ASSIGNMENT 4

Naveena M AC19UCS150

from google.colab import files
uploaded = files.upload()

Choose Files abalone.csv

• **abalone.csv**(text/csv) - 191962 bytes, last modified: 10/31/2022 - 100% done Saving abalone.csv to abalone (1).csv

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import warnings
import seaborn as sns
warnings.filterwarnings('ignore')

data = pd.read_csv("abalone.csv")

data

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140
4	- 1	0.330	0.255	0.080	0.2050	0.0895	0.0395
4172	F	0.565	0.450	0.165	0.8870	0.3700	0.2390
4173	М	0.590	0.440	0.135	0.9660	0.4390	0.2145
4174	М	0.600	0.475	0.205	1.1760	0.5255	0.2875
4175	F	0.625	0.485	0.150	1.0945	0.5310	0.2610
4176	М	0.710	0.555	0.195	1.9485	0.9455	0.3765

4177 rows × 9 columns

data.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shel
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	

sns.histplot(x='Length', data = pd.read_csv("abalone.csv"));

sns.kdeplot(x='Rings', data = pd.read_csv("abalone.csv"), hue='Sex')

sns.boxplot(x='Length',y='Height',data = pd.read_csv("abalone.csv"))

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3c12bcc50>

sns.stripplot(x="Length", y="Height", data = pd.read_csv("abalone.csv"))

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3c05c5890>

sns.boxplot(x="Sex", y="Height", data = pd.read_csv("abalone.csv"))

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3c0685190>

sns.barplot(x='Sex',y='Diameter',data = pd.read_csv("abalone.csv"))
sns.countplot(x='Sex',data = pd.read_csv("abalone.csv"))

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3c023afd0>

sns.distplot(data['Diameter'].head(300))

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3c01c06d0>

fig=plt.figure(figsize=(8,5))
sns.heatmap(data.head().corr(),annot=True)

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3c0694550>

sns.pairplot(data.head(),hue='Height')

sns.pairplot(data.head())

data.head()

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shel
0	М	0.455	0.365	0.095	0.5140	0.2245	0.1010	
1	М	0.350	0.265	0.090	0.2255	0.0995	0.0485	
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	
3	М	0.440	0.365	0.125	0.5160	0.2155	0.1140	
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	
.¥. 0.∠0]		1	1	1	1	1 1	

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4177 entries, 0 to 4176
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Sex	4177 non-null	object
1	Length	4177 non-null	float64
2	Diameter	4177 non-null	float64
3	Height	4177 non-null	float64
4	Whole weight	4177 non-null	float64
5	Shucked weight	4177 non-null	float64
6	Viscera weight	4177 non-null	float64
7	Shell weight	4177 non-null	float64
8	Rings	4177 non-null	int64
d+vn	os: float64(7)	int64(1) object	(1)

dtypes: float64(7), int64(1), object(1)

memory usage: 293.8+ KB

o's o'40 o'45 o'50 o'25 o'30 o'35 o'40 o'08 o'10 o'12 o'2 o'4 o'6 o'10 o'15 o'20 o'25 o'050 o'075 o'100 o'125 o'05 o'10

data.tail()

data.describe()

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	
count	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4177.000000	4
mean	0.523992	0.407881	0.139516	0.828742	0.359367	0.180594	
std	0.120093	0.099240	0.041827	0.490389	0.221963	0.109614	
min	0.075000	0.055000	0.000000	0.002000	0.001000	0.000500	
25%	0.450000	0.350000	0.115000	0.441500	0.186000	0.093500	
50%	0.545000	0.425000	0.140000	0.799500	0.336000	0.171000	
75%	0.615000	0.480000	0.165000	1.153000	0.502000	0.253000	
max	0.815000	0.650000	1.130000	2.825500	1.488000	0.760000	

data.mode().T

	0	1
Sex	М	NaN
Length	0.55	0.625
Diameter	0.45	NaN
Height	0.15	NaN
Whole weight	0.2225	NaN
Shucked weight	0.175	NaN
Viscera weight	0.1715	NaN
Shell weight	0.275	NaN
Rings	9.0	NaN

data.shape

(4177, 9)

data.skew()

Length	-0.639873
Diameter	-0.609198
Height	3.128817
Whole weight	0.530959
Shucked weight	0.719098
Viscera weight	0.591852
Shell weight	0.620927
Rings	1.114102

dtype: float64

data.nunique()

Sex	3
Length	134
Diameter	111
Height	51
Whole weight	2429
Shucked weight	1515
Viscera weight	880
Shell weight	926
Rings	28
dtype: int64	

data.kurt()

Length	0.064621
Diameter	-0.045476
Height	76.025509
Whole weight	-0.023644
Shucked weight	0.595124
Viscera weight	0.084012
Shell weight	0.531926
Rings	2.330687

dtype: float64

data.var()

Length	0.014422
Diameter	0.009849
Height	0.001750
Whole weight	0.240481
Shucked weight	0.049268
Viscera weight	0.012015
Shell weight	0.019377
Rings	10.395266

dtype: float64

data.isna()

Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
False	False	False	False	False	False	False
False	False	False	False	False	False	False
False	False	False	False	False	False	False
False	False	False	False	False	False	False
	False False False	False False False False False False	False False False False False False False False False	False	SexLengthDiameterHeightFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse	SexLengthDiameterHeightweightFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse

data.isna().sum()

Sex 0 0 Length Diameter 0 Height 0 Whole weight 0 Shucked weight 0 Viscera weight 0 Shell weight 0 Rings 0 dtype: int64

41// rows × 9 columns

data.isna().any()

Sex False False Length Diameter False Height False Whole weight False Shucked weight False Viscera weight False Shell weight False Rings False dtype: bool

data.isna().sum()

Sex 0 Length 0 Diameter 0 Height 0 Whole weight 0 Shucked weight 0 Viscera weight 0 Shell weight 0 Rings 0 dtype: int64

data.isna().any().sum()

0

sns.boxplot(data['Diameter'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3b9043710>

quant=data.quantile(q=[0.25,0.75])
quant

	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight	Shell
0.25	0.450	0.35	0.115	0.4415	0.186	0.0935	
0.75	0.615	0.48	0.165	1.1530	0.502	0.2530	

iqr=quant.loc[0.75]-quant.loc[0.25]
iqr

Length	0.1650
Diameter	0.1300
Height	0.0500
Whole weight	0.7115
Shucked weight	0.3160
Viscera weight	0.1595
Shell weight	0.1990
Rings	3.0000

dtype: float64

low=quant.loc[0.25]-(1.5*iqr)
low

Length	0.20250
Diameter	0.15500
Height	0.04000
Whole weight	-0.62575
Shucked weight	-0.28800
Viscera weight	-0.14575
Shell weight	-0.16850
Rings	3.50000

dtype: float64

up=quant.loc[0.75]+(1.5*iqr) up

Length	0.86250
Diameter	0.67500
Height	0.24000
Whole weight	2.22025
Shucked weight	0.97600
Viscera weight	0.49225
Shell weight	0.62750
Rings	15.50000

dtype: float64

data['Diameter']=np.where(data['Diameter']<0.155,0.4078,data['Diameter'])
sns.boxplot(data['Diameter'])</pre>

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3c01c0f50>

sns.boxplot(data['Shell weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3b8f59c90>

data['Shell weight']=np.where(data['Shell weight']>0.61,0.2388, data['Shell weight'])
sns.boxplot(data['Shell weight'])

<matplotlib.axes._subplots.AxesSubplot at 0x7fd3b9102310>

data['Sex'].replace({'M':1,'F':0,'I':2},inplace=True)
data

	Sex	Length	Diameter	Height	Whole weight	Shucked weight	Viscera weight
0	1	0.455	0.365	0.095	0.5140	0.2245	0.1010
1	1	0.350	0.265	0.090	0.2255	0.0995	0.0485
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415
3	1	0.440	0.365	0.125	0.5160	0.2155	0.1140
4	2	0.330	0.255	0.080	0.2050	0.0895	0.0395
4172	0	0.565	0.450	0.165	0.8870	0.3700	0.2390
4173	1	0.590	0.440	0.135	0.9660	0.4390	0.2145
4174	1	0.600	0.475	0.205	1.1760	0.5255	0.2875
4175	0	0.625	0.485	0.150	1.0945	0.5310	0.2610
4176	1	0.710	0.555	0.195	1.9485	0.9455	0.3765

4177 rows × 9 columns

x=data.drop(columns= ['Rings'])
y=data['Rings']

```
Sex Length Diameter Height Whole weight Shucked weight Viscera weight S
       0
              1
                   0.455
                             0.365
                                     0.095
                                                  0.5140
                                                                  0.2245
                                                                                   0.1010
                                                                   0.0995
       1
              1
                   0.350
                             0.265
                                     0.090
                                                  0.2255
                                                                                   0.0485
       2
              0
                   0.530
                             0.420
                                     0.135
                                                  0.6770
                                                                   0.2565
                                                                                   0.1415
       3
              1
                   0.440
                             0.365
                                     0.125
                                                  0.5160
                                                                   0.2155
                                                                                   0.1140
       4
              2
                   0.330
                             0.255
                                     0.080
                                                  0.2050
                                                                  0.0895
                                                                                   0.0395
У
     0
             15
     1
              7
              9
     2
     3
             10
     4
              7
             . .
     4172
             11
     4173
             10
     4174
             9
             10
     4175
     4176
             12
     Name: Rings, Length: 4177, dtype: int64
from sklearn.preprocessing import scale
x = scale(x)
Х
     array([-0.0105225, -0.57455813, -0.50179694, ..., -0.60768536,
             -0.72621157, -0.64358742],
            [-0.0105225, -1.44898585, -1.57304487, ..., -1.17090984,
             -1.20522124, -1.25742181],
            [-1.26630752, 0.05003309, 0.08738942, ..., -0.4634999]
             -0.35668983, -0.18321163],
            [-0.0105225, 0.6329849, 0.67657577, ..., 0.74855917,
              0.97541324, 0.56873549],
            [-1.26630752, 0.84118198, 0.78370057, ..., 0.77334105,
              0.73362741, 0.47666033],
            [-0.0105225, 1.54905203, 1.53357412, ..., 2.64099341,
              1.78744868, 2.00357336]])
from sklearn.preprocessing import scale
x = scale(x)
Х
     array([[-0.0105225 , -0.57455813, -0.50179694, ..., -0.60768536,
             -0.72621157, -0.64358742],
            \lceil -0.0105225 , -1.44898585, -1.57304487, ..., -1.17090984, \rceil
             -1.20522124, -1.25742181],
            [-1.26630752, 0.05003309, 0.08738942, ..., -0.4634999]
             -0.35668983, -0.18321163],
            [-0.0105225, 0.6329849, 0.67657577, ..., 0.74855917,
              0.97541324, 0.56873549],
```

```
10/31/22, 10:01 AM
                                                Untitled1.ipynb - Colaboratory
                [-1.26630752, 0.84118198, 0.78370057, ..., 0.77334105,
                  0.73362741, 0.47666033],
                [-0.0105225, 1.54905203, 1.53357412, ..., 2.64099341,
                  1.78744868, 2.00357336]])
    from sklearn.model selection import train_test_split
    x train, x test, y train, y test = train test split(x,y), test size = 0.2)
    print(x train.shape, x test.shape)
         (3341, 8) (836, 8)
    from sklearn.linear model import LinearRegression
    MLR=LinearRegression()
    MLR.fit(x_train,y_train)
         LinearRegression()
    y pred=MLR.predict(x test)
    y_pred
                13.48490299, 10.12650933, 11.21370417, 9.78466293, 10.41119396,
```

```
10.23921019, 6.36916583, 13.1372858, 11.32054954, 9.80775249,
11.57237095, 10.07203642, 7.43545573, 5.58346065, 9.74793101,
7.31047123, 10.8820856, 6.19340828, 12.36225628, 6.39327262,
8.81895465, 13.90591853, 8.80535546, 12.27266141, 10.26962165,
10.85694506, 9.23548942, 8.18722783, 7.9314565, 11.92528829,
9.5247047 , 9.45783571, 16.77713562, 9.81380449, 8.46038648,
11.83738305, 12.71033273, 9.34405315, 7.54528966, 13.64794587,
11.34200392, 10.97452307, 10.86062125, 9.48877503, 9.56273905,
8.53527877, 17.40139364, 11.24973686, 10.19084319, 14.6810828,
15.18292843, 7.20431777, 15.80313464, 9.32387206, 10.28861779,
10.77799067, 4.96252544, 10.269737 , 10.43836225, 10.24428332,
11.65337577, 10.64178254, 10.06404154, 8.96246351, 11.83909671,
11.35437817, 8.95829941, 7.29838974, 12.37340949, 11.54228431,
7.74176421, 10.78879979, 11.4815144, 11.19751406, 9.86782995,
7.30624898, 10.5956816, 8.97633041, 11.53955456, 11.88849179,
6.88243609, 11.87817948, 11.17451193, 10.59086154, 8.92981204,
9.15140208, 8.64904977, 10.76139589, 6.97769248, 9.09361918,
10.84452403, 9.32738207, 8.52766816, 9.25076866, 10.53109827,
10.46842039, 8.84043296, 10.36812729, 7.50780249, 14.35988376,
11.73039012, 6.51835523, 10.89979546, 11.14016829, 12.24422863,
7.86733091, 8.91842129, 13.15426474, 12.31895654, 11.46271619,
8.39177521, 8.45906741, 12.9984135 , 11.77007517, 11.18372644,
7.14572743, 11.02640894, 6.65127847, 9.85472883, 11.27038817,
7.35953699, 10.44403379, 7.29859572, 8.90335212, 12.52643795,
11.09625195, 7.84566972, 11.5852972, 7.4546814, 14.86525194,
9.29995656, 10.32784855, 5.80097179, 10.11812098, 10.77775104,
11.9760842 , 8.43311782, 10.63388666, 7.50089428, 11.0369102 ,
7.09502581, 9.23035555, 9.76860135, 6.92151743, 12.01523362,
8.81054443, 9.62877859, 7.96896058, 7.71984694, 7.68020093,
10.23120865, 6.89906918, 7.32170166, 9.02583862, 6.48738961,
6.93417081, 15.95467978, 10.6081471 , 14.49974856, 10.17002502,
13.90249709, 8.07489324, 11.8946688, 9.94649337, 9.54068262,
14.26789622, 14.36486553, 9.78681486, 6.93218256, 10.4955901,
10.16767472, 9.26554889, 10.84529739, 11.44745539, 9.76441072,
8.87609082. 13.02042454. 8.99605516. 11.53467843. 7.02093096.
```

```
12.11393258, 7.56076648, 6.54986875, 13.02266295, 10.27119835,
             8.71903971, 10.45717161, 11.51333691, 8.894591 , 10.14035002,
            15.03489038, 7.9023417, 10.35767151, 8.38191762, 4.99382965,
            9.01422232, 8.42087154, 11.36455901, 8.46780113, 8.59675494,
            10.14161831, 12.5837006 , 9.90706593, 8.32828309, 10.5008917 ,
             9.70482555, 11.83506591, 12.70682392, 11.62235276, 6.823856 ,
             7.06326511, 6.87944689, 9.00322861, 8.20973818, 10.04175823,
             8.99111019, 9.38651656, 10.46032737, 11.939472 , 8.48698233,
             8.13919833, 9.62546787, 6.45248215, 10.94000078, 11.8339691,
            12.66459793, 12.70517249, 9.25078847, 10.38310709, 9.04872162,
            7.50989425, 14.89629939, 8.60763701, 10.34795829, 9.51950782,
             5.19366173, 8.21412497, 9.56131108, 9.33066533, 6.06809077,
            13.68283263, 12.46155096, 10.18275967, 7.51857258, 7.15454444,
            10.74029367, 9.02599297, 6.82944699, 15.69511335, 11.75229526,
            11.63487837, 7.94134915, 6.11072922, 15.95079521, 8.32400194,
            10.85399816, 9.92283542, 7.23602627, 12.51782579, 7.80926347,
             9.18088859, 8.59544991, 11.47292828, 9.68565888, 8.58007892,
             8.46863237, 7.85634124, 7.78121552, 9.04662986, 13.60855079,
            10.96485212, 10.12910701, 7.99351895, 7.90389965, 8.40685848,
            11.9644303 , 11.25551129 , 17.84613443 , 6.44971756 , 12.09302199 ,
            10.2539475 , 6.5584797 , 12.44780802 , 9.61483012 , 10.14984344 ,
             8.66854509])
pred=MLR.predict(x_train)
pred
     array([ 8.93054315, 7.83233303, 9.08534415, ..., 12.22316511,
             9.66287984, 9.20960728])
from sklearn.metrics import r2 score
accuracy=r2_score(y_test,y_pred)
accuracy
     0.5406345167003427
MLR.predict([[1,0.455,0.365,0.095,0.5140,0.2245,0.1010,0.150]])
     array([11.94235363])
from sklearn import metrics
from sklearn.metrics import mean squared error
np.sqrt(mean squared error(y test,y pred))
     2.2428288608273217
from sklearn.linear model import Lasso, Ridge
#intialising model
lso=Lasso(alpha=0.01, normalize=True)
#fit the model
lso.fit(x_train,y_train)
Lasso(alpha=0.01, normalize=True)
#prediction on test data
lso_pred=lso.predict(x_test)
```

```
Untitled1.ipynb - Colaboratory
#coef
coef=lso.coef
coef
                       , 0.
                                                      0.25998603.
     array([-0.
                                        1.16873649])
from sklearn import metrics
from sklearn.metrics import mean squared error
metrics.r2 score(y test,lso pred)
     0.3228094234288654
np.sqrt(mean squared error(y test,lso pred))
     2.72315529870534
#initialising model
rg=Ridge(alpha=0.01,normalize=True)
#fit the model
rg.fit(x_train,y_train)
Ridge(alpha=0.01, normalize=True)
#prediction
rg_pred=rg.predict(x_test)
rg_pred
            13.05922767, 10.07740919, 10.98550809, 9.92191713, 10.40272206,
            10.34033522, 6.28773065, 12.57615794, 11.54234252, 9.93311107,
```

```
11.48331747, 10.38890668, 7.3007348, 5.46044182, 9.66565339,
7.31294707, 10.8866748, 6.1434975, 12.34159451, 6.30288007,
8.88229062, 13.97696966, 8.69577194, 12.25278912, 10.03706181,
11.04280787, 9.21551613, 8.17045263, 7.98250106, 12.04705276,
9.59235621, 9.73317426, 16.55189621, 9.7202254, 8.59429731,
11.37526054, 13.4590507, 9.41336747, 7.48318675, 13.35897892,
11.33785195, 10.86083281, 10.92862271, 9.60315586, 9.78195658,
8.69886947, 16.76150515, 11.30590633, 10.19853983, 14.38625663,
14.63523841, 7.19323717, 15.15715082, 9.49576288, 10.59357647,
10.77522826, 5.19163351, 10.35507626, 10.38841878, 10.29427328,
11.69525547, 10.5623982 , 10.05323807, 8.92585431, 11.72910293,
11.6631348 , 8.92455148, 7.19330881, 12.37909569, 11.4605733 ,
7.72978037, 10.97820651, 10.89320729, 11.31680001, 10.19804407,
7.22586069, 10.47266094, 8.9157606, 11.43407525, 11.44996836,
6.82090967, 11.93230743, 11.26937635, 10.7569687, 9.33490233,
9.41764715, 8.60875066, 11.12790702, 6.99099243, 9.00856694,
11.14626974, 9.58772879, 8.8646477, 9.44872867, 10.77895884,
10.73959181, 8.89249339, 10.0895149, 7.42941277, 13.94440489,
11.57828937, 6.4785139 , 10.66900051, 11.05486698, 12.1543264 ,
7.82491263, 9.01385332, 13.13998956, 12.42378003, 11.63715517,
8.55651436, 8.30298752, 12.70739261, 11.40285281, 11.48053045,
7.16766658, 10.85119887, 6.57289812, 9.57134011, 11.27060835,
7.44593829, 10.59908067, 7.67599058, 9.61982825, 12.37234833,
11.03016653, 7.82413361, 11.87098192, 7.48604497, 14.39433976,
9.35372673, 10.51670145, 5.70958784, 9.9336436, 10.89501108,
11.87254717, 8.44364398, 10.75387196, 7.50409279, 11.2401361,
 7.04564057, 9.39025153, 10.23115972, 6.79321352, 11.78085371,
8.86010019,
            9.53665974, 7.87113557,
                                      7.67096884,
                                                  7.63086303,
```

```
10.3/646256, 6./6562241, /.226/0986, 9.33338411, 6.4623399/,
            6.83905009, 14.78116053, 10.85939905, 14.23059425, 10.38341675,
           13.76811886, 8.11957724, 11.70852822, 10.01599988, 9.50003005,
           13.59088743, 13.43599312, 10.14488342, 6.8545766, 10.56344905,
           10.24165828, 9.300253 , 11.0721801 , 11.08511087, 9.82087237,
            9.00029956, 12.9520922 , 9.1058268 , 11.63267643, 6.96362854,
           11.99927272, 9.90501054, 6.50268158, 12.59071959, 10.65676634,
            8.66630687, 10.45392216, 11.4678933, 8.77955971, 10.41148378,
           14.55053011, 7.95503552, 10.73593933, 8.27713745, 5.22484783,
            9.00794353, 8.49048587, 11.47252627, 8.45546467, 8.55121195,
           10.01199721, 12.51368957, 9.98949806, 8.3821651, 10.7419689,
            9.72670851, 11.68365118, 12.1029351, 11.51448086, 6.73888086,
            7.01394268, 6.80741666, 9.14757642, 8.29001683, 10.09373915,
            9.36391693, 9.29773783, 10.85964702, 12.08779329, 8.74502331,
            8.09459045, 9.51525423, 6.33277899, 11.04086756, 11.75107245,
           12.27723558, 12.42100228, 9.47646341, 10.8579674, 9.02111553,
            7.55515419, 14.1563324 , 8.68599153, 10.27370728, 9.40634772,
            5.3821725 , 8.20379804 , 9.62208056 , 9.50581514 , 5.9342606 ,
           13.23587509, 12.53245039, 10.1738823, 7.43566258, 7.10693715,
           10.98973189, 9.01472461, 6.81512437, 14.69992271, 12.29547787,
           11.64462751, 8.19876166, 5.99254922, 15.20104749, 8.37736267,
           11.0041235 , 10.17324249 , 7.25615289 , 12.20976261 , 7.83793831 ,
            9.30036041, 8.5661528, 11.60267884, 10.27759708, 8.6213238,
            8.47074609, 7.79756423, 7.71772895, 9.01076046, 13.44135041,
           10.07296551, 10.21003258, 8.3198457, 7.94731013, 8.618621,
           12.10157668, 11.29114059, 16.32886707, 6.29359295, 11.8689986,
           10.42408341, 6.48698129, 12.28080793, 9.60772841, 10.45762507,
            8.63370565])
rg.coef
    array([-0.28253279, 0.72253142, -0.04237736, 0.55306056, 3.33012763,
           -3.41149089, -0.77137749, 1.30517786])
metrics.r2_score(y_test,rg_pred)
    0.514945395267461
np.sqrt(mean squared error(y test,rg pred))
    2,3046886990204123
```

Colab paid products - Cancel contracts here

✓ 0s completed at 9:55 AM

• ×