

Medidas de Discrepância Estatística Generalizada de Pearson

Estatística Generalizada de Pearson

Outra medida de discrepância é a estatística de Pearson generalizada X_p^2

$$X_p^2 = \sum_{i=1}^n \frac{(y_i - \widehat{\mu_i})^2}{V(\widehat{\mu_i})}$$

Em que $V(\widehat{\mu_i})$ é a função de variância estimada do modelo proposto.

Para respostas que seguem distribuição normal temos que $\mathbf{X}_p^2 = D_p$, e então

$$X_p^2 = \sigma^2 SQRes \sim \sigma^2 \chi_p^2$$

Estatística Generalizada de Pearson

Para respostas provenientes das distribuições binomial e Poisson, a estatística X_p^2 . É a estatística original de Pearson , utilizada na análise dos modelos logísticos e log-lineares , isto é:

$$X_p^2 = \sum_{i=1}^n \frac{\left(o_j - e_i\right)^2}{e_i}$$

Em que o_i e e_i são as frequências observadas e esperadas.

A deviance escalonada S_p tem a grande vantagem como medida de discrepância por ser aditivo para um conjunto de modelos encaixados.

