```
Sleep-assignment1
In [1]:
          import numpy as np
          import pandas as pd
          import matplotlib.pyplot as plt
          import seaborn as sns
          from sklearn.model_selection import train_test_split
          from sklearn.linear_model import LinearRegression
In [2]:
          df = pd.read_csv("Sleep.csv")
          # .dropna(axis="columns")
Out[2]:
                                                         Quality Physical
                                                                          Stress
                                                                                      BMI
              Person
                                                   Sleep
                                                                                              Blood Hea
                     Gender Age
                                    Occupation
                                                                 Activity
                                                              of
                 ID
                                                Duration
                                                                          Level
                                                                                  Category Pressure
                                                           Sleep
                                                                    Level
```

0	1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	
•••	•••		•••	•••	•••	•••	•••		•••	•••	
369	370	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
370	371	Female	59	Nurse	8.0	9	75	3	Overweight	140/95	
371	372	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
372	373	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	
373	374	Female	59	Nurse	8.1	9	75	3	Overweight	140/95	

374 rows × 13 columns

In [3]:

df.head()

Out[3]

]:	Person ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	
	0 1	Male	27	Software Engineer	6.1	6	42	6	Overweight	126/83	77

Per	rson ID	Gender	Age	Occupation	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	BMI Category	Blood Pressure	Heart Rate
1	2	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75
2	3	Male	28	Doctor	6.2	6	60	8	Normal	125/80	75
3	4	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85
4	5	Male	28	Sales Representative	5.9	4	30	8	Obese	140/90	85

Data cleaning and pre processing

In [4]: | df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 374 entries, 0 to 373 Data columns (total 13 columns):

		- / -	
#	Column	Non-Null Count	Dtype
0	Person ID	374 non-null	int64
1	Gender	374 non-null	object
2	Age	374 non-null	int64
3	Occupation	374 non-null	object
4	Sleep Duration	374 non-null	float64
5	Quality of Sleep	374 non-null	int64
6	Physical Activity Level	374 non-null	int64
7	Stress Level	374 non-null	int64
8	BMI Category	374 non-null	object
9	Blood Pressure	374 non-null	object
10	Heart Rate	374 non-null	int64
11	Daily Steps	374 non-null	int64
12	Sleep Disorder	374 non-null	object
44	Cl+C4/4\ :+C4/7\	-1-44/51	

dtypes: float64(1), int64(7), object(5)

memory usage: 38.1+ KB

In [5]:

df.describe()

Out[5]:

	Person ID	Age	Sleep Duration	Quality of Sleep	Physical Activity Level	Stress Level	Heart Rate	Daily Steps
count	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000	374.000000
mean	187.500000	42.184492	7.132086	7.312834	59.171123	5.385027	70.165775	6816.844920
std	108.108742	8.673133	0.795657	1.196956	20.830804	1.774526	4.135676	1617.915679
min	1.000000	27.000000	5.800000	4.000000	30.000000	3.000000	65.000000	3000.000000
25%	94.250000	35.250000	6.400000	6.000000	45.000000	4.000000	68.000000	5600.000000
50%	187.500000	43.000000	7.200000	7.000000	60.000000	5.000000	70.000000	7000.000000
75%	280.750000	50.000000	7.800000	8.000000	75.000000	7.000000	72.000000	8000.00000
max	374.000000	59.000000	8.500000	9.000000	90.000000	8.000000	86.000000	10000.000000

EDA and VISUALIZATION

```
In [7]: sns.pairplot(df)
```



```
In [8]: sns.distplot(df['Sleep Duration'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: FutureWarning:
 distplot` is a deprecated function and will be removed in a future version. Please adap
 t your code to use either `displot` (a figure-level function with similar flexibility) o
 r `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='Sleep Duration', ylabel='Density'>


```
In [10]: sns.heatmap(df1.corr())
```

Out[10]: <AxesSubplot:>

split the data into training and test data

```
In [12]: x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)
In [13]: lr = LinearRegression()
lr.fit(x_train, y_train)
Out[13]: LinearRegression()
In [14]: lr.intercept_
Out[14]: 11.899286331704307
In [15]: coeff = pd.DataFrame(lr.coef_, x.columns, columns =['Co-efficient'])
coeff
```

Out[15]:		Co-efficient
	Person ID	0.077905
	Sleep Duration	0.287208
	Quality of Sleep	0.591638
	Stress Level	0.031027

Co-efficient

Heart Rate 0.123934 **Daily Steps** 0.000072

Out[16]: <matplotlib.collections.PathCollection at 0x1f05513ed00>


```
In [17]: lr.score(x_test,y_test)
```

Out[17]: 0.9819159155441144

ACURACY

```
In [18]:
          from sklearn.linear_model import Ridge,Lasso
In [19]:
          rr=Ridge(alpha=10)
           rr.fit(x_train,y_train)
          rr.score(x_test,y_test)
          rr.score(x_train,y_train)
Out[19]:
         0.9868875766465539
In [20]:
          rr.score(x_test,y_test)
Out[20]:
         0.9819248705055501
In [21]:
          la = Lasso(alpha=10)
          la.fit(x_train,y_train)
```

```
Out[21]: Lasso(alpha=10)
```

```
In [22]: la.score(x_test,y_test)
```

Out[22]: 0.9779820947092206