

- Introduction and overview
- Basic types, definitions and functions

Table of Contents

Basic Data Types Week 1 Echéance le déc 12,

2016 at 23:30 UTC

More Data Types

Week 1 Echéance le déc 12, 2016 at 23:30 UTC

Expressions

Week 1 Echéance le déc 12, 2016 at 23:30 UTC

G.

Definitions

Week 1 Echéance le déc 12, 2016 at 23:30 UTC

Functions

Week 1 Echéance le déc 12, 2016 at 23:30 UTC

Recursion

Week 1 Echéance le déc 12, 2016 at 23:30 UTC

- ▶ Basic data structures
- More advanced data structures
- Higher order functions
- Exceptions, input/output and imperative constructs
- Modules and data abstraction

PRIME NUMBERS (30/30 points)

Let's define some usual arithmetical functions.

- 1. gcd that takes two non-negative integers n and m, and that returns the greatest common divisor of n and m, following Euclid's algorithm.
- 2. multiple_upto: int -> int -> bool that takes two non-negative integers n and r, and that tells whether n admits at least one divisor between 2 and r, inclusive. In other words that there exists a number d >= 2 and <= r, such that the remainder of the division of n by d is zero.
- 3. is prime a takes a non-negative integer n and checks whether it is a prime number.

Important note: You can assume that both <code>[integer_square_root]</code> and <code>[multiple_of]</code> exist, and that they are correct answers to the *Simple functions over integers* exercise from the previous sequence.

Once <code>is_prime</code> works, you can try writing a new version of it which is self-contained (that contains all definitions of auxiliary functions as locally defined functions).

YOUR OCAML ENVIRONMENT

Exercise complete (click for details)	30 pts
v Exercise 1: gcd	Completed, 10 pts
Found gcd with compatible type.	
Computing gcd 10 12	
Correct value 2	1 pt
Computing gcd 3 19	
Correct value 1	1 pt
Computing gcd 16 24	
Correct value 8	1 pt
Computing gcd 33 77	
Correct value 11	1 pt
Computing gcd 1 7	
Correct value 1	1 pt
Computing gcd 10 1	
Correct value 1	1 pt
Computing gcd 9 9	
Correct value 9	1 pt
Computing gcd 7 9	

Computing and 3.6	
Computing gcd 3 6 Correct value 3	1 pt
v Exercise 2: multiple upto	Completed, 10 pts
Found multiple_upto with compatible type.	
Computing multiple upto 10 3	
Correct value true	1 pt
Computing multiple_upto 30 2	
Correct value true	1 pt
Computing multiple_upto 25 6	
Correct value true	1 pt
Computing multiple_upto 11 10	
Correct value false	1 pt
Computing multiple_upto 6 6	
Correct value true	1 pt
Computing multiple_upto 8 5	
Correct value true	1 pt
Computing multiple_upto 3 5	
Correct value true	1 pt
Computing multiple_upto 3 6	
Correct value true	1 pt
Computing multiple_upto 8 1	
Correct value false	1 pt
Computing multiple_upto 9 2	
Correct value false	1 pt
v Exercise 3: is_prime	Completed, 10 pts
Found is_prime with compatible type.	
Computing is_prime 1	
Correct value false	1 pt
Computing is_prime 2	
Correct value true	1 pt
Computing is_prime 19	
Correct value true	1 pt
Computing is_prime 41	4 .
Correct value true	1 pt
Computing is_prime 67	1+
Correct value true	1 pt
Computing is_prime 3	1 nt
Correct value true Computing is_prime 3	1 pt
Correct value true	1 pt
Computing is_prime 2	1 pt
Correct value true	1 pt
Computing is_prime 3	ιρι
Correct value true	1 pt
Computing is_prime 3	ίρε
Correct value true	1 pt
	. P.

A propos

Aide

Contact

Conditions générales d'utilisation

Charte utilisateurs

Politique de confidentialité

