Licensed to license

Deficient probes in West Circassian nominalizations

Ksenia Ershova (kershova@mit.edu)

GLOW 46, University of Vienna

14 April 2023

bit.ly/ErshovaGLOW46

In certain syntactic configurations, ϕ -probes are deficient:

In certain syntactic configurations, ϕ -probes are deficient:

► may not assign case

In certain syntactic configurations, φ-probes are deficient:

- may not assign case
- may not expone agreement

In certain syntactic configurations, φ-probes are deficient:

- ▶ may not assign case
- may not expone agreement

Verbal φ -probes are frequently deficient in non-finite constructions.

In certain syntactic configurations, φ -probes are deficient:

- may not assign case
- may not expone agreement

Verbal φ-probes are frequently deficient in non-finite constructions.

My proposal: φ-probes are deficient by default.

In certain syntactic configurations, φ -probes are deficient:

- ► may not assign case
- ▶ may not expone agreement

Verbal φ-probes are frequently deficient in non-finite constructions.

My proposal: φ-probes are deficient by default.

Non-deficient probes result from licensing by the highest head in the extended projection $-C^0$.

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

► Nominal arguments must be licensed by φ-agreement (Kalin 2019)

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

- ► Nominal arguments must be licensed by φ-agreement (κalin 2019)
- ightharpoonup ϕ -probes are merged as deficient \Rightarrow cannot license nominals.

 φ -probes **must be licensed** to agree with and license nominal arguments.

- Nominal arguments must be licensed by φ-agreement (Kalin 2019)
- ightharpoonup ϕ -probes are merged as deficient \Rightarrow cannot license nominals.
- Full φ-feature probing must be licensed by the highest head in the extended projection C^0 .

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

- Nominal arguments must be licensed by φ-agreement (κalin 2019)
- ightharpoonup ϕ -probes are merged as deficient \Rightarrow cannot license nominals.
- Full φ-feature probing must be licensed by the highest head in the extended projection C^0 .

Evidence: deficient probes in West Circassian nominalizations.

 verbal φ-probes are deficient unless embedded under C⁰

 verbal φ-probes are deficient unless embedded under C⁰

- verbal φ-probes are deficient unless embedded under C⁰
- $ightharpoonup \phi$ -agreement and licensing are **licensed** by C^0

- verbal φ-probes are deficient unless embedded under C⁰
- $ightharpoonup \phi$ -agreement and licensing are **licensed** by C^0

► Background on West Circassian

- ► Background on West Circassian
- ► Functional structure of nominalizations

- ► Background on West Circassian
- Functional structure of nominalizations
- ightharpoonup ϕ -probe licensing by C^0

- Background on West Circassian
- ► Functional structure of nominalizations
- ightharpoonup ϕ -probe licensing by C^0
- ► Licensing arguments in nominalizations

- Background on West Circassian
- ► Functional structure of nominalizations
- ightharpoonup ϕ -probe licensing by C^0
- Licensing arguments in nominalizations
- Conclusion

- ► Background on West Circassian
- Functional structure of nominalizations
- ightharpoonup ϕ -probe licensing by C^0
- Licensing arguments in nominalizations
- Conclusion

West Circassian (or Adyghe):

Northwest Caucasian

West Circassian (or Adyghe):

- ► Northwest Caucasian
- Republic of Adygea, Russia

West Circassian (or Adyghe):

- Northwest Caucasian
- ► Republic of Adygea, Russia
- agglutinating, polysynthetic

West Circassian (or Adyghe):

- Northwest Caucasian
- Republic of Adygea, Russia
- agglutinating, polysynthetic
- ergative case and agreement

West Circassian (or Adyghe):

- Northwest Caucasian
- ► Republic of Adygea, Russia
- ► agglutinating, polysynthetic
- ergative case and agreement

Data:

West Circassian (or Adyghe):

- Northwest Caucasian
- Republic of Adygea, Russia
- agglutinating, polysynthetic
- ergative case and agreement

Data:

► fieldwork on the **Temirgoy dialect** in the Shovgenovsky district of Adygea

West Circassian (or Adyghe):

- Northwest Caucasian
- Republic of Adygea, Russia
- agglutinating, polysynthetic
- ergative case and agreement

Data:

- fieldwork on the Temirgoy dialect in the Shovgenovsky district of Adygea
- ► Adyghe Corpus by Timofey Arkhangelskiy, Irina Bagirokova, Yury Lander, and Anna Lander (http://adyghe.web-corpora.net/)

Head marking and pro-drop:

Head marking and pro-drop:

sәqәpfarjәsе λe в $^{\mathrm{w}}$ әs

Head marking and pro-drop:

$$s$$
ә q ә $pfarj$ ә s е λe в $^{\mathrm{w}}$ ә s

sə- qə- p-f- a-r- jə- ве- 1sg.abs- dir- 2sg.io+ben- 3pl.io+dat- 3sg.erg- caus-
$$\lambda$$
eв -PST

'He showed me to them for your sake.'

(Korotkova and Lander 2010:301)

Head marking and pro-drop:

'He showed me to them for your sake.'

(Korotkova and Lander 2010:301)

Head marking and pro-drop:

'He showed me to them for your sake.'

(Korotkova and Lander 2010:301)

Head marking and pro-drop:

'He showed me to them for your sake.'

(Korotkova and Lander 2010:301)

Order of cross-reference markers:

ABS-

Head marking and pro-drop:

'He showed me to them for your sake.'

(Korotkova and Lander 2010:301)

Head marking and pro-drop:

'He showed me to them for your sake.'

(Korotkova and Lander 2010:301)

Head marking and pro-drop:

'He showed me to them for your sake.'

(Korotkova and Lander 2010:301)

-r (ABS):

-r (ABS):

intransitive subject

\mathbf{S}

 $\begin{array}{ll} \text{mə p$\hat{s}a$\hat{s}e-r} & \text{daxew qa\hat{s}^{\text{w}}e$} \\ \text{this girl-${\tt ABS}$} & \text{well dances} \end{array}$

'This girl dances well.'

-r (ABS):

- intransitive subject
- direct object

\mathbf{S}

 $\begin{array}{ll} \text{mə p\hat{s}a\hat{s}e-r} & \text{daxew qa$\hat{s}we} \\ \text{this girl-ABS} & \text{well dances} \end{array}$

'This girl dances well.'

O

sabəjxe-m haxe-r qa\(\text{ous-m}\) basəbəjxe-m dogs-\(\text{ABS}\) saw

'The children saw the dogs.'

- -r (ABS):
 - ► intransitive subject
 - direct object
- -m (OBL):

\mathbf{S}

 $\begin{array}{ll} \text{mə p\hat{s}a\hat{s}e-r} & \text{daxew qa$\hat{s}we} \\ \text{this girl-$^{\textbf{ABS}}$} & \text{well dances} \end{array}$

'This girl dances well.'

O

sabəjxe-m haxe-r qa\(\rho\rho\rmathbb{B}\rho\rmathbb{B}\rho\rho\rmathbb{B}\rho\rmathbb{S}\rmathbb{ABS}\rmathbb{S}\rmathbb{S}\rmathbb{ABS}\rmathbb{S}\rmathbb{ABS}

'The children saw the dogs.'

- -r (ABS):
 - ► intransitive subject
 - ▶ direct object
- -m (OBL):
 - transitive subject

\mathbf{S}

 $\begin{array}{ll} \text{mə p\hat{s}a\hat{s}e-r} & \text{daxew qa$\hat{s}we} \\ \text{this girl-$^{\textbf{ABS}}$} & \text{well dances} \end{array}$

'This girl dances well.'

O

sabəjxe-m haxe-r qa λ eв $^{\rm w}$ əв children- $_{
m OBL}$ dogs- $_{
m ABS}$ saw

'The children saw the dogs.'

-r (ABS):

- ► intransitive subject
- ▶ direct object

-m (OBL):

- transitive subject
- applied object

\mathbf{S}

mə pŝaŝe-r daxew qaŝ w e this girl- ABS well dances

'This girl dances well.'

A C

sabəjxe-m haxe-r qa λ eв $^{\rm w}$ əв children-obl dogs- $^{\rm ABS}$ saw

'The children saw the dogs.'

IO

mafe-qes ježape-m sekwe day-each school-**OBL** go

'I go to school every day.'

 $(See \ also \ Bittner \ and \ Hale \ 1996; \ Manning \ 1996; \ Baker \ 1997; \ Aldridge \ 2008; \ Yuan \ 2018, \ 2022; \ Coon \ et \ al. \ 2021; \ Manning \ 1996; \ Baker \ 1997; \ Aldridge \ 2008; \ Yuan \ 2018, \ 2022; \ Coon \ et \ al. \ 2021; \ Manning \ 1996; \ Manning \ 1996; \ Manning \ 1996; \ Manning \ 1997; \ Aldridge \ 2008; \ Manning \ 1996; \ Manning \ 1997; \ Manning \ 1996; \ Manning \ 19$

▶ DP_{ABS} moves to Spec,TP

 $(\mathsf{See}\ \mathsf{also}\ \mathsf{Bittner}\ \mathsf{and}\ \mathsf{Hale}\ \mathsf{1996};\ \mathsf{Manning}\ \mathsf{1996};\ \mathsf{Baker}\ \mathsf{1997};\ \mathsf{Aldridge}\ \mathsf{2008};\ \mathsf{Yuan}\ \mathsf{2018},\ \mathsf{2022};\ \mathsf{Coon}\ \mathsf{et}\ \mathsf{al}.\ \mathsf{2021};$

- ▶ DP_{ABS} moves to Spec,TP
- evidence from parasitic gaps and reciprocal binding

(Ershova 2019, 2021, to appear b)

(See also Bittner and Hale 1996; Manning 1996; Baker 1997; Aldridge 2008; Yuan 2018, 2022; Coon et al. 2021;

- ► DP_{ABS} moves to Spec,TP
- evidence from parasitic gaps and reciprocal binding

(Ershova 2019, 2021, to appear b)

(See also Bittner and Hale 1996; Manning 1996; Baker 1997; Aldridge 2008; Yuan 2018, 2022; Coon et al. 2021;

Reciprocals are covert and trigger **reciprocal agreement** on the predicate:

Reciprocals are covert and trigger **reciprocal agreement** on the predicate:

correlates with syntactic position of the reciprocal

Reciprocals are covert and trigger **reciprocal agreement** on the predicate:

- correlates with syntactic position of the reciprocal
- ▶ does not affect transitivity ⇒ not a de-transitivizing operator

Reciprocals are covert and trigger **reciprocal agreement** on the predicate:

- correlates with syntactic position of the reciprocal
- ▶ does not affect transitivity ⇒ not a de-transitivizing operator

Reciprocals are subject to Condition A

Reciprocals are covert and trigger **reciprocal agreement** on the predicate:

- correlates with syntactic position of the reciprocal
- ▶ does not affect transitivity ⇒ not a de-transitivizing operator

Reciprocals are subject to Condition A

= must be bound by a local c-commanding antecedent

ABS external argument binds IO

$$\hat{\mathbf{s}}^{\mathbf{w}}$$
- qə- **d**- de- $\hat{\mathbf{s}}^{\mathbf{w}}$ eš't 2PL.ABS- DIR- 1PL.IO- COM- dance.FUT

BASELINE

'You(pl) will dance with us'

ABS external argument binds IO

'You(pl) will dance with us'

BASELINE

ABS external argument binds IO ⇒ REC replaces IO agreement

'You(pl) will dance with us'

BASELINE

ERG binds **IO**

ERG binds IO

```
axe-me ?eg<sup>w</sup>əb2e-r Ø- ze- r- a- təž'ə that.PL-OBL cup-ABS 3ABS- REC.IO- DAT- 3PL.ERG- give
```

'They pass the cup to each other.'

(http://adyghe.web-corpora.net/)

ERG binds IO

► REC replaces IO agreement

```
axe-me ?egwəbẑe-r Ø- ze- r- a- təž'ə that.PL-OBL cup-ABS 3ABS- REC.IO- DAT- 3PL.ERG- give
```

'They pass the cup to each other.'

```
(http://adyghe.web-corpora.net/)
```

ERG binds IO

- ► REC replaces IO agreement
- ► ERG antecedent bears OBL (=ERG) case

```
axe-me ?eg^wəb\hat{z}e-r \emptyset- ze- r- a- tə\check{z}'ə that.PL-OBL cup-ABS 3ABS-REC.IO- DAT- 3PL.ERG- give
```

'They pass the cup to each other.'

```
(http://adyghe.web-corpora.net/)
```

Reciprocal agreement does not affect transitivity

ABS binds 10

```
sabəjxe-r Ø- z- e- pλəž'əx child.PL-ABS 3ABS- REC.IO- DAT- look.PL
```

'The children are looking at each other.'

Reciprocal agreement does not affect transitivity

ABS binds 10

► REC replaces IO agreement

```
sabəjxe-r Ø- z- e- pλəž'əx child.PL-ABS 3ABS- REC.IO- DAT- look.PL
```

'The children are looking at each other.'

Reciprocal agreement does not affect transitivity

ABS binds IO

- ► REC replaces IO agreement
- ► ABS antecedent bears ABS case

```
sabəjxe-r Ø- z- e- pλəž'əx
child.PL-ABS 3ABS- REC.IO- DAT- look.PL
```

'The children are looking at each other.'

Reciprocal binding is established via c-command

ABS/ERG external argument binds **IO**:

Reciprocal binding is established via c-command

ABS/ERG external argument binds **IO**:

Reciprocal binding is established via c-command

ABS/ERG external argument binds IO:

Reciprocals provide evidence for high absolutive syntax:

Reciprocals provide evidence for high absolutive syntax:

reciprocals are bound by a c-commanding antecedent

Reciprocals provide evidence for high absolutive syntax:

- reciprocals are bound by a c-commanding antecedent
- ► ABS theme binds ERG agent and applied object (IO)

Reciprocals provide evidence for high absolutive syntax:

- reciprocals are bound by a c-commanding antecedent
- ► ABS theme binds ERG agent and applied object (IO)

ABS c-commands both ERG and IO.

```
tə- qə- р- f- jə- š'ав
1PL.ABS- DIR- 2SG.IO- BEN- 3SG.ERG- bring.PST
```

'S/he brought us to you.'

BASELINE

'S/he brought us to you.'

BASELINE

'S/he brought us together (= to each other).' **RECIPROCAL**

'We saw you(pl).'

BASELINE

'We saw you(pl).'

BASELINE

'We saw each other.'

RECIPROCAL

Intended: 'We saw each other.'

RECIPROCAL

ABS binds reciprocals in ERG and IO positions:

ABS binds reciprocals in ERG and IO positions:

ABS binds reciprocals in ERG and IO positions:

West Circassian finite clauses:

✓ ergative, oblique and absolutive case assignment on DPs

- ✓ ergative, oblique and absolutive case assignment on DPs
- √ φ-agreement with multiple arguments

- ✓ ergative, oblique and absolutive case assignment on DPs
- √ φ-agreement with multiple arguments
- ✓ high absolutive syntax: ABS raises to Spec,TP

- ✓ ergative, oblique and absolutive case assignment on DPs
- ✓ φ-agreement with multiple arguments
- ✓ high absolutive syntax: ABS raises to Spec,TP

 (evidence from reciprocals)

West Circassian finite clauses:

- ✓ ergative, oblique and absolutive case assignment on DPs
- ✓ φ-agreement with multiple arguments
- ✓ high absolutive syntax: ABS raises to Spec,TP

 (evidence from reciprocals)

West Circassian finite clauses:

- ✓ ergative, oblique and absolutive case assignment on DPs
- ✓ φ-agreement with multiple arguments
- √ high absolutive syntax: ABS raises to Spec,TP

 (evidence from reciprocals)

Next: nominalizations

X arguments licensed as possessor or pseudo-incorporated

West Circassian finite clauses:

- ✓ ergative, oblique and absolutive case assignment on DPs
- \checkmark ϕ -agreement with multiple arguments
- ✓ high absolutive syntax: ABS raises to Spec,TP

 (evidence from reciprocals)

- X arguments licensed as possessor or pseudo-incorporated
- X full φ-agreement unavailable

West Circassian finite clauses:

- ✓ ergative, oblique and absolutive case assignment on DPs
- √ φ-agreement with multiple arguments
- ✓ high absolutive syntax: ABS raises to Spec,TP

 (evidence from reciprocals)

- arguments licensed as possessor or pseudo-incorporated
- X full φ-agreement unavailable
 - ✓ deficient φ-agreement still possible!

West Circassian finite clauses:

- ✓ ergative, oblique and absolutive case assignment on DPs
- \checkmark ϕ -agreement with multiple arguments
- ✓ high absolutive syntax: ABS raises to Spec,TP

 (evidence from reciprocals)

- arguments licensed as possessor or pseudo-incorporated
- y full φ-agreement unavailable
 - ✓ deficient φ-agreement still possible!
- ✓ high absolutive syntax

West Circassian finite clauses:

- ✓ ergative, oblique and absolutive case assignment on DPs
- √ φ-agreement with multiple arguments
- √ high absolutive syntax: ABS raises to Spec,TP

 (evidence from reciprocals)

Next: nominalizations

- arguments licensed as possessor or pseudo-incorporated
- y full φ-agreement unavailable
 - ✓ deficient φ-agreement still possible!
- ✓ high absolutive syntax

Nominalizations include structure up to TP, but are deficient in ϕ -agreement and licensing without C^0 .

Roadmap

- ► Background on West Circassian
- ► Functional structure of nominalizations
- ightharpoonup ϕ -probe licensing by C^0
- Licensing arguments in nominalizations
- Conclusion

Noun phrase structure

```
tjə- še-n- xebze -daxe -xe -r
1PL.POSS- lead-NML rule -beautiful -PL -ABS
'our beautiful rules of conduct' (Ershova 2020:431)
```

Nominalizations bit.ly/ErshovaGLOW46

Noun phrase structure

ightharpoonup ϕ -agreement with possessor

```
tja- še-n- xebze -daxe -xe -r

1PL.POSS- lead-NML rule -beautiful -PL -ABS

'our beautiful rules of conduct' (Ershova 2020:431)
```

Nominalizations bit.ly/ErshovaGLOW46

Noun phrase structure

- \blacktriangleright ϕ -agreement with possessor
- complements and modifiers incorporated

```
tjə- <u>se-n-</u> xebze <u>-daxe</u> -xe -r
1PL.POSS- <u>lead-NML-</u> rule <u>-beautiful</u> -PL -ABS
'our beautiful rules of conduct' (Ershova 2020:431)
```

Nominalizations bit.ly/ErshovaGLOW46

Ershova (2020)

```
labe-xe-r Ø- s- e- thač'ə FINITE dish-PL-ABS 3ABS- 1SG.ERG- DYN- wash 'l am washing dishes.'
```

Ershova (2020)

▶ arguments as possessors or incorporated

```
laве-xe-r Ø- s- e- thač'ə FINITE dish-PL-ABS ЗАВS- 1SG.ERG- DYN- wash 'l am washing dishes.'
```

Ershova (2020)

arguments as possessors or incorporated

```
wjə- leʁe- thač'ə -č'e NOMINALIZATION
2SG.POSS- dish- wash -NML
'your manner of washing dishes'
```

Ershova (2020)

▶ arguments as possessors or incorporated

⇒no verbal licensing/case

```
lawe-xe-r Ø- s- e- thaç'ə FINITE
dish-PL-ABS 3ABS- 1SG.ERG- DYN- wash
'I am washing dishes.'
```

wjə- leʁe- thaç'ə -ç'e NOMINALIZATION 2SG.POSS- dish- wash -NML

'your manner of washing dishes'

Ershova (2020)

- ▶ arguments as possessors or incorporated⇒no verbal licensing/case
- \blacktriangleright no verbal ϕ -agreement

```
laße-xe-r Ø- s- e- thač'ə FINITE dish-PL-ABS 3ABS- 1SG.ERG- DYN- wash 'I am washing dishes.'
```

```
wjə- leве- thač'ə -č'e NOMINALIZATION
2SG.POSS- dish- wash -NML
'your manner of washing dishes'
```

Ershova (2020)

- arguments as possessors or incorporated
 - ⇒no verbal licensing/case

ightharpoonup no verbal ϕ -agreement

```
ightarrow possessor \phi-agreement
```

```
laße-xe-r Ø- s- e- thač'ə FINITE dish-PL-ABS 3ABS- 1SG.ERG- DYN- wash 'I am washing dishes.'
```

```
wjə- leʁe- thač'ə -č'e NOMINALIZATION
2sg.poss- dish- wash -NML
'your manner of washing dishes'
```

no verbal case/licensing

- no verbal case/licensing
- × no full φ-agreement

- no verbal case/licensing
- × no full φ-agreement
- ✓ BUT includes structure up to TP

- no verbal case/licensing
- × no full φ-agreement
- ✓ BUT includes structure up to TP

Evidence:

- no verbal case/licensing
- × no full φ-agreement
- ✓ BUT includes structure up to TP

Evidence:

1. morphological reflexes of v^0 and Appl⁰

- no verbal case/licensing
- × no full φ-agreement
- ✓ BUT includes structure up to TP

Evidence:

- 1. morphological reflexes of v^0 and Appl⁰
- 2. temporal adverbs

- no verbal case/licensing
- × no full φ-agreement
- ✓ BUT includes structure up to TP

Evidence:

- 1. morphological reflexes of v^0 and Appl⁰
- 2. temporal adverbs
- 3. deficient φ -agreement with anaphors

- no verbal case/licensing
- × no full φ-agreement
- ✓ BUT includes structure up to TP

Evidence:

- 1. morphological reflexes of v^0 and Appl⁰
- 2. temporal adverbs
- 3. deficient φ-agreement with anaphors
- 4. high absolutive

nominalizations include causatives

```
jə- xebze- \text{ke-} \text{kweda-}č'e 3SG.POSS- rule- CAUS- perish -NML 'its destruction (= causing to perish) of traditions'
```

nominalizations include causatives

```
jə- xebze- k^wedə -\xi'e 3SG.POSS- rule- CAUS- perish -NML 'its destruction (= causing to perish) of traditions'
```

nominalizations include causatives

```
jə- xebze- k^wedə -\xi'e 3SG.POSS- rule- CAUS- perish -NML 'its destruction (= causing to perish) of traditions'
```

nominalizations include applicatives

```
ja- haźwə- de- ǯegwə -č'e
3PL.POSS- puppy- COM- play -NML
'their way of playing with puppies'
```

nominalizations include causatives

```
jə- xebze- k^wedə -\check{c}'e 3SG.POSS- rule- CAUS- perish -NML 'its destruction (= causing to perish) of traditions'
```

nominalizations include applicatives

```
ja- haź<sup>w</sup>ə- <mark>de-</mark> ǯeg<sup>w</sup>ə -ç̈'e
3PL.POSS- puppy- <mark>COM-</mark> play -NML
```

'their way of playing with puppies'

Nominalizations include temporal adverbs

'I'm tired of your going to the store every day.'

Nominalizations include temporal adverbs

```
[ \frac{\text{mafe-qes}}{\text{day-each}} wjə- \frac{\text{t}^{\text{w}}\text{e} - \text{n}}{\text{sieze}} sjezes'ər day-each 2SG.POSS- store- go -NML I am tired
```

'I'm tired of your going to the store every day.'

Compare with non-derived nouns:

* mafe-qes pjerjedač day-each broadcast

Intended: 'everyday program'

reciprocal agreement with applicative

► reciprocal agreement with applicative

axer Ø- ze-f- e-
$$g^w$$
ə?ež'ə -x they.
ABS 3ABS- REC.IO-BEN- DYN- endeavor -PL

'They work hard for each other.'

FINITE

reciprocal agreement with applicative

axer Ø- **ze-f-** e-
$$g^w \partial e \dot{z} - x$$
 they.ABS 3ABS- **REC.10-BEN-** DYN- endeavor -PL

'They work hard for each other.'

FINITE

reciprocal agreement with applicative

axer Ø-
$$ze-f-$$
 e- $g^w \partial e^{\dot{z}} \partial -x$ they.ABS 3ABS- REC.IO-BEN- DYN- endeavor -PL

'They work hard for each other.'

TINITE

'their manner of working hard for each other' NOMINALIZATION

reciprocal agreement with applicative

axer Ø- **ze-f-** e-
$$g^w \partial e^{\dot{z}} \partial -x$$
 they.ABS 3ABS- **REC.IO-BEN-** DYN- endeavor -PL

'They work hard for each other.'

INITE

'their manner of working hard for each other' NOMINALIZATION

► reciprocal agreement with ergative

► reciprocal agreement with ergative

Ø- qe- zer- e-
$$\mathrm{ge}$$
- gw e - z 'ə-x 3ABS- DIR- REC.ERG- DYN- CAUS- dance -RE -PL

'They are making each other dance.'

FINITE

► reciprocal agreement with ergative

Ø- qe-
$$\overline{zer}$$
- e- \overline{s}^w e - \overline{z} 'ə - x 3ABS- DIR- $\overline{REC.ERG}$ - DYN- CAUS- dance - \overline{RE} - \overline{PL}

'They are making each other dance.'

FINITE

reciprocal agreement with ergative

'They are making each other dance.'

FINITE

ja- qe- zere- ве-
$$\hat{s}^w a$$
 - \check{c} 'e 3PL.POSS- DIR- REC.ERG- CAUS- dance -NML

'their manner of making each other dance' NOMINALIZATION

► reciprocal agreement with ergative

'They are making each other dance.'

FINITE

'their manner of making each other dance' NOMINALIZATION

► reciprocal agreement with ergative

'They are making each other dance.'

FINITE

```
ja- qe- zere- ве- ŝ<sup>w</sup>a -č'e
ЗРL.POSS- DIR- REC.ERG- CAUS- dance -NML
```

'their manner of making each other dance' NOMINALIZATION

reciprocal agreement with ergative

$$\Rightarrow$$
 DP_{ABS} binds DP_{ERG}

'They are making each other dance.'

FINITE

```
qe- zere- s<sup>w</sup> a -č'e
ja-
3PL.POSS- DIR- REC.ERG- CAUS- dance -NML
```

'their manner of making each other dance' NOMINALIZATION

reciprocal agreement with ergative

$$\Rightarrow$$
 DP_{ABS} binds DP_{ERG}
 \Rightarrow **high absolutive**

'They are making each other dance.'

FINITE

'their manner of making each other dance'

NOMINALIZATION

Functional structure of nominalizations: summary

✓ Nominalizations include a full TP:

- ✓ Nominalizations include a full TP:
 - ▶ high ABS binds ERG reciprocal

- ✓ Nominalizations include a full TP:
 - ▶ high ABS binds ERG reciprocal
 - $\triangleright v^0$ and Appl⁰ morphology

- ✓ Nominalizations include a full TP:
 - ▶ high ABS binds ERG reciprocal
 - $\triangleright v^0$ and Appl⁰ morphology
 - temporal adverbs

- ✓ Nominalizations include a full TP:
 - ▶ high ABS binds ERG reciprocal
 - $\triangleright v^0$ and Appl⁰ morphology
 - temporal adverbs
 - anaphor agreement

- ✓ Nominalizations include a full TP:
 - ▶ high ABS binds ERG reciprocal
 - $\triangleright v^0$ and Appl⁰ morphology
 - temporal adverbs
 - anaphor agreement

BUT:

- ✓ Nominalizations include a full TP:
 - ▶ high ABS binds ERG reciprocal
 - $\triangleright v^0$ and Appl⁰ morphology
 - temporal adverbs
 - anaphor agreement

BUT:

× no full φ-agreement

- ✓ Nominalizations include a full TP:
 - ▶ high ABS binds ERG reciprocal
 - $\triangleright v^0$ and Appl⁰ morphology
 - temporal adverbs
 - anaphor agreement

BUT:

- × no full φ-agreement
- no licensing of DP arguments

Deficient ϕ -probes in nominalizations

Deficient φ-probes in nominalizations

The puzzle

If nominalizations contain a full TP, why is the verbal syntax so diminished?

Deficient ϕ -probes in nominalizations

The puzzle

If nominalizations contain a full TP, why is the verbal syntax so diminished?

▶ no full φ-agreement, only anaphor agreement

Deficient ϕ -probes in nominalizations

The puzzle

If nominalizations contain a full TP, why is the verbal syntax so diminished?

- no full φ-agreement, only anaphor agreement
- no verbal case or licensing

Deficient φ-probes in nominalizations

The puzzle

If nominalizations contain a full TP, why is the verbal syntax so diminished?

- no full φ-agreement, only anaphor agreement
- no verbal case or licensing

The solution:

Deficient ϕ -probes in nominalizations

The puzzle

If nominalizations contain a full TP, why is the verbal syntax so diminished?

- no full φ-agreement, only anaphor agreement
- no verbal case or licensing

The solution:

Verbal φ -probes are present in nominalizations, but **they are deficient** in the absence of C^0 .

Roadmap

- ► Background on West Circassian
- ► Functional structure of nominalizations
- ightharpoonup ϕ -probe licensing by C^0
- ► Licensing arguments in nominalizations
- Conclusion

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

φ-probes are merged as deficient

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

- φ-probes are merged as deficient
 - ⇒ cannot expone full agreement and cannot license nominals.

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

- φ-probes are merged as deficient
 ⇒ cannot expone full agreement and cannot license nominals.
- Full φ-feature probing must be licensed by the highest head in the extended projection C^0 .

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

- φ-probes are merged as deficient
 ⇒ cannot expone full agreement and cannot license nominals.
- Full φ -feature probing must be licensed by the highest head in the extended projection C^0 .

West Circassian nominalizations:

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

- φ-probes are merged as deficient
 ⇒ cannot expone full agreement and cannot license nominals.
- Full φ-feature probing must be licensed by the highest head in the extended projection C^0 .

West Circassian nominalizations:

Contain structure up to TP, including verbal φ-probes

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

- φ-probes are merged as deficient
 ⇒ cannot expone full agreement and cannot license nominals.
- Full φ -feature probing must be licensed by the highest head in the extended projection C^0 .

West Circassian nominalizations:

Contain structure up to TP, including verbal φ -probes (Appl⁰, v^0 , and T⁰).

 ϕ -probes **must be licensed** to agree with and license nominal arguments.

- φ-probes are merged as deficient
 ⇒ cannot expone full agreement and cannot license nominals.
- Full φ -feature probing must be licensed by the highest head in the extended projection C^0 .

West Circassian nominalizations:

- Contain structure up to TP, including verbal φ -probes (Appl⁰, v^0 , and T⁰).
- ► The φ -probes are **deficient** in the absence of C⁰.

West Circassian polysynthetic φ-agreement involves multiple φ-probes: T^0 , v^0 , and Appl⁰.

- West Circassian polysynthetic φ-agreement involves multiple φ-probes: T^0 , v^0 , and Appl⁰.
 - exponed as distinct morphemes

- West Circassian polysynthetic φ-agreement involves multiple φ-probes: T^0 , v^0 , and Appl⁰.
 - exponed as distinct morphemes
 - separated by morphology which is retained in absence of φ-agreement

- West Circassian polysynthetic φ-agreement involves multiple φ-probes: T^0 , v^0 , and Appl⁰.
 - exponed as distinct morphemes
 - separated by morphology which is retained in absence of φ-agreement
- \triangleright If c-commanded by C⁰, they are licensed as full φ-probes.

- West Circassian polysynthetic φ-agreement involves multiple φ-probes: T^0 , v^0 , and Appl⁰.
 - exponed as distinct morphemes
 - separated by morphology which is retained in absence of φ-agreement
- \triangleright If c-commanded by C⁰, they are licensed as full φ-probes.
 - ⇒ may expone agreement

- West Circassian polysynthetic φ-agreement involves multiple φ-probes: T^0 , v^0 , and Appl⁰.
 - exponed as distinct morphemes
 - separated by morphology which is retained in absence of φ-agreement
- ightharpoonup If c-commanded by C⁰, they are licensed as full φ-probes.
 - ⇒ may expone agreement
 - ⇒ may license DPs

- West Circassian polysynthetic φ-agreement involves multiple φ-probes: T^0 , v^0 , and Appl⁰.
 - exponed as distinct morphemes
 - separated by morphology which is retained in absence of φ-agreement
- \triangleright If c-commanded by C⁰, they are licensed as full φ-probes.
 - ⇒ may expone agreement
 - ⇒ may license DPs
- ▶ If they are not c-commanded by C⁰, they are deficient.

- West Circassian polysynthetic φ-agreement involves multiple φ-probes: T^0 , v^0 , and Appl⁰.
 - exponed as distinct morphemes
 - separated by morphology which is retained in absence of φ-agreement
- \triangleright If c-commanded by C⁰, they are licensed as full φ-probes.
 - ⇒ may expone agreement
 - ⇒ may license DPs
- ▶ If they are not c-commanded by C⁰, they are deficient. (e.g. in nominalizations)

Agreement prefixes expone separate ϕ -probes:

Agreement prefixes expone separate ϕ -probes:

transparent agglutinating morphology

Agreement prefixes expone separate φ -probes:

- transparent agglutinating morphology
- prefixes may be separated by non-agreement morphology

Agreement prefixes expone separate φ -probes:

- transparent agglutinating morphology
- prefixes may be separated by non-agreement morphology

```
tə- q- jə- ʁe-č'ə-ž'
1PL.ABS- DIR- 3SG.ERG- CAUS-rise-again
```

's/he raised us again'

FINITE

Agreement prefixes expone separate φ -probes:

- transparent agglutinating morphology
- prefixes may be separated by non-agreement morphology

which is retained in nominalizations

```
tə- q- jə- ʁe-č'ə-ž'
1PL.ABS- DIR- 3SG.ERG- CAUS-rise-again
```

's/he raised us again'

FINITE

Agreement prefixes expone separate ϕ -probes:

- transparent agglutinating morphology
- prefixes may be separated by non-agreement morphology

which is retained in nominalizations

```
tə- q- jə- ʁe-č'ə-ž'

1PL.ABS- DIR- 3SG.ERG- CAUS-rise-again

's/he raised us again'

FINITE

jə- qe- ʁe-č'ə-n

3SG.POSS- DIR- CAUS-rise-NML

'its raising' (http://adyghe.web-corpora.net/)

NOMINALIZATION
```

Multiple verbal φ-probes

Agreement prefixes expone separate φ -probes:

- transparent agglutinating morphology
- prefixes may be separated by non-agreement morphology which is retained in nominalizations

```
sheč'afe Ø- a- f- jə- şə-s'təʁ
respect 3ABS- 3PL.IO- BEN- 3SG.ERG- do-IPF.PST
```

'He was showing respect for them.'

FINITE

Multiple verbal φ-probes

Agreement prefixes expone separate φ-probes:

- transparent agglutinating morphology
- prefixes may be separated by non-agreement morphology which is retained in nominalizations

```
sheč'afe Ø- a- f- jə- şə-s'təʁ
respect 3ABS- 3PL.IO- BEN- 3SG.ERG- do-IPF.PST
```

'He was showing respect for them.'

FINITE

```
pš'ə- ŝheč'efe- fe- ṣ̂ə-č'e
prince- respect- BEN- do-NML
```

'showing respect for princes'

NOMINALIZATION

(http://adyghe.web-corpora.net/)

w- a-de- s- š'aʁ 2sg.abs- 3pl.io-com- 1sg.erg- bring.pst

- ► T⁰ agrees with DP_{abs}
 - v^0 agrees with DP_{erg}
- Appl⁰ agrees with DP_{io}

Full φ -agreement is licensed by C^0

- Appl⁰, v^0 and T^0 are merged deficient:
 - ✓ number X person

- ► Appl⁰, v⁰ and T⁰ are merged deficient:
 - ✓ number X person

- ► Appl⁰, v⁰ and T⁰ are merged deficient:
 - ✓ number

 X person
- ightharpoonup Appl⁰ agrees with DP_{IO}.

- Appl⁰, v^0 and T^0 are merged deficient:
 - ✓ number

 X person
- ightharpoonup Appl⁰ agrees with DP_{IO}.
- \triangleright v^0 agrees with $\mathsf{DP}_{\mathsf{ERG}}$.

- ► Appl⁰, v⁰ and T⁰ are merged deficient:
 - ✓ number

 X person
- ightharpoonup Appl⁰ agrees with DP_{IO}.
- $ightharpoonup v^0$ agrees with $\mathsf{DP}_{\mathsf{ERG}}$.
- ► T^0 agrees with and attracts DP_{ABS} .

- ► Appl⁰, v⁰ and T⁰ are merged deficient:
 - ✓ number

 X person
- ightharpoonup Appl⁰ agrees with DP_{IO}.
- \triangleright v^0 agrees with $\mathsf{DP}_{\mathsf{ERG}}$.
- ► T^0 agrees with and attracts DP_{ABS} .

- ► Appl⁰, v⁰ and T⁰ are merged deficient:
- ✓ number X person
 Appl⁰ agrees with DP_{IO}.
- \triangleright v^0 agrees with DP_{ERG} .
- ► T^0 agrees with and attracts DP_{ABS} .
- [π] on DP arguments is unchecked.

► C^0 is merged and agrees with T^0 , v^0 and Appl⁰.

- ► C^0 is merged and agrees with T^0 , v^0 and Appl⁰.
- Licenses [π] on lower probes.

- ► C^0 is merged and agrees with T^0 , v^0 and Appl⁰.
- Licenses [π] on lower probes.

- ► C^0 is merged and agrees with T^0 , v^0 and Appl⁰.
- Licenses [π] on lower probes.

- ► C^0 is merged and agrees with T^0 , v^0 and Appl⁰.
- Licenses [π] on lower probes.
- Probes check [π] on DPs and license them.

- ► C^0 is merged and agrees with T^0 , v^0 and Appl⁰.
- Licenses [π] on lower probes.
- Probes check [π] on DPs and license them.
- Probes are spelled out with fully specified φ-features.

TP is embedded under n^0 :

TP is embedded under n^0 :

Verbal probes remain deficient.

TP is embedded under n^0 :

- Verbal probes remain deficient.
- [π] on DPs remains unchecked
 ⇒ DPs remain unlicensed.

TP is embedded under n^0 :

- Verbal probes remain deficient.
- [π] on DPs remains unchecked
 ⇒ DPs remain unlicensed.
 - No exponent for deficient [#] agreement
 - ⇒ probes are not spelled out overtly.

TP is embedded under n^0 :

- Verbal probes remain deficient.
- [π] on DPs remains unchecked
 ⇒ DPs remain unlicensed.
- No exponent for deficient [#] agreement
 - ⇒ probes are not spelled out overtly.

Compare with C-to-T feature inheritance!

No C^0

Deficient [#] probes in nominalizations cannot license full DPs.

Deficient [#] probes in nominalizations cannot license full DPs.

Prediction:

Deficient [#] probes in nominalizations cannot license full DPs.

Prediction: φ -deficient nominals should be possible in nominalizations.

Deficient [#] probes in nominalizations cannot license full DPs.

Prediction: φ -deficient nominals should be possible in nominalizations.

Confirmed by:

Deficient [#] probes in nominalizations cannot license full DPs.

Prediction: φ -deficient nominals should be possible in nominalizations.

Confirmed by:

1. anaphors: specified only for [#]

(Kratzer 2009; Reuland 2011; Sundaresan 2020, a.o.)

Deficient [#] probes in nominalizations cannot license full DPs.

Prediction: φ -deficient nominals should be possible in nominalizations.

Confirmed by:

- 1. anaphors: specified only for [#]
 - (Kratzer 2009; Reuland 2011; Sundaresan 2020, a.o.)
- 2. PRO: unspecified for φ-features (e.g. Chomsky and Lasnik 1993; Landau 2015)

Deficient [#] probes in nominalizations cannot license full DPs.

Prediction: φ -deficient nominals should be possible in nominalizations.

Confirmed by:

- 1. anaphors: specified only for [#]
 - (Kratzer 2009; Reuland 2011; Sundaresan 2020, a.o.)
- PRO: unspecified for φ-features (e.g. Chomsky and Lasnik 1993; Landau 2015)
- 3. structurally deficient NPs: not specified for φ -features

Deficient agreement with anaphors

```
ja- <u>šene-</u> <u>ze-fe-</u> dəž'ə -n
3PL.POSS- dress- <u>REC.IO-BEN-</u> sew -NML
```

'their sewing of dresses for each other'

Deficient agreement with anaphors

```
ja- <u>šene-</u> <u>ze-fe-</u> dəž'ə -n
3PL.POSS- dress- <u>REC.10-BEN-</u> sew -NML
```

'their sewing of dresses for each other'

► Anaphor is specified only for [#].

Deficient agreement with anaphors

```
ja- <u>šene-</u> <u>ze-fe-</u> dəž'ə -n
3PL.POSS- dress- <u>REC.IO-BEN-</u> sew -NML
```

'their sewing of dresses for each other'

- ► Anaphor is specified only for [#].
- ▶ Deficient probe can license anaphor by checking [#] feature.

► PRO is unspecified for φ-features

PRO is unspecified for φ-features

 \Rightarrow does not require licensing by ϕ -agreement.

- PRO is unspecified for φ-features \Rightarrow does not require licensing by φ-agreement.
- Nominalizations may contain PRO.

- PRO is unspecified for φ-features
 ⇒ does not require licensing by φ-agreement.
- Nominalizations may contain PRO.

lit. ' I_{SG} like [PRO_{PL} dancing with each other].' (Ershova 2020:457)

- PRO is unspecified for φ-features \Rightarrow does not require licensing by φ-agreement.
- Nominalizations may contain PRO.

lit. ' I_{SG} like [PRO_{PL} dancing with each other].' (Ershova 2020:457)

 Structurally deficient NPs are not specified for number or person

ightharpoonup Structurally deficient NPs are not specified for number or person \sim generic interpretation

- ightharpoonup Structurally deficient NPs are not specified for number or person \sim generic interpretation
- They do not require φ-licensing

- ightharpoonup Structurally deficient NPs are not specified for number or person \sim generic interpretation
- They do not require φ-licensing
 - \Rightarrow may appear in nominalizations.

- ► Structurally deficient NPs are not specified for number or person ~ generic interpretation
- They do not require φ-licensing
 ⇒ may appear in nominalizations.

'her anticipating of presents'

- ► Structurally deficient NPs are not specified for number or person ~ generic interpretation
- They do not require φ-licensing
 ⇒ may appear in nominalizations.
- ▶ NPs are pseudo-incorporated
 = licensed by adjacency (next section)

jə-
$$\hat{s}^w$$
əhaftən- \check{s} 'ə- g^w ə s^w ə - \check{c} 'e 3SG.POSS- $gift$ - LOC- hope -NML

'her anticipating of presents'

Summary: Deficient ϕ -probes in nominalizations

► Nominalizations include a full TP.

Summary: Deficient ϕ -probes in nominalizations

- ► Nominalizations include a full TP.
- The verbal φ-probes are **deficient** without licensing by C^0 .

Summary: Deficient ϕ -probes in nominalizations

- Nominalizations include a full TP.
- The verbal φ-probes are **deficient** without licensing by C^0 .
- Presence of deficient φ-probes is confirmed by licensing of φ-deficient nominals: anaphors, PRO and bare NPs.

- Nominalizations include a full TP.
- The verbal φ-probes are **deficient** without licensing by C^0 .
- Presence of deficient φ-probes is confirmed by licensing of φ-deficient nominals: anaphors, PRO and bare NPs.

Licensing in nominalizations:

- ► Nominalizations include a full TP.
- The verbal φ-probes are **deficient** without licensing by C^0 .
- Presence of deficient φ-probes is confirmed by licensing of φ-deficient nominals: anaphors, PRO and bare NPs.

Licensing in nominalizations:

1. φ-deficient pronouns (PRO and anaphors)

- ► Nominalizations include a full TP.
- The verbal φ-probes are **deficient** without licensing by C^0 .
- Presence of deficient φ-probes is confirmed by licensing of φ-deficient nominals: anaphors, PRO and bare NPs.

Licensing in nominalizations:

1. φ-deficient pronouns (PRO and anaphors)

 \rightarrow by ϕ -deficient verbal probes

- ► Nominalizations include a full TP.
- The verbal φ-probes are **deficient** without licensing by C^0 .
- Presence of deficient φ-probes is confirmed by licensing of φ-deficient nominals: anaphors, PRO and bare NPs.

Licensing in nominalizations:

- 1. φ-deficient pronouns (PRO and anaphors)
 - \rightarrow by ϕ -deficient verbal probes

2. bare NPs (no φ-features)

- ► Nominalizations include a full TP.
- The verbal φ-probes are **deficient** without licensing by C^0 .
- Presence of deficient φ-probes is confirmed by licensing of φ-deficient nominals: anaphors, PRO and bare NPs.

Licensing in nominalizations:

- 1. φ-deficient pronouns (PRO and anaphors)
 - \rightarrow by ϕ -deficient verbal probes

2. bare NPs (no φ-features)

ightarrow by adjacency

- ► Nominalizations include a full TP.
- \triangleright The verbal φ-probes are **deficient** without licensing by C^0 .
- Presence of deficient φ-probes is confirmed by licensing of φ-deficient nominals: anaphors, PRO and bare NPs.

Licensing in nominalizations:

- 1. φ-deficient pronouns (PRO and anaphors)
 - \rightarrow by $\phi\text{-deficient}$ verbal probes

2. bare NPs (no φ-features)

ightarrow by adjacency

3. + one full DP

- ► Nominalizations include a full TP.
- The verbal φ-probes are **deficient** without licensing by C^0 .
- Presence of deficient φ-probes is confirmed by licensing of φ-deficient nominals: anaphors, PRO and bare NPs.

Licensing in nominalizations:

- 1. φ-deficient pronouns (PRO and anaphors)
 - \rightarrow by ϕ -deficient verbal probes

2. bare NPs (no φ-features)

ightarrow by adjacency

3. + one full DP

ightarrow as possessor

- Nominalizations include a full TP.
- The verbal φ-probes are **deficient** without licensing by C^0 .
- \triangleright Presence of deficient φ -probes is confirmed by licensing of φ-deficient nominals: anaphors, PRO and bare NPs.

Licensing in nominalizations:

1. φ-deficient pronouns (PRO and anaphors)

 \rightarrow by φ -deficient verbal probes

bare NPs (no φ-features)
 + one full DP

→ by adjacency

ightarrow as possessor

NOMINAL LICENSING

Roadmap

- ► Background on West Circassian
- ► Functional structure of nominalizations
- ightharpoonup ϕ -probe licensing by C^0
- ► Licensing arguments in nominalizations
- Conclusion

In nominalizations:

ightharpoonup verbal ϕ -probes are deficient \Rightarrow cannot license full DPs

- ightharpoonup verbal φ -probes are deficient \Rightarrow cannot license full DPs
- arguments may be licensed by the nominal syntax

- ightharpoonup verbal φ -probes are deficient \Rightarrow cannot license full DPs
- arguments may be licensed by the nominal syntax
 - ▶ bare NPs by adjacency

- \triangleright verbal φ -probes are deficient \Rightarrow cannot license full DPs
- arguments may be licensed by the nominal syntax
 - ▶ bare NPs by adjacency
 - = DP-internal syntax-to-prosody mapping

- \triangleright verbal φ -probes are deficient \Rightarrow cannot license full DPs
- arguments may be licensed by the nominal syntax
 - ▶ bare NPs by adjacency= DP-internal syntax-to-prosody mapping
 - ▶ one full DP as possessor

- \triangleright verbal φ -probes are deficient \Rightarrow cannot license full DPs
- arguments may be licensed by the nominal syntax
 - bare NPs by adjacencyDP-internal syntax-to-prosody mapping
 - one full DP as possessor = by nominal φ-probe Poss⁰

- ightharpoonup verbal φ-probes are deficient \Rightarrow cannot license full DPs
- arguments may be licensed by the nominal syntax
 - ▶ bare NPs by adjacency
 = DP-internal syntax-to-prosody mapping
 - ightharpoonup one full DP as possessor = by nominal φ-probe Poss⁰

Pseudo-incorporation through syntax-to-prosody mapping

Phrasal modifiers and complements in DP are pseudo-incorporated because DP phase is mapped to a single phonological word.

(Ershova 2020)

Pseudo-incorporation through syntax-to-prosody mapping

Phrasal modifiers and complements in DP are pseudo-incorporated because DP phase is mapped to a single phonological word.

(Ershova 2020)

MATCH PHASE(-TO-WORD):

A **phase** in syntactic constituent structure must be matched by a **prosodic word** in phonological representation.

Pseudo-incorporation through syntax-to-prosody mapping

Phrasal modifiers and complements in DP are pseudo-incorporated because DP phase is mapped to a single phonological word.

(Ershova 2020)

MATCH PHASE(-TO-WORD):

A **phase** in syntactic constituent structure must be matched by a **prosodic word** in phonological representation.

- ► Match Theory constraint (Selkirk 2011)
- ▶ Inspired by Compton and Pittman (2010); Barrie and Mathieu (2016)

► nominal head + modifiers

▶ nominal head + modifiers = one phonological word

▶ nominal head + modifiers = one phonological word (← pass language-specific wordhood diagnostics)

(Lander 2017; Ershova 2020)

▶ nominal head + modifiers = one phonological word (← pass language-specific wordhood diagnostics)

(Lander 2017; Ershova 2020)

incorporated roots:

▶ nominal head + modifiers = one phonological word (← pass language-specific wordhood diagnostics)

(Lander 2017; Ershova 2020)

- incorporated roots:
 - may be modified

▶ nominal head + modifiers = one phonological word (← pass language-specific wordhood diagnostics)

(Lander 2017; Ershova 2020)

- incorporated roots:
 - may be modified

```
š'e -[ʔaṣ̂ə -š'e] -fabe -r
milk -[sweet -too] -warm -ABS
```

'the warm milk that is too sweet' (Lander 2017:85)

▶ nominal head + modifiers = one phonological word (← pass language-specific wordhood diagnostics)

(Lander 2017; Ershova 2020)

- incorporated roots:
 - may be modified

```
š'e -[?aṣ̂ə -š'e] -fabe -r
milk -[sweet -too] -warm -ABS
```

'the warm milk that is too sweet' (Lander 2017:85)

may be phrasal

▶ nominal head + modifiers = one phonological word (← pass language-specific wordhood diagnostics)

(Lander 2017; Ershova 2020)

- incorporated roots:
 - may be modified

```
š'e -[?aṣ̂ə -š'e] -fabe -r
milk -[sweet -too] -warm -ABS
```

'the warm milk that is too sweet' (Lander 2017:85)

may be phrasal

^{&#}x27;shops of shoes and clothes' (Lander 2017:93)

DP phase is mapped to one phonological word

```
tjə- [še -n]- xebze -daxe -xe -r
1PL.POSS- lead -NML- rule -beautiful -PL -ABS
'our beautiful rules of conduct'
```

DP phase is mapped to one phonological word

tjə- [še -n]- xebze -daxe -xe -r 1PL.POSS- lead -NML- rule -beautiful -PL -ABS 'our beautiful rules of conduct'

Nominals must be licensed:

Nominals must be licensed:

by φ-agreement

Nominals must be licensed:

- by φ-agreement
- by adjacency to the head that selects it (e.g. Levin 2015; Branan 2021)

Nominals must be licensed:

- by φ-agreement
- by adjacency to the head that selects it (e.g. Levin 2015; Branan 2021)

In West Circassian:

Nominals must be licensed:

- by φ-agreement
- by adjacency to the head that selects it (e.g. Levin 2015; Branan 2021)

In West Circassian:

An NP is licensed by adjacency if it is pronounced

Nominal licensing

Nominals must be licensed:

- by φ-agreement
- by adjacency to the head that selects it (e.g. Levin 2015; Branan 2021)

In West Circassian:

An NP is licensed by adjacency if it is pronounced

1. in same phonological word as the head that selects it,

Nominal licensing

Nominals must be licensed:

- by φ-agreement
- by adjacency to the head that selects it (e.g. Levin 2015; Branan 2021)

In West Circassian:

An NP is licensed by adjacency if it is pronounced

- 1. in same phonological word as the head that selects it, and
- 2. adjacent to **the projection of the head** that selects it.

Licensing by adjacency in nominalizations

An NP is licensed by adjacency if it is pronounced

- 1. in same phonological word as the head that selects it, and
- 2. adjacent to the projection of the head that selects it.

Licensing by adjacency in nominalizations

An NP is licensed by adjacency if it is pronounced

- 1. in same phonological word as the head that selects it, and
- 2. adjacent to the projection of the head that selects it.
- ⇒ NPs are pronounced in their theta-positions.

► NP_{ABS} is selected by V⁰ and moves to Spec,TP

pŝeŝe- **leke**- thač'ð-č'e-r girl- dish- wash-NML-ABS 'the girls' manner of dish-washing'

- NP_{ABS} is selected by V⁰ and moves to Spec,TP
- ightharpoonup NP_{ERG} is selected by v^0

pŝeŝe- **leke**- thač'ð-č'e-r girl- dish- wash-NML-ABS 'the girls' manner of dish-washing'

dish-

pŝeŝe- ✓leʁe- thač'ə-č'e-r

wash-NML-ABS

'the girls' manner of dish-washing'

- ► NP_{ABS} is selected by V⁰ and moves to Spec, TP
- \triangleright NP_{ERG} is selected by v^0 \Rightarrow licensed by adjacency to v'

girl-

pŝeŝe- **leke**- thač'a-č'e-r girl- dish- wash-NML-ABS 'the girls' manner of dish-washing'

- NP_{ABS} is selected by V⁰ and moves to Spec,TP
- ► NP_{ERG} is selected by v^0 ⇒ licensed by adjacency to v'
- NP_{ABS} in Spec,TP is not adjacent to V⁰

pŝeŝe- **/leʁe-** thač'ə-č'e-r girl- dish- wash-NML-ABS 'the girls' manner of dish-washing'

- NP_{ABS} is selected by V⁰ and moves to Spec,TP
- ► NP_{ERG} is selected by v^0 ⇒ licensed by adjacency to v'
- NP_{ABS} in Spec,TP is not adjacent to V⁰
 ⇒ must be pronounced in base position

pŝeŝe- **/leʁe-** thač'ə-č'e-r girl- dish- wash-NML-ABS 'the girls' manner of dish-washing'

- NP_{ABS} is selected by V⁰ and moves to Spec,TP
- ► NP_{ERG} is selected by v^0 ⇒ licensed by adjacency to v'
- NP_{ABS} in Spec,TP is not adjacent to V⁰
 ⇒ must be pronounced in base position

- (*leʁe-) pŝeŝe- ✓leʁe- thač̞'ə-ç̞'e-r (*dish-) girl- dish- wash-NML-ABS
 - 'the girls' manner of dish-washing'

- NP_{ABS} is selected by V⁰ and moves to Spec,TP
- NP_{ERG} is selected by v⁰
 ⇒ licensed by adjacency to v'
- NP_{ABS} in Spec,TP is not adjacent to V⁰
 ⇒ must be pronounced in base position

Nominal licensing of arguments in nominalizations

In nominalizations:

- ightharpoonup verbal φ -probes are deficient \Rightarrow cannot license full DPs
- arguments may be licensed by the nominal syntax
 - bare NPs by adjacencyDP-internal syntax-to-prosody mapping
 - one full DP as possessor = by nominal φ-probe Poss⁰

```
pŝaŝe-m jə- heč'e- je- že -n girl-OBL 3SG.POSS- guest- DAT- wait -NML 'the girl's waiting for guests'
```

```
pŝaŝe-m jə- heč'e- je- že -n
girl-OBL 3SG.POSS- guest- DAT- wait -NML
'the girl's waiting for guests'
```

Nominalizations may contain one DP argument.

```
pŝaŝe-m jə- heč'e- je- že -n girl-OBL 3SG.POSS- guest- DAT- wait -NML 'the girl's waiting for guests'
```

- Nominalizations may contain one DP argument.
- ightharpoonup ϕ -licensed by Poss⁰.

```
pŝaŝe-m jə- heč'e- je- že -n girl-OBL 3SG.POSS- guest- DAT- wait -NML 'the girl's waiting for guests'
```

- Nominalizations may contain one DP argument.
- φ-licensed by Poss⁰.
- ► Poss⁰ is deficient
 - like verbal ϕ -probes.

```
pŝaŝe-m jə- heč'e- je- že -n girl-OBL 3SG.POSS- guest- DAT- wait -NML 'the girl's waiting for guests'
```

- Nominalizations may contain one DP argument.
- φ-licensed by Poss⁰.
- Poss⁰ is deficient
 - like verbal ϕ -probes.
 - \Rightarrow licensed by D⁰.

pŝaŝe-m jə- heč'e- je- že -n girl-OBL 3SG.POSS- guest- DAT- wait -NML

- Nominalizations may contain one DP argument.
- \triangleright φ-licensed by Poss⁰.
- ► Poss⁰ is deficient
 - like verbal φ-probes.
 - \Rightarrow licensed by D⁰.

pŝaŝe-mjə-heč'e- je- že -ngirl-OBL3SG.POSS- guest- DAT- wait -NML

- Nominalizations may contain one DP argument.
- \triangleright φ-licensed by Poss⁰.
- ► Poss⁰ is deficient
 - like verbal φ-probes.
 - \Rightarrow licensed by D⁰.

pŝaŝe-m jə- heč'e- je- že -n girl-OBL 3SG.POSS- guest- DAT- wait -NML

- Nominalizations may contain one DP argument.
- φ-licensed by Poss⁰.
- ► Poss⁰ is deficient
 - like verbal φ-probes.
 - \Rightarrow licensed by D⁰.

pŝaŝe-m jə- heč'e- je- že -n girl-OBL 3SG.POSS- guest- DAT- wait -NML

- Nominalizations may contain one DP argument.
- ightharpoonup φ-licensed by Poss⁰.
- ► Poss⁰ is deficient
 - like verbal φ-probes.
 - \Rightarrow licensed by D⁰.

pŝaŝe-m jə- heč'e- je- že -n girl-OBL 3SG.POSS- guest- DAT- wait -NML

- Nominalizations may contain one DP argument.
- φ-licensed by Poss⁰.
- ► Poss⁰ is deficient
 - like verbal φ-probes.
 - \Rightarrow licensed by D⁰.

pŝaŝe-m jə- heč'e- je- že -n girl-OBL 3SG.POSS- guest- DAT- wait -NML

- Nominalizations may contain one DP argument.
- φ-licensed by Poss⁰.
- ► Poss⁰ is deficient
 - like verbal φ-probes.
 - \Rightarrow licensed by D⁰.

pŝaŝe-m jə- heč'e- je- že -n girl-OBL 3SG.POSS- guest- DAT- wait -NML

- Nominalizations may contain one DP argument.
- φ-licensed by Poss⁰.
- ► Poss⁰ is deficient
 - like verbal φ-probes.
 - \Rightarrow licensed by D⁰.

φ-licensing

φ-licensing

▶ in DP: by Poss⁰

φ-licensing

▶ in DP: by Poss⁰

 \rightarrow licensed by D⁰

φ-licensing

- ▶ in DP: by Poss⁰
- ▶ in CP: by T^0 , v^0 and Appl⁰

 \rightarrow licensed by D⁰

φ-licensing

- ▶ in DP: by Poss⁰
- ▶ in CP: by T^0 , v^0 and Appl⁰

- \rightarrow licensed by D⁰
- \rightarrow licensed by C^0

φ-licensing

▶ in DP: by Poss⁰

 \rightarrow licensed by D⁰

▶ in CP: by T^0 , v^0 and Appl⁰

 \rightarrow licensed by C⁰

In nominalizations: D^0 licenses ϕ -probe on $Poss^0$

φ-licensing

▶ in DP: by Poss⁰

 \rightarrow licensed by D^0

ightharpoonup in CP: by T⁰, v^0 and Appl⁰

 \rightarrow licensed by C^0

In nominalizations: D^0 licenses ϕ -probe on $Poss^0$

Question: Why can't D⁰ license φ -probes on T⁰, v^0 and Appl⁰?

Why can't D^0 license verbal ϕ -probes?

Why can't D^0 license verbal ϕ -probes?

Why can't D^0 license verbal ϕ -probes?

- φ-probe licensing
 - = Agree between
 - highest head of extended projection

- φ-probe licensing
 - = Agree between
 - 1. highest head of extended projection
 - 2. heads of the same extended projection

- φ-probe licensing
 - = Agree between
 - highest head of extended projection
 - 2. heads of the same extended projection
- Agree in the category feature:

- φ-probe licensing
 - = Agree between
 - highest head of extended projection
 - 2. heads of the same extended projection
- Agree in the category feature: in CP – [v]

- φ-probe licensing
 - = Agree between
 - highest head of extended projection
 - 2. heads of the same extended projection
- ▶ Agree in the category feature: in CP − [v]
 - in DP [N]

- φ-probe licensing
 - = Agree between
 - highest head of extended projection
 - 2. heads of the same extended projection
- ► Agree in the category feature: in CP [v]

in
$$DP - [N]$$

- φ-probe licensing
 - = Agree between
 - highest head of extended projection
 - 2. heads of the same extended projection
- Agree in the category feature:
 - in CP [V]
 - in DP [N]
 - \Rightarrow D⁰ cannot license verbal ϕ -probes

- φ-probe licensing
 - = Agree between
 - highest head of extended projection
 - 2. heads of the same extended projection
- ▶ Agree in the category feature: in CP – [v]
 - in DP [N]
 - \Rightarrow D⁰ cannot license verbal ϕ -probes

Roadmap

- ► Background on West Circassian
- ► Functional structure of nominalizations
- ightharpoonup ϕ -probe licensing by C^0
- Licensing arguments in nominalizations
- Conclusion

West Circassian nominalizations display a diminished verbal syntax despite containing a full TP.

- West Circassian nominalizations display a diminished verbal syntax despite containing a full TP.
- ► The φ-probes in nominalizations are deficient

- West Circassian nominalizations display a diminished verbal syntax despite containing a full TP.
- The φ-probes in nominalizations are deficient
 - \Rightarrow may only license ϕ -deficient nominals

- West Circassian nominalizations display a diminished verbal syntax despite containing a full TP.
- The φ-probes in nominalizations are deficient
 - \Rightarrow may only license ϕ -deficient nominals and expone ϕ -deficient agreement.

- West Circassian nominalizations display a diminished verbal syntax despite containing a full TP.
- The φ-probes in nominalizations are deficient
 - \Rightarrow may only license ϕ -deficient nominals and expone ϕ -deficient agreement.
- Fully specified φ-probes are counter-cyclically licensed

- West Circassian nominalizations display a diminished verbal syntax despite containing a full TP.
- ► The φ-probes in nominalizations are deficient
 - \Rightarrow may only license ϕ -deficient nominals and expone ϕ -deficient agreement.
- Fully specified φ-probes are counter-cyclically licensed by Agree in the category feature (V or N)

- West Circassian nominalizations display a diminished verbal syntax despite containing a full TP.
- The φ-probes in nominalizations are deficient
 - \Rightarrow may only license ϕ -deficient nominals and expone ϕ -deficient agreement.
- ► Fully specified φ-probes are counter-cyclically licensed by Agree in the category feature (V or N)
 - \Rightarrow verbal probes must be licensed by C^0

- West Circassian nominalizations display a diminished verbal syntax despite containing a full TP.
- ► The φ-probes in nominalizations are deficient
 - \Rightarrow may only license ϕ -deficient nominals and expone ϕ -deficient agreement.
- ► Fully specified φ-probes are counter-cyclically licensed by Agree in the category feature (V or N)
 - ⇒ verbal probes must be licensed by C⁰ nominal probes must be licensed by D⁰

- West Circassian nominalizations display a diminished verbal syntax despite containing a full TP.
- ► The φ-probes in nominalizations are deficient
 - \Rightarrow may only license ϕ -deficient nominals and expone ϕ -deficient agreement.
- ► Fully specified φ-probes are **counter-cyclically** licensed by Agree in the category feature (V or N)
 - ⇒ verbal probes must be licensed by C⁰ nominal probes must be licensed by D⁰

Conclusion bit.ly/ErshovaGLOW46

 \blacktriangleright Nominals are licensed by φ-feature checking.

- \blacktriangleright Nominals are licensed by φ-feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C⁰ is merged.

- \blacktriangleright Nominals are licensed by φ-feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- Constrained counter-cyclicity:

- \blacktriangleright Nominals are licensed by φ-feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.

- ightharpoonup Nominals are licensed by φ -feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- ► Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.
 - Feature checking and licensing are delayed.

- ightharpoonup Nominals are licensed by φ -feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- ► Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.
 - Feature checking and licensing are delayed.
 - \sim Pesetsky and Torrego's (2007) feature sharing.

- ightharpoonup Nominals are licensed by φ -feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- ► Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.
 - Feature checking and licensing are delayed.
 - \sim Pesetsky and Torrego's (2007) feature sharing.

- ightharpoonup Nominals are licensed by φ -feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.
 - Feature checking and licensing are delayed.
 - \sim Pesetsky and Torrego's (2007) feature sharing.

- ightharpoonup Nominals are licensed by φ -feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.
 - Feature checking and licensing are delayed.
 - \sim Pesetsky and Torrego's (2007) feature sharing.

- ightharpoonup Nominals are licensed by φ -feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.
 - Feature checking and licensing are delayed.
 - \sim Pesetsky and Torrego's (2007) feature sharing.

- ightharpoonup Nominals are licensed by φ -feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.
 - Feature checking and licensing are delayed.
 - \sim Pesetsky and Torrego's (2007) feature sharing.

- \blacktriangleright Nominals are licensed by φ-feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- ► Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.
 - Feature checking and licensing are delayed.
 - \sim Pesetsky and Torrego's (2007) feature sharing.

- \blacktriangleright Nominals are licensed by φ-feature checking.
- ightharpoonup Deficient ϕ -probes agree with, but cannot license arguments until C^0 is merged.
- ► Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.
 - Feature checking and licensing are delayed.
 - \sim Pesetsky and Torrego's (2007) feature sharing.

- \blacktriangleright Nominals are licensed by φ-feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- ► Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.
 - Feature checking and licensing are delayed.
 - \sim Pesetsky and Torrego's (2007) feature sharing.

Counter-cyclic nominal licensing

- \blacktriangleright Nominals are licensed by φ-feature checking.
- ightharpoonup Deficient φ-probes agree with, but cannot license arguments until C^0 is merged.
- ► Constrained counter-cyclicity:
 - ► Agree and Merge apply cyclically.
 - Feature checking and licensing are delayed.
 - \sim Pesetsky and Torrego's (2007) feature sharing.

Conclusion bit.ly/ErshovaGLOW46

62

► Agree between C⁰ and lower verbal heads independently motivated by variable islandhood effects and phase unlocking (Ershova to appear a).

- ► Agree between C⁰ and lower verbal heads independently motivated by variable islandhood effects and phase unlocking (Ershova to appear a).
- ▶ Possible approach for "indirect licensing" cross-linguistically:

- ► Agree between C⁰ and lower verbal heads independently motivated by variable islandhood effects and phase unlocking (Ershova to appear a).
- ▶ Possible approach for "indirect licensing" cross-linguistically:
 - ▶ genitive of negation in Slavic (Bailyn 2004)

- ► Agree between C⁰ and lower verbal heads independently motivated by variable islandhood effects and phase unlocking (Ershova to appear a).
- ▶ Possible approach for "indirect licensing" cross-linguistically:
 - ▶ genitive of negation in Slavic (Bailyn 2004)
 - ergative case in Hindi (Legate 2008)

- ► Agree between C⁰ and lower verbal heads independently motivated by variable islandhood effects and phase unlocking (Ershova to appear a).
- ▶ Possible approach for "indirect licensing" cross-linguistically:
 - ▶ genitive of negation in Slavic (Bailyn 2004)
 - ergative case in Hindi (Legate 2008)
 - augmentless nominals in Zulu (Halpert 2015)

- ► Agree between C⁰ and lower verbal heads independently motivated by variable islandhood effects and phase unlocking (Ershova to appear a).
- ▶ Possible approach for "indirect licensing" cross-linguistically:
 - ▶ genitive of negation in Slavic (Bailyn 2004)
 - ergative case in Hindi (Legate 2008)
 - augmentless nominals in Zulu (Halpert 2015)
 - dative case in Georgian (Ershova 2016)

- ► Agree between C⁰ and lower verbal heads independently motivated by variable islandhood effects and phase unlocking (Ershova to appear a).
- ▶ Possible approach for "indirect licensing" cross-linguistically:
 - ▶ genitive of negation in Slavic (Bailyn 2004)
 - ergative case in Hindi (Legate 2008)
 - augmentless nominals in Zulu (Halpert 2015)
 - dative case in Georgian (Ershova 2016)
 - ► PP selection in Semitic (Hewett to appear)

- ► Agree between C⁰ and lower verbal heads independently motivated by variable islandhood effects and phase unlocking (Ershova to appear a).
- Possible approach for "indirect licensing" cross-linguistically:
 - ▶ genitive of negation in Slavic (Bailyn 2004)
 - ergative case in Hindi (Legate 2008)
 - augmentless nominals in Zulu (Halpert 2015)
 - ▶ dative case in Georgian (Ershova 2016)
 - ► PP selection in Semitic (Hewett to appear)
- ► Alternative account to mixed extended projections (Borsley and Kornfilt 2000; Kornfilt and Whitman 2011)

Conclusion bit.ly/ErshovaGLOW46

Thank you!

- West Circassian consultants: Svetlana K. Alishaeva, Saida Gisheva, Susana K. Khatkova, and Zarema Meretukova
- ► Karlos Arregi, Vera Gribanova, Boris Harizanov, David Pesetsky, and audiences of SMircle at Stanford, LingLunch at MIT, Syntax Reading Group at UMass, LSA 95, and the Speaker Series at UPenn.
- Funding sources:
 - ▶ Dissertation Research Improvement Grant from the National Science Foundation (BCS-1749299)
 - Andrew W. Mellon Fellowship of Scholars in the Humanities at Stanford University

References

- Aldridge, Edith. 2008. Generative approaches to syntactic ergativity. Language and Linguistics Compass: Syntax and Morphology 2.5: 966–995.
- Bailyn, John Frederick. 2004. The case of Q. In *Proceedings of the Annual Workshop on Formal Approaches to Slavic Linguistics* 12, 1–36.
- Baker, Mark C. 1997. Thematic roles and syntactic structure. In *Elements of grammar: Handbook in generative syntax*, ed. Liliane Haegeman, 73–137. Springer.
- Barrie, Michael, and Eric Mathieu. 2016. Noun incorporation and phrasal movement. *Natural Language and Linguistic Theory* 34: 1–51.
- Bittner, Maria, and Kenneth Hale. 1996. The structural determination of case and agreement. *Linguistic Inquiry* 27: 1–68.
- Borsley, Robert D., and Jaklin Kornfilt. 2000. Mixed extended projections. In *The nature and function of syntactic categories*, 101–131. Academic Press.
- Branan, Kenyon. 2021. Licensing with case: Evidence from Kikuyu. *Natural Language and Linguistic Theory* 40: 1–41.

- Chomsky, Noam. 2000. Minimalist inquiries: the framework. In *Step by step:* Essays on minimalist syntax in honor of Howard Lasnik, eds. Roger Martin, David Michaels, and Juan Uriagereka, 89–155. MIT Press.
- Chomsky, Noam. 2001. Derivation by phase. In *Ken Hale: A life in language*, ed. Michael Kenstowicz. MIT Press.
- Chomsky, Noam, and Howard Lasnik. 1993. The theory of principles and parameters. In *Syntax: An international handbook of contemporary research*, eds. Joachim Jacobs, Arnim von Stechow, Wolfgang Sternefeld, and Theo Vennemann, 506–569. Mouton de Gruyter.
- Compton, Richard, and Christine Pittman. 2010. Word-formation by phase in inuit. *Lingua* 120: 2167–2192.
- Coon, Jessica, Nico Baier, and Theodore Levin. 2021. Mayan agent focus and the ergative extraction constraint: Facts and fictions revisited. *Language* 97 (2): 269–332.
- Ershova, Ksenia. 2016. Dative blocking in Georgian.
- Ershova, Ksenia. 2019. Syntactic ergativity in West Circassian. PhD diss, University of Chicago.

- Ershova, Ksenia. 2020. Two paths to polysynthesis: Evidence from West Circassian nominalizations. *Natural Language and Lingustic Theory* 38: 425–475. doi:10.1007/s11049-019-09455-w.
- Ershova, Ksenia. 2021. Diagnosing clause structure in a polysynthetic language: Wh-agreement and parasitic gaps in West Circassian. *Linguistic Inquiry* 52 (1): 1–38. doi:10.1162/ling_{a0}0371.
- Ershova, Ksenia. to appear a. Phasehood as defective intervention: Possessor extraction and selective DP islandhood in West Circassian. *Syntax*. https://ling.auf.net/lingbuzz/005469.
- Ershova, Ksenia. to appear b. Syntactic ergativity and the theory of subjecthood: Evidence from anaphor binding in West Circassian. *Language*. https://ling.auf.net/lingbuzz/005168.
- Halpert, Claire. 2015. Argument licensing and agreement. Oxford University Press.
- Hewett, Matthew. to appear. Verbal templates can influence I-selection in Semitic. *Linguistic Inquiry*.

- Kalin, Laura. 2019. Nominal licensing is driven by valued (phi-)features. In *Nordlyd*, eds. Gillian Ramchand and Peter Svenonius. Vol. 43 of *GLOW* short report proceedings for *GLOW* 40.
- Kornfilt, Jaklin, and John Whitman. 2011. Afterword: Nominalizations in syntactic theory. *Lingua* 121: 1297–1313.
- Korotkova, Natalia, and Yury Lander. 2010. Deriving affix ordering in polysynthesis: Evidence from Adyghe. *Morphology* 20: 299–319.
- Kratzer, Angelika. 2009. Making a pronoun: Fake indexicals as windows into the properties of pronouns. *Linguistic Inquiry* 40 (2): 187–237.
- Landau, Idan. 2015. A two-tiered theory of control. MIT Press.
- Lander, Yury. 2017. Nominal complex in West Circassian: Between morphology and syntax. *Studies in Language* 41 (1): 76–98.
- Legate, Julie Anne. 2008. Morphological and abstract case. *Linguistic Inquiry* 39(1): 55–101. doi:10.1162/ling.2008.39.1.55.
- Levin, Theodore Frank. 2015. Licensing without case. PhD diss, MIT.
- Manning, Christopher D. 1996. *Ergativity: Argument structure and grammatical relations*. Cambridge University Press.

- Pesetsky, David, and Esther Torrego. 2007. The syntax of valuation and the interpretability of features. In *Phrasal and clausal architecture*, eds. Wendy K. Wilkins, Joseph E. Emonds, Simin Karimi, and Vida Samiian, 262–294. John Benjamins.
- Reuland, Eric. 2011. Anaphora and language design. MIT Press.
- Royer, Justin. to appear. Binding and anti-cataphora in Mayan. *Linguistic Inquiry*. https://lingbuzz.net/lingbuzz/006631.
- Selkirk, Elisabeth. 2011. The syntax-phonology interface, 2nd edn. In *The handbook of phonological theory*, eds. John Goldsmith, Jason Riggle, and Alan Yu. Wiley Blackwell.
- Sundaresan, Sandhya. 2020. Distinct featural classes of anaphor in an enriched person system. In *Agree to agree: Agreement in the Minimalist Programme*, eds. Peter W. Smith, Johannes Mursell, and Katharina Hartmann, 425–461. Language Science Press.
- Yuan, Michelle. 2018. Dimensions of ergativity in Inuit: Theory and microvariation. PhD diss, MIT.
- Yuan, Michelle. 2022. Ergativity and object movement across Inuit. *Language* 98 (3): 510–551.

Reflexives

- reflexives are local subject oriented (Ershova 2019, to appear b) \Rightarrow bound by highest DP in vP
- reflexive agreement is possible in nominalizations

Reflexive agreement with absolutive

```
mə pŝaŝem Zə- q- jə- ʁe- ŝwe -ž'ə -ʁ this girl(ERG) REFL.ABS- DIR- 3SG.ERG- CAUS- dance -RE -PST

'This girl made herself dance.'

FINITE

jə- Zə- qə- ʁe- ŝwa -č'e
3SG.POSS- REFL.ABS- DIR- CAUS- dance -NML

'her manner of making herself dance'

NOMINALIZATION
```