1. Centralne twierdzenia graniczne

Intuicja

Suma dużej liczby niezaleznych składników o skończonej wariancji, gdzie żaden składnik nie dominuje ma w przyliżeniu rozkład normalny (tłumaczy to też wszechobecność rozkładu \mathcal{N}).

• Schemat serii

Tablica zmiennych losowych postaci (X_{n,r_n}) , gdzie $r_n \to \infty$, $n = 1, 2, \ldots$ Zakładamy, że zmienne losowe w każdym wierszu $X_{n,1}, \ldots, X_{n,r_n}$ są niezależne (dla wygody $k_n = n$).

• Tw. Lindeberga

Zał. że dla każdego n, zmienne $X_{n,1}, X_{n,2}, \ldots, X_{n,r_n}$ są niezależnymi zm. los. o średniej 0 takimi że $\sum_{k=1}^{r_n}$ $\mathbb{E}X_{n,k}^2 \to^{n\to\infty} 1$. Dodatkowo zał. że jest spełniony war. Lindeberga $\sum_{k=1}^{r_n} \mathbb{E}X_{n,k}^2 1_{\{|X_{n,k}|>\varepsilon\}} \to^{n\to\infty} 0$ dla każdego $\varepsilon > 0$. Wówczas $X_{n,1} + \ldots + X_{n,r_n} \Rightarrow \mathcal{N}(0,1)$.

 $Dow \acute{o}d$:

$$Z_n = \sum_{k=1}^n X_{n,k}, \ \varphi_{n,k} = varphi_{X_{n,k}}, \ \sigma_{n,k}^2 = \mathbb{E} X_{n,k}^2$$
 Pokazujemy, że $\varphi_{Z_n}(t) = \prod_{k=1}^n \varphi_{n,k}(t) \to^{n \to \infty} e^{-t^2/2}$

$$|\varphi_{Z_n(t)} - e^{-t^2/2}| = |\prod_{k=1}^n \varphi_{n,k}(t)|$$
(czyli $\mathbb{E}e^{itX_{n,k}} - \prod_{k=1}^n e^{-\sigma_{n,k}^2 t^2/2}| \le$

$$\begin{split} |\varphi_{Z_n(t)} - e^{-t^2/2}| &= |\prod_{k=1}^n \varphi_{n,k}(t) (\text{ czyli } \mathbb{E} e^{itX_{n,k}}) - \prod_{k=1}^n e^{-\sigma_{n,k}^2 t^2/2}| \leq \\ \text{Rozbijamy na dwie sumy i szacujemy z góry przez składniki, które zbiegają do 0 przy } n \to \infty. \text{ (dopisu-problem)} \end{split}$$
jemy $\mathbb{E}(-itX_{n,k}-1+\frac{1}{2}t^2X_{n,k}^2)+1-\frac{1}{2}t^2\sigma_{n,k}^2=0.$

Korzystamy z nierówności $a_1, \ldots, a_n, b_1, \ldots b_n \in \mathbb{C}$ i $|a_i|, |b_i| \le 1$ $|a_1 \ldots a_n - b_1 \ldots b_n| \le \sum |a_i - b_i|$.

• Uogólnione tw. Lindeberga

- Zał. że dla każdego n
 zmienne $X_{n,1},\ldots,X_{n,r_n}$ są niezależne i całkowalne z kwadratem. Oznaczmy
 $m_{n,k}=\mathbb{E}X_{n,k}$ i przypuśćmy że $\sum_{k=1}^{r_n}\mathbb{E}X_{n,k}\to^{n\to\infty}m, \sum_{k=1}^{r_n}VarX_{n,k}\to^{n\to\infty}\sigma^2$ oraz $\sum_{k=1}^{r_n}\mathbb{E}(X_{n,k}-m_{n,k})^2\mathbf{1}_{\{|X_{n,k}-m_{n,k}|>\varepsilon\}}\to 0$. Wówczas $X_{n,1}+\ldots+X_{n,r_n}\to\mathcal{N}(m,\sigma^2)$.
- Zał. że X_1, X_2, \ldots są niezależnymi zm. los. całkowalnymi z kwadratem, $m_n := \mathbb{E} X_n, \ \sigma_n^2 = Var X_n,$ $b_n^2 = \sum_{k=1}^n \sigma_n^2$. Jeśli jest spełniony war. Lindeberga $b_n^{-2} \sum_{k=1}^n \mathbb{E} |X_k m_k|^2 \mathbf{1}_{\{|X_k m_k| > \varepsilon b_k\}} \to^{n \to \infty} 0,$ to $\frac{X_1 + \ldots + X_n m_1 \ldots m_n}{b_n} \to \mathcal{N}(0, 1)$.

• CTG – najprostsza wersja

- Niech $X_1, X_2 \ldots$ będą niezależnymi zmiennymi losowymi o tym samym rozkładzie i niech $\mathbb{E} X=0$, i $D^2X=1$. Wtedy $\frac{X_1+\ldots+X_n}{\sqrt{n}}\to_D \mathcal{N}(0,1)$.
- Zał. że X_1, X_2, \ldots są niezależne i mają ten sam rozkład o dodatniej wariancji. Oznaczmy $m = \mathbb{E} X_1,$ $\sigma^2 = Var X_1$. Wówczas war. Lindeberga jest spełniony i $\frac{X_1 + ... + X_n - nm}{\sqrt{n}\sigma} \Rightarrow \mathcal{N}(0,1)$.

• Tw. Berry-Esseena

Dokładność przybliżenia w CTG o ile założymy istnienie trzeciego momentu.

• War. Lindeberga nie jest konieczny dla zbieżności rozkładów zmiennych losowych Z_n do $\mathcal{N}(0,1)$ $(k\to\infty,$ $n=1,2,\ldots$) np. wszystkie $X_{n,k}$ w schemacie serii mają rozkłady $(0,\sigma_{n,k}^2)$. Zał., że pierwsza zm. los. w kolumnie ma rozkład $\mathcal{N}(0,\frac{1}{2})$ (ten składnik dominuje), a pozostałe mogą mieć równe wariancje, byle ich suma = 1. Wtedy warunek Lindeberga nie jest spełniony, ale $Z_n \sim \mathcal{N}(0,1)$.

• Warunek Lindeberga spełniony jest gdy

- $-X_1,X_2,\ldots$ są wspólnie ograniczonymi niezależnymi zm. los. spełniającymi war. $\sum_{k=1}^n Var X_k \to \infty$.
- Dla każdego $n, X_{n,1}, \dots, X_{n,r_n}$ są niezależnymi scentrowanymi i zm. los. spełniającymi warunki $\sum_{k=1}^{r_n} \mathbb{E} X_{n,k}^2 \to^{n \to \infty} 1$ oraz $\sum_{k=1}^{r_n} \mathbb{E} |X_{n,k}|^{2+\delta} \to^{n \to \infty} 0$ dla pewnego $\delta > 0$ (Stw. Lapunowa).

• Tw. de Moivre'a-Laplcae'a

Zał. że X_n ma rozkład Bernoulliego z parametrami n, p. Wówczas $\frac{X_n - np}{\sqrt{np(1-p)}} \Rightarrow \mathcal{N}(0,1)$.

1

• Centralne tw. graniczne pozwala badać zachowanie dystrybuant sum niezależnych zm. los. Istotnie zbieżność $\frac{X_1+\ldots+X_n-(m_1+\ldots+m_n)}{b_n} \to \mathcal{N}(0,1)$ jest równoważna zbieżności punktowej dystrybuant: $\mathbb{P}\left(\frac{X_1+\ldots+X_n-(m_1+\ldots+m_n)}{b_n} \leq x\right) \to \phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-y^2/2} dy.$

$$\mathbb{P}\left(\frac{X_1 + \dots + X_n - (m_1 + \dots + m_n)}{h_n} \le x\right) \to \phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-y^2/2} dy$$

2. Procesy stochastyczne. Proces Wienera i jego własności

• Proces Wienera (ruch Browna)

Matematyczny model ruchu czasteczki zawieszonej w cieczy. Formalnie, rodzina zmiennych losowych W_t , $t \geq 0$, okreśonych na tej samej p-ni probabilistycznej $(\Omega, \mathcal{F}, \mathbb{P})$.

Funkcja losowa

 $X=(X_t)_{t\in T}$, gdzie (Ω,\mathcal{F},P) – przestrzeń probabilistyczna, (E,B) – przestrzeń mierzalna, E – przestrzeń strzeń stanów $T \neq \emptyset$ – dowolny zbiór, X_t – zmienna losowa o wartościach wE.

• Nierozróżnialność

Funkcje losowe $X = (X_t)_{t \in T}, Y = (Y_t)_{t \in T}$ są nierozróżnialne, jeśli $\mathbb{P}(\exists_{t \in T} X_t \neq Y_t) = 0$.

• Proces stochastyczny

Funkcja losowa o wartościach w E (czyli zwykle \mathbb{R} , czas $T = \mathbb{R}_+, \mathbb{Z}_+$, przedział w \mathbb{R}_+ lub \mathbb{Z}_+ , czasem $T=\mathbb{R}, \mathbb{Z}$) – proces stochastyczny o wartościach w E. Proces X jest: d-wymiarowy, gdy $E=\mathbb{R}^d$; dyskretny, gdy $T \subset \mathbb{Z}_+$; ciagły, gdy $T \subset \mathbb{R}_+$. Oznaczenie: $X_t(\omega) = X(t, \omega), X_t = X(t)$.

Inaczej: Niech $(\Omega, \mathcal{F}, \mathbb{P})$ będzie p-nią probabilstyczną, (E, ε) p-nią mierzalną, zaś T jest dowolnym zbiorem. Procesem stochastycznym o wartościach w E, określonym na zbiorze T, nazywamy rodzinę zm. los. $X = (X_t)_{t \in T}$ przyjmujących wartości w zbiorze E.

• Trajektoria (ścieżka)

 $\forall \omega \in \Omega \text{ funkcja } t \mapsto X_t(\omega), T \to E.$

• Niezależne przyrosty

Proces $X = (X_t)_{t \in T}$ (o wartościach w E) ma niezależne przyrosty, jeśli $\forall_{0 < t_0 < \dots < t_n, t_i \in T} X_{t_0}, X_{t_1}$ $X_{t_0},\ldots,X_{t_n}-X_{t_{n-1}}$ są niezależne, gdzie $E=\mathbb{R}^d,\,T=\mathbb{R}_+$ lub przedział.

• Stacjonarne przyrosty

Mówimy, ze proces stochastyczny $(X_t)_{t\geq 0}$ ma przyrosty stacjonarne, jeśli rozkład X_t-X_s zależy tylko od t-s, czyli $\forall_{t>s\geq 0}X_t-X_s\sim X_{t-s}-X_0$.

• Proces Wienera (ruch Browna) [PW] Proces $W = (W_t)_{t \in \mathbb{R}_+}$ spełniający:

- $-W_0 = 0$
- ma niezależne przyrosty
- $\forall s < t, W_t W_s \sim N(0, t s)$
- ciągłe trajektorie z p-stwem 1 (tzn. \exists taki zbiór A, że $\mathbb{P}(A) = 1$ oraz $\forall \omega \in A, t \to W_t(\omega)$ jest funkcją ciągła na $[0,\infty)$.

• Tw.

- Proces $W=(W_t)_{t\in\mathbb{R}_+}$ o wartościach w \mathbb{R}^d jest d-wymiarowym [PW] wtedy i tylko wtedy gdy: $W_0=0$, ma niezależne przyrosty, $s< t,\, W_t-W_s$ ma rozkład normalny ze średnią zero i macierzą kowariancji diagonalną z t-s na przekątnej.
- Proces X_t , $t \ge 0$ jest PW wtw. gdy spełnione są warunki 1, 2, 4 oraz $\mathbb{E}X_t = 0$, $\mathbb{E}X_t^2 = 1$ oraz jeśli $t \geq s$, to $X_t - X_s \sim X_{t-s}$ (przyrosty stacjonarne) i $\mathbb{E} X_t^4 < \infty \ \forall t > 0$.
- Proces $X = (X_t)_{t \in \mathbb{R}_+}$ jest [PW] wtw. gdy jest ciągły, gaussowski, $\mathbb{E}X_t = 0$, $Cov(X_t, X_s) = t \wedge s$. $Dow \acute{o} d$
 - ⇒ łatwo
 - \Leftarrow (1) $VarX_0 = 0 = \mathbb{E}X_0$.
 - (3) Dla $t > s W_t W_s \sim \mathcal{N}(0, Y), Y = Var(X_t X_s) = VarX_t + VarX_s 2Cov(X_t, X_s) = t s.$
 - (2) Ustalmy 0 $\leq t_0 \leq \ldots \leq t_n >$ Zauważmy, że wektor $(X_{t_0}, X_{t_1} X_{t_0}, X_{t_2} X_{t_1}, \ldots, X_{t_n} X_{t_n})$ $X_{t_{n-1}}$) ma rozkład gaussowski, więc jego współrzędne są niezależne w
tw. gdy są nieskorelowane. Dla $s_1 \le s_2 \le s_3 \le s_4$: $Cov(X_{s_1}, X_{s_3} - X_{s_2}) = Cov(X_{s_1}, X_{s_3}) - Cov(X_{s_1} - X_{s_2}) = s_1 - s_1 = 0$. $Cov(X_{s_2} - X_{s_1}, X_{s_4} - X_{s_3}) = Cov(X_{s_2} - X_{s_4} - X_{s_3}) - Cov(X_{s_1}, X_{s_4} - X_{s_3}) = 0$.

$$Cov(X_{s_2}-X_{s_1},X_{s_4}-X_{s_3})=Cov(X_{s_2}-X_{s_4}-X_{s_3})-Cov(X_{s_1},X_{s_4}-X_{s_3})=0$$

• d-wymiarowy proces Wienera

Proces $W=(W_t)_{t\in\mathbb{R}_+}$ o wartościach w \mathbb{R}^d , gdy $W=(W^{(1)},\ldots,W^{(d)}),\ W^{(1)},\ldots,W^{(d)}$ są niezależnymi procesami Wienera.

• Uwaga

Rozkład $(W_{t_1}, \ldots, W_{t_n})$ jest określony przez wartość oczekiwaną 0 oraz macierz kowariancji, taką że $\mathbb{E}(W_t W_s) = s \wedge t.$

Bo: $Cov(X_s, X_t) = Cov(X_s, X_t - X_s) + VarX_s = s \text{ dla } t \ge s \text{ oraz } t \text{ dla } s \ge t, \text{ czyli} = min\{s, t\}.$

Jeśli $X = (X_t)_{t \in T}$ jest ciągłym procesem z własnością $\forall_{t_1 < \dots < t_n} (X_{t_1}, \dots, X_{t_n}) \sim (W_{t_1}, \dots, W_{t_n})$, gdzie W jest [PW], to X jest [PW].

• Wniosek

Jeśli W jest [PW], to $\forall_{t_1 < \dots < t_n}(W_{t_1}, \dots, W_{t_n})$ (rozkłady skończenie wymiarowe PW – rozkłady wektorów losowych) ma rozkład normalny.

• Proces gaussowski

 $X = (X_t)_{t \in T}$ o wartościach w \mathbb{R} lub \mathbb{R}^d , gdy $\forall_{t_1 < \dots < t_n} (X_{t_1}, \dots, X_{t_n})$ ma rozkład gaussowski (PW, most Browna $X_t = W_t - tW_1$, $t \in [0, 1]$; nie są: W_t^2 , $exp(W_t)$.

• Fakt

Niech $W = (W_t)_{t \in \mathbb{R}}$ [PW], ustalmy $0 \le s < t$. Rozważmy ciąg podziałów [s,t] taki że $s = t_0^n < t_1^n < \ldots, t_{m_n}^n = t$, $\max_k (t_{k+1}^n - t_k^n) \longrightarrow_{n \to \infty} 0$. Wówczas $\sum_{k=1}^{m_n} (W_{t_k^n} - W_{t_{k-1}^n}) \longrightarrow_{n \to \infty} t - s$ w $L^2(\Omega, \mathcal{F}, P)$.

• Rozkład skończenie wymiarowy funkcji losowej \boldsymbol{X}

Mamy funkcję losową lub $X=(X_t)_{t\in T}$ w E. $\forall_{n\geq 1}\forall_{t_1,\dots,t_n\in T}$. Miara probabilistyczna na $E\times\dots\times E\to \mu_{t_1,\dots,t_n}(B)=P((X_{t_1},\dots,X_{t_n})\in B)\leftarrow \text{rozkład skończenie wymiarowy procesu }X,\,B\in\mathcal{B}^{\otimes n}$.

• Wniosek

PW $(W_t, \mathcal{F}_t)_t$ jest martyngałem.

Jeśli zdefiniujemy filtrację $(\mathcal{F}_t)_{t\geq 0}$ zależnością $\mathcal{F}_t = \sigma(W_s: s\leq t)$, to otrzymamy martyngał z czasem ciągłym W_t, \mathcal{F}_t). Martyngały: $W_t, W_t^2 - t$.

• Tw.

Prawie wszystkie trajektorie PW $(W_t)_{t \in [0,1]}$ są funkcjami nigdzie nieróżniczkowalnymi (prawie wszystkie trajektorie mają wahanie skończone).

- 3. Łańcuchy Markowa, własności
 - Macierz $P = [p_{ij}]_{(i,j) \in ExE}$ nazywamy **stochastyczną** (przejścia), jeśli $p_{ij} \in [0,1,]$ dla wszystkich $i,j \in E$ oraz $\sum_{j \in E} p_{ij} = 1$ dla każdego $i \in E$.

• Intuicja

Łańcuch Markowa charakteryzuje się pewną liczbą dopuszczalnych stanów i regułami przechodzenia pomiędzy nimi. Ważne, że szansa znalezienia się w stanie A w chwili n zależy tylko od stanu, w jakim byliśmy w chwili n-1 i od reguł przechodzenia.

• Zał. że $(\Omega, \mathcal{F}, \mathbb{P})$ jest p-nią probabilistyczną, E (zbiór przeliczalny, przestrzeń stanów), P są j.w. ustalone. **Łańcuchem Markowa** o wartościach w E i macierzy przejścia P nazywamy ciąg $(X_n)_{n=0,1,\dots}$ zm. los. (określonych na tej samej przestrzeni probabilistycznej) takich że $\mathbb{P}(X_n = a_n | X_n = a_{n-1}, X_{n-2} = a_{n-2}, \dots, X_0 = a_0)$ = własność Markowa ciągu zmiennych losowych $\mathbb{P}(X_n = a_n | X_n = a_n)$ jednorodny = $p_{a_n a_{n-1}}$ dla wszystkich a_0, a_1, \dots, a_n t. że zdarzenie warunkujące ma dodatnie p-stwo (gdy istnieje macierz $P = (p_{ij})_{i,j\in E}$ będąca $\forall n$ jego macierza przejścia w każdym kroku). Równoważnie $\mathbb{P}(X_n = j | X_0, X_1, \dots, X_{n-1}) = \mathbb{P}(X_n = j | X_{n-1}) = p_{X_{n-1}j}$. Liczba p_{ij} jest p-stwem przejśćia ze stanu i do stanu j w jednym kroku np. błądzenie losowe, model dyfuzji cząstek.

• Błądzenie losowe na prostej

Ciąg niezależnych zmiennych losowych $(U_n)_{n=0}^{\infty}$, gdzie dla $n \ge 1$ $\mathbb{P}(U_n=1)=p$, $\mathbb{P}(U_n=-1)=1-p$, U_0 – dowolna zmienna losowa o wartościach w E, $X_n = \sum_{k=0}^n U_k$, $n=1,2,\ldots$ Ciąg (X_n) tworzy łańcuch Markowa. Intuicyjne jasne, bo $X_n = X_{n-1} + U_n$ (z niezależności), $\mathbb{P}(X_n = s_n | X_{n-1} = s_{n-1}, \ldots, X_0 = s_0) = \mathbb{P}(U_n = s_n - s_{n-1}) = \frac{\mathbb{P}(U_n = s_n - s_{n-1}, X_{n-1} = s_{n-1})}{\mathbb{P}(X_{n-1} = s_{n-1})} = \mathbb{P}(X_n = s_n | X_{n-1} = s_{n-1})$ (wszystkie stany komunikuja sie).

• Rozkład skończenie wymiarowe łańcucha Markowa

Rozkłady wektorów $(X_{k_1}, \ldots, X_{k_n})$ spełniające zależność $\mathbb{P}(X_0 = s_0, \ldots, X_n = s_n) = \mathbb{P}(X_0 = s_0) p_{s_0 s_1} \ldots p_{s_{n-1} s_n}$, są więc wyznaczone jednoznacznie przez rozkład początkowy i macierz przejścia.

• Równanie Chapmana-Kołmogorowa

Dla wszystkich $k, n \ge 1$ oraz $i, j \in E$ $p_{ij}^{k+n} = \sum_{i \in E} p_{il}^k p_{lj}^n$.

- Rozkład zmiennej X_0 nazywamy **rozkładem poczatkowym**. Jest on jednoznacznie wyznaczony przez ciąg $(\pi_i)_{i\in E}$ liczb nieujemnych o sumie 1.
- Klasyfikacja stanów Mówimy, ze stan j jest osiagalny ze stanu i jeśli $p_{ij}^{(n)} > 0$ dla pewnego $n \ge 1$. Mówimy, że sany i oraz j się komunikują, jeśli j jest osiągalny z i oraz i jest osiągalny z j (mamy przechodzniość!). Stan i jest nieistotny, jeśli istnieje taki stan j, że j jest osiągalny z i oraz i nie jest osiągalny z j.

Łancuch Markowa nazywamy nieprzywiedlnym, jesli wszystkie stany komunikują się ze sobą.

- Tw. Stan j jest chwilowy (do takiego stanu wraca się skończenie wiele razy) wtw. gdy $P_j < \infty$. Stan j jest powracający (nieskończenie) wtw. gdy $P_j = \infty$. $P_j = \sum_{n=1}^{\infty} p_{jj}^{(n)} = \mathbb{E}(N_j|X_0 = j)$ średni czas przebywania łańcucha w stanie j.
- Tw. Zał. że łańcuch Markowa jest nieprzywiedlny. Wówczas jeśli jeden stan jest chwilowy, to wszystkie są chwilowe; jeśli jeden stan jest powracający, to wszystkie sa powracające (inaczej: wszystkie stany są tego samego rodzaju).

• Zamknięty zbiór stanów C

Żaden stan spoza tego zbioru nie da się osiągnąć wychodząc z owolnego stanu w C. Pojedynczy stan s_k tworzący zbiór zamkniety nazywam **stanem pochłaniającym**.

• Tw.

Zbiór stanów łańcucha Markowa można jednoznacznie rozbić na zbiór stanów chwilowych i nieprzywiedlne zamknięte zbiory stanów powracających.

Każdy stan nieistotny jest chwilowy. Jeśli łańcuch Markowa jest skończony, również każdy stan chwilowy jest nieistotny i oba zbiory stanów są równe.

Dowód

Dla stanu powracającego $j, j \in S \setminus T$ niech $\S_j = \{k : k \leftrightarrow j\}$. S_j jest zamkniętym zbiorem stanów zajemnie komunikujących się. $S_k = S_j$, dla $k \in S_j$ oraz $S_k \cap S_j = \emptyset$ dla $k \notin (S_j \cup T) > Z$ atem $S \setminus T$ rozbija się na rozłączne klasy, które możemy ponumerować $S_1, S_2 \dots$

• Zał. że P jest macierzą stochastyczną. Rozkład π na e nazywamy **stacjonarnym** (niezmienniczym, granicznym), jeśli $\pi P = \pi$ (tzn. dla wszstkich j'inE, $\sum_{i \in E} \pi_i p_{ij} = \pi_j$. Własność $\forall n \geq 1$ $\pi P^n = \pi$ ($\sum_{j \in E} \pi_j = 1$, $\forall_j \pi_j \geq 0$).

• Wniosek

Jeżeli łańcuch Markowa jest powracający, to \forall stanu j $\mathbb{P}(\exists n \geq 1X_n = j) = 1$ niezależnie od rozkładu początkowego X_0 .

• Tw ergodyczne

Niech (X_n) będzie nieprzywidlnym, nieokresowym łańcuchem Markowa, dla którego istnieje rozkład stacjonarny π . Wówczas:

- $-(X_n)$ jest łańcuchem powracającym (każdy stan jest powracalny)
- dla wszystkich $i, j \in E$, $\lim_{n \to \infty} p_{ij}^{(n)} = \pi_j > 0$
- rozkład stacjonarny jest jedyny (jednoznaczny) i $\pi_j=\frac{1}{\nu_j}$, gdzie ν_j jest średnim czasem powrotu łańcucha do stanu j.

• Łańcuch ergodyczny

Łańcuch Markowa, dla którego istnieją granice z punktu drugiego.

Jeśli łańcuch Markowa jest nieprzywiedlny, powracający, a wartości oczekiwane czasów powrotu są skończone, to istnieje rozkład stacjonarny.

• Wniosek z tw. ergodycznego

Niech (X_n) będzie łańcuchem ergodycznym, $A \subset S$ i $\nu_A(n)$ oznacza średni czas przebywania łańcuhca Markowa w zbiorze A do momentu n tj. $\nu_A(n) = \frac{1_a(X+0)+\ldots+1_A(X_n)}{n+1}$. Wtedy $\mathbb{E}(\nu_a(n)|X_0=i) \to^{n\to\infty} \sum_{j\in A} \pi_j$.

 $Dow \acute{o}d$

 $\mathbb{E}(\nu_A(n)|X_o=i) = \frac{1}{n+1} \sum_{m=0}^n \mathbb{E}(1_A|X_m)|X_0=i) = \frac{1}{n+1} \sum_{m=0}^n \sum_{j \in A} p_{ij}(m) = \sum_{j \in A} \frac{1}{n+1} \sum_{m=0}^n p_{ij}(m) \rightarrow \sum_{j \in A} \pi_j \text{ ponieważ } \lim_{n \to \infty} p_{ij}(n) = \pi_j.$

• Powyższe tw. ogólniej

Niech (X_n) będzie nieprzywiedlnym, nieokresowym łańcuchem Markowa, dla którego istnieje rozkład stacjonarny π . Wtedy $\nu_A(n)$ zdef. powyższym wzorem spełnia zależność $\lim_{n\to\infty}\nu_A(n)=\pi_i$.

• Przykład

 $P=(0\ 1,\ 1\ 0)$ – łańcuch okresowy o okresie 2 i $\lim_{n\to\infty} p_{00}(2n)=1$ i $\lim_{n\to\infty} p_{00}(2n+1)=0$. Granica nie istnieje, natomiast istnieją granice podciągów.

- Rozpatrzmy ł. M. o k stanach, przy czym stany $1, \ldots, m$ są pochłaniające. Wtedy macierz przejścia P ma postać P = (I(m)0(k-m), RQ).
- Macierz $A = (a_{ij})_{i \in \{1,...,k-m\}, j \in \{1,...,m\}}$, gdzie $a_{ij} = p_{\{j\}}(i+m)$ jest p-stwem, że łańcuch wychodzący ze stanu chwilowego i+m zatrzyma się w stanie pochłaniającym j, spełnia zależność $A = (I-Q)^{-1}R$.

• Tw.

Gdy $(X_n)_{n=0}^{\infty}$ jest jednorodnym łańcuchem Markowa to:

- dla dowolnych $m, n \in \mathbb{N}$ i dowolnych $s_0, \dots s_n \in S$ $\mathbb{P}(X_1 = s_1, X_2 = s_x, \dots, X_n = s_n | X_0 = s_0) = \mathbb{P}(X_{m+1} = s_1, X_2 = s_x, \dots, X_{n+m} = s_n | X_m = s_0) = \mathbb{P}(X_n = s_1 | X_0 = s_0)$
- dla dowolnych $m, n \in \mathbb{N}$ i dowolnych $s_0, s_1 \in S$ $\mathbb{P}(X_{n+m} = s_1 | X_m = s_0) = \mathbb{P}(X_n = s_1 | X_0 = s_0)$
- dla dowolnych $m,n \in \mathbb{N}$ i dowolnych $i_0,\ldots i_m, j_0\ldots, j_n \in S$ $\mathbb{P}(X_1=i_1,\ldots,X_m=i_m,X_{m+1}=j_1,\ldots,X_{m+n}=j_n|X_0=i_0) = \mathbb{P}(X_1=i_1,\ldots,X_m=i_m|X_0=i_0)\mathbb{P}(X_1=j_1,\ldots,X_n=j_n|X_0=i_m).$
- Okresem stanu j nazywamy największą taką liczbę n, że powrót do stanu j jest możliwy tylko po liczbie kroków podzielnej przez n: $o(j) = NWD\{n: p_{jj}^{(n)} > 0\}$. Stan nazywamy okresowym jeśli o(j) > 1 i nieokresowym, jeśli o(j) = 1.

• Stw.

W nieprzywiedlnym ł.M. wszystkie stany mają ten sam okres.

 $Dow \acute{o}d$

Weźmy 2 dowolne stany $i,j,\ i\leftrightarrow j,\ d_i=o(i),\ d_j=o(j).$ Istnieją l,m takie że $p_{ij}(l)>0,\ p_{ji}(m)>0.$ Niech n takie że $p_{ij}(n)>0.$ Wtedy $p_{ii}(l+m+n)\geq p_{ij}(l)p_{jj}(n)p_{ji}(m)>0.$ Zatem d_i dzieli l+m+n. Także $p_{ii}(l+m)>0,$ wiec d_i dzieli l+m, stąd d_i dziel n. Zatem $d_i\leq d_j=NWD\{n:p_{jj}(n)>0\}.$ Analogicznie $d_i\geq d_j\Rightarrow d_i=d_j.$

• Nieprzwiedlny łańcuch Markowa (X_n) nazywamy **okresowym**, jeśli wszystkie jego stany mają okres większy niż 1. W przeciwnym razie łańuch nazywamy nieokresowym.

- 4. Modele populacji i oddziaływań między populacjami (model Malthusa, model Verhulsta równanie logistyczne, model Lotki-Volterry...)
 - Modelowanie pojedynczej populacji model Malthusa
 - koniec XVIII w. praca o szybkim przyroście liczebności populacji ludzkiej ("liczba ludności wzrasta w tempie geometrycznym, zasoby żywności w tempie arytmetycznym)
 - opis heurystyczny: jednorodna populacja (osobniki są identyczne), osobnik rodzi się zdolny do rozrodu w dowolnym wieku (momenty rozmanżania są rozłożone jednostajnie w dowolnym przedizale czasu), osobnik nie umiera, każdorazowo osobnik ma λ osobników potomnych, wydaje je na świat co τ jednostek czasu.
 - rozrodczość: $N(t + \Delta t) N(t) = \Delta t/\tau \lambda N(t)$, czyli $\dot{N}(t) = \frac{\lambda}{\tau} N(t) = rN(t)$ (r współczynnik rozrodzczości) model ciągły $(N(t) = N_0 e^{rt})$, $N(t + \Delta t) = N(t)(\Delta t r + 1) \Rightarrow N_{t+1} = N_t(r+1)$ model dyskretny (rozwiązanie $N_t = N_0(1+r)^t$
 - rozrodczość i śmiertelność: jak wyżej, tylko r oznacza rozrodczość śmiertelność, jeśli >0 to liczebność poulacji rośnie, jeśli <0, to zbiega do 0
 - model z migracjami $\dot{N}(t) = r_n N(t) + m$ (wprowadzenie nowych osobników do siedliska jeśli m > 0, odławienie, gdy m < 0).
 - Modelowanie pojedynczej populacji model Verhulsta (logistyczny)
 - heurystycznie: konkurencja wewnątrzgatunkowa o zasoby siedliska
 - $-\ \dot{N}(t)=rN(t)-aN^2(t)=rN(t)(1-\frac{N(t)}{K}),$ gdzie K=r/a pojemność środowiska, a współczynnik konkurencji wenątrzgatunkowej
 - ważne do pokazania istnienie i jednoznaczność rozwiązań (prawa strona C^1), nieujemność (dla $N_0 \geq 0, N(t) \geq 0$ dla t > 0), istnienie dla wszystkich $t \geq 0$ ($\dot{N}(t) \leq rN(t) \Rightarrow N(t) \leq N_0 e^{rt}$, wzrost co najwyżej wykładniczy, monotoniczność rozwiązań, krzywa logistyczna
 - dyskretne równanie logistyczne $N_{t+1} = (1+r)N_t \frac{r}{K}N_t^2 = \tilde{r}N_t(1-\frac{N_t}{K}) \Rightarrow x_{t+1} = ax_t(1-X_t)$, stany stacjonarne $x_1 = 0$, $x_2 = \frac{a-1}{a}$, gdy F(x) = x = ax(1-x), pochodna a(1-2x) = dF(x) stabilność:
 - * $a \in (0,1)$ $dF(x_1) = a$ globalnie stabilny
 - * $a \in (1,3)$, x_1 niestabilny, x_2 lokalnie stabilne
 - * $a \in (3,4)$ oba rozwiązania niestabilne
 - $\ast \ a=2$ trzeba wyróźnić
 - *a = 4 chaos (diagram bifurkacyjny drzewo Feigenbauma, period dubling
 - Modele pojedynczej populacji z uwzględnieniem wieku macierze Lesliego
 - $-\ k$ grup wiekowych, N_t^i liczebność grupy wiekowej i w chwilit
 - osobniki są jednorodne w ramach każdej grupy wiekowej
 - $-\,$ procesy rozrodczości i śmiertelności jednostka czasu == jednostka zmiany wieku
 - $N_{j+1}^{t+1} = s_j N_j^t, \, s_j$ współczynnik starzenia (przeżywalności), $\gamma_i = 1 s_i$ umieralność
 - $N_0^{t+1} = \sum_{j=0}^n r_j N_j^t$, r_j współczynnik urodzeń
 - $-N_{t+1}=MN_t$, gdzie M to macierz Lesliego $[r_0,r_1,\ldots,r_k;s_0,\ldots,0;\ldots;0,\ldots;0,\ldots,0,s_{k-1},0]$
 - Modele pojedynczej populacji z uwzglednieniem wieku równanie logistyczne z opóźnieniem
 - $-\dot{N}(t) = rN(t)(1 \frac{N(t-\tau)}{K}), N_0 : [-\tau, 0] \to \mathbb{R}^+.$
 - można rozwiązywać metodą kroków
 - analiza stabilności linearyzacja, potem szukamy rozwiązań w postaci wykładniczej $(x(t) = x_0 e^{\lambda t})$
 - dla równań różnicowych, szukamy rozwiązań w postaci potęgowej $N_t = N_0 \lambda^t$
 - równanie charakterystyczne dla układu równań z pojedynczym opóźnieniem $\tau P(\lambda + Q(\lambda)e^{-\beta\tau\lambda})$.
 - funkcja pomocnicza $(F(w) = ||P(iw)||^2 ||Q(iw)||^2$
 - badamy znak $dRe(\lambda)/d\tau$.
 - Modele oddziaływań między dwiema populacjami
 - układ drapieżnik ofiara (model Lotki-Volterry), konkurencja (gatunki rywalizują o zasoby środowiska), symbioza (współżycie ≥2 gatunków): mutualizm (obie korzystają), komensalizm (jedna strona korzysta).
 - opis średnich zagęszczeń obu populacji
 - osobniki są rozmieszczone jednorodnie

- prawo zachowania średnich w naturalnych siedliskach zmiany liczebności populacji w czasie zachodzą tak, że zachowana zostaje liczebność średnia
- w ekosystemie są dwa gatunki drapieżniki i ofiary
- liczba kontaktów jest proporcjonalna do liczebności obu gatunków
- $-\dot{V}=rV-aVP,\,\dot{P}=-sP+abVP-r$ (współczynnik rozrodczości), a (współczynnik skutecznoścu upolowania), s (współczynnik śmiertelności), b (współczynnik upolowanej biomasy, którą gatunek drapieżników przeznacza na reprodukcję)
- gładkość prawej strony i liniowo oszacowanie pochodnej zawsze gwarantuje przedłużalność rowiązań
- znajdujemy stany stacjonarne $(V, P) = (0, 0), (V, P) = (\frac{s}{ab}, \frac{r}{a}).$
- model drapieżnik-ofiara w oparciu o równanie logistyczne $\dot{V}=rV(1-\frac{V}{K})-aVP,\,\dot{P}=-sP+abVP$
- model z kryjówkami dla ofiar $\dot{V}=rV-a(V-K)P,\ \dot{P}=-sP+ab(V-K)P,\ K$ liczba ofiar, które mogą się schować przed drapieżnikiem
- model Maya pojemność środowiska zależy od liczby ofiar $\dot{V}=r_1V(1-\frac{V}{K_1}),~\dot{P}=r_2P(1-\frac{P}{K_2}V)$
- konkurencja zewnątrzgatunkowa + wewnątrzgatunkowa $\dot{N}_1=r_1N_1(1-\frac{N_1}{K_1}-a_{12}\frac{N_2}{K_2}),\,\dot{N}_2=r_2N_2(1-\frac{N_2}{K_2}-a_{21}\frac{N_1}{K_1})$ (z plusem przy a symbioza
- model Nicholsona-Baileya (pasożyt gospodarz)

- Twierdzenie Poincare-Bendixona

 $\dot{x}(t) = F(x(t), y(t)), \ \dot{y}(t) = G(x(t), y(t)).$ Jeśli dla $t \ge 0$ trajektoria powyższego układu jest ograniczona, wówczas jest ona zamkniętą orbitą okresową/zbiega do zamkniętej orbity okresowej/jest stanem stacjonarnym/zbiega do stanu stacjonarnego.