

Compact Routing on the Internet AS-Graph

Stephen Strowes, University of Glasgow Graham Mooney, Cisco Systems Ltd. Colin Perkins, University of Glasgow

Context

Previous work:

Compact routing has shown promise for reducing forwarding state

Previous work has evaluated synthetic "Internet-like" graphs

We use Internet topologies spanning 14 years

Compact routing?

Shortest-path routing:

Space: linear space

Stretch: 1

Compact routing:

Space: sublinear space

Stretch: 3

Stretch-3 sounds bad!

Previous work showed actual performance to be much closer to stretch-1

(on synthetic graphs at least)

We perform systematic experimental analysis of two algorithms on Internet topologies

Overview

Two compact routing algorithms:

Thorup-Zwick (TZ)

Brady-Cowen (BC)

Overview: Thorup-Zwick

Routes via landmark nodes

Defines forwarding entries using proximity to landmarks

Nodes forward packets destination's landmark if destination not in local forwarding table

TZ Asymmetry

Overview: Brady-Cowen

- Builds a primary spanning tree
- Then, builds additional, smaller spanning trees on the periphery
- Uses a distance labelling to select, at source, best tree to forward packets to desination

Experimental Methodology

Generate AS topologies

Route Views BGP tables from 1997 through 2010

Run TZ & BC algorithms on all graphs to generate appropriate node labels/landmarks

Determine path lengths

TZ: Simulate forwarding from all nodes to 1% (random) of rest of network, and back

BC: Deterministic, and known after pre-computation

Results

In the paper, we evaluate:

Tweaks/parameters for each algorithm

Multiplicative path stretch

Additive path stretch

Forwarding table sizes

TZ landmark selection frequency and distribution of landmark set sizes

Results: TZ, multiplicative stretch

Results: TZ, additive stretch

Results: BC multiplicative stretch

Results: BC, additive stretch

Table sizes

TZ Table sizes

TZ landmark selection

Conclusions

Experimental validation of:

- ... strong performance on Internet graphs
- ... consistent performance over long periods of time

Insight into why the TZ algorithm performs well on this type of graph

Future Work

There is scope for further analysis how a decentralised protocol based on the TZ algorithm behaves in a dynamic network

... and how this works at the *router* level rather than the *AS* level

Questions?

Stephen Strowes sds@dcs.gla.ac.uk