

AMENDMENTS TO THE CLAIMS

Kindly amend claims 1, 2, 3, 5, and 6 without prejudice to the subject matter involved as indicated in the listing below. This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended): A compound of the formula (I)

wherein the bond between carbon atoms 22 and 23 indicated with a broken line is a single or double bond,

m is 0 or 1,

R₁ represents a C₁-C₁₂alkyl, C₃-C₈cycloalkyl or C₂-C₁₂alkenyl group,

R₂ represents an unsubstituted C₁-C₁₂alkyl or halogen-substituted C₁-C₁₂alkyl, unsubstituted C₃-C₈cycloalkyl or halogen-substituted C₃-C₈cycloalkyl, unsubstituted C₂-C₁₂ alkenyl or halogen-substituted C₂-C₁₂ alkenyl, unsubstituted C₂-C₈alkynyl or halogen-substituted C₂-C₈alkynyl or CN, and

R₃ is hydrogen, unsubstituted C₁-C₁₂ alkyl or halogen-substituted C₁-C₁₂ alkyl, unsubstituted C₃-C₈ cycloalkyl or halogen-substituted C₃-C₈ cycloalkyl, unsubstituted C₂-C₁₂ alkenyl or halogen-substituted C₂-C₁₂ alkenyl, unsubstituted C₂-C₈ alkynyl or halogen-substituted C₂-C₈ alkynyl, unsubstituted C₁-C₁₂alkoxy or halogen-substituted C₁-C₁₂alkoxy, unsubstituted

phenoxy, OH, arylphenyl, naphtyl, anthracenyl, phenanthrenyl, perylenyl or fluorenyl, heterocycly

l

iperidinyl, piperazinyl, oxiranyl, morpholinyl, thiomorpholinyl, pyridyl, N-oxidopyridinyl, pyrimidyl, pyrazinyl; s-triazinyl, 1,2,4-triazinyl, thienyl, furanyl, dihydrofuranyl, tetrahydrofuranyl, pyranyl, tetrahydropyranyl, pyrrolyl, pyrrolinyl, pyrrolidinyl, pyrazolyl, imidazolyl, imidazolinyl, thiazolyl, isothiazolyl, triazolyl, oxazolyl, thiadiazolyl, thiazolinyl, thiazolidinyl, oxadiazolyl, dioxaborolanyl, phthalimidoyl, benzothienyl, quinolinyl, quinoxalinyl, benzofuranyl, benzimidazolyl, benzpyrrolyl, benzthiazolyl, indolinyl, isoindolinyl, cumaranyl, indazolyl, benzothiophenyl, benzofuranyl, pteridinyl or purinyl, that are unsubstituted or substituted by 1 to 3 substituents selected from the group consisting of halogen, =O, -OH, =S, SH, nitro, C₁-C₆alkyl, C₁-C₆hydroxalkyl, C₁-C₆alkoxy, C₁-C₆haloalkyl, C₁-C₆haloalkoxy, phenyl, benzyl, CN, -N(R₅)₂, -SR₈, -S(=O)R₈, -S(=O)₂R₈, or -S(=O)₂N(R₅)₂, where

R₅ represents H, C₁-C₆ alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆ alkoxy, C₃-C₈-cycloalkoxy, hydroxy and cyano, C₁-C₆ alkoxy, C₃-C₈-cycloalkyl, C₂-C₁₂ alkenyl, C₂-C₈ alkynyl, benzyl, or benzyl which, depending on the possibilities of substitution on the ring, are mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio and C₁-C₁₂haloalkylthio; and

R₈ represents C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆ alkoxy, hydroxy, cyano and benzyl, or benzyl which, depending on the possibilities of substitution on the ring, are mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂ alkyl, C₁-C₁₂ haloalkyl, C₁-C₁₂ alkoxy, C₁-C₁₂ haloalkoxy, C₁-C₁₂ alkylthio and C₁-C₁₂ haloalkylthio; and

R₄ is hydrogen, unsubstituted C₁-C₁₂ alkyl, unsubstituted C₃-C₁₂ cycloalkyl, C₂-C₁₂ alkenyl or C₂-C₁₂ alkynyl;

or either R₂ and R₃ together or R₃ and R₄ together represent a three- to seven-membered alkylene or a four- to seven-membered alkenylene bridge, for each of which at least one, preferably a CH₂ group may be replaced by O, S or NR₆, where R₆ represents hydrogen or a hydrocarbyl group or a substituted hydrocarbyl group; or, if appropriate, an E/Z isomer and/or tautomer of the compound of formula (I), in each case in free form or in salt form.

2. (Currently amended): A process for preparing a compound of formula (I)

(I)

wherein R_1 , R_2 , R_3 , R_4 , the bond between the carbon atoms 22 and 23 and m are as defined in claim 1, comprising the steps of:

(i) synthesizing a compound of formula (α)

(α)

wherein R_1 , the bond between the carbon atoms 22 and 23 and m are as defined for formula (I) in claim 1 and Q is a protecting group;

(ii) reacting a disulfide, an aliphatic or aromatic phosphine and a compound of formula (α) to yield a sulfenimine derivative of the compound of formula (α);

(iii) oxidising the sulfenimine derivative of the compound of formula (α) to yield a sulfinimine derivative of the compound of formula (α);

either

(iva) reacting an organometallic reagent having the R_2 group with the sulfinimine derivative of the compound of formula (α) to yield a ~~desoxy – sulfonamide – hydrocarbyl derivative~~desoxy – sulfonamide - derivative of the compound of formula (α); or

(ivb) reacting an isonitrile reagent of formula

where R_{12} is unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkynyl, unsubstituted or mono- to pentasubstituted aryl, unsubstituted or mono- to pentasubstituted benzyl unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl ester, unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl ester, unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl sulfone or unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl nitrile with the sulfinimine derivative of the compound of formula (α) to yield a ~~desoxy – amine – hydrocarbyl derivative~~desoxy – amine derivative of the compound of formula (α); or

(ivc) reacting an nitro alkyl reagent of formula

where R_{10} and R_{11} are independently of each other, H, CN, unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl, unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkenyl, unsubstituted or mono- to pentasubstituted C_2 - C_{12} alkynyl, unsubstituted or mono- to pentasubstituted aryl, unsubstituted or mono- to pentasubstituted benzyl, unsubstituted or mono- to pentasubstituted C_3 - C_{12} cycloalkyl ester, an unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl ester, unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl sulfone or unsubstituted or mono- to pentasubstituted C_1 - C_{12} alkyl nitrile with the sulfinimine derivative of the compound of formula (α) to yield a ~~desoxy – amine – hydrocarbyl derivative~~desoxy – amine derivative of the compound of formula (α); and either

Application No. 10/599,671
Reply Dated May 13, 2009
Reply to the Office action of February 26, 2009

- (va) removing the sulfinyl group and protecting group Q either in one step or sequentially one after another to yield a compound of formula (I), where R₃ and R₄ each represent hydrogen, or
(vb) removing the sulfinyl group alone, carrying out reactions on one or more of the R₂, R₃ and R₄ groups to modify the group and then removing the protecting group Q to yield a compound of formula (I), or
(vc) removing the protecting group Q if the sulfinyl group is removed during (iva) or (ivb) or (ivc) to yield a compound of formula (I).

3. (Currently Amended): A process for preparing a compound of formula (I)

wherein R₁, R₂, R₃, R₄, the bond between the carbon atoms 22 and 23 and m are as defined in claim 1, comprising the steps of:

- (i) synthesizing a compound of formula (β)

- wherein R_1 , the bond between the carbon atoms 22 and 23 and m is as defined for formula (I) in claim 1 and X is H or Q, where Q is a protecting group;
- (ii) reacting $N\text{-}R_4\text{hydroxylamine}$ or salt thereof with a compound of formula (β) to yield a nitrone derivative of the compound of formula (β);
either
- (iiia) reacting an organometallic or a silyl reagent having the R_2 group with nitrone derivative of the compound of formula (β) to yield a ~~desoxy~~ $\text{N}\text{-}R_4\text{hydroxylamino}$ ~~hydrocarbyl derivative~~ ~~desoxy~~ $\text{N}\text{-}R_4\text{hydroxylamino}$ derivative of the compound of formula (β), where R_4 is as defined for formula (I) in claim 1, or
- (iiib) reacting an alkene or an alkyne derivative with the nitrone derivative of the compound of formula (β) to yield a desoxy – $N\text{-}isoazolidine$ derivative or 2,3-dihydro-isoxazole derivative respectively of the compound of formula (β); and
either
- (iva) removing the protecting group Q, if present, to yield a compound of formula (I), where R_3 is OH in the event of reaction step (iiia), or where R_2 and R_3 is an alkylene or alkenylene bridge with a CH_2 group replaced by an oxygen atom in the event of reaction step (iiib), or
- (ivb) carrying out reactions on one or more of R_2 , R_3 and R_4 groups to modify the group and removing the protecting group Q, if present, to yield a compound of formula (I).

4. (Original): A process for preparing a compound of formula (I)

Application No. 10/599,671
Reply Dated May 13, 2009
Reply to the Office action of February 26, 2009

wherein R_1 , R_3 , R_4 , the bond between the carbon atoms 22 and 23 and m are as defined in claim 1 and R_2 is CN, comprising the steps of:

(i) synthesizing a compound of formula (β)

wherein R_1 , the bond between the carbon atoms 22 and 23 and m is as defined in for formula (I) in claim 1 and X is H or Q, where Q is a protecting group; either

(iia) reacting the compound of formula (β) with a silylated amine (having the R_3 and R_4 groups) in presence of a Lewis acid and a trialkylsilyl cyanide, to yield a compound of formula (I) with the

proviso that the oxygen atom at the 5-carbon position is protected, if Q is present, and wherein R₁, R₃, R₄, the bond between the carbon atoms 22 and 23 and m are as defined in claim 1, and R₂ is CN, or

(iib) reacting the compound of formula (β) with an amine of formula R₃R₄NH, a chlorosilane, a Lewis acid and a trialkylsilyl cyanide to yield a compound of formula (I) with the proviso that the oxygen atom at the 5-carbon position is protected, if Q is present, and wherein R₁, R₃, R₄, the bond between the carbon atoms 22 and 23 and m are as defined in claim 1, and R₂ is CN;

(iii) optionally carrying out reactions on one or both of R₃ and R₄ groups to modify the group; and

(iv) removing the protecting group Q, if present, to yield a compound of formula (I);

or

(i) synthesizing a compound of formula (β)

wherein R₁, the bond between the carbon atoms 22 and 23 and m are as defined for formula (I) in claim 1 and X is H or Q, where Q is a protecting group;

(ii) reacting the compound of formula (β) with an ammonium salt of formula R₁₈CO₂⁺NH₄⁺, an isocyanide of formula R₁₂NC to yield a compound of formula (I), with the proviso that the oxygen atom at the 5-carbon position is protected, if Q is present in the compound of formula (β), wherein R₁, the bond between the carbon atoms 22 and 23 and m are as defined in claim 1, R₂ is R₁₂NHC(O), and R₄ is R₁₈C(O), R₁₈ is H, unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl, unsubstituted or mono- to pentasubstituted C₃-C₁₂cycloalkyl, unsubstituted or mono- to pentasubstituted C₂-C₁₂alkenyl, unsubstituted or mono- to pentasubstituted C₂-C₁₂alkynyl,

unsubstituted or mono- to pentasubstituted aryl, unsubstituted or mono- to pentasubstituted benzyl, unsubstituted or mono- to pentasubstituted C₃-C₁₂cycloalkyl ester, unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl ester, unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl sulfone or unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl nitrile and R₁₂ is as defined in claim 2; and (iii) removing the protecting group Q, if present, to yield a compound of formula (I).

5. (Currently Amended): A compound of the formula (III)

wherein the bond between carbon atoms 22 and 23 indicated with a broken line is a single or double bond,

m is 0 or 1,

R₁ represents a C₁-C₁₂alkyl, C₃-C₈cycloalkyl or C₂-C₁₂alkenyl, group,

R₈ represents C₁-C₆alkyl that is optionally substituted with one to five substituents selected from the group consisting of halogen, C₁-C₆alkoxy, hydroxy, cyano, arylphenyl, naphtyl, anthracenyl, phenanthrenyl, peryleneyl or fluorenyl, ~~benzyl- or heteroaryl~~, which, depending on the possibilities of substitution on the ring, are mono- to trisubstituted by substituents selected from the group consisting of OH, halogen, CN, NO₂, C₁-C₁₂alkyl, C₁-C₁₂haloalkyl, C₁-C₁₂alkoxy, C₁-C₁₂haloalkoxy, C₁-C₁₂alkylthio and C₁-C₁₂haloalkylthio, and

X represents H or Q, where Q is a suitable protecting group to prevent reaction on the oxygen atom at the 5-carbon position;

or, if appropriate, an E/Z isomer and/or diastereoisomer and/or tautomer of the compound of formula (III), in each case in free form or in salt form.

6. (Currently Amended): A compound of the formula (V)

wherein the bond between carbon atoms 22 and 23 indicated with a broken line is a single or double bond,

m is 0 or 1,

R₁ represents a C₁-C₁₂alkyl, C₃-C₈cycloalkyl or C₂-C₁₂alkenyl, group,

R₄ represents a ~~chemical constituent~~H, unsubstituted or mono- to pentasubstituted C₁-C₁₂alkyl, unsubstituted or mono- to pentasubstituted C₃-C₁₂cycloalkyl, unsubstituted or mono-to pentasubstituted C₂-C₁₂alkenyl, unsubstituted or mono-to pentasubstituted C₂-C₁₂alkynyl, and

X represents H or Q, where Q is a suitable protecting group to prevent reaction on the oxygen atom at the 5-carbon position; or, if appropriate, an E/Z isomer and/or diastereoisomer and/or tautomer of the compound of formula (V); in each case in free form or in salt form.

7. (Previously presented): A pesticidal composition comprising at least one compound of the formula (I), as defined in claim 1, as an active compound, and at least one auxiliary.

8. (Previously presented): A method for controlling pests comprising applying a composition defined in claim 7 to the pests or their habitat.

Application No. 10/599,671
Reply Dated May 13, 2009
Reply to the Office action of February 26, 2009

9. - 11 (Cancelled).

12. (Original): A method for protecting plant propagation material comprising treating the propagation material, or the location where the propagation material is planted, with a composition defined in claim 7.

13. (Previously presented): A pest resistant plant propagation material having adhered thereto at least one compound of the formula (I), as defined in claim 1.

14. (Cancelled).

15. (Previously presented): A pesticidal composition comprising at least one compound of the formula (III), as defined in claim 5, as an active compound, and at least one auxiliary.

16. (Previously presented): A pesticidal composition comprising at least one compound of the formula (V), as defined in claim 6, as an active compound, and at least one auxiliary.

17. (Previously presented): A method for controlling pests comprising applying a composition defined in claim 15 to the pests or their habitat.

18. (Previously presented): A method for controlling pests comprising applying a composition defined in claim 16 to the pests or their habitat.

19. (Previously presented): A method for protecting plant propagation material comprising treating the propagation material, or the location where the propagation material is planted, with a composition defined in claim 15.

20. (Previously presented): A method for protecting plant propagation material comprising treating the propagation material, or the location where the propagation material is planted, with a composition defined in claim 16.

Application No. 10/599,671
Reply Dated May 13, 2009
Reply to the Office action of February 26, 2009

21. (Previously presented): A method for protecting plant propagation material comprising treating the propagation material, or the location where the propagation material is planted, with a composition defined in claim 5.
22. (Previously presented): A method for protecting plant propagation material comprising treating the propagation material, or the location where the propagation material is planted, with a composition defined in claim 6.