# UNIT NADARAJAH AND HAGHIGHI DISTRIBUTION: PROPERTIES AND APPLICATIONS IN QUALITY CONTROL

# Ismail Shah<sup>1</sup>, Brikhna Iqbal<sup>2</sup>, Muhammad Farhan Akram<sup>3</sup>, Sajid Ali<sup>4,\*</sup>, and Sanku Dev<sup>5</sup>

<sup>1,2,3,4</sup>Department of Statistics, Quaid-i-Azam University, Islamabad 45320, Pakistan 
<sup>5</sup>Department of Statistics, St. Anthony's College, Shillong, India 
<sup>1</sup>ishah@qau.edu.pk, <sup>2</sup>khannasarkhang555@gmail.com, <sup>3</sup>fanjum566@gmail.com, 
<sup>4</sup>sajidali.qau@hotmail.com, <sup>5</sup>sankud66@gmail.com
Corresponding Author Phone: 00925190642185

ABSTRACT. In practice, the data related to rates and proportion may have excess of ones wherein the beta distribution does not fit well. To deal with the inflation of ones, this article introduces unit Nadarajah and Haghighi distribution. Besides deriving statistical properties of the proposed distribution, several estimation methods are discussed. In particular, maximum likelihood estimation, least squares estimation, weighted least squares estimation, maximum product of spacing, minimum spacing absolute distance estimation, minimum spacing absolute log-distance estimation, Cramér-Von-Mises, Anderson-Darling method and right-tail Anderson-Darling method are considered. Using real data sets, it is shown that the new distribution outperforms some well-known existing distributions. Furthermore, the application of the proposed distribution in quality control is also discussed. A control chart using unit Nadarajah and Haghighi distribution is constructed and its performance is evaluated using the average run length.

Keywords: Anderson-Darling method; Control chart, Cramér-Von-Mises Estimation Method; Maximum Likelihood Estimation, Root mean squared error; Weighted Least Squared Estimation.

AMS 2010 Classification: 62F10, 62P10.

### 1. Introduction

Recently many distributions have been introduced in statistics to accommodate natural phenomena arising from diverse fields. In lifetime data analysis, Weibull distribution has a special significance and considered as the benchmark model. Depending on the shape parameter, the Weibull distribution is flexible to model increasing, decreasing, and constant hazard function. In addition, its closed form cumulative distribution function also exists. However, to deal the data with range between zero and one, beta distribution is more appropriate and many absolutely continuous distributions have been used to generate flexible distributions to accommodate the data of proportion. For example, Mazucheli et al.[1] introduced the unit-Weibull distribution and showed its flexibility over the beta distribution. Similarly, the unit-gamma distribution [2], unit logistic distribution [3], unit Lindley distribution [4], unit Gompertz distribution [5], Topp-Leone generated distributions [6], reflected generalized Topp-Leone power series distribution [7], etc., are introduced to deal proportion data.

Nadarajah and Haghighi [8] introduced a new extension of the exponential distribution, known as the Nadarajah and Haghighi (NH) distribution, to deal with the inflation of zeros in absolutely continuous data. Motivated by the application of NH distribution, the aim of this article is

to introduce unit Nadarajah and Haghighi (UNH) distribution. A distinct feature of UNH distribution is that it is not constructed by taking into account the positive part of the real line and neither includes special functions nor additional parameters in the formulation but it is constructed in the unit interval. As a consequence, very few distributions with unit interval/finite support are available in the literature. However, while considering real life data sets concerning percentages, proportions or fractions, etc., one needs to consider values in a limited range [9]. Likewise, survival time of units/items/subjects of interest are normally greater than zero and also the lifetime of units/items/subjects of interest cannot arrive at infinite point. In such cases, it is necessary to use a bounded model [10, 11]. Similarly, there are many random variables and random processes that appear in real life applications whose values are bounded both at the lower and upper ends [12, 13, 14, 15, 16]. Besides, in the context of reliability measurement, Genç[17] stated that to get plausible results of reliability, it is better to have models defined on the unit interval.

In the premise of the above, the UNH distribution is suitable to handle the inflation of ones in the proportion data. For example, let compare the mean proportion of days out of 30 wherein people do some physical exercises for at least 30 minutes. If people do exercise 30 out of 30 days, then data will have inflation of one and the response will be highly skewed. In such situation, beta distribution cannot be used because it does not accommodate the occurrence of one. Similarly, comparing the proportion of rain in two cities can also lead to inflation of one when both cities have the same amount of rain in a given time. Besides introducing UNH, we estimate the parameters of the UNH using nine different methods, including maximum likelihood estimation (MLE), least squares estimation (LSE), weighted least square estimation (WLSE), maximum product of spacing (MPS), minimum spacing absolute distance estimation (MSADE), minimum spacing absolute log-distance estimation (MSALDE), Cramér-Von-Mises (CVM), Anderson-Darling method (AD) and right-tail Anderson-Darling method (RAD). In addition to estimation of the parameters of the model, we also construct control charts using UNH distribution to show its practical application for monitoring data.

The rest of the article is organized as follows. Section 2 presents the derivation of the unit Nadarajah and Haghighi distribution while properties including quantile function, moments, entropies, order statistic are discussed in Section 3. Section 4 discusses different estimation methods to estimate the unknown parameters of the proposed distribution. The simulation study is presented in Section 5. Control charts and their performance assessment are presented in Section 6. Real data applications are presented in Section 7, whereas concluding remarks are given in Section 8.

# 2. Unit Nadarajah and Haghighi Distribution

The main aim of the proposed model is to deal with the inflation of ones. To this end, the probability density function and cumulative distribution function of the NH distribution with two parameters  $\alpha$ ,  $\lambda$  are defined as

$$f(x;\alpha,\lambda) = \alpha\lambda(1+\lambda x)^{\alpha-1}\exp\left[1-(1+\lambda x)^{\alpha}\right]; x>0, \alpha,\lambda>0$$
 (1)

$$F(x;\alpha,\lambda) = 1 - \exp\left[1 - (1 + \lambda x)^{\alpha}\right], x > 0, \alpha, \lambda > 0.$$
(2)

Now, using the transformation  $Y = \exp(-X)$ , we obtain the following probability density function

$$f(y;\alpha,\lambda) = \frac{\alpha\lambda}{y} (1 - \lambda \ln y)^{\alpha - 1} \exp\left[1 - (1 - \lambda \ln y)^{\alpha}\right], \ 0 < y < 1, \tag{3}$$

Figure 1 Here

Figure 1a represents the shape of the UNH distribution which is decreasing and increasing for different values of the parameters. The parameters  $\alpha, \lambda > 0$  are non-negative where  $\alpha$  is the shape parameter and  $\lambda$  is the rate parameter.

The expression of the CDF of the unit Nadarajah-Haghighi distribution is

$$F(y;\alpha,\lambda) = \exp\left[1 - (1 - \lambda \ln y)^{\alpha}\right], \ 0 < y < 1,\tag{4}$$

whereas the graphical depiction is given in Figure 1b.

The survival function is a function that provides the probability that a particular object will survive after a specific time. The term survival function is extensively used in human mortality to show the survival time of a patient beyond a specific time. In reliability, it is used to show the performance of electric devices beyond a specific time. The survival function is given by

$$S(y; \alpha, \lambda) = 1 - \exp\left[1 - (1 - \lambda \ln y)^{\alpha}\right], \ 0 < y < 1,$$
 (5)

The hazard function is the ratio of probability density function and survival function. For the UNH, it is obtained as

$$h(y) = \frac{\alpha\lambda(1 - \lambda\ln y)^{\alpha - 1}\exp\left[1 - (1 - \lambda\ln y)^{\alpha}\right]}{y(1 - \exp\left[1 - (1 - \lambda\ln y)^{\alpha}\right])} \tag{6}$$

Figure 1d depicts the hazard function of the UNH distribution where it can be noticed that the distribution has decreasing, increasing-decreasing hazard function for different choices of the parameters. This shows the flexibility of the UNH distribution.

The cumulative hazard is the sum of all the hazard values to a particular time. The cumulative hazard function of the UNH is given by

$$H(y;\alpha,\lambda) = \int_0^y \frac{\alpha\lambda(1-\lambda\ln y)^{\alpha-1}\exp\left[1-(1-\lambda\ln y)^{\alpha}\right]}{y\left[1-\exp(1-(1-\lambda\ln y)^{\alpha})\right]}dy \tag{7}$$

Similarly, the reversed hazard function (RHF) is a important tool in reliability. The reversed hazard function of the UNH distribution is defined as

$$r(y;\alpha,\lambda) = \frac{f(y;\alpha,\lambda)}{F(y;\alpha,\lambda)} \tag{8}$$

and depicted in Figure 1e.

#### 3. Statistical Properties

This section derives some important statistical properties of the UNH distribution.

3.1. Quantile Function. The quantile function of the UNH is obtained by F(y) = u, where  $u \sim Uniform(0,1)$ , that is,  $u = \exp(1 - (1 - \lambda \log(y))^{\alpha})$ . The simplified form of the quantile function of the UNH is given by

$$y = \exp \frac{1}{\lambda} (1 - (1 - \ln(u))^{\frac{1}{\alpha}})$$
 (9)

The  $p^{th}$  quantile function of UNH distribution is defined as

$$y_p = \exp\left(\frac{1}{\lambda}(1 - (1 - \ln(p))^{\frac{1}{\alpha}})\right) \tag{10}$$

Using p = 0.5 in Equation 10, one can obtain the median of the unit UNH distribution as under

$$y_{0.5} = \exp\left(\frac{1}{\lambda}(1 - (1 - \log(0.5))^{\frac{1}{\alpha}})\right) \tag{11}$$

3.2. **The Moments.** In this section, we derive the rth moment for the UNH distribution. The first fourth moments are the most important to describe the shape of the distribution. Suppose the random variable Y follows the UNH  $(\lambda, \alpha)$ , then the rth moment is given as

$$u'_{r} = \int_{0}^{1} y^{r} f(y, \alpha, \lambda) dy = \int_{0}^{1} \alpha \lambda y^{r-1} (1 - \lambda \log y)^{\alpha - 1} \exp(1 - (1 - \lambda \log y)^{\alpha})$$
 (12)

Using the binomial expansion on  $[1 - F(y)]^i$ , i.e.,

$$[1 - F(y; \alpha, \lambda)]^{i} = \sum_{k=0}^{i} {i \choose k} (-1)^{k} [F(y)]^{k}.$$
(13)

we obtain

$$(1 - \lambda \log y)^{\alpha - 1} = \sum_{i=1}^{\alpha - 1} (-1)^i {\alpha - 1 \choose i} (\lambda \log y)^i$$

$$(14)$$

$$u'_{r} = \alpha \lambda \int_{0}^{1} y^{r-1} \sum_{i=1}^{\alpha-1} (-1)^{i} {\alpha-1 \choose i} (\lambda \log y)^{i} \exp(1 - (1 - \lambda \log y)^{\alpha}) dy$$
 (15)

$$u'_{r} = \sum_{i=1}^{\alpha-1} (-1)^{i} {\alpha-1 \choose i} \alpha \lambda \int_{0}^{1} y^{r-1} (\lambda \log y)^{i} \exp(1 - (1 - \lambda \log y)^{\alpha}) dy$$
 (16)

The rth moment of the UNH distribution cannot be expressed analytically further but can be solved numerically.

3.3. **Rényi Entropy.** The Rényi entropy measures uncertainty of a random variable and defined as

$$R_{\nu}(y) = \frac{1}{1-\nu} \log \left[ \int_{0}^{1} (f(y))^{\nu} dy \right]$$
 (17)

$$R_{\upsilon}(y) = \frac{1}{1 - \upsilon} \log \left[ \int_0^1 \frac{(\alpha \lambda)^{\upsilon}}{(y)^{\upsilon}} (1 - \lambda \ln y)^{\upsilon(\alpha - 1)} \exp\left(\upsilon(1 - (1 - \lambda \ln y))^{\alpha}\right) \right] dy \tag{18}$$

Using the Taylor series

$$\exp(\upsilon(1 - (1 - \lambda \ln y)^{\alpha})) = \sum_{i=0}^{1} \frac{(\upsilon)^{i} (1 - (1 - \lambda \ln y)^{\alpha})^{i}}{i!}$$
(19)

and

$$[1 - (1 - \lambda \ln y)^{\alpha}]^{i} = \sum_{k=0}^{i} {i \choose k} (-1)^{k} [(1 - \lambda \ln y)^{\alpha}]^{k}.$$

we get

$$R_{v}(y) = \frac{1}{1-v} \ln \left[ \int_{0}^{1} \frac{(\alpha\lambda)^{v}}{(y)^{v}} (1-\lambda \ln y)^{v(\alpha-1)} \sum_{i=0}^{1} \frac{(v)^{i} (1-(1-\lambda \ln y)^{\alpha})^{i}}{i!} \right] dy$$

$$= \frac{1}{1-v} \ln \left[ \sum_{i=0}^{1} \frac{(v)^{i}}{i!} \left( \int_{0}^{1} \frac{(\alpha\lambda)^{v}}{(y)^{v}} (1-\lambda \ln y)^{v(\alpha-1)} (1-(1-\lambda \ln y)^{\alpha})^{i} \right) \right] dy$$

$$= \frac{1}{1-v} \ln \left[ \sum_{i=0}^{1} \sum_{k=0}^{i} \binom{i}{k} (-1)^{k} \frac{(v)^{i}}{i!} \left( \int_{0}^{1} \frac{(\alpha\lambda)^{v}}{(y)^{v}} (1-\lambda \ln y)^{v(\alpha-1)} [(1-\lambda \ln y)^{\alpha}]^{k} \right) \right] dy$$

$$= \frac{1}{1-v} \ln \left[ \sum_{i=0}^{1} \sum_{k=0}^{i} \binom{i}{k} (-1)^{k} \frac{(v)^{i}}{i!} \left( \int_{0}^{1} \frac{(\alpha\lambda)^{v}}{(y)^{v}} (1-\lambda \ln y)^{(v(\alpha-1)-k\alpha)} \right) \right] dy$$
(20)

Again using

$$(1 - \lambda \ln y)^{(\upsilon(\alpha - 1) - k\alpha)} = \sum_{s=0}^{\upsilon(\alpha - 1) - k\alpha} {\upsilon(\alpha - 1) - k\alpha \choose s} (-1)^s [\lambda \log y]^s$$
 (21)

we obtain

$$R_{v}(y) = \frac{1}{1-v} \ln \left[ \sum_{i=0}^{1} \sum_{k=0}^{i} \sum_{s=0}^{v(\alpha-1)-k\alpha} \binom{v(\alpha-1)-k\alpha}{s} \binom{i}{k} \frac{(v)^{i}}{i!} (-1)^{s} (-1)^{k} (\alpha\lambda)^{v} \left( \int_{0}^{1} (y)^{-v} (\lambda \ln y)^{s} \right) \right] dy$$
(22)

3.4. Stress and Strength Modeling. Suppose  $Y_1$  and  $Y_2$  are two independent continuous random variables, where  $Y_1 \sim UNH(\alpha_1, \lambda_1)$  and  $Y_2 \sim UNH(\alpha_2, \lambda_2)$ . Then, the stress and strength, denoted by R, is determined as

$$R = P(y_1 > y_2) = \int_{-\infty}^{\infty} f_{y_1}(y) F_{y_2}(y) dy.$$
 (23)

$$R = P(y_1 > y_2) = \int_0^1 \frac{\alpha_1 \lambda_1}{y} (1 - \lambda_1 \ln y)^{\alpha_1 - 1} \exp(1 - (1 - \lambda_1 \ln y)^{\alpha_1}) \exp(1 - (1 - \lambda_2 \ln y)^{\alpha_2}) dy.$$

$$= \int_0^1 \frac{\alpha_1 \lambda_1}{y} (1 - \lambda_1 \ln y)^{\alpha_1 - 1} \exp(2 - (1 - \lambda_1 \ln y)^{\alpha_1} - (1 - \lambda_2 \ln y)^{\alpha_2}) dy. \tag{24}$$

Using

$$[1 - \lambda_1 \ln y]^{\alpha_1 - 1} = \sum_{k=0}^{\alpha_1 - 1} {\alpha_1 - 1 \choose k} (-1)^k (\lambda_1 \ln y)^k.$$
 (25)

$$R = P(y_1 > y_2) = \alpha_1 \lambda_1 \sum_{k=0}^{\alpha_1 - 1} {\alpha_1 - 1 \choose k} (-1)^k \int_0^1 y^{-1} (\lambda_1 l y)^k \exp(2 - (1 - \lambda_1 \ln y)^{\alpha_1} - (1 - \lambda_2 \ln y)^{\alpha_2}) dy.$$

Since

$$\exp(2 - (1 - \lambda_1 \ln y)^{\alpha_1} - (1 - \lambda_2 \ln y)^{\alpha_2}) = \sum_{i=0}^{1} \frac{(2 - (1 - \lambda_1 \ln y)^{\alpha_1} - (1 - \lambda_2 \ln y)^{\alpha_2})^i}{i!}$$
(26)

$$R = P(Y_1 > Y_2) = \frac{\alpha_1 \lambda_1}{i!} \sum_{i=0}^{1} \sum_{k=0}^{i} {i \choose k} (-1)^k \int_0^1 y^{-1} (\lambda_1 \ln y)^k (2^i - (1 - \lambda_1 \ln y)^{i\alpha_1} - (1 - \lambda_2 \ln y)^{i\alpha_2}) dy.$$
 (27)

Again using

$$[1 - \lambda_1 \log y]^{i\alpha_1} = \sum_{j=0}^{i\alpha_1} {i\alpha_1 \choose j} (-1)^j (\lambda_1 \ln y)^j.$$

$$R = P(y_1 > y_2) = (-1)^j (-1)^k (-1)^j \frac{\alpha_1 \lambda_1}{i!} \sum_{j=0}^{i\alpha_1} \sum_{j=0}^{i\alpha_2} \sum_{i=0}^1 \sum_{k=0}^i \binom{i\alpha_1}{j} \binom{i\alpha_2}{j} \binom{i}{k} \left( 2^i \lambda_1^k \int_0^1 y^{-1} (\ln y)^k dy \right) - \left( \lambda_2^{k+j} \int_0^1 y^{-1} (\ln y)^{k+j} dy \right) - \left( \lambda_1^k \lambda_2^j \int_0^1 y^{-1} (\ln y)^{k+j} dy \right).$$
 (28)

3.5. Order Statistics. In this section, we define the probability density function of the ith order statistic of the UNH distribution. Suppose a sample of size k,  $Y_{(1)}, \dots, Y_{(k)}$ , be the order statistic obtained from a random sample  $Y_1, \dots, Y_k$  of size k from a continuous population with distribution function  $F(y;\varphi)$  and probability density function  $f(y;\varphi)$ . Then, the probability density function of  $y_{(i)}$  is given by

$$f_{Y(i)}(y) = \frac{k!}{(i-1)!(k-i)!} f_Y(y) [F(y;\varphi)]^{i-1} [1 - F(y;\varphi)]^{k-i}$$
(29)

for  $i = 1, 2, \dots, k$ . For the UNH distribution, we have

$$f_{Y_{(i)}}(y) = \frac{k!}{(i-1)!(k-i)!} \left(\frac{\alpha\lambda}{y} (1-\lambda \ln y)^{\alpha-1} \exp(1-(1-\lambda \ln y)^{\alpha})) \left[\exp(1-(1-\lambda \ln y)^{\alpha})\right]^{i-1} \left[1-\exp(1-(1-\lambda \ln y)^{\alpha})\right]^{k-i}$$
(30)

while the probability density function of the largest order statistic  $y_{(k)}$  is given by

$$f_{Y_{(k)}}(y) = \frac{\alpha \lambda k}{y} (1 - \lambda \ln y)^{\alpha - 1} \exp(1 - (1 - \lambda \ln y)^{\alpha}) [\exp(1 - (1 - \lambda \ln y)^{\alpha})]^{k - 1}$$
(31)

and the probability density function of the smallest order statistic  $y_{(1)}$  is given by

$$f_{Y(1)}(y) = \frac{\alpha \lambda k}{y} (1 - \lambda \ln y)^{\alpha - 1} \exp(1 - (1 - \lambda \ln y)^{\alpha}) [1 - \exp(1 - (1 - \lambda \ln y)^{\alpha})]^{k - 1}$$
(32)

### 4. Estimation of Parameters

In this section, we discuss the unknown parameters estimation of the UNH distribution using the maximum likelihood estimation, ordinary least squares, percentile estimation, maximum product of spacing, minimum spacing absolute distance estimator, minimum spacing absolute log distance estimator, Cramér-Von-Mises, Anderson-Darling (AD) and right-tail Anderson-Darling methods [18, 19].

4.1. **Maximum Likelihood Estimation.** Suppose  $Y_1, Y_2, \dots, Y_n$  be a simple random sample from the UNH distribution. Then, the likelihood function is given by

$$L(\lambda, \alpha, \mathbf{y}) = \prod_{i=1}^{n} f(y_i, \lambda, \alpha) = \prod_{i=1}^{n} \frac{\alpha \lambda}{y_i} (1 - \lambda \log y_i)^{\alpha - 1} \exp(1 - (1 - \lambda \log y_i)^{\alpha})$$
(33)

The log-likelihood function is given by

$$\ln L(\lambda, \alpha, \mathbf{y}) = n \ln(\lambda \alpha) - \sum_{i=1}^{n} \ln(y_i) + (\alpha - 1) \sum_{i=1}^{n} \ln(1 - \lambda \ln y_i) + n - \sum_{i=1}^{n} (1 - \lambda \ln y_i)^{\alpha}$$
(34)

It follows that the maximum likelihood estimators MLEs of the parameters are obtained by differentiating the log-likelihood function with respect to the parameters  $\lambda$  and  $\alpha$  and then equating the resulting equations to zero.

$$\frac{\partial \ln L(\lambda, \alpha, \mathbf{y})}{\partial \alpha} = \frac{n}{\alpha} + \sum_{i=1}^{n} \ln(1 - \lambda \ln y_i) - \sum_{i=1}^{n} (1 - \lambda \ln y_i)^{\alpha} \ln(1 - \lambda \ln y_i) = 0$$
 (35)

$$\frac{\partial \ln L(\lambda, \alpha, \mathbf{y})}{\partial \lambda} = \frac{n}{\lambda} + (\alpha - 1) \sum_{i=1}^{n} \frac{(\ln y_i)}{(1 - \lambda \ln y_i)} + \alpha \sum_{i=1}^{n} (\ln y_i) (1 - \lambda \ln y_i)^{\alpha - 1} = 0$$
 (36)

The MLEs of the UNH distribution cannot be obtained in closed forms. Thus, it needs to be solved numerically for the parameters  $\lambda$  and  $\alpha$ .

4.2. Ordinary Least Squares Estimators. Let  $Y_1, \dots, Y_n$  is a random sample of size n from the distribution function F(.) and  $Y_{(i)} < \dots < Y_{(n)}$  denote the corresponding order sample. The ordinary least squares estimators can be obtained by minimizing

$$Z(\lambda, \alpha) = \sum_{i=1}^{n} [F(y_{(i)}) - E(F(y_{(i)}))]^{2}.$$
 (37)

Using

$$E(F(Y_{(i)})) = \frac{i}{n+1},$$
 (38)

we get

$$Z(\lambda, \alpha) = \sum_{i=1}^{n} \left[ F(Y_{(i)}) - \frac{i}{n+1} \right]^{2}.$$
 (39)

Therefore, in the case of the UNH distribution, the ordinary least squares estimators of  $\lambda$  and  $\alpha$ , say  $\lambda_{OLS}$  and  $\alpha_{OLS}$ , respectively, can be obtained by minimizing

$$Z(\lambda, \alpha) = \sum_{i=1}^{n} \left[ \exp(1 - (1 - \lambda \ln y_{(i)})^{\alpha}) - \frac{i}{n+1} \right]^{2}$$
 (40)

Differentiate Equation 40 with respect to the unknown parameters  $\lambda$  and  $\alpha$  and equating the resulting equations to zero, one can get the OLS estimators.

$$\frac{\partial Z(\lambda,\alpha)}{\partial \lambda} = 2\sum_{i=1}^{n} \left[ \exp\left(1 - \left(1 - \lambda \ln y_{(i)}\right)^{\alpha}\right) - \frac{i}{n+1} \right] \exp\left(1 - \left(1 - \lambda \ln y_{(i)}\right)^{\alpha}\right) \alpha \left(1 - \lambda \ln y_{(i)}\right)^{\alpha-1} \ln y_{(i)} = 0$$

$$\tag{41}$$

$$\frac{\partial Z(\lambda,\alpha)}{\partial \alpha} = 2\sum_{i=1}^{n} \left[ \exp\left(1 - \left(1 - \lambda \ln y_{(i)}\right)^{\alpha}\right) - \frac{i}{n+1} \right] \exp\left(1 - \left(1 - \lambda \ln y_{(i)}\right)^{\alpha}\right) \left(1 - \lambda \ln y_{(i)}\right)^{\alpha} \ln\left(1 - \lambda \ln y_{(i)}\right) = 0$$
(42)

As these equations cannot be solved analytically, the non-linear equations need to be solved numerically. The weighted least squares estimators of the unknown parameters can be obtained to minimizing

$$Z(\lambda, \alpha) = \sum_{i=1}^{n} w_i [F(Y_{(i)}) - E(F(Y_{(i)}))]^2.$$
(43)

Using

$$E(F(Y_{(i)})) = \frac{i}{n+1},$$
 (44)

we get

$$Z(\lambda, \alpha) = \sum_{i=1}^{n} w_i \left[ F(Y_{(i)}) - \frac{i}{n+1} \right]^2.$$
 (45)

The weight  $w_i$  are equal to

$$\frac{1}{V(y_{(i)})} = \frac{(n+1)^2(n+2)}{j(n-j+1)}.$$

Therefore, in the case of the UNH distribution, the weighted least squares estimators of  $\lambda$  and  $\alpha$ , say  $\hat{\lambda}_{WLSE}$  and  $\hat{\alpha}_{WLSE}$ , respectively, can be obtained by minimizing

$$Z(\lambda, \alpha) = \sum_{i=1}^{n} w_i \left[ \exp(1 - (1 - \lambda \ln y_{(i)})^{\alpha}) - \frac{i}{n+1} \right]^2, \tag{46}$$

that is, differentiate with respect to the unknown parameters  $\lambda$  and  $\alpha$  and equating to zero, we get the following equations.

$$\frac{\partial Z(\lambda,\alpha)}{\partial \lambda} = 2\sum_{i=1}^{n} w_i \left[ \exp\left(1 - \left(1 - \lambda \ln y_{(i)}\right)^{\alpha}\right) - \frac{i}{n+1} \right] \exp\left(1 - \left(1 - \lambda \ln y_{(i)}\right)^{\alpha}\right) \alpha \left(1 - \lambda \ln y_{(i)}\right)^{\alpha-1} \ln y_{(i)} = 0 \tag{47}$$

$$\frac{\partial Z(\lambda,\alpha)}{\partial \alpha} = 2\sum_{i=1}^{n} \frac{(n+1)^{2}(n+2)}{j(n-j+1)} \left[ \exp(1-(1-\lambda \ln y_{(i)})^{\alpha}) - \frac{i}{n+1} \right] \exp(1-(1-\lambda \ln y_{(i)})^{\alpha}) (1-\lambda \ln y_{(i)})^{\alpha} \ln (1-\lambda \ln y_{(i)}) = 0$$
(48)

The above equations need to be solved numerically.

4.3. **Percentile Estimation (PCE) Method.** If the cumulative distribution function have a closed form, then one can estimate the unknown parameter by fitting a straight line to the percentile points. In our case,

$$F(y;\alpha,\lambda) = \exp\left(1 - (1 - \lambda \log y)^{\alpha}\right),\tag{49}$$

therefore

$$y = \exp\left(\frac{1}{\lambda}(1 - (1 - \log(u))^{\frac{1}{\alpha}})\right) \tag{50}$$

Let  $Y_1, \dots, Y_n$  is a random sample of size n from the distribution function F(.) and  $Y_{(i)} < \dots < Y_{(n)}$  denote the corresponding ordered sample. The estimate of  $\lambda$  and  $\alpha$  can be obtained by minimizing

$$Z(\lambda,\alpha) = \sum_{i=1}^{n} \left[ y_{(i)} - \exp\left(\frac{1}{\lambda} (1 - (1 - \ln(u_i))^{\frac{1}{\alpha}})\right) \right]^2$$

$$(51)$$

that is, differentiate with respect to  $\alpha$  and  $\lambda$ .

$$\frac{\partial Z(\lambda,\alpha)}{\partial \alpha} = \sum_{i=1}^{n} \left[ y_{(i)} - \exp \frac{1}{\lambda} \left( 1 - \left( 1 - \ln(u_i) \right)^{\frac{1}{\alpha}} \right) \right] \frac{1}{\lambda} \exp \left( \frac{1}{\lambda} \left( 1 - \left( 1 - \ln(u_i) \right)^{\frac{1}{\alpha}} \right) \right) \left( 1 - \ln(u_i) \right)^{\frac{1}{\alpha}} \ln \left( 1 - \ln(u_i) \right) = 0$$
 (52)

$$\frac{\partial Z(\lambda,\alpha)}{\partial \lambda} = \sum_{i=1}^{n} \left[ y_{(i)} - \exp\left(\frac{1}{\lambda} \left(1 - \left(1 - \ln(u_i)\right)^{\frac{1}{\alpha}}\right)\right) \right] \exp\left(\frac{1}{\lambda} \left(1 - \left(1 - \ln(u_i)\right)^{\frac{1}{\alpha}}\right) - \left(1 - \ln(u_i)\right)^{\frac{1}{\alpha}}\right) = 0$$
 (53)

where  $u_i = \frac{i}{n+1}$ .

4.4. Maximum Product Spacing (MPS) Method. For the method of maximum product of spacing (MPS) [20, 21], we define

$$D_j(\alpha, \lambda) = F(y_{j:k}|\alpha, \lambda) - F(y_{j-1:k}|\alpha, \lambda), \quad j = 1, 2, \dots, k, \tag{54}$$

Let  $\hat{\alpha}_{MPS}$  and  $\hat{\lambda}_{MPS}$  are the estimators obtained using the maximum product of spacings for the UNH distribution parameters  $\alpha$  and  $\lambda$ . The geometric mean of the spacings is defined as

$$G(\alpha, \lambda) = \left[\prod_{j=1}^{k+1} D_j(\alpha, \lambda)\right]^{\frac{1}{k+1}}$$
(55)

or maximizing the function

$$H(\alpha, \lambda) = \frac{1}{k+1} \sum_{j=1}^{k+1} \ln D_j(\alpha, \lambda)$$
 (56)

$$\frac{\partial H(\alpha, \lambda)}{\partial \alpha} = \frac{1}{k+1} \sum_{j=1}^{k+1} \frac{1}{D_j(\alpha, \lambda)} \left[ \omega_1(y_{j:k} | \alpha, \lambda) - \omega_1(y_{j-1:k} | \alpha, \lambda) \right] = 0$$
 (57)

$$\frac{\partial H(\alpha, \lambda)}{\partial \lambda} = \frac{1}{k+1} \sum_{j=1}^{k+1} \frac{1}{D_j(\alpha, \lambda)} \left[ \omega_2(y_{j:k}|\alpha, \lambda) - \omega_2(y_{j-1:k}|\alpha, \lambda) \right] = 0$$
 (58)

$$\omega_1(y_{j:k}|\alpha,\lambda) = \exp(1 - (1 - \lambda \ln y_{j:k})^{\alpha})(1 - \lambda \ln y_{j:k})^{\alpha} \ln(1 - \lambda \ln y_{j:k})$$

$$\tag{59}$$

$$\omega_2(y_{j:k}|\alpha,\lambda) = \exp(1 - (1 - \lambda \ln y_{j:k})^{\alpha})\alpha(1 - \lambda \ln y_{j:k})^{\alpha-1}(\ln y_{j:k})$$
(60)

Maximizing  $H(\alpha, \lambda)$  is as efficient as the maximum likelihood estimation and the maximum product of spacing estimators are consistent under more common conditions than the MLE estimators.

4.5. Minimum Spacing Absolute Distance Estimation (MSADE) Method. The method of minimum spacing absolute distance estimator (MSADE) [22] and the authors showed that parameters estimation by MSADE is as efficient as MLE estimation. Furthermore, the MSADE estimators are consistent under more flexible condition than the MLE estimators. We define

$$D_j(\alpha,\lambda) = F(y_{j:k}|\alpha,\lambda) - F(y_{j-1:k}|\alpha,\lambda), \quad j = 1, 2, \dots, k.$$
(61)

Then,  $\hat{\alpha}_{MSADE}$  and  $\hat{\lambda}_{MSADE}$ , are the UNH distribution parameters  $\alpha$  and  $\lambda$  are obtained by minimizing the following function with respect to  $\alpha$  and  $\lambda$ .

$$T(\alpha, \lambda) = \sum_{j=1}^{k+1} |D_j(\alpha, \lambda) - \frac{1}{n+1}|$$
(62)

$$\frac{\partial T(\alpha, \lambda)}{\partial \alpha} = \sum_{j=1}^{k+1} \frac{D_j(\alpha, \lambda) - \frac{1}{n+1}}{|D_j(\alpha, \lambda) - \frac{1}{n+1}|} \left[ \omega_1(y_{j:k}|\alpha, \lambda) - \omega_1(y_{j-1:k}|\alpha, \lambda) \right] = 0$$
 (63)

$$\frac{\partial T(\alpha, \lambda)}{\partial \lambda} = \sum_{j=1}^{k+1} \frac{D_j(\alpha, \lambda) - \frac{1}{n+1}}{|D_j(\alpha, \lambda) - \frac{1}{n+1}|} \left[ \omega_2(y_{j:k}|\alpha, \lambda) - \omega_2(y_{j-1:k}|\alpha, \lambda) \right] = 0$$
 (64)

where

$$\omega_1(y_{j:k}|\alpha,\lambda) = \exp(1 - (1 - \lambda \ln y_{j:k})^{\alpha})(1 - \lambda \ln y_{j:k})^{\alpha} \ln(1 - \lambda \ln y_{j:k})$$

$$\tag{65}$$

$$\omega_2(y_{j:k}|\alpha,\lambda) = \exp(1 - (1 - \lambda \ln y_{j:k})^{\alpha})\alpha(1 - \lambda \ln y_{j:k})^{\alpha-1}(\ln y_{j:k})$$
(66)

4.6. Minimum Spacing Absolute Log Distance Estimation (MSALDE) Method. The minimum spacing absolute log distance estimators (MSALDE) are obtained by minimizing  $T(\alpha,\lambda)$  as follows:

$$T(\alpha, \lambda) = \sum_{j=1}^{k+1} \left| \ln D_j(\alpha, \lambda) - \ln \frac{1}{n+1} \right|$$
 (67)

$$\frac{\partial T(\alpha, \lambda)}{\partial \alpha} = \sum_{j=1}^{k+1} \frac{\ln D_j(\alpha, \lambda) - \ln \frac{1}{n+1}}{\left| \ln D_j(\alpha, \lambda) - \ln \frac{1}{n+1} \right|} \frac{1}{D_j(\alpha, \lambda)} \left[ \omega_1(y_{j:k}|\alpha, \lambda) - \omega_1(y_{j-1:k}|\alpha, \lambda) \right] = 0 \tag{68}$$

$$\frac{\partial T(\alpha, \lambda)}{\partial \lambda} = \sum_{j=1}^{k+1} \frac{\ln D_j(\alpha, \lambda) - \ln \frac{1}{n+1}}{\left|\ln D_j(\alpha, \lambda) - \ln \frac{1}{n+1}\right|} \frac{1}{D_j(\alpha, \lambda)} \left[\omega_2(y_{j:k}|\alpha, \lambda) - \omega_2(y_{j-1:k}|\alpha, \lambda)\right] = 0 \tag{69}$$

where

$$\omega_1(y_{i:k}|\alpha,\lambda) = \exp(1 - (1 - \lambda \ln y_{i:k})^{\alpha})(1 - \lambda \ln y_{i:k})^{\alpha} \ln(1 - \lambda \ln y_{i:k})$$
(70)

$$\omega_2(y_{j:k}|\alpha,\lambda) = \exp(1 - (1 - \lambda \ln y_{j:k})^{\alpha})\alpha(1 - \lambda \ln y_{j:k})^{\alpha-1}(\ln y_{j:k})$$
(71)

4.7. **Cramér-Von-Mises Method.** To encourage our decision of Cramér Von-Mises estimators, MacDonald[23] presented an empirical proof that the bias of these estimators is smaller than the other small distance type estimators. The Cramér-von-Mises estimators  $\hat{\alpha}_{CME}$  and  $\hat{\lambda}_{CME}$  of the UNH distribution parameters  $\alpha$  and  $\lambda$  are obtained by minimizing the following function

$$C(\alpha, \lambda) = \frac{1}{12n} + \sum_{j=1}^{n} \left( F(y_{j:n|\alpha, \lambda}) - \frac{2j-1}{2n} \right)^{2}$$
 (72)

These estimators can also be obtained by solving the following non-linear equations.

$$\frac{\partial C(\alpha,\lambda)}{\partial \alpha} = \sum_{i=1}^{n} \left( \exp\left(1 - \left(1 - \lambda \ln y_{j:k}\right)^{\alpha}\right) - \frac{2j-1}{2n} \right) \left(1 - \lambda \ln y_{j:k}\right)^{\alpha} \ln\left(1 - \lambda \ln y_{j:k}\right) = 0$$
 (73)

$$\frac{\partial C(\alpha, \lambda)}{\partial \lambda} = \sum_{i=1}^{n} \left( \exp\left(1 - \left(1 - \lambda \ln y_{j:k}\right)^{\alpha}\right) - \frac{2j-1}{2n} \right) \alpha \left(1 - \lambda \ln y_{j:k}\right)^{\alpha-1} (\ln y_{j:k}) = 0$$
 (74)

4.8. Anderson-Darling (AD) and Right-tail Anderson-Darling (RTADE) Methods. In this section, we define the method of Anderson-Darling (AD) estimation for the UNH distribution as

$$A(\alpha, \lambda) = -k - \frac{1}{k} \sum_{j=1}^{k} (2j - 1) \{ \ln F(y_{j:k} | \alpha, \lambda) + \ln \bar{F}(y_{k+1-j:k} | \alpha, \lambda) \}.$$
 (75)

These estimators can also be obtained by solving the following non-linear equations

$$\frac{\partial A(\alpha, \lambda)}{\partial \alpha} = \sum_{j=1}^{k} (2j-1) \frac{\exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha})(1 - \lambda \ln(y_{j:k}))^{\alpha} \ln(1 - \lambda \ln(y_{j:k}))}{\exp(1 - (1 - \lambda \ln y_{j:k})^{\alpha})} 
- \sum_{j=1}^{k} (2j-1) \frac{\exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha})(1 - \lambda \ln(y_{j:k}))^{\alpha} \ln(1 - \lambda \ln(y_{j:k}))}{(1 - \exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha}))} = 0,$$
(76)

$$\frac{\partial A(\alpha, \lambda)}{\partial \lambda} = \sum_{j=1}^{k} (2j-1) \frac{\exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha}) \alpha (1 - \lambda \ln y_{j:k})^{\alpha - 1} \ln(y_{j:k})}{\exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha})} 
- \sum_{j=1}^{k} (2j-1) \frac{\exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha}) \alpha (1 - \lambda \ln(y))^{\alpha - 1} \ln(y_{j:k})}{(1 - \exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha}))} = 0,$$
(77)

$$\frac{\partial F(\alpha, \lambda)}{\partial \alpha} = \exp(1 - (1 - \lambda \ln y_{j:k})^{\alpha})(1 - \lambda \ln y_{j:k})^{\alpha} \ln(1 - \lambda \ln y_{j:k})$$
(78)

$$\frac{\partial F(\alpha, \lambda)}{\partial \lambda} = \exp(1 - (1 - \lambda \ln y_{j:k})^{\alpha}) \alpha (1 - \lambda \ln y_{j:k})^{\alpha - 1} (\ln y_{j:k})$$
(79)

Similarly, the right tail Anderson-Darling (RTADE) estimators  $\hat{\alpha}_{RTADE}$  and  $\hat{\lambda}_{RTADE}$  of the UNH parameters  $\alpha$  and  $\lambda$  are obtained by minimizing

$$R(\alpha, \lambda) = \frac{k}{2} - 2\sum_{j=1}^{k} \ln F(y_{j:k}|\alpha, \lambda) - \frac{1}{k} \sum_{j=1}^{k} (2j-1) \ln \bar{F}(y_{k+1-j:k}|\alpha, \lambda).$$
 (80)

These estimators can also be obtained by solving the following non-linear equations.

$$\frac{\partial R(\alpha, \lambda)}{\partial \alpha} = -2 \sum_{j=1}^{k} \frac{\exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha})(1 - \lambda \ln(y_{j:k}))^{\alpha} \ln(1 - \lambda \ln(y_{j:k}))}{\exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha})} + \frac{1}{k} \sum_{j=1}^{k} (2j - 1) \frac{\exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha})(1 - \lambda \ln(y_{j:k}))^{\alpha} \ln(1 - \lambda \ln(y_{j:k}))}{1 - \exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha})} = 0$$
(81)

$$\frac{\partial R(\alpha, \lambda)}{\partial \lambda} = -2 \sum_{j=1}^{k} \frac{\exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha}) \alpha (1 - \lambda \ln(y_{j:k}))^{\alpha - 1} \ln(y_{j:k}))}{\exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha})} 
+ \frac{1}{k} \sum_{j=1}^{k} (2j - 1) \frac{\exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha}) \alpha (1 - \lambda \ln(y_{j:k}))^{\alpha - 1} \ln(y_{j:k}))}{(1 - \exp(1 - (1 - \lambda \ln(y_{j:k}))^{\alpha}))} = 0$$
(82)

5. Simulation Study

### Tables 1-6 Here

The performance of ten different estimation methods is compared using a comprehensive simulation study. For all methods, we computed biases, mean squared errors, average absolute difference between the theoretical and empirical estimate of the distribution functions (Dabs), and the maximum absolute difference between the theoretical and empirical distribution functions (Dmax). The experiments were repeated N=10000 times by taking samples of sizes n= 20, 40, 60, 80 and 100, with  $(\alpha, \lambda) = (0.5, 0.5), (0.5, 2.0), (1.5, 2.0), (1.5, 0.5), (3.5, 2.0), (3.0, 0.5).$ 

It is noticed from Tables 1-6 that the biases and RMSE of  $\alpha$  and  $\lambda$  decrease when sample size increased for all methods of estimation. The average absolute difference between the theoretical and empirical estimate of the distribution functions (Dabs) is smaller than the maximum absolute difference between the theoretical and empirical distribution functions (Dmax) for all methods of estimation. The simulation results suggest that the WLS estimators perform better in terms of biases and RMSEs. The second better performing estimators is the MPS estimators. Moreover, the WLS, MPS, MLE, AD, CVM, PCE estimators are among the good estimators for the UNH distribution. The LS estimator does not perform well. It is also confirmed that the performance of the MLE and PC estimators are the same, as expected, and the performance of the CVM and AD estimators is the same.

### 6. TBE CONTROL CHART AND PERFORMANCE ASSESSMENT

Time-between-events (TBE) control charts are frequently used in reliability and other system related applications. A TBE chart monitors the inter-arrival times so it does not require sampling intervals [24]. The defects or nonconforming items from a manufacturing system are generally modeled by a Poisson process and Poisson cumulative sum (CUSUM) and Shewhart c charts are the examples of such control charts. Alternatively, we could use control charts that are based on inter-arrival times. These inter-arrival times are assumed to be independent and identically distributed exponential random variables. The exponential CUSUM chart and exponential chart are the two examples of these type of charts [25]. The exponential chart is preferred because one does not have to wait for the fixed time period as it plots the information immediately as soon it is obtained. A comprehensive overview of these charts is provided by Ali et al. [26].

The aim of this section is to introduce control charts to monitor the TBE data measured between zero and one scale. Moreover, as the UNH provides better fit in the case of inflation of ones in the data, the proposed TBE chart is also suitable to monitor such data. The recent contributions to monitor data of rates and proportion can be seen in [27, 28, 29, 30, 31] and the references cited therein.

Let  $\beta$  denotes the false alarm probability. To derive the control limits of the proposed chart, we equate  $F(x) = \beta/2$  and  $1 - \beta/2$  to obtain the two-sided control chart. Similarly, equate  $F(x) = \beta$  or  $1 - \beta$  to obtain the lower or upper-sided control limit of the one-sided chart. The simplified expressions of the ARL and control limits for the one-sided charts are given as

$$LCL = \exp((1/\lambda_0)(1 - (1 - \log \beta)^{(1/\alpha_0)}))$$

$$ARL_L = 1/\exp(1 - (1 - \lambda \log(LCL))^{\alpha})$$

$$UCL = \exp((1/\lambda_0)(1 - (1 - \log(1 - \beta))^{(1/\alpha_0)}))$$

$$ARL_U = 1/(1 - \exp(1 - (1 - \lambda \log(UCL))^{\alpha})).$$
(83)

Similarly, the control limits and ARL expressions for the two-sided control charts are given as

$$LCL = \exp((1/\lambda_0)(1 - (1 - \log(\beta/2))^{(1/\alpha_0)}))$$

$$UCL = \exp((1/\lambda_0)(1 - (1 - \log(1 - (\beta/2)))^{(1/\alpha_0)}))$$

$$ARL_{L\cup U} = 1/(\exp(1 - (1 - \lambda\log(LCL))^{\alpha}) + 1 - \exp(1 - (1 - \lambda\log(UCL))^{\alpha}))$$
(84)

The most common measure to access the performance of a control chart is the average run length (ARL). It is defined to be the average number of points (samples) plotted until we observe a signal indicating that the process is out-of-control. The in-control ARL (ARL<sub>0</sub>) and the out-of-control ARL (ARL<sub>1</sub>) are the two types of ARL. Ideally, we should have a large value of (ARL<sub>0</sub>) so that we do not have to make unnecessary adjustments to the process while a small value of (ARL<sub>1</sub>) so that a shift in the process may be detected quickly. Further, for the Shewhart structure, the ARL is known to have geometric distribution and thus ARL = 1/p, where "p" is the parameter of geometric distribution which represents the probability of shift detection.

Although the ARL is widely used for performance evaluation, it is to be noted that the variance of the ARL distribution is large and in some cases, nearly equal to the mean. This implies that there would be large fluctuations in the frequencies of false alarms. To overcome this drawback, the coefficient of variation (CV) of the run length distribution can be utilized because of the fact that the CV values do not fluctuate drastically with the increasing/decreasing magnitude of shifts. In addition, the CV values can directly be compared especially when the ARL values do not differ greatly from each other.

We conducted the ARL analysis of UNH distribution for different values of shape and scale parameters along with some additional quantities including CV, first, second, and third quartile (Q1, Q2 and Q3). It is worth mentioning that the ARL<sub>0</sub> value for all combinations of in-control rate ( $\lambda_0$ ) and shape ( $\alpha_0$ ) parameters, assuming level of significance to be 0.0027, is 370.370. Furthermore, we computed the ARL values of upper, lower and two-sided control charts for all the considered combination of in-control values of the parameters. To be more specific, in our study, we used  $\lambda_0$ =2.5 in combination with three different values of  $\alpha_0$ , i.e.,  $\alpha_0 \in (0.75, 1, 1.50)$ . Thus, we have three combinations of in-control parameters ( $\lambda_0, \alpha_0$ ) = {(2.50, 0.75), (2.50, 1.00), (2.50, 1.50). For these in-control, three cases we assumed  $\lambda_1 \in (0.1, 0.4, 0.5, 0.6, 0.9, 1, 1.3, 1.5, 2, 2.5, 2.7, 3)$  and  $\alpha_1 \in (0.1, 0.4, 0.5, 0.6, 0.75, 0.9, 1, 1.3, 1.5)$  to represent the out-of-control situation.

6.1. **Performance Analysis assuming**  $\lambda_0 = 2.5, \alpha_0 = 0.75$ . From Tables 7, 8 and 9 and additional Tables A.1-A.6, given in the appendix, it is quite clear that when we fix the value of the shape parameter  $\alpha$ , the two-sided control chart is the quickest to detect the downward shift in the rate parameter  $\lambda$ . Furthermore, for fixed  $\alpha$ , the ARL has an increasing pattern in the lower-sided chart but an opposite pattern for the upper-sided chart. The same pattern is observed for lower and upper sided charts when we fix the value of  $\lambda$ . The two-sided control chart, however, behaves differently; for fixed  $\alpha$ , its ARL values increase till the nominal value of  $\alpha$  and when  $\alpha > 0.75$ , the ARL has increasing trend till  $\lambda < 2$  and beyond that the ARL decreases. It can also be seen that the lower-sided control chart performs poorly for  $\alpha > 0.75$  (upward shift in the shape parameter) as compared to  $\alpha < 0.75$ . The performance of two-sided control chart also deteriorates for  $\alpha > 0.75$  but not as much as it does for the lower-sided chart. On the other hand, the upper-sided control chart performs better for  $\alpha > 0.75$  than the lower-sided chart. It is also noticed that the behavior of ARL for some combination of parameters is biased, i.e.,  $ARL_1 > ARL_0$ , and we left those cells blank in the tables.

The CV analysis of Table 7 shows a decreasing pattern when we fix the value of the rate parameter  $\lambda$  for downward shifts and increasing pattern for upward shifts. This suggests that the lower-sided control chart is efficient for detecting large-size shifts in downward direction only. A similar behavior is observed when we fix the value of shape parameter  $\alpha$ , that is, the chart is only efficient in detecting large-size shifts in the downward direction. For upper-sided chart, when we fix the value of  $\lambda$ , the CV values decrease for  $\alpha > 0.75$  and increase for  $\alpha < 0.75$  which implies that the chart can efficiently be used for detection of large size shifts in upward direction.

The quartile analysis of the Table 7 shows that, for fixed  $\lambda$ , the ARL value is greater than the third quartile (Q3) or lies between second and third quartile (Q2 and Q3). This means that the ARL distribution is either highly or moderately skewed (positively). Similarly, fixing the value of  $\alpha$ , the ARL distribution is observed highly skewed for large downward shift in  $\lambda$  and less skewed for comparatively small downward or upward shift in  $\lambda$ . The two-sided control chart shows similar characteristics. The upper-sided chart shows that for fixed  $\lambda$ , the distribution of ARL is moderately skewed as all the ARL values lie between Q2 and Q3. For a fixed  $\alpha$ , the ARL distribution shows a similar pattern as it does for fixed value of  $\lambda$ . Similarly, one can compare the results listed in Tables A.1-A.6, which are given in the appendix.

### Tables 7-9 Here

### 7. Real Data Analysis

This section presents two real data applications to show the suitability of the proposed distribution and its application in quality control.

7.1. **Rainfall Data.** The first data set has taken from Nadarajah and Haghighi[8], which is the daily rainfall (in mm) in the January for a location in Florida from 1907-2000. The mode of the original data set is zero. We transformed the data using  $Y = \exp(-X)$  and the resulted data set is listed in Table 10, which represents the proportion of daily rainfall.

# Table 10 Here Figure 2 Here

We compare the proposed UNH model with some other distributions, such as Kumaraswamy distribution [32],

$$f(y;\alpha,\lambda) = \alpha \lambda y^{\alpha-1} (1 - y^{\alpha})^{\lambda-1}, \ y \in (0,1)$$
(85)

Topp-Leone distribution [17].

$$f(y;\alpha,\lambda) = 2\alpha y^{\alpha-1} (1-y)(2-y)^{\alpha-1}, \ y \in (0,1)$$
 (86)

reflected Generalized Topp-Leone (rGTL) distribution [7],

$$f(y;\alpha,\lambda) = 2\alpha y^{\alpha-1} (1-y)(2-y)^{\alpha-1}, \ y \in (0,1)$$
(87)

Beta distribution,

$$f(y;\alpha,\lambda) = \frac{1}{B(\alpha,\lambda)} y^{\alpha-1} (1-y)^{\lambda-1}, \ y \in (0,1)$$
 (88)

### Tables 11-12 Here

The values of the Akaike information criterion (AIC), consistent Akaike information criterion (CAIC), Bayesian information criterion (BIC), Hanan Quinn information criterion (HQIC), MLEs with their standard errors, Kolmogorov-Smirnov (K-S) statistic p-values are listed in Tables 11 and 12, showed that the UNH distribution fits better than the other distributions. From Figure 2, it is clear that the proposed chart can effectively be used for monitoring the rainfall data.

7.2. Anxiety Data Analysis. The second data have been obtained from Bourguignon et al.[33], which is about the anxiety test performed in a group of 180 "normal" women, i.e., outside of a pathological clinic Townsville, Queensland, Australia. The data set is reproduced in Table 13.

# Table 13 Here

# Figure 3 Here

### Tables 14-15 Here

The values of AIC, CAIC, BIC, HQIC, MLEs with their standard errors, Kolmogorov-Smirnov (K-S) statistic p-values are listed in Tables 14 and 15. From the tables, it is evident that the UNH distribution outperformed the other distributions. Furthermore, the UNH distribution has the lowest AIC and BIC values. Figure 3 indicates that anxiety level of many women fall on the lower limit of the proposed chart. This implies that these women need psychological therapy to improve their mind health.

#### 8. Conclusion

In this article, a new distribution to accommodate the inflation of the ones is proposed. Furthermore, different properties and estimation methods are discussed in detail. From the simulation results using different methods of estimation, it is clear that the MPS, MLE, AD, CVM, and PCE perform better in terms of RMSE than the rest of the methods. In addition to estimation methods, control charts are also proposed and their performance is studied using the ARL criterion. Two-real data applications to show the practicality of the proposed distribution and

utilization in process monitoring are also discussed. From the ARL study, it is noticed that for some combination of parameters, the  $ARL_1 > ARL_0$  and hence, unbiased design of the control chart may be studied in the future.

#### References

- 1. Mazucheli, J., Menezes, A. F. B., Fernandes, L. B., de Oliveira, R. P., and Ghitany, M. E., "The unit-Weibull distribution as an alternative to the Kumaraswamy distribution for the modeling of quantiles conditional on covariates", *Journal of Applied Statistics*, **47**(6), pp. 954–974 (2020).
- 2. Mazucheli, J., Menezes, A.F.B., and Dey, S., "Improved maximum-likelihood estimators for the parameters of the unit-gamma distribution", *Communications in Statistics-Theory and Methods*, **47**(15), pp. 3767–3778 (2018).
- 3. Menezes, A. F. B., Mazucheli, J., and Dey, S., "The unit-logistic distribution: Different methods of estimation", *Pesquisa Operacional*, **38**(3), pp. 555–578 (2018).
- 4. Mazucheli, J., Menezes, A.F.B., and Chakraborty, S., "On the one parameter unit- Lindley distribution and its associated regression model for proportion data", *Journal of Applied Statistics*, **46**(4), pp. 700–714 (2019).
- 5. Mazucheli, J., Menezes, A.F.B., and Dey, S., "Unit-Gompertz distribution with applications", *Statistica*, **79**(1), pp. 25–43 (2019).
- 6. Sangsanit, Y. and Bodhisuwan, W., "The Topp-Leone generator of distributions: properties and inferences.", Songklanakarin Journal of Science & Technology, 38(5) ((2016)).
- 7. Condino, F. and Domma, F., "A new distribution function with bounded support: the reflected generalized Topp-Leone power series distribution", *Metron*, **75**(1), pp. 51–68 (2017).
- 8. Nadarajah, S. and Haghighi, F., "An extension of the exponential distribution", *Statistics*, **45**(6), pp. 543–558 (2011).
- 9. Marshall, A.W. and Olkin, I., "Life Distributions: Structure of Nonparametric, Semiparametric, and Parametric Families". Springer Series in Statistics, Springer New York (2007).
- Aban, I. B., Meerschaert, M. M., and Panorska, A. K., "Parameter estimation for the truncated pareto distribution", *Journal of the American Statistical Association*, 101(473), pp. 270–277 (2006).
- 11. Zhang, T. and Xie, M., "On the upper truncated Weibull distribution and its reliability implications", Reliability Engineering & System Safety, 96(1), pp. 194 200 (2011).
- 12. Papke, L.E. and Wooldridge, J.M., "Econometric methods for fractional response variables with an application to 401(k) plan participation rates", *Journal of Applied Econometrics*, **11**(6), pp. 619–632 (1996).
- 13. Fletcher, S.G. and Ponnambalam, K., "Estimation of reservoir yield and storage distribution using moments analysis", *Journal of Hydrology*, **182**(1), pp. 259 275 (1996).
- 14. Seifi, A., Ponnambalam, K., and Vlach, J., "Maximization of manufacturing yield of systems with arbitrary distributions of component values", *Annals of Operations Research*, **99**, p. 373–383 (2000).
- 15. Gangi, A., K., Ponnambalam., D., Khalili., and Karamouz, M., "Grain yield reliability analysis with crop water demand uncertainty", *Stochastic Environmental Research and Risk Assessment*, **20**(4), pp. 259 277 (2006).
- 16. Cook, D. O., Kieschnick, R., and McCullough, B. D., "Regression analysis of proportions in finance with self-selection", *Journal of Empirical Finance*, **15**(5), pp. 860 867 (2008).
- 17. Genc, A.I., "Estimation of p(x > y) with Topp-Leone distribution", Journal of Statistical Computation and Simulation, 83(2), pp. 326–339 (2013).

- 18. Ali, S., Dey, S., Tahir, M.H., and Mansoor, M., "Two-parameter logistic-exponential distribution: Some new properties and estimation methods", *American Journal of Mathematical and Management Sciences*, **39**(3), pp. 270–298 (2020).
- 19. Ali, S., Dey, S., Tahir, M. H., and Mansoor, M., "A comparison of different methods of estimation for the flexible Weibull distribution", Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(1), pp. 794 814 (2020).
- 20. Cheng, R. C. H. and Amin, N. A. K., "Maximum product of spacings estimation with application to the lognormal distribution", tech. rep., (1979).
- 21. Cheng, R. C. H. and Amin, N. A. K., "Estimating parameters in continuous univariate distributions with a shifted origin", *Journal of the Royal Statistical Society. Series B (Methodological)*, **45**(3), pp. 394–403 (1983).
- 22. Torabi, H., "A general method for estimating and hypotheses testing using spacings", *Journal* of Statistical Theory and Practice, 8(2), pp. 163–168 (2008).
- 23. MacDonald, P. D. M., "Comment on "an estimation procedure for mixtures of distributions" by Choi and Bulgren", *Journal of the Royal Statistical Society. Series B (Methodological)*, **33**(2), pp. 326–329 (1971).
- 24. Shamsuzzaman, M., Xie, X., Goh, N.T., and Zhang, H., "Integrated control chart system for time-between-events monitoring in a multistage manufacturing system", *The International Journal of Advanced Manufacturing Technology*, **40**(3-4), pp. 373–381 (2009).
- 25. Zhang, C.W., Xie, M., Liu, J.Y., and Goh, T.N., "A control chart for the gamma distribution as a model of time between events", *International Journal of Production Research*, **45**(23), pp. 5649–5666 (2007).
- 26. Ali, S., Pievatolo, A., and Göb, R., "An overview of control charts for high quality processes", Quality and Reliability Engineering International, **32**(7), pp. 2171–2189 (2016).
- 27. Linda, L. H., Fernandes, F.H., and Bourguignon, M., "Control charts to monitor rates and proportions", Quality and Reliability Engineering International, **35**(1), pp. 74–83 (2019).
- 28. Cruz, F. R. B., Quinino, R. C., and Ho., Linda L., "Control charts for traffic intensity monitoring of Markovian multiserver queues", *Quality and Reliability Engineering International*, **36**(1), pp. 354–364 (2020).
- 29. Lima-Filho, L. M. de A., Pereira, T.L., de Souza, T. C., and Bayer, F.M., "Inflated beta control chart for monitoring double bounded processes", *Computers & Industrial Engineering*, **136**, pp. 265 276 (2019).
- 30. Lima-Filho, L.M. de A. and Bayer, F. M., "Kumaraswamy control chart for monitoring double bounded environmental data", Communications in Statistics Simulation and Computation, 50(9), pp. 2513–2528 (2021).
- 31. Chukhrova, N. and Johannssen, A., "Improved control charts for fraction non-conforming based on hypergeometric distribution", *Computers & Industrial Engineering*, **128**, pp. 795 806 (2019).
- 32. Lemonte, A.J., "Improved point estimation for the Kumaraswamy distribution", *Journal of Statistical Computation and Simulation*, **81**(12), pp. 1971–1982 (2011).
- 33. Bourguignon, M., Ghosh, I., and Cordeiro, G.M., "General results for the transmuted family of distributions and new models", *Journal of Probability and Statistics*, **2016**, pp. 1–12 (2016).

# List of Figures and Tables

Figure 1: PDF, CDF, Survival, hazard, and reverse hazard function of the UNH Distribution

Figure 2: Control Charts for the rainfall data assuming UNH and beta distributions

Figure 3: Control Chart for Anxiety Data

Table 1: Simulation results for  $\alpha=0.5$  and  $\lambda=0.5$ 

Table 2: Simulation results for  $\alpha = 0.5$  and  $\lambda = 2.0$ 

Table 3: Simulation results for  $\alpha=1.5$  and  $\lambda=2.0$ 

Table 4: Simulation results for  $\alpha$ =3.5 and  $\lambda$ =0.5

Table 5: Simulation results for  $\alpha$ =3.0 and  $\lambda$ =2.0

Table 6: Simulation results for  $\alpha=1.5$  and  $\lambda=0.5$ 

Table 7: ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the lower-sided chart with  $\alpha_0$ =0.75,  $\lambda_0$ =2.5,  $\lambda_1 \in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

Table 8: ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the upper-sided chart with  $\alpha_0$ =0.75,  $\lambda_0$ =2.5,  $\lambda_1 \in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

Table 9: ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the Two-sided chart with  $\alpha_0$ =0.75,  $\lambda_0$ =2.5,  $\lambda_1 \in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

Table 10: Daily rainfall (in mm) on the January for a location in Florida from (1907-2000)

Table 11: AIC, BIC, CAIC, and HQIC computed after fitting different distributions on for Rainfall Data

Table 12: Maximum likelihood estimates with their standard errors (in parenthesis) and K-S test p-value for Rainfall Data

Table 13: Anxiety Data Set

Table 14: AIC, BIC, CAIC, and HQIC computed after fitting different distributions using Anxiety Data

Table 15: Maximum likelihood estimates with their standard errors (in parenthesis) and p values of K-S test for Anxiety Data



FIGURE 1. PDF, CDF, Survival, hazard, and reverse hazard function of the UNH Distribution



FIGURE 2. Control Charts for the rainfall data assuming UNH and beta distributions



FIGURE 3. Control Chart for Anxiety Data

Table 1. Simulation results for  $\alpha = 0.5$  and  $\lambda = 0.5$ 

| n   | Est.                                                                                                                                                                                 | MLE                                                                                                            | LSE                                                                                                                         | WLS                                                                                         | PCE                                                                                  | MPS                                                                                                                                                     | MSADE                                                                                                                                             | MSALDE                                                                                                               | CVM                                                                                             | AD                                                                      | RAD                                                                                         |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| 20  | $\mathrm{Bias}(\alpha)$<br>$RMSE(\alpha)$<br>$\mathrm{Bias}(\lambda)$<br>$RMSE(\lambda)$<br>Dabs<br>Dmax                                                                             | $0.766^{7}$ $2.409^{6}$ $0.395^{2}$ $0.957^{2}$ $0.166^{1}$ $0.266^{4}$                                        | $0.400^4$ $0.400^3$ $167.377^{10}$ $177.911^{10}$ $0.201^7$ $0.311^7$                                                       | $0.094^{2}$ $0.219^{1}$ $0.813^{7}$ $1.520^{5}$ $0.168^{4}$ $0.249^{1}$                     | $-0.385^{3}$ $0.712^{4}$ $-0.400^{3}$ $0.400^{1}$ $0.310^{8}$ $0.719^{8}$            | $-0.085^{1}$ $0.221^{2}$ $-0.043^{1}$ $1.943^{6}$ $0.167^{2}$ $0.250^{2}$                                                                               | $1.787^8$ $3.050^7$ $1.3234^8$ $2.706^7$ $0.448^9$ $0.784^9$                                                                                      | 7.415 <sup>10</sup> 8.825 <sup>9</sup> 7.892 <sup>9</sup> 9.206 <sup>9</sup> 0.657 <sup>10</sup> 0.958 <sup>10</sup> | $0.513^{5}$ $1.017^{5}$ $0.546^{4}$ $1.302^{3}$ $0.168^{5}$ $0.270^{5}$                         | $0.647^{6}$ $3.919^{8}$ $0.666^{5}$ $1.406^{4}$ $0.168^{3}$ $0.260^{3}$ | $3.388^9$ $11.528^{10}$ $0.792^6$ $2.760^8$ $0.169^6$ $0.277^6$                             |
|     | Total                                                                                                                                                                                | $22^{3}$                                                                                                       | $41^{7}$                                                                                                                    | $20^{2}$                                                                                    | $27^{4.5}$                                                                           | $14^1$                                                                                                                                                  | $48^{9}$                                                                                                                                          | $57^{10}$                                                                                                            | $27^{4.5}$                                                                                      | $29^{6}$                                                                | $45^{8}$                                                                                    |
| 40  | $\operatorname{Bias}(\alpha)$<br>$\operatorname{RMSE}(\alpha)$<br>$\operatorname{Bias}(\lambda)$<br>$\operatorname{RMSE}(\lambda)$<br>$\operatorname{Dabs}$<br>$\operatorname{Dmax}$ | $0.246^4$ $0.637^7$ $0.378^1$ $0.654^2$ $0.166^2$ $0.256^4$                                                    | $-0.400^{6.5}  0.400^{3.5}  162.444^{10}  167.240^{10}  0.199^7  0.312^{7.0}$                                               | $0.115^{2}$ $0.195^{2}$ $0.541^{7}$ $0.837^{5}$ $0.168^{5}$ $0.250^{2}$                     | $-0.400^{6.5}  0.400^{3.5}  -0.400^2  0.400^1  0.310^8  0.761^8$                     | $-0.0964^{1}$ $0.140^{1}$ $-0.506^{6}$ $1.056^{7}$ $0.165^{1}$ $0.247^{1}$                                                                              | 2.009 <sup>9</sup> 3.639 <sup>8</sup> 1.629 <sup>8</sup> 3.181 <sup>8</sup> 0.460 <sup>9</sup> 0.835 <sup>9</sup>                                 | $8.752^{10}$ $10.085^{10}$ $9.381^{9}$ $10.531^{9}$ $0.659^{10}$ $0.973^{10}$                                        | $0.295^{5}$ $0.585^{6}$ $0.426^{3}$ $0.8014^{3}$ $0.168^{4}$ $0.262^{5}$                        | $0.190^{3}$ $0.572^{5}$ $0.489^{4}$ $0.812^{4}$ $0.167^{3}$ $0.254^{3}$ | $0.808^8$ $3.915^9$ $0.502^5$ $1.032^6$ $0.168^6$ $0.266^6$                                 |
|     | Total                                                                                                                                                                                | $20^{2}$                                                                                                       | $44^{8}$                                                                                                                    | $23^{4}$                                                                                    | $29^{6}$                                                                             | $17^{1}$                                                                                                                                                | 51 <sup>9</sup>                                                                                                                                   | $58^{1}0$                                                                                                            | $26^{5}$                                                                                        | $22^{3}$                                                                | $40^{7}$                                                                                    |
| 60  | $\operatorname{Bias}(\alpha)$<br>$\operatorname{RMSE}(\alpha)$<br>$\operatorname{Bias}(\lambda)$<br>$\operatorname{RMSE}(\lambda)$<br>$\operatorname{Dabs}$<br>$\operatorname{Dmax}$ | $0.169^4$ $0.289^4$ $0.374^1$ $0.555^2$ $0.167^2$ $0.253^4$                                                    | $\begin{array}{c} -0.400^{7.5} \\ 0.400^{6.5} \\ 161.036^{10} \\ 164.130^{10} \\ 0.199^{7} \\ 0.312^{7} \end{array}$        | $0.120^{2}$ $0.182^{2}$ $0.462^{6}$ $0.660^{5}$ $0.167^{4}$ $0.250^{2}$                     | $-0.400^{7.5}  0.400^{6.5}  -0.400^{3}  0.400^{1}  0.310^{8}  0.777^{8}$             | $-0.096^{1}$ $0.122^{1}$ $-0.638^{7}$ $0.910^{7}$ $0.165^{1}$ $0.246^{1}$                                                                               | 2.258 <sup>9</sup> 3.995 <sup>9</sup> 1.875 <sup>8</sup> 3.528 <sup>8</sup> 0.473 <sup>9</sup> 0.859 <sup>9</sup>                                 | $9.535^{1}0$ $10.811^{10}$ $10.258^{9}$ $11.294^{9}$ $0.660^{10}$ $0.979^{10}$                                       | $0.217^{5}$ $0.398^{5}$ $0.395^{2}$ $0.654^{4}$ $0.167^{5}$ $0.258^{5}$                         | $0.149^{3}$ $0.250^{3}$ $0.439^{4}$ $0.652^{3}$ $0.167^{3}$ $0.252^{3}$ | $0.335^{6}$ $1.391^{8}$ $0.439^{5}$ $0.785^{6}$ $0.168^{6}$ $0.261^{6}$                     |
|     | Total                                                                                                                                                                                | $17^{1}$                                                                                                       | 48 <sup>8</sup>                                                                                                             | $21^{4}$                                                                                    | $34^{6}$                                                                             | $18^{2}$                                                                                                                                                | $52^{9}$                                                                                                                                          | 58 <sup>10</sup>                                                                                                     | $26^{5}$                                                                                        | $19^{3}$                                                                | 37 <sup>7</sup>                                                                             |
| 80  | $\operatorname{Bias}(\alpha)$ $\operatorname{RMSE}(\alpha)$ $\operatorname{Bias}(\lambda)$ $\operatorname{RMSE}(\lambda)$ $\operatorname{Dabs}$ $\operatorname{Dmax}$                | $0.145^4$ $0.208^3$ $0.371^1$ $0.507^2$ $0.167^2$ $0.251^4$                                                    | $\begin{array}{c} \text{-}0.400^{7.5} \\ 0.400^{6.5} \\ 159.932^{10} \\ 162.206^{10} \\ 0.199^{7} \\ 0.312^{7} \end{array}$ | $0.123^{2}$ $0.175^{2}$ $0.421^{6}$ $0.571^{5}$ $0.167^{4}$ $0.251^{2}$                     | $-0.400^{7.5}  0.400^{6.5}  -0.400^4  0.400^1  0.310^8  0.786^8$                     | $-0.094^{1}$ $0.113^{1}$ $-0.707^{7}$ $0.875^{7}$ $0.166^{1}$ $0.246^{1}$                                                                               | 2.915 <sup>9</sup> 4.437 <sup>9</sup> 2.468 <sup>8</sup> 4.043 <sup>8</sup> 0.522 <sup>9</sup> 0.890 <sup>9</sup>                                 | $9.744^{10}$ $10.955^{10}$ $10.459^{9}$ $11.430^{9}$ $0.661^{10}$ $0.982^{10}$                                       | $0.188^{5}$ $0.316^{5}$ $0.372^{2}$ $0.569^{4}$ $0.167^{5}$ $0.256^{5}$                         | $0.138^{3}$ $0.209^{4}$ $0.409^{5}$ $0.568^{3}$ $0.167^{3}$ $0.256^{3}$ | $0.255^{6}$ $1.029^{8}$ $0.395^{3}$ $0.650^{6}$ $0.167^{6}$ $0.259^{6}$                     |
| 100 | Total $\operatorname{Bias}(\alpha)$ $\operatorname{RMSE}(\alpha)$ $\operatorname{Bias}(\lambda)$ $\operatorname{RMSE}(\lambda)$ $\operatorname{Dabs}$ $\operatorname{Dmax}$          | $     \begin{array}{r} 17^1 \\ 0.137^4 \\ 0.186^3 \\ 0.369^2 \\ 0.482^2 \\ 0.167^2 \\ 0.251^3 \\ \end{array} $ | $48^{8}$ $-0.400^{7.5}$ $0.400^{6.5}$ $159.557^{10}$ $161.409^{10}$ $0.199^{7}$ $0.312^{7}$ $48^{8}$                        | $21^{3.5}$ $0.124^{2}$ $0.169^{2}$ $0.401^{6}$ $0.528^{5}$ $0.167^{4}$ $0.250^{2}$ $21^{3}$ | $ 35^{6.5}  -0.400^{7.5}  0.400^{6.5}  -0.400^{5}  0.400^{1}  0.310^{8}  0.791^{8} $ | $   \begin{array}{c}     18^{2} \\     -0.092^{1} \\     0.108^{1} \\     -0.746^{7} \\     0.872^{7} \\     0.166^{1} \\     0.246^{1}   \end{array} $ | 52 <sup>9</sup> 3.545 <sup>9</sup> 4.761 <sup>9</sup> 2.986 <sup>8</sup> 4.324 <sup>8</sup> 0.571 <sup>9</sup> 0.916 <sup>9</sup> 52 <sup>9</sup> | $58^{10}$ $9.836^{10}$ $11.036^{10}$ $10.484^{9}$ $11.452^{9}$ $0.660^{10}$ $0.982^{10}$ $58^{10}$                   | $26^{5} \\ 0.172^{5} \\ 0.272^{5} \\ 0.362^{1} \\ 0.525^{3} \\ 0.167^{5} \\ 0.255^{5}$ $24^{5}$ | $21^{3.5}$ $0.133^3$ $0.191^4$ $0.395^4$ $0.527^4$ $0.167^3$ $0.251^4$  | $35^{6.5}$ $0.207^{6}$ $0.479^{8}$ $0.377^{3}$ $0.590^{6}$ $0.167^{6}$ $0.257^{6}$ $35^{6}$ |

## Authors' Biographies

Ismail Shah received the master's degree from Lund University, Sweden, and the Ph.D. degree from the University of Padova, Italy. He is currently an Assistant Professor with the Department of Statistics, Quaid-i-Azam University, Islamabad, Pakistan. He is also working as an editor for the journal of Quantitative methods. His research interests include functional data analysis, time series analysis, regression analysis, energy economics, applied and industrial statistics.

**Brikhna Iqbal** completed her MPhil in Statistics from Quaid-i-Azam University (QAU), Islamabad, Pakistan. Her research interests are focused on construction of probability distribution and applied statistics.

Muhammad Farhan Akram completed his MPhil in Statistics from Quaid-i-Azam University (QAU), Islamabad, Pakistan. His research interests are: statistical quality control, probability distributions and applied statistics.

Table 2. Simulation results for  $\alpha$ =0.5 and  $\lambda$ =2.0

| n   | Est.                                                                                                                                                                                                    | MLE                                                                                | LSE                                                                                                                  | $\mathbf{WLS}$                                                                                               | PCE                                                                                                  | MPS                                                                                                      | MSADE                                                                                                                              | MSALDE                                                                                                                              | $\mathbf{CVM}$                                                                   | $\mathbf{AD}$                                                                    | RAD                                                                                                                              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| 20  | $Bias(\alpha)$<br>$RMSE(\alpha)$<br>$Bias(\lambda)$<br>$RMSE(\lambda)$<br>Dabs<br>Dmax                                                                                                                  | $3.218^{7}$ $6.599^{7}$ $0.698^{4}$ $1.646^{4}$ $0.169^{5}$ $0.267^{6}$            | $-1.400^5$ $1.400^2$ $626.252^{10}$ $656.253^{10}$ $0.209^7$ $0.326^7$                                               | $ \begin{array}{c} -0.116^{1} \\ 0.785^{1} \\ 1.649^{7} \\ 2.924^{8} \\ 0.168^{2} \\ 0.251^{1} \end{array} $ | $25.879^{10}$ $27.146^{10}$ $-0.400^{3}$ $0.400^{3}$ $0.386^{10}$ $0.589^{8}$                        | $0.648^{2}$ $3.002^{5}$ $1.649^{8}$ $2.898^{7}$ $0.169^{6}$ $0.252^{2}$                                  | $-1.356^4$ $1.492^3$ $-0.362^1$ $0.690^2$ $0.328^8$ $0.786^9$                                                                      | -1.328 <sup>3</sup><br>1.584 <sup>4</sup><br>-0.331 <sup>1</sup><br>0.894 <sup>3</sup><br>0.329 <sup>9</sup><br>0.786 <sup>10</sup> | $2.342^{6}$ $4.908^{6}$ $1.202^{5}$ $2.608^{4}$ $0.168^{3}$ $0.265^{4}$          | $5.638^8$ $18.195^8$ $1.373^6$ $2.866^8$ $0.168^4$ $0.260^3$                     | $1.088^9$ $25.055^9$ $1.865^9$ $6.561^9$ $0.167^1$ $0.260^5$                                                                     |
|     | Total                                                                                                                                                                                                   | $33^{6}$                                                                           | $41^{8}$                                                                                                             | $20^{1}$                                                                                                     | $42^{9.5}$                                                                                           | $30^{4.5}$                                                                                               | $28^2$                                                                                                                             | $30^{4.5}$                                                                                                                          | $29^{3}$                                                                         | $35^{7}$                                                                         | $42^{9.5}$                                                                                                                       |
| 40  | $\begin{array}{l} \operatorname{Bias}(\alpha) \\ \operatorname{RMSE}(\alpha) \\ \operatorname{Bias}(\lambda) \\ \operatorname{RMSE}(\lambda) \\ \operatorname{Dabs} \\ \operatorname{Dmax} \end{array}$ | $1.376^4$ $4.233^7$ $0.649^4$ $1.134^4$ $0.166^1$ $0.259^4$                        | $-1.400^{7}$ $1.400^{2}$ $611.574^{10}$ $625.250^{10}$ $0.207^{7}$ $0.327^{7}$                                       | $-0.084^{1}$ $0.666^{1}$ $1.076^{7}$ $1.651^{6}$ $0.167^{5}$ $0.253^{2}$                                     | $27.044^{10}  27.693^{10}  -0.400^3  0.400^1  0.400^{10}  0.613^8$                                   | $0.125^{2}$ $1.826^{5}$ $1.171^{9}$ $1.681^{8}$ $0.168^{6}$ $0.251^{1}$                                  | $-1.397^{5}$ $1.410^{4}$ $-0.397^{1}$ $0.443^{3}$ $0.328^{8}$ $0.841^{10}$                                                         | -1.399 <sup>6</sup> 1.402 <sup>3</sup> -0.399 <sup>2</sup> 0.406 <sup>2</sup> 0.328 <sup>9</sup> 0.841 <sup>9</sup>                 | $1.339^{3}$ $3.566^{6}$ $0.915^{5}$ $1.651^{7}$ $0.167^{3}$ $0.261^{5}$          | $1.675^8$ $8.117^8$ $0.985^6$ $1.626^5$ $0.167^4$ $0.257^3$                      | $5.221^9$ $14.934^9$ $1.149^8$ $2.271^9$ $0.167^2$ $0.262^6$                                                                     |
|     | Total                                                                                                                                                                                                   | $24^{2}$                                                                           | $43^{9}.5$                                                                                                           | $22^{1}$                                                                                                     | $42^{8}$                                                                                             | $31^{5}$                                                                                                 | $31^{5}$                                                                                                                           | $31^{5}$                                                                                                                            | $29^{3}$                                                                         | $34^{7}$                                                                         | $43^{9.5}$                                                                                                                       |
| 60  | $\operatorname{Bias}(\alpha)$<br>$\operatorname{RMSE}(\alpha)$<br>$\operatorname{Bias}(\lambda)$<br>$\operatorname{RMSE}(\lambda)$<br>$\operatorname{Dabs}$<br>$\operatorname{Dmax}$                    | $0.589^{3}$ $2.534^{6}$ $0.641^{4}$ $0.963^{4}$ $0.166^{1}$ $0.256^{4}$            | $\begin{array}{c} -1.400^{7.5} \\ 1.400^{4.5} \\ 607.577^{10} \\ 616.405^{10} \\ 0.207^{7} \\ 0.327^{7} \end{array}$ | $-0.091^{2}$ $0.597^{1}$ $0.918^{7}$ $1.297^{5}$ $0.167^{4}$ $0.253^{2}$                                     | $27.524^{10}  27.964^{10}  -0.400^2  0.400^1  0.405^{10}  0.621^8$                                   | $-0.072^{1}$ $1.217^{2}$ $1.014^{9}$ $1.333^{7}$ $0.168^{6}$ $0.250^{1}$                                 | $-1.400^{6}$ $1.400^{3}$ $-0.399^{1}$ $0.412^{3}$ $0.327^{9}$ $0.864^{9}$                                                          | $-1.400^{7.5}$ $1.400^{4.5}$ $-0.400^{3}$ $0.400^{2}$ $0.327^{8}$ $0.864^{10}$                                                      | $0.794^{5}$ $2.704^{7}$ $0.833^{5}$ $1.347^{8}$ $0.167^{2}$ $0.258^{5}$          | $0.596^4$ $4.364^8$ $0.878^6$ $1.298^6$ $0.167^5$ $0.255^3$                      | $2.919^9$ $10.090^9$ $0.986^8$ $1.713^9$ $0.167^3$ $0.260^6$                                                                     |
|     | Total                                                                                                                                                                                                   | $22^{2}$                                                                           | $46^{10}$                                                                                                            | $21^{1}$                                                                                                     | 41 <sup>8</sup>                                                                                      | $26^{3}$                                                                                                 | $31^{4}$                                                                                                                           | 35 <sup>7</sup>                                                                                                                     | $32^{5.5}$                                                                       | $32^{5.5}$                                                                       | $44^{9}$                                                                                                                         |
| 80  | $\operatorname{Bias}(\alpha)$<br>$\operatorname{RMSE}(\alpha)$<br>$\operatorname{Bias}(\lambda)$<br>$\operatorname{RMSE}(\lambda)$<br>$\operatorname{Dabs}$<br>$\operatorname{Dmax}$                    | $0.257^4$ $1.639^6$ $0.642^4$ $0.884^4$ $0.166^1$ $0.254^4$                        | $\begin{array}{c} -1.400^7 \\ 1.400^3 \\ 604.034^{10} \\ 610.504^{10} \\ 0.207^7 \\ 0.327^7 \end{array}$             | $-0.096^{1}$ $0.550^{1}$ $0.837^{7}$ $1.125^{5}$ $0.167^{2}$ $0.253^{2}$                                     | $27.738^{10}  28.074^{10}  -0.400^2  0.400^1  0.408^{10}  0.625^8$                                   | $-0.161^{2}$ $0.857^{2}$ $0.938^{9}$ $1.171^{7}$ $0.167^{6}$ $0.250^{1}$                                 | $-1.400^{8}$ $1.400^{4}$ $-0.400^{3}$ $0.400^{2}$ $0.328^{8}$ $0.879^{9}$                                                          | $-1.398^{6}$ $1.410^{5}$ $-0.398^{1}$ $0.437^{3}$ $0.328^{9}$ $0.879^{10}$                                                          | $0.506^{5}$ $2.162^{7}$ $0.781^{5}$ $1.174^{8}$ $0.167^{3}$ $0.257^{5}$          | $0.218^{3}$ $2.713^{8}$ $0.817^{6}$ $1.128^{6}$ $0.167^{5}$ $0.254^{3}$          | $1.861^9$ $7.719^9$ $0.881^8$ $1.417^9$ $0.167^4$ $0.258^6$                                                                      |
|     | Total                                                                                                                                                                                                   | $23^{2}$                                                                           | $44^{9}$                                                                                                             | 18 <sup>1</sup>                                                                                              | $41^{8}$                                                                                             | $27^{3}$                                                                                                 | $34^{6.5}$                                                                                                                         | $34^{6.5}$                                                                                                                          | $33^{5}$                                                                         | $31^4$                                                                           | $45^{10}$                                                                                                                        |
| 100 | $\operatorname{Bias}(\alpha)$ $\operatorname{RMSE}(\alpha)$ $\operatorname{Bias}(\lambda)$ $\operatorname{RMSE}(\lambda)$ $\operatorname{Dabs}$ $\operatorname{Dmax}$                                   | $0.128^{3}$ $1.193^{3}$ $0.640^{4}$ $0.840^{4}$ $0.166^{1}$ $0.254^{4}$ $19^{1.5}$ | $-1.400^8$ $1.400^5$ $602.929^{10}$ $608.204^{10}$ $0.207^7$ $0.327^7$                                               | $-0.102^{2}$ $0.518^{1}$ $0.798^{7}$ $1.038^{5}$ $0.167^{2}$ $0.253^{2}$ $19^{1.5}$                          | 27.901 <sup>10</sup> 28.176 <sup>10</sup> -0.400 <sup>1</sup> 0.410 <sup>10</sup> 0.628 <sup>8</sup> | $ \begin{array}{c} -0.185^4 \\ 0.676^2 \\ 0.887^9 \\ 1.079^7 \\ 0.167^6 \\ 0.250^1 \\ 29^4 \end{array} $ | $\begin{array}{c} -1.400^8 \\ 1.400^5 \\ -0.400^{2.5} \\ 0.400^{2.5} \\ 0.327^{8.5} \\ 0.888^{9.5} \\ \hline 36^{6.5} \end{array}$ | $ \begin{array}{c} -1.400^8 \\ 1.400^5 \\ -0.400^{2.5} \\ 0.400^{2.5} \\ 0.327^{8.5} \\ 0.888^{9.5} \end{array} $                   | $0.336^{5}$ $1.803^{7}$ $0.758^{5}$ $1.085^{8}$ $0.167^{3}$ $0.256^{5}$ $33^{5}$ | $0.095^{1}$ $2.024^{8}$ $0.786^{6}$ $1.045^{6}$ $0.167^{4}$ $0.254^{3}$ $28^{3}$ | 1.263 <sup>6</sup><br>6.022 <sup>9</sup><br>0.839 <sup>8</sup><br>1.286 <sup>9</sup><br>0.167 <sup>5</sup><br>0.257 <sup>6</sup> |

**Sajid Ali** is currently Assistant Professor at the Department of Statistics, Quaid-i-Azam University (QAU), Islamabad, Pakistan. He graduated (PhD Statistics) from Bocconi University, Milan, Italy. His research interests include time series analysis, Bayesian inference, construction of new flexible probability distributions, change point detection, and process monitoring.

Sanku Dey PhD: An Associate Professor in the Department of Statistics, St. Anthony's College, Shillong, Meghalaya, India. He has to his credit more than 220 research papers in journals of repute. He is a reviewer and associate editors of reputed international journals. He has a good number of contributions in almost all fields of Statistics viz., distribution theory, discretization of continuous distribution, reliability theory, multi-component stress-strength reliability, survival analysis, Bayesian inference, Record Statistics, Statistical quality control, order statistics, lifetime performance index based on classical and Bayesian approach as well as different types of censoring schemes etc.

Table 3. Simulation results for  $\alpha{=}1.5$  and  $\lambda{=}2.0$ 

| n   | Est.                                                                                                                                                                                                    | MLE                                                                        | LSE                                                                                                                  | WLS                                                                                | PCE                                                                                                                               | MPS                                                                                                          | MSADE                                                                                                                            | MSALDE                                                                                                                                                     | CVM                                                                               | AD                                                                        | RAD                                                                                |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| 20  | $\operatorname{Bias}(\alpha)$<br>$RMSE(\alpha)$<br>$\operatorname{Bias}(\lambda)$<br>$RMSE(\lambda)$<br>$\operatorname{Dabs}$<br>Dmax                                                                   | $4.041^5$ $9.070^6$ $-1.140^6$ $1.694^1$ $0.163^2$ $0.251^6$               | $-1.400^{3}$ $1.400^{2}$ $674.605^{10}$ $711.801^{10}$ $0.243^{8}$ $0.392^{8}$                                       | $0.273^{1}$ $0.952^{1}$ $-0.249^{2}$ $2.095^{5}$ $0.165^{4}$ $0.243^{2}$           | $9.274^{7}$ $9.447^{7}$ $-1.689^{7}$ $1.694^{2}$ $0.077^{1}$ $0.152^{1}$                                                          | $1.882^4$ $4.608^4$ $-0.256^3$ $2.034^4$ $0.164^3$ $0.245^3$                                                 | $-1.399^{2}$ $1.401^{3}$ $-1.898^{8}$ $1.903^{3}$ $0.661^{10}$ $0.982^{10}$                                                      | $13.684^9$ $15.056^8$ $12.48^9$ $13.948^9$ $0.350^9$ $0.894^9$                                                                                             | $4.110^{6}$ $6.740^{5}$ $-0.680^{5}$ $2.123^{6}$ $0.167^{6}$ $0.250^{5}$          | $9.352^{8}$ $21.421^{9}$ $-0.547^{4}$ $2.247^{7}$ $0.165^{5}$ $0.248^{4}$ | $13.755^{10}$ $25.657^{10}$ $-0.113^{1}$ $5.756^{8}$ $0.169^{7}$ $0.252^{7}$       |
|     | Total                                                                                                                                                                                                   | $26^{4}$                                                                   | $41^{8}$                                                                                                             | $15^{1}$                                                                           | $25^{3}$                                                                                                                          | $21^{2}$                                                                                                     | $36^{6}$                                                                                                                         | $53^{10}$                                                                                                                                                  | $33^{5}$                                                                          | $37^{7}$                                                                  | $43^{9}$                                                                           |
| 40  | $\begin{array}{c} \operatorname{Bias}(\alpha) \\ \operatorname{RMSE}(\alpha) \\ \operatorname{Bias}(\lambda) \\ \operatorname{RMSE}(\lambda) \\ \operatorname{Dabs} \\ \operatorname{Dmax} \end{array}$ | $3.288^{5}$ $6.782^{6}$ $-1.160^{7}$ $1.404^{3}$ $0.165^{3}$ $0.251^{4}$   | $-1.400^3$ $1.400^2$ $660.486^{10}$ $681.658^{10}$ $0.241^8$ $0.394^7$                                               | $0.390^{1}$ $0.892^{1}$ $-0.766^{3}$ $1.291^{2}$ $0.165^{1}$ $0.245^{1}$           | 9.027 <sup>9</sup><br>9.334 <sup>7</sup><br>-0.050 <sup>1</sup><br>2.238 <sup>7</sup><br>0.172 <sup>7</sup><br>0.401 <sup>8</sup> | $ \begin{array}{c} 1.177^{2} \\ 3.317^{3} \\ -0.700^{2} \\ 1.258^{1} \\ 0.165^{2} \\ 0.246^{2} \end{array} $ | $2.301^4$ $6.290^5$ $2.321^8$ $6.427^8$ $0.495^10$ $0.894^9$                                                                     | 14.483 <sup>10</sup><br>15.630 <sup>9</sup><br>14.396 <sup>9</sup><br>15.361 <sup>9</sup><br>0.341 <sup>9</sup><br>0.927 <sup>10</sup>                     | $3.255^{6}$ $5.717^{4}$ $-0.964^{6}$ $1.518^{5}$ $0.166^{5}$ $0.251^{5}$          | $4.949^{7}$ $13.220^{8}$ $-0.905^{5}$ $1.435^{4}$ $0.165^{4}$ $0.249^{3}$ | $8.958^{8}$ $18.185^{10}$ $-0.781^{4}$ $1.863^{6}$ $0.167^{6}$ $0.252^{6}$         |
|     | Total                                                                                                                                                                                                   | $28^{3}$                                                                   | $40^{7}$                                                                                                             | $9^{1}$                                                                            | $39^{6}$                                                                                                                          | $12^{2}$                                                                                                     | $44^{9}$                                                                                                                         | $56^{10}$                                                                                                                                                  | $31^{4.5}$                                                                        | $31^{4.5}$                                                                | $40^{7.5}$                                                                         |
| 60  | $Bias(\alpha)$<br>$RMSE(\alpha)$<br>$Bias(\lambda)$<br>$RMSE(\lambda)$<br>Dabs<br>Dmax                                                                                                                  | $1.185^{3}$ $7.820^{6}$ $-1.190^{4}$ $1.348^{4}$ $0.168^{6}$ $0.254^{6}$   | $\begin{array}{c} -1.400^{7.5} \\ 1.400^{4.5} \\ 659.309^{10} \\ 674.518^{10} \\ 0.239^{7} \\ 0.392^{7} \end{array}$ | $0.433^{2}$ $0.853^{1}$ $-0.917^{7}$ $1.185^{5}$ $0.165^{2}$ $0.246^{2}$           | $11.598^{10}$ $11.715^{10}$ $4.788^{2}$ $5.370^{1}$ $0.308^{8}$ $0.853^{9}$                                                       | $0.840^{1}$ $2.564^{2}$ $-0.834^{9}$ $1.127^{7}$ $0.164^{1}$ $0.246^{1}$                                     | $3.757^{6}$ $5.926^{3}$ $3.788^{1}$ $5.905^{3}$ $0.387^{10}$ $0.846^{8}$                                                         | $14.823^{7.5}$ $16.090^{4.5}$ $14.995^{3}$ $15.969^{2}$ $0.349^{9}$ $0.940^{10}$                                                                           | $2.707^{5}$ $5.008^{7}$ $-1.054^{5}$ $1.388^{8}$ $0.166^{4}$ $0.251^{4}$          | $3.090^4$ $9.006^8$ $-1.007^6$ $1.300^3$ $0.165^3$ $0.249^3$              | $6.693^9$ $14.483^9$ $-0.942^8$ $1.526^6$ $0.166^5$ $0.252^5$                      |
|     | Total                                                                                                                                                                                                   | $31^{5}$                                                                   | $40^{7}$                                                                                                             | $10^{2}$                                                                           | $49^{9}$                                                                                                                          | $9^{1}$                                                                                                      | 45 <sup>8</sup>                                                                                                                  | 57 <sup>10</sup>                                                                                                                                           | $27^{4}$                                                                          | $26^{3}$                                                                  | $36^{6}$                                                                           |
| 80  | $\begin{array}{c} \operatorname{Bias}(\alpha) \\ \operatorname{RMSE}(\alpha) \\ \operatorname{Bias}(\lambda) \\ \operatorname{RMSE}(\lambda) \\ \operatorname{Dabs} \\ \operatorname{Dmax} \end{array}$ | $-2.010^{5}$ $11.790^{7}$ $-1.239^{6}$ $1.366^{5}$ $0.172^{6}$ $0.260^{6}$ | $\begin{array}{c} -1.400^{3.5} \\ 1.400^{2.5} \\ 658.692^{10} \\ 670.145^{10} \\ 0.238^{7} \\ 0.391^{7} \end{array}$ | $0.463^{1}$ $0.831^{-1}$ $-0.995^{2}$ $1.166^{2}$ $0.165^{2}$ $0.247^{2}$          | 16.188 <sup>10</sup> 16.272 <sup>9</sup> 8.496 <sup>8</sup> 8.638 <sup>8</sup> 0.328 <sup>8</sup> 0.946 <sup>8</sup>              | $0.655^{2}$ $2.078^{4}$ $-0.898^{1}$ $1.091^{1}$ $0.165^{1}$ $0.246^{1}$                                     | $\begin{array}{c} -1.400^{3.5} \\ 1.400^{2.5} \\ -1.900^{7} \\ 1.900^{7} \\ 0.662^{10} \\ 0.985^{10} \end{array}$                | 15.092 <sup>9</sup><br>16.400 <sup>10</sup><br>15.299 <sup>9</sup><br>16.294 <sup>9</sup><br>0.354 <sup>9</sup><br>0.948 <sup>9</sup>                      | $2.337^{7}$ $4.480^{5}$ $-1.109^{5}$ $1.339^{4}$ $0.167^{5}$ $0.252^{5}$          | $2.189^{6}$ $6.640^{6}$ $-1.063^{4}$ $1.258^{3}$ $0.166^{3}$ $0.250^{3}$  | $5.437^8$ $12.201^8$ $-1.046^3$ $1.411^6$ $0.166^4$ $0.252^4$                      |
|     | Total                                                                                                                                                                                                   | $35^{6}$                                                                   | $40^{7.5}$                                                                                                           | $10^{1.5}$                                                                         | $51^{1.5}$                                                                                                                        | $10^{1.5}$                                                                                                   | $40^{7.5}$                                                                                                                       | $55^{10}$                                                                                                                                                  | $31^{4}$                                                                          | $25^3$                                                                    | $33^{5}$                                                                           |
| 100 | $Bias(\alpha)$ $RMSE(\alpha)$ $Bias(\lambda)$ $RMSE(\lambda)$ $Dabs$ $Dmax$                                                                                                                             | $-1.687^4$ $10.846^8$ $-1.229^6$ $1.335^5$ $0.170^6$ $0.258^6$ $35^6$      | $-1.400^3$ $1.400^2$ $657.475^{10}$ $667.818^{10}$ $0.238^7$ $0.391^7$                                               | $-0.481^{1}$ $0.821^{1}$ $-1.036^{2}$ $1.166^{2}$ $0.165^{2}$ $0.248^{2}$ $10^{2}$ | $20.687^{10}  20.758^{10}  11.465^8  11.553^8  0.331^9  0.962^{10}  55^{9.5}$                                                     | $0.579^{2}$ $1.773^{3}$ $-0.941^{1}$ $1.088^{1}$ $0.165^{1}$ $0.246^{1}$ $9^{1.0}$                           | 5.231 <sup>8</sup><br>6.741 <sup>6</sup><br>5.451 <sup>7</sup><br>6.805 <sup>7</sup><br>0.319 <sup>8</sup><br>0.830 <sup>8</sup> | 15.342 <sup>9</sup><br>16.672 <sup>9</sup><br>15.610 <sup>9</sup><br>16.588 <sup>9</sup><br>0.358 <sup>10</sup><br>0.953 <sup>9</sup><br>55 <sup>9.5</sup> | $2.062^{6}$ $4.050^{4}$ $-1.135^{5}$ $1.317^{4}$ $0.166^{5}$ $0.252^{4}$ $28^{4}$ | 1.7955 5.5555 -1.0924 1.2443 0.1663 0.2503  233                           | $4.617^{7}$ $10.645^{7}$ $-1.090^{3}$ $1.373^{6}$ $0.166^{4}$ $0.252^{5}$ $32^{5}$ |

# Appendix

This appendix contains the additional ARL tables.

Table 4. Simulation results for  $\alpha{=}3.5$  and  $\lambda{=}0.5$ 

| 40 H H H H H H H H H H H H H H H H H H H | $\operatorname{Bias}(\alpha)$ $RMSE(\alpha)$ $\operatorname{Bias}(\lambda)$ $RMSE(\lambda)$ $\operatorname{Dabs}$ $\operatorname{Dmax}$ $\operatorname{Total}$ $\operatorname{Bias}(\alpha)$ $\operatorname{RMSE}(\alpha)$ $\operatorname{Bias}(\lambda)$ $\operatorname{RMSE}(\lambda)$ $\operatorname{Dabs}$ | $3.759^{5}$ $8.115^{6}$ $1.482^{6}$ $3.207^{1}$ $0.172^{2}$ $0.267^{6}$ $33^{6}$ $1.774^{4}$ $6.390^{7}$ $1.311^{3}$ | -3.400 <sup>3</sup> 3.400 <sup>2</sup> 1509.383 <sup>10</sup> 1598.423 <sup>10</sup> 0.210 <sup>8</sup> 0.338 <sup>8</sup> 39 <sup>8.5</sup> -3.400 <sup>6</sup> | $ \begin{array}{c} -0.912^1 \\ 2.282^1 \\ 3.258^2 \\ 5.411^5 \\ 0.168^4 \\ 0.252^2 \\ \end{array} $          | $5.960^{7}$ $6.074^{7}$ $0.288^{7}$ $0.342^{2}$ $0.408^{1}$ $0.605^{1}$ $33^{6}$ | $1.008^4$ $6.680^4$ $3.292^3$ $5.238^4$ $0.170^3$ $0.253^3$               | $-3.400^{2}$ $3.400^{3}$ $-0.400^{8}$ $0.400^{3}$ $0.331^{10}$ $0.798^{10}$                                     | -3.400 <sup>9</sup> 3.400 <sup>8</sup> -0.400 <sup>9</sup> 0.400 <sup>9</sup> 0.331 <sup>9</sup> 0.798 <sup>9</sup>         | $4.157^{6}$ $9.325^{5}$ $2.514^{5}$ $4.814^{6}$ $0.168^{6}$             | $9.003^{8}$ $25.405^{9}$ $2.922^{4}$ $5.990^{7}$ $0.169^{5}$             | $12.338^{10}$ $27.828^{10}$ $4.143^{1}$ $14.414^{8}$ $0.166^{7}$           |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 40 H                                     | $\operatorname{Bias}(\alpha)$ $\operatorname{RMSE}(\alpha)$ $\operatorname{Bias}(\lambda)$ $\operatorname{RMSE}(\lambda)$                                                                                                                                                                                      | $1.774^4$ $6.390^7$                                                                                                  | $-3.400^6$                                                                                                                                                       | $19^{1}$                                                                                                     | 996                                                                              |                                                                           |                                                                                                                 | 0.798                                                                                                                       | $0.261^{5}$                                                             | $0.259^4$                                                                | $0.166$ $0.259^7$                                                          |
| 60 H                                     | $\begin{array}{l} \operatorname{RMSE}(\alpha) \\ \operatorname{Bias}(\lambda) \\ \operatorname{RMSE}(\lambda) \end{array}$                                                                                                                                                                                     | $6.390^{7}$                                                                                                          |                                                                                                                                                                  |                                                                                                              | აა                                                                               | $29^{2}$                                                                  | $31^{3.5}$                                                                                                      | $31^{3.5}$                                                                                                                  | $33^{6}$                                                                | $39^{8.5}$                                                               | $43^{10}$                                                                  |
| 60 H                                     | Dmax                                                                                                                                                                                                                                                                                                           | 2.1923 0.1673 0.2606                                                                                                 | $3.400^{2}$ $1479.768^{10}$ $1529.969^{10}$ $0.209^{7}$ $0.339^{7}$                                                                                              | $-0.954^{3}$ $2.064^{1}$ $2.200^{6}$ $3.353^{6}$ $0.167^{4}$ $0.254^{2}$                                     | $-0.707^{2}$ $4.403^{5}$ $4.754^{9}$ $5.745^{9}$ $NaN^{10}$ $NaN^{10}$           | $-0.182^{1}$ $4.936^{6}$ $2.323^{7}$ $3.295^{4}$ $0.168^{6}$ $0.252^{1}$  | $-3.400^{7.5}$ $3.400^{3.5}$ $-0.400^{1.5}$ $0.400^{1.5}$ $0.331^{8.5}$ $0.854^{8.5}$                           | $-3.400^{7.5}$ $3.400^{3.5}$ $-0.400^{1.5}$ $0.400^{1.5}$ $0.331^{8.5}$ $0.854^{8.5}$                                       | $2.500^{5}$ $7.747^{8}$ $1.973^{4}$ $3.357^{7}$ $0.167^{2}$ $0.258^{5}$ | $3.512^9$ $15.072^9$ $2.061^5$ $3.346^5$ $0.168^5$ $0.256^3$             | $6.515^{10}  18.595^{10}  2.545^{8}  4.810^{8}  0.166^{1}  0.258^{4}$      |
| I                                        | Total                                                                                                                                                                                                                                                                                                          | $26^{3}$                                                                                                             | $42^{9}$                                                                                                                                                         | $22^1$                                                                                                       | $45^{10}$                                                                        | $25^{2}$                                                                  | $31^{5}$                                                                                                        | $31^{5}$                                                                                                                    | $31^{5}$                                                                | $36^{7}$                                                                 | 41 <sup>8</sup>                                                            |
| I                                        | $Bias(\alpha)$<br>$RMSE(\alpha)$<br>$Bias(\lambda)$<br>$RMSE(\lambda)$<br>Dabs<br>Dmax                                                                                                                                                                                                                         | $0.627^{2}$ $4.889^{7}$ $1.266^{3}$ $1.861^{3}$ $0.166^{1}$ $0.257^{4}$                                              | $-3.400^{7}$ $3.400^{3}$ $1470.299^{10}$ $1509.415^{10}$ $0.209^{7}$ $0.340^{7}$                                                                                 | $-1.049^4$ $1.951^2$ $1.878^6$ $2.647^5$ $0.167^4$ $0.254^2$                                                 | $-0.358^{1}$ $1.529^{1}$ $11.397^{9}$ $11.710^{9}$ $0.585^{10}$ $0.842^{8}$      | $-0.756^{3}$ $3.867^{6}$ $2.002^{7}$ $2.617^{4}$ $0.168^{6}$ $0.251^{1}$  | $-3.400^{8.5}$ $3.400^{4.5}$ $-0.400^{1.5}$ $0.331^{8.5}$ $0.878^{9.5}$                                         | $-3.400^{8.5}$ $3.400^{4.5}$ $-0.400^{1.5}$ $0.400^{1.5}$ $0.331^{8.5}$ $0.878^{9.5}$                                       | $1.416^6$ $6.509^8$ $1.778^7$ $2.788^7$ $0.167^3$ $0.257^6$             | $1.308^{5}$ $9.887^{9}$ $1.819^{6}$ $2.662^{6}$ $0.167^{5}$ $0.255^{3}$  | $3.815^{10}$ $13.866^{10}$ $2.167^{8}$ $3.612^{8}$ $0.167^{2}$ $0.257^{5}$ |
|                                          | Total                                                                                                                                                                                                                                                                                                          | $20^{1}$                                                                                                             | 44 <sup>10</sup>                                                                                                                                                 | $23^{2}$                                                                                                     | 38 <sup>8</sup>                                                                  | $27^{3}$                                                                  | $34^{6}$                                                                                                        | $34^{6}$                                                                                                                    | $34^{6}$                                                                | $33^{4}$                                                                 | 43 <sup>9</sup>                                                            |
| I<br>I<br>I                              | $Bias(\alpha)$ $RMSE(\alpha)$ $Bias(\lambda)$ $RMSE(\lambda)$ $Dabs$ $Dmax$                                                                                                                                                                                                                                    | $-0.057^{1}$ $4.084^{7}$ $1.247^{3}$ $1.710^{3}$ $0.165^{1}$ $0.255^{4}$                                             | $-3.400^9$ $3.400^5$ $1466.142^{10}$ $1497.992^{10}$ $0.209^7$ $0.339^7$                                                                                         | $ \begin{array}{c} -1.109^{5} \\ 1.875^{2} \\ 1.713^{6} \\ 2.295^{4} \\ 0.167^{4} \\ 0.253^{2} \end{array} $ | $1.133^{6} \\ 1.411^{1} \\ 16.729^{9} \\ 16.729^{9} \\ 0.637^{10} \\ 0.938^{10}$ | $-1.061^4$ $3.183^3$ $1.846^7$ $2.299^5$ $0.167^6$ $0.251^1$              | $\begin{array}{c} -3.400^9 \\ 3.400^5 \\ -0.400^{1.5} \\ 0.400^{1.5} \\ 0.331^{8.5} \\ 0.894^{8.5} \end{array}$ | $-3.400^9$ $3.400^5$ $-0.400^{1.5}$ $0.400^{1.5}$ $0.331^{8.5}$ $0.894^{8.5}$                                               | $0.743^{3}$ $5.619^{8}$ $1.657^{4}$ $2.435^{7}$ $0.167^{3}$ $0.256^{6}$ | $0.239^{2}$ $7.174^{9}$ $1.684^{5}$ $2.310^{6}$ $0.167^{5}$ $0.255^{3}$  | $2.438^{7}$ $11.097^{10}$ $1.924^{8}$ $2.982^{8}$ $0.167^{2}$ $0.256^{5}$  |
| 7                                        | Total                                                                                                                                                                                                                                                                                                          | $19^{1}$                                                                                                             | $48^{10}$                                                                                                                                                        | $23^{2}$                                                                                                     | $45^{9}$                                                                         | $26^{3}$                                                                  | $34^{6.5}$                                                                                                      | $34^{6.5}$                                                                                                                  | $31^{5}$                                                                | $30^{4}$                                                                 | $40^{8}$                                                                   |
| I<br>I                                   | $Bias(\alpha)$<br>$RMSE(\alpha)$<br>$Bias(\lambda)$<br>$RMSE(\lambda)$                                                                                                                                                                                                                                         | $-0.296^{3}$ $3.559^{7}$ $1.246^{3}$ $1.631^{3}$ $0.166^{1}$ $0.255^{4}$                                             | $-3.400^9$ $3.400^5$ $1460.600^{10}$ $1491.261^{10}$ $0.209^7$ $0.340^7$                                                                                         | $-1.156^4$ $1.826^1$ $1.630^6$ $2.116^4$ $0.167^4$ $0.253^2$                                                 | $2.411^{7}  2.465^{2}  21.344^{9}  21.372^{9}  0.650^{10}  0.964^{10}$           | $-1.197^{5}$ $2.766^{3}$ $1.7441^{7}$ $2.117^{5}$ $0.167^{6}$ $0.252^{1}$ | $-3.400^9$ $3.400^5$ $-0.400^{1.5}$ $0.331^{8.5}$ $0.903^{8.5}$                                                 | -3.400 <sup>9</sup> 3.400 <sup>5</sup> -0.400 <sup>1.5</sup> 0.400 <sup>1.5</sup> 0.331 <sup>8.5</sup> 0.903 <sup>8.5</sup> | $0.283^{2}$ $4.972^{8}$ $1.599^{4}$ $2.250^{7}$ $0.167^{3}$ $0.256^{5}$ | $-0.243^{1}$ $5.848^{9}$ $1.618^{5}$ $2.138^{6}$ $0.167^{5}$ $0.254^{3}$ | $1.580^{6}$ $9.347^{10}$ $1.823^{8}$ $2.708^{8}$ $0.167^{2}$ $0.256^{6}$   |

Table 5. Simulation results for  $\alpha{=}3.0$  and  $\lambda{=}2.0$ 

| n   | Est.                                                                                                                                                                                 | MLE                                                                                 | LSE                                                                                                        | WLS                                                                               | PCE                                                                                                                                   | MPS                                                                                  | MSADE                                                                                                                            | MSALDE                                                                                                                                | CVM                                                                                 | AD                                                                                                                   | RAD                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| 20  | $\operatorname{Bias}(\alpha)$<br>$RMSE(\alpha)$<br>$\operatorname{Bias}(\lambda)$<br>$RMSE(\lambda)$<br>$\operatorname{Dabs}$<br>Dmax                                                | $10.138^{5}$ $12.855^{6}$ $-1.181^{6}$ $1.917^{1}$ $0.146^{2}$ $0.219^{6}$          | $\begin{array}{c} -2.900^3 \\ 2.900^2 \\ 1575.716^{10} \\ 1648.607^{10} \\ 0.248^8 \\ 0.404^8 \end{array}$ | $1.365^{1}$ $2.768^{1}$ $-0.044^{2}$ $2.877^{5}$ $0.163^{4}$ $0.236^{2}$          | $6.236^{7}$ $6.383^{7}$ $-1.143^{7}$ $1.157^{2}$ $0.092^{1}$ $0.166^{1}$                                                              | $6.548^4$ $10.747^4$ $-0.174^3$ $2.672^4$ $0.158^3$ $0.233^3$                        | $3.103^{2}$ $8.059^{3}$ $2.699^{8}$ $7.126^{3}$ $0.489^{10}$ $0.876^{10}$                                                        | 12.668 <sup>9</sup> 13.666 <sup>8</sup> 13.598 <sup>9</sup> 14.580 <sup>9</sup> 0.328 <sup>9</sup> 0.865 <sup>9</sup>                 | $9.851^{6}$ $13.018^{5}$ $-0.564^{5}$ $2.815^{6}$ $0.165^{6}$ $0.241^{5}$           | $33.335^{8}$ $53.221^{9}$ $0.467^{4}$ $3.290^{7}$ $0.162^{5}$ $0.238^{4}$                                            | $36.329^{10}$ $54.659^{10}$ $0.357^{1}$ $10.011^{8}$ $0.171^{7}$ $0.248^{7}$ |
|     | Total                                                                                                                                                                                | $26^{6}$                                                                            | $40^{8.5}$                                                                                                 | $17^{1}$                                                                          | $16^{6}$                                                                                                                              | $21^{2}$                                                                             | $42^{3.5}$                                                                                                                       | $52^{3.5}$                                                                                                                            | $34^{6}$                                                                            | $37^{8.5}$                                                                                                           | $45^{10}$                                                                    |
| 40  | $\operatorname{Bias}(\alpha)$<br>$\operatorname{RMSE}(\alpha)$<br>$\operatorname{Bias}(\lambda)$<br>$\operatorname{RMSE}(\lambda)$<br>$\operatorname{Dabs}$<br>$\operatorname{Dmax}$ | $10.418^{7}$ $13.553^{7}$ $-1.363^{6}$ $1.625^{3}$ $0.152^{1}$ $0.229^{1}$          | $-2.900^{2}$ $2.900^{2}$ $1546.786^{10}$ $1589.241^{10}$ $0.246^{7}$ $0.405^{7}$                           | $1.887^{1}$ $2.833^{1}$ $-0.816^{2}$ $1.595^{1}$ $0.161^{3}$ $0.237^{3}$          | $10.409^{6}$ $10.423^{4}$ $7.052^{8}$ $7.068^{8}$ $0.319^{8}$ $0.877^{9}$                                                             | $6.619^{4}$ $10.438^{5}$ $-0.851^{3}$ $1.610^{2}$ $0.159^{2}$ $0.235^{2}$            | $4.002^{3}$ $7.248^{3}$ $3.882^{7}$ $6.620^{7}$ $0.421^{10}$ $0.862^{8}$                                                         | 13.810 <sup>8</sup> 14.831 <sup>8</sup> 14.876 <sup>9</sup> 15.810 <sup>9</sup> 0.336 <sup>9</sup> 0.908 <sup>10</sup>                | $10.020^{5}$ $12.946^{6}$ $-1.064^{4}$ $1.880^{5}$ $0.165^{5}$ $0.244^{5}$          | 28.382 <sup>9</sup> 44.788 <sup>9</sup> -1.090 <sup>5</sup> 1.848 <sup>4</sup> 0.162 <sup>4</sup> 0.241 <sup>4</sup> | $31.530^{10}$ $46.911^{10}$ $-0.784^{1}$ $2.574^{6}$ $0.169^{6}$ $0.249^{6}$ |
|     | Total                                                                                                                                                                                | $25^{3}$                                                                            | $38^{6.5}$                                                                                                 | $11^{1}$                                                                          | $43^{9}$                                                                                                                              | $18^{2}$                                                                             | $38^{6.5}$                                                                                                                       | $53^{10}$                                                                                                                             | $30^{4}$                                                                            | $35^{5}$                                                                                                             | $39^{8}$                                                                     |
| 60  | $\operatorname{Bias}(\alpha)$<br>$\operatorname{RMSE}(\alpha)$<br>$\operatorname{Bias}(\lambda)$<br>$\operatorname{RMSE}(\lambda)$<br>$\operatorname{Dabs}$<br>$\operatorname{Dmax}$ | $10.653^{6}$ $13.761^{6}$ $-1.443^{6}$ $1.590^{3}$ $0.155^{1}$ $0.233^{1}$          | $-2.900^{2}$ $2.900^{2}$ $1538.080^{10}$ $1571.552^{10}$ $0.246^{7}$ $0.406^{7}$                           | $2.170^{1}$ $2.900^{1}$ $-1.047^{1}$ $1.387^{1}$ $0.161^{3}$ $0.238^{3}$          | 16.781 <sup>8</sup><br>16.792 <sup>8</sup><br>11.393 <sup>8</sup><br>11.403 <sup>8</sup><br>0.327 <sup>8</sup><br>0.931 <sup>10</sup> | $6.689^4$ $10.250^4$ $-1.076^2$ $1.447^2$ $0.160^2$ $0.237^2$                        | 6.132 <sup>3</sup> 7.771 <sup>3</sup> 5.616 <sup>7</sup> 7.116 <sup>7</sup> 0.329 <sup>9</sup> 0.814 <sup>8</sup>                | $14.456^7$ $15.439^7$ $15.638^9$ $16.477^9$ $0.342^{10}$ $0.927^9$                                                                    | $10.167^{5}$ $12.919^{5}$ $-1.250^{4}$ $1.682^{5}$ $0.166^{5}$ $0.246^{5}$          | $25.991^9$ $40.115^9$ $-1.291^5$ $1.662^4$ $0.163^4$ $0.242^4$                                                       | $29.023^{10}  42.550^{10}  -1.084^3  3.957^6  0.168^6  0.249^6$              |
|     | Total                                                                                                                                                                                | $23^{3}$                                                                            | 38 <sup>7</sup>                                                                                            | $10^{1}$                                                                          | $50^{9}$                                                                                                                              | $16^{2}$                                                                             | $37^{6}$                                                                                                                         | 51 <sup>10</sup>                                                                                                                      | $29^{4}$                                                                            | $35^{5}$                                                                                                             | 41 <sup>8</sup>                                                              |
| 80  | $\operatorname{Bias}(\alpha)$<br>$\operatorname{RMSE}(\alpha)$<br>$\operatorname{Bias}(\lambda)$<br>$\operatorname{RMSE}(\lambda)$<br>$\operatorname{Dabs}$<br>$\operatorname{Dmax}$ | $10.215^{5}$ $13.109^{6}$ $-1.479^{6}$ $1.583^{3}$ $0.157^{1}$ $0.236^{1}$          | $-2.900^{2}$ $2.900^{1}$ $1527.869^{10}$ $1557.936^{10}$ $0.246^{7}$ $0.407^{7}$                           | $2.368^{1}$ $2.961^{2}$ $-1.163^{1}$ $1.352^{1}$ $0.162^{3}$ $0.240^{3}$          | $23.055^{8}$ $23.065^{8}$ $15.606^{8}$ $15.615^{8}$ $0.330^{9}$ $0.954^{10}$                                                          | $6.771^{3}$ $10.158^{4}$ $-1.186^{2}$ $1.423^{2}$ $0.161^{2}$ $0.239^{2}$            | 6.888 <sup>4</sup><br>8.117 <sup>3</sup><br>6.227 <sup>7</sup><br>7.410 <sup>7</sup><br>0.309 <sup>8</sup><br>0.811 <sup>8</sup> | $15.092^7$ $15.903^7$ $16.283^9$ $16.952^9$ $0.342^{10}$ $0.938^9$                                                                    | $10.433^{6}$ $13.009^{5}$ $-1.362^{4}$ $1.626^{5}$ $0.166^{5}$ $0.246^{5}$          | $24.631^9  37.454^9  -1.402^5  1.625^4  0.164^4  0.244^4$                                                            | $27.870^{10}  40.367^{10}  -1.272^3  1.759^6  0.168^6  0.250^6$              |
|     | Total                                                                                                                                                                                | $22^{3}$                                                                            | $37^{6.5}$                                                                                                 | $11^1$                                                                            | $51^{9.5}$                                                                                                                            | $15^{2}$                                                                             | $37^{6.5}$                                                                                                                       | $51^{9.5}$                                                                                                                            | $30^{4}$                                                                            | $35^{5}$                                                                                                             | 41 <sup>8</sup>                                                              |
| 100 | $Bias(\alpha)$<br>$RMSE(\alpha)$<br>$Bias(\lambda)$<br>$RMSE(\lambda)$<br>Dabs<br>Dmax                                                                                               | $10.324^{5}$ $13.370^{6}$ $-1.505^{6}$ $1.588^{3}$ $0.158^{1}$ $0.237^{1}$ $22^{3}$ | $-2.900^{2}$ $2.900^{1}$ $1531.350^{10}$ $1556.335^{10}$ $0.245^{7}$ $0.405^{7}$ $37^{6.5}$                | $2.489^{1}$ $2.998^{2}$ $-1.224^{1}$ $1.352^{1}$ $0.162^{3}$ $0.240^{3}$ $11^{1}$ | $29.303^{10}$ $29.313^{8}$ $19.781^{9}$ $19.790^{9}$ $0.331^{9}$ $0.966^{10}$ $55^{10}$                                               | $6.879^{3}$ $10.126^{4}$ $-1.257^{2}$ $1.430^{2}$ $0.161^{2}$ $0.240^{2}$ $15^{2.0}$ | 7.226 <sup>4</sup> 8.386 <sup>3</sup> 6.514 <sup>7</sup> 7.671 <sup>7</sup> 0.304 <sup>8</sup> 0.815 <sup>8</sup>                | 15.440 <sup>7</sup><br>16.171 <sup>7</sup><br>16.658 <sup>8</sup><br>17.235 <sup>8</sup><br>0.344 <sup>10</sup><br>0.946 <sup>9</sup> | $10.537^{6}$ $13.034^{5}$ $-1.425^{4}$ $1.617^{4}$ $0.166^{5}$ $0.246^{5}$ $29^{4}$ | $24.063^{8}$ $36.194^{9}$ $-1.460^{5}$ $1.624^{5}$ $0.164^{4}$ $0.244^{4}$ $35^{5}$                                  | 27.1679 38.87610 -1.3613 1.7096 0.1686 0.2506 408                            |

Table 6. Simulation results for  $\alpha{=}1.5$  and  $\lambda{=}0.5$ 

| n   | Est.                                                                                                                                                                                                                               | MLE                                                                                                                               | LSE                                                                                                                                                        | WLS                                                                                          | PCE                                                                                                                                    | MPS                                                                                                                               | MSADE                                                                                                                                                   | MSALDE                                                                                                                                                    | CVM                                                                                                                                                 | AD                                                                                                                                 | RAD                                                                                                                                    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 20  | $\operatorname{Bias}(\alpha)$ $RMSE(\alpha)$ $\operatorname{Bias}(\lambda)$ $RMSE(\lambda)$ $\operatorname{Dabs}$ $Dmax$ $\operatorname{Total}$                                                                                    | 3.219 <sup>7</sup> 6.600 <sup>7</sup> 0.698 <sup>4</sup> 1.646 <sup>4</sup> 0.169 <sup>5</sup> 0.267 <sup>6</sup>                 | -1.400 <sup>5</sup><br>1.400 <sup>2</sup><br>588.098 <sup>10</sup><br>635.295 <sup>10</sup><br>0.209 <sup>7</sup><br>0.342 <sup>7</sup><br>41 <sup>9</sup> | $-0.116^{1}$ $0.785^{1}$ $1.648^{7}$ $2.920^{8}$ $0.168^{2}$ $0.251^{1}$ $20^{1}$            | $10.128^9$ $10.337^8$ $-0.243^1$ $0.270^1$ $0.385^{10}$ $0.584^8$ $37^8$                                                               | 0.632 <sup>2</sup> 2.971 <sup>5</sup> 1.694 <sup>8</sup> 2.898 <sup>7</sup> 0.169 <sup>6</sup> 0.252 <sup>2</sup> 30 <sup>4</sup> | -1.368 <sup>4</sup><br>1.479 <sup>3</sup><br>-0.369 <sup>3</sup><br>0.670 <sup>2</sup><br>0.327 <sup>8</sup><br>0.786 <sup>9</sup><br>29 <sup>2.5</sup> | $-1.292^{3}$ $1.890^{4}$ $-0.283^{2}$ $1.466^{3}$ $0.328^{9}$ $0.786^{10}$ $31^{5}$                                                                       | $2.291^{6}$ $4.850^{6}$ $1.202^{5}$ $2.606^{5}$ $0.168^{3}$ $0.265^{4}$ $29^{2.5}$                                                                  | 5.582 <sup>8</sup> 18.081 <sup>9</sup> 1.374 <sup>6</sup> 2.866 <sup>6</sup> 0.168 <sup>4</sup> 0.260 <sup>3</sup> 36 <sup>7</sup> | 11.301 <sup>10</sup> 25.595 <sup>10</sup> 1.863 <sup>9</sup> 6.559 <sup>9</sup> 0.167 <sup>1</sup> 0.266 <sup>5</sup> 44 <sup>10</sup> |
| 40  | $\operatorname{Bias}(\alpha)$<br>$\operatorname{RMSE}(\alpha)$<br>$\operatorname{Bias}(\lambda)$<br>$\operatorname{RMSE}(\lambda)$<br>$\operatorname{Dabs}$<br>$\operatorname{Dmax}$                                               | $1.735^4$ $4.231^6$ $0.649^3$ $1.134^3$ $0.166^1$ $0.259^4$                                                                       | $\begin{array}{c} -1.400^6 \\ 1.400^2 \\ 564.159^{10} \\ 600.154^{10} \\ 0.208^7 \\ 0.350^7 \end{array}$                                                   | $-0.084^{1}$ $0.666^{1}$ $1.076^{6}$ $1.651^{5}$ $0.167^{4}$ $0.253^{2}$                     | $12.951^{10}$ $13.138^{9}$ $-0.292^{1}$ $0.300^{1}$ $0.399^{9}$ $0.609^{8}$                                                            | $0.117^{2}$ $1.801^{4}$ $1.171^{8}$ $1.681^{7}$ $0.168^{6}$ $0.251^{1}$                                                           | $1.969^{8}$ $6.633^{7}$ $2.493^{9}$ $6.308^{9}$ $0.431^{10}$ $0.860^{10}$                                                                               | $-1.396^5$ $1.424^3$ $-0.396^2$ $0.486^2$ $0.328^8$ $0.841^9$                                                                                             | $1.312^{3}$ $3.527^{5}$ $0.914^{4}$ $1.651^{6}$ $0.167^{5}$ $0.261^{5}$                                                                             | $1.734^{7}$ $8.483^{8}$ $0.985^{5}$ $1.627^{4}$ $0.167^{3}$ $0.257^{3}$                                                            | $5.270^9$ $15.045^{10}$ $1.148^7$ $2.271^8$ $0.167^2$ $0.262^6$                                                                        |
| 60  | $\begin{array}{c} \operatorname{Total} \\ \operatorname{Bias}(\alpha) \\ \operatorname{RMSE}(\alpha) \\ \operatorname{Bias}(\lambda) \\ \operatorname{RMSE}(\lambda) \\ \operatorname{Dabs} \\ \operatorname{Dmax} \end{array}$    | 21 <sup>2</sup> 0.589 <sup>3</sup> 2.536 <sup>6</sup> 0.641 <sup>3</sup> 0.963 <sup>3</sup> 0.166 <sup>1</sup> 0.256 <sup>4</sup> | $42^{8.5}$ $-1.400^{7.5}$ $1.400^{4.5}$ $553.105^{10}$ $587.759^{10}$ $0.208^{7}$ $0.355^{7}$                                                              | $19^{1}$ $-0.091^{2}$ $0.597^{1}$ $0.918^{6}$ $1.297^{4}$ $0.167^{4}$ $0.253^{2}$            | $38^{7}$ $11.197^{10}$ $11.408^{10}$ $3.993^{9}$ $5.085^{9}$ $0.581^{10}$ $0.852^{8}$                                                  | $28^{3.5}$ $-0.077^{1}$ $1.191^{2}$ $1.014^{8}$ $1.333^{6}$ $0.168^{6}$ $0.250^{1}$                                               | $53^{10}$ $-1.400^{6}$ $1.400^{3}$ $-0.399^{1}$ $0.412^{2}$ $0.327^{9}$ $0.864^{9}$                                                                     | $29^{5}$ $-1.400^{7.5}$ $1.400^{4.5}$ $-0.400^{2}$ $0.400^{1}$ $0.327^{8}$ $0.864^{10}$                                                                   | $28^{3.5}$ $0.770^{5}$ $2.657^{7}$ $0.832^{4}$ $1.347^{7}$ $0.167^{3}$ $0.258^{5}$                                                                  | $30^{6}$ $0.604^{4}$ $4.494^{8}$ $0.878^{5}$ $1.298^{5}$ $0.167^{5}$ $0.255^{3}$                                                   | 2.985 <sup>9</sup><br>10.405 <sup>9</sup><br>0.986 <sup>7</sup><br>1.713 <sup>8</sup><br>0.167 <sup>2</sup><br>0.260 <sup>6</sup>      |
| 80  | $\begin{array}{c} \operatorname{Total} \\ \operatorname{Bias}(\alpha) \\ \operatorname{RMSE}(\alpha) \\ \operatorname{Bias}(\lambda) \\ \operatorname{RMSE}(\lambda) \\ \operatorname{Dabs} \\ \operatorname{Dmax} \end{array}$    | $\begin{array}{c} 20^2 \\ 0.257^4 \\ 1.641^5 \\ 0.642^2 \\ 0.884^2 \\ 0.166^1 \\ 0.254^4 \end{array}$                             | $46^9$ $-1.400^7$ $1.400^3$ $542.228^{10}$ $577.891^{10}$ $0.207^7$ $0.360^7$                                                                              | $19^{1}$ $0.096^{1}$ $0.550^{-1}$ $0.837^{5}$ $1.125^{3}$ $0.167^{2}$ $0.253^{2}$            | 8.634 <sup>10</sup><br>8.794 <sup>10</sup><br>19.553 <sup>9</sup><br>19.771 <sup>9</sup><br>0.661 <sup>10</sup><br>0.983 <sup>10</sup> | $24^{3}$ $0.161^{2}$ $0.854^{2}$ $0.938^{7}$ $1.171^{5}$ $0.167^{6}$ $0.250^{1}$                                                  | 30 <sup>4.5</sup> 4.728 <sup>9</sup> 7.634 <sup>8</sup> 4.598 <sup>8</sup> 8.041 <sup>8</sup> 0.568 <sup>9</sup> 0.912 <sup>9</sup>                     | 33 <sup>7</sup> -1.398 <sup>6</sup> 1.410 <sup>4</sup> -0.398 <sup>1</sup> 0.437 <sup>1</sup> 0.328 <sup>8</sup> 0.879 <sup>8</sup>                       | $31^6$ $0.499^5$ $2.144^86$ $0.781^3$ $1.174^6$ $0.167^3$ $0.257^5$                                                                                 | $30^{4.5}$ $0.214^{3}$ $2.624^{7}$ $0.817^{4}$ $1.128^{4}$ $0.167^{5}$ $0.254^{3}$                                                 | $ \begin{array}{c} 41^8 \\ 1.884^8 \\ 7.712^9 \\ 0.881^6 \\ 1.416^7 \\ 0.167^4 \\ 0.258^6 \end{array} $                                |
| 100 | $\begin{array}{c} \operatorname{Total} \\ \operatorname{Bias}(\alpha) \\ \operatorname{RMSE}(\alpha) \\ \operatorname{Bias}(\lambda) \\ \operatorname{RMSE}(\lambda) \\ \operatorname{Dabs} \\ \operatorname{Dmax} \\ \end{array}$ | $ \begin{array}{c} 18^{2} \\ 0.128^{3} \\ 1.193^{3} \\ 0.640^{2} \\ 0.840^{2} \\ 0.166^{1} \\ 0.254^{4} \\ 15^{1.5} \end{array} $ | $44^{8}$ $-1.400^{7.5}$ $1.400^{4.5}$ $542.885^{10}$ $576.600^{10}$ $0.207^{7}$ $0.359^{7}$ $46^{8}$                                                       | $14^{1}$ $-0.102^{2}$ $0.518^{1}$ $0.798^{5}$ $1.038^{3}$ $0.167^{2}$ $0.253^{2}$ $15^{1.5}$ | $58^{10}$ $11.454^{10}$ $11.541^{10}$ $24.793^{9}$ $24.969^{9}$ $0.664^{10}$ $0.990^{10}$ $58^{10}$                                    | $23^{3}$ $-0.185^{4}$ $0.676^{2}$ $0.887^{7}$ $1.079^{5}$ $0.167^{6}$ $0.250^{1}$ $25^{4.0}$                                      | 51 <sup>9</sup> 5.831 <sup>9</sup> 7.480 <sup>9</sup> 5.375 <sup>8</sup> 6.822 <sup>8</sup> 0.609 <sup>9</sup> 0.928 <sup>9</sup> 52 <sup>9</sup>       | 28 <sup>5.5</sup> -1.400 <sup>7.5</sup> 1.400 <sup>4.5</sup> -0.400 <sup>1</sup> 0.400 <sup>1</sup> 0.327 <sup>8</sup> 0.888 <sup>8</sup> 30 <sup>6</sup> | 28 <sup>5.5</sup> 0.334 <sup>5</sup> 1.799 <sup>6</sup> 0.758 <sup>3</sup> 1.085 <sup>6</sup> 0.167 <sup>3</sup> 0.256 <sup>5</sup> 28 <sup>5</sup> | $26^{4}$ $0.101^{1}$ $2.129^{7}$ $0.786^{4}$ $1.045^{4}$ $0.167^{4}$ $0.254^{3}$ $23^{3}$                                          | 1.270 <sup>6</sup> 6.010 <sup>8</sup> 0.839 <sup>6</sup> 1.286 <sup>7</sup> 0.167 <sup>5</sup> 0.257 <sup>6</sup> 38 <sup>7</sup>      |

Table 7. ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the lower-sided chart with  $\alpha_0$ =0.75,  $\lambda_0$ =2.5,  $\lambda_1 \in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

|                  | λ   | $\alpha$ | 0.1                              | 0.4                     | 0.5                      | 0.6                       | 0.75                        | 0.9                       | 1                    | 1.3      | 1.5         |
|------------------|-----|----------|----------------------------------|-------------------------|--------------------------|---------------------------|-----------------------------|---------------------------|----------------------|----------|-------------|
| ARL              | 0.1 |          | 1.041                            | 1.188                   | 1.245                    | 1.308                     | 1.414                       | 1.536                     | 1.627                | 1.964    | 2.255       |
| CV               |     |          | 0.199                            | 0.397                   | 0.444                    | 0.485                     | 0.541                       | 0.591                     | 0.621                | 0.701    | 0.746       |
| Q1               |     |          | 0.089                            | 0.156                   | 0.177                    | 0.199                     | 0.234                       | 0.273                     | 0.302                | 0.404    | 0.491       |
| Q2               |     |          | 0.215                            | 0.376                   | 0.427                    | 0.479                     | 0.564                       | 0.658                     | 0.727                | 0.974    | 1.183       |
| Q3               |     |          | 0.429                            | 0.751                   | 0.853                    | 0.959                     | 1.129                       | 1.317                     | 1.454                | 1.948    | 2.366       |
| ARL              | 0.4 |          | 1.121                            | 1.718                   | 2.048                    | 2.491                     | 3.489                       | 5.184                     | 7.012                | 21.689   | 58.019      |
| CV               |     |          | 0.328                            | 0.646                   | 0.715                    | 0.774                     | 0.845                       | 0.898                     | 0.926                | 0.977    | 0.991       |
| Q1               |     |          | 0.129                            | 0.329                   | 0.429                    | 0.561                     | 0.852                       | 1.342                     | 1.869                | 6.095    | 16.547      |
| $\tilde{Q}_2$    |     |          | 0.311                            | 0.794                   | 1.035                    | 1.351                     | 2.052                       | 3.235                     | 4.505                | 14.685   | 39.868      |
| $\vec{Q}$ 3      |     |          | 0.623                            | 1.588                   | 2.069                    | 2.702                     | 4.105                       | 6.469                     | 9.010                | 29.3692  | 79.737      |
| ARL              | 0.5 |          | 1.140                            | 1.893                   | 2.347                    | 2.994                     | 4.586                       | 7.659                     | 11.411               | 53.154   | 213.829     |
| CV               | 0.5 |          | 0.351                            | 0.687                   | 0.758                    |                           |                             | 0.932                     |                      |          |             |
|                  |     |          |                                  |                         |                          | 0.816                     | 0.884                       |                           | 0.955                | 0.991    | 0.998       |
| Q1               |     |          | 0.137                            | 0.383                   | 0.518                    | 0.708                     | 1.169                       | 2.056                     | 3.137                | 15.147   | 61.371      |
| $Q_2$            |     |          | 0.331                            | 0.923                   | 1.249                    | 1.705                     | 2.818                       | 4.954                     | 7.558                | 36.496   | 147.868     |
| Q3               |     |          | 0.662                            | 1.845                   | 2.497                    | 3.411                     | 5.636                       | 9.908                     | 15.115               | 72.992   | 295.736     |
| ARL              | 0.6 |          | 1.158                            | 2.069                   | 2.665                    | 3.562                     | 5.969                       | 11.253                    | 18.569               | 135.455  | 867.527     |
| CV               |     |          | 0.369                            | 0.719                   | 0.790                    | 0.848                     | 0.912                       | 0.955                     | 0.973                | 0.996    | 0.999       |
| Q1               |     |          | 0.144                            | 0.436                   | 0.612                    | 0.873                     | 1.569                       | 3.091                     | 5.197                | 38.828   | 249.428     |
| Q2               |     |          | 0.348                            | 1.050                   | 1.474                    | 2.103                     | 3.781                       | 7.448                     | 12.521               | 93.543   | 600.977     |
| Q3               |     |          | 0.695                            | 2.100                   | 2.947                    | 4.206                     | 7.561                       | 14.896                    | 25.043               | 187.086  | 1201.954    |
| ARL              | 0.9 |          | 1.201                            | 2.613                   | 3.743                    | 5.727                     | 12.599                      | 34.761                    | 80.017               | 2745.419 | 97404.030   |
| CV               |     |          | 0.409                            | 0.786                   | 0.856                    | 0.909                     | 0.959                       | 0.986                     | 0.994                | 0.999    | 0.999       |
| Q1               |     |          | 0.161                            | 0.596                   | 0.926                    | 1.499                     | 3.479                       | 9.855                     | 22.875               | 789.664  | 28021.250   |
| $\vec{Q}_2$      |     |          | 0.388                            | 1.437                   | 2.230                    | 3.612                     | 8.382                       | 23.746                    | 55.116               | 1902.633 | 67514.980   |
| $Q_3$            |     |          | 0.776                            | 2.874                   | 4.460                    | 7.224                     | 16.764                      | 47.492                    | 110.233              | 3805.266 | 135030      |
| ARL              | 1   |          | 1.214                            | 2.800                   | 4.148                    | 6.630                     | 15.971                      | 50.259                    | 130.211              | 7945.941 | 550636.1    |
| CV               | 1   |          | 0.419                            | 0.802                   | 0.871                    | 0.030 $0.922$             | 0.968                       | 0.990                     | 0.996                | 0.999    | 0.999       |
|                  |     |          |                                  |                         |                          |                           |                             |                           | 37.315               |          |             |
| Q1               |     |          | 0.166                            | 0.651                   | 1.043                    | 1.759                     | 4.449                       | 14.315                    |                      | 2285.761 | 158408      |
| $Q_2$            |     |          | 0.399                            | 1.569                   | 2.513                    | 4.239                     | 10.720                      | 34.489                    | 89.909               | 5507.360 | 381671.5    |
| Q3               |     |          | 0.798                            | 3.138                   | 5.025                    | 8.479                     | 21.440                      | 68.979                    | 179.817              | 11014.72 | 763343      |
| ARL              | 1.3 |          | 1.247                            | 3.382                   | 5.514                    | 10.016                    | 31.651                      | 149.313                   | 561.104              | 224986.8 | _           |
| CV               |     |          | 0.445                            | 0.839                   | 0.905                    | 0.949                     | 0.984                       | 0.997                     | 0.999                | 0.999    | 1           |
| Q1               |     |          | 0.178                            | 0.821                   | 1.438                    | 2.735                     | 8.961                       | 42.811                    | 161.276              | 64724.53 | _           |
| Q2               |     |          | 0.428                            | 1.977                   | 3.464                    | 6.589                     | 21.590                      | 103.149                   | 388.581              | 155948.6 | _           |
| Q3               |     |          | 0.856                            | 3.955                   | 6.928                    | 13.179                    | 43.180                      | 206.298                   | 777.163              | 311897.2 | _           |
| ARL              | 1.5 |          | 1.266                            | 3.788                   | 6.564                    | 12.948                    | 48.992                      | 304.797                   | 1485.845             | 2349055  |             |
| CV               |     |          | 0.458                            | 0.858                   | 0.921                    | 0.961                     | 0.989                       | 0.998                     | 0.999                | 1        | 1           |
| Q1               |     |          | 0.184                            | 0.939                   | 1.741                    | 3.579                     | 13.949                      | 87.541                    | 427.307              | 675780.9 | _           |
| $\vec{Q}2$       |     |          | 0.444                            | 2.262                   | 4.194                    | 8.624                     | 33.611                      | 210.922                   | 1029.563             | 1628241  | _           |
| $\vec{Q}3$       |     |          | 0.888                            | 4.523                   | 8.388                    | 17.247                    | 67.221                      | 421.844                   | 2059.125             | 3256481  | _           |
| ARL              | 2   |          | 1.307                            | 4.877                   | 9.747                    | 23.451                    | 138.659                     | 1753.213                  | 16955.01             |          |             |
| CV               | _   |          | 0.485                            | 0.892                   | 0.947                    | 0.978                     | 0.996                       | 0.999                     | 0.999                | 1        | 1           |
| Q1               |     |          | 0.485 $0.199$                    | 1.254                   | 2.658                    | 6.602                     | 39.746                      | 504.224                   | 4877.509             |          | _           |
|                  |     |          |                                  |                         |                          |                           |                             |                           |                      | _        | _           |
| Q2               |     |          | 0.479 $0.957$                    | 3.021                   | 6.403                    | 15.906                    | 95.764                      | 1214.888                  | 11751.97             | _        |             |
| $\frac{Q3}{ADI}$ | 2 - |          |                                  | 6.041                   | 12.806                   | 31.812                    | 191.528<br>370.370          | 2429.776                  | 23503.94             |          |             |
| ARL              | 2.5 |          | 1.342                            | 6.078                   | 13.866                   | 40.321                    |                             | 9693.294                  | 193474               |          | -           |
| CV               |     |          | 0.505                            | 0.914                   | 0.963                    | 0.988                     | 0.999                       | 0.999                     | 1                    | 1        | 1           |
| Q1               |     |          | 0.210                            | 1.600                   | 3.843                    | 11.455                    | 106.405                     | 2788.443                  | 55658.86             | _        | _           |
| $Q_2$            |     |          | 0.507                            | 3.856                   | 9.260                    | 27.600                    | 256.375                     | 6718.533                  | 134105.6             | _        | _           |
| Q3               |     |          | 1.014                            | 7.711                   | 18.521                   | 55.201                    | 512.749                     | 13437.07                  | 268211.2             |          |             |
| ARL              | 2.7 |          | 1.354                            | 6.591                   | 15.819                   | 49.513                    | 541.553                     | 19034.65                  | 512333               | _        |             |
| CV               |     |          | 0.512                            | 0.921                   | 0.968                    | 0.989                     | 0.999                       | 0.999                     | 1                    | 1        | 1           |
| Q1               |     |          | 0.215                            | 1.748                   | 4.405                    | 14.099                    | 155.651                     | 5475.784                  | 147388.9             | _        | _           |
| Q2               |     |          | 0.517                            | 4.213                   | 10.615                   | 33.972                    | 375.029                     | 13193.47                  | 355121.8             | _        | _           |
|                  |     |          |                                  |                         |                          | 67.944                    | 750.059                     | 26386.93                  | 710243.7             | _        | _           |
| Q3               |     |          | 1.034                            | 8.426                   | 21.229                   | 01.344                    |                             |                           |                      |          |             |
| $\frac{Q3}{ARL}$ | 3   |          | 1.034                            |                         | 21.229<br>19.118         |                           |                             |                           | 2207735              |          |             |
| ARL              | 3   |          | 1.034<br>1.372                   | 7.399                   | 19.118                   | 66.684                    | 946.099                     | 51931.07                  | 2207735<br>1         | _<br>1   |             |
| ARL<br>CV        | 3   |          | 1.034<br>1.372<br>0.521          | 7.399<br>0.929          | 19.118<br>0.973          | 66.684<br>0.992           | 946.099<br>0.999            | 51931.07<br>1             | 1                    | 1        | <br>1<br>   |
| ARL<br>CV<br>Q1  | 3   |          | 1.034<br>1.372<br>0.521<br>0.220 | 7.399<br>0.929<br>1.981 | 19.118<br>0.973<br>5.355 | 66.684<br>0.992<br>19.039 | 946.099<br>0.999<br>272.032 | 51931.07<br>1<br>14939.49 | $\frac{1}{635125.6}$ | 1<br>    | 1<br>       |
| ARL<br>CV        | 3   |          | 1.034<br>1.372<br>0.521          | 7.399<br>0.929          | 19.118<br>0.973          | 66.684<br>0.992           | 946.099<br>0.999            | 51931.07<br>1             | 1                    | 1<br>    | 1<br>-<br>- |

Table 8. ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the upper-sided chart with  $\alpha_0$ =0.75,  $\lambda_0$ =2.5,  $\lambda_1$   $\in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

|               | λ   | $\alpha$ | 0.1           | 0.4           | 0.5                    | 0.6             | 0.75                 | 0.9             | 1                 | 1.3             | 1.5             |
|---------------|-----|----------|---------------|---------------|------------------------|-----------------|----------------------|-----------------|-------------------|-----------------|-----------------|
| ARL           | 0.1 |          | 69324.44      | 17331.109     | 13864.89               | 11554.07        | 9243.258             | 7702.715        | 6932.444          | 5332.649        | 4621.629        |
| CV            |     |          | 1             | 1             | 1                      | 1               | 1                    | 1               | 1                 | 1               | 0.999           |
| Q1            |     |          | 19943.25      | 4985.706      | 3988.536               | 3323.756        | 2658.976             | 2215.789        | 1994.196          | 1533.964        | 1329.416        |
| $Q_2$         |     |          | 48051.690     | 12012.663     | 9610.061               | 8008.326        | 6406.592             | 5338.769        | 4804.857          | 3695.964        | 3203.123        |
| Q3            |     |          | 96103.380     | 24025.326     | 19220.12               | 16016.65        | 12813.18             | 10677.54        | 9609.715          | 7391.928        | 6406.245        |
| ARL           | 0.4 |          | 17334.86      | 4333.715      | 3466.972               | 2889.143        | 2311.315             | 1926.095        | 1733.486          | 1333.451        | 1155.657        |
| CV            |     |          | 1             | 1             | 1                      | 1               | 1                    | 1               | 1                 | 0.999           | 0.999           |
| Q1            |     |          | 4986.784      | 1246.588      | 997.242                | 831.011         | 664.779              | 553.959         | 498.549           | 383.466         | 332.318         |
| Q2            |     |          | 12015.260     | 3003.556      | 2402.775               | 2002.255        | 1601.735             | 1334.721        | 1201.214          | 923.931         | 800.694         |
| Q3            |     |          | 24030.52      | 6007.112      | 4805.551               | 4004.509        | 3203.469             | 2669.441        | 2402.429          | 1847.862        | 1601.388        |
| ARL           | 0.5 |          | 13868.89      | 3467.222      | 2773.777               | 2311.481        | 1849.185             | 1540.988        | 1386.889          | 1066.838        | 924.593         |
| CV            |     |          | 0.999         | 0.999         | 0.999                  | 0.999           | 0.999                | 0.999           | 0.999             | 0.999           | 0.999           |
| Q1            |     |          | 3989.686      | 997.314       | 797.822                | 664.828         | 531.834              | 443.171         | 398.839           | 306.766         | 265.845         |
| $Q_2$         |     |          | 9612.833      | 2402.948      | 1922.289               | 1601.85         | 1281.411             | 1067.785        | 960.971           | 739.129         | 640.532         |
| Q3            |     |          | 19225.67      | 4805.897      | 3844.579               | 3203.7          | 2562.821             | 2135.569        | 1921.943          | 1478.258        | 1281.064        |
| ARL           | 0.6 |          | 11558.24      | 2889.559      | 2311.648               | 1926.373        | 1541.099             | 1284.249        | 1155.824          | 889.096         | 770.549         |
| CV            |     |          | 1             | 1             | 1                      | 1               | 1                    | 0.999           | 0.999             | 0.999           | 0.999           |
| Q1            |     |          | 3324.954      | 831.131       | 664.876                | 554.039         | 443.203              | 369.312         | 332.366           | 255.633         | 221.529         |
| $Q_2$         |     |          | 8011.214      | 2002.544      | 1601.966               | 1334.914        | 1067.862             | 889.827         | 800.809           | 615.927         | 533.758         |
| Q3            | 0.0 |          | 16022.43      | 4005.087      | 3203.931               | 2669.827        | 2135.723             | 1779.654        | 1601.619          | 1231.855        | 1067.515        |
| ARL           | 0.9 |          | 7707.158      | 1926.789      | 1541.432               | 1284.527        | 1027.621             | 856.351         | 770.716           | 592.859         | 513.811         |
| CV            |     |          | 1             | 1             | 1                      | 1               | 1                    | 0.999           | 0.999             | 0.999           | 0.999           |
| Q1            |     |          | 2217.067      | 554.159       | 443.298                | 369.391         | 295.484              | 246.213         | 221.577           | 170.411         | 147.670         |
| Q2            |     |          | 5341.849      | 1335.202      | 1068.092               | 890.019         | 711.946              | 593.231         | 533.873           | 410.592         | 355.799         |
| Q3            |     |          | 10683.7       | 2670.405      | 2136.185               | 1780.039        | 1423.892             | 1186.461        | 1067.746          | 821.183         | 711.599         |
| ARL           | 1   |          | 6936.942      | 1734.236      | 1387.389               | 1156.157        | 924.926              | 770.772         | 693.695           | 533.611         | 462.463         |
| CV            |     |          | 1             | 1             | 1                      | 1               | 0.999                | 0.999           | 0.999             | 0.999           | 0.999           |
| Q1            |     |          | 1995.49       | 498.765       | 398.983                | 332.462         | 265.941              | 221.593         | 199.419           | 153.367         | 132.899         |
| $Q_2$         |     |          | 4807.975      | 1201.734      | 961.318                | 801.041         | 640.763              | 533.912         | 480.486           | 369.525         | 320.208         |
| Q3            | 1.0 |          | 9615.951      | 2403.468      | 1922.636               | 1602.081        | 1281.526             | 1067.823        | 960.972           | 739.049         | 640.417         |
| ARL<br>CV     | 1.3 |          | 5337.263<br>1 | 1334.316<br>1 | $1067.453 \\ 0.999531$ | 889.544         | 711.635              | 593.029 $0.999$ | 533.727           | 410.559         | 355.818         |
| Q1            |     |          | 1535.291      | 383.715       | 306.943                | 0.999 $255.762$ | 0.999                | 0.999 $170.460$ | 0.999             | 0.999 $117.967$ | 0.998 $102.219$ |
| $Q_1$ $Q_2$   |     |          | 3699.162      | 924.531       | 739.555                | 616.238         | $204.581 \\ 492.921$ | 410.400         | 153.399 $369.604$ | 284.231         | 246.288         |
| $Q_2$ $Q_3$   |     |          | 7398.324      | 1849.061      | 1479.11                | 1232.477        | 985.843              | 821.420         | 739.209           | 568.462         | 492.575         |
| ARL           | 1.5 |          | 4626.294      | 1156.574      | 925.259                | 771.049         | 616.839              | 514.033         | 462.629           | 355.869         | 308.420         |
| CV            | 1.5 |          | 1             | 1150.574      | 0.999459               | 0.999           | 0.999                | 0.999           | 0.999             | 0.998           | 0.998           |
| Q1            |     |          | 1330.758      | 332.582       | 266.037                | 221.673         | 177.309              | 147.734         | 132.946           | 102.233         | 88.583          |
| $Q_2$         |     |          | 3206.356      | 801.329       | 640.994                | 534.104         | 427.214              | 355.954         | 320.324           | 246.323         | 213.434         |
| $Q_3$         |     |          | 6412.712      | 1602.658      | 1281.988               | 1068.208        | 854.428              | 711.908         | 640.648           | 492.646         | 426.868         |
| ARL           | 2   |          | 3470.969      | 867.743       | 694.194                | 578.495         | 462.796              | 385.664         | 347.097           | 266.998         | 231.399         |
| CV            | 4   |          | 0.999         | 0.999         | 0.999                  | 0.999           | 0.999                | 0.999           | 0.999             | 0.998           | 0.998           |
| Q1            |     |          | 998.392       | 249.490       | 199.563                | 166.279         | 132.994              | 110.805         | 99.709            | 76.667          | 66.425          |
| $Q_2$         |     |          | 2405.546      | 601.127       | 480.832                | 400.636         | 320.439              | 266.975         | 240.243           | 184.722         | 160.047         |
| $Q_3$         |     |          | 4811.092      | 1202.253      | 961.664                | 801.271         | 640.879              | 533.95          | 480.486           | 369.445         | 320.093         |
| ARL           | 2.5 |          | 2777.775      | 694.444       | 555.555                | 462.963         | 370.370              | 308.642         | 277.778           | 213.676         | 185.186         |
| CV            |     |          | 0.999         | 0.999         | 0.999                  | 0.999           | 0.998                | 0.998           | 0.998             | 0.998           | 0.997           |
| Q1            |     |          | 798.972       | 199.635       | 159.679                | 133.042         | 106.405              | 88.647          | 79.768            | 61.327          | 53.131          |
| $Q_2$         |     |          | 1925.06       | 481.005       | 384.735                | 320.555         | 256.375              | 213.588         | 192.194           | 147.762         | 128.014         |
| Q3            |     |          | 3850.12       | 962.010       | 769.469                | 641.109         | 512.749              | 427.175         | 384.389           | 295.524         | 256.028         |
| ARL           | 2.7 |          | 2572.383      | 643.096       | 514.477                | 428.731         | 342.985              | 285.821         | 257.239           | 197.877         | 171.493         |
| CV            |     |          | 1             | 0.999         | 0.999                  | 0.999           | 0.999                | 0.998           | 0.998             | 0.997           | 0.997           |
| Q1            |     |          | 739.885       | 184.863       | 147.862                | 123.194         | 98.527               | 82.082          | 73.859            | 56.782          | 49.192          |
| $Q_2$         |     |          | 1782.694      | 445.414       | 356.262                | 296.827         | 237.392              | 197.769         | 177.958           | 136.811         | 118.523         |
| Q3            |     |          | 3565.387      | 890.827       | 712.523                | 593.654         | 474.784              | 395.538         | 355.915           | 273.621         | 237.046         |
| ARL           | 3   |          | 2315.644      | 578.911       | 463.129                | 385.941         | 308.753              | 257.295         | 231.565           | 178.127         | 154.377         |
| CV            | _   |          | 0.999         | 0.999         | 0.999                  | 0.999           | 0.998                | 0.998           | 0.998             | 0.997           | 0.997           |
| Q1            |     |          | 666.026       | 166.398       | 133.090                | 110.884         | 88.679               | 73.875          | 66.473            | 51.100          | 44.268          |
| $Q_2$         |     |          | 1604.736      | 400.9246      | 320.67                 | 267.167         | 213.665              | 177.996         | 160.162           | 123.122         | 106.659         |
| $\tilde{Q}_3$ |     |          | 3209.471      | 801.848       | 641.34                 | 534.335         | 427.329              | 355.992         | 320.324           | 246.243         | 213.319         |
|               |     |          |               |               |                        |                 |                      |                 |                   |                 |                 |

Table 9. ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the Two-sided chart with  $\alpha_0$ =0.75,  $\lambda_0$ =2.5,  $\lambda_1 \in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

|                       | λ   | $\alpha$ | 0.1           | 0.4                    | 0.5           | 0.6     | 0.75    | 0.9     | 1        | 1.3      | 1.5      |
|-----------------------|-----|----------|---------------|------------------------|---------------|---------|---------|---------|----------|----------|----------|
| ARL                   | 0.1 |          | 1.046         | 1.214                  | 1.282         | 1.357   | 1.484   | 1.634   | 1.748    | 2.182    | 2.574    |
| CV                    |     |          | 0.211         | 0.420                  | 0.469         | 0.513   | 0.571   | 0.623   | 0.654    | 0.736    | 0.782    |
| Q1                    |     |          | 0.092         | 0.166                  | 0.189         | 0.215   | 0.257   | 0.304   | 0.339    | 0.469    | 0.585    |
| Q2                    |     |          | 0.222         | 0.399                  | 0.458         | 0.519   | 0.619   | 0.732   | 0.816    | 1.131    | 1.409    |
| $\vec{Q}3$            |     |          | 0.445         | 0.799                  | 0.915         | 1.038   | 1.237   | 1.464   | 1.633    | 2.261    | 2.818    |
| ARL                   | 0.4 |          | 1.133         | 1.820                  | 2.221         | 2.778   | 4.099   | 6.515   | 9.312    | 36.066   | 117.186  |
| CV                    |     |          | 0.342         | 0.671                  | 0.741         | 0.800   | 0.869   | 0.920   | 0.945    | 0.986    | 0.996    |
| Q1                    |     |          | 0.134         | 0.361                  | 0.481         | 0.645   | 1.029   | 1.726   | 2.532    | 10.231   | 33.568   |
| $\tilde{ m Q}2$       |     |          | 0.323         | 0.869                  | 1.159         | 1.553   | 2.478   | 4.159   | 6.101    | 24.651   | 80.880   |
| $\vec{Q}$ 3           |     |          | 0.646         | 1.739                  | 2.317         | 3.107   | 4.957   | 8.319   | 12.203   | 49.301   | 161.761  |
| ARL                   | 0.5 |          | 1.153         | 2.022                  | 2.578         | 3.402   | 5.563   | 10.134  | 16.226   | 100.386  | 449.219  |
| CV                    |     |          | 0.364         | 0.711                  | 0.782         | 0.840   | 0.906   | 0.949   | 0.969    | 0.995    | 0.999    |
| Q1                    |     |          | 0.143         | 0.423                  | 0.586         | 0.826   | 1.452   | 2.769   | 4.523    | 28.735   | 129.088  |
| $\tilde{Q}_2$         |     |          | 0.343         | 1.016                  | 1.412         | 1.992   | 3.498   | 6.672   | 10.897   | 69.235   | 311.028  |
| $\overrightarrow{Q3}$ |     |          | 0.687         | 2.032                  | 2.824         | 3.983   | 6.996   | 13.343  | 21.794   | 138.470  | 622.056  |
| ARL                   | 0.6 |          | 1.172         | 2.226                  | 2.960         | 4.117   | 7.465   | 15.641  | 28.183   | 270.085  | 1042.26  |
| CV                    | 0.0 |          | 0.383         | 0.742                  | 0.814         | 0.870   | 0.931   | 0.968   | 0.982    | 0.998    | 0.999    |
| Q1                    |     |          | 0.149         | 0.482                  | 0.698         | 1.034   | 2.000   | 4.354   | 7.963    | 77.555   | 299.696  |
| $Q_2$                 |     |          | 0.361         | 1.162                  | 1.682         | 2.491   | 4.819   | 10.491  | 19.186   | 186.862  | 722.093  |
| $Q_3$                 |     |          | 0.722         | 2.325                  | 3.363         | 4.983   | 9.638   | 20.983  | 38.372   | 373.723  | 1444.186 |
| ARL                   | 0.9 |          | 1.217         | 2.859                  | 4.278         | 6.925   | 17.081  | 54.772  | 138.689  | 1073.366 | 1027.135 |
| CV                    | 0.0 |          | 0.423         | 0.806                  | 0.875         | 0.925   | 0.970   | 0.991   | 0.996    | 0.999    | 0.999    |
| Q1                    |     |          | 0.167         | 0.668                  | 1.081         | 1.845   | 4.769   | 15.613  | 39.754   | 308.644  | 295.345  |
| $Q_2$                 |     |          | 0.402         | 1.610                  | 2.603         | 4.445   | 11.489  | 37.617  | 95.785   | 743.654  | 711.609  |
| $Q_3$                 |     |          | 0.402 $0.805$ | 3.221                  | 5.207         | 8.889   | 22.979  | 75.234  | 191.569  | 1487.307 | 1423.219 |
| ARL                   | 1   |          | 1.230         | 3.078                  | 4.779         | 8.124   | 22.168  | 81.414  | 223.498  | 1039.881 | 925.319  |
| CV                    | 1   |          | 0.433         | 0.822                  | 0.889         | 0.936   | 0.977   | 0.994   | 0.998    | 0.999    | 0.999    |
| Q1                    |     |          | 0.433 $0.172$ | 0.322 $0.732$          | 1.226         | 2.190   | 6.232   | 23.277  | 64.152   | 299.011  | 266.054  |
| $Q_2$                 |     |          | 0.172 $0.414$ | 1.765                  | 2.953         | 5.277   | 15.016  | 56.085  | 154.570  | 720.444  | 641.036  |
| $Q_3$                 |     |          | 0.414 $0.827$ | 3.529                  | 5.906         | 10.554  | 30.033  | 112.169 | 309.140  | 1440.888 | 1282.072 |
| ARL                   | 1.3 |          | 1.265         | 3.765                  | 6.495         | 12.713  | 46.493  | 236.475 | 610.052  | 821.154  | 711.943  |
| CV                    | 1.5 |          | 0.458         | 0.857                  | 0.495 $0.919$ | 0.959   | 0.989   | 0.998   | 0.999    | 0.999    | 0.999    |
| Q1                    |     |          | 0.184         | 0.932                  | 1.721         | 3.511   | 13.231  | 67.886  | 175.357  | 236.087  | 204.669  |
| $Q_2$                 |     |          | 0.134 $0.443$ | 2.245                  | 4.146         | 8.461   | 31.879  | 163.565 | 422.509  | 568.834  | 493.135  |
| Q3                    |     |          | 0.887         | 4.489                  | 8.292         | 16.921  | 63.758  | 327.129 | 845.019  | 1137.667 | 986.269  |
| ARL                   | 1.5 |          | 1.285         | 4.247                  | 7.831         | 16.769  | 73.504  | 403.125 | 763.132  | 711.979  | 617.062  |
| CV                    | 1.0 |          | 0.471         | 0.874                  | 0.934         | 0.969   | 0.993   | 0.999   | 0.999    | 0.999    | 0.999    |
| Q1                    |     |          | 0.191         | 1.072                  | 2.106         | 4.679   | 21.002  | 115.828 | 219.396  | 204.679  | 177.374  |
| $Q_2$                 |     |          | 0.191 $0.460$ | $\frac{1.072}{2.582}$  | 5.073         | 11.273  | 50.601  | 279.078 | 528.616  | 493.160  | 427.368  |
| $Q_3$                 |     |          | 0.920         | 5.164                  | 10.146        | 22.546  | 101.203 | 558.156 | 1057.232 | 986.320  | 854.736  |
| ARL                   | 2   |          | 1.328         | 5.551                  | 11.940        | 31.541  | 195.962 | 664.877 | 687.592  | 534.092  | 462.879  |
| CV                    | 2   |          | 0.497         | 0.905                  | 0.957         | 0.984   | 0.997   | 0.999   | 0.999    | 0.999    | 0.999    |
| Q1                    |     |          | 0.497 $0.206$ | 1.448                  | 3.289         | 8.929   | 56.231  | 191.129 | 197.664  | 153.505  | 133.018  |
| $Q_2$                 |     |          | 0.496         | 3.489                  | 7.925         | 21.514  | 135.483 | 460.511 | 476.256  | 369.858  | 320.497  |
| $Q_3$                 |     |          | 0.490 $0.991$ | 6.979                  | 15.849        | 43.028  | 270.967 | 921.022 | 952.512  | 739.716  | 640.994  |
| ARL                   | 2.5 |          | 1.364         | 7.002                  | 17.329        | 55.069  | 370.370 | 606.075 | 555.289  | 427.351  | 370.371  |
| CV                    | 2.0 |          | 0.517         | 0.926                  | 0.971         | 0.991   | 0.999   | 0.999   | 0.999    | 0.999    | 0.999    |
| Q1                    |     |          | 0.218         | 1.867                  | 4.840         | 15.698  | 106.405 | 174.213 | 159.603  | 122.797  | 106.405  |
| $Q_2$                 |     |          | 0.525         | 4.498                  | 11.662        | 37.824  | 256.375 | 419.759 | 384.551  | 295.870  | 256.375  |
| $Q_3$                 |     |          | 1.049         | 8.996                  | 23.324        | 75.647  | 512.749 | 839.506 | 769.101  | 591.740  | 512.749  |
| ARL                   | 2.7 |          | 1.377         | 7.625                  | 19.893        | 67.475  | 426.794 | 567.078 | 514.367  | 395.724  | 342.961  |
| CV                    | 2.1 |          | 0.523         | 0.932                  | 0.975         | 0.993   | 0.999   | 0.999   | 0.999    | 0.999    | 0.998    |
| Q1                    |     |          | 0.323 $0.222$ | 2.046                  | 5.578         | 19.267  | 122.637 | 162.994 | 147.829  | 113.699  | 98.519   |
| $Q_2$                 |     |          | 0.222 $0.535$ | 4.931                  | 13.439        | 46.423  | 295.484 | 392.722 | 356.185  | 273.948  | 237.375  |
| $Q_3$                 |     |          | 1.070         | 9.862                  | 26.879        | 92.846  | 590.969 | 785.444 | 712.369  | 547.896  | 474.751  |
| ARL                   | 3   |          | 1.395         | 8.609                  | 24.219        | 89.548  | 477.095 | 513.313 | 463.035  | 356.189  | 308.698  |
| CV                    | J   |          | 0.532         | 0.940                  | 0.979         | 0.994   | 0.999   | 0.999   | 0.999    | 0.999    | 0.999    |
| Q1                    |     |          | 0.332 $0.228$ | 2.329                  | 6.823         | 25.617  | 137.108 | 147.527 | 133.063  | 102.326  | 88.663   |
| $Q_1$                 |     |          | 0.228 $0.549$ | 5.614                  | 16.439        | 61.723  | 330.350 | 355.455 | 320.605  | 246.545  | 213.626  |
| $Q_2$ $Q_3$           |     |          | 1.099         | $\frac{3.014}{11.227}$ | 32.877        | 123.446 | 660.700 | 710.910 | 641.209  | 493.090  | 427.253  |
| <u>~</u>              |     |          | 1.099         | 11.221                 | 54.011        | 140.440 | 000.700 | 110.910 | 041.209  | 433.030  | 441.400  |

Table 10. Daily rainfall (in mm) on the January for a location in Florida from (1907-2000)

| 1.00 | 1.00 | 1.00 | 0.70 | 1.00 | 1.00 | 0.94 | 1.00 | 1.00 | 1.00 | 0.86 | 0.58 | 0.58 | 1.00 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.81 | 0.98 | 0.33 | 1.00 | 1.00 | 0.77 |
| 1.00 | 1.00 | 1.00 | 0.51 | 0.90 | 1.00 | 1.00 | 0.77 | 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 |
| 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1.00 | 0.90 | 0.63 | 0.59 | 0.54 | 0.95 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | 0.63 | 0.63 |
| 1.00 | 1.00 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 0.82 | 1.00 | 1.00 | 1.00 | 0.47 | 1.00 | 1.00 |
| 1.00 | 0.41 | 0.39 | 1.00 | 1.00 | 0.77 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
| 1.00 |      |      |      |      |      |      |      |      |      |      |      |      |      |

Table 11. AIC, BIC, CAIC, and HQIC computed after fitting different distributions on for Rainfall Data

| Statistic | UNH      | Kumaraswamy | Topp-Leon | rGTL    | beta     |
|-----------|----------|-------------|-----------|---------|----------|
| AIC       | -400.864 | -329.714    | -107.605  | -99.080 | -331.849 |
| CAIC      | -400.739 | -329.589    | -107.605  | -98.955 | -331.724 |
| BIC       | -395.674 | -324.524    | -105.01   | -93.890 | -326.659 |
| HQIC      | -398.764 | -327.614    | -106.555  | -96.980 | -329.749 |

Table 12. Maximum likelihood estimates with their standard errors (in parenthesis) and K-S test p-value for Rainfall Data

| Model                             | MLEs                                           | K-S   |
|-----------------------------------|------------------------------------------------|-------|
| $\mathrm{UNH}(\alpha,\lambda)$    | $\hat{\alpha} = 0.513, \hat{\lambda} = 36.317$ | 0.717 |
|                                   | (0.039, 5.657)                                 |       |
| Kumaraswamy $(\alpha, \beta)$     | $\hat{\alpha} = 5.045, \hat{\beta} = 0.428$    | 0.441 |
|                                   | (0.869, 0.050)                                 |       |
| Topp-Leon $(\alpha)$              | $\hat{\alpha}$ = 8.568                         | 0.426 |
|                                   | (0.861)                                        |       |
| $\mathrm{rGTL}(\alpha, \upsilon)$ | $\hat{\alpha} = 0.443, \hat{v} = 4.430$        | 0.920 |
|                                   | (0.147, 0.614)                                 |       |
| $\mathrm{beta}(\alpha,\lambda)$   | $\hat{\alpha} = 4.512, \hat{\lambda} = 0.439$  | 0.438 |
|                                   | (0.798, 0.051)                                 |       |

Table 13. Anxiety Data Set

| 0.01 | 0.17 | 0.01 | 0.05 | 0.09 | 0.41 | 0.05 | 0.01 | 0.13 | 0.01 | 0.05 | 0.17 | 0.01 | 0.09 |
|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 0.01 | 0.05 | 0.09 | 0.09 | 0.05 | 0.01 | 0.01 | 0.01 | 0.29 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
| 0.01 | 0.01 | 0.01 | 0.09 | 0.37 | 0.05 | 0.01 | 0.05 | 0.29 | 0.09 | 0.01 | 0.25 | 0.01 | 0.09 |
| 0.01 | 0.05 | 0.21 | 0.01 | 0.01 | 0.01 | 0.13 | 0.17 | 0.37 | 0.01 | 0.01 | 0.09 | 0.57 | 0.01 |
| 0.01 | 0.13 | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | 0.09 | 0.13 | 0.01 | 0.01 | 0.09 | 0.09 | 0.37 |
| 0.01 | 0.05 | 0.01 | 0.01 | 0.13 | 0.01 | 0.57 | 0.01 | 0.01 | 0.09 | 0.01 | 0.01 | 0.01 | 0.01 |
| 0.01 | 0.01 | 0.05 | 0.01 | 0.01 | 0.01 | 0.13 | 0.01 | 0.25 | 0.01 | 0.01 | 0.09 | 0.13 | 0.01 |
| 0.01 | 0.05 | 0.13 | 0.01 | 0.09 | 0.01 | 0.05 | 0.01 | 0.05 | 0.01 | 0.09 | 0.01 | 0.01 | 0.01 |
| 0.01 | 0.01 | 0.25 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.37 | 0.25 |
| 0.05 | 0.05 | 0.25 | 0.05 | 0.05 | 0.01 | 0.05 | 0.01 | 0.01 | 0.01 | 0.17 | 0.29 | 0.57 | 0.01 |
| 0.05 | 0.01 | 0.09 | 0.01 | 0.09 | 0.49 | 0.45 | 0.01 | 0.01 | 0.01 | 0.05 | 0.01 | 0.17 | 0.01 |
| 0.13 | 0.01 | 0.21 | 0.13 | 0.01 | 0.01 | 0.17 | 0.01 | 0.01 | 0.21 | 0.13 | 0.69 | 0.25 | 0.01 |
| 0.01 | 0.09 | 0.13 | 0.01 | 0.05 | 0.01 | 0.01 | 0.29 | 0.25 | 0.49 | 0.01 | 0.01 |      |      |

Table 14. AIC, BIC, CAIC, and HQIC computed after fitting different distributions using Anxiety Data

| Statistic | UNH      | rGTL-PS  | Topp-Leon |
|-----------|----------|----------|-----------|
| AIC       | -450.782 | -443.914 | -430.609  |
| CAIC      | -450.709 | -443.842 | -430.585  |
| BIC       | -444.522 | -437.655 | -427.479  |
| HQIC      | -448.241 | -441.374 | -429.339  |

Table 15. Maximum likelihood estimates with their standard errors (in parenthesis) and p values of K-S test for Anxiety Data

| Model                 | MLE                                           | K-S   |
|-----------------------|-----------------------------------------------|-------|
| $UNH(\alpha,\lambda)$ | $\hat{\alpha} = 8.794, \hat{\lambda} = 0.025$ | 0.356 |
|                       | (2.188, 0.006)                                |       |
| $rGTL-PS(\alpha, v)$  | $\hat{\alpha} = 0.537, \hat{v} = 6.378$       | 0.407 |
|                       | (0.223, 1.090)                                |       |
| Topp-leon $(\alpha)$  | $\hat{\alpha}$ =0.372                         | 0.264 |
|                       | (0.028)                                       |       |

Table A.1. ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability of the lower-sided chart with  $\alpha_0$ =1.00,  $\lambda_0$ =2.5,  $\lambda_1 \in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

| ARL   O.1   O.2   O.4   O.5   O.6   O.75   O.9   1   I.3   I.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CV         0.146         0.291         0.326         0.338         0.436         0.459         0.522         0.559           Q1         0.075         0.117         0.128         0.139         0.156         0.173         0.185         0.221         0.248           Q2         0.179         0.281         0.309         0.336         0.376         0.417         0.445         0.533         0.596           Q3         0.359         0.562         0.618         0.627         0.753         0.834         0.890         1.066         1.193           ARL         0.4         1.071         1.357         1.485         1.602         0.748         0.782         0.865         0.906           Q1         0.106         0.215         0.257         0.304         0.388         0.496         0.586         0.999         1.450           Q2         0.256         0.519         0.619         0.732         0.388         0.496         0.586         0.999         0.944           Q3         0.512         1.038         1.281         1.872         2.391         2.822         4.766         6.889           ARL         0.5         0.524         0.616         0.671                                    |
| Q1         0.075         0.117         0.128         0.139         0.136         0.173         0.185         0.221         0.248           Q2         0.179         0.281         0.309         0.336         0.376         0.417         0.445         0.533         0.596           Q3         0.359         0.562         0.618         0.672         0.753         0.834         0.890         1.066         1.193           ARL         0.4         1.071         1.357         1.485         1.634         1.911         2.273         2.576         3.962         5.588           CV         0.256         0.513         0.571         0.623         0.691         0.748         0.782         0.865         0.906           Q1         0.106         0.215         0.619         0.732         0.936         1.195         1.411         2.383         3.495           Q2         0.256         0.519         0.619         0.732         0.936         1.195         1.411         2.383         3.495           Q3         0.512         1.038         1.238         1.451         1.216         2.770         3.284         5.806         9.255           CV         0.279                                   |
| Q2         0.179         0.281         0.309         0.336         0.376         0.417         0.445         0.533         0.596           ARL         0.4         1.071         1.357         1.485         1.634         1.911         2.273         2.576         3.962         5.558           CV         0.258         0.513         0.571         0.623         0.661         0.748         0.782         0.865         0.996           Q1         0.106         0.215         0.257         0.304         0.388         0.496         0.586         0.989         1.450           Q2         0.256         0.519         0.619         0.732         0.936         1.195         1.411         2.383         3.495           Q3         0.512         1.038         1.238         1.465         1.872         2.391         2.822         4.766         6.989           ARL         0.5         1.085         1.431         1.612         1.817         2.216         2.770         3.264         5.806         9.256           CV         0.279         0.557         0.716         0.868         1.55         1.548         1.895         3.668         6.622           Q3                                     |
| Q3         0.359         0.562         0.618         0.672         0.753         0.834         0.890         1.066         1.193           ARL         0.4         1.071         1.357         1.485         1.634         1.911         2.273         2.576         3.962         5.558           CV         0.258         0.513         0.571         0.623         0.691         0.748         0.782         0.865         0.996           Q1         0.106         0.215         0.257         0.304         0.388         0.496         0.586         0.989         1.450           Q2         0.256         0.519         0.619         0.732         0.936         1.195         1.411         2.383         3.495           Q3         0.512         1.038         1.431         1.612         1.817         2.216         2.770         3.264         5.806         9.255           CV         0.279         0.554         0.616         0.671         0.741         0.799         0.833         0.909         0.944           Q1         0.113         0.244         0.297         0.587         0.716         0.868         1.155         1.548         1.895         3.668         6.662<                   |
| ARL         0.4         1.071         1.357         1.485         1.634         1.911         2.273         2.576         3.962         5.558           CV         0.258         0.513         0.571         0.623         0.691         0.748         0.782         0.865         0.906           Q1         0.106         0.215         0.257         0.304         0.388         0.496         0.586         0.989         1.450           Q2         0.256         0.519         0.619         0.732         0.936         1.195         1.411         2.383         3.495           Q3         0.512         1.088         1.238         1.465         1.872         2.391         2.822         4.766         6.989           ARL         0.5         1.085         1.431         1.612         1.817         2.216         2.770         3.264         7.66         6.989           ARL         0.5         1.085         1.431         1.612         2.216         2.770         3.263         0.909         0.944           Q1         0.113         0.244         0.297         0.568         1.55         1.548         1.895         3.688         6.062           Q3                                       |
| CV         0.258         0.513         0.571         0.623         0.691         0.748         0.782         0.865         0.989         1.450           Q1         0.256         0.519         0.619         0.732         0.936         1.195         1.411         2.383         3.495           Q3         0.512         1.038         1.238         1.465         1.872         2.391         2.822         4.766         6.989           ARL         0.5         1.085         1.443         1.612         1.817         2.216         2.770         3.264         5.806         9.255           CV         0.279         0.554         0.616         0.671         0.741         0.799         0.833         0.909         0.944           Q1         0.113         0.244         0.297         0.360         0.479         0.643         0.786         1.522         2.516           Q2         0.272         0.587         0.716         0.868         1.155         1.548         1.895         3.668         6.662           Q3         0.543         1.173         1.431         1.735         2.310         3.096         3.789         7.334         12.124           ARL                                 |
| Q1         0.106         0.215         0.257         0.304         0.388         0.496         0.586         0.989         1.450           Q2         0.512         1.038         1.238         1.381         1.872         2.391         2.822         4.766         6.989           ARL         0.5         1.085         1.443         1.612         1.817         2.216         2.770         3.264         5.806         9.255           CV         0.279         0.554         0.616         0.671         0.741         0.799         0.833         0.999         0.944           Q1         0.113         0.244         0.297         0.360         0.479         0.643         0.786         1.522         2.516           Q2         0.272         0.587         0.716         0.868         1.155         1.548         1.895         3.668         6.062           Q3         0.543         1.173         1.431         1.735         2.310         3.096         3.789         7.334         12.124           ARL         0.6         1.097         1.528         1.743         2.012         2.559         3.369         4.135         8.618         15.854           CV                                  |
| Q2         0.256         0.519         0.619         0.732         0.936         1.195         1.411         2.383         3.495           Q3         0.512         1.038         1.238         1.465         1.872         2.391         2.822         4.766         6.989           ARL         0.5         1.085         1.443         1.612         1.817         2.216         2.770         3.264         5.806         6.925           CV         0.279         0.554         0.616         0.671         0.741         0.799         0.833         0.909         0.944           Q1         0.113         0.244         0.297         0.360         0.479         0.643         0.786         1.522         2.516           Q2         0.272         0.587         0.716         0.868         1.155         1.548         1.895         3.668         6.062           Q3         0.543         1.173         1.431         1.735         2.310         3.096         3.789         7.334         12.124           ARL         0.6         1.097         1.528         1.743         2.012         2.559         3.369         4.135         8.618         15.84           Q1                                   |
| Q3         0.512         1.038         1.238         1.465         1.872         2.391         2.822         4.766         6.989           ARL         0.5         1.085         1.443         1.612         1.817         2.216         2.770         3.264         5.806         9.255           CV         0.279         0.554         0.616         0.671         0.741         0.799         0.333         0.909         0.944           Q1         0.113         0.244         0.297         0.360         0.479         0.643         0.786         1.522         2.516           Q2         0.272         0.587         0.716         0.868         1.155         1.548         1.895         3.668         6.662           Q3         0.543         1.173         1.431         1.735         2.310         3.096         3.789         7.334         12.124           ARL         0.6         1.097         1.528         1.743         2.012         2.559         3.369         4.135         8.618         15.864           CV         0.297         0.588         0.653         0.709         0.781         0.839         0.871         0.940         0.968           Q1                                  |
| ARL         0.5         1.085         1.443         1.612         1.817         2.216         2.770         3.264         5.866         9.255           CV         0.279         0.554         0.616         0.671         0.741         0.799         0.833         0.999         0.944           Q1         0.113         0.244         0.297         0.360         0.479         0.643         0.786         1.522         2.516           Q2         0.272         0.587         0.716         0.868         1.155         1.548         1.895         3.668         6.062           Q3         0.543         1.173         1.431         1.735         2.310         3.096         3.789         7.334         12.124           ARL         0.6         1.097         1.528         1.743         2.012         2.559         3.369         4.135         8.618         1.584           CV         0.297         0.588         0.653         0.799         0.781         0.839         0.871         0.940         0.968           Q1         0.118         0.271         0.337         0.419         0.581         0.817         1.039         2.332         4.416           Q2                                   |
| Q1         0.113         0.244         0.297         0.360         0.479         0.643         0.786         1.522         2.516           Q2         0.272         0.587         0.716         0.868         1.155         1.548         1.895         3.668         6.062           Q3         0.543         1.173         1.431         1.735         2.310         3.096         3.789         7.334         12.124           ARL         0.6         1.097         1.528         1.743         2.012         2.559         3.369         4.135         8.618         15.854           CV         0.297         0.588         0.653         0.709         0.781         0.839         0.871         0.940         0.968           Q1         0.118         0.271         0.337         0.419         0.581         0.817         1.039         2.332         4.416           Q2         0.286         0.652         0.813         1.009         1.399         1.969         2.504         5.619         10.639           Q3         0.571         1.305         1.625         2.017         2.799         3.938         5.007         11.239         21.278           ARL         0.91                              |
| Q2         0.272         0.587         0.716         0.868         1.155         1.548         1.895         3.668         6.062           Q3         0.543         1.173         1.431         1.735         2.310         3.096         3.789         7.334         12.124           ARL         0.6         1.097         1.528         1.743         2.012         2.559         3.369         4.135         8.618         15.854           CV         0.297         0.588         0.653         0.709         0.781         0.839         0.871         0.940         0.968           Q1         0.118         0.271         0.337         0.419         0.581         0.817         1.039         2.332         4.416           Q2         0.286         0.652         0.813         1.009         1.399         1.969         2.504         5.619         10.639           Q3         0.571         1.305         1.625         2.017         2.799         3.938         5.007         11.239         21.278           ARL         0.9         1.128         1.783         2.158         2.672         3.868         6.001         8.408         30.151         93.22           Q1                              |
| Q3         0.543         1.173         1.431         1.735         2.310         3.096         3.789         7.334         12.124           ARL         0.6         1.097         1.528         1.743         2.012         2.559         3.369         4.135         8.618         15.854           CV         0.297         0.588         0.653         0.709         0.781         0.839         0.871         0.940         0.968           Q1         0.118         0.271         0.337         0.419         0.581         0.817         1.039         2.332         4.416           Q2         0.286         0.652         0.813         1.009         1.399         1.969         2.504         5.619         10.639           Q3         0.571         1.305         1.625         2.017         2.799         3.938         5.007         11.239         21.278           ARL         0.9         1.128         1.783         2.1578         2.672         3.868         6.001         8.408         30.151         93.267           CV         0.337         0.663         0.732         0.791         0.861         0.913         0.939         0.983         0.992           Q2<                           |
| ARL         0.6         1.097         1.528         1.743         2.012         2.559         3.369         4.135         8.618         15.854           CV         0.297         0.588         0.653         0.709         0.781         0.839         0.871         0.940         0.968           Q1         0.118         0.271         0.337         0.419         0.581         0.817         1.039         2.332         4.416           Q2         0.286         0.652         0.813         1.009         1.399         1.969         2.504         5.619         10.639           Q3         0.571         1.305         1.625         2.017         2.799         3.938         5.007         11.239         21.278           ARL         0.9         1.128         1.783         2.158         2.672         3.868         6.001         8.408         30.151         93.267           CV         0.337         0.663         0.732         0.791         0.861         0.913         0.939         0.983         0.995           Q1         0.132         0.349         0.462         0.614         0.962         1.578         2.272         8.529         26.687           Q2 </td                        |
| CV         0.297         0.588         0.653         0.709         0.781         0.839         0.871         0.940         0.968           Q1         0.118         0.271         0.337         0.419         0.581         0.817         1.039         2.332         4.416           Q2         0.286         0.652         0.813         1.009         1.399         1.969         2.504         5.619         10.639           Q3         0.571         1.305         1.625         2.017         2.799         3.938         5.007         11.239         21.278           ARL         0.9         1.128         1.783         2.158         2.672         3.868         6.001         8.408         30.151         93.267           CV         0.337         0.663         0.732         0.791         0.861         0.913         0.939         0.983         0.995           Q1         0.132         0.349         0.462         0.614         0.962         1.578         2.272         8.529         26.687           Q2         0.319         0.842         1.113         1.478         2.317         3.802         5.474         20.551         64.301           Q3         0.638                           |
| Q1         0.118         0.271         0.337         0.419         0.581         0.817         1.039         2.332         4.416           Q2         0.286         0.652         0.813         1.009         1.399         1.969         2.504         5.619         10.639           Q3         0.571         1.305         1.625         2.017         2.799         3.938         5.007         11.239         21.278           ARL         0.9         1.128         1.783         2.158         2.672         3.868         6.001         8.408         30.151         93.267           CV         0.337         0.663         0.732         0.791         0.861         0.913         0.993         0.995           Q1         0.132         0.349         0.462         0.614         0.962         1.578         2.272         8.529         26.687           Q2         0.319         0.842         1.113         1.478         2.317         3.802         5.474         20.551         64.301           Q3         0.638         1.684         2.226         2.967         4.635         7.604         10.949         41.102         128.601           ARL         1         1.13                           |
| Q2         0.286         0.652         0.813         1.009         1.399         1.969         2.504         5.619         10.639           Q3         0.571         1.305         1.625         2.017         2.799         3.938         5.007         11.239         21.278           ARL         0.9         1.128         1.783         2.158         2.672         3.868         6.001         8.408         30.151         93.267           CV         0.337         0.663         0.732         0.791         0.861         0.913         0.939         0.983         0.995           Q1         0.132         0.349         0.462         0.614         0.962         1.578         2.272         8.529         26.687           Q2         0.319         0.842         1.113         1.478         2.317         3.802         5.474         20.551         64.301           Q3         0.638         1.684         2.226         2.967         4.635         7.604         10.949         41.102         128.601           ARL         1         1.138         1.868         2.304         2.919         4.415         7.251         10.653         46.718         176.786           <                       |
| Q3         0.571         1.305         1.625         2.017         2.799         3.938         5.007         11.239         21.278           ARL         0.9         1.128         1.783         2.158         2.672         3.868         6.001         8.408         30.151         93.267           CV         0.337         0.663         0.732         0.791         0.861         0.913         0.939         0.983         0.995           Q1         0.132         0.349         0.462         0.614         0.962         1.578         2.272         8.529         26.687           Q2         0.319         0.842         1.113         1.478         2.317         3.802         5.474         20.551         64.301           Q3         0.638         1.684         2.226         2.967         4.635         7.604         10.949         41.102         128.601           ARL         1         1.138         1.868         2.304         2.919         4.415         7.251         10.653         46.718         176.786           CV         0.348         0.682         0.753         0.812         0.879         0.928         0.952         0.989         0.997 <t< td=""></t<>                    |
| ARL         0.9         1.128         1.783         2.158         2.672         3.868         6.001         8.408         30.151         93.267           CV         0.337         0.663         0.732         0.791         0.861         0.913         0.939         0.983         0.995           Q1         0.132         0.349         0.462         0.614         0.962         1.578         2.272         8.529         26.687           Q2         0.319         0.842         1.113         1.478         2.317         3.802         5.474         20.551         64.301           Q3         0.638         1.684         2.226         2.967         4.635         7.604         10.949         41.102         128.601           ARL         1         1.138         1.868         2.304         2.919         4.415         7.251         10.653         46.718         176.786           CV         0.348         0.682         0.753         0.812         0.879         0.928         0.952         0.989         0.997           Q1         0.136         0.375         0.505         0.686         1.120         1.939         2.918         13.295         50.714 <t< td=""></t<>                    |
| CV         0.337         0.663         0.732         0.791         0.861         0.913         0.939         0.983         0.995           Q1         0.132         0.349         0.462         0.614         0.962         1.578         2.272         8.529         26.687           Q2         0.319         0.842         1.113         1.478         2.317         3.802         5.474         20.551         64.301           Q3         0.638         1.684         2.226         2.967         4.635         7.604         10.949         41.102         128.601           ARL         1         1.138         1.868         2.304         2.919         4.415         7.251         10.653         46.718         176.786           CV         0.348         0.682         0.753         0.812         0.879         0.928         0.952         0.989         0.997           Q1         0.136         0.375         0.505         0.686         1.120         1.939         2.918         13.295         50.714           Q2         0.328         0.904         1.218         1.653         2.699         4.671         7.032         32.034         122.192           Q3 <td< td=""></td<>                 |
| Q1         0.132         0.349         0.462         0.614         0.962         1.578         2.272         8.529         26.687           Q2         0.319         0.842         1.113         1.478         2.317         3.802         5.474         20.551         64.301           Q3         0.638         1.684         2.226         2.967         4.635         7.604         10.949         41.102         128.601           ARL         1         1.138         1.868         2.304         2.919         4.415         7.251         10.653         46.718         176.786           CV         0.348         0.682         0.753         0.812         0.879         0.928         0.952         0.989         0.997           Q1         0.136         0.375         0.505         0.686         1.120         1.939         2.918         13.295         50.714           Q2         0.328         0.904         1.218         1.653         2.699         4.671         7.032         32.034         122.192           Q3         0.657         1.809         2.435         3.306         5.397         9.342         14.063         64.069         24.4384           ARL                              |
| Q2         0.319         0.842         1.113         1.478         2.317         3.802         5.474         20.551         64.301           Q3         0.638         1.684         2.226         2.967         4.635         7.604         10.949         41.102         128.601           ARL         1         1.138         1.868         2.304         2.919         4.415         7.251         10.653         46.718         176.786           CV         0.348         0.682         0.753         0.812         0.879         0.928         0.952         0.989         0.997           Q1         0.136         0.375         0.505         0.686         1.120         1.939         2.918         13.295         50.714           Q2         0.328         0.904         1.218         1.653         2.699         4.671         7.032         32.034         122.192           Q3         0.657         1.809         2.435         3.306         5.397         9.342         14.063         64.069         244.384           ARL         1.3         1.163         2.126         2.769         3.756         6.478         12.697         21.662         183.486         1377.04                          |
| Q3         0.638         1.684         2.226         2.967         4.635         7.604         10.949         41.102         128.601           ARL         1         1.138         1.868         2.304         2.919         4.415         7.251         10.653         46.718         176.786           CV         0.348         0.682         0.753         0.812         0.879         0.928         0.952         0.989         0.997           Q1         0.136         0.375         0.505         0.686         1.120         1.939         2.918         13.295         50.714           Q2         0.328         0.904         1.218         1.653         2.699         4.671         7.032         32.034         122.192           Q3         0.657         1.809         2.435         3.306         5.397         9.342         14.063         64.069         244.384           ARL         1.3         1.163         2.126         2.769         3.756         6.478         12.697         21.662         183.486         1377.04           CV         0.374         0.728         0.799         0.857         0.919         0.959         0.977         0.997         0.999                            |
| ARL         1         1.138         1.868         2.304         2.919         4.415         7.251         10.653         46.718         176.786           CV         0.348         0.682         0.753         0.812         0.879         0.928         0.952         0.989         0.997           Q1         0.136         0.375         0.505         0.686         1.120         1.939         2.918         13.295         50.714           Q2         0.328         0.904         1.218         1.653         2.699         4.671         7.032         32.034         122.192           Q3         0.657         1.809         2.435         3.306         5.397         9.342         14.063         64.069         244.384           ARL         1.3         1.163         2.126         2.769         3.756         6.478         12.697         21.662         183.486         1377.04           CV         0.374         0.728         0.799         0.857         0.919         0.959         0.977         0.997         0.999           Q1         0.146         0.453         0.642         0.929         1.716         3.507         6.087         52.642         396.006                             |
| CV         0.348         0.682         0.753         0.812         0.879         0.928         0.952         0.989         0.997           Q1         0.136         0.375         0.505         0.686         1.120         1.939         2.918         13.295         50.714           Q2         0.328         0.904         1.218         1.653         2.699         4.671         7.032         32.034         122.192           Q3         0.657         1.809         2.435         3.306         5.397         9.342         14.063         64.069         244.384           ARL         1.3         1.163         2.126         2.769         3.756         6.478         12.697         21.662         183.486         1377.04           CV         0.374         0.728         0.799         0.857         0.919         0.959         0.977         0.997         0.999           Q1         0.146         0.453         0.642         0.929         1.716         3.507         6.087         52.642         396.006           Q2         0.353         1.090         1.548         2.239         4.134         8.449         14.665         126.836         954.145           Q3                          |
| Q1         0.136         0.375         0.505         0.686         1.120         1.939         2.918         13.295         50.714           Q2         0.328         0.904         1.218         1.653         2.699         4.671         7.032         32.034         122.192           Q3         0.657         1.809         2.435         3.306         5.397         9.342         14.063         64.069         244.384           ARL         1.3         1.163         2.126         2.769         3.756         6.478         12.697         21.662         183.486         1377.04           CV         0.374         0.728         0.799         0.857         0.919         0.959         0.977         0.997         0.999           Q1         0.146         0.453         0.642         0.929         1.716         3.507         6.087         52.642         396.006           Q2         0.353         1.090         1.548         2.239         4.134         8.449         14.665         126.836         954.145           Q3         0.705         2.181         3.095         4.478         8.268         16.899         29.331         253.671         1908.293           CV<                  |
| Q2         0.328         0.904         1.218         1.653         2.699         4.671         7.032         32.034         122.192           Q3         0.657         1.809         2.435         3.306         5.397         9.342         14.063         64.069         244.384           ARL         1.3         1.163         2.126         2.769         3.756         6.478         12.697         21.662         183.486         1377.04           CV         0.374         0.728         0.799         0.857         0.919         0.959         0.977         0.997         0.999           Q1         0.146         0.453         0.642         0.929         1.716         3.507         6.087         52.642         396.006           Q2         0.353         1.090         1.548         2.239         4.134         8.449         14.665         126.836         954.145           Q3         0.705         2.181         3.095         4.478         8.268         16.899         29.331         253.671         1908.293           ARL         1.5         1.178         2.300         3.104         4.399         8.287         18.344         34.768         476.096         6010.899              |
| Q3         0.657         1.809         2.435         3.306         5.397         9.342         14.063         64.069         244.384           ARL         1.3         1.163         2.126         2.769         3.756         6.478         12.697         21.662         183.486         1377.04           CV         0.374         0.728         0.799         0.857         0.919         0.959         0.977         0.997         0.999           Q1         0.146         0.453         0.642         0.929         1.716         3.507         6.087         52.642         396.006           Q2         0.353         1.090         1.548         2.239         4.134         8.449         14.665         126.836         954.145           Q3         0.705         2.181         3.095         4.478         8.268         16.899         29.331         253.671         1908.295           ARL         1.5         1.178         2.300         3.104         4.399         8.287         18.344         34.768         476.096         6010.899           CV         0.388         0.752         0.823         0.879         0.938         0.972         0.986         0.999         0.999                 |
| ARL         1.3         1.163         2.126         2.769         3.756         6.478         12.697         21.662         183.486         1377.04           CV         0.374         0.728         0.799         0.857         0.919         0.959         0.977         0.997         0.999           Q1         0.146         0.453         0.642         0.929         1.716         3.507         6.087         52.642         396.006           Q2         0.353         1.090         1.548         2.239         4.134         8.449         14.665         126.836         954.145           Q3         0.705         2.181         3.095         4.478         8.268         16.899         29.331         253.671         1908.293           ARL         1.5         1.178         2.300         3.104         4.399         8.287         18.344         34.768         476.096         6010.893           CV         0.388         0.752         0.823         0.879         0.938         0.972         0.986         0.999         0.999           Q1         0.152         0.504         0.739         1.116         2.237         5.132         9.858         136.820         1729.083                |
| CV         0.374         0.728         0.799         0.857         0.919         0.959         0.977         0.997         0.999           Q1         0.146         0.453         0.642         0.929         1.716         3.507         6.087         52.642         396.006           Q2         0.353         1.090         1.548         2.239         4.134         8.449         14.665         126.836         954.145           Q3         0.705         2.181         3.095         4.478         8.268         16.899         29.331         253.671         1908.293           ARL         1.5         1.178         2.300         3.104         4.399         8.287         18.344         34.768         476.096         6010.893           CV         0.388         0.752         0.823         0.879         0.938         0.972         0.986         0.999         0.999           Q1         0.152         0.504         0.739         1.116         2.237         5.132         9.858         136.820         1729.083           Q2         0.367         1.215         1.783         2.688         5.390         12.365         23.751         329.658         4166.083 <td< td=""></td<>          |
| Q2         0.353         1.090         1.548         2.239         4.134         8.449         14.665         126.836         954.145           Q3         0.705         2.181         3.095         4.478         8.268         16.899         29.331         253.671         1908.293           ARL         1.5         1.178         2.300         3.104         4.399         8.287         18.344         34.768         476.096         6010.893           CV         0.388         0.752         0.823         0.879         0.938         0.972         0.986         0.999         0.999           Q1         0.152         0.504         0.739         1.116         2.237         5.132         9.858         136.820         1729.083           Q2         0.367         1.215         1.783         2.688         5.390         12.365         23.751         329.658         4166.083           Q3         0.733         2.429         3.565         5.377         10.780         24.730         47.502         659.316         8332.173           ARL         2         1.210         2.747         4.031         6.365         14.944         45.302         113.477         5868.797         335003.3< |
| Q3         0.705         2.181         3.095         4.478         8.268         16.899         29.331         253.671         1908.293           ARL         1.5         1.178         2.300         3.104         4.399         8.287         18.344         34.768         476.096         6010.893           CV         0.388         0.752         0.823         0.879         0.938         0.972         0.986         0.999         0.999           Q1         0.152         0.504         0.739         1.116         2.237         5.132         9.858         136.820         1729.083           Q2         0.367         1.215         1.783         2.688         5.390         12.365         23.751         329.658         4166.089           Q3         0.733         2.429         3.565         5.377         10.780         24.730         47.502         659.316         8332.179           ARL         2         1.210         2.747         4.031         6.365         14.944         45.302         113.477         5868.797         335003.3           CV         0.417         0.797         0.867         0.918         0.966         0.989         0.996         0.999         1           |
| ARL         1.5         1.178         2.300         3.104         4.399         8.287         18.344         34.768         476.096         6010.89°           CV         0.388         0.752         0.823         0.879         0.938         0.972         0.986         0.999         0.999           Q1         0.152         0.504         0.739         1.116         2.237         5.132         9.858         136.820         1729.08           Q2         0.367         1.215         1.783         2.688         5.390         12.365         23.751         329.658         4166.089           Q3         0.733         2.429         3.565         5.377         10.780         24.730         47.502         659.316         8332.179           ARL         2         1.210         2.747         4.031         6.365         14.944         45.302         113.477         5868.797         335003.3           CV         0.417         0.797         0.867         0.918         0.966         0.989         0.996         0.999         1           Q1         0.164         0.636         1.009         1.683         4.154         12.888         32.501         1688.204         96374.35           |
| CV         0.388         0.752         0.823         0.879         0.938         0.972         0.986         0.999         0.999           Q1         0.152         0.504         0.739         1.116         2.237         5.132         9.858         136.820         1729.083           Q2         0.367         1.215         1.783         2.688         5.390         12.365         23.751         329.658         4166.089           Q3         0.733         2.429         3.565         5.377         10.780         24.730         47.502         659.316         8332.179           ARL         2         1.210         2.747         4.031         6.365         14.944         45.302         113.477         5868.797         335003.3           CV         0.417         0.797         0.867         0.918         0.966         0.989         0.996         0.999         1           Q1         0.164         0.636         1.009         1.683         4.154         12.888         32.501         1688.204         96374.35                                                                                                                                                                         |
| Q1     0.152     0.504     0.739     1.116     2.237     5.132     9.858     136.820     1729.083       Q2     0.367     1.215     1.783     2.688     5.390     12.365     23.751     329.658     4166.089       Q3     0.733     2.429     3.565     5.377     10.780     24.730     47.502     659.316     8332.179       ARL     2     1.210     2.747     4.031     6.365     14.944     45.302     113.477     5868.797     335003.3       CV     0.417     0.797     0.867     0.918     0.966     0.989     0.996     0.999     1       Q1     0.164     0.636     1.009     1.683     4.154     12.888     32.501     1688.204     96374.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Q2     0.367     1.215     1.783     2.688     5.390     12.365     23.751     329.658     4166.089       Q3     0.733     2.429     3.565     5.377     10.780     24.730     47.502     659.316     8332.179       ARL     2     1.210     2.747     4.031     6.365     14.944     45.302     113.477     5868.797     335003.3       CV     0.417     0.797     0.867     0.918     0.966     0.989     0.996     0.999     1       Q1     0.164     0.636     1.009     1.683     4.154     12.888     32.501     1688.204     96374.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q3         0.733         2.429         3.565         5.377         10.780         24.730         47.502         659.316         8332.179           ARL         2         1.210         2.747         4.031         6.365         14.944         45.302         113.477         5868.797         335003.33           CV         0.417         0.797         0.867         0.918         0.966         0.989         0.996         0.999         1           Q1         0.164         0.636         1.009         1.683         4.154         12.888         32.501         1688.204         96374.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ARL     2     1.210     2.747     4.031     6.365     14.944     45.302     113.477     5868.797     335003.3       CV     0.417     0.797     0.867     0.918     0.966     0.989     0.996     0.999     1       Q1     0.164     0.636     1.009     1.683     4.154     12.888     32.501     1688.204     96374.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CV 0.417 0.797 0.867 0.918 0.966 0.989 0.996 0.999 1<br>Q1 0.164 0.636 1.009 1.683 4.154 12.888 32.501 1688.204 96374.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q1 0.164 0.636 1.009 1.683 4.154 12.888 32.501 1688.204 96374.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Q2 0.396 1.531 2.431 4.055 10.008 31.053 78.309 4067.594 232206.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Q3 0.792 3.063 4.862 8.111 20.016 62.107 156.619 8135.187 464412.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ARL <b>2.5</b> 1.238 3.213 5.102 8.939 26.155 109.818 370.370 85019.46 2897644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| CV 0.438 0.829 0.897 0.942 0.981 0.995 0.999 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q1 0.174 0.772 1.319 2.425 7.379 31.448 106.405 24458.43 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q2 0.420 1.859 3.177 5.843 17.780 75.773 256.375 58930.65 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q3 0.840 3.718 6.354 11.686 35.561 151.545 512.749 117861.3 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ARL <b>2.7</b> 1.248 3.405 5.574 10.173 32.494 155.808 594.466 257929.1 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Q1 = 0.1779  0.828  1.454  2.780  9.203  44.679  170.873  74201.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $ Q2 \qquad \qquad 0.428  1.994  3.506  6.699  22.175  107.651  411.706  178782.5 \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Q3     0.888     3.988     7.011     13.398     44.349     215.301     823.412     357565     —       ARL     3     1.262     3.701     6.332     12.275     44.710     262.219     1208.825     1418697     —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CV 0.456 0.854 0.918 0.958 0.989 0.998 0.999 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Q1 0.183 0.913 1.674 3.385 12.718 75.292 347.613 408133.5 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Q2 0.441 2.200 4.032 8.157 30.643 181.409 837.547 983365.5 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Q3 0.882 4.401 8.065 16.314 61.286 362.819 1675.094 1966731 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

Table A.2. ARL, Cv and quartiles of the run length distribution assuming 0.0027 as the false alarm probability of the upper-sided chart with  $\alpha_0$ =1.00,  $\lambda_0$ =2.5,  $\lambda_1 \in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

|                                                        | λ   | $\alpha$ | 0.1                    | 0.4                  | 0.5                    | 0.6                    | 0.75                   | 0.9                  | 1                      | 1.3                 | 1.5                 |
|--------------------------------------------------------|-----|----------|------------------------|----------------------|------------------------|------------------------|------------------------|----------------------|------------------------|---------------------|---------------------|
| ARL                                                    | 0.1 |          | 92472.54               | 23118.13             | 18494.507              | 15412.089              | 12329.67               | 10274.73             | 9247.254               | 7113.272            | 6164.836            |
| CV                                                     |     |          | 1                      | 1                    | 1                      | 1                      | 1                      | 1                    | 1                      | 1                   | 1                   |
| Q1                                                     |     |          | 26602.55               | 6650.529             | 5320.394               | 4433.638               | 3546.882               | 2955.711             | 2660.125               | 2046.217            | 1773.369            |
| Q2                                                     |     |          | 64096.73               | 16023.92             | 12819.069              | 10682.499              | 8545.93                | 7121.551             | 6409.361               | 4930.198            | 4272.792            |
| Q3                                                     |     |          | 128193.5               | 32047.85             | 25638.138              | 21364.999              | 17091.86               | 14243.1              | 12818.72               | 9860.396            | 8545.58422          |
| ARL                                                    | 0.4 |          | 23121.88               | 5780.471             | 4624.377               | 3853.647               | 3082.918               | 2569.098             | 2312.188               | 1778.607            | 1541.459            |
| CV                                                     |     |          | 1                      | 1                    | 1                      | 1                      | 1                      | 1                    | 1                      | 1                   | 1                   |
| Q1                                                     |     |          | 6651.608               | 1662.794             | 1330.207               | 1108.481               | 886.756                | 738.939              | 665.031                | 511.529             | 443.306             |
| $Q_2$                                                  |     |          | 16026.52               | 4006.371             | 3205.027               | 2670.798               | 2136.569               | 1780.416             | 1602.34                | 1232.49             | 1068.111            |
| Q3                                                     | 0 - |          | 32053.04               | 8012.741             | 6410.055               | 5341.596               | 4273.139               | 3560.833             | 3204.68                | 2464.98             | 2136.223            |
| ARL                                                    | 0.5 |          | 18498.51               | 4624.627             | 3699.701               | 3083.085               | 2466.468               | 2055.39              | 1849.851               | 1422.962            | 1233.234            |
| CV                                                     |     |          | $\frac{1}{5321.545}$   | $\frac{1}{1330.278}$ | $\frac{1}{1064.194}$   | $\frac{1}{886.804}$    | $\frac{1}{709.415}$    | $\frac{1}{591.155}$  | $\frac{1}{532.025}$    | $\frac{1}{409.217}$ | $\frac{1}{354.635}$ |
| Q1                                                     |     |          |                        |                      |                        |                        |                        |                      |                        |                     |                     |
| Q2 $Q3$                                                |     |          | $12821.84 \\ 25643.68$ | 3205.201 $6410.401$  | $2564.091 \\ 5128.182$ | $2136.685 \\ 4273.370$ | $1709.278 \\ 3418.557$ | 1424.341<br>2848.682 | $1281.872 \\ 2563.745$ | 985.977 $1971.951$  | 854.466 $1708.932$  |
| ARL                                                    | 0.6 |          | 15416.26               | 3854.064             |                        |                        | 2055.501               | 1712.917             |                        | 1185.866            |                     |
| CV                                                     | 0.0 |          | 15416.26               | 3634.004<br>1        | 3083.251<br>1          | 2569.376 $1$           | 2055.501               | 1712.917             | 1541.626 $1$           | 1100.000            | 1027.751 $1$        |
| Q1                                                     |     |          | 4434.837               | 1108.601             | 886.852                | 739.019                | 591.187                | 492.632              | 443.354                | 341.009             | 295.522             |
| $Q_2$                                                  |     |          | 10685.39               | 2671.087             | 2136.800               | 1780.609               | 1424.418               | 1186.957             | 1068.227               | 821.633             | 712.036             |
| $Q_3$                                                  |     |          | 21370.78               | 5342.174             | 4273.600               | 3561.218               | 2848.836               | 2373.914             | 2136.454               | 1643.266            | 1424.072            |
| ARL                                                    | 0.9 |          | 10279.17               | 2569.793             | 2055.834               | 1713.195               | 1370.556               | 1142.13              | 1027.917               | 790.706             | 685.278             |
| CV                                                     | ٠.0 |          | 1                      | 1                    | 1                      | 1                      | 1                      | 1                    | 1                      | 0.999               | 0.999               |
| Q1                                                     |     |          | 2956.989               | 739.139              | 591.283                | 492.713                | 394.141                | 328.427              | 295.569                | 227.328             | 196.998             |
| $Q_2$                                                  |     |          | 7124.631               | 1780.898             | 1424.649               | 1187.149               | 949.651                | 791.318              | 712.151                | 547.729             | 474.652             |
| $\vec{Q}3$                                             |     |          | 14249.26               | 3561.796             | 2849.298               | 2374.299               | 1899.301               | 1582.635             | 1424.303               | 1095.457            | 949.304             |
| ARL                                                    | 1   |          | 9251.753               | 2312.938             | 1850.351               | 1541.959               | 1233.567               | 1027.973             | 925.176                | 711.674             | 616.784             |
| CV                                                     |     |          | 1                      | 1                    | 1                      | 1                      | 1                      | 1                    | 0.999                  | 0.999               | 0.999               |
| Q1                                                     |     |          | 2661.42                | 665.247              | 532.169                | 443.450                | 354.731                | 295.586              | 266.013                | 204.592             | 177.294             |
| Q2                                                     |     |          | 6412.48                | 1602.86              | 1282.219               | 1068.458               | 854.697                | 712.189              | 640.936                | 492.948             | 427.175             |
| Q3                                                     |     |          | 12824.96               | 3205.72              | 2564.437               | 2136.916               | 1709.394               | 1424.379             | 1281.872               | 985.896             | 854.351             |
| ARL                                                    | 1.3 |          | 7117.886               | 1779.472             | 1423.577               | 1186.315               | 949.052                | 790.877              | 711.789                | 547.53              | 474.526             |
| CV                                                     |     |          | 1                      | 1                    | 1                      | 1                      | 0.999                  | 0.999                | 0.999                  | 0.999               | 0.999               |
| Q1                                                     |     |          | 2047.544               | 511.778              | 409.394                | 341.138                | 272.881                | 227.377              | 204.625                | 157.371             | 136.369             |
| Q2                                                     |     |          | 4933.396               | 1233.089             | 986.402                | 821.944                | 657.486                | 547.847              | 493.028                | 379.172             | 328.569             |
| Q3                                                     |     |          | 9866.792               | 2466.178             | 1972.804               | 1643.888               | 1314.972               | 1095.694             | 986.056                | 758.344             | 657.139             |
| ARL                                                    | 1.5 |          | 6169.501               | 1542.375             | 1233.900               | 1028.250               | 822.600                | 685.500              | 616.950                | 474.577             | 411.301             |
| CV                                                     |     |          | 1                      | 1                    | 1                      | 1                      | 0.999                  | 0.999                | 0.999                  | 0.999               | 0.999               |
| Q1                                                     |     |          | 1774.711               | 443.569              | 354.827                | 295.665                | 236.504                | 197.062              | 177.342                | 136.384             | 118.179             |
| Q2                                                     |     |          | 4276.026               | 1068.747             | 854.928                | 712.382                | 569.836                | 474.806              | 427.291                | 328.605             | 284.745             |
| Q3                                                     | 2   |          | 8552.051               | 2137.493             | 1709.856<br>925.675    | 1424.764               | 1139.673               | 949.612              | 854.582                | 657.211<br>356.029  | 569.490             |
| $\begin{array}{c} \text{ARL} \\ \text{CV} \end{array}$ | 4   |          | 4628.375               | 1157.094 $1$         | 0.999                  | 771.396 $0.999$        | 617.117 $0.999$        | 514.264 $0.999$      | 462.838 $0.999$        | 0.998               | 308.559 $0.998$     |
| Q1                                                     |     |          | $\frac{1}{1331.357}$   | 332.731              | 266.156                | 221.773                | 177.389                | 147.801              | 133.006                | 102.279             | 88.623              |
| $Q_1$                                                  |     |          | 3207.798               | 801.689              | 641.283                | 534.344                | 427.406                | 356.114              | 320.468                | 246.434             | 213.529             |
| $Q_3$                                                  |     |          | 6415.597               | 1603.38              | 1282.565               | 1068.689               | 854.812                | 712.228              | 640.936                | 492.868             | 427.059             |
| ARL                                                    | 2.5 |          | 3703.699               | 925.925              | 740.740                | 617.284                | 493.827                | 411.523              | 370.370                | 284.901             | 246.914             |
| CV                                                     |     |          | 1                      | 1                    | 1                      | 1                      | 1                      | 0.999                | 0.999                  | 0.998               | 0.998               |
| Q1                                                     |     |          | 1065.344               | 266.228              | 212.954                | 177.438                | 141.921                | 118.244              | 106.405                | 81.817              | 70.889              |
| $Q_2$                                                  |     |          | 2566.862               | 641.456              | 513.095                | 427.522                | 341.948                | 284.899              | 256.375                | 197.131             | 170.801             |
| $\vec{Q}3$                                             |     |          | 5133.724               | 1282.911             | 1026.191               | 855.043                | 683.896                | 569.798              | 512.749                | 394.262             | 341.602             |
| ARL                                                    | 2.7 |          | 3429.721               | 857.431              | 685.945                | 571.621                | 457.297                | 381.081              | 342.973                | 263.825             | 228.649             |
| CV                                                     |     |          | 1                      | 0.999                | 0.999                  | 0.999                  | 0.999                  | 0.999                | 0.999                  | 0.998               | 0.998               |
| Q1                                                     |     |          | 986.526                | 246.524              | 197.190                | 164.301                | 131.412                | 109.486              | 98.523                 | 75.754              | 65.634              |
| Q2                                                     |     |          | 2376.955               | 593.979              | 475.114                | 395.871                | 316.627                | 263.798              | 237.384                | 182.523             | 158.140             |
| Q3                                                     |     |          | 4753.91                | 1187.958             | 950.228                | 791.741                | 633.254                | 527.596              | 474.766                | 365.046             | 316.281             |
| ARL                                                    | 3   |          | 3087.249               | 771.812              | 617.45                 | 514.542                | 411.634                | 343.028              | 308.725                | 237.481             | 205.817             |
| CV                                                     |     |          | 1                      | 0.999                | 0.999                  | 0.999                  | 0.999                  | 0.999                | 0.998                  | 0.998               | 0.998               |
| Q1                                                     |     |          | 888.002                | 221.893              | 177.486                | 147.881                | 118.276                | 98.539               | 88.671                 | 68.175              | 59.066              |
| Q2                                                     |     |          | 2139.571               | 534.633              | 427.637                | 356.306                | 284.976                | 237.422              | 213.645                | 164.263             | 142.315             |
| Q3                                                     |     |          | 4279.142               | 1069.266             | 855.274                | 712.613                | 569.952                | 474.844              | 427.291                | 328.526             | 284.629             |
|                                                        |     |          |                        |                      |                        |                        |                        |                      |                        |                     |                     |

Table A.3. ARL, Cv and quartiles of the run length distribution assuming 0.0027 as the false alarm probability of the two-sided chart with  $\alpha_0$ =1.00,  $\lambda_0$ =2.5,  $\lambda_1 \in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

|                          | λ   | $\alpha$ | 0.1           | 0.4           | 0.5           | 0.6           | 0.75           | 0.9             | 1                   | 1.3                  | 1.5                  |
|--------------------------|-----|----------|---------------|---------------|---------------|---------------|----------------|-----------------|---------------------|----------------------|----------------------|
| ARL                      | 0.1 |          | 1.024         | 1.103         | 1.133         | 1.163         | 1.212          | 1.265           | 1.302               | 1.428                | 1.524                |
| CV                       |     |          | 0.153         | 0.306         | 0.342         | 0.374         | 0.418          | 0.458           | 0.482               | 0.548                | 0.586                |
| Q1                       |     |          | 0.077         | 0.121         | 0.134         | 0.146         | 0.165          | 0.184           | 0.197               | 0.239                | 0.269                |
| $\tilde{ m Q}2$          |     |          | 0.185         | 0.293         | 0.323         | 0.353         | 0.398          | 0.443           | 0.475               | 0.575                | 0.649                |
| $\tilde{Q3}$             |     |          | 0.369         | 0.585         | 0.646         | 0.706         | 0.795          | 0.887           | 0.949               | 1.151                | 1.299                |
| ARL                      | 0.4 |          | 1.078         | 1.397         | 1.544         | 1.718         | 2.049          | 2.493           | 2.877               | 4.725                | 7.017                |
| CV                       |     |          | 0.268         | 0.533         | 0.593         | 0.647         | 0.716          | 0.774           | 0.808               | 0.888                | 0.926                |
| Q1                       |     |          | 0.109         | 0.229         | 0.276         | 0.329         | 0.429          | 0.561           | 0.674               | 1.209                | 1.871                |
| $\vec{Q}2$               |     |          | 0.264         | 0.551         | 0.664         | 0.795         | 1.035          | 1.352           | 1.623               | 2.915                | 4.509                |
| $\vec{Q}3$               |     |          | 0.527         | 1.102         | 1.328         | 1.589         | 2.071          | 2.704           | 3.245               | 5.830                | 9.017                |
| ARL                      | 0.5 |          | 1.092         | 1.492         | 1.688         | 1.929         | 2.412          | 3.106           | 3.745               | 7.289                | 12.579               |
| CV                       |     |          | 0.289         | 0.574         | 0.638         | 0.694         | 0.765          | 0.823           | 0.856               | 0.929                | 0.959                |
| Q1                       |     |          | 0.116         | 0.259         | 0.320         | 0.394         | 0.537          | 0.740           | 0.926               | 1.949                | 3.473                |
| Q2                       |     |          | 0.279         | 0.625         | 0.772         | 0.949         | 1.294          | 1.784           | 2.232               | 4.697                | 8.368                |
| Q3                       |     |          | 0.559         | 1.250         | 1.544         | 1.898         | 2.588          | 3.568           | 4.463               | 9.394                | 16.737               |
| ARL                      | 0.6 |          | 1.105         | 1.587         | 1.836         | 2.155         | 2.825          | 3.859           | 4.876               | 11.402               | 23.261               |
| CV                       |     |          | 0.308         | 0.608         | 0.675         | 0.732         | 0.804          | 0.861           | 0.892               | 0.955                | 0.978                |
| Q1                       |     |          | 0.122         | 0.289         | 0.366         | 0.461         | 0.658          | 0.959           | 1.253               | 3.134                | 6.547                |
| Q2                       |     |          | 0.294         | 0.697         | 0.881         | 1.112         | 1.586          | 2.311           | 3.019               | 7.551                | 15.774               |
| Q3                       |     |          | 0.588         | 1.394         | 1.763         | 2.223         | 3.173          | 4.622           | 6.039               | 15.103               | 31.549               |
| ARL                      | 0.9 |          | 1.138         | 1.872         | 2.311         | 2.931         | 4.439          | 7.303           | 10.735              | 46.459               | 161.613              |
| CV                       |     |          | 0.348         | 0.683         | 0.753         | 0.812         | 0.880          | 0.929           | 0.952               | 0.989                | 0.997                |
| Q1                       |     |          | 0.136         | 0.377         | 0.507         | 0.689         | 1.127          | 1.953           | 2.942               | 13.221               | 46.349               |
| Q2                       |     |          | 0.329         | 0.907         | 1.223         | 1.661         | 2.716          | 4.707           | 7.089               | 31.855               | 111.675              |
| Q3                       |     |          | 0.657         | 1.815         | 2.445         | 3.322         | 5.432          | 9.414           | 14.178              | 63.709               | 223.349              |
| ARL                      | 1   |          | 1.148         | 1.968         | 2.479         | 3.225         | 5.129          | 8.997           | 13.950              | 74.827               | 293.494              |
| CV                       |     |          | 0.359         | 0.701         | 0.772         | 0.831         | 0.897          | 0.943           | 0.963               | 0.993                | 0.998                |
| Q1                       |     |          | 0.140         | 0.405         | 0.557         | 0.775         | 1.326          | 2.442           | 3.868               | 21.382               | 84.289               |
| Q2                       |     |          | 0.338         | 0.977         | 1.342         | 1.868         | 3.196          | 5.883           | 9.319               | 51.519               | 203.088              |
| Q3                       |     |          | 0.677         | 1.953         | 2.685         | 3.735         | 6.392          | 11.765          | 18.637              | 103.038              | 406.175              |
| ARL                      | 1.3 |          | 1.174         | 2.257         | 3.019         | 4.232         | 7.787          | 16.634          | 30.399              | 281.180              | 774.348              |
| CV                       |     |          | 0.385         | 0.746         | 0.818         | 0.874         | 0.934          | 0.969           | 0.983               | 0.998                | 0.999                |
| Q1                       |     |          | 0.151         | 0.491         | 0.715         | 1.067         | 2.093          | 4.639           | 8.601               | 80.747               | 222.622              |
| Q2                       |     |          | 0.363         | 1.184         | 1.723         | 2.571         | 5.043          | 11.179          | 20.722              | 194.553              | 536.390              |
| Q3                       |     |          | 0.726         | 2.368         | 3.447         | 5.143         | 10.087         | 22.359          | 41.445              | 389.105              | 1072.780             |
| ARL                      | 1.5 |          | 1.189         | 2.453         | 3.410         | 5.017         | 10.173         | 24.811          | 50.541              | 515.646              | 794.908              |
| CV                       |     |          | 0.399         | 0.769         | 0.841         | 0.895         | 0.949          | 0.979           | 0.990               | 0.999                | 0.999                |
| Q1                       |     |          | 0.157         | 0.549         | 0.829         | 1.294         | 2.780          | 6.992           | 14.395              | 148.198              | 228.537              |
| $Q_2$                    |     |          | 0.378         | 1.328         | 1.997         | 3.118         | 6.699          | 16.849          | 34.684              | 357.072              | 550.641              |
| Q3                       |     |          | 0.755         | 2.648         | 3.994         | 6.237         | 13.398         | 33.698          | 69.369              | 714.144              | 1101.283             |
| ARL                      | 2   |          | 1.223         | 2.959         | 4.503         | 7.451 $0.930$ | 19.188         | 64.445          | 162.827             | 687.865              | 617.053              |
| CV<br>O1                 |     |          | 0.427 $0.169$ | 0.814         | 0.882         |               | 0.974 $5.375$  | 0.992           | 0.997               | 0.999                | 0.999                |
| Q1 $Q2$                  |     |          | 0.169 $0.408$ | 0.698 $1.681$ | 1.146 $2.760$ | 1.996 $4.809$ | 5.375 $12.951$ | 18.396 $44.322$ | $46.698 \\ 112.516$ | $197.743 \\ 476.445$ | $177.371 \\ 427.362$ |
| $Q_2$                    |     |          | 0.408 $0.815$ | 3.362         | 5.521         | 9.619         | 25.901         | 88.645          | 225.032             | 952.889              | 854.723              |
| ARL                      | 2.5 |          | 1.252         | 3.489         | 5.779         | 10.697        | 34.642         | 149.835         | 370.370             | 569.056              | 493.827              |
| CV                       | 2.0 |          | 0.449         | 0.845         | 0.909         | 0.952         | 0.985          | 0.997           | 0.999               | 0.999                | 0.999                |
| Q1                       |     |          | 0.179         | 0.852         | 1.514         | 2.931         | 9.821          | 42.961          | 106.405             | 163.563              | 141.921              |
| $Q_2$                    |     |          | 0.432         | 2.053         | 3.648         | 7.063         | 23.664         | 103.511         | 256.374             | 394.093              | 341.948              |
| Q3                       |     |          | 0.865         | 4.105         | 7.297         | 14.125        | 47.327         | 207.021         | 512.749             | 788.186              | 683.896              |
| ARL                      | 2.7 |          | 1.262         | 3.709         | 6.346         | 12.267        | 43.333         | 199.239         | 443.726             | 527.443              | 457.272              |
| CV                       |     |          | 0.456         | 0.855         | 0.918         | 0.958         | 0.988          | 0.998           | 0.999               | 0.999                | 0.999                |
| Q1                       |     |          | 0.183         | 0.916         | 1.678         | 3.383         | 12.322         | 57.174          | 127.508             | 151.592              | 131.405              |
| $\overline{\mathrm{Q}2}$ |     |          | 0.442         | 2.206         | 4.042         | 8.151         | 29.689         | 137.756         | 307.221             | 365.249              | 316.610              |
| Q3                       |     |          | 0.883         | 4.413         | 8.0841        | 16.302        | 59.377         | 275.511         | 614.442             | 730.498              | 633.221              |
| ARL                      | 3   |          | 1.277         | 4.047         | 7.259         | 14.952        | 59.746         | 282.346         | 505.086             | 474.878              | 411.578              |
| CV                       | -   |          | 0.466         | 0.868         | 0.929         | 0.966         | 0.992          | 0.998           | 0.999               | 0.999                | 0.999                |
| Q1                       |     |          | 0.188         | 1.014         | 1.941         | 4.156         | 17.044         | 81.082          | 145.160             | 136.469              | 118.259              |
| $\tilde{ m Q}2$          |     |          | 0.454         | 2.442         | 4.677         | 10.014        | 41.065         | 195.361         | 349.752             | 328.814              | 284.938              |
| $\vec{Q}3$               |     |          | 0.907         | 4.885         | 9.353         | 20.027        | 82.131         | 390.721         | 699.504             | 657.627              | 569.875              |
|                          |     |          |               |               |               |               |                |                 |                     |                      |                      |

Table A.4. ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the lower-sided chart with  $\alpha_0$ =1.50,  $\lambda_0$ =2.5,  $\lambda_1 \in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

|               | λ        | $\alpha$ | 0.1           | 0.4           | 0.5           | 0.6           | 0.75          | 0.9    | 1      | 1.3                   | 1.5      |
|---------------|----------|----------|---------------|---------------|---------------|---------------|---------------|--------|--------|-----------------------|----------|
| ARL           | 0.1      |          | 1.010         | 1.042         | 1.053         | 1.064         | 1.081         | 1.099  | 1.111  | 1.149                 | 1.176    |
| CV            |          |          | 0.1           | 0.199         | 0.224         | 0.245         | 0.274         | 0.299  | 0.316  | 0.360                 | 0.387    |
| Q1            |          |          | 0.062         | 0.089         | 0.096         | 0.102         | 0.111         | 0.119  | 0.125  | 0.141                 | 0.151    |
| Q2            |          |          | 0.151         | 0.215         | 0.231         | 0.246         | 0.268         | 0.288  | 0.301  | 0.339                 | 0.365    |
| Q3            |          |          | 0.301         | 0.431         | 0.463         | 0.493         | 0.535         | 0.575  | 0.602  | 0.679                 | 0.729    |
| ARL           | 0.4      |          | 1.036         | 1.163         | 1.212         | 1.264         | 1.352         | 1.450  | 1.523  | 1.784                 | 2.001    |
| CV            |          |          | 0.187         | 0.374         | 0.418         | 0.457         | 0.510         | 0.557  | 0.586  | 0.663                 | 0.707    |
| Q1            |          |          | 0.086         | 0.146         | 0.165         | 0.184         | 0.214         | 0.246  | 0.269  | 0.349                 | 0.415    |
| $Q_2$         |          |          | 0.207         | 0.353         | 0.397         | 0.443         | 0.515         | 0.593  | 0.649  | 0.843                 | 1.000    |
| $Q_3$         |          |          | 0.414         | 0.705         | 0.794         | 0.886         | 1.029         | 1.185  | 1.297  | 1.685                 | 2.001    |
| ARL           | 0.5      |          | 1.044         | 1.202         | 1.265         | 1.335         | 1.452         | 1.588  | 1.692  | 2.079                 | 2.423    |
| CV            | 0.0      |          | 0.206         | 0.410         | 0.458         | 0.501         | 0.558         | 0.609  | 0.639  | 0.721                 | 0.766    |
| Q1            |          |          | 0.091         | 0.161         | 0.184         | 0.208         | 0.246         | 0.289  | 0.322  | 0.439                 | 0.540    |
| Q2            |          |          | 0.219         | 0.389         | 0.444         | 0.501         | 0.594         | 0.698  | 0.775  | 1.057                 | 1.302    |
| $\tilde{Q}_3$ |          |          | 0.438         | 0.778         | 0.887         | 1.002         | 1.188         | 1.396  | 1.550  | 2.114                 | 2.604    |
| ARL           | 0.6      |          | 1.051         | 1.241         | 1.319         | 1.407         | 1.558         | 1.739  | 1.879  | 2.433                 | 2.954    |
| CV            | 0.0      |          | 0.221         | 0.441         | 0.492         | 0.538         | 0.599         | 0.652  | 0.684  | 0.768                 | 0.813    |
| Q1            |          |          | 0.221 $0.095$ | 0.176         | 0.432 $0.203$ | 0.338 $0.232$ | 0.333 $0.280$ | 0.336  | 0.379  | 0.543                 | 0.696    |
| $Q_2$         |          |          | 0.095 $0.229$ | 0.170 $0.423$ | 0.203 $0.489$ | 0.252 $0.558$ | 0.280 $0.675$ | 0.809  | 0.913  | 1.309                 | 1.677    |
| $Q_2$         |          |          | 0.229 $0.459$ | 0.425 $0.846$ | 0.489 $0.977$ | 1.117         | 1.349         | 1.619  | 1.826  | $\frac{1.509}{2.618}$ | 3.354    |
| ARL           | 0.9      |          | 1.071         | 1.357         | 1.485         | 1.634         | 1.912         | 2.273  | 2.577  | 3.964                 | 5.562    |
|               | 0.9      |          |               |               |               |               |               |        |        |                       |          |
| CV            |          |          | 0.258         | 0.513         | 0.571         | 0.623         | 0.691         | 0.748  | 0.782  | 0.865                 | 0.906    |
| Q1            |          |          | 0.106         | 0.215         | 0.257         | 0.304         | 0.389         | 0.496  | 0.586  | 0.989                 | 1.451    |
| Q2            |          |          | 0.256         | 0.519         | 0.619         | 0.732         | 0.936         | 1.196  | 1.411  | 2.384                 | 3.497    |
| Q3            |          |          | 0.512         | 1.038         | 1.238         | 1.465         | 1.872         | 2.392  | 2.823  | 4.768                 | 6.994    |
| ARL           | 1        |          | 1.077         | 1.395         | 1.541         | 1.715         | 2.043         | 2.483  | 2.863  | 4.690                 | 6.952    |
| CV            |          |          | 0.268         | 0.532         | 0.592         | 0.646         | 0.714         | 0.773  | 0.807  | 0.887                 | 0.925    |
| Q1            |          |          | 0.109         | 0.228         | 0.275         | 0.329         | 0.428         | 0.558  | 0.669  | 1.199                 | 1.852    |
| Q2            |          |          | 0.263         | 0.549         | 0.662         | 0.792         | 1.031         | 1.345  | 1.613  | 2.891                 | 4.463    |
| Q3            |          |          | 0.526         | 1.099         | 1.324         | 1.584         | 2.062         | 2.689  | 3.226  | 5.781                 | 8.926    |
| ARL           | 1.3      |          | 1.094         | 1.509         | 1.714         | 1.968         | 2.481         | 3.228  | 3.925  | 7.891                 | 14.046   |
| CV            |          |          | 0.293         | 0.581         | 0.645         | 0.701         | 0.773         | 0.831  | 0.863  | 0.934                 | 0.964    |
| Q1            |          |          | 0.117         | 0.265         | 0.328         | 0.405         | 0.557         | 0.776  | 0.978  | 2.123                 | 3.895    |
| Q2            |          |          | 0.283         | 0.639         | 0.791         | 0.977         | 1.343         | 1.869  | 2.357  | 5.115                 | 9.385    |
| Q3            |          |          | 0.565         | 1.276         | 1.583         | 1.954         | 2.686         | 3.739  | 4.714  | 10.230                | 18.771   |
| ARL           | 1.5      |          | 1.104         | 1.585         | 1.832         | 2.149         | 2.813         | 3.837  | 4.844  | 11.296                | 23.069   |
| CV            |          |          | 0.307         | 0.607         | 0.674         | 0.731         | 0.803         | 0.859  | 0.891  | 0.955                 | 0.978    |
| Q1            |          |          | 0.122         | 0.289         | 0.365         | 0.459         | 0.655         | 0.953  | 1.244  | 3.104                 | 6.492    |
| Q2            |          |          | 0.294         | 0.695         | 0.878         | 1.107         | 1.578         | 2.296  | 2.997  | 7.478                 | 15.641   |
| Q3            |          |          | 0.588         | 1.391         | 1.757         | 2.214         | 3.156         | 4.592  | 5.995  | 14.956                | 31.282   |
| ARL           | <b>2</b> |          | 1.127         | 1.774         | 2.142         | 2.646         | 3.812         | 5.878  | 8.195  | 28.769                | 87.139   |
| CV            |          |          | 0.336         | 0.660         | 0.730         | 0.789         | 0.859         | 0.911  | 0.937  | 0.982                 | 0.994    |
| Q1            |          |          | 0.132         | 0.347         | 0.457         | 0.606         | 0.946         | 1.543  | 2.211  | 8.132                 | 24.924   |
| Q2            |          |          | 0.318         | 0.835         | 1.102         | 1.459         | 2.278         | 3.717  | 5.326  | 19.593                | 60.054   |
| Q3            |          |          | 0.636         | 1.671         | 2.204         | 2.919         | 4.557         | 7.434  | 10.653 | 39.186                | 120.107  |
| ARL           | 2.5      |          | 1.148         | 1.963         | 2.472         | 3.213         | 5.102         | 8.939  | 13.866 | 76.945                | 370.370  |
| CV            |          |          | 0.359         | 0.700         | 0.772         | 0.829         | 0.897         | 0.942  | 0.963  | 0.993                 | 0.999    |
| Q1            |          |          | 0.140         | 0.404         | 0.555         | 0.772         | 1.319         | 2.425  | 3.843  | 21.992                | 106.405  |
| Q2            |          |          | 0.338         | 0.974         | 1.337         | 1.859         | 3.177         | 5.843  | 9.260  | 52.987                | 256.374  |
| Q3            |          |          | 0.676         | 1.947         | 2.674         | 3.718         | 6.354         | 11.686 | 18.521 | 105.974               | 512.749  |
| ARL           | 2.7      |          | 1.155         | 2.039         | 2.611         | 3.462         | 5.715         | 10.553 | 17.112 | 115.483               | 681.474  |
| CV            |          |          | 0.366         | 0.714         | 0.785         | 0.843         | 0.908         | 0.951  | 0.970  | 0.996                 | 0.999    |
| Q1            |          |          | 0.143         | 0.427         | 0.596         | 0.844         | 1.496         | 2.889  | 4.778  | 33.078                | 195.904  |
| Q2            |          |          | 0.345         | 1.029         | 1.435         | 2.033         | 3.603         | 6.963  | 11.511 | 79.699                | 472.015  |
| Q3            |          |          | 0.690         | 2.057         | 2.870         | 4.066         | 7.207         | 13.925 | 23.023 | 159.399               | 944.030  |
| ARL           | 3        |          | 1.165         | 2.155         | 2.825         | 3.859         | 6.756         | 13.513 | 23.461 | 215.017               | 1755.50  |
| CV            |          |          | 0.377         | 0.732         | 0.804         | 0.861         | 0.923         | 0.962  | 0.978  | 0.998                 | 0.999    |
| Q1            |          |          | 0.147         | 0.461         | 0.658         | 0.959         | 1.796         | 3.742  | 6.604  | 61.712                | 504.883  |
| $Q_2$         |          |          | 0.355         | 1.111         | 1.586         | 2.311         | 4.327         | 9.016  | 15.913 | 148.692               | 1216.47  |
|               |          |          | 0.710         | 2.223         | 3.173         | 4.623         | 8.654         | 18.031 | 31.826 | 297.383               | 2432.951 |

Table A.5. ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the upper-sided chart with  $\alpha_0$ =1.50,  $\lambda_0$ =2.5,  $\lambda_1 \in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

|                          | λ   | $\alpha$ | 0.1                  | 0.4                  | 0.5                  | 0.6                 | 0.75                 | 0.9                  | 1                    | 1.3                 | 1.5                 |
|--------------------------|-----|----------|----------------------|----------------------|----------------------|---------------------|----------------------|----------------------|----------------------|---------------------|---------------------|
| ARL                      | 0.1 | и        | 138768.8             | 34692.19             | 27753.75             | 23128.13            | 18502.5              | 15418.75             | 13876.88             | 10674.52            | 9251.251            |
| CV                       |     |          | 1                    | 1                    | 1                    | 1                   | 1                    | 1                    | 1                    | 1                   | 1                   |
| Q1                       |     |          | 39921.14             | 9980.177             | 7984.113             | 6653.403            | 5322.694             | 4435.554             | 3991.985             | 3070.724            | 2661.275            |
| Q2                       |     |          | 96186.83             | 24046.45             | 19237.09             | 16030.85            | 12824.61             | 10687.12             | 9618.371             | 7398.667            | 6412.132            |
| Q3                       |     |          | 192373.7             | 48092.89             | 38474.18             | 32061.7             | 25649.22             | 21374.23             | 19236.74             | 14797.33            | 12824.26            |
| ARL                      | 0.4 |          | 34695.94             | 8673.985             | 6939.188             | 5782.657            | 4626.125             | 3855.104             | 3469.594             | 2668.918            | 2313.063            |
| CV                       |     |          | 1                    | 1                    | 1                    | 1                   | 1                    | 1                    | 1                    | 1                   | 1                   |
| Q1                       |     |          | 9981.256             | 2495.206             | 1996.136             | 1663.423            | 1330.709             | 1108.9               | 997.996              | 767.656             | 665.283             |
| Q2                       |     |          | 24049.05             | 6012.002             | 4809.532             | 4007.886            | 3206.239             | 2671.808             | 2404.593             | 1849.606            | 1602.946            |
| Q3                       |     |          | 48098.09             | 12024                | 9619.064             | 8015.772            | 6412.478             | 5343.616             | 4809.185             | 3699.213            | 3205.893            |
| ARL                      | 0.5 |          | 27757.75             | 6939.438             | 5551.55              | 4626.292            | 3701.034             | 3084.195             | 2775.775             | 2135.212            | 1850.517            |
| CV                       |     |          | 1<br>7985.263        | $\frac{1}{1996.208}$ | $\frac{1}{1596.938}$ | 1<br>1330.757       | $\frac{1}{1064.577}$ | $\frac{1}{887.124}$  | $\frac{1}{798.397}$  | $\frac{1}{614.118}$ | $\frac{1}{532.217}$ |
| Q1 $Q2$                  |     |          | 1983.203             | 4809.705             | 3847.695             | 3206.355            | 2565.015             | 2137.454             | 198.391              | 1479.67             | 1282.334            |
| $Q_2$ $Q_3$              |     |          | 38479.72             | 9619.411             | 7695.389             | 6412.709            | 5130.029             | 4274.909             | 3847.348             | 2959.339            | 2564.668            |
| ARL                      | 0.6 |          | 23132.29             | 5783.073             | 4626.459             | 3855.382            | 3084.306             | 2570.255             | 2313.229             | 1779.407            | 1542.153            |
| CV                       | 0.0 |          | 1                    | 1                    | 1                    | 1                   | 1                    | 1                    | 1                    | 1                   | 1                   |
| Q1                       |     |          | 6654.602             | 1663.543             | 1330.805             | 1108.98             | 887.156              | 739.272              | 665.331              | 511.759             | 443.506             |
| $\overline{\mathrm{Q}2}$ |     |          | 16033.74             | 4008.174             | 3206.47              | 2672.001            | 2137.531             | 1781.218             | 1603.062             | 1233.044            | 1068.592            |
| Q3                       |     |          | 32067.47             | 8016.348             | 6412.941             | 5344.001            | 4275.063             | 3562.437             | 3206.123             | 2466.089            | 2137.185            |
| ARL                      | 0.9 |          | 15423.2              | 3855.799             | 3084.639             | 2570.533            | 2056.426             | 1713.688             | 1542.32              | 1186.4              | 1028.213            |
| CV                       |     |          | 1                    | 1                    | 1                    | 1                   | 1                    | 1                    | 1                    | 1                   | 1                   |
| Q1                       |     |          | 4436.833             | 1109.1               | 887.252              | 739.352             | 591.453              | 492.854              | 443.554              | 341.162             | 295.655             |
| Q2                       |     |          | 10690.2              | 2672.29              | 2137.762             | 1781.411            | 1425.059             | 1187.491             | 1068.708             | 822.003             | 712.356             |
| Q3                       |     |          | 21380.4              | 5344.579             | 4275.524             | 3562.822            | 2850.119             | 2374.983             | 2137.416             | 1644.006            | 1424.713            |
| ARL                      | 1   |          | 13881.38             | 3470.344             | 2776.275             | 2313.563            | 1850.85              | 1542.375             | 1388.138             | 1067.798            | 925.425             |
| CV                       |     |          | 1                    | 1                    | 1                    | 1                   | 1                    | 1                    | 1                    | 1                   | 1                   |
| Q1                       |     |          | 3993.279             | 998.212              | 798.541              | 665.427             | 532.313              | 443.569              | 399.198              | 307.043             | 266.084             |
| $Q_2$                    |     |          | 9621.49              | 2405.112             | 1924.021             | 1603.293            | 1282.565             | 1068.746             | 961.837              | 739.795             | 641.109             |
| $\frac{Q3}{ARL}$         | 1.3 |          | 19242.98<br>10679.13 | 4810.225<br>2669.784 | 3848.041<br>2135.827 | 3206.586            | 2565.13<br>1423.885  | 2137.493<br>1186.571 | 1923.674<br>1067.914 | 1479.589<br>821.472 | 1282.218<br>711.943 |
| CV                       | 1.3 |          | 10079.13             | 2009.784             | 1                    | 1779.856<br>1       | 1425.005             | 0.999                | 0.999                | 0.999               | 0.999               |
| Q1                       |     |          | 3072.052             | 767.905              | 614.295              | 511.889             | 409.482              | 341.211              | 307.076              | 236.179             | 204.669             |
| $Q_2$                    |     |          | 7401.865             | 1850.206             | 1480.096             | 1233.355            | 986.615              | 822.121              | 739.875              | 569.054             | 493.134             |
| $\vec{Q}3$               |     |          | 14803.73             | 3700.413             | 2960.192             | 2466.711            | 1973.231             | 1644.243             | 1479.749             | 1138.109            | 986.269             |
| ARL                      | 1.5 |          | 9255.916             | 2313.979             | 1851.183             | 1542.653            | 1234.122             | 1028.435             | 925.592              | 711.994             | 617.061             |
| CV                       |     |          | 1                    | 1                    | 1                    | 1                   | 1                    | 1                    | 0.999                | 0.999               | 0.999               |
| Q1                       |     |          | 2662.617             | 665.547              | 532.408              | 443.649             | 354.891              | 295.718              | 266.132              | 204.684             | 177.374             |
| Q2                       |     |          | 6415.366             | 1603.581             | 1282.796             | 1068.939            | 855.082              | 712.510              | 641.225              | 493.169             | 427.368             |
| Q3                       |     |          | 12830.73             | 3207.163             | 2565.592             | 2137.878            | 1710.163             | 1425.021             | 1282.449             | 986.339             | 854.735             |
| ARL                      | 2   |          | 6943.187             | 1735.797             | 1388.638             | 1157.198            | 925.758              | 771.465              | 694.319              | 534.092             | 462.879             |
| CV                       |     |          | 1                    | 1                    | 1                    | 1                   | 0.999                | 0.999                | 0.999                | 0.999               | 0.999               |
| Q1                       |     |          | 1997.286             | 499.214              | 399.342              | 332.761             | 266.180              | 221.793              | 199.599              | 153.505             | 133.018             |
| $Q_2$                    |     |          | 4812.304             | 1202.816             | 962.184              | 801.762             | 641.340              | 534.392              | 480.919              | 369.857             | 320.497             |
| $\frac{Q3}{ARL}$         | 2.5 |          | 9624.607<br>5555.549 | 2405.632<br>1388.887 | 1924.367             | 1603.524<br>925.925 | 1282.68<br>740.740   | 1068.785<br>617.284  | 961.837<br>555.555   | 739.715<br>427.350  | 640.994<br>370.370  |
|                          | ⊿.ə |          | 5555.549<br>1        | 1388.887             | 1111.11<br>1         | 0.999               |                      | 0.999                |                      |                     |                     |
| CV<br>Q1                 |     |          | 1598.088             | 399.414              | 319.503              | 0.999 $266.228$     | 0.999 $212.954$      | 0.999<br>177.438     | 0.999 $159.679$      | 0.999 $122.797$     | 0.999 $106.405$     |
| $Q_1$ $Q_2$              |     |          | 3850.466             | 962.357              | 769.816              | 641.456             | 513.095              | 427.522              | 384.735              | 295.869             | 256.375             |
| $Q_3$                    |     |          | 7700.933             | 1924.713             | 1539.632             | 1282.911            | 1026.191             | 855.043              | 769.469              | 591.739             | 512.749             |
| ARL                      | 2.7 |          | 5144.397             | 1286.099             | 1028.88              | 857.399             | 685.919              | 571.599              | 514.44               | 395.723             | 342.960             |
| CV                       |     |          | 1                    | 1                    | 1                    | 1                   | 0.999                | 0.999                | 0.999                | 0.999               | 0.998               |
| Q1                       |     |          | 1479.807             | 369.844              | 295.846              | 246.515             | 197.183              | 164.295              | 147.851              | 113.699             | 98.519              |
| $Q_2$                    |     |          | 3565.478             | 891.109              | 712.818              | 593.958             | 475.097              | 395.856              | 356.236              | 273.948             | 237.375             |
| $\vec{Q}3$               |     |          | 7130.955             | 1782.219             | 1425.637             | 1187.915            | 950.193              | 791.712              | 712.472              | 547.896             | 474.750             |
| ARL                      | 3   |          | 4630.457             | 1157.614             | 926.092              | 771.743             | 617.395              | 514.495              | 463.046              | 356.189             | 308.698             |
| CV                       |     |          | 1                    | 1                    | 0.999                | 0.999               | 0.999                | 0.999                | 0.999                | 0.998               | 0.998               |
| Q1                       |     |          | 1331.956             | 332.881              | 266.276              | 221.873             | 177.469              | 147.867              | 133.066              | 102.325             | 88.663              |
| Q2                       |     |          | 3209.241             | 802.051              | 641.571              | 534.585             | 427.599              | 356.274              | 320.612              | 246.545             | 213.626             |
| Q3                       |     |          | 6418.483             | 1604.101             | 1283.142             | 1069.17             | 855.197              | 712.549              | 641.225              | 493.09              | 427.252             |
|                          |     |          |                      |                      |                      |                     |                      |                      |                      |                     |                     |

Table A.6. ARL, CV and quartiles of the run length distribution assuming 0.0027 as the false alarm probability for the two-sided chart with  $\alpha_0$ =1.50,  $\lambda_0$ =2.5,  $\lambda_1 \in (0.1,0.4,0.5,0.6,0.9,1,1.3,1.5,2,2.5,2.7,3)$  and  $\alpha_1 \in (0.1,0.4,0.5,0.6,0.75,0.9,1,1.3,1.5)$ 

|               | λ   | $\alpha$ | 0.1           | 0.4           | 0.5           | 0.6           | 0.75          | 0.9           | 1      | 1.3     | 1.5     |
|---------------|-----|----------|---------------|---------------|---------------|---------------|---------------|---------------|--------|---------|---------|
| ARL           | 0.1 |          | 1.011         | 1.045         | 1.057         | 1.069         | 1.089         | 1.108         | 1.122  | 1.164   | 1.193   |
| CV            |     |          | 0.104         | 0.208         | 0.233         | 0.255         | 0.285         | 0.312         | 0.329  | 0.375   | 0.403   |
| Q1            |     |          | 0.064         | 0.092         | 0.099         | 0.105         | 0.115         | 0.124         | 0.129  | 0.147   | 0.158   |
| Q2            |     |          | 0.153         | 0.221         | 0.238         | 0.254         | 0.276         | 0.298         | 0.312  | 0.353   | 0.381   |
| Q3            |     |          | 0.307         | 0.442         | 0.476         | 0.507         | 0.555         | 0.596         | 0.624  | 0.707   | 0.762   |
| ARL           | 0.4 |          | 1.039         | 1.177         | 1.231         | 1.289         | 1.387         | 1.499         | 1.582  | 1.884   | 2.142   |
| CV            |     |          | 0.194         | 0.388         | 0.433         | 0.474         | 0.528         | 0.577         | 0.607  | 0.685   | 0.730   |
| Q1            |     |          | 0.088         | 0.152         | 0.172         | 0.193         | 0.225         | 0.261         | 0.288  | 0.380   | 0.457   |
| $\tilde{Q}_2$ |     |          | 0.212         | 0.366         | 0.414         | 0.464         | 0.543         | 0.629         | 0.693  | 0.916   | 1.102   |
| Q3            |     |          | 0.423         | 0.732         | 0.828         | 0.928         | 1.086         | 1.259         | 1.386  | 1.833   | 2.204   |
| ARL           | 0.5 |          | 1.047         | 1.219         | 1.289         | 1.367         | 1.499         | 1.655         | 1.774  | 2.231   | 2.647   |
| CV            | 0.0 |          | 0.213         | 0.425         | 0.474         | 0.518         | 0.577         | 0.629         | 0.661  | 0.743   | 0.789   |
| Q1            |     |          | 0.213 $0.093$ | 0.425 $0.168$ | 0.474 $0.193$ | 0.318 $0.219$ | 0.377 $0.262$ | 0.029 $0.310$ | 0.347  | 0.484   | 0.606   |
|               |     |          |               |               |               |               |               | 0.310 $0.748$ |        |         |         |
| Q2            |     |          | 0.224         | 0.405         | 0.464         | 0.527         | 0.630         |               | 0.836  | 1.166   | 1.461   |
| Q3            |     |          | 0.448         | 0.809         | 0.928         | 1.054         | 1.260         | 1.495         | 1.672  | 2.331   | 2.921   |
| ARL           | 0.6 |          | 1.055         | 1.262         | 1.349         | 1.446         | 1.617         | 1.825         | 1.989  | 2.651   | 3.296   |
| CV            |     |          | 0.229         | 0.456         | 0.509         | 0.556         | 0.618         | 0.673         | 0.705  | 0.789   | 0.835   |
| Q1            |     |          | 0.098         | 0.183         | 0.213         | 0.245         | 0.299         | 0.362         | 0.412  | 0.607   | 0.796   |
| Q2            |     |          | 0.235         | 0.441         | 0.512         | 0.589         | 0.719         | 0.873         | 0.992  | 1.464   | 1.917   |
| ARL           | 0.9 |          | 1.076         | 1.389         | 1.530         | 1.699         | 2.017         | 2.442         | 2.806  | 4.538   | 6.649   |
| CV            |     |          | 0.266         | 0.529         | 0.589         | 0.641         | 0.710         | 0.768         | 0.802  | 0.883   | 0.922   |
| Q1            |     |          | 0.109         | 0.226         | 0.271         | 0.324         | 0.420         | 0.546         | 0.653  | 1.156   | 1.765   |
| Q2            |     |          | 0.262         | 0.544         | 0.654         | 0.781         | 1.012         | 1.316         | 1.573  | 2.785   | 4.253   |
| Q3            |     |          | 0.524         | 1.088         | 1.308         | 1.561         | 2.025         | 2.631         | 3.145  | 5.569   | 8.505   |
| ARL           | 1   |          | 1.083         | 1.429         | 1.592         | 1.788         | 2.167         | 2.687         | 3.146  | 5.463   | 8.515   |
| CV            |     |          | 0.276         | 0.548         | 0.609         | 0.664         | 0.734         | 0.792         | 0.826  | 0.904   | 0.939   |
| Q1            |     |          | 0.112         | 0.239         | 0.291         | 0.351         | 0.465         | 0.618         | 0.752  | 1.423   | 2.303   |
| Q2            |     |          | 0.269         | 0.576         | 0.701         | 0.846         | 1.119         | 1.489         | 1.812  | 3.428   | 5.549   |
| Q3            |     |          | 0.539         | 1.153         | 1.402         | 1.693         | 2.239         | 2.978         | 3.624  | 6.857   | 11.097  |
| ARL           | 1.3 |          | 1.100         | 1.553         | 1.782         | 2.072         | 2.670         | 3.569         | 4.434  | 9.683   | 18.531  |
| CV            |     |          | 0.302         | 0.597         | 0.663         | 0.719         | 0.791         | 0.848         | 0.880  | 0.947   | 0.973   |
| Q1            |     |          | 0.120         | 0.279         | 0.349         | 0.437         | 0.613         | 0.875         | 1.126  | 2.639   | 5.186   |
| $Q_2$         |     |          | 0.289         | 0.672         | 0.842         | 1.052         | 1.477         | 2.109         | 2.712  | 6.359   | 12.495  |
| $\tilde{Q}_3$ |     |          | 0.579         | 1.343         | 1.684         | 2.104         | 2.954         | 4.218         | 5.424  | 12.718  | 24.989  |
| ARL           | 1.5 |          | 1.111         | 1.636         | 1.914         | 2.276         | 3.057         | 4.304         | 5.573  | 14.349  | 31.879  |
| CV            | 1.0 |          | 0.316         | 0.623         | 0.691         | 0.749         | 0.820         | 0.876         | 0.906  | 0.965   | 0.984   |
|               |     |          | 0.310 $0.125$ | 0.023 $0.304$ | 0.091 $0.389$ | 0.749 $0.497$ | 0.820 $0.726$ | 1.0885        | 1.455  | 3.983   | 9.026   |
| Q1            |     |          |               |               |               |               |               |               |        |         |         |
| $Q_2$         |     |          | 0.301         | 0.733         | 0.938         | 1.198         | 1.749         | 2.622         | 3.505  | 9.596   | 21.748  |
| Q3            |     |          | 0.602         | 1.467         | 1.875         | 2.396         | 3.498         | 5.243         | 7.009  | 19.191  | 43.496  |
| ARL           | 2   |          | 1.135         | 1.841         | 2.258         | 2.839         | 4.234         | 6.819         | 9.849  | 39.392  | 125.695 |
| CV            |     |          | 0.345         | 0.676         | 0.746         | 0.805         | 0.874         | 0.924         | 0.948  | 0.987   | 0.996   |
| Q1            |     |          | 0.135         | 0.367         | 0.492         | 0.663         | 1.068         | 1.814         | 2.687  | 11.188  | 36.016  |
| Q2            |     |          | 0.325         | 0.885         | 1.185         | 1.597         | 2.572         | 4.371         | 6.474  | 26.957  | 86.778  |
| Q3            |     |          | 0.651         | 1.770         | 2.369         | 3.193         | 5.145         | 8.742         | 12.948 | 53.913  | 173.556 |
| ARL           | 2.5 |          | 1.156         | 2.049         | 2.627         | 3.489         | 5.779         | 10.697        | 17.329 | 106.788 | 370.370 |
| CV            |     |          | 0.367         | 0.715         | 0.787         | 0.845         | 0.909         | 0.952         | 0.971  | 0.995   | 0.999   |
| Q1            |     |          | 0.144         | 0.429         | 0.600         | 0.852         | 1.514         | 2.931         | 4.840  | 30.577  | 106.405 |
| Q2            |     |          | 0.346         | 1.035         | 1.446         | 2.053         | 3.649         | 7.063         | 11.662 | 73.673  | 256.374 |
| Q3            |     |          | 0.692         | 2.070         | 2.893         | 4.105         | 7.297         | 14.125        | 23.324 | 147.345 | 512.749 |
| ARL           | 2.7 |          | 1.163         | 2.132         | 2.781         | 3.776         | 6.522         | 12.773        | 21.678 | 154.307 | 467.899 |
| CV            |     |          | 0.375         | 0.727         | 0.800         | 0.857         | 0.920         | 0.960         | 0.977  | 0.997   | 0.999   |
| Q1            |     |          | 0.147         | 0.454         | 0.646         | 0.935         | 1.729         | 3.529         | 6.091  | 44.247  | 134.462 |
| $\tilde{Q}_2$ |     |          | 0.353         | 1.095         | 1.556         | 2.253         | 4.165         | 8.502         | 14.676 | 106.611 | 323.976 |
| Q3            |     |          | 0.706         | 2.190         | 3.111         | 4.506         | 8.329         | 17.004        | 29.353 | 213.221 | 647.953 |
| ARL           | 3   |          | 1.174         | 2.258         | 3.022         | 4.236         | 7.793         | 16.613        | 30.222 | 248.968 | 539.485 |
| CV            | ,   |          | 0.385         | 0.746         | 0.818         | 0.874         | 0.934         | 0.969         | 0.983  | 0.998   | 0.999   |
| Q1            |     |          | 0.363 $0.151$ | 0.740 $0.492$ | 0.316         | 1.068         | 2.095         | 4.634         | 8.549  | 71.479  | 155.056 |
| $Q_2$         |     |          | 0.131 $0.363$ | 1.185         | 1.725         | 2.574         | 5.047         | 11.165        | 20.599 | 172.224 | 373.596 |
|               |     |          |               |               |               |               |               |               |        |         |         |
| Q3            |     |          | 0.727         | 2.370         | 3.449         | 5.148         | 10.095        | 22.330        | 41.199 | 344.449 | 747.191 |