3 1761 116536716

CAI ER -79R23

MID NORTH WAR TO BE

This program is cost shared under the Manitoba-Northlands Agreement between the Province of Manitoba and the Department of Regional Economic Expansion

Regional Expansion Economic Economique Expansion Régionale

D. J. Teillet

January, 1979

A Resource Information Package for

MID NORTH WAR TO BE

"Contrariwise, if it was so, it might be; and if it were so, it would be; and if it isn't, it ain't.
That's logic."

Lewis Carroll
- Through the looking glass

Acknowledgements

I would like to take this opportunity to express my appreciation to the numerous people who assisted me in the preparation of this document.

In particular, I would like to thank Mrs. C. Marriott
Dept. of M.N.R.E. for her patience in typing (and retyping) the various
drafts. Ms. B. Baldwin Dept. of Northern Affairs for her excellent
research, her assistance in writing drafts of various sections and her
editing ability. Mr. W. Barto Dept. of M.N.R.E. for his valuable and
constructive editing comments and his assistance with the report format.
Mr. H. Schell Dept. M.N.R.E. for his skill in drafting and his creative
expression in the layout and design despite time and money constraints.

I am indebted to staff from various sections of the Department of Mines, Natural Resources and Environment (M.N.R.E.) including those in Fisheries, Wildlife, Economic, Mines, Crown Lands, Forestry and the Department Library.

I also received assistance from various other Federal and Provincial Government Departments and agencies.

I wish to say a special thanks to the staff of the northern region of M.N.R.E., both present and former, for allowing me to draw on their wealth of knowledge, their constructive criticism and their patience with my continual requests.

Other persons who assisted with the project to varying degrees were: Mr. K. Davidson (M.N.R.E.), population, economic and analytical assistance; Mr. B. Kerr (M.N.R.E.), research and updating various sections; Mr. C. Wall, editing and someone to follow.

Now that I finally have this document together I can only say thanks to all of you, without whom it would not have been possible.

Preface

The majority of the research, writing and organization of this document was done in late 1976 and early 1977. Material for updating it was obtained over the period of September to December of 1978. The majority of the information presented in current to 1975/76 and where possible the fall of 1978.

The metric system is used in the presentation of most measures of distance, depth and area, although the English system is used in volumes. The mapping scales are in miles per inch.

This document is published by the Manitoba Department of Mines, Natural Resources and Environment (MNRE). References in the bibliography and in the text to the Department of Mines and Natural Resources (MNR), the Department of Mines, Resources and Environmental Management (MREM) and the Department of Renewable Resources and Transportation Services (RRTS) are but earlier forms of MNRE. In addition, the Parks Division formerly the the Department of Tourism, Recreation and Cultural Affairs (TRCA) is now a part of MNRE.

Contents

															P	age
INTRODUCT	ION	*														1
HISTORY																7
THE ENVIR	ONMENT												*			13
	Geology						*			*						15
	The Natural System												×			23
	Special Areas	,														52
RESOURCES						٠										63
	Wild Fur															65
	Fisheries Resources			*												76
	Forestry							*					*			90
	Mineral Resources .			*												110
	Recreation															127
	Water Resources															149
	Agriculture										*			*		164
LAND USE			٠	*								*			*	173
	Transportation													*		175
	Communities								×							184
	Land Use Commitments	*							×							207
BIBLIOGRA	PHY															223
APPENDICI	ES								*			*				297

Illustrations

Maps

Introduct	ion	Page
	1.	Planning Zones
History		
	1.	Historical Trading Posts
Geology		
	1.	Geological Provinces
	2.	Bedrock Geology
	3.	Topography
	4.	Surficial Geology
The Natura	al Sy	ystem
	1.	Mean Daily Temperature
	2.	Permafrost
	3.	Break-up Dates for Waters
	4.	Freeze-up Dates for Waters
	5.	Mean Net Solar Radiation
	6.	Hydrology
	7.	Drainage Basins
	8.	Forest Sections
	9.	Distribution of Soils
	10.	Land Regions
2	11.	Land Capability for Waterfowl
]	12.	Land Capability for Ungulates 49
- 1	13.	Caribou Winter Range
Special A	***	
special A	1.	Archeological Sites
	2.	International Biological Program Sites
	3.	
	٠.	Critical and Important Wildlife Areas 60
Wild Fur		
	1.	Registered Trapline Sections 66

Fisheries Re	esources	Page
1.	Average % Quota Filled	78
2.	Lakes over Quota	79
3.	Freight Rate Assistance Lakes	86
4.	F.F.M.C. Delivery Points - Summer	87
5.	F.F.M.C. Delivery Points - Winter	88
Forestry		
1.	Forest Management Units	91
2.	Areas of Intermediate Stands	92
3.	Areas of Mature Stands	93
4.	Merchantable Stands	94
5.	Net Merchantable Volume	96
6.	Major Forest Fires	97
7.	Cut over Areas - Kississing - The Pas	101
8.	Cut over Areas - Wabowden	102
9.	Land Capability for Commercial Forestry	104
10.	Mean Annual Increment	105
11.	Average Annual Increment	106
12.	Forest Capability	107
Mineral Reso	ources	
1.	Mineral Property Dispositions	112
2.	Flin Flon District Properties	113
3.	Snow Lake District Properties	114
Recreation		
1.	Provincial Park Facilities	128
2.	Game Hunting Areas	138
3.	Recreation Capability	143
4.	The Pas Area Recreation Capability	144
5a.	Recreation Study Areas	145
5b.	Recreation Study Areas	145
6.	Proposed Facilities	148
Water Resour	rces	
1.	Commercial Fished Waters	151
2.	Water Power Reserves	153

		Page
	3.	Hydro Structures
	4.	Total Dissolved Solids
	5.	Hardness of Surface Waters 162
	6.	Turbidity of Surface Waters 162
	7.	Water Bodies Surveyed
Agricult	ure	
	1.	Agricultural Areas
	2.	Agricultural Capability of the Pasquia 167
	3.	Soils of the Agricultural Zones 169
	4.	Soils of the Wabowden Area 172
Transpor	tatio	on .
	1.	Railroads
	2.	Scheduled Air Routes
	3.	Air Facilities
	4.	Winter Roads
	5.	Traffic Flow
Communit	ies	
	1.	Community Location
	2.	Electrical Services
Land Use	Comm	nitments
	1.	Registered Traplines 209
	2.	Committed Lands
	3.	Water Power Reserves
	4.	Forestry Commitments
	5.	Mineral Claiming Areas
	6.	Administrative Boundaries
	7.	Government Districts and Indian Reserves 219
	8.	Land Settlements
	9.	Community Pastures
	10.	Federal Electoral Boundaries 222
	11.	Provincial Electoral Boundaries

Appendi x	A:	Meteorology	Page
	1.	Snowfall	300
	2.	Depth of Snow	300
	3.	Water Balance	303
	4.	Lake Evaporation	303
	5.		305
Appendix	В:	Hydrology	
	1.	Mean Lake Depth	307
		Maximum Lake Depth	308
Appendix	C:	Birds	
	1.	Normal Breeding Ranges	309
Appendix	D:	Fish	
	1.	Drainage Basins	315
Appendix	К:	Existing Impoundments	
	1.	Locations of Impoundments	338
Appendix	M:	Recreation	
	1.	Lodges and Outcamps	352

Figures

Wild Fur			Page			
	1.	Total Fur Harvest	67			
	2.	Fur Value and Prices	72			
	3.	Average Trapper Income	73			
Fisheries	Res	sources				
	1.	Total Commercial Harvest	80			
	2.	Total Fishermen	80			
	3.	Number of Lakes Fished	83			
Recreation						
	1.	Number of Master Angler Awards	134			
	2.	Unit Days Sold in Campgrounds	140			
Water Res	sour	ces				
	1.	Nelson River Profile	158			
Communiti	les					
	1.	Population Pyramids	188			
Appendix	F:	Wild Fur				
	1.	Section Fur Harvest	322			
Appendix	G:	Commercial Fishing				
	1.	Percent Quota Filled - Selected Lakes 324-	327			
	2.	Percent Ouota Filled	328			

Tables

The Natural	System	Page
1.	Mean Total Precipitation	. 26
2a.	Average Climatic Data	. 30
2Ъ.	Climatic Extremes	. 30
3.	Surface Area of Selected Lakes	. 33
4.	Stream Flow Data	. 33
5.	Species Composition of Wetlands	. 39
6.	Biophysical Characteristics of Land Regions	41
7.	Vegetation Characteristics of Land Regions	. 42
8.	Climatic Characteristics of Land Regions	. 43
Special Area	as	
1.	Elevation of Archeological Sites	. 53
2.	Recommended I.B.P. Sites	. 58
3.	Designated Trout Waters	. 61
Wild Fur		
1.	Zone Fur Harvest	. 68
2.		
3.		
4.	Fur Value by Species	. 72
5.	Percent Income Derived from Trapping	. 74
Fisheries Re	esources	
1.	Production by Species	. 81
2.	Zone Harvest as a Percent of Provincial	. 82
3.	Freight Assistance Rates	. 85
4.	Prices of Fishermen	. 89
Forestry		
1.	Net Merchantable Volume by M.U	. 98
2.	Net Volume by Species	. 99
3	Lumber Production	. 100
4.	ManFor 1977-78 Production	. 100
5.	Annual Allowable Cut	. 108

Mineral Kesou	rces	Page
la.	Mining Properties	115
1b.	Extent of Development	118
2.	Employment in the Mining Industry	119
3.	HBMS Production by Property	120
4.	Sherritt Gordon Production	124
5.	Destination of Concentrates	124
Recreation		
1.	Campground Facilities	129
2.	Commercial Accommodations	130
3.	Activity Preferences of Recreation	131
4.	Participation Rates in Selected Activities	132
5.	Master Angler Awards	134
6.	Stocked Game Fish Waters	135
7.	Estimated Hunting Pressure	137
8.	Cottagers by Origin and Location	139
9.	Campground Use Statistics	141
10.	Origin of Campers	141
Water Resource	ces	
1.	Domestic Use of Water	149
2.	Hydro Generating and Control Structure	152
3.	Manitoba Hydro Employment	156
4.	Physical Impact of Hydro Development	157
Agriculture		
	Land Use of the Pasquia Area	164
		201
Transportatio	on .	
1.	Aircraft Charter Companies	178
2.	Domestic Air Passenger Statistics	178
3.	Maintenance of Provincial Roads	183
Communities		
1.	Community Population Profile	187
2.	Vital Statistics	189

		Pag	e
	3.	Labour Force	
	4.	Percent Income from Traditional Activities 192)
	5.	Social Assistance to Indian Bands 194	ŀ
	6.	Average Annual Income by Industry 195)
	7.	Incomes of L.G.D.'s)
	8.	Average Gasoline Prices 196)
	9.	Food Price Index	7
	10.	Domestic Heating Index	3
	11.	Facility Checklist	
	12.	Government Office Locations 202	>
	13.	School Enrollment	3
	14.	Keewatin Community College Enrollment 204	ŀ
Land Use	Com	mitments	
	1		,
	1.	Areas of Land Commitments 207	
Appendix	A:	Meteorology	
	1.	Number of Days with Frost)
	2.	Monthly Degree Days	
	3.	Mean Snowfall)
	4.	Mean Daily Temperature	}
	5.	Active Meteorological Stations)
Appendix	F:	Wild Fur	
	1.	Average Trapper Income	,
	2.	Aver Fur Prices	3
	3.	Trapper Income Breakdown)
Appendix	G:	Commercial Fishing	
	1.	Commercial Fishing Quotas	}
Appendix	I:	Fisheries Data Discrepancies	
	1.	Licences Discrepancies Wabowden Fishery	
	2.	Production Discrepancies	
Appendix	J:	Hunting	
	1.	Waterfowl Harvest North of 53°	3
	2.	Migratory Game Bird Hunting	

	Page
3.	Waterfowl Hunting Statistics
4.	Caribou Hunting
5.	Man-days of Deer Hunting
6.	Moose Hunting Pressure
Appendix L:	Master Angler Awards
1.	Master Angler Awards
2.	Awards by Species
3.	Awards by Community
4.	Awards by Lake
Appendix M:	Recreation
1.	Travel Expenditures in Manitoba
2.	Balance of Travel Payments
3.	Origin of Cottagers
4.	Participation in Selected Sports
5.	Participation and Prefrence of Sports
6.	Purpose of Vacation Trips

Appendices

		Page
. 4	Meteorology	299
a	Hydrology	307
•	Birds	309
	Fish	314
	Mammals	316
	Wild Fur	317
	Commercial Fishing	323
Ι.	Forestry	329
	Fisheries Data Discrepancies	331
	Hunting	333
	Existing Impoundments	337
	Master Angler Awards	341
1.	Recreation	347

Personal Communications

R. Larche	Wildlife Programs Co-ordinator, Fish and Wildlife Division Winnipeg, Manitoba
H. Payne	Northern Wildlife Specialist, Fish and Wildlife Division Winnipeg, Manitoba
L. Pettipas	Archaeologist, Historic Resources Branch Winnipeg, Manitoba
L. Skinner	Economic Research Analysis, Mineral Evaluation and Admin- istration Branch Winnipeg, Manitoba
P. Page	Wildlife Technician, Fish and Wildlife Division Winnipeg, Manitoba
D. Cross	Wildlife Technician, Northern Region The Pas, Manitoba
R. Stardom	Wildlife Specialist, Research Branch Winnipeg, Manitoba
N. Nixon	Director, Research and Data Services Branch Winnipeg, Manitoba

Introduction

Land is the common denominator the unifying factor in all society, for it is from the land that all things originate. It is for this reason that when society makes demands for any sort of good or service it translates into a demand on the land base. The land, however, is not endless as are demands, thus conflicts arise.

Judicious planning will facilitate the lands ability to meet demands and mitigate land use conflicts.

Information Package

The information package type of document, as implied by the name, is merely a collection of information. Its primary purpose is to provide a common base of ecological, resource and socio-economic information on Crown lands. Its use will be for the formulation of goals and objectives regarding land use and to aide in the specific allocation of Crown lands to specific uses.

Mid North Planning Zone

The Mid North is the developed north. It is that portion of northern Manitoba (Map 1) containing the roads, parks, mines and dams.

The planning zone encompasses an area of approximately 154 thousand square kilometers of which about 17 thousand is lake surface. The five largest lakes are Southern Indian, Moose, Cedar, Reindeer and Playgreen which have a combined area of over 6.2 thousand square kilometers. The major rivers, all of which drain to Hudson Bay, are the Saskatchewan, the Nelson, and the Churchill.

The vast majority of land is owned by the Crown, the parcels of private land being limited to areas in and around the various communities. The only large tract of private land is found in the Pasquia valley southwest of The Pas.

The principal urban centers are Thompson, The Pas and Flin Flon. The zone also has 25 other communities of various smaller sizes.

The mining, service and forest industries are the major employers and thus vitally important to the northern economy.

The zone population is approximately 67,500 of which nearly 60 percent live in the three principal urban centers. In general, the Mid North population is younger, has a higher proportion of males and and is more rapidly increasing than the provincial average.

The Mid North is the most densely populated, has the highest degree of infrastructure development the best resource potential and the largest number of resource commitments of the northern planning zones.

History

The historical background of the Mid North Planning Zone as presented, is that selected portion of history which was felt to be significant to the present land use and resource commitments of the Zone. It is not the intention of this document to relate archaeological history and early explorations unless these events have shown significant impacts on the present status of the land or its peoples. Historical highlights of the Zone have been noted in the respective resource section of this document.

Early People

The cultural and traditional roots of the indigenous peoples dictate to a certain extent present patterns of settlement as well as a natural resource oriented existance. With the exception of the Barren Lands Indians, all bands in the Zone had historically similar backgrounds. The Algonkian speaking Cree depended on game, fish and wild fruits for sustinance. In keeping with the migratory life style, portable dwellings and highly developed modes of transportation evolved. Snowshoes, canoes and toboggans carried the small bands in search of food.

The Athapaskan speaking Chipewyans of the Barren Lands depended on caribou, moose, hare, fish and berries to supply them with clothing and food. The Chipewyan were a migratory people and in spring many of them followed the caribou north to the barren grounds and returned to the forest for the winter.

The traditional patterns of life in the north, basically the dependence on natural resources, had influenced the patterns of settlement and to a degree resource allocations in the Zone.

Fur Trade

With arrival of Henry Kelsey in 1690, the Mid North Planning Zone moved formally into the fur trade era. Prior to this time furs had been shipped to either Hudson Bay or Montreal through a complex system of middlemen.

Kelsey, in the service of the Hudson Bay Company, journeyed inland from York Factory by way of the Nelson River, Cross Lake and Minago River to the vicinity of The Pas. Through his expeditions it was realized that the Nelson and Saskatchewan River systems were the keys to the entire North-West trade.

After 1713 (Treaty of Utrecht) French competition continued by way of inland routes while trade flourished with the Hudson's Bay Company on the Bay. La Vérendrye, between 1713 and 1749 mapped new inland routes and established a chain of posts including Fort Bourbon on Cedar Lake (1742) and Fort Paskayac (1749). These forts cut across the routes followed by the Indians trading at York Factory and consequently diverted a goodly portion of the trade.

The inland system of the French was based upon the birchbark canoe and local supplies as opposed to the tidewater system of the Hudson's Bay Company, oriented along the major river system leading to Hudson Bay.

After 1763, free traders from Montreal or pedlars began to penetrate the Mid North Zone along the same routes as had La Vérendrye. The Hudson's Bay Company, established its first inland post at Cumberland House on the Saskatchewan River in 1774. The competitive years that followed saw a number of trading posts become established in the Planning Zone (Map 1), the most important being that of Jack River House at Mossy Point which was later known as Norway House. Norway House functioned as not only a trading post, but a clearing house for goods travelling from the region up the Hayes River system to York Factory. It gained more importance after the establishment of the Red River Colony.

The North-West Company established a number of posts between 1786 and 1804. Because the Saskatchewan River represented a key transportation route not only to the east-west trade of the Nor'-Westers, but to the north-south system of the Hudson Bay Company along the Nelson River the Cedar Lake post became very important.

With the merging of the Hudson Bay Company and the North-West Company in 1821 until surrender of its charter in 1870, the Hudson's Bay Company maintained a virtual monopoly on the North-West fur trade.

Many of the posts established during the fur trade are now formalized settlements such as Cross Lake, South Indian Lake, Norway House and The Pas. The lakes and rivers used by early traders now offer excellent recreational potential. Although trapping has lost its economic importance to the North, it still remains a traditional activity for many people.

HISTORICAL TRADING POSTS
-see extended legend

MAP 1. HISTORY

MID NORTH PLANNING ZONE

I inch: 40 miles

Legend

Map 1

NUMBER	NAME	DATE	COMPANY/FUNCTION
1	Jack River House	1801 - 1817	HBC Trading Post
2	Norway House II	1826 - present	HBC Inland Depot
3	Norway House I	1814 - 1824	HBC Depot and Way Station
4	Cross Lake House	Unknown	NWC Wintering Post
5	Sipiwesk Lake House	1792	HBC Wintering Post
6	Chatham House	1791-2	HBC Wintering House
7	McKay's House	1790 - 94	NWC Wintering Post
8	Split Lake House	1790 - 1833	HBC District Post for Nelson River
9	Whites House	1793 - 94	Can. Wintering Post
10	Reed Lake House	1794 - ?	HBC Wintering Post
11	Cranberry Portage House	1804	NWC Wintering Post
12	Pelican Lake House	1793 - 94	HBC Wintering Post
13	Burntwood Lake House	1793 - 94	NWC Wintering Post
14	Rat River Fort	1789 - 94	NWC Wintering Post
15	Nelson House	1800 - 27	HBC District Post for Nelson River
16	Musquawegan	1804 - 05	NWC Wintering Post
17	Indian Lake House	1803 - 05	NWC Wintering Post
18	Baldwin's House	1793	Can. Wintering Post
19	Wappiscow's (White's) House	1793	Can. Wintering Post
20	Duch Portage House	1795	HBC Wintering Post
21	Grand Rapids	1808	HBC Portage Point
22	Cedar Lake House	1857	HBC Wintering Post
23	Fort Bourbon	1741 - 1802	French Trading Post
24	Moose Lake Fort	1819 - 1824	NWC Wintering Post
25	Fort Pasquia I	1751 - 1758	French Trading Post
26	Fort Pasquia II	1769 - 80	Can. Wintering Post

HBC - Hudson Bay Company NWC - North West Company CAN - Canadian

The Environment

Geology

Geology of the Mid North Planning Zone is discussed under two broad sections, bedrock and surficial. The technical level of the discussion is purposely generalized wherever possible except when necessary for clarity. The reader is referred to the literature cited for detailed geological information on the zone.

Bedrock Geology

The geological history of the Zone can be divided into four major time periods: The Precambrian, Palaeozoic, Mesozoic, and the Cenozoic. The forces at work in each period have played some part in creating the lithology now found.

The Precambrian Era, the oldest and longest, saw the effects of volcanic activity, sedimentation, mountain-building and denundation. Igneous, sedimentary, and metamorphic rocks were developed in this era. The Precambrian Shield of the Planning Zone is divided into two geologic provinces, the Superior and the Churchill (Map 1). These are separated by profound unconformities, or where absent by orogenic fronts. The contact between the two provinces is marked by a strong northeast striking gravity anomaly. This anomaly ("gravity low") coupled with intense deformation and serpentine intrusions is representative of an ancient mountain chain.

The Superior Province is characterized by a predominance of easterly trending structures of volcanic-sedimentary belts in which volcanic rocks predominate. Radioactive age determination has dated rocks of this province at about 2300 million years. Sedimentary-volcanic belts of the Churchill Province trend in various directions and sedimentary rocks are more abundant than volcanic rocks. The rock in this province are more highly and extensively metamorphosed and more complexly folded than in the Superior Province. Rocks of the Churchill Province have been dated at about 1700 million years.

Igneous or Crystalline rocks of the Precambrian Shield are extremely variable in colour, texture and composition. Many are granodiorite or quartz diorite in composition and are usually younger than the volcanic

ROCK AGES (MILLIONS OF YEARS) PROVINCE BOUNDARIES

MAJOR FAULTS

Source: Davies 1962, Energy & Mines, Canada, 1972

GEOLOGY

MID NORTH PLANNING ZONE

linch:40 miles

or sedimentary belts. Complexes of granitized para-gneisses and para-schists are frequent in the northern portion of the Planning Zone. Volcanic rock such as basalt, andesite and metamorphosed derivatives (such as hornblende schists) and their intrusive equivilants are found in the Lynn Lake and Flin Flon-Snow Lake Areas (Map 2). Occurrences of gold, copper, zinc, nickel, iron, chromium, lithium, berylluim and other rare elements have been found in volcanic sedimentary belts within the Planning Zone.

Considering known mineral occurrences and value of mineral production, the Churchill Geologic Province surpasses the Superior Province as one of the most outstanding mineral areas of Manitoba. Within this area are situated:

- copper and zinc deposits of the Flin Flon district,
- sulphide deposits, gold-bearing quartz veins and lithium bearing pegmatite dykes of the Snow Lake-Wekusko Lake area,
- copper-zinc deposits of the Sherridon area,
- nickel-copper, copper-zinc and gold deposits of the Lynn Lake area, and
- numerous nickel deposits of the Thompson belt.

A long period of erosion followed the Precambrian mountain building resulting in a peneplain. During the Palaeozoic, this peneplain was periodically covered by oceans allowing for the depositions of Silurian, Devonian, and Ordivician rocks. Limestones, dolimites and associated shales and sandstones being deposited. Exposures of Palaeozoic rocks occur in the region south of Cranberry Portage. Mineral products obtained from Palaeozoic formations include calcium limestone and dolomitic limestone.

The only occurrence of Mesozoic rocks in the Mid North is a portion of the Swan River Formation located in the southwestern corner of the Zone. Sandstone and shale beds, which contain minor amounts of lignite comprise this formation. They are considerably shallower than those found in southern Manitoba.

The Cenozoic Era which followed the Mesozoic Era is represented in the Zone by the Pleistocene epoch. The Pleistocene (or recent) had the greatest effect upon the nature of the topography. It saw the advance and retreat of four major ice sheets which resulted in the deposition of boulders, eskers, moraines, drumlins and glacial tills. These movements resulted in extensive erosion throughout the Zone characteristically

BEDROCK GEOLOGY **PRECAMBRIAN**

VOLCANIC ROCK

ARKOSES & QUARTZITES

COMPLEX OF GRANITIZED SEDIMENTARY GNEISS & SCHIST.

GRANITIC

PALEOZOIC LIMESTONE & SANDSTONE

MESOZOIC

source: Davies 1962

MAP 2 GEOLOGY

MID NORTH PLANNING ZONE

l inch: 40 miles

leaving shallow soils, striated rock and the resultant generally flat terrain. Much of the Zone was inundated by glacial Lake Agassiz from 9000-7500 B.C. following the retreat of the Wisconsin ice sheet (most recent). The northeast section of the Zone probably remained under water past this date.

Surficial Geology

The product of recent geological history is a topography which although generally flat may show radical local variations (Map 3). There exists a gradual descent (about 420 meters) from the Saskatchewan border northeast to Hudson Bay at sea level (a distance of about 600 km), the only noticable descent being the falls of rivers.

A number of glacial features exist in the Planning Zone, moraines formed when glacial tills accumulated at an ice edge occur throughout. These irregular knobby hills interspersed with basin-like hollows comprise The Pas, Hargrave and Sipiwesk moraines in the southwest corner of the Zone (Map 4). The area above the escarpment is a poorly drained fluted till plain ranging in width from one half to four kilometers. Maraines belts are usually composed of Precambrian till, clay and calcareous till, and may contain sand and coarse gravels.

Eskers are numerous throughout the Zone, although only the largest have been mapped. Eskers were deposited in stream channels under decaying glacial ice and now exist as long senuous ridges composed of sand and gravel which may be many kilometers long and hundreds of meters wide. The highly porous nature of the components (sand and gravel) and the resultant rapid water drain from the top of the esker may inhibit vegetative growth.

Drumlins, consisting of glacial till, appear as smoothly rounded oval hills which are found in the vicinity of moraines. The long axis of each drumlin, often measuring nearly a kilometer, parallel the direction of ice movement. Drumlins may be found in the Moose Lake area.

Drumlinized drift plains usually contain extensive esker systems which tend in the same direction as the drumlinized ridges. The relief is moderate with extensive elongated bogs; fens occur in depressions between ridges. Examples of this feature are found near Split Lake and northeast of Reindeer Lake.

TOPOGRAPHY OF THE MID NORTH (100 FT. INTERVALS)

MAP 3 GEOLOGY

MID NORTH PLANNING ZONE

linch: 40 miles

source: Man., Dept. of M.R.&E.M.

SURFICIAL GEOLOGY OF THE MID NORTH PEAT MANTLE AND DRUMLINIZED DRIFT PLAIN ESKERS

DRIFT PLAINS (DRUMLINIZED)
DRUMLINS
MORAINES

MAP 4 GEOLOGY

MID NORTH PLANNING ZONE

linch: 40 mlles

Patternless drift plains composed of thick deposits of glacial drift overlay bedrock. Relief is low and following with extensive bogs occuring in depressions. This is the most common surficial feature of the northern and northeastern portion of the Zone.

Till plains result when ground moraines are spread thick and smoothly over a region which was flat prior to glaciation.

The Natural System

The environment or biotic community is composed of a number of basic factors-climate, water, soil, plants and animals (including man).
The interaction of these components provides each organism with its particular habitat. Each organism in turn affects changes in its immediate surroundings, thereby influencing the lives of other inhabitants of the biotic community. The study of these interactions is termed ecology.
The natural system of interactions of any particular place and time is called an ecosystem. The biotic communities found in the Mid North Planning Zone have adapted to and are supported by their own unique set of physical and biological circumstances.

As every human land use affects the natural ecosystem is some manner, any proposed development plan will thus effect the biotic community. The reader is thus referred to the resource use sections (Recreation, Forestry, etc.) for changes to the environment of the Mid North Planning Zone.

The natural environment of the Mid North Planning Zone is a result of a series of complex interactions between a number of dependent and independent variables. Despite their complexity and interdependence, it is considered more practical to deal with groups of factors separately. Thus certain factors of the natural system are dealt with individually and interaction between components are discussed generally. The components are discussed under the following headings; climate, water, vegetation and soils fauna.

¹Man's role as a member of the biotic community is specifically dealt with in the discussion of the use of the resource and as such he is excluded from discussion in this section.

Climate

The Mid North, as all of northern Manitoba, is classified as a Dfc climate region under the Koppen-Geiger climate classification system. This climate region is common across northern Canada including portions of the Northwest Territories and stretches into Alaska. This area is termed a snow climate and is characterized by having its warmest month over 10° C and its coldest month under -3° C.

Thus Dfc refers to a cold, snowy forest climate with cool short summers. This climate is generally known as a continental subarctic climate and is particularly characterized by enormous annual temperature ranges. Map 1 shows average July and January temperatures for the Zone.

The moisture regime is an important component of the living community. The Mid North averages about 48 centimeters (19 in.) of precipitation annually (Table 1). Large areas where bedrock is near the surface, combined with areas of permafrost (northern portion of Zone Map 2) result in much of the water remaining near the surface. Low soil and water temperatures for much of the year retard plant growth particularly in the northern and northeastern portion of the Planning Zone.

Freeze-up and break up dates for various communities within the Zone are shown on Maps 3 and 4. These dates are of partucular importance to a number of communities which depend on winter roads or water for transportation, and are also significant in determining recreational seasons.

Sunlight hours fluctuate dramatically on a seasonal basis. During the summer growing season, days are long maximizing the effort of the short number of frost free days. However, net annual radiation generally increases from north to south (Map 5).

Apart from temperature and precipitation detailed weather data for most of the Zone is not available. Appendix A lists more detailed meteorological information in the Zone. Table 2a lists some of the more specialized climatic data which is available for selected communities. Those communities given are those in and around the Zone for which data was available. Table 2b denotes climatic extremes within the Zone.

MAP 1.

NATURAL SYSTEMS

MEAN DAILY TEMPERATURE IN DEGREES CELCIUS

BASED ON PERIOD 1940-1971

APPROXIMATE ISOTHERMS ——

SOURCE: ENVIRONMENT CANADA

Table 1

Normai^a Mean Total Precipitation (Millimeters)

												(mm)	(in)
January	February	March	April	May	June	July	August	September	October	November	December	Year	Year
19.3	12.4	19.6	20.8	35.8	48.0	67.8	51.6	59.7	38.1	29.2	23.9	426.2	16.8
20.6	19.8	22.9	18.3	36.6	67.6	74.4	65.5	53.1	29.7	26.9	22.9	458.3	18.0
14.2	11.9	17.0	16.0	28.4	50.0	76.5	65.0	58.2	34.8	26.7	17.8	416.5	16.4
26.2	17.8	20.8	20.8	40.4	79.5	76.2	84.1	52.6	28.4	35.3	32.8	514.9	20.3
17.5	15.2	19.3	26.4	30.5	63.5	74.2	65.5	63.8	31.2	27.2	23.6	457.9	28.0
16.3	19.6	21.1	27.9	43.4	82.3	67.1	56.9	44.5	17.5	33.0	29.2	458.8	18.1
19.8	17.0	22.6	22.9	36.1	54.1	73.4	62.7	57.9	27.9	25.7	24.4	444.5	17.5
25.1	22.6	22.6	26.7	41.4	58.7	79.2	65.3	59.9	29.2	35.1	25.9	491.7	19.4
18.5	16.5	20.6	25.4	37.8	58.2	72.4	61.5	55.1	30.7	29.0	22.9	449.6	17.7
19.3	15.7	18.3	23.9	38.6	65.0	75.7	65.5	59.2	33.3	27.2	24.1	465.8	18.3
22.4	18.3	20.6	22.1	35.8	70.6	65.0	58.9	47.8	32.5	35.6	24.9	454.5	17.9
20.6	10.9	16.3	27.4	48.3	78.2	74.2	79.2	68.1	32.5	37.8	37.8	564.1	22.2
20.6	15.5	27.7	19.8	35.1	69.3	61.5	53.1	65.5	25.7	32.5	27.9	475.2	18.7
	19.3 20.6 14.2 26.2 17.5 16.3 19.8 25.1 18.5 19.3 22.4 20.6	19.3 12.4 20.6 19.8 14.2 11.9 26.2 17.8 17.5 15.2 16.3 19.6 19.8 17.0 25.1 22.6 18.5 16.5 19.3 15.7 22.4 18.3 20.6 10.9	19.3 12.4 19.6 20.6 19.8 22.9 14.2 11.9 17.0 26.2 17.8 20.8 17.5 15.2 19.3 16.3 19.6 21.1 19.8 17.0 22.6 25.1 22.6 22.6 18.5 16.5 20.6 19.3 15.7 18.3 22.4 18.3 20.6 20.6 10.9 16.3	19.3 12.4 19.6 20.8 20.6 19.8 22.9 18.3 14.2 11.9 17.0 16.0 26.2 17.8 20.8 20.8 17.5 15.2 19.3 26.4 16.3 19.6 21.1 27.9 19.8 17.0 22.6 22.9 25.1 22.6 22.6 26.7 18.5 16.5 20.6 25.4 19.3 15.7 18.3 23.9 22.4 18.3 20.6 22.1 20.6 10.9 16.3 27.4	19.3 12.4 19.6 20.8 35.8 20.6 19.8 22.9 18.3 36.6 14.2 11.9 17.0 16.0 28.4 26.2 17.8 20.8 20.8 40.4 17.5 15.2 19.3 26.4 30.5 16.3 19.6 21.1 27.9 43.4 19.8 17.0 22.6 22.9 36.1 25.1 22.6 22.6 26.7 41.4 18.5 16.5 20.6 25.4 37.8 19.3 15.7 18.3 23.9 38.6 22.4 18.3 20.6 22.1 35.8 20.6 10.9 16.3 27.4 48.3	19.3 12.4 19.6 20.8 35.8 48.0 20.6 19.8 22.9 18.3 36.6 67.6 14.2 11.9 17.0 16.0 28.4 50.0 26.2 17.8 20.8 20.8 40.4 79.5 17.5 15.2 19.3 26.4 30.5 63.5 16.3 19.6 21.1 27.9 43.4 82.3 19.8 17.0 22.6 22.9 36.1 54.1 25.1 22.6 22.6 26.7 41.4 58.7 18.5 16.5 20.6 25.4 37.8 58.2 19.3 15.7 18.3 23.9 38.6 65.0 22.4 18.3 20.6 22.1 35.8 70.6 20.6 10.9 16.3 27.4 48.3 78.2	19.3 12.4 19.6 20.8 35.8 48.0 67.8 20.6 19.8 22.9 18.3 36.6 67.6 74.4 14.2 11.9 17.0 16.0 28.4 50.0 76.5 26.2 17.8 20.8 20.8 40.4 79.5 76.2 17.5 15.2 19.3 26.4 30.5 63.5 74.2 16.3 19.6 21.1 27.9 43.4 82.3 67.1 19.8 17.0 22.6 22.9 36.1 54.1 73.4 25.1 22.6 22.6 26.7 41.4 58.7 79.2 18.5 16.5 20.6 25.4 37.8 58.2 72.4 19.3 15.7 18.3 23.9 38.6 65.0 75.7 22.4 18.3 20.6 22.1 35.8 70.6 65.0 20.6 10.9 16.3 27.4 48.3 78.2 74.2	19.3 12.4 19.6 20.8 35.8 48.0 67.8 51.6 20.6 19.8 22.9 18.3 36.6 67.6 74.4 65.5 14.2 11.9 17.0 16.0 28.4 50.0 76.5 65.0 26.2 17.8 20.8 20.8 40.4 79.5 76.2 84.1 17.5 15.2 19.3 26.4 30.5 63.5 74.2 65.5 16.3 19.6 21.1 27.9 43.4 82.3 67.1 56.9 19.8 17.0 22.6 22.9 36.1 54.1 73.4 62.7 25.1 22.6 22.6 26.7 41.4 58.7 79.2 65.3 18.5 16.5 20.6 25.4 37.8 58.2 72.4 61.5 19.3 15.7 18.3 23.9 38.6 65.0 75.7 65.5 22.4 18.3 20.6 22.1 35.8 70.6 65.0 58.9 20.6 10.9 16.3 </td <td>19.3 12.4 19.6 20.8 35.8 48.0 67.8 51.6 59.7 20.6 19.8 22.9 18.3 36.6 67.6 74.4 65.5 53.1 14.2 11.9 17.0 16.0 28.4 50.0 76.5 65.0 58.2 26.2 17.8 20.8 20.8 40.4 79.5 76.2 84.1 52.6 17.5 15.2 19.3 26.4 30.5 63.5 74.2 65.5 63.8 16.3 19.6 21.1 27.9 43.4 82.3 67.1 56.9 44.5 19.8 17.0 22.6 22.9 36.1 54.1 73.4 62.7 57.9 25.1 22.6 22.6 26.7 41.4 58.7 79.2 65.3 59.9 18.5 16.5 20.6 25.4 37.8 58.2 72.4 61.5 55.1 19.3 15.7 18.3 23.9 38.6 65.0 75.7 65.5 59.2 22.4 18.3<</td> <td>19.3 12.4 19.6 20.8 35.8 48.0 67.8 51.6 59.7 38.1 20.6 19.8 22.9 18.3 36.6 67.6 74.4 65.5 53.1 29.7 14.2 11.9 17.0 16.0 28.4 50.0 76.5 65.0 58.2 34.8 26.2 17.8 20.8 20.8 40.4 79.5 76.2 84.1 52.6 28.4 17.5 15.2 19.3 26.4 30.5 63.5 74.2 65.5 63.8 31.2 16.3 19.6 21.1 27.9 43.4 82.3 67.1 56.9 44.5 17.5 19.8 17.0 22.6 22.9 36.1 54.1 73.4 62.7 57.9 27.9 25.1 22.6 22.6 26.7 41.4 58.7 79.2 65.3 59.9 29.2 18.5 16.5 20.6 25.4 37.8 58.2 72.4 61.5 55.1 30.7 19.3 15.7 18.3</td> <td>19.3 12.4 19.6 20.8 35.8 48.0 67.8 51.6 59.7 38.1 29.2 20.6 19.8 22.9 18.3 36.6 67.6 74.4 65.5 53.1 29.7 26.9 14.2 11.9 17.0 16.0 28.4 50.0 76.5 65.0 58.2 34.8 26.7 26.2 17.8 20.8 20.8 40.4 79.5 76.2 84.1 52.6 28.4 35.3 17.5 15.2 19.3 26.4 30.5 63.5 74.2 65.5 63.8 31.2 27.2 16.3 19.6 21.1 27.9 43.4 82.3 67.1 56.9 44.5 17.5 33.0 19.8 17.0 22.6 22.9 36.1 54.1 73.4 62.7 57.9 27.9 25.7 25.1 22.6 22.6 26.7 41.4 58.7 79.2 65.3 59.9 29.2 35.1 18.5 16.5 20.6 25.4 37.8 58.</td> <td>19.3 12.4 19.6 20.8 35.8 48.0 67.8 51.6 59.7 38.1 29.2 23.9 20.6 19.8 22.9 18.3 36.6 67.6 74.4 65.5 53.1 29.7 26.9 22.9 14.2 11.9 17.0 16.0 28.4 50.0 76.5 65.0 58.2 34.8 26.7 17.8 26.2 17.8 20.8 20.8 40.4 79.5 76.2 84.1 52.6 28.4 35.3 32.8 17.5 15.2 19.3 26.4 30.5 63.5 74.2 65.5 63.8 31.2 27.2 23.6 16.3 19.6 21.1 27.9 43.4 82.3 67.1 56.9 44.5 17.5 33.0 29.2 19.8 17.0 22.6 22.9 36.1 54.1 73.4 62.7 57.9 27.9 25.7 24.4 25.1 22.6 22.6 26.7 41.4 58.7 79.2 65.3 59.9 29.2 35</td> <td>January February March April May June July August September October November December Year 19.3 12.4 19.6 20.8 35.8 48.0 67.8 51.6 59.7 38.1 29.2 23.9 426.2 20.6 19.8 22.9 18.3 36.6 67.6 74.4 65.5 53.1 29.7 26.9 22.9 458.3 14.2 11.9 17.0 16.0 28.4 50.0 76.5 65.0 58.2 34.8 26.7 17.8 416.5 26.2 17.8 20.8 20.8 40.4 79.5 76.2 84.1 52.6 28.4 35.3 32.8 514.9 17.5 15.2 19.3 26.4 30.5 63.5 74.2 65.5 63.8 31.2 27.2 23.6 457.9 16.3 19.6 21.1 27.9 43.4 82.3 67.1 56.9</td>	19.3 12.4 19.6 20.8 35.8 48.0 67.8 51.6 59.7 20.6 19.8 22.9 18.3 36.6 67.6 74.4 65.5 53.1 14.2 11.9 17.0 16.0 28.4 50.0 76.5 65.0 58.2 26.2 17.8 20.8 20.8 40.4 79.5 76.2 84.1 52.6 17.5 15.2 19.3 26.4 30.5 63.5 74.2 65.5 63.8 16.3 19.6 21.1 27.9 43.4 82.3 67.1 56.9 44.5 19.8 17.0 22.6 22.9 36.1 54.1 73.4 62.7 57.9 25.1 22.6 22.6 26.7 41.4 58.7 79.2 65.3 59.9 18.5 16.5 20.6 25.4 37.8 58.2 72.4 61.5 55.1 19.3 15.7 18.3 23.9 38.6 65.0 75.7 65.5 59.2 22.4 18.3<	19.3 12.4 19.6 20.8 35.8 48.0 67.8 51.6 59.7 38.1 20.6 19.8 22.9 18.3 36.6 67.6 74.4 65.5 53.1 29.7 14.2 11.9 17.0 16.0 28.4 50.0 76.5 65.0 58.2 34.8 26.2 17.8 20.8 20.8 40.4 79.5 76.2 84.1 52.6 28.4 17.5 15.2 19.3 26.4 30.5 63.5 74.2 65.5 63.8 31.2 16.3 19.6 21.1 27.9 43.4 82.3 67.1 56.9 44.5 17.5 19.8 17.0 22.6 22.9 36.1 54.1 73.4 62.7 57.9 27.9 25.1 22.6 22.6 26.7 41.4 58.7 79.2 65.3 59.9 29.2 18.5 16.5 20.6 25.4 37.8 58.2 72.4 61.5 55.1 30.7 19.3 15.7 18.3	19.3 12.4 19.6 20.8 35.8 48.0 67.8 51.6 59.7 38.1 29.2 20.6 19.8 22.9 18.3 36.6 67.6 74.4 65.5 53.1 29.7 26.9 14.2 11.9 17.0 16.0 28.4 50.0 76.5 65.0 58.2 34.8 26.7 26.2 17.8 20.8 20.8 40.4 79.5 76.2 84.1 52.6 28.4 35.3 17.5 15.2 19.3 26.4 30.5 63.5 74.2 65.5 63.8 31.2 27.2 16.3 19.6 21.1 27.9 43.4 82.3 67.1 56.9 44.5 17.5 33.0 19.8 17.0 22.6 22.9 36.1 54.1 73.4 62.7 57.9 27.9 25.7 25.1 22.6 22.6 26.7 41.4 58.7 79.2 65.3 59.9 29.2 35.1 18.5 16.5 20.6 25.4 37.8 58.	19.3 12.4 19.6 20.8 35.8 48.0 67.8 51.6 59.7 38.1 29.2 23.9 20.6 19.8 22.9 18.3 36.6 67.6 74.4 65.5 53.1 29.7 26.9 22.9 14.2 11.9 17.0 16.0 28.4 50.0 76.5 65.0 58.2 34.8 26.7 17.8 26.2 17.8 20.8 20.8 40.4 79.5 76.2 84.1 52.6 28.4 35.3 32.8 17.5 15.2 19.3 26.4 30.5 63.5 74.2 65.5 63.8 31.2 27.2 23.6 16.3 19.6 21.1 27.9 43.4 82.3 67.1 56.9 44.5 17.5 33.0 29.2 19.8 17.0 22.6 22.9 36.1 54.1 73.4 62.7 57.9 27.9 25.7 24.4 25.1 22.6 22.6 26.7 41.4 58.7 79.2 65.3 59.9 29.2 35	January February March April May June July August September October November December Year 19.3 12.4 19.6 20.8 35.8 48.0 67.8 51.6 59.7 38.1 29.2 23.9 426.2 20.6 19.8 22.9 18.3 36.6 67.6 74.4 65.5 53.1 29.7 26.9 22.9 458.3 14.2 11.9 17.0 16.0 28.4 50.0 76.5 65.0 58.2 34.8 26.7 17.8 416.5 26.2 17.8 20.8 20.8 40.4 79.5 76.2 84.1 52.6 28.4 35.3 32.8 514.9 17.5 15.2 19.3 26.4 30.5 63.5 74.2 65.5 63.8 31.2 27.2 23.6 457.9 16.3 19.6 21.1 27.9 43.4 82.3 67.1 56.9

Source: Environment Canada, 1975.

Source: Fisheries and Environment Canada, 1978

 a_{1} Normal' based on most number of years of available data (up to 30 years) for the period 1941 to 1970,

bData years 1967-1974.

* Source: Fisheries and Environment Canada, 1978

Average Annual Climatic Data For Selected
Stations In The Mid North And Environs
(1931 - 1960)

	The Pas	Brochet	Gillam	Dauphin	Churchill	Wabowden
Bright Sunshine Hours	2067	-	-	2271	1798	-
Frost Free Days	113	-		127	78	-
Last Spring Frost	May 25	-	wills	May 20	June 25	-
First Fall Frost	Sept 16	webs	-	Sept 25	Sept 12	-
Growing Season Precip (in)	8.94	8.24	8.66 ^b	10.67	7.31	-
Thunderstorm Days	20.7	11.3	7.9	25.2	5.6	10.5
Hail Days	3.9	-	-	1.7	**50	-
Growing Degree Days	2236	1570	_	-	888	-
Precipitation (in)	17.70 ^a	16.78 ^a	16.40 ^a	19.46	14.25	18.3
Temperature (°C)	- 0.3	-5.2	-4.8	1.6	-7.3	-2.2

Source: Environment Canada various sources.

Table 2b

Climatic Extremes 1941-1970

Mid North Zone

Type '	Amount	Location	Years of Data
Greatest Rainfall in 24 Hours	78 mm	The Pas	57
Greatest Snowfall in 24 Hours	48.8 cm	Brochet	22
Extreme Maximum Temperature	40°C	Flin Flon	43
Extreme Minimum Temperature	-52.8°C	Norway House	1+14
Maximum observed Wind Speed	116.8 KPH	The Pas	18
Thunder Days	20.7	The Pas	U
Most Average Sunshine Hours	2108	The Pas Airport	U
Most Average Frost Days	249	Gillam	15–19

Source: Environment Canada 1975

U: Unknown

a₁₉₃₁ - 1974

b_{1960 - 1974}

Water

The province has been divided into 11 principal watersheds which include the total surface water system of Manitoba. All surface water systems (except for landlocked drainages within a system) ultimately terminate in Hudson Bay (Map 6). Many of these systems originate outside the province, in fact only three small systems are wholly contained within Manitoba.

There are seven major river systems in Manitoba, three of which are found in the Mid North Planning Zone. Of those rivers external to the Zone, the Red River system and the Winnipeg River system, flow into the Nelson via Lake Winnipeg and thus through the Zone to Hudson Bay.

A number of control and hydro electric generating structures have been constructed on the Red and Winnipeg Rivers. The Hayes River system has one generating structure (now abandoned) and the Seal River is presently in its natural state.

The water resources of the Planning Zone are one of the most important in the province being used for power generation, drinking water, recreation, commercial fishing and trapping.

The Zone's three major rivers are the Saskatchewan, Nelson and the Churchill. The Nelson River drops 217 meters from Lake Winnipeg to Hudson Bay and the Churchill River descends 262 meters from the Saskatchewan border to the Bay. There are a number of very large lakes all or partially within the Zone (Table 3). The surface area of the 20 largest lakes is about 10,400 square kilometers. Map 7 illustrates the various watershed breakdowns and the locations of active hydrometric sites within the Planning Zone. Table 4 presents the mean annual stream flow data for the rivers that have been monitored.

²Inland Waters Branch, 1966

 $^{^3}$ Total surface area of lakes in the Planning Zone is about 17,000 km $^2\cdot$ See Appendix B for lake depths.

HYDROLOGY

MAIN DRAINAGE DIVISION

DIRECTION OF WATER FLOW.....

Source; Modified from Fedoruk, 1970.

MAP 6.
NATURAL
SYSTEMS
MID NORTH
PLANNING ZONE

linch:40 miles

Table 3
Surface Area of Selected Mid North Lakes

* 1	, 2 Area	
Lake	(km²)	(mi ²)
a		
Southern Indian	1984	(766.1)
Moose	1391	(536.9)
Cedar ,	1261	(487.0)
Reindeer	895	(345.6)
Playgreen	691	(226.6)
Cross	572	(221.0)
Granville	456	(176.0)
Sipiwesk	393	(151.8)
Cormorant	328	(126.6)
Kississing	324	(125.3)
Clearwater	289	(111.5)
Split	284	(109.6)
Gauer	259	(99.8)
Kiskittogisu	254	(98.0)
Waskaiowaka	213	(82.1)
Athapapuskow	194	(75.0)
Reed	190	(73.3)
Wekusko	177	(68.2)
Kiskitto	171	(66.0)
Burntwood	166	(64.1)

Source: Schlick, 1977

^aPrior to flooding

b Manitoba portion only

Table 4
Stream Flow Data

River	Mean annual	Years	Station
	flow (CFS)	Recorded	Location
Burntwood	4,070	1957-1976	Thompson
Churchill	29,500	1951-1976	Granville Falls
Churchill Churchill	38,900	1973-1976	Leaf Rapids
Churchill Churchill	39,800	1962-1976	Fidler Lake
Grass	2,560	1959-1976	Standing Stone Fall
Grass	425	1957-1976	Wekusko Falls
Kettle	462	1963-1976	Gillam
Kisipachewuk Ch.	11,700	1971-1973	Kiskittogisu Lake
Limestone	864	1963-1976	Bird
Metchanais Ch.	33,200	1971-1973	Kiskittogisu Lake
Moose	495	1971-1973	Moose Lake
Nelson	73,800	1967-1976	Jenpeg
Nelson	87,000	1958-1976	Bladder Rapids
Nelson	87,900	1960-1976	Kelsey
Nelson	91,900	1951-1958	Sipiwesk Lake
Ominawin Ch.	33,900	1971-1973	Kiskittogisu Lake
Overflowing	422	1956-1976	Overflowing River
Saskatchewan	25,700	1912-1976	Grand Rapids
Saskatchewan	23,900	1913-1976	The Pas
Taylor	180	1970-1976	Thompson

Source: Historical Streamflow Summary, Manitoba, Inland Waters Directorate, Water Resources Branch, Water Survey of Canada, Ottawa, 1977.

DRAINAGE BASINS AND HYDROMETRIC STATIONS

MAIN DRAINAGE DIVISION

SUBDIVISION

ACTIVE HYDROMETRIC STATIONS (LEVEL ONLY)

ACTIVE HYDROMETRIC STATIONS (STREAM FLOW)

MAP 7. NATURAL SYSTEMS

MID NORTH PLANNING ZONE

linch:40 miles

Source; Environment Canada, 1973.

Vegetation and Soils

The vegetation and soils of the Planning Zone are discussed under two distinct types of subdivision; the forest region and the land region. The forest regions, discussed first, are those delineated by Rowe (1972) in The Forest Regions of Canada. The Land Regions classification is a biophysical based land subdivision used by the Northern Resources Information Program (NRIP). Following the discussion of land regions is a short list of some of the common ecosystems found in the Mid North.

FOREST REGIONS: The whole of the Mid North Planning Zone falls within the forest region known as the boreal forest. Four climatically significant forest land units called forest sections (Map 8) combine to form that portion of the boreal forest found in the Planning Zone.

Northwestern transition forest section is the most northerly in the Zone. This section is the forest fringe that fronts the tundra. It is characterized by unfavourable climatic conditions, this soils and frequent fires. These factors have combined to limit distribution, abundance and size of tree species. Open stands of dwarfed trees are scattered among areas of bog, muskeg and rock. Upland coniferous sites are characterized by their park-like appearance and ground cover of light-coloured foliose lichens. Black spruce is the dominant tree specie on all sites although it may be accompanied by white spruce on well drained soils. White birch and tamarack may also be associated species in this forest section and jack pine is not uncommon in the Planning Zone portion of the section. Stunted trembling aspen and balsam poplar are present, but balsam fir is not. The section has predominantly low relief and a shallow depth of glacial till over bedrock which accounts for a prevalence of water-filled depressions. Eskers, till ridges and rock knobs are common surface forms and ground frost is a feature common on all but the coareststextures soils.

The Northern Coniferous is a section where reasonable tree growth is permitted by climatic conditions and wherever soil depth allows, closed forests have developed. Thin soiled uplands feature black spruce as the predominate specie associated with jack pine. The frequency of fire has favoured the spread of jack pine and, to a lesser degree white birch. Poorly drained lowland areas are also characterized by black spruce and often associated with tamarack. Local areas experiencing

favourable soil and micro-climatic conditions may have mixed stands of white spruce, balsam fir, trembling aspen and balsam poplar. As a result of intense past glaciation, relief is irregular and characterized by parallel rock ridges separated by poorly drained depressions and large numbers of narrow lakes. Bare precambrian granites are often exposed or thinly covered by drift deposits. Poorly drained areas are peat-filled and valleys show humo-ferric podzol development. Map 9 illustrates the distribution of organic and associated great soil groups in the Mid North.

The Nelson River Section lies between two sections of northern coniferous forest. Black spruce is the dominant forest cover, however, extensive areas of poorly drained swamps serve to limit growth. In better drained areas good stands of white spruce are mixed with some balsam poplar, trembling aspen, white birch and baslam fir. The repeated high incidence of fire in the section has served to fragment the forest cover. As a result, extensive areas support young trembling aspen, white birch (with scattered jack pine), white or black spruce, or grassy scrub on rocky barrens. Tamarack is commonly associated with black spruce in poorly drained areas and isolated occurrences of Manitoba maple and green ash may be found along river banks. The section is characterized by its fairly level lacustrine clays and sands a result of glacial Lake Agassiz. The clays are shallow on the uplands and deeper in the valleys often extending considerable distances back from existing lakes. Well-drained sites typically develop podzolic profiles whereas gleysols are common on poorly-drained slopes. Moss and woody peat characterize the black spruce-muskeg.

The Manitoba Lowlands forest section is particularly noted for its flat poorly-drained land area and its patchy forest cover composed of black spruce and tamarack intermixed with swamps and wet meadows. Better drained alluvial strips bordering rivers and streams sometimes support good stands of white spruce, trembling aspen and balsam poplar. Balsam fir and white birch are also occasionally found in this association. Low ridges throughout this section are forested with a mixture of jack pine and trembling aspen. Other species such as green ash and Manitoba maple map be present locally. The section's soils are generally lacustrine clays over-laying palaeozic limestone. These soils tend towards humic gleysols and peat in the more poorly drained sites. Some forested areas have shallow gray luvisol profiles with a highly calcareous substratum.

FOREST SECTIONS OF THE MAP 8. BOREAL FOREST NATURAL SYSTEMS

SOURCE: NOWE 1972.

MID NORTH PLANNING ZONE

linch: 40 miles

DISTRIBUTION OF ORGANIC SOILS & ASSOCIATED GREAT SOIL GROUPS IN THE MID NORTH NOTE: NUMBER (in %) INDICATES ORGANIC SOILS.

MAP 9.
NATURAL
SYSTEMS
MID NORTH
PLANNING ZONE

linch:40 miles

Source: University of Manitoba, 1971.

Each forest section containes a number of smaller biological systems. These ecosystems are usually characterized by a dominant tree form and ground cover and are peculiar to a particular soil composition and moisture regime. Table 5 demonstrates the abundance of selected bog and fen species in relation to acidity and calcium levels found in various wet landforms.

The Abundance of Selected Species of Featland Plants in Relation to the Nutrient Status of Different Communities

	TYPE OF WELLAND		F/Cr Fer.	For-Mon. For			
	AULITY	ext. acii	very acia	4011	sl. aciı	In at the a	alvir
Species	AS FH	32	3.4-5.	4.5-5.6	5.5-7.5	11.6	·
	CALCIEN LF.1L	Ash. You	low	n Guerran	10 p rate - 15 d.	1.1-1.	ve m
Arrow grass (Trickechin maritima)							
Three leaved Smilacina (Grilacina triffilia)				-			
Fen cetton grass (Ericiherum spilusur)							
Arc's tail (Bricyhorum sylssum)		+-+					
Gerselre (Carex Limesa)		1	+ →				
Few-seeted selfe (Carex cliscs; erma)		τ.	← ←→				
fellow seige (Carex flava)							
May's olipper (Cypripedium calcoolus)							
Fitcher glant (Sarraconia gurgurea)		↔	*				
Marsh cinquefoil (Fotentilla ;alustris)			+				
Shrutty cinquefeil (Petentilla fruticesa)							
ewterry (hubus characteris)		91.614					
wasteam (Mempanthes triffliats)							
latra er tea (Lour Grosslas tiour)							

Source: Modified from Sparling 1973

+ occasional, ++ frequent, +++ abundant
Mod. = moderately rich, Calc. = calcareous

LAND REGIONS: Land regions (Map 10) are a separate bio-physical land classification system developed by the Northern Resource Information Program (NRIP) for Northern Manitoba. Unlike the forestry classification system, land regions more closely integrate soil and climate characteristics to vegetation.

MAP 10. LAND REGIONS

SOURCE:MODIFIED FROM NORTHERN RESOURCE INFORMATION PROGRAM

Land regions are delineated over large areas on the basis of vegetation, soil conditions and permafrost influence. Due to each of these conditions dependence on climate, there is an orderly zonation from south to north. This zonation tends to be complicated by local features (i.e., water bodies, valleys, etc.), with the result that soil-vegetation associations typical of adjacent land regions may develop. A summary of the biophysical properties of those land regions found in the Mid North are listed in Table 6 and 7. Climatic data characterizing the various regions are listed in Table 8.

Table 6

wing the History Thracteristics of Land Regions in the Mid North Planning Zone.

Land Rerion	120; 121; 12 to 10.	Dominant Soils	Organic Landform	Permaîrost Regime	(Ther Courte) Active Layer (cm.)
Low Sub-arctic	Open Coniferous Forest	Brunisolic static Cryosol Brunisols, Luvisols Gleysolic Static Cryosol	Peat plateaus, palsas, bog veneer, fens	Discontinuous, Widespread	Mireral collslos
	Constitution of the second of	Brunisols, Luvisols Tempolic Crystol Organo Crystol	Peat plateaus, palsas, bog veneers, fens	Discontinucus, Southern Fringe, (North)	Wirer and a color organic Soils 60
Mid Boreal		Brunisols, Luvisols Maynolic Static Amerol Organo Cryosol	Peat plateaus, palsas, bog veneers, bog plateaus, blanket bog, fens	Directinueur Southern Fringe (South)	Mineral Soils 40-100+ Organic soils
low Boresi	Mixed Deciduous -	Brunisols, Luvisols,	Bog plateaus, flat bog, blanket bog, fens	I.o. 1. 1. 2. e.c.	Organic soils 100-700

Table 7

Vegetation Characteristics of Mid North Land Regions

				Stable Vegetation Types	рез		
			Normal Facies		Wet Facies	ıcies	
Land Region	- Area Area	Warm-Drier (South Slopes, Sand)	Normal-Mesic (Level, Mod. Slopes)	Warm-Drier Normal-Mesic Gooler-Wetter (South Slopes, Sand) (Level, Mod. Slopes) (North Slopes Bottom Lands)	Impeded Drainage (Sloughs, Kettles, Marshes)	Lakeshore	Alluvial (Streamside)
Low Subarctic	Canadian Shield Ws (JP)	Ws (JP)	Open Bs and Lichen	Open Bs and lichen moss	Bs - 1 bogs/ Bs - lichen-moss peat plateau and palsa/sedge - 1 cottongrass fens	Sedge meadow	Ws/willow- db - alder
High Boreal	Canadian Shield	Bs (JP, ta, wb)	Bs (JP, wb, ta)	Bs - mosses	Bs, 1 - sphagnum bog/ Bs - lichen - moss peat plateau/sedge - 1 - db fens	Sedge meadow	Ws/Willow db - alder
Mid Boreal	Canadian Shield	Ws - bf - ta (JP)	Bs - bf - mosses	Bs 1 mosses	Bs - 1 - moss bogs (bog veneer, plateau bogs, sloping bogs, patterned fen) Bs - wb palsas and peat plateau	Rush-sedge meadow	Sedgo-grass meadow
Low Boreal	Canadian Shield	ta - wb (JP)	Ws - ta - bf - wb	Bs - ta - wb	Bs - 1 bogs	Sedge-rush meadow	Ws - bp
Source: Nor	Northern Resource Information Program.	formation Program.					
Symbols Used:							
ta - trembling aspen		l - larch					

ta — trembling aspen

wb — white birch
JP — jack pine

ws — white spruce
bf — balsam fir

bp — balsam poptar

	lemper	rature July	(Menst.)°C Arstrail	fret	
igh boreal	-		,		
ii Boreal					
,			- ,	100 - 116	410 - 535

Daurce: Northern Resource Information Program 1976.

COMMON ECOSYSTEMS: The following is a short list of some of the common ecosystems found in the Planning Zone. In addition, many of the systems are associated with a variety of trees, shrubs, forbes, mosses and grasses not listed.

- 1) Black spruce, jack pine, lichen on dry flacio-fluvial sand
- 2) Black spruce, sphagnum, feather moss on shallow organic over lacustrine, moist and influenced by permafrost
- 3) Black spruce, feathermoss, white birch on lacustrine and calcareous till, fresh to moist and influenced by permafrost
- 4) Black spruce, lichens on dry to fresh sandy till
- 5) Black spruce, feathermoss on shallow organic over lacustrine, associated with domed permafrost
- 6) Jack pine, lichen on precambrian bedrock
- 7) Black spruce, feathermoss on fresh lacustrine (over bedrock) associated with permafrost
- 8) Sphagnum, tamarack, black spruce on deep fibric or fibric over mesic organic
- 9) Black spruce, jack pine, feathermoss, lichen on dry to moist lacustrine over bedrock
- 10) Black spruce, sphagnum, feathermoss on organic over clay, influenced by permafrost
- 11) Black spruce, feathermoss on moist to fresh lacustrine
- 12) Jack pine, lichen on dry, glacio-fluvial outwash
- 13) Black spruce, sphagnum or fibric over mesic organic or fibric over mesic organic associated with permafrost
- 14) Sedges and stunted tamarack on saturated deep, mesic organic soils (fen community)
- 15) Sedges, stunted black spruce or tamarack on saturated sphagnum or forest with high water table or associated with open water

Fauna

The animal component of the ecosystem is dependent upon the climate, vegetation and availability of water. The Mid North's unique combination of biotic components serves to support about 375 different species of animal life. The uses some animals of the Zone may be divided, for purposes of discussion, into economic and non-economic species.

An economic specie, is one which is used commercially (e.g., beaver, muskrat, pickerel, lake trout), taken for sport (e.g., geese, white tailed deer) or used domestically (e.g., moose, whitefish). Non-economic species such as song birds and mice, although unimportant in dollar value are nonetheless an integral part of the ecosystem.

Discussion in this section will be primarily with the economic species found in the Zone, although other species are noted as components of the natural system. Species which are rare and/or endangered either nationally or in Manitoba are noted in the section of Special Areas.

BIRDS: A list of birds known or thought to occur within the Planning Zone is given in Appendix C. All migratory birds occurring in the Mid North are protected under the Migratory Bird Convention Act (1917) in order to fulfill international obligations as laid down by the Migratory Birds Convention (1916). The list of birds protected under the Act was last revised in 1974.

The economic species are limited to the ducks, grouse, ptarmigan, cranes and geese which are hunted for sport and domestic use. Grouse and ptarmigan are protected under the Manitoba Wildlife Act whereas ducks, cranes and geese come under Federal legislation.

Waterfowl are the best known species as to habits, numbers and distribution. Ducks Unlimited has done extensive work on waterfowl production and staging along the Saskatchewan River delta. Capability for waterfowl is shown on Map 11.

Excluding insects, spiders, etc.

The ecological niches and adaptations of different species of birds in the forest are associated with stratification and growth forms of plants. Some species essentially exist in a single stratum while others range over several. Birds tend to move more freely from one stratum to another, but even they are often limited. Ruffed grouse, spruce grouse, ovenbirds and some warblers essentially occupy the ground layer moving up into trees to feed or roost. Red-eyed vireos inhabit the lower tree stratum as does the wood peewee. Blackburnian warblers, Tennessee warblers, Cape May warbler and the olive-sided fly-catcher tend to dwell in the upper canopy. Woodpeckers, nut hatches and creepers tend to inhabit the open space areas of tree trunks between the canopy and shrub layer.

Species may vary with moisture regime as well as by vertical straticiation. Xeric (dry) forest conditions are inhabited by species such as jays. Mesic (moderate) forests are preferred by thrushes, redstarts and fly catchers. Hydric (moist) sites are the homes of some warblers (Nashville), red-polls and sparrows.

Pine forests are generally the least preferred coniferous forest whereas spruce forests generally exhibit a greater variety of bird species. Mixed forests offer the greatest variety of niches and thus support the greatest number of different bird species.

Lakeshore, streamside and marsh fringes are the ecological niche of a large number of avaian species. Ducks, geese and blackbirds are common in many marshes. Kingfishers, eagles and osprey, although not common, are found along streamsides. Sandpipers, gulls and other shore birds may be found on beaches, pebbly or gently slopping rocky shorelines.

From a management standpoint, the only birds in which an interest is shown are geese, ducks, cranes and grouse. Ducks Unlimited has constructed a number of water control facilities in the Saskeram Wildlife Management Area since 1962 with the intent of improving duck habitat. Annual counts of these birds are taken in order to estimate populations. Some preliminary work on raptors and colonial nesting birds has been done to determine population sized and locations.

AMPHIBIANS: Four species of amphibian are known to occur in the Mid North. The three frogs are the boreal chorus frog (Psedocris trisetiata), the wood from (Rana sylvatica), and the leopard frog (Rana pipiens) the most common Canadian frog. The Dakota toad, (Bufo hemiophrys) is the other amphibian found in the Zone.

REPTILES: The Garter snake is the only known reptile occurring within the Planning Zone.

FISH: Fish as are birds, can be divided into economic and non-economic species. Species such as pike and sturgeon are fished on a recreational and commercial basis. Shiners, darters and minnows are not of any apparent economic value except perhaps for bait fish. The majority of research has been done on the commercial and game species. Pickerel, trout, whitefish, goldeye, pike, sauger and sturgeon are commercially fished in the Mid North (see section on commercial fishing).

A list of fish species occurring in the Mid North Planning Zone is given in Appendix D.

From a habitat standpoint, apart from relating the obvious (i.e., fish live in water), trout, pickerel, grayling and sturgeon prefer cool, clear water, whereas pike, sauger and goldeye are not as particular. Eaters in the Zone can be considered cool, particularly in the northern portions, at all times. Mose species found in the region reflect this habitat trait and either prefer cool to cold water or are extremely varied in their habitat adaptations.

MAMMALS: Most mammals occupy the ground surface niche of the forest area, although some may burrow into the ground or live in trees. The mammals of the Zone are listed in Appendix E. The Zone's manmals inhabit a wide variety of biomes; river otters along streams, muskrat and moose in marshes and lynx and hares in the upland areas. Mammals, also are divided into economic and non-economic species. Economic species are those hunter or trapped.

Hunted species in the Zone are limited to moose, deer, caribou and bear. A more complete breakdown of hunting in the Mid North can be found in the Recreation section of this report. A number of species are trapped for commercial or domestic purposes and the statistical information regarding trapping may be found in the section entitled Wild Fur Resources.

Little information about numbers and distribution of the majority of the smaller non-economic mammals is available (bats, voles, mice, etc.).

Whitetail deer (at the northern edge of its range) are not found in great densities anywhere within the Planning Zone. The maximum Canada Land Inventory (CLI) capability rating is moderately low (Class 5, Map 12). The greatest concentration of whitetail deer occur in the western Pasquia Valley area, southwest of The Pas. Deer populations are also found along river levees (Saskatchewan, Summerberry, etc.) and in both Wildlife Management Areas. Scattered occurrences are found in the Grand Rapids area along P.T.H. 391 and along the north shore of Lake Winnipeg.

The principle limiting factor in deer distribution in northern Manitoba is climate. A combination of deep snow and very cold winter temperatures serves to severely limit their range. A lack of the right combination of suitable vegetation and landforms as well as excessive soil moisture also restrict the spread of the whitetail.

Moose is the most common and largest ungulate in the Planning Zone. It ranges in density from negligible populations to 2.9 per square mile. The highest moose densities occur in the Saskatchewan River Delta and the Red Deer Lake area. 6

The Saskatchewan River Delta is highly productive moose habitat due to its large variety of vegetative types including shallow lakes and swamps (with submerged and emergent aquatic vegetation) as well as upland forest areas (along streams and river levees). The Red Deer Lake area's high moose densities are a result of large scale burns in 1961 which has resulted in excellent moose habitat.

Localized populations also occur in Selkirk Island, the area east of Morrison Lake and the east shore of Moose Lake. Although moose occur throughout the Zone other areas contain considerably lower moose densities. Limitations to moose productivity (where they are limited) are extensive areas of bog and lack of vegetative and landform variety.

Hildebrand and Imrie, PLUP, 1975. p. 46

⁶ Ibid. p. 46

Moose are the most intensely managed ungulate in the Planning Zone. Hunting seasons have been manipulated in order to control densities. In addition, control of access by car, truck or snowmobile is used to control hunting. Hunter questionnaires, check stations and aerial surveys have been used to determine size, distribution and health characteristics of moose.

Woodland caribou range includes most of the Mid North Planning 7 One area in which specific details of caribou distribution and numbers are known is in the southwest portion of the Zone studied by Pilot Land Use Planning Project (PLUP). Within the study area caribou populations were noted in 'the bog' area south of The Pas, an area north of Grand Rapids and the area south of Reed Lake. The Sherridon-Naosap-Reed Lake triangle and the Norway House-Kiskitto Lake locations have also been shown to support a number of caribou.

Caribou prefer mature and over mature spruce with lichen-moss ground cover, and are thus easily disturbed by habitat disruption.

Caribou appear to be relatively sensitive to habitat modification whether resulting from fire, forestry operations or development.

Woodland caribou management in the northern region has been primarily limited to hunting licence quotas (about 95 licences issued on the average for Northern Manitoba). Caribou research is actively underway in the Cormorant-Reed Lake area. This research, involving aerial surveys, tagging and the use of radio transmitters is attempting to determine numbers, movements and to improve or develop adequate census techniques.

Barren-ground caribou although primarily inhabitants of the tundra area north of the Planning Zone once ranged (in winter) well into the central portions of the Mid North. Two herds range into the Zone, the Beverly Herd in the west and the Kaminuriak herd in the north and west. Herds occured near the communities of Pukatawagan, Nelson House, Ilford, South Indian Lake, Brochet and Cross Lake in the past. Although the caribou have in the past ranged as far south as Cross Lake and Nelson House, they now seldom move south of Reindeer Lake in the west and the

⁷ Banfield, 1974

Churchill River in the northeast. In fact the Kaminuriak herd has not been south of the Seal River in the last four years. They do not summer in the Planning Zone. Current winter range is shown on Map 13.

Reserach is currently underway by the Canadian Wildlife Service and the Department of Natural Resources (out of Churchill) in attempts to determine population dynamics. 9

MAP 13. NATURAL SYSTEMS

Source; R. Larche, personal communication

Payne, H. Personal Communications

Refering to the Provincial Department of Mines, Natural Resources and Environment

Special Areas

In recent years, Canadians have become increasingly sensitive to the quality of their natural environment and the need for its preservation. Increased economic and technological developments have already destroyed much evidence of the natural and human history of Manitoba. In response, the Federal and Provincial governments have passed legislation to protect special components of the environment. At the provinical level, the Historical Sites and Objects Act, Crown Lands Act, Parks Act and Wildlife Act all contain clauses concerning the preservation of natural and cultural elements. Federally, the Migratory Birds Convention Act concerns itself with the protection of certain avian species.

Archeological Sites

An inventory of archeological sites in northern Manitoba was initiated in 1969 by the proposed conversion of Southern Indian Lake into a holding reservoir as part of the Nelson River power project. The Churchill River Diversion Archeological Project (funded jointly by Manitoba Hydro and the Provincial Government) was organized to locate and research archeological sites on the diversion route below Leaf Rapids. During the period 1969-1972, 191 sites were recorded.

As evidenced by Table 1, the proposed increase in lake level (about 11 feet) would flood 71 percent of the ancient fishing camps and settlements traditionally found at the water's edge.

It has been estimated that there are about eight thousand sites on Southern Indian Lake. However, only a small portion of the cultural heritage of this area has been investigated. From the artifacts that have been discovered it appears that the early northern peoples had a certain level of sophistication in their equipment and fishing methods.

Leo Pettipas, personal communication

Table 1

Elevation Of South Indian Lake Archaeological Sites

Elevat	ion	Historica		Prehistor	ic	Undeter-	Total	Percentage
			Lateb	Middle ^C	Earlyd	mined		
0-5	ft.	6	87	1	1	21	116	60.7
	ft.	4	5	1	-	3	13	6.8
11-15		2	4	-	-	1	7	3.6
	ft.	1	2		ana	1	4	2.0
20	ft.	1	1	****	-	-	2	1.0
Undete	rmined	3	33	MAND	-	13	49	25.6
Total		17	132	2	1	39	191	99.7

Source: Dickson 1972

The clear impression of mesh fish net was found on a small pottery jar, suggesting the use of gill nets (an efficient method of fish harvest). Stone weights used in conjunction with fish nets were found at the Notigi Lake site. Stone and woodworking tools recovered from the Wapisu Lake site may indicate that this place was used by the early people as a canoe building place.

Apart from the artifacts uncovered by the project, a number of pictographs or rock paintings were also located. Representations of animals and mythical gods were often painted on rock faces along rivers, streams or gathering places. Of the three sites located on the Churchill River below Leaf Rapids the pictographs at site A (Map 1) are the most discernable. Two of the paintings on the rock face are stick figures of caribou, one of which is partially encircled. The paintings at this site were about six feet above the water level. Two more sites were located upstream. The first consisted of two thunderbirds flanking a head, a pipe being beneath one of them. The second, consisting of a single thunderbird with two oval dots above it, is about nine feet above the water level.

a_{1700 A.D. - Present}

⁵⁰⁰ B.C. - 1700 A.D.

^c4000 B.C. - 500 B.C.

dBefore 4000 B.C.

ARCHAEOLOGICAL SITES

- 1 HARBOUR BAY CERAMIC SITE
- 2 HARBOUR BAY NON-CERAMIC SITE
- 3 TRAILRACE BAY
- 4 PINE BLU
- 5 HILL ISLAND
- 6-THE PAS
- 7 LAKE SITE
- 8 BIG EDDY 9 - PROSPECTOR

- 10 THE PAS INDIAN RESERVE
- 11 THE PAS INDIAN BAND
 - --- KNOWN ARCHAEOLOGICAL SITES

PICTOGRAPH SITES

- A CARIBOU NEST
- B FACE SITE
- C OIL DRUM
- B WISAKICHAK'S FOOTPRINTS

MAP 1. SPECIAL AREAS

MID NORTH PLANNING ZONE

linch:40 miles

Pictographs have also been charted at Kipahigan Lake, Paimusk Creek, Eschimamish-Nelson River junction and Tramping Lake. Figure 1 is an example of a pictograph located along the shores of Tramping Lake.

Near the community of Nelson House, peculiar indentations in the bedrock were located. The local people refer to these indentations as the footprints of Wisakchak, the traditional cultural hero of the Cree.

At the present time there are two organizations concerned with the preservation of archeological resources in Manitoba: the Manitoba Archeological Society and the Historical Resources Branch of the Provincial Department of Tourism, Recreation and Cultural Affairs. The professional concern to preserve the native northern heritage has resulted in the recording of many sites.

The program of investigations by the Historical Resources Branch for the summer of 1976 encompassed a preliminary survey of the Tyrell Beach Ridge in anticipation of the proposed highway development between Gillam and Churchill. The right of way of the Easterville highway was also surveyed for potential archeological sites. ²

²Because of the non-renewable nature of archeological sites, provincial archeologists are anxious to be involved in the planning process.

Ecological Sites

Preservation of areas of the natural environment was considered by the International Biological Program (IBP) in the mid 1960's. One of the more important activities of the IBP was the Conservation of Terrestrial Communities (CT). The purpose of the program was to identify and preserve samples of biological systems for the purposes of ecological education, scientific research and management, and to use the areas as baselines for assessing human impact on the world.

From conception to 1972-73, 600 thousand dollars had been provided by the National Research Council for ecological inventories. Environment Canada, Department of Indian and Northern Affairs and other federal agencies have provided support in the way of funds, transportation and professional services.

An Ecological Reserves Committee was established in Manitoba in 1974 to continue the investigations of the IBP. In May 1976, the Minister of the Department of Renewable Resources and Transportation Services announced the designation of Reindeer Island (Lake Winnipeg) as Manitoba's first ecological reserve. All resource harvesting and management activities have been prohibited within the designated area.

Ten proposed reserves (IBP) occur within the Mid North Planning Zone (Map 2). Table 2 lists the sites which have been submitted to the Department of Renewable Resources for designation as Ecological Reserves. These sites presently have no legal status and lack statutory protection at this time.

The Red Rock Lake site is one of two which had been given priority by IBP to become established as an ecological reserve. The site contains eight major types of plant communities. Shallow ponds and lakes support sumberged meadows and emergent marshes. Higher and slightly drier areas are dominated by willow and alder species while Manitoba maple and green ash inhabit moist areas along small streams. Pure stands of aspen occur on recent burn sites. Mixed woods (birch, aspen, balsam fir and white spruce) are found along some river banks and almost pure stands of conifers (white spruce and balsam fir) occupy the higher, better drained sites and former stream levees. This IBP site also contains the northern most occurence of bur oak in the province. The lakes and ponds located within the 20 square mile site provide staging and breeding grounds for a variety of waterfowl. CLI capability indicates the area to be very important for waterfowl production (Map 3).

MAP 2. SPECIAL AREAS

Mid North Planning Zone

INTERNATIONAL BIOLOGICAL PROGRAM SITES

PROPOSED I.B.P. SITES

NUMBERS REFER TO TABLE 2

Source; Manitoba, Conservation of Terrestrial Ecosystems
Subcommittee, 1972.

The second priority site, Palsa Hazel, is located within the Grass River Provincial Park and is thereby partially protected under the Provinical Parks Act. However, the area has been inventoried and shown to have moderate forest capability and merchantable timber stands. It is therefore in some danger of disruption by logging activities. The IBP recommended:

- 1. That the palsa and small buffer zone around it be preserved for scientific purposes by preferential zoning within the Park, and
- 2. That any resource encumbrances on the area, such as timber leases be removed by the Department of Renewable Resources after consultation with the leasee.⁴

Table 2

Mid North Zone Sites Recommended For Ecological Reserve
Status By I.B.P. (Sept. 1972)

Site Name	IBP-CT	Land Designation	Area (Square Miles)	Primary Reason for Recommendation
Atik Jack Pine	3	Undesignated Crown	3	Typical nearly mature (50 to 60 years) Jack Pine forest on limestone ridge.
Rocky Lake-Root Lake	26	Undesignated Crown Land & Saskeram Wild, Manage. Area	36	Moist upland White Spruce forest with extremely old and large trees.
Red Rock Lake	25	Undesignated Crown Land	20	Vegetative diversity and good representa- tion of typical Saskatchewan Delta plant and animal communities.
Landry Lake Island	16	Tom Lamb Wildlife Management Area	2	Undisturbed White Spruce-Balsam Fir Fores nesting bald eagles.
Balsam Fir Area	33	Tom Lamb Wildlife Management Area	14	Undisturbed, nearly pure stand of Balsam Fir.
ADDITIONAL SITES FOR ECO	LOGICAL RESE	RVES		
Moose Lake Penninsula	41	Undesignated Crown Land	.8 (530a)	Bald eagle, woodland caribou, great grey owl, diversity of fish.
White Forest Rapids	43	Undesignated Crown Land	(70a)	Undisturbed mixed wood forest, bald eagle caribou, great grey owl.
Wapisu Lake	71	Undesignated Crown Land	144.0	Large clear lake and rivers, boreal fore communities.
White Gedar	35	Undesignated Crown	.08 (50a)	Northern most stand of white cedar known the province; glacial end moraine ridge.
SITES PROPOSED FOR CLASS	1 (SPECIAL	AREA) STATUS WITHIN PROVI	DICIAL PARKS	
Palsa Ha z el	23	Grass River Prov. Park	. 1	Permafrost peat landforms (palsas)

[&]quot;Priority Sites.

³Forests of Manitoba 1974

⁴Johnson, 1972

Wildlife Areas

Within the Mid North Planning Zone there are a number of areas which are critical to the survival of certain wildlife species. Map 3 outlines some of these areas.

The northwest corner of the Zone is a wintering area for the Beverely barren-ground caribou herd. Approximately 70,000 animals dependent on the black spruce forest to supply food for the herd is an important food source for the residents of Lac Brochet, Brochet and Tadoule Lake. Personnel from the governments of Manitoba and the Northwest Territories are presently monitoring the herd. Failure of the herd to migrate into Manitoba in recent winters has caused many hardships for the local people. Food supplies were air lifted into Brochet by the Department of Indian Affairs in 1976 and 1977.

Wolverine, now considered rare are also located primarily in this area. The specie is classified as a furbearer in the Wildlife Act (1963) and has occasionally been trapped as far south as the summerberry fur block (See Wild Fur Section). Apart from its designation as a furbearer the wolverine is not protected.

Golden Eagles have been known to nest in the Cochrane River area. Nests which may be up to five feet in diameter are usually located on incessible cliffs along streams. It has been estimated that there are only 12 eagles in the province making this area critical to breeding. Eagles are protected under the Wildlife Act.

Pergrine falcons are considered endangered and are protected under the Wildlife Act. High sharply sloping escarpments near Little Limestone Lake north of Gillam, provide nesting habitat for these birds. Since nests are used annually by the same falcons, disturbance or destruction of nesting habitat or nests could have serious affects on the population. This area is therefore probably ciritical to the survival of the specie in the Zone.

Woodland caribou calving grounds have been located in the area of Reed Lake. Ongoing research by the Department of Renewable Resources in this area should provide the necessary information for the development of a management plan.

⁵Larche, 1972

⁶Van Zyll de Jong C.G., and Nero, R., 1971

⁷ Ibid

CRITICAL AND IMPORTANT WILDLIFE AREAS
CARIBOU WINTER RANGE (BARRENGROUND) OOO
CARIBOU CALVING AREAS (WOODLAND)
MOOSE RANGE
GOLDEN EAGLE YEAR-ROUND RANGE
PEREGRINE FALCON NESTING SITE
WATERFOWL STAGING AREAS

MAP 3.
SPECIAL
AREAS
MID NORTH
PLANNING ZONE

linch:40 miles

Vegetative variety in the Saskatchewan River Delta (specifically the Saskeram and Tom Lamb Wildlife Management Areas) provides some of the best moose habitat in Western Canada. Densities have been estimated as high as 2.9 moose per square mile in some areas. Increased accessibility to the area and the use of snowmobiles has resulted in increased hunting pressure on moose populations. Manipulation of hunting seasons, road access and habitat by the regional biologists in conjunction with annual surveys are the methods employed for management of moose in the Zone.

A number of small lakes in the Zone are designated trout waters (Table 3) and as such certain regulations are placed on their use. Power boats are restricted for angling but can be used for various other recreational activities such as water skiing. Seasons and limits are manipulated in order to maintain numbers.

Table 3

Designated Trout Waters In The Mid North

Amulet Lake

Borrow Pits (between overflowing River and The Pas on P.T.H. # 10)

Kormans Lake

Mid Lake

Newman Lake

Scotty Lake

Natural Lake Trout Waters

Athapapuskow Lake

Clearwater Lake

Power Boat Restrictions

Amulet Lake

Beaver House Lake

Borrow Pits (between overflowing River and The Pas on P.T.H. # 10)

Kormans Lake

Mid Lake Scotty Lake

Murray Lake Leaf Lake

Newman Lake Crater Lake

Apart from the floral and faunal special areas there are a number of recreational and historical sites which should be considered in the discussion of special areas. Scenic and aesthetically appealing sites within provincial parks and recreation areas have been so designated to protect the natural environment. The Provincial Park Branch controls these sites. Provincial Parks are also inventorying other sites which may need protection.

Historical waterways travelled by the early fur traders hold many points of interest for adventuring canoeists. Remanents of trading posts and trapper's cabins are found along the Middle Track Hayes River corridor. Numerous rapids and falls dot the twelve hundred mile route.

The Mistik Creek and Grass River Canoe Routes have been inventoried by provincial parks. Points of interest and aesthetic sites were identified and mapped.

Byways and Special Places Program (Parks Canada) are considering the Saskatchewan River as an historic and scenic water route.

Summary

Special areas in the Mid North might be summarized by the following points:

- 1. Archeological sites along the Churchill River, Southern Indian Lake Areas were surveyed in the early 1970's but investigations in other areas have not as yet taken place.
- 2. Examination and identification of possible ecological reserves in the north was carried out by the I.B.P. program. An evaluation of this program for future additions or deletions is probably necessary.
- 3. Information on areas of significant wildlife habitat is limited. The only areas extensively surveyed being the Saskeram and Tom Lamb Wildlife Management Areas.

 $^{^{\}rm 8}$ Bernard, R. Middle Track and Hayes River Route. Tourism Recreation and Cultural Affairs, 1974.

Resources

Wild Fur

The trapping industry is probably Manitoba's oldest commercial activity. In 1935, after increased trapper pressure had reduced furbearer populations to new lows, the Summerberry Fur Rehabilitation Block was initiated. This was followed by the successful Registered Trapline System (RTL). This system was aimed at a planned fur harvest and attempted to encourage conservation practices. The fact that disputes (particularly boundaries) were left to the individuals to resolve, in the long run became one of the strong points of the system. In 1945 a provincial Order-in-Council designated the recommended areas as registered trapline sections. Trapping seasons and issuance of licences are controlled by the Department of Natural Resources.

Production

The Mid North Zone accounts for an average of 29 percent of the total Provincial wild fur production. This represents an average of 28.9 percent of the total wild fur value in Manitoba in the last five years. There are 20 registered trapline sections (Map 1) all or partially within the Mid North Planning Zone. Grand Rapids, Red Deer/Shoal River, Norway House, Cross Lake, Pikwitonei, Split Lake, Brochet and South Indian Lake sections are those which are split between the Mid North and at least one other planning zone. Split sections have been broken down on a block basis and those blocks falling as nearly as possible within the Zone were included in the Zone statistics. Thus, data given for Mid North production are based on 13 full sections and seven partial sections.

Except Grand Rapids which is included in its entirety and Red Deer/ Shoal River of which 1/3 of total production was used due to a lack of block data.

Pikwitonei Section : all blocks except 20-22, 38, 52, 53
South Indian Lake : all blocks except 12-14, 16-19, 26, 37-41, 49, 50
Brochet Section : blocks 1, 2 and 13
Cross Lake Section : all blocks except 1, 6-8, 15, 19, 28-31, 55
Norway House : all blocks except 1, 7, 16, 18, 21, 24-26, 28, 31, 22, 26, 39
Split Lake Section : all blocks except 2, 54, 58-62, 64, 71, 74

l inch:40 miles

During the years in question (1964/65 through 1976/77) the Zone's fur production hit a low of about 63,000 pelts in 1971/72 and a high of nearly 170,000 in 1975/76 (Figure 1 and Table 1). This dramatic rise in production was primarily in muskrat which comprises 55 percent of the zones harvest (Table 2).

Table 1
Zone Wild Fur Harvest

	1976/7	1975/6	1974/5	1973/4	1972/3
Muskrat	71,600	138,055	118,175	66,800	51,849
Beaver	12,851	10,845	9,335	9,472	11,868
Squirrel	7,518	9,998	3,818	2,668	2,759
Mink	4,834	3,872	2,634	2,658	3,856
Ermine	2,545	3,151	2,602	1,031	3,110
Lynx	1,136	550	374	468	1,458
Otter	1,153	1,227	979	598	970
Fisher	367	306	291	273	456
Martin	206	42	24	76	22
Wolverine	25	14	30	40	50
Timber Wolf	72	54	73	61	80
Coyote	283	221	256	476	414
Red Fox	343	198	189	142	259
Other Foxes	335	89	251	46	100
Black Bear	39	56	105	99	97
Total	103,327	168,678	139,136	84,908	77,348
% of Provincial Harvest	15.2	40.8	39.9	36.0	12.4

Percent Species Composition^a of Total Zone Harvest Table 2

R.T.L. Section	Beaver	Muskrat	Mink	Lynx	Ermine	Squirrel.	Otter	Total
Split Lake	35.0	39.7	10.2	2.7	4.3	3.3	2.6	97.8
Norway House	9.3	73.9	5.4	1.2	3.0	5.0	1.6	7.66
Cross Lake	13.6	68.2	7.9	1.3	2.3	4.5	1.6	7.66
Pikwitonei	20.6	50.7	10.1	5.1	4.0	6.1	1.8	98.2
Thicket Portage	16.7	58.0	7.4	3.0	4.0	7.4	1.1	97.6
Pukatawagan	26.0	50.4	5.7	5.6	3.0	7.7	0.9	99.3
Nelson House	22.9	51.0	4.7	4.0	3.2	12.6	1.1	99.5
Cedar Lake (Easterville)	5.4	0.49	1.0	0.1	2.0	26.6	0.2	99.3
Sherridon	31.6	37.2	10.3	2.3	4.8	11.8	1.1	1.66
Herb Lake	16.6	50.4	5.0	4.1	5.0	16.0	1.5	4.66
Cranberry Portage	29.0	39.2	11.0	1.8	6.7	9.1	1.6	98.4
Wabowden	28.7	46.8	5.9	4.8	4.5	6.3	2.0	0.66
Flin Flon	33.3	42.4	12.8	- C	4.0	3.6		98.7
Moose Lake	1.7	93.5	0.7	0.1	1.0	3.4	0.1	100.5
Cornorant	10.2	48.7	5	2.8	7.3	23.2	1.6	98.9
00 00 00 00 00 00 00 00 00 00 00 00 00	10.5	31.0	15.1	6.0	7.1	28.8	00	97.2
South Indian Lake	16.6	58.5	9.9	1.0	4.7	7.0	0.9	96.1
Summerberry Block	1.1	93.9	0.9	0.1	1.5	2.3	0.1	6.66
Grand Babids	11.3	62.7	2.7	0.8	2.6	17.9	7.0	98.4
Red Deer/Shoal River	6.4	6.45	1.7	0.3	3.4	42.2	40	98.9
Average	17.3	55.3	9.9	2.2	3.9	12.2	1.2	98.7

als year average * Less than 0.1%

The Summerberry fur block is the single most productive trapping area in the zone from a pelts harvested standpoint. The block accounted for 34 percent of the total zone production in 1976/77 and 52 percent the previous year. The lowest productive trapping area has been the Cedar Lake RTL which has a ten year average of less than 500 pelts per year. The Summerberry fur block also displayed the best efficiency, averaging 200 pelts per trapper in the last ten years. The least efficient was the Split Lake RTL which averaged only 32 pelts per man.

The number of trappers in the Mid North has increased in the last few years and was nearly 20 percent over the ten year average in the 1976/77 season. Trapper effort hit a ten year high in the 1975/76 season, but was well below the average the following season (Table 3).

Table 3

Value to the Trapper by Season

Season	Total Value (Dollars)	Number of Trappers	Pelts Per Trapper	Value Per Trapper (Dollars)
1976/7	1,166,124	1405	73.5	829.98
1975/6	1,082,919	1377	122.5	786.43
1974/5	624,922	1170	118.9	534.12
1973/4	550,357	1085	78.3	507.24
1972/3	694,926	1097	70.5	633.48
1971/2	466,973	1134	60.7	411.79
1970/1	373,029	1076	70.8	346.68
1969/70	575,587	1050	71.4	548.18
1968/9	703,600	1212	80.2	580.53
1967/8	416,790	1164	98.6	358.07
Mean	665,523	1177	84.5	565.44

^aTotal trapping licences in Mid North Planning Zone

³Summerberry block includes the Moose Lake marsh, the Cormorant marsh, The Pas marsh and The Pas open area.

See Appendix F for production by individual trapline section.

⁵Trapper effort, number of pelts per trapper.

Mid North Planning zone trappers represent about 14 percent of the provinces total trappers and about 50 percent of the provincial registered trapline trappers. The fur value for the 1976/77 season was 21 percent of the total provincial value and average trapper income (1976/77 season) of 830 dollars was higher than the provincial average of 482 dollars. 6

Economics

The value of fur produced in the Planning Zone was nearly 1.2 million dollars for the 1976/77 trapping season. Over the past several years, the zones fur value has followed the trend set by the average fur prices 8 as noted in Figure 2.

Muskrat, the most numerous specie is also the most valuable in total. Beaver, mink and lynx values when combined with muskrat value nets about 85 percent of the total zone value. Value by specie for the last five years is given in Table 4.

Individual trappers have benefited significantly by the recent high prices. Average value per trapper has more than doubled in the past ten years. In the 1975/76 season only 21 trappers in the zone produced fur worth 2000 dollars in value or more. The same season saw 749 trappers at less than 500 dollars. By comparison, 148 trappers exceeded 2000 dollars in the 1976/77 season while 656 were under 500 dollars. The average value per trapper in the Planning Zone for 1976/77 was 830 dollars. The average trapper income (value) per trapline section is shown on Figure 3. Note Pikwitonei section averages almost 1900 dollars per man, while Easterville is less than 300 dollars.

The income derived from trapping is small as a comparison of community income, although in some communities, such as those mentioned in Table 5, dependance on trapping is significant when 'income-in-kind' is included. 10

Average of provincial open areas was 372.38 dollars. Average of provincial RTL trappers was 807.60 dollars.

 $^{^{7}}$ Value determined by using average price per pelt F.O.B. auction.

 $^{^{8}\}mathrm{Average}$ prices include only those species caught in the Zone.

Trapper income per section includes all production and trappers for the whole trapline whether in the Planning Zone or not.

¹⁰ Income-in-kind is the domestic use of trapping e.g., eating the meat and using the fur for clothes.

FIGURE 2. FUR VALUE AND AVERAGE FUR PRICES.

Table 4

Zone Fur Value^a by Species
(Dollars)

	1976/7	1975/6	1974/5	1973/4	1972/3
Muskrat	305,732	499,759	309,619	187,040	136,881
Beaver	275,268	216,900	143,199	184,704	237,953
Squirrel	6,014	6,999	2,405	2,001	1,380
Mink	113,937	100,672	34,584	58,476	90,230
Ermine	3,487	2,836	2,082	1,237	3,203
Lynx	274,594	141,350	46,006	42,120	131,439
Otter	68,938	73,620	35,587	22,515	38,490
Fisher	32,435	29,682	13,206	11,807	15,107
Coyote	16,451	12,376	9,449	18,516	12,412
Red Fox	19,544	8,514	5,834	5,566	7,615
Others	49,724	19,893	22,951	16,375	20,216
Total	1,166,124	1,082,919	624,922	550,357	694,926
% of Provincial Value	18.9	33.0	24.2	19.8	19.1

 $^{^{\}mathrm{a}}$ Average price F.O.B. auction, Winnipeg.

 $^{^{\}mbox{\scriptsize b}}\mbox{Includes martin, wolverine, timber wolf, black bear, cross fox and white fox.$

Table 5

Percentage of Community Income Derived from Trapping

Community	Cash	(Percent) Income-in-Kind
Brochet ^a Cross Lake Granville Lake ^a Nelson House ^b Pukatawagan ^a South Indian Lake	1.9 1.0 5.0 1.0 3.5 2.0	0.0 1.0 4.0 2.5 4.7 2.0

^aSource: Social and Economic Impact Study of the Churchill-

Melson Rivers Hydro Development, 1973.

Source: Churchill River Study. 1975

Wild Fur Program

In April 1975, the Manitoba Wild Fur Program came into effect. Its goal was to optimize the development and use of provincial fur resources and to maximize the social and economic benefits to trappers. The program is managed by the provincial government and an advisory board. It project cost, over eight million dollars, in five years is jointly (Federal-Provincial) funded.

Under the program, marketing assistance is given to trappers. This ranges from market forcasting, production monitoring, fur depots to buyer negotiations. 12

The Improved Biological Production component endeavours to evaluate and if necessary take steps to improve the production capability of an area. For example, nearly 85 thousand dollars was spent on improved biological production in the 1976/77 fiscal year. This expenditure resulted in the construction or improvement of ten dams, 3,300 feet of ditching and nine field surveys.

The board consists of two members of the Provincial Government, two members of the Federal Government and three members of the Manitoba Trappers Association.

 $^{^{12}\}mathrm{Such}$ as The Bay's policy of selling on consignment.

¹³ Grower, 1978

Under the Advisory and Management Services component, fur managers are located in The Pas and in Thompson and between them oversee some 31 local fur councils. In addition to the managers, trapline officers are located in Cormorant, South Indian Lake, Wabowden, Brochet, Cross Lake, Nelson House, Pukatawagan and Split Lake.

Other areas of involvement for the Wild Fur Program include trapper education, ¹⁴ the humane trapping program and fur market improvement.

Summary

Trapping is a traditional activity which has acted as an income supplement and partial food source. The commercial aspects of trapping, aided by the Wild Fur Program, appear healthy despite the changing northern life style. Production, total trappers, total value and average income are all generally up in recent years.

 $^{^{14}{\}rm In}$ the 1976/77 fiscal year 12 trapping schools were held in the Mid North.

Fisheries Resources

The first commercial fishing in Manitoba occurred on Lake Winnipeg in the 1880's but two decades passed before it was successfully expanded into the Mid North Zone. The first northern fishing of this type occurred in The Pas area after the turn of the century. The industry gradually expanded in the next 50 years with Cross Lake and Southern Indian Lake fisheries starting during the early forties (although fisheries of a commercial nature occurred in Pukatawagan in the 1920's and in Brochet in 1912 significant production did not occur until the forties).

Initially the northern commercial fisheries were run by private entrepreneurs who employed native (predominantly Cree) workers. However, since 1960 there has been a significant shift in the administrative techniques with the appearance of local fishermen managed co-operatives. The Provincial Department of Co-operative Development has been set up in recent years to assist the co-operative operations. Private control of the commercial fishing was effectively ended in 1969 with the establishment of the Freshwater Fish Marketing Corporation (F.F.M.C.). This federal crown corporation, became the sole buyer for fish exported from the province.

Quotas

In the fisheries regulations, 185 water bodies in the Mid North were eligible for winter commercial fishing (1976-77), 175 for the summer season (1976). The annual quota from these lakes is in excess of seven million pounds (See Appendix G). For example in the summer 1976 season 7,050,000 pounds quota was available for commercial fishing. The quota production for that season was 63 percent for those lakes where fishing was attempted, but only 39 percent of the zones total quota for all lakes eligible. The average percent quota 2 filled

Fisheries are under the jurisdiction of the Federal Government and Fisheries regulations are published in the Canada Gazette. The Manitoba Department of Renewable Resources is responsible for enforcement and administration of these regulations.

Average quota for years fished i.e., a lake fished 10 out of 16 years would be averaged on the 10 years fished.

for those lakes regularily fished are shown on Map 1. A number of water bodies are frequently found to exceed their allowable quota. Small excesses of an infrequent nature are of course understandable. Map 2 shows those water bodies that have exceeded fisheries quotas by more than five percent in more than one season in recent years. The Saskatchewan River has been fished in 25 seasons in the period under discussion and has exceeded quota by more than five percent in 11 of them. Southern Indian Lake is ten seasons over quota for 30 seasons fished while Kiski Lake goes five percent or more over quota nearly 47 percent of the seasons fished.

Production

There are two types of production used in discussing fisheries statistics, quota production and total harvest. Quota production or harvest consists of the poundage sold for species listed on quota for each individual lake. Total harvest is the total poundage marketed, including quota and non-quota species. Total harvest generally exceeds quota harvest by about 16 percent in summer seasons and 23 percent in winter seasons.

Total harvest for the zone by season is shown in figure 1 and listed in table 1. The lakes of the Mid North Planning Zone account for the lions share of the northern fishery production. Mid North lakes yield some two-thirds of the northern harvest and about one-fifth of the total provincial production (Table 2).

The number of fishermen although down slightly from previous years (Figure 2) has not maintained any obvious declining trend as was seen in total harvest. The number of lakes fished per season has declined steadily since 1965 particularily in the winter season. The rate of decline of lakes fished in the summer season has slowed markedly since 1969 (Figure 3). The summer season averages 57 lakes fished and the winter season 49.

77

³Fished 12 seasons or more in the 32 seasons from summer 1961 to winter 1976-77.

All harvest figures are in fact pounds sold or marketed and not necessarily pounds caught. Some fish may be thrown out, some eaten by the fishermen and some sold or bartered locally, thus actual harvest is usually higher than figures given.

Production figures used are those provided by the Dept. of Natural Resources (See Appendix I)

AVERAGE % QUOTA FILLED

> 75 50-75 < 50

(SEE APPENDIX G)

MAP 1. FISHERIES RESOURCES

MID NORTH PLANNING ZONE

LAKES OVER-QUOTA (summer 61-winter 76-77)
NUMBERS REFER TO NUMBER OF SEASONS OVER-QUOTA

MAP 2.
FISHERIES
RESOURCES
MID NORTH
PLANNING ZONE

FIGURE 1. TOTAL COMMERCIAL FISHING HARVEST

FIGURE 2. TOTAL FISHERMEN

Table 1

Production By Species Mid North Zone (1bs)

Season Whitefish Pic W 76/7 339,149 12 S 76 1,693,011 87 W 75/6 25,031 (U 75/6 25,031 (U 74/5 1,537,080 58 W 74/5 216,084 17 S 74 1,115,617 58 W 73/4 148,625 12	Pickerel	Trout	Pike	Tullibee	Goldeye	Other	Total
339,149 1,693,011 5 25,031 1,557,080 5 216,084 1,115,617 4 148,625			The state of the s				
1,693,011 25,031 1,577,680 5 216,084 1,115,617 4 148,625	133,655	888	122,973	45,459	344	14,258	656,726
25,031 1,557,080 5 216,084 1,115,617 4 148,625	875,250	18,264	330,922	187,829	11,829	4,999	3,122,104
1, 457, 680 5 216,084 1,115,617 4 148,625	62,263	1,106	47,177	59,874	1,397	17,859	214,707
74/5 216,084 74 1,115,617 73/4 148,625	584,580	5,933	281,503	116,541	12,946	45,259	2,504,442
74 1,115,617 73/4 148,625	179,036	4,991	131,512	82,758	1,673	36,053	652,107
73/4 148,625	581,511	65,539	292,954	124,519	15,506	48,434	2,244,080
	171,761	4,540	131,518	47,130	1,990	22,819	528,383
5,920,318 5	535,228	42,366	318,584	50,405	2,536	342	2,869,779
W 72/3 389,939 1.	154,527	4,878	85,491	22,205	0	36	657,076
s 72 2,083,020 6	646,311	226,085	221,100	21,565	11,630	683	3,210,394
1118,453	239,148	3,551	229,565	18,723	4,052	3,911	947,403
1,662,460	896,550	80,820	285,712	25,396	4,528	10,014	2,965,480
3 1193 2	291,051	5,359	241,563	14,444	1,034	2,070	1,064,714
S 70 1,866,596 7	778,303	82,441	313,536	4,621	9,180	4,638	3,059,315
w 69/70 606,366 2	210,704	10,379	296,594	99,125	405	09	1,223,633
s 69 2,272,408 6	636,964	249,970	648,340	302,834	32,409	71,329	4,214,254
Total 16,753,950 6,9	6,976,842	807,110	3,979,044	1,223,428	111,459	282,764	30,134,597
% of	23.2	2.7	13.2	4.1	7.0	8.0	
1,147,122	436,053	50,444	248,690	76,464	9966	17,673	1,883,41.

aincludes sturgeon, perch, sauger, mullets, maria

Mid North Commercial Fishing Harvest As a Percent of Provincial and Regional^a Harvest By Species

Harvest Province	8.6	25.1	7.6	18.2	14.7		15.8		19.3		30.6		29.3		25.4		20.8	
Total Region	70.8	66.3	6°69	58.9	63.8	74.4	88.7	6.79	65.4	62.0	77.5	8.09	79.1	61.5	59.8	74.5	65.8	71.9
Tullibee on Province	47.0	62.2	43.6		20.0		18.1		9.09		80.8		64.0		53.5		7.67	
Tul Region	6.66	7.66	6.46	7.68	95.8	9.06	99.2	100.0	100.0	43.3	77.5	100.0	9.66	98.7	88.4	91.7	89.1	94.4
Pike Province	6.1	19.2	7.5	•	13.9		14.6		10.5		25.6		22.1		22.3		16.1	
Region	85.3	49.7	84.1	42.7	92.0	67.2	0.06	55.5	6.07	29.4	95.3	45.2	97.3	48.8	76.3	86.3	53.1	86.4
Trout n Province	18.0	86.8	7.66	3	80.9		75.9)			!		-		}		57.9	
Tre	17.4	86.8	22.4	54.3	39.0	91.6	45.9	81.7	31.8	9.98	24.3	75.6	35.7	76.8	18.7	84.4	7.67	29.4
Pickerel on Province	9.6	20.5	11 6	0.11	20.7		19.0		22.0	1	57.9		9.97		30.4	-	97 9	• 1 1
Pic Region	82.4	74.7	78.5	68.5	7.96	82.5	85.8	0.99	88.0	64.3	95.2	67.5	92.3	6.99	86.3	95.4	73.2	88.1
Whitefish ion Province	25.6	41.0	ر د	C * TC	α Ο	•	0 7/2) t	6 87	7	0 97	0	62.7	1	53.3	•	9 07	
White	63.0	64.1	54.0	57.7	39.0	71.5	89.0	70.4	58.2	9.49	65.6	59.8	0.89	61.6	48.7	65.8	7.79	60.7
Season	W76/7	S76	W75/6	S75	W74/5	S74	W73/4	873	W72/3	S72	W71/2	S71	W70/1	870	02/69M	869	Summer Mean	Winter Mean

^aNorthern Region of the Department of Renewable Resources

FIGURE: 3
NUMBER OF MID NORTH LAKES COMMERIALLY FISHED

Economics

With an average of just over 500 fishermen participating in the summer commercial fishery, this represents almost two percent of the estimated actual labour force for the zone. The winter fishery contributes about one half of one percent of the labour force.

The value of the catch to the fishermen varies by species composition, quality, size of catch and current prices. The 1976 summer season had a value to the fishermen of 1.1 million dollars.

Commercial Fishing Report, Summer 1976, Northern Region, Department of Renewable Resources.

F.O.B. delivery point and excluding freight rate subsidy.

This represents an average of nearly 23 thousand dollars per lake and 22 hundred dollars per man. The 1976-77 winter season on the other hand had a gross vlaue to the fishermen of just over two hundred thousand dollars. 8 This represents over 66 hundred dollars per lake and averages 1120 dollars per man.

Many lakes in the northern Manitoba fishery are economically borderline, they are operated at a loss or under subsidies and grants. The major factors in this situation are rapidly climbing transportation costs, equipment costs and operating costs. Less than efficient operations and management commonly jeopardize the economic viability of many operations.

In an effort to offset, in part, the dramatic rise in operating costs, the Department of Renewable Resources initiated in 1976 a freight assistance subsidy for licenced commercial fishermen. Individual subsidies by lake are listed in table 3 and those Mid North lakes eligible are shown on Map 3. The information available at this time is not sufficient to evaluate the effectiveness of this program.

The exact transportation network used in the northern fisheries varies from season to season, however an idea of the travel distances from the individual lakes to the intermediate delivery points may be gained by noting Maps 4 and 5.

Prices of fish have steadily increased since the marketing corporation was formed (Table 4). They have not, however kept up to the cost of living in the same period. For example medium sized continental standard whitefish prices have risen at an annual average rate of 5.4 percent while the cost of living for the same period (1970-1976) was 8.8 percent. Headless dressed pickerel averaged 5.6 percent per year and large dressed northern pike increased 3.5 percent per year. Tullibee prices, an exception to the other major species, has increased at over 21 percent per year.

⁸ Southern Indian Lake counting for 28 percent of this figure.

=	
Special .	
.0	
.0	
, s E	

10 10 10 10 10 10 10 10 10 10 10 10 10 1	14/6-7	161	Triv.	Souther I to	(M) 1 (M)
8 9 10 Eigh 107					6 173
S S S S S S S S S S	107	í	Opachuanau	- 161	D
1, 10 - 8 1/2 Coose 117 1/4 1 3/4 2 1 1 1 1 1 1 1 1 1	10				4
1		1	Partridge Crop 2	205 4 1/4	9
17 19 17 10 10 10 111	1/4		Pikwitonei 2	210 4 3/4	6 1/2 10
Same	4 1/2	m	Pipestone 2	211 6 1/2	2 7 3/4 8 1/4
13 13 14 1 1 1 1 1 1 1 1		10	Reindeer 2	222 8 3,	3/4 10 10
Herbiter 127 4 1/2 - 7 7 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	m	4	Russell 2	229 10	10
41 1 - 4 3/4 Kipahigan 143 6 1/2 - 8 1/4 8 42	7	7	Russick 2	230 -	8 3/4
ham 43 5 1/4 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	143 6			232 3	6 10
8 sham 43 5 1/4	144	1/4	Saskatchewan R. 2	233 3	5 1/4 3 1/4
45 10 10 10 Kisseynew 146 3 1/4 - 4 3/4 5 4 1/2 - 4 1/2 - Kississing 148 4 5 3 3/4 5 55 4 1/2 - 10 Landing 153 2 1/4 - 10 56 3 2 1/2 4 3/4 Landry 154 - 2 1/4 - 10 61 - 4 1/2 2 1/4 Landry 154 - 2 1/4 - 10 65 - 1/2 3 1/2 2 1/4 Leftrook 158 10 - 10 72 9 1/2 - 10 Loonhead 167 - 10 10 10 73 - 8 3/4 - Macbride 169 - 10 - 6 83 9 1/4 10 10 Moose,North Arm182 3 - 6 1/2 84 - 3 3 3/4 - Moose,North Arm182 3 - 6 1/2 85 3 - 4 1/4 Kilsan River 192 10 - 6 81 1 1/2 - 4 3/4 Kilsan River 192 10 - 10 82 - 6 - 13/4 Kilsan River 192 10 - 10 83 1 1/4 4 1/2 3 3/4 Kilsan River 192 10 - 10 84 1/2 - 13/4 Kilsan River 192 10 - 10 85 11/4 4 1/2 3 3/4 Kilsan River 192 10 - 10 86 1 1 1/2 - 13/4 Kilsan River 192 10 - 10 87 10 10 10 10 10 10 10 10 10 10 10 10 10	2		Sipiwesk	245	1 3/4
the thickness of the control of the	146 3			246 10	- 10
Kississing 148 4 5 3 3/4 S Kississing 148 4 5 3 3/4 S Landring 153 2 1/4 - 10 Landring 153 2 1/4 - 10 Landry 154 - 10 Landry 154 - 10 Laurie 155 10 - 10 Limestone Pt. 160 10 10 10 Nochead 167 - 10 Mackride 169 - 10 Mackride 169 - 10 Moody 180 - 10 Moody 180 - 10 Moose, North Arm182 3 - 1/4 5 1/4 1/4 1/2 - 1/3/4 Mossy Mossy - 1/2 - 1/3/4 Melson River 192 10 - 10 Motorial 193 - 1/4 8 10 Motorial 193 10 - 1/4 8 10 Motorial 193 - 1/4 8 10 Motorial 195 - 1/4 8 10	147		Solomon	250 -	9
55 10 Landing 153 2 1/4 - 10 10 10 10 154 - 10 10 10 10 10 10 10 10 10 10 10 10 10	148 4	6	Southern Indian	251 2 1	1/2 8 3/4 6 1/2
Fer 60 3 2 1/2 4 3/4 Landry 154 - 21/4 - 8 61 - 4 - Laurie 155 10 10 66 - 1/2 3 1/2 2 1/4 Leftrook 158 10 - 10 72 9 1/2 - 10 Loonhead 167 - 10 10 73 - 8 3/4 - Macbride 169 - 6 83 9 1/4 10 10 Moody 180 - 10 84 - 33/4 - Moose, North Arm 183 4 3 1/4 5 1/4 85 3 - 4 1/4 , East Arm 183 4 3 1/4 5 1/4 86 1 1/2 - 4 3/4 Mossy	153 2	1.0	Split	252 10	- 10
61 - 4 - 1 Laurie 155 10 6				253	
th 65		ſ	Summerberry	257 3	- 5 1/4
10 66 - 5 - 10 10 10 10 10 10 10		- 10	Suwannee	258 -	4 1/4 -
tte 82 - 10 Loonhead 167 - 10 - 6 73 - 8 3/4 - MacBride 169 - 6 83 9 1/4 10 10 Moody 180 - 10 - 6 84 - 33/4 - Moose,North Arm182 3 - 4 3/4 85 3 - 4 1/4 , East Arm 183 4 3 1/4 5 1/4 86 11/2 - 4 3/4 , Pick.Ch. 184 3 2 1/2 5 1/4 89 - 4 1/2 - Mossy * - 6 1/2 100 95 - 1 3/4 Nottgi 195 10 101 95 - 1 3/4 Nottgi 195 9 1/2	Pt. 160 10			260 -	10
13	167	- 0	Takipy	261 -	1
tion 95 - 6 - 6 - 10		9	Talbot	262 4	4 3/4 5 3/4
ss 9 1/4 10 10 Moody 180 - 10 - sken - 3 3/4 - 4 1/4 ,East Arm 183 4 3 1/4 5 1/4 ss 86 1 1/2 - 4 3/4 ,Pick.Ch. 184 3 2 1/2 5 1/4 s 89 - 4 1/2 - Mossy * - 6 1/2 n 91 - 6 - Mynarsk1 189 - 6 1/2 k - 1 3/4 Natawahunan 191 4 3/4 8 10 ction 95 - 3 3 3/4 Notig1 195 - 9 1/2 103 3 1/4 4 1/2 3 3/4 Notig1 195 - 9 1/2		10	Three Finger	265 -	
tken 84 - 33/4 - Moose,North Arm182 3 - 43/4 1/4 (2) East Arm 183 4 31/4 51/4 51/4 (2) East 89 - 41/2 - Mossy * - 61/2 61/2 (2) East Arm 183 4 31/4 81/2 (2) East Arm 183 4 31/4 81/2 (2) East Arm 183 4 10 - 10 (2) East Arm 183 4 10 (2) East Arm 183 (2) East Arm	1	1	Walker	272 10	10 10
85 3 - 41/4 ,East Arm 183 4 31/4 51/4 86 11/2 - 43/4 ,Pick.Ch. 184 3 21/2 51/4 89 - 41/2 - Mossy			Wapisu	275 -	10
s 86 11/2 - 43/4 ,Pick.Ch. 184 3 21/2 51/4 89 - 41/2 - Mossy		1/4 5	Waskalowaka	278 -	- 10
103 31/4 41/2 33/4 Notigt 195 - 6 1/2	Ch. 184	1/2 5	Wedge	282 -	
tion 95 - 6 - 81/2 13/4 Natawahunan 191 43/4 8 10 103 31/4 41/2 33/4 Notigi 195 91/2			Wekusko	283 -	5 3/4
tion 95 - 3 3 3/4 Netson River 192 10 - 10 103 3 1/4 4 1/2 3 3/4 Notigi 195 9 1/2	189		White Rabbit	288	
tion 95 - 3 33/4 Nelson River 192 10 - 10 103 31/4 41/2 33/4 Notigi 195 91/2	nan 191 4		Wintering	295 2	1/4 43/49
103 31/4 41/2 33/4 Notigi 195 91/2	r 192	- 10	Witchai	296 -	9 3/4 =
		6	Woosey	- 662	10
			Wuskwatim	300 6	1/2 - 9
UMFA			Yawninstone	301	7 7

Altem numbers are those listed in the Canada Gazette Schedule XVI. Part VI.

LAKES AVAILABLE FOR FISHERMAN'S FREIGHT RATE ASSISTANCE (1976-77)

NUMBERS ARE ITEMS LISTED IN CANADA GAZETTE (see table 3)

MAP 3.
FISHERIES RESOURCES

MID NORTH PLANNING ZONE

F.F.M.C. DELIVERY POINTS & INTERMEDIATE DESTINATIONS 1976 SUMMER SEASON

MAP 4
FISHERIES
RESOURCES
MID NORTH
PLANNING ZONE

F.F.M.C. DELIVERY POINTS & INTERMEDIATE DESTINATIONS 1976-77 WINTER SEASON

MAP 5
FISHERIES
RESOURCES
MID NORTH
PLANNING ZONE

Table 4

Price to Fishermen F.O.B. Transcona

	1970	1971	1972	1973	1974	1975	1976	1977	Change
Whitefish	.21	.21	.22	.22	. 24	.24	.29	.29	+ 38
Pickerel	.51	.51	.51	.51	.51	.54	.71	.85	+ 66
Tullibee ^d	.06	.06	.06	.06	.08	.10	.15	.17	+183.3
Northern Pike ^e	.16	.16	.14	.18	.19	.19	.20	.23	+ 43.8

Source: F.F.M.C. Price Lists

dPrices for loose dressed fresh fish

^{&#}x27;Continental standard medium sized

Headless medium sized

Continental medium sized

e Large sized

Forestry

Controlled use of forests appears to have started after the passing of the Dominion Land Act in 1872. After the turn of the century, two federal acts, the Forest Reserve Act (1906) and the Forest Reserves and Parks Act (1911), were passed to deal specifically with all aspects of forest administration. It was under Federal control that the first silviculture and fire protection programs were initiated. By 1921 aircraft were used in aerial detection. In 1930, the Forestry Branch of the Provincial Department of Natural Resources was formed and took over control of forestry administration. The Zones only forest reserve was established in 1947 (Cormorant Provincial Forest).

In 1908 the first fire rangers saw action in The Pas area. In the 1920's aircraft bases were established at Norway House and Cormorant Lake and in 1932 the newly organized government air service established a base at Grace Lake.

Status

For the purpose of inventory and records, the commercial forest zone has been divided into forestry management units (MU). The Mid North Planning Zone contains all or part of 31 units (Map 1). Documentation of current forest status is obtained by modifying the inventory data with know changes such as fires and harvesting operations. Map 2 shows the acreage (by township) of intermediate stands of timber. The Sherridon-Snow Lake-Flin Flon and Partridge Crop Lake areas contain the largest acreages of intermediate timber. Map 3 shows the acreage (by township) of mature stands. The highest number of mature acres per township occur in the Goose Lake area. The number of acres of merchantable forest in the Planning Zone are shown on Map 4. The east-central portions of the zone have the highest acreages of merchantable timber. Note that there are only 15 townships in the zone with more than 15,000 acres of merchantable timber.

The terms intermediate, mature and merchantable are used as in <u>Forests</u> of Manitoba (1974).

 $^{^{2}}$ The theoretical township is 23,040 acres.

FOREST INVENTORY REGIONS & MANAGEMENT UNITS (MU)

MAP 1. FORESTRY

MID NORTH PLANNING ZONE

linch:40 miles

Source: Manitoba; Dept. of M. R.E.M., 1975.

AREA OF INTERMEDIATE STANDS (BY TOWNSHIP IN ACRES)

>	8,0	0	0												177
	4,0	0	0	_	8	, () (
<	4,0	0	0						 ٠	٠					

MAP 2. FORESTRY

MID NORTH PLANNING ZONE

linch:40 miles

4,000-8,000 2,000-4,000 < 2,000

FORESTRY

MID NORTH PLANNING ZONE

Linch 40 miles

linch:40 miles

Source; Manitoba, Dept. M.R.E.M., 1975.

The net³ merchantable volume by management unit is shown on Map 5 and is broken down by specie (per management unit) in Table 1. Table 2 is a short summary of volume by specie.

Major fires, of course can abruptly change the forest status at any time and any calculations involving acreages or volumes should include a consideration of any fires since the last inventory. Map 6 shows the approximate locations of the more major fires occuring since 1961. Although the number of fires varies widely from year to year, the acreage burned and the extent of individual fires has been reduced in recent years. This is undoubtably due to improved detection and fire fighting capability.

³After cull factor has been applied

FOREST INVENTORY REGIONS CONIFEROUS DECIDUOUS

SOURCE: FORESTS OF MANITOBA (1974)

MID NORTH PLANNING ZONE

linch:40 miles

1961-1965-----

1966-1970

1971 - 1975 - - - - -

1976 - 1978

FORESTRY

MID NORTH PLANNING ZONE

linch: 40 miles

		Ne	et Merchanta	ble Volum	e by Spe	cies & Man	agement l	Units Provin	ncial Crown	Land (10	O's Cubi	c Feet)		
Forest Management Unit	Cutting Class	Jack Pine	Black Spruce	White Spruce	Balsam Fir	Tamarack Larch	Eastern Cedar	Subtotal Softwood	Trembling Aspen	Balsam Poplar	White Birch	Other Hardwood	Subtotal Hardwood	Total
51	3 4 & 5	794,460 490,990	370,230 190,610	75,300 67,540	2,820 2,630	15,890 3,360		1,258,700 755,130	76,810 74,590	13,560 16,180	13,130 13,290	1,190 940	104,690 105,000	1,363,390 860,130
	Total	1,285,450	560,840	142,840	5,450	19,250		2,013,830	151,400	29,740	7,110	2,130	209,690	2,223,520 516,780
52	4 & 5	136,790 119,830	216,940 143,180	47,740 39,050	2,690	13,470		417,630 308,520	50,270 56,310	101,450	7,780	42,450	207,990	516,510
	Total	256,620	360,120	86,790	5,120	17,500		726,150	106,580	130,300	14,890	55,370	307,140	1,033,290
53	3	577,460	321,270	136,680	8,360	14,040 2,230		1,057,810 1,173,540	299,480 219,280	39,070 67,930	32,870 43,570	2,160 15,720	373,580 346,500	1,431,390 1,520,040
	4 & 5 Total	589,790 1,167,250	316,070 637,340	248,470 385,150	25,340	16,270		2,231,350	518,760	107,000	76,440	17,880	720,080	2,951,430
54	3	299,830	400,560	54,150	2,520	13,100		770,160	57,420	8,940	11,380	650	78,390	848,550
	4 & 5	159,060	287,300	68,630	3,530	5,960		524,480	38,160	9,110	8,000	690	55,310	579,790
5.5	Total 3	458,890 203,160	687,860 254,310	122,780	6,050 3,080	19,060 7,880		1,294,640	95,580 72,380	18,050	19,380	2,170	103,580	626,230
3.3	4 & 5	112,500	147,410	51,390	1,950	2,080		315,330	56,800	35,270	9,400	9,390	110,860	426,190
	Total	315,660	401,720	105,610	5,030	9,960		837,980	129,180	52,830	20,870	11,560	214,440	911,890
56	4 & 5	183,830 432,940	363,220 580,910	168,010 459,550	10,530 22,840	13,050 6,020		738,640	116,200 461,090	30,740 104,540	23,220 67,230	3,090	173,250 644,760	2,147,020
	Total	616,770	944,130	627,560	33,370	19,070	,	2,240,900	577,290	135,280	90,450	14,990	818,010	3,058,910
57	3 4 & 5	122,530 120,500	181,750 221,360	75,570 106,650	4,310 7,290	4,430 2,100		388,590 457,900	43,800 53,660	7,120 11,590	10,600	470 330	61,990 82,860	450,580 540,760
-	Total	243,030	403,110	182,220	11,600	6,530		846,490	97,460	18,710	27,880	800	144,850	991,340
60	3 4 & 5	272,880	867,340 482,620	280,400	15,580 15,280	4,720 950		1,440,920 1,078,520	281,460 272,130	27,560 18,440	50,150		359,170 329,700	1,800,090 1,408,220
	Total	369,990 642,870	1,349,960	490,080	30,860	5,670		2,519,440	553,590	46,000	89,280		688,870	3,208,310
61	3	160,630	621,450	106,480	4,850	4,570		897,980	251,580	22,340	36,570		310,490	1,208,470
	4 & 5 Total	46,260	318,800 940,250	173,460	3,990 8,840	1,210		1,335,220	117,240 368,820	10,430	48,030		139,130	1,784,840
62	3	643,180	1,411,390	356,730	20,280	6,360		2,437,940	402,030	35,610	81,300		518,940	2,956,880
-	4 & 5	536,130	748,560	183,730	9,790	1,290		1,479,500	265,460	18,910	46,700		331,070	1,810,570
63	Total 3	1,179,310 726,080	2,159,950	540,460 269,110	30,070	7,650		3,917,440	482,970	54,520	128,000		850,010 605,700	4,767,450 3,630,060
03	4 & 5	604,150	859,710	99,930	5,090	1,080		1,569,960	236,140	16,600	37,780		290,520	1,860,480
	Total	1,330,230	2,869,720	369,040	16,760	8,570		4,594,320	719,110	57,610	119,500		896,220	5,490,540
64	3 4 & 5	891,310 521,400	2,078,760 1,332,230	203,100	8,800 7,670	7,070 1,500		3,189,040 1,998,700	656,520 264,730	58,320 21,180	96,620 43,300		811,460 329,210	4,000,500 2,327,910
	Total	1,412,710	3,410,990	339,000	16,470	8,570		5,187,740	921,250	79,500	139,920		1,140,670	6,328,410
65	4 & 5	905,330 242,420	1,803,970 357,810	147,400	6,110 2,980	11,050 580		2,873,860 654,590	442,020 133,210	33,520 8,500	77,450 19,630		552,990 161,340	3,426,850 815,930
-	Total	1,147,750		198,200	9,090	11,630		3,528,450	575,230	42,020	97,080		714,330	4,242,780
66	3	870,860	2,368,950	214,110	9,560	10,990		3,474,470	807,690	72,900	110,820		991,410	4,465,880
_	4 & 5	134,720	419,790	51,530	2,640	810		609,490	140,720	10,890	16,290		167,900	777,390
	Total	1,005,580	2,788,740	265,640	12,200	11,800		4,083,960	948,410	83,790	127,110		1,159,310	5,243,270
71	4 & 5	122,720 40,900	302,580 100,860		5,270	140 50		431,160 143,710	12,230		4,930 1,640		17,160 5,720	448,320 149,430
	Total	163,620	403,440		7,620	190		574,870	16,310		6,570		22,880	579,750
72	4 & 5	51,190 17,060	342,800 114,260		13,750 4,580			407,740 135,900	15,860 5,290		9,830 3,280		25,690 8,570	433,430 144,470
_	Total	68,250	457,060		18,330			543,640	21,150		13,110		34,260	577,900
73	3 4 & 5	48,690 16,230	455,690 151,900		19,650			524,030	28,200		14,450		42,540	566,680
	Total	64,920	607,590		6,550			174,680	9,400		4,810		14,210 56,860	188,890 755,570
74	3	84,490	423,620		19,360			527,470	45,080		18,740		63,820	591,290
_	4 &) Total	28,160	141,200 564,820		6,450 25,810			175,810	15,030		6,250		21,280	197,090
75	3	2,010	171,170	130		140		703,280 173,450	4,020	570	5,270		85,100 9,860	788,380 183,310
	4 & 5 Total	2,010	117,450 288,620	130		80		117,530			590		590	118,120
81	3	143,750	355,090	39,590	6,760	7,340	+	290,980	4,020 92,160	570 11,810	5,860		10,450	301,430
	405	113,900	182,810	42,920	8,030	370		348,030	70,940	10,440	13,120		94,500	442,530
82	Total 3	257,650 160,780	537,900 864,750	82,510 87,330	14,790 20,070	7,710		900,560	163,100	22,250	25,280		210,630	1,111,190
0.	4 6 5	147,330	685,790	171,770	26,980	1,460		1,033,330	129,820 161,280	21,090	26,320 29,950		177,230 218,000	1,322,100 1,251,330
83	Total		1,550,540	259,100	47,050	13,400		2,178,200	291,100	47,860	56,270		395,230	2,573,430
0.5	3 4 6 5	603,860 568,250	1,921,940 1,515,140	145,720 360,490	14,340 39,960	8,400 1,980		2,694,260 2,485,820	493,620 548,070	49,990 61,160	67,260 61,140		610,870 670,370	3,305,130 3,156,190
	Total	1,172,110	3,437,080	506,210	54,300	10,380		5,180,080	,041,690	111,150	128,400		1,281,240	6,461,320
84	3 4 & 5	657,450 454,880	1,522,270 1,131,070	125,420 336,530	11,870 44,170	5,810 1,350		2,322,820 1,968,000	462,210 422,220	47,710 46,1 9 0	60,180 54,550		570,100 522,960	2,892,920 2,490,960
	Total	1,112,330	2,653,340	461,950	56,040	7,160		4,290,820	884,430	93,900	114,730		1,093,060	5,383,880
85	4 6 5	481,050 294,670	1,403,350 795,190	97,840 151,080	9,000 18,180	4,710 870		1,995,950	355,330 245,060	35,600 28,480	50,030 29,770		440,960 303,310	2,436,910 1,563,300
	Fotal	775,720	2,198,540	248,920	27,180	5,580		3,255,940	600,390	64,080	79,800	are she	744,270	4,000,210
86	3 4 8 5	261,120 73,250	949,590 248,980	41,990 26,830	3,530	7,590 590		1,263,820	87,330	13,530	24,700		125,560	1,389,380
	Tetal	334,370	1,198,570	68,820	6,350	8,180		352,470 1,616,290	20,880	4,910	5,050		30,840 156,400	383,310
87	3	353,620	1,024,910	61,010	3,890	9,380		1,452,810	242,920	29,670	41,840		314,430	1,767,240
	+ & S Total	181,770	251,400 1,276,310	39,880	1,790 5,680	9,720		475,180	124,520	14,030	14,500		153,050	628,230
88	3	65,100	199,420	12,330	960	1,410		279,220	367,440 55,300	6,810	56,340		467,480 72,620	351,840
	4 8 5	12,240	22,290	6,240	360	40		41,170	17,250	1,840	1,640		20,730	61,900
89	T tal	77,340	221,710 809,190	18,570	4,200	4,630		320,390	72,550	8,650 28,040	12,150		93,350	1,451,680
	4 5 5	44,520	93,100	30,180	1,680	240		169,720	120,590	10,610	9,110		140,310	310,030
93	T t	279,730	902,290	83,190	5,880	4,870		1,275,960	393,480	38,650	53,620		485,750	-,761,710
73	4 & 5	73,650	474,060		60,030 20,010			1,703,180	95,870 31,960		48,020		143,890 47,960	1,847,070
	Total		1,896,250		80,040			2,270,900	127,830	~~	64,020		191,850	2,462,750
94	4 & 5	644,960	902,450 465,920	41,880 61,480	6,810	6,760		1,602,860 1,187,620	152,330 194,530	28,300 15,060	38,000 36,600		218,630 246,190	1,821,490 1,433,810
	Total	1,287,460		-	24,170	7,120		2,790,480	346,860	43,360	74,600		464,820	3,255,300

Table 2

Net Merchantable Volume a Mid North Zone (by Species in 100's Cubic Feet)

10,859,510
1,613,340
1,780,160
154,390
14,407,400
14,40

^aCutting classes 3, 4 and 5

Production

Large scale lumber production began in the north in 1910 with the establishment of a mill near The Pas. There are currently a number of sawmills (both portable and stationary) located in the Mid North and one pulp mill.

Maximum potential pulp production per day from the Manitoba Forestry Resources Ltd. (ManFor) plant is 530 tons per day of unbleached kraft pulp or unbleached kraft paper.

Production from the various sawmills in the zone goes to such things as stud lumber, mining and railroad ties and hydro poles. Lumber production of four of the zones major sawmills is in access of 63 million board feet (Table 3). A more detailed breakdown of production of the ManFor operations is given in Table 4.

The two major cutting areas in the zone are the areas between Kississing and The Pas (Map 7) and the area south of Wabowden (Map 8).

Table 3

Lumber Production
(Millions of Board Feet)

	1977	1976	1975	1974	1973
Manfor	53.0	45.9	40.6	74.9	59.7
Spruce Products ^b	4.2	4.2	1.2	1.0	n.a
Prendiville ^C	1.2	2.5	2.5	2.5	2.5
Prendivilled	5.0	3.1	3.1	3.0	3.0

Source: Forest Industries: Vol. 105 No. 6

Vol. 104 No. 6 Vol. 103 No. 7 Vol. 102 No. 6

 $^{\mathrm{a}}$ Manitoba Forest Resources Ltd. The Pas

 $^{\rm b}$ Mill in The Pas

^CMill in Arnot

d_{Mill} in Atik

Table 4

Manitoba Forest Resources 1977-78 Production

	Cut (Cords	Hauled	Sawn (FBM)
January 1978	16,832.79	26,272.68	3,555,526.00
February 1978	29,924.76	53,565.45	4,962,090.00
March 1978	32,248.78	53,395.68	5,281,397.00
April 1978	26,660.41	36,817.43	5,025,977.00
May 1978	22,340.37	4,203.76	5,157,027.00
June 1978	38,355.21	25,327.33	5,526,213.00
July 1978	30,333.21	43,347.33	3,320,213.00
August 1978	5,739.74	23,088.22	4,853,850.00
September 1977	30,286.70	19,414.58	3,944,703.00
October 1977	33,906.93	29,371.77	4,268,588.00
November 1977	28,996.96	11,695.99	4,010,723.00
December 1977	30,830.24	29,787.62	4,319,254.00
TOTAL	296,122.89	312,940.51	50,905,348.00
TOTAL 1977*	291,037.21	241,347.48	48,373,666.00
TOTAL 1976*	255,067.45	318,900.17	48,497,714.00

^{*}Calendar year

Source: Monthly progress reports, Northern Region, Forestry Section. Dept. of Mines, Natural Resources and Environment.

Capability

The Canada Land Inventory (C.L.I.) has completed the forest capability evaluation for that area south of the 55th parallel and west of the Prime Meridian. The best ratings (class 3 and 4) 4 are shown on Map 9. The primary limitations to commercial forestry noted by C.L.I. is excess soil moisture. Class 3 (C.L.I.) ratings usually have a productivity of 71-90 cubic feet per acre per year. Class 4 (C.L.I.) rating usually has a productivity range of 51 to 70 cubic feet per acre per year.

Capability is usually expressed in terms of productivity.

The productivity of the zone as determined by Forestry planners in shown on Map 10 in cubic feet per acre and on Map 11 in cubic feet per township. The first gives an idea of the individual growth rate, the latter expresses the extent of that rate. When the two maps are combined, a second type of capability rating may be developed (as opposed to C.L.I.). This method encorporates individual acreage productivity with the number of highly productive acres in each township (See Appendix H for details). This generalized capability is expressed on Map 12.

Based on such information as the forest inventory, forest capability and fires, a proposed annual allowable cut has been determined for each management unit. The proposed annual allowable cut (Table 5) was established in order to ensure a continuous supply of timber on a sustained yield basis.

⁴Ratings are not pure stands, areas shown on Map 9 are those where 50 percent or more of the stand is the rating indicated

MEAN ANNUAL INCREMENT (cu. ft./acre)

11 - 15 -----21-30 < 10

16 - 20

FORESTRY

MID NORTH PLANNING ZONE

Linch 40 miles

250,000 - 400,000

100,000 - 250,000

< 100,000

FORESTRY

MID NORTH PLANNING ZONE

linch:40miles

*FOR CALCULATION OF CAPABILITY SEE APPENDIX H

FORESTRY

MID NORTH PLANNING ZONE

linch 40 miles

Table 5

Proposed Annual Allowable Cut By Forest Management Units Provincial Crown Land (In 100 Gubic Feet)

Total	27, 20 4,780 36,040 34,40 11,440 34,100 11,050	138,870	22,140 16,760 50,020 55,270 77,440 43,750 39,510	304,890	6,080 5,520 7,010 7,210	25,820	27, 200 80,820 80,820 70,810 70,810 52,690 19,980 1,550 8,060	297,790
Subtotal	; ; ; ; ; ; ; ;	1	111111	1	1 1 1 1 1	ı	1 1 1 1 1 1 1 1 1	1
Other Deciduous	[t		1	1 1 1 1	ı	11111111	1
White Eirch	1 1 1 1 1 1 1	1	1 1 1 1 1 1 1	1		1	1 1 1 1 1 1 1 1	1
Balsam Poplar	1 1 1 1 1 1	_	1 1 1 1 1 1 1	1	1111	1	1 1 1 1 1 1 1 1 1	1
Trembling Aspen	111,111	1	11111	l	1111	1	1 1 1 1 1 1 1 1 1	
Subtotal Coniferous	27,020 4,780 36,040 14,740 11,440 34,100	138,870	22,140 16,760 50,020 55,270 77,440 73,750 39,510	304,890	6,080 5,520 7,010 7,210	25,820	11,190 27,200 80,820 70,810 53,690 19,980 24,490 1,550 8,060	297,790
Eastern Cedar	1 1 1 1 1 1	1	111111		1 1 1 1 1	1	1 1 1 1 1	1
Tamarack Larch		1	11111	1	1 1 1 1 1	ą	11111111	1
Salsam Fir	250 250 370 370 370 370 370 370 370 370 370 37	920	280 120 360 190 270 110 140	1,460	110 250 360 350	1,070	240 750 750 1,280 120 60 120	4,010
White Spruce	2,413	23,860	2,260	24,450	1111	1	1,240 8,590 9,390 1,1350 1,260 1,260 1,260 1,260	32,840
Black	6,940 2,140 9,860 5,788 12,360	16,450	3,870 11,066 25,000 29,780 48,200 23,230 27,190	174,370	3,880	19,520	5,340 15,470 48,360 41,950 33,510 13,680 14,130 690 5,250	178,380
Jack Fine	17,630 17,630 17,50 17,50 1870 5,210	071,740	3,220 3,380 18,860 22,000 24,490 17,890	104,610	2,090 880 820 1,440	5,230	4,370 5,390 22,820 18,190 14,410 4,830 9,040 2,720	82,560
F. Post Vanage ment	- 4 ° 10 0 °	Total	·) - · · · · · · · · · · · · · · · · · ·	Total	-(,0) -1	Total	1004500	Total
Forest	2		·		-		a	

Source: Forests of Manitoba 1974

Mineral Resources

The mineral industry is a major component of Canada's economic base. In 1975, the industry's mineral production was valued at \$13,403 million - 8.3% of gross national product. Direct employment estimates for the mining industry in Canada amounted to 53,000. The strength of Canada's mineral industry is based on export sales. Approximately 82.0% of total mineral production in 1975 was exported with crude minerals (i.e. not including oil and natural gas) comprising 67.2%. In 1975 the exported minerals were valued at \$10,987 million or 34.2% of the \$32,096 million total of merchandise exports. In Manitoba, mineral production in 1975 was valued at \$533.2 million. Manitoba produced 26.4% of Canada's nickel, employing approximately 6000 people in 1977 with an average weekly wage of \$308.00.

Prospecting in Manitoba began prior to World War I with first production coming from the Mandy Mine (Flin Flon) in 1917. Metallic mineral production has largely been centered in the Mid North Planning Zone whereas industrial minerals are predominantly obtained from Southern Manitoba.

Gold deposits were discovered at Herb Lake in 1914 and intermittently between 1917 and 1939 a number of mines in the area were developed producing gold, and to a lesser degree silver. The Gurney Mine near Flin Flon, also a gold producer, was active between 1937 and 1939. The Nor-Acme mine on Snow Lake produced between 1949 and 1958.

Base metal mining has far outshadowed gold production in the Zone. The first copper-zinc deposit to be brought into production was the Mandy Mine which operated from 1917 to 1920 and again in 1943 and 1944. By 1928 a rail line from The Pas had reached the site and by 1930 production had commenced in the Flin Flon Mine.

These early discoveries prompted prospecting in the Kississing Lake area, resulting in the development of a mine at Sherridon. This Sherritt Gordon mine produced copper-zinc from 1931-32 and again between 1937 and 1951. The "A" mine and the "EL" mine (nickel-copper) at Lynn Lake were brought into production in 1953, with the concentrator and mining plant being moved from Sherridon by winter tractor train.

¹total G.N.P. for 1975 was \$161,132 million

²Canada Year Book 1976-77 Special Edition p. 393

Within the Planning Zone there are 74 mine properties which have known mineral reserves. The dispositions and locations of these holdings are shown on Map 1. Property owners and major production commodities are listed in Table 1.

PRESENT PRODUCER

SURFACE OF DIAMOND DRILLING (FOR NUMBERS SEE TABLE 1a)

MID NORTH PLANNING ZONE

linch:40 miles

Table 10

			Mining Properties	in the Mi	1 North	
Map Locality No.	Property Name	Status Table	Property Molder	Loc.	ation Long.	Major Commodities and/or Reserves
1	Flin Flon	C5	Hudson Bay Mining and Smelting Co., Limited	54° 46'	101° 53°	3,847,000 Yons; 2.8% Cu; 2.3% Zn;.56 oz/Ton Ag; .05 oz/Ton Au
2	Handy	A5	Hudson Bay Mining and Smelting Co. Limited	54° 42°	101° 51'	Produced 25,000 Tons Cu ore av. 20% Cu between 1917 and 1920. Produced 125,021 Tons av. 5.47% Cu, 16.5% Zn; 0.095 oz/ton Au; 1.9 oz/ton Ag between 1943 and 1944-Geology & Mineral Resources of Manitoba, p. 72
3	Schist Lake	A 5	Hudson Bay Mining and Smelting Co. Limited	54° 43¹	101° 49'	145,800; 4.71% Cu; 5.3% Zn: .72 oz/ton Ag, .026 oz/ton Au
4	Cuprus	Α?	Hudson Bay Mining and Smelting Co., Limited	54° 42°	101° 42°	Produced 509,374 Tons av. 3.25% Cu; 6.4% Zn; 0.038 ox/ton Au; 0.84 ox/ton Ag between 1946 and 1952-G.S.C. Paper 71-27, p. 43
5	White Lake	C4	Hudson Bay Mining and Smelting Co., Limited	54° 42°	101° 42°	Cu; Zn; Ag; Au (See: Can. Mines Handbook 75/76 for production).
6	Pine Bay	D3	Pine Bay Mines Ltd.	54° 46'	101° 37°	1,500,000 Tons; 1.3% Cu-Can. Mines Handbook ?5/76
7	Baker-Patton	D5	Cerro Mining Company of Canada Limited	54" 46'	101° 34'	Narrow bodies of 3% Cu and larger bodies of low- grade copper and gold
8	North Star- Don Jon	A5-A2	Hudson Bay Mining and	54° 46'	101° 34'	North Star-produced 218,847 Tons of Cu ore between 1955 and 1958. Don Jon-produced 69,811 Tons of Cu ore between 1955 and 1957 Geology and Mineral Resources of Manitoba, p. 73.
9	Centennial	C4	Hudson Bay Mining and Smelting Co., Limited	54° 42'	101° 40'	1,400,000 Tons; 2.6% Zn; 2.06% Cu; 0.70 oz/ton Ag; 0.04 oz/ton Au to 1200 ft. as of 1970 - Can. Mines Handbook 75/76.
10	Lucille Lake	E2	P. Bachnick & H. Howell	54° 42'	101° 22'	Zone 5-10 ft. wide of 2-3% Cu-Northern Miner 64 11 05
11	Curney	A2	W.B. Dunlop	54° 44°	100° 11°	Produced 25,164 ounces of Au between 1937 and 1939 Geology and Mineral Resources of Manitoba, p. 75.
1.2	Rail Lake	E3	Hudson Bay Mining and Smelting Co., Limited	54° 45'	100° 35'	325,000 Tons; 3.01 Gu; 0.71 Zn to 1000 ft Can. Mines Handbook 75/76
23	Dickstone	B 4	Dickstone Copper Mines Limited	54° 51°	100° 29'	473,142 Tons: 2.4% Cu; 3.5% Zn; 0.009 oz/ton Au; 0.29 oz/ton Ag as of 74 12 31 - Can. Mines Handbook 75/76.
3.4	Bomber	Ε2	Falconbridge Nickel Mines Limited	54° 52'	100° 11'	750,000 Tons; 0.04% Gu; 1.00% Zn-calculated from M.f. card.
15	Squall Lake	E2	Squall Lake Gold	54* 56'	100° 04'	520,000 Tons; 0.215 oz/ton Au-calculated from H.I. cazd.
16	elW	ε3	Hudson Bay Mining and Smelting Co., Limited	55° 02'	100° 03'	1,090,000 Tons; 2.91% Cu to 2000-ft. level as of 1969 - Can. Mines Handbook 75/76.
17	Century	в3	Hudson Bay Mining and Smelting Co., Limited	54° 52°	100° 52'	Produced 59.6 ounces of Au in 1942 from reserves estimated to be 100,500 Tons av. 0.32 or ton Au and 95,000 Tons av. 0.27-0.31 or ton Au in 1940 - Northern Miner w1 02 27.
15	Vamp Lake	E3	Hudvam Mines Limited	54° 56'	101° 10'	401,200 Tons; 1.5% Gu; 1.7% Zn, 0.1% og/ton Au, 0.4% og/ton Ag - Lan. Mines Handbook '% '6
19	Sherridon	A1	Sherritt Gordon Mines Limited	55° 07°	101° 06°	Produced 6,531,352 Tons av. 2.12 Cu; 0 97% Zn. 0.4 or ton Ag. O.Ul oz.ton Au between 1931 and 1951 - Geology and Minera. New Drives of Maritcha. p. 101. Closed not open to staking 75 (2)
50	fet Lake	2.6	Sherritt Gordon Mines Limited	55" 09"	101* 00*	1,509,300 Iona, 1,241 tu, 1,281 In Shetritt oction 505,000 Iona, 1,802 tu, 1,802 in Annual Report 256,00 Iona, 1,802 tu, 0 ell In to 194.
21	Jungle	2.3	Hudson Bay Mining seiting Co., Limited	55° 10°	100* 54*	1,700,300 Tons, 1.s21 (u, 1.11 ?n - Geology and Mineral Resources of Manistoba, p. 106
2.2	Lectrope	8.2	Lasthope Labs Gold Mines Limited	16" 41"	100* 50*	140,000 line, 0.2) or form Au to 150 ft less if 1919 therropy and Millera. Fee if each Maritie, p. 1715
ا م	Eus Mine	L 4s	Territt Gordon M, es .isited	56" 36"	101" 19"	# Toologe form as , 951 u, . I In as if IS 1. 11 : Merritt wide As was be, ff f t

Map ocality No.	Property Name	Status Table	Property Holder	Locat Lat.	ion Long.	Major Commodities and/or Reserves
24	D.H. & F. L.	E2	Granges Exploration Aktiebolag	56° 50'	101° 01'	500,000 Tons; 2.2% Zn; 0.9% Cu as of 1952 - Geology and Mineral Resources of Manitoba, p. 122.
25	Lynn Lake	C5	Sherritt Gordon Mines Limited	56° 50'	101° 02†	Produced 352,000 Tons of ore 0.84% Ni; 0.38% Cu in 1975 possibly will become dormant in 1976 - Sherritt Gordon Annual Report for 1975.
26	Royal Agassiz	D3	Royal Agassiz Mines Limited	56° 54'	100° 57'	1,583,000 Tons av. 0.32 oz/ton Au; 1.2 oz/ton Ag - Can. Mines Handbook 75/76.
27	Ruttan	C4	Sherritt Gordon Mines Limited	56° 28¹	99° 38'	43,600,000 Tons av. 1.45% Cu; 1.49% Zn as of 75 12 31 - Sherritt Gordon Annual Report for 1975.
28	Nor-Acme	В3	Nor-Acme Gold Mines Limited	54° 53'	100° 01'	469,100 Tons av. 0.16 oz/ton Au plus additional ore in 2 other zones - Can. Mines Handbook 75/76.
29	Chisel	C 5	Hudson Bay Mining Smelting Co., Limited	54° 50'	100° 06'	1.22 oz/Ton Ag; .047 oz/Ton Au, 2,474,500 Tons: .40% Cu; 0.8% Pb; 11.5% Zn.
30	Westarm	C4	Hudson Bay Mining Smelting Co., Limited	54° 39†	101° 50¹	710,000 Tons av. 4.6% Cu; 0.6% Zn to 1400 feet level - Can. Mines Handbook 75/76.
31	MacBride Lake	E2	Mattagami Lake Mines Limited	56° 541	99° 54'	534,000 Tons; 8.77% Zn; 0.35% Cu to 1200 feet - Northern Miner 76 03 04
32	Mel Zone	E3	The International Nickel Co., of Canada	55° 58'	99° 46'	Ni-tonnage and grade unknown
33	Moak	D5	The International Nickel Co., of Canada	55° 56'	97° 35¹	50,000,000 Tons; 0.7% N1 - Northern Miner 61 08 17 Unknown Cu
34	Mystery Lake (South)	D5	The International Nickel Company of Canada, Limited	55° 50'	97° 46'	50,000,000 Tons; 0.5% N1 - Unknown Cu
35	Thompson	C5	The International Nickel Company of Canada, Limited	55° 431	97° 51'	Proven reserves 25,000,000 Tons 2.8% Ni; 0.2% Cu. Minor quantities Cobalt, Platinum, Palladium, Gold and Silver
36	Birchtree	C4	The International Nickel Company of Canada, Limited	55° 42'	97° 55'	Proven Reserves of Thompson, Birchtree, Pipe & Soab, 71,550,000 Ton Ni - 1,400,000 Tons, Cu - 100,000 Tons
37	Pipe No. l	В5	The International Nickel Company of Canada, Limited	55° 30'	98° 09'	Ni; Cu — tonnage and grade of production and reserves unknown.
38	Pipe No. 2 Open Pit	D5- B5	The International Nickel Company of Canada, Limited	55° 30 '	98° 09'	Ni; Cu - tonnage and grade of production and reserves unknown.
39	Hambone- Maralgo	E3 .	The International Nickel Company of Canada, Limited	55° 18'	98° 20'	3,600,000 Tons; 0.81% Ni and 1,200,000 Tons; 1.10% Ni - Northern Miner 58 10 02.
40	Grass River	E5	The International Nickel Company of Canada, Limited	55° 14'	98° 21'	N1 — tonnage and grade unknown
41	Soab North	В5	The International Nickel Company of Canada, Limited	55° 15'	98° 24†	Ni; Cu — tonnage and grade unknown
42	Soab South	В5	The International Nickel Company of Canada, Limited	55° 13'	98° 25'	Ni; Cu — tonnage and grade unknown
43	Bowden Lake	D3	Bowden Lake Nickel Mines Limited	54° 55'	98° 39'	80,000,000 Tons; 0.6% Ni with widths up to 1000 feet - Can. Mines Handbook 75/76.
44	Discovery	Е3	Bowden Lake Nickel Mines Limited	54° 54¹	98° 37'	Several ore lenses; av. 2000 tons/vert. ft. grading 0.8% Ni; av. 522 tons/vert. ft. grading 1.36% Ni; and av. 508 tons/vert. ft. grading 1.36% Ni-Mational Malartic Gold Mines Limited prospectus.
45	Bucko Lake	D3	Bowden Lake Nickel Mines Limited	54° 53'	98° 40'	30,000,000 Tons; 0.80% Ni to 2000 ft Can. Mines Handbook 75/76. 2,316,500 Tons; 2.38% Ni Cu unknown.
46	Manibridge	C4	Falconbridge Nickel Mines Limited	54° 42'	98° 50'	1,409,100 Tons; 2.55% Ni prior to production in July 1971 - Can. Mines Handbook 75/76. Closed June/77
47	Reservation 34, Area 1	E3	Amax Potash Limited	54° 05¹	99° 11'	7,300,000 Tons; 1.33% Ni (1% cutoff) to 1200 feet - CIM Bull, v. 68, no. 761, P. 77 (Roth, 1975).
48	Greenbay	E2	J. A. Syme	54° 52'	99° 39'	2,000,000 Tons; 1.4% Li ₂ 0 - Manitoba Mines Branch, Geol. Paper 2/73, p. 30 (Bannatyne, 1973).

locality	Name	Table	Holder	Lat.	Long.	ans/or Reserves
49	Vtolet	E.2	G. F. Thompson	54° 51'	99° 43°	5,800,000 Tone; 1.22 Li ₂ 0 - Manitoba Mines Branch, Geol. Paper 2/73, p. 30 (Bannatyne, 1973).
50	Gold Reef	E3	Sherritt Gordon Mines Limited	54° 51°	99° 44°	225,000 Tons; 1.2% Li ₃ 0 - Manitoba Mines Branch, Geol, Paper 2/73, p. 30 (Bannatyne, 1973).
51	Caborne Lake	C5	Hudson Bay Mining and Smelting Co., Limited	54° 571	99° 43'	1,925,200 Tons; 3.64% Cu; 1.5% 2n Unknown Ag*Au
52	Ferro	В2	Crowduck Bay Mines Limited	54° 48°	99° 42'	60,654 Tona; 0.508 oz/ton Au and 5,000 Tons; 0.35 oz/ton Au in open pit - Cen. Mines Handbook 74/75
53	Leguna	A2	W.B. Kobar	54° 47°	99° 46¹	Produced 1,377 ounces of Au in 1918; 5,517 ounces of Au during 1924-25; and 52,462 ounces Au and 6,117 ounces Ag during 1936 - 39 - Geology and Mineral Resources of Manitoba, p. 83.
54	Moosehorn - Ballast	В2	A. S. Kish	54° 46'	99° 47°	Produced 108 ounces Au in 1917, 52 ounces Au in 1918, and 3 - ounces Au and 9 ounces Ag in 1931 - Geological Survey of Canada, Hem. 208, p. 31, 32 (Stockwell, 1937).
55	Copper-Man	E3	Hartland Mines Ltd.	54° 39'	99° 53'	170,000 Tons; 4.17% Zn; 3.13% Cu and 74,200 Tons; 3.19% Zn; 1.49% Cu - Can. Mines Handbook 75/76.
56	Little Stell Lake	В3	Stall Lake Mines Limited	54° 541	99° 53'	672,641 Tons; 5.38% Cu; 2.28% Zn - Can. Mines Handbook 75/76.
57	Stall Lake	C5	Hudson Bay Mining and Smelting Co., Limited	54° 51'	99° 56°	3,401,500 Tons; 4.85% Cu; .6% Zn; .25 oz/ton Ag; .03 oz/ton Au
58	Rice Island	E3	The International Nickel Company of Canada, Limited	54° 48°	99° 55¹	Cu; Ni - tonnage and grade unknown
59	Anderson Lake	C5	Hudson Bay Mining and Smelting Co., Limited	54° 51'	99° 59'	2,128,500 Tons: 3.46% Cu; .1% Zn: .18 oz/ton Ag; .012 oz/ton Au
60	Joannie	E2	Hudson Bay Exploration and Development Company Limited	54° 50°	100° 02'	500,000 Tons; 1,28% Cu - calculated from M.I. card. Unknown Zn
61	Ghost- lost Lake	D5	Hudson Bay Mining and Smelting Co., Limited	54° 50'	100° 06'	Ghost-Cu; Zn; Pb; Ag; Au (See: Can. Mines Handbook 75/76 for production). Lost Lake - 247,300 Tons; 1.45% Cu; 4.9% Zn; 1.07% Pb; 2.37 oz/fon Ag; 0.085 oz/fon Au - to be mined and developed from Ghost Lake decline - Can. Mines Handbook 75/76.
62	Pot Lake	E2	Hudson Bay Exploration and Development Company Limited	54° 47'	100° 11'	100,000 Tons; 4.5% Zn; 1.45% Cu; 0.55% os/ton Ag. 0.11 oz/ton Au - calculated from M.I. card.
63	Spruce Point	E2	Hudson Bay Exploration and Development Co.Ltd.	54° 35'	100° 24°	1,000,000 Tons; 4% Zn; 2% Cu - Northern Miner 73 11 22
64	Reed Lake	E2	Hudson Bay Exploration and Development Company Limited	54° 381	100° 33'	1,500,000 Tons; 2.09% Cu to 1800 ft Can. Mines Handbook 75/76
65	Reservation 34, Area ⁷	£3	Amex Potash Limited	54° 02°	99° 12'	Ni - tonnage and grade unknown
66	Luck - Daisy The Pas	E3	J. W. Robinson	54° 49°	100° 35'	Nature of mineralization uncertain - Au; Cu reported from immediate vicinity
67	Eppe	E3	Pine Bays Mines Limited	54° 42'	101° 39'	Nature of mineralization uncertain - Cu reported from immediate vicinity
68	Barrington Lake	£2	Hudson Bay Exploration and Development Company Limited	56° 58°	100° 18'	250,000 Tons; 2.5% Cu - N.M.1. Reserves File, Jan. 1974.
69	Mokomie Lake	E2	Dome Exploration ((anada) Limited	55" 05"	100° 52'	100,000 Tons, 0.1 or/ton Au - M.M.I. Reserves File, Jan. 1976.
70	Secting Lake touth	2.2	LaRunge Mining Ltd.	54° 49'	98" 46"	100,900,000 tons, 6:25 0 101 St to to 1000 ft LaRonge Mining Limited Prospectus
71	Crube Lake	12	Noranda Emploration	54" 31"	97" 44"	1-15 Mill Tons, possible grading v8.02 je, 1-27 Ti
17	Parewel. Labo	E2	Manituba Mineral Ara war ea .td	54" 29"	100° 03'	283,000 Tone 2.03% cu
7.9	'r' Deposit	25	Sherritt Garden Mines itd	36° 30'	101° 92°	153,000 fune 1 list cu, . esit la. .olo us tun Au
76	cood through	15	Sherlyne Wines Ltd	30" 34"	101° 05°	182,000 fone 2 all co, 1 211 Zm. US or ton Au

TABLE 16
EXTENT OF DEVELOPMENT*

		DEVELOPED	PROSPECT		PAST P	RODUCER
		SURFACE D.D.H.	UNDERGROUND DEVELOPMENT	PRODUCERS	DORMANT *	EXHAUSTED *
	OPEN	E1	D1	-	B1	A1
PROPERTY	CLAIM OR C.B.	E 2	D2	-	B2	A2
DISPOSITION OF PR	E.A.L.	E 3	D 3	-	В3	А3
DISPOS	P.L.	E4	D4	C4	B4	A4
	0.1.C.L.	E 5	D5	C 5	B 5	A 5

^{*} AS OF JUNE, 1976.

Hudson Bay Mining and Smelting (HBMS)

The town of Flin Flon is the site of the largest zinc refinery and the third largest copper smelter in Canada. HBMS employed 2363 persons in the Flin Flon-Snow Lake area (Table 2).

Table 2

Employment in the Mid-North Mining Industry

Company		E	mploym	ent	% Change
		1974	1976	1977	1976-77
Sherritt Gordon	Ruttan	532	604	642	+6.2
	Lynn Lake	860	198	164	-17.7
	Fox		323	339	+4.2
International	Thompson		1125	1929	71.4
Nickel	Birchtree	3129	475	259	-45.4
	Pipe		145	135	-6.8
	Others-		1855	1039	-43.9
Hudson Bay Mining	All Mining Properties				
and Smelting	Including Refinery and Smelter	2550	2404	1566	-34.8
Falconbridge	Manibridge	N/A	120	55 C	Closed

Source: Personal Communication Mr. Glassford, Chief Mining Inspector

The Flin Flon property started production in 1930 and up to December 1976 the concentrator treated 77,732 tons of ore. The concentrator capacity of 6700 tons daily was increased by 15 percent in 1973 when rod mills were installed. The 1977 production of metals was 135,363,453 lbs. of refined copper; 151,820,011 lbs. of slab zinc; 219,373 lbs. of cadmium; 135,350 lbs. of selenium; 74,393 oz. of gold; 1,322,039 oz. of silver; and 915,188 lbs. of lead (Table 3). Production from the Flin Flon mine was reduced in 1977 so that ore from Centennial and Westarm mines could be processed. In 1977, 1,588,619 tons of ore was produced. Ore grades were lower.

³Canadian Mines Handbook 1977-78

HBMS Annual Report 1977

Table 3 HBMS Production by Mine Property

Mine	1977	Gold oz/ton	Silver oz/ton	Copper %	Zinc %	Lead %
Flin Flon	647,699	.042	.69	1.60	2.23	-
Anderson Lake	137,151	.027	.23	2.88	.18	-
Chisel Lake	242,248	.050	1.17	.74	9.24	-
Osborne Lake	240,703	.025	0.21	2.49	2.00	-
Dickstone	Closed Augus	st 1975				
Schist Lake*	15,320	.03	.9	3.0	6.0	
Stall Lake	263,646	.026	.21	4.36	.18	-
White Lake	12,167	.028	.56	1.93	3.17	-
Ghost Lake	29,685	.056	.11	1.47	9.72	_

Source: Canadian Mines Handbook 1977-78

The Centennial Mine, White Lake Mine, and Westarm Mine were brought into production during 1977/78.

Stall Lake Mine's ore production increased and was maintained at 22,000 tons/month. Diamond drilling to the 4600 ft. level indicated additional ore to be developed in 1978. Work has started on construction of a concentrator at the site.

Chisel Lake Mine produced on schedule at 242,248 tons. It is currently undergoing development work.

Ghost Lake Mine produced 29,685 tons, development of the Lost Lake ore body is from this mine at the 650 ft. level.

Anderson Mine was shut down in February 1978 to permit shaft deepening by 434 feet and a crusher was to be installed below the 3000 ft. level.

^{* 1976}

Proven reserves of copper-zinc in the Flin Flon-Snow Lake area totalled 17,511,100 tons, assaying gold, 0.036 ozs/ton; silver, 0.53 oz/ton; copper 2.75%; and zinc 2.7%.

Stack dust recovered from the smelter baghouse totalled 5,908 tons, assaying 28.5% zinc, 3.28% copper, 16.96% lead and 1.15% cadmium. Slag treated in the fuming furnaces totalled 358,776 tons yielding 30,063 tons of oxide fume containing 43,098,912 lbs. of zinc.

International Nickel Company (INCO)

In 1957 the beginnings of the western world's second largest nickel producing center was initiated. A fully integrated mining, smelting and concentrating complex along with a nickel refinery was constructed in Thompson. The concentrator facilities reached full production (6,000 ton daily capacity) late in 1961. Expansion continued until 1971 when economic slowdowns in Europe, United States and Japan resulted in a sharp decline in the free world demand for nickel. As world economy improved, sales for 1973 reached a new high as prices increased and mineral deliveries approached the record levels of 1970.

The Thompson mine located at the City of Thompson is the primary Inco property in Manitoba. The production shaft has a bottom level of 4330 feet. In 1966 No. 3 shaft was sunk to an initial depth of 2,067 feet and connected to Shaft No. 1 on several levels. Daily production of the mine is approximately 7000 tons.

In 1960-61 at the Pipe mine 20 miles SW of Thompson, Inco sunk an exploratory shaft at 600 to 1500 feet. In 1968 preparation of the open pit continued and Pipe No. 1 shaft was deepened to 1785 feet and Pipe No. 2 shaft sunk to 3061 feet in 1973. Production started in Pipe No. 1 and the open pit in 1970 with a projected capacity of 8000 tons daily. By December 1971 production in No. 1 shaft was suspended and open pit production reduced; present production is less than 7000 tons/day. Production from Pipe No. 2 was suspended in July 1977 due to a depressed world nickel demand and resulting inflated stockpiles of nickel.

Birchtree mine south of Thompson started production in 1969 at 4000 tons daily from the No. 1 shaft. The mine experienced limited

production in 1972. In 1975 work continued on deepening the shaft to 2,820 feet. Production was approximately 3,500 tons/day until work in the mine was suspended in December 1977.

Soab mine shafts saw production early in 1971, but is now dormant.

The International Nickel Company remains the world's leading producer of nickel and is the largest producer of copper in Canada. Its also ranks highly among producer of platinum and other by-products. Capital expenditures rose from \$149 million in 1974 to \$549 million in 1976 and dropped slightly in 1977 to \$433 million.

As December 1977, Inco had proven ore reserves in Canada of 407 million short tons containing 6.9 million short tons of nickel and 4.3 million short tons of copper. Reserves in the mid-north account for 25 percent of the Canadian total.

Apart from the actual development of mineral resources in the Thompson nickel belt, Inco has had far reaching impacts on the mid-north. The city of Thompson was constructed by the company under an agreement with the Province of Manitoba. This agreement (signed December 3, 1956) provided for development and complete servicing of the townsite initially planned for 8000 people. At approximatley 21,000 persons in 1977, Inco remained the major employer in the city. Directly employing 1929 persons at the Thompson facility and another 259 at Birchtree. The company employs a total of 3300 people.

Sherritt Gordon Mining Company

The Sherritt Gordon Mining Company (SGML) holds two active mining properties in the Planning Zone, Ruttan and Fox Lake. Sixty-six percent of the companies capital expenditures for 1975 came from the Ruttan mine. Completion of an underground conveyor system from the 1000 foot level to surface and an underground access decline to the 1200 foot level accounted for a \$7,625,000 expenditure.

⁵ INCO 1977 report

INCO 1977 report; proven reserves are only those that have been sampled in sufficient detail to enable a reliable calculation of tons of ore and tons of contained metal.

The Sherritt Gordon property at Lynn Lake began production in late 1953 at 2600 tons daily, increasing to a daily capacity of 3500 tons by 1959. Early in 1975 the mine was classified as salvage and an attempt was made to mine out the remaining economic grade of nickel-copper ore. The mine was closed in June 1976.

Production at the Ruttan open pit commenced in early 1973 at 10,000 tons/day. This rate was reduced to 8000 tons/day in June 1975.

The Fox Mine property. approximately 30 miles southwest of Lynn Lake, has development at 400, 700, 1200, 1600, 2000 and 2100 feet levels. The mine was deepened in 1976 by extending the access decline from the 2200 foot level to 2400 feet. Production has been approximately 3000 tons daily since 1970 (a 25% reduction occurred in early 1976) (Table 4).

Sixty percent of the copper and zinc concentrates produced by Fox and Ruttan mines are shipped to HBMS Flin Flon for further processing, the balance goes to Japan (Table 5). A program of exploratory drilling on the entire Fox property was begun in 1976.

Negotiations between the Province of Manitoba and Sherritt Gordon in late 1970 resulted in the planning of a townsite for the employees, 16 miles west of the Company mine. Leaf Rapids is a precedent setting arrangement whereby all assessable surface property within the Local Government District of Leaf Rapids would be subject to taxation thus making SGML a taxable corporation. Sherritt Gordon currently employs 642 persons at the Ruttan Mine, representing approximately 67 percent of the estimated actual labor force of Leaf Rapids.

Agreements between SGML and the Provincial government concerning the development of the Leaf Rapids townsite and Provincial Roads 396 and 391 call for annual payments of approximately \$760 thousand dollars to the government until 1995. Repayment to Manitoba Hydro for cost of servicing the company's mining properties will continue to 2013.

In 1977, refined nickel production was down slightly to 26,688,000 pounds. Copper sulphide, a by-product of nickel refining, amounted to 2,507,000 lbs. In addition some 1,011,000 lbs. of cobalt was produced.

Total ore reserves for Ruttan and Fox amount to 37,532,000 tons grading 1.74% copper; 1.25% zinc.

In the past mining companies constructed towns and provided facilities in return for tax concessions.

Table 4
Sherritt Gordon Mine Production

	Rutta		Fox	1077	Lynn :	
	1976	1977	1976	1977	1976	1977
Ore milled (tons)	2,661,000	2,487,000	832,000	890,000	197,000	Closed June 1976
% Copper	1.08	1.13	1.56	1.46		
% Zinc	2.14	1.95	1.68	1.93		
Concentrates (1bs)						
Copper	50,067,000	50,341,000	24,232,000	24,042,000		
Zinc	93,097,000	78,250,000	18,904,000	24,841,000		
Cash	13,61	15.14	15.97	15.22		

Source: Sherritt Gordon Annual Report 1977

Table 5

Destination of Concentrates from Zone Mines 1977

Producing Property	Tonnage	Tonnage Concentrates	Destination
Nickel			
INCO Metals Ltd. Falconbridge Nickel	707,044	56,937	Thompson Smelter
Mines Ltd. Closed 6/77	8,036	1,030	Thompson Smelter
Copper			
Sherritt Gordon Mines			
Fox Lake Mine	48,918	12,283	Hudson Bay
Ruttan Lake Mine	37,554 65,567	9,310 16,254	Hudson Bay Noranda, P.Q.
INCO Ltd.	9,755	1,690	Thompson
THOO EEG.	1,662	289	Copper Cliff
Hudson Bay Mining Smelting			
HBMS Conc.	203,947	36,921	Flin Flon Smelter
Residues	70,809	915	Flin Flon Smelter
Purchased	120,121	35,134	Flin Flon Smelter
Falconbridge Nickel Mines Ltd. Closed 6/77			
Manibridge	8,036	77	Thompson
Zinc			
Sherritt Gordon Mines Ltd	•		
Fox Lake	24,069	12,299	HBMS
Ruttan Lake	49,948	25,289	HBMS
	22,448	11,365	Japan
Lead			
Hudson Bay Mining & Smelt	ing 745	457	Trail, B.C.

Source: Personal Communication Lyle Skinner, Dept. of Mines, Natural

Resources and Environment

Environmental Impacts

Since 1930, the Hudson Bay Mining and Smelting Company has been operating in Flin Flon. Initially, slag from the smelting operations was used for mine backfill purposes. As new ore bodies were discovered at Chisel and Stall Lake in 1956, these methods were no longer feasible. At the present time, mine tailings are deposited in an area formerly occupied by Flin Flon Lake. Tailings draining via Ross Creek into Schist Lake have had adverse affects on water quality. Increased levels of zinc, copper and lead have been noted in the water and high sediments, turbidity and carbon dioxide values were also found. There has been a reduction in numbers of fish and species found in Schist Lake as well as a presence of benthic fauna with known pollution status. The overall quality of plant effluent showed some improvements in 1975. Closure of the cyanide annex section of the mill, increased holding time in the tailings area and improved seepage control have had positive results.

Tailings from Sherrit Gordon mining operations at Lynn Lake have resulted in adverse affects on the Eldon River adjacent to the mine tailings area. High levels of toxic metals were found in the bottom sediments thus lowering fish production. Siltation by mine tailings has made the river impassable in some areas.

Studies of the Grass River-Ospwagan Lake areas have shown that tailings from INCO Thompson have caused deterioration in environmental quality. There has been an increase in chemical loading of the water as a direct result of discharged dredge materials. Turbidity, color and dissolved solids have also increased, resulting in decreases in benthic production and variety.

The Manitoba Clean Environment Commission recently (August 1976) issued an Order-in-Council which would prescribe certain limits on the operation of the INCO smelter. Sulphur dioxide emissions are not to exceed 1250 tons/daily and particulate matter 19 tons per 24 hour day. The order also necessitates the construction (by INCO) of

⁸ Cober, 1967

⁹crowe, 1972

¹⁰ Crowe, 1972

facilities needed to conduct a detailed stack sampling program.

Impact in the form of slag heaps, and vegetation destruction are site specific as well as general.

Government Programs

The Mineral Exploration and Development Subsidiary Agreement aimed at enhancing the development of the province's mineral resources was announced early in 1976. Increased employment and expansion of Manitoba's mineral industry are the goals of the four year program funded jointly by the Federal and Provincial governments. Work proposed under the agreement will include:

- investigations of known mineral occurrences to determine if better ore grades can be found leading to a profitable mining operation.
- evaluation of potential base metal deposits with diamond drilling where necessary.
- assessment of sand and gravel deposits, and other industrial minerals.

Recreation

The recreation industry in the Mid North Planning Zone has grown dramatically in recent years. A vast area of Northern Manitoba which once supported only a hand full of fly-in hunting and fishing camps is now dotted with marinas, campgrounds and cottages. Although the camps and lodges are still there and many are still fly-in, rapid expansion of the road system has been accompanied by an equally rapid expansion of other recreational facilities (Map 1).

Recreation, including tourism, is an important aspect of the northern economy. A significant portion of the service industry (hotels, restaurants, etc.) is supported by the tourist-recreational trade.

Facilities

Existing government recreational facilities are primarily those shown on Map 1. These facilities are centered on the three major park areas, Grass River, Clearwater and Paint Lake. Grass River and Clearwater Lake natural parks account for 2896 $\rm km^2$ of parkland while Paint Lake recreation area is 227 $\rm km^2$.

There are 16 provincial campgrounds in the zone offering a variety of auxiliary facilities (Table 1) in addition to their 734 campsites. These seasonal sites combine with 1138 commercial accommodation units (Table 2) to give 1872 units at least on a seasonal basis. Some additional accommodation units such as overflow campsites are available for short periods of time. Thus the ability of existing accommodations to handle large numbers of visitors is limited and may be a serious limiting factor to increased tourism.

Other recreational facilities are available on a community specific basis. Arenas, gyms and curling rinks being fairly common while swimming pools, golf courses and downhill ski runs are found in and around the larger centers.

Table 1

Mid North Campground Facilities^a

Campground	Lookout	Boat	Playground	Swimming	Fishing	Dock	Camping Sites
Bakers Narrows Camper's Cove Cormorant Lake	1 1	2 1	Yes	Yes Y	Y e s	C = =	87 55 20
Cranberry Portage Iskwasum Overflowing River	1 1 1	2 -1 1	1 1 1	Yes	Yes Yes Yes	1 1 2	22 40 35
Paint Lake Pioneer Bay Reed Lake	1 1 1		1 1 1	Yes Yes Yes	Yes Yes		135 79 36
Rocky Lake Simonhouse Wekusko Falls	1 1 1		Kes I	K e s	Yes Yes		35 12 88
Berge Lake Grand Rapids Zed Lake	1 1 1	pol 1 pol	1 1 1	Kes II	Yes Yes	e e!	30 15 25
Manistikwan		1	Yes	1	Yes	1	20

Source: Manitoba Park Statistics 1976

There are no trails, tennis courts, golf courses, museums, amphtheatres, ski

ix Milk, everilew sites.

Location	Motels	Hotels	(Units) Lodges/Cabins
Athapapuskow Lake	0	0	61
Bakers Narrows	0	0	8
Clearwater Lake	0	0	38
Cranberry Lakes	0	0	36
Cranberry Portage	15	17	0
Cormorant	0	0.	8
Elbow Lake	0	0	9
Flin Flon	79	65	10
Gillam	0	41	0
Grand Rapids	24	16	29
Ilford	0	20	0
Kississing Lake	0	0	20
Leaf Rapids	0	40	0
Lynn Lake	11	60	0
Manistikwan	0	0	7
Moose Lake	0	0.	2
McGavock Lake	0	0	4
Norway House	0	16	0
Overflowing River	0	0	2
Payuk Lake	0	0	4
Ponton	4	0	0
Reed Lake	0	0	12
Rocky Lake	0	0	17
Sasagiu Rapids	0	0	10
Snow Lake	0	15	0
The Pas	112	108	0
Thompson	0	169	0
Vandekerckhove Lake	0	0	7
Wabowden	0	23	0
Wanless	6	0	2
Waskaiowaka Lake	0	0.	5
Wekusko Lake	0	0	6
Total Units	251	590	297

Source: Department of Tourism, Recreation and Cultural Affairs, Manitoba Vacation Guide 1978-79.

Participation

Surveys done in 1970 by the Research and Planning Branch of the Dept. of Tourism have indicated that fishing is the singular most preferred recreational activity in Northern Manitoba (Table 3). Participation rates (which differ from preferences) in various activities indicate that pleasure driving, picnicing, walking/hiking and fishing are very popular (Table 4).

Some of the more common activities are discussed individually below. It is important to realize that each activity or a combination of several activities may combine to produce a pleasing recreational experience. For example, a passive recreational activity such as pleasure driving may be combined with an active pursuit such as hunting or skiing to produce the total experience.

Table 3

Activity Preferences of Recreators in Northern Manitoba 1970

(Figures in Percent)

Activity	Winnipeg ^a Residents	Manitoba ^b Residents	Non-Manitoba ^c Residents
Fishing	27.0	69.0	81.1
Swimming	16.2	67.0	21.4
Boating	16.8	42.0	31.7
Canoeing	3.6	6.0	1.1
Waterskiing	2.4	3.0	4.4
Hunting	1.2		2.7

[&]quot;Winnipeg Household Survey of Vacation Travel,"
Research and Planning Branch, 1970

b"Norman Tourist Study," D. McCloy, 1970

C"Tourist Reception Surveys, 1970," Research and Planning Branch

Table 4.

Participation Rates in Selected Activities (Percentage)

Activity		tobans 1972	1967	Canadia 1969	
Hunting	12	13	14	13	11
Fishing	20	38	27		31
Boating	15	22	15		23
Canoeing	3	9	5	8	10
Skiing	2	7	6	7	7
Picnicking	37	59	42	54	54
Bicycling	7	26	14 7	13	19
Tent Camping	11	18		12	19
Trailer Camping	7	12		6	10
Pleasure Driving	48	69	52	14	65
Visiting Historic Sites	12	41	16		36
Snowmobiling	8	17	7		18
Swimming Walking/Hiking Golf	_	24 43 8	39 14 —	44 37 11	39 —

Source: Participation of Manitobans in Outdoor Recreation Activities, 1972, Neil Nixon, Dept. T.R.C.A. 1973.

Travel, Tourism and Outdoor Recreation, Statistics Canada, Catalogue No. 66-202, 1975.

PLEASURE DRIVING: Pleasure driving is apparently the most common recreational activity of Manitobans specifically and Canadians in general. Nearly seventy percent of Manitobans engage in pleasure driving. The zone provides extensive mileage of all-weather roads providing interesting and varied scenery. The road surfaces range from excellent blacktop to those capable of challenging the most adventuresome traveller. Visitors are able to see the full range of northern development from Hydro dams to mines as well as virtually untouched natural areas.

PICNICING: Picnicing is the second most popular recreational activity for Manitobans as well as other Canadians. Nearly sixty percent of Manitoban participate in picnicing. There are a number of designated and non-designated picnicing areas (wayside parks) as well as the recreation and natural parks which also include picnicing facilities. Little is known about these day users, particularily in the north. Discussions with Parks Branch field staff indicate a fairly high level of use of wayside/picnicing facilities. Picnicing often occurs in conjunction with pleasure driving, fishing, swimming and walking or hiking.

WALKING/HIKING: Nationally, hiking participation rates increased by 180 percent from 1967/1972, the highest rate of increase of any activity. Over 40 percent of Manitobans currently participate in walking and hiking activities. Formal hiking facilities in the Mid North Planning Zone are generally lacking, there is however, an interpretive trail at Pisew Falls.

FISHING: Angling has traditionally been the major recreational pursuit in northern Mantioba. As shown in Table 3 recreators, regardless of their origin, show a marked preference for fishing in the North.

Approximately 38 percent of Manitobans participated in fishing in 1972. In 1977/78 there were 148,289 resident and 28,363 non resident angling licences issued in Manitoba. On the average, about ten percent of Canadians and eight percent of Manitoba vacationers indicate fishing (and boating) as the principle vacation purpose.

Perhaps the best indicator we have of northern fishing popularity comes from the Provincial Master Angler Awards. In the past 12 years, master angler award figh have been taken in an average of 52 lakes per year. In fact over 26 percent of all award fish in the province are caught in the Zone (Appendix L). Planning Zone residents accounted for 7.6 percent of the Provincial awards indicating that over two-thirds of the award winning fish were caught by non-residents. Table 5 presents the last eight years of summarized award data in the best 20 Mid North lakes and rivers. These lakes and rivers account for about 78 percent of all master angler awards earned in the Planning Zone (Figure 1).

Creel census's have been carried out on a number of water bodies including Reed, Athapapuskow, Paint and Iskwasum Lakes and the Grass River. Game fish stocking in the Mid North has been carried out since 1941 in 30 lakes (Table 6).

An additional 9,175 non resident three day licences were issued in 1977/78

Table 5

Master Angler Awards in Rest
20 Mid North Lakes and Rivers

										Percent of Zone
Location	1970	1971	1972	1973	1974	1975	1976	1977	Mean	Total
Reed Lake	29	52	43	76	46	51	56	87	55.0	12.0
Churchill River	18	6	16	37	29	130	80	60	46.4	10.1
Athapapuskow Lake	39	40	48	39	45	34	40	50	41.9	9.1
Cedar Lake	43	6	26	16	14	38	13	42	24.8	5.4
Kississing Lake	18	4	7	22	45	26	29	45	24.5	5.3
Rocky Lake	9	12	24	30	20	28	23	26	21.5	4.7
Clearwater Lake	21	8	15	15	20	26	19	20	18.0	3.9
Cross Lake ^b	31	23	29	17	6	9	14	15	17.9	3.9
Cormorant Lake	34	24	21	17	14	12	8	11	17.6	3.8
3rd Cranberry Lake	16	42	51	7	3	2	1	4	15.8	3.4
Minago River	0	0	1	28	8	33	16	5	11.4	2.5
Saskatchewan River	5	10	20	14	8	12	13	5	10.9	2.4
Scotty Lake	6	6	29	7	2	6	7	6	8.6	1.9
Waskaiowaka Lake	3	16	24	13	3	0	0	0	7.4	1.6
McGavock Lake	2	0	7	3	9	4	17	12	6.8	1.5
Grass River	9	3	8	9	5	9	2	6	6.4	1.4
Odei River	0	0	0	0	0	0	0	51	6.4	1.4
Nelson River	8	1	4	4	2	9	3	26	6.4	1.4
Eden Lake	2	2	0	1	0	6	6	30	5.9	1.3
Simonhouse Lake	4	3	7	2	8	5	5	12	5.8	1.3
Total	297	258	380	357	287	440	352	513	361	
Percent of Zone	79.0	73.3	79.3	82,6	74.9	71.1	72.9	78.6		78.3

Source: Master Angler Award Winners 1970-1977

 $^{^{\}mathbf{a}}$ May include fish taken outside the zone.

 $^{^{\}mbox{\scriptsize b}}_{\mbox{\scriptsize May}}$ include some fish from Cedar Lake (Cross Bay) due to problem in precisely identifying locations,

Mid North Stocked Game Fish Waters to 1978^a

i de	Location	Species	Filst icai	
d d	1 (ж.	1972	1972
Amphipod	٠,١		1966	1972
Amulet	1 4 6		1940	1968
Athapapuskow	E of Elin Flon	RT	1963	1974
	J 4		1966	1974
Borrow Fits (F.1.n.10)	. 0.0		1978	1978
Borrow Fits	2	K. W. LT	1951	1978
Bowden	Clearmater Park		1943	1973
Clearwater	Toof Rapids	h	1978	1978
Crater Codor Tobo)		HI	1967	1972
Cross bay (cedal take)	Ivnn Take	RT	1972	1978
Digney		E-go	1971	1971
Eating Foint Creek	o or orang mapre	1 20	1972	1978
Genme	11 7 11		1978	1978
Goose River	N E of Thompson		1978	1978
TITH	7 4		1964	1965
Kississing	F Chor I	1 2	1965	1978
Korman	of Elia	t w	1973	1973
Little Cliff	OI FILL FIOU	E	1974	1975
Leaf Rapids	N. OI Leal hapids	K. I.T. RT. S.	W 1941	1973
Manistikwan	COLFILITION	S. RT	1966	1978
Mid Lake	N F Of Rabors Narrows	i co	1959	96
Murry	ָ קַ	T. RT	1961	1975
Newman	of Thompson	n	1978	6
Odel Kiver	.E. O.	1 00	1972	1975
One Portage	The Dag	1 (3	1978	1978
Overflowing Kiver	. 0	BT. RT	1960	1978
Scotty		S. W. S. T. S. W. S. T. S. W. S.	1971	1978
INO FORTage	u of Thomp	_	1971	1978
Upper Uspwagan	SRE	RT	1978	1978

a No stocking in 1976 and 1977 due to hatchery disease problem BT - Brook Trout
K - Kokanee
LT - Lake Trout DAMINEVIALIONS for species are:

S - Splake SM - Smallmouth Bass

RT - Rainbow Irout

W - Walleye

HUNTING: Hunting in the Mid North Planning Zone is predominently centered on moose, geese and ducks. Hunting, is engaged in by about 12 percent of Manitobans, with little apparent change in recent years. It should be noted, however, that hunting has been showing a slight but steady decrease nationally. Activity preferences for hunting by Winnipeg and non-Manitoba residents in the north are low when compared to activities such as fishing, boating and swimming.

The hunting pressure (man days of hunting) for all hunting types is estimated to be over 150 thousand user days for northern Manitoba (Table 7).

Migratory game bird hunting in northern Manitoba has been steadily increasing in recent years with the 1976 harvest estimated at over 135 thousand ducks and geese (Appendix J). This is the most popular hunting form with over 90 thousand user days or about 60 percent of all hunting.

Moose is the most popular ungulate hunted due no doubt to high moose populations and the relatively low deer populations. The highest pressure (and success rate) is found in the vicinity of The Pas, particularly game hunting areas 6, 6A, 8, 11 and 12 (Map 2).

The Pas area had received about 1.2 percent of the provinces deer hunters in 1974. These hunters had to expend more effort in order to obtain their deer and were somewhat less successful than the provincial average. There has been no white tail deer season in northern Manitoba since 1974.

Data for upland game bird hunting was collected only from 1971 to 1975 when it was discontinued due to surveying problems. Upland bird hunting user days may be double counted in the totals in Table 7 due to the likelihood that this hunting form is often carried out in conjunction with other types.

r~-Table

Estimated Hunting Pressure in Northern^C Manitoba (in ,000 of User Days)

ype 1968 1969 1970 1971 1972 1973 1974 1975 1975 1977 1873 17.5 24.7 24.7 21.9 15.3 15.7 16.0 15.3 47.6 5.4 3.9 — no hunting											
Se I	Type	1968	1969	1970	1971	1972	1973	1974	1975	1976	1977
<u> </u>		12.2	12.0	12.0	17.5	24.7	24.7	21.9	15.3	15.2	28.1
aribou 3 .6 .6 1.0 .5 .4 .3 .5 no hunting saribou (1.8) ^f [8.7] ^f [11.0] ^f 15.5 18.2 18.7 27.8 24.4 [28.5 [17.11] ^f 15.7 16.0 15.3 47.6 21.5 55.4 61.8 83.6 90.3 otal user have 38.0 43.7 46.8 94.1 82.3 113.1 113.7 124.2 135.3		3.5	5.6	2.0	8.3	11.5	10.5	1.2	ī.	00	1.0
aribou pluni G.m. Bird [4.8] f [8.7] f[11.0] f 15.5 18.2 18.7 27.8 24.4 [28.5] [15.7] 16.0 15.3 47.6 21.5 55.4 61.8 83.6 90.3 oral liser Davs 38.0 43.7 46.8 94.1 82.3 113.1 113.7 124.2 135.3		1.5	1.59	2.9a	9.4	5.4	3.9		- no h	unting	
pluni Game Bird [4.8] [8.7] [[11.0] 15.5 18.2 18.7 27.8 24.4 [28.5] [Pritory Game Bird 15.7 16.0 15.3 47.6 21.5 55.4 61.8 83.6 90.3 oral Hear Davs 38.0 43.7 46.8 94.1 82.3 113.1 113.7 124.2 135.3	noq	r.	9.	9.	9.	1.0	5.	4.	e.	2.	. 5
Tratory Came Bird ^b 15.7 16.0 15.3 47.6 21.5 55.4 61.8 83.6 90.3 oral Hser Davs 38.0 43.7 46.8 94.1 82.3 113.1 113.7 124.2 135.3		[4.8]	[8.7]	[11.0]	15.5	18.2	18.7	27.8	24.4	[28.5]e	[31.5]
oral Hser Davs 38.0 43.7 46.8 94.1 82.3 113.1 113.7 124.2 135.3	rrators Sime Sind	15.7	16.0	15.3	9.74	21.5	55.4	61.8	83.6	90.3	[93.0]
	Total User Days	38.0	43.7	8.94	94.1	82.3	113.1	113.7	124,2	135,3	155.8

Personnal communication P. Page and D. Cross, Department of Mines, Natural Resources and Environment and Canadian Wildlife Service HITCH:

Resident only

Frightes from Canadian Wildlife Service

enternate designed differently for ungulates, upland and migratory game birds but generally in Judenate Stanitoba north of 53°N

Data unavailable at this time, this figure represents a linear projection erigure represents a projection as surveys no longer carried out

Estimates as no surveys carried out

GAME HUNTING AREA BOUNDARIES

MAP 2. RECREATION

MID NORTH PLANNING ZONE

linch:40 miles

COTTAGING: In November, 1978, there were 1291 occupied cottage lots in the Mid North, ² predominently located in the southern and southwestern part of the Zone (Table 8). Approximately 2.6 percent of the adult population own or lease cottages in contrast to 3.5 percent for Winnipeg residents. ³ There has been an increase of nearly 25 percent in occupied cottage lots since 1976, the majority of which are held by local residents.

Table 8

Cottagers by Origin and Location

Location	Total ^b Lots (1978)	Lots Occupi 1976	ed 1978	Local ^a Residents	- Percent Other Manitobans	Other Canadians	Americans
Aimee L.	3	0	3	33.3	0	0	66.7
	319	281	304	86.4	7.6	3.0	3.0
Athapaskow L.	373	342	354	83.1	10.7	4.8	1.4
Clearwater L.	64	39	37	91.9	5.4	0	2.7
Berge L.	14	0	13	84.6	15.4	0	0
Cross Bay (Cedar L.)	23	0	2	100.0	0	0	0
Eden L.		9	10	90.0	10.0	0	0
First Cranberry L.	10	0	2	100.0	0	0	0
Hughes L.	15				1.6	2.3	0
Manistikwan L.	132	113	128	96.1	2.3	0.8	0
Paint L.	134	132	130	96.9	0	0.0	16.7
Payuk L.	7	6	6	83.3		0	0
Rocky L.	80	0	75	100.0	0		0
Schist L.	23	23	22	86.4	9.1	4.6	
Setting L.	176	66	143 ^c	89.5	1.4	1.4	0
Wekusko L.	44	7	35	94.3	5.7	0	0
Zed L.	31	26	27	100.0	0	0	0
rea w.	1448	1044	1291	89.2	6.0	2.6	1.4

Source: Personnel Communication; Parks Branch, Northern Region, November, 1978

²Excludes isolated cottages and squatters

^{3&}lt;sub>Nixon</sub>, 1972

a Local is defined as less than 75 driving miles from site

bIncludes lots vacant, reserved, or cancelled but on file

CIncludes 11 lots where adresses were not available

d Includes 72 private lots

CAMPING: In the period from 1971 to 1976, northern provincial campgrounds have increased the number of user days sold by an average of 5.6 percent per year (Figure 2). In the same period, due to increases in season length and number of sites, the percent occupancy has fallen (Table 9). Northern campers are generally more often from the United States than from other Canadian Provinces and are less frequently Manitobans than the provincial average (Table 10).

Table 9

Provincial Campground Use Statistics Northern Region

	1971	972	1973	1974	1975	1976	% Change 1971-76	Average Annual % Change
Season length (days)	113	115	139	136	138	137	+ 21.2	+ 3.5
No. of campsites	325	392	405	097	613	734	+125.8	+21.0
Untential mer-lays	36,725	45,080	56,295	62,560	84,594	100,558	+173.8	+29.0
User-days sold	22,302	23,774	28,278	29,979	29,795	29,849	+ 33.8	+ 5.6
No. of permits sold	9,519	10,922	13,434	13,646	14,908	14,437	+ 51.7	+8.6
% Occupancy	60.7	52.7	50.2	47.9	35.2	29.7	- 35.2	- 5.2

num. .: Manitaba Park Statistics 1971-1976

Table 10 Origon of Campers (In Percent)

	1967	4	1968	r)	196	69	1970	0	1971	-	1972	C2	1973	~	1974		1975	10	1976	50	Mean	Z.
	>	c.	541	6. ,	by .	C.	2.	d	20	D.	Z	d	Z	A.	M	d	≥:	C.	Z	Con 4	24	<i>(</i>
				1				1.,		1.	¥ ,	-	. ,	:	4	:)	1		-			
	3					S.	-:.	, .		R		``	,	X	c ,	;;	,	300	1	· ·	1	
-	Ŧ	1	,			*	.:	8	**	R		7	*,	`**			,	=		3.	3	

M: Mid North Campgrounds

P: Provincial Average

Potential

The land capability for recreation, a part of the Canada Land Inventory (CLI) program, has been completed south of the 55th parallel and west of the principal meridian. Map 3 shows the summarized capability rating for that portion of the zone completed by CLI.

In addition to CLI capability rating, the Pilot Land Use Planning project (PLUP) determined the capability rating for the area known as The Pas Special Area (Map 4). This capability rating system included CLI as well as a variety of other characteristics such as access and wildlife populations. Areas of particular importance, as identified by PLUP, were Athapapuskow and Clearwater Lakes.

Apart from CLI and PLUP, which cover much the same area of the Planning Zone, there has as yet, been no coordinated regional approach to determine recreational capability or suitablility. Other determinations of recreational potential have been on a project by project or site specific basis.

The following section will attempt to summarize the findings of some of the more significant reports by area (Map 5a and 5b).

1) SOUTHERN INDIAN LAKE: ⁴ Although the lake is representative of the Northwest Boreal Uplands Natural Region, it is considered incompatable for national park status with the present level of commercial fishing. ⁵ Should the river diversion significantly alter the native biota there would be no possibility for national park interest in the lake. The possibility of a provincial wilderness park is rejected for much the same reasons as the national park in addition to the moderate level of mechanized development which is evident on the lake (tugs, barges, float and ski planes etc.,). ⁶ A large provincial natural park is generally rejected due to the lack of major scenic areas, unique landforms, vegetation or animals, and the average scenery for the region. Generally, Southern Indian Lake does possess a potential for cottaging but is probably best suited, at present, to limited extensive recreation (fishing, hunting, boating and camping).

⁴Recreation Study South Indian Lake, Parks Branch, 1973

 $^{^{5}\}mathrm{As}$ defined by the National and Historic Parks Branch

As defined by Parks Branch, Department of Tourism, Recreation and Cultural Affairs, June, 1974

MAP 5A. RECREATION

STUDY AREAS
(NUMBERS SAME AS IN TEXT)
THE PAS SPECIAL
AREA (P.L.U.P.)

MAP 5B. RECREATION

HISTORIC WATER ROUTE —
ENVIRONMENT CORRIDOR —
STUDY AREA

NUMBERS SAME AS IN TEXT

- 2) RAT AND BURNTWOOD RIVERS: ⁷ The entire diversion route, in its natural state, has a high potential for wilderness canoeing, camping, fishing, hunting, nature study and photography. With Hydro diversion, most of the wilderness aesthetic and scenic qualities of the rivers will be lost. Recreational activities along the rivers will probably be limited to boating, fishing and picnicing.
- NELSON RIVERS (NORWAY HOUSE TO SPLIT LAKE): 8 In its natural state, the lakes and rivers in this area have a low potential for extensive recreation. After the completion of hydro construction, it is anticipated that the Jenpeg control structure will become a visitor attraction due to the recent controversy and publicity. Angling in the tailrace and forebay near Jenpeg is likely and thus picnicing, camping facilities and boat launches will be required. If the Minago River is not too severely affected by flooding it may possess (as it does at present) excellent potential for boating, angling, camping and hunting. Recreation potential of Cross Lake, Pipestone Lake and Ross Island is likely to be severely inhibited by Hydro construction. 10 The Sea River Falls/Norway House area (East Channel) currently possesses and will continue to have excellent potential for camping, canoeing and photography. There is also historic potential both at Norway House and the route to York Factory from Norway House.
- 4) CHURCHILL RIVER BASIN: 11 There is a recognized potential for canoeing on the Churchill River from Sispuk Lake to Leaf Rapids. Areas in the Churchill River Basin are under consideration by national and provincial parks (1972).
- 5) SASKATCHEWAN AND ECHIMAMISH RIVERS: 12 The Saskatchewan River is considered to have significant recreational potential due to the historic, archaeological, and biophysical sites found along its banks. It is being considered as an historic and scenic water route. Map 5b shows the location of the Saskatchewan River and the Echimamish/Hayes River historic water routes and the proposed environmental corridor.

Recreation Study Rat-Burntwood Diversion Route, Parks Branch, 1974

⁸Recreation Study Outlet Lakes, Parks Branch, 1973

Provided boating becomes feasible by clearing floating and submerged debris

¹⁰ Cross Lake and Pipestone Lake presently possess low potential for recreation activities

¹¹ Churchill River Basin Task Force, August, 1972

¹² Byways and Special Places Program, Parks Canada, 1973

- 6) PARTRIDGE CROP LAKE AREA: ¹³ In 1972 the area around Partridge Crop and Natawahunan Lakes was proposed as a provincial park. The area is considered to have a high potential for camping, canoeing, boating and associated extensive recreation forms. This area is currently under Parks Branch reservation.
- 7) LITTLE LIMESTONE LAKE: 14 Three sections of shoreline on Little Limestone Lake area are considered to have potential for recreational development. Cottaging, camping, hiking, picnicing, boating and fishing are recommended by the consultants report for the lake.
- 8) PROVINCIAL ROAD 391: 15 Significant recreational potential is shown in the Eden Lake area, Granville Lake area, Nelson Lake, Churchill River area and Wapisu Lakes area. A number of recreational features and components are mapped and the level of interaction (simulation modeling) is determined.
- 9) LOWER CHURCHILL STUDY AREA: ¹⁶ The lower Churchill River has been designated as a modified waterway with an ecological reserve containing sensitive ecosystems. Potential for guiding and canoe outfitting exists on the Deer River. Cottaging presently exists upstream from Churchill, however reduced flows may hamper further development.

The provincial Parks Branch has assessed a number of sites in order to evaluate their inherent potential for recreational use. The locations shown on Map 6 are some of the proposed sites resulting from their investigations and some of the areas currently under consideration.

¹³ Partridge Crop Lake Provincial Park, Parks Branch, 1972

Report on Proposed Development at Little Limestone Lake, Manitoba P.M. Associates Ltd., 1973

Am Environment Motivated Plan for Multiple Resource Use Along Highway 391. A. Daken, H. Jackson, D. Johns, 1973

¹⁶ Recreation Assessment Lower Churchill River, Parks Branch, 1974

PROPOSED FACILITIES

- PROPOSED WAYSIDE
- LAND RESERVATION
- A PROPOSED PROVINCIAL PARK

MAP 6. RECREATION

MID NORTH PLANNING ZONE

1 inch: 40 miles

Water Resources

The use of Manitoba's water resources has increased rapidly in recent years being used for power generation, recreation, commercial fishing, trapping and for domestic purposes. Water used by communities for domestic reasons is obtained from a variety of sources (Table 1).

Generally, domestic water use is a minor user of the total water resource.

Table 1

Domestic Use of Water in The Mid North Planning Zone

Communities utilizi	ng river water River	Communities utilizi	ng lake water Lake
The Pas	Saskatchewan	Flin Flon	Cliff
Grand Rapids		Lynn Lake	Lynn
The Pas Reserve		Snow Lake	Snow
Norway House	Nelson	Wabowden	Bowden
Split Lake		Cranberry Portage	Lake Athapapuskow
Gillam		Cormorant	Cormorant
Leaf Rapids Pukatawagan Thompson York Landing	Churchill Burntwood Aiken	Sherridon Brochet Granville South Indian	Sherlett Reindeer Granville Southern Indian

Major Users

The mining industry uses water in two ways; in the mining, smelting process and water power for electricity. The second of these is more important as all producing mines in the Zone are powered by hydroelectric power. Lynn Lake, Ruttan and Fox Mines and all mines in and around Thompson receive their power from Nelson River generating stations (Kelsey and Kettle). Flin Flon and Snow Lake receive power from Island Falls Saskatchewan. Direct mining use of water is a locally important factor. Although mines and processing equipment may have far reaching effects on local water quality and water supply, these effects are at present minimal on a regional basis.

The Saskatchewan River supplies water for the many phases of MANFOR'S industrial operations in The Pas. Effluent discharged from the plant is returned to the river with its increased chemical load.

Recreational water use is at present of an extensive nature throughout the Zone. Certain areas of intense use are, however, evident. Lakes around the larger centers are receiving moderate to heavy use. Clearwater, Reed, Athapapuskow, Rocky, Paint and Berge Lakes are receiving the brunt of recreational use in the Zone. Recent road construction has increased the accessibility of a number of water bodies and will result in expanded recreational pressure.

Commercial fishing is also a user of water resource. Waters which are commercially fished in the Zone are shown on Map 1 and the section entitled Fisheries Resources discusses locations and intensity of use in detail.

The principal user of water resources in the Mid North Planning Zone is Manitoba Hydro. Hydro is also the only user approaching its maximum potential use from a regional basis. Five generating stations are in operation (Table 2) and three more are to be operational within the next two years. By 1995, all major potential generating sites in the Zone should be completed. These structures should yield over 7.2 million kilowatts of power.

Map 2 shows the extent of Hydro's water reserves in the Mid North. These reserves have been granted Hydro for work on the Churchill River Diversion, Lake Winnipeg Regulation and the core of Hydro's northern development, the Nelson River.

The Zone has five artificial impoundments, the largest ones being Cedar Lake, Reindeer Lake and Stevens Lake. Two small reservoirs are located on the Laurie River. Locations of Hydro structures existing and proposed are shown on Map 3. Characteristic impacts of the existing impoundments are dealt with in Appendix K.

¹ See section on Recreation

²Such as the Thompson-Lynn Lake Highway, Road to Jenpeg and the Road to Kississing

COMMERCIAL FISHED WATERS
LAKES FISHED 10 OF THE LAST 32 SEASONS
(SUMMER 1961 — WINTER 1976-1977)

MAP 1.
WATER
RESOURCES
MID NORTH
PLANNING ZONE

Linch 40 miles

Table 2

Hydro Generating And Control Structures

Dam	Dam Operational	Power	Normal Head (Feet)
1. Laurie R. #1 2. Laurie R. #2 3. Missi Falls 4. Notigi 5. Wuskwatim 6. Manasan 7. First Rapids 8. Kelsey 9. Kettle 10. Long Spruce 11. Upper Limestone 12. Jenpeg 13. Kiskitto Dam 14. Grand Rapids 15. Bladder Falls 16. Upper Gull 17. Lower Gull 24. Lower Limestone — Gillam Island 19. 2 Mile Channel 20. 8 Mile Channel	1950 1950-55 1975-76 1975-76 Proposed (1990) Proposed (1991) 1960 1970 1977 1982 1976-77 1968 Proposed (1994) Proposed (1995) Proposed (1985) Proposed (1987) 1976-77 1976-77	7,000 10,000 Control 90,000 Kw (Potential) 320,000 Kw 164,000 Kw 167,000 Kw 320,000 Kw 1,224,000 Kw 970,000 Kw 1,000,000 Kw 1,000,000 Kw 472,000 Kw 423,000 Kw 450,000 Kw 450,000 Kw 1,000,000 Kw 1,000,000 Kw 1,000,000 Kw Control Control	55 55 55 30–40 93 58 55 50 98•5 80 25 125 61 45 45 80 80
18. Kiskitto-Minago Drainage Channel 22. Ominawin By-Pass 23. South Bay Diversion Channel 21. Stan Creek Diversion Channel	1976–77 1976 1976–77	Control	

Note: Numbers refer to Map 3

NELSON RIVER BURNTWOOD RIVER SASKATCHEWAN RIVER-BRAND RAPIDS PROJECT

GRAND RAPIDS POWER DEVELOPMENT SEVERENCE LINE REINDEER LAKE LICENSED STORAGE RESERVE

MAP 2. WATER RESOURCES

MID NORTH PLANNING ZONE

Linch 40 miles

HYDRO GENERATING AND CONTROL STRUCTURES

DRAINAGE AND DIVERSION CHANNELS

EXISTING CONTROL STRUCTURES

HYDRO GENERATING STATION (CONCRES)

NOTE: EXPLANATION OF NUMBERS-TABLE 2.

MAP 3. WATER RESOURCES

MID NORTH PLANNING ZONE

linch:40 miles

Economic Factors

Water is the fundamental resource upon which many resource users depend. Social and economic factors pertaining to each industry are dealt with in that industries particular section (e.g., Fisheries Resources). The only exception to this being Hydro; factors relating to Hydro are discussed in this section.

Manitoba Hydro's electrical generating program is, and probably will continue to be for the next twenty years, the most significant single land use in the Mid North. The following points will serve to highlight the variety and extent Hydro's northern influence:

- 1) Manitoba Hydro supplies power for mines at Thompson, Lynn Lake, Ruttan and Fox Lake,
- 2) Stimulates road consturction such as the all-weather road to Jenpeg and the road to South Bay,
- 3) Provides power either by transmission lines or diesel generators to all zone communities,
- 4) Constructed the towns of Gillam and Jenpeg, and the expansion of Bird is under way,
- 5) Employs men in the Mid North on construction and maintenance of power facilities (Table 3),
- 6) Through its water power reserves is the single largest agency influencing land-use outside the Crown Lands Branch,
- 7) With its dams, channels, diversions and artificial reservoirs has the highest environmental impact in the Mid North Planning Zone, and
- 8) During the summer 1975 commercial fishing season, Manitoba Hydro totally subsidized fishermen using lakes that would be adversely affected by the Churchill River Diversion.

As can be seen by the preceding points, Hydro's influence whether direct or indirect is substantial. Hydro employs a number of local northerners in its construction projects and in so doing raises the local level of skilled labour. Hydro has a significant effect upon the traditional life of local northerners by making 'wage work' on projects available. The repercussion of such employment are felt in the traditional primary industries, such as trapping and commercial fishing. Young people from communities such as Cross Lake and Nelson House are apparently abandoning traditional skills in favour of work such as offered by Hydro.

Project	Date	# of local	Men Employ	
Long Spruce	July 1975	213	1316	1529
	January 1976	149	742	891
	November 1976	N/A	N /A	183
Jenpeg	February 1976	183	234	417
Channels	February 1976	N/A	N/A	22
Lake Winnipeg Regulation	November 1976	N /A	N/A	84
Notigi	September 1975	54	176	231
	February 1976	5	31	36
	November 1976	N/A	N/A	0
South Bay Missi Falls South Bay, Missi, Thompson	February 1975	89	503	592
	February 1976	10	284	294
	February 1976	30	105	135
	November 1976	N/A	N/A	47
Kettle Rapids	July 1975	41	194	235
	January 1976	20	115	135
Limestone	November 1976	N/A	N/A	112

Source: Manitoba Hydro; Personal Communications

Hydro's influence also extends into some communities in a physical way. Table 4 outlines some of the alterations occurring as a result of changes in water regimes and flows.

"Manitoba Hydro has developed plans for a multi-billion dollar development of the Churchill and Nelson Rivers in Northern Manitoba. The power production capacity is of a similar order of magnitude as the La Grande hydro-electric development proposed for the James Bay area, Quebec and the recently completed Churchill Falls hydro-electric development, Labrador. The completed development would constitute 14 power stations." ⁵

^aFigures are for construction of power facilities only. Manitenance crews and community operations are not included in the total.

Definition of local varies from site to site

⁵Lake Winnipeg, Churchill and Nelson Rivers Study Board, July, 1974 Winnipeg, Vol. 1 Technical Report, Appendix 2, page 7.

Table 4

Physical Impact of Hydro Development on Zone Communities

Community	Impact
Cross Lake	 Changes in water regime could change fish migration patterns and decrease spawing areas of the Cross Lake fish- eries
	- Poor ice conditions could disrupt winter road transportation
South Indian Lake	- Increase water levels, flow and debris could severely decrease fish productivitey and hamper the commercial fishery
	- Homes, docks and other structures could be affected by rise in water levels
Norway House	 Water regime changes and debris on Playgreen Lake could result in hazardous navigation and fishing operations
	- Stability of the winter road would be questionable
Ilford	- Commercial fishery operations of the community may no longer be viable due to reduced flows on the Churchill River
Thompson	- Debris accumulated on the Burntwood River could hamper recreational angling and skiing
	- High water levels could affect water intake systems in the community

Source: Social and Economic Impact Study Lake Winnipeg, Churchill-Nelson Rivers Hydro Development, June 1974.

^aIlford fishermen utilize Morthern Indian Lake, Fidler and Iilliard Lakes.

The Hydro development scheme for northern Manitoba is generally termed the Nelson River Hydroelectric Development Project.

This project can be broken into three component parts; harnessing existing Nelson River power, regulating Lake Winnipeg, and diverting the Churchill River into the Nelson. The following is a brief description of each component part of the Nelson River Project (Figure 1).

FIGURE 1.

NELSON RIVER HYDRO-ELECTRIC GENERATING SITES: In addition to the two existing sites (Kelsey and Kettle) and the two sites under construction (Long Spruce and Upper Limestone) there are five hydro-electric generating sites proposed for the Nelson River. These sites are referred to as Lower Limestone, Gillam Island, Upper and Lower Gull and Bladder Rapids. The five proposed sites and two sites under construction have a combined hydro-electric potential of approximately 5 million kilowatts.

LAKE WINNIPEG REGULATION: Lake Winnipeg will be regulated by improving the outlet capacity at the north end of the lake and a control (and generating) facility at Jenpeg. By increasing outlet capacity and regulating lake flow, winter flows in the Nelson River required for power generation can be increased to coincide with peak energy demands. In order for water to be stored and then released for power generation, Lake Winnipeg will be regulated between the levels of 711 and 715 feet above sea level. This regulation will be exercised by a control and generating facility on the West channel and by-pass channels at the north end of the lake. A minor system of dams and dykes has been constructed to increase hydraulic control and prevent flooding.

The structure at Jenpeg will control approximately 75 percent of the Lake Winnipeg outflow (about 73,000 cfs). Jenpeg (using six turbines) will generate 168,000 Kw. with a head of 25 feet. Power production is expected to commence by 1979.

Three channels are associated with Lake Winnipeg regulation in order to increase outflow capacity. They are referred to as 8 Mile Channel, 2 Mile Channel and Ominawin By-Pass.

Kiskitto Lake will be controlled by a series of dams and dykes at the outlets, to Black Duck Creek and the Nelson River West channel. These structures will maintain Kiskitto Lake levels independent of Lake Winnipeg. Regulation will reduce the natural fluctuations of the lake.

CHURCHILL RIVER DIVERSION: Structures associated with the Churchill River Diversion include the Notigi control, the South Bay Diversion channel and the Missi Falls control structure.

Missi Falls control is a grated control structure and spillway located at Missi Falls on the Churchill River. This structure will result in Southern Indian Lake being raised by ten to 13 feet. Maximum drawdown is expected to be two feet. Missi Falls control will result in a reduced flow on the Churchill River of about 75 percent with approximately 27,000 cfs. diverted to the Nelson River. This will result in a two thirds reduction in flow of the Churchill at Hudson Bay.

South Bay diversion channel is an excavation channel connecting South Bay (of Southern Indian Lake) and Issett Lake (upper reaches of the Rat River). This channel is capable of diverting up to 30,000 cfs. from the Churchill to the Nelson.

Notigi control is a structure located on the Rat River at the south end of Notigi Lake to regulate upstream water levels. The control structure is capable of releasing a maximum of 30,000 fcs. to the Burntwood River. Notigi will also be capable of generating 90,000 Kw. of power using a head of 30 to 40 feet. Summer drawdown up to nine feet.

As a result of the Churchill River Diversion, substantial generating stations are feasible on the Burntwood River. Three such structures have been proposed by Manitoba Hydro; Wuskwatim, Manasan and First Rapids stations. These sites would have a combined capacity of about 640,000 Kw.

Water Quality

The quality of surface waters in the Zone has not been extensively surveyed. Certain rivers, such as the Saskatchewan and Grass, and certain lakes (Paint, Athapapuskow, etc.) have been surveyed for chemical and biological components. Lake and river surveys done to date have usually been associated with pollution or fisheries studies.

Maps 4-6 present some generalized water data, although the reader is referred to individual studies for specific water composition or quality data. Map 7 displays some of the lakes for which more detailed information is available in report form.

*Source: Fisheries and Environment Canada, 1978

WATER BODIES SURVEYED

WATER RESOURCES

MID NORTH PLANNING ZONE

40 0 40 80 10

Agriculture

Agriculture is Manitoba's leading industry, grossing an average of 926 million dollars from 1971-1975. This represents an average of 18 percent of the gross provincial product for those years.

Agriculture in the Planning Zone is almost exclusively limited to the area known as the Pasquia land settlement. This area, encompassing 142,720 acres is bordered on the north by the Carrot River, on the south by the Pasquia River and on the west by the Saskatchewan border (Map 1). The Pasquia Valley is in fact a portion of the upper Saskatchewan River Delta. Only about 76,000 of the total is intensively farmed. The breakdown of use of this portion of land is given in Table 1 for 1971. Forty percent of the land was under crops and 20 percent in summerfallow. In 1970, there were 146 land owners in the Pasquia.

Table 1

Land Use of the Pasquia Area 1971

Land Use	Acreage	Percentage
Grain crops Special crops Mixed crops	13,560 11,520 1,420	17.9 15.2 1.9
Forage crops Summerfallow Native grasses	3,840 15,160 12,250	5.1 20.0 16.2
Scrub grassland Tree grassland Scrub Open water Woodland Marsh	5,320 80 5,900 250 1,950 4,460	7.0 0.1 7.8 .3 2.3 5.9
Total	75,710	

Source: PLUP, 1975

The major agricultural limitation in the Pasquia is drainage. A combination of high water table and little gradient results in late spring seeding. With extensive spring rains crops may not be planted. This is perhaps evidenced by the large amount of summerfallow. Late planting results in a later harvest date thereby running the risk of crop loss or harvesting in fall rain and/or snow (a common occurrence in this area). Crops harvested wet must then be dried increasing

MAP 1. AGRICULTURAL AREAS OF THE PLANNING ZONE WAROWDEN..... AGRICULTURE Mid North Planning Zone LAKE WINNIPEG

production costs. Some farmers have harvested only two or three good crops out of $\operatorname{six.}^{\ l}$

Weeds are also a problem in the Valley although less critical than drainage. Poor farm practices and rapid rates of growth combine to result in a weed problem. Fields not worked annually are quickly overtaken by weeds. Fields crops not sprayed with herbicide are frequently weed infested, resulting in costly cleaning operations.

Other problems plaguing Pasquia Valley farmers are: the difficulty of obtaining equipment parts, the lack of a meat processing plant and the availability of off-farm labour.

The Agricultural capability (CLI) of the Pasquia is shown on Map 2.

Other agricultural areas in the Zone include the Saskeram Wildlife Management Area (WMA), Rahls Island, Wanless and Wabowden.

The Saskeram is located north of the Carrot River and south of the Saskatchewan River. Its agricultural use is limited to haying and grazing which is done under crown leases. Twenty farmers leased nearly 20,000 acres in this area in 1970. A number of inter-related agricultural problems are encountered in the Saskeram WMA. Access is difficult both for livestock and equipment resulting in no land improvement practices. Some cattle are allowed to free range outside of lease areas resulting in destroyed wildlife habitat, and many leases are overgrazed. Ducks Unlimited holds a lease in the Saskeram in order to manipulate water levels for habitat improvement and waterfowl production. They are restricted in that extensive areas of grazing land would be flooded should they proceed to manipulate water levels within this lease.

Rahls Island, lying immediately east of The Pas is currently utilized primarily for forage production and grazing. The developed area in agricultural production was 6,824 acres in 1971 although adjacent area are used for grazing and cutting native hay.

¹Harper, 1975

Wanless, 25 miles north of The Pas, was originally an attempt at seed production. The area is well drained and gently undulating. It has been vacant since the late 1950's (it is currently owned by a non-Canadian concern). A market garden/greenhouse operation specializing in bedding plants currently operates at Wanless. The area has a relatively high capability (CLI) for agriculture.

From 1954-1966 (under Order-in-Council 1451-54) a Dominion Agricultural Experimental Substation was operated at Wabowden. Barley, alfalfa, clover, currents, gooseberries, raspberries and a wide variety of vegetables were grown. In 1967, this land was placed under reservation with the Provincial Department of Agriculture under Order-in-Council No. 450/67. In April, 1968 this land was returned to Lands Branch Administration. Some field crop production still takes place on the old substation fields by members of the Wabowden Farmers Association.

Grazing leases on crown land in the Saskeram and Pasquia area amounts to some 28,874 acres. This acreage is held in 52 leases. There are 68 other agricultural leases and permits in the Pasquia.

Maps 3 and 4 show the soils of the four agricultural areas in the Planning Zone.

Extensive Agriculture is severely limited in the Mid North Planning Zone. Climate, drainage and lack of mineral soils are the major limiting factors to the expansion. Local intensive farming of a specialized and specific crop nature may be able to overcome any one or all of the generally limiting parameters.

²Agricultural Crown Lands December, 1977

SOILS OF MID NORTH AGRICULTURAL ZONES FOR LEGEND SEE PAGE

MAP 3. AGRICULTURE

AWANLESS
RAHL'S ISLAND➤
▼PASQUIA

Map 3 Legend

Parent Material	Map Symbol	Natural Drainage	Soil Name and Dominant Texture	Subgroup Profile	Dominant Vegetation	Topography	Stoniness
Extremely cal- careous medium textured till	At	Well	Atikameg Series (loam)	Degraded Eutric Brunisol	Black spruce, jackpine, aspen	Very gently undulating	Very stony to excessively stony
	Wy		Westray Series (loam)	Orthic Grey Luvisol	Black spruce, jackpine, aspen	Very gently undulating	Very stony to excessively stony
	Dr	Poor	Dering Series peaty phase (loam)	Rego Gleysol	Black spruce, Ledum spo, Feather and Sphagnum mosses	Depressional to level	Moderately stony to very stony
20 to 40 inches of extremely calcerous	Li	Well	Limestone Point Series (loam)	Degraded Eutric Brunisol	Black spruce, jackpine, aspen	Very gently undulating	Very stony to excessively stony
medium textured till over lime- stone bedrock	Вс	Imperfect	Birch Bay Series (loam)	Gleyed Degraded Eutric Brunisol	Black spruce, aspen, willow	Very gently undulating	Moderately stony to exceedingly stony
	₿p	Poor	Biscuit Point Series, peaty phase (loam)	Rego Gleysol	Black spruce, Ledum sp., Feather and Sphagnum mosses	Depressional to level	Moderately stony to very stony
Moderately to strongly cal-	Cl	Well	Cedar Lake Series (clay)	Orthic Grey Luvisol	Black spruce, jackpine, aspen	Very gently undulating	Moderately stony
careous fine textured till	Dy	Imperfect	Dyce Series (clay)	Gleyed Grey Luvisol	Black spruce and white spruce	Very gently sloping	Slightly to moderately stony
Moderately to strongly cal- careous lacus-	Wa	Well	Wabowden Series (clay)	Solodic Grey Luvisol	Black & white spruce, aspen and jackpine	Undulating	Stone-free
trine clay	Sk		Sipiwesk Series (clay)	Orthic Grey Luvisol	Black & white spruce, aspen and jackpine	Undulating	Stone-free
	Rl	Imperfect	Roe Lake Series	Gleyed Grey Luvisol	Black & white spruce and aspen	Gently undulating	Stone-free
	Ме		Medard Series, peaty phase (clay)	Rego Gleysol	Black spruce, Ledum sp., Feather and Sphagnum mosses	Gently undu- lating to near level	Stone-free
Non-calcareous glacio-fluvial sand deposits	Pa	Imperfect	Pakwa Series (medium to fine sand)	Gleyed Degraded Dystric Brunisol	Jackpine and black spruce	Undulating	Stone-free
	Ву	Poor	Baldy Series peaty phase (medium to fine sand)	Rego Gleysol	Black spruce, Feather and Sphagnum mosses	Near level	Stone-free
Stratified cal- cerous sand and gravel outwash and beach deposits	Wx	Rapid to well	Woodridge Com- plex (sand and gravel)	Orthic Grey Luvisol Orthic Eutric Brunisol Degraded Eutric Brunisol	Jackpine, black spruce	Gently undu- lating to undulating (low narrow ridges)	Slightly to moderately stony
	Tux	Imperfect	Tremaudan Com- plex (sand and gravel)	Gleyed Grey Luvisol Gleyed Degraded Eutric Brunisol	Black spruce, jackpine and aspen	Gently undulating	Slightly to very stony
Weakly to mod- erately calcer- eous medium to moderately coarse textured	N	Imperfect	Nels Series (fine sandy loam to loam)	Gleyed Cumulic Regosol	Balsam poplar, aspen, white spruce, some elm, maple & ash, willow	Very gently to gently undulating	Stone-free
recent alluvial deposits	P	Poor	Pasquia Series (very fine sand to silt loam)	Carbonated Rego Gleysol	Sedges, reeds, willows & some aspen	Depressional to nearly level	Stone-free
Weakly to mod- erately cal- careous mod- erately fine to medium textured	С	Imperfect	Carrot Series (fine sandy loam to loam)	Gleyed Cumulic Regosol	Balsam poplar, aspen, white spruce, some elm, maple & ash, willow	Very gently to gently undulating	Stone-free
recent alluvial deposits	В	Poor	Big Lake Series (fine sandy clay loam to clay loam)	Carbonated Rego Gleysol	Sedges, reeds, willows & some aspen	Depressional to nearly level	Stone-free

Parent Material	Map Symbol	Natural Drainage	Soil Name and Dominant Texture	Subgroup Profile	Dominant Vegetation	Topography	Stoniness
Weakly to mod- erately calcar- cous fine tex- tured recent alluvial deposits	L	Poor	Le Pas Series (silty clay to clay	Carbonated Rego Gleysol	Sedges, reeds, willows and some aspen	Depressional to nearly level	Stone-free
Thin muck and silty deposits over calcareous sediments	Mh	Very poor	Marsh Complex (mucky silty clay)	Rego Gleysol	Rushes, reeds and sedges	Depressional to level	Stone-free to moder- ately ston;
O to 4 inches or rubble over limestone bedrock	R	Rapid	Rock outcrop		Some jackpine & black spruce	Irregular steeply sloping	
16 to 52 inches of mesic forest peat or thin (0 to 24 inches) of fibric	Cdx		Grindstone Complex (under- lain by extreme- ly calcereous till)				
Sphagnum moss peat overlying resic forest peat	Rrx		Rat River Com- plex (underlain by calcareous sand)				
	Akx	Poor to very poor	Atik Complex (underlain by medium to fine textured cal- careous lacus- trine sediments)	Terric Fibric Mesisol Terric Mesic Fibrisol Terric Mesisol Terric Fibrisol	Black spruce with an under- story of feather and Sphagnum mosses & ericaceous shrubs	Level to depressional	Stone-free
24 to 64 inches of fibric Sphag- num moss peat which may be underlain by significant amounts of	Мж	Poor to very poor	Molson Complex (underlain by medium to fine textured cal- careous lac- ustrine sedi- ments)	Terric Mesic Fibrisol Terric Fibric Mesisol Terric Fibrisol	Stunted black spruce & tama- rack with an understory of Sphagnum mosses and ericaceous shrubs	Depressional to level	Stone-free
forest or sedge peat	Kx	Kilkenny	Kilkenny Complex (underlain by extremely cal- careous till)				
12 to 52 inches of moderately decomposed sedge peat with little (6 inches) or no Sphagnum moss	Cax	Very poor	Cayer Complex (underlain by medium to fine textured calcar- eous lacustrine sediments)	Terric Mesisol Terric Fibric Mesisol	Sedges & mosses with clumps of black spruce & tamarack	Depressional to level	Stone-free
peat deposits	Сх		Crane Complex (underlain by extremely cal- careous till)				
Mesic forest peat greater than 52 inches thick or thin			Bradbury Complex (underlain by extremely cal- careous till)	Typic Mesisol Mesic Fibrisol	Black spruce with an under- story of feather and	Depressional to level	Stone-free
(O to 24 inches) fibric Sphagnum moss peat over- lying mesic forest peat	,		Hargrave Complex (underlain by medium to fine textured cal- careous lacus- trine sediments)		Sphagnum mosses & ericaceous		
Greater than 52 inches of mesic seige peat with little (6 in.) or no Sphagnum muss peat reposits	Sdx	Very poor		Typic Mesisol	Seiges & mosses	Depressional to level	Stone-free

MAP 4. AGRICULTURE

SOILS OF THE WABOWDEN AGRICULTURAL AREA

SOILS OF THE UPPER NELSON RIVER BASIN AREA

Map Symbol	Soils		Land Pattern
1	Wabowden Half Bog and others	80-100% 0-20%	Irregular, gently to moderately slop- ing with some peaty depressions.
6	Wabowden Rockland and others	40-60% 40-60%	Irregular, gently to steeply sloping with about 50 percent of Rockland.
8	Sipiwesk Wabowden and others	80-100% 0-20%	Irregular, gently to moderately sloping with a few small peaty areas.
10	Pipun Wabowden and others	80-100% 0-20%	Irregular, very gently to gently sloping with some peaty areas.
11	Minago Wabowden and others	40-60% 40-60%	Irregular, very gently to gently sloping with some peaty areas.
14	Half Bog Others	80-100% 0-20%	Level to very gently sloping with a few low knolls.
15	Bog Others	80-100% 0-20%	Generally level with a few low knolls.
16	Rockland Others	80-100% 0-20%	Mainly low hills of granitoid rock outcrops.

SOIL COMPLEXES

Soil	Soil Sub-Group	Natural Drainage	Surface Deposits
Wabowden series	1 Sulonetzic Grey Wooded	Moderately well drained	Lacustrine clay
Sipiwesk series	Orthic Grey Wooded	, Moderately well drained	Lacustrine clay
Pipun series	Orthic Grey Wooded	Moderately well drained	Thin lacustrine clay on lacustrine silt
Minago series	Orthic Grey Wooded	Moderately well drained	Lacustrine silt
Half Bog		Very poorly drained	12-30 inches of peat generally underlain with clay
Bog		Very poorly drained	>30 inches of peat
Rockland			Deposits over bedrock are thin to absent

Land Use

Transportation

Historically, the rivers of the north were the highways, cross country travel in summer was generally impractical for long distances. This dependance on the river systems led to the formation of many northern communities (e.g., Norway House, The Pas). Today, the Planning Zone is serviced by Air, Rail and Road networks as well as the tradition water routes.

Rail Transportation

In 1908 the first rail intrusion into the Zone was completed linking The Pas with Hudson Bay Junction (Saskatchewan). By 1929 the line was extended to Churchill with dozens of service points established on the line, some of which have become sizeable communities (e.g., Wabowden, Pikwitonei, Thicket Portage). The railroad was extended to Sherridon in 1931 and to Lynn Lake in 1953. Additional spur lines were built into Thompson (1957) and Chisel Lake (1960) (Map 1).

The Canadian National (CNR) now hauls food supplies, wood, ore and passengers to and from a majority of the zone communities. The railway has made mining in northern Manitoba economically viable, encouraged the expansion of forest operations and permitted the construction of Hydroelectric dams.

Air Transportation

The largest air carrier in the Mid North is Transair Ltd. flying scheduled air service to six communities (Map 2) and linking the Zone with Churchill and Winnipeg. Other scheduled service is provided by Calm Air, Perimiter Aviation and Aero Trades. In addition to the scheduled air network, a number of companies are available for charter and lease. Table 1 provides a list of charter firms located in the Planning Zone.

The Manitoba Government air division maintains two permanent air facilities in the north, one at Grace Lake near The Pas and one at Thompson. Both Thompson and The Pas facilities include wheel, float and ski equiped aircraft. In addition, aircraft are also stationed at other points in northern Manitoba during the forest fire season for detection, water bombing and fire crew transportation.

A large number of air facilities are available, ranging from sheltered enchorages for float planes to multi-runwayed airports such as Clearwater Lake. Air facilities as shown in the Ministry of Transport flight guide are found on Map 3.

Thompson is the major destination and origon of air travelers, with The Pas and Gillam both fairly high in passenger traffic (Table 2).

Company	Location				
Aero Trades	Norway House, Jenpeg				
Calm Air	Lynn Lake, Leaf Rapids, Thompson				
Cross Lake Air Service	Wabowden				
Ellair Ltd. (Ilford-Riverton)	Thompson				
Fly-A-Long Ltd.	Norway House				
Keewatin Air Ltd.	Ilford, Gillam				
Kississing Air	Lynn Lake				
Laronge Aviation	Lynn Lake				
Lambair	The Pas, Gillam, Thompson				
Midwest Helicopters	Thompson				
Parson Airways	Flin Flon				
Transair-Midwest	Flin -lon, Gillam, Lynn Lake, Norway House, The Pas, Thompson				
Custom Helicopters	Thompson				

^aNovember, 1978

Table 2

Estimated Domestic Air Passenger Statistics
Mid North Airports

	1974	, +	1975		1976	
Community	Out	In	Out	In	Out	In
the state of the s	Bound	Bound	Bound	Bound	Bound	Bound
Cross Lake	30	370	260	440	210	490
Flin Flon	8,640	9,130	7,020	7,160	7,640	7,730
Gillam	10.730	10,600	11,540	10,910	10,640	10,420
Leaf Rapids	1,230	2,510	800	1,750	560	870
Lynn Lake	11,730	11,590	7,630	7,930	5,280	5,480
Missi Falls	150	530	320	610	100	240
Norway House	3,930	3,900	3,590	3,920	3,790	3,960
The Pas	11,650	11,550	11,380	11,400	12,340	11,720
Thompson	27,090	27,410	26,060	25,960	25,440	25,660
Wabowden	-	10	10	10	_	-

Source: Manitoba Statistical Review, 1st quarter, 1978

TRANSPORTATION - AIR FACILITIES

GOVERNMENT OF MANITOBA: LAND A WATER A

SHELTERED ANCHORAGE

PRIVATE

MAP 3.
TRANSPORTATION

MID NORTH PLANNING ZONE

1 inch: 40 miles

January 1974.

Winter Roads

The early 1930's marked the appearance of the first winter roads in the Mid North linking Ilford to Gods Lake and Wabowden to Cross Lake. Whereas horse drawn sleighs were initially used, modern tractor trailors are now in service.

Winter roads are still in use to some communities (Map 4) for hauling food, fuel and other dry goods, however, with the expansion of all weather roads there use is diminishing.

Water Transportation

This traditional transportation mode upon which all commerce depended in the past, is still in use in some areas of the planning zone. Fish are hauled by boat from Granville and Southern Indian Lakes to Leaf Rapids. Large bulk goods are hauled by barge to Norway House on Lake Winnipeg and pulp wood has been hauled from Warrens Landing to the Abitibi mill at Pine Falls. Barges are in operation on some lakes and rivers in the zone (e.g., Saskatchewan River and Reindeer Lake) and ferries are in use (or will be) at Sea River Falls, Cross Lake and Split Lake.

All Weather Roads

The all weather road system have been the most rapidly expanding transportation mode in the north in recent years. Hundreds of miles of road have been built in the last 20 years and have changed the face of northern Manitoba.

The major all weather roads are shown on Map 5 with the approximate average daily traffic flow.

Maintenance of provincial roads in the north was over a million dollars in 1976/77. This averaged out at 1637 dollars per mile (Table 3).

Vehicles/Day

600 + 300-600 100-300 <100

Provincial Road Provincial Highway.... TRANSPORTATION

MID NORTH PLANNING ZONE

Table 3

MAINTENANCE OF PROVINCIAL ROADS

IN THE MID NORTH 1976/77

Road	Miles	Summer Expenditure	Winter Expenditure	Total Expenditure	Cost Per Mile
282	14.8	22,139.92	2,742.32	24,882.24	1,681.23
283	24.7	31,258.95	6,742.45	38,001.40	1,538.52
285	9.5	28,517.43	11,771.22	40,288.65	4,240.91
287	11.8	27,590.19	5,983.49	33,573.68	2,845.23
289	2.4	4,124.51	1,697.50	5,822.01	2,425.84
291	2.8	2,837.14	3,928.17	6,765.31	2,416.18
373	19.4	111.10	268.12	379.22	19.55
375	3.7	2,879.07	490.23	3,369.30	910.62
391	398.3	500,094.38	258,164.38	759,258.76	1,903.74
392	26.6	8,252.00	23,078.74	31,330.74	1,177.85
393	11.8	8,669.48	2,330.67	11,000.15	932.22
394	62.7	10,681.96	4,124.51	14,806.47	236.15
395	8.1	11,365.96	2,340.58	13,706.54	1,692.17
396	28.2	9,493.09	19,206.02	28,699.11	1,017.70
397	3.4	5,402.64	11,338.61	16,741.25	4,923.90
398	1.1	962.01	534.03	1,496.04	1,360.04
399	0.3	252.60	1,521.52	1,774.12	5,913.73
TOTAL	629.6	674,632.43	356,262.56	1,030,894.99	
MEAN	027.0	074,002243	550,222,50	2,000,00,400	1,637.38

SOURCE: 1976-77 Annual Report of the Department of Highways

Communities

There are 28 communities within the Mid North Planning Zone ranging in size from 59 (Granville Lake) to over 21,000 (Thompson) people (Map 1). Their level of infrastructure development, range of services and economic bases vary as widely as their size. Most communities in the zone originated in association with fur trade posts or more recently with mineral operations.

COMMUNITY LOCATION

POPULATION

59 - 599

600 - 1499

1500 - 2999

3000 - 10000

>20000

COMMUNITIES

MID NORTH PLANNING ZONE

linch 40 m les

Demographic Characteristics

The population of the zone is estimated at 67,453 people, an increase of 18.8 percent since 1971 (Table 1). The provincial increase for the same period has been 4.4 percent. The total population of the Zone's communities represents about six percent of Manitoba's population.

There are three types of populations into which the communities may be divided. The 'traditional' settlements are characterized by very young populations (over 40 percent under 15 years). Many of the Indian reserves in the Mid North are examples of this type of community (Figure 1). The second type of settlement are the 'Resource' communities which are characterized by a high percentage of work-age males. The mining and hydro towns are good examples of 'Resource' communities. The final settlement type merely includes all other communities.

Vital statistics on a community basis are only available for Flin Flon, The Pas and Thompson (Table 2). Although actual data is not readily available for the majority of communities, these three cities represent 58 percent of the Zone's population.

The population dynamics of the northern Manitoba communities differ from those of the south and in fact there are wide variations between northern centers. The population of the zone has been growing at an annual rate of 2.4 percent since 1971. Five communities (Flin Flon, Lynn Lake, Wabowden, Thicket Portage and Pikwitonei) have displayed annual decreases in population ranging from 0.2 percent (Flin Flon) to 5.2 percent (Thicket Portage). Six communities are increasing at rates between 0.1 percent and two percent (Thompson, Gillam, Norway House, Cranberry Portage, Grand Rapids and Cormorant). There are eight communities increasing in population at rates between two and four percent annually (Snow Lake, Moose Lake, Brochet, Pukatawagan, Easterville, South Indian Lake, Ilford and Sherridon). The remaining eight communities

In the Zone's mining communities, males out number females by 30 percent in the 15-34 age groups. Males in these groups represent 26 percent of the mining communities populations.

Two percent annual increase results in doubling population in 35 years

A four percent annual increase results in population doubling every
18 years

Table 1
Community Population Profile

		Po	pulation			% Change	
Community	61	66	71	78	61-71	61-78	71-78
Thompson	3,449	8,989	19,005	21,034	451.0	509.8	10.6
The Pas	4,671	5,031	6,062	9,516	29.7	103.7	56.9
Flin Flon	10,546	9,674	8,873	8,776	- 15.8	-16.7	- 1.1
Lynn Lake	2,118	2,189	3,515	2,748	65.9	29.7	- 21.8
Gillam LGD	332	356	1,921	2,187	478.6	558.7	13.8
Norway House	543	2,275	2,762	3,056	408.6	462.7	10.6
Leaf Rapids	n.a	n.a	25	2,368	N/A	N/A	9372.0
Snow Lake	915	1,408	1,582	1,989	78.8	117.3	25.7
Cross Lake	1,051	n.a	1,917	2,543	82.3	141.9	32.6
Nelson House	n.a	847	1,504	1,989	N/A	N/A	32.2
The Pas Reserve	792	927	768	1,211	- 3.0	52.9	57.6
Cranberry Portage	907	618	922	1,021	1.6	12.5	10.7
Wabowden	327	594	1,051	763	221.4	133.3	- 27.4
Split Lake	328	384	799	1,161	143.5	253.9	45.3
Moose Lake	283	638	750	909	165.0	221.2	21.2
Brochet	n.a	n.a	822	960	N/A	N/A	16.7
Pukatawagan	n.a	699	967	1,171	N/A	N/A	21.0
Easterville	n.a	399	506	603	N/A	N/A	19.1
South Indian Lake	103	477	615	784	49.7	661.1	27.4
Grand Rapids LGD	986	571	660	670	- 33.0	-32.0	1.5
Cormorant	272	342	396	436	45.5	60.2	10.1
Thicket Portage	275	282	360	229	30.9		- 36.3
Pikwitonei	175	230	258	200	47.4	14.2	- 22.4
Ilford	165	n.a	187	217	_	31.5	16.0
York Landing	16	65	199	395	1143.	2368.7	98.0
Sherridon	220	233	166	196	- 24.5	-10.9	18.0
Wanless	156	102	123	202	- 21.1	29.4	64.2
Granville	n.a	99	74	119	N/A	N/A	60.8
TOTAL	28,630	37,429	56,789	67,453	98.3	135.6	18.8

Source: Northern Affairs

Manitoba Health Services Commission, Computer Printout

n.a. data not available
N/A not applicable

FIGURE 1. POPULATION PYRAMIDS.1

^{1.} June 1978, Manitoba Health Services.

in the zone have for the past eight years (1971-1978) been experiencing annual population increases in excess of four percent. These range from 4.6 percent for Nelson House to 14.1 percent for York landing.

Should the 2.7 percent rate of increase continue, the population of the planning zone will be over 120 thousand by the year 2000.

The male population of the Mid North exceeds the female portion of the population by over seven percent. In the 'resource' communities nearly 55 percent of the population are male. In 'traditional' communities males account for nearly 52 percent of the population. Population (1978) data indicates that only in Grand Rapids, Moose Lake and Easterville the female portion of the population exceed the male portion.

The age structure of the planning zone is heavily biased to-ward young people as can be seen by the age/sex pyramid. Thirty-four percent of the population is under 15 years old and 56 percent are under 25 years.

In summary, the population of the Mid North Planning Zone is younger, has a higher proportion of males 7 and is more rapidly increasing 5 then the total Manitoba population.

TABLE 2

Vital Statistics of Selected Mid North Communities

	Births				Dea	Deaths		Marriages	
	1974 Ma	1975 les	1974 Fem	1975 ales	1974	1975	1974	1975	
Flin Flon	4)	52	71	63	71	71)	+3		
The Pas	95	85	067	ñ	64	5.,	54		
Thompson	324	280	500	. 1/9	100	,	191		

Source: Manitoba Statistical Review, 3rd quarter, 1977 4th quarter, 1976

Leaf Rapids excluded

⁵Snow Lake, Lynn Lake, Leaf Rapids, Flin Flon and Thompson

⁶This compares to 25 percent and 44 percent respectively for Manitoba

⁷ Manitoba: 49.9 percent male, 50.1 female

⁸ Manitoba increasing at 1.5 percent per year for period 1971-1978

Economy

Over the last two decades there have been many changes in northern Manitoba resulting from increased contact with the industrialized southern society. Discovery and development of natural resources has facilitated an increase in availability of wage employment to many northern residents. Educational levels of the native peoples (especially the younger generation) have been increasing and many are now taking an active role in community affairs.

The potential labour force of the Planning Zone in 1978 was approximately 75 percent of the total population or 42,336 (Table 3). This number was calculated considering all individuals in the population between the ages of 14 and 64 years as being eligible to work. The estimated acutal labour force of the Zone is calculated by applying the provincial participation rate for 1978 to the potential labour force. The resultant figure (26,080) indicates the approximate number of people who are either employed or activily seeking work.

There are a number of factors affecting the rate of employment or unemployment within the Planning Zone. Location of the job is a critical factor since many potential workers prefer not to relocate. Season of employment may also determine the availability of local persons to work as in some communities, traditional activities such as hunting and fishing take priority over occasional wage employment. The benefits derived from traditional activities (income-in-kind) may exceed those offered by sporadic wage employment. Educational and/or technical qualifications of local residents may not meet standards required to fill specific vacancies. Professional, technical and administrative personal are usually imported from southern Manitoba to work on northern projects.

Three distinct community economies exist in the Mid North Planning Zone: traditional, wage and the transfer payment economy. The traditional communities have depended upon the extensive use of land and water resources for their economic livelihood for many decades. Particular locations were settled because of the abundance of fish and wildlife resources or for their proximity to early trading posts. Working family groups were characteristic of this economy. In many remote

⁹Department of M.R.E.M. Nelson House Community Profile 1974

Table 3 Mid North Labour Force

Community	Population*	Potential Labour Force ^a	Estimated Actual Labour Force	
Thompson	21,034	14,341	8,834	
The Pas	9,516	6,273	3,864	
Flin Flon	8,776	6,105	3,761	
Lynn Lake	2,748	1,851	1,140	
Gillam	2,187	1,508	929	
Norway House	2,391	1,287	793	
Leaf Rapids	2,368	1,549	954	
Snow Lake	1,989	1,438	886	
Cross Lake	2,087	1,108	683	
Nelson House	1,871	899	554	
The Pas Reserve	1,211	648	399	
Cranberry Portage	1,099	660	407	
Wabowden ¹	1,019	555	342	
Split Lake	1,161	602	371	
Moose Lake ¹	809	513	316	
Brochet ¹	745	337	208	
Pukatawagan	1,171	559	344	
Easterville ¹	687	300	185	
South Indian 1	697	302	186	
Grand Rapids	670	424	261	
Cormorant ¹	551	252	155	
Thicket Portage	350	165	102	
Pikwitonei ¹	295	140	86	
Ilford ¹	266	141	87	
York Landing	395	205	126	
Sherridon 1	165	79	49	
Wanless 1	123	64	39	
Granville ¹	59	31	19	
TOTAL	66,440	42,336	26,080	

^{*1978} Manitoba Health Services (MHSC) population figures

¹¹⁹⁷⁵ MHSC population figures
aAll individuals 14-64 years

[&]quot;anitoba Bureau of Statistics 1977 average participation rate is 61.6% of potential labour force

northern communities traditional activities (trapping, hunting and fishing) are pursued as they contribute income-in-kind to the communities (Table 4). In communities such as Pukatawagan, income-in-kind derived from traditional activities contributed 14.8 percent of the community income (1975).

Table 4

Percentage of Community Income
Derived from Traditional Activities

	Cash	Trapping Income-in-kind	Cash	Fishing Income-in-kind
Brochet ^a	1.9	0.0	3.5	3.4
Cross Lake ^b	1.0	1.0	2.0	6.0
Granville Lake ^a	5.0	4.0	8.0	6.0
Nelson House b	1.0	2.5	1.0	4.0
Pukatawagan ^a	3.5	4.7	2.3	10.1
South Indian Lake b	2.0	2.0	15	7

^aSocial and Economic Impact Study of the Churchill-Nelson River Hydro Development, 1974

In many cases, declining resources and the encroachment of industrialization and development has made it difficult to maintain an economy based solely on traditional activities. This encroachment has resulted in the destruction of the family working group as an economic factor. Many of the Zone's residents rely on a combination of traditional pursuits coupled with seasonal wage employment and transfer payments.

The transfer payment economy of Zone communities is based on family allowance, old age pension, social assistance and other such payments. Social assistance payments generally result from a lack of attractive alternative income sources.

Two government agencies are involved with the dispursion of monies. The federal Department of Indian Affairs and Northern Development allocates monies to the Zone's treaty Indians while the Provincial Department of Health and Social Development services Non-treaty residents.

bChurchill River Study, 1975

Social assistance payments to treaty residents totalled approximately 5.5 million dollars in 1977/78 representing an increase of 7.7 percent over the previous year. The average per capita payment was 416 dollars for the year 1977/78, however 60 percent of the Zone's band members received payments below this average (Table 5).

Economic¹⁰ welfare accounts for about 53 percent of the total federal assistance to the treaty Indians of the Zone. Social¹¹ assistance 23 percent, health payments 19 percent and miscellaneous monies about 5 percent.

The total payments made to non-treaty residents by the Department of Health and Social Development for the year 1974 amounted to 1.2 million dollars. Assistance payments ranged from a low of \$150/recipient at Norway House to a high of \$2,451/recipient in Brochet.

The transfer payment economy is tied closely to both traditional pursuits and the wage economy. The seasonality of traditional activities such as fishing and trapping is directly reflected in the dispursal patterns of social assistance. The largest amount of welfare paid out tends to peak in the months of highest unemployment. In the period 1974 to 1976, the months of January and October showed the largest assistance payments.

The major employer in the planning zone is the mining industry, employing over six thousand people. Manitoba Hydro, Manitoba Forest Resources (ManFor) Ltd. and the school system each employ approximately one thousand people.

Specific incomes by employer by location are not available, however, the provincial averages by industry type are given in Table 6.

Incomes in the seven government districts (LGD's) was 11,817 dollars in 1975, significantly above most southern Mantioba communities.

The average income for these LGD's has increased by an average of over 81 percent since 1971 (Table 7).

¹⁰ Such as unemployment

¹¹ Such as pensions and family allowance

¹² Last year of available generalized information

Average income (1975) for 50 southern communities including Brandon, Portage and Dauphin was 9611 dollars

5 Table

Social Assistance to Indian Bands

in the Mid-North

\$/capita 269 502 318 174 452 482 205 718 524 909 333 402,998 582,328 595,862 59,323 529,805 149,293 474,856 5,486,383 \$1,252,617 1,263,830 83,192 92,279 N/A1977-78 \$/capita 310 N/A 250 094 134 422 7/9 526 999 317 421 184 76,143 512,418 \$1,231,586 1,158,710 563,412 43,913 136,193 81,136 434,861 5,091,000 381,897 470,731 N/A 1976-77 \$/capita 864 N/A 644 324 363 222 256 559 531 251 201 4,186,343 622,118 148,376 \$859,741 974,552 297,777 60,147 461,755 70,082 243,430 104,051 344,314 N/A1975-76 \$/capita 269 396 198 201 N/A 389 266 211 114 277 389 192 34,175 1974-75 \$714,859 746,645 257,645 286,063 340,607 63,377 103,459 128,432 77,793 163,749 2,916,804 N/A Mathias Colomb Grand Rapids York Landing Norway House Nelson House Barren Lands Split Lake Moose Lake Chemahawin Cross Lake Band Name Fox Lake The Pas TOTAL

Canada, Department of Indian Affairs and Northern Development, Social Development Section, Source:

Manitoba Region

Table 6

Average Annual Income by Industry (,000 of Dollars)

	Mining	Trade	Service	Transportation and Utilities	Forestry	Teachers
1972	9.8	5.8	5.0	8.2	n.a	n.a
1973	10.5	6.2	5.2	8.8	11.4	10.8
1974	11.4	6.9	5.6	10.1	13.6	12.0
1975	13.5	7.9	6.4	11.5	15.9	14.2
1976	14.9	8.7	7.2	13.0	14.5	15.9
1977	16.1	9.3	7.8	14.5	n.a	n.a
Percent Increase	+63.9	+61.3	+56.4	+7 7. 2	+27.1 ^b	+47.0 ^b
Annual Percent Increase	+10.7	+10.2	+ 9.4	+12.9	+ 6.8	+11.7

Source: Modified from Manitoba Statistical Review, 3rd quarter, 1978

n.a. not available

Table 7

Incomes of Mid North Local Government Districts

	Average Income 1971	1975
L.G.D. of Flin Flon	\$5,523	\$11,097
L.G.D. of Consol	5,640	10,465
L.G.D. of Mystery Lake	7,170	11,856
L.G.D. of Snow Lake	6,084	12,018
L.G.D. of Lynn Lake	7,516	12,770
L.G.D. of Grand Rapids	5,171	9,185
L.G.D. of Gillam		15,325

Source: Manitoba Community Reports, 1977; Dept. of Industry, Trade and Commerce

aFor all of Manitoba

bover four years

An integral consideration in the economy of the north is the cost-of-living. Because of the isolation and great distance from Winnipeg of the communities in the Planning Zone, the cost-of-living is considerably higher than the southern part of the province. In 1978 gasoline prices were approximately \$.10 in The Pas to \$.29 in Gillam higher than in Winnipeg (See Table 8). Food prices and home heating in the Mid-North are also higher than in the Southern part of the province. Food prices as of 1977 were 10% higher and home heating ranged from 10-41% higher as of March 1978 (Table 9 and 10).

Table 8

Average Casoline Prices for Selected Mid North Communities

Average	Gasolin	e Price	s for S	elected M	lid North	Communi	ities
	197	6		197	77		1978
	Oct.	Dec.	Mar.	June	Sept.	Dec.	Mar.
Flin Flon	95.0	95.4	96.4	96.3	98.8	98.1	101.1
Gillam	98.7	103.7	108.9	108.0	116.0	116.0	121.0
Grand Rapids	98.2	98.2	99.4	98.2	104.0	104.3	107.8
Leaf Rapids	108.0	108.0	112.8	113.8	117.4	117.4	112.7
Lynn Lake	94.7	99.9	103.6	106.8	99.4	108.6	112.3
Snow Lake	N/A	N/A	N/A	N/A	N/A	107.5	111.8
The Pas	96.4	96.3	99.6	99.7	102.9	102.9	102.1
Thompson	100.9	101.1	105.0	105.4	108.8	107.7	112.0
Winnipeg	81.2	80.7	85.1	81.8	85.1	89.1	91.5

aRegular gas in cents/gallon

SOURCE: Manitoba Statistical Review, 1st quarter, 1978
4th quarter, 1976
3rd quarter, 1977

Table 9
Food Price Tindex for Selected Mid North Communities

	197 June	6 Dec.	June	77 Dec.	Annual 1976	Average 1977
Cross Lake	N/A	N/A	128.3	N/A	N/A	N/A
Flin Flon	109.5	110.9	111.8	111.8	103.2	112.0
Gillam	120.6	123.7	113.9	119.6	103.2	111.9
Grand Rapids	N/A	N/A	114.1	116.2	N/A	N/A
Leaf Rapids	115.1	117.5	112.9	114.0	104.8	113.9
Lynn Lake	112.6	115.7	110.5	114.4	102.3	109.6
Norway House	132.1	132.2	126.7	118.4	N/A	N/A
Snow Lake	108.1	N/A	109.7	113.4	N≠A	N/A
Split Lake	133.2	107.0	134.7	138.9	N/A	N/A
The Pas	106.4	106.3	102.9	106.6	102.2	107.7
Thompson	104.8	116.2	104.7	104.5	102.7	110.7
Wabowden	115.8	105.4	112.9	115.6	N/A	N/A

a Food for home consumption, Winnipeg = 100

Source: Manitoba Statistical Review, 1st quarter, 1978

Table 10

Domestic Heating Commodity Indicies For Selected Mid North Communities

					•				2
		,			Propane			Electricity _	ity_
	Dec.	Sept.	Mar. 1978	Dec. 1976	Sept.	Mar. 1978	Dec. 1976	Sept. 1977	Mar. 1978
									110 /
	100 6	109.4	108.9	107.0	92.9	105.8	106.8	109.8	110.4
Flin Flon	103.0			(000	133 0	109.6	115.7	114.3
C+112m	119.5	120.1	118.0	135.6	120.9	10001)))		
פדדים	0 211	115 2	115.3	111.9	118.8	118.8	109.6	130.9	141.1
Grand Rapids	0.011	2.011			(0	100 6	115.7	114.3
Took Donado	124.9	123.6	121.4	139.3	120.9	133.9	703.0	•	
rear vaptus	- (1 1 1	115.0	N/A	123.1	133.9	109,6	115.7	114.3
Lynn Lake	118.0	111.1	0.011	** / 17		0	100 6	N/A	114.3
Tolor	N/A	N/A	103,1	N/A	N/A	100.0	103.0	43 / N	1
SHOW Lake		0	1001	107.7	92.9	105.8	109.6	115,7	114,3
The Pas	108./	100.0	102.1			(0 00 5	2 001	110.4
Тъощосоп	115.2	114.2	114.6	139,3	120.9	133.9	100.0	103.0	
- Condimont									

Winnipeg = 100

Natural gas available only in Snow Lake

2Based on 650 kwh and service charge

N/A Data not available

Source: Manitoba Statistical Review, 4th quarter 1976
3rd quarter 1977

1st quarter 1978

Services

Services available in each community vary generally with the degree of development and population. Services include protection and administration, education, recreation, cultural, health and communications. Electrical services are shown on Map 2 (Table 11).

PROTECTION AND ADMINISTRATION: The planning zone is under the jurisdiction of the Royal Canadian Mounted Police. Detachment headquarters are located in a number of centres and neighboring communities are patrolled on a regular basis. In areas where an Indian Reservation is located near or included within a settlement, an appointed Band Constable is associated with the detachment.

Fire fighting service is provided in Thompson, The Pas, Flin Flon, Lynn Lake, Leaf Rapids, The Pas Reserve and Wabowden. Volunteer services are available in Gillam, Snow Lake, Cranberry Portage, Grand Rapids and Ilford. The remaining communities have no fire department organization.

Conventional ambulance service is provided in Thompson, The Pas, Flin Flon, Lynn Lake, Gillam, Leaf Rapids, Snow Lake and Grand Rapids. In emergency cases, aircraft are used to transport patients to hospital.

Provincial administrative services are located in one half of the zones communities. Department of Public Works and Highways, Agriculture, Renewable Resources and Manitoba Hydro are examples of offices located in Thompson, The Pas, Lynn Lake and Leaf Rapids (Table 12).

EDUCATION: Education facilities are available to all communities even though all disciplines may not be taught in each community. Kindergarten, elementary and/or secondary school facilities are present in all but two communities. Students from Wanless are transported to either The Pas or Cranberry Portage to attend school. Granville Lake students attend school at Lynn Lake or Leaf Rapids. Total school enrollment for the Planning Zone for 1977-78 term was 16,461 students (Table 13). Community college in The Pas offers career oriented courses as well as adult basic education and special programs (Table 14). A number of educational grants are provided by the provincial government to northern school

ELECTRICAL SERVICES
DIESEL GENERATION *
HYDRO GENERATION *
KVAC KVDC
66 --- ±450 --115 ---230 ----

MAP 2. COMMUNITIES

MID NORTH PLANNING ZONE

linch: 40 miles

	Source	Runness and R.	tot tot		Transis R.	Nelson R. Snow Lave Wells	Lake Fowder Lake	Ant staplank on	Sasm. River Nelson River	Wells	Reindeer Lawe	Marchill R.	Wells	South Indian	Sask, River	Wells	River	Wells	Aiken Rimr	Sherlett L.		Granville Law
	Dump	#±	-	-	4	76 76 76	× ₹	31:	31: 31:	a _b	×	36	at-	×	a ₂ a ₂	3):	×	÷	3:	×		×
	Plek-up	*			``	46 46 ×	×*	78:	××	**:	×	4:	*	×	4: 4:	×	31:	×	×	×	- 4	×
,	Treat	*		4.		46 46 46	₹×	41:	36.36	×	72:	31:	46	70:	4: 4:	31:	×	4:	1 30:	4:		×
	Treat.	###			,	非非×	××	*	3€ X	31:	×	×	×	×	* ×	*	*	×	×	×		×
	Dept.	46 × 4				非非×	××	***	××	×	×	×	×	×	*: ×	×	×	*	×	×		×
,	Enforcement	ROMP	8	in it	101	RCMP RCMP-Nor- way House	Thompson	ROMP	Pas RCMP-	Thompson RCMP-The	RCMP-Lynn	ROMP-	RCMP-Grand Rapids	RCMP-Lynn	ROMP ROMP-The	ROMP-	ROMP-	RCMP-	ROMP-	RCMP-Oran-	RANF-The	ROMP-Lynn
		# .		-		at × ×	××	₹:	××	×	×	×	×	×	a⊬ ×	×	×	×	×	×	×	×
,	K Centre	31:	L			***	非非	*	非非	4:	**	*	*	*	* *	*	*	31:	77	***	JJ	#
-	2	31:	-		`	4: 4: 4:	4: 4:	Ħ:	李李	Ht.	#IE	#	*	₹ 1:	4): 4):	##	#	4:	35	4 1:	×	×
	Mospital/ Dortor	* * *	31:	#	72:	2 m	ΣΣ	#	**	2/M	×	E	2/W	×	N	×	E	Σ	×	×		Σ
	Nursing Station	×	×	#b	×	* * *	31: 31:	31:	× 35	36:	#h:	카	*	#1:	का का	#:	4:	北	*	q _E	×	×
	1	1	1	1550	1	1 1 9 7	, , ,		11	200	077	350	1	1	11	300	350	1	1	-	1	1
	200	ביני -	-	0	<u>,,,3</u> ∣	220		Ы	니니	A	a	Q	ы	7	러니	0	۵	r)	-1	ы	~	4
	Store		-			李安先	71: 71:	*	**	36	41:	3 5	4:	34:	非非	**	31:	3:	36	*	× —	×
	1000			-		* TO THE R	× *E	×	# ×	×	×	×	×	×	₹: ×	×	×	×	×	×	×	×
	Joseph	79.5	7	7		To the H	×÷	×	××	×	×	×	×	×	××	×	4:	*	×	×	×	×
		. + +	-	1		2 2 2	20 20	- 8	3- 3-	*	×	75	*	*	4.4	-	8	*	· #	*	-	. <u>×</u>
				-	4	255	2.5	10	5.5	*	*	*	*	2:	2.5	2	*	*	*	2	*	×
		+ = +	4.			* * *	2.2			*	*	*	*	35	* *	25	4	*	2	2		
		-0-			-1	si to fa	m (-)	۵	96	2	2	~	C4	· ~	AA	0	0	~	e-I	^		38
			3	Ŧ		<<=	~ ~	~	< ≥	28	38	6	4	58	~ ~			38	38	Q	~<	.8
		-14				# # #	× B	0	M H	н	H	0	h	H	н ъ	9	0		26.	0	6	-
		++-			7	8 8 8				4	-		-	8	6 ×	0	-	0	0		×	0
the state of			945.5 - C. 5	66.7	Leas Feri	The second secon		Section of the Section of	Space Ce	W. M. Lake	Par here	The second second	A B of or TV 2 . LO	477	Mary Kan		50000000	**	2 2 2	92 · · · · · · · · · · · · · · · · · · ·	8	1 1 3 4

Table 12

	ırs	Pikwitonei, Easterville Thicket Portage, Cormorant, Moose Lake	Cross Lake
	Wabowden Others	Pika Corr	TITILITITI C
	Gillam Wab	× 1 1 × 1 1 1 × 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 X 1 1 1 1 1 1 1
	Grand Rapids Gi	× 1 1 × 1 1 1 × 1 1 1 1 1 1 1	×ıııııı×ııııi
	Snow	×11 × 1×11×11111	
ions	Cranberry Portage	×1× × ×××1111111	
Government Office Locations	Leaf Rapids	* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ment Off	Lynn Lake	× 1 1 × (×1) 1 1 1 1 1 1 1 1 1	
Govern	Norway House	×11 × 111×111111	* 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Flin Flon	×1× × 1××1×11111	ţıxıxıxxııııı
	The	*** * ********	× 1 1 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1
	Thompson	*** * *******	**!****!***
	Department	Manitoba Renewable Resources Agriculture Tourism and Recreation Health Education Highways Public Works Northern Affairs Mines Branch Attorney General University Affairs Air Division Human Rights Commission Labour Municipal Affairs	Canada Indian Affairs Secretary of State National Defence Communications Manpower and Immigration National Research Council Unemployment Insurance Energy, Mines and Resources Environment Regional Economic Expansion Health and Welfare Transport Public Works Central Mortgage and Housing

Table 13
School Enrollment 1977/78 for Zone Communities

Community	Students	Teachers		
Thompson	4,183	221		
The Pas	2,947	155		
Flin Flon	1,936	112		
Lynn Lake	588	34		
Gillam	461	29		
Norway House	852	56		
Leaf Rapids	647	38		
Snow Lake	468	28		
Cross Lake	736	35		
Nelson House	480	22		
The Pas Reserve	attend in The Pas			
Cranberry Portage	387	29		
Wabowden	274	16		
Split Lake	353	14		
Moose Lake	316	16		
Brochet	203	12		
Pukatawagan	261	13		
Easterville	238	10		
South Indian Lake	313	20		
Grand Rapids	354	21		
Cormorant	168	10		
Thicket Portage	54	4		
Pikwitonei	63	3		
Ilford	47	3		
York Landing	72	4		
Sherridon	41	3		
Wanless	attend in The Pas			
Granville	19	2		
Total	1 = , = < 1	910		

Personal Communication

- Frontier School Division,
 - Department of Education, and
 - Canada, Department of Indian Affairs and Northern Development

Table 14

Keewatin Community College Enrollment

	Jan. 1/76 Dec.31/76	Jan. 1/77 Dec. 31/77
Adult Basic Education	535	738
Career Occupational		
Pre-employment - Day - Evening	388 2,625	519 1,147
Apprentice Training	448	452
Short Courses	84	80
Community Services	207	76
TOTAL KEEWATIN COMMUNITY COLLEGE	4,287	3,012

Source: Dept. of Continuing Education and Manpower Annual Report 1977-78.

divisions on a per teacher and per pupil basis. In 1976-77 Frontier School Division received 2,180 dollars per teacher and 431 dollars per student to cover costs such as maintenance, administration and student services. Grants to northern schools for the 1976-77 term totalled 614,910 dollars. In recognition of the higher cost of living in northern Manitoba the school divisions in the Mid North received the following grants:

Mystery Lake (Thompson)	\$215,320
Kelsey (The Pas)	\$155,679
Flin Flon	\$111,522
Lynn Lake	\$ 38,162
Snow Lake	\$ 32,673
Leaf Rapids	\$ 31,701

The Provincial New Careers Program was initiated in 1970 to help disadvantaged persons enter the job market. Educational courses and on-the-job training are provided in a variety of disciplines. In 1977-78 the program operated in the following communities:

The Pas Moose Lake Gillam

Thompson Brochet Cranberry Portage
Wabowden Thicket Portage South Indian Lake

Grand Rapids Norway House Cross Lake
Ilford Pikwitonei Split Lake

Easterville Sherridon
Leaf Rapids Nelson House

HEALTH SERVICES: The only extended care hospital facility in the zone is available at Thompson. There are five other general hospitals located in The Pas, Flin Flon, Lynn Lake, Gillam and The Pas Reserve. Medical nursing units are located in Lynn Lake, Gillam, Norway House, Leaf Rapids, Snow Lake, Cross Lake, Nelson House, Cranberry Portage, Wabowden, Split Lake, Moose Lake, Brochet, Pukatawagan, Easterville, South Indian Lake, Cormorant, Grand Rapids, Thicket Portage, Pikwitonei, Ilford, York Landing and Sherridon. There are permanent physicians located in Thompson, The Pas, Flin Flon, Lynn Lake, Gillam, Snow Lake and The Pas Reserve. Transportation plays a vital role in health services to northern Manitoba. In emergency situations, patients are flown to the nearest medical centre.

CULTURAL SERVICES: Twenty communities have a hall as their sole cultural centre. Public libraries are found in seven communities: Thompson, The Pas, Flin Flon, Lynn Lake, Gillam, Leaf Rapids and Grand Rapids. Elementary and secondary schools in many communities have resource oriented libraries, however, these are not available for public use. There are two museums in the Planning Zone, the Little North Museum in The Pas and the Flin Flon Museum. There are theatre facilities in Thompson, The Pas, Lynn Lake, Gillam, Flin Flon and Leaf Rapids. Urban recreational facilities available to local residents range from a single playing field to large indoor complex such as the one at Leaf Rapids.

COMMUNICATIONS SERVICES. The basic network of communication in the Mid North consists of telephone, television, radio, postal and newspaper services. The Manitoba Telephone System (M.T.S.) provides service to all zone communities. Direct distance dialing is available to all except Split Lake, Moose Lake, Pukatawagan, South Indian Lake, Cormorant, Ilford, York Landing, Sherridon and Wanless which are operator assisted. Radio telephone communication of the beam type is used in Brochet, Easterville, Pikwitonei and Granville. Brochet and Granville Lake are the only two communities which do not receive television broadcasts. The CBC network has 11 satelite stations located at The Pas, Grand Rapids, Gillam, Leaf Rapids, Lynn Lake, Thompson, Ilford, Snow Lake, Norway House, Wabowden and Flin Flon. The CTV network has recently expanded its service to northern centres such as The Pas and Thompson.

The major newspapers in the zone are:

Community	Name
Lynn Lake	Northern Breeze
The Pas	Pasquia Times
Thompson	Nickel Belt News
Thompson	Citizen
Flin Flon	Daily Reminder

Land Use Commitments

Land and the resources on and under the land within the Mid-North are presently committed through easements, leases, licences, permits and reserves. Land tenure is divided between private and governmental control, private ownership being limited to relatively small parcels located in and around the several communities. Provincial Crown Lands are administered by the Lands Branch of the Department of Mines, Natural Resources and Environment. At the present time (1978) most Crown lands in the Zone have some type of encumberance. The areas of land commitment are given in Table 1.

Table 1

Areas of Land Commitments in The Mid North Planning Zone

Commitment	Area Km ²	(Square Miles)
Indian Reserves	311	(120)
Wildlife Management Areas	3,196	(1,234)
Parks (Established)	3,111	(1,201)
Timber Rights	93,240	(36,000)
Trapping Sections	Entire	Planning Zone
LGD Lands	11,914	(4,600)
Northern Affairs Lands	34	(13)
Active Mining Claim Areas	49,210	(19,000)
Provincial Forest	1,489	(575)
Community Pastures	88	(34)

Trap Line Sections

Encompassing the entire planning zone are the Registered Trapline Sections (R.T.L.) which are designated by Order-in-Council and administered under the Wildlife Act.

Twenty R.T.L. Sections occur within the Mid-North Planning Zone (Map 1):

Brochet Herb Lake South Indian Lake

Cedar Lake Moose Lake Split Lake

Cormorant Nelson House Summerberry Fur Block

Cranberry Portage Norway House Thicket Portage

Cross Lake Pikwitonei Wabowden

Flin Flon Pukatawagan Red Deer/Shoal River

Grand Rapids Sherridon

Within each section are a number of blocks, the boundaries of which were determined by trappers when the system was established. Upon payment of a fee, a Registered Trapline Permit is issued which gives the trapper exclusive trapping rights within a designated block. Registered trappers do not own the land upon which they trap. All improvements made to the land are the property of the Crown in the Province of Manitoba.

Wildlife Management Areas

The Wildlife Management Areas (WMA) located within the Mid-North Planning Zone (Map 2) were established under Orders-in-Council. These areas were established to ensure protection of the fragile marshland and alluvial flats. Ducks Unlimited has a lease to manipulate water levels for waterfowl habitat improvement in the Saskeram W.M.A. The hunting, trapping or possession of fur-bearing animals in a W.M.A. is prohibited except under the authority of a special permit. The use of grasslands within the Saskeram has been allocated to individuals under various permits and leases.

Casual hay permits allocate land to occasional users for hay cutting for domestic purposes only. This type of permit is valid for one year.

Special hay permits are issued on Crown lands which are particularily valuable for hay production. Permittees cannot sell any hay without Ministerial permission.

Casual grazing permits (valid for one year) allocate Crown land for grazing or fodder.

Farm grazing leases are issued to farm operators requiring supplemental hay or fodder regularily. This type of lease extends for five years or longer and is designed to regulate grasslands and allow for improvements.

Cash Rental/Crop Share Lease where the lessee pays a flat rental on lease from 1-5 years and is responsible for payment of a fixed rent, taxes, and/or payment of a percentage of crop to the lessor.

Water Power Reserves

Seven Water Power Reserves occur within the Planning Zone (Map 3). Regulations under the Water Powers Act have allowed the Minister of Mines, Natural Resources and Environment to grant temporary permits, leases and licences on reserved lands. Ministerial consultation prior to the granting of privileges insures that the temporary use applied for will not interfere with the purpose of the water power reservation and permits are granted or withheld accordingly. As the land is required for water power development all privileges are cancelled. Land and all improvements revert to the Crown and the Minister may or may not grant compensation.

WATER POWER RESERVES
LAKE WINNIPEG
NELSON RIVER
BURNTWOOD RIVER
CHURCHILL RIVER
SASKATCHEWAN RIVER-GRAND RAPIDS PROJECT
GRAND RAPIDS POWER DEVELOPMENT SEVERENCE LINE
REINDEER LAKE LICENSED STORAGE RESERVE

MID NORTH PLANNING ZONE

linch:40 miles

Timber Rights

Early in 1966, Churchill Forest Industry (CFI), now Manitoba Forestry Resources Ltd. (ManFor) negotiated an agreement with the Provincial Government regarding the harvest of Crown timber. Within the area specified (Map 4), ManFor was given preferred but not exclusive cutting rights over the land. Mineral and water power rights were excluded. Lands exempted from ManFor cutting privileges were Indian Reserves, rights-of-way for highways and railroads, provincial parks and the Cormorant Forest Reserve. However, harvest of Crown timber in provincial parks has taken place with the permission of Parks Branch under the supervision of regional foresters. Special permits have also been issued for the Cormorant Forest.

Under the 'Forest Act' regulations, the corporation has been required to consult provincial foresters with an annual projected cutting plan. Upon approval, general permits are issued for site specific harvest.

The government may at any time withdraw land from the ManFor reserve, however, they are given the first opportunity of cutting any timber on such lands. Compensation is not paid to the corporation for losses or damage to timber due to water power development projects.

The International Nickel Company (INCO) reserved a tract of land and was granted exclusive timber rights within its boundaries for the purpose of production of mining timbers.

Mineral Reserves

The Department of Mines, Natural Resources and Environment is responsible for the administration of the provinces mineral resources. Areas of active claiming are noted on Map 5. The disposition of mineral properties is by claim, claim block, exploratory leases, and production leases. All producing mines in the Mid-North Zone are operating under production leases or Order-in-Council leases.

Order-	in-Counc:	il Leases
--------	-----------	-----------

Flin Flon Chisel Lake Thompson Osborne Lake Stall Lake Anderson Lake Ghost-Lost Lake

Production Leases

White Lake Centennial Dickstone Fox Mine Birchtree Manibridge

FORESTRY COMMITMENT BOUNDARIES

 $\begin{array}{ll} {\rm MANFOR} & \approx 35,500 \ {\rm SQ.MI.} \\ {\rm INCO} & \approx & 800 \ {\rm SQ.MI.} \end{array}$

MAP 4. LAND USE COMMITMENTS MID NORTH PLANNING ZONE

linch:40 miles

MINERAL CLAIMING AREAS

ACTIVE

INACTIVE

MAP 5

LAND USE COMMITMENTS

MID NORTH PLANNING ZONE

Oct. 1978

Surface rights of mining properties may be granted or reserved, and Crown lands and mining rights may be withdrawn from prospecting and leasing at the discretion of the Minister.

Provincial Parks

Provincial Parks, recreation areas and waysides are administered under the Provincial Parks Lands Act. Clearwater and Grass River have been classified as Natural Parks.

Integrated land use occurs within the park system in the Mid-North Zone. The Minister of Natural Resources may grant leases or permits to the surface rights of any land within Provincial Parks.

Applications for timber permits are made to the provinical foresters and passed to the Parks Branch for approval. Timber is presently being harvested in Paint Lake and Grass River Provincial Parks. With respect to mineral rights underlying park lands or surface rights of a mining claim within park lands, applications are made to the Director of Mines, then submitted to the Director of Parks for recommendation before issuance of a lease. Hunting and trapping are also permitted within park boundaries under permit or licence only.

Highways

Jurisdiction over right-of-ways established for Provincial Roads (P.R.) and Provincial Trunk Highways (P.T.H.) lies with the Department of Highways. The Department holds exclusive rights over sand and gravel within the established right-of-way. Individuals may apply to the Department for permits to remove sand and gravel within a right-of-way at a cost of ten cents (\$0.10) per yard. Permits have been issued in areas of surplus.

There is a variance in widths of right-of-ways along the all-weather road system within the Zone, ranging from 132 feet between The Pas and Prospector on P.T.H. No. 10 to 400 feet on P.R. 391 approaching Thompson. The remainder of P.R. 391 has an allowance of 300 feet.

Administrative Regions

The Mid-North Planning Zone lies within a number of provincial government administrative regions, some of which are shown on Map 6. These departments have varying amounts of jurisdiction over land and land use.

Local Government Districts

Seven Local Government Districts (L.G.D.) are located in the Zone (Map 7). Crown land is permitted by the Department of Natural Resources upon consultation with the L.G.D.

Indian Reserves

Indian Reserves occurring in the Planning Zone encompass an area of 311 $\rm km^2$. Administration of Indian lands lies with the Federal Department of Indian Affairs and Northern Development (D.I.A.N.D.). Outstanding Indian land entitlements are being negotiated between the federal and provincial governments and the Band Councils. Map 8 illustrates the areas of outstanding entitlement for Bands in the Planning Zone.

Community Pastures

There are two community pastures (one active), both located in the Pasquia Valley southwest of The Pas (Map 9).

Electoral Boundaries

The majority of land in the Mid North falls in the Churchill Federal riding although although Grand Rapids and Easterville are in the Selkirk-Interlake riding (Map 10). There are five provincial ridings in the zone, as shown on Map 11.

COMMUNITIES WITH LAND CLAIMS, 1978

TYPE

TLE Treaty Land Entitlement

OLC Other Land Claims

MAP 8.
LAND USE
COMMITMENTS

MID NORTH PLANNING ZONE

MAP 10.

LAND USE
COMMITMENTS

1978 FEDERAL ELECTORAL BOUNDARIES.

MAP 11.

LAND USE

1978 PROVINCIAL ELECTORAL BOUNDARIES.

Bibliography

BIBLIOGRAPHY

This bibliography is a listing of documents relevant to resource planning in Northern Manitoba. It is primarily comprised of works written since 1950 and deals with that portion of the Province of Manitoba north of the 53rd parallel.

The bibliography is divided by subject and titles are arranged alphabetically by author within each subject. In some cases where the work touches on several subjects, it is included under each appropriate section. In cases where the same author has more than one title under the same heading, the titles are listed chronologically.

Titles listed as manuscript reports are usually government reports whose initial publication is of a limited nature and usually reflects the preliminary nature of research. Where the government department is named, unless otherwise specified, it is assumed to be a Manitoba Government department. Journals cited are listed at the back (See Format). Abbreviations used are as follows:

No. - Number

Dept. - Department

pp - Pages

Inc. - Incorporated

n.d. - No date

M.A. - Master of Arts

M.Sc. - Master of Science

Ltd. - Limited

BIBLIOGRAPHY

FORMAT

Subjects Agriculture A-I Bibliographies B-I Botany C-I Communities D-I Ecology E-I Economics F-I Fishing G-I Forestry H-I Geology I-I Hydro K-I Land/Land Use L-I Mining M-I Northern Manitoba General N-I Planning O-I Recreation/Tourism P-I Soils Q-I Transportation R-I Trapping S-I Water T-I Wildlife (General) U-I Wildlife (Mammals) V-I Wildlife (Birds) W-I	ge
Botany. C-I Communities D-I Ecology E-I Economics F-I Fishing G-I Forestry H-I Geology I-I History J-I Hydro K-I Land/Land Use L-I Mining M-I Northern Manitoba General N-I Planning O-I Recreation/Tourism P-I Soils Q-I Transportation R-I Trapping S-I Water T-I Wildlife (General) U-I Wildlife (Mammals)	1
Botany. C-1 Communities D-1 Ecology E-1 Economics F-1 Fishing G-1 Forestry H-1 Geology I-1 Hydro K-1 Hydro K-1 Hydro K-1 Hydro K-1 Mining M-1 Mining M-1 Northern Manitoba General N-1 Planning O-1 Recreation/Tourism P-1 Soils Q-1 Transportation R-1 Trapping S-1 Water T-1 Wildlife (General) U-1 Wildlife (Mammals) V-1 Wildlife (Mammals) Wildlife (Mammals) V-1	1
Ecology E-I Economics F-I Fishing G-I Forestry H-I Geology I-I History J-I Hydro K-I Land/Land Use L-I Mining M-I Northern Manitoba General N-I Planning O-I Recreation/Tourism P-I Soils Q-I Transportation R-I Trapping S-I Water T-I Wildlife (General) U-I Wildlife (Mammals)	1
Economics F-1 Fishing G-1 Forestry H-1 Geology J-1 History J-1 Hydro K-1 Land/Land Use L-1 Mining M-1 Northern Manitoba General N-1 Planning O-1 Recreation/Tourism P-1 Soils Q-1 Transportation R-1 Trapping S-1 Water T-1 Wildlife (General) U-1 Wildlife (Mammals)	1
Fishing G-1	1
Forestry	1
Forestry	1
Geology	1
History J-1 Hydro K-1 Land/Land Use L-1 Mining M-1 Northern Manitoba General N-1 Planning O-1 Recreation/Tourism P-1 Soils Q-1 Transportation R-1 Water T-1 Wildlife (General) U-1 Wildlife (Mammals) V-1	1
Hydro	1
	1
	1
Northern Manitoba General N-1 Planning O-1 Recreation/Tourism P-1 Soils Q-1 Transportation R-1 Trapping S-1 Water T-1 Wildlife (General) U-1 Wildlife (Mammals) V-1	1
	1
Recreation/Tourism	1
Soils Q-1 Transportation R-1 Trapping S-1 Water T-1 Wildlife (General) U-1 Wildlife (Mammals) V-1	1
Transportation R-1 Trapping S-1 Water T-1 Wildlife (General) U-1 Wildlife (Mammals) V-1	1
Trapping S-1 Water T-1 Wildlife (General) U-1 Wildlife (Mammals) V-1	
Water T-1 Wildlife (General) U-1 Wildlife (Mammals) V-1	1
Wildlife (General) U-1	
Wildlife (Mammals) V-1	1
	1
	1
Wildlife (Fish) X-1	1
Wildlife (Others) Y-1	1
List of Journals Cited	1

Agriculture

- Braun, P. 1963. Cross and Soil Manager out for the Wabowden Area of Northern Manitoba. Canada, Dept. of Agriculture, Publication No. 1164, Ottawa.
- Canada, Environment Canada. Land Capatility for Agriculture. Wekusko Lake 651, Canada Land Inventory, Lands Directorate, Ottawa.
- Dryden, R.D. and P. Braun. 1969. Crops and Soil

 Management for the Wabowden Area of Northern

 Manitoba. Canada, Dept. of Agriculture.
- Ehrlich, W.A., L.E. Pratt and F.P. Leclaire. 1957.

 Report of Soil Survey Wabowden Experimental
 Substation 27-62-W of 1 Manitoba, 1957.

 Dept. of Agriculture.
- Ellis, J.H., 1956. The Pasquia Land Settlement
 Project. Dept. of Mines and Natural Resources. Lands Branch. Interim Report
 No. 1. Winnipeg.
- . 1956. The Pasquia Land Settlement
 Project. Dept. of Mines and Natural Resources. Lands Branch. Interim Report
 No. 2. Winnipeg.
- . 1956. The Pasquia Land Settlement
 Project. Dept. of Mines and Natural Resources. Lands Brnach. Interim Report
 No. 3. Winnipeg.
- . 1959. The Pasquia Land Settlement
 Project Progress Report. Dept. of Mines
 and Natural Resources. Lands Branch.
- Ellis, J.H. 1967. Report of Field Crop Experiments in the Pasquia Area, 1966. Dominion Experimental Forms Service. Dept. of Agriculture and the Dept. of Mines and Natural Resources. Winnipeg.
- Harrington, Lynn. 1970. "The Pasquia Land Settlement Project in Manitoba" <u>Ganadian Geographical</u> <u>Journal</u>. 80 (3): 92-97.
- Johnson, L., G.H. Lawler, and L.A. Dunde. 1970.
 Rain'ow Treat Frening in Central Canada.
 Fisher.es de earen Board of Canada. Technical Report No. 165.
- University of Manitota, 1971. Principles and Practice of 2 commonly France, Faculty of Agriculture. Minning.
- Nickel, J.G., 1971. Preliminary Report on the Land Use Study of the Pasquia Settlement Area 1971. Dept. of Agriculture, Typescript. The Pas.

- Portree, J.D., N.J. Beaton and J.D. Campbell. 1975.

 An Evaluation of Tunnel Production of Bedding
 Plants and Tamatoes in Northern Manitoba in
 1974. National Research Council. City of
 Thompson. The University of Manitoba and
 Mantioba Hydro.
- Wallace, R.A. and W.E. Lambert. 1963. Report on Agricultural Potential in the Norway House Area Manitoba. Dept. of Agriculture.

Bibliographies

- Arctic Institute of North America. Arctic

 Bibliography. McGill-Queen's University
 Press. Volume VII (1967) to Volume XVI
 (1975). Montreal and London.
- Bannatyne, B.B. 1966. Bibliography of Geology,
 Palaeonotology, Industrial Minerals, and
 Fuels in the Post Cambrian Regions of
 Manitoba. Dept. of Mines and Natural
 Resources. Publication No. 66-1. Winnipeg.
- Bannatyne, B.B., S.C. Zoltai, and M.J. Tamplin.

 1970. Annotated Bibliography of the Quarternary in Manitoba and the Adjacent Lake

 Agassiz Region. Dept. of Mines, Resources and Environmental Management. Geological Paper. No. 70-2. Winnipeg.
- Barry, G.S. 1959. <u>Bibliography of Geology of the Precambrian area of Manitoba, 1950-1957.</u>

 Dept. of Mines and Natural Resources.

 Mines Branch Publication No. 57-3. Winnipeg.
- Boan, J. n.d. Annotated Bibliography of Selected

 Documents Pertaining to Water Allocation and

 Utilization in the Saskatchewan River Basin.

 Agricultural Rehabilitation and Development
 Agency (ARDA). Project No. 8049-05. Ottawa.
- Canada, Dept. of Mines and Technological Surveys.

 1959. Bibliography of Periodical Literature on Canadian Geography, 1930-1955: Part L. Prairie Provinces. Geographical Branch.

 Bibliography Series No. 22. Queen's Printer.
 Ottawa.
- . 1960. Colonization and Settlement in the Americas. A Selected Bibliography. Geographical Branch. Bibliography Series No. 25. Queen's Printer. Ottawa.
- . 1965. Selected Bibliography on Canadian Geography. Geographical Branch. Bibliography Series No. 33. Queen's Printer. Ottawa.
- Carter, N.M. 1968. Index and List of Titles,
 Fisheries Research Board of Canada and
 associated publications, 1900-1964.
 Fisheries Research Board of Canada.
 Bulletin No. 164. Ottawa.
- Gillies, D.G. 1905. The Acotto policy (Throullus and include Western Mines, Resources and Environmental Management. Research Branch. Manuscript Report No. 75-13. Winnipeg.

- Kerr, L.B. 1951. Bibliography of Geology,
 Palaeonotology, Industrial Minerals, and
 Fuels in the Post Cambrian Regions of
 Manitoba to 1950. Dept. of Mines and
 Natural Resources. Publication No. 51-2.
 Winnipeg.
- Milligan, G.C. 1951. Bibliography of the Precambrian Area of Manitoba to 1950. Dept. of Mines and Natural Resources. Mines Branch. Publication No. 51-1. Winnipeg.
- Mills, B.A. 1957. Bibliography of Geology,
 Palaeontology, Industrial Minerals, and
 Fuels in the Post Cambrian Regions of
 Manitoba to 1950. Dept. of Mines and
 Natural Resources. Publication No. 57-4.
 Winnipeg.
- Munro, N., and M. Anderson. 1967. An Initial
 Bibliography on Outdoor Recreation Studies
 in Canada with Selected United States
 References; for the Rural Development Branch,
 Canada Dept. of Forestry and Rural Development and the Dept. of Geography, Carleton
 University. Queen's Printer. Ottawa.
- Nicholson, H.F. 1974. Bibliography on the Limnology and Fisheries of Canadian Freshwaters No. 1. Environment Canada. Fisheries and Marine Service. Technical Report No. 471. Burlington.
- Sawchuk, J.P. 1972. A Natural Resource Bibliography
 for Manitoba. Dept. of Mines, Resources and
 Environmental Management. Winnipeg.

Botany

- Anthony, L. 1943. <u>Biological Survey's North</u>.

 Dept. of Mines, Resources and Environmental Management.
- Argus, G.W. 1966. "Botanical Investigations in Northeastern Saskatchewan: The Subarctic Patterson - Hasbala Lakes Region." The Canadian Field-Naturalist. 80 (3): 119-143.
- Baldwin, W.K.N. 1953. <u>Botanical Investigations</u>
 in the Reindeer-Nueltin Lake Area, Manitoba.
 Natural Museum of Canada. Bulletin 128:
 110-142. Ottawa.
- Brown, R.J.E. 1966. "Influence of vegetation on permafrost." Proceedings of the Permafrost International Confrence (1963). pp. 20-25.
- Cody, W.J. and J.D. LaFontaine. 1975. "The fern genus Woodsia in Manitoba." The Canadian Field-Naturalist. 89 (1): 66-69.
- Cody, W.J. 1975. "Schewchzeris palustris (L.)in northwestern North America." <u>The Canadian</u> <u>Field-Naturalist</u>. 89 (1): 69-71.
- Crowe, J.M.E. 1973. A Survey of the Grass River 1969. Dept. of Mines, Resources and Environmental Management. Fisheries Report.
- Dabbs, D.L. 1971. "A study of <u>Scripus acutus</u> and <u>Scirpus validus</u> in the Saskatchewan River Delta." <u>Canadian Journal of Botany</u> 49 (1): 143-153.
- Dirschl, H.J. and D.L. Dabbs. 1969. "A contribution to the flora of the Saskatchewan River Delta." The Canadian Field Naturalist. 83 (3): 212-28.
- Dirschl, H.J. 1970. Ecology of the Vegetation of the Saskatchewan River Delta. Ph.d Thesis. University of Saskatchewan. Saskatoon.
- Dirschl, H.J. and R.T. Coupland. 1972. "Vegetation patterns and site relationships in the Saskatchewan River Delta." Canadian Journal of Botany. 50: 647-675.
- Green, G.H. 1974. "Effects of hydroelectirc development in western Canada on aquatic ecosystems." <u>Journal of the Fisherics</u>
 <u>Research Board of Canada</u>. 31 (5): 913-927.
- Hecky, R.E. and R.J. Harper. 1974. "Phytoplankton and primary productivity of the lower Churchill lakes, and the Nelson River lakes and reservoirs." Lake Winnipeg, Churchill and Nelson River St.ly. Appendix 5, Volume 2-F.

- Hecky, R.E., R.J. Harper and H.J. Kling. 1974.
 "Phytoplankton and primary production in
 Southern Indian Lake." Lake Winnipeg,
 Churchill and Nelson River Study. Appendix
 5, Volume 1-E.
- Hosie, R.C. 1969. <u>Native Trees of Canada</u>. Canada, Dept. of Fisheries and Forestry. Canadian Forest Service. Ottawa.
- Hughes, C. 1973. A Preliminary Limnological
 Survey of Mystery Lake 1972. Dept. of
 Mines, Resources and Environmental Management. Research Branch. Winnipeg.
- Lake Winnipeg, Churchill and Nelson River Study
 Board. 1975. Biophysical, Forestry and
 Geological Studies. Technical Report
 Appendix 3. Winnipeg.
- Larsen, J.A. 1953. "The use of plant material in the recognition of northern organic terrain characteristics." Transactions Royal Society of Canada. Series 3. 47(5): 53-71 and National Research Council of Canada.

 Associate Committee on Soil and Snow Mechanics. Technical Memorandum No.28.
- . 1962. Major Vegetation Types of Western
 Ontario and Manitoba from Aerial Photographs.
 University of Wisconsin. Dept. of Meteorology.
 Technical Report No.7. Madison, Wisconsin.
- Looman, J. 1969. "Distribution extensions of Manitoba plant species." The Canadian Field-Naturalist. 83 (4): 392-393.
- Pruitt, W.O. Jr. 1970. "Some Aspects of the Interrelationships of permafrost and tundra biotic
 communities." in Productivity and Conservation in Northern Circumpolar Lands. International Union for Conservation of Nature
 and Natural Resources. (IUCN). pp. 33-40.
 Publications New Series No. 16. Morges,
 Switzerland.
- Ritchie, J.C. 1956. "A plant collection from northwestern Manitoba." The Canadian Field Naturalist. 70 (4): 171-181.
- . 1956. "Studies on the flora and vegetation of the taiga zone of northern Manitoba." Arctic. 9 (3): 211-212.
- . 1956. "Additions and extensions to the flora of Manitoba." Rhodora. 58 (695): 321-325.
- . 1956. "The native plants of Churchill Manitoba, Canada." Canadian Journal of Botany. 34 (2): 269-320.

- Ritchie, J.C. 1956. "The vegetation of northern Manitoba, 2: a prisere on the Hudson Bay Lowlands." <u>Ecology</u>. 38 (3): 429-435.
- . 1958. "A vegetation map from the southern spruce forest zone of Manitoba."

 Geographical Bulletin. No. 12. 39-46.
- . 1959. The vegetation of northern

 Manitoba III. Studies in the Subarctic.

 Arctic Institute of North America, Technical Paper No. 3.
- . 1960. "The vegetation of northern

 Manitoba V. establishing the major zonation."

 Arctic 13 (3): 211-229.
- . 1962. A Geobotanical Survey of
 Northern Manitoba. Arctic Institute of
 North America. Technical Paper No. 9.
- Scotter, G. 1965. "A plant collection from the Cochrane River region of northwestern Manitoba." <u>Blue Jay</u>. 23: 96-100.
- Tarnocai, 1972. "The use of remote sensing techniques to study peatland and vegetation types, organic soils and permafrost in the boreal region of Manitoba." Proceedings of the First Canadian Symposium of Remote Sensing. pp. 323-335.
- . 1975. Southern Limit of Coniferous
 Trees on the Canadian Prairies. Environment Canada. Northern Forest Research
 Centre, Information Report NOR-X-128.
 Edmonton.
- Walker, J. 1970. "The influence of man on vegetation at Churchill." in Productivity and Conservation in Northern Circumpolar Lands.
 International Union for Conservation of Nature and Natural Resource. pp. 266-271. Publication New Series No. 16.
 Morges, Switerzland.

Communities

- Anonymous. n.d. 50th Anniversary, 1912-1962.
 The Pas.
- Canada, Dept. of Citizenship and Immigration. 1964. Indians of the Prairie Provinces: A Historical Review Indian Affairs Branch. Queen's Printer. Ottawa.
- Casselman, C.W. (Editor). 1970. The Saga of Snow Lake. Snow Lake Chamber of Commerce. Snow Lake.
- Collinson, J.D. et al. 1973. Social and Economic Impact of the Nelson River Hydro Development. Preliminary report prepared for the Dept. of Northern Affairs. Technical Report No. 7. Winnipeg.
- Darby, D.A. 1978. Results of a Wildlife Consumption and Use Survey at Easterville, Manitoba, Summer, 1977. Department of Renewable Resources and Transportation Services. Wildlife Planning Division. Manuscript Report No. 78-17.
- DePercin, F. and L.W. White. 1954. Handbook of
 Fort Churchill, Manitoba, Canada, Environment. U.S. Quartermaster Corps. Environmental Protection Division. Technical
 Report EP-4.
- Ewing, J.D. 1976. Manitoba Northlands Community
 Planning Geotechnical Land-Use Study Cross
 Lake. Dept. of Mines, Resources and Environment. Water Resources Division. Winnipeg.
- Harrington, L. and R. Harrington. 1952. "They put the home town on skids." Popular Mechanics. July. 97: 106-107.
- Hedlin Menzies and Associates Ltd. n.d.' Interim Report on the Grand Rapids Forebay Economic and Social Conditions.. for the Grand Rapids Forebay Administration Committee. Winnipeg.
- Henley, T.J. 1974. The Impact of Manitoba Hydro's
 Churchill River Diversion on the Length of the
 Navigation Season at the Port of Churchill.
 Natural Resource Institute. University of
 Manitoba. Winnipeg.
- Hilderman, Feir, Witty and Associates. 1978. Norway
 House Community Planning Study: Phase II for
 the Dept. of Northern Affairs and the Norway
 House Community Council. Winnipeg.
- Jones, M.V. and Associates Ltd. 1968. Churchill Development Plan, Phase I. Toronto.
- Kenney, J.F. 1932. The Founding of Churchill. Dent. Toronto.
- Landa, M.J. 1969. Easterville: A Case Study in the Relocation of a Manitoba Native Community. MA. Thesis. Dept. of Anthropology. University of Manitoba. Winnipeg.

- Laycock, A.H. 1949. <u>Churchill, Manitoba</u>. <u>BA</u> Thesis University of Toronto. <u>Toronto</u>.
- Manitoba, Dept. of Mines, Resources and Environmental Management. 1974. The Impact of Development on Nutrition in Remote Northern Manitoba Communities. Planning Branch.

 Social and Economic Impact Team. Technical Report No. 3. Winnipeg.
- . 1970. Resources Investigations
 Socio-Economic Effects of Diversion on
 Existing Communities, Underwood McLellan
 and Associates Ltd. Winnipeg.
- 1974. Nelson House Community
 Profile. Planning Branch. Technical
 Report No. 6. Winnipeg.
- . 1974. The Social and Economic

 Impact Study of the Churchill Nelson River
 Hydro Development. Planning Branch.
 Winnipeg.
- . 1974. <u>Cross Lake Community Profile</u>.

 Planning Branch. Technical Report No.5

 Winnipeg.
- . 1975. Churchill River Study Socio Economic: Manitoba. Upper Churchill
 Study Team, Report 21. Unpublished.
- Manitoba, Dept. of Renewable Resources and Transportation Services. 1978. Taiga, Tundra, and Tidal. Winnipeg.
- Manitoba Indian Brotherhood. 1971. Wahbung: Our Tomorrows.
- Manitoba, Museum of Man and Nature. 1975. Museums in Manitoba: Inventory of Resources.

 Summary Report, Museum of Man and Nature.
 Winnipeg.
- McGill University. 1957. A Study of Northern Settlement. Committee on Physical Planning. Montreal.
- Milford, J.T. and R.P. Perry. 1974. Social
 Change and Stress A Focus on Northern
 Development. Dept. of Mines, Resources
 and Environmental Management. Social
 and Economic Impact Study team. Technical
 Report No. 1.
- Nelson, D. and R. Saurette. 1975. <u>Visitors</u>
 <u>Survey Churchill, Manitoba, 1974</u>. Dept.
 of Tourism, Recreation and Cultural Affairs.
 Winnipeg.
- Norway House Information Program. 1973-76.

 Annoosch. Dept. of Northern Affairs.
 Extension Service Division. Norway
 House.
- Pappas, T. and P.S. White. 1971. Sky Hrok
 Churchill 1971. Interim Report. Raven
 Industries Inc. Sioux Falls, South Dakota.

- Pappas, T. and P.S. White. 1974. Sky Hook Churchill
 1973. Interim Report. Raven Industries Inc.
 Sioux Falls, South Dakota.
- Redekopp, H.I. 1968. An Analysis of the Social and Economic Problems of Four Small Communities in Northern Manitoba: Wabowden, Thicket Portage, Norway House, and Oxford House. M.A. Thesis. University of Manitoba. Winnipeg.
- Richmond, K.B. and J.J. Keleher (Editors) 1975.

 Manitoba 2000: Population Size and Distribution. Manitoba Environment Council.

 Study No. 5. Winnipeg.
- Sharp, E.F. and G.A. Kristjanson. 1966. People of Manitoba 1951-1961. Agricultural Rehabilitation and Development Agency (ARDA) Ottawa.
- Sim, V.W. 1956. "The Pas, Manitoba." Geographical Bulletin No. 8.
- Teillet, D., B. Baldwin and K. Davidson. 1977.

 Resource Allocation Project Cross Lake.

 Department of Renewable Resources and
 Transportation Services. Resource Planning.
 Manuscript Report No. 77-5. Winnipeg.
- Norway House. Department of Renewable
 Resources and Transportation Services. Resource Planning. Manuscript Report No. 77-21. Winnipeg.
- Teillet, D.J., B. Baldwin and K. Davidson. 1977.

 Wabowden Technical Information Report. Department of Renewable Resources and Transportation Services. Resource Planning.

 Manuscript Report No. 77-32. Winnipeg.
- Underwood, McLellan and Associates Ltd. 1966.

 <u>Community Study of Split Lake Indian</u>

 <u>Reserve</u>. Winnipeg.
- Underwood, McLellan and Associates Ltd., 1970.

 Preliminary Study of a Highway Route Location from Ilford to York Landing, for the Dept. of Northern Affairs. Winnipeg.
- Underwood, McLellan and Associates Ltd. 1974.

 Route Locations Island Lake Gods Lake
 Red Sucker Lake. Dept. of Northern Affairs.
 Typescript.
- Unger, G.P. 1969. Gods Lake: A Case Study of
 Recreational Land Use and Potential. University of Manitoba. Thesis. Winnipeg.
- Venables, A. 1970. <u>Muskeg to Metropolis, 1957-1970</u>. Thompson.
- Watson, R. 1930. "The story of Norway House."

 <u>Canadian Geographical Journal</u>. 1 (4):

 291-303.

Ecology

- Adams, K.R.F. 1975. "The Churchill River diversion." Manitoba Nature. 16: 22-29.
- Anthony, L. 1943. Biological Survey's North.

 Dept. of Mines, Resources and Environmental
 Management.
- Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report No. 74-11. Winnipeg.
- Beke, J.G. H. Velhuis and J. Thie. 1973. <u>Bio-Physical Land Classification, Outlet Lakes Area</u>. Canada-Manitoba Soil Survey. University of Manitoba. Winnipeg.
- . 1973. Bio-Physical Land Inventory of the Churchill-Nelson Rivers Study Area North-Central, Manitoba. Canada-Manitoba Soil Survey, University of Manitoba. Winnipeg.
- Blauel, R.A. and D. Hocking. 1974. Air Pollution and Forest Decline near a Nickel Smelter.

 invision 121 Analy. Suralian Forest
 Service. Northern Forest Research Centre
 Information Report NOR-X-115. Edmonton.
- Blunt, B. 1975. Reed Lake South Shore Limnology
 Study, August, 1974. Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report No. 75-10. Winnipeg.
- . 1976. A Limnological Survey of
 Wekusko Lake, 1975. Dept. of Mines, Resources and Environmental Management.
 Environmental Management Division. Report
 No. 76-6. Winnipeg.
- brum, b.d.h. 1966. "Influence of vegetation on permafrost." Proceedings of the Permafrost International Confrence (1963). pp. 20-25.
- Permafrant as an ecological in the subarctic." Symbolium on provide Pariora, Walnight, 1966.
- Chekay, D.A. and J.M.E. Crowe. 1971. Biological

 Copyage in the Copyage System 1977 to 1909.

 Dept. of Mines, Resources and Environmental
 Management. Resource Planning Division
 71-7. Winnipeg.
- Cober, J.M.E. 1964. The Effects of Mine Tailings on Fish Production and Penthic Productivity in the Natural Resources. Winnipeg.

- . 1968. A Limmological Investigation in the Saskatchewan River Drainage Basin Prior to Operation of a Forestry Complex at The Pas, Manitoba. Fisheries Branch, Dept. of Mines, and Natural Resources. Manuscript Report No. 68-1.
- . 1971. The Effects of Mine Tailings

 Drainage on Schist Lake, June 107. Dept.

 of Mines, Resources and Environmental

 Management, Fisheries Branch. Report No.
 70-20. Winnipeg.
- Copen, S.J. 1975. Preliminary Report on Paint
 Lake Provincial Recreation Park and Pisew
 Falls Wayside Interpretive Plans. Dept.
 of Tourism, Recreational and Cultural
 Affairs. Parks Branch. Winnipeg.
- Crowe, J.M.E. 1971. Effects of Mine Tailings
 Discharge on the Fauna of the Grass River,
 Manitoba from 1960-64. Dept. of Mines,
 Resources and Environmental Management.
 Winnipeg.
- . 1972. "Man The Polluter." The

 Effects of Mine Tailing Draines (n. inist
 Lake. Dept. of Mines, Resources and Environmental Management. Research Branch.
 Winnipeg.
- 1972. Limnological Investigations
 of the Ospwagan Lake Area. Dept. of Mines,
 Resources and Environmental Management.
 Research and Planning Division. Winnipeg.
- . 1972. <u>Saskatchewan River Survey</u>
 1971. Dept. of Mines, Resources and Environmental Management. Research Branch.
 Winnipeg.
- Dept. of Minen, herournes and inverse al Management. Research Branch. Winnipeg.
- of Kettle Reservoir and the Nelson River
- . 1973. A Survey of the Grass River

 1969. Dept. of Mines, Resources and Environment. Management. Fisteries begins.

 Winnipeg.
- . 1974. Heavy Motals in Manitoba Fish.

 Dept. of Mines, Resources and Environmental
 Management. Research Branch. Winnipeg.
- 1974. Saskatchewan River Survey
 Tronmental Management. Manuscript Report
 74-18. Winnipeg.

- Dickson, I.W. 1972. The Impact of Impoundments on Fisheries. Dept. of Mines, Resources and Environmental Management. Research Branch. Publication 72-8. Winnipeg.
- Dirschl, H.J. 1970. <u>Ecology of the Vegetation of the Saskatchewan River Delta</u>. Ph.d. Thesis, University of Saskatchewan. Saskatoon.
- Dirschl, H.J. and R.T. Coupland. 1972. "Vegetation patterns and site relationships in the Saskatchewan River delta." Canadian Journal of Botany. 50: 647-675.
- Efford, I.E. 1975. "Assessment of the Impact of Hydro-dams." Journal of the Fisheries Research Board of Canada 32 (1): 196-209.
- Evans, R.M. 1970. "Oldsquaw nesting in association with arctic terns at Churchill, Manitoba."

 Wilson Bulletin 82 (4): 383-390.
- Falk, et al. 1973. Biological Effects of Mining
 Wastes in the Northwest Territories. Environment Canada. Resource Management
 Branch.
- Gillespie, W.L. 1960. Breeding Bird and Small
 Mammal Populations in relation to the Forest
 Vegetations of Northern Manitoba. Ph.D
 Thesis, University of Illinois.
- Green, G.H. 1974. "Effects of hydroelectirc development in western Canada on aquatic ecosystems." <u>Journal of the Fisheries Research Board of Canada</u>. 31 (5): 913-927.
- Hangasjarvi, E.T. 1974. A Limnological Survey of
 Moak Lake, August 1973. Dept. of Mines,
 Resources and Environmental Management.
 Publication 74-12. Winnipeg.
- Hare, F.K. and J.C. Ritchis. 1972. "The boreal bioclimates." Geographical Review. 62: 333-365.
- Hecky, R.E., R.J. Harper and H.J. Kling. 1974.
 "Phytoplankton and primary production in Southern Indian Lake." Lake Winnipeg,
 Churchill and Nelson River Study. Appendix
 5. Volume 1-E. Winnipeg.
- Hecky, R.E. and H.A. Ayles. 1974. "Summary of fisheries limnology investigations on the lower Churchill lakes and on the Rat-Burntwood Lakes." <u>Lake Winnipeg, Churchill</u> <u>and Nelson River Study</u>. Appendix 5. Volume 2-C. Winnipeg.
- Hecky, R.E. and R.J. Harper. 1974. "Phytoplankton and primary productivity of the lower Churchill lakes, and the Nelson River lakes and reservoirs." Lake Winnipeg, Churchill and Nelson River Study. Appendix 5. Volume 2-F. Winnipeg.

- Hocking, D. and R.A. Blauel. 1977. Progressive
 Heavy Metal Accumulation Associated with
 Forest Decline near the Nickel Smelter at
 Thompson, Manitoba. Environment Canada.
 Canadian Forest Service. Northern Forest
 Research Centre. Information Report NCR-X169. Edmonton.
- Hughes, C. 1973. A Preliminary Limnological
 Survey of Mystery Lake 1972. Dept. of Mines,
 Resources and Environmental Management.
 Research Branch. Winnipeg.
- . 1975. A limnological survey of Ted
 Lake, 1974. Dept. of Mines, Resources and
 Environmental Management. Research Branch.
 Manuscript Report No. 75-10. Winnipeg.
- . 1976. A limnological survey of File
 Lake, 1975. Dept. of Mines, Resources and
 Environmental Management. Environmental
 Management Division. Report No. 76-4.
 Winnipeg.
- Hughes, M.L. 1976. A limnological survey of
 Hargrave Lake, 1975. Dept. of Mines, Resources and Environmental Management. Environmental Management Division. Report
 No. 76-3. Winnipeg.
- . 1976. Pollution survey of Schist
 Lake, 1975. Dept. of Mines, Resources and
 Environmental Management. Environmental
 Management Division. Report No. 76-5
 Winnipeg.
- Hustich, I. 1957. "Hudson Bays subarktiska logland." Nordenskiold samfundet Tidsk-rift. arg. 17. pp. 45-62.
- 1957. "On the phytogeography of the subarctic Hudson Bay Lowland." Acta Geographics 16 (1).
- . 1957. "Hudson Bay Lowland, ett naturgeografiskt interessant omrade; joredrag hallet vid Finska vetenskaps societetens sammantrade den 21 januari 1957." Arsbok-vuosikirja, Volume 35B. (5) Finska vetenskaps societeten. Helsingfors.
- Jahn, B. 1977. Landry Lake Habitat Improvement
 Project. Dept. of Renewable Resources and
 Transportation Services. Manuscript Deport. The Fas.
- Johnson, K.J. 1972. <u>Ecological Reserves in the Province of Manitoba Including Site</u>

 <u>Specific Recommendations</u>. Dept. of Mines,

 Resources and Environmental Management.

 Winnipeg.
- Knollenberg, R. 1964. The Distribution of String
 Bogs in central Canada in relation to climate.
 University of Wisconsin. Dept. of Meteorology
 Technical Report 14. pp. 1-44.

- Koshinsky, G.D. 1973. "Limnology-fisheries of the Lake Winnipeg outlet lakes area: Present conditions, and implications of hydro-electric development." Lake Winnipeg,

 Churchill and Nelson River Study. Appendix

 5. Volume 2-A. Winnipeg.
- Larsen, J.A. 1972. Vegetation and Terrain (Environment): Canadian Boreal Forest and Tundra. Wisconsin University. Madison Centre for Climatic Research. Madison.
- Loughery, A.G. and J.P. Kelsall. 1970. "The ecology and population dynamics of the barren-ground caribou in Canada." Ecology and Conservation Helsinki Symposium Proceedings, 1966 UNESCO, pp. 275-280. Helsinki.
- Manitoba, Conservation of Terrestrial Ecosystems
 Subcommittee of the International Biological
 Programme. 1972. A Proposal to Establish
 a System of Ecological Reserves in the
 Province of Manitoba including specific site
 Recommendations.
- Manitoba, Dept. of Renewable Resources and Transportation Services. 1978. <u>Taiga, Tundra</u>, and <u>Tidal</u>. Winnipeg.
- Miller, D.R. 1974. "Seasonal changes in the feeding behaviour of barren-ground caribou on the tiaga winter range." in The Behaviour of Ungulates and its Relation to Management. Symposium of the Internation Union for Conservation of Nature and Natural Resources. No. 24. pp. 744-758. Morges, Switzerland.
- Mills, G.F., D.B. Forrester, H. Veldhuis and R. Schmidt. 1975. Rapid Resource Inventory of Northern Manitoba Using the Biophysical Approach. Northern Resource Information Program. Winnipeg.
- Mills, G.F., D.B. Forrester, H. Veldhuis and R. Schmidt. 1976. A Guide to Biophysical Land Classification in Munitota. Dept. of Renewable Resources and Transportation Services. Northern Resource Information Program. Winnipeg.
- Nash, J.B. 1951. An Investigation of some problems of Ecology of the Beaver in Northern Manitota. Dept. of Mines, and Natural Resources. Winnipeg.
- Northern Resource Information Program. 1976. A
 Guide to Blephysical Land Classification in
 Manitoia. Dept. of Renewable Resources and
 Transportation Services and the CanadaManitota Soil Survey. Winnipeg.
- Nevskowski, N.S. 1955. The Endery of Reindeer Lake with Special Reference to Fish. M.S. Thesis. Dept. of Biology. University of Saskatchewan. Saskatoon.

- Pakulak, A.J. 1969. Nesting Ecology of Canada
 Geese of the Churchill Area, Northern Manitoba. M.S. Thesis. Colorado State
 University.
- Pruitt, W.O. Jr. 1970. "Some Aspects of the Interrelationships of permafrost and tundra biotic
 communities." in Productivity and Conservation in Northern Circumpolar Lands. International Union for Conservation of Nature
 and Natural Resources. (IUCN). pp. 33-40.
 Publications New Series No. 16. Morges,
 Switzerland.
- Schlick, R.O. 1962. An Interim Report on Hook Lake
 Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
 Winnipeg.
- . 1964. A Survey of Reed Lake, 1963.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Manuscript Report.
- . 1964. Interim Report on Reed Lake,
 1963. Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
- . 1965. Amulet Lake Fish Eradification
 Program, September, 1964. Dept. of Mines
 and Natural Resources. Fisheries Branch.
 Manuscript Report. Winnipeg.
- . 1965. A Survey of Upper Ospwagan
 Lake, 1965. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript
 Réport.
- . 1966. The Commercial Fishery of the
 North Arm of Moose Lake. Dept. of Mines and
 Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
- ., R.O. 1968. A Survey of Paint Lake
 1967. Dept. of Mines and Natural Resources
 Fisheries Branch. Manuscript Report No.
 68-11. Winnipeg.
- Sunde, L.A. n.d. Report on a Brief Investigation of Wonderland Lake, June, 1956. Dept. of Mines and Natural Resources. Fisheries Branch.

 Typescript.
- of We Lake, June, 1956. Dept. of Mines and Natural Resources. Fisheries Branch. Type-script.
- . n.d. Report on a Brief Investigation of Sleep Lake, June, 1956. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.

- Sunde, L.A. n.d. Report on a Brief Investigation of Johnson Lake, Jume, 1956. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
- wood River (Pre-pollution Survey) July 30 to August 10, 1958. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
- of Murray Lake (54° 46 N 101° 36 W). Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
- 1960. Burntwood River Pre-Pollution
 Survey, July, 1960. Dept. of Mines and Natural
 Resources. Fisheries Branch. Interim Manuscript Report.
- . 1961. Manistikwan Trout Transfer

 September-October, 1961. Dept. of Mines and
 Natural Resources. Fisheries Branch. Typescript.
- . 1961. Survey of Borrow Pits Adjacent to P.T.H. #10 South of The Pas, Winter; 1960-1961. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
- Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
- . 1962. 1962 Tests on Borrow Pits Adjacent to P.T.H. #10 near The Pas, Manitoba.

 Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report. Winnipeg
- gations Winter D.O. Tests 1961 and 1962.

 Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
 Winnipeg.
 - Rocky Lake Survey. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1962. Interim Report: Grass River Pre-Pollution Survey. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
 - Preliminary Assessment of the Probable Effect of the Grand Rapids Development on the Fishes and the Fishing Industry of the Forebay Area. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript. Winnipeg.

- Sunde, L.A. 1964. Total Dissolved Solids in

 Northern Waters. Dept. of Mines and

 Natural Resources. Fisheries Branch.

 Manuscript Report.
 - 1964. Cormorant Lake Survey, June 9 to
 25, 1964. Dept. of Mines and Natural Resources
 Fisheries Branch. Manuscript Report. Winnipeg.
 - 1965. Whitefish Removal Experiments in Lake Athapapuskow, October-November, 1964.
 Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . n.d. A Limnological Survey of Scotty
 Lake (Twp. 66 Range 28W). Dept. of Mines and
 Natural Resources. Fisheries Branch. Typescript.
- Stewart-Hay, R.K. 1956. A Brief Biological Survey of Second Cranberry Lake, August, 1953. Dept. of Mines and Natural Resources. Game and Fisheries Branch. Typescript. Winnipeg.
- Lake, Manitoba. Dept. of Mines and Natural Resources. Fisheries Branch and the University of Manitoba. Manuscript Report. Winnipeg.
 - . n.d. A Biological Survey of Lake
 Athapapuskow, July, 1953. Dept. of Mines
 and Natural Resources. Game and Fisheries
 Branch. Typescript. Winnipeg.
- Stirling, I. and A. Macpherson. 1972. "Polar bear management changes in Canada." in Polar Bears proceedings of the Polar Bear specialist group of the International Union for Conservation of Nature and Natural Resources (IUCN). Supplementary Paper No. 35. pp. 54-59. Morges, Switzerland.

Economics

- Baker, W.B. 1962. A Study of Manitoba's Outdoor Recreational Resources. The Committee on Manitoba's Economic Future. Winnipeg.
- Brampton, G. 1975. Market Survey of Road Access Fishing Lodges in Northern Manitoba. Dept. of Tourism, Recreation and Cultural Affairs. Research and Planning Branch. Winnipeg.
- Brown, E.L. 1955. "The Sherritt Gordon Lynn Lake project (1): Notes on discovery and financing."

 Canadian Mining and Metallurgical Bulletin. 48 (518): 335-39 and Canadian Institute of Mining and Metallurgy Transaction 58: 187-200.
- Canada, Dept. of Industry, Trade and Commerce.
 1972. The Canadian Tourism Facts Book 1972.
 Ottawa.
- Canada, Dept. of Industry and Commerce. 1975.

 <u>Employment, Earnings and Hours</u>. Statistics
 Canada. Ottawa.
- . 1975. <u>Canadian Statistical Review</u>.

 Statistics Canada. Ottawa.
- Collinson, J.D. et al. 1973. Social and Economic Impact of the Nelson River Hydro Development. Preliminary report for the Dept. of Northern Affairs. Technical Report No. 7.
- Committee on Manitoba's Economic Future. 1963.
 "Tourism, recreation and development and accommodation." Manitoba 1962-75. Part 8.
 Dept. of Industry and Commerce.
- Darby, D.A. 1978. Results of a Wildlife Consumption and Use Survey at Easterville,
 Manitoba, Summer, 1977. Department of
 Renewable Resources and Transportation
 Services. Wildlife Planning Division.
 Manuscript Report No. 78-17.
- Hedlin Menzies and Associates Ltd. n.d. Interim Report on the Grand Rapids Forebay Economic and Social Conditions.. for the Grand Rapids Forebay Administration Committee. Winnipeg.
- Hudson Bay Mining and Smelting Corporation 1976.

 Annual Report 1975.
- Hudson Bay Route Association. 1958. Hudson Bay
 Route Pays Producer and Consumer Dividends.
 Saskatoon.
- . 1958. Submission to the Prime
 Minister and members of the Dominion Catinet.
 1958. Saskatoon.
- . 1959. Report of the sixteenth annual convention and confrence, Churchill Manitota, August 3-4th, 1959. Saskatoon.
- niscion on Transfertati n, 170. Sackatoon.

- International Nickel Company of Canada. 1976.

 <u>Annual Report 1975</u>. Sudbury.
- Jamieson, S. and H.B. Hawthorn. 1962. The role
 of Native People in Industrial Development
 in Northern Manitoba. The Committee on
 Manitoba's Economic Future. University of
 British Columbia. Vancouver.
- Laycock, A.H. 1949. Churchill, Manitoba. BA
 Thesis University of Toronto. Toronto.
- Little, Arthur, D. of Canada Ltd. 1962. Fresh-Water Fishing Industry of Manitoba. Report to the committee on Manitoba's Economic future. Agricultural Rehabilitation and Development Agency (ARDA) Project No. 7004. Ottawa.
- Manitoba, Bureau of Statistics. 1973. Northern

 Manitoba Lodge Industry Fishing and Hunting
 Lodges 1973. Manitoba Bureau of Statistics.

 Winnipeg.
- Manitoba, Dept. of Industry and Commerce. 1958.

 <u>Economic Survey of Northern Manitoba, 1958</u>.

 A.D. Little, Inc. Cambridge. Mass.
- Manitoba, Dept. of Mines, Resources and Environmental Management. 1974. The Social and Economic Impact Study of the Churchill-Nelson Rivers Hydro Development. Planning Branch. Winnipeg.
- Manitoba, Dept. of Mines, Resources and Environmental Management. 1974. The Impact of
 Development on Nutrition in Remote Northern
 Manitoba Communities. Planning Branch.
 Social and Economic Impact Team. Technical
 Report No. 3. Winnipeg.
- . 1975. Churchill River Study Socio-Economic: Manitoba Upper Churchill Study Team. Report 21.
- McGill University. 1957. A Study of Northern
 Settlement. Committee on Physical Planning
 Montreal.
- Milford, J.T. and R.P. Perry. 1974. Social
 Change and Stress A Focus on Northern
 Development. Dept. of Mines, Resources
 and Environmental Management. Social
 and Economic Impact Study team. Technical
 Report No. 1.
- Nixon, N. 1972. Present Ownership and Expected
 Ownership of Outdoor Recreation Equipment
 Among Winnipeg Residents. Dept. of Tourism
 Recreation and Oultural Affairs. Report
 No. 119. Winnipeg.

- Ramsay, W.W., J. Clark and M.E. Moffat. 1955.

 History of Engineering Development in the

 Summerberry Fur Development Project. Dept.

 of Mines and Natural Resources. Game Branch.
- Redekopp, H.I. 1968. An Analysis of the Social and Economic Problems of Four small communities in Northern Manitoba: Wabowden, Thicket Portage, Norway House and Oxford House. M.A. Thesis. University of Manitoba. Winnipeg.
- Resource and Economic Development Committee. 1975.

 Northern Strategy. Report to the Government of Manitoba. Typescript. Winnipeg.
- Robertson, R.J. 1968. <u>Construction and Mainten-ance Proposals for Summerberry Marsh</u>. Dept. of Mines and Natural Resource. Winnipeg.
- Roblin, J.D. 1961. "Manitoba, our frontier is our future." Western Miner and Oil Review. 34 (4): 54-5.
- Rothney, R. and S. Watson, 1975. A Brief

 Economic History of Northern Manitoba.

 Department of Northern Affairs and Resource and Economic Development (RED) subcommittee of Cabinet, Winnipeg.
- Sherritt Gordon Mining Company. 1976. Annual Report 1975. Toronto.
- Sunde, L.A. 1962. Report on Fur Farm Fishing Northern Manitoba (Kississing Lake). Dept.
 of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- . 1962. Preliminary Assessment of the Probable Effect of the Grand Rapids Development on the Fishes and the Fishing Industry of the Forebay Area. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript. Winnipeg.
- . 1964. Experiments in Rough Fish Removal in Northern Manitoba. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- Underwood, McLellan and Associates Ltd. 1966.

 <u>Community Study of Split Lake Indian Reserve</u>. Winnipeg.
- Underwood, McLellan and Associates Ltd. 1974.

 Route Locations Island Lake Gods Lake
 Red Sucker Lake. Dept. of Northern Affairs.

 Typescript.
- Wang, D. 1973. A Report on Canadian Visitors to
 Manitoba and Manitobans on Vacation. Dept.
 of Tourism, Recreation and Cultural Affairs.
 Research and Planning Branch. Report No.
 156. Winnipeg.

Weir, T.R. 1960. <u>Economic Atlas of Manitoba</u>.

Dept. of Industry and Commerce. Winnipeg.

Fishing

- Andrews, R.R. 1972. Analysis of 1967 Angling
 Licence Ouestionaire. Dept. of Mines,
 Resources and Environmental Management.
 Research and Planning Division. Publication
 71-4. Winnipeg.
- Anthony, L. 1966. An Investigation of Northern
 Lakes for Commercial Fishing. Dept. of
 Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- Ayles, H., S.B. Brown, K. Machniak and J. Sigurdson 1974. "The fisheries of the lower Churchill River diversion route lakes: present conditions and implications of hydro-electric developments." Lake Winnipeg, Churchill and Nelson Rivers Study. Appendix 5.

 Volume 2-J. Winnipeg.
- . 1974. "The fisheries of the lower Churchill lakes, the Rat-Burntwood lakes and the upper Nelson lakes: present conditions and implications of hydroelectric development." Lake Winnipeg, Churchill and Nelson Rivers Study. Appendix 5. Volume 2-I. Winnipeg.
- Ayles, H.A. and G.D. Koshinsky. 1974. "The fisheries of Southern Indian Lake: present conditions, and implications of hydroelectric development." Lake Winnipeg, Churchill and Nelson Rivers Study. Appendix 5. Volume 2-H. Winnipeg.
- Barrie, J.G.K. 1969. "Commercial fishing in Manitoba." <u>Fisheries Canada</u>, 21 (10): 15-18. Environment Canada. Ottawa.
- Beck, R.B. 1969. Northern Region Commercial
 Fishing Production Report. Summer Season.
 Dept. of Mines and Natural Resources. The
 Pas.
- . 1970. Northern Region Commercial Fishing Production Report. Summer Sesson. Dept. of Mines and Natural Resources. The Pas.
- 1970. Northern Region Commercial
 Fishing Production Report. Winter Season.
 Dept. of Mines and Natural Resources. The
 Pas.
 - 1971. Northern Region Commercial Fishing Production Report. Winter Season 1977-1971. Dept. of Mines and Natural Resources. The Pas.
- Bilan, M. 1974. Manitoba Fisheries Fact Book.

 Dept. of Mines, Resources and Environmental

 Management. Fisheries Programs. Development
 and Extension Services. Winnipeg.

- Cober, J.M.E. 1968. A Limnological Investigation in the Saskatchewan River Drainage Easin Prior to Operation of a Forestry Complex at The Pas, Manitoba. Dept. of Mines, and Natural Resources. Fisheries Branch. Manuscript Report No. 68-1. Winnipeg.
- Dickson, I.W. 1969. Development Potential of the Grand Rapids Forebay Fishery. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report No. 72-8.
 Winnipeg.
- on Fisheries. Dept. of Mines, Resources and Environmental Management. Research Branch. Publication 72-8. Winnipeg.
- Doan, K.H. 1964. Climate, Hydrology and Freshwater Fisheries. Dept. of Mines and Natural Resources. Manuscript Report. Winnipeg.
- Driver, E.A. and K.H. Doan. 1972. Fisheries

 Survey of Cross Lake (Nelson River), 1965.

 Dept. of Mines, Resources and Environmental
 Management. Publication 73-5. Winnipeg.
- Dutchie, A. 1971. <u>Manitoba Coarse Fish and Gear</u>

 <u>Development Program</u>. Canada Industrial Development Branch. Project Report. No. 47.
- Hecky, R.E. and H.A. Ayles. 1974. "Summary of fisheries limnology investigations on the lower Churchill lakes and on the Rat-Burntwood lakes." Lake Winnipeg, Churchill and Nelson River Study. Appendix 5. Volume 2-C. Winnipeg.
- Howard, W.N. 1968. A Summary Report on the fisheries of Cedar Lake and the Saskatchewan River in Manitoba. Dept. of Mines and Natural Resources. Fisheries Branch.

 Manuscript Report No. 18. Winnipeg.
- Johanson, E.B. 1971. Commercial Fishing Northern Region Summer, 1971. Dept. of Mines, Resources and Environmental Management. The Pas.
- . 1972. Commercial Fishing Northern
 Region Winter, 1971-72. Dept. of Mines,
 Resources and Environmental Management.
 The Pas.
- . 1972. Commercial Fishing Northern Region Summer, 1972. Dept. of Mines, Resources and Environmental Management. The Pas.
- Region Winter, 1972-73. Dept. of Mines, Resources and Environmental Management.

- Johanson, E.B. 1973. Commercial Fishing Northern Region Summer, 1973. Dept. of Mines, Resources and Environmental Management. The Pas.
- . 1974. Commercial Fishing Northern Region Winter, 1973-74. Dept. of Mines, Resources and Environmental Management. The Pas.
- . 1974. Commercial Fishing Northern
 Region Summer, 1974. Dept. of Mines, Resources and Environmental Management. The
- Region Winter, 1974-75. Dept. of Mines, Resources and Environmental Management.
- Koshinsky, G.D. 1973. "Limnology-fisheries of the Lake Winnipeg outlet lakes area: present conditions, and implications of hydro-electric development." <u>Lake Winnipeg</u>, <u>Churchill and Nelson River Study</u>. Appendix 5. Volume 2-A. Winnipeg.
- Kotak, D.N. n.d. An Assessment of the Molson Lake Commercial/Sport Fishing Controversy.
- Little, Arthur, D., of Canada Ltd. 1962. Fresh
 Water Fishing Industry of Manitoba. Report
 to the Committee on Manitoba's Economic
 Future. Agricultural Rehabilitation and
 Development Agency (ARDA) Project No. 7004.
 Ottawa.
- Lombard North Group Ltd. 1975. A Fisheries Resources Allocation Study: North Eastern Manitoba. Winnipeg.
- Manitoba, Bureau of Statistics. 1973. Northern

 Manitoba Lodge Industry Fishing and Hunting

 Lodges 1973. Manitoba Bureau of Statistics.

 Winnipeg.
- Manitoba, Dept. of Mines and Natural Resources.

 1967. Number of Fishermen at Various Points
 in the Province. Winnipeg.
- Manitoba, Dept. of Mines, Resources and Environmental Management. 1974. Fishermen-Northern Region Commercially Fished Lakes 1969-73. Development and Extension Services. Fisheries Program. Winnipeg.
- Manitoba, Dept. of Renewable Resources and Transportation Services. <u>The Fishing Bulletin</u> (Various issues). Fisheries Extension Programs. Winnipeg.
- Manitoba, Dept. of Tourism, Recreation and Cultural Affairs. 1958-1977. Master Angler
 Award Lists, Tourist Branch. Winnipeg.

- Miller, M.D. 1972. An Analysis of the 1969

 Manitoba Spearfishing and Bowfishing season.

 Dept. of Mines, Resources and Environmental

 Management. Research Branch. Publication
 No. 71-9. Winnipeg.
- Moskenko, W.R. n.d. 1964 Summary of Manitoba Master
 Angler Awards and Related Information. Dept.
 of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- n.d. 1965 Summary of Manitoba Master
 Angler Awards and Related Information. Dept.
 of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- . 1965. Master Angler Awards for Northern
 Manitoba Waters in 1964. Dept. of Mines and
 Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
- . 1966. Master Angler Awards for Northern
 Manitoba Waters in 1965. Dept. of Mines and
 Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
- P.M. Associates Ltd. 1975. Fisheries Resources
 Allocation Project for the South Indian Lake
 Area. Dept. of Mines, Resources and Environmental Management. Winnipeg.
- Popko, B. 1976. The Brochet Commercial Fishery.
 Dept. of Renewable Resources and Transportation Services. Typescript.
- Schindler, E.J. 1970. 1958 Summary of Manitoba

 Master Angler Awards and Related Information.

 Dept. of Mines and Natural Resources. Manuscript Report 70-10. Winnipeg.
- . 1970. 1959 Summary of Manitoba

 Master Angler Awards and Related Information.

 Dept. of Mines and Natural Resources.

 Manuscript Report 70-11. Winnipeg.
- Master Angler Awards and Related Information.

 Dept. of Mines and Natural Resources.

 Manuscript Report 70-12. Winnipeg.
- ______. 1970. 1962 Summary of Manitoba

 Master Angler Awards and Related Information.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Manuscript Report 70-14.

 Winnipeg.
- . 1970. 1963 Summary of Manitoba

 Master Angler Awards and Related Information.

 Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report 70-15.

 Winnipeg.
- Schlick, R.O. 1964. Reed Lake Creel Census, 1963.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Winnipeg.

- Schlick, R.O. 1965. Reed Lake Partial Creel

 Census, 1964. Dept. of Mines and Natural
 Resources. Fisheries Branch. Manuscript
 Report. Winnipeg.
 - . 1965. An Experimental Whitefish Removal Program, Rocky Lake, 1965. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
 - . 1966. Lake Athapapuskow Experimental Fishery, October, 1966. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1966. The Commercial Fishery of the North Arm of Moose Lake. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1966. The Commercial Fishery of the North Arm of Moose Lake. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1966. The Commercial Fishery on the North Arm of Moose Lake. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1966. The Experimental Whitefish
 Fishing Operation on Reed Lake, Manitoba in
 1965. Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
 - Fishery, October, 1966. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1967. Reed Lake Partial Creel
 Census, 1965. Dept. of Mines and Natural
 Resources. Fisheries Branch. Manuscript
 Report. Winnipeg.
 - 1967. Reed Lake Partial Creel
 Census, 1966. Dept. of Mines and Natural
 Resources. Fisheries Branch. Manuscript
 Report. Winnipeg.
 - . 1967. A Review of Borrow Pit Stockings in Northern Manitoba, 1967. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1968. A Partial Creel Census at Recei Lake in 1967. Dept. of Mines and Natural Resources. Fisheries Branch. Publication 68-3. Winnings.
 - Fisheries. Underwood McLellan and Associates
 Ltd. Winnipeg.
 - . 1971. Borrow Pit Creel Census along #15 higher in 1003. Lept. of Mines, Resources and invironmental Management. Fisheries Branch. Publication No. 70-8.

- Schlick, R.O. 1973. Lake Athapaposkow Creel

 Census in 1968. Dept. of Mines, Resources
 and Environmental Management. Research
 Branch. Manuscript Report 73-13. Winnipeg.
- Sopuck, R.D. 1978. The Status of the Whitefish
 Population of Goose Lake in Relation to the
 Commercial Fishery for 1977. Dept. of
 Northern Affairs, Renewable Resources and
 Transportation Services. Research Manuscript Report NA. 78-29. The Pas.
- green Lake with notes on Recent Changes in the Whitefish Population. Dept. of Mines,
 Natural Resources and Environment. Research
 Manuscript Report No. 78-67. The Pas.
- Sunde, L.A. 1959. The Sturgeon Fishery in Manitoba with Recommendations for Management. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
- . 1961. Trap-Net Trials Lake Athapapuskow
 1961. Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
- Northern Manitoba, 1960. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript. The Pas.
- Survey Interim Report, June 1961. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1962. Report on Fur Farm Fishing —
 Northern Manitoba (Kississing Lake). Dept.
 of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
 - . 1962. Preliminary Assessment of the Probable Effect of the Grand Rapids Development on the Fishes and the Fishing Industry of the Forebay Area. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript. Winnipeg.
 - . 1963. Reed Lake Creel Census Report Summer, 1962. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
 - . 1963. Reed Lake Creel Census Report, Summer, 1962. De t. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1964. Experiments in Rough Fish Removal in Northern Manitoba. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.

- Sunde, L.A. 1964. Master Angler Awards for
 Northern Manitoba Waters in the 1960-63
 Period. Dept. of Mines and Natural
 Resources. Fisheries Branch. Manuscript Report.
- . 1964. Review of Experiments in Whitefish Removal on Northern Angling Lakes; 1958 to 1963. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- Sunde. L.A. and L. Allard. 1964. Manistikwan Lake
 Gill Net Tests, March-April, 1964. Dept. of
 Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- Sunde, L.A. 1965. Whitefish Removal Experiments in

 Lake Athapapuskow, October-November, 1964.

 Dept. of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- . 1965. Economic Evaluation of a Late
 Fall Whitefish Removal Operation on Lake
 Athapapaskow, Manitoba. Dept. of Mines and
 Natural Resources. Fisheries Report. Manuscript Report.
- . 1973. Paint Lake Creel Census, 1968.

 Dept. of Mines, Resources and Environmental
 Management. Research Branch. Publication
 No. 73-14. Winnipeg.
- . 1977. A Fisheries Survey of Kississing Lake 1968 and 1973. Department of Renewable Resources and Transportation Services. Manuscript Report No. 77-41. Winnipeg.
- . 1978. Stevenson and Pelican Lakes
 Fisheries Survey, 1973. Dept. of Renewable Resources and Transportation Services
 Fisheries Management Branch. Fisheries
 Research. Manuscript Report. No. 78-39.
 Winnipeg.
- Weagle, K.V. and W. Baxter. 1973. The Fisheries
 of Southern Indian Lake: Exploitation and
 Reproduction. Environment Canada. Fisheries
 and Marine Service. Manuscript Report.
- Weagle, K.V. 1973. Fisheries of the Lake Winnipeg
 Outlet Lakes: Exploitation and Reproduction.
 Environment Canada. Fisheries Service
 Manuscript Report.
- 1974. "The Fisheries of the Lower Churchill River and Diverison Route Lakes: Exploitation and Reproduction." <u>Lake Winnipeg</u>, Churchill and Nelson Rivers Study. Appendix 5. Volume 1-I. Winnipeg
- Wickstrom, R.D. and G.L. Merner. 1970. Commercial Fishing Inventory of Northern Manitoba Lakes.

 Dept. of Mines, Resources and Environmental Management. Fisheries Branch. Manuscript Report No. 69-12.

Forestry

- Blauel, R.A. and D. Hocking. 1974. Air Pollution and Forest Decline near a Nickel Smelter. Environmental Canada. Northern Forest Research Centre. Information Report NCR-X-115. Edmonton.
- Burch, J.C. 1977. Status of Manitoba's Forest Resources. Dept. of Renewable Resources and Transportation Services. Manuscript Report No. 77-40. Winnipeg.
- Flanders, E.A., R.H. Lamont, and M. Kaye. 1973.

 The Forest Resources of the South Indian
 Lake Project Area. Dept. of Mines, Resources and Environmental Management.
- Gill, C.B. 1960. The Forests of Manitoba. Dept. of Mines and Natural Resources. Forest Service. Winnipeg.
- Hocking, D. and R.A. Blauel. 1977. Progressive
 Heavy Metal Accumulation Associated with
 Forest Decline near the Nickel Smelter at
 Thompson, Manitoba. Environment Canada.
 Northern Forest Research Centre. Information Report NCR-X-169. Edmonton.
- Kotowycz, A.J. 1975. Northern Strategy: Physical Resources Sector - Forestry Resources (supplement to Volume 1). Dept. of Renewable Resources and Transportation Services. Winnipeg.
- Lake Winnipeg, Churchill and Nelson River Study
 Board. 1975. Biophysical Forestry and Geological Studies. Technical Report Appendix
 3. Winnipeg.
- Lamont, R.H. 1972. Forest Inventory Report for the Jenpeg Project. Dept. of Mines, Resources and Environmental Management.
- Loch, J.S. and W.J. Bryant. 1972. Taxicity and
 Other Pollution Characteristics of Unbleached
 Kraft Mill Effluents. Canada, Dept. of the
 Environment. Fisheries Service No. TR 723. Winnipeg.
- Manitoba, Dept. of Mines and Natural Resources. 1956-1960. Forest Resources Inventory No-10, 1956 reports. Forest Service. Winnipeg.
- Manitoba, Dept. of Mines, Resources and Environmental Management. 1975. Forest Inventory Report for Forest Management Unit 83. Forest Inventory. Winnipeg.
- . 1975. Forest Inventory Report for
 Forest Management Unit 84. Forest Inventory.
- Manitoba, Dept. of Mines, Resources and Environmental Management. 1975. The Forests of Manitoba (1974). Forestry Working Team. Winnipeg.

- Manitoba Hydro. 1970. Resources Investigations
 Forest Resources and Reservoir clearing
 costs. Underwood McLellan and Associates
 Ltd. Winnipeg.
- Patterson, V.B. and G.N. Still. 1973. Forest

 Insect and Disease Conditions in Manitoba
 Provincial Parks. 1972. Environment
 Canada. Northern Forest Research Centre.
 Information Report NOR-X-55. Edmonton.
- Radforth, N.W. 1950. Progress Report on Organic
 Terrain Studies. National Research Council
 of Canada. Technical Memorandum No. 16.
- . 1953. "Palaeoecological research in northern Canada." In the 7th Proceedings of International Botanical Congress. 1950. Stockholm.
- . 1954. "Palaeobotanical method in the prediction of sub-surface summer ice conditions in northern organic terrain."

 Royal Society of Canada Transactions.

 Series 3. 48 (5): 51-64.
- Ritchie, J.A. and K.A. Hadden. 1975. "Pollen stratigraphy of holocene sediments from the Grand Rapids area, Manitoba, Canada."

 Review of Paleobotany and Palynology.

 19 (3): 193-202.
- Ritchie, J.C. 1962. A Geobotanical Survey of

 Northern Manitoba. Arctic Institute of
 North America. Technical Paper No. 9.
- Rowe, J.S. 1959. <u>Forest Regions of Canada</u>.

 Canada, Dept. of Northern Affairs and
 Natural Resources. Forestry Branch.
 Bulletin 123.
- Canada, Dept. of Environment. Publication
 No. 1300.
- Schweitzer, R.D. et al. 1973. Pre-Impoundment
 Observations on some fish populations in
 Moose Lake, Manitoba, 1963. Dept. of Mines,
 Resources and Environmental Management.
 Research Branch. Winnipeg.
- Tarnocai, C. "Glacial history, surface deposits, soils and vegetation of Wekusko and portions of Cross Lake, Norway House and Grand Rapids Map Areas." Proceedings of the Fourteenth Manitoba Soil Science Meeting. 21:25.
- Widden, A. 1973. The Forest Resources of the Rat-Burntwood Project Area. Dept. of Mines, Resources and Environmental Management.
- . 1974. The Forest Resources of
 Natigi Manason Flood Area. Dept. of Mines,
 Resources and Environmental Management.

- Zoltai, O. 1970. <u>Cormorant Lake Biophysical</u>
 <u>Project, Cranberry Portage</u>. Canada, Dept. of Fisheries and Forestry.
- Zoltai, S.C. 1975. Southern Limit of Coniferous
 Trees on the Canadian Prairies, Environment Canada. Northern Forest Research
 Centre. Information Report NOR-X-128.
 Edmonton.

Geology

- Alkock, F.J. 1920. Ospwagan Lake Burntwood Area.

 Northern Manitoba. Geological Survey of
 Canada Summary Report. Part C: 1-6. Ottawa.
- . 1920. Rat River Route from Threepoint Lake to Southern Indian Lake, Manitoba. Geological Survey Canada Summary Report. Part C: 6-12. Ottawa.
- Allen, C.M. 1953. Geology of the Cotton Lake

 Area Cross Lake Mining Division. Dept.
 of Mines, Resources and Environmental.
 Management. Mines Branch. Winnipeg.
- Allen J.D. 1946. Geology of the Lynn Lake Area Granville Lake Division. Dept. of Mines, Resources and Environmental Management.
 Mines Branch. Winnipeg.
- . 1947. Geology of the Hughes Lake

 Area Granville Lake Division. Dept. of

 Mines, Resources and Environmental Management. Mines Branch. Winnipeg.
- Alvey, J. 1969. "The Nelson: Manitoba's Own River." <u>Canadian Geographical Journal</u>. 78 (1): 2-11.
- Antevs, E. 1931. <u>Late-Glacial Correlations and Ice Recession in Manitoba</u>. Geological Survey of Canada. No. 2282. Ottawa.
- Arnole, R.C. and O.P. Malik. 1974. "Violarite in some nickel ores from Lynn Lake and Thompson, Manitoba and Sudbury, Ontario, Canada."

 <u>Canadian Mineralogist</u>. 12 (5): 320-326.
- Azis, A., G.S. Barry and I. Haugh. 1972. The Undiscovered Mineral Endowment of the Canadian Shield in Manitoba. Dept. of Mines, Resources and Environmental Management. Publication No. 72-1. Winnipeg.
- Raillie, A.D. 1951. Ordovician Geology of Lake
 Winnipeg and Adjacent Areas. Dept. of Mines
 and Natural Resources. Publication No. 51-6
 Winnipeg.
- Reiles, A.H. 1971. Preliminary Compilation of the Geology of the Snow Lake-Flin Flon-Cherridon Area. Dept. of Mines, Resources and Environmental Management. Geological Paper No. 1-71. Winnipeg.
- Bannatyne, B.B. 1958-65. Bitlicgraphy of Geology Palaechotology, Industrial Minerals, and Fuels in the Post Comprian Regions of Manitota. Dept. of Mines and Natural Resources. Publication No. 66-1. Winnipeg.
- . 1967. The Clays and Shales of Menitosa. Dept. of Mines and Natural Resources. Publication No. 67-1. Winnipeg.

- Bannatyne, B.B. 1975. High-Calcium Limestone
 Deposit of Manitoba. Dept. of Mines,
 Resources and Environmental Management.
 Publication No. 75-1. Winnipeg.
- Bannatyne, B.B., S.C. Zoltai, and M.J. Tamplin.

 1970. Annotated Bibliography of the Quarternary in Manitoba and the Adjacent Lake

 Agassiz Region. Dept of Mines, Resources
 and Environmental Management. Geological
 Paper No. 2-70. Winnipeg.
- Barry, G.S. 1958. Geology of the Oxford House-Knee Lake Area. Dept. of Mines and Natural Resources. Mines Branch. Publication No. 58-3. Winnipeg.
- Barry, G.S. 1959. Geology of the Western Oxford

 Lake Carghill Lake Area. Dept. of Mines
 and Natural Resources. Mines Branch.
 Publication No. 59-2. Winnipeg.
- Barry, G.S. 1959. Bibliography of Geology of the Precambrian area of Manitoba, 1950-57. Manitoba, Dept. of Mines and Natural Resources Mines Branch. Publication No. 57-3.
- Areas. Dept. of Mines and Natural Resources.
 Mines Branch. Publication No. 60-1. Winnipeg.
- . 1961. Geology of the Munroe Lake

 Area. Dept. of Mines and Natural Resources.

 Mines Branch. Publication No. 61-1. Winnipeg.
- . 1963. Geology of the Trophy Lake
 Area (East Half) Granville Lake Mining
 Division. Dept. of Mines, Resources and
 Environmental Management. Winnipeg.
- Barry, G.S. and R.I. Gait. 1964. Geology of the Suwannee Lake Area Granville Lake Mining Division. Dept. of Mines, Resources and Environmental Management. Winnipeg.
- Bell, C.K. 1971. Boundary Geology, Upper Nelson River Area: Manitoba and Northwest Ontario. Geological Association Canada Special Paper No. 9: 11-30.
- Bell, K., J. Blenkinsop, and J.M. Moore. 1975.
 "A proterozoic greenstone belt from Snow
 Lake, Manitoba." Nature. 1975: 698-701.
- Biestol, C.C. 1974. "Sphalerite geobarometry of some metamorphosed orebodies in the Flin Flon and Snow Lake districts, Manitoba." Canadian Mineralogist. 12 (5): 308-315.
- Bliss, N.W. 1975. "Comparative study of two ultramafic bodies at the sw end of the Manitoba nickel belt with special reference to the chromite mineralogy." Dissertation

 Abstracts (section) B: Thesis, McGill
 Iniversity. Montreal.

- Bristol, C.C. 1963. Geology of the Issett Lake

 Area-Granville Lake Mining Division. Dept.
 of Mines and Natural Resources. Mines
 Branch. Winnipeg.
- Burwosh, R.A. 1960. Geology of the Rusty Lake
 Area-Granville Lake Mining Division. Dept.
 of Mines and Natural Resources. Mines
 Branch. Winnipeg.
- Campbell, F.H.A. 1971. Stratigraphic and Structural Studies in the Granville Lake-Lynn
 Lake Region. Dept. of Mines, Resources and
 Environmental Management. Publication No.
 71-2A. Winnipeg.
- . 1971. Geology of the Turnbull Lake
 (West Half) Area. Dept. of Mines, Resources
 and Environmental Management. Publication
 No. 71-2D. Winnipeg.
- e 1972. The Stratigraphy of the Hayes
 River Group in Manitoba A Preliminary Report. Dept. of Mines, Resources and Envirommental Management. Geological Paper
 No. 72-2. Winnipeg.
- Canada, 1973. <u>Mineral Policy Objectives for Canada</u> (Federal and Provincial Ministers).
- Carlson, H.D. 1962. <u>Geology of the Mynarski Lakes</u>

 <u>Area-Cross Lake Mining Division</u>. Dept. of

 Mines and Natural Resources. Mines Branch.

 Winnipeg.
- Charlewood, G.H. 1954. "Geology of the Lynn Lake Area." Western Miner. June 1954. 27 (6): 148-51.
- Coats, C.J.A., L.A. Clark, R. Buchan and J.J.
 Brummer. 1970. "Geology of the copper-zinc deposits of Stall Lake Mines Ltd., Snow Lake area, north Manitoba." Economic Geology. 65 (8): 970-984.
- Cranstone, D.A. 1966. Geology of the Watt Lake
 Area (East Half). Dept. of Mines and Natural Resources. Mines Branch. Winnipeg.
- Cranstone, D.A. and A. Turek. 1976. "Geological and geochonological relations of the Thompson Nickel Belt, Manitoba." Canadian

 Journal of Earth Sciences. 13 (8): 1058-1069.
- Cranstone, J.R. 1971. Geology of the Southern
 Indian Lake Area, Northeastern portion.
 Dept. of Mines, Resources and Environmental
 Management. Publication No. 71-23. Winnipeg.
- Crombie, G.P. 1947. Geology of the Barrington
 Lake Area-Granville Lake Division. Dept.
 of Mines and Natural Resources. Mines
 Branch. Winnipeg.

- Davidson, W.L. 1966. <u>Caribou River Map Area</u>, <u>Manitoba</u>. Geological Survey Paper No. 65-25.
- Davies, J.F. et al. 1962. Geology and Mineral Resources of Manitoba. Dept. of Mines and Natural Resources. Winnipeg.
- Dawson, A.S. 1941. Geology of the Partridge Crop Lake Area-Gods Lake Mining Division. Dept. of Mines and Natural Resources. Winnipeg.
- . 1952. Geology of the Partridge

 Crop Lake Area. Dept. of Mines and Natural
 Resources. Winnipeg.
- Eade, K.E. and F.W. Chandler. 1975. Geology of Watterson Lake (west Half) map area district of Keewatin. Geological Survey of Canada. Ottawa.
- Ehrlich, W.A. 1962. Northern and Northwestern

 Manitoba Surface Deposits and Soils. Dept.

 of Mines, Resources and Environmental Management.
- . 1963. Surface Deposits and Soils of

 Northeastern Manitoba. Manitoba Soil Surveys and Canada Dept. of Agriculture.

 Winnipeg.
- Elphic, S.C. 1971. <u>Geology of the Mynarski-Notigi Lakes Area</u>. Dept. of Mines, Resources and Environmental Management. Publication No. 71-26. Winnipeg.
- Emslie, R.F. and J.M. Moore Jr. 1959. Geological
 Studies of the Area Between Lynn LakeFraser Lake. Dept. of Mines and Natural
 Resources. Winnipeg.
- Ermanovics, I. and W.F. Fahrig. 1975. "Petrochemistry and paleomognetism of the Molson dikes, Manitoba." <u>Canadian Journal of Earth Sciences</u>. 12 (9): 1564-1575.
- Fawley, A.P. 1949. <u>Geology of the Lasthope Lake</u>

 <u>Arca-Granville Lake Mining Division</u>. Deptoof Mines, Resources and Environmental Management. Mines Branch. Winnipeg.
- . 1950. <u>Geology of the Sickle Lake</u>

 <u>Area-Granville Lake Division</u>. Dept. of

 Mines, Resources and Environmental Management.

 Winnipeg.
- Frohlinger, T.G. 1971. Geology of the Southern Indian Lake Area, Central Portion. Dept. of Mines, Resources and Environmental Management. Publication No. 71-21. Winnipeg.
- Froise, E., and E. Gasparrini. 1975. "Metamorphic zones in the Snow Lake area, Manitoba."

 <u>Canadian Mineralogist</u>. 13 (2): 162-167.
- Gill, J.C. 1950. <u>Geology of the Mystery Lake Area-Cross Lake Mining Division</u>. Dept. of Mines and Natural Resources. Winnipeg.

- Gill, J.C. 1950. Geology of the Waskoiowaka

 Lake Area-Cross Lake Mining Division.

 Dept, of Mines and Natural Resources.

 Winnipeg.
- Glass, D.J. (ed). 1972. Field Excursion A31-C31.
 24th session of the International Geological
 Congress. Canada Guidebook. Ottawa.
- Goddard, J.D. 1959. "A new look at prospecting opportunities in northern Manitoba." <u>Canadian Mining Journal</u>. 80 (4): 92-96.
- . 1961. Geology of the Watt Lake Area (West Half). Granville Lake Mining Division. Dept. of Mines and Natural Resources. Winnipeg.
- . 1963. <u>Geology of the Hambone Lake</u>

 <u>Area-Cross Lake Mining Division</u>. Dept. of

 Mines and Natural Resources. Winnipeg.
- . 1964. Geology of the Halfway Lake

 Area (West Half). Dept. of Mines and Natural Resources. Publication No. 64-5.
 Winnipeg.
- Green, N.L. 1975. "Archean glomeroporphyritic basalts." <u>Canadian Journal of Earth Sciences</u> 12 (10): 1770-1784.
- Greer, W.L.C. and R.C. Wallace. 1972. The Mineral Resources of Manitoba. Industrial Development Board of Manitoba. Winnipeg.
- Haugh, I. 1965. <u>Geology of the Split Lake Area</u>.

 Dept. of Mines and Natural Resources.

 Winnipeg.
- Hinds, M. 1960. "Manitoba." Canadian Mining

 Journal. 81 (2): 118-120.
- Hinds, R.W. 1971. Geology of the Obachuanau Lake Fraser Lake-Lemay Island Area. Dept. of Mines, Resources and Environmental Management. Publication No. 71-26. Winnipeg.
- Hunt, G.H. 1965. Geology of the Iskwasum Lake Area (West Half). Dept. of Mines and Natural Resources. Publication No. 65-3. Winnipeg.
- Hunter, H.E. 1951. Geology of the Melvin Lake

 Area. Dept. of Mines and Natural Resources.

 Winnipeg.
- . 1952. Geology of the McKnight Lake
 Area-Granville Lake Mining Division. Dept.
 of Mines and Natural Resources. Winnipeg.
- . 1953. A Study of the Tow Lake
 Gattro-Granville Lake Mining Division.
 Dept. of Mines and Natural Resources.
 Winnipeg.

- Kalliokoski, J. 1953. <u>Interpretations of the Structural Geology of the Sherridon-Flin Flon Region</u>. Geological Survey of Canada. Bulletin No. 25. Ottawa.
- Kendrick, G. 1971. Geology of the Turnbull Lake
 (East Half) Area. Dept. of Mines, Resources
 and Environmental Management. Publication
 No. 71-2E. Winnipeg.
- Kerr, L.B. 1951. Bibliography of Geology, Palaeonotology, Industrial Minerals, and Fuels in the Post Cambrian Regions of Manitoba to 1950. Dept. of Mines and Natural Resources. Publication No. 51-2.
- Killburn, L.C. 1955. Geology of the MacBride Lake
 Area-Granville Lake Mining Division. Dept.
 of Mines and Natural Resources. Winnipeg.
- Koo, J. 1973. "Origin and metamorphism of the Flin Flon copper-zinc sulfide deposit, northern Saskatchewan and Manitoba, Canada."

 <u>Dissertation Abstracts</u> (section) B: Thesis, University of Saskatchewan, Saskatoon.
- Koo, J., and D.J. Mossmen. 1975. "Origin and metamophism of the Flin Flon stratabound copper-zinc sulfide deposit, Saskatchewan and Manitoba." The Bulletin of the Society of Economic Geologist. 70 (1): 48-62.
- . 1975. "Evaluation of primary and secondary geological processes at the Flin Flon copper-zinc deposit, Manitoba and Saskatchewan, Canada, using factor-vector analysis of ore geochemistry." Chemical Geology. 16 (1): 1-14.
- Kornik, L.J. 1964. Geology of the Guay Lake Area,
 (West Half). Dept. of Mines and Natural
 Winnipeg.
- Lake Winnipeg, Churchill and Nelson River Study
 Board. 1975. <u>Biophysical, Forestry and Geological Studies</u>. Technical Report
 Äppendix 3. Winnipeg.
- Manitoba 1967. Manitoba Underground. Dept. of Mines and Natural Resources. Winnipeg.
- Manitoba Hydro. 1975. Hydraulic and Geomophologic
 Studies. Technical Report Appendix 2,
 Volume 1.
- McIntosh, R.T. 1938. Geology of the Bigstone
 Lake Area. Dept. of Mines and Natural
 Resources. Mines Branch. Publication
 No. 38-1. Winnipeg.
- McRitchie, W.D. 1971. Preliminary Geological Investigations of the Nelson House-Pukatawagan Region. Dept. of Mines, Resources and Environmental Management. Geological Paper No. 71-2.

- Milligan, G.D. 1950. Geology of the Beau-Cage
 Lake Area-Granville Lake Mining Division.
 Dept. of Mines and Natural Resources.
 Winnipeg.
- . 1950. Geology of the Laurie Lake
 Area-Granville Lake Mining Division. Dept.
 of Mines and Natural Resources. Mines
 Branch. Winnipeg.
- . 1951. Bibliography of the Precambrian Area of Manitoba to 1950. Dept. of Mines and Natural Resources. Mines Branch. Publication No. 51-1. Winnipeg.
- Milligan, G.C. and W.T. Take. 1953. Geology
 of the Eastern Bear Lake Area. Dept. of
 Mines and Natural Resources. Mines Branch
 Publication No. 53-1. Winnipeg.
- 1957. Geology and Mineral Deposits
 of the Lynn Lake District Granville Lake
 Mining Division. Dept. of Mines and Natural
 Resources. Mines Branch. Winnipeg.
- Milligan, G.C. 1961. Geology of the Earp Lake

 Area-Granville Lake Mining Division. Dept.
 of Mines and Natural Resources. Winnipeg.
- Mills, B.A. 1957. Bibliography of Geology,
 Palaeonotology, Industrial Minerals, and
 Fuels in the Post Cambrian Regions of
 Manitoba to 1950. Dept. of Mines and
 Natural Resources. Publication No. 57-4.
 Winnipeg.
- Mukherjee, A.C., M.R. Stauffer and H. Bradsgaard.
 1971. "Hudsonian orageny near Flin Flon,
 Manitoba. Tentative interpretation of
 rubidium/strontium and potassium/argon ages."
 Canadian Journal of Earth Sciences. 8 (8):
 939-946.
- Oliver, T.A. 1950. Geology of the Counsell Lake and Wilmot Lake Area-Granville Lake Mining Division. Dept. of Mines and Natural Resources. Mines Branch.
- Patterson, S.P. 1961. Geology of the Thompson-Moak Lake-Cross Lake Mining Division. Dept. of Mines and Natural Resources.
- Pearse, G. 1961. Geology of the Pemichigamau Lake
 Area-Granville Lake Mining Division. Dept.
 of Mines and Natural Resources.
- Pollock, G.D. 1961. Geology of the Duval Lake
 Area-Athapanuskow Mining Division. Dept. of
 Mines and Natural Resources.
- . 1963. Geology of the Russick Lake
 Area-Athapapuskow Mining Division. Dept.
 of Mines and Natural Resources.

- Pollock G.D. 1964. Geology of the Trophy Lake
 Area (West Half)-Granville Lake Mining
 Division. Dept. of Mines and Natural
 Resources. Winnipeg.
- Quinn, H.A. 1956. "Mineral occurrences between Chipewyan and Herb Lakes, Manitoba." Pre-cambrian. 29 (10): 6-14 and 30 (1): 28-33.
- . 1956. "Mineral occurrences in Manitoba." Western Miner. 29 (8): 38-41.
- Radforth, N.W. 1953. "The use of plant material in the recognition of northern organic terrain characteristics." Royal Society of Canada Transactions. June 1953 Series 3. 47 (5): 53-71. Technical Memorandum No. 28. 1954.
- Ritchie, J.C. 1962. A Geobotanical Survey of
 Northern Manitoba. Arctic Institute of
 North America. Technical Paper No. 9.
- Roliff, W.A. 1955. "Exploration for oil and gas in eastern Canada." Geological Association of Canada Proceedings. Volume 7, part 1:
- Rousell, D.H. 1962. Geology of the Cross Lake

 Area-Cross Lake Mining Division. Dept. of

 Mines and Natural Resources. Publication

 No. 62-4.
- . 1962. Geology of the Iskwasum Lake
 Area (East Half). Dept. of Mines and Natural Resources. Publication No. 66-3.
- Russell, G.A. 1953. A Geological Reconnaissance of the Wolverine and Caribou Rivers, Cross Lake Mining Division, Northern Manitoba. Dept. of Mines and Natural Resources. Mines Branch. Publication No. 52-2.
- . 1955. Structural Studies-Snow Lake-Herb Lake Area-Herb Lake Mining Division. Dept. of Mines and Natural Resources. Publication No. 55-3.
- Ruttan, G.D. 1955. "The Sherritt Gordon Lynn Lake Project (2): geology of Lynn Lake." <u>Canadian</u> <u>Mining and Metallurgical Bulletin</u> 48 (518):
- Sabine, A.P. 1971. Rocks and Minerals for the Collector LaRonge-Creighton, Saskatchewan: Flin Flon-Thompson, Manitoba. Geolgocial Survey of Canada. Paper No. 71-27.
- Sangameshwar, S.R.R. 1972. "Trace element and sulfur isotope geochemistry of sulfide deposits from the Flin Flon and Snow Lake areas of Saskatchewan and Manitoba." <u>Dissertation Abstracts</u> (section) B: University of Saskatchewan. Saskatoon.

- Schledewith, D.C.P. 1971. Geology of the Rat Lake
 Area. Dept. of Mines, Resources and Environmental Management. Publication No. 71-28.
- Shcherba, G.N. 1973. "Nickel belt of Thompson and Lynn Lake Manitoba." <u>Geologiya Rudnykh</u> <u>Mestorozhdenii</u>. 15 (2): 42-55. (in Russian).
- Stanton, M.S. 1947. Geology of the Farley Lake

 Area-Granville Lake Division. Dept. of

 Mines and Natural Resources. Mines Branch.

 Winnipeg.
- . 1948. Geology of the Dunphy Lakes

 Area-Granville Lake Division. Dept. of
 Mines and Natural Resources. Mines Branch.
 Winnipeg.
- Steeves, M.A., and C.F. Lamb. 1947. Geology of the Issett-Opachuanau-Pemichigamau-Earp Lakes Area. Dept. of Mines, Resources and Environmental Management. Publication No. 71-1.
- Stephenson, J.F. 1974. Geology of the Ospwagan
 Lake (East Half) Area. Dept. of Mines,
 Resources and Environmental Management.
 Mines Branch. Publication No. 74-1.
- Tarnocai, C. "Glacial history, surface deposits, soils and vegetation of Wekusko and portions of Cross Lake, Norway House and Grand Rapids Map Area." Proceedings of the Fourteenth Manitoba Soil Science Meeting. 21: 25.
- Tedlie, W.D. 1957. Geology of the Barlow Lake

 Area Granville Lake Mining Division. Dept.

 of Mines and Natural Resources.
- Teillet, D.J. and B.D. Baldwin. 1978. Mid North
 Planning Zone Geology. Dept. of Renewable
 Resources and Transportation Services. Resource Planning. Manuscript Report No. 7850. Winnipeg.
- Thomas, K.A. 1971. Geology of the Southern Indian Lake Area, Southern Portion. Dept. of Mines, Resources and Environmental Management. Publication No. 71-2H.
- Turek, A. and Z.E. Peterman. 1970. "Rubidiumstrontium contribution to the location of the Churchill-Superior boundary in Manitoba." Canadian Journal of Earth Sciences. 7 (3): 1017-1070.
- Turnock, A.C. (ed). 1971. <u>GeoScience Studies in Manitola</u>. Geological Association of Canada. <u>Special Paper No. 9</u>.
- Weier, W., R.K. Anderson and G.S. Clark. 1975.
 "Geology and geochronology of the Wollaston
 Lake fold telt in northwestern Manitoba."
 Canadian Journal of Earth Sciences. 12 (10):
 1749-1759.

Wilson, H.D.B. and W.C. Baslin, 1954. "Regional Structure of Thompson-Moak Lake Nickel Belt."

Canadian Mining and Metallurgical Bulletin.

54 (595): 815-822.

History

- Canada, Dept. of Citizenship and Immigration. 1964.

 Indians of the Prairie Provinces. A Historical Review. Indian Affairs Branch.

 Queen's Printer. Ottawa.
- Canada, Dept. of Indian Affairs and Northern Development. 1967. Linguistic and Cultural Affiliations of Canadian Indian Bands.
 Indian Affairs Branch. Queen's Printer.
 Ottawa.
- Canada, Dept. of Mines and Technological Surveys.

 1960. Colonization and Settlement in the
 Americas. A Selected Bibliography. Geographical Branch. Bibliography Series No.
 25. Queens' Printer. Ottawa.
- Canada, Parks Canada. 1973. <u>Byways and Special</u>
 <u>Places Programs: Example Routes Warranting</u>
 <u>Study in Manitoba</u>.
- Casselman, C.W. (ed). 1970. The Saga of Snow Lake. Snow Lake Chamber of Commerce. Snow Lake.
- Dickson, G.A. 1972. An Archeological Appraisal of Southern Indian Lake. University of Winnipeg. Press.
- 50th Anniversary, 1912-1962. Manitoba Provincial Library. The Pas.
- Gill, C.B. 1962. Manitoba Forest History. Dept. of Mines and Natural Resources.
- Harrington, Lynn. 1970. "The Pasquia Land Settlement Project in Manitoba." <u>Canadian Geographical Journal</u>. 80 (3): 92-97.
- Hlady, W.M. 1971. Ten Thousand Years: Archeology
 in Manitoba Manitoba Archeological Society
 Winnipeg.
- Jackson, J.A. 1970. <u>The Centennial History of Manitoba</u>. McLelland and Stewart Ltd. Toronto.
- Jackson, V.W. 1926. Fur and Game Resources of

 Manitoba. Industrial Development Board of
 Manitoba.
- Jamieson, S. and H.B. Hawthorn. 1962. The Role of Native People in Industrial Development in Northern Manitoba. Prepared for the Committee on Manitoba's Economic future. University of British Columbia, Vancouver.
- Kenney, J.F. 1932. The Founding of Churchill.
 Dent. Toronto.
- MacPherson, J.C. 1972. Inventory of Historical and Archaeological Sites of the Pilot Land Use Planning Area. Dept. of Mines, Resources and Environmental Management.

- Mallory, O.L. 1972. A Proposal for Evaluating
 Human History and Affiliated Natural History Resources of the Nelson River Power
 Development Area, Northern Manitoba.
 Churchill Diversion Archeological Project.
 Winnipeg.
- Indian Lake. Dept. of Mines, Resources and Environmental Management.
- Manitoba Hydro. 1970. Resources Investigations
 Archaeology. Underwood McLellan and Associates Ltd. Winnipeg.
- Mayer-Oakes, W.J. 1970. Archeological Investigations in the Grand Rapids, Manitoba Reservoir 1961-62. Occasional Paper No. 3.

 Dept. of Anthropology, University of Manitoba. Winnipeg.
- Morse, E.W. 1961. "Voyageur's highway: the geography and logistics of the Canadian fur trade." <u>Canadian Geographical Journal</u>. 62 (5).
- . 1961. "Voyageur's highway: overcoming navigational obstacles." <u>Canadian</u> <u>Geographical Journal</u>. 61 (1).
- . 1961. "Voyageur's highway: the Canadian fur trade: its logistics and contribution to Candian development." Canadian Geographical Journal. 63 (2).
- . 1962. Canoe routes of the voyageurs:
 the geography and logistics of the Canadian
 fur trade. Quetico Foundation of Ontario.
 Toronto.
- Morton, W.L. 1967. Manitoba: A History, University of Toronto press. 2nd edition
- Nash, R.J. 1969. The Arctic Small Tool Tradition in Manitoba. University of Manitoba. Press Winnipeg.
- Newbury, R.W. 1974. "Painted Stone: Where two Rivers Touch." Nature Canada. 3 (1): 12-19.
- Poherecky, Z.S. and T.E.H. Jones. 1968. "Prehistoric Rock Art Studies in the Precambrian Shield and Europe." <u>Musk-Ox</u>. 3:51-55.
- Ramsay, W.W., J. Clark and M.E. Moffat. 1955.

 History of Engineering Development in the
 Summerberry Fur Development Project. Water
 Resources Commission. Winnipeg.
- Rothney, R. and S. Watson, 1975. A Brief

 Economic History of Northern Manitoba.

 Department of Northern Affairs and Resource and Economic Development (RED) subcommittee of Cabinet, Winnipeg.

- Sim, V.W. 1956. "The Pas, Manitoba." Geographical Bulletin No. 8.
- Steinbring, J.H. et. al. 1969. Rock Painting Investigation of the Churchill River Diversion Project. Preliminary Report. University of Winnipeg.
- Syms, E.L., M.E. Kelly and O.L. Mallory. 1973.

 "An assessment of the archeological resources of the outlet lakes area."

 <u>Lake Winnipeg, Churchill and Nelson River Study, Recreation and Archeological Studies.</u>

 Technical Report Appendix 7-F.
- Venables, A. 1970. <u>Muskeg to Metropolis, 1957</u>-1970. Thompson, Manitoba.
- Warkentin, J. and R.T. Ruggles. 1970. <u>Historical</u>
 Atlas of Manitoba: A Selection of Facsimile
 maps, plans and sketches from 1612 to 1969.
 Manitoba Historical Society.
- Watson, R. 1930. "The story of Norway House."

 <u>Canadian Geographical Journal</u>. 1 (4): 291303.
- Wiersum, W.E. 1971. An archeological appraisal of the Rat-Burntwood Rivers systems." <u>Technical Report No. 4</u>. Churchill Diversion Archeological Project. University of Winnipeg. Winnipeg.
- Wright, J.V. 1968. <u>Cree Cultural History in the Southern Inidan Lake Region</u>, National Museum of Canada. Bulletin 232. Ottawa

Hydro

- Adams, G.D. n.d. Grand Rapids Hydro-Electric
 Project, Saskatchewan River: A Report on
 Fish and Wildlife Resources. Canadian
 Wildlife Service. Winnipeg.
- Adams, K.R.F. 1975. "The Churchill River Diversion." Manitoba Nature. 16: 22-29.
- Allard, L. 1964. Grand Rapids Forebay Survey,

 Cedar Lake Whitefish Spawning Ground Investigations in 1963. Dept. of Mines and
 Natural Resources. Fisheries Branch.
 Manuscript Report.
- Ayles, H., S.B. Brown, K. Machniak and J. Sigurdson. 1974. "The Fisheries of the lower Churchill River Diversion Route Lakes: Present Conditions and Implications of Hydro-electric Developments." Lake Winnipeg, Churchill and Nelson Rivers Study. Appendix 5, Volume 2-J.
- Ayles, H.A. and G.D. Koshinsky. 1974. "The Fisheries of Southern Indian Lake: Present Conditions, and Implications of Hydroelectric Development." Lake Winnipeg, Churchill and Nelson Rivers Study. Appendix 5, Volume 2-H.
- Brown, G.S., J.R. Hart and D.G. Ramsey. 1972.

 <u>Churchill River Task Force Report</u>. Churchill River Basin Task Force, Canada/Saskatchewan/Manitoba. Regina.
- Canada, Dept. of Northern Affairs and Natural Resources. 1958. <u>Water Powers of Canada</u>. Water Resources Branch. Ottawa.
- . 1972. "Water Power Resources of Canada." Water Resources Bulletin.
 No. 2721-61.
- Cleugh, T.R. 1974. "Hydrography of Southern Indian Lake: present conditions and implications for hydro-electric development."

 <u>Lake Winnipeg, Churchill and Nelson Rivers Study</u>. Appendix 5, Volume 1-C.
- Cleverley, F. 1976. "Opportunity in northern Canada: Nelson power project." Opportunity in Northern Canada. 1 (1): 177.
- Dickson, I.W. 1969. Development Potential of the
 Grand Rapids Forebay Fishery. Dept. of
 Mines and Natural Resources. Fisheries
 Branch. Manuscript Report No. 72-8.
 Winnipeg.
- Dickson, I.V. 1972. The Impact of Impoundments on Fisheries. Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report No. 72-8.
 Winnipeg.

- Dickson, I.W. 1975. "Hydroelectric development of the Nelson River system in northern Manitoba." Journal of the Fisheries Research Board of Canada. 31 (1): 106-116.
- Efford, I.E. 1975. "Assessment of the Impact of Hydro-dams." Journal of the Fisheries Research Board of Canada 32 (1): 196-209.
- Electrical Electronics Press Ltd. 1972. "Manitoba's HVDC line in operation." <u>Water</u>
 Power. 24 (12): 434.
- . 1973. "Pressing on with the Nelson plan." Water Power. 25 (3): 77.
- Gaboury, M.N. 1978. <u>Biological Investigations on Brook Trout Populations in the Long Spruce Limestone Area from 1975 to 1977 and Implications of Hydro-Electric Development of the Lower Nelson River. Dept. of Renewable Resources and Transportation Services. Manuscript Report No. 78-49. Winnipeg.</u>
- Green, G.H. 1974. "Effects of hydroelectric development in western Canada on aquatic ecosystems." <u>Journal of the Fisheries Research Board of Canada</u>. 31 (5): 913-927.
- Goulden, R.C., C.F. Bossenmaier, C.G. van Zyll de
 Jong and J.L. Howard. 1968. Implications
 of the Churchill River Diversion to Wildlife. Executive Task Force Report. Section Report E.
- Haverty, A.J., C.A. L'Ami, B.J. Osiowy and J.E.

 Peters. 1974. Long Spruce Generating

 Station Concept and Early Development,

 Manitoba Hydro Generation Projects Division.

 Manuscript Report. Winnipeg.
- Hedlin Menzies and Associates Ltd. n.d. Interim Report on the Grand Rapids Forebay Economic and Social Conditions.. for the Grand Rapids Forebay Administration Committee. Winnipeg.
- Henley, T.J. 1974. The Impact of Manitoba Hydro's

 Churchill River Diversion on the Length of the

 Navigation Season at the Port of Churchill.

 Natural Resource Institute. University of
 Manitoba. Winnipeg.
- Lombard North Group. 1975. The Report on Navigation of the Minago River. For the Northern Flood Committee.
- Machniak, K. 1975. The Effects of Hydroelectric

 Development on the Biology of Northern
 Fishes. IV. Lake Trout (Salvelinus
 namaycush) (Walbaum). Fnvironment Canada.
 Fisheries and Marine Service. Technical
 Report No. 530. Winniepg.

- Machniak, K. 1975. The Effects of Hydroelectric

 Development on the Biology of Northern

 Fishes. III. Yellow Walleye (Stizostedion
 vitreum vitreum) (Mitchill). Environment

 Canada. Fisheries and Marine Service. Technical Report No. 529. Winnipeg.
- . 1975. The Effects of Hydroelectric

 Development on the Biology of Northern
 Fishes. II. Northern Pike (Esox lucius)
 (linnaeus). Environment Canada. Fisheries
 and Marine Service. Technical Report No.
 528. Winnipeg.
- Development on the Biology of Northern
 Fishes. I. Lake Whitefish (Coregonus
 clupeaformis) Mitchill). Environment Canada.
 Fisheries and Marine Service. Technical
 Report No. 527. Winnipeg.
- Manitoba, Dept. of Mines and Natural Resources.
 1969. The Churchill River Diversion. A
 Preliminary Investigation of Resource Implications. November 1968. Resources Task
 Force. 1969 Session Paper No. 8. Winnipeg.
- Manitoba, Dept. of Mines, Resources and Environmental Management. 1974. The Social and Economic Impact Study of the Churchill-Nelson Rivers Erdro Development. Planning Branch. Winniepg.
- Manitoba, Dept. of Tourism, Recreation and Cultural Affairs. 1973. <u>Recreation Study Outlet Lakes</u>. Parks Branch. Winnipeg.
- 1974. Recreation Assessment Lower Churchill River. Parks Branch. Winnipeg.
- . 1974. Recreation Study Rat-Burntwood Rivers Diversion Route. Parks Branch. Winnipeg.
- Manitoba Hydro. 1970. Resources Investigations
 Summary of Projected Resource Losses, Underwood McLellan and Associates Ltd.
 Winnipeg.
- . 1970. Resource Investigations
 Fisheries. Underwood McLellan and Associates Ltd. Winnipeg.
- . 1970. Resource Investigations
 Mineral Resources. Underwood McLelian and
 Associates Ltd. Winnipeg.
- . 1970. Resources Investigations
 Transportation. Underwood McLellan and
 Associates Ltd. Winnipeg.
- . 1970. Resources Investigations
 Recreation. Underwood McLeilan and Associates Ltd. Winnipeg.

- Manitoba Hydro. 1970. Resources Investigations
 Wildlife. Underwood McLellan and Associates
 Ltd. Winnipeg.
- . 1970. Resources Investigations
 Forest Resources and Reservoir clearing costs. Underwood McLellan and Associates Ltd. Winnipeg.
- ______. 1970. Churchill River Diversion
 Study of Alternative Diversions: Resources
 Investigations. 3 volumes. Underwood
 McLellan and Associates Ltd. Winnipeg.
- . 1970. Resources Investigations
 Socio-Economic Effects of Diversion on
 Existing Communities. Underwood McLellan
 and Associates Ltd. Winnipeg.
- . 1970. Resources Investigations
 Forest Resources and Reservoir clearing
 costs. Underwood McLellan and Associates
 Ltd. Winnipeg.
- 1970. Resources Investigations

 Archaeology. Underwood McLellan and
 Associates Ltd. Winnipeg.
- Miller, D. and W. Shipley. 1965. Moose Evaluation
 Program Grand Rapids Hydro-electric Impoundment. Dept. of Mines and Natural Resources. Winnipeg.
- Morley, C.G. 1973. "It's not to Late Yet."
 Alternatives 2 (4): 4-10.
- Newbury, R. and G.W. Malaher. 1972. "D struction of Manitoba's last great river." Nature Canada 1 (4): 4-13.
- Perlman, D., R.P. Perry and M.P. Janisse. 1974.
 "Public opinion towards the Manitoba Hydro proposal." Alternatives 3 (2): 31-33.
- Sunde, L.A. 1962. Preliminary Assessment of the Probable Effect of the Grand Rapids Development on the Fishes and Fishing Industry of the Forebay Area. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
 - . 1961. Grand Rapids Forebay Fisheries Survey Interim Report, June 1961. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
 - . 1962. <u>Grand Rapids Forebay Investigations Winter D.O. Tests 1961 and 1962.</u>
 Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
 Winnipeg.

- Webb, R. 1973. "Wildlife resource impact assessment Lake Winnipeg, Churchill and Nelson River hydroelectric projects No. 1 Outlet Lakes." Lake Winnipeg, Churchill and Nelson River Study. Wildlife Studies.

 Technical Report. Appendix 6.
- Welsh, H.E., et al. 1966. Possible Changes in
 Natural Resources of South Indian Lake as a
 Result of the Churchill River Diversion.
 Dept. of Mines and Natural Resources.
 Winnipeg.

Land/Land-use

- Adams, G.C. and S.C. Zoltai. 1969. Proposed Open
 Water and Wetland Classification for the
 Biophysical Land Survey. Guidelines for
 Biophysical land Classification. Canada,
 Dept. of Fisheries and Forestry. Canadian
 Forest Service. Publication 1264: 23-41.
- Beke, J.G., H. Velhuis and J. Thie. 1973. Bio-Physical Land Classification Outlet Lakes Area. Canada, Manitoba Soil Survey. University of Manitoba.
- 1973. Bio-Physical Land Inventory of the Churchill-Nelson Rivers Study Area North-Central, Manitoba. Canada-Manitoba Soil Survey. University of Manitoba.
- Blauel, R.A. and D. Hocking. 1974. Air Pollution and Forest Decline Near a Nickel Smelter. Environmental Canada, Canadian Forest Service. Northern Forest Research Centre. Information Report NOR-X-115. Edmonton.
- Bloxam, R.M., A.W. Brewer and C.T. McElroy. 1975.

 "Nitrogen dioxide measurements by absorption spectrophotometer: observations from the ground and high altitude ballon, Churchill Manitoba, July, 1974." Proceedings of the Fourth Confrence on Climatic Impact Assessment. 454-457.
- Brown, R.J.E. 1966. "Relation between mean annual air and ground temperatures in the permafrost region of Canada." Proceedings of the Permafrost Internation Confrence (1963).

 pp. 241-246.
- Boan, J. n.d. Annotated Bibliography of Selected

 Documents ertaining to Water Allocation and

 Utilization in the Saskatchewan River Basin.

 Agricultural Rehabilitation and Development

 Agency (ARDA). Project No. 8049-05. Ottawa.
- Bollt, E.D., J.S. Frideres and J.J. Stephens. 1973. "Perception of Pollution - and Willingness to Act." Alternatives. 2 (4): 31-36.
- Borys, A.E. 1967. The Churchill River Centering on Pawistik: A Regional Study with Particular Frontisis on Recreational Land Use and Potentials. MA. Thesis. University of Manitoba.
- Boughner, C.C. and J. G. Potter. 1953. "Snowcover in Canada." Weatherwise. 6 (6) 155-159, 170-171.
- Boughner, C.C. 1960. The Climate of Canada. Canada, Dept. of Transport. Meteorological Branch. Toronto.

- Canada, Dept. of Mines and Technological Surveys.

 1959. Bibliography of Periodical Literature
 on Canadian Geography, 1930-1955: Part 4
 Prairie Provinces. Geographical Branch
 Bibliography Series No. 22. Queen's
 Printer. Ottawa.
- Canada, Dopt. of Mines and Technological Surveys.

 1965. Selected Bibliography on Canadian
 Geography. Geographical Branch. Bibliography Series No. 33. Queen's Printer.
 Ottawa.
- Canada, Environment Canada. Land Capability For
 Recreation. Canada Land Inventory Map
 Series. Lands Directorate.
- Land Capability For Recreation
 Canada Land Inventory Map Series. Lands
 Directorate. Ottawa.
- Monthly Record Meterological Observations in Canada • Monthly editions • Ottawa •
- ture. Volume 1—SI. Atmospheric Environment. Ottawa.
- . 1975. <u>Canadian Normals Precipitation Volume 2-SI</u>. Atmospheric Environment. Ottawa.
- Land Capability for Wildlife Waterfowl Canada Land Inventory Maps.
 Lands Directorate. Ottawa.
- . Land Capability for Wildlife Ungulates. Canada Land Inventory Map
 Series. Lands Directorate. Ottawa.
- Canada, Parks Canada. 1966. Preliminary Examination of two Potential National Parks in Manitoba. Planning Division Report No. 54.
- Collinson, J.D. (assistant secretary). 1970.

 Northern Task Force, Manitoba. Planning and Priorities committee of Cabinet. Winnipeg.
- Coombs, D.B. 1952. The Hudson Bay Lowland, a <u>Geographical Study</u>. M.A. Thesis. McGill University. Montreal.
- 1954. "The Physiographic Subdivision of the Hudson Bay Lowlands south of 60° North." Geographical Bulletin. 1954. 6:1-10.
- Copen, S.J. 1975. Preliminary Report on Paint
 Lake Provincial Recreation Park and Pisew
 Falls Wayside Interpretive Plans. Dept.
 of Tourism, Recreation and Cultrual Affairs.
 Parks Branch.

- Daken, A., H. Jackson and D. Johns. 1973. An Environment Motivated Plan for Multiple Resources Use Along Highway 391. University of Manitoba. Centre for Settlement Studies. Series 1: Research Paper No. 15. Winnipeg.
- DePercin, F. and S.J. Falkowski. 1954. Frequency and Duration of Low Temperatures of Fort Churchill, Manitoba, Canada. U.S. Quartermaster Corps. Environmental Protection Division. Technical Report RP-2.
- DePercin, F. and L.W. White. 1954. Handbook of
 Fort Churchill, Manitoba, Canada, Environment U.S. Quartermaster Corps, Environmental
 Protection Division. Technical Report EP-4.
- Doan, K.H. 1964. Climate, Hydrology and Freshwater Fisheries. Dept. of Mines and Natural Resources. Manuscript Report. Winnipeg.
- Donald, J.A., and G.A. Jones. 1973. Proposed Road
 Plan and Recreation Land Reserves for the
 Mitchell Lakes Area. Dept. of Mines, Resources and Environmental Management and the
 Canada Land Inventory. The Pas.
- Efford, I.E. 1975. "Assessment of the Impact of Hydro-dams." <u>Journal of the Fisheries Research Board of Canada 32 (1): 196-209.</u>
- Ellis, J.H., 1956. The Pasquia Land Settlement
 Project. Dept. of Mines and Natural Resources. Lands Branch. Interim Report
 No. 1. Winnipeg.
- Project. Dept. of Mines and Natural Resources. Lands Branch. Interim Report
 No. 2. Winnipeg.
- . 1956. The Pasquia Land Settlement
 Project. Dept. of Mines and Natural Resources. Lands Brnach. Interim Report
 No. 3. Winnipeg.
- . 1959. The Pasquia Land Settlement
 Project Progress Report. Dept. of Mines
 and Natural Resources. Lands Branch.
- Ewing, J.D. 1976. Manitoba Northlands Community
 Planning Geotechnical Land-Use Study Cross
 Lake. Dept. of Mines, Resources and Environment. Water Resources Division. Winnipeg.
- Ferguson, H.L., A.D.J. O'Neill and H.F. Cook. 1970.
 "Mean evaporation over Canada." Water Re source Research. 6 (6): 1618-1633.
- Frazer, J.K. 1959. "Freeze-thaw frequencies and mechanical weathering in Canada." Arctic 12: 40-53.

- Gaiay, V.J. 1971. Shoreline Processes Along the
 North Shore of Lake Winnipeg and in Playgreen and Kiskittogisu Lakes. Manitoba
 Hydro Manuscript Report.
- Gill, C.B. 1961. "Manitoba's Northland rediscovered." <u>Canadian Geographical Journal</u>. 63 (5): 143-157.
- Goulden, H.D. et al. 1973. <u>Land Capability Class-ification for Wildlife-Ungulates</u>. Dept. of Mines, Resources and Environmental Management. Winnipeg.
- Harper, W.K. 1970. Saskaeram Wildlife Management Area Multiple Land Use Project. Dept. of Mines and Natural Resources. The Pas.
- erand Rapids Area Present
 Recreational Development and Potential.
 Dept. of Mines, Resources and Environmental
 Management and the Canada Land Inventory.
 The Pas.
- Harper, W.K. and I.R. Bukowsky. 1974. Churchill
 Road Corridor Study and Manitoba Hydro Road
 Study. Dept. of Mines, Resources and Environmental Management. Resource Planning
 Division. The Pas.
- Harper, W.K. 1975. (Coordinator), Pilot Land Use
 Planning Project. Dept. of Mines, Resources
 and Environmental Management and Environment
 Canada. The Pas.
- Harrington, Lynn. 1970. "The Pasquia Land Settlement Project in Manitoba." Canadian Geographical Journal. 80 (3): 92-97.
- Henley, T.J. 1974. The Impact of Manitoba Hydro's

 Churchill River Diversion on the Length of the
 Navigation Season at the Port of Churchill.

 Natural Resource Institute. University of
 Manitoba. Winnipeg.
- Hilderman, Feir, Witty and Associates. 1978. Norway

 House Community Planning Study: Phase II for
 the Dept. of Northern Affairs and the Norway
 House Community Council. Winnipeg.
- Hiller, I.G. 1972. Detailed Land Use Survey for the Pilot Land Use Planning (PLUP) Project The Pas. Dept. of Mines, Resources and Environmental Management. Winnipeg.
- Hoole, A. 1970. The Outdoor Recreational Use and Potential of Lake Athapapuskow. MA. Thesis. University of Manitoba. Winnipeg.
- Huber, A. 1954. "Churchill, lin Aussenposten an der Hudson Bay." Geographic Helvetic. 1954. 9 (1): 16-26.
- Hustich, I. 1957. "On the phytogeography of the subarctic Hudson Bay Lowland." Acta Geographics. 16 (1).

- Jahn, B. 1977. Landry Lake Habitat Improvement
 Project. Dept. of Renewable Resources and
 Transpor ation Services. Manuscript Report. The Pas.
- Johnson, K.J. 1972. <u>Ecological Reserves in the Province of Manitoba Including Site Specific Recommendations</u>. Dept. of Mines, Resources and Environmental Management. Winnipeg.
- Jones, G.A. 1973. <u>Site Analysis for Recreational</u>

 <u>Development on Rocky Lake</u>. Dept. of Mines,

 <u>Resources and Environmental</u> Management and
 the Canada Land Inventory. The Pas.
- Jones, M.V. and Associates Ltd. 1968. Churchill Development Plan, Phase I. Toronto.
- Kendrew, W.G. and B.W. Currie. 1955. The Climate of Central Canada. Queen's Printer, Ottawa.
- Kimba, J.W. and J.M. Anderson. 1951. Pasquia Reclamation Area: A Special Evaluation on Wildlife Resources. Dept. of Mines and Natural Resources. Winnipeg.
- Larche, R.A. 1972. Critical and Important Wildlife Areas in Northern Manitoba. Dept. of Mines, Resources and Environmental Management. Resource Planning. Manuscript Report No. 73-14.
- Larche, R.A. 1975. Impact of Parks and Park Development on Trapping and Hunting Programs.

 Dept. of Mines, Resources and Environmental Management. Resources Planning Division.

 Typescript. Winnipeg.
- Leggett, R.F., H.B. Dickens and R.J.E. Brown. 1961.

 "Permafrost investigations in Canada."

 Geology of the Arctic proceedings of the first International Symposium of Arctic Geology. pp. 956-969. University of Toronto Press. Toronto.
- Loch, J.S. and W.J. Brayant. 1972. Toxicity and Other Pollution Characteristics of Unbleached Kraft Mill Effluents. Canada, Dept. of the Environment. Fisheries Service No. TR 72-3. Winnipeg.
- Lombard North Group Limited. 1975. A Fisheries
 Resources Allocation Study: North Fastern
 Manitota. Winnipeg.
- Manitoba, Dept. of Mines, Resources and Environmental Management. 1975. The Forests of Manitoba (1974). Forestry Working Team. Winnipeg.

- Manitoba, Dept. of Tourism, Recreation and Cultural Affairs. 1975. Recreation Facility
 Inventory. Tourist Branch. Computer print out, tapes and maps. Winnipeg.
- Manitoba Hydro. 1970. Resources Investigations
 Summary of Projected Resource Losses, Underwood McLellan and Associates Ltd.
 Winnipeg.
- McGill University. 1957. A Study of Northern

 Settlement. Committee on Physical Planning.

 Montreal.
- Mieczkowski, A. 1968. "Geography of tourism and outdoor recreation of northern Manitoba."

 Musk Ox. No. 3.
- Morley, C.G. 1973. "It's Not to Late Yet."

 Alternatives. 2 (4): 4-10.
- Newbury, R.W. 1973. Physical Impact Study, Interim Report 1972. Lake Winnipeg, Churchill and Nelson Rivers Study Board. Winnipeg.
- . 1973. Physical Impact Study: Characteristics of Churchill-Nelson Shorelines.
- Nickel, J.G., 1971. Preliminary Report on the
 Land Use Study of the Pasquia Settlement
 Area 1971. Dept. of Agriculture, Typescript. The Pas.
- Pappas, T. and P.S. White. 1971. Sky Hook
 Churchill 1971. Interim report, Raven
 Industries Inc. South Dakota.
- Perlman, D., R.P. Perry and M.P. Janisse. 1974.
 "Public Opinion Towards the Manitoba Hydro
 Proposal." Alternatives. 3 (2): 31-33.
- P.M. Associates, Gary Hilderman and Associates and W.L. Wardrop and Associates. 1973. Report on Proposed Development at Little Limestone Lake, Manitoba. Winnipeg.
- P.M. Associates Limited. 1975. Fisheries Resources Allocation Project for the South Indian Lake Area. Winnipeg.
- Ramsey, W.W., J. Clark and M.E. Moffat. 1955.

 <u>History of Engineering Development in the Summerberry Fur Development Project. Manitoba Water Resources Commission.</u> Winnipeg.
- Rebuffoni, D. 1977. "Manitoba Hydro: Changing two rivers - and a way of life" in Minneapolis Tribune Picture Sunday, September 18, 1977. pp 1-47. Minneapolis.
- Rebuffoni, D. 1977. "Manitoba Hydro: Changing two rivers and a way of life" in Minneapolis

 Tribune Picture Sunday, September 18, 1977.

 pp 1-47. Minneapolis.

- Resource and Economic Development Committee. 1975.

 Northern Strategy. Report to the Government of Manitoba. Ty escript. Winnipeg.
- Richmond, K.B. and J.J. Keleher (Editors). 1975.

 Manitoba 2000: Population Size and Distribution. Manitoba Environment Council.

 Study No. 5. Winnipeg.
- Riddle, D.K. 1972. Wilderness Area Potential
 Rat-Burntwood Rivers, Northern Manitoba
 March, 1972. Churchill Diversion Archeological Project. University of Winnipeg.
- Robertson, R.J. 1968. <u>Construction and Mainten-ance Proposals for Summerberry Marsh</u>. Dept. of Mines and Natural Resources. Winnipeg.
- Rogge, S.R. 1970. Northern Manitoba and Northwest Territories Field Trip. Survey Report. Winnipeg.
- Scott, V.H. 1972. Winter Weather and Wild Ungulates. Dept. of Mines, Resources and Environmental Management. Resource Projects Report No. 10. Winnipeg.
- Sopuk, R.D. and B.H. Wright. 1978. A Fish Passage
 Survey of Steam Crossings Along Some Major
 Roads in Northern Manitoba. Dept. of Mines,
 Natural Resources and Environment. Manuscript Report No. 78-87. The Pas.
- Sunde, L.A. 1962. Preliminary Assessment of the Probable Effect of the Grand Rapids Development on the Fishes and Fishing Industry of the Forebay Area. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1965. Area of Some Northern Manitoba
 Lakes. Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
- . 1965. The Tackfish Creek Conservation
 Project. Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
 Winnipeg.
- Teillet, D., B. Baldwin and K. Davidson. 1977.

 Resource Allocation Project Cross Lake.

 Department of Renewable Resources and
 Transportation Services. Resource Planning.
 Manuscript Report No. 77-5. Winnipeg.
- Norway House. Department of Renewable
 Resources and Transportation Services. Resource Planning. Manuscript Report No. 77-21. Winnipeg.
- Teillet, D.J., B. Baldwin and K. Davidson. 1977.

 Wabowden Technical Information Report. Department of Renewable Resources and Transportation Services. Resource Planning.

 Manuscript Report No. 77-32. Winnipeg.

- Thomas, M.K. 1953. Climatological Atlas of Canada. National Research Council of Canada. Publication No. 3151. Ottawa.
- . 1964. Snowfall in Canada. Canada
 Dept. of Transport. Meteorological Branch
 circular No. 3977.
- Turner, D.B. 1959. "The resources of the future."
 The Canadian Northwest. 1959: 76-89.
- Unger, G.P. 1969. Gods Lake: A Case Study of
 Recreational Land Use and Potential. University of Manitoba. Thesis. Winnipeg.
- Walker, J. 1970. "The influence of man on vegetation at Churchill." in Productivity and
 Conservation in Northern Circumpolar Lands.
 International Union for Conservation of
 Nature and Natural Resource. pp. 266271. Publication New Series No. 16.
 Morges, Switerzland.
- Wall, C.L. 1976. North-East Planning Zone A Resource Information Package. Dept. of Renewable Resources and Transportation Services. Resource Planning Branch.
 Winnipeg.
- Welsh, H.E. et al. 1966. Possible changes in
 Natural Resources of South Indian Lake as
 a result of the Churchill River Diversion.
 Dept. of Mines and Natural Resources.
- Westhope, P.L. 1973. Manitoba Wildlife Lands
 Book. 2nd edition. Dept. of Mines, Resources and Environmental Management.
- Weyer, E. 1949. "How much sunlight will there be" The Beaver. March, 1949. p. 35.
- Witty, D.R. 1969. Paint Lake Recreation Area.

 Dept. of Tourism, Recreation and Cultural Affairs. Parks Branch.
- . 1971. Rocky Lake Provincial Recreation Area - A Proposed Extension. Dept. of Tourism, Recreation and Cultural Affais. Parks Branch.
- . 1972. Partridge Crop Provincial
 Park (PROPOSAL). Dept. of Tourism, Recreation and Cultural Affairs. Parks Branch.
 Winnipeg.
- Zoltai, S. and E.T. Oswald. 1969. Land Classification for land Evaluation: Cormorant Lake Pilot Project. Canada, Dept. of Fisheries and Forestry.
- 1970. Cormorant Lake Biophysical
 Project-Cranberry Portage. Canada, Dept.
 of Fisheries and Forestry.

Mining

- Blauel, R.A. and D. Hocking. 1974. Air Pollution and Forest Decline near a Nickel Smelter.

 Environment Canada, Canadian Forest Service. Northern Forest Research Centre Information Report NCR-X-115. Edmonton.
- Brown, E.L. 1955. "The Sherritt Gordon Lynn Lake project (1): Notes on discovery and financing," <u>Canadian Mining and Metallurgical</u>
 <u>Bulletin</u>. 48 (518): 335-339
- Canada, Dept. of Energy, Mines and Resources. 1972. <u>Canadian Industry in 1971</u>. Mineral Resources Branch. Ottawa.
- Canada, Dept. of Industry and Commerce 1975.

 Employment, Earnings and Hours. Statistics
 Canada. Ottawa.
- Chekay, D.A. and J.M.E. Crowe. 1971. Biological
 Effects of Overburden Discharge on the
 Ospwagan Lakes Drainage System 1967 to 1969.
 Dept. of Mines, Resources and Environmental
 Management. Resource Planning Division.
 Publication No. 71-7.
- Cober, J.M.E. 1964. The Effects of Mine Tailings on Fish Production and Benthic Productivity in the Lynn Lake Area. Dept. of Mines and Natural Resources. Winnipeg.
- . 1971. The Effects of Mine Tailings

 Drainage on Schist Lake, June 1967. Dept.
 of Mines, Resources and Environmental Management. Fisheries Branch. Manuscript
 Report No. 70-20. Winnipeg.
- . 1971. Effects of Mine Tailings

 Discharge on the Fauna of the Grass River

 Manitcha from 1960-1964. Dept. of Mines,
 Resources and Environmental Management.

 Winnipeg.
- . 1972. "Man-The Polluter." The
 Effects of Mine Tailings Drainage on
 Schist Lake. Dept. of Mines, Resources and
 Environmental Management. Research Branch.
 Winnipeg.
- . 1972. The Effects of Drainage From Mine Tailings at Thompson, Manitoba, on a Portion of the Grass River. Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report No. 72-5. Winnipeg.
- Ccle, G.E. 1956. "Manitota and Saskatchewan."
 Western Mirer. 29 (5): 96-100.
- . 1956. "Record production in Manitola." Western Mingr. 29 (4): 108-111.
- Crowe, J.M.E. 1967. The Effects of Mine Taili :

 Drainage on the Eldin hiver and Cockeran
 Lake. Dept. of Mines and Natural Resources
 Research Branch. Winnipeg.

- Crowe, J.M.E. 1969. The Effects of Mine Tailings

 Drainage from Sherritt Gordon Operations

 at Lynn Lake, Manitoba on Wheatcroft and

 Cockeram Lakes. Dept. of Mines, Resources
 and Environmental Management. Research

 Branch. Winnipeg.
- _____. 1973. A Pollution Survey of Schist Lake, 1969. Dept. of Mines, Resources and Environmental Management. Research Branch.
- Davies, J.E. et al. 1962. Geology and Mineral Resources of Manitoba. Dept. of Mines and Natural Resources. Winnipeg.
- Drake, R.T. 1955. "The Sherritt Gordon Lynn Lake Project (4): Milling at Lynn Lake." Canadian Mining and Metallurgical Bulletin.

 48 (519): 390-395 and Canadian Institute of Mining and Metallurgy Transactions. 58: 206-211.
- Falk, M. et al. 1973. <u>Biological Effects of Mining Wastes in the Northwest Territories</u>. Environment Canada. Resource Management Branch.
- Financial Post. 1973. 1973 Survey of Mines. Maclean Hunter Ltd. Toronto.
- Godard, J.D. 1959. "A new look at prospecting opportunities in northern Manitoba."

 <u>Canadian Mining Journal</u>. 80 (4): 92-96.
- Greer, W.L.C. and R.C. Wallace. 1972. The Mineral Resources of Manitoba. Industrial Development Board of Manitoba. Winnipeg.
- Hinds, M. 1960. "Manitoba." <u>Canadian Mining</u> <u>Journal</u>. 81 (2): 118-120.
- . 1961. "Manitoba." <u>Canadian</u> <u>Mining Journal</u>. 82 (2): 107-108.
- Hocking, D. and R.A. Blauel. 1977. Progressive
 Heavy Metal Accumulation Associated with
 Forest Decline near the Nickel Smelter at
 Thompson, Manitoba. Environment Canada,
 Forestry Service. Northern Forest Research
 Centre Information Report NCR-X- 169.
 Edmonton.
- Hudson Bay Mining and Smelting Annual Report 1975.
- INCO. 1974. "Environmental Statement with Respect to Discharges into the Air from the Smelter Operation at Thompson, Manitoba by the Inter-national Nickel Company of Canada, Limited." Brief to the Manitoba Clean Environment Commission. Winnipeg.
- International Nickel Company of Canada Annual Report 1975. 1976 Sudbury.

- Johnson, F. 1956. "Manitoba Mining Review." <u>Canadian Mining Journal</u>. 77 (2): 92-93.
- . 1958. "Manitoba Mining Review."

 Canadian Mining Journal. 79 (2): 112-115.
- Manitoba, 1967, <u>Manitoba Underground</u>. Dept. of Mines and Natural Resources. Winnipeg.
- Manitoba Hydro. 1970. Resource Investigations

 Mineral Resources. Underwood McLellan and Associates Ltd. Winnipeg.
- Muter, J.R. 1955. "The Sherritt Gordon Lynn Lake project (3): mining at Lynn Lake." <u>Canadian Mining and Metallurgical Bulletin</u>. 48 (519): 385-389 <u>and Canadian Institute of Mining and Metallurgy Transactions</u>. 58: 201-205.
- Northern Miner. 1974. <u>Canadian Mines Handbook</u>
 1974-75. Northern Miner Press Limited.
 Vancouver.
- . 1976. <u>Canadian Mines Handbook</u> 1976-77. Northern Miner Press Limited. Vancouver.
- Roblin, J.D. 1961. "Manitoba, our frontier is our future." Western Miner and Oil Review. 34 (4): 54-55.
- Sherritt Gordon Mining Company Annual Report 1975. Toronto.

Northern Manitoba General

- Boughner, C.C. and J. G. Potter. 1953. "Snowcover in Canada." Weatherwise. 6 (6) 155-159, 170-171.
- Boughner, C.C. 1960. The Climate of Canada.
 Canada, Dept. of Transport. Meteorological Branch. Toronto.
- Canada, Dept. of Citizenship and Immigration.
 1964. <u>Indians of the Prairie Provinces:</u>
 A Historical Review. Indian Affairs Branch.
 Queen's Printer. Ottawa.
- Canada, Environment Canada. 1975. Canadian

 Normals Volume 1-S1 and 2-S1. Atmospheric

 Environment. Downsview.
- Canadian Association of Geography. 1970. <u>Proceedings Winnipeg</u>. Dept. of Geography. University of Manitoba.
- Cass-Beggs, D. 1970. Background Information on Lake Winnibeg and Southern Indian Lake Proposals. Canadian Wildlife Service.
- Environment Canada. 1978. Water Quality Data:
 Manitoba 1961-1976. Inland Waters Directorate.
 Ottawa.
- Gill, C.B. 1961. "Manitoba's Northland Rediscovered." Canadian Geographical Journal. 63 (5): 148-157.
- Grose, R.E. (ed). 1954. <u>Industrial Resources</u> of Manitoba. Dept. of Industry and Commerce. Winnipeg.
- Harrington, R. 1953. Northern Exposures: Canada's
 Backwoods and Barrens pictured in Monochrome
 and color. Text and arrangements by C.
 Wilsen, New York. H. Schuman, Torento.
- Jamieson, S. and H.B. Hawthorn. 1962. The role
 of Native People in Industrial Development
 in Northern Manitoba. Prepared for the
 Committee on Manitola's Economic future.
 University of British Columbia. Vancouver.
- Kendrew, W.G. and B.W. Currie. 1955. The Climate of Central Canada. Queen's Printer, Ottawa.
- Larche, R.A. 1972. Critical and Important Wildlife Areas in Northern Manitoba. Dept. of Mines, Resources and Environmental Management. Research Planning. Manuscript Report No. 73-14.
- Manitoba, Dept. of Mines and Natural Resources. 1969. The Churchill River Diversion. A Preliminary Investigation of Resource Implications. November 1968. Resources Task Force. 1969 session paper No. 8. Winnipeg.

- Manitoba, Dept. of Mines, Resources and Environmental Management. 1974. The Impact of
 Development on Nutrition in Remote Northern
 Manitoba Communities. Planning Branch.
 Social and Economic Impact Team. Technical
 Report No. 3. Winnipeg.
- 1974. The Social and Economic Impact Study of the Churchill Nelson Rivers
 Hydro Development, Planning Branch.
- Manitoba, Dept. of Mines, Resources and Environmental Management. 1975. Northern Strategy Physical Resources Sector. Volume II Maps. Winnipeg.
- of Mines, Resources and Environmental Management. Winnipeg.
- . 1975. Churchill River Study Socio Economic: Manitoba. Upper Churchill
 Study Team. Report No. 21.
- Mills, G.F., D.B. Forrester, H. Veldhuis and R. Schmidt. 1975. Rapid Resource Inventory of Northern Manitota Using the Biophysical Approach. Northern Resource Information Program. Winnipeg.
- . 1976. A Guide to Biophysical Land
 Classification in Manitoba. Dept. of Renewable Resources and Transportation Services. Northern Resource Information Program.
- Northern Resource Information Program. 1975.

 Northern Resource Information Program Number 2. Dept. of Renewable Resources and Transportation Services and the Canada-Manitoba Soil Survey. Winnipeg.
- Pepper, W., et al. 1974. Missinipe Achimovin

 Wildlife. Churchill River Study. Interim
 Report Supplement No. 4.
- Portree, J.D., N.J. Beaton and J.D. Campbell. 1975.

 An Evaluation of Tunnel Production of Bedding
 Plants and Tematoes in Northern Manitoba in
 1974. National Research Council. City of
 Thompson. The University of Manitoba and
 Mantioba Hydro.
- Resource and Economic Development Committee. 1975.

 Northern Strategy. Report to the Government of Manitoba. Typescript. Winnipeg.
- Rohmer, R. 1970. The Green North. MacLean-Hunter Ltd. Toronto.
- Rothney, R. and S. Watson, 1975. A Brief
 Economic History of Northern Manitoba.
 Department of Northern Affairs and Resource and Economic Development (RED)
 subcommittee of Cabinet, Winnipeg.

- Schlick, R.O. 1977. Areas of Manitoba's Northern
 Lakes. Dept. of Renewable Resources and
 Transportation Services. Manuscript Report No. 77-6. Winnipeg.
- . 1966. Dissolved Oxygen tests in

 Borrow Pits and Small Angling Lakes in

 Northern Manitoba, March, 1966. Dept. of Mines
 and Natural Resources. Fisheries Branch.

 Manuscript Report.
- . 1967. A Review of Borrow Pit
 Stockings in Northern Manitoba, 1967.
 Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
 Winnipeg.
- Sunde, L.A. 1961. Trap and Pound Net Trials

 Northern Manitoba, 1960. Dept. of

 Mines and Natural Resources. Fisheries

 Branch. Typescript. The Pas.
- . 1964. Summary of Whitefish Infestation

 Tests Conducted in Northern Manitoba in 1963.

 Dept. of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- . 1964. Total Dissolved Solids in

 Northern Waters. Dept. of Mines and Natural
 Resources. Fisheries Branch. Manuscript
 Report.
- . 1965. Area of Some Northern Manitoba
 Lakes. Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
 - . 1965. Summary of Whitefish Infestation
 Tests Conducted in Northern Manitoba in 1964.

 Dept. of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
 - . 1965. Summary of Department of
 Fisheries Whitefish Infestation Tests for
 Northern Manitoba, August, 1962 to February,
 1965. Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
- Thomas, M.K. 1953. Climatological Atlas of
 Canada. National Research Council of
 Canada. Publication No. 3151. Ottawa.
- . 1964. Snowfall in Canada. Canada
 Dept. of Transport. Meteorological Branch
 circular No. 3977.
- Venables, A. 1970. Muskeg to Metropolis 1957-70
 Thompson, Manitoba. Thompson Centennial
 Committee.
- Wall, C.L. 1976. North-East Planning Zone A
 Resource Information Package. Dept. of
 Renewable Resources and Transportation
 Services. Planning Brnach. Winnipeg.

- Weir, T.R. 1960. <u>Economic Atlas of Manitoba</u>.

 Dept. of Industry and Commerce. Winnipeg.
- Weyer, E. 1949. "How much sunlight will there be" The Beaver. March, 1949. p. 35.
- Wilkie, A. (ed). 1972-75. <u>Churchill River</u>
 <u>Weekly</u>, Churchill River Information Program.
 <u>Leaf Rapids</u>.

Planning

- Collinson, J.E. (assistant secretary). 1970

 Northern Task Force, Manitoba. Planning and Priorities committee of Cabinet.

 Winnipeg.
- Copen, S.J. 1975. Preliminary Report on Paint
 Lake Provincial Recreation Park and Pisew
 Falls Wayside Interpretive Plans. Dept.
 of Tourism, Recreation and Cultural Affairs.
 Parks Branch. Manuscript Report. Winnipeg.
- Daken, A., H. Jackson and D. Johns. 1973. An
 Environment Motivated Plan for Multiple
 Resources Use Along Highway 391. Centre
 for Settlement Studies Series 1: Research Paper No. 15. Winnipeg.
- Donald, J.D., and G.A. Jones, 1973. Proposed
 Road Plan and Recreation Land Reserves for
 the Mitchell Lakes Area. Dept. of Mines,
 Resources and Environmental Management and
 the Canada Land Inventory. The Pas.
- Fedoruk, A.N. 1970. Proposed Watershed Division
 of Manitoba. Dept. of Mines and Natural
 Resources and Canada Land Inventory.
 Winnipeg.
- Harper, W.K. 1970. Saskeram Wildlife Management
 Area Multiple Land Use Project. Dept. of
 Mines and Natural Resources. The Pas.
- . 1975. (Coordinator). Pilot Land
 Use Planning Project. Dept. of Mines, Resources and Environmental Management and
 Environment Canada. The Pas.
- Hilderman and Ingmire. 1969. South Indian Lake
 Recreation Study. Dept. of Tourism, Recreation and Cultural Affairs and Parks
 Canada.
- Hiller, I.G. 1972. Detailed Land Use Survey for the Pilot Land Use Planning (PLUP) proj :

 The Pas. Dept. of Mines, Resources and Environmental Management. Winnipeg.
- Hoole, A. 1970. <u>The Outdoor Recreational Use and Potential of Lake Athapapuskow</u>. MA. Thesis. University of Manitoba. Winnipeg.
- Manitoba Hydro. 1970. Churchill River Diversion
 Study of Alternative Diversions: Resources
 Investigations. 3 Volumes, Underwood
 McLellan and Associates Ltd. Winnipeg.
- P.M. Associates, Gary Hilderman and Associates and W.L. Wardrop and Associates. 1973. Rert on Proposed Development at Little Limeke, Manitota. Winnipag.
- P.M. Associates. 1975. Fisheries Rescurses
 Allegation Project for the South Indian
 Lake Area. Dept. of Mines, Resources and
 Environmental Management. Winnipeg.

- Resource and Economic Development Committee. 1975.

 Northern Strategy. Report to the Government of Manitoba. Typescript. Winnipeg.
- Riddle, D.K. 1972. Wilderness Area Potential Rat-Burntwood Rivers, Northern Manitoba. Churchill Division Archeological Project. University of Winnipeg.
- Teillet, D., B. Baldwin and K. Davidson. 1977.

 Resource Allocation Project Cross Lake.

 Department of Renewable Resources and
 Transportation Services. Resource Planning.
 Manuscript Report No. 77-5. Winnipeg.
- Norway House. Department of Renewable
 Resources and Transportation Services. Resource Planning. Manuscript Report No. 77-21. Winnipeg.
- Wall, C.L. 1976. North-East Planning Zone A
 Resource Information Package. Dept. of
 Renewable Resources and Transportation
 Services. Planning Brnach. Winnipeg.
- Wells, H.E. 1962. A Wildlife Management Plan for Northern Manitoba. Dept. of Mines Resources and Environmental Management.
- Witty, D.R. 1969. A Proposal for the Grass River Recreational Areas Paint Lake, Setting Rapids, Pisew Falls, and Kwasitchewan Falls. Dept. of Tourism, Recreation and Cultural Affairs. Parks Branch. The Pas.
- _____. 1969. Paint Lake Recreation Area.

 Dept. of Tourism, Recreation and Cultural
 Affairs. Parks Branch. The Pas.
- 1971. Rocky Lake Provincial Recreation Area - A Proposed Extension. Dept. of Tourism, Recreation and Cultural Affairs. Parks Branch. The Pas.
- . 1972. Partridge Crop Provincial
 Park (PROPOSAL). Dept. of Tourism, Recreation and Cultural Affairs. Parks
 Branch. Winnipeg.

Recreation/Tourism

- Andrews, R.R. 1972. Analysis of 1967 Angling
 Licence Questionaire. Dept. of Mines,
 Resources and Environmental Management.
 Research and Planning Division. Publication No. 71-4. Winnipeg.
- Baker, W.B. 1962. Study of Manitoba's Outdoor

 Recreation Resources. Report prepared for
 the committee on Manitoba's economic future
 Agricultural Rehabilitation and Development
 Agency (ARDA). Ottawa.
- . 1966. The ARDA Program in Relation to Recreation and Tourism. ARDA condensed Report CR-No. 1. Queen's Printer. Ottawa:
- Benson, D.A. 1971. "Report on sales of the Canada migratory game bird hunting permit and waterfowl harvest and hunter activity, 1970." in Progress Notes. Canadian Wildlife Service. No. 22. August, 1971. Ottawa.
- Benson, D.A. 1970. "Report on sales of the Canada migratory game bird hunting permit and waterfowl harvest and hunter activity, 1969/70." in Progress Notes. Canadian Wildlife Service.
 No. 16. July, 1970. Ottawa.
- . 1969. "Waterfowl harvest and hunter activity in Canada during the 1968-69 hunting season." in Progress Notes. Canadian Wildlife Service. No. 10. July, 1969. Ottawa.
- Borys, A.E. 1967. The Churchill River Centering on Pawistik: A Regional Study with Particular Emphasis on Recreational Land Use and Potentials. MA. Thesis. University of Manitoba.
- Brampton, G. 1975. Market Survey of Road Access
 Fishing Lodges in Northern Manitoba, Dept.
 of Tourism, Recreation and Cultural Affairs
 Research and Planning Branch and the Natural
 Resource Institute. University of Manitoba.
 Winnipeg.
- Canada, Dept. of Indian Affairs and Northern Development. 1968. <u>Canadian Outdoor Recreation Demand Study</u>. Volume IV. Ben W. Crow and Associates. Summary Report.
- . 1970. Canadian Outdoor Recreation

 Demand Study: Canadian Participation in
 Outdoor Recreation, 1967, 1968, 1969.

 National and Historic Parks Branch.
- Canada, Dept. of Industry, Trade and Commerce. 1972. The Canadian Tourism Facts Book 1972. Ottawa.
- Canada, Environment Canada. <u>Land Capability For Recreation</u>. Canada Land Inventory Map Series. Lands Directorate.

- Canada, Parks Canada. 1966. Preliminary Examination of two Potential National Parks in Manitoba. Planning Division Report No. 54.
- Canada, Parks Canada. 1973. Byways and Special
 Places Programs: Example Routes Warranting
 Study in Manitoba.
- Canada, Statistics Canada. 1975. <u>Travel, Tourism</u> and <u>Outdoor Recreation</u>. Statistical Digest 1973 and 1974. Catalogue 66-202. Information Canada. Ottawa.
- Church, G.R. 1972. The American Visitor to Manitoha in 1971. Dept. of Tourism, Recreation and Cultural Affairs. Winnipeg.
- Committee on Manitoba's Economic Future, 1963.
 "Tourism, Recreation and Development and Accommodation." Manitoba 1962-75. Part 8.
 Dept. of Industry and Commerce.
- Cooch, F.G., K. Newell, and S. Wendt. 1978. "Report on 1976 sales of the Canada migratory game bird hunting permit, waterfowl harvest, and hunter activity."in Progress
 Notes. Canadian Wildlife Service. No. 81.
 January, 1978. Ottawa.
- game birds other than waterfowl by hunters in Canada." in Progress Notes. Canadian Wildlife Service. No. 83. March, 1978.
- Cooch, F.G. 1976. "Report on 1975 sales of the Canada migratory game bird hunting permit, waterfowl harvest, and hunter activity." in Progress Notes. Canadian Wildlife Service. No. 70. December, 1976. Ottawa.
- . 1976. "Kill of migratory game birds other than waterfowl by hunters in Canada 1975." in Progress Notes. Canadian Wildlife Service. No. 68. October, 1976.
- Cooch, F.G. and H.A. Raible. 1975. "Report on 1974 sales of the Canada migratory game bird hunting permit, waterfowl harvest, and hunter activity." in Progress Notes, Canadian Wildlife Service. No. 51. November, 1975. Ottawa,
- . 1975. "Harvest of migratory game birds other than waterfowl in Canada 1974." in Progress Notes. Canadian Wildlife Service. No. 52. November, 1975. Ottawa.
- Cooch, F.G., G.W. Kaiser, and L. Wright. 1974. "Report on 1973 sales of the Canada migratory game bird hunting permit, migratory game bird harvest and hunter activity." in Progress
 Notes. Canadian Wildlife Service. No. 41.
 July, 1974. Ottawa.

- Cooch, F. G., G. W. Kaiser, and L. Wright. 1972.

 "Report on sales of the Canada migratory game bird hunting permit, migratory game bird harvest and hunter activity, 1971," in Progress Notes. Canadian Wildlife Service. No. 28. July, 1972. Ottawa.
- Canada migratory game bird hunting permit, migratory game bird harvest and hunter activity' in Progress Notes. Canadian Wildlife Service.
 No. 34. September, 1973. Ottawa.
- Copen, S.J. 1975. Preliminary Report on Paint
 Lake Provincial Recreation Park and Pisew
 Falls Wayside Interpretive Plans. Dept.
 of Tourism, Recreational and Cultural
 Affairs. Parks Branch. Winnipeg.
- Cross, D.W. n.d. Analysis of the 1975 Caribou
 Hunting Season. Dept. of Renewable Resources and Transportation Services. Northern
 Region. Typescript. The Pas.
- . 1977. Analysis of the 1976 Woodland
 Caribou Hunting Season. Dept. of Renewable
 Resources and Transportation Services. Northern
 Region. Typescript. The Pas.
- Crowe, J.M.E. 1962. <u>Iskwasum Lake</u>, Loucks <u>Lake</u>
 and the Grass River Creel Census Report.

 Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
- Donald, J.D., and G.A. Jones. 1973. Proposed Road

 Plan and Recreation Land Reserves for the

 Mitchell Lakes Area. Dept. of Mines, Resources and Environmental Managemant and
 the Canada Land Inventory. The Pas.
- Harper, W.K. 1968. Post Hunting Season Reports
 by Conservation Officers. 1968 Spring Bear
 Season. Dept. of Mines and Natural Resources.
 Wildlife Branch. Typescript.
- Harper, W.K. 1970. Saskeram Wildlife Management
 Area Multiple Land Use Project. Dept. of
 Mines, Resources and Environmental Management. Planning Branch. The Pas.
 - . 1973. Grand Rapids Area Present Recreational Development and Potential. Dept. of Mines, Resources and Environmental Management and the Canada Land Inventory. The Pas.
- (ed) 1975. Pilot Land Use Planning
 Project. Dept. of Mines, Resources and
 Environmental Management. Comprehensive
 Land Use Planning Branch and Environment
 Canada. The Pas.

- Hildebrand, P.E. 1974. Analysis of Hunting Activity by The Pas Big Game Hunters during the 1972 Moose and Deer Hunting Seasons. Dept. of Mines, Resources and Environmental Management. The Pas.
- Hilderman and Ingmire Ltd. 1969. South Indian Lake
 Recreation Study. Dept. of Tourism, Recreation and Cultural Affairs and Parks
 Canada.
- Hoole, A. 1970. The Outdoor Recreational Use and Potential of Lake Athapapuskow. MA. Thesis. University of Manitoba.
- Jones, G.A. 1973. Site Analysis for Recreational
 Development on Rocky Lake. Dept. of Mines,
 Resources and Environmental Management and
 the Canada Land Inventory. The Pas.
- Kotak, D.N. n.d. An Assessment of the Molson Lake Commercial/Sport Fishing Controversy.
- Larche, R.A. 1975. Impact of Parks and Park Development on Trapping and Hunting Programs.

 Dept. of Mines, Resources and Environmental Management. Resources Planning Division.

 Typescript. Winnipeg.
- Lee, G.O. 1969. National Park Proposals for Manitoba. Parks Canada.
- Manitoba, Dept. of Mines, Resources and Environmental
 Management. n.d. 1974 Manitoba Moose Harvest
 Summary. Wildlife Branch. Typescript.
 Winnipeg.
- n.d. <u>Hunter Surveys 1973/74.</u> Wildlife Branch. Typescript. Winnipeg.
 - . n.d. 1972/73 Hunter Survey. Development and Extension Service. Typescript. Winnipeg.
 - n.d. 1965 Summary of Manitoba Master
 Angler Awards and Related Information. Dept.
 of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- . n.d. 1964 Summary of Manitoba Master
 Angler Awards and Related Information. Dept.
 of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
 - . 1966. Master Angler Awards for Northern Manitoba Waters in 1965. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1965. Master Angler Awards for Northern Manitoba Waters in 1964. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.

- Manitoba, Bureau of Statistics. 1973. Northern

 Manitoba Lodge Industry Fishing and Hunting

 Lodges 1973. Manitoba Bureau of Statistics.
- Manitoba, Dept. of Renewable Resources and Transportation Services. 1978. <u>Watching for</u> <u>Nanook</u>. Northern Resource Development Centre, Winnipeg, Churchill
- Manitoba, Dept. of Tourism, Recreation and Cultural Affairs. 1971. Rocky Lake Provincial Recreation Area 1971. Parks Branch.
- . 1972. <u>Manitoba Parks Statistics</u>

 1971. Research and Planning Branch. Report No. 104. Winnipeg.
- . 1973. Manitoba Parks Statistics
 1972. Research and Planning Branch. Report No. 125. Winnipeg.
- . 1973. Recreation Study Southern Indian Lake. Parks Branch. Winnipeg.
- . 1973. Recreation Study Outlet Lakes. Parks Branch. Winnipeg.
- . 1974. <u>Manitoba Canada</u>. Tourist Branch. Winnipeg.
- . 1974. Manitoba Park Statistics 1973. Research and Planning Branch. Report No. 151. Winnipeg.
- . 1974. Recreation Assessment Lower Churchill River. Parks Branch. Winnipeg.
- . 1974. Recreation Study Rat-Burntwood Rivers Diversion Route. Parks Branch, Winnipeg.
- . 1975. Manitoba Park Statistics 1974. Research and Planning Branch. Report No. 166. Winnipeg.
- 1975. Manitoba, Canada, Vacation

 Handbook 1975. Tourist Branch. Winnipeg.
- . 1975. Recreation Facility Inventory.

 Tourist Branch Computer print out. Winnipeg.
- Manitoba, Dept. of Tourism, Recreation and Cultural Affairs. 1958-1976. Master Angler Award Lists, Tourist Branch. Winnipeg.
- . 1976. Manitoba Park Statistics
 1975. Research and Planning Branch. Report No. 1-87. Winnipeg.
- . 1976. Manitoba Vacation Guide:
 Northern Region. Tourist Branch. Winnipeg.

- Manitoba, Dept. of Tourism, Recreation and Cultural
 Affairs. 1976. Manitoba Accommodation Guide.
 Tourist Branch. Winnipeg.
- . 1977. Manitoba Park Statistics
 1976. Research and Planning Branch.
 Report No. 1-110. Winnipeg.
- ______, 1977. <u>Manitoba Vacation Guide 1977-78.</u>
 Winnipeg.
- Manitoba Hydro. 1970. Resources Investigations
 Recreation. Underwood McLellan and Associates Ltd. Winnipeg.
- Manitoba, Museum of Man and Nature. 1975. Museums in Manitoba: Inventory of Resources.

 Summary Report. Museum of Man and Nature.

 Winnipeg.
- McCloy, D. 1970. <u>Norman Tourist Study</u>. Dept. of Tourism, Recreation and Cultural Affairs. Research and Planning Branch. Winnipeg.
- Mieczkowski, A. 1968. "Geography of tourism and outdoor recreation of northern Manitoba."

 Musk Ox. No. 3.
- Miller, M.D. 1972. An Analysis of the 1969

 Manitoba Spearfishing and Bowfishing Season.

 Dept. of Mines, Resources and Environmental

 Management. Research Branch. Publication

 No. 71-9.
- Muir, T. 1977. A Recreational Hunting Study (Draft).
 Dept. of Renewable Resources and Transportation
 Services. Manuscript Report No. 77-33.
 Winnipeg.
- Munro, N., and Anderson, M. 1967. An initial bibliography on outdoor recreational studies in Canada with selected United States references. Compiled for the Rural Development Branch. Canada Dept. of Forestry and Rural Development and the Dept. of Geography, Carleton University. Queen's Printer. Ottawa.
- Nelson, D. and R. Saurette. 1975. <u>Visitors Survey Churchill, Manitoba 1974</u>. Dept. of Tourism, Recreation and Cultural Affairs. Winnipeg.
- Nixon, N. 1969. Park Visitor Survey 1969. Dept. of Tourism, Recreation and Cultural Affairs. Report No. 57. Winnipeg.
- Nixon, N. 1972. Present Ownership and Expected
 Ownership of Outdoor Recreation Equipment
 Among Winnipeg Residents. Dept. of Tourism,
 Recreation and Cultural Affairs. Report
 No. 119. Winnipeg.
- . 1973. Participation of Manitobans in Outdoor Recreation Activities 1972. Dept. of Tourism, Recreation and Cultural Affairs. Research and Planning Branch. Report No. 133. Winnipeg.

- Page, P.L. 1976. Non-Resident Moose Hunter Survey.
 Dept. of Renewable Resources and Transportation
 Services. Wildlife Programs. Typescript.
 Winnipeg.
- vey. Dept. of Renewable Resources and Transportation Services. Wildlife Programs. Typescript. Winnipeg.
- . 1976. Non-Resident Moose Hunter Survey,
 August, 1976. Dept. of Renewable Resources
 and Transportation Services. Wildlife Programs.
 Winnipeg.
 - Dept. of Renewable Resources and Transportation Services, Manuscript Report No. 77-37, Winnipeg.
- Page, P.L., D. Roberts, C. Vanderpont and J. Dawson. 1978. 1977/78 Big Game Hunter Survey Report. Dept. of Renewable Resources and Transportation Services. Wildlife Management Section. Manuscript Report No. 78-61. Winnipeg.
- Patterson, V.B., and G. N. Still. 1973. Forest
 Insect and Disease Conditions in Manitoba
 Provincial Parks 1972. Environment Canada,
 Northern Forest Research Centre. Information Report NCR-X-055. Edmonton.
- P.M. Associates, Gary Hilderman and Associates and W.L. Wardrop and Associates. 1973. Report on Proposed Development at Little Limestone Lake, Manitoba. Winnipeg.
- P.M. Associates Ltd. 1975. Fisheries Resources
 Allocation Project for the South Indian Lake
 Area. Dept. of Mines, Resources and Environmental Management. Winnipeg.
- Riddle, D.K. 1972. <u>Wilderness Area Potential Rat-Burntwood Rivers</u>, Northern Manitoba March, 1972. Churchill Diversion Archeological Project. University of Winnipeg.
- Saurette, R. 1972. Park Vehicle Attendance 1972. Dept. of Tourism, Recreation and Cultural Affairs. Report No. 123. Winnipeg.
- . 1973. Traffic Attendance in Campgrounds, Provincial Parks and Recreation Areas 1973. Dept. of Tourism, Recreation and Cultural Affairs. Research and Planning Branch. Report No. 143.
- . 1975. Traffic Attendance in Campgrounds, Provincial Parks and Recreation Areas in Manitola. Dept. of Tourism, Recreation and Cultural Affairs. Report No. 163. Winnipeg.

- Schindler, E.J. 1970. 1958 Summary of Manitoba

 Master Angler Awards and Related Information.

 Dept. of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report No. 70-10.
- 1970. 1959 Summary of Manitoba Master
 Angler Awards and Related Information. Dept.
 of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report No. 70-11.
- Schindler, E.J. 1970. 1960 Summary of Manitoba

 Master Angler Awards and Related Information.

 Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report No. 70-12.
 - . 1970. 1962 Summary of Manitoba

 Master Angler Awards and Related Information.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Manuscript Report No.
 70-14.
- 1970. 1963 Summary of Manitoba Master

 Angler Awards and Related Information. Dept.

 of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report No. 70-15.
- Schlick, R.O. 1964. Reed Lake Creel Census, 1963.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Winnipeg.
 - . 1965. Reed Lake Partial Creel
 Census, 1964. Dept. of Mines and Natural
 Resources. Fisheries Branch. Manuscript
 Report. Winnipeg.
- . 1967. Reed Lake Partial Creel
 Census, 1965. Dept. of Mines and Natural
 Resources. Fisheries Branch. Manuscript
 Report. Winnipeg.
- . 1967. Reed Lake Partial Creel
 Census, 1966. Dept. of Mines and Natural
 Resources. Fisheries Branch. Manuscript
 Report. Winnipeg.
- . 1968. A Partial Creel Census at

 Reed Lake in 1967. Dept. of Mines and
 Natural Resources. Fisheries Branch.
 Publication No. 68-3. Winnipeg.
- . 1971. Borrow Pit Creel Census
 along #10 highway in 19/8. Dept. of Mines,
 Resources and Environmental Management.
 Fisheries Branch. Publication No. 70-8.
- . 1973. Paint Lake Creel Census, 1978.

 Dept. of Mines, Resources and Environmental
 Management. Research Branch. Publication
 No 73-14. Winnipeg.
- . 1973. Lake Athapaposkow Creel
 Census in 1968. Dept. of Mines, Resources
 and Environmental Management. Research
 Branch. Manuscript Report 73-13. Winnipeg.

- Smith, Carter, Parkin Ltd. 1970. Recreation Report. Thompson, Manitoba.
- Sunde, L.A. 1963. Reed Lake Creel Census Report,
 Summer, 1962. Dept. of Mines and Natural
 Resources. Fisheries Branch. Manuscript
 Report. Winnipeg.
- . 1963. Iskwasum Lake, Loucks Lake and
 the Grass River Creel Census Report, Summer,
 1962. Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
- Manitoba Waters in the 1960-63 Period. Dept.

 of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- Unger, G.P. 1969. Gods Lake: A Case Study of Recreational Land Use and Potential. MA
 Thesis. University of Manitoba. Winnipeg.
- Wang, D. 1973. A Report on Canadian Visitors to
 Manitoba and Manitobans on Vacation. Dept.
 of Tourism, Recreation and Cultural Affairs.
 Research and Planning Branch. Report No.
 156.
- . 1974. A Prediction Model for Camping
 Visitation. Dept. of Tourism, Recreation
 and Cultural Affairs. Research and Planning
 Branch. Report No. 158.
- Witty, D.R. 1969. A Proposal for the Grass River
 Recreational Areas: Paint Lake, Setting
 Rapids, Pisew Falls, and Kwasitchewan Falls.
 Dept. of Tourism, Recreation and Cultural
 Affairs. Parks Branch.
- Witty, D.R. 1969. Paint Lake Recreation Area.

 Dept. of Tourism, Recreation and Cultural
 Affairs. Parks Branch.
- . 1971. Rocky Lake Provincial Recreation Area - A Proposed Extension. Dept. of Tourism, Recreation and Cultural Affairs. Parks Branch.
- . 1972. Partridge Crop Provincial.

 Park (PROPOSAL). Dept. of Tourism, Recreation and Cultural Affairs. Parks
 Branch. Winnipeg.
- Yake, T. 1972. Big Game and Game Bird Kill Summaries
 1971/72. Dept. of Mimes, Resources and Environmental Management. Wildlife Programs.
 Winnipeg.

Soils

- Bannatyne, B.B. 1967. The Clays and Shales of Manitoba. Dept. of Mines and Natural Resources. Publication No. 67-1. Winnipeg.
- Braun, P. 1963. Crops and Soil Management for the Wabowden Area of Northern Manitoba. Canada, Dept. of Agriculture. Publication No. 1 64. Ottawa.
- Brown, G.S., J.R. Hart and D.G. Ramsey, 1972.

 <u>Churchill River Task Force Report</u>, Churchill River Basin Task Force. Canada/Saskatchewan/Manitoba, Regina, Saskatchewan.
- Brown, R.J.E. 1965. Permafrost Investigations in Saskatchewan and Manitoba. National Research Council of Canada. Research Technical Paper 193.
- Brown, R.J.E. 1966. "Relation between mean annual air and ground temperatures in the permafrost region of Canada." Proceedings of the Permafrost Internation Confrence (1963).

 pp. 241-246.
- . 1966. "Influence of vegetation on permafrost." Proceedings of the Permafrost International Confrence (1963). pp. 20-25.
- . 1968. "Occurrence of Permafrost in Canadian Peat Lands." <u>International Peat</u>, <u>Congress Proceedings</u>. pp. 18-23. Quebec.
- . 1968. Permafrost Investigations in Northern Ontario and Northeastern Manitoba. National Research Council of Canada. Paper No. 291. Ottawa.
 - . "The Distribution of Permafrost and its Relation to Air Temperature in Canada and the U.S.S.R." Arctic. 13: 163-177.
- . 1970. Permafrost in Canada. University of Toronto Press.
- factor in the Subarctic." Symposium on Ecological Subarctic Regions, Helsinki, 1976. pp. 129-40.
 - . 1973. "Effects on Climate and Terrain on Permafrost." Proceedings 2nd International Permafrost Conference.
- Brown, R.J.E. and G.H. Johnston. 1970. "Dikes on Permafrost; Predicting thaw and settlement." <u>Canadian Geotechnical Journal</u>. 7 (4): 365-371.
- Brown, R.J.E. and G.P. Williams. 1972. The Freezing of Peat Land. National Research Council of Canada. Technical Paper.

- Drew, J.V. and J.C.F. Tedrow. 1962. "Arctic soil; classification and patterned ground."

 Arctic 15: 109-116.
- Dryden, R.D. and P. Braun. 1969. Crops and Soil

 Management for the Wabowden area of Northern Manitoba. Canada, Dept. of Agriculture.
- Ehrlich, W.A. 1956. Lynn Lake and Lower Churchill River Soil Report. Dept. of Mines, Resources and Environmental Management.
- . 1962. Northern and Northwestern

 Manitoba Surface Deposits and Soils. Dept.
 of Mines, Resources and Environmental
 Management. Winnipeg.
- . 1963. Surface Deposits and Soils
 of Northeastern Manitoba. Manitoba Soil
 Survey, Canada Dept. of Agricluture.
 Winnipeg.
- Ehrlich, W.A., L.E. Pratt and F.P. Leclaire. 1957.

 Report of Soil Survey Wabowden Experimental

 Substation 29-68-8W of 1 Manitoba, 1957.

 Dept. of Agriculture.
- Ehrlich, W.A., L.E. Pratt, J.A. Barr and F.P.
 Leclaire. 1959. Soil Survey of a Cross
 Section through the Upper Nelson River Basin
 along the Hudson Bay Railway in Northern
 Manitoba. Dept. of Agriculture and Conservation. Winnipeg.
- Ehrlich, W.A., L.E. Pratt, F.P. Leclaire and J.A.
 Barr. 1960. Detailed Soil Survey of Pasquia
 Map Area in Northern Manitoba. Manitoba
 Soil Survey. Report No. 11.
- Frazer, J.K. 1959. "Freeze-thaw frequencies and mechanical weathering in Canada." Arctic 12: 40-53.
- Hills, G.A. 1960. "The Soils of the Canadian Shield." <u>Agricultural Institute Review</u>. 15 (2): 41-43.
- Hortic, H.E., R.E. Smith and A. Russel. 1967.

 Organic soils in Manitoba. Manitoba Soil
 Survey. University of Manitoba. Winnipeg.
- Johnston, G.H., R.J.E. Brown and D.N. Pickesgill 1963. Permafrost Investigations at Thompson Manitota. National Reserach Council. Terrain Studies. Technical Paper No. 158. Ottawa.
- Knollenberg, R. 1964. The Distribution of String
 Bogs in central Canada in relation to climate. University of Wisconsin. Dept. of
 Meteorology. Technical Report 14: 1-44.

- Leggett, R.F., H.B. Dickens and R.J.E. Brown. 1961.

 "Permafrost investigations in Canada."

 Geology of the Arctic proceedings of the first International Symposium of Arctic Geology. pp. 956-969. University of Toronto Press. Toronto.
- Nowosad, R. and A. Leahey. 1960. "Soils of the arctic and subarctic regions of Canada."

 Agricultural Institute Review 15: 48-50.
- Pruitt, W.O. Jr. 1970. "Some Aspects of the Interrelationships of permafrost and tundra biotic communities." in <u>Productivity and Conserva-</u> tion in Northern Circumpolar Lands. International Union for Conservation of Nature and Natural Resources. (IUCN). pp. 33-40. Publications New Series No. 16. Morges, Switzerland.
- Radforth, N.W. 1950. Progress Report on Organic
 Terrain Studies. National Research Council
 of Canada. Technical Memorardum No. 16.
- . 1952. "Suggested classification of muskeg for the engineer." Engineering Journal. 35 (11): 1199-1210.
- . 1953. "Palaeocological research in northern Canada." In the 7th proceedings of International Botanical Congress. 1950.
- . 1953. "The use of plant material in the recognition of northern organic terrain characteristics." Royal Society of Canada Transactions. Series 3. 47 (5): 153-71.
- . 1954. "Palaeobotanical method in the prediction of sub-surface summer ice conditions in northern organic terrain."

 Royal Society of Canada Transactions.

 Series 3. 48 (5): 51-64.
- Ritchie, J.A. and K.A. Hadden. 1975. "Pollen stratigraphy of holocene sediments from the Grand Rapids area, Manitoba, Canada." Review of Palaeobotany and Palynology. 19 (3): 193-202.
- Ritchie, J.C. 1962. A Geobotanical Survey of

 Northern Manitoba. Arctic Institute of
 North America. Technical Paper No. 9.
- Russ, J.R. 1956. "Problems in muskeg accessibility."

 Proceedings of the Eastern Muskeg Research

 Meeting, February 22, 1956. National Research Council of Canada. Technical Memorandum No. 42. Ottawa.
- Tarnocai, C. 1970. Classification of Peat Landforms in Manitoba. Canada, Dept. of Agriculture. Winnipeg.
- . 1972. "Some characteristics of cyric organic soils in northern Manitoba."

 Canadian Journal of Soil Science. 52: 485-

- Tarnocai, C. 1972. "The use of remote sensing techniques to study peatland and vegetation types, organic soils and permafrost in the boreal region of Manitoba." Proceedings of the First Canadian Symposium on Remote Sensing. pp. 323-335.
- . "Glacial history, surface deposits soils and vegetation of Wekusko and portions of Cross Lake, Norway House and Grand Rapids Map Areas." Proceedings of the Fourteenth Manitoba Soil Science Meeting. 21:25.
- Thie, J. 1974. "Distribution and thawing of permafrost in the southern part of the discontinuous permafrost zone in Manitoba."

 Arctic 27 (3): 189-200.
- Zoltai, S.C. and C. Tarnocai. 1969. "Permafrost in peat landforms in northern Manitoba." Paper presented at the 13th annual Manitoba Soil Science meeting December, 1969. pp. 3-16.
- Zoltai, S.C. 1971. Southern Limit of Permafrost features in peat landforms, Manitoba and Saskatchewan. Geological Association of Canada. Special Paper No. 9. 305-310.
- . 1971. Perennially frozen peat plateaus in central Manitoba and Saskatchewan. Canadian Forest Service. Edmonton.
- . 1972. "Palsas and Peat Plateaus in Central Manitoba and Saskatchewan." Canadian Journal of Forestry Research. 2:291-302.
- Zoltai, S.C. and C. Tarnocai. 1973. "Properties of a Wooded Palsa in Northern Manitoba."

 <u>Arctic-Alpine Research</u>. 3:115-129.
- Zoltai, S.C., and W.W. Pettapiece. 1974. "Tree distribution on perennially frozen earth hummocks." Arctic-Alpine Research. 6 (4): 403-411.

Transportation

- Brampton, G. 1975. Market Survey of Road Access
 Fishing Lodges in Northern Manitoba. Dept.
 of Tourism, Recreation and Cultural Affairs.
 Research and Planning Branch and the Natural Resource Institute. University of
 Manitoba. Winnipeg.
- Daken, A.H., Jackson and D. Johns. 1973. An Environment Motivated Plan for Multiple Resources Use Along Highway 391. Centre for Settlement Studies Series 1: Research Paper No. 15. Winnipeg.
- Donald, J.D., and G.A. Jones. 1973. Proposed

 Road Plan and Recreation Land Reserves for
 the Mitchell Lakes Area. Dept. of Mines,
 Resources and Environmental Management and
 the Canada Land Inventory. The Pas.
- Henley, T.J. 1974. The Impact of Manitoba Hydro's

 Churchill River Diversion on the Length of the
 Navigation Season at the Port of Churchill.
 Natural Resource Institute. University of
 Manitoba. Winnipeg.
- Hudson Bay Route Association. 1958. Hudson Bay
 Route pays Producer and Consumer Dividends.
 Saskatoon.
- . 1958. Submission to the Prime
 Minister and members of the Dominion
 Cabinet, 1958. Saskatoon.
- . 1959. Report of the sixteenth annual convention and conference, Churchill Manitoba, August 3-4th, 1959. Saskatoon.
- . 1960. Submission to the Royal
 Commission on Transportation, 1960. Saska-
- Lombard North Group. 1975. Report on Navigation of the Minago River for the Northern Flood Committee. Winnipeg.
- Manitoba Hydro. 1970. Resources Investigations— Transportation. Underwood, McLellan and Winnipeg.
- McGill University. 1957. A Study of Northern
 Settlement. Committee on Physical Planning.
 Montreal,
- Rutter, F. 1955. "Central Northern Airways." Canadian Aviation. 28 (9): 46.
- Saurette, R. 1972. Park Vehicle Attendance.

 Dept. of Tourism, Recreation and Cultural
 Affairs. Report No. 123. Winnipeg.

- Saurette, R. 1973. Traffic Attendance in Campgrounds, Provincial Parks and Recreation Areas 1973. Dept. of Tourism, Recreation and Cultural Affairs. Research and Planning Branch. Report No. 143. Winnipeg.
- 1975. Traffic Attendance in Campgrounds, Provincial Parks and Recreation Areas in Manitoba. Dept. of Tourism, Recreation and Cultural Affairs. Report No. 163. Winnipeg.
- Sopuk, R.D. and B.H. Wright. 1978. A Fish Passage
 Survey of Steam Crossings Along Some Major
 Roads in Northern Manitoba. Dept. of Mines,
 Natural Resources and Environment. Manuscript Report No. 78-87. The Pas.
- Underwood, McLellan and Associates Ltd., 1970.

 Preliminary Study of a Highway Route Location from Ilford to York Landing, for the Dept. of Northern Affairs. Winnipeg.
- Underwood, McLellan and Associates Ltd. 1974.

 Route Locations Island Lake Gods Lake
 Red Sucker Lake. Dept. of Northern Affairs.
 Typescript.

Trapping

- Grower, D. and D. McCloy. 1977. Wild Fur Development Program: Year I Evaluation. P.M.
 Associates and Dept. of Renewable, Resources
 and Transportation Services. Manuscript
 Report No. 77-8. Winnipeg.
- Jackson, V.W. 1926. Fur and Game Resources of

 Manitoba. Industrial Development Board of
 Manitoba.
- Larche, R.A. 1975. Impact of Parks and Park Development on Trapping and Hunting Programs.

 Dept. of Mines, Resources and Environmental Management. Resources Planning Division.

 Typescript. Winnipeg.
- Manitoba, Dept. of Renewable Resources and Transportation Services. 1977. <u>Manitoba Fur</u> <u>Fact Book</u>. Research Branch. Winnipeg.
- Manitoba Hydro. 1970. Resources Investigations— <u>Wildlife.</u> Underwood McLellan and Associ ates Ltd. Winnipeg.
- McLeod, J.A. 1950. "A consideration of muskrat populations and population trends in Manitoba."

 Transactions of Royal Society of Canada. 44: (8) 69-79.
- McLeod, J.A. et al. 1951. An Interim Report on a Biological Investigation of the muskrat in Manitoba, 1950-51. Dept. of Mines and Natural Resources. Winnipeg.
- Miller, D.R. 1962. Fur Resource Management in
 Northern Manitoba. Dept. of Mines, Resources and Environmental Management.
 Winnipeg.
- Ramsey, W.W., J. Clark and M.E. Moffat. 1955.

 History of Engineering Development in the
 Summerberry Fur Development Project. Manitoba Water Resources Commission. Winnipeg.
- Robertson, R.J. 1968. Construction and Maintenance
 Proposals for Summerberry Marsh. Dept. of
 Mines and Natural Resources. Winnipeg.
- Sunde, L.A. 1962. Report on Fur Farm Fishing Northern Manitoba (Kississing Lake). Dept.
 of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- Van Zyll de Jong. C.G. 1970. Past and Present
 Status of Furbearers in Manitoba. Dept. of
 Mines, Resources and Environmental Managemant. Wildlife Branch. Winnipeg.
- Yake, T. 1973. Manitoba Wildlife Fact Book.
 Dept. of Mines, Resources and Environmental
 Management. Development and Extension
 Service. Wildlife Programs. Winnipeg.

Water

- Anthony, L. 1966. An Investigation of Northern
 Lakes for Commercial Fishing. Dept. of
 Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- Blunt, B. 1975. Reed Lake South Shore Limnology
 Study, August, 1974. Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report No. 75-10.
 Winnipeg.
- . 1976. A Limnological Survey of

 Wekusko Lake, 1975. Dept. of Mines, Resources and Environmental Management. Environmental Management Division. Manuscript Report No. 76-6. Winnipeg.
- Boan, J. n.d. Annotated Bibliography of Selected
 Documents pertaining to Water Allocation
 and Utilization in the Saskatchewan River
 Basin. Agricultural Rehabilitation and
 Development Agency (ARDA). Project No.
 8049-05. Ottawa.
- Bocking, R.C. 1974. "Water: visions and revisions." Ontario Naturalist. 14 (1): 16-21.
- Brown, S.B. 1974. "The morphometry of Rat-Burntwood diversion route and Lower Churchill Lakes: Present conditions and past regulations study." Lake Winnipeg, Churchill and Nelson Rivers Study. Appendix 5.

 Volume 2-D.
- Bukowsky, R. 1976. Biophysical Water Classification in Manitoba. Northern Resource Information Program. Dept. of Renewable Resources and Transportation Services. Winnipeg.
- Canada, Dept. of Energy, Mines and Resources. 1966.

 Surface Water Data Reference Index Manitoba.
 Inland Waters Branch. Ottawa.
- Canada, Dept. of Northern Affairs and Natural Resources. 1958. Surface Water Supply of Canada. Water Resources Division. Water Resources Paper No. 117. Ottawa.
- Canada, Dept. of Northern Affairs and Natural
 Resources. 1972. Water Power Resources of
 Canada. Water Resources Bulletin No. 272161. Ottawa.
- Canada, Dept. of Transport. 1962. <u>Ice Information Office</u>. Ottawa.
- Canada, Environment Canada. 1969. Streamflow Synthesis Studies for Sackatchewan-Nelson Basin Board. Engineering Division Inland Vaters Eranch. Ottawa.

- Canada, Environment Canada. 1973. Reference Index Canada 1972: Hydro metric Map Supplement. Water Survey of Canada. Inland Water Directorate. Ottawa.
- _______. 1974. Historical Stream Flow
 Summary: Manitoba to 1973. Water Survey
 of Canada. Inland Water Directorate.
 Ottawa.
- . 1974. Surface Water Data: Reference Index Canada 1974. Water Survey of Canada. Inland Waters Directorate. Ottawa.
- . 1975. Sediment Data Canadian Rivers
 1971. Applied Hydrology Division. Water
 Resources Branch. Water Survey of Canada.
 Ottawa.
- . 1976. Mercury Levels in the Rivers
 of Western Canada 1970-76. Inland Waters
 Directorate. Water Quality Branch. Social
 Science Series No. 16. Ottawa.
- Chekay, D.A. and J.M.E. Crowe. 1971. Biological
 Effects of Overburden Discharge on the
 Ospwagan Lakes Drainage System 1967 to 1969.
 Dept. of Mines, Resources and Environmental
 Management. Resource and Planning Division.
 Manuscript Report No. 71-7. Winnipeg.
- Cleugh, T.R. 1974. "Hydrography of Southern Indian Lake: Present conditions and implications for hydro-electric development."

 Lake Winnipeg, Churchill and Nelson Rivers

 Study, Appendix 5. Volume 1-C.
- . 1974. "Hydrographic survey of lakes on the Lower Churchill and Rat-Burntwood Rivers and reservoirs and lakes on the Nelson River." Lake Winnipeg, Churchill and Nelson Rivers Study. Appendix 5. Volume 2-E.
- Cleugh, T.R., H. Ayles and W. Baxter. 1974. The

 Morphometry of South Indian Lake. Environment Canada. Fisheries and Marine Service.
 Winnipeg.
- Cober, J.M.E. 1964. The Effects of Mine Tailings on Fish Production and Benthic Productivity in the Lunn Lake Area. Dept. of Mines and Natural Resources. Winnipeg.
- . 1968. A Limnological Investigation in the Saskatchewan River Drainage Basin Prior to Operation of a Forestry Jomplex at The Pas, Manitoba. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report No. 68-1. Winnipeg.

- Cober, J.M.E. 1971. The Effects of Mine Tailings
 Drainage on Schist Lake, June 1976. Dept.
 of Mines, Resources and Environmental
 Management. Fisheries Branch. Manuscript
 Report No. 70-20. Winnipeg.
- ______. 1971. Effects of Mine Tailings
 Discharge on the Fauna of the Grass River,
 Manitoba from 1960-64. Dept. of Mines,
 Resources and Environmental Management.
 Winnipeg.
- . 1972. "Man-The Polluter." The

 Effects on Mine Tailings Drainage on Schist
 Lake. Dept. of Mines, Resources and Environmental Management. Research Branch.
 Winnipeg.
- . 1972. The Effects of Drainage from
 Mine Tailings at Thompson, Manitoba, on a
 portion of the Grass River. Dept. of Mines
 Resources and Environmental Management.
 Research Branch. Manuscript Report No.
 72-5. Winnipeg.
- Crowe, J.M.E. 1967. The Effects on Mine Tailings
 Drainage on the Eldon River and Cockeram
 Lake. Dept. of Mines and Natural Rescurces.
 Research Branch. Winnipeg.
- . 1972. <u>Saskatchewan River Survey 1971</u>.

 Dept. of Mines, Resources and Environmental

 Management. Research Branch. Winnipeg.
- . 1972. Survey's of Bowden, Clarke
 and Lily Lakes. Dept. of Mines, Resources
 and Environmental Management. Research
 Branch. Manuscript Report. Winnipeg.
- . 1973. A Survey of the Grass River
 1969. Dept. of Mines, Resources and Environmental Management. Fisheries Report.
 Winnipeg.
- . 1973. Limnological Investigations of Kettle Reservoir and the Nelson River above Kelsey. Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report. No. 73-6. Winnipeg.
- Dept. of Mines, Resources and Environmental Management. Research Branch. Winnipeg.
- The Effects of Mine Tailings
 Drainage from Sherritt Gordon Operations at
 Lynn Lake, Manitoba on Wheateroft and
 Cockeram Lakes. Dept. of Mines, Resources
 and Environmental Management. Research
 Branch. Winnipeg.
- . 1973. A Pollution Survey of Schist Lake 1969. Dept. of Mines, Resources and Environmental Management. Research Branch. Winnipeg.

- Doan, K.H. 1964. Climate, Hydrology and Freshwater Fisheries. Dept. of Mines and Natural Resources. Manuscript Report. Winnipeg.
- Environment Canada. 1978. Water Quality Data:

 Manitoba 1961-1976. Inland Waters Directorate.

 Ottawa.
- Gaiay, V.J. 1971. Shoreline Processes Along the
 North Shore of Lake Winnipeg and in Playgreen and Kiskittogisu Lake. Manitoba
 Hydro Manuscript Report.
- Hanagasjarvi, E.T. 1974. A Limnological Survey of Moak Lake, August 1973. Dept. of Mines, Resources and Environmental Management. Publication No. 74-12. Winnipeg.
- Hedlin Menzies and Associates Ltd. n.d. Interim Report on the Grand Rapids Forebay Economic and Social Conditions.. for the Grand Rapids Forebay Administration Committee. Winnipeg.
- Hughes, C. 1973. A Preliminary Limnological Survey of Mystery Lake 1972. Dept. of Mines, Resources and Environmental Management.

 Research Branch. Winnipeg.
- . 1975. A Limnological Survey of Ted Lake, 1974. Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report No. 75-10. Winnipeg.
- . 1976. A Limnological Survey of
 File Lake, 1975. Dept. of Mines, Resources
 and Environmental Management. Environmental
 Management Division. Manuscript Report No.
 76-4. Winnipeg.
- Hughes, M.L. 1976. A Limnological Survey of Hargrave Lake, 1975. Dept. of Mines, Resources and Environmental Management. Environmental Management Division. Manuscript Report No. 76-3. Winnipeg.
- . 1976. <u>Pollution Survey of Schist Lake, 1975</u>. Dept. of Mines, Resources and Environmental Management. Environmental Management Division. Manuscript Report No. 76-5. Winnipeg.
- Lake Winnipeg, Churchill and Nelson River Study
 Board. 1975. Hydrologic, Hydraulic and Geomophologic Studies. Technical Report
 Appendix 2. Volume 1.
- Larkin, P.A. 1974. Freshwater Pollution, Canadian Style. Canadian Society of Zoologists.

 McGill Queen's University Press. Montreal.
- Loch, J.S. and W.J. Brayant. 1972. Toxicity and Other Pollution Characteristics of Unbleached Kraft Mill Effluents. Canada, Dept. of the Environment. Fisheries Service No. TR 72-3. Winnipeg.

- Lombard North Group. 1975. Report on Navigation of the Minago River. for the Northern Flood Committee. Winnipeg.
- Mackay, D.K. 1962. River Ice Conditions in the
 Nelson Drainage System. MA Thesis
 University of British Columbia. Vancouver.
- Morley, C.G. 1973. "It's Not to Late Yet." Alternatives. 2 (4): 4-10. Agassiz Centre for Water Studies. University of Manitoba. Winnipeg.
- Moskenko, W. R. 1967. <u>Dissolved Oxygen Levels</u>
 in Some Borrow Pits and Small Lakes in
 Northern Manitoba, March, 1967. Dept. of
 Mines and Natural Resources. Fisheries Branch.
 Manuscript Report.
- Newbury, R.W. 1968. The Nelson River A Study of
 Sub-Arctic River Processes. Ph.d. Thesis.
 John Hopkins University.
- . 1970. The Effects of Diversion on the Winter Regime of the Abandoned Lower Churchill River. Dept. of Mines, Resources and Environmental Management. Winnipeg.
- Newbury, R. and G.W. Malaher. 1972. "Destruction of Manitoba's last great river." Nature Canada. 1 (4): 4-13.
- Newbury, R.W. 1973. Physical Impact Study, Interim Report 1972. Lake Winnipeg, Churchill and Nelson Rivers Study Board. Winnipeg.
- . 1973. Physical Impact Study: Characteristics of Churchill-Nelson Shorelines.
 Civil Engineering Dept. University of Manitoba. Winnipeg.
- Phelps, D.J. and R.W. Coley. 1973. "Flow Characteristics of the Outlet of Lake Winnipeg for Natural and Regulated Conditions."

 Paper for the Canadian Hydraulics Conference. University of Alberta. Edmonton.
- Ragotzkie, R.A. 1960. Compilation of Freezing and
 Thawing Dates for Lakes in North Central United
 States and Canada. University of Wisconsin.
 Meteorology Dept. Technical Report No. 3.
 Madison.
- Saskatchewan-Nelson Basin Board. 1972. Water
 Supply for the Saskatchewan-Nelson Basin,
 lix 7. Environmental considerations
- Schlick, R.O. 1962. An Interim Report on Hook Lake. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.

- Schlick, R.O. 1964. Interim Report on Reed Lake,

 1963. Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
- . 1964. A Survey of Reed Lake, 1963.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Manuscript Report.
- . 1965. A Comparison of Moose Lake
 Oxygen Tests, 1961, 1962 and 1965. Dept. of
 Mines and Natural Resources. Fisheries
 Branch. Manuscript Report. Winnipeg.
- . 1965. A Survey of Upper Ospwagan
 Lake, 1965. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript
 Report.
- Borrow Pits and Small Angling Lakes in
 Northern Manitoba, March, 1966. Dept. of Mines
 and Natural Resources. Fisheries Branch.
 Manuscript Report.
- ., R.O. 1968. A Survey of Paint Lake
 1967. Dept. of Mines and Natural Resources
 Fisheries Branch. Manuscript Report No.
 68-11. Winnipeg.
- . 1977. Areas of Manitoba's Northern

 Lakes. Dept. of Renewable Resources and
 Transportation Services. Technical Report
 No. 77-6. Winnipeg.
- Stewart-Hay, R.K. 1956. A Brief Biological Survey of Second Cranberry Lake, August, 1953. Dept. of Mines and Natural Resources. Game and Fisheries Branch. Typescript. Winnipeg.
- . 1963. A Biological Survey of Snow
 Lake, Manitoba. Dept. of Mines and Natural
 Resources. Fisheries Branch and the University of Manitoba. Manuscript Report.
 Winnipeg.
 - . n.d. A Biological Survey of Lake
 Athapapuskow, July, 1953. Dept. of Mines
 and Natural Resources. Game and Fisheries
 Branch. Typescript. Winnipeg.
- Sunde, L.A. n.d. Report on a Brief Investigation of Wonderland Lake, June, 1956. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
 - . n.d. Report on a Brief Investigation of We Lake, June, 1956. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.

- Sunde, L.A. n.d. Report on a Brief Investigation of Johnson Lake, June, 1956. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
- of Sleep Lake, June, 1956. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
- n.d. Preliminary Report on the Burntwood River (Pre-pollution Survey) July 30 to August 10, 1958. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
- of Murray Lake (54° 46 N 101° 36 W). Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
- . 1960. Burntwood River Pre-Pollution
 Survey, July, 1960. Dept. of Mines and Natural
 Resources. Fisheries Branch. Interim Manuscript Report.
- . 1961. Survey of Borrow Pits Adjacent to P.T.H. #10 South of The Pas, Winter; 1960-1961. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
- Dept. of Mines and Natural Resources. Fisheries Branch. Typescript.
- . n.d. A Limnological Survey of Scotty

 Lake (Twp. 66 Range 28W). Dept. of Mines and
 Natural Resources. Fisheries Branch. Typescript.
- Rocky Lake Survey. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
- . 1962. Interim Report: Grass River Pre-Pollution Survey. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- gations Winter D.O. Tests 1961 and 1962.
 Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
 Winnipeg.
- . 1962. 1962 Tests on Borrow Pits Adjacent to P.T.H. #10 near The Pas, Manitoba.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1964. <u>Cormorant Lake Survey, June 9 to</u>
 25, 1964. Dept. of Mines and Natural Resources
 Fisheries Branch. Manuscript Report. Winnipeg.

- Sunde, L.A. 1964. Total Dissolved Solids in
 Northern Waters. Dept. of Mines and
 Natural Resources. Fisheries Branch.
 Manuscript Report.
 - . 1965. Talbot Lake Dissolved Oxygen

 Tests, March 26, 1964. Dept. of Mines and
 Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1965. <u>Area of Some Northern Manitoba</u>
 <u>Lakes</u>. Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
- Webb, D.W. 1965. "Limnological features of Cedar Lake, Manitoba." <u>Journal of the Fisheries</u> <u>Research Board Canada</u>. 22: 1123-1136.

Wildlife (general)

- Adams, K.R.F. 1975. "The Churchill River Diversion." Manitoba Nature. 16: 22-29.
- Alvey, J. 1969. "The Nelson: Manitoba's Own river." <u>Canadian Geographical Journal</u>. 78 (1): 2-11.
- Anthony, L. 1943. <u>Biological Survey's North</u>.

 Dept. of Mines and Natural Resources.
- . 1974. The 1967 Biological Study and Management program for Nejanilini Lake. Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report No. 74-11. Winnipeg.
- Cober, J.M.E. 1964. The Effects of Mine Tailings on Fish Production and Benthic Productivity in the Lynn Lake Area. Dept. of Mines and Natural Resources. Winnipeg.
- . 1971. The Effects of Mine Tailings

 Drainage on Schist Lake, June 1967. Dept.
 of Mines, Resources and Environmental Management. Fisheries Branch. Manuscript
 Report No. 70-20. Winnipeg.
- . 1971. Effects of Mine Tailings

 Distinct on the Found of the Grass River

 Maniton included. Dept. of Mines, Resources and Environmental Management.

 Winnipeg.
- . 1972. "Man-The Polluter." The
 Effects of Mine Tailings Drainage on Schist
 Lake. Dept. of Mines, Resources and Environmental Management. Research Branch.
 Winnipeg.
- Crown, J.M.E. 1977. Survey's of Fowden, Clarke
 and Lily Lakes. Dept. of Mines, Resources
 and Environmental Management. Research
 Branch. Manuscript Report. Winnipeg.
- . 1973. A Survey of the Grass River 1962. Dept. of Mines, Resources and Environmental Management. Fisheries Report. Winnipeg.
- Didiuk, A.B. 1975. Fish and Wildlife Resource

 Impact Assessment, Lower Nelson River, Manitota. Dept. of Mines, Resources and Enviitota. Research Branch.
 winnipeg.
- Goatcher, M.L. 1975. Manitoba Legislation
 Affecting Wildlife from 1877-1972. Dept.

 agement. Operational Policy Division.
 Winnipeg.
- Green, G.H. 1974. "Effects of hydroelectric development in western Canada on aquatic systems." Journal of the Fisheries Research Board of Canada. 51 (5): 915-927.

- Harper. 1970. Saskeram Wildlife Management Area

 Multiple Land Use Project. Dept. of Mines
 and Natural Resources. The Pas.
- Hughes, C. 1974. Saskatchewan River Survey 1973.

 Dept. of Mines, Resources and Environmental
 Management. Publication No. 74-18.
- Jahn, B. 1977. <u>Landry Lake Habitat Improvement Project</u>. Dept. of Renewable Resources and Transportation Services. Manuscript Report. The Pas.
- Kimball, J.W. and J.M. Anderson. 1951. Pasquia
 Reclamation area: A Special Evaluation on
 Wildlife Resources. Dept. of Mines and
 Natural Resources. Winnipeg.
- Larche, R.A. (editor). 1977. Status of Manitoba Wildlife. Dept. of Renewable Resources and Transportation Services. Manuscript Report No. 77-25. Winnipeg.
- Manitoba, Dept. of Mines, Resources and Environmental Management. 1973. <u>Manitoba North</u>. Wildlife Distribution Maps. Winnipeg.
- Manitoba, Dept. of Renewable Resources and Transportation Services. 1976. Manitoba Game Bird, Pig Game 1976 Season. Winnipeg.
- McTavish, W.B. 1952. A Biological Survey of

 Southern Indian Lake. Dept. of Mines and
 Natural Resources.
- Nero, R.W. and R.E. Wrigley. 1977. "Rare, endangered and extint." Manitoba Nature. 18 (2): 4-37.
- Pepper, W. et al. 1974. <u>Missirii Achimowin Wild-life</u>. Interim Report supplement No. 4. Summer 1974.
- Stardom, R.A. and M. Bilan. 1977. Manitoba Fur Fact
 Book. Dept. of Renewable Resources and Transportation Services. Research Branch. Winnipeg.
- Van Zyll de Jong, et al. 1971. Extinct, Rare and Endangered Wildlife of Manitoba. Dept. of Mines, Resources and Environmental Management. Research and Planning Division. Publication No. 71-2.
- Wells, H.E. 147. A Wildlife Management Plan for Northern Manitoba. Dept. of Mines, Resources and Environmental Management. Winnipeg.
- Westmope, P.L. 1975. Manitota Wildlife Lands
 Book. 2nd Edition. Dept. of Mines, Resources and Environmental Management.
 Winnipeg.
- Yake, T. 1973. Manitoba Wildlife Fact Book. Dept. T. Min., The manifest of the Min. agement. Development and Extension Service. Wildlife Programs. Winnipeg.

Wildlife (mammals)

- Adams, G.D. n.d. Grand Rapids Hydro-Electric

 Project, Saskatchewan River: A Report on
 Fish and Wildlife Resources. Canadian
 Wildlife Service. Winnipeg.
- Anderson, R.M. 1946. Catalogue of Canadian Recent Mammals. Canada, Dept. of Mines and Resources. Natural Museum of Canada. Bulletin No. 102. Biological Series No. 31.
- Banfield, A.W.F. 1951. The Barren-Ground Caribou. Canada, Dept. of Resources and Development. Canadian Wildlife Service. Ottawa.
- of the Barren-Ground Caribou: Part I Former and Present Distribution, Migrations and Status. Canadian Wildlife Service. Wildlife Management Bulletin Series 1, No. 10a. Ottawa.
- 1954. Preliminary Investigations
 of the Barren-Ground Caribou: Part II Life
 History, Ecology and Utilization. Canadian
 Wildlife Service. Wildlife Management
 Bulletin Series 1, No. 10b. Ottawa.
- 1974. The Mammals of Canada. National Museum of Natural Sciences. University of Toronto Press.
- Beckel, D.K.B. 1958. A Pilot Study of Caribou Winter Range, Brochet, Manitoba. Canada, Dept. of Northern Affairs and Natural Resources. Ottawa.
- Bergerud, A.T. 1974. "Decline of caribou in North America following settlement." <u>The Journal</u> of Wildlife Management. 38 (4): 757-770.
- Bossenmaier, E.F. 1965. <u>Analysis of Deer Surveys</u>

 1965. Dept. of Mines and Natural Resources.
 Winnipeg.
- Bossenmaier, E.F. et al. 1972. <u>Manitoba Deer and Waterfowl Plans</u>. Dept. of Mines, Resources and Environmental Management. Wildlife Planning Task Force. Winnipeg.
- Bruemmer, F. 1969. "The polar bear." Canadian Geographical Journal. 78 (3): 98-105.
- Campbell, S.E. 1968. Bear, Coyote and Fox Predator Control Density and Dispersal Western Region. Dept. of Mines, Resources and Environmental Management.
- Campbell, S.E. <u>Land Capability for Wildlife</u> <u>Ungulates</u>. Canada Land Inventory Maps. Lands Directorate. Ottawa.
- . 1976. Biology of the Kaminuriak
 Population of Barren-Ground Caribou. Part 3:
 Tiaga Winter Range Relationships and Diet.
 Canadian Wildlife Service. Report No. 36.

- Coulson, E.D. 1969. Predator Density, Dispersal and Control in the Western Region. Dept. of Mines, Resources and Environmental Management. Winnipeg.
- Crichton, V.F. 1973. Eastern Region Moose Survey's and Herd Status 1972-73. Dept. of Mines, Resources and Environmental Management. Winnipeg.
- 1974. Eastern Region Moose Survey

 1973-74. Dept. of Mines, Resources and
 Environmental Management. Winnipeg.
- Cringan, A.T. 1957. "History, food habits and range requirements of the woodland caribou of continental North America." <u>Transactions of the North American Wildlife Conference</u>.

 74 (1): 3-7.
- Cross, D.W. n.d. Analysis of the 1975 Caribou
 Hunting Season. Dept. of Renewable Resources and Transportation Services. Northern
 Region. Typescript. The Pas.
- . 1977. Analysis of the 1976 Woodland

 Caribou Hunting Season. Dept. of Renewable

 Resources and Transportation Services. Northern
 Region. Typescript. The Pas.
- Dauphiné, T.C., and R.L. McClure. 1974. "Synchronous mating in Canadian Barren-Ground Caribou." The Journal of Wildlife Management. 38 (1): 54-66.
- Dauphiné, T.C., Jr. 1976. <u>Biology of the Kaminu-riak Population of Barren-Ground Caribou.</u>

 Part 4: Growth Reproduction and Energy Reserves. Canadian Wildlife Service. Report No. 38.
- Davies, D. 1970. <u>Timber Wolf Observations and Population Estimates, Winter 1969-79</u>. Dept. of Mines, Resources and Environmental Management.
- Elke, E.R. 1969. <u>Timber Wolf Densities and Distribution in the Western Region</u>. Dept. of Mines, Resources and Environmental Management.
- Gillespie, W.L. 1960. Breeding Bird and Small
 Mammal Populations in relation to the Forest
 Vegetation of Northern Manitoba. Ph.d.
 Thesis. University of Illinois.
- Goulden, R.C., G.F. Bossenmaier, C.G. van Zyll
 de Jong and J.L. Howard. 1968. <u>Implications</u>
 of the Churchill River Diversion to Wildlife. Executive Task Force Report. Section
 Report E. Winnipeg.
- Goulden H.D. et al. 1973. <u>Land Capability Class-ification for Wildlife-Ungulates</u>. Dept. of Mines, Resources and Environmental Management.

- Guymer, W. 1957. Woodland Caribou Survey 1957. Dept. of Mines and Natural Resources.
- . 1958. Woodland Caribou Survey 1958

 (Aerial). Dept. of Mines and Natural Resources. Game Branch.
- Hall, E.R. and K.R. Kelson. 1959. The Mammals of North America. Volume 1 and 11 Roland Press Co. New York.
- Harper, W.K. 1968. Post Hunting Season Reports

 by Conservation Officers. 1968 Spring Bear

 Season. Dept. of Mines and Natural Resources.

 Wildlife Branch. Typescript.
- Harper, W.K. 1968. Wolf Dispersal, Population
 Densities and Distribution in Northern
 Manitoba. Dept. of Mines, Resources and
 Environmental Management.
- Hildebrand, P.R. and J.O. Jacobson. 1974. <u>Helicopter Census of Moose in the Red Deer Lake Area, Manitoba</u>. Canada Land Inventory. Pilot Land Use Planning. The Pas.
- Hildebrand, P.R. 1974. Analysis of Hunting Activity by The Pas Big Game Hunters during the 1972 Moose and Deer Hunting Season. Dept. of Mines, Resources and Environmental Management. The Pas.
- Holbrow, W.C. 1976. The Biology, Mythology Distribution and Management of the Wolverine (G. . . . in Western Canada. Practicum Natural Resource Institute. University of Manitoba. Winnipeg.
- Howard, J.L. 1959. Winter Study of Food Habits,

 Reproductive Activity and Ageing of River

 Ottor in Northern Manitoba. Dept. of Mines,

 Resource and Environmental Management.
- . 1960. A Study of Woodland Caribou
 Winter Range. Dept. of Mines, Resources
 and Environmental Management.
 - · 1960. 1960 Aerial Moose Census, Cranberry Portage, Manitota. Dept. of Mines and Natural Resources. Winnipeg.
- . 1960. 1960 Aerial Moose Census, Summerberry Marsh, Manitoba. Dept. of M.nes and Natural Resources. Winnipeg.
- Survey, Northern Manitota, Dept. of Mines and Natural Resources, Game Branch.
- . 1960. 1960 Aerial Moose Census,

 Lynn Lake Area. Dept. of Mines and Natural
 Resources. Winnipeg.

- Howard, J. L. 1961. Moose Populations Manitoba Dept. of Mines and Natural Resources.
- . 1969. Winter Moose Survey of the
 Rat River, Granville and Burntwood Lake
 Areas. Dept. of Mines, Resources and Environmental Management. Manuscript Report.
- . 1970. Moose Habitat in Northern
 Manitoba. Dept. of Mines, Resources and
 Environmental Management. Manuscript Report.
- . 1970. Moose in Northern Manitoba.

 Dept. of Mines, Resources and Environmental
 Management. Manuscript Report.
- Howard, J.L. and R.A. Larche. 1977. A Plan for the Moose in Manitoba. Department of Renewable Resources and Transportation Services. Manuscript Report No. 77-13. Winnipeg.
- Jahn, B.E. 1969-76. Post Season Reports. Dept. of Renewable Resources and Transportation Services. The Pas.
- Jonkel, C. 1970. "The present status of polar bear research in Canada." in Polar Bears proceedings of the Polar Bear Specialist group of the International Union for Conservation of Nature and Natural Resources (IUCN). Supplementary Paper No. 29. pp. 8-11. Morges, Switzerland.
- Jonkel, C.J., G.B. Kolenosky, R.J. Robertson and R.H. Russell. 1972. "Further notes on polar bear denning habits." in Bears Their Biology and Management. Panel 3: Polar Bear Studies. International Union for Conservation of Nature and Natural Resources (IUCN) Publication New Series No. 23. pp. 142-158. Morges, Switzerland.
- Jonkel, C. and I. Stirling. 1972. "Polar bear research in Canada, 1970-1971." in Polar Bears proceedings of the Polar Bear Specialist group of the Internation Union for Conservation of Nature and Natural Resources (IUCN). Supplementary Paper No. 35. pp. 50-53. Morges, Switzerland.
- Kearney, S. 1977. An Analysis of the 1976 Polar

 Bear Tagging Program at Churchill, Manitoba

 Department of Renewable Resources and Transportation Services. Manuscript Report No.

 77-28. Winniepg.
- Kelsall, J.P. 1960. Co-operative Studies of
 Barren-Ground Caritou 1957-58. Canadian
 Wildlife Service. Wildlife Management
 Bulletin Series 1, No. 15. Ottawa.
- . 1968. The Migratory Barren-Ground Cariton of Canada. Canadian Wildlife Service monograph No. 3. Ottawa.

- Koonz, W.K. 1973. <u>Upper Churchill Reindeer</u>
 <u>Lake Wildlife Studies</u>. Dept. of Mines, Resources and Environmental Management.
 Research Branch. Winnipeg.
- . 1974. The Distribution and Abundance
 of Wildlife on Long Point. Dept. of Mines,
 Resources and Environmental Management.
 Publication No. 74-4.
- . 1975. Small Mammal and Hare Populations in Relation to Vegetation Types on Long Point 1971-74. Dept. of Mines, Resources and Environmental Management. Research Branch. Publication No. 75-3.
- . 1976. A Biological Investigation
 of Lynx in Manitoba. Dept. of Renewable
 Resources and Transportation Services. Research Branch. Manuscript Report No. 76-2
 Winnipeg.
- Larche, R.A. 1972. Critical and Important Wildlife Areas in Northern Manitoba. Dept. of Mines, Resources and Environmental Management. Resource Planning. Manuscript Report No. 73-14.
- Loughrey, A.G. 1957. Caribou investigations in Keewatin and Manitoba, May 7 to May 30, 1957. Canadian Wildlife Service. Mimeograph
- Loughery, A.G. and J.P. Kelsoll, 1970. "The ecology and population dynamics of the barren-ground caribou in Canada." Ecology and Conservation Helsinki Symposium Proc. 1966 UNESCO. pp. 275-280.
- Manitoba, Dept. of Renewable Resources and Transportation Services. 1978. <u>Watching for Nanook</u>. Northern Resource Development Centre, Winnipeg, Churchill
- Manitoba, Dept. of Mines, Resources and Environmental
 Management. n.d. 1974 Manitoba Moose Harvest
 Summary. Wildlife Branch. Typescript.
 Winnipeg.
- n.d. Hunter Surveys 1973/74. Wildlife
 Branch. Typescript. Winnipeg.
- n.d. 1972/73 Hunter Survey. Development and Extension Service. Typescript. Winnipeg.
- McLeod, J.A. 1950. "A consideration of muskrat populations and population trends in Manitoba."

 Canada. (8) 44: 69-79.
- McLeod, J.A. et al. 1951. An Interim Report on a Biological Investigation of the Muskrat in Manitoba, 1950-51. Dept. of Mines and Natural Resources. Winnipeg.

- Miller, D. 1964. 1964 Aerial Moose Census, of

 Northern Manitoba. Dept. of Mines and Natural Resources.
- Miller, D. and W. Shipley. 1965. Moose Evaluation
 Program Grand Rapids Hydro-Electric Impoundment. Dept. of Mines and Natural Resources. Winnipeg.
- Miller, D.R. and J.D. Robertson. 1967. "Results of tagging caribou at Little Duck Lake, Manitoba." <u>Journal of Wildlife Management</u>. 31 (1): 150-159.
- Miller, D.R. 1968. Woodland Caribou Report.

 Dept. of Mines and Natural Resources.

 Wildlife Branch.
- Miller, D.R. 1974. "Seasonal changes in the feeding behaviour of barren-ground caribou on the tiaga winter range." in The Behaviour of Ungulates and its Relation to Management.

 Symposium of the Internation Union for Conservation of Nature and Natural Resources.
 No. 24. pp. 744-758. Morges, Switzerland.
- Miller, F.L. 1974. Biology of the Kaminumiak
 Population of Barren Ground Caribou: Part 2.
 Canadian Wildlife Service. Report Series
 No. 31.
- Nash, J.B. 1951. An Investigation of ome roblems of Ecology of the Beaver in Northern Manitoba. Dept. of Mines and Natural Resources. Winnipeg.
- Nero, R.W. 1969. "The status of the Great Gray Owl in Manitoba." <u>Blue Jay</u>. 27: 191-209.
- Novakowski, N.S. 1964. Report on the Assessment of Proposed Bison Range in the Saskatchewan River Delta Area. Dept. of Mines and Natural Resources. Winnipeg.
- . 1970. "Endangered canadian mammals."

 The Canadian Field Naturalist. 84 (1): 1723.
- Page, P.L., D. Roberts, C. Vanderpont and J. Dawson. 1978. 1977/78 Big Game Hunter Survey Report. Dept. of Renewable Resources and Transportation Services. Wildlife Management Section. Manuscript Report No. 78-61. Winnipeg.
- Page, P.L. 1976. Non-Resident Moose Hunter Survey.

 Dept. of Renewable Resources and Transportation
 Services. Wildlife Programs. Typescript.
 Winnipeg.
- vey. Dept. of Renewable Resources and Transportation Services. Wildlife Programs. Typescript. Winnipeg.

- Page, P.L., 1976. Non-Resident Moose Hunter

 Survey, August, 1976. Dept. of Renewable Resources and Transportation Services.

 Typescript. Winnipeg.
- . 1976. Non-Resident Moose Hunter Survey,
 August, 1976. Dept. of Renewable Resources and
 Transportation Services. Wildlife Programs.
 Winnipeg.
 - Dept. of Renewable Resources and Transportation Services. Manuscript Report No. 77-37. Winnipeg.
- Parker, G.R. 1972. Biology of the Kaminuriak
 Population of Barren-Ground Caribou. Part 1.
 Canadian Wildlife Service. Report Series
 No. 20.
- Robertson, J.D. 1961. "Canadian tagging."

 Beaver. Summer 1961. :24-27.
- Rutherford, O.B. and J.H. Morphy. 1952. "White whales of Manitoba." Canada, Dept. of Fisheries. <u>Trade News</u>. 5 (6): 3-5.
- Scott, V.H. 1972. Winter Weather and Wild Ungulates. Dept. of Mines, Resources and Environmental Management. Resource Projects Report No. 10. Winnipeg.
- Scotter, G.W. 1967. "Effects of the fire on Barren-Ground Caribou and their forest Habitat in Northern Canada." <u>Transactions of North American Wildlife and Natural Resources Conference 1967</u>: 246-259.
- _____. 1967. "The winter diet of barrenground caribou in northern Canada." The Canadian Field Naturalist. 81 (1): 33-39
- Sergeant, D.E. 1962. The Biology and Hunting of
 Beluga or White Whales in the Canadian
 Arctic. Fisheries Research Board of Canada.
 circular No. 8. Montreal.
- Seton, E.T. 1909. <u>Lives of Game Animals</u>. Volume I, II, III and IV. Charles T. Brantford Co. 1953 edition.
- Shoesmith, M.W. 1977. Social Organization of Wapiti and Woodland Caribou (Mammalia: cervidae). Ph.d. Thesis. University of Manitoba. Winnipeg.
- Shoesmith, M.W. and D.R. Storey. 1977. Movements and Associated Behaviour of Woodland Caribou in Central Manitoba. Department of Renewable Resources and Transportation Services.

 Manuscript Report No. 77-15. Winnipeg.

- Shoesmith, M.W. and D.R. Storey. 1977. "Movements and associated behavior of woodland caribou in central Manitoba." in XIII International Congress of Game Biologists. The Wildlife Society and the Wildlife Management Institute. pp. 51-64. Atlanta.
- Soper, J.D. 1961. "The Mammals of Manitoba." The Canadian Field Naturalist. 75 (4): 171-219.
- Stevens, K.M. and D.R. Storey. 1977. A Score
 Sheet Method of Woodland Caribou Habitat
 Evaluation. Department of Renewable Resources and Transportation Services. Manuscript Report No. 77-36.
- Stirling, I. and A. Macpherson. 1972. "Polar bear management changes in Canada." in Polar Bears proceedings of the Polar Bear specialist group of the International Union for Conservation of Nature and Natural Resources (IUCN). Supplementary Paper No. 35. pp. 54-59. Morges, Switzerland.
- Stirling, I., C. Jonkel, P. Smith, R. Robertson and D. Cross. 1977. The Ecology of the Polar Bear (Vrsus moritimus) Along the Western Coast of Hudson Bay. Environment Canada, Canadian Wildlife Service. Occassional Paper No. 33.
- Van Zyll de Jong, C.G. 1975. "The Distribution and Abundance of the Wolverine (Gulo gulo) in Canada." The Canadian Field Naturalist. 89 (4): 431-437.
- Waller, S. 1951. "Short-tailed weasel and young in Manitoba." The Canadian Field Naturalist. 65 (3): 120
- Yake, T. 1972. Big Game and Game Bird Kill Summaries
 1971/72. Dept. of Mines, Resources and Environmental Management. Wildlife Programs.
 Winnipeg.

Wildlife (birds)

- Adams, G.D. 1968. Waterfowl Surveys, October

 16, 17, 18 in Northern Manitoba. Canadian
 Wildlife Service. Winnipeg.
- . 1970. Preliminary Assessment of
 some Water Quality Criteria of Waterfowl
 Habitat Units in Manitoba. Canadian Wildlife Service.
- Aladen, W.J.L. and A.A. Kistchinski. 1977. "Some results from circumpolar marking programs on northern swans and snow geese." in XIIIth International Congress of Game Biologists. The Wildlife Society and the Wildlife Management Institute. pp. 498-507. Atlanta.
- Arbib, R.S. 1972. "The Blue List for 1973."

 American birds, incorporating Audubon Field

 Notes. 26 (6): 932-933.
- . 1974. "The Blue List for 1975."

 American birds, incorporating Audubon Field
 Notes. 28 (6): 971-974.
- . 1975. "The Blue List for 1976."

 American birds. 29 (6): 1067-1072.
- _____. 1976. "The Blue List for 1977."

 American birds. 30 (6): 1031-1039.
- Bartonek, J.C. and J.J. Hickey. 1969. "Foods of canvasback, redheads and lesser scaup in Manitoba." Condor 71.
- Bartonek, J.C. and H.W. Murdy. 1969. "Summer foods of lesser scaup in subarctic tiaga." Arctic.
- Benson, D.A. 1969. "Waterfowl harvest and hunter activity in Canada during the 1968-69 hunting season." in <u>Progress Notes</u>.
 Canadian Wildlife Service. No. 10
 July, 1969. Ottawa.
- . 1970. "Report on sales of the Canada Migratory game bird hunting permit and waterfowl harvest and hunter activity,1969/70." in Progress Notes. Canadian Wildlife Service. No.16 July, 1970. Ottawa.
- . 1971. "Report on the sales of the Canada migratory game bird hunting permits and waterfowl harvest and hunter activity, 1970." in Progress Notes. Canadian Wildlife Service. No. 22 August, 1971. Ottawa.
- Bent, A.C. 1963. Life histories of North American Wood Warblers, Dovers Publications Incorporated, New York. Parts I and II.
- . 1964. Life histories of North
 American Nuthatches, Wrens, Thrashers and
 Their Allies. Dover Publications Incorporated. New York.

- Bent, A.C. 1964. <u>Life Histories of Northern</u>

 <u>American Thrushes, Kinglets and Their</u>

 <u>Allies. Dover Publications Inc. New York.</u>
- . 1968. Life histories of North
 American Cardinals, Grosbeaks, Buntings,
 Towhees, Finches, Sparrows, and Allies.
 Dover Publications Incorporated, Part 1,
 2 and 3.
- Bossenmaier, G.F. et al. 1972. Manitoba Deer and Waterfowl Plans. Dept. of Mines, Resources and Environmental Management. Wildlife Planning Task Force. Winnipeg.
- Brazda, A.R. and R.A. Gimby. 1973. <u>Waterfowl</u>
 breeding Pair Survey: Northern Saskatchewan
 Northern Manitoba, and the Saskatchewan
 River Delta. U.S. Dept. of Interior.
 Bureau of Sport Fisheries. Special Report.
- . 1973. Waterfowl Production Survey

 July 10-22, 1973. U.S. Dept. of Interior.

 Bureau of Sport Fish and Wildlife. Special
 Report.
- Brisco, B.W., 1974. <u>Waterfowl Habitat of the Nelson River Estuory and Hudson Bay Coast-line</u>. Canadian Wildlife Service. Pre-liminary study. Winnipeg.
- Canada, Environment Canada. 1974. List of Protected Birds in Canada Under the Migratory
 Birds Convention Act. Canadian Wildlife
 Service. Occasional Paper No. 1, 4 edition,
 Ottawa.
- . 1974. <u>Birds Protected in Canada</u>.

 Canadian Wildlife Service. Occasional
 Paper No. 1, 4th edition. Ottawa.
- Land Capability for Wildlife —
 <u>Waterfowl</u>. Canada Land Inventory Maps.
 Lands Directorate. Ottawa.
- Cooch, F.G., G.W. Kaiser and L. Wright. 1972.

 <u>Species of Waterfowl and age-sex ratios of ducks harvested in Canada during the 1971</u>

 <u>season</u>. Canadian Wildlife Service Progress Note No. 29.
- Cooch, F.G. 1972. "Report on the sales of the Canada migratory game bird hunting permit, migratory game bird harvest and hunter activity, 1971."

 in <u>Progress Notes</u>. Canadian Wildlife Service.
 No. 28. July, 1972. Ottawa.
 - . 1973. "Report on 1972 sales of the Canada migratory game bird hunting permit, migratory game bird harvest and hunter activity" in Progress Notes. Canadian Wildlife Service. No. 34. September, 1973. Ottawa.

- Cooch, F.G., G.W. Kaiser, and L. Wright, 1974. "Report on 1973 sales of the Canada migratory game bird hunting permit, migratory game bird harvest and hunter activity." in Progress
 Notes. Canadian Wildlife Service. No. 41. July, 1974. Ottawa.
- Cooch, F.G. and H.A. Raible, 1975. "Report on 1974 sales of the Canada migratory game bird hunting permit, waterfowl harvest, and hunter activity." in Progress Notes. Canadian Wildlife Service. No. 51. November, 1975. Ottawa.
- . 1975. "Harvest of migratory game birds other than waterfowl in Canada 1974." in Progress Notes. Canadian Wildlife Service. No. 52. November, 1975. Ottawa.
- Cooch, F.G. 1976. "Report on 1975 sales of the Canada migratory game bird hunting permit, waterfowl harvest, and hunter activity." in Progress Notes. Canadian Wildlife Service. No. 70. December, 1976. Ottawa.
- . 1976. "Kill of migratory game birds other than waterfowl by hunters in Canada 1975." in Progress Notes. Canadian Wildlife Service. No. 68. October, 1976.
- Cooch, F.G., K. Newell, and S. Wendt. 1978. "Report on 1976 sales of the Canada migratory
 game bird hunting permit, waterfowl harvest, and hunter activity." in Progress
 Notes. Canadian Wildlife Service. No. 81.
 January, 1978. Ottawa.
- game birds other than waterfowl by hunters in Canada." in Progress Notes. Canadian Wildlife Service. No. 83. March, 1978.
- Cook F., R.K. Ross, R.K. Smith and A.J. Pakalak. 1975. "Birds of the tundra biome at Cape Churchill and La-Perouse Bay, Manitoba Canada." The Canadian Field Naturalist. 89 (4): 413-432.
- Copeland, H.W.R. and G. Smith. 1963. "The birds of the Pikwitonei area of Manitoba."

 Natural History Society-Manitoba Ornithology
 Section Newsletter. No. 3: 25-28, and No. 4: 37-40.
- Dirschl, H.J. 1969. "Foods of lesser scaup and blue-winged teal in the Saskatchewan River Delta." Journal of Wildlife Management. 33 (1): 77-87.
- Ducks Unlimited (Canada) Annual Counts.
- Erskine, A.J. 1977. Birds in Boreal Canada. Canadian Wildlife Service. Report series No. 41. Ottawa.

- Evans, R.M. 1970. "Oldsquaw nesting in association with arctic terns at Churchill, Manitoba."

 Wilson Bulletin 82 (4): 383-390.
- Evans, R.M. and M.K. McNicholl. 1972. "Variations in the reproductive activities of arctic terns at Churchill, Manitoba." Arctic 25 (2): 131-141.
- Fairchild, G.M. (ed). 1974. Long Point Bird Observatory 1972 Annual Report.
- Fowke, S.C. 1964. "Winter birds at Norway House."
 Blue Jay 22: 56-57.
- Gillespie, M.M. and D.H. Rusch. 1972. The Status of Fish-Eating Raptors near Cross Lake,
 Manitoba. Dept. of Mines, Resources and
 Environmental Management. Research Branch.
 Publication No. 72-21.
- Gillespie, M.M. 1974. The Status of Fish-Eating
 Birds Near Cedar Lake, Manitoba. Dept. of
 Mines, Resources and Environmental Management. Publication No. 74-3.
- Gillespie, W.L. 1960. <u>Breeding Bird and Small</u>

 Mammal Populations in relation to the Forest Vegetations of Northern Manitoba.

 Ph.d. Thesis. University of Illinois.
- Godfrey, W.E. 1951. "Geographical variation in the boreal chickadee east of the rockies."

 The Canadian Field Naturalist. 65 (1): 22-26.
- . 1966. "A summer tanager in Manitoba." The Canadian Field Naturalist 80 (4): 54.
- . 1966. The Birds of Canada. National Museum of Canada Bulletin. No. 203. Biological series No. 73. Ottawa.
- . 1970. "Canada's Endangered Birds." The Canadian Field Naturalist 84: 24-26.
- Harper, W.K. 1973. <u>Bald Eagle Sighting in The Pas Special Area</u>. Dept. of Mines, Resources and Environmental Management. Pilot Land Use Planning Project. The Pas.
- Harris, W.C. and S.M. Lamont. 1976. "The winter season, December 1, 1975 - March 31, 1976. Northern Great Plains Region." American Birds 30 (1): 732-735.
- Hildebrand, P.R. 1974. The Status and Distribution of Canada Geese in the Pilot Land Use Planning Area. Dept. of Mines, Resources and Environmental Management. The Pas.
- Hooper, R.R. 1962. "The Birds of Lynn Lake." Plue Jay 20: 158.

- Houston, C.S. 1971. "The spring migration, April 1 May 31, 1971: Northern Great Plains Region." American birds incorporating Audubon Field Notes. 25 (4): 758-764.
- . 1971. "The Nesting Season: June 1 - August 15, 1971: Northern Great Plains Region." American birds incorporating Audubon Field Notes. 25 (5): 869-872.
- . 1971. "The fall migration (August 15 - November 30, 1970): Northern Great Plains Region." American birds, incorporating Audubon Field Notes. 25 (1): 71-74.
- . 1971. "The winter season (December 1, 1970 March 31, 1971): Northern Great Plains." American birds incorporating Audubon Field Notes. 25 (3): 593-596.
- . 1972. "The spring migration: April 1, 1972 May 31, 1972: Northern Great Plains." American birds incorporating Audubon Field Notes. 26 (4): 774-777.
- . 1972. "The nesting season: June 1 August 15, 1972: Northern Great Plains."

 American birds incorporating Audubon Field

 Notes. 26 (5): 869-872.
- 1972. "The fall migration: August
 16 November 30, 1972: Northern Great
 Plains." American birds incorporating
 Audubon Field Notes. 26 (1): 78-80.
- . 1972. "The winter season: December
 1, 1971 March 31, 1972: Northern Great
 Plains." American birds incorporating
 Audubon Field Notes. 26 (3): 619-622.
- 1973. "The fall migration: August 16 - November 30, 1972: Northern Great Plains." American birds incorporating Audubon Field Notes. 27 (1): 75-78.
- . 1973. "The winter season: December 1, 1972 March 31, 1973: Northern Great Plains." American Birds incorporating Audubon Field Notes. 27 (3): 630-633.
- 1974. "The nesting season: June
 1 July 31, 1974: Northern Great Plains."

 American Birds incorporating Audubon Field
 Notes. 28 (5): 915-918.
- . 1974. "The fall migration: August 1 - November 30, 1973: Northern Great Plains Region." <u>American Birds</u>. 28 (1): 67-70.
- . 1974. "The winter season: December
 1, 1973 March 31, 1974: Northern Great
 Plains." American Birds incorporating
 Audubon Field Notes. 28 (3): 653-656.

- Houston, C.S. and S.J. Shadick. 1974. "The spring migration: April 1, 1974 May 31, 1974:

 Northern Great Plains." American birds, incorporating Audubon Field Notes. 28 (4): 814-817.
- Howard, 1962. <u>Goose populations Saskatchewan</u>
 River Delta. Dept. of Mines and Natural
 Resources. Winnipeg.
- . 1970. Waterfowl in Northern Manitoba. Dept. of Mines, Resources and Environmental Management. Manuscript Report.
- Imrie, M.C. 1973. <u>Bald Eagle sightings in The</u>

 <u>Pas Special Area</u>. Dept. of Mines, Resources
 and Environmental Management. The Pas.
- Jehl. J.R. Jr. 1970. "Sexual selection for size
 differences in two species of sandpipers."
 Evolution 24 (2): 311-319.
- Johnson, J.W. 1970. "A Bird List for Thompson, Manitoba." <u>Blue Jay</u>. 28: 14-19.
- Koonz, W. 1975. A Songbird Number and Species
 Comparison by Habitat Type Between Spruce
 Woods and Sisipuk Lake, Manitoba. Dept. of
 Mines, Resources and Environmental Management. Research Branch. Manuscript Report
 No. 75-16. Winnipeg.
- Larche, R.A. and S.G. Sealy. 1977. "Inland records of the rock ptarmigan in Manitoba." Blue Jay. 35 (2): 99-101.
- Lumsden. H.G. 1964. "The rock ptarmigan, Lagopus mutus repestris in Ontario and Manitoba."

 The Canadian Field Naturalist. 78 (3): 161-166.
- MacInnes, C.G. 1971. "Long-eared owl at Churchill, Manitoba." The Canadian Field Naturalist 85 (4): 327.
- Manitoba Waterfowl Technical Committee. 1975.

 1975 Manitoba Breeding Waterfowl Status
 Report. Dept. of Renewable Resources and
 Transportation Services. Manitoba Waterfowl Technical Committee. Manuscript
 Report. Winnipeg.
- Mowat, F.M. and A.H. Lawrie. 1955. "Bird observations from southern Keewatin and the interior of northern Manitoba." The Canadian Field Naturalist. 69: 116.
- Nero, R.W. 1969. "The status of the great gray owl in Manitoba." <u>Blue Jay</u> 27: 191-209.
- Norris-Elye, L.T.S. 1951. "Manitoba bird records, 1950." <u>The Canadian Field-Naturalist</u>. 65 (2): 79-80.

- Page, P.L. n.d. 1975/76 Hunter Questionnaire Survey. Dept. of Renewable Resources and Transportation Services. Wildlife Programs. Typescript. Winnipeg.
- Pakulak, A.J. and C.D. Littlefield. 1968. <u>Breeding</u>
 Status of Whistling Swans in Northern Manitoba. Dept. of Mines, Resources and Environmental Management. Manuscript Report.
- . 1968. Black Duck Observations in

 Northern Manitoba. Dept. of Mines, Resources and Environmental Management.

 Winnipeg.
- Geese of the Churchill Area, Northern Manitoba. MS Thesis. Colorado State University.
- Parmelee, D.F. 1968. "Nesting of the great gray owl in Manitoba." <u>Blue Jay.</u> 26: 120-121.
- Raveling, D.G. 1970. Churchill River Nesting of Canada Geese, 1970. Canadian Wildlife Service.
- . 1970. Status and Distribution of Canada Geese in Manitoba. Canadian Wildlife Service. Winnipeg.
- . 1977. "Canada geese of the Churchill River basin in north-central Canada." The Journal of Wildlife Management. 41 (1): 35-47.
- Rawson, D.S. 1952. A Bird Investigation of
 Reindeer Lake. Saskatchewan Dept. of
 Natural Resources. Fisheries Branch.
- Robertson, R.J. 1970. Control burning in Waterfowl Nesting Habitat of Saskeram Wildlife Management Area. Dept. of Mines and Natural Resources. Winnipeg.
- Ryder, J.P. 1973. Nesting Distribution and Banding of Canada Geese in Northern Manitota. Dept. of Mines, Resources and Environmental Management. Special Report No. 73-4.
- Scott, W.B. and E.J. Crossman. 1973. Freshwater Fishes of Canada. Environment Canada, Fisheries Research Board of Canada Bulletin 184. Ottawa.
- Serr, E.M. 1975. "The spring migration, April 1-May 31, 1975: North Great Plains Region." American Birds. 29 (4): 867-870.
- July 31, 1975: Northern Great Plains Region."

 American Birds. 29 (5): 995-999.
- . 1975. "The winter season, December 1, 1974 - March 31, 1975: North Central Plains." American Birds. 29 (3): 705-707.

- Serr, E. M. 1976. "The spring migration, April 1 - May 30, 1976: Northern Great Plains Region." American Birds. 30 (5): 855-858.
- July 31, 1976: "The nesting season, June 1
 July 31, 1976: Northern Great Plains."

 American Birds. 30.
- . 1976. "The fall migration, August 1 - November 30, 1975: Northern Great Plains Region." American Birds. 30 (1): 87-90.
- Stewart, R.E., A.D. Geis, and C.D. Evans. 1958.
 "Distribution of populations and hunting kills of the canvasback." Journal of Wildlife Management. 22 (4): 333-370.
- Sutton, R.W. 1962. "Bird finding in Manitoba." Canadian Audubon. 24 (2): 10-14.
- Townsend, G.H. 1966. "A study of waterfowl nesting on the Saskatchewan River Delta." The Canadian Field Naturalist. 80 (2): 74-88
- Townsend, G.H. 1968. Waterfowl Management Possibilities in Area (D). Ducks Unlimited (Canada).
- Vermeer, K. 1969. "The present status of doublecrested cormorant colonies in Manitoba." <u>Blue Jay</u> 27: 217-220.
- . 1973. "Great blue heron and double-crested cormorant colonies in the prairie provinces." The Canadian Field Naturalist. 87: 427-432.
- Vermeer, K. and D.R.M. Hatch. 1972. "Additional information on great blue heron colonies in Manitoba." Blue Jay 30: 89-92.
- Walkinson, L.H. 1949. The Sandhill Cranes, Cranbrook Institute of Science, Michigan.
- Waller, S. 1967. Some interesting bird records from The Pas, Manitoba." Blue Jay. 25: 120.
- Webb, R. 1973. "Wildlife resource impact assessment Lake Winnipeg, Churchill and Nelson River Hydro electric projects No. 1 Outlet Lakes." Lake Winnipeg, Churchill and Nelson River Study. Wildlife Studies. Technical Report. Appendix 6.
- Wellein, E.G. et al. 1953. "Aerial surveys in western Ontario, northern Manitoba, northern Saskatchewan and the Districts of Mackenzie and Keewatin, 1952." U.S. Fish and Wildlife Service. Waterfowl Populations and Breeding Conditions. Summer 1952. Special Scientific Report 21: 76-80.
- West, G.C. 1973. "Foods eaten by tree sparrows in relation to availability during summer in northern Manitoba." Arctic.. 26 (1): 7-21.

Whitfield, D.W.A., J.M. Gerrard, W.J. Maher and D.W. Davis. 1974. "Bald eagle nesting habitat, density and reproduction in central Saskatchewan and Manitoba." The Canadian Field Naturalist. 88 (4): 399-407.

Yake, T. 1972. Big Game and Game Bird Kill Summaries
1971/72. Dept. of Mines, Resources and Environmental Management. Wildlife Programs.
Winnipeg.

Wildlife (fish)

- Adams, G.D. n.d. Grand Rapids Hydro-Electric
 Project, Saskatchewan River: A Report on
 Fish and Wildlife Resources. Canadian
 Wildlife Service. Winnipeg.
- Allard, L. 1963. Fish Spawning in the Kelsey Area of the Saskatchewan River. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1964. Grand Rapids Forebay Survey,
 Cedar Lake Whitefish Spawning Ground Investigations in 1963. Dept. of Mines and
 Natural Resources. Fisheries Branch.
 Manuscript Report.
- Ayles, H.A. 1973. The Limnology Fisheries of
 Playgreen and Kiskittogisu Lakes, Manitoba.
 Part II Morphometry, Biology and Fisheries.
 Manitoba Hydro Manuscript Report.
- . 1976. Lake Whitefish (Coregonus clupeaformis (Mitchell) in Southern Indian Lake, Manitoba. Canada, Fisheries and Marine service, Technical Report No. 640. Ottawa.
- Ayles, H., S.B. Brown, K. Machniak and J. Sigurdson 1974. "The fisheries of the lower Churchill Lakes, the Rat-Burntwood lakes and The upper Nelson lakes: Present conditions and implications of hydro-electric development."

 Lake Winnipeg, Churchill and Nelson Rivers

 Study. Appendix 5. Volume 2-I.
- Ayles, H.A. and G.D. Koshinsky. 1974. "The fisheries of Southern Indian Lake: Present conditions, and implications of hydro-electric development." Lake Winnipeg, Churchill and Nelson Rivers Study. Appendix 5. Volume 2-H.
- Bilan, M. 1974. Manitoba Fisheries Fact Book.

 Dept. of Mines, Resources and Environmental
 Management. Fisheries Programs. Development
 and Extension Services. Winnipeg.
- Brampton, G. 1975. Market Survey of Road Access
 Fishing Lodges in Northern Manitoba. Dept.
 of Tourism, Recreation and Cultural Affairs.
 Research and Planning Branch and the Natural
 Resource Institute. University of Manitoba.
 Winnipeg.
- Carter, N.M. 1968. Index and List of Titles,
 Figheries Research Board of Canada and
 Associated Publications, 1900-1904.
 Fisheries Research Board of Canada. Bulletin
 No. 164. Ottawa.
- . 1973. Index and List of Titles:
 Fisheries Research Found of Canada and
 Associated Pullications 1975-1972. Canada
 Dept. of Environment. Fisheries Research
 Board of Canada. Miscellaneous Special
 Pullication No. 18. Ottawa.

- Crowe, J.M.E. 1964. <u>Halfway Lake Whitefish Infestation Test</u>, February, 1964. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1968. Bowden Lake Trout Transfer.

 Dept. of Mines, Resources and Environmental
 Management. Fisheries Branch.
- . 1973. Limnological Investigations of Kettle Reservoir and the Nelson River above Kelsey. Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report. No. 73-6. Winnipeg.
- . 1974. Heavy Metals in Manitoba
 Fish. Dept. of Mines, Resourcea and Environmental Management. Research Branch.
- . 1974. Limnological Surveys of
 Colin, Muhigan and Muningwari Lakes, July
 1973. Dept. of Mines, Resources and Environmental Management. Research Branch.
 Manuscript Report No. 74-8. Winnipeg.
- . 1975. A 1974 Limnological Survey of Five Lakes in the Snow Lake Area. Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report No. 75-6. Winnipeg.
- . 1976. A Limnological Survey of
 Farwell Lake, 1975. Dept. of Mines, Resources and Environmental Management. Environmental Management Division. Manuscript Report No. 76-2. Winnipeg.
- Derksen, A.J. 1967. Variations in Abundance of Walleyes, (Stizostedion Vitreum Vitreum) in Gedar and Moose Lakes, Manitoba. M. Sc. Thesis. University of Manitoba. Winnipeg.
- . 1972. Mercury contamination in
 Fishes from Duck Lake, Manitoba and Recommendations for Fisheries Management.

 Dept. of Mines, Resources and Environmental
 Management. Fisheries Branch.
- Dickson, I.W. 1969. Development Potential of the
 Grand Rapids Forebay Fishery. Dept. of
 Mines and Natural Resources. Fisheries
 Branch. Manuscript Report No. 72-8.
 Winnipeg.
- . 1972. The Impact of Impoundments on Fisheries. Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report No. 72-8. Winnipeg.
- . 1975. "Hydroelectric development of the Nelson River system in northern Manitoba." Journal of the Fisheries Research Board of Canada. 32

- Didiuk, A.B. 1975. Fish and Wildlife Resources

 Impact Assessment, Lower Nelson River, Manitoba. Dept. of Mines, Resources and Environmental Management. Research Branch.
 Winnipeg.
- Doan, K.H. 1948. Speckled trout in the lower

 Nelson River region, Manitoba. Fisheries

 Research Board of Canada. Bulletin No. 79.
- Driver, E.A. and K.H. Doan. 1965. <u>Fisheries Survey of Cross Lake-Nelson River</u>. Dept. of Mines, Resources and Environmental Management. Research Branch. Winnipeg.
- Driver, E.A. and E.T. Garside. 1966. "Meristic numbers of yellow perch in saline lakes in Manitoba." Journal of the Fisheries Research Board of Canada. 23 (11): 1815-1817.
- Efford, I.E. 1975. "Assessment of the Impact of Hydro-dams." Journal of the Fisheries Research Board of canada 32 (1): 196-209.
- Fedoruk, A.W. 1971. Freshwater fishes of Manitoba:
 Checklist and Keys. Dept. of Mines, Resources and Environmental Management.
 Winnipeg.
- Gaboury, M.N. 1978. Biological Investigations on Brook Trout Populations in the Long Spruce Limestone Area from 1975 to 1977 and Implications of Hydro-Electric Development of the Lower Nelson River. Dept. of Renewable Resources and Transportation Services. Manuscript Report No. 78-49. Winnipeg.
- Garside, E.T., A.J. Derksen and W.N. Howard. 1973.

 Summer Food Relations and Aspects of the
 Distribution of the Principal Percid Fishes
 of the Saskatchewan River Delta Prior to
 1965 Impoundment. Dept. of Mines, Resources
 and Environmental Management. Research
 Branch. Manuscript Report No. 73-18.
 Winnipeg.
- Howard, W.N. 1968. A Summary Report on the Fisheries of Cedar Lake and the Saskatchewan River in Manitoba. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report No. 18.
- Johnson, L., G.H. Lawler, and L.A. Dunde. 1970.

 Rainbow Trout Farming in Central Canada.

 Fisheries Research Board of Canada. Technical Report No. 165.
- Keleher, J.J. 1956. "The northern limit of distribution in Manitoba for cyprinid fishes."

 Canadian Journal of Zoology. 34 (4):
 263-266.

- Kennedy, W.A. 1963. "Growth and mortality of whitefish in three unexploited lakes in northern Canada." Journal of the Fisheries Research Board of Canada 20 (2): 265-272.
- Krivda, W. 1962. "The silver spotted skipper at
 The Pas, Manitoba." The Canadian Field Naturalist. 76 (3): 181-182.
- Lawler, G.H. and N.H.F. Watson. 1958. "Limnological studies of Hemming Lake, Manitoba and two adjacent lakes." <u>Journal of the Fisheries Research Board of Canada</u>. 15 (2): 203-218.
- . 1963. "The Biology and taxonomy of the Burbot, Lota lota, in Hemming Lake, Manitoba." Journal of the Fisheries Research Board of Canada. 20 (2): 417-433.
- . 1964. "Incidence of Ligula intestinolis in Hemming Lake fish." Journal of the Fisheries Research Board of Canada. 21 (3): 549-554.
- Lawler, G.H. and N.H.F. Watson. 1965. "The food of pike, Esox lucius, in Hemming Lake, Manitoba."

 Board of Canada. 22 (6): 1357-1377.
- Perca flavescens, and pike, Esox lucius, of Hemming Lake, Manitoba." Journal of the Fisheries Research Board of Canada. 23
- Lawler, G.H., and M. Fitz-Earle. 1968. "Marking small fish with stains for estimating populations in Hemming Lake, Manitoba." Journal of the Fisheries Research Board of Canada.

 25 (2): 255-266.
- Lawler, G.H. 1970. "Activity periods of some fishes in Hemming Lake, Canada." <u>Journal of the Fisheries Research Board of Canada.</u> 26 (12): 3266-3267.
- Loch, J.S. 1974. "Phenotypic variation in lake whitefish, coregonus clupeaformis, induced by introduction into a new environment."

 Journal of the Fisheries Research Board of Canada. 31 (1): 55-62.
- Lombard North Group Limited. 1975. A Fisheries
 Resources Allocation Study: North Eastern
 Manitoba. Winnipeg.
- MacCrimmon, H.R., and J.S. Campbell. 1969. "World istribution of brook trout, salvelinus fontinalis." Journal of the Fisheries Research Board of Canada. 26 (7): 1699-1725.

- Machniak, K. 1975. The Effects of Hydroelectric

 Development on the Biology of Northern
 Fishes. IV. Lake Trout (Salvelinus
 namaycush) (Walbaum). Environment Canada.

 Fisheries and Marine Service. Technical
 Report No. 530. Winniepg.
- Machniak, K. 1975. The Effects of Hydroelectric

 Development on the Biology of Northern
 Fishes. III. Yellow Walleye (Stizostedion
 vitreum vitreum) (Mitchill). Environment
 Canada. Fisheries and Marine Service. Technical Report No. 529. Winnipeg.
- Development on the Biology of Northern
 Fishes. II. Northern Pike (Esox lucius)
 (linnaeus). Environment Canada. Fisheries
 and Marine Service. Technical Report No.
 528. Winnipeg.
- Development on the Biology of Northern
 Fishes. I. Lake Whitefish (Coregonus
 clupeaformis) (Mitchill). Environment Canada.
 Fisheries and Marine Service. Technical
 Report No. 527. Winnipeg.
- Manitoba Hydro. 1970. Resources Investigations
 Fisheries. Underwood McLellan and Associates
 Ltd. Winnipeg.
- Moskenko, W.R. 1966. Whitefish Infestation Test
 Reed Lake, 1965. Dept. of Mines and Natural
 Resources. Fisheries Branch. Typescript.
 Winnipeg.
- Nose Lake, Manitoba in 1968. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript. Winnipeg.
- Nelson, J.S. 1969. "Geographic variation in the brook stickleback, <u>Culaea inconstans</u>, and notes on nomenclature and distribution."

 <u>Journal of the Fisheries Research Board of Canada</u>. 26 (9): 2431-2447.
- Nicholson, H.F. 1974. Bibliography on the Limnology and Fisheries of Canadian Freshwaters No. 1. Environment Canada. Fisheries and Marine Service. Technical Report No. 471.
- Novakowski, N.S. 1955. The Ecology of Reindeer Lake with Special Reference to Fish. MS. Thesis. University of Saskatchewan. Saskatoon.
- P.M. Associates Ltd. 1975. Fisheries Resources
 Allocation Project for the South Indian Lake
 Area. Dept. of Mines, Resources and Environmental Management. Winnipeg.

- Qadri, S.U. 1967. "Morphological comparisons of three populations of lake char, <u>Cristivomer nameychus</u>, from Ontario and Manitoba."

 Journal of the Fisheries Research Board of <u>Canada</u>. 24 (6): 1407-1411.
- Royer, L.M. Atton and J.P. Cuerrier. 1968. "Age and growth of lake sturgeon in the Saskat-chewan River delta." Journal of the Fisheries Research Board of Canada. 25 (7): 1511-1516.
- Schindler, E.J. 1970. 1958 Summary of Manitoba
 Master Angler Awards and Related Information.
 Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report No. 70-10.
- . 1970. 1959 Summary of Manitoba

 Master Angler Awards and Related Information.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Manuscript Report No. 70-11.
- . 1970. 1960 Summary of Manitoba Master Angler Awards and Related Information.

 Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report No. 70-12.
- . 1970. 1962 Summary of Manitoba Master Angler Awards and Related Information. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report No. 70-14.
- . 1970. 1963 Summary of Manitoba Master Angler Awards and Related Information. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report No. 70-15.
- Schlick. R.O. n.d. Report on Herblet Lake Triaenophorus Survey, 1962. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- n.d. Report on Herblet Lake Triaenophorus Survey, 1962. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
 - . 1963. Whitesand Bay (Reindeer Lake)
 Whitefish Infestation Test. Dept. of Mines
 and Natural Resources. Fisheries Branch.
 Manuscript Report. Winnipeg.
 - . 1963. Cousins Lake Whitefish Infestation Test. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1964. A Survey of Reed Lake, 1963.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Manuscript Report.
 - Rend Lair, 1943. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.

- Schlick, R.O. 1964. Landing Lake Whitefish Infestation Test, February, 1964. Dept. of Mines and Natural Resources. Fisheries Branch.

 Manuscript Report.
- . 1964. <u>Reed Lake Creel Census, 1963</u>.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Winnipeg.
- . 1964. Landing Lake Whitefish Infestation Test, February, 1964. Dept. of Mines and Natural Resources. Fisheries Branch.
 Manuscript Report.
- . 1964. Fish Tagging in Reed Lake, 1963.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Manuscript Report
 - . 1965. Whitefish Infestation Test
 Three Finger Lake, 1965. Dept. of Mines
 and Natural Resources: Fisheries Branch.
 Manuscript Report.
- . 1965. Whitefish Infestation Test
 Anvil Lake, 1965. Dept. of Mines and
 Natural Resources. Fisheries Branch.
 Manuscript Report.
- . 1965. Amulet Lake Fish Eradification
 Program, September, 1964. Dept. of Mines
 and Natural Resources. Fisheries Branch.
 Manuscript Report. Winnipeg.
 - . 1965. Gestur Lake Whitefish Infestation
 Test, March, 1965. Dept. of Mines and Natural
 Resources. Fisheries Branch. Manuscript
 Report. Winnipeg.
- . 1965. Amulet Lake Fish Eradification
 Program, September, 1964. Dept. of Mines
 and Natural Resources. Fisheries Branch.
 Manuscript Report. Winnipeg.
 - . 1965. An Experimental Whitefish Removal Program, Rocky Lake, 1965. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1966. The Experimental Whitefish
 Fishing Operation on Reed Lake, Manitoba in
 1965. Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
- . 1966. Whitefish Infestation Test,
 Wuskwatim Lake, August, 1966. Dept. of
 Mines and Natural Resources. Fisheries
 Branch. Manuscript Report. Winnipeg.
- . 1966. The Commercial Fishery on the

 North Arm of Moose Lake. Dept. of Mines
 and Natural Resources. Fisheries Branch.
 Manuscript Report. Winnipeg.
- . 1967. A Review of Borrow Pit
 Stockings in Northern Manitoba, 1967.
 Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report.
 Winnipeg.

- Schlick, R.O. 1967. Whitefish Infestation Split

 Lake, 1966. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript
 Report.
- . 1967. Whitefish Infestation Sipiwesk
 Lake, 1966. Dept. of Mines and Natural Resources. Manuscript Report.
- ., R.O. 1968. A Survey of Paint Lake
 1967. Dept. of Mines and Natural Resources
 Fisheries Branch. Manuscript Report No.
 68-11. Winnipeg.
- . 1965. A Survey of Upper Ospwagan
 Lake, 1965. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript
 Report.
- . 1968. A Partial Creel Census at

 Reed Lake in 1967. Dept. of Mines and
 Natural Resources. Fisheries Branch. Publication No. 68-3. Winnipeg.
- . 1968. A Survey of Molson Lake,
 1967. Dept. of Mines and Natural Resources.
 Fisheries Research. Manuscript Report
 No. 68-4.
- . 1968. A Survey of Sipiwesk Lake in 1966. Dept. of Mines and Natural Resources Fisheries Branch. Manuscript Report No. 68-5.
 - . 1968. A Survey of Split Lake in 1966. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report No. 68-8.
 - . 1971. A Fisheries Survey of Landing
 Lake, Manitoba. Dept. of Mines and Natural
 Resources. Fisheries Branch. Manuscript
 Report No. 70-21.
- 1971. Borrow Pit Creel Census along
 #10 highway in 1968. Dept. of Mines and
 Natural Resources. Fisheries Branch.
 Publication No. 70-8.
 - . 1971. A Fisheries Survey of Egg Lake
 1968. Dept. of Mines, Resources and Environmental Management. Fisheries Branch.
 - . 1972. A Fisheries Survey of Naosap Lake, 1970. Dept. of Mines, Resources and Environmental Management. Research Branch. Publication No. 71-3.
- . 1977. A Fisheries Survey of Kississing
 Lake 1968 and 1973. Dept. of Renewable Resources and Transportation Services. Manuscript Report No. 77-41. Winnipeg.

- Schlick, R.O. 1973. <u>Paint Lake Creel Census</u>, 1968.

 Dept. of Mines, Resources and Environmental

 Management. Research Branch. Publication

 No. 73-14. Winnipeg.
- . 1973. Mitchell Lakes Survey, 1968.

 Dept. of Mines, Resources and Environmental
 Management. Fisheries Branch.
- Fisheries Survey, 1973. Dept. of Renewable Resources and Transportation Services Fisheries Management Branch. Fisheries Research. Manuscript Report. No. 78-39. Winnipeg.
- Schweitzer, R.D. et al. 1973. Pre-impoundment Observation on some Fish Populations in Moose Lake, Manitoba, 1963. Dept. of Mines, Resources and Environmental Management. Research Branch. Manuscript Report No. 73-29.
- Scott, D.P. and F.A.J. Armstrong. 1972. "Mercury concentration in relation to size in several species of freshwater fishes from Manitoba and Northwestern Ontario." <u>Journal of the Fisheries Research Board of Canada</u>. 29 (12): 1685-1690.
- Scott, W.B. and E.J. Crossman. 1973. Freshwater
 Fishes in Canada. Environment Canada.
 Fisheries Research Board of Canada. Bulletin
 184. Ottawa.
- Stewart, K.W. and C.C. Lindsay. 1970. "First specimen of the stonecat, Noturus flavus, from Hudson Bay drainage." Journal of the Figuration Research Board of Danada. 27 (1): 170-172.
- Sopuck, R.D. 1978. The Status of the Whitefish
 Population of Goose Lake in Relation to the
 Commercial Fishery for 1977. Dept. of
 Northern Affairs, Renewable Resources and
 Transportation Services. Research Manuscript Report NA. 78-29. The Pas.
- . 1978. The Commercial Fishery of Playgreen Lake with notes on Recent Changes in the Whitefish Population. Dept. of Mines, Natural Resources and Environment. Research Manuscript Report No. 78-67. The Pas.
- Sopuk, R.D. and B.H. Wright. 1978. A Fish Passage
 Survey of Steam Crossings Along Some Major
 Roads in Northern Manitoba. Dept. of Mines,
 Natural Resources and Environment. Manuscript Report No. 78-87. The Pas.
- Sunde, L.A. 1999. Comparison of the Number and District Line Following. Street in the and 1957. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.

- Sunde, L.A. 1961. <u>Trap-Net Trials Lake Athapapuskow</u>
 <u>1961</u>. Dept. of Mines and Natural Resources.

 Fisheries Branch. Manuscript Report.
- Northern Manitoba, 1960. Dept. of Mines and Natural Resources. Fisheries Branch. Typescript. The Pas.
- Survey Interim Report, June 1961. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1961. Manistikwan Trout Transfer

 September-October, 1961. Dept. of Mines and
 Natural Resources. Fisheries Branch. Typescript.
- Probable Effect of the Grand Rapids Development on the Fishes and Fishing Industry of the Forebay Area. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1962. 1962 Tests on Borrow Pits Adjacent to P.T.H. #10 near The Pas, Manitoba.

 Dept. of Mines and Natural Resources.
 Fisheries Branch. Manuscript Report. Winnipeg.
- Rocky Lake Survey. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1963. Iskwasum Lake, Loucks Lake and the Grass River Creel Census Report, Summer, 1962. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1963. <u>Simonhouse Lake Whitefish Infestation Test</u>. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1963. Bowden Lake Trout Transfer.

 Dept. of Mines and Natural Resources.

 Fisheries Branch. Manuscript Report.
- . 1963. Cousins Lake Whitefish Infestation, 1963. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
 - . 1964. Tait Lake Whitefish Infestation Test March, 1964. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1964. Hallway I be whited the line fation is to the fation of the real Resources. Finheries branch. Most right Report.

- Sunde, L.A. 1964. Norris Lake Whitefish Infestation

 Test, February, 1964. Dept. of Mines and
 Natural Resources. Fisheries Branch. Manuscript Report.
- . 1964. McCallum Lake Whitefish Infestation Test, 1963. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1964. Summary of Whitefish Infestation

 Tests Conducted in Northern Manitoba in 1963.

 Dept. of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
- . 1964. South Indian Lake Whitefish
 Infestation Test March 5th to 7th, 1963.
 Dept. of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report
- . 1964. Cormorant Lake Survey, June 9 to
 25, 1964. Dept. of Mines and Natural Resources
 Fisheries Branch. Manuscript Report. Winnipeg.
 - . 1964. Review of Experiments in Whitefish Removal on Northern Angling Lakes; 1958 to 1963. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
 - . 1964. <u>Ham Lake Whitefish Infestation</u>
 <u>Test</u>. Dept. of <u>Mines and Natural Resources</u>.
 Fisheries Branch. <u>Manuscript Report</u>.
- . 1964. Experiments in Rough Fish Removal in Northern Manitoba. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1964. Einarson Lake Whitefish Infestation Test March, 1964. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1964. Whitefish Infestation Test,
 Cormorant Lake, June, 1964. Dept. of Mines
 and Natural Resources. Fisheries Branch.
 Manuscript Report.
- . 1964. Walker lake Whitefish Infestation Test. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1964. Landing Lake Tullibee Infestation Test. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
- . 1964. <u>Kokanee Transfers in Northern</u>

 <u>Manitoba, 1963</u>. Dept. of Mines and Natural

 Resources. Fisheries Branch. Manuscript

 Report.
- . 1965. B.C. Lake Whitefish Infestation
 Test, January, 1965. Dept. of Mines and
 Natural Resources. Fisheries Branch. Manuscript Report.

- Sunde, L.A. 1965. <u>Summary of Whitefish Infestation</u>

 <u>Tests Conducted in Northern Manitoba in 1964</u>.

 Dept. of Mines and Natural Resources. Fisheries

 Branch. Manuscript Report.
 - . 1965. <u>Hutchinson Lake Whitefish Infestation Test</u>. Dept. of Mines and Natural Resources. Fisheries Branch. Manuscript Report.
 - . 1965. Economic Evaluation of a Late
 Fall Whitefish Removal Operation on Lake
 Athapapaskow, Manitoba. Dept. of Mines and
 Natural Resources. Fisheries Report. Manuscript Report.
 - . 1965. Whitefish Removal Experiments in
 Lake Athapapuskow, October-November, 1964.

 Dept. of Mines and Natural Resources. Fisheries
 Branch. Manuscript Report.
 - . 1965. Landing Lake Whitefish Infestatio

 Test, August-September, 1964. Dept. of Mines
 and Natural Resources. Fisheries Branch.
 Manuscript Report.
 - . 1965. Lake Athapapuskow Whitefish
 Infestation Test, November, 1964. Dept. of
 Mines and Natural Resources. Fisheries
 Branch. Manuscript Report
 - Project. Dept. of Mines and Natural Resources
 Fisheries Branch. Manuscript Report.
 Winnipeg.
- Uthe, J.F. and E.G. Bligh. 1971. "Preliminary survey of heavy metal contamination of Canadian Freshwater fish." Journal of the Fisheries Research Board of Canada. 28 (5): 786-286.
- Watson, N.H.F. 1963. "Summer food of lake white fish, Coregonus clupeaformis (Mitchell), from Hemming Lake, Manitoba." <u>Journal of the Fisheries Research Board of Canada</u>. 20 (2): 279-286.
- Weagle, K.V. 1973. Fisheries of the Lake Winnipeg Outlet Lakes: Exploitation and Reproduction. Environment Canada. Fisheries Service Manuscript Report.
- Weagle, K.V. and W. Baxter. 1973. The Fisheries of Southern Indian Lake: Exploitation and Reproduction. Environment Canada. Fisheries and Marine Service. Manuscript Report.
- Webb, D.W. 1965. "Limnological features of Cedar Lake, Manitoba." <u>Journal of the Fisheries</u> <u>Research Board Canada.</u> 22: 1123-1136.
- Wobeser, G., N.O. Nielsen, R.H. Dunlop and F.M.
 Atton. 1970. "Mercury concentrations in
 tissues of fish from the Saskatchewan River."

 Journal of the Fisheries Research Board of
 Canada. 27 (4): 830-834.

Wildlife (others)

- Cook, F.R. 1970. "Rare or endangered Canadian amphibians and reptiles." The Canadian Field Naturalist. 84 (1): 9-16.
- Crowe, J.M.E. 1972. The Use of Rock Filled Basket
 Samplers to Survey the Aquatic Invertebrates
 of the Saskatchewan River. Dept. of Mines,
 Resources and Environmental Management.
 Research Branch.
- Flanninga, J.F. and G.H. Lawler. 1972. "Emergence of caddis-flies Trichoptera and mayflies Ephemeroptera from Hemming Lake, Manitoba."

 <u>Canadian Entomologist</u>. 104 (2): 173-183.
- Krivda, W.V. 1972. "Revival of a colony of Erebiadiscoidalis from mouse attack at The Pas, Manitoba <u>Lepidoptera satyridae</u>." <u>Entomological News</u>. 83 (4): 103-104. pp. 103-104.
- Nero, R.W., and F.R. Cook. 1964. "A range extension for the wood frog in northeastern Saskatchewan." The Canadian Field Naturalist. 78 (4): 268-269.
- Patterson, V.B. and G.N. Still. 1973. Forest Insect and Disease Conditions in Manitoba
 Provincial Parks, 1972. Environment Canada.
 Northern Forest Research Centre. Information
 Report NOR-X-55. Edmonton.
- Slack, H.D. 1967. "A brief survey of the profundal benthic fauna of lakes in Manitoba." <u>Journal of the Fisheries Research Board of</u> <u>Canada</u>. 24 (5): 1017-1033.
- Sutton, R.W. 1968. "A wood frog from northern Manitoba." The Canadian Field Naturalist 82 (2): 147.

Journals Cited

Acta Geographics

Agricultural Institute Review

Alternatives

American Birds

Arctic

Arctic-Alpine Research

Biological Abstracts

Blue Jay

Bulletin of the Society of Economic Geologists

Canadian Audubon

Canadian Aviation

Canadian Entomologist

Canadian Geographical Journal

Canadian Geotechnical Journal

Canadian Journal of Botany

Canadian Journal of Earth Sciences

Canadian Journal of Forestry Research

Canadian Journal of Soil Science

Canadian Journal of Zoology

Canadian Mineralogist

Canadian Mining and Metallurgical Bulletin

Canadian Mining Journal

Chemical Geology

Condor

Dissertation Abstracts

Ecology

Engineering Journal

Geographical Bulletin

Geographical Review

Geographic Helvetic

Geologiya Rudnykh Mestorozhdenii

Journal of the Fisheries Research Board of Canada

Manitoba Nature

Musk-0x

Nature

Ontario Naturalist

Popular Mercanics

Precambrian

Proceedings of the Geological Society of Canada

Review of Paleobotany and Palynology

Rhodora

The Beaver

The Canadian Field-Naturalist

The Canadian Northwest

The Fishing Bulletin

The Journal of Wildlife Management

Trade News

Transactions of the Canadian Institute of Mining and Metallurgy

Transactions of the North American Wildlife Conference

Transactions of the Royal Society of Canada

Water Power

Western Miner

Western Miner and Oil Review

Wilson Bulletin

Appendices

Appendix A: Meteorology

Table 1

Normal^a Number of Days With Frost

Location	May	June	July	August	September	Sub Total	Annual Total
Brochet	22	4	0	0	6	32	234
Flin Flon	10	1	0	0	4	15	205
Gillam	24	8	*	1	12	45	249
Laurie River	22	4	*	1	9	36	237
Lynn Lake	19	4	0	*	10	33	236
Norway House	16	4	0	0	7	27	223
Pasquia	12	1	0	*	8	21	220
The Pas	10	1	0	0	5	16	210
The Pas Airport	13	1	0	0	4	18	212
Wabowden	18	2	0	*	6	26	226
Wanless	16	4	1	2	9	32	230

Source: Environment Canada, 1975

^a'Normal' based on most number of available years of data (up to 30 years) for the period from 1941 to 1970

^{*}Less than 1

MAP 1. APPENDIX A

SNOWFALL*

120-160 cm.

160 - 200 cm.

MAP 2. APPENDIX A

MEAN MAXIMUM DEPTH OF SNOW*

50-70 cm.

70-100 cm.

* Source: Fisheries and Environment Canada, 1978

Appendix A

Table 2

Normal^a Monthly Degree Days^b(From 18°C)

	.lanuaj.	February March	March	April	May	June	July	August	September	October	November	December	Annual
Churchill	1412	1259	1183	998	642	359	192	204	367	586	903	1238	9193
Dauphin	1154	576	842	654	215	93	30	52	193	367	688	966	0209
The Pas	1251	1020	901	544	315	124	38	72	242	435	992	1098	9089
Winnipeg	1126	951	908	739	233	73	21	37	173	354	670	981	2864

Source: Environment Canada, 1975

"TOTAL NOTE IN MEST NUMBER Of years of available data (up to 30 years) for the period 1941 to 1970 There is the difference (below) in temperature between the daily mean and 18°C (65°F)

Appendix A

Table 3

Normala Mean Snowfall (centimetres)

Location	January	January February March April	March	April	May	June	July	July August	September October November December	October	November	December	(cm) Annual Total	(in) Annual Total
Brochet	20.6	13.2	20.6	19.3	15.0	2.0	0.0	0.0	2.3	20.6	30.0	25.1	168.7	4.99
Flin Flon	20.6	19.8	22.9	11.9	3.0	0.5	0.0	0.0	0.5	7.8	26.7	22.9	137.2	0.45
Gillam	14.2	11.9	16.5	13.0	12.2	2.0	0.0	0.3	w w	19.1	25.9	17.8	136.2	53.6
Laurie River	26.2	17.8	20.8	15.7	₩ 1	2.0	0.0	0.0	~ ~	14.5	35.1	32.8	176.3	7.69
Lynn Lake	17.5	15.2	19.3	21.3	7.9	L	0.0	0.0	L	13.5	26.9	23.4	146.1	57.5
Norway House	16.3	19.6	19.8	13.2	8	0.3	0.0	0.0	₩ ₩	7.1	31.5	28.2	142.6	56.1
Pasquia	19.6	17.0	22.1	12.7	2,5	0.5	0.0	0.0	T	0, 00	23.9	24.4	132.9	52.3
The Pas	54.9	22.6	21.8	14.0	3.6	Q E	0.0	0.0	₩. ₩.	6.6	32.0	25.9	156.5	61.6
The Pas Airport	21.3	19.6	23.4	18.5	8.4	0.5	0.0	0	1 8	10.2	30.2	26.9	157.2	61.9
Wabowden	19.3	16.0	17.8	19.8	5.8	1.5	0.0	0	80	13.2	25.9	23.6	143.2	7.95
Wanless	22.4	18.3	20.1	14.5	3.6	0.5	0.0	0.0	1.5	9.1	34.5	24.9	149.4	58.8

^a'Normal' based on most number of years of available data (up to 30 years) for the period from 1941 to 1970 Source: Environment Canada, 1975

bTrace

Appendix A

Table 4

Normal a Mean Daily Temperature $(^{\circ}C)$

Location	January	February	March April	April	May	June	July	August	September	October	November	December	Annual
Brochet	-29.1	-24.3	-17.5	0.9-	2.9	10.8	15.3	14.0	7.2	0.0	-12.8	-22.8	15.2
Flin Flon	-21.8	-17.7	-10.4	0.2	₩ •	14.4	18.3	16.6	6.6	3.6	₩ 1	-17.7	7.0-
Gillam	-26.3	-23.3	-16.4 -6.4	7.9-	\$ \$	6.6	14.9	13.3	2.9	0.2	-11.9	-21.6	-4.8
Laurie River	-24.4	-20.8	-13.2	1.0	6.4	11.8	15.7	13.9	7.9	1.6	-10.7	-20.1	-3.0
Lynn Lake	-27.1	-22.7	-15.3	-4.2	6.4	12.1	15.8	13.7	7.3	7.0	-12.8	-22.4	-4.2
Norway House	-24.3	-20.2	-13.5	-1.6	9.9	.13.4	17.2	15.9	9.6	3.0	8.6	-19.7	-2.0
Pasquia	-23.6	-19.6	-12.2	7.0-	8.5	14.6	17.6	15.8	7.6.		6.8	-18.1	- I • I
The Pas	-22.0	-18.3	-11.0	7.0	8.7	14.7	18.3	16.6	10.3	4.1	6.4-	-17.4	-0-3
The Pas Airport	-22.4	-18.3	-11.4	7.0-	7.7	14.0	17.9	16.3	10.2	2.00	-7.5	-17.4	9.0-
Wabowden	-24.1	-20.2	-12.4	-2.2	6.2	12.8	16.8	15.1	to to	2.4	8.6-	-19.7	-2.2
Wanless	-23.6	-19.7	-10.7	0.5	7.6	13.5	16.7	15.3	80.6	3.7	₩ ₩	-18.6	1.3
Thompson	-26.4	-22.3	-13.6	-2.7	5.5	12.0	14.7	13.7	8.9	4.3	-11.4	-22.8	3.5
Grand Rapids	-22.4	-17.4	6.6-	2.2	6.9	14.2	17.2	18.5	10.6	3.6	7.9-	-16.4	0.7

Source: Environment Canada, 1975

a'Normal' based on most number of years of available data (up to 30 years) for the period from 1941 to 1970 ^bBased on years 1967-1974

WIND DIRECTION - % FREQUENCY

DIRECTION FROM

< 20 % 0

200/0-250/0

MAP 5. APPENDIX A

MID NORTH PLANNING ZONE

linch:40 miles

Appendix A

Table 5

Mid North Active Meteorological Stations

Station	Lon	g.	Lat.		Elevation	Daily Observations	A	В	С	D	E	F	G
	0	1	0	1	(Feet)								
Brochet	57	53	101	40	1,150	1	X	X	X				
Jenpeg	54	35	98	02	700	2	X	X	X				
Flin Flon	54	46	101	51	1,098	2	X	X					
Flin Flon A	54	41	101	41	968	2	X	X	X				
Gillam	56	21	94	42	472	2	X	X	X				
Grand Rapids	53	11	99	16	730	1	X	X	X			X	X
Grand Rapids Hydro	53	09	99	17	730	2	X	X	X				
Kettle	56	23	94	39	477	2	X	X					
Lynn Lake	56	52	101	04	1,162	1	X	X	X				Х
Missi Falls	57	19	98	06	884	2	X	X					
Norway House	54	00	97	48	712	2	X	X	X			X	
Norway House A	53	58	97	50	734	1	X	X					
Notigi	55	54	99	22	860	2	X	X					
Pasquia PFRA	53	43	101	30	856	6	X	X	X				
Pickerel Narrows	56	13	100	35	8'/0	2	X						
Ruttan Lake	56	37	99	37	1,000	2	X	X					
South Bay	56	40	99	00	928	2	X	X					
The Pas	53	58	101	06	894	1	Х	X	X		X		X
Thompson	55	48	97	52	695	1	X	X	Χ	X	X	X	X
Wanless	54	11	101	22	855	7	X	X					

MEAN LAKE DEPTH (METERS)

< 2 ★

2-4

4-7 **>** 7

MAP 1. APPENDIX B

MID NORTH PLANNING ZONE

linch:40 miles

MAXIMUM LAKE DEPTH (METERS)

< 10

10-20

> 20

20

MAP 2. APPENDIX B

MID NORTH PLANNING ZONE

linch:40 miles

The following is a list of animals of the class Aves (birds) known to or though to occur within the Mid North Planning Zone. The manner of occurrence of each species is also noted, the notable exception to this being migratory birds. Those species which do not normally occur within the zone for breeding or wintering seasons are generally not listed. Those species noted as transient are normally occasionally sited species which do not usually range into the zone.

Notes;

- W. Winters only in the Planning Zone.
- B: Occurs throughout zone, breeds within zone.
- 1: Transient, occassional sightings, outside normal range.
- *: Scarce local permanent resident. Planning zone is within normal range, but species may not occur in the zone.
- O: Formerly "B" but now breeds rarely in local areas of the zone. Numbers: Numbers refer to breeding ranges on accompanying maps

Common Name	Generic Name	Range
Common Loon	Cavia immer	В
Arctic Loon	G. arctica	T
Red-Necked Grebe	Podiceps grisegena	ê.
Horned Grebe	P. auritus	В
Western Grebe	Aechmophorus occidentalis	Į,
Pied-Billed Grebe	Podiceps podiceps	В
White Pelican	Pelecanus erythrorphynchos	. 4.
Double Crested Cormorant	Phalacrocorax auritus	14
American Bittern	Botaurus lentiginosus	В
Canada Goose	Branta Canadensis	B
Mallard	Anas platyrhynchos	P
Gadwall	A. strepera	14
Pintail	A. acuta	В
Green Winged Teal	A. carolinensis	E
Blue Winged Teal	A. discors	В
American Widgeon	Mareca americana	P
Shoveler	Spatula clypeata	В
Wood Duck	Aix sponsa	13
Redhead	Aythya americana	14
Ring-Necked Duck	A. collaris	\$
Canvasback	A. valisineria	1/4
Lesser Scaup	A. affinis	Б
Common Goldeneye	Bucephala clangula	D R
Bufflehead	B. albeola	B
White-Winged Scooter	Melanitta deglandi	Б
Surf Scoter	M. perspicillata	3b
Ruddy Duck	Oxyura jamaicensis	14
Hooded Merganser	Lophodytes cucullatus	16
Common Merganser	Mergus merganser	В
Red-Breasted Merganser	M. serrator	В
Goshawk	Accipiter gentilis	Ē
Sharp-Shinned Hawk	A. striatus	t
Coopers Hawk	A. cooperii	1.,
Red-Tailed Hawk	Buteo jamaicensis	E E
Broad-Winged Hawk	B. platypterus	1
Golden Eagle	Aquila chryaeltos	*
Bald Eagle	Haliaeetus leucocephalus	Ā
Marsh Hawk	Circus cyaneus	Б
Osprey	Pandion haliaetus	
Peregrine Falcon	Falco peregrinus	
Pigeon Hawk	F. columbarius	*
Sparrow Hawk	F. sparverius	Б
Spruce Grouse	Canachites canadensis	:-
Ruffed Grouse	Bonasa umbellus	~
Willow ptarmigan	Lagopus lagopus	W
Rock Starmignan	L. mutus	V.
Sharp-Tailed Grouse	Pedioecetes phasianellus	it
Gray Partridge	Perdix perdix	1
Sandhill Crane	Grus canadensis	
Virginia Rail	Rallus limicola	
Sora	Porzana carolina	
Yellow Rail	Coturnicops noveboracensis	7.
American Coot	Fulico americana	r b
Semipalmated Plover	Charadrius semipalmatus	r
2	onaradi idə əcili pailila tus	

¹From Godfrey 1966

Commandation In Termite	Generic Name	Fange
Piping Plover		
Killdeer	C. welodus C. vociferus	
American Golden Plover	Pluvialis dominica	
Common Snipe	Capella gallinago	:
Spotted Sandpiper	Actitis macularia	*.
Solitary Sandpiper	Tringa solitaria	· ·
Greater Yellowlegs Lesser Yellowlegs	Totanus melanoleucus	
Least Sandpiper	T. flavipes Frolia minutilla	

Short-Billed Dowitcher	Limnodromus griseus	3a T
Marbled Godwit	Limesa fedoa	
Wilson's phalarope	Steganopus tricolor	14
Northern phalorope	Lobipes lobatus	T
Herring Gull	Larus argentatus	B
California Gull	L. californicus	T
Ring-Billed Gull	L. delawarensis	
Franklin Gull Bonaparte's Gull	L. pepixcan L. philadelphia	
Domapar vo o duri	D. Prizzadorpriza	
Forester's Tem	Sterna forsteri	
Common Tern	S. hirundo	
Caspian Tern	Hydroprogne caspia	
Flack Term	Chlid-wine wi	
Mourning Dove	Chlidonias niger Zenaidura macroura	
Great Horned Cwl	Bubo virginianus	
Hawk Owl	Surnia ulula	
Farred Cwl	Strix varia	
Great Gray Owl	S. nebulcsa	
Long-Eared Owl	Asio otus	
Chort-Eared Owl	A. flammeus	
Boreal Owl	Aegolius funereus	
Saw-Whet Cwl	A. acadicus	
Common Nighthawk	Chartum polagica	
Chimney Swift	Chaetura pelagica	
Fuby-Throated hummingbird	Archilochus colubris	
Relted Kingfisher	Megaceryle alcyon	
Yellow Chafted Flicker	Colaptes auratus	
Fed Shafted Flicker	Contin	
Pileated Woodpecker	C. cafer Dryocopus pileatus	
Yellow-Hellied Sapsucker	Sphyrapicus varius	
Hairy Woodpecker	Dendrocopus	
Lowny Woodpecker	D. pubescens	
Plack-Backed Three-Toed Woodpecker	Piccides arcticus	
Morthern Three-Toed	P. tridactylus	
Woodrecker		
Lautern Kingbird	Tyrannus tyrannus	
Great Crested Flycatcher	Mylarchus crinitus	
Es terr. Phorte	layermis pheebe	
Yellow-Bellied Flycatcher	Empidenax flaviventria	
Inaill's Flycatcher	E. traillii	
least Flycatcher	F. minimus	
notem. We i lower live- ide: Flyoutcher	Contopus sordidulus Luttallornis borealis	
Hopres Lary	Fremophila alpestris	
. rec . wallew	Iridepreene bicolor	
hank wallew	Piparia riparia	
Impro wall w	Witness must be	
Cliff Wall W	Hiruni, rustica Tetrochelid n pyrrheneta	
Partle Martin	Ir gre suti:	

Appendix o		
Common Name	Generic Name	13 15
Cray Jay Blue Jay Black-Billed Ma gpi e	Perisorevuscanadensis Cynocitta cristata Pica pica	t
Common Raven Common Crow Black-Capped Chickadee	Corvus corax C. brachyrhynchos Parus atricapillus	
Boreal Chickadec White—Breasted Nuthatch Red—Breasted Nuthatch	P. hudsonicus Citta carolinensis S. canadensis	e pt
Brown Creeper House Wren Winter Wren	Certhia familiaris Troglodytes aedon T. troglodytes	7.
Long-Billed Marsh Wren Short-Billed Marsh Wren Cat Bird	T. palustris Cistothorus platensis Dumetella carolinensis	
Brown Thrasher American Robin Hermit Thrush	Toxostoma rufum Turdus migratorius Hylocichla guttata	
Swainson's (Russet-Backed)	H. ustulata	В
Thrush Gray-Cheeked Thrush Veery Mountain Bluebird Golden-Crowned Kinglet Ruby-Crowned Kinglet Sprague's Pipit	H. minima H. juscescens Sialia currucoides Regulus satrapa R. calendula Anthus spragueii	T T 1 7 B 4
Bohemian Waxwing Cedar Waxwing Northerm Shrike	Bombycilla garrulus B. cedrorum Lanius excubitor	2b B B or W
Common Starling Solitary Vireo Red-Eyed Vireo	Sturnus vulgaris Vireo solitarius V. olivaceus	16 6 6
Philadelphia Vireo Warbling Vireo Black and White Warble:	V. philadelphicus V. gilvus Mniotilta varia	6 T 6
Tennessee Warbler Orange-Crowned Warbler Nashville Warbler	Vermivora peregrina V. celata V. ruficapilla	B B jt
Yellow Warbler Magnolia Warbler Cape May Warbler	Dendroica petechia D. magnolia D. tigrina	,
Myrtle Warbler Black-Throated Green Warbler Elackburnian Warbler	D. coronota D. virens C. fusca	# 2.•
Chestnut-Sided Warbler Bay-Breasted Warbler Blackpoll Warbler	D. pensylvanicacastaneaStriata	- - - -
Palm Warbler Ovenbird Northern Waterthrush	D. palmarum Seiurus aurocapillus S. noveboracensis	
Connecticut Warbler Mourning Warbler Common Yellowthroa t	Oporornis agilis O. philadelphia Geothlypis trichas	
Wilson's Warbler Canada Warbler American Redstart	Wilsonia pusilla W. canadensis Setophaga ruticilla	
Western Meadowlark Yellow-Headed Blackbird Red-Winged Blackbird	Sturnella neglecta Xanthocephalus xanthocephalus Agelaius phoeniceus	
Baltimore Oriole Rusty Blackeird Brewer's Blackbird	Icterus galbula Euphagus carolinus E. cyanocephalus	

into the state	Generic Name	hange
Jorman Grackle Fr.wm-Headed Cowlind Rose-Frensted Grosbeak	quiscalus quiscula Molothrus ater Pheucticus ludovicianus	ā
Evening Grosbeak Purple Finch Pine Grosbeak	Hesperiphona vespertina Carpodacus purpureus Pinicola enucleator	b
Jermer Redpell Fine Jiskin American Goldfineh	Acanthis flammea Spinus pinus S. tristis	,
Red Crossbill White-Winged Crossbill Javannah Jparrow	loxia curvirostra L. leucoptera Passerculus sandwichensis	5b B B
Baird's Sparrow LeConte's Sparrow Sharp-Tailled Sparrow	Ammodramus bairdii Passerhertulus caudacutus Ammospiza caudacuta	
Vedper Sparrew Slate-Colored Junco Tree Sparrow	Pooecetes gramineus Junco hyemalis Opizella arborea	
Chipping Sparrow Clay-Colored Sparrow Harris Sparrow	S. passerina S. pallida Zonotrichia guerula	
White-Crowned Oparrow White-Throated Sparrow Fox Sparrow	Z. leucophrys Z. albicollis Passerella iliaca	3.
Iincoln's Sparrow Swamp Sparrow Jong Sparrow	Melospiza lincolnii M. georgiana M. melodia	
Lapland Longopur mith's Longopur now runting	Calcarius lapponicus C. pictus Plectrophenax nivalus	T T W

Appendix D

List of Freshwater Fishes Known or Thought to Occur in the Mid North Planning Zone

Common Name	Generic Name	Occurrence ^a
Silver Lamprey Lake Sturgeon Rainbow Trout Brook Trout Lake Trout Lake Herring (Cisco) Shortjaw Cisco Blackfin Cisco Lake Whitefish Arctic Grayling Goldeye	Ichthyomyzon unicuspis Acipenser fulvescens Salmo gairdneri Solvelinus jontinolis S. nomaycush Coregonus artedii C. zenithicus C. nigripinnis C. clupeaformis Thymallus arcticus Hiodon alosoides	5U, 5S, 4K All except 6D 5L, 5K, 5U Eastern Portions of 5U and 6F B B 6D, 5S 6D, 5S B All 6 5K, 5L, 5U, 5T, 4A, 5S
Mooneye Northern Pike Lake Chub Carp Golden Shiner Emerald Shiner River Shiner Mimic Shiner Blacknose Shiner Spottail Shiner Fathead Minnow	H. tergisus Esox lucius Couesius plumbeus Cyprinus carpio Notemigonus crysoleucas Notropis atherinoides N. blennius N. volucellus N. heterolepis N. hudsonius Pimephales promelas	5L, 5K, 5U, 5S, 5R B 5S, 5U, 5L, 5K 5L, 5K, 5U, 5S, 5R 6D, 6E, All 5, All 4 5L, 5K, 5U, 5S, 5R 5L 5K, 5L, 5U, 4A, 5S, 5R 5K, 5L, 5U, 4A, 5S, 5R
Fathead Chub Blacknose Dace Longnose Dace Cheek Chub Pearl Dace Quillback Longnose Sucker White Sucker Silver Redhorse	Platygobio gracilis Rhinichthys atratulus R. cataractae Semotilus atromaculatus S. margarita Carpiodes cyprinus Catostomus catostomus C. commersoni Moxostoma anisurum	5L, 5K, 5U, 5S, 5R 5L, 5K, 5U, 5S, 5R All 5, All 4 5S, 5R B 5L, 5K, 5U, 5S, 5R B 5L, 5K, 5U, 5S, 5R
Shorthead Redhorse Burbot Brook Stickleback Minespine Stickleback Threespine Stickleback Trout-Perch Yellow Perch Sauger Walleye Iowa Darter Johnny Darter	M. macrolepidotum Lota lota Culaea inconstans Pungitius pungitius Gasterosteres aculeatus Percopsis omiscomaycus Perca flavescens Stizostedion canadense S. vitreum Etheostoma exile E. nigrum	All 5, All 4 B All except 6D B 6F, 6G B 5K, 5L, 5U, 4A, 5S, 5R B 5K, 5L, 5U, 5S, 5R
Log Perch Blackside Darter River Darter Freshwater Drum Mottled Sculpin Slimy Sculpin	Percina caprodes P. maculata P. shumardi Aplodinotus grunniens Cottus bairdi C. cognatus	All except 6D 5L, 5K, 5L, 5K, 5S, 5U, 5R 5L, 5K, 5S, 5U 5L, 5K, 5U, 5S, 5R B
Spoonhead Sculpin Deepwater Sculpin	C. ricei Myoxocephalus guadricornis	6D, 6E, All 5, All 4 6D, 6E

Source: Scott and Crossman, 1973

bindicates species is found in its natural habitat throughout the zone

^aOccurrence: numbers refer to watershed drainage divisions shown on accompanying map

DRAINAGE BASINS
MAIN DRAINAGE DIVISION
SUBDIVISION

APPENDIX D

MID NORTH PLANNING ZONE

linch:40 miles

 $\label{eq:Appendix E} \mbox{Mammals of the Mid North Planning Zone}^{\mbox{a}}$

Common Name	Generic Name	Occurrence	
Masked Shrew	Sorex cinereus cinereus	В	
Water Shrew	S. palustris palustris	В	
Arctic Shrew	S. arcticus arcticus	В	
Northern Pygmy Shrew	Microsorex hoyi intervectus	В	
Short-Tailed Shrew	Blarina brevicauda manitobensis	*	
Star-Nosed Mole	Condylura cristata cristata	*	
Little Brown Bat	Myotis lucifugus lucifugus	В	
Silver-Haired Bat	Lasionycteris noctivagans	*	
Red Bat	Lasiurus borealis borealis	*	
Hoary Bat	Lasiurus cinereus cinereus	В	
Snowshoe Hare	Lepus americanus americanus	В	
Little Northern Chipmunk	Eutamias minimus borealis	В	
Hudson Bay Chipmunk	E. minimus hudsonius	*	
Lake Superior Chipmunk	E. m. jacksoni	*	
Woodchuck	Marmota monax canadensis	В	
Northern Striped Ground Squirrel	Spermophilus tridecemlineatus Hoodii	*	
Red Squirrel	Tamiasciurus hudsonicus hudsonicus	В	
Northern Flying Squirrel	Claucomys sabrinus sabrinus	*	
Beaver	Castor canadensis canadensis	В	
Deer Mouse .	Peromyscus maniculatus borealis	*	
Deer Mouse	P.m. maniculatus	*	
Gapper's Red-Backed Vole	Clethrionomys gapperi hudsonius	*	
Athabaska Red-Backed Vole	C. g. athabascae	*	
Heather Vole	Phenacomys intermedius mackenzii	*	
Heather Vole	P. i. soperi	*	
Meadow Vole	Microtus pennsylvanicus drummondii	В	
Yellow Checked Vole Northern bog Lemming	M. xanthognathus Synaptomys borealis smithi	* B	
Hudson Bay Jumping Mouse	Zapus hudsonius hudsonius	В	
Muskrat	Ondatra zibethicus albus	В	
Porcupine	Erethizon dorsatum dorsatum	В	
Coyote	Canis latrans thamnos	*	
Saskatchewan Timber Wolf	Canis lupus griseoalbus	В	
Timber Wolf	C.1. hudsonicus	*	
Arctic Fox	Alopex lagopus innuitus	В	
Red Fox	Vulpes fulva regalis	В	
Black Bear	Ursus americanus americanus	В	
Racoon	Procyon lotor hirtus	*	
Martin	Martes americana actuosa	*	
Martin	M.a. americana	*	
Fisher	M. pennanti columbiana	*	
Fisher	M. p. pennanti	*	
Ermine (Richardson Weasel)	Mustela erminea richardsonii	В	
Least Weasel	M. nivalis rixosa	В	
Mink	M. vison locustris	В	
Wolverine	Gulo gulo luscus	В	
Striped Skunk	Mephitis mephitis hudsonica	*	
River Otter	Lutra canadensis preblei	В	
Lynx	Lynx canadensis canadensis	В	
Mule Deer	Dama hemionus	*	
White-Tailed Deer	D. virginiana dacotensis	*	
Moose	Alces alces andersoni	В	
Woodland Caribou	Rangifer tarandus caribou	*	
Barren Ground Caribou	R. arcticus arcticus	*	

Source: Seton (1909), Hall and Kelson (1959), Soper (1961), De Jong (1970), Weir (1961), Banfield (1974).

 $^{^{\}mathrm{a}}$ Mammals known to or thought to normally occur within the zone.

B: species found throughout the Planning Zone

^{*}species which occur in a portion of the Planning Zone

Table 1

Appendix F

Average Trapper Income

(Dollars)

RTL	1975/6	1976/7
Brochet	676.62	1250.53
Cormorant	556.44	1002.99
Cranberry	1371.31	1475.24
Cross Lake	378.67	465.42
Easterville	?	271.13
Flin Flon	1037.85	1270.48
Grand Rapids	?	524.24
Herb Lake	733.48	1231.22
Moose Lake	1010.48	834.71
Nelson House	720.55	711.26
Norway House	833.35	666.87
Pikwitonei	1458.63	1892.50
Pukatawagan	785.28	1005.13
Red Deer/Shoal River	1028.17	1012.14
Sherridon	771.91	829.20
Southern Indian Lake	564.72	745.59
Split Lake	711.38	1048.92
Thicket Portage	1229.95	1365.26
Summerberry Fur Block ²	1042.30	650.71
Wabowden	884.12	1076.19
Mean	877.51	966.49

Average income determined by dividing the estimated gross value of the RTL using average auction values divided by total licences issued.

² Includes The Pas open area.

[?] Number of trappers unknown.

Table ? Appendix F

Average Fur Prices^a (Dollars)

Mean	63.84	65.23	36.25	36.04	34.91	23.63	20.07	20,12	20.21	13.31
Wolverine	169.39	159.00	94.88	78.50	83.80	84.65	70.40	57.00	52.50	26.00
Ermine	1.37	06.	. 80	1.20	1.03	.74	.52	86.	2.43	1.48
Timber Wolf	78.31	101.00	62.22	63.72	53.08	37.68	23.00	38.00	27.00	16.66
Squirrel	.80	.70	.63	.75	.50	.52	.25	.25	04°	.51
Otter	59.79	00.09	36.35	37.65	39.68	37.62	31.50	33.00	32.50	19.00
Muskrat	4.27	3.62	2.62	2.80	2.64	2.01	1.57	1.45	1.55	1.01
Mink	23.57	26.00	1,3.13	22.00	23.40	19.32	11.20	13.00	17.00	16.00
Marten	20.99	24.00	15.34	16,60	8.66	8.64	8.15	10.00	9.75	7.66
Lynx	241.72	257.00	123.01	90.00	90.15	39.31	29.50	30.00	41.00	32.66
Cross	95.77	85.00	48.06	00.79	43.93	19.98	21.90	18.00	16.50	9,83
Red Fox	56.98	43.00	30.87	39.20	29.40	15.15	12.40	10.00	14.50	8.05
Fisher	88.38	97.00	45.38	43.25	33,13	27.34	31.20	23.00	20.50	12,33
Coyote	58.13	56.00	36.91	38.90	28.98	14.82	12.15	13.00	15,25	8.25
Bt 1Ver	21.42	20.00	15.34	19.50	20.05	18.18	14.09	19.00	22.00	18.00
bear	36.64	65.00	29.97	50.55	74.19	25.00	35.00	33.00	26.50	18.66
Ī	1976/7	1975/6	1974/5	1973/4	1972/3	1971/2	1970/1	1969/70	1968/9	1967/8

Source: R. Stardom, kesearch Branch, Department R.R.T.S.

 $^{\mathrm{a}}\mathrm{F.0.B.}$ Winnipeg auction

Appendix F

Season	Total Trappers	Over \$20 Number	00 ^b %	Under \$5 Number	00 %
1976/7	1251	148	11.8	656	52.4
1975/6	1113	100	9.0	626	56.2
1974/5	1036	21	2.0	749	72.3
1973/4	1013	34	3.4	715	70.6
1972/3	994	54	5.4	605	60.9
Mean	1081	71	6.6	670	62.0

^aAll RTL's within the Mid North are included in their entirety when individual breakdowns are available.

bValues used are average prices F.O.B. Winnipeg auction.

APPENDIX F
SECTION FUR HARVEST
1964/65-1976/77

APPENDIX F SECTION FUR HARVEST 1964/65-1976/77

Appendix G

Commercial Fishing Quotas (in thousands of pounds)

Lakes		Lakes		Lakes		
Abram	5 SW	Gauer	60 SW	Partridge Breast	20 SW	
Allen	25 SW	Gestur	10 SW	Partridge Crop	30 SW	
Angie	5 SW	Girouard	15 W	Pearson	5 SW	
Anson etc.	10 SW	Goose	50 W	Pearson	20 SW	
Apeganau	15 SW	Granville	200 SW	Pelletier	20 SW	
Armstrong	20 SW	Guthrie	25 SW	Pemichigamau	10 SW	
Assean	40 SW	Halfway	30 SW	Pikwitonei	15 SW	
Baldock	80 SW	Hall	5 SW	Pipestone	30 SW	
Barnes	10 SW	Handle	10 SW	Playgreen	300 SW	
Barrington	55 SW	Harding	20 SW	Porcupine	5 SW	
Batty	10 SW	Herblett	20 SW	Rat (West)	45 SW	
B.C. etc.	5 W	Holmes	45 SW	Recluse	5 SW	
Beau Cage	5 SW	Hunter	10 SW	Reed	15 W	
Begg (North)	5 SW	Isbister	5 SW	Reindeer	650 SW	
Bissett	10 SW	Jensen	5 SW	Roe	5 SW	
Black Trout etc.	20 SW	Jordan	30 SW	Runner	5 SW	
Bluenose	5 SW	Kamuchawie	20 SW	Running Bear	5 SW	
Brannigan	10 SW	Kettle	10 SW	Russell etc.	75 SW	
Bright	5 SW	Kiask	5 SW	Russick	5 SW	
Britton	10 SW	Kipahigan	50 SW	Rusty	10 SW	
Bruneau	10 SW	Kiski	10 SW	Sabomin	10 SW	
	10 SW	Kiskitto	30 SW	Saskatchewan River	100 S 5	50 U
Brunne etc.	5 SW	Kiskittogisu	50 SW	Setting Setting	50 SW	JU W
Buckingham		Kisseynew	35 SW	0	5 SW	
Bud	5 SW	_	50 SW	Simpson etc.	100 SW	
Burntwood	70 SW	Kississing	45 SW	Sipiwesk		
Butterfly	15 SW	Landing		Sisipuk	100 SW	
Caldwell	25 SW	Landry	15 SW	Snake	15 SW	
Caribou	5 SW	Laurie	25 SW	Solomon	5 SW	
Cedar	500 SW	Leftrook	30 SW	Southern Indian	800 S 4	400
Chapman etc.	20 SW	Limestone	25 SW	Split	100 SW	
Christie	15 SW	Limestone Point	20 SW	Stag	10 SW	
Chuipka	10 SW	Little Limestone	20 SW	Story	5 SW	
Clearwater etc.	20 SW	Loon	15 SW	Summerberry Gp.	75 SW	
Cockeram	10 W	Loon River	10 SW	Suwannee	30 SW	
Cormorant	20 SW	Loonhead	10 SW	Tait	5 SW	
Costello	10 SW	Lundy	5 SW	Takipy etc.	10 SW	
Cousins	10 SW	MacBride	5 SW	Talbot	50 SW	
Craig	5 SW	McIarty	15 SW	Thorsteinson	30 SW	
Cross	100 SW	McKnight	35 SW	Three Finger	5 SW	
Crow	5 SW	McLeod	10 SW	Tod	15 SW	
Oolomite	5 W	Mackie etc.	30 SW	Trophy	5 SW	
)ow	5 SW	Matheson Group	20 SW	Trout (South)	10 SW	
runken	10 SW	Melvin	20 SW	Uhlman	20 SW	
Duck	30 SW	Mistake	5 SW	Walker	85 SW	
Dugas	10 SW	Moody	5 SW	Walton	5 SW	
Dunphy	30 SW	Moose	10 SW	Wapisu	30 SW	
Dunsheath	15 SW	Moose (North arm)	75 SW	Wasekwan	5 SW	
)yce	5 SW	(East arm)	75 SW	Waskaiowaka	50 SW	
	40 SW	(Pick ch.)	400 SW		5 W	
Eden		Moose Nose	10 SW	Wedge Wekusko	125 W	
Cirnason	10 SW 5 W	Morin	15 SW		10 SW	
Election		Moss	10 SW	Wernham	10 SW	
lephant	5 SW	Mynarski	25 SW	White Cap		
Elvyn etc.	10 SW	*	20 W	White Rabbit	10 SW	
Inatik	10 SW	Naosap etc. Natawahunan		White Stone	30 SW	
arwell	10 SW		30 SW 25 SW	William	100 SW	
ay etc.	5 SW	Nelson River		Wintering	50 SW	
File	15 SW	Notigi	10 SW	Witchai	20 SW	
inch	5 SW	Numakoos	5 SW	Wood	15 SW	
Fish	5 S	Opachuanau	50 SW	Woosey etc.	15 SW	
Flatrock etc.	175 SW	Orr	25 SW	Wuskwatim	40 SW	
lorence	10 SW	Paint	15 W	Yawningstone	10 SW	
raser	15 SW	Pakwa	30 SW	Hjaimarson	40 SW	

^aRound weight quota as listed in Canada Gazette

S - Summer Season

W - Winter Season

SW - Combined summer and winter quota or annual quota

APPENDIX G.
PERCENT QUOTA FILLED OF SELECTED MID NORTH LAKES

S – Summer Season W–Winter Season

Note: additional numbers are percentages for seasons over 150.

a.QUOTA ONLY FOR THOSE LAKES FISHED

Appendix H

Methodology for Estimating Forest Capability

The methodology developed to estimate the capability of land to produce wood fiber was first used in the East Lake Winnipeg Interim Land Use Plan. 1 It involves the use of mean annual increment per township (MAI/TWP) and mean annual increment per acre of productive forest land per township (MAI/ acre of productive forest land/TWP).

The value of MAI/TWP evaluates the total township in terms of productivity while the MAI/acre of productive forest land/TWP assesses the productivity of the productive forest land within the township. The combination of these 2 factors yield an estimate of the relative capability of these townships to produce wood fiber. The following matrix was used to determine the range of capabilities.

MAI/Acre of Productive Forest Land/TWP

	Acres				
		31+	21–30	11-20	-10
	400+	VH	VH	Н	M
MAT / TITLE	250-400	VH	H	M	M
MAI/TWP	100-250	Н	M	M	L
	-100	L	L	L	L
	VH - Very	High	M - 1	Medium	
	H - High		L - 1	JOW	

The matrix yields the following ranges.

Department of Mines, Resources and Environmental Management, (April, 1974) and subsequently used in the North East Planning Zone Information Package.

Appendix H
Forest Capability Ranges

MAI/TWF		MAI/Acre of Productive Forest Land/TWP
Very High (VH)	400+ 400+ 250-400	31+ 21-30 31+
High (H)	400+ 250-400 100-250	11-20 21-30 31+
Medium (M)	400+ 250-400 250-400 100-250 100-25-	-10 11-20 -10 21-30 11-20
Low (L)	100-250 -100 -100 -100 -100	-10 31+ 21-30 11-20 -10

Table 1

Appendix I

Data Licence Discrepancies Wabowden Fishery

Season	Total ^b Licences	Unlicenced ^C Producers	Percent Unlicenced Producers
S73	60	6	10.0
W73/4	35	7	20.0
S74	72	7	9.7
W74/5	34	1	2.9
S75	88	18	20.5
W75/6	38	3	7.9
S76	84	14	16.7
W76/7	40	1	2.5
Total	451	57	
Mean	56	7	12.5

Source: Modified from Wabowden Technical Information Report MS 77-32

^aWabowden Fishery is considered to include all lakes fished by Wabowden residents

Total licences are the total of all commercial fishermen and commercial operator licences for each lake.

^CMen shown to have produced fish (and paid for) by F.F.M.C. files but are not shown as holding licences on that particular lake by department files

Table 2

Appendix I

Data Production Discrepancies^a

Fishing Seasons (in % Difference)

Lake	S73	W73/4	S74	W74/5	S75	W75/6	S76	W76/7
Bruneau	0	_	+27	?	- 1.4	Sand	- 6.7	_
Duck	-214.3	-	- 1.1	-	+ 0.5	_	- 2.4	_
Fish	+ 10.8	?	- 2.2	-	*	_	_	_
Halfway	0	- 7.3	+ 0.2	+ 5.1	0	- 6.4	*	0
Kiski	- 6.0	_	+ 0.2	Name .	0	-	0	_
Kiskitto	- 9.2	*	- 3.0		- 1.6	quid	*	ann
Kiskittogisu	+ 2.8	_	- 1.7	-	+ 1.0	_	- 0.2	_
Pakwa	*	-	+ 0.9	_	-14.1		- 0.6	-
Setting	*	_	- 0.6	_	- 2.5	_	- 0.2	
Sipiwesk	+ 12.3	-24.1	- 1.6	Sant .	- 1.7	_	- 8.9	0
Utik	*	-	+ 0.1	_	?	+17.9	- 2.8	_
White Rabbit	?			0	_	-	******	_
Drunken	_	*		+ 1.9	?	+ 3.6	_	+8.1
Apeganau	_	linker .		-	tend		- 0.3	_
Hermon	-	+18.8	?		-	_	-	_
Tullibee	-	?	-	***	_	0	_	-
Nelson River	_		-14.9	_	-32.0	-	-14.8	
Butterfly	_	-	-	0	-	-13.9	- 5.5	_
Lawford	-	-	-	0	_	?	-	_
Solomon	-	_	-	0	_		?	0
Witchai	-	_	_	?		?	_	*
Bowden	_	~	-	_	-	-	+ 9.7	-

Source: Modified from Wabowden Technical Information Report MS 77-32.

 $^{^{\}mathrm{a}}$ Discrepancies between F.F.M.C. production figures and M.N.R.E. production figures.

⁻ Not fished

^{*} Less than .1%

O No difference

[?] F.F.M.C. production no M.N.R.E. production

Appendix J

Table 1

Waterfow1	Harvest	North	of	53°
	Manitol	oa		

	1972	1973	1974	1975	1976
Duck	28,781	61,344	63,101	93,166	107,684
Canada Geese	4,485	9,498	15,853	27,943	27,374*
Other Geese	2,048	1,990	4,774	5,515	
Coot	288	811	1,306	1,551	277
Total Waterfowl	35,602	73,643	85,034	128,175	135,335

^{*}Includes Other Geese

Source: Canadian Wildlife Service, Notes 51, 52, 68, 70, 81, 83

Appendix J

Table 2

Migratory Game Birds^a Hunting Statistics (,000 of User Days)

	1969				1973		1975	1976
Area 01	6.3							
Area 02	.3	.1	.4	1.0	2.7	3.7	5.8	6.4

Source: Canadian Wildlife Service. Progress Notes

^aOther than ducks and geese e.g., cranes, coots, etc.

Appendix J

Table 3

Hunting Waterfowl Statistics

1976

1975

1974

	1968	1969	1970	1971	1972	1973	1974	1975	19/0
								0	1.0 766
C	20 713	30 000	36,553	37,754	39,190	39,051	35,118	40,720	47,100
Resident permits	30,117	000600			,	677 0	670 6	2,588	3,915
, Q	ç	2,170	2,318	2,665	I,943	7,040	7,004		
Non-Resident	11.0.			(100	2 270	3 252	7,580	8,326
	5	3,323	3,418	3,396	3,120	0,7,0) 		
Area 02 sales	11.00				(0.10	86.3	83.4	88.5
	ç	74.0	71,2	79.8	868	0,10	000)	
Percent active hunters (UZ)	11.4.					1	100 226	221 865	218.052
-	110 007	226 7.12	226,903	163,353	222,662	167,62/	190,220	7006177	
User days (01)	1/0,724	4403				1	690 03	77 838	83,916
	15 676	15 673	15,263	47,266	20,482	201,20	700,000	00067	
User days (02)	10°01	17,017	10160-						
							(

Source: Canadian Wildlife Service Progress Notes 10, 16, 22, 28, 34, 41, 51, 52, 68, 70, 81, 83

aResident in defined as any Canadian citizen

 $^{\mathrm{b}}\mathrm{Migratory}$ game bird permits sold in Manitoba

^CManitoba north of 53°N. lat.

 $^{\rm d}(1)$ is the area in Manitoba south of 53 $^{\rm o}$ N. lat.

e Includes ducks and geese

n.a. not available f_{Sold} in Manitoba

Appendix J

Table 4

Caribou Hunting

N. N. N. A							1976	1977
Licences Available	u	u	225	225	200	250	200	115
Licences Sold	u	u	u	и	151	59	96	75
Total Kill	50	44	33	24	19	9	23	9
Total User Days	609		1,017	508	445	291	480	241

Source: Personnel Communication P. Page and D. Cross Department of Mines, Natural Resources and Environment

Appendix J

Table 5

Estimated Man-Days of Hunting and Deer Kills
Per Hunter in the Mid-North Planning Area

	1971-72	1972-73	1973-74	1977-782
Man-Days Hunting (Mid North) Man-Days Hunting (Manitoba)	3,975 184,469	4,223 179,529	5,422 177,782	115,828
Deer Kills/Hunter Day (Mid North) Deer Kills/Hunter Day (Manitoba)	.04	.02	.002	.20
Deer Hunters (Mid North) Deer Hunters (Manitoba)	956 39,082	1,077 50,559	782 55,659	37,364

¹ Areas 1, 2, 3, 3A, 4, 9, 10 Closed

Unknown

²No deer season in Mid-North 1974-75 to 1977-78

Game	1000		1066		1070		1071		1070		1070	
Hunting	1968		1969		1970		1971		1972		1973	
Area	R	NR	R	NR								
1	1,904	0	914	0	717	36	1,409	72	2,293	0	2,782	46
1A												
2	125	56	363	226	128	426	348	435	970	713	1,436	1,103
2A												
3	195	153	334	154	576	26	915	237	970	371	517	125
3A											821	638
4	681	46	305	105	256	120	1,409	143	1,426	479	1,748	410
5	717	240	769	886	755	156	1,519	968	1,558	1,020	274	547
6	445	316	551	787	550	660	897	913	1,367	479	1,277	507
6A	500	71	580	83	563	57	860	151	1,147	120	631	34
7	1,710	597	1,291	561	2,714	510	3,880	646	3,175	2,132	3,329	1,585
8	1,279	1,076	682	1,601	1,165	1,591	1,126	1,991	1,771	1,331	4,986	1,436
9	3,114	255	3,770	308	1,690	156	2,946	94	3,851	433	3,238	695
10	250	357	638	451	653	759	1,116	1,018	897	1,368	2,136	1,072
11	653	117	653	193	947	270	878	580	1,205	17	2,105	428
12	1,807	56	986	28	870	208	1,464	787	1,470	724	942	428
15A	167	71	87	143	218	94	384	358	456	399	426	0
Sub Total ^a	13,247	3,412	11,919	5,522	11,802	5,070	19,151	8,390	22,557	9,585	26,646	9,055
Alternate												
Estimate	11,221	3,672	12,079	5,584	12,186	4,980	15,818	8,265	26,772	13,555	22,692	12,043
Mean of												
Two Methods	12,234	3,542	11,999	5,553	11,994	5,025	17,485	8,328	24,665	11,570	24,669	10,549
Annual												
Total	15	,776	17,5	52	17,	019	25,	813	36,	235	35,2	218

Game Huntin g Area	1974 R	NR	1975 R	NR	1976 R	NR	1977 R	NR	Mean R	NR	Average
1	940	0	162	'0	102	3	491	19	1,171	16	1,187
1A	×	0	1,494	0	978	0	2,948	0	1,807	0	1,807
2	14,671	0	231	0	175	0	567	44	483	11	494
2A	×	329	380	116	394	373	208	250	327	267	594
3	***	0	391	0	350	50	302	82	506	120	626
3A	*	0	1,086	0	380	0	1,021	4	827	128	955
4	*	0	620	118	336	93	1,247	59	892	157	1,049
5	0	171	0	0	657	0	851	0	756	399	1,155
6	2,833	0	508	0	365	0	1,011	0	775	366	1,141
6A	2,207	0	89	0	58	0	208	0	515	52	567
7	*	188	2,539	99	2,994	203	2,892	225	2,725	675	3,400
8	A	0	1,196	38	365	12	586	0	1,462	908	2,370
9	*	0	3,134	0	2,044	75	8,051	74	3,538	210	3,748
10	*	447	2,475	154	1,752	204	2,930	174	1,427	600	2,027
11	**	0	629	0	803	0	775	0	961	161	1,122
12	**	0	1,301	0	2,176	0	2,098	0	1,457	223	1,680
15A	0	0	125	0	350	0	189	15	240	108	348
Sub Totala	20,652	1,144	16,359	524	14,279	640	26,375	945	18,299	4,429	22,728
Alternate ^C Estimate	23,090	1,170	14,272	558	16,160	1,102	29,730	976	18,402	5,191	23,593
Mean of Two Methods	21,871	1,157	15,316	541	15,220	871	28,053	961	18,351		=3,333
Annual	,	-,,	-5,510	3 11	10,220	371	20,000	30 T	10,331	4,810	
Total	23,0	028	15,	857	16,	091	29,	014			23,161

^aColumns may not equal totals due to rounding

 $^{{}^{\}rm b}{\rm From\ hunter\ surveys:\ Personal\ Communication\ P.\ Page}$

 $^{^{\}rm C}_{\rm Estimated}$ hunters times average days per hunter

A included in 6 NR Non-Resident

R Resident

^{*} included in 2

^{**} included in 6A *** included in 1

Appendix K

Existing Impoundments (characterisitcs and impact processes)

Laurie River Impoundment: This reservoir, located on the Laurie River south of Lynn Lake, has been in operation since 1950. The annual maximum drawdown is two to three feet. The zone of disturbance is detectable at a sediment depth of 8-10 cm. There are no obvious indications of intense shoreline erosion. Fluctuations in values of species diversity indicated that diatom phytoplankton populations in the reservoir were still (1970) responding to environmental change caused by impoundment 20 years ago, and have not yet attained a steady state condition.

Reindeer Lake: This large storage reservoir (controlled in Saskatchewan) has been in operation since 1938. Water levels have been raised about five feet over pre-impoundment levels. Total area flooded was approximately ten square miles. It has an annual mean drawdown of about two feet. The zone of disturbance is located at a sediment depth of 4-6 cm., indicating a sedimentation rate of approximately $1.7 \pm .5$ mm./year. This rate is similar to that calculated for natural lakes. Overall effects of impoundment on the diatom community composition has been small, indicating that impoundment has not appreciably disturbed this large lake. Transparency is high, the lake is strongly stratified in summer and levels of oxygen are invariably high.

Cedar Lake: This is a large reservoir on the lower reaches of the Saskatchewan River. Flooding commenced in 1964 and caused a rise of 12 feet in Cedar Lake and seven feet in adjoining Moose Lake. Mean annual drawdown is eight feet with a maximum drawdown of ten feet. Physical and chemical conditions in the lake have not altered appreciably. Oxygen levels, at least in the summer, remain high and there is little evidence of thermal stratification. The catch of northern pike has increased substantially since impoundment. This same increase was observed for goldeye until 1967 when production declined to a point below pre-impoundment levels. The total area flooded was between 800 and 900 square miles. Severe impact is noted regarding vegetation (slowly readjusting) although shore-

line erosion is not serious. Some flooding has occurred outside of the dyked areas due to the natural porosity of the underlying limestone.

Sipiwesk Lake: The flooding of the shoreline of Sipiwesk occurred in 1960 as pondage for the Kelsey generating station. Lake level was increased by 7.5 feet with a mean annual level fluctuation of 4.8 feet. Approximately ten square miles of land was flooded in total, distributed over the lakes 1100 miles shoreline. The immediate results of flooding was the destruction of shoreline vegetation to a height equal to the maximum water level and the increase in shoreline erosion which resulted in higher nearshore turbidity. Five percent of Sipiwesk's shoreline (steep rock outcrop areas) experienced no impact due to flooding, ten percent of the shoreline received slight impact resulting in a narrow band of dead trees. Moderate impact resulted on 35 percent of the shoreline and was characterized by dead vegetation and erosion. The remaining 50 percent of the shoreline experienced severe impact with heavy erosion and intensive inland flooding.

Kelsey forebay (Nelson channel): The Nelson channel above Kelsey dam was also flooded in 1960 with a mean increase in water level of 53 feet. Total area flooded was approximately five square miles which was distributed over 150 miles of shoreline. The shorelines readjustment has resulted in; solifluction of unconsolidated till in some areas, severe bank undercutting near the upper end of the channel, shoreline vegetation killed to the maximum water level and remaining in place (except in areas of slumping or severe erosion), and increased erosion with resultant higher turbidities. Twenty percent of the shoreline received slight impact, resulting in dead vegetation only. Impact of a moderate extent was experienced by 40 percent of the shoreline consisting of dead vegetation and some erosion. Forty percent of the shoreline suffered severe impact characterized by dead vegetation, erosion, undercutting and solifluction.

Stephens Lake: Stephens Lake or the Kettle forebay was formed due to flooding resulting from the construction of the Kettle Rapids Dam.

Water level was raised in two stages (fall of 1970 and fall of 1971) to a maximum of 98 feet at the dam-site to a minimum of 43 feet at the base of Gull Rapids. Mean annual level fluctuation is approximately five feet. The approximate area flooded is 125 square miles with a mean inland extent of 1000 yards. The process of shoreline re-adjustment has resulted in; undercutting of high till banks, extensive permafrost melt (resulting in surface instability and slumping), large areas of flooded (standing) vegetation with floating peat islands in embayments and severe erosion of overburden banks and midstream islands. The level of impact on the shoreline of Stephens Lake appears to be either severe (95 percent) or non-existant (due to bedrock at the surface). Severely impacted areas are characterized by flooded vegetation, severe erosion and solifluction.

Appendix L

Master Angler Awards

The Manitoba Master Angler Award Program has been in operation since 1958. From this time to 1977 more than 23,000 awards have been issued provincially. The accompanying tables provide the detailed information on Mid North Awards.

Table 1
Master Angler Awards^a

Year	Total Awards	Number of Lakes	Average/ Lake
1977	644	71	9.1
1976	478	65	7.4
1975	619	71	8.7
1974	381	57	6.7
1973	429	52	8.3
1972	458	51	9.0
1971	352	53	6.6
1970	375	51	7.4
1969	396	43	9.2
1968	350	36	9.7
1967	209	34	6.1
1966	202	35	5.8
Mean	408	52	7.8

Source: Master Angler Award Winners 1966-1977

Awards issued for fish caught in the Mid North Planning Zone.

Appendix L

Table 2

Zone Master Angler Awards by Species
Mid North Planning Zone

	Lake Trout No./% total	Northern Pike No./% total	Pickerel No./% total	Others No./% total	All Species No./% total
1977	49/47.1	453/53.0	33/ 6.1	118/ 7.1	644/20.3
1976	48/48.5	318/45.2	35/ 9.6	82/ 8.0	478/22.0
1975	73.67.0	338/46.4	33/ 7.8	175/18.9	619/28.3
1974	62/60.2	240/40.9	30/10.1	51/ 7.8	381/23.1
1973	54/59.3	268/38.6	20/ 7.4	90/12.6	429/24.4
1972	43/67.2	317/44.8	31/ 4.6	88/12.9	458/28.7
1971	29/39.2	263/56.2	19/10.3	41/ 6.5	352/26.0
1970	42/55.3	264/47.5	20/12.6	50/ 8.8	375/29.9
1969	31/54.3	318/59.3	7/ 6.0	40/ 7.2	396/31.3
1968	37/54.4	264/55.9	20/18.9	29/ 5.6	350/32.0
1967	36/55.4	154/45.6	8/ 6.8	11/ 2.5	209/21.8
1966	33/49.3	159/52.6	5/ 6.0	5/ 6.0	202/25.3
Mean	45/55.1	280/48.8	22/ 9.7	65/ 8.3	408/26.1

 $\begin{array}{c} \text{Appendix L} \\ \text{Table 3} \end{array}$ Resident Award Winners by Community a

Community	1977	1976	1975	1974	1973	Mean
Thompson	65	25	107	26	40	52.6
The Pas	62	40	40	41	34	43.4
Flin Flon	8	19	15	16	29	17.4
Gillam	17	4	14	7	4	9.2
Lynn Lake	8	10	13	1	7	7.8
Cranberry Portage	18	12	7	8	7	10.4
Snow Lake	6	5	4	8	3	5.2
Wanless	8	1	1	0	2	2.4
Grand Rapids	6	4	18	0	0	5.6
Jenpeg	11	8	4	0	0	4.6
Leaf Rapids	3	5	1	0	3	2.4
Others	3	3	6	2	5	3.8
Total	215	136	237	109	136	166.6
% of total awards	6.7	6.2	10.8	6.7	7.8	7.6
% of zone awards	32.9	28.2	38.3	28.5	31.5	32.4

^aResidents of the Planning Zone awarded Master Angler Awards from lakes in the Planning Zone.

Appendix L

Table 4

Master Angler Awards^a

Name	1970	1971	1972	1973	1974	1975	1976	1977	Mean	Location Twp.	Rge.
Reed Lake	29	52	43	76	46	51	56	87	55.0	65	20
Churchill River b	18	6	16	37	29	130	80	60	46.4	77-112	
Athapapuskow Lake	39	40	48	39	45	34	40	50	41.9	64	281
Cedar Lake ^C	43	6	26	16	14	38	13	42	24.8	51	190
Kississing Lake	18	4	7	22	45	26	29	45	24.5	71	26
Rocky Lake	9	12	24	30	20	28	23	26	21.5	60	271
Clearwater Lake	21	8	15	15	20	26	19	20	18.0	58	251
Cross Lake ^d	31	23	29	17	6	9	14	15	17.9	66	21
Cormorant Lake	34	24	21	17	14	12	8	11	17.6	60	231
3rd Cranberry Lake	16	42	51	7	3	2	1	4	15.8	66	231
Minago River	0	0	1	28	8	33	16	5	11.4	59-64	5-141
Saskatchewan River	5	10	20	14	8	12	13	5	10.9	48-58	13-29
Scotty Lake	6	6	29	7	2	6	7	6	8.6	66	261
Waskaiowaka Lake	3	16	24	13	3	0	0	0	7.4	87	7
McGavock Lake	2	0	7	3	9	4	17	12	6.8	87	261
Grass River	9	3	8	9	5	9	2	6	6.4	65-80	4E-25
Odeí River	0	0	0	0	0	0	0	51	6.4	79~83	5E- 61
Nelson River	0	1	4	4.	2	9	3	26	6.1	57-92	9E-2 41
Eden Lake	2	2	0	1	0	6	6	30	5.9	88	181
Simonhouse Lake	4	3	7	2	8	5	5	12	5.8	64	25
2nd Cranberry Lake	9	5	6	6	3	4	7	2	5.3	65	25
lst Cranberry Lake	10	6	2	4	5	6	6	1	5.0	65	26
File Lake	0	5	9	6	3	6	6	4	4.9	68	19
Carrot River	1	2	4	5	5	6	11	2	4.5	55	27~29
Tramping Lake	8	7	5	1	6	4	3	0	4.3	65	18
Ospwagan Lake	0	0	0	0	1	32	0	0	4.1	76	4
Upper Ospwagan Lake	0	0	0	0	0	26	5	1	4.0	75	5
Morton Lake	0	0	7	7	3	5	3	4	3.6	67	20
Granville Lake	0	0	0	0	0	.5	8		3.4	84	20
		9	1					14		92	25
Vandekerckhove Lake	2		1	2	1	4	4	3	3.3	64	281
Newman Lake Iskwasum Lake	12	1	1	1	1	5	1	2	3.0	65	23
	4	1	3	3	3	2	4	1	2.6	65	27
Neso Lake	1	15	1	1	0	0	1	1	2.5		221
Loucks Lake Burntwood River	0	3	4	2	6	4	0	0	2.4	65	5E-18
	.0	4	0	1	2	3	0	9	2.4	74-82	
Limestone River	0	0	0	0	3	5	3	7	2.3	86-88	11E-21
Schist Lake	2	1	4	2	0	1	4	4	2.3	65	29 ⁻ 19
Woosey Lake	0	0	0	1	4	5	1	1	1.9	67	
Wabishkok Lake	1	1	4	0	0	3	3	2	1.8	68	27
Alberts Lake	1	3	1	1	3	0	2	3	1.8	67	27
Kisseynew Lake	1	4	3	0	0	1	1	2	1.5	69	28
Sky Pilot Creek	3	0	0	0	2	0	1	6	1.5	85-86	17-20
Wekusko Lake	0	0	2	3	3	1	0	1	1.3	67	16
Cockeram Lake	0	0	0	0	0	2	6	2	1.3	90	22
Barrington River	0	1	0	0	0	2	4	3	1.3	89-90	15-17
Cochrane River	0	6	0	0	0	0	3	0	1.1	103-116	23-27
Goose Lake	0	0	0	0	8	0	1	0	1.1	63	27
Apussigamasi Lake	1	2	0	0	2	2	2	0	1.1	80	1
McMillan Lake	3	1	2	0	0	1	1	0	1.1	92	27
Payuk Lake	4	0	1	0	2	0	0	1	1.0	65	27
Orr Creek	0	0	0	0	0	0	0	8	1.0	81	2
Velde Lake	0	0	0	1	3	2	1	1	1.0	74	5
continued											

 $^{^{}a}$ Certain lakes and rivers have not been included due to difficulties in determining locations or where several water bodies have the same name (e.g., Moose Lake).

 $^{^{\}mathrm{b}}\mathrm{May}$ contain some awards for fish taken outside the Planning Zone.

 $^{^{\}mathrm{C}}\mathrm{Figures}$ listed may be higher due to a naming confusion with Cross Bay and Cross Lake.

 $^{^{}m d}$ Numbers are probably high, particularly 1970-1972 due to confusion with Cross Bay.

Table 4 continued . . .

Name	1970	1971	1972	1973	1974	1975	1976	1977	Mean	Locat Twp.	ion Rge
Paint Lake	0	0	0	0	3	1	1	2	0.9	75	417
Moak Lake	0	0	0	2	5	0	0	0	0.9	79	1 W
Trout Lake	0	1	0	0	0	0	6	0	0.9	102	8W
Moody Lake	0	1	0	1	2	0	0	2	0.8	70	21W
Namew Lake	0	1	0	2	0	0	3	0	0.8	61	29W
Woosey Creek	0	0	0	0	0	0	0	6	0.8	66	19W
Frog Creek	3	1	0	0	1	0	0	1	0.8	60	20W
Claw Lake	0	1	2	1	0	1	0	1	0.8	67	22W
Hughes River	0	0	1	0	0	3	0	1	0.6	91	21W
Moses Lake	0	0	0	2	0	1	1	2	0.6	90	21W
Sipiwesk Lake	0	0	0	0	1	0	3	1	0.6	69	3W
Squall Lake	1	0	0	0	1	2	1	0	0.6	69	18W
Sickle Lake	0	0	0	0	0	0	0	5	0.6	88	21W
Webb Lake	0	0	0	0	0	0	1	4	0.6	69	23W
Hale Lake	3	1	0	0	1	0	0	0	0.6	88	9E
Highrock Lake	0	0	0	0	1	3	0	0	0.5	79	20W
Puphes Lake	1	0	0	0	0	3	0	0	0.5	90	20W
Berge Lake	1	0	1	2	0	0	0	0	0.5	91	23W
Setting Lake	0	0	0	0	0	2	2	0	0.5	69	8W
Pasquia River	1	0	0	0	1	1	0	1	0.5	53-55	26-271
Moodie Lake	0	0	0	0	0	4	0	0	0.5	70	22W
Amulet Lake	0	0	1	3	0	0	0	0	0.5	67	27W
Aimee Lake	0	0	0	2	1	0	0	0	0.4	68	27W
Tod Lake	0	0	0	1	0	2	0	0	0.4	87	28W
Motriuk Lake	1	0	1	0	0	1	0	0	0.4	90	24W
Stephens Lake	0	0	0	0	0	2	1	0	0.4	85	16E
Manistikwan Lake	0	1	0	2	0	0	0	0	0.4	66	29W
Mistik Creek	1	0	0	0	1	1	0	0	0.4	65	28W
Anson Lake	0	0	0	0	0	1	2	0	0.4	89	21W
Southern Indian Lake	0	0	0	0	0	1	2	0	0.4	95	6W
	0	1	1	0	0	1	0	0	0.4	68	18W
Squall Creek	0	0	0	0	0	1	0	2	0.4	72	6W
Phillips Lake		0	2	0	1	0	0	0	0.4	74	5W
Jrey Lake	0					0				60	
Little Cormorant Lake	0	1	0	1	0		0	1 0	0.4		21W
Krup Lake	1	1	1	0	0	0	0		0.4	66	21W
Embury Lake	1	0	0	0	0	1	0	0	0.3	67	29W
Fiskitto Lake	0	0	0	2	0	0	0	0	0.3	61	8K
Mystery Lake	0	1	0	1	0	0	0	0	0.3	79	2W
Yawningstone Lake	1	0	0	0	1	0	0	0	0.3	62	2317
South Ospwagan Lake	0	0	0	0	0	2	0	0	0.3	75	5W
Mitchell Lake	0	0	0	0	0	1	1	0	0.3	62	241:
Neosap Lake	0	0	1	0	0	0	1	0	0.3	68	26k
Little Brightsand Lake	0	0	0	0	1	0	0	1	0.3	91	244
McLeod Lake	0	0	0	0	1	0	0		0.3	69	17%
Miskimmin Lake	0	0	0	0	0	0	1	٠	0.3	70	41
Ma Later	0	0	0	0	0	0	2		0.3	63	20h
Limestone Lake	0	0	1	0	0	0	0		0.3	87	101
Smith of their	0	0	0	0	0	0	0	2	0.3	82	18 n
Atik Lake	0	0	0	0	0	0	0	2	0.3	60	27h
	0	0	0	0	0	1	1	0	0.3	83	14"
semierland lass	0	0	2	0	0	0	0	0	0.3	66	29 n

Table 4 continued

Name	1970	1971	1972	1973	1974	1975	1976	1977	Mean	Loc. Twp	ation . Rge
Amy Lake	1	1	0	0	0	0	0	0	0.3	87	22W
Armstrong Lake	2	0	0	0	0	0	0	0	0.3	77	4E
Morgan Lake	2	0	0	0	0	0	0	0	0.3	67	19W
Mid Lake	0	0	0	0	0	0	0	2	0.3	75	5W
Pasquia Lake	1	0	0	0	0	0	0	0	0.1	54	27W
Laurie River	0	0	0	0	0	1	0	0	0.1	83	23W
Fish Lake	0	0	0	0	0	1	0	0	0.1	69	9W
Guthrie Lake	0	0	1	0	0	0	0	0	0.1	72	21W
Bonald Lake	0	0	0	1	0	0	0	0	0.1	78	26W
Saskram River	0	0	0	1	0	0	0	0	0.1	56	27W
Batty Lake	0	0	0	0	0	1	0	0	0.1	71	21W
Zed Lake	0	0	0	0	0	0	1	0	0.1	91	24W
Pothier Lake	0	0	0	0	0	0	1	0	0.1	63	25W
Drunken Lake	0	0	0	0	0	0	1	0	0.1	64	7 W
Snow Lake	0	0	0	0	0	0	1	0	0.1	68	17W
Sundance River	0	0	0	0	0	0	0	1	0.1	87	22E
Kormans Lake	0	0	0	0	0	0	0	1	0.1	67	17W
Dolomite Lake	0	0	. 0	0	0	. 0	0	1	0.1	63	21W
Split Lake	0	0	0	0	0	0	0	1	0.1	83	9E
Riddoch Lake	0	0	0	0	0	0	0	1	0.1	74	1 E
Stag Lake	0	0	0	0	0	0	1	0	0.1	86	19W
Weir River	0	0	0	0 .	0	1	0	0	0.1	90	21E
Germell Lake	0	0	0	0	0	1	0	0	0.1	89	24W
Reader Lake	0	0	0	0	0	1	0	0	0.1	57	27W
Machewin Lake	0	0	0	0	1	0	0	0	0.1	81	101
Pelletier Lake	0	0	0	0	1	0	0	0	0.1	86	4E
Oblong Lake	0	0	0	1	0	0	0	0	0.1	68	29W
Soab Creek	1	0	0	0	0	0	0	0	0.1	72	6W
Cook Lake	0	0	1	0	0	0	0	0	0.1	68 76	or 18W 2E
Taylor River	0	0	1	0	0	0	0	0	0.1	75	5W
Kississing River	0	0	1	0	0	0	0	0	0.1	73	24W
Ostaskawetawin Lake	0	1	0	0	0	0	0	0	0.1	66	25W
Nisto Lake	0	1	0	0	0	0	0	0	0.1	66	27W
Dodds Lake	0	1	0	0	0	0	0	0	0.1	65	27W
Loon Lake	0	1	0	0	0	0	0	0	0.1	103	7W
Clark Lake	0	1	0	0	0	0	0	0	0.1	84	10E
Wedge Lake	1	0	0	0	0	0	0	0	0.1	65	24W
Mikanagan Lake	1	0	0	0	0	0	0	0	0.1	67	28W
Crow Lake	0	0	0	0	1	0	0	0	0.1	73	26W
Ralph Lake	0	0	0	0	0	0	0	1	0.1	91	23W
Footprint Lake	0	0	0	0	0	0	0	1	0.1	78	10W

Table 1 Travel Expenditures in Manitoba

Appendix M

	(mill	ions of doll	ars)
Year	Resident	Others	Total
1971	164.6	78.0	242.6
1972	177.0	88.1	265.1
1973	188.3	97.0	285.2
1974	194.5	101.2	295.6
1975	206.1	105.9	312.0
1976	218.5	112.9	331.4
1977	218.5	114.2	332.7

^aA portion of this spending is on 'trip preparation' including for trips outside Manitoba

SOURCE: Personal communication Neil Nixon

Table 2

Manitoba Balance of Travel Payments
(Millions of Dollars)

Appendix M

CANADA	1971	1972	1973	1974	1975	1976	1977
Receipts	32.8	35.3	41.6	48.0	45.2	48.3	51.2
Expenditures	24.3	26.1	30.8	36.3	41.2	43.6	47.8
Balance of Payments	+8.5	+9.2	+10.8	+11.7	+4.0	+4.7	+3.4
UNITED STATES	1971	1972	1973	1974	1975	1976	1977
Receipts	47.6	55.4	58.4	49.2	55.5	57.9	56.5
Expenditures	38.7	48.7	38.5	40.0	58.2	82.0	95.9
Balance of Payments	+8.9	+6.7	+19.9	+9.2	-2.7	-24.1	-39.4
OVERSEAS	1971	1972	1973	1974	1975	1976	1977
Receipts Expenditures Balance of Payments	2.5	2.5	3.5	4.0	5.2	6.7	6.6
	15.0	15.0	15.4	20.8	24.4	25.3	32.5
	-12.5	-12.5	-11.9	-16.8	-19.2	-18.6	-25.9
TOTAL	1971	1972	1973	1974	1975	1976	1977
Receipts Expenditures Balance of Payments	82.9	93.2	103.5	101.2	107.6	112.6	114.3
	78.0	89.8	84.7	97.1	123.8	150.9	176.2
	+ 4.9	+3.4	+18.8	+4.1	-16.2	-38.0	-61.9

Source: Personal Communication Neil Nixon

Table 3 Origin of Cottage Owners and Leasees

Appendix M

	# Local ^a	# Other Manitoba	# Other Canada	# U.S.	Unknown
Aimee	1	0	0	2	0
Athapaskow	263	23	9	9	0
Clearwater	294 ^b	38	17	5	0
Berge	34	2	0	1	0
Cross Bay	11	2	0	0	0
Eden	2	0	0	0	0
1st Cranberry	9	1	0	0	0
Hughes	2	0	0	0	0
Manistikwan	123	2	3	0	0
Paint	126	3	1	0	0
Payuk	5	0	0	1	0
Rocky	7 5	0	0	0	0
Schist	19	2	1	0	0
Setting	128	2	2	0	11
Wekusko	33	2	0	0	0
Zed	27	0	0	0	0
Total	1152	77	33	18	11

Source: Personnel Communication, Parks Branch, Northern Region November, 1978

^aLess than 75 driving miles from site

b Includes 72 private lots

Table 4

PARTICIPATION IN SELECTED SPORTS ACTIVITIES BY SEX, PERSONS 14 YEARS OF AGE AND OVER, 1971-72.

Appendix M

Add And Other, 1/11 12		(% of population)
Activity	Canada	Manitoba
GOLF - M	11.4	12.7
F Total	3.7 7.5	3.7 8.1
TENNIS - M	5.5 4.5	4.5 3.1
Total	5.0	3.8
SKATING - M	16.9	16.2 9.9
Total	14.6	13.0
SKIING - M F	7.6 6.0	2.8 2.1
Total	6.8	2.5
SNOWMOBILING - M	14.7 9.8	15•3 9•2
Total	12.2	12.1
SWIMMING - M F	30•2 26•9	25•7 22•9
Total	28.5	24.3
WATERSKIING - M	6.6 3.9	6.6 2.8
Total	5.2	4.7
WALKING - M F	37.9 45.8	39.0 45.9
Total	41.9	42.6
BICYCLING - M F	11.9	14.2
Total	11.8	13.6 13.9
HUNTING/FISHING - M F	30.8 8.8	33.0
Total	19.6	8.0 20.1

Source: Statistics Canada - 1975.

Appendix M

Table 5
PARTICIPATION AND FAVORITE SPORTS 1976

		Rank	ÇS	1
Sport	By No. of	By Preference	By No. of	By Preference
	Participants	of Participants	Participants	of Participants
	CANA	DA	MANI	TOBA
Swimming	1	1	1	1 1
Skating	2	9	2	2
Tennis	3	6	3	6
Golf	4	3	4	5
Hock-2y	5	2	6	a
Cross-Country				
Skiing	6	7	7	a
Downhill Skiing	7	4	9	a
Curling	8	8	4	3
Bowling	9	5	8	4
Baseball	10)	10	10	a
			j	

a Ranks cannot be assigned due to high variability in sampling

SOURCE: Statistics Canada, Catalogue 81-001 March, 1978

Table 6

Purpose of Vacation Trips

Main Purpose	(anac	(F	tage) Manitobans			
	67	68	69	70	69	70	73
Visit Friends or Relatives Sightseeing in Cities/Towns Sightseeing Away from Cities/Towns	45 11 9	47 14 17	47 13 12	47 14 15	57 16 6	64 11 13	51 14 20
Spend Time at Vacation Spot Fishing, Boating Camping, Tenting	19 12 8	25 12 12	22 10 9	27 14 9	7 8 4	14 8 3	20 9 14
Shopping Cottage Stay Festival or Special Event	5 4 3	6 6 4	7 6 5	6 5 6	5 3	5 1 9	4 4 6

Source: The Canadian Tourism Fact Book 1972,
Canada Dept. of Industry, Trade and Commerce,
Ottawa, 1972.

A Report on Canadian Visitors to Manitoba and Manitobans on Vacation 1973, D. Wang, Manitoba Dept. of T.R.C.A., #156, Winnipeg, 1974.

LODGES AND OUTCAMPS (1976)
PRIVATE HUNTING AND FISHING CABINS
OUTCAMPS RELATED TO COMMERCIAL LODGES
COMMERCIAL LODGES
FLY-IN LODGES

•

1

MAP 1. APPENDIX M

MID NORTH PLANNING ZONE

linch:40 miles

