Elementary Number Theory: The Theory of Congruences

Arjun Vardhan

Created: 8th April 2022 Last updated: 4th July 2022

Basic Properties of Congruence 1

- Let $n \in \mathbb{N}$. $a, b \in \mathbb{Z}$ are said to be congruent modulo n, denoted $a \equiv b \mod n$, if $n \mid (a b)$.
- Let $a, b \in \mathbb{Z}$. $a \equiv b \mod n$ if and only if a and b leave the same non-negative remainder on division by n. Proof: Let a = b + kn for some $k \in \mathbb{Z}$. By the division algorithm, b = qn + r, where $0 \le r < n$. Thus a = (k+q)n + r. Conversely, suppose $a = q_1n + r$ and $b = q_2n + r$, where $0 \le r < n$. Then $a - b = (q_1 - q_2)n$ and thus $n \mid (a - b) \implies a \equiv b \mod n$.
- Let n > 1 be fixed and $a, b, c, d \in \mathbb{Z}$. Then:
 - 1. $a \equiv a \mod n$. Proof: $n \mid 0 = a a$.
 - 2. If $a \equiv b \mod n$, then $b \equiv a \mod n$. Proof: $n \mid a-b \implies a-b = kn \implies b-a = -kn \implies$
 - 3. If $a \equiv b \mod n$, and $b \equiv c \mod n$, then $a \equiv c \mod n$. Proof: $a = b + k_1 n$ and $b = a \mod n$. $c + k_2 n \implies a = c + (k_1 + k_2) n \implies n \mid a - c \implies a \equiv c \mod n$.
 - 4. If $a \equiv b \mod n$ and $c \equiv d \mod n$, then $a + c \equiv b + d \mod n$ and $ac \equiv bd \mod n$. Proof: $a=b+k_1n$ and $c=d+k_2n \implies a+c=b+d+(k_1+k_2)n \implies n\mid (a+c)-(b+d) \implies$ $a + c \equiv b + d \mod n$. Also, $ac = (b + k_1 n)(d + k_2 n) = bd + bk_2 n + dk_1 n + k_1 k_2 n^2$. Therefore, $n \mid ac - bd \implies ac \equiv bd \mod n$.
 - 5. If $a \equiv b \mod n$, then $a + c \equiv b + c \mod n$ and $ac \equiv bc \mod n$. Proof: $a = b + kn \implies$ $a+c=b+c+kn \implies n\mid (a+c)-(b+c) \implies a+c\equiv b+c \mod n$. Additionally, $ac = bc + kcn \implies n \mid ac - bc \implies ac \equiv bc \mod n$.
 - 6. If $a \equiv b \mod n$, then $a^k \equiv b^k \mod n$ for any positive integer k. Proof: $a^k b^k = a^k$ $(a-b)(a^{n-1}+a^{n-2}b+...)$. Since $n\mid a-b, n\mid a^k-b^k\implies a^k\equiv b^k\mod n$.
- If $ca \equiv cb \mod n$, then $a \equiv b \mod \frac{n}{d}$, where $d = \gcd(c,n)$. Proof: ca cb = kn. Since gcd(c,n) = d, there exist relatively prime integers r, s such that c = dr and n = ds. Then, r(a-b)=ks. As $s\mid r(a-b)$ and $\gcd(r,s)=1$, by euclid's lemma $s\mid a-b$. So $a\equiv b\mod \frac{n}{d}$, as $s=\frac{n}{d}$.
- Corollary: If $ca \equiv cb \mod n$ and gcd(c, n) = 1, then $a \equiv b \mod n$.
- Corollary: If $ca \equiv cb \mod p$, where p is prime and $p \not\mid c$, then $a \equiv b \mod n$. Proof: p being prime and $p \nmid c$ implies gcd(p, c) = 1.

$\mathbf{2}$ Binary and Decimal Representations of Integers

Linear Congruences and the Chinese Remainder Theorem 3

• An equation of the form $ax \equiv b \mod n$ is called a linear congruence. A solution to this would an integer x_0 such that $ax_0 \equiv b \mod n$.

- Two solutions of $ax \equiv b \mod n$, say x_1 and x_2 , are treated as equal if $x_1 \equiv x_2 \mod n$. Thus we want to find all possible incongruent integers satisfying a linear congruence.
- The linear congruence $ax \equiv b \mod n$ is equivalent to the diophantine equation ax ny = b (they have the same solutions).
- The linear congruence $ax \equiv b \mod n$ has a solution if and only if $d \mid b$, where $d = \gcd(a, n)$. In such a case, it has d mutually incongruent solutions. *Proof:* This congruence is equivalent to the diophantine equation ax ny = b, which has a solution if and only if $d \mid b$.
- Corollary: If gcd(a, n) = 1, then the linear congruence $ax \equiv b \mod n$ has a unique solution.
- Consider a system of linear congruences: $a_1x \equiv b_1 \mod m_1$, $a_2x \equiv b_2 \mod m_2$,..., $a_rx \equiv b_r \mod m_r$, where the moduli m_i are pairwise relatively prime. The system will obviously have no solution unless each congruence is individually solvable, so $d_k \mid b_k$ for each k, where $d_k = \gcd(a_k, m_k)$. The factor d_k can be cancelled from the kth congruence to produce a new, simpler system of congruences with the same solutions: $a'_1x \equiv b'_1 \mod n_1$, $a'_2x \equiv b'_2 \mod n_2$,..., $a'_rx \equiv b'_r \mod n_r$, where $n_k = \frac{m_k}{d_k}$ and $\gcd(n_i, n_j) = 1$ for $i \neq j$. Also, $\gcd(a'_k, n_k) = 1$ for all k.
- Chinese Remainder Theorem: Let $n_1, n_2, ..., n_r$ be positive integers such that $gcd(n_i, n_j) = 1$ for $i \neq j$. Then the system of linear congruences $x \equiv a_1 \mod n_1$, $x \equiv a_2 \mod n_2,...$, $x \equiv a_r \mod n_r$ has a unique solution modulo the integer $n_1 n_2 ... n_r$. Proof:
- The system of linear congruences $ax + by \equiv r \mod n$, $cx + dy \equiv s \mod n$ has a unique solution modulo n whenever gcd(ad bc, n) = 1. *Proof:*