UNIVERSITE DE DSCHANG

INSTITUT TECHNOLOGIE FOTSO VICTOR DE BANDJOUN

Département : Génie Electrique/

Option Electronique et Electrotechnique: / Niveau 1

UE/ Electronique de BASE / DUT_GE1/ Enseignant : Dr.KOM G

TD SERIE 2: Diodes et Applications /2019 2020

EXERCICE 1: Diode à jonction

<u>Partie I : </u> La caractéristique de la diode dans le montage de la figure 1 suivant est assimilable à une droite passant les points de coordonnées : A (5V; 0mA) et B(10V; 11mA).

- 1-1°) Donner l'équation de cette droite
- 1-2°) En déduire le schéma équivalent de la diode
- 1-3°) A l'aide du théorème de Thévénin Calculer R_{th} et E_{th} vu des bornes A et B du montage ci-dessus. On donne E₁=50V ; $E_2=20V$; $R_1=R_2=800\Omega$; $R_3=R_4=600\Omega$; $R_5=300\Omega$.
- 1-4°) Après avoir remplacé le montage vue de AB par le modèle équivalent de Thévénin, déterminer l'équation de la droite de charge et tracer celle-ci
- 1-5°) Déduire le point de repos

Partie II

1-6°) Dans le montage Figure 2 ci-contre pour quelle valeur de R la diode conduit-elle ?

Figure 2

Figure 3 1-7°) Dans le montage de la figure 3, calculer U dans les deux situations suivantes :

1-7-
$$a^{\circ}$$
) R=5 Ω ;

N.B: Les diodes sont idéales.

EXERCICE 2: Diode Zener

La différence de potentiel V₁ aux bornes de la résistance R_L du courant représenté sur la figure ci-contre est régulée par une diode zener qui présente les caractéristiques suivantes :

- -Tension de fonctionnement ou claquage Vz=220 V
- -Résistance dynamique r_z=0Ω

La tension du générateur E est égale à 340 V. on mesure alors un courant Iz=30mA dans la diode zener et un courant I_L=50mA dans la charge.

- 2-1°) Calculer la valeur de la résistance R
- 2-2°) Sachant qu'un fonctionnement convenable de la diode zener impose que le courant qui la traverse reste supérieur à 3mA et inférieur à 50mA. Calculer les intensités limitées (max et min) du courant I_L dans la charge.
- 2-3°) Calculer la valeur de la résistance R pour avoir I_{Lmin}=0A
- 2-4°) La tension d'alimentation E diminue jusqu'à ne valoir que 300V. Calculer la nouvelle valeur de l'intensité du courant dans la diode zener sachant que R garde la valeur déterminée en 2-1°).

EXERCICE 3: Diodes et Applications

Répondre aux questions suivantes

- 3-1°) Quel est l'élément de base d'une diode?
- 3-2°) Donner les 2 principales limites d'utilisation d'une diode simple
- 3-3°) Quels sont les 2 paramètres qui entre dans le choix d'une diode
- 3-4°) Comment peut –on savoir à l'aide d'un ohmmètre :
 - **3-4-a°)** Qu'une diode à jonction est bonne
 - **3-4-b°**) Qu'une diode à jonction est défectueuse
- **3-5°**) qu'est qu'un semi conducteur ? Donner 2 exemples
- **3-6°)** Qu'entend t-on, par semi conducteur Extrinsèque ?
- 3-7°) Quand est –ce qu'un semi conducteur est dit dopé?
- 3-8°) Parce qu'il provoque une conduction de type P (positif), le dopeur est appelé accepteur d'électrons, vraie ou faux (justifier)
- **3-9°)** En quoi consiste le claquage d'une diode ?
- 3-10°) Donner du point de vue charges électriques la représentation d'un semi conducteur de type P et N
- 3-11°) Expliquer ce qui se passe quand on met en contact un semi conducteur de type P avec un semi conducteur de type N
- **3-12°)** Expliquer la différence entre l'effet Zener et l'effet d'avalanche

EXERCICE 4

Pour les deux circuits suivants :

- **4.1°**) Donner l'état de chaque diode (bloquée ou passante), toutes les diodes sont idéales.
- 4.2°) Calculer le courant qui circule dans D1
- 4.3°) Calculer le courant qui circule dans D2

EXERCICE 5: Diode à jonction

Soit le montage ci-dessous :

Dans ce montage, les diodes D1, D2 et D3 sont idéales

- 5-1°) Donner l'état de chaque diode
- 5-2°) Calculer le courant dans la branche de circuit contenant R

EXERCICE 6

On donne les figures suivantes (Figures 1, 2, 3, 4 et 5).

Ecrire la lettre correspondante à la bonne réponse (une seule réponse est vraie).

- 6-1°) Dans la figure 1 si E1=10V et E2=10V, La tension Vo est :
- **A**°):9.3V **B**°):10V
- \mathbf{C}°):-10V
- \mathbf{D}°): 0V
- E°) aucune réponse n'est juste
- 6-2°) L'état des diodes (Figure 1) est : Passante = P ; Bloqué = B
 - \mathbf{A}°):D1:Pet D2:P \mathbf{B}°) D1:Bet D2:B
- C°):D1:Bet D2:P
- **D**°) D1 P et D2 B

- **6-3**)° Dans la figure 2 quel est la valeur de RL?
- \mathbf{A}°):5k Ω \mathbf{B}°):5.,5k Ω
- \mathbf{C}°):6k Ω
- \mathbf{D}°): 6,5k Ω
- E°) aucune réponse n'est vraie

- **6-4°)** dans la figure 3 V2 est :
 - **A**°) :3,201V B°) :4,3V
- C°):0V
- \mathbf{D}°): 1.371V
- E°) aucune réponse n'est vraie

Loi de maille :10=5+6.91+0.7

- 6-5°) Dans la figure4 quel est l'état de chacune des diodes idéales (Passante =P; Bloqué=B)
- A°):D3: P et D3: P B°) D3: P et D4:B
- \mathbb{C}°):D3:B et D4:P
- **D**°) D3: B et D4: B

EXERCICE 7: Régulateur a diode zener

- **7.1**)° Calculer Iz maximum.
- 7.2°) Quel est le générateur de thevenin (Eth,Rth) equivalent entre A et B.
- 7.3°) Determiner le point de fonctionnement.
- 7.4°) Calculer R et Ru sachant que :
- * $V_E = 40V$ si Iz = Izmax / 2 et que :
- * $V_E=35V$ si Eth=1,2Vz:
- **7.5°**) Calculer alors Iz si $V_E=45V$
- **7.6°**) On considère que Rz= 25Ω . Calculer alors $\delta Vs/Vs$
- 7.7°) On fait varier Ru, quel est le domaine de variation de cette résistance dans lequel la régulation est assurée ? Données : VE=40V+-12.5% . Vz=24V. Pz_{max}=1.3W. Rz sera négligée sauf a la question 1.6.

EXERCICE 8: Diode à jonction

Trouver les expressions i = f(vi) et Vo = f(vi), en précisant l'intervalle de leur validité et en faisant varier vi de -10 V à +10 V. On supposera que les diodes sont idéales.

R1 =100 Ω; R2=500 Ω; R3=400 Ω; R4=600Ω

EXERCICE 9 : Diodes et Applications

Dans le montage de la Figure dans lequel les diodes sont supposées parfaites et les générateurs idéaux.

Figure

- 9.1°) Quel est l'état de la diode D2. Justifier.
- 9.2°) Calculer l'intensité i dans les 2 cas suivants : a°) E = 10 V; b°) E = 30 V

EXERCICE 10: Diodes et Applications

Dans le montage de la Figure 2, la diode Zener est supposée parfaite. Sa tension Zener U_Z est égale à 6,2V et sa puissance maximale est de 1,3W.

- 10-1°) Déterminer le courant maximal qui peut traverser la diode.
- **10-2**°) On fixe Rc= Rp= 100Ω . Entre quelles limites peut varier E pour qu'il y ait stabilisation de la tension uc?
- **10-3**°) On fixe E = 24V et $Rp = 100\Omega$. Entre quelles limites peut varier Rc pour qu'il y ait stabilisation de la tension uc ?

EXERCICE 11

Soit le montage de démonstration suivant réalisé avec les lampes et les diodes supposés idéales.

- 11-1°) quelles sont les lampes allumées et les lampes éteintes ? Justifier votre réponse.
- 11-2°) Même question si on inverse le sens de E? Justifier votre réponse.

EXERCICE 12

On stabilise la tension Vs à l'aide du circuit de stabilisation de la figure où la tension Vs varie entre 13V et 17V.

L'alimentation ainsi réalisée doit délivrer une tension V_L =10V et fournir un courant de charge I_L variant entre 100mA et 200rnA. On prendra pour la diode Zener I_{zmin} =0,1x I_{zmax} .

- 12-1°) Indiquer les deux cas extrêmes dans lesquels la diode Zener peut assurer la régulation.
- 12-2°) Calculer I_{zmax} et déduire la puissance maximale supportée par la diode sachant que Rs est fixe.
- 12-3°) Calculer Rs.

Exercice 13:

soit le circuit représenté à la figure

La diode zener assure la stabilisation quand $10\text{mA} \le \text{Iz} \le 700\text{mA}$.

- 13-1°) Déterminer la realtion U=f(Ve) avant la stabilisation ($i_z=0$)
- 13-2°) Déterminer Ve au début de la stabilisation (i_z=i_{zmin} et U=V_z
- 13-3°) Déterminer Ve à la fin de la stabilisation (i_z=i_{zmax} et U=V_z
- 13-4°) En déduire le tracé de la caractéristique de transfert U = f(Ve) et déterminer la plage de la tension d'entrée Ve dans laquelle il y a stabilisation ; si $R_L = 20\Omega$, $R = 2\Omega$ et $r_z = 0\Omega$ (diode idéale) ; $V_z = 6V$.
- 13-5°) On considère de nouveau le montage stabilisateur de la figure 2 ; Choisir la diode zener (trouver sa puissance maximale) et la résistance de protection R si $V_z=4.5V$; $V_z^{min}=5V$; $V_z^{max}=6V$ et $I_L=0.2A$.

Exercice 14:

Vous disposez d'une diode 1N4001 dont la tension inverse limite decrete est de 50V et le courant limite 1A. Vous désirez réaliser le redresseur de la figure

Figure

- 14-1°) Ecrire les équations que Vs doit satisfaire pour que la diode puisse être monté dans le circuit sans danger.
- **14-2**°) Supposer à présent que $V_S^{eff} = 20V$
- **14-2-a**°) Calculer la tension moyenne
- 14-2-b°) Calculer le courant moyen qui circule dans la résistance de charge

EXERCICE 15

Soit les redresseurs ci -dessous (Figure 5 et Figure 6) la tension efficace du 'secondaire est Eeff= 40V

- **15-1**°) Représenter sur un même graphique pour chacun des cas les courbes de la tension du secondaire du transformateur et la tension aux bornes de la charge $R=300\Omega$.
- 15-2°) Etablir l'expression de la tension continue de charge dans chaque cas
- 15-3°) Calculer dans chaque cas la tension continue de charge et le courant moyen qui parcourt chaque diode.
- 15-4°) Calculer dans la PlV de diodes.
- 15-5°) En se basant sur les résultats des calculs obtenus précédemment dire en quoi ces deux circuits sont identiques et donner l'importance du redressement double alternance sur le redressement mono alternance.

EXERCICE 16

Soit le circuit de la figure 7, On donne $V_z = 18V, Z_z = 2\Omega, R_s = 68\Omega, et$ $V_s = 27V$.

16-1°) Calculer le courant zener et trouver la variation de la tension de charge V_L si V_S augmente jusqu'à 40V.

EXERCICE 17

On suppose que la tension au secondaire du transformateur représenté à la figure 8 est de 60V.

17-1°) Calculer la tension continue de charge et en déduire le courant moyen qui parcourt chaque diode

17-2°) Calculer la PIV entre les bornes de chaque diode

EXERCICE 18

- A .Une tension de source attaque une diode via une résistance chutrice de 100 .ohms. Supposer que la figure 9 représente sa caractéristique I-V et Calculer le courant à l'ordonnée à l'origine de la droite de charge, la tension à l'abscisse à l'origine de la droite de charge, le courant et la tension approximatifs au point Q et la puissance dissipé dans la diode.
- B. Refaire le même travail pour une résistance chutrice de 200 ohms. Décrire le changement que subit la droite de charge.
- C. Refaire le même travail pour une tension de 2V. Décrire le changement que subit la droite de charge.

EXERCICE 19:

Soit le redresseur plein onde suivant (Figure 10):

- 19-1°) Calculer la tension continue de charge
- 19-2°) Calculer le courant limite Io de chaque diode
- 19-3°) Calculer la PIV limite de chaque diode.

On donne: La tension secondaire efficace est de 40V.

On suppose que les diodes sont idéales

19-4°) Quelles diodes parmi les suivantes peuvent être utilisées. Justifier à chaque fois votre réponse.

Diode	Courant limite	PIV
1N4002	10 ⁶ μA	10 ⁵ mV
1N914	5. 10 ⁴ μA	2. 10 ⁴ mV
1N1183	35. 10 ⁶ μA	5. 10 ⁴ mV
1N3070	10 ⁵ μA	1,75. 10 ⁵ mV

EXERCICE 20:

Soit le circuit de figure ci-dessous (Figure 11) où la diode est caractérisée par tension Zener VZ.

- **20-1**°) Soit Pmax la puissance supportable par cette diode Zener, donner l'expression de la résistance RS limite en dessous de laquelle la diode se détruit (Rs=f(VS,VZ, Pmax).
- 20-2°)Calculer la tension de la source minimale qui maintient la diode dans sa zone de claquage .On donne VS=40V;

VZ=10V; $RS=2K\Omega$; $rz=10\Omega$;

- **20-3**°)Calculer le courant Zener qui passe dans la diode.
- **20-4°**)Calculer la variation de la tension de charge VL si la tension de source varier de 40V à 60V.
- 20-5°)On place aux bornes de VL une résistance RL.
- 20-5-1°) donner l'expression du courant IZ, en fonction de RL, VS, rz et RS
- **20-5-2°**) Calculer le courant Zener pour RL=1KΩ, RL=10KΩ, RL=100KΩ et conclure.

EXERCICE 21:

Dans le montage de la figure 12 ci-dessous, les diodes sont supposées idéales et la tension Zener de la diode Dz vaut 3.1v.

Le courant dans la diode Zener doit être limité à 50mA (en direct et en inverse) Lorsque la tension Ue varie entre +10V et -10V. On demande :

21-1°) D'analyser le fonctionnement du système lorsque la tension Ue est positive et lorsqu'elle est négative

21-2°) De calculer les valeurs des résistors R1 et R2 du montage

EXERCICE 22

Pour le montage ci-dessous (Figure 13) on donne : résistance de protection $Rp=5,5 \Omega$; tension seuil de la diode de UD0=0,8V; tension d'alimentation U alternative de valeur efficace 10V et de fréquence 50Hz.

- 22-1°) Déterminer les conditions à remplir par U pour que D conduise.
- 22-2°) Calculer la valeur maximale de i
- 22-3°) Calculer la valeur de la tension inverse aux bornes de la diode

Figure 14

EXERCICE 24:

 $\underline{e}(t)=24$ (24 $\sqrt{2}$)sin100πt ; R=100Ω. Les diodes sont supposés parfaites.

- 24-1°) Faire une analyse du fonctionnement de ce montage puis représenter u(t) et i(t)
- **24-2**°) On désigne par t_0 et t_1 respectivement l'instant de début et de fin de conduction d'une diode au cours d'une démi-période de e(t). Trouver les valeurs de t_1 dans les cas suivants :
- **24-1-a°**) $C=100\mu F$
- **24-1-b**°) C=1000μF
- **24-3**°) C est suffisamment grande, t_0 est alors presque égale à $t_1(t_1 \approx T/4)$. On considère aussi que la décharge est linéaire et on note I le courant dans la charge.

Calculer dans ces conditions la valeur de C pour un taux d'ondulation $\tau = 5 \%$

- **24-4°**) Vérifier si pour la valeur de C précédente. On a $(t_1 \approx T/4)$.
- 24-5°) Quelle est la valeur de la tension inverse maximale supporté par une diode ?
- 24-6°) On donne R=100Ω; C=1000μF. f=60Hz (fréquence du signal d'entrée); la tension secondaire efficace est de 17,7V
- 24-6-1°) Calculer la tension de charge (en l'absence du condensateur C et en présence de C).
- 24-6-2°) Calculer le courant continu de charge.
- **24-6-3**°) Calculer l'ondulation crête à crête.
- **24-6-4**°) En déduire la valeur exacte de la tension continue de charge avec la règle de conception de 10%.