F20T2A4

a) Sei $x_0 \in [0, \pi[$. Zeigen Sie, dass das Anfangswertproblem

$$x' = \sin(x), x(0) = x_0$$
 (1)

eine eindeutig bestimmte globale Lösung $x : \mathbb{R} \to \mathbb{R}$ besitzt.

- b) Zeigen Sie, dass $\lim_{t\to-\infty} x(t)$ und $\lim_{t\to\infty} x(t)$ existieren und bestimmen Sie diese Grenzwerte.
- c) Zeigen Sie, dass es ein $t^* \in \mathbb{R}$ gibt derart, dass x auf $]-\infty$, $t^*[$ strikt konvex und auf $]t^*, \infty[$ strikt konkav ist.

Zu a)

 $sin: \mathbb{R} \to \mathbb{R}$; $x \to sin(x)$ ist stetig differenzierbar und $|sin(x)| \le 1$ für alle $x \in \mathbb{R}$. Nach dem globalen Existenz- und Eindeutigkeitssatz mit linear beschränkter rechter Seite besitzt dann das Anfangswertproblem (1) eine eindeutig bestimmte, auf ganz \mathbb{R} definierte Lösung.

Zub)

Für die Anfangswertprobleme mit $x_0 = 0$ und $x_0 = \pi$ sind die beiden konstanten Lösungen $\lambda_0 \colon \mathbb{R} \to \mathbb{R}$; $t \to 0$ und $\lambda_0 \colon \mathbb{R} \to \mathbb{R}$; $t \to \pi$ bereits die maximalen Lösungen, da sie auf ganz \mathbb{R} definiert sind. Wegen $0 < x_0 < \pi$ sind die drei Graphen der maximalen Lösungen $\Gamma(\lambda_0) = \{(t,0) \colon t \in \mathbb{R}\}$, $\Gamma(\lambda_{x_0}) = \{(t,\lambda_{x_0}(t)) \colon t \in \mathbb{R}\}$ und $\Gamma(\lambda_{\pi}) = \{(t,\pi) \colon t \in \mathbb{R}\}$ disjunkt, also $0 < \lambda_{x_0}(t) < \pi$ für alle $t \in \mathbb{R}$ (denn sonst ergäbe der Zwischenwertsatz einen Schnittpunkt). Da λ_{x_0} eine Lösung von (1) ist, gilt $\lambda'_{x_0}(t) = \sin\left(\lambda_{x_0}(t)\right) > 0$ für alle $0 < \lambda_{x_0}(t) < \pi$, d. h. für alle $t \in \mathbb{R}$; d.h. λ_{x_0} ist streng monoton steigend. Als streng monoton steigende, bschränkte Funktion existiert dann $a \coloneqq \inf\{\lambda_{x_0}(t) \colon t \in \mathbb{R}\} = \lim_{t \to -\infty} x(t)$ und $b \coloneqq \sup\{\lambda_{x_0}(t) \colon t \in \mathbb{R}\} = \lim_{t \to \infty} x(t)$ mit $a, b \in [0, \pi]$.

Angenommen b < π . Dann ist $\lambda'_{x_0}(t) = \sin\left(\lambda_{x_0}(t)\right) \underset{t \to \infty}{\longrightarrow} \sin(b) > 0$. Nach Definition des Grenzwerts gibt es N > 0 mit $\lambda'_{x_0}(t) > \frac{1}{2}\sin(b)$ für alle $t \ge N$ imd daher ist $\lambda_{x_0}(t) = x_0 + \int_0^t \lambda'_{x_0}(s) ds \ge x_0 + \int_0^N \lambda'_{x_0}(s) ds + \int_N^t \frac{1}{2}\sin(b) ds = \operatorname{ist} \lambda_{x_0}(N) + \frac{1}{2}\sin(b)(t-N)$ nach oben unbeschränkt im Widerspruch zu ist $\lambda_{x_0}(t) \in \left]0, \pi\right[$ für alle $t \in \mathbb{R}$. Somit gilt $b = \pi$.

Analog zeigt man a = 0.

Zuc)

Lt. VL gilt: Ist $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ differenzierbar und $f': I \to \mathbb{R}$ streng monoton steigend (bzw. fallend), so ist f strikt konvex (bzw. konkav).

$$\text{Es ist } \lambda_{x_0}'(t) = \sin\left(\lambda_{x_0}(t)\right) \begin{cases} \text{streng monoton steigend für } \lambda_{x_0}(t) \in \left]0, \frac{\pi}{2}\right[\\ \text{streng monoton fallend für } \lambda_{x_0}(t) \in \left]\frac{\pi}{2}, \pi\right[. \text{ Da } \lambda_{x_0} \text{ nach (b)} \right] \end{cases}$$

 $\text{streng monoton steigend ist, gibt es genau ein } t^* \in \mathbb{R} \text{ mit } \lambda_{x_0}(t) \begin{cases} \in \left] 0, \frac{\pi}{2} \right[\text{ } f \ddot{\mathbf{u}} r \ t < t^* \\ = \frac{\pi}{2} \quad \text{ } f \ddot{\mathbf{u}} r \ t = t^* \text{ . Damit ist } \\ \in \left] \frac{\pi}{2}, \pi \right[f \ddot{\mathbf{u}} t \ t > t^* \end{cases}$ $\lambda_{x_0}|_{]-\infty,t^*[} \text{ strikt konvex und } \lambda_{x_0}|_{]-\infty,t^*[} \text{ strikt konkav.}$