

CS3300 Introduction to Software Engineering

Lecture 01: Introduction & Overview

Nimisha Roy ► nroy9@gatech.edu

Welcome to CS 3300A ©

Instruction Team

Instructor: Nimisha Roy (nroy9@gatech.edu)

GTA: Tanuj Bohra (tanuj.bohra@gatech.edu)

UTA: Tuan Huynh (thuynh71@gatech.edu)

Refer to:

Class Website

For anything (syllabus, lectures, helpful links, logistics etc.) related to this class

Ed Discussion

For any communication with the instruction team

Introduce yourselves on Ed!

Contents

- Software engineering- Introduction
- History
- Software Process, Phases, Tools of the Trade
- Course overview and structure
- Class organization
- Information about projects

- What is a computer? A programmable device. Most essential function is program development
- Software Engineering The discipline allows systematic application of methods to build and manage high-quality programs/softwares.
- Also includes understanding the requirements, working with stakeholders, trying to find a solution that balances all the stakeholders' needs in order to deliver the software in a way that's tested and rigorous

What are the attributes of a good Software?

- Functionality
 - The software should deliver the required functionality and performance to the user
- Usability
 - Should be easy to use. Not unnecessarily complex
- Maintainability
 - Software must be evolvable to meet changing needs
- Dependability
 - Software must be trustworthy (reliability, security, and safety)
- Efficiency
 - Time & Cost effective

https://www.bugsnag.com/blog/bug-day-ariane-5-disaster

Why is it so difficult to build good software??

Topic of this course and why Software Engineering is an important course in Computer Science

CRASH

Software Engineering

Methodologies

Techniques

Tools

To build software of high quality

That works

And fits into Budget

The 60s

Man on Moon

Polaroid

https://en.wikipedia.org/wiki/Software_crisis

Reason 1: Rising Demand for Software

Reason 2: Increasing product complexity

```
SIRE
          EXAMPLE
102 FOC
           CIBSS EXECUSE
                               Programming effort
102 EQL
          Small project
104 LOC
          Term project
102 LOC
           word processor
          Operating system
10° LOC
           Distributed system
102 LOC
```

Reason 3: Developers Productivity Growth

Study of 9 Development Contracts (Davis, 1990)

Birth of Software Engineering

Birth of Software Engineering

SOFTWARE ENGINEERING

Report on a conference sponsored by the NATO SCIENCE COMMITTEE Garmisch, Germany, 7th to 11th October 1968

Chairman: Professor Dr. F. L. Bauer
Co-chairmen: Professor L. Bolliet. Dr. H. J. Helms

Editors: Peter Naur and Brian Randell

January 1969

Link to proceedings:

http://homepages.cs.ncl.ac.uk/brian.randell/NATO/

What are common causes of SW failures?

- No standard procedures for development
- Inadequate understanding of requirements
- Sheer complexity of software (e.g., concurrency, distribution)
- Size of project (too large for a single manager)
- Difficult to match technical knowledge of staff with project needs
- Poor design/implementation/testing methodology
- Requirements change during project
- Poor documentation
- Force fitting software components to applications
- Changing/reusing code without understanding it
- Poor management: lack of communication, poor cost/schedule estimates
- Unrealistic expectations
- Lack of measurement
- Lack of teamwork
- Performance differences among staff

Software importance today

- More and more systems are software controlled
- The economies of ALL developed nations are dependent on software
- Expenditure on software represents a significant fraction of GNP in all developed countries

What are the key challenges facing SE?

- How can we build high-quality systems?
- How can we do it in a reasonable time?
- How can we do it at a reasonable cost?

Software Process, Phases, Tools of the Trade

Abstract Idea

System Implementation

Software Process

- Systematic
- Formal

Software Process, Phases, Tools of the Trade

Software Process

Evolutionary Prototyping

RUP/USP

Agile

Some questions

- What is the largest software system on which you have worked?
- How many LOCs/day were you producing?
- How many LOCs/day professional software engineers produce?< 25? 25-50? 50-100? 100-1000? > 1000?

- But what are they doing with the rest of their time?
- How do large systems get built?
- What process should be followed?
 - No one size fits all
 - We will see several

Software Process, Phases, Tools of the Trade Software Phases

Software Process, Phases, Tools of the Trade

Tools of the Trade

- Tools and automation are fundamental in increasing efficiency and effectiveness
- Development: punch cards => IDEs
- Languages: machine code => High-level
 languages
- Debugging: print statements =>
 Symbolic debuggers

Software Process, Phases, Tools of the Trade

Tools of the Trade

Demonstration in Lectures

- IDEs
- Front-End Development
- Back-End Development
- Version Control Systems
- Google Cloud Platform

Course Overview

Course Overview

Requirements

Class organization

- Class Website and Canvas
- Ed Discussion
- In-class Lectures
- Attendance is required
- Tools of the Trade Demonstrations Laptops recommended.
- Team-work
- Invited lectures
- Discussion, discussion, discussion

Information about projects

- Two projects
- Project 1: WEB-APP using Google Cloud Computing. All teams will do the same project
- **Project 2:** You will choose the project. It can be web- or mobile-app.
- Team based
 - Different teams
 - Grades based on individual contributions
- Tools/environments (Java, Eclipse, CVS, GIT, Visual Code ...)

Information about projects

Form your Teams and Post on Ed Discussions (Due 30th August)

Summary

- SE important/critical discipline
 - Concerned with cost-effective software development (all aspects!)
 - Based on a systematic approach that uses appropriate tools and techniques, follows a process, and operates under specific development constraints

 Goal of SE is to deliver high-quality products that provide the expected functionality, meet projected time estimates, and have a reasonable cost

Summary

