ENGG1003 - Friday Week 2

More Flow Control and Examples

Brenton Schulz

University of Newcastle

March 7, 2019

DO ... WHILE

- ► Same as WHILE except executes at least once
- The condition is tested at the end
- Loops repeats if condition is TRUE
- Syntax:

```
DO stuff WHILE condition
```

FOR Loops

- A FOR loop executes a given number of times
- Used when the number of loop repeats is known before entering the loop
 - Repeat count could be "hard coded" as a number
 - Could also be a variable
- Can be easier to read than WHILE
- Example pseudocode syntax:

```
FOR x = 1 to 10
  Do something ten times
ENDFOR
```

► The *loop variable* is automatically incremented

BREAK Statements

- Sometimes you want to exit a loop before the condition is re-tested
- The flow-control mechanism for this is a BREAK statement
- If executed, the loop quits
- BREAKs typically go inside an IF to control their execution

Loop continue Statements

- A continue causes execution to jump back to the loop start
- ▶ The *condition* is tested before reentry

FOR Example 1

► Two equivalent ways to implement the cos() series from before are:

NB: |tmp| means "absolute value of tmp".

```
BEGIN

INPUT x

sum = 0

FOR k = 0 to 10

tmp = \frac{(-1)^k x^{2k}}{(2k)!}
sum = sum + tmp

IF |tmp| < 1e-6

BREAK

ENDIF

ENDWHILE
```

```
BEGIN

INPUT x

tmp = 1

k = 0

sum = 0

WHILE (k<10) AND(|tmp|>1e-6)

tmp = \frac{(-1)^k x^{2k}}{(2k)!}

sum = sum + tmp

k = k + 1

ENDWHILE

END
```

FOR Example 2 - Factorials

- Use FOR to count from 2 to our input number
- Keep a running product as we go

```
BEGIN
  TNPUT x
  result = 1
  FOR k = 2 TO x
    result = result * k
  ENDFOR
END
```

Is this algorithm robust? What happens if:

```
x = -1
```

$$\rightarrow$$
 x = 1

 \triangleright x = 0 (**NB**: 0! = 1 because maths)

GOTO

- There exists a GOTO flow control mechanism
 - Sometimes also called a branch
- It "jumps" from one line to a different line
- It exists for a purpose
- That purpose does not (typically) exist when writing C code
 - C supports a goto statement
 - It results in "spaghetti code" which is hard to read
 - Don't use it in ENGG1003
- You can use GOTO in ELEC1710

Increment Example

```
#include <stdio.h>
int main() {
  int x = 0;
  int y = 0;
  int z = 0;
  y = ++x + 10;
  printf("Pre-increment: %d\n", y);
  y = z++ + 10;
  printf("Post-increment: %d\n", y);
  return 0;
}
```

Listing 1: increment.c

Pre/post-inc/decrements have many applications, more details in coming weeks.

Binary Nomenclature

- ► The value range is a result of the underlying binary storage mechanism
- A single binary digit is called a bit
- ► There are 8 bits in a *byte*
- In programming we use the "power of two" definitions of kB, MB, etc:
 - ▶ 1 kilobyte is $2^{10} = 1024$ bytes
 - ▶ 1 Megabyte is $2^{20} = 1048576$ bytes
 - ▶ 1 Gigabyte is $2^{30} = 1073741824$ bytes
 - ► (Advanced) These numbers look better in hex: 0x3FF, 0xFFFFF, etc.

Binary Nomenclature

- Observe that kilobyte, Megabyte, Gigabyte, etc use scientific prefixes
- ▶ These *normally* mean a power of 10:
 - ightharpoonup kilo- = 10^3
 - Mega- $= 10^6$
 - Giga- = 10^9
 - ...etc (see the inside cover of a physics text)
- Computer science stole these terms and re-defined them

Binary Nomenclature

- ► This has made some people *illogically angry*
- Instead, we can use a more modern standard:
 - $ightharpoonup 2^{10}$ bytes = 1 kibiByte (KiB)
 - $ightharpoonup 2^{20}$ bytes = 1 Mebibyte (MiB)
 - $ightharpoonup 2^{30}$ bytes = 1 Gibibyte (GiB)
 - ...etc
- Generally speaking, KB (etc) implies:
 - powers of two to engineers
 - powers of ten to marketing
 - The number is smaller
 - ► Hard drive manufacturers, ISPs, etc like this

Unambiguous Integer Data Types

- Because the standard int and long data types don't have fixed size unambiguous types exist
- Under OnlineGDB (ie: Linux with gcc) these are defined in stdint.h (#include it)
- You will see them used commonly in embedded systems programming (eg: Arduino code)
- ▶ The types are:
 - ▶ int8_t
 - ▶ uint8_t
 - ▶ int.16 t
 - ...etc

Code Blocks in C

Variable Scope

#define Constants

for(;;) Loops