1 point

1.

You are working on a spam classification system using regularized logistic regression. "Spam" is a positive class (y = 1) and "not spam" is the negative class (y = 0). You have trained your classifier and there are m = 1000 examples in the cross-validation set. The chart of predicted class vs. actual class is:

	Actual Class: 1	Actual Class: 0
Predicted Class: 1	85	890
Predicted Class: 0	15	10

For reference:

- Accuracy = (true positives + true negatives) / (total examples)
- Precision = (true positives) / (true positives + false positives)
- Recall = (true positives) / (true positives + false negatives)
- F_1 score = (2 * precision * recall) / (precision + recall)

What is the classifier's F_1 score (as a value from 0 to 1)?

Enter your answer in the box below. If necessary, provide at least two values after the decimal point.

0.09

1 point

2.

Suppose a massive dataset is available for training a learning algorithm. Training on a lot of data is likely to give good performance when two of the following conditions hold true.

Which are the two?

We train a learning algorithm with a

	small number of parameters (that is thus unlikely to
	overfit).
	We train a learning algorithm with a
	large number of parameters (that is able to
	learn/represent fairly complex functions).
	We train a model that does not use regularization.
	The features $oldsymbol{x}$ contain sufficient
	information to predict \boldsymbol{y} accurately. (For example, one
	way to verify this is if a human expert on the domain
	can confidently predict y when given only x).
1 point	
3. Suppos $h_{ heta}(x)$.	se you have trained a logistic regression classifier which is outputing
	tly, you predict 1 if $h_{ heta}(x) \geq ext{threshold}$, and predict 0 if t threshold, where currently the threshold is set to 0.5.
	se you decrease the threshold to 0.1. Which of the following are true? all that apply.
	The classifier is likely to now have higher precision.
	The classifier is likely to now have higher recall.
	The classifier is likely to have unchanged precision and recall, but
	lower accuracy.
	The classifier is likely to have unchanged precision and recall, but
	higher accuracy.
1 point	
4	

4.

Suppos	se you are working on a spam classifier, where spam
emails	are positive examples ($y=1$) and non-spam emails are
negativ	ve examples ($y=0$). You have a training set of emails
in whic	h 99% of the emails are non-spam and the other 1% is
spam.\	Which of the following statements are true? Check all
that ap	ply.
	If you always predict non-spam (output
	y=0), your classifier will have 99% accuracy on the
	training set, and it will likely perform similarly on
	the cross validation set.
	If you always predict non-spam (output
	y=0), your classifier will have an accuracy of
	99%.
	If you always predict non-spam (output
	y=0), your classifier will have 99% accuracy on the
	training set, but it will do much worse on the cross
	validation set because it has overfit the training
	data.
	A good classifier should have both a
	high precision and high recall on the cross validation
	set.
1	
point	
5. Which	of the following statements are true? Check all that apply.
	It is a good idea to spend a lot of time
	collecting a large amount of data before building

your first version of a learning algorithm.
On skewed datasets (e.g., when there are
more positive examples than negative examples), accuracy
is not a good measure of performance and you should
instead use F_1 score based on the
precision and recall.
Using a very large training set
makes it unlikely for model to overfit the training
data.
If your model is underfitting the
training set, then obtaining more data is likely to
help.
After training a logistic regression
classifier, you must use 0.5 as your threshold
for predicting whether an example is positive or
negative.
I understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code
Aloy Aditya Sen
Submit Quiz

