Examen Final Regular - Análisis Matemático I

Nicolás Robledo

29 de junio de 2020

Universidad Católica de Salta - Facultad de Ingeniería Análisis Matemático I

JUSTIFICAR TODOS LOS RESULTADOS. LOS PROCEDIMIENTOS TAMBIÉN SE CORRIGEN.

Ejercicio 1 (15 puntos)

- 1. Escribe el dominio de la función $f(x) = \frac{\sqrt{x-1}}{x+3}$.
- 2. Dadas las funciones $f(x) = \frac{1}{x}$ y $g(x) = \sqrt{x}$. Encuentra la función composición $f \circ g$, indicando cómo se define, cuál es su dominio y su imagen.

Ejercicio 2 (15 puntos)

- 1. Grafica la siguiente función $f(x) = \ln x$.
- 2. ¿La función del inciso (a) tiene inversa? Justifica y explica detalladamente cómo se determina una fórmula para f^{-1} , si existe.
- 3. Dada la función $f: \mathbb{R} \to [-1, 1]$, definida por $f(x) = \cos x$, decide si f es par, impar o ninguna de las anteriores.

Ejercicio 3 (20 puntos)

Dada la siguiente función:

$$f(x) = \begin{cases} \frac{x^3 + 2}{2x} & \text{si } x < 0\\ -3x + 3 & \text{si } 0 \le x < 1\\ |x| & \text{si } x \ge 1 \end{cases}$$

1. Determina si existen los siguientes límites:

- $\lim_{x\to 0} f(x)$
- $\lim_{x\to 1} f(x)$
- 2. Calcula los siguientes límites:
 - $\bullet \lim_{x \to 2} \frac{\sqrt{x^2 4}}{2x^2 8}$
 - $\bullet \lim_{x \to 5} \frac{x^2 25}{\sin(x 5)}$

Ejercicio 4 (20 puntos)

- 1. Analiza la continuidad de la función $f(x) = \frac{x^3-1}{x^2-1}$, en todos los puntos de su dominio. Clasifica las discontinuidades.
- 2. Determina, si existen, las asíntotas de la función del inciso (a) y grafica dichas asíntotas.

Ejercicio 5 (30 puntos)

- 1. Dada la función $y = 2x x^2$:
 - Encuentra la pendiente de la recta tangente a la curva de la función en el punto P = (1, 2), por definición.
 - Calcula la ecuación de la recta tangente y normal a la curva de la función en P = (1, 2).
- 2. Determina la función derivada de cada una de las siguientes funciones:
 - $\bullet \ x^3 + y^3 = 6xy$
 - $\bullet \ h(x) = e^{5x} \ln(4x^3)$
- 3. Experiencias físicas indican que mientras el proyectil está en movimiento su altura f(t) viene dada por la expresión $s = f(t) = 45t 5t^2$, donde t se mide en segundos y s en metros.
 - Indica la velocidad del proyectil en el instante t. ¿Cuándo el proyectil está en reposo?
 - ullet Encuentra la aceleración del proyectil en el instante t.