第四周 常见随机变量

4.4 正态分布

正态分布随机变量记为 $X \sim N(\mu, \sigma^2)$ $(\mu \in R, \sigma > 0)$

$$X$$
的密度函数为 $f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $(x \in R)$.

 $\mu=0$, $\sigma^2=1$ 时的正态分布, 即 $X \sim N(0,1)$, 称为标准正态分布。

标准正态分布分布函数
$$\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$
 $x \in R$

标准正态分布分布函数 $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$, $\Phi(x)$ 的值可查表得到。

密度函数关于 $x = \mu$ 对称; 当 $x = \mu$ 时, 密度函数达到最大值; μ 是分布的均值; σ 表示分散程度, σ 越大则数据分布越散开, 越小则数据分布越集中。

1

标准正态分布的分布函数表 $\Phi(-x)=1-\Phi(x)$, $\Phi(0)=0.5$

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{u^2}{2}} du = P\{Z \leqslant z\}$$

z	0	1	2	3	4	5	6	7	8	9
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0. 5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0. 6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7703	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621

续表

z	0	1	2	3	4	5	6	7	8	9
1. 1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9278	0.9292	0. 9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0. 9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9648	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2. 1	0.9821	0. 9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0. 9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9874	0.9878	0.9881	0.9884	0. 9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0. 9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9990	0.9993	0.9995	0.9997	0.9998	0.9998	0.9999	0.9999	1.0000

例 4.4.1 在现代的智力测验中,一种典型的规则是设定主体人口的平均智商为 100,而他们的智商服从正态分布 $N\left(100,15^2\right)$ 。求智商超出 140 和 168 的概率分别是多少?

解: 设随机变量
$$X \sim N(100,15^2)$$
,则 $\frac{X-100}{15} \sim N(0,1)$ 。 所以

$$P(X > 140) = P\left(\frac{X - 100}{15} > \frac{140 - 100}{15}\right) = P\left(\frac{X - 100}{15} > 2.67\right)$$

$$= 1 - P\left(\frac{X - 100}{15} \le 2.67\right) = 1 - \Phi(2.67) \approx 1 - 0.9962 = 0.0038$$

$$P(X > 168) = P\left(\frac{X - 100}{15} > \frac{168 - 100}{15}\right) = P\left(\frac{X - 100}{15} > 4.53\right)$$

$$= 1 - P\left(\frac{X - 100}{15} \le 4.53\right) = 1 - \Phi(4.53) \approx 2.95 \times 10^{-6}$$

例 4.4.2 在现代典型的智力测验中,设定的主体人口智商服从正态分布 $X \sim N(\mu, \sigma^2)$,并将主体人口的平均智商设定为 100,即 $\mu=100$,同时还要求一半人口的智商,介于 90—110 之间,其中智商在 90—100 和 100—110 的人各占 25%。求满足要求的 σ^2 取值。

解: 随机变量
$$X \sim N(100, \sigma^2)$$
, 则 $\frac{X-100}{\sigma} \sim N(0,1)$ 。

接要求,
$$P(100 < X < 110) = 0.25$$
 $\Rightarrow P(100 < X < 110) = P\left(0 < \frac{X - 100}{\sigma} < \frac{10}{\sigma}\right) = 0.25$

$$\text{Fig.} \quad P\bigg(0 < \frac{X - 100}{\sigma} < \frac{10}{\sigma}\bigg) = \Phi\bigg(\frac{10}{\sigma}\bigg) - \Phi\bigg(0.5\bigg) = \Phi\bigg(\frac{10}{\sigma}\bigg) - \frac{1}{2} = 0.25 \quad \Rightarrow \quad \Phi\bigg(\frac{10}{\sigma}\bigg) = 0.75$$

查表得
$$\Phi(0.675) \approx 0.75$$
,从而 $\frac{10}{\sigma} \approx 0.675$ \Rightarrow $\sigma \approx 14.8$ 。

实际上设定智商分布服从参数为 100, 15 的平方的正态分布就是希望一半人集中在 90-110 之间。