Assignment 3

Vibhavasu Pasumarti - EP20BTECH11015

Download all python codes from

https://github.com/VIB2020/AI1103/blob/main/ Assignment%203/code/Assignment%203.py

and latex-tikz codes from

https://github.com/VIB2020/AI1103/blob/main/ Assignment%203/Assignment%203.pdf

1 GATE 2015 (EE PAPER 01 NEW 2), Q 27 (ELECTRICAL ENGG SECTION)

Two players A, and B alternately keep rolling a fair dice. The person to get a six first wins the game. Given that player A starts the game, the probability that A wins the game is:

A
$$\frac{5}{11}$$

$$B \frac{1}{2}$$

B
$$\frac{1}{2}$$
 C $\frac{7}{13}$ D $\frac{6}{11}$

$$D \frac{6}{11}$$

2 Solution

- Given the die is fair.
- So, for any given throw by A or B: The probability of getting $6 = \frac{1}{6} = p$ (say) The probability of NOT getting $6 = \frac{5}{6} = q$ (say)

Markov chain for the given problem:

Definition 2.1. Transition/Stochastic matrix for the above Markov chain:

$$P = \begin{pmatrix} 0 & q & p \\ q & 0 & p \\ 0 & 0 & 0 \end{pmatrix}$$

Lemma 2.1.

$$\lim_{n\to\infty} p_{AW}(n) = 0$$

Proof.

$$p, q < 1 \implies \lim_{n \to \infty} P^n \to 0$$

 $\implies P \text{ is reducible}$
 $\therefore \lim_{n \to \infty} p_{AW}(n) = 0$

Definition 2.2. Operator A_i corresponds the state of the game on the i_{th} roll of dice.

 P^n is the corresponding Transition matrix for n rolls of dice

Lemma 2.2. The operator corresponding to the initial state i.e the first throw of dice is:

$$A_1 = \begin{pmatrix} p & 0 & 0 \end{pmatrix}$$

Proof. Given: A starts the game.

Constraint: A wins the game.

 \implies Pr (B winning on first throw) = $p_{BW}(1) = 0$ $Pr(A \text{ winning on first throw}) = p_{AW}(1) = p$

:. Operator corresponding this state is:

$$A_1 = \begin{pmatrix} p & 0 & 0 \end{pmatrix}$$

Remark. First element of each A_i represents the probability of A to win in ith roll

$$\Rightarrow p_{AW}(1) = p$$

$$A_{2} = A_{1}P = \begin{pmatrix} p & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ p & p & 0 \end{pmatrix} = \begin{pmatrix} 0 & qp & 0 \end{pmatrix}$$

$$\Rightarrow p_{AW}(2) = 0$$

$$A_{3} = A_{2}P = \begin{pmatrix} 0 & qp & 0 \end{pmatrix} \begin{pmatrix} 0 & q & 0 \\ q & 0 & 0 \\ p & p & 0 \end{pmatrix} = \begin{pmatrix} q^{2}p & 0 & 0 \end{pmatrix}$$

$$\Rightarrow p_{AW}(3) = q^{2}p$$

A	No.of Turns	Probability
$p_{AW}(1)$	1	p = 1/6
$p_{AW}(2)$	2	0
$p_{AW}(3)$	3	q^{2p}
•	•	•
$p_{AW}(2n)$	2n	0
$p_{AW}(2n+1)$	2n + 1	$q^{2n}p$

Table:1 Summary of Probabilities

$$\Pr(A \text{ wins}) = \sum_{n=1}^{\infty} p_{AW}(n)$$

$$= p_{AW}(1) + p_{AW}(2) + p_{AW}(3) + \dots$$

$$= p + 0 + q^2p + 0 + q^4p + \dots$$

$$= \sum_{k=1}^{\infty} (q^2)^k p = p \sum_{k=1}^{\infty} (q^2)^k \quad \text{But } |q| < 1$$

$$= p \left(\frac{1}{1 - q^2}\right) = \frac{\frac{1}{6}}{1 - \frac{25}{36}} = \frac{6}{11}$$

$$Pr(A \text{ wins the game}) = \frac{6}{11}$$
Option D is correct