Jon Allen October 23, 2013

4.3

only need the "form" of the particular solution for 14,20,24. Need the particular solution for 30. Don't forget we need the homogeneous solution too for form of solution.

#14

$$y'' - 4y' + 3y = -e^{-9t}$$

solution

$$r^{2} - 4r + 3 = 0 = (r - 3)(r - 1)$$
 $r = 1, 3$ $y_{h} = c_{1}e^{t} + c_{2}e^{3t}$
 $f(t) = -e^{-9t}$ $S_{p} = \{e^{-9t}\}$ $y_{p} = Ae^{-9t}$

#20

$$y'' + 4y = 4\cos t - \sin t$$

solution

$$r^{2} + 4 = 0 r = \frac{-0 \pm \sqrt{0^{2} - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{\pm 4i}{2} = \pm 2i y_{h} = c_{1} \cos 2t + c_{2} \sin 2t$$
$$f(t) = 4 \cos t - \sin t S = \{\cos t, \sin t\} \cup \{\cos t, \sin t\} = \{\cos t, \sin t\} y_{p} = A \cos t + B \sin t$$

#24

$$y'' - 4y' + 13y = 2te^{-2t}\sin 3t$$

solution

$$r^{2} - 4r + 13 = 0 r = \frac{4 \pm \sqrt{16 - 4 \cdot 1 \cdot 13}}{2} = 2 \pm 3i y_{h} = e^{2t} (c_{1} \cos 3t + c_{2} \sin 3t)$$
$$f(t) = 2te^{-2t} \sin 3t S = \left\{ e^{-2t} \sin 3t, e^{-2t} \cos 3t, te^{-2t} \sin 3t, te^{-2t} \cos 3t \right\}$$
$$y_{p} = Ae^{-2t} \sin 3t + Be^{-2t} \cos 3t + Cte^{-2t} \sin 3t + Dte^{-2t} \cos 3t$$

#30

find a general solution to $y'' + 3y' - 4y = -32t^2$

solution

$$r^{2} + 3r - 4 = 0 = (r - 1)(r + 4) \qquad r = 1, -4 \qquad y_{h} = c_{1}e^{t} + c_{2}e^{-4t}$$

$$f(t) = -32t^{2} \qquad y_{p} = A + Bt + Ct^{2} \qquad y_{p}' = B + 2Ct \quad y_{p}'' = 2C$$

$$2C + 3B + 6Ct - 4A - 4Bt - 4Ct^{2} = (2C + 3B - 4A) + t(6C - 4B) - 4Ct^{2} = -32t^{2}$$

$$-4C = -32 \qquad C = 8 \qquad 6C - 4B = 0 \qquad B = 12 \qquad 2C + 3B - 4A = 0 \qquad \frac{52}{4} = A = 13$$

$$y = c_{1}e^{t} + c_{2}e^{-4t} + 8t^{2} + 12t + 13$$

4.4

#23

find a general solution to $y'' + 6y' + 9y = t^{-1}e^{-3t}, t > 0$

solution

$$r^{2} + 6 + 9 = 0 = (r+3)^{2} r = -3 y_{h} = c_{1}e^{-3t} + c_{2}te^{-3t}$$

$$W = e^{-3t}(e^{-3t} - 3te^{-3t}) + te^{-3t}3e^{-3t} W = e^{-6t} u_{1}' = -\frac{te^{-3t}}{te^{3t}e^{-6t}} = -1$$

$$u_{2}' = \frac{e^{-3t}}{te^{3t}e^{-6t}} = t^{-1} \int u_{1}' dt = -t \int \frac{1}{t} dt = \ln|t|, t > 0 \to \ln t$$

$$y = e^{-3t}(c_{1} + c_{2}t - t + t \ln t) = e^{-3t}(c_{1} + c_{3}t + t \ln t)$$

#28

find a general solution to $y'' - 10y' + 25y = e^{5t} \ln 2t, t > 0$

solution

$$\begin{aligned} r^2 - 10r + 25 &= 0 = (r - 5)^2 & r &= 5 & y_h &= c_1 e^{5t} + c_2 t e^{5t} \\ W &= e^{5t} \left(5t e^{5t} + e^{5t}\right) - t e^{5t} 5 e^{5t} & W &= e^{10t} & u_1' &= -\frac{t e^{5t} e^{5t} \ln 2t}{e^{10t}} = -t \ln 2t \\ u_2' &= \frac{e^{5t} e^{5t} \ln 2t}{e^{10t}} = \ln 2t & -\int t \ln 2t \, \mathrm{d}t = -z_1 w_1 + \int w_1 \, \mathrm{d}z_1 & z_1 = \ln 2t \, \mathrm{d}w_1 = t \, \mathrm{d}t \\ u_1 &= -\frac{1}{2} t^2 \ln 2t + \frac{1}{2} \int t \, \mathrm{d}t & u_1 &= \frac{1}{2} t^2 \left(\frac{1}{2} - \ln 2t\right) & \int \ln 2t \, \mathrm{d}t = z_2 w_2 - \int w_2 \mathrm{d}z_2 \\ z_2 &= \ln 2t \, \mathrm{d}w_2 = \mathrm{d}t & u_2 &= t \ln t 2t - \int \mathrm{d}t & u_2 &= t \ln 2t - t \end{aligned}$$

$$y &= e^{5t} \left(c_1 + c_2 t + \frac{1}{2} t^2 \left(\frac{1}{2} - \ln 2t\right) + t^2 \ln 2t - t^2\right)$$

$$y &= e^{5t} \left(c_1 + c_2 t + \frac{1}{2} t^2 \ln 2t - \frac{3}{4} t^2\right)$$