Light

PRASHANT KIRAD

- Rectilinear propagation of light light travels in a straight line. Speed of Light = $c = 3 \times 10^8 \text{ m/s}$
- Reflection: The bouncing back of light from any shiny surface e.g. mirror or water.

The Laws of reflection states that:

- 1. The Incident ray, the Reflected ray and Normal all lie in the same plane. 2. Angle of incidence
- $(\angle i)$ = The angle of reflection (\angle r).

Plane mirror: A smooth and polished surface that reflects light uniformly.

The image formed by a plane mirror is:

- always virtual and erect.
- size of the image is equal to that of the object.
- image formed is as far behind the mirror as the object is in front of it.
- · image is laterally inverted.

Spherical mirror: a mirror whose reflecting surface is part of a hollow sphere of glass.

CONCAVE MIRROR

reflecting surface is curved inwards, towards the center of the sphere

CONVEX MIRROR

reflecting surface is curved outwards.

Pole (P): The center point of the reflecting surface of a spherical mirror.

CONCAVE MIRROR **CONVEX MIRROR**

	Object	Image		image		image	
	At infinity	At the focus F, behind the mirror		Highly diminish point-sized	ed,	Virtual and erect	
	Between infinity and the pole P of the mirror	Between P and F, behind the mirror		Diminished		Virtual and erect	
the	Position of the image	Size of the No		Nature of the image			

Position of the object	Position of the image	Size of the image	Nature of the image
At infinity	At the focus F	Highly diminished, point-sized	Real and inverted
Beyond C	Between F and C	Diminished	Real and inverted
At C	At C	Same size	Real and inverted
Between C and F	Beyond C	Enlarged	Real and inverted
At F	At infinity	Highly enlarged	Real and inverted
Between P and F	Behind the mirror	Enlarged	Virtual and erect

Uses of Concave Mirrors:

- Torches, Search-lights, and Vehicle Headlights: Shaving Mirrors Dentist's Mirrors

- Solar Furnaces

Uses of Convex Mirrors:

- Rear-view Mirrors in Vehicles:
- Preferred in Vehicles:
- Provide erect, though diminished, images.
 Have a wider field of view due to their outward curve.
- Allow drivers to view a larger area compared to plane mirrors.

- Centre of Curvature (C): The center of the sphere of which the mirror's reflecting surface forms a part.
- Radius of Curvature (R): The radius of the sphere of which the mirror's reflecting surface forms a part. R=2f
- Principal Axis: The straight line passing through the pole and the center of curvature of the mirror.
- Principal Focus (F): The point where parallel rays of light either converge or appear to diverge after reflecting from the
- Focal Length (f): The distance between the pole and the principal focus.
- Aperture: The diameter of the reflecting surface of the spherical mirror.

Ray Diagrams

(i) A ray parallel to principal axis will pass through focus after reflection.

(iv) Ray incident at pole is reflected back making same angle with principal axis.

Sign Conventions for Spherical Mirrors:

- The object is always placed to the left of the mirror.
- Distances are measured from the pole of the mirror.
- Distances along the incident ray (+X-axis) are positive, and those against it (-X-axis) are negative.
- Distances above the principal axis are positive.
- Distances below the principal axis are negative.

Object distance = always +ve Focal length of concave mirror = -ve Focal length of convex mirror = +ve

Important Formulas:

$$\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$$

$$m = \frac{Height \ of \ image(h')}{Height \ of \ object(h)} = -\frac{v}{u}$$

h' = positive (virtual images) h' = negative (real images) m = negative (real) m = positive (virtual)

Magnification refers to the ratio of the height of an image to the height of an object

Refraction of Light

Phenomenon of change in the direction of light when it passes from one transparent medium to another.

Laws of refraction of light.

(i) The incident ray, the refracted ray and the normal to the interface of two transparent media at the point of incidence, all lie in the same plane.

= constant

Snell's law of refraction.

Refractive index:

Speed of light in air $n_m=\overline{\frac{}{{
m Speed of light in medium}}}$

measurement of how much a light ray bends when it passes from one medium to another.

Lenses:

A transparent material bound by two surfaces, of which one or both surfaces are spherical.

CONVEX LENS

CONCAVE LENS

Convex Lens - Thicker in the middle, converges light. Concave Lens - Thicker at edges, diverges light.

Centre of Curvature (C1, C2) - Center of the sphere forming the lens

surface. Principal Axis - Straight line through both curvature centers.

Optical Centre (0) - Central point where light passes undeviated.

Aperture - Effective diameter of the lens. **Principal Focus (F₁, F₂)** - Point where parallel rays converge (convex)

or diverge (concave).

Focal Length (f) - Distance between the principal focus and optical center.

(i) A ray of light from the object, parallel to the principal axis

Lens formula:

$$\left(\frac{1}{v} - \frac{1}{u} = \frac{1}{f}\right)$$

$$m = \frac{Height \ of \ image(h')}{Height \ of \ object(h)} = -\frac{v}{u}$$

Power of Lens: The ability of a lens to converge or diverge the ray of light after refraction through it is called the power of the lens. It is defined as the reciprocal of focal length. SI unit = Dioptre (D)

1 dioptre is the power of a lens whose focal length is 1 metre. 1D = 1m.

power of a convex lens = positive power of concave lens = negative.

object		the image	the image		the image		
At infinity		At focus \mathbb{F}_2	Highly diminished, point-sized	Rea	d and inverted		
Beyond 2F,		Between F_2 and $2F_2$	Diminished	Rea	and inverted		
At 2F ₁		At 2F ₂	Same size	Rea	d and inverted		
Between F ₁ an	d 2F ₁	Beyond 2F ₂	Enlarged	Rea	d and inverted		
At focus F ₁		At infinity	Infinitely large or highly enlarged				
Between focus and optical centre		On the same side of the lens as the object	Enlarged	Vir	tual and erect		
	Position of the object		Position of the image		Relative size of the image		Nature of the image
At infinity		At focus F ₁		Highly diminish point-sized	ied,	Virtual and erec	

Uses of Concave Lens:

- spy holes in the doors
- glasses
- some telescopes

Uses of Convex Lens:

Diminished

Virtual and erect

- overhead projector
- camera
- focus sunlight
- simple telescope
- projector microscope
- magnifying glasses

Chapter ka KAZAANA:

- Numerical
 - o Mirror Formula
 - · Lens Formula
 - Power of Lens
- All Ray Diagrams
- Snell's Law

