12th Class NCERT Chapter 13 Exercise Question 6

Suryaansh Jain

May 16, 2022

Outline

- Question
- Solution
- \bigcirc For \mathcal{C}_1
- 4 For C_2
- \bigcirc For \mathcal{C}_3
- Tossing the coin
- Solving
- Solving (Contd.)

Question

There are 3 coins, one is a two headed coin (has both sides head), one is a biased coin that shows head with 75% probability and the last coin is unbiased. A coin is chosen at random and tossed. It shows head, what is the probability that it is a two headed coin?

Solution

Let us call the two headed coin \mathcal{C}_1 , the biased coin \mathcal{C}_2 and the unbiased coin \mathcal{C}_3

For \mathcal{C}_1

Let the random variable $X_{\mathcal{C}_1}$ denote what the coin shows. Then, we see that the sample space is S=0,1 where 1 is head and 0 is tail. The PMF is given by

$$\Pr\left(X_{\mathcal{C}_1} = k\right) = \begin{cases} 1, & k = 1\\ 0, & \text{otherwise} \end{cases} \tag{1}$$

For C_2

Let the random variable X_{C_2} denote what the coin shows. Then, we see that the sample space is S=0,1 where 1 is head and 0 is tail. The PMF is given by

$$\Pr(X_{C_2} = k) = \begin{cases} \frac{3}{4}, & k = 1\\ \frac{1}{4}, & k = 0\\ 0, & \text{otherwise} \end{cases}$$
 (2)

For C_3

Let the random variable $X_{\mathcal{C}_3}$ denote what the coin shows. Then, we see that the sample space is S=0,1 where 1 is head and 0 is tail. The PMF is given by

$$\Pr(X_{C_3} = k) = \begin{cases} \frac{1}{2}, & k = 1\\ \frac{1}{2}, & k = 0\\ 0, & \text{otherwise} \end{cases}$$
 (3)

Tossing the coin

Let the random variable X denote the coin we picked. Then we see that the same space is S=1,2,3 where 1 is C_1 , 2 is C_2 and 3 is C_3 . The PMF is given by

$$\Pr(X = k) = \begin{cases} \frac{1}{3}, & 1 \le k \le 3\\ 0, & \text{otherwise} \end{cases} \tag{4}$$

Solving

Given that the coin shows head we have to find the conditional probability that the coin is C_1 . This is given by

$$\Pr\left(X=1|K\right) \tag{5}$$

Where K is the condition that the coin shows a head.

Let E be the event : A coin is chosen at random and is tossed, the outcome of this toss is a head and the coin is a two headed coin.

Solving (Contd.)

Now.

$$Pr(E) = \frac{Pr(X = 1, C_1)}{Pr(K)}$$
(6)

$$\Pr(X = 1, C_1) = \frac{1}{3}$$
 (7)

$$\Pr(K) = \sum_{i=1}^{3} \Pr(X = i, C_i)$$
(8)

$$\Rightarrow \Pr(K) = \frac{1}{3} + \frac{1}{4} + \frac{1}{6} = \frac{3}{4}$$

$$\Rightarrow \Pr(E) = \frac{4}{9}$$
(9)

$$\implies \Pr(E) = \frac{4}{9} \tag{10}$$