Problem Set: Linear Regression 2

Problem 1. Consider the model that satisfies the classical linear model assumptions (linear in parameters, random sampling, no perfect collinearity, zero conditional mean, and homoskedasticity):

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i,$$

and the null H_0 : $\beta_1 - 3\beta_2 = 1$.

1. Let $\hat{\beta}_1, \hat{\beta}_2$ be the OLS estimates. Derive

$$Var(\hat{\beta}_1 - 3\hat{\beta}_2)$$

in terms of $Var(\hat{\beta}_1)$, $Var(\hat{\beta}_2)$, and $Cov(\hat{\beta}_1, \hat{\beta}_2)$. Hence give $SE(\hat{\beta}_1 - 3\hat{\beta}_2)$.

- 2. Write the t-statistic for testing H_0 and state the reference distribution (degrees of freedom).
- 3. Define $u_1 \equiv \beta_1 3\beta_2$ and $\hat{u}_1 \equiv \hat{\beta}_1 3\hat{\beta}_2$. Write a regression equation involving β_0 , u_1 , β_2 , and β_3 that allows you to directly obtain \hat{u}_1 and its standard error.

Problem 2. Regression analysis can be used to test whether the market efficiently uses information in valuing stocks. Let return be a firm's 4-year stock return. The efficient markets hypothesis implies return should not be systematically related to variables known in the beginning of the 4-year period: debt-to-capital ratio (dkr), earnings per share (eps), net income (netinc), and CEO pay (salary). To test this hypothesis, we estimated the following regression equation (standard errors in parentheses):

$$\widehat{return} = -14.37 + 0.321 \, dkr + 0.043 \, eps - 0.0051 \, netinc + 0.0035 \, salary$$

$$n = 142, \, R^2 = 0.0395$$

- 1. Test whether dkr, eps, netinc, salary are jointly significant at the 5% level (report the F-test). Are any coefficients individually significant at 5%?
- 2. Refit with logs for netinc and salary:

$$\widehat{return} = -36.30 + 0.327 \, dkr + 0.069 \, eps - 4.74 \, ln(netinc) + 7.24 \, ln(salary)$$

$$n = 142, \, R^2 = 0.0330.$$

Do your conclusions about joint/individual significance change?

3. Some firms have dkr = 0 and negative eps. Should $\log(dkr)$ or $\log(eps)$ be used to improve fit? Briefly justify.

4. Overall, is the evidence for predictability of returns by 1990 information strong or weak?

Problem 3. We have the estimated regression:

$$\widehat{rdintens} = \underset{(1.429)}{2.613} + \underset{(0.00014)}{0.0003} \ sales - \underset{(0.0000000037)}{0.0000000037} \ sales^2, \qquad n = 32, \ R^2 = 0.1484,$$

where rdintens is R&D spending (as percent of sales) and sales is firm sales (millions \$)

- 1. At what sales level does the marginal effect of sales on rdintens become negative?
- 2. Would you retain the quadratic term in the model? Justify your answer.
- 3. Define salesbil \equiv sales/1000 (billions of dollars). Rewrite the estimated equation using salesbil and salesbil² as regressors, reporting the transformed coefficients, standard errors, and the same R^2 . Hint: salesbil² = sales²/1000².
- 4. For reporting, which specification do you prefer—the original in dollars or the rescaled in billions—and why?

Problem 4. Use the data set WAGE1 (description).

1. Estimate by OLS:

$$\log(wage) = \beta_0 + \beta_1 \ educ + \beta_2 \ exper + \beta_3 \ exper^2 + u,$$

and report the results in the usual format (point estimates, standard errors, n, R^2).

- 2. Test whether exper² is statistically significant at the 1% level (i.e., test $H_0: \beta_3 = 0$).
- 3. Using the semi-elasticity approximation

$$\%\Delta wage \approx 100(\hat{\beta}_2 + 2\hat{\beta}_3 exper) \Delta exper,$$

compute the approximate return to the fifth year of experience and to the twentieth year (exper is measured in years).

4. At what value exper* does an additional year of experience begin to reduce predicted log(wage)? How many workers in the sample have exper > exper*?

Problem 5. An OLS regression explaining CEO salary yields

$$\widehat{\log(salary)} = \underbrace{4.59}_{(0.302)} + \underbrace{0.257}_{(0.032)} \log(sales) + \underbrace{0.011}_{(0.042)} roe + \underbrace{0.158}_{(0.089)} finance + \underbrace{0.181}_{(0.085)} conspred + \underbrace{0.283}_{(0.099)} utility,$$

with n = 209 and $R^2 = 0.357$, where finance, consprod, and utility are binary variables indicating the financial, consumer products, and utilities industries. The omitted industry is transportation. The data are from CEOSAL1.

- 1. Holding sales and roe fixed, compute the approximate percentage difference in expected salary between the utility and transportation industries. Is this difference statistically significant at the 1% level?
- 2. Using the exact log-level transformation, obtain the exact percentage difference for utility versus transportation, and compare it with part (i).
- 3. What is the approximate percentage difference between the consumer products and finance industries? Write an equation that would allow you to test whether the difference is statistically significant.

Problem 6. Let $d \in \{0,1\}$ indicate treatment and let the potential outcomes be y(0) and y(1). Assume complete random assignment: $d \perp \{y(0), y(1)\}$. Define

$$m_0 \equiv \mathbb{E}[y(0)], \quad m_1 \equiv \mathbb{E}[y(1)], \quad \sigma_0^2 \equiv \text{Var}[y(0)], \quad \sigma_1^2 \equiv \text{Var}[y(1)].$$

1. Define the observed outcome $y \equiv (1-d) y(0) + d y(1)$. Let $\tau \equiv m_1 - m_0$ be the average treatment effect. Show that

$$y = m_0 + \tau d + (1 - d) v(0) + d v(1),$$

where $v(0) \equiv y(0) - m_0$ and $v(1) \equiv y(1) - m_1$.

2. Let $u \equiv (1-d)v(0) + dv(1)$ be the error term in

$$y = m_0 + \tau d + u.$$

Show that $\mathbb{E}[u \mid d] = 0$. What does this imply about the unbiasedness and consistency of the OLS estimator of τ from the simple regression y_i on d_i in a random sample of size n? What happens as $n \to \infty$?

3. Show that

$$Var(u \mid d) = \mathbb{E}[u^2 \mid d] = (1 - d) \sigma_0^2 + d \sigma_1^2.$$

Is the error variance generally heteroskedastic?

- 4. If you suspect $\sigma_1^2 \neq \sigma_0^2$ and $\hat{\tau}$ is the OLS estimator, how would you obtain a valid standard error for $\hat{\tau}$?
- 5. After obtaining the OLS residuals \hat{u}_i for i = 1, ..., n, propose a regression that allows consistent estimation of σ_0^2 and σ_1^2 . [Hint: First square the residuals.]