31, August, 2021 Shift-2 1-15

EE24BTECH11050 - Pothuri Rahul

1) If $\alpha + \beta + \gamma = 2\pi$, Then the system of equations $x + (\cos \gamma) y + (\cos \beta) z = 0$ $(\cos \gamma) x + y + (\cos \alpha) z = 0$ $(\cos \beta) x + (\cos \alpha) y + z = 0$

has:

- a) no solution
- b) infinitely many solutions
- c) exactly two solutions
- d) a unique solution
- 2) let $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ be three vectors mutually perpendicular to each other and have same magnitude. If a vector \overrightarrow{r} satisfies

Then
$$\overrightarrow{r}$$
 is equal to:

a)
$$\frac{1}{3} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$$

b)
$$\frac{1}{3} \left(2\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c} \right)$$

c)
$$\frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c} \right)$$

d)
$$\frac{1}{2} \left(\overrightarrow{a} + \overrightarrow{b} + 2\overrightarrow{c} \right)$$

3) The domain of the function $f(x) = \sin^{-1}\left(\frac{3x^2 + x - 1}{(x - 1)^2}\right) + \cos^{-1}\left(\frac{x - 1}{x + 1}\right) \text{ is:}$

a)
$$[0, \frac{1}{4}]$$

b)
$$[-2,0] \cup \left[\frac{1}{4},\frac{1}{2}\right]$$

c)
$$\left[\frac{1}{4}, \frac{1}{2}\right] \cup \{0\}$$

d)
$$[0, \frac{1}{2}]$$

4) Let $S = \{1, 2, 3, 4, 5, 6\}$. Then the probability that a randomly chosen onto function g from S to S satisfies g(3) = 2g(1) is:

a)
$$\frac{1}{10}$$

b)
$$\frac{1}{15}$$

c)
$$\frac{1}{5}$$

d)
$$\frac{1}{30}$$

5) Let $f : \mathbb{N} \to \mathbb{N}$ be a function such that f(m+n) = f(m) + f(n) for every $m, n \in \mathbb{N}$. If f(6) = 18 then f(2).f(3) is equal to :

7) Negation of the statement $(p \lor r) =$	$\Rightarrow (q \lor r) \text{ is } :$
a) $p \land \sim q \land \sim r$	b) $\sim p \wedge q \wedge r \sim$
c) $\sim p \wedge q \wedge r$	d) $p \wedge q \wedge r$
8) If $\alpha = \lim_{x \to \frac{\pi}{4}} \frac{\tan^3 x - \tan x}{\cos(x + \frac{\pi}{4})}$ and $\beta = \lim_{x \to 0} (\cos 0)$, then the ordered pair (a, b) is:	$(x)^{\cot x}$ are the roots of the equation $ax^2 + bx - 4 =$
a) (1, -3)	b) (-1,3)
c) $(-1, -3)$	d) (1,3)
the ellipse $\frac{x^2}{4} + \frac{y^2}{4} = 1$ is: a) $9x^2 + 4y^2 + 18x + 8y + 145 = 0$ b) $36x^2 + 16y^2 + 90x + 56y + 145 = 0$ c) $36x^2 + 16y^2 + 108x + 80y + 145 = 0$ d) $36x^2 + 16y^2 + 72x + 32y + 145 = 0$	0
a) (1,2)	b) $(\frac{1}{2}, 1]$
c) (2,3)	d) $(0, \frac{1}{2}]$
11) An angle of intersection of the curve	es $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and $x^2 + y^2 = ab$, $a > b$ is:
a) $\tan^{-1}\left(\frac{a+b}{\sqrt{ab}}\right)$	b) $\tan^{-1}\left(\frac{a-b}{2\sqrt{ab}}\right)$
c) $\tan^{-1}\left(\frac{a-b}{\sqrt{ab}}\right)$	d) $\tan^{-1}\left(2\sqrt{ab}\right)$
12) If $y \frac{dy}{dx} = x \left[\frac{y^2}{x^2} + \frac{\phi\left(\frac{y^2}{x^2}\right)}{\phi'\left(\frac{y^2}{x^2}\right)} \right], \ x > 0, \ \phi > 0$), and $y(1) = -1$, then $\phi\left(\frac{y^2}{4}\right)$ is equal to :

b) 54

d) 36

b) $\frac{5}{2}$

d) $\frac{\sqrt{34}}{2}$

6) The distance of the point (-1, 2, -2) from the line of intersection of the planes

a) 6

c) 18

a) $\frac{1}{\sqrt{2}}$

c) $\frac{\sqrt{42}}{2}$

2x + 3y + 2z = 0 and x - 2y + z = 0 is:

a)	4ϕ	(2)
----	---------	-----

b) $4\phi(1)$

c)
$$2\phi(1)$$

d) $\phi(1)$

13) The sum of the roots of the equation $x + 1 - 2\log_2(3 + 2^x) + 2\log_4(10 - 2^{-x}) = 0$, is:

b) log₂ 11

d) log₂ 13

14) If z is a complex number such that $\frac{z-i}{z-1}$ is purely imaginary the the minimum value of |z-(3+3i)| is :

a)
$$2\sqrt{2} - 1$$

b) $3\sqrt{2}$

c)
$$6\sqrt{2}$$

d) $2\sqrt{2}$

15) Let a_1, a_2, a_3, \dots be an AP. If $\frac{a_1 + a_2 + \dots + a_{10}}{a_1 + a_2 + \dots + a_p} = \frac{100}{p^2}$, $p \neq 10$, then $\frac{a_{11}}{a_{10}}$ is equal to:

a)
$$\frac{19}{21}$$

b) $\frac{100}{121}$

c)
$$\frac{21}{19}$$

d) $\frac{121}{100}$