This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

AN 97-188301 [17] WPIDS

DNC : C97-060184

TI Rapidly disintegrating buccal formulation, allowing old people and infants to swallow easily, and its prepn - comprises drug and wettable material which is mouldable on humidifying..

DC A96 B07

PA (TANA) TANABE SEIYAKU CO

CYC 1

PI JP 09048726 A 970218 (9717)* 6 pp A61K009-20 <--

ADT JP 09048726 A JP 95-200845 950807

PRAI JP 95-200845 950807

IC ICM A61K009-20

ICS A61K045-00; A61K047-10; A61K047-26; A61K047-32; A61K047-34; A61K047-36; A61K047-38

AB JP09048726 A UPAB: 970424

Buccal formulation consists of drug and a material wetting in a mouldable way on humidifying and retaining a shape after moulding and drying. The ingredients are humidified and moulded at a low density in an easily disintegrable way. Pref the density on humidifying and moulding is 0.4-1.3 g/cm3. Also claimed is prepd of the formulation comprising mixing drugs with the mouldable wetting material, moulding the mixt at a low density under humidifying conditions or moulding the mixt at a low density and keeping under humidifying conditions to form into a specified shape, and drying the moulded prod. Pref the mouldable swelling material is one or more of sugars, sugar alcohols and water-soluble polymers, more pref one or more of glycose, fructose, white sugar, mannitol, sorbitol, maltitol, xylitol, erythritol, polyvinyl pyrrolidone, dextrin, hydroxyethyl cellulose and macrogel.

ADVANTAGE - The formulation disintegrates rapidly in the mouth and is physically strong and easy to handle. It can have a strong or fresh sweet taste.

Dwg.0/0

FS CPI

FA AB; DCN

MC CPI: A12-V01; B04-C02A2; B04-C03A; B07-A02B; B10-A07; B12-M11B

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-48726

(43)公開日 平成9年(1997)2月18日

(51) Int.Cl.6		識別記号	庁内整理番号	F I						技術表示箇所
A 6 1 K	9/20			A 6	1 K	9/20			E	
	45/00				•	45/00				
	47/10				•	47/10			В	
	47/26				4	47/26			В	
	47/32	7/32			47/32			В		
			審査請求	未請求	請求」	頁の数 5	OL	(全 6	頁)	最終頁に続く
(21)出願番号	. .	特願平7-200845		(71)	出願人	00000	2956	·		
						田辺墓	以菜株式	会社		
(22)出願日		平成7年(1995)8月	17日			大阪府	大阪市	中央区道	修町	3丁目2番10号
			•	(72)	発明者	中島	欣吾			
						大阪府	7交野市	星田山手	3丁	目11番10号
				(72)	発明者	鲤田	義之			
				1.		大阪系	交野市	天野が原	町2	丁目36番6号
				(72)	発明者	松原	孝次			
•	٠.					兵庫県	神戸市	中央区大	日通	3丁目4番6号
			• • •	(72)	発明者	南明	宏	٠٠.		
		•				大阪府	大阪市	淀川区加	島3	丁目13番31号
•				(74)	人野犬	弁理士	箕浦	繁夫		
		•					-		•	

(54)【発明の名称】 口腔内速崩壊性製剤およびその製法

(57)【要約】

【課題】 嚥下能力が低い高齢者や小児が容易に服用でき、嚥下能力がある成人においても、水なしで服用が容易な口腔内速崩壊性製剤およびその製法を提供する。

【解決手段】 ブドウ糖、果糖、白糖等の糖類、マンニトール、ソルビトール等の糖アルコールおよびポリビニルピロリドン、デキストリン等の水溶性高分子物質等の加湿により成形可能に湿潤しかつ成形後の乾燥により該形状を維持する物質と薬物を混合して低密度で加湿湿潤させた後、乾燥することにより、口腔内で容易に崩壊し、かつ強度も充分である口腔内速崩壊性製剤を取得する。

【特許請求の範囲】

【請求項1】 薬物および加湿により成形可能に湿潤し かつ成形後の乾燥により該形状を維持する物質からな り、これら成分が低密度で加湿、成形されることにより 崩壊容易に構成されてなる口腔内速崩壊性製剤。

1

【請求項2】 加湿、成形時における密度が約0.4~ 約1.3g/cm3である請求項1記載の方法。

【請求項3】 加湿により成形可能に温潤しかつ成形後 の乾燥により該形状を維持しうる物質が、糖、糖アルコ ールおよび水溶性高分子から選ばれる1種または2種以 10 上である請求項1または2記載の製剤。

【請求項4】 加湿により成形可能に湿潤しかつ成形後 の乾燥により該形状を維持する物質が、ブドウ糖、果 糖、白糖、マンニトール、ソルピトール、マルチトー ル、キシリトール、エリスリトール、ポリビニルピロリ ドン、デキストリン、ヒドロキシエチルセルロースおよ デマクロゴールから選ばれる1種または2種以上である 収項2記載の方法。

【請求項5】 薬物および加湿により成形可能に湿潤し かつ成形後の乾燥により該形状を維持する物質を混合 20 し、加湿下に低密度で成形するかあるいは低密度で成形 したのち加湿下に維持して所望の形状とし、ついで乾燥 することを特徴とする口腔内速崩壊性製剤の製法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、口腔内速崩壊性製 剤およびその製法に関する。

[0002]

【従来の技術】高齢者や小児は嚥下能力が低いため、錠 剤の服用が困難であったり、散剤、顆粒剤が口腔内に付 30 着したり、入れ歯に入ったり、一部をこぼしたりするこ ともある。このような高齢者や小児が容易に服用でき、 一下の能力のある成人においても水なしで服用が容易な ・ .の開発が望まれており、すでにいくつかの製剤が知 られている。

【0003】例えば、(1)薬物、ゼラチン等のポリマ 一およびマンニトール等の溶液を予め作製し、PTPの ポケットに入れ、凍結乾燥によって製造される口腔内速 崩壊性製剤(特公平1-49242、特公昭62-50 445等)、(2)薬物および乳糖又はマンニトールか 40 らなる糖類を寒天水溶液に懸濁し、鋳型に充填しゼリー 状に固化させた後、乾燥することにより製造される口腔 内速崩壞性製剤(特開平5-511543)、(3)薬 物等と賦形剤の混合物を結合剤と水等を用いて練合し、 練合物を鋳型に充填後、練合物を圧縮して製造されるロ 腔内速崩壊性製剤(特開平6-218028)がある。

[0004]

【発明が解決しようとする課題】 (1) は口腔内での崩 壊・溶解速度は極めて速いが、製剤がもろく、PTPの

く、破損し易いという問題がある。また(2)はPTP のポケットからの取り出しに耐え得る強度を持っている が、製造するには水を使用するため、水に不安定な薬物 は適用できず、苦味を持つ薬物の場合苦味が強く感じら れ、薬物によっては製造中に結晶形が変化して安定性が 悪くなる場合がある。更に (3) は圧縮成形によって得 られる錠剤に比べれば前壊し易いものの、上記 (1) お よび(2)と較べれば崩壊が遅い。

[0005]

【課題を解決するための手段】本発明者らは、かかる従 来技術の問題を解決すべく検討の結果、ブドウ糖、果 糖、白糖等の糖類に薬物を混合して加湿湿潤させた後、 乾燥した製剤は、口腔内で容易に崩壊し、かつ強度も充 分であることを見いだすと共に、他の吸湿により湿潤す る糖アルコール、水溶性高分子物質等も該製剤の担体と して利用しうることを見いだし、本発明を完成した。・

【0006】かかる知見に基づく本発明は、薬物および 加湿により成形可能に湿潤しかつ成形後の乾燥により該 形状を維持する物質からなり、これら成分が低密度で加 湿、成形されることにより崩壊容易に構成されてなるロ 腔内速崩壊性製剤およびその製法である。

【0007】本発明において、加湿とは、自然の状態に おける空気中の水分量よりも多くなるように強制的に空 気中の水分量を増加させることを意味し、水が蒸発によ り気体状態で空気中に存在することの他、例えば噴霧に より水が微小な液体状態で空気中に存在することをも意 味する。また加湿により成形可能に湿潤するとは、加湿 状態で物質が空気中の水分を吸収して流動性を低下さ せ、一定の形状に成形した場合に極端にその形状を変化 させない程度に、物質が相互に凝集ないし固着すること を意味し、成形と加湿の順序は問わない。

5)__

5

≟ بعد

【0008】また、乾燥により該形状を維持しうると は、上記の加湿、成形又は成形、加湿によって成形させ たのち、乾燥によって吸収された水分を除去した場合 に、吸湿ないし潮解した成分の固化によって極端にその 形状を変化させないことを意味する。

【0009】さらに、低密度とは、溶媒を加えて混練し たり、高圧力などを加えることによって粒子間に存在す る空隙を減少させて高密度状態としないことを意味し、 例えば粉末粒子を圧力をかけずに鋳型に充填した状態、 或いは充填後、わずかに圧力をかけた場合に見られる程 度の密度を意味する。かかる密度を具体的に示すとすれ ば、約0.4~約1.3g/cm³の範囲があげられ

【0010】本発明において、薬物としては、口腔内で 嚥下困難でない程度に、苦み、渋み等の不快感を有せ ず、経口投与可能な薬物であれば特に限定されない。か かる医薬活性成分としては、例えば化学療法剤、抗生物 質、呼吸促進剤、鎮咳去たん剤、抗悪性腫瘍剤、自律神 ポケットから押し出すことは困難であり、取り出しにく 50 経用薬剤、精神神経用薬剤、局所麻酔剤、筋弛緩剤、消

化器官用薬剤、抗ヒスタミン剤、中毒治療剤、催眠鎮静剤、抗てんかん剤、解熱鎮痛消炎剤、強心剤、不整脈治 療剤、利尿剤、血管拡張剤、抗脂血剤、滋養強壮変質 剤、抗凝血剤、肝臓用薬剤、血糖降下剤、血圧降下剤、 脳循環・代謝改善剤等があげられる。

【0011】また、加湿により成形可能に湿潤しかつ乾燥により該形状を維持しうる物質(以下、単に湿潤物質という)としては、かかる性状を有する糖類、糖アルコール又は水溶性高分子物質があげられ、糖類としては、ブドウ糖、果糖、白糖等の単糖類又は少糖類があげられ、糖アルコールとしては、マンニトール、ソルピトール、マルチトール、エリスリトール、キシリトール等があげられ、水溶性高分子物質としては、ポリビニルピロリドン、デキストリン、ヒドロキシエチルセルロース、マクロゴール等があげられる。

【0012】このうち、特に、ブドウ糖、白糖、マルチトール、キシリトール、デキストリン、ポリビニルビロリドン、マクロゴールが好ましい。

【0013】これらの物質は、通常、製剤の分野で使用される程度のグレードであればよく、特に限定されな 20い。また、これらの湿潤物質は単独又は任意の割合で混合して使用しても良い。

【0014】これらの物質においては、当然のことながら、吸湿性に強弱があり、例えば、ブドウ糖、果糖、白糖、キシリトール、ソルビトール、マルチトール、デキストリン、ポリビニルピロリドン、ヒドロキシエチルセルロース、マクロゴール等は強く、マンニトール、エリスリトール等は比較的弱いので、これらを適宜組合わせることにより、好適な製剤とすることができる。例えば吸湿性の強い物質を多くすれば成形性に優れ、かつ強固30な製剤を得ることができ、また吸湿性の弱い物質を多くすれば速く崩壊する製剤とすることができる。

【0015】本発明において、湿潤物質を複数組合わせて使用する場合の比較的好ましい組合わせとしては、例えばブドウ糖、果糖、白糖等の単糖類又は少糖類とマンニトール、ソルビトール、エリスリトール等の糖アルコールの組合わせ、単糖類又は少糖類とポリビニルビロリドン、ヒドロキシエチルセルロース、マクロゴール等の水溶性の高分子物質の組合わせ、糖アルコールと水溶性高分子物質の組合わせ等があげられる。

<u>i-</u>_

【0016】更により好ましい組合わせをあげるとすれば、例えば、マンニトール/白糖、エリスリトール/ブドウ糖、マンニトール/マルチトール、キシリトール/ポリビニルピロリドン、マンニトール/ポリビニルピロリドン等をあげることができる。これらは、2 成分に限られることなく何成分であっても配合して使用することができる。例えば、3成分の組合せをあげるとすれば、好ましいものとして、マンニトール/エリスリトール/カリビール/ロ糖、マンニトール/エリスリトール/ポリビ

ニルピロリドン等をあげることができる。とりわけ単態 類、少糖類又は糖アルコールは水に対する新動が類似す るものが多く、同じカテゴリーに属するものであれば、 容易に配合の変更や追加を行うことができる。

【0017】またこれらの配合量は、容易に決定することができる。例えば、所望の成分を薬物と適宜混合したのち、加湿条件下で吸湿させ、乾燥し、崩壊性と成形性を確認すれば、その適否は簡単に判別することができる。

【0018】本発明の製剤においては、上記の成分、す なわち薬物と湿潤物質以外に、製剤技術の分野で汎用さ れる添加物を添加することができる。かかる添加物とし ては、例えば、乳糖、結晶セルロース等の賦形剤、トウ モロコシデンプン、パレイショデンプン、カルボキシメ チルスターチナトリウム、部分アルファー化デンプン、 カルボキシメチルセルロースカルシウム、カルボキシメ チルセルロース、低置換度ヒドロキシプロピルセルロー ス、クロスリンクカルポキシメチルセルロースナトリウ ム等の崩壊剤、ステアリン酸マグネシウム、ステアリン 酸カルシウム、タルク、軽質無水ケイ酸、含水二酸化ケ イ素等の滑沢剤、更にはリン脂質、グリセリン脂肪酸エ ステル、ソルピタン脂肪酸エステル、ポリオキシエチレ ン脂肪酸エステル、ポリエチレングリコール脂肪酸エス テル、ポリオキシエチレン硬化ヒマシ油、ポリオキシエ チレンアルキルエーテル、ショ糖脂肪酸エステル等の界 面活性剤、或いはオレンジ、ストロベリー等の香料、三 二酸化鉄、黄色三二酸化鉄、リポフラピン、カラメル、 食用赤色3号、食用赤色102号、食用青色1号、食用 黄色5号、食用黄色4号アルミニウムレーキ等の着色 剤、サッカリン、アスパルテーム等の甘味剤、クエン 酸、クエン酸ナトリウム、コハク酸、酒石酸、フマル 酸、グルタミン酸等の矯味剤、シクロデキストリン、ア ルギニン、リジン、トリスアミノメタン等の溶解補助剤 があげられる。

【0019】これらの成分は、本発明の製剤における崩壊性と成形性を損なわない範囲であれば、適宜、任意の量を単独あるいは混合して使用することができ、例えば、乳糖/白糖/ステアリン酸マグネシウム、マンニトール/トウモロコシデンプン/ポリビニルピロリドン/40 オレンジ香料等をあげることができる。

【0020】本発明において、薬物と温潤物質の配合比率は、特に限定されないが、薬物の水に対する溶解度のバラエティを考慮すれば、温潤物質1重量部に対して薬物が、約0.0001~約3重量部含まれていればよく、とりわけ約0.0001~約1重量部含まれているのが好ましい。

成分に限られることなく何成分であっても配合して使用 【0021】本発明の製剤は、これら成分を低密度で加することができる。例えば、3成分の組合せをあげると 湿成型することによって、空隙が大きく口中で高い崩壊すれば、好ましいものとして、マンニトール/エリスリ 性を得ることができるので、この点が重要となる。かかトール/白鴨、マンニトール/エリスリトール/ポリビ 50 る密度を具体的に示すとすれば、約0.4~約1.3g

/cm³であり、この範囲であれば、特に不都合はない が、例えば湿潤物質として糖類や糖アルコールを用いる 場合には、密度として、全く圧力を加えない状態での密 度(約0.5g/cm³)から、崩壊性を損なわない約 50kg/杵の圧力をかけた場合の密度(約1.3g/ c m³) 程度までの範囲が適当であり、更には約0、7 ~約1. 1 g/c m³が好ましく、約0. 8~約0. 9 g/cm³がより好ましい。また水溶性高分子物質を用 いる場合には、密度として約0.4~約1.3g/cm 3が適当であり、更には約0.5~約0.8g/cm3が 10 好ましく、約0.5~約0.6g/cm³がより好まし

【0022】本発明の製剤は薬物および加湿により成形 可能に湿潤しかつ成形後の乾燥により該形状を維持する 物質を混合し、加湿下に低密度で成形するかあるいは低 密度で成形したのち加湿下に維持して所望の形状とし、 で乾燥することによって容易に製造することができ

【0023】本発明において、加湿条件は通常の湿度以 上となる条件であれば、特に限定されないが、薬物と湿 20 潤物質の混合物が全体的にしっとりと湿りけを帯び、乾 燥後成形可能となるような湿度であればよく、あるいは 混合物の内の湿潤物質の一部ないし全部が吸湿して湿り けを帯び乾燥後成形可能となる条件であってもよい。更 には湿潤物質の一部又は特定成分が潮解するような条件 であってもよい。要するに薬物と湿潤物質の混合物が乾 燥後成形可能なように吸湿する条件を設定すればよく、 作業性の面からは、湿度が高いほど所要時間が短縮でき るので、この意味からエルダーの仮説(一番ヶ瀬監修、 新しい製剤学(広川書店)平成5年9月10日発刊、9 30 6頁)により算出される混合物の臨界相対湿度以上で、 適宜、最適湿度を選択すればよい。

)024】加湿は、加温下でもよく常温でもよく特に されないが、配合される薬物と湿潤物質の温度に対 する影響を考慮して温度を設定すればよい。更に加湿手 段は特に限定されず、既知の手段、例えば噴霧式加湿 機、加温式加温機(恒温恒温器、ナガノ科学機械製作所 製)等の加湿機を使用すればよい。

【0025】最適な加湿条件は、混合物の見かけの臨界 相対湿度によって異なるが、加湿条件を例示するとすれ 40 ば、マンニトール/白糖の場合、例えば湿度が約70~ 100RH%、より好ましくは約80~100RH%、 とりわけ好ましくは約90~100RH%程度であり、 温度が約10~約70℃、より好ましくは約15~約5 0℃、とりわけ好ましくは約20~約30℃であるよう な条件があげられる。

【0026】成形は、低密度を維持しつつ所望の形状と なるよう既知の方法ないし既知手段により実施すること ができる。具体的には、例えば所望の形状の鋳型や成形 したPTPのボケットに、湿潤した薬物と湿潤物質の混 50 台物を充填し、必要に応じて圧縮することによって実施 することができる。圧縮は、例えば、約50kg/杵以 下、好ましくは約20kg~数g/杵程度の範囲で適宜 選択することができ、圧力は、密度を所望の範囲に維持 しつつ配合される薬物と湿潤物質の成形維持力と崩壊性 を加味して決定することができる。

【0027】本発明において、薬物および添加物の粒子 径は特に限定されないが、粒子系が小さい方が服用感に 使れている。

【0028】また、本発明において、薬物が苦味、臭い 等の不快感が強い場合は、これらを隠蔽することもでき るコーティング剤や矯味矯臭剤で加工して使用する事が できる。これらのコーティング剤や矯味矯臭剤並びに加 工方法は通常の技術分野で使用されているものであれば 何等制限なく使用することができる。

【0029】本発明の製剤の成形に際しては、どのよう な形状をも採用することができ、例えばタブレット型、 楕円形、球形、角形等種々の形状に成形することができ る。更に、一定の形状に成形し、加湿、乾燥の後に粉砕 して、顆粒、細粒、散剤とすることもできる。

【0030】本発明で得られる製剤の空隙率は、例えば 約20~約70%、より好ましくは約25~約60%、 とりわけ好ましくは約30~約50%である。

【0031】乾燥は、成形後の製剤の固化および水分除 去のために実施するものであり、常温~加温下、常圧~ 滅圧下に、適宜条件を組合わせて実施することができ

【0032】以下、実験例および実施例によって、更に 本発明を詳細に説明する。

[0033]

【発明の実施の形態】

[0034]

【実施例】 実験例1

<実験方法>ニセルゴリン5g、湿潤物質195g (マ ンニトール155gおよび表1に記載の湿潤物質各40 g)を混合し、乳鉢中で粉砕した。ついで粉砕末200 mgを直径10mmの鋳型に入れ、約5kg/杵の圧力 を加えた。これを40℃・89%RHの加温、加湿下に 18時間保存した後、45℃にて3時間減圧乾燥するこ とにより本発明の口腔内速崩壊性製剤を得た。また対照 として表1記載の物質を使用して同様に実施することに より、対照の製剤を得た。両者の製剤における口腔内で の崩壊時間を比較した。

【0035】<結果>結果は表1に示す通りであり、本 発明で使用される湿潤物質はいずれも優れた成形性と崩 壊性を示したことがわかる。

[0036]

【表 1 】

8

	湿潤物質	成形性	崩填時間(秒)
	デキストリン	良	1 5
本	ソルビトール	艮	3 0
	ブドウ糖	Ŗ	20.
兌	白猫	艮	5
	ヒドロキシエチルセルロース(SE500)	可	15
羽	ポリエチレングリコール2000	艮	2 0
	ポリビニルピロリドン(K30)	良	1 0
	なし	成形せず	
	カルボキシメチルセルロースナトリウム	成形せず	
	硫酸カルシウム	成形せず	
対	アラビアゴム末	成形せず	
	アルギン酸ナトリウム	成形せず	
	寒天	成形せず	
	ゼラチン	成形せず	
照	でんぷん	成形せず	
	カルボキシメチルセルロースカルシウム	成形せず	
	ヒドロキシプロピルセルロース(SL)	成形せず	
	ヒドロキシプロピルメチルセルロース(TC-5)	成形せず	

【0037】実験例2

1.7

〈実験方法〉フマル酸ピソプロロール1g、マンニトー ル、乳糖、白糖、エリスリトール又はキシリトールのい ずれかを39gに白糖5gを混合し、乳鉢中で粉砕し た。粉砕末180mgを直径10mmの鋳型に入れ、約 1 kg/杵の圧力を加えた。これを40℃の表2に示す 加湿下に12時間保存した後、40℃にて6時間乾燥* *し、得られる製剤の成形性および口腔内での崩壊時間を 比較した。

【0038】 <結果>結果は、表2に示す通りであり、 いずれの湿潤物質を用いた場合にも、優れた成形性と崩 壊性が得られたことがわかる。

[0039]

【表 2 】

表 2

賦形剤	加湿条件	成形性	口腔内崩壞時間(秒)
マンニトール	89%RH	良	5
果糖	65%RH	良	1 5
白糖	89%RH	良	2 5
エリスリトール	89%RH	良	6
キシリトール	65%RH	良	6 0

【0040】実施例1

主薬としてイミダブリル5g、乳糖を201g、ポリビ ニルピロリドン3g、ステアリン酸マグネシウム1gを 40 0℃で2時間減圧乾燥することにより口腔内速崩壊性製 混合後、乳鉢中で粉砕した。粉砕末210mgを直径1 0mmの鋳型に入れ、約100g/杵の圧力を加えた。 これを30℃・89%RHの加温、加湿下に18時間保 存した。その後、60℃にて3時間乾燥することにより 口腔内速崩壊性製剤を得た。

【0041】実施例2

塩酸トリメトキノール3gとエリスリトール160g、 ブドウ糖50gを乳鉢中で粉砕した後、ステアリン酸カ ルシウム1g、オレンジの香の粉末香料2gを加え混合 した。混合粉砕末200mgを直径8mmの凹型に成形 50 とにより口腔内速崩壊性製剤を得た。

したPTPにいれ、約1kg/杵の圧力で圧縮した後、 25℃・90%RH下で24時間保存した。その後、6 剤を得た。

【0042】 実施例3

臭化水素酸スコポラミン 0.5g、マレイン酸クロラム フェニコール3g、キシリトール200g、ポリピニル ピロリドン20g、クエン酸ナトリウム2g、リンゴ酸 5g、ステアリン酸マグネシウム 0.55gを混合した 後、粉砕した。粉砕末500mgを直径11mmの鋳型 にいれ、約5kg/杵で圧縮した。25℃・60%RH に10時間保存の後、40℃にて3時間減圧乾燥するこ

【0043】実施例4

塩酸イミダブリル 5 gに乳糖 9 5 g、ポリエチレングリコール(2 0 0 0) 2 0 gおよびステアリン酸マグネシウム 0. 1 gを混合の後、乳鉢中で粉砕し、1 0 0 mgを直径 7 mmの鋳型に入れ、約 2 0 k g/杵で圧縮した。 40 \mathbb{C} \mathbb{C} \mathbb{C} 9 0% R H \mathbb{C} 8 時間加湿の後、 40 \mathbb{C} にて 5 時間減圧乾燥することにより口腔内速崩壊性製剤を得た。

【0044】实施例5

臭化ブチルスコポラミン10g、スルビリン250g、マンニトール250g、ポリビニルピロリドン100g、メントール0.5gを混合の後、乳鉢中で粉砕し、直径11mmの鋳型に600mgをいれ、約15kg/杵で圧縮した。ついで以下実施例1と同様に実施することによりことにより口腔内速崩壊性製剤を得た。

【0045】実施例6 塩酸ジルチアゼム30g、エリントール100g、白糖10g、アスパルテーム1g、しょ糖脂肪酸エステル0.1gを混合し、ついで以下実施例1と同様に実施することにより口腔内速崩壊性製剤を得た。

【0046】実施例7

エテンザミド150g、アセトアミノフェン100g、カフェイン30g、キシリトール250g、ポリビニルピロリドン100gを混合後、粉砕した。ついで以下実施例2と同様に実施することにより口腔内速崩壊性製剤を得た。

【0047】実施例8

フマル酸ピソプロロール2.5gに乳糖100g, 白糖25gを加え混合した。これを直径11mmの鋳型に200mgをいれ、約15kg/杵で圧縮した。これに水 30蒸気を吹き付け吸湿させた後、室温で20時間保持する。ついで室温にて滅圧乾燥することにより口腔内速崩で製剤を得た。

10048] 実施例9

ニセルコリン5g、マンニトール140g、ソルビトール10g、白糖40g、マクロコール5gを混合の後、乳鉢で粉砕し、その200mgを直径10mmの鋳型にいれ約1kg/杵で圧縮した。ついで40℃・90%RHで10時間加湿後、40℃にて5時間減圧乾燥することにより口腔内速崩壊性製剤を得た。

【0049】 実施例10

10

【0050】 実施例11

臭化水素酸スコポラミン0.1gにキシリトール200gを加え、乳鉢中で粉砕の後、その200mgを直径10mmの鋳型にいれ約5kg/杵で圧縮した。ついで、25℃・85%RHで8時間加湿後、40℃にて3時間減圧乾燥することにより口腔内速崩壊性製剤を得た。

【0051】実施例12

臭化水素酸スコポラミン0. 1 gにポリビニルピロリドン200 gを加え、乳鉢中で粉砕の後、その100 mgを直径8 mmの鋳型にいれ約0. 5 k g/杵で圧縮した。ついで、25 \mathbb{C} · 75 % R H で 8 時間加湿後、40 \mathbb{C} にて 3 時間減圧乾燥することにより口腔内速崩壊性製剤を得た。

【0052】実施例13

20 実施例1で得られた錠剤を軽く粉砕した後、篩いを用い、355~1400μmの粒径の口腔内速崩壊性製剤の顆粒剤を得た。

[0053]

【発明の効果】本発明は、糖類、糖アルコール及び水溶性高分子物質等水溶性に優れた湿潤物質中に薬物が存在しているため、口腔内で急速に溶解ないし崩壊するため経口投与製剤として優れている。更に、物理的にも強固であるため、PTPのポケット等からの取り出し等、取扱いが容易であって、これまでの口腔内速崩壊性製剤のように取り出しにくい、破損し易い等の問題がない。

【0054】また本発明の製剤では水は湿潤物質の吸湿のために使用されるため、水それ自体の絶対量は非常に少なく、それゆえ多量に水を使用した場合の、水に不安定な薬物に対する悪影響(例えば、多形による薬物の不安定化等)も避け得るという利点の他、製造装置への付着も少ないという利点をも有する。

【0055】しかも、糖類及び糖アルコール等は、強い 甘味ないし清涼感のある甘味を有するので、これを使用 した場合には、小児にも抵抗なく投与できるという利点 40 も併せ有する。

フロントページの続き

(51) Int. Cl. 4	•	識別記号	庁内整理番号	F I			技術表示箇所
A 6 1 K	47/34			A 6 1 K	47/34 B	В	
	47/36				47/36	В	
	47/38				47/38	В	