

PROYECTO FINAL DE DATA SCIENCE: INCUMPLIMIENTO CREDITICIO

Profesor: David Francisco Bustos Usta

Tutor: Gianluca Peretti

Grupo: Ariana Diaz y Federico Martucci

Fecha: 26/06/2022

TABLA DE CONTENIDOS

OBJETIVO

CONTENIDO DEL DATASET

DATA WRANGLING

EXPLORATORY DATA ANALYSIS

MODELOS DE CLASIFICACION

CONCLUSIONES

OBJETIVO

Determinar si un cliente con determinadas características pagará o no el préstamo.

Dataset desbalanceado

CONTENIDO DATASET

Filas: I 48.670

Columnas: 34

VARIABLES CATEGÓRICAS

- Límite del préstamo (con o sin)
- & Género del cliente
- × Pre aprobado (si o no)
- Tipo de préstamo
- \$ Lump sum payment(si o no)
- Rango etario del cliente
- Tipo de crédito del co aplicante
- Megocio/ comercial o particular
- **Martización** negativa

CONTENIDO DATASET

Filas: I 48.670

Columnas: 34

CONTENIDO DATASET

Filas: I 48.670

Columnas: 34

Valores faltantes

Se completan con la media

Variables categóricas a numéricas

Label Encoder

Outliers

Eliminar Q_1 y Q_4

Normalización de datos

Yeo-johnson

Selección de variables

SelectKBest

DATA WRANGLING

VARIABLES DESTACADAS

DATASET LIMPIO

Filas: 143.162 Columnas: 5

Otros cargos

- Otros cargos del préstamo, fuera de los intereses.
- En el EDA se explicará porque no se puede tener en cuenta.

Ingresos

• Ingresos del cliente que toma el crédito.

Pago global

- Pago único, más grande de lo normal, que se hace al final del plazo del préstamo.
- Puede ser si o no.

Tipo de crédito del co aplicante

- Un cofirmante, por lo general un miembro de la familia, ayuda para que le aprueben un préstamo a un prestatario, al aceptar pagarlo si este no lo hace.
- Puede ser CIB o EXP

Tipo de crédito

Puede ser EXP, CIB, CRIF y EQUI.

- Mucha gente con pocos ingresos, poca gente con muchos ingresos.
- La gente de menores ingresos pide más préstamos. El monto de estos no es alto.

- La mayoría de los créditos con pago global no se pagarán, aunque son pocos casos.
- Tanto en los créditos con y sin pago global, el default del mismo está asociado a salarios mas bajos.

• La gran mayoría de los créditos tipo EQUI no se pagarán, y además, están asociados a ingresos mas bajos.

- En cuanto a la relación del tipo de crédito con el tipo de crédito del coaplicante, en todos los casos, excepto EQUI, los clientes con mayores ingresos tienen un coaplicante tipo EXP.
- Los créditos de coaplicantes tipo EXP tienen mas probabilidades de no pagar.

OTROS CARGOS DEL CRÉDITO

- Otros cargos no puede ser considerado, dado que cuando target es positiva, los datos de esta variable son null.
- Únicamente cuando se completan los *nulls* del dataset con la media comienza a aparecer la variable target como positiva. Para no generar ruido se decide no considerarla.

MODELOS DE CLASIFICACIÓN

La variable más importante es la **Sensibilidad (recall)**.

Nos indica la capacidad de dar con casos positivos, es decir, clientes que no pagarán el préstamo tomado.

La segunda variable a tener en cuenta es la **Precisión**.

Resume el rendimiento de un modelo de clasificación cuando se tienen dos clases con tamaño desigual.

PARA EVALUAR AMBOS DE MANERA CONJUNTA SE USA FI SCORE.

MODELOS DE CLASIFICACIÓN

VALIDACION DE MODELOS CON STRATIFIED K FOLD

HYPERTUNING DE PARAMETROS

Random Forest	
FI _{prom} =0,623	Sensibilidad _{prom} =0,531
KNN	
FI _{prom=} 0,626	Sensibilidad _{prom} =0,469

MODELO ELEGIDO: RANDOM FOREST CLASSIFIER

Parámetros:

n_estimators: 1600

min_samples_split: 10

min_samples_leaf: I

max_features: 'sqrt'

max_depth: 10

bootstrap: False

CONCLUSIONES FINALES

RANDOM FOREST CLASSIFIER

FI = 0,62

SENSIBLIDAD=0,46

ACCURACY=0,86

PRECISION=0,95

CONCLUSIONES FINALES

25% DE LOS
CLIENTES
NO
ABONARÁ
EL CRÉDITO

CLIENTES
CON
MENORES
INGRESOS
SON MAS
PROPENSOS A
NO ABONAR
EL CRÉDITO

MODELO QUE MEJOR SE ADAPTA: ADAPTA: RANDOM FOREST CLASSIFIER, CON 86% DE ACCURACY

FUTURAS LINEAS

¿CÓMO COMPLEMENTAR EL PROYECTO?

ANÁLISIS DE LA VARIABLE 'OTROS CARGOS' EN RELACION CON TARGET

ANÁLISIS SOBRE POSIBLES DIFERENCIAS DE GÉNERO A LA HORA DE TOMAR CRÉDITOS

PROBAR MODELO SCV

EMPLEAR OTROS MÉTODOS PARA REDUCIR AUN MÁS LOS OUTLIERS

GRACIAS

Profesor: David Francisco Bustos Usta

Tutor: Gianluca Peretti

Grupo: Ariana Diaz y Federico Martucci

Fecha: 26/06/2022