

# ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Μάθημα: Διακριτά Μαθηματικά

Ονοματεπώνυμο: Ειρήνη Δόντη

<u>A.M</u>: 03119839

 $3^{\eta} \, \Sigma$ ειρά Γραπτών Ασκήσεων

## Θέμα 1

- Επιλέγουμε 200 φοιτητές από τους 1000 που θα πάρουν το βιβλίο: C(1000,200)
- Με C(1000,200) τρόπους μοιράζουμε τα αντίτυπα Hunter. Οπότε, από τους 800 φοιτητές που απομένουν οι 250 επιλέγονται με C(800,250) τρόπους και συνεχίζοντας προκύπτει το γινόμενο:
  C(1000,200)C(800,250)C(550,100)C(450,50)
- Ο πρώτος φοιτητής επιλέγει με 4 τρόπους, για κάθε επιλογή του πρώτου ο δεύτερος επιλέγει με 4 τρόπους κ.ο.κ. Οπότε, έχουμε 4<sup>1000</sup> τρόπους.
- 4. Εφαρμόζοντας την αρχή εγκλεισμού αποκλεισμού έχουμε ότι: Από όλους τους τρόπους αφαιρούμε αυτούς που το ένα βιβλίο δεν επιλέχθηκε και αυτό μπορεί να συμβεί με (4/1) τρόπους. Έπειτα, προσθέτουμε τους τρόπους που δύο βιβλία δεν επιλέχθηκαν και αυτό μπορεί να συμβεί με (4/2) τρόπους. Τέλος προσθέτουμε τους τρόπους που 3 βιβλία δεν επιλέχθηκαν και αυτό μπορεί να γίνει με (4/3) τρόπους. Οπότε, όλοι οι τρόποι για να διατεθεί ένα αντίτυπο από κάθε βιβλίο είναι οι εξής: 41000 (4/1)31000 + (4/2)21000 (4/3)11000.
- 5. Τα σημεία που μπορεί να μοιραστούν πάνω από 350 βιβλία είναι το μέγιστο 2 γιατί στην αντίθετη περίπτωση, δεν επαρκούν τα βιβλία. Οπότε, εφαρμόζουμε Αρχή Εγκλεισμού Αποκλεισμού: Από τους τρόπους να μοιραστούν τα 1000 αντίτυπα στα 4 σημεία C(1000 + 4 1,3), αφαιρούμε αυτούς με τους οποίους μοιράζονται 351 αντίτυπα σε 1 σημείο (μπορεί να είναι σε οποιοδήποτε από τα τέσσερα σημεία) και απομένουν 649 για να μοιραστούν σε όλα τα σημεία με 4C(4 + 649 1,3) τρόπους. Έπειτα, προσθέτουμε τους διαφορετικούς τρόπους να μοιραστούν 351 αντίτυπα σε 2 σημεία είναι το γινόμενο επιλογής των σημείων επί τους τρόπους να μοιραστούν τα 298 αντίτυπα στα 4 σημεία 6C(4 + 298 1,3). Οι ζητούμενοι τρόποι διανομής είναι: C(1000 + 4 1,3) 4C(4 + 649 1,3) + 6C(4 + 298 1,3).
- 6. Η διανομή 1000 φοιτητών σε 4 υποδοχές (έχει σημασία η σειρά) έχει τόσους  $\tau ρόπους: C(1000+4-1,3)*1000! = \frac{1003!}{3!}$
- 7. Πρέπει να πολλαπλασιάσουμε με 1000! γιατί οι φοιτητές είναι διακεκριμένοι.Οπότε οι τρόποι είναι:

## Θέμα 2

- 1. Σε κάθε αμφιθέατρο μοιράζουμε από 0 έως 35 αντίτυπα θεμάτων τύπου B. Έστω  $p_1,\,p_2,\,p_3,\,p_4$ : το πλήθος των αντιτύπων θεμάτων τύπου B που μοιράσαμε στα αμφιθέατρα 1,2,3,4 αντίστοιχα. Ισχύει πως  $p_1+\,p_2+\,p_3+\,p_4=35$  και  $p_i\geq 0$  για i=1,2,3,4. Επομένως οι τρόποι είναι  $C(4+35-1,35)=\frac{38!}{35!3!}=8436$
- 2. Έχουμε 190 διακεκριμένους φοιτητές με 155 θέματα τύπου A και 35 θέματα τύπου B, δηλαδή υπάρχουν  $\frac{190!}{35!155!}$  τρόποι.
- 3. Έχουμε 190 διακεκριμένους φοιτητές με 155 θέματα τύπου Α και 35 θέματα τύπου Β, δηλαδή υπάρχουν  $\frac{155!}{35!120!}$  τρόποι. Αν μοιράσουμε στο αμφιθέατρο 2 μόνο θέματα τύπου Α θα έχουμε  $\frac{120!}{35!85!}$  τρόπους να μοιράσω τα θέματα στα υπόλοιπα 3 αμφιθέατρα. Το ίδιο ισχύει όταν συμβεί το ίδιο με το αμφιθέατρο 3. Αν και στα δύο αμφιθέατρα 2 και 3 μοιράσουμε θέματα τύπου Α θα έχω  $\frac{120!}{35!85!}$  τρόπους να μοιράσουμε τα θέματα στα 2 υπόλοιπα αμφιθέατρα. Επομένως η πιθανότητα να μην έχουμε θέματα τύπου Β σε ένα τουλάχιστον από τα δύο αμφιθέατρα είναι οι τρόποι να μην έχω θέματα τύπου Β στο 2 ή 3 δια το σύνολο των τρόπων χωρίς τον περιορισμό δηλ.  $\frac{2\frac{155!}{35!120!} \frac{120!}{35!85!}}{\frac{190!}{35!155!}}$ .
- 4. Αμφιθέατρο 1:  $\binom{80}{15}x^{15} + \binom{80}{16}x^{16} + ... + \binom{80}{80}x^{80}$  Αμφιθέατρο 2 & 3:  $\binom{35}{10}x^{10} + \binom{35}{12}x^{12} + ... + \binom{35}{34}x^{34}$  Αμφιθέατρο 4:  $\binom{40}{10}x^{10} + \binom{40}{12}x^{12} + ... + \binom{40}{40}x^{40}$  Η γεννήτρια συνάρτηση προκύπτει από το γινόμενο:

$$\begin{bmatrix} \binom{80}{15}x^{15} + \binom{80}{16}x^{16} + \ldots + \binom{80}{80}x^{80} \end{bmatrix} \begin{bmatrix} \binom{35}{10}x^{10} + \binom{35}{12}x^{12} + \ldots + \binom{35}{34}x^{34} \end{bmatrix} \begin{bmatrix} \binom{35}{10}x^{10} + \binom{35}{12}x^{12} + \ldots + \binom{35}{34}x^{34} \end{bmatrix} \begin{bmatrix} \binom{40}{10}x^{10} + \binom{40}{12}x^{12} + \ldots + \binom{40}{40}x^{40} \end{bmatrix}$$

Προσδιορίζουμε τον συντελεστή του  $x^{155}$ 

## Θέμα 3

1. Έστω  $\alpha_i$  οι χωρητικότητες με  $\alpha_1 \geq \alpha_2 \geq \ldots \geq \alpha_{100}$ . Προσδιορίζουμε το πλήθος

λύσεων της εξίσωσης: 
$$\alpha_1 + \alpha_2 + \ldots + \alpha_{100} = 100$$
 (1).

Ισχύει ότι 
$$\alpha_1 = c_1 + \alpha_2$$
,  $\alpha_2 = c_2 + \alpha_3$ ,...,  $\alpha_{99} = c_{99} + \alpha_{100}$  (2)

$$Aπό(1) και(2): c_1 + 2c_2 + 3c_3 + ... + 100α_{100} = 100$$

100 διακεκριμένες υποδοχές - 100 φοιτητές: Απαριθμητές:

$$c_1: 1 + x + x^2 + x^3 + ... + x^{100} + ...$$

$$c_2: 1 + x^2 + x^4 + \dots$$

..

$$c_{99}: 1 + x^{99} + \dots$$

$$c_{100}: 1 + x^{100} + ...$$

Γεννήτρια Συνάρτηση:  $[1 + x + x^2 + x^3 + \cdots + x^{100} + \cdots][1 + x^2 + x^4 + \cdots]$ 

$$\cdots$$
 [1 +  $x^{99}$  + ...] [1 +  $x^{100}$  + ...]

Αναζητούμε τον συντελεστή του  $x^{100}$ .

2. Χρειαζόμαστε το πλήθος των ακεραίων λύσεων της εξίσωσης:

$$\alpha_1+2\alpha_2+3\alpha_3+\ldots+100\alpha_{100}\ \mu\epsilon\ 0\leq\alpha_i\leq 1$$

Γεννήτρια Συνάρτηση :  $[1+x][1+x^2][1+x^3][1+x^{100}]$ 

Αναζητούμε τον συντελεστή του  $x^{100}$ .

## Θέμα 4

 $(\alpha)$ 

1. Έχουμε 500 διακεκριμένα βιβλία σε 8 διακεκριμένες υποδοχές με απαριθμητές

κάθε βιβλιοθήκης:  $\frac{x^{20}}{20!} + \frac{x^{21}}{21!} + \cdots + \frac{x^{100}}{100!}$ . Οπότε, η γεννήτρια συνάρτηση είναι:

$$(\frac{x^{20}}{20!} + \frac{x^{21}}{21!} + \dots + \frac{x^{100}}{100!})^8$$
 . Αναζητούμε τον συντελεστή του  $\frac{x^{500}}{500!}$ 

2.Ο απαριθμητής κάθε βιβλιοθήκης είναι αντίστοιχα:

$$20!\frac{x^{20}}{20!} + 21!\frac{x^{21}}{21!} + \dots + 100!\frac{x^{100}}{100!}$$

Οπότε, η γεννήτρια συνάρτηση είναι:  $(20!\frac{x^{20}}{20!}+21!\frac{x^{21}}{21!}+\cdots+100!\frac{x^{100}}{100!})^8$  Αναζητούμε, αντίστοιχα, τον συντελεστή  $\frac{x^{500}}{500!}$ .

(β) Χρησιμοποιούμε εκθετική Γεννήτρια Συνάρτηση, αφού έχουμε πρόβλημα διάταξης: Ως υποδοχές θεωρούμε τα ψηφία 0,1,2,...,9 και η μπαλάκια.

Απαριθμητές:

$$0,1: \frac{x}{1!} + \frac{x^2}{2!} + \dots = e^x - 1$$

$$2,4:1+\frac{x^2}{2!}+\frac{x^4}{4!}+\cdots = \frac{e^x+e^{-x}}{2}$$

7,9: 
$$x + \frac{x^3}{3!} + \frac{x^6}{6!} + \dots = \frac{e^x - e^{-x}}{2}$$

$$3,5,6,8: 1 + x + \frac{x^2}{2!} + \dots = e^x$$

Η Γεννήτρια Συνάρτηση είναι:  $(e^x - 1)^2 (\frac{e^x + e^{-x}}{2})^2 (\frac{e^x - e^{-x}}{2})^2 (e^x)^4$ 

Anazhtoúme τον suntelesth  $\frac{x^n}{n!}$  me  $n \ge 4$ .

## Θέμα 5

 $Aν Σ = {a,b,c,d,e,f}$  είναι το αλφάβητο. Κατασκευάζουμε με τη βοήθεια αυτού, αποδεκτές συμβολοσειρές με μήκος n.

Έστω  $p_n$  το πλήθος των συμβολοσειρών για τις οποίες ισχύει το συγκεκριμένο μοτίβο.

Για n = 0, ισχύει ότι  $p_0 = 1$ .

Έστω  $p_{n-1}$  το πλήθος των συμβολοσειρών μήκους n-1.

Θα προσπαθήσουμε να κατασκευάσουμε αποδεκτές συμβολοσειρές μήκους η:

Έστω  $p_n$  τελειώνει σε a ή b με την  $p_{n-1}$  να μην περιέχει c ή d. Δηλαδή έχουμε  $2*4^{n-1}$ 

Έστω  $p_n$  τελειώνει σε c ή d ή e ή f , οπότε η  $p_{n\text{--}1}$  δεν περιέχει c ή d.

Δηλαδή έχουμε 4p<sub>n-1</sub>.

Οπότε: 
$$p_n = 2*4^{n-1} + 4p_{n-1}$$
 με  $p_0 = 1$  &  $n \ge 1$ .

Δηλαδή: 
$$\sum_{n=1}^{\infty} p_n x^n$$
 -  $4\sum_{n=1}^{\infty} p_{n-1} x^n = 2\sum_{n=1}^{\infty} 4^{n-1} x^n$  ή

$$P(x) - p_0 - 4x \\ P(x) = \frac{2x}{1-4x} \acute{\eta} \ P(x) = \frac{2x}{(1-4x)^2} + \frac{1}{1-4x} = \frac{2x+1-4x}{(1-4x)^2} = \frac{1}{2(1-4x)} + \frac{1}{(1-4x)^2}$$

Οπότε, 
$$p_n = \frac{1}{2} 4^n (1 + {n+1 \choose n}) = \frac{1}{2} 4^n (n+2)$$