What is a gene set?

- Genes working together in a pathway (e.g. energy release through Krebs cycle)
- Genes located in the same compartment in a cell (e.g. all proteins located in the cell nucleus)
- Proteins that are all regulated by a same transcription factor
- Custom gene list that comes from a publication and that are down-regulated in a mutant
- List of genes associated with a disease
- ... etc!
- Several gene sets are grouped into Knowledge bases

Gene ontology

- http://geneontology.org/
- collaborative effort to address the need for consistent descriptions of gene products across databases
- GO Consortium: develop a comprehensive, computational model of biological systems, ranging from the molecular to the organism level, across the multiplicity of species in the tree of life
- GO terms = GO categorizations
- GO term: each with a name (DNA repair) and a unique accession number (GO:0005125)

Gene ontology

GO ontologies: GO terms organized in 3 independent controlled vocabularies

- **Molecular function**: represents the biochemical activity of the gene product, such activities could include "ligand", "GTPase", and "transporter".
- **Cellular component**: refers to the location in the cell of the gene product. Cellular components could include "nucleus", "lysosome", and "plasma membrane".
- Biological process: refers to the biological role involving the gene or gene product, and could include "transcription", "signal transduction", and "apoptosis". A biological process generally involves a chemical or physical change of the starting material or input.

Gene ontology

KEGG

https://www.genome.jp/kegg/

KEGG PATHWAY Database

Wiring diagrams of molecular interactions, reactions and relations

KEGG2	PATHWAY	BRITE	MODULE	ко	GENES	DISEASE	DRUG	COMPOUND		
Select prefix		Enter keywords								
map	Organism					Go	Help			

[New pathway maps | Update history]

Pathway Maps

KEGG PATHWAY is a collection of manually drawn pathway maps representing our knowledge of the molecular interaction, reaction and relation networks for:

- 1. Metabolism
 - Global/overview Carbohydrate Energy Lipid Nucleotide Amino acid Other amino Glycan Cofactor/vitamin Terpenoid/PK Other secondary metabolite Xenobiotics Chemical structure
- 2. Genetic Information Processing
- 3. Environmental Information Processing
- 4. Cellular Processes
- 5. Organismal Systems
- 6. Human Diseases
- 7. Drug Development

KEGG PATHWAY is the reference database for pathway mapping in KEGG Mapper.

Reactome

https://reactome.org/

Pathway Browser

Visualize and interact with Reactome biological pathways

Analysis Tools

Merges pathway identifier mapping, over-representation, and expression analysis

ReactomeFIViz

Designed to find pathways and network patterns related to cancer and other types of diseases

Documentation

Information to browse the database and use its principal tools for data analysis

MSigDB

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp

- hallmark gene sets are coherently expressed signatures derived by aggregating many MSigDB gene sets to represent well-defined biological states or processes.
- **C1** positional gene sets for each human chromosome and cytogenetic band.
- C2 curated gene sets from online pathway databases, publications in PubMed, and knowledge of domain experts.
- c3 regulatory target gene sets based on gene target predictions for microRNA seed sequences and predicted transcription factor binding sites.
- computational gene sets defined by mining large collections of cancer-oriented microarray data.

- C5 ontology gene sets consist of genes annotated by the same ontology term.
- oncogenic signature gene sets defined directly from microarray gene expression data from cancer gene perturbations.
- cell states and perturbations within the immune system.
- cell type signature gene sets curated from cluster markers identified in single-cell sequencing studies of human tissue.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707969/

WikiPathways

https://www.wikipathways.org/index.php/WikiPathways

GSEA of other gene sets in R

```
ClusterProfiler: GSEA for KEGG pathways
```

```
gseKEGG(geneList, organism = "hsa", keyType = "kegg", exponent = 1,
   nPerm = 1000, minGSSize = 10, maxGSSize = 500,
   pvalueCutoff = 0.05, pAdjustMethod = "BH", verbose = TRUE,
   use_internal_data = FALSE, seed = FALSE, by = "fgsea")
```

Import a .gmt file of gene sets and convert to format needed for clusterProfiler

```
read.gmt(gmtfile)
```

```
> head(term2gene_h)
```

```
ont gene
1 HALLMARK_TNFA_SIGNALING_VIA_NFKB JUNB
2 HALLMARK_TNFA_SIGNALING_VIA_NFKB CXCL2
3 HALLMARK_TNFA_SIGNALING_VIA_NFKB ATF3
4 HALLMARK_TNFA_SIGNALING_VIA_NFKB NFKBIA
5 HALLMARK_TNFA_SIGNALING_VIA_NFKB TNFAIP3
6 HALLMARK_TNFA_SIGNALING_VIA_NFKB PTGS2
```

conversion of gene ID types with clusterProfiler

```
bitr(geneID, fromType, toType, OrgDb, drop = TRUE)
```

Recap and exercise 3

- We have seen how to perform GSEA using the built-in GO gene sets. Please perform GSEA with the built-in KEGG pathways, as well as with the hallmark gene sets obtained from MSigDB.
- Exercise 3: use functions of clusterProfiler and data provided in Ex. 1, and hallmark gene sets downloaded from MSigDB
 - First convert the gene symbols to EntrezID to perform a GSEA of KEGG pathways (with argument minGSSize=30).
 - Are the majority of gene sets rather up-regulated or down-regulated?
 - Is there a KEGG immune-related gene set coming up? Is there a KEGG Natural killer gene set coming up?
 - If you want to see which genes are included in one of the built-in KEGG pathways, where could you find this information?
 - Import the hallmark gene sets and run a GSEA. How many significant gene sets are there?

barplot

ego <- enrichGO(de, OrgDb='org.Hs.eg.db', ont="BP", keyType = "SYMBOL") barplot(ego, showCategory=20)

dotplot(ego, showCategory=20)

dotplot

cnetplot

cnetplot(ego, categorySize="pvalue", foldChange=geneList)

Enrichment map

emapplot(ego)

• Ridgeplot

ggo <- gseGO(gl, ont="BP") ridgeplot(ggo)

visualizing GSEA result

gseaplot(h_NK_vs_Th, geneSetID = "BREAST", title=" BREAST")

pathview

Functional analysis

Functional analysis: Pathway topology tools

Signaling pathway impact analysis (SPIA)
Identification of dys-regulated pathways: taking into account gene interaction information + fold changes and adjusted p-values from differential expression analysis

KEGG pathway	P _{NDF}	P _{PERT}	P _G	P _{EDR}	P _{EWER}	Status
Focal adhe4510	0.0001	0.0000	0.0000	0.00000	0.00000	Act.
ECM-recept4512	0.0001	0.0004	0.0000	0.00001	0.00002	Act.
PPAR signa3320	0.0000	0.1240	0.0000	0.00011	0.00034	Inh.
Alzheimers5010	0.0000	0.7260	0.0001	0.00059	0.00235	Act.
Adherens j4520	0.0001	0.0852	0.0001	0.00090	0.00452	Act.
Axon guida4360	0.0002	0.2324	0.0006	0.00487	0.02922	Act.
MAPK signa4010	0.0001	0.7112	0.0007	0.00504	0.03527	Inh.
Tight junc4530	0.0007	0.5156	0.0032	0.02073	0.16585	Act.

 $P_{NDE} = P(X \ge N_{DE} \mid H_0)$ P_{PERT} : probability to observe a larger perturbation than observed P_G : combination of P_{NDE} and P_{PERT} P_{FDR} : adjusted FDR p-value P_{FWER} : adjusted FDR p-value (more conservative)

https://bioconductor.org/packages/release/bioc/html/SPIA.html

Functional analysis: Pathway topology tools

https://bioconductor.org/packages/release/bioc/html/SPIA.html

https://biit.cs.ut.ee/gprofiler/gost

Overview

The **D**atabase for **A**nnotation, **V**isualization and **I**ntegrated **D**iscovery (**DAVID**) v6.8 comprises a full Knowledgebase update to the sixth version of our original web-accessible programs. DAVID now provides a comprehensive set of functional annotation tools for investigators to understand biological meaning behind large list of genes. For any given gene list, DAVID tools are able to:

- ▼ Identify enriched biological themes, particularly GO terms
- ✓ Discover enriched functional-related gene groups
- Cluster redundant annotation terms
- ✓ Visualize genes on BioCarta & KEGG pathway maps
- ☑ Display related many-genes-to-many-terms on 2-D view.
- ✓ Search for other functionally related genes not in the list
- ✓ List interacting proteins

- Highlight protein functional domains and motifs
- ▼ Redirect to related literatures
- ✓ Convert gene identifiers from one type to another.

https://david.ncifcrf.gov/home.jsp

- g:Profiler http://biit.cs.ut.ee/gprofiler/index.cgi
- DAVID http://david.abcc.ncifcrf.gov/tools.jsp
- clusterProfiler http://bioconductor.org/packages/release/bioc/html/clusterProfiler.html
- GeneMANIA http://www.genemania.org/
- GenePattern http://www.broadinstitute.org/cancer/software/genepattern/ (need to register)
- WebGestalt http://bioinfo.vanderbilt.edu/webgestalt/ (need to register)
- AmiGO http://amigo.geneontology.org/amigo
- ReviGO (visualizing GO analysis, input is GO terms) http://revigo.irb.hr/
- WGCNA http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork
- GSEA http://software.broadinstitute.org/gsea/index.jsp
- SPIA https://www.bioconductor.org/packages/release/bioc/html/SPIA.html
- GAGE/Pathview http://www.bioconductor.org/packages/release/bioc/html/gage.html

Recap and Exercise 4

 We have seen several types of visualization methods of functional enrichment results

Exercise 4: create the following figures:

- barplot of –log10(p-value) of top 10 GO p-values
- GSEA plot for HALLMARK MTORC1 SIGNALING
- pathview map for KEGG Natural Killer mediated cytotoxicity (optional: with none-significant genes in grey)

Some links

- Contact Tania if you wish to discuss enrichment analysis of your data more specifically:
 - tania.wyss@sib.swiss
- Contact the head of the Bioinformatics Core Facility if you need more extensive biostatics support:
 - mauro.delorenzi@sib.swiss

Links:

limma (for gene expression analysis and also includes functions for enrichment analysis):

https://www.bioconductor.org/packages/devel/bioc/vignettes/limma/inst/doc/usersguide.pdf edgeR:

https://www.bioconductor.org/packages/release/bioc/vignettes/edgeR/inst/doc/edgeRUsersGuide.pdf DESeq2:

http://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html clusterProfiler:

https://yulab-smu.github.io/clusterProfiler-book/

bioconductor, introduction and structure

https://ivanek.github.io/analysisOfGenomicsDataWithR/02_IntroToBioc_html.html online tool for overrepresentation analysis

http://www.pantherdb.org/

Credits: 0.25 ECTS

- Please provide results of exercises 2, 3 & 4 and answers to the following questions in a document:
 - Perform GSEA of the NK vs Th data using the Reactome gene sets downloaded on the MSigDB website (use minGSSize=30)
 - How many gene sets are significantly enriched? Generate an ordered barplot of the NES of all genesets, and generate a barcode plot for the gene set with the lowest NES
- Sign up for credit here:
 - https://docs.google.com/document/d/1OT_1KDwr-7xKxwoNefKAnDTp4HPMr4UdNm2p6hmL-JI/edit#
- Send results to tania.wyss@sib.swiss

Thank you for your attention!

Please fill in the feedback available on the Moodle page:

https://edu.sib.swiss/course/view.php?id=550

Login: enrich21

Password: SIB-enrich21

We thank Linda Dib for providing course material