Processing of Probabilistic Skyline Queries Using MapReduce

Qingfu Wen

School of Software, Tsinghua University

qingfu.wen@gmail.com

Author: Yoonjae Park, Jun-Ki Min, Kyuseok Shim

November 16, 2015

Object	Instance	NO ₂	SO ₂	Probability
W	w ₁	10	40	0.5
VV	w ₂	75	10	0.4
X	X ₁	55	20	0.2
^	x ₂	65	30	0.2
V	У1	95	60	0.8
,	У2	80	70	0.2
7	z ₁	5	80	0.5
	z ₂	90	25	0.5

Object	Instance	NO ₂	SO ₂	Probability
W	w ₁	10	40	0.5
VV	w ₂	75	10	0.4
X	X ₁	55	20	0.2
^	x ₂	65	30	0.2
V	У1	95	60	0.8
,	У2	80	70	0.2
7	z ₁	5	80	0.5
	z ₂	90	25	0.5

question

Which Object's skyline probability is larger than 0.6?

Object	Instance	NO_2	SO_2	Probability
W	w ₁	10	40	0.5
V V	w ₂	75	10	0.4
Х	× ₁	55	20	0.2
^	× ₂	65	30	0.2
V	У1	95	60	0.8
' '	У2	80	70	0.2
7	z ₁	5	80	0.5
	z ₂	90	25	0.5

$$\begin{split} P_{sky}(y_1) &= P(y_1)(1 - P(w_1) - P(w_2))(1 - P(x_1) - P(x_2))(1 - P(z_2)) \\ &= 0.024 \\ P_{sky}(y_2) &= 0.012 \\ P_{sky}(Y) &= P_{sky}(y_1) + P_{sky}(y_2) = 0.036 \\ P_{sky}(W) &= 0.9 \\ P_{sky}(X) &= 0.4 \\ P_{sky}(Z) &= 0.74 \end{split}$$

Probabilistic Skyline Problem

For a set of uncertain objects $\mathbb D$ and a probability threshold T_p , the probabilistic skyline $pSL(\mathbb D, T_p)$, is the set of all objects whose skyline probabilities are at least T_p , $pSL(\mathbb D, T_p) = \{U \in \mathbb D | P_{sky}(U) \geq T_p\}$.

The discrete model:

$$P_{sky}(U) = \sum_{u_i \in U} P_{sky}(u_i) = \sum_{u_i \in U} (P(u_i) \times \prod_{V \in \mathbb{D}, V \neq U} (1 - \sum_{v_j \in V, v_j \prec u_i} P(v_j)))$$

The continuous model:

$$P_{sky}(u_i) = \int_U Uf(u) \times \prod_{V \in \mathbb{D}, V \neq U} (1 - \int_V Vf(v) 1(v \prec u) dv) du$$

What is MapReduce?

PSMR: The State-of-the-art Algorithm

- local computing candidate sets.
- merge candidate sets, broadcast and local computing, reduce probabilities.

Early Pruning Techniques

Lemma (Zero-probability Filtering)

$$\begin{split} P_{sky}(U) &= \sum_{u_i \in U} P(u_i) \times \prod_{V \in \mathbb{D}, V \neq U} (1 - \sum_{v_j \in V, v_j \prec u_i} P(v_j)) \\ \text{delete } u_i \text{ if } \prod_{V \in \mathbb{D}, V \neq U} (1 - \sum_{v_j \in V, v_j \prec u_i} P(v_j)) = 0. \end{split}$$

Early Pruning Techniques

Lemma (Upper-bound Filtering)

$$\beta(U, S, R(u_i)) = \frac{\prod\limits_{V \in S} (1 - \sum\limits_{v_j \in V, v_j \prec R(u_i).min} P(v_j))}{1 - \sum\limits_{v_k \in U, v_k \prec R(u_k).min} P(v_j)}$$

$$up(u_i, U, S, R(u_i)) = P(u_i) \times \beta(U, S, R(u_i)).$$

$$\begin{split} P_{sky}(y_1) &= P(y_1)(1 - P(w_1) - P(w_2))(1 - P(x_1) - P(x_2))(1 - P(z_2)) \\ &\leq P(y_1)(1 - P(w_1)) = 0.4 \\ P_{sky}(y_2) &\leq 0.1 \\ P_{sky}(Y) &= P_{sky}(y_1) + P_{sky}(y_2) \leq 0.5 < T_p \end{split}$$

Early Pruning Techniques

Lemma (Dominance-Power Filtering)

$$\begin{split} &DP(v_j) = \prod_{i=1}^{d} (b(k) - v_j(k)) = 0, b(k) = \max\{v_1(k), \cdots, v_n(k)\}. \\ &DP(V) = \sum_{v_j \in V} (P(v_j) \times DP(v_j)). \\ &\mathbb{F} \text{ is topK DP set, } \sum_{u_i \in U} P(u_i) \times \prod_{V \in \mathbb{F}, V \neq U} (1 - \sum_{v_j \in V, v_j \prec u_i} P(v_j)) < T_p, \ U \text{ is not a probabilistic skyline Object.} \end{split}$$

Example (Dominance-Power Filtering)

$$DP(y_1) = (100 - 95)(100 - 60) = 200$$

$$DP(y_2) = (100 - 80)(100 - 70) = 600$$

$$DP(Y) = P(y_1) * DP(y_1) + P(y_2) * DP(y_2)$$

$$= 0.8 * 200 + 0.2 * 600 = 280$$

PSQtree for Pruning

- generate PSQtree
- traverse PSQtree for computing $P_{sky}(node.min)$
- zero-probability filtering
- upper-bound filtering
- partitioning objects by PSQtree(weakly dominate)

MapReduce Algorithms with PSQtree

 $W = \{(<10,40>,0.5), (<75,10>,0.4)\}$ $X = \{(<55,20>,0.2), (<65,30>,0.2)\}$ $Z = \{(<5,80>,0.5), (<90,25>,0.5)\}$

kev value 10 W,{(<10,40>,0.5),(<75,10>,0.4)},'C' 00 W,{(<10,40>,0.5)},'W',TRUE 01 W,{(<10,40>,0.5)},'W',TRUE 11 | W, {(<10,40>,0.5),(<75,10>,0.4)}, 'W', TRUE X={(<55,20>,0.2), (<65,30>,0.2)} Y={(<95,60>,0.8), (<80,70>,0.2)} 11 | X,{(<55,20>,0.2),(<65,30>,0.2)}, W;FALSE 11 |X,{(<55,20>,0.2),(<65,30>,0.2)},'W',FALSE 11 Y,{(<95,60>,0.8),(<80,70>,0.2)},'C' 11 Z,{(<5,80>,0.5),(<90,25>,0.5)},'C' 10 Z,{(<90,25>,0.5)},'W',TRUE 01 Z.{(<5.80>,0.5)},'W',TRUE

key value 00 W.{(<10,40>,0,5)},'W',TRUE 01 W,{(<10,40>,0.5)},'W',TRUE kev value 01 Z,{(<5,80>,0.5)},'W',TRUE W.{(<10.40>.0.5),(<75.10>.0.4)},'C' Z,{(<90,25>,0.5)},'W',TRUE X,{(<55,20>,0.2),(<65,30>,0.2)},'W',FALSE Z,{(<5,80>,0.5),(<90,25>,0.5)},'C' Y,{(<95,60>,0.8),(<80,70>,0.2)},'C' W,{(<10,40>,0.5),(<75,10>,0.4)},'W',TRUE 11 X.{(<55,20>,0.2),(<65,30>,0.2)},'W',FALSE

Example (PS-QPF-MR)

- $T_p = 0.5$, map function is called with an uncertain object.
- for X, upper bound $node(10).P_{min}P(x1) + node(10).P_{min}P(x2) = 0.4 < T_D = 0.5.$ X is not a skyline candidate.
- every instance of X, emit the key-value pairs $\langle 10, (\{(\langle 55, 20 \rangle, 0.2), (\langle 65, 30 \rangle, 0.2)\}, W, False)\rangle$ and $\langle 11, (\{(\langle 55, 20 \rangle, 0.2), 0.2), 0.2), 0.2\rangle$ $(\langle 65, 30 \rangle, 0.2)$, W, False) since node(10) weakly dominates node(10) and node(11)

Experiments

- 50 machines with Intel i3 3.3GHz CPU and 4GB, Linux
- 200 machines with Intel Xeon 2.5GHz CPU and 3.75GB, Amazon EC2
- Java 1.6, Hadoop 1.2.1

Algorithm	Description
PS-QP-MR	The algorithm with quadtree partitioning
PS-QPF-MR	The algorithm with quadtree partitioning and filtering
PS-BR-MR	The algorithm with random partitioning
PS-BRF-MR	The algorithm with random partitioning and filtering
PSMR	The state-of-the-art algorithm

Parameter	Range	Default
No. of samples(\mathbb{S})	1000~10,000	1000 for PS-QPF-MR
		2000 for PS-QP-MR
		10000 for PS-BRF-MR
No. of dominating objects(\mathbb{F})	1000~10,000	100 for PS-QPF-MR
		1000 for PS-BRF-MR
No. of objects(\mathbb{D})	$10^5\sim 10^8$	10 ⁷
No. of dimensions(d)	2 ~ 8	4
Probability threshold (T_p)	0.1~0.6	0.3
No. of inst. per object(ℓ)	$1\sim400$	40
No. of machines (t)	10~200	25 - +

13 / 17

Experiments

Experiments

(a) With our cluster

(a) Varying ℓ

(b) With Amazon EC2

(b) Varying $|\mathbb{D}|$ when $\ell = 1$

Conclusion

- probabilistic skyline query for both discrete and continuous models
- zero-probability, the upper-bound, and dominance power filtering techniques
- using a PSQtree to distribute the instances of objects effectively
- a single MapReduce phase algorithm PS-QPF-MR and grouping techniques for optimization

The End

Q & A