Отчет о выполнении работы №2.3.1 Получение и измерение вакуума

Воейко Андрей Александрович, Б01-109 Долгопрудный, 2022

1 Аннотация.

В работе измеряется объем форвакуумной и высоковакуумной частей установки, а также определяется скорость откачки системы в стационарном режиме.

2 Теоретические сведения и экспериментальная установка.

По степени разрежения вакуумные установки принято делить на три класса:

- Низковакуумные до 10^{-2} — 10^{-3} торр.
- Высоковакуумные до 10^{-2} – 10^{-3} торр.
- Сверхвысокого вакуума до 10^{-2} – 10^{-3} торр.

В данной работе исследуются традиционные методы откачки механическим форвакуумным насосом до давления 10^{-2} торр и диффузионным масляным насосом до давления 10^{-5} торр, а также методы измерения вакуума в этом диапазоне.

2.1 Экспериментальная установка.

Установка изготовлена из стекла и состоит из фовакуумного баллона (ΦB), высоковакуумного диффузионного насоса (B H), высоковакуумного баллона (B B), масляного (M) и ионизационного (M) манометров, термопарных манометров (M_1 и M_2), форвакуумного насоса (ΦH) и соединительных кранов K_1 , K_2 ... K_6 (рис. 1). Кроме того, в состав установки входят: вариатор (автотрансформатор с регулируемым выходным напряжением), или реостат и амперметр для регулирования тока нагревателя диффузионного насоса.

2.1.1 Краны.

Все краны вакуумной установки — стеклянные. Стенки кранов тонки, пробки кранов полые и составляют одно целое с рукоятками. Кран K_1 используется для заполнения форвакуумного насоса и вакуумной установки атмосферным воздухом. Во время работы установки он должен быть закрыт. Трехходовой кран K_2 служит для соединения форвакууминого насоса с установкой атмосферой. Кран K_3 отделяет высоковакуумную часть установки от форвакуумной. Кран K_4 соединяет между соьой колена масляного манометра. Он должен быть открыт во все время работы установки и

закрывается лишь во время работы установки и закрывается лишь при измерении давления в форвакуумной части. Краны K_5 и K_6 стоят по концам капиояра и соединяют его с форвакуумной и высоковакуумной частями установки. Суммарный объем обоих кранов и капиляра 50 см^3 . Диаметр капиляра 0.8 мм. Его длина 108 мм.

2.1.2 Форвакуумный насос.

Устройство и принцип действия ротационного форвакуумного насоса, ипользующегося в данной работе, изображены на рис. 2.

Рис. 1: Схема экспериментальной установки.

Насос состоит из ротора, расположенного эксцентрично в цилиндре. В роторе есть прорезь, в которой располагаются способные предвигаться в нем пластины. В ходе вращения в цилиндре образуются две полости — увлекаемые пластинами «А» и «Б» соответственно. На первом и втором рисунках пластина «А» втягивает воздух из входной трубки в полость. На третьем полость отделяется от трубки пластиной «Б», а на четвертом пластина «Б» заталкивает воздух в выходную трубку.

2.1.3 Диффузионный насос.

Откасчивающее действие диффузионного насоса основано на диффузии молекул разреженного воздуха в струю паров масла. Попавшие в струю модекулы газа увлекаются ею и уже не возвращаются назад. Устройство этого насоса изображено на рис. 3.

Рис. 2: Схема действия ротационного пластинчатого форвакууминого насоса.

Масло нагревается электрической печкой. Пары масла поднимаются по трубе Б и вырываются из сопла В. Струя паров увлекает молекулы газа, которые поступают из откачиваемого сосуда через трубу ВВ. Дальше смесь попадает в вертикальную трубу Г. Здесь масло осаждается на стенках трубы и маслосборников и стекает вниз, а оставшийся газ через трубу ФВ откачивается форвакуумным насосом. Диффузионный насос работает наиболее эффективно при давлении, когда длина свободного пробега молекул воздуха примерно равна ширине кольцевого зазора между соплом В и стенками трубы ВВ. В этом случае пары масла увлекают молекулы воздуха из всего сечения зазора.

2.1.4 Процесс откачки.

Производительность насоса определяется скоростью откачки W (л/с): W — это объем газа, удаляемого из сосуда при данном давлении за единицу времени. Скорость откачки фовакуумного насоса равна емкости воздухозаборной камеры, умноженной на число оборотов в секунду. Рассмотрим обычную схему откачки. Разделим вакуумную систему на две части: «откачиваемый объем» (в состав которого включим используемые для работы части установки) и «насос» к которому кроме самого наоса, отнесем трубопроводы и краны, через которые производится отчкачка нашего объема. Обозначим через $Q_{\rm д}$ количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времени, через $Q_{\rm u}$ — количество газа, проникающего в этот объем извне — через течи.

- 3 Результаты измерений и обработка данных.
- 4 Выводы.

Рис. 3: Схема действия ротационного пластинчатого форвакууминого насоса.