Pumas.jl Workshop Solutions

Chris Rackauckas, Vijay Ivaturi

July 21, 2019

1 Problem 1: Simulate a first-order absorption model with linear elimination after a 100 mg oral dose in 24 subjects

Parameters are: Ka = 1 hr-1, CL = 1 L/hr, V = 20 L/hr.

1.1 Part 1: Setup the population

```
using Pumas, Plots, CSV
single_dose_regimen = DosageRegimen(100, time=0)
first(single_dose_regimen.data)
```

	time	cmt	amt	evid	ii	addl	rate	SS
	Float64	Int64	Float64	Int8	Float64	Int64	Float64	Int8
1	0.0	1	100.0	1	0.0	0	0.0	0

to build a single subject

```
s1 = Subject(id=1, evs=single_dose_regimen,cvs=(Wt=70,))
```

Subject

ID: 1 Events: 1

let's first define a function to choose body weight randomly

```
choose_covariates() = (Wt = rand(55:80),)
```

choose_covariates (generic function with 1 method)

Then, we use generate a population of subjects with a random weight generated from the covariate function above

Population

Subjects: 24 Covariates: Wt You can view the generated population using by calling a random subject by index and look at the subject's

- covariates
- events
- id numbers
- observations
- time

Let us us peek at the first subject's covariates
pop[1].covariates

(Wt = 67,)

1.2 Part 2: Write the model

```
mymodel = @model begin
  @param begin
    tvcl ∈ RealDomain(lower=0, init = 1.0)
    tvv ∈ RealDomain(lower=0, init = 20)
    tvka ∈ RealDomain(lower = 0, init= 1)
    \Omega \in \mathtt{PDiagDomain}(\mathtt{init=[0.09,0.09,\ 0.09]})
    \sigma_{prop} \in RealDomain(lower=0,init=0.04)
  end
  @random begin
    \eta \sim MvNormal(\Omega)
  @pre begin
    CL = tvcl * (Wt/70)^0.75 * exp(\eta[1])
    V = tvv * (Wt/70) * exp(\eta[2])
    Ka = tvka * exp(\eta[3])
  @covariates Wt
  @dynamics OneCompartmentModel
    #@dynamics begin
    # Depot' = -Ka*Depot
    # Central' = Ka*Depot - (CL/V)*Central
    #end
  @derived begin
      cp = 0.1000*(Central / V)
      dv ~ 0. Normal(cp, sqrt(cp^2*\sigma_prop))
    end
end
PumasModel
  Parameters: tvcl, tvv, tvka, \Omega, \sigma_prop
  Random effects: \eta
  Covariates: Wt
```

```
Dynamical variables: Depot, Central
```

Derived: cp, dv Observed: cp, dv

Note that above, we are using the analytical solution in **@dynamics**. You can switch to using the differential equation system if you prefer.

1.3 Part 3: Simulate

Let's first extract the model parameters

```
param = init_param(mymodel)
```

```
(tvcl = 1.0, tvv = 20.0, tvka = 1.0, \Omega = PDMats.PDiagMat{Float64,Array{Float64,1}}(3, [0.09, 0.09, 0.09], [11.1111, 11.1111, 11.1111]), \sigma_prop = 0.04)
```

Then using the simobs function, carry out the simulation and visualize the simulation output obs = simobs(mymodel, pop, param, obstimes=0:1:72)
plot(obs)

where

- mymodel is the model setup in the Part 2,
- pop is the population of subjects that was setup in Part 1
- param is the specified set of model parameters
- obstimes specifies the simulation time period.

2 Problem 2: Peform Non-compartmental analysis

We will start by generating a dataframe of the resuls from the simulation step simdf = DataFrame(obs) first(simdf, 6)

	id	$_{ m time}$	$^{\mathrm{cp}}$	dv	amt	evid	cmt	rate	Wt
	String	Int64	Float64	Float64	Float64	Int8	Int64	Float64	Int64
1	1	0	0.0	0.0	100.0	1	1	0.0	67
2	1	0	0.0	0.0	0.0	0		0.0	67
3	1	1	4378.18	4408.47	0.0	0		0.0	67
4	1	2	5662.54	6838.12	0.0	0		0.0	67
5	1	3	5889.9	4976.36	0.0	0		0.0	67
6	1	4	5763.36	6322.58	0.0	0		0.0	67

For the purpose of NCA, let us use the cp (output without residual error) as our observed value

To prepare the dataset for NCA analysis, let us use the read_nca function. The NCA datasets in Pumas requires a route specification which can either be iv or ev. Since this is an oral drug administration, lets add that to the simdf.

```
simdf.route = "ev"
```

```
"ev"
```

Next we can define time, concentration and dose units so the report includes the units for the pharmacokinetic parameters. The general syntax for units are u followed by the unit in quotes "".

```
timeu = u"hr"
concu = u''mg/L''
amtu = u"mg"
mg
ncadf = read_nca(simdf, id=:id, time=:time, conc=:cp, amt=:amt,
    route=:route,timeu=timeu, concu=concu, amtu=amtu, lloq=0.4concu)
NCAPopulation (24 subjects):
  ID: ["1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13",
 "14", "15", "16", "17", "18", "19", "20", "21", "22", "23",
    concentration: mg L^-1
    time:
    auc:
                   mg hr L^-1
    aumc:
                   mg hr^2 L^-1
    \lambda z:
                    hr^-1
    dose:
                   mg
```

You can view the concentration-time plots by doing plot(ncadf)

You can then generate cmax and auc for each subject auc = NCA.auc(ncadf)

	id	auc
	String	Unitful
1	1	1.28297e5 mg hr L-1
2	2	$1.04044\mathrm{e}5~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
3	3	$1.19677e5~\mathrm{mg~hr~L} \hat{=} 1$
4	4	$51584.5~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
5	5	$1.28688e5~\mathrm{mg~hr~L} {\scriptstyle \geq} 1$
6	6	$94164.2~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
7	7	$71832.4~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
8	8	$82991.9~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\ }1$
9	9	$1.18227\mathrm{e}5~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\mathtt{-}}1$
10	10	$62836.1~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
11	11	92371.9 mg hr L-1
12	12	$1.30654\mathrm{e}5~\mathrm{mg}$ hr L -1
13	13	$1.04288e5~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\mathtt{-}}1$
14	14	$1.52377\mathrm{e}5~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{\mathtt{-}}1$
15	15	$84398.4~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
16	16	1.70218e5 mg hr L-1
17	17	$1.03906e5~\mathrm{mg~hr~L}\hat{-}1$
18	18	$65952.3~\mathrm{mg}~\mathrm{hr}~\mathrm{L} \hat{-} 1$
19	19	$81889.8~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
20	20	$1.8396e5~\mathrm{mg~hr~L^21}$
21	21	$1.09155\mathrm{e}5~\mathrm{mg}$ hr L -1
22	22	$91688.2~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
23	23	$1.64625\mathrm{e}5~\mathrm{mg}~\mathrm{hr}~\mathrm{L}\hat{-}1$
24	24	1.09528e5 mg hr L-1

cmax = NCA.cmax(ncadf)

	id	cmax
	String	Unitful
1	1	$5889.9 \text{ mg L} \hat{1}$
2	2	3817.94 mg L-1
3	3	$4693.79~\mathrm{mg}~\mathrm{L}\hat{\ }1$
4	4	2427.58 mg L^2
5	5	5047.79 mg L^2
6	6	4480.84 mg L^2
7	7	$4612.52~\mathrm{mg}~\mathrm{L}\hat{-}1$
8	8	2920.35 mg L^2
9	9	$4620.57 \text{ mg L} \hat{-}1$
10	10	$3085.18 \text{ mg L} \hat{1}$
11	11	$4812.18 \text{ mg L} \hat{1}$
12	12	$5586.06 \text{ mg L} \hat{1}$
13	13	5717.52 mg L^2
14	14	3263.94 mg L^2
15	15	$5659.32 \text{ mg L} \hat{2}1$
16	16	6766.67 mg L^2
17	17	5271.27 mg L^2
18	18	$3620.71 \text{ mg L} \hat{1}$
19	19	$3769.13 \text{ mg L} \hat{2}1$
20	20	$4176.95 \text{ mg L} \hat{-}1$
21	21	$7904.46 \text{ mg L} \hat{1}$
22	22	$5664.0~\mathrm{mg}$ L-1
23	23	$3668.06~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$
24	24	5305.01 mg L^2

Or generate the entire NCA report using

```
report = NCAReport(ncadf)
report = NCA.to_dataframe(report)
first(report,6)
```

	id	doseamt	$lambda_z$	half_life	tmax	tlag	cmax	clast
	String	Unitful	Unitful	Unitful	Unitful	Unitful	Unitful	Unitful
1	1	100.0 mg	0.0535472 hr ² 1	12.9446 hr	3 hr	0 hr	5889.9 mg L-1	153.834 mg I
2	2	$100.0~\mathrm{mg}$	0.0431487 hr	$16.0642~\mathrm{hr}$	4 hr	0 hr	$3817.94~\mathrm{mg}$ L-1	$212.74~\mathrm{mg}~\mathrm{L}$
3	3	$100.0~\mathrm{mg}$	0.0473535 hr2	$14.6377~\mathrm{hr}$	4 hr	0 hr	$4693.79~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$	$201.072~\mathrm{mg~I}$
4	4	$100.0~\mathrm{mg}$	$0.0532171 \text{ hr} \hat{-} 1$	13.0249 hr	2 hr	0 hr	$2427.58~\mathrm{mg}~\mathrm{L}\hat{\mathtt{-}}1$	62.1136 mg I
5	5	$100.0~\mathrm{mg}$	0.0461713 hr	$15.0125~\mathrm{hr}$	4 hr	0 hr	$5047.79~\mathrm{mg}$ L-1	226.384 mg I
6	6	$100.0~\mathrm{mg}$	0.0537639 hr^2	12.8924 hr	2 hr	0 hr	$4480.84~\mathrm{mg}$ L-1	$110.14~\mathrm{mg}~\mathrm{L}$

3 Problem 3: Estimate using Non-linear mixed effects

We can use the simulated dataset in the Problem 1 for our estimation. We need a couple of data manipulation steps

- 1. missing cmt should be converted to 2 to reflect central compartment
- 2. data rows where time = 0, and cp=0 should be removed

```
simdf.cmt = ifelse.(ismissing.(simdf.cmt), 2, simdf.cmt)
est_df = simdf[.!((simdf.dv .== 0.0) .& (simdf.cmt .==2)),:]
first(est_df,6)
```

	id	$_{ m time}$	$^{\mathrm{cp}}$	dv	amt	evid	cmt	rate	Wt	route
	String	Int64	Float64	Float64	Float64	Int8	Int64	Float64	Int64	String
1	1	0	0.0	0.0	100.0	1	1	0.0	67	ev
2	1	1	4378.18	4408.47	0.0	0	2	0.0	67	ev
3	1	2	5662.54	6838.12	0.0	0	2	0.0	67	ev
4	1	3	5889.9	4976.36	0.0	0	2	0.0	67	ev
5	1	4	5763.36	6322.58	0.0	0	2	0.0	67	ev
6	1	5	5525.25	4881.75	0.0	0	2	0.0	67	ev

3.1 Part 1: Read datasets for NLME estimation

We can use the read_pumas function to prepare the dataset for NLME estimation data = read_pumas(est_df ,cvs = [:Wt], dvs=[:dv])

Population

Subjects: 24 Covariates: Wt Observables: dv

where

- cvs takes an array of covariates
- dvs takes an array of the dependent variables
- since the dataframe has time as the variable, the function does not need a specific input

3.2 Part 2: Perform a model fit

We now use the

- mymodel model that we wrote earlier
- the set of parameters specified in param as initial estimates
- data that was read in using the read_pumas function

to fit the model.

res = fit(mymodel,data,param,Pumas.FOCEI())

FittedPumasModel

Successful minimization: true

Likelihood approximation: Pumas.FOCEI Objective function value: 11220.7

Total number of observation records: 1728
Number of active observation records: 1728
Number of subjects: 24

 $\begin{array}{cccc} & \text{Estimate} \\ \hline ------ \\ \text{tvcl} & 1.019 \\ \text{tvv} & 19.913 \\ \text{tvka} & 0.94629 \\ \hline \Omega_1,_1 & 0.084256 \\ \hline \Omega_2,_2 & 0.054302 \\ \hline \Omega_3,_3 & 0.13733 \\ \sigma_\text{prop} & 0.036728 \\ \end{array}$

3.3 Part 3: Infer the results

infer provides the model inference

infer(res)

Calculating: variance-covariance matrix. Done.

 ${\tt FittedPumasModelInference}$

Successful minimization: true

Likelihood approximation: Pumas.FOCEI
Objective function value: 11220.7
Total number of observation records: 1728
Number of active observation records: 1728
Number of subjects: 24

tvcl 1.019 6.0073 [0.899 ; 1.139] tvv 19.913 4.8287 [18.029 ; 21.798] tvka 0.94629 8.6658 [0.78556 ; 1.107] Ω_1 , 1 0.084256 28.054 [0.037928; 0.13059] Ω_2 , 2 0.054302 23.117 [0.029698; 0.078905]		Estimate	RSE	95.0% C.I.
σ_{prop} 0.036728 2.0633 [0.035243; 0.038213]	tvv tvka Ω_1 , 1 Ω_2 , 2 Ω_3 , 3	19.913 0.94629 0.084256 0.054302 0.13733	4.8287 8.6658 28.054 23.117 40.91	[18.029 ; 21.798] [0.78556 ; 1.107] 4 [0.037928; 0.13059] 7 [0.029698; 0.078905] [0.027217; 0.24744]

3.4 Part 4: Inspect the results

inspect gives you the

- model predictions
- residuals
- Empirical Bayes estimates

preds = DataFrame(predict(res))
first(preds, 6)

	id	time	Wt	pred	ipred	pred _approx
	String	Float64	Int64	Float64	Float64	Pumas
1	1	1.0	67	2917.25	4311.8	FOCEI()
2	1	2.0	67	3952.07	5615.73	FOCEI()
3	1	3.0	67	4226.08	5863.35	FOCEI()
4	1	4.0	67	4201.7	5747.16	FOCEI()
5	1	5.0	67	4065.71	5512.53	FOCEI()
6	1	6.0	67	3892.21	5246.04	FOCEI()

resids = DataFrame(wresiduals(res))
first(resids, 6)

	id	$_{ m time}$	Wt	wres	iwres	wres_approx
	String	Float64	Int64	Float64	Float64	Pumas
1	1	1.0	67	0.952997	0.116996	FOCEI()
2	1	2.0	67	1.37441	1.1358	FOCEI()
3	1	3.0	67	-0.583026	-0.789355	FOCEI()
4	1	4.0	67	0.798189	0.522428	FOCEI()
5	1	5.0	67	-0.32281	-0.597079	FOCEI()
6	1	6.0	67	0.8688	0.598683	FOCEI()

ebes = DataFrame(empirical_bayes(res))
first(ebes, 6)

	id	$_{ m time}$	Wt	ebe_1	ebe_2	ebe_3	$ebes_approx$
	String	Float64	Int64	Float64	Float64	Float64	Pumas
1	1	1.0	67	-0.227424	-0.274124	0.0897472	FOCEI()
2	1	2.0	67	-0.227424	-0.274124	0.0897472	FOCEI()
3	1	3.0	67	-0.227424	-0.274124	0.0897472	FOCEI()
4	1	4.0	67	-0.227424	-0.274124	0.0897472	FOCEI()
5	1	5.0	67	-0.227424	-0.274124	0.0897472	FOCEI()
6	1	6.0	67	-0.227424	-0.274124	0.0897472	FOCEI()

There is an inspect function that provides all the results at once

Note that this function below fails to convert into a dataframe due to a bug. Will be fixed soon

resout = DataFrame(inspect(res))
first(resout, 6)

4 Problem 4: Validate your model

Finally validate your model with a visual predictive check vpc(res,200) |> plot

or stratify it based on bodyweight vpc(res,200, stratify_on=[:Wt]) |> plot

