

(b) nu $f_1($

Winter Semester 2019-2020 Continuous Assessment Test - I Programme Name: B. Tech.

Course Name: Discrete Mathematics and Graph Theory : A1+TA1+TAA1

Course Code : MAT1014 **Exam Duration: 90 minutes**

Answer All the Questions $(5 \times 10 = 50)$

1. (a) Write down the contrapositive, the converse and the inverse of st	10.00 to 10.00 to 10.00 to 10.00
 (a) Write down the contrapositive, the converse and the inverse of the st "If it is raining, then the home team wins." 	
(b) Obtain PDNF and PCNF of the statement formula $(P \rightarrow (Q \land R)) \land ((-Q \land \neg R))$.	(2)
$(\neg Q \land \neg R)$).	$P \rightarrow$
	(3)
2. Construct an argument to show that the following premises imply the con"it rained."	nclusion
(i) If it does not rain or if there is no traffic dislocation, then the sports day we held and the cultural programme will go on.	vill be
(ii) If the sports day is held then then trophy will be awarded.	
(m) The trophy was not awarded.	(10)
3. (a) Let $P(m, n)$ be "n is greater than or equal to m" where the domain (univ discourse) is the set of nonnegative integers. What are the truth values of	erse of
(i) $(\exists n)(\forall n)P(m,n)$ (ii) $(\exists m)(\forall n)P(m,n)$. (b) Show that the premises "A student in this class has not read the book" and	(2)
"Everyone in this class passed the first exam" imply the conclusion "Someone	who
passed the first exam has not read the book."	(8)
4. Show that $(\exists x)(F(x) \land S(x)) \rightarrow (y)(M(y) \rightarrow W(y))$ and $(\exists y)(M(y) \rightarrow W(y))$))
$imply(x)(F(x) \rightarrow \neg S(x)).$	(10)
(a) Define Semigroup and Monoid. What is the relationship between them your answer.	n? Justify (2)
(b) Prove that the set of four functions f_1 , f_2 , f_3 and f_4 on the set of non-zero numbers $\mathbb{C} - \{0\}$ defined by	complex
$f_1(z) = z, f_2(z) = -z, f_3(z) = \frac{1}{z}$ and $f_4(z) = -\frac{1}{z}, \ \forall z \in \mathbb{C} - \{0\}$ forms an abeliance	an group
with respect to the composition of functions.	(8)
