

분린이 경영정보학과 5516206 최현성 경영정보학과 5517661 이민상

목차

01 개념 이해

02 빅데이터 과제 분석

03 결론

01 개념 이해

01 개념 이해

02 빅데이터 과제 분석

03. 결론

배경설명

리볼빙 증가는 부실로 연결될 수 있는 징후

01 개념 이하

01 개념 이해

02 빅데이터 과제 분석

03. 결론

가설 설정

- Credit Card Fraud Detection 데이터를 통해 분석
- 리볼빙 자산 증가가 카드사의 건전성 악화를 초래하는 지 여부에 주목

02 데이터 확인

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

데이터 확인

Application Data

2V_ID_CORK	TAKGET	NAME_CUNTRACT_TYPE	CONF-GENDER	FLAG_UWN_CAK	FLAG_UWN_KEALIY	CNI_CHILUKEN	AMI_INCUME_IUTAL	AMI_CKEUTT	AMI_ANNUIIY	•••
100002	1	Cash loans	M	N	γ	0	202500.0	406597.5	24700.5	
100003	0	Cash loans	F	N	N	0	270000.0	1293502.5	35698.5	""
100004	0	Revolving loans	M	Y	γ	0	67500.0	135000.0	6750.0	
100006	0	Cash loans	F	N	γ	0	135000.0	312682.5	29686.5	
100007	0	Cash loans	M	N	γ	0	121500.0	513000.0	21865.5	
		m	""	III	m.	ш	111		"	
456251	0	Cash loans	M	N	N	0	157500.0	254700.0	27558.0	
456252	0	Cash loans	F	N	γ	0	72000.0	269550.0	12001.5	
456253	0	Cash loans	F	N	γ	0	153000.0	677664.0	29979.0	"
456254	1	Cash loans	F	N	γ	0	171000.0	370107.0	20205.0	"
456255	0	Cash loans	F	N	N	0	157500.0	675000.0	49117.5	

307511개의 행, 122개의 열

Previous Application

AMT_GOODS	AMT_DOWN_PAYMENT	AMT_CREDIT	AMT_APPLICATION	AMT_ANNUITY	NAME_CONTRACT_TYPE	SK_ID_CURR	SK_ID_PREV
	0.0	17145.0	17145.0	1730.430	Consumer loans	271877	2030495
6	NaN	679671.0	607500.0	25188.615	Cash loans	108129	2802425
1	NaN	136444.5	112500.0	15060.735	Cash loans	122040	2523466
4	NaN	470790.0	450000.0	47041.335	Cash loans	176158	2819243
3.	NaN	404055.0	337500.0	31924.395	Cash loans	202054	1784265

2	0.0	311400.0	267295.5	14704.290	Consumer loans	352015	2300464
	29250.0	64291.5	87750.0	6622.020	Consumer loans	334635	2357031
1	10525.5	102523.5	105237.0	11520.855	Consumer loans	249544	2659632
1	NaN	191880.0	180000.0	18821.520	Cash loans	400317	2785582
3	NaN	360000.0	360000.0	16431.300	Cash loans	261212	2418762

1670214개의 행, 37개의 열

EDA

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

Target 값의 불균형 문제 해결 필요

EDA

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

고객의 거주지에 대한 표준화된 정보 삭제 필요

EDA

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

AMT_REQ_CREDIT_BUREAU 변수의 경우 결측치가 존재하나 데이터 개수 모두 265992개로 동일, 문의 횟수를 기준으로 통합

EDA

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

new_ANNUITY_INCOME	new_CREDIT_INCOME	new_GOODS_INCOME
0.121978	2.007889	1.733333
0.132217	4.790750	4.183333
0.100000	2.000000	2.000000
0.219900	2.316167	2.200000
0.179963	4.22222	4.22222
0.174971	1.617143	1.428571
0.166687	3.743750	3.125000
0.195941	4.429176	3.823529
0.118158	2.164368	1.868421
0.311857	4.285714	4.285714

AMT_ANNUTY, AMT_CREDIT, AMT_GOODS_PRICE, AMT_INCOME_TOTAL 위 4개의 변수를 통해고객의 수입 대비 대출의 금전적 부담감에 대한 변수들을 생성

EDA

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

활동지역에 대한 정보에 차이점이 존재할 경우 TARGET이 1이 되는 비율이 높은 것을 확인

EDA

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

NAME_HOUSING_TYPE 변수를 통해 고객의 거주지에 대한 정보를 추출 고객이 안정적인 거주지를 확보하였는지 확인

EDA

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

교육수준이 낮을수록 연체율이 높은 것으로 판단 고등교육을 기준으로 고등교육을 받은 고객과 받지 못한 고객을 나눔

EDA

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

DAYS_EMPLOYED의 경우 이상치 다수 분포
DAYS_EMPLOYED의 구조를 보았을 때 365243이라는 수치는
단순한 이상치가 아닌 결측치 대신에 채워둔 값이라 판단

EDA

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

NAME_FAMILY_STATUS 변수를 통해 다양한 가족의 형태가 존재을 확인 CNT_CHILDREN와 CNT_FAM_MEMBERS을 활용하여 해당 가구의 경제활동인구를 추출

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

Data	Data columns (total 20 columns):						
#	Column	Non-Null Count	Dtype				
0	SK_ID_CURR	307509 non-null	int64				
1	TARGET	307509 non-null	int64				
2	NAME_CONTRACT_TYPE	307509 non-null	object				
3	CODE_GENDER	307509 non-null	object				
4	DAYS_BIRTH	307509 non-null	int64				
5	DAYS_REGISTRATION	307509 non-null	float64				
6	REGION_RATING_CLIENT_W_CITY	307509 non-null	int64				
7	HOUR_APPR_PROCESS_START	307509 non-null	int64				
8	EXT_SOURCE_1	134132 non-null	float64				
9	EXT_SOURCE_2	306849 non-null	float64				
10	EXT_SOURCE_3	246545 non-null	float64				
11	new_ANNUITY_INCOME	307497 non-null	float64				
12	new_CREDIT_INCOME	307509 non-null	float64				
13	new_GOODS_INCOME	307233 non-null	float64				
14	new_REGION	307509 non-null	int64				
15	new_REQ_CREDIT	307509 non-null	int64				
16	new_HOME_TYPE	307509 non-null	int64				
17	new_EDU_LEVEL	307509 non-null	int64				
18	new_EMPLOYED_DAYS	252135 non-null	float64				
19	new_ECONOMIC_POPULATION	307509 non-null	float64				
dtyp	es: float64(9), int64(9), obj	ect(2)					

122개의 변수로 9개의 신규변수 생성

111개의 변수 삭제

20개의 변수들로 이루어진 application data 생성

memory usage: 46.9+ MB

O2 Previous Data

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

EDA

previous_SI	K_ID_CURR	previous_AMT_ANNUITY	previous_AMT_CREDIT	previous_AMT_GOODS_PRICE	previous_ID_COUNT
	100001.0	3951.000000	23787.00	24835.500	1
	100002.0	9251.775000	179055.00	179055.000	1
	100003.0	56553.990000	484191.00	435436.500	3
	100004.0	5357.250000	20106.00	24282.000	1
	100005.0	4813.200000	20076.75	44617.500	2
	456251.0	6605.910000	40455.00	40455.000	1
	456252.0	10074.465000	56821.50	57595.500	1
	456253.0	4770.405000	20625.75	24162.750	2
	456254.0	10681.132500	134439.75	121317.750	2
	456255.0	20775.391875	424431.00	362770.875	8

한 명의 고객에 대한 기록이 여러 행 존재

group by 함수를 이용하여 별도의 계산을 통해 한 고객에 대한 통계치를 하나씩 추출

Q2 Previous Data

EDA

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

AMT_ANNUITY 외 2개의 대출금액에 대한 정보가 담긴 변수들의 평균값을 추출

- Previous Data에는 고객의 수입에 대한 정보가 존재하지 않음

단순 평균값으로 집계

한 고객에 대한 데이터의 개수를 count

- 과거에 고객이 몇 번 대출신청을 하였는지, 대출신청횟수 산출

대출신청횟수 종속변수 예측에 영향을 줄 것이라 판단

Q2 Previous Data

EDA

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

대출신청금액과 대출허가금액이 따로 존재

- 신청시 기입한 금액과 실제로 수령받게 될 금액이 다름

대출신청금액 대비 대출허가금액의 값을 추출하여 변수를 생성

NAME_CONTRACT_STATUS 변수에 승인, 거절, 취소 값 존재

- 대출거절을 받은경우에 고객에게 어떠한 문제점이 있을 것이라 판단

고객이 대출신청을 하였을때 어느정도 비율로 거절되는지를 확인

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

DAYS_DECISION 기간에 따른 영향

- 금전적 도움의 필요성을 대출간격에 따라 판단

── 새로운 대출을 받기까지 걸린 시간의 평균을 구해 새로운 변수 생성

<class 'pandas.core.frame.DataFrame'> RangeIndex: 338857 entries, 0 to 338856

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	previous_SK_ID_CURR	338857 non-null	float64
1	previous_AMT_ANNUITY	338377 non-null	float64
2	previous_AMT_CREDIT	338857 non-null	float64
3	previous_AMT_GOODS_PRICE	337793 non-null	float64
4	previous_ID_COUNT	338857 non-null	int64
5	previous_APPLICATION_TO_CREDIT	338857 non-null	float64
6	previous_REFUSED_COUNT	338857 non-null	int64
7	previous_DAY_DECISION	338857 non-null	float64
	41		

dtypes: float64(6), int64(2)

memory usage: 20.7 MB

8개의 변수로 이루어진 Previous Data 생성

02 결측치 및 샘플링

결측치 처리 및 샘플링

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

Imputation Using Deep Learning

- DataWig은 아마존이 개발한 OSS의 결손값 보완 라이브러리

Deep Learning 기반 결측치 처리 알고리즘 Datawig 사용

SMOTE+Tomek

- 생성된 데이터를 무조건 소수 클래스라고 하지 않고 분류 모형에 따라 분류
- 두 샘플 사이에 기타 관측치가 없을 경우 이를 Tomek links로 이후 그 중에서 다수 클래스에 속하는 데이터를 제외하는 방법

02 _{모델링}

모델링

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

LightGBM RandomForest Catboost 사용

- LightGBM의 경우 결측치 포함 상태에서 모델 사용가능

▶ 결측치 포함된 데이터, 결측치 채워진 데이터, 불균형 해소 데이터 3가지의 분석 방향 설정

Precision

- 연체자를 잘 찾아내어 회피하는 것이 중요

Precision를 통해 판단

02 _{모델링}

모델링

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

	결측치 포함 LGBM	결측치 처리 LGBM	불균형 해소 LGBM	결측치 처리 Random Forest	불균형 해소 Random Forest	결측치 처리 Catboost	불균형 해소 Catboost
accuracy	91.89	92.60	92.72	92.15	93.29	91.89	89.60
precision	88.98	91.59	93.04	91.27	93.40	90.25	90.00
recall	91.89	92.60	92.72	92.15	93.29	91.89	89.60
F1-score	88.24	90.07	92.71	88.81	93.29	88.06	89.57

02 최적화

모델별 Hyperparameter 최적화

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

	n_estimators	[100]	
Dondom Forest	max_depth	[6, 8, 10]	
Random Forest	min_samples_leaf	[8, 12, 18]	
	min_samples_split	[8, 16, 20]	
	n_estimators	[50, 100, 150]	
	max_depth	[-1, 8, 10, 12]	
Light GBM	min_samples_leaf	[8, 12, 16, 20]	
	num_leaves	[31, 62, 93, 124]	

모델별 Hyperparameter 최적화

01. 개념 이해

02 빅데이터 과제 분석

03. 결론

RandomForest

- Hyperparameter 튜닝 후 성능 떨어짐

Default 값으로 설정했을 때 가장 좋은 성능

Lightgbm

- max_depth : -1 min_samples_leaf : 8 n_estimators : 150 num_leaves : 124

Accuracy:92.72% Precision:93.04%

F1-score:92.71% Recall:92.72%

Accuracy:94.29% Precision:94.50%

Recall:94.29% F1-score:94.29%

03 변수중요도

01. 개념 이해

02 빅데이터 과제 분석

03 결론

변수중요도

01. 개념 이해

02 빅데이터 과제 분석

03 결론

모델해석

카드사의 건전성 악화 초래 여부를 결정하는 요인 변수중요도로 파악

상위 5개의 변수

EXT_SOURCE_1

DAYS BIRTH

previous_ID_COUNT

previous_REFUSED_COUNT

EXT_SOURCE_3

하위 3개의 변수

NAME_CONTRACT_TYPE

new_HOME_TYPE

new_REGION

→ 관련 변수의 수치를 통해 취약점 파악 후 새로운 해결책 구축 필요

03 상위 5개

01. 개념 이해

02 빅데이터 과제 분석

03 결론

변수중요도

DAYS_BIRTH

previous_ID_COUNT

previous_REFUSED_COUNT

EXT_SOURCE_3

03 모델 해석

모델 해석

01. 개념 이해

02 빅데이터 과제 분석

03 결론

Feature Importance를 통한 결과 해석

연체자 예측실패가 높은 구간: 20대 후반 - 30대 후반

- 이러한 고객의 금전적배경은 안정적이지않으며 외부의 개입,

단순한 변심등의 불확실한 변수들이 너무 많은 것으로 보임

EMPLOYED_DAYS

- 고용일을 판단할 수 있는 EMPLOYED_DAYS 통해서 고용일이 얼마되지 않은 사람은 예측율이 낮은 것을 확인할 수 있음

모델 해석

01. 개념 이해

02 빅데이터 과제 분석

03 결론

Feature Importance를 통한 결과 해석

특정 대상에 대한 집중적인 조사 필요

- 안정적인 정착 여부를 역학조사를 통해 파악

> 카드사의 건전성 악화 초래 여부를 결정하는 요인 파악 및 해결 가능

- 연체자 회피를 보다 더 높일 수 있음
- 광범위한 조사를 줄여 비용 절감 실현 가능

연체자 회피, 조사비용 절감으로 인한 금융기업의 손실의 최소화

召人自出日