Analysis II Homework 1

Nutan Nepal

January 20, 2023

Pack Pledge: I have neither given nor received unauthorized aid on this test or assignment.

1. (a) Show that if P is any partitions of [a, b], and Q is a refinement of P (i.e. $P \subseteq Q$), then

$$L(f, P) \le L(f, Q) \le U(f, Q) \le U(f, P).$$

- (b) Let P and Q be any partitions of [a, b]. Show that $L(f, P) \leq U(f, Q)$.
 - (a) Let $P = \{x_0, x_1, \ldots, x_n\}$ and $Q = \{y_0, y_1, \ldots, y_m\}$ be the given partitions. Then, each interval $I_i = [x_i, x_{i+1}]$ of P contains subintervals $J_1 = [x_i = y_\alpha, y_{\alpha+1}], \ldots, J_k = [y_{\alpha+k-1}, y_{\alpha+k} = x_{i+1}]$ of Q and the length of the intervals J_k add up to the length of I. Furthermore, $m_I = \inf_{x \in I} f(x) \leq m_{J_\beta}$ and $M_I = \sup_{x \in I} f(x) \geq M_{J_\beta}$ for each $\beta = 1, \ldots, k$. Then for each $i = 0, \ldots, n-1$,

$$m_I \cdot (x_{i+1} - x_i) \le \sum_{p=1}^k m_{J_p} \cdot (x_{i+1} - x_i) = \sum_{p=1}^k m_{J_p} \cdot (y_{\alpha+p-1} - y_{\alpha+p}).$$

$$L(f, P) = \sum_{i=0}^{n} m_{I} \cdot (x_{i+1} - x_{i}) \le L(f, Q).$$

For upper sums, we obtain similar result with $U(f,Q) \leq U(f,P)$ and we have $L(f,P) \leq U(f,P)$ because $m_I \leq M_I$ for all intervals I. Combining the inequalities, we obtain the required inequality

$$L(f, P) \le L(f, Q) \le U(f, Q) \le U(f, P).$$

- (b) Either P is a refinement of Q or Q is a refinement of P. For both cases we see that $L(f,P) \leq U(f,Q)$ from the result in (a).
- 2. Let $f:[a,b]\to\mathbb{R}$ be continuous. Show that f is Riemann integrable on [a,b].

Since f is continuous on the closed interval, it is uniformly continuous on [a, b]. For any given $\varepsilon > 0$ we have $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon/(b - a)$ at all points

 $x, y \in [a, b]$. Then, let $P = \{x_0, x_1, \dots, x_n\}$ be a partition on [a, b] such that $x_{i+1} - x_i < \delta$. Then, if m_i and M_i denote the infinimum and supremum of f(x) on the partition $[x_i, x_i + 1]$, we have $M_i - m_i < \varepsilon/(b-a)$. Multiplying by $(x_{i+1} - x_i)$ and summing over all i we get

$$U(f, P) - L(f, P) < (\varepsilon/(b-a)) \sum_{i=0}^{n-1} (x_{i+1} - x_i) = \varepsilon.$$

Since, ε was arbitrary, we see that f is Riemann integrable.

3. Show that if $f:[a,b] \to \mathbb{R}$ is monotone (without loss of generality, assume that f is increasing), then f is Riemann integrable on [a,b].

Let $P_n = \{x_0, x_1, \dots, x_n\}$ be the partition of [a, b] into n equal intervals of length (b - a)/n. Let m_i and M_i denote the infinimum and supremum of the function f on the interval $[x_i, x_{i+1}]$. Then since f is monotonic, $m_i = f(x_i)$ and $M_i = f(x_{i+1})$. So,

$$L(f, P_n) = \sum_{i=0}^{n-1} f(x_i)(x_{i+1} - x_i), \text{ and } U(f, P_n) = \sum_{i=0}^{n-1} f(x_{i+1})(x_{i+1} - x_i).$$

Since $x_{i+1} - x_i = (b - a)/n$, we have

$$U(f, P_n) - L(f, P_n) = \frac{b - a}{n} \sum_{i=0}^{n-1} f(x_{i+1}) - f(x_i) = \frac{b - a}{n} (f(b) - f(a)).$$

We see that the difference goes to 0 as $n \longrightarrow 0$. Hence f is Riemann integrable.

4. If f and g are Riemann-integrable on [a,b] and $f(x) \leq g(x)$ for all $x \in [a,b]$, show that

$$\int_{a}^{b} f(x)dx \le \int_{a}^{b} g(x)dx.$$

Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition for [a, b]. We define a function h(x) = g(x) - f(x) and see that $h(x) \ge 0$ for all x in the interval [a, b]. Let m_i and M_i denote the infinimum and supremum of h(x) on the interval (x_i, x_{i+1}) . Then $0 \le m_i \le M_i$ for all i and since g and f are Riemann integrable, so is h. Hence

$$\int_a^b h(x)dx = \int_a^b g(x)dx - \int_a^b f(x)dx \ge 0$$

which gives the required result.

- 5. Let $f:[0,1] \to \mathbb{R}, \ f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q} \end{cases}$ (the Dirichlet function).
 - (a) Show that f is discontinuous everywhere on [0,1]

- (b) Show that f is not Riemann integrable.
 - (a) Let $x_0 \in \mathbb{Q}$. Then, for $\varepsilon = 1$, we see that there exists no $\delta > 0$ such that $f(x) \in (0,2)$ for all $x \in (x_0 \delta, x_0 + \delta)$ since every interval $(x_0 \delta, x_0 + \delta)$ contains another irrational point. Hence, f is not continuous on rational points. Similarly, f is not continuous on irrational points in [0,1] either.
 - (b) For any partition $P = \{x_0, x_1, \dots, x_n\}$ of [0, 1], since every intervals contain rational as well as irrational points, inf f(x) = 0 and $\sup f(x) = 1$ for each interval. Then L(f, P) = 0 and U(f, P) = 1 for every partition. For $\varepsilon = 1$ we see that no such partition satisfying U(f, P) L(f, P) exists. Hence, f is not Riemann-integrable.
- 6. Let $f:[a,b]\to\mathbb{R}$ be bounded and Riemann integrable. Suppose that $F:[a,b]\to\mathbb{R}$ is continuous and

$$F'(x) = f(x)$$
, for all $x \in (a, b)$

Show that

$$F(b) - F(a) = \int_{a}^{b} f(x)dx$$

Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition for [a, b]. Then for any interval $I = [x_i, x_{i+1}]$, by mean value theorem, we have

$$F(x_{i+1}) - F(x_i) = F'(x_{i_k})(x_{i+1} - x_i) = f(x_{i_k})(x_{i+1} - x_i)$$

for some $x_{i_k} \in (x_i, x_{i+1})$. Let m_i and M_i denote the infinimum and supremum of f(x) on the interval (x_i, x_{i+1}) . Then $m_i \leq f(x_{i_k}) \leq M_i$ and taking sum over all i from 0 to n-1, we obtain

$$L(f, P) \le \sum_{i=0}^{n-1} F(x_{i+1}) - F(x_i) \le U(f, P).$$

However, since P was an arbitrary partition and f is integrable, we have

$$\int_{a}^{b} f(x)dx = \sum_{i=0}^{n-1} F(x_{i+1}) - F(x_i) = F(b) - F(a).$$

7. Recall the Fundamental Theorem of Calculus: If f is continuous on [a, b] and $F(x) = \int_a^x f(t)dt$, then $F \in C^1[a, b]$ and F'(x) = f(x).

Now assume that f is Riemann integrable on [a, b] (and implicitly on each subinterval of [a, b]) and $F(x) = \int_a^x f(t)dt$. True or false: F is differentiable. Justify your answer.

We define f piecewise as follows: $f:[a,b]\to\mathbb{R}, \ f(x)=\begin{cases} 1, & x\in[a,a+(b-a)/2]\\ 0, & x\in(a+(b-a)/2,b]\mathbb{Q} \end{cases} f$ is

Riemann integrable and the function F is increasing for the first half interval. However, it stays constant for the second half and thus it is not differentiable at x = a + (b - a)/2.

8. Show that a countable set of real numbers has measure 0.

Given a countable set $\{x_1, x_2, \ldots\}$ and an arbitrary $\varepsilon > 0$, we choose open covers $(x_i - \varepsilon/2^{i+2}, x_i + \varepsilon/2^{i+2})$ for x_i . The open covers are each of length $\varepsilon/2^{i+1}$. We have, $\sum_{i=1}^{\infty} \varepsilon/2^{i+1} = \varepsilon/2 < \varepsilon$. Since, the epsilon was arbitrary, we see that the countable set has measure 0.

- 9. Suppose that $f: X \to Y$ is a function and suppose that A_{α} , A, and B are subsets of Y. Show that
 - (a) $f^{-1}\left(\bigcup_{\alpha} A_{\alpha}\right) = \bigcup_{\alpha} f^{-1}(A_{\alpha})$
 - (b) $f^{-1}(\bigcap_{\alpha} A_{\alpha}) = \bigcap_{\alpha} f^{-1}(A_{\alpha})$
 - (c) $f^{-1}(A^c) = (f^{-1}(A))^c$
 - (d) $f^{-1}(A \setminus B) = f^{-1}(A) \setminus f^{-1}(B)$

Which of these remain true when f^{-1} is replaced by f (and the sets are now subsets of X)?

- (a) Let $x \in f^{-1}(\bigcup_{\alpha} A_{\alpha})$. Then, there is $y \in \bigcup_{\alpha} A_{\alpha}$ such that f(x) = y. So y is in some A_{α} . Thus $x \in \bigcup_{\alpha} f^{-1}(A_{\alpha})$. Now, let $x \in \bigcup_{\alpha} f^{-1}(A_{\alpha})$, then x is in some $f^{-1}(A_{\alpha})$. So there exists some $y \in A_{\alpha}$ such that f(x) = y. Since $y \in \bigcup_{\alpha} A_{\alpha}$, we have $x \in f^{-1}(\bigcup_{\alpha} A_{\alpha})$.
- (b) Let $x \in f^{-1}(\bigcap_{\alpha} A_{\alpha})$. Then, there is $y \in \bigcap_{\alpha} A_{\alpha}$ such that f(x) = y. So y is in all A_{α} and x belongs to all $f^{-1}(A_{\alpha})$. Thus $x \in \bigcap_{\alpha} f^{-1}(A_{\alpha})$. Now, let $x \in \bigcap_{\alpha} f^{-1}(A_{\alpha})$, then x is in all $f^{-1}(A_{\alpha})$ and there exists y in every A_{α} such that f(x) = y. Since $y \in \bigcap_{\alpha} A_{\alpha}$, we have $x \in f^{-1}(\bigcap_{\alpha} A_{\alpha})$.
- (c) Let $x \in f^{-1}(A^c)$. Then there is some $y \notin A$ such that f(x) = y. So $x \notin f^{-1}(A)$ and hence $x \in (f^{-1}(A))^c$. Now, let $x \in (f^{-1}(A))^c$. Then $f(x) \notin A$ and hence $f(x) \in A^c \implies x \in f^{-1}(A^c)$.
- (d) Let $x \in f^{-1}(A \setminus B)$. Then there is some $y \in A$ and $y \notin B$ such that f(x) = y. So $x \notin f^{-1}(B)$ and hence $x \in f^{-1}(A) \setminus f^{-1}(B)$. Now, let $x \in f^{-1}(A) \setminus f^{-1}(B)$. Then $f(x) \notin B$ and hence $f(x) \in A \setminus B \implies x \in f^{-1}(A \setminus B)$.
- 10. (a) If I and J are open intervals in \mathbb{R} and if $f: X \to \mathbb{R}^2$ is any function with f(x) = (u(x), v(x)), show that

$$f^{-1}(I\times J) = u^{-1}(I)\cap v^{-1}(J).$$

If $x \in f^{-1}(I \times J)$, then there exists $(y, z) \in I \times J$ such that y = u(x) and z = v(x). Hence $x \in u^{-1}(I)$ and $v^{-1}(J)$. Now, let $x \in u^{-1}(I) \cap v^{-1}(J)$. Then $x \in u^{-1}(I)$ and there exists $y \in I$ such that y = f(x). Also $x \in v^{-1}(J)$ and so there exists $z \in J$ such that z = f(x). Thus x is in the preimage of (y, z) and so in $f^{-1}(I \times J)$. Hence we have the required result:

$$f^{-1}(I \times J) = u^{-1}(I) \cap v^{-1}(J).$$

(b) Show that if $u: X \to \mathbb{R}$ and $v: X \to \mathbb{R}$ are measurable functions, then so is $f = (u, v): X \to \mathbb{R}^2$. [You can assume that any open set in \mathbb{R}^2 can be written as countable union of open rectangles $R_k = I_k \times J_k$, where I_k and J_k are open intervals in \mathbb{R} .] Since any open set in \mathbb{R}^2 can be witten as countable union of open rectangles $R_k = I_k \times J_k$, we have, for open set $U \subset \mathbb{R}^2$,

$$U = \bigcup_{k=1}^{\infty} I_k \times J_k.$$

From (a), we see that $f^{-1}(I \times J) = u^{-1}(I) \cap v^{-1}(J)$. Since u and v are measurable, $u^{-1}(I)$ and $v^{-1}(J)$ are measurable sets and so is their intersection. Hence f is a measurable function.