

Lecture 2: Gaussian Elimination

Section 1.1-1.2 in Linear Algebra and Its Applications

Daniel Poll

January 18, 2024

Question: How can we better express linear systems?

Question: How can we better express linear systems?

Definition: Matrix

Let m and n be natural numbers. An $m \times n$ matrix is a rectangular array (or table) consisting of m rows and n columns. We write the matrix A as

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

where a_{ij} is a real number on the i^{th} row and j^{th} column of A.

<u>Note</u>: Let $r = \min(m, n)$. We call $a_{11}, a_{22}, ..., a_{rr}$ the main diagonal entries of A.

Definition: Coefficient and Augmented Matrix

A *coefficient matrix* is a matrix consisting entirely of the coefficients of the variables in a system of linear equations.

An *augmented matrix* is a matrix consisting of the coefficients of the variables and an additional column of the constant terms in a system of equations appended to the last column of the coefficient matrix.

Definition: Coefficient and Augmented Matrix

A *coefficient matrix* is a matrix consisting entirely of the coefficients of the variables in a system of linear equations.

An *augmented matrix* is a matrix consisting of the coefficients of the variables and an additional column of the constant terms in a system of equations appended to the last column of the coefficient matrix.

Example. The system of equations below has the following coefficient matrix and augmented matrix:

System:

$$3x_1 + 2x_2 - 4x_3 = 7$$
$$5x_1 - 9x_2 + 8x_3 = 1$$
$$6x_1 - 2x_2 - 3x_3 = 4$$

Coefficient Matrix:

$$\begin{bmatrix} 3 & 2 & -4 \\ 5 & -9 & 8 \\ 6 & -2 & -3 \end{bmatrix}$$

Augmented Matrix:

$$\begin{bmatrix}
3 & 2 & -4 & 7 \\
5 & -9 & 8 & 1 \\
6 & -2 & -3 & 4
\end{bmatrix}$$

Definition: Row Echelon Form of a Matrix

A matrix is said to be in *Row Echelon Form* (REF) if the following are true:

- Each leading entry of a row is strictly to the left of all other rows below it.
- All entries below a leading entry are zero.
- Rows of all zeros are below any rows containing a leading entry.

Definition: Row Echelon Form of a Matrix

A matrix is said to be in *Row Echelon Form* (REF) if the following are true:

- Each leading entry of a row is strictly to the left of all other rows below it.
- All entries below a leading entry are zero.
- Rows of all zeros are below any rows containing a leading entry.

Definition: Reduced Row Echelon Form of a Matrix

A matrix is said to be in *Reduced Row Echelon Form* (RREF) if the matrix is in

REF form and the additional properties hold:

- All leading entries are 1.
- All other entries in the leading entry's column are 0.

Definition: Additional Definitions

- A pivot is a nonzero number in a leading entry of a matrix used to create zeros. A pivot column is a column that contains a pivot.
- A basic variable is a variable corresponding to a pivot column within an augmented matrix.
- A free variable is a variable that is not a basic variable.
- The *general solution* is found by solving each equation for the basic variables in terms of the free variables.

Definition: Additional Definitions

- A pivot is a nonzero number in a leading entry of a matrix used to create zeros. A pivot column is a column that contains a pivot.
- A basic variable is a variable corresponding to a pivot column within an augmented matrix.
- A free variable is a variable that is not a basic variable.
- The *general solution* is found by solving each equation for the basic variables in terms of the free variables.

Example. For the following system of equations and it's associated augmented matrix,

find the number of each pivot column, basic variables, and free variables.

Definition: Additional Definitions

- A pivot is a nonzero number in a leading entry of a matrix used to create zeros. A pivot column is a column that contains a pivot.
- A basic variable is a variable corresponding to a pivot column within an augmented matrix.
- A free variable is a variable that is not a basic variable.
- The *general solution* is found by solving each equation for the basic variables in terms of the free variables.

Example. For the following system of equations and it's associated augmented matrix,

find the number of each pivot column, basic variables, and free variables.

Solution. Pivot columns: 1,3,5 Basic Variables: x_1, x_3, x_5 Free variables: x_2, x_4

Properties: Elementary Row Operations

Each of these operations produces on an augmented matrix produces an row equivalent matrix

• Interchange any rows within the matrix

$$R_i \longleftrightarrow R_j$$

• Multiply a row by a (nonzero) constant

$$cR_i \longrightarrow R_i$$

Add a multiple of one row to another row

$$cR_i + R_j \longrightarrow R_j$$

Algorithm: Gaussian Elimination

Begin with augmented matrix A of size $m \times n$

For i = 1, 2, ..., m

If leading coefficient is 0:

Interchange with row j > i such that $a_{ji} \neq 0$

Divide equation i by leading coefficient[†]

For j = i, i + 1, ..., m

Add multiple of equation i to equation j to eliminate a_{ji} If equation j has all zero coefficients, move to end of equations.

End

[†]Not required, but generally a recommended practice.

Example. Reduce the following augmented matrix to row echelon form.

$$\left[\begin{array}{ccc|c}
1 & 0 & -3 & 8 \\
2 & 2 & 9 & 7 \\
0 & 1 & 5 & -2
\end{array}\right]$$

Example. Reduce the following augmented matrix to row echelon form.

$$\begin{bmatrix}
1 & 0 & -3 & 8 \\
2 & 2 & 9 & 7 \\
0 & 1 & 5 & -2
\end{bmatrix}
\xrightarrow{-2R_1 + R_2}
\begin{bmatrix}
1 & 0 & -3 & 8 \\
0 & 2 & 15 & -9 \\
0 & 1 & 5 & -2
\end{bmatrix}$$

$$\xrightarrow{R_2 \text{ and } R_3}
\begin{bmatrix}
1 & 0 & -3 & 8 \\
0 & 1 & 5 & -2 \\
0 & 2 & 15 & -9
\end{bmatrix}
\xrightarrow{-2R_2 + R_3}
\begin{bmatrix}
1 & 0 & -3 & 8 \\
0 & 1 & 5 & -2 \\
0 & 0 & 5 & -5
\end{bmatrix}$$

Example. Repeat the previous example, but put into row reduced echelon form.

Example. Repeat the previous example, but put into row reduced echelon form.

Solution. The strategy will be to do elimination, but backwards. So, we'll start with the right-most pivot column and eliminate all of the elements above it:

$$\begin{bmatrix}
1 & 0 & -3 & | & 8 \\
0 & 1 & 5 & | & -2 \\
0 & 0 & 5 & | & -5
\end{bmatrix}
\xrightarrow{(1/5)R_3}
\begin{bmatrix}
1 & 0 & -3 & | & 8 \\
0 & 1 & 5 & | & -2 \\
0 & 0 & 1 & | & -1
\end{bmatrix}$$

$$\xrightarrow{-5R_3+R_2}
\begin{bmatrix}
1 & 0 & -3 & | & 8 \\
0 & 1 & 0 & | & 3 \\
0 & 1 & 0 & | & 3 \\
0 & 0 & 1 & | & -1
\end{bmatrix}
\xrightarrow{3R_3+R_2}
\begin{bmatrix}
1 & 0 & 0 & | & 5 \\
0 & 1 & 0 & | & 3 \\
0 & 0 & 1 & | & -1
\end{bmatrix}$$

This makes it easy to read the solution for the basic variables, i.e. $x_1 = 5, x_2 = 3, x_3 = -1$.

The algorithm for this is generally referred to as Gauss-Jordan elimination.

Useful MATLAB Code:

We can import matrices as a two-dimensional array into MATLAB. To do this by-hand, we'll begin with a bracket, then separate entries by a comma or space. This fills out a row. To start a new row, use a semicolon (;). Then, close the bracket when done.

$$A = [1, 0, -3, 8; 2, 2, 9, 7; 0, 1, 5, -2]$$

This stores our matrix as the variable 'A'. To perform row reduced echolon form, we can use the function rref():

$$rfA = rref(A)$$

This stores our row-reduced matrix as the variable 'rfA'.