Single Cycle Architecture

Part 2

Office hours: this week

- A) Today 1-2pm my office
- B) Wed: 1-2:30
- C) Thursday 1:30-2:30
- Check Piazza for Sean's Office Hours Also and midterm related info

What Statement about memory in the Datapath is NOT true ©

- A) the instruction and data memory are a type of RAM
- B) Data memory can be read from and written to
- C) The Registers contain memory in flip flops
- D) The Register file allows reading and writing to the registers
- E) The Instruction memory in the datapath allows reading of instructions and writing new instructions

How the Instruction Bits are Broken up:

beq, subi, addi

6 bits

Once we access data memory \rightarrow we now have 32 bits of data

16 bits

- * this data needs to be written to destination register (rt)
- * therefore send data back to register file

5 bits

5 bits

Load/store: 1w	\$t1, 100(\$t2	$2) \Rightarrow 1 \text{w rt}, 100 \text{(rs)}$	
31 26 25	21 20 16	15	0
35/43	rs rt	offset	

lw \$t1, 100(\$t2)

We need rt to be the Write Register

Need more hardware here: to connect rt as also an option for a write register

Load/store: lw \$t1, 100(\$t2) \Rightarrow lw rt,100(rs)

31 2625 2120 1615 0

35/43 rs rt offset

6 bits 5 bits 5 bits 16 bits

BRANCHING

- A) Write Register for SW and Beq instruction
- B) Write Register for LW and SW
- C) Write Register for Data Memory
- D) Write Register between an Rformat Instruction and LW
- E) Write Register between Add instruction and Sub Instruction

BRANCHING

BRANCHING

Branch instruction ALU will subtract Two Source Registers

C)28x32 +PC+4 D)28x4 + (PC+4)

Branch instruction ALU will subtract Two Source Registers

C)28x32 +PC+4 D)28x4 + (PC+4)

Branch instruction ALU will subtract Two Source Registers

What is the value here?

If I know \$t1==\$t2
Result is zero

E) ALUSrc =0, Branch =1, Zero =0

Control Units: Course Notes

Load/store: lw \$t1, 100(\$t2) \Rightarrow lw rt, 100(rs)

31 2625 2120 1615 0

35/43 rs rt offset

6 bits 5 bits 5 bits 16 bits

Load/store: lw \$t1, 100(\$t2) \Rightarrow lw rt,100(rs)

31 2625 2120 1615 0

35/43 rs rt offset

6 bits 5 bits 5 bits 16 bits

Load/store: lw \$t1, 100(\$t2) \Rightarrow lw rt, luu(rs)

31 2625 2120 1615 0

35/43 rs rt offset

6 bits 5 bits 5 bits 16 bits

Load/store: lw \$t1, 100(\$t2) \Rightarrow lw rt, 100(rs)

31 2625 2120 1615 0

35/43 rs rt offset

6 bits 5 bits 5 bits 16 bits

WHICH ONE OF THE FOLLOWING MUST BE TRUE TO COMPLETE SW instruction:

- A) MemWrite = OFF (Low), MemtoReg = 1
- B) ALUSrc = 1 RegDst = 1
- C) ALUSrc =1, MemWrite =1
- D)MemtoReg = 1, MemWrite = 1
- E) MemtoReg = X, ALUSrc =0

Type	Reg	ALU	Mem	Reg	Mem	Mem	Branch	ALU	ALU	
	Dst	Src	ToReg	Write	Read	Write		op1	op0	
R-format	1	0	0	1	0	0	0	1	0	
lw	0	1	1	1	1	0	0	0	0	
SW	X	1	X	0	0	1	0	0	0	
beq	X	0	X	0	0	0	1	0	1	

apping of operation to ALU control input:

11 8	1		1		
Opcode	Operation	ALUop	Funct	ALU	ALU
				action	ctrl input
35	lw	00	XXXXXX	add	0010
43	SW	00	XXXXXX	add	0010
4	beq	01	XXXXXX	subtract	0110
0	add	10	100000	add	0010
0	sub	10	100010	subtract	0110
0	and	10	100100	AND	0000
0	or	10	100101	OR	0001
0	slt	10	101010	slt	0111

AL	ALUop			Funct field							
ALUop1	ALUop0	F5	F4	F3	F2	F1	F0	3210			
0	0	X	X	X	X	X	X	0010			
X(0)	1	X	X	X	X	X	X	0110			
1	X(0)	X	X	0	0	0	0	0010			
1	X(0)	X	X	0	0	1	0	0110			
1	X(0)	X	X	0	1	0	0	0000			
1	X(0)	X	X	0	1	0	1	0001			
1	X(0)	X	X	1	0	1	0	0111			

apping of operation to ALU control input:

apping of operation to MDe control input.						
Opcode	Operation	ALUop	Funct	ALU	ALU	
				action	ctrl input	
35	lw	00	XXXXXX	add	0010	
43	SW	00	XXXXXX	add	0010	
4	beq	01	XXXXXX	subtract	0110	
0	add	10	100000	add	0010	
0	sub	10	100010	subtract	0110	
0	and	10	100100	AND	0000	
0	or	10	100101	OR	0001	
0	slt	10	101010	slt	0111	

ALUop			F	Operation				
ALUop1	ALUop0	F5	F4	F3	F2	F1	F0	3210
0	0	X	X	X	X	X	X	0010
X(0)	1	X	X	X	X	X	X	0110
1	X(0)	X	X	0	0	0	0	0010
1	X(0)	X	X	0	0	1	0	0110
1	X(0)	X	X	0	1	0	0	0000
1	X(0)	X	X	0	1	0	1	0001
1	X(0)	X	X	1	0	1	0	0111

Type	Reg	ALU	Mem	Reg	Mem	Mem	Branch	ALU	ALU
	Dst	Src	ToReg	Write	Read	Write		op1	op0
R-format	1	0	0	1	0	0	0	1	O
lw	0	1	1	1	1	0	0	0	0
SW	X	1	X	0	0	1	0	0	0
beq	X	0	X	0	0	0	1	0	1

Type	Dec Opcode	Binary Opcode
R-format	0	000 000
lw	35	100 011
SW	43	101 011
beq	4	000 100

