Эффект Джоуля-Томсона (2.1.6)

Павлушкин Вячеслав

16 мая 2022 г.

1 Аннотация

В данной работе исследуется изменение температуры идеального газа при его течении по трубке с пористой перегородкой.

2 Введение

Цель работы: 1) определение изменения температуры углекислого газа при протекании через малопроницаемую перегородку при разных начальных значениях давления и температуры; 2) вычисление по результатам опытов коэффициентов Ван-Дер-Ваальса "а"и "b".

В работе используются: трубка с пористой перегородкой, трубка Дьюара, термостат, термометры, дифференциальная термопара, микровольтметр, балластный баллон, манометр. Эффектом Джоуля-Томсона называется изменение температуры газа, медленно протекающего из области высокого в область низкого давления в условиях хорошей тепловой изоляции.

3 Теоретические сведения

Рассматривая 2 произвольных сечения записываем уравнение

$$A_1 - A_2 = \left(U_2 + \frac{\mu v_2^2}{2}\right) - \left(U_1 + \frac{\mu v_1^2}{2}\right)$$

Учитывая некоторые формулы мы получаем, что

$$\mu_{D-T} = \frac{\Delta T}{\Delta P} \approx \frac{\frac{2a}{RT} - b}{C_n} \tag{1}$$

3.1 Определение коэффициента Джоуля-Томсона

Проведём измерение зависимости ΔT от ΔP для разных значений температур. Полученные значения заносим в таблицы. При записи полученных данных также учитываем, что чувствительность термопары медь – константан зависит от температуры. При вычислении будем использовать следующую формулу:

$$\Delta T = \frac{U}{\alpha},$$

где

$$\alpha_{20^{\circ}C} = 40.2 \text{ MKB}/^{\circ}C, \quad \alpha_{30^{\circ}C} = 41.1 \text{ MKB}/^{\circ}C, \quad \alpha_{50^{\circ}C} = 42.9 \text{ MKB}/^{\circ}C.$$

Рис. 1. Схема установки для изучения эффекта Джоуля-Томсона

$T = 22.1 ^{\circ}C$				
ΔP , atm	U, мВ	ΔT , K		
4	0.141	3.46		
3.5	0.118	2.90		
3	0.096	2.36		
2	0.058	1.43		

$T = 30.1 ^{\circ}C$				
ΔP , atm	U, мВ	ΔT , K		
4	0.134	3.30		
3.5	0.112	2.78		
3	0.089	2.21		
2	0.055	1.37		

$T = 45.1 {}^{\circ}C$			
ΔP , atm	U, MB	ΔT , K	
4	0.109	2.56	
3.5	0.089	2.09	
3	0.074	1.74	
2.3	0.050	1.18	

$T = 60 ^{\circ}C$				
ΔP , atm	U, мВ	ΔT , K		
4	0.066	1.62		
3.6	0.057	1.40		
3.1	0.047	1.15		
2.2	0.030	0.74		

Таблица 1: Экспериментальные данные для разных температур

Кроме того, при вычислении ΔT погрешность определяем по формуле: $\sigma_{\Delta T} = \Delta T \frac{\sigma_U}{II}$. Систематические погрешности: $\sigma_P = 0.05$ атм, $\sigma_U = 0.001$ мВ.

По имеющимся данным проведем аппроксимацию зависимости ΔT от ΔP , чтобы определить коэффициент Джоуля-Томсона. На рисунке ?? изображены графики зависимостей.

Вычислим $\mu_{\text{Д-T}} = \frac{dT}{dP}$, используя метод наименьших квадратов. Систематические погрешности оценим по следующим формуле:

$$\sigma_{\mu_{\text{Д-T}}}^{\text{сист}} = \mu_{\text{Д-T}} \sqrt{\varepsilon_{\Delta P}^2 + \varepsilon_{\Delta T}^2}.$$

Таким образом, полная погрешность измерения определяется следующим соотношением:

$$\sigma_{\mu_{\text{\tiny \mathcal{I}-T}}} = \sqrt{(\sigma_{\mu_{\text{\tiny \mathcal{I}-T}}}^{\text{chct}})^2 + (\sigma_{\mu_{\text{\tiny \mathcal{I}-T}}}^{\text{chyq}})^2}.$$

Результаты вычислений заносим в таблицу 2.

$T, \circ C$	$\mu_{ extsf{Д-T}}, ext{K}/ ext{atm}$	$\sigma_{\mu_{ extsf{I}- extsf{T}}}, ext{K}/ ext{atm}$	ε , %
22.1	1.015	0.053	5.2
30.1	0.9582	0.065	6.7
45.1	0.8057	0.043	5.3
60	0.488	0.023	4.7

Таблица 2: Результаты измерений $\mu_{\text{Д-Т}}$

3.2 Вычисление параметров газа Ван-дер-Ваальса

Вычислим параметры газа Ван-дер-Ваальса, используя коэффициенты $\mu_{\text{Д-T}}$, полученные в 3.1, для разных пар температур.

Пользуясь формулой (1), получим

$$\begin{cases} a = \frac{(\mu_1 - \mu_2) C_P R T_1 T_2}{2 (T_2 - T_1)}, \\ b = \frac{C_P (\mu_2 T_2 - \mu_1 T_1)}{T_1 - T_2}. \end{cases}$$

Погрешности этих вычислений можно оценить используя следующие формулы:

$$\sigma_a = a\sqrt{\varepsilon_{\mu_1 - \mu_2}^2 + \varepsilon_{T_1}^2 + \varepsilon_{T_2}^2 + \varepsilon_{T_2 - T_1}^2},$$

$$\sigma_b = b\sqrt{\varepsilon_{\mu_2 T_2 - \mu_1 T_1}^2 + \varepsilon_{T_1 - T_2}^2},$$

$$\sigma_{x \pm y} = \sqrt{\sigma_x^2 + \sigma_y^2}.$$

где

Для температур 22.1°C и 30.1°C, а также для 45.1°C и 60°C, вычисляем параметры «а» и «b» газа Ван-дер-Ваальса. Результаты вычислений заносим в таблицу 3.

	T, ° C	$a, \frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\text{моль}^2}$	$\sigma_a, \frac{\Pi \mathbf{a} \cdot \mathbf{m}^6}{\text{моль}^2}$	ε_a , %	$b \cdot 10^{-4}, \frac{\text{M}^3}{\text{МОЛЬ}}$	$\sigma_b \cdot 10^{-4}, \frac{\text{M}^3}{\text{MOJIb}}$	ε_b , %
	30.1 - 22.1	0.97	1.46	150	4.16	7.57	182
ſ	45.1 - 30.1	1.49	0.76	51.1	8.33	5.26	63.1
	60 - 45.1	3.43	0,55	16.1	23.0	5.59	24.3

Таблица 3: Результаты измерения параметров газа Ван-дер-Ваальса

Сверим полученные результаты с табличными. Согласно справочнику для углекислого газа

$$a = 0.36 \frac{\text{\Pia} \cdot \text{M}^6}{\text{MOJIb}^2},$$

$$b = 0.42 \cdot 10^{-4} \frac{\text{M}^3}{\text{MOJI}}.$$

Полученные данные значительно отличаются от табличных. Про причины такого различия сказано в выводе.

3.3 Вычисление температуры инверсии

Используя формулу $T_{\text{инв}} = 27 \backslash 4T_{\text{кр}}$, по полученным параметрам газа Ван-дер-Ваальса вычислим $T_{\text{инв}}$. Также оценим погрешность по следующей формуле:

$$\sigma_{T_{\text{инв}}} = T_{\text{инв}} \sqrt{\varepsilon_a^2 + \varepsilon_b^2}.$$

Результаты вычислений занесём в таблицу 4.

$T, {}^{\circ}C$	$T_{\text{инв}}$, °К	$\sigma_{T_{\text{\tiny MHB}}}, {}^{\circ}\text{K}$	ε , %
30-20	489	396	81
50-30	485	219	45

Таблица 4: Результаты вычисления температуры инверсии

Для углекислого газа, согласно справочнику

$$T_{\text{инв}} = 2053 \text{ K}.$$

Полученные результаты снова сильно отличаются от табличных.

4 Обсуждение результатов и выводы

В ходе выполнения работы мы:

- экспериментальным методом измерили коэффициенты газа Ван-дер-Ваальса «а» и «b»;
- ullet вычислили $T_{\text{инв}}$ для углекислого газа.

В ходе работы мы получили значения, очень сильно отличающиеся от табличных. Погрешность вычисления параметров газа Ван-дер-Ваальса составила десятки процентов. Такая большая ошибка может говорить нам о неприменимости уравнения Ван-дер-Ваальса в условия лабораторной работы. Действительно, это уравнение используется лишь для качественного описания процессов, происходящих с реальными газами. Количественный подход к этому уравнению неприменим.

Также для увеличения точности измерений можно использовать более точные методы измерения температуры. Повысить точность необходимо как у термостата, так и у вольтметра, т.к. температура на них колебалась на протяжении эксперимента, несмотря на то, что условия оставались неизменными.