PRACA KONTROLNA nr 1 - POZIOM PODSTAWOWY

- 1. Niech $A = \left\{ x \in \mathbb{R} : \frac{1}{x^2 + 1} \geqslant \frac{1}{7 x} \right\}$ oraz $B = \left\{ x \in \mathbb{R} : |x 2| + |x 7| < 7 \right\}$. Znaleźć i zaznaczyć na osi liczbowej zbiory A, B oraz $(A \setminus B) \cup (B \setminus A)$.
- 2. Liczba $p = \frac{(\sqrt[3]{54}-2)(9\sqrt[3]{4}+6\sqrt[3]{2}+4)-(2-\sqrt{3})^3}{\sqrt{3}+(1+\sqrt{3})^2}$ jest miejscem zerowym funkcji $f(x) = ax^2+bx+c$. Pole trójkąta, którego wierzchołkami są punkty przecięcia wykresu z osiami układu współrzędnych równe jest 20. Wyznaczyć współczynnik b oraz drugie miejsce zerowe tej funkcji wiedząc, że wykres funkcji jest symetryczny względem prostej x=3.
- 3. Trapez o kątach przy podstawie 30° oraz 45° jest opisany na okręgu o promieniu R. Obliczyć stosunek pola koła do pola trapezu.
- 4. Niech $f(x) = \begin{cases} \frac{1}{x-1}, & \text{gdy } |x-1| \ge 1, \\ x^2 x 1, & \text{gdy } |x-1| < 1. \end{cases}$ Obliczyć $f\left(\frac{1+\sqrt{3}}{2}\right)$ oraz $f\left(\frac{\pi+1}{\pi-2}\right)$.

Narysować wykres funkcji f i na jego podstawie podać zbiór wartości funkcji oraz rozwiązać nierówność $f(x) \geqslant -\frac{1}{2}$.

5. Tangens kąta ostrego α równy jest $\frac{a}{7b}$, gdzie

$$a = (\sqrt{2} + 1)^3 - (\sqrt{2} - 1)^3, b = (\sqrt{\sqrt{2} + 1} - \sqrt{\sqrt{2} - 1})^2.$$

Wyznaczyć wartości pozostałych funkcji trygonometrycznych tego kąta oraz kąta 2α .

6. W trójkąt otrzymany w przekroju ostrosłupa prawidłowego czworokątnego płaszczyzną przechodzącą przez wysokość ostrosłupa i przekątną jego podstawy wpisano kwadrat, którego jeden bok jest zawarty w przekątnej podstawy. Pole kwadratu jest dwa razy mniejsze niż pole podstawy ostrosłupa. Obliczyć stosunek pola powierzchni bocznej ostrosłupa do pola jego podstawy oraz cosinus kąta między ścianami bocznymi.

PRACA KONTROLNA nr 1 - POZIOM ROZSZERZONY

- 1. Niech $A = \{(x,y) : y \ge ||x-2|-1|\}, \ B = \{(x,y) : y + \sqrt{4x-x^2-3} \le 2\}$. Narysować na płaszczyźnie zbiór $A \cap B$ i obliczyć jego pole.
- 2. Pole powierzchni bocznej ostrosłupa prawidłowego trójkątnego jest k razy większe niż pole jego podstawy. Obliczyć cosinus kąta nachylenia krawędzi bocznej ostrosłupa do płaszczyzny podstawy.
- 3. Dane są liczby: $m = \frac{\binom{6}{4} \cdot \binom{8}{2}}{\binom{7}{3}}$, $n = \frac{(\sqrt{2})^{-4} \binom{1}{4}^{-\frac{5}{2}} \sqrt[4]{3}}{\left(\sqrt[4]{16}\right)^3 \cdot 27^{-\frac{1}{4}}}$. Wyznaczyć k tak, by liczby m, k, n były odpowiednio: pierwszym, drugim i trzecim wyrazem ciągu geometrycznego, a nstępnie wyznaczyć sumę wszystkich wyrazów nieskończonego ciągu geometrycznego, którego pierwszymi trzema wyrazami są m, k, n. Ile wyrazów tego ciągu należy wziąć, by ich suma przekroczyła 95% sumy wszystkich wyrazów?
- 4. Narysować wykres funkcji $f(x) = \begin{cases} |3^x 1| & \text{dla} \quad x \leq 1 \\ \frac{3 x}{x} & \text{dla} \quad x > 1 \end{cases}$. Posługując się nim podać wzór i narysować wykres funkcji g(m) określającej liczbę rozwiązań równania f(x) = m, gdzie m jest parametrem rzeczywistym.
- 5. Obliczyć tangens kąta wypukłego α spełniającego warunek $\sin \alpha \cos \alpha = 2\sqrt{6} \sin \alpha \cos \alpha$.
- 6. W trójkącie równoramiennym ABC o podstawie AB ramię ma długość b, a kąt przy wierzchołku C miarę γ . D jest takim punktem ramienia BC, że odcinek AD dzieli pole trójkąta na połowę. Wyznaczyć promienie ρ_1 , ρ_2 okręgów wpisanych w trójkąty ABD i ADC. Dla jakiego kąta γ promienie te są równe, a dla jakiego $\rho_1 = 2\rho_2$?

PRACA KONTROLNA nr 2 - POZIOM PODSTAWOWY

- 1. Firma budowlana podpisała umowę na modernizację odcinka autostrady o długości 21 km w określonym terminie. Ze względu na zbliżające się mistrzostwa świata w rzucie telefonem komórkowym postanowiono zrealizować zamówienie 10 dni wcześniej, co oznaczało konieczność zwiększenia średniej normy dziennej o 5%. W jakim czasie firma zamierzała pierwotnie zrealizować to zamówienie?
- 2. Pan Kowalski zaciągnął w banku kredyt w wysokości 4000 zł oprocentowany na 16% w skali roku. Zgodnie z umową będzie go spłacał w czterech ratach co 3 miesiące, spłacając za każdym razem 1000zł oraz 4% pozostałego zadłużenia. Ile złotych ostatecznie zwróci bankowi pan Kowalski?
- 3. Ile jest czterocyfrowych liczb naturalnych:
 - a) podzielnych przez 2, 3 lub przez 5?
 - b) podzielnych przez dokładnie dwie spośród powyższych liczb?
- 4. Na paraboli $y = x^2 6x + 11$ znaleźć taki punkt C, że pole trójkąta o wierzchołkach A = (0,3), B = (4,0), C jest najmniejsze.
- 5. Przy prostoliniowej ulicy (oś Ox) w punkcie x=0 zainstalowano parkomat. W punkcie x=1 można korzystać z bankomatu, a w punkcie x=-2 jest wejście do galerii handlowej. W którym punkcie x ulicy należy zaparkować samochód, aby droga przebyta od samochodu do parkomatu i z powrotem (bilet parkingowy należy położyć za szybą pojazdu), następnie do bankomatu po pieniądze, stąd do galerii i na końcu z zakupami do samochodu, była najkrótsza? Jaka będzie odpowiedź, gdy wejście do galerii będzie w punkcie x=2? W obu przypadkach podać wzór i narysować wykres funkcji określającej drogę przebytą przez klienta domu handlowego w zależności od punktu zaparkowania samochodu.
- 6. Wykonać działania i zapisać w najprostszej postaci wyrażenie

$$w(a,b) = \left(\frac{a}{a^2 - ab + b^2} - \frac{a^2}{a^3 + b^3}\right) : \left(\frac{a^3 - b^3}{a^3 + b^3} - \frac{a^2 + b^2}{a^2 - b^2}\right).$$

Wykazać, że dla dowolnych a<0 zachodzi nierówność $w(-a,a^{-1})\geqslant 1$, a dla dowolnych a>0 prawdziwa jest nierówność $w(-a,a^{-1})\leqslant 1$.

PRACA KONTROLNA nr 2 - POZIOM ROZSZERZONY

- 1. Rozwiązać nierówność $\frac{1}{\sqrt{5+4x-x^2}}\geqslant \frac{1}{|x|-2}$ i zbi
ór rozwiązań zaznaczyć na osi liczbowej.
- 2. Dwaj rowerzyści wyjechali jednocześnie naprzeciw siebie z miast A i B odległych o 30 kilometrów. Minęli się po godzinie i nie zatrzymując się podążyli z tymi samymi prędkościami każdy w swoim kierunku. Rowerzysta, który wyjechał z A dotarł do B półtorej godziny wcześniej niż jego kolega jadący z B dotarł do A. Z jakimi prędkościami jechali rowerzyści?
- 3. Pan Kowalski zaciągnął 31 grudnia pożyczkę 4000 złotych oprocentowaną w wysokości 16% w skali roku. Zobowiązał się spłacić ją w ciągu roku w czterech równych ratach płatnych 30. marca, 30. czerwca, 30. września i 30. grudnia. Oprocentowanie pożyczki liczy się od 1 stycznia, a odsetki od kredytu naliczane są w terminach płatności rat. Obliczyć wysokość tych rat w zaokrągleniu do pełnych groszy.
- 4. Dla jakiego parametru m równanie

$$2x^2 - (2m+1)x + m^2 - 9m + 39 = 0$$

ma dwa pierwiastki, z których jeden jest dwa razy większy niż drugi?

- 5. Ile jest liczb pięciocyfrowych podzielnych przez 9, które w rozwinięciu dziesiętnym mają: a) obie cyfry 1, 2 i tylko te? b) obie cyfry 1, 3 i tylko te? c) wszystkie cyfry 1, 2, 3 i tylko te? Odpowiedź uzasadnić. W przypadku b) wypisać otrzymane liczby.
- 6. Z przystani A wyrusza z biegiem rzeki statek do przystani B, odległej od A o 140 km. Po upływie 1 godziny wyrusza za nim łódź motorowa, dopędza statek, po czym wraca do przystani A w tym samym momencie, w którym statek przybija do przystani B. Prędkość łodzi w wodzie stojącej jest półtora raza większa niż prędkość statku w wodzie stojącej. Wyznaczyć te prędkości wiedząc, że rzeka płynie z prędkością 4 km/godz.

PRACA KONTROLNA nr 3 - POZIOM PODSTAWOWY

- 1. Z danych Głównego Urzędu Statystycznego wynika, że wzrost Produktu Krajowego Brutto (PKB) w Polsce w roku 2010 wyniósł 3,7%, a w roku 2011 4,3%. Jaki powinien być wzrost PKB w roku 2012, by średni roczny wzrost PKB w tych trzech latach wyniósł 4%? Podać wynik z dokładnością do 0,001%.
- 2. Czy liczby $\sqrt{2}$, 2, $2\sqrt{2}$ mogą być wyrazami (niekoniecznie kolejnymi) ciągu arytmetycznego? Odpowiedź uzasadnić.
- 3. Wielomian $W(x)=x^5+ax^4+bx^3+4x$ jest podzielny przez (x^2-1) . Wyznaczyć współczynniki a,b i rozwiązać nierówność $W(x-1)\leqslant W(x)\leqslant W(x+1)$.
- 4. Niech $f(x) = \sqrt{x}$, g(x) = x 2, h(x) = |x|. Narysować wykresy funkcji złożonych: $f \circ h \circ g$, $f \circ g \circ h$, $g \circ f \circ h$, $g \circ h \circ f$, $h \circ f \circ g$ oraz $h \circ g \circ f$.
- 5. Przyprostokątną trójkąta prostokątnego ABC jest odcinek AB o końcach A(-2,2) i B(1,-1), a wierzchołek C trójkąta leży na prostej 3x-y=14. Wyznaczyć równanie okręgu opisanego na tym trójkącie. Ile rozwiązań ma to zadanie? Sporządzić rysunek.
- 6. Na prostej x+2y=5 wyznaczyć punkty, z których okrąg $(x-1)^2+(y-1)^2=1$ jest widoczny pod kątem 60°. Obliczyć pole obszaru ograniczonego łukiem okręgu i stycznymi do niego poprowadzonymi w znalezionych punktach. Sporządzić rysunek.

PRACA KONTROLNA nr 3 - POZIOM ROZSZERZONY

- 1. Pan Kowalski umieścił swoje oszczędności na dwu różnych lokatach. Pieniądze, otrzymane jako honorarium za podręcznik, złożył na lokacie oprocentowanej w wysokości 7% w skali roku, a wynagrodzenie za cykl wykładów na lokacie 9%. Po roku jego dochód był o 30 złotych, a po dwu latach o 70 złotych wyższy od dochodu, który uzyskałby składając całą sumę na lokacie 8%. Ile pieniędzy otrzymał pan Kowalski za podręcznik, a ile za wykłady?
- 2. Czy liczby $\sqrt{2}$, $\sqrt{3}$, 2 mogą być wyrazami (niekoniecznie kolejnymi) ciągu arytmetycznego? Odpowiedź uzasadnić.
- 3. Niech $f(x) = 2^x$, g(x) = 2 x, h(x) = |x|. Narysować wykresy funkcji złożonych $f \circ g \circ h$ oraz $g \circ f \circ h$ i rozwiązać nierówność $(f \circ g \circ h)(x) < 6 + (g \circ f \circ h)(x)$.
- 4. Dane są punkty A(1,2), B(3,1). Wyznaczyć równanie zbioru wszystkich punktów C takich, że kąt BCA ma miarę 45° .
- 5. Liczby: $a_1 = \log_{(3-2\sqrt{2})^2}(\sqrt{2}-1)$, $a_2 = \frac{1}{2}\log_{\frac{1}{3}}\frac{\sqrt{3}}{6}$, $a_3 = 3^{\log_{\sqrt{3}}\frac{\sqrt{6}}{2}}$, $a_4 = \log_{(\sqrt{2}-1)}(\sqrt{2}+1)$, $a_5 = \left(2^{\sqrt{2}+1}\right)^{\sqrt{2}-1}$, $a_6 = \log_3 2$ są jedynymi pierwiastkami wielomianu W(x), którego wyraz wolny jest dodatni.
 - a) Które z tych pierwiastków są niewymierne? Odpowiedź uzasadnić.
 - b) Wyznaczyć dziedzinę funkcji $f(x) = \sqrt{W(x)}$, nie wykonując obliczeń przybliżonych.
- 6. Niech $f(x) = 3(x+2)^4 + x^2 + 4x + p$, gdzie p jest parametrem rzeczywistym.
 - a) Uzasadnić, że wykres funkcji f(x) jest symetryczny względem prostej x=-2.
 - b) Dla jakiego parametru p najmniejszą wartością funkcji f(x) jest y=-2? Odpowiedź uzasadnić, nie stosując metod rachunku różniczkowego.
 - c) Określić liczbę rozwiązań równania f(x) = 0 w zależności od parametru p.

XLII KORESPONDENCYJNY KURS Z MATEMATYKI

PRACA KONTROLNA nr 4 - POZIOM PODSTAWOWY

- 1. Wyznaczyć wszystkie kąty α z przedziału $[0, 2\pi]$, dla których suma kwadratów pierwiastków rzeczywistych równania $x^2+2x\sin\alpha-\cos^2\alpha=0$ jest równa co najwyżej 3.
- 2. Uzasadnić, że suma średnic okręgu opisanego na trójkącie prostokątnym i okręgu wpisanego w ten trójkąt jest równa sumie długości przyprostokątnych. Znaleźć długości boków trójkąta, jeżeli promienie tych okręgów są równe R=5 i r=2.
- 3. Narysować wykres funkcji $f(x) = \cos^2 x + |\sin x| \sin x$ w przedziale $[-2\pi, 2\pi]$.
 - a) Podać zbiór wartości i miejsca zerowe.
 - b) Wyznaczyć przedziały monotoniczności.
 - c) Rozwiązać nierówność $|f(x)| \ge \frac{1}{2}$.
- 4. W kwadracie o boku długości a narysowano cztery półkola, których średnicami są boki kwadratu. Półkola przecinają się parami tworząc czterolistną rozetę. Obliczyć pole i obwód rozety.
- 5. Dach wieży kościoła ma kształt ostrosłupa, którego podstawą jest sześciokąt foremny o boku 4 m a największy z przekrojów płaszczyzną zawierającą wysokość jest trójkątem równobocznym. Obliczyć kubaturę dachu wieży kościoła. Ile 2-litrowych puszek farby antykorozyjnej trzeba kupić do pomalowania blachy, którą pokryty jest dach, jeżeli wiadomo, że 1 litr farby wystarcza do pomalowania 6 m² blachy i trzeba uwzględnić 8% farby na ewentualne straty.
- 6. Promień kuli opisanej na ostrosłupie prawidłowym czworokątnym wynosi R. Prostopadła wyprowadzona ze środka kuli do ściany bocznej ostrosłupa tworzy z wysokością ostrosłupa kąt α . Wyznaczyć wysokość ostrosłupa.

PRACA KONTROLNA nr 4 - POZIOM ROZSZERZONY

- 1. Dla jakich kątów α z przedziału $\left[0,\frac{\pi}{2}\right]$ równanie $x^2 \sin \alpha + x + \cos \alpha = 0$ ma dwa różne pierwiastki rzeczywiste? Czy iloczyn pierwiastków równania może być równy $\sqrt{3}$? Wyznaczyć wszystkie kąty α , dla których suma pierwiastków jest większa od -2.
- 2. Przekrój ostrosłupa prawidłowego czworokątnego płaszczyzną przechodzącą przez przekątną podstawy i wierzchołek ostrosłupa jest trójkątem równobocznym. Wyznaczyć stosunek promienia kuli wpisanej w ostrosłup do promienia kuli opisanej na ostrosłupie.
- 3. Narysować wykres funkcji $f(x)=\frac{\sin 2x-|\sin x|}{\sin x}$. W przedziale $[0,2\pi]$ rozwiązać nierówność $f(x)<2(\sqrt{2}-1)\cos^2 x$.
- 4. Czworokąt wypukły ABCD, w którym AB=1, BC=2, CD=4, DA=3 jest wpisany w okrąg. Obliczyć promień R tego okręgu. Sprawdzić, czy w ten czworokąt można wpisać okrąg. Jeżeli tak, to obliczyć jego promień.
- 5. W kole K o promieniu 4 cm narysowano 6 kół o promieniu 2 cm przechodzących przez środek koła K i stycznych do niego tak, aby środki tych sześciu kół były wierzchołkami sześciokąta foremnego. Obliczyć pole i obwód figury, która jest sumą tych sześciu kół.
- 6. Stosunek pola powierzchni bocznej stożka ściętego do pola powierzchni wpisanej w ten stożek kuli wyrazić jako funkcję kąta nachylenia tworzącej stożka do podstawy.

PRACA KONTROLNA nr 5 - POZIOM PODSTAWOWY

- 1. Między każde dwa kolejne wyrazy pięcioelementowego ciągu arytmetycznego wstawiono m liczb, otrzymując ciąg arytmetyczny, którego suma jest 13 razy większa niż suma wyjściowego ciągu. Obliczyć m. Jaką jednakową ilość liczb należy wstawić między każde dwa kolejne wyrazy n elementowego ciągu arytmetycznego, aby otrzymać ciąg arytmetyczny o sumie n razy większej niż suma wyjściowego ciągu?
- 2. Linie kolejowe malują wagony klasy *standard* na niebiesko, klasy *komfort* na różowo, a klasy *biznes* na szaro. Na ile sposobów można zestawić skład pięciowagonowy, który zawiera co najmniej jeden wagon każdej klasy, a kolejność wagonów jest istotna?
- 3. Niech n będzie liczbą naturalną. W przedziale $[0,2\pi]$ rozwiązać równanie

$$1 + \cos^2 x + \cos^4 x + \dots + \cos^{2n} x = 2 - \cos^{2n} x$$
.

- 4. Zawodnik przebiegł równym tempem pierwsze 10 km biegu maratońskiego (42km) w czasie 45 minut, a każdy kolejny kilometr pokonywał w czasie o 5% dłuższym niż poprzedni. Sprawdzić, czy zawodnik zmieścił się w sześciogodzinnym limicie czasowym.
- 5. Rozwiązać nierówność

$$\log_2(x+2) - \log_4(4-x^2) \geqslant 0.$$

6. Niech $A=\{(x,y)\colon |x|+2|y|\leqslant 2\}$. Zbiór B powstaje przez obrót figury A o kąt $\frac{\pi}{2}$ (w kierunku przeciwnym do ruchu wskazówek zegara) wokół początku układu współrzędnych. Starannie narysować zbiory $A\cup B$ oraz $A\triangle B=(A\setminus B)\cup(B\setminus A)$ i obliczyć ich pola.

PRACA KONTROLNA nr 5 - POZIOM ROZSZERZONY

- 1. Zbadać, dla jakich argumentów funkcja $g(x) = 2^{x^3-5} \cdot 3^{7x^2} \cdot 4^{7x-1} 2^{7x^2+1} \cdot 3^{x^3-2} \cdot 9^{7x-3}$ przyjmuje wartości ujemne.
- 2. Rozwiązać nierówność

$$2^{-\sin x} + 2^{-2\sin x} + 2^{-3\sin x} + \dots \le \sqrt{2} + 1.$$

której lewa strona jest sumą nieskończonego ciągu geometrycznego.

3. Podać dziedzinę i wyznaczyć wszystkie miejsca zerowe funkcji

$$f(x) = \log_{x+1}(x-1) - \log_{x+1}(2x - \frac{2}{x}) + 1.$$

- 4. Dany jest ciąg liczbowy (a_n) , w którym każdy wyraz jest sumą podwojonego wyrazu poprzedniego i 4, a jego czwarty wyraz wynosi 36. Podać wzór na n-ty wyraz ciągu i udowodnić go, wykorzystując zasadę indukcji matematycznej.
- 5. Niech $A = \{(x,y) \colon |x| + 2|y| \le 2\}$. Zbiór B otrzymano przez obrót A o kąt $\frac{\pi}{2}$ (w kierunku przeciwnym do ruchu wskazówek zegara) wokół początku układu współrzędnych, a zbiór C przez obrót zbioru $A \cup B$ o kąt $\frac{\pi}{4}$ wokół początku układu współrzędnych. Wykonać staranny rysunek zbioru $A \cup B \cup C$ oraz obliczyć jego pole.
- 6. Boki $\triangle ABC$ zawarte są w prostych y=2x+m, y=mx+1 oraz 2y=2-x. Podać wartość rzeczywistego parametru $m\in(-\frac{1}{2},2)$, dla której pole rozważanego trójkąta wynosi $\frac{1}{5}$. Dla wyznaczonego m wykonać staranny rysunek (przyjąć jednostkę równą 3 cm).

XLII KORESPONDENCYJNY KURS Z MATEMATYKI

PRACA KONTROLNA nr 6 - POZIOM PODSTAWOWY

1. Rozwiązać równanie

$$\sqrt{2^{2x+1} - 5 \cdot 2^x + 4} = 2^{x+2} - 5.$$

- 2. Spośród cyfr liczby 211521125112 wylosowano trzy (bez zwracania). Obliczyć prawdopodobieństwo tego, że liczba utworzona z wylosowanych cyfr nie jest podzielna przez trzy.
- 3. Wyznaczyć dziedzinę funkcji

$$f(x) = \sqrt{-\log_2 \frac{3x}{x^2 - 4}} \,.$$

- 4. 20 uczniów posadzono losowo w sali zawierającej 4 rzędy po 5 krzeseł w każdym. Obliczyć prawdopodobieństwo tego, że Bolek będzie siedział przy Lolku, tzn. z przodu, z tyłu, z prawej albo z lewej jego strony.
- 5. Uzasadnić, że dla dowolnego p oraz x > -1 prawdziwa jest nierówność

$$p^2 + (1-p)^2 x \geqslant \frac{x}{1+x}.$$

Znaleźć i narysować na płaszczyźnie zbiorów wszystkich par (p, x), dla których w powyższej nierówności ma miejsce równość.

6. Trapez równoramienny ABCD o polu P, ramieniu c i kącie ostrym przy podstawie α zgięto wzdłuż jego osi symetrii EF tak, że obie połowy utworzyły kąt α . Obliczyć objętość powstałego w ten sposób wielościanu ABCDEF. Obliczyć tangens kąta nachylenia do podstawy tej ściany bocznej, która nie jest prostopadła do podstawy. Sporządzić odpowiednie rysunki. Podać warunki istnienia rozwiązania.

PRACA KONTROLNA nr 6 - POZIOM ROZSZERZONY

1. Rozwiązać równanie

$$\sqrt{x^2 - 3} + 2\sqrt{5 - 2x} = 5 - x.$$

- 2. Wybrano losowo trzy krawędzie sześcianu. Obliczyć prawdopodobieństwo tego, że żadne dwie nie mają punktów wspólnych.
- 3. **Gra w pary.** W skarbonce znajduje się duża liczba monet o nominałach 1 zł, 2 zł i 5 zł. W pierwszym kroku Jaś losuje trzy monety. Jesli wśród nich są dwie jednakowe, to wrzuca je do skarbonki. W kolejnych krokach losuje ze skarbonki każdorazowo tyle monet, ile trzyma w ręce, a następnie pary jednakowych monet wrzuca do skarbonki. Gra kończy się, gdy wrzuci do skarbonki wszystkie monety. Obliczyć prawdopodobieństwo tego, że Jaś skończy grę: a) w drugim kroku; b) w drugim lub trzecim kroku.
- 4. Dane są wierzchołki A(-3,2), C(4,2), D(0,4) trapezu równoramiennego ABCD, w którym AB||CD. Wyznaczyć współrzędne wierzchołka B oraz równanie okręgu opisanego na trapezie.
- 5. Udowodnić, że dla x > -1 prawdziwa jest nierówność podwójna

$$1 + \frac{x}{2} - \frac{x^2}{2} \leqslant \sqrt{1 + x} \leqslant 1 + \frac{x}{2}.$$

Zilustrować tę nierówność odpowiednim rysunkiem.

6. Z dwóch przeciwległych wierzchołków prostokąta o polu P, będącego podstawą prostopadłościanu o wysokości 1, wystawiono po dwie przekątne sąsiednich ścian bocznych. Wyrazić cosinus kąta pomiędzy płaszczyznami utworzonymi przez te pary przekątnych jako funkcję sinusa kąta między nimi. Sporządzić rysunki.

PRACA KONTROLNA nr 7 - POZIOM PODSTAWOWY

1. Wyznaczyć rozwiązanie ogólne równania

$$\sin\left(2x + \frac{\pi}{3}\right) = \cos\left(x - \frac{\pi}{6}\right),$$

a następnie podać rozwiązania w przedziale $[-2\pi, 2\pi]$.

2. Wyrażenie

$$\left(\frac{a-2b}{\sqrt[3]{a^2}-\sqrt[3]{4b^2}} + \frac{\sqrt[3]{2a^2b} + \sqrt[3]{4ab^2}}{\sqrt[3]{a^2} + \sqrt[3]{4b^2} + \sqrt[3]{16ab}}\right) : \frac{a\sqrt[3]{a} + b\sqrt[3]{2b} + b\sqrt[3]{a} + a\sqrt[3]{2b}}{a+b}$$

sprowadzić do najprostszej postaci. Przy jakich założeniach ma ono sens?

- 3. Narysować wykres funkcji $f(x) = 2|x| \sqrt{x^2 + 4x + 4}$ oraz wyznaczyć najmniejszą i największą wartość funkcji |f(x)| w przedziale [-1,2]. Dla jakiego m pole figury ograniczonej wykresem funkcji |f(x)| i prostą y = m równe jest 16?
- 4. Rozwiązać układ równań

$$\begin{cases} x^2 - 4y^2 + 8y = 4 \\ x^2 + y^2 - 2y = 4 \end{cases}$$

Podać interpretację geometryczną tego układu i obliczyć pole czworokąta, którego wierzchołkami są cztery punkty będące jego rozwiązaniem.

- 5. W trapezie równoramiennym ABCD, w którym BC||AD dane są $\overrightarrow{AB} = [1, -2]$ oraz $\overrightarrow{AD} = [1, 1]$. Obliczyć pole trapezu i wyznaczyć kat między jego przekatnymi.
- 6. W ostrosłupie prawidłowym trójkątnym cosinus kąta nachylenia ściany bocznej do podstawy równy jest $\frac{1}{9}$. Obliczyć stosunek pola powierzchni całkowitej do pola podstawy. Wykorzystując wzór $\sin 2\alpha = 2 \sin \alpha \cos \alpha$, wyznaczyć sinus kąta między ścianami bocznymi tego ostrosłupa. Sporządzić rysunki.

PRACA KONTROLNA nr 7 - POZIOM ROZSZERZONY

1. Rozwiązać równanie

$$\sin x + \cos x = \frac{\cos 2x}{\sin 2x - 1} \,.$$

2. Wyrażenie

$$w(x,y) = \frac{x}{x^3 + x^2y + xy^2 + y^3} + \frac{y}{x^3 - x^2y + xy^2 - y^3} + \frac{1}{x^2 - y^2} - \frac{1}{x^2 + y^2} - \frac{x^2 + 2y^2}{x^4 - y^4}$$

doprowadzić do najprostszej postaci. Przy jakich założeniach ma ono sens? Obliczyć $w(\cos 15^{\circ}, \sin 15^{\circ})$.

3. Narysować wykres funkcji

$$f(x) = \begin{cases} 2^{-x} - 1 & \text{dla } x \leq 1, \\ \log_2(x - \frac{1}{2}) & \text{dla } x > 1 \end{cases}$$

i posługując się nim wyznaczyć zbiór wartości funkcji |f(x)| w przedziale $\left[-\frac{1}{2},\frac{3}{2}\right]$.

4. Rozwiązać układ równań

$$\begin{cases} y + x^2 = 4 \\ 4x^2 - y^2 + 2y = 1 \end{cases}$$

Podać interpretację geometryczną tego układu i wykazać, że cztery punkty, które są jego rozwiązaniem, wyznaczają na płaszczyźnie trapez równoramienny. Znaleźć równanie okręgu opisanego na tym trapezie.

- 5. Odcinek o końcach A(0,7) i B(5,2) jest przeciwprostokątną trójkąta prostokątnego, którego wierzchołek C leży na prostej x=3. Posługując się rachunkiem wektorowym obliczyć cosinus kąta między dwusieczną kąta prostego a wysokością opuszczoną z wierzchołka C.
- 6. Pole powierzchni całkowitej ostrosłupa prawidłowego trójkątnego jest dziesięć razy większe niż pole jego podstawy. Wyznaczyć cosinus kąta między ścianami bocznymi oraz stosunek objętości ostrosłupa do objętości wpisanej w niego kuli.

XLII KORESPONDENCYJNY KURS Z MATEMATYKI

PRACA KONTROLNA nr 8 - POZIOM PODSTAWOWY

- 1. Cztery kolejne współczynniki wielomianu $f(x)=x^3+ax^2+bx+c$ tworzą ciąg geometryczny. Wiadomo, że -3 jest pierwiastkiem tego wielomianu. Wyznaczyć współczynniki a,b,c.
- 2. Koło $x^2 + y^2 + 4x 2y 1 \le 0$ zostało przesunięte o wektor $\vec{w} = [3, 3]$. Znaleźć równanie osi symetrii figury, która jest sumą koła i jego obrazu oraz obliczyć jej pole.
- 3. Podstawą ostrosłupa jest trójkąt o bokach a, b, c. Wszystkie kąty płaskie przy wierzchołku ostrosłupa są proste. Obliczyć objętość ostrosłupa.
- 4. Dane są punkty A(0,2), B(4,4), C(3,6). Na prostej przechodzącej przez punkt C równoległej do prostej AB znaleźć punkt D, który jest równo odległy od punktów A i B. Wykazać, że trójkąt ABD jest prostokątny i napisać równanie okręgu opisanego na nim.
- 5. Wyznaczyć wartość parametru m, dla którego równanie

$$4x^2 - 2x\log_2 m + 1 = 0$$

ma dwa różne pierwiastki rzeczywiste x_1, x_2 spełniające warunek $x_1^2 + x_2^2 = 1. \\$

6. Dane są funkcje $f(x)=4^{x-2}-7\cdot 3^{x-3}, \ g(x)=3^{3x+2}-5\cdot 4^{3x}$. Rozwiązać nierówność

$$f(x+3) > g\left(\frac{x}{3}\right)$$

.

PRACA KONTROLNA nr 8 - POZIOM ROZSZERZONY

- 1. Niech A będzie wierzchołkiem kwadratu, a M środkiem przeciwległego boku. Na przekątnej kwadratu wychodzącej z wierzchołka A wybrano punkt P tak, aby |AP| = |MP|. Obliczyć, w jakim stosunku punkt P dzieli przekatną kwadratu.
- 2. Stosując zasadę indukcji matematycznej udowodnić nierówność

$$\binom{2n}{n} \leqslant \frac{4^n}{\sqrt{2n+2}}, \quad n \geqslant 1.$$

- 3. Wyznaczyć równanie okręgu o środku leżącym na prostej y-x=0 oraz stycznego do prostej y-3=0 i do okręgu $x^2+y^2-4x+3=0$. Sporządzić rysunek.
- 4. Liczba -2 jest pierwiastkiem dwukrotnym wielomianu $w(x) = \frac{1}{2}x^3 + ax^2 + bx + c$, a punkt $S(-1, y_0)$ jest środkiem symetrii wykresu w(x). Wyznaczyć a, b, c, y_0 oraz trzeci pierwiastek. Sporządzić wykres w(x) w przedziale $[-3, \frac{3}{2}]$.
- 5. Wycinek koła o promieniu 3R i kącie środkowym α zwinięto w powierzchnię boczną stożka \mathcal{S}_1 . Podobnie, wycinek koła o promieniu R i kącie środkowym 3α zwinięto w powierzchnię boczną stożka \mathcal{S}_2 . Następnie obydwa stożki złączono podstawami tak, aby miały wspólną oś obrotu, a ich wierzchołki były skierowane w przeciwnych kierunkach. Obliczyć promień kuli wpisanej w otrzymaną bryłę. Sporządzić rysunek.
- 6. Podać interpretację geometryczną równania $\sqrt{2x+4} = mx+m+1$ z parametrem m. Graficznie i analitycznie określić, dla jakich wartości m równanie ma dwa pierwiastki $x_1 = x_1(m), \ x_2 = x_2(m)$. Nie korzystając z metod rachunku różniczkowego, wykazać, że funkcja $f(m) = x_1(m) + x_2(m)$ jest malejąca oraz sporządzić jej wykres.