

REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA DEFENSA VICEMINISTERIO DE EDUCACIÓN PARA LA DEFENSA UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA NACIONAL UNEFA FALCÓN

Materia: Geometría Analítica Docente: Ing. Violeta Gutiérrez

GUÍA INFORMATIVA

CONCEPTO Y ELEMENTOS DE LA ELIPSE

Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante.

ELEMENTOS DE LA ELIPSE:

- Focos: Son los puntos fijos F y F'.
- Eje focal: Es la recta que pasa por los focos.
- Eje secundario: Es la mediatriz del segmento FF'.
- Centro: Es el punto de intersección de los ejes.
- Radios vectores: Son los segmentos que van desde un punto de la elipse a los focos: PF y PF'.
- Distancia focal: Es el segmento de longitud 2c, c es el valor de la semidistancia focal.
- 7. Vértices: Son los puntos de intersección de la elipse con los ejes: A, A', B y B'.
- Eje mayor: Es el segmento de longitud 2a, a es el valor del semieje mayor.
- Eje menor: Es el segmento de longitud 2b, b es el valor del semieje menor.

- 10. Ejes de simetría: Son las rectas que contienen al eje mayor o al eje menor.
- Centro de simetría: Coincide con el centro de la elipse, que es el punto de intersección de los ejes de simetría.

FORMULAS

Ecuación de la elipse en forma canónica

El centro de la elipse coincide con el centro de coordenadas y los focos están en el eje de las x.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Coordenadas de los focos: F(-C,0): F1(C,0)

El centro de la elipse coincide con el centro de coordenadas y los focos están en el eje de las y.

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

Coordenadas de los focos:

Tangente a la elipse en uno de sus puntos

El centro de la elipse coincide con el centro de coordenadas.

$$\frac{x \cdot x_1}{a^2} + \frac{y \cdot y_1}{b^2} = 1$$

Tangente a la elipse de pendiente dada

El centro de la elipse coincide con el centro de coordenadas.

$$y = mx \pm \sqrt{a^2m^2 + b^2}$$

m es la pendiente

Propiedad de la tangente

La tangente en un punto de la elipse, es bisectriz del ángulo formado por un radio vector y la prolongación del otro.

CONCEPTO DE PARÁBOLA Y SUS ELEMENTOS

Una parábola queda definida por el conjunto de los puntos del plano que equidistan de una recta fija y un punto fijo.

ELEMENTOS DE LA PARÁBOLA

Foco: Es el punto fijo F.

Directriz: Es la recta fija D.

Parámetro: A la distancia entre el foco y la directriz de una parábola se le llama

parámetro p.

Eje: La recta perpendicular a la directriz y que pasa por el foco recibe el nombre de eje. Es el eje de simetría de la parábola.

Vértice: Es el punto medio entre el foco y la directriz. También se puede ver como el punto de intersección del eje con la parábola.

Radio vector: Es el segmento que une un punto cualquiera de la parábola con el foco.

FORMULAS

Ecuación de la parábola de vértice el origen y el eje concidiendo con el eje oy

Ecuación de la parabola de vértice (α, β) y eje paralelo al eje ox

Ecuación de la parabola de vértice (a, j) y e je paralelo al e je oy

Ecuación general de la parábola

$$Ax^2 + Cy^2 + Dx + Ey + F = 0$$

Una ecuación general de segundo grado, que carece del término xy y en la cual se cumple que A=0; $C\neq 0$ y $D\neq 0$, representa una parábola cuyo eje es paralelo al eje ox.

Si A \neq 0; C = 0 y E \neq 0, la ecuación representa una parábola cuyo eje es paralelo al eje oy

Ecuación de la tangente a la parábola $y^2 = 4px$ en uno de sus puntos

Ecuación de la tangente de pendiente m a la parábola y² = 4px

$$y = mx + \frac{p}{m}$$
 en donde $m \neq 0$

Funcion cuadratica

La función quadrática ax^2+bx+c en donde a $\neq 0$, está representada gráficamente por la parábola $\gamma = ax^2+bx+c$ cuyo eje es paralelo al eje oy.

Reduciendo dicha ecuación a la forma ordinaria completando cuadrados nos queda:

$$\Big(x+\frac{b}{2a}\Big)^2=\frac{1}{a}\left(y+\frac{b^2-4ac}{4a}\right) \ \text{ que comparándola con } (y-a)^2=4p(y-\beta)$$

resulta: Vértice (d,
$$\beta$$
) \rightarrow $\left(-\frac{b}{2a}, \frac{4ac-b^2}{4a}\right)$; $4p = \frac{1}{a} \rightarrow p = \frac{1}{4a}$

Cuando a > 0 se abre hacia arriba y su vértice es un punto mínimo Cuando a < 0 se abre hacia abajo y su vértice es un punto máximo

Tanto el máximo como el mínimo, se calculan con ayuda de las siguientes fórmulas:

$$x_{min} = -\frac{b}{2a}$$

$$y_{min} = \frac{4ac - b^2}{4a}$$

Ejercicios Propuestos

- Hallar la ecuación de una elipse cuyo eje mayor mide 16cm y el menor 10cm.
- En una elipse el eje menor mide 4 y la distancia entre los focos 2√2. Hallar su ecuación.
- En una elipse se conoce la longitud de la distancia focal igual a 20cm.
 Hallar la ecuación de la elipse, sabiendo que tiene una excentricidad igual a 2/3.
- 4. Dada la elipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ Hallar:
 - a) El valor de los semiejes.
 - b) Coordenadas de los focos.
 - c) Excentricidad.
- 5. Dada la elipse $4x^2 + 6y^2 + 4x 12y 1 = 0$ Hallar el centro, los semiejes y la excentricidad.
- Dada la parábola y² + 4x + 4y = 0 Hallar:
 - a) El vértice
 - b) El eje
 - c) El foco
 - d) Ecuación de la directriz.
- Hallar la ecuación de la parábola de vértice en el origen y foco en el punto (4,0).
- Hallar la ecuación de la parábola de vértice el origen y directriz la recta x+5=0

Gráfica y elementos de la Elipse conociendo la ecuación canónica https://www.youtube.com/watch?v=ZZtG_9k6UeA

Elipse | Pasar de la ecuación general a la canónica - ordinaria https://www.youtube.com/watch?v=FwDHJoY7yXU

Elipse

https://www.youtube.com/watch?v=849ryoz3LaU

https://www.youtube.com/watch?v= d1SyjVGVpk

La parábola

https://www.youtube.com/watch?v=FlsYCYbmJGU