WEEK 1: LINEAR MOTION

- Objectives:
- To explain the concepts of linear motion.
- To examine graphs of motion
- To derive Equations of motion and calculations about motion

Concepts of Linear Motion

- Displacement is the distance an object is from a fixed reference point in a specified direction.
- Displacement is a vector quantity. It has both magnitude and direction.
- Speed is the distance travelled per unit time.
- Speed is a scalar quantity. It refers to the total distance travelled.
- Velocity is the change in displacement per unit time.
- Velocity is a vector quantity, being derived from displacement not the total distance travelled.
- Acceleration is the rate of change of velocity.
- Acceleration is a vector quantity.
- An acceleration in the direction in which a body is travelling will increase its velocity.
- An acceleration in the opposite direction to which a body is travelling will decrease its velocity.

Graphs of Motion

Displacement-time graphs

Velocity-time graphs

$$v = \text{gradient} = \frac{\Delta S}{\Delta t}$$

$$a = \text{gradient} = \frac{v - u}{t_2 - t_1} = \frac{\Delta v}{\Delta t}$$

Equations of Motion and Calculations

 The equations of uniformly accelerated motion are:

1.
$$v = u + at$$

$$2. \ \ s = \frac{v+u}{2} \ t$$

3.
$$s = ut + \frac{1}{2}at^2$$

4.
$$v^2 = u^2 + 2as$$

WEEK 2 PROJECTILES

- Objectives
- To explain the Concepts of projectile motion
- To state Equations of trajectory
- To determine Time of flight
- To find Maximum height, Range, Direction of motion of projectile and motion of a projectile from a cliff.

Concepts of Projectile Motion

Equations of Trajectory

• Trajectory formula is given by

•
$$y = x \tan \theta - \frac{gx^2}{2v^2 \cos^2 \theta}$$

Where,

y is the horizontal component,

x is the vertical component,

g is gravity value,

 ${m v}$ is initial velocity, and ${m heta}$ is angle of inclination of the initial velocity from horizontal axis

Time of Flight, Maximum Height and Range

- Trajectory related equations are:
- Time of Flight: $t = \frac{2 v_0 \sin \theta}{g}$
- Max Height reached: $H = \frac{v_0^2 \sin^2 \theta}{2g}$
- Horizontal Range: $R = \frac{v_0^2 \sin^2 \theta}{g}$

Direction of Motion of Projectile and Motion of a Projectile from a Cliff

- Marshall throws a ball at an angle of 60°. If it moves at the rate of 6m/s and Steve catches it after 4s. Calculate the vertical distance covered by it.
- The horizontal distance is given by: $x = v_0 t = 6m/s \times 4s = 24 m$ $y = x \tan \theta \frac{gx^2}{2 v^2 \cos^2 \theta}$

$$y = 24 \tan 60 - \frac{9.8 \times 24^2}{2 \times 6^2 \cos^2 60}$$

$$y = -272.032 \text{ m}$$