RECEIVED

JUN 3 0 2003

Michael Konkel, et al. Serial No.: 09/764,710 Filed: January 17, 2001

Page 2

TECH CENTER 1600/2900

- --2. (Twice Amended) The method of claim 7, wherein the compound binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least 25-fold higher than the binding affinity with which the compound binds to (i) a human α_{1a} adrenergic receptor and (ii) a human α_{1b} adrenergic receptor, and the compound binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least ten-fold higher than the binding affinity with which the compound binds to a human 5-HT_{1a} receptor.—
- --8. (Amended) The method of claim 7, wherein the compound has the structure:

--9. (Amended) The method of claim 8, wherein the compound has the structure:

$$R_1$$
 R_2
 R_3
 R_4
 R_7
 R_7
 R_{11}
 R_{11}

--10. (Amended) The method of claim 9, wherein the compound has the structure:

--17. (Amended) A compound of claim 16, wherein the compound has the structure:

$$R_1$$
 R_2
 R_5
 R_6
 R_7
 R_8
 R_8

--18. (Amended) A compound of claim 17, wherein the compound has the structure:

$$R_1$$
 R_2
 R_3
 R_4
 R_7
 R_{7}
 R_{11}
 R_{11}

--19. (Amended) A compound of claim 18, wherein the compound has the structure:

--38. (Amended) A method of treating urinary incontinence in a subject which comprises administering to the subject a therapeutically effective amount of a α_{1d} adrenergic

receptor antagonist, which binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least 10-fold higher than the binding affinity with which the compound binds to (i) a human α_{1a} adrenergic receptor and (ii) a human α_{1b} adrenergic receptor, and the compound binds to the human α_{1d} adrenergic receptor with a binding affinity which is at least ten-fold higher than the binding affinity with which the compound binds to a human 5-HT_{1a} receptor, wherein the α_{1d} adrenergic receptor antagonist has the structure:

$$R_1$$
 N R_3 R_4 R_5 R_6 R_7 R_8 R_{13} R_7

wherein each m and n is independently an integer from 0 to 2;

wherein each Y and Z is independently

wherein R1 and R2 (i) are independently H, branched or unbranched C_1 - C_6 alkyl or alkoxy, branched or unbranched C_2 - C_6 alkenyl or alkynyl, branched or unbranched C_1 - C_6 hydroxyalkyl, hydroxy, substituted or unsubstituted aryl or aryl- $(C_1$ - $C_6)$ -alkyl, or substituted or unsubstituted heteroaryl or heteroaryl- $(C_1$ - $C_6)$ -alkyl, wherein the substituent if present is a halogen, CN, nitro, hydroxy, branched or unbranched C_1 - C_6 alkyl or alkoxy group, or branched or unbranched C_2 - C_6 alkenyl or alkynyl group; or

(ii) taken together form a substituted or unsubstituted cycloalkyl ring containing 3-10 carbons, wherein the substituent if present is a branched or unbranched C_1 - C_6 alkyl group or branched or unbranched C_2 - C_6 alkenyl or alkynyl group;

wherein R3 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, C_3 - C_7 cycloalkylalkyl, aryl, heteroaryl, aryl- $(C_1$ - $C_6)$ -alkyl, heteroaryl- $(C_1$ - $C_6)$ -alkyl, substituted C_1 - C_6 alkyl, substituted C_3 - C_7 cycloalkyl, substituted aryl, substituted heteroaryl, substituted aryl- $(C_1$ - $C_6)$ -alkyl, or substituted heteroaryl- $(C_1$ - $C_6)$ -alkyl, wherein the substituted heteroaryl- $(C_1$ - $C_6)$ -alkyl, wherein the substitutent if present is a halogen, CN, nitro, C_1 - C_6 alkyl, OR14, SR14, N(R14)₂, SO₂N(R14)₂, CO₂R14, SO₃R14, N(R14)COR14, CON(R14)₂, or N(R14)CON(R14)₂;

wherein R4 is H or CH3;

wherein R5 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, aryl, heteroaryl, aryl-(C_1 - C_6)-alkyl, heteroaryl-(C_1 - C_6)-alkyl, substituted C_1 - C_6 alkyl, substituted C_3 - C_7 cycloalkyl, substituted aryl, substituted heteroaryl, substituted aryl-(C_1 - C_6)-alkyl, or substituted heteroaryl-(C_1 - C_6)-alkyl, wherein the substituted if present is a halogen, CN, nitro, C_1 - C_6 alkyl, OR14, SR14, N(R14)₂, SO₂N(R14)₂, CO₂R14, SO₃R14, N(R14)COR14, CON(R14)₂, or N(R14)CON(R14)₂;

wherein R6 is H, branched or unbranched C_1-C_6 alkyl, branched or unbranched C_2-C_6 alkenyl or alkynyl, C_3-C_7 cycloalkyl, aryl, heteroaryl, aryl-

 (C_1-C_6) -alkyl, heteroaryl- (C_1-C_6) -alkyl, substituted C_1-C_6 alkyl, substituted C_3-C_7 cycloalkyl, substituted aryl, substituted heteroaryl, substituted aryl- (C_1-C_6) -alkyl, or substituted heteroaryl- (C_1-C_6) -alkyl, wherein the substituent if present is a halogen, CN, nitro, C_1-C_6 alkyl, OR14, SR14, N(R14)₂, SO₂N(R14)₂, CO₂R14, SO₃R14, N(R14)COR14, CON(R14)₂, or N(R14)CON(R14)₂;

wherein R7 is H, branched or unbranched C_1 - C_6 alkyl, branched or unbranched C_2 - C_6 alkenyl or alkynyl, C_3 - C_7 cycloalkyl, aryl, aryl- $(C_1$ - $C_6)$ -alkyl, CO_2 R14, $CON(R14)_2$, substituted C_1 - C_6 alkyl, substituted aryl, wherein the substituent is $N(R14)_2$, halogen, OR14 or SR14;

wherein R8 is H or CH3;

wherein R10 is H or F; wherein R11 is H, F, Cl, Br, I, CN, branched or unbranched C_1 - C_6 alkyl or alkoxy; wherein R13 is H or F;

and wherein R14 is independently H or branched or unbranched C_1 - C_6 alkyl.—

Please add new claims 43 and 44 as follows:

- --43. (New) The compound of claim 16, wherein the compound comprises the (-) enantiomer.--
- --44. (New) The compound of claim 16, wherein the compound comprises the (+) enantiomer.-