CHAPTER 1: SIGNALS & SYSTEMS

Signal: set of data/information

Mostly functions of time, but applies to other independent variables

Systems: entity that processes a set of signals (inputs) to yield another set of signals (outputs)

· Can be hardware or software

1.1 Size of Signal

[Def] Number that indicates largeness/strength of entity

• Measure includes amplitude & duration

1.1-1 Signal Energy

- must be finite for a meaningful measure of signal size
- necessary condition
 - amplitude
 ightarrow 0 as $|t|
 ightarrow \infty$, else Eq. (1) doesn't converge

Area under signal x(t) as a measure of signal size:

- accounts for amplitude & duration
- · squared to ensure positive & negatives don't cancel

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
 (1.1.1-1)

simplifies for real-valued signal x(t) to $E_x = \int_{-\infty}^{\infty} x^2(t) dt$.

Notes:

- signal energy depends on signal AND load:
 - energy dissipated in normalized load of 1 ohm resistor if voltage x(t) were applied across resistor
 - indicative of energy capacity of signal, not actual energy; thus conservation of energy doesn't apply

1.1-2 Signal Power

· time average of the energy

When amplitude does NOT $\to 0$ as $|t| \to \infty$, signal energy is infinite. Thus signal power is a more meaningful measure, if it exists:

$$P_x = \lim_{T
ightarrow \infty} rac{1}{T} \, \int_{-T/2}^{T/2} \left| x(t)
ight|^2 dt \hspace{1.5cm} (1.1.2\text{-}1)$$

simplifies for real-valued signal x(t) to $P_x=\lim_{T o\infty}rac{1}{T}\,\int_{-T/2}^{T/2}x^2(t)dt.$

- mean-square value of |x(t)|
- $\sqrt{P_x}$ is the root-mean-square value of x(t)

Figure 1.1 Examples of signals: (a) a signal with finite energy and (b) a signal with finite power.

Example: Determining Power & RMS Values

a) sinusoid: $x(t) = C \cdot cos(w_0 t + \theta)$

Sinusoid, with amplitude C. Period = $T_0 = 2\pi/w0$.

$$egin{aligned} P_x &= \lim_{T o \infty} rac{1}{T} \, \int_{-T/2}^{T/2} C^2 cos^2(w_0 t + heta) dt \ &= \lim_{T o \infty} rac{C^2}{2T} \, \int_{-T/2}^{T/2} 1 + cos^2(2w_0 t + 2 heta) dt \ &= \lim_{T o \infty} rac{C^2}{2T} \, \int_{-T/2}^{T/2} dt + \lim_{T o \infty} rac{C^2}{2T} \, \int_{-T/2}^{T/2} cos^2(2w_0 t + 2 heta) dt \ &= rac{C^2}{2} + 0 \ &= rac{C^2}{2} \end{aligned}$$

Note: $RMS=rac{C}{\sqrt{2}}$. While $w_0
eq 0$, frequency doesn't affect power. If $w_0=0$, $P_x=C^2$.

b) sinusoidal sum: $x(t) = C_1 \cdot cos(w_1t + \theta_1) + C_2 \cdot cos(w_2t + \theta_2),$ $w_1 \neq w_2$

$$egin{aligned} P_x &= \lim_{T o\infty}rac{1}{T}\int_{-T/2}^{T/2}[C_1cos(w_1t+ heta_1)+C_2cos(w_2t+ heta_2)]^2dt \ &= \lim_{T o\infty}rac{1}{T}\int_{-T/2}^{T/2}C_1^2cos^2(w_1t+ heta_1)\,dt + \lim_{T o\infty}rac{1}{T}\int_{-T/2}^{T/2}C_2^2cos^2(w_2t+ heta_2)\,dt \ &+ \lim_{T o\infty}rac{2C_1C_2}{T}\int_{-T/2}^{T/2}cos(w_1t+ heta_1)cos(w_2t+ heta_2)\,dt \ &= rac{C_1^2}{2}+rac{C_2^2}{2} \end{aligned}$$

$$RMS = \sqrt{(C_1^2 + C_2^2)/2}$$

If $w_1 = w_2$:

$$egin{aligned} P_x &= \lim_{T o \infty} rac{1}{T} \, \int_{-T/2}^{T/2} [C_1 cos(w_1 t + heta_1) + C_2 cos(w_2 t + heta_2)]^2 dt \ &= TBD \ &= [C_1^2 + C_2^2 + 2C_1C_2 cos(heta_1 - heta_2)]/2 \end{aligned}$$

General Case: sum of any n sinusoids with distinct frequencies

$$x(t) = C_0 + \sum_{n=1}^{\infty} C_n cos(w_n t + heta_n)$$

$$P_x = C_0^2 + rac{1}{2} \sum_{n=1}^{\infty} C_n^2$$

c) complex: $x(t) = D \cdot e^{jw_0 t}$

$$egin{aligned} P_x &= \lim_{T o \infty} rac{1}{T} \int_{-T/2}^{T/2} |De^{iw_0t}|^2 dt \ &= |D|^2 \end{aligned}$$

$$RMS = |D|$$

1.2 Signal Operations

1.2-1 Time Shifting

 $\exists \phi$ s.t. signals in $\phi(t)$ are a T second delay of x(t). Thus $\phi(t+T)=x(t)$ and $\phi(t)=x(t-T)$.

1.2-2 Time Scaling

 $\exists \phi$ s.t. signals in $\phi(t)$ are compressed by factors of a w.r.t. x(t). Thus $\phi(\frac{t}{2})=x(t)$ and $\phi(t)=x(2t)$.

1.2-3 Time Reversal

 $\exists \phi \; \text{s.t. signals in} \; \phi(t) \; \text{are reflections of} \; x(t) \; \text{across the vertical axis.} \; \text{Thus} \; \phi(t) = x(-t).$

1.3 Classification of Signals

1.3-1 Continuous-Time & Discrete-Time

signal specified for a continuum of values versus signal specified for discrete values

· nature of signal along time

1.3-2 Analog & Digital

• nature of signal along amplitude

analog signal: signal whose amplitude can take on any value in continuous range (amplitude can take on infinite values)

digital signal: signal whose amplitude takes on only a finite number of values

1.3-3 Periodic & Aperiodic

Signal x(t) is periodic if for some positive constant T_0 , $x(t) = x(t+T_0) \ orall \ T$.

$$\int_a^{a+T_0} \; x(t) \; dt = \int_b^{b+T_0} \; x(t) \; dt$$

everlasting signal: $-\infty < t < \infty$. True everlasting signals cannot be generated in practice.

causal signal: x(t) = 0, t < 0

anti-causal signal: $x(t) = 0 \ \forall \ t \ge 0$

Figure 1.11 Examples of signals: (a) analog, continuous time; (b) digital, continuous time; (c) analog, discrete time; and (d) digital, discrete time.

Else, aperiodic.

1.3-4 Energy & Power

• cannot be both energy and power, but can be neither

energy signal: signal with finite energy

power signal: signal with finite, non-zero power (infinite energy); power is time average of energy (over an infinitely large [time] interval, else will not approach limit)

ramp signal: neither energy nor power signal.

 e^{-at} is neither energy nor power signal for any $a\in\mathbb{R}$. However, if $a
ot\in\mathbb{R}$, it's a power signal with $P_x=1$ regardless of the value of a.

1.3-5 Deterministic & Probabilistic

deterministic signal: a signal whose physical description is known completely in math/graphical form

random signal: a signal whose values cannot be predicted precisely but are known only in terms of probabilistic description (beyond scope of BME252)

1.4 Useful Signal Models

1.4-1 Unit Step Function u(t)

$$u(t) = egin{cases} 1 & t \geq 0 \ 0 & t < 0 \end{cases}$$
 (1.4.1-1)

Multiply by u(t) to obtain a signal that starts at t = 0.

1.4-2 Unit Impulse Function $\delta(t)$

Dirac Delta:

$$\delta(t) = 0, \; t
eq 0, \; \int_{-\infty}^{\infty} \delta(t) \; dt = 1$$
 (1.4.2-1)

Rectangular Pulse: width $\epsilon \to 0$, height $1/\epsilon \to \infty$. Undefined at t=0.

e.g. 1.20(a)
$$ae^{-at}u(t)$$

Figure 1.20 Other possible approximations to a unit impulse.

as $a \to \infty$, pulse height $\to \infty$, width/duration $\to \infty$. Yet area under curve is unity regardless of the value of a because

$$\int_{0}^{\infty} ae^{-at}dt = 1$$

Exact pulse function cannot be generated in practice, only approached. From 1.4-2, impulse function $k\delta(t)=0\ \forall\ t\neq 0$ has area k.

Multiplication of a Function by an Impulse

 $\exists \phi(t)$ s.t. it's continuous at t=0. Since impulse has non-zero value only at t=0, and the value of $\phi(t)$ at t=0 is $\phi(0)$:

$$\phi(t)\delta(t) = \phi(0)\delta(t)$$

Result: an impulse @ t=0, has strength $\phi(0)$.

Generalization:

$$\phi(t)\delta(t-T) = \phi(T)\delta(t-T) \tag{1.4.2-2}$$

Sampling Property of Unit Impulse Function

$$\int_{-\infty}^{\infty} \phi(t) \delta(t-T) = \phi(T) \int_{-\infty}^{\infty} \delta(t) \ dt = \phi(T) \quad \ (1.4.2\text{-}3)$$

*area under the product of a function with impulse $\delta(t-T)$ is equal to the value of that function at the instant at which the unit impulse is located

Unit Impulse as Generalized Function

generalized function: defined by its effect on other functions instead of by its value at every instant of time

Impulse function is defined in terms of its effects on test function $\phi(t)$.

Unit impulse function: a function for which the area under its product with a function $\phi(t)$ is equal to the value of function $\phi(t)$ in the instant at which the impulse is located

• assumes $\phi(t)$ is continuous at location of impulse

$$\begin{split} \int_{-\infty}^{\infty} \frac{du(t)}{dt} \phi(t) dt &= u(t) \phi(t) \big|_{-\infty}^{\infty} - \int_{-\infty}^{\infty} u(t) \dot{\phi}(t) dt \\ &= \phi(\infty) - 0 - \int_{0}^{\infty} \dot{\phi}(t) dt \\ &= \phi(\infty) - \phi(t) \big|_{0}^{\infty} \\ &= \phi(0) \\ \frac{du(t)}{dt} &= \delta(t) \end{split} \tag{1.4.2-4}$$

1.4-3 Exponential Function e^{st}

 \exists complex number s s.t. $s = \sigma + jw$, therefore

$$e^{st} = e^{(\sigma+jw)t} = e^{\sigma t}e^{jwt} = e^{\sigma t}(cos(wt) + j\sin(wt))$$

Since $s^* = \sigma - jw$, then

$$e^{s^*t} = e^{(\sigma - jw)t} = e^{\sigma t}e^{-jwt} = e^{\sigma t}(cos(wt) - j\sin(wt))$$

and

$$e^{\sigma t}\cos wt = rac{1}{2}(e^{st} + e^{s^*t})$$
 (1.4.3-1)

[Euler's formula] e^{st} is a generalization of e^{jwt} , where frequency variable jw is generalized to complex variable $s=\sigma+jw$. Class of functions expressed in terms of e^{st} :

CLASSES	FUNCTIONS	CONDITIONS
Constant	$k=ke^{0t}$	s = 0
Monotonic Exponential	$e^{\sigma t}$	$w=0, s=\sigma$
Sinusoid	$\cos wt$	$\sigma=0, s=\pm jw$
Exponentially Varying Sinusoid	$e^{\sigma t}\cos wt$	$s=\sigma\pm jw$

Figure 1.21 Sinusoids of complex frequency $\sigma + j\omega$.

About e^{st} :

w: frequency of oscillation

 σ : rate of increase/decrease of amplitude

Signals' complex frequencies lie on **real** axis (σ axis, where w=0).

If signals' frequencies lie on **imaginary** axis (w axis, where $\sigma=0$), $e^{\sigma t}=1$. Signals are conventional sinusoids with constant amplitude.

Figure 1.22 Complex frequency plane.

1.5 Even & Odd Functions

[def] even function X_e : symmetrical about vertical axis

[def] odd function X_o : antisymmetrical about vertical axis

$$X_e(t) = X_e(-t) \ X_o(t) = -X_o(-t)$$

1.5-1 Properties of Even & Odd Functions

$$X_e imes X_o = X_o'$$

 $X_o imes X_o = X_e$
 $X_e imes X_e = X_e'$

Area:

$$\int_{-a}^{a}X_{e}(t)dt=2\int_{0}^{a}X_{e}(t)dt \ \int_{0}^{a}X_{o}(t)dt=0$$

*every signal can be expressed as a sum of even & odd functions

Modification for Complex Signals

- can be decomposed into even & odd components OR conjugate symmetries
- conjugate symmetric if $x_{cs}(t)=x^*(-t)$ Real part is even, imaginary part is odd, thus even signal
- conjugate-antisymmetric if $x_{ca}(t)=-x^*(-t)$ Real part is odd, imaginary part is even, thus odd signal

$$egin{aligned} x(t) &= x_{cs}(t) + x_{ca}(t) ext{ where} \ x_{cs}(t) &= rac{x(t) + x^*(-t)}{2} \ x_{ca}(t) &= rac{x(t) - x^*(-t)}{2} \end{aligned}$$

1.6 Systems

Study of systems consists of mathematical modeling, analysis design.

Consider RC circuit with current source x(t) as input. Output is given by:

$$egin{align} y(t) &= Rx(t) + rac{1}{C} \int_{-\infty}^t x(au) d au \ &= Rx(t) + rac{1}{C} \int_{-\infty}^0 x(au) d au + rac{1}{C} \int_0^t x(au) d au \ &= Rx(t) + v_C(0) + rac{1}{C} \int_0^t x(au) d au \qquad t \geq 0 \end{split}$$

Generalized form*:

$$y(t)=v_C(t_0)+Rx(t)+rac{1}{C}\int_{t_0}^t \ x(au)d au \qquad t\geq t_0 \quad \ \ (1.6 ext{-}1)$$

 $^{^*}v_C(t_0)$ is initial capacitator voltage

1.7 Classification of Systems

Categories of systems*:

- 1. linear & nonlinear
- 2. constant-parameter & time-varying-parameter
- 3. instantaneous (memoryless) & dynamic
- 4. causal & noncausal
- 5. continuous-time & discrete-time
- 6. analog & digital
- 7. invertible & non-invertible
- 8. stable & unstable

1.7-1 Linear & Nonlinear Systems

superposition property:

• additivity property:

$$x_1
ightarrow y_1 \wedge x_2
ightarrow y_2 \implies x_1 + x_2
ightarrow y_1 + y_2$$

• homogeneity (scaling property):

if
$$x \to y$$
, then \forall real and imaginary $k, kx \to ky$

Thus,

$$x_1 o y_1 \wedge x_2 o y_2 \implies k_1 x_1 + k_2 x_2 o k_1 y_1 + k_2 y_2 \ orall \ k_1, k_2 \ \ (1.7-1)$$

Response of a Linear System

context: single input, single output (SISO) systems

linear system output for $t \geq 0$:

- results from 2 independent causes:
 - initial conditions of system (system state) at t=0
 - input x(t) for $t \ge 0$
- must be sum of 2 components:
 - zero-input response (ZIR) resulting from initial response at t=0 with input x(t)=0 for $t\geq 0$.
 - zero-state response (ZSR) resulting from input x(t) for $t \geq 0$ when initial conditions are assumed to be 0.
- both ZIR & ZSR must obey superposition w.r.t. their causes

^{*}other classifications, such as deterministic & probabilistic, are not in this course

total response =
$$ZIR + ZSR$$
 (1.7-2)

decomposition property: permits separation of an output into components resulting from initial conditions & from the input

$$y(t) = \underbrace{v_C(t_0)}_{ZIR} + \underbrace{Rx(t) + rac{1}{C} \int_{t_0}^t x(au) d au}_{ZSR}$$

1.7-2 Time-Invariant & Time-Varying Systems

time-invariant: constant parameter

time invariance property:

1.7-3 Instantaneous & Dynamic Systems

A system is **instantaneous** if its output at any t depends, at most, on the strength of its inputs at same instant t.

*derivatives are NOT instantaneous: slope cannot be determined from a single point. Infinitesimally small memory must exist; see fundamental theorem of calculus.

17-4 Causal & Noncausal Systems

 ${f causal}$: output at any instant t_0 depends only on value of input x(t) for $t \leq t_0$.

*noncausal systems

- are realizable when independent variable is not time (e.g. space)
- are realizable with time delay
- provides upper bound performance for causal systems

1.7-5 Continuous-Time & Discrete-Time Systems

continuous-time signals: signals defined over a continuous range of time

Figure 1.32 Processing continuous-time signals by discrete-time systems.

1.7-6 Analog & Digital Systems

e.g. digital computer => digital & discrete system

1.7-7 Invertible & Noninvertible Systems

e.g. noninvertable: y(t) = |x(t)|, y(t) = tx(t)

1.7-8 Stable & Unstable Systems

External Stability: every bounded input applied at input terminal results in a bounded output (BIBO: bounded-input/bounded-output)

1.8 System Model: Input-Output Description

system varieties: electrical, mechanical, hydraulic, acoustic, electromechanical, chemical, social, political, economic, biological, etc.

1.8-1 Electrical Systems

e.g. Series RLC circuit

Kirchhoff's voltage law around loop:

$$egin{split} v_L(t) + v_R(t) + v_C(t) &= x(t) \ v_L(t) + Ri(t) + rac{1}{C} \int_{-\infty}^t i(au) d au &= x(t) \ rac{dy(t)}{dt} + 3y(t) + 2 \int_{-\infty}^t y(au) d au &= x(t) \end{split}$$

Differentiating both sides:

$$\frac{d^2y(t)}{dt^2} + 3\frac{dy(t)}{dt} + 2y(t) = \frac{dx(t)}{dt}$$
 (1.8.1-1)

Expressed using compact notation:

$$rac{dy(t)}{dt} \equiv Dy(t), \; rac{d^2y(t)}{dt^2} \equiv D^2y(t), \; \dots, \; rac{d^Ny(t)}{dt^N} \equiv D^Ny(t)$$
 $(D^2 + 3D + 2)y(t) = Dx(t)$ (1.8.1-2)

Integral operator expressed as inverse of differential operator:

$$\int_{-\infty}^t y(au) d au \equiv rac{1}{D} y(t) \ rac{d}{dt} igg[\int_{-\infty}^t y(au) d au igg] = y(t)$$

1.8-2 Mechanical Systems

planer motion => translational (rectilinear) motion & rotational (torsional) motion

Translational Systems

basic elements: ideal masses, linear springs, dashpots (viscous damping)

Figure 1.36 Some elements in translational mechanical systems.

Newton's law of motion (a):

$$x(t)=M\ddot{y}(t)=Mrac{d^2y(t)}{dt^2}=MD^2y(t)$$

Linear spring (K is stiffness) (b):

$$x(t) = Ky(t)$$

Linear Dashpot (B is damping coefficient) (c):

$$x(t) = B\dot{y}(t) = Brac{dy(t)}{dt} = BDy(t)$$

Rotational Systems

motion about an axis; variables:

- torque
- · angular position
- · angular velocity
- · angular acceleration
- torsional springs

• torsional dashpots

$$egin{aligned} torque &= J\ddot{ heta}(t) = Jrac{d^2 heta(t)}{dt^2} = JD^2 heta(t) = JD^2 heta(t) \\ &= K heta(t)B\dot{ heta}(t) = BD heta(t) \end{aligned}$$

1.8-3 Electromechanical Systems

Figure 1.40 Armature-controlled dc motor.

$$J\ddot{\theta}(t) = \tau(t) - B\dot{\theta}(t)$$

$$(JD^{2} + BD)\theta(t) = \tau(t)$$

$$(JD^{2} + BD)\theta(t) = K_{T}x(t)$$

$$J\frac{d^{2}\theta(t)}{dt^{2}} + B\frac{d\theta(t)}{dt} = K_{T}x(t)$$

$$(1.8.3-1)$$