Computability

Three Equivalent Definitions

Function computation

- Function computation
- Language deciding
- Problem solving
 - o intuitive definition
 - collection of Y/N questions
 - o precise definition 3 → 2
 - question = string
 - problem is a
 - set of codestrings for the questions (over Σ) q_i
 - lacksquare map $lpha:q_i\mapsto\{Y,N\}$
 - solvable if computable/decidable
 - o problem is always countable
 - set of all questions of a problem is countable

Computing Functions $(2 \rightarrow 1)$

- Given $L \subseteq \Sigma^*$:
 - \circ encode Σ^* by numbers (e.g. the alphabetical enumeration)
 - lacksquare possible because Σ^* is countable
 - lacksquare $\gamma: w \mapsto n_w$ (bijection)
- Consider the function $f: \mathbb{N} \to \{0,1\}$
 - $\circ n \mapsto 0$ if $\gamma^{-1}(n) \notin L$
 - \circ $n \mapsto 1$ else

Deciding Languages (1 → 2)

(we know how to decide languages)

- Given $f: \mathbb{N}^k \to \mathbb{N}$. (a total function)
 - \circ consider input/output pairs $P=\{(x,y)|x\in\mathbb{N}^k,y=f(x)\}$
 - "graph set" of a function
 - o cross product of a set remains the same cardinality
 - → this is countably infinite
 - o visualization:

- \blacksquare \mathbb{N}^2 as a graph
 - go from 0,0 to 0,1 to 1,0 to 1,1, ... (zig zag)
- P can be seen as a language $P \subseteq \Sigma^*$ with $\Sigma = \{0, 1, 2, 3, ..., 9, (,), ;\}$
- Let **A** be an algorithm that decides **P**.
 - Use this A in alg for computing f as follows:
 - Input: x
 - Output: *y*

```
while not_finished:
if decision_algorithm((x,y)) == 'yes':
    not_finished = false // finished
    return y
else:
    y += 1
```

Turing Computability

Is there an effective procedure for computing every finitely definable function on the natural numbers?

Turings approach:

• investigate & formalize what a human computer can and cannot do with brain, paper, pencil

Turing's Paper (1936)

On computable numbers with an application to the Entscheidungsproblem

Turing's view on Computing

- writing symbols on paper
 - o finitely many symbols
 - otherwise abitrarily similar symbols
- behavior of a computer determined by
 - o symbols he is observing
 - o state of mind at that moment
 - assume a finite number of different states

Turing Machines

Definition

4-Tuple

• (K, Σ, δ, s)

- States **K**: is finite, non-empty
 - lacktriangledown require halting states $h, yes, no \in K$
 - halting state
 - accepting state
 - rejecting state
 - (convenience items)
- \circ Alphabet Σ : finite, non-empty (take alphabet)
 - require $\triangle, _ \in \Sigma$
- \circ Transition function $\delta: K \times \Sigma \to K \cup \{h, yes, no\} \times \Sigma \times \{\leftarrow, -, \to\}$
- \circ Starting state $s \in K$