Informed search algorithms

Chapter 4

Outline

- Best-first search
- Greedy best-first search
- A* search
- Heuristics
- Local search algorithms
- Hill-climbing search

Review: Tree search

\input{\file{algorithms}{tree-search-short-algorithm}}

 A search strategy is defined by picking the order of node expansion

Best-first search

- Idea: use an evaluation function f(n) for each node
 - estimate of "desirability"
 - ☐ Expand most desirable unexpanded node
- <u>Implementation</u>:

Order the nodes in fringe in decreasing order of desirability

- Special cases:
 - greedy best-first search
 - A* search

Romania with step costs in km

Greedy best-first search

- Evaluation function f(n) = h(n) (heuristic)
- = estimate of cost from n to goal
- e.g., h_{SLD}(n) = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Some points of the example

- For this particular problem, greedy best search using h_{SLD} finds a solution without ever expanding a node that is not on the solution path
- Its search cost is minimal
- It is not optimal

Properties of greedy best-first search

- Complete? No can get stuck in loops,
 e.g., lasi □ Neamt □ lasi □ Neamt □
- <u>Time?</u> $O(b^m)$, but a good heuristic can give dramatic improvement
- Space? O(b^m) -- keeps all nodes in memory

Optimal? No

A* search

- Idea: avoid expanding paths that are already expensive
- Evaluation function f(n) = g(n) + h(n)
- $g(n) = \cos t \sin t \cos r \cot n$
- h(n) = estimated cost from n to goal
- f(n) = estimated total cost of path through
 n to goal

Admissible heuristics

- A heuristic h(n) is admissible if for every node n,
 h(n) ≤ h*(n), where h*(n) is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ (never overestimates the actual road distance)
- Theorem: If h(n) is admissible, A* using
 TREE-SEARCH is optimal

Optimality of A* (proof)

 Suppose some suboptimal goal G₂ has been generated and is in the fringe. Let n be an unexpanded node in the fringe such that n is on a shortest path to an optimal goal G.

- $f(G_2) = g(G_2) + h(G_2) = g(G_2) > C^*$ $(h(G_2) = 0 \text{ since } G_2 \text{ is goal})$
- $f(n) = g(n) + h(n) \le C^*$
- $f(n) \leq f(G2)$

Hence $f(G_2) > f(n)$, and A^* will never select G_2 for expansion

Consistent heuristics

• A heuristic is consistent if for every node n, every successor n' of n generated by any action a,

$$h(n) \le c(n,a,n') + h(n')$$

• If *h* is consistent, we have

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n,a,n') + h(n')$
 $\ge g(n) + h(n)$
= $f(n)$

- i.e., *f*(*n*) is non-decreasing along any path.
- Theorem: If h(n) is consistent, A* using GRAPH-SEARCH is optimal

Optimality of A*

• A* expands nodes in order of increasing f value

Gradually adds "f-contours" of nodes

Properties of A\$^*\$

 Complete? Yes (unless there are infinitely many nodes with f ≤ f(G))

<u>Time?</u> Exponential

Space? Keeps all nodes in memory

Optimal? Yes

Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n)$ = number of misplaced tiles
- $h_2(n)$ = total Manhattan distance

(i.e., no. of squares from desire

Start State

- h₁(S) = ? 8
- $h_2(S) = ? 3+1+2+2+3+3+2 = 18$

Dominance

- If $h_2(n) \ge h_1(n)$ for all n (both admissible)
- then h_2 dominates h_1
- h₂ is better for search

Typical search costs (average number of nodes expanded):

- d=12 IDS = 3,644,035 nodes $A^*(h_1) = 227$ nodes $A^*(h_2) = 73$ nodes
- d=24 IDS = too many nodes $A^*(h_1) = 39,135$ nodes $A^*(h_2) = 1,641$ nodes

Relaxed problems

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem
- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then h₁(n) gives the shortest solution
- If the rules are relaxed so that a tile can move to any adjacent square, then h₂(n) gives the shortest solution

Local search algorithms

- The search algorithms that we have seen so far are designed to explore search space systematically
- Systematicity is achieved by keeping one or more paths in memory and by recording which alternatives have been explored at each point along the path and which have not
- When a goal is found, the path to that goal also constitute a solution to the problem
- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- In such cases, we can use local search algorithms
- keep a single "current" state, try to improve it

Example: *n*-queens

 Put n queens on an n × n board with no two queens on the same row, column, or diagonal

Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

Hill-climbing search

 Problem: depending on initial state, can get stuck in local maxima

Hill-climbing search: 8-queens problem

- h = number of pairs of queens that are attacking each other, either directly or indirectly
- h = 17 for the above state

Hill-climbing search: 8-queens problem

• A local minimum with h = 1