Redes sem fio - conceitos

OIRC - Interconexão de redes de computadores Prof. Dr. Ricardo José Pfitscher

ricardo.pfitscher@gmail.com

Capítulo 3. Forouzan, A. Behrouz. Data communications & networking (sie). Tata McGraw-Hill Education, 2007.

- A comunicação, desde seus primórdios, consiste no envio de sinais de um ponto A para um ponto B
 - Ok. Nós nos comunicamos falando também...

International Morse Code

1. The length of a dot is one unit.

2. A dash is three units.

3. The space between parts of the same letter is one unit.

The space between letters is three units.
 The space between words is seven units.

- A comunicação, desde seus primórdios, consiste no envio de sinais de um ponto A para um ponto B
 - Ok. Nós nos comunicamos falando também...
- De fato, sinais podem ser vistos em formato de onda
- Dois tipos de sinais:
 - Analógicos
 - Variação contínua
 - Digitais
 - Valores discretos

- Ondas
 - Quando jogamos uma pedra em um lago, geramos ondas
 - Quando falamos, geramos ondas
- Como funciona a transmissão da voz por um microfone até a caixa de som?

Ondas

- <u>Definição informal</u>: As ondas são perturbações que se propagam pelo espaço sem transporte de matéria, apenas de energia.
- Ondas podem ser mecânicas ou eletromagnéticas
 - Mecânicas: precisam de um meio para se propagar. Ex.: água
 - Eletromagnéticas: não necessitam de um meio. Ex.: rádio e luz
- Ondas podem ser periódicas ou não periódicas

Não há um período específico de repetição

- O que nós queremos é transmitir sinais através de ondas eletromagnéticas!
- Antes de seguirmos, quais s\u00e3o as propriedades (caracter\u00edsticas)
 das ondas (peri\u00f3dicas)?
 - Conceitos individuais em 5 min, discussão em 5 min

- Antes de seguirmos, quais s\u00e3o as propriedades (caracter\u00edsticas)
 das ondas (peri\u00f3dicas)?
 - Amplitude, período, frequência, fase, velocidade, comprimento, potência
- Suponha que uma variação de sinal entre +5 volt e -5 volt é observada a cada 2 segundos.
 - Poderíamos assumir uma variação digital ⇒ 1, -1, 1, -1, 1
 - o Poderíamos assumir uma variação analógica \Rightarrow uma senóide em função de t

- Frequência (f): é um termo empregado na Física para indicar a repetição de qualquer fenômeno em um período de tempo (frequência é o número de oscilações em um segundo).
 - No caso das ondas, oscilações por segundo
 - \circ Medida em Hertz (Hz) = 1 Hz = 1/s = 1 s⁻¹
- Período (T): Tempo t que o sinal leva para completar um ciclo.
 Inverso da frequência. T = 1/F
- **Amplitude (A)**: é uma medida escalar não negativa da magnitude de oscilação uma onda, expressa em *Volts*.

- Frequência (f): é um termo emplx = [1: 0.01: 10]repetição de qualquer fenômeno en f = sen(x)(frequência é o número de oscilações em um seg
 - No caso das ondas, oscilações por segundo
 - Medida em $Hertz (Hz) = 1 Hz = 1/s = 1 s^{-1}$
- Período (T): Tempo t que o sinal leva para completar um colo.
 Inverso da frequência. T = 1/F

plotar no excel:

 Amplitude (A): é uma medida escalar não negativa da mag de oscilação uma onda, expressa em Volts.

 Frequência (f): é um termo emple repetição de qualquer fenômeno en plotar no excel: x = [1: 0.01: 10] f = sen(x)

egundo s-1 para completar um a lo

r não negativa da ma 1 *Volts*.

O que acontece re quando dobramos a (freq frequência?

- plotar no excel: x = [1: 0.01: 10] f = sen(x)
- ∡ções em um seg
- O No caso das oridas, oscilações quindo
- \circ Medida em Hertz (Hz) = 1 Hz = 1/s = 1 s
- Período (T): Tempo t que o sinal leva para completar um colo.
 Inverso da frequência. T = 1/F
- Amplitude (A): é uma medida escalar não negativa da magr de oscilação uma onda, expressa em Volts.

O que acontece re quando dobramos a (fre frequência?


```
plotar no excel:

x = [1: 0.01: 10]

f = sen(x)
```

ções em um seg

$$\sqrt{s} = 1s^{-1}$$

leva para completar um colo

scalar não negativa da magnetus.

O que acontece quando dividimos a (freq frequência por 2?

- plotar no excel: x = [1: 0.01: 10] f = sen(x)
- Íões em um seg
- No caso uas origus, oscilações
- \circ Medida em Hertz (Hz) = 1 Hz = 1/s = 1 $\stackrel{\frown}{s}$
- Período (T): Tempo t que o sinal leva para completar um à lo.
 Inverso da frequência. T = 1/F
- Amplitude (A): é uma medida escalar não negativa da magr de oscilação uma onda, expressa em Volts.

O que acontece quando dividimos a frequência por 2?

plotar no excel: x = [1: 0.01: 10] f = sen(x)

ções em um seg

gundo

 $/s = 1 s^{-1}$

leva para completar um colo

scalar não negativa da magnituda em Volts.

- Fase (ϕ): a posição da forma da onda em relação à zero.
 - Medido em graus, radianos
 - Ela desloca a onda

- Fase (φ): a posição da forma da
 - Medido em graus, radianos
 - Ela desloca a onda

plotar no excel: x = [1: 0.01: 10] f = sen(x + 2)

- Fase (ϕ): a posição da forma da onda em relação à zero.
 - Medido em graus, radianos
 - Ela desloca a onda
- De fato, uma onda periódica é dada por:
 - $\circ g(t) = A \operatorname{sen}(2\pi f t + \phi)$
 - Multiplicamos por 2π para simplificar a visualização do eixo x
 - Assim, ϕ é definido por uma relação de π :
 - $= +\pi + \pi/2 + 3\pi/2$

- Velocidade: A velocidade v de transmissão de uma onda depende do meio onde está inserida, e da frequência da onda
 - \circ Em geral, ondas eletromagnéticas se propagam na velocidade da luz: $3x10^8$ m/s, portanto, c
- Comprimento de onda (λ): O comprimento de onda basicamente mede a distância que um sinal consegue percorrer em um período
 - \circ $\lambda = c \times período = c / f$
 - Exemplo:
 - Qual é o comprimento das seguintes ondas no ar:
 - 2.4GHz
 - 104.3 MHz

- Velocidade: A velocidade v de transmissão de uma onda depende do meio onde está inserida, e da frequência da onda
 - Em geral, ondas eletromagnéticas se propagam na velocidade da luz:
 3x10⁸ m/s, portanto, c
- Comprimento de onda (λ): O comprimento de onda basicamente mede a distância que um sinal consegue percorrer em um período
 - \circ $\lambda = c \times período = c / f$
 - Exemplo:
 - Qual é o comprimento das seguintes ondas no ar:
 - 2.4GHz = 12.5 cm
 - 104.3 MHz = 2.87 m

Isto ajuda a definir o tamanho da antena

μm

mm

m

km λ

DO ESTADO DE

SANTA CATARINA

pm

nm

Resumindo

- Como as propriedades impactam na transmissão:
 - Ondas de mais alta frequência
 - penetram objetos
 - não são refletidas na ionosfera
 - Ondas de baixa frequência
 - desviam objetos
 - refletidas na ionosfera

Transmissão de dados

Mas efetivamente, como os dados são transmitidos?

Transmissão de dados

Mas efetivamente, como os dados são transmitidos?

- Pela variação das propriedades
 - Exemplo comum: frequência, amplitude
- Modulação
 - O sinal é modulado dentro de uma onda
 - Modulação por frequência (FM):
 - Amplitude fixa, variação da frequência
 - Modulação por amplitude (AM):
 - Frequência fixa, variação da amplitude

- Para fazer a transmissão de dados via ondas eletromagnéticas, é necessário fazer a análise de sinais nas ondas
- Para isso, vamos precisar conhecer mais uma propriedade
 - Harmônicas: são frequências (componentes), obtidas através da multiplicação do sinal original (frequência fundamental)
 - Uma onda senoidal é um múltiplo inteiro da frequência da onda. Por exemplo, se a frequência é f, as harmônicas possuem as frequências 2f, 3f, 4f, etc.
 - Também pode variar amplitude e fase

• Para fazer a transmissão de dados via ondas eletromagnéticas, é

Análise de sinais

- A transmissão de sinais não é bonitinha em uma onda só
- Na verdade há uma composição de sinais nas ondas
 - É preciso separar ⇒ Análise de Fourier
 - Sinal resultante da transmissão de 01100010 através de linhas com banda passante variando de 0 a "W" Hz

Análise de sinais

- No século XIX Fourier provou que qualquer sinal periódico expresso como uma função do tempo g(t), com período T0, pode ser considerado como uma soma de senos e cosenos de diversas frequências $(f \frac{1}{2})$
- Um sinal g(t) descrito por um sinal de frequência fundamental
- Sinais nas outras frequências denominados componentes ou harmônicos
- Este sinal pode ser representado de duas formas equivalentes:
 - Domínio no Tempo
 - Domínio de Frequência

Análise de sinais

- Domínio de tempo vs domínio de frequência
- Exemplo prático aqui

- Nenhum meio de transmissão é capaz de transmitir sinais sem que haja perdas de energia durante o processo
 - Perdas de energia significam reduções na amplitude de sinais componentes
- Se todos os sinais componentes fossem igualmente reduzidos em amplitude, o sinal resultante seria todo reduzido em amplitude, mas não distorcido
- Infelizmente, a característica dos meios de transmissão é a de provocar perdas nos diversos componentes dos sinais em diferentes proporções

- Nenhum meio de transmissão é capaz de transmitir sinais sem que haja perdas
 - O Perd Quais são os fatores que politude de sinais com afetam a qualidade do sinai?
- Se todos
 almente reduzidos em amplitude, o sinal.

 mas não distorcido
- Infelizmente, a característica dos meios de transitio é provocar perdas nos diversos componentes dos sinais e diferentes proporções

- Fatores que afetam a taxa de transmissão
 - Atenuação: Perda de energia. Quando um sinal, seja ele simples ou composto, trafega por um meio de transmissão, ele perde parte de sua energia para superar a resistência do meio. Para compensar essa perda, são usados amplificadores para o sinal.
 - Medida em decibéis
 - Potência de entrada: 10mW. Potência de saída: 5mW.
 - Atenuação: $10 \log_{10} (10/5) = 10 \log_{10} (2) = 3dB$
 - Distorção: o sinal muda sua forma ou formato. A distorção pode ocorrer em um sinal composto formado por diversas frequências. Os componentes do sinal no receptor possuem **fases** diferentes daqueles que tinham no emissor. Portanto, o formato do sinal composto não é mais o mesmo.

- Fatores que afetam a taxa de transmissão
 - Ruído: danos causados ao sinal. Existem vários tipos de ruídos:
 - térmico, induzidos, linha cruzada e de impulso que podem causar danos ao sinal.
 - O sinal recebido consiste no sinal transmitido modificado por várias distorções impostas pelas características do meio adicionadas de outras distorções inseridas durante a transmissão devido à interferência de sinais indesejáveis (ruídos).
 - Quantidade de ruído: é dado pela razão entre a potência do sinal "S"
 e a potência do ruído R
 - \blacksquare SNR = S/R
 - \blacksquare SNR_{db} = 10 log₁₀ SNR

- Canal: Em comunicação, canal designa o meio usado para transportar uma mensagem do emissor ao receptor.
- O cálculo da capacidade (C) de um canal deve considerar parâmetros físicos:
 - Banda passante (B) ou bandwidth, ou largura de banda, em Hz:
 conjunto contínuo de valores de frequência (limites) que podem ser assumidos por um sinal elétrico pertencente a um canal.
 - Ruídos (N), expressos através da relação sinal/ruído (SNR)

- Dois teoremas podem ser utilizados para calcular a capacidade de transmissão (bps) em um canal
 - Nyquist: assume a ausência de ruído
 - $C = 2B.log_2M$
 - C → capacidade de transmissão em
 - B → largura de banda em Hz
 - M → número de níveis de sinais

$$\blacksquare$$
 C = B.log₂ (1 + SNR) = B.log₂ (1 + S/R)

- Dois teoremas podem ser utilizados para calcular a capacidade de transmissão (bps) em um canal
 - Nyquist: assume a ausência de ruído
 - \blacksquare C = 2B.log₂M
 - C → capacidade de transmissão em
 - B → largura de banda em Hz
 - M → número de níveis de sinais

$$\blacksquare$$
 C = B.log₂ (1 + SNR) = B.log₂ (1 + S/R)

SNR é medido em decibéis, então: SNRdb = 10 log ₁₀ SNR

- Exemplo
 - Considere que o espectro de transmissão de um sinal está entre 3
 MHz e 5MHz. O SNR em decibéis medido para o meio é de 30 dB.
 Qual é a capacidade de transmissão em bps?

Exemplo

- Considere que o espectro de transmissão de um sinal está entre 3
 MHz e 5MHz. O SNR em decibéis medido para o meio é de 30 dB.
 Qual é a capacidade de transmissão em bps?
- \circ B= 5 -3 = 2 MHz
- \circ SNR_{db} = 30 dB
- \circ 30 = 10 \log_{10} SNR
- \circ 3 = \log_{10} SNR
- \circ 10³ = SNR
- \circ C = B.log₂ (1 + SNR)
 - $C = 2 \log_2 (1001)$
 - C = 2 MHz X 9.967 = 19.934 Mbps

SNR é medido em decibéis, então: SNRdb = 10 log ₁₀ SNR

$$log_2(1001) = \frac{log_{10}(1001)}{log_2(2)}$$

Exercício

- Crie um gráfico que calcule a capacidade do canal, usando o teorema de Shannon considerando as seguintes larguras de banda (eixo Y):
 - o 3 MHz
 - 10 MHz
 - 20 MHz
 - Sendo que no eixo (X) deverão ser consideradas as seguintes SNR: (5 dB, 10 dB, 15 dB, 20 dB, 25 dB, 30 dB, 35 dB, 40 dB, 45 dB e 50 dB)
 - Obs.: Faça a interpretação do gráfico, descrevendo o que está sendo representado no mesmo.

Links úteis adicionais

https://www.youtube.com/watch?v=Cc_Y2uP-Faq

https://www.khanacademy.org/science/electrical-engineering/ee-signals

https://www.youtube.com/watch?v=ancDN11C2vq

