

# SECB2103-01

# **PROGRAMMING FOR BIOINFORMATICS 1**

# **PROJECT PROGRESS 2**

Title: Comparison of Deep Learning Algorithms on Drug-drug
Interaction Prediction

# **GROUP MEMBERS:**

- 1. AINA NAJWA BINTI MOHD ROZI (A21EC0010)
- 2. SOFIA ANAK HENRY (A21EC0133)

**SECTION:** 01

**LECTURER'S NAME:** DR NIES HUI WEN

## 1.0 INTRODUCTION

In this research, we focus on our domain which is drug-drug interaction (DDIs) prediction. Drug-drug interactions (DDIs) occur when two or more drugs are taken simultaneously or successively. Drug-drug interactions (DDIs) prediction is the process of assessing and predicting the potential interactions between two or more drugs when taken concurrently. Drug-Drug Interaction (DDI) prediction is one of the most critical issues in drug development and health (Rohani & Eslahchi, 2019).

### 1.1 PROBLEM BACKGROUND

When two or more medications interact in ways that can harm patients or limit the effectiveness of therapies, this is referred to as a drug-drug interaction (DDIs). These interactions endanger both patient safety and treatment outcomes (Zheng et al., 2018). Many hospital admissions of elderly patients for drug toxicity occur after administration of a drug known to cause drug-drug interactions (Juurlink, 2003). Elderly patients and those with multiple medical conditions are often prescribed numerous medications, making them more susceptible to DDIs. The correct prediction of DDIs has become critical in healthcare due to the increasing complexity of modern treatment regimens (Palleria et al., 2013). The complexity of DDIs data, the requirement for advanced machine learning models, scalability in healthcare. Real-world data from clinical trials and observational studies involving human subjects can provide insights into potential DDIs and their effects in clinical settings. However, these studies are time-consuming, resource-intensive, and may not always be conclusive due to various confounding factors (Juurlink et al., 2003). Addressing these issues through deep learning algorithm comparison is crucial for enhancing patient safety and healthcare decision-making (Aldoseri et al., 2023).

### 1.2 PROBLEM STATEMENT

The critical challenge under consideration centres on the imperative to enhance the precision and efficiency of drug-drug interaction (DDI) prediction, with a primary focus on elevating patient safety within the healthcare domain. It necessitates an exhaustive evaluation and comparative analysis of deep learning algorithms designed for DDI prediction, aimed at identifying the most efficacious methodologies for practical implementation within healthcare settings. Of paramount concern is the potential harm to patients and the constraints imposed on treatment outcomes resulting from DDIs, highlighting the pressing need for the advancement of DDI prediction algorithms. This research endeavours to provide a pathway towards the development and selection of optimal deep learning models, ultimately bolstering patient safety and the quality of healthcare delivery.

## 1.3 OBJECTIVE

- To identify the best deep learning algorithms for predicting drug-drug interactions (DDIs).
- ii To evaluate the performance of selected methods in predicting drug-drug interactions by assessing their accuracy in comparison.

### 1.4 SCOPES

This research is focused on drug-drug interaction prediction using different types of algorithms in deep learning. The algorithms of deep learning that we will be comparing in this research are Convolutional Neural Network (CNN) and Neural Network (NN). The

Programming Language that will be used is Python. The dataset about DDIs prediction using

CNN and NN will be obtained from Drugbank, Github, and any internet research that is related

to our topic.

1.5 CONCLUSION

In this study, we decided to do a comparison between deep learning algorithms such as

Convolutional Neural Network (CNN) and Neural Network (NN) to determine which deep

learning algorithm is the more effective method for drug-drug interaction prediction.

2.0 SPECIFIC REQUIREMENT

Hardware Requirement:

A computer with:

CPU: Modern Multi-core CPU sufficient for training models and experimenting with

deep learning concepts.

Processor: Intel Core i3

8GB of RAM: Sufficient to handle large dataset

Storage: A solid state drive (SSD)

Internet Connection: A stable and reasonably fast internet connection

Backup and Version Control: Git for tracking changes to our code.

# Software Requirement:

Deep Learning Framework: TensorFlow

Programming language: Python

IDE: Visual Studio Code

Operating System: Windows 11

# 3.0 FLOWCHART OF THE PROPOSED APPROACH



### 4.0 Dataset

# 4.1 Importing the Dataset

```
from google.colab import drive
drive.mount('/content/drive')

# Define the folder path
raw_folder = '/content/drive/My Drive/DDI/'
```

The initial line imports the 'drive' module from the 'google.colab' package, providing functionality for interaction with Google Drive in the Colab environment. The 'drive.mount()' function is then utilized to mount Google Drive to the Colab notebook. As this cell executes, users are prompted to open a link, generate an authentication code, and subsequently paste it back into the cell. Upon the completion of this process, Google Drive becomes mounted, granting access to its contents.

The subsequent line establishes the variable `raw\_folder` with the path '/content/drive/My Drive/DDI/'. This line specifies the path to a particular folder in Google Drive, assumed to contain data pertinent to Drug-Drug Interaction (DDI).

## 4.1.1 Understanding the data

```
# Loop through each DataFrame in the tables dictionary
for table_name, df in tables.items():
    # Display information for each DataFrame
    print(f"\nTable: {table_name}")
    print(df.head())
    print("\nDataFrame Info:")
    print(df.info())
    print("\nDataFrame Description:")
    print(df.describe())
    print("\n-----\n")
```

```
Table: id drug
  ID Drug_Name
0 1 DB01083
1 2 DB00753
   3 DB01262
2
3 4 DB01219
4 5 DB01085
DataFrame Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 841 entries, 0 to 840
Data columns (total 2 columns):
 # Column Non-Null Count Dtype
--- -----
             0 ID 841 non-null
1 Drug_Name 841 non-null
            841 non-null int64
                            object
dtypes: int64(1), object(1)
memory usage: 13.3+ KB
DataFrame Description:
             ID
count 841.000000
mean 421.000000
std 242.920083
min
       1.000000
25%
      211.000000
50% 421.000000
75%
      631.000000
max 841.000000
Table: drug_drug
   Drug1 Drug2
   1 32
1
            39
      1
2
      1 285
3
      1 217
1
      1 385
DataFrame Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 331308 entries, 0 to 331307
Data columns (total 2 columns):
 # Column Non-Null Count Dtype
 --- ----- ----------
 0 Drug1 331308 non-null int64
 1 Drug2 331308 non-null int64
dtypes: int64(2)
memory usage: 5.1 MB
None
DataFrame Description:
              Drug1
                            Drug2
count 331308.000000 331308.000000
mean
         416.211821 416.211821
                       243.878501
std
         243.878501
min
          1.000000
                        1.000000
25%
         203.000000
                       203.000000
50%
         405.000000
                       405.000000
75%
         625.000000
                       625.000000
         841.000000 841.000000
max
```

```
Table: drug_enzyme
   Drug Enzyme
   1 3005
 1
   2 2937
 2
 3 2 2916
 4
   2 2844
 DataFrame Info:
 <class 'pandas.core.frame.DataFrame'>
 RangeIndex: 5992 entries, 0 to 5991
 Data columns (total 2 columns):
 # Column Non-Null Count Dtype
 0 Drug 5992 non-null int64
 1 Enzyme 5992 non-null int64
 dtypes: int64(2)
 memory usage: 93.8 KB
 DataFrame Description:
                       Enzyme
            Drug
 count 5992.000000 5992.000000
 mean 1662.866155 1662.866155
 std 1269.325560 1269.325560
 min
        1.000000 1.000000
 25%
       404.000000 404.000000
 50% 1817.500000 1817.500000
75% 2932.000000 2932.000000 max 3007.000000 3007.000000
Table: drug_path
  Drug Path
  1 3069
1
    1 3274
2
   1 3049
    1 3097
3
     1 3115
DataFrame Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23492 entries, 0 to 23491
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- -----
0 Drug 23492 non-null int64
1 Path 23492 non-null int64
dtypes: int64(2)
memory usage: 367.2 KB
None
DataFrame Description:
            Drug
                          Path
count 23492.000000 23492.000000
mean
      1794.592287 1794.592287
      1381.053900 1381.053900
std
min
        1.000000 1.000000
25%
       433.000000 433.000000
50%
     1924.500000 1924.500000
75% 3159.000000 3159.000000
max
      3314.000000 3314.000000
```

#### 

### DataFrame Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 209798 entries, 0 to 209797
Data columns (total 2 columns):

# Column Non-Null Count Dtype

0 Drug 209798 non-null int64
1 Structure 209798 non-null int64

dtypes: int64(2) memory usage: 3.2 MB

None

### DataFrame Description:

|       | Drug          | Structure     |
|-------|---------------|---------------|
| count | 209798.000000 | 209798.000000 |
| mean  | 788.503894    | 788.503894    |
| std   | 425.687700    | 425.687700    |
| min   | 1.000000      | 1.000000      |
| 25%   | 413.000000    | 413.000000    |
| 50%   | 841.500000    | 841.500000    |
| 75%   | 1161.000000   | 1161.000000   |
| max   | 1460.000000   | 1460.000000   |

### Table: drug\_target

Drug Target
0 1 2371
1 1 1659
2 1 2229
3 2 2263
4 2 2714

### DataFrame Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8630 entries, 0 to 8629
Data columns (total 2 columns):

# Column Non-Null Count Dtype

0 Drug 8630 non-null int64
1 Target 8630 non-null int64

dtypes: int64(2) memory usage: 135.0 KB

None

### DataFrame Description:

|       | Drug        | Target      |
|-------|-------------|-------------|
| count | 8630.000000 | 8630.000000 |
| mean  | 1282.483082 | 1282.483082 |
| std   | 923.510933  | 923.510933  |
| min   | 1.000000    | 1.000000    |
| 25%   | 433.000000  | 433.000000  |
| 50%   | 1151.000000 | 1151.000000 |
| 75%   | 2128.000000 | 2128.000000 |
| max   | 3006.000000 | 3006.000000 |

```
Table: drug enzyme
  Drug Enzyme
  1 3005
   1 2958
2 2937
1
2
    2
        2916
3
    2 2844
DataFrame Info:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5992 entries, 0 to 5991
Data columns (total 2 columns):
# Column Non-Null Count Dtype
0 Drug 5992 non-null int64
1 Enzyme 5992 non-null int64
dtypes: int64(2)
memory usage: 93.8 KB
None
DataFrame Description:
            Drug
                      Enzyme
count 5992.000000 5992.000000
mean 1662.866155 1662.866155
std 1269.325560 1269.325560
      1.000000 1.000000
25% 404.000000 404.000000
50% 1817.500000 1817.500000
75% 2932.000000 2932.000000
max 3007.000000 3007.000000
```

# 4.1.2 Python package for Data Science

```
import pandas as pd
import numpy as np
```

The line 'import pandas as pd' imports the Pandas library, a powerful tool for data manipulation and analysis in Python meanwhile 'import numpy as np' imports the NumPy library, a fundamental library for numerical computing in Python.

# 4.2 Data Wrangling

# 4.2.1 Identify missing values in the data

```
# Loop through each DataFrame in the tables dictionary
    for table name, df in tables.items():
        # Checking for missing values
        missing_values = df.isnull().sum()
        # Printing message based on missing values for each DataFrame
        if missing values.any():
            print(f"\n{table_name} - There are missing values ")
            print(missing_values)
            print(f"\n {table_name} - There are no missing values ")
\Box
     id_drug - There are no missing values
     drug_drug - There are no missing values
     drug enzyme - There are no missing values
     drug path - There are no missing values
     drug structure - There are no missing values
     drug target - There are no missing values
```

This code iterates through each DataFrame in the tables dictionary, checks for missing values, and prints a message for each DataFrame indicating whether it has missing values or not. If missing values are found, it prints the count of missing values for each column; otherwise, it prints a message stating that the data has no missing values.

# 4.2.2 Identify any duplicate row

```
# Check for duplicate rows in the entire DataFrame
duplicate_rows = df[df.duplicated()]

# Display duplicate rows
if not duplicate_rows.empty:
    print("Duplicate Rows:")
    print(duplicate_rows)
else:
    print("No duplicate rows found.")

No duplicate rows found.
```

We checked any duplicate row in the data and we found that no duplicate row was found.

# 4.3 Data Formatting

```
#Define the header name for each table
header_names = {
    'id_drug': ['ID', 'Drug_Name'],
    'drug_drug': ['Drug1', 'Drug2'],
    'drug_enzyme': ['Drug', 'Enzyme'],
    'drug_path': ['Drug', 'Path'],
    'drug_structure': ['Drug', 'Structure'],
    'drug_target': ['Drug', 'Target']
}
```

Headers are added in the data for each table because the data are headerless.

Headers provide descriptive names for each column, making it easier for us to understand what each column represents.

### REFERENCE

- [1] Research, C. F. D. E. A. (2013, September 25). *Drug interactions: What you should know*. U.S. Food And Drug Administration.

  <a href="https://www.fda.gov/drugs/resources-drugs/drug-interactions-what-you-should-know">https://www.fda.gov/drugs/resources-drugs/drug-interactions-what-you-should-know</a>
- [2] Aldoseri, A., Al-Khalifa, K. N., & Hamouda, A. M. (2023). Re-Thinking Data Strategy and Integration for Artificial Intelligence: Concepts, Opportunities, and Challenges.

  NATO Advanced Science Institutes Series E: Applied Sciences, 13(12), 7082.

  <a href="https://www.mdpi.com/2076-3417/13/12/7082">https://www.mdpi.com/2076-3417/13/12/7082</a>
- [3] Palleria, C., Di Paolo, A., Giofrè, C., Caglioti, C., Leuzzi, G., Siniscalchi, A., De Sarro, G., & Gallelli, L. (2013). Pharmacokinetic drug-drug interaction and their implication in clinical management. *Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences*, 18(7), 601.
  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3897029/
- [4] Zheng, W. Y., Richardson, L. C., Li, L., Day, R. O., Westbrook, J. I., & Baysari, M. T. (2018). Drug-drug interactions and their harmful effects in hospitalised patients: a systematic review and meta-analysis. *European Journal of Clinical Pharmacology*, 74(1). <a href="https://link.springer.com/article/10.1007/s00228-017-2357-5">https://link.springer.com/article/10.1007/s00228-017-2357-5</a>
- [5] Zhang, C., Lu, Y., & Zang, T. (2022). CNN-DDI: a learning-based method for predicting drug—drug interactions using convolution neural networks. *BMC Bioinformatics*, 23(S1). https://doi.org/10.1186/s12859-022-04612-2
- [6] Rohani, N., & Eslahchi, C. (2019). Drug-Drug interaction predicting by neural network using integrated similarity. *Scientific Reports*, 9(1). <a href="https://doi.org/10.1038/s41598-019-50121-3">https://doi.org/10.1038/s41598-019-50121-3</a>

[7] Juurlink, D. N. (2003). Drug-Drug interactions among elderly patients hospitalized for drug toxicity. *JAMA*, 289(13), 1652.

https://doi.org/10.1001/jama.289.13.1652