Finding the Largest Fixed-Content Necklace

Matthew Ng Supervisor: Joe Sawada CIS*4910

University of Guelph

April 2022

Intro

Our goal: A polynomial time algorithm to find the largest fixed-content necklace.

- Key step in ranking and unranking fixed-content Lyndon words and necklaces
- Applications in cut-down de Bruijn sequence generation
- Generalize a previous algorithm in fixed-density necklace generation

Result: A $O(n^2)$ algorithm that generates the larged fixed-content necklace under word-RAM model.

Key definitions:

- ▶ A **necklace** is the lexicographically smallest element in a set of all rotations of a string.
- ► **Fixed-content** refers to a necklace with a specified number of occurrence of symbols.

Summary of improvements from last time

- Sharpened notation in paper to aid in understanding/solving problem
- Developed a new optimization for algorithm in the case of majority 0 content
- ► Found the realm of the general multiway-partition problem as a very helpful aid
- Simplified aspects of algorithm, making implementation easier
- Starting to formalize lemmas, form proofs

Examples of fixed-content necklaces

Example

Given a content [0,0,1,2,2,2]: **021022**, 020221, 020212, 012202, 012022, 010222, 002221, 002212, 002122, 001222

- ► Here is a list of every possible necklace given such fixed-content. In this list, the largest necklace is denoted in bold.
- ▶ Our algorithm seeks to return this necklace given the content.

General approach

We devise an recursive algorithm defined as LargestNeck(C) that

- Recursively multi-way partitions content into simplified content until it hits a base case such that the ordering is trivial
- ► We decode the previously simplified content as the properly ordered necklace is moved up the recursive stack

Multi-way partitioning

Multi-way partitioning is a general problem that seeks to distribute a content of numbers through a specified number of partitions and optimize the partitions making up three objective functions:

- 1. Minimize the largest of the k subset sums.
- 2. Maximize the smallest of the k subset sums.
- 3. Minimize the difference between the largest and smallest of the *k* subset sums.

ie; $S = \{13, 9, 9, 6, 6, 6\}$ and $k = 3, \{13, 6\}, \{9, 6\}, \{9, 6\}$, smallest subset sum is 15, which is the maximal of this content.

In our case, we use a slightly modified version of objective function 2, where we maximize lexicographically instead of sum wise.

Definitions

- ▶ Let C be the content of a necklace, denoted by a list of symbols
- Let z be the number of 0s in C
- ► Let n be the length of a necklace

Our way of multi-way partitioning

- ► Goal: Lexicographically maximize the lexicographically smallest string out of *z* distributed strings.
- ▶ Returns: A list of tuples, S_z , first index is the associated lexicographical rank and second index is the associated new distributed string.

We denote this function as MultiwayPartition(C, z).

- ▶ A new content is C' is then made up of the rankings and a map f is use to map the new content to it's constituent string.
- Since only one constant time operation is needed for each symbol, it runs in O(n) time.

Example of multi-way partitioning

Example

C = [5,5,5,5,5,5,5,4,4,4,4,4,4,4,4,3,3,3,2,2,2,1,1,1,1,0,0,0,0,0,0].

z = 6 lists are created, serving as the partitions of content.

All 5s are evenly distributed. Start from the second list.

All remaining non-zero content is then distributed into the last list. $S_z = [(0,5432221111),(1,5433),(2,544),(2,544),(2,544),(3,55)]$ $C' = [3,2,2,2,1,0], f = \{0:5432221111,1:5433,2:544,3:55\}$

Overall recurrence for the LargestNeck(C)

$$\textit{LargestNeck}(\textit{C}) = \left\{ \begin{array}{ll} 0w_10w_2 \cdots 0w_z & \textit{if } 0 < z \leq \frac{n}{2} \\ 0s_10s_2 \cdots 0s_j & \textit{if } 0 < \frac{n}{2} < z \\ 0 \cdot \textit{C}[\textit{n}-1] \cdot \textit{C}[\textit{n}-2] \cdots \textit{C}[1] & \textit{if } z = 1 \\ 0^n & \textit{if } k = 1 \end{array} \right.$$

```
where \{w_1, w_2, \dots, w_z\} = MultiwayPartition(C, z) and \{s_1, s_2, \dots, s_j\} = MultiwayPartition(C, z).
```

Example of finding fixed-content necklace

Examples

Let C = [2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0]. $0 < z \le \frac{n}{2}$, first case of MultiwayPartition(C, z) forms lists:

 $S_z = [(0,2111), (0,2111), (1,22), (1,22)], f = \{0:2111, 1:22\}, C' = \{1,1,0,0\}.$ LargestNeck(C'), Let R be new content, x be number of zeroes. First case of MultiwayPartition(R,x) arises again.

 $T_z = [(0,1),(0,1)], g = \{0:1\}, R' = \{0,0\}$. Next recursive call, basecase of k=0 is hit. 00 is returned up the recursive stack which is decoded to

0101

using g. 0101 then decodes to

0211102202111022

Final remarks

Since each recursive call eliminates at least one symbol from the old content, order of n many O(n) recursive calls are many, giving this algorithm a running time of $O(n^2)$.

- ► Future Work
 - Extend to Lyndon words
 - Work on proofs in the paper
 - Solve for problem of finding largest fixed-content necklace less than or equal to necklace of same length
 - Extend this paper to rank and unrank fixed-content necklaces and Lyndon words
 - Possible application of multi-way partitioning solving for some k-ary cases of cut-down de Bruijn sequence construction

Thanks for attending!