2019 IMO #2

Tristan Shin

16 July 2019

In triangle ABC, point A_1 lies on side BC and point B_1 lies on side AC. Let P and Q be points on segments AA_1 and BB_1 , respectively, such that PQ is parallel to AB. Let P_1 be a point on line PB_1 , such that B_1 lies strictly between P and P_1 , and $\angle PP_1C = \angle BAC$. Similarly, let Q_1 be a point on line QA_1 , such that A lies strictly between Q and Q_1 , and $\angle CQ_1Q = \angle CBA$.

Prove that points P, Q, P_1 , and Q_1 are concyclic.

Let AA_1, BB_1 hit (ABC) again at A_2, B_2 , respectively. Then

$$\angle A_2 PQ = \angle A_2 AB = \angle A_2 B_2 B = \angle A_2 B_2 Q$$

so PQA_2B_2 cyclic. And

$$\angle CP_1B_1 = \angle CAB = \angle CB_2B = \angle CB_2B_1$$

so $CB_1B_2P_1$ cyclic. Thus

$$\angle B_2 P_1 P = \angle B_2 P_1 B_1 = \angle B_2 C B_1 = \angle B_2 C A = \angle B_2 B A = \angle B_2 Q P$$

so PQP_1B_2 cyclic. Thus $P_1 \in (PQA_2B_2)$ and similarly $Q_1 \in (PQA_2B_2)$ so PQP_1Q_1 cyclic.