

ICN6201

Register Specification

Revision 0.2

NOTICE

NOTICENOTICENOTICE

This design and all of its related documentation constitutes valuable and confidential property of Chipone Technology (Beijing) Co., Ltd. It is Roensed for use as expressly stated in the written license Agreement between Chipone Technology (Beijing) Co., Ltd and its customers. Any other use or redistribution of this design and all related documentation is expressly prohibited.

This design and all related documentation bave been released by Chipone Technology (Beijing) Co., Ltd to its customers under Non Disclosure Agreement (NDA). Disclosure of this design outside of this agreement is expressly prohibited.

NOTICE

NOTICENOTICENOTICE

Chipone Technology (Beijing) Co., Ltd

13th Floor, Test Tower, Building 4, 31 Middle North Third Ring Rd.,

Haidian District, Beijing, 100088

PRC

Contact: Simon Liu

Email. simon Inv@chiponeic.com

Revision History

Rev	Date	Author	Description
0. 1	2013-07-22	Simon_Liu	Initial
0.2	2013-08-31	Simon_Liu	Add register description
			Y
			• ()

inone continue.

Table of Contents

1	Register Set	- 4	-
1.1	Access Keys	- 4	۱ -
1 2	Interment Controller Part (0v0100 0v01EE)	1	

1 Register Set

1.1 Access Keys

Table 1-1 Access Keys

	<u>*</u>			
Key	Description			
R/W	Readable & Writable			
RO	Read Only			
WO	Write Only			
RC	ReadClear			
RW1TC	Readable & Write 1 to clear			
RW0TC	Readable & Write 0 to clear			

1.2 Interrupt Controller Part (0x0100 ~ 0x01FF)

Table 1-2 Interrupt Controller Register Mar

Base Address: 0x0100

Register Name	Offset Address	SFR Address	Size(bits)	Description
IRQ_OUT_SEL	0x007d	NA 📐	8	Select IRQ pin output signals
REG_DBG_SEL	0x007e	NA) _w	Select Register debug signals
MIPI_REV_FORCE	0x00c8			Force the reverse transaction
MIPI_REG_DBG_SEL	0x00e0	>,		Select MIPI register debug signals

Table 1-3 VENDER_ID register (Offset 0x0000)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
VENDER_ID	7-0	The ID of vender	RO	8'hc1			

Table 1-4 DEVICE_ID_H register (Offset 0x0001)

Name	Bit	Description	R/W	Reset Value	CM	WM RM	I
DEVICE_ID_H	7-0	The ID of device	RO	8'h62			

Table 1-5 DEVICE_ID_L register (Offset 0x0002)

Name	Bit	Description	R/W		Reset ∕alue	CM	WM	RM
DEVICE_ID_L	7-0	The ID of device	RO	٤	h01			

Table 1-6 VERSION_ID register (Offset 0k0003)

Name	Bit	Descr	iption	O,	R/W	Reset Value	CM	WM	RM
VERSION_ID	7-0	The ID of version			RO	8'hff			

Table 1-7 FIRMWARE_VERSION register

(Offset 0x0008)

Name	Bit	Description	R/W	Reset Value	СМ	WM	RM
FIRMWARE_VERSION	7-0	The version of firmware	R/W	8'h00			

Table 1-8 CONFIG_FINISH register (Offset 0x0009)

Name	Bit	Description 1		Reset Value	CM	WM	RM
Reserved	7-5		-/-				
CONFIG_FINISH	4	After set to 1'b1, the chip begins to work	R/W	1'b0			
Reserved	3-1		-/-				
SOFT_RESET	0	When set to 1'b1, reset the LVDS function	SC	1'b0			

Table 1-9 PD_CTRL_0 register (Offset 0x000a)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PD_CTRL_0	7-0	When one bit is set to 1'b1, power down related funcion's clk. [0]: 216M for mipi lane0; [1]: 216M for mipi lane1; [2]: 216M for mipi lane2; [3]: 216M for mipi lane3; [4]: 216M for mipi lane clk; [5]: 216M for others; [6]: 216M for test; [7]: hs clk for mipi test	R/W	8'h00	• <u>^</u>		3

Table 1-10 PD_CTRL_1 register (Offset 0x000b)

Name	Bit	Description	R/W	Reset Value	СМ	WM	RM
PD_CTRL_1	7-0	When one bit is set to 1'b1, power down related funcion's clk. [0]: hs_clk for mipi lane0; [1]: hs_clk for mipi lane2; [3]: hs_clk for mipi lane3; [4]: hs_clk for mipi chksum; [5]: hs_clk for mipi function; [7]: hs_clk for bridge.	R/W	8'h00			

Table 1-11 PD_CTRL_2 register (Offset 0x000c)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
		When one bit is set to 1'b1, power down	R/W	8'h00			
		related funcion's clk.					
		[0]: lvds_clk for lvds lvds function					
		[1]: lvds_clk for bridge					
PD_CTRL_2	7-0	[2]: clk for bist_gen					
		[3]: refclk_dig					
		[4]: pll_fbclk;					
		[5]: osc_cali					
		[6]: gold_clk.					

Table 1-12 RST_CTRL_0 register

(Offset 0x000d)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
RST_CTRL_0	7-0	When one bit is set to 1'b1, reset related function [0]:reset LVDS(bridge, package,bist) [7:1]: not used	R/W	8'h00		•	

Table 1-13 RST_CTRL_1 register

(Offset 0x000e)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
		When one bit is set to 1'b1, reset related	R/W	8'h00			
		function			y '		
RST_CTRL_1	7-0	[0]: i2c_slave;					
		[1]: arbiter;					
		[7:2]: not used.		,			

Table 1-14 RST_CTRL_2 egister

(Offset 0x000f)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
RST_CTRL_2	7-0	When one bit is set to 1'b1, reset related function [0]: lvds package [1]: hvds bridge [2]: bist_gen	R/W	8'h00			

Table 1-15 SYS_CTRL_0 register (Offset 0x00010)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7		-/-				
MIPI_XOR	6	Invert the mipi hs_clk	R/W	1'b0			
LVDS_XOR	5	Invert the lvds clk	R/W	1'b0			
DSM_XOR	4	Invert the dsm_clk	R/W	1'b0			
RST_WR_ADDR	3	1'b1: reset address of line fifo for every line	R/W	1'b0			
VSW_MODE	2	1: use register[0x28] to control the Vsync width	R/W	1'b1			

		0: wait mipi "vse"				
HSW_MODE	1	1: use register[0x24] to control the Hsync width 0: wait mipi "HSE"	R/W	1'b1		
BIST_GEN_EN	0		R/W	1'b1		

Table 1-16 LVDS_CTRL_0 register (Offset 0x00013)

Name	Bit	Description	R/W	Reset Value	CM	WM RM
LVDS_LSB_MSB	7	1: swap the 7bit sequence 0: normal sequence	R/W	1'b0	•	
LVDS_CLK_PN_SWAP	6	Lvds clock PN swap	R/W	1'b0	X,	Y
LVDS_JEIDA_EN	5	0: VESA; 1: JEIDA	R/W	1'b0		
LVDS_BIT_SEL	4	0: 6bits; 1: 8bits	R/W	1250)	
LVDS_DATA_PN_SWAP	3-0	Each bit controls one LVDS lane	R/W	1 60		

Table 1-17 LVDS_CTRL_1 register (Offset 0x00014)

Name	Bit	Description	on	R/W	Reset Value	CM	WM	RM
Reserved	7			-/-				
LVDS_CLK_PATTERN	6-0	Set the LVDS clock lane par	tern	R/W	7'h63			

Table 1-18 LVDS_CTRL_2 register (Offset 0x00015)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
LVDS_LANE2_SEL[1.0]	7-6	LVDS lane2 select the packet pair	R/W	2'b10			
LVDS_LAND_SEL	5-3	LVDS lane1 select the packet pair	R/W	3'b001			
LVDS LANE()_SEL	2-0	LVDS lane0 select the packet pair	R/W	3'b000			

Table 1-19 LVDS_CTRL_3 register (Offset 0x00016)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
LVDS_CHKSUM_EN	7	Enable LVDS checksum, just for test	R/W	1'b0			
LVDS_LANECK_SEL	6-4	LVDS lane clock select the packet pair	R/W	3'b100			
LVDS_LANE3_SEL	3-1	LVDS lane3 select the packet pair	R/W	3'b011			

Table 1-20 LVDS_CTRL_4 register

(Offset 0x00017)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
LVDS_TEST_EN	7	Enable LVDS test	R/W	1'h0			
LVDS_TEST_TYPE	6-5	00: low; 01: high; 10: clk; 11:prbs7	R/W	2'h0		>	
LVDS_TEST_LANE	4-0	For each LVDS lane, 0: PRBS7 for MIPI Rx 1: set by LVDS_TEST_TYPE	R/W	5'h0	• <	O	, ,

Table 1-21 LOGIC RESET NUMBER register

(Offset 0x00018)

Name	Bit	Description	R/W	Reset Value	СМ	WM	RM
LOGIC_RST_NUM	7-0	Set the reset time after PLL lock for digital logic function	R/W	8'h10			

Table 1-22 ATE PLL EN register

(Offset 0x0001f)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
ATE_PLL_EN	7-0	Enable PLL ATE	R/W	8'h00			

Table 1-23 HACTIVE_L register

(Offset 0x0020)

Name	^ Bit	Description	R/W	Reset Value	CM	WM	RM
HACTIVE[7:0]	7-0	Set the horizontal active pixl number	R/W	8'h00			

$Table \ 1\text{-}24 \ VACTIVE_L \ register$

(Offset 0x0021)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
VACTIVE[7:0]	7-0	Set the vertical active line number	R/W	8'h58			

Table 1-25 VACTIVE_HACTIVE_H register (Offset 0x0022)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
VACTIVE[11:8]	7-4	Set the vertical active line number	R/W	4'h2			
HACTIVE[11:8]	3-0	Set the horizontal active pixel number	R/W	4'h4			

Table 1-26 HFP_L register (Offset 0x0023)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
HFP[7:0]	7-0	Set the horizontal front port	R/W	8'h54)	

Table 1-27 HSW_L register

(Offset 0x0024)

Name	Bit	Description	R/W	Reset Value	C	M	WM	RM
HSW[7:0]	7-0	Set the horizontal sync width	R/W	8464)				

Table 1-28 HBP_L register (Offset 0x0025)

Name	Bit	Description	C	R/W	Reset Value	CM	WM	RM
HBP[7:0]	7-0	Set the horizontal back porch) '	R/W	8'h38			

Table 1-29 HFP_HSW_HBP_H register

(Offset 0x0026)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7-6		-/-				
HFP[9:8]	5-4	Set the horizontal front portch	R/W	2'h0			
HSW[9:8]	3-2	Set the horizontal sync width	R/W	2'h0			
HBP[9:8]	1-0	Set the horizontal back porch	R/W	2'h0			

Table 1-30 VFP register

(Offset 0x0027)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
VFP[7:0]	7-0	Set the vertical front porch	R/W	8'h4			

Table 1-31 VSW register

(Offset 0x0028)

Name	Bit	Description	R/W	Reset	CM	WM	RM
------	-----	-------------	-----	-------	----	----	----

				Value		
VSW[7:0]	7-0	Set the vertical sync width	R/W	8'h4		

Table 1-32 VBP register (Offset 0x0029)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
VBP[7:0]	7-0	Set the vertical back porch	R/W	8'h14			

Table 1-33 BIST POL register (Offset 0x002a)

Name	Bit	Description	R/W	Reset Value	CM^	WM	RM
BIST_MODE	7-4	Select the bist mode 4'h0: BIST mode is disabled 4'h1: Monochrome is enabled 4'h2: Monochrome with colored border is enabled 4'h3: Chess board is enabled 4'h4: Color bar is enabled 4'h5: Color switching is enabled Others: reserved	R/W	4'h0			
BIST_FORCE	3	Force thei LVDS to send out bist_gen pattern	R/W	1'h0			
HS_POL	2	Set the hsync polarity	R/W	1'h0			
VS_POL	1	Set the vsync polarity	R/W	1'h0			
DE_POL	0	Set the de volarity	R/W	1'h1			

Table 1-34 BIST RED register (Offset 0x002b)

Name Bit Description R/W Reset Value CM WM RM

BIST_RED 7-0 Set the red color of bist_pattern. R/W 8'hff

Table 1-35 BIST GREEN register

(Offset 0x002c)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
BIST_GREEN	7-0	Set the green color of bist_pattern.	R/W	8'hff			

Table 1-36 BIST BLUE register (Offset 0x002d)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
BIST_BLUE	7-0	Set the blue color of bist_pattern.	R/W	8'hff			

Table 1-37 BIST CHESS X register

(Offset 0x002e)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
CHESS_X[7:0]	7-0	Set the chess width	R/W	8'h01			

Table 1-38 BIST CHESS Y register

(Offset 0x002f)

Name	Bit	Description	R/W	Reset Value)¢M	ЖM	RM
CHESS_Y[7:0]	7-0	Set the chess height	R/W	8'h01			

Table 1-39 BIST CHESS XY_H register

(Offset 0x0030)

Name	Bit	Description		X	R/W	Reset Value	CM	WM	RM
CHESS_Y[11:8]	7-4	Set the chess heigth		\	R/W	4'h0			
CHESS_X[11:8]	7-4	Set the chess width) '		R/W	4'h0			

Table 1-40 BIST FRAME TIME L register

(Offset 0x0031)

Name	Bit	~	Description	R/W	Reset Value	CM	WM	RM
FRM_TIME[7:0]	7-0	Set	he auto display frame time.	R/W	8'h78			

Table 1-41 BIST FRAME TIME H register

(Offset 0x0032)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
SYNC_EVENT_DLY[11:8]	7-4	Set the delay number of MIPI event	R/W	4'h0			
FIFO_MAX_ADDR[9:8]	3-2	Set the fifo max address	R/W	2'h3			
FRM_TIME[9:8]	1-0	Set the auto display frame time	R/W	2'h0			

Table 1-42 FIFO MAX ADDR LOW register

(Offset 0x0033)

Name	Bit	Degenintien	R/W	Reset	CM	WM	RM	
Name	ы	Description	R/W	Value				

FIFO_MAX_ADDR[7:0]	7-0	Set the fifo max address	R/W	8'hbf			
--------------------	-----	--------------------------	-----	-------	--	--	--

Table 1-43 SYNC EVENT DLY LOW register

(Offset 0x0034)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
SYNC_EVENT_DLY[7:0]	7-0	Set the delay number of MIPI event	R/W	8'h40			1

Table 1-44 HSW MIN register

(Offset 0x0035)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
HSW_MIN	7-0	Set the minimum pixel of HSW	R/W	8'h8			

Table 1-45 HFP MIN register

(Offset 0x0036)

Name	Bit	Description	X	R/W	Reset Value	CM	WM	RM
HFP_MIN	7-0	Set the minimum pixel of HFP	\	R/W	8'h8			

Table 1-46 TX_PHY_CTRL_0 register

(Offset 0x0040)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7	1	-/-				
PD_TX_LOCK	6	1. auto power down tx when pll is not done	R/W	1'h1			
PD_TX	5	1: power down tx	R/W	1'h0			
PD_TX_CK	*	1: power down lvds clock lane	R/W	1'h0			
PD_TX_CN3	3	1: power down lvds lane3	R/W	1'h0			
PD_TX_CH2	2	1: power down lvds lane2	R/W	1'h0			
PD_TX_CHI	1	1: power down lvds lane1	R/W	1'h0			
PD_TX_CH0	0	1: power down lvds lane0	R/W	1'h0			

Table 1-47 TX_PHY_CTRL_1 register

(Offset 0x0041)

Nama	Bit	Description	R/W	Reset	CM	WM	RM
Name	ы	Description	K/W	Value			

TX_RTERM	7	LVDS near end differential terminal resistance: $0 \ \text{for} \ 100\Omega \ ; \qquad 1 \ \text{for} \ 200\Omega$	R/W	1'h0		
TX_VOCM	6	LVDS data/clock output common mode 0 for 1.2V; 1 for 0.9V	R/W	1'h1		
TX_BYP_RSTDIV7	5	Bypass DIV7 reset block	R/W	1'h0		
TX_CK_SWAP	4	Swap 7x clock polarity	R/W	1'h0		
TX_VOD_DATA	3-0	LVDS data output differential swing control output swing=<3>*100m+<2:0>*50m+50m	R/W	4'h3	^	

Table 1-48 TX_PHY_CTRL_2 register (Offset 0x0042)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
TX_VOD_CK	7-4	LVDS clock output differential swing control output swing=<3>*100m+<2:0>*50m+50m	R/W	(X)(3)			
TX_VOCM_AD	3-2	LVDS data/clock output common mode fine adjust TX_VOCM=0, 00: 1.12V, 01. 16V, 10: 1.2V, 11: 1.24V TX_VOCM=1, 00: 0.86V, 01. 0.9V, 10: 0.94V, 11: 0.98V	R/W	2'h1			
Reserved	1-0		-/-				•

Table 1-49 TX_PHY_CTRL_3 register

(Offset 0x0043)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7		-/-				
TX_YOSL	6-4	LVDS data/clock output slew rate control	R/W	3'h0			
TX_SW_DATA	3-2	LVDS data driver switch strength 11: >=350mV, 10:200~350mV, 01:<200mV	R/W	2'h2			
TX_SW_CK	1-0	LVDS clock driver switch strength 11:>=350mV, 10:200~350mV, 01:<200mV	R/W	2'h2			

Table 1-50 TX_PHY_CTRL_4 register

(Offset 0x0044)

Name	Bit	Description	R/W	Reset	CM	WM	RM	
------	-----	-------------	-----	-------	----	----	----	--

				Value			
		LVDS PMOS driver duty cycle control	R/W	2'h3			
TX_DCP_DATA	7-6	for 0.9V VCM, recommend 3,					
		for 1.2V VCM, recommend 1					
		LVDS NMOS driver duty cycle control	R/W	2'h3			
TX_DCN_DATA	5-4	for 0.9V VCM, recommend 3,					
		for 1.2V VCM, recommend 1					
		LVDS PMOS driver duty cycle control	R/W	2'h3			
TX_DCP_CK	3-2	for 0.9V VCM, recommend 3,					
		for 1.2V VCM, recommend 1					
		LVDS NMOS driver duty cycle control	R/W	2'h3			ر د
TX_DCN_CK	1-0	for 0.9V VCM, recommend 3,			^		
		for 1.2V VCM, recommend 1			X	Y	

Table 1-51 TX_PHY_CTRL_5 register

(Offset 0x0045)

Name	Bit	Description	•	R/W	Reset Value	CM	WM	RM
TX_TEST_EN	7	TX test enable		R/W	1'h0			
TX_TEST_SEL	6-4	TX test selection	>	/R/W	3'h0			
Reserved	3-0			-/-				

Table 1-52 TX_PHY_CTRL_6 register

(Offset 0x0046)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
TX_RESERVE	7-0	reserve regesiter	R/W	8'h00			

Table 1-53 OSC_CTRL_0 register (Offset 0x0048)

Reset CM WM RM Bit R/W **Description** Value 7-5 Reserved -/-1: cali pll after osc cali finish; R/W 1'h0 CALI_SEQ_SET 6 0: cali pll directly R/W 1'h1 1: cali pll & osc again after ULPS CALI_ULPS 5 0: not cali pll & osc after ULPS 4 PLL_CALI_SIGN Set PLL cali value sign(direction) R/W 1'h0 OSC_CALI_SIGN 3 Set OSC cali value sign(direction) R/W 1'h0

OSC_CALI_REQ	2	Set 1 to request cali osc again	R/W	1'h0		
GOLD_CLK_SEL	1-0	Bit[1]=0: sel reference clk; Bit[1]=1: sel mipi hs clk	R/W	2'h0		

Table 1-54 OSC_CTRL_1 register (Offset 0x0049)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
OSC_CALI_EN	7	1: cali osc; 0: not cali oscc, use OSC_FREQ	R/W	1'h0			
OSC_FREQ	6-0	Set the osc freq value when not cali osc	R/W	7'h40	^		

Table 1-55 OSC_CTRL_2 register

(Offset 0x004a)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
OSC_CALI_GOAL[7:0]	7-0	OSC cali goal value	R/W	8'h00			

Table 1-56 OSC_CTRL_3 register (Offset 6x004b)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
OSC_CALI_GD_TIME[7:0]	7-0	Set the dso cali time window	R/W	8'h00			

Table 1-57 OSC_CTRL_4 register (Offset 0x004c)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
OSC_CALI_COAL[\1:8]	7-4	OSC cali goal value	R/W	4'h0			
OSC_CALI_GD_TIME[11:8]	3-0	Set the osc cali time window	R/W	4'h0			

Table 1-58 OSC_CTRL_5 register (Offset 0x004d)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
OSC_CALI_WT_TIME	7-0	Set the settle time for OSC each cali	R/W	8'h1a			

Table 1-59 BG_CTRL register

(Offset 0x004e)

Name	Bit	Description	R/W	Reset Value	СМ	WM	RM
BG_TEST_EN	7	Bandgap test enable	R/W	1'b0			
Reserved	6-2		-/-				
LDODIG_REF	1-0	RX LDO reference voltage control 00:0.5V, 01:0.55V, 10:0.6V, 11:0.65V	R/W	2'h2			

Table 1-60 LDO_PLL register (Offset 0x004f)

Name	Bit	Description	R/W	Reset Value)em	ЖM	RM
PD_LDOPLL_FORCE	7	When 1, use PD_LDOPLL	R/W	1'b0			
PD_LDOPLL	6	When 1, power down LDOPLL	R/W	1,20			
Reserved	5		-/-				
LDOPLL_IDC	4	Control constant current for LDO	RW	1'b1			
LDOPLL_REF	3-2	RX LDO reference voltage control 00:0.5V, 01:0.55V, 10:0.6V, 11:0.65V	R/W	2'h2			
LDOPLL_VO	1-0	RX LDO feedback ratio 00:1.85, 01:1.92, 10:2, 11:2.09	R/W	2'h2			

Table 1-61 PLL_CTRL_0 register (Offset 0x0050)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PD_PLL_FORCE	7	When 1, use PD_PLL	R/W	1'b0			
PD_PLL	S	When 1, power down PLL	R/W	1'b0			
Reserved	5		-/-				
PD_VCO	4	Power down VCO	R/W	1'b1			
PD_PFDCP	3	PD signal for PFD and charge pump	R/W	1'b0			
PD_FBDV	2	PD signal for feedback divider	R/W	1'b0			
Reserved	1		-/-				
PD_PLLDV	0	PD signal for PLL output divider	R/W	1'b0			

(Offset 0x0051)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_CALI_EN	7	When 1, enable PLL cali	R/W	1'b0			
PLL_CALI_REQ	6	When 1, request PLL cali again	R/W	1'b0			
PLL_VCO_ISEL	5-0	Set the PLL_VCO_ISEL(default or force value)	R/W	6'h8			

Table 1-63 PLL_CTRL_2 register (Offset 0x0052)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_CALI_GOAL[7:0]	7-0	Set the goal value of PLL cali	R/W	8'h00	X	X	

Table 1-64 PLL_CTRL_3 register

(Offset 0x0053)

Name	Bit	Description	•	R/W	Reset Value	CM	WM	RM
PLL_CALI_GD_TIME[7:0]	7-0	Set PLL cali time window	X	R/W	8'h00			

Table 1-65 PLL CTRL_4 register

(Offset 0x0054)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_CALI_GOAL[11:8]	7-4	Set the goal value of PLL cali	R/W	4'h0			
PLL_CALI_GD_TIME[11:8]	3-0	Set RLL cali time window	R/W	4'h0			•

Table 1-66 PLL_CTRL_5 register

(Offset 0x0055)

	Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL	LCALI_WI_TIME[7:0]	7-0	Set PLL settle time before each cali.	R/W	8'h1a			

Table 1-67 PLL_CTRL_6 register (Offset 0x0056)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_LPF_C	7-5	Loop filter capacitance control	R/W	3'h4			
PLL_LPF_R	4-2	Loop filter resistance control	R/W	3'h4			

		PLL reference clock source:	R/W	2'h0		
PLL REFSEL	1-0	00: from reference clock				
PLL_REFSEL	1-0	10: from mipi high speed byte clock				
		11: from oscillator				

Table 1-68 PLL_CTRL_7 register (Offset 0x0057)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7-4		-/-				
PLL_TEST_EN	3	PLL test enable	R/W	1'h0			١
PLL_TEST_SEL	2-0	PLL test selection	R/W	3'h0	^		

Table 1-69 PLL_CTRL_8 register (Offset 0x0058)

		(Offset uxuu58)			7		
Name	Bit	Description	R/W	Reset Value	СМ	WM	RM
Reserved	7	<u> </u>	-/-				
PLL_OPEN	6	PLL open loop control 0: close loop, 1:open loop	R/W	1'h0			
PLL_LKDET_EN	5	PLL lock detection enable	R/W	1'h1			
PLL_ICP	4-0	Charge pump current default 6uA and step = 3uA Charge pump current=(PLL_ICP<2:0>+1)*step step=2ux@J*LL_ICP<4:3>=00 *step=3uA@PLL_ICP<4:3>=01 *step=4uA@PLL_ICP<4:3>=10 step=6uA@PLL_ICP<4:3>=11 suggested current = 9uA (PLL_ICP=5'ha) @REFCLK_DIG<=18MHz suggested current = 12uA (PLL_ICP=5'hb) @REFCLK_DIG<=12MHz		5'h9			

Table 1-70 PLL_CTRL_9 register (Offset 0x0059)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_DITHER_EN	7-5	Set PLL dither type	R/W	3'h0			
PLL_C_DLY_EN	4	When 1, delay DSM C value	R/W	1'h0			
PLL_INT_DLY_NUM	3-2	Set the integer delay number for DSM	R/W	2'h0			

PLL_DSM_TYPE	1-0	00: 1 order;	01: 2 order;	10: 3 order	R/W	2'h1			
--------------	-----	--------------	--------------	-------------	-----	------	--	--	--

$Table \ 1\text{--}71 \ PLL_CTRL_A \ register$

(Offset 0x005a)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_DLY_LDO[7:0]	7-0	Set PLL wait LDO time	R/W	8'he			

Table 1-72 PLL_CTRL_B register

(Offset 0x005b)

Name	Bit	Description	R/W	Reset Value	CM	WM)	RM
PLL_DLY_UP[7:0]	7-0	Set PLL power up time	R/W	8'h1c	>		

Table 1-73 PLL_CTRL_C register

(Offset 0x005c)

Name	Bit	Descripti	on 🔨	\Diamond	R/W	Reset Value	CM	WM	RM
PLL_WT_LOCK[7:0]	7-0	Set wait PLL lock time		Y .	R/W	8'h64			

Table 1-74 PLL_CTRL_D register

(Offset 0x005d)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_DLY_LDO[9:8]	7.6	Set JLL wait LDO time	R/W	2'h1			
PLL_DLY_UP[9:8]	5.4	Set PLL power up time	R/W	2'h2			
PLL_WT_LOCK[118]	3-0	Set wait PLL lock time	R/W	4'h0			

Table 1-75 PLL_CTRL_E register

(Offset 0x005e)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_TX_RST	7-0	Set tx rst time after PLL lock	R/W	8'h1b			

Table 1-76 PLL_CTRL_F register

(Offset 0x005f)

Name	Bit	Description	R/W	Reset	CM	WM	RM
Name	DIL	Description	IX/ VV	Value			

Reserved	7		-/-			
PLL_AFCREF	6-4	PLL AFC reference voltage selection, 0.55+PLL_AFCREF*0.03	R/W	3'h4		
PLL_PREDIV2	3	FBDV pre divide by 2, 0: div1, 1: div2	R/W	1'h0		
PLL_VGAIN	2-0	VCO bias select, PMOS finger=PLL_VGAIN*2+2	R/W	3'h3		

Table 1-77 PLL_REM_0 register

(Offset 0x0060)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_REM[7:0]	7-0	PLL remainder[7:0]	R/W	8'h00	^		

Table 1-78 PLL_REM_1 register

(Offset 0x0061)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_REM[15:8]	7-0	PLL remainder[15:8]	R/W	8'h00			

Table 1-79 PLL REM 2 register

(Offset 0x0062)

Name	Bit	Description	F	R/W	Reset Value	CM	WM	RM
PLL_REM[23:16]	7-0	PLL remainder[23:16]	I	R/W	8'h00			

Table 1-80 PLL_DIV_0 register

(Offset 0x0063)

Name	.	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_DIV[7:0]	<u> </u>	7-0	Set the divisor[7:0]	R/W	8'hff			

Table 1-81 PLL_DIV_1 register (Offset 0x0064)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_DIV[15:8]	7-0	Set the divisor[15:8]	R/W	8'h00			

Table 1-82 PLL_DIV_2 register

(Offset 0x0065)

Nama	Bit	Description	R/W	Reset	CM	WM	RM	
Name	ы	Description	K/W	Value				

|--|

Table 1-83 PLL_FRAC_0 register

(Offset 0x0066)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_FRAC[7:0]	7-0	Set the fraction[7:0]	R/W	8'h00			

Table 1-84 PLL_FRAC_1 register

(Offset 0x0067)

Name	Bit	Description	R/W	Reset Value	CM	WM) RM
PLL_FRAC[15:8]	7-0	Set the fraction[15:8]	R/W	8'h00	Χ.	X	

Table 1-85 PLL_FRAC_2 register

(Offset 0x0068)

Name	Bit	Description	C	R/W	Reset Value	CM	WM	RM
PLL_FRAC[23:16]	7-0	Set the fraction[23:16]	\sim	R/W	8'h00			

Table 1-86 PLL_INT_0 register

(Offset 0x0069)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PLL_INT[7:0]	7-0	Set interer[7:0]	R/W	8'h16			

Table 1-87 PLL_INT_1 register

(Offset 0x006a)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7-4		-/-				
SSC_ENABLE	3	When 1, enable ssc	R/W	1'h0			
DET_LOCK_SEL	2	1: sel lockb; 0:sel locka.	R/W	1'h0			
PLL_INT[9:8]	1-0	Set integer[9:8]	R/W	2'h0			

$Table \ 1\text{--}88 \ PLL_REF_DIV \ register$

(Offset 0x006b)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7		-/-				

		PLL output divide ratio:	R/W	2'h0		
PLL_DV	6-5	00: 1; 01: 2				
		10: 4; 11: 8				
		Reference clock divide ratio	R/W	5'h1		
		PLL_REFDIV<3:0> : 1~15: divide by				
PLL_REFDIV	4-0	1~15, 0: divide by 16				
		PLL_REFDIV<4> , 0: no extra divide, 1:				
		extra divide by 2				

$Table \ 1\text{--}89 \ PLL_SSC_P0 \ register$

(Offset 0x006c)

Name	Bit	Description	R/W	Reset Value	CM WM R	RM
SSC_PERIOD[7:0]	7-0	Set SSC period[7:0]	R/W	8'h0		

Table 1-90 PLL_SSC_P1 register

(Offset 0x006d)

Name	Bit	Description	/ R/W	Reset Value	CM	WM	RM
SSC_PERIOD[15:8]	7-0	Set SSC period[15:8]	R/W	8'h0			

Table 1-91 PLL_SSC_P2 register

(Offset 0x006e)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
SSC_PERIOD[23:16]	7-0	Set SSC period[23:16]	R/W	8'h0			

Table 1-92 PLL_SSC_STEP0 register

(Offset 0x006f)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
SSC_STEP[XI] 7	7-0	Set SSC step[7:0]	R/W	8'h0			

$Table \ 1-93 \ PLL_SSC_STEP1 \ register$

(Offset 0x0070)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
SSC_STEP[15:8]	7-0	Set SSC step[15:8]	R/W	8'h0			

Table 1-94 PLL_SSC_STEP2 register (Offset 0x0071)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
SSC_STEP[23:16]	7-0	Set SSC step[23:16]	R/W	8'h0			

Table 1-95 PLL_SSC_OFFSET0 register

(Offset 0x0072)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
SSC_OFFSET[7:0]	7-0	Set SSC offset[7:0]	R/W	8'h0			

Table 1-96 PLL_SSC_OFFSET1 register

(Offset 0x0073)

Name	Bit	Description	R/W	Reset Value)CM	WМ	RM
SSC_OFFSET[15:8]	7-0	Set SSC offset[15:8]	R/W	8'h0	\		

Table 1-97 PLL_SSC_OFFSET2 register

(Offset 0x0074)

Name	Bit	Description		R/W	Reset Value	CM	WM	RM
SSC_OFFSET[23:16]	7-0	Set SSC offset[23:16]	Y	R/W	8'h0			

Table 1-98 PLL_SSC_OFFSET3 register

(Offset 0x0075)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
SSC_OFFSET[31:24]	7-0	Set SSC offset[31:24]	R/W	8'h0			

Table 1-99 GPIO_OEN register

(Offset 0x0079)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
GPIO_1_OEN	7	Not used	R/W	1'h0			
GPIO_0_OEN	6	Not used	R/W	1'h0			
Reserved	5-1		-/-	-			
ARBITER_CONFLICT	0	Not used	RW1TC	1'h0			

Table 1-100 MIPI_CFG_PW register

(Offset 0x007a)

Nama	Bit	Description	R/W	Reset	CM	WM	RM	
Name	DIL	Description	IX/ VV	Value				

Table 1-101 GPIO_0_SEL register

(Offset 0x007b)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
GPIO_0_SEL	7-0	Select gpio_0 output signals	R/W	8'hff			

Table 1-102 GPIO_1_SEL register

(Offset 0x007c)

Name	Bit	Description	R/W	Reset Value	CM	MM	RM
GPIO_1_SEL	7-0	Select gpio_1 output signals	R/W	8'hf1	X		

Table 1-103 IRQ_SEL register

(Offset 0x007d)

Name	Bit	Description		R/W	Reset Value	CM	WM	RM
IRQ_SEL	7-0	Select irq output signals	/	R/W	8'h01			

Table 1-104 DBC SEL register

(Offset 0x007e)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
GPIO_1_IN	7	Not used	RO	1'h0			
GPIO_0_IN	6	Not used	RO	1'h0			
DBG_SEL	5-0	Select the debug signals for [0x7f]	R/W	6'h00			

Table 1-105 DBG_SIGNAL register

(Offset 0x007f)

	Name	Bit	Description	R/W	Reset Value	CM	WM	RM
DBG	S_SIGNAL	7-0	Debug signals.	R/W	8'h00			

Table 1-106 MIPI_ERR_VECTOR_L register (Offset 0x0080)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
SOT_ERR	0	SoT error	R/W	1'h0			
SOT_SYNC_ERR	1	SoT sync Error	R/W	1'h0			
EOT_SYNC_ERR	2	EoT sync error	R/W	1'h0			
EMEC_ERR	3	Escape Mode Entry Command Error	R/W	1'h0			
LPT_SYNC_ERR	4	Low-Power Transmit sync error	R/W	1'h0			Y
PERIPHERAL_ERR	5	Peripheral timeout error	R/W	1'h0	•	,0)
FALSE_CTRL_ERR	6	False control Error	R/W	1'h0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Y	
CONTENTION_ERR	7	Contention Detected	R/W	1'h0		•	

Table 1-107 MIPI_ERR_VECTOR_H register (Offset 0x0081)

Name	Bit	Description	R /W	Reset Value	CM	WM	RM
ECC_SINGLE_ERR	0	ECC error, single-bit	R/W	1'h0			
ECC_MULTI_ERR	1	ECC error, multi-bit	R/W	1'h0			
CHKSUM_ERR	2	Checksum Error	R/W	1'h0			
DDTNR_ERR	3	DSI Data type Not Recoginized	R/W	1'h0			
DSI_VC_ERR	4	DSI VC ID invalid	R/W	1'h0			
TRAN_LEN_ERR	5	Invalid Transpission Length	R/W	1'h0			
RESERVED_ERR	6	Reserved	R/W	1'h0			
PROT_VIO_ERR	7	DSI Protocol Violation	R/W	1'h0			

Table 1-108 MIPI_ERR_VECTOR_EN_L register (Offset 0x0082)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM	
ERR_VECT_EN[7:0]	7-0	Error enable	R/W	8'hff				

Table 1-109 MIPI_ERR_VECTOR_EN_H register (Offset 0x0083)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
ERR_VECT_EN[15:8]	7-0	Error enable	R/W	8'hff			

Table 1-110 MIPI_MAX_SIZE_L register (Offset 0x0084)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
MAX_SIZE[7:0]	7-0	The maximum return packet size	R/W	8'h01			

Table 1-111 MIPI_MAX_SIZE_H register (Offset 0x0085)

Name	Bit	Description	R/W	Reset Value	CM	WM F	RM
MAX_SIZE[15:8]	7-0	The maximum return packet size	R/W	8'h00		Š	

Table 1-112 DSI_CTRL register (Offset 0x0086)

Name	Bit	Description	R/W	Reset CN Value	1 WM	RM
MIPI_LINE_DIV_EN	7	1: enable one line divided into multi packdet	R/W	1'h0		
MIPI_BIT_SWAP	6	1: enable mipi rx 8bits MSB/LSB swap	R/W	1'h0		
MIPI_CHKSUM_EN	5	1: enabler reverse transition with checksum	R/W	1'h1		
MIPI_8B9B_EN	4	Not used	R/W	1'h0		
MIPI_VIDEO_MODE	3-2	Not used	R/W	2'h2		
MIPI_LANE_NUM	1-0	00: 1 lane; 01: 2 lane 10: 3 lane; 11: 4 lane	R/W	2'h3		

Table 1-113 MIPI_PN_SWAP register (Offset 0x0087)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7-6		-/-				
AUTO_LRX_EN	5	1: enable auto check LPX time for reverse transition.	R/W	1'b0			
MIPI_CLK_PN_SWAP	4	1: enable mipi clock lane p/n swap	R/W	1'h0			
MIPI_DATA_PN_SWAP	3-0	1: enable mipi data lane p/n swap	R/W	4'h0			

Table 1-114 MIPI_SOT_SYNC_BIT register (Offset 0x0088)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
CLR_ERR_VECT	7	Write 1 to self clear	WSC	1'b0			
MIPI_SYNC_FOREVER	6	1: enable find the sync pattern 011101	R/W	1'b0			•

		forever				
MIDL SOT SYNC BIT	5:0	When one bit is 1, then the sync pattern can	R/W	6'h00		
MIPI_SOT_SYNC_BIT	3.0	be error.				

Table 1-115 MIPI_SOT_SYNC_BIT register

(Offset 0x0089)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7-4		-/-			>	
USE_LOCK_DET	3	1: use hs_ck_det from analog 0: use digital detect logic	R/W	1'b0	•		
CON_DET_EN	2	1: enable contention detect when reverse transsition	R/W	1'b0	X	>	
TIME_OUT_EN	1-0	bit[0]: enable HS_RX timeout check bit[1]: not used	R/W	2'b00)		

Table 1-116 MIPI_ULPS_CTRL register

(Offset 0x008a) /

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7-6		-/-				
ULPS_AND_OR	5	use and logic with used lares to set ULPS; use or logic with used lanes to set ULPS	R/W	1'b0			
ULPS_EN	4-0	Enable related lanes to check ULPS	R/W	5'h00			

Pable 1-117 MIPI_CLK_CHK_VAR register

(Offset 0x008e)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
CHK_CLK_EN	7	check MIPI RX clock stable or not	R/W	1'b0			
CHK_CLK_VAR	6-0	Set the variable when check MIPI RX clock	R/W	7'h00			

Table 1-118 MIPI_CLK_CHK_INI register

(Offset 0x008f)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
CHK_CLK_INI	7-0	Set the mipi rx clock check time	R/W	8'h00			

Table 1-119 MIPI_T_TERM_EN register

(Offset 0x0090)

	Name	Bit	Description	R/W	Reset	CM	WM	RM
--	------	-----	-------------	-----	-------	----	----	----

				Value		
T D TERM EN	7-0	Time for the data lane receiver to enable the	R/W	8'h05		
I_D_IERW_EN	/-0	HS line termination				

Table 1-120 MIPI_T_HS_SETTLE register

(Offset 0x0091)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
T_HS_SETTLE	7-0	Time interval during which the HS receiver shall ignore any data lane HS transitions	R/W	8'h0a		>	

Table 1-121 MIPI_T_TA_SURE_PRE register

(Offset 0x0092)

Name	Bit	Description	R/W	Reset Value)¢M	WM	RM
Reserved	7-5				>		
T_TA_SURE_PRE	4-0	Set the factor the TA_SURE time with T_LPX. Bit[4]: integer; [3:0]: fraction;	R/W	51/18)			

Table 1-122 MIPI 1 LPX SET register

(Offset 0x0094)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
T_LPX_SET	7-0	When r_auto_lpx_en = 0, set the transmitted length of any low-power state period.	R/W	8'h0d			

Table 1-123 MIPI_T_CLK_MISS register

(Offset 0x0095)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
T_CLK_MISS	7-0	Timeout for receiver to detect absence of clock transitions and disable the clock lane HS-RX		8'h04			

Table 1-124 MIPI_INIT_TIME_L register

(Offset 0x0096)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
T_INIT_TIME[7:0]	7-0	Set the initial time after power on	R/W	8'h64			

Table 1-125 MIPI_INIT_TIME_H register (Offset 0x0097)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7-4		-/-				
T_INIT_TIME[11:8]	3-0	Set the initial time after power on	R/W	4'h0			•

Table 1-126 MIPI_T_CLK_TERM_EN register

(Offset 0x0099)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
T_CLK_TERM_EN	7-0	Time for the clock lane receiver to enable the HS line termination.	R/W	8'h05	××	>	

Table 1-127 MIPI_T_CLK_SETTLE register

(Offset 0x009a)

Name	Bit	Description	•R/	w	Reset Value	CM	WM	RM
T_CLK_SETTLE	7-0	Time interval during which the HS receiver shall ignore any Clock Lane HS transitions.	R/	N.	8'h96			

Table 1-128 MIVI_TO_HS_RX_L register

(Offset 0x009e)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
HS_RX_TIMEOUT[7:0]	7-0	Set the HS RX max time	R/W	8'h00			

Table 1-129 MIPI_TO_HS_RX_H register

(Offset 0x009f)

Name B	Description	R/W	Reset Value	CM	WM	RM
HS_RX_TIMEOUT[15:8] 7-0	Set the HS-RX max time	R/W	8'h00			

$Table \ 1\text{-}130 \quad MIPI_PHY_0 \ register$

(Offset 0x00a0)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
RX_RT_CTRL	7-6	RX terminal resistor value control 00:90ohm, 01:100ohm, 10:110ohm, 11:120ohm	R/W	2'b01			
RX_EQ_CTRL	5-4	RX equalization gain control	R/W	2'b00			

		00:0dB; 01:1dB; 10:2dB; 11:3dB				
Reserved	3		-/-			
RX_CK_SWP	2	Swap deserializer clock polarity	R/W	1'b0		
RX_SKEW_CK	1-0	RX high speed output clock skew control	R/W	2'b00		

Table 1-131 MIPI_PHY_1 register (Offset 0x00a1)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
RX_SKEW_CH3	7-6	RX high speed output clock skew control	R/W	2'b00			Y
RX_SKEW_CH2	5-4	RX high speed output clock skew control	R/W	2'b00	•	, O	
RX_SKEW_CH1	3-2	RX high speed output clock skew control	R/W	2'b00	<		
RX_SKEW_CH0	1-0	RX high speed output clock skew control	R/W	2'b00		·	

Table 1-132 MIPI_PHY_2 register (Offset 0x00a2)

 \mathbf{CM} Reset $\mathbf{W}\mathbf{M}$ RMBit **Description** Name Value RX high speed mode comparator current 2'b10 RX_HS_COMP 7-6 control. bias current: 00:12uA, 01:18uA, 10:24uA RX LPRX comparator current R/W 2'b00 RX_LPRX_COMP bias current: 00:12uA, 01:18uA, 10:24uA, 5-4 11:30uA RX LPCD comparator current control R/W 2'b00 RX_LPCD_COMP 3-2 00:12uA, 01:18uA, 10:24uA, R/W power reverse mode output load control 2'b01 RX_LP_LOAD (for slew rate 00:0p, 01:2p, 10:4p, 11: 6p

Table 1-133 MIPI_PHY_3 register (Offset 0x00a3)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
RX_REF_LPRX	7-6	RX low power receiver reference voltage control 00:690mV, 01:715mV, 10:740mV, 11:765mV	R/W	2'b01			
RX_REF_LPCD	5-4	RX low power contention detector reference voltage control	R/W	2'b0			

		00:295mV, 01:320mV, 10:345mV, 11:370mV				
Reserved	3-2		-/-			
RX_REF_BYP	1	RX reference voltage bypass	R/W	1'b1		
RX_HSPLL_SEL	0	HSCLK_PLL selection, 0: div4, 1:div1, for <100MHz, no divide	R/W	1'b0		

Table 1-134 MIPI_PHY_4 register

(Offset 0x00a4)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7-5		-/-				
LDORX_IDC	4	Control constant current for LDO	R/W	1'b0	X		
LDORX_REF	3-2	RX LDO reference voltage control 00:0.5V, 01:0.55V, 10:0.6V, 11:0.65V	R/W	2'b10	\		
LDORX_VO	1-0	RX LDO feedback ratio 00:1.85, 01:1.92, 10:2, 11:2.09	R/W	2 10			

Table 1-135 MIPL PHY 5 register

(Offset 0x00a5)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
RX_RESERVE	7-0	reserve regesiter	R/W	8'h00			

Table 1-136 MIPI_PD_RX register

(Offset 0x00b0)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
Reserved	7-1		-/-				
PD_RX	0	PD signal for RX, 1 for power down, 0 for power up	R/W	1'b0			

Table 1-137 MIPI_PD_TERM register

(Offset 0x00b1

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PD_TERM_FORCE	7-4	Force the term with PD_TERM_VALUE	R/W	4'h0			
PD_TERM_VALUE	3-0	Set the forced value	R/W	4'h0			•

PD_LPTX_VALUE

3-0

(Offset 0x00b2)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PD_HSRX_FORCE	7-4	Force the hsrx with PD_HSRX_VALUE	R/W	4'h0			
PD_HSRX_VALUE	3-0	Set the force value	R/W	4'h0			

Table 1-139 MIPI_PD_LPTX register (Offset 0x00b3)

 Name
 Bit
 Description
 R/W
 Reset Value
 CM
 WM
 RM

 PD_LPTX_FORCE
 7-4
 Force the LPTX with PD_LPTX_VALUE
 R/W
 4'h0
 4'h0

R/W

4'hf

Table 1-140 MIPI_PD_LPRX register (Offset 0x00b4)

Name	Bit	Description	R/W	Reset Value	СМ	WM	RM
PD_LPRX	7-4	Power down the LPRX	RW	4'h0			
PD_LPCD	3-0	Power down the LPCD	R/W	4'hf			

Table 1-141 MIPL_PD_CK_LANE register (Offset 0x00b5)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
PD_CK_TERM_FORCE	7	Force clock lane TERM with PD_CK_TERM_VALUE	R/W	1'b0			
PD_CK_TERM_VALUE	6	Set the force value	R/W	1'b0			
PD_CK_HSRX_FORCE	5	Force clock lane HSRX with PD_CK_HSRX_VALUE	R.W	1'b0			
PD_CK_HSRX_VALUE	4	Set the force value	R/W	1'b0			
PD_CK_LPRX	3	Power down clock lane LPRX	R/W	1'b0			
PD_LPCD_FORCE	2	For lane0	R/W	1'b0			
Reserved	1-0		R/W	2'b00			

Table 1-142 MIPI_FORCE_0 register (Offset 0x00b6)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
LAST_RD_FORCE	7	Debug: force last rd type.	R/W	1'b0			

LAST_RD_VALUE	6	Debug: force last rd value	R/W	1'b0		
SHUT_DOWN_FORCE	5	Dedbug: force shut down	R.W	1'b0		
SHUT_DOWN_VALUE	4	Debug: force shut down value	R/W	1'b0		
REVERSE_FIX_LONG	3	1: reverse use long packet only	R/W	1'b0		
Reserved	2-0		-/-			

Table 1-143 MIPI_RST_CTRL register (Offset 0x00b7)

Name	Bit	Description	R/W	Reset Value	CM	WM RM
Reserved	7-3		-/-		•	Ç
MIPI_RST_200	2	1: reset mipi rx 200M clock domain	R/W	1'b0	< ,	>
MIPI_RST_HS_BYTE	1	1: reset mipi rx hs_clk domain	R/W	1'b0	2	•
MIPI_RST_HS_BRIDGE	0	1: reset bridge hs_clk domain	R.W	1'b0	>	

Table 1-144 MIPI_RST_NUM regist

(Offset 0x00b8)

Name	Bit	Description	Ž,	R/W	Reset Value	CM	WM	RM
Reserved	7-4		>	-/-				
MIPI_HS_RST_NUM	3-0	Set the reset time for his_clk		R/W	4'ha			

MIPI DBG SET 0 register

(Offset 0x00c0)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
MIPI_REV_DATA_0	7-0	Set the reverse transition value	R/W	8'h00			

Table 1-146 MIPI_DBG_SET_1 register

(Offset 0x00c1)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
MIPI_REV_DATA_1	7-0	Set the reverse transition value	R/W	8'h00			

Table 1-147 MIPI_DBG_SET_2 register

(Offset 0x00c2)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
MIPI_REV_DATA_2	7-0	Set the reverse transition value	R/W	8'h00			

Table 1-148 MIPI_DBG_SET_3 register (Offset 0x00c3)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
MIPI_REV_DATA_3	7-0	Set the reverse transition value	R/W	8'h00			

Table 1-149 MIPI_DBG_SET_4 register (Offset 0x00c4)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
MIPI_REV_DATA_4	7-0	Set the reverse transition value	R/W	8'h00		3	

Table 1-150 MIPI_DBG_SET_5 register (Offset 0x00c5)

Name	Bit	Description	R/W	Reset Value	E M	WM	RM
MIPI_REV_DATA_5	7-0	Set the reverse transition value	R/W	8'h00			

Table 1-151 MIPI_DBG_SET_6 register (Offset 0x00c6)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
MIPI_REV_DATA_6	7-0	Set the reverse transition value	R/W	8'h00			

Table 1-152 MIPI_DBG_SET_7 register (Offset 0x00c7)

Name	Bit	~ (Description	R/W	Reset Value	CM	WM	RM
MIPI_REV_DATA_7	7-0	Set	the reverse transition value	R/W	8'h00			

Table 1-153 MIPI_DBG_SET_8 register (Offset 0x00c8)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
REV_REG_EN	7	1: trnasiton with the register set value	R/W	1'b0			
REG_REG_LENGTH	6_4	Set the reverse transition length	R/W	3'h0			
DBG_DI_WC_SEL	3	0: latch all word count 1: latch only video word count	R/W	1'b0			
DBG_DI_WC_EN	2	1: enable latch word count	R/W	1'b0			
DBG_PHY_EN	1	When 1, latch the front 4 non-zero data.	R/W	1'b0			
DBG_EN	0	Only this is set to 1'b1, above debug	R/W	1'b0			

6 11 1			
I function is enabled.			
Turioticii is citacica.			

Table 1-154 MIPI_DBG_SET_9 register (Offset 0x00c9)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
RX_TEST_EN	7	RX PHY test enable	R/W	1'b0			
RX_TEST_SEL	6_4	RX PHY test select	R/W	3'h0			
AT_EN	3	analog test enable	R/W	1'b0		^	
ATBUF_BYP	2	bypass analog test buffer	R/W	1'b1		\bigcirc	Y
Reserved	1-0		-/-		•	,0)

Table 1-155 MIPI_DBG_SEL register

(Offset 0x00e0)

Name	Bit	Description	R/W	Reset Value	СМ	WM	RM
DBG_SEL	7-0	Select debug register signals for DBG_DAT	R/W	8 h00			

Table 1-156 MIPI_DBG_DATA register

(Offset 0x00e1)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
DBG_DAT	7-0	Based on DGB_SEL[uxe0]	RO	8'h00			

Table 1.157 MIPI_ATE_TEST_SEL register (Offset 0x00e2)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
TX_DATA_FORGE	7	Ate test	R/W	1'b0			
TX_TEST_DATA	.6-5	Ate test	R/W	2'b00			
LP_TX_RX_TEST	4	Ate test	R/W	1'b0			
HS_TEST_128	3	Ate test	R/W	1'b1			
HS_TEST_SEL	2	Ate test	R/W	1'b0			
HS_TEST	1	Ate test	R/W	1'b0			
LP_TEST	0	Ate test	R/W	1'b0			

Table 1-158 MIPI_ATE_STATUS_0 register

(Offset 0x00e3)

Name	Bit	Description	R/W	Reset	CM	WM	RM	
------	-----	-------------	-----	-------	----	----	----	--

				Value		
DBG_STATUS_0	7-0	Ate test status	RO	8'h00		

Table 1-159 MIPI_ATE_STATUS_1 register (Offset 0x00e3)

Name	Bit	Description	R/W	Reset Value	CM	WM	RM
DBG_STATUS_0	7-0	Ate test status	RO	8'h00			