# INEAR REGRESSION

### CONTENTS

- Introduction
- Regression Definition
- Linear Regression
- Scatter Graph
- Slope and Intercept
- Least square method
- Example

### Introduction

 Analyze the specific relationships between the two or more variables .

 This is done to gain the information about one through knowing values of the others

### Regression

 A statistical measure that attempts to determine the strength of the relationship between one dependent variable (usually denoted by Y) and a series of other changing variables (known as independent variables).

 Forecast value of a dependent variable (Y) from the value of independent variables (X<sub>1</sub>, X<sub>2</sub>,....).

### **Regression Analysis**

 In statistics, regression analysis includes many techniques for modeling and analyzing several variables, when the focus is on the relationship between a dependent variable and one or more independent variables

Regression analysis is widely used for prediction and forecasting,

### Dependent & independent variable

- Independent variables are regarded as inputs to a system and may take on different values freely.
- Dependent variables are those values that change as a consequence of changes in other values in the system.
- Independent variable is also called as predictor or explanatory variable and it is denoted by X.
- Dependent variable is also called as response variable and it is denoted by Y.

# Linear regression

- The simplest mathematical relationship between two variables x and y is a linear relationship.
- In a cause and effect relationship, the independent variable is the cause, and the dependent variable is the effect.
- Least squares linear regression is a method for predicting the value of a dependent variable Y, based on the value of an independent variable X.

### The first order linear model

$$Y = b_0 + b_1 X + \epsilon$$

Y = dependent variable

X = independent variable

 $b_0 = Y$ -intercept

 $b_1$  = slope of the line

e = error variable

# Slope & Intercept

### **SLOPE:**

The slope of a line is the change in y for a one unit increase in x.

### Y-Intercept:

It is the height at which the line crosses the vertical axis and is obtaining by setting x=0 in the equation.



### **EXAMPLE**



 Example of simple linear regression which has one independent variable.

# **Error variable**

- Random error term:
  - 1.The quantity € in the model equation is a random varible assumed to be normally distributed with
    E(€)=0 and V(€)=σ²
  - 2.E-random deviation or random error term.
  - 3. Without € ,any observed pair (x,y) would correspond to a point falling exactly on the line

 $Y=b_0 + b_1 X$ , called true regression line.

The inclusion of the random error term allows (x,y) to fall either above the true regression line (when E>0) or below the line (when E<0).

# Scatter plot

### **Definition of Scatter Plot**

- Scatter plot or Scattergraph is a type of mathematical diagram to display values for two variables for a set of data.
- 2. A scatter plot is a graph made by plotting ordered pairs in a coordinate plane to show the correlation between two sets of data.
- 3. The data is displayed as a collection of points,

### **More about Scatter Plot**

- A scatter plot describes a positive trend if, as one set of values increases, the other set tends to increase.
- A scatter plot describes a negative trend if, as one set of values increases, the other set tends to decrease.
- The position on the vertical axis. This kind of plot is also called a scatter chart, scattergram, scatter diagram or scatter graph.

# Scatter graph



### Least Squares Estimation of $b_0$ , $b_1$

- $\beta_0 \equiv$  Mean response when x=0 (y-intercept)
- $\beta_1 \equiv$  Change in mean response when x increases by 1 unit (slope)
- $\beta_0$ ,  $\beta_1$  are unknown parameters (like  $\mu$ )
- $\beta_0 + \beta_1 x \equiv$  Mean response when explanatory variable takes on the value x
- Goal: Choose values (estimates) that minimize the sum of squared errors (SSE) of observed values to the straight-line:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \qquad SSE = \sum_{i=1}^n \left( y_i - \hat{y}_i \right)^2 = \sum_{i=1}^n \left( y_i - \left( \hat{\beta}_0 + \hat{\beta}_1 x_i \right) \right)^2$$

# The least squares estimate of the slope coefficient $\beta_1$ of true regression line is

$$\beta_1 = \frac{\Sigma(X_i - X')(Y_i - Y')}{\Sigma (X_i - X')^2}$$

The least squares estimate of the intercept  $\beta_0$  of true regression line is

$$\beta_0 = Y' - \beta_1 x'$$

- Regression generates what is called the "least-squares" regression line.
- The regression line takes the form: = a + b\*X, where a and b are both constants, (pronounced y-hat) is the predicted value of Y and X is a specific value of the independent variable.
- Such a formula could be used to generate values of for a given value of X. For example, suppose a = 10 and b = 7. If X is 10, then the formula produces a predicted value for Y of 45 (from 10 + 5\*7).
- It turns out that with any two variables X and Y, there is one equation that produces the "best fit" linking X to Y.
- We use the criterion is called the least squares criterion to measure best.

- You can imagine a formula that produces predictions for Y
  from each value of X in the data. Those predictions will usually
  differ from the actual value of Y that is being predicted (unless
  the Y values lie exactly on a straight line).
- If you square the difference and add up these squared differences across all the predictions,
- you get a number called the residual or error sum or squares (or SS<sub>error</sub>). The formula above is simply the mathematical representation of SS<sub>error</sub>. Regression generates a formula such that SS<sub>error</sub> is as small as it can possibly be
- Minimising this number (by using calculus) minimises the average error in prediction.

# • Example:

| ×                  | Y            |
|--------------------|--------------|
| <u>Temperature</u> | <u>Sales</u> |
| 63                 | 1.52         |
| 70                 | 1.68         |
| 73                 | 1.8          |
| 75                 | 2.05         |
| 80                 | 2.36         |
| 82                 | 2.25         |
| 85                 | 2.68         |
| 88                 | 2.9          |
| 90                 | 3.14         |
| 91                 | 3.06         |
| 92                 | 3.24         |
| 75                 | 1.92         |
| 98                 | 3.4          |
| 100                | 3.28         |
| 92                 | 3.17         |
| 87                 | 2.83         |
| 84                 | 2.58         |
| 88                 | 2.86         |
| 80                 | 2.26         |
| 82                 | 2.14         |
| 76                 | 1.98         |



### Most applications of linear regression:

- If the goal is prediction, or forecasting, linear regression can be used to fit a predictive model to an observed data set of y and X values.
- After developing such a model, if an additional value of X is then given without its accompanying value of y, the fitted model can be used to make a prediction of the value of y.
- Given a variable y and a number of variables X<sub>1</sub>, ..., X<sub>p</sub> that
  may be related to y, linear regression analysis can be
  applied to quantify the strength of the relationship
  between y and the X<sub>j</sub>, to assess which X<sub>j</sub> may have no
  relationship with y at all, and to identify which subsets of
  the X<sub>i</sub> contain redundant information about y.

### THANK YOU