Head Injury Prediction for NASA's Integrated Medical Model

A. S. Weaver¹, A. E. Zakrajsek², B. E. Lewandowski¹, J. E. Brooker¹, and J. G. Myers¹

¹NASA Glenn Research Center, Cleveland, OH ²Purdue University, West Lafayette, IN

HRP Investigators' Workshop Houston, TX February 14, 2012

Integrated Medical Model (IMM)

- Probability and consequences of medical risks
- Integrate best evidence in a quantifiable assessment of risk
- Identify medical resources necessary to optimize health and mission success

Probabilistic Modeling

- Why computational modeling?
 - Event has not happened during space flight
 - No incidence rate
 - Many unknowns

 The Head Injury Module examines the likelihood of neurologic injury due to head impacts during standardized ISS increments to crewmembers during IVA activities.

Probabilistic Modeling Overview

- Construct a computational model
 - Define the initiating event scenario and resulting injury
 - Determine available data and develop parameter distributions
 - Mathematically model the physiological response
 - Perform Verification and Validation
 - Relate the physiological response to probability of injury
 - Determine probability of occurrence
- Use probabilistic risk assessment methodology
 - Monte Carlo simulations
 - Estimate the most likely probability and confidence intervals

Head Injury Mission Scenario

- Head impacts onboard the ISS
- Impact through the center of gravity
- Crewmember without a helmet
- Impacting structure is modeled as a fixed, rigid body

Injury Definition

- Moderate neurological injury
- Anterograde amnesia of 30 min 24 hrs
- Abbreviated Injury Scale (AIS) score of three and above

Lumped Parameter Mathematical Model

- A model of head acceleration response developed in [1] was modified for the ISS head impact scenario
- Allows for both head translation and rotation
- Stiffness and damping relationships taken from [2]

[1] Deb and Ali, 2004[2] Sulzer et. al., 2006

Lumped Parameter Mathematical Model

- The Head Injury Criteria (HIC) score was used to determine risk of injury.
- The relation of HIC to moderate head injury risk was developed from [3].
- The 5th-95th percentile uncertainty bands were used to define the injury corridor.

Input Distributions

- Head mass
- Head radius
- Moment of inertia
- Neck stiffness
- Impact velocity
- Incidence rate
- Probability of injury coefficients

Assumptions on Incidence Rate

- Data from Scheuring et. al. (2009) were used to develop a distribution for the event that an crew member hits his/her head.
- There were 9 total head injuries reported.
 - Created a distribution using only injuries from translation, impacts, and unknown categories

Assumptions on Velocity at Impact

- Velocities are given in NASA-STD-3000 as
 - 0.15-0.30 m/s for moving equipment
 - 0.40-0.60 m/s for translation
 - 1.8 m/s for "gymnastics"
- Percentages and bounds were constructed using injuries from transferring equipment, stowing equipment, translating, impacting structures, and unknown.

Model Validation

- The output of the current model was compared to data from a head-drop test [2]
 - Model showed a +1.2% error in peak acceleration and -1.0% error in HIC score when compared to experimental data.

Results of Monte Carlo Simulation

	Mean	Standard Deviation	5 th Percentile	95 th Percentile
Probability of Moderate Neurological Injury per six months (per year)	1.16×10^{-4} (2.32×10^{-4})	5.48×10^{-4} (1.10×10^{-3})	3.26×10^{-7} (6.52×10^{-7})	4.94×10^{-4} (9.88×10^{-4})

Sensitivity Analysis

 Percentage that each input variable accounts for the variability in the probability of injury output

Input Parameter	% Contribution to Variance		
Impact Velocity	64.80		
Injury Coefficient, b	23.58		
Incidence Rate	10.66		
Head Mass	0.94		
Injury Coefficient, a	0.01		
Moment of Inertia	0.00		
Neck Stiffness	0.00		

Assumptions and Limitations

- Minor injuries that may require med kit items, are not covered by this model.
- HIC score does not take rotation into account.
 Therefore, in order to obtain a more conservative result, only translation was considered.
- The headform impact model, which is used by the automobile industry to examine the effectiveness of countermeasures is assumed to accurately represent head impact onboard the ISS.

Thank You

Acknowledgements

- DeVon Griffin
- Eric Milo
- Michael McRae
- Elise Griffin

References

- [1] Deb A, Ali T. International Journal of Impact Engineering 2004;30: 521-539.
- [2] Sulzer J et. al. SAE International Conference on Digital Human Modeling. Lyon, France; 2006.
- [3] Marjoux D et. al. Accident Analysis & Prevention 2008;40: 1135-1148.

