TEST REPORT

KCTL Inc.

65, Sinwon-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-390, Korea

TEL: 82 70 5008 1021 FAX: 82 505 299 8311 Report No.: KCTL15-FR0031

Page(1)/(57) Pages

1. Applicant

Name:

Hyundai Mobis Co., Ltd.

Address:

203, Teheran-ro, Gangnam-gu, Seoul, 135-977, Korea

2. Sample Description:

FCC ID:

TQ8-AVB30F6AN

IC ID:

5074A-AVBA0F6KN

Type of equipment:

Digital Car Audio System

Basic Model:

AVB30F6AN

Variant Model:

AVBA0F6KN

3. Date of Test:

August 28 ~ September 10, 2015

FCC Part 15 Subpart C, 15.247

4. Test method used:

RSS-247 Issue 1 May 2015

RSS GEN Issue 4 November 2014

5. Test Results

Test Item:

Refer to page 9

Result:

Refer to page 10 ~ page 56

Measurement Uncertainty:

Refer to page 9

This result shown in this report refer only to the sample(s) tested unless otherwise stated.

Tested by

Affirmation

Name: BAEK, DONG HEON

Technical Manager

Name: SON, MIN GI

2015. 09. 11

KCTL Inc. Testing Laboratory

[KCTL-TIR001-002/0]

[Contents]

1. Client information	3
2. Laboratory information	4
3. Description of E.U.T.	
3.2 General description	6
3.3 Test frequency	
3.4 Test Voltage	7
4. Summary of test results	8
4.1 Standards & results	
4.2 Uncertainty	8
5. Test results	9
5.1 Antenna Requirement	
5.2 Maximum Peak Output Power	10
5.3 Peak Power Spectral Density	12
5.4 6 dB Bandwidth(DTS Channel Bandwidth)	20
5.5 Spurious Emission, Band Edge, and Restricted bands	34
6. Test equipment used for test	57

1. Client information

Applicant: Hyundai Mobis Co., Ltd.

Address: 203, Teheran-ro, Gangnam-gu, Seoul, 135-977, Korea

Telephone number: +81-31-260-2707

Facsimile number: +81-31-899-1788

Contact person: Choi Seung Hoon/csh@mobis.co.kr

Manufacturer: Hyundai Mobis Co., Ltd.

Address: 69-23, Hansam-Ro, Ducksan-Myeon, Jinchun-Gun,

Chungcheongbuk-Do 365-843 Korea

2. Laboratory information

Address

KCTL Ltd.

480-5, Sin-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea

Telephone Number: +82-70-5008-1016 Facsimile Number: +82-505-299-8311

Certificate

KOLAS No.: 231

FCC Site Designation No: KR0040 FCC Site Registration No: 687132

VCCI Site Registration No.: R-3327, G-198, C-3706, T-1849

IC Site Registration No.:8035A-2

SITE MAP

3. Description of E.U.T.

3.1 Basic description

Applicant:	Hyundai Mobis Co., Ltd.
Address of Applicant	203, Teheran-ro, Gangnam-gu, Seoul, 135-977, Korea
Manufacturer	Hyundai Mobis Co., Ltd.
Address of Manufacturer	69-23, Hansam-Ro, Ducksan-Myeon, Jinchun-Gun, Chungcheongbuk-Do 365-843 Korea
Type of equipment	Digital Car Audio System
Basic Model	AVB30F6AN
Variant Model	AVBA0F6KN *
Serial number	N/A

^{*} Variant model name is only for export toward Canada

3.2	General	descri	ption

3.2 General description			
	2 402 Mz ~ 2 480 Mz (Bluetooth)		
	2 412 MHz ~ 2 462 MHz (802.11b/g/n_HT20)		
	5 180 Mz ~ 5 240 Mz (802.11a/n/ac_HT20/VHT20)		
	5 190 Mz ~ 5 230 Mz (802.11n/ac_HT40/VHT40)		
	5 210 M位 (802.11ac_VHT80)		
	5 260 Mz ~ 5 320 Mz (802.11a/n/ac_HT20/VHT20)		
Frequency Range	5 270 Mz ~ 5 310 Mz (802.11n/ac_HT40/VHT40)		
Frequency Range	5 290 Mb (802.11ac_VHT80)		
	$5500\text{MHz}\sim 5700\text{MHz}$ (802.11a/n/ac_HT20/VHT20)		
	5 510 Mz ~ 5 670 Mz (802.11n/ac_HT40/VHT40)		
	5 530 Mz (802.11ac_VHT80)		
	5 745 MHz ~ 5 825 MHz (802.11a/n/ac_HT20/VHT20)		
	5 755 Mbz ~ 5 795 Mbz (802.11n/ac_HT40/VHT40)		
	5 775 Mz (802.11ac_VHT80)		
Type of Modulation	GFSK, π/4DQPSK, 8DPSK : Bluetooth,		
Type of Woddiation	DSSS, OFDM: WIFI 2.4 G, OFDM: WIFI 5 G		
	2.0 础:79 ch (Bluetooth)		
	11 ch (802.11b/g/n_HT20)		
	5.0 GHz: 5 150 MHz Band: 4 ch (802.11a/n/ac_HT20/VHT20)		
	2 ch (802.11n/ac_HT40/VHT40) 1 ch (802.11ac VHT80)		
	5 250 Mb Band: 4 ch (802.11ac_vHT80)		
	2 ch (802.11n/ac HT40/VHT40)		
Number of Channels	1 ch (802.11ac VHT80)		
	5 470 Mtz Band: 11 ch (11a/n/ac HT20/VHT20)		
	5 ch (802.11n/ac_HT40/VHT40)		
	1 ch (802.11ac_VHT80)		
	5 725 Mb Band: 4 ch (802.11a/n/ac_HT20/VHT20)		
	2 ch (802.11n/ac_HT40/VHT40)		
	1 ch (802.11ac_VHT80)		
Type of Antenna	Chip Antenna		
	2 GHz: 4.11 dBi (Bluetooth), 4.11 dBi (WiFi)		
Antenna Gain	5 GHz: 5 150 MHz Band: 2.89 dBi, 5 250 MHz Band: 2.89 dBi		
	5 470 MHz Band: 2.51 dBi, 5 725 MHz Band: 5.78 dBi		
Transmit Power	22.58 dBm		
Power supply	DC 14.4 V		
H/W Version	1.0		
S/W Version	1.0		
Test S/W version	JFHEV.USA.0000.V060.150427		
RF Power setting	Using original setting value inside EUT		

Note: The above EUT information was declared by the manufacturer.

3.3 Test frequency

	Frequency
Low frequency	2 412 Mb
Middle frequency	2 437 Mb
High frequency	2 462 Mb

3.4 Test Voltage

Mode	Voltage
Norminal voltage	DC 14.4 V

4. Summary of test results

4.1 Standards & results

FCC Rule Reference	IC Rule Reference	Parameter	Report Section	Test Result
15.203, 15.247(b)(4)	-	Antenna Requirement	5.1	С
15.247(b)(3)	RSS-247, 5.4(4)	Maximum Peak Output Power	5.2	C
15.247(e)	RSS-247, 5.2	Peak Power Spectral Density	5.3	С
15.247(a)(2)	RSS-247, 5.2	6 dB Channel Bandwidth	5.4	С
-	RSS-247, 5.2	Occupied Bandwidth	5.4	С
15.247(d), 15.205(a), 15.209(a)	RSS-247, 5.5 RSS-GEN, 8.9, 10	Spurious Emission, Band Edge and Restricted bands	5.5	С
15.207(a)	RSS-GEN, 8.8	Conducted Emissions	5.6	N/A_1

Note: C = complies

NC = Not complies

NT = Not tested

NA = Not Applicable

 N/A_1 : This test is not applicable because the EUT falls into the automotive device and it's not to be connected to the public utility(AC) power line.

4.2 Uncertainty

Measurement Item	Expanded Uncertainty U = KUc (K = 2)		
Conducted RF power	± 1	1. 30 dB	
Conducted Spurious Emissions	± 1.52 dB		
	30 MHz ∼ 300 MHz:	+ 4.94 dB, - 5.06 dB	
	30 MIZ ∼ 300 MIZ.	+ 4.93 dB, - 5.05 dB	
Radiated Spurious Emissions	300 MHz ∼ 1 000 MHz:	+ 4.97 dB, - 5.08 dB	
		+ 4.84 dB, - 4.96 dB	
	1 GHz ∼ 25 GHz:	+ 6.03 dB, - 6.05 dB	
G 1 4 15 11	9 kHz ~ 150 kHz:	± 3.75 dB	
Conducted Emissions	150 kHz ∼ 30 MHz:	± 3.36 dB	

^{*} The general test methods used to test this device is ANSI C63.4:2013

5. Test results

5.1 Antenna Requirement

5.1.1 Regulation

According to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

And according to $\S15.407(a)(1)(2)(3)$, If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.1.2 Result

-Complied

The transmitter has a Chip antenna. The directional peak gain of the antenna is 4.11 dBi.

5.2 Maximum Peak Output Power

5.2.1 Regulation

According to §15.247(b)(3), For systems using digital modulation in the 902-928 Mb, 2 400-2 483.5 Mb, and 5 725-5 850 Mb bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to §15.247(b)(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2.2 Measurement Procedure

These test measurement settings are specified in section 9.0 of 558074 D01 DTS Meas Guidance.

5.2.2.1 PKPM1 Peak power meter method

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.

5.2.3 Test Result

- Complied

* 802.11b

Channel	Frequency (Mb)	Result (dBm)	Limit (dBm)	Margin (dB)	Avarage Power (dBm)
Low	2 412	19.78	30.00	10.22	15.55
Middle	2 437	19.58	30.00	10.42	15.79
High	2 462	20.08	30.00	9.92	16.26

* 802.<u>11g</u>

Channel	Frequency (Mb)	Result (dBm)	Limit (dBm)	Margin (dB)	Avarage Power (dBm)
Low	2 412	21.58	30.00	8.42	11.02
Middle	2 437	21.68	30.00	8.32	11.12
High	2 462	21.68	30.00	8.32	11.17

* 802. 11n HT20

Channel	Frequency (Mb)	Result (dBm)	Limit (dBm)	Margin (dB)	Avarage Power (dBm)
Low	2 412	22.58	30.00	7.42	11.05
Middle	2 437	22.38	30.00	7.62	11.06
High	2 462	22.38	30.00	7.62	11.04

NOTE:

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.3 Peak Power Spectral Density

5.3.1 Regulation

According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.3.2 Measurement Procedure

These test measurement settings are specified in section 10.0 of 558074 D01 DTS Meas Guidance.

5.3.2.1 Method PKPSD (peak PSD)

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- 1) Set analyzer center frequency to DTS channel center frequency.
- 2) Set the span to 1.5 times the DTS bandwidth.
- 3) Set the RBW to: 3 kHz \leq RBW \leq 100 kHz.
- 4) Set the VBW \geq 3 x RBW.
- 5) Detector = peak.
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level within the RBW.
- 10) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3.3 Test Result

- Complied

* 802.11b

Channel	Result [dBm]	Limit [dBm]	Margin [dBm]
Low	5.34	8.00	2.66
Middle	5.78	8.00	2.22
High	6.02	8.00	1.98

* 802.11g

Channel	Result [dBm]	Limit [dBm]	Margin [dBm]
Low	0.47	8.00	7.53
Middle	1.02	8.00	6.98
High	1.04	8.00	6.96

* 802.11n HT20

002(11111111111111111111111111111111111			
Channel	Result [dBm]	Limit [dBm]	Margin [dBm]
Low	0.50	8.00	7.50
Middle	0.96	8.00	7.04
High	1.00	8.00	7.00

NOTE

1. We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.3.4 Test Plot

Figure 1. Plot of the Power Density

* 802.11b

Lowest Channel(2412 5)

* 802.11g

Lowest Channel (2 412 Mb)

* 802.11n HT20

Lowest Channel (2 412 Mb)

5.4 6 dB Bandwidth(DTS Channel Bandwidth)

5.4.1 Regulation

According to \$15.247(a)(2) Systems using digital modulation techniques may operate in the 902–928 Mz, 2 400–2 483.5 Mz, and 5 725–5 850 Mz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

5.4.2 Measurement Procedure

These test measurement settings are specified in section 8.0 of 558074 D01 DTS Meas Guidance.

5.4.2.1 DTS Channel Bandwidth-Option 1

- 1) Set RBW = 100 kHz.
- 2) Set the video bandwidth (VBW) \geq 3 x RBW.
- 3) Detector = Peak.
- 4) Trace mode = max hold.
- 5) Sweep = auto couple.
- 6) Allow the trace to stabilize.
- 7) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

5.4.2.2 DTS Channel Bandwidth Measurement Procedure-Option 2

The automatic bandwidth measurement capability of an instrument may be employed using the $X \, dB$ bandwidth mode with X set to $6 \, dB$, if the functionality described above (i.e., $RBW = 100 \, kHz$, $VBW \ge 3 \, x \, RBW$, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be $\ge 6 \, dB$.

5.4.3 Test Result

- Complied

* 802.11b

0021110				
Channel	Frequency [Mb]	6 dB Bandwidth [Mb]	Min. Limit [Mtz]	Occupied Bandwidth (99 % BW) [雕]
Low	2 412	7.39	0.50	11.23
Middle	2 437	7.47	0.50	11.29
High	2 462	7.24	0.50	11.35

* 802.11g

002.11g				
Channel	Frequency [Mb]	6 dB Bandwidth [雕]	Min. Limit [Mtz]	Occupied Bandwidth (99 % BW) [胐]
Low	2 412	16.50	0.50	16.44
Middle	2 437	16.45	0.50	16.44
High	2 462	16.45	0.50	16.44

* 802.11n HT20

002.11H 11120				
Channel	Frequency [Mb]	6 dB Bandwidth [Mb]	Min. Limit [Mb]	Occupied Bandwidth (99 % BW) [岫]
Low	2 412	17.77	0.50	17.71
Middle	2 437	17.84	0.50	17.71
High	2 462	17.84	0.50	17.71

NOTE:

^{1.} We took the insertion loss of the cable loss into consideration within the measuring instrument.

5.4.4 Test Plot

Figure 2. Plot of the 6 dB Bandwidth & Occupied Bandwidth

* 802.11b (6 dB Bandwidth)

Lowest Channel (2 412 Mb)

* 802.11g (6 dB Bandwidth)

Lowest Channel (2 412 Mb)

* 802.11n HT20 (6 dB Bandwidth)

Lowest Channel (2 412 Mb)

* 802.11b (Occupied Bandwidth)

Lowest Channel (2 412 Mz)

* 802.11g (Occupied Bandwidth)

Lowest Channel (2 412 Mz)

* 802.11n HT20 (Occupied Bandwidth)

Lowest Channel(2412 附)

5.5 Spurious Emission, Band Edge, and Restricted bands

5.5.1 Regulation

According to §15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

According to §15.209(a), Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall notexceed the field strength levels specified in the following table:

Frequency (Mb)	Field strength (µV/m)	Measurement distance (m)
0.009 - 0.490	2 400/F(kHz)	300
0.490 - 1.705	24 000/F(kHz)	30
1.705 - 30	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54–72 Mtz, 76–88 Mtz, 174–216 Mtz or 470–806 Mtz. However, operation within these frequency bands is permItted under other sections of this part, e.g., §§15.231 and 15.241.

According to § 15.205(a) and (b), only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.009 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
0.495 - 0.505	16.694 75 - 16.695 25	608 - 614	5.35 - 5.46
2.173 5 - 2.190 5	16.804 25 - 16.804 75	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	$1\ 300-1\ 427$	8.025 - 8.5
4.177 25 - 4.177 75	37.5 - 38.25	1 435 – 1 626.5	9.0 - 9.2
4.207 25 - 4.207 75	73 - 74.6	1 645.5 – 1 646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1 660 – 1 710	10.6 - 12.7
6.267 75 - 6.268 25	108 - 121.94	1 718.8 – 1 722.2	13.25 - 13.4
6.311 75 - 6.312 25	123 - 138	$2\ 200 - 2\ 300$	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.524 75 - 156.525 25	2483.5 - 2500	17.7 - 21.4
8.376 25 - 8.386 75	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.414 25 - 8.414 75	162.012 5 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.519 75 - 12.520 25	240 - 285	3 345.8 – 3 358	36.43 - 36.5
12.576 75 - 12.577 25	322 - 335.4	3 600 – 4 400	Above 38.6
13.36 - 13.41			

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1 000 Mb, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1 000 Mb, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

5.5.2 Measurement Procedure

5.5.2.1 Band-edge Compliance of RF Conducted Emissions

5.5.2.1.1 Reference Level Measurement

Establish a reference level by using the following procedure:

- 1) Set instrument center frequency to DTS channel center frequency.
- 2) Set the span to ≥ 1.5 times the DTS bandwidth.
- 3) Set the RBW = 100 kHz.
- 4) Set the VBW \geq 3 x RBW.
- 5) Detector = peak.
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum PSD level.

5.5.2.1.2 Emissions Level Measurement

- 1) Set the center frequency and span to encompass frequency range to be measured.
- 2) Set the RBW = 100 kHz.
- 3) Set the VBW \geq 3 x RBW.
- 4) Detector = peak.
- 5) Ensure that the number of measurement points \geq span/RBW
- 6) Sweep time = auto couple.
- 7) Trace mode = max hold.
- 8) Allow trace to fully stabilize.
- 9) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) are attenuated by at least the minimum requirements specified in 11.1 a) or 11.1 b). Report the three highest emissions relative to the limit.

5.5.2.2 Conducted Spurious Emissions

Set the spectrum analyzer as follows:

- 1) Span = wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
- 2) RBW = 100 kHz
- 3) VBW ≥ RBW
- 4) Sweep = auto
- 5) Detector function = peak
- 6) Trace = max hold
- 7) Allow the trace to stabilize. Set the marker on the peak of any spurious emission recorded.
- 8) Each frequency found during preliminary measurements was re-examined and investigated.

 The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

5.5.2.3 Radiated Spurious Emissions

- 1) The preliminary and final rdiated measurements were performed to determine the frequency producing the maximum emissions in at a 10m anechoic chamber. The EUT was tested at a distance 3 meters.
- 2) The EUT was placed on the top of the 0.8-meter height, 1 × 1.5 meter non-metallic table. To find the maximum emission levels, the height of a measuring antenna was changed and the turntable was rotated 360°.
- 3) The antenna polarization was also changed from vertical to horizontal. The spectrum was scanned from 9 kHz to 30 MHz using the loop antenna, and from 30 to 1 000 MHz using the TRILOG broadband antenna, and from 1 000 MHz to 26 500 MHz using the horn antenna.
- 4) Each frequency found during preliminary measurements was re-examined and investigated. The test-receiver system was set up to average, peak, and quasi-peak detector function with specified bandwidth.

Note

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 MHz for Peak detection and frequency above 1 GHz.

The resolution bandwidth of test receiver/spectrum analyzer is 1 Mz and the video bandwidth is 1 kHz($\geq 1/T$) for Average detection (AV) at frequency above 1 GHz. (where T = pulse width)

5.5.3 Test Result

- Complied

- 1. Band edge & Conducted Spurious Emissions was shown in figure 3 & 4.

 Note: We took the insertion loss of the cable into consideration within the measuring instrument.
- 2. Measured value of the Field strength of spurious Emissions (Radiated)
- 3. It tested x,y and z 3 axis each, mentioned only worst case data at this report.
- * Noise was not measured. (Margin was more than 20 dB) Worst value of noise floor was recorded.

* Below 1 (Hz data (worst-case: 802.11n HT20)

Low channel (2 412 脏)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin			
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]			
Quasi-Peak DATA. Emissions below 30 Mz										
Below 30.00	Not Detected	-	-	-	-	-	-			
Quasi-Peak DAT	Quasi-Peak DATA. Emissions below 1 @z									
39.94	120	V	41.80	-14.70	27.10	40.00	12.90			
46.13	120	V	43.80	-13.70	30.10	40.00	9.90			
66.50	120	V	35.10	-16.80	18.30	40.00	21.70			
449.89	120	Н	30.60	-8.30	22.30	46.00	23.70			
599.88	120	V	20.40	-5.00	15.40	46.00	30.60			
Below 600.00	Not detected	-	-	-	-	-	-			

* Above 1 Hz data

802.11b_Low channel (2 412 吨)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit [dB(μ V/m)]	Margin		
[INITZ]	[kHz]	[V/П]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[ab(\mu v/III)]$	լահյ		
Peak DATA. Emissions above 1 (Hz									
1731.50	1 000	V	63.50	-3.50	60.00	74.00	14.00		
* 2390.00	1 000	V	60.80	0.40	61.20	74.00	12.80		
Above	Not	_	_	_	_	_	_		
3 000.00	Detected								
Average DATA. E	missions above	1 GHz							
1731.50	1 000	V	38.40	-3.50	34.90	54.00	19.10		
* 2390.00	1 000	V	40.70	0.40	41.10	54.00	12.90		
Above	Not	_	_	_	_	_	_		
3 000.00	Detected	_	_	_	_	_	_		

^{*} This Asterisk means restricted band.

802.11b_Middle channel (2 437 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]		
Peak DATA. Emissions above 1 @z									
2359.75	1 000	Н	52.00	0.20	52.20	74.00	21.80		
Above 3 000.00	Not Detected	-	1	-	-	-	-		
Average DATA. E	Emissions above	1 GHz							
2359.75	1 000	Н	41.40	0.20	41.60	54.00	12.40		
Above 3 000.00	Not Detected	-	-	-	-	-	-		

802.11b_High channel (2 462 **Mb**)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]		
Peak DATA. Emissions above 1 @z									
2387.00	1 000	Н	50.70	0.40	51.10	74.00	22.90		
Above 3 000.00	Not Detected	-	1	-	-	-	-		
Average DATA. E	missions above	1 GHz							
2387.00	1 000	Н	38.10	0.40	38.50	54.00	15.50		
Above 3 000.00	Not Detected	-	-	-	-	-	-		

802.11g_Low channel (2 412 Mz)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin			
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]			
Peak DATA. Emissio	Peak DATA. Emissions above 1 @z									
1730.50	1 000	V	58.20	-3.50	54.70	74.00	19.30			
* 2389.75	1 000	V	65.70	0.40	66.10	74.00	7.90			
Above 3 000.00	Not Detected	-	-	-	-	-	-			
Average DATA. Emis	ssions above 1 Œz									
1730.50	1 000	V	39.00	-3.50	35.50	54.00	18.50			
* 2389.75	1 000	V	49.70	0.40	50.10	54.00	3.90			
Above 3 000.00	Not Detected	-	-	-	-	-	-			

^{*} This Asterisk means restricted band.

802.11g_Middle channel (2 437 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]		
Peak DATA. Emissions above 1 @z									
2385.50	1 000	V	52.80	0.40	53.20	74.00	20.80		
Above 3 000.00	Not Detected	-	•	-	-	-	1		
Average DATA. Emis	ssions above 1 Œz								
2385.50	1 000	V	42.40	0.40	42.80	54.00	11.20		
Above 3 000.00	Not Detected	-	-	-	-	-	-		

802.11g High channel (2 462 Mz)

002.11g_High cha	inner (2 402 Mile	,							
Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]		
Peak DATA. Emissions above 1 Hz									
* 2483.50	1 000	Н	63.80	0.70	64.50	74.00	9.50		
Above 3 000.00	Not Detected	-	1	-	-	-	ı		
Average DATA. Em	issions above 1 🖫	z							
* 2483.50	1 000	Н	47.10	0.70	47.80	54.00	6.20		
Above 3 000.00	Not Detected	-	-	-	-	-	-		

^{*} This Asterisk means restricted band.

802.11n HT20_Low channel (2 412 N世)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]		
Peak DATA. Emissions above 1 Hz									
* 2389.50	1 000	V	66.80	0.40	67.20	74.00	6.80		
Above 3 000.00	Not Detected	-	-	-	-	-	-		
Average DATA. Emi	issions above 1 Œz								
* 2389.50	1 000	V	52.60	0.40	53.00	54.00	1.00		
Above 3 000.00	Not Detected	-	-	-	-	-	-		

^{*} This Asterisk means restricted band.

802. 11n HT20_ Middle channel (2 437 Mb)

Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]		
Peak DATA. Emissions above 1 @z									
-	Not Detected	-	-	-	-	-	-		
Average DATA. Emissions above 1 @z									
-	Not Detected	-	-	-	-	-	-		

802.11n HT20_ High channel (2 462 Nb)

· ·									
Frequency	Receiver Bandwidth	Pol.	Reading	Factor	Result	Limit	Margin		
[MHz]	[kHz]	[V/H]	$[dB(\mu V)]$	[dB]	$[dB(\mu V/m)]$	$[dB(\mu V/m)]$	[dB]		
Peak DATA. Emissions above 1 dz									
* 2483.50	1 000	Н	68.60	0.70	69.30	74.00	4.70		
Above 3 000.00	Not Detected	-	-	-	-	-	-		
Average DATA. En	nissions above 1 🖫	ı							
* 2483.50	1 000	Н	48.10	0.70	48.80	54.00	5.20		
Above 3 000.00	Not Detected	-	-	-	-	-	-		

^{*} This Asterisk means restricted band.

5.7.4 Test Plot

Figure 3. Plot of the Band-edge & Conducted Spurious Emissions

* 802.11b

Lowest Channel (2 412 Mb)

Reference

Stop 12.75 GHz

691 pts

-50 dBm -60 dBm -70 dBm -80 dBm

Start 30.0 MHz

Middle Channel (2 437 Mb)

Reference

Highest Channel (2 462 眦)

Reference

* 802.11g

Lowest Channel (2 412 Mb)

Reference

Middle Channel (2 437 Mb)

Reference

Highest Channel (2 462 眦)

Reference

* 802.11n HT20

Lowest Channel (2 412 吨)

Reference

Middle Channel (2 437 Mb)

Reference

Highest Channel (2 462 吨)

Reference

6. Test equipment used for test

	Description	Manufacturer	Model No.	Serial No.	Next Cal Date.
•	Temp & humidity chamber	ESPEC CORP.	SH-641	92005476	15.12.26
	Spectrum Analyzer	R&S	FSV40	100988	16.01.26
	Wideband Power Sensor	R&S	NRP-Z81	102398	15.11.27
	DC Power Supply	AGILENT	E3632A	MY40004399	16.01.06
•	Loop Antenna	R&S	HFH2-Z2	861971/003	17.03.03
	Bi-Log Antenna	SCHWARZBECK	VULB9163	552	16.06.14
•	Horn Antenna	SCHWARZBECK	3117	155787	16.02.05
	Horn Antenna	ETS.lindgren	3116	86632	15.10.20
•	Amplifier	SONOMA INSTRUMENT	310	293004	15.09.25
	Emi Test Receiver	R&S	ESCI	101078	16.02.16
	Vector Signal Generator	R&S	SMBV100A	257566	16.01.06
	Broadband Preamplifier	SCHWARZBECK	BBV9721	2	16.05.19
•	Broadband Preamplifier	SCHWARZBECK	BBV9718	9718-233	16.04.13
•	Power Divider	Aeroflex/ Weinschel,Inc	1580-1	NX375	15.10.14
	Power Divider	Aeroflex/ Weinschel,Inc	1580-1	RM986	16.04.08
•	Attenuator	HP	8494A	2631A09825	15.10.14
	Attenuator	НР	8496A	3308A16640	15.10.14
	Antenna Mast	Innco Systems	MA4000-EP	-	-
•	Turn Table	Innco Systems	DT2000	-	-
•	Highpass Filter	Wainwright Instruments GmbH	WHKX3.0/18G- 12SS	44	16.02.02
•	Highpass Filter	Wainwright Instruments GmbH	WHKX6.5/18G-8SS	2	16.06.15