1 Grundlagen

S 1.1 Es gibt keine Gleichung der Form

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = 0$$

mit $a_i \in \mathbb{Q}$, so dass $x = \pi$ eine Lösung ist

 ${f S}$ 1.2 R ist ein kommutativer, angeordneter Körper, der ordnungsvollständig ist

D Axiome der Addition

- A1 Assoziativität x + (y + z) = (x + y) + z
- A2 Neutrales Element $x + 0 = x \quad \forall x \in \mathbb{R}$
- A3 Inverses Element $\forall x \in \mathbb{R} \ \exists y \in \mathbb{R} : x + y = 0$
- A4 Kommutativität $x + z = z + x \quad \forall x, z \in \mathbb{R}$

D Axiome der Multiplikation

- M1 Assoziativität $x \cdot (y \cdot z) = (x \cdot y) \cdot z \quad \forall x, y, z \in R$
- M2 Neutrales Element $x \cdot 1 = x \quad \forall x \in \mathbb{R}$
- M3 Inverses Element $\forall x \in \mathbb{R}, x \neq 0 \ \exists y \in \mathbb{R}: x \cdot y = 1$
- M4 Kommutativität $x \cdot z = z \cdot x \quad \forall x, z \in \mathbb{R}$

D Distributivität

D1 Distributivität $x \cdot (y+z) = x \cdot y + x \cdot z$

D Ordnungsaxiome

- O1 Reflexivität $x < x \quad \forall x \in \mathbb{R}$
- O2 Transitivität $x \leq y$ and $y \leq z \implies x \leq z$
- O3 Antisymmetrie $x \le y$ and $y \le x \implies x = y$
- O4 Total $\forall x, y \in \mathbb{R}$ gilt entweder $x \leq y$ oder $y \leq x$

D Kompatibilität

- K1 $\forall x, y, z \in \mathbb{R} : x \leq y \implies x + z \leq y + z$
- $K2 \forall x > 0, \forall y > 0 : x \cdot y > 0$

D Ordnungsvollständigkeit

Seien A,B \subseteq von \mathbb{R}

- i $A \neq \emptyset, B \neq \emptyset$
- ii $\forall a \in A \text{ and } \forall b \in B : a < b$

Dann gibt es $c \in \mathbb{R},$ dass $\forall \in A: a \leq c$ und $\forall b \in B: c \leq b$

K 1.6

- 1 Additive und multiplikate Inverse eindeutig
- $2 \ 0 \cdot x = 0 \quad \forall x \in \mathbb{R}$
- $3 (-1) \cdot x = -x \quad \forall x \in \mathbb{R}$
- $4 \ y \ge 0 \Leftrightarrow (-y) \le 0$
- $5 y^2 > 0 \quad \forall x \in \mathbb{R}$
- $6 \ x \le y \text{ and } u \le v \implies x + u \le y + v$

 $7 \ 0 \le x \le y \text{ und } 0 \le u \le v \implies x \cdot u \le y \cdot v$

K 1.7(Archimedisches Prinzip)

Sei $x \in \mathbb{R}$ mit x > 0 und $y \in \mathbb{R}$. Dann gibt es $n \in \mathbb{N}$ mit $y \le n \cdot x$

S 1.8

Für jedes $t \geq 0, t \in \mathbb{R}$ hat $x^2 = t$ eine Lösung in \mathbb{R} D 1.9 Seien $x, y \in \mathbb{R}$

- (i) $\max\{x,y\} = \begin{cases} x & \text{falls} & y \le x \\ y & \text{falls} & x \le y \end{cases}$
- (ii) $\min\{x,y\} = \begin{cases} y & \text{falls} \quad y \le x \\ x & \text{falls} \quad x \le y \end{cases}$
- (iii) Der Absolutbetrag einer Zahl $x \in \mathbb{R}$: $|x| = \max\{x, -x\}$

S 1.10

- (i) $|x| \ge 0 \quad \forall x \in \mathbb{R}$
- (ii) $|xy| = |x| |y| \quad \forall x, y \in \mathbb{R}$
- (iii) $|x+y| \le |x| + |y| \quad \forall x, y \in \mathbb{R}$
- (iv) $|x+y| > |x| |y| \quad \forall x, y \in \mathbb{R}$

S 1.11(Young'sche Ungleichung)

 $\forall \epsilon > 0, \forall x, y \in \mathbb{R}$:

$$2|xy| \le \epsilon x^2 + \frac{1}{\epsilon}y^2$$

1.1 Infimum und Supremum

D 1.12 Sei $A \subseteq \mathbb{R}$ eine Teilmenge.

- 1) $c \in \mathbb{R}$ ist obere Schranke if $\forall a \in A : a \leq c$
- 2) $c \in \mathbb{R}$ ist untere Schranke if $\forall a \in A : c \leq a$
- 3) $m \in \mathbb{R}$ heisst ein **Maximum** von A if $m \in A$ und m eine obere Schranke von A ist.
- 4) $m \in \mathbb{R}$ heisst ein **Minimum** von A if $m \in A$ und m eine untere Schranke von A ist.

S 1.15 . Sei $A \subseteq \mathbb{R}, A \neq \emptyset$

1) Sei A nach oben beschränkt. Dann gibt es eine kleinste obere Schranke:

$$c := \sup A$$
 (Supremum von A)

2) Sei A nach unten beschränkt. Dann gibt es eine grösste untere Schranke:

$$d := \inf A$$
 (Infimum von A)

Eigenschaften von Supremum und Infimum

- $\sup(A \cup B) = \max(\sup A, \sup B)$
- $\sup(A+B) = \sup A + \sup B$
- $\inf(A \cup B) = \min(\inf A, \inf B)$
- $\inf(A+B) = \inf A + \inf B$

K 1.16 Seien $A \subseteq B \subseteq \mathbb{R}$ Teilmengen von \mathbb{R}

- 1 Falls B nach oben beschränkt ist, $\sup A \leq \sup B$
- 2 Falls B nach unten beschränkt ist, inf $B \le \inf A$

B 1.17

- 1. A = [1, 2[: sup A = 2, inf A = 1]]
- 2. $A = \sum_{k=1}^{n} \frac{1}{k} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$ ist nicht nacht oben beschränkt (harmonische Reihe)
- 3. $A = \{1 \frac{1}{3}, (1 \frac{1}{3}) + (\frac{1}{5} \frac{1}{7}), (1 \frac{1}{3}) + (\frac{1}{5} \frac{1}{7}) + (\frac{1}{9} \frac{1}{11}), \dots\}$ Dann gilt: $\sup A = \frac{\pi}{4}$ (Leibniz).

D 1.18 Kardinalität

- (i) Zwei Mengen X,Y heissen gleichmächtig if eine Bijection $f:X\to Y$ existiert
- (ii) Eine Menge ist endlich, wenn $X = \emptyset$ or $\exists n \in \mathbb{N}$ so dass $\{1, 2, \dots, n\}$ gleichmächtig wie X
- (iii) Eine Menge X ist abzähbar if endlich oder gleichmächtig wie $\mathbb N$
- S 1.20 (Cantor) \mathbb{R} ist nicht abzählbar

2 Folgen und Reihen

D 2.1 Eine **Folge** ist eine Abbildung

$$a: \mathbb{N}^* \to \mathbb{R}(\mathbb{N}^* = \mathbb{N}/\{0\})$$

2.1 Grenzwert einer Folge

L 2.3 $(a_n)_{n\geq 1}$ eine Folge, es gibt höchstens eine Zahl $l\in\mathbb{R}$ mit der Eigenschaft:

 $\forall \epsilon > 0$ ist Menge $\{n \in \mathbb{N} : a_n \notin]l - \epsilon, l + \epsilon[\}$ endlich

D 2.4 $(a_n)_{n\geq 1}$ ist **konvergent**, falls $l\in\mathbb{R}$ so dass $\forall \epsilon>0$ die Menge $\{n\in\mathbb{N}^*: a_n\notin]l-\epsilon, l+\epsilon[\}$ endlich ist. Dieses l ist der **Limes** der Folge.

Bem: [2.5] Jede Konvergente Folge ist beschränkt

- L 2.6 Folgende Aussagen sind äquivalent
- 1 $(a_n)_{n\geq 1}$ konvergiert gegen $l=\lim_{n\to\infty}a_n$
- $2 \ \forall \epsilon > 0 \ \exists N \geq 1 \ \text{that}$

$$|a_n - l| < \epsilon \quad \forall n \ge N$$

B 2.7 Sei $a_n = \frac{n}{n+1}, n \ge 1$.

Dann gilt: $\lim_{n\to\infty} a_n = 1$ Begründung: $a_n - 1 = \frac{n}{n+1} - 1 = \frac{-1}{n+1}$. Es folgt $|a_n - 1| = \frac{1}{n+1}$ Sei $\epsilon > 0$; Nach Archimedes gibt es $N \in \mathbb{N}$ mit $\frac{1}{N+1} < \epsilon$. Dann folgt $\forall n > N$:

$$|a_n - 1| = \frac{1}{n+1} \le \frac{1}{N+1} < \epsilon$$

S 2.8 Seien $(a_n)_{n\geq 1}$ und $(b_n)_{n\geq 1}$ konvergent Folgen mit $a=\lim_{n\to\infty}a_n,\,b=\lim_{n\to\infty}b_n$

- 1 $(a_n + b_n)_{n \ge 1}$ ist konvergent und $\lim_{n \to \infty} (a_n + b_n) = a + b$
- 2 $(a_n \cdot b_n)_{n \ge 1}$ ist konvergent und $\lim_{n \to \infty} (a_n \cdot b_n) = a \cdot b$
- 3 if $b_n \neq 0 \ \forall n \geq 1, b \neq 0 \ (\frac{a_n}{b_n})_{n \geq 1}$ konvergent, $\lim_{n \to \infty} (\frac{a_n}{b_n}) = \frac{a}{b}$
- 4 Falls existiert K \geq 1 mit $a_n \leq b_n \ \forall n \geq K \implies a < b$

B 2.9 $b \in \mathbb{Z} : \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^b = 1$ Das folgt aus $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right) = 1$ und wiederholter Anwendung von Satz 2.8 (2) & (3)

2.2 Satz von Weierstrass

D 2.10

1 $(a_n)_{n>1}$ ist monoton wachsend if

$$a_n \le a_{n+1} \ \forall n \ge 1$$

2 $(a_n)_{n>1}$ ist monoton fallend if

$$a_{n+1} \le a_n \ \forall n \ge 1$$

S 2.11 (Weierstrass)

• Sei $(a_n)_{n\geq 1}$ monoton wachsend und nach oben beschränkt. Dann konvergiert $(a_n)_{n\geq 1}$ nach

$$\lim_{n \to \infty} a_n = \sup\{a_n : n \ge 1\}$$

• Sei $(a_n)_{n\geq 1}$ monoton fallend und nach unten beschränkt. Dann konvergiert $(a_n)_{n\geq 1}$ nach

$$\lim_{n \to \infty} a_n = \inf\{a_n : n \ge 1\}$$

B 2.12 Sei $a \in \mathbb{Z}$ und $0 \le q < 1$. Dann gilt $\lim_{n \to \infty} n^a q^n = 0$. Sei $x_n = n^a q^n$ dann folgt

$$x_{n+1} = (n+1)^a q^{n+1} = \left(\frac{n+1}{n}\right)^a q \cdot n^a q^n =$$

$$\left(1+\frac{1}{n}\right)^a \cdot q \cdot x_n$$

Also:

$$x_{n+1} = \left(1 + \frac{1}{n}\right)^a \cdot q \cdot x_n$$

Da $\lim_{n\to\infty} \left(1+\frac{1}{n}\right)^a = 1$ gibt es ein n_0 , so dass $\left(1+\frac{1}{n}\right)^a < \frac{1}{a} \ \forall n \ge n_0$. Es folgt: Da $x_n > 0 \ \forall n \ge 1$

ist die Folge nach unten beschränkt und für $n \geq n_0$ monoton fallend. Sei

$$l = \lim_{n \to \infty} x_n = \lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^a \cdot qx_n$$
$$= q \cdot \lim_{n \to \infty} x_n = q \cdot l$$

Also $(1-q) \cdot l = 0$ woraus l=0 folgt.

Bem: [2.13] Oben haben wir folgede Tatsache benützt: Sei $(a_n)_{n\geq 1}$ eine konvergente Folge mit $\lim_{n\to\infty}a_n=a$ und $k\in\mathbb{N}$. Dann ist die durch

$$b_n := a_{n+k} \quad n \ge 1$$

definierte Folge konvergent und

$$\lim_{n\to\infty} b_n = a$$

 $\mathbf{B} \ \mathbf{2.14} \ \lim_{n \to \infty} \sqrt[n]{n} = 1$

B 2.15 Die Folge $\left(1+\frac{1}{n}\right)^n, n \geq 1$ konvergiert. Der Limes ist

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$$

die Eulersche Konstante $e \approx 2.71828$ L 2.16 (Bernoulli Ungleichung)

$$(1+x)^n > 1+n \cdot x \quad \forall n \in \mathbb{N}, x > -1$$

B 2.17 Sei c > 1. Wir definieren $(a_n)_{n > 1}$ durch:

$$a_1 = c$$
, $a_{n+1} = \frac{1}{2} \left(a_n + \frac{c}{a_n} \right)$ $n \ge 1$

Dann existiert $a:=\lim_{n\to\infty}a_n>0$ und es gilt $a^2=c$

1. $(a_n)_{n\geq 1}$ ist monoton fallend.

$$a_{n+1} = a_n + \frac{1}{2} \left(\frac{c}{a_n} - a_n \right) = a_n + \left(\frac{c - a_n^2}{2a_n} \right)$$

Wir zeigen zunächst: $a_n^2 \ge c \quad \forall n \ge 1$ Für $n=1: a_1^2=c^2>c,$ da c>1. Und für $n\ge 1$:

$$a_{n+1}^2 = a_n^2 + (c - a_n^2) + \left(\frac{c - a_n^2}{2a_n}\right)^2 =$$

$$c + \left(\frac{c - a_n^2}{2a_n}\right)^2 \ge c$$

Aus $a_n^2 \ge c$ folgt:

$$a_{n+1} = a_n + \left(\frac{c - a_n^2}{2a_n}\right) \le a_n$$

- 2. Es ist klar: $a_n > 0 \quad \forall n \ge 1$ Aus $a_n^2 \ge c > 1$ folgt dann $a_n > 1 \ \forall n > 1$
- 3. Nach Weierstrass: $a = \lim_{n \to \infty} a_n$, dann folgt aus (2) $a \ge 1 \& a \ne 0$

$$a = \lim_{n \to \infty} a_{n+1} = \frac{1}{2} \left(\lim_{n \to \infty} a_n + \frac{c}{\lim_{n \to \infty} a_n} \right)$$
$$= \frac{1}{2} \left(a + \frac{c}{a} \right) \implies a^2 = c$$

2.3 Limes inferior, Limes superior

Eine wichtige Anwendung des Satzes von Weierstrass ist, wie man mit jeder beschränkten Folge $(a_n)_{n\geq 1}$ zwei monotone Folgen $(b_n)_{n\geq 1}$ und $(c_n)_{n\geq 1}$ definieren kann, welche dann einen Grenzwert besitzen.

$$\lim_{n \to \infty} \inf a_n = \lim_{n \to \infty} b_n, (b_n = \inf\{a_k : k \ge n\})$$

$$\lim_{n \to \infty} \sup a_n = \lim_{n \to \infty} c_n, \ (c_n = \sup\{a_k : k \ge n\})$$

$$\lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} \sup a_n$$

B 2.18
$$a_n = (-1)^n + \frac{1}{n}, \ n \ge 1.$$

Dann: $b_n = -1$ und $c_n = 1 + \frac{1}{n_g}$ wobei n_g die kleinste gerade Zahl $\geq n$ bezeichnet. Also: $\lim_{n \to \infty} \inf a_n = -1$ und $\lim_{n \to \infty} \sup a_n = +1$

2.4 Cauchy Kriterium

Wie sieht man einer Folge an, ob sie konvergent ist, ohne ihren Grenzwert zu kennen? Dafür wird das Cauchy Kriterium angewendet.

L 2.19 $(a_n)_{n\geq 1}$ konvergiert if only if $(a_n)_{n\geq 1}$ beschränkt und

$$\lim_{n \to \infty} \inf a_n = \lim_{n \to \infty} \sup a_n$$

S 2.20 (Cauchy Kriterium)

Die Folge $(a_n)_{n\geq 1}$ ist genau dann konvergent wenn $\forall \epsilon > 0 \ \exists N > 1 \ \text{so dass} \ |a_n - a_m| < \epsilon \ \forall n, m > N$

2.5 Satz von Bolzano-Weierstrass

In diesem Abschnitt zeigen wir, dass jede beschränkte Folge eine konvergente Teilfolge besitzt.

D 2.21 Ein abgeschlossenes Intervall ist $I \subseteq \mathbb{R}$

- 1 [a,b] $a \leq b, a,b \in \mathbb{R}$
- $2 [a, +\infty] a \in \mathbb{R}$
- $3 \mid -\infty, a \mid a \in \mathbb{R}$
- $4 \mid -\infty, +\infty \mid = \mathbb{R}$

Länge $\mathcal{L}(I)$ ist in 1) b-a, ansonsten $+\infty$

Bem: [2.22] $I \subseteq \mathbb{R}$ ist abgeschlossen if only if für jede konvergente Folge $(a_n)_{n\geq 1}$ aus Elementen in I, der Grenzwert auch in I ist.

Bem: [2.23] Seien I=[a,b], J=[c,d] mit $a\leq b$ und $c\leq d$ $a,b,c,d\in\mathbb{R}$. Dann gilt $I\subseteq J$ genau dann, wenn $c\leq a$ und $b\leq d$

S 2.25 (Cauchy-Cantor) Sei $I_1 \supseteq I_2 \supseteq \dots$ eine Folge abgeschlossener Intervale mit $\mathcal{L}(I_1) < +\infty$

Dann gilt

$$\bigcap_{n\geq 1} I_n \neq \emptyset$$

Falls zudem $\lim_{n\to\infty}\mathcal{L}(I_n)=0$ enthält $\bigcap_{n\geq 1}I_n$ genau einen Punkt

D 2.27 Eine Teilfolge einer Folge $(a_n)_{n\geq 1}$ ist eine Folge $(b_n)_{n\geq 1}$ wobei

$$b_n = a_l(n)$$

und $l: \mathbb{N}^* \to \mathbb{N}^*$ eine Abbildung ist mit

$$l(n) < l(n+1) \quad \forall n \ge 1s$$

S 2.29 (Bolzano. Weierstrass) Jede beschränkte Folge besitzt eine Konvergente Teilfolge

Bem: [2.30] Sei $(a_n)_{n\geq 1}$ eine beschränkte Folge. Dann gilt für jede konvergente Teilfolge $(b_n)_{n\geq 1}$:

$$\lim_{n \to \infty} \inf a_n \le \lim_{n \to \infty} b_n \le \lim_{n \to \infty} \sup a_n$$

2.6 Folgen in \mathbb{R}^d und \mathbb{C}

D 2.31 Eine Folge in \mathbb{R}^d ist eine Abbildung

$$a: \mathbb{N}^* \to \mathbb{R}^d$$

D 2.32 Eine Folge $(a_n)_{n\geq 1}$ in \mathbb{R}^d heisst konvergent, falls es $a\in\mathbb{R}^d$ gibt so dass:

$$\forall \epsilon > 0 \ \exists N \ge 1 \ \text{mit} \ ||a_n - a|| < \epsilon \ \forall n \ge N$$

S 2.33 Sei $b = b_1, \ldots, b_d$. 1) und 2) sind äquivalent:

- $\lim_{n \to \infty} a_n = b$
- $2 \lim_{n \to \infty} a_{n,j} = b_j \quad \forall 1 \le j \le d$

S 2.36

1 Eine Folge $(a_n)_{n\geq 1}$ konvergiert genau, wenn sie eine Cauchy Folge ist :

$$\forall \epsilon > 0 \,\exists N \ge 1 \,\text{mit} \, ||a_n - a_m|| < \epsilon \,\forall n, m \ge N$$

2 Jede beschränkte Folge hat eine konvergente Teilfolge

2.7 Reihen

D 2.7.0 Eine Reihe ist eine unendliche Summe

$$S_n := a_1 + \dots + a_n = \sum_{k=1}^n a_k$$

D 2.37 Die Reihe

$$\sum_{k=1}^{\infty} a_k$$

ist konvergent, falls die Folge $(S_n)_{n\geq 1}$ der Partialsummen konvergiert. In diesem Fall :

$$\sum_{k=1}^{\infty} a_k := \lim_{n \to \infty} S_n$$

B 2.38 (Geometrische Reihe). Sei $q \in \mathbb{C}$ mit |q| < 1. Dann konvergiert $\sum_{k=0}^{\infty} q^k$ und der Wert ist:

$$\sum_{k=0}^{\infty} q^k = \frac{1}{1-q}$$

Sei
$$S_n = \sum_{k=0}^n q^k = 1 + q + \dots + q^n$$

$$q \cdot S_n = q + \dots q^n + q^{n+1}$$

woraus

$$(1-q)S_n = 1 - q^{n+1}$$

folgt. Es gilt also: $S_n = \frac{1-q^{n+1}}{1-q}$ Nun zeigen wir die Konvergenz:

$$\left| S_n - \frac{1}{1-a} \right| = \left| \frac{-q^{n+1}}{1-a} \right| = \frac{|q|^{n+1}}{|1-a|}$$

Aus Bsp 2.12 und $0 \le |q| < 1$ folgt:

$$\lim_{n \to \infty} \left| S_n - \frac{1}{1 - a} \right| = \lim_{n \to \infty} \frac{|q|^{n+1}}{|1 - a|} = 0$$

Somit konvergiert $(S_n)_{n\geq 1}$ gegen $\frac{1}{1-a}$

S 2.40 Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{j=1}^{\infty} b_j$ konvergent sowie $\alpha \in \mathbb{C}$

- 1 $\sum_{k=1}^{\infty}(a_k+b_k)$ konvergent und $\sum_{k=1}^{\infty}(a_k+b_k)=(\sum_{k=1}^{\infty}a_k)+(\sum_{j=1}^{\infty}b_j)$
- $\begin{array}{l} 2 \; \sum_{k=1}^{\infty} \alpha \cdot a_k \text{ konvergent und} \\ \sum_{k=1}^{\infty} \alpha \cdot a_k = \alpha \cdot \sum_{k=1}^{\infty} a_k \end{array}$

S 2.41 (Cauchy Kriterium)

Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert genau dann, wenn:

$$\forall \epsilon > 0 \ \exists N \ge 1 \ \mathrm{mit} \left| \sum_{k=n}^{m} a_k \right| < \epsilon \quad \forall m \ge n \ge N$$

Anmerkung: Aus dem Cauchy Kriterium folgt das Nullfolgenkriterium. Bildet die Folge der Summanden einer Reihe keine Nullfolge, dann divergiert die Reihe. Also falls $\lim_{n\to\infty}|a_n|\neq 0 \implies \sum_{n=0}^\infty a_n$ divergiert.

S 2.42 Sei $\sum_{k=1}^{\infty} a_k$ eine Reihe mit $a_k \geq 0 \quad \forall k \in \mathbb{N}^*$. Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert if only if $(S_n)_{n \geq 1}, S_n = \sum_{k=1}^{n} a_k$ der Partialsummen nach oben beschränkt ist.

K 2.43 (Vergleichssatz)

Seien $\sum_{k=1}^{\infty} a_k$ und $\sum_{k=1}^{\infty} b_k$ Reihen mit:

$$0 \le a_k \le b_k \quad \forall k \ge 1$$

$$\sum_{k=1}^{\infty} b_k \text{ konvergent } \implies \sum_{k=1}^{\infty} a_k \text{ konvergent}$$

$$\sum_{k=1}^{\infty} a_k \text{ divergent } \implies \sum_{k=1}^{\infty} b_k \text{ divergent}$$

Diese Implikation gilt auch, wenn

$$K \geq 1 \text{ mit } 0 \leq a_k \leq b_k \quad \forall k \geq K$$

B 2.44 $\sum_{k=1}^{\infty} \frac{1}{k^2}$ konvergiert.

Sei $a_k = \frac{1}{k^2}, b_k = \frac{1}{(k-1)k}, k \ge 1$. Dann gilt $0 \le a_k \le b_k, k \ge 2$ und

$$\sum_{k=2}^{n} b_k = \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right) = \dots \left(\frac{1}{n-1} - \frac{1}{n} \right)$$
$$= 1 - \frac{1}{n} < 1 \quad \forall n \ge 1$$

D 2.45 Die Reihe $\sum_{k=1}^{\infty} a_k$ heisst absolut konvergent

falls
$$\sum_{k=1}^{\infty} |a_k|$$
 konvergiert

S 2.46 Eine absolut konvergente Reihe $\sum_{k=1}^{\infty} a_k$ ist auch konvergent und:

$$\left| \sum_{k=1}^{\infty} a_k \right| \le \sum_{k=1}^{\infty} |a_k|$$

B 2.47 $\sum_{k=1}^{\infty} (-1)^{k+1} \frac{1}{k}$ konvergiert, ist aber nicht absolut konvergent. S 2.48 (Leibniz 1682) Sei $(a_n)_{n>1}$ monoton

fallend mit $a_n \geq 0 \quad \forall n \geq 1 \text{ und } \lim_{n \to \infty} a_n = 0.$ Dann konvergiert

$$S := \sum_{k=1}^{\infty} (-1)^{k+1} a_k$$
 und es gilt $a_1 - a_2 \le S \le a_1$

B 2.49 Betrachten wir nochmals Bsp 2.47

$$S = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$
$$\frac{1}{2} = 1 - \frac{1}{2} \le S \le 1$$

D 2.50 Eine Reihe $\sum_{n=1}^{\infty} a'_n$ ist eine **Umordnung** der Reihe $\sum_{n=1}^{\infty} a_n$, falls eine bijektive Abbildung

$$\phi: \mathbb{N}^* \to \mathbb{N}^*$$
 mit $a'_n = a_{\phi(n)}$

S 2.52 (Dirichlet 1837) Falls $\sum_{n=1}^{\infty} a_n$ absolut konvergiert, dann konvergiert jede Umordnung (oder auch Teilfolge) der Reihe und hat den selben Grenzwert

S 2.53(Quotientenkriterium

Sei $(a_n)_{n\geq 1}$ mit $a_n\neq 0 \quad \forall n\geq 1$. Falls

$$\limsup_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}<1\implies \sum_{n=1}^\infty a_n \text{ konvergiert absolut}$$

Fal

$$\liminf_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} > 1 \implies \sum_{n=1}^{\infty} a_n \text{ divergiert}$$

B 2.54 (Exponentialfunktion). Für $z \in \mathbb{C}$ betrachte die Reihe

$$1+z\frac{z^2}{2!}+\frac{z^3}{3!}+\dots$$

mit allgemeinem Glied

$$a_n = \frac{z^n}{n!}$$

Dann folgt für $z \neq 0$:

$$\frac{|a_{n+1}|}{|a_n|} = \frac{|z|}{n+1}$$

also gilt $\lim_{n\to\infty}\frac{|a_{n+1}|}{|a_n|}=0$ und die Reihe konvergiert für alle $z\in\mathbb{C}$

 $\bf Bem: 2.55$ Das Quotientenkriterium versagt, z.B wenn unendliche viele Glieder der Reihe verschwinden

S 2.56 Wurzelkriterium

1 Falls

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} < 1$$

dann konvergiert $\sum_{n=1}^{\infty} a_n$ absolut

2 Falls

$$\limsup_{n \to \infty} \sqrt[n]{|a_n|} > 1$$

dann diviergiert $\sum_{n=1}^{\infty} a_n$ und $\sum_{n=1}^{\infty} |a_n|$

D Kovergenzradius Gibt den Bereich an, in welchem für eine Potenzreihe Konvergenz garantiert ist. Sei $(c_k)_{k\geq 0}$ eine Folge in $\mathbb R$ oder $\mathbb C$. Falls $\lim_{n\to\infty}\sup\sqrt[k]{|c_k|}$ existiert, definieren wir

$$\rho = \begin{cases} +\infty & \limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0\\ \frac{1}{\lim \sup_{k \to \infty} \sqrt[k]{|c_k|}} \lim \sup_{k \to \infty} \sqrt[k]{|c_k|} > 0 \end{cases}$$

Falls ab einem bestimmten Index all $a_n \neq 0$ und der folge limes definiert ist, kann man den Konvergenzradius auch mit dem Quotientenkriterium ausrechen.

$$\rho = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

K 2.57 Die Potenzreihe

$$\sum_{k=0}^{\infty} c_k z^k$$

- konvergiert absolut für alle $|z| < \rho$
- · divergiert für alle $|z| > \rho$
- **D** Die Zeta Funktion Sei s > 1 und

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}$$

Für s>1 konvergiert die obige Reihe \mathbf{D} 2.58 $\sum_{k=0}^{\infty}b_k$ ist eine lineare Anordnung der Doppelreihe $\sum_{i,j>0}a_{i,j}$, falls es eine Bijektion

$$\sigma: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$$

gibt mit $b_k = a_{\sigma(k)}$

S 2.59 (Cauchy 1821). Wir nehmen an, dass es B > 0 gibt, so dass

$$\sum_{i=0}^{m} \sum_{j=0}^{m} |a_{ij}| \le B \quad \forall m \ge 0$$

Dann konvergieren die folgenden Reihen absolut:

$$S_i := \sum_{j=0}^{\infty} a_{ij} \quad \forall i \geq 0 \text{ und } U_j := \sum_{i=0}^{\infty} a_{ij} \quad \forall j \geq 0$$

sowie

$$\sum_{i=0}^{\infty} S_i \text{ und } \sum_{j=0}^{\infty} U_j$$

und es gilt:

$$\sum_{i=0}^{\infty} S_i = \sum_{j=0}^{\infty} U_j$$

Zudem konvergiert jede lineare Anordnung der Doppelreihe absolut, mit selbem Grenzwert

D 2.60 Das Cauchy Produkt der Reihe

$$\sum_{i=0}^{\infty} a_i, \sum_{j=0}^{\infty} b_j$$

ist die Reihe

$$\sum_{n=0}^{\infty} \left(\sum_{j=0}^{n} a_{n-j} b_j \right) = a_0 b_0 + \left(a_0 b_1 + a_1 b_0 \right) + \dots$$

S 2.62 Falls die Reihen

$$\sum_{i=0}^{\infty} a_i, \sum_{j=0}^{\infty} b_j$$

absolut konvergieren, so konvergiert ihr Cauchy Produkt und es gilt:

$$\sum_{n=0}^{\infty} (\sum_{j=0}^{n} a_{n-j} b_j) = (\sum_{j=0}^{\infty} a_i) (\sum_{j=0}^{\infty} b_j)$$

S 2.64 Sei $f_n: \mathbb{N} \to \mathbb{R}$ eine Folge. Wir nehmen an:

- 1 $f(j) := \lim_{n \to \infty} f_n(j)$ existiert $\forall j \in \mathbb{N}$
- 2 Es gibt eine Funktion $g: \mathbb{N} \to [0, \infty[$, so dass
 - $2.1 |f_n(j)| \le g(j) \quad \forall j \ge 0, \forall n \ge 0$
- $2.2 \sum_{j=0}^{\infty} g(j)$ konvergiert

Dann folgt

$$\sum_{j=0}^{\infty} f(j) = \lim_{n \to \infty} \sum_{j=0}^{\infty} f_n(j)$$

K 2.65 Für jedes $z \in \mathbb{C}$ konvergiert die Folge $((1+\frac{z}{n})^n)_{n\geq 1}$ und

$$\lim_{n \to \infty} (1 + \frac{z}{n})^n = \exp(z)$$

3 Stetige Funktionen

3.1 Reellwertige Funktionen

D 3.1 Sei $f \in \mathbb{R}^d$

- 1 f ist nach **oben beschränkt**, if $f(D) \subseteq \mathbb{R}$ nach oben beschränkt ist
- 2 f ist nach **unten beschränkt**, if $f(D) \subseteq \mathbb{R}$ nach unten beschränkt ist
- 3 f ist beschränkt, if $f(D) \subseteq \mathbb{R}$ b ist

D 3.2 Eine funktion $f: D \to \mathbb{R}$, wobei $D \subseteq \mathbb{R}$ ist

1 monoton wachsend, if $\forall x, y \in D$

$$x \le y \implies f(x) \le f(y)$$

2 streng monoton wachsend, if $\forall x, y \in D$

$$x < y \implies f(x) < f(y)$$

3 monoton fallend, if $\forall x, y \in D$

$$x \le y \implies f(x) \ge f(y)$$

4 streng monoton fallend, if $\forall x, y \in D$

$$x < y \implies f(x) > f(y)$$

- 5 **monoton**, falls f monoton wachsend oder monoton fallend
- 6 streng monoton, falls f streng monoton wachsend/fallend

3.2 Stetigkeit

D 3.4 Sei $D \subseteq \mathbb{R}, x_0 \in D$. Die Funktion $f: D \to \mathbb{R}$ ist in x_0 **stetig**, falls es für jedes $\epsilon > 0$ ein $\delta > 0$ gibt, so dass für alle $x \in D$ die Implikation

$$|x - x_0| < \delta \implies |f(x) - f(x_0)| < \epsilon$$

B 3.6 Sei n > 0: $f: \mathbb{R} \to \mathbb{R}, x \to x^n$ ist stetig.

2. $f : \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto |x|$ ist stetig.

Die Abrundungsfunktion $\lceil \cdot \rceil : \mathbb{R} \to \mathbb{R}, x \to \lceil x \rceil := \max\{m \in \mathbb{Z} : m \leq z\}$ ist in jedem Punkt $x_0 \notin \mathbb{Z}$ stetig; sie ist in keinem Punkt $y \in \mathbb{Z}$ stetig.

Funktion $f: \mathbb{R} \to \mathbb{R}$ definiert durch:

D 3.5 Die Funktion $f: D \to \mathbb{R}$ ist **stetig**, falls sie in jedem Punkt von D stetig ist.

S 3.7 Sei $x_0 \in D \subseteq \mathbb{R}$ und $f: D \to \mathbb{R}$. Die Funktion f ist genau dann in x_0 stetig falls für jede Folge $(a_n)_{n>1}$ in D folgende implikation gilt:

$$\lim_{n \to \infty} a_n = x_0 \implies \lim_{n \to \infty} f(a_n) = f(x_0)$$

K 3.8 Sei $x_0 \in D \subseteq \mathbb{R}, \lambda \in \mathbb{R}$ und $f: D \to \mathbb{R}$, $q: D \to \mathbb{R}$ beide stetig in x_0

1 Dann sind $f + g, \lambda \cdot f, f \cdot g$ stetig in x_0

2 Falls $g(x_0) \neq 0$ dann ist

$$\frac{f}{g}: D \cap \{x \in D: g(x) \neq 0\} \to \mathbb{R}$$

$$x \to \frac{f(x)}{g(x)}$$

stetig in x_0

D 3.9 Eine polynomiale Funktion $P : \mathbb{R} \to \mathbb{R}$ ist eine Funktion der Form

$$P(x) = a_n x^n + \dots + a_0$$

wobei : $a_n \dots a_0 \in \mathbb{R}$. Falls $a_n \neq 0$ ist n der **Grad** von P

K 3.10 Polynomiale Funktionen sind auf ganz \mathbb{R} stetig

K 3.11 Seien P,Q, polynomiale Funktionen auf \mathbb{R} mit $Q \neq 0$. Seien $x_1 \dots x_m$ die Nullstellen von Q. Dann ist

$$\frac{P}{Q}: \mathbb{R} \setminus \{x_1, \dots x_m\} \to \mathbb{R}$$

$$x \to \frac{P(x)}{Q(x)}$$

stetig

3.3 Der Zwischenwertsatz

S 3.12 (Bolzano 1817). Sei $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ eine stetige Funktion und $a, b \in I$. Für jedes c zwischen f(a) und f(b) gibt es ein z zwischen a und b mit f(z) = c

K 3.13 Sei $P(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$ ein Polynom mit $a_n \neq 0$ und n ungerade. Dann besitzt P mindestens eine Nullstelle in \mathbb{R}

Bem: [3.14] für c > 0 besitzt $Q(x) = x^2 + c$ keine Nullstelle in R

3.4 Der Min-Max Satz

D 3.16 Ein Intervall $\subseteq \mathbb{R}$ ist **kompakt**, falls es von Form

$$I = [a.b], \quad a \leq b$$

ist

Die

L 3.17 Sei $D \subseteq \mathbb{R}, x_0 \in D$ und $f, g : D \to \mathbb{R}$

stetig in x_0 . Dann sind

$$|f|, \max(f, g), \min(f, g)$$

stetig in x_0

L 3.18 Sei $(x_n)_{n\geq 1}$ eine konvergente Folge in \mathbb{R} mit Grenzwert

$$\lim_{n\to\infty} x_n \in \mathbb{R}$$

sei $a \leq b$. Falls $\{x_n : n \geq 1\} \subseteq [a, b]$ folgt

$$\lim_{n \to \infty} x_n \in [a, b]$$

S 3.19 Sei $f: I = [a, b] \to \mathbb{R}$ stetig auf dem kompakten Intervall I. Dann gibt es $u \in I$ und $v \in I$ mit

$$f(u) \le f(x) \le f(v) \quad \forall x \in I$$

Insbesondere ist f beschränkt

3.5 Der Satz über Umkehrabbildung

S 3.20 Seien $D_1, D_2 \subseteq \mathbb{R}$ zwei Teilmengen, $f: D_1 \to D_2, g: D_2 \to \mathbb{R}$ Funktionen, sowie $x_0 \in D_1$. Falls f in x_0 und g in $f(x_0)$ stetig sind

$$g \circ f : D_1 \to \mathbb{R}$$

in x_0 stetig

K 3.21 Falls in Satz 3.20 f auf D_1 und g auf D_2 stetig sind, so ist $g \circ f$ auf D_1 stetig

S 3.22 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig, streng monoton. Dann ist $J:=f(I)\subseteq \mathbb{R}$ ein Intervall und $f^{-1}: J \to I$ ist stetig. streng monoton.

3.6 Die reelle Exponentialfunktion

D Exponentialfunktion

$$\exp(z) := \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

S 3.24 exp : $\mathbb{R} \to]0, +\infty[$ ist streng monoton wachsend, stetig und surjektiv

K 3.25

$$\exp(x) > 0 \quad \forall x \in \mathbb{R}$$

$$\exp(x) > 1 \quad \forall x > 0$$

K 3.26

$$\exp(z) > \exp(y) \quad \forall z > y$$

K 3.27

$$\exp(x) \ge 1 + x \quad \forall x \in \mathbb{R}$$

K 3.28 Der natürliche Logarithmus

$$\ln:]0,+\infty[\longrightarrow\mathbb{R}$$

ist eine streng monoton wachsende, stetige, bijektive Funktion. Des Weiteren gilt:

$$\ln(a \cdot b) = \ln a + \ln b \quad \forall a, b \in]0, +\infty[$$

Wir können den Logarithmus und die Exponentialfunktion benutzen, um allgemeine Potenzen zu definieren. Für x>0 und $a\in\mathbb{R}$ beliebig definieren wir:

$$x^a := \exp(a \ln x)$$

Insbesondere $x^0 = 1 \quad \forall x > 0$

K 3.29

1 Für a > 0 ist

$$]0, +\infty[\longrightarrow]0, +\infty[$$

eine stetige, streng monoton wachsende Bijektion

2 Für a < 0 ist

$$]0, +\infty[\longrightarrow]0, +\infty[$$

eine stetige, streng monoton fallende Bijektion

$$3 \ln(x^a) = a \ln(x) \quad \forall a \in \mathbb{R}, \forall x > 0$$

$$4 x^a \cdot x^b = x^{a+b} \quad \forall a, b \in \mathbb{R}, \forall x > 0$$

$$5 (x^a)^b = x^{a \cdot b} \quad \forall a, b \in \mathbb{R}, \forall x > 0$$

3.7 Konvergenz v. Funktionenfolgen

Eine Funktionenfolge ist eine Abbildung

$$\mathbb{N} \longrightarrow \mathbb{R}^D$$

$$n \longrightarrow f(n)$$

D 3.30 Die Funktionenfolge $(f_n)_{n\geq 0}$ konvergiert punktweise gegen eine Funktion $f:D\to \mathbb{R}$, falls für alle $x\in D$:

$$f(x) = \lim_{n \to \infty} f_n(x)$$

D 3.32 (Weierstrass 1841) Die Folge

$$f_n:D\longrightarrow\mathbb{R}$$

konvergiert gleichmässig in D gegen

$$f:D\to\mathbb{R}$$

falls gilt $\forall \epsilon > 0 \quad \exists N \geq 1$, so dass

$$\forall n \ge N, \ \forall x \in D: \ |f_n(x) - f(x)| < \epsilon$$

In dieser Definition ist es wichtig, dass N nur von ϵ abhängig ist und nicht von $x \in D$.Deswegen kommt die Bedingung $\forall x \in D$ nach der Bedingung $\exists N \geq 1$ **S 3.33** Sei $D \subseteq \mathbb{R}$ und $f_n : D \to \mathbb{R}$ eine Funktionenfolge bestehend aus(in D) stetigen Funktionen die (in D) gleichmässig gegen eine Funktion $f : D \to \mathbb{R}$ konvergiert. Dann ist f (in D) stetig **D 3.34** Eine Funktionenfolge

$$f_n:D\longrightarrow\mathbb{R}$$

ist **gleichmässig konvergent**, falls für alle $x \in D$ der Grenzwert

$$f(x) := \lim_{n \to \infty} f_n(x)$$

existiert und die Folge $(f_n)_{n\geq 0}$ gleichmässig gegen f konvergiert

K 3.35 Die Funktionenfolge

$$f_n:D\longrightarrow\mathbb{R}$$

konvergiert genau dann gleichmässig in D, falls

 $\forall \epsilon > 0 \quad \exists N > 1$, so dass $\forall n, m > N$ und $\forall x \in D$:

$$|f_n(x) - f_m(x)| < \epsilon$$

K 3.36 Sei $D \subseteq \mathbb{R}$. Falls $f_n : D \longrightarrow \mathbb{R}$ eine gleichmässig konvergente Folge stetiger Funktionen ist, dann ist die Funktion

$$f(x) := \lim_{n \to \infty} f_n(x)$$

stetig

D 3.37 $f_n: D \longrightarrow \mathbb{R}$ eine Folge von Funktionen. Die Reihe $\sum_{k=0}^{\infty} f_k(x)$ konvergiert gleichmässig (in D), falls die durch

$$S_n(x) := \sum_{k=0}^n f_k(x)$$

definierte Funktionenfolge gleichmässig konvergiert S 3.38 Sei $D \subseteq \mathbb{R}$ und

$$f_n:D\to\mathbb{R}$$

eine Folge stetiger Funktionen. Wir nehmen an

$$|f_n(x)| < c_n \quad \forall x \in D$$

und, dass $\sum_{n=0}^{\infty} c_n$ konvergiert. Dann konvergiert die Reihe

$$\sum_{n=0}^{\infty} f_n(x)$$

gleichmässin in D und deren Grenzwert

$$f(x) := \sum_{n=0}^{\infty} f_n(x)$$

ist eine in D stetige Funktion

D 3.39 Die Potenzreihe

$$\sum_{k=0}^{\infty} c_k x^k$$

hat **positiven Konvergenzradius**, falls $\limsup_{k \to \infty} \sqrt[k]{|c_k|}$ existiert Der Konvergenzradius ist dann definiert als:

$$\rho = \begin{cases} +\infty & \text{falls} \limsup_{k \to \infty} \sqrt[k]{|c_k|} = 0 \\ \frac{1}{\lim\sup_{c \to \infty} \sqrt[k]{|c_k|}} & \text{falls} \ \limsup_{k \to \infty} \sqrt[k]{|c_k|} > 0 \end{cases}$$

S 3.40 Sei $\sum_{k=0}^{\infty} c_k x^k$ eine Potenzreihe mit positivem Konvergenzradius $\rho > 0$ und sei

$$f(x) := \sum_{k=0}^{\infty} c_k x^k, |x| < \rho$$

Dann gilt: $\forall 0 \leq r < \rho$ konvergiert

$$\sum_{k=0}^{\infty} c_k x^k$$

gleichmässig auf [-r, r], insbesondere ist $f:]-\rho, \rho[\longrightarrow \mathbb{R}$ stetig

3.8 Trigonometrische Funktionen

D Sinus&Cosinus

$$\sin(z) = z - \frac{z^3}{2!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{(2n)!}$$

$$\cos(z) = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n}}{(2n)!}$$

S 3.41 $\sin : \mathbb{R} \to \mathbb{R}$ und $\cos : \mathbb{R} \to \mathbb{R}$ sind stetige

Funktionen

S 3.42

- $1 \exp iz = \cos(z) + i \sin(z) \quad \forall z \in \mathbb{C}$
- $2 \cos(z) = \cos(-z)$ und $\sin(-z) = -\sin z \quad \forall z \in \mathbb{C}$
- $3 \sin z = \frac{e^{iz} e^{-iz}}{2i}, \cos z = \frac{e^{iz} e^{-iz}}{2}$
- $4 \sin(z+w) = \sin(z)\cos(w) + \cos(z)\sin(w)$ $\cos(z+w) = \cos(z)\cos(w) \sin(z)\sin(w)$
- $5\cos(z)^2 + \sin(z)^2 = 1 \quad \forall z \in \mathbb{C}$

K 3.34

$$\sin(2z) = 2\sin(z)\cos(z)$$

$$\cos(2z) = \cos(z)^2 - \sin(z)^2$$

3.9 Die Kreiszahl π

S 3.44 Die Sinusfuktion hat auf $]0, +\infty[$ mindestens eine Nullstelle

$$\pi := \inf\{t > 0 : \sin t = 0\}$$

Dann gilt:

- $1 \sin \pi = 0, \quad \pi \in]2,4[$
- $2 \ \forall x \in]0, \pi[: \sin x > 0]$
- $3 e^{\frac{i\pi}{2}} = i$

K 3.45

$$x \ge \sin x \ge x - \frac{x^3}{3!} \quad \forall 0 \le x \le \sqrt{6}$$

K 3.46

- $1 e^{i\pi} = -1, e^{2i\pi} = 1$
- $2 \sin(x + \frac{\pi}{2}) = \cos(x),$ $\cos(x + \frac{\pi}{2}) = -\sin(x) \quad \forall x \in \mathbb{R}$
- $3 \sin(x + \pi) = -\sin(x),$ $\sin(x + 2\pi) = \sin(x) \quad \forall x \in \mathbb{R}$
- $4 \cos(x + \pi) = -\cos(x),$ $\cos(x + 2\pi) = \cos(x) \quad \forall x \in \mathbb{R}$
- 5 Nullstellen von Sinus = $\{k \cdot \pi : k \in \mathbb{Z}\}$ $\sin(x) > 0 \quad \forall x \in]2k\pi, (2k+1)\pi[, k \in \mathbb{Z}]$

$$\sin(x) < 0 \quad \forall x \in](2k+1)\pi, (2k+2)\pi[, \quad k \in \mathbb{Z}$$

 $\begin{array}{l} 6 \ \ \text{Nullstellen von Cosinus} = \{\frac{\pi}{2} + k \cdot \pi : k \in \mathbb{Z}\} \\ cos(x) > 0 \\ \forall x \in] - \frac{\pi}{2} + 2k\pi, -\frac{\pi}{2} + (2k+1)\pi[, \quad k \in \mathbb{Z} \\ cos(x) < 0 \\ \forall x \in] -\frac{\pi}{2} + (2k+1)\pi, -\frac{\pi}{2} + (2k+2)\pi[, \quad k \in \mathbb{Z} \\ \end{array}$

Für $z \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z}$ definieren wir:

$$\tan(z) = \frac{\sin(z)}{\tan(z)}$$

und für $z \notin \pi \cdot \mathbb{Z}$:

$$\cot(z) = \frac{\cos(z)}{\sin(z)}$$

3.10 Grenzwerte von Funktionen

D 3.47 $x_0 \in \mathbb{R}$ ist ein **Häufungspunkt** der Menge D falls $\forall \delta > 0$:

$$(|x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) \cap D \neq \emptyset$$

D 3.49 Sei $f: D \longrightarrow \mathbb{R}, x_0 \in \mathbb{R}$ ein Häufungspunkt von D. Dann ist $A \in \mathbb{R}$ der Grenzwert von f(x) für $x \to x_0$ bezeichnet mit

$$\lim_{x \to x_0} f(x) = A$$

falls $\forall \epsilon > 0 \quad \exists \delta > 0 \text{ so dass}$

$$\forall x \in D \cap (]x_0 - \delta, x_0 + \delta[\setminus \{x_0\}) : |f(x) - A| < \epsilon$$

Bem: 3.50

1 Sei $f: D \to \mathbb{R}$ und x_0 ein Häufungspunkt von D. Dann gilt $\lim_{x \to x_0} f(x) = A$ genau dann wenn für alle Folgen $(a_n)_{n > 1}$ in $D \setminus \{x_0\}$ mit

$$\lim_{n \to \infty} a_n = x_0$$

folgt

$$\lim_{n \to \infty} f(a_n) = A$$

2 Sei $x_0 \in D$. Dann ist f stetig in x_0 genau dann, falls

$$\lim_{x \to x_0} f(x) = f(x_0)$$

3 Falls $f, g: D \to \mathbb{R}$ und $\lim_{x \to x_0} f(x)$, $\lim_{x \to x_0} g(x)$ existieren, so folgt

$$\lim_{x \to x_0} (f+g)(x) = \lim_{x \to x_0} f(x) + \lim_{x \to x_0} g(x)$$

und

$$\lim_{x \to x_0} (f \cdot g)(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

4 Sei $f, g: D \to \mathbb{R}$ mit $f \leq g$. Dann folgt

$$\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$$

falls beide Grenzwerte existieren

5 Falls $q_1 < f < q_2$ und

$$\lim_{x \to x_0} g_1(x) = \lim_{x \to x_0} g_2(x)$$

dann existiert $\lim_{x\to x_0} f(x)$ und

$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} g_1(x)$$

S 3.52 Seien $D, E \subseteq \mathbb{R}$, x_0 Häufungspunkt von $D, f: D \longrightarrow E$ eine Funktion. Wir nehmen an,

dass

$$y_0 := \lim_{x \to x_0} f(x)$$

existiert und $y_0 \in E$. Falls $g: E \longrightarrow \mathbb{R}$ stetig in y_0 folgt:

$$\lim_{x \to x_0} g(f(x)) = g(y_0)$$

3.11 Linksseitige und rechsseitige Grenzwerte

Betrachten wir zum Beispiel

$$f: \mathbb{R} \setminus \{0\} \longrightarrow \mathbb{R}$$

$$x \longrightarrow \frac{1}{x}$$

Dann wird für x>0, x beliebig nahe an 0, $\frac{1}{x}$ beliebig positiv gross und für x<0, x beliebig nahe an 0, $\frac{1}{x}$ beliebig negativ "gross". In beiden Fällen hat $\frac{1}{x}$ ein einfaches Verhalten.

Im Fall $a \in \mathbb{R}$,

$$f:]0, \infty[\to \mathbb{R}$$

$$x \to x^a$$

ist f
 auf]0, ∞ [definiert. Falls a>0 werden wir sehen, dass

$$\lim_{x\in]0,\infty[\to 0} f(x)=0$$

Sei $f:D\longrightarrow \mathbb{R}$ und $x_0\in \mathbb{R}$. Wir nehemn an, x_0 ist Häufungspunkt von $D\cap]x_0,+\infty[$; das heisst ein rechtsseitiger Häufungspunkt. Falls der Grenzwert der eingeschränkten Funktion

$$f|_{D\cap[x_0,+\infty[}$$

für $x \longrightarrow x_0$ existiert, wird er mit

$$\lim_{x \to x_0^+} f(x)$$

bezeichnet und nennt sicht rechtsseitiger Grenzwert von f bei x_0 .

Wir erweitern diese Definition auf:

$$\lim_{x \to x_{-}^{+}} f(x) = +\infty$$

falls gilt:

$$\forall \epsilon > 0 \exists \delta > 0, \ \forall x \in D \cap]x_0, x_0 + \delta[: \ f(x) > \frac{1}{2}]$$

und analog:

$$\lim_{x \to x_0^+} f(x) = -\infty$$

falls

$$\forall \epsilon > 0 \ \exists \delta > 0, \ \forall x \in D \cap]x_0, x_0 + \delta[:f(x) < -\frac{1}{\epsilon}]$$

Linksseitige Häufungspunkt und Grenzwerte werden analog definiert. Mit diesen Definitionen gilt:

$$\lim_{x \to 0^+} \frac{1}{x} = +\infty, \quad \lim_{x \to 0^-} \frac{1}{x} = -\infty$$

4 Differenzierbare Funktionen

D 4.1 Sei $D \subseteq \mathbb{R}, f: D \to \mathbb{R}$ und $x_0 \in D$ ein Häufungspunkt von D

f ist ist in x_0 Differenzierbar, falls der Grenzwert

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert. Ist dies der Fall, wird der Grenzwert mit $f'(x_0)$ bezeichnet

Bem: 4.2: Es ist oft von Vorteil in der Definiton von $f'(x_0)$, $x = x_0 + h$ zu setzen

$$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

 $\frac{f(x)-f(x_0)}{x-x_0}$ ist die Steigung der Gerade durch $(x_0,f(x_0)),(x,f(x)).$ Falls $f'(x_0)$ existiert ist die Intuition, dass die Familien der Geraden durch $(x_0,f(x_0)),(x,f(x))$ für $x\neq x_0,x\rightarrow x_0$ als "Grenzwert"die Tangente zum Graphen von f in $(x_0,f(x_0))$ annimmt.

4.1 Die Ableitung

S 4.3 (Weierstrass 1861). Sei $f: D \to \mathbb{R}, x_0 \in D$ Häufungspunkt von D. Folgende Aussagen sind äquivalent:

- 1 f ist in x_0 differenzierbar.
- 2 Es gibt $c \in \mathbb{R}$ und $r: D \to D$ mit:

2.1
$$f(x) = f(x_0) + c(x - x_0) + r(x)(x - x_0)$$

$$2.2 \ r(x_0) = 0 \ \text{und r ist stetig in } x_0$$

Falls dies zutrifft ist $c=f'(x_0)$ eindeutig bestimmt Die Formulierung der Differenzierbarkeit von f mittels

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + r(x)(x - x_0)$$

und der Stetigkeit von r
 in x_0 hat den Vorteil, dass sie keinen Limes enthält. Ausserdem ist dann

$$y = f(x_0) + f'(x_0)(x - x_0)$$

die Gleichung der Tangente zum Graphen von f im Punkt $(x_0, f(x_0))$. WIr können die Charakterisierung der Differenzierbarkeit noch vereinfachen in dem wir in Satz 4.3(2.1)

$$\phi(x) = f'(x_0) + r(x)$$

setzen. Wir erhalten:

S 4.4 Eine Funktion $f: D \to \mathbb{R}$ ist genau dann in x_0 differenzierbar, falls es eine Funktion $\phi: D \to \mathbb{R}$ gibt die stetig in x_0 ist und so, dass

$$f(x) = f(x_0) + \phi(x)(x - x_0) \quad \forall x \in D$$

In diesem Fall gilt $\phi(x_0) = f'(x_0)$

K 4.5 Sei $f:D\to\mathbb{R}$ und $x_0\in D$ ein Häufungspunkt von D. Falls f in x_0 differenzierbar ist, so ist f stetig in x_0

B 4.6

- 1. $f = 1 : \mathbb{R} \to \mathbb{R}$, dann ist $f'(x) = 0 \quad \forall x_0 \in \mathbb{R}$ Folgt aus $f(x) - f(x_0) = 1 - 1 = 0$
- 2. $f: \mathbb{R} \to \mathbb{R}, f(x) = x$. Dann ist $f'(x_0) = 1$ Folgt aus $f(x) - f(x_0) = 1 \cdot (x - x_0)$
- 3. $f: \mathbb{R} \to \mathbb{R}, f(x) = x^2$. Dann ist $f'(x_0) = 2x_0 \quad \forall x_0 \in \mathbb{R}$ Folgt aus:

$$f(x) - f(x_0) = x^2 - x_0^2 = (x - x_0)(x + x_0)$$

Also für $x \neq x_0$:

$$\frac{f(x) - f(x_0)}{x - x_0} = x + x_0$$

woraus

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} (x + x_0) = 2x_0$$
 folgt.

4. $f: \mathbb{R} \to \mathbb{R}, f(x) = |x|$

Ist in $x_0 = 0$ nicht differenzierbar: Für x < 0:

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = -1$$

Für x > 0:

$$\frac{f(x) - f(0)}{x - 0} = \frac{|x|}{x} = 1$$

Also hat für $x \to 0$, $\frac{f(x)-f(0)}{x-0}$ keinen Grenzwert. Für alle $x_0 \neq 0$ ist f in x_0 differenzierbar.

5. (Van der Waerden) Sei für $x \in \mathbb{R}$,

$$g(x) = \min\{|x - m| : m \in \mathbb{Z}\}\$$

Sei

$$f(x) = \sum_{n=0}^{\infty} \frac{g(10^n x)}{10^n}$$

Dann ist nach Satz 3.38 diese Reihe auf ganz $\mathbb R$ gleichmässig konvergent und f ist deswegen stetig. Mittels Dezimalentwicklung kann man zeigen, dass f in keinem Punkt von $\mathbb R$ differenzierbar ist.

D 4.7 $f: D \to \mathbb{R}$ ist in **D differenzierbar**, falls für jeden Häufungspunkt $x_0 \in D$, f in x_0 differenzierbar ist.

B 4.8

1. $\exp: \mathbb{R} \to \mathbb{R}$ ist in \mathbb{R} differenzierbar und exp' = exp Seien $x_0 \in \mathbb{R}$ und $h \neq 0$:

$$\frac{\exp(x_0+h)-\exp(x_0)}{h} =$$

$$\frac{\exp(x_0)\exp(h) - \exp(x_0)}{h} =$$

$$\exp(x_0) \left\lceil \frac{\exp(h) - 1}{h} \right\rceil$$

Also:

$$\exp'(x_0) = \exp(x_0) \lim_{h \to 0} \left[\frac{\exp(h) - 1}{h} \right]$$

Aus $\exp(h) = 1 + h + \frac{h^2}{2!} + \dots$ folgt für $h \neq 0$:

$$\frac{\exp(h)-1}{h} = 1 + \frac{h}{2!} + \frac{h^2}{2!} + \dots$$

und für $h \in [-1, 1], h \neq 0$:

$$\left|\frac{\exp(h)-1}{h}-1\right| \leq |h| \left[\frac{1}{2!} + \frac{|h|}{3!} + \dots\right] \leq 2 |h|$$

woraus

$$\lim_{h \to 0} \left(\frac{\exp(h) - 1}{h} \right) - 1 = 0$$

folgt.

2. $\sin' = \cos und \cos' = -\sin$

S 4.9 Sei $D \subseteq \mathbb{R}, x_0 \in D$ ein Häufungspunkt von D und $f, g: D \to \mathbb{R}$ in x_0 differenzierbar. Dann gelten

1 f + q ist in x_0 differenzierbar und

$$(f+g)'(x_0) = f'(x_0) + g'(x_0)$$

- 2 $f \cdot g$ ist in x_0 differenzierbar und $(f \cdot g)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$
- 3 Falls $g(x_0) \neq 0$ ist $\frac{f}{g}$ in x_0 differenzierbar und

$$\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$$

D Eine Funktion $f: \mathbb{R} \to \mathbb{R}$ heisst gerade(resp. ungerade), falls f(-x) = f(x) (resp. f(-x) = -f(x)) gilt für alle $x \in \mathbb{R}$ B 4.10

- 1. $n > 1 : (x^n)' = nx^{n-1} \quad \forall x \in \mathbb{R}$
- 2. Die Tangensfunktion

$$\tan x = \frac{\sin x}{\cos x}, x \notin \frac{\pi}{2} + \pi \mathbb{Z}$$

ist auf ihrem Definitonsbereich differenzierbar und

$$\tan'(x) = \frac{1}{\cos^2(x)}$$

3. Die Cotangensfunktion

$$\cot x = \frac{\cos x}{\sin x}, x \notin \pi \mathbb{Z}$$

ist auf ihrem Definitonsbereich differenzierbar und

$$\cot'(x) = -\frac{1}{\sin^2(x)}$$

S 4.11 Seien $D, E \subseteq \mathbb{R}$ und sei $x_0 \in D$ ein Häufungspunkt. Sei $f: D \to E$ eine in x_0 differenzierbare Funktion so dass $y_0 := f(x_0)$ ein Häufungspunkt von E ist, und sei $g: E \to \mathbb{R}$ eine in y_0 differenzierbare Funktion. Dann ist $g \circ f: D \to \mathbb{R}$ in x_0 differenzierbar und

$$(g \circ f)'(x_0) = g'(f(x_0))f'(x_0)$$

K 4.12 Sei $f: D \to E$ eine bijektive Funktion, $x_0 \in D$ ein Häufungspunkt; wir nehem an f ist in x_0 differenzierbar und $f'(x) \neq 0$; zudem nehemn wir an f^{-1} ist in $y_0 = f(x_0)$ stetig. Dann ist y_0

Häufungspunkt von E, f^{-1} ist in y_0 differenzierbar und

$$(f^{-1})(y_0) = \frac{1}{f'(x_0)}$$

B 4.13

1. Die Ableitung von $\ln :]0, +\infty[\to \mathbb{R} \text{ ist }]$

$$\ln'(x) = \frac{1}{x}$$

Für alle $x \in \mathbb{R}$ gilt:

$$\ln(\exp(x)) = x$$

S4.11 für
$$f(x) = \exp x$$
 und $g(y) = \ln y$

$$\ln'(\exp x) \exp'(x) = 1 \quad \forall x \in \mathbb{R}$$

und da exp : $\mathbb{R} \to]0, \infty[$ bijektiv ist, folgt:

$$\forall y \in]0, \infty[: \ln'(y) \cdot y = 1$$

4.2 Erste Ableitung

D 4.14 Sei $f: D \to \mathbb{R}, D \subseteq \mathbb{R}$ und $x_0 \in D$

1 f besitzt ein lokales Maximum in x_0 falls es $\delta > 0$ gibt mit:

$$f(x) \le f(x_0) \quad \forall x \in]x_0 - \delta, x_0 + \delta[\cap D]$$

2 f besitzt ein lokales Minimum in x_0 falls es $\delta > 0$ gibt mit:

$$f(x) \ge f(x_0) \quad \forall x \in]x_0 - \delta, x_0 + \delta[\cap D]$$

3 f besitzt ein lokales Extremum in x_0 falls es entweder ein lokales Minimum oder Maximum von f ist.

S 4.15 Sei $f:]a, b[\to \mathbb{R}, x_0 \in]a, b[$. Wir nehmen an, f ist in x_0 differenzierbar

1 Falls f'(x) > 0 gibt es $\delta > 0$ mit

$$f(x) > f(x_0) \quad \forall x \in]x_0, x_0 + \delta[$$

$$f(x) < f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$$

2 Falls $f'(x_0) < 0$ gibt es $\delta > 0$ mit

$$f(x) < f(x_0) \quad \forall x \in]x_0, x_0 + \delta[$$

$$f(x) > f(x_0) \quad \forall x \in]x_0 - \delta, x_0[$$

3 Falls f in x_0 ein lokales Extremum besitzt, folgt $f'(x_0) = 0$

S 4.16 (Rolle 1690). Sei $f:[a,b]\to\mathbb{R}$ stetig und in]a,b[differenzierbar. Erfüllt sie f(a)=f(b) so gibt es $\mathcal{E}\in]a,b[$ mit

$$f'(\mathcal{E}) = 0$$

S 4.17 (Lagrange 1797) Sei $f:[a.b] \to \mathbb{R}$ stetig mit f in]a,b[differenzierbar. Dann gibt es $\mathcal{E} \in]a,b[$ mit

$$f(b) - f(a) = f'(\mathcal{E})(b - a)$$

K 4.18 Seien $f, g: [a, b] \to \mathbb{R}$ stetig und in]a, b[differenzierbar

1 Falls

$$f'(\mathcal{E}) = 0 \quad \forall \mathcal{E} \in]a, b[$$
 ist f konstant

- 2 Falls $f'(\mathcal{E}) = g'(\mathcal{E}) \quad \forall \mathcal{E} \in]a, b[$ gibt es $c \in \mathbb{R} \ \text{mit} f(x) = g(x) + c \quad \forall x \in [a, b].$
- 3 Falls $f'(\mathcal{E}) \ge 0 \quad \forall \mathcal{E} \in]a, b[$ ist f auf [a, b]monoton wachsend
- 4 Falls $f'(\mathcal{E}) > 0 \quad \forall \mathcal{E} \in]a,b[$ ist f auf[a,b] strikt monoton wachsend
- 5 Falls $f'(\mathcal{E}) \leq 0 \quad \forall \mathcal{E} \in]a, b[$ ist f auf [a, b]monoton fallend
- 6 Falls $f'(\mathcal{E}) < 0 \quad \forall \mathcal{E} \in]a, b[$ ist f auf [a, b]strikt monoton fallend
- 7 Falls es $M \ge 0$ gibt mit

$$|f'(\mathcal{E})| \le M \quad \forall \mathcal{E} \in]a, b[$$

dann folgt $\forall x_1, x_2 \in [a, b]$:

$$|f(x_1) - f(x_2)| \le M |x_1 - x_2|$$

B 4.19

1. $\underline{\operatorname{arcsin}}$: Da $\sin' = \cos$ und $\cos(x) > 0$ $\forall x \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ folgt aus K4.18, dass die Sinusfunktion auf $\left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$ strikt monoton wachsend ist, also ist

$$sin: \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \rightarrow [-1, 1]$$

bijektiv. Wir definieren

$$\arcsin: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

als die Umkehrfunktion von sin. Nach 4.12 ist sie auf]-1,1[differenzierbar und für $y=\sin x,\ x\in]-\frac{\pi}{2},\frac{\pi}{2}[$ folgt nach 4.12

$$\arcsin'(y) = \frac{1}{\sin'(x)} = \frac{1}{\cos x}$$

Nun benützen wir:

$$y^2 = \sin^2 x = 1 - \cos^2 x$$

woraus mit $\cos x > 0$ folgt:

$$\cos x = \sqrt{1 - y^2}$$

Wir erhalten also $\forall y \in]-1,1[$

$$\arcsin'(y) = \frac{1}{\sqrt{1 - y^2}}$$

2. <u>arccos</u>: Eine analoge Diskussion zeigt, dass $\cos : [0, \pi] \to [-1, 1]$ strikt monoton fallend ist, und $[0, \pi]$ auf [-1, 1] bijektiv abbildet. Sei:

$$\arccos: [-1,1] \to [0,\pi]$$

die Umkehrfunktion. Sie ist auf]-1,1[differenzierbar und:

$$\arccos'(y) = \frac{-1}{\sqrt{1-y^2}} \quad \forall y \in]-1,1[$$

3. arctan: Für $x \notin \frac{\pi}{2} + \pi \cdot \mathbb{Z}$

$$\tan x = \frac{\sin x}{\cos x}$$

$$\tan' x = \frac{1}{\cos^2 x}$$

Also ist tan auf $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ streng monoton wachsend mit

$$\lim_{x \to \frac{\pi}{2}^-} \tan x = +\infty,$$

$$\lim_{x \to \frac{\pi}{2}^+} \tan x = -\infty,$$

Also ist tan : $]-\frac{\pi}{2}, \frac{\pi}{2}[\to]-\infty, \infty[$ bijektiv. Sei

$$\arctan:]-\infty, \infty[\to]-\frac{\pi}{2}, \frac{\pi}{2}[$$

die Umkehrfunktion. Dann ist arctan differen-

zierbar und für $y = \tan x$:

$$\arctan'(y) = \cos^2 x = \frac{1}{1+y^2}$$

4. $\underline{\operatorname{arccot}}$: Für $x \notin \pi \cdot \mathbb{Z}$

$$\cot x = \frac{\cos x}{\sin x}$$

$$\cot'(x) = -\frac{1}{\sin^2 x}$$

Die Cotangensfunktion ist auf $]0,\pi[$ streng monoton fallend und bildet $]0,\pi[$ bijektiv auf $]-\infty,\infty[$ ab. Sei:

$$\operatorname{arccot}:]-\infty, \infty[\to]0, \pi[$$

die Umkehrfunktion. Dann folgt:

$$\operatorname{arccot}'(y) = -\frac{1}{1+y^2}, \quad y \in]-\infty, \infty[$$

B 4.20 (Hyperbel und Areafunktionen)

Als Hyperbelfunktionen bezeichnet man die Funktionen $\cosh x$, $\sinh x$, $\tanh x$ definiert $\forall x \in \mathbb{R}$:

$$\cosh x = \frac{e^x + e^{-x}}{2}$$

$$\sinh x = \frac{e^x - e^{-x}}{2}$$

$$\tanh x = \frac{\sinh x}{\cosh x} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\cosh'(x) = \frac{e^x - e^{-x}}{2} = \sinh x$$

$$\sinh'(x) = \frac{e^x + e^{-x}}{2} = \cosh x$$

Offensichtlich gilt $\cosh x \geq 1 \quad \forall x \in \mathbb{R}, \sinh x \geq 0 \quad \forall x \in [0, +\infty[\,, \sinh(0) = 0.$ Daraus folgt: \cosh ist auf $[0, \infty[\, \text{strikt monoton wachsend}, \cosh(0) = 1$ und $\lim_{x \to +\infty} \cosh x = +\infty.$

$$\cosh:[0,\infty[\,\to[1,\infty[\,$$

bijektiv. Deren Umkehrfunktion wird mit

$$\mathrm{arcosh}: [1,\infty[\,\to [0,\infty[$$

bezeichnet. Unter benützung von

$$\cosh^2(x) - \sinh^2(x) = 1 \quad \forall x \in \mathbb{R}$$

folgt:

$$\operatorname{arcosh}'(y) = \frac{1}{\sqrt{y^2 - 1}} \quad \forall y \in]1, \infty[$$

Analog:

$$\sinh: \mathbb{R} \to \mathbb{R}$$

streng monoton wachsend und bijektiv. Die Umkehrfunktion wird mit

$$\operatorname{arsinh}:\mathbb{R}\to\mathbb{R}$$

bezeichnet und es gilt:

$$\operatorname{arsinh}'(y) = \frac{1}{\sqrt{1+y^2}} \quad \forall y \in \mathbb{R}$$

Für tanh folgt:

$$\tanh'(x) = \frac{1}{\cosh^2(x)} > 0$$

Also ist tanh auf $\mathbb R$ streng monoton wachsend und man zeigt, dass

$$\lim_{x \to +\infty} \tanh(x) = 1$$

$$\lim_{x \to -\infty} \tanh(x) = -1$$

Die Funktion tanh : $\mathbb{R} \to]-1,1[$ ist bijektiv. Ihre Umkehrabbildung wird mit

$$\operatorname{artanh}:]-1,1[\to \mathbb{R}$$

bezeichnet. Es gilt dann:

$$\operatorname{artanh}'(y) = \frac{1}{1 - y^2} \quad \forall y \in]-1, 1[$$

S 4.22 (Cauchy). Seien $f,g:[a,b]\to\mathbb{R}$ stetig und in]a,b[differenzierbar. Dann gibt es $\mathcal{E}\in]a.b[$ mit

$$g'(\mathcal{E})(f(b) - f(a)) = f'(\mathcal{E})(g(b) - g(a))$$

Falls $g'(x) \neq 0 \quad \forall x \in]a, b[$ folgt

$$g(a) \neq g(b)$$

und

$$\frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\mathcal{E})}{g'(\mathcal{E})}$$

Randnotiz: Man erhält den Satz von Lagrange mit g(x)=x

S 4.23 (l'Hospital 1696) Seien $f,g:]a,b[\to \mathbb{R}$ differenzierbar mit $g'(x)\neq 0 \quad \forall x\in]a,b[$ Falls

$$\lim_{x \to b^{-}} f(x) = 0, \lim_{x \to b^{-}} g(x) = 0$$

und

$$\lim_{x \to b^{-}} \frac{f'(x)}{g'(x)} =: \lambda$$

existiert, folgt

$$\lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \lim_{x \to b^{-}} \frac{f'(x)}{g'(x)}$$

Bem: 4.24 Der Satz gilt auch

- falls $b = +\infty$
- falls $\lambda = +\infty$
- falls $x \to a^+$

B 4.25

1. Für a>0 folgt aus S4.13 (1), (2) und l'Hospital:

$$\lim_{x \to \infty} \frac{\ln x}{x^a} = \lim_{x \to \infty} \frac{\left(\frac{1}{x}\right)}{ax^{a-1}} = \lim_{x \to \infty} \frac{1}{ax^a} = 0$$

2.

$$\lim_{x \to 0^+} x \cdot \ln x = \lim_{x \to 0^+} \frac{\ln x}{\left(\frac{1}{x}\right)} =$$

$$\lim_{x \to 0^+} \frac{\frac{1}{x}}{-\frac{1}{x^2}} = \lim_{x \to 0^+} (-x) = 0$$

D 4.26 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ eine Funktion.

- 1 f ist **konvex** (auf I) falls es für alle $x \leq y$, $x, y \in I$ und $\lambda \in [0, 1]$ $f(\lambda x + (1 \lambda)y) \leq \lambda f(x) + (1 \lambda)f(y)$ gilt
- 2 f ist **streng konvex** falls für alle x < y, $x, y \in I$ und $\lambda \in]0, 1[$ $f(\lambda x + (1 \lambda)y) < \lambda f(x) + (1 \lambda)f(y)$

Bem: 4.27 Sei $f: I \to \mathbb{R}$ konvex. Ein einfacher Induktionsbeweis zeigt, dass für alle $n \ge 1, \{x_1, \dots x_n\} \subseteq I$ und $\lambda_1, \dots, \lambda_n$ in [0, 1] mit $\sum_{i=1}^n \lambda_i = 1$

$$f\left(\sum_{i=1}^{n} \lambda_i x_i\right) \le \sum_{i=1}^{n} \lambda_i f(x_i)$$

L 4.28 Sei $f: I \to \mathbb{R}$ eine beliebige Funktion. Die Funktion f ist genau dann konvex, falls für alle $x_0 < x < x_1$ in I

$$\frac{f(x) - f(x_0)}{x - x_0} \le \frac{f(x_1) - f(x)}{x_1 - x}$$

rilt.

f ist streng konvex wenn < gilt

S 4.29 Sei $f:]a, b[\rightarrow \mathbb{R}$ in]a, b[differenzierbar.

Die Funktion f ist genau dann (streng) konvex, falls f' (streng) monoton wachsend ist.

K 4.30 Sei $f:]a,b[\to \mathbb{R}$ zweimal differenzierbar in]a.b[. Die Funktion f ist (streng) konvex, falls $f'' \le 0$ (bzw f'' > 0) auf]a,b[

B 4.31 Für alle $n \ge 1$ und $x_1 \dots x_n$ in $]0, \infty[$ gilt

$$\sqrt[n]{x_1 \dots x_n} \le \frac{x_1 + \dots + x_n}{n}$$

Wir betrachten $f(x) = -\ln x$, dann ist

$$f'(x) = -\frac{1}{x}$$

und

$$f''(x) = \frac{1}{x^2}, \ x \in]0, \infty[$$

Folglich ist f konvex und aus Bem. 4.27 mit $I =]0, \infty[$ und $\lambda_1 = \cdots = \lambda_n = \frac{1}{n}$ folgt:

$$-\ln\left(\frac{1}{n}\sum_{i=1}^{n}x_{i}\right) \leq \sum_{i=1}^{n}-\frac{1}{n}\ln x_{i} = -\frac{1}{n}\ln(x_{1},\dots x_{n})$$

4.3 Höhere Ableitungen

D 4.32 Sei $D \subseteq \mathbb{R}$, so dass jedes $x_0 \in D$ Häufungspunkt der Menge D ist. Sei $f: D \to \mathbb{R}$ differenzierbar in D und f' ihre Ableitung; wir setzen $f^{(1)} = f'$

- 1 Für $n \ge 2$ ist f **n-mal differenzierbar in D** falls $f^{(n-1)}$ in D differenzierbar ist. Dann ist $f^{(n)} := (f^{(n-1)})'$ und nennt sich die n-te Ableitung von f
- 2 Die Funktion f ist **n-mal stetig differenzierbar in D**, falls sie n-mal differenzierbar ist und falls $f^{(n)}$ in D stetig ist
- 3 Die Funktion f ist in D glatt, falls sie $\forall n \geq 1$, n-mal differenzierbar ist.

Bem: 4.33 Es folgt aus Korollar 4.5, dass für $n \ge 1$, eine n-mal differenzierbare Funktion (n-1)-mal differenzierbar ist.

S 4.34 Sei $D \subseteq \mathbb{R}$ wie in Def. 4.32, $n \ge 1$ und $f, g: D \to \mathbb{R}$ n-mal differenzierbar in D

1 f + q ist n-mal differenzierbar und

$$(f+q)^{(n)} = f^{(n)} + q^{(n)}$$

2 $f \cdot g$ ist n-mal differenzierbar und

$$(f \cdot g)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} f^{(k)} g^{(n-k)}$$

B 4.35

- 1. Die Funktionen exp, sin, cos, sinh, cosh, tanh sind glatt auf ganz \mathbb{R}
- 2. Polynome sind auf ganz \mathbb{R} glatt.

3. $\ln :]0, +\infty[\to \mathbb{R} \text{ ist glatt};]$

$$(\ln)'(x) = \frac{1}{x} = x^{-1}, \ (\ln)''(x) = (-1)x^{-2}, \dots$$

$$\ln^{(n)}(x) = (-1)^{n-1}(n-1)!x^{-n}, \ n \ge 1$$

S 4.36 Sei $D \subseteq \mathbb{R}$ wie in Def. 4.32, $n \ge 1$ und $f,g:D \to \mathbb{R}$ n-mal differenzierbar in D Falls $g(x) \ne 0 \quad \forall x \in D$, ist $\frac{f}{g}$ in D n-mal differenzierbar

S 4.37 Seien $E, D \subseteq \mathbb{R}$ Teilmengen für die jeder Punkt Häufungspunkt ist. Seien $f: D \to E$ und $g: E \to \mathbb{R}$ n-mal differenzierbar. Dann ist $g \circ f$ n-mal differenzierbar und

$$(g \circ f)^{(n)}(x) = \sum_{k=1}^{n} A_{n,k}(x)(g^{(k)} \circ f)(x)$$

wobei $A_{n,k}$ ein Polynom in den Funktionen $f', f^{(2)}, \ldots, f^{(n+1-k)}$ ist

$$(g \circ f)' = (g' \circ f) \cdot f'$$
$$(g \circ f)^{(2)} = (g^{(2)} \circ f)(f')^2 + (g' \circ f) \cdot f^{(2)}$$
$$(g \circ f)^{(3)} =$$

$$(g^{(3)}\circ f)(f')^3 + 3(g^{(2)}\circ f)f'f^{(2)} + (g'\circ f)f^{(3)}$$

${\bf 4.4}\quad {\bf Potenzreihen}\ \&\ {\bf Taylor}\ {\bf Approx}.$

In diesem Abschnitt zeigen wir, dass grob gesagt, konvergente Potenzreihen glatte Funktionen ergeben. Die Umkehrung gilt im Allgemeinen nicht und wird durch eine schwächere Aussage (Taylor Approximation) ersetzt.

S 4.39 Seien $f_n:]a,b[\to \mathbb{R}$ eine Funktionsfolge wobei f_n einmal in]a,b[stetig differenzierbar ist $\forall n \geq 1$. Wir nehemen an, dass sowohl die Folge $(f_n)_{n\geq 1}$ wie $(f'_n)_{n\geq 1}$ gleichmässig in]a,b[konvergieren (Def. 3.34) mit $\lim_{n\to\infty} f_n =: f$ und

 $\lim_{n\to\infty}f_n'=:p.$

Dann ist f stetig differenzierbar und f' = p

S 4.40 Sei $\sum_{k=0}^{\infty} c_k x^k$ eine Potenzreihen mit positivem Konvergenzradius (3.39) $\rho > 0$. Dann ist

$$f(x) = \sum_{k=0}^{\infty} c_k (x - x_0)^k$$

auf $]x_0 - \rho, x_0 + \rho[$ differenzierbar und

$$f'(x) = \sum_{k=1}^{\infty} kc_k (x - x_0)^{k-1}$$

für alle $x \in]x_0 - \rho, x_0 + \rho[$

K 4.41 Unter der Voraussetzung von Satz 4.39 ist f auf $|x_0 - \rho, x_0 + \rho|$ glatt und

$$f^{(j)}(x) = \sum_{k=j}^{\infty} c_k \frac{k!}{(k-j)!} (x - x_0)^{k-j}$$

Insbesondere ist

$$c_j = \frac{f^{(j)}(x_0)}{j!}$$

B 4.42 (Cauchy 1823)

Das nicht jede glatte Funktion Summe einer Potenzreihe ist, folgt aus diesem Beispiel

$$f(x) = \begin{cases} \exp\left(\frac{-1}{x^2}\right) & x \neq 0\\ 0 & x = 0 \end{cases}$$

Diese Funktion ist auf ganz $\mathbb R$ glatt und $f^{(k)}(0) = 0 \quad \forall k \geq 0$. Da andererseits $f(x) > 0 \quad \forall x \neq 0$, gibt es keine Potenzreihe mit positivem Konvergenzradius ρ , die in $]-\rho, \rho[$ gegen f konvergiert.

Aus Satz 4.37 folgt, dass $\forall k \geq 0$

$$f^{(k)}(x) = \mathcal{P}_k\left(\frac{1}{x}\right) \exp\left(\frac{-1}{x^2}\right) \quad \forall x \neq 0$$

wobei \mathcal{P}_k ein Polynom ist. Unter Benützung von:

$$\lim_{x \to 0} \frac{1}{x^m} \exp\left(\frac{-1}{x^2}\right) = 0 \quad \forall m \ge 0$$

folgt mit $f^{(k)}(0) = 0$:

$$f^{(k+1)}(0) = \lim_{x \to 0} \frac{f^k(x) - f^{(k)}(0)}{x} = \lim_{x \to 0} \frac{f^{(k)}(x)}{x} = 0$$

S 4.43 Sei $f : [a, b] \to \mathbb{R}$ stetig und in]a, b[(n+1)-mal differenzierbar. Für jedes $a < x \le b$ gibt es $\mathcal{E} \in]a, x[$ mit:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\mathcal{E})}{(n+1)!} (x-a)^{n+1}$$

K 4.44 (Taylor Approximatio) Sei $f:[c,d] \to \mathbb{R}$ stetig und in]c,d[(n+1)-mal differenzierbar. Sei c < a < d. Für alle $x \in [c,d]$ gibt es \mathcal{E} zwischen x und a so dass

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x-a)^k + \frac{f^{(n+1)}(\mathcal{E})}{(n+1)} (x-a)^{n+1}$$

Anhand dieses Korollars können wir eine präzisere Aussage über lokale Extremalstellen einer (n+1)-mal differenzierbaren Funktion machen.

K 4.45 Sei $n \geq 0, a < x_0 < b$ und $f: [a, b] \to \mathbb{R}$ in]a, b[(n+1)-mal stetig differenzierbar. Annahme: $f'(x_0) = f^{(2)}(x_0) = \cdots = f^{(n)}(x_0) = 0$

- 1 Falls
n gerade ist und x_0 lokale Extremalstelle, folg
t $f^{(n+1)}(x_0)=0$
- 2 Falls n ungerade ist und $f^{(n+1)}(x_0) > 0$ so ist x_0 eine strikt lokale Minimalstelle
- 3 Falls n ungerade ist und $f^{(n+1)}(x_0) < 0$ so ist x_0 eine strikt lokale Maximalstelle

K 4.46 Sei $f : [a.b] \to \mathbb{R}$ stetig und in]a,b[zweimal stetig differenzierbar. Sei $x < x_0 < b$. Annahme: f'(x) = 0

- 1 Falls $f^{(2)}(x_0) > 0$ ist x_0 strikte lokale Minimalstelle
- 2 Falls $f^{(2)}(x_0) < 0$ ist x_0 strikte lokale Maximalstelle

B 4.47 Sei $f(x) = x^4 - x^2 + 1$. Wir bestimmen die lokalen Extremalstellen von f. Sei x_0 eine solche; dann folgt nacht Satz 4.15(3):

$$f'(x_0) = 0,$$

das heisst

$$4x_0^3 - 2x_0 = 0.$$

Also gilt $x_0 \in \left\{ -\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \right\}$. Nun ist $f^{(2)}(x) = 12x^2 - 2$:

$$f^{(2)}\left(-\frac{1}{\sqrt{2}}\right) = f^{(2)}\left(\frac{1}{\sqrt{2}}\right) = 4 > 0$$

$$f^{(2)}(0) = -2 < 0$$

Also sind $-\frac{1}{\sqrt{2}}$ und $\frac{1}{\sqrt{2}}$ strikte lokale Minimalstellen, und 0 strikte lokale Maximalstelle.

5 Das Riemann Integral5.1 Integrabilitätskriterien

D 5.1 Eine **Partition** von I ist eine endliche Teilmenge $P \subsetneq [a,b]$ wobei $\{a,b\} \subseteq P$ **L** 5.2

1 Sei P' eine Verfeinerung von P, dann gilt:

$$s(f.P) \le s(f, P') \le S(f, P') \le S(f, P)$$

2 Für beliebige Partitionen P_1, P_2 gilt:

$$s(f, P_1) < S(f, P_2)$$

D 5.3 Eine beschränkte Funktion $f:[a,b] \to \mathbb{R}$ ist **Riemann integrierbar** falls

$$s(f) = S(f)$$

In diesem Fall bezeichnen wir den gemeinsamen Wert von s(f) und S(f) mit

$$\int_a^b f(x) \, dx$$

S 5.4 Eine beschränkte Funtkion ist genau dann integrierbar, falls

$$\forall \epsilon > 0 \quad \exists P \in \mathcal{P}(I)$$

mit $S(f,P)-s(f,P)<\epsilon$ **S** 5.8(Du Bois-Reymond 1875) Eine beschränkte Funktion $f:[a,b]\to\mathbb{R}$ ist genau dann integrierbar, falls $\forall \epsilon>0$ $\exists \delta>0$ so dass

$$\forall P \in P_{\delta}(I), S(f, P) - s(f, P) < \epsilon$$

K 5.9 Die beschränkte Funktion $f:[a,b] \to \mathbb{R}$ ist genau dann integrierbar mit $A:=\int_a^b f(x)\,dx$ falls: $\forall \epsilon>0 \quad \exists \delta>0$ so dass $\forall P\in p(I)$ Partition mit

 $\delta(P) < \delta \text{ und } \epsilon_1, \dots, \epsilon_n \text{ mit } \mathcal{E}_i \in [x_{i-1}, x_i], P = \{x_0, \dots, x_n\}$

$$\left| A - \sum_{i=1}^{n} f(\mathcal{E}_{\rangle})(x_i - x_{i-1}) \right| << epsilon$$

5.2 Integrierbare Funktionen

S 5.10 Seien $f,g:[a,b]\to\mathbb{R}$ beschränkt, integrierbar und $\lambda\in\mathbb{R}$. Dann sind $f+g,\lambda\cdot f,f\cdot g,|f|,\max(f,g),\min(f,g)$ und $\frac{f}{g}$ (falls $|g(x)\geq\beta>0\quad\forall x\in[a,b]$) integrierbar **Bem:** 5.11 Sei $\phi:[c,d]\to\mathbb{R}$ eine beschränkte Funktion. Dann ist

$$\sup_{x,y \in [c,d]} |\phi(x) - \phi(y)| = \sup_{x \in [c,d]} \phi(x) - \inf_{x \in [c,d]} \phi(x)$$

K 5.12 Seien P,; Polynome und [a, b] ein Intervall in dem Q keine Nullstelle besitzt. Dann ist

$$[a,b] \to \mathbb{R}$$

$$x o \frac{P(x)}{Q(x)}$$

integrierbar D 5.13 Eine Funktion $f: D \to \mathbb{R}$, $D \subseteq \mathbb{R}$ ist in D gleichmässig stetig, falls $\forall \epsilon > 0 \quad \exists \delta > 0 \quad \forall x, y \in D$:

$$|x - y| < \delta \implies |f(x) - f(y)| < \epsilon$$

S 5.15 (Heine 1872). Sei $f:[a,b] \to \mathbb{R}$ stetig in dem kompakten Intervall [a,b]. Dann ist f in [a,b] gleichmässig stetig. **S** 5.16 Sei $f:[a,b] \to \mathbb{R}$ stetig. Dann ist f integrierbar **S** 5.17 Sei $f:[a,b] \to \mathbb{R}$ monoton. Dann ist f integrierbar **Bene**: 5.18 Seien a < b < c und $f:[a.c] \to \mathbb{R}$ beschränkt mit $f|_{[a,b]}$ und $f|_{[b,c]}$ integrierbar. Dann ist f integrierbar und

$$\int_{a}^{c} f(x) dx = \int_{a}^{c} f(x) dx + \int_{b}^{c} f(x) dx$$

S 5.19 Sei $I \subseteq \mathbb{R}$ ein kompaktes Intervall mit Endpunkten a,b sowie $f_1, f_2 : I \to \mathbb{R}$ beschränkt integrierbar und $\lambda_1, \lambda_2 \in \mathbb{R}$. Dann gilt:

$$\int_{a}^{b} (\lambda_{1} f_{1}(x) + \lambda_{2} f_{2}(x)) dx = \lambda_{1} \int_{a}^{b} f_{1}(x) dx + \lambda_{2} \int_{a}^{b} f_{2}(x) dx + \lambda_{3} \int_{a}^{b} f_{2}(x) dx + \lambda_{4} \int_{a}^{b} f_{3}(x) dx + \lambda_{5} \int_{a}^{b}$$

5.3 Ungleichungen und Mittelwertsatz

S 5.20 Seien $f,g:[a,b]\to\mathbb{R}$ beschränkt integrierbar, und

$$f(x) \le g(x) \quad \forall x \in [a, b]$$

Dann folgt:

$$\int_{a}^{b} f(x) \, dx \le \int_{a}^{b} g(x) \, dx$$

K 5.21 Falls $f:[a,b]\to\mathbb{R}$ beschränkt integrierbar, folgt

$$\left| \int_{a}^{b} f(x) \, dx \right| \le \int_{a}^{b} |f(x)| \, dx$$

S 5.22(Cauchy-Schwarz Ungleichung 1821) Seien $f, g: [a, b] \to \mathbb{R}$ beschränkt integrierbar. Dann gilt:

$$\left| \int_a^b f(x)g(x) \, dx \right| \leq \sqrt{\int_a^b f^2(x) \, dx} \sqrt{\int_a^b g^2(x) \, dx}$$

S 5.23(Mittelwertsatz, Cauchy 1821) Sei f: $[a,b] \to \mathbb{R}$ stetig. Dann gibt es $\mathcal{E} \in [a,b]$ mit:

$$\int_{a}^{b} f(x) dx = f(\mathcal{E})(b - a)$$

S 5.25(Cauchy 1821) SEien $f, g : [a, b] \to \mathbb{R}$ wobei f stetig, g beschränkt integrierbar mit q(x) > $0 \quad \forall x \in [a, b]$. Dann gibt es $\mathcal{E} \in [a, b]$ mit

$$\int_a^b f(x)g(x)\,dx = f(\mathcal{E})\int_a^b g(x)\,dx$$

5.4 Fundamentalsatz

S 5.26 Seien a < b und $f : [a, b] \to \mathbb{R}$ stetig. Die Funktion

$$F(x) = \int_{a}^{x} f(t) dt \quad a \le x \le b$$

ist in [a, b] stetig differenzierbar und

$$F'(x) = f(x) \quad \forall x \in [a, b]$$

D 5.27 Sei a < b und $f: [a,b] \to \mathbb{R}$ stetig. Eine Funktion $F:[a,b] \to \mathbb{R}$ heisst **Stammfunktion** von f, falls F (stetig) differenzierbar in [a, b] ist und F' = f in [a, b] gilt **S** 5.28 (Fundamentalsatz der Differential rechnung Sei $f:[a.b] \to \mathbb{R}$ stetig. Dann gibt es eine Stammfunktion F von f, die bis auf eine additive Konstante eindeutig bestimmt ist und es

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

S 5.30(Partielle Integration) Seien a < b reele Zahlen und $f, g: [a, b] \to \mathbb{R}$ stetig differenzierbar. Dann

$$\int_a^b f(x)g'(x) dx = f(b)g(b) - f(a)g(a) - \int_a^b f'(x)g(x) dx B_k(x) = k! P_k(x) D 5.41 \text{ Sei } B_0 = 1 \text{ für alle } k \ge 2$$
definieren wir B_{k-1} rekursiv:

S 5.31(Substitution) Sei $a < b, \phi : [a, b] \to \mathbb{R}$ stetig differenzierbar, $I \subseteq \mathbb{R}$ ein Intervall mit $\phi([a,b]) \subseteq I$ und $f: I \to \mathbb{R}$ eine stetige Funktion. Dann gilt:

$$\int_{\phi(a)}^{\phi(b)} f(x) dx = \int_a^b f(\phi(t))\phi'(t) dt$$

K 5.33 Sei $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ stetig.

1 Seien $a, b, c \in \mathbb{R}$ so dass das abgeschlossene Intervall mit Endpunkten a+c, b+c in I enthalten ist. Dann gilt:

$$\int_{a+c}^{b+c} f(x) dx = \int_{a}^{b} f(t+c) dt$$

2 Seien $a, b, c \in \mathbb{R}$ mit $c \neq 0$ so dass das abgeschlossene Intervall mit Endpunkten ac, bc in I enthalten ist. Dann gilt:

$$\int_{a}^{b} f(ct) dt = \frac{1}{c} \int_{ac}^{bc} f(x) dx$$

5.5 Integration konvergenter Reihen

S 5.34 Sei f_n : $[a,b] \rightarrow \mathbb{R}$ eine Folge von beschränkten, integrierbaren Funktionen die gleichmässig gegen eine Funktion $f:[a,b]\to\mathbb{R}$ konvergiert. Dann ist f beschränkt integrierbar und

$$\lim_{n \to \infty} \int_{a}^{b} f_n(x) dx = \int_{a}^{b} f(x) dx$$

K 5.35 Sei $f_n:[a,b]\to\mathbb{R}$ eine Folge beschränkter integrierbarer Funktionen so dass

$$\sum_{n=0}^{\infty} f_n$$

auf [a.b] gleichmässig konvergiert. Dann gilt :

$$\sum_{n=0}^{\infty} \int_{a}^{b} f_n(x) \, dx = \int_{a}^{b} \left(\sum_{n=0}^{\infty} f_n(x) \right) dx$$

K 5.36 Sei

$$f(x) = \sum_{n=0}^{\infty} c_k x^k$$

eine Potenzreihe mit positivem Konvergenzradius $\rho > 0$. Dann ist für jedes $0 < r < \rho$, f auf [-r, r]integrierbar und es gilt $\forall x \in]-\rho, \rho[$:

$$\int_{0}^{x} f(t)dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} x^{n+1}$$

5.6 Euler-McLaurin Summationsformel

D 5.40 $\forall k > 0$ ist das k'te Bernoulli Polynom definieren wir B_{k-1} rekursiv:

$$\sum_{i=0}^{k-1} \binom{k}{i} B_i = 0$$

S 5.42

$$B_k(x) = \sum_{i=0}^k \binom{k}{i} B_i x^{k-i}$$

Bem: 5.43 Für k > 2:

$$B_k(1) = \sum_{i=0}^k \binom{k}{i}$$

$$= B_k \quad \text{(nach 5.41)}$$

$$= B_k(0) \quad \text{(nach Satz 5.42)}.$$

Zur Aussage der Summationsformel definieren wir für k > 1

$$\widetilde{B}_k: [0,\infty[\longrightarrow \mathbb{R}]$$

$$\widetilde{B}_k(x) = \begin{cases} B_k(x) & \text{für } 0 \le x < 1 \\ B_k(x-n) & \text{für } n \le x < n+1 \text{ wobei } n \ge 1 \end{cases}$$

S 5.44 Sei $f:[0,n]\to\mathbb{R}$ k-mal stetig differenzierbar, $k \geq 1$. Dann gilt :

1 Für k = 1:

$$\sum_{i=1}^{n} f(i) = \int_{0}^{n} f(x) dx + \frac{1}{2} (f(n) - f(0)) + \int_{0}^{n} \tilde{B}_{1}(x) dx$$

2 Für k > 2:

$$\sum_{i=1}^n f(i) = \int_0^n f(x) \, dx + \frac{1}{2} (f(n) - f(0)) + \sum_{J=2}^k \frac{(-1)^J R_{\text{inistigatt}} (n) \underline{\text{dig}(\text{spin})} [n]}{j!} \underbrace{\text{wird}}_{b} \text{der Grenzwert mit} \frac{1}{j!} \underbrace{\int_a^b f(x) \, dx}_{b} \text{bezeichnet}$$

wobei

$$\tilde{R}_k = \frac{(-1)^{k-1}}{k!} \int_0^n \tilde{B}_k(x) f^{(k)}(x) dx$$

5.7 Stirling'sche Formel

S 5.47

$$n! = \frac{\sqrt{2\pi n}n^n}{e^n} \cdot \exp(\frac{1}{12n} + R_3(n))$$

$$|R_3(n)| \le \frac{\sqrt{3}}{216 \cdot \frac{1}{n^2}} \quad \forall n \ge 1$$

L 5.48 $\forall m > n+1 > 1$:

$$|R_3(m,n)| \le \frac{\sqrt{3}}{216} (\frac{1}{n^2} - \frac{1}{m^2})$$

5.8 Uneigentliche Integrale

D 5.49 Sei $f: [a, \infty] \to \mathbb{R}$ beschränkt und integrierbar auf [a, b] für alle b > a. Falls

$$\lim_{b \to \infty} \int_a^b f(x) \, dx$$

existiert, bezeichnen wir den Grenzwert mit

$$\int_{-\infty}^{\infty} f(x\,dx)$$

und sagen, dass f auf $[a, +\infty[$ integrierbar ist. **L** 5.51 Sei $f:[a,\infty[\to\mathbb{R} \text{ beschränkt und integrierb}B_k \text{ auf } [a,b] \quad \forall b>a$

- 1 Falls $|f(x)| < q(x) \quad \forall x > a \text{ und } q(x) \text{ ist auf}$ $[a, \infty[$ integrierbar, so ist f auf $[a, \infty[$ integrier-
- 2 Falls $0 \le g(x) \le f(x)$ und \int_a^{∞} divergiert, so divergiert auch $\int_{a}^{\infty} f(x) dx$

S 5.53 (McLaurin 1742) Sei $f: [1, \infty] \rightarrow [0, \infty]$ monoton fallend. Die Reihe

$$\sum_{n=1}^{\infty} f(n)$$

konvergiert genau dann, wenn

$$\int_{1}^{\infty} f(x) dx$$

 $\sum_{i=1}^{n} f(i) = \int_{0}^{n} f(x) dx + \frac{1}{2} (f(n) - f(0)) + \int_{0}^{n} \tilde{B}_{1}(x) f_{0}^{\text{konvergiert}} \underbrace{\mathbf{D}}_{i} 5.56 \text{ In dieser Siutation ist } f :$

$$\lim_{\epsilon \to 0^+} \int_{a+\epsilon}^b f(x) \, dx$$

5.9 Die Gamma Funktion

D 5.59 Für s ; 0 definieren wir

$$\Gamma(s) := \int_0^\infty e^{-x} x^{s-1} dx$$

S 5.60(Bohr-Mollerup)

1 Die Gamme Funktion erfüllt die Relationen

- (a) $\Gamma(1) = 1$
- (b) $\Gamma(s+1) = s\Gamma(s) \quad \forall s > 0$
- (c) Γ ist logarithmisch, das heisst

$$\Gamma(\lambda x + (1 - \lambda)y) \le \Gamma(x)^{\lambda} \Gamma(y)^{1 - \lambda}$$
 für alle $x, y > 0$ und $0 < \lambda < 1$

2 Die Gamme Funktion ist die einzige Funktion $0, \infty[\rightarrow]0, \infty[$ die (a), (b) und (c) erfüllt.

Darüber hinaus gilt: $\Gamma(x) = \lim_{n \to +\infty} \frac{n! n^x}{x(x+1)\dots(x+n)} \quad \forall x > 0$

L 5.61 Sei $\rho > 1$ und q > 1 mit

$$\frac{1}{p} + \frac{1}{q} = 1$$

Dann gilt $\forall a, b > 0$

$$a \cdot b \le \frac{a^p}{p} + \frac{b^q}{q}$$

 ${\color{red}\mathbf{S}}$ 5.62(Hölder Ungleichung). Seien $\rho>1$ und q>1 mit $\frac{1}{p}+\frac{1}{q}=1.$ Für alle $f,g:[a,b]\to\mathbb{R}$ stetig gilt: $\int_a^b |f(x)g(x)|\ dx \leq ||f||_p\,||g||_q$

5.10 Das unbestimmte Integral