

Analiza algorytmów dla dominowania rzymskiego słabo spójnego Analysis of algorithms for weakly connected Roman domination

inż. Paulina Brzęcka

POLITECHNIKA Definicja problemu

Definicja

Funkcję dominującą rzymską słabo spójną (WCRDF) na grafie G definiuje się jako taką funkcję dominującą rzymską $f\colon V(G)\to\{0,1,2\}$, dla której zbiór wierzchołków

$$\{u \in V(G) : f(u) \in \{1, 2\}\}$$

stanowi jednocześnie słabo spójny zbiór dominujący.

Wagę funkcji f definiuje się jako:

$$f(V) = \sum_{u \in V} f(u)$$

Liczbą dominowania rzymskiego słabo spójnego grafu G nazywamy najmniejszą możliwą wagę funkcji f spełniającej powyższe warunki i oznaczamy ją symbolem:

$$\gamma_R^{\mathrm{wc}}(G)$$

TreeLinear Weakly connected Roman domination number: 17

Approx
Weakly connected Roman domination number: 36

- analiza algorytmów dla dominowania rzymskiego słabo spójnego,
- opisanie już istniejących rozwiązań i opracowanie własnych,
- analiza i porównanie ich skuteczności,
- znalezienie możliwych praktycznych zastosowań.

Pytania badawcze

- Jakie algorytmy są w stanie znaleźć WCRDF? Które z nich są w stanie znaleźć dodatkowo najmniejszą sumę wag WCRDF?
- Czy czas i jakość działania algorytmów będzie uzależniony od klasy grafów?
- Czy i jakie algorytmy heurystyczne mogą skutecznie przybliżyć wartość liczby dominowania rzymskiego słabo spójnego w czasie krótszym niż dokładne algorytmy?
- Czy hiperparametry algorytmu mrówkowego można dostroić w taki sposób, aby ten algorytm znajdował liczbę dominowania rzymskiego słabo spójnego bliską optymalnej?

- brute force Brute Force,
- liniowy dla drzew TreeLinear,
- programowania liniowego 1 ILP,
- programowania liniowego 2 ILP2,
- mrówkowy AntColony,
- aproksymacyjny Approx,
- zachłanny Greedy.

Działanie	Generowanie wszystkich kombinacji przypisań wartości $\{0,1,2\}$
	i sprawdzanie każdej pod względem spełnialności definicji
	WCRDF. Wybór kombinacji o najmniejszej sumie wag.
Złożoność	$O(3^n \cdot n^2)$
Jakość rozwiązania	Znalezienie optymalnej $\gamma_R^{ m wc}(G)$.
Opracowanie	Samodzielne

POLITECHNIKA | Algorytm liniowy dla drzew

Działanie	Rozpatrywanie drzewa od liści do korzenia i nadawanie wierz-
	chołkom wartości poprzez analizę relacji ojciec-syn i wartości
	zdefiniowanych parametrów.
Złożoność	O(n)
Jakość rozwiązania	Znalezienie optymalnej $\gamma_R^{ m wc}(G)$ dla drzew.
Opracowanie	Wraz z promotorką

POLITECHNIKA | Algorytm programowania liniowego 1

Działanie	Model programowania liniowego polegający na definiowaniu
	podgrafu indukowanego i jego drzewa rozpinającego.
Złożoność	Wykładnicza
Jakość rozwiązania	Znalezienie optymalnej $\gamma_R^{ m wc}(G)$.
Opracowanie	Na podstawie literatury

POLITECHNIKA | Algorytm programowania liniowego 2

Działanie	Model programowania liniowego oparty na przepływach.
Złożoność	Wykładnicza
Jakość rozwiązania	Znalezienie optymalnej $\gamma_R^{ m wc}(G)$.
Opracowanie	Na podstawie literatury

Działanie	Budowanie rozwiązania poprzez heurystyki i poziom feromo-
	nów na wierzchołkach. Następnie sprawdzenie pod względem
	poprawności WCRDF i wybór najlepszego rozwiązania.
Złożoność	$O(num_iterations \cdot num_ants \cdot n^2)$
Jakość rozwiązania	Znalezienie prawidłowej WCRDF, niekoniecznie optymalnej
	$\gamma_R^{ m wc}(G)$.
Opracowanie	Samodzielne

POLITECHNIKA | Algorytm aproksymacyjny

Działanie	Znajdowanie zbioru dominującego spójnego w grafie przy uży-
	ciu programowania liniowego. Następnie wierzchołkom zbioru
	dominującego przypisanie wartości 2.
Złożoność	Wykładnicza
Jakość rozwiązania	Znalezienie prawidłowej WCRDF, niekoniecznie optymalnej
	$\gamma_R^{ m wc}(G)$. Algorytm $2(1+arepsilon)(1+\ln(\Delta-1))$ -aproksymacyjny.
Opracowanie	Na podstawie literatury

Działanie	Algorytm rozpoczyna od przypisania wartości 2 wierzchołkowi o największym stopniu oraz zabezpieczenia jego sąsiadów. Następnie, dopóki istnieją wierzchołki niechronione (czyli z przypisaną wartością 0), wybierany jest wierzchołek v , który dominuje jak największą liczbę sąsiadów.
Złożoność	$O(n^2)$ - grafy rzadkie, $O(n^3)$ - grafy gęste
Jakość rozwiązania	Znalezienie prawidłowej WCRDF, niekoniecznie optymalnej $\gamma_R^{\rm wc}(G)$.
Opracowanie	Samodzielne

TreeLinear
Weakly connected Roman domination number: 17

Approx Weakly connected Roman domination number: 36

POLITECHNIKA | Wyniki algorytmu aproksymacyjnego

POLITECHNIKA Wyniki algorytmów przybliżonych

POLITECHNIKA Zastosowania praktyczne

Rysunek: Rozmieszczenie zabezpieczeń sieci energetycznych.

Długość geograficzna

Długość geograficzna

- udało się odpowiedzieć na wszystkie pytania badawcze,
- konieczność doboru właściwego algorytmu do rodzaju lub klasy grafu:
 - np. TreeLinear dla drzew, ILP2 dla grafów gęstych, Greedy dla dużych instancji.
- algorytmy heurystyczne (Greedy, Approx) zapewniają szybkie i dobre przybliżenia,
- słaba jakość rozwiązań algorytmu mrówkowego niezalecane w tej implementacji,
- wskazano potencjalne zastosowania praktyczne (np. sieci energetyczne, społeczne) potwierdzono zasadność modelu WCRDF.

Dalsze kierunki badań

- implementacja i testy potencjalnych ulepszeń dla algorytmu zachłannego,
- rozszerzenie testów na inne klasy, jak i na inne wielkości grafów,
- podniesienie jakości wyników algorytmu mrówkowego, między innymi poprzez inną implementację heurystyki lokalnej oraz strategii feromonowej,
- opracowanie algorytmów dokładnych, rozwiązywalnych w czasie wielomianowym dla innych klas grafów,
- weryfikacja i przełożenie teoretycznych rozważań na temat praktycznych zastosowań tego problemu na praktyczną analizę i realizację.

Dziękuję za uwagę!

POLITECHNIKA GDAŃSKA