INFERENCIA FILOGENÉTICA

- I. ARGUMENTACIÓN HENNIGIANA
- I. MÁXIMA PARSIMONIA
- 2. DISTANCIA
- 3. MÁXIMA VEROSIMILITUD
- 4. INFERENCIA BAYESIANA

INFERENCIA FILOGENÉTICA

- I. ARGUMENTACIÓN HENNIGIANA
- I. MÁXIMA PARSIMONIA
- 2. DISTANCIA
- 3. MÁXIMA VEROSIMILITUD
- 4. INFERENCIA BAYESIANA

Algunos problemas con la argumentación Hennigiana

	1	2	3	4	5	6	7	8	9	10	11	12
Outgroup	0	0	0	0	0	0	0	0	0	0	0	0
Cat	0	1	0	1	0	0	1	1	1	0	0	0
Hyena	0	1	0	1	0	0	1	0	1	0	0	0
Civet	0	1	0	0	0	0	0	0	1	0	0	0
Dog	1	0	0	0	1	0	0	0	0	0	0	0
Raccoon	1	0	0	0	1	0	0	0	0	0	0	0
Bear	1	0	0	0	1	1	0	0	0	1	0	0
Otter	1	0	0	0	1	0	0	0	0	1	0	0
Seal	1	0	1	0	1	1	0	0	0	1	1	1
Walrus	1	0	1	0	1	1	0	0	0	1	1	1
Sea lion	1	0	1	0	1	1	0	0	0	1	0	0

- Polarización a priori de caracteres (grupo ajeno = ancestral)
- El método asume que **no hay homoplasia** (poco realista)
 - Caracteres inconsistentes con otros violan el modelo Hennigiano
- Imposible evitar errores o malas interpretaciones al codificar caracteres

CRITERIO DE OPTIMALIDAD

 Medida que permite decidir, con base en un conjunto de datos, cuales árboles (hipótesis) son mejores y cuales son peores

Cuchilla de Occam: la mejor hipótesis para explicar un proceso es aquella que requiere el menor número de suposiciones

En inferencia filogenética: el mejor árbol es aquel que explica los datos observados con la menor cantidad de homoplasia posible (menos transformaciones)

I. MÁXIMA PARSIMONIA IMPLEMENTACIÓN

- Contar el mínimo número de cambios (pasos) de cada caracter en un árbol determinado
- 2. Sumar todos los números de pasos para determinar la LONGITUD DEL ÁRBOL
- 3. Repetir en los otros árboles alternativos y escoger aquel con la menor longitud com el ÁRBOL MÁS PARSIMONIOSO

I. MÁXIMA PARSIMONIA EJEMPLO

	1	2	3	4	5	6	7	8
o	0	0	0	0	0	0	0	0
A	0	1	0	0	0	1	1	0
В	1	1	0	1	1	1	1	1
С	0	0	1	1	0	0	0	0

	1	2	3	4	5	6	7	8
o	0	0	0	0	0	0	0	0
A	0	1	0	0	0	1	1	0
В	1	1	0	1	1	1	1	1
С	0	0	1	1	0	0	0	0

2 pasos

2 pasos

2 pasos

	1	2	3	4	5	6	7	8
o	0	0	0	0	0	0	0	0
A	0	1	0	0	0	1	1	0
В	1	1	0	1	1	1	1	1
С	0	0	1	1	0	0	0	0

	1	2	3	4	5	6	7	8
o	0	0	0	0	0	0	0	0
A	0	1	0	0	0	1	1	0
В	1	1	0	1	1	1	1	1
С	0	0	1	1	0	0	0	0

	1	2	3	4	5	6	7	8	
0	0	0	1	0	1	1	0	0	
A	0	1	1	0	1	0	1	0	
В	1	1	1	1	0	0	1	1	
С	0	0	0	1	1	1	0	0	Total length
Length on tree 1	1	2	1	1	1	2	2	1	11
Length on tree 2	1	2	1	2	1	2	2	1	12
Length on tree 3	1	1	1	2	1	1	1	1	9

Árbol más parsimonioso

Caracteres informativos y no informativos para parsimonia

El problema de encontrar árboles óptimos...

Taxa	Árboles resueltos
1	
2	1
3	1
4	3
5	15
6	105
7	945
8	10395
9	135135
10	2027025
11	34459425
12	654729075
13	13749310575
14	316234143225
15	7905853580625
16	213458046676875
17	6190283353629370
18	191898783962510000
19	6332659870762850000
20	221643095476699000000
62	6,66409461 x 10 E 98
63	> 10 E 100

Métodos exactos:

I. Búsqueda exhaustiva

Métodos exactos: 2. Branch & Bound

Métodos heurísticos:

- I. Buscar árbol inicial:
- Adición paso a paso (Stepwise addition)
- Aleatorio

Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Nearest Neighbor Interchange (NNI)

0. Starting tree

Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Subtree Pruning & Regrafting (SPR)

1. Generate two subtrees by breaking an internal node

2. Try to insert the red subtree at each node of the blue subtree

Starting tree

Métodos heurísticos:

- 2. Perturbar árbol inicial:
- Tree Bisection & Reconnection (TBR)

2. Try to insert all possible rooted red subtrees at each node of the blue subtree

Métodos heurísticos:

3. Visitar óptimos locales para tener óptimo global:

- Réplicas
- Stepwise-randomaddition

Métodos heurísticos:

Para más de 100 terminales:

- Nueva Tecnología: Parsimonia RATCHET y Tree-Drifting
 - Sacrifican búsquedas intensivas en islas para poder visitar más islas en el espacio de árboles (escapar de óptimos locales).
 - 2 pasos:
 - Búsquedas en subset de datos con nuevos pesos (para explorar islas)
 - Volver a pesos originales y escoger mejores árboles

Variaciones de optimización de caracteres en árboles

Caracteres no ordenados o no aditivos (pesos iguales) =
Parsimonia de Fitch

Variaciones de optimización de caracteres en árboles

 Caracteres ordenados o aditivos (pesos diferentes de caracter) = Parsimonia de Wagner

Variaciones de optimización de caracteres en árboles

Otras variaciones:

Parsimonia de Dollo

 Estado derivado solo ocurre una vez, pero reversiones al estado ancestral pueden ocurrir múltiples veces

Parsimonia de Camil-Sokal

Los estados de carácter son irreversibles

Pesos implicados

 Pesaje a posteriori después de un análisis de pesos iguales (homólogos pesan más)

ACCTRAN y DELTRAN

- ACCTRAN: Transformación acelerada (favorece reversiones)
- DELTRAN: Transformación retrasada (favorece los paralelismos)

¿Qué pasa si hay más de un árbol más parsimonioso?

Problemas

- Longitud de ramas no se toma en cuenta (se ignora la tasa de evolución de los caracteres en cada rama)
- Atracción de ramas largas (¡¡entre más caracteres, peor!!)

- Pesaje de caracteres es necesario (aún si son pesos iguales)
 - No hay métodos formales para decidir pesos

PRÓXIMA CLASE

- Quiz sobre Máxima Parsimonia
- Leer sobre métodos de distancia en caracteres morfológicos (fenética)

PRIMERA EVALUACIÓN

- Presentación 15 minutos
 - Grupo de estudio
 - Pregunta de investigación
 - Estrategia de selección de taxones
 - Como codificó caracteres y estados de carácter
- Entregar matriz en formato .nex y .tnt con los caracteres y estados de carácter descritos en la matriz
- Calificación:
 - Claridad de la presentación
 - Capacidad de responder preguntas
 - Calidad de la matriz de datos