# Time series Forecasting

Part 3: Linear Regression

## The forecasting process



## Components of a Time Series - Recap

- 1. Level (always present)
- 2. Trend: steady increase/decrease over time.
- **3. Seasonality**: pattern that repeats itself every season
- 4. Random **noise** (always present)

Additive:

 $Y_t$  = Level + Trend + Seasonality + Noise

Multiplicative:

 $Y_t$  = Level x Trend x Seasonality x Noise

## Regression-Based Methods

### The Idea:

Using suitable predictors to capture trend and/or seasonality

### **Uses:**

Examine trend and/or seasonality

### **Advantages:**

Simple, popular

### **Disadvantages:**

Model can become too complicated very quickly

### **Key concept:**

Using suitable predictors

### Models that we will examine

Models with Trend

Linear Trend

**Exponential Trend** 

Polynomial Trend

Models with Seasonality

Models with trend & Seasonality

## Models with linear trend

• Values of the series increase or decrease linearly with time

$$y_t = \beta_0 + \beta_1 t + e_t$$





Linear trend fitted to the Amtrak ridership data.

```
# Generate forecasts for the validation period
```

```
fc.lm <- train.lm |> forecast(h = 36)
```

```
train.ridership |>
     autoplot(Ridership) +
     autolayer(fitted.values(train.lm), colour = "blue1", size = 1.2) +
     geom_line(aes(y = .mean), data = fc.lm, colour = "blue1", linetype = "dashed", size = 1.2) +
     scale_x_yearmonth(date_breaks = "2 years", date_labels = "%Y") +
     labs(x = "Time")
```



Linear trend fitted to the Amtrak ridership training data and forecasts for the validation period.

```
# Model's summary output
```

> report(train.lm)

Series: Ridership

Model: TSLM

Residuals: Min 1Q Median 3Q Max -411.29 -114.02 16.06 129.28 306.35

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 1750.3595 29.0729 60.206 <2e-16 \*\*\* trend() 0.3514 0.4069 0.864 0.39

---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 160.2 on 121 degrees of freedom

Multiple R-squared: 0.006125, Adjusted R-squared: -0.002089

F-statistic: 0.7456 on 1 and 121 DF, p-value: 0.38957

An insignificant coefficient does not mean no trend in the data. There may be a trend in the data once we control for seasonality. Examine the plot!

## Models with Exponential trend

- An exponential trend implies a multiplicative increase/decrease of the series over time  $(y_t = c e^{\beta_1 t + e_t})$ .
- It reflects a percentage increase/decrease.
- To fit exponential trend, simply replace the output variable y with ln(y) and fit a linear regression:

$$ln(y_t) = \beta_0 + \beta_1 t + e_t$$





Linear and exponential trends fitted to the Amtrak ridership training data and forecasts for the validation period.

## Models with polynomial trend

$$y_t = \beta_0 + \beta_1 t + \beta_t^2 + \beta_t^3 + \dots + e_t$$



#### # quadratic (U-shape) trend

> train.lm.poly.trend <- train.ridership |> model(TSLM(Ridership ~ trend() + I(trend()^2)))

> report(train.lm.poly.trend)

Series: Ridership

Model: TSLM

#### Residuals:

Min 1Q Median 3Q Max -344.79 -101.86 40.89 98.54 279.81

#### Coefficients:

|              | Estimate   | Std. Error | t value | Pr(> t )     |
|--------------|------------|------------|---------|--------------|
| (Intercept)  | 1888.88401 | 40.91521   | 46.166  | < 2e-16 ***  |
| trend()      | -6.29780   | 1.52327    | -4.134  | 6.63e-05 *** |
| I(trend()^2) | 0.05362    | 0.01190    | 4.506   | 1.55e-05 *** |

---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 148.8 on 120 degrees of freedom Multiple R-squared: 0.1499, Adjusted R-squared: 0.1358 F-statistic: 10.58 on 2 and 120 DF, p-value: 5.8437e-05





• Recreate the plot

### Models that we will examine

Models with Trend

Linear Trend

**Exponential Trend** 

Polynomial Trend

Models with Seasonality

Models with trend & Seasonality

## Models with seasonality

- Observations that fall in some seasons have consistently higher or lower values than those in others.
- Amtrak ridership monthly time series, for example, exhibits strong monthly seasonality (pick in summer months).
- To capture seasonality, we can create dummy variables
  - For *m* seasons, we create *m-1* dummy variables
  - Each take on the value 1 if the record falls in that particular season and 0 otherwise.
  - The *m*-th season does not require a dummy, since it is identified when all the *m*-1 dummies take on zero values.



> train.lm.season <- train.ridership |> model(TSLM(Ridership ~ season()))

> report(train.lm.season)

Series: Ridership

Model: TSLM

#### Residuals:

Min 1Q Median 3Q Max -276.165 -52.934 5.868 54.544 215.081

#### Coefficients:

| E              | Estimate : | Std. Error | t value Pr(> t )   |
|----------------|------------|------------|--------------------|
| (Intercept)    | 1573.97    | 30.58      | 51.475 < 2e-16 *** |
| season()year2  | -42.93     | 43.24      | -0.993 0.3230      |
| season()year3  | 260.77     | 43.24      | 6.030 2.19e-08 *** |
| season()year4  | 245.09     | 44.31      | 5.531 2.14e-07 *** |
| season()year5  | 278.22     | 44.31      | 6.279 6.81e-09 *** |
| season()year6  | 233.46     | 44.31      | 5.269 6.82e-07 *** |
| season()year7  | 345.33     | 44.31      | 7.793 3.79e-12 *** |
| season()year8  | 396.66     | 44.31      | 8.952 9.19e-15 *** |
| season()year9  | 75.76      | 44.31      | 1.710 0.0901 .     |
| season()year10 | 200.61     | 44.31      | 4.527 1.51e-05 *** |
| season()year11 | 192.36     | 44.31      | 4.341 3.14e-05 *** |
| season()year12 | 230.42     | 44.31      | 5.200 9.18e-07 *** |

---

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 101.4 on 111 degrees of freedom

Multiple R-squared: 0.6348, Adjusted R-squared: 0.5986

F-statistic: 17.54 on 11 and 111 DF, p-value: < 2.22e-16



A regression model with additive seasonality fitted to the Amtrak ridership data in the top panel (model is a blue thick line in training and dashed line in validation). The model's residuals are in the bottom panel.



This can be fixed by adding a linear trend

## Models with trend and seasonality

- Models that can capture both trend and seasonality
- Amtrak ridership series, for example, exhibits a quadratic trend and monthly seasonality (pick in summer months).
- To capture tend and seasonality, we will use 11 dummy variables, t and  $t^2$  for trend.

#### 

#### > report(train.lm.trend.season)

Series: Ridership Model: TSLM Residuals:

Min 1Q Median 3Q Max -213.775 -39.363 9.711 42.422 152.187

#### Coefficients:

|                | Estimate   | Std. Error | t value | Pr(> t )     |
|----------------|------------|------------|---------|--------------|
| (Intercept)    | 1.697e+03  | 2.768e+01  | 61.318  | < 2e-16 ***  |
| trend()        | -7.156e+00 | 7.293e-01  | -9.812  | < 2e-16 ***  |
| I(trend()^2)   | 6.074e-02  | 5.698e-03  | 10.660  | < 2e-16 ***  |
| season()year2  | -4.325e+01 | 3.024e+01  | -1.430  | 0.15556      |
| season()year3  | 2.600e+02  | 3.024e+01  | 8.598   | 6.60e-14 *** |
| season()year4  | 2.606e+02  | 3.102e+01  | 8.401   | 1.83e-13 *** |
| season()year5  | 2.938e+02  | 3.102e+01  | 9.471   | 6.89e-16 *** |
| season()year6  | 2.490e+02  | 3.102e+01  | 8.026   | 1.26e-12 *** |
| season()year7  | 3.606e+02  | 3.102e+01  | 11.626  | < 2e-16 ***  |
| season()year8  | 4.117e+02  | 3.102e+01  | 13.270  | < 2e-16 ***  |
| season()year9  | 9.032e+01  | 3.102e+01  | 2.911   | 0.00437 **   |
| season()year10 | 2.146e+02  | 3.102e+01  | 6.917   | 3.29e-10 *** |
| season()year11 | 2.057e+02  | 3.103e+01  | 6.629   | 1.34e-09 *** |
| season()year12 | 2.429e+02  | 3.103e+01  | 7.829   | 3.44e-12 *** |

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 70.92 on 109 degrees of freedom Multiple R-squared: 0.8246, Adjusted R-squared: 0.8037 F-statistic: 39.42 on 13 and 109 DF, p-value: < 2.22e-16





- Modelling Toys "R" Us Revenues.
- The Figure on the right is a time plot of the quarterly revenues of Toys "R" Us between 1992 and 1995.
- The data is available in the ToysRUsRevenues.csv file.
- Fit a regression model with a linear trend and seasonality.
   Use the entire series (excluding the last two quarters) as the training period.





- A partial regression model output is shown in the Table on the left (where season()year2 is the Quarter 2 dummy).
   Use this output to answer the following questions:
- Mention two statistics (and their values) that measure how well this model fits the training period.
- ii. Mention two statistics (and their values) that measure the predictive accuracy of this model.

Series: Revenues Model: TSLM

#### Residuals:

Min 1Q Median 3Q Max -335.90 -54.29 18.50 63.80 319.24

#### Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 906.75 115.35 7.861 2.55e-05 \*\*\*
trend() 47.11 11.26 4.185 0.00236 \*\*
season()year2 -15.11 119.66 -0.126 0.90231
season()year3 89.17 128.67 0.693 0.50582
season()year4 2101.73 129.17 16.272 5.55e-08 \*\*\*

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 168.5 on 9 degrees of freedom Multiple R-squared: 0.9774, Adjusted R-squared: 0.9673 F-statistic: 97.18 on 4 and 9 DF, p-value: 2.1289e-07

|              | ME       | RMSE     | MAE       | MPE       | MAPE     | MASE     |
|--------------|----------|----------|-----------|-----------|----------|----------|
| Training set | 0        | 135.0795 | 92.53061  | 0.1614994 | 5.006914 | 0.434212 |
| Test set     | 183.1429 | 313.6820 | 254.66667 | 3.0193814 | 7.404655 | 1.195057 |



- A partial regression model output is shown in the Table on the left (where season()year2 is the Quarter 2 dummy).
   Use this output to answer the following questions:
- iii. After adjusting for trend, what is the average difference between sales in Q3 and sales in Q1?
- iv. After adjusting for seasonality, which quarter (Q1, Q2, Q3 or Q4) has the highest average sales?

Series: Revenues Model: TSLM

Residuals:

Min 1Q Median 3Q Max -335.90 -54.29 18.50 63.80 319.24

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 906.75 115.35 7.861 2.55e-05 \*\*\*
trend() 47.11 11.26 4.185 0.00236 \*\*
season()year2 -15.11 119.66 -0.126 0.90231
season()year3 89.17 128.67 0.693 0.50582
season()year4 2101.73 129.17 16.272 5.55e-08 \*\*\*

Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 168.5 on 9 degrees of freedom Multiple R-squared: 0.9774, Adjusted R-squared: 0.9673 F-statistic: 97.18 on 4 and 9 DF, p-value: 2.1289e-07

|              | ME       | RMSE     | MAE       | MPE       | MAPE     | MASE     |
|--------------|----------|----------|-----------|-----------|----------|----------|
| Training set | 0        | 135.0795 | 92.53061  | 0.1614994 | 5.006914 | 0.434212 |
| Test set     | 183.1429 | 313.6820 | 254.66667 | 3.0193814 | 7.404655 | 1.195057 |