Afina in projektivna geometrija

Afina geometrija v \mathbb{R}^n

Afini podprostori v \mathbb{R}^n so posplošitve pojmov premice in ravnine v \mathbb{R}^3 . Množica \mathcal{A} je afin podprostor v \mathbb{R}^n dimenzije k, če jo lahko zapišemo v obliki

$$\mathcal{A} = a + U$$
.

kjer je $a \in \mathcal{A}$ poljubna točka, $U \subset \mathbb{R}^n$ pa linearen podprostor dimenzije k. Točka a je analog začetne točke na premici, prostor U pa lahko razumemo kot množico smeri na \mathcal{A} .

V nadaljevanju bomo spoznali, kako lahko na različne načine opišemo afine podprostore in kako definiramo pojem vzporednosti afinih podprostorov v \mathbb{R}^n .

- (1) (a) Pokaži, da točke $T_0(-1,1,2)$, $T_1(2,3,5)$ in T(-4,-1,-1) ležijo na isti premici ter določi relativno lego točke T glede na T_0 in T_1 .
 - (b) V ravnini 3x + 2y + z = 7 ležijo točke $T_0(1, 1, 2)$, $T_1(3, -1, 0)$, $T_2(0, 3, 1)$, A(2, 0, 1) in B(0, 4, -1). Določi lego točk A in B glede na trikotnik $T_0T_1T_2$.
 - (c) Ugotovi, ali točka T(0,1,0) leži znotraj piramide z oglišči $T_0(-1,1,-1)$, $T_1(1,2,0)$, $T_2(1,3,1)$ in $T_3(2,1,0)$.

 $Re\check{s}itev$: (a) Začeli bomo z opisom premice v \mathbb{R}^3 . Opišemo jo lahko v parametrični ali pa v normalni obliki.

Parametrična oblika:

V parametrični obliki lahko točke na premici podamo v obliki

$$\vec{r} = \vec{r}_0 + t\vec{s},$$

kjer je \vec{r}_0 začetna točka, \vec{s} pa smerni vektor. Parameter t določa lego točke na premici.

Ekvivalentno nam parametrizacijo premice določata tudi dve točki T_0 in T_1 , ki ležita na njej. Vsaka točka T na premici je potem oblike

$$T = \lambda_0 T_0 + \lambda_1 T_1$$

za neki realni števili λ_0 in λ_1 , ki zadoščata pogoju $\lambda_0 + \lambda_1 = 0$. Kakor hitro poznamo vrednost λ_1 , je λ_0 s tem pogojem enolično določena. Zato lahko premico parametriziramo s parametrom λ_1 , ki ga imenujemo afina koordinata točke T glede na afino bazo $\{T_0, T_1\}$. Med obema parametrizacijama velja zveza:

$$\vec{r}_0 = T_0,$$

$$\vec{s} = \overrightarrow{T_0 T_1},$$

$$t = \lambda_1.$$

Normalna oblika:

Premico v \mathbb{R}^3 lahko podamo tudi kot rešitev sistema dveh neodvisnih enačb:

$$a_1x + b_1y + c_1z = d_1,$$

 $a_2x + b_2y + c_2z = d_2.$

Geometrično to ustreza preseku dveh nevzporednih ravnin v \mathbb{R}^3 .

V našem primeru sta vektorja $\overrightarrow{T_0T}=(-3,-2,-3)$ in $\overrightarrow{T_1T}=(-6,-4,-6)$ vzporedna, zato so točke $T_0,\,T_1$ in T kolinearne. To pomeni, da lahko točko T izrazimo kot afino kombinacijo točk T_0 in T_1 oziroma

$$T = \lambda_0 T_0 + \lambda_1 T_1 = T_0 + \lambda_1 \overrightarrow{T_0 T_1},$$

kjer je $\overrightarrow{T_0T_1} = (3,2,3)$. Po komponentah tako pridemo do sistema enačb:

$$-4 = -1 + 3\lambda_1,$$

 $-1 = 1 + 2\lambda_1,$
 $-1 = 2 + 3\lambda_1,$

ki ima rešitev $\lambda_1 = -1$. Afina koordinata $\lambda_1 = -1$ nam pove, da pridemo do točke T tako, da začnemo v T_0 in se nato premaknemo po premici za vektor $-\overrightarrow{T_0T_1}$.

(b) Sedaj se posvetimo opisom ravnine v \mathbb{R}^3 .

Parametrična oblika:

Ravnino lahko podamo v obliki

$$\vec{r} = \vec{r}_0 + t_1 \vec{s}_1 + t_2 \vec{s}_2$$

kjer je $\vec{r_0}$ začetna točka in $\vec{s_1}$ ter $\vec{s_2}$ smerna vektorja. Če je ravnina definirana s tremi nekolinearnimi točkami T_0 , T_1 in T_2 , lahko poljubno točko te ravnine izrazimo v obliki

$$T = \lambda_0 T_0 + \lambda_1 T_1 + \lambda_2 T_2,$$

kjer je $\lambda_0 + \lambda_1 + \lambda_2 = 1$. Podobno kot pri premici imenujemo par (λ_1, λ_2) afini koordinati točke T glede na afino bazo $\{T_0, T_1, T_2\}$. Zveza med opisoma je tokrat:

$$\vec{r}_0 = T_0,$$

$$\vec{s}_i = \overrightarrow{T_0 T_i},$$

$$t_i = \lambda_i$$

za i = 1, 2.

Normalna oblika:

Ravnina v \mathbb{R}^3 je določena tudi z enačbo

$$ax + by + cz = d$$
.

V našem primeru je ravnina določena z enačbo 3x + 2y + z = 7. Za začetno točko vzemimo $T_0(1, 1, 2)$, za smerna vektorja pa:

$$\vec{s}_1 = \overrightarrow{T_0T_1} = (2, -2, -2),$$

 $\vec{s}_2 = \overrightarrow{T_0T_2} = (-1, 2, -1).$

Najprej izračunajmo afini koordinati točke A glede na afino bazo $\{T_0, T_1, T_2\}$. Določeni sta s sistemom enačb

$$(2,0,1) = (1,1,2) + \lambda_1(2,-2,-2) + \lambda_2(-1,2,-1)$$

oziroma po komponentah:

$$2 = 1 + 2\lambda_1 - \lambda_2,
0 = 1 - 2\lambda_1 + 2\lambda_2,
1 = 2 - 2\lambda_1 - \lambda_2,$$

ki ima rešitev $\lambda_1 = \frac{1}{2}$ in $\lambda_2 = 0$. Od tod sledi, da je točka A središče stranice T_0T_1 . Afini koordinati točke B glede na afino bazo $\{T_0, T_1, T_2\}$ sta določeni s sistemom enačb

$$(0,4,-1) = (1,1,2) + \lambda_1(2,-2,-2) + \lambda_2(-1,2,-1).$$

oziroma:

$$0 = 1 + 2\lambda_1 - \lambda_2,$$

$$4 = 1 - 2\lambda_1 + 2\lambda_2,$$

$$-1 = 2 - 2\lambda_1 - \lambda_2.$$

Ta sistem ima rešitev $\lambda_1=\frac{1}{2}$ in $\lambda_2=2$. Ker je $\lambda_2=2>1$, leži točka B izven trikotnika $T_0T_1T_2$.

(c) Točke T_0 , T_1 , T_2 in T_3 so afino neodvisne, zato tvorijo afino bazo \mathbb{R}^3 . Torej lahko točko T izrazimo kot afino kombinacijo teh točk. Če označimo:

$$\vec{s}_1 = \overrightarrow{T_0 T_1} = (2, 1, 1),$$

$$\vec{s}_2 = \overrightarrow{T_0 T_2} = (2, 2, 2),$$

$$\vec{s}_3 = \overrightarrow{T_0 T_3} = (3, 0, 1),$$

morajo obstajati parametri $\lambda_1,\,\lambda_2$ in $\lambda_3,\,$ da velja

$$(0,1,0) = (-1,1,-1) + \lambda_1(2,1,1) + \lambda_2(2,2,2) + \lambda_3(3,0,1).$$

Točka T leži v notranjosti piramide natanko takrat, ko so njene afine koordinate (vključno z λ_0) pozitivne. Če upoštevamo kartezične koordinate točk, pridemo do sistema enačb:

$$0 = -1 + 2\lambda_1 + 2\lambda_2 + 3\lambda_3,$$

$$1 = 1 + \lambda_1 + 2\lambda_2,$$

$$0 = -1 + \lambda_1 + 2\lambda_2 + \lambda_3,$$

ki ima rešitev $\lambda_0=\lambda_2=\lambda_3=1,\ \lambda_1=-2.$ To pomeni, da točka T ne leži v notranjosti piramide.

(2) Zapiši dani afini ravnini v parametrični obliki $\mathcal{A} = a + U$ in pa v normalni obliki:

- (a) ravnine v \mathbb{R}^3 skozi točke $T_0(1,2,3), T_1(2,0,3)$ in $T_2(2,-1,2),$
- (b) ravnine v \mathbb{R}^4 skozi točke $T_0(1,0,1,0), T_1(0,1,1,1)$ in $T_2(1,1,0,0)$.

Rešitev: (a) Za smerna vektorja ravnine lahko vzamemo:

$$\vec{s}_1 = \overrightarrow{T_0T_1} = (1, -2, 0),$$

 $\vec{s}_2 = \overrightarrow{T_0T_2} = (1, -3, -1).$

Od tod sledi, da velja A = a + U, kjer je:

$$a = (1, 2, 3),$$

 $U = \text{Lin}\{(1, -2, 0), (1, -3, -1)\}.$

Če hočemo ravnino opisati v normalni obliki, moramo poiskati smer normale. Pomagamo si lahko z vektorskim produktom

$$\vec{n} = \vec{s}_1 \times \vec{s}_2 = (1, -2, 0) \times (1, -3, -1) = (2, 1, -1).$$

Dano ravnino lahko torej podamo z enačbo

$$2x + y - z = d,$$

kjer vrednost d dobimo tako, da vstavimo kartezične koordinate ene izmed točk T_i v to enačbo. Sledi d = 1, zato je enačba ravnine skozi dane točke

$$2x + y - z = 1.$$

(b) Sedaj imamo ravnino v \mathbb{R}^4 . Opišemo jo lahko v parametrični obliki z dvema parametroma ali pa v normalni obliki s sistemom dveh linearno neodvisnih enačb. Za smerna vektorja vzemimo:

$$\vec{s}_1 = \overrightarrow{T_0 T_1} = (-1, 1, 0, 1),$$

$$\vec{s}_2 = \overrightarrow{T_0 T_2} = (0, 1, -1, 0).$$

Torej velja $\mathcal{A} = a + U$, kjer je:

$$a = (1, 0, 1, 0),$$

 $U = \text{Lin}\{(-1, 1, 0, 1), (0, 1, -1, 0)\}.$

Ker smo sedaj v štirih dimenzijah, smer normale ni enolično določena. Zadoščati mora pogojema $\vec{n} \cdot \vec{s}_1 = 0$ in $\vec{n} \cdot \vec{s}_2 = 0$. Če pišemo $\vec{n} = (a, b, c, d)$, nam ta dva pogoja dasta sistem enačb:

$$-a + b + d = 0,$$

$$b - c = 0.$$

Vektorji, ki zadoščajo temu sistemu, tvorijo dvodimenzionalni podprostor \mathbb{R}^4 , ki se ujema s prostorom U^{\perp} . Ker imamo štiri neznanke in samo dve enačbi, si lahko poljubno izberemo dva parametra, recimo c in d. Vrednosti a in b sta nato natanko določeni. Če izberemo c=1 in d=0, sledi a=b=1, zato definirajmo $\vec{n}_1=(1,1,1,0)$. Pri izbiri c=0 in d=1 pa dobimo a=1 in b=0 ter $\vec{n}_2=(1,0,0,1)$. Če koordinate na \mathbb{R}^4 označimo z (x,y,z,w), lahko dano ravnino opišemo s sistemom enačb:

$$\begin{aligned} x+w &= e, \\ x+y+z &= f. \end{aligned}$$

Vrednosti e in f spet dobimo tako, da vstavimo kartezične koordinate ene izmed točk T_i v obe enačbi. Tako dobimo e = 1 in f = 2, sistem enačb, ki določa našo ravnino, pa je:

$$x + w = 1,$$

$$x + y + z = 2.$$

Opomba: Naj bo \mathcal{A} afin podprostor dimenzije k v \mathbb{R}^n . Potem ga lahko opišemo v parametrični obliki s k parametri ali pa v normalni obliki s sistemom n-k linearno neodvisnih enačb.

- (3) Ugotovi, ali so dani afini prostori vzporedni:
 - (a) premica $\vec{r} = (1,0,0) + t(1,-1,0)$ in ravnina $x + y z = 3 \text{ v } \mathbb{R}^3$,
 - (b) ravnina skozi točke $T_0(1,0,0,0)$, $T_1(2,0,2,1)$ in $T_2(1,1,1,0)$ in premica, določena s sistemom enačb x-w=0, x-y+z=1 in x+y-2w=2 v \mathbb{R}^4 .

Rešitev: Naj bosta \mathcal{A} in \mathcal{A}' afina podprostora v \mathbb{R}^n in naj velja:

$$A = a + U,$$

$$A' = a' + U'.$$

Potem rečemo, da sta \mathcal{A} in \mathcal{A}' vzporedna, če je $U \subset U'$ ali pa $U' \subset U$. Če imata \mathcal{A} in \mathcal{A}' isto dimenzijo, sta vzporedna natanko takrat, ko je U = U'. V primeru dveh premic to pomeni, da imata vzporedna smerna vektorja.

V praksi lahko vzporednost afinih podprostorov preverimo na naslednja načina. Denimo, da je $\dim(\mathcal{A}) \leq \dim(\mathcal{A}')$. Potem sta \mathcal{A} in \mathcal{A}' vzporedna natanko takrat, ko lahko vsak smerni vektor \mathcal{A} zapišemo kot linearno kombinacijo smernih vektorjev \mathcal{A}' . Če imamo \mathcal{A}' podan v normalni obliki, pa je dovolj preveriti, da je vsak smerni vektor \mathcal{A} pravokoten na vse normalne vektorje \mathcal{A}' .

- (a) Imamo premico s smernim vektorjem $\vec{s} = (1, -1, 0)$ in ravnino z normalo $\vec{n} = (1, 1, -1)$. Ker je $\vec{s} \cdot \vec{n} = 0$, sta dana premica in ravnina vzporedni.
- (b) Sedaj imamo premico in ravnino v \mathbb{R}^4 . Premica je določena s tremi neodvisnimi enačbami z normalami $\vec{n}_1 = (1,0,0,-1)$, $\vec{n}_2 = (1,-1,1,0)$ in $\vec{n}_3 = (1,1,0,-2)$. Smerni vektor premice je pravokoten na vse tri normale, zato njegove komponente zadoščajo sistemu enačb:

$$x - w = 0,$$

$$x - y + z = 0,$$

$$x + y - 2w = 0.$$

Ta sistem enačb reši na primer vektor $\vec{s} = (1, 1, 0, 1)$. Ravnina ima po drugi strani smerna vektorja:

$$\vec{s}_1 = \overrightarrow{T_0 T_1} = (1, 0, 2, 1),$$
$$\vec{s}_2 = \overrightarrow{T_0 T_2} = (0, 1, 1, 0).$$

Premica in ravnina sta vzporedni natanko takrat, ko je smerni vektor premice linearna kombinacija smernih vektorjev ravnine. Pa denimo, da obstajata realni števili α_1 in α_2 , da velja

$$(1,1,0,1) = \alpha_1(1,0,2,1) + \alpha_2(0,1,1,0).$$

Po komponentah dobimo sistem enačb:

$$1 = \alpha_1,$$

$$1 = \alpha_2,$$

$$0 = 2\alpha_1 + \alpha_2,$$

$$1 = \alpha_1,$$

ki pa ni rešljiv. Od tod sledi, da premica in ravnina nista vzporedni.