

O problema

Dados do TSP Utilizado: att48.tsp

MÉTODO HÍBRIDO

Algoritmo Genético com técnica de troca de nós com a melhor solução vigente da geração.

Algoritmo Perturbação

```
private void pertubacao (Individuo trial, Individuo xrl, Individuo xr2) throws CloneNotSupportedException {
   //Difrença entre rl e r2
    ArrayList<Double> diferencas = new ArrayList<>();
   int diferenca:
   for (int i = 0; i < problema.dimensao; i++) {
       for (int j = 0; j < problema.dimensao; j++) {
           if (Objects.equals(xr1.getCromossomos().get(i), xr2.getCromossomos().get(j))) {
                diferenca = Math.abs(i - j);
                trial = (Individuo) xrl.clone();
                int aux = trial.getCromossomos().get(diferenca);
                trial.getCromossomos().set(diferenca, xrl.getCromossomos().get(i));
                trial.getCromossomos().set(i, aux);
```

Algoritmo Mutação

```
private void mutacao(Individuo trial, Individuo xr0) throws CloneNotSupportedException {
    for (int i = 0; i < problema.dimensao; i++) {
        for (int j = 0; j < problema.dimensao; j++) {
            if (Objects.equals(trial.getCromossomos().get(i), xr0.getCromossomos().get(j))) {
                int aux = trial.getCromossomos().get(j);
                trial.getCromossomos().set(j, xr0.getCromossomos().get(j));
                trial.getCromossomos().set(i, aux);
            }
        }
}</pre>
```

Algoritmo Crossover

```
private void crossover(Individuo pail, Individuo pai2, Individuo filhol, Individuo filho2) {
   filhol.getCromossomos().addAll(pail.getCromossomos().subList(0, problema.dimensao / 2));
   filho2.getCromossomos().addAll(pai2.getCromossomos().subList(0, problema.dimensao / 2));
   for (int i = 0; i < problema.dimensao; i++) {
       int ver2 = pai2.getCromossomos().get(i);
       if (!filhol.getCromossomos().contains(ver2)) {
           filhol.getCromossomos().add(ver2);
   for (int i = 0; i < problema.dimensao; i++) {
       int verl = pail.getCromossomos().get(i);
       if (!filho2.getCromossomos().contains(verl)) {
           filho2.getCromossomos().add(ver1);
```

Algoritmo Replace

```
public Individuo replace(Individuo trial) throws CloneNotSupportedException {
    Random rnd = new Random();
    for (int i = 1; i < trial.getCromossomos().size() - 1; i++) {
        if (rnd.nextDouble() <= this.taxa) {
            for (int j = 0; j < getMelhorSolucao().getCromossomos().size(); j++) {</pre>
                if (Objects.equals(trial.getCromossomos().get(i), getMelhorSolucao().getCromossomos().get(j))) {
                    int aux = trial.getCromossomos().get(j);
                    trial.getCromossomos().set(j, trial.getCromossomos().get(i));
                    trial.getCromossomos().set(i, aux);
                    break:
    return trial:
```


O objetivo do trabalho foi realizar experimentos com 4 casos de uso. O algoritmo para resolução do TSP implementou a Evolução Diferencial e um método que busca melhorar as soluções com base no melhor resultado registrado vigente.

Parâmetros

Caso 1	Caso 2	Caso 3	Caso 4
Execuções: 30	Execuções: 30	Execuções: 30	Execuções: 30
Gerações = 300;	Gerações = 500;	Gerações = 100;	Gerações = 800;
Variáveis = 40;	Variáveis = 50;	Variáveis = 80;	Variáveis = 10;
TamPopulação = 100;	TamPopulação = 80;	TamPopulação = 200;	TamPopulação = 50;
TxReplace = 0.5;	TxReplace = 0.3;	TxReplace = 0.6;	TxReplace = 0.5;
F = 0.8;	F = 0.8;	F = 0.9;	F = 0.5;
Cr = 0.4;	Cr = 0.3;	Cr = 0.5;	Cr = 0.5;

Casos

	Caso 1	Caso 2	Caso 3	Caso 4
Média	5691.9	5822.4	5712.267	5652.267*
Melhor Resultado	4389	4461	4618	4354*
Pior Resultado	6709	7421	6758*	6489
Melhor Tempo	967	1249	655*	1284

Média Geral	5719.708	Melhor Resultado	4354
-------------	----------	------------------	------

Comparação entre as probabilidades de 'replace'

	Caso 1	Caso 2	Caso 3	Caso 4
Desvio Padrão-R	525.2124	552.31	531.2039	505.366*
Desvio Padrão-T	118.7918	121.4341	65.07539*	115.1907

Casos - BoxPlot- Tempo

Casos- BoxPlot-Resultado

P value and statistical significance:

The two-tailed P value equals 0.3522

By conventional criteria, this difference is considered to be not statistically significant.

Confidence interval:

The mean of Caso1 minus Caso2 equals -130.50 95% confidence interval of this difference: From -409.04 to 148.04

Intermediate values used in calculations:

t = 0.9378 df = 58 standard error of difference = 139.152

P value and statistical significance:

The two-tailed P value equals 0.8818

By conventional criteria, this difference is considered to be not statistically significant.

Confidence interval:

The mean of Caso1 minus Caso3 equals -20.37

95% confidence interval of this difference: From -293.37 to 252.64

Intermediate values used in calculations:

t = 0.1493

df = 58

standard error of difference = 136.385

P value and statistical significance:

The two-tailed P value equals 0.7669

By conventional criteria, this difference is considered to be not statistically significant.

Confidence interval:

The mean of Caso1 minus Caso4 equals 39.63

95% confidence interval of this difference: From -226.74 to 306.01

Intermediate values used in calculations:

t = 0.2978

df = 58

standard error of difference = 133.072

Anova

	Summary of Data					
	Treatments	;				
	1	2	3	4	5	Total
N	30	30	30	30		120
ΣΧ	170757	174672	165421	169568		680418
Mean	5691.9	5822.4	5514.033 3	5652.266 7		5670.15
ΣX^2	97993136 1	10258565 98	94386601 5	96585000 2		39155039 76
Std.Dev.	525.2124	552.31	1045.995 8	505.366		694.709

Anova

Result Details				
Source	SS	df	MS	
Between-treatm ents	1450360.5667	3	483453.5222	F = 1.00177
Within-treatmen ts	55981492.7333	116	482599.0753	
Total	57431853.3	119		

O problema

Dados do TSP Utilizado: att48.tsp

MÉTODO HÍBRIDO

Algoritmo de Evolução Diferencial com método que busca melhorar as soluções com base no melhor resultado registrado vigente.

.....

O objetivo do trabalho foi realizar a comparação do Algoritmo Genético para o TSP, já implementado na sala, com o Algoritmo Genético com o uso da técnica desenvolvida no trabalho para o problema TSP.

Parâmetros

Para poder realizar a comparação entre os métodos, optou-se em manter os parâmetros tamanho da população, probabilidade de crossover, probabilidade de mutação, probabilidade de busca local, número de gerações. Os valores que sofreram alteração foram os de probabilidade de 'replace'.

Parâmetros - Valores

- Tamanho da População:1000
- Probabilidade de Crossover: 0.8
- Probabilidade de Mutação: 0.05
- Probabilidade de Busca Local: 0.8
- Número de Gerações: 100
- Número de Execuções: 30

Probabilidade de Replace

- 0.3
- 0.5
- 0.8

Comparação entre as probabilidades de 'replace'

	Caso 1	Caso 2	Caso 3	Caso 4
Média	7591.433	7711.567	7790.7	5219.867*
Melhor Resultado	4514*	5746	5605	4695
Pior Resultado	10255*	8820	9625	5643
Melhor Tempo	10081*	20106	11103	128095

Média Geral	7078.392	Melhor Resultado	Caso 1 / 4514

Comparação entre as probabilidades de 'replace'

	Caso 1	Caso 2	Caso 3	Caso 4
Desvio Padrão-R	1495.177	841.5367	976.4532	215.0379
Desvio Padrão-T	7072.373	8335.878	7568.937	12214.88

Comparação entre as probabilidades de 'replace' - BoxPlot- Tempo

Comparação entre as probabilidades de 'replace' - BoxPlot-Resultado

P value and statistical significance:

Review your data:

1 Value and Statistical Significance.			
The two-tailed P value equals 0.5999		Caso	Caso
By conventional criteria, this difference is considered to be not statistically significant.	Grou	1	3
	р		
Confidence interval:			
The mean of Caso 1 minus Caso 3 equals -166.72	Mean	7524.59	7691.31
95% confidence interval of this difference: From -799.91 to 466.46	SD	1475.31	848.96
	30	1473.51	040.90
Intermediate values used in calculations:	SEM	273.96	157.65
t = 0.5275			
df = 56	N	29	29
standard error of difference = 316.079			

Review your data:

P value and statistical significance:			
The two-tailed P value equals 0.3576		Caso	Caso
By conventional criteria, this difference is considered to be not statistically significant.	Group	1	3
Confidence interval:	Mean	7524.59	7828.79
The mean of Caso 1 minus Caso 3 equals -304.21			
95% confidence interval of this difference: From -961.17 to 352.76	SD	1475.31	970.79
Intermediate values used in calculations:			
t = 0.9276	SEM	273.96	180.27
df = 56			
standard error of difference = 327.950	N	29	29

P value and statistical significance: The two-tailed P value is less than 0.0001 By conventional criteria, this difference is considered to be extremely statistically significant.	Grou p	Caso 1	Caso 4
Confidence interval:	Mean	7524.59	5219.87
The mean of Caso 1 minus Caso 4 equals 2304.72 95% confidence interval of this difference: From 1759.61 to 2849.83	SD	1475.31	215.04
Intermediate values used in calculations:	SEM	273.96	39.26
t = 8.4664	N	29	30
df = 57 standard error of difference = 272.219			

Review your data:

Anova

Std.Dev.

1475.3142

848.9565

Summary of Data Treatments 2 3 4 5 Total Ν 29 29 29 29 116 ΣΧ 218213 223048 227035 151377 819673 Mean 7524.5862 7691.3103 7828.7931 5219.8966 7066,1466 ΣX^2 17357117 17029059 18037979 79151327 60339289 83 48 61 7 69

970.7861

218.8441

1450.6353

Result Details				
Source	SS	df	MS	
Between-tr eatments	133146699 .819	3	44382233. 273	<i>F</i> = 45.66546
Within-trea tments	108852726 .6897	112	971899.34 54	
Total	241999426 .5086	115		