

GEETHANJALIINSTITUTEOFSCIENCE&TECHNOLOGY (ANAUTONOMOUSINSTITUTION)

(ANACTONOMOUSINSTITE TION)
(ApprovedbyAICTE,NewDelhi&AffiliatedtoJNTUA,Ananthapuramu) (Accredited by NAAC with "A" Grade, NBA (EEE,ECE &ME) & ISO9001:2008CertifiedInstitution)

QUESTIONBANK(DESCRIPTIVE)

SubjectName:STATISTICAL METHODS FOR DATA

SCIENCE

Course & Branch: B.Tech & CSE (DS) Year&Semester: II B.TechII Semester

Regulation: RG23

UNIT-I

S.No	Question B'	TLevel][CO][Marks]
	2MarksQuestions (Short)	
1.	What is the formula of Mean and Variance of a discrete random variable?	L1, CO1, 2M
2.	Write formula to calculate mean and variance of a continuous random variable.	L1, CO1, 2M
3.	If X is a continuous random variable and $Y=a X + b$, Prove that $E(Y)=a E(X)+b$.	L1 ,CO1, 2M
4.	The mean and variance of a binomial distribution are 4 and $4/3$ respectively. Find n, q	p,L2, CO1, 2M
5.	write conditions of Poisson distribution	L1, CO1, 2M
6	Write probability of density function normal distribution	L1, CO1, 2M
7	Write the characteristics of a good estimator	L1, CO1, 2M
8	Define unbiasedness	L1, CO1, 2M
9	Define sufficient	L1, CO1, 2M
10	Define efficient estimator	
	Descriptive Questions(Long)	
1.	Two dice are thrown. Let X assign to each point (a, b) is S the maximum of its	s L2, CO1,10M
	numbers I .e, X (a ,b)=max(a, b). Find the probability distribution. X is a random variable with $X(s) = \{1,2,3,4,5,6\}$. Also, find the mean and variance the distribution	of
2.	A random variable X has the following probability function $X=x$ 1 2 3 4 5 6 7 8 $P(X=x)$ K 2K 3 K 4K 5K 6K 7K 8K Find the value of k and (i) Mean (ii) Variance (iii) $P(2 \le x \le 5)$	L2, CO1,10M
3.	If the probability density of a random variable is given by $f(x) = kx^2e^{-x}$ for $x \ge 0$ 0 otherwise i) Find the value of k ii) mean and variance of the variable	L2, CO1,10M
4.	If the probability density of a random variable is given by $f(x)=[k\ (1-x^2),\ for\ 0< x<1],$ = 0,otherwise Find the value of k and the probabilities that a random variable having this probability density will take on a value (i) between 0.1 and 0.2 (ii) greater the	L2, CO1,10M an
5.	O.5. Out of 800 families with 4 children each, how many families would be expected to have a probabilities for boys and 2 girls (b) at least one boy (c) no girl (d) at most 2 girls? Assume equal probabilities for boys and girls	1
6.	a)As only 3 students came to attend the class today, find the probability for exactly 4 students to attend the classes tomorrow. b)If x is Poisson varieties such that $p(x = 0) = p(x=1)$ and using recurrence relation formula fimd the probabilities at $x = 1.2.3.4.5$	L2, CO1,10M

7	 a) If x is normal vitiate with mean 30 and standard deviation with 5. find the probabilities (i) 26 ≤ x ≤ 40 (ii) x ≥ 45 b) A sales tax has reported that the average sales of the 500 business that has deal during with a year 36,000 with standard deviation 10,000 Assuming that the sales in these distributed in normal distribution Find (i) The number of business as sales which RS 40,000 (ii)the percentage of business sales of which are likely range between RS 30,000 and RS 40,000 In a Normal distribution, 7% of the items are under 35 and 89% are under 63. 	
8	Determine the mean and variance of the distribution	l
9	Show that the sample variance of a sample drawn from population given by the expression the $s^2 = 1/n \sum (x_i - x)$ is an unbiased estimator of the population variance	
10	Let $x_1, x_2, x_3, \ldots, x_n$ is a random sample taken from a population with probability density function $f(x) = \theta x^{\theta-1}$, $0 < x < 1, \theta > 0$. Find a sufficient estimator for θ .	

UNIT -III

S.No	Question							[BTLevel][CO][Marks]				
2Ma	2MarksQuestions (Short)											
1.	Define estimation, estimate and estimator										L1,CO2,2M	
2.	List the properties of the Maximum Likelihood Estimator.										L1,CO2,2M	
3.	Define normal equations for two-variable relationships Y on X1, X2 in the											L1,CO2,2M
	method o											
	Define th		•									L1,CO2,2M
5.	What is the formula for the modified minimum chi-square method?										L1,CO2,2M	
11	DescriptiveQuestions(Long)										1.2.002 1014	
11.	Describe the method of maximum likelihood estimation.										L2,CO2, 10M	
12.	In a watch repair shop, the service time in minutes is 14,17,27,18,12,8,22,13,19 and 12. Give a maximum likelihood estimate of											L2,CO2, 10M
	mean service time with the assumption that the service time follows an exponential distribution with parameter λ .										's an	
	exponential distribution with parameter 76.											
			m sam	ple o	of size	n is take	n from	the prob	abilit	y de	nsity	L2, CO2,10M
	A simple random sample of size n is taken from the probability density function											
	[f(x)= $2\theta x e^{-\theta x^2}$,x>0, θ >0 is an unknown parameter. Calculate the estimator of θ by the method of moments.											
	Explain							ments.				L2, CO2,10M
14.	Lapiani	the met	nou o	1110	inciit s	CStillian	1011.					L2, CO2,10W
	Let x ₁ , x	2. X3 X	n be a	rand	dom sa	mple fro	m the c	liscrete d	listrib	utio	n	L2, CO2,10M
15								ere $\theta \in (0, 0)$				22, 002,1011
	Find the								,			
16	A trainin						nid seme	ster (say	x) and	l end	[L2, CO2,10M
10	semester						_				7	
	X 10		3	16	9	11	7	10	8	,		
	Y 42	2 39	32	50	44	55	43	37	4	.3		
	Assumir	_			ship y	ox.Es	timate t	he parar	neters	s by	the	
	method											
	Past expe											L2, CO2,10M
	respectiv						_	e linear re	elation	ısnıp	of y on	
	x_1, x_2 . Es		45		30	70	75	65	80			
	Seeds x		2		18	3	2.5	2	3			
	Product		200		2100	1800	1900	2400	2500)		
10								l .			on with	L2. CO2.10M
1 1 2	Consider a random sample of size n from an exponential distribution with parameter θ having p.d.f $[f(x,\theta)=\theta e]^{-(-\theta x)}$, x>0. Calculate the modified											,,
	minimum chi-square estimator of θ based on the partitions											
	A_1= $\{x,0 \le x \le 0.5\}$, A_2= $\{x,x > 0.5\}$											
		Suppose that the random sample has Normal distribution $N(\mu, \sigma 2)$)	
19.	Find the maximum likelihood estimator (i) for μ when $\sigma 2 = 1$, (ii)									(ii) for		
σ^2 when $\mu = 0$										(11) 101		
	Suppose that the random comple has exponential distribution with											
20.	parameters (α, β) $f(x, \alpha, \beta) = y_0 e^{-\beta(x-\alpha)}$ $\alpha \le x < \infty, \beta > 0$, y_0 be a											
	constant . (i) find the constant y_o (ii) find the MLE for paramaters										1	