

(1) Numéro de publication : 0 461 045 A1

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 91401501.1

(2) Date de dépôt : 07.06.91

(51) Int. Cl.5: C12Q 1/68, C12P 19/34, C07H 21/04, // C12N15/11

(30) Priorité : 08.06.90 FR 9007192

(43) Date de publication de la demande : 11.12.91 Bulletin 91/50

(84) Etats contractants désignés : AT BE CH DE DK ES FR GB GR IT LI LU NL SE

(71) Demandeur : INSTITUT PASTEUR 25-28, rue du Docteur Roux F-75724 Paris Cédex 15 (FR)

(72) Inventeur: Guesdon, Jean-Luc 33, Grande-Rue F-92310 Sévres (FR)

Inventeur: Thierry, Dominique 4 rue des Longs Prés F-92100 Boulogne (FR)

(74) Mandataire: Grosset-Fournier, Chantal Catherine et al ERNEST GUTMANN-YVES PLASSERAUD S.A., 67 boulevard Haussmann F-75008 Paris (FR)

(54) Détection spécifique du mycobacterium tuberculosis.

L'invention concerne un fragment d'acide nucléique dérivé du génome de Mycobacterium tuberculosis caractérisé en ce qu'il comporte une des séquences I, II, III et IV, définie de la façon suivante :

7 : une séquence choisie parmi l'une des séquences A à H : A: 5' - CCCGCGGCAAAGCCCGCAGGACCACGATCG - 3'

B: 5' - CGACCGCCAGCCCAGGATCCTGCGAGCGT - 3'

C: 5' - GGCGGGTCCAGATGGCTTGCTCGATCGCGT - 3'

D: 5' - GTTGGCGGGTCCAGATGGCTTGCTCGATCG - 3'

E: 5' - TCAAAGGGTTTGACAAATTAATGATTGGTC - 3'

F: 5' - TCGTGTACAAAATGTGGACAAGTA - 3'

G: 5' - TCGACGGACGTCGTGACCAGAAGTC - 3'

H: 5' - GTCGACACGCCTTCTGCACGGGAAGTCCTT - 3'

Il : une séquence comportant au moins 10 bases consécutives de l'une des séquences A à F et ayant une longueur totale d'environ 20 à 40 bases;

III: une séquence ayant une longueur de 20 à 40 bases qui hybride avec la séquence I ou avec la séquence II, et qui présente de préférence au moins 80 % d'homologie avec celles-ci;

IV : une séquence complémentaire à l'une des séquences I, II ou ÎII.

L'invention concerne une séquence d'acide nucléique spécifique du <u>Mycobacterium tuberculosis</u>, ainsi que des fragments particuliers de cette séquence aptes à jouer le rôle d'amorces nucléiques dans l'amplification d'ADN provenant de Mycobacterium dans un échantillon biologique. L'invention conceme également une méthode de détection de <u>Mycobacterium tuberculosis</u> dans un échantillon biologique, cette méthode mettant en oeuvre lesdites amorces nucléiques.

Les mycobactéries correspondent au genre <u>Mycobaccerium</u> qui comprend au moins 54 espèces différentes.

5

10

20

35

45

Parmi celles-ci, environ 10 sont pathogènes ou opportunistes pour l'homme ou l'animal. <u>M. tuberculosis</u> est l'agent de la tuberculose.

Il est connu que cette maladie représente un problème majeur de Santé Publique; en effet, il existe actuellement entre 15 et 60 millions d'individus atteints; de tuberculose dans le monde et 2 à 3 millions de personnes meurent chaque année à cause de cette infection. Dans les pays développés, M. tuberculosis est la cause la plus commune des infections mycobactériennes. En France, il apparaît environ 10⁴ nouveaux cas de tuberculose par an. La vaccination par le BCG (Bacille de Calmette et Guérin, une souche atténuée de M. bovis) est loin d'être efficace au sein de toutes les populations. Cette efficacité varie environ de 80 % dans les pays occidentaux comme l'Angleterre à 0 % en Inde (résultats du dernier essai de vaccination à Chingleput). De plus, l'apparition de souches de M. tuberculosis résistantes aux antituberculeux usuels et l'existence d'une comélation entre tuberculose et SIDA ajoute à l'urgence de mettre au point une méthode rapide de détection et d'identification des mycobactéries.

Par exemple, une étude épidémiologique réalisée en Floride a montré que 10 % des malades atteints de SIDA sont atteints de tuberculose au moment du diagnostic du SIDA ou 18 mois avant celui-ci. Chez ces malades, la tuberculose apparaît dans 60 % des cas sous une forme disséminée donc non repérable par les critères de diagnostic classiques comme la radiographie pulmonaire ou l'analyse de crachats.

Enfin, le diagnostic de la tuberculose et des autres mycobactérioses apparentées est difficile à réaliser pour différentes raisons : les maladies pulmonaires causées par différentes mycobactéries ne peuvent pas être distinguées cliniquement, radiologiquement ou histologiquement ; les mycobactéries sont souvent présentes en faible quantité et lorsqu'elles sont en quantité détectable par les méthodes classiquement utilisées, la maladie est déjà en évolution et les malades sont contagieux pour leur entourage ; de plus, en raison du temps de génération très long de ces bactéries (24 h pour M. tuberculosis comparé à 20 min pour E. coli), la culture de ces organismes est difficile. Ainsi faut-il 6 à 8 semaines pour identifier les germes et davantage pour obtenir un antibiograme utilisable pour le traitement adéquat des malades. La nécessité d'un test de détection n'exigeant pas de culture des germes et directement utilisable avec les échantillons pathologiques, même lorsque les germes y sont présents à de faibles concentrations, est donc indispensable.

Plusieurs techniques sont actuellement utilisées en clinique pour identifier une infection mycobactérienne. Il faut tout d'abord citer la détection directe des microorganismes au microscope ; cette technique est rapide mais ne permet pas l'identification de l'espèce mycobactérienne observée et manque de sensibilité dans la mesure où un grand nombre de microorganismes doit être présent dans l'échantillon (>104/ml) pour permettre une détection fiable (BATES J., CHEST, 1979, 76, (suppl.), 757-763).

Les cultures, lorsqu'elles sont positives, ont une spécificité approchant 100 % et permettent l'identification de l'espèce mycobactérienne isolée; néanmoins, comme précisé ci-dessus, la croissance des mycobactéries in vitro ne peut être réalisée qu'en 3 à 6 semaines et lorsque peu de mycobactéries sont présentes au site de l'infection, des cultures répétées sont nécessaires pour s'assurer d'un résultat positif (BATES J., 1979 et BATES J. et al., Am. Rev. Respir. Dis., 1986, 134, 415-417).

Les techniques sérologiques peuvent s'avérer utiles dans certaines conditions mais leur utilisation est limitée par leur sensibilité et/ou leur spécificité faibles (DANIEL T.M. et al., Am. Rev. Respir. Dis., 1987, 135, 1137-1151).

La présence ou l'absence de mycobactéries peut également être déterminée par hybridation avec de l'ADN ou de l'ARN en utilisant des sondes spécifiques des séquences d'ADN (KIEHN T.E. et al., J. Clin. Microbiol., 1987, 25, 1551-1552; ROBERTS M.C. et al., J. Clin. Microbiol., 1987, 25, 1239-1243; DRAKE T.A. et al., J. Clin. Microbiol., 1987, 25, 1442-1445). Cependant, ces méthodes reposent sur le polyomorphisme des séquences nucléotidiques des fragments utilisés ou sur le polymorphisme des régions avoisinantes et nécessitent également la culture des microorganismes.

THIERRY et al. (Nucl. Acid Res., Vol. 18 n° 1, p 188) ont décrit une séquence spécifique du complexe <u>Mycobacterium tuberculosis</u> et nommée IS 6110. Les auteurs proposent d'utiliser cette séquence comme sonde nucléique dans la détection de <u>Mycobacterium tuberculosis</u>.

Cependant, les quantités d'ADN mycobactérien présentes dans la piupart des échantillons biologiques sont insuffisantes pour donner un signal positif ; la technique d'hybridation par sonde nucléique s'est donc révélée inadaptée à l'identification d'ADN mycobactérien extrait directement d'échantillons biologiques.

Certains auteurs ont proposé, pour sumonter ce problème, d'amplifier spécifiquement l'ADN provenant du mycobactérium en utilisant des amorces nucléiques dans une méthode d'amplification telle que la réaction de polymérase en chaîne (P.C.R.). PATEL et al. (J. Clin., Microbiol., Mar. 1990, 513-518) ont décrit l'utilisation de plusieurs amorces nucléiques choisies à partir d'une séquence connue en tant que sonde dans l'identification de M. tuberculosis. Cependant, la longueur des fragments obtenue en utilisant ces amorces était différente de la longueur théorique attendue, et plusieurs fragments de taille variable étaient obtenus. De plus, les auteurs ont observé l'absence d'hybridation des produits amplifiés avec le plasmide ayant servi à déterminer les amorces. Ces résultats indiquent que ces amorces ne seraient pas appropriées dans la détection de la présence de M. tuberculosis dans un échantillon biologique et confirment la nature critique du choix des amorces.

L'objet de la présente invention est de fournir une méthode de détection de M. tuberculosis qui est à la fois spécifique, sensible et fiable, et quine nécessite pas de culture préalable des mycobactéries. L'invention concerne un fragment d'acide nucléique dérivé du génome de <u>Mycobacterium tuberculosis</u> caractérisé en ce qu'il comporte une des séquences I, II, III et IV, définie de la façon suivante :

I : une séquence choisie parmi l'une des séquences A à H :

A: 5' - CCCGCGGCAAAGCCCGCAGGACCACGATCG - 3'

B: 5' - CGACCCGCCAGCCCAGGATCCTGCGAGCGT - 3'

C: 5' - GGCGGGTCCAGATGGCTTGCTCGATCGCGT - 3'

D: 5' - GTTGGCGGGTCCAGATGGCTTGCTCGATCG - 3'

E: 5' - TCAAAGGGTTTGACAAATTAATGATTGGTC - 3'

F: 5' - TCGTGTACAAAATGTGGACAAGTA - 3'

10

15

20

25

30

50

55

G: 5' - TCGACGGACGTCGTGACCAGAAGTC - 3'

H: 5' - GTCGACACGCCTTCTGCACGGGAAGTCCTT - 3'

II : une séquence comportant au moins 10 bases consécutives de l'une des séquences A à H et ayant une longueur totale d'environ 20 à 40 bases ;

III : une séquence ayant une longueur de 20 à 40 bases qui hybride avec la séquence I ou avec la séquence II, et qui présente de préférence au moins 80 % d'homologie avec celles-ci ;

IV : une séquence complémentaire à l'une des séquences I, II ou III.

L'invention concerne également un couple de fragments d'acide nucléique dérivés du génome de Myco-bacterium tuberculosis et aptes à jouer le rôle d'amorces nucléiques dans l'amplification de l'ADN provenant dudit Mycobacterium dans un échantillon biologique, caractérisé en ce qu'il est constitué de deux séquences sélectionnées parmi les séquences I à IV selon la revendication 1.

Les inventeurs ont identifié cette série de fragments d'acide nucléique apte à jouer le rôle d'amorces à partir de la séquence IS 6110 (Nucl. Acid. Res. Vol 18 n° 1, 1990) et des séquences qui jouxtent la séquence IS 6110 dans le génome du M. tuberculosis. Ces dernières ont été identifiées dans le cadre de cette invention par les inventeurs. La séquence IS 6110 décrite dans Nucl. Acid., Res., Vol. 18 n° 1, 1990, fait partie de la séquence indiquée dans la figure 6. Plus particulièrement, la séquence IS 6110 s'étend des bases 327 à 1687 de la séquence de la figure 6.

Les amorces de l'invention présentent des caractéristiques essentielles pour permettre leur utilisation dans l'amplification sélective d'ADN de M. tuberculosis, à savoir l'absence d'homologie avec le génome humain et l'absence d'amplification de séquences apparentées et susceptibles d'être présent es dans l'échantillon biologique (par exemple la séquence d'<u>E. coli</u> IS 3411). De plus, les inventeurs ont constaté que les résultats obtenus en utilisant les amorces de l'invention sont très fiables dans la mesure où la longueur des fragments obtenus correspond à la longueur théorique attendue et sont d'une longueur constante et non pas variable. Ceci est vrai même pour les couples d'amorces qui conduisent à l'amplification de fragments très longs (de l'ordre de 1000 à 1500 bases) où le risque d'interruption de la polymérisation est très élevé en raison des effets de la structure secondaire de la séquence.

En outre, une vérification des produits d'amplification par hybridation d'une sonde nucléique contenant la séquence indiquée dans la figure 6 ou un fragment de cette séquence confirme la fiabilité de la méthode. Ces résultats n'étaient pas prévisibles.

A partir de la séquence IS 6110, il serait possible de préparer un grand nombre d'amorces nucléiques, cependant peu d'entre elles seraient efficaces et/ou spécifiques.

La figure 6 illustre les positions des amorces A à H par rapport à la séquence entière.

La figure 7 montre la carte de restriction de la séquence de la figure 6.

Selon un mode de réalisation de l'invention, le couple d'amorces est choisi, parmi les séquences l à IV, de façon à ce que le produit d'amplification ait une longueur entre 100 et 300 nucléotides environ, par exemple entre 100 et 200 environ. Des couples dont l'amorce positive est constituée de la séquence A et l'amorce négative est constituée de l'une des séquences B, C et D, sont particulièrement préférés. Un autre couple d'amorces particulièrement préféré est celui dont l'amorce positive est constituée de la séquence H et l'amorce négative

est constituée de la séquence complémentaire à la séquence G.

10

15

20

25

30

50

55

Les amorces de l'invention peuvent aussi être constituées d'une séquence II qui a une longueur de 20 à 40 bases et qui comporte au moins 10 bases consécutives de l'une des séquences A à H. Comme exemple de ce type d'amorce, on peut citer des fragments de l'une des séquences A à H ayant entre 20 et 30 hases, ou encore, l'une des séquences A à H à laquelle ont été rajoutés des linkers, par exemple un linker EcoRI, GAAT. Il est particulièrement préféré d'utiliser des amorces dont les 5 premiers nucléotides côté 3' sont 100 % homologues à ceux présents dans la partie correspondante de la séquence à amplifier.

Il est également possible d'utiliser comme amorce une séquence III ayant une iongueur de 20 à 40 bases qui hybride dans des conditions stringentes avec la séquence I ou II. Ce type de séquence présente en général au moins 80 % d'homologie avec la séquence à laquelle elle s'hybride. De cette manière, il est possible de substituer certaines bases des séquences A à H avec d'autres bases ou de rajouter des bases aux extrémités des séquences A à H. Les conditions stringentes sont celles normalement utilisées dans l'art.

L'invention concerne aussi des séquences IV qui sont des séquences complémentaires à l'une des séquences I, II ou III, par exemple complémentaires à l'une des séquences A à H.

L'invention concerne également une méthode de détection de la présence de <u>Mycobacterium tuberculosis</u> dans un échantillon biòlogique, caractérisée par les étapes suivantes :

- i) mise en contact de l'échantillon biologique avec un couple de fragments d'acide nucléique, dits amorces, selon l'invention, l'ADN contenu dans l'échantillon ayant été, le cas échéant, préalablement rendu accessible à l'hybridation et dans des conditions permettant une hybridation des amorces à l'ADN de Mycobacterium tuberculosis;
- ii) amplification de l'ADN de Mycobacterium tuberculosis ;
- iii) mise en évidence de l'amplification de fragments d'ADN correspondant au fragment encadré par les amorces, par exemple par électrophorèse sur gel ;
- iv) vérification éventuelle de la séquence du fragment amplifié, par exemple par hybridation de sonde spécifique, par séquençage ou par analyse de site de restriction.

L'échantillon biologique peut être n'importe quel échantillon susceptible de contenir du M. tuberculosis, par exemple des crachats, de l'urine, du sang. Normalement, les échantillons subissent un traitement afin d'extraire l'ADN et de le rendre accessible à l'hybridation. Ces traitements sont connus dans l'art.

Les canditions appliquées lors de l'amplification peuvent être les suivantes :

	ler cycle	:	i) e ii)		94°C 60°C	5 minu 1 minu	ites ite))	1 X
35	cycles suivants		_	11	94°C	15 seco		•	20 à 40 X
40	dernier cycle		i) ii)	H H	94°C	15 seco	ondes utes)	1 X

La mise en évidence de l'amplification peut être effectuée par électrophorèse sur gel, par exemple sur gel d'agarose coloré au bromure d'éthidium. Après avoir effectué l'amplification, il est possible, dans le cadre de l'invention, de vérifier la séquence du fragment amplifié par exemple par hybridation de sonde nucléique, ladite sonde comprenant au moins une partie de la séquence. De telles sondes sont des plasmides pMT01, contenant les bases 1 à 1152 de la séquence de la figure 6 et le plasmide pMT02, contenant les bases 309 à 1219 de ladite séquence. D'autres sondes appropriées seraient toute sonde ayant une longueur d'au moins 20 bases, capable de s'hybrider dans des conditions stringentes avec une partie de la séquence IS 6110 se trouvant entre les deux amorces choisies. Des sondes particulièrement préférées sont les séquences J, K, L, M suivantes :

```
J: 5' - CTGATCCGGCCACAGCCCGTCCCGCCGATC - 3'

K: 5' - AGGCGTCGGTGACAAAGGCCACGTAGGCGA - 3'

L: 5' - CGAGGACCATGGAGGTGGCCATCGTGGAAG - 3'

M: 5' - TGCCCTCATTGGCAACGTTTGCGCCCTGCC - 3'
```

Les conditions d'hybridation appliquées lors d'une telle vérification pourraient être les suivantes :

	hybridation	:	environ	65	à	68.C -	6 x SSC
5							10 % dextran
3							sulfate
							5 x Denhardt's
							10 mM EDTA
10							0.5 % SDA
							100 μg/ml d'ADN
							de sperme de
15							saumon
	lavage	:	environ	65	·c	-	2 x SSC (deux
							FOIS 10 min)
							2xSSC+0.1% SDS
20							(une fois 30mn)
							0.1 x SSC (une
							fois 10 min)

1 x SSC correspond à 0.15 M NaC1 et 0.05 M citrate de Na et une solution 1 x Denhardt's correspond à 0.02 % Ficotl, 0.02 % de polyvinylpyrrolidone et 0.02 % de sérum albumine bovine.

D'autres moyens de vérifier les produits d'amplification consiste en le séquençage direct du fragment ou une analyse par site de restriction. Toutefois, cette vérification n'est pas une étape obligatoire de la méthode, les amorces de l'invention conduisant à une amplification très fidèle de la séquence.

Il est à noter que l'amplification selon l'invention est spécifique de l'ADN du complexe Mycobacterium tuberculosis (voir par exemple figures 1A et B). L'amplification observée avec l'ADN de M. bovis-BCG, M. bovis et M. microti ne diminue pas l'intérêt de la méthode dans la mesure où ces mycobactéries ne sont pas susceptibles d'être présentes dans l'échantillon d'origine humaine. M. Bovis est responsable de la tuberculose chez les bovins et M. Microti est l'agent causal de la tuberculose des rongeurs. Les amorces de l'invention ne conduisent à aucune amplification d'ADN issu d'autres types de Mycobacteria tels que M. fortiutum, M. gordonae, M. avium,

En outre, les amorces de l'invention n'amplifient pas d'ADN d'orgine humaine ou bactérienne (par exemple E. Coli). Ceci est illustré dans la figure 2.

L'invention concerne également un kit ou nécessaire pour la détection de la présence de Mycobacterium tuberculosis dans un échantillon biologique, caractérisé en ce qu'il comporte les éléments suivants :

- un couple de fragments d'acide nucléique selon l'une quelconque des revendications 1 à 5 ;
- les réactifs nécessaires pour effectuer une amplification d'ADN ;
- éventuellement un composant permettant de vérifier la séquence du fragment amplifié, plus particulièrement une sonde nucléique selon l'une quelconque des revendications 8 à 10.

L'invention concerne en outre la séquence entière illustrée dans la figure 6. Les inventeurs ont constaté que cette séquence contient deux cadres ouverts de lecture dont un ressemble à un gène codant pour un trans-

L'invention sera illustrée par les exemples non-limitatifs suivants.

EXEMPLES

Exemple 1 : sélection et synthèse des couples d'amorces oligonucléotidiques

A partir de la séquence complète illustrée dans la figure 6, plusieurs couples d'amorces oligonucléotidiques ont été sélectionnés et synthétisés. Ces couples d'amorces sont illustrés ci-dessous. Pour certains de ces couples d'amorces, les séquences des sondes oligonucléotidiques susceptibles d'être utilisées pour détecter les produits d'amplification sont indiquées :

40

45

50

couple d'amorces n°1

5	amorce positive: 5' - CCCGCGGCAAAGCCCGCAGGACCACGAICG - 3'
	amorce négative : 5 - CGACCCGCCAGCCCAGGATCCTGCGAGCGT - 3
10	longueur du fragment amplifié hors amorces : 141
	sondes du couple n°1
	1) 5 - CTGATCCGGCCACAGCCCGTCCCGCCGATC - 3'
15	2) 5' - AGGCGTCGGTGACAAAGGCCACGTAGGCGA - 3'
20	couple d'amorces n'2
	amorce positive: 5 - CCCGCGGCAAAGCCCGCAGGACCACGATCG - 3
	amorce négative : 5' - GGCGGGTCCAGATGGCTTGCTCGATCGCGT - 3'
25	longueur du fragment amplifié hors amorces : 201
	sondes du couple n°2
30	1) 5' - CTGATCCGGCCACAGCCCGTCCCGCCGATC - 3'
	2) 5' - CGAGGACCATGGAGGTGGCCATCGTGGAAG - 3'
35	couple d'amorces nº3
	amorce positive: 5 - CCCGCGGCAAAGCCCGCAGGACCACGATCG - 3"
40	amorce négative : 5' - GTTGGCGGGTCCAGATGGCTTGCTCGATCG - 3
	longueur du fragment amplifié hors amorces : 204
45	sondes du couple n°3
	1) 5 - CTGATCCGGCCACAGCCCGTCCCGCCGATC - 3
50	2) 5 - CGTCGAGGACCATGGAGGTGGCCATCGTGG -

6

couple d'amorces n°4

5	amorce positive: 5'-CCCGCGGCAAAGCCCGCAGGACCACGATCG-3'	
	amorce négative : 5- TCAAAGGGTTTGACAAATTAATGATTGG	TC-3
10	longueur du fragment amplifié hors amorce : 740	
	couple d'amorces n°5	
15		
15	amorce positive: 5-CCCGCGGCAAAGCCCGCAGGACCACGATCG-3	
	amorce négative : 5'- TCGTGTACAAAATGTGGACAAGTA-3'	
20	longueur du fragment amplifié hors amorce : 770	
	couple d'amorces n°6	
25	amorce positive : 5'- ,TCGACGGACGTCGTGACCAGAAGTC-3'	
	amorce négative : 5 - CGACCCGCCAGCCCAGGATCCTGCGAGCGT	- 3"
30	longueur du fragment amplifié hors amorce: 980	
	couple d'amorces n°7	
35	amorce positive : 5- TCGACGGACGTCGTGACCAGAAGTC-3	7
	amorce négative : 5- GGCGGGTCCAGATGGCTTGCTCGATCGCGT	:-3"
	longueur du fragment amplifié hors amorce: 1040	
40	-	
	couple d'amorces nº8	
45	amorce positive : 5- TCGACGGACGTCGTGACCAGAAGTC	-3*
-	amorce négative : 5- TCGTGTACAAAATGTGGACAAGTA-	r
	longueur du fragment amplifié hors amorce : 1550	
50		

7

couple d'amorces nº 9

amorce positive: 5'-GTCGACACGCCTTCTGCACG GGAAGTCCTT-3'

amorce négative : 5'-GACTTCTGGTCACGACGTCCGTCGAA-3'

longueur du fragment amplifié hors amorces : 219

sonde du couple n°9

5-TGCCCTCATTGGCAACGTTTGCGCCCTGCC-3'

15

10

5

Exemple 2 : vérification de la spécificité des amorces par rapport à d'autres types de Mycobactéries.

La spécificité des amorces a été vérifiée en utilisant de l'ADN de différentes espèces bactériennes appartenant au genre <u>Mycobacterium</u>.

L'ADN total provenant d'échantillons de différents types le <u>Mycobacteria</u> est soumis à une amplification par la technique de "Polymerase Chain Reaction" (P.C.R.) en utilisant le couple d'amorces n° 1 indiqué dans l'exemple 1.

Les paramètres des étapes de P.C.R. ont été choisis de la façon suivante :

25

40

	ler cycle	:	i) ii)	94°C	5 minutes 1 minute) 1 X)
30	cycles suivants	:	i) ii)	94°C 60°C	15 secondes 1 minute) 20 à) 40 X
35	dernier cycle	:	i) ii)	94°C	15 secondes 5 minutes) 1 X

Les produits d'amplification sont analysés par électrophorèse en gel d'agarose et coloration au bromure d'éthidium.

La figure 1A montre les résultats. Les voies indiquées dans la figure 1A correspondent aux échantillons suivants :

	1- Marqueurs de taille	7-	M. gordonae
45	2- Mycobacterium tuberculosis	8-	M. intracellularae
	3- M. bovis-BCG	9-	M. paratuberculosis
	4- <u>M. bovis</u>	10-	M. scrofulaceum
	5- <u>M. nicroti</u>	11-	M. avium
50	6- M. fortiutum	12-	tampon TE

La figure 1B montre les résultats obtenus lorsque le plasmide pMT02 (marqué par l'AAF selon Kourilsky et al, demande de brevet français 8124131) a été utilisé comme sonde sur les produits d'amplification obtenus dans cet exemple. La construction du plasmide pMT02 est décrit dans l'exemple 6.

Exemple 3 : vérification de la spécificté des amorces par rapport à de l'ADN provenant d'Escherichia Coli ou de cellules humaines

L'ADN humain peut contaminer les échantillons à analyse:r. La technique d'amplification décrite dans l'exemple 2 est appliquée à des échantillons d'ADN total en présence du couple d'amorce n° 1.

Les produits d'amplifications sont analysés par électrophorèse en gel d'agarose et coloration au bromure d'éthidium. La figure 2 montre les résultats, les différentes voies correspondant aux échantillons suivants :

- 1- Mycobacterium tuberculosis
- 2- ADN humain
- 3- Mycobacterium tuberculosis + ADN humain
- 4- ADN d'Escherichia coli
- 5- tampon TE

10

15

30

35

40

45

50

Exemple 4 : utilisation des amorces sur des ADN d'échantillons biologiques

10 μl des échantillons amplifiés provenant d'expectoration de malades de la tuberculose sont déposés sur

un gel d'agarose à 2 % dans un tampon TAE (0.04M Tris-acétate, 0.001M EDTA) et 1 µg/ml EtBr.

L'amplification est réalisée par la technique de polymerase chain reaction (P.C.R.) selon Saiki et al (Science, 1988, 239, 487-491) en utilisant 12.5 pmoles des oligonucléotides (couple d'amorces n° 1) et l'ADN d'échantillons biologiques avec 2 U de Taq polymérase dans un tampon 50mM KC1, 10mM Tris-HC1 pH8.3, 2.4mM MgC1₂, 300 µM de désoxyribonucléotides et 100 µg/ml de gélatine. Le volume final de la réaction est de 100 µl. Les paramètres des étapes de P.C.R. ont été choisis de la façon suivante : 1 mn à 94°C, 1 mn à 50°C, 1 mn à 72°C ceci pendant 40 cycles.

La figure 3 montre les résultats de l'analyse sur gel d'agarose après P.C.R. de ces échantillons. Les voies 1 à 11 correspondent à des échantillons biologiques provenant de 11 personnes différentes. Ces résultats étaient vérifiés par lecture directe au microscope et confirmaient les résultats obtenus par amplification: échantillons biologiques négatifs en lecture directe : lignes 1-3-4-5-6-9-10;

échantillons biologiques positifs en lecture directe : lignes 2-7-8-11 ;

les bandes amplifiées sont visualisées sous UV.

Exemple 5 : analyse sur gel d'agarose d'ADN M. tuberculosis amplifié avec différents couples d'oligonucléotides.

10 μl des échantillons amplifiés sont déposés sur un gel d'agarose à 2 %. L'amplification est réalisée selon la technique déjà décrite en utilisant plusieurs couples d'amorces décrits dans l'exemple 1. La figure 4 montre ces résultats :

ligne 1 : couple d'amorce n° 8

ligne 2 : couple d'amorce n° 7

ligne 3 : couple d'amorce n° 6

ligne 4 : couple d'amorce n° 5

ligne 5 : couple d'amorce n° 4

ligne 6 : couple d'amorce n° 2

ligne 7 : couple d'amorce nº 1

ligne 8 : contrôle négatif

M = marqueur

Les bandes amplifiées sont visualisées sous UV.

Ces résultats confirment que les fragments amplifiés sont d'une longueur correspondant à la longueur théorique, calculée à partir de la distance entre chaque amorce. Il est surprenant que malgré l'utilisation de certains couples d'amorces conduisant à l'amplification de fragments très longs, aucune interruption de la polymérisation résultant d'une structure secondaire de la séquence n'est observée.

Les résultats étaient vérifiés par hybridation avec le plasmide <u>pMT01</u> (CNCM I-900 déposé le 25/8/89) qui contient les bases 1 à 1152 de la séquence illustrée dans la figure 6.

Exemple 6: construction du plasmide pMT02

55

Le plasmide pMT02 a été construit par clonage dans le vecteur pUC18 d'un fragment de 900 paires de bases Hind III/Bam HI issus de la séquence IS 6110 (fragment qui correspond aux bases 309 à 1219 de la séquence illustrée dans la figure 6).

Le plasmide pMT02 peut servir de sonde lors de la vérification des séquences amplifiées. La spécificité de pMT02 a été déterminée par Southern blot après digestion complète de différents ADN mycobactériens par Bam Hl.

Les résultats sont indiqués dans la figure 5.

Les différentes voies de la figure 5 ont les significations suivantes :

	1- M. tuberculosis)
	2- M. bovis-BCG) complexe
10	3- M. bovis) tuberculosis
	4- M. microti)
15	5- M. paratuberculosis)
13	6- M. intracellularae) complexe
	7- M. scrofulaceum) avium
	8- M. avium)
20		

Revendications

25

30

35

40

45

50

5

1. Fragment d'acide nucléique dérivé du génome de <u>Mycobacterium tuberculosis</u> caractérisé en ce qu'il comporte une des séquences I, II, III et IV, définie de la façon suivante :

I : une séquence choisie parmi l'une des séquences A à H :

A: 5' - CCCGCGCAAAGCCCGCAGGACCACGATCG - 3'

B: 5' - CGACCCGCCAGCCCAGGATCCTGCGAGCGT - 3'

C: 5' - GGCGGGTCCAGATGGCTTGCTCGATCGCGT - 3'

D: 5' - GTTGGCGGGTCCAGATGGCTTGCTCGATCG - 3'

E: 5' - TCAAAGGGTTTGACAAATTAATGATTGGTC - 3'

F: 5' - TCGTGTACAAAATGTGGACAAGTA - 3'

G: 5' - TCGACGGACGTCGTGACCAGAAGTC - 3'

H: 5' - GTCGACACGCCTTCTGCACGGGAAGTCCTT - 3'

Il : une séquence comportant au moins 10 bases consécutives de l'une des séquences A à H et ayant une longueur totale d'environ 20 à 40 bases ;

III : une séquence ayant une longueur de 20 à 40 bases qui hybride avec la séquence I ou avec la séquence II, et qui présente de préférence au moins 80 % d'homologie avec celles-ci ;

IV : une séquence complémentaire à l'une des séquences I, II ou III.

- 2. Couple de fragments d'acide nucléique dérivés du génome de Mycobacterium tuberculosis et aptes à jouer le rôle d'amorces nucléiques dans l'amplification de l'ADN provenant dudit Mycobacterium dans un échantillon biologique, caractérisé en ce qu'il est constitué de deux séquences sélectionnées parmi les séquences l à IV selon la revendication 1.
- 3. Couple de fragments selon la revendication 2 caractérisé en ce qu'au moins un des membres du couple est constitué par une séquence appartenant au groupe I.
- 4. Couple de fragments selon la revendication 2 ou 3, caractérisé en ce qu'il est constitué d'une part de l'une des séquences A ou G, et, d'autre part, de l'une des séquences B, C, D, E, F ou encore de la séquence H et la séquence complémentaire à la séquence G.
- 55 5. Couple de fragments selon la revendication 4 caractérisé en ce qu'il est constitué d'une part de la séquence A et, d'autre part, de l'une des séquences B, C, D.
 - 6. Méthode de détection de la présence de Mycobacterium tuberculosis dans un échantillon biologique,

caractérisée par les étapes suivantes :

5

10

30

35

- i) mise en contact de l'échantillon biologique avec une couple de fragments d'acide nucléique, dits amorces, selon l'une quelconque des revendications 1 à 5, l'ADN contenu dans l'échantillon ayant été, le cas échéant, préalablement rendu accessible à l'hybridation et dans des conditions permettant une hybridation des amorces à l'ADN de Mycobacterium tuberculosis;
- ii) amplification de l'ADN de Mycobacterium tuberculosis;
- iii) mise en évidence de l'amplification de fragments d'ADN correspondant au fragment encadré par les amorces, par exemple par électrophorèse sur gel ;
- iv) vérification éventuelle de la séquence du fragment amplifié, par exemple par hybridation de sonde spécifique, par séquençage ou par analyse de site de restriction.
- 7. Méthode de détection selon la revendication 6 caractérisée en ce que les conditions appliquées lors de l'amplification de l'ADN sont les suivantes :

15	ler cycle	:				5 minutes 1 minute)	1 3	X
20	cycles suivants			11		15 secondes 1 minute	•	20 40	
25	dernier cycle	:	i) ii)	n	94°C	15 secondes 5 minutes)	1	x

- 8. Sonde nucléique apte à détecter par hybridation la présence d'ADN spécifique du Mycobacterium tuberculosis dans un échantillon biologique et, en particulier, de vérifier les produits d'amplification résultant
 du procédé de détection selon l'une quelconque des revendications 6 ou 7, caractérisée en ce qu'elle
 comporte une séquence ayant une longueur d'au moins 20 bases capable de s'hybrider avec une partie
 de la séquence IS 6110 se situant entre les deux amorces nucléiques.
- Sonde nucléique selon la revendication 8 caractérisée en ce qu'elle comporte au moins 20 bases consécutifs de l'une des séquences J, K, L ou M suivantes :
 - J: 5' CTGATCCGGCCACAGCCCGTCCCGCCGATC 3'
 - K: 5' AGGCGTCGGTGACAAAGGCCACGTAGGCGA 3'
 - L: 5' CGAGGACCATGGAGGTGGCCATCGTGGAAG 3'
 - M: 5' TGCCCTCATTGGCAACGTTTGCGCCCTGCC 3'
- 40 10. Sonde nucléique selon la revendication 8 caractérisée en ce qu'elle est constituée du plasmide pMT02, contenant les bases 309 à 1219 de la séquence IS 6110.
 - 11. Kit ou nécessaire pour la détection de la présence de <u>Mycobacterium tuberculosis</u> dans un échantillon biologique, caractérisé en ce qu'il comporte les éléments suivants :
 - un couple de fragments d'acide nucléique selon l'une quelconque des revendications 1 à 5;
 - les réactifs nécessaires pour effectuer une amplification d'ADN;
 - éventuellement un composant permettant de vérifier la séquence du fragment amplifié, plus particulièrement une sonde nucléique selon l'une quelconque des revendications 8 à 10.
- 50 12. Séquence d'acide nucléique, spécifique du Mycobacterium tuberculosis ayant la séquence :

55

	10	20	30	40	50	60
	GTCGACACGC	CTTCTGCACG	GGAAGTCCTT	CTGCGGCCAT	CGTTGCTATG	SCCGCTTACT
5	70	. 80	90	100	110	120
	GCCTTCTAGT	CCGTGCGGCT	CTCGCAACAG	CTCACGGGAC	CTTTTTGAGG	ATCGCCACTT
	130	140	150	160	170	180
10	CAGGTCTTCA	ACTCGCGGAT	GCCCTCATTG	GCAACGTTTG	CCCCTCCCT	TGGGGCGGCC
10	190	200	210	220	230	240
	GGCAGCCACC	AAGTCGAGCA	CTTTGCGGCG	GAACTACTCG	GGGTAACACT	TCGGCACGGA
	250	260	270	280	290	300
15	CACGGCTCGT	TCGACGGACG	TCGTGACCAG	AAGTCGAGCA	AACCGACTCC	ACTCTAGCTA
	310	320	330	340	350	360
	GTGATACAAG	CTTTTTTGTA	GCCGCGCGAT	GAACCGCCCC	GGCATGTCCG	GAGACTCCAG
	370	380	390	400	410	420
20	TTCTTGGAAA	GGATGGGGTC	ATGTCAGGTG	GTTCATCGAG	GAGGTACCCG	CCGGAGCTGC
	430	440	450	460	470	480
	GTGAGCGGGC	GGTGCGGATG	GTCGCAGAGA	TCCGCGGTCA	GCACGATTCG	GAGTGGGCAG
	490	500	510	520	530	540
25	CGATCAGTGA	GGTCGCCCGT	CTACTTGGTG	TTGGCTGCGC	GGAGACGGTG	CGTAAGTGGG
	550	560	570	580	590	600
	TGCGCCAGGC	GCAGGTCGAT	GCCGGCGCAC	GCCCGGGAC	CACGACCGAA	GAATCCGCTG
	610	620	630	640	650	660
30	AGCTGAAGCG	CTTAGCGGCG	GGACAACGCC	GAATTGCGAA	GGGCGAACGC	GATTTTAAAG
	670	680	690	700	710	720
	ACCGCGTCGG	CTTTCTTCGC	GGCCGAGCTC	C GACCGGCCAC	G CACGCTAATT	AACGGTTCAT
35	730	740	750	760	770	780
	CGCCGATCAT	CAGGGCCACC	GCGAGGGCC	CCGATGGTTT	G CGGTGGGGTG	TCGAGTCGAT
	790	800	810	820	930	840
	CTGCACACAC	CTGACCGAG	TGGGTGTGC	C GATCGCCCC	A TCGACCTACT	ACGACCACAT
40	850	860	87	0 88	0 890	900
	033000003		CCCACCTCC	G CGATGGCGA	A CTCAAGGAGG	ACATCAGCCC

	910	920	930	940	950	960
		GCCAACTACG		TGCCCGCAAA	GTGTGGCTAA	CCCTGAACCG
5	970	980	990	1000	1010	1020
		GAGGTGGCCA	GATGCACCGT	CGAACGCTG	ATGACCAAAC	TCGGCCTGTC
	1030	1040	1050	1060	1070	1080
	CGGGACCACC	CGCGGCAAAG	CCCGCAGGAC	CACGATCGCT	GATCLGGCCA	CAGCCCGTCC
10	1090	1100	1110	1120	1130	1140
	CGCCGATCTC	GTCCAGCGCC	GCTTCGGACC	ACCAGCACCT	AACCGGCTGT	GGGTAGCAGA
	1150	1160	1170	1180	1190	1200
15	CCTCACCTAT	GTGTCGACCT	GGGCAGGGTT	CGCCTACGTG	GCCTTTGTCA	CCGACGCCTA
	1210	1220	1230	1240	1250	1260
		ATCCTGGGCT	GGCGGGTCGC	TTCCACGATG	GCCACCTCCA	TGGTCCTCGA
	1270		1290			1320
20	CGCGATCGAG	CAAGCCATCT	GGACCCGCCA	ACAAGAAGGC	GTACTCGACC	TGAAAGACGT
	1330	1340	1350	1360	1370	1380
	TATCCACCAT	ACGGATAGGG	GATCTCAGTA	CACATCGATC	CGGTTCAGCG	AGCGGCTCGC
25	1390	1400	1410	1420	1430	1440
23	CGAGGCAGGC	ATCCAACCGT	CGGTCGGAGC	GGTCGGAAGC	TCCTATGACA	ATGCACTAGC
	1450	1460	1470	1480	1490	1500
	CGAGACGATC	AACGGCCTAT	ACAAGACCGA	GCTGATCAAA	CCCGGCAAGC	
30	1510					
	CATCGAGGAT	GTCGAGTTGG	CCACCGCGCG	CTGGGTCGAC	TGGTTCAACC	ATCGCCGCCT
	1570					
	CTACCAGTAC	TGCGGCGACG	TCCCGCCGGT	CGAACTCGAG	GCTGCCTACT	
35	1630					
	CCAGAGACCI	A GCCGCCGGCT	GAGGICICA			ACCGGGGCGG
	1690					
40						GGGCGACCAA
40		1760				
						CACGAAATAC
		0 1826				1860
45	CTAACACAC			I CCACGTTCC	S TATTCGGTGT	ACGATTTGTC
	-	0 188				
	ACGCAACTA	A GCGTTCAAG	a gggagt			

50

FIGURES 1 ET 2

Figure 1

1 2 3 4 5

Figure 2

FIGURES 3 ET 4

FIGURE 3

M 1 2 3 4 5 6 7 8 9 10 11

FIGURE 4

M 1 2 3 4 5 6 7 8 M

FIGURE 5

FIGURE 6

09	GCCGCTTACT	120	ATCGCCACTT	180	Teeeeceecc	240	TCGGCACGGA	300	ACTCTAGCTA	360	GAGACTCCAG	420	CCGGAGCTGC
50	CGTTGCTATG	110	CTCGCAACAG CTCACGGGAC CTTTTTGAGG ATCGCCACTT	170	CGCCCTGCCT	230	GGCAGCCACC AAGTCGAGCA CTTTGCGGCG GAACTACTCG GGGTAACACT TCGGCACGGA	290	CACGGCTCGT TCGACGGACG TCGTGACCAG AAGTCGAGCA AACCGACTCC ACTCTAGCTA	350	GTGATACAAG CTTTTTGTA GCCGCGCGAT GAACCGCCCC GGCATGTCCG GAGACTCCAG	410	TTCTTGGAAA GGATGGGGTC ATGTCAGGTG GTTCATCGAG GAGGTACCCG
40	CTGCGGCCAT	100	CTCACGGGAC	160	GCAACGTTTG	220	GAACTACTCG	280	AAGTCGAGCA	340	GAACCGCCCC	400	GTTCATCGAG
30	GGAAGTCCTT	06	CTCGCAACAG	150	GCCCTCATTG	210	CTTTGCGGCG	270	TCGTGACCAG	330	GCCGCGCGAT	390	ATGTCAGGTG
20	GTCGACACGC CTTCTGCACG GGAAGTCCTT	н 80	GCCTTCTAGT CCGTGCGGCT	140	CAGGICTICA ACTCGCGGAT GCCCTCATIG GCAACGITIG	200	AAGTCGAGCA	260	TCGACGGACG	320	CTTTTTGTA	380	GGATGGGGTC
10	GTCGACACGC	70	GCCTTCTAGT	130	CAGGTCTTCA	190	GGCAGCCACC	250	CACGGCTCGT	310	GTGATACAAG	370	TTCTTGGAAA

480	GTCGCAGAGA TCCGCGGTCA GCACGATTCG GAGTGGGCAG	540	GGAGACGGTG CGTAAGTGGG	009	AGGTCGAT GCCGGCGCAC GGCCCGGGAC CACGACCGAA GAATCCGCTG	099	CTTAGCGGCG GGACACGCC GAATTGCGAA GGGCGAACGC GATTTTAAAG	720	CTTTCTTCGC GGCCGAGCTC GACCGGCCAG CACGCTAATT AACGGTTCAT	780	TCGAGTCGAT	840	TGGGTGTGCC GATCGCCCCA TCGACCTACT ACGACCACAT
470	GCACGATTCG	530		290	CACGACCGAA	650	GGGCGAACGC	710	CACGCTAATT	770	CGGTGGGGTG	830	TCGACCTACT
460	TCCGCGGTCA	520	Treecrecec	580	GGCCCGGGAC	640	GAATTGCGAA	700	GACCGGCCAG	760	CGATGGTTTG	820	GATCGCCCCA
450	GTCGCAGAGA	510	CTACTTGGTG	570	GCCGGCGCAC	630	GGACAACGCC	069	GGCCGAGCTC	750	GCGAGGGCCC	810	
440	TGCGGATG	200	TCGCCCGT	560	GCAGGTCGAT	620	CTTAGCGGCG	680	CTTTCTTCGC	740	CGCCGATCAT CAGGGCCACC GCGAGGGCCC CGATGGTTTG	800	CTGCACACAG CTGACCGAGC
430	GTGAGCGGGC GG	490	CGATCAGTGA GG	550	TGCGCCAGGC	610	AGCTGAAGCG	0.29	ACCGCGTCGG	730	CGCCGATCAT	790	CTGCACACAG

006	ACATCAGCCG	096	CCCTGAACCG	1020	TCGGCCTGTC	1080	CAGCCCGTCC	1140	GGGTFGCAGA	1200	CCGACGCCTA
890	CAACCEGEAG CCCAGCCGCC GCGAGCTGCG CGATGGCGAA CTCAAGGAGC ACATCAGCCG	950	CAACTACG GIGITIACGG IGCCCGCAAA GIGIGGCIAA CCCIGAACCG	1010	GGTGGCCA GATGCACCGT CGAACGGCTG ATGACCAAAC TCGGCCTGTC	1070	CGGCAAAG CCCGCAGGAC CACGATCGCT GATCCGGCCA CAGCCCGTCC	1130	CCAGCGCC GCTTCGGACC ACCAGCACCT AACCGGCTGT GGGTFGCAGA	1190	GICGACCT GGGCAGGGIT CGCCTACGIG GCCTTIGICA CCGACGCCTA
880	CGATGGCGAA	940	TGCCCGCAAA	1000	CGAACGGCTG	1060	CACGATCGCT	1120	ACCAGCACCT	1180	CGCCTACGTG
870	GCGAGCTGCG	930	GTGTTTACGG	066	GATGCACCGT	1050	CCCGCAGGAC	A 1110	GCTTCGGACC	1170	GGGCAGGGTT
860	CCCAGCCGCC	920	GCCAACTACG	980	GAGGTGGCCA	1040	CGCGGCAAAG	1100 🕭	GTCCAGCGCC	1160	GTGTCGACCT
850	CAACCGGGAG	910	CGTCCACGCC GC	970	TGAGGGCATC GA	1030	CGGGACCACC CG	1090	CGCCGATCTC GT	1150	CCTCACCTAT GT

ATCGCCGCCT	1510 1520 1530 1530 1540 1550 1560	1540 CTGGGTCGAC	1530 CCACCGCGCG	1520 GTCGAGTTGG	1510 GGAT
CCTGGCGGTC	ACGGCCTAT ACAAGACCGA GCTGATCAAA CCCGGCAAGC CCTGGCGGTC	GCTGATCAAA	ACAAGACCGA	ACGGCCTAT	CGAGACGATC A
1500	1490	1480	1470	1460	
ATGCACTAGC	TCCTATGACA ATGCACTAGC	GGTCGGAAGC	TCCAACCGT CGGTCGGAGC GGTCGGAAGC	TCCAACCGT	CGAGGCAGGC A
1440	1430	1420	1410	1400	
AGCGGCTCGC	CGGATAGGG GATCTCAGTA CACATCGATC CGGTTCAGCG AGCGGCTCGC	CACATCGATC	GATCTCAGTA	CGGATAGGG	TATCCACCAT A
1380	1370	1360	1340 D 1350	1340	1330
TGAAAGACGT	CECCATCGAG CAAGCCATCT GGACCCGCCA ACAAGAAGGC GTACTCGACC TGAAAGACGT	ACAAGAAGGC	GGACCCGCCA	AAGCCATCT	O
1320	1310	1300	1290	1280	1270 B
TGGTCCTCGA	CECTCECAGE ATCCTEGECT GECEGETCEC TTCCACGATE GCCACCTCCA TEGTCCTCGA	TTCCACGATG	GCGGGTCGC	rccreeecr	A
1260	1250	1240	1230	1220	

			GGGAGT	ACGCAACTAA GCGTTCAAGA GGGAGT	ACGCAACTAA
				1880	1870
ACGATTTGTC	TATTCGGTGT	CCACGTTCCG	CTAACACACT ATGGTGCACA TCACGCACTT CCACGTTCCG TATTCGGTGT ACGATTTGTC	ATGGTGCACA	CTAACACACT
1860	F 1850	1840	1830	E 1820	1810
CACGAAATAC	ACATTTTGTA	CTACTTGTCC	TCATTAATTT GTCAAACCCT TTGAGATGCA CTACTTGTC ACATTTTGTA CACGAAATAC	GTCAAACCCT	TCATTAATTT
1800	1790	1780	1770	1760	1750
GGGCGACCAA	TTCGCATCAC	CATGAGCGAC	TTCACGATTG GGCCGCCGTA AGGAATGCGT CATGAGCGAC TTCGCATCAC GGGCGACCAA	GGCCGCCGTA	TTCACGATTG
1740	1730	1720	1710	1700	1690
ACCGGGGCGG	CTCCGGACTC	ATCAGAGAGT	CCAGAGACCA GCCGCCGGCT GAGGTCTCAG ATCAGAGAGT CTCCGGACTC ACCGGGGCGG	GCCGCCGGCT	CCAGAGACCA
1680	1670	1660	1650	1640	1630
ACGCTCAACG	GCTGCCTACT	CGAACTCGAG	CTACCAGTAC TGCGGCGACG TCCCGCCGGT CGAACTCGAG GCTGCCTACT ACGCTCAACG	TGCGGCGACG	CTACCAGTAC
1620	1610	1600	1590	1580	1570

FIGURE 7

100 ACGGGAC	AFLI SAU96A	200 TCGAGCA	TAQI BSP1286 HGIAI
90 3CAACAGCTC	ALUI	190 AGCCACCAAG	II.
80 Tecegetete	FNU4HI	າອິວວັວັວັວັວ 180 ວັວວັວັວັວັວ	FNU4HI BBVI EAEI FNU4HI XMAIII HAEIII NAEI
70 TTÇTAGTCCG	MAEI	170 ccreccrres	STYI
60 TTACTGCC	ы	160 GTTTĞCGC	CFOI
50 TGCTAŢĞĞCCGC	EAEI HAEIII FNU4HI	150 CTCATTGGCAAC	MNLI
40 T <u>Ģ</u> ÇĞGCCATCGT	FNU4HI EAEI HAEIII	140 CTÇGCĞĞATGCÇ	ACCII M FOKI SFANI
30 AAGTCCTTC	XMNI	130 GGŢCTTCAA	MBOII
20 rgcacgga	×	120 CACTTCA	
10 20 30 40 50 60 70 80 90 100 GTCGACACGCCTTCTGCGGAAGTCCTTCTGCGGCCATCGTTGCTATGGCGCTTACTGCCTTCTAGTCCGTGCGGCTCTCGCAACAGCTCACGGGAC	ACCI HINDII SALI TAQI	110 120 130 140 150 150 200 CTTTTTĢAGĞATCGCCACTTCAAGTÇGCĞĞATGCÇCTCATTGGCAACGTTTĞCGCCCTGÇCTTGGGĞÇĞĞÇCĞĞCAGCCACCAAGŢCĞAGCA	MNL.I SAU3A

BBVI SAU3A MNLI FNU4HI

HINFI

XHOII SAUJA SACII ACCII

FOKI

ANDII HAPII ALUI BBVI FNU4HI

BANI KPNI RSAI

MNLI

FIGURE 7 - SULTE 1

300 ÇTAĞÇTA	MAEI ALUI MAEI	400 CAŢCĞAG	TAQI MNLI	SOC SOCCET
290 CGACTCCACT	HINFI	390 TCAGGTGGT1	II	480 490 GCAGCGATCAGTGAGGT
280 rcgagcaaac	TAQI	380 regegrçare	I NLA111	480 rggcagcga
270 TGACCAGAAG		370 TTGGAAAÇGA'	FOKI	470 CGATTCGGAG1
260 cgacgrcg	AATII MAEIII AHAII	360 crccagrrc	HINFI	460 GGTCAGCA
250 GCTCGTTCGA	TAQI	350 TGŢĊCGGAĢA	AIII HII ACCIII HAPII	450 CAGAGATCCGC
240 cacggacacg		340 360 360 360	NCII NLAIII SCRFI ACC HAPII H	440 CĞGATGGTCG
230 SGTAACACTTCGG	AVAI MAEIII	330 ZĞĞĞĞĞATGAAC	FNU4HI ACCII CFOI ACCII	430 GAGCGGGCGGTG
220 ractcese	AVAI	320 rttgtage	£	420 GCTGCGT
210 220 230 240 250 250 300 300 300 300 250 270 280 290 300 cttrececesaactaaactaaaccaactcactctaacta	FNU4HI	310 320 330 340 350 360 400 cercadores de contratores de contrator	HINDIII	410 420 430 440 450 460 470 480 490 500 gAGGTCGCCGGTCGCGGTCAGCACGATTCGGAGTGGCACGATCAGTGAGTCGCCGT

912 009	ESPI I DDEI	700 36CCAG	PII AEI HAEIII
590 ACCGAAGAAT	MBOII HINFI	690 GAGUTCGAÇÇ	BANTI HAE BSP1286 EP ALUI H II TAQI II HGIAI
eccegeAccace	HAEIII SAU96A AVAI NCII SCRFI SMAI HAPII NCII SCRFI AFLI	OSSOCILLOŽI	MBOII EAEI BANTI HAPII ACCII BSP1286 EAEI FNU4HI ALUI HAE XMAIII TAQI HAEIII RGIAI
egocecacee	SAS	670 Secercaecri	ACCII TTH111I HGAI
560 AGGŢCGATGO	TAQI NAEI SFANI CFOI HAPII	660 TTTAAAGACC	ACCII AHAIII 7
2925982525 250	CFOI CFOI ECORII SCRFI	650 SCGAAÇGCGAT	ACCII
540 Pagtegetê	ō	640 TTGCGAAGGC	
530 GACGGTGCG		630 CAACGCCGAA	·
520 igcrececer	BBVI FNU4HI CFOI ACCII	620 Agcggcggga	rnu4hi I
510 520 530 540 550 560 570 570 590 600 CTACTTGGTGGCTGCCGAGGTGCCAGGTCGATGCCGGCGCGCCACGGGGACCACGACCGAAGAATCCGCTG		610 620 630 640 650 660 670 680 680 690 700 AGCTIGAAĞÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇÇ	ALUI ECO47III HAEII CFOI ESPI DDEI

PIGURE 7 - SUITE 3

25 ě 323 008	ALUI	900 006	FNU4HI ACCII HGAI	1000 CGGCTG	
790 CAÇAGCTGA	PVUII	890 SÇAGCACAT	BSP1286 HGIAI	990 ACCGTCGAA	TAQI
780 ICGATCTGCA	raqi Fi Sau3a	880 SCGAACTCAA		980 SGCCAGATGC2	BALI SFANI EAEI HAEIII
770 GGGTGŢCĢAG	TAQI TAQI HINFI SA	870 gcr <u>ę</u> ceceare	I ALUI ACCII U4HI BBVI ACCII CFOI FNU4HI	970 GCCATCGAGGTÇ	TAQI FANI MNLI
760 TGGTTTGCGGT		860 AgccgcgcaA	FNU4H FN	960 TGAACCGTGAG	MNLI
750 gagggccccga	MLI MNLI APAI BANII BSP1286 SAU96A SAU96A	950 ACCGGGAGCCC	HAPII NCII SCRFI BANII BSP1286	950 STGCCTAACCC	
740 ggeccacçec	SAU96A ACCII HAEIII HAEIII MNLI APAI BANII BSP1286 SAU96A	840 SACCACATCA		940 CCGCAAAGT	1286
730 CĞATCATCA	SAU3A	830 ACCTACTAC	н	930 rttaceere	BANI BSP1
720 STTCATCGC		820 SCCCATCG	TAQI	920 CTACGGTG	
710 720 730 740 750 760 770 780 790 800 CACGCTAATTAACGGTTCATCGCCGATCATCAGGGCCCACCGAGGGCCCCGATGGTTTGCGGTGGGGTGTCGAGTCGATCTGCACACAGAGCTGACCGAGC		810 820 830 840 850 860 870 870 900 TGGGTGTGCCCATCGCCCCATCGACCACCATCAACCGGAGCCCAGCCGCGAGCTGCGCAACTGCGAACTCAAGGAGCACATCAGCCG	PVUI SAU3A	910 920 930 940 950 960 960 970 970 970 990 1000 cetccaccaactaccccaccaccaccaccaccaccaccacca	FNU4HI

- SULTE FIGURE 7

1100 CCCAGCGCC	HAEII CFOI FNU4HI	1200 gacgccta	AEIII HPHI AHAII HGAI
1090 CCGATCTCG1	SAU3A	1190 CTTTĞŢCACC	HAEIII MAEIII HPHI
1080 CCGTCCCG		1180 STACGTGGC	
1070 1080 ATÇÇĞGCCACAGCCCGTCCO	SAU3A HAPII EAEI HAEIII	1170 SCAGGGTTCGC	I BGLI
1060 AÇĞATCGCTĞA:	3A	1160 IĞŢCGAČCTGG	ACCI ECORII HINDII SALI SCRFI TAQI
1050 GCAĞGACC	AFLI PVUI SAU96A SAU	1150 CACCTATG1	ILI НРНІ
1040 cgcaaagccc	CII CCII FNU4HI	1140 STAGCAGAÇCȚ	MNLI
1030 sgaccaccce	SA A LI U96A	1130 ceecreree	наріі
1020 GCCTGTCCGG	HAEIII HAPII NCII SCRFI AF	1120 AGCACCTAAC	щ
1010 1020 1030 1040 1050 1060 1070 1080 1090 1100 ATGACCAAACTCGGCCTGTCCGGGACCACCCGCAAAGCCCGCAAGGACCACACAAACCCGCACAAACCCGCCG	*	1110 1120 1130 1140 1150 1160 1170 1170 1180 1200 SCTTCGGACCACCAGCACCTAACCGGCTGGGGTAGCAGGACTCACCTATGTGTCGACCTGGGCAGGGTTCGCCTACGTGGCCTTTGTCACCGACGCTA	AFLI SAU96A

BALI MNLI AFLI TAQI PVUI EAEI NCOI MNLI ACCII HAEIII STYI HGAI SAU3A BSTXI NLAIII TAQI

AFLI SAU96A

ECORII SCRFI

SAU3A

			Æ		
1400 AACCGT		1500 GCGGTC	ECORII SCRFI AFLI SAU96A	1600 ÇŢCĞAG	AVAI SEXI TAQI MNLI
1390 AGĞÇATCC	SFANI FOKI	1490 AAGCCCTG	ECORII SCRFI	1590 CGGTCGAA	HAPII TAQI
) CCGAGGCA	MNLI) VČČCGGCA	NCII SCRFI HAPII) TCCCGCC	H. H.
1380 CGGCTCGC	FNU4HI	1480 ŢĞATCAAAÇ	I BCLI SAU3A	1580 cgccacci	FNU4HI AATII AHAII
1370 cagcgag	E.	1470 ACCGAGC	ALUI B	1570 AĞTACTĞ	SCAI FI RSAI
1360 GATÇCGGTI	CLAI HAPII TAQI SAU3A	1460 CTATACAAG	II	1560 GÇCTCTACC	HI
1 SACAŢCĞ		1, Acgecc	SAU3A HAEIII	TCGCCG	FNU4 HI
1350 TCAĞTAC	I RSAI 3A DDEI	1450 SACGATCA	SAU3A	1550 TCAACCA	
1310 1320 1330 1340 1350 1360 1370 1370 1380 1400 QTACȚCGACCTGAAAGACGTTATCCACCATAGGGGATÇTCAĞTACACĂŢCĞATÇCGGTTCAGCGAĞCGGCTCGCCĞAGGCAGĞÇATCCAACCGT	XHOII SAU3A DDI	1410 1420 1430 1440 1450 1460 1470 1479 1480 1500 CGGTCGGAGCGGTCGGAAACCCAATGCACTAGCCGAGACGATCAACGGCCTATACAAGACCGAGCTGATCAAACCCGGCAAGCCTGGCGGTC	MAEI	1510 1520 1530 1540 1550 1560 1560 1570 1580 1590 1600 CAŢCGAGGATGŢCGAGTŢGGCCACÇGÇGGCTGGĢŢCGACTGGTTCAACCATCGCCGCCTCTACCAĞTACTĢCGGCĞACGTCCGGÇCGGŢCGAAÇŢCĞAG	ACCI HINDII SALI TAQI
1330 rccaccataco		1430 STATGACAATO		1530 ACCGCGCGCTG	ALI ACCII AEI BSSHII HAEIII CFOI ACCII
1320 GACGTTA1		1420 GAAGCTCC	ALUI	1520 GTŢĞGCCA	BALI EAEI HAEII
0 CTGAAA(o ccercc		o TGŢCGA	TAQI I
1310 ĢTACŢCGACCI	RSAI TAQI	1410 CGGTCGGAGC		1510 CAŢCĞAĞGAT	TAQI MNLI FOKI
		27			

1690 1700 ATTGGGCCGCCGTA SAU96A HAEIII FNU4HI	1790 TGTACACGAAATAC RSAI	
1680 CGGGGCGGTTCACG APII CII	1780 CTACTTGTCCACATTT	1810 1820 1830 1840 1850 1860 1870 1880 CTAACACACTATGGTGCACATCCACGTTCCGTATTCGGTGTACGATTTGTCACGCAACTAAGCGTTCAAGAGGGAGT
1660 1670 GAGAGTCTCCGGACTCACCGG HINFI HAPII HPHI ACCIII HAPI HINFI NCII	1760 1770 AAACCCTTTGAGATGCA(SFANI	1860 1870 ATTTĞTCACGCAAÇTAA(
1650 GGTÇTCAĞATCA DDEI LI SAU3A	1750 CATTAATTTGTC	1850 ATTCGGTGTACG
1640 GCCGCCGGCTGAGG' FNU4HI DDEI NAEI MNLI HAPII	1740 GGGCGACCAAT	1840 CCACGTTCCGT
1630 ICCAGAGACCAG	.0 CTTCGCATCAC SFANI	1830 ATCACGCACTT
16 TACGCTCAACG	1710 GCGTÇATGAGCGACT NLAIII HGAI	1810 CACTATGGTGCACA1
161 GCTGCCTAC BBVI FNU4HI	AGGAATGC BSMI HG	11 CTAACAC

MNLI

DDEI

MAEIII

RSAI

APALI BSP1286 HGIAI

RAPPORT DE RECHERCHE EUROPEENNE Numero de la demande

EP 91 40 1501

				 ,		31 40	100
DO	CUMENTS CONSID			S			
Catégoric	Citation du document avec des parties pe		soin,	Revendication corpornée	CLASSEME DEMANDI	INT DE LA	
	WO-A-9 010 085 (CC LTD)(07-09-1990) * Le document entie	er *		8,10,12	C 12 Q C 12 P C 07 H	1/68 19/34 21/04	
A	NUCLEIC ACIDS RESEA 11 janvier 1990, pa University Press; E "IS6110, an IS-like Mycobacterium tuber * Article en entier	ige 188, Oxfor D. THIERRY et e element of culosis compl	d al.:	8,10,12	C 12 N	15/11	
	FR-A-2 651 505 (IN PASTEUR)(08-03-1991 * Le document entie	.)		2,6,7, 10-12			
	JOURNAL OF GENERAL 135, no. 9, septemb 2347-2355, Society Microbiology; Z.F. "Polymorphic repeti	re 1989, page for General ZAINUDDIN et a tive DNA sequ	al.:	8,10,12			
	in Mycobacterium tu with a gene probe f	berculosis de	tected		DOMAINES T	ECHNIQUES (Int. CL	ES
	fortuitum plasmid"			-			
	* Article en entier la discussion * 	, particulière	ement		C 12 Q C 12 N C 12 P		
	JOURNAL OF CLINICAL 28, no. 3, mars 199 American Society for PATEL et al.: "Sequamplification by poreaction of a clone identification of Muberculosis"	0, pages 513-9 or Microbiology ence analysis Nymerase chai ed DNA fragmen	518, y; R.J. and n t for	2,6,7	A 61 K		
LA X:part Y:part	ésent rapport a été établi pour to Les de la recherche A HAYE CATEGORIE DES DOCUMENTS ticulièrement pertinent à lui seul ticulièrement pertinent en combinais re document de la même catégorie	Date d'echèvement d 19-09- CITES	1991 C: thénrie ou princip. C: document de brow date de dépôt nu a D: cité dans la dema	e à la base de l' et antérieur, ma après cette date nde			
A : arri	e document de la riente caregorie dere-plan technologique ulgation non-ècrite ument intercalaire		. : cité pour d'autres & : membre de la mêr	•••••			

RAPPORT DE RECHERCHE EUROPEENNE

Page 2

Numero de la demande

EP 91 40 1501

DC	CUMENTS CONSIDERES		NTS	_
Catégorie	Citation du document avec indica des parties pertinent	tion, en cas de besoin, es	Revendication concernée	CLASSEMENT DE LA DEMANDE (Int. Cl.5)
A	INTERNATIONAL JOURNAL (56, no. 4, décembre 198 592-598, US; P.P. REDDI "Repetitive DNA sequence Mycobacterim tuberculos differential hybridizat other mycobacteria" * Article en entier *	OF LEPROSY, vol. 88, pages I et al.: ce fo sis: analysis of	8,10,12	DOMAINES TECHNIQUE RECHERCHES (Int. CL5)
	ssent rapport a été établi pour toutes les	revendications Date d'achèrement de la recherche		Function
LA	HAYE	19-09-1991	1	Examinateur RNE H.H.
X : part Y : part autr A : arric O : divu	CATEGORIE DES DOCUMENTS CITES iculièrement pertinent à lui seul iculièrement pertinent en combinaison avec le document de la même catégorie re-plan technologique ligation non-écrite ment intercalaire	T : théorie ou prin E : document de b date de dépoi un D : cité dans la de L : cité pour d'aut	ncipe à la base de l'in revet antérieur, mais ou après cette date emande res raisons	vention publié à la

30

EPO FORM 1503 03.62 (PO402)