# Class 8

## Lauren Waters (A16326738)

#### Outline

Today we will apply the machine learning methods we introduced in the last class on breast cancer biopsy data from fine needle aspiration (FNA).

#### Data input

The dta is supplied in CVS format:

```
wisc.df <- read.csv("WisconsinCancer.csv", row.names=1)
head(wisc.df)</pre>
```

|          | diagnosis radiu | ıs_mean  | texture_mean   | perimeter_mea | n area_mea  | n            |
|----------|-----------------|----------|----------------|---------------|-------------|--------------|
| 842302   | М               | 17.99    | 10.38          | 122.8         | 0 1001.     | 0            |
| 842517   | М               | 20.57    | 17.77          | 132.9         | 0 1326.     | 0            |
| 84300903 | M               | 19.69    | 21.25          | 130.0         | 0 1203.     | 0            |
| 84348301 | M               | 11.42    | 20.38          | 77.5          | 8 386.      | 1            |
| 84358402 | M               | 20.29    | 14.34          | 135.1         | 0 1297.     | 0            |
| 843786   | M               | 12.45    | 15.70          | 82.5          | 7 477.      | 1            |
|          | smoothness_mean | n compa  | ctness_mean co | oncavity_mean | concave.po  | ints_mean    |
| 842302   | 0.11840         | )        | 0.27760        | 0.3001        |             | 0.14710      |
| 842517   | 0.08474         | <u>l</u> | 0.07864        | 0.0869        |             | 0.07017      |
| 84300903 | 0.10960         | )        | 0.15990        | 0.1974        |             | 0.12790      |
| 84348301 | 0.14250         | )        | 0.28390        | 0.2414        |             | 0.10520      |
| 84358402 | 0.10030         | )        | 0.13280        | 0.1980        |             | 0.10430      |
| 843786   | 0.12780         | )        | 0.17000        | 0.1578        |             | 0.08089      |
|          | symmetry_mean i | ractal_  | _dimension_mea | n radius_se t | exture_se ] | perimeter_se |
| 842302   | 0.2419          |          | 0.0787         | 1.0950        | 0.9053      | 8.589        |
| 842517   | 0.1812          |          | 0.0566         | 0.5435        | 0.7339      | 3.398        |
| 84300903 | 0.2069          |          | 0.0599         | 0.7456        | 0.7869      | 4.585        |

| 84348301 | 0.2597        | ,         | 0.0         | 9744  | 0.4956        | 1.1560     | 3.445   |
|----------|---------------|-----------|-------------|-------|---------------|------------|---------|
| 84358402 | 0.1809        |           |             | 5883  |               | 0.7813     | 5.438   |
| 843786   | 0.2087        |           |             | 7613  | 0.3345        | 0.8902     | 2.217   |
| 010700   | area_se smoot |           |             |       |               |            |         |
| 842302   | 153.40        | 0.006399  | _           | 4904  | 0.05373       | _          | 0.01587 |
| 842517   |               | 0.005225  |             | 1308  | 0.01860       |            | 0.01340 |
| 84300903 |               | 0.006150  |             | 4006  | 0.03832       |            | 0.02058 |
| 84348301 |               | 0.009110  |             | 7458  | 0.05661       |            | 0.01867 |
| 84358402 |               | 0.011490  |             | 2461  | 0.05688       |            | 0.01885 |
| 843786   | 27.19         | 0.007510  |             | 3345  | 0.03672       |            | 0.01137 |
| 010100   | symmetry_se f |           |             |       |               |            | 0.01101 |
| 842302   | 0.03003       |           | 0.006193    |       | 25.38         | 17.33      |         |
| 842517   | 0.01389       |           | 0.003532    |       | 24.99         | 23.41      |         |
| 84300903 | 0.02250       |           | 0.004571    |       | 23.57         | 25.53      |         |
| 84348301 | 0.05963       |           | 0.009208    |       | 14.91         | 26.50      |         |
| 84358402 | 0.01756       |           | 0.005115    |       | 22.54         | 16.67      |         |
| 843786   | 0.02165       |           | 0.005082    |       | 15.47         | 23.75      |         |
|          | perimeter_wor | st area_  | worst smoot | hness | s_worst compa | ctness_wor | st      |
| 842302   | 184.          |           | 019.0       |       | 0.1622        | 0.66       |         |
| 842517   | 158.          | 80 19     | 956.0       |       | 0.1238        | 0.18       | 66      |
| 84300903 | 152.          | 50 17     | 709.0       |       | 0.1444        | 0.42       | 45      |
| 84348301 | 98.           | 87        | 567.7       |       | 0.2098        | 0.86       | 63      |
| 84358402 | 152.          | 20 15     | 575.0       |       | 0.1374        | 0.20       | 50      |
| 843786   | 103.          | 40        | 741.6       |       | 0.1791        | 0.52       | 49      |
|          | concavity_wor | st concar | ve.points_w | orst  | symmetry_wor  | st         |         |
| 842302   | 0.71          | .19       | 0.          | 2654  | 0.46          | 01         |         |
| 842517   | 0.24          | 16        | 0.          | 1860  | 0.27          | 50         |         |
| 84300903 | 0.45          | 504       | 0.          | 2430  | 0.36          | 13         |         |
| 84348301 | 0.68          | 869       | 0.          | 2575  | 0.66          | 38         |         |
| 84358402 | 0.40          | 000       | 0.          | 1625  | 0.23          | 64         |         |
| 843786   | 0.53          | 355       | 0.          | 1741  | 0.39          | 85         |         |
|          | fractal_dimer | sion_wors | st          |       |               |            |         |
| 842302   |               | 0.1189    | 90          |       |               |            |         |
| 842517   |               | 0.0890    | 02          |       |               |            |         |
| 84300903 |               | 0.087     | 58          |       |               |            |         |
| 84348301 |               | 0.1730    |             |       |               |            |         |
| 84358402 |               | 0.076     |             |       |               |            |         |
| 843786   |               | 0.124     | 40          |       |               |            |         |
|          |               |           |             |       |               |            |         |

#### 1. Exploratory data analysis

We don't want to ID numbers included in the dataset (we won't really be needing it), so we set the ID number as the row titles.

```
diagnosis <- as.factor(wisc.df$diagnosis)</pre>
  wisc.data <- wisc.df[,-1]</pre>
     Q1. How many people are in this data set
  nrow(wisc.data)
[1] 569
     Q2. How many of the observations have a malignant diagnosis?
  table(wisc.df$diagnosis)
  В
      М
357 212
can also use sum()
  sum(wisc.df$diagnosis == "M")
[1] 212
     Q3. How many variables/features in the data are suffixed with _mean?
  x <- colnames(wisc.df)
  length(grep("_mean", x))
[1] 10
```

#### 2. Principal Component Anaysis

We need to scale our input data before PCS as some of the columns are measured in terms of very different unit with different means and different vairances. We will set scale=TRUE argument to prcomp.

```
wisc.pr <- prcomp(wisc.data, scale = TRUE)
summary(wisc.pr)</pre>
```

#### Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                 PC4
                                                         PC5
                                                                 PC6
                                                                          PC7
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Standard deviation
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                PC11
                                                        PC12
                                                                PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion 0.92598 0.9399 0.95157 0.9614 0.97007 0.97812 0.98335
                          PC15
                                  PC16
                                          PC17
                                                  PC18
                                                          PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                                         PC24
                                                 PC25
                          PC22
                                  PC23
                                                         PC26
                                                                 PC27
                                                                          PC28
Standard deviation
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

```
plot(wisc.pr$x[,1], wisc.pr$x[,2], col=diagnosis)
```



Q4. From your results, what proportion of the original variance is captured by the first principal components (PC1)?

#### 0.4427

Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?

#### PC3

Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?

#### PC7

biplot(wisc.pr)



Q7. What stands out to you about this plot? Is it easy or difficult to understand? Why?

It's very difficult to read

```
plot(wisc.pr$x, col=diagnosis, xlab = "PC1", ylab = "PC2")
```



Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

```
plot(wisc.pr$x, col = diagnosis, xlab = "PC1", ylab = "PC3")
```



```
pr.var <- wisc.pr$sdev^2
head(pr.var)</pre>
```

[1] 13.281608 5.691355 2.817949 1.980640 1.648731 1.207357

```
pve <- pr.var / sum(pr.var)
plot(pve, xlab = "Principal Component", ylab = "Proportion of Variance Explained", ylim =</pre>
```



Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points\_mean?

### wisc.pr\$rotation[,1]

| perimeter_mea    | texture_mean               | radius_mean                |
|------------------|----------------------------|----------------------------|
| -0.2275372       | -0.10372458                | -0.21890244                |
| compactness_mea  | ${\tt smoothness\_mean}$   | area_mean                  |
| -0.2392853       | -0.14258969                | -0.22099499                |
| symmetry_mea     | concave.points_mean        | ${\tt concavity\_mean}$    |
| -0.1381669       | -0.26085376                | -0.25840048                |
| texture_s        | radius_se                  | $fractal\_dimension\_mean$ |
| -0.0174280       | -0.20597878                | -0.06436335                |
| smoothness_s     | area_se                    | perimeter_se               |
| -0.0145314       | -0.20286964                | -0.21132592                |
| concave.points_s | concavity_se               | compactness_se             |
| -0.1834174       | -0.15358979                | -0.17039345                |
| radius_wors      | fractal_dimension_se       | symmetry_se                |
| -0.2279966       | -0.10256832                | -0.04249842                |
| area_wors        | perimeter_worst            | texture_worst              |
| -0.2248705       | -0.23663968                | -0.10446933                |
| concavity_wors   | ${\tt compactness\_worst}$ | smoothness_worst           |
|                  |                            |                            |

```
-0.12795256 -0.21009588 -0.22876753

concave.points_worst symmetry_worst fractal_dimension_worst

-0.25088597 -0.12290456 -0.13178394
```

-0.26085376

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

PC5

#### 3. Heirarchical clustering

```
data.scaled <- scale(wisc.data)
data.dist <- dist(data.scaled)
wisc.hclust <- hclust(data.dist)</pre>
```

Q11. Using the plot() and abline() functions, what is the height at which the clustering model has 4 clusters?

```
plot(wisc.hclust)
abline(h=4, col ="red", lty = 2)
```

### **Cluster Dendrogram**



data.dist hclust (\*, "complete")

Q12. Can you find a better cluster vs diagnoses match by cutting into a different number of clusters between 2 and 10?

```
wisc.hclust.cluster <- cutree(wisc.hclust, k = 2)
table(wisc.hclust.cluster, diagnosis)</pre>
```

```
diagnosis
wisc.hclust.cluster B M
1 357 210
2 0 2
```

Q13. Which method gives your favorite results for the same data.dist dataset? Explain your reasoning.

No preference because the output is the same for all of them.

```
hclust(data.dist, method = "ward.D2")

Call:
hclust(d = data.dist, method = "ward.D2")

Cluster method : ward.D2
Distance : euclidean
Number of objects: 569

hclust(data.dist, method = "single")
```

```
Call:
hclust(d = data.dist, method = "single")
Cluster method : single
Distance
                : euclidean
Number of objects: 569
  hclust(data.dist, method = "complete")
Call:
hclust(d = data.dist, method = "complete")
Cluster method : complete
Distance : euclidean
Number of objects: 569
  hclust(data.dist, method = "average")
Call:
hclust(d = data.dist, method = "average")
Cluster method : average
Distance
               : euclidean
Number of objects: 569
```

#### 5. Combining methods

This approach will not take the original data but our PCA resilts and work with them.

```
d <- dist(wisc.pr$x[,1:3])
wisc.pr.hclust <- hclust(d, method = "ward.D2")
plot(wisc.pr.hclust)</pre>
```

## **Cluster Dendrogram**



d hclust (\*, "ward.D2")

Generate 2 cluster gorups from this helust object

```
grps <- cutree(wisc.pr.hclust, k = 2)
grps</pre>
```

| 84458202 | 844359   | 843786  | 84358402 | 84348301 | 84300903 | 842517   | 842302   |
|----------|----------|---------|----------|----------|----------|----------|----------|
| 1        | 1        | 1       | 1        | 1        | 1        | 1        | 1        |
| 84799002 | 84667401 | 846381  | 846226   | 84610002 | 845636   | 84501001 | 844981   |
| 1        | 1        | 2       | 1        | 1        | 2        | 1        | 1        |
| 851509   | 8511133  | 8510824 | 8510653  | 8510426  | 849014   | 84862001 | 848406   |
| 1        | 1        | 2       | 2        | 2        | 1        | 1        | 2        |
| 853612   | 853401   | 853201  | 852973   | 852781   | 852763   | 852631   | 852552   |
| 1        | 1        | 2       | 1        | 1        | 1        | 1        | 1        |
| 855138   | 855133   | 854941  | 854268   | 854253   | 854039   | 854002   | 85382601 |
| 1        | 2        | 2       | 1        | 1        | 1        | 1        | 1        |
| 85715    | 85713702 | 857010  | 85638502 | 856106   | 855625   | 855563   | 855167   |
| 1        | 2        | 1       | 2        | 1        | 1        | 1        | 2        |
| 85759902 | 857438   | 857392  | 857374   | 857373   | 857343   | 857156   | 857155   |
| 2        | 2        | 1       | 2        | 2        | 2        | 2        | 2        |
| 859196   | 858986   | 858981  | 858970   | 858477   | 857810   | 857793   | 857637   |
| 2        | 1        | 2       | 2        | 2        | 2        | 1        | 1        |
| 859711   | 859575   | 859487  | 859471   | 859465   | 859464   | 859283   | 85922302 |
|          |          |         |          |          |          |          |          |

| 1        | 1        | 2         | 2        | 1        | 2         | 1         | 1         |
|----------|----------|-----------|----------|----------|-----------|-----------|-----------|
| 859717   | 859983   |           |          |          | 8610637   |           | 8610908   |
| 1        | 2        | 2         | 2        |          |           |           |           |
| 861103   | 8611161  | 8611555   | 8611792  | 8612080  | 8612399   | 86135501  | 86135502  |
| 2        | 1        | 1         | 1        | 2        | 1         | 2         | 1         |
| 861597   | 861598   | 861648    | 861799   | 861853   | 862009    | 862028    | 86208     |
| 2        | 1        | 2         | 2        | 2        | 2         | 1         | 1         |
| 86211    | 862261   | 862485    | 862548   | 862717   | 862722    | 862965    | 862980    |
| 2        | 2        | 2         | 1        | 2        | 2         | 2         | 2         |
| 862989   | 863030   | 863031    | 863270   | 86355    | 864018    | 864033    | 86408     |
| 2        | 1        | 2         | 2        | 1        | 2         | 2         | 2         |
| 86409    | 864292   | 864496    | 864685   | 864726   | 864729    | 864877    | 865128    |
| 1        | 2        | 2         | 2        | 2        | 1         | 1         | 2         |
| 865137   | 86517    | 865423    | 865432   | 865468   | 86561     | 866083    | 866203    |
| 2        | 1        | 1         | 2        | 2        | 2         | 2         | 1         |
| 866458   | 866674   | 866714    | 8670     | 86730502 | 867387    | 867739    | 868202    |
| 1        | 1        | 2         | 1        | 1        | 2         | 1         | 2         |
| 868223   | 868682   | 868826    | 868871   | 868999   | 869104    | 869218    | 869224    |
| 2        | 2        | 1         | 2        | 2        | 2         | 2         | 2         |
| 869254   | 869476   | 869691    | 86973701 | 86973702 | 869931    | 871001501 | 871001502 |
| 2        | 2        | 1         | 2        | 2        | 2         | 2         | 1         |
| 8710441  | 87106    | 8711002   | 8711003  | 8711202  | 8711216   | 871122    | 871149    |
| 1        | 2        | 2         | 2        | 1        | 2         | 2         | 2         |
| 8711561  | 8711803  | 871201    | 8712064  | 8712289  | 8712291   | 87127     | 8712729   |
| 2        | 1        | 1         | 2        | 1        | 2         | 2         | 2         |
| 8712766  | 8712853  | 87139402  | 87163    | 87164    | 871641    | 871642    | 872113    |
| 1        | 2        | 2         | 2        | 1        | 2         | 2         | 2         |
| 872608   | 87281702 | 873357    | 873586   | 873592   | 873593    | 873701    | 873843    |
| 1        | 1        | 2         | 2        | 1        | 1         | 1         | 2         |
| 873885   | 874158   | 874217    | 874373   | 874662   | 874839    | 874858    | 875093    |
| 2        | 2        | 2         | 2        | 2        | 2         | 1         | 2         |
| 875099   | 875263   | 87556202  | 875878   | 875938   | 877159    | 877486    | 877500    |
| 2        | 1        | 1         | 2        | 1        | 1         | 1         | 1         |
| 877501   | 877989   | 878796    | 87880    | 87930    | 879523    | 879804    | 879830    |
| 2        | 1        | 1         | 1        | 2        | 2         | 2         | 2         |
| 8810158  | 8810436  | 881046502 |          |          | 881094802 | 8810955   | 8810987   |
| 1        | 2        | 1         | 2        | 1        | 1         | 1         | 1         |
| 8811523  | 8811779  | 8811842   | 88119002 | 8812816  | 8812818   | 8812844   | 8812877   |
| 2        | 2        | 1         | 1        | 2        | 2         | 2         | 1         |
| 8813129  | 88143502 | 88147101  | 88147102 | 88147202 | 881861    | 881972    | 88199202  |
|          |          | 2         |          |          |           |           |           |
| 88203002 | 88206102 | 882488    | 88249602 | 88299702 | 883263    | 883270    | 88330202  |
| 2        | 1        | 2         | 2        | 1        | 1         | 2         | 1         |

| 884626    | 884448   | 884437   | 884180   | 88411702 | 883852   | 883539   | 88350402  |
|-----------|----------|----------|----------|----------|----------|----------|-----------|
| 1         | 2        | 2        | 1        | 2        | 1        | 2        | 2         |
| 886452    | 886226   | 8860702  | 885429   | 88518501 | 884948   | 884689   | 88466802  |
| 1         | 1        | 1        | 1        | 2        | 1        | 2        | 2         |
| 889403    | 888570   | 888264   | 887549   | 88725602 | 887181   | 886776   | 88649001  |
| 2         | 1        | 2        | 1        | 1        | 1        | 1        | 1         |
| 8910748   | 8910721  | 8910720  | 8910506  | 8910499  | 8910251  | 88995002 | 889719    |
| 2         | 2        | 2        | 2        | 2        | 2        | 1        | 1         |
| 8911834   | 8911800  | 8911670  | 8911230  | 8911164  | 8911163  | 8910996  | 8910988   |
| 2         | 2        | 2        | 2        | 2        | 2        | 2        | 1         |
| 8913      | 8912909  | 8912521  | 8912284  | 8912280  | 89122    | 8912055  | 8912049   |
| 2         | 2        | 2        | 2        | 1        | 1        | 2        | 1         |
| 891923    | 891716   | 891703   | 891670   | 8915     | 89143602 | 89143601 | 8913049   |
| 2         | 2        | 2        | 2        | 2        | 1        | 2        | 1         |
| 892657    | 89263202 | 892604   | 892438   | 892399   | 892214   | 892189   | 891936    |
| 2         | 1        | 2        | 1        | 2        | 2        | 2        | 2         |
| 89382601  | 893783   | 893548   | 893526   | 89346    | 89344    | 893061   | 89296     |
| 2         | 2        | 2        | 2        | 2        | 2        | 2        | 2         |
| 894335    | 894329   | 894326   | 894090   | 894089   | 894047   | 893988   | 89382602  |
| 2         | 1        | 1        | 2        | 2        | 2        | 2        | 2         |
| 895299    | 89524    | 89511502 | 89511501 | 895100   | 894855   | 894618   | 894604    |
| 2         | 2        | 2        | 2        | 1        | 2        | 1        | 2         |
| 89742801  | 897374   | 897137   | 897132   | 896864   | 896839   | 895633   | 8953902   |
| 1         | 2        | 2        | 2        | 2        | 1        | 1        | 1         |
| 898431    | 89827    | 898143   | 89813    | 89812    | 897880   | 897630   | 897604    |
| 1         | 2        | 2        | 1        | 1        | 2        | 1        | 2         |
| 899667    | 899187   | 899147   | 898690   | 89869    | 898678   | 898677   | 89864002  |
| 1         | 2        | 2        | 2        | 2        | 2        | 2        | 2         |
| 901034301 | 9010333  | 901028   | 9010259  | 9010258  | 901011   | 9010018  | 899987    |
| 2         | 2        | 2        | 2        | 2        | 2        | 1        | 1         |
| 9011495   | 9011494  | 901088   | 9010877  | 9010872  | 9010598  | 901041   | 901034302 |
| 2         | 1        | 1        | 2        | 2        | 2        | 2        | 2         |
| 901303    | 9013005  | 901288   | 9012795  | 9012568  | 9012315  | 9012000  | 9011971   |
| 2         | 2        | 1        | 1        | 2        | 1        | 1        | 1         |
| 90251     | 90250    | 901836   | 901549   | 9013838  | 9013594  | 9013579  | 901315    |
| 2         | 2        | 2        | 2        | 1        | 2        | 2        | 1         |
| 903483    | 90317302 | 90312    | 903011   | 902976   | 902975   | 90291    | 902727    |
| 2         | 2        | 1        | 2        | 2        | 2        | 2        | 2         |
| 904357    | 904302   | 90401602 | 90401601 | 903811   | 903554   | 903516   | 903507    |
| 2         | 2        | 2        | 2        | 2        | 2        | 1        | 1         |
| 905190    | 905189   | 904971   | 904969   |          | 904689   | 904647   | 90439701  |
| 2         | 2        | 2        | 2        | 2        | 2        | 2        | 1         |
| 905686    | 905680   | 905557   | 905539   | 905520   | 905502   | 905501   | 90524101  |
|           |          |          |          |          |          |          |           |

| 1         | 2           | 2        | 2       | 2         | 2           | 2       | 2         |
|-----------|-------------|----------|---------|-----------|-------------|---------|-----------|
| 905978    | 90602302    |          |         |           |             |         |           |
| 2         | 1           | 2        | 2       | 2         | 1           | 2       | 2         |
| 907145    | 907367      | 907409   | 90745   | 90769601  | 90769602    | 907914  | 907915    |
| 2         |             | 2        |         | 2         |             |         | 2         |
| 908194    | 908445      | 908469   | 908489  | 908916    | 909220      | 909231  | 909410    |
| 1         | 1           | 2        | 1       | 2         | 2           | 2       | 2         |
| 909411    | 909445      | 90944601 | 909777  | 9110127   | 9110720     | 9110732 | 9110944   |
| 2         | 1           | 2        | 2       | 1         | 2           | 1       | 2         |
| 911150    | 911157302   | 9111596  | 9111805 | 9111843   | 911201      | 911202  | 9112085   |
| 2         | 1           | 2        | 1       | 2         | 2           | 2       | 2         |
| 9112366   | 9112367     | 9112594  | 9112712 | 911296201 | 911296202   | 9113156 | 911320501 |
| 2         |             |          |         | 1         |             |         | 2         |
| 911320502 | 9113239     |          |         |           | 911366      |         | 9113816   |
| 2         |             |          |         |           |             |         |           |
| 911384    |             | 911391   |         |           |             |         | 911916    |
| 2         | _           |          |         |           | 2           |         | 1         |
|           | 91227       |          |         |           |             |         |           |
| 2         |             |          |         | 2         |             |         |           |
| 913512    |             |          |         |           | 914101      |         |           |
| 2         |             |          |         |           | 2           |         | 2         |
| 914366    |             |          |         |           | 91504       |         |           |
| 1         |             |          |         |           |             |         |           |
| 915186    |             | 91544001 |         |           |             |         | 915664    |
| 1         |             |          |         |           | 1           |         |           |
|           | 915940      |          |         |           |             |         |           |
| 1         |             | 2        |         |           |             |         |           |
|           | 91762702    |          |         |           |             |         |           |
| 2         |             |          |         |           | 2           |         | 2         |
|           | 918465<br>2 | 91858    |         | 91903902  |             |         |           |
| 01070701  |             |          |         |           |             |         |           |
|           | 919812<br>2 |          |         |           |             |         |           |
| _         | 922576      | _        | _       | _         | _           | _       | _         |
| 922291    |             |          |         |           |             |         |           |
|           | 924342      |          |         |           |             |         |           |
|           | 924342<br>2 |          |         |           |             |         |           |
|           | 925311      |          |         |           |             |         |           |
| 2         |             |          |         |           | 920002<br>1 |         |           |
| 92751     |             | _        | _       | _         | _           | Z       | _         |
| 2         |             |          |         |           |             |         |           |
| _         |             |          |         |           |             |         |           |



```
B 24 333
M 179 33
```

```
plot(wisc.pr$x[,1:2], col = diagnosis)
```



```
g <- as.factor(grps)
levels(g)

[1] "1" "2"

g <- relevel(g,2)
levels(g)

[1] "2" "1"

plot(wisc.pr$x[,1:2], col=g)</pre>
```



Q15. How well does the newly created model with four clusters separate out the two diagnoses?

table(grps, diagnosis)

diagnosis grps B M 1 24 179 2 333 33

There is an obvious separation between the groups and diagnosis.