### Introduction to machine learning

#### Victor Kitov

v.v.kitov@yandex.ru victorkitov.github.io



#### Table of Contents

- Problem statement
- 2 Visual examples
- 3 Function class
- 4 Function estimation
- 5 Notation used in the course

#### Relevance

"The fourth technological revolution is built on the ubiquitous and mobile internet, by smaller and more powerful sensors that have become cheaper, and by artificial intelligence and machine learning." Klaus Martin Schwab, President of the World Economic Forum (2016).



## Formal definitions of machine learning

- Machine learning is a field of study that gives computers the ability to learn without being explicitly programmed.
- A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance P at tasks in T improves with experience E.

## Examples

- Spam filtering
  - if sender belongs to black-list -> spam
  - if contains phrase 'buy now' and sender is unknown -> spam
  - ...
- Part-of-speech tagger.
  - if ends with 'ed' -> verb
  - if previous word is 'the' -> noun
  - ...



ML finds decision rules automatically with labelled data!

## Manual approach and machine learning

#### Manual approach:

- difficult to find specialists
- expensive
- slow
- imprecise (simple rules only)

These problems are solved using machine learning.

• but data is needed for a formalized description of experience.

## Where ML gives advantage

- hard to formulate explicit rules
  - complex inter-relationships
    - e.g. image recognition
  - too many attributes
    - e.g. text categorization
- fine-tuning performance on huge datasets
  - e.g. threshold for credibility in credit scoring
- fast adaptation to changing conditions
  - e.g. stock prices/volatility prediction
- many models are needed
  - due to further adaptation to usage conditions
  - e.g. voice detection

### Formal problem statement

- Set of objects Z
- Each object is described by a vector of known characteristics  $x \in \mathcal{X}$  and predicted characteristics  $y \in \mathcal{Y}$ .

$$z \in Z \longrightarrow (\mathbf{x}, y)$$

- Task: find a mapping f, which could accurately approximate  $\mathcal{X} \to \mathcal{Y}$ .
  - using a finite known set of objects.
  - apply model for objects from the test set.
- test set way be known or not.

### Types of features<sup>1</sup>

- Full object description  $x \in \mathcal{X}$  consists of individual features  $x^i \in \mathcal{X}_i$
- Types of feature (e.g. for credit scoring):
  - $\mathcal{X}_i = \{0, 1\}$  binary feature
    - e.g. marital status
  - ullet  $|\mathcal{X}_i| < \infty$  categorical (nominal) feature
    - e.g. occupation
  - $|\mathcal{X}_i| < \infty$  and  $\mathcal{X}_i$  is ordered ordinal feature
    - e.g.education level
  - $\mathcal{X}_i = \mathbb{R}$  real feature
    - e.g. age

<sup>&</sup>lt;sup>1</sup>Actually any type is possible. Listed are most common types.

## Specification of known/test sets

#### Known set:

- supervised learning:  $(x_1, y_1), (x_2, y_2), ...(x_N, y_N)$ 
  - e.g. regression, classification.
- unsupervised learning:  $x_1, x_2, ... x_N$  -
  - e.g. dimensionality reduction, clustering, outlier analysis
- semi-supervised learning:

$$(x_1, y_1), (x_2, y_2), ...(x_N, y_N), x_{N+1}, x_{N+2}, ...x_{N+M}$$

If test set objects  $\mathbf{x}_1', \, \mathbf{x}_2', \, \dots \, \mathbf{x}_K'$  are known in advance, then this is transductive learning.

### Reinforcement learning

- Reinforcement learning setup:
  - a set of environment and agent states S;
  - a set of actions A, of the agent
  - $P(s_{t+1} = s' | s_t = s, a_t = a)$  is the probability of transition from state s to state s' under action a.
  - $R_a(s, s')$  is the (expected) immediate reward after transition from s to s' with action a.
  - rules that describe what the agent observes
    - full / partial observability
- Well-suited to problems which include a long-term versus short-term reward trade-off
- Applications: robot control, elevator scheduling, games (chess, go), etc.

#### Table of Contents

- Problem statement
- 2 Visual examples
  - Supervised learning
  - Unsupervised learning
- 3 Function class
- 4 Function estimation
- 5 Notation used in the course

- 2 Visual examples
  - Supervised learning
  - Unsupervised learning

## Regression



#### Classification



Predict class y shown with color for any point.

### Example: medical applications

- Objects: patients
- Features:
  - real: age, pulse, blood pressure, hemoglobin content in the blood, drug dose.
  - binary: gender, presence of headache, weakness, nausea
  - categorical: past illnesses
  - ordinal: severity of the condition
- Possible targets:
  - classification: determine the type of disease, method of treatment.
  - regression: duration of treatment and recovery.

### Example: Predicting Customer Behavior

- Objects: the client at the current time.
- Features:
  - real: age, historical frequency of use of services and spending on services.
  - binary: gender, whether there were arrears in payments.
  - categorical: what services does he use.
  - ordinal: assessment of the company according to the client.
- Possible targets:
  - classification: will the client go to competitors? will the service be enabled?
  - **regression**: how many times will the service be used? how much money will be deposited into the account?

### Supervised Learning - Ranking



How could the ranking problem be solved through regression or classification?

### Semi-supervised classification



- 2 Visual examples
  - Supervised learning
  - Unsupervised learning

## Clustering



Cluster points into distinct similarity groups.

### Dimensionality reduction



Reduce dimension from 3D to 2D with minimal distortion.

#### Outlier detection



Detect untypical observations.

# Search for association rules (rule induction)

| rhs           | lhs                             | support      | confidence | lift   |
|---------------|---------------------------------|--------------|------------|--------|
| bottled beer  | liquor, red/blush wine          | 0.0016268429 | 0.9411765  | 19.53  |
|               | liquor, red/blush wine, soda    | 0.0006100661 | 1.0000000  | 20.75  |
|               | liquor, soda                    | 0.0010167768 | 0.7692308  | 15.96  |
| bottled water | bottled beer, misc. beverages   | 0.0005083884 | 0.5000000  | 8.29   |
| citrus fruit  | meat, turkey                    | 0.0004067107 | 0.5714286  | 6.97   |
| coffee        | condensed milk, sugar           | 0.0004067107 | 0.8000000  | 25.71  |
| frankfurter   | liver loaf, sausage             | 0.0005083884 | 0.5000000  | 8.48   |
| liquor        | bottled beer, red/blush wine    | 0.0016268429 | 0.6666667  | 81.96  |
|               | bottled beer, red/blush wine, s | 0.0006100661 | 1.0000000  | 122.94 |
|               | red/blush wine, soda            | 0.0006100661 | 0.5454545  | 67.06  |
|               |                                 |              |            |        |

Market basket analysis.

Using sets  $\{a, b, c\}$ ,  $\{a, d, e\}$ ,  $\{a, b\}$ ,  $\{a, b, g, h\}$  generate rules:  $a \rightarrow b, b \rightarrow a, ...$ 

### General problem statement

- We want to find  $f(x): X \to Y$ .
- How it may be used:
  - prediction of Y
  - ullet qualitative analysis, understanding of  $X \to Y$  dependency
  - untypical objects detection (where model fails)
- Questions solved in ML:
  - what target y we are predicting?
  - how to select object descriptors (features) x?
  - what is the kind of mapping f?
  - in what sense a mapping f should approximate true relationship?
  - how to tune f?

# Types of target variable (supervised learning)<sup>3</sup>

- ullet  $\mathcal{Y}=\mathbb{R}$  regression
  - e.g. flat price
- $\mathcal{Y} = \mathbb{R}^M$  vector regression
  - e.g. stock price dynamics
- $\mathcal{Y} = \{\omega_1, \omega_2, ...\omega_C\}$  classification.
  - C=2: binary classification.
    - e.g. spam / not spam
  - C>2: multi-class classification
    - e.g. identity recognition, activity recognition
- $\mathcal{Y}$  set of all sets of  $\{\omega_1, \omega_2, ... \omega_C\}$  labeling.<sup>2</sup>
  - e.g. news categorization

<sup>&</sup>lt;sup>2</sup>How to solve labeling using classification?

<sup>&</sup>lt;sup>3</sup>Actually any type is possible. Listed are most common types.

#### Table of Contents

- Problem statement
- 2 Visual examples
- 3 Function class
- 4 Function estimation
- 5 Notation used in the course

#### Linear function class

• Regression:  $\hat{y} = g(x)$ , g(x) parametrized by  $\theta$ .

<sup>&</sup>lt;sup>4</sup>Are discriminant functions uniquely defined for fixed mapping  $X \to Y$ ?

#### Linear function class

- **Regression**:  $\hat{y} = g(x)$ , g(x) parametrized by  $\theta$ .
- Milciclass classifier  $(y \in \{1, 2, ... C\})^4$ :

$$\widehat{y}(x) = \underset{c}{\arg\max} \, g_c(x), \quad g(x) \text{ parametrized by } \theta.$$
 
$$\{x: g_i(x) = g_j(x)\}, \quad \text{border between classes } i, j.$$
 
$$M(x,y) = g_y(x) - \underset{c \neq y}{\max} \, g_c(x), \quad \text{margin (quality of classification)}$$

 $<sup>{}^4\</sup>overline{\text{Are discriminant functions uniquely defined for fixed mapping }X o Y?$ 

#### Linear function class

- **Regression**:  $\hat{y} = g(x)$ , g(x) parametrized by  $\theta$ .
- Milciclass classifier  $(y \in \{1, 2, ... C\})^4$ :

$$\widehat{y}(x) = \underset{c}{\arg\max} g_c(x), \quad g(x) \text{ parametrized by } \theta.$$
  $\{x: g_i(x) = g_j(x)\}, \quad \text{border between classes } i, j.$   $M(x,y) = g_y(x) - \underset{c \neq y}{\max} g_c(x), \quad \text{margin (quality of classification)}$ 

• Binary classifier  $(y \in \{+1, -1\})$ :

$$\widehat{y}(x) = \underset{c \in \{+1,-1\}}{\arg \max} g_c(x) = \operatorname{sign}(g_{+1}(x) - g_{-1}(x)) = \operatorname{sign}(g(x))$$

$$M(x, y) = g_y(x) - g_{-y}(x) = y (g_{+1}(x) - g_{-1}(x)) = yg(x)$$

<sup>&</sup>lt;sup>4</sup>Are discriminant functions uniquely defined for fixed mapping  $X \to Y$ ?

## Examples

linear regression  $y \in \mathbb{R}$ :

$$f(x|\theta) = \theta_0 + \theta_1 x$$



### **Examples**

linear regression  $y \in \mathbb{R}$ :

$$f(x|\theta) = \theta_0 + \theta_1 x$$



linear classification  $y \in \{1, 2\}$ :

$$g_c(\mathbf{x}|\theta) = \theta_c^0 + \theta_c^1 x^1 + \theta_c^2 x^2, \ c = 1, 2.$$
$$f(\mathbf{x}|\theta) = \arg\max_{c} g_c(\mathbf{x}|\theta)$$



#### Score versus loss

- In machine learning predictions, functions, objects can be assigned:
  - score, rating this should be maximized
  - loss, cost this should be minimized<sup>5</sup>

<sup>&</sup>lt;sup>5</sup>how can one convert score ↔ loss?

# Loss function $\mathcal{L}(\widehat{y},y)^6$

- Examples:
  - classification:
    - misclassification rate

$$\mathcal{L}(\widehat{y},y) = \mathbb{I}[\widehat{y} \neq y]$$

- regression:
  - MAE (mean absolute error):

$$\mathcal{L}(\widehat{y}, y) = |\widehat{y} - y|$$

• MSE (mean squared error):

$$\mathcal{L}(\widehat{y}, y) = (\widehat{y} - y)^2$$

 $<sup>^6\</sup>overline{\text{Selecting realistic loss}}$  is not trivial. Consider e.g. demand forecasting.  $^{30/62}$ 

#### Table of Contents

- Problem statement
- 2 Visual examples
- Function class
- 4 Function estimation
  - Separate validation set
  - Cross-validation
  - A/B testing
- 6 Notation used in the course

#### Known set

Known set: 
$$(x_1, y_1), ...(x_M, y_M),$$
  
design matrix  $X = [x_1, ...x_M]^T, Y = [y_1, ...y_M]^T.$ 

#### features



### Known set

Known set: 
$$(x_1, y_1), ...(x_M, y_M),$$
  
design matrix  $X = [x_1, ...x_M]^T, Y = [y_1, ...y_M]^T.$ 

#### features



### Known set

Known set: 
$$(x_1, y_1), ...(x_M, y_M),$$
  
design matrix  $X = [x_1, ...x_M]^T, Y = [y_1, ...y_M]^T.$ 

#### features



# Types of learning



LUPI - Learning Using Priveledged Information<sup>7</sup>.

<sup>&</sup>lt;sup>7</sup>Vapnik V., Vashist A. A new learning paradigm: Learning Using Priveledged Information // Neural Networks. 2009.

### Known set, test set

- Known sample  $X, Y: (x_1, y_1), ...(x_M, y_M)$
- Test sample X', Y':  $(x'_1, y'_1), ...(x'_K, y'_K)$



# Empirical risk

• Want to minimize expected risk:

$$\int \int \mathcal{L}(f_{\theta}(\mathbf{x}), y) p(\mathbf{x}, y) d\mathbf{x} dy \to \min_{\theta}$$

<sup>&</sup>lt;sup>8</sup>We assume that objects are i.i.d.

# Empirical risk

• Want to minimize expected risk:

$$\int \int \mathcal{L}(f_{ heta}(\mathbf{x}),y)p(\mathbf{x},y)d\mathbf{x}dy 
ightarrow \min_{ heta}$$

• Can minimize only empirical risk8:

$$L(\theta|X,Y) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\theta}(\mathbf{x}_n), y_n)$$

• Method of empirical risk minimization:

$$\widehat{\theta} = \arg\min_{\theta} L(\theta|X, Y)$$

<sup>&</sup>lt;sup>8</sup>We assume that objects are i.i.d.

# Underfitting and overfitting

- Underfitting: too simple model for true dependency.
  - doesn't account for subtle dependencies
- Overfitting: too complex model for true dependency.
  - adjusts for noise in measurements



# Estimation of empirical risk

• What is the relationship between  $L(\widehat{\theta}|X,Y)$  and  $L(\widehat{\theta}|X',Y')$ ?

# Estimation of empirical risk

- What is the relationship between  $L(\widehat{\theta}|X,Y)$  and  $L(\widehat{\theta}|X',Y')$ ?
- Typically

$$L(\widehat{\theta}|X,Y) < L(\widehat{\theta}|X',Y')$$

• How to get realistic estimate of  $L(\widehat{\theta}|X', Y')$ ?

# Estimation of empirical risk

- What is the relationship between  $L(\widehat{\theta}|X,Y)$  and  $L(\widehat{\theta}|X',Y')$ ?
- Typically

$$L(\widehat{\theta}|X,Y) < L(\widehat{\theta}|X',Y')$$

- How to get realistic estimate of  $L(\widehat{\theta}|X',Y')$ ?
  - separate validation set
  - cross-validation
  - leave-one-out method

Separate validation set

- 4 Function estimation
  - Separate validation set
  - Cross-validation
  - A/B testing

# Separate validation set

- Known sample  $X, Y: (x_1, y_1), ...(x_M, y_M)$
- Test sample X', Y':  $(x'_1, y'_1), ...(x'_K, y'_K)$



# Separate validation set

Divide known set randomly or randomly with stratification:



- 4 Function estimation
  - Separate validation set
  - Cross-validation
  - A/B testing



Divide training set into K parts, referred as «folds» (here K=4). Variants:

- randomly
- randomly with stratification (w.r.t target value or feature value).



Use folds 1,2,3 for model estimation and fold 4 for model evaluation.



Use folds 1,2,4 for model estimation and fold 3 for model evaluation.



Use folds 1,3,4 for model estimation and fold 2 for model evaluation.



Use folds 2,3,4 for model estimation and fold 1 for model evaluation.

- Denote
  - k(n) fold to which observation  $(\mathbf{x}_n, y_n)$  belongs to:  $n \in I_k$ .
  - $\widehat{\theta}^{-k}$  parameter estimation using observations from all folds except fold k.

<sup>&</sup>lt;sup>9</sup>will samples be correlated?

- Denote
  - k(n) fold to which observation  $(\mathbf{x}_n, y_n)$  belongs to:  $n \in I_k$ .
  - $\widehat{\theta}^{-k}$  parameter estimation using observations from all folds except fold k.

### Cross-validation empirical risk estimation

$$\widehat{L}_{total} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\widehat{\theta}^{-k(n)}}(x_n), y_n)$$

<sup>&</sup>lt;sup>9</sup>will samples be correlated?

- Denote
  - k(n) fold to which observation  $(\mathbf{x}_n, y_n)$  belongs to:  $n \in I_k$ .
  - $\widehat{\theta}^{-k}$  parameter estimation using observations from all folds except fold k.

### Cross-validation empirical risk estimation

$$\widehat{L}_{total} = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\widehat{\theta}^{-k(n)}}(x_n), y_n)$$

- For K-fold CV we have:
  - K parameters  $\widehat{\theta}^{-1},...\widehat{\theta}^{-K}$
  - K models  $f_{\widehat{\theta}^{-1}}(\mathbf{x}), ... f_{\widehat{\theta}^{-K}}(\mathbf{x})$ .
    - can use ensembles
  - *K* estimations of empirical risk:

$$\widehat{L}_k = \frac{1}{|I_k|} \sum_{n \in I_k} \mathcal{L}(f_{\widehat{\theta}^{-k}}(\mathbf{x}_n), y_n), \ k = 1, 2, ... K.$$

\_\_\_\_\_\_e can estimate variance & use statistics!9

<sup>&</sup>lt;sup>9</sup>will samples be correlated?

### Comments on cross-validation

- When number of folds *K* is equal to number of objects *N*, this is called **leave-one-out method**.
- Cross-validation uses the i.i.d.<sup>10</sup> property of observations
- Stratification by target y helps for imbalanced/rare classes.

<sup>10</sup> i.i.d.=independent and identically distributed

- 4 Function estimation
  - Separate validation set
  - Cross-validation
  - A/B testing

# A/B testing

- Observe test set after the models were built.
- A/B testing procedure:
  - divide test objects randomly into two groups A and B.
  - apply base model to A
  - apply modified model to B
  - compare final results

# A/B testing

- Observe test set after the models were built.
- A/B testing procedure:
  - divide test objects randomly into two groups A and B.
  - apply base model to A
  - apply modified model to B
  - compare final results

# Cross-validation vs. A/B testing

Comparison of cross-validation and A/B test:

|             | cross-validation          | A/B test                    |
|-------------|---------------------------|-----------------------------|
| realism     | use retrospective         | full realism                |
|             | analysis, rely on i.i.d.  |                             |
|             | assumption                |                             |
| overfitting | possible (when use it     | almost impossible           |
|             | multiple times)           | (possible if A/B split is   |
|             |                           | inadequate)                 |
| costs       | uses available data, only | requires time and resources |
|             | computational costs       | for collecting & evaluating |
|             |                           | feedback from objects of    |
|             |                           | groups A and B              |

• When forecast affects true outcome (e.g. in recommender system) A/B test is more adequate.

# General modelling pipeline<sup>11</sup>

- Understand business problem
- Problem formalization
- Data collection
- Data preprocessing
- Modelling
- Model evaluation
- Deployment
- Maintenance

<sup>&</sup>lt;sup>11</sup>Steps covered in kaggle competitions.

# Examples of ML applications by domain

- WEB
  - Web-page ranking
  - Spam filtering
    - e-mails, web pages in search results
- Computer networks
  - Authentication systems
    - by voice, face, fingerprint
    - by behavior
  - Intrusion detection
- Business
  - Fraud detection
  - Churn prediction
- Banking
  - Credit scoring
  - Stock prices forecasting
  - Risks estimation

# Examples of ML applications by data type

#### Texts

- Document classification
- POS tagging, semantic parsing,
- named entities detection
- sentimental analysis
- automatic summarization

### Images

- Handwriting recognition
- Face detection, pose detection
- Person identification
- Image classification
- Image segmentation
- Adding artistic style

#### Other

- Target detection / classification
- Particle classification

A/B testing

### Recommended materials

- The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2nd Edition, Springer, 2009.
- Data Mining: The Textbook. Charu C. Aggarwal, Springer, 2015.
- Statistical Pattern Recognition. 3rd Edition, Andrew R. Webb, Keith D. Copsey, John Wiley & Sons Ltd., 2011.
- Any additional public sources:
  - wikipedia, articles, tutorials, video-lectures.
- Practical questions:
  - StackOverflow, scikit-learn documentation, kaggle forum.

### Table of Contents

- Problem statement
- 2 Visual examples
- 3 Function class
- 4 Function estimation
- 5 Notation used in the course

### Notation used in the course<sup>12</sup>

### Objects and outputs:

- x vector of known input characteristics of an object
- $\bullet$  y predicted target characteristics of an object specified by x
- $x_i$  i-th object of a set,  $y_i$  corresponding target characteristic
- $x^k$  k-th feature of object specified by x
- $x_i^k$  k-th feature of object specified by  $x_i$

#### General definitions:

- D dimensionality of the feature space:  $x \in \mathbb{R}^D$
- N the number of objects in the training set
- C total number of classes in classification.
- Possible classes:  $\{1, 2, ... C\}$  or  $\{\omega_1, \omega_2, ... \omega_C\}$

 $<sup>^{12}\</sup>mbox{If this corresponds the context and there are no redefinitions}$ 

### Notation used in the course

### Training set:

- X design matrix,  $X \in \mathbb{R}^{N \times D}$
- $Y \in \mathbb{R}^N$  target characteristics of a training set

### Optimization:

- $\mathcal{L}(\widehat{y}, y)$  loss function for 1 object
  - y is the true value and  $\hat{y}$  is the predicted value.
- $L(\theta) = \sum_{n=1}^{N} \mathcal{L}(f_{\theta}(x_n), y_n)$  loss function for the whole the training set.

### Notation used in the course

### Special functions:

•  $[x]_+ = \max\{x, 0\}$ •  $\mathbb{I}[\operatorname{condition}] = \begin{cases} 1, & \text{if condition is satisfied} \\ 0, & \text{if condition is not satisfied} \end{cases}$ •  $\operatorname{sign}(x) = \begin{cases} 1, & x \geq 0 \\ -1, & x < 0 \end{cases}$ 

#### Other definitions:

- $\widehat{z}$  defines an estimate of z, based on the training set: for example,  $\widehat{\theta}$  is the estimate of  $\theta$ ,  $\widehat{y}$  is the estimate of y, etc.
- r.v.=random variable, w.r.t.=with respect to, e.g.=for example.
- $A \geq 0$  means that A is a square positive semi-definite matrix.
- All vectors are vectors-columns, e.g. if  $x \in \mathbb{R}^D$  its dimensions are Dx1.

### Summary

- Machine learning algorithms reconstruct relationship between features x and outputs y.
- Relationship is reconstructed by optimal function  $\widehat{y} = f_{\widehat{\theta}}(x)$  from function class  $\{f_{\theta}(x), \theta \in \Theta\}$ .
- $m{ heta}$  is particular controls model complexity, models may be too simple and too complex.
- $\widehat{\theta}$  selected to minimize empirical risk  $\frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(f_{\theta}(x_n), y_n)$  for some loss function  $\mathcal{L}(\widehat{y}, y)$ .
- Overfitting non-realistic estimate of expected loss on the training set.
- To avoid overfitting use validation sets, cross-validation, A/B test.