МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ федеральное государственное автономное образовательное учреждение высшего образования

«САНКТ-ПЕТЕРБУГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 43

ОТЧЕТ								
ЗАЩИЩЕН С ОЦЕНКОЙ								
ПРЕПОДАВАТЕЛЬ								
Старший преподаватель		Фоменкова А.А.						
Ассистент		Величко М.В.						
должность, уч. степень, звание	подпись, дата	инициалы, фамилия						
ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ Графическое представление результатов вычислений при решении численных задач								
РАБОТУ ВЫПОЛНИЛ	курсу: ИНФОРМАТИКА							
CTVHEHT ED Ma 41241/		И D Ираха-						
СТУДЕНТ ГР. № 4134К	подпись, дата	И.В.Иванов инициалы, фамилия						

Цель: Знакомство с графическими возможностями MATLAB, особенностями форматирования графиков. Визуализация результатов вычислений. Закрепление навыков по преобразованию типов данных, организации программ-сценариев, подпрограмм и организации диалогов.

Задание на лабораторную работу №6

Дополнить программу, реализованную в лабораторной работе №6, графическим представлением решения. Программа должна запросить у пользователя математическую функцию, запросить интервал для построения графика заданной пользователем функции и проверить введенные значения согласно условию 1 и условию 2 (используя ранее написанные функции для лабораторной работы №5). Программа должна рассчитать

$$\int_{a}^{x} f(x)dx$$
, значение интеграла

где f(x) – функция, введенная пользователем, а – нижняя граница интервала для построения графика, х − текущее значение аргумента, х ∈ [a, b]. Интеграл рассчитать любым удобным методом и вывести результаты расчетов в виде таблицы с дискретными данными с 3 столбцами (аргумент, функция, интеграл), а так же в виде графика. Для вывода таблицы использовать не более 15 строк, охватывающих всю ОДЗ с одинаковым шагом. Графическое окно должно быть разбито на два подокна, расположенных горизонтально или вертикально в зависимости от номера варианта (см. табл. 3). На графике функции указать маркерами точки, по которым строился график (для наглядности допускается прорисовать точки с большим шагом). Стили линий и маркеров, их цвет, толщина выбирается в соответствии с номером варианта (см. табл. 3). На графике тонкими горизонтальными пунктирными линиями отметить максимальное и минимальное значение функции. На графиках прорисовать сетку. Все графики и оси должны быть

		_			диновитьи.				
1	Гориз.	сплошная	знак	синий	красный	1	пунктирная	Красный	2,5
			плюс				линия		

Ход выполнения:

Листинг

```
clear %очистка памяти
func = input("Введите функцию: f(x) = ", 's') %запрос
функции у пользователя
[left, right] = test2(); %запрос и проверка границ интервала
f=eval(['@(x)' func]); %объявление АФ
x = left:abs(left-right)/14:right; %построение вектора на
15 эл
for i=1:1:15
    res(i)=integral(f,left,x(i)); % построение вектора со
зн. интеграла
end
printtable(x, func, res) %рисуем таблицу
for i =1:1:15
    \max \operatorname{res}(i) = \max (\operatorname{res});
    min res(i) = min(res);
subplot(2,1,1) %рисуем графики
plot(x, res,'b-', x, res, "r+", "LineWidth",1)
```

```
hold on
plot(x, max res, "k:", "lineWidth", 0.2) %линия макс зн
hold on
plot(x,min res,"k:", "lineWidth", 0.2) %линия мин зн
hold on
xlabel x
ylabel y
grid on
legend(func, func, "max", "min")
subplot(2,1,2)
plot(x, res,":r", "LineWidth", 2.5)
hold on
plot(x, max res, "k:", "lineWidth", 0.2)%линия макс зн
hold on
plot(x,min res,"k:", "lineWidth", 0.2)%линия мин зн
hold on
grid on
xlabel x
ylabel y
legend(func, "max", "min")
```


листинг программы check.m function buffer = check(str)

```
%Проверка, является ли число натуральным while 1
```

buffer = input(str,'s'); %принимаем значение
пользователя

x = str2double(buffer); %вспомогательная переменная другого типа данных

if (isnan(x)) %первая поверка

 ${\tt disp}$ ("Ошибка, введенное данное содержит символы или пробел");

else

```
disp("Введённое число нецелое, так как содержит запятую");
```

if (strfind(buffer, ',')>0) %вторая проверка

```
else
             if strfind(buffer, '.')>0 %третья проверка
                 disp("Введенное число нецелое, так как
содержит точку");
             else
                 if x<1 %четвертая проверка
                     disp("Ошибка, не натуральное")
                 else
                     break %если все проверки пройдены == 0,
цикл прерывается
                 end
            end
        end
    end
end
end
Работа программы
Ошибка, не натуральное
privet: 0
Ошибка, не натуральное
privet: 16
ans =
```

Листинг test2()

'16'

```
function [x1, x2] = test2()
```

```
%Первое из возвращаемых функцией чисел отрицательное,
второе -положительное
while 1
 buffer1 =check("Введите число 1: "); %ввод первого числа
    x1 = str2double(buffer1); %вспомогательная переменная
другого типа данных
break
end
while 1 %второй цикл для второго числа
    buffer2 =check("Введите число 2: "); %вводим данные о
втором числе
    x2 = str2double(buffer2); %вспомогательная переменная
для второго числа
    if (x2/x1) >= 2 %проверка второго числа на условие
        disp("первое меньше второго в 2 и более раза");
           else
        if x1==x2
           disp("числа должны отличаться");
           continue %если проверка успешна, просим
повторить ввод, начиная цикл со следующего шага
принудительно
        else
        break %иначе break, данное подходит
        end
    end
end
end
```

Работа программы

```
>> test2
Введите число 1: 0
Ошибка, не натуральное
Введите число 1: 5
Введите число 2: 12
первое меньше второго в 2 и более раза
Введите число 2: 9
```

Листинг printtable()

```
function res = printtable (x, y, z)
% нарисовать таблицу из двух входныхх векторов

fprintf("/-----\\\n") %шапка таблицы
fprintf("| Аргумент | Функция | Интеграл|\n")
fprintf("|-----|\n")

for i= 1:1:length(x) %середина таблицы
    fprintf('|%7.3f |\t%s |%12.4f |\n', x(i), y, z(i))

end
fprintf('\\-----\/\n'); %хвост таблицы
end
```

Блок схема

Результат и проверка Входные данные

>> printtak	ole(x,	buff, re	es)				
/ Аргумент	1		1	Интеграл	1		
					ı		
-11.000	1	1.000	1	0.0000			
-10.000	1	0.544	1	0.8435			
-9.000	1	-0.412	1	0.9156			
-8.000	1	-0.989	1	0.1499			
-7.000	1	-0.657	1	-0.7495			
-6.000	1	0.279	1	-0.9557			
-5.000	1	0.959	1	-0.2792			
-4.000	1	0.757	1	0.6581			
-3.000	1	-0.141	1	0.9944			
-2.000	1	-0.909	1	0.4206			
-1.000	1	-0.841	1	-0.5359			
0.000	1	0.000	1	-0.9956			
1.000	1	0.841	1	-0.5359			
2.000	1	0.909	1	0.4206			
3.000	1	0.141	1	0.9944			
\				/	/		

Вывод:

Я познакомился с возможностями визуализации в MATLAB и закрепил навыки в создании программ-сценариев и функций