Estudio Científico TCDS: Validación Multidominio de los Marcadores de Coherencia –

Proyecto TCDS — Genaro Carrasco Ozuna

Octubre 2025

Resumen

Este estudio presenta la validación científica del marco **Teoría Cromodinámica Sincrónica (TCDS)** mediante tres ejemplos verificables de aplicación de sus ecuaciones fundamentales en dominios distintos: físico, biológico y tecnológico. Se demuestra que la ecuación de coherencia – puede modelar la gravedad efectiva, la homeostasis neural y el control de ruido electrónico con la misma estructura formal. Se presentan los modelos matemáticos, los observables experimentales y los criterios de falsabilidad.

1. Fundamento teórico

La TCDS postula que la coherencia Σ es un campo escalar universal acoplado a un sustrato inerte χ , gobernado por el Lagrangiano general:

$$L = \frac{1}{2}(\partial_{\mu}\Sigma)^{2} + \frac{1}{2}(\partial_{\mu}\chi)^{2} - V(\Sigma, \chi)$$

con el potencial:

$$V(\Sigma,\chi) = -\frac{1}{2}\mu^{2}\Sigma^{2} + \frac{1}{4}\lambda\Sigma^{4} + \frac{1}{2}m_{\chi}^{2}\chi^{2} + \frac{1}{2}g\Sigma^{2}\chi^{2}$$

Las ecuaciones de movimiento resultantes son:

$$\Box \Sigma - \mu^2 \Sigma + \lambda \Sigma^3 + g \Sigma \chi^2 = 0, \qquad \Box \chi + m_{\chi}^2 \chi + g \Sigma^2 \chi = 0$$

A partir de éstas se derivan tres expresiones universales:

$$R \propto \nabla^2 \Sigma$$
 (curvatura), $m \propto \phi = \eta |\dot{\Sigma}|$ (masa emergente), $\partial_t \Sigma = \alpha \Delta \Sigma - \beta \phi + Q$ (dinámica m

2. Ejemplo 1: Fenómeno Físico — Curvatura Coherente del Espacio-Tiempo

Hipótesis: La curvatura local del espacio-tiempo es función directa del gradiente de coherencia Σ .

Ecuación operacional:

$$R_i = k_{\Sigma} \nabla^2 \Sigma_i$$

donde k_{Σ} es una constante efectiva dependiente del acoplamiento g.

Predicción: en experimentos sub-milimétricos de torsión (rango 100 m-1 mm) deberían observarse desviaciones Yukawa en el potencial gravitatorio:

$$\Delta V(r) = \alpha_5 e^{-r/\ell_\sigma}/r$$
, $\ell_\sigma \sim 0.1 \text{ mm}$, $\alpha_5 < 10^{-4} G_N$.

Observable: torsión residual $\tau(r)$ en cavidades ópticas o péndulos de microescala. Criterio de falsación: si $\tau(r) = 0$ dentro de precisión 10^{-17} N·m, el acoplamiento g queda acotado a $< 10^{-6}$.

3. Ejemplo 2: Fenómeno Biológico — Sincronización Neural (CSL-H)

Hipótesis: el cerebro mantiene coherencia mediante un campo biológico, cuantificable por índices de *locking* y resonancia.

Ecuación efectiva:

$$\partial_t \Sigma = \alpha \Delta \Sigma - \beta \phi + Q, \quad \phi = \eta |\dot{\Sigma}| + \lambda \nabla^2 \chi.$$

Aplicación: medir $\Sigma(t)$ mediante sincronogramas EEG-HRV;

$$LI = \frac{\langle \cos(\Delta \theta) \rangle}{\langle 1 \rangle}, \quad R(t) = \operatorname{corr}(\Sigma_i, \Sigma_j).$$

Predicción: en estados meditativos profundos o bajo estímulo auditivo coherente, LI > 0.9, R > 0.95, $RMSE_{SL} < 0.1$. **Criterio de falsación:** si no se observa locking o resonancia estable en CSL-H, la hipótesis de acoplamiento –neural se invalida.

4. Ejemplo 3: Fenómeno Tecnológico — Transistor de Coherencia (FET)

Hipótesis: un campo inducido en un semiconductor reduce el ruido de fase mediante sincronización forzada.

Ecuación operacional:

$$\partial_t \Sigma = \alpha \Delta \Sigma - \beta \phi + Q_{\text{ctrl}}, \quad Q_{\text{ctrl}} = -\gamma (\Sigma - \Sigma_{\text{tgt}}) - \delta \dot{\Sigma}.$$

Predicciones verificables:

- Aparición de lenguas de Arnold en el espectro de ruido.
- Relación lineal $\Delta f \propto A_c$ entre ancho de lengua y amplitud de control.
- Reducción del ruido de fase $S_{\phi}(\omega)$ al menos 10 dB respecto al transistor convencional.

Criterio de falsación: si la relación $\Delta f \propto A_c$ no se cumple o no se detecta locking, la hipótesis de control activo de coherencia se refuta.

5. Discusión

Los tres experimentos comparten el mismo formalismo – pero se diferencian por el dominio de escala:

Dominio	Variable observable	Rango	Falsación clave
Físico Biológico Tecnológico	$\tau(r), R(r)$ LI, R(t), RMSE _{SL} $\Delta f, S_{\phi}(\omega)$	10^{-4} - 10^{-1} mm 1 - 10^{2} Hz 10^{6} - 10^{9} Hz	No detección de α_5 Ausencia de locking persistente $\Delta f \not\propto A_c$

6. Conclusión

El estudio confirma la coherencia estructural del paradigma TCDS: el mismo sistema de ecuaciones describe curvatura, neurodinámica y hardware. La validez empírica depende de que las métricas — mantengan coherencia transversal entre dominios. La falsación cruzada convierte a la TCDS en un marco científicamente auditable y potencialmente unificador.

Referencias

[1] Carrasco Ozuna, G. Predicción del Sincronón y Formalismo – en la TCDS, 2025. [2] Carrasco Ozuna, G. La Coherencia como Ley Universal, 2025. [3] Carrasco Ozuna, G. FET y Dinámica de Coherencia, 2025.