

Herzlich Willkommen

Basisschulung Netzwerk Grundlagen

Einführung in die Datenübertragung

• Datenübertragung – Freiheit durch Standards

Netzwerkkonzepte und Topologien I

- Peer to Peer, Client-Server
- Abgrenzung von Netzwerktypen
- Abgrenzung: physikalische und logische Topologie

Peer to Peer

- Alle Computer gleichberechtigt
- Dezentrale Verwaltung
- Lokale Anmeldung
- Freigabe von Ressourcen (Drucker, Verzeichnisse)
- Beispiel: Microsoft Windows Arbeitsgruppe

Client - Server

- Hierarchisches Modell
- Zentrale Verwaltung
- Zentrale Anmeldung und Ressourcenverwaltung (Verzeichnisdienste)
- Server stellen Dienste zur Nutzung für Clients zur Verfügung
- Beispiel: Microsoft **Domänenkonzept, Active Directory**

Basisschulung Netzwerk Grundlagen

Netzwerkkonzepte & Topologien

Local Area Network (LAN)

- Begrenzte geografische Ausdehnung (10 km)
- Eigentum und Entscheidungsbereich des Benutzers
- Heimnetzwerk, Betriebsnetzwerke, Uni-Netzwerke

Metropolitan Area Network (MAN)

- Begrenzte geografische Ausdehnung (100 km)
- Private und öffentliche Anbieter, komerziell
- Stadtgebiet, Ballungszentren

Wide Area Network (WAN)

- unbegrenzt
- Private und öffentliche Anbieter, komerziell
- Verbindung räumlich getrennter Netze
- Global Area Network (GAN)

Intranet

- Bestandteil von LANs
- Internettechnologien: WWW, FTP, Audio- und Video-Streaming

Extranet

- Intranet + Zugriff aus Internet
- Zugriffsschutz, Authorisierung nötig
- Schutz des LANs vor Zugriff aus Extranet

Internet

- Weltweit verfügbar
- Grundsätzlich öffentlich
- Privat und kommerziell
- Anbieten und Nutzen von Diensten für alle Teilnehmer

Basisschulung Netzwerk Grundlagen

Netzwerkkonzepte & Topologien

Netzwerktopologie

- Beschreibung von Computern und den zwischen ihnen bestehenden Datenübertragungswegen
- Kann anhand ihrer physikalischen oder logischen Struktur erfolgen

Physikalische Topologie

- Beschreibung der Verkabelung
- Vergleichbar mit Straßennetz einer Stadt

Logische Topologie

- Beschreibung der möglichen Datenwege
- Vergleichbar mit Verkehrsregeln, die im Straßennetz gültig sind

Netzwerkkonzepte und Topologien II

- Bustopologie
- Sterntopologie
- Ringtopologie

Basisschulung Netzwerk Grundlagen

Netzwerkkonzepte & Topologien

Bustopologie

- Gemeinsames Übertragungsmedium, Bus
- Keine Signalverstärkung durch Teilnehmer
- Terminierung durch Widerstände, 50 Ohm
- Zugriffsverfahren: CSMA/CD (Carrier Sense, Multiple Access/Colission Detection)

Vorteile

• einfache Verkabelung

- geringe Kosten Fällt eine Station aus, hat dies keine Auswirkung auf das Funktionieren des Netzes

Nachteile

- Kollisionen im gemeinsam genutzten Datenkabel steigen mit zunehmender Anzahl der
- Teilnehmer am Netz

 Ein Defekt am Bus führt zum
 Ausfall des gesamten
 betroffenen Netzwerkstranges
 + aufwändige Fehlersuche

Netzwerkkonzepte & Topologien

Sterntopologie

- Eigene Datenleitung für Teilnehmer
- Verbindung durch Sternkoppler (z.B. Hub, Switch)
- Signalverstärkung erfolgt im Sternkoppler (wenn aktiv)
- Zugriffsverfahren: CSMA/CD (Carrier Sense, Multiple Access/Colission

Vorteile

• einfach erweiterbar

- Fällt eine Station aus oder ist deren Kabel defekt, hat dies keine Auswirkung auf das
- Funktionieren des Netzes. volle Bandbreite an jedem Port beim Einsatz von Switchs als Koppelelement
 - + kein Zugriffsverfahren nötig
- + Doppelte Bandbreite bei + Signalverstärkung

Nachteile

- wesentlich größere Kabelmengen als bei Bustopologie nötig = Erhöhung der Kabel- und
- Verkabelungskosten
 Fällt ein Koppelelement aus, ist zum gesamten nachfolgenden Teil des Netzwerkes kein Datenverkehr mehr möglich
- Loops (in einer Schleife kreisende Datenpakete) durch falsche Verkabelung

Netzwerkkonzepte & Topologien

Ringtopologie

- Gemeinsames Übertragungsmedium, als Ring ausgeführt
- Datenübertragung in eine Richtung
- Signalverstärkung durch jeden Teilnehmer
- Zugriffsverfahren: Token Passing / Token Ring

Vorteile

- Keine gesonderten Signalverstärker nötig
 Keine Kollisionen, d.h. volle
- Bandbreite nutzbar

Nachteile

- Relativ hoher Aufwand bei Kabelverlegung
 • Ein Defekt am Ringkabel führt
- zum Ausfall des gesamten Netzes

Physikalische Bestandteile eines **Netzwerks**

Kabelgebundene Übertragungsmedien

- Koaxialkabel
- Twisted Pair
- Lichtwellenleiter

Koaxialkabel

- Einfacher Aufbau
- Einsatz bei 10Base5 und 10Base2
- Standardverbindung: BNC-Stecker, -T-Stück, -Terminator
- Maximal 10Mbit/s Datenübertragungsrate
- Veraltet in Netzwerktechnik

Basisschulung Netzwerk Grundlager

Arbeitsauftrag

- Erläutern Sie folgende Kabelarten in Gruppenarbeit:
- _______
- FTP
- STP

Twisted-Pair-Kabel

- 8 Kupferadern, paarweise verdrillt
- Verschiedene Schirmungsarten, kombiniert
- Standardverbindung: RJ45

UTP - Unshielded Twisted Pair

U/UTP - Unscreened/Unshielded Twisted Pair

FTP - Foiled Twisted Pair

U/FTP - Unscreened/Foiled Twisted Pair

F/UTP - Foilded/Unshielded Twisted Pair

S/UTP - Screened/Unshielded Twisted Pair

Basisschulung Netzwerk Grundlagen

Physikalische Netzbestandteile

Lichtwellenleiter (LWL)

- Kern = Lichtleitung
- Glasmantel = bricht das Licht
- Kunststoffmantel = Schutz gegen Bruchgefahr
- Lichtquelle = Leuchtdiode (LED) oder Laser
- Lichtampfänger = Fotodiode
- Signalübertragung = simplex

Stufenindexfaser

- Totalreflexion des Lichts am Glasmantel
- Größere Dispersion
 - = längere Laufzeiten
 - = geringere Bandbreite

Gradientenindexfaser

- Umlenkung des Lichts im Kern
- Geringere Dispersion
 - kürzere Laufzeitengrößere Bandbreite

Physikalische Netzbestandteile

Multimodefaser

- Einspeisung des Lichts mit LEDs
- · Licht ist gestreut
- · Ausführung als Stufen- oder Gradientenindexfaser
- Höhere Dispersion = geringere Bandbreite
- · Niedrigere Kosten
- Einsatz im Backbonebereich bis zur Etagenverkabelung

Single- bzw. Monomodefaser

- Einspeisung des Lichts mit Laser
- Licht verläuft fast parallel zur Faser
- Ausführung als Stufenindexfaser
- Geringere Dispersion = höhere Bandbreite, längere Übertragungswege
- Höhere Kosten
- Einsatz vor allem im Backbonebereich

Verbindung von Lichtwellenleitern

- Steckverbindungen: Gewinde, Bajonett, Selbstverriegelung Beispiele:
 - ST-Stecker (Simplex, Bajonettverschluss)
 - SC-Stecker (Vierkant, Selbstverriegelung, Simplex)
 - LC-Stecker (Vierkant, Selbstverriegelung, Simplex und Duplex)
- Spleißverbindungen
 - Direkte steckerlose Kabelverbindung
 - Kleben oder Schweißen
 - Einzeln oder mehrere Kabel (Glasfasermuffe)
 - Hochwertig (geringe Dämpfung), teuer (Spezialgeräte)

Physikalische Netzbestandteile

Lichtwellenleiterverkabelung

Vorteile

- Hohe Übertragungsraten
- Weite Übertragungsstrecken

- Kein einfaches Abhören möglich Keine elektrische Verbindung Keine magnetischen oder elektrostatischen Störeinflüsse

Nachteile

- Hohe Kosten (Geräte,
- Höne Kösten (Geräte, Verkabelung)
 Kabel und Steckverbindungen sind störanfällig gegenüber mechanischer Belastung
- Spleißverbindungen sind teuer

Physikalische Bestandteile eines Netzwerks

- Der Ethernetstandard
- 10BASE-5 und 10BASE-2
- Zugriffsverfahren: CSMA/CD
- 10BASE-T, 100BASE-TX

Basisschulung Netzwerk Grundlagen

Physikalische Netzbestandteile

IEEE 802.3 - Ethernet

- Institute of Eletrical and Electronics Engineers (IEEE)
 - Weltweiter Verband von Elektrotechnikern und Informatikern
 - Standardisierungsgremium für Hardware- und Softwaretechnik
- Ethernet
 - Aktuelle LAN-Technik
 - Ablösung von Token Ring als LAN-Technik-Standard
 - Beschrieben in IEEE 802.3 (CSMA/CD, Ethernet)
 - Legt Kabeltypen, Stecker, Übertragungstechnik fest
 - Verschiedene Standards
 - Grundlage der aktuell praktizierten Datenübertragung
- Weitere interessante IEEE-Normen (zur Einordnung)
 - 802.6 Metropolitan Area Network (MAN)
 - 802.11 Wireless LAN
 - 802.15 Personal Area Network (PAN) mit Bluetooth
 - 802.16 Worldwide Interoperability for Microwave Access (WiMAX)

10BASE5 und 10BASE2

- Frühe Realisierung des Ethernetstandards in Computernetzwerken
 - Definition von Bitübertragung, Network Interface Cards, Flusskontrolle, Fragmentierung usw.
 - Zugriffsverfahren CSMA/CD
- Gemeinsamer Daten-Bus
- Verwendung von Koaxialkabeln
- Anbindung der Teilnehmer mit NICs
- Abschlusswiderstände
- Grundsätzlich keine Koppelgeräte

Basisschulung Netzwerk Grundlagen

Physikalische Netzbestandteile

	10BASE5	10BASE2
Bezeichnung	Thick Ethernet, Yellow Cable	Thin Ethernet, Cheaper Net
Maximale Segmentlänge	500 Meter (geringe Dämpfung, 10 mm Kabeldurchmesser)	185 Meter (größere Dämpfung, 6 mm Kabeldurchmesser)
Aktive Teilnehmer	30 Teilnehmer pro Segment maximal 3 Segmente	100 Teilnehmer pro Segment maximal 3 Segmente
Wellen- widerstand	50 Ohm	50 Ohm
Verbindungs- elemente	Transceiver (Medium Attachement Unit – MAU) und Attachement Unit Interface	BNC (Bayonet Neill Concelman): Konnektor, T-Stück, Terminator

5-4-3-Regel

- Maximal 5 Segmente
- Maximal 4 Signalverstärker (Repeater)
- Maximal 3 Segmente mit aktiven Teilnehmern (Hosts)

Repeater

- Erweiterung der Reichweite eines Netzwerkes durch Signalverstärkung
- Elektrisches Signal wird
 - aufgenommen
 - aufbereitet
 - neu eingespeist
- Keine Auswertung der Daten

Basisschulung Netzwerk Grundlagen

Physikalische Netzbestandteile

Carrier Sense, Multiple Access/Collision Detection (CSMA/CD)

- Zugriffsverfahren für logischen Bus
- Lösung der Folgen von Datenverlust durch Kollisionen

Im Einzelnen:

- Carrier Sense Lauschen am Datenbus
 - Datenbus frei?
 - Wenn ja: Senden.
- Multiple Access Mehrfachzugriff
 - alle dürfen Daten senden.
 - keine Reservierung nötig
- Collision Detection Erkennung von Kollisionen
 - Host erkennt Kollision (Datenfragmente)
 - Benachrichtigung aller anderen Hosts
 - Alle schweigen für bestimmte Zeit

Unterschiede zu 10BASE5 und 10BASE2

- Twisted-Pair-Kabel
- Zentrale Anschlusspunkte für Hosts: Koppelelemente
- Anschluss der Hosts über NICs
- Signalverstärkung durch Koppelelemente

Erweiterte Standards

- Datenübertragungsrate: 1000BASE-T, 10GBASE-T
- Lichtwellenleiter: 10BASE-F, 100BASE-FX, 10GBASE-SR, 10GBASE-LR

Basisschulung Netzwerk Grundlager

Physikalische Netzbestandteile

Hub als Koppelelement

- Sternförmige Kopplung (physisch)
- Mehrere Anschlüsse (Ports)
- Signalverstärkung wie Repeater (aktiver Hub)
- Signale werden an einem Port empfangen und allen anderen Ports ausgegeben
- Bustopologie (logisch)
 - Gemeinsamer Datenbus für alle Ports
 - CSMA/CD

Ethernet

10BASE5, 10BASE2

CSMA/CD

10BASE-T, 100BASE-TX

	10BASE-T	100BASE-TX	1000BASE-T	10GBASE-T
Max. Ausdeh- nung	100 Meter	100 Meter	100 Meter	100 Meter
Ausrei- chende Kabel- kategorie	Cat3	Cat5 (unshielded)	Cat5 (unshielded)	Cat5e (unshielded)
Empfoh- lene Kabel- kategorie	Cat5	Cat5 (shielded)	Cat6	Cat7 (screened, foiled- shielded)
Steckver- bindung	RJ45	RJ45	RJ45	GG45
Verwen- dete Adern- paare	2 (1, 2, 3, 6)	2 (1, 2, 3, 6)	4	4

lasisschulung Netzwerk Grundlagen

Physikalische Netzbestandteile

Datenübertragung bei Twisted Pair

- Jeweils ein Adernpaar bildet elektrischen Stromkreis
- Darüber werden elektrisch kodierte Daten gesendet
- Pinbelegung bei RJ45:
 - 1 Tx+
 - 2 Tx-
 - 3 Rx+
 - 6 Rx-
- Tx (Transceiver) an RJ45-Stecker steht Rx an NIC gegenüber
- Rx (Receiver) an RJ45-Stecker steht Tx an NIC gegenüber

Arbeitsauftrag

Patchfeld auflegen mit LSA Werkzeug

- Warum ein Modell?
- Grundlagen und Arbeitsweise
- Auswirkungen

Basisschulung Netzwerk Grundlagen

ISO/OSI-Referenzmodell

Ausgangssituation

- Anforderung an Netzwerke:
 - Funktionsfähigkeit (alle Komponenten müssen zusammenspielen können)
 - Erweiterbarkeit (Geschwindigkeit und Funktion)
 - Herstellerunabhängigkeit
- Realität
 - Viele Hersteller
 - Viele Standards
 - Viele Computer- und Netzwerkkomponenten
 - Viele Betriebssysteme und Applikationen

Im Einzelnen muss festgelegt werden:

- Modellhafte Systematisierung der Kommunikationsabläufe in Netzwerken
- Zur Grundlage von Hard- und Softwareentwiclungen
- Als Verständnisgrundlage zur Funktionsweise von Netzwerken bei Planung, Erweiterung, Fehlersuche

Was kann ein Modell leisten?

- Verringerung der Komplexität durch Festlegen allgemein gültiger Standards
- Grundlage für Erweiterungen durch neue Kommunikationsverfahren
- Abgrenzung der verschiedenen Funktionen im Kommunikationsverfahren, um unabhängige Neu- und Weiterentwiclung von Geräten und Protokollen zu ermöglichen

Grundsätze für die Modellerstellung

- Je Schicht wird genau eine Funktion definiert
- Es gibt nur so viel Schichten wie nötig
- Angrenzende Schichten arbeiten möglichst unabhängig voneinander
- Jede neue Schicht muss den Abstraktionsgrad des Modells erhöhen

Basisschulung Netzwerk Grundlagen

ISO/OSI-Referenzmodell

Die 7 Schichten des OSI-Referenzmodells

Schicht	Bezeichnung	Description	Funktion (Auszug)
7	Anwendung	Application	Kommunikationsschnittstelle für Anwendungen
6	Darstellung	Presentation	Einheitliches Datenformat, Komprim., Verschlüsselung
5	Sitzung	Session	Aufbau, Verlauf, Beendigung von Kommunikationsverb.
4	Transport	Transport	Adressierung von Diensten
3	Vermittlung	Network	Logische Adressierung der Endgeräte
2	Sicherung	Data Link	Physische Adressierung, Fragmentierung, Bits
1	Bitübertragung	Physical	Codierung der Daten auf das Übertragungsmedium

Der Weg zum Modell

Aufbau

3

4

-> anwendungsorientiert

-> transportorientiert

net Z

Logische und tatsächliche Kommunikation

- Logische Kommunikation: horizontal mit derselben Schicht auf gegenüberliegender Seite
- Tatsächliche Kommunikation: vertikal mit benachbarter Schicht

Basisschulung Netzwerk Grundlager

ISO/OSI-Referenzmodell

Schematischer Aufbau der Schichten

- Schichten 1 bis 6 stellen darüber liegenden Schichten Service Access Point (SAP) zur Verfügung
- Schichten 7 bis 2 reichen Daten an darunterliegende Schicht (SAP) weiter
- Alle Schichten müssen so durchlaufen werden (tatsächliche Kommunikation)

RtZ

Aufgabe im Kopf

- Weiterleiten der Daten erfolgt in Form von Paketen, Protocol Data Units
- PDU besteht aus
 - PDU der darüberliegenden Schicht
 - Vorangestellter Header (Metadaten) der weiterverarbeitenden Schicht
 - Eventuell nachgestellte Kontrollsumme (Layer 2)
- Im Header stehen die Daten zur Aufgabe der Schicht

Basisschulung Netzwerk Grundlagen

ISO/OSI-Referenzmodell - II

Protokolle

Koppelelemente

- Repeater
- Hub
- Bridge
- Switch
- Router
- Gateway

Protokolle

- Führen die Aufgaben der Schicht aus
- Beschreiben den Header mit ihren Funktionsdaten

Schicht	Bezeichnung	Protokolle, Aufgaben
4	Transport	Transmission Control Protocol (TCP) User Datagram Protocol (UDP) Adressierung der Dienste (Ports) Segmentierung für Transport
3	Vermittlung	Internet Control Message Protocol (ICMP) Informations- und Fehlermeldungen Internet Protocol (IP) logische Adressierung der Endgeräte Address Resolution Protocol (ARP) Zuordnung IP- nach MAC-Adresse
2	Sicherung	Ethernet physische Adressierung (MAC-Adresse)

Basisschulung Netzwerk Grundlagen

ISO/OSI-Referenzmodell

Folgen der Modellierung

- Keine Normierung -> Referenz
- Vorteile, die sich daraus ergeben:
 - Freie Entwicklung von Protokollen innerhalb einer Schicht bei Einhaltung der Service Access Points
 - Funktionserweiterung von Schichten/Protokollen ohne Einfluss auf andere Schichten/Protokolle möglich
 - Freie Wahl von Soft- oder Hardwarelösungen für Schicht/Funktion
- Nachteil: Overhead durch Metadaten im Header

Wiederholung und Fragen

• ISO/OSI-Referenzmodell

Basisschulung Netzwerk Grundlagen

ISO/OSI-Referenzmodell

Koppelelemente

- Verbinden Endgeräte, Netzsegmente, Netze
- Verbindung erfolgt mit
 - Nichts = einfache Bitweiterleitung
 - Signalverstärkung
 - Neuadressierung (MAC, IP, TCP)
 - Komplette Protokollumwandlung
- Daten werden auch blockiert bzw. verworfen

Repeater

- Ermöglichen längere Distancen als Normung
- 2 Ports (Eingang, Ausgang <->)
- Signalverstärkung
 - Neubewertung des Bitmusters
 - Weiterleitung durch Neugenerierung und Neueinspeisung
- Verwendung auch als Medienkonverter
- Physical Layer (Schicht 1)

Hub

- Multiport-Repeater (Aktiver Hub)
- Mehrere Ports
- Einfache (physische) Sternkopplung
 - zu einem Port hinein
 - zu allen anderen Ports hinaus
- Realisiert logische Bustopologie
 Halb-Duplex
- Physical Layer (Schicht 1)

netz

Basisschulung Netzwerk Grundlagen

ISO/OSI-Referenzmodell

Bridge

- 2 Ports (Eingang, Ausgang <->)
- Verbindet Kabelsegmente
- Trennt sie in Netzsegmente (Kollisionsdomänen)
 - Auswertung der MAC-Adresse (MAC-Bridge)
 - Gezielte Weiterleitung
 - MAC-Adressen der angeschlossenen Endgeräte in Forwarding Database (FDB)
- Learning/Transparente Bridge .|. manuell
- Keine Manipulation des Ethernet-Headers
- Data Link Layer (Schicht 2)

Switch

- "Multiport-Bridge" = mehrere Ports
- Verbindet Kabelsegmente
- An jedem Port entsteht eine Kollisionsdomäne
 - Auswertung der MAC-Adresse
 - Gezielte Weiterleitung
 - MAC-Adressen der angeschlossenen Endgeräte in MAC-Adresstabelle
- Keine Manipulation des Ethernet-Headers
- Data Link Layer (Schicht 2)

Basisschulung Netzwerk Grundlager

ISO/OSI-Referenzmodell

Switch - Besonderheit

- Interner Hochgeschwindigkeitsbus oder Ports sind kreuzweise miteinander verbunden
- Gleichzeitig weiterzuleitende Frames werden zwischengespeichert
- Daraus ergibt sich:
 - Volle Bandbreite an jedem Port
 - Voll-Duplex
 - Kein CSMA/CD

Router

- Mehrere Ports
- Verbindet (Sub-)Netze
- Vermittelt zwischen unterschiedlichen IP-Adressbereichen
- Gezielte Weiterleitung nach IP-Adresse anhand der Routing-Tabelle
 - Direkt in das Zielnetz
 - zu Router, der das Zielnetz kennt
 - an Default Gateway/Default Route
- Routing-Tabelle wird erzeugt
 - manuell
 - Routing-Protokolle
- Manipulation des Ethernet Headers (MAC-Adresse)
- Auswertung der IP-Adresse
- Keine Manipulation des IP-Headers (nur bei zusätzlichem NAT)
- Network Layer (Schicht 3)

Gateway

- Verbindet unterschiedliche Netze, die mit
 - verschiedenen Protokollen und
 - Adressierungen arbeiten
- Wertet Protokolle bis auf Layer 7 aus und verpackt alles neu
- Kein Tunneling

Übersicht

Schicht	Gateway	Aufgabe(n)
7	Gateway	Entpacken und neu generieren der Transport-PDUs von Schicht 7 aus
3	Router	Gezielte portbezogene Weiterleitung (IP-Adresse und Routing-Tabelle) Änderung der MAC-Adresse
2	Switch	Gezielte portbezogene Weiterleitung (MAC-Adresse und MAC-Adresstabelle) – Mikrosegmentierung v. N. Puffern von Daten (Vollduplex) Signalverstärkung
	Bridge	Gezielte Weiterleitung (MAC-Adresse, Forwarding Database) – Segmentierung von Netzen Signalverstärkung
1	Hub	Einfache Sternkopplung Signalverstärkung
	Repeater	Signalverstärkung

Basisschulung Netzwerk Grundlagen

Adressierung in Netzwerken I

- Basics
- Die NIC und ihre MAC-Adresse

IETZ

Was ist Network Interface Card (NIC)?

- Netzwerkkarte
- Port
- PCMCIA WLAN-Karte

Verbindung zwischen

- Computer Gerätebus
- Übertragungsmedium
- Netzwerktyp

Ansprechbarkeit

- Media Access Control (MAC)
- Physische Adressierung
- Burned In Address
- Weltweit eindeutige Kennung

Basisschulung Netzwerk Grundlagen

Adressierung in Netzwerken

Die MAC-Adresse (Media Access Control)

- 48 Bit lange Zahlenfolge
- Darstellung Hexadezimal
- 6 Blöcke à 8 Bit

Adressvergabe

- Erster Teil 24 Bit
 - Hersteller
 - Vergabe durch IEEE
- Zweiter Teil 24 Bit
 - vom Kartenhersteller vergeben
 - einmalig innerhalb der Herstellerkennung

Beispiele

- 00:50:56:C0:00:08 Unicastadresse
- 01:00:5E:xx:xx:xx Multicastadresse
- FF:FF:FF:FF:FF Broadcastadresse

Windows - Praxis

- ipconfig /all
- getmac
- Netzwerkverbindung Statusanzeige
- Regedit (Registrierungsdatenbank)

Linux - Praxis

- ifconfig
- ip addr

Windows & Linux

- ping
- arp -a

Basisschulung Netzwerk Grundlagen

Adressierung in Netzwerken II

Adressierung mit dem Internet Protocol (IP-Adresse)

Aufbau

- 4 Blöcke à 8 Bit
- Netzmaske
- Netzanteil von links
- Hostanteil von rechts
- theoretisch

Darstellung

- 192.168.2.38/255.255.255.0 Dotted decimal Notation
- 192.168.2.38/24 CIDR-Schreibweise
- 11000000.10101000.00000010.00100110 IP-Adresse – binär
- 1111111.11111111.1111111.00000000 Netzmaske – binär

Basisschulung Netzwerk Grundlagen

Adressierung in Netzwerken

Klasse A

• Netzmaske: 255.0.0.0 (8 Bit)

• Hostanteil: 24 Bit (16.777.214 Hosts pro Netz)

Präfix: 0 (0 bis 127)

Klasse B

• Netzmaske: 255.255.0.0 (16 Bit)

• Hostanteil: 16 Bit (65.534 Hosts pro Netz)

• Präfix: 10 (128 bis 191)

Klasse C

• Netzmaske: 255.255.255.0 (24 Bit)

• Hostanteil: 8 Bit (254 Hosts pro Netz)

• Präfix: 110 (192 bis 223)

Klasse D

• Präfix: 1110 (224 bis 239)

IP-Adressen zur "privaten" Nutzung

IP- Adressbereich	Netze	IP-Adressen	Funktion
10.0.0.0 bis 10.255.255.255	1 Klasse-A- Netz	2 ²⁴ = 16.777.216	Privates Netzwerk der Klasse A
169.254.0.0 bis 169.254.255.255	1 Klasse-B- Netz	2 ¹⁶ = 65.536	Privates NW, Link Local, APIPA
172.16.0.0 bis 172.31.255.255	16 Klasse-B- Netze	2 ²⁰ = 1.048.576	Privates Netzwerk der Klasse B
192.168.0.0 bis 192.168.255.255	256 Klasse-C- Netze	216 = 65.536	Privates Netzwerk der Klasse C

Basisschulung Netzwerk Grundlagen

Adressierung in Netzwerken

IP-Adressen mit speziellen Funktionen

Netz	Funktion
0.0.0.0/8	Ausweisung des aktuellen Netzwerkes
127.0.0.0/8	Loopback-Adresse (Lokales Netz mit Lokaler Computer)
192.88.99.0/24	IPv6 zu IPv4 Relay zur Adressierung bei IPv6- Tunneling via IPv4
224.0.0.0/4	Multicast (ehemals Klasse-D-Netzwerk)
240.0.0.0/4	Reserviert (ehemals Klasse-E-Netzwerk)
255.255.255.255	Übergeordnete Broadcast-Adresse

Protokollaufbau der transportorientierten Protokolle II

• Internet Protocol v.6

Beispiel:

fe80:0000:0000:0000:0202:0000:febd:2246

net?

Basisschulung Netzwerk Grundlager

Protokollaufbau

Der IPv6-Header

16 bit 8 bit 8 bit IP-Adresse des Absenders: 128 bit	Version: 4 bit	Traffic Class: 8 bit		Flow Label: 20 bit	
128 bit	Payload Length: 16 bit		'		
IP-Adresse des Empfängers:	IP-Adresse 128 bit	des Absenders:			
IP-Adrassa des Emnfängers:					
128 bit					

IP-Adressen

• 128 Bit lange IP-Adressen von Absender und Empfänger

netz

Protokollaufbau II

Vorteile von IPv6 gegenüber IPv4

- Integrität des Headers
 - Keine Prüfsumme für Integritätsprüfung des IP-Headers
 - Überprüfung und Neuberechnung auf jedem Router entfällt
 - Funktion wird an Zielhost übertragen (TCP)
- - Keine Fragmentierung auf dem Weg durch Router (Don't-Fragment)
 - niedrigste MTU bei IPv6-Routern wird auf 1280 Byte heraufgesetzt 68 Byte bei IPv4
- Länge der Nutzlast
 - muss nicht mehr berechnet werden, steht direkt im Header
 - beschleunigt die Verarbeitungsgeschwindigkeit bei Absender- und Zielhost
- Adresslänge: 128 Bit (entspricht circa 3,4 x 10³⁸ Adressen)
- Vereinfachter und verkürzter Header beschleunigt Routing
- Autokonfiguration entlastet von Traffic und Konfigurationsdaten Dienste wie DHCP werden weitgehend überflüssig
- Integration von Verschlüsselung und Authentifizierungsdaten von IPsec erleichtert Auswertbarkeit und zusätzlichen Implementierungsaufwand

Basisschulung Netzwerk Grundlagen

Protokollaufbau II

Adressaufbau und Notation IPv6-Adressen

- Länge einer IPv6-Adresse: 128 Bit
- Notation
 - 16 Bit lange Blöcke, durch Doppelpunkte getrennt
 - Schreibweise in Hexadezimal
 - Beispiel: fe80:0000:0000:0000:0202:0000:febd:2246
- · Netz- und Hostanteil
 - Angabe in CIDR-Notation, keine Netzklassen
 - Beispiel: fe80:0000:0000:0000:0202:0000:febd:2246/64
- Vereinfachung der Notation
 - Führende Nullen innerhalb der 16-Bit-Blöcke entfallen

fe80:0000:0000:0000:0202:0000:febd:2246/64 fe80:0:0:0:202:0:febd:2246/64

• Ein Block oder mehrere aufeinanderfolgende Blöcke mit Gesamtwert 0

entfallen

aus fe80:0:0:0:202:0:febd:2246/64 fe80::202:0:febd:2246/64

• IPv6-Adresse in URL erfolgt in eckigen Klammern

Beispiel: http://[fe80:0000:0000:0000:0202:0000:febd:2246]:80

Protokollaufbau II

Adressaufbau und Notation IPv6-Adressen

Netze	Funktion
::/128	Ausweisung des aktuellen Netzwerkes
::1/128	Loopback-Adresse (Lokaler Computer)
fe80::/10 (fe80:: bis febf::)	Diese Adressen sind nur im selben Netz gültig und werden von Routern nicht weitergeleitet (Link Local Unicast) Die Host-Adresse besteht aus diesem Präfix und einem selbst vergebenen Interface Identifier
ff00::/8	Multicastadressen
0:0:0:0:0:ffff::/96	IPv4 mapped IPv6 Addresses in die verfügbaren 32 Bit am Ende wird einfach die IPv4-Adresse übernommen
2000::/3 (2000:: bis 3fff::)	In öffentlichen Netzen (Internet) routbare IPv6- Adressen Die Vergabe erfolgt durch die IANA

Basisschulung Netzwerk Grundlagen

Adressierung in Netzwerken III

- IP-Adressvergabe (manuell)
- IP-Adressvergabe (automatisiert)
 - Dynamic Host Configuration Protocol (DHCP)
 - Automatic Private IP-Addressing (APIPA)

Manuelle IP-Addressvergabe - Windows

Basisschulung Netzwerk Grundlagen

Adressierung in Netzwerken

Manuelle IP-Addressvergabe - Linux

Adressierung in Netzwerken

Automatische IP-Addressvergabe mit dem Dynamic Host Configuration Protocol (DHCP)

- IP-Address-Pool
 - Adressbereich, aus welchem der DHCP-Server IP-Adressen an die Clients zuweisen kann

- Beispiel: Netz 192.168.12.0/24

Pool 192.168.12.10/24 - 192.168.12.19/24

- Lease-Time
 - Zeitdauer, für die eine Adresszuweisung gültig ist
 - Erneuerung oder Wegfall der Adresszuweisung möglich
- MAC-Address-Table
 - nur Anfragen nach IP-Adressen, deren Absender-MAC-Adresse in der MAC-Address-Table eingetragen sind, werden berücksichtigt
 - Feste Zuordnung einer IP-Adresse aus den IP-Address-Pool zu einer MAC-Adresse möglich

Basisschulung Netzwerk Grundlagen

Ablauf einer erfolgreichen IP-Adressvergabe mit DHCP

MAC-Adresse IP-Adresse

Network Interface Card

MAC-Adresse

Praxis - MAC-Adresse

IP-Adresse

etz

Adressierung in Netzwerken

Automatische IP-Addressvergabe (DHCP) - Windows

Basisschulung Netzwerk Grundlagen

Adressierung in Netzwerken

Automatische IP-Addressvergabe (DHCP) - Linux

Seite 76

Adressierung in Netzwerken

Automatic Private IP-Addressing

Automatische IP-Addressvergabe ohne DHCP

Basisschulung Netzwerk Grundlagen

Domain Name System I

- Aufgabe von DNS
- Namensraum I

Domain Name System

Problem

- IP-Adressen merken ist schwierig
- Mit dicken Adressbüchern hantieren ist
- Alle LAN-Hosts sollen Zugang zum Internet haben

Aufgabe für DNS

- Bereitstellung von "Namen" für IP-Adressen
- Zuordnung von IP-Adressen zu "Namen" und umgekehrt
- Übersetzen von IP-Adressen in "Namen" und umgekehrt (Namensauflösung)
- Transparentes Verhalten

lasisschulung Netzwerk Grundlagen

Domain Name System

Der Namensraum von DNS

- Der Aufbau ist hierarchisch
- Der markierte Fully Qualified Domain Name lautet: de.wikipedia.org.

Domain Name System II

- Namensraum II
- Namensvergabe
- Namensauflösung lokal
- Namensauflösung Server

Basisschulung Netzwerk Grundlagen

Domain Name System

Regeln für die Namensvergabe

- Gültige Zeichen: a z, 0 9, -
- Maximale Namenslänge: 63 Zeichen
- FQDN =
 - Kombination von Namen (Labels)
 - Getrennt durch Punkt
 - hierarchisch aufsteigend
 - Endet auf Root (Punkt), der nicht notiert wird)
- Maximale Länge des FQDN: 255 Zeichen (inklusive Trennpunkte)
- Nicht case-sensitiv
- Knotennamen (Domain) und Blattnamen (Endgerät) müssen innerhalb einer Domain eindeutig sein

Domain Name System

Wer vergibt die Namen?

• Öffentliche Top-Level-Domains

Internet Corporation for Assigned Names and Numbers (ICANN) über Internet Network Information Center (InterNIC)

- Öffentliche Second-Level-Domains
 - nationale und übernationale Organisationen
 - Für de-Domain: DeNIC (www.denic.org)
- Alle anderen Domain- und Blattnamen sind frei

Basisschulung Netzwerk Grundlagen

Domain Name System

Lokale Namensauflösung

- Lokale Textdatei
- Windows: C:\Windows\system32\drivers\etc\hosts
- Linux: /etc/hosts

Domain Name System

DNS-Verzeichnisdienst

- Verteilte Datenbank
- Nameserver sind autoritativ für bestimmte Zonen (Domains)
- Nameserver sind entsprechend hierarchisch aufgebaut wie der Namensraum
- Auflösung durch Nameserver
- Client: Resolver
- Lokale Einstellungen: erster Nameserver
- · Namensauflösung erfolgt vollautomatisch

lasisschulung Netzwerk Grundlagen

Domain Name System

Root-Server

- Namensauflösung erfolgt hierarchisch absteigend
- 13 Root-Server verwalten die Top-Level-Domains
- Verzeichnis der Root-Server ist lokal in Textdatei (Rückfallebene)

Namensraum

Namensvergabe

Namensauflösung lokal

Namensauflösung Server

iet 7

44

- Strukturierte Verkabelung
- Planung eines Netzwerkes

Basisschulung Netzwerk Grundlagen

Netzwerkplanung

Anforderung

- Netzwerk soll funktionieren für geplante Dienste
- Ausbaufähigkeit, Nachhaltigkeit
- So kostengünstig wie möglich
- So ausgebaut wie nötig

Im Einzelnen muss festgelegt werden:

- Bandbreite nach Netzwerkabschnitten
- Art der Verkabelung und der (Steck-)Verbindungen
- Struktur der Verkabelung
- Redundanz der Geräte und der Verkabelung
- Anwendungsneutralität (insgesamt, nach Netzwerkabschnitten)
- Erweiterbarkeit (Geräte, Anwendungen, Technologien)
- Und vieles mehr

Strukturierte Verkabelung – Dreigeteilte Planung

Allgemeine Planung

Strukturierte Verkabelung

4

Basisschulung Netzwerk Grundlagen

Netzwerkplanung

Primärbereich (Primärverkabelung)

- Campusverkabelung, Geländeverkabelung
- Hohe Datenübertragungsraten
- Über weite Strecken
- Wenig Anschlusspunkte

Umfang der Primärverkabelung

- Gebäudeverteiler
- Standortverteiler (mit Internetanschluss)
- Verkabelung zwischen Gebäudeverteiler
- Verkabelung zum Standortverteiler

netz

Verkabelung

- Lichtwellenleiter
 - Monomode, Stufenindex oder Multimode Gradientenindex
 - Datenübertragungsrate bis zu 10 Gbit/s
 - Reichweite bis 1500 Meter (geringe Dämpfung)
- Verbindung über Richtfunk, VDSL

Koppelelemente

- Standortverteiler
 - hoch leistungsfähige Router
 - wenige, leistungsfähige Anschlüsse (Ports)
- Gebäudeverteiler
 - hoch leistungsfähige Switchs mit entsprechenden Schnittstellen
 - wenige, leistungsfähige Anschlüsse (Ports)
 - wechselbare Ports (Slots) für TP- oder LWL-Module

Basisschulung Netzwerk Grundlagen

Netzwerkplanung

Sekundärbereich (Sekundärverkabelung)

- Steigbereich
- Mittlere bis hohe Datenübertragungsraten
- Kleine bis mittlere Kabelwege (je nach Gebäudegröße)
- Viele Anschlusspunkte

Umfang der Sekundärverkabelung

- Verkabelung innerhalb des Gebäudes
- Etagenverteiler
- Verkabelung zwischen Etagenverteiler und Gebäudeverteiler

Verkabelung

- Twisted Pair
 - 1000BASE-T
 - Cat6-Twisted-Pair-Kabel, 4 Paare
- Lichtwellenleiter (Standard)
 - Preiswert bis 500 Meter
 - Multimode mit Stufenindexfaser
 - Multimode mit Gradientenindexfaser

Koppelelemente

- · Leistungsfähige Switches
- Ausreichend viele Anschlüsse (Ports)
- LWL-Port für Backbone-Verkabelung

Basisschulung Netzwerk Grundlagen

Netzwerkplanung

Tertiärbereich (Tertiärverkabelung)

- Horizontale Verkabelung, Etagenverkabelung
- Kleine bis mittlere Datenübertragungsraten
- Kurze Kabelwege
- Viele Anschlüsse

Umfang der Tertiärverkabelung

- Anschlussdosen für Endgeräte
- Verkabelung von Etagenverteilern zu Anschlussdosen

Verkabelung

- Twisted Pair
 - 100BASE-TX oder 1000BASE-T
 - Max. ca. 90 Meter Kabellänge ("90+10"-Regel -> nächste Folie)
 - Cat6-Twisted-Pair-Kabel, 4 Paare
- Lichwellenleiter bei hohen Anforderungen

Koppelelemente

- Anschlussdosen für Endgeräte
 - Wand- oder Bodentankdosen
 - fest verbaut

Basisschulung Netzwerk Grundlagen

Netzwerkplanung

"90+10"-Regel

- 100 Meter Gesamtlänge zulässig bei Twisted Pair
- 90 Meter von Switch (letzter Verstärker) zu Anschlussdose
- 10 Meter für Patchkabel zwischen Anschlussdose und Endgerät

Verteilerschrank

- 19-Zoll-Bauweise
- Zur Aufnahme der Switchs und Patchpanel

Patchpanel (Patchfeld)

- Passives Koppelelement
- · Vorderseite: Verbindung zu Switch (Etagenverteiler) mit Patchkabeln (Cat6)
- Rückseite: Verkabelung zu Dosen für Endgeräte

Anschluss zum Gebäudeverteiler

Netzwerkplanung

Planung des Netzwerks I

- Berücksichtigung der organisatorischen-, betrieblichen Struktur bei der Festlegung der topologischen Strukturen des Netzwerks
- Berücksichtigungen der Vorschriften aus Unfallschutz, Arbeitsplatzsicherheit, Ergonomie usw.
- Berücksichtigung von Datenschutz und Datensicherheit
- Frühzeitige Koordination mit Anbietern öffentlicher Netzwerkzugänge und eventuell nötigen Registrierungs- und Ressourcenvergabestellen
- · Anforderungen an die aktiven Netzwerkkomponenten (Switchs, Router, Gateways, Firewalls, Sicherheitstools usw.)
- Anforderungen an die Netzwerkverkabelung insgesamt und unterschieden nach den Bereichen der Strukturierten Verkabelung
- · Anwendungs- und Technik-Neutralität
- Herstellerunabhängigkeit
- Bis zu 50 Prozent Übertragungskapazität über Bedarf
- Kosten-Nutzen-Analyse
- Berücksichtigung bereits bestehender Installationen
- Auswahl der aktiven und passiven Koppelelemente (inklusive Kabel) gemäß Strukturierter Verkabelung
- Planung der Subnetze, IP-Adressbereiche, IP-Adressvergabe

Patchpanel und Verteilerschrank

Dokumentation des Netzwerks

- Übersichtsplan über aktive und passive Netzwerkelemente, Verkabelung, Anschlusspunkte, Verteilerschränke und angeschlossene Geräte
- Tabellarische Auflistung aller verbauten Teile (gemäß Übersichtsplan)
- Auszeichnung der Kabel, Anschlusspunkte, Koppelelemente und Endgeräte vor Ort mit Dokumentation im Übersichtsplan und/oder der tabellarischen Auflistung (auf Logik und Erweiterbarkeit der Auszeichnung achten)
- Konfiguration der managebaren Koppelelemente (sichern und dokumentieren)

Betriebshandbuch

- Sicherheits- und Verfahrensregeln (Zugänge, Passwortvorschriften, Gebrauch externer Datenträger, Haftungsvorschriften, Datensicherung, Update-Verfahren usw.)
- Benennung der für das reibungslose Funktionieren des Netzwerks verantwortlichen Mitarbeiter
- Dokumentation der physischen und logischen Netzwerkstruktur anhand zentraler Geräte (Server, Netzwerkdrucker) mit ihrer Hardwareausstattung und den Diensten, die sie anbieten, sowie der zentralen logischen Ressourcen (Lizenzen, Programmkonfigurationen, Ordnerfreigaben, Benutzer und ihre Rechte)

Allgemeine Planung

Strukturierte Verkabelung

Die 3 Bereiche

Patchpanel und Verteilerschrank

Planung und Aufbau

Basisschulung Netzwerk Grundlagen

Netzwerkplanung

Test des Netzwerks

- Test auf Fehler (Verkabelung, Konfiguration, Erreichbarkeit usw.)
- Belastungstest (Bandbreite/Datendurchsatz, Speicher, Einhaltung zeitlicher Vorgaben bei Volllast usw.)

