Практические работы 5-0..5-4. Конфигурирование серверов

Практическая работа 5-0. Настраиваем WEB сервер

Топология приведена на рис 5.1.

Рис. 5.1. Схема сети

Создаем WEB-документ на сервере

Для создания HTTP-сервера открываем на сервере вкладку HTTP и редактируем первую страницу сайта с названием **index.html**. Включаем службу HTTP переключателем On (Рис. 5.2).

Рис. 5.2. Вкладка Config, служба сервера HTTP

Примечание

В этом окне можно добавить новую страницу кнопкой New File или удалить текущую кнопкой (delete)

В окне html кода создаем текст первой страницы сайта **index.html**. Вариант 1 (Рис. 5.3).

Рис. 5.3. Текст web-страницы, вариант 1

Либо вариант 2 (рис. 5.4)

<html>

<center>Welcome to Cisco Packet Tracer HTML
Server! </center>

<body>

Hello!
I am OK!

</body>

</html>

Рис. 5.4. Текст web-страницы, вариант 2

Совет

Текст можно переносить в это окно через буфер обмена. Он может быть только на английском языке

Для того, чтобы проверить работоспособность нашего сервера, открываем клиентскую машину (10.0.0.2 или 10.0.0.3) и на вкладке **Desktop** (Рабочий стол) запускаем приложение **WebBrowser**. После чего набираем адрес нашего WEB-сервера 10.0.0.1 и нажимаем на кнопку **GO**. Убеждаемся, что наш веб-сервер работает.

Практическая работа 5-1. Настройка сетевых сервисов DNS, DHCP и Web

Создайте схему сети, представленную на рис. 5.5.

Рис. 5.5. Схема сети

Наша задача состоит в том, чтобы настроить Server1 как DNS и Web-сервер, а Server2 как DHCP сервер. Напомню, что работа DNS - сервера заключается в преобразовании в *IP*доменных имен серверов адреса. DHCP сервер позволяет организовывать пулы для автоматического конфигурирования сетевых интерфейсов, ТО есть, обеспечивает автоматическое распределение IP-адресов между компьютерами в сети. Иначе говоря, в нашем случае компьютеры получают ІР-адреса благодаря сервису DHCP Server2 и открывают, например, сайт на Server1.

Настраиваем IP адреса серверов и DHCP на ПК

Войдите в конфигурацию PC1 и PC2 и установите настройку IP через DHCP сервер рис. 5.6.

Рис. 5.6. Настройка IP на PC1

Задайте в конфигурации серверов настройки IP: Server1 - 10.0.0.1 (Рис. 5.7), Server2 - 10.0.0.2 (рис. 5.8) Маска подсети установится автоматически как 255.0.0.0.

Рис. 5.7. Конфигурация сервера DNS

Рис. 5.8. Конфигурация сервера DHCP

Hастройка служб DNS и HTTP на Server1

В конфигурации Server1 войдите на вкладку DNS и задайте две ресурсные записи (Resource Records) в прямой зоне DNS.

Новый термин

Зона DNS — часть дерева доменных имен (включая ресурсные записи), размещаемая как единое целое на сервере доменных имен (DNS-сервере). В зоне прямого просмотра на запрос доменного имени идет ответ в виде IP адреса. В зоне обратного просмотра по IP мы узнаем доменное имя ПК.

Сначала в ресурсной записи типа **A Record** свяжите доменное имя компьютера **server1.yandex.ru** с его **IP адресом 10.0.0.1** и нажмите на кнопку **Add** (добавить) и активируйте переключатель **On** Puc. 5.9.

Рис. 5.9. Ввод ресурсной записи типа A Record

Далее в ресурсной записи типа **CNAME** свяжите название сайта с сервером и нажмите на кнопку **Add** (добавить) – Рис. 5.10.

Рис. 5.10. Ввод ресурсной записи типа СNAME

В результате должно получиться следующее (Рис. 5.11).

Рис. 5.11. Служба DNS в прямой зоне

Теперь настроим службу HTTP. В конфигурации Server1 войдите на вкладку HTTP и создайте стартовую страницу сайта (Рис. 5.12).

```
<html>
<center><font size='+2' color='green'>Web Server</font></center>
www.yandex.ru

Hello!<br/>
br/>I am Server1
</html>
```

Рис. 5.12. Стартовая страница сайта

Включите командную строку на Server1 и проверьте работу службы DNS. Для проверки правильности работы прямой зоны DNS сервера введите команду SERVER>nslookup. Если все правильно настроено, то вы получите отклик на запрос с указанием доменного имени DNS сервера в сети и его IP адреса (Рис. 5.13).

Рис. 5.13. Служба DNS в прямой зоне DNS на Server1 настроена правильно

Примечание

Команда **nslookup** служит для определения ip-адреса по доменному имени (и наоборот).

Настройка службы DHCP на Server2

Войдите в конфигурацию Server2 и на вкладке DHCP настройте службу DHCP. Для этого наберите новые значения пула, установите переключатель **On** и нажмите на кнопку **Save** (Сохранить) – рис. 5.14.

Рис. 5.14. Настройка DHCP сервера.

Проверка работы клиентов

Войдите в конфигурации хоста PC1и PC2 и в командной строке сконфигурируйте протокол TCP/IP. Для этого командой PC>ipconfig /release сбросьте (очистите) старые параметры IP адреса (Рис. 5.15).

Рис. 5.15. Удаление конфигурации ІР-адресов для всех адаптеров

Примечание

Команда **ipconfig** /**release** отправляет сообщение **DHCP RELEASE** серверу DHCP для освобождения текущей конфигурации DHCP и удаления конфигурации IP-адресов для всех адаптеров (если адаптер не задан). Этот

ключ отключает протокол TCP/IP для адаптеров, настроенных для автоматического получения IP-адресов.

Теперь командой PC>ipconfig /renew получите новые параметры от DHCP сервера (Рис. 5.16).

Рис. 5.16. Конфигурация протокол ТСР/ІР клиента от DHCP сервера

Аналогично поступите для РС2 (рис 5.17).

Рис. 5.17. PC2 получил IP адрес от DHCP сервера Server2

Осталось проверить работу WEB сервера Server1 и открыть сайт в браузере на PC1 или PC2 (Рис. 5.18).

Рис. 5.18. Проверка работы службы HTTP на Server1

Примеры работы маршрутизатора в роли DHCP сервера

Маршрутизация (routing) — процесс определения маршрута следования информации в сетях связи. Задача маршрутизации состоит в определении последовательности транзитных узлов для передачи пакета от источника до адресата. Определение маршрута следования и продвижение IP-пакетов выполняют специализированные сетевые устройства — маршрутизаторы. Каждый маршрутизатор имеет от двух и более сетевых интерфейсов, к которым подключены: локальные сети либо маршрутизаторы соседних сетей.

Новый термин

Маршрутизатор (*router*, *poymep*) — сетевое устройство третьего уровня модели OSI, обладающее как минимум двумя сетевыми интерфейсами, которые находятся в разных сетях. Маршрутизатор может иметь интерфейсы: для работы по медному кабелю, оптическому кабелю, так и по беспроводным "линиям" связи.

маршрута маршрутизатор осуществляет таблицы на основе маршрутизации. Таблицы маршрутизации содержат информацию о сетях, и интерфейсов, через которые осуществляется подключение непосредственно, содержатся сведения или также 0 маршрутах путях, ПО которым маршрутизатор связывается c удаленными сетями, не подключенными к нему напрямую. Эти маршруты могут назначаться администратором статически или определяться динамически при помощи программного протокола маршрутизации. Таблица маршрутизации содержит набор правил – записей, состоящих из определенных полей. Каждое правило содержит следующие основные поля-компоненты:

- адрес ІР-сети получателя,
- маску,
- адрес следующего узла, которому следует передавать пакеты,

- административное расстояние степень доверия к источнику маршрута,
- метрику некоторый вес стоимость маршрута,
- интерфейс, через который будут продвигаться данные.

Пример таблицы маршрутизации:

```
192.168.64.0/16 [110/49] via 192.168.1.2, 00:34:34, FastEthernet0/0.1
где 192.168.64.0/16 — сеть назначения,
110/- административное расстояние
/49 — метрика маршрута,
192.168.1.2 — адрес следующего маршрутизатора, которому следует
передавать пакеты для сети 192.168.64.0/16,
00:34:34 — время, в течение которого был известен этот маршрут,
FastEthernet0/0.1 — интерфейс маршрутизатора, через который можно
достичь «соседа» 192.168.1.2.
```

Протокол *DHCP* представляет собой *стандартный протокол*, позволяет серверу динамически присваивать клиентам ІР-адреса и сведения о конфигурации. Идея работы *DHCP* сервиса такова: на ПК заданы настройки получения ір адреса автоматически. После включения и загрузки каждый ПК отправляет широковещательный запрос в своей сети с вопросом "Есть здесь DHCP сервер - мне нужен ір адрес?". Данный запрос получают все в подсети, но ответит на этот запрос только DHCP сервер, который отправит компьютеру свободный ір адрес из пула, а также маску и адрес шлюза умолчанию. Компьютер получает ПО параметры от *DHCP* сервера и применяет их. После перезагрузки ПК снова отправляет широковещательный запрос и может получить другой ір адрес (первый свободный который найдется в пуле адресов на *DHCP* сервере).

Маршрутизатор можно сконфигурировать как *DHCP сервер*. Иначе говоря, вы можете программировать *интерфейс* маршрутизатора на раздачу настроек для хостов.

Системный *администратор* настраивает на сервере *DHCP* параметры, которые передаются клиенту. Как правило, *сервер DHCP* предоставляет клиентам по меньшей мере: *IP-адрес*, маску подсети и основной *шлюз*. Однако предоставляются и дополнительные сведения, такие, например, как *адрес* сервера *DNS*.

Практическая работа 5-2. Конфигурирование DHCP сервера на маршрутизаторе

Схема сети приведена на рис. 5.19. С помощью настроек ПК, представленных на рисунке, мы указываем хосту, что он должен получать IP *адрес*, *адрес* основного шлюза и *адрес DNS* сервера от *DHCP* сервера.

Рис. 5.19. Схема сети

- 1. Настраиваем интерфейс маршрутизатора (как в задании 5.4)
- 2. Произведем настройку R0:

Router (config)#ip dhcp pool TST создаем *пул IP* адресов для *DHCP* сервера с именем *TST*

Router (**dhcp-config**)**#network 192.168.1.0 255.255.255.0** указываем из какой сети мы будем раздавать *IP* адреса (первый *параметр* - *адрес* данной сети, а второй *параметр* ее *маска*)

Router (dhcp-config)#default-router 192.168.1.1 указываем *адрес* основного шлюза, который будет рассылать в сообщениях *DHCP*

Router (dhcp-config)#dns-server 5.5.5.5 указываем *адрес DNS* сервера, который так же будет рассылаться хостам в сообщениях *DHCP*

Router (dhcp-config)#exit

Router (config)#ip dhcp excluded-address 192.168.1.1 этот хост исключен из пула, то есть, ни один из хостов сети не получит от DHCP сервера этот adpec.

Полный листинг этих команд приведен на Рис. 5.20.

Рис. 5.20. Команды для конфигурирования R0

Проверим результат получения динамических параметров для РС0 (рис. 5.21).

Рис. 5.21. DHCP работает

Проверим работоспособность DHCP сервера на хосте PC0 командой **ipconfig** /all (Puc. 5.22).

Рис. 5.22. Хост получил настройки от DHCP сервера

Хост успешно получил *IP адрес*, *адрес* шлюза и *адрес DNS* сервера от *DHCP* сервера R0.

Практическая работа 5-3. Пример настройки интерфейса маршрутизатора в качестве DHCP клиента

Схема сети показана на Рис. 5.23.

Рис. 5.23. Схема сети

Конфигурируем интерфейс Fa0/0 для R1 (Рис. 5.24).

Рис. 5.24. Конфигурируем интерфейс маршрутизатора

Наблюдаем результат (Рис. 5.25).

Рис. 5.25. DHCР не работает

После настройки интерфейса роутера на получение настроек по *DHCP*, *DHCP* клиент на PC1 перестал получать *IP-адрес – IP* из диапазона 169.254.x.x/16 назначается автоматически самим ПК при проблемах с получением адреса по *DHCP*. *Интерфейс* роутера *IP-адрес* так же не получит т.к. в данной подсети нет *DHCP* серверов.

Практическая работа 5-4. DHCP сервер на маршрутизаторе

В этом примере мы будем конфигурировать маршрутизатор 285, а именно, настраивать на нем *DHCP сервер*, который будет выдавать по *DHCP* адреса из сети 192.168.1.0 (Рис. 5.26). РС1 и РС2 буду получать настройки динамически, а для сервера желательно иметь постоянный адрес, т.е., когда он задан статически.

Рис. 5.26. Схема сети **Примечание**

Как устройство с постоянным адресом здесь можно включить еще и принтер.

Резервируем 10 адресов

R1 (config)#ip dhcp excluded-address 192.168.1.1 192.168.1.10

Примечание

Этой командой мы обязали маршрутизатор R1 не выдавать адреса с 192.168.1.1 по 192.168.1.10 потому, что адрес 192.168.1.1 будет использоваться самим маршрутизатором как шлюз, а остальные адреса мы зарезервируем под различные хосты этой сети.

Таким образом, первый *DHCP адрес*, который выдаст R1 равен **192.168.1.11**.

Создаем пул адресов, которые будут выдаваться из сети 192.168.1.0 R1 (config)#ip dhcp pool POOL1

R1 (dhcp-config)#network 192.168.1.0 255.255.255.0

R1 (dhcp-config)#default-router 192.168.1.1

R1 (dhcp-config)#domain-name my-domain.com

R1 (dhcp-config)#dns-server 192.168.1.5

Примечание

Согласно этим настройкам выдавать адреса из сети 192.168.1.0 (кроме тех, что мы исключили) будет маршрутизатор R1 через шлюз 192.168.1.1.

Настраиваем интерфейс маршрутизатора

R1 (config)#interface fa0/0

R1 (config-if)#ip address 192.168.1.1 255.255.255.0

R1 (config-if)#no shutdown

R1 (config-if)#exit

R1(config)#exit

R1#

Примечание

Команда **no shut** (сокращение от noshutdown) используется для того, чтобы бы интерфейс был **активным.** Обратная команда — shut, выключит интерфейс.

Проверка результата

Теперь оба ПК получили настройки и командой R1#show ip dhcp binding можно посмотреть на *список* выданных роутером адресов (Рис. 5.27).

Рис. 5.27. Адреса выдаются автоматически, начиная с адреса 192.168.1.5

Итак, мы видим, что протокол *DHCP* позволяет производить автоматическую настройку сети на всех компьютерах (Рис. 5.28).

Рис. 5.28. PC1 и PC2 получают IP адреса от DHCP сервера

Подготовить отчет по выполненным заданиям:

- 1. Цель работы
- 2. Топология созданной сети
- 3. Что настроено
- 4. Проверка работоспособности
- 5. Ответить на вопросы

Вопросы:

- 1. Что такое рекурсивный запрос DNS и какова схема его работы?
- 2. Зачем нужен DNS протокол?
- 3. Виды записей DNS.
- 4. Зачем нужна обратная зона DNS?
- 5. Какими сообщениями обмениваются клиент и сервер DHCP?
- 6. В чем различие динамического и автоматического методов назначения адресов IPv4?
- 7. Каково назначение команды *Router*(*config*)#*ip dhcp excluded-address* 192.168.10.1 192.168.10.5?
- 8. Каково назначение команды Router(config)#ip dhcp pool SERV-DH. В какой режим при этом переходит маршрутизатор?
- 9. Какую команду нужно дать, чтобы маршрутизатор получал IP-адреса от сервера DHCP?
- 10. Какая команда позволяет клиенту получать адресную информацию от DHCP-сервера, расположенного в другой локальной сети?

- 11. Как настраивается пул адресов DHCP?
- 12. Какие параметры получает хост от DHCP сервера?
- 13. Приведите команды для настройки сетевого интерфейс роутера.
- 14. Какой командой можно посмотреть текущие настройки роутера?
- 15. Как просмотреть настройки свитча?
- 16. Какая команда существует для просмотра таблицы продвижения на свитче?

Практическая работа №12 Самостоятельная работа

Задание для самостоятельной работы:

- 1. Реализовать сеть, разделенную на 5 vlan: 10, 40, 50, 60 и 70.
- 2. Настроить VTP на Switch0, Switch1.
- 3. VLan 10 должна быть доступна из любой другой vlan, в ней находятся все серверы.
- 4. Конечные узлы других vlan не должны иметь возможности взаимодействовать между собой.
- 5. Bo vlan 10 реализовать:
- Web сервер. Создайте на нем страницу index.html с текстом «I (your name) AM SUPER»:

- DNS сервер содержит доменную запись «super.ru», указывающую на Web сервер.
- DHCP сервер содержит пулы адресов для отдельной подсети каждой vlan.
- 6. DHCP раздает адреса во все подсети (в каждую vlan). Из каждого пула адресов (определенной VLAN) исключить первые пять адресов.

Так как маршрутизатор подключен к центральному коммутатору, то интерфейсы у нас будут не физические, а виртуальные - подинтерфейсы. Для этого следует сконфигурировать на интерфейсе роутера виртуальные подинтерфейсы для работы с vlan.

Пример:

Создадим на интерфейсе fa0/0 подинтерфейсы. Каждый из подинтерфейсов будет иметь собственный IP-адрес, соответствующий определенной VLAN.

R1(config)#int f0/0.10 {Создание подинтерфейса}

R1(config-subif)# $encapsulation\ dot1Q\ 10$ {определение номера виртуальной сети}

R1(config-subif)#ip address 10.10.0.1 255.255.255.0 {адрес подинтерфейса}

 $R1(config\text{-}subif)\#\ ip\ access\text{-}group\ 10\ out$ {Привязка списка доступа к интерфейсу}

R1(config)#int f0/0.20

R1(config-subif)#encapsulation dot1Q 20

R1(config-subif)#ip address 10.20.0.1 255.255.255.0

R1(config-subif)# ip access-group 20 out

R1(config)#int f0/0.30

R1(config-subif)#encapsulation dot1Q 30

R1(config-subif)#ip address 10.30.0.1 255.255.255.0

R1(config-subif)#ip access-group 30 out

Обратите внимание на команду encapsulation. Она определяет номер виртуальной сети, в которой будет находиться данный подинтерфейс.

Не забудьте создать транковый порт на свитче для связи с роутером!

На каждом подинтерфейсе назначается список доступа - access list (ACL)с номером, соответствующим номеру vlan. В этих ACL будут впоследствии сконфигурированы правила доступа к подсетям.

Стандартный список доступа:

Router(config)#access-list {номер} {permit или deny} {адрес источника}

На роутере настроить соответствующие списки доступа.

Пример:

```
access-list 40 deny 192.168.50.0 0.0.0.255
access-list 40 deny 192.168.60.0 0.0.0.255
access-list 40 deny 192.168.70.0 0.0.0.255
access-list 40 permit any
access-list 50 deny 192.168.40.0 0.0.0.255
access-list 50 deny 192.168.60.0 0.0.0.255
access-list 50 deny 192.168.70.0 0.0.0.255
```

Для выполнения задачи каждый список будет содержать набор правил, запрещающий пропускать пакеты подсети любого vlan, кроме vlan, для которой конфигурируется этот список, и vlan 10, которая должен иметь доступ ко всем остальным. Другие пакеты будут разрешены. Таким образом гарантирована возможность обмена данных с внешней сетью.

- 7. Для всех подинтерфейсов, кроме предназначенного для vlan 10, настроить 192.168.10.2 как DHCP relay (использовать команду *helper address*). По данному адресу будет располагаться DHCP сервер, поэтому широковещательные DHCP запросы из подсетей транслируются на DHCP сервер (см. пример в приложении 1).
- 8. Для DHCP сервера использовать доверенный порт.
- 9. Все устройства в сети должны иметь параметры Display name и Host name, соответствующие фамилии+имени выполнившего работу студента.

Для успешного выполнения практических работ можно воспользоваться следующими ресурсами:

- 1. Сети для самых маленьких https://linkmeup.ru/blog/588/
- 2. Kypc молодого бойца https://www.youtube.com/playlist?list=PLArYZbSM72P9FinOb0P9S4NiRyaz-zLJN
- 3. Книга «Компьютерные сети. Принципы, технологии, протоколы: Юбилейное издание» https://www.rulit.me/author/olifer-v-g/kompyuternye-seti-principy-tehnologii-protokoly-5-e-izdanie-download-475363.html

Приложение 1

Во многих случаях клиент и DHCP-сервер могут находиться в разных сетях, например, узел А (_рис.1) находится в сети 1, а сервер - в сети 2.

Рис. 1. Ретрансляция DHCP

Конфигурирование функции ретрансляции разрешает маршрутизатору пересылать широковещательные сообщения DHCP-протокола. Для этого на интерфейсе G0/0 маршрутизатора R-A конфигурируется команда с адресом DHCP-сервера:

R-A(config)#int g0/0

R-A(config-if)#ip helper-address 192.168.20.2

В этом случае маршрутизатор выступает в роли ретранслятора. Он получает от узла A широковещательные запросы (DHCP DISCOVER, DHCP REQUEST) и пересылает их на уникальный адрес (192.168.20.2) DHCP-сервера, который выделяет адреса узлу A.