

MAULANA ABUL KALAM AZAD UNIVERSITY OF TECHNOLOGY, WEST BENGAL

Paper Code: EC301 Electronic Devices UPID: 003460

Time Allotted: 3 Hours

Full Marks:70

The Figures in the margin indicate full marks. Candidate are required to give their answers in their own words as far as practicable

		Group-A (Very Short Answer Type Question)	
1. 4		er any ten of the following:	[1 x 10 = 10]
	(1)	of the term of the diode, the back resistance decrease with the of the term	perature.
	(8	ne amount of photo generated current increases slightly with an increase in	
	(11)	The capacitance of a reverse biased PN junctionas reverse bias is decreased.	
	(1)	In a PN junction with no external voltage, the electric field between acceptor and donor ion is call	ed
	(V	The free electron density in a conductor is $(1/1.6) \times 10^{22}$ /cm ³ the electron mobility is 10 cm ² /Vs value of resistivity	. Calculate the
	(VI	If Φs and ΦF denotes respectively the surface & Fermi potential, strong inversion takes place in n channel MOSFET	T, when
	(VI	The greatest wavelength of photons that a photodiode built of a semiconductor with a bandgap of detect is aroundnm.	2eV can
	(VII	Example of direct band gap semiconductor is	
	(IX	When the diode is reverse biased with a voltage of 6V and V _{bi} =0.63V. Calculate the total potential.	
		1BH62	
		± V1 V	
	(X)	L DIT	
	(XI)	region.	
		current for V _{GS} = 1400mV is	1mA . The drain
	(XII	Which type of photodetector is based on the principle of internal photoemission?	
		Group-B (Short Answer Type Question)	
		Answer any three of the following:	[5 x 3 = 15]
2.	Wh	nat are direct band gap & indirect band gap semiconductors? Draw E-K diagram for Si and GaAs.	[5]
3.	Dei	rive the expression for drain current for an ideal MOSFET at saturation.	[5]
4.	Dra	w and explain the output characteristics of B.T in CB configuration.	(5)
5.	Wh	at is meant by do operating point or Q point in a transistor characteristic? What is load line?	[5]
6.	If th	transconductance parameter is $2mA/V2$ for $V_{GS} = 1V \& Vt = 0.5 V$ calculate the linear resistance r_{DS} . Also mention	[5]
	the	region of operation if V _{DS} = 1V.	(5)
		Group-C (Long Answer Type Question)	
		Answer any three of the following:	[45346]
7.	(a)	Write down the mathematical expression for Fermi-Dirac probability function and plot f(E) Vs E _f for	[15 x 3 = 45]
	•	three different temperatures T= OK, 300 K & 2000 K.	[5]
		Explain different scattering mechanisms in semiconductor devices.	(5)
		Explain with E-K diagram, why LED emits light but pn-junction does not?	(5)
8.	(a)	Which of the two semiconductor materials between SI or Ge has larger conductivity at room	[5]
		temperature and why?	[5]
		What is an Ohmic contact?	[3]
	(c)	Can a Schottky diode be used as Ohmic contact ? Explain in brief.	[5]
			1/2

	(b)	Draw the symbol and I-V characteristics of a Zener diode.	[2]
9.	(a)	Explain the various modes of operation possible in a BJT.	[5]
	(b)	With the help of circuit diagram describe the operation of BJT in CE configuration.	[10]
10.	. (a)	Explain the band bending and channel inversion in case of NMOS.	[10]
	(b)	What is channel length modulation.	[5]
11.		What is mobility and conductivity, Define effective mass. Derive relationship between energy & momentum.	[5]
		Define mobility and write down its unit. Also give an expression that relates the mobility and diffusivity of carriers in a semiconductor. State the significance of this equation.	[5]
	(c)	A Si sample A is doped with 10 ¹⁸ atoms/cm ³ of Boron. Another sample B of identical dimensions is doped with 10 ¹⁸ atoms/cm ³ of Phosphorus. The ratio of electron to hole mobility is 3. The ratio of conductivity of sample A to sample B.	[5]

*** END OF PAPER ***

https://www.makaut.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स क्षेजे और 10 रुपये पार्ये, Paytm or Google Pay से