Abstract interpretation with numeric intervals

Second assignment of the Software Verification course, A.Y. 2022/2023

Christian Micheletti October 22, 2023

Outline

- 1 The Language
 - Arithmetic Expressions
 - Boolean Expressions

2 Introduction

3 First section

The Language

The language is a variation of the While language seen in class. It differs on:

- it admits some syntactic sugar (it's not minimal);
- its semantic functions are modified to allow divergence and state changes in both arithmetic and boolean expressions.

Arithmetic Expressions (1)

$$AExp ::= n \mid x \mid -e \mid (e)$$

 $\mid e_1 + e_2 \mid e_1 - e_2 \mid e_1 * e_2 \mid e_1/e_2$
 $\mid x++ \mid ++x \mid x-- \mid --x$

$\mathcal{A}: AExp \rightarrow State \hookrightarrow \mathbb{Z} \times State$

$$\begin{split} &\mathcal{A}[\![n]\!]\varphi = &(n_{\mathbb{Z}},\varphi) \\ &\mathcal{A}[\![x]\!]\varphi = &(\varphi(x),\varphi) \\ &\mathcal{A}[\![(e)]\!]\varphi = &\mathcal{A}[\![e]\!]\varphi \\ &\mathcal{A}[\![-e]\!]\varphi = \begin{cases} (-a,\varphi') & \mathcal{A}[\![e]\!]\varphi = (a,\varphi') \\ \uparrow & (\mathcal{A}[\![e]\!]\varphi) \uparrow \end{cases} \end{split}$$

Arithmetic Expressions (2)

$\mathcal{A}: AExp \rightarrow State \hookrightarrow \mathbb{Z} \times State$

$$\mathcal{A}[\![e_1/e_2]\!]\varphi = \begin{cases} (a_1 \div a_2, \varphi'') & \mathcal{A}[\![e_1]\!]\varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!]\varphi' = (a_2, \varphi'') \\ & \wedge a_2 \neq 0 \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{A}[\![e_1 \text{ op } e_2]\!]\varphi = \begin{cases} (a_1 \text{ op } a_2, \varphi'') & \mathcal{A}[\![e_1]\!]\varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!]\varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

Arithmetic Expressions (3)

$\mathcal{A}: \mathsf{AExp} \to \mathsf{State} \hookrightarrow \mathbb{Z} \times \mathsf{State}$

$$\mathcal{A}[\![x++]\!]\varphi = (\varphi(x), \varphi[x \mapsto x+1])$$

$$\mathcal{A}[\![++x]\!]\varphi = let \ \varphi' = \varphi[x \mapsto x+1]$$

$$in \ (\varphi'(x), \varphi')$$

$$\mathcal{A}[\![x--]\!]\varphi = (\varphi(x), \varphi[x \mapsto x-1])$$

$$\mathcal{A}[\![--x]\!]\varphi = let \ \varphi' = \varphi[x \mapsto x-1]$$

$$in \ (\varphi'(x), \varphi')$$

Boolean Expressions (1)

BExp ::=true | false |
$$(b)$$
 | b_1 and b_2 | b_1 or b_2 | $e_1 = e_2$ | e_1 != e_2 | e_1 < e_2 | e_1 >= e_2

$$\begin{split} \mathcal{B}[\![\mathtt{true}]\!]\varphi = & (\mathtt{tt},\varphi) \\ \mathcal{B}[\![\mathtt{false}]\!]\varphi = & (\mathtt{ff},\varphi) \\ \mathcal{B}[\![(b)]\!]\varphi = & \mathcal{B}[\![b]\!]\varphi \end{split}$$

Boolean Expressions (2)

Operators between booleans short circuits results:

$$\mathcal{B}[\![b_1 \text{ and } b_2]\!]\varphi = \begin{cases} (\mathbf{ff}, \varphi') & \mathcal{B}[\![b_1]\!]\varphi = (\mathbf{ff}, \varphi') \\ \mathcal{B}[\![b_2]\!]\varphi' & \mathcal{B}[\![b_1]\!]\varphi = (\mathbf{tt}, \varphi') \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{B}[\![b_1 \text{ or } b_2]\!]\varphi = \begin{cases} (\mathbf{tt}, \varphi') & \mathcal{B}[\![b_1]\!]\varphi = (\mathbf{tt}, \varphi') \\ \mathcal{B}[\![b_2]\!]\varphi' & \mathcal{B}[\![b_1]\!]\varphi = (\mathbf{ff}, \varphi') \\ \uparrow & \text{otherwise} \end{cases}$$

Boolean Expressions (3)

Comparison operations propagate updates in the state:

$$\mathcal{B}\llbracket e_1 = e_2 \rrbracket \varphi = \begin{cases} (a_1 = a_2, \varphi'') & \mathcal{A}\llbracket e_1 \rrbracket \varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}\llbracket e_2 \rrbracket \varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{B}\llbracket e_1 < e_2 \rrbracket \varphi = \begin{cases} (a_1 < a_2, \varphi'') & \mathcal{A}\llbracket e_1 \rrbracket \varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}\llbracket e_2 \rrbracket \varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

Boolean Expressions (4)

$$\mathcal{B}\llbracket e_1 \ != \ e_2 \rrbracket \varphi = \begin{cases} (a_1 \neq a_2, \varphi'') & \mathcal{A}\llbracket e_1 \rrbracket \varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}\llbracket e_2 \rrbracket \varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{B}[\![e_1 >= e_2]\!]\varphi = \begin{cases} (a_1 \geq a_2, \varphi'') & \mathcal{A}[\![e_1]\!]\varphi = (a_1, \varphi') \\ & \wedge \mathcal{A}[\![e_2]\!]\varphi' = (a_2, \varphi'') \\ \uparrow & \text{otherwise} \end{cases}$$

Boolean Expressions (5)

Negation is expressed by syntactic sugar:

not true
$$\stackrel{\text{def}}{=}$$
 false

not false $\stackrel{\text{def}}{=}$ true

not $(b_1 \text{ and } b_2) \stackrel{\text{def}}{=}$ not b_1 or not b_2

not $(b_1 \text{ or } b_2) \stackrel{\text{def}}{=}$ not b_1 and not b_2

not $e_1 = e_2 \stackrel{\text{def}}{=} e_1 != e_2$

not $e_1 < e_2 \stackrel{\text{def}}{=} e_1 >= e_2$

not $e_1 != e_2 \stackrel{\text{def}}{=} e_1 = e_2$

not $e_1 >= e_2 \stackrel{\text{def}}{=} e_1 < e_2$

Boolean Expressions (6)

Also other arithmetic comparisons are expressed with syntactic sugar:

$$e_1 > e_2 \stackrel{\text{def}}{=} e_2 < e_1$$

 $e_1 <= e_2 \stackrel{\text{def}}{=} e_2 >= e_1$

Statements (1)

While ::=
$$x$$
 := $e \mid \text{skip} \mid \{S\} \mid S_1$; S_2 | if b then S_1 else $S_2 \mid \text{while } b$ do S

$\mathcal{S}_{\textit{ds}}: \textit{While} ightarrow \textit{State} \hookrightarrow \textit{State}$

$$\mathcal{S}_{ds}[\![x := e]\!]\varphi = \begin{cases} \varphi'[x \mapsto a] & \mathcal{A}[\![e]\!]\varphi = (a, \varphi') \\ \uparrow & \text{otherwise} \end{cases}$$

$$\mathcal{S}_{ds}[\![skip]\!]\varphi = \varphi$$

$$\mathcal{S}_{ds}[\![S]\!]\varphi = \mathcal{S}_{ds}[\![S]\!]\varphi$$

Statements (2)

$\mathcal{S}_{ds}: While \rightarrow State \hookrightarrow State$

$$\begin{split} \mathcal{S}_{ds} \llbracket S_1 \; ; \; S_2 \rrbracket \varphi = & (\mathcal{S}_{ds} \llbracket S_2 \rrbracket \circ \mathcal{S}_{ds} \llbracket S_1 \rrbracket) \varphi \\ \mathcal{S}_{ds} \llbracket \text{if } b \text{ then } S_1 \text{ else } S_2 \rrbracket \varphi = & cond (\mathcal{B} \llbracket b \rrbracket, \mathcal{S}_{ds} \llbracket S_1 \rrbracket, \mathcal{S}_{ds} \llbracket S_2 \rrbracket) \\ \mathcal{S}_{ds} \llbracket \text{while } b \text{ do } S \rrbracket \varphi = & \text{FIX} (\lambda g. cond (\mathcal{B} \llbracket b \rrbracket, g \circ \mathcal{S}_{ds} \llbracket S \rrbracket, id)) \end{split}$$

Where

$$cond(pred, g_1, g_2) = egin{cases} g_1(arphi') & pred(arphi) = (\mathbf{tt}, arphi') \ g_2(arphi') & pred(arphi) = (\mathbf{ff}, arphi') \ \uparrow & \text{otherwise} \end{cases}$$

Introduction

Etiam eu interdum ligula Nunc mi eros, vulputate in ornare a, viverra eget quam

- Morbi vitae lacus porta neque tincidunt sodales
- Proin tincidunt, neque at tincidunt mollis
- Ut lacinia sem a nibh consequat porttitor

First section

Normal block

Fusce luctus venenatis felis quis semper

Alert block

$$E = (x_1 \vee \neg x_2 \vee \neg x_3) \wedge (x_1 \vee x_2 \vee x_4)$$

Example block

Proin tincidunt, neque at tincidunt mollis