Lösungsvorschläge zum Übungsblatt 3

zur Vorlesung Mannigfaltigkeiten

Sommersemester 2016

Aufgabe 1 (Die Wunder des \mathbb{RP}^n).

(a) Zur Wohldefiniertheit: Der Kern einer umkehrbaren linearen Abbildung ist trivial; daher ist $Ax \neq 0$ für alle $x \neq 0$. Andererseits gilt $Ax = \lambda Ay$ für $x = \lambda y \in \mathbb{R}^{n+1}$, d.h. $[x] = [y] \Rightarrow [Ax] = [Ay]$. F_A ist deshalb wohldefiniert.

Zur Diffeomorphie: Es reicht zu zeigen, daß $F_A : \mathbb{RP}^n \to \mathbb{RP}^n$ glatt ist, da die Umkehrabbildung durch $[x] \mapsto [A^{-1}x]$ gegeben ist. Es sei $\{(\psi_j, U_j)\}_{j=1}^{n+1}$ der übliche Atlas des \mathbb{RP}^n . Für $i, j \in \{1, \ldots, n+1\}$ ist die Abbildung

$$\psi_i \circ F_A \circ \psi_i^{-1} : \psi_i(U_i \cap A^{-1}(U_i)) = \psi_i \left(\{ [x] : x^i \neq 0, (Ax)^j \neq 0 \} \right) \to \mathbb{R}^n$$

gegeben durch

$$(\psi_{j} \circ F_{A} \circ \psi_{i}^{-1})(x)$$

$$= \psi_{j}([A(x^{1}, \dots, x^{i-1}, 1, x^{i}, \dots, x^{n})]).$$

$$= \frac{1}{A(y)^{j}} (A(y)^{1}, \dots, \widehat{A(y)^{j}}, \dots, A(y)^{n}),$$

wobei $y=(x^1,\ldots,x^{i-1},1,x^i,\ldots,x^n)$. Da $A(y)^j\neq 0$ für alle x in Betracht, ist $\psi_j\circ A\circ\psi_i^{-1}$ glatt für alle $i,j\in\{1,\ldots,n+1\}$; daher ist A glatt.

Wenn $[x] \neq [y]$, sind $x, y \in \mathbb{R}^{n+1}$ linear unabhängig. Es gibt daher $\{z_1, \dots, z_{n-1}\} \subset \mathbb{R}^{n+1}$ s.d. $\mathbb{R}^{n+1} = \operatorname{span}\{x, y, z_1, \dots, z_{n-1}\}$. Die eindeutige lineare Abbildung $L : \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ mit der Eigenschaft, daß $L(x) = (1, 0, \dots, 0), L(y) = (1, 1, 0, \dots, 0)$ und $\forall i \in \{1, \dots, n-1\}$ $L(z_i) = e_{i+2}$, welche offensichtlich umkehrbar ist, induziert daher einen Diffeomorphismus $G := F_L$ mit der gewünschten Eigenschaft.

(b) Bezüglich Glattheit: Die lokalen Repräsentanten sind wie folgt:

$$\psi_{1} \circ F \circ \phi_{N}^{-1} : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x$$

$$\psi_{1} \circ F \circ \phi_{S}^{-1} : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$$

$$x \mapsto (\phi_{N} \circ \phi_{S}^{-1})(x)$$

$$\psi_{2} \circ F \circ \phi_{N}^{-1} : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}$$

$$x \mapsto \frac{1}{x}$$

$$\psi_{2} \circ F \circ \phi_{S}^{-1} : \mathbb{R} \to \mathbb{R}$$

$$x \mapsto x.$$

F ist daher glatt. Da seine Umkehrabbildung durch

$$[(x,y)] \mapsto \begin{cases} \phi_N^{-1}(\frac{y}{x}), & x \neq 0 \\ N, & x = 0 \end{cases}$$

gegeben ist und die Umkehrabbildungen der obigen Repräsentanten glatt sind, so ist F^{-1} auch glatt, d.h. F ist ein Diffeomorphismus.

Aufgabe 2.

(a) $W \subset N$ sei eine offene Menge, $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in A}$ ein Atlas auf M und $\{(V_{\mathfrak{X}}, \psi_{\mathfrak{X}})\}_{\mathfrak{X} \in \mathfrak{X}}$ einer auf N. Dann gilt

$$F^{-1}(W) = \bigcup_{\alpha \in A} U_{\alpha} \cap F^{-1}(W \cap \bigcup_{\mathfrak{m} \in \mathfrak{M}} V_{\mathfrak{m}})$$
$$= \bigcup_{(\alpha, \mathfrak{m}) \in A \times \mathfrak{M}} \phi_{\alpha}^{-1} \left(\phi_{\alpha}(U_{\alpha}) \cap \phi_{\alpha} \left(F^{-1}(W \cap V_{\mathfrak{m}}) \right) \right)$$

da ϕ_{α} injektiv ist. Bemerke, daß $y \in \phi_{\alpha}\left(F^{-1}(W \cap V_{\mathbb{x}})\right) \Leftrightarrow \phi_{\alpha}^{-1}(y) \in F^{-1}(W \cap V_{\mathbb{x}}) \Leftrightarrow \left(F \circ \phi_{\alpha}^{-1}\right)(y) \in W \cap V_{\mathbb{x}} \Leftrightarrow (\psi_{\mathbb{x}} \circ F \circ \phi_{\alpha}^{-1})(y) \in \psi_{\mathbb{x}}(W \cap V_{\mathbb{x}})$ wegen der Injektivität von $\psi_{\mathbb{x}}$. Insgesamt haben wir die Gleichung

$$F^{-1}(W) = \bigcup_{(\alpha, \mathbf{x}) \in A \times \mathbf{W}} \phi_{\alpha}^{-1}(\phi_{\alpha}(U_{\alpha}) \cap (\psi_{\mathbf{x}} \circ F \circ \phi_{\alpha}^{-1})^{-1}(\psi_{\mathbf{x}}(W \cap V_{\mathbf{x}}))).$$

Die Abbildung $\psi_{\mathfrak{m}} \circ F \circ \phi_{\alpha}^{-1}$ ist glatt im klassischen Sinne, daher stetig. Da $\psi_{\mathfrak{m}}$ ein Homöomorphismus und $W \cap V_{\mathfrak{m}}$ offen ist, ist die Menge $(\psi_{zhe} \circ F \circ \phi_{\alpha}^{-1})^{-1}(\psi_{\mathfrak{m}}(W \cap V_{\mathfrak{m}}))$ offen. Da ϕ_{α} auch ein Homöomorphismus ist, so ist $\phi_{\alpha}(U_{\alpha})$ offen, daher auch $\phi_{\alpha}^{-1}(\phi_{\alpha}(U_{\alpha}) \cap (\psi_{\mathfrak{m}} \circ F \circ \phi_{\alpha}^{-1})^{-1}(\psi_{\mathfrak{m}}(W \cap V_{\mathfrak{m}})))$. Da Vereinigungen von offenen Mengen wieder offen sind, ist $F^{-1}(W)$ offen in M. Folglich ist F stetig.

(b) Bezüglich Glattheit: Es seien $\{\phi_{\alpha,\varepsilon}\}$ die Karten auf S^n aus Übungsblatt 1 und $\{\psi_{\mathfrak{m}}\}_{\mathfrak{m}\in\{0,\ldots,n\}}$ die üblichen Karten auf \mathbb{RP}^n aus dem Skript. Es gelten

$$\phi_{\alpha\varepsilon}(U_{\alpha\varepsilon} \cap F^{-1}(V_{\mathbb{R}})) = \phi_{\alpha\varepsilon} \left(\{ x \in S^n : \varepsilon x^{\alpha} > 0 \text{ und } x^{\mathbb{R}+1} \neq 0 \} \right)$$

$$= \begin{cases} B(0,1) \setminus \{ x^{\mathbb{R}+1} = 0 \}, & \alpha > \mathbb{R} + 1 \\ B(0,1), & \alpha = \mathbb{R} + 1 \\ B(0,1) \setminus \{ x^{\mathbb{R}} = 0 \}, & \alpha < \mathbb{R} + 1 \end{cases}$$

und

$$\begin{split} \left(\psi_{\mathbf{m}}\circ F\circ\phi_{\alpha\varepsilon}^{-1}\right)(x) &= \psi_{\mathbf{m}}([x^{1},\ldots,x^{\alpha-1},\varepsilon\sqrt{1-|x|^{2}},x^{\alpha},\ldots,x^{n}])\\ &= \begin{cases} \left(\frac{x^{1}}{x^{\mathbf{m}+1}},\ldots,\widehat{\frac{x^{\mathbf{m}+1}}{x^{\mathbf{m}+1}}},\ldots,\frac{\varepsilon\sqrt{1-|x|^{2}}}{x^{\mathbf{m}+1}},\frac{x^{\alpha}}{x^{\mathbf{m}+1}},\ldots,\frac{x^{n}}{x^{\mathbf{m}+1}}\right), & \alpha>\mathbf{m}+1\\ \frac{x}{\varepsilon\sqrt{1-|x|^{2}}}, & \alpha=\mathbf{m}+1\\ \left(\frac{x^{1}}{x^{\mathbf{m}}},\ldots,\frac{\varepsilon\sqrt{1-|x|^{2}}}{x^{\mathbf{m}}},\ldots,\widehat{\frac{x^{\mathbf{m}}}{x^{\mathbf{m}}}},\ldots,\frac{x^{n}}{x^{\mathbf{m}}}\right), & \alpha<\mathbf{m}+1 \end{cases} \end{split}$$

Da die Definitionsbereiche der verschiedenen $\psi_{\mathfrak{K}} \circ F \circ \phi_{\alpha\varepsilon}^{-1}$ keine der in diesen Ausdrücken vorkommenden singulären Punkte enthalten, sind sie glatt.

Bezüglich der Surjektivität (präziser: zweifältigen Überdeckung): Erstens gilt

$$F^{-1}([(x^1,\ldots,x^n)]) = \{y \in S^n : [y] = [x]\}.$$

Außerdem ist [y] = [x] genau dann, wenn $y = \lambda x$; die Tatsache, daß |y| = 1 ist, impliziert nun, daß $|\lambda| = \frac{1}{|x|}$, d.h. $y = \pm \frac{x}{|x|}$, also

$$F^{-1}([x]) = \left\{ \frac{x}{|x|}, -\frac{x}{|x|} \right\} \neq \emptyset.$$

Bezüglich der Kompaktheit: Da F glatt ist, ist es auch stetig; daher ist $F(S^n)$, das Bild einer kompakten Menge, kompakt.

(c) Bemerke, daß $[(1,0,\ldots,0)], [(1,1,0,\ldots,0)] \in F(U_{11})$. Außerdem ist $\widetilde{F}:=F|_{U_{11}}:U_{11}\to F(U_{11})$ injektiv, weil $F(x)=F(y)\Rightarrow x=\pm y$ und $x,y\in U_{11}\Rightarrow x^1,y^1>0$, d.h. x=y; ferner hat \widetilde{F} die Abbildung $[x]\mapsto \frac{|x^1|}{x^1}\cdot \frac{x}{|x|}$ als Umkehrabbildung, und dies ist auch glatt. Daher ist \widetilde{F} ein Diffeomorphismus, daher ein Homöomorphismus. Da S^n und daher $\phi_{11}(U_{11})$ ein Hausdorff-Raum ist, so ist auch $F(\phi_{11}(U_{11}))$ ein Hausdorff-Raum. Da diese Menge die von \mathbb{RP}^n induzierte Topologie trägt, können $[(1,0,\ldots,0)]$ und $[(1,1,0,\ldots,0)]$ durch offene Mengen U_1 bzw. U_2 in \mathbb{RP}^n getrennt werden. Laut Aufgabe 1(a) gibt es zu allen $[x]\neq [y]\in \mathbb{RP}^n$ einen Diffeomorphismus, daher einen Homöomorphismus $F_{xy}: \mathbb{RP}^n\to \mathbb{RP}^n$ mit $F_{xy}([x])=[(1,0,\ldots,0)]$ und $F_{xy}([y])=[(1,1,0,\ldots,0)]$, daher werden [x] und [y] durch die offenen Mengen $F_{xy}(U_1)$ bzw. $F_{xy}(U_2)$ getrennt. Daher ist \mathbb{RP}^n ein Hausdorff-Raum.

Aufgabe 3.

(a) Falls $x, y \neq 0$, gibt es $i, j \in \{0, 1\}$ mit $x^i, y^j \neq 0$. Falls i = j, ist $\widetilde{F}^0(x, y)$ oder $\widetilde{F}^2(x, y) \neq 0$. Falls $i \neq j$, ist x^0y^1 oder $x^1y^0 \neq 0$; $F^1(x, y)$ ist dann $\neq 0$, es sei denn, daß auch $x^jy^i \neq 0$, in welchem Falle $F^0(x, y) \neq 0$. Daher ist $\widetilde{F}(x, y) \neq 0$ für alle $x, y \in \mathbb{R}^2 \setminus \{0\}$. Da $\widetilde{F}(\lambda_1 x, \lambda_2 y) = \lambda_1 \lambda_2(x^0y^0, x^0y^1 + x^1y^0, x^1y^1) \in [\widetilde{F}(x, y)]$ für alle $\lambda_1, \lambda_2 \in \mathbb{R} \setminus \{0\}$, ist die Abbildung $\mathbb{RP}^1 \times \mathbb{RP}^1 \ni ([x], [y]) \mapsto [\widetilde{F}(x, y)] \in \mathbb{RP}^2$ wohldefiniert.

F ist glatt, da alle lokalen Repräsentanten von F rationale Funktionen sind; da sie auf den entsprechenden Mengen definiert sind, müssen sie glatt sein; z.B. F([(1,x)],[(1,y)]) = [(1,x+y,xy)], so daß ein lokaler Repräsentant in inhomogenen Koordinaten (wo $x^0 \neq 0$) gleich der Abbildung

$$(x,y) \mapsto (x+y,xy)$$

wäre. F ist außerdem symmetrisch, da

$$F([x],[y]) = [(x^0y^0,x^0y^1 + x^1y^0,x^1y^1)] = [(y^0x^0,y^0x^1 + y^1x^0,y^1x^1)] = F([y],[x])$$

gilt wegen der Kommutativität der reelen Zahlen unter Addition und Multiplikation.

(b) Wir identifizieren \mathbb{R}^2 mit dem Raum aller Monomen nach $(x^0, x^1) \sim x^0 + tx^1$ und \mathbb{R}^2 mit dem Raum aller quadratischen Polynomen nach $(z^0, z^1, z^2) \sim z^0 + tz^1 + t^2z^2$. Es gilt dann:

$$F([x^0+x^1t],[y^0+y^1t])=[(x^0y^0)+t(x^0y^1+x^1y^0)+t^2(x^1y^1)].$$

F wäre genau dann surjektiv falls sich alle quadratischen Polynome in der Form $(x^0y^0) + t(x^0y^1 + x^1y^0) + t^2(x^1y^1)$ schreiben lassen. Dies gilt aber nicht, weil die Diskriminante solch eines Polynoms immer nichtnegativ sein müßte, da

$$(x^{0}y^{1} + x^{1}y^{0}) - 4(x^{0}y^{0})(x^{1}y^{1}) = (x^{0}y^{0} - x^{1}y^{1})^{2} \ge 0.$$

Aufgabe 4 (Beulefunktionen).

(a) Bemerke, daß $g_1(t) = g_0(t) \cdot g_0(1-t)$ für alle $t \in \mathbb{R}$, wobei

$$g_0: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} e^{-\frac{1}{x}}, & x > 0\\ 0, & x \le 0 \end{cases}.$$

Es reicht daher zu zeigen, daß g_0 glatt ist. Dies folgt aber aus der Tatsache, daß für alle $k \in \mathbb{N}$ und t > 0, $g_0^{(k)}(t) = P_{2k}(\frac{1}{t})e^{-\frac{1}{t}}$, wobei $P_{2k}(z)$ irgendeinen polynomischen Ausdruck vom Grad 2k in z bezeichnet, da g_0 offensichtlich auf $\mathbb{R}\setminus\{0\}$ glatt ist; bei 0 verschwinden dann alle Ableitungen von g_0 , und für alle k gilt $\lim_{t\searrow 0}g_0^{(k)}(t)=0$.

(b) Wir können g_2 als

$$g_2(t) = \frac{\int_0^t g_1}{\int_0^1 g_1}$$

schreiben, da $g_1 = 0$ auf $]-\infty, 0[$ und $]1, \infty[$. Es folgt dann aus dem Fundamentaltheorem der Integralrechnung, daß g'_2 existiert, und $g'_2 = \frac{g_1}{\int_0^1 g_1}$, aber wir wissen schon, daß diese

Funktion glatt ist. Da $g_1(t) = 0$ für $t \le 0$ gilt daher $g_2(t) = \frac{-\int_t^0 g_1}{\int_0^1 g_1} = 0$ für alle t < 0, und für $t \ge 1$ gilt $g_2(t) = \frac{\int_0^1 g_1 + \int_1^t g_1}{\int_0^1 g_1} = \frac{\int_0^1 g_1}{\int_0^1 g_1} = 1$, da $g_1(t) = 0$ für t > 1.

(c) Die Funktion $g_3 = \left(\mathbb{R}^n \ni x \mapsto \frac{1}{3} \left(\frac{|x|^2}{\varepsilon^2} - 1\right) \in \mathbb{R}\right)$ ist glatt und hat die folgenden Eigenschaften:

$$g_3(x) \le 0 \Leftrightarrow |x|^2 \le \varepsilon^2 \Leftrightarrow |x| \le \varepsilon$$

 $g_3(x) \ge 1 \Leftrightarrow \frac{|x|^2}{\varepsilon^2} - 1 \ge 3 \Leftrightarrow |x| \ge 2\varepsilon$.

Daher gilt $(g_2 \circ g_3)(x) \equiv 0$ für $|x| \leq \varepsilon$ und $(g_2 \circ g_3)(x) \equiv 1$ für $|x| \geq 2\varepsilon$. Die Funktion $h := 1 - g_2 \circ g_3$ hat dann die begehrte Eigenschaft.