Software Requirements Specification for Chipmunk2D

Alex Halliwushka and Luthfi Mawarid

Reference Material

This section records information for easy reference.

Table of Units

The unit system used throughout is SI (Système International d'Unités). In addition to the basic units, several derived units are also used. For each unit, Tab: ToU lists the symbol, a description and the SI name.

SI Name	Description	Symbol
joule	energy	J
kilogram	mass	kg
metre	length	m
newton	force	N
radian	angle	rad
second	time	S

Table of Symbols

The symbols used in this document are summarized in Tab: ToS along with their units. Throughout the document, symbols in bold will represent vectors, and

Units	Description	Symbol
m/s ²	Acceleration	а
m/s ²	Linear Acceleration	a(t)
m/s ²	The I-Th Body's Acceleration	a_i
	Coefficient of restitution	C _R
N	Force	F
N	Force exerted by the first body (on another body)	F ₁
N	Force exerted by the second body (on another body)	F ₂
N	Force Applied to the I-Th Body at Time T	F _i
$m^3/(kg \cdot s^2)$	Gravitational constant	G
m/s ²	Gravitational acceleration	g
m	Height	h
kg·m²	Moment of inertia	1
kg·m²	Moment of Inertia Of Rigid Body A	I _A
kg·m²	Moment of Inertia Of Rigid Body B	I B
N·s	Impulse (vector)	J
N·s	Impulse (scalar)	j
J	Kinetic energy	KE
m	Length	L
kg	Total Mass of the Rigid Body	М
kg	Mass	т
kg	Mass of the first body	m_1
kg	Mass of the second body	m_2
kg	Mass Of Rigid Body A	$m_{\!A}$
kg	Mass Of Rigid Body B	m _B

m_j	Mass Of the J-Th Particle	kg
n	Collision Normal Vector	m
PE	Potential energy	J
p	Position	m
P _{CM}	Center of Mass	m
	Position Vector of the J-Th Particle	m
η	Distance Between the J-Th Particle and the Axis of Rotation	m
r	Displacement	m
r(t)	Linear Displacement	m
r oa	Displacement vector between the origin and point B	m
f	Displacement unit vector	m
t	Time	s
t_c	Denotes the time at collision	s
v	Velocity	m/s
Δν	Change in velocity	m/s
v (t)	Linear Velocity	m/s
V ^{AP}	Velocity Of the Point of Collision P in Body A	m/s
V ^{BP}	Velocity Of the Point of Collision P in Body B	m/s
v ₁	Velocity Of the First Body	m/s
v ₂	Velocity Of the Second Body	m/s
ν_A	Velocity At Point A	m/s
v _B	Velocity At Point B	m/s
v/ ^{AB}	Final Relative Velocity Between Rigid Bodies of A and B	m/s
v _i	Velocity Of the I-Th Body's Velocity	m/s
v / ^{AB}	Initial Relative Velocity Between Rigid Bodies of A and B	m/s
ν ₀	Velocity At Point Origin	m/s
10	Length of the Normal Vector	m
lri	Euclidean norm of the displacement	m
r _A p* n	Length of the Perpendicular Vector To the Contact Displacement Vector of Rigid Body A	m
r _{BP} * n	Length of the Perpendicular Vector To the Contact Displacement Vector of Rigid Body B	m
r ²	Squared distance	m²
а	Angular Acceleration	rad/s ²
heta	Angular Displacement	rad
τ	Torque	N·m
$ au_l$	Torque applied to the i-th body	N·m
ω	Angular Velocity	rad/s
φ	Orientation	rad
Abbreviations and Acronyms		
-	Abbreviation	Full Form
	2D	Two-Dimensional

3D

Three-Dimensional

Assumption	Α
Centre of Mass	СМ
Chipmunk2D game physics library	Chipmunk2D
Data Definition	DD
General Definition	GD
Goal Statement	GS
Instance Model	IM
Likely Change	LC
Ordinary Differential Equation	ODE
Requirement	R
Software Requirements Specification	SRS
Theoretical Model	ТМ
Unlikely Change	UC
Typical Uncertainty	Uncert.

Introduction

Due to the rising cost of developing video games, developers are looking for ways to save time and money for their projects. Using an open source physics library that is reliable and free will cut down development costs and lead to better quality products.

The following section provides an overview of the Software Requirements Specification (SRS) for Chipmunk2D. This section explains the purpose of this document, the scope of the system, the characteristics of the intended reader, and the organization of the document.

Purpose of Document

This document describes the modeling of an open source 2D rigid body physics library used for games. The theoretical models and goal statements used in Chipmunk2D are provided. This document is intended to be used as a reference to provide all necessary information to understand and verify the model.

This document will be used as a starting point for subsequent development phases, including writing the design specification and the software verification and validation plan. The design document will show how the requirements are to be realized, including decisions on the numerical algorithms and programming environment. The verification and validation plan will show the steps that will be used to increase confidence in the software documentation and the implementation. Although the SRS fits in a series of documents that follow the so-called waterfall model, the actual development process is not constrained in any way. Even when the waterfall model is not followed, as Parnas and Clements point out parnasClements1986, the most logical way to present the documentation is still to "fake" a rational design process.

Scope of Requirements

The scope of the requirements includes the physical simulation of 2D rigid bodies acted on by forces.

Characteristics of Intended Reader

Reviewers of this documentation should have an understanding of rigid body dynamics and high school calculus. The users of Chipmunk2D can have a lower level of expertise, as explained in <u>Section: User Characteristics</u>.

Organization of Document

The organization of this document follows the template for an SRS for scientific computing software proposed by <u>dParnas1972</u> and <u>parnasClements1984</u>. The presentation follows the standard pattern of presenting goals, theories, definitions, and assumptions. For readers that would like a more bottom up approach, they can start reading the instance models in <u>Section: Instance Models</u> and trace back to find any additional information they require.

The goal statements (Section: Goal Statements) are refined to the theoretical models and the theoretical models (Section: Theoretical Models) to the instance models (Section: Instance Models).

General System Description

This section provides general information about the system. It identifies the interfaces between the system and its environment, describes the user characteristics, and lists the system constraints.

System Context

Fig:sysCtxDiag shows the system context. A circle represents an external entity outside the software, the user in this case. A rectangle represents the software system itself (Chipmunk2D). Arrows are used to show the data flow between the system and its environment.

The interaction between the product and the user is through an application programming interface. The responsibilities of the user and the system are as follows:

- · User Responsibilities
 - Provide initial conditions of the physical state of the simulation, rigid bodies present, and forces applied to them.
 - Ensure application programming interface use complies with the user guide.
 - Ensure required software assumptions (FIXME REF) are appropriate for any particular problem the software addresses.
- Chipmunk2D Responsibilities
 - Determine if the inputs and simulation state satisfy the required physical and system constraints (FIXME REF).
 - Calculate the new state of all rigid bodies within the simulation at each simulation step.
 - Provide updated physical state of all rigid bodies at the end of a simulation step.

User Characteristics

The end user of Chipmunk2D should have an understanding of first year programming concepts and an understanding of high school physics.

System Constraints

There are no system constraints.

Specific System Description

This section first presents the problem description, which gives a high-level view of the problem to be solved. This is followed by the solution characteristics specification, which presents the assumptions, theories, and definitions that are used.

Problem Description

A system is needed to create a simple, lightweight, fast, and portable 2D rigid body physics library, which will allow for more accessible game development and the production of higher quality products. Creating a gaming physics library is a difficult task. Games need physics libraries that simulate objects acting under various physical conditions, while simultaneously being fast and efficient enough to work in soft real-time during the game. Developing a physics library from scratch takes a long period of time and is very costly, presenting barriers of entry which make it difficult for game developers to include physics in their products. There are a few free, open source and high quality physics libraries available to be used for consumer products (Section: Off-The-Shelf Solutions).

Terminology and Definitions

This subsection provides a list of terms that are used in the subsequent sections and their meaning, with the purpose of reducing ambiguity and making it easier to correctly understand the requirements.

- Rigid body: A solid body in which deformation is neglected.
- Elasticity: Ratio of the relative velocities of two colliding objects after and before a collision.
- Centre of mass: The mean location of the distribution of mass of the object.
- Cartesian coordinate system: A coordinate system that specifies each point uniquely in a plane by a set of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in the same unit of length (from <u>cartesianWiki</u>).
- Right-handed coordinate system: A coordinate system where the positive z-axis comes out of the screen.

Goal Statements

Given the kinematic properties, and forces including any (collision forces) applied on a set of rigid bodies, the goal statements are: Determine-Linear-Properties: Determine their new positions and velocities over a period of time.

Determine-Angular-Properties: Determine their new orientations and angular velocities over a period of time.

Solution Characteristics Specification

The instance models that govern Chipmunk2D are presented in <u>Section: Instance Models</u>. The information to understand the meaning of the instance models and their derivation is also presented, so that the instance models can be verified.

Assumptions

This section simplifies the original problem and helps in developing the theoretical models by filling in the missing information for the physical system. The assumptions refine the scope by providing more detail.

objectTy: All objects are rigid bodies. (RefBy: DD: chalses, DD: reVelnColl, IM: transMot, IM: rotMot, DD: potEnergy, DD: ctrOfMass, DD: momentOfInertia, DD: linVel, DD: linDisp, DD: linAcc, DD: kEnergy, DD: impulseV, DD: impulse, IM: col2D, TM: ChaslesThm, DD: angVel, DD: angDisp, and DD: angAccel.)

objectDimension: All objects are 2D. (RefBy: DD: chalses, IM: transMot, IM: rotMot, DD: potEnergy, DD: ctrOfMass, TM: NewtonSecLawRotMot, DD: linVel, DD: linDisp, DD: linAcc, DD: kEnergy, DD: impulse, IM: col2D, DD: angVel, DD: angDisp, and DD: angAccel.)

coordinateSystemTy: The library uses a Cartesian coordinate system.

axesDefined: The axes are defined using right-handed coordinate system. (RefBy: IM: rotMot, DD: impulse, and IM: col2D.)

collisionType: All rigid bodies collisions are vertex-to-edge collisions. (RefBy: LC: Expanded-Collisions, DD: impulse, and IM: col2D.)

dampingInvolvement: There is no damping involved throughout the simulation and this implies that there are no friction forces. (RefBy: DD: chalses, IM: transMot, IM: rotMot, DD: potEnergy, DD: linVel, DD: linVel, DD: linVel, DD: linVel, DD: linVel, DD: angVel, DD: angVe

constraintsAndJointsInvolvement: There are no constraints and joints involved throughout the simulation. (RefBy: IM: transMot, IM: rotMot, LC: Include-Joints-Constraints, and IM: col2D.)

Theoretical Models

This section focuses on the general equations and laws that Chipmunk2D is based on.

Refname TM:NewtonSecLawMot Label Newton's second law of motion Equation F = maF is the force (N) m is the mass (kg) Description a is the acceleration (m/s2) The net force F(N) on a body is proportional to the acceleration a (m/s²) of the body, where m (kg) denotes the mass of the body as the constant of proportionality. Source RefBy Refname TM:NewtonThirdLawMot Label Newton's third law of motion Equation $F_1 = -F_2$ F_1 is the force exerted by the first body (on another body) (N) Description F_2 is the force exerted by the second body (on another body) (N) Every action has an equal and opposite reaction. In other words, the force F₁ (N) exerted on the second rigid body by the first is equal in magnitude and in the opposite Notes direction to the force \mathbf{F}_2 (N) exerted on the first rigid body by the second. Source RefBv Refname TM:UniversalGravLaw Label Newton's law of universal gravitation $m_1 m_2 ||r||^2$ $\hat{r} = G$ **Equation** $m_1 m_2 ||\mathbf{r}||^2$ r||r||F is the force (N) G is the gravitational constant $(m^3/(kg \cdot s^2))$ m_1 is the mass of the first body (kg) m_2 is the mass of the second body (kg) Description $\| \mathbf{r} \|$ is the Euclidean norm of the displacement (m) \hat{r} is the displacement unit vector (m) r is the displacement (m) Two rigid bodies in the universe attract each other with a force F(N) that is directly proportional to the product of their masses, m_1 and m_2 (kg), and inversely proportional to the squared distance $||r||^2$ (m²) between them. The vector r (m) is the displacement between the centres of the rigid bodies and ||r|| (m) represents the Euclidean norm of the Notes displacement, or absolute distance between the two, \hat{r} denotes the displacement unit vector, equivalent to the displacement divided by the Euclidean norm of the displacement, as shown above. Finally, G is the gravitational constant (6.673 * 10E-11) (m³/(kg·s²)). Source RefBy TM:ChaslesThm Refname Label Chasles' theorem **Equation** $\mathbf{v}_B = \mathbf{v}_O + \omega \times \mathbf{r}_{OB}$ v_B is the velocity at point B (m/s) \mathbf{v}_{O} is the velocity at point origin (m/s) Description ω is the angular velocity (rad/s) \emph{r}_{OB} is the displacement vector between the origin and point B (m) The linear velocity \mathbf{v}_B (m/s) of any point B in a rigid body A: objectTy is the sum of the linear velocity \mathbf{v}_O (m/s) of the rigid body at the origin (axis of rotation) and the resultant Notes vector from the cross product of the rigid body's angular velocity ω (rad/s) and the displacement vector between the origin and point B, r_{OB} (m). Source RefBv TM:NewtonSecLawRotMot Refname Newton's second law for rotational motion Label Equation τ is the torque (N·m) I is the moment of inertia (kg·m²) Description a is the angular acceleration (rad/s²) The net torque τ (N·m) on a rigid body is proportional to its angular acceleration α (rad/s²). Here, I (kg·m²) denotes the moment of inertia of the rigid body. We also assume Notes that all rigid bodies involved are two-dimensional A: objectDimension. Source

General Definitions

RefBy

There are no general definitions.

Data Definitions

This section collects and defines all the data needed to build the instance models.

DD:ctrOfMass Label Center of Mass Symbol p_{CM} Units m **p**_{CM} = Equation $\sum m_j \mathbf{p}_j M$ \mathbf{p}_{CM} is the Center of Mass (m) m_j is the mass of the j-th particle (kg) Description p_j is the position vector of the j-th particle (m)
M is the total mass of the rigid body (kg) A: objectTy Notes A: objectDimension Source --RefBy IM: transMot and IM: col2D Refname DD:linDisp Label Linear Displacement Symbol r(t) Units m r(t) =Equation $d\mathbf{p}(t)dt$ r(t) is the linear displacement (m)
 t is the time (s) Description p is the position (m) A: objectTy Notes A: objectDimension A: dampingInvolvement Source --RefBy IM: transMot Refname DD:linVel Label Linear Velocity Symbol v(t) Units m/s $\mathbf{v}(t) =$ Equation dr(t) dt • v(t) is the linear velocity (m/s) t is the time (s) Description r is the displacement (m) A: objectTy Notes A: objectDimension A: dampingInvolvement Source --RefBy IM: transMot Refname DD:linAcc Label Linear Acceleration Symbol a(t) Units m/s2 a(t) =Equation dv(t) dt • a(t) is the linear acceleration (m/s2) t is the time (s) Description ${m v}$ is the velocity (m/s) A: objectTy Notes A: objectDimension A: dampingInvolvement Source --RefBy IM: transMot

```
 {\bf Symbol} \ \ \theta
                                       Units rad
                                  Equation
                                                                                    d\phi(t)dt
                                                  • \theta is the angular displacement (rad) 
• t is the time (s)
                               Description
                                                                 \phi is the orientation (rad)
                                                A: objectTy
                                      Notes A: objectDimension
                                                A: dampingInvolvement
                                    Source --
                                     RefBy IM: rotMot
                                                                               DD:angVel
                                  Refname
                                      Label Angular Velocity
                                    Symbol \omega
                                       Units rad/s
                                  Equation
                                                                                    d\theta(t)dt
                                                         \omega is the angular velocity (rad/s)
                                                                           t is the time (s)
                               Description
                                                  • \theta is the angular displacement (rad)
                                                A: objectTy
                                      Notes A: objectDimension
                                                A: dampingInvolvement
                                    Source --
                                     RefBy IM: rotMot
                                  Refname
                                                                             DD:angAccel
                                     Label Angular Acceleration
                                   Symbol a
                                     Units rad/s2
                                  Equation
                                                                                     d\omega(t)dt
                                                 • \alpha is the angular acceleration (rad/s²)
                                                                            t is the time (s)
                              Description
                                                          \omega is the angular velocity (rad/s)
                                               A: objectTy
                                     Notes A: objectDimension
                                               A: dampingInvolvement
                                    Source
                                    RefBy IM: rotMot
                                                                                                                     DD:impulse
Label Impulse (scalar)
                                                                                                                  j = -(1+C_R) \mathbf{v}_i^{AB} \cdot \mathbf{n}(
                                                                                                                              1m_B
                                                                                                                           ||n||^{2}
                                                                                                                        ||\mathbf{r}_{AP}^*\mathbf{n}||^2\mathbf{I}_A
                                                                                                                        ||\boldsymbol{r}_{BP}^*\boldsymbol{n}||^2\boldsymbol{I}_B
```

DD:angDisp

Refname

Refname

Equation

Symbol j Units N·s Label Angular Displacement

```
j is the impulse (scalar) (N·s)
                                                                                          C_R is the coefficient of restitution (Unitless)
                                                          \emph{v}_{\emph{i}}^{\emph{AB}} is the initial relative velocity between rigid bodies of A and B (m/s)
                                                                                                   n is the collision normal vector (m)
                                                                                                  m_A is the mass of rigid body A (kg)
                                                                                                  m_B is the mass of rigid body B (kg)
Description
                                                                                            ||n|| is the length of the normal vector (m)
                     \|\mathbf{r}_{AP}^*\mathbf{n}\| is the length of the perpendicular vector to the contact displacement vector of rigid body A (m)
                                                                                  I_A is the moment of inertia of rigid body A (kg·m²)
                     ||\mathbf{r}_{BP}^*\mathbf{n}|| is the length of the perpendicular vector to the contact displacement vector of rigid body B (m)
                                                                                  IB is the moment of inertia of rigid body B (kg·m²)
                A: objectTy
                A: objectDimension
      Notes
                A: axesDefined
                A: collisionType
      RefBy IM: col2D
```

 Refname
 DD:chalses

 Label
 Velocity At Point B

 Symbol
 v_B

 Units
 m/s

 Equation
 v_B = v_O+ω_xr_{OB}

 Description
 v_B is the velocity at point B (m/s)

 v_O is the velocity at point origin (m/s)
 w is the angular velocity (rad/s)

 v_{OB} is the displacement vector between the origin and point B (m)

The linear velocity \mathbf{v}_B (m/s) of any point B in a rigid body A: objectTy is the sum of the linear velocity \mathbf{v}_O (m/s) of the rigid body at the origin (axis of rotation) and the resultant vector from the cross product of the rigid body's angular velocity ω (rad/s) and the displacement vector between the origin and point B, \mathbf{r}_{OB} (m).

Notes A: objectTy

A: objectDimension

A: dampingInvolvement

Source -

RefBy

Refname **DD:torque** Label Torque Symbol τ Units N·m **Equation** $\tau = r \times F$ τ is the torque (N·m) r is the displacement (m) Description F is the force (N) The torque on a body measures the the tendency of a force to rotate the body around an axis or pivot. Source RefBy Refname DD:kEnergy Label Kinetic energy Symbol KE Units KE = **Equation** $mv^{2}2$ KE is the kinetic energy (J) m is the mass (kg) Description v is the velocity (m/s) The kinetic energy of an object is the energy it possess due to its motion. A: objectTy Notes A: objectDimension

A: dampingInvolvement

Source RefBy

```
Coefficient of restitution
         Label
      Symbol C<sub>R</sub>
                  Unitless
         Units
                                                                                                                                                                                                                   C_R = -(\mathbf{v}_i^{AB} \cdot \mathbf{n} \mathbf{v}_i^{AB} \cdot \mathbf{n}
    Equation
                                                                                                                                                                               C<sub>R</sub> is the coefficient of restitution (Unitless)
                                                                                                                                               \mathbf{v_f}^{AB} is the final relative velocity between rigid bodies of A and B (m/s)
 Description
                                                                                                                                                                                         n is the collision normal vector (m)
                                                                                                                                             \mathbf{v}_i^{AB} is the initial relative velocity between rigid bodies of A and B (m/s)
                   The coefficient of restitution C_R is a unitless, dimensionless quantity that determines the elasticity of a collision between two rigid bodies. C_R = 1 results in an elastic
        Notes
                   collision, while C_R < 1 results in an inelastic collision, and C_R = 0 results in a totally inelastic collision.
       Source
        RefBy
     Refname
                                                                                                                                                                                                                DD:reVeInColl
                   Initial Relative Velocity Between Rigid Bodies of A and B
         Label
      Symbol
         Units m/s
    Equation
                                                                                                                                             \mathbf{v}_i^{AB} is the initial relative velocity between rigid bodies of A and B (m/s)
                                                                                                                                                           \textbf{\textit{v}}^{\textit{AP}} is the velocity of the point of collision P in body A (m/s)
 Description
                                                                                                                                                           \mathbf{v}^{BP} is the velocity of the point of collision P in body B (m/s)
                   In a collision, the velocity of a rigid body A: objectly A colliding with another rigid body B relative to that body v_i^{AB} is the difference between the velocities of A and B at
        Notes
       Source
        RefBy
                                                         Refname
                                                                                                                                                             DD:impulseV
                                                             Label
                                                                      Impulse (vector)
                                                           Symbol J
                                                              Units N·s
                                                         Equation
                                                                                                                                                                   J = m \Delta v
                                                                                                                                          \boldsymbol{J} is the impulse (vector) (N·s)
                                                                                                                                                       m is the mass (kg)
                                                     Description
                                                                                                                                      \Delta \mathbf{v} is the change in velocity (m/s)
                                                                       An impulse (vector) {\it J} occurs when a force {\it F} acts over a body over an interval of time.
                                                             Notes
                                                                       A: objectTy
                                                           Source
                                                             RefBy
Detailed derivation of impulse (vector):
Newton's second law of motion states:
\mathbf{F} = m\mathbf{a} = m
dv dt
Rearranging:
\int_{t_1}^{t_2} \mathbf{F} dt = m (\int_{\mathbf{v}_1}^{\mathbf{v}_2} 1 d\mathbf{v})
Integrating the right hand side:
\int_{t_1}^{t_2} \mathbf{F} dt = m \mathbf{v}_2 - m \mathbf{v}_1 = m \Delta \mathbf{v}
                                                                                                                                                                       DD:potEnergy
                                             Refname
                                                  Label
                                                           Potential energy
                                               Symbol
                                                  Units
                                                                                                                                                                             PE = mgh
                                             Equation
                                                                                                                                                       PE is the potential energy (J)
                                                                                                                                                                   m is the mass (kg)
                                          Description
                                                                                                                                         g is the gravitational acceleration (m/s<sup>2</sup>)

h is the height (m)
```

DD:coeffRestitution

Refname

The potential energy of an object is the energy held by an object because of its position to other objects. A: objectTy Notes A: objectDimension A: dampingInvolvement Source RefBy Refname DD:momentOfInertia Label Moment of inertia Symbol I $\textbf{Units} \quad kg \!\cdot\! m^2$ Equation $I = \sum m_j r_j^2$ \emph{I} is the moment of inertia (kg·m²) m_j is the mass of the j-th particle (kg) Description r_i is the distance between the j-th particle and the axis of rotation (m) The moment of inertia I of a body measures how much torque is needed for the body to achieve angular acceleration about the axis of rotation. Notes

Instance Models

Equation

Source --RefBy

This section transforms the problem defined in <u>Section: Problem Description</u> into one which is expressed in mathematical terms. It uses concrete symbols defined in <u>Section: Data Definitions</u> to replace the abstract symbols in the models identified in <u>Section: Theoretical Models</u> and <u>Section: General Definitions</u>.

The goal GS: Determine-Linear-Properties is met by IM: transMot and IM: col2D. The goal GS: Determine-Angular-Properties is met by IM: rotMot and IM: col2D.

The goal GS:	<u>Determine-Linear-Properties</u> is met by <u>IM: transMot</u> and <u>IM: col2D</u> . The goal <u>GS: Determine-Angular-Properties</u> is met by <u>IM: rotMot</u> and <u>IM: col2D</u> .
Refname	IM:transMot
Label	Force on the translational motion of a set of 2d rigid bodies
Input	$\mathbf{v}_i, t, g, \mathbf{F}_i, m_j$
Output	a_i
Input Constraints	v _{i>0} t>0 t>0 g>0 F _{i>0} m _{j>0}
Output Constraints	
Constraints	2 -
Equation	$egin{align*} oldsymbol{a}_i &= & oldsymbol{a} oldsymbol{v}_i(t) dt \ &= g + \ oldsymbol{F}_i(t) m_j \ \end{pmatrix}$
Description	$ a_{j} \text{ is the the i-th body's acceleration } (\text{m/s}^{2}) $ $ t \text{ is the time (s)} $ $ v_{j} \text{ is the velocity of the i-th body's velocity } (\text{m/s}) $ $ g \text{ is the gravitational acceleration } (\text{m/s}^{2}) $ $ F_{j} \text{ is the force applied to the i-th body at time t } (\text{N}) $ $ m_{j} \text{ is the mass of the j-th particle } (\text{kg}) $
Notes	The above equation expresses the total acceleration of the rigid body <u>A: objectTy, A: objectTy, A: objectDimension</u> i as the sum of gravitational acceleration (GD3) and acceleration due to applied force Fi(t) (T1). The resultant outputs are then obtained from this equation using <u>DD: linDisp</u> <u>DD: linDel DD: linAcc</u> . It is currently assumed that there is no damping <u>A: dampingInvolvement</u> or constraints <u>A: constraintsAndJointsInvolvement</u> involved. <u>DD: ctrOfMass</u> .
Source	
RefBy	
Refname	IM:rotMot
	Force on the rotational motion of a set of 2D rigid body
Input	ω, t, au_i, I
Output	
Input Constraints	ω>0 t>0 τ _i >0 I>0
Output Constraints	a>0

dω(t) dt

 $\tau_i(t)I$

 τ_i is the torque applied to the i-th body (N·m) I is the moment of inertia (kg·m²) The above equation for the total angular acceleration of the rigid body A: objectTy A: objectDimension i is derived from T5, and the resultant outputs are then obtained from this equation using DD: angDisp DD: angVel DD: angAccel. It is currently assumed that there is no damping A: dampingInvolvement or constraints A: Notes constraintsAndJointsInvolvement involved. A: axesDefined Source RefBv IM:col2D Refname Label Collisions on 2D rigid bodies Input t, j, m_A, n Output t_c Input Constraints $m_A>0$ Output Constraints $\mathbf{v}_A(t_c) = \mathbf{v}_A(t) +$ Equation v_A is the velocity at point A (m/s) t_c is the denotes the time at collision (s) t is the time (s) Description j is the impulse (scalar) (N·s) m_A is the mass of rigid body A (kg) n is the collision normal vector (m) This instance model is based on our assumptions regarding rigid body A: objectTy A: objectDimension collisions A: collisionType Again, this does not take damping A: Notes dampingInvolvement or constraints A: constraintsAndJointsInvolvement into account. A: axesDefined. DD: ctrOfMass DD: impulse Source RefBy

Data Constraints

Description

Table:InDataConstraints shows the data constraints on the input variables. The column for physical constraints gives the physical limitations on the range of values that can be taken by the variable. The uncertainty column provides an estimate of the confidence with which the physical quantities can be measured. This information would be part of the input if one were performing an uncertainty quantification exercise. The constraints are conservative, to give the user of the model the flexibility to experiment with unusual situations. The column of typical values is intended to provide a feel for a common scenario. FIXME

Uncert.	Typical Value	Physical Constraints	Var
10%	0.8	0≤C _R ≤1	C_R
10%	98.1 N		F
10%	9.8 m ³ /(kg·s²)		G
10%	74.5 kg⋅m²	I≥0	ı
10%	<i>44.2</i> m	L≥0	L
10%	56.2 kg	<i>m</i> ≥0	т
10%	0.412 m		р
10%	2.51 m/s		V
10%	200.0 N·m		τ
10%	2.1 rad/s		ω
10%	π2 rad		φ

Input Data Constraints

Properties of a Correct Solution

Table: OutDataConstraints shows the data constraints on the output variables. The column for physical constraints gives the physical limitations on the range of values that can be taken by the variable.

var

·--

a is the angular acceleration (rad/s2)

 ω is the angular velocity (rad/s)

t is the time (s)

j>0

n>0

 $\mathbf{v}_A > 0$

 $t_c > 0$

 jm_A

Output Data Constraints

Requirements

This section provides the functional requirements, the tasks and behaviours that the software is expected to complete, and the non-functional requirements, the qualities that the software is expected to exhibit.

Functional Requirements

This section provides the functional requirements, the tasks and behaviours that the software is expected to complete. Simulation-Space: Create a space for all of the rigid bodies in the physical simulation to interact in.

Input-Initial-Conditions: Input the initial masses, velocities, orientations, angular velocities of, and forces applied on rigid bodies.

Input-Surface-Properties: Input the surface properties of the bodies such as friction or elasticity.

Verify-Physical_Constraints: Verify that the inputs satisfy the required physical constraints from Section: Solution Characteristics Specification.

Calculate-Translation-Over-Time: Determine the positions and velocities over a period of time of the 2D rigid bodies acted upon by a force.

Calculate-Rotation-Over-Time: Determine the orientations and angular velocities over a period of time of the 2D rigid bodies.

Determine-Collisions: Determine if any of the rigid bodies in the space have collided.

Determine-Collision-Response-Over-Time: Determine the positions and velocities over a period of time of the 2D rigid bodies that have undergone a collision.

Non-Functional Requirements

This section provides the non-functional requirements, the qualities that the software is expected to exhibit. High-Performance: The code has a short reponse time when performing computation.

Correct: The outputs of the code have the properties described in Section: Properties of a Correct Solution.

Understandable: The code is modularized with complete module guide and module interface specification.

Portable: The code is able to be run in different environments.

Reliable: The code gives consistent outputs.

Reusable: The code is modularized.

Maintainable: The traceability between requirements, assumptions, theoretical models, general definitions, data definitions, instance models, likely changes, unlikely changes, and modules is completely recorded in traceability matrices in the SRS and module guide.

Likely Changes

This section lists the likely changes to be made to the software.

Variable-ODE-Solver: The internal ODE-solving algorithm used by the library may be changed in the future.

Expanded-Collisions: A: collisionType - The library may be expanded to deal with edge-to-edge and vertex-to-vertex collisions.

Include-Dampening: A: dampingInvolvement - The library may be expanded to include motion with damping.

Include-Joints-Constraints: A: constraintsAndJointsInvolvement - The library may be expanded to include joints and constraints.

Unlikely Changes

This section lists the unlikely changes to be made to the software.

Simulate-Rigid-Bodies: The goal of the system is to simulate the interactions of rigid bodies.

External-Input: There will always be a source of input data external to the software.

Cartesian-Coordinate-System: A Cartesian Coordinate system is used.

Objects-Rigid-Bodies: All objects are rigid bodies.

Off-The-Shelf Solutions

As mentioned in Section: Problem Description, there already exist free open source game physics libraries. Similar 2D physics libraries are:

- Box2D: http://box2d.org/
- Nape Physics Engine: http://napephys.com/

Free open source 3D game physics libraries include:

• Bullet: http://bulletphysics.org/

- Open Dynamics Engine: http://www.ode.org/
- Newton Game Dynamics: http://newtondynamics.com/

Traceability Matrices and Graphs

The purpose of the traceability matrices is to provide easy references on what has to be additionally modified if a certain component is changed. Every time a component is changed, the items in the column of that component that are marked with an "X" should be modified as well. Table:TraceMatAvsAll shows the dependencies of data definitions, theoretical models, general definitions, instance models, requirements, likely changes, and unlikely changes on the assumptions. Table:TraceMatRefvsRef shows the dependencies of data definitions, theoretical models, general definitions, and instance models with each other. Table:TraceMatAllvsR shows the dependencies of requirements, goal statements on the data definitions, theoretical models, general definitions, and instance models.

models.	•						
	A: objectTy	A: objectDimension	A: coordinateSystemTy	A: axesDefined	A: collisionType	A: dampingInvolvement	A: constraintsAndJointsI
DD: ctrOfMass	Х	Х					
DD: linDisp	Х	Х				Х	
DD: linVel	Х	Х				Х	
DD: linAcc	Х	Х				Х	
DD: angDisp	Х	Х				Х	
DD: angVel	Х	Х				Х	
DD: angAccel	Х	Х				Х	
DD: impulse	Х	Х		X	Х		
DD: chalses	Х	Х				Х	
DD: torque							
DD: kEnergy	Х	Х				X	
DD: coeffRestitution							
DD: reVeInColl	Х						
DD: impulseV	Х						
DD: potEnergy	Х	Х				X	
DD: momentOfInertia	X						
TM: NewtonSecLawMot							
TM: NewtonThirdLawMot							
TM: UniversalGravLaw							
TM: ChaslesThm	Х						
TM: NewtonSecLawRotMot		Х					
IM: transMot	Х	Х				Х	X
IM: rotMot	Х	Х		Х		Х	Х
IM: col2D	Х	Х		Х	Х	Х	Х
FR: Simulation- Space							
FR: Input-Initial- Conditions							
FR: Input-Surface- Properties							
FR: Verify- Physical Constraints							
FR: Calculate- Translation-Over- Time							

FR: C Rotation-O	ver-Time																			
	etermine- Collisions																			
Collision-Re	etermine- esponse- ver-Time																			
	R: High- ormance																			
NFR	: Correct																			
<u>Unders</u>	NFR:																			
NFR:	<u>Portable</u>																			
NFR:	Reliable																			
NFR: F	Reusable																			
NFR: Mair	ntainable																			
LC: Variab	Solver																			
	<u>cpanded-</u> <u>Collisions</u>														X					
	Include- mpening																Х			
LC: Include	e-Joints- enstraints																			Х
UC: Simula	te-Rigid- Bodies																			
UC: Exteri	nal-Input																			
	artesian-																			
<u>UC: C</u>	artesian- e-System																			
UC: Co	artesian- System ts-Rigid- Bodies	Showin	g the (Conne	ctions	Betwe	een As	sumpt	ions ar	nd Oth	er Item	ns								
UC: CoCoordinate UC: Object Traceability	artesian- System ts-Rigid- Bodies	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	<u>DD:</u>		TM:	TM:	<u>TM:</u>	IM:	IM:	IM:
UC: C. Coordinate UC: Object Traceability DD: DD:	artesianSystem ts-Rigid- Bodies Matrix S	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:								
UC: C: Coordinate UC: Object Traceability DD: ctrO DD: ctrOfMass	artesianSystem ts-Rigid- Bodies Matrix S	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:								
UC: C. Coordinate UC: Object Traceability DD: ctrOfMass DD: linDisp DD:	artesianSystem ts-Rigid- Bodies Matrix S	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:								
UC: C. Coordinate UC: Object Traceability DD: ctrOfMass DD: linDisp DD: linVel DD:	artesianSystem ts-Rigid- Bodies Matrix S	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:								
UC: C: Coordinate UC: Object Traceability DD: ctrOfMass DD: linDisp DD: linVel DD: linAcc DD: linAcc	artesianSystem ts-Rigid- Bodies Matrix S	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:								
UC: C. Coordinate UC: Object Traceability DD: ctrOfMass DD: linDisp DD: linAcc DD: angDisp DD: angDisp	artesianSystem ts-Rigid- Bodies Matrix S	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:								
UC: C. Coordinate UC: Object Traceability DD: ctrOfMass DD: linDisp DD: linVel DD: linAcc DD: angDisp DD: angVel DD: angVel DD: angVel	artesianSystem ts-Rigid- Bodies Matrix S	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:								
UC: C: Coordinate UC: Object Traceability DD: ctrOfMass DD: linDisp DD: linAcc DD: angDisp DD: angVel	artesianSystem ts-Rigid- Bodies Matrix S	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:								
UC: C. Coordinate UC: Object Traceability DD: ctrOfMass DD: linDisp DD: linAcc DD: angDisp DD: angVel DD: angAccel DD: impulse	artesianSystem ts-Rigid- Bodies Matrix S	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:								
UC: C: Coordinate UC: Object Traceability DD: ctrO Endowners DD: linDisp DD: linVel DD: linAcc DD: angDisp DD: angVel DD: angAccel DD: angAccel DD: angAccel	artesianSystem ts-Rigid- Bodies Matrix S	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:	DD:								

DD: kEnergy		
DD: coeffRestitution		
DD: reVelnColl		
DD: impulseV		
DD: potEnergy		
DD: momentOfInertia		
TM: NewtonSecLawMot		
TM: NewtonThirdLawMot		
TM: UniversalGravLaw		
IM: ChaslesThm		
TM: NewtonSecLawRotMot		
IM: X X X X transMot		
IM: X X X rotMot		
<u>IM:</u> X X COI2D		
Traceability Matrix Showing the Connections Between Items and Other Sections		
DD;	<u> 1: IM: FR: FR: FR: FR: FR: FR: FR: FR: FR: FR</u>	<u>: FR: NFRNFRNFRNFRNFRNFRNI teDetablighGorrebtd&etaRdibRheus</u> M
Traceability Matrix Showing the Connections Between Items and Other Sections DD: DD: DD: DD: DD: DD: DD: DD: DD: DD	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBeteldigh6orrektd6rstaftalätfittest/l didteltisterformance <u>Response-</u>
DD;	Mod RSilMdtatida pulVerif <i>G</i> alc Caltella <u>SpadeitiaSurfaReysTcahsRetiaSle</u>	tePatakigh6orrettde9stalialälikestM kiittshiiFerformance
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-
DD:	AMost RSiMeltatienpulverif@alc@alm9le SpadeitiaBurfaVeysTcah ButisAn Conditiopertie®verOver-	teBatekirjh6orrentderstallablitesM didteliserformance Response- Over-

FR: Calculate- Rotation- Over- Time			
FR: Determine- Collisions			
FR: Determine- Collision- Response- Over- Time			
NFR: High- Performance			
NFR: Correct			
NFR: Understandable			
NFR: Portable			
NFR: Reliable			
NFR: Reusable			
NFR: Maintainable			

Traceability Matrix Showing the Connections Between Requirements, Goal Statements and Other Items

Values of Auxiliary Constants

There are no auxiliary constants.

References

- [1]: Bueche, J. Frederick. Introduction to Physics for Scientists, Fourth Edition. Mcgraw-Hill College, 1986.
- [2]: Koothoor, Nirmitha. A document drive approach to certifying scientific computing software. McMaster University, Hamilton, ON, Canada: 2013. Print.
- [3]: Parnas, David L. "On the Criteria To Be Used in Decomposing Systems into Modules." Communications of the ACM, 1972. pp. 1053–1058. Print.
- [4]: Parnas, David L. "Designing Software for Ease of Extension and Contraction.." ICSE '78: Proceedings of the 3rd international conference on Software engineering. 1978. pp. 264–277.
- [5]: Parnas, David L. and Clements, P. C. "A rational design process: How and why to fake it." *IEEE Transactions on Software Engineering*, vol. 12, no. 2, Washington, USA: February, 1986. pp. 251–257. Print.
- [6]: Parnas, David L., Clements, P. C., and Wiess. "The Modular Structure of Complex Systems." *ICSE* '84: Proceedings of the 7th international conference on Software engineering. 1984. pp. 408–417.
- [7]: Smith, W. Spencer and Lai, Lei. "A new requirements template for scientific computing." *Proceedings of the First International Workshop on Situational Requirements Engineering Processes Methods, Techniques and Tools to Support Situation-Specific Requirements Engineering Processes, SREP'05*. Edited by PJ Agerfalk, N. Kraiem, and J. Ralyte, Paris, France: 2005. pp. 107–121. In conjunction with 13th IEEE International Requirements Engineering Conference,
- [8]: Wikipedia Contributors. Cartesian coordinate system. June, 2019. https://en.wikipedia.org/wiki/Cartesian coordinate system. (https://en.wikipedia.org/wiki/Cartesian coordinate system).
- [9]: Wilson, Greg, Aruliah, D. A., Titus, C., Chue Hong, Neil P., Davis, Matt, Guy, Richard T., Haddock, Steven H. D., Huff, Kathryn D., Mitchell, Ian M., Plumblet, Mark D., Waugh, Ben, White, Ethan P., and Wilson, Paul. "Best Practices for Scientific Computing, 2013." PLoS Biol, vol. 12, no. 1, 2013. Print.