Universidade Tecnológica Federal do Paraná – Toledo Engenharia da Computação – COENC

Sistemas Embarcados

Interfaceando chaves mecânicas

Tiago Piovesan Vendruscolo

 Sempre que são utilizadas chaves (switch) ou qualquer outro tipo de componente de contato mecânico em uma entrada do microcontrolador, são gerados ruídos que devem ser tratados para o correto funcionamento do circuito. Esse tratamento é conhecido como (circuitos) Debounce.

https://instrumentationtools.com/hand-switches/

- Chaves mecânicas: Botões, push button, teclados (arranjo de chaves), chaves de fim de curso, etc.
- Como uma chave deve ser conectada ao circuito?

Entrada do circuito (microcontrolador, flip-flop, etc)

- Não possui limitador de corrente.
- Sinal fica flutuando quando a chave está aberta.

Melhoria:

- Qual o nome dos resistores?
- Quando se utiliza resistores pequenos (próximo de 0Ω) são chamados pull-up fortes, pois permitem uma grande passagem de corrente (o que pode afetar a segurança do circuito). Quando se utiliza resistores grandes (acima de 1MΩ) são chamados de pull-up fracos pois pouca corrente fluirá, porém isso aumentará o tempo de comutação da porta (devida a capacitância intrínseca nos pinos de entrada T=RC).
- Obs: Alguns microcontroladores possuem resistores de pull-up e pull-down configuráveis em seus drivers de entrada.

 Durante o fechamento da chave, duas placas metálicas entram em contato, porém, inicialmente o contato não é perfeito, gerando ruído.

Monte o circuito:

- Problemas:
 - Em circuitos sequenciais, o ruído pode levar os flip-flops comutarem indevidamente.
 - Em um contador de pulsos, podem ocorrer mais incrementos do que o desejado.

 Solução: Circuitos de rejeição de ruído, ou Debounce. Isso pode ser implementado por: software e/ou hardware.

Hardware:

1. Debounce com LATCH RS. Método mais eficaz, porém pouco utilizado devido à necessidade de usar uma chave H-H (3 pinos), ou um CI extra para a porta NOT.

- Componentes utilizados:
 - Porta NAND 7400
 - Porta NOT 7404

Botão pressionado (VCC para GND)

Botão solto (GND para VCC)

Hardware

2. *Debounce* com circuito RC: O ruído da chave pode ser anulado por um filtro capacitivo.

Chave normalmente aberta → Saída em nível baixo.

Chave normalmente aberta → Saída em nível alto.

Constante de tempo = RC

Resultado:

- Que tipo de problema isso acarretará?
- Como resolver?
- Monte o circuito

Circuito RC com porta Schmitt trigger.

Tem versões inversoras e não-inversoras

Resultado:

Resultado (monte o circuito):

V _{CC} 2G 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1 20 19 18 17 16 15 14 13 12 11 1 2 3 4 5 6 7 8 9 10 1G 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND	_ SN54//4LS244			
1 2 3 4 5 6 7 8 9 10	V _{CC} 2G 1Y1 2A4 1Y2 2A3 1Y3 2A2 1Y4 2A1			
1 2 3 4 5 6 7 8 9 10 16 1A1 2Y4 1A2 2Y3 1A3 2Y2 1A4 2Y1 GND	20 19 18 17 16 15 14 13 12 11			
	1 2 3 4 5 6 7 8 9 10			

CNE4/741 CO44

Inputs		Output
G	Α	Y
L	L	L
L	Н	н
Н	X	Z

L = LOW Logic Level

H = HIGH Logic Level

X = Either LOW or HIGH Logic Level

Z = High Impedance

- Circuito RC com porta Schmitt trigger.
 - Calculando para quando fecha a chave...

$$V_{cap} = V_{inicial}. (e^{\frac{-t}{RC}})$$

• Resolvendo para R:

$$R = \frac{-t}{C.\ln\left(\frac{V_{th}}{V_{inicial}}\right)}$$

 $V_{inicial}$: tensão inicial no capacitor

 V_{cap} : tensão limiar (V_{th}) em que o Schmitt Trigger muda de estado, indo para 0.

R: resistor em que o capacitor se descarrega.

t : Delay, em segundos

Para uso em projeto comercial, escolhe-se o valor do capacitor (componente em que o preço varia bastante de acordo com o tipo) e calcula-se o resistor.

Para mais informações: GANSSLE, Jack G. *A Guide to Debouncing*, The Ganssle Group, Baltimore, 2008. http://www.eng.utah.edu/~cs5780/debouncing.pdf

 Dependendo como o circuito for projetado, a soma R1 + R2 acaba se tornando muito alta, atenuando demais a tensão Vcc, nesse caso, adiciona-se um diodo para anular o R2. Isso também reduz o tempo de carregamento do capacitor C1, tornando o circuito mais rápido.

http://www.labbookpages.co.uk/electronics/debounce.html

Componentes utilizados: R1= 10k, R2= 120k, C1= 1uF, D1= 1N4007

Sem diodo ~ 400 ms – calculado: 130 ms

Com diodo ~ 50 ms – calculado: 10 ms

- Hardware:
 - 3. Com o uso de circuitos integrados
 - MAX6816, MAX6817, MAX6818: A partir de U\$2,00

MC14490: A partir de U\$4.00

MC14490

Existem outras opções, mais caras...

Próxima aula

Uso de IDEs / Interfaceamento de botões (debounce) - Software

