

Corso di Comunicazioni Digitali

2 – RICHIAMI DI TEORIA DEI SEGNALI

Prof. Giovanni Schembra

Nota bene:

 Nell'a.a. 2018/2019, l'85% di chi non ha superato l'esame non aveva superato l'esame di Teoria dei Segnali

Da non trascurare

Alfabeto Greco

MAIUSCOLA	minuscola	nome
A	α	alfa
В	β	beta
Γ	γ	gamma
Δ	δ	delta
E	3	epsilon
Z	ζ	zeta
Н	η	eta
Θ	θ	theta
I	ı	iota
K	κ	kappa
Λ	λ	lambda

• • •

1000 1000	
μ	mi
ν	ni
يح	xi
О	omicron
π	pi
ρ	ro
σ	sigma
τ	tau
υ	upsilon
φ	phi
χ	chi
Ψ	psi
ω	omega
	ν ξ ο π ρ σ τ υ φ χ Ψ

TEORIA DEI SEGNALI DETERMINATI

Segnali notevoli

• Funzione impulso rettangolare, $\Pi(t)$

Definizione:

$$\Pi\left(\frac{t}{T}\right) \equiv \begin{cases} 1 & \text{se } |t| \le \frac{T}{2} \\ 0 & \text{se } |t| > \frac{T}{2} \end{cases}$$

• Funzione impulso triangolare, $\Lambda(t)$

Definizione:

$$\Lambda\left(\frac{t}{T}\right) = \begin{cases} 1 - \frac{|t|}{T} & \text{se } |t| \le T \\ 0 & \text{se } |t| > T \end{cases}$$

 $\sin(\pi x)$

Segnali notevoli: SENO CARDINALE

Segnale SENO CARDINALE, sinc(x)

Definizione:

$$\operatorname{sinc}(x) = \frac{\sin(\pi x)}{\pi x}$$

Si annulla sui valori interi non nulli del suo argomento

$$x(t) = A\operatorname{sinc}\left(\frac{t}{T}\right)$$

$$\langle x(t) \rangle = 0$$

$$P = 0$$

$$E_r = A^2 T$$

Il seno cardinale è un segnale di energia

Segnali notevoli: SENO CARDINALE

ESEMPIO

$$\operatorname{sinc}(3t) = \frac{\sin(\pi 3t)}{\pi 3t}$$

Si annulla sui valori interi non nulli del suo argomento

$$\left. \text{sinc}(3t) \right|_{t=0.15} = 0.6986$$

Segnali notevoli: COSENO RIALZATO

Definizione in frequenza:

$$W(f) = \begin{cases} 1 & |f| < f_1 \\ \frac{1}{2} \left\{ 1 + \cos \left[\pi \frac{|f| - f_1}{2f_{\Delta}} \right] \right\} & f_1 < |f| < B_{\Sigma} \\ 0 & |f| > B_{\Sigma} \end{cases}$$

 f_0 : banda a - 6 dB

È coseno rialzato nel dominio della frequenza

 B_{Σ} : banda occupata

$$f_{\Delta} = B_{\Sigma} - f_0$$

$$f_1 = f_0 - f_{\Delta}$$

Fattore di decadimento oppure *rolloff*

$$0 \le r \le 1$$

 f_0 è il perno su cui ruota il fronte di discesa del filtro

IMPORTANTISSIMA

Segnali notevoli: COSENO RIALZATO

Definizione in frequenza:

- r=0 \longrightarrow Impulso rettangolare in frequenza
 - Occupazione minima di banda: $B_{\Sigma} = f_0$

Segnali notevoli: COSENO RIALZATO

Definizione nel tempo:

 $w(t) = 2f_0 \operatorname{sinc}(2f_0 t) \cdot \left[\frac{\cos(2\pi f_{\Delta} t)}{1 - (4f_{\Delta} t)^2} \right]$

Coincide con un sinc $(2f_0 t)$ $-f_0 \qquad f_0$

-

Spettri di un impulso rettangolare e di un impulso triangolare

Spettro bilatero di un impulso rettangolare:

Spettro bilatero di un impulso **triangolare**:

Banda di un segnale

Definizione: SEGNALE IN BANDA BASE

Condizione per essere in **banda base**

Definizione: SEGNALE IN BANDA PASSANTE

Banda Assoluta

$$B = f_2 - f_1$$

Condizione per essere in **banda passante**

Banda limitata in frequenza Durata limitata nel tempo

Osserviamo che:

- La Banda di un segnale si misura solo sulle frequenze positive
- La Durata di un segnale si misura su tutto l'asse temporale

Segnale di durata T

Segnale di banda *B*

Segnali a banda limitata

Definizione: un segnale è a banda rigorosamente limitata B se:

$$W(f) = 0 \text{ per } |f| \ge B$$

dove B è la banda del segnale

Definizione: un segnale è a durata rigorosamente limitata T se:

 $\exists t_0 \text{ tale che}: w(t) = 0 \text{ per } t \notin [t_0, t_0 + T]$

dove T è la durata del segnale

Teorema:

- un segnale a BANDA LIMITATA non può essere a DURATA LIMITATA
- un segnale a DURATA LIMITATA non può essere a BANDA LIMITATA

Banda "ingegneristica" di un segnale

Definizione "ingegneristica" di banda per:

segnali non rigorosamente limitati in banda

oppure segnali con spettro trascurabile per frequenze superiori ad una soglia:

Banda "ingegneristica" di un segnale

BANDA AL PRIMO NULLO (per i segnali in banda base):

BANDA NULLO-NULLO (per i segnali passa-banda):

TEORIA DEI SEGNALI DETERMINATI

CAMPIONAMENTO DI UN SEGNALE

Teorema del campionamento

• Un segnale w(t) a banda rigorosamente limitata, B, può essere ricostruito esattamente a partire dai propri campioni, purchè la frequenza di campionamento sia

 $f_s \geq 2B$

Condizione di Nyquist

Ricostruzione nel dominio della frequenza:

$$\stackrel{W_{\delta}(f)}{\longrightarrow} H_{r}(f) \stackrel{W(f)}{\longrightarrow}$$

$$H_r(f) = T_s \cdot \Pi\left(\frac{f}{2B}\right) = T_s \cdot \Pi\left(\frac{f}{f_s}\right)$$

Il problema dell'Aliasing

- Un segnale campionato nel tempo presenta uno spettro fatto da repliche dello spettro del segnale originale, centrate sui multipli della frequenza di campionamento
- Se si campiona un segnale analogico ad una frequenza di campionamento minore del doppio della banda, le repliche in frequenza si sovrappongono, e il segnale originale non è più ricostruibile (ALIASING)

Spettro del segnale analogico originale

Spettro del segnale campionato "male" (è evidente il fenomeno dell'aliasing)

Il problema dell'Aliasing

 Se si campiona un segnale analogico ad una frequenza di campionamento minore del doppio della banda, le repliche in frequenza si sovrappongono, e il segnale originale non è più ricostruibile (ALIASING) Spettro del segnale campionato "male" (è evidente il fenomeno dell'aliasing)

NON CONFONDERE L'ALIASING
CON
L'ISI (INTERFERENZA INTERSIMBOLICA)

VARIABILI ALEATORIE

Variabili aleatorie notevoli

UNIFORME

$$f_{\xi}(x) = \begin{cases} \frac{dF}{dx} = \frac{1}{b-a} & \text{se } a \le x \le b \\ & \text{altrove} \end{cases}$$

$$\eta_{\xi} = \frac{a+b}{2}$$

GAUSSIANA

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi\sigma_{\xi}^2}} e^{-\frac{(x-\eta_{\xi})^2}{2\sigma_{\xi}^2}}$$

caratterizzata da

$$\left\{egin{array}{l} \sigma_{\xi}^{2} &= ext{varianza} \ \eta_{\xi} &= ext{valor medio} \ \end{array}
ight.$$

IMPORTANTISSIMA

Variabile aleatoria normale standard

Una variabile aleatoria continua ξè normale standard se:

0.0

-3.0

-2.0

-1.0

• con valor medio: $\eta_{\xi} = 0$

• e varianza: $\sigma_{\xi}^2 = 1$

Funzione densità di probabilità

$$f_{\xi}^{(N)}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

Funzione distribuzione cumulativa

$$\Phi(x) \stackrel{\triangle}{=} F_{\xi}^{(N)}(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-x^{2}/2} dx$$

non esprimibile in forma chiusa

0.0

X

1.0

2.0

3.0

Funzioni erf(x) ed erfc(x)

Funzioni deterministiche
non sono una cdf
non sono una pdf

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-\theta^2} d\theta$$

$$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{+\infty} e^{-\theta^{2}} d\theta$$

Funzione error function

Funzione error function complementare

Legame tra

v.a. normale standard ← → funzione erfc

$$\Phi(x) = 1 - \frac{1}{2}\operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right)$$

$$Q(x) = \frac{1}{2}\operatorname{erfc}\left(\frac{x}{\sqrt{2}}\right) \operatorname{erfc}(x) = 2 \cdot Q(\sqrt{2} \cdot x)$$

Calcolo della probabilità di un intervallo

Variabile aleatoria normale ξ caratterizzata da valor medio e varianza generici

$$F_{\xi}(x) = \Phi\left(\frac{x - \eta_{\xi}}{\sigma_{\xi}}\right) \qquad \xi \in N(\eta_{\xi}, \sigma_{\xi}^{2})$$

$$\xi \in N(\eta_{\xi}, \sigma_{\xi}^2)$$

Probabilità che una v.a. Gaussiana assuma valori in un intervallo [a,b]

$$\Pr\{a < \xi \le b\} = F_{\xi}(b) - F_{\xi}(a)$$

$$\Pr\{a < \xi \le b\} = \frac{1}{2} \left[\operatorname{erfc} \left(\frac{a - \eta_{\xi}}{\sqrt{2 \sigma_{\xi}^{2}}} \right) - \operatorname{erfc} \left(\frac{b - \eta_{\xi}}{\sqrt{2 \sigma_{\xi}^{2}}} \right) \right]$$

$$\Pr\{a < \xi \le b\} = \Phi\left(\frac{b - \eta_{\xi}}{\sigma_{\xi}}\right) - \Phi\left(\frac{a - \eta_{\xi}}{\sigma_{\xi}}\right)$$

Per calcolare

$$\Pr\{\xi \le b\}$$

$$\Pr\{\xi \le b\} = 1 - \frac{1}{2} \operatorname{erfc}\left(\frac{b - \eta_{\xi}}{\sqrt{2\sigma_{\xi}^{2}}}\right) = \Phi\left(\frac{b - \eta_{\xi}}{\sigma_{\xi}}\right)$$

Tabella utile per il calcolo numerico

DISTRIBUZIONE NORMALE STANDARD E COMPLEMENTARE

x	Ф(х)	Q(x)	х	Ф(х)	Q(x)
-7.0000e+000	1.2798e-012	1.0000e+000	2.0000e-001	5.7926e-001	4.2074e-001
-6.8000e+000	5.2309e-012	1.0000e+000	4.0000e-001	6.5542e-001	3.4458e-001
-6.6000e+000	2.0558e-011	1.0000e+000	6.0000e-001	7.2575e-001	2.7425e-001
-6.4000e+000	7.7688e-011	1.0000e+000	8.0000e-001	7.8814e-001	2.1186e-001
-6.2000e+000	2.8232e-010	1.0000e+000	1.0000e+000	8.4134e-001	1.5866e-001
-6.0000e+000	9.8659e-010	1.0000e+000	1.2000e+000	8.8493e-001	1.1507e-001
-5.8000e+000	3.3157e-009	1.0000e+000	1.4000e+000	9.1924e-001	8.0757e-002
-5.6000e+000	1.0718e-008	1.0000e+000	1.6000e+000	9.4520e-001	5.4799e-002
-5.4000e+000	3.3320e-008	1.0000e+000	1.8000e+000	9.6407e-001	3.5930e-002
-5.2000e+000	9.9644e-008	1.0000e+000	2.0000e+000	9.7725e-001	2.2750e-002
-5.0000e+000	2.8665e-007	1.0000e+000	2.2000e+000	9.8610e-001	1.3903e-002
-4.8000e+000	7.9333e-007	1.0000e+000	2.4000e+000	9.9180e-001	8.1975e-003
-4.6000e+000	2.1125e-006	1.0000e+000	2.6000e+000	9.9534e-001	4.6612e-003
-4.4000e+000	5.4125e-006	9.9999e-001	2.8000e+000	9.9744e-001	2.5551e-003
-4.2000e+000	1.3346e-005	9.9999e-001	3.0000e+000	9.9865e-001	1.3499e-003
-4.0000e+000	3.1671e-005	9.9997e-001	3.2000e+000	9.9931e-001	6.8714e-004

Altra tabella utile

2 0000 +000	17.2240 005	Lo 0002 001	2 4000 +000	0.0066 001	12.2602 004
-3.8000e+000	7.2348e-005	9.9993e-001	3.4000e+000	9.9966e-001	3.3693e-004
-3.6000e+000	1.5911e-004	9.9984e-001	3.6000e+000	9.9984e-001	1.5911e-004
-3.4000e+000	3.3693e-004	9.9966e-001	3.8000e+000	9.9993e-001	7.2348e-005
-3.2000e+000	6.8714e-004	9.9931e-001	4.0000e+000	9.9997e-001	3.1671e-005
-3.0000e+000	1.3499e-003	9.9865e-001	4.2000e+000	9.9999e-001	1.3346e-005
-2.8000e+000	2.5551e-003	9.9744e-001	4.4000e+000	9.9999e-001	5.4125e-006
-2.6000e+000	4.6612e-003	9.9534e-001	4.6000e+000	1.0000e+000	2.1125e-006
-2.4000e+000	8.1975e-003	9.9180e-001	4.8000e+000	1.0000e+000	7.9333e-007
-2.2000e+000	1.3903e-002	9.8610e-001	5.0000e+000	1.0000e+000	2.8665e-007
-2.0000e+000	2.2750e-002	9.7725e-001	5.2000e+000	1.0000e+000	9.9644e-008
-1.8000e+000	3.5930e-002	9.6407e-001	5.4000e+000	1.0000e+000	3.3320e-008
-1.6000e+000	5.4799e-002	9.4520e-001	5.6000e+000	1.0000e+000	1.0718e-008
-1.4000e+000	8.0757e-002	9.1924e-001	5.8000e+000	1.0000e+000	3.3157e-009
-1.2000e+000	1.1507e-001	8.8493e-001	6.0000e+000	1.0000e+000	9.8659e-010
-1.0000e+000	1.5866e-001	8.4134e-001	6.2000e+000	1.0000e+000	2.8232e-010
-8.0000e-001	2.1186e-001	7.8814e-001	6.4000e+000	1.0000e+000	7.7689e-011
-6.0000e-001	2.7425e-001	7.2575e-001	6.6000e+000	1.0000e+000	2.0558e-011
-4.0000e-001	3.4458e-001	6.5542e-001	6.8000e+000	1.0000e+000	5.2309e-012
-2.0000e-001	4.2074e-001	5.7926e-001	7.0000e+000	1.0000e+000	1.2799e-012
0.0	5.0000e-001	5.0000e-001		<u> </u>	<u> </u>

Esempio di calcolo

Esempio: Gaussiana con media 5 e varianza 10

Con la tabella precedente:

$$\Pr\{\xi \le 12\} = F_{N(5,10)}(x)\Big|_{x=12} = \Phi\left(\frac{x-5}{\sqrt{10}}\right)\Big|_{x=12} = \Phi(2.21) = 0.987$$

Analogamente, con il Matlab:

$$\Pr\{\xi \le 12\} = 1 - \frac{1}{2} \operatorname{erfc}\left(\frac{12 - 5}{\sqrt{2 \cdot 10}}\right) = 0.987$$

Altro grafico utile

PROCESSI ALEATORI

Processo aleatorio GAUSSIANO

Processo aleatorio RUMORE BIANCO

IMPORTANTISSIMA

Processi aleatori Gaussiani

Definizione:

DA IMPARARE A MEMORIA

• un processo aleatorio X(t) è Gaussiano se le n variabili aleatorie $[X(t_1), \ldots, X(t_n)]$ da esso estratte agli istanti $[t_1, \ldots, t_n]$ risultano congiuntamente Gaussiane per ogni n, e per qualunque n-upla di istanti

Proprietà fondamentali:

- se un processo Gaussiano è stazionario in senso lato, allora è anche stazionario in senso stretto
- due processi gaussiani, se incorrelati, sono anche indipendenti

NON CONFONDERE I **PROCESSI ALEATORI GAUSSIANI**CON

LE VARIABILI ALEATORIE GAUSSIANE

IMPORTANTISSIMA

Rumore bianco

- Il rumore bianco è un processo aleatorio (cioè un modello matematico astratto) caratterizzato da:
 - Funzione di autocorrelazione impulsiva
 - Spettro costante

Ne segue che:

Media nulla

Potenza infinita!!!

Le due formule in giallo IMPORTANTISSIME Calcolo di probabilità di una Gaussiana a media nulla

Data una v.a. gaussiana ξ a media nulla e varianza σ_{ε}^2

$$\Pr\{\xi \le -\gamma\} = A$$

$$|\Pr\{\xi \le -\gamma\} = A|$$
 $|\Pr\{\xi \le \gamma\} = 1 - B = 1 - A|$

iami di Teoria dei segnali

Graficamente vediamo che:

$$A = B = \Pr\{\xi > \gamma\} =$$

$$= 1 - \Pr\{\xi \le \gamma\} = 1 - F_{\xi}(\gamma) =$$

$$= 1 - \Phi_{\xi}\left(\frac{\gamma - \mu_{\xi}}{\sigma_{\xi}}\right) = Q\left(\frac{\gamma}{\sigma_{\xi}}\right)$$

$$= Q\left(\frac{\gamma}{\sigma_{\xi}}\right) = Q\left(\frac{\gamma}{\sigma_{\xi}}\right)$$

$$A = Q\left(\frac{\gamma}{\sigma_{\xi}}\right) \qquad A = \frac{1}{2} \operatorname{erfc}\left(\frac{1}{\sqrt{2}} \frac{\gamma}{\sigma_{\xi}}\right)$$

Le tre formule in giallo sono IMPORTANTISSIME Calcolo di probabilità di una Gaussiana a media nulla

unu	х	Φ(x)	Q(x)
	2.0000e-001	5.7926e-001	4.2074e-001
	4.0000e-001	6.5542e-001	3.4458e-001

iami di Teoria dei segnali

$$A = Q \left(\frac{\gamma}{\sigma_{\xi}} \right)$$

$$A = \frac{1}{2} \operatorname{erfc} \left(\frac{1}{\sqrt{2}} \frac{\gamma}{\sigma_{\xi}} \right)$$

$$|\Pr\{\xi \le \gamma\} = 1 - B = 1 - A|$$

Esercizio:

consideriamo un segnale n(t), rumore Gaussiano bianco con spettro per unità di banda pari a $P(f) = N_0/2 = 18 \ \forall f$

$$\operatorname{Prob}\{n \le 1.6971\} = 1 - B = 1 - A = 1 - \frac{1}{2}\operatorname{erfc}\left(\frac{1}{\sqrt{2}}\frac{1.6971}{\sqrt{N_0/2}}\right) = \frac{1 - \frac{1}{2}\operatorname{erfc}(0.28285)}{1 - Q(0.4)} = 1 - 0.34458 = 0.6542$$

Analogamente:

$$\operatorname{Prob}\{n \ge -1.6971\} = 1 - A = 1 - \frac{1}{2}\operatorname{erfc}\left(\frac{1.6971}{\sqrt{2N_0/2}}\right) = -\gamma$$

$$= 1 - Q\left(\frac{1.6971}{\sqrt{N_0/2}}\right) = 1 - Q(0.4) = 1 - 0.34458 = 0.65542$$

$$A = Q\left(\frac{\gamma}{\sqrt{N_0/2}}\right)$$

(*) Dimostreremo nella Lezione4b che la potenza media statistica (valore quadratico medio) della variabile aleatoria componente di rumore Gaussiano bianco all'istante t, coincidente anche con la varianza σ^2 perché a media nulla, è pari a N₀/2, cioè uguale all'ordinata della densità spettrale di potenza