PCT/US00/35516 (12) INTERNATIONAL APPLICATION PUBLISH®D UNDER THE PATENT COOPERATION TREATY (PCT

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 June 2001 (28.06.2001)

(10) International Publication Number WO 01/45728 A2

- (51) International Patent Classification7: A61K 38/08. 39/00, 39/385, 39/39, C07H 21/04, C07K 14/435
- (21) International Application Number: PCT/US00/35516
- (22) International Filing Date:

20 December 2000 (20.12.2000)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/171,312 09/633,364

US 21 December 1999 (21.12.1999) 7 August 2000 (07.08.2000) US

- (71) Applicant: EPIMMUNE INC. [US/US]; 5820 Nancy Ridge Drive, San Diego, CA 92121 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): FIKES, John [US/US]; 4671 Robbins Street, San Diego, CA 92122 (US). SETTE, Alessandro [IT/US]; 5551 Linda Rosa Avenue, La Jolla, Ca California 92037 (US). SIDNEY, John [US/US]; 4218 Corte delaa Siena, San Diego, CA 92130 (US). SOUTHWOOD, Scott [US/US]; 19679 Strathmore Drive, Santee, CA 92071 (US). CHESNUT, Robert [US/US]; 1473 Kings Cross Drive, Cardiff-by-the-Sea, CA 92007 (US). CELIS, Esteban [US/US]; 3683 Wright

Road S.W., Rochester, MN 55902 (US). KEOGH, Elissa [US/US]; 799 Caminito Dia #2, San Diego, CA 92122 (US).

- (74) Agents: LOCKYER, Jean, M. et al.; Townsend Townsend and Crew LLP, Two Embarcadero Center, Eighth Floor, San Francisco, CA 94111 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

With declaration under Article 17(2)(a); without abstract; title not checked by the International Searching Authority.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

10

15

20

25

30

35

40

5 INDUCING CELLULAR IMMUNE RESPONSES TO PROSTATE CANCER ANTIGENS USING PEPTIDE AND NUCLEIC ACID COMPOSITIONS

I. BACKGROUND OF THE INVENTION

A growing body of evidence suggests that cytotoxic T lymphocytes (CTL) are important in the immune response to tumor cells. CTL recognize peptide epitopes in the context of HLA class I molecules that are expressed on the surface of almost all nucleated cells. Following intracellular processing of endogenously synthesized tumor antigens, antigen-derived peptide epitopes bind to class I HLA molecules in the endoplasmic reticulum, and the resulting complex is then transported to the cell surface. CTL recognize the peptide-HLA class I complex, which then results in the destruction of the cell bearing the HLA-peptide complex directly by the CTL and/or via the activation of non-destructive mechanisms, e.g., activation of lymphokines such as tumor necrosis factor- α (TNF- α) or interferon- γ (IFN γ) which enhance the immune response and facilitate the destruction of the tumor cell.

Tumor-specific helper T lymphocytes (HTLs) are also known to be important for maintaining effective antitumor immunity. Their role in antitumor immunity has been demonstrated in animal models in which these cells not only serve to provide help for induction of CTL and antibody responses, but also provide effector functions, which are mediated by direct cell contact and also by secretion of lymphokines (e.g., IFNγ and TNF- α).

A fundamental challenge in the development of an efficacious tumor vaccine is immune suppression or tolerance that can occur. There is therefore a need to establish vaccine embodiments that elicit immune responses of sufficient breadth and vigor to prevent progression and/or clear the tumor.

The epitope approach, as we have described, represents a solution to this challenge, in that it allows the incorporation of various CTL, HTL, and antibody (if desired) epitopes from discrete regions of one or more target tumor-associated antigens (TAAs) in a single vaccine composition. Such a composition may simultaneously target multiple dominant and subdominant epitopes and thereby be used to achieve effective immunization in a diverse population.

Prostate cancer is the most common malignancy in men. Current therapies, *i.e.*, chemotherapy combined with androgen blockade, antiandrogen withdrawal, and other secondary hormonal therapies, have met with limited success. Thus, there is a need to develop more efficacious therapies. The multiepitopic immunotherapy vaccine compositions of the present invention fulfill this need.

Antigens that are associated with prostate cancer include, but are not limited to, prostate specific antigen (PSA), prostate specific membrane antigen (PSM), prostatic acid phosphatase (PAP), and human kallikrein2 (hK2 or HuK2). These antigens represent important antigen targets for the polyepitopic vaccine compositions of the invention.

PSM is also an important candidate for prostate cancer therapy. It is a Type II membrane protein that is expressed at high levels on prostate adenocarcinomas. The levels of expression increase on

metastases and in carcinomas that are refractory to hormone therapy. PSM is not generally present on normal tissues, although low levels have been detected in the colonic crypts and in the duodenum, and PSM can be detected in normal male serum and seminal fluid (see, e.g., Silver et al., Clin. Cancer Res. 3:81-85, 1997). CTL responses to PSM have also been documented (see, e.g., Murphy et al., Prostate 29:371-380, 1996; and Salgaller et al., Prostate 35:144-151, 1998).

PAP is a tissue-specific differentiation antigen that is secreted exclusively by cells in the prostate (see, e.g., Lam et al., Prostate 15:13-21, 1989). It can be detected in serum and levels are increased in patients with prostate carcinoma (see, e.g., Jacobs et al., Curr. Probl. Cancer 15:299-360, 1991). The PAP protein sequence has, at best, a 49% sequence homology with other acid phosphatases with the homologous regions distributed throughout the protein. Accordingly, PAP-specific epitopes can be identified and several different CTL epitopes have been described (see, e.g., Peshwa et al., Prostate 36:129-138, 1998).

The hK2 protein is functionally a serine protease involved in posttranslational processing of polypeptides. It is expressed by prostate epithelia exclusively, and is found in both benign and malignant prostate cancer tissue. Although it is expressed in 50% of normal prostate cells, the percentage of cells expressing hK2 is increased in adenocarcinomas and prostatic intraepithelial neoplasia (PIN) (see, e.g., Darson et al., Urology 49:857-862, 1997). Based on the preferential expression of this antigen on prostate cancer cells, hK2 is also an important target for immunotherapy.

Prostate-specific antigen (PSA), also referred to as hK3, is a secreted serine protease and a member of the kallikrein family of proteins. The PSA gene is 80% homologous with the hK2 gene, however, tissue expression of hK2 is regulated independently of PSA (see, e.g., Darson et al., Urology 49:857-862, 1997). Expression of PSA is restricted to prostate epithelial cells, both benign and malignant. The antigen can be detected in the serum of most prostate cancer patients and in seminal plasma. Several T cell epitopes from PSA have been identified and have been found to be immunogenic, and antibody responses have been reported in patients (see, e.g., Correale et al., J. Immunol. 161:3186, 1998; and Alexander et al., Urology 51:150-157, 1998). Thus, based on its prostate-restricted expression and ability to stimulate immune responses, PSA is an attractive target for immunotherapy of prostate cancer.

The information provided in this section is intended to disclose the presently understood state of the art as of the filing date of the present application. Information is included in this section which was generated subsequent to the priority date of this application. Accordingly, information in this section is not intended, in any way, to delineate the priority date for the invention.

II. SUMMARY OF THE INVENTION

5

10

15

20

25

30

35

40

This invention applies our knowledge of the mechanisms by which antigen is recognized by T cells, for example, to develop epitope-based vaccines directed towards TAAs. More specifically, this application identifies epitopes for inclusion in diagnostic and/or pharmaceutical compositions and methods of use of the epitopes for the evaluation of immune responses and for the treatment and/or prevention of cancer.

The use of epitope-based vaccines has several advantages over current vaccines, particularly when compared to the use of whole antigens in vaccine compositions. For example,

immunosuppressive epitopes that may be present in whole antigens can be avoided with the use of epitopebased vaccines. Such immunosuppressive epitopes may, e.g., correspond to immunodominant epitopes in whole antigens, which may be avoided by selecting peptide epitopes from non-dominant regions (see, e.g., Disis et al., J. Immunol. 156:3151-3158, 1996).

An additional advantage of an epitope-based vaccine approach is the ability to combine selected epitopes (CTL and HTL), and further, to modify the composition of the epitopes, achieving, for example, enhanced immunogenicity. Accordingly, the immune response can be modulated, as appropriate, for the target disease. Similar engineering of the response is not possible with traditional approaches.

5

10

15

20

25

30

35

40

Another major benefit of epitope-based immune-stimulating vaccines is their safety. The possible pathological side effects caused by infectious agents or whole protein antigens, which might have their own intrinsic biological activity, is eliminated.

An epitope-based vaccine also provides the ability to direct and focus an immune response to multiple selected antigens from the same pathogen (a "pathogen" may be an infectious agent or a tumor-associated molecule). Thus, patient-by-patient variability in the immune response to a particular pathogen may be alleviated by inclusion of epitopes from multiple antigens from the pathogen in a vaccine composition.

Furthermore, an epitope-based anti-tumor vaccine also provides the opportunity to combine epitopes derived from multiple tumor-associated molecules. This capability can therefore address the problem of tumor-to tumor variability that arises when developing a broadly targeted anti-tumor vaccine for a given tumor type and can also reduce the likelihood of tumor escape due to antigen loss. For example, prostate cancer cells in one patient may express target TAAs that differ from the prostate cancer cells in another patient. Epitopes derived from multiple TAAs can be included in a polyepitopic vaccine that will target both prostate cancers.

One of the most formidable obstacles to the development of broadly efficacious epitope-based immunotherapeutics, however, has been the extreme polymorphism of HLA molecules. To date, effective non-genetically biased coverage of a population has been a task of considerable complexity; such coverage has required that epitopes be used that are specific for HLA molecules corresponding to each individual HLA allele. Impractically large numbers of epitopes would therefore have to be used in order to cover ethnically diverse populations. Thus, there has existed a need for peptide epitopes that are bound by multiple HLA antigen molecules for use in epitope-based vaccines. The greater the number of HLA antigen molecules bound, the greater the breadth of population coverage by the vaccine.

Furthermore, as described herein in greater detail, a need has existed to modulate peptide binding properties, e.g., so that peptides that are able to bind to multiple HLA molecules do so with an affinity that will stimulate an immune response. Identification of epitopes restricted by more than one HLA allele at an affinity that correlates with immunogenicity is important to provide thorough population coverage, and to allow the elicitation of responses of sufficient vigor to prevent or clear an infection in a diverse segment of the population. Such a response can also target a broad array of epitopes. The technology disclosed herein provides for such favored immune responses.

In a preferred embodiment, epitopes for inclusion in vaccine compositions of the invention are selected by a process whereby protein sequences of known antigens are evaluated for the

WO 01/45728 PCT/US00/35516

presence of motif or supermotif-bearing epitopes. Peptides corresponding to a motif- or supermotif-bearing epitope are then synthesized and tested for the ability to bind to the HLA molecule that recognizes the selected motif. Those peptides that bind at an intermediate or high affinity i.e., an IC50 (or a KD value) of about 500 nM or less for HLA class I molecules or an IC₅₀ of about 1000 nM or less for HLA class II molecules, are further evaluated for their ability to induce a CTL or HTL response. Immunogenic peptide epitopes are selected for inclusion in vaccine compositions.

Supermotif-bearing peptides may additionally be tested for the ability to bind to multiple alleles within the HLA supertype family. Moreover, peptide epitopes may be analoged to modify binding affinity and/or the ability to bind to multiple alleles within an HLA supertype.

The invention also includes embodiments comprising methods for monitoring or evaluating an immune response to a TAA in a patient having a known HLA-type. Such methods comprise incubating a T lymphocyte sample from the patient with a peptide composition comprising a TAA epitope that has an amino acid sequence comprising a supermotif or motif and which binds the product of at least one HLA allele present in the patient, and detecting for the presence of a T lymphocyte that binds to the peptide. A CTL peptide epitope may, for example, be used as a component of a tetrameric complex for this type of analysis.

An alternative modality for defining the peptide epitopes in accordance with the invention is to recite the physical properties, such as length; primary structure; or charge, which are correlated with binding to a particular allele-specific HLA molecule or group of allele-specific HLA molecules. A further modality for defining peptide epitopes is to recite the physical properties of an HLA binding pocket, or properties shared by several allele-specific HLA binding pockets (e.g. pocket configuration and charge distribution) and reciting that the peptide epitope fits and binds to the pocket or pockets.

As will be apparent from the discussion below, other methods and embodiments are also contemplated. Further, novel synthetic peptides produced by any of the methods described herein are also part of the invention.

III. BRIEF DESCRIPTION OF THE FIGURES

not applicable

5

10

15

20

25

35

30 IV. DETAILED DESCRIPTION OF THE INVENTION

The peptide epitopes and corresponding nucleic acid compositions of the present invention are useful for stimulating an immune response to a TAA by stimulating the production of CTL or HTL responses. The peptide epitopes, which are derived directly or indirectly from native TAA protein amino acid sequences, are able to bind to HLA molecules and stimulate an immune response to the TAA. The complete sequence of the TAA proteins to be analyzed can be obtained from GenBank. Peptide epitopes and analogs thereof can also be readily determined from sequence information that may subsequently be discovered for heretofore unknown variants of particular TAAs, as will be clear from the disclosure provided below.

A list of target TAAs includes, but is not limited to, the following antigens: MAGE 1, 40 MAGE 2, MAGE 3, MAGE-11, MAGE-A10, BAGE, GAGE, RAGE, MAGE-C1, LAGE-1, CAG-3,

DAM, MUC1, MUC2, MUC18, NY-ESO-1, MUM-1, CDK4, BRCA2, NY-LU-1, NY-LU-7, NY-LU-12, CASP8, RAS, KIAA-2-5, SCCs, p53, p73, CEA, Her 2/neu, Melan-A, gp100, tyrosinase, TRP2, gp75/TRP1, kallikrein, PSM, PAP, PSA, PT1-1, B-catenin, PRAME, Telomerase, FAK, cyclin D1 protein, NOEY2, EGF-R, SART-1, CAPB, HPVE7, p15, Folate receptor CDC27, PAGE-1, and PAGE-4. Epitopes derived from these antigens may be used in combination with one another to target a specific tumor type, e.g., prostate tumors, or to target multiple types of tumors.

The peptide epitopes of the invention have been identified in a number of ways, as will be discussed below. Also discussed in greater detail is that analog peptides have been derived and the binding activity for HLA molecules modulated by modifying specific amino acid residues to create peptide analogs exhibiting altered immunogenicity. Further, the present invention provides compositions and combinations of compositions that enable epitope-based vaccines that are capable of interacting with HLA molecules encoded by various genetic alleles to provide broader population coverage than prior vaccines.

IV.A. Definitions

5

10

15

20

25

3Ó

35

The invention can be better understood with reference to the following definitions, which are listed alphabetically:

A "construct" as used herein generally denotes a composition that does not occur in nature. A construct can be produced by synthetic technologies, e.g., recombinant DNA preparation and expression or chemical synthetic techniques for nucleic or amino acids. A construct can also be produced by the addition or affiliation of one material with another such that the result is not found in nature in that form.

A "computer" or "computer system" generally includes: a processor; at least one information storage/retrieval apparatus such as, for example, a hard drive, a disk drive or a tape drive; at least one input apparatus such as, for example, a keyboard, a mouse, a touch screen, or a microphone; and display structure. Additionally, the computer may include a communication channel in communication with a network. Such a computer may include more or less than what is listed above.

"Cross-reactive binding" indicates that a peptide is bound by more than one HLA molecule; a synonym is degenerate binding.

A "cryptic epitope" elicits a response by immunization with an isolated peptide, but the response is not cross-reactive *in vitro* when intact whole protein which comprises the epitope is used as an antigen.

A "dominant epitope" is an epitope that induces an immune response upon immunization with a whole native antigen (see, e.g., Sercarz, et al., Annu. Rev. Immunol. 11:729-766, 1993). Such a response is cross-reactive in vitro with an isolated peptide epitope.

With regard to a particular amino acid sequence, an "epitope" is a set of amino acid residues which is involved in recognition by a particular immunoglobulin, or in the context of T cells, those residues necessary for recognition by T cell receptor proteins and/or Major Histocompatibility Complex (MHC) receptors. In an immune system setting, in vivo or in vitro, an epitope is the collective features of a molecule, such as primary, secondary and tertiary peptide structure, and charge, that together form a site

recognized by an immunoglobulin, T cell receptor or HLA molecule. Throughout this disclosure epitope and peptide are often used interchangeably.

5

10

15

20

25

30

35

40

It is to be appreciated that protein or peptide molecules that comprise an epitope of the invention as well as additional amino acid(s) are within the bounds of the invention. In certain embodiments, there is a limitation on the length of a peptide of the invention which is not otherwise a construct as defined herein. An embodiment that is length-limited occurs when the protein/peptide comprising an epitope of the invention comprises a region (i.e., a contiguous series of amino acids) having 100% identity with a native sequence. In order to avoid a recited definition of epitope from reading, e.g., on whole natural molecules, the length of any region that has 100% identity with a native peptide sequence is limited. Thus, for a peptide comprising an epitope of the invention and a region with 100% identity with a native peptide sequence (and which is not otherwise a construct), the region with 100% identity to a native sequence generally has a length of: less than or equal to 600 amino acids, often less than or equal to 500 amino acids, often less than or equal to 400 amino acids, often less than or equal to 250 amino acids, often less than or equal to 100 amino acids, often less than or equal to 85 amino acids, often less than or equal to 75 amino acids, often less than or equal to 65 amino acids, and often less than or equal to 50 amino acids. In certain embodiments, an "epitope" of the invention which is not a construct is comprised by a peptide having a region with less than 51 amino acids that has 100% identity to a native peptide sequence, in any increment of (50, 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5) down to 5 amino acids.

Certain peptide or protein sequences longer than 600 amino acids are within the scope of the invention. Such longer sequences are within the scope of the invention so long as they do not comprise any contiguous sequence of more than 600 amino acids that have 100% identity with a native peptide sequence, or if longer than 600 amino acids, they are a construct. For any peptide that has five contiguous residues or less that correspond to a native sequence, there is no limitation on the maximal length of that peptide in order to fall within the scope of the invention. It is presently preferred that a CTL epitope of the invention be less than 600 residues long in any increment down to eight amino acid residues.

"Human Leukocyte Antigen" or "HLA" is a human class I or class II Major Histocompatibility Complex (MHC) protein (see, e.g., Stites, et al., IMMUNOLOGY, 8TH ED., Lange Publishing, Los Altos, CA, 1994).

An "HLA supertype or family", as used herein, describes sets of HLA molecules grouped on the basis of shared peptide-binding specificities. HLA class I molecules that share somewhat similar binding affinity for peptides bearing certain amino acid motifs are grouped into HLA supertypes. The terms HLA superfamily, HLA supertype family, HLA family, and HLA xx-like molecules (where xx denotes a particular HLA type), are synonyms.

Throughout this disclosure, results are expressed in terms of "IC₅₀'s." IC₅₀ is the concentration of peptide in a binding assay at which 50% inhibition of binding of a reference peptide is observed. Given the conditions in which the assays are run (i.e., limiting HLA proteins and labeled peptide concentrations), these values approximate K_D values. Assays for determining binding are described in detail, e.g., in PCT publications WO 94/20127 and WO 94/03205. It should be noted that IC₅₀ values can change, often dramatically, if the assay conditions are varied, and depending on the particular reagents used

(e.g., HLA preparation, etc.). For example, excessive concentrations of HLA molecules will increase the apparent measured IC_{50} of a given ligand.

Alternatively, binding is expressed relative to a reference peptide. Although as a particular assay becomes more, or less, sensitive, the IC_{50} 's of the peptides tested may change somewhat, the binding relative to the reference peptide will not significantly change. For example, in an assay run under conditions such that the IC_{50} of the reference peptide increases 10-fold, the IC_{50} values of the test peptides will also shift approximately 10-fold. Therefore, to avoid ambiguities, the assessment of whether a peptide is a good, intermediate, weak, or negative binder is generally based on its IC_{50} , relative to the IC_{50} of a standard peptide.

5

10

15

20

25

30

35

Binding may also be determined using other assay systems including those using: live cells (e.g., Ceppellini et al., Nature 339:392, 1989; Christnick et al., Nature 352:67, 1991; Busch et al., Int. Immunol. 2:443, 19990; Hill et al., J. Immunol. 147:189, 1991; del Guercio et al., J. Immunol. 154:685, 1995), cell free systems using detergent lysates (e.g., Cerundolo et al., J. Immunol. 21:2069, 1991), immobilized purified MHC (e.g., Hill et al., J. Immunol. 152, 2890, 1994; Marshall et al., J. Immunol. 152:4946, 1994), ELISA systems (e.g., Reay et al., EMBO J. 11:2829, 1992), surface plasmon resonance (e.g., Khilko et al., J. Biol. Chem. 268:15425, 1993); high flux soluble phase assays (Hammer et al., J. Exp. Med. 180:2353, 1994), and measurement of class I MHC stabilization or assembly (e.g., Ljunggren et al., Nature 346:476, 1990; Schumacher et al., Cell 62:563, 1990; Townsend et al., Cell 62:285, 1990; Parker et al., J. Immunol. 149:1896, 1992).

As used herein, "high affinity" with respect to HLA class I molecules is defined as binding with an IC₅₀, or K_D value, of 50 nM or less; "intermediate affinity" is binding with an IC₅₀ or K_D value of between about 50 and about 500 nM. "High affinity" with respect to binding to HLA class II molecules is defined as binding with an IC₅₀ or K_D value of 100 nM or less; "intermediate affinity" is binding with an IC₅₀ or K_D value of between about 100 and about 1000 nM.

The terms "identical" or percent "identity," in the context of two or more peptide sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues that are the same, when compared and aligned for maximum correspondence over a comparison window, as measured using a sequence comparison algorithm or by manual alignment and visual inspection.

An "immunogenic peptide" or "peptide epitope" is a peptide that comprises an allele-specific motif or supermotif such that the peptide will bind an HLA molecule and induce a CTL and/or HTL response. Thus, immunogenic peptides of the invention are capable of binding to an appropriate HLA molecule and thereafter inducing an HLA-restricted cytotoxic or helper T cell response to the antigen from which the immunogenic peptide is derived.

The phrases "isolated" or "biologically pure" refer to material which is substantially or essentially free from components which normally accompany the material as it is found in its native state. Thus, isolated peptides in accordance with the invention preferably do not contain materials normally associated with the peptides in their *in situ* environment.

5

10

15

20

25

30

35

"Link" or "join" refers to any method known in the art for functionally connecting peptides, including, without limitation, recombinant fusion, covalent bonding, disulfide bonding, ionic bonding, hydrogen bonding, and electrostatic bonding.

"Major Histocompatibility Complex" or "MHC" is a cluster of genes that plays a role in control of the cellular interactions responsible for physiologic immune responses. In humans, the MHC complex is also known as the HLA complex. For a detailed description of the MHC and HLA complexes, see, Paul, FUNDAMENTAL IMMUNOLOGY, 3RD ED., Raven Press, New York, 1993.

The term "motif" refers to the pattern of residues in a peptide of defined length, usually a peptide of from about 8 to about 13 amino acids, often 8 to 11 amino acids, for a class I HLA motif and from about 6 to about 25 amino acids for a class II HLA motif, which is recognized by a particular HLA molecule. Peptide motifs are typically different for each protein encoded by each human HLA allele and differ in the pattern of the primary and secondary anchor residues.

A "negative binding residue" or "deleterious residue" is an amino acid which, if present at certain positions (typically not primary anchor positions) in a peptide epitope, results in decreased binding affinity of the peptide for the peptide's corresponding HLA molecule.

A "non-native" sequence or "construct" refers to a sequence that is not found in nature, i.e., is "non-naturally occurring". Such sequences include, e.g., peptides that are lipidated or otherwise modified, and polyepitopic compositions that contain epitopes that are not contiguous in a native protein sequence.

The term "peptide" is used interchangeably with "oligopeptide" in the present specification to designate a series of residues, typically L-amino acids, connected one to the other, typically by peptide bonds between the α-amino and carboxyl groups of adjacent amino acids. CTL-inducing peptides of the invention are often 13 residues or less in length and usually consist of between about 8 and about 11 residues, preferably 9 or 10 residues. HTL-inducing oligopeptides are often less than about 50 residues in length and usually consist of between about 6 and about 30 residues, more usually between about 12 and 25, and often between about 15 and 20 residues.

"Pharmaceutically acceptable" refers to a generally non-toxic, inert, and/or physiologically compatible composition.

A "pharmaceutical excipient" comprises a material such as an adjuvant, a carrier, pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservative, and the like.

A "primary anchor residue" is an amino acid at a specific position along a peptide sequence which is understood to provide a contact point between the immunogenic peptide and the HLA molecule. One to three, usually two, primary anchor residues within a peptide of defined length generally defines a "motif" for an immunogenic peptide. These residues are understood to fit in close contact with peptide binding grooves of an HLA molecule, with their side chains buried in specific pockets of the binding grooves themselves. In one embodiment, for example, the primary anchor residues are located at position 2 (from the amino terminal position) and at the carboxyl terminal position of a 9-residue peptide epitope in accordance with the invention. The primary anchor positions for each motif and supermotif are set forth in Table I. For example, analog peptides can be created by altering the presence or absence of

particular residues in these primary anchor positions. Such analogs are used to modulate the binding affinity of a peptide comprising a particular motif or supermotif.

5

10

15

20

25

30

35

"Promiscuous recognition" is where a distinct peptide is recognized by the same T cell clone in the context of various HLA molecules. Promiscuous recognition or binding is synonymous with cross-reactive binding.

A "protective immune response" or "therapeutic immune response" refers to a CTL and/or an HTL response to an antigen derived from an infectious agent or a tumor antigen, which prevents or at least partially arrests disease symptoms or progression. The immune response may also include an antibody response which has been facilitated by the stimulation of helper T cells.

The term "residue" refers to an amino acid or amino acid mimetic incorporated into an oligopeptide by an amide bond or amide bond mimetic.

A "secondary anchor residue" is an amino acid at a position other than a primary anchor position in a peptide which may influence peptide binding. A secondary anchor residue occurs at a significantly higher frequency amongst bound peptides than would be expected by random distribution of amino acids at one position. The secondary anchor residues are said to occur at "secondary anchor positions." A secondary anchor residue can be identified as a residue which is present at a higher frequency among high or intermediate affinity binding peptides, or a residue otherwise associated with high or intermediate affinity binding. For example, analog peptides can be created by altering the presence or absence of particular residues in these secondary anchor positions. Such analogs are used to finely modulate the binding affinity of a peptide comprising a particular motif or supermotif.

A "subdominant epitope" is an epitope which evokes little or no response upon immunization with whole antigens which comprise the epitope, but for which a response can be obtained by immunization with an isolated peptide, and this response (unlike the case of cryptic epitopes) is detected when whole protein is used to recall the response *in vitro* or *in vivo*.

A "supermotif" is a peptide binding specificity shared by HLA molecules encoded by two or more HLA alleles. Preferably, a supermotif-bearing peptide is recognized with high or intermediate affinity (as defined herein) by two or more HLA molecules.

"Synthetic peptide" refers to a peptide that is man-made using such methods as chemical synthesis or recombinant DNA technology.

As used herein, a "vaccine" is a composition that contains one or more peptides of the invention. There are numerous embodiments of vaccines in accordance with the invention, such as by a cocktail of one or more peptides; one or more epitopes of the invention comprised by a polyepitopic peptide; or nucleic acids that encode such peptides or polypeptides, e.g., a minigene that encodes a polyepitopic peptide. The "one or more peptides" can include any whole unit integer from 1-150, e.g., at least 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, or 150 or more peptides of the invention. The peptides or polypeptides can optionally be modified, such as by lipidation, addition of targeting or other sequences. HLA class I-binding peptides of the invention can be admixed with, or linked to, HLA class II-binding peptides, to facilitate activation of

both cytotoxic T lymphocytes and helper T lymphocytes. Vaccines can also comprise peptide-pulsed antigen presenting cells, e.g., dendritic cells.

The nomenclature used to describe peptide compounds follows the conventional practice wherein the amino group is presented to the left (the N-terminus) and the carboxyl group to the right (the Cterminus) of each amino acid residue. When amino acid residue positions are referred to in a peptide epitope they are numbered in an amino to carboxyl direction with position one being the position closest to the amino terminal end of the epitope, or the peptide or protein of which it may be a part. In the formulae representing selected specific embodiments of the present invention, the amino- and carboxyl-terminal groups, although not specifically shown, are in the form they would assume at physiologic pH values, unless otherwise specified. In the amino acid structure formulae, each residue is generally represented by standard three letter or single letter designations. The L-form of an amino acid residue is represented by a capital single letter or a capital first letter of a three-letter symbol, and the D-form for those amino acids having D-forms is represented by a lower case single letter or a lower case three letter symbol. Glycine has no asymmetric carbon atom and is simply referred to as "Gly" or G. The amino acid sequences of peptides set forth herein are generally designated using the standard single letter symbol. (A, Alanine; C, Cysteine; D, Aspartic Acid; E, Glutamic Acid; F, Phenylalanine; G, Glycine; H, Histidine; I, Isoleucine; K, Lysine; L, Leucine; M, Methionine; N, Asparagine; P, Proline; Q, Glutamine; R, Arginine; S, Serine; T, Threonine; V, Valine; W, Tryptophan; and Y, Tyrosine.) In addition to these symbols, "B"in the single letter abbreviations used herein designates α-amino butyric acid.

20

25

30

35

40

15

5

10

IV.B. Stimulation of CTL and HTL responses

The mechanism by which T cells recognize antigens has been delineated during the past ten years. Based on our understanding of the immune system we have developed efficacious peptide epitope vaccine compositions that can induce a therapeutic or prophylactic immune response to a TAA in a broad population. For an understanding of the value and efficacy of the claimed compositions, a brief review of immunology-related technology is provided.

A complex of an HLA molecule and a peptidic antigen acts as the ligand recognized by HLA-restricted T cells (Buus, S. et al., Cell 47:1071, 1986; Babbitt, B. P. et al., Nature 317:359, 1985; Townsend, A. and Bodmer, H., Annu. Rev. Immunol. 7:601, 1989; Germain, R. N., Annu. Rev. Immunol. 11:403, 1993). Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues that correspond to motifs required for specific binding to HLA antigen molecules have been identified and are described herein and are set forth in Tables I, II, and III (see also, e.g., Southwood, et al., J. Immunol. 160:3363, 1998; Rammensee, et al., Immunogenetics 41:178, 1995; Rammensee et al., SYFPEITHI, access via web at:

http://134.2.96.221/scripts.hlaserver.dll/home.htm; Sette, A. and Sidney, J. Curr. Opin. Immunol. 10:478, 1998; Engelhard, V. H., Curr. Opin. Immunol. 6:13, 1994; Sette, A. and Grey, H. M., Curr. Opin. Immunol. 4:79, 1992; Sinigaglia, F. and Hammer, J. Curr. Biol. 6:52, 1994; Ruppert et al., Cell 74:929-937, 1993; Kondo et al., J. Immunol. 155:4307-4312, 1995; Sidney et al., J. Immunol. 157:3480-3490, 1996; Sidney et al., Human Immunol. 45:79-93, 1996; Sette, A. and Sidney, J. Immunogenetics 1999 Nov;50(3-4):201-12, Review 9).

10

15

25

Furthermore, x-ray crystallographic analysis of HLA-peptide complexes has revealed pockets within the peptide binding cleft of HLA molecules which accommodate, in an allele-specific mode, residues borne by peptide ligands; these residues in turn determine the HLA binding capacity of the peptides in which they are present. (See, e.g., Madden, D.R. Annu. Rev. Immunol. 13:587, 1995; Smith, et al., Immunity 4:203, 1996; Fremont et al., Immunity 8:305, 1998; Stern et al., Structure 2:245, 1994; Jones, E.Y. Curr. Opin. Immunol. 9:75, 1997; Brown, J. H. et al., Nature 364:33, 1993; Guo, H. C. et al., Proc. Natl. Acad. Sci. USA 90:8053, 1993; Guo, H. C. et al., Nature 360:364, 1992; Silver, M. L. et al., Nature 360:367, 1992; Matsumura, M. et al., Science 257:927, 1992; Madden et al., Cell 70:1035, 1992; Fremont, D. H. et al., Science 257:919, 1992; Saper, M. A., Bjorkman, P. J. and Wiley, D. C., J. Mol. Biol. 219:277, 1991.)

Accordingly, the definition of class I and class II allele-specific HLA binding motifs, or class I or class II supermotifs allows identification of regions within a protein that have the potential of binding particular HLA molecules.

The present inventors have found that the correlation of binding affinity with immunogenicity, which is disclosed herein, is an important factor to be considered when evaluating candidate peptides. Thus, by a combination of motif searches and HLA-peptide binding assays, candidates for epitope-based vaccines have been identified. After determining their binding affinity, additional confirmatory work can be performed to select, amongst these vaccine candidates, epitopes with preferred characteristics in terms of population coverage, antigenicity, and immunogenicity.

Various strategies can be utilized to evaluate immunogenicity, including:

- 1) Evaluation of primary T cell cultures from normal individuals (see, e.g., Wentworth, P. A. et al., Mol. Immunol. 32:603, 1995; Celis, E. et al., Proc. Natl. Acad. Sci. USA 91:2105, 1994; Tsai, V. et al., J. Immunol. 158:1796, 1997; Kawashima, I. et al., Human Immunol. 59:1, 1998); This procedure involves the stimulation of peripheral blood lymphocytes (PBL) from normal subjects with a test peptide in the presence of antigen presenting cells in vitro over a period of several weeks. T cells specific for the peptide become activated during this time and are detected using, e.g., a lymphokine-release or a ⁵¹Cr cytotoxicity assay involving peptide sensitized target cells.
- 2) Immunization of HLA transgenic mice (see, e.g., Wentworth, P. A. et al., J. Immunol. 26:97, 1996; Wentworth, P. A. et al., Int. Immunol. 8:651, 1996; Alexander, J. et al., J. Immunol. 159:4753, 1997); In this method, peptides in incomplete Freund's adjuvant are administered subcutaneously to HLA transgenic mice. Several weeks following immunization, splenocytes are removed and cultured in vitro in the presence of test peptide for approximately one week. Peptide-specific T cells are detected using, e.g., a 51Cr-release assay involving peptide sensitized target cells and target cells expressing endogenously generated antigen.
- 3) Demonstration of recall T cell responses from patients who have been effectively vaccinated or who have a tumor; (see, e.g., Rehermann, B. et al., J. Exp. Med. 181:1047, 1995; Doolan, D. L. et al., Immunity 7:97, 1997; Bertoni, R. et al., J. Clin. Invest. 100:503, 1997; Threlkeld, S. C. et al., J. Immunol. 159:1648, 1997; Diepolder, H. M. et al., J. Virol. 71:6011, 1997; Tsang et al., J. Natl. Cancer Inst. 87:982-990, 1995; Disis et al., J. Immunol. 156:3151-3158, 1996). In applying this strategy, recall
 responses are detected by culturing PBL from patients with cancer who have generated an immune response

"naturally", or from patients who were vaccinated with tumor antigen vaccines. PBL from subjects are cultured *in vitro* for 1-2 weeks in the presence of test peptide plus antigen presenting cells (APC) to allow activation of "memory" T cells, as compared to "naive" T cells. At the end of the culture period, T cell activity is detected using assays for T cell activity including ⁵¹Cr release involving peptide-sensitized targets, T cell proliferation, or lymphokine release.

The following describes the peptide epitopes and corresponding nucleic acids of the invention.

IV.C. Binding Affinity of Peptide Epitopes for HLA Molecules

5

10

15

20

25

30

35

40

As indicated herein, the large degree of HLA polymorphism is an important factor to be taken into account with the epitope-based approach to vaccine development. To address this factor, epitope selection encompassing identification of peptides capable of binding at high or intermediate affinity to multiple HLA molecules is preferably utilized, most preferably these epitopes bind at high or intermediate affinity to two or more allele-specific HLA molecules.

CTL-inducing peptides of interest for vaccine compositions preferably include those that have an IC₅₀ or binding affinity value for class I HLA molecules of 500 nM or better (i.e., the value is \leq 500 nM). HTL-inducing peptides preferably include those that have an IC₅₀ or binding affinity value for class II HLA molecules of 1000 nM or better, (i.e., the value is \leq 1,000 nM). For example, peptide binding is assessed by testing the capacity of a candidate peptide to bind to a purified HLA molecule in vitro. Peptides exhibiting high or intermediate affinity are then considered for further analysis. Selected peptides are tested on other members of the supertype family. In preferred embodiments, peptides that exhibit cross-reactive binding are then used in cellular screening analyses or vaccines.

High HLA binding affinity is correlated with greater immunogenicity (see, e.g., Sette, et al., J. Immunol. 153:5586-5592, 1994; Chen et al., J. Immunol. 152:2874-2881, 1994; and Ressing et al., J. Immunol. 154:5934-5943, 1995). Greater immunogenicity can be manifested in several different ways. Immunogenicity corresponds to whether an immune response is elicited at all, and to the vigor of any particular response, as well as to the extent of a population in which a response is elicited. For example, a peptide might elicit an immune response in a diverse array of the population, yet in no instance produce a vigorous response. Moreover, higher binding affinity peptides lead to more vigorous immunogenic responses. As a result, less peptide is required to elicit a similar biological effect if a high or intermediate affinity binding peptide is used. Thus, in preferred embodiments of the invention, high or intermediate affinity binding epitopes are particularly useful.

The relationship between binding affinity for HLA class I molecules and immunogenicity of discrete peptide epitopes on bound antigens has been determined for the first time in the art by the present inventors. The correlation between binding affinity and immunogenicity was analyzed in two different experimental approaches (see, e.g., Sette, et al., J. Immunol. 153:5586-5592, 1994). In the first approach, the immunogenicity of potential epitopes ranging in HLA binding affinity over a 10,000-fold range was analyzed in HLA-A*0201 transgenic mice. In the second approach, the antigenicity of approximately 100 different hepatitis B virus (HBV)-derived potential epitopes, all carrying A*0201 binding motifs, was assessed by using PBL from acute hepatitis patients. Pursuant to these approaches, it

was determined that an affinity threshold value of approximately 500 nM (preferably 50 nM or less) determines the capacity of a peptide epitope to elicit a CTL response. These data are true for class I binding affinity measurements for naturally processed peptides and for synthesized T cell epitopes. These data also indicate the important role of determinant selection in the shaping of T cell responses (see, e.g., Schaeffer et al., Proc. Natl. Acad. Sci. USA 86:4649-4653, 1989).

An affinity threshold associated with immunogenicity in the context of HLA class II DR molecules has also been delineated (see, e.g., Southwood et al. J. Immunology 160:3363-3373,1998, and co-pending U.S.S.N. 09/009,953 filed 1/21/98). In order to define a biologically significant threshold of DR binding affinity, a database of the binding affinities of 32 DR-restricted epitopes for their restricting element (i.e., the HLA molecule that binds the motif) was compiled. In approximately half of the cases (15 of 32 epitopes), DR restriction was associated with high binding affinities, i.e. binding affinity values of 100 nM or less. In the other half of the cases (16 of 32), DR restriction was associated with intermediate affinity (binding affinity values in the 100-1000 nM range). In only one of 32 cases was DR restriction associated with an IC₅₀ of 1000 nM or greater. Thus, 1000 nM can be defined as an affinity threshold associated with immunogenicity in the context of DR molecules.

In the case of tumor-associated antigens, many CTL peptide epitopes that have been shown to induce CTL that lyse peptide-pulsed target cells and tumor cell targets endogenously expressing the epitope exhibit binding affinity or IC₅₀ values of 200 nM or less. In a study that evaluated the association of binding affinity and immunogenicity of a small set of such TAA epitopes, 100% (10/10) of the high binders, *i.e.*, peptide epitopes binding at an affinity of 50 nM or less, were immunogenic and 80% (8/10) of them elicited CTLs that specifically recognized tumor cells. In the 51 to 200 nM range, very similar figures were obtained. With respect to analog peptides, CTL inductions positive for wildtype peptide and tumor cells were noted for 86% (6/7) and 71% (5/7) of the peptides, respectively. In the 201-500 nM range, most peptides (4/5 wildtype) were positive for induction of CTL recognizing wildtype peptide, but tumor recognition was not detected.

The binding affinity of peptides for HLA molecules can be determined as described in Example 1, below.

IV.D. Peptide Epitope Binding Motifs and Supermotifs

5

10

15

20

25

30

35

40

Through the study of single amino acid substituted antigen analogs and the sequencing of endogenously bound, naturally processed peptides, critical residues required for allele-specific binding to HLA molecules have been identified. The presence of these residues correlates with binding affinity for HLA molecules. The identification of motifs and/or supermotifs that correlate with high and intermediate affinity binding is an important issue with respect to the identification of immunogenic peptide epitopes for the inclusion in a vaccine. Kast et al. (J. Immunol. 152:3904-3912, 1994) have shown that motif-bearing peptides account for 90% of the epitopes that bind to allele-specific HLA class I molecules. In this study all possible peptides of 9 amino acids in length and overlapping by eight amino acids (240 peptides), which cover the entire sequence of the E6 and E7 proteins of human papillomavirus type 16, were evaluated for binding to five allele-specific HLA molecules that are expressed at high frequency among different ethnic groups. This unbiased set of peptides allowed an evaluation of the predictive value of HLA class I motifs.

From the set of 240 peptides, 22 peptides were identified that bound to an allele-specific HLA molecule with high or intermediate affinity. Of these 22 peptides, 20 (i.e. 91%) were motif-bearing. Thus, this study demonstrates the value of motifs for the identification of peptide epitopes for inclusion in a vaccine: application of motif-based identification techniques will identify about 90% of the potential epitopes in a target antigen protein sequence.

Such peptide epitopes are identified in the Tables described below.

5

10

15

20

25

30

35

40

Peptides of the present invention may also comprise epitopes that bind to MHC class II DR molecules. A greater degree of heterogeneity in both size and binding frame position of the motif, relative to the N and C termini of the peptide, exists for class II peptide ligands. This increased heterogeneity of HLA class II peptide ligands is due to the structure of the binding groove of the HLA class II molecule which, unlike its class I counterpart, is open at both ends. Crystallographic analysis of HLA class II DRB*0101-peptide complexes showed that the major energy of binding is contributed by peptide residues complexed with complementary pockets on the DRB*0101 molecules. An important anchor residue engages the deepest hydrophobic pocket (see, e.g., Madden, D.R. Ann. Rev. Immunol. 13:587, 1995) and is referred to as position 1 (P1). P1 may represent the N-terminal residue of a class II binding peptide epitope, but more typically is flanked towards the N-terminus by one or more residues. Other studies have also pointed to an important role for the peptide residue in the 6th position towards the C-terminus, relative to P1, for binding to various DR molecules.

In the past few years evidence has accumulated to demonstrate that a large fraction of HLA class I and class II molecules can be classified into a relatively few supertypes, each characterized by largely overlapping peptide binding repertoires, and consensus structures of the main peptide binding pockets. Thus, peptides of the present invention are identified by any one of several HLA-specific amino acid motifs (see, e.g., Tables I-III), or if the presence of the motif corresponds to the ability to bind several allele-specific HLA molecules, a supermotif. The HLA molecules that bind to peptides that possess a particular amino acid supermotif are collectively referred to as an HLA "supertype."

The peptide motifs and supermotifs described below, and summarized in Tables I-III, provide guidance for the identification and use of peptide epitopes in accordance with the invention.

Examples of supermotif and/or motif-bearing peptide epitopes are shown in Tables VII-XX. To obtain the peptide epitope sequences, protein sequence data for the prostate cancer antigens PAP, PSA, PSM, and hK2, which is designated as kallikrein in Tables VII-XX, were evaluated for the presence of the designated supermotif or motif. The "Position" column indicates the position in the protein sequence that corresponds to the first amino acid residue of the putative epitope. The "number of amino acids" indicates the number of residues in the epitope sequence. The tables also include a binding affinity ratio listing for some of the peptide epitopes for the allele-specific HLA molecule indicated in the column heading. The ratio may be converted to IC₅₀ by using the following formula: IC₅₀ of the standard peptide/ratio = IC₅₀ of the test peptide (i.e., the peptide epitope). The IC₅₀ values of standard peptides used to determine binding affinities for Class I peptides are shown in Table IV. The IC₅₀ values of standard peptides used as standards for the binding assays described herein are examples of standards; alternative standard peptides can also be used when performing binding studies.

To obtain the peptide epitope sequences listed in each of Tables VII-XX, the amino acid sequences of PSA, PSM, PAP, and HuK were evaluated for the presence of the designated supermotif or motif, *i.e.*, the amino acid sequence was searched for the presence of the primary anchor residues as set out in Table I (for Class I motifs) or Table III (for Class II motifs) for each respective motif or supermotif.

In the Tables, the motif- and/or supermotif-bearing amino acid sequences are identified by the position number and the length of the epitope with reference to the prostate antigen amino acid sequence and numbering provided below. The "protein" indicates the prostate antigen sequence that includes the epitope. The "pos" (position) column designates the amino acid position in the prostate antigen sequence protein sequence below that corresponds to the first amino acid residue of the epitope. The "number of amino acids" indicates the number of residues in the epitope sequence and hence, the length of the epitope. For example, the first peptide sequence listed in Table VII is a sequence of 11 residues in length starting at position 122 of PAP. Accordingly, the amino acid sequence of the epitope is ALFPPEGVSIW. Similarly, the first kallikrein sequence in Table VII starts at position 147 and is 11 residues in length. Thus the amino acid sequence is ALGTTCYASGW.

Binding data presented in Tables VII-XX are expressed as a relative binding ratio, *supra* in the in columns labeled with the allele-specific HLA molecule.

PSA (Prostate Specific Antigen)

5

10

15

30

1 VVFLTLSVTW IGAAPLILSR IVGGWECEKH SQPWQVLVAS RGRAVCGGVL VHPQWVLTAA 60
20 HCIRNKSVIL LGRHSLFHPE DTGQVFQVSH SFPHPLYDMS LLKNRFLRPG DDSSHDLMLL 120
RLSEPAELTD AVKVMDLPTQ EPALGTTCYA SGWGSIEPEE FLTPKKLQCV DLHVISNDVC 180
AQVHPQKVTK FMLCAGRWTG GKSTCSGDSG GPLVCNGVLQ GITSWGSEPC ALPERPSLYT 240
KVVHYRKWIK DTIVANP 257

25 PAP (Prostatic Acid Phosphatase)

1 MRAAPLLIAR AASLSIGFLF LIFFWLDRSV LAKELKFVTL VFRHGDRSPI DTFPTDPIKE 60
SSWPQGFGQL TQLGMEQHYE LGEYIRKRYR KFLNESYKHE QVYIRSTDVD RTLMSAMTNL 120
AALFPPEGVS IWNPILLWQP IPVHTVPLSE DQLLYLPPRN CPRFQELESE TLKSEEFQKR 180
LHPYKDFIAT LGKLSGLHGQ DLFGIWSKVY DPLYCESVHN FTLPSWATED TMTKLRELSE 240
LSLLSLYGIH KQKEKSRLQG GVLVNEILNH MKRATQIPSY KKLIMYSAHD TTVSGLQMAL 300
DVYNGLLPPY ASCHLTELYF EKGEYFVEMY YRNETQHEPY PLMLPGCSPS CPLERFAELV 360
GPVIPQDWST ECMTTNSHQG TEDSTD 386

PSM (prostate specific membrane antigen)

1 MWNLLHETDS AVATARRPRW LCAGALVLAG GFFLLGFLFG WFIKSSNEAT NITPKHNMKA 60
FLDELKAENİ KKFLYNFTQI PHLAGTEQNF QLAKQIQSQW KEFGLDSVEL AHYDVLLSYP 120
NKTHPNYISI INEDGNEIFN TSLFEPPPPG YENVSDIVPP FSAFSPQGMP EGDLVYVNYA 180
RTEDFFKLER DMKINCSGKI VIARYGKVFR GNKVKNAQLA GAKGVILYSD PADYFAPGVK 240
SYPDGWNLPG GGVQRGNILN LNGAGDPLTP GYPANEYAYR RGIAEAVGLP SIPVHPIGYY 300
DAQKLLEKMG GSAPPDSSWR GSLKVPYNVG PGFTGNFSTQ KVKMHIHSTN EVTRIYNVIG 360
TLRGAVEPDR YVILGGHRDS WVFGGIDPOS GAAVVHEIVR SFGTLKKEGW RPRRTILFAS 420

16

WDAEEFGLLG	STEWAEENSR	LLQERGVAYI	NADSSIEGNY	TLRVDCTPLM	YSLVHNLTKE	480
LKSPDEGFEG	KSLYESWTKK	SPSPEFSGMP	RISKLGSGND	FEVFFQRLGI	ASGRARYTKN	540
WETNKFSGYP	LYHSVYETYE	LVEKFYDPMF	KYHLTVAQVR	GGMVFELANS	IVLPFDCRDY	600
AVVLRKYADK	IYSISMKHPQ	EMKTYSVSFD	SLFSAVKNFT	EIASKFSERL	QDFDKSNPIV	660
LRMMNDQLMF	LERAFIDPLG	LPDRPFYRHV	IYAPSSHNKY	AGESFPGIYD	ALFDIESKVD	720
DCKVMCEAKD	OTVIAZETIO	ΔΔΑΕΤΙΩΕΝΔ	750			

Kallikrein (human kallikrein2, Accession NM005551)

MWDLVLSIAL SVGCTGAVPL IQSRIVGGWE CEKHSQPWQV AVYSHGWAHC GGVLVHPQWV 60

LTAAHCLKKN SQVWLGRHNL FEPEDTGQRV PVSHSFPHPL YNMSLLKHQS LRPDEDSSHD 120

LMLLRLSEPA KITDVVKVLG LPTQEPALGT TCYASGWGSI EPEEFLRPRS LQCVSLHLLS 180

NDMCARAYSE KVTEFMLCAG LWTGGKDTCG GDSGGPLVCN GVLQGITSWG PEPCALPEKP 240

AVYTKVVHYR KWIKDTIAAN P 261

15 HLA Class I Motifs Indicative of CTL Inducing Peptide Epitopes:

The primary anchor residues of the HLA class I peptide epitope supermotifs and motifs delineated below are summarized in Table I. The HLA class I motifs set out in Table I(a) are those most particularly relevant to the invention claimed here. Primary and secondary anchor positions are summarized in Table II. Allele-specific HLA molecules that comprise HLA class I supertype families are listed in Table VI. In some cases, peptide epitopes may be listed in both a motif and a supermotif Table. The relationship of a particular motif and respective supermotif is indicated in the description of the individual motifs.

IV.D.1. HLA-A1 supermotif

5

20

25

30

35

40

The HLA-A1 supermotif is characterized by the presence in peptide ligands of a small (T or S) or hydrophobic (L, I, V, or M) primary anchor residue in position 2, and an aromatic (Y, F, or W) primary anchor residue at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind to the A1 supermotif (i.e., the HLA-A1 supertype) is comprised of at least: A*0101, A*2601, A*2602, A*2501, and A*3201 (see, e.g., DiBrino, M. et al., J. Immunol. 151:5930, 1993; DiBrino, M. et al., J. Immunol. 152:620, 1994; Kondo, A. et al., Immunogenetics 45:249, 1997). Other allele-specific HLA molecules predicted to be members of the A1 superfamily are shown in Table VI. Peptides binding to each of the individual HLA proteins can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif. Representative peptide epitopes that comprise an A1 supermotif are set forth on the

IV.D.2. HLA-A2 supermotif

attached Table VII.

Primary anchor specificities for allele-specific HLA-A2.1 molecules (see, e.g., Falk et al., Nature 351:290-296, 1991; Hunt et al., Science 255:1261-1263, 1992; Parker et al., J. Immunol. 149:3580-3587, 1992; Ruppert et al., Cell 74:929-937, 1993) and cross-reactive binding among HLA-A2 and -A28

molecules have been described. (See, e.g., Fruci et al., Human Immunol. 38:187-192, 1993; Tanigaki et al., Human Immunol. 39:155-162, 1994; Del Guercio et al., J. Immunol. 154:685-693, 1995; Kast et al., J. Immunol. 152:3904-3912, 1994 for reviews of relevant data.) These primary anchor residues define the HLA-A2 supermotif; which presence in peptide ligands corresponds to the ability to bind several different HLA-A2 and -A28 molecules. The HLA-A2 supermotif comprises peptide ligands with L, I, V, M, A, T, or Q as a primary anchor residue at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope.

The corresponding family of HLA molecules (i.e., the HLA-A2 supertype that binds these peptides) is comprised of at least: A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*0209, A*0214, A*6802, and A*6901. Other allele-specific HLA molecules predicted to be members of the A2 superfamily are shown in Table VI. As explained in detail below, binding to each of the individual allele-specific HLA molecules can be modulated by substitutions at the primary anchor and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise an A2 supermotif are set forth on the attached Table VIII. The motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.

IV.D.3. HLA-A3 supermotif

5

10

15

30

35

The HLA-A3 supermotif is characterized by the presence in peptide ligands of A, L, I, V,

M, S, or, T as a primary anchor at position 2, and a positively charged residue, R or K, at the C-terminal position of the epitope, e.g., in position 9 of 9-mers (see, e.g., Sidney et al., Hum. Immunol. 45:79, 1996).

Exemplary members of the corresponding family of HLA molecules (the HLA-A3 supertype) that bind the A3 supermotif include at least: A*0301, A*1101, A*3101, A*3301, and A*6801. Other allele-specific HLA molecules predicted to be members of the A3 supertype are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions of amino acids at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the A3 supermotif are set forth on the attached Table IX.

IV.D.4. HLA-A24 supermotif

The HLA-A24 supermotif is characterized by the presence in peptide ligands of an aromatic (F, W, or Y) or hydrophobic aliphatic (L, I, V, M, or T) residue as a primary anchor in position 2, and Y, F, W, L, I, or M as primary anchor at the C-terminal position of the epitope (see, e.g., Sette and Sidney, Immunogenetics 1999 Nov;50(3-4):201-12, Review). The corresponding family of HLA molecules that bind to the A24 supermotif (i.e., the A24 supertype) includes at least: A*2402, A*3001, and A*2301. Other allele-specific HLA molecules predicted to be members of the A24 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

WO 01/45728 18

Representative peptide epitopes that comprise the A24 supermotif are set forth on the attached Table X.

IV.D.5. HLA-B7 supermotif

The HLA-B7 supermotif is characterized by peptides bearing proline in position 2 as a primary anchor, and a hydrophobic or aliphatic amino acid (L, I, V, M, A, F, W, or Y) as the primary anchor at the C-terminal position of the epitope. The corresponding family of HLA molecules that bind the B7 supermotif (i.e., the HLA-B7 supertype) is comprised of at least twenty six HLA-B proteins comprising at least: B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502, B*3503, B*3504, B*3505, B*3506, B*3507, B*3508, B*5101, B*5102, B*5103, B*5104, B*5105, B*5301, B*5401, B*5501, B*5502, B*5601, B*5602, B*6701, and B*7801 (see, e.g., Sidney, et al., J. Immunol. 154:247, 1995; Barber, et al., Curr. Biol. 5:179, 1995; Hill, et al., Nature 360:434, 1992; Rammensee, et al., Immunogenetics 41:178, 1995 for reviews of relevant data). Other allele-specific HLA molecules predicted to be members of the B7 supertype are shown in Table VI. As explained in detail below, peptide binding to each of the individual allele-specific HLA proteins can be modulated by substitutions at the primary and/or secondary anchor positions of the peptide, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B7 supermotif are set forth on the attached Table XI.

20

25

30

35

40

15

5

10

IV.D.6. HLA-B27 supermotif

. The HLA-B27 supermotif is characterized by the presence in peptide ligands of a positively charged (R, H, or K) residue as a primary anchor at position 2, and a hydrophobic (F, Y, L, W, M, I, A, or V) residue as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics 1999 Nov;50(3-4):201-12, Review). Exemplary members of the corresponding family of HLA molecules that bind to the B27 supermotif (i.e., the B27 supertype) include at least B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705, B*2706, B*3801, B*3901, B*3902, and B*7301. Other allele-specific HLA molecules predicted to be members of the B27 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif. Representative peptide epitopes that comprise the B27 supermotif are set forth on the

attached Table XII.

IV.D.7. HLA-B44 supermotif

The HLA-B44 supermotif is characterized by the presence in peptide ligands of negatively charged (D or E) residues as a primary anchor in position 2, and hydrophobic residues (F, W, Y, L, I, M, V, or A) as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney et al., Immunol. Today 17:261, 1996). Exemplary members of the corresponding family of HLA molecules that bind to the B44 supermotif (i.e., the B44 supertype) include at least: B*1801, B*1802, B*3701, B*4001, B*4002, B*4006, B*4402, B*4403, and B*4404. Peptide binding to each of the allele-specific HLA

molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the supermotif.

IV.D.8. HLA-B58 supermotif

5

10

15

20

25

35

The HLA-B58 supermotif is characterized by the presence in peptide ligands of a small aliphatic residue (A, S, or T) as a primary anchor residue at position 2, and an aromatic or hydrophobic residue (F, W, Y, L, I, V, M, or A) as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics 1999 Nov;50(3-4):201-12, Review). Exemplary members of the corresponding family of HLA molecules that bind to the B58 supermotif (i.e., the B58 supertype) include at least: B*1516, B*1517, B*5701, B*5702, and B*5801. Other allele-specific HLA molecules predicted to be members of the B58 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B27 supermotif are set forth on the attached Table XII.

IV.D.9. HLA-B62 supermotif

The HLA-B62 supermotif is characterized by the presence in peptide ligands of the polar aliphatic residue Q or a hydrophobic aliphatic residue (L, V, M, I, or P) as a primary anchor in position 2, and a hydrophobic residue (F, W, Y, M, I, V, L, or A) as a primary anchor at the C-terminal position of the epitope (see, e.g., Sidney and Sette, Immunogenetics 1999 Nov; 50(3-4):201-12, Review). Exemplary members of the corresponding family of HLA molecules that bind to the B62 supermotif (i.e., the B62 supertype) include at least: B*1501, B*1502, B*1513, and B5201. Other allele-specific HLA molecules predicted to be members of the B62 supertype are shown in Table VI. Peptide binding to each of the allele-specific HLA molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative peptide epitopes that comprise the B62 supermotif are set forth on the attached Table XIV.

30 IV.D.10. HLA-A1 motif

The HLA-A1 motif is characterized by the presence in peptide ligands of T, S, or M as a primary anchor residue at position 2 and the presence of Y as a primary anchor residue at the C-terminal position of the epitope. An alternative allele-specific A1 motif is characterized by a primary anchor residue at position 3 rather than position 2. This motif is characterized by the presence of D, E, A, or S as a primary anchor residue in position 3, and a Y as a primary anchor residue at the C-terminal position of the epitope (see, e.g., DiBrino et al., J. Immunol., 152:620, 1994; Kondo et al., Immunogenetics 45:249, 1997; and Kubo et al., J. Immunol. 152:3913, 1994 for reviews of relevant data). Peptide binding to HLA-A1 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise either A1 motif are set forth on the attached Table XV. Those epitopes comprising T, S, or M at position 2 and Y at the C-terminal position are also included in the listing of HLA-A1 supermotif-bearing peptide epitopes listed in Table VII, as these residues are a subset of the A1 supermotif.

5

10

15

20

IV.D.11. HLA-A*0201 motif

An HLA-A2*0201 motif was determined to be characterized by the presence in peptide ligands of L or M as a primary anchor residue in position 2, and L or V as a primary anchor residue at the C-terminal position of a 9-residue peptide (see, e.g., Falk et al., Nature 351:290-296, 1991) and was further found to comprise an I at position 2 and I or A at the C-terminal position of a nine amino acid peptide (see, e.g., Hunt et al., Science 255:1261-1263, March 6, 1992; Parker et al., J. Immunol. 149:3580-3587, 1992). The A*0201 allele-specific motif has also been defined by the present inventors to additionally comprise V, A, T, or Q as a primary anchor residue at position 2, and M or T as a primary anchor residue at the Cterminal position of the epitope (see, e.g., Kast et al., J. Immunol. 152:3904-3912, 1994). Thus, the HLA-A*0201 motif comprises peptide ligands with L, I, V, M, A, T, or Q as primary anchor residues at position 2 and L, I, V, M, A, or T as a primary anchor residue at the C-terminal position of the epitope. The preferred and tolerated residues that characterize the primary anchor positions of the HLA-A*0201 motif are identical to the residues describing the A2 supermotif. (For reviews of relevant data, see, e.g., del Guercio et al., J. Immunol. 154:685-693, 1995; Ruppert et al., Cell 74:929-937, 1993; Sidney et al., Immunol. Today 17:261-266, 1996; Sette and Sidney, Curr. Opin. in Immunol. 10:478-482, 1998). Secondary anchor residues that characterize the A*0201 motif have additionally been defined (see, e.g., Ruppert et al., Cell 74:929-937, 1993). These are shown in Table II. Peptide binding to HLA-A*0201 molecules can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise an A*0201 motif are set forth on the attached Table VII. The A*0201 motifs comprising the primary anchor residues V, A, T, or Q at position 2 and L, I, V, A, or T at the C-terminal position are those most particularly relevant to the invention claimed herein.

30 IV.D.12. HLA-A3 motif

The HLA-A3 motif is characterized by the presence in peptide ligands of L, M, V, I, S, A, T, F, C, G, or D as a primary anchor residue at position 2, and the presence of K, Y, R, H, F, or A as a primary anchor residue at the C-terminal position of the epitope (see, e.g., DiBrino et al., Proc. Natl. Acad. Sci USA 90:1508, 1993; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise the A3 motif are set forth on the attached Table XVI. Those epitopes that comprise the A3 supermotif are also listed in Table IX, as the A3 supermotif primary anchor residues comprise a subset of the A3- and A11-allele-specific motifs.

35

5

10

15

20

30

35

40

WO 01/45728 PCT/US00/35516 21

IV.D.13. HLA-A11 motif

The HLA-A11 motif is characterized by the presence in peptide ligands of V, T, M, L, I, S, A, G, N, C, D, or F as a primary anchor residue in position 2, and K, R, Y, or H as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Zhang et al., Proc. Natl. Acad. Sci USA 90:2217-2221, 1993; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A11 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise the A11 motif are set forth on the attached Table XVII; peptide epitopes comprising the A3 allele-specific motif are also present in this Table because of the extensive overlap between the A3 and A11 motif primary anchor specificities. Further, those peptide epitopes that comprise the A3 supermotif are also listed in Table IX.

IV.D.14. HLA-A24 motif

The HLA-A24 motif is characterized by the presence in peptide ligands of Y, F, W, or M as a primary anchor residue in position 2, and F, L, I, or W as a primary anchor residue at the C-terminal position of the epitope (see, e.g., Kondo et al., J. Immunol. 155:4307-4312, 1995; and Kubo et al., J. Immunol. 152:3913-3924, 1994). Peptide binding to HLA-A24 molecules can be modulated by substitutions at primary and/or secondary anchor positions; preferably choosing respective residues specified for the motif.

Representative peptide epitopes that comprise the A24 motif are set forth on the attached Table XVIII. These epitopes are also listed in Table X, which sets forth HLA-A24-supermotif-bearing peptide epitopes, as the primary anchor residues characterizing the A24 allele-specific motif comprise a subset of the A24 supermotif primary anchor residues.

25 Motifs Indicative of Class II HTL Inducing Peptide Epitopes

The primary and secondary anchor residues of the HLA class II peptide epitope supermotifs and motifs delineated below are summarized in Table III.

IV.D.15. HLA DR-1-4-7 supermotif

Motifs have also been identified for peptides that bind to three common HLA class II allele-specific HLA molecules: HLA DRB1*0401, DRB1*0101, and DRB1*0701 (see, e.g., the review by Southwood et al. J. Immunology 160:3363-3373,1998). Collectively, the common residues from these motifs delineate the HLA DR-1-4-7 supermotif. Peptides that bind to these DR molecules carry a supermotif characterized by a large aromatic or hydrophobic residue (Y, F, W, L, I, V, or M) as a primary anchor residue in position 1, and a small, non-charged residue (S, T, C, A, P, V, I, L, or M) as a primary anchor residue in position 6 of a 9-mer core region. Allele-specific secondary effects and secondary anchors for each of these HLA types have also been identified (Southwood et al., supra). These are set forth in Table III. Peptide binding to HLA-DRB1*0401, DRB1*0101, and/or DRB1*0701 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the supermotif.

Representative 9-mer peptide sequences comprising the DR-1-4-7 supermotif, wherein position 1 of the supermotif is at position 1 of the nine-residue core, are set forth in Table XIX. For each sequence, the "protein" column indicates the prostate-associated antigen, *i.e.*, PSA, PSM, PAP, or HuK2 (kallikrein). The "position" column designates the amino acid position in the prostate antigen protein sequence that corresponds to the first amino acid residue of the core sequence. The core sequences are all 9 residues in length. For example, the first PSM sequence listed in Table XIX is a core sequence of nine residues in length that starts at position 611 of the PSM amino acid sequence provided herein. Accordingly, the amino acid sequence of the core sequence is IYSISMKHP. Exemplary epitopes of 15 amino acids in length that comprises the nine residue core include the three residues on either side that flank the nine residue core. For example, the exemplary epitope of 15 amino acids in length that comprises the core epitope at position 611 of PSM is ADKIYSISMKHPQEM.

HTL epitopes that comprise the core sequences can also be of lengths other than 15 amino acids, *supra*. For example, epitopes of the invention include sequences that comprise the nine residue core plus the 1, 2, 3 (as in the exemplary 15-mer), 4, or 5 flanking residues immediately adjacent to the nine residue core on each side.

IV.D.16. HLA-DR3 motifs

5

10

15

20

25

30

35

40

Two alternative motifs (i.e., submotifs) characterize peptide epitopes that bind to HLA-DR3 molecules (see, e.g., Geluk et al., J. Immunol. 152:5742, 1994). In the first motif (submotif DR3a) a large, hydrophobic residue (L, I, V, M, F, or Y) is present in anchor position 1 of a 9-mer core, and D is present as an anchor at position 4, towards the carboxyl terminus of the epitope. As in other class II motifs, core position 1 may or may not occupy the peptide N-terminal position.

The alternative DR3 submotif provides for lack of the large, hydrophobic residue at anchor position 1, and/or lack of the negatively charged or amide-like anchor residue at position 4, by the presence of a positive charge at position 6 towards the carboxyl terminus of the epitope. Thus, for the alternative allele-specific DR3 motif (submotif DR3b): L, I, V, M, F, Y, A, or Y is present at anchor position 1; D, N, Q, E, S, or T is present at anchor position 4; and K, R, or H is present at anchor position 6. Peptide binding to HLA-DR3 can be modulated by substitutions at primary and/or secondary anchor positions, preferably choosing respective residues specified for the motif.

Peptide epitope 9-mer core regions corresponding to a nine residue sequence comprising the DR3a or the DR3b submotifs (wherein position 1 of the motif is at position 1 of the nine residue core) are set forth in Table XXa and b. For each sequence, the "protein" column indicates the prostate-associated antigen, i.e., PSA, PSM, PAP, or HuK2 (kallikrein). The "position" column designates the amino acid position in the prostate antigen protein sequence that corresponds to the first amino acid residue of the core sequence. The core sequences are all 9 residues in length. For example, the first sequence listed in Table XXa is a core sequence of nine residues in length that starts at position 124 of the PAP amino acid sequence provided herein. Accordingly, the amino acid sequence of the core sequence is FPPEGVSIW. Exemplary epitopes of 15 amino acids in length that comprises the nine residue core include the three residues on either side that flank the nine residue core. For example, the exemplary epitope of 15 amino acids in length that comprises the core epitope at position 124 of PAP is AALFPPEGVSIWNPI.

23

HTL epitopes that comprise the core sequences can also be of lengths other than 15 amino acids, *supra*. For example, epitopes of the invention include sequences that comprise the nine residue core plus the 1, 2, 3 (as in the exemplary 15-mer), 4, or 5 flanking residues immediately adjacent to the nine residue core on each side.

Each of the HLA class I or class II peptide epitopes identified as described herein is deemed singly to be an inventive aspect of this application. Further, it is also an inventive aspect of this application that each peptide epitope may be used in combination with any other peptide epitope.

IV.E. Enhancing Population Coverage of the Vaccine

5

10

15

20

25

30

40

Vaccines that have broad population coverage are preferred because they are more commercially viable and generally applicable to the most people. Broad population coverage can be obtained using the peptides of the invention (and/or nucleic acid compositions that encode such peptides) through selecting peptide epitopes that bind to HLA alleles which, when considered in total, are present in most of the population. Table XXI shows the overall frequencies of HLA class I supertypes in various ethnicities (Table XXIa) and the combined population coverage achieved by the A2-, A3-, and B7-supertypes (Table XXIb). The A2-, A3-, and B7 supertypes are each present on average of over 40% in each of these five major ethnic groups. Coverage in excess of 80% is achieved with a combination of these supermotifs. These results suggest that effective and non-ethnically biased population coverage is achieved upon use of a limited number of cross-reactive peptides. Although the population coverage reached with these three main peptide specificities is high, coverage can be expanded to reach 95% population coverage and above, and more easily achieve truly multispecific responses upon use of additional supermotif or allele-specific motif bearing peptides.

The B44-, A1-, and A24-supertypes are each present, on average, in a range from 25% to 40% in these major ethnic populations (Table XXIa). While less prevalent overall, the B27-, B58-, and B62 supertypes are each present with a frequency >25% in at least one major ethnic group (Table XXIa). Table XXIb summarizes the estimated prevalence of combinations of HLA supertypes that have been identified in five major ethnic groups; the incremental coverage obtained by the inclusion of A1,- A24-, and B44-supertypes to the A2, A3, and B7 coverage; and coverage obtained with all of the supertypes described herein, is shown.

The data presented herein, together with the previous definition of the A2-, A3-, and B7-supertypes, indicates that all antigens, with the possible exception of A29, B8, and B46, can be classified into a total of nine HLA supertypes. By including epitopes from the six most frequent supertypes, an average population coverage of 99% is obtained for five major ethnic groups.

35 IV.F. Immune Response-Stimulating Peptide Analogs

In general, CTL and HTL responses to whole antigens are not directed against all possible epitopes. Rather, they are restricted to a few "immunodominant" determinants (Zinkernagel, et al., Adv. Immunol. 27:5159, 1979; Bennink, et al., J. Exp. Med. 168:19351939, 1988; Rawle, et al., J. Immunol. 146:3977-3984, 1991). It has been recognized that immunodominance (Benacerraf, et al., Science 175:273-279, 1972) could be explained by either the ability of a given epitope to selectively bind a particular HLA

protein (determinant selection theory) (Vitiello, et al., J. Immunol. 131:1635, 1983); Rosenthal, et al., Nature 267:156-158, 1977), or to be selectively recognized by the existing TCR (T cell receptor) specificities (repertoire theory) (Klein, J., IMMUNOLOGY, THE SCIENCE OF SELF/NONSELF DISCRIMINATION, John Wiley & Sons, New York, pp. 270-310, 1982). It has been demonstrated that additional factors, mostly linked to processing events, can also play a key role in dictating, beyond strict immunogenicity, which of the many potential determinants will be presented as immunodominant (Sercarz, et al., Annu. Rev. Immunol. 11:729-766, 1993).

5

10

15

20

25

30

35

40

Because tissue specific and developmental TAAs are expressed on normal tissue at least at some point in time or location within the body, it may be expected that T cells to them, particularly dominant epitopes, are eliminated during immunological surveillance and that tolerance is induced. However, CTL responses to tumor epitopes in both normal donors and cancer patient have been detected, which may indicate that tolerance is incomplete (see, e.g., Kawashima et al., Hum. Immunol. 59:1, 1998; Tsang, J. Natl. Cancer Inst. 87:82-90, 1995; Rongcun et al., J. Immunol. 163:1037, 1999). Thus, immune tolerance does not completely eliminate or inactivate CTL precursors capable of recognizing high affinity HLA class I binding peptides.

An additional strategy to overcome tolerance is to use analog peptides. Without intending to be bound by theory, it is believed that because T cells to dominant epitopes may have been clonally deleted, selecting subdominant epitopes may allow existing T cells to be recruited, which will then lead to a therapeutic or prophylactic response. However, the binding of HLA molecules to subdominant epitopes is often less vigorous than to dominant ones. Accordingly, there is a need to be able to modulate the binding affinity of particular immunogenic epitopes for one or more HLA molecules, and thereby to modulate the immune response elicited by the peptide, for example to prepare analog peptides which elicit a more vigorous response.

Although peptides with suitable cross-reactivity among all alleles of a superfamily are identified by the screening procedures described above, cross-reactivity is not always as complete as possible, and in certain cases procedures to increase cross-reactivity of peptides can be useful; moreover, such procedures can also be used to modify other properties of the peptides such as binding affinity or peptide stability. Having established the general rules that govern cross-reactivity of peptides for HLA alleles within a given motif or supermotif, modification (*i.e.*, analoging) of the structure of peptides of particular interest in order to achieve broader (or otherwise modified) HLA binding capacity can be performed. More specifically, peptides which exhibit the broadest cross-reactivity patterns, can be produced in accordance with the teachings herein. The present concepts related to analog generation are set forth in greater detail in co-pending U.S.S.N. 09/226,775 filed 1/6/99.

In brief, the strategy employed utilizes the motifs or supermotifs which correlate with binding to certain HLA molecules. The motifs or supermotifs are defined by having primary anchors, and in many cases secondary anchors. Analog peptides can be created by substituting amino acid residues at primary anchor, secondary anchor, or at primary and secondary anchor positions. Generally, analogs are made for peptides that already bear a motif or supermotif. Preferred secondary anchor residues of supermotifs and motifs that have been defined for HLA class I and class II binding peptides are shown in Tables II and III, respectively.

For a number of the motifs or supermotifs in accordance with the invention, residues are defined which are deleterious to binding to allele-specific HLA molecules or members of HLA supertypes that bind the respective motif or supermotif (Tables II and III). Accordingly, removal of such residues that are detrimental to binding can be performed in accordance with the present invention. For example, in the case of the A3 supertype, when all peptides that have such deleterious residues are removed from the population of peptides used in the analysis, the incidence of cross-reactivity increased from 22% to 37% (see, e.g., Sidney, J. et al., Hu. Immunol. 45:79, 1996). Thus, one strategy to improve the cross-reactivity of peptides within a given supermotif is simply to delete one or more of the deleterious residues present within a peptide and substitute a small "neutral" residue such as Ala (that may not influence T cell recognition of the peptide). An enhanced likelihood of cross-reactivity is expected if, together with elimination of detrimental residues within a peptide, "preferred" residues associated with high affinity binding to an allele-specific HLA molecule or to multiple HLA molecules within a superfamily are inserted.

To ensure that an analog peptide, when used as a vaccine, actually elicits a CTL response to the native epitope *in vivo* (or, in the case of class II epitopes, elicits helper T cells that cross-react with the wild type peptides), the analog peptide may be used to immunize T cells *in vitro* from individuals of the appropriate HLA allele. Thereafter, the immunized cells' capacity to induce lysis of wild type peptide sensitized target cells is evaluated. It will be desirable to use as antigen presenting cells, cells that have been either infected, or transfected with the appropriate genes, or, in the case of class II epitopes, cells that have been pulsed with whole protein antigens, to establish whether endogenously produced antigen is also recognized by the relevant T cells.

Another embodiment of the invention is to create analogs of weak binding peptides, to thereby ensure adequate numbers of cross-reactive cellular binders. Class I binding peptides exhibiting binding affinities of 500-5000 nM, and carrying an acceptable but suboptimal primary anchor residue at one or both positions can be "fixed" by substituting preferred anchor residues in accordance with the respective supertype. The analog peptides can then be tested for crossbinding activity.

Another embodiment for generating effective peptide analogs involves the substitution of residues that have an adverse impact on peptide stability or solubility in, e.g., a liquid environment. This substitution may occur at any position of the peptide epitope. For example, a cysteine can be substituted out in favor of α -amino butyric acid ("B" in the single letter abbreviations for peptide sequences listed herein). Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Substituting α -amino butyric acid for cysteine not only alleviates this problem, but actually improves binding and crossbinding capability in certain instances (see, e.g., the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999).

35

40

5

10

15

20

25

30

IV.G. Computer Screening of Protein Sequences from Disease-Related Antigens for Supermotif- or Motif-Bearing Peptides

In order to identify supermotif- or motif-bearing epitopes in a target antigen, a native protein sequence, e.g., a tumor-associated antigen, or sequences from an infectious organism, or a donor tissue for transplantation, is screened using a means for computing, such as an intellectual calculation or a

computer, to determine the presence of a supermotif or motif within the sequence. The information obtained from the analysis of native peptide can be used directly to evaluate the status of the native peptide or may be utilized subsequently to generate the peptide epitope.

Computer programs that allow the rapid screening of protein sequences for the occurrence of the subject supermotifs or motifs are encompassed by the present invention; as are programs that permit the generation of analog peptides. These programs are implemented to analyze any identified amino acid sequence or operate on an unknown sequence and simultaneously determine the sequence and identify motif-bearing epitopes thereof; analogs can be simultaneously determined as well. Generally, the identified sequences will be from a pathogenic organism or a tumor-associated peptide. In the present invention, the target TAA molecules include, without limitation, PSA, PSM, PAP, and hK2.

It is important that the selection criteria utilized for prediction of peptide binding are as accurate as possible, to correlate most efficiently with actual binding. Prediction of peptides that bind, for example, to HLA-A*0201, on the basis of the presence of the appropriate primary anchors, is positive at about a 30% rate (see, e.g., Ruppert, J. et al. Cell 74:929, 1993). However, by extensively analyzing peptide-HLA binding data disclosed herein, data in related patent applications, and data in the art, the present inventors have developed a number of allele-specific polynomial algorithms that dramatically increase the predictive value over identification on the basis of the presence of primary anchor residues alone. These algorithms take into account not only the presence or absence of primary anchors, but also consider the positive or deleterious presence of secondary anchor residues (to account for the impact of different amino acids at different positions). The algorithms are essentially based on the premise that the overall affinity (or ΔG) of peptide-HLA interactions can be approximated as a linear polynomial function of the type:

$$\Delta G = a_{1i} \times a_{2i} \times a_{3i} \dots \times a_{ni}$$

5

10

15

20

25

30

35

40

where a_{ji} is a coefficient that represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. An important assumption of this method is that the effects at each position are essentially independent of each other. This assumption is justified by studies that demonstrated that peptides are bound to HLA molecules and recognized by T cells in essentially an extended conformation. Derivation of specific algorithm coefficients has been described, for example, in Gulukota, K. et al., J. Mol. Biol. 267:1258, 1997.

Additional methods to identify preferred peptide sequences, which also make use of specific motifs, include the use of neural networks and molecular modeling programs (see, e.g., Milik et al., Nature Biotechnology 16:753, 1998; Altuvia et al., Hum. Immunol. 58:1, 1997; Altuvia et al., J. Mol. Biol. 249:244, 1995; Buus, S. Curr. Opin. Immunol. 11:209-213, 1999; Brusic, V. et al., Bioinformatics 14:121-130, 1998; Parker et al., J. Immunol. 152:163, 1993; Meister et al., Vaccine 13:581, 1995; Hammer et al., J. Exp. Med. 180:2353, 1994; Sturniolo et al., Nature Biotechnol. 17:555 1999).

For example, it has been shown that in sets of A*0201 motif-bearing peptides containing at least one preferred secondary anchor residue while avoiding the presence of any deleterious secondary anchor residues, 69% of the peptides will bind A*0201 with an IC₅₀ less than 500 nM (Ruppert, J. et al. Cell 74:929, 1993). These algorithms are also flexible in that cut-off scores may be adjusted to select sets of peptides with greater or lower predicted binding properties, as desired.

In utilizing computer screening to identify peptide epitopes, a protein sequence or translated sequence may be analyzed using software developed to search for motifs, for example the "FINDPATTERNS" program (Devereux, et al. Nucl. Acids Res. 12:387-395, 1984) or MotifSearch 1.4 software program (D. Brown, San Diego, CA) to identify potential peptide sequences containing appropriate HLA binding motifs. The identified peptides can be scored using customized polynomial algorithms to predict their capacity to bind specific HLA class I or class II alleles. As appreciated by one of ordinary skill in the art, a large array of computer programming software and hardware options are available in the relevant art which can be employed to implement the motifs of the invention in order to evaluate (e.g., without limitation, to identify epitopes, identify epitope concentration per peptide length, or to generate analogs) known or unknown peptide sequences.

In accordance with the procedures described above, prostate cancer-associated antigen peptide epitopes and analogs thereof that are able to bind HLA supertype groups or allele-specific HLA molecules are identified.

15 IV.H. Preparation of Peptide Epitopes

5

10

20

25

30

35

40

Peptides in accordance with the invention can be prepared synthetically, by recombinant DNA technology or chemical synthesis, or from natural sources such as native tumors or pathogenic organisms. Peptide epitopes may be synthesized individually or as polyepitopic peptides. Although the peptide will preferably be substantially free of other naturally occurring host cell proteins and fragments thereof, in some embodiments the peptides may be synthetically conjugated to native fragments or particles.

The peptides in accordance with the invention can be a variety of lengths, and either in their neutral (uncharged) forms or in forms which are salts. The peptides in accordance with the invention are either free of modifications such as glycosylation, side chain oxidation, or phosphorylation; or they contain these modifications, subject to the condition that modifications do not destroy the biological activity of the peptides as described herein.

When possible, it may be desirable to optimize HLA class I binding epitopes of the invention, such as can be used in a polyepitopic construct, to a length of about 8 to about 13 amino acid residues, often 8 to 11, preferably 9 to 10. HLA class II binding peptide epitopes of the invention may be optimized to a length of about 6 to about 30 amino acids in length, preferably to between about 13 and about 20 residues. Preferably, the peptide epitopes are commensurate in size with endogenously processed pathogen-derived peptides or tumor cell peptides that are bound to the relevant HLA molecules, however, the identification and preparation of peptides that comprise epitopes of the invention can also be carried out using the techniques described herein.

In alternative embodiments, epitopes of the invention can be linked as a polyepitopic peptide, or as a minigene that encodes a polyepitopic peptide.

In another embodiment, it is preferred to identify native peptide regions that contain a high concentration of class I and/or class II epitopes. Such a sequence is generally selected on the basis that it contains the greatest number of epitopes per amino acid length. It is to be appreciated that epitopes can be present in a nested or overlapping manner, e.g. a 10 amino acid long peptide could contain two 9 amino acid long epitopes and one 10 amino acid long epitope; upon intracellular processing, each epitope can be

WO 01/45728 28

exposed and bound by an HLA molecule upon administration of such a peptide. This larger, preferably multi-epitopic, peptide can be generated synthetically, recombinantly, or via cleavage from the native source.

The peptides of the invention can be prepared in a wide variety of ways. For the preferred relatively short size, the peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. (See, for example, Stewart & Young, SOLID PHASE PEPTIDE SYNTHESIS, 2D. ED., Pierce Chemical Co., 1984). Further, individual peptide epitopes can be joined using chemical ligation to produce larger peptides that are still within the bounds of the invention.

Alternatively, recombinant DNA technology can be employed wherein a nucleotide sequence which encodes an immunogenic peptide of interest is inserted into an expression vector, transformed or transfected into an appropriate host cell and cultivated under conditions suitable for expression. These procedures are generally known in the art, as described generally in Sambrook et al., MOLECULAR CLONING, A LABORATORY MANUAL, Cold Spring Harbor Press, Cold Spring Harbor, New York (1989). Thus, recombinant polypeptides which comprise one or more peptide sequences of the invention can be used to present the appropriate T cell epitope.

The nucleotide coding sequence for peptide epitopes of the preferred lengths contemplated herein can be synthesized by chemical techniques, for example, the phosphotriester method of Matteucci, et al., J. Am. Chem. Soc. 103:3185 (1981). Peptide analogs can be made simply by substituting the appropriate and desired nucleic acid base(s) for those that encode the native peptide sequence; exemplary nucleic acid substitutions are those that encode an amino acid defined by the motifs/supermotifs herein. The coding sequence can then be provided with appropriate linkers and ligated into expression vectors commonly available in the art, and the vectors used to transform suitable hosts to produce the desired fusion protein. A number of such vectors and suitable host systems are now available. For expression of the fusion proteins, the coding sequence will be provided with operably linked start and stop codons, promoter and terminator regions and usually a replication system to provide an expression vector for expression in the desired cellular host. For example, promoter sequences compatible with bacterial hosts are provided in plasmids containing convenient restriction sites for insertion of the desired coding sequence. The resulting expression vectors are transformed into suitable bacterial hosts. Of course, yeast, insect or mammalian cell hosts may also be used, employing suitable vectors and control sequences.

IV.I. Assays to Detect T-Cell Responses

5

10

15

20

25

30

35

40

Once HLA binding peptides are identified, they can be tested for the ability to elicit a Tcell response. The preparation and evaluation of motif-bearing peptides are described in PCT publications WO 94/20127 and WO 94/03205. Briefly, peptides comprising epitopes from a particular antigen are synthesized and tested for their ability to bind to the appropriate HLA proteins. These assays may involve evaluating the binding of a peptide of the invention to purified HLA class I molecules in relation to the binding of a radioiodinated reference peptide. Alternatively, cells expressing empty class I molecules (i.e. lacking peptide therein) may be evaluated for peptide binding by immunofluorescent staining and flow microfluorimetry. Other assays that may be used to evaluate peptide binding include peptide-dependent

class I assembly assays and/or the inhibition of CTL recognition by peptide competition. Those peptides that bind to the class I molecule, typically with an affinity of 500 nM or less, are further evaluated for their ability to serve as targets for CTLs derived from infected or immunized individuals, as well as for their capacity to induce primary *in vitro* or *in vivo* CTL responses that can give rise to CTL populations capable of reacting with selected target cells associated with a disease.

5

10

15

20

25

30

35

40

Analogous assays are used for evaluation of HLA class II binding peptides. HLA class II motif-bearing peptides that are shown to bind, typically at an affinity of 1000 nM or less, are further evaluated for the ability to stimulate HTL responses.

Conventional assays utilized to detect T cell responses include proliferation assays, lymphokine secretion assays, direct cytotoxicity assays, and limiting dilution assays. For example, antigen-presenting cells that have been incubated with a peptide can be assayed for the ability to induce CTL responses in responder cell populations. Antigen-presenting cells can be normal cells such as peripheral blood mononuclear cells or dendritic cells. Alternatively, mutant non-human mammalian cell lines that are deficient in their ability to load class I molecules with internally processed peptides and that have been transfected with the appropriate human class I gene, may be used to test for the capacity of the peptide to induce *in vitro* primary CTL responses.

Peripheral blood mononuclear cells (PBMCs) may be used as the responder cell source of CTL precursors. The appropriate antigen-presenting cells are incubated with peptide, after which the peptide-loaded antigen-presenting cells are then incubated with the responder cell population under optimized culture conditions. Positive CTL activation can be determined by assaying the culture for the presence of CTLs that kill radio-labeled target cells, both specific peptide-pulsed targets as well as target cells expressing endogenously processed forms of the antigen from which the peptide sequence was derived.

Additionally, a method has been devised which allows direct quantification of antigen-specific T cells by staining with Fluorescein-labelled HLA tetrameric complexes (Altman, J. D. et al., Proc. Natl. Acad. Sci. USA 90:10330, 1993; Altman, J. D. et al., Science 274:94, 1996). Other relatively recent technical developments include staining for intracellular lymphokines, and interferon-γ release assays or ELISPOT assays. Tetramer staining, intracellular lymphokine staining and ELISPOT assays all appear to be at least 10-fold more sensitive than more conventional assays (Lalvani, A. et al., J. Exp. Med. 186:859, 1997; Dunbar, P. R. et al., Curr. Biol. 8:413, 1998; Murali-Krishna, K. et al., Immunity 8:177, 1998).

HTL activation may also be assessed using such techniques known to those in the art such as T cell proliferation and secretion of lymphokines, e.g. IL-2 (see, e.g. Alexander et al., Immunity 1:751-761, 1994).

Alternatively, immunization of HLA transgenic mice can be used to determine immunogenicity of peptide epitopes. Several transgenic mouse models including mice with human A2.1, A11 (which can additionally be used to analyze HLA-A3 epitopes), and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed. Additional transgenic mouse models with other HLA alleles may be generated as necessary. The mice may be immunized with peptides emulsified in Incomplete Freund's Adjuvant and the resulting T cells tested for their capacity to recognize peptide-pulsed target cells and

target cells transfected with appropriate genes. CTL responses may be analyzed using cytotoxicity assays described above. Similarly, HTL responses may be analyzed using such assays as T cell proliferation or secretion of lymphokines.

IV.J. Use of Peptide Epitopes as Diagnostic Agents and for Evaluating Immune Responses

5

10

15

20

25

30

35

40

In one embodiment of the invention, HLA class I and class II binding peptides as described herein are used as reagents to evaluate an immune response. The immune response to be evaluated is induced by using as an immunogen any agent that may result in the production of antigen-specific CTLs or HTLs that recognize and bind to the peptide epitope(s) to be employed as the reagent. The peptide reagent need not be used as the immunogen. Assay systems that are used for such an analysis include relatively recent technical developments such as tetramers, staining for intracellular lymphokines and interferon release assays, or ELISPOT assays.

For example, peptides of the invention are used in tetramer staining assays to assess peripheral blood mononuclear cells for the presence of antigen-specific CTLs following exposure to a tumor cell antigen or an immunogen. The HLA-tetrameric complex is used to directly visualize antigen-specific CTLs (see, e.g., Ogg et al., Science 279:2103-2106, 1998; and Altman et al., Science 174:94-96, 1996) and determine the frequency of the antigen-specific CTL population in a sample of peripheral blood mononuclear cells. A tetramer reagent using a peptide of the invention is generated as follows: A peptide that binds to an HLA molecule is refolded in the presence of the corresponding HLA heavy chain and β_2 -microglobulin to generate a trimolecular complex. The complex is biotinylated at the carboxyl terminal end of the heavy chain at a site that was previously engineered into the protein. Tetramer formation is then induced by the addition of streptavidin. By means of fluorescently labeled streptavidin, the tetramer can be used to stain antigen-specific cells. The cells can then be identified, for example, by flow cytometry. Such an analysis may be used for diagnostic or prognostic purposes. Cells identified by the procedure can also be used for therapeutic purposes.

Peptides of the invention are also used as reagents to evaluate immune recall responses (see, e.g., Bertoni et al., J. Clin. Invest. 100:503-513, 1997 and Penna et al., J. Exp. Med. 174:1565-1570, 1991). For example, patient PBMC samples from individuals with cancer are analyzed for the presence of antigen-specific CTLs or HTLs using specific peptides. A blood sample containing mononuclear cells can be evaluated by cultivating the PBMCs and stimulating the cells with a peptide of the invention. After an appropriate cultivation period, the expanded cell population can be analyzed, for example, for CTL or for HTL activity.

The peptides are also used as reagents to evaluate the efficacy of a vaccine. PBMCs obtained from a patient vaccinated with an immunogen are analyzed using, for example, either of the methods described above. The patient is HLA typed, and peptide epitope reagents that recognize the allelespecific molecules present in that patient are selected for the analysis. The immunogenicity of the vaccine is indicated by the presence of epitope-specific CTLs and/or HTLs in the PBMC sample.

The peptides of the invention are also used to make antibodies, using techniques well known in the art (see, e.g. CURRENT PROTOCOLS IN IMMUNOLOGY, Wiley/Greene, NY; and Antibodies A Laboratory Manual, Harlow and Lane, Cold Spring Harbor Laboratory Press, 1989), which may be useful

as reagents to diagnose or monitor cancer. Such antibodies include those that recognize a peptide in the context of an HLA molecule, *i.e.*, antibodies that bind to a peptide-MHC complex.

IV.K. Vaccine Compositions

5

10

15

20

25

30

35

40

Vaccines and methods of preparing vaccines that contain an immunogenically effective amount of one or more peptides as described herein are further embodiments of the invention. Once appropriately immunogenic epitopes have been defined, they can be sorted and delivered by various means, herein referred to as "vaccine" compositions. Such vaccine compositions can include, for example, lipopeptides (e.g., Vitiello, A. et al., J. Clin. Invest. 95:341, 1995), peptide compositions encapsulated in poly(DL-lactide-co-glycolide) ("PLG") microspheres (see, e.g., Eldridge, et al., Molec. Immunol. 28:287-294, 1991: Alonso et al., Vaccine 12:299-306, 1994; Jones et al., Vaccine 13:675-681, 1995), peptide compositions contained in immune stimulating complexes (ISCOMS) (see, e.g., Takahashi et al., Nature 344:873-875, 1990; Hu et al., Clin Exp Immunol. 113:235-243, 1998), multiple antigen peptide systems (MAPs) (see e.g., Tam, J. P., Proc. Natl. Acad. Sci. U.S.A. 85:5409-5413, 1988; Tam, J.P., J. Immunol. Methods 196:17-32, 1996), peptides formulated as multivalent peptides; peptides for use in ballistic delivery systems, typically crystallized peptides, viral delivery vectors (Perkus, M. E. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 379, 1996; Chakrabarti, S. et al., Nature 320:535, 1986; Hu, S. L. et al., Nature 320:537, 1986; Kieny, M.-P. et al., AIDS Bio/Technology 4:790, 1986; Top, F. H. et al., J. Infect. Dis. 124:148, 1971; Chanda, P. K. et al., Virology 175:535, 1990), particles of viral or synthetic origin (e.g., Kofler, N. et al., J. Immunol. Methods. 192:25, 1996; Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993; Falo, L. D., Jr. et al., Nature Med. 7:649, 1995), adjuvants (Warren, H. S., Vogel, F. R., and Chedid, L. A. Annu. Rev. Immunol. 4:369, 1986; Gupta, R. K. et al., Vaccine 11:293, 1993), liposomes (Reddy, R. et al., J. Immunol. 148:1585, 1992; Rock, K. L., Immunol. Today 17:131, 1996), or, naked or particle absorbed cDNA (Ulmer, J. B. et al., Science 259:1745, 1993; Robinson, H. L., Hunt, L. A., and Webster, R. G., Vaccine 11:957, 1993; Shiver, J. W. et al., In: Concepts in vaccine development, Kaufmann, S. H. E., ed., p. 423, 1996; Cease, K. B., and Berzofsky, J. A., Annu. Rev. Immunol. 12:923, 1994 and Eldridge, J. H. et al., Sem. Hematol. 30:16, 1993). Toxin-targeted delivery technologies, also known as receptor mediated targeting, such as those of Avant Immunotherapeutics, Inc. (Needham, Massachusetts) may also be used.

Vaccines of the invention include nucleic acid-mediated modalities. DNA or RNA encoding one or more of the peptides of the invention can also be administered to a patient. This approach is described, for instance, in Wolff et. al., Science 247:1465 (1990) as well as U.S. Patent Nos. 5,580,859; 5,589,466; 5,804,566; 5,739,118; 5,736,524; 5,679,647; WO 98/04720; and in more detail below. Examples of DNA-based delivery technologies include "naked DNA", facilitated (bupivicaine, polymers, peptide-mediated) delivery, cationic lipid complexes, and particle-mediated ("gene gun") or pressure-mediated delivery (see, e.g., U.S. Patent No. 5,922,687).

For therapeutic or prophylactic immunization purposes, the peptides of the invention can also be expressed by viral or bacterial vectors. Examples of expression vectors include attenuated viral hosts, such as vaccinia or fowlpox. As an example of this approach, vaccinia virus is used as a vector to express nucleotide sequences that encode the peptides of the invention. Upon introduction into a host

bearing a tumor, the recombinant vaccinia virus expresses the immunogenic peptide, and thereby elicits a host CTL and/or HTL response. Vaccinia vectors and methods useful in immunization protocols are described in, e.g., U.S. Patent No. 4,722,848. Another vector is BCG (Bacille Calmette Guerin). BCG vectors are described in Stover et al., Nature 351:456-460 (1991). A wide variety of other vectors useful for therapeutic administration or immunization of the peptides of the invention, e.g. adeno and adeno-associated virus vectors, retroviral vectors, Salmonella typhi vectors, detoxified anthrax toxin vectors, and the like, will be apparent to those skilled in the art from the description herein.

5

10

15

20

25

30

35

40

Furthermore, vaccines in accordance with the invention encompass compositions of one or more of the claimed peptides. A peptide can be present in a vaccine individually. Alternatively, the peptide can exist as a homopolymer comprising multiple copies of the same peptide, or as a heteropolymer of various peptides. Polymers have the advantage of increased immunological reaction and, where different peptide epitopes are used to make up the polymer, the additional ability to induce antibodies and/or CTLs that react with different antigenic determinants of the pathogenic organism or tumor-related peptide targeted for an immune response. The composition can be a naturally occurring region of an antigen or can be prepared, e.g., recombinantly or by chemical synthesis.

Carriers that can be used with vaccines of the invention are well known in the art, and include, e.g., thyroglobulin, albumins such as human serum albumin, tetanus toxoid, polyamino acids such as poly L-lysine, poly L-glutamic acid, influenza, hepatitis B virus core protein, and the like. The vaccines can contain a physiologically tolerable (i.e., acceptable) diluent such as water, or saline, preferably phosphate buffered saline. The vaccines also typically include an adjuvant. Adjuvants such as incomplete Freund's adjuvant, aluminum phosphate, aluminum hydroxide, or alum are examples of materials well known in the art. Additionally, as disclosed herein, CTL responses can be primed by conjugating peptides of the invention to lipids, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine (P₃CSS).

Upon immunization with a peptide composition in accordance with the invention, via injection, aerosol, oral, transdermal, transmucosal, intrapleural, intrathecal, or other suitable routes, the immune system of the host responds to the vaccine by producing large amounts of CTLs and/or HTLs specific for the desired antigen. Consequently, the host becomes at least partially immune to later infection, or at least partially resistant to developing an ongoing chronic infection, or derives at least some therapeutic benefit when the antigen was tumor-associated.

In some embodiments, it may be desirable to combine the class I peptide components with components that induce or facilitate neutralizing antibody and or helper T cell responses to the target antigen of interest. A preferred embodiment of such a composition comprises class I and class II epitopes in accordance with the invention. An alternative embodiment of such a composition comprises a class I and/or class II epitope in accordance with the invention, along with a cross-binding HLA class II molecule such as PADRETM (Epimmune, San Diego, CA) molecule (described, for example, in U.S. Patent Number 5,736,142).

A vaccine of the invention can also include antigen-presenting cells (APC), such as dendritic cells (DC), as a vehicle to present peptides of the invention. Vaccine compositions can be created in vitro, following dendritic cell mobilization and harvesting, whereby loading of dendritic cells occurs in vitro. For example, dendritic cells are transfected, e.g., with a minigene in accordance with the invention,

or are pulsed with peptides. The dendritic cell can then be administered to a patient to elicit immune responses in vivo.

5

10

15

20

25

30

35

40

Vaccine compositions, either DNA- or peptide-based, can also be administered *in vivo* in combination with dendritic cell mobilization whereby loading of dendritic cells occurs *in vivo*.

Antigenic peptides are used to elicit a CTL and/or HTL response ex vivo, as well. The resulting CTL or HTL cells, can be used to treat tumors in patients that do not respond to other conventional forms of therapy, or will not respond to a therapeutic vaccine peptide or nucleic acid in accordance with the invention. Ex vivo CTL or HTL responses to a particular tumor-associated antigen are induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells, such as dendritic cells, and the appropriate immunogenic peptide. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cell (an infected cell or a tumor cell). Transfected dendritic cells may also be used as antigen presenting cells.

The vaccine compositions of the invention can also be used in combination with other treatments used for cancer, including use in combination with immune adjuvants such as IL-2, IL-12, GM-CSF, and the like.

Preferably, the following principles are utilized when selecting an array of epitopes for inclusion in a polyepitopic composition for use in a vaccine, or for selecting discrete epitopes to be included in a vaccine and/or to be encoded by nucleic acids such as a minigene. It is preferred that each of the following principles are balanced in order to make the selection. The multiple epitopes to be incorporated in a given vaccine composition may be, but need not be, contiguous in sequence in the native antigen from which the epitopes are derived.

- 1.) Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For HLA Class I this includes 3-4 epitopes that come from at least one TAA. For HLA Class II a similar rationale is employed; again 3-4 epitopes are selected from at least one TAA (see e.g., Rosenberg et al., Science 278:1447-1450). Epitopes from one TAA may be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs as described, e.g., in Example 15.
 - 2.) Epitopes are selected that have the requisite binding affinity established to be correlated with immunogenicity: for HLA Class I an IC₅₀ of 500 nM or less, often 200 nM or less; and for Class II an IC₅₀ of 1000 nM or less.
 - 3.) Sufficient supermotif bearing-peptides, or a sufficient array of allele-specific motif-bearing peptides, are selected to give broad population coverage. For example, it is preferable to have at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess the breadth, or redundancy of, population coverage.
 - 4.) When selecting epitopes from cancer-related antigens it is often useful to select analogs because the patient may have developed tolerance to the native epitope. When selecting epitopes for infectious disease-related antigens it is preferable to select either native or analoged epitopes.

- 5.) Of particular relevance are epitopes referred to as "nested epitopes." Nested epitopes occur where at least two epitopes overlap in a given peptide sequence. A nested peptide sequence can comprise both HLA class I and HLA class II epitopes. When providing nested epitopes, a general objective is to provide the greatest number of epitopes per sequence. Thus, an aspect is to avoid providing a peptide that is any longer than the amino terminus of the amino terminal epitope and the carboxyl terminus of the carboxyl terminal epitope in the peptide. When providing a multi-epitopic sequence, such as a sequence comprising nested epitopes, it is generally important to screen the sequence in order to insure that it does not have pathological or other deleterious biological properties.
- to generate the smallest peptide that encompasses the epitopes of interest. This principle is similar, if not the same as that employed when selecting a peptide comprising nested epitopes. However, with an artificial polyepitopic peptide, the size minimization objective is balanced against the need to integrate any spacer sequences between epitopes in the polyepitopic protein. Spacer amino acid residues can, for example, be introduced to avoid junctional epitopes (an epitope recognized by the immune system, not present in the target antigen, and only created by the man-made juxtaposition of epitopes), or to facilitate cleavage between epitopes and thereby enhance epitope presentation. Junctional epitopes are generally to be avoided because the recipient may generate an immune response to that non-native epitope. Of particular concern is a junctional epitope that is a "dominant epitope." A dominant epitope may lead to such a zealous response that immune responses to other epitopes are diminished or suppressed.

IV.K.1. Minigene Vaccines

5

20

25

30

35

40

A number of different approaches are available which allow simultaneous delivery of multiple epitopes. Nucleic acids encoding the peptides of the invention are a particularly useful embodiment of the invention. Epitopes for inclusion in a minigene are preferably selected according to the guidelines set forth in the previous section. A preferred means of administering nucleic acids encoding the peptides of the invention uses minigene constructs encoding a peptide comprising one or multiple epitopes of the invention.

The use of multi-epitope minigenes is described below and in, e.g., co-pending application U.S.S.N. 09/311,784; Ishioka et al., J. Immunol. 162:3915-3925, 1999; An, L. and Whitton, J. L., J. Virol. 71:2292, 1997; Thomson, S. A. et al., J. Immunol. 157:822, 1996; Whitton, J. L. et al., J. Virol. 67:348, 1993; Hanke, R. et al., Vaccine 16:426, 1998. For example, a multi-epitope DNA plasmid encoding supermotif- and/or motif-bearing PSA, PSM, PAP, and hK2 epitopes derived from multiple regions of one or more of the prostate cancer-associated antigens, the PADRE™ universal helper T cell epitope (or multiple HTL epitopes from PSA, PSM, PAP, and hK2), and an endoplasmic reticulum-translocating signal sequence can be engineered. A vaccine may also comprise epitopes that are derived from other TAAs.

The immunogenicity of a multi-epitopic minigene can be tested in transgenic mice to evaluate the magnitude of CTL induction responses against the epitopes tested. Further, the immunogenicity of DNA-encoded epitopes *in vivo* can be correlated with the *in vitro* responses of specific CTL lines against target cells transfected with the DNA plasmid. Thus, these experiments can show that

the minigene serves to both: 1.) generate a CTL response and 2.) that the induced CTLs recognized cells expressing the encoded epitopes.

5

10

15

20

25

30

35

40

For example, to create a DNA sequence encoding the selected epitopes (minigene) for expression in human cells, the amino acid sequences of the epitopes may be reverse translated. A human codon usage table can be used to guide the codon choice for each amino acid. These epitope-encoding DNA sequences may be directly adjoined, so that when translated, a continuous polypeptide sequence is created. To optimize expression and/or immunogenicity, additional elements can be incorporated into the minigene design. Examples of amino acid sequences that can be reverse translated and included in the minigene sequence include: HLA class I epitopes, HLA class II epitopes, a ubiquitination signal sequence, and/or an endoplasmic reticulum targeting signal. In addition, HLA presentation of CTL and HTL epitopes may be improved by including synthetic (e.g. poly-alanine) or naturally-occurring flanking sequences adjacent to the CTL or HTL epitopes; these larger peptides comprising the epitope(s) are within the scope of the invention.

The minigene sequence may be converted to DNA by assembling oligonucleotides that encode the plus and minus strands of the minigene. Overlapping oligonucleotides (30-100 bases long) may be synthesized, phosphorylated, purified and annealed under appropriate conditions using well known techniques. The ends of the oligonucleotides can be joined, for example, using T4 DNA ligase. This synthetic minigene, encoding the epitope polypeptide, can then be cloned into a desired expression vector.

Standard regulatory sequences well known to those of skill in the art are preferably included in the vector to ensure expression in the target cells. Several vector elements are desirable: a promoter with a down-stream cloning site for minigene insertion; a polyadenylation signal for efficient transcription termination; an *E. coli* origin of replication; and an *E. coli* selectable marker (e.g. ampicillin or kanamycin resistance). Numerous promoters can be used for this purpose, e.g., the human cytomegalovirus (hCMV) promoter. See, e.g., U.S. Patent Nos. 5,580,859 and 5,589,466 for other suitable promoter sequences.

Additional vector modifications may be desired to optimize minigene expression and immunogenicity. In some cases, introns are required for efficient gene expression, and one or more synthetic or naturally-occurring introns could be incorporated into the transcribed region of the minigene. The inclusion of mRNA stabilization sequences and sequences for replication in mammalian cells may also be considered for increasing minigene expression.

Once an expression vector is selected, the minigene is cloned into the polylinker region downstream of the promoter. This plasmid is transformed into an appropriate *E. coli* strain, and DNA is prepared using standard techniques. The orientation and DNA sequence of the minigene, as well as all other elements included in the vector, are confirmed using restriction mapping and DNA sequence analysis. Bacterial cells harboring the correct plasmid can be stored as a master cell bank and a working cell bank.

In addition, immunostimulatory sequences (ISSs or CpGs) appear to play a role in the immunogenicity of DNA vaccines. These sequences may be included in the vector, outside the minigene coding sequence, if desired to enhance immunogenicity.

In some embodiments, a bi-cistronic expression vector which allows production of both the minigene-encoded epitopes and a second protein (included to enhance or decrease immunogenicity) can

be used. Examples of proteins or polypeptides that could beneficially enhance the immune response if co-expressed include cytokines (e.g., IL-2, IL-12, GM-CSF), cytokine-inducing molecules (e.g., LeIF), costimulatory molecules, or for HTL responses, pan-DR binding proteins (e.g., PADRE™, Epimmune, San Diego, CA). Helper (HTL) epitopes can be joined to intracellular targeting signals and expressed separately from expressed CTL epitopes; this allows direction of the HTL epitopes to a cell compartment different than that of the CTL epitopes. If required, this could facilitate more efficient entry of HTL epitopes into the HLA class II pathway, thereby improving HTL induction. In contrast to HTL or CTL induction, specifically decreasing the immune response by co-expression of immunosuppressive molecules (e.g. TGF-β) may be beneficial in certain diseases.

5

10

15

20

25

30

35

40

Therapeutic quantities of plasmid DNA can be produced for example, by fermentation in *E. coli*, followed by purification. Aliquots from the working cell bank are used to inoculate growth medium, and grown to saturation in shaker flasks or a bioreactor according to well known techniques. Plasmid DNA can be purified using standard bioseparation technologies such as solid phase anion-exchange resins supplied by QIAGEN, Inc. (Valencia, California). If required, supercoiled DNA can be isolated from the open circular and linear forms using gel electrophoresis or other methods.

Purified plasmid DNA can be prepared for injection using a variety of formulations. The simplest of these is reconstitution of lyophilized DNA in sterile phosphate-buffered saline (PBS). This approach, known as "naked DNA," is currently being used for intramuscular (IM) administration in clinical trials. To maximize the immunotherapeutic effects of minigene DNA vaccines, an alternative method for formulating purified plasmid DNA may be desirable. A variety of methods have been described, and new techniques may become available. Cationic lipids, glycolipids, and fusogenic liposomes can also be used in the formulation (see, e.g., as described by WO 93/24640; Mannino & Gould-Fogerite, BioTechniques 6(7): 682 (1988); U.S. Pat No. 5,279,833; WO 91/06309; and Felgner, et al., Proc. Nat'l Acad. Sci. USA 84:7413 (1987). In addition, peptides and compounds referred to collectively as protective, interactive, non-condensing compounds (PINC) could also be complexed to purified plasmid DNA to influence variables such as stability, intramuscular dispersion, or trafficking to specific organs or cell types.

Target cell sensitization can be used as a functional assay for expression and HLA class I presentation of minigene-encoded CTL epitopes. For example, the plasmid DNA is introduced into a mammalian cell line that is suitable as a target for standard CTL chromium release assays. The transfection method used will be dependent on the final formulation. Electroporation can be used for "naked" DNA, whereas cationic lipids allow direct *in vitro* transfection. A plasmid expressing green fluorescent protein (GFP) can be co-transfected to allow enrichment of transfected cells using fluorescence activated cell sorting (FACS). These cells are then chromium-51 (51 Cr) labeled and used as target cells for epitope-specific CTL lines; cytolysis, detected by 51 Cr release, indicates both production of, and HLA presentation of, minigene-encoded CTL epitopes. Expression of HTL epitopes may be evaluated in an analogous manner using assays to assess HTL activity.

In vivo immunogenicity is a second approach for functional testing of minigene DNA formulations. Transgenic mice expressing appropriate human HLA proteins are immunized with the DNA product. The dose and route of administration are formulation dependent (e.g., IM for DNA in PBS, intraperitoneal (IP) for lipid-complexed DNA). Twenty-one days after immunization, splenocytes are

harvested and restimulated for one week in the presence of peptides encoding each epitope being tested. Thereafter, for CTL effector cells, assays are conducted for cytolysis of peptide-loaded, ⁵¹Cr-labeled target cells using standard techniques. Lysis of target cells that were sensitized by HLA loaded with peptide epitopes, corresponding to minigene-encoded epitopes, demonstrates DNA vaccine function for *in vivo* induction of CTLs. Immunogenicity of HTL epitopes is evaluated in transgenic mice in an analogous manner.

Alternatively, the nucleic acids can be administered using ballistic delivery as described, for instance, in U.S. Patent No. 5,204,253. Using this technique, particles comprised solely of DNA are administered. In a further alternative embodiment, DNA can be adhered to particles, such as gold particles.

Minigenes can also be delivered using other bacterial or viral delivery systems well known in the art, e.g., an expression construct encoding epitopes of the invention can be incorporated into a viral vector such as vaccinia.

IV.K.2. Combinations of CTL Peptides with Helper Peptides

5

10

15

20

25

30

35

Vaccine compositions comprising the peptides of the present invention can be modified to provide desired attributes, such as improved serum half-life, or to enhance immunogenicity.

For instance, the ability of a peptide to induce CTL activity can be enhanced by linking the peptide to a sequence which contains at least one epitope that is capable of inducing a T helper cell response. The use of T helper epitopes in conjunction with CTL epitopes to enhance immunogenicity is illustrated, for example, in the co-pending applications U.S.S.N. 08/820,360, U.S.S.N. 08/197,484, and U.S.S.N. 08/464,234.

Although a CTL peptide can be directly linked to a T helper peptide, often CTL epitope/HTL epitope conjugates are linked by a spacer molecule. The spacer is typically comprised of relatively small, neutral molecules, such as amino acids or amino acid mimetics, which are substantially uncharged under physiological conditions. The spacers are typically selected from, e.g., Ala, Gly, or other neutral spacers of nonpolar amino acids or neutral polar amino acids. It will be understood that the optionally present spacer need not be comprised of the same residues and thus may be a hetero- or homoligomer. When present, the spacer will usually be at least one or two residues, more usually three to six residues and sometimes 10 or more residues. The CTL peptide epitope can be linked to the T helper peptide epitope either directly or via a spacer either at the amino or carboxy terminus of the CTL peptide. The amino terminus of either the immunogenic peptide or the T helper peptide may be acylated.

In certain embodiments, the T helper peptide is one that is recognized by T helper cells present in the majority of the population. This can be accomplished by selecting amino acid sequences that bind to many, most, or all of the HLA class II molecules. These are known as "loosely HLA-restricted" or "promiscuous" T helper sequences. Examples of peptides that are promiscuous include sequences from antigens such as tetanus toxoid at positions 830-843 (QYIKANSKFIGITE), *Plasmodium falciparum* circumsporozoite (CS) protein at positions 378-398 (DIEKKIAKMEKASSVFNVVNS), and *Streptococcus* 18kD protein at positions 116 (GAVDSILGGVATYGAA). Other examples include peptides bearing a DR 1-4-7 supermotif, or either of the DR3 motifs.

Alternatively, it is possible to prepare synthetic peptides capable of stimulating T helper lymphocytes, in a loosely HLA-restricted fashion, using amino acid sequences not found in nature (see, e.g., PCT publication WO 95/07707). These synthetic compounds called Pan-DR-binding epitopes (e.g., PADRETM, Epimmune, Inc., San Diego, CA) are designed to most preferrably bind most HLA-DR (human HLA class II) molecules. For instance, a pan-DR-binding epitope peptide having the formula: aKXVAAWTLKAAa, where "X" is either cyclohexylalanine, phenylalanine, or tyrosine, and "a" is either D-alanine or L-alanine, has been found to bind to most HLA-DR alleles, and to stimulate the response of T helper lymphocytes from most individuals; regardless of their HLA type. An alternative of a pan-DR binding epitope comprises all "L" natural amino acids and can be provided in the form of nucleic acids that encode the epitope.

HTL peptide epitopes can also be modified to alter their biological properties. For example, they can be modified to include D-amino acids to increase their resistance to proteases and thus extend their serum half life, or they can be conjugated to other molecules such as lipids, proteins, carbohydrates, and the like to increase their biological activity. For example, a T helper peptide can be conjugated to one or more palmitic acid chains at either the amino or carboxyl termini.

IV.K.3. Combinations of CTL Peptides with T Cell Priming Agents

5

10

15

20

25

30

35

40

In some embodiments it may be desirable to include in the pharmaceutical compositions of the invention at least one component which primes cytotoxic T lymphocytes. Lipids have been identified as agents capable of priming CTL in vivo against viral antigens. For example, palmitic acid residues can be attached to the ε -and α - amino groups of a lysine residue and then linked, e.g., via one or more linking residues such as Gly, Gly-Gly-, Ser, Ser-Ser, or the like, to an immunogenic peptide. The lipidated peptide can then be administered either directly in a micelle or particle, incorporated into a liposome, or emulsified in an adjuvant, e.g., incomplete Freund's adjuvant. A preferred immunogenic composition comprises palmitic acid attached to ε - and α - amino groups of Lys, which is attached via linkage, e.g., Ser-Ser, to the amino terminus of the immunogenic peptide.

As another example of lipid priming of CTL responses, *E. coli* lipoproteins, such as tripalmitoyl-S-glycerylcysteinlyseryl- serine (P₃CSS) can be used to prime virus specific CTL when covalently attached to an appropriate peptide (*see*, *e.g.*, Deres, *et al.*, *Nature* 342:561, 1989). Peptides of the invention can be coupled to P₃CSS, for example, and the lipopeptide administered to an individual to specifically prime a CTL response to the target antigen. Moreover, because the induction of neutralizing antibodies can also be primed with P₃CSS-conjugated epitopes, two such compositions can be combined to more effectively elicit both humoral and cell-mediated responses.

CTL and/or HTL peptides can also be modified by the addition of amino acids to the termini of a peptide to provide for ease of linking peptides one to another, for coupling to a carrier support or larger peptide, for modifying the physical or chemical properties of the peptide or oligopeptide, or the like. Amino acids such as tyrosine, cysteine, lysine, glutamic or aspartic acid, or the like, can be introduced at the C- or N-terminus of the peptide or oligopeptide, particularly class I peptides. However, it is to be noted that modification at the carboxyl terminus of a CTL epitope may, in some cases, alter binding characteristics of the peptide. In addition, the peptide or oligopeptide sequences can differ from the natural

sequence by being modified by terminal- NH_2 acylation, e.g., by alkanoyl (C_1 - C_{20}) or thioglycolyl acetylation, terminal-carboxyl amidation, e.g., ammonia, methylamine, etc. In some instances these modifications may provide sites for linking to a support or other molecule.

5 IV.K.4. Vaccine Compositions Comprising DC Pulsed with CTL and/or HTL Peptides

10

15

20

25

30

35

An embodiment of a vaccine composition in accordance with the invention comprises ex vivo administration of a cocktail of epitope-bearing peptides to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as ProgenipoietinTM (Monsanto, St. Louis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides. In this embodiment, a vaccine comprises peptide-pulsed DCs which present the pulsed peptide epitopes complexed with HLA molecules on their surfaces.

The DC can be pulsed ex vivo with a cocktail of peptides, some of which stimulate CTL response to one or more antigens of interest, e.g., prostate-associated antigens such as PSA, PSM, PAP, kallikrein, and the like. Optionally, a helper T cell peptide such as a PADRETM family molecule, can be included to facilitate the CTL response.

IV.L. Administration of Vaccines for Therapeutic or Prophylactic Purposes

The peptides of the present invention and pharmaceutical and vaccine compositions of the invention are typically used therapeutically to treat cancer, particularly prostate cancer. Vaccine compositions containing the peptides of the invention are typically administered to a prostate cancer patient who has a malignancy associated with expression of one or more prostate-associated antigens.

Alternatively, vaccine compositions can be administered to an individual susceptible to, or otherwise at risk for developing prostate cancer.

In therapeutic applications, peptide and/or nucleic acid compositions are administered to a patient in an amount sufficient to elicit an effective CTL and/or HTL response to the tumor antigen and to cure or at least partially arrest or slow symptoms and/or complications. An amount adequate to accomplish this is defined as "therapeutically effective dose." Amounts effective for this use will depend on, e.g., the particular composition administered, the manner of administration, the stage and severity of the disease being treated, the weight and general state of health of the patient, and the judgment of the prescribing physician.

As noted above, peptides comprising CTL and/or HTL epitopes of the invention induce immune responses when presented by HLA molecules and contacted with a CTL or HTL specific for an epitope comprised by the peptide. The peptides (or DNA encoding them) can be administered individually or as fusions of one or more peptide sequences. The manner in which the peptide is contacted with the CTL or HTL is not critical to the invention. For instance, the peptide can be contacted with the CTL or HTL either *in vivo* or *in vitro*. If the contacting occurs *in vivo*, the peptide itself can be administered to the patient, or other vehicles, *e.g.*, DNA vectors encoding one or more peptides, viral vectors encoding the peptide(s), liposomes and the like, can be used, as described herein.

5

10

15

20

25

30

35

40

When the peptide is contacted *in vitro*, the vaccinating agent can comprise a population of cells, *e.g.*, peptide-pulsed dendritic cells, or TAA-specific CTLs, which have been induced by pulsing antigen-presenting cells *in vitro* with the peptide or by transfecting antigen-presenting cells with a minigene of the invention. Such a cell population is subsequently administered to a patient in a therapeutically effective dose.

For therapeutic use, administration should generally begin at the first diagnosis of cancer. This is followed by boosting doses until at least symptoms are substantially abated and for a period thereafter. The embodiment of the vaccine composition (i.e., including, but not limited to embodiments such as peptide cocktails, polyepitopic polypeptides, minigenes, or TAA-specific CTLs or pulsed dendritic cells) delivered to the patient may vary according to the stage of the disease or the patient's health status. For example, a vaccine comprising TAA-specific CTLs may be more efficacious in killing tumor cells in patients with advanced disease than alternative embodiments.

The vaccine compositions of the invention may also be used therapeutically in combination with treatments such as surgery. An example is a situation in which a patient has undergone surgery to remove a primary tumor and the vaccine is then used to slow or prevent recurrence and/or metastasis.

Where susceptible individuals, e.g., individuals who may be diagnosed as being genetically pre-disposed to developing a prostate tumor, are identified prior to diagnosis of cancer, the composition can be targeted to them, thus minimizing the need for administration to a larger population.

The dosage for an initial therapeutic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1,000 µg and the higher value is about 10,000; 20,000; 30,000; or 50,000 µg. Dosage values for a human typically range from about 500 µg to about 50,000 µg per 70 kilogram patient. Initial doses followed by boosting doses at established intervals, e.g., from four weeks to six months, may be required, possibly for a prolonged period of time to effectively treat a patient. Boosting dosages of between about 1.0 µg to about 50,000 µg of peptide pursuant to a boosting regimen over weeks to months may be administered depending upon the patient's response and condition as determined by measuring the specific activity of CTL and HTL obtained from the patient's blood.

Administration should continue until at least clinical symptoms or laboratory tests indicate that the tumor has been eliminated or that the tumor cell burden has been substantially reduced and for a period thereafter. The dosages, routes of administration, and dose schedules are adjusted in accordance with methodologies known in the art.

In certain embodiments, peptides and compositions of the present invention are employed in serious disease states, that is, life-threatening or potentially life threatening situations. In such cases, as a result of the minimal amounts of extraneous substances and the relative nontoxic nature of the peptides in preferred compositions of the invention, it is possible and may be felt desirable by the treating physician to administer substantial excesses of these peptide compositions relative to these stated dosage amounts.

The vaccine compositions of the invention can also be used as prophylactic agents. For example, the compositions can be administered to individuals at risk of developing prostate cancer.

Generally the dosage for an initial prophylactic immunization generally occurs in a unit dosage range where the lower value is about 1, 5, 50, 500, or 1000 µg and the higher value is about 10,000; 20,000; 30,000; or

50,000 μg. Dosage values for a human typically range from about 500 μg to about 50,000 μg per 70 kilogram patient. This is followed by boosting dosages of between about 1.0 μg to about 50,000 μg of peptide administered at defined intervals from about four weeks to six months after the initial administration of vaccine. The immunogenicity of the vaccine may be assessed by measuring the specific activity of CTL and HTL obtained from a sample of the patient's blood.

5

10

15

20

25

30

35

The pharmaceutical compositions for therapeutic treatment are intended for parenteral, topical, oral, intrathecal, or local administration. Preferably, the pharmaceutical compositions are administered parentally, e.g., intravenously, subcutaneously, intradermally, or intramuscularly. Thus, the invention provides compositions for parenteral administration which comprise a solution of the immunogenic peptides dissolved or suspended in an acceptable carrier, preferably an aqueous carrier. A variety of aqueous carriers may be used, e.g., water, buffered water, 0.8% saline, 0.3% glycine, hyaluronic acid and the like. These compositions may be sterilized by conventional, well known sterilization techniques, or may be sterile filtered. The resulting aqueous solutions may be packaged for use as is, or lyophilized, the lyophilized preparation being combined with a sterile solution prior to administration. The compositions may contain pharmaceutically acceptable auxiliary substances as required to approximate physiological conditions, such as pH-adjusting and buffering agents, tonicity adjusting agents, wetting agents, preservatives, and the like, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, sorbitan monolaurate, triethanolamine oleate, etc.

The concentration of peptides of the invention in the pharmaceutical formulations can vary widely, *i.e.*, from less than about 0.1%, usually at or at least about 2% to as much as 20% to 50% or more by weight, and will be selected primarily by fluid volumes, viscosities, *etc.*, in accordance with the particular mode of administration selected.

A human unit dose form of the peptide composition is typically included in a pharmaceutical composition that comprises a human unit dose of an acceptable carrier, preferably an aqueous carrier, and is administered in a volume of fluid that is known by those of skill in the art to be used for administration of such compositions to humans (see, e.g., Remington's Pharmaceutical Sciences, 17th Edition, A. Gennaro, Editor, Mack Publishing Co., Easton, Pennsylvania, 1985).

The peptides of the invention may also be administered via liposomes, which serve to target the peptides to a particular tissue, such as lymphoid tissue, or to target selectively to infected cells, as well as to increase the half-life of the peptide composition. Liposomes include emulsions, foams, micelles, insoluble monolayers, liquid crystals, phospholipid dispersions, lamellar layers and the like. In these preparations, the peptide to be delivered is incorporated as part of a liposome, alone or in conjunction with a molecule which binds to a receptor prevalent among lymphoid cells, such as monoclonal antibodies which bind to the CD45 antigen, or with other therapeutic or immunogenic compositions. Thus, liposomes either filled or decorated with a desired peptide of the invention can be directed to the site of lymphoid cells, where the liposomes then deliver the peptide compositions. Liposomes for use in accordance with the invention are formed from standard vesicle-forming lipids, which generally include neutral and negatively charged phospholipids and a sterol, such as cholesterol. The selection of lipids is generally guided by consideration of, e.g., liposome size, acid lability and stability of the liposomes in the blood stream. A

variety of methods are available for preparing liposomes, as described in, e.g., Szoka, et al., Ann. Rev. Biophys. Bioeng. 9:467 (1980), and U.S. Patent Nos. 4,235,871, 4,501,728, 4,837,028, and 5,019,369.

For targeting cells of the immune system, a ligand to be incorporated into the liposome can include, e.g., antibodies or fragments thereof specific for cell surface determinants of the desired immune system cells. A liposome suspension containing a peptide may be administered intravenously, locally, topically, etc. in a dose which varies according to, inter alia, the manner of administration, the peptide being delivered, and the stage of the disease being treated.

For solid compositions, conventional nontoxic solid carriers may be used which include, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate, and the like. For oral administration, a pharmaceutically acceptable nontoxic composition is formed by incorporating any of the normally employed excipients, such as those carriers previously listed, and generally 10-95% of active ingredient, that is, one or more peptides of the invention, and more preferably at a concentration of 25%-75%.

For aerosol administration, the immunogenic peptides are preferably supplied in finely divided form along with a surfactant and propellant. Typical percentages of peptides are 0.01%-20% by weight, preferably 1%-10%. The surfactant must, of course, be nontoxic, and preferably soluble in the propellant. Representative of such agents are the esters or partial esters of fatty acids containing from 6 to 22 carbon atoms, such as caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric and oleic acids with an aliphatic polyhydric alcohol or its cyclic anhydride. Mixed esters, such as mixed or natural glycerides may be employed. The surfactant may constitute 0.1%-20% by weight of the composition, preferably 0.25-5%. The balance of the composition is ordinarily propellant. A carrier can also be included, as desired, as with, e.g., lecithin for intranasal delivery.

IV.M. HLA EXPRESSION: IMPLICATIONS FOR T CELL-BASED IMMUNOTHERAPY

25 Disease progression in cancer and infectious disease

5

10

15

20

30

35

It is well recognized that a dynamic interaction between exists between host and disease, both in the cancer and infectious disease settings. In the infectious disease setting, it is well established that pathogens evolve during disease. The strains that predominate early in HIV infection are different from the ones that are associated with AIDS and later disease stages (NS versus S strains). It has long been hypothesized that pathogen forms that are effective in establishing infection may differ from the ones most effective in terms of replication and chronicity.

Similarly, it is widely recognized that the pathological process by which an individual succumbs to a neoplastic disease is complex. During the course of disease, many changes occur in cancer cells. The tumor accumulates alterations which are in part related to dysfunctional regulation of growth and differentiation, but also related to maximizing its growth potential, escape from drug treatment and/or the body's immunosurveillance. Neoplastic disease results in the accumulation of several different biochemical alterations of cancer cells, as a function of disease progression. It also results in significant levels of intraand inter- cancer heterogeneity, particularly in the late, metastatic stage.

Familiar examples of cellular alterations affecting treatment outcomes include the outgrowth of radiation or chemotherapy resistant tumors during the course of therapy. These examples

parallel the emergence of drug resistant viral strains as a result of aggressive chemotherapy, e.g., of chronic HBV and HIV infection, and the current resurgence of drug resistant organisms that cause Tuberculosis and Malaria. It appears that significant heterogeneity of responses is also associated with other approaches to cancer therapy, including anti-angiogenesis drugs, passive antibody immunotherapy, and active T cell-based immunotherapy. Thus, in view of such phenomena, epitopes from multiple disease-related antigens can be used in vaccines and therapeutics thereby counteracting the ability of diseased cells to mutate and escape treatment.

The interplay between disease and the immune system

5

10

15

20

25

30

35

40

One of the main factors contributing to the dynamic interplay between host and disease is the immune response mounted against the pathogen, infected cell, or malignant cell. In many conditions such immune responses control the disease. Several animal model systems and prospective studies of natural infection in humans suggest that immune responses against a pathogen can control the pathogen, prevent progression to severe disease and/or eliminate the pathogen. A common theme is the requirement for a multispecific T cell response, and that narrowly focused responses appear to be less effective. These observations guide skilled artisan as to embodiments of methods and compositions of the present invention that provide for a broad immune response.

In the cancer setting there are several findings that indicate that immune responses can impact neoplastic growth:

First, the demonstration in many different animal models, that anti-tumor T cells, restricted by MHC class I, can prevent or treat tumors.

Second, encouraging results have come from immunotherapy trials.

Third, observations made in the course of natural disease correlated the type and composition of T cell infiltrate within tumors with positive clinical outcomes (Coulie PG, et al. Antitumor immunity at work in a melanoma patient In Advances in Cancer Research, 213-242, 1999).

Finally, tumors commonly have the ability to mutate, thereby changing their immunological recognition. For example, the presence of monospecific CTL was also correlated with control of tumor growth, until antigen loss emerged (Riker A, et al., Immune selection after antigen-specific immunotherapy of melanoma Surgery, Aug: 126(2):112-20, 1999; Marchand M, et al., Tumor regressions observed in patients with metastatic melanoma treated with an antigenic peptide encoded by gene MAGE-3 and presented by HLA-A1 Int. J. Cancer 80(2):219-30, Jan. 18, 1999). Similarly, loss of beta 2 microglobulin was detected in 5/13 lines established from melanoma patients after receiving immunotherapy at the NCI (Restifo NP, et al., Loss of functional Beta2 - microglobulin in metastatic melanomas from five patients receiving immunotherapy Journal of the National Cancer Institute, Vol. 88 (2), 100-108, Jan. 1996). It has long been recognized that HLA class I is frequently altered in various tumor types. This has led to a hypothesis that this phenomenon might reflect immune pressure exerted on the tumor by means of class I restricted CTL. The extent and degree of alteration in HLA class I expression appears to be reflective of past immune pressures, and may also have prognostic value (van Duinen SG, et al., Level of HLA antigens in locoregional metastases and clinical course of the disease in patients with melanoma Cancer Research 48, 1019-1025, Feb. 1988; Möller P, et al., Influence of major

histocompatibility complex class I and II antigens on survival in colorectal carcinoma *Cancer Research* 51, 729-736, Jan. 1991). Taken together, these observations provide a rationale for immunotherapy of cancer and infectious disease, and suggest that effective strategies need to account for the complex series of pathological changes associated with disease.

5

10

15

The three main types of alterations in HLA expression in tumors and their functional significance

The level and pattern of expression of HLA class I antigens in tumors has been studied in many different tumor types and alterations have been reported in all types of tumors studied. The molecular mechanisms underlining HLA class I alterations have been demonstrated to be quite heterogeneous. They include alterations in the TAP/processing pathways, mutations of β2-microglobulin and specific HLA heavy chains, alterations in the regulatory elements controlling over class I expression and loss of entire chromosome sections. There are several reviews on this topic, see, e.g., : Garrido F, et al., Natural history of HLA expression during tumour development Immunol Today 14(10):491-499, 1993; Kaklamanis L, et al., Loss of HLA class-I alleles, heavy chains and β2-microglobulin in colorectal cancer Int. J. Cancer, 51(3):379-85, May 28,1992. There are three main types of HLA Class I alteration (complete loss, allele-specific loss and decreased expression). The functional significance of each alteration is discussed separately:

Complete loss of HLA expression

20

25

40

Complete loss of HLA expression can result from a variety of different molecular mechanisms, reviewed in (Algarra I, et al., The HLA crossroad in tumor immunology Human Immunology 61, 65-73, 2000; Browning M, et al., Mechanisms of loss of HLA class I expression on colorectal tumor cells Tissue Antigens 47:364-371, 1996; Ferrone S, et al., Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance Immunology Today, 16(10): 487-494, 1995; Garrido F, et al., Natural history of HLA expression during tumour development Immunology Today 14(10):491-499, 1993; Tait, BD, HLA Class I expression on human cancer cells: Implications for effective immunotherapy Hum Immunol 61, 158-165, 2000). In functional terms, this type of alteration has several important implications.

While the complete absence of class I expression will eliminate CTL recognition of those tumor cells, the loss of HLA class I will also render the tumor cells extraordinary sensitive to lysis from NK cells (Ohnmacht, GA, et al., Heterogeneity in expression of human leukocyte antigens and melanoma-associated antigens in advanced melanoma J Cellular Phys 182:332-338, 2000; Liunggren HG, et al., Host resistance directed selectively against H-2 deficient lymphoma variants: Analysis of the mechanism J. Exp. Med., Dec 1;162(6):1745-59, 1985; Maio M, et al., Reduction in susceptibility to natural killer cell-mediated lysis of human FO-1 melanoma cells after induction of HLA class I antigen expression by transfection with B2m gene J. Clin. Invest. 88(1):282-9, July 1991; Schrier PI, et al., Relationship between myc oncogene activation and MHC class I expression Adv. Cancer Res., 60:181-246, 1993).

The complementary interplay between loss of HLA expression and gain in NK sensitivity is exemplified by the classic studies of Coulie and coworkers (Coulie, PG, et al., Antitumor immunity at work in a melanoma patient. In <u>Advances in Cancer Research</u>, 213-242, 1999) which described the

evolution of a patient's immune response over the course of several years. Because of increased sensitivity to NK lysis, it is predicted that approaches leading to stimulation of innate immunity in general and NK activity in particular would be of special significance. An example of such approach is the induction of large amounts of dendritic cells (DC) by various hematopoietic growth factors, such as Flt3 ligand or ProGP. The rationale for this approach resides in the well known fact that dendritic cells produce large amounts of IL-12, one of the most potent stimulators for innate immunity and NK activity in particular. Alternatively, IL-12 is administered directly, or as nucleic acids that encode it. In this light, it is interesting to note that Flt3 ligand treatment results in transient tumor regression of a class I negative prostate murine cancer model (Ciavarra RP, et al., Flt3-Ligand induces transient tumor regression in an ectopic treatment model of major histocompatibility complex-negative prostate cancer Cancer Res 60:2081-84, 2000). In this context, specific anti-tumor vaccines in accordance with the invention synergize with these types of hematopoietic growth factors to facilitate both CTL and NK cell responses, thereby appreciably impairing a cell's ability to mutate and thereby escape efficacious treatment. Thus, an embodiment of the present invention comprises a composition of the invention together with a method or composition that augments functional activity or numbers of NK cells. Such an embodiment can comprise a protocol that provides a composition of the invention sequentially with an NK-inducing modality, or contemporaneous with an NKinducing modality.

Secondly, complete loss of HLA frequently occurs only in a fraction of the tumor cells, while the remainder of tumor cells continue to exhibit normal expression. In functional terms, the tumor would still be subject, in part, to direct attack from a CTL response; the portion of cells lacking HLA subject to an NK response. Even if only a CTL response were used, destruction of the HLA expressing fraction of the tumor has dramatic effects on survival times and quality of life.

It should also be noted that in the case of heterogeneous HLA expression, both normal HLA-expressing as well as defective cells are predicted to be susceptible to immune destruction based on "bystander effects." Such effects were demonstrated, e.g., in the studies of Rosendahl and colleagues that investigated in vivo mechanisms of action of antibody targeted superantigens (Rosendahl A, et al., Perforin and IFN-gamma are involved in the antitumor effects of antibody-targeted superantigens J. Immunol. 160(11):5309-13, June 1, 1998). The bystander effect is understood to be mediated by cytokines elicited from, e.g., CTLs acting on an HLA-bearing target cell, whereby the cytokines are in the environment of other diseased cells that are concomitantly killed.

Allele-specific loss

5

10

15

20

25

30

35

40

One of the most common types of alterations in class I molecules is the selective loss of certain alleles in individuals heterozygous for HLA. Allele-specific alterations might reflect the tumor adaptation to immune pressure, exerted by an immunodominant response restricted by a single HLA restriction element. This type of alteration allows the tumor to retain class I expression and thus escape NK cell recognition, yet still be susceptible to a CTL-based vaccine in accordance with the invention which comprises epitopes corresponding to the remaining HLA type. Thus, a practical solution to overcome the potential hurdle of allele-specific loss relies on the induction of multispecific responses. Just as the inclusion of multiple disease-associated antigens in a vaccine of the invention guards against mutations that

yield loss of a specific disease antigens, simultaneously targeting multiple HLA specificities and multiple disease-related antigens prevents disease escape by allele-specific losses.

Decrease in expression (allele-specific or not)

5

10

15

20

25

30

35

40

The sensitivity of effector CTL has long been demonstrated (Brower, RC, et al., Minimal requirements for peptide mediated activation of CD8+ CTL Mol. Immunol., 31;1285-93, 1994; Chriustnick, ET, et al. Low numbers of MHC class I-peptide complexes required to trigger a T cell response Nature 352:67-70, 1991; Sykulev, Y, et al., Evidence that a single peptide-MHC complex on a target cell can elicit a cytolytic T cell response Immunity, 4(6):565-71, June 1996). Even a single peptide/MHC complex can result in turnor cells lysis and release of anti-tumor lymphokines. The biological significance of decreased HLA expression and possible turnor escape from immune recognition is not fully known. Nevertheless, it has been demonstrated that CTL recognition of as few as one MHC/peptide complex is sufficient to lead to turnor cell lysis.

Further, it is commonly observed that expression of HLA can be upregulated by gamma IFN, commonly secreted by effector CTL. Additionally, HLA class I expression can be induced in vivo by both alpha and beta IFN (Halloran, et al. Local T cell responses induce widespread MHC expression. J Immunol 148:3837, 1992; Pestka, S, et al., Interferons and their actions Annu. Rev. Biochem. 56:727-77, 1987). Conversely, decreased levels of HLA class I expression also render cells more susceptible to NK lysis.

With regard to gamma IFN, Torres et al (Torres, MJ, et al., Loss of an HLA haplotype in pancreas cancer tissue and its corresponding tumor derived cell line. Tissue Antigens 47:372-81, 1996) note that HLA expression is upregulated by gamma IFN in pancreatic cancer, unless a total loss of haplotype has occurred. Similarly, Rees and Mian note that allelic deletion and loss can be restored, at least partially, by cytokines such as IFN-gamma (Rees, R., et al. Selective MHC expression in tumours modulates adaptive and innate antitumour responses Cancer Immunol Immunother 48:374-81, 1999). It has also been noted that IFN-gamma treatment results in upregulation of class I molecules in the majority of the cases studied (Browning M, et al., Mechanisms of loss of HLA class I expression on colorectal tumor cells. Tissue Antigens 47:364-71, 1996). Kaklamakis, et al. also suggested that adjuvant immunotherapy with IFN-gamma may be beneficial in the case of HLA class I negative tumors (Kaklamanis L, Loss of transporter in antigen processing 1 transport protein and major histocompatibility complex class I molecules in metastatic versus primary breast cancer. Cancer Research 55:5191-94, November 1995). It is important to underline that IFN-gamma production is induced and self-amplified by local inflammation/immunization (Halloran, et al. Local T cell responses induce widespread MHC expression J. Immunol 148:3837, 1992), resulting in large increases in MHC expressions even in sites distant from the inflammatory site.

Finally, studies have demonstrated that decreased HLA expression can render tumor cells more susceptible to NK lysis (Ohnmacht, GA, et al., Heterogeneity in expression of human leukocyte antigens and melanoma-associated antigens in advanced melanoma J Cellular Phys 182:332-38, 2000; Liunggren HG, et al., Host resistance directed selectively against H-2 deficient lymphoma variants: Analysis of the mechanism J. Exp. Med., 162(6):1745-59, December 1, 1985; Maio M, et al., Reduction in susceptibility to natural killer cell-mediated lysis of human FO-1 melanoma cells after induction of HLA

class I antigen expression by transfection with β2m gene J. Clin. Invest. 88(1):282-9, July 1991; Schrier PI, et al., Relationship between myc oncogene activation and MHC class I expression Adv. Cancer Res., 60:181-246, 1993). If decreases in HLA expression benefit a tumor because it facilitates CTL escape, but render the tumor susceptible to NK lysis, then a minimal level of HLA expression that allows for resistance to NK activity would be selected for (Garrido F, et al., Implications for immunosurveillance of altered HLA class I phenotypes in human tumours Immunol Today 18(2):89-96, February 1997). Therefore, a therapeutic compositions or methods in accordance with the invention together with a treatment to upregulate HLA expression and/or treatment with high affinity T-cells renders the tumor sensitive to CTL destruction.

10

15

20

25

30

35

40

5

Frequency of alterations in HLA expression

The frequency of alterations in class I expression is the subject of numerous studies (Algarra I, et al., The HLA crossroad in tumor immunology Human Immunology 61, 65-73, 2000). Rees and Mian estimate allelic loss to occur overall in 3-20% of tumors, and allelic deletion to occur in 15-50% of tumors. It should be noted that each cell carries two separate sets of class I genes, each gene carrying one HLA-A and one HLA-B locus. Thus, fully heterozygous individuals carry two different HLA-A molecules and two different HLA-B molecules. Accordingly, the actual frequency of losses for any specific allele could be as little as one quarter of the overall frequency. They also note that, in general, a gradient of expression exists between normal cells, primary tumors and tumor metastasis. In a study from Natali and coworkers (Natali PG, et al., Selective changes in expression of HLA class I polymorphic determinants in human solid turnors PNAS USA 86:6719-6723, September 1989), solid turnors were investigated for total HLA expression, using W6/32 antibody, and for allele-specific expression of the A2 antigen, as evaluated by use of the BB7.2 antibody. Tumor samples were derived from primary cancers or metastasis, for 13 different tumor types, and scored as negative if less than 20%, reduced if in the 30-80% range, and normal above 80%. All tumors, both primary and metastatic, were HLA positive with W6/32. In terms of A2 expression, a reduction was noted in 16.1 % of the cases, and A2 was scored as undetectable in 39.4 % of the cases. Garrido and coworkers (Garrido F, et al., Natural history of HLA expression during turnour development Immunol Today 14(10):491-99, 1993) emphasize that HLA changes appear to occur at a particular step in the progression from benign to most aggressive. Jiminez et al (Jiminez P, et al., Microsatellite instability analysis in tumors with different mechanisms for total loss of HLA expression. Cancer Immunol Immunother 48:684-90, 2000) have analyzed 118 different tumors (68 colorectal, 34 laryngeal and 16 melanomas). The frequencies reported for total loss of HLA expression were 11% for colon, 18% for melanoma and 13 % for larynx. Thus, HLA class I expression is altered in a significant fraction of the tumor types, possibly as a reflection of immune pressure, or simply a reflection of the accumulation of pathological changes and alterations in diseased cells.

Immunotherapy in the context of HLA loss

A majority of the tumors express HLA class I, with a general tendency for the more severe alterations to be found in later stage and less differentiated tumors. This pattern is encouraging in the context of immunotherapy, especially considering that: 1) the relatively low sensitivity of

immunohistochemical techniques might underestimate HLA expression in tumors; 2) class I expression can be induced in tumor cells as a result of local inflammation and lymphokine release; and, 3) class I negative cells are sensitive to lysis by NK cells.

Accordingly, various embodiments of the present invention can be selected in view of the fact that there can be a degree of loss of HLA molecules, particularly in the context of neoplastic disease. For example, the treating physician can assay a patient's tumor to ascertain whether HLA is being expressed. If a percentage of tumor cells express no class I HLA, then embodiments of the present invention that comprise methods or compositions that elicit NK cell responses can be employed. As noted herein, such NK-inducing methods or composition can comprise a Flt3 ligand or ProGP which facilitate mobilization of dendritic cells, the rationale being that dendritic cells produce large amounts of IL-12. IL-12 can also be administered directly in either amino acid or nucleic acid form. It should be noted that compositions in accordance with the invention can be administered concurrently with NK cell-inducing compositions, or these compositions can be administered sequentially.

5

10

15

20

30

35

In the context of allele-specific HLA loss, a tumor retains class I expression and may thus escape NK cell recognition, yet still be susceptible to a CTL-based vaccine in accordance with the invention which comprises epitopes corresponding to the remaining HLA type. The concept here is analogous to embodiments of the invention that include multiple disease antigens to guard against mutations that yield loss of a specific antigen. Thus, one can simultaneously target multiple HLA specificities and epitopes from multiple disease-related antigens to prevent tumor escape by allele-specific loss as well as disease-related antigen loss. In addition, embodiments of the present invention can be combined with alternative therapeutic compositions and methods. Such alternative compositions and methods comprise, without limitation, radiation, cytotoxic pharmaceuticals, and/or compositions/methods that induce humoral antibody responses.

Moreover, it has been observed that expression of HLA can be upregulated by gamma

25 IFN, which is commonly secreted by effector CTL, and that HLA class I expression can be induced in vivo
by both alpha and beta IFN. Thus, embodiments of the invention can also comprise alpha, beta and/or
gamma IFN to facilitate upregulation of HLA.

IV.N. REPRIEVE PERIODS FROM THERAPIES THAT INDUCE SIDE EFFECTS: "Scheduled Treatment Interruptions or Drug Holidays" .

Recent evidence has shown that certain patients infected with a pathogen, whom are initially treated with a therapeutic regimen to reduce pathogen load, have been able to maintain decreased pathogen load when removed from the therapeutic regimen, i.e., during a "drug holiday" (Rosenberg, E., et al., Immune control of HIV-1 after early treatment of acute infection Nature 407:523-26, Sept. 28, 2000) As appreciated by those skilled in the art, many therapeutic regimens for both pathogens and cancer have numerous, often severe, side effects. During the drug holiday, the patient's immune system is keeping the disease in check. Methods for using compositions of the invention are used in the context of drug holidays for cancer and pathogenic infection.

For treatment of an infection, where therapies are not particularly immunosuppressive, 40 compositions of the invention are administered concurrently with the standard therapy. During this period, the patient's immune system is directed to induce responses against the epitopes comprised by the present inventive compositions. Upon removal from the treatment having side effects, the patient is primed to respond to the infectious pathogen should the pathogen load begin to increase. Composition of the invention can be provided during the drug holiday as well.

For patients with cancer, many therapies are immunosuppressive. Thus, upon achievement of a remission or identification that the patient is refractory to standard treatment, then upon removal from the immunosuppressive therapy, a composition in accordance with the invention is administered. Accordingly, as the patient's immune system reconstitutes, precious immune resources are simultaneously directed against the cancer. Composition of the invention can also be administered concurrently with an immunosuppressive regimen if desired.

IV.O. Kits

The peptide and nucleic acid compositions of this invention can be provided in kit form together with instructions for vaccine administration. Typically the kit would include desired peptide compositions in a container, preferably in unit dosage form and instructions for administration. An alternative kit would include a minigene construct with desired nucleic acids of the invention in a container, preferably in unit dosage form together with instructions for administration. Lymphokines such as IL-2 or IL-12 may also be included in the kit. Other kit components that may also be desirable include, for example, a sterile syringe, booster dosages, and other desired excipients.

20

25

30

35

40

5

10

15

IV.P. Overview

Epitopes in accordance with the present invention were successfully used to induce an immune response. Immune responses with these epitopes have been induced by administering the epitopes in various forms. The epitopes have been administered as peptides, as nucleic acids, and as viral vectors comprising nucleic acids that encode the epitope(s) of the invention. Upon administration of peptide-based epitope forms, immune responses have been induced by direct loading of an epitope onto an empty HLA molecule that is expressed on a cell, and via internalization of the epitope and processing via the HLA class I pathway; in either event, the HLA molecule expressing the epitope was then able to interact with and induce a CTL response. Peptides can be delivered directly or using such agents as liposomes. They can additionally be delivered using ballistic delivery, in which the peptides are typically in a crystalline form. When DNA is used to induce an immune response, it is administered either as naked DNA, generally in a dose range of approximately 1-5mg, or via the ballistic "gene gun" delivery, typically in a dose range of approximately 10-100 μg. The DNA can be delivered in a variety of conformations, e.g., linear, circular etc. Various viral vectors have also successfully been used that comprise nucleic acids which encode epitopes in accordance with the invention.

Accordingly compositions in accordance with the invention exist in several forms. Embodiments of each of these composition forms in accordance with the invention have been successfully used to induce an immune response.

One composition in accordance with the invention comprises a plurality of peptides. This plurality or cocktail of peptides is generally admixed with one or more pharmaceutically acceptable

excipients. The peptide cocktail can comprise multiple copies of the same peptide or can comprise a mixture of peptides. The peptides can be analogs of naturally occurring epitopes. The peptides can comprise artificial amino acids and/or chemical modifications such as addition of a surface active molecule, e.g., lipidation; acetylation, glycosylation, biotinylation, phosphorylation etc. The peptides can be CTL or HTL epitopes. In a preferred embodiment the peptide cocktail comprises a plurality of different CTL epitopes and at least one HTL epitope. The HTL epitope can be naturally or non-naturally (e.g., PADRE®, Epimmune Inc., San Diego, CA). The number of distinct epitopes in an embodiment of the invention is generally a whole unit integer from one through one hundred fifty (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or, 100).

5

10

15

20

25

30

35

40

An additional embodiment of a composition in accordance with the invention comprises a polypeptide multi-epitope construct, i.e., a polyepitopic peptide. Polyepitopic peptides in accordance with the invention are prepared by use of technologies well-known in the art. By use of these known technologies, epitopes in accordance with the invention are connected one to another. The polyepitopic peptides can be linear or non-linear, e.g., multivalent. These polyepitopic constructs can comprise artificial amino acids, spacing or spacer amino acids, flanking amino acids, or chemical modifications between adjacent epitope units. The polyepitopic construct can be a heteropolymer or a homopolymer. The polyepitopic constructs generally comprise epitopes in a quantity of any whole unit integer between 2-150 (e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or, 100). The polyepitopic construct can comprise CTL and/or HTL epitopes. One or more of the epitopes in the construct can be modified, e.g., by addition of a surface active material, e.g. a lipid, or chemically modified, e.g., acetylation, etc. Moreover, bonds in the multiepitopic construct can be other than peptide bonds, e.g., covalent bonds, ester or ether bonds, disulfide bonds, hydrogen bonds, ionic bonds etc.

Alternatively, a composition in accordance with the invention comprises construct which comprises a series, sequence, stretch, etc., of amino acids that have homology to (i.e., corresponds to or is contiguous with) to a native sequence. This stretch of amino acids comprises at least one subsequence of amino acids that, if cleaved or isolated from the longer series of amino acids, functions as an HLA class I or HLA class II epitope in accordance with the invention. In this embodiment, the peptide sequence is modified, so as to become a construct as defined herein, by use of any number of techniques known or to be provided in the art. The polyepitopic constructs can contain homology to a native sequence in any whole unit integer increment from 70-100%, e.g., 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, or, 100 percent.

A further embodiment of a composition in accordance with the invention is an antigen presenting cell that comprises one or more epitopes in accordance with the invention. The antigen presenting cell can be a "professional" antigen presenting cell, such as a dendritic cell. The antigen

presenting cell can comprise the epitope of the invention by any means known or to be determined in the art. Such means include pulsing of dendritic cells with one or more individual epitopes or with one or more peptides that comprise multiple epitopes, by nucleic acid administration such as ballistic nucleic acid delivery or by other techniques in the art for administration of nucleic acids, including vector-based, e.g. viral vector, delivery of nucleic acids.

Further embodiments of compositions in accordance with the invention comprise nucleic acids that encode one or more peptides of the invention, or nucleic acids which encode a polyepitopic peptide in accordance with the invention. As appreciated by one of ordinary skill in the art, various nucleic acids compositions will encode the same peptide due to the redundancy of the genetic code. Each of these nucleic acid compositions falls within the scope of the present invention. This embodiment of the invention comprises DNA or RNA, and in certain embodiments a combination of DNA and RNA. It is to be appreciated that any composition comprising nucleic acids that will encode a peptide in accordance with the invention or any other peptide based composition in accordance with the invention, falls within the scope of this invention.

It is to be appreciated that peptide-based forms of the invention (as well as the nucleic acids that encode them) can comprise analogs of epitopes of the invention generated using principles already known, or to be known, in the art. Principles related to analoging are now known in the art, and are disclosed herein; moreover, analoging principles (heteroclitic analoging) are disclosed in co-pending application serial number U.S.S.N. 09/226,775 filed 6 January 1999. Generally the compositions of the invention are isolated or purified.

The invention will be described in greater detail by way of specific examples. The following examples are offered for illustrative purposes, and are not intended to limit the invention in any manner. Those of skill in the art will readily recognize a variety of non-critical parameters that can be changed or modified to yield alternative embodiments in accordance with the invention.

V. EXAMPLES

5

10

15

20

25

30

35

40

The following examples illustrate identification, selection, and use of immunogenic Class I and Class II peptide epitopes for inclusion in vaccine compositions.

Example 1. HLA Class I and Class II Binding Assays

The following example of peptide binding to HLA molecules demonstrates quantification of binding affinities of HLA class I and class II peptides. Binding assays can be performed with peptides that are either motif-bearing or not motif-bearing.

HLA class I and class II binding assays using purified HLA molecules were performed in accordance with disclosed protocols (e.g., PCT publications WO 94/20127 and WO 94/03205; Sidney et al., Current Protocols in Immunology 18.3.1 (1998); Sidney, et al., J. Immunol. 154:247 (1995); Sette, et al., Mol. Immunol. 31:813 (1994)). Briefly, purified MHC molecules (5 to 500nM) were incubated with various unlabeled peptide inhibitors and 1-10nM ¹²⁵I-radiolabeled probe peptides as described. Following incubation, MHC-peptide complexes were separated from free peptide by gel filtration and the fraction of

peptide bound was determined. Typically, in preliminary experiments, each MHC preparation was titered in the presence of fixed amounts of radiolabeled peptides to determine the concentration of HLA molecules necessary to bind 10-20% of the total radioactivity. All subsequent inhibition and direct binding assays were performed using these HLA concentrations.

Since under these conditions [label]<[HLA] and $IC_{50} \ge [HLA]$, the measured IC_{50} values are reasonable approximations of the true K_D values. Peptide inhibitors are typically tested at concentrations ranging from 120 μ g/ml to 1.2 ng/ml, and are tested in two to four completely independent experiments. To allow comparison of the data obtained in different experiments, a relative binding figure is calculated for each peptide by dividing the IC_{50} of a positive control for inhibition by the IC_{50} for each tested peptide (typically unlabeled versions of the radiolabeled probe peptide). For database purposes, and inter-experiment comparisons, relative binding values are compiled. These values can subsequently be converted back into IC_{50} nM values by dividing the IC_{50} nM of the positive controls for inhibition by the relative binding of the peptide of interest. This method of data compilation has proven to be the most accurate and consistent for comparing peptides that have been tested on different days, or with different lots of purified MHC.

Binding assays as outlined above can be used to analyze supermotif and/or motif-bearing epitopes as, for example, described in Example 2.

Example 2. Identification of HLA Supermotif- and Motif-Bearing CTL Candidate Epitopes

Vaccine compositions of the invention may include multiple epitopes that comprise multiple HLA supermotifs or motifs to achieve broad population coverage. This example illustrates the identification of supermotif- and motif-bearing epitopes for the inclusion in such a vaccine composition. Calculation of population coverage is performed using the strategy described below.

Computer searches and algorithms for identification of supermotif and/or motif-bearing epitopes

The searches performed to identify the motif-bearing peptide sequences in Examples 2
and 5 employ protein sequence data for prostate cancer-associated antigens.

Computer searches for epitopes bearing HLA Class I or Class II supermotifs or motifs were performed as follows. All translated protein sequences were analyzed using a text string search software program, e.g., MotifSearch 1.4 (D. Brown, San Diego) to identify potential peptide sequences containing appropriate HLA binding motifs; alternative programs are readily produced in accordance with information in the art in view of the motif/supermotif disclosure herein. Furthermore, such calculations can be made mentally.

Identified A2-, A3-, and DR-supermotif sequences were scored using polynomial algorithms to predict their capacity to bind to specific HLA-Class I or Class II molecules. These polynomial algorithms take into account both extended and refined motifs (that is, to account for the impact of different amino acids at different positions), and are essentially based on the premise that the overall affinity (or ΔG) of peptide-HLA molecule interactions can be approximated as a linear polynomial function of the type:

40 "
$$\Delta G$$
" = $a_{1i} \times a_{2i} \times a_{3i} \dots \times a_{ni}$

5

10

15

20

30

35

where a_{ji} is a coefficient which represents the effect of the presence of a given amino acid (j) at a given position (i) along the sequence of a peptide of n amino acids. The crucial assumption of this method is that the effects at each position are essentially independent of each other (i.e., independent binding of individual side-chains). When residue j occurs at position i in the peptide, it is assumed to contribute a constant amount j_i to the free energy of binding of the peptide irrespective of the sequence of the rest of the peptide. This assumption is justified by studies from our laboratories that demonstrated that peptides are bound to MHC and recognized by T cells in essentially an extended conformation (data omitted herein).

The method of derivation of specific algorithm coefficients has been described in Gulukota et al., J. Mol. Biol. 267:1258-126, 1997; (see also Sidney et al., Human Immunol. 45:79-93, 1996; and Southwood et al., J. Immunol. 160:3363-3373, 1998). Briefly, for all i positions, anchor and non-anchor alike, the geometric mean of the average relative binding (ARB) of all peptides carrying j is calculated relative to the remainder of the group, and used as the estimate of j_i . For Class II peptides, if multiple alignments are possible, only the highest scoring alignment is utilized, following an iterative procedure. To calculate an algorithm score of a given peptide in a test set, the ARB values corresponding to the sequence of the peptide are multiplied. If this product exceeds a chosen threshold, the peptide is predicted to bind. Appropriate thresholds are chosen as a function of the degree of stringency of prediction desired.

Selection of HLA-A2 supertype cross-reactive peptides

5

10

15

20

25

30

35

The complete protein sequences of the prostate cancer-associated antigens PAP, PSA, PSM, and hK2 were obtained from GenBank and scanned, utilizing motif identification software, to identify 8-, 9-, 10-, and 11-mer sequences containing the HLA-A2-supermotif main anchor specificity.

HLA-A2 supermotif-bearing sequences are shown in Table VII. These sequences are then scored using the A2 algorithm and the peptides corresponding to the positive-scoring sequences are synthesized and tested for their capacity to bind purified HLA-A*0201 molecules *in vitro* (HLA-A*0201 is considered a prototype A2 supertype molecule).

Examples of peptides that were identified that bind to HLA-A*0201 with IC₅₀ values ≤500 nM are shown in Tables XXII and XXIII. These peptides were then tested for the capacity to bind to additional A2-supertype molecules (A*0202, A*0203, A*0206, and A*6802). Peptides that bind to at least three of the five A2-supertype alleles tested are deemed A2-supertype cross-reactive binders. Preferred peptides bind at an affinity equal to or less than 500 nM to three or more HLA-A2 supertype molecules. Examples of such peptides are set out in Table XXIII. (Due to the homology described above, a number of CTL and HTL epitopes are represented in both the PSA and hK2 antigens. This is represented in Tables XXIII and XXIV by the headings source and alternate source.)

Selection of HLA-A3 supermotif-bearing epitopes

The protein sequences scanned above were also examined for the presence of peptides with the HLA-A3-supermotif primary anchors using methodology similar to that performed to identify HLA-A2 supermotif-bearing epitopes.

Peptides corresponding to the supermotif-bearing sequences are then synthesized and tested for binding to HLA-A*0301 and HLA-A*1101 molecules, the two most prevalent A3-supertype alleles. The peptides that are found to bind one of the two alleles with binding affinities of \leq 500 nM, preferably \leq 200 nM, are then tested for binding cross-reactivity to the other common A3-supertype alleles (A*3101, A*3301, and A*6801) to identify those that can bind at least three of the five HLA-A3-supertype molecules tested.

Selection of HLA-B7 supermotif bearing epitopes

The same target antigen protein sequences were also analyzed to identify HLA-B7-supermotif-bearing sequences. The corresponding peptides are then synthesized and tested for binding to HLA-B*0702, the most common B7-supertype allele (i.e., the prototype B7 supertype allele). Those peptides that bind B*0702 with IC₅₀ of \leq 500 nM, preferably \leq 200 nM, are then tested for binding to other common B7-supertype molecules (B*3501, B*5101, B*5301, and B*5401) to identify those peptides that are capable of binding to three or more of the five B7-supertype alleles tested.

15

20

10

5

Selection of A1 and A24 motif-bearing epitopes

To further increase population coverage, HLA-A1 and -A24 epitopes can also be incorporated into vaccine constructs. An analysis of the protein sequence data from the target antigens utilized above was performed to identify HLA-A1- and A24-motif-containing sequences. Peptides are then synthesized and tested for binding.

Peptides that bear other supermotifs and/or motifs can be assessed for binding or cross-reactive binding in an analogous manner.

Example 3. Confirmation of Immunogenicity

25

Cross-reactive candidate CTL A2-supermotif-bearing peptides that are identified as described in Example 2 were selected for *in vitro* immunogenicity testing. Examples of immunogenic HLA-A2 cross-reactive binding peptides that bind to at least 3/5 HLA-A2 supertype family members at an IC₅₀ of 200 nM or less are shown in Table XXIV. Testing was performed using the following methodology:

30

35

Target Cell Lines for Cellular Screening:

The .221A2.1 cell line, produced by transferring the HLA-A2.1 gene into the HLA-A, -B, -C null mutant human B-lymphoblastoid cell line 721.221, is used as the peptide-loaded target to measure activity of HLA-A2.1-restricted CTL. This cell line is grown in RPMI-1640 medium supplemented with antibiotics, sodium pyruvate, nonessential amino acids and 10% (v/v) heat inactivated FCS. Cells that express an antigen of interest, or transfectants comprising the gene encoding the antigen of interest, can be used as target cells to test the ability of peptide-specific CTLs to recognize endogenous antigen.

5

10

15

20

25

30

35

40

Primary CTL Induction Cultures:

Generation of Dendritic Cells (DC): PBMCs are thawed in RPMI with 30 μg/ml DNAse, washed twice and resuspended in complete medium (RPMI-1640 plus 5% AB human serum, non-essential amino acids, sodium pyruvate, L-glutamine and penicillin/strpetomycin). The monocytes are purified by plating 10 x 10⁶ PBMC/well in a 6-well plate. After 2 hours at 37°C, the non-adherent cells are removed by gently shaking the plates and aspirating the supernatants. The wells are washed a total of three times with 3 ml RPMI to remove most of the non-adherent and loosely adherent cells. Three ml of complete medium containing 50 ng/ml of GM-CSF and 1,000 U/ml of IL-4 are then added to each well. TNFα is added to the DCs on day 6 at 75 ng/ml and the cells are used for CTL induction cultures on day 7.

Induction of CTL with DC and Peptide: CD8+ T-cells are isolated by positive selection with Dynal immunomagnetic beads (Dynabeads® M-450) and the detacha-bead® reagent. Typically about 200-250x10⁶ PBMC are processed to obtain 24x10⁶ CD8⁺ T-cells (enough for a 48-well plate culture). Briefly, the PBMCs are thawed in RPMI with 30μg/ml DNAse, washed once with PBS containing 1% human AB serum and resuspended in PBS/1% AB serum at a concentration of 20x10⁶ cells/ml. The magnetic beads are washed 3 times with PBS/AB serum, added to the cells (140μl beads/20x10⁶ cells) and incubated for 1 hour at 4°C with continuous mixing. The beads and cells are washed 4x with PBS/AB serum to remove the nonadherent cells and resuspended at 100x10⁶ cells/ml (based on the original cell number) in PBS/AB serum containing 100μl/ml detacha-bead® reagent and 30μg/ml DNAse. The mixture is incubated for 1 hour at room temperature with continuous mixing. The beads are washed again with PBS/AB/DNAse to collect the CD8+ T-cells. The DC are collected and centrifuged at 1300 rpm for 5-7 minutes, washed once with PBS with 1% BSA, counted and pulsed with 40μg/ml of peptide at a cell concentration of 1-2x10⁶/ml in the presence of 3μg/ml β₂- microglobulin for 4 hours at 20°C. The DC are then irradiated (4,200 rads), washed 1 time with medium and counted again.

Setting up induction cultures: 0.25 ml cytokine-generated DC (@1x10⁵ cells/ml) are co-cultured with 0.25ml of CD8+ T-cells (@2x10⁶ cell/ml) in each well of a 48-well plate in the presence of 10 ng/ml of IL-7. Recombinant human IL10 is added the next day at a final concentration of 10 ng/ml and rhuman IL2 is added 48 hours later at 10IU/ml.

Restimulation of the induction cultures with peptide-pulsed adherent cells: Seven and fourteen days after the primary induction the cells are restimulated with peptide-pulsed adherent cells. The PBMCS are thawed and washed twice with RPMI and DNAse. The cells are resuspended at 5×10^6 cells/ml and irradiated at ~4200 rads. The PBMCs are plated at 2×10^6 in 0.5ml complete medium per well and incubated for 2 hours at 37°C. The plates are washed twice with RPMI by tapping the plate gently to remove the nonadherent cells and the adherent cells pulsed with 10μ g/ml of peptide in the presence of 3 μ g/ml Ω_2 microglobulin in 0.25ml RPMI/5%AB per well for 2 hours at 37°C. Peptide solution from each well is aspirated and the wells are washed once with RPMI. Most of the media is aspirated from the induction cultures (CD8+ cells) and brought to 0.5 ml with fresh media. The cells are then transferred to the wells containing the peptide-pulsed adherent cells. Twenty four hours later rhuman IL10 is added at a final concentration of 10 ng/ml and rhuman IL2 is added the next day and again 2-3 days later at 50 IU/ml (Tsai et al., Critical Reviews in Immunology 18(1-2):65-75, 1998). Seven days later the cultures are assayed for CTL activity in a 51 Cr release assay. In some experiments the cultures are assayed for peptide-

specific recognition in the *in situ* IFN γ ELISA at the time of the second restimulation followed by assay of endogenous recognition 7 days later. After expansion, activity is measured in both assays for a side by side comparison.

Measurement of CTL lytic activity by 51Cr release.

5

15

20

25

30

35

Seven days after the second restimulation, cytotoxicity is determined in a standard (5hr) ⁵¹Cr release assay by assaying individual wells at a single E:T. Peptide-pulsed targets are prepared by incubating the cells with 10µg/ml peptide overnight at 37°C.

Adherent target cells are removed from culture flasks with trypsin-EDTA. Target cells are labelled with 200µCi of ⁵¹Cr sodium chromate (Dupont, Wilmington, DE) for 1 hour at 37°C. Labelled target cells are resuspended at 10⁶ per ml and diluted 1:10 with K562 cells at a concentration of 3.3×10⁶/ml (an NK-sensitive erythroblastoma cell line used to reduce non-specific lysis). Target cells (100 µl) and 100µl of effectors are plated in 96 well round-bottom plates and incubated for 5 hours at 37°C. At that time, 100 µl of supernatant are collected from each well and percent lysis is determined according to the formula: [(cpm of the test sample- cpm of the spontaneous ⁵¹Cr release sample)/(cpm of the maximal ⁵¹Cr release sample- cpm of the spontaneous release are determined by incubating the labelled targets with 1% Trition X-100 and media alone, respectively. A positive culture is defined as one in which the specific lysis (sample- background) is 10% or higher in the case of individual wells and is 15% or more at the 2 highest E:T ratios when expanded cultures are assayed.

In situ Measurement of Human γ IFN Production as an Indicator of Peptide-specific and Endogenous Recognition

Immulon 2 plates are coated with mouse anti-human IFN γ monoclonal antibody (4 µg/ml 0.1M NaHCO₃, pH8.2) overnight at 4°C. The plates are washed with Ca²⁺, Mg²⁺-free PBS/0.05% Tween 20 and blocked with PBS/10% FCS for 2 hours, after which the CTLs (100 µl/well) and targets (100 µl/well) are added to each well, leaving empty wells for the standards and blanks (which received media only). The target cells, either peptide-pulsed or endogenous targets, are used at a concentration of 1x10⁶ cells/ml. The plates are incubated for 48 hours at 37°C with 5% CO₂.

Recombinant human IFN γ is added to the standard wells starting at 400 pg or 1200pg/100 μ l/well and the plate incubated for 2 hours at 37°C. The plates are washed and 100 μ l of biotinylated mouse anti-human IFN γ monoclonal antibody (2 μ g/ml in PBS/3%FCS/0.05% Tween 20) are added and incubated for 2 hours at room temperature. After washing again, 100 μ l HRP-streptavidin (1:4000) are added and the plates incubated for 1 hour at room temperature. The plates are then washed 6x with wash buffer, 100 μ l/well developing solution (TMB 1:1) are added, and the plates allowed to develop for 5-15 minutes. The reaction is stopped with 50 μ l/well 1M H₃PO₄ and read at OD450. A culture is considered positive if it measured at least 50 pg of IFN γ /well above background and is twice the background level of expression.

CTL Expansion. Those cultures that demonstrate specific lytic activity against peptidepulsed targets and/or tumor targets are expanded over a two week period with anti-CD3. Briefly, 5x10⁴ CD8+ cells are added to a T25 flask containing the following: 1x10⁶ irradiated (4,200 rad) PBMC 5

10

(autologous or allogeneic) per ml, $2x10^5$ irradiated (8,000 rad) EBV- transformed cells per ml, and OKT3 (anti-CD3) at 30ng per ml in RPMI-1640 containing 10% (v/v) human AB serum, non-essential amino acids, sodium pyruvate, 25μ M 2-mercaptoethanol, L-glutamine and penicillin/streptomycin. Rhuman IL2 is added 24 hours later at a final concentration of 200 IU/ml and every 3 days thereafter with fresh media at 50 IU/ml. The cells are split if the cell concentration exceeded $1x10^6$ /ml and the cultures are assayed between days 13 and 15 at E:T ratios of 30, 10, 3 and 1:1 in the 51 Cr release assay or at $1x10^6$ /ml in the *in situ* IFNy assay using the same targets as before the expansion.

Cultures are expanded in the absence of anti-CD3⁺ as follows. Those cultures that demonstrate specific lytic activity against peptide and endogenous targets are selected and $5x10^4$ CD8⁺ cells are added to a T25 flask containing the following: $1x10^6$ autologous PBMC per ml which have been peptide-pulsed with 10μ g/ml peptide for 2 hours at 37°C and irradiated (4,200 rad); $2x10^5$ irradiated (8,000 rad) EBV-transformed cells per ml RPMI-1640 containing 10%(v/v) human AB serum, non-essential AA, sodium pyruvate, 25mM 2-ME, L-glutamine and gentamicin.

15 Immunogenicity of A2 supermotif-bearing peptides

A2-supermotif cross-reactive binding peptides were tested in the cellular assay for the ability to induce peptide-specific CTL in normal individuals. In this analysis, a peptide is considered to be an epitope if it induces peptide-specific CTLs in at least 2 donors (unless otherwise noted) and preferably, also recognizes the endogenously expressed peptide. Examples of immunogenic peptides are shown in Table XXIV.

Immunogenicity is additionally confirmed using PBMCs isolated from cancer patients. Briefly, PBMCs are isolated from patients with prostate cancer, re-stimulated with peptide-pulsed monocytes and assayed for the ability to recognize peptide-pulsed target cells as well as transfected cells endogenously expressing the antigen.

25

20

Evaluation of A*03/A11 immunogenicity

HLA-A3 supermotif-bearing cross-reactive binding peptides are also evaluated for immunogenicity using methodology analogous for that used to evaluate the immunogenicity of the HLA-A2 supermotif peptides.

30

35

Evaluation of B7 immunogenicity

Immunogenicity screening of the B7-supertype cross-reactive binding peptides identified in Example 2 are evaluated in a manner analogous to the evaluation of A2-and A3-supermotif-bearing peptides.

Peptides bearing other supermotifs and/or motifs, e.g., HLA-A1, HLA-a24 etc. are also evaluated using similar methodology

Example 4. Implementation of the Extended Supermotif to Improve the Binding Capacity of Native Epitopes by Creating Analogs

HLA motifs and supermotifs (comprising primary and/or secondary residues) are useful in the identification and preparation of highly cross-reactive native peptides, as demonstrated herein. Moreover, the definition of HLA motifs and supermotifs also allows one to engineer highly cross-reactive epitopes by identifying residues within a native peptide sequence which can be analoged, or "fixed" to confer upon the peptide certain characteristics, e.g. greater cross-reactivity within the group of HLA molecules that comprise a supertype, and/or greater binding affinity for some or all of those HLA molecules. Examples of analog peptides that exhibit modulated binding affinity are set forth in this example.

Analoging at Primary Anchor Residues

5

10

15

20

25

30

35

Peptide engineering strategies were implemented to further increase the cross-reactivity of the epitopes identified above (see, e.g., Table XXIII). On the basis of the data disclosed, e.g., in related and co-pending U.S.S.N 09/226,775, the main anchors of A2-supermotif-bearing peptides are altered, for example, to introduce a preferred L, I, V, or M at position 2, and I or V at the C-terminus.

Peptides that exhibit at least weak A*0201 binding (IC₅₀ of 5000 nM or less), and carrying suboptimal anchor residues at either position 2, the C-terminal position, or both, can be fixed by introducing canonical substitutions (typically L at position 2 and V at the C-terminus). Those analoged peptides that show at least a three-fold increase in A*0201 binding and bind with an IC₅₀ of 500 nM, or preferably 200 nM, or less are then tested for A2 cross-reactive binding along with their wild-type (WT) counterparts. Analoged peptides that bind at least three of the five A2 supertype alleles are then selected for cellular screening analysis.

Additionally, the selection of analogs for cellular screening analysis is further restricted by the capacity of the WT parent peptide to bind at least weakly, *i.e.*, bind at an IC₅₀ of 5000nM or less, to three of more A2 supertype alleles. The rationale for this requirement is that the WT peptides must be present endogenously in sufficient quantity to be biologically relevant. Analoged peptides have been shown to have increased immunogenicity and cross-reactivity by T cells specific for the WT epitope (see, e.g., Parkhurst et al., J. Immunol. 157:2539, 1996; and Pogue et al., Proc. Natl. Acad. Sci. USA 92:8166, 1995).

In the cellular screening of these peptide analogs, it is important to demonstrate that analog-specific CTLs are also able to recognize the wild-type peptide and, when possible, tumor targets that endogenously express the epitope.

Peptides that were analoged at primary anchor residues, generally by adding a preferred residue at a primary anchor position, were synthesized and assessed for enhanced binding to A*0201 and/or enhanced cross-reactive binding. Examples of analoged peptides that exhibit increased binding and/or cross-reactivity are shown in Table XXIII.

Analogs exhibiting altered binding characteristics are then selected for cellular screening studies. Examples are shown in Table XXIV.

Using methodology similar to that used to develop HLA-A2 analogs, analogs of HLA-A3 and HLA-B7 supermotif-bearing epitopes are also generated. Analogous strategies can be used for peptides bearing other supermotifs/motifs as well. For example, peptides binding at least weakly to 3/5 of the A3-supertype molecules may be engineered at primary anchor residues to possess a preferred residue (V, S, M, or A) at position 2. The analog peptides are then tested for the ability to bind A*03 and A*11 (prototype A3 supertype alleles). Those peptides that demonstrate \leq 500 nM binding capacity, often \leq 200 nM binding values, are then tested for A3-supertype cross-reactivity. B7 supermotif-bearing peptides may, for example, be engineered to possess a preferred residue (V, I, L, or F) at the C-terminal primary anchor position, as demonstrated by Sidney *et al.* (*J. Immunol.* 157:3480-3490, 1996) and tested for binding to B7 supertype alleles.

Analoging at Secondary Anchor Residues

5

10

15

20

30

35

40

Moreover, HLA supermotifs are of value in engineering highly cross-reactive peptides and/or peptides that bind HLA molecules with increased affinity by identifying particular residues at secondary anchor positions that are associated with such properties. For example, the binding capacity of a B7 supermotif-bearing peptide representing a discreet single amino acid substitution at position 1 can be analyzed. A peptide can, for example, be analoged to substitute L with F at position 1 and subsequently be evaluated for increased binding affinity/ and or increased cross-reactivity. This procedure will identify analoged peptides with modulated binding affinity.

Engineered analogs with sufficiently improved binding capacity or cross-reactivity are tested for immunogenicity as above.

Other analoging strategies

Another form of peptide analoging, unrelated to the anchor positions, involves the substitution of a cysteine with α-amino butyric acid. Due to its chemical nature, cysteine has the propensity to form disulfide bridges and sufficiently alter the peptide structurally so as to reduce binding capacity. Subtitution of α-amino butyric acid for cysteine not only alleviates this problem, but has been shown to improve binding and crossbinding capabilities in some instances (see, e.g., the review by Sette et al., In: Persistent Viral Infections, Eds. R. Ahmed and I. Chen, John Wiley & Sons, England, 1999).

In conclusion, these data demonstrate that by the use of even single amino acid substitutions, it is possible to increase the binding affinity and/or cross-reactivity of peptide ligands for HLA supertype molecules.

Example 5. Identification of peptide epitope sequences with HLA-DR binding motifs

Peptide epitopes bearing an HLA class II supermotif or motif may also be identified as outlined below using methodology similar to that described in Examples 1-3.

Selection of HLA-DR-supermotif-bearing epitopes

To identify HLA class II HTL epitopes, the prostate cancer-associate antigen protein sequences were analyzed for the presence of sequences bearing an HLA-DR-motif or supermotif.

Specifically, 15-mer sequences are selected comprising a DR-supermotif, further comprising a 9-mer core, and three-residue N- and C-terminal flanking regions (15 amino acids total).

Protocols for predicting peptide binding to DR molecules have been developed (Southwood et al., J. Immunol. 160:3363-3373, 1998). These protocols, specific for individual DR molecules, allow the scoring, and ranking, of 9-mer core regions. Each protocol not only scores peptide sequences for the presence of DR-supermotif primary anchors (i.e., at position 1 and position 6) within a 9-mer core, but additionally evaluates sequences for the presence of secondary anchors. Using allele specific selection tables (see, e.g., Southwood et al., ibid.), it has been found that these protocols efficiently select peptide sequences with a high probability of binding a particular DR molecule. Additionally, it has been found that performing these protocols in tandem, specifically those for DR1, DR4w4, and DR7, can efficiently select DR cross-reactive peptides.

The prostate antigen-derived peptides identified above are tested for their binding capacity to various common HLA-DR molecules. All peptides are initially tested for binding to the DR molecules in the primary panel: DR1, DR4w4, and DR7. Peptides binding at least 2 of these 3 DR molecules with an IC₅₀ value of 1000 nM or less, were then tested for binding to DR5*0101, DRB1*1501, DRB1*1101, DRB1*0802, and DRB1*1302. Peptides were considered to be cross-reactive DR supertype binders if they bound at an IC₅₀ value of 1000 nM or less to at least 5 of the 8 alleles tested.

Following the strategy outlined above DR supermotif-bearing sequences were identified within the prostate antigen protein sequence. Generally, these sequences are then scored for the combined DR 1-4-7 algorithms. The postive-scoring peptides are synthesized and tested for binding to HLA-DRB1*0101, DRB1*0401, DRB1*0701. Those that bind at least 2 of the 3 alleles are then tested for binding to secondary DR supertype alleles: DRB5*0101, DRB1*1501, DRB1*1101, DRB1*0802, and DRB1*1302.

25 Selection of DR3 motif peptides

5

10

15

20

30

35

40

Because HLA-DR3 is an allele that is prevalent in Caucasian, Black, and Hispanic populations, DR3 binding capacity is an important criterion in the selection of HTL epitopes. However, data generated previously indicated that DR3 only rarely cross-reacts with other DR alleles (Sidney et al., J. Immunol. 149:2634-2640, 1992; Geluk et al., J. Immunol. 152:5742-5748, 1994; Southwood et al., J. Immunol. 160:3363-3373, 1998). This is not entirely surprising in that the DR3 peptide-binding motif appears to be distinct from the specificity of most other DR alleles. For maximum efficiency in developing vaccine candidates it would be desirable for DR3 motifs to be clustered in proximity with DR supermotif regions. Thus, peptides shown to be candidates may also be assayed for their DR3 binding capacity. However, in view of the distinct binding specificity of the DR3 motif, peptides binding only to DR3 can also be considered as candidates for inclusion in a vaccine formulation.

To efficiently identify peptides that bind DR3, the PSA, PSM, PAP, and hK2 protein sequences were analyzed for sequences carrying one of the two DR3 specific binding motifs (Table III) reported by Geluk *et al.* (*J. Immunol.* 152:5742-5748, 1994). The corresponding peptides are then synthesized and tested for the ability to bind DR3 with an affinity of 1000 nM or better, *i.e.*, less than 1000 nM.

Additionally, the DR3 binders are also tested for binding to the DR supertype alleles.

Conversely, the DR supertype cross-reactive binding peptides are also tested for DR3 binding capacity.

DR3 binding epitopes identified in this manner are then included in vaccine compositions with DR supermotif-bearing peptide epitopes.

Similarly to the case of HLA class I motif-bearing peptides, the class II motif-bearing peptides are analoged to improve affinity or cross-reactivity. For example, aspartic acid at position 4 of the 9-mer core sequence is an optimal residue for DR3 binding, and substitution for that residue often improves DR 3 binding.

For example, a number of HLA-DR supermotif and DR-3 motif-bearing prostate antigenassociated sequences have been identified. The number in each category is summarized in Table XXV.

Example 6. Immunogenicity of HTL epitopes

5

10

15

25

30

35

40

This example determines immunogenic DR supermotif- and DR3 motif-bearing epitopes among those identified using the methodology in Example 5.

Immunogenicity of HTL epitopes are evaluated in a manner analogous to the determination of immunogenicity of CTL epitopes by assessing the ability to stimulate HTL responses and/or by using appropriate transgenic mouse models. Immunogenicity is determined by screening for: 1.) in vitro primary induction using normal PBMC or 2.) recall responses from cancer patient PBMCs.

20 Example 7. Calculation of phenotypic frequencies of HLA-supertypes in various ethnic backgrounds to determine breadth of population coverage

This example illustrates the assessment of the breadth of population coverage of a vaccine composition comprised of multiple epitopes comprising multiple supermotifs and/or motifs.

In order to analyze population coverage, gene frequencies of HLA alleles were determined. Gene frequencies for each HLA allele were calculated from antigen or allele frequencies utilizing the binomial distribution formulae gf=1-(SQRT(1-af)) (see, e.g., Sidney et al., Human Immunol. 45:79-93, 1996). To obtain overall phenotypic frequencies, cumulative gene frequencies were calculated, and the cumulative antigen frequencies derived by the use of the inverse formula [af=1-(1-Cgf)²].

Where frequency data was not available at the level of DNA typing, correspondence to the serologically defined antigen frequencies was assumed. To obtain total potential supertype population coverage no linkage disequilibrium was assumed, and only alleles confirmed to belong to each of the supertypes were included (minimal estimates). Estimates of total potential coverage achieved by inter-loci combinations were made by adding to the A coverage the proportion of the non-A covered population that could be expected to be covered by the B alleles considered (e.g., total=A+B*(1-A)). Confirmed members of the A3-like supertype are A3, A11, A31, A*3301, and A*6801. Although the A3-like supertype may also include A34, A66, and A*7401, these alleles were not included in overall frequency calculations. Likewise, confirmed members of the A2-like supertype family are A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*6802, and A*6901. Finally, the B7-like supertype-confirmed alleles are: B7, B*3501-03, B51, B*5301, B*5401, B*5501-2, B*5601, B*6701, and B*7801 (potentially also B*1401, B*3504-06, B*4201, and B*5602).

Population coverage achieved by combining the A2-, A3- and B7-supertypes is approximately 86% in five major ethnic groups (see Table XXI). Coverage may be extended by including peptides bearing the A1 and A24 motifs. On average, A1 is present in 12% and A24 in 29% of the population across five different major ethnic groups (Caucasian, North American Black, Chinese, Japanese, and Hispanic). Together, these alleles are represented with an average frequency of 39% in these same ethnic populations. The total coverage across the major ethnicities when A1 and A24 are combined with the coverage of the A2-, A3- and B7-supertype alleles is >95%. An analogous approach can be used to estimate population coverage achieved with combinations of class II motif-bearing epitopes.

10 Example 8. Recognition Of Generation Of Endogenous Processed Antigens After Priming

5

15

20

25

35

This example determines that CTL induced by native or analogued peptide epitopes identified and selected as described in Examples 1-6 recognize endogenously synthesized, *i.e.*, native antigens, using a transgenic mouse model.

Effector cells isolated from transgenic mice that are immunized with peptide epitopes (as described, e.g., in Wentworth et al., Mol. Immunol. 32:603, 1995), for example HLA-A2 supermotif-bearing epitopes, are re-stimulated in vitro using peptide-coated stimulator cells. Six days later, effector cells are assayed for cytotoxicity and the cell lines that contain peptide-specific cytotoxic activity are further re-stimulated. An additional six days later, these cell lines are tested for cytotoxic activity on ⁵¹Cr labeled Jurkat-A2.1/K^b target cells in the absence or presence of peptide, and also tested on ⁵¹Cr labeled target cells bearing the endogenously synthesized antigen, i.e. prostate tumor cells or cells that are stably transfected with TAA expression vectors.

The result will demonstrate that CTL lines obtained from animals primed with peptide epitope recognize endogenously synthesized antigen. The choice of transgenic mouse model to be used for such an analysis depends upon the epitope(s) that is being evaluated. In addition to HLA-A*0201/K^b transgenic mice, several other transgenic mouse models including mice with human A11, which may also be used to evaluate A3 epitopes, and B7 alleles have been characterized and others (e.g., transgenic mice for HLA-A1 and A24) are being developed. HLA-DR1 and HLA-DR3 mouse models have also been developed, which may be used to evaluate HTL epitopes.

30 Example 9. Activity Of CTL-HTL Conjugated Epitopes In Transgenic Mice

This example illustrates the induction of CTLs and HTLs in transgenic mice by use of a tumor associated antigen CTL/HTL peptide conjugate whereby the vaccine composition comprises peptides to be administered to a cancer patient. The peptide composition can comprise multiple CTL and/or HTL epitopes and further, can comprise epitopes selected from multiple-tumor associated antigens. The epitopes are identified using methodology as described in Examples 1-6 This analysis demonstrates the enhanced immunogenicity that can be achieved by inclusion of one or more HTL epitopes in a vaccine composition. Such a peptide composition can comprise an HTL epitope conjugated to a preferred CTL epitope containing, for example, at least one CTL epitope selected from Table XXIII, or other analogs of that epitope. The peptides may be lipidated, if desired.

Immunization procedures: Immunization of transgenic mice is performed as described (Alexander et al., J. Immunol. 159:4753-4761, 1997). For example, A2/K^b mice, which are transgenic for the human HLA A2.1 allele and are useful for the assessment of the immunogenicity of HLA-A*0201 motif- or HLA-A2 supermotif-bearing epitopes, are primed subcutaneously (base of the tail) with a 0.1 ml of peptide in Incomplete Freund's Adjuvant, or if the peptide composition is a lipidated CTL/HTL conjugate, in DMSO/saline or if the peptide composition is a polypeptide, in PBS or Incomplete Freund's Adjuvant. Seven days after priming, splenocytes obtained from these animals are restimulated with syngenic irradiated LPS-activated lymphoblasts coated with peptide.

5

10

15

20

25

30

35

40

The target cells for peptide-specific cytotoxicity assays are Jurkat cells transfected with the HLA-A2.1/K^b chimeric gene (e.g., Vitiello et al., J. Exp. Med. 173:1007, 1991).

In vitro CTL activation: One week after priming, spleen cells (30x10⁶ cells/flask) are cocultured at 37°C with syngeneic, irradiated (3000 rads), peptide coated lymphoblasts (10x10⁶ cells/flask) in 10 ml of culture medium/T25 flask. After six days, effector cells are harvested and assayed for cytotoxic activity.

Assay for cytotoxic activity: Target cells (1.0 to 1.5x10⁶) are incubated at 37°C in the presence of 200 µl of ⁵¹Cr. After 60 minutes, cells are washed three times and resuspended in medium. Peptide is added where required at a concentration of 1 µg/ml. For the assay, 10^{4 51}Cr-labeled target cells are added to different concentrations of effector cells (final volume of 200 µl) in U-bottom 96-well plates. After a 6 hour incubation period at 37°C, a 0.1 ml aliquot of supernatant is removed from each well and radioactivity is determined in a Micromedic automatic gamma counter. The percent specific lysis is determined by the formula: percent specific release = 100 x (experimental release - spontaneous release)/(maximum release - spontaneous release). To facilitate comparison between separate CTL assays run under the same conditions, % ⁵¹Cr release data is expressed as lytic units/10⁶ cells. One lytic unit is arbitrarily defined as the number of effector cells required to achieve 30% lysis of 10,000 target cells in a 6 hour ⁵¹Cr release assay. To obtain specific lytic units/10⁶, the lytic units/10⁶ obtained in the absence of peptide is subtracted from the lytic units/10⁶ obtained in the presence of peptide. For example, if 30% ⁵¹Cr release is obtained at the effector (E): target (T) ratio of 50:1 (i.e., 5x10⁵ effector cells for 10,000 targets) in the absence of peptide and 5:1 (i.e., 5x10⁴ effector cells for 10,000 targets) in the presence of peptide, the specific lytic units would be: {(1/50,000)-(1/500,000)} × 10⁶ = 18 LU.

The results are analyzed to assess the magnitude of the CTL responses of animals injected with the immunogenic CTL/HTL conjugate vaccine preparation. The magnitude and frequency of the response can also be compared to the the CTL response achieved using the CTL epitopes by themselves. Analyses similar to this may be performed to evaluate the immunogenicity of peptide conjugates containing multiple CTL epitopes and/or multiple HTL epitopes. In accordance with these procedures it is found that a CTL response is induced, and concomitantly that an HTL response is induced upon administration of such compositions.

Example 10. Selection of CTL and HTL epitopes for inclusion in a cancer vaccine.

This example illustrates the procedure for the selection of peptide epitopes for vaccine compositions of the invention. The peptides in the composition can be in the form of a nucleic acid

sequence, either single or one or more sequences (i.e., minigene) that encodes peptide(s), or may be single and/or polyepitopic peptides.

The following principles are utilized when selecting an array of epitopes for inclusion in a vaccine composition. Each of the following principles is balanced in order to make the selection.

5

10

15

20

25

30

35

40

Epitopes are selected which, upon administration, mimic immune responses that have been observed to be correlated with tumor clearance. For example, a vaccine can include 3-4 epitopes that come from at least one prostate cancer-associated antigen. Epitopes from one prostate cancer-associated antigen can be used in combination with epitopes from one or more additional TAAs to produce a vaccine that targets tumors with varying expression patterns of frequently-expressed TAAs as described, e.g., in Example 15.

Epitopes are preferably selected that have a binding affinity (IC₅₀) of 500 nM or less, often 200 nM or less, for an HLA class I molecule, or for a class II molecule, 1000 nM or less.

Sufficient supermotif bearing peptides, or a sufficient array of allele-specific motif bearing peptides, are selected to give broad population coverage. For example, epitopes are selected to provide at least 80% population coverage. A Monte Carlo analysis, a statistical evaluation known in the art, can be employed to assess breadth, or redundancy, of population coverage.

When selecting epitopes from cancer-related antigens it is often preferred to select analogs because the patient may have developed tolerance to the native epitope.

When creating a polyepitopic composition, e.g. a minigene, it is typically desirable to generate the smallest peptide possible that encompasses the epitopes of interest, although spacers or other flanking sequences can also be incorporated. The principles employed are often similar as those employed when selecting a peptide comprising nested epitopes. Additionally, however, upon determination of the nucleic acid sequence to be provided as a minigene, the peptide sequence encoded thereby is analyzed to determine whether any "junctional epitopes" have been created. A junctional epitope is a potential HLA binding epitope, as predicted, e.g., by motif analysis. Junctional epitopes are generally to be avoided because the recipient may bind to an HLA molecule and generate an immune response to that epitope, which is not present in a native protein sequence.

A vaccine composition comprised of selected peptides, when administered, is safe, efficacious, and elicits an immune response that results in tumor cell killing and reduction of tumor size or mass.

Example 11. Construction of Minigene Multi-Epitope DNA Plasmids

This example provides general guidance for the construction of a minigene expression plasmid. Minigene plasmids may, of course, contain various configurations of CTL and/or HTL epitopes or epitope analogs as described herein. Examples of the construction and evaluation of expression plasmids are described, for example, in co-pending U.S.S.N. 09/311,784 filed 5/13/99.

A minigene expression plasmid may include multiple CTL and HTL peptide epitopes. In this example, HLA-A2, -A3, -B7 supermotif-bearing peptide epitopes and HLA-A1 and -A24 motif-bearing peptide epitopes are used in conjunction with DR supermotif-bearing epitopes and/or DR3 epitopes. HLA class I supermotif or motif-bearing peptide epitopes derived from multiple prostate cancer-associated

antigens are selected such that multiple supermotifs/motifs are represented to ensure broad population coverage. Similarly, HLA class II epitopes are selected from multiple prostate cancer-associated antigens to provide broad population coverage, *i.e.* both HLA DR-1-4-7 supermotif-bearing epitopes and HLA DR-3 motif-bearing epitopes are selected for inclusion in the minigene construct. The selected CTL and HTL epitopes are then incorporated into a minigene for expression in an expression vector.

This example illustrates the methods to be used for construction of such a minigenebearing expression plasmid. Other expression vectors that may be used for minigene compositions are available and known to those of skill in the art.

The minigene DNA plasmid contains a consensus Kozak sequence and a consensus murine kappa Ig-light chain signal sequence followed by CTL and/or HTL epitopes selected in accordance with principles disclosed herein. The sequence encodes an open reading frame fused to the Myc and His antibody epitope tag coded for by the pcDNA 3.1 Myc-His vector.

Overlapping oligonucleotides that can, for example, average about 70 nucleotides in length with 15 nucleotide overlaps, are synthesized and HPLC-purified. The oligonucleotides encode the selected peptide epitopes as well as appropriate linker nucleotides, Kozak sequence, and signal sequence. The final multiepitope minigene is assembled by extending the overlapping oligonucleotides in three sets of reactions using PCR. A Perkin/Elmer 9600 PCR machine is used and a total of 30 cycles are performed using the following conditions: 95°C for 15 sec, annealing temperature (5° below the lowest calculated Tm of each primer pair) for 30 sec, and 72°C for 1 min.

For example, a minigene can be prepared as follows. For a first PCR reaction, 5 µg of each of two oligonucleotides are annealed and extended: In an example using eight oligonucleotides, *i.e.*, four pairs of primers, oligonucleotides 1+2, 3+4, 5+6, and 7+8 are combined in 100 µl reactions containing *Pfu* polymerase buffer (1x= 10 mM KCL, 10 mM (NH₄)₂SO₄, 20 mM Tris-chloride, pH 8.75, 2 mM MgSO₄, 0.1% Triton X-100, 100 µg/ml BSA), 0.25 mM each dNTP, and 2.5 U of *Pfu* polymerase. The full-length dimer products are gel-purified, and two reactions containing the product of 1+2 and 3+4, and the product of 5+6 and 7+8 are mixed, annealed, and extended for 10 cycles. Half of the two reactions are then mixed, and 5 cycles of annealing and extension carried out before flanking primers are added to amplify the full length product. The full-length product is gel-purified and cloned into pCR-blunt (Invitrogen) and individual clones are screened by sequencing.

30

35

40

5

10

15

20

25

Example 12. The plasmid construct and the degree to which it induces immunogenicity.

The degree to which a plasmid construct, for example a plasmid constructed in accordance with Example 11, is able to induce immunogenicity can be evaluated *in vitro* by testing for epitope presentation by APC following transduction or transfection of the APC with an epitope-expressing nucleic acid construct. Such a study determines "antigenicity" and allows the use of human APC. The assay determines the ability of the epitope to be presented by the APC in a context that is recognized by a T cell by quantifying the density of epitope-HLA class I complexes on the cell surface. Quantitation can be performed by directly measuring the amount of peptide eluted from the APC (see, e.g., Sijts et al., J. Immunol. 156:683-692, 1996; Demotz et al., Nature 342:682-684, 1989); or the number of peptide-HLA class I complexes can be estimated by measuring the amount of lysis or lymphokine release induced by

infected or transfected target cells, and then determining the concentration of peptide necessary to obtained equivalent levels of lysis or lymphokine release (see, e.g., Kageyama et al., J. Immunol. 154:567-576, 1995).

Atlernatively, immunogenicity can be evaluated through *in vivo* injections into mice and subsequent *in vitro* assessment of CTL and HTL activity, which are analysed using cytotoxicity and proliferation assays, respectively, as detailed *e.g.*, in co-pending U.S.S.N. 09/311,784 filed 5/13/99 and Alexander *et al.*, *Invanuity* 1:751-761, 1994.

5

10

15

20

25

30

35

40

For example, to assess the capacity of a DNA minigene construct (e.g., a pMin minigene construct generated as decribed in U.S.S.N. 09/311,784) containing at least one HLA-A2 supermotif peptide to induce CTLs in vivo, HLA-A2.1/K^b transgenic mice, for example, are immunized intramuscularly with 100 µg of naked cDNA. As a means of comparing the level of CTLs induced by cDNA immunization, a control group of animals is also immunized with an actual peptide composition that comprises multiple epitopes synthesized as a single polypeptide as they would be encoded by the minigene.

Splenocytes from immunized animals are stimulated twice with each of the respective compositions (peptide epitopes encoded in the minigene or the polyepitopic peptide), then assayed for peptide-specific cytotoxic activity in a ⁵¹Cr release assay. The results indicate the magnitude of the CTL response directed against the A2-restricted epitope, thus indicating the *in vivo* immunogenicity of the minigene vaccine and polyepitopic vaccine. It is, therefore, found that the minigene elicits immune responses directed toward the HLA-A2 supermotif peptide epitopes as does the polyepitopic peptide vaccine. A similar analysis is also performed using other HLA-A3 and HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 and HLA-B7 motif or supermotif epitopes.

To assess the capacity of a class II epitope encoding minigene to induce HTLs in vivo, DR transgenic mice, or for those epitope that cross react with the appropriate mouse MHC molecule, I-A^b-restricted mice, for example, are immunized intramuscularly with 100 µg of plasmid DNA. As a means of comparing the level of HTLs induced by DNA immunization, a group of control animals is also immunized with an actual peptide composition emulsified in complete Freund's adjuvant. CD4+ T cells, i.e. HTLs, are purified from splenocytes of immunized animals and stimulated with each of the respective compositions (peptides encoded in the minigene). The HTL response is measured using a ³H-thymidine incorporation proliferation assay, (see, e.g., Alexander et al. Immunity 1:751-761, 1994). The results indicate the magnitude of the HTL response, thus demonstrating the in vivo immunogenicity of the minigene.

DNA minigenes, constructed as described in Example 11, may also be evaluated as a vaccine in combination with a boosting agent using a prime boost protocol. The boosting agent can consist of recombinant protein (e.g., Barnett et al., Aids Res. and Human Retroviruses 14, Supplement 3:S299-S309, 1998) or recombinant vaccinia, for example, expressing a minigene or DNA encoding the complete protein of interest (see, e.g., Hanke et al., Vaccine 16:439-445, 1998; Sedegah et al., Proc. Natl. Acad. Sci USA 95:7648-53, 1998; Hanke and McMichael, Immunol. Letters 66:177-181, 1999; and Robinson et al., Nature Med. 5:526-34, 1999).

For example, the efficacy of the DNA minigene used in a prime boost protocol is initially evaluated in transgenic mice. In this example, A2.1/K^b transgenic mice are immunized IM with 100 µg of a DNA minigene encoding the immunogenic peptides including at least one HLA-A2 supermotif-bearing

peptide. After an incubation period (ranging from 3-9 weeks), the mice are boosted IP with 10⁷ pfu/mouse of a recombinant vaccinia virus expressing the same sequence encoded by the DNA minigene. Control mice are immunized with 100 μg of DNA or recombinant vaccinia without the minigene sequence, or with DNA encoding the minigene, but without the vaccinia boost. After an additional incubation period of two weeks, splenocytes from the mice are immediately assayed for peptide-specific activity in an ELISPOT assay. Additionally, splenocytes are stimulated *in vitro* with the A2-restricted peptide epitopes encoded in the minigene and recombinant vaccinia, then assayed for peptide-specific activity in an IFN-γ ELISA.

It is found that the minigene utilized in a prime-boost protocol elicits greater immune responses toward the HLA-A2 supermotif peptides than with DNA alone. Such an analysis can also be performed using HLA-A11 or HLA-B7 transgenic mouse models to assess CTL induction by HLA-A3 or HLA-B7 motif or supermotif epitopes.

The use of prime boost protocols in humans is described in Example 20.

Example 13. Peptide Composition for Prophylactic Uses

5

10

15

20

25

35

40

Vaccine compositions of the present invention are used to prevent cancer in persons who are at high risk for developing a tumor. For example, a polyepitopic peptide epitope composition (or a nucleic acid comprising the same) containing multiple CTL and HTL epitopes such as those selected in Examples 9 and/or 10, which are also selected to target greater than 80% of the population, is administered to an individual at high risk for prostate cancer. The composition is provided as a single polypeptide that encompasses multiple epitopes. The vaccine is administered in an aqueous carrier comprised of Freunds Incomplete Adjuvant. The dose of peptide for the initial immunization is from about 1 to about 50,000 µg, generally 100-5,000 µg, for a 70 kg patient. The initial administration of vaccine is followed by booster dosages at 4 weeks followed by evaluation of the magnitude of the immune response in the patient, by techniques that determine the presence of epitope-specific CTL populations in a PBMC sample. Additional booster doses are administered as required. The composition is found to be both safe and efficacious as a prophylaxis against cancer.

Alternatively, the polyepitopic peptide composition can be administered as a nucleic acid in accordance with methodologies known in the art and disclosed herein.

30 Example 14. Polyepitopic Vaccine Compositions Derived from Native TAA Sequences

A native TAA polyprotein sequence is screened, preferably using computer algorithms defined for each class I and/or class II supermotif or motif, to identify "relatively short" regions of the polyprotein that comprise multiple epitopes and is preferably less in length than an entire native antigen. This relatively short sequence that contains multiple distinct, even overlapping, epitopes is selected and used to generate a minigene construct. The construct is engineered to express the peptide, which corresponds to the native protein sequence. The "relatively short" peptide is generally less than 1000, 500, or 250 amino acids in length, often less than 100 amino acids in length, preferably less than 75 amino acids in length, and more preferably less than 50 amino acids in length. The protein sequence of the vaccine composition is selected because it has maximal number of epitopes contained within the sequence, i.e., it has a high concentration of epitopes. As noted herein, epitope motifs may be nested or overlapping (i.e.,

frame shifted relative to one another). For example, with frame shifted overlapping epitopes, two 9-mer epitopes and one 10-mer epitope can be present in a 10 amino acid peptide. Such a vaccine composition is administered for therapeutic or prophylactic purposes.

The vaccine composition will preferably include, for example, three CTL epitopes and at least one HTL epitope from multiple prostate cancer-associated antigens. This polyepitopic native sequence is administered either as a peptide or as a nucleic acid sequence which encodes the peptide.

Alternatively, an analog can be made of this native sequence, whereby one or more of the epitopes comprise substitutions that alter the cross-reactivity and/or binding affinity properties of the polyepitopic peptide.

5

10

15

20

25

. 30

35

40

The embodiment of this example provides for the possibility that an as yet undiscovered aspect of immune system processing will apply to the native nested sequence and thereby facilitate the production of therapeutic or prophylactic immune response-inducing vaccine compositions. Additionally such an embodiment provides for the possibility of motif-bearing epitopes for an HLA makeup that is presently unknown. Furthermore, this embodiment (absent analogs) directs the immune response to multiple peptide sequences that are actually present in native TAAs thus avoiding the need to evaluate any junctional epitopes. Lastly, the embodiment provides an economy of scale when producing nucleic acid vaccine compositions.

Related to this embodiment, computer programs can be derived in accordance with principles in the art, which identify in a target sequence, the greatest number of epitopes per sequence length.

Example 15. Polyepitopic Vaccine Compositions Comprising Epitopes From Multiple Tumor-Associated Antigens

The prostate cancer-associated antigen peptide epitopes of the present invention are used in combination with each other, or with peptide epitopes from other target tumor-associated antigens to create a vaccine composition that is useful for the treatment of prostate tumors from multiple patients. Furthermore, a vaccine composition comprising epitopes from multiple tumor antigens also reduces the potential for escape mutants due to loss of expression of an individual tumor antigen.

The composition can be provided as a single polypeptide that incorporates the multiple epitopes from the various TAAs, or can be administered as a composition comprising one or more discrete epitopes. Alternatively, the vaccine can be administered as a minigene construct or as dendritic cells which have been loaded with the peptide epitopes in vitro.

Example 16. Use of peptides to evaluate an immune response

Peptides of the invention may be used to analyze an immune response for the presence of specific CTL or HTL populations directed to a prostate cancer-associated antigen. Such an analysis may be performed using multimeric complexes as described, e.g., by Ogg et al., Science 279:2103-2106, 1998 and Greten et al., Proc. Natl. Acad. Sci. USA 95:7568-7573, 1998. In the following example, peptides in accordance with the invention are used as a reagent for diagnostic or prognostic purposes, not as an immunogen.

In this example, highly sensitive human leukocyte antigen tetrameric complexes ("tetramers") are used for a cross-sectional analysis of, for example, tumor-associated antigen HLA-A*0201-specific CTL frequencies from HLA A*0201-positive individuals at different stages of disease or following immunization using a TAA peptide containing an A*0201 motif. Tetrameric complexes are synthesized as described (Musey *et al.*, *N. Engl. J. Med.* 337:1267, 1997). Briefly, purified HLA heavy chain (A*0201 in this example) and β2-microglobulin are synthesized by means of a prokaryotic expression system. The heavy chain is modified by deletion of the transmembrane-cytosolic tail and COOH-terminal addition of a sequence containing a BirA enzymatic biotinylation site. The heavy chain, β2-microglobulin, and peptide are refolded by dilution. The 45-kD refolded product is isolated by fast protein liquid chromatography and then biotinylated by BirA in the presence of biotin (Sigma, St. Louis, Missouri), adenosine 5'triphosphate and magnesium. Streptavidin-phycoerythrin conjugate is added in a 1:4 molar ratio, and the tetrameric product is concentrated to 1 mg/ml. The resulting product is referred to as tetramer-phycoerythrin.

For the analysis of patient blood samples, approximately one million PBMCs are centrifuged at 300g for 5 minutes and resuspended in 50 µl of cold phosphate-buffered saline. Tri-color analysis is performed with the tetramer-phycoerythrin, along with anti-CD8-Tricolor, and anti-CD38. The PBMCs are incubated with tetramer and antibodies on ice for 30 to 60 min and then washed twice before formaldehyde fixation. Gates are applied to contain >99.98% of control samples. Controls for the tetramers include both A*0201-negative individuals and A*0201-positive uninfected donors. The percentage of cells stained with the tetramer is then determined by flow cytometry. The results indicate the number of cells in the PBMC sample that contain epitope-restricted CTLs, thereby readily indicating the extent of immune response to the TAA epitope, and thus the stage of tumor progression or exposure to a vaccine that elicits a protective or therapeutic response.

25 <u>Example 17. Use of Peptide Epitopes to Evaluate Recall Responses</u>

5

10

15

20

30

The peptide epitopes of the invention are used as reagents to evaluate T cell responses, such as acute or recall responses, in patients. Such an analysis may be performed on patients who are in remission, have a tumor, or who have been vaccinated with a prostate cancer-associated antigen vaccine.

For example, the class I restricted CTL response of persons who have been vaccinated may be analyzed. The vaccine may be any TAA vaccine. PBMC are collected from vaccinated individuals and HLA typed. Appropriate peptide epitopes of the invention that, optimally, bear supermotifs to provide cross-reactivity with multiple HLA supertype family members, are then used for analysis of samples derived from individuals who bear that HLA type.

PBMC from vaccinated individuals are separated on Ficoll-Histopaque density gradients

(Sigma Chemical Co., St. Louis, MO), washed three times in HBSS (GIBCO Laboratories), resuspended in RPMI-1640 (GIBCO Laboratories) supplemented with L-glutamine (2mM), penicillin (50U/ml), streptomycin (50 μg/ml), and Hepes (10mM) containing 10% heat-inactivated human AB serum (complete RPMI) and plated using microculture formats. A synthetic peptide comprising an epitope of the invention is added at 10 μg/ml to each well and HBV core 128-140 epitope is added at 1 μg/ml to each well as a source of T cell help during the first week of stimulation.

In the microculture format, 4 x 10⁵ PBMC are stimulated with peptide in 8 replicate cultures in 96-well round bottom plate in 100 µl/well of complete RPMI. On days 3 and 10, 100 µl of complete RPMI and 20 U/ml final concentration of rIL-2 are added to each well. On day 7 the cultures are transferred into a 96-well flat-bottom plate and restimulated with peptide, rIL-2 and 10⁵ irradiated (3,000 rad) autologous feeder cells. The cultures are tested for cytotoxic activity on day 14. A positive CTL response requires two or more of the eight replicate cultures to display greater than 10% specific ⁵¹Cr release, based on comparison with uninfected control subjects as previously described (Rehermann, et al., Nature Med. 2:1104,1108, 1996; Rehermann et al., J. Clin. Invest. 97:1655-1665, 1996; and Rehermann et al. J. Clin. Invest. 98:1432-1440, 1996).

5

10

15

20

25

30

35

Target cell lines are autologous and allogeneic EBV-transformed B-LCL that are either purchased from the American Society for Histocompatibility and Immunogenetics (ASHI, Boston, MA) or established from the pool of patients as described (Guilhot, et al. J. Virol. 66:2670-2678, 1992).

Cytotoxicity assays are performed in the following manner. Target cells consist of either allogeneic HLA-matched or autologous EBV-transformed B lymphoblastoid cell line that are incubated overnight with the synthetic peptide epitope of the invention at 10 μ M, and labeled with 100 μ Ci of ⁵¹Cr (Amersham Corp., Arlington Heights, IL) for 1 hour after which they are washed four times with HBSS.

Cytolytic activity is determined in a standard 4 hour, split-well ⁵¹Cr release assay using U-bottomed 96 well plates containing 3,000 targets/well. Stimulated PBMC are tested at effector/target (E/T) ratios of 20-50:1 on day 14. Percent cytotoxicity is determined from the formula: 100 x [(experimental release-spontaneous release)/maximum release-spontaneous release)]. Maximum release is determined by lysis of targets by detergent (2% Triton X-100; Sigma Chemical Co., St. Louis, MO). Spontaneous release is <25% of maximum release for all experiments.

The results of such an analysis indicate the extent to which HLA-restricted CTL populations have been stimulated by previous exposure to the TAA or TAA vaccine.

The class II restricted HTL responses may also be analyzed. Purified PBMC are cultured in a 96-well flat bottom plate at a density of 1.5×10^5 cells/well and are stimulated with 10 µg/ml synthetic peptide, whole antigen, or PHA. Cells are routinely plated in replicates of 4-6 wells for each condition. After seven days of culture, the medium is removed and replaced with fresh medium containing 10U/ml IL-2. Two days later, 1 µCi ³H-thymidine is added to each well and incubation is continued for an additional 18 hours. Cellular DNA is then harvested on glass fiber mats and analyzed for ³H-thymidine incorporation. Antigen-specific T cell proliferation is calculated as the ratio of ³H-thymidine incorporation in the presence of antigen divided by the ³H-thymidine incorporation in the absence of antigen.

Example 18. Induction Of Specific CTL Response In Humans

A human clinical trial for an immunogenic composition comprising CTL and HTL epitopes of the invention is set up as an IND Phase I, dose escalation study. Such a trial is designed, for example, as follows:

A total of about 27 male subjects are enrolled and divided into 3 groups:

Group I: 3 subjects are injected with placebo and 6 subjects are injected with 5 μg of 40 . peptide composition;

71

Group II: 3 subjects are injected with placebo and 6 subjects are injected with 50 μg peptide composition;

Group III: 3 subjects are injected with placebo and 6 subjects are injected with 500 µg of peptide composition.

After 4 weeks following the first injection, all subjects receive a booster inoculation at the same dosage. Additional booster inoculations can be administered on the same schedule.

The endpoints measured in this study relate to the safety and tolerability of the peptide composition as well as its immunogenicity. Cellular immune responses to the peptide composition are an index of the intrinsic activity of the peptide composition, and can therefore be viewed as a measure of biological efficacy. The following summarize the clinical and laboratory data that relate to safety and efficacy endpoints.

Safety: The incidence of adverse events is monitored in the placebo and drug treatment group and assessed in terms of degree and reversibility.

Evaluation of Vaccine Efficacy: For evaluation of vaccine efficacy, subjects are bled before and after injection. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

The vaccine is found to be both safe and efficacious.

20 Example 19. Therapeutic Use in Cancer Patients

5

10

15

25

30

35

Evaluation of vaccine compositions are performed to validate the efficacy of the CTL-HTL peptide compositions in cancer patients. The main objectives of the trials are to determine an effective dose and regimen for inducing CTLs in prostate cancer patients, to establish the safety of inducing a CTL and HTL response in these patients, and to see to what extent activation of CTLs improves the clinical picture of cancer patients, as manifested by a reduction in tumor cell numbers. Such a study is designed, for example, as follows:

The studies are performed in multiple centers. The trial design is an open-label, uncontrolled, dose escalation protocol wherein the peptide composition is administered as a single dose followed six weeks later by a single booster shot of the same dose. The dosages are 50, 500 and 5,000 micrograms per injection. Drug-associated adverse effects (severity and reversibility) are recorded.

There are three patient groupings. The first group is injected with 50 micrograms of the peptide composition and the second and third groups with 500 and 5,000 micrograms of peptide composition, respectively. The patients within each group are males, typically above the age of 50, and represent diverse ethnic backgrounds.

Example 20. Induction of CTL Responses Using a Prime Boost Protocol

A prime boost protocol similar in its underlying principle to that used to evaluate the efficacy of a DNA vaccine in transgenic mice, such as described in Example 12, can also be used for the administration of the vaccine to humans. Such a vaccine regimen can include an initial administration of,

for example, naked DNA followed by a boost using recombinant virus encoding the vaccine, or recombinant protein/polypeptide or a peptide mixture administered in an adjuvant.

5

10

15

20

25

30

35

40

For example, the initial immunization can be performed using an expression vector, such as one constructed in accordance with Example 11, in the form of naked nucleic acid administered IM (or SC or ID) in the amounts of 0.5-5 mg at multiple sites. The nucleic acid (0.1 to 1000 μg) can also be administered using a gene gun. Following an incubation period of 3-4 weeks, a booster dose is then administered. The booster can be recombinant fowlpox virus administered at a dose of 5-10⁷ to 5x10⁹ pfu. An alternative recombinant virus, such as an MVA, canarypox, adenovirus, or adeno-associated virus, can also be used for the booster, or the polyepitopic protein or a mixture of the peptides can be administered. For evaluation of vaccine efficacy, patient blood samples will be obtained before immunization as well as at intervals following administration of the initial vaccine and booster doses of the vaccine. Peripheral blood mononuclear cells are isolated from fresh heparinized blood by Ficoll-Hypaque density gradient centrifugation, aliquoted in freezing media and stored frozen. Samples are assayed for CTL and HTL activity.

Analysis of the results will indicate that a magnitude of response sufficient to achieve protective immunity against prostate cancer is generated.

Example 21. Administration of Vaccine Compositions Using Antigen Presenting Cells

Vaccines comprising peptide epitopes of the invention may be administered using antigenpresenting cells (APCs), or "professional" APCs such as dendritic cells (DC). In this example, the peptidepulsed DC are administered to a patient to stimulate a CTL response in vivo. In this method, dendritic cells
are isolated, expanded, and pulsed with a vaccine comprising peptide CTL and HTL epitopes of the
invention. The dendritic cells are infused back into the patient to elicit CTL and HTL responses in vivo.
The induced CTL and HTL then destroy (CTL) or facilitate destruction (HTL) of the specific target tumor
cells that bear the proteins from which the epitopes in the vaccine are derived.

For example, a cocktail of epitope-bearing peptides is administered ex vivo to PBMC, or isolated DC therefrom, from the patient's blood. A pharmaceutical to facilitate harvesting of DC can be used, such as ProgenipoietinTM (Monsanto, St. Louis, MO) or GM-CSF/IL-4. After pulsing the DC with peptides and prior to reinfusion into patients, the DC are washed to remove unbound peptides.

As appreciated clinically, and readily determined by one of skill based on clinical outcomes, the number of dendritic cells reinfused into the patient can vary (see, e.g., Nature Med. 4:328, 1998; Nature Med. 2:52, 1996 and Prostate 32:272, 1997). Although 2-50 x 10⁶ dendritic cells per patient are typically administered, larger number of dendritic cells, such as 10⁷ or 10⁸ can also be provided. Such cell populations typically contain between 50-90% dendritic cells.

In some embodiments, peptide-loaded PBMC are injected into patients without purification of the DC. For example, PBMC containing DC generated after treatment with an agent such as ProgenipoietinTM are injected into patients without purification of the DC. The total number of PBMC that are administered often ranges from 10⁸ to 10¹⁰. Generally, the cell doses injected into patients is based on the percentage of DC in the blood of each patient, as determined, for example, by immunofluorescence analysis with specific anti-DC antibodies. Thus, for example, if ProgenipoietinTM mobilizes 2% DC in the

peripheral blood of a given patient, and that patient is to receive 5 x 10⁶ DC, then the patient will be injected with a total of 2.5 x 10⁸ peptide-loaded PBMC. The percent DC mobilized by an agent such as Progenipoietin™ is typically estimated to be between 2-10%, but can vary as appreciated by one of skill in the art.

The ability of DC to stimulate immune responses was evaluated in both *in vitro* and *in vivo* immune function assays. These assays include the stimulation of CTL hybridomas and CTL cell lines, and the *in vivo* activation of CTL.

DC Purification

5

10

15

20

25

30

35

Progenipoietin[™]-mobilized DC were purified from peripheral blood (PB) and spleens of Progenipoietin[™]-treated C57Bl/6 mice to evaluate their ability to present antigen and to elicit cellular immune responses. Briefly, DC were purified from total WBC and spleen using a positive selection strategy employing magnetic beads coated with a CD11c specific antibody (Miltenyi Biotec, Auburn CA). For comparison, ex vivo expanded DC were generated by culturing bone marrow cells from untreated C57Bl/6 mice with the standard cocktail of GM-CSF and IL-4 (R&D Systems, Minneapolis, MN) for a period of 7-8 days (Mayordomo et al., Nature Med. 1:1297-1302 (1995)). Recent studies have revealed that this ex vivo expanded DC population contains effective antigen presenting cells, with the capacity to stimulate anti-tumor immune responses (Celluzzi et al., J. Exp. Med. 83:283-287 (1996)).

The purities of ProgenipoietinTM-derived DC (100 μg/day, 10 days, SC) and GM-CSF/IL-4 ex vivo expanded DC were determined by flow cytometry. DC populations were defined as cells expressing both CD11c and MHC Class II molecules. Following purification of DC from magnetic CD11c microbeads, the percentage of double positive PB-derived DC, isolated from ProgenipoietinTM-treated mice, was enriched from approximately 4% to a range from 48-57% (average yield = 4.5 x 10⁶ DC/animal). The percentage of purified splenic DC isolated from ProgenipoietinTM treated mice was enriched from a range of 12-17% to a range of 67-77%. The purity of GM-CSF/IL-4 ex vivo expanded DC ranged from 31-41% (Wong et al., J. Immunother., 21:32040 (1998)).

In Vitro Stimulation of CTL Hybridomas and CTL Cell Lines: Presentation of Specific CTL Epitopes

The ability of ProgenipoietinTM generated DC to stimulate a CTL cell line was demonstrated *in vitro* using a viral-derived epitope and a corresponding epitope responsive CTL cell line. Transgenic mice expressing human HLA-A2.1 were treated with ProgenipoietinTM. Splenic DC isolated from these mice were pulsed with a peptide epitope derived from hepatitis B virus (HBV Pol 455) and then incubated with a CTL cell line that responds to the HBV Pol 455 epitope/HLA-A2.1 complex by producing IFNy. The capacity of ProgenipoietinTM-derived splenic DC to present the HBV Pol 455 epitope was greater than that of two positive control populations: GM-CSF and IL-4 expanded DC cultures, or purified splenic B cells. A left shift in the response curve for ProgenipoietinTM-derived spleen cells versus the other antigen presenting cells revealed that these ProgenipoietinTM-derived cells required less epitope to stimulate maximal IFNy release by the responder cell line.

The ability of ex vivo peptide-pulsed DC to stimulate CTL responses in vivo was also evaluated using the HLA-A2.1 transgenic mouse model. DC derived from ProgenipoietinTM-treated animals or control DC derived from bone marrow cells after expansion with GM-CSF and IL-4 were pulsed ex vivo

WO 01/45728

with the HBV Pol 455 CTL epitope, washed and injected (IV) into such mice. At seven days post immunization, spleens were removed and splenocytes containing DC and CTL were restimulated twice in vitro in the presence of the HBV Pol 455 peptide. The CTL activity of three independent cultures of restimulated spleen cell cultures was assessed by measuring the ability of the CTL to lyse ⁵¹Cr-labeled target cells pulsed with or without peptide. Vigorous CTL responses were generated in animals immunized with the epitope-pulsed ProgenipoietinTM derived DC as well as epitope-pulsed GM-CSF/IL-4 DC. In contrast, animals that were immunized with mock-pulsed ProgenipoietinTM-generated DC (no peptide) exhibited no evidence of CTL induction.

74

These data confirm that DC derived from ProgenipoietinTM treated mice can be pulsed ex vivo with epitope and used to induce specific CTL responses in vivo. Thus, these data support the principle that ProgenipoietinTM-derived DC promote CTL responses in a model that manifests human MHC Class I molecules.

In vivo pharmacology studies in mice have demonstrated no apparent toxicity of reinfusion of pulsed autologous DC into animals.

15 Ex vivo activation of CTL/HTL responses

10

20

25

30

35

40

Alternatively, ex vivo CTL or HTL responses to a particular tumor-associated antigen can be induced by incubating in tissue culture the patient's, or genetically compatible, CTL or HTL precursor cells together with a source of antigen-presenting cells (APC), such as dendritic cells, and the appropriate immunogenic peptides. After an appropriate incubation time (typically about 7-28 days), in which the precursor cells are activated and expanded into effector cells, the cells are infused back into the patient, where they will destroy (CTL) or facilitate destruction (HTL) of their specific target cells, i.e., tumor cells.

Example 22. Alternative Method of Identifying Motif-Bearing Peptides

Another way of identifying motif-bearing peptides is to elute them from cells bearing defined MHC molecules. For example, EBV transformed B cell lines used for tissue typing, have been extensively characterized to determine which HLA molecules they express. In certain cases these cells express only a single type of HLA molecule. These cells can then be infected with a pathogenic organism or transfected with nucleic acids that express the tumor antigen of interest. Thereafter, peptides produced by endogenous antigen processing of peptides produced consequent to infection (or as a result of transfection) will bind to HLA molecules within the cell and be transported and displayed on the cell surface.

The peptides are then eluted from the HLA molecules by exposure to mild acid conditions and their amino acid sequence determined, e.g., by mass spectral analysis (e.g., Kubo et al., J. Immunol. 152:3913, 1994). Because, as disclosed herein, the majority of peptides that bind a particular HLA molecule are motif-bearing, this is an alternative modality for obtaining the motif-bearing peptides correlated with the particular HLA molecule expressed on the cell.

Alternatively, cell lines that do not express any endogenous HLA molecules can be transfected with an expression construct encoding a single HLA allele. These cells may then be used as described, i.e., they may be infected with a pathogenic organism or transfected with nucleic acid encoding an antigen of interest to isolate peptides corresponding to the pathogen or antigen of interest that have been

presented on the cell surface. Peptides obtained from such an analysis will bear motif(s) that correspond to binding to the single HLA allele that is expressed in the cell.

As appreciated by one in the art, one can perform a similar analysis on a cell bearing more than one HLA allele and subsequently determine peptides specific for each HLA allele expressed.

Moreover, one of skill would also recognize that means other than infection or transfection, such as loading with a protein antigen, can be used to provide a source of antigen to the cell.

5

The above examples are provided to illustrate the invention but not to limit its scope. For example, the human terminology for the Major Histocompatibility Complex, namely HLA, is used throughout this document. It is to be appreciated that these principles can be extended to other species as well. Thus, other variants of the invention will be readily apparent to one of ordinary skill in the art and are encompassed by the appended claims. All publications, patents, and patent application cited herein are hereby incorporated by reference for all purposes.

TABLE I

SUPERMOTIFS	POSITION	POSITION	POSITION
	2 (Primary Anchor)	3 (Primary Anchor)	C Terminus (Primary
			Anchor)
A1	T, I, L, V, M, S	:	F, W, Y
A2	L, I, V, M, A, T, Q		I, V, M, A, T, L
- A3	V, S, M, A, T, L, I		R,K
A24	Y, F, W, I, V, L, M, T		F, I, Y, W, L, M
B7	P		V, I, L, F, M, W, Y, A
B27	R, H, K		F, Y, L, W, M, I, V, A
B44	\mathbf{E}, D .		F, W, L, I, M, V, A
B58	A, T, S		F, W, Y, L, I, V, M, A
B62	Q, L, I, V, M, P		F, W, Y, M, I, V, L, A
·		•	
MOTIFS	,		
A1	T, S, M		Y
A1		D , E , <i>A</i> , <i>S</i>	Y
A2.1	L, M, V, Q, I, A, T		V, L, I, M, A, T
A3	L, M, V, I, S, A, T, F,		K, Y, R, H, F, A
·	C, G, D		
A11	V, T, M, L, I, S, A,	•	K, R, Y, H
	G, N, C, D, F		
A24	Y, F, W, M		F, L, I, W
A*3101	M, V, T, A, L, I, S		R, K
A*3301	M, V, A, L, F, I, S, T		R, K
A*6801	A, V, T, M, S, L, I		R, K
B*0702	P		L, M, F, W, Y, A, I, V
B*3501	P		L, M, F, W, Y, I, V, A
B51	P		L, I, V, F, W, Y, A, M
B*5301	P .		I, M, F, W, Y, A, L, V
B*5401	P		A, T, I, V, L, M, F,
			W, Y

Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.

TABLE Ia

**			
SUPERMOTIFS	POSITION	POSITION	POSITION
	2 (Primary Anchor)	3 (Primary Anchor)	C Terminus (Primary
			Anchor)
A1	T, I, L, V, M, S	,	F, W, Y
A2	V, Q, A, T		I, V, L, M, A, T
A3	V, S, M, A, T, L, I	,	R, K
A24	Y, F, W, I, V, L, M, T		F, I, <i>Y, W, L, M</i>
B7 ·	P	,	V, I, L, F, M, W, Y, A
B27	R, H, K		F, Y, L, W, M, I, V, A
B58	A, T, S		F, W, Y, L, I, V, M, A
B62	Q, L, I, V, M, P	• •	F, W, Y, M, I, V, L, A
•			
MOTIFS			
A1 .	T, S, M		Y
A1 .		D , E , <i>A</i> , <i>S</i>	Y
A2.1	V, Q, A, T*	· .	V, L, I, M, A, T
A3.2	L, M, V, I, S, A, T, F,		K, Y, R, H, F, A
•	C, G, D		
A11	V, T, M, L, I, S, A,		K, R, H, Y
,	G , N, <i>C</i> , <i>D</i> , <i>F</i>		
A24	Y,F,W		F, L, I, W

^{*}If 2 is V, or Q, the C-term is not L

Bolded residues are preferred, italicized residues are less preferred: A peptide is considered motif-bearing if it has primary anchors at each primary anchor position for a motif or supermotif as specified in the above table.

TABLEII

	10				-		
	C-terminus		1°Anchor Y			1°Anchor Y	
	∞		Y,F,W,			D,E,	G,P,
	E.		D,E,Q,N,			A,S,T,C, L,I,V,M,	P,G,
NO	(0		P,	Α,		A,S,T,C,	R,H,K,
POSITION	[2]			ზ			P,Q,N,
	<u>'ব</u> ্ব		Y,F,W,	Α,		G,S,T,C,	D,E,
•	· [6]	t	D,E,A,	R,H,K,L,I,V A, M,P,		1°Anchor D,E,A,S	
	[@]		1°Anchor S,T,M,			A,S,T,C,L,I V,M,	R,H,K,D,E, P,Y,F,W,
			G,F,Y,W,	· D,E,		G,R,H,K	¥
		S	Al preferred 9-mer	deleterious D,E,		ргеfепеd G,R,H,K	deleterious A
		MOTIFS	A1 9-mer			A1 9-mer	

						POSITION	z				
		[]		<u> </u>	<u>[4]</u>	[5]	IS		∞	9 or C-terminus	C-terminus
A1 10-mer	регетер	Y,F,W,	1°Anchor S,T,M	D,E,A,Q,N,	Ą,	Y,F,W,Q,N,		P,A,S,T,C, G,D,E,		Т	1°Anchor Y
	deleterious	G,P,		R,H,K,G,L,I V,M,	D,E,	R,H,K,	Q,N,A	R,H,K,Y,F, R,H,K, W,	R,H,K,	∀	
A1 10-mer	preferred	Y,F,W,	S,T,C,L,I,V M,	1°Anchor D,E,A,S	Ą,	Y,F,W,		P,G,	ර	Y,F,W,	<u>1°Anchor</u> Y
	deleterious	R,H,K,	R,H,K,D,E, P,Y,F,W,			Ъ,	G,	·	Р, В, Н, К,	Q,N,	
A2.1 9-mer	ргебепед	Y,F,W,	1°Anchor L,M,I,V,Q, A,T	Y,F,W,	S,T,C,	Y,F,W,		Α,	d	1°Anchor V,L,I,M,A,T	
	deleterious	D,E,P,		D,Е,R,К,Н			к,к,н	D,E,R,K,H			
A2.1 10-mer	регене	A,Y,F,W,	1°Anchor L,M,I,V,Q, A,T	L,V,I,M,	Ď		ڻ		F,Y,W,L, V,I,M,		1°Anchor V,L,I,M,A,T
	deleterious	D,E,P,		D,E,	R,K,H,A,	ъ,		R,К,Н,	D,E,R,K, R,K,H, H,	R,K,H,	

	C- terminus	4		·				1°Anchor F,L,I,W			
	@ p	C-termins 1ºAnchor K,Y,R,H,F,A		<u>1°Anchor</u> K" <i>RY,H</i>		1°Anchor F,L,I,W			D,E,A,	1°Anchor R,K	
	œ	oʻ.		Ą,	Ğ,	Y,F,W,	A,Q,N,		Q,N,	А,Р,	D,E,
				Y,FW,	A	Y,F,W,	.	of .	Ą	Y,F,W,	D,E,
NO	(Ø)	Y,F,W,		Y,F,W,			D,E,R,H,K,		D,E	Y,F,W,	D,E,
POSITION	S	Ą		Α,			Q,N,P,	Y,F,W,P,	R,H,K		A,D,E,
	4	P,R,H,K,Y, F,W,		Y,FW,		S,T,C	Ğ,	e,	N,Q	P,	
	ത്ര	Y,F,W,	D,E	Y,F,W,			D,E,		G,D,E	Y,F,W,	D,E,
	[2]	1°Anchor L,M,V,I,S, A,T,F, <i>C</i> , <i>G</i> <i>D</i>		1°Anchor V,T,L,M,I, S,A,G,N,C, <i>D,F</i>		1°Anchor Y,F,W,M		1°Anchor Y,F,W,M		1°Anchor M,V,T,A,L,	
		R,H,K,	D,E,P,	Ą	D,E,P,	Y,F,W,R,H,K,	D,E,G,			R,H,K,	D,E,P,
		preferred	deleterious	ргебетед	deleterious	preferred	deleterious	preferred	deleterious	A3101 preferred	deleterious
		А3		A11		A24 9-mer		A24 10-mer		A3101	

						POSITION	7				
				ලා	<u> </u>	2	9		<u></u>		C- terminus
A3301	А3301 preferred		l°Anchor M,V,A,L,F, <i>I,S,T</i>	Y,F,W				A,Y,F,W		C-terminus <u>1°Ancho</u> r R,K.	
	deleterious	G,P		D,E							
A6801	А6801 preferred	Y,F,W,S,T,C,	1°Anchor A,V,T,M,S, L,I			Y,F,W,L,I, V,M		Y,F,W,	ų	<u>1°Anchor</u> R,K	
	deleterious	G,P,		D,E,G,		R,H,K,			À,		02
B0702	В0702 preferred	R,H,K,F,W,Y,	1°Anchor P	R,H,K,	·	R,H,K,	К,Н,К,	R,H,K,	P,A,	1°Anchor L,M,F, <i>W,Y,A</i> ,	
	deleterious	D,E,Q,N,P,		D,E,P,	D,E,	D,E,	G,D,E,	Q,N,	D,E,		
B3501	В3501 preferred	F,W,Y,L,I,V,M,	<u>1°Anchor</u> P	F,W,Y,	·			F,W,Y,		1°Anchor L,M,F,W,Y,I,	
	deleterious	A,G,P,	:			G,	Ġ,				
						•					

	C- terminus						
	ලා දි	C-terminus 1ºAnchor L,I,V,F,W, Y,A,M		1ºAnchor I,M,F,W,Y,	A,L, V	1°Anchor A,T,I,V,L,	
	Ø	F,W,Y,	G,D,E,	F,W,Y,	D,E,	F,W,Y,A,P,	D,E,
		ර	D,E,Q,N,	L,I,V,M,F, W,Y,	R,H,K,Q,N,	A,L,I,V,M,	Q,N,D,G,E,
NC	9		Ą	٠	ර		, D,E,
POSITION		F,W,Y,	D,E,	F,W,Y,		L,I,V,M,	R,H,K,D,E, D,E,
	4	S,T,C,		S,T,C,			
	ഇ	F,W,Y,		F,W,Y,		F,W,Y,L,I,V M,	G,D,E,S,T,C,
	团	<u>1°Anchor</u> P		1°Anchor P		<u>1°Anchor</u> P	
	I I	L,I,V,M,F,W,Y,	A,G,P,D,E,R,H,K, S,T,C,	L,I,V,M,F,W,Y,	A,G,P,Q,N,	F,W,Y,	G,P,Q,N,D,E,
		ргебетед	deleterious	B5301 preferred	deleterious	B5401 preferred	deleterious
		B51		B5301		B5401	

Italicized residues indicate less preferred or "tolerated" residues. The information in Table II is specific for 9-mers unless otherwise specified. Secondary anchor specificities are designated for each position independently.

	6	М, Н	W, D, E	A, V, M		I, V	ŋ				
	∞				Q		z				
		М, Н,	ጟ	M,	G, D, E,	M,	G, R, D,				
	1° anchor 6	V, S, T, C, P, A, L, I, M,		V, M, A, T, S, P, L, I, C,		I, V, M, S, A, C, T, P, L,		V, M, S, T, A, C, P, L, I,	1° anchor 6		К, В, Н
POSITION	2	ъ́т.			C, W, D				5		
	(35)	•	W,	P, A, M, Q,	F, D	,	ර		1° anchor 4	Q	D, N, Q, E, S, T
	<u>6</u>	Ŧ,			С, Н	Μ,			<u></u>		
	[2]	M,			C	M,	ర		[2]		
	1° anchor 1	F, M, Y,L, I, V, W,		M, F, L, I, V, W, Y,		M, F, L, I, V, W, Y,		M, F, L, I, V, W, Y,	1° anchor 1	L, I, V, M, F, Y,	L, I, V, M, F, A, Y,
Ш	FS	ргебетед	deleterious	preferred	deleterious	preferred	deleterious	DR Supermotif	DR3 MOTIFS	pa.	pə.
Table III	MOTIFS	DR4		DR1		DR7		DR S	DR3 1	motif a preferred	motif b preferred

Italicized residues indicate less preferred or "tolerated" residues. Secondary anchor specificities are designated for each position independently.

WO 01/45728 PCT/US00/35516

Table IV: HILA Class I Standard Peptide Binding Affinity.

ALLELE	STANDARD	SEQUENCE	STANDARD
	PEPTIDE	(SEQ ID NO:)	BINDING AFFINITY
			(nM)
A*0101	944.02	YLEPAIAKY	25
A*0201	941.01	FLPSDYFPSV	5.0
A*0202	941.01	FLPSDYFPSV	4.3
A*0203	941.01	FLPSDYFPSV	10 .
A*0205	941.01	FLPSDYFPSV	4.3
A*0206	941.01	FLPSDYFPSV	3.7
A*0207	941.01	FLPSDYFPSV	23
A*6802	1072.34	YVIKVSARV	8.0
A*0301	941.12	KVFPYALINK	11
A*1101	940.06	AVDLYHFLK	6.0
A*3101	941.12	KVFPYALINK	18
A*3301	1083.02	STLPETYVVRR	29
A*6801	941.12	KVFPYALINK	8.0
A*2402	979.02	AYIDNYNKF	12
B*0702	1075.23	APRTLVYLL	5.5
B*3501	1021.05	FPFKYAAAF	7.2
B51	1021.05	FPFKYAAAF	5.5
B*5301	1021.05	FPFKYAAAF	9.3
B*5401	1021.05	FPFKYAAAF	10

Table V. HLA Class II Standard Peptide Binding Affinity.

Allele	Nomenclature	Standard	Sequence	Binding
		Peptide	(SEQ ID NO:)	Affinity
1			3	(nM)
DRB1*0101	DR1	515.01	PKYVKQNTLKLAT	5.0
DRB1*0301	DR3	829.02	YKTIAFDEEARR	300
DRB1*0401	DR4w4	515.01	PKYVKQNTLKLAT .	45
DRB1*0404	DR4w14	717.01	YARFQSQTTLKQKT	50
DRB1*0405	DR4w15	717.01	YARFQSQTTLKQKT	38
DRB1*0701	DR7	553.01	QYIKANSKFIGITE	25
DRB1*0802	DR8w2	553.01	QYIKANSKFIGITE	49
DRB1*0803	DR8w3	553.01	QYIKANSKFIGITE	1600
DRB1*0901	DR9	553.01	QYIKANSKFIGITE	75
DRB1*1101	DR5w11	553.01	QYIKANSKFIGITE	20
DRB1*1201	DR5w12	1200.05	EALIHQLKINPYVLS	298
DRB1*1302	DR6w19	650.22	QYIKANAKFIGITE	3.5
DRB1*1501	DR2w2β1	507.02	GRTQDENPVVHFFKNIV	9.1
			TPRTPPP	
DRB3*0101	DR52a	511	NGQIGNDPNRDIL	470
DRB4*0101	DRw53	717.01	YARFQSQTTLKQKT	58
DRB5*0101	DR2w2β2	553.01	QYIKANSKFIGITE	20

Table VI

	Allelle-specific HLA-supertype members	pe members
HLA-supertype	Verified ^a	Predicted ^b
A1	A*0101, A*2501, A*2601, A*2602, A*3201	A*0102, A*2604, A*3601, A*4301, A*8001
A2	A*0201, A*0202, A*0203, A*0204, A*0205, A*0206, A*0207, A*0214, A*6802, A*6901	A*0208, A*0210, A*0211, A*0212, A*0213
A3	A*0301, A*1101, A*3101, A*3301, A*6801	A*0302, A*1102, A*2603, A*3302, A*3303, A*3401, A*3402, A*6601, A*6602, A*7401
A24	A*2301, A*2402, A*3001	A*2403, A*2404, A*3002, A*3003
B7	B*0702, B*0703, B*0704, B*0705, B*1508, B*3501, B*3502, B*3503, B*3503, B*3503, B*3504, B*3505, B*3506, B*3507, B*3508, B*5101, B*5101, B*5102, B*5103, B*5104, B*5105, B*5301, B*5401, B*5501, B*5502, B*5601, B*5602, B*6701, B*7801	B*1511, B*4201, B*5901
B27	B*1401, B*1402, B*1509, B*2702, B*2703, B*2704, B*2705, B*2706, B*3801, B*3901, B*3902, B*7301	B*2701, B*2707, B*2708, B*3802, B*3903, B*3904, B*3905, B*4801, B*4802, B*1510, B*1518, B*1503
B44	B*1801, B*1802, B*3701, B*4402, B*4403, B*4404, B*4001, B*4002, B*4006	B*4101, B*4501, B*4701, B*4901, B*5001
B58	B*5701, B*5702, B*5801, B*5802, B*1516, B*1517	
B62	B*1501, B*1502, B*1513, B*5201	B*1301, B*1302, B*1504, B*1505, B*1506, B*1507, B*1515, B*1520, B*1521, B*1512, B*1514, B*1510

Verified alleles include alleles whose specificity has been determined by pool sequencing analysis, peptide binding assays, or by analysis of the sequences of CTL epitopes. તું

Predicted alleles are alleles whose specificity is predicted on the basis of B and F pocket structure to overlap with the supertype specificity. ج.

	Binding Data
Table VII	Prostate A01 Supermotif Peptides with

		٠
A*0101	0.0110	
No. of Amino Acids		;∞
Position	122 147 147 118 119 119 129 131 111 137 140 166 168 168 173 173 173 173 174 175 175 175 175 175 175 175 175 175 175	. 09
×		
tein	PAP Kallikrein PSA PSA PSA PSA PSA PAP PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS	0.
	. No. of Amino Acids	Position Amino Acids 122

٠															•																•											
Sinding Data	A*0101		0.0980					0.0260										0.0025	0.4800	0.4000						0.0001												•			0.0260	0070'0
Table VII Prostate A01 Supermotif Peptides with Binding Data	No. of Amino Acids	=	6	∞	∞	=	6	01	= •	50 0 (y 5	<u>2</u> . α	၀ ထ	→ ∞	8	11	∞	σ;	<u>-</u> :	2 ∞	• =	;∞	80	6	= '	•	o 0	10	8	80	oo (`	6	6	6	x 0 x 0	» =	6	Ξ	∞ o	•
Prostate A01.5	Position	216	56	0.21	542	542	557	557	7.27		33	50	561 .	161	646	546	639	529	204	961	961	427	089	295	74	168	118	915	158	154	403	(49)	145	238	221	217	75 .	128	. 82	270	76	NΑ
	Protein	PAP	PAP	PAP	PSM	PSM	PSM	PSM	PSM	PAP	PSM	I SIMI DCA	rsA Kallikrein	PSA	PSM	PSM	PSM	PSM	PAP	PAP	PAP ·	PSM	PSM	PAP	PAP	PSM	Z Z	PSM	Kallikrein	PSA	PSM	Kallikrein DS A	NS.	PSM	Kallikrein	PSA	Kallikrein DSA	PAP	PSM	PAP	Kallikrein	PSA

	ପା	
	Dat	
	nding	
	8	
	with	
4	ides	
	eptic	
	II E	
4	OU.	
	ada	
	9	
	8	
	tate	
	Pros	

	Prostate A01 Sup	Prostate A01 Supermotif Peptides with Binding Data	inding Data
Protein	Position	No. of Amino Acids	A*0101
Kallikrein	34	01	
NSW WASH	347	<u> </u>	0.0048
DOM	130	2:	
NSG.	171	= 0	
WSd.	27.5	\ <u>_</u>	
PSA	5 9		
PSA	12	· •	
PSM	226	۰, ۵	
PSM	226	10	
PSM .	512	10	
PSM	. 52	01	
PSM	200	01	
PSM	165	10	
PSM	157	80	
PSM	661	==	
PSM	514	8	
PSM	514	=	
PAP	193		
PSM	623	Ξ,	
PSM	817	∞ ;	
r JM Kallikrein	324	2.0	
PSA	247	o	
PSA	91	, <u>c</u>	
Kallikrein	70	. 01	
PSM	34	80	
PSM	34	6	
PSA ,	70	∞	
PSM	441	6	
Kallikrein	178	=	
T SIM DAD	008	oo o	
PAP	148	o =	
PAP	238	: 9	12.0000
PAP	194	01	
PAP	14	01	
PAP	14	=	
Kallikrein	179	.01	
PSA	<u>8</u>	∞ c	
PSM		=:	
PAP	CIS 09C	17	6000
PAP	907	2 5	0.0082
PSW	261	2 0	0.0200
PAP	359	2 9	

Prostate A Position	Position No. of Amino Acids	A*0101
9	663 8	
_	11	
•	8. 6(
-	, x	
	66	
•	<u> </u>	
E .	91	
	9	
	11	
9	6 8	
9	30	
•	: <u>-</u>	
•		
	6	1.2000
2	11	
2	2 10	
. "	2 0	
, ,		
, n		
4 (01000
1 (•	0.0010
1	· 5	0.0031
•		
7		
•		
7	_	
•		
7	_	
	_	
9	6 2	
	11	
	22	
	9	
io	8	
ν		
n ir		
· -		
4	440	
. 4	•	
) -	. :	
ř.		

Table VII	Prostate A01 Supermotif Peptides with Binding Data

th Binding Data	A*0101	11.0000	0.0430
Table VII Prostate A01 Supermotif Peptides with Binding Data	No. of Amino Acids	0 8 8 E 9 0 E 8 E 8 E 8 E 8 E 8 E 8 E 8 E 8 E 8 E	
Prostate A01 Sur	Position	28 414 463 463 89 129 291 291 130 15 15 13	23.7 615 615 615 317 317 626 626 630 68 68 690 690 690 690 690 690 690 690 690 690
		.j.	
•	Protein	PAP PSM Kallikrein PSM PSM PSM PSM PSM PSM PAP PAP	PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM

	Prostate A01 Sup	Table VII Prostate A01 Supermotif Peptides with Binding Data	linding Data	
Protein	Position	No. of Amino Acids	A*0101	
PSM	154	==		
PAP	293			
Kallikrein	. 32	01	0.1500	
PSA	88	01	0.1500	
PAP	129	01		
Kallikrein	192			
PSA	188	. =		
PSA	-	01		
PSM	394	6		
PSM	602	11		
Kallikrein	74	80		
PAP	706	6	0.0046	
PSM ·	497	. 01		
PAP	84	6.		
PAP	155	. 01		
PSM	228	∞		
Kallikrein	188	∞		
PSM	625	o.		
PSM	537	10	-	
Kallikrein	243	01		
PSA	239	01		
PSM	371	11		
PSM .	176	01		
PSM	176	-		

	Information
_	with Binding
Table VII	otif Peptides
	A02 Superm
	Prostate,

A*6802	0.0018	0.0009	0.0012
A*0206	0.0004	0.0250	0.0051
A*0203	0.0140	7.2000	0.1100
A*0202	0.0100	6.0000 0.0200 0.0050	0.0038
A*0201	0.0002 0.0002 0.0003 0.0002 0.0002 0.0002	0.0520 0.0590 0.0590 0.0230 0.0030 0.0009	0.0008 0.0410 0.0180 0.0150 0.0002
No. of Amino Acids	62868622226262626	,	, 2 6 2 2 I 8 8 6 2 I 8 6 8 I 6 I
Position	741 742 742 742 735 735 735 59 63 63 63 121 121 13	299 299 711 122 122 147 143 235 231	231 9 9 25 25 217 217 217 217 217 217 217 217 181 181 181 133
		·	
		·	
Protein	PSM PSM PSM PSM PSM PSM PSM PSM PSM PSA PSA PAP PAP PAP PAP	PAP PAP PAP PSM PAP PAP RAIlkrein PSA KAllikrein RAIlkrein	PSA Kallikrein PSM PSM PSM PSM PSM PSM PSA PSA PSA PSM

	Prostate Al	Table VIII Prostate A02 Supermotif Peptides with Binding Information	Table VIII Peptides with	Binding Infor	mation			
Protein	Position	No. of	A*0201	A*0202	A*0203	A*0206	A*6802	
		Amino Acids	I					
PAP	189	o	0.0005		ů.			
PSM	49	01						
PAP DAD	274	2:	0.0002					
₩S.d	2/4 11	==						
PSA	. 4	_ ∝	0 0003					
PSM	365	: 00						
PSM	365	6	0.0001					
PSM	365	0	0.0002					
. NSd	286	o , o	0.0042					
. ×	635	× c					-	
PSA	131	n 0	0 0001					
Kallikrein	17	, o	0.0001	0.0026	0.0013	0.0020	0.0610	
Kallikrein	17	01	0.0014	0.0510	0.0490	0.0035	0.0058	
NS.	601	∞						
FSIM Kallikrain	601	= 4	. 000	0000				
WSd	. 65	×0 0	-0.0001	0.0005	0.0011	0.0004	0.0003	
Kallikrein	198	° =	0.0001	0.0003	0.0027	-0.0001	-0.0002	
PSA	194	=	0.0013	0.0370	0.0250	0.0002	0.0081	
Kallikrein	234	. ∞	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	
Kallikrein	234	6.	0.0002	0.0013	0.1100	0.0004	0.0001	
Kalikrein PS A	234	= •	0.0008	0.0033	0.0120	0.1700	-0.0002	
TOTAL	230	თ :	0.0001	00.00		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
PSA	180	= 0	0.0008	0.0130	0.0071	0.0016	0.0023	
PSA	180	. 9	0.0001					
Kallikrein	184	6	-0.0001	90000	0.0025	0.0002	0.0012	
Kallikrein PS 4	184	0	0.0074	0.0710	0.0200	0.0030	0.0071	
PSA	. 79	∞ c	0.0001					
PSA	7 62	v :2	0.0003					
Kallikrein .	99	2 ∞	0.0001	0.0006	0.0006	-0.0001	-0.0001	
Kallikrein	99	01	0.0001	0.0220	0.0083	0.0002	-0.0001	
rar	372	0 1	0.0002					
PSM	466	∞ 0	0.0001	0.0001	0.0001	0.0012	0.0004	
PSM	466	0 0	0 0004					
PSA	691	`=	0.0001					
Kallikrein	173	=	0.0002	0.0031	0.0020	0.0009	0.0007	
PSM	422	∞ :						
WSd.	422	= 5	70000					
PSM	301	2 o	0.0004					
PSA	130	\ x c	-0.0001	0.0003	-0.0001	-0.0001	0.0001	

	Prostate A	Table VIII Prostate A02 Supermotif Reptides with Binding Information	Table VIII Peptides with	Binding Inform	nation			
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
					- Control			0
PSA	130	01	0.0001					
PSM	714	= :						
1 Sin DΔD	130	∞ ∘	0000					
ΑSA	107	S 0	0.0002					•
PSA	121	» :	0.000					
Kallikrein	120	= =	0.0001					
PSA	116	: =	0.002					
PSA	136	: ∞	0.0001					
	136	6	0.0003					
PSA	136	Ξ	0.0041	0.0180	0.0100	0.0001	0.0009	
Kallikrein	m ·	∞	0.0001	-0.0002	-0.0001	-0.0001	90000	
Nallikrein PCM ·	در زر	0 .	0.0010	0.0180	0.0052	0.0230	0.0051	
MSd	5.5	∞⊊	*000					
Kallikrein	182	2 =	0.000	0.0018	0.0130	10000	02100	
PSM	191	: 2	0.000	0.0010	00100	0.0001	0.01	
PSM	161	: =						
PSA	86	10	0.0001					
PSM .	999	6						
FSM	999	=:						
Nainkrein PAP	70 <i>7</i>	_ °	0.0001	-0.0001	0.0005	-0.0001	0.0005	
Kallikrein	85	co	10000	0000	10000	-0.0001	0000	
PSA	81	o 00	-0.0001	0.000	-0.0001	-0.0001	0.0016	
PAP	230	6	0.0002					
PAP	290	σ.						
PAP	067	<u>.</u>						
PSA	178	= =	10000					
PAP .	801	o						
PAP	108	10						
MSd	202	= 5				•		
Kallikrein	134	2 ∝	1000	10000	(0000	1000	0.000	
Kallikrein	134	, <u>0</u>	0.0012	0.0230	0,0460	0.0004	0.0017	
PAP	301	=						•
PSM	48	=						-
PSM	285	œ						
POM	285	01	0.0002					
PAP	766	2 ∘	0.0001					
PAP .	266	01						
PSM	397	00				•	•	
PSM .	397	6	0.0002					
100	200	×						

Protein		Prostate A	Table VIII Prostate A02 Supermotif Peptides with Binding Information	Table VIII Peptides with	Binding Infor	mation	,		
109 9 0,00028 586 8 8 8 8 8 8 8 8 8	Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
100 9 0.0028 237 10 0.0008 237 10 0.0001 127 10 0.0001 127 11 0.0001 127 11 0.0001 127 11 0.0001 127 11 0.0001 100 18 10 100 10 10 100 <									
250 8 8 6 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PSM	109	6	0.0028					
237 8 8 1 240 100008 227 10 000008 227 10 000000 227 11 000001 227 11 000001 227 11 000001 228 10 000001 238 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	WCJ WSd	286	∞ :						
237 8 0 00008 227 10 00008 228 10 00001 127 9 00001 127 9 00001 127 10 00001 127 10 00001 128 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	PAP	£ 5	= •						
240 0,0008 240 10 0,0000 127 8 0,00001 127 11 0,0001 127 11 0,0001 127 11 0,0001 127 11 0,0001 127 11 0,0001 128 8 87 10 0,0002 134 10 0,0002 134 9 0,0002 135 8 8 152 10 0,0002 135 8 8 152 10 0,0002 135 8 8 152 10 0,0002 152 10 0,0002 153 1 1 1 0,0002 154 8 1 1 1 0,0002 155 1 1 1 0,0001 155 1 1	PAP	. 237	o «						
127 8 0,00001 127 8 0,00001 127 9 0,00001 127 9 0,00001 127 9 0,00001 128 8 8 8 129 9 0,00001 120 9 0,00002 120 9 0,00002 120 9 0,00002 120 9 0,00002 120 9 0,00002 120 9 0,00002 120 9 0,00002 120 9 0,00002 120 9 0,00002 120 9 0,00002 120 9 0,00001 120 9 0,00014	PAP	237	o 2	0.0008					
127 9 0,0001 127 9 0,0001 127 9 10 0,0001 127 1 1 0,0001 128 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	PAP	240	01	0.0002					
127 9 0,0001 127 19 0,0001 128 11 0,0001 128 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	PSA	127	∞	0.0001					
567 11 00001 317 11 00001 318 8 76 10 87 10 100 8 100 8 100 8 242 10 252 10 252 10 252 10 252 10 253 18 254 11 255 10 255 10 256 18 256 19 257 10 257	PSA	127	6	10000					
560 110 0,0001 378 8 8 76 110 100 18 87 10 100 100 100 100 100 100 234 10 234 10 235 8 8 235 10 236 8 8 236 8 8 236 8 8 236 8 8 237 11 231 11 242 11 252 10 253 10 253 11 253 11 254 10 255 10	PSA	127	=	0.0001					
3.17 11 7	PSM DAB	260	01	0.0001					
756 8 87 10 100 10 100 10 7 8 542 10 0,0002 334 10 522 9 0,0002 523 10 727 9 727 9 727 9 727 9 727 9 727 9 727 8 8 8 8 9 0,0002 187 8 187 8 42 9 0,0002 187 8 42 11 43 9 0,0001 44 9 9 0,0001 67 0 10 0,0001 18 61 10 0,0001 18 8 42 11 0,0001 67 0 10 0,0001 18 61 10 0,0001 18 62 11 0,0001	DAD .	317	= <						
87 100 8 100 100 100 100 100 100 100 100 1	. dVd	328	∞ S						
100	WSd	8, 0	2 5						
100 10 7 8 8 334 10 0.0002 334 10 0.0002 522 9 0.0002 522 9 0.0002 523 9 0.0002 524 10 0.0002 525 10 527 9 0.0002 528 9 0.0002 536 8 8 0.0002 548 11 0.0002 548 11 0.0002 559 11 0.0014 570 10 0.0014 570 10 0.0014	PAP	901	2 ∝						
7 8 7 8 9 0.0002 3.34 10 0.0002 3.34 10 0.0002 3.34 11 1 0.0002 5.22 9 0.0002 5.22 9 0.0002 5.22 10 0.0002 5.22 10 0.0002 5.22 10 0.0002 5.22 10 0.0002 5.22 10 0.0002 5.22 10 0.0002 5.22 11 11 11 11 11 11 11 11 11 11 11 11 1	PAP	80	∘ ⊆						
242 10 0,0002 334 9 0,0002 334 10 0,0002 522 9 0,0002 522 10 0,0002 522 10 0,0002 523 10 0,0002 535 8 0,0002 536 8 8 0,0002 536 8 8 11 536 9 0,0002 548 11 542 11 542 8 6 570 10 0,0160 670 10 0,0014 58 18 9 0,0011	PSM	7	2 ∝						
542 10 0,0002 334 10 0,0002 334 11 0,0002 522 9 0,0002 727 8 727 727 10 351 8 0,0002 351 9 0,0002 356 8 0,0002 356 8 0,0002 418 11 42 42 8 42 11 0,0014 670 10 0,0014 18 9 0,0011 20 11 0,0014 20 11 0,0014 20 11 0,0014 20 11 0,0014 20 11 0,0014 20 11 0,0014 20 11 0,0014	PSM	7	. 6						
334 9 0,0002 334 10 522 9 0,0002 522 10 727 8 727 8 727 9 727 9 351 8 351 9 0,0002 351 11 42 8 42 9 42 11 61 10 0,0160 670 10 0,0014 18 9 0,0011 18 9 0,0011	PSM	542	01	0.0002					
334 10 522 9 0,0002 522 10 727 8 727 8 351 8 351 8 351 8 356 8 11 356 9 0,0002 418 11 187 8 42 9 42 11 61 10 0,0160 670 110 0,0014 18 9 0,0011 18 9 0,0011 18 9 0,0011	PAP	334	<u>.</u> 0	0.0002					
334 11 522 9 0.0002 522 10 727 10 351 8 351 8 356 8 9 0.0002 356 8 9 0.0002 418 11 187 8 42 9 42 11 61 10 0.0160 670 10 0.0014 18 9 0.0011 20 11 20 11 20 11	PAP	334	. 10						
522 9 0,0002 522 10 727 8 727 8 727 8 351 8 351 9 0,0002 351 11 356 9 0,0002 418 11 187 8 187 8 42 9 670 10 0,0160 670 11 0,00014 18 9 0,0011 20 11 20	PAP	334	Ξ						
727 10 727 10 351 8 8 351 9 0.0002 356 9 0.0002 418 11 42 8 42 9 8 42 11 61 10 0.0014 63 11 63 11 64 10 0.0014	PSM	522	o . :	0.0002					
727 9 727 10 351 8 351 8 356 9 0.0002 356 9 0.0002 418 11 187 8 42 9 42 11 61 10 0.0104 670 10 0.0014 18 9 0.0011 20 11 20 11 92 11	WSd.	777	o 6						
727 19 351 8 351 8 356 8 356 9 0.0002 356 9 0.0002 418 11 42 8 42 11 42 14 42 19 610 10 0.0014 18 9 0.0011 20 11 20 11 20 11 20 11	WSd	121	∞ c						
351 87 351 9 0.0002 356 8 8 356 9 0.0002 418 11 187 8 42 9 42 11 61 10 0.0160 670 10 0.0014 18 9 0.0011 20 11 33 111	PSM	727	ν Ξ						
351 9 0.0002 356 8 356 9 0.0002 418 111 187 8 187 11 42 8 42 11 61 10 0.0160 670 10 0.0014 18 9 0.0011 20 111 20 111 33 111	PSM	351	2 ∝						
356 8 356 8 356 9 0.0002 418 111 187 8 42 8 42 9 42 11 61 10 0.0014 670 10 0.0014 18 9 0.0011 20 11 20 11 33 111 650 0.0016	PSM	351	0	0.0002					
356 8 356 9 0.0002 418 11 187 8 187 11 42 8 42 11 61 10 0.0160 670 10 0.0014 18 9 0.0011 20 11 20 11 33 11 92 11	WS.d.	351	=						
418 11 0.0002 418 11 187 8 187 8 42 8 42 9 0.0160 670 10 0.0014 18 9 0.0011 20 11 20 11 33 11 92 11 651 10 0.0410 0.0000	DAD	356	00 (
1187 8 187 11 42 8 42 9 42 11 61 10 0.0160 670 10 0.0014 18 9 0.0011 20 11 20 11 92 11	MSd	970	ν:	0.0002					
187 11 42 8 42 9 42 11 61 10 0.0160 670 10 0.0014 18 9 0.0011 20 11 33 111 92 11	dVd.	187	= ∝						
42 8 42 9 42 11 61 10 0.0160 670 10 0.0014 18 9 0.0011 20 11 33 11 92 11	PAP	187	° =						
42 9 42 11 61 10 0.0160 670 10 0.0014 18 9 0.0011 20 11 33 11 92 11	PSM	42	_ ∞						
42 11 61 10 0.0160 670 10 0.0014 18 9 0.0011 20 11 33 11 92 11	PSM	42	0 00						
61 10 0.0160 670 10 0.0014 18 9 0.0011 20 11 . 33 11 92 11	PSM	42	=				•		
670 10 0.0014 18 9 0.0011 . 20 11 . 33 11 92 11 0.0010 0.0000 1.1000 0.0068	FSM	19	01	0.0160					
18 9 0.0011	FSM	029	0 10	0.0014					
20 11	מאס	æ 6	6 ;	0.0011				•	
55 11 92 11 163 10 0.0410 0.0040 1.1000 0.0068	WSd	33	=:		•				
rein 165 10 0.0410 0.0040 1.1000 0.0068	PAP	6	= =						
	Kallikrein	37	= 5	01700	0000	0001	0,000	,,,,,,,	

	Prostate A	Table VIII Prostate A02 Supermotif Peptides with Binding Information	Table VIII Peptides with	Binding Infor	mation			•
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
PSA BSA	m r	ο:	0.0150					•
. VC1	3	= 9	0.0160					
Wyd	101	2 .	0.0310					
. WSd	2 %	• =						
Kallikrein	195	: 0	0 000	01000	0.0160	0.0100	. 0.000.	
PSA.	161	۰ ۵	0.0059	× 100:0	2010.0	200	0.000	
PAP .	164	. o o						
PAP	164	· 6						
PSM	525	=	•					
PSA	98	=						
Pom.	333 .	<u>0</u>	0.0001					
rar	221	∞						
DEM	221	= '						
FOM	- !	∞ ;						
POW		0,						
NOW NOW	13/	o :						
PAP	137	2 9	0.0001					
PSA	27	2 5	20000					
PSA .	2.	2 =	0.0003	0000	01100	20000	21000	
PSM	391	Ξ∝	0.1/00	0.0220	0.01	0.0000		
PSM	391		0.0002					
PSM	24	- =					•	
PSM	364	0	0.0001		٠			
PSM	364	10	0.0002					
PSM	364	=						
Kalitkrein	91:	0 :	0.0017	0.0520	0.0380	0.0041	0.0057	
Nallingill	9 6	=	0.0001	0.0004	0.0004	0.0003	0.0003	
NS.	787 787	× Z						
PSM	529	<u> </u>						
PSM	385	2 ∝		,				
PSM	385	6						
PSM	385	01	0.0002					
PSM	385	=						
PAP	248	=					•	
Kallikrein	225	=	0.000	0.0014	0.0230	0.0001	0.0004	
PSA	221	=	0.0001					
PAP			0.0002					
PSM PSM		6	0.0210					
PSIVI DAD	9 5	∞ ;						
Mod	9,7	2 ∘	0.0340					
PAP	174	n :	0.0079					
WS.	689	= =						
	2	-						

	Prostate A	<u> Table VIII</u> Prostate A02 Supermotif Peptides with Binding Information	Table VIII Peptides with	Binding Infor	mation		:	
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
7.04								
PSIM Kallikrein	788	0.0	0.0340	0.000	4.7000	0.0015	0.0260	
Kallikrein	140	0 0	0.000	0.0003	0.0013	0.000	-0.0001	
Kallikrein	140	=	0.0003	0.0200	0.0450	0.0006	0.0020	
PAP	295	∞						
Kallikrein	500	6	0.0002	0.0007	0.0015	-0.0001	-0.0002	
PAP	4.	∞ (
PSM	891	∞ ⊊	0100	1 4000	1 4800		0,0013	
WSd	80.	2 0	0.0910	7.4000	1.4000	0.0230	0.0013	
PSM	285 282	01	0.0024					
PSM	282	=						
PAP	199	11						
PAP	89	∞						
PSM	82	∞ -	•					
PSM	£ 8	6 ;						
MSd	226	= <						
PSM	238	y :						
Kallikrein .	52	- 6	0.0003				•	
PSA	84	0	0.0003					
Kallikrein	52	10	0.0004					
PSA	48	10	0.0004					
Kallikfein DC A	25	=:	0.0002	0.0005	0.0005	0.0014	-0.0001	
rsh pap	4 c	= •	0.0002	0.0005	0.0005	0.0014	-0.0001	
PAP	7,01	»			,			
PSM	252	- ∞						
PSM	252	10	0.0001					
PAP	128	∞ ·						
PAP	128	ο ;	0.0034					
PSM	345	2 ∝	0.0010					
PSM	345	0 0						
PSM	345	Ξ						
PSM	87	=						
Kallikrein Kollikrain	121	٥;	0.0020	0.0049	0.0005	0.0009	0.0003	
PSM	25		0.0290	0.0520	0.1100	0.0088	0.0004	
PAP	270	∵ ∝						
PAP	378	, 						
PAP PAP ·	44.5	0:	0.0002			•		
PSA	173	: o	0 000					
PSA	173	· =	0.0024					
PSM	283	10	0.0001					

Table VIII	otif Peptides with Binding Information
Table VIII	Prostate A02 Supermotif Peptides with 1

Protein	Position	No. of Amino Acids	A*0201	A*0202	A+0203	A*0206	A*6802	
Kallikrein	∞	∞	0.0001	-0.0002	-0.0001	-0.0001	0.0003	
Kallikrein	00	01	0.0013	0.0500	0.0180	0.0180	0.0005	
Kallikrein	œ (=	0.0009	0.0032	0.0270	0.0100	0.0061	
PSM	530	6						
PSIM.	242	э. ;	0.0001					
rar	188	≘ •	0.0002					
PSIM	130	σ,	0.0002					
FOIN	410 615	∞ ;						
PSM	3/3	01	0.0003					
PSA	69	∞ 0	0.0010					
PAP	135	6	. 1.3000					
PAP	135	=						
PAP	267	∞						
PAP	267	6	0.0001					
РАР	792	=				•	•	
PSM	258	=						
PSM	526	=						
PAP	284	∞						
PAP	284	6	0.0019			•		
PAP	284	01	0.0610					
PSM	96	01					٠	
Kallikrein	132	∞	0.0001	0.0010	0.0001	-0.0001	0.0002	
Kallikrein	132	01	0.0003	0.0084	0.0088	0.0004	0.0005	
PSM	52	6						
PSM	25	Ξ						
Kallikrein	226	01	0.0003	0.0100	0.0031	0.0005	0.0002	
Kallikrein	226	=	0.0003	0.0150	0.0007	0.0013	0.0350	
PSA	222	9	0.0003	0.0036	0.0030	0.0001	0.0003	
PSA	222	=	0.0010	0.0120	0.0096	0.0001	0.0003	
PSM	200	6 ;	0.0001					
FOM	160	= :					•	
POM	600	2:	0.0004					
DSM	208	= •				•		
N. W.	960		0000					
PSM	8 %		0.000					
PSM	723	01	0.0001					
PSM	193	; ∞						
PSM	193	6	0.0002					
PSM	193	01	0.0001					
PSM	193	=						
Kallikrein	131	∞	0.0004	0.0002	0.0017	0.0002	-0.0001	
Kallikrein	131	6	0.0047	0.0500	0.0420	0.0021	0.0002	
Kallikrein	131	=	0.0002	0.0053	0.1700	0.0011	9000'0	
PSM	166	9	0.0002					
PSM	187	œ						

	Prostate A	Prostate A02 Supermotif Peptides with Binding Information	Table VIII f Peptides with	Binding Inform	nation			
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
PSM	514	01	0.0140					
FAF	282	0 :	0.0002					
rar	282	=						
rsm . *se	304	10	0.0003					
FSA	991	6	0.0100					
PSA	166	0 ,	0.0370					
ואו	234	>						
rar Dan	234	0 :	0.0040					
rar	234	=						
FAF PSM	193	9 9	0.0026					
Mod	243	2:	0.0042					
. dVd	743.	= •						
Mod	127	∞ ∘	0000					
Mod	771	ν:	0.0007					
MSd	771	9 5	0.0001					
Myd	210	2:	0.0002					
Mod	710	= •						
Mod	707	×:						
WSd	341	= <						
. WSd	1.5	<i>y</i> 0						
PSM	213	o S						
Kallikrein	137	2 =	0000	0 0004	0000	0.0012	5000	
PSA	133	==	0.0031	0.000	0.000	0.0012	2000.0	
PSM	324	: =						
Kallikrein	191	6	0.0035	0.0092	0.1900	0.1600	0.0004	
Kallikrein	161	Ξ	0.0010	0.0280	0.0280	0.0160	0.0036	
PSA	187	6	0.0020		•			
Kallikrein	245	σ	0.0001					
FSA	241	o ;	0.0001					
በሊያ ወልክ	208	= :						
Mod	071	2 -	0.0017					
PSM	219	.	0000					
WSd	28	n 04	0.0002					
PSM	5	• =						
PSM	83	: <u>e</u>	0.0001					
PSM	83	: =						
PSM	110	œ						
PAP	31	œ						
PAP	31	6						
PAP	33	10	0.0002					
FAP	31	=						
7A7 0 ^ 0	œ ;	6	0.0002					
ΓΑΓ DAD	£87	σ.						
LAF	783	0						

	Prostate /	Table VIII Prostate A02 Supermotif Peptides with Binding Information	Table VIII Peptides with	Binding Infor	mation			
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
0 > 0	C	:		Ė				
PAP	697	- «						
PAP	, ,	2 ه	0 0061					
PSM	305		0.0001					
PAP	21	. 01	0.6000					
PAP	21	=						
Pom	34	2 °	0.0058					
PSM	470	× ×						
PSM	4	0	0.0180					
PSM	4	01	90000					
PSM	4	=						
PAP	9 4	6 :	0.0120					
PAP	306	= =	0.0017					
PAP	306	2 =	0.001					
PSM	4	; ∞						
PSM	141	10	0.0280	0.7500	1.5000	0.0043	90000	
Kallikrein PSA	123	∞ 0	0.0001					
PSA	. 119	o <u>c</u>	0000					
PSA	611	=	0.0023	0.0140	0.0150	0.0002	0.0010	
Kallikrein	123	10	0.0030	0.0290	0.9200	0.0010	0.0008	
Nallik/Jein Vollik/Jein	123	= •	0.0002	0.0007	0.0180	-0.0001	-0.0001	
Kallikrein	178	∞ ⊆	0.0003	0.00/3	0.0003	0.0021	-0.0001	
PSM	116	2 ∞	0.000	0.0000	0.0200	0.0020	0.0042	•
PAP	136	∞ ∞						
PAP	136	0 :	0.0074					
PSM	136	Ξ,	01.00					
Kallikrein	900	⊅ 5	0.0110					
PSA	711	10	0.0018					
PAP	113	œ						
PAP	113	ο;	0.0071					
PAP	13	2 =	0.0037					
PSM	469	. 0	0.0780	11.0000	4.8000	0.0340	0.0250	
PSM	469	01	0.0046					
PSA	167	∞ (
Kallikrein	121	~ ∝						
Kallikrein	171	. S						
PSM	650	0						
PSM	650 442	<u> </u>		•			•	
	!							

	Prostate A	<u>Table VIII</u> Prostate A02 Supermotif Peptides with Binding Information	Table VIII Peptides with	Binding Infort	nation		· :	
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
PSM	442	=						
PAP	258	0						
PAP	258	= :						
17A P.O. A. D.O. D.O	967	=			,			
rsa nsa	128	∞ :	-0.0001	-0.0001	0.0002	-0.0001	0.0001	
PSA PSA	128	01	0.0002					
PSA	4	∞	0.0003	-0.0001	9000.0	0.0007	0.0001	
PSA	4	01	0.0018	0.0450	0.0820	0.0110	0.0910	
PSA	4	=	0.0008	0.0014	0:0370	0.0025	0.0062	
PSM	268	=						
PSA	162	6	0.0003					
PSA	162	=	0.0007	0.0087	0.0074	0.0004	0.0021	
PSM	574	01						
PSM ·	574	=						
PSA	37	∵∞ ∞	0.0001					
PSA	37	6	0.0003					
Kallikrein	217	01	0.0004					
PSA	213	01	0.0004					
Kallikrein	217	=	0.0007	0.0034	0.0033	0.0049	0.0041	
PSA · ·	213	=	0.0007	0.0034	0.0033	0.0049	0.0041	
PSM	561	6						
PAP	40	=						
PSM	473	6	0.0001					
Kallikrein	54	∞	0.0001					
PSA	20	∞	0.0001					
Kallikrein	54	6	0.0001		•			
PSA	20	6	0.0001					
Kallikrein ·	54	0	0.0001					
roa Kanaa	3	2	0.0001					
	¥ 8	=:	0.0001					
Myd) 20 30	= -	0.0001	0.000	0000	9011	0000	
MXd	2,5	ν ,	0.0200	0.0030	0.0004	0.1100	0.000	
Kallikrein	07	2 σ	0.0020	20000	28000	. 00100	2000	
PAP	263	. 0	0.0020	0.0027	C000.0	0.0100	0.0002	
PSM	174	. 0						
PAP	298	. 0	0.0037					
PAP	298	0	0.0010					
Kallikrein	961	∞	0.0014	0.0020	0.0018	0.0001	0.0002	
PSA	192	œ	90000	0.0012	0.0033	-0.0001	0.0001	
Kallikrein	122	6	0.0610	•				
PSA	118	0	0.0610					
PSA '	118	=	0.1400					
Kallikrein	122	=	0.0044	0.0072	0.2100	0.0019	. 00000	
PAP	343	=						
PSM	663	6	0.4400	5.7000	5.8000	0.4900	0.0410	

Table VIII	ate A02 Supermotif Peptides with Binding Information
	rostate A
	괵

					7			
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
PAP .	232	10	0000					
PAP	373	? o						
PSM	583	. 6	0.0170					
PSM	583	. 2	0.0140					
PSM	. 583	: =						
PSM	451	: =						
PSM	216	: 5	, , , , ,					
PSM	216	2 =	70000					
PSM	04	= 5						
WSd	25.	2 <						
·	75	× •						
Non Non	7	~						
MC.	51	2						
PAP	119	=						
Kallikrein	79	.	0.0002	0.0035	0.0004	-0.0001	0.0004	
PSM	3	6	0.0001					
PSM	33	01	0.0027			•		
PSM ·	3	=						
PSM	260	; σ	0 000					
PSM	260	, <u>-</u>	0000					
PSM .	2.5	2 0	0.0026					
PSM	57	` =	0.0020					
Kallikrein	5 2		0 0043	0,000	. 0	0,000	- 0000	
WSd	301	2 ∈	0.0043	0.0200	0.0400	0.0058	0.0020	
NSG.	755	~ £	, 000					
WSd	. 153	2 :	0.0001					
MSd	122	= <	.000					
PSA	152	~ (0.0001					
PSA	551	∞ ;	-0.0001	-0.0001	-0.0001	-0.0001	-0.0001	
A DO	5 5	<u>2</u> ;	0.0002					
Kallikroin	C7 .	= •	0.0003	0.0028	0.0008	-0.0001	-0.0001	
Vollibrain	671	x o ;	0.0001	0.0003	-0.0001	-0.0001	-0.0001	
Valibrain	67.	0	0.0011	0.0100	0.0320	9000.0	0.0002	
Naminatin Validation	129	=	0.0002	9000'0	0.0017	-0.0001	0.0001	
	146	6	0.0083	0.0210	0.0270	0.0002	0.0035	
PSA	142	6	0.0083	0.0210	0.0270	0.0002	0.0035	
PSM	273	Ξ						
Kallikrein	240	∞	0.0001	-0.0001	-0.0001	-0.0001	-0.0001	
PAP	49	01	0.0002					
PSM	296	01	0.0001					
PSM	296	=						
PAP	134	∞						
PAP	134	10	0.0075					
PAP	140	6	0.0002				٠	
WSd	929	11						
PAP	352	∞						
PAP	352	6	0.0001					
PSA	15	∞	0.0001					

	Prostate A	Table VIII Prostate A02 Supermotif Peptides with Binding Information	Table VIII Peptides with	Binding Infort	nation			
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
Kallikrein	01	۰	1000	0000	1000	10000	10000	
PAP		c &	0.000	0.0002	-0.0001	1000.0-	100000-	
PAP	'n	, C	0.0004					
PSM	468	2	0.000				•	
PSM	468	2 =						
PAP	147	: ∞						
PAP	147	. 2	90000					
PSM	267	2 ∞						
Kallikrein	216	· ~	0.0001	•				
PSA	212	∞	0.0001					
Kallikrein	216	=	0.0020					
PSA	212	=	0.0020					
PAP	212	=						
PSA	95	∞ -	0.0002					
PSM) 20 30	6	0.0002					
Kalikrein BSM	56	∞	0.0002	0.0008	0.0002	-0.0001	-0.0001	
PSW	268	∞ (•			
FOW	208	5	0.0042					
PSW	268	<u>0</u> (0.0005	•				·
DAD	365	۷ 5						
PAP	365	2 :						
WSd	619	- 0						
PAP	4	~ oc						
PAP	64	9 9						
PSM	166	9						
PSM	991	2						
PSA	185	∞						
PSA	185	6						
PSA	185	= '						
PSM	788	× I						
Kallikrein	57	. ∝						
PSA	53.	∞ ∝					,	
PSA	53	· =					•	
Kallikrein	57	:=						
Kallikrein	142	6	0.0001					
PSA .	138	6	0.0001					
Kallikrein	142	0	0.0084	0.0220	0.0520	0.0037	0.0005	
PSA	138	0	0.0084	0.0220	0.0520	0.0037	0.0005	
PSIM	293	۵ و						
Kallitzein	362	5 S	0100	0000	0000	***************************************	11000	
PSM	162	2 9	0.0019	0.0099	0.0080	0.0022	0.0011	
PSM	740	2 =	0.0000			•		
PSM	82	: ∞						

	Prostate A	Table VIII Prostate A02 Supermotif Peptides with Binding Information	Table VIII Peptides with	Binding Inform	nation			
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	· A*0206	A*6802	
PAP	276	∞ .						
DAD	9/7	s :	0.0002					
PSM	0/7	2 =						
PSM	731	: ∝						
PSM	731	0	0.0026					
PSM	731	Ξ						
PSM	218	∞						
PSM	218	6	0.0001		•			
PSM	218	10	9000.0					
PAP	72	0.	0.0003					
MSd	199	∞ <u>⊆</u>	01300	0001	00110	,000	0000	
PAP .	797	2 2	0.0310	.0.1200	0.1100	0.0003	00/7:0	
PAP	297	2 =	70000					
Kallikrein	39	: 0	0.0004	0.0097	0.0200	0.0005	0.0252	
PSA	182	; œ	-0.0001	-0.0001	0.0001	-0.0001	-0.0001	
PSA	182	11	0.0001					
PSA	35	0 :	0.0001					
MSM	373	Ξ.	0.0001					
PSM	578 578	0 11	0.0001					
PSA	87	10	0.0001					
Kallikrein BAB	22	6	0.0001	0.0021	0.0011	0.0025	0.0510	
PAP	101	6 (0.0002					
PAP	7 (∞ ⊆						
PAP ·	7 7	2 =						
PAP	01	01	0.0002					
PSM	673	6	0.000					
PSM D&B	534	0:						
PSA	43	= •	10000	10000	20000	1000	1000	
PSA	5.4	0 0	0000	7.000	0.000	. 1000.0-	-0.0001	
Kallikrein	981	· 00	-0.0001	-0.0001	0.0003	0.0001	-0.0001	
Kallikrein	981	=	0.0007	0.0560	0.0016	0.0018	60000	
PSM	354	∞						
PSM	354	6	0.0004				•	
PAP	180	Э	0.0001					
PAP	081	v 5	0.0000					
PAP	180	2 =						
PSM	440	∞						
PSIM	440	6	0.0001					
PSM	0440	= :						
	Ì	=						

	Prostate A	<u> Table VIII</u> Prostate A02 Supermotif Peptides with Binding Information	Table VIII Peptides with	Binding Inform	nation	·		
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
	-0			666				
PAP PAP	257	∞:						
₩ N	35	= •	,000				•	
PSA	121	× c	0.0004					
PSA	. 121	` =	0.0003					
Kallikrein	125	; ∝	-0.0001	0 0005	0 0007	-0 000	-0 0001	
Kallikrein	125	6	-0.0001	-0.0002	0.000	-0.0001	-0.0002	
Kallikrein	125	=	0.0015	0.0043	0.0210	0.0002	90000	
PSM	999	∞						
PSM	662	10	0.5100	1.6000	1.3000	0.0930	0.0005	
PSM	730	6						
PSM	08/	<u>0</u>						
DOM	8 ;	∞ ;						
DAD	414	<u>o</u> «						
PAP	= =	× S	0					
PAP	===	2 =	0.0150					
PSM	463	: •						
PSM	463	° =			•	•		
PSM	162	: ∞			٠			
PAP	287	01	0.0002					
PAP	115	∞						
PAP	115	6	0.0043					
MSd	634	ο 5	0.0001					
Kallikrein	924	⊇ a	10000			7000	7000	
Kallikrein		~ =	0.0001	0.000	0.0087	0.000	0.0004	
PSM	455	: ∞	0.002	9999	2010.0	0.00	0.000	
PSM	455	01	0.0001					
Kallikrein	159	∞	0.0001					
PSA	155	00	0.0001					
Nud	55	σ;	0.0001					
WSd	671	2 2	0.0001					
PAP	130	2 •						
PSA	75	~	00003	0.0032	0.0028	10000	-0.0001	
PSA	75	· =	0.0190			10000	10000	
PSM	631	10	0.0010					
PAP	15	∞						
Kallikrein	175	6	0.0003	0.0720	0.0180	-0.0001	0.0004	
Kallikrein PSM	175	= (0.0390	1.9000	0.6900	0.0005	0.0004	
Kallikrein	775	x	0000	0000	6000	,000		
PSA	5 2	o ∞	0.0020	0.0007	0.0002	-0.0001	-0.0001	
PAP	242	∞∞)					
Kallikrein	170	6	0.0100	0.0840	0.0240	90000	0.0031	

	Prostate A	Table VIII Prostate A02 Supermotif Peptides with Binding Information	<u> Table VIII</u> : Peptides with	Binding Infor	mation			
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
PAP	2 2	<u>9</u>	0.0099	0.4000	0.0920	0.0059	0.0008	
	<u>E</u>	. 9	0.0200					
PSM	472	2 2	0.0002					
PSM	615	∞						
PSM	615	10	0.0001					
Kallikrein	35	∞						
PSA		∞						
FSA	3	6 .						
Kalikrein	7	01						
FOW	8 8	∞ ;						
DOA.	8 6	=:						
PAP	503	= •	0.0005	0.0150	0.0092	0.0002	0.0035	
PAP	901	∞ ⊂						
PAP	20.	v :						
PSM	431	==						
PSM	348	. ∞						
PSM	348	=						
PSM	338	6	0.0001					
PSM	107	6	0.0001					
PSM	107	2 :	0.0002					
Kallikrein) I	≓ ∝	0000	90000	0.000	0,000	0000	
Kallikrein	=	9	0.0024	0.0760	0.0065	0.0026	0.000	
Kallikrein	11	2 =	0.0100	0.0010	0.0007	0.0007	0.0005	
PAP	217	=						
PAP	62	9	0.0001					
PAP	67	2 :	0.0031					
PSM	626	<u> </u>					•	
PSM	979							
PSA	7	∞	0.0001				•	
PSA	ĩ	10	0.0001					
MSM		Ι,	0.0001					
PSM	554	∞ (
PSA .	58	D [0.0073	13000	3000	7000	3010	
PSM	5 4	: ∝	0.000	/ 500.0	0.0085	0.0004	0.0105	
PSM	<u> </u>	9 5						
PSM	415	6						
PAP	190	∞						
rar Dab	<u> </u>	= 4						
PAP	112	5 م	0.0650					
PAP	112	2=	0.000				•	

	Prostate A	Table VIII Prostate A02 Supermotif Peptides with Binding Information	<u>Table VIII</u> f Peptides with	Binding Infor	nation		•	
Protein	Position	No. of	A*0201	A*0202	A*0203	A*0206	A*6802	
		Amino Acids						
Q V Q								
PAP	222	2 :	0.0002					
PSM	461	- 0	0.0012				•	
PSM	461	. 9	0.0008					
PSA	S	6	0.0016					
PSA	s	01	0.0007					
PAP.	231	œ						
PAP	231	=						
Kallikrein	143	∞						
FSA Kallibrain	139	∞ ‹						
PCA PCA	143	5 (
dyd	139	٥ م						
PAP	335	00						
PAP	335	۲ 5						
PSM	78	6						
PAP	275	, σ						
PAP	275	01						
PAP	275							
PSM	339	∞ ;						
FOIN	339							
Kallikrein	150	===	10000	0000	50000	90000	0 1400	
PSA	146	=	-0.0001	0.000	0.0025	0.0005	0.1400	
PAP	374	: œ						
747	291	∞ (
. pAp	167	و ج	. 0000					
PSM	575	2 6	0.0020					
PSM	575	10	0.0005					
PAP	145	6	0.0002					
PSK	145 738	0 0	0.0001					
PSM	738	0 0	0 0000					
PAP	292	· >						
PAP	292	6	0.0044					
PAP	292	= (
PSM	734	∞ c						
PSM	734	~ ⊆						
PSM	576	2 ∞						
PSM.	576	6	0.0002					
PSA PSA	38	∞ :	-0.0001	-0.0001	-0.0001	-0.0001	.0000	
/ Sivi	7.7	2 6	0.0001	.000	0000			
PSM	44	n 2	0.0001	-0.0001	0.0002	0.0002	0.0004	
		· •	· · · · · · · · · · · · · · · · · · ·					

A02 Su	Table VIII	permotif Peptides with Binding Information
		Supe

	Prostate AC	Prostate A02 Supermotif Peptides with Binding Information	Peptides with	Binding Inform	nation			
Protein	Position	No. of	A*0201	A*0202	A*0203	A*0206	A*6802	
		Amino Acids				-		
PSW	201	œ						
PSM	358	• •						
PSM	358	6	0.0002					
PSM	372	=						
PSA	89	6	0.0003					
PSM .	225	∞ ∘						
PAP	195 195	∞ <u>:</u>						
PSA	174	= ∞	0.0001					
PSA	174	9 2	0.0008					
PSM MSM	27	∞						
MSM	27	6	0.1300	19.0000	0.3000	0.1200	0.0028	
PAP	9 30	6 :	0.0590					
PAP	30	2 :	0.0021					
rat Kallifrain	٠ د د	= :						
Kallikrein	138	2 :	0.0008	0.0150	0.0110	0.0004	-0.0001	
PSM	130	= =	-0.0001	0.0007	0.0003	0.0003	0.0000	
PSM	593	» S	0.0002					
PSM	592	2 =	2100.0					
PSM	603	6	0.0002					
PSM	099	6	0.0001					
PSM	099	01	0.0003					
Kallikrein Kallikrein	'n	∞ ;	0.0050	0.0790	0.0200	0.0024	0.0003	
PSA	ر ک	=•	0.0002	0.0011	0.0048	0.0004	0.0005	
Kallikrein	3 8	∘ ∝	0.0002	0.0034	0.0001	0 0001	0 0000	
PSA	36	. 6	0.0001					
PSA	36	01	0.0003					
Kallikrein DS A	S 3	00 (0.0001					
Kallitrein	5 5	∞ 0	0.0001				•	
PSA	4 4		0.0200					
Kallikrein	53	01	0.0001					
PSA	49	01	0.0001					
Kallikrein	53	=	0.0130					
rsa bab	49	= :	0.0130					
PSA	797	2 9	0.0008					
PSA	13.	2 :	0.000	0,000	71000	1000	0000	
PSM	739	. ∝	0.0021	7500.0	+100.0	0.0001	0.0003	
PSM	739	· =						
PSM	253	6						
Kallikrein	192	∞	-0.0001	0.0003	0.0005	0.0007	0.0007	
Kallikrein PS A	192	۰ 2	0.0008	0.0180	0.0068	0.0004	0.0030	
F37	188	×	0.0001	0.0002	0.0031	-0.000	-0.000	

	Prostate A	02 Supermotif	Table VIII f Peptides with	Table VIII Prostate A02 Supermotif Peptides with Binding Information	nation			
Protein	Position	No. of Amino Acids	A*0201	A*0202	A*0203	A*0206	A*6802	
								•
PSM	. 352	00						
PSM	352	10						
PSM	352	=						
PSA	∞ ∘	o ;	0.0110					
POA .	00 0	0 :	0.0019	0000	0000		0000	
PSA .	- ه	∷ ∝	0.0013	0.0005	0.0009	0.0011	0.0002	
PSA			0.000					
PSA	-	\ =	0.0069					
PSM	394	=						
Kallikrein	246	∞	0.0001	0.0021	-0.0001	0.0001	-0.0001	
PSA	242	∞	0.0001	0.0021	-0.0001	0.0001	-0.0001	
Kallikrein	246	=	0.0001	0.0001	0.0002	-0.0001	0.0004	
PSA	242	=	0.0001	0.0001	0.0002	-0.0001	0.0004	
Kallikrein	135	6	-0.0001	-0.0005	0.0007	0.0008	-0.0002	
PSM	602	01	0.0001	٠				
PSM	434	∞						
FSM	434	6	0.0001				•	
Kallikrein Kallikrein	47	∞ ¢	-0.0001	0.0003	0.0005	0.0001	0.0070	
PAP	756	o 0	-0.0001	40000	0.006/	0.000	0.0310	
PAP	220	∞ <u>⊆</u>	0000					
PSA	01	2 ∝	0.0002					
PSA	201	0 0	0.0005					
Kallikrein	252	∞	0.0002	0.0120	0.1700	0.0002	-0.0001	
PSA	248	00	0.0001					
PSM	50	∞						
POM	20 20	6;	0.0180					
DAP	9 ×	2 •	0.0120		٠			
PAP	3 %	o :						
PAP	138	: ∝						
PAP .	138	6						
PAP	138	=						
Kallikrein	38	=						
PSA	34	=======================================						
PSA	55	6	0.0008					
Kallikrein ·	89,	6	0.0003	0.0018	0.0001	0.0160	0.0007	
FOIM	/09 ·	00 (
FSIM	700	2 €	0000					
PSM	969	S 5	0.0013					
PSM	179	2 2	0000					
PAP	310		0.0037					
Kallikrein	153	. 👓	-0.0001	0.0000	0.0003	0.0003	0.0120	
PSA	149	«	-0.0001	0.0000	0.0003	0.0003	0.0120	

		A*68
		A*3301
	g Data	A*3101
X	tif with Binding Da	A*1101
Table IX	A03 Supermo	A*0301
	Prostate	No of
		Position

		LLOSIA	4	mi widi bildi	ng Data			
Protein	Position	No. of Amino Acids	A*0301	A*1101	A*3101	A*3301	A*6801	
								1
PSA	29	∞ :						
PSA	13	90						
PAP	3	∞ (
PSM	392							
PSM	7111	∞ ;						
Kallikrein	235	=						
PSA	231	=						
PSM	. 531	6	0.0086	0.2700				
PAP	227		0.0003	0.0039				
PAP	227							
NS.	49	=						
PAP	274		0.0180	0.0700				
PAP	274	6	0.1000	1.2000				
PSM	=							
PSM	635							
Kallikrein	17							
Mod	101	∞ ∝						
Myd	109		90000	01200				
I DIVI	100		0.0020	0.0210				
Natification	147							
Namikrem	147							
Kallikrein	86.		7000	31000				
FSA	<u> </u>		0.000	0.0015				
rsa ss.	081	×:						
rsa	200							
Kalikrein	25.	0						
FSM	2		0,000					
PAP	347		0.0040	0.0006				
Kallikrein	14							
PSM	710	6	0.0006	0.0002				
PSM	301				•			
W.S.d.	714		0.0003	0.0002				
PAP	201							
PSM	173							
Kallikrein	182							
PSM	161							
PSA	86		0.0003	0.0001				
PSA	86							
PSM	6							
PSM	6							
PSM	6							
PSM	630	∞						
Kallikrein	911	10						
PSA	112	10						
PSM	453	=						
PSM	316	6	0.0032	0.0003				
PAP	51	6	0.0001	0.0001				

		Prostate	Table IX A03 Supermotif v	Table IX Prostate A03 Supermotif with Binding Data	ng Data			
Protein	Position	No. of Amino Acids	A*0301	A*1101	A*3101	A*3301	A*6801	
PCA	178	01 .	0.0007	11000				
NSA NSA	110	2 0	0.000	0.0010				
PSM	48	. 00						
PSM	64	6	90000	0.0002				
PAP .	500	∞						
PSM	397	0 ;						
PSM	39/	= ∘	•					
PAP	<u>8</u>	~ •						
DAD	8	0 0						
PAP	8 8	\ <u>=</u>		,				
PSM	3	; ∞						
PSM	2	6						
PAP	34	10	0.0014	0.0037				
PSM	716	∞						
PAP	95							
PSM	-	0:						
PSM	7	Ξ:		0.00				
PAP	0 2	2 .	0.0004	0.0140				
PSR MSG	557	□ ∝						
PSM	675	9 2						
PSM	19	Ţ						
PSM	37	∞ :						
PAP	18	=						
PAP	25	σ;	0.0024	0.0004				
PSM	646	2 <	0.0003	0.0007				
Z Z Z	900	٠ 						
PSM	333	6						
PSM	333	=						
PAP	37	= <	0310	03000				
DOM	301	۶ ۵	0.010	0.0550				
Kallikrein	91 .	2 0						
PSM	529	. 20						
PSM	529	=						
PAP	248	∞						
PAP	248	10						
PSM	089	σ:	0.0460	0.0280				
PSM	311	9 9	0.0006	0.1400				
Kallikrein	158	2 2						
PSM	430	: =						
PSM	85	10						
PSM	403	6						
		•						

	A*6801	
	A*3301	
g Data	. A*3101	
tif with Binding Da	A*1101	
Table 1X Prostate A03 Supermotif n	A*0301	
	No. of Amino Acids	
	Position	-
	İ	

	607							
FSM	403	= :						
Mod.		= 9						
FSM	345	2 5						
PAP		• 2 o	0 2 2 0 0	0.5300				
WSd		· ∞		2000				
PSM		· ∞						
PSM		=						
PSM		6						
PSM		2						
PSM		∞						
PSM		۵,	0.1900	0.1100	•			
PSM		∞						
Kallikrein		6	0.0410	0.0100	0.0002	9000.0	0.001:	
PSA		6	0.0410	0.0100	0.0002	9000'0	0.001:	
PSM PSM		∞ ;						
PSM		= •				-		
PSM								
PSM		6	0.1700	0.0087				
PSM		. د	0.0260	90000				
PSM		∞ ∘						
PSM		× •						
PSM		6.0	0.0740	1.0000				
PSM		∞ ∘						
PAP		~						
PSM		6 ;	0.4000	2.1000				
PSM		2	0.3200	0.0810				
PSM		∞ '						
PSM		<u> </u>	0.0044	0.0210				
PSA		∞						
PSM		6	0.1600	0.1200				
PSM		=						
PSA		=						
Kallikrein		10	0.0450	0.0450				
PSA		01	0.0450	0.0450				
PSM		2	0.0031	0.0007				
PAP		∞						
PSM		=						
Kallikrein	105	∞	٠.					
PSA	101	∞						
Kallikrein	123	6						
PAP	243	6	0.0760	0.2000				
PAP	243	=						
Kallikrein	178	6						
PAP	153	=						
Kallikrein	121	=						

	A*3301
g Data	A*3101
LX tif with Binding	A*1101
Table IX A03 Supermotif w	A*0301
Prostate	No. of Amino Acids
	Position

Protein

A*6801

PSM	469	=					
PAP	241	=					
PAP	244	∞					
PAP	244	0	0.0520	0.0370			
Kallikrein	179	∞					
PSA	57	∞ ;					
PSA	. 57	0	0.1400	0.0830			
Kallikrein	19	∞ (•			
Kallıkrein	19	or					
PAP	315	∞ '	0.0014	0.0100			
PSM	561	=					
PAP	40	∞	0.0003	0.0002			
PSM	473	01					
PAP	263	10	0.0560	0.1200			
PAP	263	=					
PSM	174	00					
Kallikrein	196	11					
PSA	192						
Kallikrein	122	01					
PSM	699	:=					
Kallikrein	103	: 2					
PSA	66	01	0.0070	0.0110			
PSM	216	; ∞					
PSM	51	6					
Kallikrein	62	=					
PSM	247						
PSM	27	10					
Kallikrein	102	=					
PSM	589	10					
Kallikrein	20	∞					
PSM	438	∞ ;					
FSM	152	<u>o</u> ,					
PSA Vallibrair	2 2	5 0	0.0007	0.0002	0.0004	0.0006	0.0001
DSM	6	ν ο ₀					
Wid	273		0000	0,000			
Kallikrein	240	`=		7000			
PAP	49	:=					
PSM	296	: 6					
PSM	678	- =					
PSA	56	6	0.2400	0.0370	0.0002	90000	0.0001
PSA	95						
Kallikrein	66	6					
PSM	721	6					
PSM	721	10	0.0003	0.0002			
PSA	236	11					

	- Date -	12 T 12 CL 1777 1777	A 0.0	Danage	
		l			
		<	Table		
		<u> </u>	Toklo IV		
		1			

		Prostate	Table 1X A03 Supermotif v	Table IX Prostate A03 Supermotif with Binding Data	g Data		
Protein	Position	No. of Amino Acids	A*0301	A*1101 ·	A*3101	A*3301	A*6801
Mad	603	9					
DAD	700	2 :					
Mad	10	3 5					
PAP	152	: ∞				٠	
PSA	182	6	09000	0.0140	0.0028	0.0014	0.0051
PSA	35	. 6	0.0021	0.0018			
PAP	9	=					
PAP	2	6	0.1500	0.1200			,
PAP	273	6	0.0210	0.0600			
PAP	273	10	0.0053	0.0250			
Kallikrein	54	10	0.0460	0.0670			
PSA	70	. 01	0.0460	0.0670			
PSM	354	o ;	0.3700	0.4300			
PSM	527	∞ :					
PSM	27	0					
PSM	400	œ					
PAP	28	6	0.0490	0.1100			
PSM	181	01					
PSM	312	6	9000.0	0.0012			
PSM	2	œ					
PSM .	2 ;	o ,					
FSM	455	o ;					
Kalikrein	<u>5</u>	۷.					
	6C1	= =					
Mod	5 5	3 =					
MSA	290	<u>.</u> σ	0 0006	0.0220			
Kallikrein	₹ 2	. 6					
PSA	100	. 0	0.0024	0.0470			
PAP	242	01	0.4900	2,3000			
PSM	472	∞					
PSM	472	=					
PSM	492	∞					
PSM	492	Q.	1.0000	2.0000			
PAP	. 245	6	1.1000	0.8000			
PAP	245	· =					
PSA	237	으 :	0.2800	0.2300			
FOA	23/	Ξ «	0				
rsM Valiltain	25	.	0.1100	07/070			
Naminacini		y C	0.0039	1 2000			
. Wod	250	\ <u></u>	0.0039	0.000			
Wod	£ \$	2 =	0.000	0.0210			
PSM	£ [. ∝					
PSM	431	, <u>c</u>	0 0005	91000			
PAP	53	2 ∞	0.0017	0.0061			

	A*680
	A*3301
g Data	A*3101
IX tif with Binding D	A*1101
A03 Supermo	A*0301
Prostate	No. of
	Position
	. <u>s</u>

Protein	Position	No. of Amino Acids	A*0301	A*1101	A*3101	A*3301	A*6801	
. XX	554	11						
PSA	28	6	0.0094	0.0140				
Kallikrein DSM	2 62	∞ o						
MSd	4 4	o S	0.0007	0.0002				
PSM	\$:=						
PAP	171	6	90000	0.0078				
PAP	171	0 :	0.0007	0.0001				
PSM	361	ල (0.0003	0.0002				
PAP	£ :	эл оч	0.0006	0.0002				
WSd	201	o <u>c</u>						
PSM	69	2 2	0.5400	0.7900				
PSM	115	∞						
PSM	603	00		1				
PSA	26	σ;	0.0002	0.0005				
PSA V. Lilinois	8 9	= c						
Nallikrein	8 9	∧ ⊆						
PSA	36	2 ∞						
PAP	262	=						
PSM	627	=						•
PSA	188	2	0.0003	0.0120				
PAP	38	2 •	0 000	0000	0033.0	9070	8000	
Nallikrein DCA	240	» о	0.0072	0.0930	0.5500	0.0490	0.0028	
WSd	7±7 (0.09		0.03	0.0930	00000	0.0450	0.0020	
PAP	226	. 0	0.0006	0.0002			•	
PAP	. 226	11						
PSA	2	=						
PAP	۲2 ک	ο :	0.0035	0.0150				
roA Kallikrein	50	2 5	0.0004	0.0001				
Kallikrein	9	? =						
PSM	607							
PSM	692	; ∞						
PSM	179	6						
PSM	009	=						
PAP	84	∞ (
PAP	5 5	0.0						
Pom	133	~ 0	00900	0.5400				
WSd	537	, o	2000	201.00				
Kallikrein	243	· ••					•	
PSA	239	∞						
Kallikrein	243	6	9000'0	0.0580	1.2000	2.8000	1.3000	

		o.
	A*6801	1.3000
	A*3301	2.8000
ng Data	A*3101	1.2000
rostate A03 Supermotif with Binding Data	A*1101	0.0580
A03 Supermotif v	A*0301	0.0006
Prostate	No. of Amino Acids	o &
	Position	239
	Protein	PSA PSM

I .	rostate A24 Supernic	Table X Prostate A24 Supermotif Peptides with Binding Data	Data .
Protein	Position	No. of Amino Acids	A*2401
PSM	6/4	∞:	
PSM	00		
PSM	967	= 0	
PAP	667		
PAP	299	ۍ ;	
PAP	122	2:	
PAP	122	=	
Kallikrein	147	=	
PSA	143	=	
Kallikrein	235	.6	
PSA	231		
PSA	231	6	
WSd	25	∞	
No.	25	. 60	
Mag	1 %	01	
	36	? =	
70M	27	. o	
7.A.	91	. 0	00150
FAF	2	^ •	00100
NSW .	2 5	• •	
Poly	2.0	\ 0	
rar	180	N G	
PAP	169	n S	
WS-	٠ د د	2 5	
PAP	774	2:	
PAP	7/7	= =	
MS-	= :	2:	
PSM	= ;	= (
PSM	365	3 .	
PSM	365	<u>o</u> (
PSM	635	× •	
Kallikrein	17	ο,	
PSM	393	01	
PSM	109		
Kallikrein	241	0	
PSM	724	o	
PSM	724	01	
PSM .	448	6	0.0190
Kallikrein	187	6	
Kallikrein	187	01	
Kallikrein	187	=	
PSA		∞	
PSA	62	. 6	
PSA	62	10	
Kallikrein	99	6	
Kallikrein	99	10	
Kallikrein	14	8	

•	5
	晑
	급
	=
	딤
	4
	Ę
	S
	원
×	핗
۳	ञ
듾	
H	=
	Ħ
	5
	맠
	S
	77
	4
	돸
•	픮
	2
	_

J	rostate A24 Superir	Table X Prostate A24 Supermotif Peptides with Binding Data	Data
Protein	Position	No. of Amino Acids	A*2401
PSM	466	∞ Ξ	
Nathkrein	5.5		0 1700
PSA	148	\ 6\	0.1700
W.C.	. 652	. ∞	
PSM	652	10	
PSM .	520	6	
PSM	520	=	
PSM	184	σ;	
PSM	184	= (
PAP	98 1	5	0.0002
PSW .	156	Σ, :	
PAP	107	2 0	
PSA	97	,	
Kalilkrein	. [5	0 2	
TOIN! DSA	80	2 0	0 0001
F3A DSA	8 86	01	1000:0
Kallikein	207) 	
PAP	15	∵ ∞	
PAP .	230	6	
PAP	290	6	
PAP	290		
PAP	108		
Kallikrein	134		
PAP	301	2 6	
WS.	717	٠ 1	
No.	3 2	6	
. WSd	425	. 01	
Kallikrein	164	00	
PSA	091	∞	
Kallikrein	194	00 (
Kallikrein	194	Φ.	
PAP	176	5	
PSM	505	∞;	
PSW	505		
PSW	641	2,	
PSM	137	∞ (
MSH.	99/	~ 00	
W.C.	601	0 0	
NO.	601	`=	
NS.	586	: ∞	
NSA.	586	01	
PAP	08	. 01	

	rostate A24 Supermo	Table X Prostate A24 Supermotif Peptides with Binding Data	g Data
Protein	Position	No. of Amino Acids	A*2401
POLY	73	01	
No.	5 3	2 =	
ρΑρ	34.	·	
. WSd	480	. 0.	
PAP	237	∞	
PAP	237	01	
PAP	237	=	
PAP	240	∞ ;	
PAP	240	2 (
PSA	/71	~ =	
PSA PSA	171	<u> </u>	
PSW	995	2 =	
POM DAD	358		
ያል የል	317	. 6	
ρΑρ	317	.01	
MSA	621	6	0.0010
PAP	170	∞	
PSM	542	∞ ;	
PSM	542	<u>o</u> :	
PSM	542	= -	
PAP	334 134	01	-
DAD	737	2 =	
MSd	557	: 6	
WS.	557	01	
PSM	522	6	
PSM	727	Ξ,	
PSM	351	a c	
MSG	435	01	
PSW MSM	276	? ∝	
PAP	324	×	
PAP	83	02	0.0067
PAP	83	Ξ,	
PSM	185	∞ ;	
PSM	185	2 ∘	
NSW .	7. C	⊆	0.0026
NA NA	32	2 =	07000
PAP	23	6	0.0017
PAP .	187	&	
PAP	187	= :	
ZSG 6	76		
PSM	029	2 2	

Amino Acids		01	:=	•	6	. ∞ Ξ	- cc			2 ∞	·=			∞ σ	∞;			2 ∞			6	~	
Protein Position	. avc					PSM 73	Ollikeein 195				SW 487				Z82 WS								

	rostate A24 Supern	Prostate A24 Supermotif Peptides with Binding Data	ding Data	
Protein	Position	No. of	A*2401	
	168	6		
PSM	208	œ		
PSM	582	10	0.0002	
PSM	85	×		
PSM	403	œ		
Kallikrein	149	6		
PSA	145	6		
PSM	446	=		
PSM	224	=		
PSM	238	6		
PSM	238	11		
Kallikrein	221	: 6		
PSA	217	. 0		
Vollibrain	. C.	\ o		
Naminical	4 2	3 3		
l'SA Vollibrain	ę Ç	o <u>c</u>		
	76	25		
PSA	48	2 6		
PAP	197	∞;		
PAP	261	= 0		
NS.	757	×° :		
PSM ·	727	2 .		
- LAP	971	∞ (
7.A.	971	~ <u>-</u>		
DA.D	971	2:		
r Ar Valillania	971	: c		
Vality	9 60	· -		
	2, 20			
Kallikrain	<u> </u>	: c	0 0001	
A S A	251	: 9	10000	
Kallikrein	951			
PSA	152	=		
PSM	409	∞		
PSM	409	6		
PSM	409	01	0.0540	
PSM	150	∞		
PSM	271	, 6		
WSd	. 548	6		
PSM	298	∞		
PSM	298	6		
PSM	345	=		
PSM	82	6		
PSM	82	=		
PSM	573	=		
PAP	270	∞		
PAP	270	=		

Table X	Prostate A24 Supermotif Peptides with Binding Data
---------	--

Position 144 144 112 78 248 244 130 130	No. of Amino Acids 10 11 10 10 10 10 10 10 10 10	A*2401	
144 144 112 78 248 244 130 130	2		
144 144 112 78 248 244 130 130 416	9		
144 112 78 248 244 130 130 416	=∞∞2262=6=		
112 78 248 244 130 130 416	∞ ≈ 2 2 o 2 I o I		
78 248 244 130 130 416	× 2 2 6 2 7 6 7		
244 244 130 130 416	2 2 6 2 7 6 7	00000	
130 130 130 416	? 6 2 	0.0550	
130 416 473	· 2 = 6 =		
416			
171	6 .		
	-		
373	=		
69	∞		
69	6		
267	. 11		
258			
11	6		
226	σ.		
226	10		
132	∞ ;		
132	<u>o</u> :		
75 53	2 2		
25 25			
220	= =		
200	: 2		
591	2		
659	01		
659	=		
157	æ		
398	8		
131	œ		
131			
205	6	0.0024	
205	0		
169	0 <u> </u>		
208	∞		
355	∞		
772	φ;		
<u>081</u>	ۍ ن	0.0310	
645	δ,		
242	∞ (•	
204	Σ :		
504	= •		
193	• ⊆		
131			
	132 222 222 222 200 200 659 659 131 131 132 133 134 137 137 137 137 137 137 137 137 137 137		

<u>nding Data</u>	A*2401	12.0000
Table X Prostate A24 Supermotif Reptides with Binding Data	No. of Amino Acids	
Prostate A24 Sup	Position	131 132 133 133 133 133 133 133 133 133
	j	
	Protein	Kallikrein PSM PSM PSM PSM PSM PSM PSM PAP PAP PAP PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS

Position Actifs Antito Actifs Antito Actifs Antito Actifs Antito Actifs Antito Actifs Antito Actifs Antito Actifs Antito Actifs Antito Actifs Actification of the second of th				
Antino Actus 441 441 441 441 441 441 466 668 668 668 668 668 668 668 668 668	Protein	Position	No. of	A*2401
6 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Amino Acids	
306 441 441 441 119 113 113 113 119 119 119 119 119 11			-	
441 441 9 5 668 668 668 668 668 668 668 668 668 6	AP	908	= 5	
441 119 168 668 668 668 668 668 113 113 113 114 113 114 115 117 118 119 110 119 110 119 110 119 110 111 111	N.	300	2 ~	
119 113 113 113 113 113 113 113	TAIS.	441	> ⊆	
1173 1173 110 178 668 8 8 111 178 113 8 8 8 111 178 113 8 8 8 113 179 110 170			0:	
123 10 668 668 668 668 668 668 668 668 668 66	DA.	611	01	
668 8 8 11 11 11 11 11 11 11 11 11 11 11 1	allikrein	123	01	
668 668 8 8 4113 113 113 113 113 113 113 113 113 11	allikrein	178	=	
(668) 9 113 8 469 128 128 1 128 8 128 1 128 1 129 1 264 1 274 1 274 1 275 1 276 1 277 1 270 1 271 1 272 1 273 1 274 1 275 1 276 1 277 8 277 8 278 8 279 1 271 1 272 8 273 8	NS	899	8	
113 8 469	SM	899	6	0.0075
11.2 469 128 128 128 128 128 129 130 140 160 160 170 170 170 170 170 170 170 170 170 17	ΑP	211	. 00	
4615 128 128 138 145 150 160 160 160 160 160 160 160 16			o :	
128 128 162 162 163 164 165 165 165 165 165 165 165 165 165 165			Ξ :	
128 128 160 164 165 167 160 160 170 160 170 160 170 160 170 170 160 170 170 170 170 180 180 180 180 180 180 180 180 180 18	W.C.	469	20	
128 162 170 162 163 164 170 170 170 170 170 170 170 170 170 170	AS.	128	œ	
4	Y.	128	10	
268 162 110 100 101 101 101 101 101 101 101 10	G.V.	315	=	
268 162 111 162 111 163 111 164 111 165 111 16	~	. 7	; oc	
162 11 70 11 10 10 10 10 10 10 10 10 10 10 10 10	× ×	268	: 9	
70 70 574 10 561 10 561 10 561 10 561 10 574 10 575 10 576 10 577 10 578 11 578 11 578 11 578 11 578 578 578 578 578 578 578 578	4	162	2 =	•
574 10 217 10 561 9 561 10 561 10 473 9 57 8 8 58 8 50 8 50 8 50 8 50 8 50 9 50 9 51 10 51 11 51 11 52 11 51 11 52 11 52 11 53 18 54 8 56 9 57 9 58 11 58 12 58 12				0.0000
217 10 213 10 361 10 361 10 379 10 473 9 10 26 8 8 26 8 8 26 9 26 9 26 10 26 9 27 9 213 9 318 8 318	1 ₹	67 878	2 5	7700.0
217 218 561 10 359 10 473 9 473 9 9 10 10 10 10 10 10 10 10 10 10	٠	#/C	2 2	
561 561 40 40 473 473 50 8 8 8 8 8 9 9 11 9 11 9 11 11 11 11 11	iliniciii A	717	2 9	
501 40 473 473 54 54 56 56 56 56 56 56 57 57 57 57 57 57 57 57 57 57	. 2	517	2 0	
201 10 359 10 473 6 8 56 8 8 26 9 26 9 213 9 213 9 96 11 96 11 96 11 154 11 154 11 154 11 154 11 154 11 154 10		100	. :	
359 10 473 9 9 54 8 8 56 8 8 56 9 9 57 26 10 57 20 13 9 9 51 8 8 51 9 9 551 9 9 551 11 54 11 54 11 552 8 527 8 538 8		100	2 :	
473 9 10 54 8 8 56 8 8 26 9 8 26 9 9 26 10 213 9 9 318 8 8 318 9 9 551 9 9 551 11 154 11 154 11 154 11 227 9 8	ء يا	04	= :	
47.5 54 56 56 26 26 26 26 9 213 9 9 9 11 9 11 11 11 11 11 11		939	0 0	
50 88 266 99 267 10 263 99 213 99 318 88 88 318 99 351 99 351 11 11 11 11 11 11 11 11 11 11 11 11 1	-;B;at	5/4	> 1	
26 8 26 9 26 10 263 9 213 11 96 11 318 8 318 9 551 9 551 11 154 11 154 11 227 9	llikrein	. 54	∞ (
26 8 26 10 263 9 213 9 213 9 213 9 318 8 318 9 551 9 551 11 154 11 227 8 238 8	~ :	000	× 0 ·	
26 263 9 9 213 9 9 213 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		5,0	00 (
263 10 263 9 213 11 96 11 318 8 318 9 551 9 551 11 154 11 154 10 227 8 238 8	Į.	97	. م	
263 9 213 11 96 11 318 8 318 9 551 9 551 11 154 11 227 8 238 8	W.	50	2	
213 213 9 96 11 318 8 318 9 551 9 551 11 · · · · · · · · · · · · · · · · ·		263	ο (
213 96 111 318 318 8 551 9 551 11 154 11 127 227 8 227 9	<u> </u>	213	ο:	0.4400
96 11 318 8 318 8 551 9 551 11 154 11 227 8 227 9 238 8	44	213	=;	
318 8 318 9 551 9 551 11 · · · · · 10 74 10 227 8 227 9	¥.	9,6	<u> </u>	0.1200
318 9 551 9 551 11 154 11 74 10 227 8 238 8	÷:	318	∞ (
551 11		% - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	~ (2.5000
251 11 74 10 74 10 74 10 74 10 74 10 74 74 74 74 74 74 74 7	Mic	100	; بر	•
154 11 74 10 227 8 238 8		166	= :	
74 10 227 8 227 9 238 8		961	= :	
227 6 227 9 238 8	Nic.	4/ 55.0	2 °	0.2300
238 8	N	777	e c	00770
	V	177	• 0	0.4400
	< <	967	0 ;	

Protein Position				
(60) (60) (60) (60) (61) (62) (63) (63) (63) (63) (63) (64) (63) (64) (64) (64) (64) (64) (64) (64) (64	c c	Position	No. of	A*2401
660 1118 1127 1137 1137 1140 1150 1160 1170 1			Ainino Acids	
(67) 118 118 123 143 153 1663 1663 1663 167 178 178 178 178 178 178 178 178 178 17		099	×	
118 122 118 118 119 124 125 119 137 137 138		699	: =	
122 343 444 445 445 663 663 663 663 883 883 883 883 883 883		200	=	
663 663 663 663 663 663 663 663 663 663		122	==	
663 663 78 78 78 78 78 78 78 78 78 78 78 78 78		343	=	
232		663	œ	
117 8 8 583 9 583 583 19 9 583 9 9 68 8 8 8 8 8 9 68 8 6 9 9 68 6 9 9 9 68 6 9 9 68 6 9 9 68 7 11 78 8 8 8 70 9 9 70 100		693	3	
117 8 583 583 583 583 583 583 583 583 583 583	•	232	10	
583 583 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		117	c	
883 1 1 1 10 10 10 10 10 10 10 10 10 10 10		583	6	
1 8 89 8 8 336 638 8 8 638 638 9 9 638 69 9 9 51 11 11 11 11 11 11 11 11 11 11 11 11 1		. 583	=	-
470 8 8 8 8 336 11 1 10 10 11 11 11 11 11 11 11 11 11 1	ie.		∵ ∞	
470 88 88 336 99 88 836 99 99 99 99 99 99 99 99 99 99 99 99 99	i.i.d.	-	, <u>S</u>	
840 836 638 640 650 651 861 102 103 103 104 104 105 106 107 107 108 109 109 109 109 109 109 109 109		- 027	2 0	
336 336 336 336 336 337 337 338 311 328 328 329 329 329 329 329 329 329 329 329 329		0/4	e c	
3,50 3,50 6,50 5,1 1,0 2,60 9,50 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,		68° ;	∞ (
536 69 76 76 88 81 51 11 51 11 526 9 9 69 77 102 103 148 8 8 119 178 178 18 18 18 18 18 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10		336	(م	
638 69 69 69 69 71 11 260 9 77 77 79 79 79 79 79 79 79 79 79 70 70 70 70 70 70 70 70 70 70 70 70 70		336		
76 69 69 9 1 1 1 2 5 1 1 1 1 2 5 1 1 1 1 2 5 1 1 1 1		638	ο .	0.0001
51 8 8 51 11 11 11 11 11 11 11 11 11 11 11 11		9,2	&	
51 8 260 9 9 57 9 9 102 10 328 10 178 8 8 178 9 11 178 9 178 9 178 9 178 9 178 11 160 10 685 8 8 49 10 296 11 296 11 134 8 134 8 140 9 658 8	•	69	6	
260 9 57 9 9 102 102 100 9 102 102 100 153 9 9 100 178 8 8 118 9 9 118 118 119 119 119 119 11		15	∞	
260 9 57 9 102 10 328 10 153 9 540 10 178 9 178 9 178 11 459 11 157 8 157 8 160 10 685 8 49 10 296 11 57 11 134 8 658 11 658 11 658 11 658 11 352 8		15	=	
102 10 328 10 153 9 540 10 178 8 178 9 178 9 178 9 178 9 178 11 459 11 157 8 49 10 296 10 296 11 27 11 134 8 658 11 658 11 352 8		260	6	
102 10 328 10 153 9 9 178 8 8 178 9 11 459 11 459 11 157 8 157 8 160 10 685 8 49 10 296 11 296 11 296 11 134 8 140 9 658 11		57	٠.	•
328 10 153 9 163 9 178 8 178 8 178 9 178 9 178 9 178 11 17	rein	102	10	
153 9 240 10 178 8 178 9 178 11 459 11 594 11 157 8 160 10 685 8 49 10 296 11 57 11 134 8 658 11 658 11 352 8		328	10	
540 10 178 8 178 9 178 11 459 11 594 11 157 8 157 11 160 10 685 8 685 8 296 11 57 11 134 8 140 9 658 11 352 8		153	6	
178 8 178 9 178 9 178 11 594 11 157 8 157 11 160 10 685 8 49 10 296 11 57 11 134 8 658 11 658 11 352 8		540	10	
178 9 178 11 459 11 594 11 157 8 157 11 160 10 685 8 49 10 296 10 296 11 57 11 134 8 658 8 352 8		178	8	
178 11 459 11 594 11 157 8 157 11 160 10 685 8 49 10 296 11 57 11 134 8 140 9 658 8 352 8		178	6	0.7700
459 894 157 157 160 685 49 296 296 57 134 140 688 688 853 873 873 873 873 873 873 873 873 873 87		178	Ξ	
594 157 157 160 685 685 49 296 296 57 57 134 140 658		459		
157 157 160 685 685 49 296 296 57 57 134 140 658		765	=	
157 160 685 49 296 296 27 57 134 140 658		151	: «	
157 685 685 49 296 296 57 57 134 140 658 658		651	> =	
100 685 49 296 296 57 57 134 140 658 658		/61	- 9	
985 49 296 27 57 57 134 140 658 352		001	01	
245 296 296 57 57 134 140 658 658		080	∞ ;	
296		49	2 :	
		. 296	01	
		296		
		27	=	
		134	∞	
		140	6	
		829	=	
		352	∞	

	Prostate A24 Superm	Table X Prostate A24 Supermotif Peptides with Binding Data	<u>Data</u>
Protein	Position	No. of Amino Acids	A*2401
PSM	829	10	
PSA	15	=	
Kallikrein	61	=	
PAP	2	01	
PSM	468	10	
PAP	147	∞ ¢	
PAP	147	5	
PAP	147	01:	
PSM	797	= (
Kallikrein	216		
PSA	2112	∞ ;	
Kallikrein	216		
PSA	212	- :	
PAP	717	2 .	
PSA	C 5	φ <u>\$</u>	
FOM	000	2 °	
Kallıkrein DAD	6. 3	∞ ⊆	
FAF	20.7	2 ∞	
rolvi Vollikrain	C47	o <u>S</u>	
Valibration	10	<u> </u>	
Kalikrein			
DAD	309		0.0240
PAP	309	2 =	
PAP	183	: 6	0.1100
WSd	326	. 00	
PAP	276	œ	
PAP	276	6	
PAP	276	10	
PAP	276		
PSM	95	6	
PSM	95		
PSM	218	6	
PSM	218	01	
PSM	218	- :	
PSM	16	⊇,	
PAP	72	∞ :	
PAP	7/	2 0	
NC.	/90	<i>></i> ≤	
F. C.	/90	2 =	
DAD	797		0 0001
PAP	297	2 =	
Kallikrein	39	. 6	
PSA	84	6	
PSA	182	01	

Pros	ostate A24 Supern	Table X Prostate A24 Supermotif Peptides with Binding Data Position No of A*2	Binding Data A*2401	
L.C.	Sition	No. or Amino Acids	A*2401	
	187	-		
	578	: ∞		
	578	10		•
	87	01		
	87	=		
	72	6		
	72	01		
	54	10	0.0007	
	28	. 9		
	355	2 =	0.0037	
	163	2 2	10000	
		2:	0.0001	
	211	=		
•	354	6		
	527			
	180	œ		
	001	o		
	2 5	. :		
	440	2 :		
	440	= :		
	649	=		
	257	=	•	
	121	∞		
	125	œ		
	799	∞		
	799	o.		
	799	01		
	181	∞		
	414	œ		
	=	01		
	463	∞		
	463			
	463	=		
	68	œ		
	61	œ		
	19	01		
	88	01	0.0057	
	536	=		
	401	01		
	704	6		
	704	. 01		
	16	6	0.0007	
	16	=		
	95	6		
	95	=		
	455	oc :	•	
	159	×		
	155	∞		

Table X	upermotif Peptides with Binding Data
	Prostate A24 Supermotif P

	Prostate A24 Superm	<u>Table X</u> Prostate A24 Supermotif Reptides with Binding Data	g i
Protein	Position	No. of Amino Acids	A*240i
PSM	129	01	•
PSW State of the s	129	= •	
W.C.	791	a S	
	167	9	
. ×S.	280	2 =	
PAP	130	; ∞	
PAP	130	6	
PSM	142	10	
PSM	631	6	
PAP	15	∞	
PAP	15	6	
PAP	15	2	
PAP	15	=	
Kallikrein	175	6	
Kallikrein	104	œ	
PSA	001	œ	
PAP	242	oc	
Kallikrein	170	5	
Kallikrein	170	. 01	
PAP	13	99	
PAP	22	6	
bVd	13	0	
PAP	= ;	= :	
PSM	472	01	
PSA	237	6	
PSW.	615	∞	
PSM	615	=	
PSA	203	=	
PAP	106	∞	
PAP	901	6	
	431	11	
PSM	348	∞ .	
PSM	348	6	
PSM	338	6	
PSM	101	01	
PSM	107	=	
Kallikrein	=	01	
Kallikrein	=		
PAP	217	01	
PSA	29	0	
PSA	29		
PAP	29	6	
PSM	626	∞	
PSA	7-	0.	
PSA	7	_	

554 225 225 226 420 420 420 420 420 420 420 420 420 420	Protein	Position	Position No. of A*2	A*2401
××=696669=8689=8=6==62=8=88==896=62=69=668699			Amino Acids	
225 22 22 420 420 420 420 420 420 420 420 4		733	O	
225 420 420 420 420 420 420 420 420 420 420	PAP	225	c x	
420 428 428 438 446 446 118 118 118 118 119 119 111 111	PAP	225	; - -	
224 224 224 318 318 318 318 36 36 37 37 37 37 37 37 37 37 37 37 37 37 37	PSM	420	; 6	
228 62 63 63 64 66 65 67 68 69 69 69 69 69 69 69 69 69 69 69 69 69	PSM	420	01	
224 95 496 496 496 496 496 496 111 118 1118 1191 119 1191 119 1191 119 1191 119 1191 1	Kallikrein	228	6 .	
3.62 96 496 96 97 96 97 97 98 111 111 111 111 111 111 111	PSA	224	6	0.0001
318 10 96 96 11 96 8 8 241 8 8 8 118 118 119 119 8 8 119 110 9 8 8 110 9 9 111 119 119 119 119 119 119 119 119 119	PAP	62	6	0.0013
96 96 8 11 21 21 8 8 8 11 11 11 11 11 11 11 11 11 11 11	PSM	318	10	
96 96 88 277 88 118 118 119 88 119 119 88 119 119 11	PSM	496	==	
2479 8 8 2479 8 8 118 118 119 119 119 119 119 119 11	PAP	96	∞	
279 8 241 8 8 118 10 171 111 111 111 111 111 111 111 111	PAP	96	6	0.2600
241 8 118 10 119 19 171 11 172 9 222 11 461 9 461 9 461 10 231 8 231 8 150 8 150 8 291 11 145 9 575 9 145 10 145 10 145 10 145 10 145 10 145 10 145 10 145 10 145 10 145 10 145 10 145 10 145 10 145 10 146 8 147 10 148 11 149 11 140 11 140 11 140	PAP	279	8	
118 110 190 8 8 171 171 171 171 171 171 171 171 171	PSM	241	∞	
118 119 8 117 117 118 119 119 119 119 119 119 119 119 119	PSM	8118	9	
190 171 171 171 171 171 171 171 17	PSM	8		
177 177 177 177 177 177 177 177 177 177	PAP	061	. œ	•
112 12 11 12 12 11 12 12 11 12 11 12 11 12 11 12 11 12 11 12 11 12 12	PAP	121	• :	
222 361 461 461 461 10 461 10 461 10 10 11 146 11 146 11 146 11 147 148 148 149 149 149 149 149 140 140 140 140 140 140 140 140	PAP	111	-	
361 461 461 461 10 461 11 12 13 146 18 146 18 146 18 19 10 145 10 145 11 145 11 145 11 145 11 145 11 145 16 17 18 19 19 19 19 10 10 10 10 10 10 10 10 10 10	PAP	222	~ =	•
461 461 10 461 10 461 10 231 88 146 88 146 88 146 11 146 11 147 10 148 10 148 10 149 9 140 10 140 10 141 11 142 10 143 11 144 11 145 10 146 11 147 10 148 10 148 11 149 10 140 10 140 10 141 11 142 10 143 11 144 11 145 10 146 10 147 10 148 10 149 10 140	WSd	777	-	
461 461 461 110 123 133 146 146 146 16 173 173 174 173 173 173 173 173 173 173 173	Mod	100	I	
461 231 150 146 146 150 16 16 16 175 175 175 175 175 175 175 177 177 177	MSd	461	\ S	
231 8 8 150 8 1146 8 8 146 111 146 8 8 8 146 111 146 111 146 111 147 147 147 147 147 147 147 147 147	PSM	461		
231 150 8 8 146 8 111 146 111 146 111 146 111 146 111 146 111 145 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	PAP	187	; oc	
150 88 146 88 150 150 150 150 150 150 150 150 150 150	PAP	231	» =	
146 8 8 11 146 11 11 146 11 11 11 11 11 11 11 11 11 11 11 11 11	Kallikrein	157	cα	
150 146 146 167 167 167 167 167 167 167 167 167 16	PSA	941	: 00	
146 11 291 8 291 8 575 9 575 9 145 11 145 11	Kallikrein	120	· =	
291 8 8 575 9 624 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	PSA .	146		
291 10 575 575 9 145 11 145 10 145 11 145 11 145 10 292 9 9 9 9 9 9 9 9 9 9 10 558 8 558 9	PAP	291	: ∞	
575 575 145 145 116 145 117 145 117 147 149 140 140 140 140 140 140 140 140 140 140	PAP	291	, 2	
575 145 145 145 147 148 149 149 149 149 149 149 149 149	PSM	575	. 6	
145 9 145 10 145 11 738 9 292 9 9 9 9 9 9 9 558 8 624 9	PSM	575	<u>-</u> -	
145 10 145 11 145 11 145 11 145 10 145 11 145 PAP	145	6		
145 11 738 9 292 9 9 9 9 10 558 8 558 9 624 9	PAP	145	10	
738 9 292 9 9 8 9 10 558 8 558 9 624 9	PAP	145	=	
292 9 8 9 9 558 558 8 624 9	PSM	738	6	
9 8 9 9 9 558 88 558 9 624 9	PAP	292	6	
9 9 9 10 558 8 558 9 624 9	PSA	6	∞	
558 8 558 8 658 9 624 9	PSA	.6	o .:	0.1100
558 8 558 9 624 9	PSA	6	0 1	0.3600
538 9 624 9 634 10	Z Z	000 000 000 000 000 000 000 000 000 00	∞ (
0: <i>PC3</i>	No.	900	y ė	
	FOIN	170 163	ν <u>:</u>	,

	Prostate A24 Su	Table X Prostate A24 Supermotif Peptides with Binding Data	Binding Data	•
Protein	Position	No. of Amino Acids	A*2401	
				1
PSM	584	∞ :		
PSM	584	2 '		
. WSd	5 <u>7</u> 3	∞	0001	
PSA	7 (^ <u>-</u>	2.1000	
PSA	7	0 1	0.0062	
PSA	82	∞		
PAP	41	01	0.0005	
PSM	201	6		
PSM · MSd	372	2		
PSA	89	6		
ASG.	89	01		
Wod.	225	2		
Mod	325	-		
רטוען .	25.			
PAP	203			
PSM	069	=		
PSM	27	∞		
PSM	27	6		
WSd	27	-		
100 P) P	; ∞		
מאם	S &			
rar v-1111:-	200	: =		
Kalijkrein	<u>0</u>	: 6		
FSM	240	v a		
Kallıkrein	777			
PSA	817	∞ (
PSM	903	ъ ;		
PSM .	603	2		
PSM	099	Φ.		
PSM	999	91		
PSM	099	=		
PSA	26	∞		
Kallikrein	99	∞		
Kallikrein	53	6		
PSA	49	٥		
PAP	797	01		
PSA	134	=		
Kallikrein	192	01		
Kallikrein	192			
PSA	. 881.	=		
PSM	352	æ		
MSM	352	=		
PSA	• • • • • • • • • • • • • • • • • • •	6		
A24	∞ ∞	. 2		
A Su	: œ	: =		
DCA	· –	: 2		
DOA	-	:=		
FOA	- 702	: c		
No.	394	>		

.	rostate A24 Supermo	Table X Prostate A24 Supermotif Reptides with Binding Data	<u>ata</u>
Protein	Position	No. of	A*2401
	<	mino Acids	
N - 1811 1.	246	o	
Nailikrein DC A	047	o 20	
. Myd	267	9 9	
Mod	209	2	
Kallikrein	73	: ∞	
Kallikrein	52	; 6	
PSM	555		
PAP	302	6	0.0320
Kallikrein	242	8	
Kallikrein	242	=	
PSM	175	=	
PSA	9	œ	
PSA	2	6	
PSM .	70	6	
PAP	25		
Kallikrein	74	∝c	
PSM	497	01	
PSA	55	6	
Kallikrein	. 65	6	
PSM	234	6	
PAP	319	×	
PAP	319	=	
PSM	449	~	
PAP	84	6	
PAP	2	01	
PAP	103	=	
PAP	155	01	
PSM	537	01	
Kallikrein	243	01	
PSA	239.	. 10	
Kallikrein	243	= :	
PSA	239	=	
PSM	460	92	
PSM	460	. =	
PSM	17.1	=	
PSM	176	01	
PSM	176	=	
PSM	209	œ	
PSM	299	=	
PAP	330	=	

	Prostate B07 Supern	Table X1 Prostate B07 Supermotif Peptides with Binding Data	r. Data
Protein	Position	No. of Amino Acids	B*0702
	226	-	
POINT	770 14	_ ∞	
₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩ ₩	7 7		0.0007
PAP	4	. ∞	
PAP	4	6	0.0210
PAP	4	11	
PSM	313	Ξ,	
PSM	693	∞ (
PSM	693	о с	0.0003
rar Dad	351	ν <u>:</u>	0.0810
NOG NOG	230	20	0.0002
PAP	26	? ∞	
WSd	219	10	0.0001
PSM	229	11	
PSM	266	6	0.0001
PAP	211	∞ ;	
PAP	211	Ξ,	
PSM	/9C	∞ ⊆	
NOW MORE	795	2 =	10000
NSW MSW	387	. ∞	
PSM	387	6	0.0011
PSM	720	σ.	0.0002
PSA	124	∞ (1000 0
PSA PSA	124	> =	0.000
Kallikrein	128	: ∞	
Kalikrein	128	. 0	
Kallikrein	128	=	
Kallikrein	145	6	
PSA	141	σ;	
Kallikrein	. 4. . 4.	<u> </u>	7,000,0
roa	737	2 2	0.0002
Nathkrein Kallibrain	257 24.0	2 =	
PSA	228		
PSM	367	. &	
Kallikrein	82	6	
Kallikrein	82	11	
Kallikrein	191	=	
PSA	157	=:	10000
PSW No.	145 705	⊋ ∝	10000
WSd	202	o 0	0.0013
PSM	705		

	Prostate B07 Superm	<u>Table X1</u> Prostate B07 Supermotif Peptides with Binding Data	<u>Data</u>
Protein	Position	No. of Amino Acids	B*0702
	Š	¢	
P3A	7 8	× ;	
PSA	7 6	2 :	1.1000
rsa v-uili-	76 8	= 0	
Nallikrein Vantiari-	8 %	∞ :	
Kallikrein	96	01	
Kallikrein	9 6 ;	<u> </u>	
PAP	124	>>	
PAP	124	. 6	.0.0001
PAP	S	=	
PSM	330	∞	
	215	∞ :	
PSA	211	∞	
Kallikrein	215	. 6	0.0280
PSA	211	6	0.0280
PAP	361	8	
PSA	78	8	
PSA	78	6	0.0006
PSA	. 82		
PSM	295	∵ ∞	
PSM	295	11	
PSA '	96	8	
PSA	94	6	0.0018
Kallikrein	86	00	
Kallikrein	86	. 6	
PSM	124	8	
PSM	618	8	
PSM	819	10	0.0003
PSA	184		
PSA	184	6	0.1700
PSA	184	01	0.0230
Kallikrein	56	∞	
PSA	52	∞	
Kallikrein	20	6	0.0240
PSA	. 22	6	0.0240
PAP	182	∞ ¦	
PAP	. 782	01	0.0150
No.	08 <u>2</u>	_;	
rar	304		0.0019
rAr	717	x (
PAP	777	ر د	5.8000
rAr.	117	⊇,	
No.	767	∞ (
MSG MSG	767	ъ:	0.0007
Point of the control	767	= «	
	141	×	
Kallikrein	739	×	

-	Prostate B07 Supern	Table XI Prostate B07 Supermotif Peptides with Binding Data	Data
Protein	Position	No. of Amino Acids	B*0702
Kallikrein	239	6	
Kallikrein	239	11	
PSM	681	10	0.0007
PSM	189	11	
Kallikrein	236	∞ ;	
Kallikrein	236	= •	
FSA	232	.∞ ;	
PSA	232]]	
PSM	593	00 (
FSM	593 503	φ ;	0.0011
FSM	293	2:	0.0150
PAN	393	= 0	0 0040
040	344	V .	0.0049
WSH	4,0	01.	. 00000
r Jin	240	<u> </u>	00000
Wid	780	0	0.020
WSd	280	~ =	06100
PAP	223	. 01	0 0032
Kallikrein	141	; ∞	
PSA	137	∞	
PSM	169	8	
PSM	691	6	0.0001
PSM	691	11	
PAP	133	6	0.0026
PAP	133	Ξ (
TSM.	/59	∞ :	
PSM	314	2 0	0.0012
PAB	571	o :	
PSM	651		
PSM	148	: 2	0.0001
PSM	148		
PSM	147	8	
PSM	147	=	•
PSM	146	6	0.0001
PAP	308	∞	
PAP	308	=	
PAP	139	∞ '	
PAP	139	01	0.2400
Kallikrein DSA	\$ £	∞ °	
r 3A Kallikasin	112	° -	
Kallikrein	112	2 =	
PSM	684	∵∞	
PSM	684	6	0.4700

	Data
	Binding
	with
le XI	Peptides
Tab	Supermotif
	B07
	Prostate

R	ostate B07 Supern	Table X1 Prostate B07 Supermotif Reptides with Binding Data	Data
Protein	Position	No. of Amino Acids	B*0702
No.	684	01	0.7200
PSA	801	01	
PSA	108	=	
MSG	411	∞ ∢	
	411	د	0.7800
rolvi Kallikrein	141		
Kallikrein	167	. <u>.</u>	
PSM	17	? o	0.3200
PSM	11	. 01	5.2000
PSM .		11	
PSA	235	∞ (
PSA DSA	255	ν <u>:</u>	
MSd	627		
PSM	503	0.	. 00000
PAP	48		07000
PSM	165	01	0.0002
PSM	165	11	
PAP	348	6	0.0066
PAP	348	<u>0</u>	0.0002
POM	260	D 0	0.0025
WSd	269	v Z	0.0012
PSM	269	2 =	1000:0
PSM	53	∵ ⊗	
PSM	53	6	0.0990
PSM	53	01	0.0200
PSA PSA	163	∞ ;	
PSM PSM	103	2 ∞	0.0006
PSM	467	- =	
Kallikrein	81	· 00	
Kallikrein	81	6	
PAP	146	∞ (
ያል p	946	ν ;	0.0002
PAP	140	2.5	1100.0
Kallikrein	06		
PSM	325	; 6	0.0039
PAP	63	8	
PAP	63		
Pow Pow	272	∞ 0	
Wa	249	o :	
Z XX	110		0,0001
	ì	`	0.000

		1
Binding Data	B*0702	0.0035
Table X1 Prostate B07 Supermotif Peptides with Binding Data	No. of Amino Acids	10
Prostate B07 Sup	Position .	. 119
	Protein	MSd

	ith Binding Data
Table XII	Supermotif w
	Prostate B27

_			
Protein	Position	No. of	
The second secon		Amino Acids	
Kallikrein	48	œ ·	
PSA	09	o :	
PSA	09	01	
PSA	09	=	
Kallikrein	49	01	
Kallikrein	64	=	
DAP	288	•	
DAD	288	`=	
701	107	= 0	
PSM		ح	
PAP	32	5	
PAP	32	01	
PAP	32	11	
Wod	200	:=	
No. Inches	131	: 0	
Naturalia	000	\ <u>-</u>	
Kallikrein	130	01	
PSM	93	×	
PSM	93	=	
PAP	6	∞	
pAp	6	01	
PAP	. •	:=	
Kallikrein	581	: ox	
National Contraction of the Cont	581		
Kallikrein	C01	= «	
PSM	<u>S</u> :	ъ.;	
PSM	15	7	
PSM	180	6	
PAP	313	∞	
PSM	597	000	
Wind	265	Ξ	
POD	609	; «	
THE T	600) Q	
. Talo	F-50	o <u>S</u>	
FOW	900	2 :	
PSM	624	= -	
PSM	683	∞	
PSM	683	6	
PSM	683	01	
PSM	683		
PAP	46	∵ ∞	
DAD	7.6		
ייאנו מאנו	17	\ <u>-</u>	
7.4.7	17	= 6	
PAP	2:	»;	
PAP	01	= '	
PSM	563	∞ :	
PSM	563	01	
PAP	321	6	

I tate B27 Supe	Table XII	rmotif with Binding Data
	EI.	tate B27 Super

	Table XII Prostate B27 Supermotif with Binding Data	ith Binding Data	
Protein .	Position	No. of Amino Acids	
PAP	321	0.	
Kalikreip	321	<u>.</u> o	
PSA	7.80	\ 0	
Kallikrein	32	01	
Kallikrein	32	=	
PSA	28	10	
PSA	28	=	
Kallıkrein	238	6	
Kallikrein	238	0i	
PAP	254	6	
PAP	254	0:	
rar	254	= •	
Kallikrein Valikasia	261	∞ ⊊	
DEM	061	21 0	
PSM	7/9	∞ ⊆	
FOINT	7/0	2 5	
pap	154	2	
WSW	444	: o	
PSA	234	· •	
PSA	. 234	01	
PSA	77	6	
PSA	77	01	
PSM	186	6	
PSM	570	∞ :	
PSM	570	2.0	
FOW	607	ν:	
r Sivi DAD	607	= 0	
PAP	7 +		
PSM	376	2 ∞	
PSM	376	· =	
PSM	861	∵ ∞	
PSM	198		
PAP	192	Ξ	
PSM	490	. 😄	
PSM	206	6	
PSM	533	6	
PSA	42	00 (
PSA	42	Φ.	
מאמ	74	2 ←	
Myd	06.7 77.8	<i>y</i> ∈	
TAIC 1	110	2	

	4
	Da
	3
	름
	5
_	핗
Ξ	1
9	o
Lab	8
H	즼
	3
	77
	=
	품
	S
	니

	Table XII Prostate B27 Supermotif with Binding Data	1 with Binding Data	
Protein	Position	No. of	
		Amino Acids	
PAP	249	01	
PSM	346	. 01	
PSM	346	=	
PAP	58	01	
PSM	0/	∞	
PSM:	70	=	
PSM	. 43	01	
PAP	85	∞ :	
PAP	85	6	
PSA	63	∞ (
PSA		5 :	
PAP	104	<u>o</u> :	
PAP	104	= 4	
PSM	22	∞ :	
· MSA	50	= 0	
Pom	. /10	» =	
Foly Kollibrain	33	= ∝	
PSA	29	» œ	
Kallikrein	33	. 6	
Kallikrein	33	01	
Kallikrein	33	=	
PSA	29	φ.	
PSA	29	0:	
PSA	29 406		
MSd	17	0.	
PAP	281	} ∞	
PSA	165		
PSA	165	01	
PSA	165	= '	
Kallikrein	89 0	∞ ∘	
DOM	464	• =	
PAP	272	. 6	
PAP	621	. 0	
PAP	621	01	
PAP	179	=	
PSM .	729	∞ (
PSM	729	Φ.	
FSIM	87		
PSM	; v	; ∞	
PSM	5	6	

able XII ermotif with Bino		ling Data
	able XII	ermotif with Bin

197 197 197 197 197 197 197 197 197 197	197 197		Position	No. of Amino Acids	
			^ !	= •	
			/61	y 3	
			161	2 °	
			. 9/1	×	
			9/1	01	
			181	∞	
			101		
			101	n :	
			181 .	=	
			1.72	œ	
		•		. 5	
			7/1	2	
			59	6	
				. :	
			9	01	
			37	-	
			69	===	
			35	۰	
			CC	6	
			1.9	~	
			5 !	•	
		•	29	6	
	· .		-		
			. 7/1	21	
			. 481	œ	
· .				. :	
	·		575		
			235	•	
				` :	
			235	01	
· .				91	
	· .		700	2 :	
			362	=	
			707	•	
			+OC	•	
			604	6	
	·		707	==	
•			100	-	
			120	6	
			77		
			t7-		
	·	•	199	•	
			199	0	
			100	` :	
			199	2	
		•	177	=	
			100	-	
			101	3	
			2	-	
			991	6	
100 462 8 462 9 462 10 58 8 58 10 616 10	160 462 8 462 8 462 9 344 58 8 58 10 616 192 9			-	
462 8 462 9 462 10 344 9 58 8 58 8 616 10	462 8 462 9 462 9 462 10 344 9 58 8 58 10 616 10 192 9		991	-	
462 9 462 10 344 9 58 8 58 10 616 10	462 9 462 10 344 9 58 8 58 10 616 10		2962	∞	
402 7 462 10 344 9 58 8 58 10 616 616 10	402 9 462 10 344 9 9 58 8 8 8 8 8 8 8 8 8 8 8 8 8 8 10 616 10 616 10 192.		1.5		
462 10 344 9 58 8 8 58 10 616 10	462 10 344 9 58 8 58 10 616 10		704	•	
344 9	344 9 58 8 58 10 616 10 192. 9		462	01	
58 8 8 58 10 10 616 10 10 100 100 100 100 100 100	544 58 58 10 616 192 9		780	: <	
58 8 58 10 616 10	58 8 58 10 616 10 . 192. 9		744		
58 10 616 10	58 10 616 10 . 192. 9		28	∞	
01 919	616 10 192. 9		82	-	
01 919	616 10			2 :	
601	. 192.		919	01	
	6 .761			: c	

	Data
	inding
=1	with B
Table XI	permotif
	B27 St
	Prostate

	Table XII Prostate B27 Supermotif with Binding Data	Position No. of Amino Acids	192 10	271	622 8	622	~	6 1	269 9		121 8	121	212 8	8 807	. 01	93 10		54	, to the second	104	_	01 714			336 8		6 44	252	303	01
Protein PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	Prostate B27 &	Posi																												

	Data
1	nding
	ith Bi
le XII	10tif w
Tabl	upern
	B27.S
	Prostate

254 254 254 254 368 88 88 43 86 87 250 250 250 250 260 260 260 260 260 260 260 260 260 26	8.1	Amino Acids	1
	981	∞ ≍	
	254	∞∶	
	526	: =	
	88	6	
	43	∞	
	43	::	
	06	∞ :	
	98.	∞	
	. 250	∞	
	246	∞	
	250	6	
	250)[
	246	6	
	246	1(
	509	∞	
	909)I .	
	280	œ	
	280	υ	
	91	∞	
	16)[
	16	=	
413 118 99 44 44 44 11 696 89 99 89 99 89 99 89 89 89 89	413	6	
118 9 9 114 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	413	=	
114 44 III 696 III 89 88 93 88 93 88 89 9 93 111 722 III 644 III 513 9	811	6	
44 II 696 II 93 88 89 88 89 99 89 11 722 II 644 II 513 9	114	6	
696 II 93 8 8 89 8 8 89 9 9 89 9 11 722 11 724 II 717 8	44); 	
696 93 89 89 89 89 89 91 11 722 11 722 11 717 8	4	=	
93 8 8 89 8 8 89 9 9 89 11 772 11 644 1(513 9 513 8	969)(
89 88 93 99 8 89 89 11 722 11 644 1(513 9 513 8	93	∞	
93 9 89 9 89 11 722 11 644 1(513 9 513 9	68	∞	
89 99 89 11 722 11 644 16 513 9 513 11 717 8	93	6	
. 89 . 11 722 . 11 644 . 1(513 . 9 513 . 11 717 . 8	68 .	6 .	
93 11 722 11 644 1(513 9 513 11 717 8	68	= .	
722 11 644 I(513 9 513 11 717 8	93	=	
644 I(513 9 513 11 717 8	722	=	
513 9 513 11 717 8	644	υ	
513 11 717 8 717 9	513	6	
717 8	513	=	
6 211	717	∞ .	
	111	5 5 (

Table XII spermotif with Binding I

	Table XII Prostate B27 Supermotif with Binding Data	l with Binding Data	
Protein	Position	No. of Amino Acide	
		corati omini	
PSA	40	. 10	
PSA	40	=	
PSM	439	6;	
PSM	439	2:	
PAP	439 256	_ ∞	
PAP	256	• •	
PSM	123	√ ∞	
PSM	123	6.	
PSM	478	==	
PSA	189	01	
MSd	498	δ.	
PAP	233	م ;	
FAP	233		
Kallikrein	336 244	n 0	
PSA	240	\ 0	
Kallikrein	244	10	
PSA	240	10	
PSM	353	0,	
POM	395	∞:	
PAP	. 218	- 6	
PAP	218	, <u>0</u>	
PSM	474	⊹∞	
PSM	294	6	
PSA	183	6	
FOA	183	01 -	
Kallikrein	201 55	_ 0	
PSA	55	\ o	
Kallikrein	55	. 01	
PSA	51	01	
PAP	143	=	
Kallikrein psa	247	= :	
WSd	347		
PSM	214	5 6	
PSM	636	œ	
PSM .	636		
No.	728	∞ ¢	
No.	327	· •	
PSM	239	2 ∞	

	h Binding Data
Table >	Prostate B27 Supermoti

Protein	Position	No. of Amino Acids
PSM	239	01
PSM	625	? c
PSM	575	, CI
PSM	001	<u>;</u> 6
PSM	001	=
PSM	319	∴ o
PSM	319	- 11
PSM	410	· 00
PSM	410	. 6
PSM	. 014	01
PSM	572	; o o
PSM	552	∞
PSM	552	01
PSM	. 552	=
PAP	184	∞
PAP	184	
PAP	26	∞
PAP	280	. 6
PAP	68	6
Kallikrein	249	6
PSA	245	6
Kallikrein	249	01
Kallikrein	249	
PSA	245	10
PSA	. 245	
PAP	331	01 .
PSM	279	.∞
PSM	279	. 6
PSM .	279	=

ᆈ	Table XIII	ostate B58 Supermotif with Binding Data
		Prost

Protein	Position	No. of Amino Acids	
PSM	741	ъ.;	
PSM	741	2,	
FSM	142	>> (
PSM	142		
MSd	735	••••••••••••••••••••••••••••••••••••	
Poin	735		
PSA .	S S	2:	
FSA	60	=:	
Kallikrein	. 63		
PAP	. 121	6	
PAP	121	11	
PSA	13	. 6	
PSA	13	01	
PAP	3	6	
PAP	m	10	
PAP	-	∵ ∞	
PAP		. 6	
PAP		. 9	
PAP	:=	2 =	
MSd	392	: ∝	
PSM	392	, II	
PAP	331	; 00	
pAp	315	. 0	
PAP'	311	.01	
WSd	531	=	
PSM	643		
PSM	643		
pAp	12	; ∝	
pAp	12	, 0	
pAp	: 2	01	
dyd	12	2: =	
γSd	: £	:=	
WSd	419	: ∝	
Wod	419	, <u>c</u>	
MSd	419	2 =	
WSd	13	; ∞	
PSM	13	6	
PSM	13	=	
PAP	227	6	
PAP	189	6	
PSM	49	10	
PAP	274	. 01	
PAP	274	=	
PSM	22	∞	

	ata
	Ö
	8
	힏
	E
	4
=	氢
X	닖
_,	펄
Table	븝
H	끸
	窈
	B58 S
	当
	읙
	딍
	Š
	4

Position

	Amino Acids
	11
	∞
	6
	10
	6
	10
	6
	6
	. 6
	10
	. ∞
	10
	01
	∵ ∞
	• ••
	6
	10
	6
•	00
	=
	. 01
	000
	o
	٠. م
	=:
	= 0
	×o Ş
	0
	o <u>-</u>
	2 ∞
	. 01
	11
	∵ ∞
	- 11
	80
Kallikrein 85	∞
	∞
	6
	6

B58	일	Table XIII	
-----	---	------------	--

Amno Acids 290 48 48 10 285 286 10 10 10 10 10 10 10 10 10 1			
			Amino Acids
		290	01
		290	
		48	=
		285	∞
		285	10
		891	01
		703	o
		703	· <u>c</u>
		202	-
		312	: •
		017	٧.
		91/	9
		09	∞
		. 09	
		216	; oc
		217	> =
		017	= '
		95	œ
		96	6
		95	. 01
· .		7	6
		0.21	· 00
		547	» «
		547	S
· .		25.5	2 =
		240 240	= <
		4CC	م
		334	01
•	,	334	=
		257	6
		557	01
·		356	000
		356	. 6
		235	. 00
		718 718	o c
		27	\ :
		81 4	= '
·		191	6
633 11 646 8 506 10 546 10 546 11 164 11 337 8		633	<u>o</u>
646 8 506 10 546 10 546 11 164 11 337 8 337 10		633	=
506 10 546 10 546 11 164 11 337 8 337 8 337 10		646	∞
546 10 546 11 164 11 337 8 337 10		908	9
546 11 164 11 337 8 337 10		546	:⊆
164 11 137 8 337 8		546	2 =
337 8		010	
337 10		104	
337 10		33/	∞ ;
		337	⊆

Table XIII	te B58 Supermotif with Binding Data
	Prostate B

Protein	Docition	No of	
		Amino Acids	
PSM	333	. 01	
PSM	11	∞	
PSM	737	10	
PSA	12	01	
PSA			
PSM	391	∞	
PSM	391	6	
PSM	263	01	
PSM	221	∞	
PSM	. 24	6	
PSM	24	10	
PSM	24	=	
MSd	364	. «	
MSd	364	o	
MSd	364	, <u>c</u>	
Mod	100	2 :	
r Sivi	+0C		
Nallikfein 77-11:1:	0 :	0;	
Kallıkrein	16	= '	
, PSM	311	. 6	
PSM	516	∞	
PSM	919	o :	
PSM	516	01	
Kallikrein	158	∞	
PSA	154	œ	
Kallikrein	158	6	
PSA	154	. 6	
PSM	321	6	
PSM	85	∞	
PSM	85	6	
PSM	403	80	
Kallikrein	149	6	
PSA	145	6	
Kallikrein	94	∞	
PSA	06	œ	
PSA	06	10	
Kallikrein	94	. 01	
Kallikrein	34	· ∞	
Kallikrein	34	6	
Kallikrein	34	10	
PSA	30	∞	
PSA	30		
PSA	30	01	
PSM	347	6	
PSM	347	01	

No. of Amino Acids	0001001∞∞001000∞000010101∞0000100000100000100000100000100000100000
Position	553 553 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
Protein	PSM PSM PAP PAP PAP PSM Kallikrein PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM

	Data
	Binding
Table XIII	Supermotif with
	B58
	Prostate

No. of Amino Acids	10	; ∞	6	0	∞ :	<u>.</u>	= 0	° <u>-</u>		: ∞	, 01	&	10	II.	σ,	5	م	: ∞) O	11	6	10	01	11	01	Ξ (y 2	2 ∞	o	0.7	==	6	6	10	∞ .	∞ (o :	Ξ°	ه ه	· =
Position	120	219	219	219	28	87	8 78 83 83	68	83 83	011	011	31	31	31	92	/80	oo oo		148	148	238	238	122	122	126	126	161	151	4	14	41	241	179	179	8	01	0 :	01	0 7	9
Protein	PAP	PSM	PSM	PSM	PSM	FOR	FSM	MSd	MSd	PSM	PSM	PAP	PAP	PAP	PSW .	PSM	rar. Pap	PAP .	PAP	PAP	PAP	PAP	PSA	PSA	Kallikrein	Kallikrein	PAP	PAP	PAP	PAP	PAP	PAP	Kallikrein	Kallikrein	PSA	Kallikrein	Kaliikrein	Kallıkreın De A	107 004	PSA

	53
	=
	$\ddot{\sim}$
	_
	24
	=
	밀
	.51
	₩.
	E I
	ᆆ
	회
-1	.21
_	7
_	4
\sim	:=1
O.	0
aple	2
0	5
œ.	ᆲ
-	ă
	=
	-21
	Sī
	B58
	5
	2
	쁘
	<u>त्व</u>
	-
	2
	2
	الت

Protein	Position	No. of Amino Acids	
PSM	117		
PSA	871	∞ ;	
PSA S.S.	871	01:	
PAP	315	Ι,	
PSA.	4 •	∞ :	
PSA	4.	01	
PŞA	4	11	
PSM	268	01	
PSM	768	11	
PSA	162	6	
PSA	162	11	
PAP	70	01	
PSM	574	01	
PSM	574	=	
· PAP ·	298	6	
PAP	298	10	
PAP	114	∞	
PAP	114	6	
. PAP	114	. 01	
PAP.	114	-11	
Kallikrein	103	6	
PSA	66	∞ (
PSA	66	σ ;	
PAP	232	0.	
PAP	117	∞ ;	
PSM	451	2 :	
FSM	710	<u>o</u> :	
WSd.	216		
Kallikrein	0/	=::	
PSM	854	2 :	
Por	\$0.4 0.4		
POINT.	167	7 . 0	
roa 194	671	o :	
FOA POA	C 2	2 :	
F3A	521	= •	
Kalikkein	671	∞ :	
Kallikrein	129	01	
Kallikrein	129	=	
Kallikrein	146	∞	
PSA	142	∞	
Kallikrein	146	6	
PSA	142	o :	
PSM	273	=	
· Kallikrein	240	∞	

Table XIII	rostate B58 Supermotif with Binding Data
	Pro

Protein	Position	No. of Amino Acids	
	070		
Kallıkrein	240	≥ ∘	
TAT	249	00	
ΓAΓ DAD	349.	, <u> </u>	
Mid	260	: ∝	
MSM	290	, <u>e</u>	
PSM	290		
PSM	721	; ∞	
PSA	236	8	
PSA .	236	10	
PSM	202	œ	
PSM	205	11	
PSM	694	œ	
PAP	224	o	
PAP	278	∞	
PAP	278	6	
PAP	278	11	
PAP	3	01	
PSM	740	01	
PSM	740	_;	
PSM	389	2 :	
FORM	289	= 0	
Kallikrein	, ,	v 00	
DAP	; ~	» «	
PAP	. ~	» S	
PAP	5 -)	
PAP	9	; o	
PAP	9	10	
PAP	01	=	
PSM	673	6	
PSM .	534	∞	
PAP	273	∞	
PAP	273	=	
PSA	43	∞ :	
PSA	43	σ;	
Kallikrein	981	<u>9</u> :	
Kallikrein	981	=:	
PSM K-M3:-	400		
Namkrem Kallikrein	691	∞ <u>c</u>	
Kalikrein	691	. =	
PAP	501	6	
PAP	105	01 .	

Table Prostate B58 Supermot

Protein	Position	No. of Amino Acids	
PAP	28	ox.	
PAP	28 28	01	
PAP	28	2 =	
PSM	181	œ	
PSM	414	∞	
PSM	414	10	
PAP	111	10	
PAP	111	= .	
PSM	162	∞	
PAP	287	10	
PAP	115	∞	
PAP	115	6	
PAP	115	01	
PSM	. 312	00	
PSM	01	11	
PSM	634	6	
PSM	634	01	
Kallikrein	117	00	
PSA	113	90	
Kallikrein	1117	10	
PSA	. 113	10	
PSM	. 569	11	
PSM	454	6	
PSM	454	11	
PSM	45	∞	
PAP	61	01	
PSM	317	6	
PSM	317	11	
PSA	203	==	
PAP	901	∞	
PAP	901	6	
PAP	106	==	
PSM	431	=	
PSM	348	∞	
PSM	348	0	
PSM	348	11	
PSM	338	6	
PSA	28	=	
PSM	14	80	
PSM	4	10	
PSM	141	= -	
Kallikrein	227	6	
Kallikrein	227	0.	
PSA	577	ر ب	

Table XIII	tate B58 Supermotif with Binding Data
	Prostate

Protein	Position	No. of Amino Acids	
PSA	. 223	01	
Kallikrein	150	∞	
PSA	146	∞ ;	
Kallikrein	150		
FSA PAP	291	:∞	
PAP	291) o	
PAP	291	01	
PSM	734	∞	
PSM	734	o .:	
PSM	734	01	
PSM	576	∞	
PSM	576	⊅ :	
PSM	5/6	0 °	
PSA	36 	00	
PSM	7 [^ =	
Kallikrein	40	≥ ∞	
Kalikrein	40		
PSW	447	01	
PSM	154	¦∞	
PSM	154	01	
PSM	. 451		
PSM	627	6	
- PSM	627	01	
PAP	293	, co	
PAP	293	01	
PAP	293	= (
Kallikrein	76	o n (
rsA Z-un-i-	8 6	y	
	76		
PAP	120	≥ ∝	
υδρ	120	o	
PAP	129	, 01	
Kallikrein	174	. 01	
Kallikrein	192	80	
Kallikrein	192	10	
Kallikrein	192	Ξ	
PSA	. 881	00 (
PSA	188	= 4	
PSM	352	» :	
PSM:	7C5	<u> </u>	
PSA	×	٧.	

Table XIII	sstate B58 Supermotif with Binding Data
	Pros

Protein	Position	No. of Amino Acids	
DCA	0	01	
PSA	o ∞	2 =	
PSM.	434	: ∞	
PSM	434	· 00	
Kallikrein	47	8	
Kallikrein	47	Q	
PAP	226	01	
PAP	206	8	
PAP	206	6	
PSM	497	10	
PSM	209	∞	
PSM	209	10	
PSM	700	6	
PSM	200	10	
PSM	692	6	
PSM	692	01	
PSM	179	∞	
PSiM	621	01	
PAP .	310	o :	
PAP	310	<u>o</u> :	
rar Valibrain	310	= •	
NAIIMIGIII DSA	133	00	
. WSd	600		
WSd	009) o	
PSM	277	. 00	
PSM	772	10	
PSM	772	11	
PAP	286	∞	
PAP	286	11	
PSM	228	∞	
PSM	228	6	
Kallikrein	188	∞	
Kallikrein	188	6	
Kallikrein	188	01	
Kallikrein	43	-	
PSM	612		
MSd	471	Ξ,	
MON.	625	×ο α	
No.	625	ον ;	
MST MST	625	_	
r SIVI V o Historia	750	2 9	
DSA	243	29	
Lon	457	2	

Table XIII
Prostate B58 Supermotif with Binding Data

Position No. of Amino Acids

Amino A 11 11 10

> 243 239 460 460

Protein

Kallikrein PSA PSM PSM

Table XIV	62 Supermotif with Binding Data
	Prostate B62 Supe

	Table XIV Prostate B62 Supermotif with Binding Data	<u>Y</u> vith Binding Data	
Protein	Position	No. of Amino Acids	
			ľ
dAq	299	∞	
PAP	299	6	
PSM	711	6	
PAP	122	∞	
PAP	122	01	
PAP	122	11	
Kallikrein	147	∞	
PSA	143	•••	
Kallikrein	147	=	
PSA	143	=	
Kallikrein	235	∞ (
Kallikrein	235	o (
PSA	231	∞ (
PSA	157	~ (
Kallikrein	5	~ ·	
Kallikrein	ر بر در	⊇ ∝	
MON.	57 51	0 0	
FSM	67 56	2	
PSM	22	2 =	
FOIM	911	: ∞	
PAP	911	6	
ASA	236	=	
PSA	. 41	∞	
PSA	14	6	
PAP	4	80	
PAP	4	6	
PAP .	4		
PSM	313	=	
PSM	693	∞ (
PSM	693	5	
PSM	202	• 0	
FSIM	717	. 01	
NO.	217	2	
PSA	181	;∞	
PSA	181	=	
PSM	577	∞	
PSM	577	6	
PSM	577	= :	
PSM		0 :	
PSM	- 7	<u> </u>	
FSA	365	> ∝	
Contraction		•	

	Table XIV Prostate B62 Supermotif with Binding Data
--	---

	Prostate B62 Supermotif with Binding Data	with Binding Data	
Protein	Position	No. of	
		Amino Acids	
Mad	371.		
No.			
PSM	205 286	2 0	
Nod	913	\ o	
WS.d.	635	• •	
Kallikrein	27	. 0	
Kallikrein	17	01	
PSM	393	2	
PSM	109	? ∞	
PSM	109	- =	
Kallikrein	. 4	∵∞	
Kallikrein	241	6	
PSA	62	8	
PSA	62	6	
PSA .	62	01	
Kallikrein	99	œ	
Kallikrein	99	6	
Kallikrein	99	10	
PAP	351	6	
. PAP	351	2:	
rsa Valibraia	109	end us	
DOM	6/1		
MSM	# / / 95	- ∞	
, WSd	156		
PAP	201	, o	
PAP	201	. 01	
PSA	171	6	
PSA	171	=======================================	
Kallikrein	120	Ξ.	
PSA	116		
PSA	136	∞ :	
PSA	136	6	
Kallikrein	(1)	∞ ;	
Kallikrein	C	01	
PSM	173	∞ :	
Kallikrem	781	= :	
. MSG	161	9.	
FOIN	1 <u>6</u> 1	<u>.</u> o	
ASA	86	01	
PSM	230	2 2	
PAP	56	. ∞	
PSM	677	01.	

	G.
	ন
	a
	2
	.51
	ם
	:=
	몍
	듸
~ I	-3
×	\equiv
의	0
폨	Ħ
3	ö
_	읔
	S
	~
	Ó
	의
	3
	S
	4
	اے

	Table XIV Prostate B62 Supermotif with Binding Data	V with Binding Data	
Protein	Position	No. of Amino Acids	
			1
PSM	677 595	<u> </u>	
PAP	211	. 00	
PAP	211	= .	
PSM ·	295	∞	
PSM	567	0:	
FSM	/90	= (
PSM	387	∞ c	
PSM	387	D	
PSW	07/		
DOM	151	0 0	
LOW	999	^ 2	
LOW	999	2 ;	
FSIM	000		
F3A	8/1		
rar	807	ν -	
rar vanitation	208	2 °	
NaillAfeili	901	0 5	
rar Dab	100	2 :	
Mod	301	11	
MSd	137	2 ∝	
PAP	266	0 00	
PSM	397	6	
PSM	601	00	
PSM	109	6	
PSM	601		
PSM	286	∞	
PSM	586	01	
PAP	08	01	
PSM	64	01	
PSM	64	=	
PAP	34	000	
PAP	34	6	
FSM	480	5 (
PAP	237		
PAP	237	2:	
PAP 848	237	= 0	
rar ·	047	∞ ;	
PAP	240	<u>o</u> ,	
PSA	127		
FSA	/21	o ;	
PSA	127		
PSM	260	01	

Position

Protein

The second secon		Amino Acids
PSM	260	. 11
PAP	358	=
PAP	317	6
PAP	317	01 .
PAP	317	11
NSA .	621	6
PSA	124	8
PSA	124	6
PSA	124	11
Kallikrein	128	8
Kallikrein	128	6
Kallikrein	128	
Kallikrein	145	6
PSA	141	6
Kallikrein	145	10
PSA	141	10
Kallikrein	232	10
Kallikrein	232	11
PSA	228	. 11
PSM	367	. &
Kallikrein	82	6
Kallikrein	. 82	11
Kallikrein	191	11
PSA	157	11
PSM	145	01
PAP	9/	σ:
PAP	9/	01
PSM ,	87	01
PAP	001	10
PSM	522	o '
PSM .	522	10
PSM	727	~
PSM	727	σ;
PSM	727	2
PSM	727	Ξ,
PSM	351	>> (
PSM	351	6
PAP	187	∞ :
PAP	187	=
PSM .	42	∞ ;
PSM	42	= :
WSd	19	2:
PSM	0.40	2,
PAP	81	, œ

	Binding Data
Table XIV	362 Supermotif with
	Prostate B6

Protein	Position	Z	
		Amino Acids	
	:		1
PAP	<u> </u>	ο :	
PAP	20	= 0	
NO.	33	01	
WS.	i en		
PAP.	92	: =	
Kallikrein	165	10	
PSA	6	8	
PSA	'n	6	
PSA	E.	=	
PSA	191	01	
PSM	73	∞	
PSM	73	11	
Kallikrein	195	∞ :	
PSA .	161	∞ (
Wind	705	∞ :	
PSM	705	6)	
PSM	705	Ξ,	
PSA	92	∞ :	
PSA	92	0:	
PSA	92		
Kaliikrein	95	∞ :	
Kallikrein	96	01	
Kallikrein	25	0	
PAP	5 71	∞ α	
TAT C	5 71	v :	
PAP	55		
TAT .	÷01	> 0	
PAP Papa	72	× :	
PCM	· · ·		
MAG	505		
PSA	98		
1 20	282	; ∞	
MSd	282		
WS.	529	: 6	
PSM	385	. ∞	
PSM	385	6	
PSM	385	01	
PSM	385	=	
PAP	248	=:	
Kallikrein	225	= :	
PSA	221	= :	
PAP	507	01	

	ca
	ᆲ
	-
	目
	딈
	1
	ב
	딉
7	-2
	. >
×	Ξ
انه	ᆲ
⇉	뒴
त	밁
Н	8
-	3
	S
	N
	9
	몍
	Ç.
	7
	ᇷ
	9
	ᆲ

204 707 707 707 707 707 707 707 707 707 7	PAP PSM PSM PSM PSM PSM PAP PAP PAP PAP PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS	Protein	Position	No. of
204 707 707 104 1104 1104 1206 1305 1305 140 140 140 140 140 1205 1205 1205 1205 1205 1205 1205 120			0.00	Amino Acids
204 104 104 105 106 106 106 107 107 107 107 107 108 108 108 108 108 109 109 109 109 109 109 109 109 109 109		O V O	700	=
104 104 105 106 106 107 108 108 108 108 108 109 109 109 109 111 121 121 121 122 123 130 130 130 130 130 130 130 130 130 13		. Woo	707 707	= 0
196 196 196 196 198 198 198 198 198 198 199 199 199 199		W	707	`
196 196 196 196 196 197 140 188 198 198 199 199 199 199 199 199 199			70-	: 5
196 196 427 427 427 427 427 427 428 680 680 680 681 168 168 168 168 168 168 168 168 179 199 199 199 199 199 199 199 199 199		PAP	961	?∝
196 427 427 427 427 427 427 428 680 680 680 680 680 680 680 680 680 68		AP	961	, <u>s</u>
427 427 427 305 680 680 680 295 295 295 295 295 295 296 297 211 211 361 199 68 87 87 87 87 87 87 87 87 87 87 87 87 87		dVd	961	: :
477 477 680 680 680 680 295 295 295 295 295 295 296 168 168 208 208 201 201 201 201 201 201 201 201 201 201		Mo	7.00	: ×
342, 680 680 680 680 680 680 695 74 74 74 74 74 74 74 168 83 83 83 81 199 68 83 83 84 84 84 83 83 83 83 83 83 83 83 83 83 83 83 83		Mac	(7)	
680 680 680 680 680 295 74 74 74 74 74 74 74 76 88 88 88 87 87 87 87 87 87 87 87 87 87		SIM	174	· :
680 680 288 140 140 140 140 140 140 140 140		Ar	505	= 0
080 288 140 140 140 140 140 140 140 168 168 168 168 168 178 189 199 199 199 199 199 199 19		SM	080	∞ ;
288 295 295 295 296 297 44 298 298 330 330 330 330 330 330 330 331 341 361 361 361 361 361 361 361 361 361 36		WSd	089	=
140 295 295 296 297 74 74 74 74 74 74 74 74 74 74 74 74 74		WSo	288	01
140 295 295 296 297 74 74 74 78 78 78 78 78 78 78 78 78 78 78 78 78		Kallikrein	140	∞
295 74 74 74 74 76 168 168 168 582 582 582 582 582 582 582 582 583 581 581 68 68 68 68 68 68 68 7 7 7 7 7 7 7 7 7		Kallikrein	. 140	σ
295 74 74 74 168 168 168 168 508 508 508 508 508 508 508 508 508 50		AP	295	00
74 74 168 168 168 508 508 508 508 508 508 508 508 508 50		AP	295	6
74 168 168 508 582 582 582 511 211 211 361 199 68 87 87 87 87 87 87 87 87 87 87 87 87 87		AP	74	. 00
168 168 168 508 508 582 582 582 582 511 511 511 511 511 68 68 68 68 68 68 68 68 68 68 68 68 68		AP	74	. =
168 508 582 582 582 583 330 511 511 511 68 68 68 68 68 68 68 68 68 68 74 68 74 68 74 74 74 74 74 74 74 74 74 74 74 74 74		WS	168	; ∞
168 508 508 508 508 508 508 508 508 508 50		WS	891	6
508 582 582 530 511 211 211 361 199 68 87 87 87 87 87 87 87 83 87 87 87 87 87 87 87 87 87 87 87 87 87		NS.	891	10
582 582 582 582 511 211 361 199 68 87 87 87 83 84 446 224 224 238 238 238 238		WS.	208	∞
582 330 215 211 211 361 199 68 87 87 83 446 224 224 224 224 224 238 238 238		MSd	582	01
330 215 211 211 361 199 68 87 87 83 446 224 224 224 238 238 231 217		NS.	582	-
215 211 211 361 199 68 87 87 83 446 224 224 238 238		NS.	330	∞
211 215 211 361 199 68 87 87 83 446 224 224 238 238 238 231		Callikrein	. 215	∞
215 211 361 199 68 87 87 87 87 224 224 238 238 238 231		SA	211	00
		Allikrein	215	6
		SA:	211	. 0
		AP	198	. ∝
		AP	061	o 00
		Δp	061	· =
		DAD	67	: o
		Collibrain	00	<u> </u>
			60	2 5
		YS.	. 63	
		Mic	440	Ξ «
		INIC.	577	; م
		NS.W	224	Ξ
		WS	238	φ:
		WS.	238	Ξ.
		allikrein	221	6
		SA	217	6

T. B62 Supe	able XIV	rmotif with Binding Data
		B62 Sur

Position No. of Amino Acids	בטועה טווווווס		8	52 9	6 6 87		01 20	01 84	261 8	261	257	252	000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 971	01 871	128	345 8	345 11	6		11 20 771		11 //1	27.5	9 0/7	11 0/7	82	6	78	295 8	295 11		-		6 86											20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 701	187
Protein			PSA	Kallikrein	AS d	V. ollikasin	NAIMAIGH POA	FSA	PAP	PAP	WSg	No.	d V c	מאפ	TAT TAKE	TAP	PAP	NS ₄	WSd	WSa	Woo	7.3 likrein	Zalikain	NAIIINEIII			rar	YSA S	ASA	PSA PSA	WSo	PSM	· VSo	ASc.	Kallikrein	Kallikrein	MSc	WSc	WSc	VS.	YS ₄	AS ₄	Callikrein	SA.	Callikrein	V	A D		ÄF

•	Binding Data
Table XIV	Supermotif with
	B62
	Prostate

PSM 130 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V.	173	=	
130 416 416 416 416 416 69 69 69 69 733 733 733 733 733 733 733 733 733 73		130	56	
416 416 69 69 69 133 267 226 226 227 277 277 277 277 277 277	_	130	01	
416 373 373 373 373 373 373 373 373 373 37		416	8	
373 373 373 373 373 373 373 373 373 373		416	11	
373 373 56 69 69 105 207 207 207 207 207 207 207 207		373	6 .	
973 69 69 267 267 278 80 80 80 80 277 277 277 277 277 277 277 277 277 27		373	01	
69 69 267 258 226 226 226 227 227 227 227 227 220 200 200 200 200		373	Ξ	
69 267 267 226 226 227 237 292 292 293 294 44 364 394 395 659 659 659 659 659 659 659 659 659 6		69	; ∝	
13.5 267 278 286 286 287 277 277 277 277 277 277 277		60	•	
267 288 284 286 287 277 277 277 277 277 277 277 277 277		60	n c	
267 258 258 277 277 277 277 292 292 293 296 659 659 659 659 659 659 659 659 659 6		(6)	~ (
267 17 226 226 226 226 227 277 277 277 277 27		. 792	×	
258 17 226 226 226 227 284 80 80 364 277 277 277 277 277 277 277 277 277 27		267		
17. 226 226 284 284 277 277 277 292 292 290 200 200 200 200 200 200 200		258	=	
226 226 88 80 364 277 277 292 292 293 296 659 659 659 659 659 659 659 659 659 6		2.1	: c	
226 226 284 364 364 277 277 277 292 292 293 296 659 659 659 659 659 659 659 659 659 6			•	
226 226 80 80 364 277 277 277 277 277 277 277 277 277 27		526	6	
226 80 80 364 277 277 277 292 292 293 200 200 200 200 201 21 21 21 21 21 21 21 21 21 21 21 21 21		226	02	
284 80 277 277 292 292 293 296 96 96 96 96 96 96 96 96 96 96 96 96 9		326		
284 364 277 277 292 292 293 294 659 659 659 659 659 659 619 193		700	- :	
80 277 277 292 292 292 293 200 200 200 200 200 200 200 200 200 20		587	2	
364 277 277 292 292 293 200 200 200 200 200 200 200 200 200 20		. 08	=	
277 277 277 277 277 292 292 292 293 200 200 200 200 200 200 201 201 201 201		364	10	
277 277 292 292 296 86 96 200 200 200 200 201 291 291 157 157 193 193		77.	×	
277 292 292 293 200 200 200 200 200 200 200 200 200 20			0 0	
277 292 292 293 204 200 200 200 200 200 200 200 200 200		117	n ;	
292 292 293 396 659 659 659 659 659 659 659 659 659 6	-	277	01	
292 292 141 96 96 200 200 200 200 659 659 659 659 659 157 193 193		292	∞	
25.2 96 96 200 200 200 200 200 200 200 200 200 20		200	. 0	
25.7 96 96 200 200 200 591 659 659 659 659 659 193 193		100	` =	
141 96 200 200 200 659 659 659 659 157 193 193		767	=	
96 200 200 200 591 591 593 157 193 193 193		141	∞	
96 21 200 200 200 591 591 659 659 659 659 157 193 193		96	00	
2.0 200 200 891 659 659 659 157 193 193		36	· C	
200 200 200 591 659 659 659 157 193 193			2 0	
200 200 591 591 659 659 659 157 193 193		17	ν.	
200 591 659 659 659 157 193 193 193		200	0	
591 591 659 659 157 193 193 193		200	10	
591 659 659 157 167 193 193		103	: =	
591 659 659 157 193 193 193		140	2	
659 659 157 398 193 193 193		165		
659 157 398 193 193 193		629	01	
157 157 398 · 193 193 193		037	: -	
		600	=	
		/61	×	
		398	∞	
		τ61 .	œ	
			.	
		661	5	
		193	01	
		101		
			-	

	Data
	Binding
Table XIV	motif with
L	B62 Super
	Prostate

Position Amino Miles 131	Position in the property of th		Table XIV Prostate B62 Supermotif with Binding Data	ith Binding Data	
131 131 131 133 147 187 187 187 187 187 187 187 187 187 18	131 131 131 139 199	Protein	Position	No. of Amino Acids	
131 199 199 166 166 166 166 167 193 193 193 191 191 191 191 191 191 191	131 132 134 135 136 136 136 136 136 136 136 136 136 136 136 136 137	rrein	13.1	o	
199 199 187 187 187 187 187 187 187 187 187 187	199 199 187 187 187 187 187 187 187 187 187 187	rein	131	`=	
187 187 187 166 166 166 166 167 193 193 193 193 194 191 191 191 191 191 191 191 191 191	187 187 187 166 166 166 167 193 193 193 194 191 191 191 191 191 191 191 191 191		661	01	
187 514 514 514 514 514 514 514 514 514 514	187 187 187 187 198 198 198 198 198 199 191 191		661	=	
514 514 514 514 514 514 514 514 514 514	514 514 514 514 514 514 514 514 514 514		187	∞	
514 514 514 515 516 517 518 519 519 519 511 511 511 511 511	514 514 514 515 516 517 518 519 519 519 511 511 511 511 511		514	∞	
514 166 166 167 168 169 169 169 169 169 169 169 169 171 18 171 18 171 171 171 171 171 171 1	514 304 166 166 167 234 234 239 239 239 239 241 241 241 245 245 241 245 245 247 247 248 248 248 248 248 248 248 248		514	01	
166 166 166 167 193 193 193 193 194 197 191 191 191 191 191 191 191 191 191	166 166 166 193 234 239 239 239 239 243 261 207 207 213 213 213 213 213 213 213 213 213 213		514		
166 234 234 234 234 234 239 239 239 239 241 261 261 261 261 261 262 262 263 263 263 263 263 263 263 263	166 166 166 166 166 166 166 166 163 163 193		304	01 .	
166 234 234 234 234 239 239 239 241 251 261 261 261 262 261 262 261 262 262 26	166 234 234 234 234 239 239 239 239 239 240 241 241 241 242 241 242 241 242 241 242 242		. 991	6	
234 234 234 239 239 239 239 239 248 261 261 261 261 262 263 263 263 263 263 263 263 263 263	234 234 234 234 193 193 343 243 243 244 245 241 245 245 247 247 247 248		991	10	
234 234 193 239 239 241 207 207 207 207 213 324 131 131 131 131 131 131 131 131 131 13	234 234 343 343 343 239 239 241 241 137 137 137 137 137 137 137 137 137 13		4.c	; oc	
234 193 193 239 239 239 241 207 207 207 213 133 131 131 131 131 131 131 131 131	234 193 193 193 239 244 213 213 213 137 137 137 137 137 137 137 137 137 1		7.52	S -	
254 193 193 239 239 249 261 261 261 261 261 261 261 261 261 261	193 193 343 239 239 239 261 207 207 207 213 324 131 131 131 131 131 131 131 131 131 13		+C7	2 :	
193 343 343 343 239 241 207 207 213 133 133 131 191 191 191 191 191 191 1	193 343 343 239 239 241 207 207 207 213 324 191 191 191 191 191 191 191 191 191 19		+67	_ ;	
193 239 239 241 207 207 207 213 133 133 133 131 187 187 187 245 245 245 245 245 245 245 245 245 245	193 343 239 239 244 251 267 267 267 27 28 245 241 245 268 268 268 27 20		26	2:	
343 239 239 239 241 207 207 207 213 324 133 133 191 191 191 191 191 191 191 191	239 239 239 251 207 207 207 213 133 133 191 191 191 191 191 191 191 1		193	=	
239 239 24 251 718 718 718 718 718 718 719 719 719 719 719 719 719 719 719 719	239 239 24 251 718 718 718 718 207 207 207 213 213 213 214 245 245 245 245 245 247 7		343	01	
239 24 251 267 267 27 207 207 213 213 244 245 245 246 268 268 27	239 94 251 2718 718 718 718 718 718 718 718 719 719 719 719 719 719 719 719 719 719	ein	239	∞	
239 251 261 718 718 718 718 718 719 719 719 719 719 719 719 719 719 719	239 251 261 718 718 718 718 718 719 719 719 719 719 719 719 719 719 719	ein	239	6	
94 718 718 207 207 207 133 133 191 191 191 191 191 191 191 191	94 251 718 718 207 207 213 133 133 133 131 191 191 191 191 191 1	ein	239	=	
251 718 718 207 207 213 133 133 133 134 191 191 191 187 245 245 241 245 241 241 241 241 241 241 241 241 241 241	251 718 718 207 207 213 133 133 133 133 134 191 191 191 191 191 191 191 191 191 19		94	01	
718 718 718 207 207 213 213 137 133 324 191 191 187 245 241 245 241 245 241 245 241 245 241 248 241 248 241 248	718 718 718 207 207 213 213 137 133 324 191 191 191 187 245 245 241 208 16 16 7 7		251	∞	
718 207 207 213 213 213 1137 1137 1137 1137 1137 1	718 207 207 213 213 137 133 133 191 191 191 191 187 245 245 245 241 245 245 241 245 247 245 241 245 247 247 247 247 247 247 247 248 241 248 248 241 248 247 247 248 241 248 248 241 248 248 241 248 248 241 248 248 248 248 248 248 248 248 248 248		812	00	
207 207 207 213 213 213 324 191 191 187 245 241 268 16 16 17	207 207 208 213 213 213 133 324 191 191 187 245 241 245 241 208 16 20 7		718	11	
207 213 213 133 133 133 191 191 187 245 241 245 241 241 268 16 20 20	207 213 213 137 137 133 324 191 191 187 245 241 241 245 241 241 245 241 241 245 241 241 245 241 241 245 241 247 241 241 248 241 248 241 248 241 248 241 248 241 248 248 248 248 248 248 248 248 248 248		202	; oc	
213 213 137 137 191 191 187 245 241 241 268 16 20	213 213 137 137 133 324 191 191 187 245 241 241 248 241 268 16 16 7		200	, =	
213 137 133 324 191 187 245 241 241 268 16 20 20	213 137 133 324 191 191 187 245 241 246 241 208 16 16 16 7		110	; o	
137 133 133 191 191 187 245 241 246 248 16 16 16	137 133 324 191 191 187 245 241 245 241 208 16 16 7		213	o <u>C</u>	
133 133 324 191 187 245 241 248 241 208 16 16 17	133 324 191 191 187 245 241 248 249 241 249 241 241 241 241 241 241 241 241 241 241	.!	C17	2:	
324 191 191 187 245 241 248 241 208 16 16	324 191 191 187 245 241 241 208 16 20 20 7	5	151	= :	
324 191 187 245 241 241 208 16 16 283	324 191 187 245 241 241 208 16 16 20 20 7		251	.	
191 191 187 245 241 248 241 248 241 248 268 20	191 187 245 241 241 208 16 283 20 7		324	0	
191 187 245 241 245 241 208 16 20	191 187 245 241 241 208 16 283 20 7	ein	161	o	
187 245 241 245 241 208 16 20	187 245 241 245 241 208 16 16 283 7	in	161	=	
245 241 245 241 208 16 283 20	245 241 245 246 241 208 16 283 7		187	6	
241 245 241 208 16 283 20	241 245 241 208 16 283 7	ëi	245	∞	
245 241 208 16 28 20	245 241 208 16 283 20 7		241	∞	
241 208 16 28 20	241 208 16 283 20 7	in.	245	6	
208 16 283 20	208 16 16 283 20 7		241	. 0	
283			208		
283 20	283 20 20 7		91	: =	
20	20 20 7		28.7	2 =	
			607		
00	7 10		07	2 ∘	
	0		~ 1	×o :	

 Table XIV	662 Supermotif with Binding Data
	B62

Position An and a second and a	·	<u> Table XIV</u> Prostate B62 Supermotif with Binding Data	<u>V</u> with Binding Data	
305 21 22 34 44 44 44 44 44 44 44 44 44	Protein	Position	No. of Amino Acids	
212 213 34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4				1
21 34 44 44 441 441 119 668 668 668 668 668 668 668 66	SW A D	305	⊅ ⊆	
34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 119 6 6 6 6 6 6 6 6 6 6 6 7 119 113 113 113 113 113 113 113 113 113	AP		2 =	
34 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	. WS	34	; ∞	
428 428 449 441 441 441 119 119 119 113 113 113 113 11	SM	34	6	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SM	34	10	
428 4	SA	0.1	∞ ·	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SM	428	∞ :	
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	SM	4	∞	
6 6 4 441 441 441 441 441 441 441 441 44	SM	4	6 :	
6 441 441 441 119 306 441 119 119 119 119 119 119 119 119 119	WS	4	0.	
3 06 441 441 441 441 113 113 113 113 113 113	A.P	9	م :	
306 441 441 441 441 119 119 119 119 119 119		9		
441 119 119 113 113 113 111 111 113 113 11	d'h	306	<u>0</u>	
441 119 119 118 136 668 668 668 111 113 113 113 113 113 113 113 113 11	N.S.	441	00 (
441 119 119 178 178 178 178 178 178 178 178 178 178	MS	144	э ;	
119 119 123 136 668 668 668 111 113 113 113 113 113 113 113 113 11	M	1441	0.	
117 178 178 178 178 179 170 170 171 171 171 171 171 171 171 171	allikrein .	671	00	
123 178 178 178 168 668 668 113 113 113 113 113 113 113 113 113 11		611	∞ ⊆	
178 178 178 178 168 668 668 668 111 117 117 113 113 113 113 113 113 114 115 115 115 117 117 117 117 117 117 117	allikrein	123	2 0	
178 136 668 668 668 121 113 113 113 113 113 113 113 113 113	ıllikrein	178	8	
178 136 668 668 668 111 113 113 113 113 113 113 113 236 236 237 237 237 237 237 237 237 237 237 237	ıllikrein	178	10	
136 668 668 668 113 113 113 113 113 113 113 113 113 11	allikrein	178	11	
136 668 668 117 113 113 113 113 113 113 113 113 113	d'I	136	∞ :	
668 668 117 113 113 113 113 113 113 113 113 113	d'i	136	=	
968 117 113 113 113 113 113 113 113 113 113	W.	899	∞	
121 113 113 113 113 469 681 681 236 236 232 232 593		899	ָא ל	
11.7 11.3 11.3 11.3 11.3 469 681 681 236 236 232 232 593 593	illikrein	121	<u>o</u> :	
113 113 113 469 681 681 236 236 232 232 593 593	Y.		2,	
113 113 469 681 681 236 236 232 232 593 593	4	511	∞ (
113 113 469 681 681 236 232 232 593 593		51	ъ.	
469 469 681 681 236 232 232 232 593	4 4	2 :	2 :	
681 681 236 232 232 232 593		113	<u> </u>	
681 681 236 232 232 232 593		409	<u>ح</u> ج	
236 236 232 232 593 593	Wio and	189	2:	
236 232 232 593 593)!VI 	180	_ •	
232 232 232 593 593	allikiein . Hibrain	230	∞ Ξ	
232 232 593		250	<u> </u>	
593	Y.	232	> =	
593	W.	593	. ∞	
	M	593	6	

	Binding Data
Table XIV	Supermotif with
	B62
	Prostate

	Table XIV Prostate B62 Supermotif with Binding Data	ith Binding Data
Protein	Position	No. of Amino Acids
PSM	. 263	
PAP	156	6
PAP	344	01
PSM	248	=
PAP	307	6
PSM	289	6
PSM	289	11
PAP	223	10
Kallikrein	141	∞ .
PSA	137	∞.
PSA	. 167	∞
PSA	191	6 ;
Kallikrein	171	∞
Kallikrein	171.	6
PSM	650	10
PSM .	650	==
PSM	442	∞
PSM	442	6
PSM	442	=
PAP	258	01
PAP	258	
PAP	296	∞ ;
PAP	296	Ξ,
PSA	37	× (
PSA with	37	ъ.;
Kalinkrein	717	2 9
FOR	517	. 01 0
POM	100	v -
r SIM. DAD	361	2 =
PAP	359	: 5
MSM	473	? o
Kallikrein	54	. ∞
PSA	50	∞
Kallikrein	54	01
PSA	50	01
Kallikrein	54	= .
PSA	20	=
PSM	26	
Mod	26 26	ov
Kallikrein) 4	2 0
PAP	263	, 6
Kallikrein	122	6

Table XIV	ostate B62 Supermotif with Binding Data
	Prosta

Pro	Table XIV Prostate B62 Supermotif with Binding Data	<u>V</u> with Binding Data	
Protein	Position	No. of Amino Acids	
			M
PSA	œ :	6	
rsa Validania	110		
NAIIIMEIII PAP	343		
MSd	663	: ∝	
PSM	993	, 0	
PSM	691	. &	
PSM	691	6	
PSM	691	11	
PSM	583	6	
PSM	583	01	
PSM	583	=	
PSM	69	6	
PSM	257	00 (
PSM	51	∞ ¦	
PSM	. S.	10	
PSM	10.		
PAP	611	1.0	
POM	า แ	> 5	
PSW	n m	2 =	
MSd	090	- 0	
PSM	22	\ 0	
PSM	57	. =	
Kallikrein	102	01	
PAP	133	6	
PAP	133		
PSM	657	∞	
PSM	328	01	
PSM	357	σ;	
PSM	357	2 °	
FOM	<u> </u>	× =	
DΔΔ	40	- 01	
WSd	296	: <u>c</u>	
PSM	296	2 =	
PAP	57		
PAP	134	∞	
PAP	134	10	
PAP	140	6 .	
PSW	658	= '	
PAP	352	∞ (
PAP	352 670	7 C	
[CSIM]	0/0	,	

	Prost
--	-------

FSM FSM FSM FSM FSM FSM FSM FSM FSA FSM FSA FSM FSA FSM FSA FSM FSM FSM FSM FSM FSM FSM FSM FSM FSM	Protein	Position	No. of Amino Acids	1
15 5 5 6 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		829		
15		15	œ	
19 46.8 5 5 14.4 14.	_	15	=	
19 468 468 468 147 147 147 147 147 158 158 168 168 168 168	likrein	61	∞ .	
468 468 147 147 147 148 148 148 149 140 140 140 140 140 140 140 140 140 140	likrein	61	=	
46.8 46.8 147 147 147 147 147 148 148 148 148 148 148 148 148	PAP	vs	∞ ¹	
468 147 147 147 147 147 148 148 148 148 149 149 149 149 149 149 149 149 149 149	PAP	ď	01	
147 147 147 147 147 148 148 148 149 149 149 149 149 149 149 149 149 149	PSM	468	01	
147 267 267 267 267 267 267 267 267 267 26	PAP	147	∞	
147 267 267 267 267 212 212 212 212 212 213 214 314 314 314 314 314 314 314 314 314 3	PAP	147	6	
267 267 216 216 217 218 218 219 219 210 211 211 211 211 211 211 211 211 211	PAP	147	01	
267 216 216 217 218 219 219 210 211 211 212 213 214 214 214 214 214 214 214 214 214 214	. •	196	. ∝	
212 212 212 212 213 368 868 868 868 868 868 868 868 868 86		192	. =	
212 215 216 217 218 368 368 368 368 368 368 368 369 361 619 619 619 619 619 619 619 619 619 6	1:1::-	916		
212 212 212 213 568 568 568 314 314 314 314 314 314 314 314 314 314	liktein	017 .	• •	
216 212 212 213 368 568 568 568 568 568 115 115 117 117 117 116 619 619 619 619 619 619 619 619 619		717	o ;	
212 99 558 568 314 125 125 126 147 147 147 146 619 619 619 619 619 619 619 619 619 61	likrein	216	=	
212 95 96 96 86 86 125 125 125 147 147 147 147 147 146 166 166 166 166 185 185		212	=	
95 568 568 568 568 568 568 568 56		212	01	
550 99 568 568 568 568 568 568 125 148 149 140 140 140 140 140 140 140 140		95	•	
568 568 314 125 125 126 148 149 140 140 140 140 140 140 140 140 140 140		055	, -	
568 568 125 125 126 148 147 147 147 146 166 166 166 166 166 185		000	2 ∘	
568 568 314 125 125 146 147 147 146 146 166 166 166 166 185 185	Ikrein	66	0 6	
368 125 125 148 148 147 147 146 146 166 166 166 185		800	د	
314 125 125 148 148 147 147 147 146 166 166 166 166 185		268	2	
125 125 148 147 147 146 146 166 166 166 166 185	****	314	01	
125 159 148 147 147 146 308 308 308 308 619 619 619 619 619 619 619 619 619 619		125	∞	
159 148 147 147 146 146 308 308 308 308 308 308 619 619 619 619 619 619 619 619 619 619		521	=	
148 148 147 147 146 308 308 308 308 308 308 308 308 308 308		95	:=	
148 147 147 146 308 308 365 619 619 619 619 619 619 619 619 619 619		60	_ :	
148 147 146 146 308 308 308 308 619 619 619 619 619 619 619 619 619 619		148	91	
147 147 146 308 308 365 619 619 619 619 64 166 166 185		148	=	
147 146 308 308 365 619 619 619 619 619 619 166 166 166 185		147	∞	
146 308 308 365 619 619 64 166 166 166 166 185		147	_	
308 308 365 365 619 619 64 166 166 185 185		. 971	o	
308 308 365 619 619 64 64 166 166 185 185		802	· •	
365 365 619 619 64 64 66 66 166 166 185			> =	
365 619 619 64 166 166 166 185 185	_	308		
619 64 166 166 166 166 185		365	6	
619 64 166 166 185 185		619	6 .	
64 166 166 168 185 185 185		619	=	
991 991 991 883 883 884 885 885 885 885 885 885 885 885 885		79	01	
991 .		771	: o	
581 581 991	-	001	\ 5	
		. 991	OI :	
•		991	=	
		\$81 .	∞	
		. 185	6	
		185		

	Table XIV Prostate B62 Supermotif with Binding Data	V with Binding Data	
Protein	Position	No. of Amino Acids	
		o	
PSM	3888	o 11	
Kallikrein	57	80	
PSA	53	. &	
PSA	53	=	
Kallikrein	57	= '	
PSM	293	∞ ⊊	
PSM	. 293 91	2 9	
Kallikrein	7.0	2 =	
Kallikrein	926	: ∞	
rAr	276) O	
PAP	276	10	
PAP	276		
PSM	95	6	
PSM	95	11	
PSM	731	Φ;	
PSM	731		
PSM	817	• •	
PSM	218	, OI	
PSM	218	= .	
PSM	. 16	01	
PAP	. 22	∞ :	
PAP	7/	2 •	
PSM	/99	· •	
. Non	799	\ <u>2</u>	
TOIN	69	2.1	
PAP	297	01	
PAP	297	ı,	
PAP	139	∞ <u>-</u>	
PAP	95	2 •	
Kallikrein	2, 29	∞ ∞	
PSA Kallikrein	35	6	
Kallikrein	39	0	
PSA	84	6	
PSA	182	<u>o</u> :	
PSA	182	_ :	
PSA	رن کړ	2 =	
PSA	578	:∝	
PSM	578	01	

878 877 101 101 180 180 180 180 180 180 180 180		Position	No. of Amino Acids	
87 87 72 72 72 72 72 72 72 72 72 72 72 72 72		063	-	
87. 72 72 73 74 75 76 77 77 77 77 77 77 77 77 77 77 77 77		87	01	
72 101 101 334 527 527 527 180 180 180 180 180 180 180 662 662 662 662 662 662 663 664 684 684 684 684 684 684 684 684 684		780		
72 834 837 837 837 840 840 840 841 841 841 841 841 841 841 841		27	6	
527 527 527 527 527 527 649 649 644 644 662 662 662 663 663 663 664 664 664 665 665 667 668 668 667 668 668 669 67 67 67 67 67 67 67 67 67 67 67 67 68 68 68 68 68 68 68 68 68 68 68 68 68	in	72	01	
311 327 527 180 180 180 440 440 440 440 662 662 662 662 662 663 663 664 664 664 664 664 665 667 667 668 668 668 668 668 668		101	6	
23.7 5.2.7 5.2.7 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80		115	11	
527 527 180 180 180 180 180 140 440 440 642 652 662 662 662 662 663 663 663 664 664 664 662 663 664 664 664 667 667 667 667 677 112 112 113 114 116 117 117 117 117 117 117 117 117 117		354	6	
188 180 180 180 180 180 180 180		527	6	
180 180 440 440 440 649 649 662 662 662 662 663 664 664 664 662 663 664 664 664 667 112 112 112 113 114 114 117 117		527	11	
180 440 440 440 440 662 257 257 257 121 122 123 662 662 663 664 664 664 664 664 664 664 664 664		081	∞	
180 440 440 440 440 440 440 649 649 652 652 652 652 652 653 653 654 654 654 654 657 112 112 112 1167 17		180	6	
440 440 440 649 649 652 662 662 662 663 664 684 684 684 684 684 684 684 684 684		180	01	
440 440 440 649 649 652 121 125 662 662 663 664 684 684 684 684 684 684 684 684 684		440	∞	
440 440 649 649 7257 7257 7257 7257 7257 727 727 727 72		. 440	6	
440 257 257 257 121 125 662 662 662 663 664 684 684 684 684 684 684 684 684 684		. 440	01	
257 257 257 257 257 257 257 258 258 258 258 258 258 258 258 258 258		440		
257 257 121 121 125 662 662 662 663 664 684 684 684 684 108 108 108 108 108 107 17 17		649		
257 121 123 125 662 662 662 663 664 684 684 684 684 108 108 108 108 117 17 17		257	∞ .	
121 125 125 662 662 684 684 684 684 684 684 108 108 108 108 111 17 17		257	11	
121 125 662 662 662 112 684 684 684 684 108 108 108 111 17 17		121	∞ .	
125 662 662 662 684 684 684 684 684 108 108 108 111 141 17 17		121	=	
125 662 662 662 112 112 684 684 684 684 108 108 1108 111 117 117	ii	125	00	
662 662 663 112 112 684 684 684 684 108 108 119 117 117 117	ii	125	=	
662 662 112 112 684 684 684 108 108 110 411 411 411 17 17		662	∞ •	
662 112 112 684 684 684 108 108 119 11 11 11 11 11 11 12		662	o :	
1112 684 684 684 108 108 119 411 411 17 17 17		662	01	
112 684 684 684 108 108 119 411 411 411 17 17 17	ii	. 112	. 01	
684 684 684 108 108 411 411 411 17 17 17 17	iin	112	=	
684 684 108 108 411 411 17 17 17 17 235		684	∞ .	
684 108 108 411 411 167 167 17 17		684	δ.	
108 108 411 411 167 167 17 17 17		684	01	
108 411 411 167 167 17 17 17		801	01	
411 411 411 167 167 17 17 17 235		801	= '	
411 411 167 167 17 17 17		114	∞ (
411 167 17 17 17 235		114	Σ ;	
167 167 17 17 17 235		411	= '	
17 17 17 17 17 17 17 17 17 17 17 17 17 1	i.	291	∞ ;	
	ri.	191 .	0,	
		71	<u>.</u>	
		.1	2:	
		11	= (
		235	∞ (

Table XIV Prostate B62 Supermotif with Bindin	Table XIV	Prostate B62 Supermotif with Binding Data
---	-----------	---

	Table XIV Prostate B62 Supermotif with Binding Data	V with Binding Data	
Protein	Position	No. of Amino Acids	
PSA	235	=	
PSM	730	∞ :	
PSM	730	0 °	
PSM	463	>	
PSM	463	σ.	
PSM	463	= '	
Kallikrein	68	∞ :	
Kallikrein	L :	Ξ,	
PSM	455	∞ 0 !	
PSM	455	0.	
Kallikrein	. 651	∞ :	
PSA	155	~	
PSM.	129	10	
PSM	129	=	
PSM	. 291	6	
PSM	291	10	
PSM		01	
PSM	290	= (
PAP	130	∞ (
PAP	130	y :	
PSM	741	2 =	
Mod	631	. 6	
I SM I	51	· œ	
pAp	51	. 6	
PAP	: 1	01	
PAP	51	=	
Kallikrein	175	6	
Kallikrein	175	=	
PSM	322	oo (
Kallikrein	104	∞ α	
PSA	100	Ø 00	
rar Valitania	75 7	° °	
Kallikrein Kallikrein	170	. 9	
PAP	13	? ∞	
PAP	13	0 6	
PAP	13	01	
PAP	13	11	
PSM	472	01	
PSA	237	Φ (
. WSd	619	· •	
Pow	013		
LOIM		-,	

Table XIV Prostate B62 Supermotif with
--

	Table XIV Prostate B62 Supermotif with Binding Data	vith Binding Data	
Protein	Position	No. of Amino Acids	1
Mod	105	10	
PAP	48	:=	
PSM	165	01	
PSM	165	=	
PAP	348	6	
PAP	348	0 ·	
PSM	201	ъ. С	
Kallikrein	35	>> (
Kallikrein	35	σ, (
PSA	E :	œ i	
PSA	<u>.</u>		
Kallikrein	77	2 :	
Kallikrein	77	-	
PSM	866 866	∞:	
PSM	86 ·	= «	
PSM	/01	v 3	
PSM	/01	2 -	
PSIM	701	_ 0	
Kallikrein		° 5	
Namikrein		2 =	
DAD	712		
PAP	217	=	
PSA	· 49	10	
PSA	29	11	
PAP	29	6	
PAP	29	01	
PSM .	626	∞ ;	
PSM	979	01	
PSM	929	= '	
PSA	- 1	∞ 5	
PSA	- 1	2 :	
PSA	733	- 6	
PSM.	P00	o c	
PSM	900	n 0	
מאמ	C1+	v «	
rar	061	• =	
rAr	51	<u>:</u> o	
FAF	211	01	
DAD	211	2 =	
PAP	222	: =	
MSd	361	==	
PSM	461	6	

Table XIV Prostate B62 Supermotif with Binding I
--

Position No. of Amino Acids	01 89		225 10	225 11		174 8	174 10	690 11	27 8	27 9	27 11	30 8	30 9					592 10			•				01 000														134 10		∞ ° .	y 81	χ 0 6 1	
Protein	PSA	PSM	PSM .	PSM	PAP	PSA	PSA	PSM	PSM ·	PSM	PSM	PAP	PAP	PAP	Kallikrein	Kallikrein	PSM	PSM	PSM	Kallikrein	PSA	FSM	PSM	FSIM	Mon	roivi Kallibrain	PSA	Yoursen	DSA	rok Pe t	roa r ins	Kallıkrein	PSA	Kallıkreın	PSA	Kallikrein	PSA	PAP	PSA	PSA	Kallikrein	Kalikrein	247	15.1

Table XIV	ostate B62 Supermotif with Binding Data
	Prostat

Pros	<u>Table XIV</u> state B62 Supermotif wi	<u>Table XIV</u> Prostate B62 Supermotif with Binding Data	
Protein	Position	. No. of Amino Acids	
Wid	151	<u>-</u>	I
WSd	46	2 =	
PSA		: 6	
PSA	٠	01 .	
PAP	231	∞	
PAP	231	=	
MS.	269	6	
MSG	269	2:	
FOIN	697	= •	
MSd			
W.d.		√ <u>c</u>	
PSA	163	2 ∞	
PSA	163	, 0	
PSM	. 467	'¦ ∞	
PSM	467	=	
Kallikrein	143		
PSA	139	=	
PAP.	335	∞	
PAP	335	o ;	
PAF	335	<u>o</u> ,	
ΓΑΓ ΡΑΡ	217 275	2v	
υν	275	2:	
MSd	213	= ∞	
PAP	17	တ	
PAP		` =	
PSM	575	. 6	
PSM	575	. 01	
PSM	575	=	
PAP	145	0	
PAP	145	01	
PAP	145	=	
PSM	738	φ.	
FAF	292	20 0 (
AAR	767	a :	
Mod	767	= °	
WSd	201	00	
WSd	158	v «	
PSM	358	0	
PSM · MSM	372	, <u>0</u>	
PSM	372	=	
PSA	89	6	

	Binding Data
Table XIV	Prostate B62 Supermotif with

90 325 739 739 739 253 1 1 1 394 246
7.39 7.39 2.53 1 1 1 394 246 242
253 1 1 394 246 242
1 1 394 246 242
394 394 246 242
294 246 242
242
602
602
01
252
248
20
20
. 25
74
3 5
138
138
38
38
55
59
449
84
84
103
155
272
549
549
61

Protein	Position	No. of Amino Acids	
WSd	733	o	
PSM	733	. 01	
PSM .	733	=======================================	
PSM	371		
PSM .	176	01	
PSIM	176	1.1	

	-
	ä
	9
	Ē.
	曺
	園
	를
	3
>	S
×	흰
릙	딝
<u> </u>	۳
<u></u>	∺
	9
	1
	9
	7
	ä
	S
	ä

	Prostate A01 Motif	Table XV Prostate A01 Motif Peptides with Binding Data	(fa
Protein	Position	No. of Amino Acids	A*0101
. Wid	452	6	
- WS	220	6	
PSM	264	S.	0.0099
PSM	701	6 '	0.0040
PSM	693	œ ·	
PAP	311	o:	0.7700
PSW State of the s	765	= 9	02100
PSW MSW	25	2 °	0.0100
PSM	455	e a	
MSM	9 9	co	
NA NA	121	\ o	0.0024
WSd	601		
PAP	237	=	
PAP	240	&	
Kallikrein	145	6	0.0011
PSA	141	. 6	0.0011
PAP	95	6	0.0980
PSM	542	∞	
PSM	542		
PSM	557	10	0.0260
PSM	546	= '	
PSM	565	× 0	
PSM	707	••• ••	
FOR	48/	. c	90000
DOM	104	01	0.4800
PAP	. 42		
PSM	168	, o	0.0001
PAP	270	=	
Kallikrein	94	∞ :	0.0260
PSA	06	∞ ;	0.0260
Kallikrein	34	0.	0,000
PSM .	74.	2 °	0.0048
PSW NO.	711	o o	
MOD	346	o =	
No.	450		
PAP	277	. 01	0.5700
PAP	205	01	0.0012
PSM	169	01	
PSM	99	01	0.0001
PSM	545	∞ .	
PAP	322	φ÷.	3.4000
PAP	322	2:	0.0180
Kallikrein	55	=	

	239	Amino Acids	
	239		
	272		
•		6	0.0011
	669	= -	
	501	S	0.000
	143		0.0010
	59	`=	2007.0
	178	: =	
·	66	. =	•
•	236	: oc	
	222	ာဏ	0000
	267	o <u>-</u>	70007
		: c	
	744	×	
	148	00	
	238	. 01	12.0000
	179	01	
	117		
	315	=	
	268	01	0.0082
	0/	10	. 0.6200
	227	∞	
	169	00	
	691		
	451	0 :	0.4300
	195 1		
	94	01	0.0033
	262		
	540	01	
	233	-	
	229		
	484	=	
	147	6	1.2000
	290	10	
	290	=	
	236	10	0.000
	278	6	0.0031
	16	=	
	309	=	
	218	=	
	87	=	
	363	6	0.0001
	320	œ	
	332	6	0.0002
	235	=	
	. 463	6	11.0000

	cti
	Dat
	ding
	Bin
	with
X	ides
Table	Sept
_	ij
	Ξ
	e AC
	ostat
	H

	Prostate AUI	Prostate Aut Moth Peptides with Binding Data	ung Data	
Protein	Position	No. of Amino Acids	A*0101	
Kallikrein	63	6	0.0011	
PSA	68	۰. ۵	0.001	
PSM	615			
Kallikrein .	180	; o		
PSM	. 317	11		
PSM	348	0	0.0430	
PSM · MSd	349	8		
Kallikrein	143		0.0190	
PSA .	139	=	0.0190	
PSM	141	=		
PSM	. 558	6	0.0010	
PAP	293	=		
Kallikrein	. 92	01	0.1500	
PSA		9	0.1500	
PSM	725	6	0.0010	
PAP	206	6	0.0046	
PAP	310	01	0.5500	
PSM	234	6		
PSM	552	8		
PSM	272	00		

	T. Prostate A03 Motif	Table XVI Prostate A03 Motif Peptides with Binding Data	el el
Protein	Position	No. of	A*0301
		mino Acids	
DOM	141	Ŷ.	
Mod	741		
PSM	7#/	N 0	
. William	. 357		
ASA	65	· 00	
, Vod	<u> </u>	» •	
, A DAD	<u>.</u> "	o oc	
DAD	7 (1	0 0	
270	. "	01	
יייי	:	2 •	•
DAD	: =	0 0	
TO I	303	2 0	
PSW	265	v :	
FOW	392	- ·	
FSM	800	0:	
FSM	809	= (
PSM	452	6	
PSM	232	o :	0.0006
MSd	232	_	
PSM	674	11	
PSM	09	∞	
MSM	736	∞	
PSM	220	6	
PSM	23	10	
PSM	5.23	=	
PSM	264	ο ;	
PSM	264	= •	
FSM	10/	Σ ;	
PSM	10/	= 4	
FSM	67		
PSM	67 ;	= •	
Kallikrein	661	∞ 0	
PSA	6,0	o S	
FOIN	***	2 :	
NSM 202	\$:	П	
FSM	11.	× •	
Kallıkrein	147	∞ (
PSA	143	× (
Kallikrein	235	ъ.;	
Kallikrein	235	=	
PSA	231	6	0.0170
PSA	231	11	
Kallikrein	6 (6	
PSM	57	∞ α	
PAP	27	» а	
PAP	311	N 0	0.0002
	:	`	2000:0

	CAV JAM	i repaues with billium Data	P.
Protein .	Position	No. of	A*0301
The second secon		Amino Acids	
PAP	311	01	
PSM	531	6	0.0086
PSM	643	= 6	
rar	7.7	D 0	
WSG.	419	× I	
roly!	נוני		0 0003
	177	∞	0.0003
מים	177	01.	
TAP	189	2 "	
FOIN	4	o :	
TOW.	4 t		
FAP	5/7	x	0.0180
PAP	274	ο .	0.1000
PSM	=	5	
PSA		6	
PSM	286	10	
PSM	635	6	
PSIM	635	11	
Kallikrein	17	00	
MSM	393	. 00	
MSd	393	, 01	
PSM	109	; ∝	
MSd	109		0.0026
K allibrain	5	2 0	0.200.0
Kallikrein	1 4	ာတ	
Volitzein	146	, o	
Valification	147	0 0	
Namikiciii	147	× 5	
Nallikielii	147	2:	
NaillKrein .	147	Ι,	
FSM	77	∞ ;	
FSM K-III:	77 .	= «	
Namikrem	867	~ (,
FOA	\$ 5	5 (0.0006
Kallikrein	234	∞ ;	
Kallikrein	234	01	
PSA	230	0	
PSA	180	œ :	
PSA	180	=	
Kallikrein	184	∞	
PSM	961	∞	
PSM	961	6	
PSM	961	10	0.0600
PAP	347	6	0.0040
PAP	347	. 01	
PAP	347	=	
Kallikrein	14		

	Data
	1 Binding
Table AVI	Aotif Peptides with
	Prostate A03

	Prostate A03 Moti	Table XVI Prostate A03 Motif Peptides with Binding Data	희
Protein	Position	No. of Amino Acids	A*0301
PSM	466	01	
PSM	710	6	0.0006
PSM VSG	301	∞ ;	
PSW	96	2:	
rom Pow	596	=:	
Pom	465	= :	
POM	111	= :	
LOW	700	= 0	
. MSd	184	٠.	
1.01.1 0.40	184	2 0	
PSM	134	o =	
MSA	714	:0	0 0003
PSM	714	2 =	
PSM	156	; ∞	
PSM	156	6	
PAP	201	. ∞	
PAP	201	01	
PSA	171	11	
Kallikrein	120	=	
PSA	911	11	
PSA	136	∞	
PSM	173	00 (
PSM Validation	173	ον ;	
DSM · · · · · · · · · · · · · · · · · · ·	791	210	
PSA	<u>.</u> 8	v «	0.0003
PSA	86	. 6	
PSA	86	11	
PSM	6	∞	
PSM	6	. 6	
PSM	6		
PSM	630	∞ ;°	
rsim z	630	. 01	
DOCA	9 5	0.5	
MAN	723	2 •	
PSM .	453	• =	
MSA	316		0.0032
PSM	901	· 00	
PAP	21	6	0.0001
Kallikrein	85	01	
PSA	81	01	
PAP	290	2	
FSA DAD	8/1	2 (0.0007
FAP	201	7	

Table XVI	Prostate A03 Motif Peptides with Binding Data

	Prostate A03 Moti	Table XVI Prostate A03 Motif Peptides with Binding Data	ata
Protein	Position	No. of Amino Acids	A*0301
Mod	7:1	ć	, , , , , , , , , , , , , , , , , , , ,
POW	114	٠. ـ	0.0006
PAP	301		
PAP	301	2 =	
PSW	48	; 00	
WSd	84	. 0	
MSd	285	`=	
dAp	371	: œ	
WSd	183	» œ	
MSd	183	· =	
PAP	150	: 0	
PAP	150	`	
I Al Kollikasin	116		
Valishasia	64		
Namakem	÷ 6		
0.00	0,7	= 0	
DOM	677	ء ه	
DOM	701	2 :	
MSd	701 704	e	
Ιζίζι ΒΑΔ	771		
ρλρ	9/1	٠	
. MSd	905	25	
Mod	171	2 0	
Myd	121	~ •	
N. W.	121	2 =	
. Wid	486	: 0	
Nod	480	· -	
MXd	408		
MSd	64.	: σ	0 0006
MSd	137	۰ ۵۰	20000
PAP	992	o ∞	•
PAP	992	. .	
WSd	397		
WSd	397	2 =	
WSd	100	-	
WSG.	286	::0	
PAP	166	200	
PAP	8) oo	
PAP	08	. 6	
PAP	08	01	
PAP	80	-	
PSM	64		
PSM	64	. 6	
PSM	64	10	
PAP	34	6	
PAP	34	01	. 0.0014

Postein Postein No. off PSW Amino Acids PSW 383 11 PSW 383 11 PSW 383 11 PSW 383 11 PSW 103 9 PSW 103 9 PSW 402 10 PSW 41 11 PSW 42 8 PSW 42 8 PSW 42 8 PSW 44 11 PSW 44 13 PSW 44 13 PSW		Prostate A03	Table XVI Prostate A03 Motif Peptides with Binding Data	nding Data	٠
23 383 383 383 383 383 402 402 402 403 403 403 403 403 403 403 403		Position	No. of Amino Acids	A*0301	
23 38 38 38 103 103 103 103 103 104 402 402 403 404 404 405 406 603 603 603 603 603 603 603 6					1
383 203 203 405 405 405 406 406 407 407 408 408 409 409 409 409 409 409 409 409		23			
263 103 103 103 103 104 105 106 106 106 107 107 108 108 108 109 108 108 108 108 108 108 108 108 108 108		383	2		
203 103 103 103 105 106 106 107 108 108 108 108 108 108 108 108 108 108		383	=		
103 103 103 103 103 103 103 103 103 103		203			
103 426 406 407 408 408 408 409 613 33 408 618 619 619 619 619 619 619 619 619 619 619		103	6		
103 426 426 437 437 437 437 437 437 437 437 437 437		103	10		
426 427 427 427 427 427 427 427 427 427 427		103	11		
402 404 405 406 406 406 406 406 406 406 406		426	10		
655 665 675 833 833 833 833 833 833 833 833 833 83		402	0.		
675 42 42 50 18 33 33 33 44 64 64 64 64 64 64 64 64 64 64 64 64		36			
42		675	01		
6.1 1.8 2.0 2.0 3.3 4.6 6.46 6.39 6.30		64	? ∝		
33 18 10 10 10 10 10 10 10 10 10 10 10 10 10		75	> <u>=</u>		
18 8 33 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		37	11		
20 106 633 639 639 639 639 639 639 63		. 01	• :		
106 106 106 106 107 108 108 109 109 109 109 109 109 109 109 109 109		90 °C	=		
92 106 633 633 546 546 546 539 639 639 639 639 639 639 77 77 77 77 77 77 77 77 77 77 77 77 77		20	6	0.0024	
92 106 646 646 646 506 639 133 133 133 133 133 14 16 16		33	01	-	
106 3 646 646 646 646 646 646 646		92	œ		
646 646 646 646 506 506 639 639 639 639 639 639 639 639 639 63		901	10		
633 646 646 646 546 546 539 639 639 639 639 639 639 77 77 77 77 77 77 77 77 77 77 77 77 77		m	11		
633 646 646 546 546 546 639 639 639 639 639 77 77 77 37 37 37 37 37 37 37 37 37 37		73	. 01	0.0102	
646 646 546 546 546 537 337 333 333 333 333 333 34 37 37 37 37 37 37 37 37 37 37 37 37 37		633	11		
646 506 546 546 337 333 333 333 333 33 37 37 37 37 37 3		646	8		
506 546 546 537 337 333 333 333 337 77 77 77 391 263 24 24 364		646	01	. 0.0003	
546 546 537 337 333 333 333 37 77 77 77 77 263 263 264 364		506	: 6		
546 337 337 333 333 37 37 37 37 37 37 37 37		546	. 00		
337 337 333 333 37 37 37 37 37 39 263 263 263 263 263 263 263 263 263 263		345	· =		
337 337 639 639 333 37 37 37 39 26 24 24 24 364		2000	= 0		
531 639 639 33 33 37 37 37 39 12 26 24 24 364		755	^ =		
639 333 333 37 77 77 12 391 263 263 27 28 29 16		660	= 0		
333 333 37 77 37 37 391 263 263 24 24 24 364		600	• :		
333 37 37 37 39 263 263 24 24 364		600	= 4		
233 77 37 37 391 261 24 24 364		333	n :		
3.7 3.7 3.7 3.9 2.6 2.4 2.4 3.64		555	= 0		
3.7 3.7 1.2 3.9 2.6 2.4 2.4 3.64			0		
37 12 391 263 221 24 24 364		3/	×ọ ;		
112 263 221 24 24 24 364		37	= •		
391 263 221 24 24 364 16		21	و	0.0150	
263 221 24 24 364 364		391	0.7		
221 24 24 364 16		263	01		
24 24 364 16		221	∞		
24 364 16		24	6		
364		24	01		
91		364	20		
	u	91	6		
340		346	01		
		346	11		

	Prostate A03 Moti	<u>Table XVI</u> Prostate A03 Motif Reptides with Binding Data	ឭ
Protein	Position	No. of	A*0301
		Amino Acids	
7,00	223	٥	
No.	221	• •	
WSA	172	0.00	
PSM	265	90	
MSM.	265	10	
PAP · ·	45	6	
PSM	487	œ	
PSM .	31	6	0.0005
PSM	36	6	0.0007
PAP		∞ ;	
PSM .	332	o ;	
WS	9 9 9	× S	
PSM	92 32 33		
PSM	3/3	ου (
MSd	384	د	
PSM	38 S	0	
PSS .	581	∞ ;	
PSM	310	= :	
PAP	260	Ξ °	•
Kallıkrein	/7	×	
PSA.	57	∞ ∘	
NSW MSW	675	• •	
MAG	536	\ <u>-</u>	
Mod	388		
Mod	385		
מאס	248	√ œ	
ρΔp	248	S	
Kallikrein	225		
PSA	221		
PAP	204		
PSM	104	8	
PSM	104	6	
PSM	104	01	
PAP	961	∞	
PSM	. 427	6	
PAP	305	01	
PSM	089		
PSM	089	ۍ :	0.0460
PSW	080	0.0	
PSW	288	∞ (
Kallikrein	140	× 0	
TAP.	667	^ :	•
PAP	4/	= 0	00000
	100	· •	0.000
PSM	110	2	0.0000

	T Prostate A03 Motif	Table XVI Prostate A03 Motif Peptides with Binding Data	
Protein	Position	No. of A*(A*0301
		mino Acids	
PSA ·	226	01	
PSM	916	. 6	
PSM	216	01	
Kallikrein	158	00	
PSA	154		
Kalikrein	228	2;	
LOW) 20	= <	
Non-	Ç ö	ν -	
MOD	403	2 0	
To a	403	^ =	
Wid	360		
Myd	200	-	
	224	\ <u>=</u>	
PAP	261		
Kallikrein	49	; œ	
PAP	289	, =	
PAP	44	10	
РАР	198	11	
PSM	345	10	
PSM	82	0	
Kallikrein	171	6	
Kallikrein	7.	. 01	
DAD	314	0	0 2200
WSd	573		
PAP	270		
Kallikrein	94		0.0890
PSA	8.		0880
Kallikrein	34	∞ '	
Kallikrein	34	01	
PSA	30	2 0	
Mod	347		4000
DOA DOA	7.5	0.0	cond
Wid	689	~ 0	
PSW	689	`=	
Kallikrein	∞	10	
PSM	202	. ∞	
PSM	202	. 6	
PSM	530	8	
PSM	530	0.0	
rom Dad	760	∞ .	
MSG	929	1 0	
PSM	929	. =	

	Data
	h Binding
	with
Table XVI	tides
	103 Motif Pep
	A03
	Prostate

	Prostate A03 Motil	Table XVI Prostate A03 Motif Peptides with Binding Data	· E
Protein ·	Position	No. of Amino Acids	A*0301
. PADG	205	0	
WSd	386	° []	
PAP	20		
PSA	=	10	
MS4	297	∞	
PSM	130	0,	
PSM	416	∞ :	
PSM	416		
TOWN DCA	5/3	Ξ σ	
ስርል ውርል	60	v	
480	135	2 2	
A DA	750	2 ~	
Wa	20/	0 0	
Wod	. 966	, <u>, , , , , , , , , , , , , , , , , , </u>	
Wid	27,	2 =	
Wid	512		
WSd	512	2 -	0 1900
ASA ASA	175	01	
PSM	25	? ∞	
PSM	52	. 6	٠
PSM	52	10	
Kallikrein	226	10	
PSA	222	. 01	
Kallikrein	25	6	0.0410
PSA	21	6	0.0410
Kallikrein	:C :	<u>o</u> ;	
P.S.A. DOM	17 0	<u>.</u>	
DOM	200	2 م	
WSd	200	2 =	
PSM	591	. ∞	
PSM	591	01	
PSM	591	11	
PSM	157	8	
PSM	398	6	0.1700
PSM	398	01	0.0260
PSM	99		
PSM	99	01	
WSd	59	∞ :	
PSM	59	o (
PSM	723	∞ :	
row. PAD	571	= 0	2000 0
	100	n 0	0000
PAD	ī ē	oʻc	
	1.	•	

i,

cut
님
멸
킁
.5
꼑
=
3
83
Ď
a
괴
J
핗
Σ
9
긺
a
at
S
爿

Position Amino Acids Av001 SEA Amino Acids Av001 SEA Amino Acids Av001 SEA Amino Acids Av001 SEA Amino Acids Av001 SEA Amino Acids Av000 SEA Amino Av0000 SEA Amino Av00000 SEA Amino Av000000000000000000000000000000000000		LLOSIAIE AND	TI COLORIO AND TATOLIA A CALLACA TIMIL MINABILE L'ALA	
1972 1976 1976 1977 1976 1977 1977 1977 1977	Protein	Position	No. of Amino Acids	A*0301
_ & o _ & o & o & o & o & o & o & o & o				
196 645 545	MSd	72	=	
645 645 11 345 545 345 345 346 54 8 8 346 54 8 8 347 54 6 9 347 54 6 9 348 6 9 349 6 9 349 6 9 340 6 9	PSA	190	;∞)-
545 545 546 564 564 564 564 564	PSM .	645	6	
545 546 564 564 564 564 564 564	PSM	645	11	-
3.65 3.66 3.67 3.67 3.67 3.67 3.67 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.7	PSM	545	∞	
36 564 564 564 564 564 564 564 56	PSM	545	6	
36 564 8 8 564 10 564 1	PAP	36	∞	
564 8 564 9 9 564 9 9 564 9 9 572 10 10 10 10 10 10 10 10 10 10 10 10 10	PAP	36	6	•
564 9 5 564 10 322 10 322 10 10 10 10 10 10 10 10 10 10 10 10 10	PSM	564	.	
3564 10 322 10 323 10 193 11 194 11 195 11 196 10 197 11 197 11 198 11 199 11 190 11 190 11 191 11 191 11 191 11 192 11 193 11 194 10 66 6 8 66 6 8 66 7 19 11 19	PSM	564	6	
322 9 322 10 199 199 19 199 9 9 110 6610 8 8 111 199 19 199 9 9 111 199 19 199 9 9 199 199	PSM	564	01	
322 223 10 193 223 110 193 193 194 195 197 197 197 197 197 197 197 197 197 197	PAP	322	6	0.0002
223 223 193 193 194 199 199 199 199 199 199 191 191 193 191 193 191 191	PAP	322	01	0.0057
223 10 193 194 19 195 196 19 196 610 8 197 11 282 8 284 8 284 8 304 10 173 18 173 8 491 9 491 10 655 66 8 66 66 6 66 66 9 673 11 207 9 207 207 11 213 11	PAP	322	11	
193 193 113 113 114 115 115 115 115 115 115 115 115 115	PSM	223	01	
199 199 9 199 199 199 199 199 199 199 1	MSM	163	:=	
199 610 8 610 8 8 610 9 9 611 9 9 610 9 9 610 9 9 614 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	MSd	061	. 6	0.0740
610 8 514 8 514 8 304 10 166 8 173 10 173 10 491 9 491 9 66 6 66 9 675 8 66 9 675 11 11 12 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11 13 11	PSM	661		
514 514 514 514 514 514 514 514 514 514	PSM	910	8	
514 514 11 282 8 8 304 100 103 11 11 11 11 11 11 11 11 11 11 11 11 11	PSM	019	6 .	0.1800
282 8 304 11 166 8 166 8 173 8 8 173 173 18 8 173 19 9 19 10 10 10 10 10 10 10 10 10 10 10 10 10	PSM	514	∞	
282 304 106 166 193 173 173 173 10 174 191 191 191 193 194 19	PSM	514	=	
166 8 10 173 173 18 173 19 173 10 491 10 655 8 8 66 6 8 8 66 6 9 66 9 67 11 207 11 213 11 137 11 137 11 137 11 137 11 137 11 137 11	PAP	282	× ;	
193 111 173 8 8 173 10 491 9 491 10 655 8 8 666 9 66 9 623 111 207 9 207 9 207 11 213 11 133 11 133 11 134 10	PSM	304	2 °	•
173 8 11 173 10 491 10 655 8 665 8 8 666 9 9 623 11 207 11 213 11 137 11 133 11	rsa S. S.	997	∞;	
173 10 491 9 491 9 655 8 66 8 66 9 66 9 623 11 207 9 207 207 11 213 10 131 11 133 11 131 11 131 11 131 11	PAP	193	= •	
491 9 10 655 8 655 8 66 9 9 665 9 9 665 9 9 665 9 9 665 9 9 665 9 9 665 9 9 665 9 9 665 9 9 665 9 9 665 9 9 9 665 9 9 9 665 9 9 9 665 9 9 9 9	1 V C	671	0 5	
491 10 655 8 66 8 66 9 623 11 207 9 207 11 213 10 133 11 134 10 187 9	Nod	11/3	2 σ	0,000
655 88 66 88 66 8 8 623 10 207 9 207 207 213 8 213 10 131 11 133 11 131 11 131 11 131 11	NSC NSC NSC NSC NSC NSC NSC NSC NSC NSC	191	^ <u>-</u>	0004:0
482 10 66 8 66 8 623 11 207 9 207 11 213 8 213 8 11 137 11 133 11 131 11 131 11 131 11	PSM	164	2 ∞	0.3200
66 8 66 8 623 11 207 9 207 11 213 8 213 8 213 10 131 11 133 11 134 10 191 9	MSM	482	, 0	0.0044
66 9 623 11 207 9 207 9 213 8 213 8 213 10 131 11 133 11 134 10 191 9 187 9	PSA	99	; ∞	
623 11 207 9 207 9 213 8 213 8 213 10 213 11 133 11 133 11 134 10 191 9	PSA	99	6	0.0025
207 9 207 11 213 8 213 10 213 11 137 11 133 11 191 9 187 9	PSM	623	11	•
207 213 213 213 137 133 324 191	PSM	207	6	0.1600
213 213 213 137 133 324 191 187	PSM	207	11	
213 213 137 133 324 191 187	PSM ·	213	000	
213 137 133 324 191 187	PSM	213	. 10	
137 133 324 191 187	PSM	213		
133 324 191 187	Kallikrein	137	~	
191	FSA	133	_ :	
	TOW	57¢	2 °	
	Kaliikrein BS 4	161	a	
	PS.A	197	· -	

Table XVI	Motif Peptides with Binding Data
Tab	Prostate A03 Motif Po

	T Prostate A03 Motif	Table XVI Prostate A03 Motif Peptides with Binding Data	택	
Protein	Position	No. of	A*0301	
		mino Acids		
Kallikrein	245	10	0.0450	
PSA	241	01	0.0450	
PSM	219	01	0.0004	
PSM	28	01		
PSM		∞ ;		
PSM	. 83	= :		
PSM	011	01	,	
WSd	92	<u>o</u> (0.0031	
PSM	287	ر مو د		
PAP	œ ;	= (
PSM	21	o i		
Kallikrein	197	01		
PSA	193	01		
PSM ·	62	01		
PSM	. 79	====		
PAP	56	∞		
PAP	56	=		
PSM	105	∞		
MS4	105	6:		
PAP	990	= :		
PSM	417	2:		
Kallıkrein	2	<u>o</u> ,		
PSM	143	o :		
rar .	77	= <		
PAP	707	ν:		
PSA	9 9	- :		
PAP	£ (2 °		
TOWN.	932	*		
מאָם	100	• •	0000	
. DAD .	0 2	× <u> </u>	0,0003	
10.1	 	2 =	60000	
WSd	35	. ∞		
WSd	35	. 0	0.0007	
PAP	91	; ∞		
PAP	91	. 60		
WSd	374	10		
PSM	528	8		
PSM	528	6	90000	
PSM	528	10		
PAP	161	80		
PSM	619	∞		
PSM	629	6		
PSM	629	01		
PSM	679	= '		
Kallikrein	139	6		

	7 Prostate A03 Motif	Table XVI Prostate A03 Motif Peptides with Binding Data	<u>ata</u>
Protein	Position	No. of Amino Acids	A*0301
A 20 C	7.1	α	
PSW MSW	515	01	
PSW	515	11	
PSM	305	ο.	0.0006
PAP	21	∞ ·	
PSM	34	a;	
PSM	34	= '	
PSA	2 8	× c	
PSA	2, 6		
. War	470 V	o ∝	
MSM MSM	- 4	01	0.0005
Kallikrein	105	¦ ∞	
PSA	101	, ∞	
PAP	306	0	0.0010
PSM	441	∞	
PSM	441	6	
Kallikrein	123	∞	
PSA	911	>> (-
Kallikrein BAB	273	> ∞	
DAD	243	0	0.0760
PAP	243	, 11	
Kallikrein	178	&	
Kallikrein	178	6	
Kallikrein	178	10	
Kallikrein	178	11	
PSM	911	5	0.0006
PAP	95	, -	
PAN PAN	668	_ ∞	
r S.M. Kallikrein	121	9	
PSA	117	10	
Kallikrein	121	=	
PAP	113	6	0.0005
PAP	113	01	0.0005
PSM	469	= i	
PAP	148	∞ ;	
PAP	148	= :	
PAP	238	0 9	0.0005
PSA	771	2 9	
	. 41	2 0	
PAP	14	:=	
PAP	241	10	0.0003
PAP	241	=	

Position	No. of Amino Acids	A*0301	
			I
244	∞ ;		
244	2 €	0.0520	
6/1	∞ c		
021	√ S		
6/1	2 ∘		
2 4	o oc		
.	0 0		
2 1 1	, 0		
711	- ٥		
65	- 0		
70	2 ه	0 1400	
) 	2 0	00110	
10	• •		
315	N 00	71000	
315	o <u>-</u>	1000	
210			
+	2 =		
* * * C	= =	20000	
268	2 =	0000	
02	: 0		
20	, 01	0.0150	
37	: ∞		
561	10		
561	=		
40	∞	0.0003	
473	10		
54	10	•	
20	01		
54	= :		
20	Ξ,		
97.	∞ (
263	× S	0,000	
507	2:	0.0360	
607	Ξ ο		
183			
135			
569	. 0		
961			
192	=		
122	6		
118	6	-	
. 122	10		
663	œ		
663	=		
6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		6 % I % S % 6 % I S I S I S S S I % 8 8 9 I 8 8 6 I 8 6 6 6 8 I	9 8 11 8 10 0.1400 8 8 8 8 11 11 10 0.0014 11 10 10 10 10 10 11 11 8 8 8 8 8 9 0.00560 11 11 11 11 11 11 11 11 11 11 11 11 11

	Prostate A03 Mot	Table XVI Prostate A03 Motif Peptides with Binding Data	<u> 2ata</u>
Protein	Position	No. of	A*0301
		Amino Acids	
PAP	114	∞	
PAP	114	6	
PAP	114		
Kallikrein	103	01	
PSA	66	∞	
PSA	66	01	0.0070
PAP	117	∞	
PSM	451	01	
PSM	216	∞	
PSM	195	6	
PSM	195	10	
PSM	195	11	
PSM	519	6	•
Kallikrein	181	∞	
Kallikrein	181	=	
PSM	999	6	
PSM	\$99.	01	
PSM	999	11	
PSA	177	∞	
PSA	171	11	
PSM	336	∞ ;	
PSM	336	9	
PSM	638	∞ (
PSM	938		0.0003
PAP	077	∞ α	
PSM	0/	,	
r Jivi Dad	307	. = ∞	
DAP	304	» =	
	69	: 6	
WSd	257	. ∞	•
PSM	51	. 6	
PSM	51	01	
PSM	51	11	
Kallikrein	79	==	
PSM	3	6.	. 90000
PSM	٣	=	
PSM	247	6	
PSM	57	0	
PSM	57	=:	
Kallikrein	102	= :	
PSM	289	2 .	
Kallikrein	2 5	• •	
Namkrein	0/ 7	, o	
PSM	438	• - -	

	Prostate A03 Moti	<u>Table XVI</u> Prostate A03 Motif Peptides with Binding Data	
Protein ·	Position	No. of A*0301 Amino Acids	
ava			İ
PSM	480	9	
PAP	237	. =	
PAP	240	∞	
PAP	240	11	
PSM	260	= -	
PAP.	317	σ ;	
PRI	31/	01	
PAP	128 128	0,000	
PAP	891	2 0	
PSM	703	6	
PSM	703		
PSM	716	8	
PSM	. 91.	6	
PAP	09	∞	
PAP	56 5	6 0.0002	
PAP	32	= •	
		A 5	
PSW			
PAP	170		
PAP	170	10 0.0004	
PAP	170	= -	
PSM MS	542 547	× =	
PSM	557	. ∞	
PSM	557		
PSM	557	10 0.0006	
PSM	522	. 00	
PSM	171	⊅ ⊆	
PSM.	727		
PSM	235	. 8	
PSM	418	6	
PSM	595	=:	
MODI	/13		
WSd	679	<u>0</u>	
NS.d	629	\ -	
MS-A	185	6	
PSM	32	√ ∞	
PSM	32		
PSM	524	∞ ;	
TOM DAD	524		
	3		

	Prostate A03 Moti	Tradic XVI Prostate A03 Motif Peptides with Binding Data	
Protein	Position	No. of A*0301 Amino Acids	10
Nod	378	01	
MSM	357	2 0	
PSM	153	. 6	
PSM	153	-	
PSM	231		
PSA Valitacia	125	9 0.0002	22
Kalistein	671	3 0	
PSA	142		
Kallikrein	146) O	
PSA	142	. 6	
PSM	273		
PSM	273	9 0.0001	10
Kallikrein	240	6	
Kallikrein	240	<u> </u>	
Kallıkrein	240	= •	
Kallıkrein Vellikasis	233	y :	
	220		
NS.	484	: ∞	
PSM	484	=	
PSM	682	8	
PSM	682	=:	
PSM	368	0 :	
DOM	315	= 5	
PSW	594	2 ∞	
PAP	157	8	
PSM	685	∞	
PSM	685	o:	
DEM	343		
MSd	70,	Ξ ∝	
PSM	270	· •	
PSM	270	6 .	
PSM	270	01	
PSM	270	=:	
PAP	49 704	Ξ α	
PAP	270	· -	
PAP	134	:=	
PSM	678	δ.	
Por Por	678	0 :	
PAP	8 50	: ∞	
PSM	468	œ	

	I Prostate A03 Motif	Table XVI Prostate A03 Motif Peptides with Binding Data	
Protein	Position A	No. of Amino Acids	A*0301
PAP ·	147	6	0.0005
PSM	267	8	
PSM	267	= •	
rar nas	212	∞ :	
7.A.P.	717	2 0	2070
PSA		> =	0.2400
WSd	550		0 0004
Kallikrein	66	6	£000:0
Kallikrein	66	10	
PSM	268	10	0.0005
PAP	349	&	
PAP	349	6	
PSM	290	01	
PSM	290		
PSM	721	6	
PSM	721	10	0.0003
PSA	236	6	
PSA	236	01	0.0079
PSA	236	= :	
Pow	707	0.	
DAD	986	» :	
PAP	278	: 0	0,000
PAP	278	`=	
j. WSd.	293	.∞	
PSM	293	. 10	
Kallikrein	16	œ	
Kallikrein	16	=	
PSM	740	Ξ,	1
rar	200	ο:	0.0006
rar next	007	= :	
PAP	776	2 =	
MSd	207	: 0	
PSM	731	\ <u></u>	
PSM	218	=	
PSM	16	=	
PAP	72	∞	
PAP	152	∞ :	
PSM	199		
PAP	/90	v 1	
PAP	<u>6</u> 9	2 =	
PSM	389	∵∞	
Kallikrein	109	=	

	Prostate A03 Mo	Jable XVI Prostate A03 Motif Peptides with Binding Data	ng Data
Protein	Position	No. of Amino. Acids	A*0301
Kallikrein	. 39	01	
Kallikrein	39	=	
PSA	84	6	
PSA	84	=	
PSA	182	σ:	0.0060
PSA	187	2 σ	0.0031
	ξ. Σ.		0.0021
WSd.	578	2 ∞	
PSM	578	=	
PSA	. 87	∞	
PSA	87	=	
Kallikrein	72	9	
PAP	101		
PAP	2	∞	
PAP	2	6	0.1500
PAP	5	₽;	
PAP	7 ;	= <	
PAP	2 9	ń :	
TAP	10 درر	- •	
PAP	27.2	0 0	0.0210
PAP	27.	√ S	0.212
PSA	43	2 0	0.0110
Kallikrein	981	01	
PSM	061	0	0.0021
PSM	598	∞ (
WSd.	598	o :	0.0024
POM .	960	2 :	
PSA	105	==	
pAp .	163		
PSM	363	. ∞	
PSM	363	6	
PSM	280	6	
PSM	255	<u>o</u>	
WSd.	210	∞ ;	
PSM	210	= •	
Mod	970		
POM	£115	o <u>=</u>	
Kallikrein	24	: 2	0.0460
PSA	50	. 0	0.0460
Kallikrein	24	=	
PSA	70	=	
PSM	354	01 .	0.3700

Table XVI Prostate A03 Motif Peptides with Binding Data	Position No. of A*0301	VIIIII ACION		527 9 0.0032	01		∞ ;	180 0 00005	⋋ ⊆	2 =	, -	400 8	6			414 10				01 68 10	10	312 9 0,0006		634 10				350 8			624 8 8 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				704 10		x /61								294 10 507 · 8 517 8
	Protein		PSM	PSM	PSM	PSM	DAD	PSM	PSW	PSA	PSM	PSM	Kallikrein	PAP	PAP	PSM	PAP	PSM	Kallikrein	PAP	PAP	PSM	PSM.	PSM	PAP	PAP	PAP	PAP	POIN	WSd	PSM	PSM .	PSM	PSM	PSM	PSM PSM	FSIM	WS.d	PAP	PAP	PAP	PAP PSM	PAP PSM	PAP PSM PSM	PAP PSM PSM

615 9 0.1100

ostate .

	Prostate A03 Motil	Table XVI Prostate A03 Motif Peptides with Binding Data	Į3
Protein	Position	No. of Amino Acids	A*0301
PSW	45	=	
PSM	317	8	
PSM	317		
PAP	901	=	
PAP '	369	10	
PSM	431	01	0.0005
PSM	348	6	0.0016
PSM .	338	∞	
PSM	338	01	
PAP	217	=	
PSA	<i>L</i> 9	8	
PSA	19	.=	
DΔP	30	; ∝	0.0017
σγd	<u>ج</u> ز	o	
No.	, <u>,</u>	√ œ	
MAG	929	∘ ⊊	
TAIN.	020	2 a	
Not.	- 733	• =	
FSM.	+111	= 0	70000
roA Valillania	° 6	~ •	0.0094
	70	∘ ≘	
NO.	<u>+</u> ∝	2 ≈.	
Nac			•
		, C	
	101	2 5	
IV.	65	2 00	
Kallikrein	2 2	o c	
. WSd	134	; œ	
Wd	334	01	0.0007
Kallikrain	98	? o	
Kallikrein	2 %	· =	
PSA	83	. 0	0 0000
PSA	% % 2.2	`=	
WSd	415	: 0	
υνο	6	٠. ٥	
Mod	404	\ 0	
NG.	404	, 9	0.0007
NG.	404		
PAP	171	: 6	0.0006
PAP	171	.01	0.0007
PAP	112	10	0.0005
PAP	112	=	
PSM	361	10	0.0003
PSM	361		
PSM	461	=	
PSA	2	6	

	Prostate A03 Motii	<u>Table XVI</u> Prostate A03 Motif Peptides with Binding Data	<u>ata</u>
Protein	Position	No. of Amino Acids	A*0301
PSA	v	9	
PAP	39	2 0	0.0006
PSM	141	· =	
Kallikrein	227		
PSA	223	6	
PAP	291	ο:	
PAR	5/5	= :	
DAD	145	= •	
M3d	767 767	0 00	
MSd	734	o 0	
WSd	734	√ <u>S</u>	
PSM	576	2 2	
PSM	17	; ∞	
Kallikrein	40	. 0	
Kallikrein	40	10	
PSA	179	· 60	
PSA	45	00	
PSM	464	8	
PSM	. 612		
PAP	601	∞ :	
PSM	523	6	
PSIM	382	Ξ,	
TO T	6 8	∞ ⊆	
WSd	20%	2 &	
PSM	208	, 01	
Kallikrein	26	8	
PSA	22	&	
Kallikrein	56	6	
PSA	22	6	
PSM	287	6 (
. Mod	676	D (
WSd	207	× =	
WS.A.	358	2 ∞	
. PSA	89	. <u>S</u>	
PSA	89	:=	
PSM	225		
PSM	225	01	
PSM	225	Ξ,	
PSA PSA	174	∞:	
DOM	4/1	Ξ ο	
PCM	060	∞ ⊆	0.5400
WSd	069	2 =	0.3400
	>>	Ξ	

Table XVI Prostate A03 Motif Peptides with
--

Table XVI Prostate A03 Motif Peptides with Binding Data	Position No. of A*0301 Amino Acids	27 11 30 8 138 10 115 8	592 9 592 10 603 8 603 10			· ·	394 9 246 9 0.0072 242 9 0.0072 602 9 0.0390 602 11 0.0390 226 11 0.0006 226 11 0.0006 41 9 0.0006
	Protein	PSM · PAP Kallikrein PSM PSM PSM PSM	PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	PSM PSA PSA Kallikrein Kallikrein PSA PSA	PSA PAP PSA PSM PSM PSM PSM	PAP Kallikrein PSA Kallikrein PSA PAP	PSM Kallikrein PSA PSM Kallikrein PAP RAllikrein

	T. Prostate A03 Motif	Table XVI Prostate A03 Motif Peptides with Binding Data	댔
Protein	Position	No. of Amino Acids	A*0301
PSA Kallikmin	225	_ 6	
PSA	53	. 0	
Kallikrein	157	=	
PSA	10	11	
Kalikrein DSA	252	∞ •	
MOD	947	o \$	2000
PAP	07 52	2 «	0.0026
PAP	25	. 6	0.0035
Kallikrein	74	. œ	
PAP	706	. 6	0.0002
PAP .	368	=	
PSM	497	10	
PSA	. SS	01	0.0004
Nailikrein Valibaia	60	2:	
NAIIIKTEIN PCM	60.7		
WSd) 00.		
PSM	692	` ∞	
PSM	692	. 6	
PSM	. 692	2 6	
. Wide	179	× o	
PAP	310	, i	0.0003
PAP	310	:=	
PSM	009	∞	
PSM	. 009	6	
- MSG	009	= "	
WSG.	1.17	∞ 5	
ΓΟΙΜ ΡΑΡ	214	2 ∞	
MSd	602	o C	
PSM	300	. 6	90000
PSA	26	6	
PSA	26	10	
PAP	210	0 '	
MSG MSG MSG MSG MSG MSG MSG MSG MSG MSG	266	∞ 5	30000
NS NS NS NS NS NS NS NS NS NS NS NS NS N	234		0.0005
PAP	319	· ∞	
PAP	325	∞ :	
PAP PAP	247	o I	0.0006
PSM	205	. 6	90000
PSM	205	11	

Pros	I able AVI	itate A03 Motif Peptides with Binding Data
		Prostate,

	CONTANTON	TANKE LEPINGS THE PERM	THE PART
Protein	Position	No. of Amino Acids	A*0301
PAP	84	8	
PAP	84	6	
PAP	103	. 6	
PAP	155	6	
PAP	155	10	
PSM	228	∞	
PSM	228	6	
Kallikrein	. 881	∞	
PSM	471	6	0.0600
PSM	625	6	
PSM	625	=	
PSM	537	6	
PSM	537	01	
Kallikrein	243	8	
PSA	239	&	
Kallikrein	243	6	0.0006
PSA	239	6	0.0006
PSM	733	6	
PSM	733	01	
PSM ·	733	. =	
PSM	371	∞	•
PSM	9/1	01	
PSM	176		

	Prostate All M	<u>Table XVII</u> Prostate A11 Motif Peptides with Binding Data	ding Data	
Protein	Position	No. of Amino Acids	A*1101	
			the state of the s	
PSA	59	× ×		
PAD	<u>.</u>	o		
WSA	392	. 6		
PSW	809	. 0		
. WSA	809	=		
PSM	452	6		
PSM	232	6	0.0051	
PSM	232	=;		
PSM	674	= •		
PSM	220	5 (
PSM	264	-		
rom Valitatia	10/1	Σ α	•	
PSA .	195	o oc		
WSA	28	· =		
PSM	7117	∞ •		
Kallikrein	235	6		
Kallikrein	235	= •		
PSA	231	э.	0.0013	
PSA	231	=.∝		
MSG	288	• I		
PAP	311	: 6	0.0550	
PSM	531	6	0.2700	
PAP .	227	∞ ;	0.0039	
PAP	777	2 9		
PAP: DOM:	- 89 49	⊇ ∝		
WSd	49	· -		
PAP	274	; ∞	0.0700	
PAP	274	6	1.2000	
PSM · MSM	=	6		
PSA	44	6		
PSM	286	0:		
rom Kaliberia	033	<u> </u>		
MSW	393			
PSM	109	10	0.0210	
Kallikrein	41	6		
Kallikrein ·	241	∞ .		
Kallikrein	241	ο;		
Kallikrein	241	2 =		
Kallikrein	861	: 6		
PSA	194	6	0.0015	

Table XVII Prostate All Motif Peptides with Binding Data	on No. of A*1101 Amino Acids	10	230 10	8 08	11 08	184 8	6	196 0.0490	6 .	0.	70000	01 060	11 067	11 11		∞:	9 107		191 9	• E			01. 01.	=	901	» <u>C</u>	178 10 0.0011		. 01 100
Prosta	Protein		PSA 23																										

	티
	ㅋ
	Z
	늉
	3ind
	~
	됩
	.≅
Ξ	2
2	읨
7	÷
able	라
ᢛ	4
H	≅
	Moti
	\mathbf{z}
	=
	₹
	9
	ä
	S
	밁

	Prostate A11 Mo	Table XVII Prostate A11 Motif Peptides with Binding Data	ıta
Protein	Position	No. of Amino Acids	A*1101
FSM	84 8	o ;	
TOINT DAD	727	10	
WSd	183	o	
WSd	E 28	• -	
dVd	051	: 9	
Kallikrein	115	2 =	
Kallikrein	84	: =	
PSA	80	11	
PAP	229	∞	
PSM	102	11	
PAP	176	ه :	
. Non	176	01:	
Non	505	0 0	
PSM	<u> </u>	ъ.	
TOWN DOWN	1/1	= 0	
TOWN DOWN	480	2 م	
WSd	467	- 0	0 0000
PAP	266	\ o c	70000
PSM.	397	10	
PSM	. 397	11	•
PSM	. 109	11	
PAP	991	∞ :	
PAP	S 8	>> (
ተለተ ውልው	2 8	σ S	
App	S &	2 =	
PSM	3	; ∞	
PSM	49	. 0	
PAP	34	01	0.0037
. PAP	34	11	
PAP	237	= .	
PAP	240	∞ :	
PAP	240	Ξ	
PAP	317	э ;	
Wod	87°C		
WSd	417		
WSd	716		
PAP	95	. 6	0.0002
PAP	95	=	
PSM	7	10	
PSM	7		
PAP DAD	170	<u> </u>	0.0140
	2	=	

_	
Binding	
<u>u</u> with	
able XVI Peptides	
Ta 1 Motif	
rostate A1	

	T. Prostate A11 Motif	Table XVII Prostate A11 Motif Peptides with Binding Data	<u>it</u> a
Protein	Position	No. of Amino Acids	A*1101
Mod	542	~	
PSW .	542	· =	
PSM	557	∞ ;	
PSM	557	2 ∝	0.0002
WSd	595	» =	
MSA	713	:=	
PSM	653		
PSM	629	σ,	
PSM	185	a :	
PSM	224	= =	
rar Dad	202	_ oc	
WSd	103	01	
PSM	103	:=	
PSM	402	10	
PSM	675	10	
MSA!	19	=	
MSM	37	œ ;	
PAP	œ 6	= •	1000
PAP	0 60	ъ «	0.0004
PSA	76 100	o <u>0</u> 1	
WSd	73	10	0.0036
PSM	646	10	0.0007
PSM	206	6	
PSM	546	∞ :	
WSd.	337	1 6	
PSM	337	· =	
PSM	639	. 11.	
PSM	333	6:	
PSM	333	= ∘	
PAP	3.7	· = = :	
PSA	12	· 6	0.0350
PSM	391	01	
PSM	263	0 0	
PSM	221	∞ ∘	
PSM	364	∞ 0	
Namkrein PAP	346	6 I	
WSd	172	? ∞	
PSM	172	10	
PSM	265	∞	
PSM	487	∞	

Table XVII	f Peptides with Binding Data
Table XVII	ptides with
	Prostate A11

	Tal Prostate A11 Motif P	Table XVII Prostate A11 Motif Peptides with Binding Data	
Protein ·	Position Am	No. of Amino Acids	A*1101
Mod	3.6	0	0.0014
Wod	332	01	10014
WSA	310	:=	
PAP	260	=	
Kallikrein	27	8	
PSA	23	∞ :	
PSM	529	œ c	
PSM	526	v :	
rom pap	248	. «	
PAP	248	01	
PAP	204	11	
PSM	104	6	
PSM	20	10	
PAP	305	0 8	
WSG	089	•	0.0280
PSM	089	01	7.02.00
Zi Zi	288	? ∞	
PAP	295	6	
PAP	74		
PSM	168		0.0002
PSM	518	0 0	
MSG	335	γ <u>=</u>	
. Wo	311		0.1400
PSA	226		
Kallikrein	158	10	
PSM	430	= :	
PSM	\$ 6	2 0	
PSM	403	<u> </u>	
PSM MSM	. 360	=	
PSM	224	11	
PAP	261	01	
Kallikrein	49	∞ :	
PAP	198		
F3)M Vallibrain	177	2 2	
Naminiem PAP	314	٠	0.5300
PSM	573		
PAP	270	= '	
PSM PSW	475 S6	∞ =	
r Jivi V allitrain	76		ייטטע
PSA	: 8		0.0006

Position	No. of	A*1101	
TONICO I	Amino Acids		
34	2 ∝		
347	, <u>c</u>	0.0002	
689	6		
689	=		
202	6		
530	. oc		
025	, ⊆		
000			
710	• :		
188	=		
919	6		
386	11		
5	: =		
3	2 :		
	2	•	
297	∞		
69	10		
136			
700	2 0		
977	ν:		
450	= ;		
194	=		
614	9	0.1100	
175	9		
52	∞		
25	6	0.0190	
21	6	0.0190	
25	9	1	
21	01		
i 002		•	
002	=		
565	· «		
501	9		
398	6	0.0087	
308	9	9000 0	
99	2		
8 5	2 ∝		
,,,,			
57/	o :		
57	= <	7000	
183	٠ • حد	0.0004	
16	∞ •		
16	6		
72	=		
190	∞		
645	=		
545	∞		
545	6		
36	•		

214

	Prostate All Mot	Table XVII Prostate All Motif Peptides with Binding Data	
Protein	Position	No. of Amino Acids	A*1101
PAP	36		
PSM	564	∞ :	
PSM	564	σ;	•
DAD	4 66		0000
rar pap	322		0.0002
PAP	322		2000
PSM	1661		1,0000
PSM	019	. &	
PSM	019	0 6	0.1200
PAP	282	00 (
PSA	991	60 (
NSW.	215	a	
PSIM.	/50	a 6	
Kallikrein	60	y 5	
Naminaem	630	2 :	
PAP	657 871	- ∞	
PAP		. C	
WSd	491	9	1000
PSM	491		0.0810
PSM	655		
PSM	482	10 0	0.0210
PSA	99		
PSA	99		0.0014
PSM	207		0.1200
PCA.	217	11	
Kallikrein	745		0.0450
PSA	241		0.0450
PSM	219		0.0002
PSM	110		
MS4	35	0 01	0.0007
Kallikrein	161	10	
PSA	193	01	
MOD	70	07	
PAP	70 70	- ∞	
PAP	92	· =	
MSd	105	; ∞	
PSM	105	6	
PAP	300	11	
Kallikrein	80	0 0	
rom PAP	202	א ס	
PAP	61	01	

|--|--|

	T Prostate A11 Motif	Table XVII Prostate A11 Motif Peptides with Binding Data	
Protein .	Position	No. of Amino Acids	A*1101
		0	
PAP	ō 50	• •	0.0002
PAP	: - 8	. 0	0.0002
PAP	18	11	
PSM	35	01	0.3700
PSM	528	ο 5	0.0002
PSM B B	976	2 0	
DOM	171	· •	
PSM	629	.02	
WSd	629	. 11	
PSA	11	∞	
PAP	21	∞	
PSM	34	11	
PSA	. 02	6	
Kallikrein	105	00	
PSA	101	00	
PAP	306	6	0.0002
PSM	144	o (
Kallikrein .	123	ο,	
PAP	243	∞ (0000
7AT 0 × 0	243	y :	0.2000
Kollibrain	5±7	-	
Kallistein	2.2		
PSM	116	: 6	0.0003
PAP	136	. 6	
PAP	153	=	
Kallikrein .	121	=	
PSM	469		
PAP	88	Ξ,	
PAP	148	×;	
7. C	279	0.0	0.0004
PAP .	147	2 =	0.0002
040	247	- α	
PAP	244	, <u>c</u>	0.0370
Kallikrein	179	. ∞	
Kallikrein	179	01	
PSM	117	8	
PSM	117	=	
PSA	27	∞	
PSA	27	10	0.0830
Kallikrein	19	∞ :	
Kallikrein	19	6	
PAP	315	∞	0.0100

Table XVII Motif Peptides with Bindir
Table XVII Motif Peptides wi
Tab Motif Pe
rostate A11

	Prostate A11 Mot	Table XVII Prostate A11 Motif Peptides with Binding Data	<u>11a</u>
Protein	Position	No. of Amino Acids	A*1101
PAP	315	=	
PSM	268	: 0	0.0002
PAP .	20	6	
PAP	70	0:	0.0024
FOIM	261	= •	
PSW	40	∞ <u>⊆</u>	0.0002
PAP	263	2 ∞	
PAP	. 563	, <u>o</u>	0.1200
PAP	263	11	
PSM	174		•
Kallikrein	. 183	o ;	
Namikrem PSA	96	7	
Kallikrein	122	1	
PSM	663		
PSM	664	01	
Kallikrein	103	10	
PSA	66	01	0.0110
PSM	451	. 01	
PSM	216	∞ ;	
MSG	56.	2:	
MSd	510	<u> </u>	
Kallikrein	181	n oo	
Kallikrein	181	• =	
PSM	999	: 6	
PSA	17.1	. ∞	
PSA	171	-	
PSM Signal Control of the Control of	336	∞ ;	
PSW	336	<u>0</u>	
WSd	267	∘	
PAP	304		
PSM	51	; 6	
Kallikrein	79	11	
PSM	247	6	
PSM	52	<u>0</u> :	
	705	= 9	
Kallikrein	70	2 ∞	
Kallikrein	70	. 6	
PSM	438	. 00	
PSM	231	01	
PSA	125	6	0.0002
Nainkielii	671	5	

Table XVII
Prostate A11 Motif Peptides with Binding Data

		Prostate A11 Motif	Prostate A11 Motif Peptides with Binding Data	el el
Protein		Position A1	No. of Amino Acids	A*1101
Kallikrain	PALCHCY	146	04	
PSA	PALGITCY	147	o ∝	
PSM	PANEYAYR	273	» »	
PSM	PANEYAYRR	273	6	0.0002
Kallikrein	PAVYTKVVH	240	6	
Kallikrein	PAVYTKVVHY	240	. 01	
Kallikrein	PAVYTKVVHYR	240	1	
Kallikrein	PCALPEKPAVY	233	1	
PSA	PCALPERPSLY	229		
PSM	PDEGFEGK	484	∞ :	
PSM	PDEGFEGKSLY	484	= (
FSM	PDKFFYKH	789	∞:	
FSIM	DDBVXIII GCH	790		
PSM		366	2 :	
WS4	POSSWREGGIK	315		
PSM	PFYRHVIY	685	2 oc	,
PAP	PGCSPSCPLER	345	- =	
PSM	PGFTGNFSTQK	331	11	
PSM	PGYPANEY	270	8	
PSM	PGYPANEYAY	270	10	
PSM	PGYPANEYAYR	270		
PAP	PIDTFFIUPIK	49	= (
PSM	PIGYTDAUK	290	J :	
PSM	FILLWORTEVE PI GI PORPEV	134		
PSM	PLGLPDRPFYR	678		
PSM	PLMYSLVH	468	; ∞	
PAP	PLSEDQLLY	147	6	0.0001
PSM	PLTPGYPANEY	267	=======================================	
PAP	PLYCESVH BI VDMS1 I V	212	∞ ⊲	0 0330
PSA	PLYDMSLLAN	S &	`=	0.0370
PSM	PLYHSVYETY	550	:0	0.0002
Kallikrein	PLYNMSLLK	66	6	
Kallikrein	PLYNMSLLKH	66	. 01	
PSM	PNKTHPNY	120	8	
PSM	PSIPVHPIGY	290	01	
PSM	PSIPVIHPIGYY	290	Ξ,	
PSW	PSKAWGEVK.	17.	D :	2000
PSA	PSLYTKVVH	736	2 0	0.0002
PSA	PSLYTKVVHY	236	10	0.0003
PSA	PSLYTKVVHYR	236	=	
PSM	PSPEFSGMPR	202	01	
PAP	PSWATEDTMTK	224	=	

	Data
	Binding
— 1	with
Table XVI	Peptides
Ä	Motif
	V
	Prostate
	Z

	<u>Tal</u> Prostate A11 Motif P	Table XVII Prostate A11 Motif Peptides with Binding Data	
Protein	Position Am	No. of Amino Acids	A*1101
d P d	278		0 0002
WSA	293	. 00	
Kallikrein	16	. &	
Kallikrein	16		
PAP	200	6	0.0008
PAP	200		
PSM	167	2 :	
PSW	9/7		
PSM	917		
DAP	77	- ∞	
pAp	152	o ∞	
dVd.	69	01	
PAP	: 69	= = = = = = = = = = = = = = = = = = = =	
PSM	389	∞	
Kallikrein	109	=	•
Kallikrein	. 39	11	
PSA	84		
PSA	182		0.0140
F3A P8A	c	7 . 0	0.0018
ASA PSA	/ ²	• =	
dAg	101	:::	
PAP	2	6	0.1200
PAP	273		
PAP	273		0.0600
PAP	2/3		0.0250
No.4	190		0.0310
PSM	598		
PSM	865		0.0190
PSM	865	01	
PSA	105	= :	
FAF	163	= 0	
POM	363	00	
PSM	320		
Kallikrein	24		0.0670
PSA	20	10	0.0670
Kallikrein	24		
PSA	5 20		
. Wid	354	2.	0.4300
NSW MSW	775 277	0	
PSM	527		
PSM	440	01	0.0005

	17
	되
	2
	-
	.=
	3
	E
	료
	덪
=	3
S	퓌
긔	#
apk	P
_	딍
	Ĭ
	\exists
	Ħ
	a
	ä
	S
	Ħ

	Prostate All M	Prostate All Motif Peptides with Binding Data	ding Data	
Protein	Position	No. of	A*1101	
		Amino Acids		I
PAP	332	6	0.0002	
PSA	49	10		
PSA	99	= •		
PSM	904 -	∞ c		
Kaliikrein	69	2 C	00110	
PAT	07	× 5	0.11.0	
FOIN	161	2 0		
Kallikrein	£	\ <u>S</u>		
PSM	312	; o	0.0012	
PSM	. 01	∞		
PSM .	2	01		
PAP .	312	∞		
PAP	312	=		
PSM	628	<u>e</u> :		
PSM	401	= :		
PSM	330	Ξ,		
FSA	197	×0 G		
PSM .	761	v :		
FOIN	767	= =		
PCA	507	? ∞		
PSS	517	=		
PSM	532	∞		
PSM ,	547	0		
PSM	455	6 6		
Kallikrein	159	6;		
Kallikrein	159	= =	•	
DOM	791	= 0		
Wild	291	. 0	1.4000	
PSM	613	=		
PSM	290	6	0.0220	
PSM	280	= :		
PSM	142	2 <		
Kallikrein	45 5	v 0	00000	
PSA Great	100		0.0470	
FAF	247	01	2,0002	
Kallibrain	170	? ∝		
Kallikrein	011	01		
PSM	472	∞		
PSM	472	= -		
PSM	492	∞ ∢	0000	
PSM	492	D	2.0000	
PAP	C+7	ע	0.8000	

220

a	costate A11 Moti	Table XVII Prostate A11 Motif Peptides with Binding Data	<u>Data</u>
Protein Po	Position	No. of Amino Acids	A*1101
		;	
PAP	245	 •	
FOA	737	• •	07100
FOA DCA	757	2	0.0140
PAA PAA	237	2 =	0007:0
WSd.	615	: 6	0.0720
PSM	615		
Kallikrein	180	6	
PSA	176	6	
PSM	46	10	
PSM	46	=	
Kallikrein	117	.60	1.2000
PSA	113	6	1.2000
PSM	454	10	0.0910
PSM	45	11	
PSM	317	∞	
PSM	317	=======================================	
PAP	369	10	
PSM	431	10	0.0016
PSM	348		0.0083
PSM	338	∞ ;	
PSW	338	0	
PSA	. 79	••••••	
PAP	67.	∞.;	0.0061
PSM	554	= (
PSA ·	8 5	ъ.	0.0140
Nainkrein	70	00	
Poly	c ~	, <u>.</u>	
LOIVI	° ភូ	2 ∘	
rar Valibrain	75	2 ه	
Myd	334	2 ∞	
WSd	334	, 0	0.0002
Kallikrein .	98	50	
PSA	82	6	0.0002
PAP	190	6	
PSM	404	∞	
PSM	404	·01 ·	.0.0002
PSM	404	=	
PAP	171	6	0.0078
PAP	171	10	0.0001
PSM	361	01	0.0002
PSM	361	= :	
row.	401	= 0	5000
PAP	340	ν 3	0.0002
Laivi	717	5	

Amino Acids A mino Acids A cids B C C C C C C C C C C C C C C C C C C	Amino Acids Amino Acids 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Prostate A11	Table XVII Prostate A11 Motif Peptides with Binding Data	inding Data	
Q Q = = = ∞ Q 6 ∞ ∞ = Q ∞ ∞ ∞ 6 6 6 9 = 0 = ∞ Q 6 ∞ Q 6 = 6 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22===×26××==2××666=====================	Position	No. of Amino Acids	A*1101	
2 2 I I I ∞ 2 6 ∞ ∞ I 2 ∞ ∞ ∞ 6 6 2 I 2 I 2 2 2 2 2 ∞ 2 6 ∞ 2 6 I 6 2 ∞ 6 I 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	Ş	OI.		
===∞26∞∞=2∞∞∞066====2022 ====∞26∞∞=6=6====2022 ====∞26∞∞=6=6====2022	===∞2	543	. 2		
==∞2⊙∞∞=2∞∞∞o⊙o9=2=2≈2=∞2⊙∞2⊙=⊙2∞⊙=⊙2∞⊙=⊙2===2222		543	=		
_ & 2 o & & = 2 & & & o o o 2 = 2 = 2 = & 2 = & 2 o & 2 o = o 2 & o = o 2 = = = 2 2 2 2 3 3 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	_ & 2 o & & 1 2 & & & o o o o 2 1 5 1 & 5 1 & 5 0 & 5 0 1 o 5 & o 1 o 5 1 1 1 1 2 5 5 5 5	141	11		
∞ 2 o ∞ ∞ I 2 ∞ ∞ ∞ o o o o I I I I I I I I I I I I I	∞ 2 o ∞ ∞ I 2 ∞ ∞ ∞ o o o o I I I I I ∞ 2 I ∞ 2 o ∞ 2 o I o 2 ∞ o I o 0 I I I I I 2 0 2 0 2 0 0 0 0 0 0 0 0 0	145	· =		
2 o ∞ ∞ = 2 ∞ ∞ ∞ o o o 5 = 5 = ∞ 5 = ∞ 5 o ∞ 5 o = o 5 ∞ o = o 5 = = = 5 5 5 5	2 6 ∞ ∞ = 5 ∞ ∞ 0 6 6 = 5 = ∞ 5 = ∞ 5 6 ∞ 5 6 = 6 = 6 = 5 = = 5 5 5 6 ∞ 5 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6 = 6	12	∞		
0 8 8 I 2 8 8 8 0 0 0 5 I 5 I 8 5 I 8 5 0 8 5 0 I 9 5 8 0 I 9 5 I I I I I I I I I I I I I I I I I	0 8 8 I 3 8 8 8 0 0 0 5 I 3 I 8 2 I 8 2 0 8 2 0 I 0 2 8 0 I 0 2 I I I I 2 2 2 2 2 2 2 2 2 3 1 1 1 1 2 2 2 2 2 2	40	01		
. 8 8 I 2 8 8 6 6 6 2 I 2 I 2 2 8 I 8 2 6 8 2 6 I 6 2 8 6 I 6 2 I I I I 2 2 2 2 3 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	. x x = 2 x x x 6 6 6 2 = 2 = x 2 = x 2 6 x 2 6 x 6 = 6 2 x 6 = 6	179	6		
o ≈ = 2 ≈ ≈ ≈ o o o o o = = = = = = = = = = = =	o ≈ = 2 ∞ ∞ ∞ o o o o = = = = = 0 = ∞ o = o o o o o o o o o o o o o o o o	45	~		
- I 2 ∞ ∞ ∞ o o o o 2 I 2 I ∞ 2 I ∞ 2 o ∞ 0 o I o 2 ∞ o I o 2 I I I I 2 2 2 2 3	-	464) œ		
	= 2 ∞ ∞ ∞ o o o o o o o o o o o o o o o o		• :		
⊇∞∞∞⊙⊙⊙⊒⊒⊒⊇⊇≡∞⊇⊙∞⊇⊙⊒⊙⊇∞⊙⊒⊙⊇≡⊒⊒⊇⊇⊇;	2 ∞ ∞ ∞ o o o o o o o o o o o o o o o o	61/			
∞∞∞∞ooo9===============================	∞∞∞∞0000==============================	85	01		
°∞∞∘∘∘⊙=================================	°∞∞∘°°5=5=∞5=∞5°°5°°°5°°°°°°°°°°°°°°°°°°	900	; o		
∞∞∞∞∞∞∞2==============================	∞∞∞0002=2=∞2=∞20∞20=02∞0=020====22222	700	0		
≈ o o o o 5 = 5 = ∞ 5 = ∞ 5 o ∞ 5 o = o 5 ∞ o = o 5 = = = 5 5 5 5	∞ o o o o o o o o o o o o o o o o o o o	26	∞		
, o o o o o = o = o o e o e o e o e o e o	, o o o o o = = = = = = = = = = = = = =	22	000		
, o o o o = o = o o e o e o e o e o e o e	v o o o = = = = = = = = = = = = = = = =	1 70			
o o 5 = 5 = 8 = 8 = 8 = 8 = 8 = 8 = 8 = 8 =	o o 5 I 5 I ∞ 5 I ∞ 5 o ∞ 5 o I o 5 ∞ o I o 6 I I I I 5 5 5 5	07	ъ.		
• 5 = 5 = ∞ 5 = ∞ 5 • ∞ 5 • = • 5 ≈ • = • 5 = = = 5 5 5 5 5 5 5 5 5 5 5 5 5	• 2 = 2 = ∞ 2 = ∞ 2 • ∞ 2 • = • 2 ∞ • = • 2 = = = 2 2 2 2 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5	22	. 6		
9:9:∞2:∞26∞26:02∞6:02:::2222 9:0:∞2:∞26∞26:02∞6:02:::22222	9:0:∞0:∞0:∞0.000000000000000000000000000	287	ο		
: = = = ∞ = = ∞ = ∞ = ∞ = ∞ = ∞ = = = =	::2:∞2:∞26∞26:62∞6:62::=22222	201	10		
: 2 I ∞ 2 I ∞ 2 0 ∞ 2 0 I 0 2 ∞ 0 I 0 2 I I I I 2 2 2 2 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: 2 I ∞ 2 I ∞ 2 0 ∞ 2 0 I 0 2 ∞ 0 I 0 2 I I I I 2 2 2 2 2 2 1	89	:		
2 = ∞ 2 = ∞ 2 6 ∞ 2 6 = 6 2 ∞ 6 = 6 2 = = = 2 2 2 2	2 I ∞ 2 I ∞ 2 o ∞ 2 o I o 2 ∞ o I o 2 I I I I 2 2 2 2 2	8 6	: :		
:∞2:∞26∞26:02∞6:02:::2222:	:∞2:∞26∞26:62∞6:62:::22222	577	2:		
∞ 2 I ∞ 2 o ∞ 2 o I o 2 ∞ o I o 2 I I I I 2 2 2 2 3	∞ 2 I ∞ 2 o ∞ 2 o I o 2 ∞ o I o 2 I I I I 2 2 2 2	1/4	=		
2 = ∞ 2 6 ∞ 2 6 = 6 2 ∞ 6 = 6 2 = = = 2 2 2 2	2	069	∞		
2 = ∞ 2 6 ∞ 2 6 = 6 2 ∞ 6 = 6 2 = = = 2 2 2 2	: 1 ∞ 2 o ∞ 2 o 1 o 2 ∞ o 1 o 2 1 1 1 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3	069	01	0.7900	
:∞26∞26162∞61621==2223	:∞2⊙∞2⊙=⊙2∞⊙=⊙2===2222	069	=		
• 2 • ∞ 2 • 1 • 2 ∞ • 1 • 9 = = = 2 2 2 3 • 2 • ∞ 2 • 1 • 2 ∞ • 1 • 9 = = = 2 2 2 3	• 2 • ∞ 2 • 1 • 2 ∞ • 1 • 2 1 1 1 2 2 2 2 2 1 1 1 1 2 2 2 2	116			
2 0 ∞ 5 0 1 0 5 ∞ 0 1 0 5 1 1 1 1 5 5 5 5	2 o ∞ 2 o 1 o 2 ∞ o 1 o 2 1 1 1 2 2 2 2 2	CH	o ;		
o∞2o=o2∞o=o2===2223	o∞2o=o2∞o=o2===2222	115	10		
.∞26162≈6162112222 .∞26162≈6162112222	. ∞ 2 o	592	6		
• 2 • 1 • 2 ∞ • 1 • 2 = 1 = 2 2 2 3	o 2 o 1 o 2 ∞ o 1 o 2 1 1 1 2 2 2 2 2	603	. •		
26162∞6162111222	2626262622222222	500	:		
o = o 2 ∞ o = o 2 = = = 2 2 2 2	o = o 2 ∞ o = o = = = = 2 2 2 2	603	01		
	162≈6162 1112222	2 6	6	0.0005	
: 6 2 ∞ 6 2 6 2 7 7 7 2 2 2 2 3	: o 2 ∞ o = o 2 = = = 2 2 2 2	95	=		
, 2 ∞ o I o 2 I I I I 2 2 2 3	v 5 ∞ v I v 5 I I I I S S S S		: <		
2∞6262222222	2∞6252222222 2∞62522222222	00	Α,		
∞ 6 1 6 2 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3	∞ o I o O I I I O O O O	09	01		
00100111222	001001110000	36	00		
> = • = = = = = = = = :	> = 0 = = = = 9 = 9	3 6		00000	
- 62 222	= 6 2 = = = 2 2 2 2	707	λ,	0.0050	
69===999	62===2222	262			
. 2 = = = 2 2 2 3	. 2 = = = 2 2 2 2	264	0		
2===222:	2===2222	107			
	===9999	264	9		
		177	=		
==9999					
= 2 2 2 :	= 2 2 2 2	627	=		
222:	2222	293			
2229	2 2 2 2	6	: =	21000	
<u> </u>	0 0 0	76	0.	2100.0	
02:	<u>0</u> 0	88	01	0.0015	
2 :	2 2	188	2	00100	
		901	2 :	0710:0	

	5
	ē
	\Box
	ь.
	Ξ.
	=
	Ē
	3
	-
	윤
	₹
_	7
7	S
2	의
×	.≝
انة	ם
百	व्य
æ	9
4	-
•	Moti
	2
	-
	-
	<
	انه
	ï
	2
	д
	4

	I Prostate A11 Motif	Table XVII Prostate A11 Motif Peptides with Binding Data	. a j
Protein	Position A	No. of Amino Acids	A*1101
V allibration	346	ď	0,000
PSA	242	5 6	0.0930
PSM	602	. 6	0.0660
PSM	602	= 5	
Namikrem DAD	4/	2 0	2000
PAP	226	· =	0.0002
PSM	725	. 6	
Kallikrein	229	=	
PSA	225		
Kallıkrein PSA	157	==	
. dvd	2,5	<u>.</u>	0.0150
PSM	246	, 01	0010:0
PAP	506	6	0.0002
PAP	368		
PSA	55	<u>o</u> :	0.0001
Naimkrein Kalikrain	£ 6	2:	
PSM	603		
PSM ·	700	. 01	
PSM	692	80	
MSM MSM	692	6	
rom PAP	310	~ ⊆	0,000
PSM	009	2 ∞	
PSM	009	=	
PSM	709	01	
FUM	300	a	0.0002
PAP	. 012	6	
PSM	266	? ∞	
PSM	113	01	0.0016
PSM	234	σ. α	
PAP	242	0 0	0,0000
PAP	247	11	20000
PSM	205		0.0002
PSM	205	=	
PAP DAD	84	∞ c	
PAP	155		
PSM	27	. 00	
PAP	303	∞ :	
Kalikrein DSM	101	∞ 0	
1 5341	חרכ	0	

WO 01/45728 PCT/US00/35516

223

Table XVII
Prostate A11 Motif Peptides with Binding Data

No. of A*1 Amino Acids

Position

0.5400				0.0580	0.0580	
6	O	∞	œ	O	6	00
171	537	243	239	243	239	171

PSM PSM Kallikrein PSA Kallikrein PSA

Table XVIII Prostate A24 Motif Peptides with Binding		Data
Table XVIII Prostate A24 Motif Peptides with		Binding
	Table XVIII	

Table XVIII Prostate A24 Motif Peptides with Binding Data	No. of A*2401 Amino Acids		o =	=		0.0150		0610.0	6		0.1.00	00/1:n	0	6	=		9 0.0002	01	0.0001	2. 6	.01	∞ .	00 1	∞ 6	<i>√</i> ∞	, =	0.0010	6	01	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		. 01		0.0026	11		o ∞		1.1000	= -	∞
1 Prostate A24 Moti	Position	763	09	736	116	911	724	448	100		757	148	259	520	520	184	981	191	86	98	425	164	091	. 194	194	505	621	433	433	9/7	S & &	185	32	32	32	C7 261	161	24	\$98	487	lE .
	Protein	Wod	No.	PSM	PAP	PAP	PSM	PSM	Kallikrein	Kallikrein	Kallıkrem	PSA	Wod	WSd	PSM	PSM	PAP	PSM	PSA	NS.	PSM	Kallikrein	PSA	Kallikrein	Kaliikrein PSM	PSM	PSM	PSM	PSM	FSIVI	PAP	PSM	PSM	PSM	PSM	rar Kalibrain	PSA	PAP	PSM	PSM	PSM

Table XVIII Prostate A24 Motif Peptides with Binding Data	No. of A*2401 Amino Acids	=	; ∞	8		9 0.0016		∞ •	. 01000		=		10 0.0001	100001	= =	: ∞		10 0.0540		6	00		0.0330			9 0.0024	ာ ၹ		0.0310	6	9 12 0000			10 0.0045	o		10 0.0140		=	c
Prostate A24 Mot	Position	1.6	99	36	17	11	17	<i>b</i> /	508	46	28	24	951	152	051	409	409	409	150	2.78	270	788	248	131	131	507	355	. 72	061	645	564 606	669	417	22	76		123	632	632	877
· .	Protein	WSd	PAP	PSM	PAP	PAP	PAP	rAr.	MSA	Kallikrein	Kaflikrein	PSA	Kallikrein	PSA	Kallikrein PSA	NS.	PSM	PSM	MV.	PSM	PAP	PAP	Nallikreili PSA	PAP	PAP	PAP	PSM	PSM	PSA	PSM	Pom	PSM	PSM	PAP .	PSA	949	PAP	PSM	PSM	, 100

	Prostate A24 N	Table XVIII Prostate A24 Motif Peptides with Binding Data	ding Data	
Protein	Position	No. of Amino Acids	A*2401	
				I
PSM.	899	6	0.0075	
. PAP	113	∞		
PAP	113	=		
PSM	469	6	•	
PAP	213	6	0.4400	
PAP	213	=		
PSA	%		0.1200	
PAP	318	6	2.5000	
PSM	551	=		
dVd	154	=		
WSd	74	10	0.2300	
WSd	227	. 6	0.4400	
Vod	238			
NO.	099	: ∝		
Mad	699	> =		
MSC.	600	_ 0		
LOW	663	o c		
I SIM	 	v 00		
Validitation		≎ ⊆		
	077	2 ∞		
I SIMI DEM	08	o oc		
Word Modern	922	° =		
MSG.	638	ō	0000	
WSd	92	· ∞		
Wod	2.5	6		
Kallibrein	102	. 9		
MSM	178	; œ		
Wod	178	6	0 7700	
WSd	178	. 1		
. WSd	459	=		
WSd	594			
PAP	157	. ∞		
dVd	157	=		
Kallikrein	37	=		
PAP	309	10	0.0240	
PAP	183	6	0.1100	
PSM	326	∞ [.]		
PAP	297	<u>o</u> :	0.0001	
PAP	297	_;	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
PSA	5 2.5	<u> </u>	0.0007	
Kallikrein	28	2 9	0000	
PAP	551	2 9	0.0037	
PAP	103	2 0	0.0001	
MSC	200			
INC.	007 10	2•		

. Data	A*2401	0.0001 0.0013 0.2600 0.3600 3.2000 2.1000 0.0062 0.0005	
Table XVIII Prostate A24 Motif Peptides with Binding Data	No. of Amino Acids	5=5°5===°5°°°°=°=°=°=°°°°°°°°°°°°°°°°°	
] Prostate A24 Moti	Position	19 536 401 704 704 704 704 420 525 420 62 496 62 496 62 731 831 832 833 834 834 835 834 835 837 838 838 838 838 838 838 838 838 838	
		-3 -	
	Protein	PSM PSM PSM PSM PSM PSM PSM PAP PSM PAP PSM PAP PSA PSA PSA PSA PSA PSA PSA PSA PSA	

Table XIX
Prostate DR Supermotif Peptides

229

Table XIX
Prostate DR Supermotif Peptides

Table XIX
Prostate DR Supermotif Peptides

Table XIX
Prostate DR Supermotif Peptides

Kalikrein PSM PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	PSM Kallikrein PSA PAP PAP PAP PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PAP PAP PAP PAP PAP PAP PAP PAP PAP PA					
Kalikerin PSA PAP PAP PAP PAP PAP PAP PAP PAP PAP	Kallikrein PSA PAP PAP PAP PAP PSM PSM PSM PSM PSM PSM PSM PSM PAP PAP PAP PAP PAP PAP PAP PAP PAP PA				·	
PSA PSA PAP PAP PAP PAM PSAM PSAM PSAM P	PSA PAP PAP PAP PAP PSM PAP Rallikrein PAP PAP PAP PAP PAP PAP PAP PAP					
PSM PSM PAP PAP PAP PAP PAP PSM PSM PSM PSM PSM PSM PSM Ralliketin PSA Ralliketin PSA Ralliketin PSA Ralliketin PSA PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	PAAP PAP PAP PAP PAM PAP Kallikrein PAP PAP PAP RAllikrein PAP					
PAP PAP PAP PAP PAP PAP PAP PAM PSM PSM Kalikrein PSM PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	PAP PAP PAP PSM PSM PAP Kallikrein PAP PAP PAP Kallikrein PAP					
P.A.P. P.A.P. PSM PSM PSM PSM PSM PSM PSM Rallikein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	PAP PAP PSM PSM PAP Kallikrein PSM PAP PAP PAP Kallikrein PAP					
PAP PSM PSM PSM PSM PSM PSM PSM PAP PAP PAP PAP PAP PAP PAP PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS	PAP PSM PSM PAP Kallikrein PAP PAP PAP PAP PAP PAP Rallikrein PAP					
PSM PSM PSM PSM PSM PSM PSM PSM PSM PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	PSM PSM PSM PAP Rallikrein PSA PAP PAP PAP PAP PAP PAR Rallikrein PSA PAP PAP					
PSM PSM PSM PAP Kalikrein PSA Kalikrein PSA PAP PAP PAP PAP PAP PAP PSM Kalikrein PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	PSM PSM PAP Kallikrein PSA PAP RAllikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA					
PSM Kallikrein RSA RAIlikrein PSPM PAP PAP PAP PAP PAP PAP PAP PAP PAP P	PSM PAP Kallikrein PSA PAP Kallikrein PSM PAP PAP PAP PAP RAllikrein PSA					
Rallikrein PAP Rallikrein PSM PAP PAP PAP PAP PAP PAP PAP PSM Rallikrein PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	PAP Kallikrein PSA PAP Kallikrein PAP PAP Kallikrein PSA Kallikrein					
RAIIIkrein PSA PAP RAIIIkrein PSW PAP PAP PAP PAP PAP PAP PAP PAP PAP PSM PSW PSW PSW PSW PSW PSW PSW PSW PSW PSW	Kallikrein PSA PAP Kallikrein PAP PAP Kallikrein PSA Kallikrein					
PSA PAP Kalikrein PSM PAP PAP PAP PAP PAP PAP PSM Kalikrein PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	PSA PAP Kallikrein PSM PAP PAP Kallikrein PSA Kallikrein					
Kalikrein PAP PAP PAP PAP PAP PAP PAN Kalikrein PAN PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	PAP Kallikrein PAP PAP PAP Kallikrein PSA Kallikrein					
Kalikein PSM PAP PAP PAP PAP RAlikein PSA Kalikein PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	Kallikrein PAP PAP PAP Kallikrein PSA Kallikrein					
PAM PAP PAP PAP Kallikrein PAM PSM PSM PSM PSM PSM PSM Rallikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	PSM PAP PAP PAP Kallikrein PSA Kallikrein			,		
PAP PAP PAP Rallikrein PSA Kalikrein PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	PSM PAP PAP PAIIkrein PSA Kallikrein					
PAP PAP PAP PAP PAN Kallikrein PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS	PAP PAP PAP Kallikrein PSA Kallikrein					
PAP PAP Kallikrein PSA Kallikrein PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	PAP PAP Kallikrein PSA Kallikrein PAP					
Kallikrein PAA Kallikrein PAA Kallikrein PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	PAP Kallikrein PSA Kallikrein PAP					
Kallikrein PSA Kallikrein PSM PSM PSM PSM PSM PSM PSM PSM PSM PSM	Kallikrein PSA Kallikrein PAP					
PSA Kalikrein PSM PSM PSM PSM PSM PSA Kalikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	PSA Kallikrein PAP					
Kalikrein PAP PSM PSM PSM PSM PSM PSM RAlikrein PSA Kalikrein PSA RAlikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PSA PSA	Kallikrein PAP					
PAP PSM PSM PSM PSM Rallikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	NAIII KICIII DAD					
PSM PSM PSM PSM PSM Rallikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA						
PSM PSM PSM PSM Rallikrein Rallikrein PAP PSA Kallikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA						
PSM PSM PSM Rallikrein PSA Kallikrein PAP PSA Kallikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	PSM					
PSM PSM Kallikrein PSA Kallikrein PAP PAP PAP PAP PAP PAP PAP PAP PAM PSM PSM PSM PSM PSM PSM PSM PSM PSM PS	PSM					
PSM Kallikrein PSA Kallikrein PAP PSA Kallikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	PSM					
Kallikrein PSA Kallikrein PAP PSA Kallikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	PSM		•			
PSA Kallikrein PAP PSA Kallikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	Kallikrein					
Kallikrein PAP PSA Kallikrein PAP PAP PAP PAP PAP PAP PSM PSM PSM PSM PSM PSM PSM PSM PSM PS	PSA					
PAP PSA Kallikrein PAP PAP PAP PAP PAP PAP PAP PAP PAP PA	Kallikrein					
PSA Kallikrein PAP PAP PAP PAP PAP PAP PSM PSM PSM PSM	DAD					
Kallikrein RAP PAP PAP PAP PAP PAP PAP PAP PAM PSM PSM PSM PSM	100					
Kallikrein PAP PAP PAP PAP PAP PAM PSM PSM PSM PSM PSM PSM PSM	PSA					
PAP PAP PSA PAP PAP PAP PAM PSM PSM PSM PSM PSM PSM	Kallikrein					
PAP PSA PAP PAP PAP PAM PSM PSM PSM PSM PSM PSM	PAP					
PSA PAP PAP PAP PSM PSM PSM PSM PSM						
PAP PAP PAP PSM PSM PSM PSM Raditerin	PSA			•		
PAP PAP PSM PSM PSA Kallibrein	10 A					
PAP PAP PSM PSM PSA Kalliterin	7/7					
PAP PSM PSM PSA Kalliterin	PAP					
PSM PSM PSA Kallitrein	PAP					
PSM PSA Kallikrein	PSM					
PSA Kallitrein	PSM					
Kalikrain	PSA	•				
	Kallibrein					

Positic	329 342 342 342 342 343 341 341 342 343 341 343 343 343 343 344 344 345 347 347 347 347 347 347 347 347 347 347

717

Prostate DR Supermotif Peptides

O 01/45728		233	PCT/US00/35516
418 464 8 8 546 356 144	627 737 579 43 450 330 587 88 88 297 71	103 103 103 103 103 103 103 103 103	603 712 713 713 713 713 713 713 713 713 713 713
			٠.
			·
n n			
		•	

<u>Table XXa</u> Prostate DR 3a Submotif Peptides

	eptides
XXP	ubmotif [
Table	DR 3b S
	Prostate
	,

96	713	612	194	214	188	692	358	284	73	19	724	93	31	593	179	Ξ	373	435	477
IQSQWKEFG	FDIESKVDP	YSISMKHPQ	INCSGKIVI	YCESVHNFT	LERDMKINC	YAPSSHNKY	VIGTLRGAV	IMYSAHDTT	LGMEQHYEL	FLDELKAEN	AWGEVKRQI	LNESYKHEQ	LAKELKFVT	LPFDCRDYA	VCAQVHPQK	AVATARRPR	MTTNSHQGT	AEENSRLLQ	LTKELKSPD
PSM	PSM	PSM	PSM	PAP	PSM	PSM	PSM	PAP	PAP	PSM	PSM	PAP	PAP	PSM	PSA	PSM	PAP	PSM	PSM

TABLE XXI. Population coverage with combined HLA Supertypes

	PHENOTYPIC FREQUENCY Coversion North Jonanes Chinese Hispanic Average											
	Caucasian	North	Japanese	Chinese	Hispanic	Average						
HLA-SUPERTYPES		American										
		Black										
a. Individual Supertypes	_											
A2	45.8	39.0	42.4	45.9	43.0	43.2						
A3	37.5	42.1	45.8	52.7	43.1	44.2						
B7	43.2	55.1	57.1	43.0	49.3	49.5						
A1	47.1	16.1	21.8	1 4.7	26.3	25.2						
A24	23.9	38.9	58.6	40.1	38.3	40.0						
B44	43.0	21.2	42.9	39.1	39.0	37.0						
B27	28.4	26.1	13.3	13.9	35.3	23.4						
B62	12.6	4.8	36.5	25.4	11.1	18.1						
B58	10.0	25.1	1.6	9.0	5.9	10.3						
b. Combined Supertypes												
A2, A3, B7	84.3	86.8	89.5	89.8	86.8	87.4						
A2, A3, B7, A24, B44, A1	99.5	98.1	100.0	99.5	99.4	99.3						
A2, A3, B7, A24, B44, A1, B27, B62, B58	99.9	99.6	100.0	99.8	99.9	99.8						

Table XXII. Prostate Antigen Peptides

Antigen	
Binding affinity	Sequence
≤ 200nM	
PSA.117	LMLLRLSEPA
PSA.118	MLLRLSEPAEL
PSA.118	MLLRLSEPA
PSA.143	ALGTTCYA
PSA.161	FLTPKKLQCV
PSA.166	KLQCVDLHV
PAP.6	LLLARAASLSL
PAP.21	LLFFWLDRSV
PAP.30	VLAKELKFV
PAP.92	FLNESYKHEQV
PAP.112	TLMSAMTNL
PAP.135	ILLWQPIPV
PAP.284	IMYSAHDTTV
PAP.299	ALDVYNGLL
PSM.26	LVLAGGFFL
PSM.27	VLAGGFFLL
PSM.168	GMPEGDLVYV
PSM.288	GLPSIPVHPI
PSM.441	LLQERGVAYI
PSM.469	LMYSLVHNL
PSM.662	RMMNDQLMFL
PSM.663	MMNDQLMFL
PSM.667	QLMFLERAFI
PSM.711	ALFDIESKV
HuK2.165	FLRPRSLQCV
HuK2.175	SLHLLSNDMCA
Binding affinity	
>200nM	Sequence
PSM.4	LLHETDSAV
PSM.25	ALVLAGGFFL
PSM.427	GLLGSTEWA
PSM.514	KLGSGNDFEV

Table XXIIIA A2 supermotif cross-reactive binding data

Peptide	AA	Sequence	Source	A*0201 nM	A*0202 nM	A*0203	A*0206 nM	A*6802 nM	A2 Cross- Reactivity
20.0044	٥	LLLARAASL	PAP.6	208	13	29	425	1	4
63.0136	11	LLLARAASLSL	PAP.6	8.1	3.1	5.3	80	143	5
60.0201	6	LLLARAASV	PAP.6.V9	18	215	2.9	95	1	4
20.0203	2	LLARAASLSL .	PAP.7	200	5.2	63	9250	5714	m
63.0031	10	LLARAASLSV	PAP.7.V10	109	10	21	378	727	4
63.0137	Ξ	AASLSLGFLFL	PAP.11	227	23	53	66	1	4
1419.51	10	SLSLGFLFLL	PAP.13	40	13	403	21	8560	4
1419.52	10	SLSLGFLFLV	PAP.13.V10	1.8	3.9	17	42	355	ς.
1419.50	6	SLSLGFLFV	PAP.13.V9	11	25	21	93	1	4
60.0203	6	FLFLLFFWV	PAP.18.V9	42	307	625	308	06	4
63.0138	11	FLLFFWLDRSV	PAP.20	14	17	2.8	285	364	5
1097.09	2	LLFFWLDRSV	PAP.21	28	09.0	1.6	231	1	4
1418.23	10	LTFFWLDRSV	PAP.21.T2	118	11	9.6	43	16	\$
63.0139	11	LLFFWLDRSVL	PAP.21	65	2.9	2.7	822	4444	3
63.0033	9	SLLAKELKFV	PAP.29.L2	64	5.7	3.8	38	2999	4
1097.171	6	VLAKELKFV	PAP.30	96	3.6	6.7	168	:	4
63.0142	11	VLAKELKFVTL	PAP.30	6.9	8.1	21	25	1	4
63.0034	10	VLAKELKFVV	PAP.30.V10	31	12	189	98	2286	4
1419.55	Ξ	FLNESYKHEQV	PAP.92	29	1.4	5.6	381	6154	4
1177.01	6	TLMSAMTNL	PAP.112	43	08.0	2.9	285	296	S
20.0312	10	TLMSAMTNLA	PAP.112	385	3.6	37	3700	2999	9
63.0037	10	TLMSAMTNLV	PAP.112.V10	63	3.9	12	43	242	\$
1419.56	6	TLMSAMTNV	PAP.112.V9	10	2.4	3.6	54	62	5
1419.58	01	LLALFPPEGV	PAP.120.L2	5.0	0.70	1.6	148	163	5
1419.59	10	LVALFPPEGV	PAP.120.V2	156	17	4.8	463	28	5
1419.6	2	ALFPPEGVSI	PAP.122	278	11	133	2643	ł	m
1419.61	10	ALFPPEGVSV	PAP.122.V10	15	1.0	18	119	4444	4
63.0041	10	GVSIWNPILV	PAP.128.V10	250	94	23	451	2286	4

- indicates binding affinity >10,000nM.

Table XXIIIA A2 supermotif cross-reactive binding data

Peptide	ΑA	Sequence	Source	A*0201 nM	A*0202 nM	A*0203 nM	A*0206 nM	A*6802 nM	A2 Cross- Reactivity
60.0207	6	GVSIWNPIV	PAP.128.V9	455	569	606	308		3
63.0042	10	PLLLWQPIPV	PAP.134.L2	238	47	19	336	3333	4
1044.04	6	ILLWQPIPV	PAP.135	3.3	39	1.8	71	1702	4
1418.25	6	ITLWQPIPV	PAP.135.T2	34	1720	6.2	26	32	4
1419.69	10	LLWQPIPVHV	PAP.136.V10	25	1.8	17	287	09	5
1166.11	10	GLHGQDLFGI	PAP.196	26	06.0	2.5	315	ì	4
1419.62	10	GLHGQDLFGV	PAP.196.V10	12	2.3	3.1	18	1	4
63.0048	10	KLRELSELSV	PAP.234.V10	263	9.1	7.1	49	1818	4
1097.05	01	IMYSAHDTTV	PAP.284	217	1.5	14	411	:	4
1389.06	10	LYSAHDTTV	PAP.284.L2	385	1.0	15	1480	5714	3
60.0213	6	TVSGLQMAV	PAP.292.V9	294	12	122	. 561	5.7	5
1177.02	6	ALDVYNGLL	PAP.299	73	29	256	3083		3
1419.64	10	LLPPYASCHV	PAP.306.V10	88	15	16	86	5260	4

-- indicates binding affinity >10,000nM.

Table XXIIIB A2 supermotif cross-reactive binding data

Peptide	AA	AA Sequence	Source	A*0201 nM	A*0202 nM	A*0203 nM	A*0206 nM	A*6802 nM	A2 Cross-Reactivity
1126.10	6	VLAGGFFLL	PSM.27	39	0.20	33	31	2857	4
1389.20	6	VLAGGFFLV	PSM.27.V9	56	0.40	5.0	57	216	. 5
1129.04	10	GMPEGDLVYV	PSM.168	55	3.1	7.1	191	6154	4
1389.22	10	GLPEGDLVYV	PSM.168.L2	42	2.0	2.1	112	964	4
1418.29	. 10	GTPEGDLVYV	PSM.168.T2	313	134	53	40	571	4
1129.10	10	GLPSIPVHPI	PSM.288	147	2.7	2.1	2467	308	4
1389.24	10	GLPSIPVHPV	PSM.288.V10	55	0.70	09.0	308	121	5
1129.01	10	LLQERGVAYI	PSM.441	179	5.7	6.7	861		3
1126.14	6	LMYSLVHNL	PSM.469	64	0.40	2.1	109	320	5
1126.06	10	RMMNDQLMFL	PSM.662	8.6	2.7	1.7	40	;	4
1126.01	6	MMNDQLMFL	PSM.663	11	0.80	1.7	9.7	195	5
1126.16	10	QLMFLERAFI	PSM.667	86	36	91	1	30	4
1129.08	6	ALFDIESKV	PSM.711	85	0.70	1.4	148	6888	4
1418.30	6	ATFDIESKV	PSM.711.T2	238	27	44	82	258	5

indicates binding affinity >10,000nM.

Table XXIIIC A2 supermotif cross-reactive binding data

Peptide	AA	Sequence	Source	Alternate Source	A*0201 nM	A*0202 nM	A*0203 nM	A*0206 nM	A*6802 nM	A2 Cross- Reactivity
1419.25	=	VVFLTLSVTWI	PSA.1		385	159	63	2846	i	3
63.0185	11	VVFLTLSVTWV	PSA.1.V11		68	88	71	336	}	4
63.0186	11	FLTLSVTWIGV	PSA.3.V11		8.9	3.0	18	99	114	5
60.0216	6	FLTLSVTWV	PSA.3.V9		53	8.4	8.3	46		4
60.0217	6	TLSVTWIGV	PSA.5.V9		26	4.9	40	712	229	4
1419.10	=	VLVHPQWVLTA	PSA.49	HuK2.53	294	7.7	101	2056	1	Э
1419.11	11	VLVHPQWVLTV	PSA.49.V11	HuK2.53.V11	=======================================	1.5	16	31	8889	4
63.0109	11	DLMLLRLSEPV	PSA.116.V11	HuK2.120.V11	20	27	29	148	2759	4
63.0014	10	LMLLRLSEPA	PSA.117	HuK2.121	200	17	<i>L</i> 9	925	2000	Э
1418.43	10	LMLLRLSEPV	PSA.117.V10	HuK2.121.V10	114	<i>L</i> 9	29	25	6154	4
1419.02	6	MLLRLSEPA	PSA.118	HuK2.122	195	745	145	49	1	3
1389.10	6	MLLRLSEPV	PSA.118.V9	HuK2.122.V9	36	36	46	638	421	4
1389.12	11	MLLRLSEPAEV	PSA.118.V11		294	331	115	1762	4444	3
1419.01	8	ALGTTCYA	PSA.143	HuK2.147	15	19	13	199	ı	3
1389.14	∞	ALGTTCYV	PSA.143.V8	HuK2.147.V8	74	6.4	12	264	ł	4
1098.02	10	FLTPKKLQCV	PSA.161		52	8.3	13	755	:	3
990.01	6	KLQCVDLHV	PSA.166		42	205	91	6167	1	3
63.0058	10	KLQCVDLHVV	PSA.166.V10		13	84	9.1	200	1	4
60.0220	6	KVTKFMLCV	PSA.187.V9		69	518	53	128		3
1419.17	11	PLVCNGVLQGV	PSA.212.V11	HuK2.216.V11	27	127	19	255	4314	4
1418.55	10	LVCNGVLQGV	PSA.213.V10	HuK2.217.V10	10	2.9	12	5.6	3.5	5

- indicates binding affinity >10,000nM.

Table XXIIID A2 supermotif cross-reactive binding data

Peptide	AA .	Sequence	Source	Alternate Source	A*0201 nM	A*0202	A*0203 nM	A*0206 nM	A*6802 nM	· A2 Cross- Reactivity
1418.13	6	LLLSIALSV	HuK2.4.L2		88	176	147	189	1	4
1418.57	11	ILLSVGCTGAV	HuK2.8.L2		36	33	36	308	,	4
1418.59	11	ITLSVGCTGAV	HuK2.8.T2		294	134	40	506	121	5
1419.05	2	ALSVGCTGAV	HuK2.9		53	75	17	542	١.	3
1418.15	6	ALSVGCTGV	HuK2.9.V9		24	17	9.1	264	1	4
1418.35	10	SVGCTGAVPV	HuK2.11.V10		104	287	154	552	216	4
1419.10	11	VLVHPQWVLTA	HuK2.53	PSA.49	294	7.7	101	2056	ı	3
1419.11	11	VLVHPQWVLTV	HuK2.53.V11	PSA.49.V11	=	1.6	91	31	9378	4
63.0109	=	DLMLLRLSEPV	HuK2.120.V11	PSA.116.V11	20	57	29	148	2759	4
63.0014	10	LMLLRLSEPA	HuK2.121	PSA.117	200	11	<i>L</i> 9	925	2000	3
1418.43	10	LMLLRLSEPV	HuK2.121.V10	PSA.117.V10	114	19	29	25	6154	4
1419.02	6	MLLRLSEPA	HuK2.122	PSA.118	195	745	145	49	1	3
1389.10	6	MLLRLSEPV	HuK2.122.V9	PSA.118.V9	36	36	46	638	421	4
1419.01	∞	ALGTTCYA	HuK2.147	PSA.143	15	61	13	199	1	. 3
1389.14	∞	ALGTTCYV	HuK2.147.V8	PSA.143.V8	74	6.4	12	264	:	4
1419.07	10	FLRPRSLQCV	HuK2.165		186	4.8	4.2	1		3
60.0191	6	SLQCVSLHL	HuK2.170		200	51	417	6167	2581	9
1419.66	10	SLQCVSLHLL	HuK2.170		263	4.9	11	446	2000	4
1418.52	10	SLQCVSLHLV	HuK2.170.V10		13	6.3	2.8	5.2	205	5
1418.19	0	SLQCVSLHV	HuK2.170.V9		. 96	. 165	48	. 4111	1600	3
1419.14	Ξ	SLHLLSNDMCA	HuK2.175		71	4.8	71	ı	1	3
1418.66	11	SCHLLSNDMCV	HuK2.175.V11		9.8	0.80	10	2313	2162	3
1419.15	=	HLLSNDMCARA	HuK2.177		417	391	250	374	1	4
1418.67	11	HLLSNDMCARV	HuK2.177.V11		56	1.3	5.3	37	860	4
1418.20	6	HLLSNDMCV	HuK2.177.V9		119	102	278	176	1	4
1418.53	10	LLSNDMCARV	HuK2.178.V10		5.3	0.70	4.3	10	1702	4
1418.71	=	KVTEFMLCAGV	HuK2.191.V11		95	10	26	29	143	. 5
1418.21	6	KVTEFMLCV	HuK2.191.V9		53	27	31	34	2999	4
1418.22	6	FMLCAGLWV	HuK2.195.V9		. 29	12	16	51	1	4
1419.17	11	PLVCNGVLQGV	HuK2.216.V11	PSA.212.V11	27	127	19	255	4314	4
1418.55	10	LVCNGVLQGV	HuK2.217.V10	PSA.213.V11	10	2:9	12	5.6	3.5	5

- indicates binding affinity >10,000nM.

			0				Contract of the Contract of th						
Peptide ID	¥₩	AA Sequence	Source	A*0201 nM	A*0202 nM	A*0203 nM	A*0206 nM	A*6802 nM	Cross- Reactivity (<200nM)	A2 peptide	A2 native	A2 in vivo	wo o
1419.51	10	SLSLGFLFLL	PAP.13	40	13	403	21	8560	3				1/45
1419.52	10	SLSLGFLFLV	PAP.13.V10	1.8	3.9	17	42	355	4				5728
1097.09	10	LLFFWLDRSV	PAP.21	28	09:0	1.6	231	1	3	3/3		0/3	3
1418.23	10	LTFFWLDRSV	PAP.21.T2	118	11	9.6	. 43	. 16	5	3/3	2/3		٠,
1097.17	6	VLAKELKFV	PAP.30	96	3.6	6.7	168	1	4	1/3		0/3	
1177.01	6	TLMSAMTNL	PAP.112	43	08.0	2.9	285	296	3	272		3/3	
1419.58	10	LLALFPPEGV	PAP.120.L2	5.0	0.72	1.6	146	164	5	-			
1419.61	10	ALFPPEGVSV	PAP.122.V10	15	1.0	18	120	4387	4	1/3	1/3		
1044.04	6	ILLWQPIPV	PAP.135	3.3	39	1.8	7.1	8511	4	. 5/5		1/6	
1418.25	6	ITLWQPIPV	PAP.135.T2	34	1723	6.2	26	32	4	3/3	2/3		1
1419.69	12	LLWQPIPVHV	PAP.136.V10	25	1.8	17	287	09	4				24
1166.11	12	GLHGQDLFGI	PAP.196	. 97	6.0	2.5	. 315	1	ю			,	3
1419.62	10	GLHGQDLFGV	PAP.196.V10	12	2.3	3.2	18	ł	4				
1097.05	10	IMYSAHDTTV	PAP.284	217	1.5	14	411	1	2	3/3		0/3	
1419.64	10	LLPPYASCHV	PAP.306.V10	88	15	16	86	5260	4				

Table XXIVB Immunogenicity of A2 cross-reactive binding peptide and peptide analogs

こうしょう かんけいかんかい かんしょうかん

ころうのでいると

Peptide ID	¥¥	AA Sequence	Source	A*0201 nM	A*0202 nM	A*0203 nM	A*0206 nM	A*6802 nM	Cross- Reactivity (<200nM)	A2 peptide	A2 native	A2 in vivo
1126.10	6	VLAGGFFLL	PSM.27	39	0.20	33	31	ł	4	1/2		3/3
1389.20	6	VLAGGFFLV	PSM.27.V9	5 6	0.40	5.0	57	216	4	1/2	1/2	
1129.04	10	GMPEGDLVYV	PSM.168	55	3.1	7.1	161	***	4	1/0		1/3
1129.10	10	0 GLPSIPVHPI	PSM.288	147	2.7	2.1	2467	1538	Э	2/4		0/3
1389.24	10	10 GLPSIPVHPV	PSM.288.V10	55	0.70	09.0	308	121	4	4/4	3/4	
1129.01	2	10 LLQERGVAYI	PSM.441	179	5.7	6.7	861		3	3/3		
1126.14	6	LMYSLVHNL	PSM.469	64	0.40	2.1	109	1600	4	3/3		3/3
1126.06	2	10 RIMINDQLMFL	PSM.662	8.6	2.7	7.7	40	1	4	1/1		20/22
1126.01	6	MMNDQLMFL	PSM.663	11	0.80	1.7	7.6	926	4	2/2		. 3/3
1129.08	6	ALFDIESKV	PSM.711	85	0.70	1.4	148	1	4	2/2		3/3

٠
peptide analogs
and
peptides
Jing
bin
oss-reactive
2
ξ
Immunogenicity o
Table XXIVC

The second second		The second secon	0.000										
Peptide ID	AA.	AA Sequence	Source	Alternate Source	A*0201 nM	A*0202 nM	A*0203 nM	A*0206 nM	A*6802 nM	Cross- Reactivity (<200nM)	A2 peptide	A2 native	A2 in vivo
1419.27	=	FLTLSVTWIGV	PSA.3.V11		8.9	3.0	18	65	113	5	3/3	3/3	
1419.11	=	VLVHPQWVLTV	PSA 49.V11	HuK2.53.V11	11	1.6	16	31	9378	4			
1419.13	=	11 DLMLLRLSEPV	PSA.116.V11	HuK2.120.V11	20	57	29	148	2759	4			
1419.02	6	MLLRLSEPA	PSA.118	HuK2.122	195	745	145	49	1	æ			•
1389.10	9	MLLRLSEPV	PSA.118.V9	HuK2.122.V9	36	. 96	46	638	421	3	3/3	1/3	
1419.01	∞	ALGITCYA	PSA.143	PSA.143	15	19	13	295	:	٣			
1389.14	∞	ALGTTCYV	PSA.143.V8	HuK2.147.V8	74	6.4	12	264	ı	3	2/3	1/3	
1098.02	10	FLTPKKLQCV '	PSA.161		52	8.3	13	755	1	3	3/4		9/0
10.066	6	KLQCVDLHV	PSA.166		61	205	16	6167	:	2	1/2		1/3
1419.24	2	10 KLQCVDLHVV	PSA.166.V10		13	84	9.5	502	1	3	1/2	1/2	!
1419.17	=	11 PLVCNGVLQGV	PSA.212.V11	HuK2.216.V11	27	127	19	255	4314	3			

Table XXIVD Immunogenicity of A2 cross-reactive binding peptides and peptide analogs

							The second second						
Peptide	A B	ID AA Sequence	Source	Alternate Source	A*0201 nM	A*0202 nM	A*0203 nM	A*0206 nM	A*6802 nM	Cross- Reactivity (<200nM)	A2 peptide	A2 native	A2 in vivo
1418.13	ľ	LLLSIALSV	HuK2.4.L2		88	176	147	189	:	4	2/2	272	
1419.05	=	10 ALSVGCTGAV	HuK2.9		53	75	11	542		3			
1419.11		11 VLVHPQWVLTV	HuK2.53.V11	PSA 49.V11	11	1.6	16	31.	9378	4	272	2/2	
1419.13	-	11 DLMLLRLSEPV	HuK2.120.V11	PSA.116.V11	20	57	29	148	2759	4	77	272	
1419.02	2	MLLRLSEPA	HuK2.122	PSA.118	195	745	145	49	i	6			
1389.10	2	9 MLLRLSEPV	HuK2.122.V9	PSA.118.V9	36	36	46	638	421	3			
1419.01		8 ALGTTCYA	HuK2.147	PSA.143	15	61	.13	295	ï	6	1/2		
1389.14	~	8 ALGTTCYV	HuK2.147.V8	PSA.143.V8	74	6.4	12	264	:	3			
1419.07		10 FLRPRSLQCV	HuK2.165		186	4.8	4	I	1	3	1/3		
1419.14		11 SLHLLSNDMCA	HuK2.175		72	4.8	73	ı	;	3	1/3		
1419.17	-	1 PLVCNGVLQGV	HuK2.216.V11	PSA.212.V11	27	127	19	255	4314	3	272	2/2	

Table XXV.

DR supermotif and DR3 motif-bearing peptides cross-reactive binding peptides

	DR st	upermotif	DR3
Antigen	Motif+	Algorithm+*	Motif+
PAP	67	39/15	21
PSM	45	25/7	4
PSA	108	54/20	31
HuK2	45	21/6	4
Total	265	139/48	60

^{*}Number scoring positive in the combined DR1, DR4w4 and DR7 algorithms ($\geq 1/\geq 2$)

WHAT IS CLAIMED IS:

1. An isolated prepared prostate cancer-associated antigen epitope consisting of a sequence selected from the group consisting of the sequences set out in Table XXIV.

5

- 2. A composition of claim 1, wherein the epitope is admixed or joined to a CTL epitope.
- 3. A composition of claim 2, wherein the CTL epitope is selected from the group set out in claim 1.
 - 4. A composition of claim 1, wherein the epitope is admixed or joined to an HTL epitope.
- 15 5. A composition of claim 4, wherein the HTL epitope is selected from the group set out in claim 1.
 - 6. A composition of claim 4, wherein the HTL epitope is a pan-DR binding molecule.

20

- 7. A composition of claim 1, comprising at least three epitopes selected from the group set out in claim 1.
- 8. A composition of claim 1, further comprising a liposome, wherein the epitope is on or within the liposome.
 - 9. A composition of claim 1, wherein the epitope is joined to a lipid.
 - 10. A composition of claim 1, wherein the epitope is joined to a linker.

30

- 11. A composition of claim 1, wherein the epitope is bound to an HLA heavy chain, β2-microglobulin, and strepavidin complex, whereby a tetramer is formed.
- 12. A composition of claim 1, further comprising an antigen presenting cell, wherein the epitope is on or within the antigen presenting cell.
 - 13. A composition of claim 12, wherein the epitope is bound to an HLA molecule on the antigen presenting cell, whereby when a cytotoxic lymphocyte (CTL) is present that is restricted to the HLA molecule, a receptor of the CTL binds to a complex of the HLA molecule and the epitope.

- 14. A clonal cytotoxic T lymphocyte (CTL), wherein the CTL is cultured in vitro and binds to a complex of an epitope selected from the group set out in Table XXIV, bound to an HLA molecule.
- 5
 15. A peptide comprising at least a first and a second epitope, wherein the first epitope is selected from the group consisting of the sequences set out in Table XXIV;

 wherein the peptide comprise less than 50 contiguous amino acids that have 100% identity with a native peptide sequence.
- 10 16. A composition of claim 15, wherein the first and the second epitope are selected from the group of claim 14.
 - 17. A composition of claim 16, further comprising a third epitope selected from the group of claim 15.
 - 18. A composition of claim 15, wherein the peptide is a heteropolymer.
 - 19. A composition of claim 15, wherein the peptide is a homopolymer.
- A composition of claim 15, wherein the second epitope is a CTL epitope.

15

25

35

- 21. A composition of claim 20, wherein the CTL epitope is from a tumor associated antigen that is not prostate specific antigen (PSA), prostate specific membrane antigen (PSM), prostatic acid phosphatase (PAP), or human kallikrein (HuK2).
- 22. A composition of claim 15, wherein the second epitope is a PanDR binding molecule.
- A composition of claim 1, wherein the first epitope is linked to an a linker sequence.
 - 24. A vaccine composition comprising:

a unit dose of a peptide that comprises less than 50 contiguous amino acids that have 100% identity with a native peptide sequence of a prostate cancer-associated antigen, the peptide comprising at least a first epitope selected from the group consisting of the sequences set out in Table XXIV; and;

a pharmaceutical excipient.

25. A vaccine composition in accordance with claim 24, further comprising a second epitope.

PATENT COOPERATION TREATY

PCT

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT (PCT Article 17(2)(a), Rules 13ter and 39)

Applicant's or agent's file reference 18623-1472PC	IMPORTANT DEC	CLARATION	Date of mailing (day/month/year) 09 MAY 2001
International application No.	International filing date	(day/month/year)	(Earliest) Priority Date (day/month/year)
PCT/US00/35516	20 DECEMBER 20	00	21 DECEMBER 1999
International Patent Classification (IPC) Please See Continuation Sheet.	or both national classifica	ation and IPC	
Applicant EPIMMUNE INC.			
he established on the international app 1.	incation for the reasons in crnational application related by the processes for the production such processes. The processes is ethods of doing business, the thods of performing pure thods of playing games. The of the human body by the practiced on the human of the information. In the claims of the international grants of the internatio	es to: on of plants and animal ely mental acts. surgery or therapy. surgery or therapy. animal body. al Searching Authorical application to complete the complete with the complete search out. Description of the complete search out. Description of the complete search out. Description of the complete search out. Description of the complete search out. Description of the complete search out. Description of the complete search out.	the standard.
Name and mailing address of the ISA/I	JS	Authorized officer	TERRY J. DEY
Commissioner of Patents and Trade Box PCT	marks	ANNE L. HOL	PARALEGAL COCONALICE
Washington, D.C. 20231 Facsimile No. (703) 305-3230			TECHNOLOGY CENTER 1600 (703) 308-0196

DECLARATION OF NON-ESTABLISHMENT OF INTERNATIONAL SEARCH REPORT

l.....al application No. PCT/US00/35516

The International Patent Classification (IPC) or National Classification and IPC are as listed below:

IPC(7): A61K 38/08, 39/00, 39/385, 39/39; C07H 21/04; C07K 14/435 US CI: 424/184.1, 185.1; 530/ 300, 328; 536/23.4; 23.5

4. Purther Comments (Continued):

No meaningful search could be performed for the claims, 1-34, because there is no correlation in the claims, sequence listing or disclosure between the sequences recited in the 1-letter code of Tables XXIVA-D, and the sequences recited in the 3-letter coled in the sequence listing. It is, further, not clear that the Table XXIV referred to in claims is the same as Tables XXIVA-D. Careful review of the sequences listed on page 15 and in Table IV, of the description, did not reveal the required correlation. Text appears to be missing following "SEQ ID NO: " in Table IV. PCT Rule 62(a) states that the claims shall not rely on references to description or drawings.