4 假设 SR 锁存器的输入端 $S \times R$ 的波形如图 4.27 所示,图中信号的上升延迟和下降延迟设为 0,要求画出图 4.27 中输出端 Q 和 \overline{Q} 的输出波形。

假设 D 锁存器和 D 触发器的各输入端波形分别如图 4.28a 和 b 所示,图中信号的上升延迟和下降延迟设为 0,并且不考虑逻辑门的传输延迟,要求画出图 4.28a 和 b 中输出端 Q 和 \overline{Q}

的输出波形。 假设 D 锁存器的控制端 C 为高电平有效, D 触发器是上升沿触发,则它们的输出波形图如下:

D在C高电平之前稳定或者 D在C高电平之后变化都会改变Q

只有D先稳定,CLK边沿随后到来(D继续保持稳定一会),才会改变Q

6 请用带使能端的 T 触发器和组合逻辑构造 D 触发器。

D 触发器的次态方程 $Q^*=D$; 使能 T 触发器的次态方程为: $Q^*=EN^{\bullet}Q+EN^{\bullet}Q$ 。

根据这两个次态方程得到以下表中的结果:

不管原来的Q是0还是1,时钟到来之后Q*就必须=D

所以,不能允许T触发器的Q*在每次时钟到来之后都反转

— En Q — → T Q O—

所以,增加D输入端,利用D和原来的Q对EN进行控制,从而控制Q*

由此可以推得: $EN=\overline{D} \cdot Q+D \cdot \overline{Q}$ 。(也可以由 $z=x \oplus y \rightarrow x=z \oplus y \rightarrow y=z \oplus x$ 推出)

9

请用尽量少的 D 触发器实现一个能检测输入信号 X 中是否出现"110"序列的电路。若出现"110"序列,则输出 Z 为 1,否则 Z 为 0。请分析你实现的电路是否能够自启动。如果 D 触发器的个数没有限制,你是否有更简洁的实现方案?

根据题意设计如下状态表:

现态 <i>Y</i>	次态 Y*/输出 Z		
DUES 1	X=0	<i>X</i> =1	
SO (初态)	S0 / Z=0	S1 / Z=0	
S1(检测到第一位 1)	S0/ Z=0	S2 / Z=0	
S2 (检测到两位 11)	S0 / Z=1	S2 / Z=0	

根据次优状态分配策略, 三个状态都有编码相邻的需求, 设置 S0 为 00, S1 为 01, S2 为 10 得到如下状态转换表:

状态转移表

Y0	Y1	Χ	Y0 ³	*Y1	*Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	d	d	d
_1	1	1	d	d	d

考察状态变化情况: 当电路处于11 状态时,

若 X=0,则经过一个时钟周期,电路状态回到初态 00。

若 X=1,则经过一个时钟周期,电路变成 10(S2)状态,

此时若再输入 X=1,则出现两个连续的 1,变成 S2 状态;若再输入 X=0,则经过一个时钟周期,回到初态 00。

考察输出 Z 的情况: 当电路处于 11 状态时,

若 X=0,则输出 Z=1,输出错误。

因此,输出逻辑应调整为:

 $Z = \overline{X} \cdot Y0 \cdot \overline{Y1}$

分析未用状态

: Y0Y1=11

利用无关项进行化简,可得如下次态函数:

$$Y0*=X• Y1+X•Y0=X• (Y1+Y0)$$

$$Y1 *= X \bullet \overline{Y0} \bullet \overline{Y1}$$

$$Z = \overline{X} \cdot Y0$$

不化简: Y0*=XY0~Y1 + XY0Y1~

化简: Y0*=X• Y1+X•Y0=X• (Y1+Y0)

如果Y0*不化简, 则初始为11状态时,无论接下来 X=0或1,都可以随后变为00状态 (相当于输入的1无效)

考试时是否有唯 一正确的做法, 我们会提前说明

状态转移表 					
Y0	Y1	Χ	Y0 ³	*Y1	*Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	d	d	d
1	1	1	đ	d	d

ルトナーナナエク 士

γηγ	1		A T	Y1	*=X•
XYOY	00	01	11	10	
0			d		
1	1		d/1		

X Y0Y1		Z			
X	00	01	11	10	
0			d	1	
1			d		

如果在初始为11状态时,希望X=1之后 变为01状态,则需要把一个d改为1,并 重新修改Y1*方程。(随后再经过若干周期也可以回到00状态)

 $\overline{Y0} \bullet \overline{Y1}$

可以通过增加一个触发器来简化组合逻辑设计。

连续输入110,则这三个时钟周期后D0=0,D1=D2=1,则Z=1

11 假设图 4.20 所示的 4 位同步并行加法计数器中 T 触发器的信号传输延迟是 T_{tq} ,与门的传输延迟为 T_{and} ,T 触发器 En 信号的建立时间是 T_{setup} ,请计算该计数器外部时钟 Clk 的最大工作频率。

由时序逻辑电路的时序分析可知:

时钟周期 t_{clk} >触发器锁存延迟 t_{mpd} + 次态激励延迟 t_{nspd} + 触发器建立时间 t_{setup}

根据题意可知: $t_{\text{ffpd}} = T_{\text{tq}}$, $t_{\text{nspd}} = T_{\text{and}}$, $t_{\text{setup}} = T_{\text{setup}}$

因此可知,该计数器最大工作频率为:

$$1/(T_{tq}+T_{and}+T_{setup})$$

12 将图示的右移一位寄存器中 Q_3 和 Q_2 异或后送入输入端 X,可构成一个线性反馈移位寄存器计数器。请分析该设计中 $Q_3Q_2Q_1Q_0$ 构成的状态编码转移情况,并分析总结其特点。


```
Q_3Q_2Q_1Q_0编码状态转移的情况如下: 0100\rightarrow1010\rightarrow1101\rightarrow0110\rightarrow1101\rightarrow1101 0100\rightarrow1000\rightarrow0000; 0101\rightarrow0000; 1000\rightarrow1100\rightarrow0110 1100\rightarrow1101 0100\rightarrow11101\rightarrow1101 0100\rightarrow11101\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow1111\rightarrow11
```

蓝色编码是所有不重复的16种情况

