Problem 1 (14 pts). For each of the sentences below, fill in each blank with one of the terms provided at the top of the page. You may not need to use every term, and some terms might be used more than once.

overfit	underfit	classification	regression		
loss	testing	training	validation		
minimize	maximize	r-squared	accuracy		
fit	predict	SSE	negative log-likelihood		

a)	The goal of a learning algorithm in a supervised learning task (whether classification or regression) is to
	minimize the value of the loss function, as calculated on the training set.
b)	The <u>Validation</u> set is used to compare the performance of different models, and to select the final model
c)	The <u>testing</u> set is used to assess how well your final model will generalize to new, unseen examples.
d)	negative The log likelihood loss function is used for classification algorithms.
e)	The loss function is used for regression algorithms.

- f) The score method of a Scikit-Learn regression model returns the <u>r-squared</u> metric for the model, as calculated on the dataset provided.
- g) The score method of a Scikit-Learn classification model returns the <u>accuracy</u> metric for the model, as calculated on the dataset provided.
- h) A <u>classification</u> task is a supervised learning problem in which the target values are categorical.
- i) A <u>regression</u> task is a supervised learning problem in which the target values are real numbers.

- j) An <u>overfit</u> model will perform very well on the training data, but will not likely generalize well.
- k) An <u>underfit</u> model performs poorly on the training data, and will also not likely generalize well.
- I) The more rigid a model is, the more likely it is to <u>underfit</u>.
- m) The more flexible a model is, the more likely it is to ________.

Problem 2 (10 pts). Assume that you are provided with two 2D arrays, X_num and X_cat, whose contents are as shown below. The array X_num contains the values for a single numerical (quantitative) feature, while X_cat contains the values for two categorical (qualitative) features. The feature arrays are preprocessed and combined into a single array by running the code below. Provide the contents of the array X_preprocessed by completing the table on the right. You may not need all of the columns provided. If not, leave any extra columns blank.

from sklearn.preprocessing import PolynomialFeatures, OneHotEncoder

poly = PolynomialFeatures(2)
Xp = poly.fit_transform(X num)

enc = OneHotEncoder(sparse=False)

Xe = enc.fit_transform(X_cat)

X_preprocessed = np.hstack((Xp, Xe))

X_num

um	X_cat	
3	2	S
1	1	F
0	1	S
2	1	D
4	2	D
2	1	F

X_preprocessed

1	3	9	0	\	0	0	1	
1	١	١	١	0	0	١	6	
١	٥	0		0	0	0	1	
١	2	4	•	0	1	0	0	
1	4	16	0	1	١	0	0	
1	2	4	- manual	0	0	١	0	