Exercise 1. Let us consider the following binary search tree over the nodes {A, E, M, N, S, T} using the alphabetical order. In case it is not a binary search tree, transform it into an "equivalent" (with the same nodes, but not necessarily edges) well-balanced binary search tree using the AVL algorithm.

Exercise 2. Let us consider the following binary search tree with nodes over the set of positive integers using the increasing order. In case it is not a binary search tree, transform it into an "equivalent" (with the same nodes, but not necessarily edges) well-balanced binary search tree using the AVL algorithm.

Exercise 3. Let us consider the following binary search tree with nodes over the set of positive integers using the increasing order. In case it is not a binary search tree, transform it into an "equivalent" (with the same nodes, but not necessarily edges) well-balanced binary search tree using the AVL algorithm.

Exercise 4. Let us consider the following binary search tree with nodes over the set of positive integers using the increasing order. In case it is not a binary search tree, transform it into an "equivalent" (with the same nodes, but not necessarily edges) well-balanced binary search tree using the AVL algorithm.

