LC 谐振放大器 (第1题)

一、任务

设计并制作一个LC谐振放大器。

二、要求

设计并制作一个低压、低功耗 LC 谐振放大器;为便于测试,在放大器的输入端插入一个 40dB 固定衰减器。电路框图见图 1。

图 1 电路框图

1. 基本要求

- (1) 衰减器指标: 衰减量 40 ± 2 dB, 特性阻抗 50Ω , 频带与放大器相适应。
- (2) 放大器指标:
 - a) 谐振频率: f₀=15MHz; 允许偏差±100kHz;
 - b) 增益: 不小于 60dB;
 - c) -3dB 带宽: 2 △ f_{0.7} =300kHz; 带内波动不大于 2dB;
 - d) 输入电阻: R_{in}=50Ω;
 - e) 失真:负载电阻为 200Ω,输出电压 1V 时,波形无明显失真。
- (3)放大器使用 3.6V 稳压电源供电(电源自备)。最大不允许超过 360mW, 尽可能减小功耗。

2. 发挥部分

- (1) 在-3dB 带宽不变条件下,提高放大器增益到大于等于80dB。
- (2) 在最大增益情况下,尽可能减小矩形系数 Kr01。
- (3)设计一个自动增益控制(AGC)电路。AGC 控制范围大于 40 dB。AGC 控制范围为 20log(V_{omin}/V_{imin})—20log(V_{omax}/V_{imax})(dB)。
- (4) 其他。

三、说明

1. 图 2 是 LC 谐振放大器的典型特性曲线,矩形系数 $Kr_{0.1}=\frac{2\Delta f_{0.1}}{2\Delta f_{0.7}}$ 。

图 2. 谐振放大器典型幅频特性示意图

- **2.** 放大器幅频特性应在衰减器输入端信号小于 5mV 时测试(这时谐振放大器的输入 $V_i < 50 \mu V$)。所有项目均在放大器输出接 200Ω 负载电阻条件下测量。
- 3. 功耗的测试: 应在输出电压为 1V 时测量。
- 4. 文中所有电压值均为有效值。

	项 目	主要内容	满分
设计	方案论证	比较与选择 方案描述	3
报告	理论分析与计算	增益 AGC 带宽与矩形系数	6

		·	
	电路设计	完整电路图 输出最大不失真电压及功耗	6
	测试方案与测试结果	测试方法与仪器 测试结果及分析。	3
	设计报告结构及规范性	摘要 设计报告正文的结构 图标的规范性	2
	总分		20
基本要求	实际制作完成情况		50
	完成第(1)项		15
发挥	完成第(2)项		19
\$ ₽ /\	完成第(3)项		10
部分	其他		6
	总分		50

射频宽带放大器(第2题)

一、任务

设计并制作一个射频宽带放大器。

二、要求

1. 基本要求

- (1) 电压增益 $A_{\rm v} \ge 20{\rm dB}$,输入电压有效值 $U_{\rm i} \le 20{\rm mV}$ 。 $A_{\rm v}$ 在 $0\sim 20{\rm dB}$ 范围内可调。
- (2) 最大输出正弦波电压有效值 $U_0 \ge 200 \text{mV}$,输出信号波形无明显失真。
- (3) 放大器 BW_{-3dB} 的下限频率 $f_L \leq 0.3$ MHz,上限频率 $f_H \geq 20$ MHz,并要求在 1MHz~15MHz 频带内增益起伏 ≤ 1 dB。
- (4) 放大器的输入阻抗 $= 50\Omega$, 输出阻抗 $= 50\Omega$ 。

2. 发挥部分

- (1) 电压增益 $A_{\rm v} \ge 60{\rm dB}$,输入电压有效值 $U_{\rm i} \le 1~{\rm mV}$ 。 $A_{\rm v}$ 在 $0 \sim 60{\rm dB}$ 范围内可调。
- (2) 在 $A_{\rm v} \geqslant$ 60dB 时,输出端噪声电压的峰峰值 $U_{
 m oNpp} \leqslant$ 100mV。
- (3) 放大器 BW_{-3dB} 的下限频率 $f_L \leq 0.3$ MHz,上限频率 $f_H \geq 100$ MHz,并要求在 1MHz~80MHz 频带内增益起伏 ≤ 1 dB。该项目要求在 $A_V \geq 60$ dB(或可达到的最高电压增益点),最大输出正弦波电压有效值 $U_o \geq 1$ V,输出信号波形无明显失真条件下测试。
- (4) 最大输出正弦波电压有效值 $U_0 \ge 1V$,输出信号波形无明显失真。
- (5) 其他 (例如进一步提高放大器的增益、带宽等)。

三、说明

- 1. 要求负载电阻两端预留测试端子。最大输出正弦波电压有效值应在 $R_L=50\Omega$ 条件下测试(要求 R_L 阻值误差 ≤ 5 %),如负载电阻不符合要求,该项目不得分。
- 2. 评测时参赛队自备一台 220V 交流输入的直流稳压电源。
- 3. 建议的测试框图如图 1 所示,可采用点频测试法。射频宽带放大器幅频特性示意图如图 2 所示。

图 1 测试框图

图 2 幅频特性示意图

	项 目	主要内容	分数
	系统方案	比较与选择	2
		方案描述	2
37F.37F	理论分析与计算	宽带放大器设计	
报告		频带内增益起伏控制	8
		射频放大器稳定性	
		增益调整	
	电路与程序设计	电路设计	4
		程序设计	4

	测试方案与测试结果	测试方案及测试条件	
		测试结果完整性	4
		测试结果分析	
	设计报告结构及规范性	摘要	
		设计报告正文的结构	2
		图表的规范性	
	总分		20
	完成 (1)		19
基本	完成 (2)		10
要求	完成 (3)		21
	总分		50
	完成(1)		18
	完成 (2)		2
发挥	完成(3)		16
部分	完成(4)		6
	其他		8
	总分		50

增益可控射频放大器 (第3题)

一、任务

设计并制作一个增益可控射频放大器。

二、要求

1. 基本要求

- (1) 放大器的电压增益 $A_{\rm V} \! \ge \! 40 {\rm dB}$,输入电压有效值 $V_{\rm i} \! \le \! 20 {\rm mV}$,其输入阻抗、输出阻抗均为 50Ω ,负载电阻 50Ω ,且输出电压有效值 $V_{\rm o} \! \ge \! 2{\rm V}$,波形无明显失真:
- (2) 在 75MHz~108MHz 频率范围内增益波动不大于 2dB;
- (3)-3dB 的通频带不窄于 60MHz~130MHz, 即 ft≤60MHz、f_H≥130MHz;
- (4) 实现 A_V 增益步进控制,增益控制范围为 $12dB \sim 40dB$,增益控制步长为 4dB,增益绝对误差不大于 2dB,并能显示设定的增益值。

2. 发挥部分

- (1) 放大器的电压增益 $A_V \ge 52 dB$,增益控制扩展至 52 dB,增益控制步长不变,输入电压有效值 $V_i \le 5 mV$,其输入阻抗、输出阻抗均为 50Ω ,负载电阻 50Ω ,且输出电压有效值 $V_o \ge 2 V$,波形无明显失真;
- (2) 在 50MHz~160MHz 频率范围内增益波动不大于 2dB;
- (3) -3dB 的通频带不窄于 40MHz ~ 200 MHz,即 $f_L \leqslant 40$ MHz 和 $f_H \geqslant 200$ MHz;
- (4) 电压增益 $A_V \ge 52 dB$,当输入信号频率 $f \le 20 MHz$ 或输入信号频率 $f \ge 270 MHz$ 时,实测电压增益 A_V 均不大于 20 dB;
- (5) 其他。

三、说明

- 1. 基本要求(2)和发挥部分(2)用点频法测量电压增益,计算增益波动,测量频率点测评时公布。
- 2. 基本要求(3)和发挥部分(3)用点频法测量电压增益,分析是否满足通频带要求,测量频率点测评时公布。
 - 3. 放大器采用+12V 单电源供电, 所需其它电源电压自行转换。

	项目	主要内容	分数
	系统方案	比较与选择	2
		方案描述	
	理论分析与计算	射频放大器设计	
		频带内增益起伏控制	8
		射频放大器稳定性	
设计	电路与程序设计	增益调整 电路设计与程序设计	4
报告			4
	测试方案与测试结果	测试方案及测试条件	4
		测试结果完整性 测试结果分析	4
	设计报告结构及规范性	例 风	
	及17队日知何 <u>次</u> 观他且	過受 设计报告正文的结构	2
		图表的规范性	
	小计		20
	完成第(1)项		18
#-	完成第(2)项		6
基本要求	完成第(3)项		16
女 水	完成第(4)项		10
	小计		50
	完成第(1)项		14
	完成第(2)项		3
发挥 部分	完成第(3)项		12
	完成第(4)项		16
	(5) 其他		5
	小计		50 120
	总分		

调幅信号处理实验电路(第4题)

一、任务

设计并制作一个调幅信号处理实验电路。其结构框图如图 1 所示。输入信号为调幅度 50% 的 AM 信号。其载波频率为 250MHz~300MHz,幅度有效值 V_{irms} 为 $10\,\mu$ V~1mV,调制频率为 300Hz~ 5kHz。

低噪声放大器的输入阻抗为 50Ω ,中频放大器输出阻抗为 50Ω ,中频滤波器中心频率为 10.7 MHz,基带放大器输出阻抗为 600Ω 、负载电阻为 600Ω ,本振信号自制。

图 1 调幅信号处理实验电路结构框图

二、要求

1. 基本要求

(1)中频滤波器可以采用晶体滤波器或陶瓷滤波器,其中频频率为10.7MHz;

- (2) 当输入 AM 信号的载波频率为 275MHz,调制频率在 300Hz~ 5kHz 范围内任意设定一个频率, $V_{irms}=1mV$ 时,要求解调输出信号为 $V_{orms}=1V\pm0.1V$ 的调制频率的信号,解调输出信号无明显失真;
- (3) 改变输入信号载波频率 250MHz~300MHz,步进 1MHz,并在调整本振频率后,可实现 AM 信号的解调功能。

2. 发挥部分

- (1) 当输入 AM 信号的载波频率为 275MHz, V_{irms} 在 $10\,\mu$ V~1mV 之间变动时,通过自动增益控制(AGC)电路(下同),要求输出信号 V_{orms} 稳定在 $1V\pm0.1V$;
- (2)当输入 AM 信号的载波频率为 250MHz~300MHz(本振信号频率可变), $V_{\rm irms}$ 在 $10\,\mu$ V~1mV 之间变动,调幅度为 50%时,要求输出信号 $V_{\rm orms}$ 稳定在 $1V\pm0.1V$;
- (3) 在输出信号 V_{orms} 稳定在 $1V\pm0.1V$ 的前提下,尽可能降低输入 AM 信号的载波信号电平;
- (4) 在输出信号 V_{orms} 稳定在 $1V\pm0.1V$ 的前提下,尽可能扩大输入 AM 信号的载波信号频率范围:
 - (5) 其他。

三、说明

- 1.采用+12V 单电源供电, 所需其它电源电压自行转换:
- 2.中频放大器输出要预留测试端口 TP。

	项目	主要内容	分数
	系统方案	比较与选择	2
		方案描述	2
	理论分析与计算	低噪声放大器设计	
		中频滤波器设计	
375.21.		中频放大器设计	8
设计 报告		混频器的设计	0
		基带放大器设计	
		程控增益的设计	
	电路与程序设计	电路设计与程序设计	4
	测试方案与测试结果	测试方案及测试条件	
		测试结果完整性	4
		测试结果分析	

	设计报告结构及规范性	摘要 设计报告正文的结构 图表的规范性	2
	合计	H 144//01017	20
	完成第(1)项		6
基本	完成第(2)项		20
要求	完成第(3)项		24
	合计		50
	完成第(1)项		10
	完成第(2)项		20
发挥	完成第(3)项		10
部分	完成第(4)项		5
	(5) 其他		5
	合计		50
	总分		

双路语音同传的无线收发系统(第5题)

一、任务

设计制作一个双路语音同传的无线收发系统,实现在一个信道上同时传输两路话音信号。系统的示意图如图 1 所示。

图 1 双路语音同传无线收发系统示意图

二、要求

1. 基本要求

(1) 制作一套 FM 无线收发系统。其中, FM 信号的载波频率设定为

G - 1 / 3

赛题答疑:李老师,创新创业学院518, lishengming@dlut.edu.cn

- 48.5MHz, 相对误差的绝对值不大于 1%; 峰值频偏不大于 25kHz; 天线长度不大于 0.5m。
- (2) 通过 FM 无线收发系统任意传输一路语音信号 A 或者 B,语音信号的 带宽不大于 3400Hz。要求无线通信距离不小于 2m,解调输出的语音信号波形无明显失真。
- (3) 通过 FM 无线收发系统同时传输双路语音信号 A 和 B。要求无线通信 距离不小于 2m,解调输出的双路语音信号波形无明显失真。

2. 发挥部分

- (1) 要求设计制作的发射电路中 FM 信号的载波频率能通过一个电压信号 $v_c(t)$ 进行调节,用来模拟无线通信中载波频率漂移的情况。电压信 号 $v_c(t)$ 单位电压调节载波频率产生的频率漂移量,由参赛者自行设 计。
- (2) 在保证系统能正确进行双路语音无线传输的前提下,通过 $v_c(t)$ 信号调节 FM 信号的载波频率产生不小于 300 kHz 的漂移,要求调节时间 τ 不超过 5s(秒)。
- (3) 在保证系统能正确进行双路语音无线传输的前提下,通过 $v_c(t)$ 信号调节 FM 信号的载波频率,按照图 2 所示进行漂移,要求 FM 信号的载波频率漂移范围 Δf_0 越大越好。

图 2: 载波频率漂移的图示

(4) 其他。

三、说明

- (1) 系统输入的语音信号,可以由标准的信号源产生;解调的语音信号输出应留有测试接口,以便示波器观测。
- (2) 制作的 FM 发射电路应在发射天线端引出测试端口,以便测试。

G-2/3

(3) 控制 FM 信号的载波频率漂移的外加电压信号 $v_c(t)$ 通过标准信号源外部输入。外加的 $v_c(t)$ 信号为零时,FM 信号的载波频率漂移对应为零。

	项 目	主要内容	满分
	系统方案	总体设计方案	3
		发射的双路语音合路处理分析与 计算	
	理论分析与计	接收的双路语音信号分离处理分析与计算	7
		无线收发系统频漂处理分析与计 算	
设计报告	电路与程序设计	电路图和流程图	5
	测计学学上测	测试方法与仪器	
	测试方案与测试结果	测试数据完成性	3
	W/NH //	测试结果分析	
	 设计报告结构	摘要	
	及规范性	设计报告正文的结构	2
		图标的规范性	
	小计		20
	完成(1)		6
****	完成 (2)		20
基本要求	完成(3)		24
	小计		50
	完成(1)		10
	完成 (2)		20
发挥部分	完成(3)		15
	完成 (4)		5
	小计		50
	总 分		