INFO-H420 Management of Data Science and Business Workflows

Part II Fairness

Dimitris SACHARIDIS

2023-2024

How do people feel about interacting with Al systems?

survey of 5,000 consumers by Pegasystems about people interacting with Artificial Intelligence (AI) systems

- 34% say they interact with AI systems
- machines not trustworthy
 - only 9% very comfortable interacting
- machines can be biased
 - 53% say it's possible for systems to show bias in their decisions
- machines cannot be moral
 - 56% don't believe it is possible to develop systems that behaves morally

How comfortable are you/would you be with a business using Artificial Intelligence to interact with you?

Responsible Data Science

 Responsible data science is the practice of using data and data-driven techniques in a way that is ethical, transparent, and respectful of the rights and interests of individuals and society

- Key concepts:
 - Data privacy and security, to protect sensitive data of individuals
 - Transparency about data sources, methods, and limitations
 - Exhibit desirable **ethical** principles
 - Put human in control, allow them to understand and control

Responsible AI/ML/Data Science

- Algorithmic Decisions (e.g., from ML/Al models) are ubiquitous, permeate many aspects of society
- more and more questions of responsible use arise

<u>Fairness</u> Accountability Transparency Ethics

- dedicated conferences
 - ACM Conference on Fairness, Accountability, and Transparency (<u>FAccT</u>)
 - AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (AIES)
- topics appear in almost all CS venues
- courses: in Berkeley, Cornell, Princeton
- EU high-level expert group on AI: <u>Ethics Guidelines for Trustworthy AI</u>
- EU upcoming regulation: Al Act

Irresponsible Al

Welcome to the Al Incident Database

Ethical Principles

- review of 84 AI ethics guidelines
- trust is the "end goal"

Ethical principle	Number of	Included codes
Ethicai principie	Number of	included codes
	documents	
Transparency	73/84	Transparency, explainability, explicability, understandability,
		interpretability, communication, disclosure, showing
Justice & fairness	68/84	Justice, fairness, consistency, inclusion, equality, equity, (non-)bias,
		(non-)discrimination, diversity, plurality, accessibility, reversibility,
		remedy, redress, challenge, access and distribution
Non-maleficence	60/84	Non-maleficence, security, safety, harm, protection, precaution,
		prevention, integrity (bodily or mental), non-subversion
Responsibility	60/84	Responsibility, accountability, liability, acting with integrity
Privacy	47/84	Privacy, personal or private information
Beneficence	41/84	Benefits, beneficence, well-being, peace, social good, common good
Freedom &	34/84	Freedom, autonomy, consent, choice, self-determination, liberty,
autonomy		empowerment
Trust	28/84	Trust
Sustainability	14/84	Sustainability, environment (nature), energy, resources (energy)
Dignity	13/84	Dignity
Solidarity	6/84	Solidarity, social security, cohesion

[2019 Nature Machine Intelligence A. Jobin et al.] Artificial Intelligence: the global landscape of ethics guidelines

Fairness

Bias in Data-Driven Decisions

- COMPAS risk assessment software by Northpointe
- estimates the likelihood of a criminal to reoffend
 - based on a detailed question-based profiling of the people
- used by judges in the US to guide their decisions
 - about sentences, bail amounts
- ProPublica, a news organization, analyzed the predictions of COMPAS
- looked at more that 10,000 offenders
 - compared the predictions of COMPAS
 - with what actually happened (did they reoffend?)

https://incidentdatabase.ai/cite/40/

Bias in Data-Driven Decisions

results of the study:

- correctly predicts reoffending for black and white at the same rate
 - same recall (true positive rate, sensitivity)

but mistakes paint a different picture:

- blacks are almost twice as likely as whites to be labeled a higher risk but not actually reoffend
 - more false positives for blacks
- black are much less likely than whites to be labeled lower risk, but actually reoffend
 - less false negatives for blacks

Algorithmic Decisions

main result of the study:

discrimination against blacks

- but there is some controversy to the study results
 - https://www.propublica.org/article/machine-bias-riskassessments-in-criminal-sentencing
 - https://www.documentcloud.org/documents/2998391-ProPublica-Commentary-Final-070616.html
 - https://www.propublica.org/article/technical-response-tonorthpointe
 - http://www.crj.org/assets/2017/07/9_Machine_bias_rejoinder.pdf

Algorithmic Decisions

What are the issues here?

- fairness is the system actually fair to racial groups?
- transparency we don't know what the algorithm does
- accountability who is to hold responsible?

What is Fairness?

- Dictionary: "the state of being free from bias or injustice"
- Political Science: "distributive justice discusses fair allocation of resources among diverse members of a community"
 - "A Theory of Justice" by J. Rawls (American philosopher)
 - "justice as fairness"; "social cooperation should be fair to all citizens regarded as free and as equals"
 - but what is a fair allocation?
 - equality of outcome: each person get the same amount
 - equality of opportunity: equal grounds for competing for resources
 - social welfare: what benefits the society the most

What is Fairness?

- Legal Systems: "fairness as non-discrimination"
 - disparate treatment: intentional discrimination on protected groups (defined on race, color, sex, etc.); not "color-blind"
 - e.g., only African American applicants are required to take a pre-employment assessment test
 - disparate impact: a procedure that has disproportionate impact on protected groups
 - e.g., all applicants are tested but only African Americans are eliminated based on the results of the assessment.
 - affirmative action: promote non-discrimination and support historically disadvantaged groups; quota systems
 - e.g., to address gender imbalance in STEM

Algorithmic Fairness

- Data-Driven Systems often make decisions on behalf of humans
 - high-stake decisions: likelihood to reoffend; grant a loan application
 - innocuous decisions: which article to read; what to buy in a store
 - or not so innocuous? fake news, filter bubbles

Algorithmic Fairness: machine made decisions should *not discriminate* against individuals

Group vs Individual Fairness

Group Fairness

- a specific protected group defined by a sensitive attribute (e.g., race, gender) should be treated/impacted similarly to the other (non-protected) groups
 - typically two groups protected (disadvantaged) and nonprotected (advantaged)

Individual Fairness

 a specific individual should be treated/impacted similarly to a similar other individual

Classification based on Tasks

Fairness depends on the type of task and its outcomes

- Classification
- Ranking
- Recommendation

Fairness in Classification

Classification

- assume binary classification (positive or negative classes)
 - e.g., accept a loan
- assume group fairness: protected vs. non-protected group
- assume that some score predicts the likelihood of being in the positive class
 - e.g., a credit score
- a score threshold determines the classification outcome
 - e.g., scores above threshold mean positive

How should we set the threshold?

http://research.google.com/bigpicture/attacking-discrimination-in-ml/

How about now?

Credit Score

higher scores represent higher likelihood of payback 0 10 20 30 40 50 60 70 80 90 100

each circle represents a person, with dark circles showing people who pay back their loans and light circles showing people who default

How should we set the threshold?

accuracy

Correct 84%

loans granted to paying applicants and denied to defaulters

Incorrect 16%

loans denied to paying applicants and granted to defaulters

recall

True Positive Rate88% percentage of paying applications getting loans

Positive Rate54%

percentage of all applications getting loans

Two groups: Blue and Orange

How should we set the thresholds for the two groups?

Equal Treatment (Color-Blindness)

We don't look at color, set the same threshold.

Equal Treatment (Color-Blindness)

We don't look at color, set the **same threshold**.

Equal Treatment (Color-Blindness)

We don't look at color, set the same threshold.

Group (Demographic/Statistical) Parity

Set **different thresholds** so that groups have equal chance of getting a loan (equal impact)

Group (Demographic/Statistical) Parity

Set **different thresholds** so that groups have equal chance of getting a loan (equal impact)

Group (Demographic/Statistical) Parity

Set **different thresholds** so that groups have equal chance of getting a loan (equal impact)

Equal Opportunity

Aim to be fair for those that would pay back the loan

Equal Opportunity

Aim to be fair for those that would pay back the loan

Fairness Notions

- equal treatment (color-blindness, fairness by unawareness):
 same threshold
- group parity (demographic or statistical parity): same positive rate
- equal opportunity: same true positive rate (recall)
- you cannot have it all!
- there are various impossibility theorems related to fairness in classification

Fairness in Ranking

Ranking

- algorithm computes some score that encodes/predicts goodness
 - e.g., **merit**, relevance
- we want to rank objects (usually people) based on that score
 - e.g., candidates for a job position
- similarity with classification task: algorithm computes scores
- difference with classification task: there is no threshold; just the length (cutoff) of the ranked list

so to achieve fairness we can only change the scoring function

Group Parity

- how does group parity translate in ranking?
- remember for classification: group parity = achieve equal positive rate in each group
 - positive (predicted as relevant) = you appear in the ranked list
- so if we look at the top-N objects:
- group parity = half from protected, half from non-protected

example: rank 10 people from two groups

• is this fair? how can we fix it?

Group Parity

 stronger requirement: for every prefix of the ranked list, there should be group parity

- generalize a bit: assume we have a target ratio/mix of groups
 - e.g., 40% blue, 60% orange
- how can you achieve this?

Exposure in rankings

- a ranked list exposes items to the user
- the amount of exposure depends on the ranking position
 - top positions give higher exposure (aka position bias)
- the exposure of an item does not depend on relevance, utility, user satisfaction, etc.; just on ranking position

Fairness of Exposure

- a ranking exposes objects at varying degrees
 - position bias: higher ranked items are exposed more

- fairness aspect: exposure should be proportional to merit
 - if an item is x times better than another, it should receive x times more exposure

Fairness of Exposure

- fairness = exposure ~ merit (relevance)
- can we achieve this? almost never
 - exposure is fixed
 - merit depends on ranking scores

Fairness of Exposure

- what can we do then?
 - be fair in the long-term: amortized fairness
 - or be fair **probabilistically**: probabilistic rankings
- formulate an optimization problem
 - maximize relevance subject to equal exposure, or
 - minimize exposure discrepancy subject to relevance quality drop

Fairness in Recommendations

What are recommender systems?

We Have Recommendations for You

Sign in to see personalized recommendations

Customers who bought this item also bought

Ultimate Ears Power Up Charging Dock for BOOM 3, MEGABOOM 3, BLAST and MEGABLAST ★★★☆☆ 15

\$39.99

LTGEM Case Compatible for Ultimate Ears UE Megaboom Wireless Bluetooth Speaker. Fits... ★★★★★ 203 \$12.99

What other items do customers buy after viewing this item?

Ultimate Ears MEGABOOM Charcoal Wireless Mobile Bluetooth Speaker Waterproof and Shockproof (2015)

★★★☆☆1,086 \$102.99\prime

Ultimate Ears Power Up Charging Dock for BOOM 3, MEGABOOM 3, BLAST and MEGABLAST

\$39.99~prime

Stakeholders in recommender systems

recommenders = match users with items

a multi-sided market with possibly conflicting interests and various **fairness concerns**

Fairness in recommendations

fairness is the fair distribution of a resource

to make it less abstract and cyclic, answer three questions:

- fair for whom? (which are the protected groups)
 - consumers (end users, buyers)
 - producers (item providers, creators, sellers)
- distribution of what resource?
 - accuracy (effectiveness, utility, satisfaction, quality of service, etc.)
 - e.g., items are good matches for users; users are good matches to items
 - exposure (attention)
 - e.g., what users see; to whom items are recommended
- when is the distribution fair?
 - specify the optimal state of fairness
 - quantify how far the optimal state is = define some (un-)fairness measure

Taxonomy of fairness definitions in recommenders

some representative works

Accuracy in recommender systems

view 1: the recommender **matches** users with items

user-item pair actual rating predicted rating

prediction accuracy: how good is the matching (regression task)

 metrics: absolute error (MAE), root mean square error (RMSE)

view 2: the recommender ranks items for a user

reciprocal rank (RR) = 1/2

ranking accuracy: how good is the ranking (ranking task)

 metrics: reciprocal rank (RR), discounted cumulative gain (DCG)

Fairness of accuracy for consumers

"Males and females should experience the same quality of service."

- 1. **group** users **by gender**
- 2. measure **total accuracy** per gender
- 3. **assess** if distribution is **fair**

Fairness of accuracy for producers

"When recommending products, **all brands** should have similar accuracy."

- 1. **group** items **by brand**
- 2. measure **total accuracy** per brand
- 3. **assess** if distribution is **fair**

Fairness of exposure for consumers

"When recommending jobs, **males** and **females** should see the same number of executive openings."

exposure

- 1. group users by gender
- 2. measure **total exposure** per gender
- 3. assess if distribution is fair

Fairness of exposure for producers

"When recommending products, **all brands** should be fairly exposed."

- 1. group items by producer
- 2. measure total exposure per producer
- 3. **assess** if the distribution is **fair**

How to Achieve Fairness

How to Achieve Fairness

Post-Processing for Group Parity in Ranking

Step 1. Determine **minimum representation** from the **protected** group in each **prefix**

• Suppose we want at least [40%N] orange at every top-N

Step 2. Create two sublists of objects (blue and orange), sorted on score

Step 3. Build the ranked list incrementally

- at each rank choose the **best** from either group (why best?),
- **unless** you *must* choose from the protected (to ensure minimum representation)

Post-Processing for Fair Exposure in Ranking

change the position of items to improve fairness trade-off between **fairness** and **accuracy**

reranking goal: equalize exposure

Post-Processing for Ranking

the original list optimizes some internal measure of utility

• e.g., relevance, click-through rate

but to increase fairness, the list has to be reranked

at the expense of utility

reranking must trade-off two objectives: utility and fairness

possibilities:

maxU
 maxF
 maxF
 maximize fairness given a constraint on utility
 u+F
 maximize a combination of utility and fairness

Other Fairness Challenges

Continuous Protected Attributes

- All definitions compare a protected group (e.g., blacks, women) against the non-protected
- What happens in the case of continuous protected attributes, e.g., age, income, location
- Groups are not defined beforehand, and defining them can lead to gerrymandering
 - purposefully setting the group boundaries to hide discrimination

Continuous Protected Attributes

- All definitions compare a protected group (e.g., blacks, women) against the non-protected
- What happens in the case of continuous protected attributes, e.g., age, income, location
- Groups are not defined beforehand, and defining them can lead to gerrymandering
 - purposefully setting the group boundaries to hide discrimination

Spatially Unfair Distribution of Outcomes

Spatially Fair Distribution of Outcomes

Continuous Protected Attributes

- All definitions compare a protected group (e.g., blacks, women) against the non-protected
- What happens in the case of continuous protected attributes, e.g., age, income, location
- Groups are not defined beforehand, and defining them can lead to gerrymandering
 - purposefully setting the group boundaries to hide discrimination

Spatially Fair Distribution of Outcomes

X	0	X	0	X	0	X	0	X O X	0	X	0
0	X	0	X	0	X	0	X	0	X	0	X
X	0	X	0	X	0	X	0	X	0	X	0
0	X	0	X	0	X	0	X	0	X	0	X

Spatially Unfair Distribution of Outcomes

X	X	0	0	X	X	0	0	X	X	0	0
X	0	X	0	X	0	X	0	X	0	X	0
X	X	0	0	X	X	0	0	X	X	0	0
X	X	0	0	X	X	0	0	X	X	0	0

1 x 1 2 x 2 1 x 4

Location Fairness

- We want outcomes to be independent of location
- Consider Loan Application Accepts and Rejects per location
- Is this map fair?

Discover Unfairness via Explanations

- Previous definitions require the groups (protected vs. non-protected) to be fixed and known in advance
- Can you discover groups (or sub-groups) where discrimination occurs?

Counterfactual Explanations

- A person x does not receive a loan
 - x = {Race=Caucasian, Gender=Female, Income=Low}
- What are the minimal changes to receive the loan?
 - {Gender=Female} → {Gender=Male}
- This shows discrimination based on gender!