

AOC Proposal Systolic Tensor Array

Group|把家齊高中還給家齊

Member

電機所114 張育誠 N26121892

工科系113 劉子齊 E94096209

電機系113 洪翊碩 E24091027

電機系113 陳喬雅 E14093140

電機系113 鄭喆嚴 E14096724

TABLE OF CONTENTS

Model,
O1 Quantization
and Pruning

O2 PE Architecture and Dataflow

Our Accelerator
Architecture and
SPEC

O4 Analysis and Question

01

Model, Quantization and Pruning

0

()

nnnn

Model

VGG16:

Mobile NetV3:

•

nnnn

UUUU

Quantization

QAT:

PTQ:

nnnn

UUUU

Quantization

QAT:

PTQ:

Fix position pruning:

```
SPARSITY:
       updateConv2D()
    # train(1)
    test(sparsity_model)
    maskConv2D()
    test (model)
    test(sparsity model)
```


Original

```
[[-1.2915e-04, -9.6068e-04, -1.1363e-03],
          [ 2.1713e-02, 7.5816e-03, 5.7231e-03],
          [ 2.7600e-03, 2.2870e-02, 3.2581e-03]],
         [[1.3669e^{-04}, 3.5387e^{-02}, 3.6681e^{-04}],
          [-8.6679e-04, 3.6982e-03, 3.2041e-02],
          [ 5.4913e-03, -5.7838e-03, 1.4623e-03]],
         [[-9. 4173e-04, 2. 0093e-04, 6. 6950e-04],
          [ 4.0101e-03, -1.5172e-02, -9.6157e-03],
          [ 5.9197e-03, -1.0201e-03, -1.6133e-02]]]], device='cuda:0')
Test set: Average loss: 0.3102, Accuracy: 9279/10000 (92.8%)
Test set: Average loss: 0.3081, Accuracy: 9283/10000 (92.8%)
```


Saliency-based pruning:

```
SPARSITY:
    updateConv2D()
    train(1)
    test(sparsity_model)
    maskConv2D()
    test (model)
    test(sparsity_model)
```


Saliency-based pruning:

According to scaling factor Only keep the largest value

According to PatDNN
Center value is important, so it can't be pruned

PE Architecture and Dataflow

For Dense Matrix

Systolic Tensor Array

For Sparse Matrix

DBB | Density-Bound Block

Constraint mechanism for the number of non-zero values permissible in each block of a matrix.

For Sparse Matrix

Our DBB Method

According to scaling factor Only keep the largest value

According to PatDNN
Center value is important, so it can't be pruned

For Sparse Matrix

PE Architecture

I _o	I ₁	l ₂
l ₃	l ₄	l ₅
I ₆	I ₇	I ₈

W ₀	w ₀	W_0
	W ₁	
W ₂	W ₂	W ₂

PEI/O Ports

Signal	I/O	Bits	Function
ifmap_i	Input	56 bits	l ₀ ->[7:0] l ₀ , l ₁ , l ₂ , l ₄ , l ₆ , l ₇ , l ₈
weight_i	Input	24 bits	W ₀ -> [7:0] W ₀ , W ₁ , W ₂
address_i	Input	4 bits	[1:0] for upper weight [3:2] for lower weight
ifmap_o	Output	56 bits	
weight_o	Output	24 bits	
address_o	Output	4 bits	
result	Output	18 bits	Product and Add

A for 3*3 Ifmap Sliding Window B for 3*3 Weight (num) num:which clock to send

Output Channel

Our Accelerator Architecture and SPEC

Architecture

SPEC

SRAM

Туре	Size	Why we use this size?
Ifmap SRAM	16KB	512(input channel) * 3(filter row) 10(6+4) * 1Byte = 15KB
Weight SRAM	16KB	512(input channel) * 8(output channel) * 3(NNZ) * 10(int8+2 bit address) = 15KB

SPEC

On-Chip Buffer

Туре	Size	Why we use this size?
Ifmap Buffer	576B	32(input channel) * 3(filter row) * 6(ifmap column) * 1Byte = 576B
Weight Buffer	480B	32(input channel) * 3(filter NNZ) * 4(PE a row) * 10bit (int8 + 2 bit address) = 480B
Accumulator Buffer	64B	32 Bits * 16 (PE) = 64B

SPEC

Bandwidth

Туре	Size	Why we use this size?
PE to Ifmap Buffer	28B	7(element)*4(PE a row)*1Byte = 28B
PE to Weight Buffer	15B	3(NNZ in a filter) * 4(PE a col) * 10 bits = 15B
PE to Accumulator Buffer	64B	4Byte * 16 = 64B

Analysis and Question

Advantages

- Increased Efficiency
- Enhanced Area and Power Efficiency
- Efficient Data Flow

Roofline Model

Problem Disscusion

Q1: Is the Accumulator on-chip bandwidth (64B) too large?

Q2: Is the number of times data is fetched from DRAM too many?

(Up to 64 times per layer)

RESOURCES

Course

• Al on Chip NCKU by Professor Chia-Chi Tsai

Paper Reference

- Liu, Z. G., Whatmough, P. N., & Mattina, M. (2020). Systolic tensor array: An efficient structuredsparse GEMM accelerator for mobile CNN inference. IEEE Computer Architecture Letters, 19(1), 34-37.
- Niu, W., Ma, X., Lin, S., Wang, S., Qian, X., Lin, X., ... & Ren, B. (2020, March). Patdnn: Achieving real-time dnn execution on mobile devices with pattern-based weight pruning. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (pp. 907-922).

THANKS!

