Problem 1

Example 3: A small block having a mass of 0.1 kg is given a horizontal velocity $v_1 = 0.4$ m/s when $r_1 = 500$ mm. It slides along the smooth conical surface. When it descends to h = 100 mm, determine its speed and the angle of descent, θ ; that is, determine the angle measured from the horizontal to the tangent of the path.

Analysis

To find the equations, we can first draw a FBD of the block, then try to find what equations can we use to solve the unknowns.

First, we try to consider energy: we can easily notice that there are 2 forces, gravity mg, and normal force N from the cone. Gravity is conservative force, and normal force is perpendicular to the cone surface. So we can use conservative of energy for this problem (with $U_{nc}=0$).

$$T_1 + V_1 = T_2 + V_2$$

Then we look into momentum-impulse. $\overrightarrow{p_1} + F_{1-2} = \overrightarrow{p_2}$

$$ec{F} = -N cos heta \cdot \hat{u}_r + (N sin heta - mg) \cdot \hat{u}_z$$

we can see that direction of N is consistently changing with the position of the block, making $\int \vec{F} dt$ hard to solve, and making momentum in all directions not conserved.

We then analyze angular momentum-impulse. Where $ec{M}=ec{r} imesec{F}$:

$$egin{aligned} ec{M} &= r \hat{u}_r imes (-N cos heta \cdot \hat{u}_r + (N sin heta - mg) \cdot \hat{u}_z) \ &= (N sin heta - mg) r \cdot \hat{u}_ heta \end{aligned}$$

 \vec{M} is along polar direction, which means that on direction \hat{u}_z , angular momentum is conserved. Where $\hat{h}_z = r\hat{u}_r \times m(\dot{r}\hat{u}_r + r\dot{\theta}\hat{u}_\theta) = mr^2\dot{\theta}\hat{u}_z$. So

$$mr_1^2\dot{ heta}_1=mr_2^2\dot{ heta}_2$$

Solution

EMA 202 Lecture 24

FBD of particle at position 1:

All forces conservative or I, so can find speed from work-energy / conservation of energy:

$$T_1 + V_1 = T_2 + \chi_2^{0}, \text{ weight datum}$$

$$\frac{1}{2} \text{ m/v}^2 + \text{ m/gh} = \frac{1}{2} \text{ m/v}^2$$

$$U_2 = \sqrt{v_1^2 + 2gh}$$

$$= \sqrt{(0.4 \frac{m}{5})^2 + 2(9.81 \frac{m}{5^2})(100 \text{ mm})(100 \text{ mm})}$$

$$= 1.457 \frac{m}{5}$$

What is angle of descent?

⇒ Need vector info about V.

Impulse-momentum methods are vector methods. (Work-energy is a scalar method.)

Have linear momentum and angular momentum. Is either conserved? (Conserved is helpful because impulse momentum integrates forces and moments over time, and we don't have time information.)

Angular: $h_{01} + \int_{t_{1}}^{t_{2}} \overrightarrow{M} dt = h_{02} \Rightarrow don't know Li,tz$ Maybe ang. mom. conserved in some direction?

Forces Moment wrt 0 mg 0

Ing (i) purely horizontal

N(7) horizontal from 1 component

No vertical moments

The angular moment um conserved in vertical direction

 $hozz = r_z mv_z cos\theta = h_{01z} = r_i mv_i$ $cos\theta = \frac{r_i mv_i}{r_z mv_z}$

Need r_2 \Rightarrow cone geometry $\tan \phi = \frac{r_1}{H} = \frac{r_2}{H-h}$

 $\phi = 30^{\circ}$, $r_1 = 500 \text{ mm} \Rightarrow H = 866 \text{ mm}$ $r_2 = 442.3 \text{ mm}$ $\cos \theta = \frac{(500)(0.4)}{(442.3)(1.457)}$

Consider what would happen if vi were 0 instead of 0:45 :

Block would slide straight down the cone.

Linear momentum would change from mvi=0 to mvi≥0.

>> Linear momentum not conserved.

Angular momentum about z-axis would be conserved.

rixmvi = 0 because vi = 0

 $\vec{r_2} \times m\vec{v_2} \neq \vec{0}$, but $\vec{r_2} \times m\vec{v_2} = (something) \hat{u_0}$, nothing in the \hat{k} direction because $\vec{v_2} = V_{2r} \hat{u_r} + V_{2z} \hat{k}$ and $\hat{u_r} \times \hat{u_r} = 0$, $\hat{u_r} \times \hat{k} = -\hat{u_0}$

Conservation of angular momentum about the Z-axis means the forces don't have moments about the Z-axis,

Same forces whether $V_i = 0$ or $V_i = 0.4 \frac{m}{s}$ (mg, \vec{N} -see FBD)

. Can also prove N, mg don't have moments about the z-axis using vectors:

 $\vec{M}_z = \vec{\Gamma} \times \vec{F}$ perpendicular
to z-axis, $\vec{\Gamma} = r\hat{U}r$ $\vec{N} = -Nr\hat{U}r + Nz\hat{k}$ $\vec{M}_z, \vec{n} = (r\hat{U}r) \times (-N_r\hat{U}r + Nz\hat{k}) = rN_z (\hat{U}r \times \hat{k}) = rN_z (-\hat{U}\theta)$ $\Rightarrow no \hat{k} \text{ component}$ $\vec{m}\vec{g} = -mg\hat{k}$ $\vec{M}_z, \vec{m}\vec{g} = (r\hat{U}r) \times (-mg\hat{k}) = -rmg(-\hat{U}\theta) \Rightarrow no \hat{k} \text{ component}$

Problem 2

Example 3 (Lec. 11, Ex. 2 revisited): The 2-kg particle is initially traveling around a **horizontal** circular path of radius $r_0 = 0.5$ m such that the angular velocity is 1 rad/sec. If the attached cord *ABC* is drawn down through the hole at a constant speed of 0.2 m/s,

determine the tension the cord exerts on the particle at the instant r = 0.25 m. Also compute the angular velocity at this instant. Neglect friction.

Recall & Analysis

- ullet Angular momentum: $ec{H}=ec{r} imesec{p}=mec{r} imesec{v}$
- Conservation of angular momentum: if the torque \vec{M} is zero, then \vec{H} is constant. Because $\vec{M}=\frac{d\vec{H}}{dt}$, if $\vec{M}=0$, then $\frac{d\vec{H}}{dt}=0$, which means \vec{H} is constant.
- In this problem, the $\vec{H}=m\vec{r}\times\vec{v}=m(r\hat{u_r})\times(v\hat{u_\theta})=mvr\hat{u_k}$, which is always perpendicular to the z-axis. Therefore, if there is no torque on the $\hat{u_k}$ direction, the angular momentum is conserved.
- In this problem, the torque $\vec{M} = \vec{r} \times \sum \vec{F} = (r\hat{u_r}) \times (N\hat{u_k} mg\hat{u_k} T\hat{u_r}) = (-rN + rmg)\hat{u_\theta}$. Therefore, there is no torque on the $\hat{u_k}$ direction.

Solution

Since the angular momentum is conserved, we can use the angular momentum conservation to solve this problem: $H_1=H_2$.

$$egin{aligned} H_1 &= H_2 \ mr_1v_1 &= mr_2v_2 \ mr_1(\dot{ heta_1}r_1) &= mr_2(\dot{ heta_2}r_2) \ \dot{ heta_1}r_1^2 &= \dot{ heta_2}r_2^2 \ & rac{\dot{ heta_1}}{\dot{ heta_2}} &= rac{r_2^2}{r_1^2} \ & rac{\dot{ heta_1}}{\dot{ heta_2}} &= rac{0.25^2}{0.5^2} \ & rac{\dot{ heta_1}}{\dot{ heta_2}} &= rac{1}{4} \ & \dot{ heta_2} &= 4\dot{ heta_1} \ & \dot{ heta_2} &= 4 \, ext{rad/s} \end{aligned}$$

From the FBD:

$$\sum F_r = m\ddot{r} - mr\dot{ heta}^2 = -T$$

where $\ddot{r}=0$ because the string is always drawn down at a constant speed, i.e. $T=mr\dot{\theta}^2$. So, at $r_2=0.25$ m, $\dot{\theta_2}=4$ rad/s, $T=2\times0.25\times4^2=8$ N.