COMMUNICATION SYSTTEM REVIEW

MULTIPLEXING

Objectives

- Discuss the various steps required to prepare a signal for TDM.
- Understand amplitude modulation (AM).
- Understand pulse code modulation (PCM).

Multiplexing

- Space Division Multiplexing
- Frequency Division Multiplexing (FDM)
- Time Division Multiplexing (TDM)

Bandwidth

- A voice signal is usually though of as a signal between 0 and 4000 Hz (BW = 4000 Hz).
- In the United States, AT&T designed its FDM systems to handle the band of signals between 200 and 3400 Hz (BW = 3200 Hz).

Twelve-Channel Frequency Division Multiplexing

Transmit and Receive Paths: The Four-Wire System

- The first multiplexers used four wires for the transmission medium.
 - One pair of wires was used for the signal going in one direction.
 - A separate pair of wires was used for the signal going in the opposite direction.
- Two fiber optic strands are required to connect multiplexers.
- Two microwave frequencies are required to connect multiplexers.

The Channel Unit of a FDM System

- Each signal fed to a FDM system interfaces to the multiplexer through a device called a channel unit.
- The channel unit makes changes to the input signal so it can be multiplexed with other signals for transmission.
 - Voice signals arrive between 0 and 4000 Hz.
 - A sharp cutoff bandpass filter passes only 200 3400 Hz.
 - A modulator takes the 200 3400 Hz signal and shifts it to another frequency.

Why Use Multiplexing?

- Multiplexing was first used to reduce the number of transmission media needed between cities and towns.
- This resulted in significantly reduced costs for trunk circuits.

Amplitude Modulation

- In amplitude modulation (AM) the amplitude of the carrier frequency coming out of the mixer will vary according to the changing amplitude of the input voice signal.
- Amplitude modulation is used by AM broadcast stations.
 - Carrier frequencies are between 540 kHz and 1,650 kHz.
 - Carrier frequencies are licensed by the FCC.

Frequency Division Multiplexing

- Using FDM, many telephone calls can be multiplexed over two pairs of wires.
- If we wish to multiplex 12 calls over two pairs of wires between cities A and B:
 - We hook up a multiplexer containing 12 transmitters to the first wire pair in city A; at the other end we attach 12 receivers in city B.
 - We hook up a multiplexer containing 12 transmitters to the second wire pair in city B; at the other end we attach 12 receivers in city A.
- The two simplex circuits make up a full-duplex circuit between A and B.

Amplitude Modulation

12

10

Hybrid Network

- The circuit from a telephone arrives at the input to the channel unit of a multiplexer as a two-wire circuit.
- The channel unit contains a hybrid network that interfaces the two-wire input to a fourwire transmit/receive path.
 - The transmit path connects to the transmitter for this channel.
 - The receive path connects to the receiver for this channel.

Channel Unit

Amplitude Modulation Technology

 Amplitude modulation is a technique in which the amplitude of the high-frequency signal changes when the high-frequency signal is mixed with a low-frequency signal in a device called a mixer or modulator.

- The high-frequency signal is termed the carrier frequency.
- The low-frequency signal is called the modulating signal.

Channel Unit

Amplitude Modulation Example

- If a 64,000 Hz signal is modulated by a 4,000 Hz signal, the outputs of the modulator will be:
 - 64,000 Hz
 - 4,000 Hz
 - 68,000 Hz (64,000 + 4,000)
 - 60,000 Hz (64,000 4,000)
- The two additional signals generated by the mixing process are called sidebands.
 - The higher signal is called the upper sideband.
 - The lower signal is called the lower sideband.

Bandwidth and Single-Sideband Suppressed Carrier

14

- The bandwidth of an AM signal is twice the bandwidth of the modulating signal.
 - When a low-frequency signal is present as an input to the mixer, the amplitude of both sideband signals changes as the input signal changes.
 - Since both sidebands have been modulated, they both contain the frequency changes of the modulating signal.

Single-Sideband (SSB) systems

- We only need to demodulate one of the sidebands to recapture the intelligence of the modulating signal.
- Since only one sideband is needed to demodulate the modulating signal, some systems will transmit only one sideband with the carrier frequency.
- Systems that do not transmit the main carrier frequency, but transmit the sideband only, are called Single-Sideband Suppressed Carrier (SSB-SC) systems.

Applications for Frequency Division Multiplexing

- We now use FDM on fiber optic facilities to place multiple TDM systems on a fiber.
- Time Division Multiplexing (TDM) places each signal to be multiplexed on the medium for a brief instant of time at recurring intervals of time.
- Wave Division Multiplexing (WDM) uses many different lightwaves to connect many TDM systems on one fiber.

CCITT Standards for Frequency Division Multiplexing

- Telecommunications standards are set by several organizations.
- Predominant organizations:
 - American National Standards Institute (ANSI)
 - Establishes standards for North America
 - Consultative Committee on International Telegraphy and Telecommunications (CCITT)
 - Organization within the International Telecommunications Union (ITU)
 - Creates worldwide standards

TDM Using Pulse Amplitude Modulation (PAM) Signals

20

- Early TDM signals multiplexed samples of the human voice from different channels over one common facility.
- Nyquist made some studies of voice sampling techniques and developed the Nyquist Theorem.
- The original signal can be reproduced if the sampling rate is at least twice the highest frequency present in the original signal.

Pulse Amplitude Modulation Samples

Samples taken of the voice signal 8000 samples taken every second

Creation of a Time Division Multiplexing Signal

TDM-PAM: Transmitter

TDM-PAM: Receiver

Example

Example

Samples of Signal -1

Samples of signal - 2

Example

25

Example

26

Multiplexing of TWO signals

TDM-PAM for 4 signals.

Time Division Multiplexing Using PCM Signals

- TDM systems using PAM are susceptible to noise interference.
- The industry standard for converting an analog signal into a digital signal is called *Pulse Code Modulation* (PCM).
- PCM/TDM has many advantages over FDM and PAM/TDM
 - Digital signals are less susceptible to noise.
 - Digital circuitry lends itself readily to integrated circuit design, which makes digital circuits cheaper than analog circuits.
 - Digital-to-digital interface is easily achieved.

Sampling

- Sampling refers to how often measurements are taken of the input analog signal.
- The Nyquist Theorem states that an analog signal should be sampled at a rate at least twice its highest frequency.
- In telecommunications, the network was designed to handle signals between 0 and 4000 Hz.
- Every 1/8000 of a second (125 μs) a voltage measurement is taken of the input signal.

Pulse Code Modulation

- The industry standard method for converting one analog voice signal into a digital signal is PCM.
- There are five basic steps to PCM:
 - Sampling
 - Quantization
 - Companding
 - Encoding
 - Framing

30

Quantization

- In PCM, each voltage measurement is converted to an 8-bit code, and the 8-bit coded is sent instead of the actual voltage.
 - The input signal can be any level.
 - The 8-bit coded limits the conversion process to the recognition of 256 (28 = 256) levels.
- Quantization is the process to convert the input level to one of the 256 discrete codes available.

Companding

- Quantizing a signal will result in some distortion because we do not code the exact voltage of the input signal.
- This distortion is called *quantizing noise*, it is greater for low-amplitude signals.
- Companding is used to reduce quantizing noise.
 - The signal is compressed at the transmitter to divide low-amplitude signals into more levels.
 - When the signal is decoded at the receiving system, it is expanded by reversing the compression process.

Framing

- The encoded 8-bit signal is time division multiplexed with 23 other 8-bit signals to generate 192 bits for 24 signals.
- A single framing bit is added to these 192 bits to make a 193-bit frame.
- Framing Bits
 - Follow an established pattern of 1s and 0s for 12 frames (1,0,0,0,1,1,0,1,1,0,0) and then repeat in each of the succeeding 12 frames.
 - This pattern is used by the receiving terminal to stay synchronized with the received frames.

Encoding

- After compression and quantization of the input signal, it will be one of the 256 discrete signal levels that can be assigned an 8-bit code.
- The process of assigning an 8-bit code to represent the signal level is known as encoding.

North American DS1 System

- The basic building block for digital transmission standards begins with the DS0 signal level.
 - One voice equivalent
 - 8 bits/sample x 8,000 samples/second
- The DS1 signal has 24 voice equivalents
 - 193 bits per frame
 - 24 x 8 bits per channel
 - 1 framing bit

One Frame of a DS1 Signal

8 Bits in Each Channel 24 Channels × 8 Bits per Channel = 192 Bits + 1 Framing Bit = 193 Bits per Frame

Superframe

T1 Carrier Systems

- The multiplexing system of choice to connect two central offices in a North American DS1 system is called T1 carrier.
- It is necessary to remove load coils from pairs being used for T1 to improve highfrequency response.
- Repeaters (pulse regenerators) are placed where the load coils were and at each central office.

European TDM 30 + 2 System

- The European TDM system multiplexes 32 DS0 channels together.
 - Channel 0 is used for synchronizing (framing) and signaling.
 - Channels 1-15 and 17-31 are used for voice.
 - Channel 16 is reserved for future use as a signaling channel.
- The total signal rate is 2.048 Mbps (64 kbps * 32 channels)

Statistical Time Division Multiplexing (STDM)

- The T1 and E1 systems are referred to as synchronous time division multiplexing systems.
- The statistical time division multiplexer improves the efficiency of a TDM system.
 - Channel units do not have reserved time slots.
 - Time slots are dynamically assigned.
- Also called *stat muxs*, *intelligent multiplexers*, and *asynchronous multiplexers*.