Assignment 1:

Advanced Color-to-Gray Conversion

系級: 電機四 姓名: 林棋祥 學號: b04505004

1. 輸入圖片: 1a.png, 1b.png, 1c.png

2. main.py 主要包含了以下幾個作業要求的函數:

Function Name	Description	Parameters			Returns		
rgb2gray			Input Image: RGB image array weight for red weight for green				
	conventional rgb2gray	wr			Grayscale image of type 'float'		
		wg					
		wb	weight for blue				
JBF	joint bilateral filter	1	Input Image: RGB image array with pixel values between 0~1				
		G	Guide Image: Grayscale/RGB image array with pixel values between 0~1		Filtered image of type 'float' with pixel values between 0~1		
		k	kernel size	I_filtered			
		sigma_s	sigma for spatial kernel				
		sigma_r	sigma for range kernel				
rgb2gray_X	advanced	ı	Input Image: RGB image array with pixel values between 0~255		List of top 3 voted grayscale images with		
	rah2aray				nixel values between 0~255		

Note: 此次作業用到了 skimage 及 numpy 套件, 煩請事先安裝。

3. 要確認某個點是否為 local minima,需要在 wr+wg+wb=1 的平面上 與相鄰的六個點比對數值大小,為此,我先將所有的點計算在 wr, wg 的平面上,如下圖所示:

wg	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1.0
0.0											
0.1											
0.2											
0.3											
0.4											
0.5											
0.6											
0.7											
0.8											
0.9											
1.0											

若想確認(wr, wg, wb)=(0.2, 0.3, 0.5)是否為 local minima,只需要比對(0.2, 0.3)(意即圖上的紅色方格)上下左右、右上和左下共六個點(意即圖上的黃色方格)即可。不難理解在 wr, wg 平面上的這六個點就是在 wr+wg+wb=1 平面上與(0.2, 0.3, 0.5)相鄰的六個點。此方法也可以透過 numpy 運算而達成,因此不會耗費太多運算時間。

4. 輸出結果:

(wr, wg, wb)

Image Name	Input	Conventional	Advanced 1	Advanced 2	Advanced 3
1a.png			(1, 0, 0) votes=7	(0, 0, 1) votes=6	(0, 0.2, 0.8) votes=3
1b.png			(0, 0.6, 0.4) votes=3	(0.1, 0.5, 0.4) votes=3	(0.7, 0.1, 0.2) votes=2
1c.png			(0.6, 0.4, 0) votes=4	(0.8, 0.2, 0) votes=2	(0.5, 0.4, 0.1) votes=1

為求排版圖片經過縮放。在 Output images 資料夾中有清晰的原圖。

5. 心得:

這次的作業結果看起來滿成功的。然而在時間上,我已盡量用 numpy 的矩陣運算,跑一張 joint bilateral filter 的時間仍需要 6 秒。也許當 初應該用 Pytorch 實現,就可以用 GPU 加速了。