Теорема 1. Интегральный признак Коши.

 $f:[1,+\infty) \to \mathbb{R}$ монотонно убывает, $f \ge 0, f$ непр. Тогда $\sum_{k=1}^\infty f(k)$ и $\int_1^{+\infty} f(x) dx$ сходится/расходится одновременно.

Доказательство.

$$\sum_{k=1}^{n} f(k) = \int_{1}^{n+1} f(x)dx + \Delta_n$$

 Δ_n — площадь криволинейных треугольников, получаемых отсечением кривой y=f(x).

$$0 \le \Delta_n \le f(1) - f(n) \le f(1)$$

 $\Delta_n \uparrow \Rightarrow \exists$ кон. $\lim \Delta_n$

Более формальный вариант, без картинок:

$$\sum_{k=1}^{n} - \int_{1}^{n+1} = \sum_{k=1}^{n} \left(f(k) - \int_{k}^{k+1} f(x) dx \right)$$

T.к. $f \downarrow$:

$$\int_{k}^{k+1} f(x)dx \ge \int_{k}^{k+1} f(k+1)dx = f(k+1)$$
$$\sum_{k=1}^{n} \left(f(k) - \int_{k}^{k+1} f(x)dx \right) \le \sum_{k=1}^{n} f(k) - f(k+1) = f(1) - f(n+1)$$

Пример. $\sum \frac{1}{k^{\alpha}(\ln k)^{\beta}}$ Способы:

- 1. "Удавить логарифм"
- 2. Покажем, что $\frac{1}{k^{\alpha}(\ln k)^{\beta}}$ монотонна НСНМ:

$$f' = \frac{-\alpha}{x^{\alpha+1}(\ln x)^\beta} - \frac{\beta}{x^{\alpha+1}(\ln x)^\beta \ln x} \underset{x \to +\infty}{\sim} \frac{-\alpha}{x^{\alpha+1}(\ln x)^\beta} \Rightarrow f' < 0 \text{ HCHM}$$

Перейдем к интегралу:

$$\int_{2}^{+\infty} \frac{1}{x^{\alpha} (\ln x)^{\beta}} dx$$

- $\alpha > 1$ сходится
- $\alpha < 1$ расходится
- $\alpha = 1$:

M3137y2019

- $-\beta > 1$ сходится
- $\beta \leq 1$ расходится

По другим признакам сходимость ряда нельзя выяснить.

Определение. Ряд A абсолютно сходится, если 1 и 2:

- 1. $\sum a_n \operatorname{cx.}$
- 2. $\sum |a_n| \cos a$

Пример.

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - \ldots + (-1)^n x^{2n} + \frac{(-1)^{n+1} x^{2n+2}}{1+x^2}$$

Возьмём интеграл на [0,1]:

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \dots \frac{(-1)^n}{2n+1} + \underbrace{\int_0^1 \frac{(-1)^{n+1} x^{2n+2}}{1+x^2} dx}_{\Lambda_n}$$

Устремим $n \to +\infty$

$$\frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} + \dots$$

Таким образом, мы посчитали сумму ряда, это ряд Лейбница. По модулю этот ряд не сходится.

Теорема 2. $\sum a_n, a_n \in \mathbb{R}$. Тогда эквивалентны следующие утверждения:

- 1. $\sum a_n$ абс. cx.
- 2. $\sum |a_n| \operatorname{cx.}$
- 3. Оба ряда $\sum a_n^+, \sum a_n^-$ сх.

Сходимость рядов со слагаемыми произвольного знака

Теорема 3. Признак Лейбница.

$$c_n \geq 0, c_1 \geq c_2 \geq c_3 \geq \dots, c_n \to 0$$
 Тогда $\sum_{n=1}^{+\infty} (-1)^{n-1} c_n$ сх.

Доказательство.

$$S_{2N} = c_1 - c_2 + \ldots + c_{2N-1} - c_{2N}$$

$$S_{2N+2} = S_{2N} + \underbrace{(c_{2N+1} - c_{2N+2})}_{\geq 0} \geq S_{2N} \Rightarrow S_{2N} \uparrow$$

$$S_{2N} = c_1 - \underbrace{(c_2 - c_3)}_{\geq 0} - \underbrace{(c_3 - c_4)}_{\geq 0} - \ldots - c_{2N} \leq c_1$$

$$S_{2N} \uparrow \atop S_{2N} \leq c_1$$

$$\Rightarrow \exists \lim_{N \to +\infty} S_{2N} \in \mathbb{R}$$

$$S_{2N+1} = \underbrace{S_{2N}}_{\rightarrow l \in \mathbb{R}} + \underbrace{c_{2N+1}}_{\rightarrow 0} \Rightarrow S_{2N+1} \to l \Rightarrow S_N \to l$$

M3137y2019

Примечание. Секретное приложение к признаку Лейбница.

В условиях признака Лейбница:

$$\left| \sum_{n=N}^{+\infty} (-1)^{n-1} C_n \right| \le |C_n|$$

Пример.

$$\sum_{k=1}^{+\infty} \frac{(-1)^k}{\sqrt{k} + (-1)^k}$$
$$c_k = \frac{1}{\sqrt{k} + (-1)^k}$$

Не монотонно.

Для незнакостабильных рядов признак эквивалентности не работает.

Функции и отображения в \mathbb{R}^m

- 1. Структуры в \mathbb{R}^m
 - Линейное пространство $x = (x_1 \dots x_m), x_i \in \mathbb{R}$. Строка/столбец не важно.

$$\langle x, y \rangle = \sum_{i=1}^{m} x_i y_i$$

$$|x| = \sqrt{\langle x, x \rangle} = \sqrt{\sum_i x_i^2}$$

$$\rho(x, y) := |x - y|$$

• Окрестности, шар

 $B(a,r) = \{x \in \mathbb{R}^m : |x-a| < r\}$ — открытый шар, r-окрестность точки a

a — внутренняя точка множества D,если $\exists U(a):U(a)\subset D,$ т.е. $\exists r>0:B(a,r)\subset D$

D — открытое множество, если $\forall a \in D: a$ — внутренняя точка D

a — предельная точка множества D, если $\forall \dot{U}(a) \;\; \dot{U}(a) \cap D \neq \emptyset$

D — замкнутое множество, если оно содержит все свои предельные точки.

 Замыканием множества D называется $\overline{D}=D\cup ($ множество предельных точек D)

• Сходимость, предел

$$\sphericalangle x_n$$
 — посл. в $\mathbb{R}^m, a \in \mathbb{R}^m$

$$x_n \to a \Leftrightarrow \forall U(a) \ \exists N \ \forall n > N \ x_n \in U(a)$$

Норма и скалярное произведение сохраняют сходимость:

$$x_n \to a, y_n \to b \Rightarrow \langle x_n, y_n \rangle \to \langle a, b \rangle, |x_n| \to |a|$$

Сходимость функций:

$$f: O \subset \mathbb{R}^m \to \mathbb{R}^n$$

М3137у2019 Лекция 11

a — предельная точка $O, L \in \mathbb{R}^n$

$$\lim_{x \to a} f(x) = L \Leftrightarrow \forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x : 0 < |x - a| < \delta \quad |f(x) - L| < \varepsilon$$

То же самое, но по Гейне:

$$\forall (x_k) : \begin{cases} x_k \in O \subset \mathbb{R}^m \\ x_k \to a \\ \forall k \ x_k \neq a \end{cases} \qquad f(x_k) \xrightarrow[k \to +\infty]{} L$$

Покоординатная сходимость:

$$\lim_{x \to a} f(x) = L \Leftrightarrow \forall i : 1 \le i \le n : \lim_{x \to a} f(x)_i = L_i$$
$$x_k \to a \Leftrightarrow \forall i : 1 \le i \le m : x_i^{(k)} \xrightarrow[k \to +\infty]{} a_i$$

• Компактность

Параллелепипед $[a, b] = \{x : \forall i : 1 \le i \le m \mid a_i \le x_i \le b_i\}$

$$K$$
 компактно, если $K\subset\bigcup_{\alpha\in A}\underbrace{G_{\alpha}}_{\mathrm{otkp.}}\Rightarrow K\subset\bigcup_{i=1}^nG_{\alpha_i}$

В \mathbb{R}^m комп. \Leftrightarrow замкн. и огр.

Секвенциальная компактность: $\forall (x_n), x_n \in K \Rightarrow \exists n_k, a \in K : x_{n_k} \to a$

Принцип выбора Больцано-Вейерштрасса: если в \mathbb{R}^m (x_n) — ограниченная последовательность, то у неё существует сходящаяся подпоследовательность.

$$\lim_{y \to 0, x \to 0} \frac{x+y}{x-y} = \lim_{y \to 0} \lim_{x \to 0} \frac{x+y}{x-y} = \lim_{y \to 0} -1$$

$$= \lim_{x \to 0} \lim_{y \to 0} \frac{x+y}{x-y} = \lim_{x \to 0} 1 = 1$$

Получили противоречие. Что мы сделали не так?

Определение. $\sphericalangle F: X \to \mathbb{R}^m; x \mapsto F(x) = (F_1(x), \dots, F_m(x)),$ то $F_1(x) \dots F_m(x)$ — координатные функции отображения F

Определение. $D_1, D_2 \subset \mathbb{R}, a-$ пр. точка $D_1, b-$ пр. точка D_2 $(D_1 \setminus \{a\}) \times (D_2 \setminus \{b\}) \subset D \quad f: D \to \mathbb{R}$ $\forall x \in D_1 \setminus \{a\} \; \exists \; \text{кон.} \; \varphi(x) = \lim_{y \to b} f(x,y)$ Если $\exists \lim_{x \to a} \varphi(x) -$ это повторный предел.

Как предел в метрическом пространстве:

$$\lim_{(x,y)\to(a,b)} f(x,y) = A \Leftrightarrow \forall w(A) \ \exists U(a), V(b) \ \forall (x,y) \in U(a) \times V(b) \ f(x,y) \in W(A)$$

Двойной предел:

$$\lim_{\substack{x \to a \\ y \to b}} f(x,y) = A \Leftrightarrow \forall W(A) \ \exists U(a), V(b) \ \forall x \in \dot{U}(a), \forall y \in \dot{V}(b) \quad f(x,y) \in W(A)$$

М3137у2019 Лекция 11

Примечание. $(D_1 \setminus \{a\}) \times (D_2 \setminus \{b\}) = D$:

$$\lim_{(x,y)\to(a,b)}f=\lim_{\substack{x\to a\\y\to b}}f$$

Теорема 4. О повторных пределах

 $D_1,D_2\subset\mathbb{R},$ a — пр. точка $D_1,$ b — пр. точка D_2 $D=(D_1\setminus\{a\}) imes(D_2\setminus\{b\})$ $f:D o\mathbb{R}$ Пусть:

1.
$$\exists \lim_{(x,y)\to(a,b)} f(x,y) = A \in \overline{\mathbb{R}}$$

2.
$$\forall x \in D_1 \setminus \{a\} \; \exists \; \text{кон.} \; \varphi(x) = \lim_{y \to b} f(x,y)$$

Тогда $\exists \lim_{x \to a} \varphi(x) = A$

Доказательство. Пусть $A \in \mathbb{R}$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall x \in D_1 \ |x - a| < \delta$$

$$\forall \varepsilon > 0 \ \exists \delta > 0 \ \forall y \in D_2 \ |y - b| < \delta$$

$$|f(x, y) - A| < \varepsilon \xrightarrow[y \to b]{} |\varphi(x) - A| \le \varepsilon$$

Пример. $f(x,y) = (x+y)\sin\frac{1}{x}\sin\frac{1}{y}$ $D = \mathbb{R}^2 \setminus (\{\text{ось } Ox\} \cup \{\text{ось } Oy\})$

$$\lim_{(x,y)\to(0,0)} \underbrace{(x+y)}_{\text{6.M.}} \underbrace{\sin\frac{1}{x}\sin\frac{1}{y}}_{\text{orp.}} = 0$$

$$\varphi(x) = \lim_{y \to 0} \underbrace{(x+y)}_{\to x} \sin \frac{1}{x} \underbrace{\sin \frac{1}{y}}_{\text{ilim}}$$

Загадка:

$$f(x,y) = \frac{xy}{x^2 + y^2}$$

$$\lim_{x \to 0} \lim_{y \to 0} \frac{xy}{x^2 + y^2} = \lim_{x \to 0} 0 = 0$$

По теореме если предел \exists , то он = 0. Но существует ли он?

M3137y2019