שיעור 2 טורים חיוביים וטורים כלליים

2.1 סדרות חשבוניות

הגדרה 2.1 סדרה חשבונית

- את גודל הוא גודל קבוע. את סדרה חשבונית היא סדרה של מספרים שבה ההפרש בין כל איבר לקודמו הוא גודל קבוע. את הפרש הסדרה מסמנים באות d.
 - (ב) באופן כללי אם נתונה סדרה חשבונית

$$a_1, a_2, a_3, \ldots$$

שהפרשה d, אזי מתקיים

$$a_2 - a_1 = d$$
, $a_3 - a_2 = d$, $a_4 - a_3 = d$,

וכו'.

(ג) הנוסחה לאיבר הכללי בסדרה חשבונית היא

$$a_n = a_1 + (n-1)d$$
.

כלל 2.1 הסכום של סדרה חשבונית

נסמן את סכום S_n -ב בסדרה ברים הראשונים האיברים n סכום את נסמן

$$S_n = a_1 + a_2 + a_3 + \ldots + a_n$$
.

הטכום של a_1 האיברים הראשונים בסדרה חשבונית שהפרשה d ואיבר הרשאונה שלה בסדרה הגוסחה הסכום של

$$S_n = \frac{n}{2} \left(a_1 + a_n \right)$$

או שקול

$$S_n = \frac{n}{2} (2a_1 + (n-1)d)$$
.

2.2 סדרה הנדסית

הגדרה 2.2 סדרה הנדסית

- (א) סדרה הנדסית היא סדרה של מספרים שבה המנה של כל איבר באיבר הקודם לו היא גודל קבוע. את מנת הסדרה מסמנים באות g.
 - (ב) באופן כללי אם נתונה סדרה הנדסית

$$a_1, a_2, a_3, \ldots$$

ומנה הסדרה היא q, אזי מתקיים

$$\frac{a_2}{a_1} = q$$
, $\frac{a_3}{a_2} = q$, $\frac{a_4}{a_3} = q$,

וכו'.

מתקיים q מתקיים שלה $a_1\,,\;a_2\,,\;a_3\,,\dots$ מתקיים (ג)

$$a_1 \neq 0$$
, $q \neq 0$.

כל איבר בסדרה הנדסית (פרט לראשון) מתקבל ע"י כפל של האיבר הקודם לו במנה q, כלומר מתקיים מתקיים

$$a_1 = qa_2$$
, $a_3 = qa_2$, $a_4 = qa_3$,

וכו'.

(ה) הנוסחה לאיבר הכללי בסדרה הנדסית היא

$$a_n = q^{n-1}a_1 .$$

כלל 2.2 התנהגות של סדרה הנדסית

ניתן לקבוע אם סדרה הנדסית היא סדרה הנדסית עולה, סדרה הנדסית יורדת או סדרה הנדסית שאינה עולה ואינה יורדת לפי הערך של המנה q ושל האיבר הראשון a_1

- :q>1 עבור (א)
- אם עולה, למשל סדרה הנדסית עולה, למשל (1) אם $a_1>0$

$$3, 15, 45, \dots$$

למשל יורדת, למשל אז הסדרה היא סדרה הנדסית יורדת, למשל (2)

$$-3, -6, -12, \dots$$

- 0 < q < 1 עבור (ב)
- אז הסדרה היא סדרה הנדסית יורדת, למשל (1) אם $a_1>0$

למשל, עולה, הנדסית סדרה היא הסדרה איז $a_1 < 0$ אם (2)

$$-36, -12, -4, \dots$$

למשל עבור a < 0 עבור (ג)

$$5, -10, 20, -40, \dots$$

לוה, למשל איבריה שווים אה מתקבלת סדרה מתקבלת איבריה שווים אה לוה, למשל (ד) עבור q=1

סדרה זו גם נקרא סדרה קבועה.

כלל 2.3 הסכום של סדרה הנדסית

נסמן את סכום N האיברים הראשונים בסדרה ב-N נסמן את נסמן

$$S_N = a_1 + a_1 q + a_1 q^2 + a_1 q^3 + \ldots + a_1 q^{N-1} = \sum_{n=1}^N a_1 q^{n-1}$$
.

ייע ע"י a_1 האיברים הראשונה שלה מנדסית שמנת הסדרה היא q ואיבר הרשאונה שלה בסדרה הנוסחה הנוסחה

$$S_N = \frac{a_1 \left(1 - q^N \right)}{1 - q} \ .$$

כלל 2.4 הסכום אינסופי של סדרה הנדסית

הסכום אינסופי של טור הנדסי הוא

$$\sum_{n=1}^{\infty} a_1 q^{n-1} = \lim_{N o \infty} rac{a_1 (1-q^N)}{1-q} = egin{cases} rac{a_1}{1-q} & |q| > 1 \ rac{a_1}{1-q} & |q| < 1 \end{cases}$$

דוגמה 2.1

חשבו את
$$S_{10}=\sum\limits_{n=1}^{10}rac{1}{2^n}$$
 . $S_{\infty}=\sum\limits_{n=1}^{\infty}rac{1}{2^n}$ ו

ון:
$$q = \frac{1}{2} \ a_1 = \frac{1}{2}$$

$$S_{10} = \frac{\frac{1}{2} \left(1 - \left(\frac{1}{2} \right)^{10} \right)}{1 - \frac{1}{2}} = \frac{1023}{1024} .$$

$$S_{\infty} = \lim_{n \to \infty} \frac{\frac{1}{2} \left(1 - \left(\frac{1}{2} \right)^n \right)}{1 - \frac{1}{2}} = \lim_{n \to \infty} \left(1 - \left(\frac{1}{2} \right)^n \right) = 1 .$$

 $\sum_{n=1}^{\infty} rac{e^n}{p^{2n}}$ מתכנס הטור אילט ערכים של הפרמטר עבור אילט

פתרון:

$$\sum_{n=1}^{\infty} \frac{e^n}{p^{2n}} = \sum_{n=1}^{\infty} \left(\frac{e}{p^2}\right)^n = \sum_{n=1}^{\infty} q^n .$$

כאשר $p^2>e$ א"ג $|q|=\left|\dfrac{e}{p^2}\right|<1$ מתכנס אם $q=\dfrac{e}{p^2}$ כאשר כאשר $q=\dfrac{e}{p^2}$

$$|p| > \sqrt{e}$$
,

 $p<-\sqrt{e}$ או $p>\sqrt{e}$ כלומר הטור מתכנס עבור

2.3 טור טלסקופי

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

$$= \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= \lim_{N \to \infty} \sum_{n=1}^{N} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$= \lim_{N \to \infty} \left(1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{N} - \frac{1}{N+1}\right)$$

$$= \lim_{N \to \infty} \left(1 - \frac{1}{N+1}\right)$$

$$= 1.$$

2.4 טורים חיוביים

הגדרה 2.3 טור

ביטוי מצורה

$$\sum_{k=1}^{\infty} a_k = a_1 + a_2 + a_3 + \dots + a_n + \dots$$

נקרא **סכום אינסופי** או **טור**.

הגדרה 2.4 סכום החלקי

בטור: הראשונים הראשונים החלקי S_n של הטור יסומן ב- S_n ויוגדר כסכום של האיברים הראשונים בטור:

$$S_n = \sum_{k=1}^n a_k = a_1 + a_2 + \ldots + a_n$$
.

הגדרה 2.5 טור חיובי

הטור k מתקיים אם לכל אור מור טור נקרא הטור $\sum_{k=1}^{\infty}a_k$

$$a_k > 0$$
.

הגדרה 2.6 התכנסות

אם קיים גבול אומרים שהטור מתכנס וגבול אם מתכנס אומרים שהטור אומרים אומ

$$S = \lim_{n \to \infty} S_n = \lim_{n \to \infty} (a_1 + a_2 + \ldots + a_n) .$$

. מתבדר שהטור שהטור אינסופי) אומרים שהטור מתבדר במקרה כאשר גבול של אינו קיים (או הוא אינסופי)

דוגמה 2.3

נתון הטור

$$1 + 2 + 3 + \ldots + n + \ldots$$

קבעו אם הטור מתכנס.

פתרון:

הטור מתבדר:

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{n(n+1)}{2} \to \infty$$

דוגמה 2.4

הטור

$$1 + q + q^2 + \ldots + q^{n-1} + \ldots$$

. הטור מתכנס של ערכים ערכים לאיזה מנה q הטור מתכנס. קבעו לאיזה מנה טור הנדסי בעל מנה

פתרון:

לפי נוסחה 2.3,

$$S_n = \frac{1 - q^n}{1 - q} \ .$$

לכן

$$\lim_{n \to \infty} S_n = \lim_{n \to \infty} \frac{1 - q^n}{1 - q}$$

ולכן הטור מתכנס אם ורק אם |q| < 1 ובמקרה זה

$$S = \frac{1}{1 - q} \ .$$

לרוב הטורים נוסחאות מדויקות אינן קיימות. במקרים אלה ניתן להעריך את הסכומים החלקיים בעזרת אינטגרל ע"י שימוש במשפט הבא.

2.5 תנאי הכרחי להתכנסות ותנאי מספיק להתבדרות

משפט 2.1 תנאי הכרחי להתכנסות טור

$$\displaystyle \lim_{n o \infty} a_n = 0$$
 אם הטור $\displaystyle \sum_{k=1}^\infty a_k$ מתכנס, אזי

הוכחה: שים לב שלכל
$$n$$
 טבעי, $a_n=S_n-S_{n-1}$ ולפיו אם קיים $a_n=S_n-S_{n-1}$ כך ש- S סופי, אז
$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}(S_n-S_{n-1})=S-S=0\;.$$

משפט 2.2 תנאי מספיק להתבדרות טור

. אם $\sum\limits_{k=1}^{\infty}a_k$ אז הטור או $\lim\limits_{n o \infty}a_n
eq 0$ אם

כלל 2.5

$$\lim_{n \to \infty} a_n = 0 \qquad \Leftrightarrow \qquad \lim_{n \to \infty} |a_n| = 0$$

ולכן בבדיקה המתאימה אינם חשובים סימני איבריו של הטור.

דוגמה 2.5

קבעו אם הטורים הבאים מתכנסים ומתבדרים:

$$\sum_{n=1}^{\infty} (-1)^n$$
 .1

$$\sum\limits_{n=1}^{\infty}n$$
 .2

$$\sum_{n=1}^{\infty} rac{n^2}{1+n^2}$$
 .3

פתרון:

$$a_n = (-1)^n$$
 .1

. לכן הטור מתבדר
$$\lim_{n \to \infty} |a_n| \neq 0$$

$$a_n = n$$
 .2

. לכן הטור מתבדר
$$\lim_{n \to \infty} |a_n| \neq 0$$

$$a_n = \frac{n^2}{1+n^2} \ . \mbox{.}$$
 .
$$\lim_{n \to \infty} |a_n| = 1 \neq 0$$

2.6 משפטים בסיסיים על התכנסות טורים

2.3 משפט

- 1. הורדת מספר סופי של איברים מהטור אינה משפיעה על התכנסותו או התבדרותו.
- .מתכנס. ב $\sum_{n=1}^\infty c\cdot a_n$ מחכנס אז מחכנס אז אם מחפר ממשי שונה מאפס, אז אם מחפר $c\in\mathbb{R}$ מחכנס.

אם
$$\sum\limits_{n=1}^{\infty} c \cdot a_n$$
 מתבדר אז מתבדר מתקיים $\sum\limits_{n=1}^{\infty} a_n$

$$\sum_{n=1}^{\infty} c \cdot a_n = c \cdot \sum_{n=1}^{\infty} a_n .$$

מתכנס ומתקיים $\sum\limits_{n=1}^{\infty}\left(a_n+b_n\right)$ אם הטור ב $\sum\limits_{n=1}^{\infty}b_n$ -ו ומתכנסים, אז הם הטורים .3

$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n.$$

.(טאומרים מתכנס הטור מתכנס מתכנס הא גם בהחלט). מתכנס אז גם מתכנס אז גם בהחלט מתכנס מתכנס הטור $\sum_{n=1}^{\infty} |a_n|$

דוגמה 2.6

. קבעו אם הטור
$$\sum_{n=1}^{\infty} \frac{3 \cdot 2^n + 4 \cdot 5^n}{10^n}$$
 מתכנס

פתרון:

לפי משפטים 2 ו 3:

$$\sum_{n=1}^{\infty} \frac{3 \cdot 2^n + 4 \cdot 5^n}{10^n} = 3 \cdot \sum_{n=1}^{\infty} \frac{2^n}{10^n} + 4 \cdot \sum_{n=1}^{\infty} \frac{5^n}{10^n}$$

$$= 3 \cdot \sum_{n=1}^{\infty} \left(\frac{1}{5}\right)^n + 4 \cdot \sum_{n=1}^{\infty} \left(\frac{1}{2}\right)^n$$

$$= 3 \cdot \frac{\frac{1}{5}}{\frac{4}{5}} + 4 \cdot 1$$

$$= 3 \cdot \frac{1}{4} + 4$$

$$= \frac{19}{4} .$$

. קבעו אם הטור
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 מתכנס

בתרון:

לפי משפטים 4: הטור $\sum\limits_{n=1}^{\infty} \frac{(-1)^n}{n^2}$ מתכנס לכן גם הטור $\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$ מתכנס.

2.7 מבחן האינטגרל להתכנסות

משפט 2.4 מבחן האינטגרל להתכנסות של טורים חיוביים

 $x \geq 1$ מונוטונית יורדת בתחום f(x) אם פונקציה חיובית

-ש מתכנס, כך אז
$$S=\sum\limits_{k=1}^{\infty}f(k)$$
 מתכנס מתכנס, כך ש $\int_{1}^{\infty}dx\,f(x)$ אם (1)

$$\int_{1}^{\infty} dx f(x) \le S \le \int_{1}^{\infty} dx f(x) + f(1) .$$

. מתבדר
$$\sum_{k=1}^{\infty} f(k)$$
 אם $\int_{1}^{\infty} dx \, f(x)$ מתבדר אז (2)

 $\int_{1}^{\infty}dx\,f(x)$ אמיתי ההעכנסות האינטגרל שקולה להתכנסות שקולה $\sum_{k=1}^{\infty}f(k)$ אמיתי

$$\int_{1}^{n+1} f(x) \, dx \le f(1) + f(2) + \ldots + f(n)$$

. בהתרשים מעל הקו מעל השטחים של השטחים של שווה לסכום שווה $f(1) + f(2) + \ldots + f(n)$ בגלל ש

מאותה מידה.

$$f(2) + f(3) + \ldots + f(n) \le \int_{1}^{n} f(x) dx$$

בגלל ש- מתחת הקו כמתואר השטחים של השטחים של החלבנים בהתרשים שווה $f(2)+f(2)+\ldots+f(n)$ בגלל ש-

הפונקציה חיובית לכן

$$f(1) + f(2) + f(3) + \ldots + f(n) \le f(1) + \int_{1}^{n} f(x) dx$$
.

בסה"כ נקבל את אי-השוויון

$$\int_{1}^{n+1} f(x) dx \le f(1) + f(2) + f(3) + \dots + f(n) \le f(1) + \int_{1}^{n} f(x) dx.$$

נקח את הגבול $n o \infty$ ונקבל

$$\int_{1}^{\infty} f(x) \, dx \le \sum_{k=1}^{\infty} f(k) \le f(1) + \int_{1}^{\infty} f(x) \, dx \, .$$

דוגמה 2.8

קבעו אם הטור

$$S = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$$

מתכנס ואם כך מהו הערך של הטור.

פתרון: $f(k) = \frac{1}{k^2} \, ,$ יהי

$$\int_{1}^{\infty} dx \, f(x) = \int_{1}^{\infty} dx \, \frac{1}{x^{2}} = \left[-\frac{1}{x} \right]_{1}^{\infty} = 1 \ .$$

לכן לפי מבחן האינטגרל במשפט 2.4 לעיל הטור מתכנס, ו-

קבעו אם הטור

$$S = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$$

מתכנס ואם כך מהו הערך של הטור.

פתרון: $f(k) = \frac{1}{k} \, \, \mbox{``in'} \label{eq:fk}$

$$\int_{1}^{n+1} dx \, f(x) = \int_{1}^{n+1} dx \, \frac{1}{x} = [\ln x]_{1}^{n+1} = \ln(n+1).$$

. אינטגרל במשפט 2.4 מתכנס לפי מבחן האינטגרל ולכן הטור $n o \infty$ ולכן מתכנס אינו מתכנס אינו מתכנס כאשר

דוגמה 2.10

קבעו אם הטור

$$\sum_{k=1}^{\infty} \frac{1}{k^p}$$

מתכנס או לא.

$$f(k)=rac{1}{k^p}$$
יהי

$$\int_{1}^{\infty} dx f(x) = \int_{1}^{\infty} dx \frac{1}{x^{p}} = \left[\frac{x^{1-p}}{1-p}\right]_{1}^{\infty}$$

מתכנס האינטגרל מתכנס אם p>1 ומתבדר אם p>1. לכן לפי מבחן האינטגרל במשפט 2.4 לעיל, הטור p>1p < 1 אם p > 1 אם

דוגמה 2.11

קבעו אם הטור

$$\sum_{n=1}^{\infty} \frac{n^2 + 2^n}{3^n \cdot n^3}$$

מתכנס.

בתרון: $f(x) = \frac{x^2 + 2^x}{3^x \cdot x^3}$ נרשום נרשום $f(x) = \frac{x^2 + 2^x}{3^x \cdot x^3}$

$$f'(x) = \frac{(2x + \ln 2 \cdot 2^x) \cdot 3^x \cdot x^3 - (x^2 + 2^x)(\ln 3 \cdot 3^x \cdot x^3 + 3^x \cdot 3x^2)}{3^{2x}x^6}$$

$$= \frac{(2x + \ln 2 \cdot 2^x) \cdot x - (x^2 + 2^x)(\ln 3 \cdot x + 3)}{3^xx^4}$$

$$= \frac{-x^2 - (\ln 3 - \ln 2)x \cdot 2^x - 3 \cdot 2^x - \ln 3 \cdot 2^x \cdot x^3}{3^xx^4} .$$

. מתכנס הכנס אם $\int_{1}^{\infty}f(x)$ מתכנס אם לכן הטור מונוטונית יורדת. לכן לכן לכן לכן f'<0

$$\int_{1}^{\infty} \frac{x^{2} + 2^{x}}{3^{x} \cdot x^{3}} dx = \int_{1}^{\infty} \frac{1}{3^{x} \cdot x} dx + \int_{1}^{\infty} \frac{2^{x}}{3^{x} \cdot x^{3}} dx$$

$$< \int_{1}^{\infty} \left(\frac{1}{3}\right)^{x} dx + \int_{1}^{\infty} \left(\frac{2}{3}\right)^{x} dx$$

$$= \left[\frac{\left(\frac{1}{3}\right)^{x}}{\ln\left(\frac{1}{3}\right)} + \frac{\left(\frac{2}{3}\right)^{x}}{\ln\left(\frac{2}{3}\right)}\right]_{1}^{\infty}$$

$$= \left[-\frac{1}{3} \cdot \frac{1}{\ln\left(\frac{1}{3}\right)} - \frac{2}{3} \cdot \frac{1}{\ln\left(\frac{2}{3}\right)}\right]$$

לכן הטור מתכנס.

דוגמה 2.12

קבעו אם הטור

$$\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln n}$$

מתכנס.

פתרון:

נרשום $f(x)=\frac{1}{x\cdot \ln x}$. לכן הטור מתכנס רק אם האינטגרל . $f(x)=\frac{1}{x\cdot \ln x}$ מתכנס. מתכנס.

$$\int_{2}^{\infty} \frac{1}{x \cdot \ln x} dx = \lim_{R \to \infty} \int_{2}^{R} \frac{1}{x \cdot \ln x} dx$$

$$= \lim_{R \to \infty} \int_{e^{2}}^{e^{R}} \frac{1}{t} dt$$

$$= \lim_{R \to \infty} \left[\ln t \right]_{e^{2}}^{e^{R}}$$

$$= \lim_{R \to \infty} \left[R - 2 \right]$$

 $=\infty$.

לכן הטור מתבדר.

2.8 מבחן השוואה

משפט 2.5 מבחן השוואה

יהיו b_n , סדרות חיוביות כך ש- $a_n \leq b_n$ לכל $a_n \leq a_n$ אזי סדרות חיוביות כך ש

.מתכנס אז $\sum\limits_{n=1}^{\infty}a_n$ מתכנס מתכנס $\sum\limits_{n=1}^{\infty}b_n$

מתבדר.
$$\sum\limits_{n=1}^{\infty}b_n$$
 מתבדר אז $\sum\limits_{n=1}^{\infty}a_n$ מתבדר.

. קבעו אם הטור
$$\sum_{n=1}^{\infty} \frac{1}{n \cdot 2^n}$$
 מתכנס

פתרון:

$$\sum_{n=1}^\infty \frac{1}{n \cdot 2^n} < \sum_{n=1}^\infty \frac{1}{2^n}$$
 נבדוק התכנסות של הטור $\sum_{n=1}^\infty \frac{1}{2^n}$. האינטגרל הטור $\sum_{n=1}^\infty \frac{1}{2^n}$ מתכנס, לכן לפי מבחן האינטגרל הטור $\sum_{n=1}^\infty \frac{1}{n \cdot 2^n}$ מתכנס, ולכן לפי מבחן השוואה הטור $\sum_{n=1}^\infty \frac{1}{n \cdot 2^n}$ מתכנס, ולכן לפי מבחן השוואה הטור

דוגמה 2.14

קבעו אם הטור
$$\displaystyle \sum_{n=1}^{\infty} \frac{1}{\ln n}$$
 מתכנס.

פתרון:

$$\sum_{n=1}^{\infty} \frac{1}{\ln n} > \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

. מתבדר $\sum_{n=1}^{\infty} \frac{1}{\ln n}$ מתבדר מבחן לפן לפי

דוגמה 2.15

פתרון:

לכן
$$n > 3$$
 לכל $2^n < n! < n^n$

מכאן אם p < 0 (כלומר p > 1 הטור מתכנס. אם 1 - p > 1 (כלומר $p \geq 0$ הטור מתבדר.

משפט 2.6 מבחן השוואה הגבולי

דוגמה 2.16

קבעו אם הטור
$$\displaystyle \sum_{n=1}^{\infty} \sin{(5^{-n})}$$
 מתכנס.

פתרון:

$$\lim_{n\to\infty}\frac{\sin(5^{-n})}{5^{-n}}=\lim_{x\to0}\frac{\sin(x)}{x}=1$$

$$.\sum_{n=1}^\infty\left(5^{-n}\right)=\sum_{n=1}^\infty\left(\frac{1}{5}\right)^n$$
 מתכנס יחד עם
$$\sum_{n=1}^\infty\sin\left(5^{-n}\right)$$

דוגמה 2.17

קבעו אם הטור
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin\left(\frac{\pi}{n}\right)$$
 מתכנס.

פתרון:

$$\lim_{n\to\infty}\frac{\frac{1}{\sqrt{n}}\sin\left(\frac{\pi}{n}\right)}{\frac{1}{\sqrt{n}}\cdot\frac{\pi}{n}}=\lim_{n\to\infty}\frac{\sin\left(\frac{\pi}{n}\right)}{\frac{\pi}{n}}=\lim_{x\to0}\frac{\sin(x)}{x}=1$$

$$:\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}\cdot\frac{\pi}{n}\text{ עם}\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}\sin\left(\frac{\pi}{n}\right)$$
 לכן
$$\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}}\cdot\frac{\pi}{n}=\frac{1}{\pi}\sum_{n=1}^{\infty}\frac{1}{n^{3/2}}$$

מתכנס לכן גם
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sin\left(\frac{\pi}{n}\right)$$
 מתכנס.

2.9 שארית הטור

הגדרה 2.7 שארית הטור

הטור

$$\sum_{k=n+1}^{\infty} a_n$$

$$\sum_{k=1}^n a_n$$
 אור שארית- (או "זנב") או n -שארית- נקרא

 R_n -ם אם או נסמן אז מתכנס מתכנס או השארית מתכנס אז אם טור השארית

אם טור
$$\sum\limits_{k=1}^{\infty}a_{k}$$
 מתכנס אזי

$$R_n = S - S_n$$

ולכן

$$\lim_{n\to\infty} R_n = 0 \ .$$

2.10 מבחן דלמבר ומבחן קושי

(d'Alembert) משפט 2.7 מבחן דלמבר

נתון הטור $\sum\limits_{k=0}^{\infty}a_{k}$ אם קיים הגבול

$$q = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

אז

- . אם q<1 אם .
- . אם q>1 הטור מתבדר.
- . אם q=1 המבחן דלמבר אינו נותן תשובה על התכנסות הטור.

משפט 2.8 מבחן קושי (Cauchy)

נתון הטור $\sum\limits_{k=0}^{\infty}a_{k}$ אם קיים הגבול

$$q = \lim_{n \to \infty} \sqrt[n]{a_n} \equiv \lim_{n \to \infty} a_n^{1/n}$$

 $(a_n$ של n-ם השורש האומרים שקולים שקולים $\sqrt[n]{a_n} \equiv a_n^{1/n}$ של אז

- .1 אם q < 1 אם .1
- . אם q>1 הטור מתבדר.
- . אם q=1 המבחן קושי אינו נותן תשובה על התכנסות הטור.

דוגמה 2.18 מבחן דלמבר

קבעו אם הטור

$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

מתכנס.

פתרון:

שים לב האיבר ה- בסדרה הוא

$$a_n = \frac{n}{2^n}$$

נשתמש במבחן דלמבר:

$$\begin{split} \lim_{n\to\infty} \frac{a_{n+1}}{a_n} &= \lim_{n\to\infty} \frac{\frac{n+1}{2^{n+1}}}{\frac{n}{2^n}} \\ &= \lim_{n\to\infty} \frac{n+1}{n} \cdot \frac{2^n}{2^{n+1}} \\ &= \lim_{n\to\infty} \frac{n+1}{n} \cdot \frac{1}{2} \\ &= \frac{1}{2} < 1 \ . \end{split}$$

לכן הטור מתכנס.

נשתמש במבחן קושי:

$$\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{\frac{n}{2^n}}$$

$$= \lim_{n \to \infty} \frac{\sqrt[n]{n}}{2}$$

$$= \frac{1}{2} < 1.$$

דוגמה 2.19 מבחן קושי

קבעו אם הטור

$$\sum_{n=1}^{\infty} n^{-n}$$

מתכנס.

פתרון:

שים לב האיבר ה- n בסדרה הוא

$$a_n = \frac{1}{n^n}$$

נשתמש במבחן קושי:

$$\lim_{n \to \infty} \sqrt[n]{n^{-n}} = \lim_{n \to \infty} \sqrt[n]{\frac{1}{n^n}}$$

$$= \lim_{n \to \infty} \sqrt[n]{\left(\frac{1}{n}\right)^n}$$

$$= \lim_{n \to \infty} \frac{1}{n}$$

$$= 0 < 1$$

.

לכן הטור מתכנס.

2.11 גבולות שימושיים

$$\lim_{n\to\infty}\sqrt[n]{n}=1 \ \mathbf{1}$$

$$\lim_{n \to \infty} \sqrt[n]{c} = 1$$
 אם $c > 0$ אם 2

$$a_k > 0$$
 אם 3

$$\lim_{n\to\infty} \sqrt[n]{a_0 + a_1 n + \ldots + a_k n^k} = 1$$

אז
$$p>0$$
 כאשר $1\leq f(n)\leq n^p$ אז 4

$$\lim_{n \to \infty} \sqrt[n]{f(n)} = 1$$

דוגמה 2.20

. קבעו אם הטור
$$\sum_{n=1}^{\infty} \frac{3^n n!}{n^n}$$
 מתכנס

פתרון:

$$\begin{split} \lim_{n \to \infty} \frac{a_{n+1}}{a_n} &= \lim_{n \to \infty} \frac{\frac{3^{n+1}(n+1)!}{(n+1)^{n+1}}}{\frac{3^n n!}{n^n}} \\ &= \lim_{n \to \infty} 3 \left(\frac{n}{n+1} \right)^n \\ &= \lim_{n \to \infty} 3 \left(1 - \frac{1}{n+1} \right)^n \\ &= \lim_{n \to \infty} 3 \left(1 - \frac{1}{n+1} \right)^{(n+1) \cdot \frac{n}{n+1}} \\ &= \frac{3}{e} > 1 \ . \end{split}$$

ולכן הטור מתבדר לפי מבחן דלמבר.

2.12 טורים כללים

הגדרה 2.8 טור כללי

טור כללי הוא טור מצורה איברים אשר כל איברו a_n לא בהכרח חיובי, אלא ישנם אינסוף איברים חיוביים טור כללי הוא טור מצורה בחיוביים איברים איברים שליליים. לדוגמא הטור

$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

הוא סוג של טור כללי הנקרא טור מחליף סימן.

הגדרה 2.9 טור מחליף סימן

טור מצורה

$$\sum_{k=1}^{\infty} (-1)^{k+1} a_k$$

שבו איברים מחליפים סימן לסירוגין נקרא טור מחליף סימן.

משפט 2.9 התכנסות של טור כללי

- מתכנס $\sum\limits_{k=1}^\infty a_k$ מתכנס שהטור $\sum\limits_{k=1}^\infty a_k$ מתכנס אז גם בהחלט בהחלט $\sum\limits_{k=1}^\infty |a_k|$ (absolutely convergent).
- ע"י מבחן לייבניץ $\sum\limits_{k=1}^\infty a_k$ מתבדר אבל $\lim\limits_{n \to \infty} |a_n| = 0$ יש להמשיך לחקור את הטור יש $\sum\limits_{k=1}^\infty |a_k|$ מתבדר אבל (Leibinz).
 - מתכנס בתנאי $\sum\limits_{n=1}^\infty a_n$ מתכנס, אומרים שהטור $\sum\limits_{n=1}^\infty a_n$ מתכנס מתכנס מתכנס בתנאי .3 (conditionally convergent)

דוגמה 2.21

קבעו אם הטור
$$\sum\limits_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$
 מתכנס.

פתרון:

. מתכנס בהחלט
$$\sum\limits_{n=1}^{\infty} \dfrac{(-1)^n}{n^2}$$
 מתכנס בהחלט $\sum\limits_{n=1}^{\stackrel{\centerdot}{\sim}} \dfrac{1}{n^2}$

. קבעו אם הטור
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$
 מתכנס

פתרון: $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ מתכנס (ראו דוגמה למטה). לכן $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ מתכנס בדר (ראו דוגמה למטה). לכן $\sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n} \right|$ בתנאי.

דוגמה 2.23

. קבעו אם הטור
$$\sum_{n=1}^{\infty} \frac{\cos^3 n}{n!}$$
 מתכנס

פתרון:

$$\left| \sum_{n=1}^{\infty} \left| \frac{\cos^3 n}{n!} \right| \le \sum_{n=1}^{\infty} \frac{1}{n!} \le \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \sum_{n=1}^{\infty} \frac{1}{n^2} \right|$$

הטור באגף הימין מתכנס (ראו דוגמה 2.8 לעיל) לכן לפי מבחן מתכנס (ראו דוגמה (ראו דוגמה $\sum_{n=1}^{\infty} \left| \frac{\cos^3 n}{n!} \right|$ מתכנס בהחלט.

(Leibniz) מבחן לייבניץ 2.13

משפט 2.10 מבחן לייבניץ (Leibniz)

מבחן לייבניץ קשור לטור מחליף סימן.

נתון טור מחליף סימן מצורה

$$S = \sum_{n=1}^{\infty} (-1)^{n+1} a_n , \qquad a_n > 0 .$$

אם הסדרה מקיימת את התנאים הבאים:

$$a_n > 0$$
 נכל

$$(n)$$
 לכל $a_{n+1} \leq a_n$ מונוטונית יורדת $\{a_n\}$

$$\lim_{n\to\infty}a_n=0 \ \mathbf{3}$$

אז הטור מתכנס ומתקיים

$$0 < S < a_1$$
,

-1

$$|S - S_N| < a_{N+1} - 1$$
.

. קבעו אם הטור מתבדר $\sum\limits_{n=1}^{\infty}(-1)^{n}\frac{1}{n}$ מתבדר או מתכנס

פתרון:

$$\sum_{n=1}^{\infty} (-1)^n a_n \ , \qquad a_n = \frac{1}{n} \ .$$

$$a_n = \frac{1}{n} > 0$$
 (1

. לכל
$$a_n$$
 לכל a_n לכל $a_{n+1}=rac{1}{n+1}<rac{1}{n}=a_n$ (2

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{n} = 0 \quad (3)$$

לכן הטור מתכנס.

. שימו לב הטור $\sum\limits_{n=1}^\infty (-1)^n\frac{1}{n}$ מתכנס מתבדר (עין דוגמה 2.9 מתבדר מתבדר (עין הטור מתבדר $\sum\limits_{n=1}^\infty \left|(-1)^n\frac{1}{n}\right|=\sum\limits_{n=1}^\infty \frac{1}{n}$ מתכנס בתנאי.

דוגמה 2.25

. קבעו אם הטור
$$\sum\limits_{n=2}^{\infty} rac{n \cdot \cos(n\pi)}{n^2 + \sqrt{n}}$$
 מתבדר או קבעו

פתרון:

$$\cos(n\pi) = (-1)^n$$

לכן ניתן לרשום את הטור בצורה

$$\sum_{n=2}^{\infty} \frac{n \cdot \cos(n\pi)}{n^2 + \sqrt{n}} = \sum_{n=2}^{\infty} (-1)^n \frac{n}{n^2 + \sqrt{n}} = \sum_{n=2}^{\infty} (-1)^n a_n , \qquad a_n = \frac{n}{n^2 + \sqrt{n}} .$$

$$n = \frac{n}{n^2 + \sqrt{n}} > 0$$
 (1)

2) כדי לבדוק מונוטוניות נגדיר פונקציה

$$f(x) = \frac{x}{x^2 + \sqrt{x}}.$$

$$f(x) = \frac{(x^2 + \sqrt{x}) - x \cdot \left(2x + \frac{1}{2\sqrt{x}}\right)}{(x^2 + \sqrt{x})^2}$$

$$= \frac{-x^2 + \frac{1}{2}\sqrt{x}}{(x^2 + \sqrt{x})^2}$$

$$f'(x) = 0$$
 \longrightarrow $x^2 = \frac{1}{2}\sqrt{x}$ \longrightarrow $x^4 = \frac{1}{4}x$ \longrightarrow $x^3 = \frac{1}{4}$ \longrightarrow $x = \frac{1}{\sqrt[3]{4}}$.

x	$x < 4^{-1/3}$	$x > 4^{-1/3}$
f'(x)	+	_
f(x)	7	¥

 $.x \geq 2$ כלומר, f עבור

לכל a_n כלומר , $n \geq 2$

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}\frac{n}{n^2+\sqrt{n}}=\lim_{n\to\infty}\frac{1}{n+\frac{1}{\sqrt{n}}}=0 \quad \textbf{(3)}$$

לכן הטור מתכנס.

:מתבדר
$$\sum\limits_{n=2}^{\infty}\left|rac{n\cdot\cos(n\pi)}{n^2+\sqrt{n}}
ight|=\sum\limits_{n=2}^{\infty}rac{n}{n^2+\sqrt{n}}$$
 מתבדר

$$\sum_{n=2}^{\infty} \frac{n}{n^2 + \sqrt{n}} = \sum_{n=2}^{\infty} \frac{1}{n + \frac{1}{\sqrt{n}}} > \sum_{n=2}^{\infty} \frac{1}{n} \to \infty$$

לכן הטור $\sum\limits_{n=2}^{\infty} rac{n \cdot \cos(n\pi)}{n^2 + \sqrt{n}}$ מתכנס בתנאי.

2.14 כיצד בודקים התכנסות טור חיובי

$\displaystyle ?\sum_{n=1}^{\infty}a_{n}$ כיצד בודקים התכנסות טור כללי 2.15

 $\sum_{n=1}^{\infty}a_n$ כיצד בודקים התכנסות טור התכנסות

. אם $\sum\limits_{n=1}^{\infty}a_n$ אז הטור $\lim\limits_{n o \infty}|a_n|
eq 0$.1

- . אם בתרשים המתואר בתרשים ע"י השיטה החיובי $\sum\limits_{n=1}^{\infty}|a_n|$ אם בודקים את התכנסות של התכנסות של בודקים את 2.
 - .3 מתכנס בהחלט. $\sum\limits_{n=1}^{\infty}a_n$ מתכנס מתכנס מתכנס מתכנס מתכנס .3
 - . מתכנס בתנאי $\sum\limits_{n=1}^{\infty}a_n$ מתכנס בתנאי מחבדר אז נשארת אפשרות האפשרות מתבדר אז מתבדר אז נשארת .4
 - טוען אשר איבנייץ אשר בשיטה בייטה בייט בייטה בייטה בייטה ביי $\sum\limits_{n=1}^{\infty}a_n$ אשר התכנסות גדוק .5

 $\sum\limits_{n=1}^{\infty}a_n$ אם סימנים איברי הטור מתחלפים והסדרה $\{|a_n|\}$ מונוטונית יורדת ושואפת לאפס אזי הטור מתכנס.

2.16 תרגילים

דוגמה 2.26

רשמו את הנוסחה לחישוב של S_n עבור הטור הנתון, בדקו את התכנסות הטור על סמך ההגדרה ומצאו את סכום הטור במקרה שהוא מתכנס.

$$\sum_{n=1}^{\infty} (2n-1)$$
 (x

$$\sum_{n=1}^{\infty} (0.1)^n$$
 (2

$$\sum_{n=1}^{\infty} \frac{2^n + 3^n}{5^n}$$
 (3)

$$\sum\limits_{n=1}^{\infty}rac{1}{\sqrt{n+1}+\sqrt{n}}$$
 (7

$$\sum\limits_{n=1}^{\infty}\ln\left(1+rac{1}{n}
ight)$$
 (ກ

פתרון:

$$S_n = \sum\limits_{k=1}^n (2k-1) = 2 \cdot \sum\limits_{k=1}^n k - \sum\limits_{k=1}^n 1$$
 שים לב,

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n$$

,2.1 פכל לפי לפי (עיין הגדרה עניין d=1 ו- $a_1=1$ עם לפי לפי סדרה סכום של סדרה אוא סכום ווי ת

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$

ולכן

$$S_n = \sum_{k=1}^{n} (2k - 1) = n(n+1) - n = n^2$$

ואז קל לראות כי

$$S = \lim_{n \to \infty} S_n \to \infty$$

לא מתכנס. ■

(2

$$S_n \sum_{k=1}^{n} (0.1)^k = 0.1 + 0.1^2 + 0.1^3 + \dots + (0.1)^n$$

הסכום 2.2 הסדרה (עין הגדרה 2.2 לעיל). הסכום חוא טור הנדסי אשר מנת הסדרה q=0.1 האיבר הראשונים מנת הסדרה עין איברים הראשונים הוא, לפי הנוסחא בכלל 2.3,

$$S_n = \frac{0.1(1 - 0.1^n)}{1 - 0.1} = \frac{0.1(1 - 0.1^n)}{0.9} = \frac{1 - 0.1^n}{9}$$
.

הטור מתכנס:

$$S = \lim_{n \to \infty} S_n = \frac{1}{9} .$$

()

$$S_n = \sum_{k=1}^n \frac{2^k + 3^k}{5^k} = \sum_{k=1}^n \frac{2^k}{5^k} + \sum_{k=1}^n \frac{3^k}{5^k} = \sum_{k=1}^n \left(\frac{2}{5}\right)^k + \sum_{k=1}^n \left(\frac{3}{5}\right)^k = \sum_{k=1}^n (0.4)^k + \sum_{k=1}^n (0.6)^k$$

אז קבלנו שני סכומים של סדרה הנדסית. עבור הראשון, $a_1=0.4$, $a_1=0.4$ (סכום של סדרה הנדסית. עבור הראשונים) לפי 2.3 הוא

$$\frac{0.4(1-0.4^n)}{1-0.4} = \frac{2(1-0.4^n)}{3}$$

ועבור השני, 2.3 משפט פך עהסכום קס עד פך q=0.6 , $a_1=0.6$ ועבור השני,

$$\frac{0.6(1 - 0.6^n)}{1 - 0.6} = \frac{3(1 - 0.6^n)}{2}$$

אז בסך הכל

$$S_n = \frac{2(1 - 0.4^n)}{3} + \frac{3(1 - 0.6^n)}{2} .$$

הטור מתכנס:

$$S = \lim_{n \to \infty} S_n = \frac{2}{3} + \frac{3}{2} = \frac{13}{6} .$$

הטור הטור הטור הטור הנדסי אבל הוא הנדסי אבל הוא הנדסי לא הנדסי לא הנדסי היורד, לפיו ניתן לבדוק הטור הטור $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n+1}+\sqrt{n}}$ העור האיבר ה- $a_n=f(n)=n$ התכנסותו ע"י מבחן האינטגרל (עין משפט 2.4).

:נבדוק אם האינטגרל נבדוק מתכנס: . $\frac{1}{\sqrt{n+1}+\sqrt{n}}$

$$\int_{1}^{\infty} f(x) \, dx = \int_{1}^{\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} \, dx$$

$$= \int_{1}^{\infty} \frac{1}{\sqrt{x+1} + \sqrt{x}} \cdot \frac{\sqrt{x+1} - \sqrt{x}}{\sqrt{x+1} - \sqrt{x}} \, dx$$

$$= \int_{1}^{\infty} \frac{\sqrt{x+1} - \sqrt{x}}{(\sqrt{x+1} + \sqrt{x}) \cdot (\sqrt{x+1} - \sqrt{x})} \, dx$$

$$= \int_{1}^{\infty} \frac{\sqrt{x+1} - \sqrt{x}}{x+1 - x} \, dx$$

$$= \int_{1}^{\infty} \frac{\sqrt{x+1} - \sqrt{x}}{1} \, dx$$

$$= \int_{1}^{\infty} \left(\sqrt{x+1} - \sqrt{x} \right) \, dx$$

$$= \left[\frac{2}{3} (x+1)^{3/2} - \frac{2x^{3/2}}{3} \right]_{1}^{\infty} \to \infty$$

בגלל שהאינטגרל לא מתכנס אז גם הטור לא מתכנס.

, כמו הסעיף הקודם, הטור הטור $\sum_{n=1}^\infty \ln\left(1+\frac{1}{n}\right)$ לא חשבוני ולא הנדסי אבל הוא טור חיובי וגם מונוטוני יורד, $a_n=n$ המונוסונת פייו מתכנסותו ע"י מבחן האינטגרל (עין משפט 2.4). הפונקציה של האיבר ה- $f(n)=\ln\left(1+\frac{1}{n}\right)$

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} \ln\left(1 + \frac{1}{x}\right) dx$$

$$= \int_{1}^{\infty} \ln\left(\frac{x+1}{x}\right) dx$$

$$= \int_{1}^{\infty} \left(\ln\left(x+1\right) - \ln\left(x\right)\right) dx$$

$$= \left[\frac{1}{x+1} - \frac{1}{x}\right]_{1}^{\infty}$$

$$= \left[\frac{-1}{x(x+1)}\right]_{1}^{\infty} \to \infty$$

בגלל שהאינטגרל לא מתכנס אז גם הטור לא מתכנס.

דוגמה 2.27

חשבו את הערך את בעזרת האינטגרל ובדקו בעזרת בעזרת בעזרת את חשבו את חשבו את בעזרת בעזרת בעזרת בעזרת אינטגרל בעזרת האינטגרל בעודת האינטגרל בעו

$$\sum_{n=1}^{\infty} rac{1}{2n-1}$$
 (x

$$\sum_{n=1}^{\infty} rac{1}{\sqrt{n}}$$
 (ع

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 (3

$$\sum_{n=1}^{\infty} rac{n}{2^n}$$
 (7

$$\sum\limits_{n=1}^{\infty}rac{1}{n\sqrt{n}}$$
 (ភ

פתרון:

א) הפונקציה עבור איבר ה- n

$$a_n = \frac{1}{2n-1} \equiv f(n)$$

נבדוק את האינטגרל המתאים:

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} \frac{1}{2x - 1} dx$$
$$= \left[\frac{1}{2} \ln(2x - 1) \right]_{1}^{\infty} \to \infty$$

ולכן לפי משפט 2.4 הטור מתבדר. ■

הינה n -הפונקציה עבור איבר ה-

$$a_n = \frac{1}{\sqrt{n}} \equiv f(n)$$

נבדוק את האינטגרל המתאים:

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$
$$= \left[2\sqrt{x}\right]_{1}^{\infty} \to \infty$$

ולכן לפי משפט 2.4 הטור מתבדר. ■

הינה n -היבר איבר עבור הינה (ג

$$a_n = \frac{1}{n^2} \equiv f(n)$$

נבדוק את האינטגרל המתאים:

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} \frac{1}{x^{2}} dx$$
$$= \left[-\frac{1}{x} \right]_{1}^{\infty}$$
$$= 1$$

ולכן לפי משפט 2.4 הטור מתכנס כך ש-

$$\int_{1}^{\infty} f(x) \, dx \le \sum_{n=1}^{\infty} \frac{1}{n^2} \le \int_{1}^{\infty} f(x) \, dx + f(1) \quad \Rightarrow \quad 1 \le \sum_{n=1}^{\infty} \frac{1}{n^2} \le 2$$

החישוב של הערך המדויק של הטור לא חלק של השאלה וגם לא בסילבוס, אבל למי שמעוניין החישוב נמצא בסוף הפרק הזה, לפיו

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \ .$$

הינה n -היבר איבר עבור הינה n

$$a_n = \frac{n}{2^n} \equiv f(n)$$

נבדוק את האינטגרל המתאים:

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} \frac{x}{2^{x}} dx$$

$$= \left[-\frac{2^{-x} (x \ln(2) + 1)}{\ln^{2}(2)} \right]_{1}^{\infty}$$

$$= \frac{1 + \ln(2)}{2 \ln^{2}(2)}$$

ולכן לפי משפט 2.4 הטור מתכנס כך ש-

$$\int_{1}^{\infty} f(x) \, dx \le \sum_{n=1}^{\infty} \frac{n}{2^{n}} \le \int_{1}^{\infty} f(x) \, dx + f(1) \quad \Rightarrow \quad 1.76203 \le \sum_{n=1}^{\infty} \frac{n}{2^{n}} \le 2.26203$$

החישוב של הערך המדויק של הטור לא חלק של השאלה ולא בסילבוס, אבל למי שמעוניין:

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \sum_{n=1}^{\infty} \left(-z \frac{d}{dz} \left(\frac{1}{z^n} \right) \right) \Big|_{z=2}$$

$$= -z \frac{d}{dz} \sum_{n=1}^{\infty} \left(\frac{1}{z^n} \right) \Big|_{z=2}$$

$$= -z \frac{d}{dz} \sum_{n=1}^{\infty} \left(\frac{1}{z^n} \right) \Big|_{z=2}$$

$$= -z \frac{d}{dz} \left(\frac{z^{-1}}{1 - z^{-1}} \right) \Big|_{z=2}$$

$$= -z \frac{d}{dz} \left(\frac{1}{z - 1} \right) \Big|_{z=2}$$

$$= -z \left(\frac{-1}{(z - 1)^2} \right) \Big|_{z=2}$$

$$= \frac{z}{(z - 1)^2} \Big|_{z=2}$$

$$= 2$$

הינה n -היבר איבר ה-n הינה

$$a_n = \frac{1}{n^2} \equiv f(n)$$

נבדוק את האינטגרל המתאים:

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} \frac{1}{x^{2}} dx$$
$$= \left[-\frac{1}{x} \right]_{1}^{\infty}$$
$$= 1$$

ולכן לפי משפט 2.4 הטור מתכנס כך ש-

$$\int_{1}^{\infty} f(x) \, dx \le \sum_{n=1}^{\infty} \frac{1}{n^2} \le \int_{1}^{\infty} f(x) \, dx + f(1) \quad \Rightarrow \quad 1 \le \sum_{n=1}^{\infty} \frac{1}{n^2} \le 2$$

החישוב של הערך המדויק של הטור לא חלק של השאלה וגם לא בסילבוס, אבל למי שמעוניין החישוב נמצא בסוף הפרק הזה, לפיו

$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \ .$$

הינה n -ה איבר איבר ה- n

$$a_n = \frac{1}{n\sqrt{n}} \equiv f(n)$$

נבדוק את האינטגרל המתאים:

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} \frac{1}{x\sqrt{x}} dx$$
$$= \int_{1}^{\infty} \frac{1}{x^{3/2}} dx$$
$$= \left[-\frac{2}{3} \frac{1}{\sqrt{x}} \right]_{0}^{\infty}$$
$$= \frac{2}{3}.$$

ולכן לפי משפט 2.4 הטור מתכנס כך ש-

$$\int_{1}^{\infty} f(x) dx \le \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} \le \int_{1}^{\infty} f(x) dx + f(1) \quad \Rightarrow \quad \frac{2}{3} \le \sum_{n=1}^{\infty} \frac{1}{n\sqrt{n}} \le 1$$