1

Assignment 7

Adarsh Sai - AI20BTECH11001

Download all python codes from

https://github.com/Adarsh541/AI1103-prob-andranvar/blob/%main/Assignment6/codes/ Assignment6.py

Download latex-tikz codes from

https://github.com/Adarsh541/AI1103-prob-and-ranvar/blob/main/Assignment7/Assignment7.

1 Problem(CSIR UGC NET EXAM(June 2012)Q.112)

Let $X_1, X_2, X_3,, X_n$ be i.i.d observations from a distribution with continuous probability density function f which is symmetric around θ i.e

$$f(x - \theta) = f(\theta - x) \tag{1.0.1}$$

for all real x.Consider the test H_0 : $\theta = 0$ vs H_1 : $\theta > 0$ and the sign test statistic

$$S_n = \sum_{i=1}^n sign(X_i)$$
 (1.0.2)

where

$$sign(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases}$$
 (1.0.3)

Let z_{α} be the upper $100(1-\alpha)^{th}$ percentile of the standard normal distribution where $0 < \alpha < 1$. Which of the following is/are correct?

1) If
$$\theta = 0$$
 then $\lim_{n \to \infty} P\{S_n > \sqrt{n}z_\alpha\} = 1$

2) If
$$\theta = 0$$
 then $\lim_{n \to \infty} P\{S_n > \sqrt{n}Z_\alpha\} = \alpha$

3) If
$$\theta > 0$$
 then $\lim_{n \to \infty} P\{S_n > \sqrt{n}z_\alpha\} = 1$

4) If
$$\theta > 0$$
 then $\lim_{n \to \infty} P\{S_n > \sqrt{n}Z_{\alpha}\} = \alpha$

2 SOLUTION(CSIR UGC NET EXAM(JUNE 2012)Q.112)

Assume hypothesis $H_0: \theta = 0$ is true.

1) Given X is symmetric around zero.

$$f_X(x) = f_X(-x)$$
 (2.0.1)

$$\int_0^\infty f_X(x)dx = \int_0^\infty f_X(-x)dx \qquad (2.0.2)$$

a) Solving LHS of (2.0.2)

$$\int_0^\infty f_X(x)dx = \Pr(X \ge 0) \tag{2.0.3}$$

b) Solving RHS of (2.0.2)

$$\int_0^\infty f_X(-x)dx \tag{2.0.4}$$

Changing $-x \rightarrow x$ we get

$$\int_0^\infty f_X(-x)dx = \int_{-\infty}^0 f_X(x)dx \qquad (2.0.5)$$
$$= \Pr(X \le 0) \qquad (2.0.6)$$

but

$$\int_{-\infty}^{0} f_X(x)dx + \int_{0}^{\infty} f_X(x)dx = 1 \qquad (2.0.7)$$

from (2.0.2), (2.0.5) and (2.0.7)

$$\int_{-\infty}^{0} f_X(x)dx = \int_{0}^{\infty} f_X(x)dx = \frac{1}{2}$$
 (2.0.8)

$$\implies \Pr(X \le 0) = \Pr(X \ge 0) = \frac{1}{2}$$
 (2.0.9)

2) Let Y be a random variable such that

$$Y = sign(X) \tag{2.0.10}$$

$$Y = \begin{cases} 1 & X > 0 \\ -1 & X < 0 \end{cases}$$
 (2.0.11)

From (2.0.9) and (2.0.11) we have

$$Pr(Y = -1) = Pr(Y = 1) = \frac{1}{2}$$
 (2.0.12)

So Y = sign(X) is also symmetric around zero.

Fig. 2: pdf of Y = sign(X)

$$\implies \mu_{v} = 0 \tag{2.0.13}$$

and variance is

$$\sigma_y^2 = (-1)^2 \left(\frac{1}{2}\right) + (1)^2 \left(\frac{1}{2}\right)$$
 (2.0.14)

$$= 1$$
 (2.0.15)

3) Given

$$S_n = \sum_{i=1}^n sign(X_i)$$
 (2.0.16)

$$S_n = \sum_{i=1}^n Y_i \tag{2.0.17}$$

From central limit theorem

$$Z = \lim_{n \to \infty} \sqrt{n} \left(\frac{\frac{S_n}{n} - \mu_y}{\sigma_y} \right)$$
 (2.0.18)

$$= \lim_{n \to \infty} \sqrt{n} \left(\frac{S_n}{n} \right) \tag{2.0.19}$$

$$= \lim_{n \to \infty} \left(\frac{S_n}{\sqrt{n}} \right) \tag{2.0.20}$$

where Z is a standard normal variable N(0,1).

a) Given

$$\alpha = P\{Z > z_{\alpha}\} \tag{2.0.21}$$

So from (2.0.20) and (2.0.21)

$$\lim_{n \to \infty} P\left\{ \frac{S_n}{\sqrt{n}} > z_{\alpha} \right\} = \alpha \qquad (2.0.22)$$

$$\implies \lim_{n \to \infty} P\left\{S_n > \sqrt{n}z_\alpha\right\} = \alpha \qquad (2.0.23)$$