3D Data Processing

Introduction of 3D Data Processing

Department of Software Convergence Hyoseok Hwang

Computer Vision

A contact of the cont

What

[Kirillov et al 2019]

Who

[Sun et al 2019]

Where

Reconstruct

3D Vision

Inspection: Reduce cost and time of inspecti on to enable frequent inspection and reduce

Driving: Fewer accidents, less stress

Construction: Reduce schedule cost, risk, and plan d eviation to benefit builders, owners, and dwellers

Robotics: Do repetitive jobs fast, dangerous jobs safely

Image: Hu et al. 2019

3D Vision

digital twin

3D Reconstruction

Multiview Reconstruction

Single-view Reconstruction

[Reconstruct]

[Zou et al. 2018]

3D Reconstruction

Mesh-based

[Riegler Kolton 2020]

NeRF

[Mildenhall et al. 2020]

Localization

Structure from Motion (SfM)

[Reconstruct]

Simultaneous Localization and Mapping (SLAM)

[OpenSpace.ai]

Pose estimation

And Andrew of An

Semantic Segmentation

[Shin et al. 2018]

3D Data Processing

• We do reconstruct 3D using geometry (some optimization technique)

single-view 3D reconstruction

multiple-view 3D reconstruction

Sparse 3D reconstruction - SLAM

Point Clouds 3D reconstruction

Point Clouds 3D reconstruction

Structure from motion (N images)

Structure from motion (N uncalibrated images)

Creating 3D model of buildings and monuments using structure from motion

3D Data Processing

• We do not reconstruct 3D using probability, implicit model, and machine learning

single-view 3D reconstruction – implicit model

3D Data Processing

- We deal with 3D computer vision
 - 3D reconstruction
 - 2D-based reconstruction
 - 3D-based reconstruction
 - 2D-3D reconstruction

Andrew Market Control of the Control

- Top-down approach
 - What does it take to restore?
 - Case of 3D sensor

Point clouds processing Week 9, 12

Lidar

Week 3

registration

Week 13

A Section of the Control of the Cont

- Top-down approach
 - What does it take to restore?
 - Case of 2+1D sensor (RGBD)

Camera, RGBD Week 3 Depth, PC Week 9, 11

As a first or a first

- Top-down approach
 - What does it take to restore?
 - Case of 2D sensor (RGB)

Camera

Week 3

Stereo, triangulation Week 10 calibration

Week 7

Structure from motion Week 14

Assistant of the state of the s

- Top-down approach
 - What does it take to restore?
 - Case of 2D sensor (RGB) → Feature point processing

Feature extraction Week 6

Feature descriptor Week 7

The Banks of the B

- Top-down approach
 - What does it take to restore?
 - Hybrid (2D-3D convert)

PC registration is hard

matching

convert

matching

As for five and the state of th

- Top-down approach
 - What does it take to restore?
 - Optimization (Bundle adjustment)

