

STATISTICS

Preprocessing: Validity and Reliability Test

Wiwik Anggraeni

Learning Objective

 Students are able to test the validity and reliability of data

Outline

- □ Uji Reliabilitas
- □ Uji Validitas

Pendahuluan

- Jenis kuesioner yang dapat dilakukan uji reliabilitas dan validitas ialah kuesioner yang mempunyai jawaban skala likert
- Untuk soal yang mempunyai jawaban yang tidak berskala likert, dapat dilakukan analisa lain

Reliabilitas (1)

- Reliabilitas adalah alat untuk mengukur konsistensi dari responden
- Suatu kuesioner dikatakan
 reliable bila jawaban responden
 konsisten dari waktu ke waktu

Reliabilitas (2)

- Pengukuran reliabilitas dilakukan dengan dua cara yaitu
 - Repeated Measure: responden diberikan pertanyaan yang sama atau bernegasi, kemudian dilihat apakah ia konsisten dengan jawabannya atau tidak
 - One Shot: responden hanya diberikan sekali kemudian jawabannya dibandingkan atau dicari korelasi antar jawaban pertanyaan.

Uji Reliabilitas

- SPSS menyediakan cara untuk mengukur reliabilitas, yaitu dengan uji statistik Cronbach Alpha
- Suatu kuesioner dinyatakan reliabel bila nilai Cronbach Alpha bernilai > 0.6
 - semakin tinggi nilai
 cronbach's alpha maka
 semakin tinggi pula
 reliabilitas suatu jawaban
 responden

Reliable

Reliabilitas

Contoh kuesioner yang dapat dilakukan uji reliabilitas

3a. Persepsi Manfaat

- Menggunakan SMS layanan masyarakat akan memberi keuntungan buat saya:	Sangat Setuju	Setuju O	Agak Setuju	Netral	Agak Tidak Setuju	Tidak Setuju	Sangat Tidak Setuju
- Menggunakan SMS layanan masyarakat TIDAK ADA manfaatnya sama sekali buat saya:	Sangat Setuju 🔘	Setuju ()	Agak Setuju	Netral	Agak Tidak Setuju	Tidak Setuju	Sangat Tidak Setuju
- Informasi/layanan yang disediakan oleh SMS layanan masyarakat sesuai dengan informasi/layanan yang saya butuhkan:	Sangat Setuju	Setuju O	Agak Setuju	Netral	Agak Tidak Setuju	Tidak Setuju	Sangat Tidak Setuju
- Informasi yang dikirimkan SMS layanan masyarakat akurat dan dapat dipercaya:	Sangat Setuju	Setuju ()	Agak Setuju	Netral	Agak Tidak Setuju	Tidak Setuju	Sangat Tidak Setuju
- Informasi yang dikirimkan SMS layanan masyarakat adalah informasi terkini (up-to-date):	Sangat Setuju	Setuju	Agak Setuju	Netral	Agak Tidak Setuju	Tidak Setuju	Sangat Tidak Setuju

Untuk semua kelompok

- Pada pertanyaan yang saling bernegasi, masukkan hanya pertanyaan yang bersentimen positif saja.
- Pertanyaan bersentimen negatif tidak diikutsertakan dalam SPSS.
- Lakukan Uji Reliabilitas ulang.

Reliabilitas

- □ Analyze > Scale > Reliability Analysis
- Field Item (masukkan item kuesioner)
- Statistics, pilih item, scale, scale if item deleted dan inter-correlation

NB : lakukan uji reliabilitas untuk item deleted

Uji Reliabilitas

Output from Reliability Analysis

Scale: ALL VARIABLES

Case Processing Summary

	T	N	%
Cases	Valid	5	100.0
	Excludeda	0	.0
	Total	5	100.0

a. Listwise deletion based on all variables in the procedure.

Reliability Statistics

Cronbach's Alpha	N of Items
.273	3

Item Statistics

3	Mean	Std. Deviation	N
Q1	2.60	1.517	5
Q2	2.40	1.517	5
Q3	2.80	1.304	5

Item-Total Statistics

	Scale Mean if Item Deleted	Scale Variance if Item Deleted	Corrected Item-Total Correlation	Cronbach's Alpha if Item Deleted
Q1	5.20	4.700	.106	.298
Q2	5.40	4.800	.090	.333
Q3	5.00	4.500	.271	044ª

a. The value is negative due to a negative average covariance among items. This violates reliability model assumptions. You may want to check item codings.

Interpret Output

- Case Processing Summary N is # of Test Takers
- Reliability Statistics Cronbach's Alpha is our stat,
 - .50-.60 marginal,
 - ■.61-.70 good,
 - .71-85 very good
- □ Item Statistics average response for all test takers
- Item total Statistics use to determine which items stay, get dropped

Item Total Statistics

- □ If reliability goes up after deleting item, bad item
- If reliability goes down after deleting item, good item
- □ Jawaban 5 is Bad Item

Item-Total Statistics

	Scale Mean if Item De-	Scale Vari- ance if Item	Corrected Item-Total	Squared Multiple Cor-	Cronbach's Alpha if Item
	leted	Deleted	Correlation	relation	Deleted
Jawaban1	14.60	3.600	.299	.715	.551
Jawaban2	14.40	2.933	.734	.778	.293
Jawaban3	14.40	3.156	.619	.613	.366
Jawaban4	14.50	3.611	.182	.141	.648
Jawaban5	13.70	5.122	047	.522	.654

Validitas (1)

- Validitas ialah alat untuk mengukur sah atau valid tidaknya suatu instrument (pertanyaan/pernyataan) dalam kuesioner
- Instrument dikatakan valid jika instrument tersebut dapat digunakan untuk mengukur apa yang hendak diukur
- Suatu kuesioner dikatakan valid bila, jawaban responden merepresentasikan apa yang dituju oleh soal kuesioner (tujuan kuisioner)

Validitas (2)

Contoh:

- ingin mengukur kemampuan siswa dalam matematika.
 Kemudian diberikan soal dengan kalimat yang panjang dan yang berbelit-belit sehingga sukar ditangkap maknanya. Akhimya siswa tidak dapat menjawab, akibat tidak memahami pertanyaannya.
- peneliti ingin mengukur kemampuan berbicara, tapi ditanya mengenai tata bahasa atau kesusastraan seperti puisi atau sajak.

Pengukur tersebut tidak tepat (valid)

Uji Validitas (2)

- Mengukur validitas ada 3 cara
 - Melakukan korelasi antar skor butir pertanyaan dengan total skor variable
 - Melakukan korelasi bivariate antar skor indikator dengan total skor variable
 - Uji dengan Confirmatory Factor Analysis (CFA)

Uji Confirmatory Factor Analysis (1)

- Analisis Factor Confirmatory digunakan untuk
 - Menguji apakah suatu konstruk mempunyai unidimensionalitas
 - Menguji apakah indikator-indikator dapat digunakan untuk mengonfirmasikan variable
- Range Nilai KMO
 - 0.8 0.9: sangat bagus
 - □ 0.7 0.8: bagus
 - □ 0.6 0.7: cukup
 - **0.5** 0.6: kurang
 - dibawah 0.5: tidak dapat diterima

Uji Confirmatory Factor Analysis (2)

- Dan nilai eigenvalue harus > 1
 dan memiliki factor loading >
 0.4 untuk setiap pertanyaan
- Semakin tinggi factor loading semakin baik validity dari suatu pertanyaan

Uji Confirmatory Factor Analysis (3)

- □ Analyze > Dimension Reduction > Factor
- Masukkan setiap variable
- Descriptives, pilih KMO dan Barlett's test
- Rotation, pilih Varimax
- Extraction, eigen value greater than 1

Output (1)

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure	.508	
Bartlett's Test of Sphericity	15.142	
	df	10
	Sig.	.127

KMO pada tabel diatas bernilai 0.508, nilai ini menunjukkan bahwa hasil kuesioner dapat dinyatakan valid, sekalipun masih kurang bagus.

Output (2)

Total Variance Explained

				Extraction Sums of Squared Load-						
		Initial Eigenva	lues		ings		Rotation	Rotation Sums of Squared Loadings		
Compo-		% of Vari-			% of Vari-	Cumulative		% of Vari-	Cumulative	
nent	Total	ance	Cumulative %	Total	ance	%	Total	ance	%	
1	2.357	47.148	47.148	2.357	47.148	47.148	2.341	46.823	46.823	
2	1.494	29.882	77.030	1.494	29.882	77.030	1.510	30.207	77.030	
3	.704	14.071	91.101							
4	.324	6.471	97.572							
5	.121	2.428	100.000							

Extraction Method: Principal Component Analysis.

Terdapat dua nilai eigenvalue dari 5 komponen yang bernilai > 1, sehingga dari tabel diatas dapat dilihat bahwa jawaban kuesioner tercluster menjadi dua kelompok.

Output (3)

Rotated Component Matrix^a

	Component			
	1 2			
Jawaban1	.797	449		
Jawaban2	.935	.100		
Jawaban3	.867	.160		
Jawaban4	.222	.717		
Jawaban5	174	.871		

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

- Rotated Component Matrixmenggambarkan nilai factor loading
- Jika setiap kuisioner menunjukkan factor loading > 0,40 dan mengelompok di satu kelompok maka menunjukkan bahwa pertanyaan-pertanyaan dalam suatu variabel adalah valid.
- Jika terdapat variabel yang tidak mengelompok pada salah satu kelompok, dan memiliki factor loading
 0,40, maka variabel tersebut harus dikeluarkan atau dibuang

Mengapa tidak valid?

- Petunjuk yang tidak jelas > pilih satu atau lebih?
- Struktur kalimat pertanyaan yang sulit dibaca
- Statement yang ambigu
- Waktu pengisian yang tidak cukup
- Tingkat kesulitan yang tidak cocok dengan responden
- Statement tidak cocok dengan apa yang ingin diukur
- Test dan jawaban terlalu pendek
- Penyusunan pertanyaan yang tidak tepat
- Scoring

2

3

4

5

6

8

9

10

11

12

0.842

0.732

0.861

0.609

0.704

0.810

0.892

0.77

0.827

0.911

0.735

0.820

Institut Teknologi Sepuluh Nopember	l Uji validit	as dan Reliabilitas
Kelompok Ke-	KMO (>0.5)	Cronbach's Alpha (>0.6)

Teknologi Sepuluh Nopember	Uli valialit	as dan Keliabilitas
Kelompok Ke-	KMO (>0.5)	Cronbach's Alpha (>0.6)

0.523

0.604

0.546

0.591

0.56

0.708

0.522

0.56

Teknologi Sepuluh Nopember	Hasii	Uli valia	litas aan keliabilitas	
Kelompok K	(e-	KMO (>0.5)	Cronbach's Alpha (>0.6)	Result

Reliabilitas & Validitas

