

AD-R173 849

A FLIGHT DYNAMIC SIMULATION PROGRAM IN AIR-PATH AXES
USING ACSL (ADVANCED.) (U) AERONAUTICAL RESEARCH LABS
MELBOURNE (AUSTRALIA) P W GIBBENS JUN 86

1/2

UNCLASSIFIED

ARL-AERO-TM-380

F/G 12/1

NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

ARL-AERO-TM-380

AR-004-472

12

**DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES**

MELBOURNE, VICTORIA

AD-A173 849

Aerodynamics Technical Memorandum 380

**A FLIGHT DYNAMIC SIMULATION PROGRAM IN
AIR-PATH AXES USING A.C.S.L.**

by

P. W. GIBBENS

APPROVED FOR PUBLIC RELEASE.

DTIC FILE COPY

THE UNITED STATES NATIONAL
TECHNICAL INFORMATION SERVICE
IS AUTHORIZED TO
REPRODUCE AND SELL THIS REPORT

(C) COMMONWEALTH OF AUSTRALIA 1986

JUNE 1986

86 10 10 202

AR-004-472

DEPARTMENT OF DEFENCE
DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES

Aerodynamics Technical Memorandum 380

A FLIGHT DYNAMIC SIMULATION PROGRAM
IN AIR-PATH AXES USING A.C.S.L.

by

P.W. GIBBENS

SUMMARY

The six degrees of freedom dynamic equations of motion have been programmed in the Advanced Continuous Simulation Language (ACSL) for use in aircraft simulations at ARL. Air-path axes were chosen for the integration of the force equations, and body axes for the integration of the moment equations. The use of quaternions for the determination of the direction cosines has been described.

DTIC
ELECTE
S NOV 12 1986 D
B

(C) COMMONWEALTH OF AUSTRALIA 1986

POSTAL ADDRESS: Director, Aeronautical Research Laboratories,
P.O. Box 4331, Melbourne, Victoria, 3001, Australia.

CONTENTS

	Page No.
1. INTRODUCTION.....	1
2. ACSL AIRCRAFT FLIGHT DYNAMIC SIMULATION PROGRAM - SDOFAP....	1
3. SDOFAP SIMULATION MODEL.....	3
3.1 Definition of Axes Systems.....	3
3.2 Selection of Axes.....	4
3.3 Aircraft Attitude Determination.....	5
3.4 Axes Transformation.....	7
3.5 Equations of Motion.....	8
4. EXAMPLE OF APPLICATION TO THE SIMULATION OF LONGITUDINAL MOTION OF A LIGHT AIRCRAFT.....	14
4.1 Background.....	14
4.2 Time Histories.....	15
4.3 Eigen Analysis.....	15
4.4 Jacobian Analysis - Extraction of Non-Dimensional Derivatives.....	15
5. CONCLUSIONS.....	17
REFERENCES.....	18
ACKNOWLEDGEMENTS.....	19
FIGURES	
APPENDICES	
1. SDOFAP PROGRAM LISTING	
2. POWER EFFECTS PROGRAM LISTING	
3. SETUP PROGRAM LISTING - FTCHOO	
4. EXAMPLE OF TIME HISTORIES ANALYSIS	
5. EXAMPLE OF EIGEN ANALYSIS	
6. EXAMPLE OF JACOBIAN ANALYSIS	
7. JACOBIAN ANALYSIS SUBROUTINES	

NOTATION

a_x, a_y, a_z	Linear accelerations in body axes	(g's)
a_n	Normal acceleration	(g's)
C_i ($i=0,9$)	Inertia constants	

Non-dimensional aerodynamic coefficients

C_{D_e}	Equilibrium drag coefficient
C_{D_V}	Derivative of drag coefficient with respect to velocity
C_{D_α}	Derivative of drag coefficient with respect to angle of attack
C_{L_e}	Equilibrium lift coefficient
C_{L_q}	Derivative of lift coefficient with respect to pitch rate
C_{L_V}	Derivative of lift coefficient with respect to velocity
C_{L_α}	Derivative of lift coefficient with respect to angle of attack
$C_{L_{\dot{\alpha}}}$	Derivative of lift coefficient with respect to rate of change of angle of attack
C_{m_q}	Derivative of moment coefficient with respect to pitch rate
C_{m_V}	Derivative of moment coefficient with respect to velocity
C_{m_α}	Derivative of moment coefficient with respect to angle of attack
$C_{m_{\dot{\alpha}}}$	Derivative of moment coefficient with respect to rate of change of angle of attack
C_{T_e}	Equilibrium thrust coefficient
C_{T_V}	Derivative of thrust coefficient with respect to velocity

NOTATION (Contd.)

F_{GX}, F_{GY}, F_{GZ}	Gravitational forces	(N)
F_{XB}, F_{YB}, F_{ZB}	Total forces in body axes	(N)
F_{XS}, F_{YS}, F_{ZS}	Total forces in stability axes	(N)
F_{XW}, F_{YW}, F_{ZW}	Total forces in air-path axes	(N)
g	Gravitational constant	(ms^{-2})
$I_{XX}, I_{YY}, I_{ZZ}, I_{XZ}$	Moments and product of inertia	(Kg m^2)
L, M, N	Total applied moments in body axes	(Nm)
L_A, M_A, N_A	Applied aerodynamic moments in stability axes	(Nm)
L_P, M_P, N_P	Applied propulsive moments in body axes(Nm)	
L_i, M_i, N_i ($i=1,3$)	Direction cosines	
m	Aircraft mass	(Kg)
P, Q, R	Angular velocity components about body axes	(rad. s^{-1})
P_S, R_S	Pitch and yaw rates about stability axes(rad. s^{-1})	
RANGE	Aircraft range	(m)
U_B, V_B, W_B	Body axes velocity components	(ms^{-1})
V_E, V_{EK}	Equivalent airspeed	(ms^{-1} , Knots)
V_{GR}	Aircraft ground speed	(ms^{-1})
V_{NE}, V_{EE}, V_{DE}	Components of velocity relative to the earth(ms^{-1})	
V_T	True airspeed	(ms^{-1})
X_A, Y_A, Z_A	Applied aerodynamic forces in stability axes(N)	
X_P, Y_P, Z_P	Applied propulsive forces in body axes (N)	
X_B, Y_B, Z_B	Body axes reference frame	
X_E, Y_E, Z_E	Earth axes reference frame	
X_S, Y_S, Z_S	Stability axes reference frame	

NOTATION (Contd.)

x_w, y_w, z_w	Air-path axes reference frame	
α	Angle of attack	(rad)
β	Angle of sideslip	(rad)
γ	Flight path angle	(rad)
θ, ϕ, ψ	Euler angles of pitch, roll (bank) and yaw (heading)	(rad)
λ	Angle of climb	(rad)
τ_i ($i=0,3$)	Quaternion components	
χ	Angle of track, east of north	(rad)

Subscripts

A	Aerodynamic contribution
B	Body axes
E	Earth axes
P	Propulsive contribution
S	Stability axes
W	Air-path axes

A dot over a variable denotes the first derivative with respect to time.

1. INTRODUCTION

The aircraft behavioural Studies - Fixed Wing (ABS - FW) group of Aerodynamics Division at the Aeronautical Research Laboratories (ARL) is concerned with the flight dynamic behaviour of fixed wing aircraft, and has the responsibility for developing flight dynamic computer models of the advanced high performance aircraft operated by the RAAF.

This memorandum documents the basic six degrees of freedom dynamic equations of motion incorporated in the associated simulation program SDOFAP which was written using Advanced Continuous Simulation Language (ACSL). The program has been developed for general use by the ABS-FW group for aircraft simulation studies. The program presented in Ref. (1), which was originally written using Earth axes, has been modified to use Air-path axes for integration of the force equations to allow the linear analysis capabilities of ACSL to be utilised more conveniently.

Section 2 of the memorandum gives a description of the program and its structure, while section 3 deals with the axes systems, their selection and transformation, the use of quaternions in determining aircraft attitude, and the six degrees of freedom equations of motion. Section 4 contains an example application of the program which demonstrates the analytical capabilities of the ACSL language and illustrates various alternative presentations of the output data.

2. ACSL AIRCRAFT FLIGHT DYNAMIC SIMULATION PROGRAM - SDOFAP

The six degree of freedom aircraft simulation program SDOFAP has been written in air-path axes and utilises the analytical features of the ACSL language. A description of ACSL and its utilisation is given in Ref. (2).

The ACSL program structure contains three primary regions, each dealing with specific segments of program execution; these are the INITIAL, DYNAMIC and DERIVATIVE sections. Fig. 1 illustrates the program flow.

The INITIAL section serves the following purposes;

1. Aircraft configuration and aerodynamic data are read in at subroutine level from an input file. This file is prepared by the setup program FTCHOO.
2. The initialisation of state and control variables and specification of atmospheric data and other constants is performed.
3. The setting and updating of prescribed control variables and runtime parameters for particular simulation runs is performed.

Time history calculation is carried out within the DYNAMIC section. This portion of the program primarily administers the trimming procedures, prepares output variables and manages the generation and logging of time dependent results.

The DERIVATIVE section contains the details of the six degrees of freedom flight model.

Trimming of the aircraft equations is performed by a user supplied trimming subroutine. The routine POWIT used in the example application calls the subroutine EVAL, which gives access to the DERIVATIVE section. Because ACSL does not allow the use of common

statements, EVAL must be appended to the ACSL program and variable values made available by use of the ACSL inclusion character '\$' as described in Ref. (2).

To provide the trim routine with initial state and control variables, an approximation is made before trimming. When trimming is complete, control is transferred back to the INITIAL section.

A description of the six degree of freedom equations is given in Section 3, and complete program listings are presented in Appendix 1.

3. SDOFAP SIMULATION MODEL

3.1 Definition of Axes Systems

All axes systems are assumed to be orthogonal, right-handed triads, and are shown in figure 2.

(i) Earth Axes (X_E, Y_E, Z_E)

The origin is at a point fixed on the earth's surface, typically at the runway threshold and on the centreline. The x-axis points North, the Y-axis East, and the Z-axis 'down' toward the centre of the earth. It is assumed that the earth is flat and non-rotating, such that the earth axes are regarded as an inertial frame.

(ii) Body Axes (X_B, Y_B, Z_B)

Body axes are fixed on the aircraft with the origin located at the aircraft centre of gravity. The aircraft is assumed to be rigid, with the X-axis parallel to the horizontal fuselage reference line and pointing 'forward', the Y-axis pointing to starboard (right), and the Z-axis 'downward'.

(iii) Stability Axes (X_S, Y_S, Z_S)

Stability axes are a special set of body axes used primarily in the study of small disturbances from a steady reference flight condition. Aerodynamic data are frequently presented in stability axes. These axes are displaced from the body frame by the angle of attack, α , such that the X-axis in the steady-state is aligned with the projection of the relative wind vector on the aircraft plane of symmetry; the Y-axis points to starboard, and the Z-axis 'downward'.

(iv) Air-Path Axes (X_W, Y_W, Z_W)

Air-path axes differ from body axes by the angle of attack, α , and the angle of sideslip, β . The transformation from body to air-path axes is accomplished as shown in figure 2, by first pitching through $-\alpha$, to coincide with the stability axes, and then yawing through β . The origin is located at the aircraft centre of gravity and the X-axis is aligned with the relative wind vector.

Note: When the wind velocity components are zero, the air-path axes coincide with the flight-path axes as defined by Fogarty and Howe (4). Etkin (3) refers to the air-path axes as the air-trajectory reference frame (or wind axes).

3.2 Selection of Axes

The various options for selection of axes systems are discussed in Ref. (3) and Ref. (4). With the development of high speed digital computers with large data storage, the selection of axes systems has become less critical.

(i) Force Equations.

In recent years, the use of body axes for the computation and integration of force equations has become less popular. Ref. (1), from which this program was developed, employs earth axes to suit the particular application in that report. However, air-path axes have been selected here because when used in conjunction with the ACSL linear analysis procedures they yield parameters which can be used directly for simulation validation and assessment.

(ii) Moment Equations

The body axes system is the natural choice for the solution of the rotational equations of motion because of the important advantage of constant moments of inertia when calculating the moments and angular motion of the aircraft.

3.3 Aircraft Attitude Determination

The attitude of an aircraft is defined in terms of the traditional Euler angles, ψ (heading angle), θ (pitch attitude), and ϕ (roll, or 'bank' angle). In order to avoid the problems associated with the singularity in the Euler 'rate' equations, which occurs when $\theta = \pm 90^\circ$, quaternion components (5) or direction cosines may be used in the integration step.

Quaternion components were chosen for the following reasons:

- (i) their time derivates are always finite and continuous, whereas those of the Euler angles possess singularities;
- (ii) the computations remain accurate as θ approaches 90° ;

(iii) it is a four parameter method consisting of four integrations with one constraint equation, whereas direction cosines, in principle, require nine integrations and six constraint equations.

The quaternion components are expressible in terms of Euler angles as follows:

$$\tau_0 = \cos\phi/2 \cos\theta/2 \cos\psi/2 + \sin\phi/2 \sin\theta/2 \sin\psi/2$$

$$\tau_1 = \sin\phi/2 \cos\theta/2 \cos\psi/2 - \cos\phi/2 \sin\theta/2 \sin\psi/2$$

$$\tau_2 = \cos\phi/2 \sin\theta/2 \cos\psi/2 + \sin\phi/2 \cos\theta/2 \sin\psi/2$$

$$\tau_3 = \cos\phi/2 \cos\theta/2 \sin\psi/2 - \sin\phi/2 \sin\theta/2 \cos\psi/2$$

The quaternion component time derivatives are given by,

$$\begin{aligned}\dot{\tau}_0 &= -1/2 (P\tau_1 + Q\tau_2 + R\tau_3) \\ \dot{\tau}_1 &= 1/2 (P\tau_0 - Q\tau_3 + R\tau_2) \\ \dot{\tau}_2 &= 1/2 (P\tau_3 + Q\tau_0 - R\tau_1) \\ \dot{\tau}_3 &= -1/2 (P\tau_2 - Q\tau_1 - R\tau_0)\end{aligned}\tag{2}$$

where P,Q,R are angular velocity components about body axes, and

$$\tau_0^2 + \tau_1^2 + \tau_2^2 + \tau_3^2 = 1\tag{3}$$

Failure to normalize the quaternion components at each iteration can result in the integration becoming unstable.

(7)

Euler angles may be derived from the quaternion components or from direction cosines by using the following relationships,

$$\phi = \tan^{-1} \left[\frac{\tau_2\tau_3 + \tau_0\tau_1}{\tau_0^2 + \tau_3^2 - 1/2} \right] = \tan^{-1} \left[\frac{M_3}{N_3} \right] \quad (4)$$

$$\theta = \tan^{-1} \left[\frac{\tau_0\tau_2 - \tau_1\tau_3}{[(\tau_0^2 + \tau_1^2 - 1/2)^2 + (\tau_1\tau_2 + \tau_0\tau_3)^2]^{1/2}} \right] = \tan^{-1} \left[\frac{-L_3}{(L_1^2 + L_2^2)^{1/2}} \right] \quad (5)$$

$$\psi = \tan^{-1} \left[\frac{\tau_1\tau_2 + \tau_0\tau_3}{\tau_0^2 + \tau_1^2 - 1/2} \right] = \tan^{-1} \left[\frac{L_2}{L_1} \right] \quad (6)$$

The initial Euler angles are used to determine the initial quaternion components, which are in turn used to calculate the direction cosine parameters for use in axes transformation computations. The quaternion components are updated at each iteration, using equation (2), such that the direction cosines are recalculated for use in the equations of motion, while the Euler angles are calculated as output data only.

3.4 Axes Transformation

Transformation of a set of variables from body axes to earth axes (or vice-versa) is conveniently achieved by use of direction cosines (7), which are obtained in terms of the quaternion components by the following relationships,

$$\begin{aligned}
 L_1 &= 2(\tau_0^2 + \tau_1^2) - 1 \\
 L_2 &= 2(\tau_1\tau_2 + \tau_0\tau_3) \\
 L_3 &= 2(\tau_1\tau_3 - \tau_0\tau_2) \\
 M_1 &= 2(\tau_1\tau_2 - \tau_0\tau_3) \\
 M_2 &= 2(\tau_0^2 + \tau_2^2) - 1 \\
 M_3 &= 2(\tau_2\tau_3 + \tau_0\tau_1) \\
 N_1 &= 2(\tau_1\tau_3 + \tau_0\tau_2) \\
 N_2 &= 2(\tau_2\tau_3 - \tau_0\tau_1) \\
 N_3 &= 2(\tau_0^2 + \tau_3^2) - 1
 \end{aligned} \tag{7}$$

3.5 Equations of Motion

Figure 3 is a summary of the overall six degrees of freedom dynamic equations for the case of a flat earth.

(i) Force Equations

The aerodynamic force components are frequently computed along stability axes, and the propulsive force components are usually supplied in body axes. Resolution along stability axes is given by:

$$\begin{aligned}
 F_{XS} &= X_p \cos\alpha + Z_p \sin\alpha + X_A + F_{GX} \\
 F_{YS} &= Y_p + Y_A + F_{GY} \\
 F_{ZS} &= Z_p \cos\alpha - X_p \sin\alpha + Z_A + F_{GZ}
 \end{aligned} \tag{8}$$

where F_{GX} , F_{GY} , F_{GZ} are the gravitational forces resolved into stability axes through use of the direction cosines.

$$\begin{aligned} F_{GX} &= L_3 mg \cos\alpha + N_3 mg \sin\alpha \\ F_{GY} &= M_3 mg \\ F_{GZ} &= -L_3 mg \sin\alpha + N_3 mg \cos\alpha \end{aligned} \quad (9)$$

'g' is assumed to be constant such that the calculated altitude in figure 3 is the geopotential height, as used in standard atmosphere calculations.

The total force components in air-path axes are obtained by transformation of the forces in stability axes through the sideslip angle β .

$$\begin{aligned} F_{XW} &= F_{XS} \cos\beta + F_{YS} \sin\beta \\ F_{YW} &= -F_{XS} \sin\beta + F_{YS} \cos\beta \\ F_{ZW} &= F_{ZS} \end{aligned} \quad (10)$$

The state variable derivatives are obtained from the dynamic equations;

$$\begin{aligned} \dot{\alpha} &= (Q \cos\beta - P_S \sin\beta + F_{ZW}/mV_T)/\cos\beta \\ \dot{\beta} &= F_{YW}/mV_T - R_S \\ \dot{V}_T &= F_{XW}/m \end{aligned} \quad (11)$$

where m is the aircraft mass, and virtual mass effects are ignored. P_S and R_S are the angular rates about the X and Z axes respectively, in stability axes.

$$\begin{aligned} P_S &= P \cos \alpha + R \sin \alpha \\ R_S &= -P \sin \alpha + R \cos \alpha \end{aligned}$$

(12)

The velocity components of the aircraft relative to the air may be obtained in body axes, if required, from the state variables, after integration of equation (11).

$$U_B = V_T \cos \alpha \cos \beta$$

$$V_B = V_T \sin \beta$$

$$W_B = V_T \sin \alpha \cos \beta$$

(13)

Wind components are introduced to give the components of aircraft velocity relative to the earth.

$$V_{NE} = L_1 U_B + M_1 V_B + N_1 W_B - V_{WN}$$

$$V_{EE} = L_2 U_B + M_2 V_B + N_2 W_B - V_{WE}$$

$$V_{DE} = L_3 U_B + M_3 V_B + N_3 W_B - V_{WD}$$

where V_{WN} , V_{WE} , V_{WD} are the wind components North, East and Down respectively with respect to the earth.

Flight path parameters are derived directly from the earth axes velocity vector components using equations (15) to (17).

Ground speed,

$$v_{GR} = (v_{NE}^2 + v_{EE}^2)^{\frac{1}{2}} \quad (15)$$

Climb angle,

$$\lambda = \tan^{-1} [v_{DE}/v_{GR}] \quad (16)$$

Angle of Track,

$$\chi = \tan^{-1} [v_{EE}/v_{NE}] \quad (17)$$

also, equation (18) gives the flight path angle α .

$$\gamma = \theta - \alpha \quad (18)$$

The positional coordinates of the aircraft's centre of gravity are deduced by integrating the earth axes velocity vector components:

$$\dot{x}_E = v_{NE} \quad (19)$$

$$\dot{y}_E = v_{EE} \quad (20)$$

$$\dot{z}_E = -v_{DE} \quad (21)$$

to give distance North, distance East and Altitude respectively, where
altitude (ALT) = $-z_E$.

The additional parameter, the Range of the aircraft C.G. from the runway threshold is calculated using the definition:

$$\text{RANGE} = (X_E^2 + Y_E^2)^{\frac{1}{2}} \quad (22)$$

The linear accelerations sensed by accelerometers mounted at the c.g. and aligned along the body axes are computed from the applied aerodynamic and propulsion forces as follows:

$$\begin{aligned} F_{XB} &= X_A \cos\alpha - Z_A \sin\alpha + X_P \\ F_{YB} &= Y_A + Y_P \\ F_{ZB} &= X_A \sin\alpha + Z_A \cos\alpha + Z_P \end{aligned} \quad (23)$$

The linear accelerations are then given by

$$\begin{aligned} a_x &= F_{XB}/mg \\ a_y &= F_{YB}/mg \\ a_z &= F_{ZB}/mg \end{aligned} \quad (24)$$

In aircraft operations reference is more commonly made to the normal acceleration or 'load factor' which is defined as:

$$a_n = -a_z \quad (25)$$

(ii) Moment Equations

The total moments acting on an aircraft consist of aerodynamic and powerplant components. The powerplant components which include

gyroscopic moments due to powerplant rotors, and thrust alignment moments, are normally given in body axes. The aerodynamic moments are, like the aerodynamic forces, frequently given in stability axes (3). If the aerodynamic moments are given in body axes, the simplification of equation (26) is obvious (i.e. set $\alpha=0$).

$$\begin{aligned} L &= L_A \cos\alpha - N_A \sin\alpha + L_P \\ M &= M_A + M_P \\ N &= L_A \sin\alpha + N_A \cos\alpha + N_P \end{aligned} \quad (26)$$

If it is assumed that the aircraft has a plane of symmetry, such that the products of inertia I_{YZ} and I_{XY} are zero, then the body axes angular accelerations can be calculated by using equation (27).

$$\begin{aligned} \dot{P} &= L.C_1 + N.C_2 + (P.C_3 + R.C_4) Q \\ \dot{Q} &= M.C_5 + (R^2 - P^2) C_6 + R.P.C_7 \\ \dot{R} &= N.C_8 + L.C_2 + (P.C_9 - R.C_3) Q \end{aligned} \quad (27)$$

where

$$\begin{aligned} C_0 &= I_{XX}I_{ZZ} - I_{XZ}^2 \\ C_1 &= I_{ZZ}/C_0 \\ C_2 &= I_{XZ}/C_0 \\ C_3 &= C_2(I_{XX} - I_{YY} + I_{ZZ}) \\ C_4 &= C_1(I_{YY} - I_{ZZ}) - C_2 I_{XZ} \\ C_5 &= 1/I_{YY} \\ C_6 &= C_5 I_{XZ} \\ C_7 &= C_5(I_{ZZ} - I_{XX}) \\ C_8 &= I_{XX}/C_0 \\ C_9 &= C_5(I_{XX} - I_{YY}) + C_2 I_{XZ} \end{aligned} \quad (28)$$

The constants C_0 to C_9 are evaluated during initialization.

The aircraft angular velocity components may then be obtained by integrating equation (27).

4. EXAMPLE APPLICATION: SIMULATION OF THE LONGITUDINAL MOTION OF A LIGHT AIRCRAFT

4.1 Background.

In Ref. (6), the effects of power on the longitudinal aerodynamic characteristics of a single engined, propeller driven aeroplane were investigated. The simulation developed in that report was written in FORTRAN 66 code for the DEC system 10 computer. The subroutines employed a model of propulsion effects on the aerodynamics of a competition aerobatic aircraft. These subroutines have been updated to FORTRAN 77 level and transferred to an ELXSI 6400 computer for use in the SDOFAP model.

Appendix 2 presents a listing of the simulation program using the master program SDOFAP.ACSL, plus the associated subroutines. Since the aerodynamic and propulsive forces are inter-related in the power effects modelling, they have been supplied to the ACSL program already combined in stability axes, through the subroutine AERO, and the subroutine PROP which normally supplies the propulsive forces was bypassed.

The calling sequence of the power effects subroutines is illustrated in Fig. 4 together with brief explanations of their individual purposes.

Preparation of the input data for this example is demonstrated in Appendix 3 together with a listing of the data preparation program FTCHOO. Some of the variables listed in the data tables relate to the original power effects simulation program of Ref. (6) and are not used in the ACSL program. It is recommended however that this format be employed for data entry.

4.2 Time Histories

Time histories of the longitudinal dynamic behaviour of the light aircraft have been generated in Appendix 4. Input data and command files have been included to demonstrate the use of ACSL run-time commands.

Both the short period and phugoid modes have been analysed to illustrate the various plotting capabilities of ACSL.

4.3 Eigen Analysis

The eigen analysis of Appendix 5 gives results for the same flight case as in section 4.2.

By eliminating the lateral variables using the FREEZE facility, results for the longitudinal modes only are obtained. The first eigenvalue and its accompanying eigenvector are associated with the quaternions, the second and third with the phugoid mode and the fourth and fifth with the short period mode.

4.4 Jacobian Analysis

The purpose of this extension to the program is to extract the non-dimensional aerodynamic derivatives from the elements of the non-dimensional Jacobian matrix.

The ANALYZ 'JACOB' run-time command causes ACSL to calculate a Jacobian matrix around the current trim point in state space. In order to gain access to this matrix it is necessary to call the subroutine INTERM from the ACSL library subroutine ZZEIGC. The resulting matrix comprises the linearised small disturbance equations of longitudinal motion given in Ref. (3) Eq. (5.13-19). The matrix contains ten non-zero coefficients in rows 1 to 3 from which eleven unknown longitudinal derivatives are to be determined. It is also noted that two elements in column 4 become zero for zero flight path angle and that the denominators in rows 2 and 3 contain the term $(2\mu + C_{L\dot{\alpha}})$ in which 2μ is almost three orders of magnitude greater than $C_{L\dot{\alpha}}$. The equations are therefore ill-conditioned and in order to obtain satisfactory estimates for the eleven unknowns, a number of assumptions are proposed.

Two options are included in the program. the first option can only be used if the flight-path angle γ is significantly greater than zero and includes the assumption $C_{T_V} = -3 C_{T_e}$ for propellor driven aircraft and $C_{T_V} = -2 C_{T_e}$ for jet or rocket powered aircraft. (Ref. (3) Section 7.8). The remaining ten derivatives are obtained from the ten matrix elements. Evaluation of this method has shown that the derivatives $C_{L\dot{\alpha}}$ and C_{Lq} become inaccurate if $|\gamma| < 2.0$ degrees, and that the other derivatives are unreliable if $|\gamma| < 0.2$ degrees.

In the second option, it is further assumed that the derivatives $C_{m\dot{\alpha}}$ and $C_{L\dot{\alpha}}$ are related to C_{mq} and C_{Lq} directly through the downwash rate $dz/d\alpha$ (Ref. (3) Section 7.10) and that C_{mq} and $C_{m\dot{\alpha}}$ are related to C_{Lq} and $C_{L\dot{\alpha}}$ via the tailplane non-dimensional moment arm. These additional constraints assume that the contributions to the p and i derivatives are entirely due to the tailplane lift. Seven of the unknown

derivatives are derived from the matrix elements and the remainder from the above assumed relationships.

The second option provides more accurate estimates of the derivatives for cases where the assumed constraints are applicable.

5. CONCLUSIONS

The six degrees of freedom dynamic equations of aircraft motion have been programmed using the Advanced Continuous Simulation Language for use in aircraft simulations. The air-path axes system was chosen for the integration of the force equations, while the moment equations are integrated in body axes. Euler angles and direction cosines have been calculated by use of quaternion components.

Details of an example application have been provided to illustrate the use of the program and its potential. Time histories, eigen and jacobian analyses have been demonstrated.

REFERENCES

1. HALL, P.H. "A Set of Flight Dynamic Equations for Aircraft Simulation".
ARL-AERO-TECH-MEMO-339. June 1982
2. MITCHELL & GAUTHIER, "Advanced Continuous Simulation Language (ACSL). ASSOC., INC. User Guide/Reference Manual".
3. ETKIN, B. "Dynamics of Atmospheric Flight".
Wiley & Sons, 1972.
4. FOGARTY, L.E. & HOWE, R.M. "Computer Mechanization of Six Degree of Freedom Flight Equations." NASA CR-1344, May 1969.
5. ROBINSON, A.C. "On the Use of Quaternions in Simulation of Rigid-Body Motion." WADC TR 58-17, December 1958.
6. MARTIN, C.A. "Power effects on the longitudinal characteristics of a single-engine, propeller driven aircraft." ARL-AERO-REPORT-157, February 1983.

ACKNOWLEDGEMENTS

The author would like to thank Mr C.A. Martin for the expert guidance tendered throughout the course of the development of this program, and Mr R.H. Perrin for his generous help in the refinement of the routines described in Section 4.4. Appreciation is extended to all members of ABS-FW group for their enthusiastic support.

```

PROGRAM
INITIAL
    {Statements performed before the run begins. State variables do not contain
    the initial conditions yet.
END
DYNAMIC
DERIVATIVE
    {Statements needed to calculate derivatives of each INTEG
    statement. The dynamic model.
END
    {Statements executed every communications interval.
END
TERMINAL
    {Statements executed when the termination condition TERMT becomes
    true.
END
END

```

Outline of Explicitly Structured Program

Figure 1 . Main Program Loop of ACSL Model

FIG. 2: RELATIONSHIP BETWEEN EARTH AXES, BODY AXES, STABILITY AXES AND AIR-PATH AXES.

FIG 3: BLOCK DIAGRAM OF COMBINED AIR-PATH AXES/BODY AXES SYSTEM FOR AIRCRAFT MOTION

112

292

FIG 4:
POWER EFFECTS SUBROUTINES.

APPENDICES

APPENDIX 1. SDOFAP PROGRAM LISTING

SDOFAP.ACSL

PROGRAM SDOFAP (FLIGHT SIMULATION MODEL)

```
*****
" PROGRAM NAME : Six Degrees of Freedom in Air Path axes.
" WRITTEN BY : P.W.GIBBENS (EO1, A.R.L., ABS-FW)
" COMPLETED : 8 MAY 1985
" DESCRIPTION : THIS PROGRAM PRESENTS A SET OF FLIGHT DYNAMIC
" EQUATIONS (SIX DEGREES OF FREEDOM), IN AIR-PATH AXES, FOR
" AIRCRAFT SIMULATION USING ADVANCED CONTINUOUS SIMULATION
" LANGUAGE (ACSL) ON THE A.R.L. ELXSI 6400 COMPUTER.
"
```

```
INTEGER ITLIM,MAXRES
LOGICAL BEGIN
ARRAY VECIN(20),XH(3)
```

"***** INITIAL SECTION *****"

INITIAL

"***** PREPARE ALL DATA AND RUNTIME PARAMETERS *****"

"*** READ IN CONFIGURATION AND FLIGHT CONDITION DATA ***"

PROCEDURAL (PHID0,ALT0,VE0K,IXX,IYY,IZZ,IXZ,MASS=)

CALL CAFCDI (PHID0,ALT0,VE0K,IXX,IYY,IZZ,IXZ,MASS)

END \$"OF CAFCDI PROCEDURAL"

"*** DEFINE ALL PRESET VARIABLES ***"

"*** RUNTIME PARAMETERS ***"

```
CONSTANT      $"#### RUNTIME CONTROL PARAMETERS SHOULD ####"
CONSTANT      $"#### BE DEFINED AT THIS POINT. SEE ####"
CONSTANT      $"#### APPLICATION FOR EXAMPLES. ####"
```

"*** TRIMMING ROUTINE ITERATION PARAMETERS ***"

```
CONSTANT      $"#### TRIMMING ROUTINE PARAMETERS SHOULD ####"
CONSTANT      $"#### BE DEFINED AT THIS POINT. SEE ####"
CONSTANT      $"#### APPLICATION FOR EXAMPLES. ####"
```

"*** ATMOSPHERIC STANDARDS AND CONVERSION FACTORS ***"

CONSTANT RHO \varnothing = 1.2256

"GENERAL CONVERSION FACTORS, CONSTANTS AND VARIABLES"

CONSTANT DEGTOR= 0.017453 , RADTOD= 57.29578
KTOMPS= 0.514773 , MPSTOK= 1.942602
MTONM = 0.000538 , NMTO M = 1858.5
FTTOM = 0.304800 , G = 9.807
PI = 3.141593

"...WHERE DEGTOR= DEGREES TO RADIANS
RADTOD= RADIANS TO DEGREES
KTOMPS= KNOTS TO METRES PER SECOND
MPSTOK= METRES PER SECOND TO KNOTS
MTONM = METRES TO NAUTICAL MILES
NMTO M = NAUTICAL MILES TO METRES
FTTOM = FEET TO METRES "

"*** INITIAL CONDITIONS (FLIGHT DATA) ***"

CONSTANT DPSID \varnothing =0.0 , DPHID \varnothing =0.0 , DALT \varnothing =0.0 ...
VWN =0.0 , VWE =0.0 , VWD =0.0 ...
DVE \varnothing K =0.0 , DX \varnothing =0.0 , DY \varnothing =0.0 ...
PSID \varnothing =0.0 , X \varnothing =0.0 , Y \varnothing =0.0 ...

"*** ALLOW PARAMETER INCREMENTING ***"

"#### INCREMENTS TO FLIGHT CONDITION PARAMETERS ####"
"#### SHOULD BE DEFINED AT THIS POINT. THOSE ####"
"#### SHOWN PERTAIN TO THE EXAMPLE APPLICATION. ####"

CONSTANT DEL1 =0.0 , DRPM =0.0 , DXCGP=0.0 ...
DPL =0.0 , DEL5 =0.0 , DEL6 =0.0

"*** SET CONTROL INPUT PARAMETERS ***"

"#### REQUIRED CONTROL INPUT PARAMETERS SHOULD ####"
"#### BE DEFINED AT THIS POINT. THOSE SHOWN ####"
"#### PERTAIN TO THE EXAMPLE APPLICATION. ####"

CONSTANT ESTART=0.01, TSTART=0.01 \$"** PULSE START TIME **"
CONSTANT EPULSE=5.0 , TPULSE=120. \$"** PULSE DURATION **"
CONSTANT EREPET=200. , TREPET=200. \$"** REPETITION TIME **"
CONSTANT ETAMAX=5.0 , THRMAX=1.0 \$"** PULSE AMPLITUDE **"

PULMAX =ETAMAX*DEGTOR \$"** CONVERT TO RADIANS **"

"***** INCREMENT DATA AND PARAMETERS *****"

"*** ADD RUNTIME INCREMENTS TO FLIGHT DATA ***"

PSID \varnothing =PSID \varnothing +DPSID \varnothing
PHID \varnothing =PHID \varnothing +DPHID \varnothing
ALT \varnothing =(ALT \varnothing +DALT \varnothing)*FTTOM

```

VEØK =VEØK +DVEØK
XØ =XØ +DXØ
YØ =YØ +DYØ
GAMMAR=GAMMAR+DGAMMR

**** DEFINE INITIAL Z COORDINATE. ****
ZØ =-ALTØ

**** ADD RUNTIME INCREMENTS TO PARAMETERS ****
VECIN(1)=ALTØ $"#### INCREMENTS OF FLIGHT CONDITION DATA ####"
VECIN(2)=DRPM $"#### ARE ADDED AT SUBROUTINE LEVEL. ####"
VECIN(3)=DXCCP
VECIN(4)=DPL $"#### INITIAL ALTITUDE IS ALSO REQUIRED ####"
VECIN(5)=DEL5 $"#### AT SUBROUTINE LEVEL. ####"
VECIN(6)=DEL6

CALL PARINC(VECIN,CGPOS,PLS)

**** CONVERT FROM EAS TO TAS ****

PROCEDURAL (RHO=ALTØ)
CALL ATMOS (ALTØ,RHO)
END $" OF ATMOS PROCEDURAL"

VTØK=VEØK*SQRT (RHOØ/RHO)
VEØ = VEØK*KTOMPS
VTØ = VTØK*KTOMPS

***** SPECIFY SYSTEM EXCITATION PARAMETERS *****

**** SPECIFY TERMINATION CONDITION ****
CONSTANT TSTOP =Ø.Ø

**** SPECIFY INDEPENDENT VARIABLE AS A PRECAUTION ****
VARIABLE TIME = Ø.Ø
CINTERVAL CINT = Ø.Ø
NSTEPS NSTP = Ø

***** APPROXIMATE TRIM VALUES FOR INITIAL CONDITIONS *****

PSIRØ = PSIDØ*DECTOR
PHIRØ = PHIDØ*DECTOR

PROCEDURAL (PØ,QØ,RØ,BETARØ,ALPHRØ,THETRØ,ETARØ
,GAMMAR=VTØ,PHIRØ,G)
CALL TRAP (VTØ,PHIRØ,G,GAMMAR,PØ,QØ,RØ,BETARØ
,ALPHRØ,THETRØ,ETARØ)
END $" OF TRAP PROCEDURAL "

```

"*** CALCULATE INERTIAL CONSTANTS ***"

```
CØ = ((IXX*IZZ) - (IXZ*IXZ))
C1 = IZZ/CØ
C2 = IXZ/CØ
C3 = C2*(IXX-IYY+IZZ)
C4 = ((IYY-IZZ)*C1) - (IXZ*C2)
C5 = 1.Ø/IYY
C6 = CS*IXZ
C7 = CS*(IZZ-IXX)
C8 = IXX/CØ
C9 = ((IXX-IYY)*C8) + (IXZ*C2)
```

"***** INITIALIZE QUATERNIONS *****"

```
THETDØ= THETRØ*RADTOD
```

```
1Ø .. CONTINUE
```

"**NOTE:- THE EULER ANGLE(S) ARE HALVED WHEN CALCULATING...
THE QUATERNIONS"

```
CALL QUATNS(PSIRØ, THETRØ, PHIRØ, TAUØØ, TAU1Ø, TAU2Ø, TAU3Ø)
```

```
END $"OF INITIAL"
```

"***** DYNAMIC SECTION *****"

```
DYNAMIC
```

"*** THE TRANSITION FROM INITIAL TO DYNAMIC TRANSFERS ***
*** ALL INITIAL CONDITIONS TO THE STATE VARIABLES AND ***
*** EVALUATES THE CODE IN THE DERIVATIVE SECTION ONCE. ***"

```
IF(BEGIN) GO TO 2Ø
```

"***** TRIM AIRCRAFT WITH USER SUPPLIED SUBROUTINE *****"

"#### EXAMPLE OF TRIMMING IN RECTILINEAR #####
"#### FLIGHT USING SUBROUTINE POWIT. #####"

```
XH(1) =THETRØ      $"#### OTHER TRIM CONDITIONS MAY BE #####
XH(2) =ALPHRØ       $"#### OBTAINED BY DEFINING APPROPRIATE #####
XH(3) =ETARØ        $"#### TRIM STATES AND ASSOCIATED TRIM #####
                           $"#### CONTROLS. EG. LEVEL BANKED TURN. #####"
```

```
PROCEDURAL(XH=XH, MAXRES, ITLIM, ERRMAX)
```

```
CALL POWIT(XH, MAXRES, ERRMAX, ITLIM)
```

```
THETRØ =XH(1)
ALPHRØ =XH(2)
ETARØ =XH(3)
```

```
END   S "OF POWIT PROCEDURAL"
```

```

BEGIN=.TRUE.
GO TO 10

20 .. CONTINUE

"***** DERIVATIVE SECTION *****"

DERIVATIVE

"***** CALCULATE CONTROL INPUTS *****"

"#### EXAMPLE OF CONTROL INPUTS USING THE ACSL PULSE ####"
"#### GENERATOR, OTHER INPUT FORMS ARE AVAILABLE. ####"

PROCEDURAL(ETAR,PLS=
ETARØ,DELPL,ESTART,EREPET,EPULSE,TSTART,TREPET,TPULSE)

DELETA=PULMAX*PULSE(ESTART,EREPET,EPULSE)
DELPL =THRMAX*PULSE(TSTART,TREPET,TPULSE)
ETAR=ETARØ+DELETA

CALL CONTROLS(ETAR,DELPL,PLS)

ETAD=ETAR*RADTOD

END $ "OF CONTROLS PROCEDURAL"

"***** CALCULATE QUATERNIONS; NORMALIZE, AND THEN *****
"***** DETERMINE THE DIRECTION COSINES *****

PROCEDURAL(L1,L2,L3,M1,M2,M3,N1,N2,N3=TAUØ,TAU1,TAU2,TAU3)

"*** NORMALIZE QUATERNIONS ***"

TAUN = SQRT((TAUØ*TAUØ)+(TAU1*TAU1)+(TAU2*TAU2)+(TAU3*TAU3))
TAUØN = TAUØ/TAUN
TAU1N = TAU1/TAUN
TAU2N = TAU2/TAUN
TAU3N = TAU3/TAUN

"*** CALCULATE THE DIRECTIONAL COSINES (L1 -> N3) ***"

L1 = (((TAUØN*TAUØN)+(TAU1N*TAU1N))*2.Ø)-1.Ø
L2 = (((TAU1N*TAU2N)+(TAUØN*TAU3N))*2.Ø)
L3 = (((TAU1N*TAU3N)-(TAUØN*TAU2N))*2.Ø)

M1 = ((TAU1N*TAU2N)-(TAUØN*TAU3N))*2.Ø
M2 = (((TAUØN*TAUØN)+(TAU2N*TAU2N))*2.Ø)-1.Ø
M3 = (((TAU2N*TAU3N)+(TAUØN*TAU1N))*2.Ø)

N1 = ((TAU1N*TAU3N)+(TAUØN*TAU2N))*2.Ø
N2 = ((TAU2N*TAU3N)-(TAUØN*TAU1N))*2.Ø
N3 = (((TAUØN*TAUØN)+(TAU3N*TAU3N))*2.Ø)-1.Ø

END $"OF QUATERNION PROCEDURAL"

```

"*** CALCULATE ATMOSPHERIC CONDITIONS FOR CURRENT ALTITUDE ***"

CALL ATOMS (-Z,RHO) \$"##### ATMOSPHERICS SUBROUTINE MUST #####"
"##### BE SUPPLIED BY THE USER. #####"

"*** CALCULATE LONGITUDINAL AND LATERAL AERODYNAMIC FORCES ***"
"***** IN STABILITY AXES AND MOMENTS IN BODY AXES *****"

PROCEDURAL (XA,YA,ZA,LA,MA,NA=VT,ALPHAR,BETAR,P,Q,R,PHIR,THETAR,DALPHR)

"#### THE AERO SUBROUTINE SUPPLIES THE AERODYNAMIC FORCES #####"
"#### IN STABILITY AXES. THIS MUST BE SUPPLIED BY USER. #####"

CALL AERO (XA,YA,ZA,LA,MA,NA,VT,ALPHAR,BETAR,P,Q,R,...
PHIR,THETAR,DALPHR)

END \$"OF AERO PROCEDURAL"

PROCEDURAL (XP,YP,ZP,LP,MP,NP=VT,ALPHAR,BETAR,P,Q,R,PHIR,THETAR)

"#### THE PROP SUBROUTINE SUPPLIES THE PROPULSIVE FORCES #####"
"#### IN BODY AXES. THIS MUST BE SUPPLIED BY USER. #####"

CALL PROP (XP,YP,ZP,LP,MP,NP,VT,ALPHAR,BETAR,P,Q,R,...
PHIR,THETAR)

END \$"OF PROP PROCEDURAL"

SA = SIN(ALPHAR)
CA = COS(ALPHAR)
SB = SIN(BETAR)
CB = COS(BETAR)

"*** CALCULATE GRAVITY FORCE COMPONENTS -> STABILITY AXES ***"

FGX = L3*MASS*G*CA + N3*MASS*G*SA
FCY = M3*MASS*G
FGZ = -L3*MASS*G*SA + N3*MASS*G*CA

"*** CALCULATE THE TOTAL FORCES (FXS,FYS,FZS) ***"
"*** -> STABILITY AXES ***"

FXS = XA + XP*CA + ZP*SA + FGX
FYS = YA + YP + FCY
FZS = ZA - XP*SA + ZP*CA + FGZ

"*** CALCULATE THE TOTAL MOMENTS (L,M,N) -> BODY AXES ***"

L = (LA*CA) - (NA*SA) + LP
M = MA + MP
N = (LA*SA) + (NA*CA) + NP

"*** CALCULATE THE TOTAL FORCES (FXW,FYW,FZW) ***"
"*** -> AIR-PATH AXES ***"

FXW = FXS*CB + FYS*SB
FYW = -FXS*SB + FYS*CB
FZW = FZS

"*** CALCULATE FORCES IN BODY AXES ***"

$$\begin{aligned}FXB &= XA*CA - ZA*SA + XP \\FYB &= YA + YP \\FZB &= XA*SA + ZA*CA + ZP\end{aligned}$$

"*** CALCULATE LINEAR ACCELERATIONS ***"

$$\begin{aligned}AX &= FXB / (\text{MASS}^*G) \\AY &= FYB / (\text{MASS}^*G) \\AZ &= FZB / (\text{MASS}^*G)\end{aligned}$$

"*** CALCULATE NORMAL ACCELERATION ***"

$$AN = -AZ$$

"*** RESOLVE BODY AXIS ANGULAR RATES INTO STABILITY AXES ***"

$$\begin{aligned}PS &= P*CA + R*SA \\RS &= -P*SA + R*CA\end{aligned}$$

"***** CALCULATE LINEAR DERIVATIVES -> AIR PATH AXES *****"

"*** DECLARE DALPHR AS AN IMPLICIT VARIABLE ***"

$$\text{DALPHR} = \text{IMPL } (Q, \dot{\phi}, \ddot{\phi}1, 3\dot{\phi}, \text{EF}, \\(Q^*CB - PS^*SB + FZW / \text{MASS} / VT) / CB, \dot{\phi}, \ddot{\phi}1)$$

PROCEDURAL (=EF)

CALL IMP(EF)

END \$"OF DALPHR PROCEDURAL"

$$\begin{aligned}\text{DBETAR} &= FYW / \text{MASS} / VT - RS \\DVT &= FXW / \text{MASS}\end{aligned}$$

"*** CALCULATE ANGULAR ACCELERATIONS -> BODY AXES ***"

$$\begin{aligned}\text{PDOT} &= (L^*C1) + (N^*C2) + (((P^*C3) + (R^*C4)) * Q) \\QDOT &= (M^*C5) + (((R^*R) - (P^*P)) * C6) + (R^*P^*C7) \\RDOT &= (N^*C8) + (L^*C2) + (((P^*C9) - (R^*C3)) * Q)\end{aligned}$$

"***** DETERMINE QUATERNION RATES AND EULER ANGLES. *****"

"*** CALCULATE THE QUATERNION RATES ***"

$$\begin{aligned}\text{TAU}\dot{\phi}\text{DT} &= -((\text{TAU1N}^*P) + (\text{TAU2N}^*Q) + (\text{TAU3N}^*R)) * \dot{\phi}.5 \\ \text{TAU1DT} &= ((\text{TAU}\dot{\phi}^*P) - (\text{TAU3N}^*Q) + (\text{TAU2N}^*R)) * \dot{\phi}.5 \\ \text{TAU2DT} &= ((\text{TAU3N}^*P) + (\text{TAU}\dot{\phi}^*Q) - (\text{TAU1N}^*R)) * \dot{\phi}.5 \\ \text{TAU3DT} &= -((\text{TAU2N}^*P) - (\text{TAU1N}^*Q) - (\text{TAU}\dot{\phi}^*R)) * \dot{\phi}.5\end{aligned}$$

"*** CALCULATE THE NEW EULER ANGLES ***"

PROCEDURAL (PSID, THETAD, PHID=L1, L2, L3, M3, N3)

"*** CALCULATE HEADING (OR YAW) ANGLE (PSI) ***"
"*** IN RANGE θ (NORTH) TO 360° DEG. ***"

PSIR = ATAN(L2/L1)
IF(PSIR.LT. 0°) PSIR = PSIR+PI*2
PSID = PSIR*RADTOD

"*** CALCULATE ANGLE OF PITCH (THETA) ***"
"*** IN RANGE +/- 90° DEGREES ***"

THE TAR = ATAN(-L3/SQRT((L1*L1)+(L2*L2)))
THE TAD = THE TAR*RADTOD

"*** CALCULATE BANK (OR ROLL) ANGLE (PHI) IN RANGE ***"
"*** +/- 180° DEGREES, WHERE θ DEG. INDICATES WINGS LEVEL ***"

PHIR = ATAN(M3/N3)
PHID = PHIR*RADTOD

END \$"OF EULER PROCEDURAL"

"***** TRAJECTORY *****"

"*** RESOLVE FLIGHT PATH AXES VELOCITIES INTO BODY ***"
"*** COMPONENTS FOR CALCULATION OF DISTANCES IN EARTH AXES ***"

UB = VT*CA*CB
VB = VT*SB
WB = VT*SA*CB

"*** CALCULATE EARTH AXES VELOCITIES FROM BODY AXES ***"
"*** VELOCITIES USING DIRECTION COSINES AND WIND VELOCITIES ***"

VNE = L1*UB+M1*VB+N1*WB-VWN
VEE = L2*UB+M2*VB+N2*WB-VWE
VDE = L3*UB+M3*VB+N3*WB-VWD

PROCEDURAL(VGRKT, GAMMAD, CHID=VNE, VEE, VDE)

"*** CALCULATE THE VELOCITY OVER THE GROUND, ***"
"*** VGR (IE. GROUND SPEED) ***"

VGR = SQRT((VNE*VNE)+(VEE*VEE))
VGRKT = VGR*MPSTOK

"*** CALCULATE FLIGHT-PATH ANGLE, GAMMA IN RANGE +/- 90° DEG ***"

GAMMAR = THE TAR-ALPHAR
GAMMAD = GAMMAR*RADTOD

"*** CALCULATE ANGLE OF CLIMB, LAMBDA IN RANGE +/- 90° DEG ***"

LAMDAR = ATAN(-VDE/VGR)
LAMDAD = LAMDAR*RADTOD

"*** CALCULATE ANGLE OF TRACK, CHI, ***"
"*** IN RANGE ϕ (NORTH) TO 36 ϕ DEG. ***"

CHIR = ATAN(VEE/VNE)
CHID = CHIR*RADTOD

END \$"OF TRAJECTORY PROCEDURAL"

"*** CALCULATE THE RANGE (NOTE: IN METRES) ***"

RANGE = SQRT((X*X)+(Y*Y))

"***** INTEGRATION OF SYSTEM STATE EQUATIONS *****"

ALPHAR = INTVC(DALPHR,ALPHR ϕ)
BETAR = INTVC(DBETAR,BETAR ϕ)
VT = INTVC(DVT,VT ϕ)

P = INTVC(PDOT,P ϕ) \$"ROLL RATE"
Q = INTVC(QDOT,Q ϕ) \$"PITCH RATE"
R = INTVC(RDOT,R ϕ) \$"YAW RATE"

TAU ϕ = INTVC(TAU ϕ DT,TAU ϕ ϕ) \$"QUATERNION TERMS"
TAU1 = INTVC(TAU1DT,TAU1 ϕ)
TAU2 = INTVC(TAU2DT,TAU2 ϕ)
TAU3 = INTVC(TAU3DT,TAU3 ϕ)

Z = INTEG(VDE,Z ϕ) \$"Z-POSITIONAL CO-ORDINATE"
X = INTEG(VEE,X ϕ) \$"X-POSITIONAL CO-ORDINATE"
Y = INTEG(VNE,Y ϕ) \$"Y-POSITIONAL CO-ORDINATE"

END \$"OF DERIVATIVE"

VE = VT*SQRT(RHO/RHO ϕ) \$"EQUIVALENT AIRSPEED (M/S)"
VEK = VE*MPSTOK \$"EQUIVALENT AIRSPEED (KTS)"
ALPHAD = ALPHAR*RADTOD \$"ANGLE OF ATTACK (DEG)"
ALT = -Z/FTTOM \$"ALTITUDE (FT.)"

"***** EXPRESS TERMINATION CONDITION *****"

TERMT(TIME.GE.TSTOP)

END \$"OF DYNAMIC"

"*** NOTE: THIS LISTING SHOULD BE USED IN CONJUNCTION WITH ***"
"*** THE ADVANCED CONTINUOUS SIMULATION LANGUAGE (ACSL) USER ***"
"*** GUIDE/REFERENCE MANUAL. ***"

END \$"OF PROGRAM"

```

SUBROUTINE QUATNS(PSIR, THETAR, PHIR, TAUØ, TAU1, TAU2, TAU3)

C      **** CALCULATES NORMALIZED QUATERNIONS ****

SPSI    = SIN(PSIR*Ø.5)
CPSI    = COS(PSIR*Ø.5)
STHETA = SIN(THETAR*Ø.5)
CTHETA = COS(THETAR*Ø.5)
SPHI    = SIN(PHIR*Ø.5)
CPHI    = COS(PHIR*Ø.5)

C      **** CALCULATE THE QUATERNIONS FROM THE EULER ANGLE TERMS ****

TAUØ = (CPHI*CTHETA*CPSI) + (SPHI*STHETA*SPSI)
TAU1 = (SPHI*CTHETA*CPSI) - (CPHI*STHETA*SPSI)
TAU2 = (CPHI*STHETA*CPSI) + (SPHI*CTHETA*SPSI)
TAU3 = (CPHI*CTHETA*SPSI) - (SPHI*STHETA*CPSI)

C      **** NORMALIZE INITIAL QUATERNIONS ****

TAUN = SQRT((TAUØ*TAUØ) + (TAU1*TAU1) + (TAU2*TAU2)
1          + (TAU3*TAU3))
TAUØ = TAUØ/TAUN
TAU1 = TAU1/TAUN
TAU2 = TAU2/TAUN
TAU3 = TAU3/TAUN

RETURN
END

```

```

SUBROUTINE EVAL (XXXX, XXXRES, MAXR)

C      **** THIS SUBROUTINE IS CALLED FROM THE TRIMMING SUBROUTINE ****
C      **** TO GAIN ACCESS TO THE DERIVATIVE SECTION. ****

DIMENSION XXXX(3), XXXRES(3)

$ C      **** THE "$" CONTROL CHARACTER MAKES MAIN PROGRAM ****
C      **** VARIABLES AVAILABLE TO THIS SUBROUTINE. ****

INTEGER I
I=1

THETAR = (XXXX(1))
ALPHAR = (XXXX(2))
ETARØ = (XXXX(3))

CALL QUATNS(PSIRØ, THETAR, PHIRØ, TAUØ, TAU1, TAU2, TAU3)

CALL ZZDERV(I)

XXXRES(1) = (DVT)
XXXRES(2) = (DALPHR)
XXXRES(3) = (QDOT)

RETURN

```

```
END  
SUBROUTINE IMP(EE)  
C      ***** NOTIFIES FAILURE OF IMPLICIT ITERATION ROUTINE *****  
  
IF (EE .EQ. 0.0) GOTO 89  
99  WRITE (6,99)  
     FORMAT(//27HIMPLICIT PROCEDURAL FAILED    //)  
89  RETURN  
END
```

FTSUBS.F

```
SUBROUTINE CAFCDI(PHIN,HNM,VN,IXX,IYY,IZZ,IXZ,MASS)

IMPLICIT REAL(A-Z)
INCLUDE 'FTPAR.F'
INTEGER I,J

C ***** ROUTINE FOR THE INPUT OF CONFIGURATION AND *****
C ***** FLIGHT CONDITION DATA. *****

OPEN (UNIT=1,FILE='FTSUD2.IN',STATUS='OLD')
OPEN (UNIT=7,FILE='FTGRAF.VPP',STATUS='OLD')

C *** READ IN CONFIGURATION AND FLIGHT CONDITION DATA ***

C ##### THE VARIABLES SHOWN PERTAIN TO THE EXAMPLE APPLICATION #####
C ##### DATA READ IN IS AVAILABLE AT SUBROUTINE LEVEL ONLY. #####
C

READ(1,*) TTOT,TSAMP,NH,HN,DELH,NV,VN,DELV,NPHI,PHIN
READ(1,*) DELPHI,NPL,PLØ,DELPL,NRPM,RPM,DELRPM,WEIGHT,NXCG,XCGP
READ(1,*) DELXCG,ZCG,(PEFF(I),I=1,7).XT
READ(1,*) ZT,XTH,ZTH,THSET,MAXEP,NBLAD,PDIA,WSET,TPSET,ETAG
READ(1,*) ACMASS,ACIXX,ACIYY,ACIZZ,ACIXZ,SW,CW,BW,ST,CT
READ(1,*) CETA,XP,ZP,CWP,BFW,BTAIL,CLØ,CLAL,CDØ,CDAL
READ(1,*) CMØ,CMAL,EPSØ,EPSAL,QTOQ,AØ,A1,A2,A3,BØ
READ(1,*) B1,B2,B3,CDØT,CDLT,CMTØ,CMQW,CLP,CLXI,KWING
READ(1,*) KFUSE,NPSFI,NPSFR,MPSFI,MPSFR,CDB,CTR,BLØ,WTR,TAPERE
READ(1,*) XWC,ZWC,SØS,XQARTC

READ(7,*) (FPROP(I,1),FPROP(I,2),I=1,2Ø)
READ(7,*) ((TOP(I,J),J=1,33),I=1,2Ø)
READ(7,*) ((ETP(I,J),J=1,6Ø),I=1,21)
111 READ(7,*) (CYPROP(I,1),CYPROP(I,2),CYPROP(I,3),CYPROP(I,4),I=1,2Ø)
READ(7,*) ((DELEPS(I,J),J=1,1Ø),I=1,8)

C ##### DATA WHICH IS REQUIRED IN THE MAIN PROGRAM MUST #####
C ##### RENAMED BEFORE BEING PASSED AS ARGUMENTS. #####
C

MASS=ACM MASS
IXX=ACIXX
IYY=ACIYY
IZZ=ACIZZ
IXZ=ACIXZ

HNH=HN*.3Ø48

CLOSE(UNIT=1)
CLOSE(UNIT=7)

RETURN

END
```

```

SUBROUTINE PARINC (VECIN,CGPOS,PLS)
C      **** SUBROUTINE TO ALLOW RUNTIME PARAMETER MODIFICATIONS ****
IMPLICIT REAL (A-Z)
DIMENSION VECIN(6)
INCLUDE 'FTPAR.F'

C      ##### THE VARIABLES SHOWN PERTAIN TO THE EXAMPLE APPLICATION. #####
C      ##### THEY DEMONSTRATE THE METHOD OF PARAMETER INCREMENTING. #####
ALTO=      VECIN(1)
RPM =RPM +VECIN(2)
XCGP=XCGP+VECIN(3)
PLØ =PLØ +VECIN(4)
PAR5=PAR5+VECIN(5)
PAR6=PAR6+VECIN(6)

XCG=XCGP*CW/1ØØ.+XQARTC-CW/4.

C      ##### DATA WHICH IS REQUIRED IN THE MAIN PROGRAM MUST #####
C      ##### RENAMED BEFORE BEING PASSED AS ARGUMENTS.      #####
CGPOS=XCGP
PLS=PLØ

RETURN

END

SUBROUTINE TRAP (VTØ,PHIRØ,G,GAMMAR,PØ,QØ,RØ,BETARØ
1           ,ALPHRØ,THETRØ,ETARØ)
C      ***** GIVES INITIAL APPROXIMATION FOR TRIM CONDITION *****
C      ##### THE APPROXIMATION SHOWN PERTAINS TO THE #####
C      ##### EXAMPLE APPLICATION. THE APPROXIMATION TO #####
C      ##### BE USED IS AT THE USERS DISCRETION.      #####
IMPLICIT REAL (A-Z)
INCLUDE 'FTPAR.F'

PI = 3.141593
ETAØØ= 2.2
KK =41.Ø*(XCGP/1ØØ.-Ø.4)
QD =( .5*1.2256*VTØ*VTØ)

PØ =Ø.
QØ =G/VTØ*TAN(PHIRØ)*SIN(PHIRØ)
RØ =G/VTØ*SIN(PHIRØ)

AN = 1/COS(PHIRØ)

BETARØ = Ø.

ALPHAW = ACMASS*C/(CLAL*QD*SW)
ALPHRØ = ALPHAW - WSET
CLWB = CLØ +(CLAL*ALPHAW)
CDWB = CDØ +(CDAL*CLWB**2)

DRAG = CDWB * QD * SW

GAMMAR = ASIN(-DRAG/(ACMASS*C))
THETRØ = GAMMAR + ALPHRØ

```

```
ETAØ = (ETAØØ+KK*CLWB)*PI/18Ø.  
ETARØ = ETAØ
```

```
RETURN
```

```
END
```

```
SUBROUTINE ATMOS (H,RO)
```

```
IMPLICIT REAL (A-Z)
```

```
COMMON/ARGS2/HITE,DENS
```

```
C ***** THIS ROUTINE GIVES THE DENSITY AT A *****  
C GIVEN ALTITUDE FOR ISA CONDITIONS. *****
```

```
C ##### MORE COMPLICATED ATMOSPHERE ROUTINES MAY BE USED. #####  
C ##### THE SUBROUTINE TO BE USED IS AT THE USERS DISCRETION. #####
```

```
HITE=H  
DENS=1.2256*(1-Ø.Ø2256*HITE/1ØØØ.Ø)**4.2561  
RO =DENS
```

```
RETURN
```

```
END
```

```
SUBROUTINE AERO (XA,YA,ZA,LA,MA,NA,VT,ALPHAR,BETAR  
1 ,PP,QQ,RR,PHIR,THETAR)
```

```
C ***** CALCULATES TOTAL AERODYNAMIC FORCES AND MOMENTS *****
```

```
IMPLICIT REAL (A-Z)
```

```
INCLUDE 'FTPATR.F'
```

```
DIMENSION X(2Ø)
```

```
C ##### THE VECTOR X IS USED TO PASS STATE VARIABLES TO #####  
C ##### ANY SUBROUTINES CALLED FROM AERO. SEE THE EXAMPLE #####  
C ##### APPLICATION FOR DETAILS OF ITS USE. #####
```

```
X(V) = VT  
X(ALPHA) = ALPHAR  
X(Q) = QQ  
X(P) = PP  
X(H) = HITE  
X(PHI) = PHIR  
X(THETA) = THETAR
```

```
CALL ATMOS (HITE,RHO)
```

```
QD=.5*RHO*VT**2
```

```
C ***** DETERMINE INDIVIDUAL AERODYNAMIC CONTRIBUTIONS. *****
```

```
C ##### ANY SUBROUTINE CALLS OR OTHER CALCULATIONS #####
```

C ##### TO DETERMINE INDIVIDUAL AERODYNAMIC FORCE #####
C ##### CONTRIBUTIONS SHOULD BE ENTERED HERE. #####
C ##### SEE APPLICATION FOR EXAMPLES. #####

C ***** CALCULATE TOTAL AERODYNAMIC FORCES AND MOMENTS. *****
C ##### TOTAL FORCES AND MOMENTS SHOULD BE DETERMINED #####
C ##### HERE BY ADDITION OF INDIVIDUAL CONTRIBUTIONS. #####
C ##### SEE APPLICATION FOR EXAMPLES. #####

XA =
YA =
ZA =

LA =
MA =
NA =

RETURN
END

SUBROUTINE PROP(XP,YP,ZP,LP,MP,NP,VT,ALPHAR,BETAR,
1 PP,QQ,RR,PHIR,THETAR)

C ***** CALCULATES TOTAL PROPULSIVE FORCES AND MOMENTS *****
IMPLICIT REAL(A-Z)
INCLUDE 'FTPAR.F'
DIMENSION X(20)

C ##### THE VECTOR X IS USED TO PASS STATE VARIABLES TO #####
C ##### ANY SUBROUTINES CALLED FROM PROP. SEE THE EXAMPLE #####
C ##### APPLICATION FOR DETAILS OF ITS USE. #####

X(V) = VT
X(ALPHA) = ALPHAR
X(Q) = QQ
X(P) = PP
X(H) = HITE
X(PHI) = PHIR
X(THETA) = THETAR

CALL ATMOS(HITE,RHO)

QD=.5*RHO*VT**2

C ***** DETERMINE INDIVIDUAL PROPULSIVE CONTRIBUTIONS. *****

C ##### ANY SUBROUTINE CALLS OR OTHER CALCULATIONS #####
C ##### TO DETERMINE PROPULSIVE FORCES SHOULD BE #####
C ##### ENTERED HERE. #####
C ##### SEE APPLICATION FOR EXAMPLES. #####

C ***** CALCULATE TOTAL PROPULSIVE FORCES AND MOMENTS. *****
C ##### TOTAL FORCES AND MOMENTS SHOULD BE DETERMINED #####
C ##### HERE BY ADDITION OF INDIVIDUAL CONTRIBUTIONS. #####
C ##### SEE APPLICATION FOR EXAMPLES. #####

XP =

YP =
ZP =

LP =
MP =
NP =

RETURN
END

SUBROUTINE CONTROLS(ETAR,DELPL,PLS)

INCLUDE 'FTPAR.F'

C *** THIS SUBROUTINE IS USED TO INCREMENT OR OTHERWISE ***
C *** MODIFY CONTROL INPUTS AS REQUIRED. ***

C #### THE CODING SHOWN RELATES TO THE EXAMPLE APPLICATION. ####

ETA = ETAR
PL = PL0+DELPL
PLS = PL

RETURN

END

APPENDIX 2. POWER EFFECTS PROGRAM LISTING

SDOFAP.ACSL

PROGRAM SDOFAP (FLIGHT SIMULATION MODEL)

```
=====
"
" PROGRAM NAME : Six Degrees of Freedom in Air Path axes.
" WRITTEN BY   : P.W. GIBBENS (EO1, ABS-FW, ARL)
" COMPLETED    :  8 MAY      1985
"
" MODIFIED BY R.H. PERRIN (EO1, ABS-RW, ARL) TO ALLOW FOR
" A VERY SMALL OR ZERO CLIMB ANGLE - OCTOBER 1985
"
" DESCRIPTION : THIS PROGRAM PRESENTS A SET OF FLIGHT DYNAMIC
" EQUATIONS (SIX DEGREES OF FREEDOM), IN AIR-PATH AXES, FOR
" AIRCRAFT SIMULATION USING ADVANCED CONTINUOUS SIMULATION
" LANGUAGE (ACSL) ON THE ARL ELXSI 6400 COMPUTER.
"
=====
```

```
INTEGER ITLIM,MAXRES
LOGICAL BEGIN
ARRAY VECIN(20),XH(3)
```

"***** INITIAL SECTION *****"

INITIAL

"***** PREPARE ALL DATA AND RUNTIME PARAMETERS *****"

"*** READ IN CONFIGURATION AND FLIGHT CONDITION DATA ***"

PROCEDURAL (PHID0,ALT0,VE0K,IXX,IYY,IZZ,IXZ,MASS=)

CALL CAFCDI (PHID0,ALT0,VE0K,IXX,IYY,IZZ,IXZ,MASS)

END \$"OF CAFCDI PROCEDURAL"

"*** DEFINE ALL PRESET VARIABLES ***"

"*** DEFINE RUNTIME PARAMETERS ***"

CONSTANT TSTP=5. ,PLS=0. ,CGPOS=25.1

CONSTANT HI1=0. ,HI2=0. ,HI3=0.

CONSTANT LO1=0. ,LO2=0. ,LO3=0.

"*** POWIT TRIMMING ROUTINE ITERATION PARAMETERS ***"

CONSTANT MAXRES =3 ,ITLIM =100
,ERRMAX =0.0000001

"*** ATMOSPHERIC STANDARDS AND CONVERSION FACTORS ***"

CONSTANT RHO \emptyset = 1.2256

"*** GENERAL CONVERSION FACTORS, CONSTANTS AND VARIABLES ***"

CONSTANT	DEGTOR= $\emptyset.017453$	RADTOD= 57.29578	...
,	KTOMPS= $\emptyset.514773$	MPSTOK= 1.9426 $\emptyset2$...
,	MTONM = $\emptyset.000538$	NMTOM = 1858.5	...
,	FTTOM = $\emptyset.304800$	G = 9.807	...
,	PI = 3.141593		

"... WHERE DEGTOR= DEGREES TO RADIANS
RADTOD= RADIANS TO DEGREES
KTOMPS= KNOTS TO METRES PER SECOND
MPSTOK= METRES PER SECOND TO KNOTS
MTONM = METRES TO NAUTICAL MILES
NMTOM = NAUTICAL MILES TO METRES
FTTOM = FEET TO METRES "

"*** INITIAL CONDITIONS (FLIGHT DATA) ***"

CONSTANT	DPSID \emptyset = $\emptyset.0$, DPHID \emptyset = $\emptyset.0$, DALT \emptyset = $\emptyset.0$...
,	VWN = $\emptyset.0$, VWE = $\emptyset.0$, VWD = $\emptyset.0$...
,	DVE \emptyset K = $\emptyset.0$, DX \emptyset = $\emptyset.0$, DY \emptyset = $\emptyset.0$...
,	PSID \emptyset = $\emptyset.0$, X \emptyset = $\emptyset.0$, Y \emptyset = $\emptyset.0$...

"*** ALLOW PARAMETER INCREMENTING ***"

CONSTANT	DEL1 = $\emptyset.0$, DRPM = $\emptyset.0$, DXCGP= $\emptyset.0$...
,	DPL = $\emptyset.0$, DEL5 = $\emptyset.0$, DEL6 = $\emptyset.0$	

"*** SET CONTROL INPUT PARAMETERS ***"

CONSTANT	ESTART= $\emptyset.01$, TSTART= $\emptyset.01$	\$*** PULSE START TIME ***
CONSTANT	EPULSE=5. \emptyset	, TPULSE=12 \emptyset	\$*** PULSE DURATION ***
CONSTANT	EREPET=2 \emptyset 0	, TREPET=2 \emptyset 0	\$*** REPETITION TIME ***
CONSTANT	ETAMAX=5. \emptyset	, THRMAX=1. \emptyset	\$*** PULSE AMPLITUDE ***

PULMAX =ETAMAX*DEGTOR \$*** CONVERT TO RADIANS ***"

"*** ADD RUNTIME INCREMENTS TO FLIGHT DATA ***"

PSID \emptyset	=PSID \emptyset +DPSID \emptyset
PHID \emptyset	=PHID \emptyset +DPHID \emptyset
ALT \emptyset	=(ALT \emptyset +DALT \emptyset)*FTTOM
V \emptyset E \emptyset K	=V \emptyset E \emptyset K +DVE \emptyset K
X \emptyset	=X \emptyset +DX \emptyset
Y \emptyset	=Y \emptyset +DY \emptyset
GAMMAR	=CAMMAR+DGAMMR

"*** DEFINE INITIAL Z COORDINATE. ***"

Z \emptyset =-ALT \emptyset

```

"*** ADD RUNTIME INCREMENTS TO PARAMETERS ***"

VECIN(1)=ALTØ
VECIN(2)=DRPM
VECIN(3)=DXCGP
VECIN(4)=DPL
VECIN(5)=DEL5
VECIN(6)=DEL6

CALL PARINC(VECIN,CGPOS,PLS)

"*** CONVERT FROM EAS TO TAS ***"

PROCEDURAL (RHO=ALTØ)

CALL ATMOS (ALTØ,RHO)

END $" OF ATMOS PROCEDURAL"

VTØK=VEØK*SQRT (RHOØ/RHO)

VEØ = VEØK*KTOMPS
VTØ = VTØK*KTOMPS

***** SPECIFY SYSTEM EXCITATION PARAMETERS *****

"*** SPECIFY TERMINATION CONDITION ***"

CONSTANT TSTOP = Ø.Ø

"*** SPECIFY INDEPENDENT VARIABLE AS A PRECAUTION ***"

VARIABLE TIME = Ø.Ø
CINTERVAL CINT = Ø.Ø
NSTEPS NSTP = Ø

"*** SET INITIAL APPROXIMATION FOR INITIAL CONDITIONS ***"

PSIDØ = PSIDØ*DEGTOR
PHIDØ = PHIDØ*DEGTOR

PROCEDURAL (PØ,QØ,RØ,BETARØ,ALPHRØ,THETRØ,ETARØ . .
,CAMMAR=VTØ,PHIRØ,G)

CALL TRAP (VTØ,PHIRØ,G,CAMMAR,PØ,QØ,RØ,BETARØ . .
,ALPHRØ,THETRØ,ETARØ)

END $" OF TRAP PROCEDURAL"

"*** CALCULATE INERTIAL CONSTANTS ***"

CØ = ((IXX*IZZ)-(IXZ*IXZ))
C1 = IZZ/CØ
C2 = IXZ/CØ
C3 = C2*(IXX-IYY*IZZ)
C4 = ((IYY-IZZ)*C1)-(IXZ*C2)
C5 = 1.Ø/IYY
C6 = C5*IXZ
C7 = C5*(IZZ-IXX)
C8 = IXX/CØ
C9 = ((IXX-IYY)*C8)+(IXZ*C2)

```

"***** INITIALIZE QUATERNIONS *****"

THETD θ = THETR θ *RADTOD

10 .. CONTINUE

"**NOTE:- THE EULER ANGLE(S) ARE HALVED WHEN CALCULATING...
THE QUATERNIONS"

CALL QUATNS(PSIR θ , THETR θ , PHIR θ , TAU0 θ , TAU1 θ , TAU2 θ , TAU3 θ)

END \$"OF INITIAL"

"***** DYNAMIC SECTION *****"

DYNAMIC

"*** THE TRANSITION FROM INITIAL TO DYNAMIC TRANSFERS ***"
"*** ALL INITIAL CONDITIONS TO THE STATE VARIABLES AND ***"
"*** EVALUATES THE CODE IN THE DERIVATIVE SECTION ONCE. ***"

IF(BEGIN) GO TO 20

"*** TRIM AIRCRAFT USING SUBROUTINE POWIT ***"

XH(1) =THETR θ
XH(2) =ALPHR θ
XH(3) =ETAR θ

PROCEDURAL(XH=XH, MAXRES, ITLIM, ERRMAX)

CALL POWIT(XH, MAXRES, ERRMAX, ITLIM)

THETR θ =XH(1)
ALPHR θ =XH(2)
ETAR θ =XH(3)

END \$"OF POWIT PROCEDURAL"

BEGIN=.TRUE.
GO TO 10

20 .. CONTINUE

"***** DERIVATIVE SECTION *****"

DERIVATIVE

"***** CALCULATE CONTROL INPUTS *****"

PROCEDURAL(ETAR, PLS= ETAR θ , DELPL, ESTART, EREPET, EPULSE, TSTART, TREPET, TPULSE)

```

DELETA=PULMAX*PULSE (ESTART, EREPET, EPULSE)
DELPL =THRMAX*PULSE (TSTART, TREPET, TPULSE)
ETAR=ETARØ+DELETA

CALL CONTROLS (ETAR, DELPL, PLS)

ETAD=ETAR*RADTOD

END $ "OF CONTROLS PROCEDURAL"

***** CALCULATE QUATERNIONS; NORMALIZE, AND THEN *****
***** DETERMINE THE DIRECTION COSINES *****

PROCEDURAL (L1,L2,L3,M1,M2,M3,N1,N2,N3=TAUØ, TAU1, TAU2, TAU3)

**** NORMALIZE QUATERNIONS ***

TAUN = SQRT((TAUØ*TAUØ)+(TAU1*TAU1)+(TAU2*TAU2)+(TAU3*TAU3))
TAUØN = TAUØ/TAUN
TAU1N = TAU1/TAUN
TAU2N = TAU2/TAUN
TAU3N = TAU3/TAUN

**** CALCULATE THE DIRECTIONAL COSINES (L1 -> N3) **

L1 = (((TAUØN*TAUØN)+(TAU1N*TAU1N))*2.Ø)-1.Ø
L2 = (((TAU1N*TAU2N)+(TAUØN*TAU3N))*2.Ø
L3 = (((TAU1N*TAU3N)-(TAUØN*TAU2N))*2.Ø

M1 = ((TAU1N*TAU2N)-(TAUØN*TAU3N))*2.Ø
M2 = (((TAUØN*TAUØN)+(TAU2N*TAU2N))*2.Ø)-1.Ø
M3 = ((TAU2N*TAU3N)+(TAUØN*TAU1N))*2.Ø

N1 = ((TAU1N*TAU3N)+(TAUØN*TAU2N))*2.Ø
N2 = ((TAU2N*TAU3N)-(TAUØN*TAU1N))*2.Ø
N3 = (((TAUØN*TAUØN)+(TAU3N*TAU3N))*2.Ø)-1.Ø

END $"OF QUATERNION PROCEDURAL"

**** CALCULATE ATMOSPHERIC CONDITIONS FOR CURRENT ALTITUDE ***
CALL ATOMS (-Z, RHO)

**** CALCULATE LONGITUDINAL AND LATERAL AERODYNAMIC FORCES ***
**** IN STABILITY AXES AND MOMENTS IN BODY AXES ***

PROCEDURAL (XA, YA, ZA, LA, MA, NA=VT, ALPHAR, BETAR, P, Q, R, PHIR, THETAR, DALPHR)

CALL AERO (XA, YA, ZA, LA, MA, NA, VT, ALPHAR, BETAR, P, Q, R, ...
          PHIR, THETAR, DALPHR)

END $"OF AERO PROCEDURAL"

PROCEDURAL (XP, YP, ZP, LP, MP, NP=VT, ALPHAR, BETAR, P, Q, R, PHIR, THETAR)

CALL PROP (XP, YP, ZP, LP, MP, NP, VT, ALPHAR, BETAR, P, Q, R, ...
           PHIR, THETAR)

END $"OF PROP PROCEDURAL"

```

```
SA = SIN(ALPHAR)
CA = COS(ALPHAR)
SB = SIN(BETAR)
CB = COS(BETAR)
```

"*** CALCULATE GRAVITY FORCE COMPONENTS -> STABILITY AXES ***"

```
FGX = L3*MASS*G*CA + N3*MASS*G*SA
FGY = M3*MASS*G
FGZ = -L3*MASS*G*SA + N3*MASS*G*CA
```

"*** CALCULATE THE TOTAL FORCES (FXS,FYS,FZS) ***"
"*** -> STABILITY AXES ***"

```
FXS = XA + XP*CA + ZP*SA + FGX
FYS = YA + YP + FGY
FZS = ZA - XP*SA + ZP*CA + FGZ
```

"*** CALCULATE THE TOTAL MOMENTS (L,M,N) -> BODY AXES ***"

```
L = (LA*CA) - (NA*SA) + LP
M = MA + MP
N = (LA*SA) + (NA*CA) + NP
```

"*** CALCULATE THE TOTAL FORCES (FXW,FYW,FZW) ***"
"*** -> AIR-PATH AXES ***"

```
FXW = FXS*CB + FYS*SB
FYW = -FXS*SB + FYS*CB
FZW = FZS
```

"*** CALCULATE FORCES IN BODY AXES ***"

```
FXB = XA*CA - ZA*SA + XP
FYB = YA + YP
FZB = XA*SA + ZA*CA + ZP
```

"*** CALCULATE LINEAR ACCELERATIONS ***"

```
AX = FXB/(MASS*G)
AY = FYB/(MASS*G)
AZ = FZB/(MASS*G)
```

"*** CALCULATE NORMAL ACCELERATION ***"

```
AN = -AZ
```

"*** RESOLVE BODY AXIS ANGULAR RATES INTO STABILITY AXES ***"

```
PS = P*CA + R*SA
RS = -P*SA + R*CA
```

"***** CALCULATE LINEAR DERIVATIVES -> AIR PATH AXES *****"

"*** DECLARE DALPHR AS AN IMPLICIT VARIABLE ***"

```
DALPHR = IMPL (Q, Ø, ØØ1, 3Ø, EF,
```

$(Q^*CB - PS^*SB + FZW/MASS/VT) / CB, \theta .0001)$

PROCEDURAL (=EF)

CALL IMP(EF)

END \$"OF DALPHR PROCEDURAL"

DBETAR = FYW/MASS/VT-RS
DVT = FXW/MASS

"*** CALCULATE ANGULAR ACCELERATIONS -> BODY AXES ***"

PDOT = $(L^*C1) + (N^*C2) + ((P^*C3) + (R^*C4)) * Q$
QDOT = $(M^*C5) + (((R^*R) - (P^*P)) * C6) + (R^*P^*C7)$
RDOT = $(N^*C8) + (L^*C2) + ((P^*C9) - (R^*C3)) * Q$

"***** DETERMINE QUATERNION RATES AND EULER ANGLES. *****"

"*** CALCULATE THE QUATERNION RATES ***"

TAUQDT=-((TAU1N^*P)+(TAU2N^*Q)+(TAU3N^*R))*0.5
TAU1DT= ((TAU0N^*P)-(TAU3N^*Q)+(TAU2N^*R))*0.5
TAU2DT= ((TAU3N^*P)+(TAU0N^*Q)-(TAU1N^*R))*0.5
TAU3DT=-((TAU2N^*P)-(TAU1N^*Q)-(TAU0N^*R))*0.5

"*** CALCULATE THE NEW EULER ANGLES ***"

PROCEDURAL (PSID, THETAD, PHID=L1,L2,L3,M3,N3)

"*** CALCULATE HEADING (OR YAW) ANGLE (PSI) ***"
"*** IN RANGE θ (NORTH) TO 36θ DEG. ***"

PSIR = ATAN(L2/L1)
IF (PSIR.LT.0.0) PSIR = PSIR+PI*2
PSID = PSIR*RADTOD

"*** CALCULATE ANGLE OF PITCH (THETA) ***"
"*** IN RANGE +/- 9 θ DEGREES ***"

THETAR= ATAN(-L3/SQRT((L1*L1)+(L2*L2)))
THETAD= THETAR*RADTOD

"*** CALCULATE BANK (OR ROLL) ANGLE (PHI) IN RANGE ***"
"*** +/- 18 θ DEGREES, WHERE θ DEG. INDICATES WINCS LEVEL ***"

PHIR = ATAN(M3/N3)
PHID = PHIR*RADTOD

END \$"OF EULER PROCEDURAL"

"***** TRAJECTORY *****"

"*** RESOLVE FLIGHT PATH AXES VELOCITIES INTO BODY ***"
"*** COMPONENTS FOR CALCULATION OF DISTANCES IN EARTH AXES ***"

```
UB = VT*CA*CB  
VB = VT*SB  
WB = VT*SA*CB
```

```
"*** CALCULATE EARTH AXES VELOCITIES FROM BODY AXES ***"  
"*** VELOCITIES USING DIRECTION COSINES AND WIND VELOCITIES ***"
```

```
VNE = L1*UB+M1*VB+N1*WB-VWN  
VEE = L2*UB+M2*VB+N2*WB-VWE  
VDE = L3*UB+M3*VB+N3*WB-VWD
```

```
PROCEDURAL(VGRKT,GAMMAD,CHID=VNE,VEE,VDE)
```

```
"*** CALCULATE THE VELOCITY OVER THE GROUND, ***"  
"*** VGR (IE. GROUND SPEED) ***"
```

```
VGR = SQRT((VNE*VNE)+(VEE*VEE))  
VGRKT = VGR*MPSTOK
```

```
"*** CALCULATE FLIGHT-PATH ANGLE, GAMMA IN RANGE +/-90 DEG ***"
```

```
GAMMAR = THETAR-ALPHAR  
GAMMAD = GAMMAR*RADTOD
```

```
"*** CALCULATE ANGLE OF CLIMB, LAMBDA IN RANGE +/-90 DEG ***"
```

```
LAMDAR = ATAN(-VDE/VGR)  
LAMDAD = LAMDAR*RADTOD
```

```
"*** CALCULATE ANGLE OF TRACK, CHI, ***"  
"*** IN RANGE 0(NORTH) TO 360 DEG. ***"
```

```
CHIR = ATAN(VEE/VNE)  
CHID = CHIR*RADTOD
```

```
END $"OF TRAJECTORY PROCEDURAL"
```

```
"*** CALCULATE THE RANGE (NOTE: IN METRES) ***"
```

```
RANGE = SQRT((X*X)+(Y*Y))
```

```
"***** INTEGRATION OF SYSTEM STATE EQUATIONS *****"
```

ALPHAR	= INTVC(DALPHR,ALPHRØ)	
BETAR	= INTVC(DBETAR,BETARØ)	
VT	= INTVC(DVT,VTØ)	
P	= INTVC(PDOT,PØ)	\$"ROLL RATE"
Q	= INTVC(QDOT,QØ)	\$"PITCH RATE"
R	= INTVC(RDOT,RØ)	\$"YAW RATE"
TAUØ	= INTVC(TAUØDT,TAUØØ)	\$"QUATERNION TERMS"
TAU1	= INTVC(TAU1DT,TAU1Ø)	
TAU2	= INTVC(TAU2DT,TAU2Ø)	
TAU3	= INTVC(TAU3DT,TAU3Ø)	
Z	= INTEG(VDE,ZØ)	\$"Z-POSITIONAL CO-ORDINATE"
X	= INTEG(VEE,XØ)	\$"X-POSITIONAL CO-ORDINATE"

Y = INTEG(VNE,YØ) \$"Y-POSITIONAL CO-ORDINATE"
END \$"OF DERIVATIVE"

VE = VT*SQRT(RHO/RHOØ) \$"EQUIVALENT AIRSPEED (M/S)"
VEK = VE*MPSTOK \$"EQUIVALENT AIRSPEED (KTS)"
ALPHAD = ALPHAR*RADTOD \$"ANGLE OF ATTACK (DEC)"
ALT = -Z/FTTOM \$"ALTITUDE (FT.)"

"***** EXPRESS TERMINATION CONDITION *****"
TERMT(TIME.GE.TSTOP)

END \$"OF DYNAMIC"

"*** NOTE: THIS LISTING SHOULD BE USED IN CONJUNCTION WITH ***"
"*** THE ADVANCED CONTINUOUS SIMULATION LANGUAGE (ACSL) USER ***"
"*** GUIDE/REFERENCE MANUAL. ***"

END \$"OF PROGRAM"

SUBROUTINE QUATNS(PSIR,THETAR,PHIR,TAUØ,TAU1,TAU2,TAU3)

C "*** CALCULATES NORMALIZED QUATERNIONS ***"

SPSI = SIN(PSIR*Ø.5)
CPSI = COS(PSIR*Ø.5)
STHETA = SIN(THETAR*Ø.5)
CTHETA = COS(THETAR*Ø.5)
SPHI = SIN(PHIR*Ø.5)
CPHI = COS(PHIR*Ø.5)

C "*** CALCULATE THE QUATERNIONS FROM THE EULER ANGLE TERMS ***"

TAUØ = (CPHI*CTHETA*CPSI)+(SPHI*STHETA*SPSI)
TAU1 = (SPHI*CTHETA*CPSI)-(CPHI*STHETA*SPSI)
TAU2 = (CPHI*STHETA*CPSI)+(SPHI*CTHETA*SPSI)
TAU3 = (CPHI*CTHETA*SPSI)-(SPHI*STHETA*CPSI)

C "*** NORMALIZE INITIAL QUATERNIONS ***"

TAUN = SQRT((TAUØ*TAUØ)+(TAU1*TAU1)+(TAU2*TAU2)
 +(TAU3*TAU3))
TAUØ = TAUØ/TAUN
TAU1 = TAU1/TAUN
TAU2 = TAU2/TAUN
TAU3 = TAU3/TAUN

RETURN

END

SUBROUTINE EVAL (XXXX, XXXRES, MAXR)

C **** THIS SUBROUTINE IS CALLED FROM THE TRIMMING SUBROUTINE ****
C **** TO GAIN ACCESS TO THE DERIVATIVE SECTION. ****

DIMENSION XXXX(3), XXXRES(3)

\$ C **** THE "\$" CONTROL CHARACTER MAKES MAIN PROGRAM ****
C **** VARIABLES AVAILABLE TO THIS SUBROUTINE. ****

INTEGER I
I=1

THETAR = (XXXX(1))
ALPHAR = (XXXX(2))
ETARØ = (XXXX(3))

CALL QUATNS (PSIRØ, THETAR, PHIRØ, TAUØ, TAU1, TAU2, TAU3)

CALL ZZDERV(I)

XXXRES(1) = (DVT)
XXXRES(2) = (DALPHR)
XXXRES(3) = (QDOT)

RETURN
END

SUBROUTINE IMP (EF)

C ***** NOTIFIES FAILURE OF IMPLICIT ITERATION ROUTINE *****

IF (EF .EQ. 0.0) GOTO 89
WRITE (6,99)
99 FORMAT(//27HIMPLICIT PROCEDURAL FAILED //)
89 RETURN
END

FTSUBS.F

SUBROUTINE CAFCDI (PHIN,HNM,VN,IXX,IYY,IZZ,IXZ,MASS)

IMPLICIT REAL(A-Z)
INCLUDE 'FTPAR.F'
INTEGER I,J

C ROUTINE FOR THE INPUT OF CONFIGURATION AND
C FLIGHT CONDITION DATA.

OPEN (UNIT=1,FILE='FTSUD2.IN',STATUS='OLD')
OPEN (UNIT=7,FILE='FTGRAF.VPP',STATUS='OLD')

C *** READ IN CONFIGURATION AND FLIGHT CONDITION DATA ***

READ(1,*) TTOT, TSAMP, NH, HN, DELH, NV, VN, DELV, NPHI, PHIN
READ(1,*) DELPHI, NPL, PL0, DELPL, NRPM, RPM, DELRPM, WEGHT, NXCG, XCGP
READ(1,*) DELXCG, ZCG, (PEFF(I), I=1, 7), XT
READ(1,*) ZT, XTH, ZTH, THSET, MAXEP, NBLAD, PDIA, WSET, TPSET, ETAG
READ(1,*) ACMASS, ACIXX, ACIYY, ACIZZ, ACIXZ, SW, CW, BW, ST, CT
READ(1,*) CETA, XP, ZP, CWP, BFW, BTAIL, CL0, CLAL, CD0, CDAL
READ(1,*) CM0, CMAL, EPS0, EPSAL, QTOQ, A0, A1, A2, A3, B0
READ(1,*) B1, B2, B3, CD0T, CDLT, CMT0, CMQW, CLP, CLXI, KWING
READ(1,*) KFUSE, NPSFI, NPSFR, MPSFI, MPSFR, CDB, GTR, BL0, WTR, TAPERF
READ(1,*) XWC, ZWC, S0S, XQARTC

READ(7,*) (FPROP(I,1), FPROP(I,2), I=1, 20)
READ(7,*) ((TOP(I,J), J=1, 33), I=1, 20)
READ(7,*) ((ETP(I,J), J=1, 60), I=1, 21)
111 READ(7,*) (CYPROP(I,1), CYPROP(I,2), CYPROP(I,3), CYPROP(I,4), I=1, 20)
READ(7,*) ((DELEPS(I,J), J=1, 10), I=1, 8)

MASS=ACMASS

IXX=ACIXX

IYY=ACIYY

IZZ=ACIZZ

IXZ=ACIXZ

HNM=HN

CLOSE (UNIT=1)
CLOSE (UNIT=7)

RETURN

END

SUBROUTINE PARINC (VECIN,CCPOS,PLS)

C " SUBROUTINE TO ALLOW RUNTIME PARAMETER MODIFICATIONS "

IMPLICIT REAL(A-Z)
DIMENSION VECIN(6)
INCLUDE 'FTPAR.F'

```
ALTØ=      VECIN(1)
RPM = RPM+VECIN(2)
XCGP=XCGP+VECIN(3)
PLØ =PLØ +VECIN(4)
PAR5=PAR5+VECIN(5)
PAR6=PAR6+VECIN(6)
```

```
XCC=XCGP*CW/100. +XQARTC-CW/4.
CCPOS=XCGP
PLS=PLØ
```

```
RETURN
```

```
END
```

```
SUBROUTINE TRAP (VTØ,PHIRØ,G,GAMMAR,PØ,QØ,RØ,BETARØ
1           ,ALPHRØ,THETRØ,ETARØ)
```

```
C          " GIVES INITIAL APPROXIMATION FOR TRIM CONDITION "
```

```
IMPLICIT REAL (A-Z)
INCLUDE 'FTPAT.F'
```

```
PI = 3.141593
ETAØØ= 2.2
KK =41.Ø*(XCGP/100.-Ø.4)
QD = (.5*1.2256*VTØ*VTØ)
```

```
PØ =Ø.
QØ =G/VTØ*TAN(PHIRØ) *SIN(PHIRØ)
RØ =G/VTØ*SIN(PHIRØ)
```

```
AN = 1/COS(PHIRØ)
```

```
BETARØ = Ø.
```

```
ALPHAW = ACMASS*G/(CLAL*QD*SW)
ALPHRØ = ALPHAW - WSET
CLWB = CLØ + (CLAL*ALPHAW) + CLF
CDWB = CDØ + (CDAL*CLWB**2) + CDF
```

```
DRAG = CDWB * QD * SW
```

```
GAMMAR = ASIN(-DRAG/(ACMASS*G))
THETRØ = GAMMAR + ALPHRØ
```

```
ETAØ = (ETAØØ+KK*CLWB)*PI/18Ø.
ETARØ = ETAØ
```

```
RETURN
```

```
END
```

```
SUBROUTINE ATMOS (H,RO)
```

```
IMPLICIT REAL (A-Z)
```

COMMON/ARGS2/HITE,DENS

HITE=H
DENS=1.2256*(1-0.02256*HITE/1000.0)**4.2561
RO =DENS

RETURN

END

SUBROUTINE AERO (XA,YA,ZA,LA,MA,NA,VT,ALPHAR,BETAR
1 ,PP,QQ,RR,PHIR,THETAR,DALPHR)

C C MODIFIED BY RODD PERRIN OCTOBER 1985
C

IMPLICIT REAL(A-Z)
INCLUDE 'FTPAR.F'
DIMENSION X(20)

XDAL = DALPHR

X(V) = VT
X(ALPHA) = ALPHAR
X(Q) = QQ
X(P) = PP
X(H) = HITE
X(PHI) = PHIR
X(THETA) = THETAR

CALL ATMOS (HITE,RHO)

QD=.5*RHO*VT**2

CALL THRUST(X,TOP,ETP)
CALL PROPEL(X)
CALL FLAPS(X)
CALL WB(X)
CALL TAIL(X)
CDW=CDWB-CDB
CALL RESOLV(X(ALPHA),CLWB,CDW,XP,ZP,CMWBF)
ALTF=ALPHAT-TPB
CALL RESOLV(ALTF,CLT,CDT,XT,ZT,CMTF)

CTHXW=CTPROP*COS(ALTH)-CLPROP*SIN(ALTH)
CTHZW=-CLPROP*COS(ALTH)-CTPROP*SIN(ALTH)

CTHX=CTPROP*COS(THSET)-CLPROP*SIN(THSET)
CTHZ=-CLPROP*COS(THSET)-CTPROP*SIN(THSET)

ALTFs=X(ALPHA)-ALTF
CTXW=-CLT*SIN(ALTFs)-CDT*COS(ALTFs)
CTZW=-CLT*COS(ALTFs)+CDT*SIN(ALTFs)

CMTHF=CTHX*(ZTH-ZCG)+CTHZ*(XTH-XCG)
CLWBT=CLWB-ST*(CTZW)/SW

CALL RESOLV(X(ALPHA),0.0,CDB,XP,ZTH,CMBF)
CMWBTH=CMWB+(CMWBF+CMTHF+CMBF)/CW

C *** CALCULATE AERODYNAMIC FORCES ***

XA = QD*(SW*(CTHXW CDWB)+ST*CTXW)
YA = 0.0

```
ZA = QD*(SW*(CTHZW-CLWBT))  
LA = Ø Ø  
MA = QD*(SW*CW*CMWBTH*(ST*(CT*CMT+CMTE))+(SW*CW*CMQW*Q))  
NA = Ø Ø
```

```
RETURN  
END
```

```
SUBROUTINE PROP (XP,YP,ZP,LP,MP,NP,VT,ALPHAR,BETAR  
1 ,PP,QQ,RR,PHIR,THETAR)
```

```
RETURN  
END
```

```
SUBROUTINE CONTROLS (ETAR,DELPL,PLS)
```

```
INCLUDE 'FTPAR.F'
```

```
ETA = ETAR  
PL = PLØ+DELPL  
PLS = PL
```

```
RETURN  
END
```

FTSUBS2.F

```
C      SUBROUTINE THRUST(X)
C      !CALCULATES COMPONENTS OF PROPELLOR THRUST
C      IMPLICIT REAL (A-Z)
C      INCLUDE 'FTPAR.F'
C      INTEGER I,J
C      DIMENSION X(20)

1000  FORMAT(' POWER TOO LOW')
1001  FORMAT(' POWER TOO HIGH')

4      EP=PL*MAXEP
ETAP=0
TCC=0.0
TTHST=0.0
IF (RPM==0) GO TO 1
IF (PL==0) GO TO 1

IF (X(V)>55.0) GO TO 5

POD2=S0S*EP/745.7/((PDIA/0.3048)**2)
PIND=3.142*RPM*PDIA/0.3048/60.0

DO 3 J=1,6
DO 2 I=1,5
2    CALL INTERP(TOP(1,1),TOP(1,(J-1)*5+I+3),20,POD2, TOP(I,34),ERROR)
3    CALL INTERP(TOP(1,2),TOP(1,34),5,PIND, TOP(J,35),ERROR)
CALL INTERP(TOP(1,3),TOP(1,35),6,X(V),TDP,ERROR)

IF (TDP<0) GO TO 9
IF (TDP>10) GO TO 10
TTHST=TDP*EP*4.4497/745.7
TCC=TTHST/(2.0*QD*PDIA**2)
ETAP=TTHST*X(V)/EP
RETURN

5      S0SCP=S0S*EP/DENS/((RPM/60)**3)/((PDIA)**5)
IF (S0SCP<0.025) GO TO 9

MACH=X(V)/340.29
PINDOA=3.142*RPM*PDIA/60.0/340.29

DO 8 J=1,5
DO 7 I=1,11
7    CALL INTERP(ETP(1,1),ETP(1,(J-1)*11+I+3),21,S0SCP, ETP(I,59)
1 ,ERROR)
8    CALL INTERP(ETP(1,2),ETP(1,59),11,PINDOA, ETP(J,60),ERROR)
CALL INTERP(ETP(1,3),ETP(1,60),5,MACH,ETAP,ERROR)

IF (ETAP>1.0) GO TO 9
IF (ETAP<0.0) GO TO 11
1    TTHST=ETAP*EP/X(V)
TCC=TTHST/(2.0*QD*PDIA**2)
RETURN
9    IF (RPM<600) GO TO 12
RPM=RPM-200
GO TO 4
12    TTHST=-1.0
TYPE 1000
RETURN
10   IF (RPM>2600) GO TO 13
```

```

RPM=RPM+200
GO TO 4
13 ETAP=-1.0
TYPE 1001
RETURN
11 IF (RPM<600) GO TO 14
RPM=RPM-200
GO TO 4
14 TCC=-1.0
TYPE 1001
RETURN
END

SUBROUTINE WB(X)
C !CALCULATES WING-BODY AERODYNAMICS
IMPLICIT REAL(A-Z)
INCLUDE 'FTPAR.F'
DIMENSION X(20)

CLWB=CL0+ (CLAL*ALPHAW)+CLF
CDWB=CD0+ (CDAL*(CLWB**2))+CDF
CMWB=CM0+ (CMAL*ALPHAW)+CMF

CLSS=0
CMSS=0
QSOQIN=TCC*8.0/3.142
TEMP=DUWDAL

CALL SLIPST(X,2)
IF (ZSS>(PDIA/2.0)) GO TO 2
BWP=2*SQRT((PDIA/2.0)**2-ZSS**2)-BEW/2
IF (PEFF(2)==0) GO TO 1
CMSS=(CM0+CMF)*CWP**2*BWP*QSOQIN/CW/SW
1 IF (PEFF(3)==0) GO TO 2

DELAW=-(DPEDAL*ALTH)/(1+TEMP)
AIL=BWP/CWP
SIL=BWP*CWP
BL=0.08
ARL=BW/CW
IF (ARL>10.0) BL=0.0
K2=3.0*(AIL-1.0)+BL*(10.0-ARL)*AIL
K3=1.96*SQRT(TCC)
K4=(K2+3.0)*0.1*K3
K1=0.2*K4+1.181-0.489*SQRT(TCC*0.1)
CLSS=K1*SIL*((1.0*QSOQIN)*CLAL*DELAW+QSOQIN*CLWB)/SW

2 CLWB=CLWB+CLSS
CMWB=CMWB+CMSS

CDWB=CDWB*(1.0+CLSS/CLWB)

XZSS(18)=ZWC
XZSS(19)=ZT
XZSS(20)=PDIA

RETURN
END

C SUBROUTINE TAIL(X)
!CALCULATES TAIL CONTRIBUTION
IMPLICIT REAL(A-Z)
INCLUDE 'FTPAR.F'
DIMENSION X(20)

CALL DWASH(X)

```

CALL BEND(X)

```
CALL SLIPST(X,3)
IF (ZHEFF>(PDIA/2.Ø)) GO TO 1
SHI=2*CT*SQRT((PDIA/2.Ø)**2-ZHEFF**2)
K1=4.Ø8*SHI/ST
K2=K1*(TCC+Ø.575)-Ø.3
K3=Ø.2Ø2-Ø.Ø3*ZHEFF/(PDIA/2.Ø)-Ø.Ø754*((ZHEFF/(PDIA/2.Ø))**2)
DELQT=K2*K3-Ø.1
IF (TCC<Ø.1) DELQT=Ø.Ø
GO TO 2

1   DELQT=Ø
2   RT=QTOQ+DELQT
RT1=RT-1
IF (PEFF(5)==Ø) RT=1.Ø

ALPHAQ=(XT-XCG)*X(Q)/(X(V)*SQRT(RT))
ALPHAT=X(ALPHA)+TPB-EPS+ALPHAQ
CLT=RT*(AØ+A1*ALPHAT)+A2*ETA+A3*BETA
CH=RT*(BØ+B1*ALPHAT)+B2*ETA+B3*BETA

IF (PEFF(6)==Ø) RT1=Ø.Ø

CLT=CLT+RT1*(A2*ETA+A3*BETA)
CH=CH+RT1*(B2*ETA+B3*BETA)
CDT=CDØT+CDLT*CLT**2

CLTTH=CLT-RT*(A2*ETA+A3*BETA)
CDTTH=CDØT+CDLT*CLTTH**2

CMT=CMTØ
PETA=QD*CETA*CH*ETAG

XZSS(22)=CT

RETURN
END

C   SUBROUTINE RESOLV(AL,CL1,CD1,X1,Z1,CM1)
!TRANSLATES FORCES TO THE CG
IMPLICIT REAL(A-Z)
INCLUDE 'FTPAR.F'

CM1=-(CD1*COS(AL)-CL1*SIN(AL))*(Z1-ZCG)
1 -(CL1*COS(AL)+CD1*SIN(AL))*(X1-XCG)

RETURN
END

C   SUBROUTINE DWASH(X)
!CALCULATES DOWNWASH AND TOTAL HEAD AT THE TAIL
!AND ALSO INDUCED INCIDENCE AT THE TAIL DUE TO PITCHING
IMPLICIT REAL(A-Z)
INTEGER I
INCLUDE 'FTPAR.F'
DIMENSION X(2Ø)

KA=CW/BW-1.Ø/(1.Ø+(BW/CW)**1.7)
KLAM=(1Ø.Ø-3.Ø*WTR)/7.Ø
LH=XT-XWC
HH=(XT-XWC)*TAN(WSET)*ZWC-ZT
KH=(1-HH/BW)/((2.Ø*LH/BW)**Ø.33)
```

```

EPSAL=4.44* ((KA*KLAM*KH)**1.19)

EPS=57.3* (EPS0+EPSAL* (ALPHAW-XDAL* (XT-XCC)/X(V)))

IF (PEFF(4)==0) GO TO 1
DO 2 I=1,8
2 CALL INTERP (DELEPS(1,1),DELEPS(1,I+2),8,EPS,DELEPS(I,11),ERROR)
CALL INTERP (DELEPS(1,2),DELEPS(1,11),8,TCC,DEP,ERROR)

ZHT=ZTH+ (XT-XTH)*TAN (THSET)-ZT
KFAC=0.85-0.25*ABS(ZHT)/PDIA
DEPS=KFAC*DEP
EPS=EPS+DEPS

1 EPS=EPSF+(EPS)/57.3
QTOQ=QTOQ
ALPHAQ=(XT-XCG)*X(Q)/X(V)

XZSS(21)=CW

RETURN
END

C SUBROUTINE BEND(X)
!CALCULATES TAILPLANE ANGLE DUE TO FUSELAGE BENDING
IMPLICIT REAL(A-Z)
INCLUDE 'FTPAR.F'
DIMENSION X(20)

LT=QD*QTOQ*ST*CLT
TPB=KFUSE*LT*TPSET

RETURN
END

C SUBROUTINE TORSON(X)
!CALCULATES EFFECTIVE WING INCIDENCE
IMPLICIT REAL(A-Z)
INCLUDE 'FTPAR.F'
DIMENSION X(20)

LW=QD*SW*CLWB
ALPHAW=X(ALPHA)+WSET-KWING*LW

RETURN
END

SUBROUTINE PROPEL(X)

C !CALCULATES PROPELLER FORCES

IMPLICIT REAL(A-Z)
INCLUDE 'FTPAR.F'
DIMENSION X(20)
INTEGER IB
CALL TORSON(X)
CALL SLIPST(X,1)
ALTH=THSET*X(ALPHA)+DUWDAL*ALPHAW
IF (RPM==0) GO TO 1

DPEDAL=0

```

```

CLPROP=0
IF (PEFF (1)==0) GO TO 3
IB=IFIX(NBLAD)
CALL INTERP (CYPROP (1, 1), CYPROP (1, IB), 20, BL0, CYPSI0, ERROR)

CALL INTERP (FPROP (1, 1), FPROP (1, 2), 20, TCC, FPR, ERROR)
CLPROP=3.142*PDIA**2*CYPSI0*FPR*ALTH/SW/4.0
C1=SQRT ((SQRT (50.6*TCC+28.623)-5.35)/25.3)
C2=0.27*EXP (-0.127*TCC)
DPEDAL=C1+C2*CYPSI0
3 CTPROP=2*TCC*PDIA**2/SW

GO TO 2
1 DPEDAL=0
CLPROP=0
CTPROP=0
2 CONTINUE

XZSS (17)=ZTH

RETURN
END

```

```

SUBROUTINE INTERP (XLIST, YLIST, N, X, Y, ERROR)
C USED FOR INTERPOLATING INTO A ONE DIMENSIONAL ARRAY
C X: INDEPENDENT VARIABLE
C XLIST: LIST OF INDEPENDENT VARIABLE BREAK POINTS IN
C ASCENDING ORDER
C YLIST: LIST OF DEPENDENT VARIABLE BREAK POINTS
C N: NUMBER OF BREAK POINTS
C Y: INTERPOLATED VALUE OF DEPENDENT VARIABLE
C ERROR: .TRUE. IF EXTRAPOLATION WAS NEEDED
C
DIMENSION XLIST(100), YLIST(100)
IF (X.GE.XLIST(1)) GO TO 5
ERROR=.TRUE.
I=1
GO TO 20
5 IF (X.LE.XLIST(N)) GO TO 7
ERROR=.TRUE.
I=N-1
GO TO 20
7 ERROR=.FALSE.
DO 10 I=1,N-1
IF (X.GE.XLIST(I) .AND. X.LE.XLIST(I+1)) GO TO 20
10 CONTINUE
I=N-1
J=I
XLB=XLIST(J)
XUB=XLIST(J+1)
RX=XUB-XLB
W1=(XUB-X)/RX
W2=(X-XLB)/RX
Y=W1*YLIST(J)+W2*YLIST(J+1)
RETURN
END

```

```

SUBROUTINE SLIPST (X, I)
C !CALCULATES LOCUS OF PROPELLER SLIPSTREAM

IMPLICIT REAL (A-Z)
INCLUDE 'FTPAR.F'

```

```

DIMENSION X(20)
INTEGER I

GO TO (10, 20, 30), I

10 XZSS(3)=XTH
DUWDAL=0.28/(XWC-XTH)/CW
XZSS(1)=2*XZSS(3)
ALUW=X(ALPHA)+DUWDAL*ALPHAW
IF (PEFF(7)) 12, 12, 11
11 ALUW=X(ALPHA)+DUWDAL*(CLWB/CLAL)
12 XZSS(2)=ABS(XZSS(3))*TAN(ALUW)+ZTH
XZSS(4)=ZTH

RETURN

20 XZSS(5)=XZSS(3)/2
ALUW=ALUW-DPEDAL*ALTH
XZSS(6)=-ABS(XZSS(5))*TAN(ALUW)+XZSS(4)
DUWDAL=0.28/(XWC-(XTH/2))/CW
IF (PEFF(7)) 21, 21, 22
21 ALUW=ALUW+DUWDAL*ALPHAW
GO TO 23
22 ALUW=ALUW+DUWDAL*(CLWB/CLAL)
23 XZSS(7)=XWC
XZSS(8)=-ABS(XZSS(5)-XZSS(7))*TAN(ALUW)+XZSS(6)
ZSS=ABS(ZWC-XZSS(8))

ALUW=-WSET
XZSS(9)=XWC+0.75*CW
XZSS(10)=-0.75*CW*TAN(ALUW)+XZSS(8)+ZFLAP

RETURN

30 KA=CW/BW-1/(1+(BW/CW)**1.7)
KLAM=(10.0-3.0*WTR)/7.0
WTE=XWC+0.75*CW

XZSS(11)=WTE*(XT-WTE)/2
LH=XZSS(11)-XWC
HH=(XZSS(11)-XWC)*TAN(WSET)+ZWC-XZSS(10)
1 - (XZSS(11)-WTE)*TAN(ALPHAW)
KH=(1-HH/BW)/((2*LH/BW)**0.33)
DDWDAL=4.44*((KA*KLAM*KH)**1.19)
XZSS(12)=-ABS(XZSS(11)-WTE)*TAN(X(ALPHA)-(DDWDAL*ALPHAW)-EPSF)
1 +XZSS(10)

XZSS(13)=XT
LH=XT-XWC
HH=(XT-XWC)*TAN(WSET)+ZWC-XZSS(12)
1 - (XT-XZSS(11))*TAN(ALUW)
KH=(1-HH/BW)/((2*LH/BW)**0.33)
DDWDAL=4.44*((KA*KLAM*KH)**1.19)
XZSS(14)=-ABS(XT-XZSS(11))*TAN(X(ALPHA)-(DDWDAL*ALPHAW)-EPSF)
1 +XZSS(12)

ZHEFF=ABS(ZT-XZSS(14))

XZSS(15)=XT*(XT-WTE)/2
LH=XZSS(15)-XWC
HH=(XZSS(15)-XWC)*TAN(WSET)+ZWC
1 - XZSS(14)-(XZSS(15)-XT)*TAN(ALUW)
KH=(1-HH/BW)/((2*LH/BW)**0.33)

```

```
DDWDAL=4.44*((KA*KLAM*KH)**1.19)
XZSS(16)=-ABS(XZSS(15)-XT)*TAN(X(ALPHA)-(DDWDAL*ALPHAW)-EPSF)
1 +XZSS(14)

RETURN
END
SUBROUTINE FLAPS(X)

C   !CALCULATES CL,CM,CD,EPS,ZFLAP FOR A SINGLE SLOTTED
C   !FLAP FITTED TO THE A1.DEFLECTIONS 2Ø DEG AND 4Ø DEG

IMPLICIT REAL(A-Z)
INCLUDE 'FTPAR.F'

CLF=Ø.Ø
CMF=Ø.Ø
CDF=Ø.Ø
ZFLAP=Ø.Ø
IF (PEFF(7)-1) 15,5,1Ø

5   CLF=Ø.74
    CMF=-Ø.167
    CDF=Ø.Ø213
    ZFLAP=Ø.2*CW*Ø.364
    GO TO 15

1Ø  CLF=1.13
    CMF=-Ø.2829
    CDF=Ø.Ø628
    ZFLAP=Ø.2*CW*Ø.839

15  EPSF=(CLF*(1Ø.3+64.1*((ABS(ZWC-ZT)/(BW/2.Ø))-Ø.53)**2)/
1 (2.Ø*BW*5.Ø/SW))/57.3
    XFLAP=Ø.2*CW

RETURN
END
```

FTPAR.F

```
PARAMETER (V=1,ALPHA=2,Q=3,P=4,H=5,PHI=6,THETA=7)

INTEGER V,ALPHA,Q,P,H,PHI,THETA
COMMON/ARGS/ACMASS,ACIXX,ACIYY,ACIZZ,ACIXZ,SW,CW,BW,WSET
1 ,ST,CT,CETA,TPSET,ETAG,XP,ZP,XT,ZT,XQARTC
1 ,XTH,ZTH,ZSS,XCG,XCGP,ZCG,AØ,A1,A2,A3,BØ,B1,B2,B3
2 ,CLØ,CDØ,CMØ,CLAL,CDAL,CMAL,MAXEP,THSET,ALTH
3 ,DUWDAL,ALUW,EPSØ,EPSAL,QTOQ,KFUSE,KWING,CDØT,CDLT,CMTØ
4 ,CMQW,CLP,CLXI,TSAMP,VØ,PHIØ
5 ,PW,QW,RW,CTHX,CTHZ,CLWB,CDWB,CMWB,CLWBT
6 ,ALPHAW,TPB,ALPHAQ,EPS,DPEDAL,ALPHAT,CLT,CDT,CMT,CH
7 ,ETAØ,ETA,PETA,BETA,XI
8 ,TTHST,CTHXW,CTHZW,CMWBF,CMTF,CLTTH,CDTTH,CMWBTH,CMTTH
9 ,NPSFI,NPSFR,MPSFI,MPSFR,CDB,GTR,QD,RHO,XDV,XDAL
1 ,NBLAD,PDIA,RPM,CWP,BFW,CLPROP,CTPROP,ETAP,TCC,PCP
2 ,WTR,TAPERF,BTAIL,DTAIL,BLØ,SØS,DEPS,CLF,CMF,CDF,EPSF
3 ,XFLAP,ZFLAP,DELEPS(8,11),FPROP(2Ø,2),CYPROP(2Ø,4),PEFF(7)
4 ,XZSS(24),XWC,ZWC,ZHEFF,RT,LT,PL,PLØ,TOP(2Ø,35),ETP(21,6Ø)

COMMON/ARGS2/HITE,DENS
```

LOGICAL ERROR

APPENDIX 3. SET UP PROGRAM LISTING - FTCHOO

FTCHOO.F

C ! PROGRAM FOR PREPARING DATA FOR INPUT INTO CAM'S FLIGHT
C ! SIMULATION PROGRAM. THE DATA IS READ IN FROM FTSUD FILE
C ! AND THEN DISPLAYED ON A VDU ALONG WITH VARIABLE NAMES
C ! CHANGES CAN BE MADE BY APPLYING THE COMMANDS INDICATED

DIMENSION A(40),B(54)
DOUBLE PRECISION A1(40),B1(54)

DATA A1/'TTOT','TSAMP','NH','HN','DELH','NV','VN','DELV',
1 'NPHI','PHIN','DELPHI','NPL','PLN','DELPL','NRPM',
1 'RPMN','DELRPM','WEIGHT','NXCG','XCG %','DELXCG',
1 'ZCG','PEFF(1)','PEFF(2)','PEFF(3)','PEFF(4)','PEFF(5)',
1 'PEFF(6)','PEFF(7)','XT','ZT','XTH','ZTH','THSET',
1 'MAXEP','NBLAD','PDIA','WSET','TPSET','ETAG' /

DATA B1/'MASS','IXX','IYY','IZZ','IXZ','SW','CW'
1 , 'BW','ST','CT','CETA','XP','ZP','CWP'
1 , 'BFW','BTAIL','CLØ','CLAL','CDØ','CDAL','CMØ'
1 , 'CMAL','EPSØ','EPSAL','QTOQ','AØ','A1','A2','A3','BØ','B1',
1 , 'B2','B3','CDØT','CDLT','CMTØ','CMQW','CLP','CLXI','KWINC'
1 , 'KFUSE','NPSEI','NPSFR','MPSFI','MPSFR','CDB','GTR','BLØ',
1 , 'WTR','TAPERF','XWC','ZWC','SØS','XQARTC' /

OPEN (UNIT=1,FILE='FTSUD2.OUT',STATUS='OLD')
OPEN (UNIT=2,FILE='FTSUD2Ø.OUT',STATUS='OLD')

C ! PRIMARY DATA READ IN,STORED IN ARRAY A
READ(1,*) (A(I),I=1,1Ø)
READ(1,*) (A(I),I=11,2Ø)
READ(1,*) (A(I),I=21,3Ø)
READ(1,*) (A(I),I=31,4Ø)

C ! SECONDARY DATA READ IN,STORED IN ARRAY B
READ(1,*) (B(I),I=1,1Ø)
READ(1,*) (B(I),I=11,2Ø)
READ(1,*) (B(I),I=21,3Ø)
READ(1,*) (B(I),I=31,4Ø)
READ(1,*) (B(I),I=41,5Ø)
READ(1,*) (B(I),I=51,54)

C ! FLAG SETTING - Ø.Ø FOR ARRAY A , 1.Ø FOR B
FLAG=Ø.Ø

C ! DISPLAY ON VDU HEADINGS,THEN NAMES AND VARIABLE VALUES
15Ø2 PRINT 1ØØ
PRINT 1Ø1
PRINT 1Ø2

IF (FLAG==1.Ø) GO TO 17ØØ

DO 1ØØØ I=1,2Ø
J=I+2Ø
PRINT 1Ø3,I,A1(I),A(I),J,A1(J),A(J)
1ØØØ CONTINUE

```

1000 CONTINUE

1504 PRINT 104
1500 ACCEPT *,I,F
IF (FLAG==1.0) GO TO 1800
A(I)=F
GO TO 1801
1800 B(I)=F
1801 CONTINUE
IF (I .NE. 0) GO TO 1500
1501 PRINT 105
ACCEPT *,I
GO TO (1502,1600,1503) I+2

1503 FLAG=1.0
GO TO 1502

1700 DO 1001 I=1,27
J=I+27
PRINT 103,I,B1(I),B(I),J,B1(J),B(J)
1001 CONTINUE
GO TO 1504

C ! PRIMARY DATA WRITTEN OUT FROM ARRAY A
1600 WRITE(2,*) (A(I),I=1,10)
WRITE(2,*) (A(I),I=11,20)
WRITE(2,*) (A(I),I=21,30)
WRITE(2,*) (A(I),I=31,40)

C ! SECONDARY DATA WRITTEN OUT FROM ARRAY B
WRITE(2,*) (B(I),I=1,10)
WRITE(2,*) (B(I),I=11,20)
WRITE(2,*) (B(I),I=21,30)
WRITE(2,*) (B(I),I=31,40)
WRITE(2,*) (B(I),I=41,50)
WRITE(2,*) (B(I),I=51,54)

100 FORMAT(//,9X,' **** FTSIM SETUP DATA-TO CHANGE TYPE I,F'
1,' **** ')
101 FORMAT(//,17X,' - TERMINATE CHANGES WITH 0,0 - ')
102 FORMAT(//,2(' #(I)',1X,'QUANTITY',7X,'VALUE(F)',4X ))
103 FORMAT(2(1X,I2,3X,A10,F14.7,2X))
104 FORMAT(//,' TO CHANGE VALUE TYPE I,NEW F ')
105 FORMAT(//,' TYPE -1,0,1 TO REVIEW, TERMINATE OR VIEW REMAINING'
1,' DATA ')

CLOSE (UNIT=1)
CLOSE (UNIT=2)

END

```

:FTCHOO

**** FTSIM SETUP DATA-TO CHANGE TYPE I,F ****

- TERMINATE CHANGES WITH Ø.Ø -

#(I)	QUANTITY	VALUE(F)	#(I)	QUANTITY	VALUE(F)
1	TTOT	.ØØØØØØØØ	21	DELXCG	.1135Ø6Ø
2	TSAMP	.1ØØØØØØØ	22	ZCG	.Ø591ØØØ
3	NH	1.ØØØØØØØØ	23	PEFF(1)	1.ØØØØØØØØ
4	HN	1.ØØØØØØØØ	24	PEFF(2)	1.ØØØØØØØØ
5	DELH	.ØØØØØØØØ	25	PEFF(3)	1.ØØØØØØØØ
6	NV	21.ØØØØØØØØ	26	PEFF(4)	1.ØØØØØØØØ
7	VN	6Ø.ØØØØØØØØ	27	PEFF(5)	1.ØØØØØØØØ
8	DELV	3.ØØØØØØØØ	28	PEFF(6)	1.ØØØØØØØØ
9	NPHI	1.ØØØØØØØØ	29	PEFF(7)	.ØØØØØØØØ
1Ø	PHIN	.ØØØØØØØØ	3Ø	XT	3.ØØØØØØØØ
11	DELPHI	1ØØ.ØØØØØØØØ	31	ZT	-.55ØØØØØØ
12	NPL	.ØØØØØØØØ	32	XTH	-3.66ØØØØØ1
13	PLN	.ØØØØØØØØ	33	ZTH	.ØØØØØØØØ
14	DELPL	.ØØØØØØØØ	34	THSET	.ØØØØØØØØ
15	NRPM	1.ØØØØØØØØ	35	MAXEP	155ØØØ.ØØØØØØØØ
16	RPMN	26ØØ.ØØØØØØØØ	36	NBLAD	3.ØØØØØØØØ
17	DELRPM	.ØØØØØØØØ	37	PDIA	1.9ØØØØØØØØ
18	WEIGHT	125Ø.ØØØØØØØØ	38	WSET	.Ø175ØØØ
19	NXCG	3.ØØØØØØØØ	39	TPSET	-.ØØ36ØØØ
2Ø	XCG %	25.Ø988597	4Ø	ETAG	.ØØØØØØØØ

TO CHANGE VALUE TYPE I, NEW F

4 Ø.
7 1ØØ.
Ø Ø

TYPE -1,Ø,1 TO REVIEW, TERMINATE OR VIEW REMAINING DATA

-1

**** FTSIM SETUP DATA-TO CHANGE TYPE I,F ****

- TERMINATE CHANGES WITH Ø.Ø -

#(I)	QUANTITY	VALUE(F)	#(I)	QUANTITY	VALUE(F)
1	TTOT	.ØØØØØØØØ	21	DELXCG	.1135Ø6Ø
2	TSAMP	.1ØØØØØØØ	22	ZCG	.Ø591ØØØ
3	NH	1.ØØØØØØØØ	23	PEFF(1)	1.ØØØØØØØØ
4	HN	.ØØØØØØØØ	24	PEFF(2)	1.ØØØØØØØØ
5	DELH	.ØØØØØØØØ	25	PEFF(3)	1.ØØØØØØØØ
6	NV	21.ØØØØØØØØ	26	PEFF(4)	1.ØØØØØØØØ
7	VN	6Ø.ØØØØØØØØ	27	PEFF(5)	1.ØØØØØØØØ
8	DELV	3.ØØØØØØØØ	28	PEFF(6)	1.ØØØØØØØØ
9	NPHI	1.ØØØØØØØØ	29	PEFF(7)	.ØØØØØØØØ
1Ø	PHIN	.ØØØØØØØØ	3Ø	XT	3.ØØØØØØØØ
11	DELPHI	1ØØ.ØØØØØØØØ	31	ZT	-.55ØØØØØØ
12	NPL	.ØØØØØØØØ	32	XTH	-3.66ØØØØØ1
13	PLN	.ØØØØØØØØ	33	ZTH	.ØØØØØØØØ
14	DELPL	.ØØØØØØØØ	34	THSET	.ØØØØØØØØ
15	NRPM	1.ØØØØØØØØ	35	MAXEP	155ØØØ.ØØØØØØØØ
16	RPMN	26ØØ.ØØØØØØØØ	36	NBLAD	3.ØØØØØØØØ
17	DELRPM	.ØØØØØØØØ	37	PDIA	1.9ØØØØØØØØ
18	WEIGHT	125Ø.ØØØØØØØØ	38	WSET	.Ø175ØØØ
19	NXCG	3.ØØØØØØØØ	39	TPSET	-.ØØ36ØØØ
2Ø	XCG %	25.Ø988597	4Ø	ETAG	.ØØØØØØØØ

TO CHANGE VALUE TYPE I, NEW F
Ø Ø

TYPE -1, Ø, 1 TO REVIEW, TERMINATE OR VIEW REMAINING DATA
1

**** FTSIM SETUP DATA-TO CHANGE TYPE I,F ****

- TERMINATE CHANGES WITH Ø, Ø -

#(I)	QUANTITY	VALUE(F)	#(I)	QUANTITY	VALUE(F)
1	MASS	125Ø.ØØØØØØØØ	28	A2	2.2ØØØØØØØ
2	IXX	1355.ØØØØØØØØ	29	A3	.ØØØØØØØØ
3	IYY	2466.ØØØØØØØØ	3Ø	BØ	.ØØØØØØØØ
4	IZZ	366Ø.ØØØØØØØØ	31	B1	.ØØØØØØØØ
5	IXZ	.ØØØØØØØØ	32	B2	-.42ØØØØØØ
6	SW	15.ØØØØØØØØ	33	B3	-.12ØØØØØØ
7	CW	1.57ØØØØØ1	34	CDØT	.ØØØØØØØØ
8	BW	1Ø.ØØØØØØØØ	35	CDLT	.ØØØØØØØØ
9	ST	2.72ØØØØØØ	36	CMTØ	.ØØØØØØØØ
1Ø	CT	.87ØØØØØØ	37	CMQW	.ØØØØØØØØ
11	CETA	.337ØØØØ	38	CLP	-.4Ø5ØØØØØ
12	XP	-1.266ØØØØ	39	CLXI	-.36ØØØØØØ
13	ZP	.26ØØØØØØ	4Ø	KWING	.ØØØØØØØØ
14	CWP	2.ØØØØØØØØ	41	KFUSE	.ØØØØØØØØ
15	BFW	.81ØØØØØØ	42	NPSFI	.Ø1ØØØØØØ
16	BTAIL	3.1Ø999999	43	NPSFR	.ØØØØØØØØ
17	CLØ	.22561ØØ	44	MPSFI	.ØØØØØØØØ
18	CLAL	4.Ø7ØØØØØ2	45	MPSFR	.ØØØØØØØØ
19	CDØ	.Ø38ØØØØØ	46	CDB	.Ø125ØØØØ
2Ø	CDAL	.Ø65ØØØØØ	47	GTR	1.ØØØØØØØØ
21	CMØ	-.Ø25ØØØØØ	48	BLØ	25.ØØØØØØØØ
22	CMAL	.ØØØØØØØØ	49	WTR	.44ØØØØØØ
23	EPSØ	.ØØØØØØØØ	5Ø	TAPERF	.5ØØØØØØØØ
24	EPSAL	.4ØØØØØØØØ	51	XWC	-1.2ØØØØØØØ
25	QTOQ	1.ØØØØØØØØ	52	ZWC	.26ØØØØØØØ
26	AØ	.ØØØØØØØØ	53	SØS	1.5ØØØØØØØ
27	A1	3.16ØØØØØ1	54	XQARTC	-1.2ØØØØØØØ

TO CHANGE VALUE TYPE I, NEW F
Ø Ø

TYPE -1, Ø, 1 TO REVIEW, TERMINATE OR VIEW REMAINING DATA

Ø

:

APPENDIX 4. EXAMPLE OF TIME HISTORIES ANALYSIS

SDOFAP.SETUP

```
"*** ACSL. COMMAND FILE TO PERFORM TIME HISTORY ANALYSIS. ***"  
"*** APPLICATION: LONGITUDINAL STABILITY STUDY OF A LIGHT ***"  
"*** AIRCRAFT INFLUENCED BY POWER EFFECTS. ***"
```

```
S PRN=9,TCWPRN=72,RRR=21
```

```
"*** TIME HISTORY ANALYSIS OF THE SHORT PERIOD RESPONSE ***"  
"*** OF A LIGHT AIRCRAFT TO AN ELEVATOR PULSE INPUT. ***"
```

```
S TSTP=5.0,NSTP=1,CINT=.05  
S CALPLT=.F.,PRNPLT=.F.,STRPLT=.T.,GRDSPL=.T.  
OUTPUT VEK,ALPHAD,Q,ALT,ETAD,GAMMAD,THETAD,TIME,AN,'NCIOUT'=10  
PREPAR TIME,VEK,ALPHAD,Q,ETAD,ALT,GAMMAD,THETAD,AN
```

```
S DPL=1.  
S THRMAX=0.0,TSTART=0.0,TPULSE=TSTP,TREPET=200.  
S ETAMAX=-5.0,ESTART=0.01,EPULSE=.5,EREPET=200.
```

```
S TSTOP=TSTP,DXCGP=7.22968  
S DALT0=10000.
```

```
START  
D CGPOS,PLS  
S CMD=DIS
```

```
S RRR=21
```

```
S TITLE=' LIGHT AIRCRAFT - SHORT PERIOD MODE.  
RANGE ETAD  
S CMD=DIS  
PLOT ETAD,'XHI'=TSTP,'HI'=HI1,'LO'=LO1,'XTAG'='(SEC)', 'TAG'='(DEG)'
```

```
S TITLE='  
RANGE ALPHAD,Q  
S CMD=DIS  
PLOT ALPHAD,'HI'=HI1,'LO'=LO1,'TAG'='(DEG)' ...  
.Q,'HI'=HI2,'LO'=LO2,'TAG'='(RAD/SEC)'
```

```
RANGE AN,VEK  
S CMD=DIS  
PLOT AN,'HI'=HI1,'LO'=LO1,'TAG'='( G )' ...  
.VEK,'HI'=HI2,'LO'=LO2,'TAG'='(KTS)'
```

```
S TITLE=' LIGHT AIRCRAFT - SHORT PERIOD MODE.  
RANGE GAMMAD,THETAD  
S CMD=DIS  
PLOT GAMMAD,'HI'=HI1,'LO'=LO1,'TAG'='(DEC)' ...  
.THETAD,'HI'=HI2,'LO'=LO2,'TAG'='(DEC)'
```

```
S CMD=DIS
```

SDOFAP.L

'*** TIME HISTORY ANALYSIS OF THE SHORT PERIOD RESPONSE ***'
'*** OF A LIGHT AIRCRAFT TO AN ELEVATOR PULSE INPUT. ***'

S TSTP=5.0, NSTP=1, CINT=.05
S CALPLT=.F., PRNPLT=.F., STRPLT=.T., CRDSPL=.T.
OUTPUT VEK, ALPHAD, Q, ALT, ETAD, GAMMAD, THETAD, TIME, AN, 'NCIOUT'=10
PREPAR TIME, VEK, ALPHAD, Q, ETAD, ALT, GAMMAD, THETAD, AN

S DPL=1.
S THRMAX=0.0, TSTART=0.0, TPULSE=TSTP, TREPET=200.
S ETAMAX=-5.0, ESTART=0.01, EPULSE=.5, EREPET=200.

S TSTOP=TSTP, DXCGP=7.22968
S DALT0=10000.

START

VEK 99.9999059	ALPHAD 2.36140201	Q 0.
ALT 100000.0000	ETAD 0.80067985	GAMMAD 2.13050990
THETAD 4.49191191	TIME 0.	AN 0.99695606
VEK 99.7383439	ALPHAD 8.08575800	Q 0.40193779
ALT 10004.2341	ETAD -4.19923639	GAMMAD 3.59332151
THETAD 11.6790795	TIME 0.50000000	AN 1.84753308
VEK 98.4150283	ALPHAD 7.82560635	Q -0.00434133
ALT 10014.5120	ETAD 0.80067985	GAMMAD 8.39623514
THETAD 16.2218415	TIME 1.00000000	AN 1.79180178
VEK 97.0084709	ALPHAD 4.13979811	Q -0.05634470
ALT 10030.8854	ETAD 0.80067985	GAMMAD 10.7648666
THETAD 14.9046647	TIME 1.50000000	AN 1.19691563
VEK 95.7332492	ALPHAD 2.60163220	Q -0.02671067
ALT 10049.0153	ETAD 0.80067985	GAMMAD 11.1008773
THETAD 13.7025095	TIME 2.00000000	AN 0.94981021
VEK 94.5503649	ALPHAD 2.43318653	Q -0.00849723
ALT 10066.8256	ETAD 0.80067985	GAMMAD 10.8983200
THETAD 13.2415065	TIME 2.50000000	AN 0.90641519
VEK 93.4366668	ALPHAD 2.62361519	Q -0.00441509
ALT 10083.8828	ETAD 0.80067985	GAMMAD 10.4554629
THETAD 13.0790781	TIME 3.00000000	AN 0.91313888
VEK 92.3810440	ALPHAD 2.80481571	Q -0.00586753
ALT 10100.2189	ETAD 0.80067985	GAMMAD 10.1325532
THETAD 12.9373689	TIME 3.50000000	AN 0.91809176
VEK 91.4306631	ALPHAD 2.92349396	Q -0.00661579
ALT 10115.8837	ETAD 0.80067985	GAMMAD 9.81900547
THETAD 12.7424994	TIME 4.00000000	AN 0.92266517
VEK 90.6550760	ALPHAD 3.04215094	Q -0.00630872
ALT 10130.9422	ETAD 0.80067985	GAMMAD 9.52346617
THETAD 12.5656171	TIME 4.50000000	AN 0.92371201
VEK 89.9308754	ALPHAD 3.13963864	Q -0.00790029
ALT 10145.4264	ETAD 0.80067985	GAMMAD 9.22406554
THETAD 12.3637042	TIME 5.00000000	AN 0.92242613

D CGPOS,PLS
CGPOS 32.3285397 PLS 1.00000000

S CMD=DIS

S CMD=10

S RRR=21

S TITLE=' LIGHT AIRCRAFT - SHORT PERIOD MODE.
RANGE ETAD
ETAD-4.19923639 0.80067985

S CMD=DIS

S HI1=2.,LO1=-6.

S CMD=10
PLOT ETAD,'XHI'=TSTP,'HI'=HI1,'LO'=LO1,'XTAG'='(SEC)', 'TAG'='(DEG)'

S TITLE='
RANGE ALPHAD,Q
ALPHAD 2.36140201 9.38391014
Q-0.05862956 0.40193779

S CMD=DIS

S HI1=14.,LO1=-2.,HI2=.6,LO2=-.2

S CMD=10
PLOT ALPHAD,'HI'=HI1,'LO'=LO1,'TAG'='(DEG)' ...
,Q,'HI'=HI2,'LO'=LO2,'TAG'='(RAD/SEC)'

RANGE AN,VEK
AN 0.90631505 2.08298743
VEK 89.8613617 100.000728

S CMD=DIS

S HI1=2.5,LO1=.5,HI2=105.,LO2=85.

S CMD=10
PLOT AN,'HI'=HI1,'LO'=LO1,'TAG'='(G)' ...
,VEK,'HI'=HI2,'LO'=LO2,'TAG'='(KTS)'

S TITLE=' LIGHT AIRCRAFT - SHORT PERIOD MODE.
RANGE GAMMAD,THETAD
GAMMAD 2.09020455 11.1164848
THETAD 4.49191191 16.2218415

S CMD=DIS

S HI1=12.,LO1=2.,HI2=20.,LO2=0.

S CMD=10
PLOT GAMMAD,'HI'=HI1,'LO'=LO1,'TAG'='(DEG)' ...
,THETAD,'HI'=HI2,'LO'=LO2,'TAG'='(DEG)'

S CMD=DIS

STOP

SDOFAP.SETUP

"*** ACSL. COMMAND FILE TO PERFORM TIME HISTORY ANALYSIS. ***"
"*** APPLICATION: LONGITUDINAL STABILITY STUDY OF A LIGHT ***"
"*** AIRCRAFT INFLUENCED BY POWER EFFECTS. ***"

S PRN=9,TCWPRN=72,RRR=21

"*** TIME HISTORY ANALYSIS OF THE PHUGOID RESPONSE OF ***"
"*** A LIGHT AIRCRAFT TO AN ELEVATOR PULSE INPUT. ***"

S TSTP=120.0,NSTP=1,CINT=.05

S CALPLT=.T.,PRNPLT=.F.,STRPLT=.F.,GRDCPL=.T.

OUTPUT VEK,ALPHAD,Q,ALT,ETAD,GAMMAD,THETAD,TIME,AN,'NCIOUT'=240
PREPAR TIME,VEK,ALPHAD,Q,ETAD,ALT,GAMMAD,THETAD,AN

S DPL=0.

S THRMAX=0.0,TSTART=0.0,TPULSE=TSTP,TREPET=200.

S ETAMAX=1.0,ESTART=0.01,EPULSE=5.,EREPET=200.

S TSTOP=TSTP,DXCCGP=7.22968

S DALT0=10000.

START

D CGPOS,PLS

S CMD=DIS

S RRR=21

S TITLE=' LIGHT AIRCRAFT - PHUGOID MODE.

RANGE ETAD

S CMD=DIS

PLOT ETAD,'XHI'=TSTP,'HI'=H11,'LO'=L01,'XTAG'='(SEC)', 'TAG'='(DEG)'

S TITLE='

RANGE ALPHAD,Q,AN

S CMD=DIS

PLOT ALPHAD,'HI'=H11,'LO'=L01,'TAG'='(DEG)',Q,'HI'=H12,'LO'=L02 ...
, 'TAG'='(RAD/SEC)',AN,'HI'=H13,'LO'=L03,'TAG'='(G)'

RANGE VEK,GAMMAD,THETAD

S CMD=DIS

PLOT VEK,'HI'=H11,'LO'=L01,'TAG'='(KTS)',GAMMAD,'HI'=H12,'LO'=L02 ...
, 'TAG'='(DEG)',THETAD,'HI'=H13,'LO'=L03,'TAG'='(DEG)'

S CMD=DIS

SDOFAP.L

'*** TIME HISTORY ANALYSIS OF THE PHUGOID RESPONSE OF ***'
'*** A LIGHT AIRCRAFT TO AN ELEVATOR PULSE INPUT. ***'

S TSTP=120.0, NSTP=1, CINT=.05
S CALPLT=.T., PRNPLT=.F., STRPLT=.F., CRDCPL=.T.
OUTPUT VEK, ALPHAD, Q, ALT, ETAD, GAMMAD, THETAD, TIME, AN, 'NCIOUT'=240
PREPAR TIME, VEK, ALPHAD, Q, ETAD, ALT, GAMMAD, THETAD, AN

S DPL=0.
S THRMAX=0.0, TSTART=0.0, TPULSE=TSTP, TREPET=200.
S ETAMAX=1.0, ESTART=0.01, EPULSE=5., EREPET=200.

S TSTOP=TSTP, DXCGP=7.22968
S DALT0=10000.

START

VEK 99.9999059 ALT 10000.0000 THETAD-3.43137409	ALPHAD 2.69495477 ETAD 0.49637286 TIME 0.	Q 0. GAMMAD-6.12632886 AN 0.99929857
VEK 121.937459 ALT 9399.40124 THETAD-3.45999241	ALPHAD 1.93136242 ETAD 0.49637286 TIME 12.00000000	Q 0.04324758 GAMMAD-5.39135482 AN 1.31508105
VEK 87.5520883 ALT 9521.73771 THETAD 6.23735405	ALPHAD 3.43412635 ETAD 0.49637286 TIME 24.00000000	Q-0.02549850 GAMMAD 2.80322770 AN 0.85162012
VEK 99.1196767 ALT 9218.32978 THETAD-12.6037528	ALPHAD 2.65628993 ETAD 0.49637286 TIME 36.00000000	Q-0.00102716 GAMMAD-15.2600428 AN 0.97578389
VEK 109.290973 ALT 8795.32924 THETAD 0.02009332	ALPHAD 2.31813959 ETAD 0.49637286 TIME 48.00000000	Q 0.01964675 GAMMAD-2.29804627 AN 1.12601581
VEK 91.1228162 ALT 8763.29354 THETAD-1.04949672	ALPHAD 3.19802476 ETAD 0.49637286 TIME 60.00000000	Q-0.01958144 GAMMAD-4.24752148 AN 0.89270209
VEK 103.209102 ALT 8414.01146 THETAD-7.73255472	ALPHAD 2.51945226 ETAD 0.49637286 TIME 72.00000000	Q 0.00702534 GAMMAD-10.2520070 AN 1.03622142
VEK 102.264847 ALT 8150.97446 THETAD-0.12452573	ALPHAD 2.59925787 ETAD 0.49637286 TIME 84.00000000	Q 0.00533936 GAMMAD-2.72378360 AN 1.03013203
VEK 95.5421614 ALT 8000.27666 THETAD-3.90601896	ALPHAD 2.92362864 ETAD 0.49637286 TIME 96.00000000	Q-0.00980669 GAMMAD-6.82964760 AN 0.94358945
VEK 103.120145 ALT 7681.26595 THETAD-4.74415664	ALPHAD 2.54128177 ETAD 0.49637286 TIME 108.00000000	Q 0.00674860 GAMMAD-7.28543841 AN 1.03801802
VEK 99.3821384 ALT 7470.98509 THETAD-1.43838404	ALPHAD 2.73222594 ETAD 0.49637286 TIME 120.00000000	Q-0.00101423 GAMMAD-4.17060998 AN 0.99260128

D CGPOS,PLS
CGPOS 32.3285397 PLS Ø.
S CMD=DIS
S CMD=1Ø

S RRR=21

S TITLE=' LIGHT AIRCRAFT - PHUGOID MODE.
RANGE ETAD
ETAD Ø.49637286 1.49635611
S CMD=DIS
S HI1=2.,LO1=Ø.
S CMD=1Ø
PLOT ETAD,'XHI'=TSTP,'HI'=HI1,'LO'=LO1,'XTAG'='(SEC)', 'TAG'='(DEG)'

S TITLE='
RANGE ALPHAD,Q,AN
ALPHAD-Ø.23557132 3.77131611
Q-Ø.Ø8Ø342Ø3 Ø.Ø5ØØ5342
AN Ø.617Ø2932 1.32Ø9Ø147
S CMD=DIS
S HI1=4.,LO1=-1.,HI2=.1,LO2=-.1,HI3=1.4,LO3=.4
S CMD=1Ø
PLOT ALPHAD,'HI'=HI1,'LO'=LO1,'TAG'='(DEG)',Q,'HI'=HI2,'LO'=LO2 ...
, 'TAG'='(RAD/SEC)',AN,'HI'=HI3,'LO'=LO3,'TAG'='(G)'

RANGE VEK,GAMMAD,THETAD
VEK 83.2781743 122.456445
GAMMAD-2Ø.Ø4Ø4889 6.21916Ø33
THETAD-19.6957197 8.959ØØØ22
S CMD=DIS
S HI1=13Ø.,LO1=8Ø.,HI2=15.,LO2=-35.,HI3=25.,LO3=-25.
S CMD=1Ø
PLOT VEK,'HI'=HI1,'LO'=LO1,'TAG'='(KTS)',GAMMAD,'HI'=HI2,'LO'=LO2 ...
, 'TAG'='(DEG)',THETAD,'HI'=HI3,'LO'=LO3,'TAG'='(DEG)'

S CMD=DIS
STOP

LIGHT AIRCRAFT - PHUGOID MODE.

APPENDIX 5. EXAMPLE OF EIGEN ANALYSIS

SDOFAP.SETUP

"*** ACSL. COMMAND FILE TO PERFORM EIGEN ANALYSIS. ***"
"*** APPLICATION: LONGITUDINAL STABILITY STUDY OF ***"
"*** A LIGHT AIRCRAFT INFLUENCED BY POWER EFFECTS. ***"

S PRN=9,TCWPRN=72

"*** EIGEN ANALYSIS OF LONGITUDINAL MOTION OF A ***"
"*** LIGHT AIRCRAFT INFLUENCED BY POWER EFFECTS. ***"

S NSTP=1,CINT=.05
S DXCGP=7.22968,TSTOP=0.
S DALT0=10000.

PREPAR TIME,VEK,ALPHAD,Q,ETAD,ALT,GAMMAD,THETAD,AN

"*** EIGEN ANALYSIS ***"

S DPL=0.

START
D CGPOS,PLS

ANALYZ 'FREEZE'=X,Y,Z,P,R,BETAR,TAU1,TAU3
ANALYZ 'EIGVEC'=.T.,'EIGEN'

"*** EIGEN ANALYSIS ***"

S BEGIN=.F.
S DPL=1.

START
D CGPOS,PLS

ANALYZ 'EIGVEC'=.T.,'EIGEN'

STOP

SDOFAP.L

'*** EIGEN ANALYSIS OF LONGITUDINAL MOTION OF A ***'
'*** LIGHT AIRCRAFT INFLUENCED BY POWER EFFECTS. ***'

S NSTP=1,CINT=.05
S DXCGP=7.22968,TSTOP=0.
S DALTO=10000.

PREPAR TIME,VEK,ALPHAD,Q,ETAD,ALT,GAMMAD,THETAD,AN

'*** EIGEN ANALYSIS ***'

S DPL=0.

START
D CGPOS,PLS
CGPOS 32.3285397 PLS 0.

ANALYZ 'FREEZE'=X,Y,Z,P,R,BETAR,TAU1,TAU3
ANALYZ 'EIGVEC'=.T.,'EIGEN'

COMPLEX EIGEN VALUES IN ASCENDING ORDER

REAL	IMAGINARY	FREQUENCY	DAMPING
1 -3.2785E-16			
2 -0.01886002	+/-0.18552241	0.186479	0.101138
4 -1.84179949	+/-1.71229370	2.514791	0.732387

COMPLEX EIGEN VECTORS

1	2	3
1 -0.9819847 0.	2.849E-04-3.806E-05	2.849E-04 3.806E-05
2 0.0290791 0.	0.0095129-0.0012707	0.0095129 0.0012707
3 1.461E-16 0.	1.127E-04 0.0035793	1.127E-04-0.0035793
4 0.1867097 0.	0.0142453 0.9998451	0.0142453-0.9998451
5 2.800E-07 0.	7.715E-05-0.0013708	7.715E-05 0.0013708

4	5
0.0025064 0.0031429	0.0025064-0.0031429
0.0836763 0.1049257	0.0836763-0.1049257
0.0511200-0.6733628	0.0511200 0.6733628
0.4396764 0.4369320	0.4396764-0.4369320
0.3589739 0.1133794	0.3589739-0.1133794

'*** EIGEN ANALYSIS ***'

S BEGIN=.F.
S DPL=1.

START
D CGPOS,PLS
CGPOS 32.3285397 PLS 1.00000000

ANALYZ 'EIGVEC'=.T.,'EIGEN'

COMPLEX EIGEN VALUES IN ASCENDING ORDER

REAL	IMAGINARY	FREQUENCY	DAMPING
1 -6.9337E-17			
2 -Ø.Ø17ØØ625	+/-Ø.152723Ø1	Ø.153667	Ø.11Ø67Ø
4 -1.9923ØØ691	+/-1.744839Ø6	2.648349	Ø.752283

COMPLEX EIGEN VECTORS

1	2	3
1 -Ø.9992318 Ø.	-1.8Ø8E-Ø4 2.549E-Ø4	-1.8Ø8E-Ø4-2.549E-Ø4
2 -Ø.Ø391893 Ø.	Ø.ØØ46Ø99-Ø.ØØ64994	Ø.ØØ46Ø99 Ø.ØØ64994
3 -1.728E-16 Ø.	Ø.ØØ18298 Ø.ØØ163Ø4	Ø.ØØ18298-Ø.ØØ163Ø4
4 -4.8Ø5E-Ø9 Ø.	Ø.66639ØØ Ø.7455544	Ø.66639ØØ-Ø.7455544
5 4.6Ø5E-12 Ø.	-Ø.ØØ12826-Ø.ØØ13281	-Ø.ØØ12826 Ø.ØØ13281

4	5
3.778E-Ø4-Ø.ØØ52915	3.778E-Ø4 Ø.ØØ52915
-Ø.ØØ96333 Ø.13492Ø6	-Ø.ØØ96333-Ø.13492Ø6
Ø.5Ø96Ø59-Ø.5Ø43772	Ø.5Ø96Ø59 Ø.5Ø43772
-Ø.Ø298649 Ø.5624622	-Ø.Ø298649-Ø.5624622
Ø.184Ø649 Ø.341241Ø	Ø.184Ø649-Ø.341241Ø

STOP

2 WORDS TABLE SPACE USED

APPENDIX 6. EXAMPLE OF JACOBIAN ANALYSIS

SDOFAP.SETUP

"*** ACSL. COMMAND FILE TO PERFORM JACOBIAN ANALYSIS. ***"
"*** APPLICATION: LONGITUDINAL STABILITY STUDY OF A ***"
"*** LIGHT AIRCRAFT INFLUENCED BY POWER EFFECTS. ***"

S PRN=9, TCWPRN=72

"*** JACOBIAN ANALYSIS TO DEDUCE NON-DIMENSIONAL ***"
"*** AERODYNAMIC DERIVATIVES OF A LIGHT AIRCRAFT ***"
"*** INFLUENCED BY POWER EFFECTS. ***"

S NSTP=1, CINT=.05
S DXCGP=7.22968, TSTOP=0.
S DALT0=10000.

PREPAR TIME, VEK, ALPHAD, Q, ETAD, ALT, GAMMAD, THETAD, AN

"*** JACOBIAN ANALYSIS ***"

S DPL=1.

START
D CGPOS, PLS

ANALYZ 'FREEZE'=X, Y, Z, P, R, BETAR, TAU1, TAU3
ANALYZ 'JACOB'

S PRN=DIS
ANALYZ 'EIGEN' \$"*** THIS COMMAND IS USED ONLY TO ***"
\$"*** INITIATE THE JACOBIAN ANALYSIS ***"

S PRN=9

"*** JACOBIAN ANALYSIS ***"

S BEGIN=.F.
S DPL=1.

START
D CGPOS, PLS
ANALYZ 'JACOB'

S PRN=DIS
ANALYZ 'EIGEN'

STOP

SDOFAP.L

'*** JACOBIAN ANALYSIS TO DEDUCE NON-DIMENSIONAL ***'
'*** AERODYNAMIC DERIVATIVES OF A LIGHT AIRCRAFT ***'
'*** INFLUENCED BY POWER EFFECTS. ***'

S NSTP=1,CINT=.05
S DXCCP=7.22968,TSTOP=0.
S DALTQ=10000.

PREPAR TIME,VEK,ALPHAD,Q,ETAD,ALT,GAMMAD,THETAD,AN

'*** JACOBIAN ANALYSIS ***'

S DPL=1.

START
D CGPOS,PLS
CGPOS 32.3285397 PLS 1.00000000

ANALYZ 'FREEZE'=X,Y,Z,P,R,BETAR,TAU1,TAU3
ANALYZ 'JACOB'

ROW VECTOR NAMES

TAUØ	1	TAU2	2	Q	3
VT	4	ALPHAR	5		

COLUMN VECTOR NAMES

TAUØDT	1	TAU2DT	2	QDOT	3
DVT	4	DALPHR	5		

MATRIX ELEMENTS - ROWS ACROSS, COLUMNS DOWN

	1	2	3	4	5
1	Ø.	Ø.	-Ø.Ø195946	Ø.	Ø.
2	Ø.	Ø.	Ø.4996159	Ø.	Ø.
3	-3.991E-Ø4	Ø.Ø1Ø1762	-2.5Ø35555	-9.349E-Ø5	-3.36526Ø7
4	Ø.7681246	-19.585314	-Ø.Ø17429Ø	-Ø.Ø43141Ø	4.6697616
5	4.738E-Ø4	-Ø.Ø12Ø811	Ø.9798915	-Ø.ØØ51Ø29	-1.4719298

S PRN=DIS

*** DIMENSIONAL JACOBIAN. ***

-Ø43141Ø	4.6697616	-Ø17429Ø	-19.5853136
-ØØ51Ø29	-1.4719298	.9798915	-Ø12Ø811
-ØØØØ935	-3.36526Ø7	-2.5Ø35555	Ø1Ø1762
.ØØØØØØØ	.ØØØØØØØ	.4996159	.ØØØØØØØ

NOTE: ASSUMED RELATIONSHIPS IN USE FOR CALCULATION
OF ANGULAR RATE DERIVATIVES.

*** NON-DIMENSIONAL JACOBIAN. ***

- .0005653	.0010215	- .0174290	- .0021422
- .0040057	- .0192886	.9798915	- .00000792
- .0000010	- .0005779	- .0328073	.0000009
.0000000	.0000000	.4996159	.0000000

*** NON-DIMENSIONAL AERODYNAMIC DERIVATIVES. ***

CTV	=	- .2208641
CLV	=	- .0606333
CDV	=	- .0509233
CMV	=	- .0150985
CLALPHA	=	4.4965035
CDALPHA	=	.2632860
CMALPHA	=	- .2876742
CLDALPHA	=	1.3753121
CMDALPHA	=	-3.6791788
CLQ	=	3.2512172
CMQ	=	-8.6975235

*** JACOBIAN ANALYSIS ***

S BEGIN=.F.

S DPL=1.

START

D CCPOS, PLS

CCPOS 32.3285397

PLS 1.00000000

ANALYZ 'JACOB'

ROW VECTOR NAMES

TAUØ

VT

1

4

TAU2
ALPHAR

2

5

Q

3

COLUMN VECTOR NAMES

TAUØDT

DVT

1

4

TAU2DT
DALPHR

2

5

QDOT

3

MATRIX ELEMENTS - ROWS ACROSS, COLUMNS DOWN

	1	2	3	4	5
1	Ø.	Ø.	-Ø.Ø195946	Ø.	Ø.
2	Ø.	Ø.	Ø.4996159	Ø.	Ø.
3	-3.991E-Ø4	Ø.Ø1Ø1762	-2.5Ø35555	-9.349E-Ø5	-3.36526Ø7
4	Ø.7681246	-19.585314	-Ø.Ø17429Ø	-Ø.Ø43141Ø	4.6697616
5	4.738E-Ø4	-Ø.Ø12Ø811	Ø.9798915	-Ø.ØØ51Ø29	-1.4719298

S PRN=DIS

*** DIMENSIONAL JACOBIAN. ***

- Ø43141Ø	4.6697616	- Ø17429Ø	-19.5853136
- ØØ51Ø29	-1.4719298	.9798915	- Ø12Ø811
- ØØØØ935	-3.36526Ø7	-2.5Ø35555	.Ø1Ø1762
.ØØØØØØØ	.ØØØØØØØ	.4996159	.ØØØØØØØ

NOTE: ANGULAR RATE DERIVATIVES CALCULATED FROM
ELEMENTS OF THE JACOBIAN MATRIX.

BEWARE OF POSSIBLE INACCURACY ASSOCIATED WITH SMALL CLIMB ANGLES.

*** NON-DIMENSIONAL JACOBIAN. ***

- .ØØØ5653	.ØØ1Ø215	- .Ø17429Ø	- .ØØ21422
- .ØØ4ØØ57	- .Ø192886	.9798915	- .ØØØØ792
- .ØØØØØ1Ø	- .ØØØ5779	- .Ø328Ø73	.ØØØØØØ9
.ØØØØØØØ	.ØØØØØØØ	.4996159	.ØØØØØØØ

*** NON-DIMENSIONAL AERODYNAMIC DERIVATIVES. ***

CTV	=	-.2208641
CLV	=	-.0616025
CDV	=	-.0509233
CMV	=	-.0169414
CLALPHA	=	4.4918363
CDALPHA	=	.2632860
CMALPHA	=	-.2965481
CLDALPHA	=	1.1333446
CMDALPHA	=	-4.1392378
CLQ	=	3.6067239
CMQ	=	-8.2467156

APPENDIX 7. JACOBIAN ANALYSIS SUBROUTINES

SUBROUTINE INTERM(A)

```
C      ***** PROVIDES JACOBIAN REDUCTION ROUTINE 'ZZREDC' WITH *****
C      ***** FLIGHT CONDITION DATA. *****
C      ***** THIS SUBROUTINE MUST BE APPENDED TO SDOFAP.ACSL *****
S
      INTEGER ROCOL(5)
      DIMENSION A(5,5),AA(5,5),AAA(5,5)
      DIMENSION B(15)
      LOGICAL LINEAR
      CHARACTER*1 ANS
S
      DATA ROCOL/4,5,3,2,1/
      LINEAR = .FALSE.

C      **** REARRANGE ROWS OF JACOBIAN. ****
      DO 10 I=1,5
      DO 20 J=1,5
      AAA(I,J)=A(ROCOL(I),J)
20    CONTINUE
10    CONTINUE

C      **** REARRANGE COLS OF JACOBIAN. ****
      DO 30 I=1,5
      DO 40 J=1,5
      AA(I,J)=AAA(I,ROCOL(J))
40    CONTINUE
30    CONTINUE

C      *** WRITE DIMENSIONAL JACOBIAN TO FILE. ***
      WRITE (9,80)
      DO 70 I=1,4
      WRITE (9,85) (AA(I,J),J=1,4)
70    CONTINUE

C      *** ASCERTAIN WHETHER LINEAR ANALYSIS IS TO BE USED ***
      WRITE (6,130)
      READ (5,100) ANS
      IF ( ANS .EQ. 1HY .OR. ANS .EQ. 1Hy , LINEAR = .TRUE.

      IF ( LINEAR ) THEN
      WRITE(9,123)
      ELSE
      WRITE(9,124)
      WRITE(9,125)
      WRITE(9,126)
      ENDIF
```

```

C     "*** CALCULATE NON-DIMENSIONALISING FACTORS ***"
C     "*** REQUIRED A/C DATA AT EQUILIBRIUM POINT ***"
CALL ACINFO(CTPRP,SW,CW,THSET,XLT,XEPSAL)

QDS=.5*RHO*VT**2*SW
CTE=CTPRP
CWE=MASS*G/QDS
CDE=CTE*COS(THSET)-CWE*SIN(GAMMAR)
CLE=CWE*COS(GAMMAR)-CTE*SIN(THSET)
AMU=MASS/(.5*RHO*SW*CW)
FACT1=.5*CW/VT
FACT2=.5*CW/VT/VT
FACT3=FACT1**2
FACT4=CW*CW/4./VT
FACT5=CW/2.
FACT6=RHO*SW*CW**3/8./IYY
IYYND=1/FACT6

C     "*** NON-DIMENSIONALISE JACOBIAN ELEMENTS. ***"

AA(1,1)=AA(1,1)*FACT1
AA(1,2)=AA(1,2)*FACT2
AA(1,3)=AA(1,3)
AA(1,4)=AA(1,4)*FACT2*.5

AA(2,1)=AA(2,1)*FACT5
AA(2,2)=AA(2,2)*FACT1
AA(2,3)=AA(2,3)
AA(2,4)=AA(2,4)*FACT1*.5

AA(3,1)=AA(3,1)*FACT4
AA(3,2)=AA(3,2)*FACT3
AA(3,3)=AA(3,3)*FACT1
AA(3,4)=AA(3,4)*FACT3*.5

C     "*** ELEMENTS OF ROW 4 ARE OF NO FURTHER USE ***"
C     "*** PASS A/C INFO TO SUBROUTINE IN ARRAY B ***"

B(1)=SIN(GAMMAR)
B(2)=COS(GAMMAR)
B(3)=SIN(THSET)
B(4)=COS(THSET)
B(5)=CWE
B(6)=CLE
B(7)=CTE
B(8)=CDE
B(9)=AMU
B(10)=IYYND
B(11)=XLT
B(12)=XEPSAL
B(13)=CW

C     "***** CALCULATE NON-DIMENSIONAL DERIVATIVES *****"
CALL ZZREDC(AA,B,LINEAR)

```

```
80  FORMAT(////,31H *** DIMENSIONAL JACOBIAN. ***.//)
85  FORMAT(/,4X,F11.7,2X,F11.7,2X,F11.7,2X,F11.7)
100  FORMAT (A1)
123  FORMAT(//,1X,51HNOTE: ASSUMED RELATIONSHIPS IN USE FOR CALCULATION
     .   .,1X,35H      OF ANGULAR RATE DERIVATIVES. .//)
124  FORMAT(//,1X,47HNOTE: ANGULAR RATE DERIVATIVES CALCULATED FROM
     .   .,1X,38H      ELEMENTS OF THE JACOBIAN MATRIX.)
125  FORMAT(//,1X,45HBEWARE OF POSSIBLE INACCURACY ASSOCIATED WITH
     .   .,20H SMALL CLIMB ANGLES. )
126  FORMAT(   1X,45H-----
     .   .,20H----- .//)
130  FORMAT(//,1X,46H SHOULD THE ANGULAR RATE DERIVATIVES BE FOUND ./
     .   .,1X,42H BY USING ASSUMED RELATIONSHIPS. (Y/N) : ?,4XS)
200  RETURN
END
```

REDUCE.F

```
SUBROUTINE ZZREDC(AA,B,LINEAR)

C *** REDUCES DIMENSIONAL JACOBIAN TO NON DIMENSIONAL DERIVATIVES ***

PARAMETER (ISIZE=5,ISIZEM1=4)           !*** SIZE OF THE PROBLEM ***
LOGICAL FLAG, LINEAR
CHARACTER*10 C(11)
DIMENSION AA(ISIZE,ISIZE),B(24),D(11)
REAL IYYND, LT

DATA C /'CTV      =', 'CLV      =', 'CDV      =', 'CMV      =',
1      'CLALPHA =', 'CDALPHA =', 'CMALPHA =', 'CLDALPHA =',
1      'CMDALPHA =', 'CLQ      =', 'CMQ      ='/

C *** WRITE NON-DIMENSIONAL JACOBIAN TO FILE ***

WRITE (9,50)

10 DO 20 I=1,ISIZEM1
    WRITE (9,70) (AA(I,J),J=1,ISIZEM1)
20 CONTINUE

C *** RECONSTITUTE FLIGHT DATA ***

SGA    =B(1)
CGA    =B(2)
SAL    =B(3)
CAL    =B(4)
CWE   =B(5)
CLE    =B(6)
CTE    =B(7)
CDE    =B(8)
AMU    =B(9)
IYYND =B(10)
XLT    =B(11)
XEPSAL=B(12)
CW     =B(13)

IF ( LINEAR ) THEN

C *** APPROXIMATE SURPLUS DERIVATIVE CTV ***
D(1)  = -3.0*CTE                      !CTV

C *** CALCULATE NON-DIMENSIONAL DERIVATIVES ***
D(6)  = CLE-2.0*AMU*AA(1,2)            !CDALPHA
D(3)  = D(1)*CAL+2.0*CWE*SGA-2.0*AMU*AA(1,1) !CDV
D(11) = IYYND*AA(3,3)/(1.0*XEPSAL*AA(2,3)) !CMQ
D(9)  = D(11)*XEPSA                    !CMDALPHR
D(10) = -D(11)*CW/XLT                  !CLQ
D(8)  = XEPSAL*D(10)                   !CLDALPHA

DENOM = 2.0*AMU+D(8)                   !DENOMINATOR
```

```

D(5) = -AA(2,2)*DENOM-CDE          !CLALPHA
D(2) = -D(1)*SAL-AA(2,1)*DENOM-2.0*CWE*CGA !CLV
D(4) = IYYND*AA(3,1)-D(9)*AA(2,1)      !CMV
D(7) = IYYND*AA(3,2)-D(9)*AA(2,2)      !CMALPHA

ELSE

C *** APPROXIMATE SURPLUS DERIVATIVE CTV ***
D(1) = -3.*CTE                      ! CTv

C *** CALCULATE NON-DIMENSIONAL DERIVATIVES ***
D(8) = -CWE*SGA/AA(2,4)-2.*AMU        ! CLDALPHA
DENOM= 2.0*AMU+D(8)                  ! DENOMINATOR
D(9) = -AA(3,4)*IYYND*DENOM/CWE/SGA ! CMDALPHA
D(6) = CLE-2.*AMU*AA(1,2)            ! CDALPHA
D(5) = -AA(2,2)*DENOM-CDE          ! CLALPHA
D(10)= 2.*AMU-AA(2,3)*DENOM         ! CLQ
D(3) = D(1)*CAL+2.*CWE*SGA-2.*AMU*AA(1,1) ! CDV
D(2) = -D(1)*SAL-2.*CWE*CGA-DENOM*AA(2,1) ! CLV
FACT1= D(9)*(D(1)*SAL+D(2)+2.*CWE*CGA)/DENOM
D(4) = IYYND*AA(3,1)+FACT1          ! CMV
D(7) = IYYND*AA(3,2)+D(9)*(D(5)+CDE)/DENOM ! CMALPHA
D(11)= IYYND*AA(3,3)-D(9)*(2.*AMU-D(10))/DENOM ! CMQ

```

ENDIF

```

C *** OUTPUT COEFFICIENTS TO FILE SDOFAP.L ***
WRITE(9,60)
DO 30 II=1,11
WRITE(9,40) C(II),D(II)
30 CONTINUE
WRITE(9,80)

40 FORMAT(/,4X,A10,2X,F14.7)
50 FORMAT(////,35H *** NON-DIMENSIONAL JACOBIAN. *** //)
60 FORMAT(///,
70 ,50H *** NON-DIMENSIONAL AERODYNAMIC DERIVATIVES. *** //)
70 FORMAT(/,4X,F11.7,2X,F11.7,2X,F11.7,2X,F11.7)
80 FORMAT(///)

```

RETURN

END

SUBROUTINE ACINFO(CTP,SWING,CWING,ALPT,XLT,XEPSAL)

INCLUDE 'ETPAR.F'

```

CTP=CTPROP
SWING=SW
CWING=CW
ALPT=THSET

```

C *** CALCULATE THE TAILPLANE'S MOMENT ARM (XLT) ***
XLT = XT - XQARTC

C *** THE RATE OF CHANGE OF DOWNWASH WITH ALPHA IS PREFIXED WITH ***
C *** AN 'X' TO OVERCOME PROBLEMS WITH THE COMMON STATEMENT. ***

XEPSAL = EPSAL

RETURN

END

AD-A173 849 A FLIGHT DYNAMIC SIMULATION PROGRAM IN AIR-PATH AXES 2/2
USING ACSL (ADVANCED. (U) AERONAUTICAL RESEARCH LABS
MELBOURNE (AUSTRALIA) P W GIBBENS JUN 86
UNCLASSIFIED ARL-AERO-TM-380 F/G 12/1 NL

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963-A

DISTRIBUTION

AUSTRALIA

Department of Defence

Defence Central

Chief Defence Scientist)	
Deputy Chief Defence Scientist)	
Superintendent, Science and Program Administration)	I Copy
Controller, External Relations, Projects and Analytical Studies)	
Defence Science Counsellor (UK) (Doc Data Sheet Only)		
Counsellor, Defence Science (USA) (Doc Data Sheet Only)		
Defence Science Representative (Bangkok)		
Defence Central Library		
Document Exchange Centre, DISB (18 copies)		
Joint Intelligence Organisation		
Librarian H Block, Victoria Barracks, Melbourne		

Aeronautical Research Laboratories

Director
Library
Superintendent - Aerodynamics
Divisional File - Aerodynamics
D. Secomb
R. Feik
C. Martin
T. Tran-Cong
J. Drobik
M. Cooper
Author: P.W. Gibbens

Materials Research Laboratories

Director/Library

Defence Research Centre

Library

Navy Office

Navy Scientific Adviser
RAF Aircraft Maintenance and Flight Trials Unit
Directorate of Naval Aircraft Engineering

Army Office

Scientific Adviser - Army
Royal Military College Library

Air Force Office

Air Force Scientific Adviser
Aircraft Research and Development Unit
Scientific Flight Group
Library
Technical Divisional Library
Director General Aircraft Engineering - Air Force
Director General Operational Requirements - Air Force
HQ Support Command (SLENGO)
RAAF Academy, Point Cook

Government Aircraft Factories

Manager
Library

Department of Aviation

Library
Flight Standards Division

Industry

Commonwealth Aircraft Corporation, Library
Hawker de Havilland Aust. Pty. Ltd, Bankstown, Library

Universities and Colleges

Adelaide
Barr Smith Library

Flinders
Library

La Trobe
Library

Melbourne
Engineering Library

Monash
Hurgrave Library

Newcastle
Library

Sydney
Engineering Library
Prof G.A. Bird, Dept. of Aeronautical Engineering

NSW
Physical Sciences Library

Queensland
Library

Tasmania
Engineering Library

Western Australia
Library

RMIT
Library

SPARES (15 copies)

TOTAL (83 copies)

Department of Defence
DOCUMENT CONTROL DATA

1.a. AR No AR-004-472	1.b. Establishment No ARL-AERO-TM-380	2. Document Date JUNE 1986	3. Task No DST 82/030
A FLIGHT DYNAMIC SIMULATION PROGRAM IN AIR-PATH AXES USING ACSL		5. Security a. document UNCLASS. b. title c. abstract U U	6. No Pages 90 7. No Refs 6
8. Author(s) P. W. GIBBENS		9. Downgrading Instructions	
10. Corporate Author and Address Aeronautical Research Laboratories P.O. Box 4331, MELBOURNE, VIC. 3001		11. Authority (as appropriate) a. Sponsor b. Security c. Downgrading d. Approval	
12. Secondary Distribution (of this document) Approved for public release.			
Overseas enquirers outside stated limitations should be referred through ASDIS, Defence Information Services Branch, Department of Defence, Campbell Park, CANBERRA ACT 2601			
13.a. This document may be ANNOUNCED in catalogues and awareness services available to ... No limitations.			
13.b. Citation for other purposes (ie casual announcement) may be (select) unrestricted(or) as for 13 a.			
14. Descriptions Equations of motion Flight simulation Flight dynamics Advanced Continuous Simulation Language		15. COSATI Group 01010	
16. Abstract The six degrees of freedom dynamic equations of motion have been programmed in the Advanced Continuous Simulation Language (ACSL) for use in aircraft simulations at ARL. Air-path axes were chosen for the integration of the force equations, and body axes for the integration of the moment equations. The use of quaternions for the determination of the direction cosines has been described. ↗			

This paper is to be used to record information which is required by the Establishment for its own use but which will not be added to the DISTIS data base unless specifically requested.

16. Abstract (contd)

17. Imprint

Aeronautical Research Laboratories, Melbourne

18. Document Series and Number	19. Cost Code	20. Type of Report and Period Covered
Aerodynamics Technical Memorandum 380	52 7710	Written September 1985.

21. Computer Programs Used

22. Establishment File Ref(s)

12 - 86

