

FEATURE ENGINEERING

Trevor Lindsay

COMMUNICATING RESULTS

LEARNING OBJECTIVES

 Understand the concept of feature engineering and apply it towards a machine learning problem

OPENING

WHICH MODEL PERFORMS THE BEST?

ACTIVITY: KNOWLEDGE CHECK

COMPLETE THE FOLLOWING TASKS

- 1. Using the raw features in the *titanic_train* dataset, train a logistic regression, random forest, GBDT and KNN model to predict if a passenger survived.
- 2. Which model performs the best? What is the most appropriate metric for this task?

INTRODUCTION

WHAT IS FEATURE ENGINEERING?

WHAT IS FEATURE ENGINEERING?

- Feature engineering is the process of transforming raw data into features that better represent the underlying problem to the predictive models
- Feature engineering depends on:
 - The performance measures you've chosen
 - The framing of the problem (classification? regression?)\
 - The predictive models you're using
 - The raw data you have selected and prepared

GUIDED PRACTICE

THE SECRET TO FEATURE ENGINEERING

THE SECRET TO FEATURE ENGINEERING

DOMAIN KNOWLEDGE

GUIDED PRACTICE

FEATURE ENGINEERING IN PRACTICE

FEATURE ENGINEERING IN PRACTICE

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from sklearn import (
    metrics,
    linear_model,
    ensemble,
    neighbors,
df = pd.read_csv('../../data/titanic_train.csv')
```