DIT UNIVERSITY DEHRADUN

B.TECH. (ALL) MID TERM EXAMINATION, EVEN SEM 2020-21 (SEM I)

Roll No.					

Subject Name: Engineering Mathematics-I

Time: 2 Hours Total Marks: 50

Note: All questions are compulsory. No student is allowed to leave the examination hall before the completion of the exam.

Q.1) Attempt all Parts:

- Evaluate $\lim_{x\to 0}\frac{1-\cos x}{x^2}$. Determine n^{th} order derivative of function $y=\sin(3x-5)$.
- Show that $\lim_{x\to 0} \frac{e^{1/x}+1}{e^{1/x}-1}$ doesn't exist at x=0.
- (d) Discuss the continuity of function $f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$, at x = 0.

 $[4 \times 2.5 = 10]$

Attempt all Parts: Q.2)

- Show that the function $f(x) = \begin{cases} px + 1, & x \ge 1 \\ x^2 + p, & x < 1 \end{cases}$ is continuous for all p.
- (b) Evaluate $\lim_{x\to 0}\frac{1-\sqrt{1-x^2}}{x^2}$. (c) If $y=(x-1/7)^{10}$ then find its 8^{th} derivative.
- Evaluate $\lim_{x \to \infty} \frac{e^x}{x^3}$.

[4 x 2.5= 10]

Attempt any Two Parts: Q.3)

- For what value of m the function $f(x) = \begin{cases} x^m cos(1/x), x \neq 0 \\ 0, & x = 0 \end{cases}$ is differentiable at x = 0. Find n^{th} order derivative of function $f(x) = \frac{1}{x^2 5x + 6}$.
- Obtain fourth degree Taylor's polynomial expansion of f(x) = logx about point x = 1.

[2 x 5= 10]

Attempt any Two Parts: Q.4)

- Evaluate $\lim_{x\to 1} x^{\frac{1}{(1-x)}}$.
- (b) If $f(x) = x^2 \sin(\frac{1}{x})$, for $x \neq 0$ and f(0) = 0. Then show that f(x) is differentiable at x = 0.
- Use Taylor's theorem to show that $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \cdots$

 $[2 \times 5 = 10]$

Q.5) **Attempt any Two Parts:**

- (a) Use Taylor's theorem to approximate the function $f(x) = tan^{-1}x$ upto degree five.
- (b) If $y = \sin 2x \cdot \cos^2 4x$ then determine y_n .
- Evaluate $\lim_{x \to 0} \frac{\sin x x \frac{1}{6}x^3}{x^5}$. (c)

 $[2 \times 5 = 10]$