1 nalen

א. תנאי התחלה:

(סדרה ריקה! נוח להיעזר ב- a_0 לסעיף ב) (סדרה ריקה נוח להיעזר ב-

(רק בלוק 2 × 1 עומד אפשרי) a_1 = 1

. (בים 2 x בלוקים 2 או שני בלוקים 2 x בלוקים 2 או שני בלוקים 2 או שני בלוקים a_2 = 3

n+1 יחס נסיגה: נתבונן בריצוף באורך

- , ת באורך כל ריצוף באורך אז לפני הבלוק הזה יכול לבוא כל באורך באורך א אם הוא מסתיים בבלוק 2×1 עומד, אז לפני הבלומר a_n ריצופים אפשריים.
- , n 1 באורך באורך לבוא כל ריצוף באורך 2×2 , אז לפני הבלוק הזה יכול לבוא כל ריצוף באורך * כלומר a_{n-1} ריצופים אפשריים.
- אם הוא מסתיים בבלוק 2×1 שוכב, אז בהכרח מדובר בשני בלוקים 2×1 שוכבים זה מעל * a_{n-1} הוא כל ריצוף באורך n-1 כלומר a_{n-1} ריצופים אפשריים.

 $a_{n+1} = a_n + 2a_{n-1}$: בסה"כ קיבלנו

 $\lambda^2 - \lambda - 2 = 0$ ב. המשוואה האפיינית:

. 2 , - 1 כלומר $\lambda_{1,2} = \frac{1\pm\sqrt{1+8}}{2} = \frac{1\pm3}{2}$ כלומר הם:

 $\cdot a_n$ - A 2ⁿ+ B $(=1)^n$ לפיכך

: נקבל a_1 , a_0 נקבל בהצבת תנאי ההתחלה

.2A - B = 1 , A + B = 1

. B = 1/3 מכאן . A = 2/3 כלומר , 3A = 2 מכאן מחיבור שתי משוואות אלה לפיכך

$$a_n - \frac{2}{3} 2^n \frac{1}{3} (1)^n - \frac{1}{3} (2^{n+1} (=1)^n)$$

 $a_4=a_3+2a_2=11$, $a_3=a_2+2a_1=5$: מיחס הנסיגה $a_4=\frac{1}{3}\left(2^5+(-1)^4\right)=11$: מהנוסחה המפורשת

2 nolen

קיבלנו

כמו בפתרון שאלה 4 בממ"ן 15, נניח שהמשתנים הזוגיים הם 3 הראשונים, ונכפול את התוצאה

$$\frac{6}{2} = \frac{6}{1}$$
 שנקבל ב- 20 שנקבל

מספר פתרונות המשוואה $x_1+x_2+x_3+x_4+x_5+x_6=29$ תחת האילוצים הנתונים בשאלה $f(x)=(x^2+x^4+x^6+...)^3(x^3+x^5+x^7+...)^3$ הוא המקדם של x^{29} בפיתוח הפונקציה x^6 , שלאחר העלאה בחזקת x^6 נותן x^6 נותן x^6 שלאחר העלאה בחזקת x^6

 $_{\cdot}\,x^{9}\,$ נותן נוציא בחזקת העלאה אלאחר העלאה משותף נוציא גורם נוציא גורם בסוגריים הימניים נוציא גורם משותף

$$f(x) + x^{6} (1 + x^{2} + x^{4} + x^{6} + \dots)^{3} x^{9} (1 + x^{2} + x^{4} + x^{6} + \dots)^{3}$$

$$= x^{15} (1 + x^{2} + x^{4} + x^{6} + \dots)^{6}$$

 $\cdot (1+x^2+x^4+x^6+...)^6$ בפונקציה או המקדם של x^{14} בפונקציה או בפונקציה המקדם של $(1+y+y^2+y^3+...)^6$ בהצבת בפונקציה של y^7 בפונקציה או המקדם של בפונקציה בפונקציה בפונקציה המקדם של בפונקציה המקדם של בפונקציה המקדם של המקדם של או בפונקציה בפונקציה בפונקציה המקדם של המקדם במקדם של המקדם של ה

. $D(6,7) = \frac{12}{5} = \frac{17}{5} = \frac{17}{5}$ בסוף הממ"ן, המקדם הזה הוא שבסוף (iii) שבסוף הממ"ן,

. 792 = 20 ' 15,840 : תשובה סופית את זה עלינו לכפול ב- 20 . תשובה סופית הפתרון, את זה עלינו לכפול ב- 20 .

3 nalen

א. לפי הדיון בעמי 124 - 127 בספר, הפונקציה היוצרת היא

$$f(x) = (1 + x + x^2 + x^3)^2 (1 + x + x^2 + x^3 + x^4 + \dots)^2$$

.וו המקדם של בפיתוח פונקציה זו. a_n

ב. מסעיף א׳, בעזרת סכום טור הנדסי סופי וסכום טור הנדסי אינסופי נקבל:

$$f(x) = \left(\frac{1-x^4}{1-x}\right)^2 \left(\frac{1}{1-x}\right)^2 = (1-x^4)^2 \frac{1}{(1-x)^4} = (1-2x^4+x^8) \frac{1}{(1-x)^4}$$

. $\frac{1}{(1-x)^4}$ = $\sum_{i=0}^{\infty} D(4,i) \, x^i$,(11), שהופיעה בממיין (עמי 11),

מכאן עייי קיבוץ איברים הנותנים מעלה n (נוסחה (ii) בממיין. השווה גם השאלה הקודמת), מכאן עייי קיבוץ איברים הנותנים מעלה f(x) ב- x^n ב-

$$a_n = D(4, n) - 2D(4, n - 4) + D(4, n - 8) = \binom{n+3}{3} - 2\binom{n-1}{3} + \binom{n-5}{3}$$

אם n < 5 הביטוי הימני ביותר באגף ימין הוא θ (מקדמים בינומיים חריגים - ר' עמי n < 5) בדומה, אם n < 1 < 3 הביטוי האמצעי באגף ימין מתאפס.

נקבל כך את המקרים $a_0=1$, $a_0=1$, $a_0=1$, שלא קשה לודא את נכונותם מתנאי $n\geq 5$ אד הם אינם מהוים בדיקה טובה לביטוי בשלמותו. מצד שני, אם נניח $n\geq 5$ ונפתח את הביטוי, לאחר פיתוח וקיבוץ איברים מתקבל הביטוי הפשוט: $a_n=16n-32$ מישהו וואה דרך קצרה להגיע ישר לתוצאה זו !

4 nalen

א. $c_{2m}=\frac{\sqrt[3]{n}}{\sqrt[3]{2m}}$, המקדם של x^{2m} בפיתוח $(1+x)^n$ הוא, לפי נוסחת הבינום, x^{2m} בפיתוח $(1+x^2)^n$ $\frac{1}{(1-x)^n}$: את אגף שמאל של הזהות הנתונה בשאלה נראה כמכפלה של שני גורמים $b_i=D(n,i)$. מנוסחה $b_i=D(n,i)$ בממ"ן , מנוסחה $a_i=0$ מנוסחה $a_i=0$ בפיתוח $a_i=0$ בפיתוח $a_i=0$ מנוסחה $a_i=0$ בממ"ן .

$$(1-x^2)^n = \prod_{i=0}^{\infty} (-1)^i \frac{y}{\xi} \frac{n}{i} (x_0^{\frac{1}{2}})^i = \prod_{i=0}^{\infty} (-1)^i \frac{y}{i} \frac{x}{\xi} \sum_{i=0}^{2^i} (-1)^i \frac{x}{\xi} x_0^{\frac{1}{2}}$$

.ה. את המקדם של x^i בביטוי את a_i בביטוי

 \pm מכיוון שמופיעות רק חזקות זוגיות של \pm כל המקדמים בעלי אינדקס אי-זוגי מתאפסים

.
$$a_{2i}$$
 = $(-1)^i \frac{8}{7} \frac{n}{i}$ -ש בעי. אנו רואים אנו לכל a_{2i+1} = 0

. 2i או i מופיע ולא a_{2i} המינומי ובחזקה של (a_{2i} ולא ולא שימו לב שימו לב שזהו , a_i שבסוף הממיין למציאת המקדמים בכפל פונקציות יוצרות:

$$c_{2m} = \int_{i=0}^{2m} a_i b_{2m-i}$$

 a_{2i+1} ונוכל לרשום עבור המקרה שלנו a_{2i} ולא a_{2i+1} ולא יים יש לנו רק מקדמים ולא יים יש לנו רק מקדמים ולא

$$c_{2m} = \int_{i=0}^{m} a_{2i} b_{2m-2i}$$

שימו לב לשינוי גבול הסכימה כאן והבינו מדוע הוא נדרש. נציב בשוויון זה את הביטויים שקיבלנו עבור המקדמים:

$$\frac{1}{2} \frac{n}{2m} \int_{0}^{1} \int_{i=0}^{m} (-1)^{i} \int_{0}^{m} D(n, 2m-2i)$$

. נקרא למשתנה הסכימה i במקום במקום (נקרא למשתנה לנדרש בשאלה). זו הזהות המבוקשת

בדיקה: כאשר
$$n=5, m=2$$
, ואגף ימין הוא בדיקה: כאשר $n=5, m=2$

.
$$D(j,0) = \frac{j}{l} \frac{j+0-1}{j-1} \frac{j}{0} = \frac{j-1}{l} \frac{j-1}{j-1} = \frac{1}{0}$$
 שימו לב ש-

את הבדיקה השניה אנא השלימו בעצמכם.

איתי הראבן