

GUÍA DOCENTE 2022-2023

DATOS GENERALES DE LA ASIGNATURA

ASIGNATURA:	Tecnol	ología y Estructura de Ordenadores					
PLAN DE ESTUDIOS:		Grado en Ingeniería de organización Industrial					
FACULTAD: Escuela Politécnica Supe			ca Supe	rior			
CARÁCTER DE LA ASIGNATURA: Op				ntiva			
ECTS: 6							
CURSO: Tercero							
SEMESTRE: Primero							
IDIOMA EN QUE SE IMPARTE: Cast			Castella	tellano			
PROFESORADO:			Arambarri a Leticia alas				
DIRECCIÓN DE CORREO ELECTRÓNICO			NICO:	jon.arambarri@uneatlantico.es loyda.alas@uneatlantico.es			

DATOS ESPECÍFICOS DE LA ASIGNATURA

REQUISITOS PREVIOS: No aplica CONTENIDOS: Tema 1. Conceptos básicos y organización funcional del computador 1.1 Evolución y características de los sistemas de cómputo. 1.2 Arquitectura y organización de los sistemas de cómputo modernos. Tema 2. Representación de la información a nivel de máquina

- 2.1 Sistemas de numeración.
- 2.2 Representación digital de la información.
- Tema 3. Sistemas digitales combinacionales
 - 3.1 Lógica binaria y álgebra de Boole
 - 3.2 Diseño y síntesis de circuitos lógicos combinacionales.
- Tema 4. Sistemas digitales secuenciales
 - 4.1 Circuitos biestables.
 - 4.2 Registros de desplazamiento y contadores.
 - 4.3 Diseño y síntesis de circuitos lógicos secuenciales.
- Tema 5. Organización y diseño del procesador
 - 5.1 Interacción entre procesador y memoria.
 - 5.2 Ejecución de código.
 - 5.3 Tipos de memoria.
- Tema 6. Descripción de un computador en el nivel de lenguaje máquina y ensamblador
 - 6.1 Arquitecturas de procesadores CISC. Intel IA32-IA64.
 - 6.2 Set de instrucciones Intel.
 - 6.3 Arquitecturas de procesadores RISC. ARM y PowerPC.
 - 6.4 Set de instrucciones ARM.
- Tema 7. Entradas y salidas: buses
 - 7.1 Hardware de entrada/salida y periféricos.
 - 7.2 Buses serie USB y PS/2.
 - 7.3 Buses paralelo PCI y PCIe.
 - 7.4 Interfaces internas y externas.
- Tema 8. Clasificación de los computadores y mejora de prestaciones.
 - 8.1 Tipos de sistemas de cómputo.
 - 8.2 Parámetros técnicos de componentes comerciales.

COMPETENCIAS

COMPETENCIAS GENERALES:

Que los estudiantes sean capaces de:

- CG1 Analizar resultados y sintetizar información en un contexto teórico y/o experimental relacionado con la ingeniería de la organización industrial
- CG2 Organizar y planificar de forma adecuada tareas en el ámbito de la ingeniería de la organización industrial
- CG3 Comunicar de manera adecuada y eficaz en lengua nativa, tanto de forma oral como escrita, ideas y resultados relacionados con la ingeniería de la organización industrial a audiencias formadas por público especializado y/o no especializado
- CG4 Analizar y buscar información en diversas fuentes sobre temas de la ingeniería de la organización industrial
- CG5 Resolver problemas relativos a la ingeniería de la organización industrial
- CG6 Tomar decisiones ante diferentes escenarios y situaciones que pueden darse en el ámbito de la ingeniería de la organización industrial
- CG8 Ejercer la crítica y la autocrítica con fundamentos sólidos, teniendo en cuenta la diversidad y complejidad de las personas y de los procesos en el ámbito de la ingeniería de la organización industrial
- CG10 Aprender de forma autónoma conceptos relacionados en el ámbito de la ingeniería de la organización industrial
- CG12 Relacionar de forma creativa principios, conceptos y resultados en el ámbito de la ingeniería de la organización industrial

COMPETENCIAS PROPIAS DE LA ASIGNATURA:

Que los estudiantes sean capaces de:

CEOP17 - Conocimiento, organización, funcionamiento e interconexión de los sistemas informáticos, de los fundamentos de su programación y de su utilidad en la resolución de problemas propios de la ingeniería

CEOP18 - Capacidad para conocer, comprender y evaluar la estructura y arquitectura de los computadores, así como los componentes básicos que los conforman

RESULTADOS DE APRENDIZAJE:

En esta asignatura se espera que los alumnos alcancen los siguientes resultados de aprendizaje

- Comprender el funcionamiento básico de los dispositivos electrónicos.
- Comprender los principios de arquitectura de un computador.
- Conocer cómo está organizada una CPU, sus unidades funcionales y explicar su rol en el funcionamiento de un ordenador.
- Conocer el subsistema de Entrada/Salida y su interfaz con la CPU.
- Conocer los tipos de almacenamiento de información, comprender su papel en el sistema de memoria de un computador y su influencia sobre la latencia de la memoria
- Comprender las técnicas de gestión de la memoria virtual.
- Conocer cómo evaluar el rendimiento de un computador.
- Comprender la segmentación de instrucciones paralelas y los problemas derivados.
- Conocer los principales tipos de arquitectura de un CPU.

Conocer la programación a bajo nivel.

METODOLOGÍAS DOCENTES Y ACTIVIDADES FORMATIVAS

METODOLOGÍAS DOCENTES:

En esta asignatura se ponen en práctica diferentes metodologías docentes con el objetivo de que los alumnos puedan obtener los resultados de aprendizaje definidos anteriormente:

- MD1 Método expositivo
- MD2 Estudio y análisis de casos
- MD3 Resolución de ejercicios
- MD4 Aprendizaje basado en problemas
- MD6 Aprendizaje cooperativo/trabajo en grupo
- MD7 Trabajo autónomo

ACTIVIDADES FORMATIVAS:

A partir de las metodologías docentes especificadas anteriormente, en esta asignatura, el alumno participará en las siguientes actividades formativas:

Actividades formativas		
	Clases expositivas	12
Actividades dirigidas	Clases prácticas	15
	Seminarios y talleres	12
Actividades supervisadas	Supervisión de actividades	7,5
Actividades supervisadas	Tutorías (individual / en grupo)	6
	Preparación de clases	15
A atividade a cuté verse	Estudio personal y lecturas	37,5
Actividades autónomas	Elaboración de trabajos	22,5
	Trabajo individual en campus virtual	15
Actividades de evaluación	ón Actividades de evaluación	

El primer día de clase, el profesor/a proporcionará información más detallada al respecto.

SISTEMA DE EVALUACIÓN

CONVOCATORIA ORDINARIA:

En la convocatoria ordinaria de esta asignatura se aplican los siguientes instrumentos de evaluación:

	Actividades de evaluación	Ponderación
Ī	1 Examen parcial	25 %

Eval	luación	Entrega de Portfolios y Ejercicios	20%
cor	ntinua	Interés y participación del alumno en la asignatura	5%
	luación final	Prueba teórico-práctica final	50%

La calificación del instrumento de la evaluación final (tanto de la convocatoria ordinaria como de la extraordinaria, según corresponda) **no podrá ser inferior, en ningún caso, a 4,0 puntos** (escala 0 a 10) para aprobar la asignatura y consecuentemente poder realizar el cálculo de porcentajes en la calificación final.

CONVOCATORIA EXTRAORDINARIA:

La convocatoria extraordinaria tendrá lugar durante el mes de julio (consúltese el calendario académico fijado por la universidad). Esta consistirá en la realización de un examen con un valor del 40% de la nota final de la asignatura. El resto de la nota se complementará con la calificación obtenida en la evaluación continua de la convocatoria ordinaria.

BIBLIOGRAFÍA Y RECURSOS DE REFERENCIA GENERALES

BIBLIOGRAFÍA BÁSICA:

Las siguientes referencias son de consulta obligatoria:

Floyd, T. L. (1997). Fundamentos de sistemas digitales 9° Edición. Ed. Prentice-Hall

Stallings, W. (1997). Organización y arquitectura de computadores 7ª Edición. Ed. Prentice-Hall

BIBLIOGRAFÍA COMPLEMENTARIA:

No aplica

WEBS DE REFERENCIA:

No aplica

OTRAS FUENTES DE CONSULTA:

No aplica