• 시계열 데이터

- > 시계열 데이터란?
 - 일정 시간 간격으로 저장된 데이터

<class 'pandas.core.frame.dataframe'=""> RangeIndex: 122 entries, 0 to 121</class>				Date	
Data columns (total 18 co # Column		Dtype	0	2015- 01-05	
 O Date	 122 non-null	datetime64[ns]	1	2015- 01-04	
			2	2015- 01-03	
미래변화 예측을 위해 패턴(반복) 분석을 통해 시계열데이터 분석예)주식,날씨 등 시간의 흐름대로 기록된 데이터					

머신러닝에서 시게열데이터 모형: ARIMA

• 시계열 데이터

```
03
  > 시계열 데이터 불러오기
방법 1 – 데이터를 불러오면서 변환
  import pandas as pd
  ebola = pd.read_csv('country_timeseries.csv', parse_dates=['Date'])
      - to_datatime을 이용한 변환 -->차후 덮어씌어야
  pd.to_datetime(ebola['Date'])
                                        --. 덮어씌어야
 방법3 – astype('datetime64[ns]')을 이용한 변환
  ebola['Date'].astype('datetime64[ns]')
```

• 시계열 데이터

- > 시간 정보 추출하기
 - dt 접근자

print(ebola['Date'].dt.year)

```
Out:
                2015
                2015
                2015
                2015
                2014
                . . .
         117
                2014
         118
                2014
         119
                2014
         120
                2014
                2014
         Name: Date, Length: 122, dtype: int32
```

pandas.Series.dt.date pandas.Series.dt.time pandas.Series.dt.timetz pandas.Series.dt.year pandas.Series.dt.month pandas.Series.dt.day pandas.Series.dt.hour pandas.Series.dt.minute pandas.Series.dt.second pandas.Series.dt.microsecond pandas.Series.dt.nanosecond pandas.Series.dt.dayofweek pandas.Series.dt.day_of_week pandas.Series.dt.weekday pandas.Series.dt.dayofyear pandas.Series.dt.day_of_year pandas.Series.dt.days_in_month pandas.Series.dt.quarter pandas.Series.dt.is_month_start pandas.Series.dt.is_month_end pandas.Series.dt.is_quarter_start pandas.Series.dt.is_quarter_end pandas.Series.dt.is_year_start pandas.Series.dt.is_year_end

pandas.Series.dt.daysinmonth pandas.Series.dt.days_in_month pandas.Series.dt.tz pandas.Series.dt.freq pandas.Series.dt.unit pandas.Series.dt.normalize pandas.Series.dt.isocalendar pandas.Series.dt.to_period pandas.Series.dt.to_pydatetime pandas.Series.dt.tz_localize pandas.Series.dt.tz_convert pandas.Series.dt.normalize pandas.Series.dt.strftime pandas.Series.dt.round pandas.Series.dt.floor pandas.Series.dt.ceil pandas.Series.dt.month_name pandas.Series.dt.day_name pandas.Series.dt.as_unit pandas.Series.dt.qyear pandas.Series.dt.start_time pandas.Series.dt.end_time pandas.Series.dt.days pandas.Series.dt.seconds pandas.Series.dt.microseconds pandas.Series.dt.nanoseconds pandas.Series.dt.components

pandas.Series.dt.unit

pandas.Series.dt.is_leap_year

• 시계열 데이터

> 시계열 그래프 그리기

보통 line 그래프 사용

import matplotlib.pyplot as plt

plt.plot(ebola['Date'], ebola['Cases_Guinea'])

Out:

• 시계열 데이터

- > 시계열 그래프 그리기
 - 분기별 그래프 그리기

- 0. 분기별 컬럼 만듦 1. year 컬럼 만듦 2. year와 quarter 로 그룹

ebola['Date_quarter'] = ebola['Date'].dt.quarter

plt.plot(ebola['Date_quarter'], ebola['Cases_Guinea'])

Out:

x,y값에 시간의 흐름이 없음

• 시계열 데이터

- > 시계열 그래프 그리기
 - 분기별 그래프 그리기

```
ebola['Date_year'] = ebola['Date'].dt.year
ebola_quarter = ebola.groupby(['Date_year', 'Date_quarter'])['Cases_Guinea'].mean()
ebola_quarter
```

```
Out: Date_year Date_quarter
2014 1 94.500000
2 252.185185
3 636.633333
4 1989.800000
2015 1 2773.333333
Name: Cases_Guinea, dtype: float64
```

• 시계열 데이터

80

- > 시계열 그래프 그리기
 - 분기별 그래프 그리기

ebola_quarter.plot()

Out:

• 시계열 데이터

```
> 시간 범위 다루기
- pd.date_range 누락값 기간을 정해서 값 채우기
시작
pd.date_range('2014-12-31', '2015-01-05', freq = 'D') 간격`
```

```
Out: DatetimeIndex(['2014-12-31', '2015-01-01', '2015-01-02', '2015-01-03', '2015-01-04', '2015-01-05'], dtype='datetime64[ns]', freq='D')
```

• 시계열 데이터

010

> 시간 범위 다루기

https://pandas.pydata.org/docs/user_guide/timeseries.html#offset-aliases

B: 삭제 S: 시작 M: 마지막

지정자	설명	지정자	설명	
В	평일	QS	분기의 시작일	
С	사용자가 정의한 평일	BQS	휴일을 제외한 QS	
D	일자 단위	Α	연 마지막 날	
W	주 단위	ВА	휴일을 제외한 A	
M	월 마지막 날	AS	연 시작일	
SM	15일과 월 마지막 날	BAS	유일을 제외한 AS	
ВМ	휴일을 제외한 M	ВН	업무 시간 단위(9~16시)	
СВМ	BM에 사용자 정의	Н	시간 단위	
MS	월 시작일	Т	분 단위	
SMS	월 시작일과 15일	S	초 단위	
BMS	휴일을 제외한 MS	L	밀리초 단위	
CBMS	BMS에 사용자 정의	U	마이크로초 단위	
Q	분기의 마지막 날	N	나노초 단위	
BQ	휴일을 제외한 Q			

• 시계열 데이터

- > 시간 주기 변경하기
 - resample

ebola_month = ebola.set_index('Date').resample('M').mean() ebola_month 월 마지막 날

Out:

	Day	Cases_Guinea	Cases_Liberia	Cases_SierraLeone	Cases_Nigeria	Cases_Senegal	Cases_UnitedStates
Date							
2014- 03-31	4.500000	94.500000	6.500000	3.333333	NaN	NaN	NaN
2014- 04-30	24.333333	177.818182	24.555556	2.200000	NaN	NaN	NaN
2014- 05-31	51.888889	248.777778	12.555556	7.333333	NaN	NaN	NaN
2014- 06-30	84.636364	373.428571	35.500000	125.571429	NaN	NaN	NaN
2014- 07-31	115.700000	423.000000	212.300000	420.500000	1.333333	NaN	NaN
2014- 08-31	145.090909	559.818182	868.818182	844.000000	13.363636	1.000000	NaN
2014- 09-30	177.500000	967.888889	2815.625000	1726.000000	20.714286	1.285714	NaN
2014- 10-31	207.470588	1500.444444	4758.750000	3668.111111	20.000000	1.000000	2.555556
2014- 11-30	237.214286	1950.500000	7039.000000	5843.625000	20.000000	1.000000	4.000000
2014- 12-31	271.181818	2579.625000	7902.571429	8985.875000	20.000000	1.000000	4.000000
2015- 01-31	287.500000	2773.333333	8161.500000	9844.000000	NaN	NaN	NaN

• 시계열 데이터

012

- > 시간 주기 변경하기
 - resample

plt.plot(ebola_month.index, ebola_month['Cases_Guinea'])

Out:

