Calcul Stochastique Appliqué à la Finance - 4^{ème} GF

Chapitre 0 : Rappels en Probabilités

Pr. El Mahjour

Points Principaux

1 Espaces Probabilisés et événements

événements

Espaces Probabilisés et

- A, B deux ensembles.
- $\blacksquare A \subset B \longrightarrow A$ est inclus dans B.
- $lacksquare \omega \in A \longrightarrow \omega$ appartient (est un élément de) A
- L'ensemble fini formé de n éléments $\omega_1, \ldots, \omega_n$ est noté $\{\omega_1, \ldots, \omega_n\}$.

L'univers ou l'espace Ω est un ensemble abstrait qui contient tous les résultats possibles d'une expérience.

- *A*, *B* deux ensembles.
- $\blacksquare A \subset B \longrightarrow A$ est inclus dans B.
- $lacksquare \omega \in A \longrightarrow \omega$ appartient (est un élément de) A
- L'ensemble fini formé de n éléments $\omega_1, \ldots, \omega_n$ est noté $\{\omega_1, \ldots, \omega_n\}$.

L'univers ou l'espace Ω est un ensemble abstrait qui contient tous les résultats possibles d'une expérience.

- 1 Lancer d'une pièce de monnaie :
- Choisir une carte parmi 52 :
- 3 Nombres d'accident de voiture par jour :

- A, B deux ensembles.
- $A \subset B \longrightarrow A$ est inclus dans B.
- $lacksquare \omega \in A \longrightarrow \omega$ appartient (est un élément de) A
- L'ensemble fini formé de n éléments $\omega_1, \ldots, \omega_n$ est noté $\{\omega_1,\ldots,\omega_n\}.$

L'univers ou l'espace Ω est un ensemble abstrait qui contient tous les résultats possibles d'une expérience.

Exemples

- **1** Lancer d'une pièce de monnaie : $\Omega = \{P, F\}$.
- Choisir une carte parmi 52 :
- Nombres d'accident de voiture par jour :

19 avril 2025

- *A*, *B* deux ensembles.
- $\blacksquare A \subset B \longrightarrow A$ est inclus dans B.
- $lacksquare \omega \in A \longrightarrow \omega$ appartient (est un élément de) A
- L'ensemble fini formé de n éléments $\omega_1, \ldots, \omega_n$ est noté $\{\omega_1, \ldots, \omega_n\}$.

L'univers ou l'espace Ω est un ensemble abstrait qui contient tous les résultats possibles d'une expérience.

- **11** Lancer d'une pièce de monnaie : $\Omega = \{P, F\}$.
- 2 Choisir une carte parmi 52 : $\Omega = \{1, 2, \dots, 52\}$.
- 3 Nombres d'accident de voiture par jour :

- A, B deux ensembles.
- $\blacksquare A \subset B \longrightarrow A$ est inclus dans B.
- $lacksquare \omega \in A \longrightarrow \omega$ appartient (est un élément de) A
- L'ensemble fini formé de n éléments $\omega_1, \ldots, \omega_n$ est noté $\{\omega_1,\ldots,\omega_n\}.$

L'univers ou l'espace Ω est un ensemble abstrait qui contient tous les résultats possibles d'une expérience.

Exemples

- 1 Lancer d'une pièce de monnaie : $\Omega = \{P, F\}$.
- 2 Choisir une carte parmi 52 : $\Omega = \{1, 2, \dots, 52\}$.
- Nombres d'accident de voiture par jour : $\Omega = \mathbb{N}$.

19 avril 2025

- 1 Le prix du cours d'une action en bourse :
- Le temps, la température ou la richesse :
- Le choix aléatoire d'une trajectoire continue de fonctions définies sur \mathbb{R}^+ :

- 11 Le prix du cours d'une action en bourse : $\Omega = \mathbb{R}^+$
- Le temps, la température ou la richesse :
- 3 Le choix aléatoire d'une trajectoire continue de fonctions définies sur \mathbb{R}^+ :

- 11 Le prix du cours d'une action en bourse : $\Omega = \mathbb{R}^+$
- **2** Le temps, la température ou la richesse : $\Omega = \mathbb{R}$.
- Le choix aléatoire d'une trajectoire continue de fonctions définies sur \mathbb{R}^+ :

- 11 Le prix du cours d'une action en bourse : $\Omega = \mathbb{R}^+$
- **2** Le temps, la température ou la richesse : $\Omega = \mathbb{R}$.
- Le choix aléatoire d'une trajectoire continue de fonctions définies sur \mathbb{R}^+ : $\Omega = \mathcal{C}(\mathbb{R}^+)$.

Exemples

- 11 Le prix du cours d'une action en bourse : $\Omega = \mathbb{R}^+$
- **2** Le temps, la température ou la richesse : $\Omega = \mathbb{R}$.
- Le choix aléatoire d'une trajectoire continue de fonctions définies sur \mathbb{R}^+ : $\Omega = \mathcal{C}(\mathbb{R}^+)$.

Dans le dernier cas, $\omega \in \Omega$ est une fonction qui va de \mathbb{R}^+ vers \mathbb{R} . Un exemple typique est le graphe $t \mapsto \omega(t)$ du cours d'une option au fil du temps.

Espaces produits

- L'univers de probabilité peut être construit à partir de produit d'ensembles.
- Espace produit → expériences aléatoires répétées.

Exemples

- **1** Lancer de deux dés : $\Omega = \{1, 2, ..., 6\} \times \{1, 2, ..., 6\}$.
- 2 Un nombre fini n d'échantillons de valeurs réelles :

$$\Omega = \underbrace{\mathbb{R} \times \dots \mathbb{R}}_{n \text{ fois}} = \mathbb{R}^n$$

Dans le cas dernier un élément ω de l'espace \mathbb{R}^n est un vecteur à n composantes $\omega = (x_1, x_2, \dots, x_n)$.

- Les situations de la vie réelle en pratique nécessitent un Ω plus complexe.
- Pile ou Face : $\Omega = \{P, F\}$ mais les actions d'une bourse $\Omega = \mathcal{C}(\mathbb{R}^+)$.
- Généralement, on ne spécifie pas Ω explicitement.

Événements

Définition

Un événement est une collection de résultats. C'est un sous-ensemble de Ω . Les collections d'événements $\mathcal G$ sont nommées des σ -algèbres (tribus).

En bref, on demande que les événements de \mathcal{G} soient stables par union et par le complémentaire.

On notera l'ensemble de tous les événements sur Ω par \mathcal{F} . Les ensembles \emptyset et Ω sont considérés comme des événements.

Remarque

On fera la distinction entre le résultat ω et l'événement $\{\omega\}$.

Dans le contexte des processus stochastique, deux tribus $\mathcal{G} \subset \mathcal{F}$ veut dire que les informations contenues dans \mathcal{F} sont plus riches que les informations contenues dans \mathcal{F} .

Exemples

- 1 $\Omega = \{1, 2, ..., 6\}$. L'événement $A = \{2, 4, 6\}$ correspond au "résultat du lancer est pair".
- 2 $\Omega = \{1, ..., 6\}$. On prend $\mathcal{F}_1 = \{\Omega, \emptyset, \{2, 4, 6\}, \{1, 3, 5\}\}$. La collection \mathcal{F}_1 est bien une tribu.

Cherchons un exemple d'une tribu \mathcal{F}_2 plus fine (plus riche en informations que $\mathcal{F}_1).$

