Just to get your attention

Data Science Labor Market Research

Years covered:

2023 - 2024

Affected variables:

Position
Qualification
Salary
Work type
Remoteness
Size and Location of the company

Content

- Goal Setting
- Context & Background
- Exploratory Data Analysis
- Brainstorm & Goal Strategies
- Realization
- The bottom line 👋
- What I learned from the project
- Initiatives to improve research approach

- This is not a 3-slide report, but a clear projection of each step of my work, placed in a compact presentation for easy familiarization
- This work does not oblige the viewer to fully study the entire project
- The main emphasis is on the approach to data, their presentation, and accompanying thinking
- All the extracts from the project are in the sections "<u>The Bottom Line</u>" AND "<u>What I learned from the project</u>"
- The project is my first work
 Many mistakes were realized during or at the end of the project

Goal Setting

Relationships:

- Analyze relationships between categorical variables
- Identify wage relationships between categorical variables

Salary Trends:

- Compare total and particular wages across years
- Model a regression model to determine the most influential variables on wages

Staff Demand:

- Analyze demand for specialists across years
- Consider qualification level
- Consider company size

the detailed course of the investigation can be found in the 4th section

Remote Work:

Compare trends in remote work adoption

Context & Background

"To know what you know and what you do not know, that is true knowledge."

— Confucius

- 1. Prior knowledge
- 2. Data Source & Collection Method
 - 3. Collection Purpose
 - 4. Timeframe
 - 5. Limitations

bias, external influence

Prior knowledge

Number of rows: 27 500

work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	company_size
2024	SE	FT	Machine Learning Engineer	150000	USD	150000	US	0	US	М
2024	MI	FT	Data Manager	128000	USD	128000	US	0	US	М
2024	SE	FT	Research Engineer	202000	USD	202000	US	100	US	М
2023	SE	FT	Bl Developer	140000	USD	140000	US	100	US	М
2023	SE	FT	Data Engineer	123700	USD	123700	US	0	US	L

SALARY_CURRENCY: ['USD' 'GBP' 'CAD' 'EUR' 'TRY' 'PLN' 'ZAR' 'SEK' 'INR' 'DKK' 'ILS' 'BRL' 'CHF' 'NZD' 'AUD' 'PHP' 'NOK' 'JPY' 'HKD' 'SGD' 'THB' 'HUF' 'MXN' 'CLP']

COMPANY_LOCATION: ['US' 'GB' 'AR' 'CA' 'KR' 'EG' 'AU' 'IN' 'NZ' 'BR' 'IE' 'NL' 'FR' 'ZA' 'PH' 'IT' 'TR' 'AM' 'MX' 'DE' 'SK' 'PL' 'LT' 'PT' 'CL' 'DZ' 'AS' 'IL' 'FI' 'LU' 'KE' 'RS' 'GR' 'UA' 'ES' 'SE' 'DK' 'LV' 'AT' 'CH' 'AE' 'SA' 'OM' 'BA' 'EE' 'MT' 'HU' 'LB' 'RO' 'VN' 'NG' 'GI' 'CO' 'SI' 'MU' 'RU' 'CZ' 'QA' 'GH' 'AD' 'EC' 'NO' 'JP' 'HK' 'CF' 'SG' 'TH' 'HR' 'PK' 'IR' 'BS' 'PR' 'BE' 'ID' 'MY' 'HN' 'IQ' 'CN' 'MD']

```
JOB_TITLE:

['Software Engineer' 'Data Architect' 'AI Developer' 'Data Analyst'

'Data Scientist' 'Data Product Owner' 'Data Engineer'

'Machine Learning Engineer' 'Engineering Manager' 'Software Developer'

'Machine Learning Scientist' 'Solutions Architect' 'Research Scientist'

'Applied Scientist' 'Analytics Engineer' 'DevOps Engineer'

'Data Specialist' 'Business Intelligence Engineer'

'Data Operations Analyst' 'Frontend Engineer' 'AI Engineer'

'Data Analytics Specialist' 'Site Reliability Engineer'

'Solutions Engineer' 'AI Architect' 'Research Engineer'
```

```
WORK_YEAR:
[2024 2022 2023 2020 2021]

EXPERIENCE_LEVEL:
['SE' 'EN' 'MI' 'EX']

EMPLOYMENT_TYPE:
['FT' 'PT' 'CT' 'FL']

REMOTE_RATIO:
[100 0 50]

COMPANY_SIZE:
['M' 'L' 'S']
```

'Business Intelligence Developer' 'Data Modeler' 'ETL Developer'
'Business Analyst' 'Business Intelligence' 'Data Product Manager'
'Decision Scientist' 'Data Visualization Engineer'
'Encounter Data Management Professional' 'Data Strategist'
'Data Quality Analyst' 'Statistical Programmer' 'Systems Engineer'
'Software Development Engineer' 'Data Analytics Manager'
'Full Stack Engineer' 'Data Quality Manager'
'Data Visualization Specialist' 'Research Analyst' 'Head of Data'
'Data Team Lead' 'Robotics Engineer' 'Data Governance Lead'

```
'Data Governance Specialist' 'Head of AI' 'Data Management Manager'
'Data Governance Engineer' 'Data Management Specialist'
'Machine Learning Model Engineer' 'Artificial Intelligence Engineer'
'Machine Learning Manager' 'MLOps Engineer' 'ML Infrastructure Engineer'
'Cloud Database Administrator' 'Computer Vision Engineer'
'Data Integration Engineer' 'Data Quality Engineer' 'Python Developer'
'Data Operations Engineer' 'Data Infrastructure Engineer'
'Data Operations Specialist' 'Data Visualization Analyst'
'Machine Learning Architect' 'Machine Learning Modeler'
```

Data Source & Collection Method

Source link:

https://ai-jobs.net/

Collection method:

...based on internal data (survey submissions (<u>form</u>) + jobs with open salaries)

Despite the public availability of the electronic form (bias, intentionality), the number of observations in the data is greater than 25 000, thus mitigating this vulnerability

Collection Purpose

Our goal is to have open salary data for everyone.

So newbies, experienced pros, hiring managers, recruiters and also startup founders or people wanting to switch careers can make better decisions

Timeframe

2020 - 2024

The data is processed and updated on a weekly basis

Limitations

(bias, external influence)

Missing data:

- Job location (city, state/province) may influence salary levels
- Industry or sector may influence salary levels
- Requirements for each job title may influence salary levels

- Education & Qualifications (educational background, degrees, certifications) may influence salary levels
- Employee demographics (age, gender, or ethnicity) potential biases or disparities in compensation

Yes, these points can affect results, but we're looking for the general trend, not strict perfection

Merging data sources can be valuable

Exploratory Data Analysis

- 1. Any incorrect types?
- 2. Any missing values?
 - 3. Any duplicates?
- 4. Any inconsistencies?
 - 5. Any outliers?
- 6. Feature engineering (1/2)
- 7. Analyze variable distribution initial mental model of the dataset

Any incorrect types?

Minor corrections are available

Insignificant conversion of textual representation to categorical representation:

experience_level
employment_type
 company_size
 remote_ratio

Column	Non-Null Count	Dtype
work_year	27486 non-null	int64
experience_level	27486 non-null	object
employment_type	27486 non-null	object
job_title	27486 non-null	object
salary	27486 non-null	int64
salary_currency	27486 non-null	object
salary_in_usd	27486 non-null	int64
employee residence	27486 non-null	object
remote ratio	27486 non-null	int64
	27486 non-null	object
company_size	27486 non-null	object
	work_year experience_level employment_type job_title salary salary_currency salary_in_usd employee_residence remote_ratio company_location	work_year 27486 non-null experience_level 27486 non-null employment_type 27486 non-null job_title 27486 non-null salary 27486 non-null salary_currency 27486 non-null salary_in_usd 27486 non-null employee_residence 27486 non-null remote_ratio 27486 non-null company_location 27486 non-null

#	Column	Non-Null Count	Dtype
0	work_year	27486 non-null	int64
1	experience_level	27486 non-null	category
2	employment_type	27486 non-null	category
3	job_title	27486 non-null	object
4	salary	27486 non-null	int64
5	salary_currency	27486 non-null	object
6	salary in usd	27486 non-null	int64
7	employee_residence	27486 non-null	object
8	remote_ratio	27486 non-null	category
9	company_location	27486 non-null	object
10	company_size	27486 non-null	category
dtyp	es: category(4), int	64(3), object(4)	

Any missing values?

No. There is no missing data column homogeneity indicates that there are no NULL values

Any duplicates?

Ratio:

- 45% of the data in the horizontal view (row) is repeated
- There is an overall extremely low uniqueness of values in the vertical relationship (column)

Assumed origin of repetitions:

Identical overlaps between variables arise due to (a) lack of unique identifiers and (b) frequently occurring values in each individual variable (popular combinations such as [2024, US, Data Analyst, EN])

	work_year	experience_level	employment_type	job_title	salary	salary_currency	salary_in_usd	employee_residence	remote_ratio	company_location	company_size	count
0	2023	SE	FT	Applied Scientist	136000	USD	136000	US	0	US	T.	53
1	2024	MI	FT	Applied Scientist	222200	USD	222200	US	0	US	Ĺ	42
2	2024	Mi	FT	Applied Scientist	136000	USD	136000	US	0	US	L	42
3	2023	SE	FT	Machine Learning Engineer	204500	USD	204500	US	0	US	М	34

Any inconsistencies?

Identical positions have different lengths for their titles, ignoring which can significantly affect the interpretation of the results

ML Ops = ML Operations
BI Analyst = Business Intelligence Analyst

```
ds_copy.job_title.replace({'^Data Science Engineer$': 'Data Engineer',
                           '^Data Science Analyst$': 'Data Analyst',
                           '^Data Science Manager$': 'Data Manager',
                           'Machine Learning': 'ML',
                           '^ML Ops$ | ^ML Operations': 'MLOps',
                           'Artificial Intelligence': 'AI',
                           'Business Intelligence': 'BI',
                           '^BI Data Analyst$': 'BI Analyst',
                           '^Finance Data Analyst$': 'Financial Data Analyst',
                           '^Head of Data Science$': 'Head of Data',
                           '^Data Lead$': 'Head of Data',
                           '^Data Science Lead$': 'Head of Data Science',
                           '^Bear Robotics$': 'Robotics Engineer',
                           '^Data Analyst Lead$': 'Lead Data Analyst',
                           '^Data Scientist Lead$': 'Lead Data Scientist',
                           '^Data Science Tech Lead$': 'Tech Lead Data Science',
                           '^Data Science Director$': 'Director of Data Science',
                           '^Data Analytics Engineer$': 'Analytics Engineer',
                           '^Applied Data Scientist$': 'Applied Scientist'},
                           inplace=True, regex=True)
```

Any outliers?

Salaries are skewed to the right, so robust IQR would be an appropriate method for identifying outliers

Feature engineering (1/2)

It would be great to categorize job_title into major groups for deeper analysis

It would also be nice to segment dollar salaries into groups

job_title:

- Data
- Engineer
- Scientist
- Analyst
- ML
- Al
- BI
- Manager
- Research
- Applied

salary_in_usd : (in thousands)

- 0-50
- 50-100
- 100-150
- 150-200
- 200-250
- 250-300
- 300-350
- 350-400
- 400+

Analyze variable distribution

the initial mental model of the dataset

EX – Executive-level

The market demands highly skilled professionals (SE) totally immersed in business issues (FT)

Dependencies between variables will be considered later to identify a more explainable labor market

FL – Freelance

It's not a surprising fact that the US and the Dollar supply the bulk of the IT market

0 – No remote work (less than 20%) 50 – Hybird 100 – Fully remote (more than 80%) Working from home has become a new reality that you don't want to let go of...

Either way, today's employers want to see employees in person

Stanford study: +13% productivity gains from working remotely

Employees who switched to telecommuting showed a productivity gain of 13%. Reduced breaks and sick days, as well as a quieter and more comfortable work environment, contributed to this increase

Salary distributions in relation to other variables will be covered later

The clear demand for Data
Scientists is also seen in the
Research Scientist and Research
Engineer pairing, as well as in the
more practical occupation of
Applied Scientist

A visual representation of the demand volume

Considering the most encompassing first 4 position

Not including the first 4 positions

Analyzing job distribution across predetermined categories

Based on this, we can assume the **immaturity** of companies in adapting data for datadriven decision making There is a clear increase in demand for Data Architects a more fundamental and advanced level of work with structures, types and stores

The work of Data Architects lays the foundation for other data professionals such as analysts and scientists

 The Data Manager position lays the foundation for a managerial approach in working with data

General observation

The market is actively saturating with **new specializations** such as:

Applied Scientist, Data Architect, Al Engineer, Research Analyst, ML Scientist, Data Manager and others

forming a multifaceted foundation around data science, bringing more opportunities for human expression in solving business problems

Less-developed groups (groups where the first position is extremely dominant):

APPLIED group, MANAGER group, AI and ML groups, ANALYST and SCIENTIST groups

Brainstorm & Goal Strategies

"Chance favors the connected mind."

— Steven Johnson

- 1. Brainstorming based on the goals
- Relationships Staff Demand
 - - Salary Trends Remote Work
 - 2. Identifying goal achievement methods

Brainstorming based on the goals

Salary Trends

1. Compare overall and specific wages across years (2024 vs 2023)

Overall

1 variable

Specific

- Compare Q1, Q2, and Q3 ratios
- Compare ratios of cumulative sums for each quartile range (Q0-Q1 ... Q3-Q4), using samples with equal N
- Compare overall and sub-range standard deviations

- Non-working positions
- Top 5 countries
- Qualification
- Company size

>1 variable

- Qualification
 Top 5 most common
- Company size
 Top 5 most common

Working positions

- Top 5 most common
- Top 5 most common by salary groups
- Top 5 positive / negative ratios
- Top 5 common highestpaid (>250k) / lowestpaid (<70k) job titles
- Top 3 most common by group
- 2. Modeling a regression model to determine the most influential variables on wages

Relationships

Specific relationships will be considered after the tests have been performed

Staff Demand

Analyze demand for specialists across years (2024 vs 2023)

Overall

Specific

Top 10

- Qualification
- Company size

Remote Work

Compare trends in remote work adoption

Identifying goal achievement methods

Relationships

- 1. Analyze relationships between categorical variables
- Pearson correlation for binarized variables for a clear comparison
- V Cramer's Coefficient measures the strength of the association
- 2. Explore how salaries relate to categorical variables
- Variance homogeneity (box-plots or Levene's test)
- Kruskal-Wallis test
- Post-hoc: Dunn's test (if KW significant)

Salary Trends

1. Compare overall and specific wages across years (2024 vs 2023)

There are no specific methods. Simple data filter and output

- 2. Modeling a regression model to determine the most influential variables on wages
- Use the most appropriate and efficient model (lazypredict library will help decide)
- Use Partial Dependence Plots (PDPs)

Staff Demand & Remote Work

There are no specific methods. Simple data filter and output

Realization

- 1. Feature engineering (2/2)
 - 2. Relationships
 - 3. Salary Trends
 - 4. Staff Demand
 - 5. Remote Work

Feature engineering (2/2)

For a machine learning model to effectively explain the target variable (salary), comprehensive data covering true variable relationships is essential

Outliers, unprocessed, and missing values can significantly distort the model's results

Creating new features from existing data can enhance the explainability of salary data, potentially including external sources

Often, simply removing unnecessary information (possible noise) is sufficient

In my case, I did it this way:

I got rid of noise and imbalanced features (overweight/underweight by number of observations) in such variables as job_title and company_location by defining features with number of observations ≤ 15 as "Other", while the ranges from 15 to 29 were increased to 30 by bootstrap without replacement

The above variables had many values in the ranges from 2 to 10

Extracted such new data from company_location, experience_level and job_title variables as:

- Continent + Its Directions
 Asia | West, Europe | East ...
- Conditional median by country Salary ranges: 0-30k, 30-60k ...
- Salary above/below the median of the [qualification + position]
 For example, a [Junior + Analyst] might earn above the median in one country but below it in another
- Grouping positions into their origin group
 ML Engineer = "Engineer",
 Applied Scientist = "Scientist"
- Highly specialized positions
 ML Engineer = "ML",
 Applied Scientist = "Applied"

Interestingly, analysts are preferred more in Australia than in other countries

	origin_group	specialization	experience_level	company_location	salary_in_usd	jobexp_median
21425	Analyst	Unique / Origin	MI	US	70000	Below
23837	Engineer	Research	SE	US	189110	Above
20334	Scientist	Unique / Origin	SE	US	204500	Above
21765	Scientist	Unique / Origin	MI	Us	115000	Below
27621	Engineer	NLP	MI	IN	32834	(n<15)

Relationships

Analyze relationships between categorical variables

- Pearson correlation shows the level of linear dependence (relationship) between variables
- Cramer's V coefficient measures the strength of this relationship

Both methods give results ranging from 0 to 1, where 0 means no relationship / strength

Example: Age and income

- Correlation: moderate/high (income increases with age)
- Correlation coefficient: 0.6 (approximately)
- Weak correlation: many exceptions (education, industry, decisions)
- Cramer coefficient:0.3 (approximately)

Experience level

Employment type

- Full-time employment in Data Science is distinct from other types (PT, CT, FL) globally
- Medium-sized companies (50-250 employees)
 prefer full-time staff
- Small companies
 (<50 employees) favor
 contract and freelance
 workers
- Salaries up to \$50,000 / year are common in part-time and freelance roles

Remote ratio cramer_v mean - 0.79 (weak)

50

15450

0.05

.0

Ĭ.

100

Company size cramer_v mean - 0.2 (weak)

- Companies outside America favor hybrid work, while the U.S. prefers office work
- Hybrid work is common in large and small companies, but less so in medium-sized ones

This trend impacts flexibility and satisfaction in large companies, and cost optimization and scaling in small companies

Company location

cramer_v mean - 0.36 (moderate)

Frequent and apparent similarities between the locations of companies and employees suggest the current level of remote work, where employees work from one country for companies in another

Ultimately

the most desirable conditions (SE experience, M / L company size, FL employment, 0 / 100 remoteness, high salaries) are satisfied in the US

Others often use less attractive, but business-friendly approaches (EN experience, S company size, PT/FL employment, 50 remoteness, low salaries) based on correlations between countries and these conditions

Relationships

Identify wage relationships between variables

To decide on a test measuring the relationship between categorical and numerical data, certain conditions must be met for reliable interpretation

The choice is between parametric one-factor ANOVA and non-parametric Kruskal-Wallis tests

ANOVA is preferred due to its higher sensitivity, allowing it to detect deeper and more accurate relationships compared to non-parametric tests

To engage this power, it is necessary to ensure that these conditions are met:

- Independence of observations
- Normality of distribution
- Homogeneity of variances

```
P-value by Levene:
   (if n > 30)
0.210 - work year (5/5)
 Skewness: [2.31, 1.52, 0.53, 0.6, 0.85]
0.000 - origin group (10/12)
0.000 - specialization (18/20)
0.008 - experience level (4/4)
0.009 - company size (3/3)
0.136 - employment_type (3/4)
 Skewness: [2.12, 0.77, 1.48]
0.549 - remote ratio (3/3)
  Skewness: [0.8, 2.47, 0.64]
0.000 - employee residence (22/22)
0.000 - company location (24/24)
0.000 - country continent (6/6)
0.000 - country direction (3/4)
0.000 - country median (6/6)
0.000 - jobexp_median (3/3)
0.000 - salary currency (6/6)
0.000 - grouped salary usd (9/9)
```

Levene's test determines the uniformity of variance among variables (homogeneity condition). Here, only three variables have similar variance among their categories, but the level of skewness (distribution condition) prevents ANOVA application due to diverse distributions

Categories with ≥ 30 observations were considered for accuracy

Logarithmizing salaries for three variables could achieve a more normal distribution for ANOVA, but this wasn't done due to the total number of variables not meeting the condition

```
P-value by Kruskal-Wallis:
      (if n > 30)
0.000 - work year (5/5)
0.000 - origin group (10/12)
0.000 - specialization (18/20)
0.000 - experience level (4/4)
0.000 - company size (3/3)
0.000 - employment type (3/4)
0.000 - remote ratio (3/3)
0.000 - employee residence (22/22)
0.000 - company location (24/24)
0.000 - country continent (6/6)
0.000 - country direction (3/4)
0.000 - country median (6/6)
0.000 - jobexp median (3/3)
0.000 - salary currency (6/6)
```

0.000 - grouped salary usd (9/9)

The variable categories clearly contain different median salaries, which is not surprising

We are interested in specifics, particularly the post-hoc Dunn's test, which is applied after the Kruskal-Wallis H-test. This test would clarify the relationship of median salaries between categories, as Kruskal-Wallis does not provide this information

In this presentation, the results of the previous test have more weight, but **not significantly**, based on the analysis of the variables. I did not find any obvious clues for further investigation of patterns that would not be covered in further stages of analysis, only clarification of the full picture regarding salary relations of the groups

1.00 – identity / similarity of salaries

Salary Trends

Compare overall and specific wages across years (2024 vs 2023)

Overall

Compare Q1, Q2, and Q3 ratios

	2023	2024	Ratios (%)
Q1	108000	105000	2.9
Q2	145000	146100	-0.8
Q3	190000	198000	-4.0

The displayed averages of quartile intervals are bootstrap results because different years contain different numbers of observations within these intervals and a single common value is needed for accuracy

Compare ratios of means for each quartile range (Q0-Q1 ... Q3-Q4) using samples with equal N

	2023	2024	Ratios (%)
Q0-Q1	77865	78524	-0.8
Q1-Q2	128231	126171	1.6
Q2-Q3	166163	170482	-2.5
Q3-Q4	237929	245914	-3.2

Compare overall and sub-range standard deviations

- Most "noise" comes from the extreme high-salary range, while the Q0-Q1 range is more concentrated
- In 2024, the labor market's volatility is 5% higher, indicating more opportunities and greater competition
- The Q2-Q3 range is less volatile due to the large number of positions accumulated in this interval

Overall ratio (23 to 24): -5.22%

	2023	2024	Ratios (%)
Q0-Q1	21087	18631	13.2
Q1-Q2	10890	12166	-10.5
Q2-Q3	13555	14349	-5.5
Q3-Q4	41334	47513	-13.0

There is no downward trend in salaries in 2024

None of the recent negative global phenomena have significantly affected the financial position of the market to date; this reflects its dominance over external factors, which is a reference point for further interpretations

The increased variation in the different salary groups in the 24th year compared to the 23rd year suggests new directions are emerging, possible salary shifts, and in general the adaptation of companies to new labor conditions

Specific (1 variable) Non-working positions

Top 5 countries (company location)

- Germany's salary growth in 2024 was 4.7%, nearly double that of 2023
 IT job openings in Germany increased by 50% year-on-year in 2024
 Germany is heavily investing in digitalization and technological innovation
- Interpreting "Other" is difficult due to insufficient country data, but DS wages are expected to rise in 2024
- Canada's economy is slowing in 2024, leading to lower wages in some sectors, including IT Many companies have cut IT and Data Science budgets, impacting salaries
- The large gap in UK DS salaries is due to revised budgets and market overheating
- The US remains stable and attractive

Despite the Data Science hype,
the market is leveling off.
Previously inflated salaries are
being re-evaluated, and hiring is
shifting towards employer terms
due to oversupply, even with a
general upward salary trend

Qualification

	23_(mean)	24_(mean)	Ratio_(%)
experience_level			
MI	121826	140214	15.1
EN	90094	99370	10.3
EX	190775	202469	6.1
SE	164797	171738	4.2

- Without a strong US influence on the results of this comparison, SE level specialists started to get paid less (113k → 107k = -5%), while in the US the difference is 8000 in the positive direction (160k → 168k = 5%)
- EN (especially), MI and EX are experiencing wage increases across the board

EN
$$(43k \rightarrow 56k = 23\%)$$

MI $(70k \rightarrow 83k = 15\%)$
EX $(135k \rightarrow 160k = 15\%)$

Company size

- Excluding the US impact, salaries in companies of sizes L and M were virtually unchanged (L = +0.1% and M = -3.5%), while S found a significant increase of 25% (61k → 81k)
- Smaller companies (<50 employees) are actively involved in modern solutions, at least to keep up with the mainstream

Specific (1 variable) Working positions

Top 5 most common

	23_(mean)	24_(mean)	Ratio_(%)
job_title			
ML Engineer	191246.0	196827.0	2.9
Research Scientist	188938.0	193053.0	2.2
Data Engineer	148978.0	150146.0	0.8
Data Analyst	108751.0	107567.0	-1.1
Data Scientist	163205.0	160040.0	-1.9

	23_(mean)	24_(mean)	Ratio_(%)
origin_group			
Specialized	120587.0	142640.0	18.3
Manager	121358.0	139126.0	14.6
Specialist	93371.0	101612.0	8.8
Developer	114432.0	121243.0	6.0
Head	201580.0	209048.0	3.7

Top 5 most common by salary groups

	23_(mean)	24_(mean)	Ratio_(%)
(200-300k) job_title			
ML Engineer	237350.0	239057	0.7
Research Scientist	234648.0	235228	0.2
Data Scientist	235999.0	234168	-0.8
Data Analyst	220299.0	218327	-0.9
Data Engineer	235438.0	231706	-1.6

- up to 100k
- 100k 200k
- 200k 300k
- 300k+

	23_(mean)	24 (mean)	Ratio_(%)
(100-200k) job_title			
Data Analyst	132795.0	135881	2.3
Data Engineer	145299.0	146956	1.1
ML Engineer	157369.0	157277	-0.1
Research Scientist	155059.0	154970	-0.1
Data Scientist	150664.0	149553	-0.7

	23_(mean)	24_(mean)	Ratio (%)
(300k+) job_title			
ML Engineer	328675.0	339803.0	3.4
Data Scientist	331735.0	335854.0	1.2
Data Engineer	nan	323778.0	nan
Research Scientist	nan	364601.0	nan
Software Engineer	nan	332625.0	nan

Top 5 positive / negative ratios

- A Research Analyst focuses on qualitative data using surveys and interviews
- A Data Analyst works with quantitative data and large datasets using statistical analysis and data mining
- Research Analysts are common in marketing, social sciences, and politics, while Data Analysts are prevalent in IT, finance, and e-commerce

Given the high salaries among Research Analysts, this position is likely to see **further financial growth** Top 5 common highest-paid (>250k) / lowest-paid (<70k) job titles

	23_(mean)	24_(mean)	Ratio_(%)
(>250k) job_title			
Research Scientist	291086.0	300924.0	3.4
ML Engineer	288651.0	294605.0	2.1
Data Engineer	277725.0	282739.0	1.8
Applied Scientist	269105.0	268370.0	-0.3
Data Scientist	288717.0	285361.0	-1.2

Top 3 most common by group

Data

23_(mean)	24_(mean)	Ratio_(%)
149535.0	150360.0	0.6
108828.0	107776.0	-1.0
163665.0	160225.0	-2.1
	149535.0 108828.0	108828.0 107776.0

Engineer

	23_(mean)	24_(mean)	Ratio_(%)
job_title			
ML Engineer	191331.0	197649.0	3.3
Data Engineer	149789.0	150203.0	0.3
Software Engineer	nan	187688.0	nan

Scientist

	23_(mean)	24_(mean)	Ratio_(%)
job_title			
Research Scientist	188776.0	192937,0	2.2
Applied Scientist	187435.0	186880.0	-0.3
Data Scientist	164014.0	160307.0	-2.3

Analyst

ML

ΑI

	23_(mean)	24_(mean)	Ratio (%)
job_title			
Al Engineer	161401.0	160402.0	-0.6
Al Architect	nan	215027.0	nan

ΒI

23_(mean)	24_(mean)	Ratio_(%)
111749.0	105350.0	-5.7
118169.0	110552.0	-6.4
149768.0	127295.0	-15.0
	111749.0 118169.0	111749.0 105350.0 118169.0 110552.0

Manager

23_(mean)	24_(mean)	Ratio_(%)
148542.0	137319.0	-7.6
110122.0	99907.0	-9.3
nan	150456.0	nan
	148542.0 110122.0	110122.0 99907.0

Research

	23_(mean)	24_(mean)	Ratio_(%)
job_title			
Research Analyst	96543.0	128199.0	32.8
Research Engineer	178307.0	188744.0	5.9
Research Scientist	188858.0	192484.0	1.9

Specific (>1 variable) Qualification

Top 5 most common

Entry-level qualifications massively adjust the salary cap for Data Science majors

	23_(mean)	24_(mean)	Ratio_(%)
EN + job_title			
Research Analyst	77519.0	114651.0	47.9
Data Analyst	76655.0	92331.0	20.5
Data Engineer	90758.0	107279.0	18.2
Data Scientist	91558.0	104428.0	14.1
BI Analyst	nan	102264.0	nan

STATE OF THE PARTY	(188931)	U 3000555000	
	23_(mean)	24_(mean)	Ratio_(%)
SE + job_title			
Data Analyst	120762.0	126987.0	5.2
ML Engineer	198075.0	206007.0	4.0
Data Engineer	157891.0	161414.0	2.2
Data Scientist	172087.0	171976.0	-0.1
Software Engineer	nan	196676.0	nan

	23_(mean)	24_(mean)	Ratio_(%)
MI + job_title			
Data Scientist	126798.0	142633.0	12.5
ML Engineer	154840.0	169816.0	9.7
Data Analyst	95188.0	101394.0	6.5
Data Engineer	122805.0	129489.0	5.4
Research Scientist	177057.0	174655.0	-1.4

	23_(mean)	24_(mean)	Ratio_(%)
EX + job_title			
Head of Data	217456.0	230296.0	5.9
Data Engineer	189250.0	189091.0	-0.1
Data Scientist	209776.0	209270.0	-0.2
ВІ	nan	204868.0	nan
ML Engineer	nan	237093.0	nan

Company size

Top 5 most common

	23_(mean)	24_(mean)	Ratio_(%)
L + job_title			
Data Scientist	109381.0	168196.0	53.8
Data Engineer	138904.0	140045.0	0.8
Applied Scientist	185006.0	186294.0	0.7
Bl Engineer	139382.0	134198.0	-3.7
Other	102378.0	nan	nan

An unexpected observation.

Data Scientist, a particularly preferred position by large companies, is, according to demand, the only specialty with a significant shift in salary by an average of 54% (a clear shift is observed both in America and Europe)

Salary Trends

Modeling a regression model to determine the most influential variables on wages

The **libraries** involved at this stage of the study:

- joblib to save/use the saved model after a long iteration over the hyperparameter grid in search of the most efficient one, so as not to return to this step
- sklearn for building and evaluating model performance, for processing categorical data, for determining the best performing model parameters
- lazypredict for determining the most efficient model and the resulting time savings
- xgboost machine learning regression algorithm

Transformations

Square root / Box-Cox transformation:

- Compresses large values, stretches small values (info loss, noise amplification)
- More sensitive to outliers than logarithmic transformation
- Logarithmic transformation better for salary prediction (better accounts for the typical income distribution)

I use the salary transformation here to (a) reduce the impact of high salary ranges, (b) improve interpretability, and (c) make the model more stable After dividing the data into training (0.7) and test (0.3) data, converting the categorical data into numerical representation using OneHotEncoder, the final data was mass processed using various regression algorithms

	Adjusted R-Squared	R-Squared	RMSE Time To	aken
Model				
LGBMRegressor	0.76	0.76	0.23	0.46
XGBRegressor	0.76	0.76	0.23	0.56
HistGradientBoostingRegressor	0.75	0.76	0.23	1.83
RandomForestRegressor	0.75	0.76	0.23	7.06
BaggingRegressor	0.75	0.75	0.24	0.94
GradientBoostingRegressor	0.74	0.75	0.24	7.82
NuSVR	0.74	0.74	0.24	67.24
SVR	0.74	0.74	0.24	44.20
ElasticNetCV	0.73	0.74	0.24	6.28
LassoCV	0.73	0.74	0.24	4.38

The most efficient in performance are algorithms such as: LightGBM and XGBoost.

My choice fell on the second option

After building the model and finding the optimal parameters, the generalizability of the data by the model (R^2) was 0.78 for the training data and 0.76 for the test data, where 1.00 = full explainability.

Whereas without the US these values are 0.87 and 0.73 respectively

Factual

The importance of the features that influenced the prediction result the most

With the absence of the U.S. in the data:

- The importance of the dollar increases
- Importance of North America (including Canada) decreases
- Importance of Analysts decreases
- Importance of entry level experience increases
- The influence of salaries below the median for specialty and experience (Below) decreases
- Importance of countries with median salaries in the 30-60k range increases

	category	importance
0	jobexp_median_Above	9.80
1	country_median_>120k	9.45
2	salary_currency_USD	7.72
3	jobexp_median_Below	5.31
4	experience_level_EN	4.01
5	country_median_30-60k	3.65
6	jobexp_median_(n<15)	2.91
7	cont_direct_Asia North	2.83
8	cont_direct_North America North	2.26
9	experience_level_SE	1.99

With the absence

	category	importance
0	jobexp_median_Above	18.54
1	jobexp_median_Below	17.23
2	country_median_>120k	13.10
3	origin_group_Analyst	6.24
4	cont_direct_North America North	5.84
5	salary_currency_USD	3,73
6	experience_level_EN	3.48
7	experience_level_SE	2.90
8	jobexp_median_(n<15)	2.26
9	experience_level_EX	1.52

With the presence

To assess how specific traits influence salary predictions, we used Partial Dependence Plots (PDPs) from scikit-learn. PDPs help isolate the effect of individual variables in complex models by averaging out the impact of other features. This technique allows us to understand how a particular trait affects predicted salaries without interference from other factors

Without US in the data:

0 – trait absence 1 – presence The relationship is mostly linear

- Above-median salaries
 (e.g., Junior Analyst at 110k vs. median 100k) show stronger positive influence on predictions. This suggests that more frequent occurrences of above-median salaries could indicate broader salary growth trends
- Below-median salaries
 (e.g., Junior Analyst at 85k vs.
 median 100k) have a weaker
 negative influence, about half
 as strong as the positive effect
 of above-median salaries

Analysts have a slight negative effect on wage predictions, likely due to:

- 1. The position's prevalence
- 2. Its tendency towards lower salaries given certain responsibilities

Each trait's impact on salary predictions is isolated, showing near-pure dependence (though not perfect) between the trait and salaries

- High wage medians (90-120k)
 positively influence high salary predictions, but not absolutely
- Mid-range salaries (60-90k) have minimal impact, considered 'stable'
- Lower medians (30-60k)
 significantly influence the regression model"

With the US presence:

"Below" has become **more significant** in influence

Analysts have higher influence in this mapping due to:

- Greater importance in the initial array
- Larger numbers in the USA
- Consistently lower salaries compared to other common roles (DE, DS)

The entire focus shifted to countries (*country) with medians >120k, understating the impact of the remaining attributes. This shows the overall influence of the US on the Data Science labor market

'Above' and 'Below' median salary positions effectively isolate groups with specific salary features, as shown by their importance in feature ranking

- High-median countries (\$120k+, US and Canada) maintain stable distinctiveness:
 - Without US: 2nd in importance
 - With US: 3rd in importance This suggests separate analysis is needed for extreme salary ranges
- Analysts impact on overall salary median:
 - Without US: 83k / 86k (-3%)
 - With US: 145k / 150k (-3%)

Staff Demand

Analyze demand for specialists across years (2024 vs 2023)

Overall

What is presented here is not the difference, but the ratio of the two ratios, 24th to 23rd year

Data Scientist demand shows consolidation in 2024, separating from Data Engineer despite a slight overall decline

Downward trends:

- Data Analysts
- Data Engineers
- ML Engineers

"Engineer" branch demand stable over 2 years (includes ML, Al, Data, Bl Engineers)

Increasing demand:

- Research Scientist and Research Analyst: +40% each
- Al Engineer: +100% (2x FY23)
- Data Architect: +14%
- BI Analyst: +26%
- Diverse Professionals ("Other"): ~90% increase

Decreasing demand:

- Applied Scientist: -22%
- Analytics Engineer: -15% (out of top)
- BI Engineer: -37% (out of top)

"Other" 2024 demand order:

- 1. Unique categories (new diverse roles)
- 2. Al (not only Al Engineer): +300%
- 3. ML (not only ML Engineer): +160%
- 4-7. Lead, Management, Operations, Analytics (insufficient FY23 data)

Specific

Qualification

- Despite a general decline in analyst demand, entry-level professionals are leading in FY24, with mid- and high-level professionals less considered
- Demand for mid-level Data
 Scientists and Data Engineers is
 significantly higher than last year,
 especially for Data Scientists, with
 a similar increase at the senior level

Specific

Company size

The same trend holds true for a mid-size company

Remote Work

Compare trends in remote work adoption

20

22

23

20

23

- Office work dominates, but a balance with remote work is expected soon
- Office and remote work similarly impact salaries positively, despite office work's prevalence
- The most stable remote work type is hybrid

The bottom line

- 1. Overall impressions
- 2. Salaries
- 3. Demand
- 4. Remoteness

Overall impressions

- The current state of the market, which is at an active stage of formation, provides opportunities for experienced and inexperienced professionals
- The requirements for many specialties are still not definitively defined, which leaves less limited trade-offs and consequent uncertainty
- The growth in competitor volume is explained and at the same time offset by the overall demand for specialists

 Collecting, storing, processing and analyzing data is more actively becoming a business standard, which is generating demand and with it more sophisticated ways to solve business questions about data without predominantly involving specialists

Improved automation is part of the demand, which is also actively changing the shape of labor market requirements

Salaries

- Salaries are growing, though not equally or everywhere
- The fluid market causes spikes in salary adjustments, introducing uncertainty and risk
- North America, especially the US, is the most generous and demanding (64% density of senior professionals).
 Its market impact needs separate analysis
- Germany's average Data Science salary increased by 15% since FY23 (top growth)
- Entry-level salaries grew from 43k to 56k (23%), with MI and EX at 15%, and SE with no clear advantage

- Entry-level salary increases:
 Data Analyst (+20%), Data Engineer (+18%), Data Scientist (+14%)
- Mid-level salary increases:
 Data Scientist (+12%),
 ML Engineer (+10%)
- Largest salary increase:
 Research Analyst (+33%),
 especially EN level (+48%);
 biggest declines: Decision Scientist
 (-22%), BI Engineer (-15%)
- Shocking growth:
 Large Company + Data Scientist (+54%, from 110k to 168k)
- Small company salaries (under 50 people) grew 15-25%

Demand

- Top positions like Data Analysts,
 Data Engineers, and ML Engineers
 see a slight decline in demand,
 while new specialists in Al,
 Management, and Research rise
- Demand for Data Analysts declines (except entry-level), but BI Analyst demand increases (+26%)
- Specialist diversity increased significantly in 2024 (+90%), led by Al and ML branches
- Despite high demand for mid-level Data Scientists, engineers (ML, AI, Data, BI) are the leading group, with scientists at a lower position

- Al Engineer demand doubled in Year 23 (+100%)
- Research positions like
 Research Scientist and
 Research Analyst see a 40%
 increase in demand
- Data Architect demand increased by 14%, indicating a need for advanced data structures

Data Architects are mostly senior (95%) in mid-sized companies (98%)

Remoteness

- Office and remote work are virtually identically reflected on salaries in a positive way, despite the quantitative superiority of office work
- Observing this phenomenon, I consider myself to be in a position where a balance between remote and office work will be formed over time, introducing more flexibility. Research shows that remote work only has a positive impact on productivity for a number of simple reasons.

Stanford study: +13% to productivity when working from home

 The most stable type of remote work is the hybrid type

What I learned from the project

Weeks of work in two slides

- Efficiently utilize key combinations to manipulate code and text. This allows you to save significant time and keep your focus on what is important
- Structurally work with the project. The most fundamental thing that every analyst must be able to do, otherwise (a) uncertainty will overwhelm the mind, (b) the project results will probably not justify themselves, (c) the project may go down the wrong path. Waste of resources as a consequence. This project started as a thought, not an action

- Be clearer about what is important and what is not
- Respect uncertainty. The one thing that stood out in particular was the realization that working with data, in general, is often about the cruelest feeling of all – the feeling of uncertainty. I darted from loathing to self-esteem, from discouragement to indescribable joy. A mix of emotions, simply put
- Provide further clarification as questions arise. Initially experience a sense of laziness when building this skill, afterward a sense of urgency due to possible incorrect interpretations and important omissions (a sense of excitement comes with this)

- Suppress perfectionism (in development). Challenging skill
- Being honest with oneself.
 Unsuspected self-deception is worse than conscious self-deception.
 It's easier to fix in the second case
- Writing functions with complex logic.
 At least that's what Claude and GPT told me
- Use the LLM to find better solutions to problems. The most difficult points to overcome are to accept your mistakes during clearly stated arguments as opposed to your expectations. Thereby deriving the following skill...
- ...to be more cool and judicious with criticism. Resentment is replaced by a sense of acceptance of missed opportunities

- Work with basic libraries for processing, analysis, and output.
 LeetCode rests in comparison to this experience
- Build simple machine learning models (but it's not automatic yet). I've tried combining 2 completely different models (XGBoost and CTGAN), but haven't quite figured out how to turn this experience into something positive
- Overcome the urge to "leave it alone" when there is something to fix.
- Spend less time on super details.
 So many unnecessary actions during the project took up my time and nerves

A lot of time was spent on this very first project in my life, so the experience gained is too much and invaluable

Initiatives to improve research approach

- Use less complex approaches at the beginning of the project
- Set specific deadlines for completing project tasks
- Spend more time determining the actual benefits of the project
- Review as many third-party sources as possible to confirm / refute assumptions

- Be less wasteful of time with respect to generating visualizations, especially in the beginning when getting to know the data
- Engage more frequently with the LLM to find gaps in thinking about the project