Left recursion and Left factoring

Session Outcomes

- At the end of this session, participants will be able to
 - Understand different types of grammar
 - Understand the concepts of left recursion
 - Understand the concepts of left factoring

Outline

- Elimination of left recursion
- Left factoring

Types of grammar

- Ambiguous grammar
- Un ambiguous grammar
- Recursive grammar
- Non deterministic grammar
- Deterministic grammar

Left Recursion

- A grammar is *left recursive* if it has a non-terminal A such that there is a derivation.
 - $A_{+} \Rightarrow A\alpha$ for some string α
- Top-down parsing techniques cannot handle leftrecursive grammars.
- So, we have to convert our left-recursive grammar into an equivalent grammar which is not left-recursive.
- The left-recursion may appear in a single step of the derivation (*immediate left-recursion*), or may appear in more than one step of the derivation.

Immediate Left-Recursion

$$A \to A \alpha \mid \beta$$
 where β does not start with A
$$\downarrow \qquad \text{eliminate immediate left recursion}$$

$$A \to \beta \ A'$$

$$A' \to \alpha \ A' \mid \epsilon \text{ an equivalent grammar}$$

In general,

$$A \rightarrow A \alpha_1 \mid ... \mid A \alpha_m \mid \beta_1 \mid ... \mid \beta_n \text{ where } \beta_1 ... \beta_n \text{ do not start with } A$$

$$\downarrow \qquad \text{eliminate immediate left recursion}$$

$$A \rightarrow \beta_1 A' \mid \dots \mid \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid \dots \mid \alpha_m A' \mid \epsilon$$

an equivalent grammar

Example

$$E \rightarrow E+T \mid T$$

 $T \rightarrow T*F \mid F$

$$F \rightarrow id \mid (E)$$

 $\downarrow \downarrow$

eliminate immediate left recursion

$$E \rightarrow T E'$$

$$E' \rightarrow +T E' \mid \epsilon$$

$$T \rightarrow F T'$$

$$T' \rightarrow *F T' \mid \varepsilon$$

$$F \rightarrow id \mid (E)$$

Left-Recursion -- Problem

- A grammar cannot be immediately left-recursive, but it still can be left-recursive.
- By just eliminating the immediate left-recursion, we may not get a grammar which is not left-recursive.

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Sc \mid d$ This grammar is not immediately left-recursive,

but it is still left-recursive.

$$\underline{S} \Rightarrow Aa \Rightarrow \underline{S}ca$$
 or $\underline{A} \Rightarrow Sc \Rightarrow \underline{A}ac$ causes to a left-recursion

• So, we have to eliminate all left-recursions from our grammar

Algorithm

- Input: Grammar G with no cycles or ε-productions
- Arrange the non terminals in some order A1, A2, ..., An for i = 1, ..., n do

```
for j=1,\ldots,i-1 do replace each Ai \rightarrow Aj \gamma with Ai \rightarrow \delta 1 \gamma \mid \delta 2 \gamma \mid \ldots \mid \delta k \gamma where Aj \rightarrow \delta 1 \mid \delta 2 \mid \ldots \mid \delta k
```

enddo

eliminate the *immediate left recursion* in *Ai* **enddo**

Example1

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid f$

- Order of non-terminals: S, Afor S:
 - we do not enter the inner loop.
 - there is no immediate left recursion in S.

for A:

- Replace A \rightarrow Sd with A \rightarrow Aad | bd So, we will have A \rightarrow Ac | Aad | bd | f
- Eliminate the immediate left-recursion in A

$$A \rightarrow bdA' \mid fA'$$

 $A' \rightarrow cA' \mid adA' \mid \epsilon$

So, the resulting equivalent grammar which is not left-recursive is:

$$S \rightarrow Aa \mid b$$

 $A \rightarrow bdA' \mid fA'$
 $A' \rightarrow cA' \mid adA' \mid \epsilon$

Example2

$$S \rightarrow Aa \mid b$$

 $A \rightarrow Ac \mid Sd \mid f$

- Order of non-terminals: A, S for A:
 - we do not enter the inner loop.
 - Eliminate the immediate left-recursion in A

$$A \rightarrow SdA' \mid fA'$$

 $A' \rightarrow cA' \mid \epsilon$

for S:

- Replace $S \rightarrow Aa$ with $S \rightarrow SdA'a \mid fA'a$ So, we will have $S \rightarrow SdA'a \mid fA'a \mid b$
- Eliminate the immediate left-recursion in S

$$S \rightarrow fA'aS' \mid bS' S' \rightarrow dA'aS' \mid \epsilon$$

So, the resulting equivalent grammar which is not left-recursive is:

$$S \rightarrow fA'aS' \mid bS' S' \rightarrow dA'aS' \mid \epsilon A \rightarrow SdA' \mid fA' A' \rightarrow cA' \mid \epsilon$$

Non deterministic grammar

 Grammar with common prefix between at least two different productions from the same LHS

```
Eg.
S →aSb | aA |b
S → ab |abA
A → aB |a
B → b
```

Disadvantage: During parsing non-deterministic grammar requires lot of back tracking (time consuming)

Deterministic grammar

 Grammar without any common prefix in any of the different productions from same LHS

Note: To make the grammar suitable for predictive or topdown parsing, we need to convert the non deterministic grammar into deterministic grammar using the process called as left factoring.

Left-Factoring

 A predictive parser (a top-down parser without backtracking) insists that the grammar must be *left-factored*.

grammar → a new equivalent grammar suitable for predictive parsing

```
stmt \rightarrow if expr then stmt else stmt
if expr then stmt
```

 when we see if, we cannot now which production rule to choose to re-write stmt in the derivation.

Left-Factoring cont...

• In general,

 $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$ where α is non-empty and the first symbols of β_1 and β_2 (if they have one)are different.

• when processing α we cannot know whether expand

A to $\alpha\beta_1$ or A to $\alpha\beta_2$

But, if we re-write the grammar as follows

 $A \rightarrow \alpha A'$

 $A' \rightarrow \beta_1 \mid \beta_2$ so, we can immediately expand A to $\alpha A'$

Left-Factoring -- Algorithm

 For each non-terminal A with two or more alternatives (production rules) with a common non-empty prefix, let say

$$A \rightarrow \alpha \beta_1 \mid ... \mid \alpha \beta_n \mid \gamma_1 \mid ... \mid \gamma_m$$

convert it into

$$A \rightarrow \alpha A' \mid \gamma_1 \mid \dots \mid \gamma_m$$

 $A' \rightarrow \beta_1 \mid \dots \mid \beta_n$

Left-Factoring – Example1

A
$$\rightarrow$$
 abB | aB | cdg | cdeB | cdfB
 $\downarrow \downarrow$
A \rightarrow aA' | cdg | cdeB | cdfB
A' \rightarrow bB | B
 $\downarrow \downarrow$
A \rightarrow aA' | cdA"
A' \rightarrow bB | B
A" \rightarrow g | eB | fB

Left-Factoring – Example2

$$A \rightarrow ad \mid a \mid ab \mid abc \mid b$$

$$\downarrow \downarrow$$

$$A \rightarrow aA' \mid b$$

$$A' \rightarrow d \mid \epsilon \mid b \mid bc$$

$$\downarrow \downarrow$$

$$A \rightarrow aA' \mid b$$

$$A' \rightarrow d \mid \epsilon \mid bA''$$

$$A'' \rightarrow \epsilon \mid c$$

Summary

- Eliminating left recursion
- Left factoring

Check your understanding?

- 1. Eliminate left recursion in the following grammars
- (a) $A \rightarrow Abd \mid Aa \mid a$ $B \rightarrow Be \mid b$
- (b) $S \rightarrow (L) / a$ $L \rightarrow L$, S / S
- 2. Left factorize the following grammar
 - (a)S \rightarrow iEtS | iEtSeS | a E \rightarrow b
 - (b) S → aSSbS | aSaSb | abb | b

