UNIVERSIDADE FEDERAL DE VIÇOSA DEPARTAMENTO DE ENGENHARIA ELÉTRICA ELT 312 – ELETRÔNICA DIGITAL I

	2ª Prova				
NOME:	MATRÍCULA:				
1º Questão: (10 pts) ρεταν β	3 RAS				
BARRAMENTO DE ENDEREÇOS	DECODIFICADOR A Y ₀				

O circuito apresentado na figura ao lado é um decodificador de endereços, onde o A_8 é o *bit* mais significativo do barramento de endereços. Para ativar o *bit* Y_3 do decodificador, o endereço que deverá ser escrito no barramento, na base 10 é

Dados do decodificador:

$$G_{2A} + G_{2B} = \begin{cases} 0, & habilita \\ 1, & Y_{i} = 1 \forall i \in [0, 7] \end{cases}$$

$$G_{1} = \begin{cases} 0, & Y_{i} = 1 \forall i \in [0, 7] \\ 1, & habilita \end{cases}$$

A, B, C →ativa Y_i=0, onde A é o bit menos significativo

2ª Questão: (5 pts)

3 -D 0000.0011

1111.1100

1111,1101

0000.1010

10000.0111

Realize as seguintes operações no sistema do complemento de 2. Use oito bits (incluindo o bit de sinal) para cada número.

- a) Some -3 com 10;
- b) Subtraia +3 de -7.

3ª Questão: (10 pts)

PETRUBRAS

Az	(A)	191	/Ao	L	B3	Bu	181	βο	
 P	0	0	0		0	0	Ō	Q	-
0 0 1 1		·						0 -t 1 -p 0 -i 1 -0	A>B

O circuito acima usa um comparador de igualdade e magnitude para números de 4 bits, como o 7485.

As lógicas das saídas A>B, A=B e A<B, em função de P e Q, são, respectivamente,

- (A) P, P @ Q e Q
- ADR = P. Q + P.Q
- A>B = P(6+6)
- (B) PQ, PQ eP
- A>B=P
- (C) PQ, PQ e PQ

(E) PQ. PQ e Q

$$A=B$$
 $P.O$
 $P.O$

Considerando que os *flip-flops* da figura acima comecem zerados, o número de estados que se repetem indefinida-

mente é	•		1)
(A) 3	ANTERIOR	PROXIMO	$\mathcal{V}_0 = \mathcal{Q}_0$
J	0, 0, 00	02 01 00	$D_1 = \overline{Q_2}$
(C) 5	0 0 0	0. 1 1/	· · · · · · · · · · · · · · · · · · ·
(D) 6 (E) 8	0 1.1	1 10	D2 = 60.01
	7 1 0	0 0 1.	
	001	0 1 0	(0)
	0 1 0	(011)	
			\mathfrak{I}
			7)
			(6)

O circuito acima usa um multiplexador de 4 entradas para 1 saída.

A lógica da saída Y, em função de P e Q, é