MODELO DE HANSEN (1985) - TRABAJO INDIVISIBLE

PERCY HUAMÁN PALOMINO*

June 14, 2014

Abstract

El trabajo es considerado de horario completo, no exiten "part time" y las fluctuaciones económicas es generado por el número o cantidades de trabajadores que ingresan al mercado. el modelo de Hansen propone que un individuo decide trabajar o no, trabajar 8 horas y ocio cero horas, incorpora este fenómeno en el modelo de Real Business Cycle de Kydland y Prescott (1982).

EL MODELO

El modelo surge como crítica al modelo RBC estándar de Kydland y Prescott (1982), pero no explica las principales caracteristicas de trabajo:

- No explica el desempleo.
- Tampoco la fluctuaciones.
- No captura la alta volatilidad de las horas total trabajadas.
- En el mercado de trabajo las personas ajustan su horario de trabajo al mes, el modelo Real Business Cycle no considera esto.
- Hansen considera la entrada y sálida de trabajadores en su evidencia empirica (clave observar la data).

La evidencia empirica de elasticidad de sustitución baja, pero el modelo Real Business Cycle necesita alta, para explicar la volatilidad. Y, utiliza loteria para explicarlo.

En la actualidad se considera el modelo Hansen (1985) como el modelo base, gracias a que hizo un mejor ajuste con la data entre la volatilidad y/o varianza del trabajo y salario real del modelo.

FAMILIAS

Función de Utilidad:

$$U^{e}(C_{t}, \alpha_{t}) = \alpha_{t} \left[lnC_{t} + Aln(1 - h_{o}) \right] + (1 - \alpha_{t}) \left[lnC_{t} + Aln(1) \right]$$

El trabajo esperado en el período t será igual: $h_t^e = \alpha_t h_o + (1 - \alpha_t)0 = \alpha_t h_o$, Este es la oferta de trabajo perfectamente inelástica.

 h_o ; es un parámetro, α_t ; es la probabilidad de trabajar.

Dónde
$$\alpha_t = \frac{h_t^e}{h_o}$$
 y $A = \frac{\varepsilon}{1-\varepsilon}$ Las familias optimizan:

$$\max_{\{C_{t}, \alpha_{t}, K_{t+1}\}} E_{t} \sum_{t=0}^{\infty} \beta^{t} \left\{ lnC_{t} + A\alpha_{t} ln(1 - h_{o}) \right\}$$

S.A

^{*}Economista y Administrador de Negocios; estudios: Economía Avanzada en Banco Central de Reserva del Perú-BCRP, Derecho Económico en Escuela Nacional de la Competencia y Propiedad Intelectual - INDECOPI, ambos cursos de extensiones universitarias y la Licenciatura en la Universidad Nacional Federico Villarreal. Cualquier comentario y/o ${\bf sugerencia} \ {\bf a} \ perhuaman @gmail.com \ {\bf o} \ {\bf visite} \ {\bf esta} \ {\bf p\'agina} \ www.facebook.com/EconomiaParaTuVida.$

$$C_t + K_{t+1} - (1 - \delta)K_t = W_t(\alpha_t h_o) + R_t K_t$$

Desde el punto de vista del Planificador Social le interesa el trabajo $(h_t = h_t^e)$

$$\underset{\{C_t,\alpha_t,K_{t+1}\}}{Max} E_t \sum_{t=0}^{\infty} \beta^t \left\{ lnC_t + A \underbrace{\frac{h_t^e}{h_o}}_{t} ln(1-h_o) \right\}$$

Langrageano

$$\mathcal{L} = \underset{\{\lambda_t, h_t, C_t, K_{t+1}\}}{Max} E_t \sum_{t=0}^{\infty} \beta^t \left\{ \left[lnC_t + A \underbrace{\frac{h_t}{h_o}}_{ln(1-h_o)} ln(1-h_o) \right] + \lambda_t \left[W_t(\alpha_t h_o = h_t) + R_t K_t - (C_t + K_{t+1} - (1-\delta)K_t) \right] \right\}$$

Por Condiciones de Primer órden, se obtiene;

Oferta de trabajo:

$$A\frac{1}{h_o}ln(1 - h_o) = \frac{W_t}{C_t}$$
 (1)

Ecuación de Euler:

$$\frac{1}{C_t} = \beta E_t \left\{ \frac{1}{C_{t+1}} \left[R_{t+1} + (1 - \delta) \right] \right\}$$
 (2)

EMPRESAS

Función de produción neoclásica;

$$Y_t = A_t f(K_t, h_t) = A_t K_t^{\theta}, h_t^{1-\theta}$$

$$\tag{3}$$

Lev de movimiento de capital:

$$K_{t+1} = (1 - \delta)K_t + I_t \tag{4}$$

Problema de optimización:

$$\max_{\{K_t, h_t\}} \pi_t = Y_t - (W_t h_t + R_t K_t)$$

S.A

$$Y_t = A_t K_t^{\theta}, h_t^{1-\theta}$$

Por Condiciones de Primer órden, se obtiene;

Demanda de trabajo:

$$h_t = (1 - \theta) \frac{Y_t}{W_t} \tag{5}$$

Demanda de capital:

$$K_t = \theta \frac{Y_t}{R_t} \tag{6}$$

Equilibrio del Mercado de Bienes:

$$Y_t = C_t + I_t \tag{7}$$

Choque de productividad:

$$lnA_{t+1} = \gamma lnA_t + \varepsilon_t \tag{8}$$

Donde; $\varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$

En el sistema tenemos 8 ecuaciones con 8 variables (enumeradas), por lo tanto, cumple las condiciones de Blanchard & Kahn y se puede resolver el sistema de ecuaciones.

ESTADO ESTACIONARIO

1.
$$Ass = 1$$

2.
$$Rss = \frac{1}{\beta} - (1 - \delta)$$

3.
$$Wss = (1 - \theta) \left(\frac{\theta}{Rss}\right)^{\frac{\theta}{1 - \theta}}$$

4.
$$Css = \frac{Wss}{\frac{A}{h_0}ln(1-h_o)}$$

5.
$$Yss = \frac{Css}{1 - \frac{\delta\theta}{Rss}}$$

6.
$$Kss = \theta\left(\frac{Yss}{Rss}\right)$$

7.
$$hss = \frac{Kss}{\left(\frac{\theta}{Rss}\right)^{\frac{\theta}{1-\theta}}}$$

8.
$$Iss = \delta Kss$$

LINEARIZACIÓN DE LAS ECUACIONES RESPECTO AL ESTADO ESTACIONARIO

1.
$$c_{t+1} = c_t + \left\{ \frac{Rss}{Rss + (1-\delta)} \right\} r_{t+1}$$

2.
$$w_t = c_t$$

3.
$$y_t = a_t + \theta k_t + (1 - \theta)\hat{h}_t$$

$$4. \ \hat{h}_t = y_t - w_t$$

5.
$$k_t = y_t - r_t$$

6.
$$k_{t+1} = (1 - \delta)k_t + \left(\frac{Iss}{Kss}\right)i_t$$

7.
$$y_t = \left(\frac{Css}{Yss}\right)c_t + \left(\frac{Iss}{Yss}\right)i_t$$

8.
$$a_{t+1} = \gamma a_t + \varepsilon_t^a$$

CALIBRACIÓN

Variable	Nombre	Parámetro	Valor	Nombre	
C_t	Consumo	β	0.99	Factor de descuento.	
I_t	Inversión	θ	0.36	Participación del Capital en la producción.	
Y_t	Pruducción	γ	0.95	Persistencia de choque.	
W_t	Salario Real	δ	0.025	Tasa de depreciación del capital.	
h_t	Horas de trabajo	σ	0.00712	Desviación estándar del choque.	
K_t	Capital	h_o	0.53	Horas fijas de trabajo ofrecidas por la familia.	
R_t	Tasa de interés real	A	2	Tiempo en actividades no market (del total de 3).	
A_t	Productividad				

FUENTE: ELABORACIÓN PROPIA

TRABAJO EN DYNARE - MATLAB

Para llevar a las conclusiones del paper de Hansen, habría que reemplazar con los paramétros con las calibraciones dadas en tabla anterior. Obteniendo los siguientes resultados:

EIGENVALUES:		
Modulus	Real	Imaginary
0.9418	0.9418	0
0.9500	0.9500	0
1.073	1.073	0
Inf	Inf	0

FUENTE: ELABORACIÓN PROPIA

There are 2 eigenvalue(s) larger than 1 in modulus for 2 forward-looking variable(s) The rank condition

is verified.

MODEL SUMMARY

Number of variables: 8

Number of stochastic shocks: 1

Number of state variables: 2

Number of jumpers: 2

Number of static variables: 4

MATRIX OF COVARIANCE OF EXOGENOUS SHOCKS

Variables e e 0.000051

Resultados en MATLAB - DYNARE

Variable	Steady state	Std. Dev.	Variance
C_t	0	0.0323	0.0010
I_t	0	0.1075	0.0116
Y_t	0	0.0461	0.0021
W_t	0	0.0323	0.0010
h_t	0	0.0236	0.0006
K_t	0	0.0447	0.0020
R_t	0	0.0327	0.0011
A_t	0	0.0228	0.0005

FUENTE: ELABORACIÓN PROPIA

Funciones Impulso - Respuesta

FUENTE: ELABORACIÓN PROPIA

CONCLUSIONES Y REFERENCIAS

El principal resultado del modelo es la alta volatilidad de en el total de las horas trabajas y del número de empleados y pequeñas fluctuaciones en el salario real. El resultado no depende del tamaño de la elasticidad de sustitución intertemporal del ocio.

Las fluctuaciones en las horas trabajadas es el resultado de la entrada o sálida de los individuos en el mercado laboral (un mayor nivel de trabajo incrementa la producción ($\triangle h_t$) y altera los ciclos económicos), en lugar de que un empleado ajuste su horas de trabajo como se hace en el modelo RBC estándar.

- Notas de Clases BCRP, UNI, LAMBDA.
- Hansen (1985): Real Business Cycle Model, Indivisible Labor.