Midterm Review

Solutions

Problem 1. Let p represent the statement "I have coffee" and q represent the statement "I am awake".

Translate the symbolic expressions into plain English.

(a) ¬p

Solution. "I do not have coffee."

(b) $p \wedge q$

Solution. "I have coffee and I am awake."

(c) $p \lor q$

Solution. "I have coffee or I am awake."

(d) $q \lor (\neg p)$

Solution. "I am awake or I do not have coffee."

Translate the following plain English statements into symbolic language using the symbols p, q, \land , \lor , and \neg .

(a) "I have coffee."

Solution. p

(b) "I have coffee and I am awake."

Solution. $p \wedge q$

(c) "Either I have coffee or I am awake."

Solution. $p \lor q$

(d) "I am not awake or I do not have coffee."

Solution. $\neg q \vee \neg p$

Problem 2. Construct the truth tables for the following compound statements.

(a) $\neg (p \lor q)$.

Solution.

p	q	$p \lor q$	$\neg(p \lor q)$
T	T	T	F
Τ	F	Т	F
F	T	Т	F
F	F	F	T

 $(b) \ \neg (p \lor q) \land r.$

Solution.

p	q	r	$p \lor q$	$\neg (p \lor q)$	$\neg (p \lor q) \land r$
Т	T	Т	T	F	F
Т	Т	F	T	F	F
Т	F	Т	T	F	F
Т	F	F	Т	F	F
F	Т	Т	Т	F	F
F	Т	F	Т	F	F
F	F	Т	F	Т Т	T
F	F	F	F	Т	F

(c) $p \lor (q \land \neg r)$.

Solution.

p	q	r	¬r	$q \wedge \neg r$	$p \lor (q \land \neg r)$
Т	Т	T	F	F	Т
T	T	F	T	T	T
T	F	T	F	F	T
Т	F	F	Т	F	T
F	Т	T	F	F	F
F	Т	F	T	T	Ţ
F	F	T	F	F	F
F	F	F	T	F	F

Problem 3. Use truth tables to show that the propositions $\neg(p \land \neg q)$ and $\neg p \lor q$ are logically equivalent.

Solution.

p	q	$\neg q$	$p \land \neg q$	$\neg(p \land \neg q)$
Т	Т	F	F	T
T	F	Т	T	F
F	Т	F	F	T
F	F	Т	F	Т

p	q	¬р	$\neg p \lor q$
T	T	F	T
T	F	F	F
F	Т	T	T
F	F	T	T

Since the truth values for both propositions are the same for all possible combinations of p and q, we conclude that $\neg(p \land \neg q)$ and $\neg p \lor q$ are logically equivalent.