@ FOCHOL! PSO

PN - JP11197762 A 19990727

TI - DIE

- PROBLEM TO BE SOLVED: To provide the die compatible for heat crack resistance as well as oxidation resistance and having a long life. SOLUTION: In the die, which is arranged with a steel having a main surface and a coated film formed on the main surface of the steel, a nitride layer is formed in the part neighboring to the main surface of the steel. In the nitride layer, an average value F1 of the compression residual stress down to 10 &mu m depth from the main surface satisfies a formula I, 0.2 GPa<F1 <=1.5 GPa, a composition of the coating film is shown in a formula II, (Ti1-x, Alx)N. In the formula, (x) is shown in 0.02<=(x)<=0.7, or an average value F2 of the compression residual stress in the coating film satisfies a formula II, 0.5 GPa&eta F2 <=8 GPa.
- IC B21D37/01; B22C9/06; C23C8/26; C23C14/06; C23C14/32

FI - B21D37/01; B22C9/06&Q; C23C14/06&A; C23C14/32&Z; C23C8/26

FT - 4E050/JA01; 4E050/JA08; 4E050/JB06; 4E050/JB09; 4E050/JB10; 4E050/JC02; 4E050/JD04; 4E050/JD05; 4E093/NA02; 4E093/NB08; 4K028/AA02; 4K028/AB01; 4K028/AB06; 4K029/BA58; 4K029/BB02; 4K029/EA01

PA - SUMITOMO ELECTRIC INDUSTRIES

IN - OHARA HISANORI

PR - JP19980003946 19980112

GWP / DERWEM

PN - JP11197762 A 19990727 DW199940 B21D37/01 008pp

TI - Metal molds - is made of steel and is covered on the surface with a nitrided membrane

AB - JP11197762 A metal mold (A) is made of steel and is covered on the surface with a nitrided membrane (B). The mean residual stress (F1) down to a depth of 10 mu m from the surface satisfies 0.2 at most F1 at most 1.5 GPa.
 (B) has a composition of formula (Ti1-xAlx)N where 0.02 at most x at most 0.7. The average value (F2) of residual stress of (B) satisfies 0.5 at most F2 at most 8 GPa.

- USE - Used for casting aluminium alloy.

- ADVANTAGE - This mold has high resistance against thermal cracking and oxidation.

- (Dwg.0/0)

- B21D37/01 ;B22C9/06 ;C23C8/26 ;C23C14/06 ;C23C14/32

PA - (SUME) SUMITOMO ELECTRIC IND CO

AN - 1999-472548 [40]

PR - JP19980003946 19980112

OPD - 1998-01-12

SPAI: #0

PN - JP11197762 A 19990727

PD - 1999-07-27

AP - JP19980003946 19980112

IN - OHARA HISANORI

PA - SUMITOMO ELECTRIC IND LTD

TI - DIE

 PROBLEM TO BE SOLVED: To provide the die compatible for heat crack resistance as well as oxidation resistance and having a long life.

- SOLUTION: In the die, which is arranged with a steel having a main surface and a coated film formed on the main surface of the steel, a nitride layer is formed in the part neighboring to the main surface of the steel. In the nitride layer, an average value F1 of the compression residual stress down to 10 &mu m depth from the main surface satisfies a formula I, 0.2 GPa<F1 <=1.5 GPa, a composition of the coating film is shown in a formula II, (Ti1-x, Aix)N. In the formula, (x) is shown in 0.02<=(x)<=0.7, or an average value F2 of the compression residual stress in the coating film satisfies a formula II, 0.5 GPa&eta F2 <=8 GPa.</p>

- B21D37/01 ;B22C9/06 ;C23C8/26 ;C23C14/06 ;C23C14/32

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平11-197762

(43)公開日 平成11年(1999)7月27日

(51) Int.CL*		FI B21D 37/01 B22C 9/06 Q C23C 8/26 14/06 A 14/32 Z 審査請求 未請求 請求項の数9	
B 2 2 C 9/06 C 2 3 C 8/26 14/06 14/32 (21) 出願番号 特額平10-		B 2 2 C 9/06 Q C 2 3 C 8/26 14/06 A 14/32 Z 審査請求 未請求 請求項の数 9	
C 2 8 C 8/26 14/06 14/32 (21) 出願番号 特額平10-		C 2 3 C 8/26 14/06 A 14/32 Z 審査請求 未請求 請求項の数 9	
14/06 14/32 (21)出願番号 特顧平10-		14/06 A 14/32 Z 審査請求 未請求 請求項の数 9 (71) 出題人 000002130	
14/06 14/32 (21)出願番号 特顧平10-		14/32 Z 審査請求 未請求 請求項の数 9 (71)出題人 000002130	
21)出願番号 特額平10-		審査請求 未請求 請求項の数9 (71)出題人 000002130	
(21)出剧番号 特額平10-		(71) 出題人 000002130	OL (全 8 頁)
22)出劇日 平成10年	/1009) 1 F19E	件友質気工業株式会社	
(22) 出顧日 平成10年	/1009) 1 F19 D		
	(1220) T 1/17C	大阪府大阪市中央区北海	四丁目5番33号
		(72) 発明者 大原 久典	
		兵庫県伊丹市昆陽北一丁 電気工業株式会社伊丹製	
		(74)代理人 弁理士 深見 久郎	

(54) 【発明の名称】 金 型

(57)【要約】

【課題】 耐熱亀裂性と耐酸化性を両立させ、寿命の長い金型を提供する。

【解決手段】 金型は主表面を有する鋼材と鋼材の主表面上に形成された被膜とを備える。鋼材の主表面近傍の部分には窒化処理層が形成される。窒化処理層において、主表面からの深さが 10μ mまでの部分の圧縮残留応力の平均値 F_1 は0.2G $Pa \le F_1 \le 1.5$ G Paの関係式を満たす。被膜の組成式は(Ti_{1-X} 、A I_X) Nで表わされる。Xは $0.02 \le X \le 0.7$ の関係式を満たす。被膜内での圧縮残留応力の平均値 F_2 は0.5G $Pa \le F_2 \le 8$ G Pa の関係式を満たす。

【特許請求の範囲】

【請求項1】 表面を有する鋼材と、前記鋼材の表面上 に形成された被膜とを備えた金型において、

前記鋼材の表面の部分には窒化処理層が形成され、

則記解析の表面の部分には窒化処理者が形成され、 前記窒化処理層において、前記主表面からの深さが10 μ mまでの部分の圧縮残留応力の平均値 F_1 は、0.2 $GPa \le F_1 \le 1.5 GPa$ の関係式を満たし、 前記被膜の組成式は(Ti_{1-x} 、 Al_x) Nで表わさ

前記Xは $0.02 \le X \le 0.7$ の関係式を満たし、前記被膜内での圧縮残留応力の平均値 F_2 は0.5GP $a \le F_2 \le 8$ GPaの関係式を満たすことを特徴とする金型。

【請求項2】 前記被膜内でのアルミニウムの濃度は、 前記鋼材側の前記被膜の表面から遠ざかるにつれて高く なることを特徴とする、請求項1に記載の金型。

【請求項3】 積層された複数の前記被膜を備え、前記 被膜の組成は、隣り合う前記被膜の組成と異なる、請求 項1に記載の金型。

【請求項4】 積層された8層以上の前記被膜を備え、 前記被膜の組成は、隣り合う前記被膜の組成と異なる、 請求項1に記載の金型。

【請求項5】 主表面を有する鋼材と、前記鋼材の主表面上に形成された被膜とを備えた金型において、

前記鋼材の主表面近傍の部分には窒化処理層が形成され、

前記室化処理層において、前記主表面からの深さが10 μ mまでの部分の圧縮残留応力の平均値 F_1 は、0.2 $GPa \le F_1 \le 1.5 GPa$ の関係式を満たし、

前記被膜は、窒化チタン膜と窒化アルミニウム膜とを交 互に積層したものであり、前記窒化チタン膜と前記窒化 アルミニウム膜との膜数の合計は20以上であり、

前記被膜内での圧縮残留応力の平均値F2は0.5GP a≤F2≤8GPaの関係式を満たすことを特徴とする金型。

【請求項6】 前記鋼材と前記被膜との間には窒化チタン膜が形成されていることを特徴とする、請求項1~5のいずれか1項に記載の金型。

【請求項7】 前記窒化処理層の深さは50μm以上5 00μm以下であることを特徴とする、請求項1~6の いずれか1項に記載の金型。

【請求項8】 前記被膜の厚さは0.5μm以上40μm以下であることを特徴とする、請求項1~7のいずれか1項に記載の金型。

【請求項9】 当該金型は、鉄系部品の温間もしくは熱間鍛造用またはアルミニウム合金の鉄造用に用いられることを特徴とする、請求項1~8のいずれか1項に記載の金型。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、金型に関し、特に、鉄系部品の温間もしくは熱間袋造用、またはアルミニウム合金の鋳造用に用いられる金型に関するものである。

[0002]

【従来の技術】従来、自動車部品や機械部品などの鉄系部品を温間または熱間で鍛造する際や、アルミニウム合金の部品を鋳造する際には金型が用いられている。なお、この明細書中で「金型」とは、これを材料に押付けて成形するために、その表面が、鍛造品の寸法、形状に合うような形状をした強固の金属体(ダイ)、および成形品または溶湯を受取る空間(キャビティ)を囲む部品から組立られたものの両方の意味で用いる。

【0003】金型が使用されれば、その表面は、一般に 温度500℃程度の高温となるため、金型の表面が酸化 して損傷する場合がある。また、高温と室温とのサイク ルを繰返すため、熱応力による疲労亀裂が発生する場合 もある。これらの損傷や亀裂により金型表面が荒れ、こ の現象はヒートチェックと呼ばれる。この現象は金型が 使用されるほど、すなわち、金型による加工数が増大す るほど進行し、成形品の寸法精度を低下させる。寸法精 度が一定値以下になると、金型が寿命に達したとされ る。

【0004】このような金型表面の損傷や亀裂を発生させないために、現在、金型を窒化処理(タフトライド処理、ガス窒化処理、イオン窒化処理、浸硫窒化処理)することが幅広く行なわれている。

【0005】この窒化処理は、JIS呼称SKH、SKDまたはこれらの相当材である鋼からなる金型母材の表面に、窒素を主成分とする元素を拡散浸透させる処理である。この処理を施すことにより、金型表面の硬度を増大させ、金型表面に圧縮応力を付与し、ヒートチェックに対する金型の耐久性を向上させている。

【0006】しかしながら、この窒化処理では、金型表面の耐酸化性を向上させることができず、金型表面の酸化による損傷が生じやすかった。つまり、金型表面が酸化され、酸化鉄が発生する。この酸化鉄が金型から剥離し、さらに金型が酸化されるという現象が起こっていた。

【0007】一方、窒化処理以外では、金型表面にセラミックスの被膜を形成する方法がよく用いられている。この方法は、化学蒸着法 (CVD法) または物理蒸着法 (PVD法) により、金型表面に炭化チタン、窒化チタンまたは炭窒化チタンなどのセラミック膜を形成するものである

【0008】また、TRD法またはTD法と呼ばれる熱 反応・析出法により鋼の表面に炭化バナジウムを形成す る方法も用いられている。

【0009】しかしながら、これらの炭化チタン、窒化 チタン、炭窒化チタンおよび炭化バナジウムなどのセラ ミックスの被膜を形成した場合、被膜自身の耐酸化性が 温度500~600℃付近で失われるため、金型表面の 耐酸化性を向上させることが困難であった。

[0010]

【発明が解決しようとする課題】この問題を解決するために、窒化処理などの表面硬化処理と、蒸着法などの被膜形成処理とを組合せた方法が提案されている。たとえば特開昭61-231158号公報では、窒化処理層と、その上に1層以上の炭化チタンなどの密着型処理層を設けた工具が開示されている。また、特開昭62-103368号公報では、金属基材の表面に窒化物層を形成し、その表面をセラミックコーティング膜で被覆したものが開示されている。

【0011】また、特開平2-125861号公報では、イオン窒化処理とイオンプレーティングを同一の真空槽内で連続して行なった後、金属の窒化物、炭化物、炭窒化物、炭空酸化物、酸化物の膜を1層あるいは多層に形成する方法が開示されている。

【0012】また、特開平4-103755号公報では、鉄系金属母材の表面に壁化層、炭化層および炭壁化層を有し、その窒化層などの上にTi、Zrなどの少なくとも1種とアルミニウムからなる炭化物、窒化物および炭壁化物からなる被膜が設けられた鋼製品が開示されている。

【0013】特開平5-98422号公報では、高周波直流電源を用いてプラズマを発生させ、窒素イオンを被処理物に衝突させて硬化層を作り、その硬化層をセラミックスで被覆する方法が開示されている。また、特開平8-35075号公報では、金属部材をアンモニアガスと水素ガスの雰囲気でイオン窒化し、この窒化層の上にPVD法により硬質被膜を形成する方法が開示されている。また、特開平8-296064号公報では、金属部材をアンモニアガスと水素ガスの雰囲気中で窒化し、この層上にPVD法により硬質被膜(TiAIN)を形成する方法が開示されている。

【0014】しかしながら、これらの方法では、被膜の耐酸化性は向上するものの、500~600℃の高温と室温程度の低温の熱サイクルに供した場合に、金型表面に亀裂が発生し、耐熱亀裂性が低いという問題があった。すなわち、従来の技術では、金型の耐熱亀裂性と耐酸化性とを同時に満足させることが困難であった。

【0015】そこで、この発明は、上述のような問題点を解決するためになされたものであり、耐熱亀裂性と耐酸化性の双方が優れた金型を提供することを目的とするものである。

[0016]

【課題を解決するための手段】本発明者らは、金型の耐 熱亀裂性と耐酸化性について種々の検討を行なった結 果、以下の結論を得た。

【0017】まず、耐熱亀裂性を向上させるためには、

窒化処理層や被膜の圧縮残留応力を最適化すればよい。 【0018】また、耐酸化性を向上させるためには、窒 化チタンをベースとし、アルミニウムを添加したセラミ ックスの被膜、または窒化チタン膜と窒化アルミニウム 膜とを合計で20層以上積層した被膜を金型の表面に形 成すればよい。

【0019】以上の知見に基づき、本発明の1つの局面に従った金型は、表面を有する鋼材と、鋼材の表面上に形成された被膜とを備える。鋼材の表面の部分には、窒化処理層が形成される。窒化処理層において、主表面からの深さが 10μ mまでの部分の圧縮残留応力の平均値 F_1 は、0.2GPa $\leq F_1 \leq 1.5$ GPaの関係式を満たす。被膜の組成式は(Ti_{1-x} 、 Al_x) Nで表わされる。Xは $0.02 \leq X \leq 0.7$ の関係式を満たす。被膜内での圧縮残留応力の平均値 F_2 は、0.5GPa $\leq F_2 \leq 8$ GPaの関係式を満たす。

【0020】このような金型においては、窒化処理層内での圧縮残留応力F₁と被膜内での圧縮残留応力F₂が最適化されているため、熱亀裂が発生しにくくなり、耐熱亀裂性が向上する。また、被膜内にアルミニウムが存在するため、耐酸化性が向上する。

【0021】ここで、0.2 $GPa \le F_1 \le 1.5GP$ a、0.5 $GPa \le F_2 \le 8GPa$ 、0.02 $\le X \le$ 0.7 $\xi \ge 1.5GPa$

【0022】0.2GPa \leq F₁ および0.5GPa \leq F₂ としたのは、0.2GPa>F₁ または0.5GPa>F₂ となれば、圧縮残留応力が小さすぎて、熱亀裂の発生を抑制できないからである。F₁ \leq 1.5GPaおよびF₂ \leq 8GPaとしたのは、F₁ >1.5GPaまたはF₂ >8GPaであれば、窒化処理層や被膜の持つ圧縮強度の上限値を超え、窒化処理層や被膜自体が圧壊してしまうからである。

【0023】0.02≦Xとしたのは、0.02>Xであれば、アルミニウムの添加量が小さすぎ、耐酸化性向上の効果が得られないからである。X≦0.7としたのは、X>0.7となれば、被膜の機械的特性、特に硬度が若しく低下するため好ましくないからである。

【0024】また、被膜内でのアルミニウムの濃度は、 鋼材側の被膜の表面から遠ざかるにつれて高くなることが好ましい。この場合、被膜のうち、鋼材から一番遠い 部分、すなわち、大気と接触する部分において、アルミニウムの濃度が一番高くなる。そのため、被膜表面にアルミナからなる耐酸化性被膜が形成されるので、耐酸化 性が一層向上する。

【0025】また、金型は、積層された複数の被膜を備え、被膜の組成は隣合う被膜の組成と異なることが好ましい。この場合、1つの層が摩耗しても次の層が露出することにより、耐酸化性が持続する。また、積層された8層以上の被膜を備え、被膜の組成は隣り合う被膜の組成と異なることがさらに好ましい。

【0026】また、この発明の別の局面に従った金型は、主表面を有する鋼材と、鋼材の主表面上に形成された被膜とを備える。鋼材の主表面近傍の部分には窒化処理層が形成される。窒化処理層において、主表面からの深さが 10μ mまでの部分の圧縮残留応力の平均値 F_1 は $0.2GPa \le F_1 \le 1.5GPa$ の関係式を満たす。被膜は、窒化チタン膜と窒化アルミニウム膜とを交互に積層したものである。窒化チタン膜と窒化アルミニウム膜との膜数の合計は20以上である。被膜内での圧縮残留応力の平均値 F_2 は $0.5GPa \le F_2 \le 8GPa$ の関係式を満たす。

【0027】このように構成された金型においては、窒化処理層と被膜での圧縮残留応力が最適化されているため、熱亀裂が発生しにくく、耐熱亀裂性が向上する。さらに、被膜には窒化アルミニウム膜が含まれているため、被膜の耐酸化性が向上する。F₁ およびF₂ の範囲を限定したのは、上記と同様の理由である。

【0028】また、鋼材と被膜との間には窒化チタン膜が形成されていることが好ましい。この場合、窒化処理層と被膜との密着性を窒化チタン膜が向上させることにより、金型の寿命を向上させる。

【0029】また、窒化処理層の深さは50μm以上500μm以下であることが好ましい。窒化処理層の深さを50μm以上としたのは、50μm未満であれば、窒化処理による効果が得られないからである。また、窒化処理層の深さを500μm以下としたのは、500μmを超えると苦しく長時間の窒化処理が必要となり、製造コストが大幅に上昇するからである。

【0030】また、被膜の厚さは0.5μm以上40μm以下であることが好ましい。被膜の厚さを0.5μm以上としたのは、0.5μm未満であれば、被膜が薄すぎて、被膜による耐酸化性向上などの効果が得られないからである。被膜の厚さを40μm以下としたのは、40μmを超えると、使用時の衝撃によって被膜が破壊しやすくなるため好ましくない。

【0031】また、金型は、鉄系部品の温間もしくは熱間鉄造用またはアルミニウム合金の鋳造用に用いられることが好ましい。

[0032]

【実施例】(実施例1)JIS野称SKT61の鋼からなり、直径が40mmで高さが30mmの円筒形状のブロックを準備した。このブロックに焼入および焼戻による熱処理を施して、ブロックの表面のロックウェルCスケール硬度を52とした。このブロックの側面(曲面)を研磨して、この面の十点平均粗さ尺2を0.5mm以下とした。このブロックの研磨面に手法(1)または

- (2)の処理をして窒化層を形成した。次に、手法
- (7)の処理をしてTiN膜を形成した。次に、手法
- (3)~(6)のいずれかの処理をして被膜を形成し3 0個のサンブルを作製した。

【0033】手法(1)<u>タフトライド処理</u>

ブロックを温度550℃の塩浴中に30分から20時間保持し、ブロックの表面からの深さが25~440μmの窒化処理層としての窒化層を得た。ブロックの表面からの深さが10μmの部分の窒化層を研磨して除去し、十点平均粗さRzを0.5mmとした。また、タフトライド処理の温度を変えることにより、窒化層の表面の残留応力を変化させたものも製造した。

【0034】手法(2)<u>イオン窒化処理</u> ブロックを以下の条件の処理槽内に保った。

【0035】温度:500℃ 窒素ガスの体積流量:60% 水素ガスの体積流量:40% 処理槽内の圧力:2Torr

ブロックに印加した直流電圧:-100V

ブロックに印加した高周波電力(13.56MHz): 1000W

保持時間:15分~2時間

これにより、ブロックの表面からの深さが15~100 μmの窒化層を得た。この窒化層の表面には有害な化合物層は生成しなかったが、プラズマ処理によって窒化層の表面が荒れていたので、この表面を軽くラッピングし、表面の十点平均粗さ十点平均粗さRzを0.5mmとした。また、温度をさまざまに変えて、窒化層の表面の残留応力をさまざまに変化させた。

【0036】手法(3)<u>(Ti_{1-x}、Al_x)N被膜形</u>成

ブロックを以下の条件の真空槽内に保持した。 【0037】蒸発源のアーク電流:100A

ブロックの温度: 450℃ ブロックの周囲のガス: 窒素 真空槽内の圧力: 30mTorr ブロックに印加した直流電圧: -200V

保持時間:30分

蒸発源の組成: (Ti_{1-x}、Al_x)

【0038】手法(4) TIN/AIN (機関が取 純チタン(不可避不純物を0.5重量%以下含む)からなる蒸発源と、純アルミニウム(不可避不純物を0.5 重量%以下含む)からなる蒸発源とを用意した。これらの2つの蒸発源を真空槽の内壁に互いに対向するように 配置した。2つの蒸発源の中心に回転テーブルを設け、 このテーブルにブロックを取付けた。アークイオンプレ ーティング法に従い、ブロックを以下の条件の真空槽内 に保った。

【0039】蒸発源のアーク電流:100A

ブロックの温度: 450℃ ブロックの周囲のガス: 窒素 真空槽内の圧力: 30mTorr

ブロックに印加した直流電圧:-200V

テーブルの回転数:1rpm

保持時間:20分

これにより、TiN層とAIN層とを交互に積層し、TiN層とAIN層がそれぞれ10層ずつ存在する被膜を 形成した。なお、TiN層の1層の厚さとAIN層の1 層の厚さは等しかった。

【0040】また、テーブルの回転数を0.4rpmとし、TiN層とAiNの層の数がそれぞれ8層としたものを作成した。また、ブロックの温度を変えることにより、被膜中の残留応力を変化させたものも形成した。

【0041】手法(5) <u>(Ti_{1-x}、Al_x) N/(T</u>i_{1-y}、Al_y) N被膜形成

組成が(Ti_{1-x} 、 Al_x)で表わされる蒸発源と、組成が(Ti_{1-y} 、 Al_y)で表わされる蒸発源とを準備した。この2つの蒸発源を手法4で用いた真空槽の内壁に対向させて設置した。テーブルの回転数を0.3rpmとした。その他の条件は手法4と同様とした。これにより、(Ti_{1-x} 、 Al_x) N層と(Ti_{1-y} 、 Al_y) N層が交互にそれぞれ10 層積層された被膜を形成した。また、比較のため、テーブルの回転数を0.2rpmとし、それぞれの層の数が5である被膜を形成した。また、ブロックの温度を変化させることにより、被膜内の残留応力を変化させたものを形成した。

【0042】手法(6)<u>(Ti,-x、Alx)N傾斜組</u> 成被膜形成

ーーマルミニウムの割合がX原子%のチタンーアルミニウム 合金からなる蒸発源と、アルミニウムの割合がZ原子% のチタンーアルミニウム合金からなる蒸発源とを用意し た(X < Z)。この2つの蒸発源を300mmの間隔をあけて配置し、ブロックを以下の条件の真空槽内に保った。

【0043】蒸発源のアーク電流:100A

ブロックの温度: 450℃ ブロックの周囲のガス: 窒素 真空槽内の圧力: 30mTorr

ブロックに印加した直流電圧:-200V

保持時間:60分

ブロックを 2つの蒸発源の間をゆっくりと平行移動させた。これにより、ブロックに近い部分から遠ざかるに従って、組成が(Ti_{1-x} 、 Al_x) Nから(Ti_{1-z} 、 Al_z) Nへ傾斜するような被膜を形成した。また、ブロックの温度を変化させることにより、被膜の残留応力を変化させたものを形成した。

【0044】手法(7)<u>TiN被膜形成</u>

純チタンで作製された蒸発源を用いて手法3と同じ条件 で厚みが2μmのTiN被膜をブロックの表面に形成した。

【0045】それぞれのサンプルの壁化層および被膜の 残留応力を \sin^2 が法によるX線回折法を用いて調べ た。ここで、 \sin^2 が法について説明する。

【0046】sin² が法におけるかという角度は、X線回折におけるか、すなわち、材料表面の法線を基準にした方位を意味しており、か=0°であれば、材料表面に対する法線の向きを、か=90°であれば、材料の表面に平行な向きを指す。材料表面に平行な向き(か=90°)の圧縮応力は、同じ向きに材料を最も大きく縮ませ、垂直な方向(か=0°)に材料を最も大きく勝らませる。このときの材料の膨張・収縮の程度を格子定数の変化に置換えると、格子定数の変化(歪み)とかとは以下のように関係づけられる。

【0047】 【数1】

格子定数の変化=(ヤング率とポアソン比で決まる定数)×応力×sin²φ

【0048】そこで、X線回折時にゆを変化させながら格子定数を計測し、sin² ゆを横軸に、格子定数を縦軸にしてグラフを書くと、測定した点は直線上にのる。この直線の傾きは材料固有のヤング率およびポアソン比で決まる定数と、応力との積であるから、傾きより応力の値が計算できる。

【0049】また、すべてのサンプルの表面を温度60

0℃の大気中に60秒保った後、温度25℃の水中に入れて60秒保ち、これを1回の熱サイクルとした。この熱サイクルを100回繰返した後、被膜または窒化層の表面の損傷を光学顕微鏡にて観察した。これらの結果を表1および表2に示す。

【0050】 【表1】

	窒化処理		TiN膜	
サンプル	窒化層の	窒化層の深さ	窒化層の	TiN膜の
No.	形成手法	(μm)	残留応力(@Pa)	形成手法
1	手法(1)	250	1.3	手法(7)
2	"	55	0.7	11
3	11	250	1. 2	_
4	11	250	1.4	
5	"	250	1.2	手法(7)
6	"	250	1	"
7	手法(2)	100	0.8	"
8	手法(1)	440	1. 45	"
9	"	440	1, 42	"
10	手法(2)	100	0. 75	-
11	11	45	0. 22	_
12	"	100	0.9	手法(7)
13	"	100	0. 85	B B
14	手法(1)	25	0. 21	"
15	手法(2)	100	0.87	11
16	11	35	0. 23	"
17	ri .	100	0. 3	11
18	"	100	0. 25	IJ
19	n	100	0.8	
20		0	0. 2	手法(7)
21	_	0	0.4	
22	-	0	0.3	手法(7)
23	_	0	0.4	"
24	-	0	0.2	"
25	手法(2)	75	0. 15	
26	n	100	0.14	手法(7)
27	"	85	0.12	<u> </u>
28	"	120	0.18	手法(7)
29	31	80	1.6	IJ
30	11	125	1.8	11

[0051]

【表2】

.

		被膜					
サン			被職の	全体	熱		
7.4	被膜の		残留応	度み	947k	寿	
No.	形成手法	被護の組成	カ	(μm)	数	1	
	, , , , , , , , , , , , , , , , , , ,		(GPa)				
1	手法(3)	(TiO. 97, A10. 03) N	2. 5	3.4	4800		
2	n	(TiO. 3, AD. 7) N	7.8	0. 52	5200	ľ	
3	п	(TiO. 6, AIO. 4) N	5.1	6. 5	3900		
4	"	(T10. 4, A10. 6) N	3.4	25. 9	4200		
5	手法(4)	TiN/AIN を 10 回積層	4.4	5.3	5500	- 1	
6	n	TiN/AIN を 25 国積層	4. B	5.5	6200		
7	11	TIN/AIN を 500 回積層	6. 7	4.7	7500		
8	手法(5)	(TiO. 7, AIO. 3) N/(TiO. 3, AIO. 7) Nを5回積層	2. 1	6. 2	4800	*	
9	"	(Tio. 7, Aio. 3) N/(Tio. 3, Aio. 7) N を 10 回積層	2. 3	6. 6	5300	発	
10		(Tio. 7, AIO. 3) N/(Tio. 3, AID. 7) N を 80 回積層	3, 1	6. 5	5900	明品	
-		(Tio. 3, AIO. 7) N	2.4	2.9	2900	1	
11	手法(3)	(Tio. 3, Ato. 7) N	7.6	0.4	2300		
12	"	(Tio. 3, Alo. 7) N	1.1	41	2000	1	
13	"	(Tio. 3, Alo. 7) N	6.3	0.55	1500	1	
14		(Tio. 97, AIO. 03) Nから	 			1	
15	5 手法(6)	(Tio. 3, Aio. 7)N 个倾斜	3. 9	4.8	4100		
-	6 "	(TIO. 97, AIO. 03) Nから		1.0	2000		
16		(Tio. 3, Aio. 7) N 个倾斜	3.7	4. 9	2300		
17	手法(4)	TiN/AINを8回積層	1.6	5. 4	400		
18	手法(5)	TiN	2.9	5. 4	300]	
19	-	なし		T -	200		
20		TIN	3	5. 4	300]	
21	手法(3)	(Tio. 6, Alo. 4) N	1.3	6.7	200	7	
-21		(Tio. 7, AIO. 3) N/ (Tio. 1, AIO. 9)		1.	000	7	
22	手法(5)	H を 10 回接階	2.3	4.8	200	l E	
-		(T:0.07 AID 03) N 40 G	2.5	2.5 6.7	200	較	
23	手法(6)	(TiO. 3, AIO. 7)N 个傾斜	2. 5		200	- A	
24	手法(4)	TiN/AIN を 500 回復層	1.1	4.6	200		
25		(Tio. 3, Aio. 7) N	0.3	2.8	200	_	
26	_	(Tio. 3, AIO. 7) N	0.4	3. 4	200	_	
27	11	(Tio. 3, Alo. 7) N	8. 3	2. 9	100	_	
28		(T10. 3, A10. 7) N	8. 2	3.5	100	4	
29	"	(Tio. 3, Alo. 7) N	2.3	3. 3	100	4	
30		(Tio. 3, Alo. 7) N	2. 1	3.7	100		

【0052】表1中「窒化層の形成手法」の欄において「一」としたのは窒化層を形成しなかったことを示す。また、「窒化層の残留応力」とは、鋼材の表面からの深さが10μmまでの部分の圧縮残留応力の平均値である。また、この欄において、サンプル20~24については、窒化処理をしなかったため、鋼材の表面からの深さが10μmまでの部分の圧縮残留応力の平均値を記載した。また、「TiN膜の形成手法」の欄において、「一」としたのは、TiN膜を形成しなかったことを示

ず.

【0053】表2中、「被膜の組成」の欄で、「X/Yを2回積層」としたのは、まず、Xを形成し、その上にXと同じ厚さのYを積層し、これを2回繰返したことを意味する。そのため、Xについての膜の数はZであり、Yについての限の数もZであり、膜数の合計は2Zである。また、「AからBへ傾斜」とは鋼材に近い部分での組成がAであり、鋼材から離れるにつれて組成がBに近づくことを示す。また、「被膜の残留応力」とは、被膜

内での圧縮残留応力の平均値を示す。この欄において、サンプル18および20については、TiN膜の圧縮残留応力の平均値を記載した。さらに、この欄において、サンプル19については、被膜を形成しなかったので、「一」とした。「全体厚み」とは、鋼材の表面から被膜の上面(被加工物と接する面)までの厚さをいう。

【0054】表1および2から明らかなように、本発明品では、熱亀裂の発生が大幅に抑制され、熱サイクル数が多いことがわかる。

【0055】(実施例2) 実施例1で製造した本発明品であるサンプルNo. 4、6、10、15と、比較品であるサンプルNo. 21、22、25および28を、温間鉄造用の金型パンチ(母材はJIS呼称SKH51の鋼材からなり、そのロックウェルCスケール硬度53)に処理し、実際に温間鍛造時の金型寿命の評価を行なった。鍛造時には、金型の表面は、温度700℃まで加熱されていた。被加工材の寸法精度が規定の範囲を超えた時点を金型の寿命とした。寿命の評価結果を表3に示す。

【0056】 【表3】

977 Mb.	全型寿命
4	14000 ショット
6	15000 ショット
10	14000 ショット
15	12000 ショット
21	2300 ショット
22	1800 ショット
25	1400 ショット
28	1300 ショット

【0057】本発明品では、金型の寿命が大きく向上していることが確かめられた。

【0058】(実施例3)実施例1で製造した本発明品であるサンプルNo.4、6、10および15と、比較品であるサンプルNo.21、22、25および28

を、A 1 鋳造用の鋳抜きピン (母村はJ I S呼称SKD 6 1 の鋼材からなりそのロックウエルCスケール硬度5 1) に処理し、A 1 合金の鋳造時の鋳抜きピンの寿命評価を行なった。鋳造方法は重力鋳造とし、鋳造時には、鋳抜きピンの表面は、温度670℃まで加熱されていた。被加工材の寸法精度が規定の範囲を超えた時点で金型の寿命とした。寿命評価結果を表4に示す。

[0059]

【表4】

\$27 AHL	鏡抜きピン寿命
4	27000 ショット
В	32000 ショット
10	29000 ショット
15	26000 ショット
21	4100 ショット
22	3600ショット
25	2700 ショット
28	2400 ショット

【0060】本発明品では、鋳抜きピンの寿命が大きく 向上していることが確かめられた。

【0061】以上、この発明の実施例について説明したが、本発明はさまざまに変形が可能である。たとえば、 残留圧縮応力や膜厚などは本発明の思想内で適宜変更す ることができる。

【0062】今回開示された実施の形態はすべての点で 例示であって制限的なものてないと考えられるべきであ る。本発明の範囲は上記した説明ではなくて特計請求の 範囲によって示され、特計請求の範囲と均等の意味およ び範囲内でのすべての変更が含まれることが意図され る。

[0.063]

【発明の効果】以上説明したように、本発明によれば、 耐酸化性と耐熱亀裂性に優れ、寿命の長い金型を得ることができる。

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
☐ BLACK BORDERS		
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES		
☐ FADED TEXT OR DRAWING		
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING		
☐ SKEWED/SLANTED IMAGES		
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS		
GRAY SCALE DOCUMENTS		
LINES OR MARKS ON ORIGINAL DOCUMENT		
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.