

Digitális áramkörök

Portfólió

Kombinációs áramkörök realizálása NEM, ÉS, VAGY kapuáramkörökkel (N-É-V-rendszer)

A digitális technikában az egyik legalapvetőbb fogalom a kombinációs áramkör, amely olyan logikai áramkör, amelynek a kimenete kizárólag a bemenetek aktuális logikai értékétől függ. A kombinációs áramkörök nem rendelkeznek memóriával, vagyis a kimenet nem függ a korábbi bemeneti állapotoktól.

Alaplogikai kapuk az N-É-V-rendszerben

A kombinációs áramkörök megvalósítása történhet az NEM (NOT), ÉS (AND) és VAGY (OR) logikai kapuk felhasználásával. Ezeket a kapukat együttesen funkcionálisan teljes rendszernek nevezzük, mivel tetszőleges logikai művelet megvalósítható kizárólag ezek segítségével.

NEM kapu (NOT): Inverziót hajt végre.

ÉS kapu (AND): Akkor ad logikai 1-et, ha minden bemenet logikai 1.

VAGY kapu (OR): Akkor ad logikai 1-et, ha legalább egy bemenet logikai 1.

m _i 4	Α	В	С	D	Ε	F	G	Н
0	0	0	0	0	0	0	0	0
1	0	0	0	1	1	1	1	1
2	0	0	1	1	1	1	1	0
3	0	0	1	1	1	1	0	1
4	0	1	0	0	1	1	0	0
5	0	1	0	1	1	0	1	1
6	0	1	1	0	1	0	1	0
7	0	1	1	1	1	0	0	1
8	1	0	0	0	1	0	0	0
9	1	0	0	1	0	1	1	1
10	1 1 1	0	1		0		1	0
11	1	0	1	1	0	1	0	1
12	1	1	0	0	0	1	0	0
13	1	1	0	1	0	0	1	1
14	1	1	1	0	0	0	1	0
15	1	1	1	1	0	0	0	1
	Bemeneti változók				Kimeneti függvények			

Forrás: <u>Digitális áramkörök</u>

Kombinációs áramkörök megvalósításához a következő lépések vezetnek az elméleti specifikációtól a kapcsolási rajzig:

-Igazságtábla felállítás

Meghatározzuk a bemeneti kombinációkhoz tartozó kimeneteket.

-Logikai kifejezés előállítása

A táblázat alapján diszjunktív normálformát (DNF) vagy konjunktív normálformát (KNF) készítünk.

-Egyszerűsítés

A logikai kifejezést egyszerűsítjük Boole-algebra vagy Karnaugh-térkép segítségével.

-Kapcsolási rajz létrehozása

A legegyszerűbb logikai kifejezést NEM, ÉS, VAGY kapukkal valósítjuk meg.

Forrás: <u>Digitális áramkörök</u>

Önreflexió

A kombinációs áramkörök megvalósításának témáján keresztül mélyebb betekintést nyertem a logikai kapuk működésébe és szerepébe a digitális technikában. A NEM, ÉS, VAGY kapukból álló N-É-V rendszer elsajátítása különösen hasznos volt, mivel ezek az alapvető építőelemek bármilyen logikai művelet megvalósítását lehetővé teszik.