

NCERT solutions for class 9 Maths Triangles Ex 7.2

Q1. In an isosceles triangle ABC, with AB = AC, the bisectors of \angle B and \angle C intersect each other at O. Join A to O. Show that:

- (i) OB = OC
- (ii) AO bisects ∠A.

Ans. (i) ABC is an isosceles triangle in which AB = AC.

 $\therefore \angle C = \angle B$ [Angles opposite to equal sides]

$$\Rightarrow \angle OCA + \angle OCB = \angle OBA + \angle OBC$$

∵ OB bisects ∠ B and OC bisects ∠ C

$$\therefore$$
 \angle OBA = \angle OBC and \angle OCA = \angle OCB

$$\Rightarrow \angle OCB + \angle OCB = \angle OBC + \angle OBC$$

$$\Rightarrow 2 \angle OCB = 2 \angle OBC$$

$$\Rightarrow \angle OCB = \angle OBC$$

Now in \triangle OBC,

$$\angle$$
 OCB = \angle OBC [Prove above]

∴ OB = OC [Sides opposite to equal sides]

(ii) In \triangle AOB and \triangle AOC,

$$\angle$$
 OBA = \angle OCA [Given]

And
$$\angle B = \angle C$$

$$\Rightarrow \frac{1}{2} \angle \mathbf{B} = \frac{1}{2} \angle \mathbf{C}$$

$$\Rightarrow \angle OBA = \angle OCA$$

$$\Rightarrow$$
 OB = OC [Prove above]

$$\triangle \triangle AOB \cong \triangle AOC$$
[By SAS congruency]

$$\Rightarrow \angle OAB = \angle OAC [By C.P.C.T.]$$

Hence AO bisects $\angle A$.

Q2. In \triangle ABC, AD is the perpendicular bisector of BC (See figure). Show that \triangle ABC is an isosceles triangle in which AB = AC.

Ans. In \triangle AOB and \triangle AOC,

BD = CD [AD bisects BC]

$$\angle ADB = \angle ADC = 90^{\circ} [AD \perp BC]$$

AD = AD [Common]

$$\triangle ABD \cong \triangle ACD$$
 [By SAS congruency]

$$\Rightarrow$$
 AB = AC [By C.P.C.T.]

Therefore, ABC is an isosceles triangle.

Q3. ABC is an isosceles triangle in which altitudes BE and CF are drawn to sides AC and AB respectively (See figure). Show that these altitudes are equal.

Ans. In \triangle ABE and \triangle ACF,

 $\angle A = \angle A$ [Common]

$$\angle AEB = \angle AFC = 90^{\circ}$$
 [Given]

AB = AC [Given]

 $\triangle ABE \cong \triangle ACF$ [By ASA congruency]

$$\Rightarrow$$
 BE = CF [By C.P.C.T.]

 \Rightarrow Altitudes are equal.

Q4. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (See figure). Show that:

- (i) $\triangle ABE \cong \triangle ACF$
- (ii) AB = AC or $\triangle ABC$ is an isosceles triangle.

Ans. (i) In \triangle ABE and \triangle ACF,

 $\angle A = \angle A$ [Common]

 $\angle AEB = \angle AFC = 90^{\circ}$ [Given]

BE = CF[Given]

 $\triangle ABE \cong \triangle ACF$ [By ASA congruency]

- (ii) Since $\triangle ABE \cong \triangle ACF$
- \Rightarrow BE = CF [By C.P.C.T.]
- \Rightarrow ABC is an isosceles triangle.

Q5. ABC and DBC are two isosceles triangles on the same base BC (See figure). Show that \angle ABD = \angle ACD.

Ans. In isosceles triangle ABC,

AB = AC [Given]

∠ACB = ∠ABC(i) [Angles opposite to equal sides]

Also in Isosceles triangle BCD.

BD = DC

 \therefore \angle BCD = \angle CBD(ii) [Angles opposite to equal sides]

Adding eq. (i) and (ii),

$$\angle ACB + \angle BCD = \angle ABC + \angle CBD$$

$$\Rightarrow \angle ACD = \angle ABD$$

$$Or \angle ABD = \angle ACD$$

Q6. \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB. Show that \angle BCD is a right angle (See figure).

Ans. In isosceles triangle ABC,

AB = AC [Given]

 \angle ACB = \angle ABC(i) [Angles opposite to equal sides]

Now AD = AB [By construction]

$$\therefore$$
 AD = AB = AC

$$\Rightarrow$$
 AD = AC

Now in triangle ADC,

$$AD = AC$$

$$\Rightarrow$$
 \angle ADC = \angle ACD(ii) [Angles opposite to equal sides]

Since
$$\angle$$
 BAC + \angle CAD = $^{180^{\circ}}$ (iii) [Linear pair]

And Exterior angle of a triangle is equal to the sum of its interior opposite angles.

$$\therefore$$
 In \triangle ABC,

$$\angle CAD = \angle ABC + \angle ACB = \angle ACB + \angle ACB$$

[Using (i)]

$$\Rightarrow \angle CAD = 2\angle ACB$$
(iv)

Similarly, for \triangle ADC,

$$\angle$$
 BAC = \angle ACD + \angle ADC

$$= \angle ACD + \angle ACD = 2 \angle ACD \dots (v)$$

From eq. (iii), (iv) and (v),

$$2\angle ACB + 2\angle ACD = 180^{\circ}$$

$$\Rightarrow$$
 2(\angle ACB + \angle ACD) = 180°

$$\Rightarrow \angle ACB + \angle ACD = 90^{\circ}$$

$$\Rightarrow \angle BCD = 90^{\circ}$$

Hence \angle BCD is a right angle.

Q7. ABC is a right angled triangle in which $\angle A = 90^{\circ}$ and AB = AC. Find $\angle B$ and $\angle C$.

Ans. ABC is a right triangle in which,

$$\angle A = 90^{\circ} \text{ And } AB = AC$$

In ∆ABC,

$$AB = AC$$

$$\Rightarrow \angle C = \angle B$$
(i)

We know that, in \triangle ABC,

$$\angle A + \angle B + \angle C = 180^{\circ}$$
 [Angle sum property]

$$\Rightarrow$$
 90° + \angle B + \angle B = 180°

$$[\angle A = 90^{\circ} \text{ (given) and } \angle B = \angle C \text{ (from eq. (i))}$$

$$\Rightarrow 2 \angle B = 90^{\circ}$$

$$\Rightarrow \angle B = 45^{\circ}$$

Also
$$\angle C = 45^{\circ} [\angle B = \angle C]$$

Q8. Show that the angles of an equilateral triangle are 60° each.

Ans. Let ABC be an equilateral triangle.

$$AB = BC = AC$$

$$\Rightarrow$$
 AB = BC

$$\Rightarrow \angle C = \angle A \dots (i)$$

Similarly, AB = AC

$$\Rightarrow \angle C = \angle B$$
(ii)

From eq. (i) and (ii),

$$\angle A = \angle B = \angle C$$
....(iii)

Now in △ABC

$$\angle A + \angle B + \angle C = 180^{\circ}$$
(iv)

$$\Rightarrow \angle A + \angle A + \angle A = 180^{\circ}$$

$$\Rightarrow$$
 3 \angle A = 180°

$$\Rightarrow \angle A = 60^{\circ}$$

Since $\angle A = \angle B = \angle C$ [From eq. (iii)]

$$\therefore \angle A = \angle B = \angle C = 60^{\circ}$$

Hence each angle of equilateral triangle is 60°.

********* END *******