ELEC 341: Systems and Control

Lecture 19

Nyquist stability criterion: Examples on relative stability

Course roadmap

Modeling

Laplace transform

Transfer function

Models for systems

- Electrical
- Electromechanical
- Mechanical
- Linearization, delay

Analysis

Stability

- Routh-Hurwitz
- Nyquist

- ✓ Transient
 - Steady state
- Frequency response
 - Bode plot

Design

Design specs

Root locus

Frequency domain

PID & Lead-lag

Design examples

Matlab simulations

Nyquist plot (review)

Nyquist path

Nyquist plot

Nyquist stability criterion (review)

CL system is stable $\Leftrightarrow Z = P + N = 0$

- Z: # of CL poles in open RHP
- P: # of OL poles in open RHP (given)
- N: # of clockwise/counterclockwise encirclement of -1 by Nyquist plot of OL transfer function L(s) (counted by using Nyquist plot of L(s))

Advantages of Nyquist stability criterion

- It can deal with closed-loop systems with a time-delay system in the open-loop, while Routh-Hurwitz criterion cannot.
- It does not require transfer functions, just experimental frequency response data of the open-loop system are necessary to judge the closed-loop stability. On the other hand, Routh-Hurwitz criterion needs transfer functions.
- Nyquist criterion leads to the concept of "stability margin", i.e., gain-margin and phase-margin. From Routh-Hurwitz criterion, we can only judge "stable or not".

Nyquist criterion: A special case

CL system is stable
$$\Leftrightarrow Z = P + N = 0$$

• If P = 0 (i.e., if L(s) has no pole in open RHP)

CL system is stable $\Leftrightarrow N = 0$

We assume P = 0 from now on!

Examples when P = 0

CL stable

CL unstable

Example 1: Stable L(s)

$$L(s) = \frac{20}{(s+1)(s+2)(s+3)}$$

$$L(s) = \frac{100}{(s+1)(s+2)(s+3)}$$

Example 2: L(s) with an integrator

$$L(s) = \frac{1}{s(s+1)}$$

How to use the Nyquist stability criterion?

Example 2 (cont'd): *L*(*s*) with an integrator

 When open loop poles lie on the imaginary axis, we modify Nyquist path, by detouring to the right of the poles.

Ex:

$$L(s) = \frac{1}{s(s+1)}$$

Example 2 (cont'd): L(s) for modified Nyquist path

• For small |*s*|,

$$L(s)=rac{1}{s(s+1)}=rac{1}{s^2+s}pproxrac{1}{s}$$
 (very small) $s=arepsilon e^{j heta}
ightarrow L(s)pproxrac{1}{arepsilon}e^{-j heta}$

 $\begin{array}{c|c} & \text{Im} & s\text{- plane} \\ \hline \text{(very small)} & \nearrow e^{j\theta} \\ \hline & \text{Re} \end{array}$

• When s moves as $s = \varepsilon e^{j\theta}$ and $\theta = 0 \rightarrow 90^{\circ}$ L(s) moves as shown on the right:

$$L(s) \approx \frac{1}{\varepsilon} e^{-j\theta}, \ \theta = 0 \rightarrow 90^{\circ}$$

Example 2 (cont'd): L(s) with an integrator

$$L(s) = \frac{1}{s(s+1)}$$

 $P = 0, N = 0 \Rightarrow CL$ stable

Example 2 (cont'd): Bode plot of L(s)

$$G_1(s) = \frac{1}{s+1}$$

X

$$G_2(s) = \frac{1}{s}$$

$$L(s) = \frac{1}{s(s+1)}$$

Example 3: *L(s)* with double integrator

$$L(s) = \frac{1}{s^2(s+1)}$$

 $P = 0, N = 2 \Rightarrow CL$ unstable

Example 3 (cont'd): Bode plot of L(s)

$$G_1(s) = \frac{1}{s+1}$$

X

$$G_2(s) = \frac{1}{s^2}$$

$$L(s) = \frac{1}{s^2(s+1)}$$

Example 4: L(s) with a time-delay

$$L(s) = \frac{20}{(s+1)(s+2)(s+3)}$$

$$P = 0, N = 0 \Rightarrow CL$$
 stable

$$L(s) = \frac{20e^{-0.7s}}{(s+1)(s+2)(s+3)}$$

$$P = 0, N = 2 \Rightarrow CL$$
 unstable

Routh-Hurwitz is NOT applicable!

-6000

Bode plot of a time delay (review)

The phase lag causes instability of the closed-loop system, and thus, the difficulty in control.

10⁰

10¹

10⁻¹

Remarks on Nyquist stability criterion

- Nyquist stability criterion gives not only *absolute* but also *relative stability*.
 - Absolute stability: Is the closed-loop system stable or not? (Answer is yes or no.)
 - Relative stability: How "much" is the closed-loop system stable? (Margin of safety or margin of stability)
- Relative stability (stability margin) is important because a math model is never accurate.
- How to measure relative stability?
 - Use a "distance" from the critical point -1.
 - Gain margin (GM) & Phase margin (PM)

Gain margin (GM)

• Phase crossover frequency ω_p :

$$\angle L(j\omega_p) = -180^{\circ}$$

Gain margin (in dB)

$$GM = 20\log_{10}\frac{1}{|L(j\omega_p)|}$$

 GM indicates how much OL gain can be multiplied without violating CL stability.

Examples of GM

Reason why GM is inadequate

Phase margin (PM)

• Gain crossover frequency ω_g :

$$|L(j\omega_g)| = 1$$

Phase margin

$$PM = \angle L(j\omega_g) + 180^{\circ}$$

 PM indicates how much OL phase lag can be added without violating CL stability.

a place of mind

Example 1

GM and PM: An extreme example

Notes on Nyquist plot

Advantages

 Nyquist plot can be used for study of closed-loop stability, for open-loop systems which are unstable and include time-delay.

Disadvantage

 Controller design on Nyquist plot is difficult. (Controller design on Bode plot is much simpler.)

We translate GM and PM defined in Nyquist plot into those in Bode plot!

Relative stability on Bode plot

Notes on Bode plot

Advantages

- Without computer, Bode plot can be sketched easily by using straight-line approximations.
- GM, PM, crossover frequencies are easily determined on Bode plot.
- Controller design on Bode plot is simpler. (Next week)

Disadvantage

 If OL system has poles in open right half plane, it will be complicated to use Bode plot for closed-loop stability analysis. -50

-100

10⁰

10²

10¹

Relative stability with time delay

$$L(s) = \frac{1}{s(s+1)(s+2)}$$

$$L(s) = \frac{e^{-s}}{s(s+1)(s+2)}$$

Time delay reduces relative stability!

Unstable closed-loop case

Summary

- Relative stability: Closeness of Nyquist plot to the critical point -1.
 - Gain margin, phase crossover frequency
 - Phase margin, gain crossover frequency
- Relative stability on Bode plot
- We normally emphasize PM in controller design.
- Next
 - Frequency domain specifications