Topological Tensor Products

Ikhan Choi

May 6, 2023

Contents

1	Univers	cal properties	2
2	2 Banach spaces		2
3	Approximation property		3
4	Nuclear spaces		3
5	C*-alge	bras	3
Notation			
1	L(X,Y)	the set of bounded linear operators from X to Y	
E	B(X,Y)	the set of bounded bilinear forms on $X \times Y$	
F	F(X,Y)	the set of continuous finite-rank linear operators from X to Y	
	B_X	closed unit ball of a normed space X	
	S_X	unit sphere of a normed space X	
	$X \otimes Y$	algebraic tensor product of X and Y	
	X^*	continuous dual space	
	$X^{\#}$	algebraic dual space	

1 Universal properties

1.1 (Algebraic tensor product of vector spaces). Let X and Y be vector spaces. The *algebraic tensor product* is a vector space $X \otimes Y$ with a bilinear map $S : X \times Y \to X \otimes Y$ such that the following universal property: for any vector space S and any bilinear map $S : X \times Y \to S$, there exists a unique linear map $S : X \times Y \to S$ such that the diagram

$$X \times Y \xrightarrow{\otimes} X \otimes Y$$

$$\downarrow^{\widetilde{\sigma}}$$

$$Z$$

is commutative.

- (a) The tensor product $X \otimes Y$ always exists.
- (b) We have linear maps $L(X,Z) \otimes L(Y,W) \to L(X \otimes Y,Z \otimes W)$ and $B(L(X,Z),L(Y,Z)) \to L(X \otimes Y,Z)$.
- (c) Every element $t \in X \otimes Y$ is represented as $t = \sum_{i=1}^{n} x_i \otimes y_i$ such that $\{x_i\}$ is linearly independent. In this case, if t = 0 then $y_i = 0$ for all i.

Proof. (a) Let T be the set of formal linear combinations of $X \times Y$, that is, an element of T has the form $\sum_{i=1}^{n} a_i \cdot (x_i, y_i)$ for $x_i \in X$, $y_i \in Y$, and scalars a_i . Define $T_0 \subset T$ to be a linear space spanned by the elements of the following four types:

$$(x+x',y)-(x,y)-(x',y), (x,y+y')-(x,y)-(x,y'),$$

 $(ax,y)-a(x,y), (x,ay)-a(x,y).$

Then, the quotient space T/T_0 satisfies the universal property with the bilinear map $X \times Y \to T/T_0$: $(x,y) \mapsto (x,y) + T_0$.

1.2 (Algebraic tensor product of involutive algebras).

2 Banach spaces

- 2.1 (Subcross norms).
- **2.2** (Injective tensor products). Let *X* and *Y* be Banach spaces. Define the *injective norm* ε on $X \otimes Y$ such that

$$\varepsilon \left(\sum_{i=1}^{n} x_i \otimes y_i \right) := \sup_{\substack{x^* \in B_{X^*} \\ y^* \in B_{n,n}}} \left| \sum_{i=1}^{n} \langle x_i, x^* \rangle \langle y_i, y^* \rangle \right|.$$

We denote by $X \otimes_{\varepsilon} Y$ the algebraic tensor product with the injective norm, and by $X \otimes_{\varepsilon} Y$ its completion.

- (a) $X \otimes_{\varepsilon} Y$ is naturally isometrically isomorphic to $F((X^*, w^*), (Y, w))$.
- (b) $X^* \otimes_{\varepsilon} Y$ is naturally isometrically isomorphic to F(X,Y).
- **2.3** (Projective tensor products). Let *X* and *Y* be Banach spaces. Define the *projective norm* π on $X \otimes Y$ such that

$$\pi(t) := \inf \left\{ \sum_{i=1}^{n} ||x_i|| ||y_i|| : t = \sum_{i=1}^{n} x_i \otimes y_i \right\}.$$

We denote by $X \otimes_{\pi} Y$ the algebraic tensor product with the projective norm, and by $X \otimes_{\pi} Y$ its completion.

2

(a) There are natural isometric isomorphisms $(X \otimes_{\pi} Y)^* \cong B(X,Y) \cong L(X,Y^*)$.

(b)

2.4 (Hilbert space tensor product). Let $\varphi: H \odot K \to L(H^*, K)$. Then, $\lambda(\xi) = \|\varphi(\xi)\|$, $\gamma(\xi) = \operatorname{tr}(|\varphi(\xi)|)$, so $H \otimes_{\lambda} K \cong K(H^*, K)$ and $H \otimes_{\gamma} K \cong L^1(H^*, K)$.

2.5 (Nuclear operators).

$$X^* \otimes_{\pi} Y \to X^* \otimes_{\varepsilon} Y \xrightarrow{\sim} F(X,Y) \xrightarrow{1} K(X,Y)$$

defines

$$J: X^* \widehat{\otimes}_{\pi} Y \to K(X,Y).$$

Define $N(X, Y) := \operatorname{im} J$.

2.6 (Grothendieck theorem). Let Y^* be an RNP space. Then, there is an isometric isomorphism $(X \hat{\otimes}_{\varepsilon} Y)^* \cong N(X, Y^*)$.

3 Approximation property

- **3.1** (Approximation property of locally convex spaces).
- **3.2** (Approximation property of Banach spaces).
- 3.3 (Approximation property of dual Banach spaces).
- **3.4** (Mazur's goose). (a) If *X* has a Schauder basis, then it has the approximation property.

4 Nuclear spaces

5 C*-algebras

von Neumann algebras, Haagerup tensor product