CSC 561: Neural Networks and Deep Learning

Loss, Overfitting, Model Selection

Marco Alvarez

Department of Computer Science and Statistics University of Rhode Island Spring 2024

Loss functions

The "learning" problem

• Finding a hypothesis (classifier/regressor) that best approximates the target function

for $h \in \mathcal{H}$ and $\forall (x_i, y_i) \sim P$, we want $h(x_i) \approx f(x_i)$

ML uses **search** and **optimization** (to **minimize expected loss**)

$$\mathbb{E}\left[l\left(h, x_i, y_i\right)\right]_{(x_i, y_i) \sim P}$$

Approximating the expected loss

$$\mathbb{E}\left[l\left(h, x_i, y_i\right)\right]_{(x_i, y_i) \sim P}^{\text{expected loss}}$$

$$\approx L = \frac{1}{n} \sum_{i=1}^{n} l(h, x_i, y_i) \sim P$$
empirical loss

the law of large numbers states that the arithmetic mean of the values almost surely converges to the expected value as the number

0/1 loss

$$l_{0/1}(h, x_i, y_i) = I\left(h(x_i) \neq y_i\right)$$
indicator
function

Prediction	Target
5	5
1	9
2	2
7	7
8	0
0	0
0	8
3	3
6	6
4	4

Empirical loss?

Practice

X0	Х1	X2	Υ
1	0	0	-1
1	1	0	+1
1	1	1	+1
1	0	1	+1

$$h_{w}(\mathbf{x}) = \sigma(\mathbf{w}^{T}\mathbf{x})$$

$$\sigma(z) = \begin{cases} +1 & \text{if } z > 0 \\ -1 & \text{if } z \le 0 \end{cases}$$

zero-one loss for $\mathbf{w}_a = [0,0,0]^T$?

zero-one loss for $\mathbf{w}_b = [0,1,0]^T$?

zero one loss for $\mathbf{w}_c = [-1,2,2]^T$?

Squared loss

$$l_{sq}(h, x_i, y_i) = (h(x_i) - y_i)^{2}_{\text{penalizes big mistakes}}$$

Prediction	Target
1.2	1.4
2.3	2.3
1.1	1.2
3.4	4.1
2.3	2.5
1.1	1.1
2.5	2.6
3.1	3.2
1.7	1.8
2.3	2.3

Empirical loss?

Absolute loss

$$l_{abs}(h, x_i, y_i) = \left| h(x_i) - y_i \right|$$

Target
1.4
2.3
1.2
4.1
2.5
1.1
2.6
3.2
1.8
2.3

Empirical loss?

Overfitting

Overfitting

- Reasons
 - √ model is too complex
 - model is fitting noise present in the training data
 - ✓ training data is not a representative sample of the distribution
- · How to prevent?
 - √ use more training data
 - √ use fewer features
 - √ regularize your model

Generalization

We can use a ML method to calculate:

$$g = \arg\min_{h \in \mathcal{H}} L(h, \mathcal{D})$$

- Problem: it may overfit the training data
 we want better generalization
- Solution: split your data in train, validation, test use train and validation to select the best hypothesis use test for final evaluation and report

Model selection

1

Confusion matrix (2 classes)

		Predicted condition						
	Total population = P + N	Positive (PP)	Negative (PN)					
ondition	Positive (P)	True positive (TP)	False negative (FN)					
Actual condition	Negative (N)	False positive (FP)	True negative (TN)					

https://en.wikipedia.org/wiki/Confusion_matrix

2

Confusion matrix (example)

		Predicted condition					
	Total	Cancer	Non-cancer				
	8 + 4 = 12	7	5				
Actual condition	Cancer 8	6	2				
	Non-cancer 4	1	3				

https://en.wikipedia.org/wiki/Confusion_matrix

Evaluation metrics (2 classes)

accuracy (ACC)

$$ext{ACC} = rac{ ext{TP} + ext{TN}}{ ext{P} + ext{N}} = rac{ ext{TP} + ext{TN}}{ ext{TP} + ext{TN} + ext{FP} + ext{FN}}$$

F1 score

is the harmonic mean of precision and sensitivity

$$\mathrm{F}_1 = 2 \cdot rac{\mathrm{PPV} \cdot \mathrm{TPR}}{\mathrm{PPV} + \mathrm{TPR}} = rac{2\mathrm{TP}}{2\mathrm{TP} + \mathrm{FP} + \mathrm{FN}}$$

Matthews correlation coefficient (MCC)

$$\mathrm{MCC} = \frac{\mathrm{TP} \times \mathrm{TN} - \mathrm{FP} \times \mathrm{FN}}{\sqrt{(\mathrm{TP} + \mathrm{FP})(\mathrm{TP} + \mathrm{FN})(\mathrm{TN} + \mathrm{FP})(\mathrm{TN} + \mathrm{FN})}}$$

nttps://en.wikipedia.org/wiki/Confusion_matrix

2

Confusion matrix (example >2 classes)

CIFAR-10 Confusion Matrix

	airplane	923	4	21	8	4	1	5	5	23	6
	automobile	5	972	2					1	5	15
	bird	26	2	892	30	13	8	17	5	4	3
	cat	12	4	32	826	24	48	30	12	5	7
Glass	deer	5	1	28	24	898	13	14	14	2	1
	dog	7	2	28	111	18	801	13	17		3
	frog	5		16	27	3	4	943	1	1	
Lue	horse	9	1	14	13	22	17	3	915	2	4
	ship	37	10	4	4		1	2	1	931	10
	truck	20	39	3	3			2	1	9	923

	12.0%	6.1%	14.2%	21.0%	8.6%	10.3%	8.4%	5.9%	5.2%	5.0%
(P)	ene mono	olide.	bird	cat ,	Jeer	900	40g	orse	ship y	unck

Predicted Class

https://www.mathworks.com/help/deeplearning/ref/confusionchart.html

2

