Maximum Classifier Discrepancy for Unsupervised Domain Adaptation

CVPR 2018 이 정 수

Task

What is Domain Adaptation?

source domain

Source image (GTA5)

Source images (SVHN)

target domain

Target image (CityScapes)

Target images (MNIST)

Train: source image, source label, target image

Test: predicted label of target image == target label?

Motivation

- Previous: only considers domain features, not class-specific features
- Proposed: also consider class-specific features for domain alignment

Method

Method

Step B : Maximize discrepancy on target (Fix G)

Step C: Minimize discrepancy on target (Fix F₁, F₂)

Maximize Discrepancy

Minimize Discrepancy

$$d(p_1, p_2) = \frac{1}{K} \sum_{k=1}^{K} |p_{1k} - p_{2k}|$$

Method

Loss functions in 3 steps

Step A

$$egin{aligned} \min_{G,F_1,F_2} \mathcal{L}(X_s,Y_s), \ \mathcal{L}(X_s,Y_s) &= -\mathbb{E}_{(\mathbf{x_s},y_s) \sim (X_s,Y_s)} \sum_{k=1}^K \mathbf{1}_{[k=y_s]} \log p(\mathbf{y}|\mathbf{x}_s) \end{aligned}$$

Step B

$$\min_{F_1, F_2} \mathcal{L}(X_s, Y_s) - \mathcal{L}_{adv}(X_t)$$

$$\mathcal{L}_{adv}(X_t) = \mathbb{E}_{\mathbf{x_t} \sim X_t}[d(p_1(\mathbf{y}|\mathbf{x_t}), p_2(\mathbf{y}|\mathbf{x_t}))]$$

Step C $\min_{C} \mathcal{L}_{\operatorname{adv}}(X_t)$

Step B: Maximize discrepancy on target (Fix G)

Step C: Minimize discrepancy on target (Fix F₁, F₂)

Toy Datasets

- Red: Source A / Green: Source B
- Blue: target samples (source samples rotated)
- Dashed/normal lines: two decision boundaries (F1, F2)
- Results of both decision boundary 0: pink / 1: light green

Digits Datasets

	SVHN	SYNSIG	MNIST	MNIST*	USPS
METHOD	to	to	to	to	to
	MNIST	GTSRB	USPS	USPS*	MNIST
Source Only	67.1	85.1	76.7	79.4	63.4
	Distrib	ution Matchi	ng based Met	hods	
MMD † [21]	71.1	91.1	-	81.1	-
DANN † [7]	71.1	88.7	77.1±1.8	85.1	73.0 ± 0.2
DSN † [4]	82.7	93.1	91.3	-	-
ADDA [39]	76.0 ± 1.8	-	89.4±0.2	-	90.1 ± 0.8
CoGAN [19]	-	-	91.2±0.8	-	89.1 ± 0.8
PixelDA [3]	-	-	-	95.9	-
Ours $(n=2)$	94.2±2.6	93.5±0.4	92.1±0.8	93.1±1.9	90.0±1.4
Ours $(n=3)$	95.9±0.5	94.0±0.4	93.8±0.8	95.6±0.9	91.8 ± 0.9
Ours $(n=4)$	96.2 ±0.4	94.4 ±0.3	94.2 ±0.7	96.5 ±0.3	94.1 ±0.3
		Other M	lethods		
ATDA † [32]	86.2	96.2	-	-	-
ASSC [11]	95.7±1.5	82.8±1.3	-	-	-
DRCN [9]	82.0±0.1	-	91.8±0.09	-	73.7±0.04

- n: # of times repeat step C for same mini-batch.

VisDA (Object classification)

- Source domain: Synthetic objects / Target domain: MSCOCO (real objects)

Method	plane	bcycl	bus	car	horse	knife	mcycl	person	plant	sktbrd	train	truck	mean
Source Only									81.0		73.5	8.5	52.4
MMD [21]	87.1	63.0	76.5	42.0	90.3	42.9	85.9	53.1	49.7	36.3	85.8	20.7	61.1
DANN [7]											82.8	7.8	57.4
Ours $(n=2)$	81.1	55.3	83.6	65.7	87.6	72.7	83.1	73.9	85.3	47.7	73.2	27.1	69.7
Ours $(n=3)$												29.7	1
Ours $(n=4)$	87.0	60.9	83.7	64.0	88.9	79.6	84.7	76.9	88.6	40.3	83.0	25.8	71.9

Semantic Segmentation

- Source domain: GTA5, Synthia (synthetic) / Target domain: Cityscapes (real objects)

Network	method	mIoU	road	sdwk	bldng	wall	fence	pole	light	sign	vgttn	trrn	sky	person	rider	car	truck	bus	train	mcycl	bcycl
VGG-16	Source Only	24.9	25.9	10.9	50.5	3.3	12.2	25.4	28.6	13.0	78.3	7.3	63.9	52.1	7.9	66.3	5.2	7.8	0.9	13.7	0.7
	FCN Wld [13]	27.1	70.4	32.4	62.1	14.9	5.4	10.9	14.2	2.7	79.2	21.3	64.6	44.1	4.2	70.4	8.0	7.3	0.0	3.5	0.0
	CDA (I) [42]	23.1	26.4	10.8	69.7	10.2	9.4	20.2	13.6	14.0	56.9	2.8	63.8	31.8	10.6	60.5	10.9	3.4	10.9	3.8	9.5
	Ours (k=2)	28.0	87.4	15.4	75.5	17.4	9.9	16.2	11.9	0.6	80.6	28.1	60.2	32.5	0.9	75.4	13.6	4.8	0.1	0.7	0.0
	Ours (k=3)	27.3	86.0	10.5	75.1	20.0	2.9	19.4	8.4	0.7	78.4	19.4	74.8	23.2	0.3	74.1	14.3	10.4	0.2	0.1	0.0
	Ours (k=4)	28.8	86.4	8.5	76.1	18.6	9.7	14.9	7.8	0.6	82.8	32.7	71.4	25.2	1.1	76.3	16.1	17.1	1.4	0.2	0.0
DRN-105	Source Only	22.2	36.4	14.2	67.4	16.4	12.0	20.1	8.7	0.7	69.8	13.3	56.9	37.0	0.4	53.6	10.6	3.2	0.2	0.9	0.0
	DANN [7]	32.8	64.3	23.2	73.4	11.3	18.6	29.0	31.8	14.9	82.0	16.8	73.2	53.9	12.4	53.3	20.4	11.0	5.0	18.7	9.8
	Ours (k=2)	39.7	90.3	31.0	78.5	19.7	17.3	28.6	30.9	16.1	83.7	30.0	69.1	58.5	19.6	81.5	23.8	30.0	5.7	25.7	14.3
	Ours (k=3)	38.9	90.8	35.6	80.5	22.9	15.5	27.5	24.9	15.1	84.2	31.8	77.4	54.6	17.2	82.0	21.6	29.0	1.3	21.8	5.3
	Ours (k=4)	38.1	89.2	23.2	80.2	23.6	18.1	27.7	25.0	9.3	84.4	34.6	79.5	53.2	16.0	84.1	26.0	22.5	5.2	16.7	4.8

Table 3. Adaptation results on the semantic segmentation. We evaluate adaptation from GTA5 to Cityscapes dataset.

Network	method	mIoU	road	sdwlk	bldng	wall	fence	pole	light	sign	vgttn	sky	prsn	ridr	car	bus	mcycl	bcycl
VGG-16	Source Only [42]	22.0	5.6	11.2	59.6	0.8	0.5	21.5	8.0	5.3	72.4	75.6	35.1	9.0	23.6	4.5	0.5	18.0
	FCN Wld [13]	20.2	11.5	19.6	30.8	4.4	0.0	20.3	0.1	11.7	42.3	68.7	51.2	3.8	54.0	3.2	0.2	0.6
	CDA (I+SP) [42]	29.0	65.2	26.1	74.9	0.1	0.5	10.7	3.7	3.0	76.1	70.6	47.1	8.2	43.2	20.7	0.7	13.1
DRN_105	Source Only	23.4	14.9	11.4	58.7	1.9	0.0	24.1	1.2	6.0	68.8	76.0	54.3	7.1	34.2	15.0	0.8	0.0
	DANN [7]	32.5	67.0	29.1	71.5	14.3	0.1	28.1	12.6	10.3	72.7	76.7	48.3	12.7	62.5	11.3	2.7	0.0
	Ours (k=2)	36.3	83.5	40.9	77.6	6.0	0.1	27.9	6.2	6.0	83.1	83.5	51.5	11.8	78.9	19.8	4.6	0.0
	Ours (k=3)	37.3	84.8	43.6	79.0	3.9	0.2	29.1	7.2	5.5	83.8	83.1	51.0	11.7	79.9	27.2	6.2	0.0
	Ours (k=4)	37.2	88.1	43.2	79.1	2.4	0.1	27.3	7.4	4.9	83.4	81.1	51.3	10.9	82.1	29.0	5.7	0.0

Table 4. Adaptation results on the semantic segmentation. We evaluate adaptation from Synthia to Cityscapes dataset.

THE END

THANK YOU!