

∀ Where Python Is Used in DSP

DSP Task	Python Role	Libraries/Tools
Signal generation	Create test signals (sine, square, noise)	numpy, scipy.signal
Visualization	Plot waveforms, spectra, spectrograms	<pre>matplotlib , scipy , seaborn</pre>
Filtering	Design and apply FIR/IIR filters	scipy.signal, pyfilterbank
Transform analysis	DFT, FFT, STFT, IFFT	numpy.fft , scipy.fft
Modulation/ Demodulation	Simulate AM, FM, QAM, etc.	Custom or commpy
IQ data handling	Parse, visualize, analyze IQ samples	numpy, matplotlib, custom scripts
SDR interfacing	Real-time DSP from SDR hardware	<pre>pyrtlsdr , SoapySDR , gnuradio</pre>
Machine learning	Signal classification, denoising, feature extraction	<pre>scikit-learn , tensorflow , torch</pre>

Recommended Practice Tracks (in Python)

♦ 1. Basic Signal Processing in Python

- · Sine wave generation, addition, scaling
- · Noise addition and filtering
- Moving average filter

♦ 2. FFT / Frequency Analysis

• Compute FFT manually (step-by-step)

- · Visualize magnitude spectrum
- Real-time FFT from IQ data

♦ 3. FIR / IIR Filters

- FIR design with windowing (e.g., Hamming)
- IIR filter design (Butterworth, Chebyshev)
- · Filter application and response visualization

♦ 4. Working with Real IQ Data

- Read .bin or .wav IQ data
- Plot constellation diagrams
- Detect frequency shifts or signals

♦ 5. Projects & Experiments

- · Bandpass filter for a specific signal
- Spectrogram display (short-time FFT)
- · Signal detection from noisy IQ streams
- Simulate simple AM/FM transmitter and receiver

★ Tools & Libraries Setup

Make sure you have these installed:

```
pip install numpy scipy matplotlib
pip install soundfile # for audio signals
pip install pyrtlsdr # for SDR work
```


If you're in early/mid stages:

- Focus on writing simple signal generators and filters.
- Visualize time-domain and frequency-domain plots.

If you're moving to advanced DSP:

- Start working on SDR data streams.
- Build a full DSP pipeline: read IQ \rightarrow process \rightarrow visualize \rightarrow demodulate.