

Context-Free Grammars

Formalism
Derivations
Backus-Naur Form
Left- and Rightmost Derivations

Informal Comments

- □ A context-free grammar is a notation for describing languages.
- ☐ It is more powerful than finite automata or RE's, but still cannot define all possible languages.
- Useful for nested structures, e.g., parentheses in programming languages.

Informal Comments – (2)

7 Non - Terminal

- Basic idea is to use "variables" to stand for sets of strings (i.e., languages).
- □ These variables are defined recursively, in terms of one another.
- □ Recursive rules ("productions") involve only concatenation.
- Alternative rules for a variable allow union.

Example: CFG for $\{0^n1^n \mid n \geq 1\}$

- Productions: B 7 Al

 S-> 01

 S-> 051

 Start Symbol 2 Mon Formal

 Terminal (nnothile)= 01

 Non-Terminal 2

 (nnothile)= 01

 Non-Terminal 2

 (nnothile)= 01

 Start Symbol 2

 Mon Terminal 2

 (nnothile)= 01
 - □ Basis: 01 is in the language.
- Induction: if w is in the language, then so is 0w1.

CFG Formalism

- □ *Terminals* = symbols of the alphabet of the language being defined.
- □ Variables = nonterminals = a finite set of other symbols, each of which represents a language.
- □ *Start symbol* = the variable whose language is the one being defined.

Productions

- □ A production has the form variable -> string of variables and terminals.
- Convention:
 - ☐ A, B, C,... are variables. NT
 - □ a, b, c,... are terminals. Ţ
 - ..., X, Y, Z are either terminals or variables.
 - □ ..., w, x, y, z are strings of terminals only.
 - $\square \alpha$, β , γ ,... are strings of terminals and/or variables.

Example: Formal CFG

```
000111
```

5=7051

E) 00911

27 000111

- □ Here is a formal CFG for $\{0^n1^n \mid n \ge 1\}$.
- \square Terminals = $\{0, 1\}$.
- \square Variables = $\{S\}$.
- ☐ Start symbol = S.
- □ Productions =
 - S -> 01
 - S -> 0S1

Derivations – Intuition

- □ We *derive* strings in the language of a CFG by starting with the start symbol, and repeatedly replacing some variable A by the right side of one of its productions.
 - ☐ That is, the "productions for A" are those that have A on the left side of the ->.

Derivations – Formalism

- □ We say $\alpha A\beta => \alpha \gamma \beta$ if A -> γ is a production.
- □ Example: S -> 01; S -> 0S1.

$$\Box S => OS1 => OOS11 => 000111.$$

Iterated Derivation

- =>* means "zero or more derivation steps."
- □ Basis: $\alpha = >^* \alpha$ for any string α .
- □ Induction: if $\alpha =>* \beta$ and $\beta => \gamma$, then $\alpha =>* \gamma$.

Example: Iterated Derivation

- □ S -> 01; S -> 0S1.
- $\square S => 0S1 => 00S11 => 000111.$
- □ So S =>* S; S =>* 0S1; S =>* 00S11; S =>* 000111.

Sentential Forms

- I Any string of variables and/or terminals derived from the start symbol is called a sentential form.
- □ Formally, α is a sentential form iff $S = \sum_{\alpha} \alpha$.

Language of a Grammar

- ☐ If G is a CFG, then L(G), the language of G, is {w | S =>* w}.
 - Note: w must be a terminal string, S is the start symbol.
- □ Example: G has productions S -> ϵ and S -> 0S1.
- \square L(G) = $\{0^n1^n \mid n \ge 0\}$. Note: ϵ is a legitimate right side.

Context-Free Languages

- □ A language that is defined by some CFG is called a *context-free language*.
- □ There are CFL's that are not regular languages, such as the example just given.
- But not all languages are CFL's.
- Intuitively: CFL's can count two things, not three.

BNF Notation

- □ Grammars for programming languages are often written in BNF (*Backus-Naur Form*).
- □ Variables are words in <...>; Example: <statement>.
- □ Terminals are often multicharacter strings indicated by boldface or underline; Example: while or WHILE.

BNF Notation -(2)

- □ Symbol ::= is often used for ->.
- □ Symbol | is used for "or."
 - □ A shorthand for a list of productions with the same left side.
- □ Example: $S \rightarrow 0S1 \mid 01$ is shorthand for $S \rightarrow 0S1$ and $S \rightarrow 01$.

BNF Notation – Kleene Closure

- Symbol ... is used for "one or more."
- □ Example: <digit> ::= 0|1|2|3|4|5|6|7|8|9
- <unsigned integer> ::= <digit>...
 - □ Note: that's not exactly the * of RE's.
- □ Translation: Replace α ... with a new variable A and productions A -> $A\alpha$ α .

Recursive 1357 rows of

Example: Kleene Closure

Grammar for unsigned integers can be replaced by:

U -> UD | D

 $D \rightarrow 0|1|2|3|4|5|6|7|8|9$

BNF Notation: Optional Elements

- Surround one or more symbols by [...] to make them optional.
- Example: <statement> ::= if
 <condition> then <statement> [; else
 <statement>]
- □ Translation: replace $[\alpha]$ by a new variable A with productions A -> α | ϵ .

Example: Optional Elements

□ Grammar for if-then-else can be replaced by:

S -> iCtSA

A -> ;eS | €

BNF Notation – Grouping

- Use {...} to surround a sequence of symbols that need to be treated as a unit.
 - ☐ Typically, they are followed by a ... for "one or more."
- □ Example: <statement list> ::= <statement> [{;<statement>}...]

Translation: Grouping

- □ You may, if you wish, create a new variable A for $\{\alpha\}$.
- \square One production for A: A -> α .
- \square Use A in place of $\{\alpha\}$.

Example: Grouping

Leftmost and Rightmost Derivations

- Derivations allow us to replace any of the variables in a string.
- Leads to many different derivations of the same string.
- By forcing the leftmost variable (or alternatively, the rightmost variable) to be replaced, we avoid these "distinctions without a difference."

Leftmost Derivations

- □ Say wA $\alpha =>_{lm} w\beta\alpha$ if w is a string of terminals only and A -> β is a production.
- □ Also, $\alpha = >*_{lm} \beta$ if α becomes β by a sequence of 0 or more $=>_{lm}$ steps.

Example: Leftmost Derivations

Balanced-parentheses grammar:

$$S -> SS | (S) | ()$$

- $\Box S =>_{lm} SS =>_{lm} (S)S =>_{lm} (())S =>_{lm} (())()$
- □ Thus, $S = >*_{lm} (())()$
- \square S => SS => S() => (S)() => (())() is a derivation, but not a leftmost derivation.

Rightmost Derivations

- □ Say $\alpha Aw =>_{rm} \alpha \beta w$ if w is a string of terminals only and A -> β is a production.
- □ Also, $\alpha = >^*_{rm} \beta$ if α becomes β by a sequence of 0 or more $= >_{rm}$ steps.

Example: Rightmost Derivations

□ Balanced-parentheses grammar:

$$S -> SS | (S) | ()$$

- $\square S =>_{rm} SS =>_{rm} S() =>_{rm} (S)() =>_{rm} (())()$
- □ Thus, $S = >*_{rm} (())()$
- S => SS => SSS => S()S => ()()S => ()()() is neither a rightmost nor a leftmost derivation.

Parse Trees

Definitions
Relationship to Left- and
Rightmost Derivations
Ambiguity in Grammars

Parse Trees

- Parse trees are trees labeled by symbols of a particular CFG.
- \square Leaves: labeled by a terminal or ϵ .
- □ Interior nodes: labeled by a variable.
 - Children are labeled by the right side of a production for the parent.
- Root: must be labeled by the start symbol.

Example: Parse Tree

S -> SS | (S) | ()

Yield of a Parse Tree

- The concatenation of the labels of the leaves in left-to-right order
 - ☐ That is, in the order of a preorder traversal.

is called the *yield* of the parse tree.

□ Example: yield of (s) is (())()

Parse Trees, Left- and Rightmost Derivations

- For every parse tree, there is a unique leftmost, and a unique rightmost derivation.
- We'll prove:
 - 1. If there is a parse tree with root labeled A and yield w, then $A = >*_{lm} w$.
 - 2. If $A = >*_{lm} w$, then there is a parse tree with root A and yield w.

Code meaning Ambiguous Grammars Janese.

- Mo Code iden 12 Am More Nosin Horaz
- □ A CFG is ambiguous if there is a string in the language that is the yield of two or more parse trees.
- □ Example: S -> SS | (S) | ()
- □ Two parse trees for ()()() on next slide.

Ambiguity, Left- and Rightmost Derivations

- ☐ If there are two different parse trees, they must produce two different leftmost derivations by the construction given in the proof.
- Conversely, two different leftmost derivations produce different parse trees by the other part of the proof.
- Likewise for rightmost derivations.

Ambiguity, etc. -(2)

- Thus, equivalent definitions of "ambiguous grammar" are:
 - 1. There is a string in the language that has two different leftmost derivations.
 - 2. There is a string in the language that has two different rightmost derivations.

Ambiguity is a Property of Grammars, not Languages

□ For the balanced-parentheses language, here is another CFG, which is unambiguous.

■ Restart symbols

B, the start symbol, derives balanced strings.

R generates strings that have one more right parenthan left.

Example: Unambiguous Grammar

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$$

- Construct a unique leftmost derivation for a given balanced string of parentheses by scanning the string from left to right.
 - \square If we need to expand B, then use B -> (RB if the next symbol is "(" and ε if at the end.
 - ☐ If we need to expand R, use R ->) if the next symbol is ")" and (RR if it is "(".

```
Remaining Input:
(())()
Next
symbol
```

Steps of leftmost derivation:

B

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$$

```
Remaining Input:
())()
Next
symbol
```

Steps of leftmost derivation:

В (RB

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR$$

```
Remaining Input:
                        Steps of leftmost
                          derivation:
))()
                        В
                        (RB
Next
                        ((RRB
symbol
```

$$B \rightarrow (RB \mid \epsilon \quad R \rightarrow) \mid (RR)$$

```
Remaining Input:
                        Steps of leftmost
                          derivation:
)()
                        В
                        (RB
Next
                        ((RRB
symbol
                        (()RB
```

$$B \rightarrow (RB \mid \epsilon)$$

```
Remaining Input:
                            Steps of leftmost
                              derivation:
                            В
                            (RB
Next
                            ((RRB
symbol
                            (()RB
                            (())B
                           R -> ) | (RR
      B \rightarrow (RB \mid \epsilon)
```

```
Remaining Input:
                            Steps of leftmost
                              derivation:
                                         (())(RB)
                            В
                            (RB
Next
                            ((RRB
symbol
                            (()RB
                            (())B
                           R -> ) | (RR
      B \rightarrow (RB \mid \epsilon)
```

```
Remaining Input:
                        Steps of leftmost
                          derivation:
                        В
                                    (())(RB)
                        (RB
                                    (())()B
Next
                        ((RRB
symbol
                        (()RB
                        (())B
```

 $B \rightarrow (RB \mid \epsilon)$

R ->) | (RR

Remaining Input: Steps of leftmost derivation:

```
Next
symbol
```

```
B (())(RB
(RB (())()B
(()RB
(()RB
(())B
```

$$B \rightarrow (RB \mid \epsilon)$$

LL(1) Grammars

- □ As an aside, a grammar such B -> (RB | ∈ R ->) | (RR, where you can always figure out the production to use in a leftmost derivation by scanning the given string left-to-right and looking only at the next one symbol is called LL(1).
 - "Leftmost derivation, left-to-right scan, one symbol of lookahead."

LL(1) Grammars -(2)

- Most programming languages have LL(1) grammars.
- □ LL(1) grammars are never ambiguous.

Inherent Ambiguity

- ☐ It would be nice if for every ambiguous grammar, there were some way to "fix" the ambiguity, as we did for the balanced-parentheses grammar.
- Unfortunately, certain CFL's are inherently ambiguous, meaning that every grammar for the language is ambiguous.

Example: Inherent Ambiguity

- □ The language $\{0^i1^j2^k \mid i = j \text{ or } j = k\}$ is inherently ambiguous.
- Intuitively, at least some of the strings of the form $0^n1^n2^n$ must be generated by two different parse trees, one based on checking the 0's and 1's, the other based on checking the 1's and 2's.

May Parse Tree

One Possible Ambiguous monthes Grammar

$$C -> 0C \mid 0$$

And there are two derivations of every string with equal numbers of 0's, 1's, and 2's. E.g.:

$$S => AB => 01B => 012$$

$$S => CD => 0D => 012$$