CHAPTER 2

> Problems:

(3) Griven,
$$\beta_A = 1.15$$
 $\sigma_A = 35\%$
 $\beta_B = 0.95$ $\sigma_B = 33\%$

$$Corr(A,B)$$
? $\omega_A > \omega_B$?

-> Appendix:

& Assumptions:

- 1) Righ-Free asset exists
- @ All first and second moments exist
- 3 Impossible to build a fully invested postfolio with zero risk
- @ Expected excess return on postfolio ((Fully invested with minimum risk) is positive.

La Characteristic Port Folios:

- → Assets have affributes beta, P[E ratio, m-cap, etc.
- → Characteristic PostFolio → uniquely capture the defining attribute

a= {a, a, ..., a,} - vector of osset attributes

hp= vector of risky asset holding (1. weights)

Exposure of postfolio he to attribute a ap= In anhen or ap= aphe

- Proposition 1

1 For any attribute a + 0, unique postfolio ha exists that has

minimum risk and unit exposure to a

$$h_{\alpha} = \frac{V^{-1}\alpha}{\alpha^{2} V^{-1}\alpha} \qquad (2A \cdot 1)$$

V -> covariance matrix of excess returns for the risky ossets

- includes long and short positions with leverage.

@ Variance of characteristic portfolio:

$$\sigma_a^2 = h_a^T V h_a = \frac{1}{a^T V^T a}$$
 (2 A · 2)

3 Beta of all assets w.r.t. portfolio ha is a

$$\Delta = \frac{Vh_a}{\sigma_a^2} \qquad (2A \cdot 3) \qquad \beta \quad \omega. v.t. \quad postfolio \quad p = \frac{Vh_p}{\sigma_p^2}$$

@ Two attributes a and I with char postfolios ha and ha.

a → exposure of postfolio ha to characteristic a: a ha $\lambda_{\alpha} \rightarrow$ " $\lambda : \lambda' h_{\alpha}$

$$\nabla_{a,b} = \alpha_a \nabla_a^2 = \lambda_a \nabla_a^2 \qquad (2A.4) \qquad \qquad \nabla_{a,b} = h_a^T V h_a = \left[\sigma_a^2 a^T \right] h_a = \alpha_a \sigma_a^2$$

- 6 K \rightarrow positive scalar. Characteristic postfolio of Ka is $\underline{h_a}$
- @ If a is weighted combination of d and f, then char. postfolio of a is weighted combination of hy and he

If
$$a = \frac{k_A d + k_F f}{\sigma_A^2}$$
, then
$$h_a = \left[\frac{k_A \sigma_a^2}{\sigma_A^2}\right] h_A + \left[\frac{k_F \sigma_a^2}{\sigma_I^2}\right] h_F \qquad (2A.5)$$

where,
$$\frac{1}{\sigma_a^2} = \left[\frac{K_a \alpha_d}{\sigma_a^2}\right] + \left[\frac{K_F \alpha_F}{\sigma_a^2}\right]$$

-> Portfolio C Suppose e = {1,1,...,1} is the attribute.

Postfolio C, the char postfolio for e is the wivinum

risk Fully invested postfolio

$$h_c = \frac{V^- e}{e^{\tau} V^- e}$$
 $\sigma_c^2 = \frac{1}{e^{\tau} V^- e}$

For any portfolio P, we have $\sigma_{P,c}^2 = e_P \sigma_c^2$

Postfolio B has
$$\beta$$
 as the attribute. $h_B = Benchmark postfolio$. $\beta = \frac{V h_B}{\sigma_b^2}$
Relationship blu postfolio B and C: $\sigma_{a,c}^2 = e_B \sigma_c^2 = \beta_c \sigma_b^2$

win ! w Ew s.t. w . i = 1

<u> 21 = 2m-7i = 0</u> w* = 25'i (12-i) Ti=1

L(w, x)= 1 wzw-2(wii-1)

= (i = 1.i).x λ = <u>|</u> i * £ ' i

w* = <u>£'i</u>

→ PortFolio q:	expected	exuss	returns	۶	have
postfolio q	as their	char.	postFolio		

- Proposition 2

→ The expected excess returns F have

postfolio q as their characteristic postfolio.

$$h_1 = \frac{V^{-1}f}{F^{T}V^{T}f}$$
 (2A.23)

①
$$SR_q = wax\{SR_p|p\} = (f^TV^{-1}f)^{y_2}$$
 (2A·24)

(2)
$$f_0 = 1$$
 (2A · 25) $\sigma_0^2 = \frac{1}{F^7 V^7 F}$ (2A · 26)

3
$$f = \frac{Vh_{\phi}}{\nabla_{\phi}^2} = \left[\frac{Vh_{\phi}}{\nabla_{\phi}}\right] \leq R_{\phi}$$
 (2A.27) From 3 in Proposition 1

$$q = \frac{f_c \sigma_q^2}{\sigma_c^2}$$
 (2A. 29) Follows from (2A.4): $\sigma_{q,c} = e_q \sigma_c^2 = f_c \sigma_q^2$

the char postfolio for alpha, minimum risk with

1001. alpha.

According to equation (2A.5), we can express h,

in terms of he and har.

From (2A·4), relationship b/w alpha and beta: TBA = QBTA = BATE.

However, $a_8=0$ by construction, so postfolios ALB and $\beta_A=0$.

- Proposition 3

let postfolio Q be the wor. postfolio of eqf. ha= ha | ea From item 6 in Proposition 1.

$$\underbrace{\frac{f_c}{\sigma_c^2}} = \underbrace{\frac{f_a}{\sigma_a^2}} (2A \cdot 36)$$

$$f = \frac{V h_q}{\sigma^2}$$
, $f_c \sigma_q^2 = e_q \sigma_c^2 \Rightarrow \frac{1}{\sigma_q^2} = \frac{f_c}{e_q \sigma_c^2}$

$$f = f_c \left(\frac{v h_0}{v_c^2 e_0} \right) = f_c \left(\frac{v h_0}{v_c^2} \right)$$
 "premultiply this by h_0 "???

$$\beta_{\alpha} = \frac{f_{\alpha} \sigma_{\alpha}^{2}}{f_{\alpha} \sigma_{\alpha}^{2}} \qquad (2A \cdot 37) \qquad \frac{h_{\alpha}}{\sigma_{\alpha}^{2}} = \frac{h_{\alpha}}{\sigma_{\alpha}^{2}} f_{\alpha}$$

Multiply eq. (2A·27) by
$$h_{g}$$
: $h_{g}^{T} = h_{g}^{T} \left[\frac{V h_{g}}{\sigma_{g}^{2}} \right] \rightarrow f_{g} = h_{g}^{T} V h_{g} \left[\frac{f_{g}}{\sigma_{g}^{2}} \right] = \frac{h_{g}^{T} V h_{g}}{\sigma_{g}^{2}} \left[\frac{\sigma_{g}^{2} f_{g}}{\sigma_{g}^{2}} \right]$

$$f_{g} = \beta_{g} \left[\frac{\sigma_{g}^{2} f_{g}}{\sigma_{g}^{2}} \right]$$

$$\beta_{a} = \frac{\beta_{c} f_{e}}{f_{c}} \qquad (2A \cdot 38)$$

 $e_{B}=1$ and $\sigma_{B,C}=e_{B}\sigma_{C}^{2}=\beta_{C}\sigma_{B}^{2}$ imply $\beta_{C}=\sigma_{C}^{2}/\sigma_{B}^{2}$ when this is combined with $\frac{f_{C}}{\sigma_{C}^{2}}=\frac{f_{B}}{\sigma_{C}^{2}}$, we get

→	Characteristic	Postfolio	Description
	F	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Characteristic postfolio of expected excess
	•	hq = <u>V-1+</u> + + V-1+	returns with minimum risk. Mox SR.
②	eaf	he= ha	Postfolio q is not long. eq > 0
Ü	γ,	ha= ha ea	l V
(3)	β	$h_B = \frac{V^{-1}\beta}{\beta^T V^{-1}\beta}$	The Bench work portfolio i.e., minimum
_	•	βTV-'B	risk portfelio with a beta of 1.
(4)	e	hc = V-1e e V-1e	The minimum-risk fully invested portfolio
		<u>e' V''e</u>	
6	$\alpha = F - \beta F_B$	ha	The minimum-risk postfolio with alpha
	. , . ,	,	of 100.1.