Qi Shutong

☑ st.qi@mail.utoronto.ca

1 +1-437-344-6913

Shutong.space

EDUCATION BACKGROUND

University of Toronto (UofT)

Toronto, Canada

Ph.D. Student, Electrical and Computer Engineering

Sep. 2020 - Present

Research topic: Physics-Informed Machine Learning for Electromagnetic and Multiphysics Modeling

Beihang University (BUAA)

Beijing, China

B.Eng., Electronic and Information Engineering

Sep. 2016 - Jun. 2020

Excellent Graduate

RESEARCH EXPERIENCE

University of Toronto, Department of Electrical and Computer Engineering

Toronto, Canada

Research Assistant, Advised by Professor Costas D. Sarris

Sep. 2020 - Now

- Established a hybrid Physics-Informed Neural Network (PINN) with a finite difference method for time-domain electromagnetic modeling with unconditionally stable time-stepping.
- Integrated radial basis functions into PINNs to enable efficient unsupervised electromagnetic modeling in complex scenarios.
- Pioneered a novel approach by combining Finite-Difference Time-Domain (FDTD) method and PINN for multiphysics simulation.
- Developed a deep neural network to compensate for numerical errors in the FDTD method for planar microwave circuit modeling.

Beihang University, School of Electronic and Information Engineering

Beijing, China

Research Assistant, Advised by Associate Professor Qiang Ren

Sep. 2018 - Jun. 2020

- Utilized the Finite-Difference Frequency-Domain (FD-FD) method for generating an electromagnetic scattering database.
- Developed a deep neural network (U-net) to accelerate the simulation of 2-D and 3-D electromagnetic scattering problems using the FD-FD approach.

WORK EXPERIENCE

Ansys Lumerical

Vancouver, Canada

Intern, Mentored by Dr. Jens Niegenmann

Aug. 2024 - Dec. 2024

Working on fast algorithms for metalens modeling.

SKILLS

- Programming language: Proficient in Python and Matlab. Familiar with C and C++.
- Technologies & Frameworks: Extensive experience with Python libraries and frameworks, including PyTorch, GPyTorch, NumPy, pandas, Scikit-learn, and Keras.
- Outstanding in electromagnetics theories, especially FDTD and FEM. Experienced in ANSYS HFSS, Lumerical, COMSOL Multiphysics, and FlexCompute Tidy3D.
- TOEFL: 105

SELECTED PUBLICATIONS

- **Shutong Qi** and Costas Sarris, "Hybrid Physics-Informed Neural Network for the Wave Equation with Unconditionally Stable Time-Stepping," in *IEEE Antennas and Wireless Propagation Letters*, doi: 10.1109/LAWP.2024.3355896.
- **Shutong Qi** and Costas Sarris, "Electromagnetic-Thermal Analysis With FDTD and Physics-Informed Neural Networks," in *IEEE Journal on Multiscale and Multiphysics Computational Techniques*, vol. 8, pp. 49-59, 2023, doi: 10.1109/JMMCT.2023.3236946.
- **Shutong Qi** and Costas Sarris, "Deep Neural Networks for Rapid Simulation of Planar Microwave Circuits Based on their Layouts," in *IEEE Transactions on Microwave Theory and Techniques*, 2022, doi: 10.1109/TMTT.2022.3210229.
- **Shutong Qi**, Yinpeng Wang, Yongzhong Li, Xuan Wu, Qiang Ren and Yi Ren, "2D Electromagnetic Solver Based on Deep Learning Technique," in *IEEE Journal of Multiscale and Multiphysics Computational Technique*, 2020, 5: 83-88.
- **Shutong Qi** and Costas Sarris, "Physics-Informed Neural Networks for Multiphysics Simulations: Application to Coupled Electromagnetic-Thermal Modeling," in 2023 IEEE/MTT-S International Microwave Symposium, San Diego, CA, USA, 2023, pp. 166-169, doi: 10.1109/IMS37964.2023.10188015.
- Shutong Qi and Costas Sarris, "Benchmarking Physics-Informed Neural Networks for Time-Domain Electromagnetic Simulations," in 2023 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (USNC-URSI), Portland, OR, USA, 2023, pp. 1619-1620, doi: 10.1109/USNC-URSI52151.2023.10237914.
- **Shutong Qi** and Costas Sarris, "Numerical Dispersion Compensation for FDTD via Deep Learnings," in 2022 *IEEE International Symposium on Antennas and Propagation and USNC/URSI Radio Science Meeting*, Denver, CO, USA, 2022, pp. 671-672, doi: 10.1109/AP-S/USNC-URSI47032.2022.9886317.
- Yipeng Wang, Yongzhong Li, Shutong Qi and Qiang Ren, "Predicting Scattering From Complex Nano-Structures via Deep Learning," in *IEEE Access*, vol. 8, pp. 139983-139993, 2020, doi: 10.1109/AC-CESS.2020.3012132.
- Qiang Ren, Yinpeng Wang, Youngzhong Li and **Shutong Qi**, "Sophisticated Electromagnetic Forward Scattering Solver via Deep Learning," in *Springer Singapore Pte*. Limited, 2021.

AWARDS & ACHIEVEMENTS

• IEEE Microwave Theory and Technology Society Graduate Fellowship Feb. 2024

• Excellent Graduate, Beihang University Jun. 2020

• Excellent Student Leader, Beihang University three times

• Excellent Academic Scholarship, Beihang University twice

Outstanding Social Work Scholarship, Beihang University
twice