not know what it got wrong and how. Next slide talks about false positives/negatives

Accuracy disadvantage example

- Let's say you train a model to predict if someone has lung cancer given a chest scan image.
- Its trained on 1000 data points
 - 999 did not have cancer in the training set
 - o 1 did
- If this model just decides to predict that no matter what, no one has cancer, what are the results?

False Positives and False Negatives

- Draw square on whiteboard
- True/False- means it is correct/incorrect prediction
- Positive/Negative- means it is in a class vs not in a class
- Do cancer example
- Ex: True positive means the model correctly predicted the data point was part of the class
- Ex: False positive means the model incorrectly predicted the data point was part of the class
- Ex: False negative means the model correctly predicted the data point was

Why talk about false positive and negatives?

• What do you think?

Measuring Amt of False Positives and Negatives

- Precision- how many of the positive predictions were correct?
- Recall- how many of the negative predictions were correct?

Precision

$$\text{Precision} = \frac{TP}{TP + FP}$$

- Cancer example
 - 1000 data points
 - True values: 100 have cancer, 900 do not
 - Predictions: 50 have cancer
- What is Precision Score?

Recall

$$\text{Recall} = \frac{TP}{TP + FN}$$

- Cancer example
 - o 1000 data points
 - True values: 100 have cancer, 900 do not
 - Predictions: 50 have cancer
- What is recall score?

Tradeoff between precision and recall

- Classification often making a function that splits the data
- Some are obviously in one class or the other
- Some are on the boundary

Looking at position of boundary in classification space

 Draw simpler example on whiteboard and talk about what happens when you shift the decision boundary

Tradeoff between Precision and Recall

- Often, when you train your models, you have to balance between the precision and recall.
- That's why you should look at both!

Code for precision

```
from sklearn.metrics import precision_score
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]

precision_score(y_true, y_pred, average="macro")
```

- Parameters:
 - average
 - For binary classification- "binary"
 - For multiple classes- "macro"

Code for Recall

```
from sklearn.metrics import recall_score
y_true = [0, 1, 2, 0, 1, 2]
y_pred = [0, 2, 1, 0, 0, 1]

recall_score(y_true, y_pred, average="macro")
```

- Parameters:
 - average
 - For binary classification- "binary"
 - For multiple classes- "macro"

Confusion Matrix

Let's do example and talk about it

```
from sklearn.metrics import confusion_matrix
y_true = [0, 0, 1, 1, 0, 1]
y_pred = [0, 0, 0, 1, 1, 1]
confusion_matrix(y_true, y_pred)
```

Confusion Matrix Multiclass Example

```
from sklearn.metrics import confusion_matrix
y_true = [2, 0, 2, 2, 0, 1]
y_pred = [0, 0, 2, 2, 0, 2]
confusion_matrix(y_true, y_pred)
```

F1 Score

Harmonic mean of precision and recall

$$F1 = 2 * \frac{1}{\frac{1}{precision} + \frac{1}{recall}}$$
 F1 Score

F1 Score

- Takes both precision and recall into account and weights both evenly
- Let's do an example on whiteboard then confirm with code- make

```
y_true = [0, 1, 1, 0, 1, 0]
y_pred = [1, 0, 0, 0, 1, 0]
```

F1- score example with code

```
from sklearn.metrics import f1_score
y_true = [0, 1, 1, 0, 1, 0]
y_pred = [1, 0, 0, 0, 1, 0]
print(precision_score(y_true, y_pred, average='binary'))
print(recall_score(y_true, y_pred, average='binary'))
print(f1_score(y_true, y_pred, average='binary'))
```

F1 Score code for multiple classes

```
from sklearn.metrics import f1_score
y_true = [2, 0, 2, 2, 0, 1]
y_pred = [0, 0, 2, 2, 0, 2]
print(precision_score(y_true, y_pred, average='macro'))
print(recall_score(y_true, y_pred, average='macro'))
print(f1_score(y_true, y_pred, average='macro'))
```

- Parameters-
 - Average-
 - "binary" for binary classification
 - "Macro" for multiple classes

F1 Score

- Great way to evaluate classification models.
- It is also good to look at precision and recall too.

Regression Evaluation Metrics

- The goal is for the model to predict a number
- Ex:
 - cost of a home
 - Amt of calories burned
 - Amt of profit

Mean Absolute Error

Average difference between prediction and true value

$$MeanAbsoluteError = \frac{1}{N} \sum_{j=1}^{N} |y_j - \hat{y}_j|$$

MAE example- manually and with code

Do example by hand, and then run code

```
from sklearn.metrics import mean_absolute_error
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
mean_absolute_error(y_true, y_pred)
```

MAE- Pros and Cons

- Pros
 - Intuitive can give you a sense of how far your predictions were
- Cons
 - Hard to compare your model to other models in the same field
 - Talk about thesis comparison

Mean Squared Error (MSE)

Same as MAE except you square the differences

$$MeanSquaredError = \frac{1}{N} \sum_{j=1}^{N} (y_j - \hat{y}_j)^2$$

MSE- example by hand and with code

```
from sklearn.metrics import mean_squared_error
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
mean_squared_error(y_true, y_pred)
```

MSE- Pros and Cons

- Pros
 - More efficiently trains then MAE (easier to perform derivative)
 - Big errors become BIGGER- models respond by minimizing them
- Cons
 - Units are now squared
- Cons can be addressed!

Root Mean Squared Error (RMSE)

Same as MSE but you square root it!

$$RMSE = \sqrt{MSE} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y})^2}$$

RMSE example by hand and code

```
from sklearn.metrics import mean_squared_error
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
mean_squared_error(y_true, y_pred, squared=False)
```

squared = False means take the square root of the MSE

RMSE Pros and Cons

- Pros
 - All the pros of MSE
- Cons
 - I dont know of any!
 - This is why it is used so often for machine learning
 - Has same units as target var

R Squared- Coefficient of Determination

$$R^{2} = 1 - \frac{\sum (y_{i} - \hat{y})^{2}}{\sum (y_{i} - \bar{y})^{2}}$$

- Represents how much variation in the features is controlled by the target
- ŷ is predicted value
 ÿ is average of dataset
- Note- R squared is not you squaring something called R
- Is R squared always positive?
- Talk about scale- what does 0-1 mean?

R squared- code

```
from sklearn.metrics import r2_score
y_true = [3, -0.5, 2, 7]
y_pred = [2.5, 0.0, 2, 8]
r2_score(y_true, y_pred)
```