Aprendizaje Automático III

Ana X. Ezquerro

ana.ezquerro@udc.es, 🦪 GitHub

Grado en Ciencia e Ingeniería de Datos Universidad de A Coruña (UDC)

Curso 2021-2022

Tabla de Contenidos

1.	Técnicas avanzadas de preprocesado de datos			
	1.1.	Métricas de evaluación ante el desbalanceo de datos	3	
	1.2.	Algoritmos de extracción de características	3	
2.	2. Modelos combinados (ensembles)			
	2.1.	Algoritmos clásicos	5	
	2.2.	Reglas de decisión en modelos combinados	6	
	2.3.	Medidas de diversidad entre clasificadores	6	
3.	Apre	endizaje por refuerzo	8	
	3.1.	k-Armed Bandit Problem	8	
	3.2.	Procesos de Decisión de Markov (<i>Markov Decision Processes</i> , MDPs) .	8	
	3.3.	Programación dinámica	10	
	3.4.	Métodos de MonteCarlo	11	
	3.5.	Temporal Difference	11	
	3.6.	Optimización de una política aprendiendo el modelo	12	
	3.7.	Aproximación de funciones	13	
4.	4. Aprendizaje semi supervisado			
	4.1.	Modelos generativos	14	
	4.2.	Modelos discriminativos	14	
	4.3.	Modelos basados en grafos	14	
	4.4.	Algoritmo de co-entrenamiento	15	

Tema 1: Técnicas avanzadas de preprocesado de datos

1.1. Métricas de evaluación ante el desbalanceo de datos

		Predicción	
		Positivos	Negativos
Real	Positivos	VP	FN
Real	Negativos	FP	VN

1.2. Algoritmos de extracción de características

1.2.1. Algoritmo del ReliefF

- Entradas: $D \in \mathbb{R}^{n \times m}$ dataset de n ejemplos y m atributos, t iteraciones del método, $C = c_1, ..., c_d$ clases.
- Salida: Vector W de las estimaciones de la calidad de los atributos.
 - 1. Inicialización del vector W a 0.
 - 2. Para i = 1, ..., t:
 - 2.1. Seleccionar una instancia X_i .
 - 2.2. Seleccionar las k instancias más cercanas de la misma clase c_X (nearest hits H_j para j=1,..,k).
 - 2.3. Seleccionar las k instancias más cercanas para cada clase distinta de la de X_i (nearest misses $M_i(c)$ para j=1,...k y para $\forall c \in C-c_X$)
 - 2.4. Para f = 1, ..., m (actualización del vector W):

$$\begin{split} W[f] &= W[f] - \frac{1}{k} \sum_{j=1}^k \operatorname{diff}(f, X_i, H_j) \\ &+ \frac{1}{k} \sum_{c \in \{C - c_X\}} \frac{\mathbb{P}(c)}{1 - \mathbb{P}(c_X)} \sum_{j=1}^k \operatorname{diff}(f, X_i, M_j(c)) \end{split}$$

donde $\mathbb{P}(c)$ es la probabilidad *a priori* de la clase c (estimada a partir de D).

$$\operatorname{diff}(f, X_1, X_2) = \begin{cases} 0 & X_1[f] = X_2[f] \\ 1 & \text{en otro caso} \end{cases}$$

- Si X_i y H_j tienen valores diferentes para f, es un atributo no deseable.
- Si X_i y M_j tienen valores diferentes para f, es un atributo deseable.
- 3. Finalmente, promediar por el número de iteraciones. $W=\frac{1}{t}W$

1.2.2. Algoritmo de mRMR (Maximum Relevance Minimum Redundancy)

- Entradas: Conjunto inicial de características S, número de características qu se quieren seleccionar $m_{\rm opt}$, función para evaluar la correlación (información mutua) entre características y clases (mutualInfo())
- Salidas: Conjunto de características seleccionadas S_{opt} .
 - 1. Para cada característica f_i en S:
 - 1.1. Calcula la **relevancia** como mutualInfo(f_i , clases).
 - 1.2. Inicializa la redundancia a 0.
 - 1.3. Para cada característica f_j en S, se suma a la redundancia mutualInfo (f_i, f_j) .
 - 1.4. Se le asocia a la característica f_i una magnitud v_i .

 $v_i = \text{relevancia} - \text{redundancia}$

2. Las características se seleccionarán a partir de las magnitudes v_i para i=1,...,m en orden de mayor a menor.

1.2.3. Algoritmo de SVM-RFE

- ullet Entradas: Conjunto de entrenamiento D, conjunto inicial de características S.
- Salidas: Selección y ranking de características del dataset.
 - 1. Inicialización del conjunto F = S.
 - 2. Mientras que F no esté vacío:
 - 2.1. Entrenar F con una SVM lineal.
 - 2.2. Calcular el vector de pesos w_i .
 - 2.3. Ordenar las características de F por el vector de pesos w_i^2 .

- 2.4. Eliminar la última característica (la de menor peso) de F.
- 3. De esta forma se obtiene las características que se deben seleccionar en orden de menor a mayor relevancia.

Tema 2: Modelos combinados (ensembles)

2.1. Algoritmos clásicos

Pseudocódigo del AdaBoost

Entrada: $D = \{(x_1, y_1), ..., (x_n, y_n)\} = (\mathbf{X}, \mathbf{y})$ dataset de entrenamiento donde $y_i \in [-1, 1]$, K modelos de clasificación y una distribución W de pesos para los ejemplos de entrenamiento.

- 1. Inicialización de W = Unif(1, n).
- 2. Para cada modelo (for k = 1, ...K):
 - 2.1. h_k : Modelo entrenado en base a D ponderado con W.
 - 2.2. Cálculo del error cometido por el modelo h_k :

$$\varepsilon_k = \sum_{i=1}^n W(i) \mathcal{L}(y_i, \hat{y}_i)$$

donde W(i) expresa el peso asociado al ejemplo i y $\mathcal L$ es una función que expresa el error en la predicción.

- 2.3. Si $\varepsilon_k \geq 0.5$, se detiene el bucle.
- 2.4. Cálculo de nuevas estimaciones para los pesos.

$$\alpha_k = \frac{1}{2} \log \frac{1 - \varepsilon_k}{\varepsilon_k}$$

2.5. Actualizar la distribución W:

$$W = \frac{1}{Z_k} W \exp(-\alpha_k \mathbf{y} \hat{\mathbf{y}})$$

donde ${\cal Z}_k$ es un factor de normalización para que ${\cal W}$ sea una distribución válida.

3. Para un punto nuevo (x_0,y_0) sobre el que se quiere realizar una predicción, utilizar:

$$H(x_0) = \operatorname{sign}\left(\sum_{k=1}^K \alpha_k h_k(x_0)\right)$$

Pseudocódigo de Bagging

Entrada: $D=\{(x_1,y_1),...,(x_n,y_n)\}=(\mathbf{X},\mathbf{y})$ dataset de entrenamiento donde $y_i\in[-1,1]$ y K modelos de clasificación.

- 1. Para cada modelo de clasificación (para k = 1, ...K).
 - 1.1. Construir una muestra bootstrap $D^{(k)}$ a partir del muestreo con reemplazamiento de n elementos de D.
 - 1.2. Entrenar el modelo M_k .
- 2. Devolver los K modelos obtenidos.

Pseudocódigo de Random Forest

Entrada: $D = \{(x_1, y_1), ..., (x_n, y_n)\} = (\mathbf{X}, \mathbf{y})$ dataset de entrenamiento donde $y_i \in [-1, 1]$, K árboles (tamaño del ensemble), subespacio de dimensión d.

- 1. Para cada árbol (base leaner) k = 1, ...K.
 - 1.1. Construir una muestra bootstrap $D^{(k)}$ a partir del muestreo con reemplazamiento de n elementos de D.
 - 1.2. Escoger d características de forma aleatoria.

Ana X. Ezquerro

- 1.3. Entrenar el modelo M_k con $D^{(k)}$.
- 2. Devolver los modelos entrenados.

Pseudocódigo de Gradient Boosting

Entrada: $D = \{(x_1, y_1), ..., (x_n, y_n)\} = (\mathbf{X}, \mathbf{y})$ dataset de entrenamiento donde $y_i \in [-1, 1]$, \mathcal{L} función de pérdida (diferenciable), M iteraciones del algoritmo.

1. Inicialización de un modelo basado en una constante:

$$F_0(x) = \underset{\gamma}{\operatorname{arg\,min}} \sum_{i=1}^n \mathcal{L}(y_i, \gamma)$$

- 2. Para m = 1, ..., M:
 - 2.1. Calcular los pseudo-residuos:

$$\varepsilon_{i,m} = -\left[\frac{\partial \mathcal{L}(y_i, F(x_i))}{\partial F(x_i)}\right]_{F(x) = F_{m-1}(x)}$$
 $i = 1, ..., n$

- 2.2. Entrenar un modelo $h_m()$ usando $\{(x_1, \varepsilon_{1,m}), ..., (x_n, \varepsilon_{n,m})\}$
- 2.3. Obtener el factor multiplicativo γ_m optimizando:

$$\gamma_m = \arg\min_{\gamma} \sum_{i=1}^n \mathcal{L}(y_i, F_{m-1}(x_i) + \gamma h_m(x_i))$$

2.4. Finalmente, actualizar el modelo general:

$$F_m(x) = F_{m-1}(x) + \gamma_m h_m(x_i)$$

3. Devolver el modelo obtenido $F_M(x)$.

6

XGBoost es una variante de Gradient Boosting que consigue muy buenos resultados y es altamente paralelizable. Usa una formalización del modelo más regularizada para controlar el sobreajuste, lo que resulta en mejores resultados.

2.2. Reglas de decisión en modelos combinados

Sea la muestra x a la que le tenemos que asignar una de las d posibles clases del problema, y m el número de clasificadores con su y_i salidas, para i=1,...,m.

Cuando los clasificadores proporcionan un grado de certeza, la probabilidad a posterior puede estimarse como: $\mathbb{P}(c_i|x) = y_i$.

Sea $y_{ij}(x)$ la salida del clasificador i (i=1,...,m) en la clase j (j=1,...,d) para la muestra x, asumiendo que lasa salidas y_i están normalizadas. Se puede asignar a la muestra x la clase c_k según las siguientes reglas:

- $\blacksquare \text{ Regla del producto: } k = \mathop{\arg\max}_{j=1...d} \left\{ \prod_{i=1}^m y_{ij}(x) \right\}$
- Regla de la suma: $k = \underset{j=1...d}{\operatorname{arg\,máx}} \left\{ \sum_{i=1}^m y_{ij}(x) \right\}.$
- Regla de la media: $k = \underset{j=1...d}{\arg\max} \left\{ \frac{1}{m} \sum_{i=1}^{m} y_{ij}(x) \right\}.$
- $\qquad \qquad \text{Regla del máximo: } k = \mathop{\arg\max}_{j=1...d} \left\{ \mathop{\max}_{i=1...m} y_{ij}(x) \right\}.$
- Regla del mínimo: $k = \underset{j=1...d}{\arg \max} \left\{ \underset{i=1...m}{\min} y_{ij}(x) \right\}$.

2.3. Medidas de diversidad entre clasificadores

$$S_{\mathsf{AMPLE}} = \left| \left(\frac{a}{a+b} \right) / \frac{c}{c+d} \right| = \left| \frac{a(c+d)}{c(a+b)} \right|$$

		Clasificador 2	
		Aciertos	Fallos
Clasificador 1	Aciertos	a	b
	Fallos	c	d

Tema 3: Aprendizaje por refuerzo

3.1.	k-Armed Bandit Problem	8
3.2.	Procesos de Decisión de Markov (Markov Decision Processes, MDPs)	8
3.3.	Programación dinámica	10
3.4.	Métodos de MonteCarlo	11
3.5.	Temporal Difference	11
3.6.	Optimización de una política aprendiendo el modelo	12
3.7.	Aproximación de funciones	13

3.1. k-Armed Bandit Problem

Supongamos que:

- Existen *k* opciones/acciones a escoger.
- Al escoger una acción, se recibe una recompensa numérica escogida de una distribución de probabilidad que depende de la acción escogida.
- $\,\blacksquare\,$ El objetivo es maximizar las recompensas obtenidas después de T iteraciones.

Sea A_t la acción tomada en la iteración t y R_t su recompensa correspondiente. El valor de una acción arbitraria a es el valor esperado de su recompensa dado que se ha escogido dicha acción:

$$q_*(a) = \mathbb{E}[R_t | A_t = a]$$

Sea $Q_t(a)$ la estimación de $q_*(a)$ en la iteración t (deseamos que $Q_t(a) = q_*(a)$):

$$Q_t(a) = \frac{\sum_{i=1}^{t-1} R_i \cdot \mathbb{I}(A_i = a)}{\sum_{i=1}^{t-1} \mathbb{I}(A_i = a)}$$

A la hora de seleccionar una acción en la iteración t, se pueden tomar distintas opciones:

a) Greedy action.

$$A_t = \underset{a}{\operatorname{argmax}} Q_t(a)$$

- b) ε -greedy action.
- c) Optimistic Initial Values: Consiste en, para favorecer la exploración de más acciones al inicio del algoritmo, iniciar los valores de $Q_1(a)$, $\forall a \in A$ con valores mucho mayores a sus recompensas.

3.2. Procesos de Decisión de Markov (*Markov Decision Processes*, MDPs)

Consideremos un agente y un entorno con el que interactúa en cada momento t=0,1,2,3... (tiempo discreto).

- En cada momento t, el agente obtiene una representación del entorno denominada estado $(S_t \in \mathcal{S})$ y realiza una acción $A_t \in \mathcal{A}(s)$.
- En el siguiente momento t+1, recibirá una recompensa numérica $(R_{t+1} \in \mathcal{R} \subset \mathbb{R})$ y pasará al siguiente estado S_{t+1} .
- El MDP y el agente realizan una trayectoria del tipo:

$$S_0, A_0, R_1; S_1, A_1, R_2; \dots$$

■ En un MDP *finito*, el conjunto de estados, acciones y recompensas (S, A, R) tiene un número finito de elementos.

Para cada valor aleatorio de las variables R_t y S_t (en un tiempo cualquiera t) podemos definir su probabilidad de ocurrencia dado un estado anterior S_{t-1} y la acción tomada en t-1, A_{t-1} :

$$p: \mathcal{S} \times \mathcal{R} \times \mathcal{S} \times \mathcal{A} \longrightarrow [0, 1]$$

$$p(s', r | s, a) = \mathbb{P}[S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a]$$

$$\forall s', s \in \mathcal{S}, r \in \mathcal{R}, a \in \mathcal{A}(s)$$

Esta función p caracteriza completamente la dinámica del entorno. A partir de ella se pueden definir otras funciones como:

■ La probabilidad de transición entre estados:

$$p(s'|s,a) = \mathbb{P}[S_t = s'|S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$

■ La **recompensa esperada** en t dado el *estado* y *acción* anterior (en t-1):

$$r(s, a) = \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a] = \sum_{r \in \mathcal{R}} r \sum_{s' \in \mathcal{S}} p(s', r | s, a)$$

 La recompensa esperada en t dado el estado actual, el estado anterior y al acción anterior.

$$r(s, a, s') = \mathbb{E}[R_t | S_{t-1} = s, A_{t-1} = a, S_t = s'] = \sum_{r \in \mathcal{R}} r \frac{p(s' | s, a)}{p(s', r | s, a)}$$

El objetivo del agente es maximizar la acumulación de recompensas a lo largo de un episodio. Sea G_t el **retorno esperado**, éste se define como:

$$G_t = R_{t+1} + R_{t+2} + \dots + R_t$$

donde T es el tiempo final del episodio. Otra forma de definir el retorno esperado es descontando las recompensas a la largo plazo:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{T} \gamma^k R_{t+k+1}$$

donde $\gamma \in [0,1]$ es la **tasa de descuento**. Nótese que:

$$G_{t} = R_{t+1} + \gamma R_{t+2} + \gamma^{2} R_{t+3} + \gamma^{3} R_{t+4}$$

$$= R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \gamma^{2} R_{t+4} + \cdots), \qquad G_{T} = 0$$

$$= R_{t+1} + \gamma G_{t+1}$$

3.2.1. Políticas y funciones de evaluación

Una **política** π en el tiempo t se define como la probabilidad de tomar la acción $A_t=a$ dado un estado $S_t=s$.

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s], \quad a \in \mathcal{A}(S_t)$$

■ El valor del estado s bajo la política π :

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s] = \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} \middle| S_t = s\right], \quad \forall s \in \mathcal{S}$$

Podemos reescribir $v_{\pi}(s)$ como (ecuaciones de Bellman):

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_{t}|S_{t} = s]$$

$$= \mathbb{E}_{\pi}[R_{t+1} + \gamma G_{t+1}|S_{t} = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \Big(r + \gamma \mathbb{E}_{\pi}[G_{t+1}|S_{t+1} = s']\Big)$$

$$= \sum_{a} \pi(a|s) \sum_{s', r} p(s', r|s, a) \Big(r + \gamma v_{\pi}(s')\Big)$$

■ El valor de la acción a en el estado s bajo la política π :

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a \right]$$

- Una políica π es mejor que otra π' si y sólo si $v_{\pi}(s) \geq v_{\pi'}(s)$, $\forall s \in \mathbb{S}$.
- Función de valor de estado óptima:

$$v^*(s) = \max_{\pi} v_{\pi}(s), \quad \forall s \in \mathbb{S}$$

■ Función de valor de acción óptima:

$$q^*(s, a) = \max_{\pi} q_{\pi}(s, a), \quad \forall s \in \mathbb{S}, \ a \in \mathbb{A}$$

3.2.2. Ecuaciones de Bellman

$$v_{\pi}(s) = \mathbb{E}[G_t|S_t = s] = \mathbb{E}[R_{t+1} + \gamma G_{t+1}|S_t = s]$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big(r + \gamma \mathbb{E}[G_{t+1}|S_{t+1} = s']\Big)$$

$$= \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \Big(r + \gamma v_{\pi}(s')\Big)$$

$$q_{\pi}(s, a) = \mathbb{E}[G_t|S_t = s, A_t = a] = \mathbb{E}[R_{t+1} + \gamma G_{t+1}|S_t = s, A_t = a]$$

$$= \sum_{s',r} p(s', r|s, a) \left(r + \gamma \mathbb{E}[G_{t+1}|S_{t+1} = s']\right)$$

$$= \sum_{s',r} p(s', r|s, a) \left(r + \gamma \sum_{a'} \pi(a'|s') \mathbb{E}[G_{t+1}|S_{t+1} = s', A_{t+1} = a']\right)$$

$$= \sum_{s',r} p(s', r|s, a) \left(r + \gamma \sum_{a'} \pi(a'|s') q_{\pi}(s', a')\right)$$

3.3. Programación dinámica

Se basa en utilizar las ecuaciones de Bellman para calcular $v^*(s)$ y derivar a partir de ahí π^* .

1. Partimos de una política inicial $\pi(s)$, a partir de la cual estimamos $v_{\pi}(s)$, $\forall s \in \mathbb{S}$.

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r'} p(s',r|s,a) [r + \gamma v_{\pi}(s')]$$

2. Podemos definir una nueva política π' greedy con respecto a v_{π} :

$$\pi'(s) = \arg \max_{a} \sum_{s',r} p(s',r|s,a)[r + \gamma v_{\pi}(s')] = \arg \max_{a} q_{\pi}(s,a)$$

3.3.1. Iteración de valores para estimar $\pi \approx \pi^*$

Ana X. Ezquerro

3.4. Métodos de MonteCarlo

First-visit MC prediction, for estimating $V \approx v_{\pi}$ Input: a policy π to be evaluated Initialize: $V(s) \in \mathbb{R}$, arbitrarily, for all $s \in \mathcal{S}$ $Returns(s) \leftarrow$ an empty list, for all $s \in \mathcal{S}$ Loop forever (for each episode): Generate an episode following π : $S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T$ $G \leftarrow 0$ Loop for each step of episode, $t = T-1, T-2, \ldots, 0$: $G \leftarrow G + R_{t+1}$ Unless S_t appears in $S_0, S_1, \ldots, S_{t-1}$: Append G to $Returns(S_t)$ $V(S_t) \leftarrow average(Returns(S_t))$

```
Off-policy MC control, for estimating \pi \approx \pi_*
Initialize, for all s \in S, a \in A(s):
     Q(s,a) \in \mathbb{R} (arbitrarily)
     C(s,a) \leftarrow 0
     \pi(s) \leftarrow \operatorname{arg\,max}_a Q(s, a) (with ties broken consistently)
Loop forever (for each episode):
     b \leftarrow \text{any soft policy}
     Generate an episode using b: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     W \leftarrow 1
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
          C(S_t, A_t) \leftarrow C(S_t, A_t) + W
          Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} \left[ G - Q(S_t, A_t) \right]
          \pi(S_t) \leftarrow \operatorname{arg\,max}_a Q(S_t, a) (with ties broken consistently)
          If A_t \neq \pi(S_t) then exit For loop
          W \leftarrow W \frac{1}{b(A_t|S_t)}
```

3.5. Temporal Difference

```
Tabular TD(0) for estimating v_{\pi}

Input: the policy \pi to be evaluated Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize V(s), for all s \in \mathbb{S}^+, arbitrarily except that V(terminal) = 0
Loop for each episode:
Initialize S
Loop for each step of episode:
A \leftarrow \text{action given by } \pi \text{ for } S
Take action A, observe R, S'
V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
S \leftarrow S'
until S is terminal
```

```
Sarsa (on-policy TD control) for estimating Q \approx q_*

Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in S^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal,\cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \epsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \epsilon-greedy)

Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma Q(S',A') - Q(S,A)]

S \leftarrow S'; A \leftarrow A';

until S is terminal
```


Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$ Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ϵ -greedy) Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha[R + \gamma \max_a Q(S',a) - Q(S,A)]$

Expected SARSA: Actualización de valores:

 $S \leftarrow S'$

until S is terminal

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \cdot \mathbb{E}[Q(S_{t+1}, A_{t+1}) | S_{t+1}] - Q(S_t, A_t) \right]$$

$$\leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \cdot \sum_{a \in \mathcal{A}(S_{t+1})} \left(\mathbb{P}(a | S_{t+1}) Q(S_{t+1}, a) \right) - Q(S_t, A_t) \right]$$

donde A_{t+1} se obtiene siguiendo una políitca ε -greedy.

3.6. Optimización de una política aprendiendo el modelo

Tabular Dyna-Q

Initialize Q(s,a) and Model(s,a) for all $s \in \mathcal{S}$ and $a \in \mathcal{A}(s)$ Loop forever:

- (a) $S \leftarrow \text{current (nonterminal) state}$
- (b) $A \leftarrow \epsilon$ -greedy(S, Q)
- (c) Take action A; observe resultant reward, R, and state, S'
- (d) $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) Q(S, A)]$
- (e) $Model(S, A) \leftarrow R, S'$ (assuming deterministic environment)
- (f) Loop repeat n times:

 $S \leftarrow \text{random previously observed state}$

 $A \leftarrow$ random action previously taken in S

 $R, S' \leftarrow Model(S, A)$

 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$

Dyna-Q+: La recompensa viene ponderada por el número de *steps* sin explorar ese estado (τ) :

$$r = r + \kappa \sqrt{\tau}, \qquad \kappa > 0$$

3.7. Aproximación de funciones

Gradient Monte Carlo Algorithm for Estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated

Input: a differentiable function \hat{v}: \mathbb{S} \times \mathbb{R}^d \to \mathbb{R}

Algorithm parameter: step size \alpha > 0

Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0})

Loop forever (for each episode):

Generate an episode S_0, A_0, R_1, S_1, A_1, \dots, R_T, S_T using \pi

Loop for each step of episode, t = 0, 1, \dots, T - 1:

\mathbf{w} \leftarrow \mathbf{w} + \alpha \left[ G_t - \hat{v}(S_t, \mathbf{w}) \right] \nabla \hat{v}(S_t, \mathbf{w})
```

Semi-gradient TD(0) for estimating $\hat{v} \approx v_{\pi}$

```
Input: the policy \pi to be evaluated Input: a differentiable function \hat{v}: \mathbb{S}^+ \times \mathbb{R}^d \to \mathbb{R} such that \hat{v}(\text{terminal},\cdot) = 0 Algorithm parameter: step size \alpha > 0 Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0}) Loop for each episode: Initialize S Loop for each step of episode: Choose A \sim \pi(\cdot|S) Take action A, observe R, S' \mathbf{w} \leftarrow \mathbf{w} + \alpha \big[ R + \gamma \hat{v}(S', \mathbf{w}) - \hat{v}(S, \mathbf{w}) \big] \nabla \hat{v}(S, \mathbf{w}) S \leftarrow S' until S' is terminal
```

Episodic Semi-gradient Sarsa for Estimating $\hat{q} \approx q_*$

```
Input: a differentiable action-value function parameterization \hat{q}: \mathbb{S} \times \mathcal{A} \times \mathbb{R}^d \to \mathbb{R} Algorithm parameters: step size \alpha > 0, small \varepsilon > 0 Initialize value-function weights \mathbf{w} \in \mathbb{R}^d arbitrarily (e.g., \mathbf{w} = \mathbf{0}) Loop for each episode: S, A \leftarrow initial state and action of episode (e.g., \varepsilon-greedy) Loop for each step of episode: Take action A, observe R, S' If S' is terminal: \mathbf{w} \leftarrow \mathbf{w} + \alpha \big[ R - \hat{q}(S, A, \mathbf{w}) \big] \nabla \hat{q}(S, A, \mathbf{w}) Go to next episode Choose A' as a function of \hat{q}(S', \cdot, \mathbf{w}) (e.g., \varepsilon-greedy) \mathbf{w} \leftarrow \mathbf{w} + \alpha \big[ R + \gamma \hat{q}(S', A', \mathbf{w}) - \hat{q}(S, A, \mathbf{w}) \big] \nabla \hat{q}(S, A, \mathbf{w}) S \leftarrow S' A \leftarrow A'
```

Tema 4: Aprendizaje semi supervisado

4.1. Modelos generativos

4.1.1. Cluster and label

Hipótesis: Los clusters coinciden con las fronteras de decisión.

Entrada:

- Conjunto de datos etiquetados $\mathbf{X}^l = \{(x_i, y_i), i = 1, ..., n^l\}$ y sin etiquetar $\mathbf{X}^u = \{x_i, i = 1, ..., n^u\}$.
- Algoritmo de supervisado $f: x \to y$.
- 1. Obtener el conjunto de clusters $\mathbb{S} = \{S_i, i = 1, ..., n^c\}$ para todos los datos: $\mathbf{X}^l \cup \mathbf{X}^u$.
- 2. Para cada cluster k, entrenar el algoritmo supervisado con las muestras de \mathbf{X}^l que pertenezcan a ese cluster. El resultado es un clasificador $f_k: x \to y$ donde $x \in S_k \cap \mathbf{X}^l$.
- 3. Aplicar f_k a las muestras sin etiquetar de S_k .
- 4. Resultado: Etiquetas para \mathbf{X}^u .

4.2. Modelos discriminativos

4.2.1. S3VM

Entrada:

- Conjunto de datos etiquetados $\mathbf{X}^l=\{(x_i,y_i),\ i=1,...,n^l\}$ y sin etiquetar $\mathbf{X}^u=\{x_i,\ i=1,...,n^u\}.$
- Función de separación: f(x) = h(x) + b, donde h es una función kernel en el espacio de Hilbert H_k .
- Clasificación de un x_i : sign $(f(x_i))$

■ Función de pérdida (Hinge): $(1 - y_i f(x_i))_+$.

$$\mathcal{L} = \sum_{i=1}^{n^{l}} (1 - y_i f(x_i))_+ + \lambda ||h||^2$$

1. Añadimos los datos sin etiquetar con la función de pérdida: $(1-\operatorname{sign}(f(x_i))f(x_i))_+ = (1-|f(x_i)|)_+$:

$$\mathcal{L} = \sum_{i=1}^{n^{l}} (1 - y_i f(x_i))_+ + \lambda ||h||^2 + \gamma \sum_{i=1}^{n^{u}} (1 - |f(x_i)|)_+$$

4.3. Modelos basados en grafos

Entrada:

- Conjunto de datos etiquetados $\mathbf{X}^l = \{(x_i, y_i), i = 1, ..., n^l\}$ y sin etiquetar $\mathbf{X}^u = \{x_i, i = 1, ..., n^u\}$.
- Grafo G donde los nodos son las instancias y las aristas indican el grado de similitud entre las instancias.
- $w_{ij} = \text{Similitud directa entre } x_i \text{ y } x_j \text{ (instancias de } \mathbf{X}^l \cup \mathbf{X}^u \text{)}.$
- 1. Hipótesis: Las predicciones de todas las observaciones se pueden definir con una función f.
- 2. Función de regularización:

$$\mathcal{L} = \min_{f} \sum_{i=1}^{l} (y_i - f(x_i))^2 + \lambda \sum_{x_i, x_j \in \mathbf{X}^l \cup \mathbf{X}^u} w_{ij} (f(x_i) - f(x_k))^2$$

- 3. Resoluciones:
 - lacksquare Algoritmo de mincut: Fijar $f(x_i)$ para obtener $f(x_j)$.

■ Paseo aleatorio de un nodo x_i a x_j con probabiildad: $w_{ij}/\sum_k w_{ik}$ y parar cuando se encuentra un nodo etiquetado.

$$f(x_i) = \mathbb{P}(x_j \in \mathbf{X}^l | x_i)$$

4.4. Algoritmo de co-entrenamiento

Entrada:

- Conjunto de datos etiquetados $\mathbf{X}^l = \{(x_i, y_i), i = 1, ..., n^l\}$ y sin etiquetar $\mathbf{X}^u = \{x_i, i = 1, ..., n^u\}$.
- lacktriangle Dos clasificadores f_1 y f_2 para distintas características de las observaciones.
- 1. Asumimos que ${\bf X}_1$ y ${\bf X}_2$ son los conjuntos de entrenamiento de f_1 y f_2 respectivamente. Inicialmente ${\bf X}_1={\bf X}_2={\bf X}^l$
- 2. Entrenar f_1 y f_2 con sus conjuntos de entrenamiento.
- 3. Predecir \mathbf{X}^u con f_1 y f_2 .
- 4. Los k pares con más certeza de $(x_i, f_1(x_i))$, $x_i \in \mathbf{X}^u$ se añaden \mathbf{X}_2 .
- 5. Los k pares con más certeza de $(x_i, f_2(x_i))$, $x_i \in \mathbf{X}^u$ se añaden \mathbf{X}_1 .
- 6. Volver al paso 2.