Demonstration of Networked Gas Sensor Data-driven Calibration

EQ2443/EQ2444/EQ2445

Elin Berglund <u>elberglu@kth.se</u>
Laura Briffa <u>briffa@kth.se</u>
Yu Qin <u>yqin@kth.se</u>
Yuqi Zheng <u>yuqizh@kth.se</u>

Contents

- 1. Background
- 2. Project goals
- 3. Hardware
- 4. Measurements
- 5. Supervised HMM
- 6. Unsupervised HMM
- 7. Sensor fusion
- 8. Demonstration
- 9. Conclusions
- 10. Reflections

Background

Low-cost CO₂ sensors have insufficient accuracy

- Sensitive to aging
- Sensitive to environmental factors (e.g. temperature and pressure)

Previous work

- HMM for sensor calibration [1]
- Investigation of sensor fusion algorithms [2]

This project

- Combine both methods
- Analyse performance and different spatial setups

Project goals

- Collect data with NDIR CO₂ sensors
- Implement automatic calibration with supervised and unsupervised algorithms on each sensor
- Implement fusion algorithms at different spatial setting of sensors

Hardware

5×

Measurements

Reference sensors

Low-cost sensors

Measurements

- Many factors that affect the CO₂ value
 - People
 - Distance
 - Airflow

Implementation of HMMs for auto-calibration

$$zero \stackrel{T,IR,etc.}{\longleftarrow} transmittance \stackrel{Mapping}{\longleftarrow} CO2$$

zero: zero coefficient

- calibration parameter compensating for drift

T: environmental temperature

IR: amount of IR light received by detector

CO2: CO2 concentration level

Process

Data:

- CO2 concentration level CO2, temperature T, time, etc.
- collected by 5 LP8 sensors and corresponding reference sensors in different setups

zero:

- reference zero
- \Rightarrow baseline zero
- measured zero

HMM:

- Hidden states: quantized
 reference zero or (zero, ΔT)
- Observations: quantized measured CO2

Example

2022-12-02 23:16:22

Date

2022-12-04 21:19:26

2022-12-01 18:35:11

2022-12-04 14:21:33

Date

2022-12-04 07:24:52

- a. Measured CO2
- c. Test CO2

2022-12-04 03:56:40

- b. Training CO2
- d. Training zeros

Example: $(zero, \Delta T)$, supervised HMM

Data pre-processing:

Down sample and take average every 16 minutes

Remove irrational data based on 3σ rule

High-resolution quantization

	min	max	q_min	q_max	stepsize
zero	13333	13541	13360	13480	8
ΔT	-0.126	0.920	-0.0672	0.068	0.0035
CO2	975	1800	992	1770	22

(ppm)

$RMSE (reference, _)$			
Measured	789.620		
Baseline	27.136		
Predicted	21.211		

HMMs

Setup: Place sensors in different rooms.

Calibrated Concentration Level of CO2

Calibrated concentration levels of CO2

440

CO2 Level in ppm

460

480

420

- Verified the Belief Function Fusion methods in [2] with constructed belief functions.
- Weighted average approach
 - More appropriate when we have conflicting belief functions.

0.00

400

- Example belief functions from our collected data and models.
 - Conflicting
- Belief functions determined through the forward algorithm.

- Example: Conflicting belief is attenuated.
 - Fusion results: 533.00
 - mean of references: 533.84 ppm

- Example of when the conflicting belief is chosen.
 - Higher probability seem to outweigh the large distance.
- Fusion results: 795.92ppm.
- Mean of references: 597.25ppm.

Sensor Fusion - Demonstration

Results of sensor fusion every 20th minute given past observations

Sensor Fusion - Extra Demonstration

Discussion of results

- Very conflicting belief functions
 - The references
- Highly dependent on model

Conclusions

• Successfully demonstrate the networked gas sensor data-driven calibration methods proposed in [1] and [2] by Yang and Tobias.

 The success of the "Data collection-> HMM -> Sensor Fusion -> Calibrated Data" flow is sensitive to the non-fixed & human-involved aspects within the process.

Reflections

- The current assumption for the data, coming from the HMM, is too strict to use it in every situation.
- Outdoor data collection could have provided better training data due to regular temperature variations.
- The HMM needs a better initialization mechanism. (e.g. meta-learning)
- Processing the data is important and time consuming (synchronization)

Reflections

Lesson learned:

- Have consistent meetings (with and without project owner).
- Pay attention to the time plan throughout the entire project.
- Do a thorough risk analysis and plan for changes.
- Difference between theory and real-world application.

Merry Christmas! @~@

Elin Berglund, Laura Briffa, Yu Qin, Yuqi Zheng

References

[1] You, Yang, and Tobias J. Oechtering. "Hidden markov model based data-driven calibration of non-dispersive infrared gas sensor." *2020 28th European Signal Processing Conference* (EUSIPCO). IEEE, 2021.

[2] You, Yang, Anran Xu, and Tobias J. Oechtering. "Belief function fusion based self-calibration for non-dispersive infrared gas sensor." *2020 IEEE SENSORS*. IEEE, 2020.