# Fast, sample-efficient algorithms for structured phase retrieval

Gauri Jagatap and Chinmay Hegde Department of Electrical and Computer Engineering

# IOWA STATE UNIVERSITY

# Problem Setup

**Premise:** To devise a sample-efficient linear-convergence algorithm for phase retrieval of (structured) *s*-sparse signals from Gaussian measurements.

#### Main Challenges

- Linear-convergence algorithms have sample complexity with quadratic dependence on sparsity  $m = \mathcal{O}\left(s^2 \log n\right)$ .
- ► High number of tuning parameters.
- ► Lower sample complexity algorithms require high run time, not scalable.

# Prior Work

- Convex: PhaseLift, PhaseMax.
  Drawbacks: Computationally expensive, poor emperical performance.
- Non-convex: AltMinPhase,
   Wirtinger Flow. Faster, scalable.
   Drawbacks: Sample complexity depends on selecting good initial point. Parametric inputs.
- Designed sensing matrices:
   Matrices with low underlying dimension or Fourier-like.
  - **Drawbacks:** Harder to analyze theoretical guarantees.
- Structured sparsity models: Utilized for sparse signal recovery, statistical learning applications.

**Drawbacks:** No rigorous results for phase retrieval problem.



Fig. (a) Test object; (b) modulus of its Fourier transform; (c) initial estimate of the object (first test); (d)-(f) reconstruction results—number of iterations: (d) 20, (e) 230, (f) 600; (g) initial estimate of the object (second test); (h)-(i) reconstruction results—number of iterations: (h) 2, (i) 215.

Reproduced from [F78] J. Fienup, "Reconstruction of an object from the modulus of its Fourier transform."

Optics letters, 1978.

# Our Objective

We devise a phase-retrieval algorithm that:

- Utilizes underlying structured sparsity in signals for efficient analysis.
- ▶ Is **naturally compatible** with standard sparse recovery algorithms.
- ▶ Is **fast and scalable** to large datasets of large dimensions.
- ▶ Has **sub-quadratic** sample complexity  $m = \mathcal{O}\left(\frac{s^2}{b}\log n\right)$ .
- Requires **no extra parametric inputs** apart from (block) sparsity  $k = \frac{s}{b}$ .

# New Direction: Phase retrieval of structured sparse signals

**Idea**: Efficient phase retrieval algorithms for structured sparse signals. **Problem Setup:** Recover signal  $\mathbf{x}^* \in \mathbb{R}^n$ , using Gaussian sampling matrix  $\mathbf{A} = [\mathbf{a_1} \dots \mathbf{a_m}]^\top$ , from measurements  $\mathbf{y} \in \mathbb{R}^m$ ,

$$y_i = |\langle \mathbf{a_i}, \mathbf{x}^* \rangle|, \quad \text{for } i = 1, \dots, m.$$

 $\mathbf{x}^*$  is part of model  $\mathcal{M}_{s,b}$  formed of uniformly block sparse signals with block length b, effective block sparsity k = s/b and total number of blocks  $n_b = n/b$ .

# Solution Methodology

Formulate the above as a two-step problem, by introducing diagonal phase matrix  $\mathbf{P} \in \mathcal{P}$  with  $P_{ii} = \text{sign}\left(\mathbf{a}_i^{\top}\mathbf{x}\right) \in \{1, -1\}$ , and alternatively minimize the loss function over variables  $\mathbf{x}$  and  $\mathbf{P}$ :

$$\min_{\mathbf{x}\in\mathcal{M},\mathbf{P}\in\mathcal{P}}\left\|\mathbf{A}\mathbf{x}-\mathbf{P}\mathbf{y}\right\|_{2}.$$

This strategy requires a good initial point, to converge to minimum. For this, we introduce our algorithm Block Compressive Phase Retrieval with Alternating Minimization (Block CoPRAM) [JH17].

# Block CoPRAM - Smart Initialization

**Setup**: Define signal marginals as  $M_{jj} = \frac{1}{m} \sum_{i=1}^n y_i^2 a_{ij}^2$ , for  $j \in \{1 \dots n\}$ .

**Objective**: Find good initial estimate  $\mathbf{x}^0$  of the true signal  $\mathbf{x}^*$ . **Challenge**: Designing block marginals. Performance guarantees.

# Block CoPRAM - Smart Initialization (Cont.)

Solution: (Alg. 1)

- ▶ Define block marginals as  $M_{j_b j_b} = \sqrt{\sum_{j \in j_b} M_{jj}^2}$ , for  $j_b \in \{1 \dots n_b\}$ .
- Retain top k block marginals; call the index set  $\hat{S}$ , card $(\hat{S}) = s$ .
- Construct matrix  $(\in \mathbb{R}^{s \times s})$   $\mathbf{M}_{\hat{S}} = \frac{1}{m} \sum_{i=1}^{m} y_i^2 \mathbf{a}_{i \hat{S}} \mathbf{a}_{i \hat{S}}^{\top}$ .
- Initial estimate  $\mathbf{x^0} = \phi \mathbf{v}$ ,  $\mathbf{v}$  is top-singular-vec( $\mathbf{M}_{\hat{S}}$ ), where  $\phi = \sqrt{\frac{1}{m} \sum_{i=1}^m y_i^2}$ .

#### **Guarantees: Theorem 1**

The initial vector  $\mathbf{x}^{0}$ , which is the output of Alg. 1, is a small constant distance  $\delta_{b}$  away from the true signal  $\mathbf{x}^{*}$ , i.e.,

$$\operatorname{dist}\left(\mathbf{x}^{\mathbf{0}},\mathbf{x}^{*}\right) \leq \delta_{b} \left\|\mathbf{x}^{*}\right\|_{2},$$

where  $0 < \delta_b < 1$ , as long as the number of measurements satisfy  $m \ge C \frac{s^2}{b} \log mn$  with probability greater than  $1 - \frac{8}{m}$ .

#### Block CoPRAM - Descent

**Setup**: Use the initialization  $x^0$  from Alg. 1.

**Objective**: Gradually descend to k-block sparse solution  $\mathbf{x}^*$ .

Challenge: Performance guarantees for convergence.

Solution: (Alg. 2)

Use alternating minimization with model CoSAMP to solve the non-convex problem:

- ▶ Phase estimation:  $\mathbf{P}^t = \text{diag}\left(\text{sign}\left(\mathbf{A}\mathbf{x}^t\right)\right)$ .
- ▶ Signal estimation:  $\mathbf{x}^t \approx \min_{\mathbf{x} \in \mathcal{M}_{s,h}} \|\mathbf{A}\mathbf{x} \mathbf{P}\mathbf{y}\|_2$  via model CoSAMP.

#### **Guarantees: Theorem 2**

Given an initialization  $\mathbf{x}^0$  satisfying Alg. 1, if number of measurements  $m \geq C\left(s + \frac{sb}{n}\log\frac{n}{s}\right)$ , then the iterates of Alg. 2 satisfy:

$$\operatorname{dist}\left(\mathbf{x}^{t+1},\mathbf{x}^{*}\right) \leq \rho_{b}\operatorname{dist}\left(\mathbf{x}^{t},\mathbf{x}^{*}\right).$$

where  $0 < \rho_b < 1$  is a constant, with probability greater than  $1 - e^{-\gamma m}$ , for positive constant  $\gamma$ .

# Results

Phase transitions: Block CoPRAM v/s CoPRAM, SPARTA, Thresholded Wirtinger Flow (ThWF).

CoPRAM is a special case of Block CoPRAM with b = 1.



Figure 1: Phase transitions for signal length n = 3,000.



Figure 2: Phase transition for signal length n=3,000 and block length b=5 and different sparsity levels.

# Acknowledgments

This work was supported in part by grants from the National Science Foundation and NVIDIA.