Database Management System: Assignment 7

Total Marks: 20

July 31, 2024

Question 1

Marks: 2 MCQ

Consider the following schedule S of transactions T_1 and T_2 .

The read operation on data item A is denoted by read(A) and the write operation on data item A is denoted by write(A).

T_1	T_2
read(A)	
A:=A-1000	
write(A)	
	read(A)
read(B)	
B:=B+1000	
	temp:=A*0.8
	A:=A-temp
write(B)	
	write(A)
	read(B)
	B:=B+temp
	write(B)

Which of the following is TRUE about the schedule S?

- a) S is serializable both as T_1 , T_2 and T_2 , T_1 .
- b) S is not serializable neither as T_1 , T_2 nor T_2 , T_1 .
- c) S is serializable only as T_1 , T_2 .
- d) S is serializable only as T_2 , T_1 .

Answer: c)

Explanation: First, swap all non-conflicting instructions of the above schedule S.

 T_1 and T_2 both are working on the same data items.

So, S is serializable as T_1 , T_2 only

Hence, option (c) is correct.

Marks:2 MCQ

Consider the following schedule S involving five transactions T_1 , T_2 , T_3 , T_4 , and T_5 :

T_1	T_2	T_3	T_4	T_5
R(X)				
	W(X)			
		R(Y)		
		W(Y)		
			W(X)	
			W(Y)	
	R(Z)			
		W(Z)		
				W(Z)

R(X) denotes read operation on data item X by transaction T_i . W(X) denotes write operation on data item X by transaction T_i . Choose the correct option for the above transaction schedule.

- a) The schedule is only view serializable schedule.
- b) The schedule is only conflict serializable schedule.
- c) The schedule is both view and conflict serializable schedule.
- d) The schedule is neither conflict serializable nor view serializable schedule.

Answer: c)

Explanation: If we draw the precedence graph of the transactions as shown in the following, we can observe that the graph has no cycle.

So, the above schedule is a conflict serializable schedule.

All conflict serializable schedules are view serializable too.

So, option (c) is correct.

Marks:2 MCQ

Consider the following schedule S involving four transactions T_1 , T_2 , T_3 and T_4 .

T_1	T_2	T_3	T_4
R(X)			
	W(X)		
		W(Z)	
			R(Z)
R(Z)			
W(Z)			

R(X) denotes read operation on data item X by transaction T_i .

W(X) denotes write operation on data item X by transaction T_i .

Identify the possible number of conflict serializable schedules of the above schedule S.

- a) 1
- b) 2
- c) 3
- d) 4

Answer: a)

Explanation: If we draw the precedence graph of the schedule, we can observe that the graph has no cycle. Hence, the above schedule is conflict serializable schedules.

All possible topological orderings of the above precedence graph will be the possible conflict serializable schedule.

 $1. \ T3 \rightarrow T4 \rightarrow T1 \rightarrow T2$

Hence, option a) is correct.

Marks:2 MCQ

Consider the following schedule S involving four transactions T_1 , T_2 , T_3 and T_4 .

T_1	T_2	T_3	T_4
R(X)			
R(Z)			
	W(X)		
		R(Y)	
		W(Y)	
			W(X)
			W(Y)
			W(Z)

R(X) denotes read operation on data item X by transaction T_i .

W(Y) denotes write operation on data item Y by transaction T_i .

Identify the option(s) that do not represent the correct order of execution of all transactions of the above schedule S.

a)
$$T1 \rightarrow T3 \rightarrow T2 \rightarrow T4$$

b)
$$T1 \rightarrow T2 \rightarrow T3 \rightarrow T4$$

c)
$$T3 \rightarrow T1 \rightarrow T2 \rightarrow T4$$

d)
$$T3 \rightarrow T2 \rightarrow T1 \rightarrow T4$$

Answer: d)

Explanation: If we draw the precedence graph of the transactions as shown in the following, we can observe that the graph has no cycle.

So, the above schedule is a conflict serializable schedule.

All conflict serializable schedules are view serializable too.

All possible topological orderings of the above precedence graph will be the possible conflict serializable schedule.

Hence, the correct order of execution of all transactions is:

1.
$$T1 \rightarrow T3 \rightarrow T2 \rightarrow T4$$

2. T1
$$\rightarrow$$
 T2 \rightarrow T3 \rightarrow T4

3.
$$T3 \rightarrow T1 \rightarrow T2 \rightarrow T4$$

So, option (d) is the answer.

Consider the following schedule S.

T2	Т3
	R(X)
	R(Y)
W(Y)	
	W(Y)

Marks: 2 MCQ

- R(Y) denotes read operation on data item Y by Transaction T_i .
- W(Y) denotes write operation on data item Y by Transaction T_i .

Identify the possible number of view serializable schedule of the above schedule S.

- a) 7
- b) 5
- c) 3
- d) 1

Answer: d)

Explanation: Step 1: Final Update on data item: Y-T1

Final Update on data item: X-T1

Since the final update on Y and X is made by T1, the transaction T1 must execute after all the transactions: $(T2,T3) \rightarrow T1$.

Step 2: Initial Read + Which transaction updates after read?

Y: T3 (initial read) then T2 firstly updates it.

Hence, the dependency is: $T3 \rightarrow T2$

X: T3 (initial read) then T1 firstly updates it as well as final update also.

Hence, T1 will execute later than T3: T3 \rightarrow T1

Step 3: Write Read Sequence: T2 firstly writes Y and then T1 reads Y.

Hence, the dependency is: $T2 \rightarrow T1$

The ways we can arrange $(T3 \rightarrow T2 \rightarrow T1)$.

Hence, total possible view serializable schedule of S=1.

Hence, option (d) is correct.

Marks:2 MCQ

Consider two transactions given below where lock-X(A) denotes T_i has obtained an Exclusive-mode lock on item A and lock-S(A) denotes T_i has obtained a Shared-mode lock on item A.

T_1	
lock-S(A)	
read(A)	
lock-X(B)	
read(B)	
B:= B+100	
write(B)	
lock-S(C)	
read(C)	
unlock(A)	
unlock(C)	
commit	
unlock(B)	

T_2
lock-X(A)
read(A)
A:= A-100
write(A)
lock-S(B)
read(B)
commit
unlock(A)
unlock(B)

Which of the following statement is (are) true?

- a) T_2 follows the rigorous two-phase locking protocol, but T_1 follows the strict two-phase locking protocol only.
- b) T_1 follows the rigorous two-phase locking protocol, but T_2 follows the strict two-phase locking protocol only.
- c) Both T_1 and T_2 follow the rigorous two-phase locking protocol.
- d) Both T_1 and T_2 do not follow the rigorous two-phase locking protocol.

Answer: a)

Explanation: Transaction T_1 first unlocks all Shared-mode lock and then commits. After commit, it unlocks Exclusive-mode lock. That is why, it follows the strict two phase locking protocol only.

Transaction T_2 first commits and then unlocks all locks(Exclusive-mode lock and Shared-mode lock). That is why, T_2 follows the rigorous two-phase locking protocol. So, option (a) is correct.

Marks: 2 MSQ

Suppose in a database, there are four transactions T_1 , T_2 , T_3 , and T_4 with timestamp 10, 14, 18, and 22 respectively. T_2 is holding a data item which T_1 and T_3 are requesting to acquire. Which of the following statement(s) is (are) correct in respect of Wound-Wait Deadlock Prevention scheme?

- a) Transaction T_1 will wait to release the data item.
- b) Transaction T_3 will wait to release the data item.
- c) Transaction T_1 will wounds T_2 , Transaction T_2 will be aborted.
- d) Transaction T_3 will wounds T_2 , Transaction T_2 will be aborted.

Answer: b), c)

Explanation: Wound-Wait Deadlock Prevention scheme: When TA1 requests data item held by TA2 (older means smaller timestamp), two cases may arise.

- If TA1 is older than TA2 then TA1 wounds TA2 (TA2 will be aborted).
- If TA1 younger to TA2 then TA1 will wait for release the data item held by TA2.

In this case Transaction T_2 and T_3 are younger in respect of Transaction T_1 . Hence, options b) and c) are correct.

Consider the following schedule S.

T_1	T_2
R(X)	
W(X)	
R(Y)	
W(Y)	
	R(X)
COMMIT	
	W(X)
	R(Y)
	W(Y)
	COMMIT

Marks: 2 MCQ

R(X) denotes read operation on data item X by Transaction T_i . W(X) denotes write operation on data item X by Transaction T_i . Choose the correct options for the above schedule.

- a) The schedule is only recoverable schedule.
- b) The schedule is only cascadeless schedule.
- c) The schedule is recoverable schedule and cascadeless schedule both.
- d) The schedule is neither recoverable nor cascadeless schedule.

Answer: a)

Explanation: Recoverable schedule: If a transaction T_j reads a data item previously written by a transaction T_i , the commit operation of T_i must appear before the commit operation of T_i .

Cascadeless schedules: For each pair of transactions T_i and T_j such that T_j reads a data item previously written by T_i , the commit operation of T_i appears before the read operation of T_j . Here, T_i read data item X before commit of T_i . Hence, the schedule is recoverable. So, option (a) is correct.

Consider the following schedule S.

T1	T2	Т3
		R(X)
		W(X)
		R(Y)
		commit
	R(X)	
	W(X)	
R(X)		
W(X)		
	abort	

Marks: 2 MCQ

R(Y) denotes read operation on data item Y by Transaction T_i . W(Y) denotes write operation on data item Y by Transaction T_i .

Identify the correct statement(s) based on the above schedule S.

- a) If T2 fails (aborted), both transactions T1, and T3 must also be rolled back.
- b) If T2 fails (aborted), transaction T3 must also be rolled back.
- c) If T2 fails (aborted), only transaction T1 will be rolled back.
- d) If T2 fails (aborted), no transaction will be rolled back.

Answer: c)

Explanation: As per the cascading rollback a single transaction failure leads to a series of transaction rollbacks.

Hence, if T2 fails (aborted), T1 must also be rolled back.

Transaction T3 has already been committed, so no rollback will happen. So, option (c) is correct.

Marks: 2 MCQ

Suppose that four transactions T_1 , T_2 , T_3 and T_4 are being applied on a database. Transaction T_1 is waiting for transactions T_2 ; transaction T_2 is waiting for transaction T_3 , and transaction T_4 is waiting for transactions T_1 and T_2 to release a data item. Identify the correct wait-for graph for the above scenario.

Answer: c)

Explanation: When T_i requests a data item currently being held by T_j , then the edge $T_i \to T_j$ is inserted in the wait-for graph. An edge $T_i \to T_j$ implies that T_i is waiting for T_j to release a data item.

Hence, option c) is correct.