LINEAR TRANSFORMATIONS

• We have already seen repeatedly that a matrix can be used to transform vectors. Let T be a matrix, and v be a vector in \mathbb{R}^2 and w be a vector in \mathbb{R}^3 . Let w = T(v):

$$T = \begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & 4 \end{bmatrix} \quad v = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \quad w = T(v) = \begin{bmatrix} 1 \\ 3 \\ -1 \end{bmatrix}$$

- T will transform any vector in \mathbb{R}^2 into a vector in \mathbb{R}^3 : $\begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 2x y \\ 3x + 4y \end{bmatrix}$
- The **transformation** or **mapping** T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns each vector v in \mathbb{R}^n to a unique vector T(v) in \mathbb{R}^m
- The **domain** of T is \mathbb{R}^n .
- The **codomain** of T is \mathbb{R}^m .
- Thus the transformation would be described as $T: \mathbb{R}^n \to \mathbb{R}^m$
- The vector T(v) is the **image** of v.
- The set of all possible images is known as the range of T.
- In our example $\begin{bmatrix} 1 & 0 \\ 2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 2x y \\ 3x + 4y \end{bmatrix}$, the range of T would be all linear combinations,

$$x\begin{bmatrix} 1\\2\\3 \end{bmatrix} + y\begin{bmatrix} 0\\-1\\4 \end{bmatrix}$$
, thus the column space of T .

WHEN IS A TRANFORMATION "LINEAR?"

• $T: \mathbb{R}^n \to \mathbb{R}^m$ is called a linear transformation if and only if :

$$T(u+v) = T(u) + T(v)$$
 for all u and v in \mathbb{R}^n

$$T(cv) = cT(v)$$
 for all v in \mathbb{R}^n and all scalars c

• Steps to verify that our example transformation is linear:

$$T: \mathbb{R}^n \to \mathbb{R}^m = T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 2x - y \\ 3x + 4y \end{bmatrix}$$
, let $u = \begin{bmatrix} x_1 \\ y_1 \end{bmatrix}$ and $v = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$

$$T(u+v) = T\left(\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ y_2 \end{bmatrix}\right) = T\left(\begin{bmatrix} x_1 + x_2 \\ y_1 + y_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ 2(x_1 + x_2) - (y_1 + y_2) \\ 3(x_1 + x_2) + 4(y_1 + y_2) \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_1 + 2x_2 - y_1 - y_2 \\ 3x_1 + 3x_2 + 4y_1 + 4y_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ (2x_1 - y_1) + (2x_2 - y_2) \\ (3x_1 + 4y_1) + (3x_2 + 4y_2) \end{bmatrix} = \begin{bmatrix} x_1 \\ 2x_1 - y_1 \\ 3x_1 + 4y_1 \end{bmatrix} + \begin{bmatrix} x_2 \\ 2x_2 - y_2 \\ 3x_2 + 4y_2 \end{bmatrix} = T\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} + T\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = T(u) + T(v)$$

$$T(cv) = T \left(c \begin{bmatrix} x \\ y \end{bmatrix} \right) = T \left(\begin{bmatrix} cx \\ cy \end{bmatrix} \right) =$$

$$= \begin{bmatrix} cx \\ 2(cx) - (cy) \\ 3(cx) + 4(cy) \end{bmatrix} = \begin{bmatrix} cx \\ c(2x - y) \\ c(3x + 4y) \end{bmatrix} =$$

$$= c \begin{bmatrix} x \\ 2x - y \\ 3x + 4y \end{bmatrix} = cT \begin{bmatrix} x \\ y \end{bmatrix} = cT(v)$$

- Therefore, our example transformation was indeed linear.
- This is true for any $m \times n$ matrix A. Let $T_A : \mathbb{R}^n \to \mathbb{R}^m$ be defined by $T_A(x) = Ax$ for any x in \mathbb{R}^n . Let u and v be vectors in \mathbb{R}^n and c be a scalar:

$$T_A(u+v) = A(u+v) = Au + Av = T_A(u) + T_A(v)$$
 and $T_A(cv) = A(cv) = c(Av) = cT_A(v)$

ROTATIONS AS LINEAR TRANSFORMATIONS

- A rotation about the origin through an angle θ is a linear transformation from \mathbb{R}^n to \mathbb{R}^n .
- Let R_{θ} be the rotation, and u and v be vectors in R^2 . Provided that the vectors are not parallel, we know that $\|u+v\|$ is the diagonal of a parallelogram formed by the two vectors. Applying R_{θ} would rotate the entire parallelogram through angle θ , and thus the diagonal of the parallelogram must be $R_{\theta}(u)+R_{\theta}(v)$ and therefore $R_{\theta}(u+v)=R_{\theta}(u)+R_{\theta}(v)$.

Applying R_{θ} to v and cv would obtain $R_{\theta}(v)$ and $R_{\theta}(cv)$. Since a rotation does not affect lengths, $R_{\theta}(cv) = cR_{\theta}(v)$

- The matrix of this linear transformation can be found by determining the effects on standard basis vectors: $R_{\theta} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$ and $R_{\theta} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ (which is orthogonal, so $R_{\theta} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\sin \theta \\ \cos \theta \end{bmatrix}$)
- $\bullet \quad R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$

PROJECTIONS AS LINEAR TRANSFORMATIONS

- As an example, let ℓ be a line through the origin in \mathbb{R}^2 . The linear transformation $P_\ell: \mathbb{R}^2 \to \mathbb{R}^2$ projects a vector in \mathbb{R}^2 onto ℓ .
- ℓ has a directional vector d onto which we will project an arbitrary vector v.
- The projection of v onto d is given by $\left(\frac{d^T v}{d^T d}\right) d$
- Therefore, the transformation $P_{\ell}: \mathbb{R}^2 \to \mathbb{R}^2$ is linear because:

$$P_{\ell}(u+v) = \left(\frac{d^{T}(u+v)}{d^{T}d}\right)d = \left(\frac{d^{T}u+d^{T}v}{d^{T}d}\right)d =$$

$$= \left(\frac{d^{T}u}{d^{T}d} + \frac{d^{T}v}{d^{T}d}\right)d = \left(\frac{d^{T}u}{d^{T}d}\right)d + \left(\frac{d^{T}v}{d^{T}d}\right)d =$$

$$P_{\ell}(u) + P_{\ell}(v)$$

Similarly $P_{\ell}(cv) = cP_{\ell}(v)$

TRANSPOSITION AS A LINEAR TRANSFORMATION

- Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be defined as $T_A = A^T$
- $T(A+B) = (A+B)^T = A^T + B^T = T(A) + T(B)$
- $T(cA) = (cA)^T = cA^T = cT(A)$

DIFFERENTIATION AS A LINEAR TRANSFORMATION

- Let D be the differential operator $D: \Delta \to \Phi$ defined by D(f) = f'
- ullet Let f and g be differentiable functions.
- D is a linear transformation because D(f+g)=(f+g)'=f'+g'=D(f)+D(g) and D(cf)=(cf)'=cf'=cD(f) .b

INTEGRATION AS A LINEAR TRANSFORMATION

• Let
$$S: \partial[a,b] \to \mathbb{R}$$
 by $S(f) = \int_a^b f(x) dx$

- Let f and g be functions in $\partial[a,b]$.
- S is a linear transformation because

$$S(f+g) = \int_{a}^{b} (f+g)(x)dx = \int_{a}^{b} (f(x)+g(x))dx =$$

$$= \int_{a}^{b} f(x)dx + \int_{a}^{b} g(x)dx = S(f) + S(g)$$

• Similarly, S(cf) = cS(f)

EXAMPLES OF NON-LINEAR TRANSFORMATIONS

•
$$T: \mathbb{R} \to \mathbb{R}: T(x) = 2^x$$

Let $x = 1$ and $y = 2$
 $T(x + y) = T(3) = 2^3 = 8 \neq 6 = 2^1 + 2^2 = T(x) + T(y)$

•
$$T: \mathbb{R} \to \mathbb{R}: T(x) = x+1$$

Let $x = 1$ and $y = 2$
 $T(x+y) = T(3) = 3+1 = 4 \neq 5 = (1+1) + (2+1) = T(x) + T(y)$

•
$$T: M_{22} \to \mathbb{R}: T(A) = |A|$$
Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$

$$T(A+B) = |A+B| = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1 \neq 0 = \begin{vmatrix} 1 & 0 \\ 0 & 0 \end{vmatrix} + \begin{vmatrix} 0 & 0 \\ 0 & 1 \end{vmatrix} = T(A) + T(B)$$

$T:V \rightarrow W$ and T's effect on a basis for V

Example:

$$T: \mathbb{R}^2 \to F: T \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 2 - 3x + x^2 \text{ and } T \begin{bmatrix} 2 \\ 3 \end{bmatrix} = 1 - x^2$$

• Find $T \begin{bmatrix} -1 \\ 2 \end{bmatrix}$.

$$\left\{\begin{bmatrix}1\\1\end{bmatrix},\begin{bmatrix}2\\3\end{bmatrix}\right\} \text{ is a basis for } \mathbb{R}^2 \text{ , and therefore } \begin{bmatrix}-1\\2\end{bmatrix} \text{ is in its span. Solve } \begin{bmatrix}1&2\\1&3\end{bmatrix} \begin{bmatrix}c_1\\c_2\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix} \text{ to } \begin{bmatrix}-1\\2\end{bmatrix} \text{ to } \begin{bmatrix}-1\\2\end{bmatrix} \text{ is a basis for } \mathbb{R}^2 \text{ , and therefore } \begin{bmatrix}-1\\2\end{bmatrix} \text{ is in its span. } \begin{bmatrix}-1\\1&3\end{bmatrix} \begin{bmatrix}c_1\\c_2\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix} \text{ to } \begin{bmatrix}-1\\2\end{bmatrix} \text{ to } \begin{bmatrix}-1\\2\end{bmatrix} \begin{bmatrix}c_1\\1&3\end{bmatrix} \begin{bmatrix}c_1\\c_2\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix} \text{ to } \begin{bmatrix}-1\\2\end{bmatrix} \begin{bmatrix}c_1\\1&3\end{bmatrix} \begin{bmatrix}c_1\\c_2\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix} \text{ to } \begin{bmatrix}-1\\2\end{bmatrix} \begin{bmatrix}c_1\\2\end{bmatrix} \begin{bmatrix}c_1\\2\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix} \text{ to } \begin{bmatrix}-1\\2\end{bmatrix} \begin{bmatrix}c_1\\2\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix} \begin{bmatrix}c_1\\2\end{bmatrix} = \begin{bmatrix}-1\\2\end{bmatrix} = \begin{bmatrix}-$$

find the appropriate scalars $\,c_{\scriptscriptstyle 1}=-7\,$ and $\,c_{\scriptscriptstyle 2}=3\,$.

Therefore
$$T \begin{bmatrix} -1 \\ 2 \end{bmatrix} = T \left(-7 \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right) = -7T \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 3T \begin{bmatrix} 2 \\ 3 \end{bmatrix}$$

= $-7(2 - 3x - 10x^2) + 3(1 - x^2) = -11 + 21x - 10x^2$

• Find $T \begin{bmatrix} a \\ b \end{bmatrix}$.

$$= (5a-3b) + (-9a+6b)x + (4a-3b)x^2$$

Therefore, let $T:V\to W$ be a linear transformation, and let $B=v_1,\ldots,v_n$ be a basis that spans V . $T(B)=T(v_1),\ldots T(v_n)$ is a basis that spans the range of T .

COMPOSITION OF LINEAR TRANSFORMATIONS

Let $T:U\to V$ and $S:V\to W$ be linear transformations. The composition of S with T is the mapping $S\circ T$ definite by $(S\circ T)(u)=S(T(u))$

EXAMPLE:

Let $T: \mathbb{R}^2 \to F_1$ and $S: F_1 \to F_2$ be the linear transformations defined by

$$T\begin{bmatrix} a \\ b \end{bmatrix} = a + (a+b)x$$
 and $S(f(x)) = xf(x)$

• Find $(S \circ T) \begin{bmatrix} 3 \\ -2 \end{bmatrix}$

$$(S \circ T) \begin{bmatrix} 3 \\ -2 \end{bmatrix} = S \left(T \begin{pmatrix} 3 \\ -2 \end{pmatrix} \right) = S(3 + (3 - 2)x) = S(3 + x) = x(3 + x) = 3x + x^{2}$$

• Find $(S \circ T) \begin{bmatrix} a \\ b \end{bmatrix}$

$$(S \circ T) \begin{bmatrix} a \\ b \end{bmatrix} = S \left(T \left(\begin{bmatrix} a \\ b \end{bmatrix} \right) = S(a + (a+b)x) = x(a+(a+b)x) = ax + (a+b)x^2$$

If $T:U\to V$ and $S:V\to W$ are linear transformation, then $S\circ T:U\to V$ is a linear transformation.

$$(S \circ T)(u+v) = S(T(u+v)) \qquad (S \circ T)(cu) = S(T(cu))$$

$$= S(T(u)+T(v)) \qquad = S(cT(u))$$

$$= S(T(u))+S(T(v)) \qquad = cS(T(u))$$

$$= (S \circ T)(u)+(S \circ T)(v) \qquad = c(S \circ T)(u)$$

INVERSES OF LINEAR TRANSFORMATION

A linear transformation $T:V\to W$ is invertible if there is a linear transformation $T':W\to V$ such that $T'\circ T=I_V$ and $T\circ T'=I_W$

EXAMPLE:

Verify that the linear mapping
$$T:\mathbb{R}^2 \to F_1:T\begin{bmatrix} a \\ b \end{bmatrix} = a + (a+b)x$$
 and
$$T':F_1 \to \mathbb{R}^2:T'(c+dx) = \begin{bmatrix} c \\ d-c \end{bmatrix} \text{are inverses.}$$

$$(T \circ T) \begin{bmatrix} a \\ b \end{bmatrix} = T \cdot \left(T \begin{bmatrix} a \\ b \end{bmatrix} \right) = T \cdot (a + (a+b)x) = \begin{bmatrix} a \\ (a+b)-a \end{bmatrix} = \begin{bmatrix} a \\ b \end{bmatrix}$$
$$(T \circ T \cdot)(c+dx) = T(T \cdot (c+dx)) = T \begin{bmatrix} c \\ d-c \end{bmatrix} = c + (c+(d-c))x = c + dx$$

Therefore they are inverses because $T \ensuremath{\,^{'}\!\!\circ} T = I_{\mathbb{R}^2}$ and $T \circ T \ensuremath{\,^{'}\!\!=} I_{F_{\!\scriptscriptstyle 1}}$.

KERNEL AND RANGE

Let $T:V \rightarrow W$ be a linear transformation

• The **kernel** of T [ker(T)] is the set of all vectors in V that are mapped by T to 0 in W.

$$\ker(T) = \{ v \text{ in } V : T(v) = 0 \}$$

• The range of T [range(T)] is the set of all vectors in W that are images of vectors in V under T.

EXAMPLES:

Find the kernel and range of the differential operator $D: P_3 \to P_2: D(p(x)) = p'(x)$

$$D(a+bx+cx^{2}+dx^{3}) = b + 2cx + 3dx^{2}$$

$$\ker(D) = \{a+bx+cx^{2}+dx^{3}: D(a+bx+cx^{2}+dx^{3}) = 0\}$$

$$= \{a+bx+cx^{2}+dx^{3}: b+2cx+3dx^{2} = 0\}$$

$$b+2cx+3dx^2=0$$
 iff $b=2c=3d=0$, implying $b=c=d=0$, therefore
$$\ker(D)=\{a+bx+cx^2+dx^3:b=c=d=0\}$$

$$=\{a:a\ \text{in}\ \mathbb{R}\}$$

Therefore, the kernel of D is the set of all constant polynomials. The range of D is all of P_2 because every polynomial in P_2 is the image under D of some polynomial in P_3 .

Find the kernel and range of
$$S: P_1 \to \mathbb{R}: S(p(x)) = \int_0^1 p(x) dx$$

$$S(a+bx) = \int_{0}^{1} (a+bx)dx$$

$$\left[ax + \frac{b}{2}x^{2}\right]_{0}^{1} = \left(a + \frac{b}{2}\right) - 0 = a + \frac{b}{2}$$

$$ker(S) = \{a + bx : S(a + bx) = 0\}$$

$$= \left\{ a + bx : a + \frac{b}{2} = 0 \right\}$$
$$= \left\{ a + bx : a = -\frac{b}{2} \right\}$$
$$= \left\{ -\frac{b}{2} + bx \right\}$$

Therefore, the kernel consists of all linear polynomials whose graphs have the property that the area between the line and the x-axis is equally distributed above and below the axis.

The range of S is \mathbb{R} since every real number can be obtained as the image under S of a first degree polynomial.

Find the kernel and range of
$$T: M_{22} \rightarrow M_{22}: T(A) = A^T$$

$$\ker(T) = \{A \text{ in } M_{22} : T(A) = 0\}$$

= $\{A \text{ in } M_{22} : A^T = 0\}$

$$\ker(T)=\ 0$$
 because if $A^T=0$, then $(A^T)^T=0^T=0$. Also range $(T)=M_{22}$ because $A=(A^T)^T=T(A^T)$

In each of the examples, the kernel of T is a subspace of V, the range of T is a subspace of W.

RANK AND NULLITY

- The rank of T is the dimension of the range of T.
- The nullity of T is the dimension of the kernel of T.

FROM OUR EXAMPLES:

$$D: P_3 \rightarrow P_2: D(p(x)) = p'(x)$$

Rank(D)=3; nullity (D)=1

$$S: P_1 \to \mathbb{R}: S(p(x)) = \int_0^1 p(x) dx$$

Rank(S)=1; nullity (S)=1

$$T: M_{22} \to M_{22}: T(A) = A^T$$

Rank (T)=4; Nullity(T)=0

RANK THEOREM:

 $Rank(T) + Nullity(T) = dim(V) when T: V \rightarrow W$

Let W be the vector space of all 2×2 matrices for which $A = A^T$. Let

 $T:W\to P_2:T\begin{bmatrix}a&b\\b&c\end{bmatrix}=(a-b)+(b-c)x+(c-a)x^2$. Find the rank on the nullity of T.

$$\ker(T) = \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} : T \begin{bmatrix} a & b \\ b & c \end{bmatrix} = 0 \right\}$$

$$= \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} : (a-b) + (b-c)x + (c-a)x^2 = 0 \right\}$$

$$= \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} : (a-b) = (b-c) = (c-a) = 0 \right\}$$

$$= \left\{ \begin{bmatrix} a & b \\ b & c \end{bmatrix} : a = b = c \right\}$$

$$= \left\{ \begin{bmatrix} c & c \\ c & c \end{bmatrix} \right\} = span \left(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right)$$

$$\ker(T) = \left\{ \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \right\}$$
 and thus the nullity $= \dim(\ker(T)) = 1$. Therefore the rank $= \dim W - nullity(T) = 3 - 1 = 2$

ONE-TO-ONE and ONTO LINEAR TRANSFORMATIONS

- $T:V \to W$ is called one-to-one if T maps distinct vectors in V to distinct vectors in W.
- T is called onto if range(T) = W.
 - $T:V \to W$ is one-to-one if for all vectors in V , $u \neq v$ implies that $T(u) \neq T(v)$ and T(u) = T(v) implies that u = v.

EXAMPLES:

$$T: \mathbb{R}^2 \to \mathbb{R}^3: T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x \\ x - y \\ 0 \end{bmatrix}$$

• T is one-to-one because Let $T\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = T\begin{bmatrix} x_2 \\ y_2 \end{bmatrix}$. Then $\begin{bmatrix} 2x_1 \\ x_1 - y_1 \\ 0 \end{bmatrix} = \begin{bmatrix} 2x_2 \\ x_2 - y_2 \\ 0 \end{bmatrix}$, which implies

$$2x_1 = 2x_2$$
 and $x_1 - y_1 = x_2 - y_2$ so $x_1 = x_2$ and $y_1 = y_2$.

• T is NOT onto because its range is not all of \mathbb{R}^3 . There is no vector such that $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

$$D: P_3 \rightarrow P_2: D(p(x)) = p'(x)$$

- D is not one-to-one because distinct polynomials in P_3 can have the same derivative.
 - D is onto because $range(D) = P_2$.

 $T \begin{bmatrix} a \\ b \end{bmatrix} = a + (a+b)x$ is one-to-one because $\ker(T) = 0$ since if T(A) = 0, then a = 0 and a+b=0

(therefore b=0). $T\begin{bmatrix} a \\ b \end{bmatrix} = a + (a+b)x$ is also onto because if $\ker(T) = 0$ then it is full rank:

$$rank(T) = dim(\mathbb{R}^2) - nullity(T) = 2 - 0 = 2$$

THE MATRIX OF A LINEAR TRANSFORMATION

Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x - 2y \\ x + y - 3z \end{bmatrix}$ with bases $B = e_1, e_2, e_3$ for \mathbb{R}^3 and

 $\mathit{C} = \mathit{e}_{2}, \mathit{e}_{1} \; \; \mathsf{for} \; \mathbb{R}^{2}$. Find the matrix of T with respect to B and C .

- Compute $T(e_1) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $T(e_2) = \begin{bmatrix} -2 \\ 1 \end{bmatrix}$, $T(e_3) = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$
- ullet Find their coordinate vectors with respect to C

Since
$$\begin{bmatrix}1\\1\end{bmatrix}=e_2+e_1, \begin{bmatrix}-2\\1\end{bmatrix}=e_2-2e_1, \begin{bmatrix}-3\\0\end{bmatrix}=-3e_2+0e_1$$
 , we have

$$T(e_1)_C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, T(e_2)_C = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, T(e_3)_C = \begin{bmatrix} 0 \\ -3 \end{bmatrix}$$

• Therefore, the matrix of T with respect to B and C is $\begin{bmatrix} 1 & 1 & -3 \\ 1 & -2 & 0 \end{bmatrix}$.

Let
$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix}$$

$$T(v) = T \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} -5 \\ 10 \end{bmatrix}$$

$$v_B = \begin{bmatrix} 1\\3\\2 \end{bmatrix}$$
 and $T(v)_C = \begin{bmatrix} -5\\10 \end{bmatrix}_C = \begin{bmatrix} 10\\-5 \end{bmatrix}$

$$A \ v_{B} = \begin{bmatrix} 1 & 1 & -3 \\ 1 & -2 & 0 \end{bmatrix} \begin{vmatrix} 1 \\ 3 \\ -2 \end{vmatrix} = \begin{bmatrix} 10 \\ -5 \end{bmatrix} = T(v)_{C}$$

Let $D:P_3\to P_2$ be the differential operator D(p(x))=p'(x). A basis for P_3 would be $B=1,x,x^2,x^3$ and a basis for P_2 would be $C=1,x,x^2$.

Find the matrix of D with respect to B and C.

The images of B under D are D(1) = 0, D(x) = 1, $D(x^2) = 2x$, $D(x^3) = 3x^2$ and therefore their coordinate vectors with respect to C are:

$$D(1)_{C} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, D(x)_{C} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, [D(x^{2})]_{C} = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}, [D(x^{3})]_{C} = \begin{bmatrix} 0 \\ 0 \\ 3 \end{bmatrix}$$

Therefore
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}$$

Find the matrix A' of D with respect to B' and C where $B' = x^3, x^2, x, 1$

The order of the vectors in a basis will affect the matrix of a transformation with respect to the basis. Since basis B' is simply B in reverse order, we see that

$$A' = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{bmatrix}$$

Use matrix A to compute $D(5-x+2x^3)$

$$A\begin{bmatrix} 5 - x + 2x^{3} \end{bmatrix}_{B} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 5 \\ -1 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \\ 6 \end{bmatrix} = \begin{bmatrix} D(5 - x + 2x^{3}) \end{bmatrix}_{C}$$

Let
$$T: P_2 \to P_2: T(p(x) = p(2x-1)$$

Find the matrix of the linear transformation with respect to $B = 1, x, x^2$

$$T(1) = 1, T(x) = 2x - 1, T(x^{2}) = (2x - 1)^{2} = 1 - 4x + 4x^{2}$$

$$T(1)_{B} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, T(x)_{B} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} T(x^{2}) \end{bmatrix}_{B} = \begin{bmatrix} 1 \\ -4 \\ 4 \end{bmatrix}$$
Therefore $T_{B} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & 4 \end{bmatrix}$

Compute $T(3+2x-x^2)$

MATRICES OF COMPOSITE AND INVERSE TRANSFORMATIONS

$$T: \mathbb{R}^2 \to P_1: T \begin{bmatrix} a \\ b \end{bmatrix} = a + (a+b)x \text{ and } S: P_1 \to P_2: S(a+bx) = ax + bx^2 = xp(x)$$

FIND A MATRIX FOR $S \circ T$

- Standard Basis for \mathbb{R}^2 is $B=e_1,e_2$
 - Standard Basis for P_1 is C = 1, x
- Standard Basis for P_2 is $D = 1, x, x^2$

$$T(e_1) = 1 + (1+0)x = 1 + x$$
 $T(e_2) = 0 + (0+1)x = x$

$$T_{C} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$S\begin{bmatrix} 1 \\ 1 \end{bmatrix} = x + x^2 \qquad S\begin{bmatrix} 0 \\ 1 \end{bmatrix} = x^2$$

$$S_{D} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$S \circ T = S \quad T = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}$$

$$T: \mathbb{R}^2 \to P_1: T \begin{bmatrix} a \\ b \end{bmatrix} = a + (a+b)x$$

FIND T^{-1}

Because the transformation is both one-to-one and onto, it is invertible.

In the above example we found $T = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} T^{-1} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

This implies
$$\begin{bmatrix} T^{-1}(a+bx) \end{bmatrix} = \begin{bmatrix} T^{-1} \end{bmatrix} a + bx = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ b-a \end{bmatrix}$$

This is the same as
$$T^{-1}(a+bx)=ae_1+(b-a)e_2=\begin{bmatrix} a\\b-a\end{bmatrix}$$

AN EXAMPLE FROM CALCULUS

Using the inverse of a differential operator, find $\int x^2 e^{3x} dx$ (which usually requires two applications of integration by parts.)

From the example problem given in class, we found $D_B = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}$ for which

$$B = e^{3x}, xe^{3x}, x^2e^{3x}$$

$$\begin{bmatrix} D^{-1} \end{bmatrix}_{B} = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 2 \\ 0 & 0 & 3 \end{bmatrix}^{-1} = \begin{bmatrix} \frac{1}{3} & -\frac{1}{9} & \frac{2}{27} \\ 0 & \frac{1}{3} & -\frac{2}{9} \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

$$\begin{bmatrix} x^{2}e^{3x} \end{bmatrix}_{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} \int x^{2}e^{3x} dx \end{bmatrix}_{B} = \begin{bmatrix} D^{-1}(x^{2}e^{3x}) \end{bmatrix} B$$

$$= \begin{bmatrix} D^{-1} \end{bmatrix}_{B} \begin{bmatrix} x^{2}e^{3x} \end{bmatrix}_{B}$$

$$= \begin{bmatrix} \frac{1}{3} & -\frac{1}{9} & \frac{2}{27} \\ 0 & \frac{1}{3} & -\frac{2}{9} \\ 0 & 0 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{2}{27} \\ -\frac{2}{9} \\ \frac{1}{3} \end{bmatrix}$$

$$\int x^2 e^{3x} dx = \frac{2}{27} e^{3x} - \frac{2}{9} x e^{3x} + \frac{1}{3} x^2 e^{3x} + C$$

CHANGE OF BASIS AND SIMILARITY

$$T: \mathbb{R}^2 \to \mathbb{R}^2: T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+3y \\ 2x+2y \end{bmatrix}$$

Is it possible to find a basis B for \mathbb{R}^2 such that the transformation matrix T is diagonal with respect to B?

With respect to a standard basis,
$$T_E = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$$
.

We can show that $T_E = \begin{bmatrix} 1 & 3 \\ 2 & 2 \end{bmatrix}$ is diagonalizable into $T_E = S\Lambda S^{-1}$, in which Λ is a diagonal matrix.

$$\Lambda = \begin{bmatrix} 4 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{and} \quad S = \begin{bmatrix} 1 & 3 \\ 1 & -2 \end{bmatrix}$$

If $T_E = S\Lambda S^{-1}$, then $\Lambda = S^{-1} T_E S$. Let B be the basis in \mathbb{R}^2 consisting of the columns of S, then S is the change-of-basis matrix from B to E. Then

$$T_{p} = S^{-1} T_{p} S = \Lambda$$

Therefore the transformation matrix T with respect to the basis $B = \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 3 \\ -2 \end{bmatrix} \right\}$ is diagonal.

$$T\begin{bmatrix}1\\1\end{bmatrix} = \begin{bmatrix}4\\4\end{bmatrix} = 4\begin{bmatrix}1\\1\end{bmatrix} + 0\begin{bmatrix}3\\-2\end{bmatrix} \quad \text{and} \quad T\begin{bmatrix}3\\-2\end{bmatrix} = \begin{bmatrix}-3\\2\end{bmatrix} = 0\begin{bmatrix}1\\1\end{bmatrix} - 1\begin{bmatrix}3\\-2\end{bmatrix}$$

So the vectors that form the columns of $\ T_{_{R}}$ are

$$\begin{bmatrix} T \begin{bmatrix} 1 \\ 1 \end{bmatrix} \end{bmatrix}_{B} = \begin{bmatrix} 4 \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} T \begin{bmatrix} 3 \\ -2 \end{bmatrix} \end{bmatrix}_{B} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

 $T_E \sim T_B$ because when $T:V \to W$, changing a basis for V of transformation matrix A would require multiplication AM (multiply by M on the right to come first). Chaging the basis for W would change A to $M^{-1}A$ (to come last). Therefore, to change both bases the same way, the new matrix is $B = M^{-1}AM$. The good basis vectors are thus the eigenvectors of A, and $B = M^{-1}AM$ becomes $B = S^{-1}AS$.

WORKING WITHIN A NON-STANDARD OR NON-EIGEN BASIS

$$T: P_2 \to P_2: T(p(x)) = p(2x-1)$$

Find T with respect to basis $B = 1 + x, 1 - x, x^2$

With respect to a standard basis:

$$T(1) = 1, T(x) = 2x - 1, T(x^{2}) = (2x - 1)^{2} = 1 - 4x + 4x^{2}$$

$$T(1)_{E} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, T(x)_{E} = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}, [T(x^{2})]_{E} = \begin{bmatrix} 1 \\ -4 \\ 4 \end{bmatrix}$$
Therefore $T_{E} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 2 & -4 \\ 0 & 0 & 4 \end{bmatrix}$

The change of basis matrix from
$$B$$
 to E is
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Therefore it follows that $T_B = M^{-1} T_E M$

$$\begin{bmatrix}
\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1 & -1 & 1 \\
0 & 2 & -4 \\
0 & 0 & 4
\end{bmatrix}
\begin{bmatrix}
1 & 1 & 0 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 0 & -\frac{3}{2} \\
-1 & 2 & \frac{5}{2} \\
0 & 0 & 4
\end{bmatrix}$$

Find a basis $\it C$ for $\it P_2$ such that $\it T$ $\it _C$ is a diagonal matrix.

T _E has eigenvalues 1, 2, and 4 with eigenvectors $\begin{bmatrix} 1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} -1\\1\\0\\1 \end{bmatrix}$

$$S = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad \Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

 $S^{-1} \ T_{-E} \, S = \Lambda$, and therefore $\, S$ is a change of basis matrix from a basis $\, C$ to $\, E$.

Therefore
$$C = 1, -1 + x, 1 - 2x + x^2$$

INVERSES: LEFT/RIGHT/PSEUDOINVERSE

2-SIDED INVERSES

- A is full row rank.
- A is full column rank.
- 1 solution to Ax = b
- n=m=r
- $A^{-1}A = I = AA^{-1}$

LEFT INVERSES

- A is full column rank.
- A has independent columns.
- \bullet N(A) = 0
- 0 or 1 solution to Ax = b
- r = n < m
- $A^T A$ is symmetric and invertible
- Therefore $\lceil (A^T A)^{-1} A^T \rceil$ is a "left inverse" because $\lceil (A^T A)^{-1} A^T \rceil A = I$
- If we multiply $\left[(A^TA)^{-1}A^T\right]$ on the right, we get $A\left[(A^TA)^{-1}A^T\right]$ which is P, a projection onto the column space.

RIGHT INVERSES

- A is full row rank.
- A has independent rows.
- $N(A^T) = 0$
- Infinite solutions to Ax = b
- r = m < n
- n-m free variables.
- AA^T is invertible
- Therefore $A^T(AA^T)^{-1}$ is a "right inverse" because $AA^T(AA^T)^{-1} = I$
- If we multiply $\left[A^T(AA^T)^{-1}\right]$ on the left we get $\left[A^T(AA^T)^{-1}\right]A$, which is a projection onto the row space.

PSEUDOINVERSES

- A is neither full row nor full column rank.
- A has dependent columns and dependent rows
- r < n and r < m
- Nonetheless, there is a one-to-one and onto relationship between a row vector x and a column vector Ax, ignoring the left and right null spaces of the matrix.

To Calculate A Pseudoinverse:

- Because every matrix has a singular value decomposition, the pseudoinverse is calculated from the SVD.
- Let $A = U \Sigma V^T$ in which U and V^T are orthogonal square invertible matrices, and Σ is

an
$$m \times n$$
 matrix of singular values: $\Sigma = \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_r & \\ & & 0 \end{bmatrix}$.

- The pseudoinverse, A^+ , can then be found through the inverse of $A=U\Sigma V^T$, $A^+=V\Sigma^+U^T$.
- Because U and V^T are invertible, there is no need to find their pseudoinverse. Because Σ is a purely diagonal matrix, it's inverse is easy to calculate:

$$\Sigma^+ = egin{bmatrix} rac{1}{\sigma_1} & & & & \\ & \ddots & & & \\ & & rac{1}{\sigma_r} & & \\ & & & 0 \end{pmatrix}.$$

• Note that
$$\Sigma \Sigma^+ = \Sigma^+ \Sigma = \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & & 0 \end{bmatrix} \neq I$$

Let A be an $n \times n$ matrix. Let $T: V \to W$ be a linear transformation whose

transformation matrix T is A.

THE FOLLOWING ARE ALL EQUIVALENT STATEMENTS:

- *A* is invertible.
- Ax = b has a unique solution for every b in \mathbb{R}^n .
- Ax = 0 has only the trivial solution.
- The reduced row echelon form of A is I.
- A is a product of elementary matrices.
- $\operatorname{rank}(A) = n$.
- nullity (A)=0.
- The column vectors of *A* are linearly independent.
- The column vectors of A span \mathbb{R}^n .
- The column vectors of A form a basis for \mathbb{R}^n .
- The row vectors of A are linearly independent.
- The row vectors of A span \mathbb{R}^n .
- The row vectors of A form a basis for \mathbb{R}^n .
- $|A| \neq 0$
- 0 is not an eigenvalue of A.
- 0 is not a singular value of A.
- *T* is invertible.
- *T* is one-to-one and onto.
- $\ker(T) = 0$
- range (T) = W