



# **CONTEÚDO**

- 1. Questões fundamentais
- 2. Exemplo
- 3. Que dados guardar e durante quanto tempo?
- 4. Business Intelligence e Big Data
- 5. Usos comuns de Big Data
- 6. Big Data e IoT
- 7. Rede de Sensores Sem Fios (RSSF)
- 8. RSSF Libelium
- 9. Sensores Virtuais
- 10. Processamento de eventos complexos

## Questões fundamentais

#### Que quantidade de dados vai ser capturada, enviada e transmitida para a cloud?

- Dificuldades começam a aparecer quando o projeto escala
  - É fácil manter streaming e armazenamento de dados de um pequeno número de dispositivos
  - Torna-se mais difícil com o aumento desse número

#### O que se vai fazer com os dados?

- Os dados devem
  - · Ajudar a identificar padrões, tendências e possibilidades de melhoria
  - · Servir para atingir um propósito específico
  - Resolver um problema (ex: Melhorar eficiência operacional, Ajudar na manutenção de equipamentos, Reduzir desperdício)

## Durante quanto tempo se deve guardar os dados?

- Não é exequível guardar todos os dados gerados pelos dispositivos desde sempre
  - · Custos do armazenamento

## Os dados devem ser arquivados quando deixarem de ser necessários?

- Não faz sentido guardar os dados só para os ter.
  - É necessário que sirvam um propósito



# **Exemplo**

## Queremos perceber quanta energia consome o sistema de iluminação de um edifício

- 1. Instalar sensores
- 2. Sensores recolhem diversos dados (pressão atmosférica, altitude, temperatura, ...)
- Que dados são úteis?
  - Há luzes acesas em salas vazias?
  - É possível diminuir a intensidade das luzes em certas circunstancias? (ex: dias mais claros)

• Gestão de dados: processo que, tendo em conta todos os dados disponíveis, refina-os para extrair algumas métricas

específicas



# Que dados guardar e durante quanto tempo?

## Queremos perceber quanta energia consome o sistema de iluminação de um edifício

- Dados em tempo real:
  - Luzes ligadas ou desligadas?
  - Sala vazia ou ocupada?
  - Luz natural é suficiente?

Memória (curto prazo)

- Dados históricos
  - Experimentamos sensores automáticos há 6 meses.
    - Qual foi o impacto em termos de custos de energia?
  - Quando é que o edifício está mais (e menos) ocupado?
  - Há padrões sazonais presentes nos dados?

Analytics Warehouse (longo prazo)



# **Business Intelligence e Big Data**

- Muitos dispositivos
- · Cada um transmite muitos dados
- Aproveitamento do grande volume de dados
  - Sistemas analíticos eficientes (Business Intelligence, BI)



- Sistemas de BI tentam (sem sucesso) dar resposta a
  - Volume: cada vez mais aplicações, mais dados, de mais fontes. Problemas com armazenamento e processamento
  - Velocidade: Necessidade de processar dados em tempo real e de dar resposta em tempo útil
  - Variedade: Formatos de dados cada vez mais diversificados
- Big Data
  - Adapta-se às necessidades do processamento analítico de dados loT
  - Dá ainda resposta a **veracidade**: garantia de veracidade dos dados
  - · Permite usar dados
    - Estruturados, ex: bases de dados, ficheiros com formato predefinido
    - Não estruturados, ex: emails, documentos word, pdf, vídeos, fotografias, som, publicações em redes sociais, ...



# **Usos comuns de Big Data**

#### Indústria:

- Previsão de falhas de manutenção
- Gestão de Clientes (CRM, Customer Relationship Management)
- Controlo de processos de fabrico

## **Telecomunicações**

- Deteção e prevenção de fraude
- Prevenção de churn (saídas de clientes ou desligamento de serviços)
- · Controlo de qualidade da rede

#### Saúde

- Desenvolvimento de medicamentos e efeitos secundários
- Análises de ensaios clínicos
- Controlo da qualidade da prestação de serviços de saúde

#### **Energia e Utilities**

- Gestão de contadores inteligentes
- Gestão de falhas na rede de distribuição

#### **Banca**

- Deteção de fraude
- Compliance e regulação
- Gestão de clientes
- Vigilância dos mercados de capitais

#### Governo

- Prevenção da criminalidade
- · Combate ao terrorismo
- Deteção de fraude (fisco, segurança social)

#### Media

- Segmentação de campanhas publicitárias
- Análise de audiências

#### Retalho

- Ajuste de preços face à concorrência
- Gestão de localização de abertura de novas lojas
- · Gestão de clientes



# Big Data e IoT



https://www.whizlabs.com/blog/iot-and-big-data/



# Rede de Sensores Sem Fios (RSSF)

Interligação de um determinado número de equipamentos equipados com sensores com capacidade de observar o meio físico, podendo ou não conter certos mecanismos (conhecidos como atuadores) com capacidade de interagir com o ambiente como por exemplo as torneiras de água de alguns alarmes de incêndio.

Pplware, 2015





## **RSSF Libelium**





## **Sensores Virtuais**

• **Soft sensors** are inferential models that use easily measured variables to estimate process variables that are hard to measure due to technological limitations, large measurement delays, or high investment costs (*Kadlec et al., 2009*).

#### Exemplos:

- Medir concentração de biomassa, com base nas concentrações de CO<sub>2</sub> e O<sub>2</sub>
- Filtros Kalman para estimar a localização
- Estimar a velocidade em motores elétricos
- Computação fuzzy no controle de processos
- Estimar qualidade dos alimentos



Sensor biocompatível https://mc.ai/a-safe-wearable-soft-sensor/



# Processamento de eventos complexos

## CEP, Complex Event Processing

- Objetivo: tirar conclusões dos dados em tempo real ou quase real.
- Tecnologia de rede emergente que usa sistemas, bases de dados e aplicações baseadas em mensagens distribuídas
- Usado para aplicações exigentes que melhoram a perceção da situação e dão suporte a decisões em tempo real
- Combina dados de várias fontes para inferir eventos ou padrões que sugerem circunstâncias mais complicadas
- Pode fornecer capacidade de definir, gerir e prever eventos, situações, condições, oportunidades e ameaças.
- Dados recebidos sobre eventos s\u00e3o transformados em dados de eventos "complexos" mais \u00eateis e de n\u00edvel superior,
  projetados para fornecer informa\u00f3\u00f3es sobre o que est\u00e1 a acontecer.
  - Dados: notícias, mensagens de texto, publicações em redes sociais, feeds do mercado de ações, relatórios de tráfego,
    boletins meteorológicos, ...
- Evento: "mudança de estado", quando uma medição excede um limite predefinido
  - Orientado aos eventos: o cálculo é acionado pela receção de dados do evento
  - Os eventos que estão a ser analisados podem estar a acontecer em diferentes partes de uma organização

## Processamento de eventos complexos





Do conhecimento à prática.