Functional Analysis Problem Sheet 1

August 22, 2019

1 Metric Spaces

- 1. Determine whether d is a metric on the set \mathbb{R} of all real numbers in the following cases.
 - (a) $d(x,y) = (x-y)^2$ for all $x, y \in \mathbb{R}$.
 - (b) $d(x,y) = \sqrt{|x-y|}$ for all $x, y \in \mathbb{R}$.
- 2. If A is the subspace of l^{∞} consisting of all sequences of zeros and ones, what is the induced metric on A?
- 3. Let X be the set of all ordered triples of zeros and ones. Show that X consists of eight elements and a metric d on X is defined by

d(x,y) = number of places where x and y have different entries

for all $x, y \in X$.

- 4. (a) Find a sequence which converges to 0, but is not in any space l^p for $1 \le p < \infty$.
 - (b) Find a sequence which is in l^p for all p > 1 but not in l^1 .
- 5. Let (X, d) be a metric space. Define

$$D(A,B) = \inf_{a \in A, b \in B} d(a,b)$$

for all $A, B \subseteq X$. Show that D is not a metric on the power set of X.

- 6. Show that the image of an open set under a continuous mapping need not be open.
- 7. Show that a metric space (X, d) is separable if and only if X has a countable subset Y such that for every $\epsilon > 0$ and every $x \in X$, there is a $y \in Y$ such that $d(x, y) < \epsilon$.
- 8. (a) Let (X, d) be a metric space. Suppose that there exists an uncountable subset Z of X such that the topology on Z generated by the induced metric is the discrete topology. Show that (X, d) is not separable.
 - (b) Show that for $a, b \in \mathbb{R}$ with a < b, the metric space B[a, b] is not separable.
- 9. Let (x_n) be a sequence in X and let $x \in X$. Show that if every subsequence of (x_n) has a subsequence that converges to x, then (x_n) converges to x.
- 10. Show that a Cauchy sequence which has a convergent subsequence is convergent.

11. If d_1 and d_2 are metrics on the same set X and there are positive numbers a and b such that for all $x, y \in X$,

$$ad_1(x,y) \le d_2(x,y) \le bd_1(x,y),$$

then prove the following.

- (a) A subset A of X is open in (X, d_1) if and only if it is open in (X, d_2) .
- (b) A sequence (x_n) in X is Cauchy in (X, d_1) if and only if it is Cauchy in (X, d_2) .
- 12. Determine whether (\mathbb{N}, d) is a complete metric space in the following cases.
 - (a) d(m,n) = |m-n| for all $m, n \in \mathbb{N}$.
 - (b) $d(m,n) = \left|\frac{1}{m} \frac{1}{n}\right|$ for all $m, n \in \mathbb{N}$.
- 13. Show that C[0,1] and C[a,b] are isometric.
- 14. Let d be a metric on a nonempty set X and $\overline{d} = \frac{d}{1+d}$. Show that (X, d) is complete if and only if (X, \overline{d}) is complete.
- 15. Let \tilde{X} be the set of all Cauchy sequences in a metric space (X,d).
 - (a) Show that $(d(x_n, y_n))$ converges for $(x_n), (y_n) \in \tilde{X}$.
 - (b) Let $(x_n), (y_n) \in \tilde{X}$ such that $(d(x_n, y_n))$ converges to 0 and let $z \in X$. Show that (x_n) converges to z if and only (y_n) converges to z.
 - (c) Define a relation \sim on \tilde{X} such that for $(x_n), (y_n) \in \tilde{X}$, $(x_n) \sim (y_n)$ if and only if $(d(x_n, y_n))$ converges to 0. Show that \sim is an equivalence relation.

2 Normed spaces, Banach spaces

- 1. (a) Let $(X, \|\cdot\|)$ be a normed space. Show that if $X \neq \{0\}$, then $\{\|x\| : x \in X\} = [0, \infty)$.
 - (b) Let d be a metric on a vector space $X \neq \{0\}$ and define

$$\overline{d}(x,y) = \left\{ \begin{array}{ll} 0 & \text{if} & x = y \\ d(x,y) + 1 & \text{if} & x \neq y \end{array} \right.$$

for all $x, y \in X$. Show that \overline{d} is a metric on X that cannot be obtained from any norm on X.

- 2. Show that a subset A of a normed space is bounded if and only if there exists m > 0 such that $||x|| \le m$ for all $a \in A$.
- 3. (a) Let X be a normed space and let $Y \neq \{0\}$ be a subspace of X. Show that Y is unbounded.
 - (b) Show that there exists no norm on a vector space X which induces the discrete metric on X.
- 4. Let Y be a subspace of a vector space X. For $x \in X$, let $x + Y = \{x + y : y \in Y\}$. Show that for any $a, b \in X$, either a + Y = b + Y or $a + Y \cap b + Y = \emptyset$
- 5. For a subspace Y of a vector space X, let $X/Y = \{x + Y : y \in Y\}$. Show that under the algebraic operations defined by

$$(a+Y) + (b+Y) = a+b+Y$$
$$\alpha(a+Y) = \alpha a + Y$$

for any $a, b \in X$ and scalar $\alpha, X/Y$ is a vector space.

6. Let c = set of all convergent sequences of real numbers, $c_0 = \text{set}$ of all sequences of real numbers converging to 0 and $c_{00} = \text{set}$ of all sequences of real numbers with only finitely many nonzero terms.

- (a) Show that c is a closed subspace of l^{∞} .
- (b) Show that c_0 is a closed subspace of c.
- (c) Show that c_{00} is not closed in c, c_0 and l^p for any $1 \le p \le \infty$.
- 7. Show that if a normed space has a Schauder basis, it is separable.
- 8. (a) Let $\{x_n\}$ be a Cauchy sequence in X. Show that there exists a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that the sequence $\sum_{n=1}^{\infty} \|x_{n_k} x_{n_{k+1}}\| < \infty$.
 - (b) Show that a normed space X is complete if and only if every absolutely convergent series is convergent.
- 9. Let Y be a subspace of a normed space $(X, \|\cdot\|)$. Define $\|x+Y\|_0 = \inf\{\|x+y\| : y \in Y\}$ for all $x \in X$.
 - (a) Show that $||x + Y||_0 = D(x, Y)$.
 - (b) Show that Y is closed if and only if $\|\cdot\|_0$ is a norm on X/Y.
- 10. Show that equivalent norms on a vector space X induce the same topology on X.
- 11. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be equivalent norms on a vector space X. Show that $(X, \|\cdot\|_1)$ is complete if and only if $(X, \|\cdot\|_2)$ is complete.
- 12. (a) Let x_1, \ldots, x_n be linearly independent elements of a normed space X and let $x_{n+1} \in X$. Show that x_1, \ldots, x_{n+1} are linearly independent if and only if $D(x_{n+1}, span\{x_1, \ldots, x_n\}) > 0$.
 - (b) Let Y be a finite-dimensional proper subspace of a normed space X. Show that there exists $x \in X$ such that ||x|| = D(x, Y) = 1.
 - (c) Show that if X is an infinite-dimensional normed space, then $\{x \in X : ||x|| \le 1\}$ is not compact.
- 13. Let X, Y be vector spaces, let $T: X \to Y$ be a linear operator and let $x_1, \ldots, x_n \in X$..
 - (a) Show that the image of a subspace of X is a subspace of Y, and the inverse image of a subspace of Y is a subspace of X.
 - (b) Show that if Tx_1, \ldots, Tx_n are linearly independent, then x_1, \ldots, x_n are linearly independent.
 - (c) Show that if T is injective and x_1, \ldots, x_n are linearly independent in X, then Tx_1, \ldots, Tx_n are linearly independent.
- 14. Let X, Y be normed spaces and let $T: X \to Y$ be a linear operator. Show that T is bounded if and only if it maps bounded sets into bounded sets.
- 15. Let X, Y be normed spaces and let $T: X \to Y$ be a bounded linear operator. If $T \neq 0$, show that for $x \in X$ such that ||x|| < 1, we have ||Tx|| < ||T||.
- 16. For $(x_1, x_2, x_3, ...) \in l^{\infty}$, let

$$T(x_1, x_2, x_3, \ldots) = \left(\frac{x_1}{1}, \frac{x_2}{2}, \frac{x_3}{3}, \ldots\right).$$

- (a) Show that $T: l^{\infty} \to l^{\infty}$ is an injective bounded linear operator.
- (b) Show that $\mathcal{R}(T)$ is not closed in l^{∞} .
- (c) Show that $T^{-1}: \mathcal{R}(T) \to l^{\infty}$ is not bounded.
- 17. Let T be a bounded linear operator from a normed space X onto a normed space Y. If there is b > 0 such that $||Tx|| \ge b||x||$ for all $x \in X$, show that $T^{-1}: Y \to X$ exists and is bounded.
- 18. Let $f \neq 0$ be a linear functional on a vector space X. Show that $\mathcal{R}(f)$ is the scalar field of X.

- 19. (a) Let $f \neq 0$ be a linear functional on a vector space X. Fix $x_0 \notin \mathcal{N}$. Show that for every $x \in X$, there exists a unique pair (α, y) such that α is a scalar and $y \in \mathcal{N}(f)$ and $x = \alpha x_0 + y$.
 - (b) Let f_1, f_2 be nonzero linear functional on a vector space X. Show that $\mathcal{N}(f_1) = \mathcal{N}(f_2)$, if and only if f_1 and f_2 are linearly dependent.
- 20. Let $f \neq 0$ be a linear functional on a vector space X. Show that

$$\inf\{\|x\|: f(x)=1\} = \frac{1}{\|f\|}.$$