LPHYS2114 Non-linear dynamics Série 4 – Variété stable-unstable and Lyapunov Functions

1. Phase portrait of two dimensional systems. Given the two dimensional system

$$\dot{x} = -x(1+y), \quad \dot{y} = y + x^2.$$
 (1)

- (a) Show that the system is invariant under the transformation $(x, y) \mapsto (-x, y)$. What does this tell us about the phase space of the system?
- (b) Find and classify all the equilibria of the system. Qualitatively describe the dynamics in the neighbourhood of these equilibria.
- (c) Approximately calculate the stable and unstable local manifolds of the saddle point equilibria by developing the Taylor series up to order 4. *Hint*: Use the symmetry of the system found in part (a) to simplify the calculation.
- (d) Sketch the dynamics of the system.

2. Stable and unstable manifold. Given the system of ODEs

$$\dot{x} = x(4 - x - y), \quad \dot{y} = y(x - 2).$$
 (2)

- (a) Show that the system has saddle point two equilibria at $\mathbf{p} = (0,0)$ and $\mathbf{p} = (4,0)$, and a single attractor at $\mathbf{p} = (2,2)$.
- (b) Determine the unstable and stable manifolds in the neighbourhood of the saddle points by developing the Taylor series up to 3.
- (c) Sketch the phase portrait of the system.

3. A Lyapunov function for the Lorenz **63** system. The famous Lorenz 1963 system of ODEs is given by :

$$\dot{x} = \sigma(y - x), \quad \dot{y} = rx - y - xz, \quad \dot{z} = xy - bz. \tag{3}$$

Where, $\sigma, r, b > 0$ are parameters. In this exercise we are interested in one of the equilibria :

- (a) Show that p = (0, 0, 0) is an equilibria of the system for all σ, r, b .
- (b) Show that $E(x, y, z) = \sigma^{-1}x^2 + y^2 + z^2$ is a strict Lyapunov function for this equilibria for 0 < r < 1.
- (c) Describe the basin of attraction of this equilibria. (The basin of attraction of a equilibria is a collection of points that converge to the equilibria under the flow.)

Figure 1 – Sketch of the idealised pendulum.

4. Ideal pendulum with friction. THe ideal pendulum, is a rigid pendulum of length ℓ under the influence of gravity and a friction force such as air pressure. The equation of motion is given by :

$$\ddot{\theta} + 2\gamma\dot{\theta} + \omega^2\sin\theta = 0. \tag{4}$$

Here, $\gamma > 0$ is the coefficient of friction and $\omega = \sqrt{g/\ell}$.

- (a) Write the equations of movement as a two dimensional system where $x_1 = \theta$ and $x_2 = \dot{\theta}$.
- (b) Show that the equilibria of the system are of the form $\mathbf{p} = (n\pi, 0)$, $n \in \mathbb{Z}$. Why is it sufficient to consider only the points described by n = 0 et n = 1. Distinguish the physical meaning of these two equilibria.
- (c) Show that the energy function $E = \frac{1}{2}x_2^2 + \omega^2(1 \cos x_1)$ is a Lyapunov function of the equilibria $\mathbf{p} = (0,0)$. Deduce that this equilibria is stable.
- (d) Can we also deduce that $\mathbf{p}=(0,0)$ is asymptotically stable? Conclude about the dynamics of the system.
- **5.** Bendixson Criteria. Show that the ODE $\ddot{x} = x x^3 + (b x^2)\dot{x}$ does not have periodic solutions for b < 0.