

DERWENT-ACC-NO: 1998-218452

DERWENT-WEEK: 199830

COPYRIGHT 2007 DERWENT INFORMATION LTD

TITLE: Turbo-compound-combustion engine for motor vehicle - has valves arranged in pipe on suction side of exhaust-driven compressor in intake pipe to reduce gas-flow to turbine stage

INVENTOR: HAKANSSON, N O

PATENT-ASSIGNEE: VOLVO LASTVAGNAR AB[VOLV]

PRIORITY-DATA: 1996SE-0003618 (October 3, 1996)

PATENT-FAMILY:

PUB-NO	PUB-DATE	LANGUAGE	PAGES	MAIN-IPC
DE 19743751 A1	April 9, 1998	N/A	004	F02D 009/06
SE 507506 C2	June 15, 1998	N/A	000	F02B 041/10
SE 9603618 A	April 4, 1998	N/A	000	F02B 041/10

APPLICATION-DATA:

PUB-NO	APPL-DESCRIPTOR	APPL-NO	APPL-DATE
DE 19743751A1	N/A	1997DE-1043751	October 2, 1997
SE 507506C2	N/A	1996SE-0003618	October 3, 1996
SE 9603618A	N/A	1996SE-0003618	October 3, 1996

INT-CL (IPC): F02B037/00, F02B041/10, F02D009/06

ABSTRACTED-PUB-NO: DE 19743751A

BASIC-ABSTRACT:

A turbo-compound-IC engine has an intake pipe (9), an exhaust pipe (5), a turbo-compressor (3) whose first turbine stage is coupled to the exhaust so as to drive the compressor stage in the intake pipe and a second turbine stage downstream of the first stage, coupled by gearing 911 to the crankshaft.

A compression brake device and valves (14) are located in the exhaust pipe upstream of the second turbine stage, used to reduce the gas flow to this second stage. The valves are in a pipe (19) on the suction side of the compressor in the intake pipe. There is a cooler on the intake side of the compressor for the exhaust gases coming through the valves.

ADVANTAGE - Increased engine output.

CHOSEN-DRAWING: Dwg.1/1

TITLE-TERMS: TURBO COMPOUND COMBUST ENGINE MOTOR VEHICLE VALVE
ARRANGE PIPE

SUCTION SIDE EXHAUST DRIVE COMPRESSOR INTAKE PIPE REDUCE GAS
FLOW

TURBINE STAGE

DERWENT-CLASS: Q52

SECONDARY-ACC-NO:

Non-CPI Secondary Accession Numbers: N1998-172698

**⑫ Offenlegungsschrift
⑬ DE 197 43 751 A 1**

(5) Int. Cl. 6:
F 02 D 9/06
F 02 B 37/00

DE 19743751 A1

① Aktenzeichen: 197 43 751.6
② Anmeldetag: 2. 10. 97
③ Offenlegungstag: 9. 4. 98

④ Unionspriorität:
9603618-1 03. 10. 96 SE

(7) Anmelder:
Volvo Lastvagnar AB, Göteborg/Gotenburg, SE

(7) Vertreter:
HOFFMANN · EITLE, 81925 München

⑦ Erfinder:
Håkansson, Nils Olof, Stenkullen, SE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

5) Turbo-Compound-Verbrennungsmotor mit Motorbremse

57 Die Erfindung betrifft einen Turbo-Compound-Verbrennungsmotor mit einer Motorbremse (21) (oder Kompressionsbremseinrichtung) und einem Ventil (14) zur Reduzierung des Gasstroms zur Antriebsturbine (6) der Turbo-kompressoreinheit (3) während der Motorbremsung. Das Ventil (14) ist in einer Leitung (19) angeordnet, das die Ab-gasleitung (7) auf der Ansaugseite der Antriebsturbine mit der Einlaßleitung (20) auf der Ansaugseite der Kom-pressorturbine verbindet.

DE 19743751 A1

Beschreibung

Technisches Gebiet

Die vorliegende Erfindung betrifft einen Turbo-Compound-Verbrennungsmotor (oder auch einen Verbrennungsmotor mit leistungsabgebendem Abgasgebläse bzw. ein Abgasturbolader-Verbrennungsmotor) umfassend eine Einlaßleitung und eine Auslaßleitung, einen Turbokompressor mit einer ersten Turbinenstufe, die mit der Abgasleitung gekoppelt ist und eine Kompressorstufe in der Einlaßleitung antreibt, eine zweite Turbinenstufe, die auf der stromabwärts liegenden Seite der ersten Turbinenstufe angeordnet ist und über eine Übertragungseinrichtung mit der Kurbelwelle gekoppelt ist, eine Kompressionsbremseinrichtung (compression braking device) und Ventilmittel, die in der Abgasleitung stromaufwärts zur zweiten Turbinenstufe angeordnet sind und beim oder nach dem Aktivieren der Kompressionsbremseinrichtung eingestellt werden können, um den Gasstrom zur zweiten Turbinenstufe zu reduzieren.

Stand der Technik

Es ist bekannt, daß die Motorbremsleistung eines Fahrzeuges erhöht werden kann, wenn der Verbrennungsmotor mit einer sogenannten Kompressionsbremseinrichtung (oder allgemein einer Motorbremse) ausgerüstet ist, mittels der die Verbrennungskammer des Motors im Bremsmodus während des letzten Abschnitts des Verdichtungstaktes mit dem Abgassystem verbunden ist, beispielsweise durch Öffnen der vorhandenen Abgasventile. Das Ergebnis wird sein, daß die verdichtete Luft während des Verdichtungshubs aus den Zylindern ausströmen wird und die während des Verdichtungshubs geleistete Verdichtungsarbeit während des Expansionshubes nicht wieder eingebracht werden kann, was somit zu einer Zunahme der Bremsleistung des Motors führt. Bei der Motorbremsung mit einem Turbo-Compound-Verbrennungsmotor ist es somit wünschenswert, die der mit der Motorkurbelwelle gekoppelten Antriebsturbine zugeführte Extraleistung zu eliminieren oder zumindest zu reduzieren, um die maximale Bremsleistung zu erzielen. Zu diesem Zweck ist es bekannt, ein Nebenventil in einer Nebenleitung anzutreiben, die stromaufwärts der Antriebsturbine von der Abgasleitung abzweigt und stromabwärts der Antriebsturbine in die Abgasleitung mündet. Ein Turbo-Compound-Verbrennungsmotor mit einer derartigen Bypass-Leitung ist beispielsweise aus der EP 0 477 579 bekannt. Während der Motorbremsung wird das Nebenventil geöffnet, so daß durch die Antriebsturbine eine größere oder geringere Abgasmenge durchgelassen und über den Auspuff und die Abgasleitung in die Atmosphäre abgegeben wird.

Darstellung der Erfindung

Das der Erfindung zugrundeliegende technische Problem besteht vor allem darin, einen Turbo-Compound-Verbrennungsmotor der eingeschlossenen Art bereitzustellen, mit dem eine höhere Motorbremsleistung als mit dem oben beschriebenen Verbrennungsmotor erzielt werden kann.

Dieses technische Problem wird durch einen Motor mit den Merkmalen des Anspruchs 1 gelöst. Ein derarti-

ger erfindungsgemäß Motor zeichnet sich dadurch aus, daß die Ventilmittel in einer Leitung angeordnet sind, die auf der Ansaugseite der Kompressorstufe in die Einlaßleitung (oder dem Ansaugrohr) mündet.

Der sehr einfache Schritt des Anschließens der Leitung vom Neben- oder Bypass-Ventil zur Einlaßleitung anstatt mit der Abgasleitung erbringt eine Reduzierung des Abgasstroms zur Antriebsturbine, ohne daß die Antriebsturbine umgangen wird. Alles Gas, das letztlich den Verbrennungsmotor verläßt, lief bisher durch die Antriebsturbine. Durch das Verbinden der Leitung mit dem Ventil mit der Einlaßleitung wird auf der stromabwärts liegenden Seite der Verdichterturbine ein niedrigerer Druck als der Atmosphärendruck erzielt, was einen größeren Druckverlust über die Kompressorturbine hinweg schafft als bei dem Stand der Technik, also der bekannten Ausgestaltung, wo immer ein Abgasgegendruck im Abgasdrucksystem vorhanden ist, so daß der Druck hier immer etwas höher ist als der atmosphärische Druck. Ein größerer Druckverlust führt aber zu einer höheren Verdichter- oder Kompressorladeleistung. Obwohl es zutrifft, daß im Bremsmodus während des Einlaßhubs die Kolben einer größeren Energie des Gases ausgesetzt sind, muß die Arbeit, die die Kolben während des Verdichtungshubes gegen das Gas ausführen, soviel größer werden, daß der Nettoeffekt eine höhere Bremsleistung sein wird.

Dadurch, daß während der Motorbremsung keine Einspritzung und Kraftstoffverbrennung stattfindet, werden sich keine Verbrennungsprodukte in dem Gas befinden, die ansonsten den Kompressor und den Ladeflußfühler beschädigen könnten. Das Gas ist aber in geeigneter Weise gekühlt, bevor es zur Einlaßseite eingeführt wird.

Wenn auch ein Staubseparator oder ein Staubfilter in der Leitung beabstandet vom Ventil angeordnet ist, kann das Ventil als ein sogenanntes EGR-Ventil (Abgasrückführventil) verwendet und während des Fahrmodus so gesteuert werden, daß es sich innerhalb des Lastintervalls des Verbrennungsmotors zur Abgasrückführung öffnet, wo dies zur Emissionsreduzierung nötig ist. Auf diese Weise erfüllt die Anordnung gemäß der Erfindung eine Doppelfunktion.

Kurze Beschreibung der Zeichnungen

Im folgenden ist zur weiteren Erläuterung und zum besseren Verständnis ein Ausführungsbeispiel der Erfindung unter Bezugnahme auf die einzige Figur näher beschrieben und erläutert. Es zeigt:

die einzige Figur schematisch eine Turbo-Compound-Brennkraftmaschine gemäß der Erfindung.

Beschreibung eines Ausführungsbeispiels der Erfindung

Wie aus der Figur ersichtlich ist, ist ein Sechszyylinder-Turbo-Compound-Verbrennungsmotor bzw. ein Misch- oder ein Verbundmotor 6 mit einem hieran angekoppelten Getriebe 2 ersichtlich. Ein allgemein mit dem Bezeichnungen 2 bezeichneter Turbokompressor umfaßt eine erste Turbinenstufe 4, die an dem Motorabgasammler 5 angeschlossen ist, und eine zweite Turbinenstufe 6, die an der Auslaßseite der Turbinenstufe 4 an eine Abgasleitung 7 angeschlossen ist. Die erste Turbinenstufe 4 ist eine kleine Hochdruckstufe, die einen Kompressor 8 in einer Lufteinlaßleitung 9, die einen Ladeluftkühler 10 umfaßt, antreibt, während die zweite Turbinenstufe 6 eine große Niedrigdruckstufe ist, die

über eine Übertragungseinrichtung 11 mit der Motorkurbelwelle gekoppelt ist. Die Turbinenstufe 6 ist mit der Auslaßseite an einer einen Auspufftopf 13 umfassende Abgasleitung 12 angeschlossen. Über ein kontinuierlich variables Abgasauslaßventil (nicht gezeigt) (waste gate valve) kann der Abgasstrom durch die Hochdruck-Turbine 4 kontrolliert werden, um den Ladegrad des Kompressors 8 zu steuern. Ein pneumatisch gesteuertes Ventil 14 besitzt ein Ventilelement 16, das sich in einem Ventilgehäuse 15 bewegt, um in einer offenen Position eine Öffnung 17 in der Leitung 7 freizugeben, so daß Gas von der Leitung 7 über einen Auslaß 18 im Ventilgehäuse 15 zu einer Leitung 19 strömen kann, die in einen Einlaßleitungsabschnitt 20 zwischen einem Luftfilter 26 und dem Kompressor 8 mündet.

Der Motor ist mit einer schematisch angedeuteten Kompressionsbremseinrichtung – bzw. allgemein Motorbremse 21 ausgestattet, die derart sein kann, wie sie in der SE 466 320 gezeigt und beschrieben ist und mittels derer die Motorzylinder während des letzten Teils des Einlaßhubs wie auch während des letzten Teils des Verdichtungshubs mit dem Auspufftopf verbunden werden können, um den Motorbremseffekt zu erhöhen. Die Motorbremse 21 wird elektrisch betrieben, während das Ventil 14 über eine mit einer Druckluftquelle (nicht gezeigt) verbundene Steuerventileinheit 22 pneumatisch betätigt wird. Sowohl die Motorbremse 21 wie auch das Ventil 14 werden durch eine Steuereinrichtung 23 gesteuert, die vorzugsweise ein Mikroprozessor ist, der Ausgabesignale zum An- und Ausschalten der Motorbremse wie auch zum Einstellen des Vents 14 in Erwiderung auf die vom Fahrer ausgehenden Kommandos aussendet. Dies bedeutet, daß, wenn der Fahrer die Motorbremse 21 aktiviert, sich das Ventil 14 zur gleichen Zeit öffnet, um Gas in der Leitung 7 zur Einlaßleitung 20 zu führen und hierdurch den Druckverlust über die Turbinenstufe 4 zu erhöhen, wie auch die Abgaszuführung zur Antriebsturbine 6 zu reduzieren, wodurch die Antriebsleistung der Antriebsturbine reduziert wird.

Das Ventil 14 ist vorzugsweise kontinuierlich zwischen einer vollständig geschlossenen und einer vollständig offenen Stellung veränderbar, um in einem normalen Fahrmodus zur Abgasrückführung verwendet zu werden, unter solchen Betriebsbedingungen (niedrige Geschwindigkeit, Teillast, etc.), bei denen eine Abgasrückführung (EGR) notwendig ist, um die Abgasemissionen auf einem zulässigen niedrigen Wert zu halten. Das Ventil 14 wird in einer an sich bekannten Art durch die Steuereinheit 23 gesteuert und zwar als Funktion verschiedener Fahrzeug- und Verbrennungsmotordaten, die der Steuereinheit zugeführt werden.

Um den Kompressor 8 und den Ladeluftkühler 10 gegen Überhitzen und Verschmutzen zu schützen, sind insbesondere während der Abgasrückführung in der Leitung 19 ein Staubseparatör 24 bzw. Staubfilter und 55 ein Kühler 25 angeordnet, durch die das rückgeführte Gas zum Reinigen und Kühlen strömt.

Patentansprüche

1. Turbo-Compound-Verbrennungsmotor, umfassend eine Einlaßleitung (9, 20) und eine Abgasleitung (5, 7, 12), einen Turbokompressor (3) mit einer ersten Turbinenstufe (4), die mit der Abgasleitung gekoppelt ist und eine Verdichterstufe (8) in der Einlaßleitung antreibt, und eine zweite Turbinenstufe (6), die auf der stromabwärts liegenden Seite der ersten Turbinenstufe angeordnet und über eine

Übertragungseinrichtung (11) mit der Kurbelwelle gekoppelt ist, eine Kompressionsbremseinrichtung und Ventilmittel (14), die in der Abgasleitung stromauwärts der zweiten Turbinenstufe angeordnet sind und bei oder nach der Aktivierung der Kompressionsbremseinrichtung eingestellt werden können, um den Gasstrom zur zweiten Turbinenstufe zu reduzieren, dadurch gekennzeichnet, daß die Ventilmittel (14) in einer Leitung (19) angeordnet sind, die auf der Ansaugseite der Verdichterstufe (8) in die Einlaßleitung (20) mündet.

2. Verbrennungsmotor nach Anspruch 1, dadurch gekennzeichnet, daß ein Kühler (25) auf der Einlaßseite der Verdichterstufe (8) zum Kühlen der Abgase, die durch die Ventilmittel (14) strömen, angeordnet ist.

3. Verbrennungsmotor nach Anspruch 2, dadurch gekennzeichnet, daß ein Staubseparatör (24) oder Staubfilter zwischen den Ventilmitteln (14) und dem Kühler (25) angeordnet ist.

4. Verbrennungsmotor nach einem der Ansprüche 1–3, dadurch gekennzeichnet, daß die Kompressionsbremseinrichtung (21) und die Ventilmittel (4) durch eine gemeinsame elektronische Steuereinrichtung (23) gesteuert werden.

Hierzu 1 Seite(n) Zeichnungen
