Commutative algebra

Luka Horjak (luka1.horjak@gmail.com)

February 20, 2025

Contents Luka Horjak

Contents

Introduction				
1	Rin	gs and modules	4	
	1.1	Rings and ring homomorphisms	4	
	1.2	Modules	7	

Introduction Luka Horjak

Introduction

These are my lecture notes on the course Commutative algebra in the year 2024/25. The lecturer that year was gost. izr. prof. dr. rer. nat. Daniel Smertnig.

The notes are not perfect. I did not write down most of the examples that help with understanding the course material. I also did not formally prove every theorem and may have labelled some as trivial or only wrote down the main ideas.

I have most likely made some mistakes when writing these notes – feel free to correct them.

1 Rings and modules

1.1 Rings and ring homomorphisms

Definition 1.1.1. Unless stated otherwise, rings always have a unit and are commutative.

Definition 1.1.2. Let A be a ring. The set A^{\bullet} denotes the set of non-zero-divisors.

Definition 1.1.3. A ring A is a *domain* if 0 is the only zero-divisor of A.

Definition 1.1.4. Let $A \subseteq B$ be rings and $S \subseteq B$ a subset. The ring

$$A[S] = \bigcap_{\substack{A \subseteq A' \subseteq B \\ S \subseteq A'}} A'$$

is the subring of B obtained by adjoining S to A.

Definition 1.1.5. The set Spec(A) denotes the prime ideals of A.

Definition 1.1.6. The radical of an ideal I is defined as

$$\sqrt{I} = \{ a \in A \mid \exists n \in \mathbb{N} \colon a^n \in I \} .$$

Proposition 1.1.7. The radical of an ideal is again an ideal.

Proof. It suffices to show that for any $a, b \in \sqrt{I}$ their sum is also in \sqrt{I} . Suppose that $a^n, b^m \in I$. Then

$$(a+b)^{n+m-1} = \sum_{k=0}^{n+m-1} {m+n-1 \choose k} a^k b^{n+m-1-k}$$
$$= b^m \sum_{k=0}^{n-1} {m+n-1 \choose k} a^k b^{n-1-k} + a^n \sum_{k=n}^{n+m-1} {m+n-1 \choose k} a^{k-n} b^{n+m-1-k} \in I. \square$$

Definition 1.1.8. The *nilradical* of A is the set $\mathcal{N}(A) = \sqrt{(0)}$.

Definition 1.1.9. The *Jacobson radical* $\mathcal{J}(A)$ is the intersection of all maximal ideals in A

Lemma 1.1.10. The nilradical is contained in the Jacobson radical.

Proof. Let $a \in \mathcal{N}(A)$ and suppose that $a^n = 0$. For any maximal ideal M, we know that $a^n \in M$. Since M is prime, we deduce $a \in M$.

Lemma 1.1.11. We have

$$\mathcal{J}(A) = \left\{ a \in A \mid \forall b \in A \colon 1 - ba \in A^{\times} \right\}.$$

Proof. Let $a \in \mathcal{J}(A)$ and $b \in A$. Note that $1 - ab \notin M$ for any maximal ideal M, since $ab \in M$. As 1 - ab is not contained in any maximal ideal, it follows that (1 - ab) = A, hence 1 - ab is invertible.

Suppose now that $1 - ab \in A^{\times}$ for all $b \in A$. Let M be a maximal ideal and suppose $a \notin M$. Then (M, a) = A. In particular, we can write 1 = m + xa with $m \in M$ and $x \in A$. Rearranging, m = 1 - xa, which is a contradiction, as 1 - xa is invertible. \square

Lemma 1.1.12. The following statements hold:

- i) Let $I \triangleleft A$ and $P_1, \ldots, P_n \in \text{Spec}(A)$. If $I \subseteq P_1 \cup \cdots \cup P_n$, there exists some k such that $I \subseteq P_k$.
- ii) Let $I_1, \ldots, I_n \triangleleft A$ and $P \in \operatorname{Spec}(A)$. If $I_1 \cap \cdots \cap I_n \subseteq P$, then there exists some k such that $I_k \subseteq P$.

Proof.

i) We induct on n, noting that the statement trivially holds for n = 1.

Suppose the statement doesn't hold for n. By the induction hypothesis we can find

$$a_i \in I \setminus \bigcup_{j \neq i} P_j$$

for any i. Then $a_i \in P_i$. Consider the element

$$a = \sum_{i=1}^{n} \prod_{j \neq i} a_j.$$

Note that all but one of the above terms are an element of P_i . But then a is not an element of any P_i , which is a contradiction.

ii) Suppose the contrary and let $a_j \in I_j \setminus P$ for all j. But then

$$\prod_{j=1}^{n} a_j \subseteq \prod_{j=1}^{n} I_j \subseteq \bigcap_{j=1}^{n} I_j \subseteq P,$$

which is a contradiction.

Remark 1.1.12.1. The first statement is called *prime avoidance*.

Proposition 1.1.13. Let $f: A \to B$ be a ring homomorphism. If $I \triangleleft B$, then $f^{-1}(I) \triangleleft A$. Furthermore, if $P \in \text{Spec}(B)$, then $f^{-1}(P) \in \text{Spec}(A)$.

Proposition 1.1.14 (Universal property). Let $I \triangleleft A$ and $\pi \colon A \to A/I$ be the canonical epimorphism. For every ring homomorphism $f \colon B$ with $I \subseteq \ker(f)$, there exists a unique ring homomorphism $\hat{f} \colon A/I \to B$ such that $f = \hat{f} \circ \pi$.

Corollary 1.1.14.1. If $f: A \to B$ is a ring homomorphism, then $A/\ker f \cong f(A)$.

Theorem 1.1.15 (Isomorphism theorems). The following statements hold:

i) Let $I \triangleleft A$. There is a bijective correspondence

$$\{J \triangleleft A \mid I \subseteq J\} \leftrightarrow \{\overline{J} \triangleleft A/I\},$$

given by $J \mapsto J/I$ and $\overline{J} \mapsto \pi^{-1}(\overline{J})$.

ii) If $I, J \triangleleft A$ with $I \subseteq J$, then

$$A/J \cong A/I/J/I$$
.

iii) Let $B\subseteq A$ be a subring and $I\triangleleft A.$ Then $I\cap B\triangleleft B$ and

$$B+I/I \cong B/B \cap I$$
.

Theorem 1.1.16 (Chinese remainder theorem). If $I_1, \ldots, I_n \triangleleft A$ are pairwise comaximal, then

$$A/I_1 \cap \cdots \cap I_n \cong \prod_{k=1}^n A/I_k$$
.

1.2 Modules

Definition 1.2.1. Let M be an A-module and $E \subseteq M$. The A-module generated by E is denoted by

$$\langle E \rangle_A = \left\{ \sum_{k=1}^n a_k m_k \mid a_k \in A \land m_k \in E \right\}.$$

Proposition 1.2.2. Let M be an A-module and $I \triangleleft A$. Then M/IM is an A/I-module via the natural product.

Remark 1.2.2.1. Categorically, A/I-modules are equivalent to A-modules M with IM = 0.

Theorem 1.2.3 (Universal property). Let $N \leq M$ be A-modules and $\pi: M \to M/N$ be the canonical epimorphism. If $f: M \to X$ is an A-module homomorphism with $N \subseteq \ker f$, then there exists a unique homomorphism $\hat{f}: M/N \to X$ such that $f = \hat{f} \circ \pi$.

Theorem 1.2.4 (Isomorphism theorems). The following statements hold:

- i) We have $f(M) \cong M/\ker(f)$.
- ii) If $N \leq M$, then submodules $N \leq X \leq M$ are in bijective correspondence with submodules of M/N.
- iii) If $N \leq X \leq M$, then

$$M/X \cong M/N/X/N$$
.

iv) If $N, N' \leq M$, then

$$N + N'/N \cong N'/N \cap N'$$
.

Theorem 1.2.5 (Universal property). If $(f_i: M_i \to X)_{i \in I}$ is a family of A-module homomorphisms, then there exists a unique homomorphism

$$\hat{f} : \bigoplus_{i \in I} M_i \to X$$

such that $f_i = \hat{f} \circ \varepsilon_i$ for all $i \in I$.

If $(g_i: X \to M_i)_{i \in I}$ is a family of A-module homomorphisms, then there exists a unique homomorphism

$$\hat{g}\colon X\to\prod_{i\in I}M_i$$

such that $g_i = \pi_i \circ \hat{g}$ for all $i \in I$.

Index Luka Horjak

\mathbf{Index}

\mathbf{A}	${f N}$
adjoining, 4	nilradical, 4
D domain, 4	P prime avoidance, 5
I isomorphism theorems	${f R}$ radical, ${f 4}$
modules, 7	${f U}$
rings, 5	universal property module quotients, 7
J	product and coproduct,
Jacobson radical, 4	ring quotients, 5