

이슈리포트 2019-41호

플랫폼 기업들의 인공지능 활용사례와 시사점

김두규 수석 (dkkim1@nipa.kr) SW산업본부 공개SW팀

2019. 12. 24

목 차

- I. 들어가는 말
- Ⅱ. 인공지능 응용의 개발과정
 - 1. AI응용 개발과정 개요
 - 2. AI응용 개발 세부절차
- Ⅲ. 플랫폼 비즈니스의 인공지능 활용사례
 - 1. 플랫폼 비즈니스의 이해
 - 2. 플랫폼 기업들의 인공지능 활용사례 분석
- Ⅳ. 시사점

사로운 IT의 세계가 시작되는 곳 정보통신산업진흥원입니다.

일러두기

- 1. 본 보고서에서 "인공지능"은 머신러닝(기계학습)과 같은 개념으로 사용되었습니다
- 2. 본 보고서의 "인공지능 활용사례 분석"은 해당 기업의 개발자 또는 제3자의 논문, 보고서, 언론 인터뷰 등의 내용을 토대로 필자가 정리한 것이므로 용어를 포함하여 당해 기업의 공식적 내용물과는 다를 수 있습니다

I. 들어가는 말

- o 최근 우버(Uber), 에어비앤비(Airbnb)와 같은 플랫폼 비즈니스가 확산되고 있는데, 이는 운송, 숙박 등 전통 서비스업이 디지털화·지능화되면서 비즈니스 모델도 양면시장형으로 변모(reshaping)하는 추세로 볼 수 있음
- o 이러한 지능화의 주요 동인(動因)으로는 이미지 인식, 자연어 처리 등의 인공지능 (AI) 기술들을 손꼽을 수 있는데, AI의 거두(巨斗) Andrew Ng은 향후 몇십년 동안 AI가 변화시키지 않을 산업을 상상하기 어렵다고 언급한 바 있음
- o 본 고에서는 최근 확산되고 있는 플랫폼 비즈니스 기업들의 인공지능 활용사례를 살펴보고, IT산업 진흥에 시사하는 바를 도출해보고자 함

Ⅱ. 인공지능(AI) 응용의 개발 과정

1 AI응용 개발과정 개요

o 인공지능 응용1) 개발은 과거 데이터로부터 패턴을 찾아내어 모델화한 후, 사용자 인터페이스 등을 추가한 응용(application)으로 만들어 실무에 사용하는 일련의 과정으로, 크게 나누어 데이터전처리 → 모델링→ 예측(적용)의 3단계로 구분됨

¹⁾ 여기에서는 머신러닝(딥러닝) 방법으로 개발하는 인공지능 응용서비스들을 의미

AI응용 개발과정 세부 절차

- o (데이터 전처리) 전처리는 데이터의 클린징, 변환, 필터링 등을 통해 원시 데이터를 구조화하여 훈련용으로 사용가능한 데이터셋(dataset)을 생성하는 작업2). 전처리를 거쳐 만들어진 데이터의 완성도는 곧 훈련(fitting)의 효율성과 모델의 성능(예: 정확도, 안정성)을 좌우하기 때문에 모델링에서 매우 중요한 작업
 - 클린징(cleansing) : 원시 데이터의 결측값, 오류값 등을 제거 또는 수정
 - 변환(transformation) : 범주형데이터(예: 예/아니오, 청소년/성인/노인)를 수자로 바꾸거나, 데이터를 표준화3)하거나, 특이값을 수정/제거하거나 주소(지역명과 수자)의 GPS값으로의 변환 등
 - 필터링(filtering) : 모델의 성능을 저해하는 변수(예: 다중공선성(multicollinearity)⁴⁾ 높은 변수)를 제거
- o (모델링) 알고리즘 선택, 훈련(fitting), 테스팅을 반복하면서 가장 성능이 좋은 모델을 생성하는 과정
- 알고리즘 선택 : 데이터로부터 패턴을 찾기 위해 적용할 알고리즘(분류,회귀) 선택
- 훈련(fitting) : 훈련용 데이터를 이용하여 모델의 최적 계수를 찾아내고, 검증용 데이터(validation set)를 이용하여 모델의 예측력 확인
- 테스트(test) : 훈련용과 별도의 데이터셋을 이용하여 모델의 성능을 평가
- o (예측) 실제 데이터를 모델에 적용하여 결과를 예측하는 과정
 - 요구(기대) 수준의 성능을 갖춘 모델은 User Interface 추가, 시스템 통합 등의 배치과정을 거쳐 실무에 사용
 - 데이터 투입 방식은 일괄처리(batch) 또는 스트리밍(streaming)

²⁾ 수자나 문자로 이루어진 데이터의 수정·보완, 큰 이미지를 분할하여 부호화하는 것, 음성(신호) 샘플링 등도 학습 모델에 투입하기 위한 데이터를 준비하는 작업, 즉, 전처리에 해당.

³⁾ 표준화는 각 변수값을 평균의 몇 배에 해당하는 값으로 변환하는 것으로 가장 흔한 정규화(normalize) 방법

⁴⁾ 회귀분석에서 독립변수(특성변수)들 사이에 존재하는 상관관계를 다중공선성(multicollinearity)이라 함. 상관관계가 높은 변수(예컨대 분산팽창계수 VIF>10)들을 제거하거나 변형함으로써 변수들의 독립성을 높여주면 예측력이 향 상되는 경향이 있음

Ⅲ. 플랫폼 비즈니스의 인공지능 활용 사례

1 | 플랫폼 비즈니스의 이해

□ 개요

- o 플랫폼 비즈니스는 다면 플랫폼(multi-sided platform)을 통해 공급자와 소비자를 연결하여 거래가 이루어지게 하는 새로운 형태의 비즈니스
 - 여러 유형의 다면 플랫폼 가운데 교차보조효과5)가 강하게 나타나는 비즈니스 모델이 플랫폼 비즈니스에 해당
 - 공급자와 소비자는 모두 플랫폼에 참여하여 원하는 거래를 실행

<그림 : 플랫폼 비즈니스의 다양한 유형6 >

< 플랫폼별 양측 참여자 >

□ 주요 사례

o 자산 공유, 소셜미디어(SNS), 금융(편당,결제), 경매 등 다양한 업종에서 플랫폼 비즈니스가 등장하면서 여러 산업으로 확산

⁵⁾ 플랫폼의 일방(공급자 또는 소비자)이 상대측으로부터 얻을 수 있을 것으로 기대되는 이익을 교차보조효과라 함

^{6) 2017,} Murat Uenlue(The Complete Guide to the Platform Business Model)을 따른 것이며 여러 유형 가운데 본고에 서는 교차보조효과(Cross Subsidiary Effect)가 강한 다면플랫폼을 Platform Business로 구분

< 표 : 플랫폼 비즈니스 주요 사례 >

구분	내용	해당 기업		
	운휴 차량을 타인에게 대여하도록 중개(차량공유)	Zipcar, Socar		
운송	드라이버가 있는 승차 서비스를 승차요구자에게 연결	Uber, Lyft, DiDi		
<u> </u>	물품/음식 등의 운송(배달) 중개	GogoBan, MeshKorea		
	항공사,숙박업체(호텔)와 여행객을 연결	Skyscanner, Orbitz		
	소규모사업자와 신용카드회사를 연결하여 지불,정산 제공	Square, Alipay(Alibaba)		
금융	여유자금 보유자와 대출소비자를 연결, 개인간 대출을 중개	Lendit		
	투자자와 스타트업을 연결하여 투자를 중개	Kickstarter		
숙박	빈객실과 여행객을 연결, 숙박 제공	Airbnb, Hotels.com, Kozaza		
	구직자와 채용기업을 연결	LinkedIn, Recruiter.com		
인력중개	통번역, 소프트웨어개발, 요리사 등 전문인력과 수요자 연결	Freelancer.com, Upwork		
	집수리(인테리어), 설비공사 전문인력을 건물주에게 연결	TaskRabbit, Handy		
סהורה	빈주택공간을 모아 거주수요자에게 연결	ShareHouse		
공간공유	빈 업무(사무)공간을 공간수요자에게 제공	Breather, Wework		
물품거래	경매를 통해 타인 소유 물품의 거래를 중개	Sotheby, Auction		
	비디오(음악) 창작자와 비디오(음악) 소비자를 연결	Youtube, Spotify		
콘텐트거래	게임 창작자와 게이머를 연결	Nintendo, Naver(NHN)		
	학습(강의)콘텐트 창작자와 수강자를 연결	MOOC(Coursera, Edex,)		

□ 산업적 특징

o (네트워크 효과) 양측 참여자가 늘어날수록 각 측의 기대이익(판매기회 확대, 탐색비용 절감 등)도 늘어나기 때문에 규모가 큰 플랫폼이 더 확대되는 효과가 나타남

구분	교차보조효과	데이터 효과				
Airbnb	 (게스트) 객실공급이 많을수록 더 저렴하고 더 편리한 위치에서 숙박 가능 (호스트) 게스트가 많을수록 더 공실 감소, 더 많은 숙박료 수입 가능 	• 거래데이터(숙박 위치, 객실 타입, 거래 가격 등)가 많이 쌓일수록 효율적인 객실 확보, 매칭 확률 등의 예측에 유리				
Uber	 (승차자) 운전자(차량)가 많을수록 더 저렴한 요금, 더 신속한 이동 가능 (운전자) 승차자(고객)가 많을수록 운휴 감소, 더 많은 운행수입 가능 	• 거래데이터(승차요청위치,이동경로,픽업 소요시간, 도로상 이벤트 발생)가 많이 쌓일수록 효율적인 차량 배치, 도착예상 시간(ETA) 계산 등 예측력이 향상				
spotify	 (음악공급자) 회원이 많을수록 음악 판매수익 증가 (음악소비자) 음악 공급이 많을수록 선호(취향)에 맞는 음악 청취 가능 	• 거래데이터(선호장르,청취시간 등)가 쌓 일수록 더 효과적인 매칭시스템 개발				
LinkdedIn	 (구직자) 채용기업이 많을수록 더 유리한 직장 확보 가능 (채용기업) 구직자가 많을수록 더 우수한 인력확보 가능 	• 거래데이터(채용인력의 학력, 경력, 채 용기업의 인력선호유형 등)가 쌓일수록 효과적인 매칭 가능				

- o (플랫폼의 적극성) 플랫폼은 단순한 중개자가 아니라 거래공간제공(Playground Provider), 규칙설정(rule setter), 코디네이터(coordinator) 등 적극적 역할 수행기
- 플랫폼 운영자는 네트워크 효과를 키우기 위해 참여자에 대한 수익분배, 보조금 지불8), 개발툴(SDK), 이용통계 제공 등 다양한 수단을 통해 양측을 유인
- 우버가 수요를 예측하여 적정 위치에 차량을 배치하거나, 에어비앤비가 호스트 에게 가격 추천을 제공하는 등 플랫폼이 거래형성에 적극적 역할을 수행
- o (공유경제모델과의 관계) 공유경제모델은 플랫폼 비즈니스의 한 유형으로 상품을 보유하지 않는 측면에서 다른 플랫폼 비즈니스와 구별
- 공유경제모델은 자동차, 사무실 등 이용률이 낮은 자산, 즉 유휴자산(idle-sitting assets)을 다른 소비자가 사용하게 하여 수익을 창출하는 플랫폼 비즈니스의 한 유형

2 플랫폼 기업들의 인공지능 활용사례 분석

□ 에어비앤비(Airbnb)

- o (사업 현황) 전세계 65,000여 도시, 190여 국가에서 약 3백만 개의 객실을 확보, 매일 약 1백만 건의 숙박거래를 형성시키는 세계 최대의 숙박 서비스 기업
- o (거래 흐름) 객실 등록(호스트) → 객실 검색(게스트) → 매칭(에어비앤비) → 숙박(게스트) → 지불(게스트) → 평가·리뷰(게스트)

⁷⁾ 예를 들면, 검색포털은 콘텐트(정보) 제공자에게 개발툴, 수익공유(Profit Share) 등을 제공하고, 수요자(포털 이용자)에게 이메일, 저장공간 등을 제공하여 양측을 플랫폼으로 유인 및 거래를 촉진하는데 이것은 포털이 단순한 중개자(middleman)이 아니라 부가가치를 창출하는 활동을 함을 의미

⁸⁾ 회원가입시에 무료 이용을 제공하거나 장기이용자에게 할인을 확대하는 것이 보조금 지불의 예

- o (인공지능 활용) 에어비앤비는 머신러닝 기법으로 Dynamic Listing 모델과 Price Tips 모델을 개발, 이를 토대로 게스트-호스트 매칭시스템을 구축
 - 매칭시스템은 ① 객실예약확률 모델(Booking Probability Model) ② 전략 모델 (Strategy Model) ③ 개인화 모델(Personalization Model)로 구성
 - 예약확률모델은 리스팅가격, 객실타입, 수용인원, 침실개수, 객실위치, 숙박예정일까지 남은 날짜, 주변의 리스팅수 등의 변수를 이용하여 각 객실의 특정일자까지의예약확률을 산출(이 모델로부터 개별객실의 일자별 기본가격이 유도됨). 전략모델은 지역의평균수요, 객실 위치 등의 변수를 이용하여 게스트가 수용할 확률이 높은 가격을산출. 끝으로 호스트의 수용 행동, 호스팅 목표 등 개인화 변수를 반영, 다시조정된 가격을 생성(이 가격이 dynamic listing을 통해표시)

- Dynamic Listing 모델은 객실 속성을 나타내는 변수가 정해지는 흐름에 따라 객실목록을 실시 간으로 재구성하는 방법. 객실검색이 시작될 때는 객실 위치, 숙박 기간, 가격 등 입력조건에 따른 일반검색 순위(search ranking)에 의해 객실목록을 표시하지만, 어떤 객실(list item)이 클릭된 이후에는 그 항목 가중치를 높인 순위 리스트를 다시 생성하고, 최종 예약이 이루어지면 그 항목에 높은 가중치를 주는 방식으로 개인화된 리스트를 생성
- Host-Guest Matching Model은 객실별 예약확률 계산(기본가격 생성) → 권장가격 제시(객실 위치, 숙박예정일의 지역 수요 등 반영) → 가격 조정(개인화 변수 반영) 모델로 구성된 시스템

- o (성과) 대규모 데이터를 이용한 인공지능 기반의 매칭시스템을 구축, 여행객과 호스트들을 만족시키면서 숙박업계 선도기업으로 성장
 - 호스트에게는 보유자산을 활용(utilize)한 추가 수익원을 제공, 게스트(여행자)에게는 선호에 맞는 숙박을 정확하게 찾아주는 매칭모델이 사업 성장의 동력
 - ※ 에어비앤비와 같은 공유경제모델은 상품(객실)을 보유하지 않아 자산 가격하락 등 재무적 위험은 회피할 수 있으나 낮은 수익성(거래대금의 3~10%를 수수료로 수취)을 극복할 수 있는 대규모 거래를 만들어내기 위해 지능적인 매칭시스템이 필요
- Mariott, Hilton 등 전통호텔을 제치고 호텔객실점유율 1위(19%), 매출액은 전년비 30% 이상 성장(2018년)하면서 세계 최대숙박서비스 기업으로 성장

□ 우버(Uber)

- o (사업 현황) 83개국, 858개 도시에서 월평균 승차 7천5백만 건(택시의 1.7배), 매출 32억불, 드라이버 약 60만명(2018년)에 이르는 세계 최대 승차공유 기업
- o (거래의 흐름) 승차요청(라이더) → 예약등록(우버) → 승차수락(드라이버) →매칭(우버) → 승차(라이더) → 지불·평가(라이더)

- o (인공지능 활용) 차량-승차자 갭줄이기를 위한 Surge Pricing(수요추종 가격) 모델, 최적경로 모델 등 머신러닝을 이용한 지능화된 플랫폼을 구현
 - Surge Pricing 모델은 계속 변화하는 지역별 수요·공급량을 토대로 균형가격을 산출하는 회귀분석 모델로, 바뀌는 가격은 일정주기로 앱에 표시
 - 변동 가격은 차량은 수요가 높은 지역으로, 승객은 수요가 낮은 지역으로 이동할 수 있도록 하는 플랫폼의 중요한 장치
 - 최적경로는 과거의 승하차정보(예: TLC데이터》), 도로망 데이터를 기반으로 소요시간, 이동거리 등을 계산해주는 예측 모델로부터 생성

⁹⁾ 美TLC(교통관리위원회) 데이터는 승차시각, 하차시각, 요청위치GPS, 차량유형 등을 기록한 데이터로 일반에 공개

Surge Pricing(수요에 따라 변동되는 요금 표시)

Route Recommendation(운행경로추천)

Heat Map (붉은색이 진할수록 수요가 많은 지역)

- (Surge Pricing) Surge Pricing 모델은 수요 데이터(Ride demand)와 공급 데이터(Driver Availability)로부터 지역별 균형가격을 산출하는 회귀분석 모델(수요량이 늘어나면 가격이 오르는 dynamic pricing 모델)로, ① 소블록(hyperlocals¹0)) 단위로 도시를 구획 ② 과거의 승차거래데이터를 유사 특성을 갖는 몇 개의 지역으로 구분(군집화) ③ 각 지역별 수요·공급 함수를 도출한 후 소블록별로 동적가 격(5~10분 단위로 변동)을 표시
- (Heat map) 계속 변동되는 군형가격(승차공급, 승차수요 함수로부터 결정)을 몇 단계로 나누어 단 계별로 컬러를 다르게 표시해주는 시각화 모델.
- (Route Recommendation) 과거의 승하차, 도로상의 이벤트(행사, 교통사고) 등의 데이터를 분석하여 최단 경로(경로 이동시간 최소인 경로)를 운전자에게 제시하는 모델

¹⁰⁾ Hyperlocals는 어떤 지역을 매우 작은 육각형으로 나눈 공간, 대부분의 도시 승차관리 프로그램이 채택하는 방식

- o (성과) 지능화된 차량·승차자 매칭기술을 기반으로 승차공유업계 선도기업 으로 성장
- 머신러닝으로 개발한 Surge Pricing, Route Optimization 모델은 수급 매칭을 최대화할 수 있게 하는 우버의 핵심 역량
 - ※ 승차공유 사업(ride-share)의 핵심과제는 ① 어떻게 승차거래량을 극대화할 것인가? ② 어떻게 택시보다 저렴한 요금을 제공할 것인가? ③ 어떻게 최단 운행 거리를 찾아내어 이동시간을 줄일 것인가 하는 문제로 요약될 수 있는데, 우버는 머신러닝을 통해 이러한 이슈들을 해결
- 우버드라이버는 택시보다 운휴시간이 짧고, 자산(택시)회전율은 더 높은데(지역에 따라 3.5%~44.2% 높음) 이러한 효과를 기반으로 드라이버, 승차자가 지속 증가하면서 거래 규모도 지속 증가(2018년 매출 전년비 43%, Booking건수 45% 증가)

□ 스포티파이(Spotify)

- o (사업 현황) 스포티파이는 매출액 52억 유로(6.8조원), 이용자 2억7천만 명(플레이리스트 이용자 2억1천만명)에 이르는(2018년) 세계 최대 음악스트리밍 기업
- o (거래 흐름) 음원 업로드·회원가입 → 검색·추천 → 리스트 추가 → 청취

- o (인공지능 활용) 스포티파이는 이용자들의 온라인 행위 분석(자연어 처리), 오디오(음원) 분석 및 이를 토대로 한 음악추천시스템 개발에 머신러닝을 이용
 - 자연어처리(NLP)모델은 사람들(청취자,음악전문가)의 온라인 행동(뉴스,블로그,저널 등에 나타난 코멘트, SNS의 호감(like) 표시 등)을 분석하는 모델
 - 오디오 분석(Audio Analysis) 모델은 스포티파이가 보유한 음악들의 장르, 음조(tunes), 조성(key) 등을 분석, 비슷한 음악들을 분류하는 모델
 - Collaborative Filtering, NLP, Audio Analysis를 통해 수백만 개의 데이터 (observations)로 구성된 2개의 벡터(User Vector, Song Vector)로 거대행렬을 만들고 이를 분류하는 알고리즘을 토대로 개인화된 추천리스트를 생성

- * 스포티파이의 큐레이션시스템(Music Curation System)은 Collaborative Filtering 모델, NLP모델, Audio Analysis 모델의 정보를 통합하여 개별청취자를 위한 추천리스트(Discover Weekly)를 생성함
- (1) 청취자 행위 데이터(예: 특정음악 선택, 플레이리스트 생성·음악 추가) 분석 및 웹스크래핑¹¹⁾, 스코어링을 통해 의미있는 특징을 변수화하고 User Vector(이용자 벡터)를 생성
- (2) 보유 음악들은 개별 특징(예: 장르, 빠르기, key, 재생시간 등)을 나타내는 변수를 생성하여 행렬로 만들고, 인자분석(결과값에 강한 영향을 주는 변수의 식별 방법)을 통해 주요 변수를 추린 후 Song Vector 생성
- (3) 두 벡터를 각각 행과 열로 하는 수백만 개의 관측값(Observations)를 갖는 행렬(matrix)을 구성. 분류 알고리즘을 적용하여 유사성 높은 백터들을 그룹화(군집화)
- (4) 그룹 공통의 리스트에서 빠져있는 곡을 다른 개인의 추천리스트에 추가하거나, 새로운 음악의 경우 그 속성들을 분석하여 개인화된 Discover Weekly에 추가하는 방법으로 개인화 리스트 구성

¹¹⁾ 웹페이지를 구성하는 여러 콘텐트중 필요한 단어,부호 등을 식별하여 수집하는 것으로 Python에서는 BeautifulSoup, Selenium 라이브러리의 API들을 통해 이러한 작업을 수행

- o (성과) 기존 기업들과 차별화된 머신러닝 기반의 지능화된 음악추천시스템을 개발, 소비자로부터 높은 평판을 얻으며 세계적인 음악서비스 기업으로 성장
 - 5천만 곡 이상의 음악 보유, 매일 1천7백만 번 이상의 음악재생이 이루어지는 거대 음악플랫폼으로 성장
 - 전년비 매출액 28%, 영업이익 29%, 가입자수 30% 각각 증가, 음악스트리밍시장 점유율 36%로 업계 1위(2018년)

Ⅳ. 시사점

□ AI 활용능력이 플랫폼 비즈니스의 핵심 역량으로 부상(浮上)

- o 플랫폼 기업들은 인공지능을 활용하여 플랫폼 참여자(공급자,소비자)의 니즈 (needs)와 시장 흐름을 정확히 이해하고 이를 토대로 혁신적인 서비스를 전개
 - 과거에는 인구통계학적 특성, 시장조사자료 등 소규모의 데이터를 이용하여 일차원적, 단편적으로 시장흐름을 분석
- 에어비앤비, 우버 등 사례 기업들은 대규모 거래데이터 및 공공정보(교통,지리,기상 등)를 이용한 인공지능 모델을 개발, 양측 매칭을 활성화함으로써 신시장을 창출

□ 데이터 자산화는 글로벌 비즈니스의 출발점

- o 시장환경이 복잡하고 변화도 빠른 글로벌 마켓에서 데이터 자산화(데이터 축적, 구조화)는 글로벌 비즈니스의 출발점
- 에어비앤비는 일 1백만건, 우버는 일 2백5십만건 이상의 대규모 거래데이터로 부터 매칭 시스템을 개발
- 전세계 수백개의 도시, 수천만 인구를 대상으로 모델링을 반복하면서 데이터의 자산화, 모델링 노하우를 축적하고 있는 글로벌 플랫폼에 대한 대응 필요

□ 다양한 AI응용 프로젝트 발굴을 통한 비즈니스 혁신

- o 우버 등 선도기업들은 기존 경험을 이용한 새로운 비즈니스 개발에 적극적
- 우버는 승차공유에서 축적한 노하우로 음식배달플랫폼(Uber Eats)을 개발, 세계 13개 국가(50여개 도시)로 진출
- 아마존(Amazon.com)은 대규모 거래데이터로부터 주문 전에 상품을 포장, 선적 하는 예측배송(Anticipatory Package Shipping)을 개발, 서비스를 고도화
- o 국내에 축적된 공공데이터, 운영 경험을 활용할 수 있는 다양한 AI 응용개발 프로젝트를 통해 인력 양성 및 비즈니스를 혁신
- 건강보험(급여심사), 교통사고(보험심사) 등 다양한 공공데이터 이용

<참고 문헌>

- 1) The evolution of platform business models: Exploring competitive battles in the world of platforms (2017, Yang Zhao, Stephan von Delft, Anna Morgan-Thomas, Trevor Buck)
- 2) Platform Revolution (2016, Marshall Van Alstyne, Geoffery G. Parker, Sangeet Paul Chaudary)
- 3) The complete guide to platform business model(Jul, 2017, Murat Uenlue)
 - https://www.innovationtactics.com/platform-business-model-complete-guide
- 4) Impact of AI on Business : from Research, Innovation, market Deployment to Future Shifts in Business Models(2018, Neha Soni 등 4인 공저, Science Direct)
- 5) How AI is powering Airbnb's mission to change how we travel forever(2018, Amelia Heathman, http://www.chinatrevelblog.com)
- 6) Applying Deep Learning to Airbnb Search(2018, Malay Haldar 외 8인 공저, Science Direct)
- 7) Customized Regression Model for Airbnb Dynamic Pricing(2018, Peng Ye 외 7인, Applied Data Science)
- 8) Predicting Airbnb prices with machine learning and deep learning(May 22, Luara Lewis)
- 9) Spotify's Recommendation Engine; Behind the models that power Spotify's Discover Weekly(2018, Giuliano Gricaglia)
- 10) Spotify's Recommendation Engine (Vincent Ngo, Cognitive Science 190, 12 May 2019)
- 11) Managing Machine Learning Models, The Uber Way (2019, Jankiram)
- 12) How Uber Surge Pricing really works(2019, Zehn Peng, Academia.edu/3687163)
- 13) 7 Steps of Machine Learning(Sep., 1 2017, Yufeng G)
- 14) 데이터과학자가 뽑은 머신러닝 알고리즘 개발 베스트프랙티스(2017, SAS Korea)
- 15) 양면시장(two-sided market) 이론에 따른 방송통신 서비스 정책 이슈 연구(2008, 김성환, KISDI)
- 16) 디지털플랫폼과 인공지능의 이해(2017,KISDI)
- 17) 택시수요 예측 모델 연구동향 소개(2018.12, TGNet, 이수경 외 1인)

*	본 이슈리포트의 합니다.	내용은	무단	전재할	수	없으며,	인용할	경우,	반드시	원문출처를	명시하여야