Kann ich die Verweildauer meiner Mitarbeiter analysieren und vorhersagen? Survival Analyse von SAS liefert die Antworten

Gerhard Svolba, SAS Austria Mannheim, 2. März 2018 - KSFE 2018









#### Überblick

- Fachlicher Hintergrund des Fallbeispiels
- Problematik zensierter Daten
- Kaplan-Meier Methode und die LIFETEST Procedure
- Analyse von Einflussfaktoren mit der PHREG Procedure
- Ausgewählte Graphiken für die Mitarbeiter-Verweildauer
- Schlussfolgerungen





#### Checking the Alignment with Predefined Pattern

Which customers show a behaviour which is far from what you expected?





# Listen to Your Data – Discover Unknown Relationships

Can your data tell you stories, even if you don't ask them?





# Using Monte Carlo Simulations to Understand the Outcome Distribution

Will the Sales Manager keep his job (when you look at his sales pipeline)?





# Studying Complex Systems – Simulate the Monopoly® Board Game

How can you simulate complex environments to get insight in the most frequent processes?









# **Performing Headcount Survival Analysis for Employee Retention**

Can you make assumptions about the average length of time intervals, even if most of the endpoints have not yet been observed?





# **Detecting Outliers and Structural Changes in Longitudinal Data**

Can you automatically detect events and changes in the course of your data over time?





# **Explaining Deviations and Forecast Errors**

Do the demand planners really improve forecast accuracy with their manual overwrites?





# Forecasting the Demand for New Products

Can you assess the exptected demand of products that are introduced right now?







# We Can Use Area to Quantify Results



- Increase in survival is given by the area between the curves.
- For the first year, area of triangle is a good enough estimate

Note: there are easy ways to calculate the exact value





Data Science in Action: #1

Performing Headcount Survival Analysis for Employee Retention

Can assumptions about the average length of time intervals be made, even if most of the endpoints have not yet been observed?





Survival analysis methods: Kaplan-Meier estimates
Cox Proportional Hazards regression
Survival Data Mining
Company Confidential - For Internal Use City



## Beispiel aus dem "Human Ressources" Bereich

- Verweildauer von Mitarbeitern im Unternehmen
- Getrennt nach Abteilungen: Marketing, Admin, Sales, TechSupport, Sales Engineer



| <b>⊚</b> EmpNo | ♠ FirstName | Department     |   | Start     | End       | (i) Status | Duration |
|----------------|-------------|----------------|---|-----------|-----------|------------|----------|
| 1021           | Mary        | MARKETING      | F | 01JUL2009 | 01AUG2012 | 0          | 37       |
| 1022           | Frank       | SALES_REP      | M | 01JUL2009 | 01JUN2010 | 0          | 11       |
| 1023           | Alan        | SALES_ENGINEER | M | 01JUL2009 |           | 1          | 90       |
| 1024           | Frencesca   | ADMINSTRATION  | F | 01AUG2009 | 01FEB2012 | 0          | 30       |
| 1025           | Karl        | SALES_ENGINEER | M | 01AUG2009 | 01DEC2013 | 0          | 52       |
| 1026           | Hana        | ADMINSTRATION  | F | 01AUG2009 | 01APR2010 | 0          | 8        |
| 1027           | Brian       | SALES_REP      | M | 01NOV2009 | 01NOV2010 | 0          | 12       |
| 1028           | Pawel       | SALES_REP      | M | 01NOV2009 | 01APR2012 | 0          | 29       |
| 1029           | Alessandro  | TECH_SUPPORT   | M | 01FEB2010 |           | 0          | 83       |

# Nicht zu allen Mitarbeitern haben wir ein "Ereignis-Datum" (Glücklicherweise)

- Betrachten der Karrieren pro Mitarbeiter
  - Unterschiedliche Länge
  - Kündigung oder "zensiert"



## Fachliche Fragen

- What is the average retention period for employees in the company?
- How can the important fact that the employment end date is known only for those who already left the company, be adequately considered in the analysis?
- How can the retention period be visualized and compared between different subgroups?
- Are there influential factors for the length of the retention period?
- How can these factors be ranked by magnitude of their influence?
- Can the expected survival period for an employee be predicted?



# Ergebnisse der Kaplan-Meier Analyse

Sales-Engineer Department

| Duration | Left | Resigned | Censored | Survival | Comment                              |
|----------|------|----------|----------|----------|--------------------------------------|
| 0        | 11   |          |          | 1,000    | Start of Observation                 |
| 6        | 10   | 1        | 0        | 0,909    | John resigns                         |
| 6        | 9    | 0        | 1        |          | Brady is censored from the analysis  |
| 10       | 8    | 0        | 1        |          | Lucas is censored from the analysis  |
| 27       | 7    | 1        | 0        | 0,795    | Rainer resigns                       |
| 29       | 6    | 1        | 0        | 0,682    | Vincenz resigns                      |
| 32       | 5    | 1        | 0        | 0,568    | George resigns                       |
| 36       | 4    | 0        | 1        |          | Mark is censored from the analysis   |
| 51       | 3    | 1        | 0        | 0,426    | Viktor resigns                       |
| 52       | 2    | 1        | 0        | 0,284    | Karl resigns                         |
| 59       | 1    | 0        | 1        |          | Eugene is censored from the analysis |
| 90       | 0    | 0        | 1        | 0,284    | Alan is censored from the analysis   |



# Kaplan-Meier Analyse mit der LIFETEST Procedure

| Quartile Estimates |          |                         |         |         |  |  |  |  |  |
|--------------------|----------|-------------------------|---------|---------|--|--|--|--|--|
|                    | Point    | 95% Confidence Interval |         |         |  |  |  |  |  |
| Percent            | Estimate | Transform               | [Lower  | Upper)  |  |  |  |  |  |
| 75                 |          | LOGLOG                  | 32.0000 | •       |  |  |  |  |  |
| 50                 | 51.0000  | LOGLOG                  | 27.0000 |         |  |  |  |  |  |
| 25                 | 29.0000  | LOGLOG                  | 6.0000  | 51.0000 |  |  |  |  |  |

|         | Standard |
|---------|----------|
| Mean    | Error    |
| 39.9489 | 5.2333   |

```
ods graphics on;
proc lifetest data=employees;
time Duration*Status(1);
where Department='SALES ENGINEER';
```

run;





# Interpretation der Survival Kurve

Für alle Abteilungen

| Quartile Estimates |          |            |         |        |  |  |  |  |
|--------------------|----------|------------|---------|--------|--|--|--|--|
|                    |          | 95% Confid | ence In | terval |  |  |  |  |
| Perce              | Point    |            | [Lowe   | Upper  |  |  |  |  |
| nt                 | Estimate | Transform  | r       | )      |  |  |  |  |
| 75                 | 72.000   | LOGLOG     | 51.00   |        |  |  |  |  |
| 50                 | 37.000   | LOGLOG     | 30.00   | 51.00  |  |  |  |  |
| 25                 | 23.000   | LOGLOG     | 14.00   | 29.00  |  |  |  |  |
|                    |          |            |         |        |  |  |  |  |

|        | Standard |
|--------|----------|
| Mean   | Error    |
| 46.757 | 3.813    |



ods graphics on;

proc lifetest data=employees ; time Duration\*Status(1);

run;

Duration

50

+ Censored 95% Confidence Limits

75

100

125

# Analyse der Hazard Kurve





```
PROC LIFETEST DATA=employees plots=(hazard(bandwidth=3 maxtime=120));
  TIME Duration*Status(1);
RUN;
Company Confidential - For Internal Use Only
Company Confidential - For Internal Use Only
```

#### Konfidenz-Bänder mit der LIFETEST Procedure

run;





### Survival-Kurve pro Abteilung

Referenz-Linie für den Median



PROC LIFETEST DATA=employees;
TIME Duration\*Status(1);

STRATA department;

RUN;

#### In den "guten alten Zeiten" war alles beser

- Mitarbeiter werden Stichtag 01/2009 betrachtet
- Unternehmen wurde 01/2004 gegründet
- "Pre-Selektion" der Daten





# Nicht zu allen Mitarbeitern haben wir ein "Ereignis-Datum" (Glücklicherweise)

- Betrachten der Karrieren pro Mitarbeiter
  - Unterschiedliche Länge
  - Kündigung oder "zensiert"



## "Wie lange wird Gerhard Svolba noch in unserem Unternehmen sein?"

Vorhersage der Verweildauer für indivudelle Mitarbeiter





## Analyse von Input-Variablen mit der PHREG Procedure

| Class Level Information |                |       |      |     |    |  |  |  |
|-------------------------|----------------|-------|------|-----|----|--|--|--|
|                         | Design         |       |      |     |    |  |  |  |
| Class                   | Value          | ٧     | aria | ble | S  |  |  |  |
| Department              | ADMINSTRATION  | -1    | -1   | -1  | -1 |  |  |  |
|                         | MARKETING      | 1     | 0    | 0   | 0  |  |  |  |
|                         | SALES_ENGINEER | 0     | 1    | 0   | 0  |  |  |  |
|                         | SALES_REP      | 0 0 1 |      | 0   |    |  |  |  |
|                         | TECH_SUPPORT   | 0     | 0    | 0   | 1  |  |  |  |
|                         |                |       |      |     |    |  |  |  |
| Gender                  | F              | -1    |      |     |    |  |  |  |
|                         | М              | 1     |      |     |    |  |  |  |
|                         |                |       |      |     |    |  |  |  |
| TechKnowHow             | NO             | -1    |      |     |    |  |  |  |
|                         | YES            | 1     |      |     |    |  |  |  |

| Analysis of Maximum Likelihood Estimates |                  |    |           |          |            |            |        |  |  |
|------------------------------------------|------------------|----|-----------|----------|------------|------------|--------|--|--|
|                                          |                  |    | Parameter | Standard |            |            | Hazard |  |  |
| Parameter                                |                  | DF | Estimate  | Error    | Chi-Square | Pr > ChiSq | Ratio  |  |  |
| Department                               | MARKETING        | 1  | -1.15513  | 0.47794  | 5.8414     | 0.0157     | 0.606  |  |  |
| Department                               | SALES_ENGINEER   | 1  | 0.82336   | 0.52244  | 2.4838     | 0.1150     | 4.380  |  |  |
| Department                               | SALES_REP        | 1  | 0.62976   | 0.29224  | 4.6436     | 0.0312     | 3.609  |  |  |
| Department                               | TECH_SUPPORT     | 1  | 0.35572   | 0.29940  | 1.4117     | 0.2348     | 2.744  |  |  |
| TechKnowHow                              | YES              | 1  | -0.63474  | 0.27370  | 5.3781     | 0.0204     | 0.281  |  |  |
| Variable (Ca                             | ategory)         |    |           | Co       | efficient  | p-Value    |        |  |  |
| Departmen                                | t MARKETING      |    |           |          | -1.155     | 0.016      |        |  |  |
| Departmen                                | t SALES_ENGINEER |    |           |          | 0.823      | 0.115      |        |  |  |
| Departmen                                | t SALES_REP      |    | 0.630     | 0.031    |            |            |        |  |  |
| Departmen                                | t TECH_SUPPORT   |    | 0.356     | 0.235    |            |            |        |  |  |
| Departmen                                | t ADMIN          |    | -0.654    |          |            |            |        |  |  |
| TechKnow                                 | low YES          |    | -0.635    | 0.020    |            |            |        |  |  |

-[(-1.155)+0.823+0.630+0.356] = -0.654

#### PROC PHREG DATA=Employees;

CLASS department gender TechKnowHow / PARAM=effect REF=first;
MODEL Duration\*Status(1) = department gender TechKnowHow /

SELECTION=stepwise;



## Analyse der "Explained Variation" mit der PHREG Procedure

Verwende die "EV" Option im PHREG Statement

```
PROC PHREG DATA=Employees EV;
CLASS department gender TechKnowHow/ PARAM=effect REF=first;
MODEL Duration*Status(1) = department gender TechKnowHow;
RUN;
```

| <b>Predictive Inaccuracy and Explained</b> |            |           |  |  |  |  |  |
|--------------------------------------------|------------|-----------|--|--|--|--|--|
| Variation                                  |            |           |  |  |  |  |  |
| Predictive Inaccuracy                      |            |           |  |  |  |  |  |
| (Smaller                                   | Percent    |           |  |  |  |  |  |
| Without                                    | With       | Explained |  |  |  |  |  |
| Covariates                                 | Covariates | Variation |  |  |  |  |  |
| 0.3600                                     | 0.2921     | 18.84     |  |  |  |  |  |

| Variables in the Model          | Explained Variation |
|---------------------------------|---------------------|
| Department                      | 13.7 %              |
| TechKnowKow                     | 2.0 %               |
| Department, TechKnowKow         | 17.2 %              |
| Department, TechKnowKow, Gender | 18.4 %              |



## Vorhersage der Survival mit der PHREG Procedure

```
PROC PHREG DATA=Employees outest = ParamEstimates;

CLASS department gender TechKnowHow StartPeriod/

PARAM=effect REF=first;

MODEL Duration*Status(1) = department gender /

SELECTION=stepwise;

OUTPUT OUT=surv_pred survival=SurvPred

Atrisk =ObsAtRsik

LD =DisplacmLikelihood;

DETIN:

Department & Gender Status End Status TechKnowHow StartPeriod/

PROC PHREG DATA=Employees outest = ParamEstimates;

PARAM=effect REF=first;

MODEL Duration*Status(1) = department gender /

SELECTION=stepwise;

OUTPUT OUT=surv_pred survival=SurvPred

Atrisk =ObsAtRsik
```

RUN;

|    |       | —I             | $rac{1}{2}$ | тас       | ·111177   | RETTHOOU | 7        |           |              |                    |
|----|-------|----------------|-------------|-----------|-----------|----------|----------|-----------|--------------|--------------------|
| 0  | EmpNo | Department     | Gender      | Start     | End       | Status   | Ouration | ObsAtRsik | SurvPred     | DisplacmLikelihood |
| 1  | 1001  | MARKETING      | M           | 01JAN2004 | 01MAR2012 | 0 NO     | 98       | 3         | 0.3000662358 | 0.0342095828       |
| 2  | 1002  | SALES_REP      | M           | 01JAN2005 | 01MAR2011 | 0 NO     | 74       | 9         | 0.0152709689 | 0.3883756359       |
| 3  | 1003  | TECH_SUPPORT   | M           | 01MAY2006 |           | 1 YES    | 128      | 1         | 0.2160216763 | 0.1379484728       |
| 4  | 1004  | TECH_SUPPORT   | М           | 01OCT2006 | 01DEC2011 | 0 YES    | 62       | 12        | 0.4732932188 | 0.0030581462       |
| 5  | 1005  | SALES_ENGINEER | M           | 01OCT2006 | 01JAN2011 | 0 YES    | 51       | 25        | 0.4301588168 | 0.0038343292       |
| 6  | 1006  | ADMINSTRATION  | F           | 01MAR2007 | 01DEC2010 | 0 NO     | 45       | 28        | 0.5577228186 | 0.0137046542       |
| 7  | 1007  | ADMINSTRATION  | F           | 010CT2007 | 01JAN2012 | 0 NO     | 51       | 25        | 0.5038628656 | 0.0073694734       |
| 8  | 1008  | SALES_REP      | M           | 01NOV2007 | 01FEB2012 | 0 NO     | 51       | 25        | 0.0842551576 | 0.0501603566       |
| 9  | 1009  | ADMINSTRATION  | F           | 01DEC2007 | 01AUG2012 | 0 NO     | 56       | 17        | 0.4368117997 | 0.007699317        |
| 10 | 1010  | TECH_SUPPORT   | M           | 01DEC2007 |           | 1 YES    | 109      | 2         | 0.2160216763 | 0.1379484728       |
| 11 | 1011  | TECH_SUPPORT   | M           | 01FEB2008 | 01OCT2010 | 0 NO     | 32       | 41        | 0.3835067447 | 0.0013479246       |
| 12 | 1012  | MARKETING      | M           | 01APR2008 | 01DEC2015 | 0 NO     | 92       | 4         | 0.3978245623 | 0.0317086643       |
| 13 | 1013  | SALES_REP      | M           | 01JUN2008 | 01SEP2009 | 0 NO     | 15       | 63        | 0.6635274122 | 0.0094219574       |
| 14 | 1014  | SALES_REP      | М           | 01JUN2008 | 01MAY2010 | 0 NO     | 23       | 52        | 0.5451210355 | 0.0056891192       |
| 15 | 1015  | TECH_SUPPORT   | M           | 01JUL2008 | 01FEB2012 | 0 YES    | 43       | 29        | 0.6640788277 | 0.0379949482       |

#### SAS Viya PHSELECT Procedure:

The CODE statement generates SAS code that predicts the survival function at specified years

```
proc phselect data=mycas.Customers;
   class Area(ref='Urban') LifeChange(ref='None')
         PlanType(ref='B') Satisfaction(ref='Poor')
          Smoking(ref='No') / param=ref;
   model Time*Status(0) = Age Area Education Income
                          LifeChange PlanType
                          Satisfaction Smoking;
   selection method=forward(select=bic stop=bic);
   code file='ScoreCode.txt' timepoint=12 24 36 48 60;
run;
```

# The score code predicts retention probabilities for new customers at the specified years

```
data Retention;
   set NewCustomers;
   %include 'ScoreCode.txt';
run;
```

| Area  | Satisfaction | Life Change | Years of Education | Retention<br>Probability<br>at 1 Year | Retention<br>Probability<br>at 2 Years | Retention<br>Probability<br>at 3 Years | Retention<br>Probability<br>at 4 Years | Retention<br>Probability<br>at 5 Years |
|-------|--------------|-------------|--------------------|---------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|
| Rural | Poor         | New Job     | 13                 | 0.671                                 | 0.455                                  | 0.315                                  | 0.221                                  | 0.155                                  |
| Urban | Good         | Married     | 14                 | 0.718                                 | 0.520                                  | 0.383                                  | 0.285                                  | 0.212                                  |
| Rural | Excellent    | New Job     | 8                  | 0.711                                 | 0.512                                  | 0.373                                  | 0.276                                  | 0.204                                  |
| Urban | Poor         | New Job     | 11                 | 0.652                                 | 0.431                                  | 0.290                                  | 0.198                                  | 0.136                                  |
| Rural | Excellent    | Child       | 17                 | 0.786                                 | 0.622                                  | 0.498                                  | 0.402                                  | 0.324                                  |

# Ausgewählte Plots für die Employee Survival



## Career Start-End Plot





## Employees-Win-Loss-Plot





## Cumulated-Knowledge Plot





#### Zusammenfassung

- Die "Survival-Analyse" ist auch in anderen Bereichen als der Medizin-Statistik oder der Analyse klinischer Studien sehr gut einsetzbar
- Survival Kurven können visualisiert und gut interpretiert werden
- SAS STAT Procedures und der SAS Enterprise Miner bieten Möglichkeiten zur Analyse von Ereignisdaten (zensierte Daten)
- Die Cox-Proportional Hazards Regression erlaubt die Identifikation und Bewertung von Einflussvariablen.



#### Links

- https://support.sas.com/en/books/authors/gerhard-svolba.html
- <a href="https://www.sas.com/store/books/categories/usage-and-reference/applying-data-science-business-case-studies-using-sas-/prodBK 63165 en.html">https://www.sas.com/store/books/categories/usage-and-reference/applying-data-science-business-case-studies-using-sas-/prodBK 63165 en.html</a>
- Programme und Datasets: derzeit noch auf <u>sascommunity.org</u> werden demnächst nach github.com migriert.
- AS/STAT® 14.2 User's Guide. The LIFETEST Procedure. http://support.sas.com/documentation/onlinedoc/stat/142/lifetest.pdf (accessed 1 March 2017).
- Allison, P. 1995. Survival Analysis Using SAS®: A Practical Guide, Second Edition. Cary, NC: SAS Institute Inc. – Annals of Internal Medicine, 2001 Volume 136-10
- Redelmaier et al: Survival in Academy Award-Winning Actors and Actresses
- Sylvestre et. Al: Do Osca Winners Live Longer than Less Successful Peers? A Re-analysis of the Evidence – Annals of Internal Medicine, 2006, Volume 145-5



#### More Information

Gerhard Svolba – Principal Analytic Solutions Architect sastools.by.gerhard@gmx.net

https://github.com/gerhard1050/





- Applying Data Science Business Case Studies Using SAS, SAS Press 2017
- Eight Case Studies showing how Data Science and Analytics can be applied to provide insight into yout data and improve your business decisions
- http://www.sascommunity.org/wiki/Applying Data
   Science Business Case Studies Using SAS

