ICPC 2023 Online Fall Challenge powered by Huawei

Ideas by Gleb Astashkin

(aka gleb.astashkin)

A few words about myself

- It's my third cash prize in the Huawei ICPC completions
- I finished 7th, it's my personal best
- I used to work at telecommunication company, that's why I know something about transmitting signals from base stations to client's devices
- It didn't help me at all during the competition [

Speech plan

- General approach greedy solution to beat most of the cases
- Packing multiple frames to one (cell, radio)
- Unique approach to deal with low duration frames + low average D cases
- Impressions and additional thoughts

General approach

General approach

There is no penalty if an user occupies a radio exclusively

$$s_{rnt}^{(k)} = \frac{s_{0,rnt}^{(k)} \times p_{rnt}^{(k)} \times \prod_{m \neq n} e^{d_{mrn}^{(k)} \times b_{rmt}^{(k)}}}{1 + \sum_{k' \neq k, n' \neq n} s_{0,rnt}^{(k')} \times p_{rn't}^{(k')} \times e^{-d_{n'rn}^{(k')}}}$$

$$s_{rnt}^{(k)} = s_{0,rnt}^{(k)} \times p_{rnt}^{(k)} \times p_{rnt}^{(k')}$$

- Let's sort all the frames somehow, iterate through them and try to schedule them one by one greedy
- > Since radio resources are limited, we will try to minimize consumption of radio resources
- And use power consumption as a tiebreaker

General approach – frame ordering

- Since this is a heuristic, different way to order the frames leads to different results
- Make multiple runs using different ordering and choose the best
- We can order frames by:

Occupied radios

Occupied pairs (cell, radio)

Purely random

Combination of all above

General approach – extra tricks

- Coccupy only limited amount of power on the first run set power limit for (cell, radio) to 1.0 instead of min(4.0, R).

 Utilize all the energy on the last run
- Recalculate the order of frames based on already occupied resources, for example between the first and the last runs

General approach – multiple runs

Consider the case where:

- \rightarrow K = 4
- ightharpoonup R = 5
- First two cells have twice greater S₀ then, the others
- There are 4 frames with total 'size' = 6
- A frame occupies radio exclusively: 1 radio = 1 frame

S ₀	K ₀	K ₁	K ₂	K ₃
R_0	2	2	1	1
R_1	2	2	1	1
R ₂	2	2	1	1
R_3	2	2	1	1
R_4	2	2	1	1

General approach – multiple runs

Without power limit

Р	K_0	K ₁	K_2	K_3	Sum
R_0	3	0	0	0	6
R ₁	2	1	0	0	6
R_2	0	3	0	0	6
R_3	0	1	4	0	6
R ₄	0	0	1	4	5
Sum	5	5	5	4	

Power limit = 1.0

Р	K_0	K ₁	K_2	K ₃	Sum
R_0	1	1	1	1	6
$R_{\scriptscriptstyle 1}$	1	1	1	1	6
R_2	1	1	1	1	6
R_3	1	1	1	1	6
R_4	1	1	1	1	6
Sum	5	5	5	5	

Packing multiple frames to one (cell, radio)

Packing multiple frames to one (cell, radio)

Penalty for doing that is not that big. It doesn't involve P_{rnt} at all

$$s_{rnt}^{(k)} = \frac{s_{0,rnt}^{(k)} \times p_{rnt}^{(k)} \times \prod_{m \neq n} e^{d_{mrn}^{(k)} \times b_{rmt}^{(k)}}}{1 + \sum_{k' \neq k, n' \neq n} s_{0,rnt}^{(k')} \times p_{rn't}^{(k')} \times e^{-d_{n'rn}^{(k')}}}$$

$$s_{rnt}^{(k)} = s_{0,rnt}^{(k)} \times p_{rnt}^{(k)} \times \prod_{m \neq n} e^{d_{mrn}^{(k)} \times b_{rmt}^{(k)}}$$

- Usually we have some leftover power, so we can utilize it by packing frames
- It's perfect when we have many 1 time unit duration frames
- There's no way to improve final score if average D is high enough

Packing multiple frames – algorithm

Since we share radio resources between multiple frames, we have to consider interference – frames influence to each other. Deal with it using following steps:

- 1. Assign all available frames to the chosen (cell, radio)
- 2. Use bin search to calculate minimum amount of power to complete the frame
- 3. Choose maximum subset of frames we can complete under given constraints
- 4. Add a few runner ups and repeat all previous steps
- **5.** Stop if the subset of frames is stable

Unique approach for low duration frames and low average D cases

Unique approach

We are not allowed to use same radio on multiple cells due to high penalty

$$s_{rnt}^{(k)} = \frac{s_{0,rnt}^{(k)} \times p_{rnt}^{(k)} \times \prod_{m \neq n} e^{d_{mrn}^{(k)} \times b_{rmt}^{(k)}}}{1 + \sum_{k' \neq k, n' \neq n} s_{0,rnt}^{(k')} \times p_{rn't}^{(k')} \times e^{-d_{n'rn}^{(k')}}}$$

- But we are allowed to use multiple radios for the same frame
- Actually we can even share set of (cell, radio) between multiple frames
- The only penalty is $\prod_{m \neq n} e^{d_{mrn}^{(k)} \times b_{rmn}^{(k)}}$

Unique approach – set of (cell, radio)

Choose the set of (cell, radio) in such way, that:

- 1. A radio used by only one cell
- 2. Maximum number of radios assigned to a single cell is as lower as possible

Then choose maximum subset of frames using algorithm from the previous part and scheduling each frame to all chosen (cell, radio) at once

Р	K_0	K ₁	K ₂	K ₃	Sum
R_0	4				4
R_1		4			4
R_2			4		4
R_3				2.5	2.5
R_4				2.5	2.5
Sum	4	4	4	5	

Unique approach – a little trick

Some of the frames are so small we can schedule them to a smaller amount of radios (perhaps 1 or 2)

Assign them only on orange (cell, radio)s

It slightly reduces penalty for all the other frames scheduled on green (cell, radios)

Make it in two runs:

- 1. Assign some frames only on orange (cell, radio)s
- $2.\,$ Try to assign maximum number of unassigned frames on all (cell, radio)s: both green and orange

Р	K ₀	K ₁	K ₂	K ₃	Sum
R_0	4				4
$R_{\scriptscriptstyle 1}$		4			4
R_2			4		4
R_3				2.5	2.5
R_4				2.5	2.5
Sum	4	4	4	5	

Impressions and additional thoughts

Impressions and additional thoughts

- All the formulas seemed scary at first, but turned out it was not that bad
- Low TL made feedback loop short and convenient. Also it made the problem deeper, since we have not enough runtime to do classical SA
- > Shared testcases made local debugging possible. I like that number of them was small to prevent overfitting
- Once again I don't think probing is a problem. At least system tests deal well with overfitted solutions
- Difference between preliminary and system tests was small. Set of top-10 competitors didn't change after the system tests. That's a good sign
- > Overall it was a great contest! I really enjoyed it. Thank you!

Thank you for your attention!

謝謝你!

Telegram: @gvastash

Linkedin: linkedin.com/in/gvastash

