SAMMANFATTNING OM GRADIENT, DIVERGENS, ROTATION, NABLAOPERATOR

Ofta förekomande uttryck och operatorer i R³:

GRADIENT, DIVERGENS, ROTATION

Vi betraktar funktioner med rektangulära koordinater x,y,z.

Låt f(x, y, z) vara en deriverbar **skalärfunktion** (eller **skalärfält**) och $\vec{F} = (P(x, y, z), Q(x, y, z), R(x, y, z))$ en deriverbar **vektorfunktion** (eller **vektorfält**).

Nedan definierar vi gradient, divergens och rotation som är ofta förekommande uttryck inom matematiken och dess tillämpningar.

GRADIENT

Gradienten av f(x, y, z) är vektorfunktion (=vektorfält) som betecknas grad(f) och definieras enligt följande:

$$grad(f) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z})$$

Anmärkning: Om $f(x_1, x_2, ..., x_n)$ så definieras $grad(f) = (\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n})$

DIVERGENS

Divergensen av $\vec{F} = (P(x, y, z), Q(x, y, z), R(x, y, z))$ är en skalärfunktion som betecknas $div(\vec{F})$ och definieras av

$$div(\vec{F}) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Anmärkning: På liknande sätt använder vi divergensen på n-dimensionella vektorfält.

ROTATION

Rotationen av $\vec{F} = (P(x, y, z), Q(x, y, z), R(x, y, z))$ är en vektorfunktion som betecknas $rot(\vec{F})$ (eller $curl(\vec{F})$) och definieras av

$$rot(\vec{F}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z})\vec{i} + (\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x})\vec{j} + (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})\vec{k}$$

$$=(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})$$

Anmärkning: Till skillnad från divergensen är **rotationen** definierad **endast på tredimensionella** vektorfält. Om vi vill använda rotationen på tvådimensionella problem i xy planet, måste vi skriva om fältet som tredimensionellt genom att lägga till 0 som den tredje koordinaten.

Vi sammanfattar standardtillämpning av grad div och rot i R³:

Gradienten tillämpas på ett skalärfält, resultat är ett vektor fält.

Divergensen tillämpas på ett vektorfält, resultat är ett skalärfält fält;

Rotationen tillämpas på ett vektorfält, resultat är ett vektor fält

Anmärkning: Inom strömningslära (och andra tekniska tillämpningar) används divergensen även på matrisfunktioner genom att tillämpa div på varje kolonnvektor.

DEL (NABLA) OPERATOR

Följande symboliska vektor (vektoriell differential operator)

$$\nabla = \vec{i} \frac{\partial}{\partial x} + \vec{j} \frac{\partial}{\partial y} + \vec{k} \frac{\partial}{\partial z} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z})$$

kallas nablaoperatorn (eller deloperator)

Med hjälp av nablaoperatorn kan vi beskriva grad, div och rot på följande sätt:

$$grad(f) = \nabla f$$

$$div(\vec{F}) = \nabla \cdot \vec{F}$$

$$rot(\vec{F}) = \nabla \times \vec{F}$$

LAPLACEOPERATORN $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ (= div(grad)) kan också skrivas med hjälp av nablaoperatorn, $\Delta = \nabla^2$.

Laplaceoperatorn tillämpad på ett skalärfält ger

$$\Delta f = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2},$$

och kan också tillämpas på ett vektorfält $\vec{F} = (P(x, y, z), Q(x, y, z), R(x, y, z))$ genom att tillämpa $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ på varje koordinatfunktion,

$$\Delta \vec{F} = \nabla^2 \vec{F} = (\Delta P, \Delta Q, \Delta R)$$
.

Uppgift 1. Bestäm a) ∇f och b) Δf om $f = xe^y + z^2$.

Lösning:

a)
$$\nabla f = grad(f) = (\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}) = (e^y, xe^y, 2z)$$

b)
$$\Delta f = \nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0 + xe^y + 2 = 2 + xe^y$$

Uppgift 2. Bestäm

a)
$$div(\vec{F})$$
, b) $grad(div(\vec{F}))$ och c) $rot(\vec{F})$ då $\vec{F} = (y + x^2, z, x^2)$

Lösning

a) Eftersom
$$div(\vec{F}) = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$
 har vi

$$\vec{F} = (y + x^2, z, x^2) \implies div(\vec{F}) = 2x + 0 + 0 = 2x$$
.

Svar a)
$$div(\vec{F}) = 2x$$

Answer a) $div(\vec{F}) = 2x$

b) Från
$$grad(\varphi) = (\frac{\partial \varphi}{\partial x}, \frac{\partial \varphi}{\partial y}, \frac{\partial \varphi}{\partial z})$$
 har vi (för $\varphi = div(\vec{F})$)

$$grad(div(\vec{F})) = (2,0,0)$$

Svar b) $grad(div(\vec{F})) = (2,0,0)$

c)
$$rot(\vec{F}) \stackrel{def}{=} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y + x^2 & z & x^2 \end{vmatrix} = -1\vec{i} - 2x\vec{j} - \vec{k} = (-1, -2x, -1)$$

Svar c) $rot(\vec{F}) = (-1, -2x, -1)$

Uppgift 3. Bestäm $grad(div(rot(\vec{F})))$ om $\vec{F} = (x + y + z, x^2 + z^2, x + y)$

Lösning

$$\vec{F} = (x + y + z, x^2 + z^2, x + y)$$

$$rot(\vec{F}) = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ (x+y+z) & (x^2+z^2) & (x+y) \end{vmatrix} = (1-2z)\vec{i} - (1-1)\vec{j} + (2x-1)\vec{k}$$

$$=(1-2z, 0, 2x-1)$$

Alltså $div(curl(\vec{F})) = 0$ och därmed $grad(div(curl(\vec{F}))) = (0,0,0) = \vec{0}$

Svar: $grad(div(rot(\vec{F}))) = (0,0,0) = \vec{0}$

Uppgift 4. Låt $\vec{F} = (P, Q, R)$ vara ett C^1 fält definierat i ett öppet område $\Omega \subseteq R^3$.

Bevisa att $div(rot(\vec{F}) = 0$.

Lösning: Enligt definitionen är $rot(\vec{F}) = (\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}, \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}, \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y})$.

Därför
$$div(rot(\vec{F}) = \frac{\partial}{\partial x} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) + \frac{\partial}{\partial y} \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) + \frac{\partial}{\partial z} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) =$$

$$= \frac{\partial^2 R}{\partial x \partial y} - \frac{\partial^2 Q}{\partial x \partial z} + \frac{\partial^2 P}{\partial y \partial z} - \frac{\partial^2 R}{\partial y \partial x} + \frac{\partial^2 Q}{\partial z \partial x} - \frac{\partial^2 P}{\partial z \partial y} = 0, \quad \text{vad skulle bevisas.}$$

Vi utnyttjade att, eftersom fältet är ett C^l -fält (dvs kontinuerliga partiella derivator), blandade partiella derivator är lika, t ex $\frac{\partial^2 R}{\partial x \partial y} = \frac{\partial^2 R}{\partial y \partial x}$.

Uppgift 5. Bestäm $\Delta f + \nabla \cdot (\nabla \times (\nabla f))$ om $f(x, y, z) = x^3 + y^2 + z$.

Svar: $\Delta f + \nabla \cdot (\nabla \times (\nabla f)) = \Delta f + div(rot(gradf)) = 6x + 2$

Uppgift 6. Låt $f = x + y^2 + z^3$. Bestäm vilket (vilka) av följande uttryck är definierad på korrekt sätt och beräkna det.

a) grad(grad(f)) b) div(rot(f)) c) grad(div(grad(f)))

Lösning:

- a) Gradient tillämpas på skalärfunktion och resultat är en vektorfunktion. Uttrycket är **inte** definierad eftersom grad(f) är vektorfunktion och därmed är grad(grad(f)) INTE definierad.
- b) Rotationen tillämpas på vektorfält och inte på skalärfält. Därmed är rot(f) INTE definierad.
- c) Uttrycket är korrekt definierad:

$$grad(f) = (1, 2y, 3z^2)$$

div(grad(f)) = 2 + 6z och slutligen

$$grad(div(grad(f))) = (0,0,6)$$

Svar c) grad(div(grad(f))) = (0,0,6)

Definition1. Vi säger att ett vektorfält \vec{F} , definierad i en öppen mängd Ω , är potentialfält om det finns en skalär funktion U(x,y,z) så att $\vec{F} = grad(U)$.

Definition2. Vi säger att ett vektorfält \vec{F} , definierad i en öppen mängd Ω , är virvelfritt om $rot(\vec{F}) = \vec{0}$.

Uppgift 7. Låt \vec{F} vara ett potentialfält med kontinuerliga partiella derivator (kortare C^1 fält). Visa att \vec{F} är virvelfritt.

Lösning: Enligt antagande
$$\vec{F} = grad(U) = (\frac{\partial U}{\partial x}, \frac{\partial U}{\partial y}, \frac{\partial U}{\partial z})$$

Därför

$$rot(\vec{F}) \stackrel{\text{def}}{=} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial U}{\partial x} & \frac{\partial U}{\partial y} & \frac{\partial U}{\partial z} \end{vmatrix} = \vec{i} \left(\frac{\partial^{2} U}{\partial y \partial z} - \frac{\partial^{2} U}{\partial z \partial y} \right) - \vec{j} \left(\frac{\partial^{2} U}{\partial x \partial z} - \frac{\partial^{2} U}{\partial z \partial x} \right) + \vec{k} \left(\frac{\partial^{2} U}{\partial x \partial y} - \frac{\partial^{2} U}{\partial y \partial x} \right) = (0,0,0)$$

Vi utnyttjade att, eftersom fältet är ett C^1 -fält (dvs kontinuerliga partiella derivator), blandade partiella derivator är lika, t ex $\frac{\partial^2 U}{\partial x \partial y} = \frac{\partial^2 U}{\partial y \partial x}$.

Uppgift 8.

A) I nedanstående ekvation (eq 1) är $\vec{U} = (u, v, w)$. Funktioner ρ, φ, Γ, S , u, v, w är reella funktioner av t, x, y and z.

Skriv ekvationen

$$\frac{\partial(\rho\varphi)}{\partial t} + \nabla \bullet (\rho\varphi\vec{U}) = \nabla \bullet (\Gamma \cdot (\nabla\varphi)) + S \qquad (\text{ekv 1})$$

utan operatorer div, ∇ , Δ , div, rot or grad.

B) Låt
$$\rho = 2$$
, $\Gamma = 3$, $\vec{U} = (1, 2, 4)$.

Bestäm uttrycket S(x,y,z) i (ekv 1) om vi vet att $\varphi(x,y,z) = x + y^2 + z^3$ satisfierar ekvationen.

Lösning:A)

$$\frac{\partial(\rho\varphi)}{\partial t} + \nabla \bullet (\rho\varphi\vec{U}) = \nabla \bullet (\Gamma \cdot (\nabla\varphi)) + S \Rightarrow$$

$$\frac{\partial(\rho\varphi)}{\partial t} + div(\rho\varphi\vec{U}) = div(\Gamma grad\varphi) + S \Rightarrow$$

$$\frac{\partial(\rho\varphi)}{\partial t} + div(\rho\varphi u, \rho\varphi v, \rho\varphi w) = div(\Gamma\frac{\partial\varphi}{\partial x}, \Gamma\frac{\partial\varphi}{\partial y}, \Gamma\frac{\partial\varphi}{\partial z}) + S \Rightarrow$$

$$\frac{\partial(\rho\varphi)}{\partial t} + \frac{\partial(\rho\varphi u)}{\partial x} + \frac{\partial(\rho\varphi v)}{\partial y} + \frac{\partial(\rho\varphi w)}{\partial z} = \frac{\partial}{\partial x} \left(\Gamma \frac{\partial\varphi}{\partial x}\right) + \frac{\partial}{\partial y} \left(\Gamma \frac{\partial\varphi}{\partial y}\right) + \frac{\partial}{\partial z} \left(\Gamma \frac{\partial\varphi}{\partial z}\right) + S \qquad (ekv2)$$

B) Vi substituerar $\rho = 2$, $\Gamma = 3$, $\vec{U} = (1, 2, 4)$ och $\varphi(x, y, z) = x + y^2 + z^3$ i (ekv2):

$$0 + \frac{\partial(2\varphi)}{\partial x} + \frac{\partial(4\varphi)}{\partial y} + \frac{\partial(8\varphi)}{\partial z} = \frac{\partial}{\partial x} \left(3\frac{\partial \varphi}{\partial x} \right) + \frac{\partial}{\partial y} \left(3\frac{\partial \varphi}{\partial y} \right) + \frac{\partial}{\partial z} \left(3\frac{\partial \varphi}{\partial z} \right) + S$$

$$0 + 2 + 8y + 24z^2 = 0 + 6 + 18z + S.$$

Därför
$$S = -4 + 8y - 18z + 24z^2$$

Svar:
$$S = -4 + 8y - 18z + 24z^2$$