

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-312612

(43)公開日 平成6年(1994)11月8日

(51)Int.Cl.⁵
B 60 G 17/01

識別記号
府内整理番号
8710-3D

F I

技術表示箇所

(21)出願番号 特願平5-128086
(22)出願日 平成5年(1993)4月30日

審査請求 未請求 請求項の数2 FD (全4頁)

(71)出願人 000000170
いすゞ自動車株式会社
東京都品川区南大井6丁目26番1号
(72)発明者 豊福 勝也
神奈川県藤沢市土棚8番地 株式会社い
すゞ中央研究所内
(74)代理人 弁理士 山本 俊夫

(54)【発明の名称】 車両の横転警報装置

(57)【要約】

【目的】 車両横転の危険な運転状態が所定時間が持続した時に、警報器が作動し、運転者に安全運転を促すようになる。

【構成】 車両の重心位置に配設した横加速度センサ9と、各車輪の懸架機構におけるばね台座17に配設した荷重センサ1a～4aと、横加速度センサ9により検出した横加速度g_xが所定値以上で、荷重センサ1a～4aにより検出した少くとも1つの車輪の荷重P_iが所定値以下の状態を求める横転危険度算出手段13と、横転危険な状態が所定時間持続した時警報器6を駆動する警報器駆動手段14とを備える。

【特許請求の範囲】

【請求項1】車両の重心位置に配設した横加速度センサと、各車輪の懸架機構におけるばね台座に配設した荷重センサと、横加速度センサにより検出した横加速度が所定値以上で、荷重センサにより検出した少くとも1つの車輪の荷重が所定値以下の状態を求める横転危険度算出手段と、危険な運転状態が所定時間持続した時警報器を駆動する警報器駆動手段とからなる車両の横転警報装置。

【請求項2】車両の重心位置に配設した横加速度センサと、各車輪の懸架機構に配設した車高センサと、横加速度センサにより検出した横加速度が所定値以上で、車高センサにより検出した少くとも1つの車輪の車高が所定値以上の状態を求める横転危険度算出手段と、危険な運転状態が所定時間持続した時警報器を駆動する警報器駆動手段とからなる車両の横転警報装置。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は急旋回などの危険な運転を未然に防止する車両の横転警報装置に関するものである。

【0002】

【従来の技術】車両の急旋回時の横転を防止する装置には、車両の旋回時の車輪の上下変位を検出する車高センサ、車速センサ、舵角センサなどの各信号に基づき、内輪の浮上りを判別し、ブレーキのスリップ制御を中止し、機関の出力を減じて横転を回避するもの（特開平1-168555号公報）や、車両の旋回時の重心スリップ角が過正範囲にない時は、油圧式懸架機構により車高を低くし、横転を回避するもの（特開平3-125617号公報）が知られているが、前者はトラクション制御装置とアンチキツド制御装置を装備していること、後者は高剛性懸架能を有する油圧式懸架機構を装備していることが前提であり、何れも非常に高価なものになる。また、両者とも車両が危険な条件を満す、運転者の意思に従ない車両の横転を自動的に防止するように働き、運転者の意思が介入する余地はない。

【0003】

【発明が解決しようとする課題】本発明の目的は上述の問題に鑑み、車両横転の危険な運転状態が所定時間持続した時に、警報器が作動し、運転者に安全運転を促す、安価で実用的な車両の横転警報装置を提供することにある。

【0004】

【課題を解決するための手段】上記目的を達成するためには、本発明の構成は車両の重心位置に配設した横加速度センサと、各車輪の懸架機構におけるばね台座に配設した荷重センサと、横加速度センサにより検出した横加速度が所定値以上で、荷重センサにより検出した少くとも1つの車輪の荷重が所定値以下の状態を求める横転危険度算出手段と、危険な運転状態が所定時間持続した時警報器を駆動する警報器駆動手段とからなる車両の横転警報装置。

度算出手段と、危険な運転状態が所定時間持続した時警報器を駆動する警報器駆動手段とからなるものである。

【0005】

【作用】車両の走行中に横加速度センサが検出した横加速度の絶対値が所定値以上であり、各車輪の懸架機構のばね台座に配設した荷重センサが検出した荷重が所定値以下の状態を車両機械の危険度が高いと判断し、危険な運転状態が所定時間持続した時に、計器盤に配設した警報器を鳴らすか点滅させる。

【0006】

【実施例】図1は本発明に係る車両の横転警報装置の概略構成を示す平面図である。車両はばね重心位置に横加速度センサ9を配設され、左右の前輪1、2と左右の後輪3、4を懸架する各懸架機構に、各車輪1～4の荷重を検出する荷重センサ1a、2a、3a、4aを配設され、ハンドル8の対向部の計器盤7の近くに、警報器6を配設される。好ましくは、速度センサ5に車速センサ5を接続される。各荷重センサ1a～4aは挿ねば荷重を抵抗変化として検出する公知のものを用いる。

【0007】図2は後輪の荷重センサ3aを代表して示すように、アクスル20を懸架するばね19を、車枠16のばねないし台座17とアクスル20のばね座18の間に支持し、荷重センサ3aを車輪16と台座17との間に配設する。

【0008】図3に示すように、本発明では電子制御装置1は横転危険度算出手段13と警報器駆動手段14を備えられており、始動キーイッチ12の信号と各センサ9、1a～4aの検出信号に基づき、車両の横加速度gTが所定値g0以上で、各車輪の荷重Rjが所定値Rj0以下との条件から、車両横転の危険度を求め、危険な運転状態が所定時間持続した時に、警報器駆動回路へ出力信号を加え、警報器6を駆動するものである。

【0009】図4は上述の制御を例えばマイクロコンピュータからなる電子制御装置1において行う制御プログラムの流れ図である。p11～p18は制御プログラムの各ステップを表す。本制御プログラムは所定時間ごとに繰り返し実行する。本制御プログラムはp11で開始し、p12で演算部を初期化し、p13で機械の始動キーイッチ12がONかOFFかを判別する。始動キーイッチ12がOFFの場合はp18へ進み、始動キーイッチ12がONの場合は、p14で左方向または右方向の横加速度gTが所定値g0よりも大きいか否かを判別する。

【0010】横加速度gTが所定値g0よりも小さい場合はp18へ進み、横加速度gTが所定値g0よりも大きい場合は、p15で少くとも1つの車輪の荷重Rjが所定値Rj0よりも小さいか否かを判別する。

【0011】車輪の荷重Rjが所定値Rj0よりも大きい場合は、p18へ進み、車輪の荷重Rjが所定値Rj0よりも小さい場合は、その車輪が浮上り状態にあるものとして、危険な運転状態の持続時間t1を計時し、p16で危険な運転状態

の持続時間 t_1 が所定値 t_0 よりも大きいか否かを判別する。持続時間 t_1 が所定値 t_0 よりも小さい場合は p_{18} へ進み、持続時間 t_1 が所定値 t_0 よりも大きい場合は p_{17} で警報器 6 を駆動し、 p_{18} へ終了する。

【0012】なお、各所定値 g_0 、 P_0 、 t_0 は車両が横転に至る前の値に予め設定される。上述の実施例において、始動キースイッチ 12 の値が否かにより機械が運転中か否かを判別する代りに、車速センサ 5 により車両が走行中か否かを判別してしまった。荷重センサ 1 a～ 4 aにより各車輪の荷重 P_1 を検出する代りに、各懸架機構に車高センサ 2 を配設し、懸架機構の車高変位（ストローク）が異常に大きくなつた時に車輪が浮上しているものとしても、同様の作用効果が得られる。

【0013】本発明では始動キースイッチ 12 または車速センサ 5 を使用しているが、横転傾斜した路面に駐車しても警報器 6 が誤動作することはない。また、車両が路上の大きな搖みを通過する時、一時的に車輪の荷重が小さくなるか、車高変位が大きくなつても、持続時間 t_1 が短いので、警報器 6 が誤動作することはない。要するに、車両が横転するような無駄な横傾斜路を走行するとか、高速で急回りするとか、不整地で搖みを乗せ越えるような無駄な運動時に警報器 6 が作動する。

【0014】

【発明の効果】本発明は上述のように、車両の重心位置に配設した横加速度センサと、各車輪の懸架機構における

ばね台座に配設した荷重センサと、横加速度センサにより検出した横加速度が所定値以上で、荷重センサにより検出した少なくとも1つの車輪の荷重が所定値以下の状態を求める横転危険度算出手段と、危険な運転状態が所定時間持続した時警報器を駆動する警報器駆動手段とかなるものであり、各車輪の懸架機構に配設した荷重センサまたは車高センサの信号に基づき、車両懸架の危険度が高い場合に警報器を駆動するものであるから、構成が簡単のため安価であり、トランジション制御装置や油圧式懸架機構を備えていない普通の車両にも採用できるのが経済的であり、安全運転に役立つ。

【四面の簡略な説明】

【図1】本発明に係る車両の横転警報装置の正面断面図である。

【図2】同横転警報装置における荷重センサの配置を示す側面図である。

【図3】同横転警報装置のプロツク図である。

【図4】同横転警報装置の前例プログラムの流れ図である。

20 【符号の説明】

1～4：車輪 1a～4a：荷重センサ 5：車速センサ 6：警報器 9：横加速度センサ 10：電子制御装置 12：始動キースイッチ 13：横転危険度算出手段 14：警報器駆動手段 17：台座

【図1】

【図2】

【図3】

【図4】

