

Universidad Nacional del Altiplano

Facultad de Ingeniería Estadística e Informática

Sistema de Análisis Estadístico Avanzado

Aplicación Web con Shiny en R

Estudiante: Nelson Catunta Huisa

Docente: Fred Torres Cruz

Curso: Estadistica Computacional

Fecha: 9 de julio de 2025

Repositorio GitHub:

https://github.com/CAISA25/APUESTA.git

Puno, Perú

$\bf \acute{I}ndice$

1.	Intr	oducción
	1.1.	Objetivos
		Alcance
2.	Mar	co Teórico
	2.1.	Estadística Descriptiva
		2.1.1. Medidas de Tendencia Central
		2.1.2. Medidas de Dispersión
	2.2.	Pruebas de Hipótesis
		2.2.1. Prueba t de Student
		2.2.2. Análisis de Varianza (ANOVA)
		2.2.3. Prueba Chi-cuadrado
3.	Met	odología 6
		Tecnologías Utilizadas
	3.2.	
		•
4.	_	lementación
		Estructura de la Aplicación
	4.2.	Funciones Principales
		4.2.1. Función para Cálculo de Moda
		4.2.2. Función para Gráficos de Pastel
5.	Fun	cionalidades del Sistema 8
	5.1.	Carga de Datos
	5.2.	Análisis Descriptivo
	5.3.	Visualizaciones
6.	Pru	ebas Estadísticas
	6.1.	Pruebas Implementadas
	6.2.	Interpretación Automática
7.	Imá	genes del Sistema
		Interfaz Principal
	7.2.	Módulo de Carga de Datos
	7.3.	Estadísticas Descriptivas
	7.4.	Gráficos Estadísticos
	7.5.	Pruebas Estadísticas
	7.6.	Análisis de Normalidad
8.	Case	os de Uso
		Caso de Uso 1: Análisis de Encuesta
		Caso de Uso 2: Análisis de Calidad
9.	Vali	dación y Pruebas 14
٥.		Pruebas de Funcionalidad
	9.2.	Pruebas de Rendimiento
	0.2.	

10.Conclusiones	14
10.1. Logros Alcanzados	14
10.2. Limitaciones	14
10.3. Trabajo Futuro	14
11.Anexos	15
11.1. Código Fuente Completo	15
11.2. Manual de Usuario	15
11.3. Instalación y Configuración	15
12 Referencias	15

Índice de figuras

1.	Interfaz principal de la aplicación	10
2.	Módulo de importación de datos	10
3.	Vista de estadísticas descriptivas	11
4.	Ejemplos de visualizaciones generadas	12
5.	Resultados de pruebas estadísticas con interpretación	12
6	Análisis de normalidad y detección de outliers	13

Índice de cuadros

1.	Estadísticas por tipo de variable	8
2.	Resumen de pruebas estadísticas	Ć
3.	Resultados de pruebas de funcionalidad	14

1 Introducción

El presente documento describe el desarrollo de un sistema web para análisis estadístico avanzado, implementado en R usando el framework Shiny. Esta aplicación permite realizar análisis descriptivo, inferencial y exploratorio de datos de manera intuitiva y profesional.

1.1 Objetivos

- Desarrollar una aplicación web interactiva para análisis estadístico
- Implementar herramientas de estadística descriptiva e inferencial
- Generar visualizaciones estadísticas de calidad profesional
- Proporcionar interpretaciones automáticas de pruebas estadísticas
- Crear reportes automatizados en formato PDF

1.2 Alcance

La aplicación cubre las siguientes áreas del análisis estadístico:

- Estadística descriptiva (medidas de tendencia central, dispersión, forma)
- Visualización de datos (histogramas, boxplots, gráficos de barras, pasteles, ojivas)
- Pruebas de hipótesis (t-test, ANOVA, Chi-cuadrado, Wilcoxon)
- Análisis de correlación (Pearson, Spearman)
- Análisis de normalidad (Shapiro-Wilk)
- Detección de valores atípicos
- Teorema del Límite Central

2 Marco Teórico

2.1 Estadística Descriptiva

La estadística descriptiva se encarga de resumir y presentar la información contenida en una muestra o población de datos. Las principales medidas incluyen:

2.1.1 Medidas de Tendencia Central

- Media aritmética: $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Mediana: Valor que divide la distribución en dos partes iguales
- Moda: Valor que aparece con mayor frecuencia

2.1.2 Medidas de Dispersión

- Desviación estándar: $s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{x})^2}$
- Varianza: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{x})^2$
- Rango: $R = x_{max} x_{min}$
- \bullet Coeficiente de variación: $CV = \frac{s}{\bar{x}} \times 100\,\%$

2.2 Pruebas de Hipótesis

2.2.1 Prueba t de Student

Para comparar medias de dos grupos:

$$t = \frac{\bar{x_1} - \bar{x_2}}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \tag{1}$$

donde s_p es la desviación estándar pooled.

2.2.2 Análisis de Varianza (ANOVA)

Para comparar medias de tres o más grupos:

$$F = \frac{MSB}{MSW} \tag{2}$$

donde MSB es la media cuadrática entre grupos y MSW es la media cuadrática dentro de grupos.

2.2.3 Prueba Chi-cuadrado

Para analizar la independencia de variables categóricas:

$$\chi^2 = \sum_{i=1}^r \sum_{j=1}^c \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$
 (3)

3 Metodología

3.1 Tecnologías Utilizadas

- R: Lenguaje de programación estadística
- Shiny: Framework para aplicaciones web interactivas
- Bibliotecas especializadas: ggplot2, dplyr, plotly, knitr, rmarkdown

3.2 Arquitectura del Sistema

La aplicación sigue el patrón MVC (Modelo-Vista-Controlador) de Shiny:

- UI (Interfaz de Usuario): Define la estructura y apariencia
- Server (Servidor): Contiene la lógica de procesamiento
- Reactividad: Permite actualizaciones automáticas de resultados

4 Implementación

4.1 Estructura de la Aplicación

La aplicación está organizada en las siguientes secciones:

- 1. Importar Datos: Carga de archivos CSV y Excel
- 2. Estadísticas Descriptivas: Análisis básico de variables
- 3. Gráficos por Variable: Visualizaciones detalladas
- 4. Pruebas e Interpretación: Análisis inferencial
- 5. Extras: Análisis de normalidad y outliers
- 6. Nuevas Pruebas: Pruebas estadísticas avanzadas
- 7. Exportar Reporte: Generación de documentos PDF

4.2 Funciones Principales

4.2.1 Función para Cálculo de Moda

Listing 1: Función para calcular moda de forma segura

```
moda_segura <- function(x) {
    x <- na.omit(x)
    if (length(x) == 0) return(NA)
    freq <- table(x)
    max_freq <- max(freq)
    if (max_freq == 1) {
        return("No hay moda")
    }
    moda <- names(freq[freq == max_freq])
    if (length(moda) == 1) {
        return(moda)
    } else {
        return(paste(moda, collapse = ", "))
    }
}</pre>
```

4.2.2 Función para Gráficos de Pastel

Listing 2: Función para crear gráficos de pastel

```
crear_grafico_pastel <- function(datos, variable) {</pre>
  freq_table <- table(datos)</pre>
  df_pie <- data.frame(</pre>
    categoria = names(freq_table),
    frecuencia = as.numeric(freq_table),
    porcentaje = round(as.numeric(freq_table) / sum(freq_table) * 100,
  ggplot(df_pie, aes(x = "", y = frecuencia, fill = categoria)) +
    geom_bar(stat = "identity", width = 1) +
    coord_polar("y", start = 0) +
    geom_text(aes(label = paste0(porcentaje, "%")),
              position = position_stack(vjust = 0.5)) +
    theme_void() +
    labs(title = paste("Gr fico de Pastel:", variable),
         fill = "Categor as") +
    theme(plot.title = element_text(hjust = 0.5, size = 14, face = "bold
       "))
}
```

5 Funcionalidades del Sistema

5.1 Carga de Datos

El sistema permite importar datos desde archivos CSV y Excel, con las siguientes características:

- Validación automática de formatos
- Vista previa de datos
- Selección de variables para análisis
- Manejo de errores en la carga

5.2 Análisis Descriptivo

Para cada variable, el sistema calcula:

Variables Numéricas	Variables Categóricas	
Media aritmética	Tabla de frecuencias	
Mediana	Distribución porcentual	
Moda	Categoría modal	
Desviación estándar	Número de categorías	
Coeficiente de variación	Gráfico de barras	
Rango	Gráfico de pastel	
Cuartiles	Análisis de uniformidad	

Cuadro 1: Estadísticas por tipo de variable

5.3 Visualizaciones

El sistema genera automáticamente:

• Histogramas: Con curva de densidad superpuesta

• Boxplots: Para identificar outliers y distribución

• Gráficos de barras: Para variables categóricas

• Gráficos de pastel: Con porcentajes automáticos

• Ojivas: Para análisis de frecuencias acumuladas

6 Pruebas Estadísticas

6.1 Pruebas Implementadas

Prueba	Propósito	Condiciones	
t-test	Comparar dos medias	Variables numéricas	
ANOVA	Comparar múltiples medias	Una numérica, una categórica	
Chi-cuadrado	Independencia de variables	Variables categóricas	
Shapiro-Wilk	Normalidad	Variables numéricas	
Wilcoxon	Comparar distribuciones	Variables numéricas	
Correlación	Asociación lineal	Dos variables numéricas	

Cuadro 2: Resumen de pruebas estadísticas

6.2 Interpretación Automática

El sistema proporciona interpretaciones automáticas basadas en:

- Valores p (= 0.05)
- Intervalos de confianza
- Tamaños de efecto
- Recomendaciones prácticas

7 Imágenes del Sistema

7.1 Interfaz Principal

Figura 1: Interfaz principal de la aplicación

7.2 Módulo de Carga de Datos

Figura 2: Módulo de importación de datos

7.3 Estadísticas Descriptivas

Figura 3: Vista de estadísticas descriptivas

7.4 Gráficos Estadísticos

- (a) Histograma con curva de densidad
- (b) Boxplot para detección de outliers

Figura 4: Ejemplos de visualizaciones generadas

7.5 Pruebas Estadísticas

Figura 5: Resultados de pruebas estadísticas con interpretación

7.6 Análisis de Normalidad

Análisis de normalidad (Shapiro-Wilk)

```
Resultado de la prueba de normalidad (Shapiro-Wilk):
Valor p: 0.0014
X La variable NO sigue una distribución normal.
```

Figura 6: Análisis de normalidad y detección de outliers

8 Casos de Uso

8.1 Caso de Uso 1: Análisis de Encuesta

Escenario: Análisis de una encuesta de satisfacción con variables numéricas (edad, puntuación) y categóricas (género, área).

Proceso:

- 1. Carga del archivo CSV con datos de encuesta
- 2. Selección de variables relevantes
- 3. Generación de estadísticas descriptivas
- 4. Análisis de normalidad de puntuaciones
- 5. Comparación de satisfacción por género (t-test)
- 6. Análisis de satisfacción por área (ANOVA)
- 7. Generación de reporte final

8.2 Caso de Uso 2: Análisis de Calidad

Escenario: Control de calidad de productos con mediciones de peso, longitud y clasificación.

Proceso:

- 1. Importación de datos de mediciones
- 2. Análisis descriptivo de cada variable
- 3. Detección de valores atípicos
- 4. Análisis de correlación entre medidas
- 5. Pruebas de normalidad
- 6. Generación de gráficos de control

9 Validación y Pruebas

9.1 Pruebas de Funcionalidad

Función	Prueba	Resultado
Carga de datos	Archivos CSV/Excel	Exitosa
Estadísticas descriptivas	Cálculos manuales	Verificado
Gráficos	Comparación visual	Correctos
Pruebas estadísticas	Resultados conocidos	Validado
Exportación PDF	Generación completa	Funcional

Cuadro 3: Resultados de pruebas de funcionalidad

9.2 Pruebas de Rendimiento

- Datasets pequeños (¡1000 registros): Respuesta instantánea
- Datasets medianos (1000-10000 registros): Respuesta en 2-5 segundos
- Datasets grandes (¿10000 registros): Respuesta en 5-15 segundos

10 Conclusiones

10.1 Logros Alcanzados

- Desarrollo exitoso de aplicación web interactiva
- Implementación de análisis estadístico completo
- Interfaz intuitiva y fácil de usar
- Generación automática de reportes profesionales
- Interpretación automática de resultados

10.2 Limitaciones

- Tamaño máximo de archivo limitado por memoria
- Algunas pruebas requieren condiciones específicas
- Dependencia de conexión a internet para ciertas funcionalidades

10.3 Trabajo Futuro

- Implementación de análisis multivariado
- Integración con bases de datos
- Análisis de series temporales

- Métodos de machine learning
- Interfaz multi-idioma

11 Anexos

11.1 Código Fuente Completo

El código fuente completo está disponible en el repositorio GitHub: https://github.com/CAISA25/APUESTA.git

11.2 Manual de Usuario

El manual detallado de usuario se encuentra en el archivo Manual_Usuario.pdf en el repositorio.

11.3 Instalación y Configuración

Para instalar y ejecutar la aplicación:

Listing 3: Comandos de instalación

```
# Clonar repositorio
git clone https://github.com/[usuario]/analisis-estadistico-avanzado.git

# Instalar dependencias
Rscript -e "install.packages(c('shiny', 'shinydashboard', 'ggplot2', 'dplyr', 'plotly', 'knitr', 'rmarkdown'))"

# Ejecutar aplicaci n
Rscript -e "shiny::runApp('app.R')"
```

12 Referencias

- Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York.
- Chang, W. (2021). *R Graphics Cookbook*. O'Reilly Media. Comprehensive R Archive Network (CRAN). (2023). *The R Project for Statistical Computing*. https://www.r-project.org/
- Xie, Y., Allaire, J.J., Grolemund, G. (2018). *R Markdown: The Definitive Guide*. Chapman Hall/CRC.
- Wickham, H., Grolemund, G. (2017). R for Data Science. O'Reilly Media.

Fin del documento

Desarrollado por Nelson Catunta Huisa Universidad Nacional del Altiplano - Puno