UE 6
INITIATION À LA CONNAISSANCE DU
MÉDICAMENT

Pharmacocinétique

Cours N° 3

Dr. F. DESPAS

Pharmacocinétique

- Etude du devenir du Principe Actif (PA) dans l'organisme, depuis son administration jusqu'à son élimination
 - Absorption
 - Distribution
 - Métabolisation
 - Excrétionf Elimination

Phases A, D, M et E coexistent dans le temps

- 1. Définitions
- 2. Distribution sanguine
 - a. Forme liée du médicament
 - b. Forme libre du médicament
- 3. Distribution tissulaire
- Distribution au travers de la BHE
- 5. Distribution au travers de la « non » barrière placentaire
- 6. Paramètre quantitatif : le Volume de distribution
- 7. Facteurs modifiant la distribution des médicaments

1. Définitions

- 2. Distribution sanguine
 - a. Forme liée du médicament
 - b. Forme libre du médicament
- 3. Distribution tissulaire
- 4. Distribution au travers de la BHE
- 5. Distribution au travers de la « non » barrière placentaire
- 6. Paramètre quantitatif : le Volume de distribution
- 7. Facteurs modifiant la distribution des médicaments

1. Définitions

Distribution

- Diffusion du Principe Actif depuis le secteur vasculaire vers les tissus de l'organisme, dont le tissu cible
- Existe 2 niveaux de répartition
 - Distribution dans le compartiment sanguin
 - Distribution vers les autres tissus

Le sang

- 1. Définitions
- 2. Distribution sanguine
 - a. Forme liée du médicament
 - b. Forme libre du médicament
- 3. Distribution tissulaire
- 4. Distribution au travers de la BHE
- 5. Distribution au travers de la « non » barrière placentaire
- 6. Paramètre quantitatif : le Volume de distribution
- 7. Facteurs modifiant la distribution des médicaments

2. Distribution sanguine

- Dans le sang, le médicament peut être sous :
 - Forme liée
 - Médicament fixé aux protéines plasmatiques
 - Médicament fixé ou contenu dans les éléments figurés du sang
 - Forme libre
 - Médicament en solution dans l'eau plasmatique
- Equilibre forme libre/forme liée
 - Loi d'action de masse

```
[M libre] + [Protéine] ⇔ [M-Protéine]
```

- Equilibre dynamique entre les deux formes
 - Si diminution concentration forme libre
 - → dissociation forme liée => libération forme libre
 - Fraction liée constitue un stock de réserve

2. Distribution sanguine

a. Forme liée du médicament

- Taux de fixation peut varier de 0 à 99,99%
- Sites de fixation différents suivant nature du PA

Nature du PA	Acide faible (ionisé)	Base faible (ionisée)	Hydrophobe (non ionisé)
Protéines fixatrices	Albumine	α1- glycoprotéine	Lipoprotéines, albumine
Affinité	Forte	Faible	Faible
Nombre de sites	N = 2	N > 30	Illimité (surfaces)
Saturation/compétition	oui	rare	non
Risque d'interaction médicamenteuse	possible	peu probable	non

2. Distribution sanguine

b. Forme libre du médicament

PA doit être hydrosoluble

- lit vasculaire extra-vasculaire
- Concentration non saturable aux doses thérapeutiques utilisées
- Fraction portant l'effet pharmacologique
 - Fraction diffusible jusqu'à sa cible pharmacologique
- Fraction éliminable
 - Captée pour métabolisation
 - Captée pour excrétion

- 1. Définitions
- 2. Distribution sanguine
 - a. Forme liée du médicament
 - b. Forme libre du médicament
- 3. Distribution tissulaire
- Distribution au travers de la BHE
- 5. Distribution au travers de la « non » barrière placentaire
- 6. Paramètre quantitatif : le Volume de distribution
- 7. Facteurs modifiant la distribution des médicaments

3. Distribution tissulaire

- Fraction libre du PA diffuse depuis le secteur vasculaire vers les autres tissus de l'organisme dont le tissu cible
 - Activité principale
 - Effets latéraux
- Distribution tissulaire dépend
 - Des caractéristiques physico-chimiques du PA
 - Poids Moléculaire, ionisation, coefficient de partage (loi de Fick)...
 - Certains P.A. ont une affinité particulière pour certains tissus
 - De la structure de la barrière tissulaire (présence de transporteurs : PGP...)
 - De l'irrigation des organes

ORGANE	DEBIT SANGUIN LOCAL (% débit cardiaque)	POIDS DE L'ORGANE (% poids corporel)
Rein	25 %	0,5 %
Foie	25 %	2 %
Cerveau	15 %	2 %
Muscle	15 %	~ 40 %
Peau	5 %	7 %
Tissu adipeux	1 %	≥ 15 %

3. Distribution tissulaire

- Phénomènes de redistribution
 - Depuis les tissus les mieux perfusés, vers les tissus où le PA a une plus grande affinité
 - Depuis les tissus où le PA a une plus grande affinité, vers le tissu sanguin (relargage)

ORGANE	DEBIT SANGUIN LOCAL (% débit cardiaque)	POIDS DE L'ORGANE (% poids corporel)
Rein	25 %	0,5 %
Foie	25 %	2 %
Cerveau	15 %	2 %
Muscle	15 %	~ 40 %
Peau	5 %	7 %
Tissu adipeux	1 %	≥ 15 %

- 1. Définitions
- 2. Distribution sanguine
 - a. Forme liée du médicament
 - b. Forme libre du médicament
- 3. Distribution tissulaire
- Distribution au travers de la BHE
- 5. Distribution au travers de la « non » barrière placentaire
- 6. Paramètre quantitatif : le Volume de distribution
- 7. Facteurs modifiant la distribution des médicaments

4. Distribution au travers de la BHE

- Barrière Hémato-Encéphalique (BHE): épaississement paroi vasculaire des vaisseaux sanguins du SNC
 - Endothélium non fenestré : les cellules endothéliales sont reliées par des jonctions serrées
 - Manchon d'astrocytes faisant écran entre les capillaires sanguins et les neurones
 - Transporteurs d'efflux rejetant certains xénobiotiques dans la circulation sanguine
- Transfert passif limité aux médicaments
 - Lipophiles
 - Non ionisés
 - Petits Poids Moléculaires
 - Non rejetés par les transporteurs d'efflux

4. Distribution au travers de la BHE

- La BHE protège le SNC, MAIS peut limiter l'accessibilité de certains PA dans un objectif de traitement
- Pour concentration adéquate niveau SNC, possibilité administration voie épidurale ou intrathécale
 - Accouchement : Anesthésie péridurale (bupivacaïne)
 - Leucémie Aiguë Lymphoblastique à localisation méningée : administration anticancéreux (cytarabine)

- 1. Définitions
- 2. Distribution sanguine
 - a. Forme liée du médicament
 - b. Forme libre du médicament
- 3. Distribution tissulaire
- Distribution au travers de la BHE
- 5. Distribution au travers de la « non » barrière placentaire
- 6. Paramètre quantitatif : le Volume de distribution
- 7. Facteurs modifiant la distribution des médicaments

5. Distribution au travers de la « non » barrière placentaire

Définition

 Organe des mammifères permettant d'assurer, pendant la gestation, les échanges entre l'embryon/fœtus et la mère

Pharmacocinétique : le placenta n'est pas une barrière = filtre placentaire

- Tout au long grossesse
 - → Surface d'échange, → perméabilité aux PA
- Quasiment tous les médicaments traversent
 - Hydrosolubles ou liposolubles, acides ou bases faibles
 - Le + souvent par diffusion passive
 - Peu de PA empruntent les transporteurs actifs des nutriments (vitamines, acides aminés, fer...)
 - Mêmes grosses molécules (peptides ou protéines thérapeutiques) peuvent atteindre l'embryon/fœtus par mécanismes d'endocytose ou de macrophagie

5. Distribution au travers de la « non » barrière placentaire

- Les concentrations de PA embryo-fœtales (sang et tissus) peuvent être très différentes des concentrations maternelles
 - Fixation protéique plus faible
 - B.H.E. embryo-fœtale est immature
 - Fonctions rénales et hépatiques inexistantes ou immatures
 - **–** ..
- Par conséquent jusqu'à preuve de leur innocuité, les médicaments sont déconseillés chez la femme enceinte

- 1. Définitions
- 2. Distribution sanguine
 - a. Forme liée du médicament
 - b. Forme libre du médicament
- 3. Distribution tissulaire
- 4. Distribution au travers de la BHE
- 5. Distribution au travers de la « non » barrière placentaire
- 6. Paramètre quantitatif : le Volume de distribution
- 7. Facteurs modifiant la distribution des médicaments

6. Paramètre quantitatif : le Volume de distribution

 Pouvoir de diffusion différent suivant propriétés physico-chimiques du PA

Administration I.V.: 10 mg de médicament X

Administration I.V.: 10 mg de médicament M

 Détermination paramètre pharmacocinétique à l'état d'équilibre

- Volume (apparent) de distribution Vd
 - Volume fictif dans lequel se distribue une quantité de médicament (mg) pour être en équilibre avec la concentration plasmatique (mg/L)

Dose 10 mg X

Paroi vasculaire hermétique à X

Mesure concentration X: 3,33 mg/L (=10 mg/3L)

Volume apparent 3 L ≈ Volume plasmatique

Dose 10 mg M

Paroi Vasculaire poreuse à M

Mesure concentration M: 0,333mg/L

(=1mg/3L) V apparent ?? L

6. Paramètre quantitatif : le Volume de distribution

Détermination du Vd

- 1° Administration I.V. d'une dose (x mg) de médicament
- 2° Prélèvement sanguin fin phase de distribution (T₅₋₁₀min)
- 3° Mesure de la concentration en médicament (y mg/l)
- 4° Calcul d'un volume apparent de distribution

Vd=Facteur de proportionnalité entre la dose et la concentration

6. Paramètre quantitatif : le Volume de distribution

- Estime pouvoir de diffusion extravasculaire d'un PA
 - Vd_1 = Vol. plasmatique ≈ 0,04 L/kg, soit environ 3 L pour 70 kg
 - Vd_2 = vol. extra-cellulaire ≈ 0,2 L/kg, soit 14 L pour 70 kg
 - Vd_3 = vol. eau totale ≈ 0,6 L/kg, soit 42 L pour 70 kg
 - Vd₄ ≈ Vol. non anatomique ≈ 20 L/kg, soit 1500 L pour 70 kg

- Valeur propre au PA (propriétés physico-chimique)
- Indépendant de la voie d'administration

	Vd en litres	Vd en l/kg
Gentamycine	18	0,25
Tramadol	280	4
Amlodipine	1470	21
Chloroquine	18450	235

- 1. Définitions
- 2. Distribution sanguine
 - a. Forme liée du médicament
 - b. Forme libre du médicament
- 3. Distribution tissulaire
- 4. Distribution au travers de la BHE
- 5. Distribution au travers de la « non » barrière placentaire
- 6. Paramètre quantitatif : le Volume de distribution
- 7. Facteurs modifiant la distribution des médicaments

7. Facteurs modifiant la distribution des médicaments

- Variabilité corpulence des sujets
 - Variabilité du « Volume total » : Adaptation dose
 - mg/kg
 - mg/m²
 - Variabilité « composition » : répartition masse maigre/grasse
- Modification répartition liquidienne de l'organisme
 - Déshydratation
 - Rétention hydrique, œdème, ascite...
- Variations concentrations protéines plasmatiques
 - Situations d'hypo-albuminémie
 - Grossesse, syndrome néphrotique, cirrhose, dénutrition, grand brulé...
 - Augmentation fraction libre

7. Facteurs modifiant la distribution des médicaments

- Modification perméabilité BHE

 - Perméabilité en cas de fièvre ou inflammation méningée ou cérébrale (efficacité de la pénicilline dans les méningites)
- Risque d'interactions médicamenteuses sur protéines de transport
 - Conséquences faibles, si seul système concerné
 - Conséquences significatives si élimination également altérée (altération physiopathologique ou interaction médicamenteuse pour élimination)

Variation Vd d'un médicament lipophile?

- Programmation pour 2 patientes, intervention chirurgicale avec
 - anesthésie générale
 - Mlle. MONA Lisa, 162 cm, 59 kg
 - Mlle. BOTERO Lisa, 162 cm, 118 kg
- Midazolam utilisé comme hypnotique par voie I.V.
 - Posologie initiale : 2 mg en 3 minutes
- Quelle dose prévoir pour Mlle. BOTERO ?
 - Poids BOTERO = 2 x poids MONA : DONC 2 x 2 mg ?
 - Le midazolam est lipophile...

Merci de votre attention