天体物理辐射机制笔记

GasinAn

2022年4月29日

Copyright © 2022 by GasinAn

All rights reserved. No part of this book may be reproduced, in any form or by any means, without permission in writing from the publisher, except by a BNUer.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories, technologies and programs to determine their effectiveness. The author and publisher make no warranty of any kind, express or implied, with regard to these techniques or programs contained in this book. The author and publisher shall not be liable in any event of incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these techniques or programs.

Printed in China

目录

第一章	辐射场理论	Ę
1.1	有源场: 电磁势—求解辐射场的经典方法	ŀ
1.2	辐射谱: 电磁场能量在不同频率的分布	(
第二章	相对论性带电粒子辐射	ç

第一章 辐射场理论

有源场: 电磁势——求解辐射场的经典方法

 \diamondsuit $\partial^a A_a(t, \mathbf{r}) = 0$, 得

$$\partial^a \partial_a A_b(t, \mathbf{r}) = -4\pi J_b(t, \mathbf{r}). \tag{1.1}$$

有解

$$A^{a}(t, \mathbf{r}) = \frac{1}{c} \int \frac{J^{a}(t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}, \mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} \, dV'.$$
 (1.2)

对单粒子, $J^a(t, \mathbf{r}) = qU^a(t)\delta(\mathbf{r} - \mathbf{r}_a(t))$, 所以

$$A^{a}(t, \mathbf{r}) = \frac{q}{c} \int \frac{U^{a}(t - \frac{|\mathbf{r} - \mathbf{r}'|}{c})\delta(\mathbf{r}' - \mathbf{r}_{q}(t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}))}{|\mathbf{r} - \mathbf{r}'|} dV'$$
(1.3)

$$= \frac{q}{c} \int \frac{\int U^{a}(t')\delta(\mathbf{r}' - \mathbf{r}_{q}(t'))\delta(t' - (t - \frac{|\mathbf{r} - \mathbf{r}'|}{c})) dt'}{|\mathbf{r} - \mathbf{r}'|} dV' \qquad (1.4)$$

$$= \frac{q}{c} \iint \frac{U^{a}(t')\delta(t' - (t - \frac{|\mathbf{r} - \mathbf{r}'|}{c}))}{|\mathbf{r} - \mathbf{r}'|} \delta(\mathbf{r}' - \mathbf{r}_{q}(t')) \, dV' \, dt' \qquad (1.5)$$

$$= \frac{q}{c} \int \frac{U^a(t')\delta(t' - (t - \frac{|\mathbf{r} - \mathbf{r}_q(t')|}{c}))}{|\mathbf{r} - \mathbf{r}_q(t')|} dt', \tag{1.6}$$

上式是对 t' 进行的积分. 把积分变量变成 $\tilde{t}'=t'-(t-\frac{|r-r_q(t')|}{c})$. 注意到积分中 t 和 r 被当成常量, 所以 $\mathrm{d}\tilde{t}'=\mathrm{d}t'+\frac{\dot{R}(t')}{c}\mathrm{d}t'=(1+\frac{\dot{R}(t')}{c})\mathrm{d}t'$, 其中 $R(t') = |\mathbf{r} - \mathbf{r}_q(t')|,$ 所以 $\dot{R}(t') = -\frac{(\mathbf{r} - \mathbf{r}_q(t'))}{|\mathbf{r} - \mathbf{r}_q(t')|} \cdot \dot{\mathbf{r}}_q(t') = -\hat{\mathbf{n}}(t') \cdot \mathbf{u}_q(t').$ 定义 $K(t') = 1 + \frac{\dot{R}(t')}{c} = 1 - \frac{\hat{\mathbf{n}}(t') \cdot \mathbf{u}_q(t')}{c} = 1 - \frac{u_r(t')}{c},$ 则 $\mathrm{d}\tilde{t}' = K(t')\mathrm{d}t',$

所以

$$A^{a}(t, \mathbf{r}) = \frac{q}{c} \int \frac{U^{a}(t')}{K(t') |\mathbf{r} - \mathbf{r}_{a}(t')|} \delta(\tilde{t}') \,\tilde{t}', \tag{1.7}$$

其中 t' 是 \tilde{t}' 和 t, r 的函数. 令 $\tilde{t}' = t' - (t - \frac{|r - r_q(t')|}{c}) = 0$, 可得 $R(t') = |r - r_q(t')| = c(t - t')$, 所以

$$A^{a}(t, \mathbf{r}) = \left[\frac{qU^{a}(t')}{cK(t')R(t')}\right]_{R(t')=c(t-t')}.$$
(1.8)

t 时刻 r 处接收到 t' 时刻 $r_q(t')$ 处产生的辐射, 恰有 R(t') = c(t-t'). 给定 t 和 r, 满足 $R(t') = |r - r_q(t')| = c(t-t')$ 的 t' 存在且唯一, 否则世界线不类时.

$$E = q \left[\frac{(\hat{n}(t') - \beta(t'))(1 - \beta(t')^2)}{K(t')^3 R(t')^2} \right]_{R(t') = c(t - t')}$$
(1.9)

$$+ \frac{q}{c} \left[\frac{\hat{\boldsymbol{n}}(t') \times ((\hat{\boldsymbol{n}}(t') - \boldsymbol{\beta}(t')) \times \dot{\boldsymbol{\beta}}(t'))}{K(t')^3 R(t')} \right]_{R(t') = c(t - t')}, \quad (1.10)$$

$$B = [\hat{n} \times E]_{R(t') = c(t - t')}. \tag{1.11}$$

$$\frac{\mathrm{d}P(t)}{\mathrm{d}\Omega} = \frac{c}{4\pi}R(t')^2 \left| \mathbf{E}(t') \right|^2. \tag{1.12}$$

 $\mathrm{d}P(t)$ 为因 t' 时刻电荷的辐射, 观者在 t 时刻测得的单位时间通过 $R(t')^2\mathrm{d}\Omega$ 的辐射. 求电荷处单位时间 $\mathrm{d}\Omega$ 方向的能量 $\mathrm{d}P(t')$. 能量守恒 $\mathrm{d}P(t')\mathrm{d}t'=\mathrm{d}P(t)\mathrm{d}t$, $K(t')=\frac{\mathrm{d}t}{\mathrm{d}t'}$,

$$\frac{\mathrm{d}P(t')}{\mathrm{d}\Omega} = \frac{c}{4\pi} K(t') R(t')^2 |\mathbf{E}(t')|^2.$$
 (1.13)

非相对论, $K \simeq 1$, $\hat{\boldsymbol{n}} - \boldsymbol{\beta} \simeq \hat{\boldsymbol{n}}$,

$$\boldsymbol{E} = \frac{q}{cR} [\hat{\boldsymbol{n}} \times (\hat{\boldsymbol{n}} \times \dot{\boldsymbol{\beta}})], \tag{1.14}$$

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega} = \frac{q^2}{4\pi c} \dot{\beta}^2 \sin^2 \Theta_{\dot{\beta}, \hat{n}}.\tag{1.15}$$

1.2 辐射谱: 电磁场能量在不同频率的分布

$$E(t) = \int E(\omega)e^{-i\omega t}d\omega, \qquad (1.16)$$

$$E(\omega) = \frac{1}{2\pi} \int E(t)e^{i\omega t} dt.$$
 (1.17)

对 $\frac{\mathrm{d}P(t)}{\mathrm{d}\Omega}$ 作 Fourier 分析 (警告: 不是 $\frac{\mathrm{d}P(t')}{\mathrm{d}\Omega}$, 因为观者测得频谱). 假定 $R\simeq \mathrm{const}$, 由 Parseval 定理,

$$\frac{\mathrm{d}W}{\mathrm{d}\Omega\mathrm{d}\omega} = cR^2 \left| \mathbf{E}(\omega) \right|^2. \tag{1.18}$$

$$\mathbf{E}(\omega) = \frac{1}{2\pi} \int \mathbf{E}(t')e^{i\omega t} dt, \qquad (1.19)$$

 $\pm t' = t - \frac{R(t')}{c}, \frac{\mathrm{d}t}{\mathrm{d}t'} = K(t'),$

$$\boldsymbol{E}(\omega) = \frac{1}{2\pi} \int K(t') \boldsymbol{E}(t') e^{i\omega \left[t' + \frac{R(t')}{c}\right]} dt', \qquad (1.20)$$

$$R(t')=|m{r}-m{r}_q(t')|\simeq |m{r}|-rac{m{r}}{|m{r}|}\cdotm{r}_q(t')=|m{r}|-\hat{m{n}}\cdotm{r}_q(t'),$$
 得

$$|\boldsymbol{E}(\omega)|^2 = \left| \frac{1}{2\pi} \int K(t') \boldsymbol{E}(t') e^{i\omega \left[t' - \frac{\hat{\boldsymbol{n}} \cdot \boldsymbol{r}_q(t')}{c} \right]} dt' \right|^2.$$
 (1.21)

非相对论,

$$\frac{\mathrm{d}W}{\mathrm{d}\Omega\mathrm{d}\omega} = \frac{\omega^4 q^2 \left| \boldsymbol{r}_q \right| (\omega)^2 \sin^2 \Theta_{\ddot{\boldsymbol{r}}_q, \hat{\boldsymbol{n}}}}{c^3}.$$
 (1.22)

第二章 相对论性带电粒子辐射

$$\frac{\mathrm{d}P(t')}{\mathrm{d}\Omega} = \frac{c}{4\pi}K(t')R(t')^2 \left| \mathbf{E}(t') \right|^2, \tag{2.1}$$

$$\boldsymbol{E} = \frac{q}{c} \frac{\hat{\boldsymbol{n}}(t') \times ((\hat{\boldsymbol{n}}(t') - \boldsymbol{\beta}(t')) \times \dot{\boldsymbol{\beta}}(t'))}{K(t')^3 R(t')}, \tag{2.2}$$

$$K(t') = 1 - \hat{\boldsymbol{n}}(t') \cdot \boldsymbol{\beta}(t'). \tag{2.3}$$

若 $\hat{\boldsymbol{n}}/\!/\boldsymbol{\beta}$, 则 $K \to 0$, $\frac{\mathrm{d}P}{\mathrm{d}\Omega} \to \infty$, 速度方向极大.

$$K = 2K_{\min} \rightarrow \theta \simeq \frac{1}{\gamma} := \sqrt{1 - \beta^2}$$
.

粒子静系中 $\theta = \frac{\pi}{2}$ 出射的光子², 观者看来 $\theta \simeq \frac{1}{\gamma}$. $\beta //\dot{\beta}$,

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega} = \frac{q^2}{4\pi c} \frac{\dot{\boldsymbol{\beta}}^2 \sin^2 \theta}{(1 - |\boldsymbol{\beta}| \cos \theta)^5},\tag{2.4}$$

 $\theta_{\text{max}} = \arccos \frac{\sqrt{15|\beta|^2 + 1} - 1}{3|\beta|}^3.$

 $\beta \perp \dot{\beta}$,

$$\frac{\mathrm{d}P}{\mathrm{d}\Omega} = \frac{q^2}{4\pi c} \dot{\boldsymbol{\beta}}^2 \left[\frac{\gamma^2 (1 - |\boldsymbol{\beta}| \cos \theta)^2 - \sin^2 \theta \cos^2 \phi}{\gamma^2 (1 - |\boldsymbol{\beta}| \cos \theta)^5} \right],\tag{2.5}$$

其中 ϕ 坐标系为: 以 $\dot{\beta}$ 方向为 x 轴正向, 以 β 方向为 z 轴正向.

 $^{^{1}}$ 此处 θ 是观者系中粒子运动方向和观者方向的夹角.

 $^{^{2}}$ 此处 θ 是粒子静系中光子出射方向和粒子运动方向的夹角.

³我算的, 不知对不对.