Math 421, Section 1 Homework 2 Harry Luo

Problem 1. Prove that for any $x, y \in \mathbb{N}$, if x is odd and y is odd then $x + y$ is even.	
Solution:	

Problem 2. Prove that for any $x \in \mathbb{N}$, if x is odd then x^3 is odd.

Solution: (Type your solution to problem 2 here.)

Problem 3. Using induction, prove that for all $n \in \mathbb{N}$ we have

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$
.

Solution: (Type your solution to problem 3 here.)

Problem 4. Compute the following sum:

$$\frac{1}{1\cdot 3} + \frac{1}{3\cdot 5} + \dots + \frac{1}{(2n-1)(2n+1)}.$$

Prove that your answer is true for all $n \in \mathbb{N}$ using induction.

Solution: (Type your solution to problem 4 here.)

Problem 5. Prove the following statements for all $a, b \in \mathbb{R}$:

(a)
$$-a + (-b) = -(a+b)$$
.

(a)
$$-a + (-b) = -(a+b)$$
.
(b) If $a, b \neq 0$ then $a^{-1} \cdot b^{-1} = (ab)^{-1}$.

Carefully justify every step using properties of $\mathbb R$ stated in lecture.

Solution: (Type your solution to problem 5 here.)

Problem 6. Prove the following statements for all $a, b, c, d \in \mathbb{R}$:

- (a) If a < b and c < d then a + c < b + d.
- (b) If 0 < a < b and 0 < c < d then ac < bd.

Carefully justify every step using properties of $\mathbb R$ stated in lecture.

Solution: (Type your solution to problem 6 here.)