

Dominik Gothe
Johns Hopkins University
Prepared for USC Colloquium
September 18th 2014

Measuring Inflation

The CLASSy way!

The Cosmology Large Angular Scale Surveyor (CLASS)

The Big Picture

Wait! What am I doing here?

- What do we know about the Cosmic Microwave Background so far?
 - What are the unexplained phenomena?
- What is the tensor-to-scalar ratio?
 - Why do we care?
- How do we test Inflation?
 - WMAP, ACT, SPT, PLANCK, and BICEP
 - The CLASS approach
- What is unique about CLASS?
 - The Variable delay Polarization Modulator
 - The super-conducting Transition Edge Sensors

Cosmic Microwave Background

- In 1964 Arno Penzias and Robert Wilson discovered the CMB.
- They measured an excess temperature of 3.5 ± 1 K at 4.08 GHz.
- How can the isotropy of the CMB be explained?
- In 1992 COBE finds primordial seeds.
- COBE confirms homogeneity.
- 2.7 K with 18.4 μK (rms)

Cosmic Microwave Background

- In 1964 Arno Penzias and Robert Wilson discovered the CMB.
- They measured an excess temperature of 3.5 ± 1 K at 4.08 GHz.
- How can the isotropy of the CMB be explained?
- In 1992 COBE finds primordial seeds.
- COBE confirms homogeneity.
- 2.7 K with 18.4 μK (rms)

Cosmic Microwave Background

- In 1964 Arno Penzias and Robert Wilson discovered the CMB.
- They measured an excess temperature of 3.5 ± 1 K at 4.08 GHz.
- How can the isotropy of the CMB be explained?
- In 1992 COBE finds primordial seeds.
- COBE confirms homogeneity.
- 2.7 K with 18.4 μK (rms)

Unexplained Discoveries

- The homogeneity was not predicted and is not explained by the Big Bang theory.
- Taking a prior on H_o
 WMAP is able constrain
 Ω_o to be one within 1%.
- Together they form the two problems of the Big Bang theory.
 - The Horizon Problem
 - The Flatness Problem

WMAP's measurement of the CMB power spectrum constrained several parameters of the ACDM with exquisite precision.

Inflationary Modification

- Accelerated expansion of space very early in the universe.
 - Accelerated expansion of roughly 60 e-folding is necessary to flatten space to what we observe today.
 - While not in causal contact today, patches of the sky used to be in causal contact.
- The primordial seeds can be explained as quantum fluctuations of a scalar inflation field.
- Different inflationary theories predict different features of the Cosmic Microwave Background anisotropies.
 - Theorized inflation models are thus testable with highly sensitive surveys of the CMB across a wide range of angular scales.
- The predicted impacts on the CMB anisotropy are on the order of $10^{-9} K$. Requiring highly sensitive detection schemes.

Dominik Gothe Control of the Control

What Polarization?

- Thomson Scattering of a plane wave results in linearly polarized light.
- If incoming radiation were isotropic the resulting emission would be polarized.
- Anisotropies in temperature produced polarized light.
- Polarization pattern of the CMB reduce to understanding the quadrupolar temperature fluctuations at last scattering.

E and B Modes

- The polarization field can be decomposed into two orthogonal modes: E and B.
- Scalar perturbations create only E-modes.
- Tensor perturbations create both E-modes and B-modes.
- Observation of B-modes is an observation of gravitational waves.

Inflationary Predictions

- Inflation predicts a flat and homogeneous space.
- Consequently it predicts an isotropic CMB.
- Inflation explains primordial seeds as the consequence of quantum fluctuations in the inflation field.
- Inflation predicts gravitational waves, which would be detectable as polarized patterns in the CMB anisotropies.
- So we measure B-modes.

A typical example of scalar inflation field corresponding to slow-roll single field inflation.

Testing Inflation via **r**

- Scalar properties of the CMB power-spectrum are measured exquisitely by PLANCK.
- Measurements of the Tensor-to-Scalar ratio (r) would provide empirical data to restrict the vast landscape of theoretical models.
- Measurements of r require experiments that have an ultrahigh sensitivity to B-modes on the largest scales.

Various theories can be described to be unlikely when considering the probability space formed by the Tensorto-Scalar ratio and the Primordial Tilt.

The feature-full spectrum

Review: What is needed?

- Full B-Mode spectra with multiple peaks
 - Reionization and Recombination
- Multi-Frequency data to assess foregrounds
- Independent instrument design
 - Independent survey design
 - Independent data analysis
 - Independent team
 - Independent but complementary
- Large sky coverage to better assess isotropy
- CLASS will compliment the surveys of WMAP, ACT, SPT, PLANCK, BICEP, and many others.

Designing for low *l* sensitivity!

- 360° constant-elevation azimuth scans at 1°/sec
- Boresight angle changed daily in 15° increments
- Covers full survey area every day, with different instrument-to-sky angle, allowing important checks on systematics.

South Pole

25%

CLASS Scan Strategy

Removing Foregrounds

- A multi-frequency
 experiment allows us to
 break the degeneracy
 between synchrotron and
 dust foregrounds with
 primordial signals.
- Three primary frequencies straddle the foreground minimum.
- PIPER Provides additional foreground constrains from 200 GHz and 270 GHz.

Dominik Gothe Control of the Control

The CLASSy approach!

Instrument Design!

The VPM

- The VPM is composed of a polarizing wire grid and a mirror.
- To combat $\frac{1}{f}$ noise we need a modulation technique similar to that of a lock-in amplifier.
- This modulation allows us to discard the non-modulated systematics.
- Our modulator is the first optical element.
- CLASS will be the first to measure circular polarization.

The VPM continued

- Un-polarized light is unaffected by the VPM, not modulated.
- Parallel and Perpendicular polarizations are unaffected.
- 45° Polarized light is mapped into circular polarization.
- Circular polarization is mapped into 45° polarization.
 - $\overline{}$ $\overline{U_{sky}}$ and $\overline{V_{sky}}$ is modulated
- A 45° degree boresight-rotation changes Q_{Sky} and U_{Sky} .

VPM Grid Prototype

Transition Edge Sensors

- Molybdenum-Gold bolometers
 - Super conducting transition is tuned to ~150mK with the Gold bilayer.
- Background limited detectors.
- Increased sensitive requires increased number of detectors.
 - Distinct advantage over space borne missions.
 - Ground based missions can have a larger number of detectors.

The Detectors

- Large number of detectors.
 - Q-band has 72 detectors
 - W-band has two times 518 detectors
 - The HF receiver has 2000
 detectors each in the HF150
 and HF220 bands.

 40ghz focal plane is being populated and tested as I speak.

The Detectors

- Our custom feed-horns replace the standard corrugated configurations.
 - They are smooth-walled to allow for easier machining.
 - Additionally their cross-section is monotonically decreasing, allowing for plunge cutting.
 - This will become very important when we attempt to populated the HF receiver with four thousand detectors.

Survey Sensitivity

Conclusion

- CLASS will be able to measure and effectively remove polarization foregrounds, via our multi-frequency approach.
- Our key technologies, Variable delay Polarization Modulator and Transition Edge Sensors, afford us unprecedented sensitive to primordial signals.
- CLASS will make cosmic variance limited measurements of E-mode polarization for l < 100, making definitive measurements of the optical depth of reionizaiton (τ) .
- By 2020 CLASS will be able to measure the tensor-to-scalar ratio at a level of r=0.01.