1 Question 1

As the graph G is composed of two connected components, we just have to count the number of edges in each connected component:

- The first component is a complete graph with 100 vertices, therefore there are $\sum_{k=0}^{100-1} k = \frac{99*100}{2} = 4950$ edges in that component.
- In the second component, there are two partition set, with 50 nodes each which are linked to all the nodes of the other partition set. Therefore there are 50*50=2500 edges in that component. (It can be seen as a linear layer of neural network without bias)

So, in total there are 7450 edges in the graph.

Similarly, we count the number of triangles in each component:

- A triangle is just a triplet, therefore, counting the number of triangles is equivalent to counting the number of triplets in a set of 100 nodes: this is exactly $\binom{100}{3} = \frac{100*99*98}{6} = 161,700$ triangles.
- In the complete bipartite component, since there are no edges between the nodes from the same partition set, there are no triangles.

So, in total there are 161,700 triangles in G.

2 Question 2

Figure 1: Two graphs where nodes have been assigned to 2 clusters. Cluster membership is indicated by node color.

In both graph (a) and (b), m = 13, $n_c = 2$,

• For the graph (a), $l_{qreen}=6$, $l_{blue}=6$, $d_{qreen}=13$ and $d_{blue}=13$. Then,

$$Q = \left(\frac{6}{13} - \left(\frac{13}{26}\right)^2\right) + \left(\frac{6}{13} - \left(\frac{13}{26}\right)^2\right) = \frac{11}{26} \approx 0.42$$

• For the graph (b), $l_{green}=2$, $l_{blue}=4$, $d_{green}=11$ and $d_{blue}=15$. Then,

$$Q = \left(\frac{2}{13} - \left(\frac{11}{26}\right)^2\right) + \left(\frac{4}{13} - \left(\frac{15}{26}\right)^2\right) = -\frac{17}{338} \approx -0.05$$

This results seems to be coherent with the natural idea that the clustering from graph (a) is better than the one from graph (b).

3 Question 3

If we note k the shortest path kernel, then there exists a function ϕ such that: $k(G_1, G_2) = \langle \phi(G_1), \phi(G_2) \rangle$. The function ϕ counts the frequency of shortest path distance in the graph i.e. $\phi(G)[i]$ counts the number of shortest paths of distance i+1 in the graph.

```
Therefore, \phi(P_4)=[3,2,1] and \phi(C_4)=[4,4,0]. Finally, k(C_4,C_4)=32,\,k(C_4,P_4)=20 and k(P_4,P_4)=14.
```

4 Question 4

As the elements of the vectors f_G , $f_{G'}$ are all non negative, if the kernel value : $k(G, G') = f_G^T f_{G'} = 0$, then it means that there are no types of graphlets of size 3 that both graphs G and G' share.

If we take $G_1=C_3$, a complete graph with 3 nodes and $G_2=P_3$, a path graph with 3 nodes. Then, $f_G=[1,0,0,0]$ and $f_G'=[0,1,0,0]$, therefore $k(G,G')=f_G^Tf_{G'}=0$, as both graphs don't share a common 3-node subgraph.