Отчет по части II

Богданов Ярослав

Гипотезы:

- H_0 : данные из распределения weibull с параметром $\lambda=1$
- H_1 : данные из распределения lognormal с параметром $\sigma = log(5)$

Параметры исследования:

- Тип графа: dist-граф с параметром d = 0.5
- Размеры выборок: n = 25, 100, 500
- Количество выборок на класс: 100

Исследуемые характеристики графов:

- $\Delta(G)$ максимальная степень вершины
- $\delta(G)$ минимальная степень вершины
- ullet c(G) количество компонент связности
- t(G) количество треугольников
- \bullet diam(G) диаметр графа
- $\lambda(G)$ рёберная связность
- $\omega(G)$ кликовое число

1 Результаты

1.1 Анализ важности характеристик

Анализ важности характеристик с использованием Random Forest показал следующие результаты:

Основные наблюдения:

- При n=25 наибольший вклад дают число треугольников $t(G)\approx 29\%$ и кликовое число $\omega(G)\approx 27\%$, за ними следуют максимальная степень $\Delta(G)\approx 17\%$ и диаметр $\mathrm{diam}(G)\approx 13\%$.
- При n=100 доминирует $\omega(G)\approx 46\%$, тогда как важность диаметра $\mathrm{diam}(G)$ падает до $\approx 4\%$, а $\delta(G)$ и $\lambda(G)$ практически сходят на нет (<1%).
- При увеличении до n=500 максимальная степень $\Delta(G)$ растёт до $\approx 32\%$ и выравнивается с $\omega(G)\approx 32\%$, число треугольников t(G) остаётся стабильным ($\approx 29\%$).
- Диаметр $\operatorname{diam}(G)$ продолжает снижаться (до $\approx 1.3\%$), а минимальная степень $\delta(G)$ и реберная связность $\lambda(G)$ практически теряют

значение.

• Число компонент связности c(G) демонстрирует U-образную динамику: $\approx 7\% \to 2\% \to 6.5\%$ при росте n.

1.2 Сравнение классификаторов

Для оценки качества классификации использовались следующие алгоритмы: Random Forest, Logistic Regression и Neural Network. Результаты представлены на графике:

Основные выводы по классификаторам:

- Для малых выборок (n=25) все модели демонстрируют среднюю точность (≈ 0.75 –0.77) и аналогичный F1-Score, при этом ошибка I рода значительно превышает уровень значимости ($\alpha=0.05$), достигая 20%–24%, а мощность критерия находится на уровне 0.72–0.74.
- При увеличении выборки до n=100 точность и F1-Score резко возрастают до 0.95–0.97, ошибка I рода падает ниже 5% (до $\approx 2\%$ –3%), а мощность критерия достигает 0.94–0.97.

- Для больших выборок (n=500) все три алгоритма достигают практически идеальных показателей: точность и F1-Score близки к 1.00, ошибка I рода стремится к нулю, мощность критерия приближается к единице.
- Различия между алгоритмами минимальны: Logistic Regression чуть опережает Random Forest на средних выборках, Neural Network демонстрирует чуть больший разброс оценок.

1.3 Анализ распределений характеристик

Гистограммы распределений характеристик графов показывают, как изменяется разделимость между гипотезами H_0 и H_1 с ростом размера выборки:

- $\Delta(G)$ (максимальная степень) при n=25 видна лишь слабая тенденция к сдвигу, при n=100 распределения уже хорошо разделяются, а при n=500 их разделение становится почти полным.
- t(G) (число треугольников) умеренное разделение для n=25 и n=100, для n=500 гистограммы практически не перекрываются.
- $\operatorname{diam}(G)$ (диаметр) заметное, но неполное разделение; с ростом n средние значения расходятся, но хвосты всё ещё пересекаются.
- $\omega(G)$ (кликовое число) при n=100 уже явное разделение, при n=500 гистограммы хорошо разделены.
- c(G) (число компонент связности) небольшое смещение средних при $n \geq 100$, сильнее выраженное при n = 500, но перекрытие сохраняется.
- $\delta(G)$ (минимальная степень) и $\lambda(G)$ (рёберная связность) при любых n распределения почти совпадают, разделения не наблюдается.

С увеличением размера выборки разделение между распределениями становится более выраженным, что объясняет улучшение качества классификации на больших n.

2 Выводы

Анализ итоговых показателей классификации даёт следующие выводы:

- Для n=25: ни один классификатор не удовлетворяет условию $\alpha \leq 0.05$.
- Для n=100: лучший классификатор Random Forest с ошибкой I рода $\alpha=0.0344$ и мощностью 0.9722.
- Для n=500: лучший классификатор Random Forest с ошибкой I рода $\alpha=0.0011$ и мощностью 1.0000.