5.131 distance_change

DESCRIPTION LINKS GRAPH AUTOMATON

Origin Derived from change.

Constraint distance_change(DIST, VARIABLES1, VARIABLES2, CTR)

Synonym distance.

Arguments DIST : dvar

VARIABLES1 : collection(var-dvar)
VARIABLES2 : collection(var-dvar)

CTR : atom

Restrictions $DIST \ge 0$

 $\begin{array}{l} {\rm DIST} \geq 0 \\ {\rm DIST} < |{\rm VARIABLES1}| \\ {\rm required}({\rm VARIABLES1}, {\rm var}) \\ {\rm required}({\rm VARIABLES2}, {\rm var}) \\ |{\rm VARIABLES1}| = |{\rm VARIABLES2}| \\ {\rm CTR} \in [=, \neq, <, \geq, >, \leq] \end{array}$

DIST is equal to the number of times one of the following two conditions is true $(1 \le i < n)$:

Purpose

- \bullet VARIABLES1[i].var CTR VARIABLES1[i+1].var holds and VARIABLES2[i].var CTR VARIABLES2[i+1].var does not hold,
- \bullet VARIABLES2 [i]. var CTR VARIABLES2 [i+1]. var holds and VARIABLES1 [i]. var CTR VARIABLES1 [i+1]. var does not hold.

Example

```
(1, \langle 3, 3, 1, 2, 2 \rangle, \langle 4, 4, 3, 3, 3 \rangle, \neq)
```

The distance_change constraint holds since the following condition (DIST = 1) is verified: $\left\{ \begin{array}{l} {\tt VARIABLES1[3].var} = 1 \neq {\tt VARIABLES1[4].var} = 2 \land \\ {\tt VARIABLES2[3].var} = 3 = {\tt VARIABLES1[4].var} = 3 \end{array} \right. .$

Typical

```
\begin{split} & \texttt{DIST} > 0 \\ & | \texttt{VARIABLES1} | > 1 \\ & \texttt{CTR} \in [=, \neq] \end{split}
```

Symmetries

- Arguments are permutable w.r.t. permutation (DIST) (VARIABLES1, VARIABLES2) (CTR).
- One and the same constant can be added to the var attribute of all items of VARIABLES1.
- One and the same constant can be added to the var attribute of all items of VARIABLES2.

20000128 1107

Arg. properties

Functional dependency: DIST determined by VARIABLES1, VARIABLES2 and CTR.

Usage Measure the distance between two sequences according to the change constraint.

Remark We measure that distance with respect to a given constraint and not according to the fact

that the variables are assigned distinct values.

See also common keyword: distance_between (proximity constraint).

root concept: change.

Keywords characteristic of a constraint: automaton, automaton with counters.

constraint arguments: pure functional dependency.

constraint network structure: sliding cyclic(2) constraint network(2).

constraint type: proximity constraint.
modelling: functional dependency

Arc input(s)	VARIABLES1/VARIABLES2
Arc generator	$PATH \mapsto collection(variables1, variables2)$
Arc arity	2
Arc constraint(s)	variables1.var CTR variables2.var
Graph property(ies)	DISTANCE= DIST

Graph model

Within the **Arc input(s)** slot, the character / indicates that we generate two distinct graphs. The graph property DISTANCE measures the distance between two digraphs G_1 and G_2 . This distance is defined as the sum of the following quantities:

- The number of arcs of G_1 that do not belong to G_2 ,
- The number of arcs of G_2 that do not belong to G_1 .

Part (A) of Figure 5.304 gives the final graph associated with the sequence var-3,var-3,var-1,var-2,var-2 (i.e., the second argument of the constraint of the **Example** slot), while part (B) shows the final graph corresponding to var-4,var-4,var-3,var-3,var-3 (i.e., the third argument of the constraint of the **Example** slot). Since arc $3 \rightarrow 4$ belongs to the first final graph but not to the second one, the distance between the two final graphs is equal to 1.

Figure 5.304: Final graphs of the distance_change constraint

20000128 1109

Automaton

Figure 5.305 depicts the automaton associated with the distance_change constraint. Let $(VAR1_i, VAR1_{i+1})$ and $(VAR2_i, VAR2_{i+1})$ respectively be the i^{th} pairs of consecutive variables of the collections VARIABLES1 and VARIABLES2. To each quadruple $(VAR1_i, VAR1_{i+1}, VAR2_i, VAR2_{i+1})$ corresponds a 0-1 signature variable S_i . The following signature constraint links these variables:

Figure 5.305: Automaton of the distance_change constraint

Figure 5.306: Hypergraph of the reformulation corresponding to the automaton of the distance_change constraint