Aufgabe 1

Wir betrachten die folgenden Matrizen aus $\mathrm{Mat}(3,\mathbb{R})$:

$$A := \begin{pmatrix} -4 & -3 & -3 \\ 3 & 2 & 3 \\ 3 & 3 & 3 \end{pmatrix} \quad \text{und} \quad B := \begin{pmatrix} 1 & 2 & 3 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ \hline 0 & 0 & 1 & 0 & 0 \\ \hline 0 & 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 5 & 4 \end{pmatrix}$$

- **a**)
- i)
- ii)
- b)

Aufgabe 2

Sei V ein K-Vektorraum, $\lambda, \mu \in K$ sowie $\varphi \in \text{End}(V)$ und $A \in \text{Mat}(n, K)$.

a)

Die Abbildung φ ist genau dann injektiv, wenn 0 kein Eigenwert von φ ist.

Beweis. Es gilt:

$$\varphi \text{ ist injektiv}$$

$$\Leftrightarrow \ker(\varphi) = \ker(\varphi - 0 \cdot \mathrm{id}_v) = \mathrm{Eig}(\varphi, 0) \neq \{0\}$$

$$\Leftrightarrow 0 \text{ ist kein Eigenwert von } v$$

b)

Ist φ bijektiv und λ ein Eigenwert von φ , so folgt $\lambda \neq 0$ und λ^{-1} ist Eigenwert von φ^{-1} .

Beweis. Sei λ ein Eigenwert von φ und $v \in \text{Eig}(\varphi, \lambda)$ d.h. $\varphi(v) = \lambda v$ und insbesondere $\varphi^{-1}(\lambda v) = v$. Daraus folgt

$$\varphi(\lambda^{-1}v) = \lambda^{-1}\varphi(v) = \lambda^{-1}\varphi(\varphi^{-1}(\lambda v)) = v.$$

Das ist äquivalent zu $\varphi^{-1}(v) = \lambda^{-1}v$. Also ist λ^{-1} Eigenwert von φ^{-1} .

c)

Gilt $p \in K[X]$ und $v \in \text{Eig}(A, \lambda)$, so folgt $v \in \text{Eig}(\tilde{p}(A), \tilde{p}(\lambda))$.

Beweis. Sei $p \in K[X]$ und $v \in Eig(A, \lambda) = \ker(A - \lambda \mathbb{1}_3)$, d.h.

$$(A - \lambda \mathbb{1}_3) \cdot v = 0$$
 also auch $\tilde{p}((A - \lambda \mathbb{1}_3) \cdot v) = \tilde{p}(0) = 0$.

Aufgrund von Lemma 7.25 folgt

$$((\tilde{p}(A) - \tilde{p}(\lambda)\mathbb{1}_3) \cdot \tilde{p}(v)) = \tilde{p}((A - \lambda\mathbb{1}_3) \cdot v) = 0.$$

Also ist $\tilde{p}(v) \in \text{Eig}(\tilde{p}(A), \tilde{p}(\lambda))$ und somit auch $(A - \lambda \mathbb{1}_3) \cdot v = 0$, da v und $\tilde{p}(v)$ l.a. sind. \square

d)

Seien $v_{\lambda}, v_{\mu} \in K^n$ Eigenvektoren von A zu den Eigenwerten λ, μ . Dann ist $v_{\lambda} + v_{\mu}$ wieder ein Eigenvektor, genau dann wenn $\lambda = \mu$.

Beweis. "\(= \)" Sei $\lambda = \mu$. Dann ist $\varphi(v_{\lambda}) = \lambda \cdot v_{\lambda}$ und $\varphi(v_{\mu}) = \mu \cdot v_{\mu} = \lambda \cdot v_{\mu}$. Daraus folgt

$$\varphi(v_{\lambda} + v_{\mu}) = \varphi(v_{\lambda}) + \varphi(v_{\mu}) = \lambda \cdot v_{\lambda} + \lambda \cdot v_{\mu} = \lambda(v_{\lambda} + v_{\mu})$$

Also ist $v_{\lambda} + v_{\mu}$ ein Eigenvektor von A.

"⇒" Sei $(v_{\lambda}+v_{\mu})\in \mathrm{Eig}(A,\xi)$ ein Eigenvektor von Amit Eigenwert $\xi.$ Dann ist

$$\lambda \cdot v_{\lambda} + \mu \cdot v_{\mu} = \varphi(v_{\lambda}) + \varphi(v_{\mu}) = \varphi(v_{\lambda} + v_{\mu}) = \xi \cdot (v_{\lambda} + v_{\mu}) = \xi \cdot v_{\lambda} + \xi \cdot v_{\mu}$$

Diese Linearkombination ist eindeutig bestimmt also folgt $\xi = \lambda = \mu$.