Población y muestra:

Valores que dependen de la muestra ALEATORIOS

Estadístico: Función de los valores de la muestra.

Estimador: Estadístico que toma valores en el espacio paramétrico.

	VARIABLE ESTADÍSTICA	VARIABLE ALEATORIA	ESTADÍSTICO MUESTRAL	PARÁMETRO DE LA POBLACIÓN
Posición central	Media	Esperanza	Media muestral	Media
	$\bar{x} = \frac{1}{n} \sum_{i} x_{i} n_{i}$	$E[X] = \sum_{i} x_{i} P[X = x_{i}]$ $E[X] = \int_{-\infty}^{\infty} x f(x) dx$	$\overline{X} = \frac{1}{n} \sum_{i} X_{i}$	μ
Variabilidad	Varianza	Varianza	Varianza y cuasi-varianza muestrales	Varianza
	$\sigma^2 = \frac{1}{n} \sum_i x_i^2 n_i - \overline{x}^2$	$Var[X] = E[X^2] - E[X]^2$	Varianza muestral: $\hat{\sigma}^2 = \frac{1}{n} \sum_i X_i^2 n_i - \overline{X}^2$ Cuasivarianza muestral: $S^2 = \frac{n}{n-1} \hat{\sigma}^2$	$\sigma^{\scriptscriptstyle 2}$
Proporción	Frecuencia relativa	Probabilidad	Proporción muestral	Proporción
	$f_i = \frac{n_i}{N}$	Función masa de probabilidad: $P[X = x_i]$ Función de densidad: $f(x)$	$\hat{p} = \frac{k}{n}$ (k número de unidades que cumplen la característica)	p

Distribuciones en el muestreo de poblaciones normales:

Distribución de la media muestral de una población normal

$$T = \frac{\overline{X} - \mu}{S / \sqrt{n}} \to t_{n-1}$$

Distribución de la varianza muestral de una población Normal

$$\chi^2 = \frac{n\hat{\sigma}^2}{\sigma^2} = \frac{(n-1)S^2}{\sigma^2} \rightarrow \chi^2_{n-1}$$

Distribución de la diferencia de medias muestrales de dos poblaciones Normales independientes

Varianzas poblacionales desconocidas pero iguales

Varianzas poblacionales desconocidas, iguales o no, con *n*_x≥30 y *n*_y≥30

$$T = \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{S_p \sqrt{\frac{1}{n_X} + \frac{1}{n_Y}}} \to t_{n_X + n_Y - 2}$$

$$S_p^2 = \frac{(n_X - 1)S_X^2 + (n_Y - 1)S_Y^2}{n_X + n_Y - 2}$$

$$Z = \frac{(\overline{X} - \overline{Y}) - (\mu_X - \mu_Y)}{\sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}} \to N(0,1)$$

$$Z = \frac{\left(\overline{X} - \overline{Y}\right) - \left(\mu_X - \mu_Y\right)}{\sqrt{\frac{S_X^2}{n_X} + \frac{S_Y^2}{n_Y}}} \to N(0,1)$$

Distribución del cociente de varianzas muestrales de dos poblaciones Normales independientes

$$F = \frac{S_X^2}{\sigma_X^2} \rightarrow F_{n_X - 1, n_Y - 1}$$

$$\sigma_Y^2 \rightarrow \sigma_Y^2$$

Distribución de la proporción muestral

$$Z = \frac{\hat{p} - p}{\sqrt{\frac{p(1-p)}{n}}} \to N(0,1)$$

Distribución de la diferencia de proporciones muestrales

$$Z = \frac{\left(\hat{p}_{X} - \hat{p}_{Y}\right) - \left(p_{X} - p_{Y}\right)}{\sqrt{\frac{p_{X}(1 - p_{X})}{n_{X}} + \frac{p_{Y}(1 - p_{Y})}{n_{Y}}}} \to N(0,1)$$