5.2 哈夫曼树与哈夫曼编码

什么是哈夫曼树(Huffman Tree)

[例] 将百分制的考试成绩转换成五分制的成绩

```
if( score < 60 ) grade =1;
else if( score < 70 ) grade =2;
else if( score < 80 ) grade =3;
else if( score < 90 ) grade =4;
else grade =5;</pre>
```

□ 判定树:

□ 如果考虑学生成绩的分布的概率:

分数段	0-59	60-69	70-79	80-89	90-100
比例	0.05	0. 15	0.40	0.30	0. 10

▶ 查找效率: 0.05× 1+0.15 ×2+0.4× 3+0.3 ×4+0.1× 4 = 3.15

□ 如果考虑学生成绩的分布的概率:

分数段	0-59	60-69	70-79	80-89	90-100
比例	0.05	0. 15	0.40	0.30	0. 10

□ 修改判定树:

如何根据结点不同的查找频率构造更有效的搜索树?

❖ 哈夫曼树的定义

带权路径长度(WPL): 设二叉树有n个叶子结点,每个叶子结点带有权值 w_k ,从根结点到每个叶子结点的长度为 l_k ,则每个叶子结点的带权路径长度之和就是: $WPL = \sum_{k=1}^{n} w_k l_k$

最优二叉树或哈夫曼树: WPL最小的二叉树

〖例〗有五个叶子结点,它们的权值为{1,2,3,4,5},用此权值序列可以构造出形状不同的多个二叉树。

WPWPL 5-11 ** 11 + 12 ** 22 + 13 ** 32 + 4 ** 42 + 15 *

哈夫曼树的构造

每次把权值最小的两棵二叉树合并

合并后的节点作为新的节点 加入到原节点集合再次进行 比较操作


```
typedef struct TreeNode *HuffmanTree;
struct TreeNode{
                                   使用最小堆效率比直接
 int Weight;
                                   排序效率高
 HuffmanTree Left, Right;
HuffmanTree Huffman( MinHeap H )
   /* 假设H->Size个权值已经存在H->Elements[]->Weight里*/
   int i; HuffmanTree T;
   BuildMinHeap(H); /*将H->Elements[]按权值调整为最小堆*/
   for (i = 1; i < H->Size; i++) { /*做H->Size-1次合并*/
       T = malloc( sizeof( struct TreeNode) ); /*建立新结点*/
       T->Left = DeleteMin(H);
                  /*从最小堆中删除一个结点,作为新T的左子结点*/
       T->Right = DeleteMin(H);
                 /*从最小堆中删除一个结点,作为新T的右子结点*/
       T->Weight = T->Left->Weight+T->Right->Weight;
                 /*计算新权值*/
       Insert(H,T); /*将新T插入最小堆*/
   T = DeleteMin(H);
                             整体复杂度为O(N logN)
   return T;
```

❖ 哈夫曼树的特点:

- 🌮 没有度为1的结点;
- ☞ n个叶子结点的哈夫曼树共有2n-1个结点;
- 哈夫曼树的任意非叶节点的左右子树交换后仍是哈夫曼树;
- 对同一组权值 $\{w_1, w_2, \dots, w_n\}$,是否存在不同构的两棵哈夫曼树呢?

对一组权值{1,2,3,3},不同构的两棵哈夫曼树:

WPL = 18

哈夫曼编码

□ 给定一段字符串,如何对字符进行编码,可以使得该字符串的编码存储空间最少?

[例] 假设有一段文本,包含58个字符,并由以下7个字符构: a, e, i, s, t, 空格(sp), 换行(nl); 这7个字符出现的次数不同。如何对这7个字符进行编码,使得总编码空间最少?

【分析】

- (1) 用等长ASCII编码: $58 \times 8 = 464$ 位;
- (2) 用等长3位编码: $58 \times 3 = 174$ 位;
- (3) 不等长编码:出现频率高的字符用的编码短些,出现频率低的字符则可以编码长些?

之所以编码更长是为了与短编 码的区分

怎么进行不等长编码?

如何避免二义性?

- 前缀码prefix code: 任何字符的编码都不是另一字符编码的前缀
 - ◆ 可以无二义地解码

❖二叉树用于编码

保证前缀码唯一

用二叉树进行编码:

- (1) 左右分支: 0、1
- (2) 字符只在叶结点上

四个字符的频率: a:4, u:1, x:2, z:1

不等长

Cost (
$$aaaxuaxz \rightarrow 00010110010111$$
)
= $1\times4 + 3\times1 + 2\times2 + 3\times1 = 14$

Cost ($aaaxuaxz \rightarrow 0000001001001011$) = $2\times4 + 2\times1 + 2\times2 + 2\times1 = 16$

怎么构造一颗编码代价最小的二叉树?

〖例〗哈夫曼编码

C_i	a	е	i	S	t	sp	nl
f_i	10	15	12	3	4	13	1

a:111

e:10

i:00

s:11011

t: 1100

sp: 01

nl: 11010

$$Cost = 3 \times 10 + 2 \times 15$$

$$+ 2 \times 12 + 5 \times 3$$

$$+ 4 \times 4 + 2 \times 13$$

$$+ 5 \times 1$$

$$= 146$$

