Matematika I

Séria úloh 7

1. (7b) Daná je Doplňte	e všeobecná rovnica kužeľosečky $4y^2 - 9x^2 + 36x - 8y - 68 = 0$.
a) (2b) Kane	onická rovnica (rovnica v štandardnom tvare) kužeľosečky je
b) (1b) Typ	kužeľosečky je
c) (3b) Napa	íšte súradnice
c_1) stree	łu kužeľosečky:
$c_2)$ ohní	sk kužeľosečky:
c_3) vrch	olov kužeľosečky:

d) (1b) Znázornite kužeľosečku a v náčrte popíšte jej charakteristické prvky.

2. (2b) Vyberte funkciu, ktorej definičný obor je znázornený na obrázku.

a)
$$f(x,y) = \sqrt{x} + \ln(4 - x^2 - y^2)$$

b)
$$f(x,y) = \arcsin x + \sqrt{4 - x^2 - y^2}$$

c)
$$f(x,y) = \frac{\ln(x+1)}{\sqrt{4-x^2-y^2}}$$

d)
$$f(x,y) = \frac{\arcsin(x+y)}{\sqrt{4-x^2-y^2}}$$

3. (6b) Vypočítajte

$$\iint_{M} xy^2 \, \mathrm{d}x \mathrm{d}y,$$

kde množina M je mnohouholník s vrcholmi $A=[-1,-1],\,B=[1,-1],\,C=[4,3],\,D=[-4,3].$

Výsledok:

4. (4b) Bod Mmá v pravouhlej súradnicovej sústave súradnice: $M=[3,\sqrt{3},3].$

a) (2b) Vyberte správnu odpoveď: Súradnice bodu M v cylindrickej súradnicovej sústave sú:

a)
$$M = [2\sqrt{3}, -\frac{\pi}{6}, 3]$$

c)
$$M = [2\sqrt{3}, \frac{\pi}{3}, 3]$$

b)
$$M = [2\sqrt{3}, -\frac{\pi}{3}, 3]$$

d)
$$M = [2\sqrt{3}, \frac{\pi}{6}, 3]$$

b) (2b) Znázornite tento bod M v cylindrickej súradnicovej sústave.

Náčrt:

5. (8b) Daná je lineárna obyčajná diferenciálna rovnica (LODR) $y''(x) + 6y'(x) = 3x$.
a) (2b) Napíšte charakteristickú rovnicu k danej diferenciálnej rovnici.
Charakteristická rovnica je:
b) (2b) Nájdite fundamentálny systém riešení diferenciálnej rovnice s nulovou pravou stranou.
Fundamentálny systém riešení je
b) (2b) Nájdite partikulárne riešenie uvedenej nehomogénnej rovnice.
Partikulárne riešene je
c) (2b) Napíšte všeobecné riešenie danej lineárnej diferenciálnej rovnice.
Všeobecné riešenie danej LODR je
6. (4b) Vypočítajte, ak existuje
$\lim_{[x,y]\to[1,2]} \frac{2-\sqrt{4-xy}}{xy}.$
Výsledok:
7. (6b) Nájdite rovnicu dotykovej roviny τ ku grafu funkcie $f(x,y)=\frac{1}{x+2y}$ v bode $T=\left[-1,y_0,\frac{1}{3}\right]$.
(2b) Nájdite y_0 a uveďte súradnice dotykového bodu :
(4b) Rovnica dotykovej roviny τ je:
8. (6b) Daná je funkcia $f(x,y)=\frac{x}{\sqrt{x^2+y^2}}$, bod $A=[1,-1]$ a vektor $\vec{l}=(-1,2)$.
a) (3b) Nájdite gradient funkcie $f(x,y)$ v bode A .
Gradient funkcie $f(x,y)$ v bode A je
b) (3b) Vypočítajte deriváciu funkcie $f(x,y)$ v bode A v smere vektora \vec{l} .
Derivácia funkcie $f(x,y)$ v bode A v smere vektora \vec{l} je

9. (9b) Toto je príklad typu E

text text text