Introducción a la Robótica Móvil

Segundo cuatrimestre de 2016

Departamento de Computación - FCEyN - UBA

Práctica - clase 3

Taller Actuación

Problematica

¿Qué cosas se pueden controlar con un PID?

Problematica

¿Qué cosas se pueden controlar con un PID?

- caldera
- aire acondicionado
- posición de una válvula
- nivel de agua de un tanque

¿Qué es lo primero que tenemos que controlar en un robot?

Problematica

¿Qué cosas se pueden controlar con un PID?

- caldera
- aire acondicionado
- o posición de una válvula
- nivel de agua de un tanque

¿Qué es lo primero que tenemos que controlar en un robot?

los motores del robot

¿Cómo controlamos un motor?

Driver

¿Qué es un driver?

Los driver permite manejar la corriente que necesitan los motores para moverse, que no puede ser otorgada por un microcontrolador.

- En la practica utilizaremos el L298
- Puede controlar dos motores CC o un PAP
- Vin = 6V 12V
- Corrienta por canal de salida de hasta 2A

Driver

¿Qué es un driver?

Los driver permite manejar la corriente que necesitan los motores para moverse, que no puede ser otorgada por un microcontrolador.

- En la practica utilizaremos el L298
- Puede controlar dos motores CC o un PAP
- Vin = 6V 12V
- Corrienta por canal de salida de hasta 2A

Driver

¿Qué es un driver?

Los driver permite manejar la corriente que necesitan los motores para moverse, que no puede ser otorgada por un microcontrolador.

- En la practica utilizaremos el L298
- Puede controlar dos motores CC o un PAP
- Vin = 6V 12V
- Corrienta por canal de salida de hasta 2A

Modulación por Ancho de Pulso

- Los motores los controlamos con PWM ¿Por qué?
- Se utiliza en otras aplicaciones, ¿Ejemplos?
- En Arduino usamos la función analogWrite().

Control de un motor: Esquema

Componentes:

- Arduino
- motor controlado por PWM
- driver
- ¿ Cómo lo controlo?
 - un *pin* para *enable*
 - dos pines para PWM
 - adelante $pwm_1 = 100 \text{ y } pwm_2 = 0$
 - atras $pwm_1 = 0$ y $pwm_2 = 100$
 - frenado $pwm_1 = 0$ y $pwm_2 = 0$

¿Falta algo? ¿Podemos cerrar el lazo?

Control de un motor: Esquema Completo

Funciones:

#include <Encoder.h>: incluye la librería Encoder.

Encoder myEnc(pin1, pin2): crea un nuevo objeto Encoder usando 2 pins. (Mayor performance si son pines de interrupciones ¿Por qué?)

myEnc.read(): Devuelve la posición acumulada, puede ser positiva o negativa.

Funciones:

#include <Encoder.h>: incluye la librería Encoder.

Encoder myEnc(pin1, pin2): crea un nuevo objeto Encoder usando 2 pins. (Mayor performance si son pines de interrupciones ¿Por qué?)

myEnc.read(): Devuelve la posición acumulada, puede ser positiva o negativa.

Funciones:

#include <Encoder.h>: incluye la librería Encoder.

Encoder myEnc(pin1, pin2): crea un nuevo objeto Encoder usando 2 pins. (Mayor performance si son pines de interrupciones ¿Por qué?)

myEnc.read(): Devuelve la posición acumulada, puede ser positiva o negativa.

Funciones:

#include <Encoder.h>: incluye la librería Encoder.

Encoder myEnc(pin1, pin2): crea un nuevo objeto Encoder usando 2 pins. (Mayor performance si son pines de interrupciones ¿Por qué?)

myEnc.read(): Devuelve la posición acumulada, puede ser positiva o negativa.

Juntando Todo

Pasos a seguir:

- Calculo el error actual para P.
- ullet Para calcular el l'acumulo el error . I+=e(t) (¿satura?)
- Calculo la diferencia entre el error actual y el error anterior tip: e(t) e(t-1) = (y(t) u(t)) (y(t-1) u(t)) = y(t) y(t-1).
- Calculo un valor de PWM sumando estos valores multiplicados por sus constantes respectivamente.

Juntando Todo

Pasos a seguir:

- Calculo el error actual para P.
- Para calcular el I acumulo el error . I+=e(t) (¿satura?)
- Calculo la diferencia entre el error actual y el error anterior tip: e(t) e(t-1) = (y(t) u(t)) (y(t-1) u(t)) = y(t) y(t-1).
- Calculo un valor de PWM sumando estos valores multiplicados por sus constantes respectivamente.

DC motor dead zone

Funcionamiento de un motor real

DC motor dead zone

Funcionamiento de un motor real

EjerciciosBasta de clases, quiero jugaaaar!

Bajar consigna desde la página!