北京理工大学 2020 年春季学期期末试卷

一、填空题

- 1. 点 M(1,0,2) 到直线 $\frac{x}{2} = \frac{y+1}{-2} = \frac{z-1}{1}$ 的距离是______.
- 2. 函数 u = xyz在点 P(5,1,2) 处沿从点 P(5,1,2) 到点 Q(9,4,14) 方向的方向导数为______.
- 3. 设 f(x,y) 在 全 平 面 上 连 续 , 交 换 累 次 积 分 的 积 分 次 序 $I = \int_0^{\pi} dx \int_0^{c-\alpha} f(x,y) dy = _____.$
- 4. 已知 L 为右半圆: $x^2 + y^2 = R^2(x \ge 0)$, 计算 $\int_L |y| dl = _____.$
- 5. 已知级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n^{p-3}}$ 条件收敛,则 p 的取值范围为______.
- 二、计算题
- 1. 求点 P(1, 2, -1) 在平面 2x y + z = 5 上的投影点的坐标.
- 2. 设 $z = f(x + \varphi(x y), y)$, 其中 f 具有二阶连续偏导数, φ 有二阶导数,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}, \frac{\partial^2 z}{\partial x \partial y}.$
- 3. 计算 $I = \iiint_V (x + y + z) dV$,其中 V 是由 z = xy, y = x, x = 1, z = 0 所围成的区域.
- 4. 己知函数 $u = x^2 + yz$, 计算 div(gradu).
- 三、设 f(x) 连续, $F(x) = \int_0^x (\int_0^t u f(u^2 + t^2) du) dt$, 求 F''(x).
- 四、设 Ω 是由曲面 $z = \sqrt{x^2 + y^2}$ 和曲面 $z = 1 + \sqrt{1 x^2 y^2}$ 围成的密度为 1 的均匀几何体. 试计算 Ω 关于 z 轴的转动惯量.
- 五、求常数 a,b,c 的值,使函数 $f(x,y,z) = axy^2 + byz + cx^3z^2$ 在点 M(1,2,-1) 处沿 z 轴正方向的方向导数有最大值 64.
- 六、已知在半平面x > 0内 $(x-y)(x^2+y^2)^{\lambda}dx + (x+y)(x^2+y^2)^{\lambda}dy$ 为二元函数

f(x,y)的全微分.

- (1) 求 λ 的值;
- (2) 求 $f(1,\sqrt{3}) f(2,0)$ 的值.

七、求幂级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n(2n-1)} x^{2n}$ 的收敛区间及和函数.

z = R, z = -R(R > 0)所围成的立体表面的外侧.

八、将函数 $f(x) = \frac{1}{x^2 + 3x + 2}$ 展开成 (x-1) 的幂级数,并求收敛区间及 $f^{(5)}(1)$ 的值.

九、计算曲面积分 $I = \iint_S \frac{xdydz + z^2dxdy}{x^2 + y^2 + z^2}$, 其中 S 是由曲面 $x^2 + y^2 = R^2$ 及两平面

十、设 $\Omega(t) = \{(x, y, z) \mid x^2 + y^2 + z^2 \le t^2\}$,其中t > 0. 已知f(x)在 $[0, +\infty)$ 内连续,又设 $F(t) = \iint_{\Omega(t)} f(x^2 + y^2 + z^2) dx dy dz$.

- (1) 求证: F(t)在 $(0,+\infty)$ 内可导,并求F'(t)的表达式;
- (2) 设 $f(0) \neq 0$, 求证: 级数 $\sum_{n=1}^{\infty} n^{1-\lambda} F'(\frac{1}{n})$ 在 $\lambda > 0$ 时收敛, $\lambda \leq 0$ 时发散.