ANA I/II - Zusammenfassung

Jan-Cornelius Molnar, Version: 25. Oktober 2008 11:02

Professor Pöschel ist für den Inhalt dieses Dokuments nicht verantwortlich.

1 Mengen

Im Folgenden sei A immer eine Teilmenge eines normierten Raumes.

• Eine Menge A heißt beschränkt, falls

$$\sup_{a\in A}\|a\|<\infty.$$

• Eine Menge A heißt induktiv, falls

 $1 \in A \text{ und } a \in A \Rightarrow a+1 \in A.$

• Eine Menge A heißt offen, wenn A mit a auch eine Umgebung von a enthält.

$$\forall a \in A \exists \delta > 0 : B_{\delta}(a) \subset A.$$

- Eine Menge A heißt abgeschlossen, wenn A^c offen ist.
- Eine Menge A heißt kompakt, wenn jede Folge in A eine in A konvergente Teilfolge besitzt.
- Ein Punkt a nicht notwendiger Weise $\in A$ heißt Häufungspunkt von A, wenn in jeder Umgebung von a unendlich viele Punkte von A liegen.
- Die Menge A' aller Häufungspunkte von A heißt abgeleitete Menge.
- Die Menge $A^- = A \cup A'$ heißt Abschluss von A.
- Ein Punkt $a \in A$ heißt innerer Punkt von A, wenn A eine Umgebung von a enthält.
- $\, \bullet \,$ Die Menge A° aller inneren Punkte von A heißt offener Kern von A.

- Eine Menge A heißt zusammenhängend, falls es zu je zwei Punkten in A eine ganz in A liegende, differenzierbare Kurve gibt, die die zwei Punkte verbindet.
- ullet Eine Menge Ω heißt Gebiet, wenn sie offen und zusammenhängend ist.
- Für zwei Punkte u, v bezeichnet

$$[u,v] = \{(1-t)u + tv : t \in [0,1]\}$$

die Verbindungsstrecke.

- Eine Menge A heißt konvex, falls für $u, v \in A$ auch $[u, v] \subset A$ ist.
- Seien x_1, \ldots, x_n Punkte einer Menge, dann heißt die Linearkombination

$$\sum_{i=1}^n \lambda_i x_i,$$

eine Konvexkombination, falls $\lambda_i \ge 0$ und $\sum_{i=1}^n \lambda_i = 1$.

• Eine Norm auf einem Vektorraum V ist eine Abbildung

$$\|\cdot\|:V\to\mathbb{R},$$

mit den Eigenschaften

- (a) $||x|| \ge 0$ für alle $x \in V$ und ||x|| = 0, wenn x = 0.
- (b) $\|\lambda x\| = |\lambda| \|x\|$ für alle $x \in V, \lambda \in \mathbb{K}$.
- (c) $||x + y|| \le ||x|| + ||y||$ für alle $x, y \in V$.
- Ein Skalarprodukt auf einem Vektorraum V ist eine Abbildung

$$\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R},$$

mit folgenden Eigenschaften für $x, y, z \in V$ und $\lambda, \mu \in \mathbb{R}$

(a) $\langle x, x \rangle \ge 0$,

1

- (b) $\langle x, y \rangle = \langle y, x \rangle$,
- (c) $\langle \lambda x + \mu y, z \rangle = \lambda \langle x, z \rangle + \mu \langle y, z \rangle$.

1.1 BEISPIELE FÜR NORMEN

(a) Summennorm eines Vektors

$$\|x\|_1 = \sum_{i=1}^n |x_i|.$$

(b) *p*-Norm eines Vektors

$$\|x\|_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p}.$$

(c) Supremumsnorm einer stetigen Abbildung $f: K \to W$

$$||f||_{\infty} = \sup_{x \in K} |f(x)|.$$

(d) Operatornorm eines linearen Operators $A: V \rightarrow W$

$$||A|| = \sup_{x \in V \setminus \{0\}} \frac{|Ax|_W}{|x|_V} = \sup_{|x|_V = 1} |Ax|.$$

(e) L_1 Norm einer stetigen integrablen Abbildung f

$$||f||_{L_1} = \int_{-\infty}^{\infty} |f(x)| dx.$$

1.2 SÄTZE IN EINEM NORMIERTEN RAUM

- Ist N eine induktive Teilmenge von \mathbb{N} , so gilt $N = \mathbb{N}$.
- ullet \varnothing und E sind offen und abgeschlossen.
- Die Vereinigung beliebig vieler offener Mengen ist offen.
- Der Durchschnitt endlich vieler offener Mengen ist offen.
- Die Vereinigung endlich vieler abgeschlossener Mengen ist abgeschlossen.

- Der Durchschnitt beliebig vieler abgeschlossener Mengen ist abgeschlossen.
- Die Vereinigung endlich vieler kompakter Mengen ist kompakt.
- A ist abgeschlossen genau dann, wenn A alle seine Häufungspunkte enthält, also genau dann, wenn $A = A^-$.
- A ist offen genau dann, wenn alle Punkte von A innere Punkte sind, also genau dann, wenn $A = A^{\circ}$.
- Jede abgeschlossene Teilmenge einer kompakten Menge ist kompakt.
- Eine kompakte Menge ist abgeschlossen und beschränkt.
- Eine Menge K ist konvex genau dann, wenn sie mit den Punkten $x_1, ..., x_n \in K$ auch jede Konvexkombination dieser Punkte enthält.
- Auf endlichdimensionalen Vektorräumen sind alle Normen äquivalent.

Bolzano Weierstraß Eine Teilmenge des \mathbb{R} , \mathbb{C} , \mathbb{R}^n ist kompakt genau dann, wenn sie abgeschlossen und beschränkt ist.

Überdeckungslemma von Heine-Borell Sei K kompakt und $(I_{\lambda})_{{\lambda}\in{\Lambda}}$ eine beliebige Familie offener Intervalle. Gilt

$$\bigcup_{\lambda\in\Lambda}I_{\lambda}\supset K,$$

so existieren endlich viele Umgebungen I_1, \ldots, I_m , sodass

$$\bigcup_{1\leq i\leq m}I_i\supset K.$$

2 Folgen

- Eine Folge in einer Menge M ist eine Funktion $\mathbb{N} \to M$.
- Ist (a_n) eine Folge in M und (n_k) eine strikt wachsende Folge natürlicher Zahlen, dann heißt (a_{n_k}) Teilfolge von (a_n) und (n_k) Auswahlfolge.

- Ist (a_n) eine Folge und $W = \{a_n : n \in \mathbb{N}\}$, dann heißt (a_n) beschränkt, falls W be- Sind (a_n) und (b_n) Folgen mit $a_n \to a$, $b_n \to b$, so gilt für $\lambda, \mu \in \mathbb{K}$ schränkt ist.
- **Eine** Folge (a_n) in $(M, \|\cdot\|)$ heißt konvergent gegen a bezüglich $\|\cdot\|$, wenn

$$\forall \ \varepsilon > 0 \ \exists \ N_0 > 0 \ \forall \ n \ge N_0 : \|a_n - a\| < \varepsilon,$$

$$n \ge N_0 \Rightarrow \|a_n - a\| < \varepsilon.$$

- Eine Folge (a_n) heißt uneigentlich konvergent gegen ∞ bzw. $-\infty$, wenn in jeder Umgebung von ∞ bzw. $-\infty$ fast alle Folgenglieder liegen.
- Eine Folge, die nicht konvergiert, heißt divergent.
- Eine Folge (a_n) heißt Cauchyfolge, wenn

$$\forall \ \varepsilon > 0 \ \exists \ N_0 > 0 \ \forall \ n, m \ge N_0 : \|a_n - a_m\| < \varepsilon,$$

$$n, m \ge N_0 \Rightarrow \|a_n - a_m\| < \varepsilon.$$

- Für eine Folge (a_n) in $M \subset E$ heißt ein Element $a \in E$ Häufungspunkt, wenn in jeder Umgebung von a unendlich viele Folgenglieder liegen.
- Den Raum der beschränkten Folgen nennt man c, den Raum der Nullfolgen c₀.

2.1 ALLGEMEINE SÄTZE FÜR FOLGEN IN NORMIERTEN RÄUMEN

- Der Grenzwert einer konvergenten Folge ist eindeutig bestimmt.
- Gilt $||a_n a|| \le ||b_n||$ für eine Nullfolge b_n und fast alle n, dann ist (a_n) konvergent mit Grenzwert a.
- Jede konvergente Folge ist eine Cauchyfolge.
- Jede Cauchyfolge ist beschränkt.
- Besitzt eine Cauchyfolge eine konvergente Teilfolge, dann ist die gesamte Folge konvergent mit dem selben Grenzwert.

$$\lambda a_n + \mu b_n \rightarrow \lambda a + \mu b$$

- Ist (b_n) beschränkt und (c_n) eine Nullfolge, so gilt $(b_n, c_n) \to 0$.
- Sind die Folgen (a_n) und (b_n) konvergent mit Grenzwert a und b, dann gilt $(a_n, b_n) \rightarrow$ $\langle a,b\rangle$.

2.2 SÄTZE FÜR FOLGEN IN BANACHRÄUMEN

- Eine Folge ist genau dann konvergent, wenn sie eine Cauchyfolge ist.
- Die Folgenräume c und c_0 mit der Supremumgsnorm sind vollständig.

2.3 Sätze für Folgen im \mathbb{R}^n

- Eine Folge konvergiert genau dann, wenn sie komponentenweise konvergiert.
- Jede beschränkte Folge besitzt eine konvergente Teilfolge.

2.4 SÄTZE IN \mathbb{R}

- Sind (a_n) , (b_n) konvergent und gilt $a_n \le b_n$ für unendlich viele n, dann ist auch $\lim a_n \leq \lim b_n$.
- Allgemeine Grenzwertsätze
- (a) $a_n \to \infty$ und $b_n \ge c \Rightarrow a_n + b_n \to \infty$,
- (b) $a_n \to \infty$ und $b_n \ge c > 0 \Rightarrow a_n b_n \to \infty$
- (c) $|a_n| \to \infty \Rightarrow a_n^{-1} \to 0$,
- (d) $a_n \to 0$ und $a_n > 0 \Rightarrow a_n^{-1} \to \infty$.

- Für jede reelle Zahl q mit |q| < 1 gilt $q^n \to 0$.
- Für jede reelle Zahl q mit |q| < 1 und jedes $p \in \mathbb{Z}$ gilt $n^z q^n \to 0$.
- Für jede reelle Zahl a gilt $\frac{a^n}{n!} \to 0$.
- $\sqrt[n]{n} \rightarrow 1.$

Erweiterter Annäherungssatz In jeder nichtleeren Menge A existiert eine Folge, die gegen sup A konvergiert. Entsprechendes gilt für inf A.

Erweiterter Satz von der monotonen Konvergenz *Jede monotone Folge konvergiert gegen einen eigentlichen oder uneigentlichen Grenzwert.*

Erweiterter Satz von Bolzano Weierstrass *Jede reelle Folge besitzt eine eigentlich oder uneigentlich konvergente Teilfolge.*

Jede reelle Folge besitzt einen eigentlichen oder uneigentlichen Häufungswert.

3 Reihen

- Eine Reihe ist ein Ausdruck der Form $\sum_{k=1}^{\infty} a_k$.
- Die endlichen Summen $\sum_{k=1}^{n} a_k$ heißen n-te Partialsummen der Reihe.
- Eine Reihe heißt konvergent, falls die Folge ihrer Partialsummen konvergiert, andernfalls divergent.
- Eine Reihe heißt absolut konvergent, falls ihre Absolutreihe $\sum_k |a_k|$ konvergiert. Ist eine Reihe konvergent aber nicht absolut konvergent, heißt sie bedingt konvergent.
- Eine reelle Reihe $\sum_k b_k$ mit nichtnegativen Gleidern heißt Majorante der Reihe $\sum_k a_k$, wenn für fast alle Folgenglieder gilt $|a_k| \le b_k$.

3.1 BEISPIELE

- (a) Die geometrische Reihe $\sum_{n=0}^{\infty} q^n$ konvergiert, falls |q| < 1.
- (b) Die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert.
- (c) Die alternierende harmonische Reihe $\sum\limits_{n=1}^{\infty} \frac{(-1)^n}{n}$ ist bedingt konvergent.
- (d) Die Zetafunktion $\sum_{n=1}^{\infty} \frac{1}{n^r}$ konvergiert für r > 1 und divergiert für $r \le 1$.
- (e) Die Exponentialreihe $\sum\limits_{n=0}^{\infty}\frac{z^n}{n!}$ ist für jedes $z\in\mathbb{C}$ konvergent.

3.2 SÄTZE FÜR REIHEN IN BANACHRÄUMEN

Nullfolgenkriterium *Ist eine Reihe* $\sum_k a_k$ *konvergent, bilden ihre Glieder* a_k *eine Nullfolge.*

Cauchykriterium *Ist eine Reihe* $\sum_k a_k$ *konvergent, dann gilt*

$$\forall \ \varepsilon > 0 \ \exists \ N_0 \ge 0 \ \forall \ m, n \ge N : \left\| \sum_{k=n}^m a_k \right\| < \varepsilon.$$

■ Eine Reihe ist absolut konvergent, genau dann wenn ihre Absolutreihe beschränkt ist. Jede absolut konvergente Reihe ist auch konvergent.

Umordnungssatz *Ist eine Reihe absolut konvergent, so ist auch jede Umordnung dieser Reihe absolut konvergent.*

Majorantenkriterium Sei $\sum_k a_k$ eine Reihe. Existiert eine reelle konvergente Reihe $\sum_k b_k$ so, dass für fast alle k gilt $||a_k|| \le b_k$, dann ist $\sum_k a_k$ absolut konvergent.

Wurzelkriterium Sei $\sum_k a_k$ eine Reihe. Existiert dann ein q < 1, sodass gilt

$$\sqrt[n]{\|a_n\|} \le q$$
, für fast alle n ,

4

konvergiert die Reihe absolut. Gilt andernfalls

$$\sqrt[n]{\|a_n\|} \ge 1$$
, für unendlich viele n,

dann divergiert die Reihe.

Quotientenkriterium Sei $\sum_k a_k$ eine Reihe. Existiert dann ein q < 1, sodass gilt

$$\frac{\|a_{n+1}\|}{\|a_n\|} \le q, \text{ für fast alle } n,$$

konvergiert die Reihe absolut. Gilt andernfalls

$$\frac{\|a_{n+1}\|}{\|a_n\|} \ge 1$$
, für unendlich viele n,

dann divergiert die Reihe.

3.3 Sätze für Reihen in $\mathbb R$

■ Ist eine reelle Reihe konvergent aber nicht absolut konvergent, so existiert zu jeder Zahl $s \in \mathbb{R}$ eine Umordnung, sodass die Reihe gegen s konvergiert.

Leibnizkriterium Die alternierende Reihe $\sum_k (-1)^k a_k$ konvergiert, falls (a_k) eine monoton fallende Nullfolge ist.

Verdichtungssatz Ist (a_n) eine reelle, monoton fallende Nullfolge, dann sind die Reihen $\sum_k a_k$ und $\sum_k 2^k a_{2^k}$ entweder beide konvergent oder beide divergent.

4 Stetigkeit

■ Eine Abbildung $f: D \to W$ heißt stetig im Punkt $a \in V$, wenn es zu jedem $\varepsilon > 0$ ein $\delta > 0$ gibt, sodass

$$||f(x)-f(a)||_W < \varepsilon, \quad x \in B_{\delta}(a) \cap D.$$

Mit Quantoren ausgedrückt

$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 \ \forall \ x \in B_{\delta}(a) \cap D : ||f(x) - f(a)||_{W} < \varepsilon.$$

Ist f in a nicht stetig, heißt sie dort unstetig.

- Eine Abbildung heißt stetig, wenn sie in allen Punkten ihres Definitionsbereichs stetig ist.
- Eine Abbildung $f: D \rightarrow W$ heißt gleichmäßig stetig auf D, wenn

$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 \ \forall \ x_0, x \in D : \|x - x_0\|_V < \delta \Rightarrow \|f(x) - f(x_0)\|_W < \varepsilon.$$

■ Eine Abbildung $f: D \to W$ heißt lipschitzstetig auf D, wenn es eine Konstante $L \ge 0$ gibt, sodass für $x, a \in D$ gilt

$$||f(x)-f(a)||_W \le L ||x-a||_V$$
.

Dabei ist die beste Lipschitz-Konstante

$$L = \sup_{\substack{x,y \in D \\ x \neq y}} \frac{||f(x) - f(y)||_W}{||x - y||_V}.$$

- Den Raum der Funktionen auf D bezeichnet man mit F(D).
- Den Raum der beschränkten Funktionen auf D bezeichnet man mit B(D).
- Den Raum der stetigen Funktionen auf D bezeichnet man mit C(D).
- ullet Den Raum der beschränkten stetigen Funktionen auf D bezeichnet man mit CB(D).
- Eine Folge (f_n) in F(D) konvergiert punktweise gegen eine Funktion $f \in F(D)$, falls

$$\forall x \in D \ \forall \ \varepsilon > 0 \ \exists \ N_0 \ge 0 : ||f_n(x) - f(x)|| < \varepsilon.$$

■ Eine Folge (f_n) in F(D) konvergiert gleichmäßig gegen eine Funktion $f \in F(D)$, falls

$$\forall \ \varepsilon > 0 \ \exists \ N_0 \ge 0 : ||f_n - f|| < \varepsilon.$$

4.1 Beispiele stetiger Funktionen

- (a) Auf einem beliebigen normierten Raum sind die id und die konstanten Funktionen lipschitz.
- (b) Auf \mathbb{C} sind Re z und Im z lipschitz.
- (c) Jede Norm $\|\cdot\|$ auf dem \mathbb{R}^n ist lipschitz.
- (d) Jedes reelle Polynom ist stetig.
- (e) Die Wurzelfunktion ist stetig auf $[0, \infty)$ und für jedes b > 0 auf [0, b] gleichmäßig aber nicht lipschitzstetig.

4.2 SÄTZE FÜR FUNKTIONEN IN BELIEBIGEN NORMIERTEN RÄUMEN

Folgenkriterium Eine Funktion $f: D \to F$ ist stetig in a genau dann, wenn für jede Folge $x_n \to a$ gilt $f(x_n) \to f(a)$.

Folgenkriterium für Grenzwerte *Ist* $f: D \rightarrow F$ *stetig, und* $a \in D$ *dann gilt*

$$\lim_{x \to a} f(x) = w,$$

genau dann wenn für jede Folge $x_n \rightarrow a, x_n \neq a$ gilt

$$\lim_{n\to\infty}f(x_n)=w.$$

- \bullet C(D), ist eine Algebra.
- Ist f auf D stetig und g auf einer Obermenge von f(D), dann ist $g \circ f$ ebenfalls stetig.
- $f: D \to F$ ist stetig in a genau dann, wenn $f^{-1}(U_{\varepsilon}(f(a)))$ für jedes $\varepsilon > 0$ eine D-relative Umgebung $U_{\delta}(a)$ enthält.
- $f: D \to F$ ist stetig auf D genau dann, das Urbild $f^{-1}(A)$ jeder offenen Menge A offen ist.
- *Ist* $K \subset E$ *kompakt und* $f : E \to F$ *stetig, dann ist auch* f(K) *kompakt.*

- Ist $K \subset E$ kompakt und $f : E \to F$ stetig, dann ist $f \mid_K$ gleichmäßig stetig.
- Sind M, N kompakt und $f: M \to N$ bijektiv und stetig, dann ist f^{-1} ebenfalls stetig.
- Ist $K \subset E$ kompakt und $f: K \to \mathbb{R}$ stetig, dann nimmt f sein Minimum und sein Maximum an.
- Ist a ein Häufungspunkt im Definitionsbereich der Funktion $f: D \to F$, und existiert der Grenzwert $\lim_{x\to a} f(x) = w$, so ist die Funktion

$$\tilde{f}: D \cup \{a\} \to F, \quad \tilde{f}(x) = \begin{cases} w, & \text{für } x = a \\ f(x), & \text{sonst,} \end{cases}$$

stetig in a.

4.3 SÄTZE FÜR FUNKTIONEN IN BANACHRÄUMEN

- Konvergiert eine Funktionenfolge (f_n) in F(D) gleichmäßig gegen f und sind alle f_n stetig (integrierbar), dann ist auch f stetig (integrierbar).
- Konvergiert eine Folge (f_n) differenzierbarer Funktionen in F(D) punktweise gegen f und die Folge der Ableitungen (f'_n) gleichmäßig gegen g, dann ist f differenzierbar mit Ableitung g.
- $\blacksquare B(D)$ und CB(D) sind mit der Supremumsnorm Banachräume.
- Ist K eine kompakte Menge, dann ist C(K) mit der Supremumsnorm Banachraum.
- lacksquare Ist f:D o F lipschitz, dann existiert genau eine stetige Forstetzung

$$\Phi: D^- \to F$$
, $\Phi|_D = f$,

von f. Sie ist lipschitz mit der selben L-Konstante wie f.

4.4 SÄTZE FÜR REELLWERTIGE FUNKTIONEN

- Ist $K \subset E$ kompakt und $f : K \to \mathbb{R}$ stetig, dann ist f gleichmäßig stetig.
- Sind f,g stetige Funktionen und $\lim_{x\to a} f(a) = u$, $\lim_{x\to a} g(a) = v$, dann gilt
- (a) $\lim_{x \to a} (\lambda f + \mu g)(a) = \lambda u + \mu v$.
- (b) $\lim_{y \to a} (fg)(a) = uv$.
- (c) $\lim_{x \to a} (fg^{-1})(a) = uv^{-1}$, $f\ddot{u}r v \neq 0$.

Gilt außerdem in einer punktierten Umgebung von a $f(x) \le g(x)$, dann gilt

(d) $\lim_{x \to a} f(a) \le \lim_{x \to a} g(a)$.

4.5 Sätze für Funktionen auf einem Intervall $f:I \to \mathbb{R}$

Zwischenwertsatz von Bolzano *Ist* $f : [a,b] \to \mathbb{R}$ *stetig und* f(a) < f(b), *dann gibt es* zu *jedem* $w \in \mathbb{R} : f(a) \le w \le f(b)$ *ein* $c \in [a,b]$, *sodass* f(c) = w.

- Ist I ein Intervall und $f: I \to \mathbb{R}$ stetig, dann nimmt f jeden Wert zwischen inf f und $\sup f$ mindestens einmal an.
- *Ist I ein Intervall und f* : $I \to \mathbb{R}$ *stetig, dann ist auch f*(*I*) *ein Intervall.*

Satz über stetige Umkehrfunktionen *Ist I ein Intervall, f: I \to \mathbb{R} stetig und streng monoton steigend, dann gilt*

- (a) f(I) = J ist ein Intervall.
- (b) $f: I \to J$ ist bijektiv und besitzt eine Umkehrfunktion $f^{-1}: J \to I$.
- (c) f^{-1} ist stetig und streng monoton steigend auf J.
- Für $n \ge 2$ besitzt die Funktion $t \mapsto t^n$ eine stetige streng monoton steigende Umkehr funktion, die n-te Wurzel.
- Ist $f : \mathbb{R} \to \mathbb{R}$ monoton, so existieren in jedem Punkt die links- und rechtsseitigen Grenzwerte von f.

5 Integration

■ Eine Zerlegung Z eines Intervalls [a, b] ist ein Tupel reeller Zahlen mit

$$a = t_1 < \ldots < t_n = b.$$

■ Eine Funktion $\varphi : [a,b] \to \mathbb{R}$ heißt Treppenfunktion, wenn eine Zerlegung und reelle Zahlen c_1, \ldots, c_k existieren, sodass

$$\varphi(x)\big|_{t_k,t_{k+1}}=c_k.$$

Der Raum der Treppenfunktionen auf [a,b] *wird mit* T_a^b *bezeichnet.*

• Das Integral der Treppenfunktion ist

$$J_a^b(\varphi) = \sum_{k=1}^n \varphi(t_k)(t_k - t_{k-1}).$$

■ Der Abschluss von T_a^b bezüglich der Supremumsnorm heißt Raum der Regelfunktionen auf [a,b] und wird mit R_a^b bezeichnet.

Die stetige Fortsetzung von J_a^b heißt Cauchyintegral auf [a,b] und wird mit \int_a^b bezeichnet.

■ Es sei $a < b \le \infty$, und die Funktion $f : [a,b) \to \mathbb{R}$ sei über jedem kompakten Intervall $[a,c] \subseteq [a,b)$ integrabel. Existiert der Limes

$$\int_a^b f(x) \, \mathrm{d}x = \lim_{c \to b} \int_a^c f(x) \, \mathrm{d}x,$$

so heißt er das uneigentliche Integral von f über [a,b) und man sagt, das uneigentliche Integral konvergiert. Andernfalls sagt man, es divergiert.

Analoges gilt für $f:(a,b] \to \mathbb{R}$ und $-\infty \le a < b$.

■ Für $n \ge 2$ besitzt die Funktion $t \mapsto t^n$ eine stetige streng monoton steigende Umkehr- ■ Das Integral $\int_a^b f(x) \, dx$ heißt absolut konvergent, falls das Absolutintegral

$$\int_a^b |f(x)| \, \mathrm{d}x$$

existiert.

5.1 SÄTZE FÜR TREPPENFUNKTIONEN

 $T_a^b \leq B_a^b$.

■ Das Integral $J_a^b(\varphi)$ hängt nicht von der Darstellung von φ ab.

Das Funktional

$$J_a^b:T_a^b\to\mathbb{R},\quad \varphi\mapsto J_a^b(\varphi),$$

hat die Eigenschaften.

(a) Lineartiät. $J_a^b(\lambda \varphi + \mu \psi) = \lambda J_a^b(\varphi) + \mu J_a^b(\psi)$.

(b) Monotonie. $\varphi \leq \psi \Rightarrow J_a^b(\varphi) \leq J_a^b(\psi)$.

(c) Normiertheit. $\varphi|_{(a,b)} = c \Rightarrow J_a^b(\varphi) = c(b-a)$.

(d) Lipschitzstetigkeit mit L-Konstante (b - a).

5.2 SÄTZE FÜR DAS CAUCHYINTEGRAL

Das Cauchyintegral hat die selben Eigenschaften wie das Integral der Treppenfunktionen.

Intervalladditivität Vereinbart man $\int_a^b f(x) dx = -\int_b^a f(x) dx$, dann gilt auf einem Intervall, das a, b, c umfasst

$$f \in R_a^b \Leftrightarrow f \in R_a^c \text{ und } f \in R_c^b$$

und außerdem

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

• Ist f auf [a,b] integrierbar, dann auch |f| und es gilt

$$\left| \int_a^b f(x) \, \mathrm{d}x \right| \le \int_a^b |f(x)| \, \mathrm{d}x.$$

Riemann'sches Lemma *Ist f auf I integrierbar und in c* \in [a, b] *stetig, dann gilt*

$$\lim_{h\to 0}\frac{1}{h}\int_{c}^{c+h}f(x)\,\mathrm{d}x=f(c).$$

Mittelwertsatz der Integralrechnung Sei f auf [a,b] stetig, p auf [a,b] integrabel und $p \ge 0$, dann gibt es ein $c \in [a,b]$, sodass

$$\int_a^b (fp)(x) \, \mathrm{d}x = f(c) \int_a^b p(x) \, \mathrm{d}x.$$

- Eine Funktion $f:[a,b] \to \mathbb{R}$ ist eine Regelfunktion genau dann, wenn sie in jedem Punkt links- und rechtsseitige Grenzwerte besitzt. Insbesondere sind stetige und monotone Funktionen Regelfunktionen.
- Eine Regelfunktion besitzt nur abzählbar viele Unstetigkeitsstellen.

5.3 SÄTZE FÜR DAS UNEIGENTLICHE INTEGRAL

- Ist $a < b \le \infty$ und $f : [a, b) \to \mathbb{R}$, so sind folgende Aussagen äquivalent.
- (a) Das uneigentliche Integral $\int_{a}^{b} f(x) dx$ konvergiert.
- (b) Für jede Stammfunktion F von f existiert $\lim_{x \to h} F(x)$.
- (c) Es gilt das Cauchykriterium. Zu jedem $\varepsilon > 0$ existiert ein $c \in [a,b)$, sodass

$$\left| \int_{u}^{v} f(x) dx \right| < \varepsilon,$$

für alle $u, v \in (c, b)$.

8

Satz von der absoluten Konvergenz Das uneigentliche Integral $\int_a^b f(x) dx$ ist genau dann absolut konvergent, wenn es beschränkt ist. In diesem Falle ist es auch konvergent.

Majorantenkriterium Gilt $|f| \le g$ auf [a,b) und existiert das Integral $\int_a^b g(x) dx$, so ist $\int_a^b f(x) dx$ absolut konvergent.

Nützliche Majoranten sind beispielsweise

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{\alpha}} < \infty \Leftrightarrow \alpha > 1,$$

$$\int_{0}^{1} \frac{\mathrm{d}x}{x^{\alpha}} < \infty \Leftrightarrow \alpha < 1.$$

6 Differentiation

■ Eine Funktion $f: I \to \mathbb{R}$ heißt differenzierbar im Punkt $a \in I$, wenn es eine in a stetige Funktion r gibt mit r(a) = 0, so dass

$$f(t) = f(a) + m(t - a) + r(t)(t - a), t \in I.$$

Dann heißt m die erste Ableitung von f im Punkt a und wird mit f'(a) bezeichnet.

■ Eine Funktion $f: I \to \mathbb{R}$ heißt differenzierbar auf I, wenn sie in jedem Punkt aus I differenzierbar ist. In diesem Fall heißt die Funktion

$$f': I \to \mathbb{R}, \quad t \mapsto f'(t)$$

die Ableitung von f.

Ist f' außerdem stetig, so heißt f stetig differenzierbar auf I.

■ Eine Funktion $f: I \to \mathbb{R}$ besitzt an der Stelle $a \in I$ ein lokales Maximum, wenn eine Umgebung $U_{\delta}(a)$ existiert, sodass

$$f(x) \le f(a), \ \forall \ x \in I \cap U_{\delta}(a).$$

Gilt sogar f(x) < f(a) in $I \cap \dot{U}_{\delta}(a)$, so heißt das Maximum strikt.

- Ist $f: I \to \mathbb{R}$ in c differenzierbar und f'(c) = 0, so heißt c stationärer oder kritischer Punkt von f.
- Die Klasse der r-mal stetig differenzierbaren Funktionen $f: D \to F$ wird mit $C^r(D, F)$ bezeichnet.
- Ist $f: I \to \mathbb{R}$, dann heißt F eine Stammfunktion von f, falls F' = f.

ullet Das unbestimmte Integral einer stetigen Funktion f ist die Parallelschar

$$\int f = \{F + c : c \in \mathbb{R}\},\,$$

aller Stammfunktionen von f auf einem Intervall.

■ Ist f n-mal stetig differenzierbar auf I und $a \in I$, so heißt

$$T_a^n f(t) = \sum_{i=0}^n \frac{f^{(i)}(a)}{i!} (t-a)^i,$$

das n-te Taylorpolynom an der Stelle a.

• Für $f \in C^{\infty}(I)$ und $a \in I$, heißt

$$T_a f(t) = \sum_{i=0}^{\infty} \frac{f^{(i)}}{i!} (t-a)^i,$$

die Taylorreihe von f. Konvergiert diese Reihe in einer Umgebung um a und gilt $T_a f(t) = f(t)$, dann heißt f um a in seine Taylorreihe entwickelbar.

6.1 Beispiele für differenzierbare Funktionen

- (a) Die Identitätsfunktion, sowie konstante und affine Funktionen, reell e Polynome, sin, cos und die Exponentialfunktion sind von der Klasse $C^{\infty}(\mathbb{R})$.
- (b) Die Betragsfunktion ist für jedes $t \neq 0$ stetig differenzierbar, aber in t = 0 nicht differenzierbar, denn es gilt

$$\frac{|t| - |0|}{t - 0} = \begin{cases} 1, & t > 0, \\ -1, & t < 0. \end{cases}$$

9

- (c) Die Wurzelfunktion \sqrt{t} ist für jedes t > 0 stetig differenzierbar, aber in t = 0 nicht differenzierbar.
- (d) Die Funktion $f(t) = t^2 \sin(\frac{1}{t})$ ist differenzierbar, aber in t = 0 nicht stetig differenzierbar.

6.2 Sätze für Funktionen $f: I \to \mathbb{R}$

• Ist f im Punkt a differenzierbar, so ist f im Punkt a stetig und es gilt

$$\lim_{t \to a} \frac{f(t) - f(a)}{t - a} = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = f'(a).$$

■ Der Raum der differenzierbaren Funktionen ist eine Algebra und für in a differenzierbare Funktionen $f, g: I \to \mathbb{R}$ gilt

$$(f+g)'(a) = f'(a) + g'(a)$$

 $(fg)'(a) = f'(a)g(a) + f(a)g'(a).$

Ist $J \subset \mathbb{R}$ *und* $g: I \to J$ *in a differenzierbar und* $f: J \to \mathbb{R}$ *in* g(a), *dann gilt außerdem*

$$(f \circ g)'(a) = g'(a)f(g(a)).$$

■ Der Raum C^r ist eine Algebra. Sind f, g von der Klasse C^r und f im Wertebereich von g definiert, dann ist auch $f \circ g$ von der Klasse C^r .

Ableitung der Umkehrfunktion *Ist* $f: I \to J$ *stetig, bijektiv, in a differenzierbar und* $f'(a) \neq 0$, *so ist* $g = f^{-1}: J \to I$ *ebenfalls stetig und in* b = f(a) *differenzierbar und es ailt*

$$g'(b) = \frac{1}{f'(g(b))}.$$

Ist f außerdem C^r und verschwindet f' nirgends auf I, so ist auch f^{-1} C^r .

Satz von Fermat Besitzt $f: I \to \mathbb{R}$ in $c \in I^{\circ}$ ein Extremum, so gilt f'(c) = 0.

Satz von Rolle *Ist* $f : [a,b] \to \mathbb{R}$ *stetig, auf* (a,b) *differenzierbar und gilt* f(a) = f(b), *so besitzt* f *einen kritischen Punkt in* (a,b).

Mittelwertsatz *Ist* $f : [a,b] \to \mathbb{R}$ *stetig und auf* (a,b) *differenzierbar, dann existiert ein* $c \in (a,b)$, *sodass*

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Monotoniesatz *Ist* $f : [a,b] \to \mathbb{R}$ *stetig und auf* (a,b) *differenzierbar, dann gilt*

- (a) f ist konstant auf [a,b] genau dann, wenn $f' \equiv 0$.
- (b) f ist monoton steigend auf [a, b] genau dann, wenn $f' \ge 0$.
- (c) f ist streng monoton steigend, wenn f' > 0.
- Sei f in einem offenen Intervall I differenzierbar und besitzte in $c \in I$ einen kritischen Punkt. Ist dann f' in einer Umgebung um c monoton fallen bzw. steigend, besitzt f in c ein Maximum bzw. Minimum.
- Die Stammfunktionen einer Funktion f auf einem Intervall unterscheiden sich nur durch eine additive Konstante.
- Sei f auf I integrierbar und $t_0 \in I$, dann wird durch

$$\Phi(t) = \int_{t_0}^t f(x) \, \mathrm{d}x,$$

eine Funktion mit den Eigenschaften definiert.

- (a) Φ ist lipschitz auf I mit L-Konstante $||f||_I$.
- (b) Ist f in a stetig, dann ist Φ in a differenzier bar und es gilt $\Phi'(a) = f(a)$.
- (c) Ist f stetig, so ist Φ stetig differenzierbare Stammfunktion f.

Haupsatz der Differential und Integralrechnung Ist f auf[a,b] stetig und F irgendeine Stammfunktion von f, dann gilt

$$F(b) - F(a) = \int_a^b f(x) \, \mathrm{d}x.$$

• Ist f auf [a,b] stetig differenzierbar, so gilt

$$\int_{a}^{b} f' = f \big|_{a}^{b} = f(b) - f(a).$$

10

Partielle Integrationsregel Sind f, g auf I stetig differenzierbar, so gilt

$$\int_{a}^{b} f'(x)g(x) dx = f(x)g(x) \Big|_{a}^{b} - \int_{a}^{b} f(x)g'(x) dx.$$

Substitutionsregel Ist φ stetig differenzierbar auf I = [a, b] und f stetig, so ist

$$\int_a^b f(\varphi(t))\varphi'(t)\,\mathrm{d}t = \int_{\varphi(a)}^{\varphi(b)} f(s)\,\mathrm{d}s.$$

Restgliedformel nach Lagrange *Ist* $f \in C^{n+1}(I)$ *und sind* $t, a \in I$, *dann existiert ein* $\xi \in (a, t)$, *so dass gilt*

$$R_a^n f(t) = \frac{(t-a)^{n+1}}{(n+1)!} f^{(n+1)}(\xi).$$

Restglied in Integralform *Ist* $f \in C^{n+1}(I)$ *und* $t, a \in I$, *dann gilt*

$$R_a^n f(t) = \frac{1}{n!} \int_a^t (t-s)^n f^{(n+1)}(s) \, \mathrm{d}s.$$

Variante der Integralformel *Ist* $f \in C^{n+1}(I)$ *und sind* $a, a + h \in I$ *, dann gilt*

$$R_a^n f(a+h) = \frac{h^{n+1}}{n!} \int_0^1 (1-s)^n f^{(n+1)}(a+sh) \, \mathrm{d}s.$$

• Es gilt $T_a f(t) = f(t)$ genau dann, wenn $\lim_{n \to \infty} R_a^n f(t) = 0$.

Regel von l'Hopital Seien $f,g \in C^1(I)$ und x_0 sei eigentlicher oder uneigentlicher Randpunkt des (punktierten) Intervalls I. Darüber hinaus sei

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g(x) = 0,$$

oder

$$\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = \infty,$$

sowie $g'(x) \neq 0$, für $x \in I$. Existiert dann $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$ als eigentlicher oder uneigentlicher Grenzwert, so existiert auch $\lim_{x \to x_0} \frac{f(x)}{g(x)}$ und es gilt

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}.$$

7 Differentialgleichungen

• Sei I ein Intervall, $D \subset \mathbb{R}$ offen und $f: I \times D \to \mathbb{R}$ stetig, dann heißt

$$\dot{x}=f(t,x),$$

eine Differentialgleichung erster Ordnung auf $I \times D$. Eine Lösung dieser Differentialgleichung ist eine differenzierbare Abbildung

$$\varphi(t): J \to \mathbb{R}, \quad \emptyset \neq J \subset I,$$

mit der Eigenschaft

$$\dot{\varphi}(t) = f(t, \varphi(t)), \quad t \in J.$$

- Eine Differentialgleichung heißt autonom, falls f nicht explizit von t abhängt, also gilt $f: D \to \mathbb{R}$ mit $\dot{x} = f(x)$. Andernfalls nichtautonom.
- Ein zu einer Differentialgleichung gehörendes System

$$\dot{x} = f(t, x), \quad x(t_0) = x_0,$$

nennt man Anfangswertproblem, wobei $(t_0, x_0) \in I \times D$. Eine lokale Lösung ist eine Lösung $\varphi : I_0 \to \mathbb{R}$ der Differentialgleichung mit

$$\varphi(t_0)=x_0,\quad t_0\in I_0\subset I.$$

7.1 LINEARE DIFFERENTIALGLEICHUNGEN - DER HOMOGENE FALL

• Eine lineare Differentialgleichung erster Ordnung hat die Form

$$\dot{x} = a(t)x + b(t),$$

mit auf I stetigen Funktionen a und b. Sie heißt homogen, falls b = 0, andernfalls inhomogen.

• Sei a stetig auf I. Dann ist die allgemeine Lösung der Differentialgleichung

$$\dot{x} = a(t)x$$
,

gegeben durch

$$\varphi(t) = e^{A(t)}c, c \in \mathbb{R}$$

mit einer beliebigen Stammfunktion A von a. Sie existiert auf ganz I.

■ Die Gesamtheit aller Lösungen bildet einen eindimensionalen Vektorraum

$$L_0 = \left\{ e^{A(t)}c : c \in \mathbb{R} \right\}.$$

■ Das Anfangswertproblem

$$\dot{x} = a(t)x$$
, $x(t_0) = x_0$,

besitzt auf I die eindeutige Lösung

$$\varphi(t) = \exp\left(\int_{t_0}^t a(s) \, \mathrm{d}s\right) x_0.$$

7.2 LINEARE DIFFERENTIALGLEICHUNGEN - DER INHOMOGENE FALL

ullet Sei ϕ_0 eine partikuläre Lösung der inhomogenen Gleichung

$$\dot{x} = a(t)x + b(t),$$

dann hat jede andere Lösung die Form $\phi_0+\phi$, mit einer Lösung ϕ der homogenen Gleichung.

■ Die Gesamtheit aller Lösungen bildet einen eindimensionalen affinen Vektorraum

$$L = \varphi_0 + L_0 = \left\{ \varphi_0 + e^{A(t)}c : c \in \mathbb{R} \right\}.$$

■ Sind a und b stetig auf I, dann ist die allgemeine Lösung von

$$\dot{x} = a(t)x + b(t),$$

auf ganz I erklärt und gegeben durch

$$\varphi(t) = e^{A(t)}(c + c_0(t)),$$

mit einer Stammfunktion A von a und c_0 von $e^{-A}b$.

■ Sind a und b stetig auf I, dann besitzt das Anfangswertproblem

$$\dot{x} = a(t)x + b(t), \quad \varphi(t_0) = x_0,$$

auf I die eindeutige Lösung

$$\varphi(t) = e^{A(t)} \left(c + \int_{t_0}^t e^{-A(s)} b(s) \, ds \right), \quad A(t) = \int_{t_0}^t a(s) \, ds.$$

Prozedur Gegeben sei das Anfangswertproblem

$$\dot{x} = a(t)x + b(t), \quad x(t_0) = x_0.$$

Zunächst löst man die homogene Gleichung $\dot{x} = a(t)x$, und erhält damit

$$\varphi(t) = e^{A(t)}c, \quad A(t) = \int a(s) ds.$$

Mit Hilfe von A(t) ergibt sich

$$c_0 = \int e^{-A(s)}b(s)\,\mathrm{d}s\,,$$

und somit kann die inhomogene Gleichung gelöst werden

$$\varphi(t)=e^{A(t)}(c+c_0).$$

Nun setzt man $\varphi(t_0) = x_0$ und löst nach c auf.

7.3 SEPARIERBARE DIFFERENTIALGLEICHUNGEN

• Eine Differentialgleichung der Form

$$\dot{x} = g(t)h(x),$$

mit stetigen Funktionen $g: I \to \mathbb{R}, h: J \to \mathbb{R}$ heißt separierbar.

■ Sind g, h stetig und x_0 Nullstelle von h, so ist die konstante Funktion $\phi \equiv x_0$ eine Lösung des Anfangswertproblems

$$\dot{x} = g(t)h(x), \quad \varphi(t_0) = x_0.$$

Ist h lipschitz, so ist φ auch die einzige Lösung.

■ Seien g,h stetig auf I bzw. J und $h(x) \neq 0$ für $x \in J$. Dann existiert genau eine lokale Lösung $φ: I_0 \to \mathbb{R}$ des Anfangswertproblems

$$\dot{x} = g(t)h(x), \quad \varphi(t_0) = x_0,$$

 $mit \ t_0 \in I \ und \ x_0 \in J.$ Diese erfüllt die Gleichung

$$H(\varphi(t)) = G(t), \quad t \in I_0,$$

wobei

$$H(x) := \int_{x_0}^{x} \frac{\mathrm{d}s}{h(s)}, \quad G(t) = \int_{t_0}^{t} g(s) \, \mathrm{d}s.$$

Prozedur Gegeben sei das Anfangswertproblem

$$\dot{x}=g(t)h(x),\quad \varphi(t_0)=x_0.$$

Zunächst prüft man h(x) auf Nullstellen n_i . Gilt $n_i = x_0$ für ein i und ist h(x) lipschitz, dann ist die einzige Lösung $\varphi(t) \equiv x_0$.

Andernfalls separiert man die Variablen t und x und erhält

$$\dot{x} = \frac{\mathrm{d}x}{\mathrm{d}t} = g(t)h(x)$$

$$\Leftrightarrow \frac{\mathrm{d}x}{h(x)} = g(t)\,\mathrm{d}t$$

$$\Leftrightarrow H(x) = \int \frac{\mathrm{d}x}{h(x)} = \int g(t)\,\mathrm{d}t = G(t).$$

Kann man H invertieren, erhält man als lokale Lösung

$$\varphi(t) = x = H^{-1}(G(t)).$$

Zuletzt setzt man $\varphi(t_0) = x_0$ und löst nach c auf.

7.4 Homogene Differentialgleichung

Eine Differentialgleichung der Form

$$\dot{x} = f(t, x),$$

heißt homogen, falls $f(\lambda t, \lambda x) = f(t, x)$. In diesem Fall kann man f(t, x) schreiben als $h\left(\frac{x}{t}\right)$.

■ Sei h stetig auf I und $\frac{x_0}{t_0} \in I$. Eine Funktion $\varphi: I_0 \to \mathbb{R}$ ist eine lokale Lösung des Anfangswertproblems

$$\dot{x} = h\left(\frac{x}{t}\right), \quad x(t_0) = x_0,$$

genau dann, wenn die Funktion

$$\psi:I_0\to\mathbb{R},\quad \psi(t)=\frac{\varphi(t)}{t},$$

eine lokale Lösung des Anfangswertproblems

$$\dot{z}=\frac{h(z)-z}{t},\quad z(t_0)=\frac{x_0}{t_0},$$

darstellt.

Prozedur Gegeben sei ein Anfangswertproblem

$$\dot{x}=f(t,x),\quad x(t_0)=x_0.$$

Um die Prozedur anwenden zu können, ist es notwendig zu überprüfen, ob $f(\lambda t, \lambda x)$ für $\lambda > 0$. In diesem Fall lässt sich f schreiben als $f(t,x) = h\left(\frac{x}{t}\right)$.

Zunächst substituiert man $z = \frac{x}{t}$ und damit gilt

$$t\dot{z}-z=\dot{x}=h(z)\Leftrightarrow\dot{z}=rac{h(z)+z}{t}.$$

Diese Differentialgleichung ist separierbar und eine allgemeine Lösung kann mit der bekannten Prozedur bestimmt werden.

Anschließend muss die Lösung für z mit $\varphi(t) = x = zt$ rücksubstituiert, und das Anfangswertproblem $\varphi(t_0) = x_0$ gelöst werden.

8 Kurven und Wege

Im Folgenden sei I = [a, b] ein kompaktes Intervall von \mathbb{R} und E Bannachraum.

• Eine Kurve ist eine C^0 -Abbildung $\gamma: I \to E$.

Ihr Bild $y(I) = \{y(t) \in E : t \in I\}$ *heißt Spur.*

- Eine Kurve $y : [a,b] \to E$ heißt geschlossen, falls y(a) = y(b).
- Eine Kurve $y : [a,b] \to E$ heißt einfach oder doppelpunktfrei, falls $y|_{(a,b]}$ und $y|_{[a,b)}$ injektiv sind.
- Eine Kurve $y: I \to E$ heißt differenzierbar im Punkt $t_0 \in I$, wenn es einen Vektor $v \in E$ und eine in t_0 stetige Abbildung $r: I \to E$ mit $r(t_0) = 0$ gibt, sodass

$$y(t) = y(t_0) + v(t - t_0) + r(t)(t - t_0).$$

In diesem Fall heißt v die erste Ableitung von y im Punkt t_0 und wird mit $\dot{y}(t_0)$ bezeichnet.

- Ist $y: I \to E$ in t_0 differenzierbar, dann bezeichnet man $\dot{y}(t_0)$ als Tangentialvektor von y im Punkt $y(t_0)$ und $|\dot{y}(t_0)|$ als seine momentan Geschwindigkeit.
- Ist $\dot{y}(t_0) \neq 0$, so ist die Tangente an y im Punkt t_0 gegeben durch

$$\alpha(t) = \gamma(t_0) + \dot{\gamma}(t_0)(t-t_0).$$

- Eine C¹-Kurve heißt regulär, wenn ihre Ableitung nirgends verschwindet.
- Die Länge einer Kurve $\gamma \in C^0(I, E)$ ist

$$L_I(\gamma) = \sup_{T} \sum_{T} ||\gamma(t_k) - \gamma(t_{k-1})||.$$

- $y \in C^0(I, E)$ heißt rektifizierbar, falls $L_I(y) < \infty$.
- Sei $\gamma \in C^0(I, E)$. Die Längenfunktion ist definiert als

$$\lambda: I \to \mathbb{R}, \quad \lambda(t) = L_{[a,t]}(\gamma).$$

- Eine Parametertransformation ist eine bijektive stetige Abbildung $\varphi: I \to I^*$ eines Intervalls I auf ein Intervall I*. Ist φ monoton steigend heißt φ orientierungstreu, andernfalls orientierungsumkehrend.
- Zwei Kurven $y \in C^0(I, E)$ und $y^* \in C^0(I^*, E)$ heißen topologisch äquivalent geschrieben $y \sim y^*$, falls eine orientierungstreue Parametertransformation φ existiert, sodass

$$\gamma = \eta \circ \varphi$$
.

ullet Ein stetiger Weg ω in E ist eine Klasse topologisch äquivalenter Kurven

$$\omega = [\gamma] = \{ \eta \in C^0(I, E) : \gamma \sim \eta \}.$$

Jedes Element $\eta \in \omega$ *heißt Parametrisierung des Weges.*

- Ein Weg $\omega = [\gamma]$ heißt einfach, falls γ einfach, geschlossen, falls γ geschlossen und Jordanweg, falls γ Jordankurve ist. Der Anfangs- und Endpunkt von ω ist der Anfangs- und Endpunkt von γ und die Spur von ω ist die Spur von γ .
- Ein Weg heißt rektifizierbar, falls er eine rektifizierbare Parametrisierung besitzt. Seine Länge ist in diesem Fall die einer beliebigen Parametrisierung.
- Ein Weg heißt glatt, falls er eine reguläre Parametrisierung besitzt.

8.1 SÄTZE FÜR KURVEN IN BANACHRÄUMEN

- ullet Für eine in $t_0 \in I$ differenzierbare Kurve $\gamma:I \to E$ ist äquivalent
- (a) Es gibt eine in t_0 stetige Abbildung $\varphi: I \to E$ mit $\varphi(t_0) = \nu$, sodass

$$\gamma(t) = \gamma(t_0) + \varphi(t)(t - t_0).$$

(b) Es gilt

$$\lim_{h\to 0} h^{-1}(\gamma(t_0+h)-\gamma(t_0)) = \nu.$$

(c) Es gilt

$$\lim_{t \to t_0} \frac{|y(t) - y(t_0) - v(t - t_0)|}{|t - t_0|} = 0.$$

• Sei $\gamma \in C^0(I, E)$ und $t_0 \in I$, dann wird durch

$$\Phi(t) = \int_{t_0}^t \gamma(t) \, \mathrm{d}t,$$

eine stetig differenzierbare Funktion definiert mit $\dot{\Phi} = \gamma$.

Haupsatz der Differential und Integralrechnung $Sei\ y \in C^0(I,E)$ und Γ eine beliebige $Stammfunktion\ auf\ [a,b] \subset I,\ dann\ gilt$

$$\Gamma(b) - \Gamma(a) = \int_a^b \gamma(t) dt$$
.

Außerdem gilt für jede Kurve $y \in C^1(I, E)$, dass $y(b) - y(a) = \int_a^b \dot{y}(t) dt$ ist.

- Jede Kurve $y \in C^1(I, E)$ ist lipschitz mit L-Konstante $M = \max_{t \in I} ||\dot{y}(t)||_E$.
- ullet Ist $y \in C^0(I,E)$ lipschitz mit L-Konstante M, dann ist y rektifizierbar und es gilt

$$L_I(\gamma) \leq M |I|$$
.

Insbesondere ist jede C^1 Kurve rektifizierbar.

- Die Längenfunktion ist additiv $L_{[a,c]} + L_{[c,b]} = L_{[a,b]}$.
- Ist $\gamma \in C^1(I, E)$, so ist die Längenfunktion stetig differenzierbar und es gilt $\lambda'(t) = ||\dot{\gamma}(t)||_F$, sowie

$$\lambda(t) = \int_a^t ||\dot{y}(t)||_E dt.$$

■ Die euklidische Länge einer Kurve ist

$$L_I(\gamma) = \int_I \sqrt{\dot{\gamma}_1^2(t) + \ldots + \dot{\gamma}_n^2(t)} \, \mathrm{d}t.$$

- Seien γ und γ^* topologisch äquivalent. Ist γ rektifizierbar, so auch γ^* und die Längen sind gleich.
- Jeder glatte Weg besitzt eine Parametrisierung nach der Bogenlänge

$$\eta:[0,l]\to E$$

derart, dass $\|\dot{\eta}(t)\|_E = 1$ für alle $t \in [0, l]$ mit $l = L(\omega)$.

ullet Jede stückweise C^1 Kurve ist rektifizierbar und es gilt

$$L_I(\gamma) = \int_I ||\dot{\gamma}(t)|| dt.$$

8.2 Sätze für Kurven im \mathbb{R}^n

Jordanscher Kurvensatz Ist $y: I \to \mathbb{R}^2$ geschlossenen und doppelpunktfrei, so besteht das Komplement von $\Gamma = y(I)$ genau aus zwei disjunkten, zusammenhängenden Mengen Ω_i und Ω_o , genannt das Innere und das Äußere. Außerdem ist Ω_i beschränkt und Γ bildet den Rand von Ω_i und Ω_o .

Satz von Peano *Es gibt stetige Abbildungen* $y : [0,1] \rightarrow [0,1]^2$, *die surjektiv sind.*

■ Eine Kurve $y: I \to \mathbb{R}^n$ ist differenzierbar genau dann, wenn jede Komponentenfunktion differenzierbar ist und es gilt

$$\dot{\gamma}(t)=(\dot{\gamma}_1(t),\ldots,\dot{\gamma}_n(t)).$$

- Eine Kurve ist von der Klasse C^r , wenn jede Komponentenfunktion C^r ist.
- Ist $y: I \to \mathbb{R}^2$ eine reguläre C^r Kurve, so ist die Spur von y lokal um jeden Punkt der Graph einer C^r Funktion.

9 Mehrdimensionale Differentiation

• Eine Abbildung $f:V\hookrightarrow W$ heißt differenzierbar in a, wenn es eine lineare Abbildung L und eine in a stetige Abbildung $r:\Omega\to\mathbb{R}^m$ gibt, sodass gilt

$$f(a+h) = f(a) + Lh + r(a+h)|h|.$$

• Sei $f: V \hookrightarrow W$, a aus dem Definitionsbereich und $v \in V$ beliebig. Existiert die Ableituna

$$D_{\nu}f(a) = \frac{d}{dt}f(a+t\nu)\big|_{t=0},$$

so heißt $D_{\nu}f(a)$ die Richtungsableitung von f an der Stelle a in Richtung ν .

• Sei $f: \mathbb{R}^n \hookrightarrow W$, a aus dem Definitionsbereich $1 \leq i \leq n$. Existiert die Ableitung

$$D_i f(a) = \frac{d}{dt} f(a + te_i) \big|_{t=0} = \frac{\partial}{\partial_{x_i}} f(a) = \partial_{x_i} f(a) = f_{x_i}(a),$$

so nennt man $D_i f(a)$ die partielle Ableitung von f nach i im Punkt a.

• Die Operatornorm einer linearen Abbildung $L:V\to W$ ist definiert als

$$||L|| = \sup_{\nu \neq 0} \frac{|L\nu|_W}{|\nu|_V} = \sup_{|\nu|=1} |L\nu|_W.$$

- Sei V ein Hilbertraum und $f: V \hookrightarrow W$ in x differenzierbar. Dann ist der Gradient der eindeutig bestimmte und mit $\nabla f(x)$ bezeichnete Vektor, für den gilt Df(x)h = $\langle \nabla f(x), h \rangle$.
- Ist $f: \mathbb{R}^n \to \mathbb{R}$ stetig differenzierbar, so heißt der Graph der Abbildung

$$T: \mathbb{R}^n \hookrightarrow \mathbb{R}, \quad z(x) = f(a) + \langle \nabla f(a), x - a \rangle,$$

die Tangentialebene an den Graphen von f im Punkt a.

• Die r-te partielle Ableitung einer Abbildung $f: \mathbb{R}^n \to \mathbb{R}^m, D_r D_{r-1} \dots D_1 f(x)$ ist rekur- • Ist Ω wegzusammenhängend, dann ist eine Abbildung $f: \Omega \to W$ konstant genau dann, siv erklärt durch $D_rD_{r-1}...D_1f(x) = D_r(D_{r-1}...D_1f(x))$.

9.1 BEISPIELE

- (a) Eine affine Abbildung $f: V \hookrightarrow W, x \mapsto Ax + b$ ist überall differenzierbar und es gilt Df(x) = A.
- (b) Die Abbildung $g: V \hookrightarrow W, x \mapsto \langle Ax, x \rangle + b$ ist überall differenzierbar und es gilt $Df(x) = \langle Ax, \cdot \rangle + \langle A^tx, \cdot \rangle$, ist A symmetrisch gilt sogar Df(x) = 2Ax.
- (c) Für $f(x, y) = \frac{1}{2}(x^2 y^2)$ ist $\nabla f(x, y) = (x, -y)^T$.
- (d) Für die Abbildung $f(x, y) = \frac{2xy}{x^2 + y^2}$ existieren im Nullpunkt beide partiellen Ableitungen und es gilt f(x,0) = f(0,y) = 0, sie ist jedoch nicht total differenzierbar. Sie ist in 0 nicht einmal stetig, denn

$$f(t\cos\varphi,t\sin\varphi) = \frac{2\cos\varphi\sin\varphi}{\cos^2\varphi + \sin^2\varphi} = 2\sin\varphi.$$

9.2 Sätze für Funktionen $f: V \hookrightarrow W$

- Für eine Abbildung $f: Ω \to W$ sind folgende Aussagen äquivalent
- (a) f ist differenzierbar in a mit D f(a) = L.
- (b) f(a+h) = f(a) + Lh + o(h).
- (c) $\lim |h|^{-1} |f(a+h) f(a) Lh| = 0$.
- Ist f in a differentierbar, so ist f in a stetiq und D f(a) ist eindeutiq bestimmt.
- Die Differentiation ist eine lineare Operation und D ist ein linearer Operator.

Kettenregel Ist $f: U \rightarrow V$ in a differenzierbar und $g: V \rightarrow W$ in f(a), so ist auch $g \circ f : U \hookrightarrow W$ in a differenzierbar und es gilt

$$D(g \circ f)(a) = Dg(f(a))Df(a).$$

wenn $D f(x) \equiv 0$ ist.

■ Ist $f: U \hookrightarrow W$ differenzierbar, so gilt

$$D_{\nu}f(a) = Df(a)\nu$$
.

• Ist $f: \mathbb{R}^n \hookrightarrow \mathbb{R}^m$ in a differenzierbar, so existieren alle Richtungsableitungen von f und die totale Ableitung ist durch die Jacobimatrix darstellbar

$$Df(a) = \begin{pmatrix} \partial_{x_1} f_1(a) & \dots & \partial_{x_n} f_1(a) \\ \vdots & \ddots & \vdots \\ \partial_{x_1} f_m(a) & \dots & \partial_{x_n} f_m(a) \end{pmatrix}.$$

• Ist $f: \mathbb{R}^n \to \mathbb{R}^m$ in a differenzierbar, so ist

$$D_{\nu}f(a) = \sum_{i=1}^{n} D_{i}f(a)\nu_{i} = \sum_{i=1}^{n} f_{x_{i}}(a)\nu_{i}.$$

■ Existieren sämtliche partiellen Ableitungen von $f: \Omega \to \mathbb{R}^m$ und sind diese auf Ω stetig, so ist f auf Ω differenzierbar und die Ableitung ist stetig.

Lemma von Hadamard *Ist* $f \in C^1(\Omega, W)$ *und* $[u, v] \subset \Omega$ *, so gilt*

$$f(v) - f(u) = L(v - u), \text{ mit } L = \int_0^1 Df((1 - t)u + tv) dt.$$

Schrankensatz *Ist* $f \in C^1(\Omega, W)$ *und* $[u, v] \subset \Omega$ *, so gilt*

$$|f(v) - f(u)|_W \le \max_{z \in [u,v]} ||Df(z)|| |v - u|_W.$$

• *Ist* $f \in C^1(\Omega, W)$, so ist f lokal lipschitz.

Satz von H.A. Schwartz Sei Ω offen, $f \in C^1(\Omega, \mathbb{R}^m)$, und x, y seien zwei beliebige Koordinaten in Ω . Existiert dann die zweite Abbleitung f_{xy} und ist sie dort stetig, so existiert auch f_{yx} und es gilt $f_{xy} = f_{yx}$.

9.3 Sätze für Funktionen $f: V \hookrightarrow \mathbb{R}$

■ Im Standardfall ist der Gradient einer Abbildung $f: \mathbb{R}^n \to \mathbb{R}$ der Spaltenvektor

$$\nabla f(x) = \begin{pmatrix} \partial_{x_1} f(x) \\ \vdots \\ \partial_{x_n} f(x) \end{pmatrix} = D f(x)^{\top}.$$

Kettenregel Ist $g: \mathbb{R}^n \to \mathbb{R}^m$ differenzierbar in a und $f: \mathbb{R}^n \to \mathbb{R}$ in f(a), so gilt

$$\nabla (f \circ g)(a) = Dg(a)^{\mathsf{T}} \nabla f(g(a)).$$

Produktregel Seien $f,g:V\hookrightarrow W$ differenzierbar, $\langle\cdot,\cdot\rangle:W\to\mathbb{R}$ eine Bilinearform und $\varphi(x)=\langle f(x),g(x)\rangle$. Dann ist φ differenzierbar und es gilt

$$\mathrm{D}\varphi(x) = \langle \mathrm{D}f(x)\cdot, g(x)\rangle + \langle f(x), \mathrm{D}g(x)\cdot\rangle.$$

Mittelwertsatz *Ist* $f \in C^1(\Omega, \mathbb{R})$ *und* $[u, v] \subset \Omega$ *, dann existiert ein* $\xi \in [u, v]$ *sodass*

$$f(v) - f(u) = Df(\xi)(v - u) = \langle \nabla f(\xi), v - u \rangle.$$

- Ist $f: \mathbb{R}^n \to \mathbb{R}$ in x stetig differenzierbar und $\nabla f(x) \neq 0$, so bezeichnet $\nabla f(x)$ die Richtung des steilsten Anstiegs und $-\nabla f(x)$ die Richtung des steilsten Abstiegs. Beide Richtungen sind eindeutig.
- Sei $Q := [a,b] \times [c,d]$ und sei $g : Q \to \mathbb{R}$ auf Q stetig und stetig nach y differenzierbar, dann ist auch

$$\varphi: Q \to \mathbb{R}, \quad \varphi(x, y) = \int_a^x g(s, y) \, \mathrm{d}s,$$

nach y differenzierbar und es gilt

$$\varphi_{\mathcal{Y}}(x,y) = \int_a^x g_{\mathcal{Y}}(s,y) \,\mathrm{d}s.$$

10 Matritzen

- Eine Matrix $A \in S(n)$ heißt
- (a) positiv definit, geschrieben A > 0, falls $\langle Av, v \rangle > 0$, $\forall v \neq 0$,
- (b) positiv semidefinit, geschrieben $A \ge 0$, falls $\langle Av, v \rangle \ge 0$, $\forall v$,
- (c) negativ definit A < 0, falls -A > 0,
- (d) negativ semidefinit $A \le 0$, falls $-A \ge 0$,
- (e) sonst indefinit $A \leq 0$.
- Die Abbildung det : $\mathbb{R}^{n \times n} \to \mathbb{R}$, $A \mapsto \det A$ ist stetig differenzierbar auf $\mathbb{R}^{n \times n}$.
- Ist $A \in S(n)$, dann sind folgende Aussagen äquivalent
- (a) A ist positiv definit.
- (b) Es gibt ein $\lambda > 0$, sodass $\langle A\nu, \nu \rangle \ge \lambda |\nu|^2$.
- (c) Es gibt ein $\lambda > 0$, sodass $A \lambda E \ge 0$.
- Sei $A \in S(n)$ und $\lambda_1 \leq \ldots \leq \lambda_n$ seien Eigenwerte, dann gilt
- (a) $A > 0 \Leftrightarrow \lambda_1 > 0$ und $A \ge 0 \Leftrightarrow \lambda_1 \ge 0$.
- (b) $A < 0 \Leftrightarrow \lambda_n < 0 \text{ und } A \leq 0 \Leftrightarrow \lambda_n \leq 0.$
- (c) $A \leq 0 \Leftrightarrow \lambda_1 \lambda_n < 0$.
- Eine Matrix $A \in S(n)$ ist positiv definit genau dann, wenn alle ihre Haupt-Unterdeterminanten positiv sind. Sie ist positiv semidefinit genau dann, wenn diese nicht negativ sind.
- Sei $M: \Omega \to S(n)$ eine steige matrixwertige Abbildung und M(a) > 0. Dann existiert eine Umgebung U von a derart, dass

$$M(x) > 0$$
, $\forall x \in U$.

11 Mehrdimensionale Analysis

• Für eine Funktion $f \in C^2(\mathbb{R}^n, \mathbb{R})$ heißt

$$Hf(a) = (f_{x_k x_l}(a))_{1 \le k, l \le n},$$

die Hessematrix von f an der Stelle a.

■ Eine Funktion $f: V \hookrightarrow \mathbb{R}$ besitzt im Punkt a ein lokales Minimum, falls ein $\delta > 0$ existiert, sodass

$$f(a) \le f(x), \ \forall \ x \in B_{\delta}(a).$$

Das Minimum heißt strikt, falls gilt

$$f(a) < f(x), \ \forall \ x \in \dot{B}_{\delta}(a).$$

Analog sind lokales und striktes Maximum definiert.

- Ein kritischer Punkt a einer C^2 -Funktion $f: \mathbb{R}^n \hookrightarrow \mathbb{R}$ heißt nichtentartet bzw. nichtdegeneriert, falls $\det Hf(a) \neq 0$. Andernfalls entartet bzw. degeneriert.
- Ein nichtentarteter kritischer Punkt a einer C^2 -Funktion f heißt Sattelpunkt, falls die Hessische Hf(a) indefinit ist.
- Sei $f \in C^2(\mathbb{R}^n, \mathbb{R})$ mit kritischem Punkt a. Dann ist der Index von f in a definiert als $\operatorname{ind}(a) := \operatorname{card}(Hf(a) \cap (0, \infty)).$
- Eine Funktion $f \in C^2(\mathbb{R}^n, \mathbb{R})$ heißt harmonisch, falls

$$\Delta f = \sum_{i,j=1}^n f_{x_i x_j} = 0.$$

• Sei K konvex und $f: K \to \mathbb{R}$. Dann heißt f konvex, falls

$$f((1-t)u+tv) \le (1-t)f(u)+tf(v),$$

für alle $u, v \in K$ und $t \in [0, 1]$.

f heißt strikt konvex, wenn die strikte Ungleichung für $u \neq v \in K$ und $t \in (0,1)$ gilt.

11.1 BEISPIELE

(a) Der definite Fall

Die Abbildung $f(x,y) = x^2 + y^2$ mit $Hf(x,y) = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ hat in 0 ein striktes Minimum.

(b) Der semidefinite Fall

Die Abbildungen $f(x, y) = x^2 + y^4$, $g(x, y) = x^2$, $h(x, y) = x^2 + y^3$ haben in und dem zugehörigen Restglied 0 einen kritischen Punkt mit semidefiniter Hessischen.

f hat ein striktes Minimum, g ein nichtisoliertes Minimum und h hat kein Minimum.

(c) Der nicht degenerierte Fall

Die Abbildung $f(x, y) = x^2 - y^2$ hat in 0 einen nicht degenerierten kritischen Punkt. Die Hessische ist dort, also liegt ein Sattelpunkt vor.

11.2 SÄTZE FÜR ABBILDUNGEN $f: V \hookrightarrow W$

Satz von Taylor *Sei* Ω *offen und* $f \in C^{r+1}(\Omega, W)$. *Ist* $[a, a+h] \subset \Omega$, *so gilt*

$$f(a+h) = T_a^r f(h) + R_a^r f(h),$$

mit dem r-ten Taylorpolynom

$$T_a^r f(h) = \sum_{i=1}^r \frac{1}{i!} D_h^i f(a),$$

und dem zugehörigen Restglied

$$R_a^r f(h) = \frac{1}{r!} \int_0^1 (1-t)^r D_h^{r+1} f(a+th) dt.$$

11.3 SÄTZE FÜR DEN STANDARDFALL $f: \mathbb{R}^n \to \mathbb{R}^m$

Satz von Taylor II Sei $\Omega \subset \mathbb{R}^n$ offen, $f \in C^{r+1}(\Omega, \mathbb{R}^m)$. Ist $[a, a+h] \subset \Omega$, so gilt

$$f(a+h) = T_a^r f(h) + R_a^r f(h),$$

mit dem r-ten Taylorpolynom

$$T_a^r f(h) = \sum_{|\alpha| \le r} \frac{1}{\alpha!} D^{\alpha} f(a) h^{\alpha},$$

$$R_a^r f(h) = \sum_{|\alpha|=r+1} \frac{|\alpha|}{\alpha!} h^{\alpha} \int_0^1 (1-t)^r D^{\alpha} f(a+th) dt.$$

11.4 SÄTZE FÜR FUNKTIONEN $f: V \hookrightarrow \mathbb{R}$

• *Ist* $f: \Omega \to \mathbb{R}$, dann gilt

$$R_a^r f(h) = \frac{1}{(r+1)!} D_h^{r+1} f(\xi),$$

für ein $\xi \in [a, a+h]$.

Spezialfall *Ist* $f \in C^2(\Omega, \mathbb{R})$ *und* $[a, a + h] \subset \Omega$, *dann qilt*

$$f(a+h) = f(a) + \sum_{i=1}^{n} f_{x_i}(a)h_i + \frac{1}{2} \sum_{i,j=1}^{n} f_{x_i x_j}(\xi)h_i h_j,$$

für ein $\xi \in [a, a+h]$.

■ Für eine Funktion $f \in C^2(\mathbb{R}^n, \mathbb{R})$ gilt

$$D_h^2 f(a) = \sum_{i,j=1}^n f_{x_i x_j}(a) h_i h_j = \langle H f(a) h, h \rangle.$$

• Ist $f \in C^{r+1}\Omega$ und

$$D^{\alpha}f=0, \quad |\alpha|=r+1,$$

so ist f ein Polynom vom $Grad \leq r$.

Satz von Fermat Besitzt $f: V \to \mathbb{R}$ in a ein lokales Extremum, so ist Df(a) = 0.

• Ist Ω offen und besitzt $f:\Omega\to\mathbb{R}$ in a ein lokales Extremum, so gilt

$$f(a+h) = f(a) + \frac{1}{2} \langle Hf(\xi)h, h \rangle,$$

für alle hinreichend kleinen h und ein $\xi \in [a, a+h]$.

• Sei $f \in C^2(\Omega)$ und $a \in \Omega$ eine Minimalstelle, dann gilt

$$Hf(a) \geq 0$$
.

• Sei $f \in C^2(\Omega)$ und $a \in \Omega$ ein kritischer Punkt von f. Existiert eine Umgebung U von a derart, dass

$$Hf(x) \ge 0, x \in U$$

dann hat f an der Stelle a ein lokales Minimum. Gilt sogar

$$Hf(a) > 0$$
,

so liegt ein striktes Minimum vor.

■ Eine Funktion $f \in C^2(\mathbb{R}^n, \mathbb{R})$ ist lokal in einem nichtentarteten kritischen Punkt a bereits vollständig durch ind(a) charakterisiert.

$$ind(a) = 0 \Leftrightarrow Hf(a) < 0$$

$$ind(a) = n \Leftrightarrow Hf(a) > 0$$
,

$$0 < \operatorname{ind}(a) < n \Leftrightarrow Hf(a) \leq 0.$$

■ Sei $f \in C^2(\mathbb{R}^n, \mathbb{R})$ und a ein nichtdegenerierter kritischer Punkt von f, dann ist a isoliert.

Lemma von Morse Sei $f \in C^3(\mathbb{R}^n, \mathbb{R})$ und a ein nichtentarteter kritischer Punkt. Dann können um a neue Koordinaten $u = (u_1, \dots, u_n)$ eingeführt werden, sodass

$$f(u) = f(a) + \sum_{i=1}^{k} u_i^2 - \sum_{j=k}^{n} u_j^2,$$

wobei k = ind(a).

■ Im \mathbb{R}^n gibt es genau n+1 verschiedene nichtentartete kritische Punkte. Strikte Minimalstellen, strikte Maximalstellen und n-1 Sattelpunkte mit $k=1,\ldots,n-1$.

Maximumsprinzip harmonischer Funktionen Sei Ω ein beschränktes Gebiet und sei $f \in C^0(\bar{\Omega}) \cap C^2(\Omega)$ harmonisch, dann gilt

- (a) |f| nimmt ihr Maximum auf dem Rand an $\max_{\Omega} |f| = \max_{\partial\Omega} |f|$.
- (b) Ist f auf dem Rand von Ω konstant, so ist f auf $\bar{\Omega}$ konstant.
- Sei K eine konvexe Teilmenge des Vektorraums V und $f: K \to \mathbb{R}$, dann ist f konvex genau dann, wenn ihr Epigraph

$$\mathrm{Epi}(f) := \{(u, z) \subset V \times \mathbb{R} : u \in K, z \geq f(u)\},\$$

konvex ist.

- Sei $\Omega \subset V$ offen und konvex und $f : \Omega \to \mathbb{R}$ konvex, dann ist f stetig und auf jeder kompakten Teilmenge von Ω sogar lipschitz.
- Sei $\Omega \subset V$ offen und konvex und $f \in C^1(\Omega)$, dann ist f konvex genau dann, wenn

$$f(x+h) - f(x) \ge \langle \nabla f(x), h \rangle$$
,

für alle $x, x + h \in \Omega$ und strikt konvex genau dann, wenn die strikte Ungleichung für $h \neq 0$ gilt.

• Sei $\Omega \subset V$ offen und konvex und $f \in C^2(\Omega)$, dann ist f konvex genau dann, wenn

$$Hf(x)\geq 0$$

für alle $x \in \Omega$. f ist strikt konvex, falls Hf(x) > 0.

■ Ist $f \in C^1(\mathbb{R}^n, \mathbb{R})$ strikt konvex und koerziv, dann besitzt f genau eine Minimalstelle x_0 und es gilt $\min_{x \in \mathbb{R}^n} f(x) = f(x_0)$.

12 Umkehrabbildungen & Implizite Funktionen

- Eine C^1 -Abbildung $f: \mathbb{R}^n \hookrightarrow \mathbb{R}^m$ mit $n \ge m$ heißt regulär im Punkt $x_0 \in \mathbb{R}^n$ und x_0 heißt regulärer Punkt, wenn $\mathrm{D} f(x_0)$ surjektiv ist, andernfalls singulär. f heißt regulär, wenn f in jedem Punkt regulär ist.
- Sei $\Omega \subset \mathbb{R}^n$ offen, dann heißt eine C^1 -Abbildung $\varphi : \Omega \to \mathbb{R}^n$ ein Diffeomorphimus auf Ω , wenn
- (a) $\Omega' = \varphi(\Omega)$ offen ist,
- (b) $\varphi: \Omega \to \Omega'$ bijektiv abbildet,
- (c) $\varphi^{-1}:\Omega'\to\Omega$ ebenfalls C^1 ist.
- Ein Lipeomorphismus ist eine bijektive Abbildung zwischen zwei offenen Mengen, die in beiden Richtungen lipschitz ist.
- Eine offene Abbildung bildet jede offene Menge auf eine offene Menge ab.
- Für lipschitzstetige Abbildungen $f: \Omega \to \mathbb{R}^n$ wird durch

$$[f]_{\Omega} = \sup_{\nu \neq u} \frac{\left| \left| f(\nu) - f(u) \right| \right|}{\left\| \nu - u \right\|},$$

eine Seminorm definiert. $[f]_{\Omega}$ ist die bestmögliche Lipschitzkonstante von f auf Ω .

12.1 SÄTZE FÜR ABBILDUNGEN $\varphi: \mathbb{R}^n \hookrightarrow \mathbb{R}^n$

- Ein Diffeomorphimus ist in jedem Punkt regulär.
- Eine C^1 Abbildung $\varphi: \Omega \to \Omega'$ ist genau dann diffeomorph, wenn sie regulär und bijektiv ist.
- *Ist* Ω *konvex und* $f \in C^1(\Omega)$ *, dann gilt*

$$||\mathbf{D}f|| = [f]_{\Omega}.$$

• Sei $\Omega \subset \mathbb{R}^n$ offen und konvex und $f \in C^2(\Omega, \mathbb{R}^n)$. Gilt für jedes $x \in \Omega$

$$\langle \mathrm{D}f(x)h,h\rangle > 0, \quad h \in \mathbb{R}^n \setminus \{0\},$$

so ist f auf Ω umkehrbar.

• Lokal um einen regulären Punkt ist eine C^1 Abbildung diffeomorph.

12.2 BEWEIS DES SATZES ÜBER UMKEHRABBILDUNGEN

Banachscher Fixpunktsatz Sei $(E, \|\cdot\|)$ Banachraum, $X \subset E$ eine abgeschlossene Teilmenge und $T: X \to X$ eine Kontraktion, d.h. es existiert eine Konstante $0 < \theta < 1$, sodass

$$||Tv - Tu|| \le \theta ||v - u||, \quad v, u \in X$$

dann besitzt T genau einen Fixpunkt ξ .

Spezialfall Sei $\varphi : \mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar mit

$$\varphi(0) = 0$$
, $D\varphi(0) = Id$,

dann ist φ lokal um 0 diffeomorph.

- Es genügt den Spezialfall zu beweisen, der allgemeine Fall folgt daraus.
- ullet Erfüllt ϕ den Spezialfall, so existiert ein r>0, sodass

$$[\varphi-\mathrm{id}]_{B_r(0)}<\frac{1}{4}.$$

Für alles weitere fixiert man $A = B_{r/2}(0), B = B_r(0)$

Proposition A *Ist* $\varphi : B \to \mathbb{R}^n$ *lipschitz mit* $[\varphi - id]_B < 1$, *so ist* φ *injektiv.*

Proposition B $Sei \varphi : B \to \mathbb{R}^n$ lipschitz mit

$$\varphi(0) = 0, \quad [\varphi - id]_B < \frac{1}{4}.$$

Dann existiert eine stetige Abbildung ψ : $A \rightarrow B$ *mit*

$$\psi(0) = 0, \quad [\psi - \mathrm{id}]_A < \frac{1}{2},$$

sodass $\varphi \circ \psi = \mathrm{id}_A$ ist.

Proposition C Sei $\varphi : B \to \mathbb{R}^n$ lipschitz mit

$$\varphi(0) = 0$$
, $[\varphi - id]_B < \frac{1}{4}$.

Dann definiert φ ein Lipeomorphismus von einer Umgebung $U \subset B$ von 0 auf A mit

$$\varphi^{-1}(0) = 0, \quad [\varphi^{-1} - \mathrm{id}]_A \le \frac{1}{2}.$$

Proposition D Ist φ in Proposition C von der Klasse C^1 , so definiert φ einen Diffeomorphismus von U auf A. Ist φ außerdem C^r , so ist φ^{-1} ebenfalls C^r .

12.3 SATZ ÜBER IMPLIZITE FUNKTIONEN

Satz über implizite Funktionen (IFS) Sei m < n,

$$f: \mathbb{R}^m \times \mathbb{R}^{n-m} \hookrightarrow \mathbb{R}^m$$

stetig differenzierbar und $f(u_0, v_0) = w_0$. Ist (u_0, v_0) ein regulärer Punkt von f, so existieren Umgebungen $U \times V$ von (u_0, v_0) und W von w_0 , sowie eine stetig differenzierbare Abbildung

$$g: W \times V \to U$$
, $g(w, v) = u$,

so dass für jedes $w \in W$ gilt

$$\{(u,v) \in U \times V : f(u,v) = w\} = \{(g(w,v),v) : v \in V\}.$$

ullet Für jedes $w \in W$ existiert die Ableitung der impliziten Funktion und es gilt

$$g_{\nu}(\nu) = f_u^{-1} f_{\nu} |_{(g(\nu),\nu)}.$$

• Sei $f: \mathbb{R}^n \hookrightarrow \mathbb{R}^m$ stetig differenzierbar. Ist p_0 ein regulärer Punkt, so ist lokal um p_0 die Niveaumenge

$${x : f(x) = f(p_0)},$$

darstellbar als Graph einer stetig differenzierbaren Funktion $g: \mathbb{R}^{n-m} \hookrightarrow \mathbb{R}^m$.

13 Mannigfaltigkeiten

■ Eine nichtleere Teilmenge $M \subset \mathbb{R}^n$ heißt eine Mannigfaltigkeit der Kodimension m, falls eine offene Umgebung Ω von M und eine stetig differenzierbare Abbildung ohne singuläre Punkte $f: \Omega \to \mathbb{R}^m$ existiert, so dass gilt

$$M = f^{-1}(0) = \{x \in \mathbb{R}^n : f(x) = 0\}.$$

- Sei $f: \mathbb{R}^n \to \mathbb{R}^m$ stetig differenzierbar. Ein Punkt $w \in \mathbb{R}^m$ heißt regulärer Wert von f, falls $f^{-1}(w)$ entweder leer ist oder nur aus regulären Punkten besteht. Andernfalls heißt w singulärer oder kritischer Wert von f.
- Eine nichtleere Teilmenge $M \subset \mathbb{R}^n$ heißt eine durch f definierte Mannigfaltigkeit im \mathbb{R}^n , falls f in einer offenen Umgebung um M stetig differenzierbar ist, regulären Wert 0 hat, und $M = f^{-1}(0)$ gilt.
- Ein Vektor $v \in \mathbb{R}^n$ heißt Tangentialvektor an M im Punkt p, falls es eine C^1 -Kurve $y : \mathbb{R} \hookrightarrow M$ gibt mit

$$\gamma(0)=p, \quad \dot{\gamma}(0)=\nu.$$

- Die Menge aller Tangentialvektoren an M im Punkt p heißt Tangentialraum von M an p und wird mit T_pM bezeichnet.
- Sei $M \subset \mathbb{R}^n$ eine Mannigfaltigkeit und $p \in M$. Dann heißt das orthogonale Komplement zum Tangentialraum T_pM der Normalraum von M in p und wird mit N_pM oder $T_p^{\perp}M$ bezeichnet. Seine Elemente heißen die Normalenvektoren von M in p.
- Die Tangentialebene an M im Punkt p ist die zu T_pM parallele affine Ebene durch den Punkt p

$$E_p M = p + T_p M.$$

13.1 SÄTZE FÜR GLEICHUNGSDEFINIERTE MANNIGFALTIGKEITEN

- Eine Mannigfaltikeit $M \subset \mathbb{R}^n$ der Kodimension m ist lokal um jeden Punkt $p \in M$ der Graph einer Funktion $g : \mathbb{R}^{n-m} \to \mathbb{R}^m$.
- Eine nichtleere Teilmenge $M \subset \mathbb{R}^n$ ist eine Mannigfaltigkeit genau dann, wenn gilt

$$M=f^{-1}(0),$$

mit einer C^1 -Funktion $f: \mathbb{R}^n \to \mathbb{R}^m$ mit regulärem Wert 0.

■ *Ist M eine durch f definierte Mannigfaltigkeit, so gilt*

$$T_{p}M = \ker Df(p), \quad p \in M$$

Jeder T_pM ist ein Vektorraum mit derselben Dimension wie M.

■ Sei M eine durch f definierte Mannigfaltigkeit der Kodimension m im \mathbb{R}^n und $\langle \cdot, \cdot \rangle$ ein beliebiges Skalarprodukt im \mathbb{R}^n . Dann gilt . . .

$$T_n^{\perp}M = \operatorname{span}\left\{\nabla f_1(p), \dots, \nabla f_m(p)\right\}, \quad p \in M.$$

■ Sei M eine Mannigfaltigkeit im \mathbb{R}^n und $f: \mathbb{R}^n \to \mathbb{R}^m$ in einer Umgebung von M stetig differenzierbar. Dann besitzt $f|_M$ einen kritischen Punkt in p genau dann, wenn

$$\nabla f(p) \in T_p^{\perp}M.$$

• Sei M eine durch g definierte Mannigfaltigkeit der Kodimension m im \mathbb{R}^n und sei $f: \mathbb{R}^n \to \mathbb{R}$ in einer Umgebung von M stetig differenzierbar. Dann besitzt $f|_M$ einen kritischen Punkt in $p \in M$ genau dann, wenn es reelle Zahlen $\lambda_1, \ldots, \lambda_n$ gibt, sodass

$$\nabla f(p) = \sum_{i=1}^n \lambda_i \nabla g_i(p).$$

• Seien $f: \mathbb{R}^n \to \mathbb{R}$ und $g: \mathbb{R}^n \to \mathbb{R}^m$ auf einer offenen Teilmenge des \mathbb{R}^n stetig differenzierbar, und sei 0 ein regulärer Wert von g. Dann besitzt f unter den Nebenbedingungen g=0 genau dann einen kritischen Punkt in p, wenn die erweiterte Funktion

$$F: \mathbb{R}^n \times \mathbb{R}^m \hookrightarrow \mathbb{R}, \quad F(x,\lambda) = f(x) + \langle \lambda, g(x) \rangle,$$

einen kritischen Punkt (p, λ) besitzt.