Exercises 5

软件工程一班 张逸松 57 号

October 22, 2019

1.2

- a) It's not reflexive, not symmetric, not antisymmetric, transitive.
- b) It's reflexive, symmetric, not antisymmetric, transitive.
- c) It's not reflexive, symmetric, not antisymmetric, not transitive.
- d) It's not reflexive, not symmetric, antisymmetric, transitive.
- e) It's reflexive, symmetric, antisymmetric, transitive.
- f) It's not reflexive, not symmetric, not antisymmetric, not transitive.

1.5

If $R = \emptyset$, then the hypotheses of the conditional statements in the definitions of symmetric and transitive are always false, so that definitions are always true. If $S = \emptyset$, the no element in S, so R without any (a, a) also is the reflexive.

1.14

- a) $\{(a,b) \mid a \text{ is required to or has read book } b.\}$
- **b)** $\{(a,b) \mid a \text{ is required to and has read book } b.\}$
- c) $\{(a,b) \mid a \text{ is required to but has not read book b or has read book b but is not required to read.}\}$
- **d)** $\{(a,b) \mid a \text{ is required to but has not read book } b.\}$
- **d)** $\{(a,b) \mid a \text{ has read book b but is not required to read.}\}$

2.5

- a) Social Security numbers.
- b) There are no two people with the same name who happen to have the same street address.
- c) There are no two people with the same living in the same street address in a city.

2.11

Both sides of the equation select the n-tuples with C_1 and C_2 , so the order does not affect result.

2.13

Both sides of the equation leaving the $i_1th, i_2th \dots i_mth$ components with m-tuples from n-tuples in either R or S.

3.8

a)
$$\begin{bmatrix} 0 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$
 b)
$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 c)
$$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

3.12

$$\{(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b), (d, d)\}$$

3.16

Step 1 M_R represents the relation R.

Step 2 If $M_R^{[n-1]}$ represent the relation R^{n-1} , because of $M_R^{[n-1]} \cdot M_R = M_R^{[n]}$ and $R^{n-1} \cdot R = R^n$, $M_R^{[n]}$ represents R^n .

4.2

 $\{(a,b) \mid a \text{ divides } b \text{ or } b \text{ divides } a\}$

4.4

4.7

The symmetric closure of R is $R \cup R^{-1}$, as $M_{R \cup R^{-1}} = M_R \vee M_R^t$.

4.9

a)
$$\{(1,1),(1,5),(2,3),(3,1),(3,2),(3,3),(3,4),(4,1),(4,5),(5,3),(5,4)\}$$

$$\mathbf{b)} \ \left\{ (1,1), (1,2), (1,3), (1,4), (2,1), (2,5), (3,1), (3,3), (3,4), (3,5), (4,1), (4,2), (4,3), (4,4), (5,1), (5,3), (5,5) \right\}$$

f)
$$\{(a,b) \mid a,b \in [1,5] \cap \mathbb{Z}\}$$