

Kevin H. Wilson Principal Data Scientist

Determining Skill Levels

What does Knewton do?

Recommendations for students

Learning analytics

for students and teachers

Content insights

for publishers

What does Knewton do?

Some Data Problems Knewton Faces:

- What do students know?
- When do students learn it?
- Are students engaged?
- How effective are particular pieces of content?
- How do we measure success?

Some Data Problems Knewton Faces:

- What do students know?
- When do students learn it?
- Are students engaged?
- How effective are particular pieces of content?
- How do we measure success?

What do students know?

- How to assess?
- About a particular subject?
- At a particular time?
- In a particular setting?

How to assess?

There's no way to open a student's mind and, with a single measurement, determine how much she knows.

About a particular subject?

Summarize and describe distributions.

CCSS.MATH.CONTENT.6.SP.B.4

Display numerical data in plots on a number line, including dot plots, histograms, and box plots.

CCSS.MATH.CONTENT.6.SP.B.5

Summarize numerical data sets in relation to their context, such as by:

CCSS.MATH.CONTENT.6.SP.B.5.A

Reporting the number of observations.

CCSS.MATH.CONTENT.6.SP.B.5.B

Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.

CCSS.MATH.CONTENT.6.SP.B.5.C

Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.

CCSS,MATH.CONTENT.6.SP.B.5.D

Relating the choice of measures of center and variability to the shape of the data distribution and the context in which the data were gathered.

http://www.corestandards.org/Math/Content/SP/

At a particular time?

In a particular setting?

What do students know?

- About a particular subject?
- At a particular time?
- In a particular setting?

Take as fixed for this talk.

Thus is born....

Types of assessments:

- Fill-in-the-blank
- Free response
- Multiple choice
- Matching

Types of assessments:

- Fill-in-the-blank
- Free response
- Multiple choice
- Matching

Types of assessments:

- Fill-in-the-blank
- Free response
- Multiple choice
- Matching

Correct/Incorrect is easy

Boiling it down:

- Measuring latent "proficiency" parameter through binary tasks
- Some tasks may be more difficult
- Some tasks may be more discriminating

Exams

Exams

Is this the number 3?

Is this the number 3?

Football Games

Football Games

Triplet Question

Which (B or C) is most similar to the left (A)?

В

Triplet Question

A Quick Tour of Objective Functions

The Situations....

A few dimensions:

- Are responses **deterministic** or **probabilistic**?
- Are comparisons head-to-head or via an intermediary?
- Do you know the answer or is the answer unknown?

The Situations....

Known

	Deterministic	Probabilistic
Head-to-head	Sorting	Ranking
Intermediary	20 Questions	Proficiency

Unknown

	Deterministic	Probabilistic
Head-to-head	SMEs	Crowdsourcing
Intermediary	SMEs	Crowdsourcing

Who wins?

Obvious!

Ranking

Objective function:

Ranking

Objective function: Minimize number of out of order teams

Ranking

Objective function: Minimize out of order teams

Problems: Ambiguity, no room for priors!

Ranking

Objective function: Minimum Feedback Arc Set Problem

Ranking

Objective function: Minimum Feedback Arc Set Problem

APX-Hard :-(

Some approximations:

- igraph package provides Eades algorithm and exact solution
- Naeff and Nichols' recent work from the education perspective (NIPS Workshops 2014)

Ranking

Objective function: Define latent "awesomeness" parameter θ_t that determines probability of winning in head-to-head matchup. Maximize likelihood.

Ranking

Objective function: Elo's Method

$$Pr(A \ beats \ B) = \frac{1}{1 + \exp(-(\theta_A - \theta_B))}$$

$$\operatorname{argmax}_{\theta} = \sum_{A \text{ beat } B} -\log(1 + \exp(-(\theta_A - \theta_B)))$$

```
[(34.347870666232524, 'Georgia Southern'),
(29.838761263481281, 'Florida State'),
(25.432582458372824, 'North Dakota St'),
(23.821632753205929, 'Northern Iowa'),
(18.679517268505776, 'McNeese State'),
(18.625173744416838, 'Towson'),
(14.917821539733199, 'Fordham'),
(10.959894887882886, 'Alabama'),
(10.919577390031504, 'Auburn'),
(10.296523121897861, 'Missouri'),
(9.9650384068581026, 'Louisiana State'),
(9.9401026629153737, 'Clemson'),
(9.8242445700308938, 'South Carolina'),
(9.6859376591590625, 'Georgia'),
(9.6360200598307966, 'Ohio State'),
```



```
[(34.347870666232524, 'Georgia Southern'),
(29.838761263481281, 'Florida State'),
(25.432582458372824, 'North Dakota St'),
(23.821632753205929, 'Northern Iowa'),
(18.679517268505776, 'McNeese State'),
(18.625173744416838, 'Towson'),
(14.917821539733199, 'Fordham'),
(10.959894887882886, 'Alabama'),
(10.919577390031504, 'Auburn'),
(10.296523121897861, 'Missouri'),
(9.9650384068581026, 'Louisiana State'),
(9.9401026629153737, 'Clemson'),
(9.8242445700308938, 'South Carolina'),
(9.6859376591590625, 'Georgia'),
(9.6360200598307966, 'Ohio State'),
```


Extensions: Priors / Regularization

- Florida should have a high starting rating
- Towson should not
- Michigan should be better than them all (well, not this year....)

Makes objective convex!

Allows for domain knowledge to make up for sparsity.

Extensions: Stochastic Gradient Ascent

$$\theta'_A = \theta_A + K \cdot (1(A \ won) - Pr(A \ beats \ B))$$

Allows for online updates with many users (XBox, Yahoo!, etc.)

But warning!

- No room for improvement
- Top of the heap has little incentive to play
- Sparsity means that priors have strong effect (which is why everybody hated the BCS)

Proficiency

Objective function:

Proficiency

Objective function: Define probability of answering correctly given latent proficiency parameter θ_s and latent difficulty parameter β_q .

Proficiency

Objective function: Item Response Theory (IRT)

$$Pr(s \ gets \ q \ right) = \frac{1}{1 + \exp(-(\theta - \beta))}$$

$$\operatorname{argmax}_{\theta,\beta} - \sum_{(s,q) \ right} \log(1 + \exp(-(\theta - \beta))) - \sum_{(s,q) \ wrong} \log(1 + \exp(-(\beta - \theta)))$$

Features:

- Students and questions are ranked on the same scale
- Items can be more or less difficult
- Can tailor an exam!

Features:

- Students and questions are ranked on the same scale
- Items can be more or less difficult
- Can tailor an exam!

Problems:

- Distinguishing between features of questions
- Just right/wrong?
- Learning over time

Performance?

- Typically measured in prediction accuracy
 - Given a student's history, how well can you predict their future responses?
- AUC a common metric
- Typically see 10-15 point improvement in AUC for accounting for differences in questions

В

Crowdsourcing

Objective function components:

- Raters have a skill level
- Trust skilled raters more (likelihood of a skilled rater getting a correct answer is higher, even on unknown data)
- Choose classification that maximizes likelihood of responses

Skill level?

- Fixed set of questions with known answers
- Then can use IRT to assess skill level!

What does trust mean?

- Really hard question
- HCOMP is a conference dedicated to issues like this.

Thank You.

Kevin H. Wilson

Principal Data Scientist

Knewton, Inc.

kevin@knewton.com

khwilson@gmail.com

Code: github.com/khwilson/pydata2014