Multi-Path Fading Channel

Department of Computer System Engineering University Of Engineering and Technology Peshawar Pakistan.

Mobile Channel Parameters

- Time delay spread
 - Coherence Bandwidth | -> ISI
- Doppler Spread
- Coherence Time | -> Unstable channel
- Flat fading
- Frequency selective fading
- Fast fading
- Slow fading

Multi-path Propagation

- Multi-path smears or spreads out the signal
 - delay spread
- Causes inter-symbol interference

limits the maximum symbol rate

Delay Spread

Channel

Intersymbol Interference

Average Delay Spread

• Average delay spread $\overline{\tau}$

RMS Delay Spread (Discrete)

• RMS delay spread σ_{τ}

$$\sigma_{\tau} = \frac{\sum_{k} a_{k} |a_{k}|^{2} \tau^{\frac{k}{2}}}{\sum_{k} |a_{k}|^{2}} = \frac{\sum_{k} P(\tau_{k}) \tau_{k}^{2}}{\sum_{k} P(\tau_{k})}$$

Coherence Bandwidth

- Coherence bandwidth B_c is a range of frequencies over which the channel can be considered flat
 - passes all spectral components with approximately equal gain and liner phase
- Bandwidth where the correlation function $R_T(\omega)$ for signal envelopes is high
- Therefore two sinusoidal signals with frequencies that are farther apart than the coherence bandwidth will fade independently.

Coherence Bandwidth

• If $R_T(\omega) > 0.9$

$$B_C = \frac{1}{50\sigma_{\tau}}$$

• If $R_T(\omega) > 0.5$

$$B_C = \frac{1}{5\sigma_{\tau}}$$

• An exact relationship between coherence bandwidth & delay spread does not exist

Doppler Shift

• f_c broadening from f_c to $(f_c + f_m)$

Relativistic Doppler Frequency

The observed frequency is

$$f = f_c \cdot \sqrt{\frac{1 + \frac{v}{c}}{1 - \frac{v}{c}}}$$

$$f_d = f - f_c \approx f_c \cdot \frac{v}{c}$$

where the relative velocity \mathbf{v} is positive if the source is approaching and negative if receding.

f_c- carrier freq., c-speed of light, f_d-Doppler shift

Doppler Spread & Coherence Time

- Describes the time varying nature of the channel in a local area
- Doppler Spread B_D, is a measure of the spectral broadening caused by the time rate of change
- f_c broadening from $(f_c f_m)$ to $(f_c + f_m)$
- If the base-band signal bandwidth is much greater than B_D, the effects of Doppler spread are negligible at the receiver

Coherence Time

- Coherence Time is the time domain dual of Doppler spread
- Doppler spread and coherence time are inversely proportional
- $T_C = 1/f_m$
- Statistical measure of the time duration over which the channel impulse response is invariant

Coherence Time

• If the coherence time is defined as the time over which the correlation function is above 0.5, then

$$T_C \approx \frac{9}{16\pi f_m}$$

• Rule of thumb for modern digital communication defines TC as the geometric mean of the above two expressions for TC

$$T_C = \sqrt{\frac{9}{16\pi f_m^2}}$$

Inter-symbol Interference

- For no Inter-symbol Interference the transmission rate R for a digital transmission is limited by delay spread and is represented by: $R < 1/2\sigma_{\tau}$;
- If $R > 1/2\sigma_{\tau}$ Inter-symbol Interference (ISI) occurs
- Need for ISI removal measures (Equalizers)

Types of Small-Scale Fading

Small-Scale Fading

(Based on multipath time delay spread)

Flat Fading

- 1. BW of signal BW of channel
- 2. Delay spread < Symbol period

Frequency Selective Fading

- 1. BW of signal >BW of channel
- 2. Delay spread > Symbol period

Small-Scale Fading

(Based on Doppler spread)

Fast Fading

- 1. High Doppler spread
- 2. Coherence time < Symbol period
- 3. Channel variations faster than baseband signal variations

Slow Fading

- 1. Low Doppler spread
- 2. Coherence time > Symbol period
- 3. Channel variations slower than baseband signal variations

Small-Scale Fading Delay Spread

Small-Scale Fading Time Variations

Flat Fading 1

• If the mobile radio channel has a constant gain and linear phase over a bandwidth *greater* than the bandwidth of the transmitted signal - the received signal will undergo *flat fading*

• Please, observe that the fading is flat (or frequency selective) depending on the signal bandwidth relative to the channel coherence bandwidth.

Flat Fading 2

• BS
$$<<$$
 B_C & T_S $>>$ σ_{τ}

Frequency Selective Fading 1

- If the mobile radio channel as a constant gain and linear phase over a coherence bandwidth, *smaller* than the bandwidth of the transmitted signal the received signal will undergo *frequency selective fading*
- Again, the signal bandwidth is wider then the channel coherence bandwidth, causing one or more areas of attenuation of the signal within the signal bandwidth

Frequency Selective Fading 2

•
$$BS > B_C \& T_S < \sigma_{\tau}$$

Fast Fading

- The channel impulse response changes rapidly within the symbol duration coherence time < symbol period
- $T_S > T_c$ and $B_S < B_D$
- Channel specifies as a fast or slow fading channel does not specify whether the channel is flat fading or frequency selective fading

Slow Fading

- The channel impulse response changes at a rate much slower than the transmitted base-band signal.
- Doppler spread is much less than the bandwidth of the base-band signal
- $T_S \ll T_c$ and $B_S \gg B_D$
- Velocity of the MS and the base-band signaling determines whether a signal undergoes fast or slow fading

Summary

 Fast and slow fading deal with the relationship between the time rate of change in the channel and the transmitted signal, NOT with propagation path loss models

Typical Cellular Mobile Environment

Fading

- Fading: The interference between two or more versions of the transmitted signal which arrive at the receiver at slightly different times
- Multipaths: Above mentioned versions of the transmitted signal

Fading (Continued)

Delay Spread ←→ Coherence Bandwidth

Frequency separation at which two frequency transposed frequency transposed frequency transposed frequency transposed frequency transposed frequency transposed frequency freque

Doppler Spread ←→Coherence Time

Time sepparational achiely two time time components of Tx signal guadergo independent attenuations

Fading (Continued)

Bandwidth

Fading (Continued)

Fast and Slow Fading

If the channel response changes within a symbol interval, then the channel is regarded FAST FADING

Otherwise

the channel is regarded as SLOW FADING

Fast Fading

When?

The channel impulse response changes rapidly within the symbol period of the transmitted signal.

What?

The Doppler Spread causes frequency dispersion which leads to signal distortion.

Doppler Spread

The **Doppler** effect (in addition to the fading effect) renders the received pulse to be **time-varying**

The **State Transitions** are determined from the dynamics of the fading channel (Fading Correlation Function or The **Doppler Spectrum**)

f carrier frequency

c: speed of light

v: mobile speed

 θ : Angle of motion with incoming multipath

$$f_d = \frac{f v \cos \theta}{c}$$

f carrier frequency

c: speed of light

v: mobile speed

 θ : Angle of motion with incoming multipath

For the land mobile fading spectrum,

The Auto-Correlation Function

Doppler Fading Spectrum

- >h is the channel impulse response
- >h has a complex normal distribution with zero mean
- ►/h/ is Raleigh distributed
- \triangleright Phase φ is uniformly distributed between 0 and 2π
- $> |h|^2$ is *Chi-square* distributed

Fading in Brief

Large Doppler Spread

I
Time-Selective Fading

Large Delay Spread

Frequency-Selective Fading

Large Angle Spread

[]
Space-Selective Fading

Rayleigh Fading 1

- The received envelope (amplitude) of a flat fading signalis described as a Rayleigh distribution
 - Square root sum r, of two quadrature Gaussian noise signals x_I and y_Q has a Rayleigh distribution (Papoulis65)

$$r = \sqrt{x_I^2 + y_Q^2} \qquad p(r) = \left\{ \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right); (0 \le r \le \infty) \right\}$$

Rayleigh Fading 2

Rayleigh Fading PDF

Figure 1.2: Rayleigh PDF.

Rayleigh Fading 3

$$p(r) = \left\{ \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) \right\} \qquad (0 \le r \le \infty)$$

- σ rms value of the received voltage signal before envelope detection
- σ^2 time average power before envelope detection
- The probability that the received signal envelope does not exceed R is given by:

$$P(R) = \Pr(r \le R) = \int_{0}^{R} p(r)dr = 1 - \exp\left(-\frac{R^{2}}{2\sigma^{2}}\right)$$

Rayleigh Fading 4

• The median value of r is found by solving

$$\frac{1}{2} = \int_{0}^{r_{median}} p(r)dr$$

$$r_{median} = 1.77\sigma$$

Mean and median differ by only 0.55dB

Ricean Fading 1

- When there is a dominant stationary signal component
- At the output of an envelope detector adding a DC component of the random multi-path

$$p(r) = \frac{r}{o^{e}} e^{-\frac{(r^{2} + A^{2})}{2\sigma^{2}}} I_{0} \left(\frac{Ar}{\sigma^{2}}\right); \qquad for \quad (A \ge 0, r \ge 0)$$

Ricean Fading 2

- A peak amplitude of the dominant signal
- I₀() modified Bessel function of the first kind and zero order
- Described in terms of a Ricean factor, K

$$K(dB) = 10\log \frac{A^2}{2\sigma}(dB)$$

Ricean PDF

Received signal envelope voltage r (V)

Clarks Model for Flat Fading 1

• Statistical Characteristics of the EM fields of the received signal at the MS are obtained from scattering

Assumes

- Fixed transmitter & vertically polarized antenna
- Fields incident on the mobile antenna comprises of N waves in azimuth plane with arbitrary carrier phases and azimuth angels of arrival
- equal average signal amplitude

Clarks Model for Flat Fading 2

• The model shows that the random received signal envelope *r* has a Rayleigh distribution and is given by:

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2}\right); \qquad 0 < r \le \infty$$

Effect of Doppler Spread

- It can be shown that if the angle of the received signals, α_i is uniformly distributed that the Doppler frequency has a random cosine distribution.
- Then the Doppler power spectral density S(f) can be computed by equating the incident received power in an angle $d\alpha$ with Doppler power S(f)df
 - df is found by differentiating the Doppler term $f_m cos \alpha$ wrt α .

x - random variable

$$\int_{\mathbf{X}}^{b} f_{\mathbf{X}}(x) dx = 1$$

y = g(x); function of x

y -random variable

$$\int_{g(a)}^{g(b)} f_{\mathbf{Y}}(y) dy = 1$$

$$\int_{g(a)}^{g(b)} f_{\mathbf{Y}}(y) dy = 1$$

x - random variable

y = g(x); function of x

y - random variable

y-random
$$y \Big|_{g(a)}^{g(b)} \int_{g(a)} f_{Y}(y) dy = 1$$
 variable y=g(x); function of x
$$y = g(x); \text{ substitution } \int_{g(a)} f_{Y}(y) dy = 1$$
 in
$$\int_{g(a)} f_{Y}(y) dy = f_{Y}(y) dy = g'(x) dx; \qquad y \Big|_{g(a)}^{g(b)} \Rightarrow x \Big|_{a}^{b}$$

$$\int_{a}^{b} f_{Y}(g(x))g'(x) dx = \int_{a}^{b} f_{X}(x) dx = 1$$

$$\int_{a}^{g(x)} f_{Y}(g(x))g'(x) dx = \int_{a}^{x} f_{X}(x) dx$$

$$\int_{a}^{g(x)} f_{\mathbf{Y}}(g(x))g'(x) dx = \int_{a}^{x} f_{\mathbf{X}}(x)dx$$

$$f_{\mathbf{Y}}(g(x))g'(x) = f_{\mathbf{X}}(x)$$

$$f_{\mathbf{Y}}(y)g'(x) = f_{\mathbf{X}}(x)$$

$$f_{\mathbf{Y}}(y) = \frac{f_{\mathbf{X}}(x)}{|g'(x)|}$$

Doppler Shift

Effect of Doppler Spread

$$f = f_m \cos \alpha$$
 α - uniformly distributed (0,2 π)

$$S_{\mathbf{f}}(f) = \frac{S_{\alpha}(\alpha)}{\left| \left(f \cos \alpha \right) \right|}$$
$$S_{\mathbf{f}}(f) = \frac{1}{2 \pi f_{m} \sin \alpha}$$

$$\sin \alpha \neq 1 - \cos^2 \alpha$$

$$\cos\alpha = \frac{f}{f_m}$$

$$S_{\mathbf{f}}(f) = \frac{1}{2\pi f_m \sqrt{1 - \frac{f^2}{f_m^2}}}$$

Doppler Spectrum

• the incident received power at the MS depends on the power gain of the antenna and the polarization used

$$S(f) = \frac{A}{\sqrt{1 - (f/f_m)^2}}$$

Two-ray Rayleigh Fading Model

- Clarke's model for flat fading
- It is necessary to model multi-path delay spread as well
- Commonly used model is the two-ray model

Two-ray Rayleigh Fading Model

Two-ray Rayleigh Fading Model

The impulse response of the model

$$h_b = \alpha_1 \exp(j\phi_1)\delta(t) + \alpha_1 \exp(j\phi_2)\delta(t-\tau)$$

- $-\alpha_{1}$ and α_{2} are independent and Rayleigh distributed
- ϕ_1 and ϕ_1 are independent and uniformly distributed over $[0,2\pi]$
- $-\tau$ time delay between the two rays
- By varying τ it is possible to create a wide range of frequency selective fading effects

Beyond Current Engineering Practice

Antenna Arrays are Electromagnetic Eyes

Channel

Multi-user System Model

$$y = Sx + n$$

$$\mathbf{E}\{\mathbf{n}\mathbf{n}^{\mathrm{H}}\} = \sigma^{2}\mathbf{I}$$

- y received signal(N X 1)dimensional vector
- •S signature matrix (N X K) dimensional matrix
- •x transmitted symbols (K X 1) dimensional vector
- •n Gaussian noise (N X 1) dimensional vector
- •N Number of antenna elements
- •K Number of Users

Multi-user System Information Capacity

$$y = Sx + n$$

$$C = \log_2 \left| I + \frac{S V_x S^H}{\sigma_n^2} \right|$$

$$V_{x} = E\{xx^{H}\} = PI - Signalsymbol power$$

$$\sigma_{\rm n}^2$$
 – Noise **n** (variance) power

$$C = log 1 + \sigma_n^2$$
Multi-Path Fading
Channel

Wireless Communications Week 11-12;
Fall - 2015

Multiuser Spatial Filter

$$y = Sx + n$$

$$\boldsymbol{\beta} = (\mathbf{S}^H \mathbf{S})^{-1} \mathbf{S}^H$$

Moore-Penrose Pseudo Inverse Optimum Spatial Filter

$$\hat{\mathbf{x}} = (\mathbf{S}^H \, \mathbf{S})^{-1} \mathbf{S}^H \cdot \mathbf{y}$$

$$= (\mathbf{S}^H \, \mathbf{S})^{-1} \mathbf{S}^H \cdot \mathbf{S} \, \mathbf{x} + (\mathbf{S}^H \, \mathbf{S})^{-1} \mathbf{S}^H \mathbf{n}$$

$$= \mathbf{x} + 0_{MAI} + \mathbf{n}$$

Array of N Elements

Capacity of 2G/3G vs Achievable Capacity

C= 0.1
$$\log \left(1 + \frac{1}{0.1}\right) = 0.3bits / Hz/s$$
 2G/3G

$$C = 30 \log_2 \left(\frac{1}{0.001} \right) = 300 bits / Hz/s$$
 3G+

300 / 0.3= 1000Capacity improvement factor