Group Theory Notes

by Tyler Wright

github.com/Fluxanoia fluxanoia.co.uk

These notes are not necessarily correct, consistent, representative of the course as it stands today, or rigorous. Any result of the above is not the author's fault.

These notes are in progress.

0 Notation

We commonly deal with the following concepts in Group Theory which I will abbreviate as follows for brevity:

Term	Notation
$\{1,2,\ldots\}$	N
$\{0,1,2,\ldots\}$	\mathbb{N}_0
The set of primes	${\mathbb P}$
$(F \setminus \{0_F\}, \times)$	F^*
(invertible $n \times n$ matrices on F, \times)	$GL_n(F)$

Contents

0	Not	ation	1
1	The	Fundamentals	5
	1.1	Binary Operations	5
	1.2	Groups	5
		1.2.1 Distinct Powers of Group Elements	5
		1.2.2 Symmetric Groups	5
		1.2.3 Cyclic Groups	5
		1.2.4 Dihedral Groups	6
		1.2.5 The Infinite Cyclic/Dihedral Group	6
		1.2.6 Torsion Groups	6
	1.3	<i>p</i> -groups	6
	1.4	Subsets of Groups	7
		1.4.1 Set Multiplication	7
		1.4.2 Centre	7
		1.4.3 Properties of Sets	7
	1.5	Order	7
	1.6	Isomorphisms	8
	1.7	Subgroups	8
		1.7.1 The Product of Subgroups	9
		1.7.2 The Subgroup Test	9
		1.7.3 The Intersection of Subgroups	9
	1.8	Generated Subgroups	10
	1.9	Cyclic Groups	10
	1.10	Cosets	11
		1.10.1 A Bijection from Left to Right Cosets	11
		1	11
		1.10.3 Index	11
		1.10.4 Lagrange's Theorem	11
	1.11	Outer Direct Product	12
		1.11.1 Properties of the Outer Direct Product	12
2	TT	l.:	1 0
4	2.1	•	13
		1	13
	2.2	Homomorphisms and Generating Sets	13
3	Aut	omorphisms	14
	3.1	Inner Automorphisms	14
	3.2	Conjugation	14

		3.2.1 Conjugations on Subgroups	14
4	Nor 4.1 4.2 4.3 4.4 4.5	mal and Characteristic Subgroups Properties of Normal Subgroups	
5	Quo	tient Groups	17
6	The	Homomorphism Theorem	18
7	The 7.1	First Isomorphism Theorem The Order of the Product	18 19
8	The	Second Isomorphism Theorem	2 0
9	The	Correspondence Theorem	2 0
	10.1 10.2 10.3 10.4 Dire 11.1 11.2 11.3	Commutator Subgroups Commutator Subgroup of Characteristic Subgroups Abelian Quotients 10.3.1 Quotients of Abelian Groups The Abelianisation ect Products Component Groups The Commutator of Normal Subgroups Isomorphism between Products Criteria for Inner Direct Products 11.4.1 By Unique Compositions	22 23 23 24 24 25 25 26
		11.4.2 By the Size	27
12	12.1 12.2 12.3 12.4 12.5	tely Generated Abelian Groups Classification of Cyclic Groups	28 28 29 30 30 30

	12.7 Decomposition of Finite Abelian p -groups	31
	12.8 Homomorphism from \mathbb{Z}^n to Sequences	31
	12.9 One-way Inverses on Homomorphisms to \mathbb{Z}^n	32
	12.10Abelian Groups with \mathbb{Z}^n Quotients	32
	12.11Finitely Generated Subgroups	
	12.12Fundamental Theorem of Finitely Generated Torsion-free Abelian	
	Groups	33
	12.13 Fundamental Theorem of Finitely Generated Abelian Groups	34
13	Symmetric Groups	35
	13.1 Cycles	35
	13.2 Permutations as Disjoint Cycles	36
	13.3 Cycle Type	36
	13.4 Conjugacy in S_n	36
	13.5 Conjugacy and Cycle Type	37
	13.6 Parity of Transposition Representations	37
	13.7 Signature	37
	13.8 The Signature Homomorphism	38
	13.9 Alternating Groups	38
	13.10Subgroups of Index 2 in S_n	38
	13.11Alternating Groups generated by 3-Cycles	39
14	Group Actions	40
	14.1 The Orbit and Stabiliser	40

1 The Fundamentals

1.1 Binary Operations

A binary operation on a set X is a map $X \times X \to X$.

Take a binary operation * on a set X, we say that * is associative if for all x, y, z in X:

$$x * (y * z) = (x * y) * z.$$

Furthermore, we say e in X is an identity element of * if for all x in X:

$$e * x = x * e$$
,

and we say that y in X is the inverse to x if x * y and y * x are both identities of *.

1.2 Groups

A group (G,*) is a non-empty set G combined with a binary operation * such that:

- * is associative,
- G contains an identity for *,
- for each element in G, there exists some inverse in G with respect to *.

1.2.1 Distinct Powers of Group Elements

For an element x in a group G, we have that the powers of x are distinct up to the order of x.

1.2.2 Symmetric Groups

For a set X, the set of bijections $X \to X$ is a group under function composition denoted by $\operatorname{Sym}(X)$. We typically write $\operatorname{Sym}(\{1, 2, \dots, n\})$ as S_n .

1.2.3 Cyclic Groups

If we consider a regular n-gon P_n , we take rotations of $\frac{2\pi}{n}$ radians about the centre to be r and can define:

$$C_n = \{e, r, r^2, \dots, r^{n-1}\},\$$

to be the group of rotational symmetries of P_n , the cyclic group on P_n .

1.2.4 Dihedral Groups

If we consider again, a regular n-gon P_n and take:

r =a rotation of $\frac{2\pi}{n}$ radians about the centre, s =reflection in some fixed line of symmetry,

then we have that:

$$Sym(P_n) = \{e, r, r^2, \dots, r^{n-1}, s, rs, r^2s, \dots, r^{n-1}s\},\$$

called the dihedral group, denoted by D_{2n} .

1.2.5 The Infinite Cyclic/Dihedral Group

A map φ from $\mathbb{Z} \to \mathbb{Z}$ is a symmetry if for some n and m in \mathbb{Z} :

$$|\varphi(m) - \varphi(n)| = |m - n|.$$

Taking r to be the symmetry $n \mapsto n+1$, we can define the infinite cyclic group:

$$C_{\infty} = \{\dots, r^{-2}, r^{-1}, e, r, r^2, \dots\}.$$

Taking s to be the symmetry $n \mapsto -n$, we can define the infinite dihedral group:

$$D_{\infty} = \{\dots, r^{-2}, r^{-1}, e, r, r^2, \dots, r^{-2}s, r^{-1}s, s, rs, r^2s\}.$$

1.2.6 Torsion Groups

A group is a torsion group if every element has finite order and torsion-free if every non-identity element has infinite order.

1.3 p-groups

For p in \mathbb{P} , we say that a group G is a p-group if the order of each element of G is a power of p.

1.4 Subsets of Groups

1.4.1 Set Multiplication

For X, Y subsets of a group (G, *), we define:

$$X * Y = \{x * y : x \in X, y \in Y\},\$$

the product set of X and Y (which is a subset of G). We have that * is an associative binary operation on $\mathcal{P}(G)$. Additionally, we define:

$$X^{-1} = \{x^{-1} : x \in X\}.$$

However, these definitions do not define a group on $\mathcal{P}(G)$ as an inverse does not necessarily exist for each element, despite the existence of an identity $\{e_G\}$.

1.4.2 Centre

For a group G, the centre of G is the set of elements that commute with all elements of G, denoted by Z(G):

$$Z(G) = \{ z \in G : gz = zg, \forall g \in G \}.$$

We have that Z(G) is a subgroup.

1.4.3 Properties of Sets

For a group (G, *) with $X \subseteq G$, we have some defined properties:

- X is symmetric if for each x in X, x^{-1} is also in X,
- X is closed under * if for all x, y in X, x * y is in X.

1.5 Order

For a group G = (X, *), G has order |X|. The order of an element x of X is defined as follows:

$$|x| = \infty$$
 if $x^n \neq e_G$ for any n in \mathbb{N} , $|x| = \min\{n \in \mathbb{N} \mid x^n = e_G\}$ otherwise.

Taking x in X, if x has finite order, then:

- 1. $x^n = e_G$ if and only if |x| divides n,
- 2. $x^n = x^m$ if and only if |x| divides m n,

and if x has infinite order:

3. $x^n = x^m$ if and only if n = m.

Proof. For (1), we take n = q|x| + r for some q in \mathbb{Z} , r in $\{0, 1, \ldots, |x| - 1\}$. Thus:

$$x^n = x^{q|x|}x^r,$$

= $e_G^q x^r,$
= $x^r,$

and we can see that $x^r = e_G$ if and only if r = 0 as r < |x| and |x| is minimal. Thus, $x^n = e_G$ if and only if r = 0 which occurs if and only if |x| divides n.

For (2) and (3), we take x to have any order and consider:

$$x^n = x^m,$$

$$x^{m-n} = e_G.$$

Thus, if $|x| < \infty$ then |x| divides m - n by (1) and if $|x| = \infty$ then m - n = 0 by the definition of order.

1.6 Isomorphisms

For (G, *), (H, \circ) groups, an isomorphism $\varphi : G \to H$ is a bijection such that $\varphi(x * y) = \varphi(x) \circ \varphi(y)$ for all x, y in G. If such a map exists, we say G is isomorphic to H, denoted by $G \cong H$.

We can restrict isomorphisms to subgroups, compose them, or take the inverse and the result will be an isomorphism.

1.7 Subgroups

A subset X of a group (G, *) is a subgroup if and only if (X, *) (with * restricted to X, for which X must be closed under *) is a group, denoted by $X \leq G$ (or if $X \neq G, X < G$).

Alternatively, we have that X is a subgroup if and only if:

- e_G is in X,
- X is closed under *,
- X is symmetric under *.

1.7.1 The Product of Subgroups

For $H, K \leq G, HK$ is a subgroup of G if and only if HK = KH.

Proof. By the alternate definition of a subgroup above, we know that for a subgroup X of G, X contains e_G , and X is closed and symmetric under *.

Suppose $HK \leq G$, thus:

$$HK = (HK)^{-1}$$
$$= K^{-1}H^{-1}$$
$$= KH$$

Now, suppose HK = KH:

- $e_G = e_G e_G$ is in HK,
- (HK)(HK) = H(KH)K = H(HK)K = (HH)(KK) = HK,
- $(HK)^{-1} = K^{-1}H^{-1} = KH = HK$,

so HK is a subgroup.

1.7.2 The Subgroup Test

For X a subset of a group G, X is a subgroup if and only if $X \neq \emptyset$ and $x^{-1}y$ is in X for each x, y in X.

Proof. Suppose $X \leq G$, then e_G is in X so $X \neq \emptyset$. For x, y in X, x^{-1} is also in X by the inverse rule of subgroups, so $x^{-1}y$ is also in X by the closure of subgroups.

Suppose $X \neq \emptyset$ and for each x, y in $X, x^{-1}y$ is also in X. Taking x, y in X, we have that $x^{-1}x = e_G$ is also in X. Also, $x^{-1}e_G = x^{-1}$ is in X. Finally, $xy = (x^{-1})^{-1}y$. \square

1.7.3 The Intersection of Subgroups

We have that for a group G with A a set of subgroups of G:

$$\bigcap_{a \in \mathcal{A}} a,$$

is a subgroup of G.

Proof. We will use the subgroup test. We set X to be the intersection of the subgroups in A, X must be non-empty as each subgroup must contain e_G . Taking x, y in X, for each a in A, we know that x and y are in a. As a is a subgroup, x^{-1} and thus $x^{-1}y$ are in a. As a is arbitrary, $x^{-1}y$ must be in X.

1.8 Generated Subgroups

For a group G with $X \subseteq G$ non-empty, we define the subgroup generated by X as:

$$\langle X \rangle = \bigcap_{A \le G: X \subseteq A} A,$$

the intersection of all the subgroups containing X. This can also be called the smallest subgroup containing X.

Alternatively, we have that:

$$\langle X \rangle = \Gamma(X) = \{x_1 x_2 \cdots x_n : x_i \in X \cup X^{-1}, m \in \mathbb{N}\}.$$

Proof. We can see that $\Gamma(X) \subseteq \langle X \rangle$ as $\langle X \rangle$ contains X and is a subgroup so it contains all the finite products of elements of $X \cup X^{-1}$ by closure and existence of inverses.

If we can show that $\Gamma(X)$ is a subgroup, then that would mean $\langle X \rangle \subseteq \Gamma(X)$ as $\Gamma(X)$ contains X so would have been included in the intersection used to generate $\langle X \rangle$. We know that $\Gamma(X)$ is non-empty as X is non-empty and taking x, y in $\Gamma(X)$, for some n, m in \mathbb{N} , we have that:

$$x = x_1 x_2 \cdots x_n,$$

$$y = y_1 y_2 \cdots y_m,$$

by the definition of $\Gamma(X)$. For each x_i with i in [n], we know that x_i^{-1} is in $\Gamma(X)$ as $X^{-1} \subseteq \Gamma(X)$ so:

$$x^{-1}y = (x_1x_2 \cdots x_n)^{-1}y$$

= $x_n^{-1}x_{n-1}^{-1} \cdots x_1^{-1}y_1y_2 \cdots y_m$,

is in $\Gamma(X)$ by its definition. Thus, $\Gamma(X)$ is a subgroup as required.

1.9 Cyclic Groups

A group G is cyclic if it is generated by a single element. Elements in G that generate G are called generators. Supposing G is cyclic:

- For x a generator of G, $G = \{x^n : n \in \mathbb{Z}\}$,
- \bullet G is abelian,
- $G \cong C_{|G|}$,
- For X < G, X is cyclic.

1.10 Cosets

For a group G with $H \leq G$ and x in G, the subset xH is a left coset of H in G and similarly, Hx is a right coset. We have some properties of left cosets:

- For h in H, hH = H = Hh,
- For g in $G \setminus H$ we cannot say gH = Hg in general,
- G is the union of all the left cosets,
- For x, y in G, xH = yH if and only if x is in yH,
- For x, y in G, either xH = yH or $xH \cap yH = \emptyset$,
- For all x in G, |xH| = |H|.

1.10.1 A Bijection from Left to Right Cosets

For a group G with $H \leq G$, the map $xH \mapsto Hx^{-1}$ is a bijection from the set of left cosets to the set of right cosets.

1.10.2 A Equivalence Relation on Cosets

We can define an equivalence relation \sim on a group G with $H \leq G$ by setting:

$$x \sim y \iff y \in xH$$
,

where xH is the equivalence class containing x.

1.10.3 Index

For a group G with $H \leq G$, the number of distinct left cosets of H in G is called the index of H in G, denoted by [G:H] (the choice of left cosets here is arbitrary due to the bijection between the coset types).

1.10.4 Lagrange's Theorem

For a finite group G with $H \leq G$, |G| = [G:H]|H|.

This means, for any subgroup $H \leq G$, its index and order divide the order of G. Thus, for G a finite group:

- For x in G, |x| divides |G|,
- If G has prime order, G is cyclic and every non-identity element is a generator,
- For p in \mathbb{P} with $P, Q \leq G$ and |P| = |Q| = p, $P \cap Q = \emptyset$ or P = Q.

1.11 Outer Direct Product

For G_1, \ldots, G_n groups, we set:

$$G_1 \times \cdots \times G_n = \{(a_1, \dots, a_n) : a_i \in G_i, i \in [n]\},$$

and define a binary operation on $G = G_1 \times \cdots \times G_n$ by:

$$(a_1,\ldots,a_n)(b_1,\ldots,b_n)=(a_1b_1,\ldots,a_nb_n).$$

G is a group under this operation.

1.11.1 Properties of the Outer Direct Product

For G_1, \ldots, G_n groups, with $G = \prod_{i \in [n]} G_i$:

- $|G| = \prod_{i \in [n]} |G_i|$,
- $Z(G) = \prod_{i \in [n]} Z(G_i),$
- If G is cyclic, G_i is cyclic for each i in [n],
- For all σ in S_n , $G \cong \prod_{i \in [n]} G_{\sigma(i)}$,
- For the integers $1 \le n_1 < n_1 < \dots < n_r < n$,

$$G \cong (G_1 \times \cdots \times G_{n_1}) \times (G_{n_1+1} \times \cdots \times G_{n_2}) \times \cdots \times (G_{n_r+1} \times \cdots \times G_n),$$

• For H_1, \ldots, H_n groups with $G_i \cong H_i$ for each i in [n] $G \cong \prod_{i \in [n]} H_i$.

2 Homomorphisms

For G, H groups, a homomorphism $\varphi:G\to H$ is a map that for all x,y in G satisfies:

$$\varphi(xy) = \varphi(x)\varphi(y).$$

The image and kernel are defined as expected:

$$Im(\varphi) = \{ \varphi(g) : g \in G \},$$

$$Ker(\varphi) = \{ g \in G : \varphi(g) = e_H \}.$$

2.1 Properties of Homomorphisms

For G, H groups and $\varphi: G \to H$ a homomorphism, we have that:

- 1. $\varphi(e_G) = e_H$,
- 2. $Ker(\varphi)$ is a subgroup of G,
- 3. $\operatorname{Im}(\varphi)$ is a subgroup of H,
- 4. φ is injective if and only if $Ker(\varphi) = \{e_G\},\$
- 5. $\varphi(x^{-1}) = \varphi(x)^{-1}$ for every x in G,
- 6. For x_1, \ldots, x_n in G, $\varphi(x_1 \cdots x_n) = \varphi(x_1) \cdots \varphi(x_n)$.

These properties lead us to the following:

- For a finitely ordered element g in G, $|\varphi(g)|$ divides |g| by (6),
- If G is a p-group for p in \mathbb{P} , the image of every homomorphism on G is a p-group also.

We can restrict homomorphisms to subgroups or compose them and the result will be a homomorphism.

2.2 Homomorphisms and Generating Sets

For G, H groups, a homomorphism $\varphi: G \to H$, and $X \subseteq G$, we have that $\varphi(\langle X \rangle) = \langle \varphi(X) \rangle$.

Furthermore, for another homomorphism $\psi: G \to H$ with X being a generating set for G, if $\varphi(x) = \psi(x)$ for each x in X, then $\varphi = \psi$.

3 Automorphisms

An automorphism is an isomorphism from a group to itself. The set of all automorphisms on a group G is denoted by Aut(G) which is a group under composition.

3.1 Inner Automorphisms

For a group G, we have that $\varphi: G \to G$ defined for some g in G as $x \mapsto g^{-1}xg$ is an automorphism. Any automorphism of this form is called an inner automorphism.

Proof. For x, y in G:

$$\varphi(xy) = g^{-1}xyg$$

$$= g^{-1}xe_Gyg$$

$$= g^{-1}xgg^{-1}yg$$

$$= \varphi(x)\varphi(y),$$

so φ is a homomorphism. We can see that $g^{-1}xg = e_G$ implies that $x = gg^{-1} = e_G$ so $\text{Ker}(\varphi) = \{e_G\}$. Finally, we see that $x = g^{-1}(gxg^{-1})g$ so φ is surjective as x is arbitrary in G. Thus, φ is an automorphism.

3.2 Conjugation

The operation performed by inner automorphisms is called conjugation by an element. For a group G with x, y, g in G and $X \subseteq G$:

- $g^{-1}xg$ is the conjugation of x by g,
- $g^{-1}xg$ is denoted by x^g ,
- $g^{-1}Xg$ is similarly denoted by X^g ,
- x and y are said to be conjugate if there exists some g in G such that $x = y^g$.

3.2.1 Conjugations on Subgroups

For G a group with $H \leq G$ and g in G, H^g is a subgroup of G and $H^g \cong H$.

Two subgroups $H, K \leq G$ are said to be conjugate if there exists some g in G with $H = K^g$.

4 Normal and Characteristic Subgroups

For a group G, a subgroup H of G is normal if for each g in G, gH = Hg. This is denoted by $H \triangleleft G$.

We say H is a characteristic subgroup if for every φ in $\operatorname{Aut}(G)$, $\varphi(H) = H$ (denoted by $H \leq G$). We know characteristic subgroups are normal as $\operatorname{Aut}(G)$ contains inner automorphisms.

4.1 Properties of Normal Subgroups

We have that for a group G, the set of normal subgroups on G is closed under set multiplication and intersection. For G, H. groups with $\varphi : G \to H$ a homomorphism, we have that:

- 1. If $K \leq G$ then $\varphi(K) \leq H$,
- 2. If $K \subseteq G$ then $\varphi(K) \subseteq \varphi(G)$,
- 3. If K < H then $\varphi^{-1}(K) < G$,
- 4. If $K \leq H$ then $\varphi^{-1}(K) \leq G$.

Using $K = \{e_H\}$ in (4), we can see that $Ker(\varphi) \subseteq G$. Furthermore, every normal subgroup is the kernel of some homomorphism.

4.2 A Test for Normal and Characteristic Subgroups

Let G be a group with $H \leq G$:

- 1. If for every g in $G, H^g \subseteq H$ then $H \subseteq G$,
- 2. If for every φ in $\operatorname{Aut}(G)$, $\varphi(H) \subseteq H$ then $H \underset{\text{char}}{\trianglelefteq} G$.

Proof. (2) Suppose that $\varphi(H) \subseteq H$ for each φ in $\operatorname{Aut}(G)$. We take φ in $\operatorname{Aut}(G)$, φ^{-1} is also an isomorphism so is also in $\operatorname{Aut}(G)$. We have that $\varphi^{-1}(H) \subseteq H$ by our assumption, applying φ to both sides, we see that $H \subseteq \varphi(H)$ so combined with our assumptions, $H = \varphi(H)$ as required.

(1) We can perform the same argument as (2) by using the fact that the inverse of an inner automorphism is also an inner automorphism. \Box

4.3 Normal Subgroups of Index 2

For a group G with $H \leq G$ and [G:H] = 2, $H \leq G$.

Proof. Taking x in G, suppose x is in H, then xH = H = Hx.

Suppose x is not in H, then $xH \neq H$ as x is in xH. Thus, xH and H are disjoint cosets of H and as [G:H]=2, $G=H\cup xH$ the disjoint union of these cosets. So, $xH=G\backslash H$. We can apply this reasoning to the right coset and deduce that xH=Hx as required.

4.4 Properties of the Centre

For a group G, Z(G) is a characteristic subgroup of G and every subgroup of Z(G) is normal.

Proof. We know that $Z(G) \leq G$. We take φ in $\operatorname{Aut}(G)$ and take z in Z(G). We take an arbitrary g in G, as z is in Z(G), zg = gz, thus $\varphi(z)\varphi(g) = \varphi(g)\varphi(z)$ as φ is a homomorphism. Furthermore, $\varphi(z)h = h\varphi(z)$ for every h in G as φ is surjective. Thus, $\varphi(z)$ is in Z(G) as required.

Taking $H \leq Z(G)$, we know that for all g in G, h in H, gh = hg as h is in Z(G). Thus, gH = Hg for all g in G.

4.5 Simple Groups

A non-trivial group is simple if its only normal subgroups are itself and the trivial subgroup.

5 Quotient Groups

For a group G with $H \subseteq G$, G/H is a group under set multiplication and for every a, b in G satisfies:

$$(aH)(bH) = (ab)H.$$

Furthermore, we have $\pi: G \to G/H$ the mapping $g \mapsto gH$ is a surjective homomorphism with kernel H.

Proof. We know set multiplication is associative so, we take a, b in G, and see that:

$$(aH)(bH) = aHbH$$

= $(ab)(HH)$ (*H* is normal)
= $(ab)H$. (*H* is a subgroup)

Thus, G/H is closed under the operation. We take the identity to be e_GH and for g in G, the inverse of gH is $g^{-1}H$. So, G/H is a group under set multiplication.

 π is trivially surjective, for g in $\operatorname{Ker}(\pi)$, gH = H which means g is in H. The converse is true as H is a subgroup. Thus, π is a homomorphism.

The group G/H with the operation of set multiplication is called the quotient group of G by H. We call π on this quotient group the quotient homomorphism from G to G/H.

6 The Homomorphism Theorem

For G, H groups with $\varphi: G \to H$ a homomorphism, we let $\pi: G \to G/\operatorname{Ker}(\varphi)$ be the quotient homomorphism. There exists an isomorphism $\psi: G/\operatorname{Ker}(\varphi) \to \operatorname{Im}(\varphi)$ such that $\varphi = \psi \circ \pi$.

If φ is injective, this shows that $G \cong \operatorname{Im}(\varphi)$.

Proof. We set $I = \text{Im}(\varphi)$ and $K = \text{Ker}(\varphi)$, and define $\psi : G/K \to I$ by $gK \mapsto \varphi(g)$. We then consider:

$$(gK = hK) \iff (g^{-1}h \in K)$$

$$\iff (\varphi(g^{-1}h) = e_H)$$

$$\iff (\varphi(g)^{-1}\varphi(h) = e_H)$$

$$\iff (\varphi(g) = \varphi(h)).$$

So, the map is well-defined and injective. Furthermore, $\psi(\pi(g)) = \psi(gK) = \varphi(g)$. Consider:

$$\psi(ghK) = \varphi(gh)$$

$$= \varphi(g)\varphi(h)$$

$$= \psi(gK)\psi(hK),$$

so ψ is a homomorphism and is trivially surjective as required.

7 The First Isomorphism Theorem

For a group G with $N \subseteq G$, $\pi: G \to G/N$ the quotient homomorphism, and $H \subseteq G$:

- 1. $H \cap N \leq H$,
- 2. $\pi(H) \cong H/(H \cap N)$.

Proof. We write $\pi|_H$ for the restriction of π to H. Note that $\pi|_H: H \to G/N$ is a homomorphism. Furthermore:

$$\operatorname{Im}(\pi|_H) = \pi(H),$$

 $\operatorname{Ker}(\pi|_H) = H \cap \operatorname{Ker}(\pi) = H \cap N.$

As the kernel of a homomorphism is a normal subgroup in the domain, $H \cap N \leq H$. The homomorphism says that $\pi(H) \cong H/H \cap N$.

Additionally, we have that $HN \leq G$ and $\pi(H) = HN/N$.

Proof. We know that $HN \leq G$ if and only if HN = NH which is implied by the normality of N. We consider the group:

$$\begin{split} HN/N &= \Big(\{hnN: h \in H, n \in N\}, \times \Big), \\ &= \Big(\{hN: h \in H\}, \times \Big), \\ &= \pi(H). \end{split} \tag{N is a subgroup}$$

As required. \Box

7.1 The Order of the Product

Let G be a group with $N \subseteq G$, and $H \subseteq G$. If HN is finite, then:

$$|HN| = \frac{|H||N|}{|H \cap N|}.$$

Proof. We can see that:

$$\frac{|HN|}{|N|} = [HN : N]$$
 (By Lagrange's Theorem)

$$= |\pi(H)|$$
 (By the above)

$$= [H : H \cap N]$$
 (By the First Isomorphism Theorem)

$$= \frac{|H|}{|H \cap N|},$$
 (By Lagrange's Theorem)

as required. \Box

8 The Second Isomorphism Theorem

For a group G with $N \leq H \leq G$, and $N, H \subseteq G$, we have that $H/N \subseteq G/N$ and $(G/N)/(H/N) \cong G/H$.

Proof. We let $\varphi: G/N \to G/H$ be defined by $gN \mapsto gH$. We have that:

$$aN = bN \Rightarrow ab^{-1} \in N \subseteq H \Rightarrow aH = bH$$
,

so φ is well-defined. It is a homomorphism because:

$$\varphi(aNbN) = \varphi(abN)$$

$$= abH$$

$$= aHbH$$

$$= \varphi(aN)\varphi(bN),$$

and is trivially surjective. Considering:

$$Ker(\varphi) = \{gN : gH = eH\}$$
$$= \{gN : g \in H\}$$
$$= H/N,$$

we have that $H/N \leq G/N$ as it is the kernel of a homomorphism and that $(G/N)/(H/N) \cong G/H$ by the homomorphism theorem.

9 The Correspondence Theorem

For a group G with $N \subseteq G$ and $\pi: G \to G/N$ the quotient homomorphism. We have that:

- 1. If $K \subseteq G/N$ then:
 - (a) $K \leq G/N$ if and only if K = H/N for some $H \leq G$ containing N,
 - (b) $K \leq G/N$ if and only if K = H/N for some $H \leq G$ containing N,
- 2. If $N \subseteq H \subseteq G$ then:
 - (a) $H \leq G$ if and only if $H = \pi^{-1}(K)$ for some $K \leq G/N$,
 - (b) $H \subseteq G$ if and only if $H = \pi^{-1}(K)$ for some $K \subseteq G/N$.

Proof. We have already proved the (\Leftarrow) direction in (4.1).

- (1)(a) Note that $K = \pi(\pi^{-1}(K))$. By the (\Rightarrow) direction of (2)(a), we know that $\pi^{-1}(K)$ is a subgroup of G and contains N as it's a subgroup. So, $\pi(\pi^{-1}(K)) = \pi^{-1}(K)/N$. Taking $H = \pi^{-1}(K)$ proves the (\Rightarrow) direction of (1)(a).
- (1)(b) To prove the (\Rightarrow) direction of (1)(b), we just need to prove that $K \leq G/N$ implies that $\pi^{-1}(K) \leq G$ which we proved in the (\Leftarrow) direction of (2)(b).
- (2) We know that H is a union of left cosets of N as it's a subgroup, this means that $H = \pi^{-1}(\pi(H))$. We apply (4.1) again with $\phi = \pi$ and get the (\Rightarrow) direction of (2).

10 Commutators

For x, y in a group G, we define the commutator of x and y as:

$$[x,y] = x^{-1}y^{-1}xy.$$

This can be considered as the 'cost' of commuting x and y:

$$xy = yx[x, y].$$

Note that for a homomorphism φ with domain G, we have that $\varphi([x,y]) = [\varphi(x), \varphi(y)]$.

10.1 Commutator Subgroups

For a group G with $H, K \leq G$, we define a subgroup [H, K] by:

$$[H, K] = \langle [h, k] : h \in H, k \in K \rangle.$$

The subgroup [G, G] is called the commutator subgroup. Furthermore, if G is abelian, $[G, G] = \{e_G\}$.

10.2 Commutator Subgroup of Characteristic Subgroups

For a group G with $H, K \underset{\text{char}}{\unlhd} G$, $[H, K] \underset{\text{char}}{\unlhd} G$. Furthermore, $[G, G] \underset{\text{char}}{\unlhd} G$.

Proof. We take φ in Aut(G):

$$\varphi([H, K]) = \varphi(\langle [h, k] : h \in H, k \in K \rangle)$$

$$= \langle \varphi([h, k]) : h \in H, k \in K \rangle$$

$$= \langle [\varphi(h), \varphi(k)] : h \in H, k \in K \rangle$$

$$= \langle [h, k] : h \in H, k \in K \rangle \qquad (H, K \leq G)$$

$$= [H, K],$$

as required.

10.3 Abelian Quotients

For a group G with $H \subseteq G$, G/H is abelian if and only if $[G, G] \subseteq H$. Furthermore, this shows that a quotient of G is abelian if and only if it is isomorphic to a quotient of G/[G, G] (by the second isomorphism theorem).

Proof. We take $\pi: G \to G/H$ to be the quotient homomorphism.

 (\Rightarrow) If G/H is abelian then we take x, y arbitrary in G. We have that $\pi([x, y]) = [\pi(x), \pi(y)] = e_G H$. Thus, [x, y] is in H. Thus, as x, y are arbitrary, $[G, G] \subseteq H$.

 (\Leftarrow) If $[G,G] \subseteq H$ then for every xH, yH in G/H we have that:

$$[xH, yH] = (x^{-1}H)(y^{-1}H)(xH)(yH)$$

= $[x, y]H$
= H .

Thus, G/H is abelian.

10.3.1 Quotients of Abelian Groups

Every quotient of an abelian group is abelian.

Proof. If G is abelian then $[G, G] = \{e_G\}$. So, for each $H \leq_{\text{char}} G$ we have $[G, G] \subseteq H$ and so G/H is abelian by the above.

10.4 The Abelianisation

For a group G, the abelianisation of G is the quotient group G/[G,G]. This group is always abelian and is the largest possible abelian quotient of G.

It can be that $G/[G,G] = \{e_G\}$ ([G,G] = G). These groups are called perfect. An example is non-abelian simple groups as $[G,G] \subseteq G$.

11 Direct Products

We have already seen the outer direct product as:

$$G_1 \times \cdots \times G_n = \{(g_1, \dots, g_n) : g_i \in G_i\},\$$

for groups G_1, \ldots, G_n which forms a group with component-wise group operations.

For a group G with $H_1, \ldots, H_n \leq G$. We say G is the inner direct product of H_1, \ldots, H_n if:

- $G = H_1 \times \cdots \times H_n$,
- $H_i \cap (H_1 \times \cdots \times H_{i-1} \times H_{i+1} \times \cdots \times H_n) = \{e_G\}$ for all i in [n].

We have that $|G| = \prod_i H_i$.

11.1 Component Groups

We let $G = G_1 \times \cdots \times G_n$, for each i in [n], we set:

$$\widehat{G}_i = \{(e, \dots, e, g_i, e, \dots, e) : g_i \in G_i\}.$$

We have that:

- 1. For each i in [n], $\widehat{G}_i \subseteq G$,
- 2. For each i in [n], $\widehat{G}_i \cong G_i$,
- 3. G is the inner direct product of $\widehat{G}_1, \ldots, \widehat{G}_n$

Proof. (1) We can see that:

$$\psi((g_1,\ldots,g_n)) = (g_1,\ldots,g_{i-1},e,g_{i+1},\ldots g_n),$$

is a homomorphism with kernel \widehat{G}_i . Thus, $\widehat{G}_i \leq G$.

(2) We can see that:

$$\varphi_i((e,\ldots,e,g_i,e,\ldots,e))=g_i,$$

is an isomorphism. Thus, $\widehat{G}_i \cong G_i$.

(3) We have that $G = \widehat{G}_1 \cdots \widehat{G}_n$ as:

$$(g_1, \ldots, g_n) = (g_1, e, \ldots)(e, g_2, e, \ldots) \cdots (e, \ldots, e, g_n).$$

Furthermore, $\widehat{G_i} \cap G_i' = \{e\}$ where $G' = \widehat{G_1}, \ldots, \widehat{G_{i-1}}, \widehat{G_{i+1}}, \ldots G_n$ as the elements of G_i' are of the form $(g_1, \ldots, g_{i-1}, e, g_{i+1}, \ldots, g_n)$ whereas elements of $\widehat{G_i}$ are of the form $(e, \ldots, e, g_i, e, \ldots, e)$. Thus, the only element in common is e_G .

11.2 The Commutator of Normal Subgroups

For a group G with $H, K \subseteq G$, $[H, K] \subseteq H \cap K$.

Proof. For h in H and k in K, $[h, k] = h^{-1}k^{-1}hk$. But:

- $h^{-1}k^{-1}h$ is in $h^{-1}Kh = K$,
- $k^{-1}hk$ is in $k^{-1}Hk = H$,

so [h, k] is in $H \cap K$.

Furthermore, if $G = H_1 \times \cdots \times H_n$ is an inner direct product, then for $i \neq j$ both in [n], we have that the elements of H_i commute with the elements of H_j .

Proof. The definition of the inner direct product means that $H_i \cap H_j = \{e\}$. This means that $[H_i, H_j] = \{e\}$ as required.

11.3 Isomorphism between Products

For a group G the inner direct product of subgroups $H_1, \ldots, H_n, G \cong H_1 \times \cdots \times H_n$.

Proof. We define $\varphi: H_1 \times \cdots \times H_n \to G$ by:

$$\varphi((h_1,\ldots,h_n))=h_1\cdots h_n,$$

which is a homomorphism by the commutativity of H_i and H_j (where $i \neq j$). The definition of the inner direct product implies that it is surjective. We take $(h_1, \ldots, h_n) \in \text{Ker}(\varphi)$:

$$h_1 \cdots h_n = e$$

$$\Longrightarrow h_i^{-1} = h_1 \cdots h_{i-1} h_{i+1} \cdots h_n$$

$$\Longrightarrow h_i^{-1} \in H_i \cap (H_1 \cdots H_{i-1} H_{i+1} \cdots H_n)$$

$$\Longrightarrow h_i^{-1} = e.$$

Thus, as i was chosen arbitrarily, $(h_1, \ldots, h_n) = (e, \ldots, e)$. Thus, φ is an isomorphism.

11.4 Criteria for Inner Direct Products

11.4.1 By Unique Compositions

For a group G with H_1, \ldots, H_n normal subgroups of G, G is an inner direct product of H_1, \ldots, H_n if and only if for all g in G, there exists a unique h_i in each H_i such that $g = \prod_i h_i$.

Proof. (\Rightarrow) By the definition, we have $g = \prod_i h_i$ for some h_i in each H_i so it suffices to show this product is unique. We suppose that:

$$\prod_{i} k_i = g = \prod_{i} h_i,$$

for some k_i , h_i in each H_i . We fix i and see that:

$$e = g^{-1}g$$

$$= h_n^{-1} \cdots h_1^{-1} k_1 \cdots k_n$$

$$= h_1^{-1} k_1 \cdots h_n^{-1} k_n$$

$$= h_i^{-1} k_i h_1^{-1} k_1 \cdots h_{i-1}^{-1} k_{i-1} h_{i+1}^{-1} k_{i+1} \cdots h_n^{-1} k_n$$

$$k_i^{-1} h_i = h_1^{-1} k_1 \cdots h_{i-1}^{-1} k_{i-1} h_{i+1}^{-1} k_{i+1} \cdots h_n^{-1} k_n$$

$$\in H_i \cap (H_1 \cdots H_{i-1} H_{i+1} \cdots H_n)$$

$$= \{e\}.$$

as G is the direct product of H_1, \ldots, H_n which means elements from differing subgroups commute. Thus, for each i, $h_i = k_i$.

 (\Leftarrow) Clearly $G = H_1 \cdots H_n$ so it suffices to show that:

$$H_i \cap (H_1 \cdots H_{i-1} H_{i+1} \cdots H_n) = \{e\}$$

for each i. We take x in this intersection:

$$x = h_i = h_1 \cdots h_{i-1} h_{i+1} \cdots h_n$$
$$e \cdots e h_i e \cdots e = h_1 \cdots h_{i-1} e h_{i+1} \cdots h_n,$$

which, by the uniqueness of the composition of x, means that x = e as required. \square

11.4.2 By the Size

For G a finite group with $H_1, \ldots, H_n \leq G$ such that $G = H_1 \cdots H_n$. G is an inner direct product if and only if $|G| = \prod_i |H_i|$.

Proof. (\Rightarrow) As G is an inner direct product we have the result.

(\Leftarrow) As $|G| = \prod_i |H_i|$, each $h_1 \cdots h_n$ product of elements in $H_1 \cdots H_n$ are distinct. By the above, this means G is an inner direct product.

12 Finitely Generated Abelian Groups

We will write $\mathbb{Z}^n = \{(m_1, \dots, m_n) : m_1, \dots, m_n \in \mathbb{Z}\}$ and $e_i = (0, \dots, 1, \dots, 0) \in \mathbb{Z}^n$ with 1 in the i^{th} entry. These are the standard generators for \mathbb{Z}^n .

For some n in \mathbb{N} , we write \mathbb{Z}_n to be the integers modulo n which is a group under addition. Additionally, $n\mathbb{Z}$ is a subgroup of \mathbb{Z} and $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z}$.

12.1 Classification of Cyclic Groups

For a cyclic group G, if |G| = n finite, we have that $G \cong \mathbb{Z}_n$. Otherwise, $G \cong \mathbb{Z}$.

Proof. We choose x as a generator of G. We take $\varphi : \mathbb{Z} \to G$ to be defined as $\varphi(m) = x^m$. We can see that φ is a surjective homomorphism. If $|x| = \infty$ then $\text{Ker}(\varphi) = \{0\}$, otherwise, $\text{Ker}(\varphi) = |x|\mathbb{Z}$. By the homomorphism theorem:

$$G = \operatorname{Im}(\varphi) \cong \mathbb{Z}/\operatorname{Ker}(\varphi).$$

The result follows as $\mathbb{Z}/\operatorname{Ker}(\varphi) = \mathbb{Z}$ if $|x| = \infty$ and $\mathbb{Z}_{|x|}$ otherwise.

12.2 The Torsion Subgroup

For an abelian group G with $T \subseteq G$ the set of elements in G of finite order and a prime p with $G_p \subseteq T$ the set of elements in T of with order equal to a power of p. We have that $G_p \subseteq T \subseteq G$ and G/T is torsion-free with T called the torsion subgroup of G and G_p called the p-primary component of G.

Proof. We suppose x and y are in T with |x| = k, |y| = m. We know that km(x-y) = 0 so $|x-y| \le km < \infty$, thus (x-y) is in T so T is a subgroup of G by the subgroup test.

Furthermore, |x - y| must divide km so if x and y are in G_p then km is a power of p. Thus, |x - y| is a power of p so (x - y) is in G_p . Again, by the subgroup test, G_p is a subgroup of T.

Suppose z+T has finite order for some z in G. If so, there exists some m in \mathbb{N} with mx+T=T, in particular mx is in T. By the definition of T, there exists some n in \mathbb{N} with nmx=0. But, this would mean x has finite order so x is in T. Thus, G/T is torsion-free.

12.3 The Primary Decomposition Theorem

For a finite abelian group G, we take p_1, \ldots, p_k to be the prime factors of |G|. We have that $G = G_{p_1} \oplus \cdots \oplus G_{p_k}$.

Proof. We take x in G, by Lagrange's Theorem, we have that $x = p_1^{l_1} \cdots p_k^{l_k}$ for some l_1, \ldots, l_k in \mathbb{N}_0 . For each i in [k], we set:

$$n_i = \prod_{j \in [k] \setminus \{i\}} p_j^{l_j},$$

and note that $|n_i x| = p_i^{l_i}$ so $n_i x$ is in G_{p_i} . Clearly $\gcd(n_1, \ldots, n_k) = 1$, so by the Euclidean algorithm there exists m_1, \ldots, m_k such that $m_1 n_1 + \cdots + m_k n_k = 1$. Thus:

$$x = \left(\sum_{i=1}^{k} m_i n_i\right) \cdot x$$
$$= \sum_{i=1}^{k} m_i (n_i x)$$
$$\in \sum_{i=1}^{k} G_{p_i}.$$

Thus, $G = G_{p_1} + \dots + G_{p_k}$.

We now consider x_i , x_i' in G_{p_i} for each i in [k] such that $\sum_{i \in [k]} x_i = \sum_{i \in [k]} x_i'$. We write $y_i = x_i - x_i'$ so that $\sum_{i \in [k]} y_i = 0$. Furthermore, we say $|y_i| = p_i^{d_i}$ and set:

$$r_i = \prod_{j \in [k] \setminus \{i\}} |y_i| = \prod_{j \in [k] \setminus \{i\}} p_j^{d_j}.$$

As $|y_i|$ divides $|r_j|$ for all $j \in [k] \setminus \{i\}$, we know that $r_i y_j = 0$. This implies that $r_i y_i = 0$ as $\sum_{i=1}^k y_i = 0$.

Moreover, as r_i and p_i are coprime by definition, the Euclidean algorithm implies that there exists a, b in \mathbb{Z} such that:

$$ar_{i} + bp_{i}^{d_{i}} = 1,$$

$$\Rightarrow y_{i} = (ar_{i} + bp_{i}^{d_{i}})y_{i},$$

$$\Rightarrow y_{i} = ar_{i}y_{i} + bp_{i}^{d_{i}}y_{i},$$

$$\Rightarrow y_{i} = 0 + 0 = 0,$$

so $x_i = x_i'$ for each i in [k]. Thus, our compositions are unique as required.

12.4 Finitely Generated Abelian Torsion Groups

A finitely generated torsion group is finite.

Proof. We take x_1, \ldots, x_n to be the finite generating set for an abelian torsion group G so:

$$G = \{l_1x_1 + \dots + l_nx_n : 0 \le l_i < |x_i|\},\$$

which is finite since $|x_i| < \infty$ for all i in [n].

12.5 Order of Elements in p-groups

For a prime p and a p-group G, we take g in G. We set k in \mathbb{N} to np^r with n, p coprime and r in \mathbb{N}_0 . If $p^r \leq |g|$ then $|g^k| = \frac{|g|}{p^r}$.

Proof. We know that $|g| = p^m$ for some m as G is a p-group. For d in \mathbb{N} :

$$(g^k)^d = e$$

$$\iff g^{dnp^r} = e$$

$$\iff p^m \text{ divides } dnp^r$$

$$\iff p^m \text{ divides } dp^r$$

$$\iff p^{m-r} \text{ divides } d,$$

thus, $|g^k| = p^{m-r} = \frac{|g|}{p^r}$ as required.

12.6 Elements with Coset Order

For G a finite abelian p-group for some prime p. We take g in G to have maximum order. For every x in G, there exists y in $x + \langle g \rangle$ such that the order of y in G is equal to the order of $x + \langle g \rangle$ in $G/\langle g \rangle$.

Proof. We write $x + \langle g \rangle = p^m$ for some m, noting that $p^m \cdot x$ is in $\langle g \rangle$ so $p^m \cdot x = l \cdot g$ for some l in \mathbb{N}_0 (if l = 0 we are done). We write $l = np^r$ with n, p coprime. If $p^r \geq |g|$ then $l \cdot g = 0$ and $|x| = p^m$ and we are done. Otherwise, we use the result above to see that $|l \cdot g| = \frac{|g|}{p^r}$ and $|p^m x| = \frac{|x|}{p^m}$ so $\frac{|g|}{p^r} = \frac{|x|}{p^m}$. The maximality of g implies that $|g| \geq |x|$ so $r \geq m$ and thus p^m divides l. We define:

$$y = x - \frac{l}{p^m} \cdot g,$$

thus $p^m y = p^m (x - np^{r-m}g) = 0$ so $|y| \le p^m$. But, as y is in $x + \langle g \rangle$, $|y| \ge p^m$ so $|y| = p^m$ as required.

12.7 Decomposition of Finite Abelian p-groups

For a finite abelian p-group G with p prime, there exists a k in \mathbb{N}_0 and m_1, \ldots, m_k in \mathbb{N} such that $G \cong \mathbb{Z}_{p^{m_1}} \oplus \cdots \oplus \mathbb{Z}_{p^{m_k}}$.

Proof. It is sufficient to show that for x_1, \ldots, x_k in G, G is an inner direct sum:

$$G = \langle x_1 \rangle \oplus \cdots \oplus \langle x_k \rangle. \tag{*}$$

If $G = \{0\}$ then this is trivial so we assume |G| > 1. By strong induction, we assume every group of order lesser to that of G is of the form shown in (*).

We take g in G to have maximum order, $g \neq e$ as our group is non-trivial so $|G/\langle g \rangle| < |G|$ so by induction, there exists x_1, \ldots, x_k in G such that:

$$G/\langle q \rangle = \langle x_1 + \langle q \rangle \rangle \oplus \cdots \oplus \langle x_k + \langle q \rangle \rangle.$$

The previous result implies that we can assume that $|x_i| = |x_i + \langle g \rangle|$, so:

$$|G/\langle g\rangle| = |\langle x_1 + \langle g\rangle\rangle| \cdots |\langle x_k + \langle g\rangle\rangle|$$

= $|x_1| \cdots |x_k|$,

which combined with Lagrange's theorem means that:

$$\begin{aligned} |G| &= [G : \langle g \rangle] \\ &= |G/\langle g \rangle| \cdot |g| \\ &= |x_1| \cdots |x_k| \cdot |g|. \end{aligned}$$

We want to show that $G = \langle x_1 \rangle + \cdots + \langle x_k \rangle + \langle g \rangle$ so for all h in G, $h = ng + \sum_{i=1}^k l_i x_i$ for some l_1, \ldots, l_k, n in \mathbb{N}_0 . By (*) we know that:

$$h + \langle g \rangle = (l_1 x_1 + \dots + l_k x_k) + \langle g \rangle$$

$$\implies h \in (l_1 x_1 + \dots + l_k x_k) + \langle g \rangle$$

$$\implies h = l_1 x_1 + \dots + l_k x_k + ng \text{ for some } n.$$

As we have that G is a sum of $\langle x_1 \rangle, \ldots, \langle x_k \rangle, \langle g \rangle$ and its size is a product of the size of these groups, G is an inner direct product of said elements as required.

12.8 Homomorphism from \mathbb{Z}^n to Sequences

For n in \mathbb{N} and an abelian group G, and every g_1, \ldots, g_n in G, there exists a unique homomorphism $\varphi : \mathbb{Z}^n \to G$ satisfying $\varphi(e_i) = g_i$ for all i. In particular, $\varphi((m_1, \ldots, m_1)) = m_1 g_1 + \cdots + m_n g_n$.

Proof. This is trivially a homomorphism and is unique as homomorphisms are defined by the images of a set of generators. \Box

12.9 One-way Inverses on Homomorphisms to \mathbb{Z}^n

For an abelian group G and $\alpha: G \to \mathbb{Z}^n$ is a surjective homomorphism, there exists an injective homomorphism $\beta: \mathbb{Z}^n \to G$ such that $\alpha \circ \beta = \iota_{\mathbb{Z}^n}$ (the identity on \mathbb{Z}^n).

Proof. If n=0, this is trivial. Otherwise, there exists g_1, \ldots, g_n in G such that $\alpha(g_i)=e_i$ for all i as α is surjective. The previous result states that there exists a homomorphism β from \mathbb{Z}^n to G such that $\beta(e_i)=g_i$ for all i. This gives us that $(\alpha \circ \beta)(e_i)=e_i$ which defines $\alpha \circ \beta$ as homomorphisms are defined by the images of a set of generators. Thus, $\alpha \circ \beta = \iota_{\mathbb{Z}^n}$.

We can see that:

$$\ker(\beta) \subseteq \ker(\alpha \circ \beta)$$

$$= \ker(\iota_{\mathbb{Z}^n})$$

$$= \{0\}.$$

Thus, $ker(\beta) = \{0\}$ so β is injective as required.

12.10 Abelian Groups with \mathbb{Z}^n Quotients

For an abelian group G with $H \leq G$ satisfying $G/H \cong \mathbb{Z}^n$ for some n in \mathbb{N}_0 , we have that $G = H \oplus K$ for some $K \leq G$ satisfying $K \cong \mathbb{Z}^n$.

Proof. We consider $\pi: G \to G/H$ the quotient homomorphism and $\psi: G/H \to \mathbb{Z}^n$ an isomorphism. We set $\alpha = \psi \circ \pi$ from G to \mathbb{Z}^n , which is a surjective homomorphism. The previous result gives us $\beta: \mathbb{Z}^n \to G$ an injective homomorphism with $\alpha \circ \beta = \iota_{\mathbb{Z}^n}$. We note that $H = \ker(\alpha) \leq G$ and set $K = \beta(\mathbb{Z}^n) \leq G$. Furthermore, as β is injective, $K \cong \mathbb{Z}^n$.

Given g in G:

$$\alpha(g - (\beta \circ \alpha)(g)) = \alpha(g) - \alpha((\beta \circ \alpha)(g))$$

$$= \alpha(g) - ((\alpha \circ \beta) \circ \alpha)(g)$$

$$= \alpha(g) - \alpha(g)$$

$$= 0.$$

therefore $(g - (\beta \circ \alpha)(g))$ is in $\ker(\alpha) = H$ so g is in $(\beta \circ \alpha)(g) + H$ in particular, g is in K + H = H + K. As $\alpha \circ \beta = \iota_{\mathbb{Z}^n}$, $\ker(\alpha) \cap \beta(\mathbb{Z}^n) = \{0\}$ which means $H \cap K = \{0\}$. Thus, $G = H \oplus K$ as required.

12.11 Finitely Generated Subgroups

For a finitely generated abelian group G with $H \leq G$ satisfying $G/H \cong \mathbb{Z}^n$ for some n in \mathbb{N}_0 , H is finitely generated.

Proof. We know that $G \cong H \oplus \mathbb{Z}^n$ by the previous result. The projection π from $H \oplus \mathbb{Z}^n$ onto H defined by $(h, z) \mapsto h$ is a homomorphism. Since $H \oplus \mathbb{Z}^n$ is finitely generated, H is finitely generated by these generators under π .

12.12 Fundamental Theorem of Finitely Generated Torsionfree Abelian Groups

For n in \mathbb{N} and G a finitely generated torsion-free abelian group generated by at most n elements, $G \cong \mathbb{Z}^k$ for some $k \leq n$.

Proof. We take $\{g_1, \ldots, g_n\}$ to be a generating set of G. If n = 1, G is cyclic and has infinite order so $G \cong \mathbb{Z}$. Otherwise, we set:

$$H = \{x \in G : \exists m \in \mathbb{N} \text{ such that } mx \in \langle g_n \rangle \},$$

and observe that H is a subgroup via the subgroup test. We consider the quotient G/H and the quotient homomorphism $\pi:G\to G/H$. We know that G/H is torsion-free as:

$$k\pi(x) = 0 \Longrightarrow \pi(kx)$$

 $\Longrightarrow kx \in H$
 $\Longrightarrow lkx \in \langle g_n \rangle \text{ for some } l$
 $\Longrightarrow x \in H$
 $\Longrightarrow \pi(x) = 0.$

So 0 is the only element of finite order in G/H as π is surjective. Furthermore, g_n is also in H so G/H is generated by $\{\pi(g_1), \ldots, \pi(g_{n-1})\}$. By induction on n, $G/H \cong \mathbb{Z}^k$ for some $k \leq n-1$. By a previous result, $G \cong H \oplus \mathbb{Z}^k$ so it's sufficient to show that $H \cong \{0\}$ or \mathbb{Z} .

We know that H is torsion-free as it's a subgroup of G, we consider $H/\langle g_n \rangle$ which is finitely generated via π and the quotient homomorphism to $H/\langle g_n \rangle$ and a torsion group as for all h in H, there's some l such that $l(h + \langle g_n \rangle) = \langle g_n \rangle$. In particular, $H/\langle g_n \rangle$ is finite with size m for instance. Thus, for all h in H, $m(h + \langle g_n \rangle) = \langle g_n \rangle$ so mh is in $\langle g_n \rangle$. We define $\varphi : H \to \langle g_n \rangle$ by $h \mapsto mh$ which is clearly a homomorphism and injective as H is torsion-free (so mh = 0 implies that h = 0). So, $H \cong \varphi(H) \leq \langle g_n \rangle$, in particular, H is cyclic. Thus, $H \cong \mathbb{Z}$ because H has infinite order and is cyclic as required.

12.13 Fundamental Theorem of Finitely Generated Abelian Groups

Suppose G is a finitely generated abelian group, there exists non-negative integers n and k, primes p_1, \ldots, p_k , and natural numbers n_1, \ldots, n_k such that:

$$G \cong \mathbb{Z}_{p_1^{m_1}} \oplus \cdots \oplus \mathbb{Z}_{p_k^{m_k}} \oplus \mathbb{Z}^n$$

Proof. We take $T \leq G$ to be the torsion subgroup. As G is finitely generated, G/T is also and by the previous result, $G/T \cong \mathbb{Z}^n$ for some n. By more previous results, we know that $G \cong T \oplus \mathbb{Z}^n$ and T is finitely generated and hence finite. Again, we know that there are finitely many primes p_1, \ldots, p_m such that $G_{p_i} \neq \{0\}$, each G_{p_i} is finite, and $T = G_{p_1} \oplus \cdots \oplus G_{p_m}$. We know that each $G_{p_i} = \mathbb{Z}_{p_i^{m_1}} \oplus \cdots \oplus \mathbb{Z}_{p_i^{m_d}}$ which gives us the result.

13 Symmetric Groups

For a set X, a permutation of X is a bijection from X to X, the set of all permutations of X forms a group under composition denoted by $\operatorname{Sym}(X)$. For n in \mathbb{N} , we write $\operatorname{Sym}([n])$ as S_n . Note that $|\operatorname{Sym}(X)| = |X|!$.

Proof. We prove this by considering the number of bijections between sets X, Y of size n. For n = 1, $f = \{(x, y) : x \in X, y \in Y\}$ has only one pair. For n > 1:

$$\begin{split} m &= \sum_{y \in Y} |\{ \text{bijections from } X \text{ to } Y : x \mapsto y \}| \\ &= \sum_{y \in Y} |\{ \text{bijections from } X \backslash \{x\} \text{ to } Y \backslash \{y\} \}| \\ &= \sum_{y \in Y} (n-1)! \\ &= n \cdot (n-1)! \\ &= n!, \end{split}$$

as required.

13.1 Cycles

For k in \mathbb{N} , a permutation f in S_n is called k-cycle if there are k distinct members i_1, \ldots, i_k in [n] such that:

$$f(i_j) = \begin{cases} i_{j+1} & j \in [k-1] \\ i_1 & j = k, \end{cases}$$

in which case, we write $f = (i_1, \ldots, i_k)$. A 2-cycle is called a transposition and cycles $(i_1, \ldots, i_k), (j_1, \ldots, j_l)$ are disjoint if $\{i_1, \ldots, i_k\} \cap \{j_1, \ldots, j_l\} = \emptyset$. Furthermore:

- A k-cycle has order k,
- $(i_1, \ldots, i_k) = (i_2, \ldots, i_k, i_1),$
- $(i_1, \ldots, i_k)^{-1} = (i_k, \ldots, vi_1),$
- $(i_1,\ldots,i_k)=(i_1,i_2)(i_2,i_3)\cdots(i_{k-1},i_k),$
- Disjoint cycles commute.

13.2 Permutations as Disjoint Cycles

For n in \mathbb{N} , each element of S_n can be written as a product of disjoint cycles with lengths summing to n which is unique up to reordering. Every element can also be written as a product of transpositions.

From this, we can see that S_n is generated by the set of transpositions on 1, $\{(1,2),(1,3),\ldots,(1,n)\}$ as (1,i)(1,j)(1,i)=(i,j).

13.3 Cycle Type

For f in S_n written as a product of disjoint cycles with lengths summing to n, we take l_1, \ldots, l_k be the lengths of these cycles in descending order. The k-tuple (l_1, \ldots, l_k) is the cycle type of f.

From this, we can see that $|f| = \text{lcm}(l_1, \dots, l_k)$.

13.4 Conjugacy in S_n

For all g in S_n with i_1, \ldots, i_k distinct elements of [n]:

$$g(i_1,\ldots,i_k)g^{-1}=(g(i_1),\ldots,g(i_k)).$$

Proof. For k = 1, $(i_1) = e$ so $g(i_1)g^{-1} = gg^{-1} = e = (g(i_1))$. For k = 2 and x in $S_n \setminus \{g(i_1), g(i_2)\}$:

$$g(i_1, i_2)g^{-1}(g(i_1)) = g(i_2),$$

$$g(i_1, i_2)g^{-1}(g(i_2)) = g(i_1),$$

$$g(i_1, i_2)g^{-1}(x) = gg^{-1}(x)$$

$$= x,$$

so $g(i_1, i_2)g^{-1} = (g(i_1), g(i_2))$. For k > 2, $(i_1, \dots, i_k) = (i_1, i_2) \cdots (i_{k-1}, i_k)$ so:

$$g(i_1, \dots, i_k)g^{-1} = g(i_1, i_2) \cdots (i_{k-1}, i_k)g^{-1}$$

$$= g(i_1, i_2)g^{-1}g \cdots g^{-1}g(i_{k-1}, i_k)g^{-1}$$

$$= (g(i_1), g(i_2)) \cdots (g(i_{k-1}), g(i_k))$$

$$= (g(i_1), \dots, g(i_k)),$$

as required.

13.5 Conjugacy and Cycle Type

For x, y in S_n , x and y are conjugate if and only if they have the same cycle type.

Proof. We take the cycle type of x be (l_1, \ldots, l_k) so:

$$x = (a_1^{(1)}, \dots, a_{l_1}^{(1)}) \cdots (a_1^{(k)}, \dots, a_{l_k}^{(k)}),$$

with each value in [n] corresponding to some $a_j^{(r)}$. For g in S_n :

$$gxg^{-1} = g(a_1^{(1)}, \dots, a_{l_1}^{(1)})g^{-1}g \cdots g^{-1}g(a_1^{(k)}, \dots, a_{l_k}^{(k)})g^{-1}$$
$$= (g(a_1^{(1)}), \dots, g(a_{l_1}^{(1)})) \cdots (g(a_1^{(k)}), \dots, g(a_{l_k}^{(k)})),$$

with the disjoint property of the cycles preserved as the contrary would contradict the disjoint property of the cycles of x. Thus, all conjugates of x have the same cycle type as x.

For y in S_n with cycle type equal to (l_1, \ldots, l_k) :

$$y = (b_1^{(1)}, \dots, b_{l_1}^{(1)}) \cdots (b_1^{(k)}, \dots, b_{l_k}^{(k)}),$$

with each value in [n] corresponding to some $b_j^{(r)}$. We define g in S_n by $g(a_i^{(j)}) = b_i^{(j)}$ and see that:

$$gxg^{-1} = y,$$

using the previous result.

13.6 Parity of Transposition Representations

For x in S_n with $x = t_1 \cdots t_r = s_1 \cdots s_k$ and each t_i , s_i a transposition, $r \equiv k \mod 2$.

13.7 Signature

For x in S_n with $x = t_1 \cdots t_r$ and each t_i a transposition, the signature of x is defined as:

$$\varepsilon(x) = \begin{cases} 1 & r \equiv 0 \bmod 2 \\ -1 & \text{otherwise.} \end{cases}$$

13.8 The Signature Homomorphism

For n in \mathbb{N} , $\varepsilon: S_n \to (\{-1,1\}, \times)$ is a homomorphism.

Proof. For x, y in S_n with $x = x_1 \cdots x_r$ and $y = y_1 \cdots y_s$ where each x_i and y_j is a transposition:

$$\varepsilon(xy) = \varepsilon(x_1 \cdots x_r y_1 \cdots y_s)$$

$$= (-1)^{r+s}$$

$$= (-1)^r (-1)^s$$

$$= \varepsilon(x)\varepsilon(y).$$

13.9 Alternating Groups

We define the alternating group A_n to be the set of even permutations in S_n . Thus, $A_n \leq S_n$.

Proof.
$$A_n = \operatorname{Ker}(\varepsilon)$$
.

13.10 Subgroups of Index 2 in S_n

For n > 1, $H \leq S_n$ has index 2 if and only if $H = A_n$.

Proof. (\Rightarrow) We know that $H \subseteq S_n$ so we consider S_n/H which must have order 2 as H has index 2. Thus, $S_n/H \cong C_2 \cong (\{-1,1\},\times)$ so there's a surjective homomorphism π from S_n to $(\{-1,1\},\times)$ with kernel H. For t_1 , t_2 transpositions, there exists g such that $t_1 = g^{-1}t_2g$ so:

$$\pi(t_1) = \pi(g)^{-1}\pi(t_2)\pi(g)$$

$$= \pi(t_2)\pi(g)^{-1}\pi(g)$$

$$= \pi(t_2),$$
(({-1,1}, ×) is abelian)

meaning π takes the same value k on all transpositions. The set of transpositions T generates S_n so $\pi(T)$ generates $(\{-1,1\},\times)$ but $\pi(T)=\{k\}$ so k=-1. Thus, for $x=x_1\cdots x_r$ a product of transpositions, $\pi(x)=(-1)^r=\varepsilon(x)$ so $\pi=\varepsilon$. As such, $H=\mathrm{Ker}(\pi)=\mathrm{Ker}(\varepsilon)=A_n$.

(
$$\Leftarrow$$
) By the homomorphism theorem, $\operatorname{Im}(\varepsilon) \cong S_n/\operatorname{Ker}(\varepsilon) = S_n/A_n$. So, $[S_n:A_n]=|\{-1,1\}|=2$.

13.11 Alternating Groups generated by 3-Cycles

For n in \mathbb{N} , A_n is generated by its subset of 3-cycles.

Proof. Each element of A_n is a product of an even number of transpositions, so a product of permutations of the form (i,j)(k,l). It suffices to show that these permutations must be 3-cycles.

Case 1 If $\{i, j\} = \{k, l\}$, as (i, j) = (j, i), (i, j)(k, l) = e, a product of zero 3-cycles.

Case 2 If $|\{i,j\} \cap \{k,l\}| = 1$, we take j = k without loss of generality so:

$$(i,j)(k,l) = (i,j)(j,l)$$

= (i,j,l) ,

a 3-cycle.

Case 3 If i, j, k, and l are all distinct then:

$$(i, j)(k, l) = (i, j)(j, k)(j, k)(k, l)$$

= $(i, j, k)(j, k, l)$,

a product of two 3-cycles.

14 Group Actions

For a group G and a non-empty set X, an action of G on X is a homomorphism $\varphi: G \to \operatorname{Sym}(X)$. We say that:

- the action is faithful if φ is injective,
- the action is transitive if for all x, y in X, there exists g in G such that $\varphi(g)(x) = y$.

We will abbreviate $\varphi(g)(x)$ to $g \cdot x$.

14.1 The Orbit and Stabiliser

For a group G acting on a set X, for each x in X:

$$Orb_G(x) = G \cdot x = \{g \cdot x : g \in G\},$$

$$Stab_G(x) = G_x = \{g \in G : g \cdot x = x\},$$

are the orbit and stabiliser of x, respectively.