# HW5

jn2294@nyu.edu

April 2022

# Problem Background

This assignment asks us to figure out several ways to interpolate a given function with a fixed number of given points(not necessarily in the domain). Since for this function, the domain is  $x \in (0, \infty)$ , we hardcode the (0, f(x)) to be (0, 0) and use

$$f(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma} \frac{e^{-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2}}{x}$$
 where  $\mu$ ,  $\sigma$  are parameters and  $x$  is independent variable. At  $\mu = 0$ ,  $\sigma = 1$ , the function becomes

$$f(x; 0,1) = \frac{1}{\sqrt{2\pi}} \frac{e^{-\frac{1}{2}(\ln x)^2}}{x}$$

and it looks like



Figure 1: Description for problem 3.1

this as the basis for our interpolation.

## Problem 5.1

### Description

Select 6 points between  $x \in [0, 5]$  evenly and interpolate these points in a polynomial of the appropriate order. Estimate the upper bound of the interpolation errors.

Figure 2: Description for problem 5.1

## Algorithm

Assume that P(x) is the (degree n-1 or less) interpolating polynomial fitting the npoints  $(x_1, y_1), \ldots, (x_n, y_n)$ . The interpolation error is

$$f(x) - P(x) = \frac{(x - x_1)(x - x_2)\cdots(x - x_n)}{n!} f^{(n)}(c), \tag{3.6}$$

where c lies between the smallest and largest of the numbers  $x, x_1, \dots, x_n$ .

Figure 3: Algorithm for problem 5.1

Since we want to estimate the upper boundary of the error, we have to choose the value of c so that the absolute value of  $f^{(n)}(c)$  is the largest among all the x between interpolation points. Here we compute the sixth derivative of the f(x) and uniformly select 1000 points between [0,5] and compute the value of error function and figure out the upper boundary.

### Code

The source code are previded here at the github repo(hw5.py:189).

#### Results

• The polynomial interpolation function and its error plot





Figure 4: Result plots for problem 5.1

• The upper boundaries (in absolute value) at the points x=1.4264264264264264 or x=3.5735735735735736 is 4.1242796675136314e-08

• The coefficients for interpolation function

| coeff | c0 | c1    | c2     | c3    | c4     | c5    |
|-------|----|-------|--------|-------|--------|-------|
| value | 0  | 1.409 | -1.546 | 0.647 | -0.120 | 0.008 |

### Performance

No performance analysis is performed since it doesn't involve heavy computation and only involves simple numpy vector multiplication and small matrix multiplication in normal equation.

## Problem 5.2

## Description

**Problem 5.2** Same as Problem 5.1, select 6 points between  $x \in [0, 5]$  as required by Chebyshev interpolation and interpolate these points by Chebyshev polynomials. Estimate the upper bound of the interpolation errors.

Figure 5: Description for problem 5.2

# Algorithm

### **Chebyshev interpolation nodes**

On the interval [a,b],

$$x_i = \frac{b+a}{2} + \frac{b-a}{2} \cos \frac{(2i-1)\pi}{2n}$$

for i = 1, ..., n. The inequality

$$|(x-x_1)\cdots(x-x_n)| \le \frac{\left(\frac{b-a}{2}\right)^n}{2^{n-1}}$$

holds on [a, b].

Figure 6: Algorithm for problem 5.2

The chebyshev algorithm is used to select the interpolation point so as to ensure a better performance on the error plot(smaller and stabler error plot curve).

#### Code

- Main Program:(hw5.py:270).
- Chebshev Interpolation:(hw5.py:82).

### Results

• The polynomial interpolation function and its error plot





Figure 7: Result plots for problem 5.2

- The upper boundaries (in absolute value) at the points x=1.2502911606820617 or x=3.749708839 is 1.428805278031125e-07
- The coefficients for interpolation function

| coeff c0 c1 c2 c3 |       |       |       | - 2    | - 4   | - 17   |       |
|-------------------|-------|-------|-------|--------|-------|--------|-------|
|                   | соеп  | co    | C1    | CZ     | c3    | C4     | co    |
|                   | value | 0.109 | 1.520 | -1.806 | 0.779 | -0.146 | 0.010 |

# Performance

No performance analysis is performed since it doesn't involve heavy computation and only involves simple numpy vector multiplication and small matrix multiplication in normal equation.

## Problem 5.3

## Description

**Problem 5.3** Using data from Problem 5.1, select 6 points between  $x \in [0, 5]$  evenly and fit these points in the following form

$$y = c_0 + c_1 x + c_2 x^2 + c_3 x^3$$

Also, compute the RMSE for this fit.

Figure 8: Description for problem 5.3

# Algorithm

Interpolation polynomial is in the form

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$$

p interpolates the data points means that

$$p(x_i) = y_i$$
 for all  $i \in \{0, 1, ..., n\}$ .

If we substitute the above data into the polynomial, we get a system of linear equation for the coefficients  $a_{\nu}$ :

$$\begin{bmatrix} x_0^n & x_0^{n-1} & x_0^{n-2} & \dots & x_0 & 1 \\ x_1^n & x_1^{n-1} & x_1^{n-2} & \dots & x_1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ x_n^n & x_n^{n-1} & x_n^{n-2} & \dots & x_n & 1 \end{bmatrix} \begin{bmatrix} a_n \\ a_{n-1} \\ \vdots \\ a_0 \end{bmatrix} = \begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{bmatrix}.$$

Solving this system for  $a_k$ , we construct the interpolant p(x).

Figure 9: Algorithm for problem 5.3

Since we have  $\{1, x, x^2, x^3\}$ , which is isomorphoic to a 4-dimensional vector space, which means the independent set  $\{1, x, x^2, x^3\}$  can only span 4-dimensional vector space. Thus, any vector y that is 6-dimensional cannot be spanned by the  $\{1, x, x^2, x^3\}$ , which results in the RMSE. In the meantime, if we construct the coefficient matrix, we can easily find that the column is linearly independent, which means  $RANK(A) = RANK(A^TA) = n$ , given that we have  $A_{mxn}$  matrix and that we  $A^TA$  is invertible and thus ensures the LS solution  $c = (A^TA)^{-1}(A^Ty)$ 

### Code

- Main Program:(hw5.py:282).
- Normal Equation Solution :(hw5.py:168).

### Results

- Curve Fitting:

• **RSME:** 0.06887457675451285

#### Performance

No performance analysis is performed since it doesn't involve heavy computation and only involves simple numpy vector multiplication and small matrix multiplication in normal equation.

5



Figure 10: Result plot for problem 5.3

## Problem 5.4

### Description

**Problem 5.4** Using data from Problem 5.1, select 6 points between  $x \in [0, 5]$  evenly and fit these points in the following form

$$y = c_1 x e^{c_2 x}$$

Also, compute the RMSE for this fit.

Figure 11: Description for problem 5.4

## Algorithm

$$\ln y = \ln c_1 + \ln t + c_2 t$$
  
$$k + c_2 t = \ln y - \ln t,$$

Now, we can construct

$$A = \begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \quad \text{and} \quad b = \begin{bmatrix} \ln y_1 - \ln t_1 \\ \vdots \\ \ln y_m - \ln t_m \end{bmatrix}$$

Figure 12: Algorithm for problem 5.4

### Code

Main Program:(hw5.py:307).

### Results

• Curve Fitting:

| Coefficients:   | coeff | $c_1$              | $c_2$               |  |
|-----------------|-------|--------------------|---------------------|--|
| • Coefficients. | value | 0.9474407258985583 | -1.1296988632916292 |  |



Figure 13: Result plot for problem 5.3

• **RSME:** 0.2169227011386179

# Performance

No performance analysis is performed since it doesn't involve heavy computation and only involves simple numpy vector multiplication and small matrix multiplication in normal equation.