Lecture14: CMOS amplifier, common-source (1)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Electrical Engineering and Coumputer Science
Gwangju Institute of Science and Technology

Simple biasing (1/3)

A better way to provide the gate voltage

$$V_{GS} = \frac{R_2}{R_1 + R_2} V_{DD} \tag{17.10}$$

The drain current is

$$I_D = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} \left(\frac{R_2}{R_1 + R_2} V_{DD} - V_{TH} \right)^2 \quad (17.12)$$

Simple biasing (2/3)

- How to apply the small-signal input
 - Use a capacitor!

Simple biasing (3/3)

DC and AC

Common-source amplifer

- The source terminal is the reference.
 - The small-signal gate voltage changes the drain current.
 - The output voltage, $V_{out} = V_{DD} I_D R_D$, is affected.

Small-signal model

- Let's draw its small-signal model together!
 - A transistor small-signal model is introduces.
 - Resistors are resistors.

Gain

- Now, calculate the v_{out} .
 - KCL for the v_{out} node gives

$$v_{out} = -g_m(R_D||r_0)v_{in}$$

