Computation of emission probability

Hidden

Observed

Sates
$$OS1 \rightarrow OS2 \rightarrow OS3 \rightarrow Os4 \rightarrow OS5 \rightarrow OS6 \rightarrow OS7 \rightarrow OS8 \rightarrowOSN$$

where HS(i) is pos tags and OS(i) is given word

emission probability is calculated as P(word/tag) = count(word and tag) / count(tag) we will do these for all words present in training data and letter used it for testing that is for observed words

so we will have **emission_matrix** as

	tag1	tag2	tag3	tag4	•	•	•	tagN
word1	count(wor d1 and tag1) / count(tag 1)	count(wor d1 and tag2) / count(tag 2)	count(wor d1 and tag3) / count(tag 3)	count(wor d1 and tag4) / count(tag 4)		•		count(wor d1 and tagN) / count(tag N)
word2	count(wor d2 and tag1) / count(tag 1)	count(wor d2 and tag2) / count(tag 2)	count(wor d2 and tag3) / count(tag 3)	count(wor d2 and tag4) / count(tag 4)		•		count(wor d2 and tagN) / count(tag N)
word3	•	•	•	•	•	•	•	
word4	•	•	•			•		
			•			•		
	•	•	•		•	•	•	•
		•	•		•	•	•	
wordN	count(wor dN and tag1) / count(tag 1)	count(wor dN and tag2) / count(tag 2)	count(wor dN and tag3) / count(tag 3)	count(wor dN and tag4) / count(tag 4)	•	•		count(wor dN and tagN) / count(tag N)

wordi and tagi belongs to training data

Computation of transition probability

Here we will generate the transition probability matrix it is tag x tag matrix and each value represents the p(tag_i/tag_j)=count(tag_i and tag_j) / count(tag_j)

transition_matrix

	tag1	tag2	•	tagN
tag1	count(tag1 and tag1) / count(tag1)	count(tag1 and tag2) / count(tag2)	•	count(tag1 and tagN) / count(tagN)
tag2				
tagN	count(tagN and tag1) / count(tag1)	count(tagN and tag2) / count(tag2)		count(tagN and tagN) / count(tagN)

	ADJ	VERB	NUM	DET	PRON	PRT	CONJ	ADV		ADP	NOUN	Х
ADJ	0.056893	0.018291	0.005378	0.006028	0.004727	0.020654	0.039116	0.111971	0.012057	0.092002	0.632403	0.000480
VERB	0.055460	0.182813	0.007285	0.152601	0.066860	0.071045	0.015127	0.088674	0.102953	0.164836	0.092136	0.000209
NUM	0.056691	0.046654	0.019145	0.012825	0.007435	0.004833	0.040892	0.289777	0.018959	0.128625	0.373978	0.000186
DET	0.222712	0.068682	0.009055	0.005476	0.009450	0.002353	0.000613	0.011546	0.016073	0.008679	0.643502	0.001858
PRON	0.008877	0.696104	0.000828	0.018168	0.006255	0.024608	0.011913	0.117060	0.054827	0.052160	0.009153	0.000046
PRT	0.019644	0.580802	0.004215	0.081915	0.008510	0.014156	0.015429	0.096867	0.045650	0.102275	0.030539	0.000000
CONJ	0.103482	0.218757	0.021771	0.144931	0.081990	0.027632	0.000279	0.022399	0.092317	0.070825	0.214988	0.000628
ADV	0.035533	0.091510	0.018665	0.140859	0.129119	0.040923	0.087010	0.148970	0.081794	0.101348	0.122857	0.001396
	0.125768	0.225868	0.012744	0.065483	0.054004	0.030143	0.020246	0.203091	0.091649	0.140591	0.030324	0.000090
ADP	0.077002	0.040448	0.028783	0.465660	0.083272	0.015807	0.002223	0.007960	0.016358	0.020690	0.241417	0.000380
NOUN	0.012170	0.171115	0.009190	0.015968	0.019424	0.018152	0.060312	0.288262	0.028780	0.243172	0.133104	0.000352
X	0.006173	0.078189	0.000000	0.008230	0.002058	0.016461	0.024691	0.298354	0.014403	0.039095	0.067901	0.444444

here tagi belongs to training data it follows markov property that is t th state depends on t-1 th state

computation of initial probabilities of hidden state(Pi)

it is calculated from transition_matrix

Repeated Matrix multiplication

 $pi = lim transition_matrix \land n$

 $n \rightarrow inf$

but here we had take n as 10^2

but we can use **Monto carlo** or **left eigen vector** to compute the **pi**

Accuracy:

Algorithm Accuracy: 90.04975124378109

Trigram

Emission probabilities

	tag1&tag	tag1&tag 2	•					tagN&tag N
word1	count(wor d1 and tag1&tag 1) / count(tag 1&tag1)	count(wor d1 and tag1&tag 2) / count(tag 1&tag2)	•			•	•	count(wor d1 and tagN&tag N) / count(tag N&tagN)
word2	count(wor d2 and tag1&tag 1) / count(tag 1&tag1)	count(wor d2 and tag1&tag 2) / count(tag 1&tag2)	•			•	•	count(wor d2 and tagN&tag N) / count(tag N&tagN)
word3								
word4					•	•	•	
			•			•	•	
			•					
•	•	•	•	•	•	•	•	
wordN	count(wor dN and tag1&tag N) / count(tag 1&tag1)	count(wor dN and tag1&tag 2) / count(tag 1&tag2)	•					count(wor dN and tagN&tag N) / count(tag N&tagN)

tarnsition probabilities

	tag1&tag1	tag1&tag2		tagN&tagN
tag1 count(tag1 and tag1&tag1) / count(tag1&tag 1)		count(tag1 and tag1&tag2) / count(tag1&tag 2)		count(tag1 and tagN&tagN) / count(tagN&tagN)
tag2				
tagN	count(tagN and tag1&tag1) / count(tag1&tag 1)	count(tagN and tag1&tag2) / count(tag1&tag 2)		count(tagN and tagN&tagN) / count(tagN&tagN)