Set	Conve	nvex sets Comments	
Set Convex hull: • conv $C = \{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, 0 \le 0 \le 1, 1^{T} 0 = 1 \}$		 conv C will be the smallest convex set that contains C. conv C will be a finite set as long as C is also finite. 	
• conv $C = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, 0 \leq 0 \leq 1, 1^{T} 0 = 1 \right\}$ Affine hull:		 A will be the smallest affine set that contains C. 	
• aff $C = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C \text{ for } i = 1, \dots, k, 1^T 0 = 1 \right\}$		• Different from the convex set, θ_i is not restricted between 0 and 1 • aff C will always be an infinite set. If aff C contains the origin, it is also a subspace.	
Conic hull:		 A will be the smallest convex conic that contains C. 	
• $A = \left\{ \sum_{i=1}^{k} \theta_i \mathbf{x}_i \mid \mathbf{x}_i \in C, \theta_i > 0 \text{ for } i = 1, \dots, k \right\}$		• Different from the convex and affine sets, θ_i does not need to sum up 1.	
Ray: • $\mathcal{R} = \{\mathbf{x}_0 + \theta \mathbf{v} \mid \theta \ge 0\}$		• The ray is an infinite set that begins in \mathbf{x}_0 and extends infinitely in direction of \mathbf{v} . In other words, it has a beginning, but it has no end.	
Hyperplane: • $\mathcal{H} = \{ \mathbf{x} \mid \mathbf{a}^T \mathbf{x} = b \}$		 It is an infinite set ℝⁿ⁻¹ ⊂ ℝⁿ that divides the space into two halfspaces. a[⊥] = {v a^Tv = 0} is the set of vectors perpendicular to a. It passes through the origin. 	
$\bullet \ \mathcal{H} = \left\{ \mathbf{x} \mid \mathbf{a}^{T}(\mathbf{x} - \mathbf{x}_0) = 0 \right\}$		• $a = \{\mathbf{v} \mid \mathbf{a} \mid \mathbf{v} = 0\}$ is the set of vectors perpendicular to \mathbf{a} . It passes through the origin. • a^{\perp} is offset from the origin by \mathbf{x}_0 , which is any vector in \mathcal{H} .	
• $\mathcal{H} = \mathbf{x}_0 + a^{\perp}$ Halfspaces:		$ullet$ They are infinite sets of the parts divided by ${\cal H}.$	
$\bullet \ \mathcal{H}_{-} = \left\{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \le b \right\}$.,	
• $\mathcal{H}_{+} = \{ \mathbf{x} \mid \mathbf{a}^{T} \mathbf{x} \ge b \}$ Euclidean ball:		• $B(\mathbf{x}_c, r)$ is a finite set as long as $r < \infty$.	
• $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid \mathbf{x} - \mathbf{x}_c _2 \le r\}$ • $B(\mathbf{x}_c, r) = \{\mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{T} (\mathbf{x} - \mathbf{x}_c) \le r\}$		$ullet$ \mathbf{x}_c is the center of the ball.	
$\bullet B(\mathbf{x}_c, r) = \left\{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^{\top} (\mathbf{x} - \mathbf{x}_c) \le r \right\}$ $\bullet B(\mathbf{x}_c, r) = \left\{ \mathbf{x}_c + r \ \mathbf{u}\ \mid \ \mathbf{u}\ \le 1 \right\}$		ullet r is its radius.	
Ellipsoid: • $\mathcal{E} = \{ \mathbf{x} \mid (\mathbf{x} - \mathbf{x}_c)^T \mathbf{P}^{-1} (\mathbf{x} - \mathbf{x}_c) \le 1 \}$		 \mathcal{E} is a finite set as long as P is a finite matrix. P is symmetric and positive definite, that is, P = P^T > 0. 	
• $\mathcal{E} = \{\mathbf{x}_c + \mathbf{A}\mathbf{u} \mid \mathbf{u} \le 1\}$, where $\mathbf{A} = \mathbf{P}^{1/2}$.		$ullet$ \mathbf{x}_c is the center of the ellipsoid.	
		 The lengths of the semi-axes are given by √\(\lambda_i\). A is invertible. When it is not, we say that \(\mathcal{E}\) is a degenerated ellipsoid (degenerated ellipsoid semi-axes). 	
Norm cone:		ellipsoids are also convex). • Although it is named "Norm cone", it is a set, not a scalar.	
• $C = \{[x_1, x_2, \cdots, x_n, t]^T \in \mathbb{R}^{n+1} \mid \mathbf{x} \in \mathbb{R}^n, \mathbf{x} _p \le t\} \subseteq \mathbb{R}^{n+1}$		• The cone norm increases the dimension of \mathbf{x} in 1.	
Proper cone: $K \subset \mathbb{R}^n$ is a proper cone when it has the following properties		 For p = 2, it is called the second-order cone, quadratic cone, Lorentz cone or ice-cream cone. The proper cone K is used to define the generalized inequality (or partial ordering) in some 	
• K is a convex cone, i.e., $\alpha K \equiv K, \alpha > 0$. • K is closed.		 set S. For the generalized inequality, one must define both the proper cone K and the set S. • x ≤ y ← y − x ∈ K for x, y ∈ S (generalized inequality) 	
\bullet K is solid.		• $\mathbf{x} < \mathbf{y} \iff \mathbf{y} - \mathbf{x} \in \text{int } K \text{ for } \mathbf{x}, \mathbf{y} \in S \text{ (strict generalized inequality)}.$	
• K is pointed, i.e., $-K \cap K = \{0\}$.		 There are two cases where K and S are understood from context and the subscript K is dropped out: When S = ℝⁿ and K = ℝⁿ, (the nonnegative orthant). In this case, x ≤ y means that 	
		$x_i \leq y_i$. When $S = S^n$ and $K = S^n_+$ or $K = S^n_{++}$, where S^n denotes the set of symmetric $n \times n$	
		matrices, \mathcal{S}_{+}^{n} is the space of the positive semidefinite matrices, and \mathcal{S}_{++}^{n} is the space of the positive definite matrices. \mathcal{S}_{+}^{n} is a proper cone in \mathcal{S}^{n} (??). In this case, the generalized inequality $\mathbf{Y} \succeq \mathbf{X}$ means that $\mathbf{Y} - \mathbf{X}$ is a positive semidefinite matrix belonging to the	
		positive semidefinite cone S_+^n in the subspace of symmetric matrices S^n . It is usual to denote $X > 0$ and $X \ge 0$ to mean than X is a positive definite and semidefinite matrix, respectively, where $0 \in \mathbb{R}^{n \times n}$ is a zero matrix.	
		respectively, where $0 \in \mathbb{R}^{n \times n}$ is a zero matrix. • Another common usage is when $S = \mathbb{R}^n$ and $K = \{\mathbf{c} \in \mathbb{R}^n \mid c_1 + c_2t + \dots + c_nt^{n-1} \geq 0, \text{ for } 0 \leq t \leq 1\}$. In this case, $\mathbf{x} \leq_K \mathbf{y}$ means that	
		• The generalized inequality has the following properties:	
		► If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{u} \leq_K \mathbf{v}$, then $\mathbf{x} + \mathbf{u} \leq_k \mathbf{y} + \mathbf{v}$ (preserve under addition). ► If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq_K \mathbf{z}$, then $\mathbf{x} \leq_K \mathbf{z}$ (transitivity).	
		▶ If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq_K \mathbf{z}$, then $\mathbf{x} \leq_K \mathbf{z}$ (transitivity). ▶ If $\mathbf{x} \leq_K \mathbf{y}$, then $\alpha \mathbf{x} \leq_K \mathbf{y}$ for $\alpha \geq 0$ (preserve under nonnegative scaling). ▶ $\mathbf{x} \leq_K \mathbf{x}$ (reflexivity).	
		► If $\mathbf{x} \leq_K \mathbf{y}$ and $\mathbf{y} \leq_K \mathbf{x}$, then $\mathbf{x} = \mathbf{y}$ (antisymmetric). ► If $\mathbf{x}_i \leq_K \mathbf{y}_i$, for $i = 1, 2,$, and $\mathbf{x}_i \to \mathbf{x}$ and $\mathbf{y}_i \to \mathbf{y}$ as $i \to \infty$, then $\mathbf{x} \leq_K \mathbf{y}$.	
		• It is called partial ordering because $\mathbf{x} \not\succeq_K \mathbf{y}$ and $\mathbf{y} \not\succeq_K \mathbf{x}$ for many $\mathbf{x}, \mathbf{y} \in S$. When it happens, we say that \mathbf{x} and \mathbf{y} are not comparable (this case does not happen in ordinary inequality,	
		< and >). • $\mathbf{x} \in S$ is the <i>minimum</i> element of S if $\mathbf{x} \leq_K \mathbf{y}$ for every $\mathbf{y} \in S$. The set does not necessarily	
		have a minimum, but the minimum is unique if it does. The same is true for <i>maximum</i> . The mathematical notation for that is $S \subseteq \mathbf{x} + K$, where $\mathbf{x} + K$ denotes all points that are comparable to \mathbf{x} and greater than or equal to \mathbf{x} (for the maximum, we have $S \subseteq \mathbf{x} - K$).	
		• $\mathbf{x} \in S$ is the <i>minimal</i> element of S if $\mathbf{y} \leq_K \mathbf{x}$ only when $\mathbf{y} = \mathbf{x}$. The same is true for <i>maximal</i> . We can have many different minimal (maximal) elements. The mathematical notation for	
		that is $(\mathbf{x} - K) \cap S = \{\mathbf{x}\}$, where $\mathbf{x} - K$ denotes all points that are comparable to \mathbf{x} and less than or equal to \mathbf{x} (for the maximal, we have $(\mathbf{x} + K) \cap S = \{\mathbf{x}\}$).	
		• When $K = \mathbb{R}_+$ and $S = \mathbb{R}$ (ordinary inequality), the minimal is equal to the minimum and the maximal is equal to the maximum.	
Dual cone: • $K^* = \{ \mathbf{y} \mid \mathbf{x}^T \mathbf{y} \ge 0, \ \forall \ \mathbf{x} \in K \}$		 K* is a cone, and it is convex even when the original cone K is nonconvex. K* has the following properties: 	
		 ▶ If K has a nonempty interior, then K* is pointed. ▶ If the closure of K is pointed then K* has a nonempty interior. 	
		\succ K^{**} is the closure of the convex hull of K . Hence, if K is convex and closed, $K^{**} = K$.	
Polyhedra: $\bullet \ \mathcal{P} = \left\{ \mathbf{x} \mid \mathbf{a}_{j}^{T} \mathbf{x} \leq b_{j}, j = 1, \dots, m, \mathbf{a}_{j}^{T} \mathbf{x} = d_{j}, j = 1, \cdots, p \right\}$		 The polyhedron may or may not be an infinite set. Polyhedron is the result of the intersection of m halfspaces and p hyperplanes. 	
• $\mathcal{P} = \{ \mathbf{x} \mid \mathbf{a}_j \cdot \mathbf{x} \leq b_j, j = 1, \dots, m, \mathbf{a}_j \cdot \mathbf{x} = d_j, j = 1, \dots, p \}$ • $\mathcal{P} = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} \leq \mathbf{b}, \mathbf{C}\mathbf{x} = \mathbf{d} \}, \text{ where } \mathbf{A} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix}^T \text{ and } \mathbf{C} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \dots & \mathbf{c}_m \end{bmatrix}^T$		• Subspaces, hyperplanes, lines, rays line segments, and halfspaces are all polyhedra.	
,, [1 2 ··· -m] and 5 [01 02 ··· 0m]		• The nonnegative orthant, $\mathbb{R}^n_+ = \{\mathbf{x} \in \mathbb{R}^n \mid x_i \leq 0 \text{ for } i = 1, \dots n\} = \{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{I}\mathbf{x} \succeq 0\}$, is a special polyhedron.	
Simplex: • $S = \text{conv } \{\mathbf{v}_m\}_{m=0}^k = \{\sum_{i=0}^k \theta_i \mathbf{v}_i \mid 0 \leq \mathbf{\theta} \leq 1, 1^T \mathbf{\theta} = 1\}$		 Simplexes are a subfamily of the polyhedra set. Also called k-dimensional Simplex in Rⁿ. 	
• $S = \{\mathbf{x} \mid \mathbf{x} = \mathbf{v}_0 + \mathbf{V}\mathbf{\theta}\}, \text{ where } \mathbf{V} = \begin{bmatrix} \mathbf{v}_1 - \mathbf{v}_0 & \dots & \mathbf{v}_n - \mathbf{v}_0 \end{bmatrix} \in \mathbb{R}^{n \times k}$		• The set $\{\mathbf{v}_m\}_{m=0}^k$ is a affinely independent, which means $\{\mathbf{v}_1 - \mathbf{v}_0, \dots, \mathbf{v}_k - \mathbf{v}_0\}$ are linearly independent	
• $S = \{\mathbf{x} \mid \underbrace{\mathbf{A}_1 \mathbf{x} \leq \mathbf{A}_1 \mathbf{v}_0, 1^T \mathbf{A}_1 \mathbf{x} \leq 1 + 1^T \mathbf{A}_1 \mathbf{v}_0}_{\text{Linear inequalities in } x}, \underbrace{\mathbf{A}_2 \mathbf{x} = \mathbf{A}_2 \mathbf{v}_0}_{\text{Linear equalities}} \}$ (Polyhedra form), where $\mathbf{A} = \begin{bmatrix} \mathbf{A} & \mathbf{I} \end{bmatrix}$		• $\mathbf{V} \in \mathbb{R}^{n \times k}$ is a full-rank tall matrix, i.e., rank(\mathbf{V}) = k . All its column vectors are independent. The matrix \mathbf{A} is its left pseudoinverse.	
$\begin{bmatrix} \mathbf{A}_1 \\ \mathbf{A}_2 \end{bmatrix} \text{ and } \mathbf{AV} = \begin{bmatrix} \mathbf{I}_{k \times k} \\ 0_{n-k \times n-k} \end{bmatrix}$			
Function Union: $C = A \cup B$	Not in most of the cases.		
Intersection: $C = A \cap B$ Convex function: $f : \mathbb{R}^n \to \mathbb{R}$	Yes, if A and B are convex sets. Yes.	• Affine (and therefore also linear) functions are examples of convex functions.	
• $f(\theta \mathbf{x} + (1 - \theta)\mathbf{y}) \le \theta f(\mathbf{x}) + (1 - \theta)f(\mathbf{y})$, where $0 \le \theta \le 1$. • dom $f \subseteq \mathbb{R}^n$ shall be a convex set to f be a convex function.		• Graphically, the line segment between $(\mathbf{x}, f(\mathbf{x}))$ and $(\mathbf{y}, f(\mathbf{y}))$ lies always above the graph f .	
		• In terms of sets, a function is convex iff a line segment within dom f , which is a convex set, gives an image set that is also con-	
		vex. • $\operatorname{dom} f$ is convex iff all points for any line segment within $\operatorname{dom} f$	
		belong to it. • First-order condition: f is convex iff dom f is convex and $f(\mathbf{y}) \ge$	
		$f(\mathbf{x}) + \nabla f(\mathbf{x})^{T}(\mathbf{y} - \mathbf{x}), \forall \mathbf{x}, \mathbf{y} \in \text{dom } f, \mathbf{x} \neq \mathbf{y}, \text{ being } \nabla f(\mathbf{x}) the gradient vector. This inequation says that the first-order Taylor approximation is a underestimator for convex functions. The first-$	
		order condition requires that f is differentiable. • If $\nabla f(\mathbf{x}) = 0$, then $f(\mathbf{y}) \geq f(\mathbf{x}), \forall \mathbf{y} \in \text{dom } f \text{ and } \mathbf{x} \text{ is a global}$	
		minimum. • Second-order condition: f is convex iff dom f is convex and $\mathbf{H} \geq 0$,	
		that is, the Hessian matrix H is a positive semidefinite matrix. It means that the graphic of the curvature has a positive (upward) curvature at x . It is important to note that, if $\mathbf{H} > 0, \forall \mathbf{x} \in \text{dom } f$,	
		then f is strictly convex. But is f is strictly convex, not necessarily that $\mathbf{H} > 0, \forall \mathbf{x} \in \text{dom } f$. Therefore, the strict convexity can only be partially characterized.	
Affine function $f: \mathbb{R}^n \to \mathbb{R}^m$	Yes, if the domain $S \subseteq \mathbb{R}^n$ is a convex set, then its image $f(S) = \{f(\mathbf{x}) \mathbf{x} \in S\} \subseteq \mathbb{R}^m$ is also convex. • The affine function, $f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}$, is a broader category that encompasses the linear function, $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$. The linear function		
$f(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{b}, \text{ where } \mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m, \mathbf{x} \in \mathbb{R}^n$ is also		also convex. encompasses the linear function, $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$. The linear function has its origin fixed at 0 after the transformation, whereas the affine function does not necessarily have it (when not, this makes	
		the affine function nonlinear). Graphically, we can think of an affine function as a linear transformation plus a shift from the origin of b .	
		• Similarly, the inverse image of C , $f^{-1}(C) = \{\mathbf{x} \mid f(\mathbf{x}) \in C\}$, is also convex.	
		convex. • The linear matrix inequality (LMI), $\mathbf{A}(\mathbf{x}) = x_1 \mathbf{A}_1 + \dots + x_n \mathbf{A}_n \leq \mathbf{B}$, is a special case of affine function. In other words, $f(S) = \mathbf{B}$	
		$\{\mathbf{x} \mid \mathbf{A}(\mathbf{x}) \leq \mathbf{B}\}\$ is a convex set if S is convex. Many optimization problems can be formulated as LMI problems and solved opti-	
Perspective function $f: \mathbb{R}^{n+1} \to \mathbb{R}^n$	Yes, if the domain $S \subseteq \text{dom } f$ is a convex set, then its image $f(S) = \{f(\mathbf{x}) \mathbf{x} \in S\} \subseteq \mathbb{R}^n$ is also convex.		
		\mathbb{R}^n is also convex. • The perspective function decreases the dimension of the domain.	
• $f(\mathbf{x}, t) = \mathbf{x}/t$, where $\mathbf{x} \in \mathbb{R}^n, t \in \mathbb{R}$.		LES CHECL IS SIMILAR TO THE CAMERA ZOOM	
$J(\mathbf{x},t) = \mathbf{x}/t$, where $\mathbf{x} \in \mathbb{K}^+, t \in \mathbb{K}$.		Its effect is similar to the camera zoom. • The inverse image is also convex, that is, if $C \subseteq \mathbb{R}^n$ is convex, then $f^{-1}(C) = \{(\mathbf{x}, t) \in \mathbb{R}^{n+1} \mid \mathbf{x}/t \in C, t > 0\}$ is also convex.	