BLUE BOTTLE COFFE

Pt 2: Analysis

Agenda

Introduction

Problem Statement

Data Description and Preparation

Model Building and Evaluation

Key Findings and proposals

Concerns and Resolutions

Hello!

Alondra Espinoza

Business Data Analytics

International Business Studies

PROBLEM STATEMENT

Problem:

- Low market share
 - ~99 locations
 - O Starbucks: 38,038
 - Dunkin Donuts: 13,200

Proposal:

- Analyze Salary prediction data to identify high paying costumers and where they reside
- Decision tree, Logistic regression

 Posesses a Luxury atmospshere

Data Description and Preparation

5

PhD

Rural

Director

Kaggle: Salary prediction data

Google Colab

7 columns, 1000 records:

Education, Experience, Location, Job

title, age, gender, salary

```
import pandas as pd

# Adjust this path with the correct filename from the directory
file_path = "/content/dataset/salary_prediction_data.csv"

df = pd.read_csv(file_path)
print(df.head())
```

	Education	Experience	Location	Job_Title	Age	Gender	Sa
0	High School	8	Urban	Manager	63	Male	84620.05
1	PhD	11	Suburban	Director	59	Male	142591.25
2	Bachelor	28	Suburban	Manager	61	Female	97800.25
3	High School	29	Rural	Director	45	Male	96834.67
4	PhD	25	Urban	Analyst	26	Female	132157.78

print(df.shape)

(1000, 7)

Preparation

- Removed: Experience
- Change salary to integer
- New column "Salary_Category"
- Null values

```
import pandas as pd
 import numpy as np
 # Create a new column for Salary with standardized labels
 df['Salary_Category'] = np.where(df['Salary'] >= 100000, '>=100k', '<100k')</pre>
 print(df.head())
 # Check the result to ensure uniform labels
 # print(df[['Salary', 'Salary_Category']].head())
      Education Location Job_Title Age Gender Salary_Category
 0 High School
                                                   84620
                    Urban
                            Manager
                                            Male
                                                                    <100k
            PhD Suburban
                           Director
                                            Male
                                                  142591
                                                                   >=100k
                                                   97800
       Bachelor Suburban
                            Manager
                                      61 Female
                                                                    <100k
                                             Male
                                                    96834
                                                                    <100k
    High School
                    Rural
                           Director
                                      45
                                          Female 132157
                    Urban
                            Analyst
                                      26
                                                                   >=100k
] df.head(20)
      Education Location Job_Title Age Gender Salary_Category
  0 High School
                    Urban
                                                   84620
                                                                   <100k
                             Manager
                                                 142591
                 Suburban
                             Director
                                            Male
                                                                   >=100k
                 Suburban
                                      61
                                          Female
                                                   97800
                                                                    <100k
        Bachelor
                             Manager
  3 High School
                    Rural
                             Director
                                      45
                                            Male
                                                   96834
                                                                   <100k
           PhD
                                      26
                    Urban
                              Analyst
                                          Female
                                                 132157
                                                                   >=100k
```

156312

Female

>=100k

Identify features and target variable

- dummy variables for categorical predictors
- Encode target variable

5

Data Exploration

	count
Salary_Catego	ſ
>=100k	560
<100k	440

Director 275 Analyst 255 241 Manager 229 Engineer Name: count, dtype: int64 Location Suburban 345 345 Rural 310 Urban Name: count, dtype: int64

Job_Title

CLASSIFICATION ANALYSIS

Output variable (Salary_Category) is categorical (<100k, >=100K)

MODELS

Decision Tree

- Pros: Easy to interpret, handles both numerical and categorical input variables, Can be improved (Random Forest, Bagging, Boosting)
- Cons: Prone to overfitting, unbalanced data can lead to bias
- Logistic Regression
 - Pros: Easy to interpret, efficient and accurate
 - Ons: Limited to binary classification, limited to linear

relationships

Model Performance

Decision tree

Training set accuracy: 99%

Test set: 85%

Actual/Predicted	<100k	=>100k
<100k	392	1
=>100k	1	500

Model Performance

Decision tree

Training set accuracy after pruning: 86%

Actual/Predicted	<100k	=>100k
<100k	39	8
=>100k	7	46

Decision Tree

```
Education_High School <= 0.5
entropy = 0.989
samples = 800
value = [351, 449]
class = over 100k
```

- Those who posses a highschool diploma are more likely
- I to achive a salary of or more than 100k
- Director and Phd

Decision Tree

	Importance
Education_High School	0.453773
Education_PhD	0.252261
Education_Master	0.131606
Job_Title_Director	0.122038
Age	0.038380
Job_Title_Engineer	0.001942
Location_Suburban	0.000000
Location_Urban	0.000000
Job_Title_Manager	0.000000
Gender_Male	0.000000

Top Feature Importance

Education_High School

Education_PhD

Education_Master

Model Performance

Logistic Regression

Training set accuracy: %87

Test set: 85%

Actual/Predicted	<100k	=>100k
<100k	260	43
=>100k	48	349

Logistic Regression

	0dds
Education_PhD	13.383412
Job_Title_Director	4.268618
Education_Master	3.147870
Job_Title_Manager	2.191963
Location_Urban	1.989866
Location_Suburban	1.445671
Job_Title_Engineer	1.259980
Age	0.983812
Gender_Male	0.971556
Education_High School	0.354086

Top Feature Importance

Education_PhD

Education_Master

Improved Model Improvement

Not all of these methods increase accuracy, but they should help reduce overfitting

Decision Tree

Test set accuracy: %85

Bagging: 86%

Boosted model: 84%

Random Forest: 82%

Logistic regression

Test set accuracy: %85

K-fold

Key Findings and Proposals

Education related feature

Location near schools(Universities)

Student discount/special

CONCERNS/RESOLUTIONS

- One hot encoding issue
 - Ordinal encoding
- Dataset was limited
 - Access better dataset
- Other analysis
 - Foot traffic analysis

Thank you for listening!

Sources Used

- Fonts
 - TAN Mon Cheri
 - Poppins Medium
 - Poppins Light
 - The Seasons
- Google Colab
- Kaggle
 - https://www.kaggle.com/datasets/mrsimple07/salary-prediction-data
- Website
 - https://bluebottlecoffee.com/us/eng/shop/coffee