APPENDIX

A. Nomenclature

TABLE A1
PTION OF THE ABBREVIATIONS IN THIS PAPER

DESCRIPTION OF THE ABBREVIATIONS IN THIS PAPER			
Symbol	Meaning		
IES	integrated energy system		
IES-SR	security region of integrated energy system		
ECSR	energy circuit security region		
EPS-ECSR	ECSR of electric power system		
NGS-ECSR	ECSR of natural gas system		
IES-ECSR	ECSR of integrated energy system		

 $TABLE\ A2$ Description of the mathematical symbols in this paper

	Symbol Meaning	
	W	Operating point
	$oldsymbol{arOmega}_{ ext{EPS-ECSR}}$	ECSR of EPS
	$S_{\mathrm{l,e}i}$	power of power load node i
	$S_{1,cm}$	power required to drive compressor m
	$I_{ m n}$	vector of node current
	$m{I}_{ ext{n}}^{ ext{max}}$, $m{I}_{ ext{n}}^{ ext{min}}$	vectors of the upper and lower limits of
Symbols of		node current
EPS-ECSR	$I_{ m b}$	vector of branch current
	$m{I}_{ m b}^{ m max}$	vector of the current-carrying capacity
	$oldsymbol{U}_{ exttt{n}}$	vector of node voltage
	$oldsymbol{U}_{ ext{n}}^{ ext{max}}$, $oldsymbol{U}_{ ext{n}}^{ ext{min}}$	vectors of the upper and lower limits of
	\mathcal{O}_{n} , \mathcal{O}_{n}	node voltage
	<i>Y</i> _e	node admittance matrix of EPS
	<i>K</i> _e	transformer ratio matrix
	$oldsymbol{\Omega}_{ ext{NGS-ECSR}}$	ECSR of NGS
	$G_{1,\mathrm{g}j}$	flow rate of natural gas load node j
	$G_{ m l,GT}_n$	natural gas input by the gas generator n
	- 11	vectors of node flow of natural gas vector of the upper and lower limits of
	$oldsymbol{G}_{\mathrm{n}}^{\mathrm{max}}$, $oldsymbol{G}_{\mathrm{n}}^{\mathrm{min}}$	the node gas flow
	$oldsymbol{p}_{ m n}$	vector of node pressure of natural gas
Symbols of	-	vector of the upper and lower limits of
NGS-ECSR	$oldsymbol{p}_{\mathrm{n}}^{\mathrm{max}}$, $oldsymbol{p}_{\mathrm{n}}^{\mathrm{min}}$	node pressure
	$oldsymbol{G}_{ ext{b}}^{ ext{max}}$	vector of pipe capacity
	$K_{ m g}$	matrix of compressor pressure ratio
	$Y_{ m g}$	generalized node admittance matrix of NGS
	$\boldsymbol{A}_{\mathrm{g},\mathrm{L}}^{-1}$	Left inverse matrix of $A_{\rm g}$
Symbols of	$oldsymbol{arOmega}_{ ext{IES-ECSR}}$	ECSR of IES

$oldsymbol{F_{ m n}}{F_{ m n}}$	node pressure vector of energy flow vector of the upper limits of node flow
$oldsymbol{Y}_{ ext{IES}}$	generalized node admittance matrix of IES
$\stackrel{m{\psi}}{K_{ m g}}$	efficiency of compressor pressure ratio of compressor
$a_{ ext{GT}}, b_{ ext{GT}}, c_{ ext{GT}}, \ d_{ ext{GT}}, e_{ ext{GT}}$	heat consumption coefficients of gas generator active power output by the gas generator
$P_{ m GT}^{ m min}$	lower limit of $P_{\rm GT}$
$egin{aligned} Y_{ ext{g,pp}}, \ Y_{ ext{g,pg}}, \ Y_{ ext{g,gp}}, \ Y_{ ext{g,gg}} \end{aligned}$	block the rearranged $Y_{\rm g}$
$oldsymbol{p}_{ ext{n,p}}$	node pressure vector of the constant

vector of the upper and lower limits of

	$P_{ m GT}^{ m min}$	lower limit of $P_{\rm GT}$
	$egin{aligned} oldsymbol{Y}_{ ext{g,pp}}, & oldsymbol{Y}_{ ext{g,pp}}, \ oldsymbol{Y}_{ ext{g,gp}}, & oldsymbol{Y}_{ ext{g,gg}} \end{aligned}$	block the rearranged $Y_{\rm g}$
	$p_{\mathrm{n,p}}$	node pressure vector of the constant pressure node
	$m{G}_{ ext{n,p}}$	injection flow vector of the constant pressure node
	$m{p}_{ m n,g}$	node pressure vector of the constant injection flow node
	$G_{ m n,g}$	injection flow vector of the constant injection flow node
Symbols of solution and	D^{max}	Distance error threshold for hyperplane fitting
observation	H^0	initial hyperplane
for ECSR	$oldsymbol{H}_{j}^{k}$	The hyperplane <i>j</i> during the <i>k</i> -th segmented fitting
	$D_{W_{\mathrm{b}} o H_{j}^{k}}$	distance from W_b to H_j^k
	$D_{\mathbf{W_b} \to \mathbf{H}^k}$	The minimum value of $D_{W_b \to H_j^k}$
	. в	during the k-th segment fitting
	$D_{W_{\mathrm{b}} o H^k}^{\mathrm{max}}$	The maximum value of a corresponding to all boundary points
		The distance from the origin to the
	D_i	corresponding hyperplane Hi at the safety boundary

B. ECSR modeling results of the cases

(1) EPS-ECSR

The EPS-ESSR of IEEE 14-node EPS is shown as equation (B1). In the equation, Y_e is the node admittance matrix, U_n and I_n are vectors composed of node voltage and current, K_e is the transformer ratio matrix.

$$\begin{split} & \boldsymbol{P}_{n} & \text{vector of node pressure of natural gas} \\ & \boldsymbol{Q}_{\text{EPS-SR}} = \left\{ \boldsymbol{W}_{s} = [S_{\text{l,e4}} \ S_{\text{l,e5}} \ S_{\text{l,e7}} \ S_{\text{l,e9}} \ S_{\text{l,e10}} \ S_{\text{l,e11}} \ S_{\text{l,e12}} \ S_{\text{l,e13}} \ S_{\text{l,e14}}] \middle| h(\boldsymbol{W}_{s}) = 0, g(\boldsymbol{W}_{s}) \leq 0 \right\} \\ & \boldsymbol{Y}_{e} \boldsymbol{U}_{n} = \boldsymbol{I}_{n} \\ & [20 \ 85 \ 40 \ 0 \ 0 \ 25 \ 0 \ 0 \ 0 \ 0 \ 10]^{T} \leq [S_{\text{l,e4}} \ S_{\text{l,e5}} \ S_{\text{l,e7}} \ S_{\text{l,e9}} \ S_{\text{l,e10}} \ S_{\text{l,e11}} \ S_{\text{l,e12}} \ S_{\text{l,e13}} \ S_{\text{l,e14}}]^{T} \\ & \leq [30 \ 100 \ 55 \ 10 \ 15 \ 40 \ 15 \ 5 \ 10 \ 15 \ 20]^{T} \\ & [1.06 \ 1.045 \ 1.01 \ 0.969 \ 0.97 \ 1.07 \ 1.012 \ 1.09 \ 1.006 \ 1.001 \ 1.007 \ 1.005 \ 1 \ 0.986]^{T} \leq \boldsymbol{U}_{n} \\ & \leq [1.06 \ 1.045 \ 1.01 \ 1.069 \ 1.07 \ 1.07 \ 1.112 \ 1.09 \ 1.106 \ 1.101 \ 1.107 \ 1.105 \ 1 \ 1.086]^{T} \\ & [S_{be1} \ S_{be2} \ S_{be3} \ S_{be4} \ S_{be5} \ S_{be6} \ S_{be7} \ S_{be8} \ S_{be9} \ S_{be10} \ S_{be11} \ S_{be12} \ S_{be13} \ S_{be14} \ S_{be15} \ S_{be16} \ S_{be17} \ S_{be18} \ S_{be20}]^{T} \\ & \leq [200 \ 100 \ 100 \ 75 \ 50 \ 50 \ 75 \ 50 \ 25 \ 75 \ 25 \ 25 \ 25 \ 25 \ 50 \ 10 \ 25 \ 10 \ 5 \ 10]^{T} \\ & \boldsymbol{K}_{e} = \begin{bmatrix} 0.978 \ 0.969 \ 0.932 \end{bmatrix}^{T} \end{aligned}$$

(2) NGS-ECSE

IES-ECSR

The NGS-ECSR of Belgian 9-node NGS is shown as equation (B2). In the equation, p_n and G_n are vectors composed of node gas pressure and gas flow, Y_g is the generalized node

admittance matrix of the NGS [21,28]. When deriving Y_g , the base value of natural gas flow is introduced, which bring the main error in the linearization process of ECSR modeling. The specific derivation and base value setting process of Y_g are detailed in [28].

$$\begin{cases} \mathbf{\Omega}_{\text{NGS-ECSR}} = & \left\{ \mathbf{W}_{\text{s}} = \left[G_{\text{l,e3}} \ G_{\text{l,e6}} \ G_{\text{l,e9}} \right] h(\mathbf{W}_{\text{s}}) = 0, g(\mathbf{W}_{\text{s}}) \le 0 \right\} \\ & \left\{ \mathbf{Y}_{\text{g}} \mathbf{p}_{\text{n}} = \mathbf{G}_{\text{n}} \\ \left[69 \ 126 \ 0 \ 0 \right]^{\text{T}} \le \left[G_{\text{l,e3}} \ G_{\text{l,e5}} \ G_{\text{l,e6}} \ G_{\text{l,e9}} \right]^{\text{T}} \le 129 \ 191 \ 30 \ 60 \right]^{\text{T}} \\ & \left[5.5 \ 0 \ 3 \ 0 \ 0 \ 0 \ 0 \ 2.5 \right]^{\text{T}} \le \mathbf{p}_{\text{n}} \le 6.5 \ 6.5 \ 6.5 \ 6.5 \ 6.5 \ 6.5 \ 6.5 \ 6.5 \ 6.5 \ 6.5 \ 6.5 \ 6.5 \ 6.5 \ 15 \ 115.7 \ 231.5 \ 115.7 \ 231.5 \ 115.7 \ 231.5 \ 115.7 \ 11$$

(3) IES-ECSE

The NGS-ECSR of 23-node IES is shown as equation (B3). In the equation, Y_{IES} is the generalized node admittance matrix of IES; P_n and F_n are vectors composed of node pressure (voltage or gas pressure) and flow rate (current or gas flow)

respectively; S_c is the power consumption of the compressor drive, p_0 and T_0 are the standard atmospheric pressure and temperature, Z and κ are the compression factor and adiabatic of natural gas, ψ and K_g are the efficiency and pressure ratio of compressor, V_{GH} is the total calorific value of natural gas.

$$\begin{cases} \mathbf{Q}_{\text{IES-ECSR}} = \left\{ \mathbf{W}_{\text{s}} = [S_{\text{l,e4}} \ S_{\text{l,e5}} \ S_{\text{l,e7}} \ S_{\text{l,e10}} \ S_{\text{l,e11}} \ S_{\text{l,e12}} \ S_{\text{l,e13}} \ S_{\text{l,e14}} \ G_{\text{l,e5}} \ G_{\text{l,e6}} \ G_{\text{l,e9}} \] \middle| h(\mathbf{W}_{\text{s}}) = 0, g(\mathbf{W}_{\text{s}}) \le 0 \right\} \\ = \left\{ \begin{aligned} \mathbf{Y}_{\text{IES}} & \mathbf{P}_{\text{n}} &= \mathbf{F}_{\text{n}} \\ [1.06 \ 1.045 \ \cdots \ 0.986 \ 5.5 \ 0 \ \cdots \ 2.5] \le \left[U_{1} \ U_{2} \ \cdots \ U_{14} \ p_{1} \ p_{2} \ \cdots \ p_{9} \right] \le \left[1.06 \ 1.045 \ \cdots \ 1.086 \ 6.5 \ 6.5 \ \cdots \ 6.5 \right] \\ [20 \ 85 \ \cdots \ 10 \ 69 \ 126 \ 0 \ 0] \le \left[S_{\text{l,e4}} \ S_{\text{l,e5}} \ \cdots \ S_{\text{l,e14}} \ G_{\text{l,e3}} \ G_{\text{l,e6}} \ G_{\text{l,e9}} \right] \le \left[30 \ 100 \ \cdots \ 20 \ 129 \ 191 \ 30 \ 60 \right] \\ \left[\left[S_{\text{be1}} \ S_{\text{be2}} \ \cdots \ S_{\text{be20}} \ G_{\text{bg1}} \ G_{\text{bg2}} \ \cdots \ G_{\text{bg11}} \right] \le \left[200 \ 100 \ \cdots \ 10 \ 231.5 \ 115.7 \ \cdots \ 115.7 \right] \\ \left[\left[0.978 \ \cdots \ 0.932 \ 1 \ \cdots \ 1 \right] \le \mathbf{K}_{\text{IES}} \le \left[0.978 \ \cdots \ 0.932 \ 1.2 \ \cdots \ 1.2 \right] \end{aligned} \right] \\ S.t.(22-2) \\ \left\{ S_{\text{c}} = \frac{151.4653 p_{0} ZTG_{\text{c}} \kappa}{\psi T_{0}(\kappa - 1)} \left(K_{\text{g}}^{\frac{\kappa}{\kappa - 1}} - 1 \right) \\ G_{\text{GT}} = \frac{1}{V_{\text{GH}}} \left(0.01 P_{GT}^{2} + 4P_{GT} + 150 + |15 \sin(0.5(P_{\text{GT}}^{\text{min}} - P_{GT})) |) \right) \end{aligned} \right.$$

C. Upper and lower boundary points in EPS-ECSR

 $\begin{tabular}{l} Table C1\\ Upper and lower boundary points in EPS-ECSR of IEEE 14-bus\\ system \end{tabular}$

SISIEM			
		$(S_{l,e2}, S_{l,e3}, S_{l,e4}, S_{l,e5}, S_{l,e6}, S_{l,e9}, S_{l,e10}, S_{l,e11}, S_{l,e12}, S_{l,e13}, S_{l,e14})$	
Upper	$W_{b,1}$ $W_{b,2}$ $W_{b,3}$	(20, 85, 40, 0, 0, 25, 0, 5, 5, 0, 19.25) (20, 85, 40, 0, 0, 25, 0, 5, 5, 5, 17.18) (20, 85, 40, 0, 0, 25, 0, 5, 5, 10, 14.06) 	
point	$W_{b,19715} \ W_{b,19716}$	(30, 100, 45, 10, 15, 25, 0, 5, 0, 0, 13.74) (30, 100, 45, 10, 15, 25, 0, 5, 0, 5, 11.88)	
Lower boundary	$egin{aligned} oldsymbol{W}_{ ext{b},1} \ oldsymbol{W}_{ ext{b},2} \ oldsymbol{W}_{ ext{b},3} \end{aligned}$	(30, 100, 45, 10, 15, 25, 0, 5, 0, 5, 10.00) (30, 100, 45, 10, 15, 25, 0, 5, 0, 0, 11.24) (30, 100, 45, 10, 15, 25, 0, 0, 5, 5, 10.87)	
point	$W_{\rm b,4254} \ W_{\rm b,4255}$	(20, 100, 45, 0, 0, 25, 0, 0, 5, 15, 11.89) (20, 100, 45, 0, 0, 25, 0, 0, 5, 10, 13.06)	

TABLE C2
UPPER BOUNDARY POINTS OF THE SOUTHEASTERN BELGIUM NATURAL GAS

DIL) I L/IVI
Upper boundary point	$(G_{\rm l,g3},G_{\rm l,g5},G_{\rm l,g8},G_{\rm l,g9})$
$W_{\mathrm{b,1}}$	(129, 126, 0, 4.87)
$W_{\mathrm{b,2}}$	(124, 131, 0, 5.21)
$W_{\mathrm{b,3}}$	(124, 126, 5, 5.33)
$W_{ m b,338}$	(104, 126, 20, 6.77)

TABLE VIII

UPPER AND LOWER BOUNDARY POINTS IN IES-ECSR OF 23-NODE IES				
$(S_{l,e2}, S_{l,e3}, S_{l,e4}, S_{l,e5}, S_{l,e6}, S_{l,e9}, S_{l,e10}, S_{l,e11}, S_{l,e12},$				
$S_{l,e13}, S_{l,e14}, S_{l,c1}, S_{l,c2}, S_{l,c3}, G_{l,g3}, G_{l,g5}, G_{l,GT1},$				
$G_{ m l,g8},G_{ m l,GT2},G_{ m l,g9})$				
	$W_{\mathrm{b},1}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69,		
	77 Б, І	126, 10, 0, 5, 15.7422)		
	$W_{\mathrm{b.2}}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69,		
	77 6,2	126, 10, 0, 10, 10.7419)		
Upper	$W_{\mathrm{b},3}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69,		
boundary	77 0,3	126, 10, 0, 15, 5.7408)		
point	$W_{\mathrm{b,4}}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69,		
	77 6,4	126, 10, 0, 20, 0.7382)		
	$W_{\rm b,10513}$	(30, 100, 55, 10, 15, 40, 10, 5, 10, 5, 10, 4, 4, 3,		
	152	129, 126, 40, 0, 10, 4.4512)		
	$W_{\mathrm{b},1}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 3, 3, 1, 69,		
	,, p'	126, 10, 0, 5, 1.1266)		
	$W_{b,2}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 3, 3, 1, 69,		
		126, 10, 0, 10, 1.1269)		
Lower	$W_{b,3}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 3, 3, 1, 69,		
boundary		126, 10, 0, 15, 1.1281)		
point	$W_{\mathrm{b.4}}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 3, 3, 1, 69,		
	77 0,4	126, 10, 0, 20, 1.1304)		
	$W_{\rm b,47251}$	(30, 85, 50, 10, 15, 20, 10, 0, 10, 0, 10, 2, 2, 3, 0, 10, 10, 10, 10, 10, 10, 10, 10, 10,		
	66	94, 126, 15, 10, 10, 2.0852)		

- D. Comparison results between the proposed method and existing method
- 1) Solution results of boundary points of the IES region

TABLE D1

COMPARISON OF THE SOLUTION RESULTS OF BOUNDARY POINTS OF THE IES SECURITY REGION

		COMPARISON OF THE SOLUTION RESULTS OF BOUNDARY		
		Operating (S. S. S	2 I	
		$(S_{1,e2}, S_{1,e3}, S_{1,e4}, S_{1,e5}, S_{1,e6}, S_{1,e9}, S_{1,e10}, S_{1}, S_{1,e3}, S_{1,e5}, S_{1,e71}, C_{1,e71}, C_{1,e71}$		
		Traditional method [R2]	Proposed method	Relative deviation
	$W_{\mathrm{b,1}}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69, 126, 10, 0, 5, 15.7422)	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69, 126, 10, 0, 5, 15.7421)	0.001%
	$W_{\mathrm{b,2}}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69, 126, 10, 0, 10, 10.7419)	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69, 126, 10, 0, 10, 10.7418)	0.001%
Upper boundary	$W_{\mathrm{b,3}}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69, 126, 10, 0, 15, 5.7408)	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69, 126, 10, 0, 15, 5.7408)	-
point	$W_{ m b,4}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69, 126, 10, 0, 20, 0.7382)	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 5, 69, 126, 10, 0, 20, 0.7381)	0.014%
	$W_{b,10513152}$	(30, 100, 55, 10, 15, 40, 10, 5, 10, 5, 10, 4, 4, 3, 129, 126, 40, 0, 10, 4.4512)	(30, 100, 55, 10, 15, 40, 10, 5, 10, 5, 10, 4, 4, 3, 129, 126, 40, 0, 10, 4.4511)	0.022%
	$W_{\mathrm{b,1}}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 10, 3, 3, 1, 69, 126, 10, 0, 5, 1.1266)	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 3, 3, 1, 69, 126, 10, 0, 5, 1.1265)	0.009%
	$W_{\mathrm{b,2}}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 3, 3, 1, 69, 126, 10, 0, 10, 1.1269)	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 3, 3, 1, 69, 126, 10, 0, 10, 1.1268)	0.009%
	$W_{\mathrm{b,3}}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 3, 3, 1, 69, 126, 10, 0, 15, 1.1281)	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 3, 3, 1, 69, 126, 10, 0, 15, 1.1280)	0.009%
Lower boundary point	$W_{ m b,4}$	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 3, 3, 1, 69, 126, 10, 0, 20, 1.1304)	(20, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 3, 3, 1, 69, 126, 10, 0, 20, 1.1303)	0.009%
pomi	 W _{b,2951428}	(25, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 1, 94, 131, 15, 0, 5, 0.3825)	 (25, 85, 40, 0, 0, 25, 0, 0, 0, 0, 10, 2, 2, 1, 94, 131, 15, 0, 5, 0.3824)	0.026%
	 W _{b,4725166}	(30, 85, 50, 10, 15, 20, 10, 0, 10, 0, 10, 2, 2, 3, 94, 126, 15, 10, 10, 2.0852)	 (30, 85, 50, 10, 15, 20, 10, 0, 10, 0, 10, 2, 2, 3, 94, 126, 15, 10, 10, 2.0851)	0.005%

Note: (1) Blue marks the deviation and maximum deviation generated when solving boundary points.

(2) To observe the relative deviation between the results of this paper and those of the traditional method, the accuracy of boundary points is improved to 10⁻⁴ in the table

2) online security analysis for operating points

First, randomly generate operating points $W_1 \sim W_{10}$. Second, the full dimensional security boundary is calculated and the reduced dimensional sections of the existing method are taken respectively to analyze the security of $W_1 \sim W_{10}$. Due to these points not being on the reduced dimensional section, the

traditional method cannot analyze them, which means additional calculations are required. The Comparison results are shown in Table D1. It can be seen although the same analysis results are obtained, the calculation time of the proposed method is reduced by 10^6 times.

 $TABLE\ D1$ Comparison of online security analysis for random operating points of 23-node IES

Operating	$(S_{1,c2},S_{1,c3},S_{1,c4},S_{1,c5},S_{1,c6},S_{1,c9},S_{1,c10},S_{1,c11},S_{1,c12},S_{1,c13},S_{1,c14},S_{1,c1},S_{1,c2},S_{1,c3},$	Proposed method		Traditional method	
point	$(O_{1,e25}O_{1,e3},O_{1,e45}O_{1,e55}O_{1,e55}O_{1,e15}O_{1,e11},O_{1,e125}O_{1,e15}O_{1,e145}O_{1,e15}O_{1,e25}O_{1,e3}, \\ G_{1,g3},G_{1,g5},G_{1,gT1},G_{1,g8},G_{1,GT2},G_{1,g9})$	analysis result	time/s	analysis result	time/s
W_1	(29.45, 96.58, 54.64, 5.67, 7.07, 28.81, 12.85, 0.66, 5.27, 7.19, 18.28, 134.0, 2.3, 28.05)	secure	8.54×10 ⁻³	secure	1.87×10^{3}
W_2	(27.14, 92.13, 48.33, 9.69, 8.14, 26.99, 13.5, 4.35, 8.94, 13.48, 15.07, 154.8, 22.22, 8.48)	insecure	8.11×10 ⁻³	insecure	1.68×10^{3}
W_3	(26.79, 95.21, 52.69, 8.25, 0.9, 33.18, 3.27, 3.01, 7.78, 14.02, 13.66, 184.4, 13.7, 4.09)	insecure	7.62×10 ⁻³	insecure	1.79×10^{3}
W_4	(29.59, 91.25, 46.12, 9.6, 9.87, 37.42, 1.15, 1.33, 0.69, 12.27, 12.27, 149.0, 20.05, 42.85)	insecure	7.98×10 ⁻³	insecure	1.64×10^{3}
W_5	(27.75, 90.7, 46.93, 6.46, 13.34, 37.56, 7.11, 4.32, 2.79, 10.63, 15.35, 133.8, 20.98, 18.48)	secure	8.36×10 ⁻³	secure	1.69×10^{3}
W_6	(26.08, 88.2, 52.39, 3.8, 1.64, 37.5, 12.53, 0.29, 3.79, 11.15, 12.89, 163.0, 17.14, 40.27)	insecure	7.47×10 ⁻³	insecure	1.99×10 ³
W_7	(29.48, 90.74, 54.87, 4.77, 6.57, 28.06, 7.04, 2.29, 8.65, 13.5, 10.68, 182.9, 18.86, 39.15)	secure	7.55×10 ⁻³	secure	1.81×10^{3}
W_8	(20.6, 85.45, 47.86, 9.12, 4.2, 33.17, 6.21, 3.61, 4.2, 0.98, 10.85, 148.7, 26.33, 31.86)	insecure	8.02×10 ⁻³	insecure	1.82×10^{3}
W_9	(22.69, 92.08, 53.88, 0.15, 14.78, 38.12, 7.54, 1.7, 2.4, 5.04, 10.68, 128.7, 19.87, 42.91)	insecure	7.96×10 ⁻³	insecure	1.78×10^{3}
W_{10}	(29.87, 90.0, 51.09, 1.57, 9.13, 26.82, 1.88, 2.01, 5.98, 0.07, 14.1, 135.2, 26.26, 30.29)	insecure	8.17×10 ⁻³	insecure	1.80×10^{3}