CompSci 190: Chance & Iteration

Jeff Forbes

October 15, 2018

Monty Hall Problem

Random Selection

np.random.choice

- Selects at random
- with replacement
- from an array
- a specified number of times

```
np.random.choice(some_array, sample_size)
```

Discussion Question

```
d = np.arange(6) + 1
```

What results from evaluating the following 2 expressions? Are they the same? Do they describe the same process?

```
np.random.choice(d, 1000) + np.random.choice(d, 1000)
```

```
2 * np.random.choice(d, 1000)
```

Comparison Operators

The result of a comparison expression is a **bool** value

$$x = 2$$
 $y = 3$ Assignment statements

 $x > 1$ $x > y$ $y >= 3$
 $x = y$ $x != 2$ $2 < x < 5$ Comparison expressions

Combining Comparisons

Boolean operators can be applied to bool values

```
a = True b = False
                              Evaluate to True
 not b a or b a and not b
a and b not (a or b) b and b
                             Evaluate to False
                 (Demo)
```

Aggregating Comparisons

Summing an array or list of bool values will count the True values only.

More Python Commands

- Printing
 - Use print to display the value of a variable
- Control Statements
 - The purpose of if is to define functions that choose different behavior based on their arguments
 - The purpose of for is to perform a computation for every element in a list or array

Probability

- Lowest value: 0
 - Chance of event that is impossible
- Highest value: 1 (or 100%)
 - Chance of event that is certain

- If an event has chance 70%, then the chance that it doesn't happen is
 - 100% 70% = 30%
 - \circ 1 0.7 = 0.3

Equally Likely Outcomes

Assuming all outcomes are equally likely, the chance of an event A is:

Simulating Monty Hall

Multiplication Rule

Chance that two events A and B both happen

- $= P(A \text{ happens}) \times P(B \text{ happens given that } A \text{ has happened})$
- The answer is less than or equal to each of the two chances being multiplied
- The more conditions you have to satisfy, the less likely you are to satisfy them all

Addition Rule

If event A can happen in exactly one of two ways, then

$$P(A) = P(first way) + P(second way)$$

 The answer is greater than or equal to the chance of each individual way

Example: At Least One Head

- In 3 tosses:
 - Any outcome except TTT
 - \circ P(TTT) = $(\frac{1}{2}) \times (\frac{1}{2}) \times (\frac{1}{2}) = \frac{1}{8}$
 - P(at least one head) = 1 P(TTT) = % = 87.5%
- In 10 tosses:
 - 0 1 (1/2)**10
 - 99.9%

Test 1 Results

• Median: 68

Test 1 75.0 points

MINIMUM

62.67%

MEDIAN

91.0%

MAXIMUM

98.67%

MEAN

87.0%

STD DEV

9.99%