

CUESTIONARIOS-ALGEBRA.pdf

jodiecomer

Álgebra I

1º Doble Grado en Ingeniería Informática y Matemáticas

Facultad de Ciencias Universidad de Granada

Descarga la APP de Wuolah. Ya disponible para el móvil y la tablet.

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa do

405416 arts esce ues2016juny.pdf

Top de tu gi

Rocio

pony

Cuestionario de Conjuntos. Axiomática.

- 1. Si P y Q son proposiciones, entonces:
 - a. Si P es falsa y Q es cierta entonces $\urcorner(P\bigvee Q)$ es cierta.
 - b. Si P es falsa y Q es falsa entonces $\neg (P \lor Q)$ es cierta. \bigstar
 - c. Si P es cierta y Q es falsa entonces $\neg(P \lor Q)$ es cierta.
- 2. Sea $x \in A$, entonces:
 - a. Las otras opciones son falsas. *
 - b. $P(x) \subseteq P(A)$
 - c. $P(x) \in P(A)$
- 3. Sea $X = \{\{1, 2, 4\}, 5, 7\}, A = \{4, 2, 1\}$ y $B = \{1, 2, 4\}$
 - a. Las otras opciones son falsas. *
 - b. $P(x) \subseteq P(A)$
 - c. $P(x) \in P(A)$
- 4. Sea $A = \{x, y\}$, entonces:
 - a. $z \subseteq x \Rightarrow z \subseteq A$
 - b. $z \in x \Rightarrow z \in A$
 - c. Ninguna de las opciones es cierta. *
- 5. Si la proposición P es falsa y la proposición Q es cierta entonces:
 - a. La proposición $P \Rightarrow Q$ es falsa.
 - b. La proposición $P \Rightarrow Q$ es cierta. \bigstar
 - c. No tiene sentido considerar $P\Rightarrow Q$ si P es falsa.
- 6. Sea $X = \{1, 2, 4, 5, 7\}$, $A = \{4, 2, 1\}$ y $B = \{1, 2, 4\}$, entonces:
 - a. $A \not\subseteq X, B \subseteq XyA \neq B$
 - b. $A \subseteq X, B \subseteq XyA = B \bigstar$
 - c. $A \subseteq X, B \subseteq XyA \neq B$
- 7. Sea $A = \{x, y\}$, entonces:
 - a. $i \subseteq A$
 - b. $\{x\} \in P(A) \bigstar$
 - c. $x \in P(A)$
- 8. $\{\{\emptyset\}\}$
 - a. No tiene elementos ya que el \varnothing no tiene elementos.
 - b. Tiene un elemento pero no es el conjunto \varnothing . \bigstar
 - c. Tiene un elemento que es el conjunto \varnothing
- 9. Sea $X = \{a, b\}$ un conjunto entonces:
 - a. $a \in X \bigstar$

b.
$$a \notin X$$

c. $\{a\} \in X$

- 10. Supongamos $A \subseteq B$, entonces:
 - a. Las otras dos opciones son falsas.
 - b. $P(A) \in P(B)$
 - c. $P(A) \subseteq P(B) \bigstar$

$\mathbf{2}$ Producto cartesiano y aplicaciones.

- 11. Sean $f: A \to B$ y $g: X \to Y$ dos aplicaciones:
 - a. Si la aplicación $f \times g : A \times X \to B \times Y$ es inyectiva también lo son $f \times g$ pero el recíproco no es cierto.
 - b. La aplicación $f \times g : A \times X \to B \times Y$ es inyectiva, sí y solo si, $f \times g$ lo son.

- c. Si las aplicaciones f y g son inyectivas entonces $f \times g : A \times X \to B \times Y$ también lo es pero el recíproco no es cierto.
- 12. Considera el conjunto $3 = \{0, 1, 2\}$ y el conjunto $G = \{(0, 1), (0, 2), (1, 2), (2, 1)\}$.

Entonces: a. G no puede ser la gráfica de una aplicación de 3 en 3. \bigstar

- b. G puede ser la gráfica de una aplicación de 3 en 3 pero esta aplicación no es invectiva.
- c. G puede ser la gráfica de una aplicación de 3 wn 3 que es una biyección ya que tiene el mismo dominio que codominio.
- 13. Considera la aplicación $f:\mathbb{Z}\to\mathbb{Z}$ definida por $f(m):=m^2$ y los subconjuntos $Par \subseteq \mathbb{Z}$ y $Neg \subseteq \mathbb{Z}$ formados por los enteros pares (múltiplos de 2) y los enteros negativos, respectivamente. Entonces:

a.
$$4 \in f_*(Neg) \cap f^*(Par) \bigstar$$

b.
$$4 \in f_*(Neg)$$
 pero $4 \notin f^*(Par)$

- c. $4 \notin f_*(Neg)$ pero $4 \in f^*(Par)$
- 14. La aplicación $f: \mathbb{Z} \times \mathbb{Z}^* \to \mathbb{Q}$ definida por $f(n,m) := \frac{n}{m}$, donde \mathbb{Z}^* es el conjunto de los enteros distintos de cero.
 - a. No es invectiva y tampoco sobrevectiva.
 - b. Es sobreyectiva pero no es inyectiva. \bigstar

- c. Es inyectiva pero no es sobreyectiva.
- 15. La aplicación $f: \mathbb{N} \to \mathbb{N}^*$ definida por f(n) = n! donde el factorial se define como $n! := n(n-1)(n-2)\cdots 2\cdot 1$ para n>0 y 0! := 1 y \mathbb{N}^* es el conjunto de los naturales positivos.
 - a. No es invectiva pero si es sobrevectiva.
 - b. No es sobreyectiva pero si es inyectiva.
 - c. No es inyectiva y tampoco sobreyectiva. *
- 16. Considera la aplicación $f: \mathbb{Z} \to \{0,1,2\}$ definida por:

$$f(n) := \left\{ \begin{array}{ll} 0 & si & n \text{ es m\'ultiplo de 3} \\ 1 & si & n-1 \text{ es m\'ultiplo de 3} \\ 2 & si & n-2 \text{ es m\'ultiplo de 3} \end{array} \right.$$

- a. $f^*f_*(\mathbb{N}) = \mathbb{N}$
- b. $f^*f_*(\mathbb{N}) = \mathbb{Z} \bigstar$
- c. $f^*f_*(\mathbb{N})$ no es ni \mathbb{Z} ni \mathbb{N} , ya que $0 \notin f^*f_*(\mathbb{N})$.
- 17. Considera la aplicación $f:\mathbb{Q}\to\mathbb{Z}$ definida por $f(\frac{n}{m}):=n$ a. No está bien definida. \bigstar
 - b. Está bien definida y es inyectiva.
 - c. Está bien definida y es sobreyectiva.
- 18. Considera la aplicación $f: \mathbb{Z} \to \mathbb{Z}$ definida por $f(m) := m^2 1$ y los subconjuntos $Par \subseteq \mathbb{Z}$ y $Neg \subseteq \mathbb{Z}$ formados por los enteros pares (múltiplos de dos) y los enteros negativos respectivamente. Entonces:
 - a. $3 \in f^*f_*(Neg)$ pero $3 \notin f^*(Par)$
 - b. $3 \in f^*f_*(Neg) \cap \in f^*(Par) \bigstar$
 - c. $3 \notin f^*f_*(Neg)$ pero $3 \in f^*(Par)$
- 19. Considera los conjuntos $3 = \{0, 1, 2\}, 4 = \{0, 1, 2, 3\}$ y el conjunto $G = \{(0, 1), (0, 2), (2, 0)\}.$ Entonces:
 - a. G puede ser la gráfica de una aplicación de 3 en 4 que además es inyectiva y no es sobreyectiva, pero no la gráfica de una aplicación de 4 en 3. \bigstar
 - b. G no puede ser la gráfica de una aplicación de 3 en 4 ni de 4 en 3.
 - c. G puede ser la gráfica de una aplicación de 4 en 3 que no es sobreyectuva

pero si inyectiva, pero no puede ser la gráfica de una aplicación de 3 en 4.

- 20. La aplicación $f:\mathbb{Z} \to \mathbb{Z}$ definida por $f(n) = \frac{n(n-1)}{2}$
 - a. Está bien definida pero no es sobreyectiva. *
 - b. Está bien definida y es sobreyectiva.
 - c. No está bien definida pues la imagen de un entero tiene que ser un entero.

3 Relaciones de equivalencia y cocientes.

- 21. Sea X un conjunto, en P(X) definimos la siguiente relación: $ARB \Leftrightarrow A \cap B \neq \emptyset$
 - a.R es una relación de equivalencia.
 - b.R es simétrica y transitiva pero no reflexiva.
 - c.R es reflexiva y simétrica pero no es transitiva. ★
- 22. Dada la aplicación f tal que $X = \{a, b, c, d\}$ e $Y = \{1, 2, 3, 4, 5\}$ y f(a) = 2, f(b) = 1, f(c) = 4, f(d) = 4. Entonces: (hacer representación gráfica para verlo más claro)
 - a. El conjunto cociente X/R_f tiene 3 elementos. \bigstar
 - b. El conjunto cociente X/R_f tiene 4 elementos.
 - c. El conjunto cociente X/R_f tiene 5 elementos.
- 23. Dadas dos aplicaciones $f, g: A \rightarrow B$

a. Si $R_f = R_g$ entonces f y g pueden ser distintas pero sus imágenes son biyectivas. \bigstar

b. Si $R_f=R_g$ entonces f y g pueden ser distintas y tener imágenes no biyectivas.

c.Si $R_f = R_g$ entonces f y g son iguales.

- 24. Definimos $0 = \emptyset$, $1 = \{0\}$, $2 = \{0,1\}$, ..., $n = \{0,1,...,n-1\}$. En n definimos la siguiente relación $aRb \Leftrightarrow a \in b$, entonces
 - a. R es transitiva pero no es simétrica ni reflexiva. *
 - b. R no es transitiva ni simétrica ni reflexiva.
 - c. R es refleviva pero no es simétrica ni transitiva.

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa do

405416_arts_esce ues2016juny.pdf

Top de tu gi

7CR

Rocio

- 25. En el conjunto $\mathbb N$ de los números naturales definimos la siguiente relación de equivalencia: $nRm\Leftrightarrow n-m$ es múltiplo de 2.
 - a. El conjunto cociente \mathbb{N}/R tiene infinitos elementos.
 - b. El conjunto cociente \mathbb{N}/R tiene solo dos elementos, la clase del cero formada por todos los pares y la clase del uno formada por todos los impares. \bigstar c.El conjunto cociente \mathbb{N}/R tiene tres elementos, la clase del cero que solo tiene al cero, la clase del uno formada por todos los impares y la clase del dos formada por todos los pares.
- 26. Considerar la relación de equivalencia en $\mathbb Z$ definida por nRm sí, y solo sí, $n^2=m^2$ y considerar el conjunto cociente $\mathbb Z/R$. La correspondencia $\bar a\mapsto a$
 - a. Define una aplicación de \mathbb{Z}/R en \mathbb{Z} que no es sobrevectiva pero si inyectiva.
 - b. Define una aplicación en \mathbb{Z}/R en \mathbb{Z} que no es inyectiva pero si sobreyectiva.
 - c. No define una aplicación de \mathbb{Z}/R en \mathbb{Z} . \bigstar
- 27. Considera la relación de equivalencia R en \mathbb{Z} definida por $nRm\Leftrightarrow |n|=|m|$ y la correspondencia $\overline{n}\mapsto n^2$ definida sobre el cociente \mathbb{Z}/R . a. Esa correspondencia da lugar a una aplicación bien definida de \mathbb{Z}/R en \mathbb{N} que es una biyección.
 - b. Esa correspondencia no da lugar a una aplicación bien definida de \mathbb{Z}/R en $\mathbb{N}.$
 - c. Esa correspondencia da lugar a una aplicación bien definida de \mathbb{Z}/R en \mathbb{N} que es inyectiva pero no sobreyectiva. \bigstar
- 28. Considera la aplicación $f:\mathbb{Z}\to\mathbb{N}$ definida por f(n)=|n|, el valor absoluto y la relación de equivalencia R_f asociada a f.
 - a. La aplicación $\bar{f}: \mathbb{Z}/R_f \to \mathbb{N}; \bar{f}(x) = f(x) = |x|$ no está bien definida ya que $\bar{f}(-1) = 1 = \bar{f}(1)$.
 - b. Cada clase de equivalencia, salvo la del 0, tiene dos elementos y por tanto la aplicación $\bar{f}: \mathbb{Z}/R_f \to \mathbb{N}; \ \bar{f}(x) = f(x) = |x|$ aunque es sobreyectiva no puede ser invectiva.
 - c. Cada clase de equivalencia, salvo la del 0, tiene dos elementos y $\mathbb{Z}/R_f\cong\mathbb{N}.$
- 29. Sea $f:A\to B$ una aplicación y sea R_f la relación de equivalencia asociada a f, entonces:
 - a. La aplicación f es inyectiva si, y sólo si, la clase de equivalencia de cada

elemento $a \in A$ tiene sólo al elemento a.

b. La aplicación f es sobreyectiva si, y sólo si, hay sólo una clase de equivalencia que corresponde a la imagen de f.

c. La aplicación f es biyectiva si, y sólo si, $A/R_f \cong Im(f)$.

4 Anillos. Definición y ejemplos.

- 30. El conjunto $\mathbb{Z}[x]^*$ de los polinomios no nulos de $\mathbb{Z}[x]$
 - a. Es cerrado para la suma, producto y opuestos y por tanto es un subanillo de $\mathbbmss{Z}\left[x\right]$
 - b. Depende de la definición de subanillo, podría ser o no subanillo de $\mathbb{Z}[x]$
 - c. Es cerrado para la suma, producto y opuestos, pero no es un subanillo de $\mathbbmss{Z}\left[x\right]$
- 31. La aplicación $f:A[x] \to A$ que asocia a cada polinommio su término independiente (es decir, el coeficiente que acompaña a x^0)
 - a. no es morfismo de anillos.
 - b. es morfismo de anillos inyectivo pero no sobreyectivo.
 - c. es morfismo de anillos sobreyectivo pero no inyectivo. \bigstar
- 32. La aplicación norma $N: \mathbb{Z}[i] \to \mathbb{Z}_i; N(a+bi) := a^2 + b^2$
 - a. es un morfismo de anillos sobreyectivo pero no inyectivo.
 - b. es un morfismo de anillos inyectivo pero no sobreyectivo.
 - c. no es morfismo de anillos. *
- 33. La inclusión $\mathbb{Z}_n \hookrightarrow \mathbb{Z}; i \mapsto i$
 - a. Está bien definida pero no es un morfismo de anillos. \bigstar
 - b. No está bien definida por tanto no tiene sentiido preguntarse si es un morfismo de anillos.
 - c. Está bien definida, lleva el 0 en el 0, el 1 en el 1 y es un morfismo de anillos.
- 34. El elemento $2 + \sqrt{3}$
 - a. es una unidad en $\mathbb{Z}(\sqrt{3})$ y su inverso es $2-\sqrt{3}$.
 - b. no es una unidad en $\mathbb{Z}(\sqrt{3})$ ya que este no es un cuerpo.
 - c. no es una unidad en $\mathbb{Z}(\sqrt{3})$ ya que su inverso sería un conjugado y al ser real

coincide con el mismo pero $\left(2+\sqrt{3}\right)\left(2+\sqrt{3}\right)=\left(2+\sqrt{3}\right)^2=4+3+8\sqrt{3}\neq 1$

- 35. Considerar los anillos $\mathbb{Z}[i]$ y $\mathbb{Q}[i]$
 - a. Ambos $\mathbb{Z}[i]$ y $\mathbb{Q}[i]$ son cuerpos.
 - b. $\mathbbmss{Z}[i)$ no es un cuerpo sólo tiene cuatro unidades, pero $\mathbbmss{Q}[i)$ si que es un cuerpo. \bigstar
 - c. Ni $\mathbb{Z}[i]$ ni $\mathbb{Q}[i]$ son cuerpos, solo tienen cuatro unidades, 1, .1, $i \neq -i$.
- 36. Si A es un anillo y $B \subseteq A$ es un subanillo. Entonces:
 - a. si A no es un cuerpo, como la estructura de B es heredada de la de A, no puede tener una estructura más rica y por tanto B no puede ser un cuerpo.
 - b. puede ser B un cuerpo aunque no lo sea A y puede ser A un cuerpo y no serlo B. \bigstar
 - c. B hereda la estructura de A por tanto si A es un cuerpo B también tiene que ser un cuerpo.
- 37. La aplicación $f: \mathbb{Z}_6 \to \mathbb{Z}_3$ definida como f(n) := resto de dividir n entre 3, para n=0,1,2,3,4,5.
 - a. Es un morfismo de anillos. \bigstar
 - b. Está bien definida pero no es un mmorfismo de anillos.
 - c. No está bien definida.
- 38. La aplicación $f: \mathbb{Z}_9 \to \mathbb{Z}_6$ definida como f(n) := resto de dividir n entre 6, para n=0,1,2,3,4,5,6,7,8.
 - a. Está bien definida pero no es un morfismo de anillos. \bigstar
 - b. Está bien definida y es un morfismo de anillos.
 - c. No está bien definida.
- 39. Las unidades del anillo \mathbb{Z}_5 son:
 - a. $U(\mathbb{Z}_5) = \{1, -1\}$
 - b. $U(\mathbb{Z}_5) = \{1, 2, 3, 4\}.$
 - c. $U(\mathbb{Z}_5) = \{1\}$

5 Congruencias, ideales y cocientes.

40. En $\mathbb{Z} \times \mathbb{Z}$ definimos la siguiente relación:

$$(a,b) \sim (c,d) \Leftrightarrow a-c$$
 es un múltiplo de 2 y $b=d$

- a. es una congruencia. *
- b. es relación de equivalencia.
- c. no es de equivalencia y por tanto no puede ser congruencia.
- 41. En el anillo Q definimos la siguiente relación:

$$a \sim b \Leftrightarrow a - b \in \mathbb{Z}$$

- a. no es de equivalencia y por tanto no puede ser congruencia.
- b. es congruencia.
- c. es de equivalencia pero no es una congruencia. *
- 42. Considera el morfismo $E_1: \mathbb{Z}[x] \to \mathbb{Z}$ que evalúa cada polinomio en 1, $E_1(f(x)) := f(1)$ y sea $I = \langle x 1 \rangle \leq \mathbb{Z}[x]$ el ideal generado por x 1. Entonces:
 - a. $I \subseteq \ker E_1 \ y \ \mathbb{Z}[x] / \ker E_1 \cong \mathbb{Z}. \bigstar$
 - b. $I \subseteq \ker E_1 \ y \ \mathbb{Z}[x] / \ker E_1 \cong Im(E_1) \neq \mathbb{Z}$.
 - c. ninguna de las opciones es correcta.
- 43. En el anillo de los polinomios $\mathbb{Z}[x]$ considera el conjunto P con elementos los polinomios de grado par, notar que los polinomios constantes tienen grado cero que es par.
 - a. P no es un ideal pero si es un subanillo.
 - b. P es un ideal pero no es un subanillo.
 - c. P no es un ideal y tampoco un subanillo. \bigstar
- 44. El cuerpo de los números complejos
 - a. es infinito y tiene infinitos ideales e infinitos subanillos.
 - b. aunque es infinito, solo tiene un número finito de ideales y un número finito de subanillos
 - c. solo tiene dos ideales, que son el trivial y el total, pero tiene infinitos subanillos. \bigstar
- 45. Sea A un anillo
 - a. todo ideal de A tiene al cero y al 1.

Descarga la APP de Wuolah.

Ya disponible para el móvil y la tablet.

Continúa do

405416 arts esce ues2016juny.pdf

Top de tu gi

pony

- b. todo ideal de A tiene al cero y puede haber ideales que tienen al 1 sin que sean el propio anillo.
- c. todo ideal de A tiene al cero y el único ideal que tiene al 1 es el propio anillo. \bigstar
- 46. Dados los ideales $I, J \leq A$
 - a. la intersección $I \cap J$ no es un ideal pero la unión $I \cup J$ si lo es.
 - b. ni la intersección $I\cap J$ ni la unión $I\cup J$ son ideales.
 - c. la intersección $I\cap J$ es un ideal pero la unión $I\cup J$ no lo es. \bigstar
- 47. Elige la correcta:
 - a. Todos los ideales de $\mathbb Z$ y de $\mathbb Q$ son principales. \bigstar
 - b. Todos los ideales de \mathbb{Z} son principales pero hay ideales de \mathbb{Q} que no lo son.
 - c. Todos los ideales de $\mathbb Q$ son principales pero hay ideales de $\mathbb Z$ que no son principales.
- 48. Considera la aplicación $T:\mathbb{Z}[x]\to\mathbb{Z}$ que asocia a cada polinomio su término independiente (aquel que no tiene x), y el ideal $I = \langle x \rangle \leq$ $\mathbb{Z}[x]$ generado por x.
 - a. Es un morfismo de anillos que además induce un morfismo $\bar{T}: \mathbb{Z}[x]/I \to \mathbb{Z}$, tal que $\bar{T}f(x) = T(f(x))$.
 - b. Es un morfismo de anillos que no induce un morfismo $\bar{T}:\mathbb{Z}\left[x\right]/I\to\mathbb{Z},$ tal que $\bar{T}f(x) = T(f(x))$.
 - c. no es morfismo.
- 49. En el anillo $\mathbb{Z}[i]$ considera el ideal I generado por el elemento i, en-

a. $I = \{ni; n \in \mathbb{Z}\}$

b. $I = \mathbb{Z}[i] \bigstar$

c. ninguna de las otras opciones es cierta.

DI

- 50. El anillo $\mathbb{Z}_{11}[x]$
 - a. es un DI con infinitas unidades.
 - b. no es DI.

c. es un DI con 10 unidades. ★

51. **En** $\mathbb{Z}\left[\sqrt{2}\right]$

- a. 2 y $2-2\sqrt{2}$ son asociados y tienen la misma norma.
- b. $2 \text{ y } 2 2\sqrt{2}$ no son asociados porque no tienen la misma norma.
- c. 2 y $2-2\sqrt{2}$ son asociados pero no tienen la misma norma. \bigstar

52. En $\mathbb{Q}[x]$ el polinomio $x^2 + 1$

- a. tiene infinitos asociados e infinitos divisores propios. *
- b. tiene infinitos asociados pero no tiene divisores propios.
- c. tiene un número finito de asociados y un número finito de divisores propios.

53. Sea A un dominio de integridad. Dados $a,b\in A$ escribo $a\sim_{as}b$ si son asociados.

- a. Si $a\sim_{as}b$ y $c\sim_{as}d$ no tiene por qué cumplirse que $ac\sim_{as}bd$ y tampoco que $a+c\sim_{as}b+d$
- b. Si $a\sim_{as}b$ y $c\sim_{as}d$ entonces $ac\sim_{as}bd$ y también $a+c\sim_{as}b+d$
- c. Si $a\sim_{as}b$ y $c\sim_{as}d$ entonces $ac\sim_{as}bd$ pero no tiene por qué ser cierto que $a+c\sim_{as}b+d$

54. Elige la correcta

- a. Cualquier subanillo de un cuerpo es un DI y cualquier DI es un subanillo de un cuerpo. \bigstar
- b. Todo DI es un subanillo de un cuerpo pero no todo subanillo de un cuerpo es un DI
- c. Cualquier subanillo de un cuerpo es un DI pero no todo DI es un subanillo de un cuerpo.

55. En $\mathbb{Z}[i]$

- a. 1 + 2i y 1 2i tienen la misma norma y por tanto son asociados.
- b. Ninguna de las otras opciones es correcta.
- c. 3+i y 1-3i son asociados y por tanto tienen la misma norma. \bigstar

56. El anillo $\mathbb{Z}[i][x]$

- a. no tiene sentido hablar del cuerpo de fracciones de $\mathbb{Z}\left[i\right]\left[x\right]$ porque hay demasiados corchetes.
- b. es un DI pero su cuerpo de fracciones no es $\mathbb{Q}[i][x]$

c. es un DI y su cuerpo de fracciones es $\mathbb{Q}[i][x]$

57. Sea A un DI y $a \in A$ un elemento no nulo. Considera la aplicación

 $f:A\to A$ definida como f(x):=ax, entonces

- a. f es inyectiva y sobreyectiva.
- b. f no tiene porqué ser inyectiva ni sobreyectiva.
- c. f es inyectiva pero no tiene que ser sobreyectiva. \bigstar
- 58. En $\mathbb{Q}[x]$ el polinomio $x^3 + 1$
 - a. tiene infinitos asociados e infinitos divisores propios. *
 - b. tienen un número finito de asociados y un número finito de divisores pro-
 - c. tienen un número finito de asociados y un número finito de divisores propios.
- 59. El cuerpo de fracciones de $\mathbb{Z}[\sqrt{-2}]$ es
 - a. $\mathbb{C}[\sqrt{-2}] = \mathbb{C}$
 - b. $\mathbb{Q}[\sqrt{-2}] \bigstar$ c. $\mathbb{R}[\sqrt{-2}]$

11