Feature Selection & Dimensionality Reduction

Curse of Dimensionality

What is Curse of Dimensionality?

What is Curse of Dimensionality?

Does every feature improve accuracy?

Why to Use Feature Selection?

Univariate Feature Selection

Feature Selection Approaches – Scikit-Learn

Steps For Univariate Feature Selection

Step 1 – Get all Independent Features

Step 2 – Apply relevant statistical method

Step 3 – Get P-Value and compare with the significance level

Step 4 – Select the feature if P < α

Step 1 – Get all Independent Features

 x_1 x_2

 x_3

 x_n

Step 2 – Apply relevant statistical method

 $H_0 \rightarrow$ The feature has no impact on predictor

 $H_a \rightarrow$ The feature has significant impact on predictor

Statistical Significance

Nothing changes.
Null Hypothesis is true.
Status quo remains.

Null Hypothesis rejected. Status quo or claim is rejected

Important terms – Statistical Significance

Step 3 – Get P-Value and compare with the significance level

Step 4 – Select the feature if P < α

Step 4 – Select the feature if P < α

F-Distribution

F-Distribution

$$F-Score = \frac{R^2}{1-R^2} * \frac{df_2}{d_1}$$

R =Correlation Coefficient

$$R = \frac{\sum (x - \bar{x}) * (y - \bar{y})}{\sigma_x \sigma_y}$$

 df_2 = Degrees of freedom within the group

 df_1 = Degrees of freedom between the groups

F-Test for Target variables

 $y \rightarrow Continuous \rightarrow f_regression$

 $y \rightarrow Categorical \rightarrow f_classif$

Chi-Square

- Developed by Karl Pearson
- Evaluates the relationship when the target variable is categorical
- Steps to Evaluate the Independence
 - Define Hypothesis Null and Alternate
 - Define Alpha
 - Calculate the Degrees of Freedom
 - State Decision Rule
 - Calculate Test Statistics
 - Results
 - Conclusion

Flight Status	Weather
Delayed	Rainy
Delayed	Rainy
Delayed	Rainy
Ontime	Rainy
Delayed	Rainy
Ontime	Sunny
Delayed	Rainy
Delayed	Rainy
Ontime	Sunny
Delayed	Rainy
Delayed	Overcast

Step 1

Null Hypothesis – There is no relationship between Flight Status and Weather

Alternate Hypothesis – There is relationship between Flight Status and Weather

Step 2 alpha, $\alpha = 0.05$

	Rainy	Sunny	Overcast	
Delayed	36	16	13	65
On time	11	84	40	135
	47	100	53	

Step 3

Calculate the degrees of freedom

Total df = (no of Rows – 1) * (no of Columns – 1)
=
$$(2-1)$$
 * $(3-1)$
= 2

Reject the Null Hypothesis if the X square value is greater than 5.991

Actual

	Rainy	Sunny	Overcast	
Delayed	36	16	13	65
On time	11	84	40	135
	47	100	53	

Step 5

Calculate Test Statistics

$$f = \frac{f_c * f_r}{n}$$

Expected

	Rainy	Sunny	Overcast
Delayed	15		
On time			

Expected (Delayed, Rainy)

Actual

	Rainy	Sunny	Overcast	
Delayed	36	16	13	65
On time	11	84	40	135
	47	100	53	

Step 5

Calculate Test Statistics

$$f = \frac{f_c * f_r}{n}$$

Expected

	Rainy	Sunny	Overcast
Delayed	15	33	
On time			

Expected (Delayed, Sunny)

Actual

	Rainy	Sunny	Overcast	
Delayed	36	16	13	65
On time	11	84	40	135
	47	100	53	

Step 5

Calculate Test Statistics

$$f = \frac{f_c * f_r}{n}$$

Expected

		<u> </u>	
	Rainy	Sunny	Overcast
Delayed	15	33	
On time	32		
	47		

Expected (OnTime, Rainy)

Actual

	Rainy	Sunny	Overcast	
Delayed	36	16	13	65
On time	11	84	40	135
	47	100	53	

Step 6

Calculate Results

$$Score = \frac{(f_o - f_e)^2}{f_e}$$

Expected

	Rainy	Sunny	Overcast	
Delayed	15	33	17	65
On time	32	67	36	135
	47	100	53	

	Rainy	Sunny	Overcast
Delayed	29.4	8.76	0.94
On time	13.78	4.31	0.44

Flight Status	Weather
Delayed	Rainy
Ontime	Rainy
Delayed	Rainy
Ontime	Sunny
Delayed	Overcast
Delayed	Overcast

Step 6 Calculate Results

$$Score = \frac{(f_o - f_e)^2}{f_e}$$

 $Total\ Score = 57.64$

	Rainy	Sunny	Overcast
Delayed	29.4	8.76	0.94
On time	13.78	4.31	0.44

Step 7

Conclusion

Chi squared (57.64) > 5.991

Reject the Null Hypothesis.

Table 3-1 Critical Values of the χ^2 Distribution									
				P					
df	0.995	0.975	0.9	0.5	0.1	0.05	0.025		
1	.000	.000	0.016	0.455	2.706	3.841	5.024		
2	0.010	0.051	0.211	1.386	4.605	5.991	7.378		
3	0.072	0.216	0.584	2.366	6.251	7.013	9.348		
4	0.207	0.484	1.064	3.357	7.779	9.488	11.143		
5	0.412	0.831	1.610	4.351	9.236	11.070	12.832		
6	0.676	1.237	2.204	5.348	10.645	12.592	14.449		
7	0.989	1.690	2.833	6.346	12.017	14.067	16.013		
8	1.344	2.180	3.490	7.344	13.362	15.507	17.535		
9	1.735	2.700	4.168	8.343	14.684	16.919	19.023		

The weather and Flight Status are correlated.

Selection Transforms

Most common Feature Selection Transforms

Most common Feature Selection Transforms

Most common Feature Selection Transforms

Recursive Feature Elimination

Recursive Feature Elimination

Classification

Regression

Performance

Feature Importance Coefficients

Criteria for Feature Selection or Elimination

• Coefficients or weights

• Feature Importance

Rank Ordered Features for elimination

 x_1

 x_2

 χ_3

•

•

•

 x_n

Recursive Feature Elimination

Input Features

 x_1

 x_2

 x_3

•

,

 x_n

Coefficients or weights

$$y = b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

Learning Algorithm

Feature Importance

$$Entropy = -1 * \sum_{i=1}^{n} p_i \log_2 p_i$$
 $Gini = 1 - \sum_{i=1}^{n} p_i^2$

Rank Ordered Features

 x_2

 χ_3

 χ_7

Principal Component Analysis

What is a Principal Component?

- Creates a new set of coordinates for the data
- Reveals the internal structure of the data that best explains the variance in data
- Reduces the dimensionality of the multivariate dataset

Predict the demand for bikes

How Capital Bikeshare Works

Pick up a bike at one of hundreds of stations around the metro DC area. See bike availability on the System Map or mobile app.

Take as many short rides as you want while your pass is active. Passes and memberships include unlimited classic bike trips under 30 minutes.

End a ride by returning your bike to any station. Push your bike firmly into an empty dock and wait for the green light to make sure it's locked.

Actual Temperature Vs Feels Like

Temp

Actual Temperature Vs Feels Like

Temp

Important concepts to know for PCA

Variance and covariance among variables

Change of Basis using matrix transformation

Step 1 – Center the Data

X1	X2
-1.475	-0.955
-0.975	0.045
-0.475	-0.955
-0.475	0.045
0.025	-0.655
0.025	0.545
0.525	-0.205
0.525	0.545
1.025	1.045
1.275	0.545

Step 1 – Center the Data

Step 2 – Create Variance-Covariance Matrix

Covariance Matrix

	Height X	Weight Y	<u> </u>	Y – Y	$(X-\overline{X})*(Y-\overline{Y})$
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

Variance – Covariance Matrix

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1)}$$

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x})^* (y - \overline{y})}{(N-1)}$$

X1 X2
X1 Variance(x) Covariance(x, y)
X2 Covariance (y, x) Variance (y)

	X1	X2	
X1	0.76	0.42	
X2	0.42	0.48	

X1	X2
-1.475	-0.955
-0.975	0.045
-0.475	-0.955
-0.475	0.045
0.025	-0.655
0.025	0.545
0.525	-0.205
0.525	0.545
1.025	1.045
1.275	0.545

Step 1 – Center the Data

Step 2 – Create Variance-Covariance Matrix

Step 3 – Project Vectors towards variance

Step 1 – Center the Data

Step 2 – Create Variance-Covariance Matrix

Step 3 – Project Vectors towards variance

Step 4 – Find Eigen Vectors and Eigen Values

Step 1 – Center the Data

Step 2 – Create Variance-Covariance Matrix

Step 3 – Project Vectors towards variance

Step 4 – Find Eigen Vectors and Eigen Values

