

Introduction to time series modelling

Dr Gianluca Campanella 21st June 2016

Contents

Statistics for time series

Forecasting

Time series models

Statistics for time series

Time series

Any data that change **over time**

Time series

Any data that change over time

Seasonality

- · Cyclic pattern(s) repeated over time
- E.g. peak of sales in December

Trend

- · Change in 'baseline' levels over time
- E.g. linear increase in sales over last 5 years

Rolling (or moving) statistics

Each observation is replaced with some statistic (e.g. mean) of *k* consecutive time points:

- k preceding points
- \cdot k/2 points prior to and following a given time point

Usage

- · Reduce influence of outliers
- Smooth time series to identify patterns

Exponentially weighted averages

- Rolling statistics weigh the *k* time points equally
- · Often, points closer in time are more important
- ightarrow Weighting

Exponentially weighted averages

- · Rolling statistics weigh the k time points equally
- · Often, points closer in time are more important
- → Weighting

Exponential weighting

- $EWMA_1 = y_1$
- EWMA_t = $\alpha y_t + (1 \alpha)$ EWMA_{t-1}, t > 1
- $ightarrow \alpha$ controls the **decay**

Expanding statistics

Each observation is replaced with some statistic (e.g. sum) of all points prior to the given time point

Usage

- · Visualise cumulative distribution over time
- Identify trends

Autocorrelation

Correlation of the time series with itself at different lags:

- At lag 1, dependency on 'yesterday'
- At lag 7, dependency on 'last week'
- At lag 30, dependency on 'last month'...

Usage

- Identify trends
- Identify period of seasonal cycles

Forecasting

Forecasting

Prediction

- · Value of y given values for the predictors X
- Does not depend on time (or temporal effect is negligible)

Forecasting

Prediction

- · Value of y given values for the predictors X
- Does not depend on time (or temporal effect is negligible)

Forecasting

- · Value of y given **previous values** of y
- · Captures autocorrelation to 'project forward'
- (Some models can also incorporate predictors)

Model evaluation

- Same metrics used for regression (e.g. MSE)
- Standard cross-validation doesn't apply

Model evaluation

- · Same metrics used for regression (e.g. MSE)
- · Standard cross-validation doesn't apply

Solution

- We can only forecast based on past values
- → Split into training/test sets
 (e.g. before/after some point in time)

Stationarity

Many models require time series to be **stationary**:

- · Mean and variance constant over time
- ightarrow Seasonality and trend must be removed

Stationarity

Many models require time series to be stationary:

- · Mean and variance constant over time
- \rightarrow Seasonality and trend must be removed

Solutions

- Detrending (estimate and subtract 'baseline')
- Differencing (predict change or 'change in changes')

Time series models

ARMA models

Auto**R**egressive

- y_t depends on y_{t-1} , ...
- Regression on past values
- Captures (slow) changes in trend

Moving Average

- y_t depends on ε_{t-1} , ...
- Smoothing of past errors
- Captures sudden changes (e.g. spikes)

$$y_t = \alpha + \beta_1 y_{t-1} + \ldots + \beta_p y_{t-p} + \gamma_1 \varepsilon_{t-1} + \ldots + \gamma_q \varepsilon_{t-q}$$

ARIMA models

- · ARMA models on differentiated time series
- Typically d = 1 or 2

ARIMA models

- · ARMA models on differentiated time series
- Typically d = 1 or 2

First-order differences $y_t - y_{t-1}$

- Predict change
- Corresponds to velocity in physics

Second-order differences $(y_t - y_{t-1}) - (y_{t-1} - y_{t-2})$

- Predict 'change in changes'
- Corresponds to acceleration in physics