Capítulo 4

Criptografia Convencional

Algoritmos

Plano de Curso

- Triplo DES
- IDEA
- Blowfish
- RC5
- CAST-128
- RC2
- Características dos Cifradores de Bloco Simétrico Avançados

Cifração Dupla

Cifrar
$$C=E_{K_2}[E_{K_1}[P]]$$

Decifrar $P=D_{K_1}[D_{K_2}[C]]$

Cifração Tripla

Cifrar

Decifrar

IDEA

Algoritmo Internacional de Criptografia de Dados

Desenvolvido por: Xuejia Lai e James Massey Instituto Federal de Tecnologia Suíço 1990 - Proposta Original

1991 - Revisão

Objetivo: Substituir o DES

Características:

- Comprimento do Bloco: 64 bits
- Comprimento da Chave: 128 bits
- Confusão: Três Diferentes Operações ——
- Difusão

Operações:

- ⊕ XOR
- Adição mod 2¹⁶
- - Multiplicações mod 2¹⁶+1

MA - Estrutura da Multiplicação/Adição

Difusão

Cada bit de saída depende:

- Todo bit de entrada
- Todo bit da chave

Considerações de Implementação

- Software
 - Sub-blocos naturais (8, 16 ou 32 bits)
 - Uso de simples operações
- Hardware
 - Similaridade entre encriptar e decriptar
 - Estrutura Regular facilitar VLSI

Estrutura Geral do IDEA

Primeira Fase do IDEA

Desvia-se da estrutura clássica de Feistel

+ resistente a criptoanálise diferencial

Transformação da Saída do IDEA

Subchaves do IDEA

25 bits de deslocamento circular a esquerda

Ciframento e Deciframento do IDEA

Formação das Subchaves

Cifrar			Decifrar	
Fase	Designação	Equivalente a	Designação	Equivalente a
1	$Z_1, Z_2, Z_3, Z_4, Z_5, Z_6$	Z[196]	U ₁ ,U ₂ ,U ₃ ,U ₄ ,U ₅ ,U ₆	$Z_{49}^{-1}, Z_{50}, Z_{51}, Z_{52}^{-1}, Z_{47}, Z_{48}$
2	$Z_7, Z_8, Z_9, Z_{10}, Z_{11}, Z_{12}$	Z[97128,2689]	$U_7, U_8, U_9, U_{10}, U_{11}, U_{12}$	$Z_{43}^{-1}, Z_{45}, Z_{44}, Z_{46}^{-1}, Z_{41}, Z_{42}$
3	Z_{13} , Z_{14} , Z_{15} , Z_{16} , Z_{17} , Z_{18}	Z[90128,125,5182]	$U_{13}, U_{14}, U_{15}, U_{16}, U_{17}, U_{18}$	$Z_{37}^{-1}, Z_{39}, Z_{38}, Z_{40}^{-1}, Z_{35}, Z_{36}$
4	$Z_{19}, Z_{20}, Z_{21}, Z_{22}, Z_{23}, Z_{24}$	Z[83128,150]	$U_{19}, U_{20}, U_{21}, U_{22}, U_{23}, U_{24}$	$Z_{31}^{-1}, Z_{33}, Z_{32}, Z_{34}^{-1}, Z_{29}, Z_{30}$
5	$Z_{25}, Z_{26}, Z_{27}, Z_{28}, Z_{29}, Z_{30}$	Z[76128,143]	$U_{25}, U_{26}, U_{27}, U_{28}, U_{29}, U_{30}$	$Z_{25}^{-1}, Z_{27}, Z_{26}, Z_{28}^{-1}, Z_{23}, Z_{24}$
6	$Z_{31}, Z_{32}, Z_{33}, Z_{34}, Z_{35}, Z_{36}$	Z[4475,101128,136]	$U_{31}, U_{32}, U_{33}, U_{34}, U_{35}, U_{36}$	$Z_{19}^{-1}, Z_{21}, Z_{20}, Z_{22}^{-1}, Z_{17}, Z_{18}$
7	$Z_{37}, Z_{38}, Z_{39}, Z_{40}, Z_{41}, Z_{42}$	Z[37100,126128,129]	$U_{37}, U_{38}, U_{39}, U_{40}, U_{41}, U_{42}$	$Z_{13}^{-1}, Z_{15}, Z_{14}, Z_{16}^{-1}, Z_{11}, Z_{12}$
8	$Z_{43}, Z_{44}, Z_{45}, Z_{46}, Z_{47}, Z_{48}$	Z[30125]	$U_{43}, U_{44}, U_{45}, U_{46}, U_{47}, U_{48}$	$Z_7^{-1}, Z_9, Z_8, Z_{10}^{-1}, Z_5, Z_6$
Transf.	$Z_{49}, Z_{50}, Z_{51}, Z_{52}$	Z[2386]	$U_{49}, U_{50}, U_{51}, U_{52}$	$Z_1^{-1}, Z_2, Z_3, Z_4^{-1}$

$$Z_{j} \odot Z_{j}^{-1} = 1$$

- $Z_{j} + Z_{j} = 0$

RC5

Desenvolvido por: Ron Rivest, 1994

Parâmetros, Definição e Valores Permitidos

w - Tamanho da palavra - 16, 32 ou 64

r - Número de fases - 0, 1, ..., 255

b - Número de bytes da chave - 0, 1, ..., 255

Versão Nominal

RC5-w/r/b = RC5-32/12/16

Características:

- Adequado a hardware e software
- Rápido
- Adaptável a diferentes CPUs
- Número variável de rodadas
- Tamanho variável da chave
- Simples
- Necessita de pouca memória
- Alta segurança
- Rotação dependente dos dados
- Tamanho do Bloco: 32, 64 ou 128

Expansão da Chave

Inicializa

$$P_{w} = Odd[(e-1)2^{w}]$$
 $e = 2,718281828459$ $Q_{w} = Odd[(\phi-12^{w})]$ $\phi = 1,618033988749 = (1+\sqrt{5})/2$

W	16	32	64
$\overline{\mathrm{P}_{\mathrm{w}}}$	B7E1	B7E15163	B7E151628AED2A6B
$Q_{\rm w}$	9E37	9E3779B9	9E3779B97F4A7C15

$$S[0] = P_w$$

Para $i = 1$ até t-1 faça
 $S[i] = S[i-1] + Q_w$

Mistura

```
i = j = X = Y = 0

Repita 3 x max(t,c) vezes

S[i] = (S[i] + X + Y) \iff 3

X = S[i]

i = (i+1) \mod t

L[j] = (L[j] + X + Y) \iff (X+Y)

Y = L[j]

j = (j+1) \mod c

Fim Repita
```

Cifrar

```
LE0 = A + S[0] \\ RE0 = B + S[1] \\ Para i = 1 até r Faça \\ LE_i = ((LE_{i-1} \oplus RE_{i-1}) <<< RE_{i-1}) + S[2i] \\ RE_i = ((RE_{i-1} \oplus LE_i) <<< LE_i) + S[2i+1] \\ Fim Para
```


Decifrar

```
\begin{aligned} & \text{Para i} = r \text{ at\'e 1 Passo 01 Faça} \\ & \text{RD}_{i\text{-}1} = ((\text{RD}_i - \text{S[2i+1]} >>> \text{LD}_i) \oplus \text{LD}_i \\ & \text{LD}_{i\text{-}1} = ((\text{LD}_i - \text{S[2i]} >>> \text{RD}_{i\text{-}1}) \oplus \text{RD}_{i\text{-}1} \\ & \text{Fim Para} \\ & \text{B} = \text{RD}_0 - \text{S[1]} \\ & \text{A} = \text{LD}_0 - \text{S[0]} \end{aligned}
```


Modos de Operação

- ECB
- CBC
- CBC Pad

00001000

• CTC - Texto Cifrado Roubado

Modo Texto Cifrado Roubado (RFC 2040)

CAST-128 (RFC 2144)

Desenvolvido por: Carlisle Adams e Stafford Tavares, 1997

Características:

Tamanho de chave Variável: 40 a 128 bits (8 em 8)

Tamanho do bloco: 64 bits

Estrutura clássica de Feistel

Função F depende da fase

Usa duas subchaves em cada fase

Cifrar

```
L_0 \parallel R_0 = P

Para i = 1 até 16 Faça

L_i = R_{i-1}

R_i = L_{i-1} \oplus F_i[R_{i-1}, Km_i, Kr_i]

Fim Para

C = R_{16} \parallel L_{16}
```

Decifrar

Chave em ordem inversa

Uma simples fase do CAST-128

```
Rodadas: 1, 4, 10, 13, 16

f1 = +

f2 = \oplus

f3 = -

f4 = +
```

Rodadas: 2, 5, 8, 11, 14 $f1 = \oplus$ f2 = f3 = + $f4 = \oplus$

Rodadas: 3, 6, 9, 12, 15 f1 = f2 = + $f3 = \oplus$ f4 = -

RC2

Desenvolvido por: Ron Rivest

Características:

Tamanho de chave Variável: 8 a 1024 bits (8 em 8)

Tamanho do bloco: 64 bits

Fácil de implementar em CPUs 16 bits

Usado em S/MIME com chaves de 40, 64 e 128 bits

Características dos Cifradores Simétricos Avançados

- Tamanho variável da chave
- Operações mistas
- Rotação dependente dos dados
- Rotação dependente da Chave
- Caixas S dependente da Chave
- Algoritmo de geração das subchaves
- Função F variável
- Comprimento do bloco variável
- Número variável de fases
- Operação nas duas metades dos dados em cada fase