Closure properties and regular expressions

Arno Pauly

February 12, 2021

Notation

- \triangleright \land , \lor denote boolean and and or
- ▶ \cup is the union of sets, i.e. $A \cup B := \{x \mid x \in A \lor x \in B\}$
- ▶ \cap is the intersection of sets,
 - i.e. $A \cap B := \{x \mid x \in A \land x \in B\}$

A closure property

Theorem

If L_1, L_2 are regular languages, then so are $L_1 \cap L_2$ and $L_1 \cup L_2$.

The technical tool

Definition

Given two finite automata $A_i = (V_i, s_i, \delta_i, F_i)_{i \in \{1,2\}}$, let their product be $(V_1 \times V_2, (s_1, s_2), \delta_{\times}, F)$ where

- 1. $((q_1, q_2), a, (q'_1, q'_2)) \in \delta_{\times}$ iff $(q_i, a, q'_i) \in \delta_i$ for both $i \in \{1, 2\}$ (non-deterministic case)
- 2. $\delta_{\times}((q_1, q_2), a) = (\delta_1(q_1), \delta_2(q_2))$ (deterministic case)
- 3. and typically $F = \{(q_1, q_2) \mid q_1 \in F_1 \lor q_2 \in F_2\}$ or $F = F_1 \times F_2 = \{(q_1, q_2) \mid q_1 \in F_1 \land q_2 \in F_2\}$

Concatenation

Definition

Given languages L_1 , L_2 , let their concatenation be

$$L_1 \circ L_2 := \{uw \mid u \in L_1 \land w \in L_2\}$$

(sometimes written at L_1L_2).

Theorem

If L_1, L_2 are regular, then so is $L_1 \circ L_2$.

Kleene-star

Definition

Given a language L, let $L^0 = \{\varepsilon\}$, $L^{n+1} = LL^n$ and $L^* = \bigcup_{n \in \mathbb{N}} L^n$.

Theorem

If L is regular, so is L*.

Regular expressions

Definition

Regular expressions are defined as follows:

- 1. \emptyset is a regular expression.
- 2. ε is a regular expression.
- 3. a is a regular expression for each $a \in \Sigma$.
- 4. R|Q is a regular expression whenever R and Q are.
- 5. RQ is a regular expression whenever R and Q are.
- 6. R^* is a regular expression whenever R is.

Warning!!

Regex in Perl are not regular expressions.

Meaning

- 1. Ø denotes the empty language.
- 2. ε denotes the language $\{\varepsilon\}$
- 3. a denotes the language {a}
- 4. R|Q denotes the language given by the union of the languages denoted by R,Q
- RQ denotes the language given by the concatenation of the languages denoted by R,Q
- R* denotes the language given by the Kleene star of the language denoted by R

Connection

Theorem

A language is regular if and only if there is a regular expression denoted by it.

- ► That regular expressions denote regular languages follows from the closure properties we saw today.
- We'll leave the other direction for later.