

Proximity Measure for Binary Attributes

A contingency table for binary data

	Object <i>j</i>			
		1	0	sum
Object /	1	q	r	q+r
	0	s	t	s+t
	sum	q + s	r+t	p

$$d(i,j) = \frac{r+s}{q+r+s+t}$$

■ Distance measure for symmetric binary variables:

□ Distance measure for asymmetric binary variables:

$$d(i,j) = \frac{r+s}{q+r+s}$$

☐ Jaccard coefficient (*similarity* measure for *asymmetric*

binary variables):

$$sim_{Jaccard}(i, j) = \frac{q}{q + r + s}$$

□ Note: Jaccard coefficient is the same as "coherence": (a concept discussed in Pattern Discovery)

$$coherence(i,j) = \frac{sup(i,j)}{sup(i) + sup(j) - sup(i,j)} = \frac{q}{(q+r) + (q+s) - q}$$

Example: Dissimilarity between Asymmetric Binary Variables

Name	Gender	Fever	Cough	Test-1	Test-2	Test-3	Test-4
Jack	M	Y	N	P	N	N	N
Mary	F	Y	N	P	N	P	N
Jim	M	Y	P	N	N	N	N

- ☐ Gender is a symmetric attribute (not counted in)
- ☐ The remaining attributes are asymmetric binary
- ☐ Let the values Y and P be 1, and the value N be 0

Distance:
$$d(i, j) = \frac{r+s}{q+r+s}$$

$$d(jack, mary) = \frac{0+1}{2+0+1} = 0.33$$
$$d(jack, jim) = \frac{1+1}{1+1+1} = 0.67$$
$$d(jim, mary) = \frac{1+2}{1+1+2} = 0.75$$

				٨	/lar	У		_
			1		0		\sum_{row}	
la	ck	1	2		0		2	
Ju	CIX	0	1		3		4	
		\sum_{col}	3		3		6	
		lim						

		Jin	1	
		1	0	Σ_{row}
	1	1	1	2
Jack	0	1	3	4
	\sum_{col}	2	4	6

		M	lary	
		1	0	\sum_{row}
	1	1	1	2
Jim	0	2	2	4
	\sum_{col}	3	3	6