Minería de datos.

Preprocesamiento y Clasificación.

Dataset: MetroPT-3

Grupo: Data Mavericks.

- Brian Sena Simons
- Miguel García López
- Álvaro Santana Sánchez
- Ana Fuentes Rodríguez

Ciencia de Datos Universidad de Granada

https://github.com/briansenas/MineriaMetroPT-3

Introducción

Modelos Base

Modelos Ensemble

Definición del problema

Análisis de Datos

Ventana Deslizante

Conjunto de datos

Vectores Soporte (Ana Fuentes)

Clasificador Bayesiano (Brian Sena)

Árboles (Miguel García)

Regresión Logística (Álvaro Santana)

Bagging (Ana Fuentes)

Stacking (Brian Sena)

Boosting (Miguel García)

AdaBoost (Álvaro Santana)

Detección de anomalías

Figura 1: Visualización de datos

Variable	Tipo	Mín.	Q1	$\mathbf{Q2}$	Media	Q3	Máx.
TP2	Numérico	-0.032	-0.014	-0.012	1.368	-0.010	10.676
TP3	Numérico	0.730	8.492	8.960	8.985	9.492	10.302
H1	Numérico	-0.036	8.254	8.784	7.568	9.374	10.288
DV pressure	Numérico	-0.032	-0.022	-0.020	0.05596	-0.018	9.844
Reservoirs	Numérico	0.712	8.494	8.960	8.985	9.492	10.300
Oil temperature	Numérico	15.40	57.77	62.70	62.64	67.25	89.05
Motor current	Numérico	0.020	0.040	0.045	2.050	3.808	9.295
COMP	Numérico	0.000	1.000	1.000	0.837	1.000	1.000
DV eletric	Numérico	0.000	0.000	0.000	0.1606	0.000	1.000
Towers	Numérico	0.000	1.000	1.000	0.9198	1.000	1.000
MPG	Numérico	0.000	1.000	1.000	0.8327	1.000	1.000
LPS	Numérico	0.000	0.000	0.000	0.00342	0.000	1.000
Pressure switch	Numérico	0.000	1.000	1.000	0.9914	1.000	1.000
Oil level	Numérico	0.000	1.000	1.000	0.9042	1.000	1.000
Caudal impulses	Numérico	0.000	1.000	1.000	0.9371	1.000	1.000

Tabla 1: Información básica de los diferentes tipos de datos presentes en MetroPT-3 [1]

- Información de sensores
- Datos pseudo-cíclicos, salvo anomalías

Para incorporar temporalidad, se estima una ventana deslizante equivalente a la mediana del tiempo de activación del motor.

Durante el estudio de dicha ventana, se hallan nuevas anomalías además de saltos temporales.

Se estiman características como media, mediana, mínimo, máximo y varianza.

Figura 1: Visualización de la ventana.

Detalles Experimentación

Es necesario crear las particiones.

Se eliminan discontinuidades temporales.

Se generan pliegues de tamaño equitativo.

Se entremezclan distintos intervalos de tiempo.

Pliegue	Negativo	Positivo	Conjunto		
0	635	31	Evaluación		
1	635	31	Entrenamiento pliegue 1		
2	635	31	Entrenamiento pliegue 2		
3	635	31	Entrenamiento pliegue 3		
4	635	31	Entrenamiento pliegue 4		
5	635	31	Entrenamiento pliegue 3		
6	635	31	Entrenamiento pliegue 2		
7	638	31	Entrenamiento pliegue 1		
8	641	43	Evaluación		

Tabla 1: Los 9 pliegues generados.

Ana Fuentes Rodríguez

Máquinas de Vectores de Soporte

Asunciones:

- Separabilidad de las clases.
- Representatividad de los Vectores de Soporte.
- Adecuación del kernel.
- Escalas comparables entre características.

Preprocesamiento:

- Eliminación de saltos temporales.
- No hay valores faltantes.
- Escalado de los datos

Experimentación:

- Parámetros estudiados:

C: [0.1, 1, 10]

gamma: [auto, scale, 0.1]

kernel: [linear, rbf]

Análisis de Datos

Modelos Base

Máquinas de Vectores de Soporte

Parámetro	Posibles valores				
С	0.1	1	10		
γ	scale	auto	0.1		
kernel	linear	rbf			

Matriz de confusión - Entrenamiento Matriz de confusión - Prueba

- 1200

- 1200

- 1278

- 100

- 800

- 400

- 200

Etiqueta Predicha

Etiqueta Predicha

Figura 1: Resultado mejor modelo en entrenamiento y test

Tabla	1:	Sele	cción	de	parámet	ros
Tublu	Ι.	OCIC	COIOII	uc	paramet	.103

Modelo		Parámetros		Precisión	Sensibilidad	F1-score
SVM	C: 10	γ: auto	kernel: rbf	0.985	0.93	0.96

Tabla 2: Resultados mejor modelo.

Introducción Análisis de Datos Bagging (Random Forest, ExtraTrees y Random

Asunciones:

Subspaces)

- Alta varianza en los modelos base.
- Diversidad en los modelos base.
- Errores no correlacioados
- Tamaño suficiente del dataset...
- Modelos base independientes.
- Preprocesamiento:
- Eliminación de saltos temporales.

No es necesario escalar los datos

No hay valores faltantes.

- Experimentación: Random Forest.

Modelos Base

- Parámetros: n_estimators, max_depth,
- min_samples_split, min_samples_leaf. ExtraTrees.
- Parámetros: n_estimators, max_depth,

Modelos Ensemble

- min_samples_split, min_samples_leaf. Random Subspaces. Parámetros: n_estimators,
 - estimator_max_depth, max_features.

Matriz de confusión - Entrenamiento

70

Matriz de confusión - Prueba

1276

Bagging (Random Forest)

Parámetro	Posibles valores			
n_estimatorss	100	200	300	
max_depth	None	10	20	
min_samples_split	2	5	10	
min_samples_leaf	1	2	4	

Tabla 1: Selección de parámetros

	Etiqueta) 1 1		216	Etiqueta ` 1	4		
	0		1		0	'	
		Etiqueta Predi	cha		Eti	queta Predic	าล
		Figur		esulta trenan			
1	Sensibilidad	F1-scor				, ,	
1	Schsibillidad	1 1-8001					

modelo en est

Verdadera 0

Modelo	Parámetros		Precisión	Sensibilidad	F1-score
Random	max_depth: 10 min samples leaf: 1	min_samples_split: 5 n estimators: 100	0.98	0.975	0.975

Tabla 2: Resultados mejor modelo.

- 1200

- 1000

Introducción

Análisis de Datos

Modelos Base

Modelos Ensemble

Bagging (ExtraTrees)

Parámetro	Posibles valores		
n_estimatorss	100	200	
max_depth	None	10	
min_samples_split	2	5	
min_samples_leaf	1	2	

Tabla 1: Selección de parámetros

Modelo	Parámetros		Precisión	Sensibilidad	F1-score
ExtraTrees	max_depth: 10	min_samples_split: 5 n_estimators: 200	0.985	0.965	0.975

Tabla 2: Resultados mejor modelo.

Figura 1: Resultado mejor modelo en entrenamiento y test

11

Introducción

Análisis de Datos

Modelos Base

Modelos Ensemble

Bagging (Random Subspaces)

Parámetro	Posibles valores			
n_estimators	50	100	150	
max_features	[0.5	0.75	1.0	
estimator_max_depth	None	10	20	

Tabla 1: Selección de parámetros

		'			0
Modelo	Parámetr	Precisión	Sensibilidad	F1-score	
Random	estimator_max_depth: None		0.98	0.965	0.975
Subspaces	max_features: 0.75	n_estimators: 50	0.70	0.703	0.775

Tabla 2: Resultados mejor modelo.

Figura 1: Resultado mejor modelo en entrenamiento y test

Brian Sena Simons

Clasificador Bayesiano

Asunciones:

- Independencia condicional.
- Distribución normal.
- Clases balanceadas.

Preprocesamiento:

- Eliminación de saltos temporales.
- No hay valores faltantes.
- No es necesario escalar los datos.

Experimentación:

- Parámetro de suavizado.
 - 1e-11 a 1e-9 con 25 valores
- Submuestreo CondensedNearestNeighbour.
 - Los valores de K en [1, 5, 10]
- Sobremuestreo con SMOTE.
- Selección características:
 - MRMR.
 - Chi-cuadrado.

Clasificador Bayesiano

Parámetros	F1 Promedio
$\alpha = 4^{-9}$	0.6802
$lpha=1^{-8}$	0.6894
$lpha=1^{-11}$	0.6847
K=10, $\alpha = 4^{-9}$	0.7088
$K=10, \alpha = 1^{-11}$	0.7320
K=10, $\alpha = 2^{-8}$	0.7819
$\alpha = 4^{-9}$	0.6811
$\alpha = 4^{-8}$	0.7047
$lpha = 5^{-8}$	0.6865
	$lpha = 4^{-9}$ $lpha = 1^{-8}$ $lpha = 1^{-11}$ $K=10, \ lpha = 4^{-9}$ $K=10, \ lpha = 1^{-11}$ $K=10, \ lpha = 2^{-8}$ $lpha = 4^{-9}$ $lpha = 4^{-8}$

Tabla 1: Búsqueda combinatoria

Figura 1: Resultado mejor modelo en entrenamiento y test

Modelo	Parámetros	Precisión	Sensibilidad	$\mathbf{F1}$
Bayesiano + CNN + CHI	$lpha=2^{-8}$	0.8084	0.8396	0.8231

Tabla 2: Resultados mejor modelo.

Stacking

Asunciones:

- Diversidad de modelos base.
- Flexibilidad del meta-modelo.
- Distribución equilibrada de clases.
- Independencia de los errores.

Preprocesamiento:

- Eliminación de saltos temporales.
- No hay valores faltantes.
- Adecuado para cada modelo.

Experimentación:

- Modelos elegidos:
 - SVM: Frontera de decisión
 - Árboles: No linealidades fuertes
 - Bayes: Probabilidades
- Parámetros:
 - SVM: Regularización C [0.1, 1, 10]
 - Árboles: Criterio [gini, entropia]
- Técnicas CNN y SMOTE.

16

Stacking

Modelo	Parámetros	F1 Promedio
Stacking	C=10, $\alpha = 1e^{-9}$, ct="entropía"	0.9376
Stacking + SMOTE	C=10, $\alpha = 1e^{-9}$, ct="gini"	0.9309
Stacking + CNN	C=10, $\alpha = 1e^{-9}$, ct="gini"	0.8726
Stacking + OPT	C=10, $\alpha=1e^{-9}$, ct="entropía"	0.9438

Tabla 1: Búsqueda combinatoria

Figura 1: Resultado mejor modelo en entrenamiento y test

Modelo	Parámetros	Precisión	Sensibilidad	F1
Stacking + OPT	C=10, α =1 e^{-9} , ct="entropía"	0.9889	0.9387	0.9623

Tabla 2: Resultados sobre test del mejor modelo.

Alvaro Santana Sanchez

Regresión Logística

Asunciones:

- Relación lineal X -> y.
- Variables en X no correlacionadas.
- Independencia de las observaciones.
- Ausencia de valores extremos.

Preprocesamiento:

- Eliminación de ruido.
- PCA.
- Escalado de datos.

Experimentación:

- Regularización.
 - penalización l1 y l2
 - C: np.logspace(-3, 3, 7),
- Pesos en las salidas:
 - -__0:1-1:10
 - 0:1-1:20
 - balanceado

.

Preprocesado

1. Eliminación de Ruido: Ensemble Filter

Eliminación de valores no deseados

Dataset	Tipo	Count
Original	Anomalía	209
Modificado	Anomalía	217
Original	No Anomalia	4445
Modificado	Anomalía	4443

2: Escalado de datos: StandardScaler (media)

3 PCA: de 76 - 30 variables

Evitamos variables muy correlacionadas

Experimentación

Parámetro	Valores		
C	10^{-3} , 10^{-2} , 10^{-1} , 10^{0} , 10^{1} , 10^{2} , 10^{3}		
penalty	11, 12		
class_weight	balanced, {0: 1, 1: 10}, {0: 1, 1: 20}		

Tabla 1: Grid de hiperparametros

C	class_weight	penalty
1000	{0: 1, 1: 10}	11

Tabla 2: Resultados mejor modelo.

Figura 1: Resultado mejor modelo en entrenamiento y test

AdaBoost

Asunciones:

- Ausencia de ruido excesivo.
- Poco desbalanceo de clases

Preprocesamiento:

- Eliminación de ruido.

Experimentación:

- Optimización: learning rate.
- Pesos en las salidas
- Número estimadores
- Árbol de clasificación:
 - profundidad
 - ejemplos mínimos por nodo y división
 - Criterio
 - Splitter

22

Preprocesado

1. Eliminación de Ruido: Ensemble Filter

Eliminación de valores no deseados

Dataset	Tipo	Count
Original	Anomalía	209
Modificado	Anomalía	217
Original	No Anomalia	4445
Modificado	Anomalía	4443

Experimentación

Parámetro	Valores
estimatorcriterion	gini, entropy
estimatorsplitter	best, random
estimatormax_depth	3, 5, 10
estimatormin_samples_split	2, 5, 10
estimatormin_samples_leaf	1, 2, 5
estimatorclass_weight	$\{0: 1, 1: 1\}, \{0: 1, 1: 10\}, \{0: 1, 1: 20\}, \{0: 1, 1: 40\}, \{0: 1, 1: 100\}$
n_estimators	1, 2, 10, 50, 100, 200
learning_rate	0.01,0.1,0.5,1

Tabla 1: Grid de hiperparametros

Criterio	max_depth	min_samples_leaf	min_samples_split	splitter	class_weight
gini	3	5	2	best	0:1,1:1

learning_rate	n_estimators
1	200

Tabla 2: Resultados mejor modelo.

Figura 1: Resultado mejor modelo en entrenamiento y test

Resultados 3

F1 test

AdaBoost:0.939 LR:0.917

Precision

AdaBoost:0.933 LR:0.93

<u>Recall</u>

AdaBoost:0.945 LR:0.917

Miguel García López

Árbol de decisión

Características:

- Pueden trabajar con datos de todo tipo.
- Resilientes a valores extremos (outliers).
- No asume nada sobre los datos.
- Muy variable.

Preprocesamiento:

- No requiere escalado.
- No requiere transformación alguna sobre las variables.

Experimentación:

- Búsqueda de hiperparámetros:
 - max_depth
 - min_samples_split
 - min_samples_leaf
 - criterion

Árbol de decisión

Parámetro		Valor	
criterion		entropy	
max_depth		15	
min samples	leaf	2	
min_samples	split	17	

Tabla 1: Mejores parámetros

	Precision	Recall	F1-Score	Support	
False	0.9976	0.9945	0.9961	1279	
True	0.9103	0.9595	0.9342	74	
Accuracy	0.9926				
Macro Avg	0.9540	0.9770	0.9651	1353	
Weighted Avg	0.9929	0.9926	0.9927	1353	

Tabla 2: Resultados mejor modelo.

Figura 1: Resultado mejor modelo en entrenamiento y test

Árbol de decisión

Introducción

Figura 2: Gráfica de importancia de características.

XGBoost (Gradient Boosting)

Caracteristicas:

- Resilientes a valores extremos (outliers).
- No asume nada sobre los datos.
- Muy robusto y menos variable que un árbol individual.

Preprocesamiento:

- No requiere escalado.
- No requiere transformación alguna sobre las variables.

Experimentación:

- Búsqueda de hiperparámetros:
 - n_estimators
 - colsample_bytree
 - subsample
 - max_depth
 - learning_rate
 - gamma
 - min_child_weight
- Pruebas con búsqueda bayesiana

XGBoost

Parámetro	Valor	
colsample_bytree	0.8778	
gamma	1.5361	
learning_rate	0.2528	
\max_{depth}	4	
min_child_weight	2	
$n_{estimators}$	448	
subsample	0.5743	

Tabla 1: Mejores parámetros

	Precision	Recall	F1-Score	Support	
False	0.9969	0.9977	0.9973	1279	
True	0.9589	0.9459	0.9524	74	
Accuracy	0.9948				
Macro Avg	0.9779	0.9718	0.9748	1353	
Weighted Avg	0.9948	0.9948	0.9948	1353	

Tabla 2: Resultados mejor modelo.

Figura 1: Resultado mejor modelo en entrenamiento y test

XGBoost

Figura 2: Gráfica de importancia de características.

