تمرين في الحساب مع الحل النموذجي خاص بشعبتي الرياضي و التقني رياضي

نصر التمرين:

- . 7 على n و a^n على a^n أدرس تبعا لقيم العدد الطبيعي a^n ، باقي القسمة الإقليدية لكل من العددين a^n
- - . $u_{_n}=2 imes 3^n+3 imes 4^n$: نعتبر المتتالية العددية $(u_{_n})$ المعرفة على (3
 - . $S_{_{n}}=u_{_{0}}+u_{_{1}}+\ldots +u_{_{n}}$: أحسب بدلالت n المجموع (أ
 - . \circ 7 قبلا للقسمة على \circ 9 أجلها المجموع قيم الأعداد الطبيعية \circ 1 التي يكون من أجلها المجموع قيم الأعداد الطبيعية

بواقي القسمة الإقليدية لكل من $\,^{3^{n}}$ و $\,^{4^{n}}$ على $\,^{7}$:

 $.\ 3^{6} \equiv 1 \begin{bmatrix} 7 \end{bmatrix} \text{, } 3^{5} \equiv 5 \begin{bmatrix} 7 \end{bmatrix} \text{, } 3^{4} \equiv 4 \begin{bmatrix} 7 \end{bmatrix} \text{, } 3^{3} \equiv 6 \begin{bmatrix} 7 \end{bmatrix} \text{, } 3^{2} \equiv 2 \begin{bmatrix} 7 \end{bmatrix} \text{, } 3^{1} \equiv 3 \begin{bmatrix} 7 \end{bmatrix} \text{, } 3^{0} \equiv 1 \begin{bmatrix} 7 \end{bmatrix} \quad \bullet \quad \text{(a)} \quad \text{(b)} \quad \text{(b)} \quad \text{(c)} \quad \text{(c)}$

n قيم	6k	6k + 1	6k + 2	6k + 3	6k + 4	6k + 5
7 بواقي قسمت 3^n على	1	3	2	6	4	5

. $4^3\equiv 1\big[7\big]$, $4^2\equiv 2\big[7\big]$, $4^1\equiv 4\big[7\big]$, $4^0\equiv 1\big[7\big]$. •

	L 3	L 3	L 3
n قيم	3k	3k + 1	3k + 2
7 بواقي قسمت 3^n على	1	4	2

n يقبل القسمة على 7 من أجل كل عدد طبيعي $2 \times 2012^{6n+4} + 3 \times 1432^{3n+2}$ برهان أن:

.
$$2012^{6n+4}\equiv 4igl[7igr]$$
 . ومنه : $2012^{6n+4}\equiv 3^{6n+4}igl[7igr]$. ومنه : $2012\equiv 3igl[7igr]$

.
$$1432^{3n+2}\equiv 2igl[7igr]$$
 ، ومنه : $1432^{3n+2}\equiv 4^{3n+2}igl[7igr]$ ، أي : $1432^{3n+2}\equiv 4^{3n+2}$

: إذن : $\left[7
ight]$ إذن : $\left[7
ight]$ $\left[3 \times 2012^{6n+4} + 3 \times 1432^{3n+2} \right]$ أي $\left[4 \times 2012^{6n+4} + 3 \times 1432^{3n+2} \right]$ ومنه :

. و هو المطلوب .
$$2 imes 2012^{6n+4} + 3 imes 1432^{3n+2} \equiv 0ig[7ig]$$

 $S_n = u_0 + u_1 + \ldots + u_n$ (عساب بدلالت n المجموع) الجموع (غ

نلاحظ أن المتتالية (u_n) هي مجموع متتاليتين هندسيتين إحداهما أساسها 3 و حدها الأول 2 ، والثانية أساسها 4 و حدها

،
$$S_{_{n}}=\left[3^{^{n+1}}-1
ight]+\left[4^{^{n+1}}-1
ight]$$
 ، أي: $S_{_{n}}=2\left[rac{1-3^{^{n+1}}}{1-3}
ight]+3\left[rac{1-4^{^{n+1}}}{1-4}
ight]$: الأول 3 ، أي: $S_{_{n}}=2\left[3^{^{n+1}}-1
ight]$

$$S_{n}=3^{n+1}+4^{n+1}-2$$
 . ني

:7 قيم n حتى يكون $S_{\scriptscriptstyle n}$ قبلا للقسمة على n

. $3^{n+1}+4^{n+1}\equiv 2{\left[7\right]}$. معناه : $S_n\equiv 0{\left[7\right]}$

n قيم	6k	6k + 1	6k + 2	6k + 3	6k + 4	6k + 5
7 باقي قسمت 3^n على	1	3	2	6	4	5
7 باقی قسمت 4^n علی	1	4	2	1	4	2

.
$$n+1=6k$$
 : يار $3^{n+1}+4^{n+1}\equiv 2ig[7ig]$ ، و منه $n=6k$ ، يا ، $3^n+4^n\equiv 2ig[7ig]$ نلاحظ أن

.
$$n=6(k-1)+5$$
 او $n=6k-1$

$$k'\in\mathbb{N}$$
 : ديث ، $n=6k'+5$ ، أي ، $k'=k-1$

$$k'\in\mathbb{N}$$
 : حيث ، $n=6k'+5$ ومنه حتى يكون S_n قابلا للقسمة على S_n ، يجب أن يكون

كتابة الأستاذ : بلقاسم عبدالرزاق

