The Basics of Bergman Spaces

Jacob White* University of Nebraska Omaha

The Space $A^2(\Omega)$

Definition 1. Let $\Omega \subseteq \mathbb{C}$ be a **domain** (i.e., an open, connected set). Define

$$A^2(\Omega) = \left\{f \text{ holomorphic on } \Omega: \int_{\Omega} |f(z)|^2 \ dA(z) < \infty \right\} \subseteq L^2(\Omega)$$

where dA is the ordinary two-dimensional area measure. Then, $A^2(\Omega)$ is a complex vector space, called the **Bergman space**.

• The Bergman norm is given by

$$||f||_{A^2(\Omega)} = \left[\int_{\Omega} |f(z)|^2 dA(z) \right]^{1/2}.$$

• The standard inner product on $A^2(\Omega)$ is defined by

$$\langle f,g\rangle = \int_{\Omega} f(z)\overline{g(z)} \; dA(z).$$

^{*}Contact: jwhite3@unomaha.edu... please let me know if you have questions, feedback, or ideas on how to improve these notes! You can also make pull requests/issue requests/whatever how that works on the github repo for this document