Aplicacions Estadístiques

Enginyeria Edificació 2009/10.

Antonio E. Teruel

Temari

- ► Estadística Descriptiva
 - Tema 1. Anàlisi exploratori de dades.
 - Tema 2. Distribucions estadístiques bidimensionals.
- Probabilitat.
 - Tema 3. Teoria de la probabilitat.
- Estadística Inferencial.
 - Tema 4. Variables aleatòries discretes.
 - Tema 5. Variables aleatòries continues.
 - Tema 6. Estimació de paràmetres.
 - Tema 7. Contrast d'hiptesis.

- ► El conjunt de valors de freqüència associats a una variable estadística rep el nom de **distribució de freqüències** de la variable.
- Les característiques principals d'una distribució de freqüències es poden resumir amb uns pocs valors numèrics anomenats estadístics.
- Els estadístics de tendència central resumeixen el comportament global de la distribució.
 - Moda: valor amb màxima freqüència absoluta.
 - Mitjana: mitjana aritmètica dels valors (ùnicament variables quantitatives)
 - Mediana: valor que ocupa la posició central de les dades ordenades (Únicament variables quantitatives i ordinals)
 - Percentil P_p: valor x tal que el p% dels valors de la distribució són inferiors o iguals a x.
 - Quartils: $Q_1 = P_{25}$, $Q_2 = P_{50}$ i $Q_3 = P_{75}$.

La mitjana és iagual al percentil 50 i al 2^{on} quartil.

► Exemple: **Moda**

\mathbf{x}_i	n _i	\mathbf{N}_i	fi	F_i	p _i	\mathbf{P}_i
4	1	1	0.1	0.1	10	10
5	2	3	0.2	0.3	20	30
6	2	5	0.2	0.5	20	50
7	4	9	0.4	0.9	40	90
9	1	10	0.1	1.0	10	100

$$n = 10$$
 $f = 1$

► Exemple: **Moda**

	\mathbf{x}_i	n _i	N_i	fi	F_i	\mathbf{p}_i	\mathbf{P}_i
	4	1	1	0.1	0.1	10	10
	5	2	3	0.2	0.3	20	30
	6	2	5	0.2	0.5	20	50
moda	(7)	4	9	0.4	0.9	40	90
	9	1	10	0.1	1.0	10	100
	- 1	$\gamma = 1$	0	f = 1			

► Exemple: **Mediana**

$$n = \begin{cases} \frac{d_{\left(\frac{n+1}{2}\right)}}{n} & n \text{ impar} \\ \frac{d_{(n/2)} + d_{(n/2+1)}}{2} & n \text{ par} \end{cases}$$

\mathbf{x}_{i}	\mathbf{n}_i	\mathbf{N}_i	\mathbf{f}_i	F_i	\mathbf{p}_i	\mathbf{P}_i
4	1	1	0.1	0.1	10	10
5	2	3	0.2	0.3	20	30
6	2	5	0.2	0.5	20	50
7	4	9	0.4	0.9	40	90
9	1	10	0.1	1.0	10	100

$$n = 10$$
 $f = 1$

► Exemple: **Mediana**

$$n = \begin{cases} \frac{d_{\left(\frac{n+1}{2}\right)}}{n} & n \text{ impar} \\ \frac{d_{(n/2)} + d_{(n/2+1)}}{2} & n \text{ par} \end{cases}$$

\mathbf{x}_{i}	\mathbf{n}_i	\mathbf{N}_i	\mathbf{f}_i	F_i	\mathbf{p}_i	\mathbf{P}_i
4	1	1	0.1	0.1	10	10
5	2	3	0.2	0.3	20	30
6	2	5	0.2	0.5	20	50
7	4	9	0.4	0.9	40	90
9	1	10	0.1	1.0	10	100

$$n = 10$$
 $f = 1$

► Exemple: **Mediana**

$$n = \begin{cases} \frac{d_{\left(\frac{n+1}{2}\right)}}{n} & n \text{ impar} \\ \frac{d_{(n/2)} + d_{(n/2+1)}}{2} & n \text{ par} \end{cases}$$

\mathbf{x}_{i}	\mathbf{n}_i	\mathbf{N}_i	\mathbf{f}_i	Ei	\mathbf{p}_i	\mathbf{P}_i
4	1	1	0.1	0.1	10	10
5	2	3	0.2	0.3	20	30
6	2	5	0.2	0.5	20	50
7	4	9	0.4	0.9	40	90
9	1	10	0.1	1.0	10	100

$$n = 10$$
 $f = 1$

► Exemple: **Percentils** $k = Int\left(\frac{n*p}{100}\right), d = \frac{n*p}{100} - k,$

$$P_p = \left\{ \begin{array}{ll} d_{k+1} & \text{si } d \neq 0 \\ \frac{d_k + d_{k+1}}{2} & \text{si } d = 0 \end{array} \right.$$

\mathbf{d}_i		\mathbf{d}_i
7		d _i 4 5
5		5
9		5
7		5 6 6
5 6	\Rightarrow	6
6		7
7		7
6		7
4		7
7		9

\mathbf{x}_i	n _i	\mathbf{N}_{i}	\mathbf{f}_i	F_i	\mathbf{p}_i	P_i			
4	1	1	0.1	0.1	10	10			
5	2	3	0.2	0.3	20	30			
6	2	5	0.2	0.5	20	50			
7	4	9	0.4	0.9	40	90			
9	1	10	0.1	1.0	10	100			
n = 10 $f = 1$									

$$n = 10$$
 $f =$

▶ Exemple: **Percentils** $k = Int\left(\frac{n*p}{100}\right), d = \frac{n*p}{100} - k$,

$$p=20 \rightarrow k=2, d=0$$

$$P_p = \left\{ \begin{array}{ll} d_{k+1} & \text{si } d \neq 0 \\ \frac{d_k + d_{k+1}}{2} & \text{si } d = 0 \end{array} \right.$$

\mathbf{d}_i		\mathbf{d}_i
7		4
5 9		5
9	P_{20}	5 6
7	1	6
5 6	\Rightarrow	6
6		7
7		7
6		7
4		7
7		9

\mathbf{x}_i	\mathbf{n}_i	\mathbf{N}_i	\mathbf{f}_i	F_i	\mathbf{p}_i	\mathbf{P}_i
4	1	1	0.1	0.1	10	10
5	2	3	0.2	0.3	20	30
6	2	5	0.2	0.5	20	50
7	4	9	0.4	0.9	40	90
9	1	10	0.1	1.0	10	100

$$n=10$$
 $f=1$

▶ Exemple: **Percentils** $k = Int\left(\frac{n*p}{100}\right), d = \frac{n*p}{100} - k$,

$$p = 20 \to k = 2, d = 0$$
 $P_p = \begin{cases} d_{k+1} & \text{si } d \neq 0 \\ \frac{d_k + d_{k+1}}{2} & \text{si } d = 0 \end{cases}$

j		\mathbf{d}_i
7		4
5 9		5
9	P_{20}	5
7 5 6		d _i 4 5 6 6 7
5	\Rightarrow	6
		7
7 6		7
6		7
4		7
7		9

\mathbf{x}_{i}	\mathbf{n}_i	\mathbf{N}_i	\mathbf{f}_i	\mathbf{F}_i	\mathbf{p}_i	\mathbf{P}_i
4	1	1	0.1	0.1	10	10
5	2	3	0.2	9.3	20	30
6	2	5	0.2	0.5	20	50
7	4	9	0.4	0.9	40	90
9	1	10	0.1	1.0	10	100

$$n=10$$
 $f=1$

▶ Exemple: **Percentils** $k = Int\left(\frac{n*p}{100}\right), d = \frac{n*p}{100} - k$,

$$P_p = \left\{ \begin{array}{ll} d_{k+1} & \text{si } d \neq 0 \\ \frac{d_k + d_{k+1}}{2} & \text{si } d = 0 \end{array} \right.$$

\mathbf{x}_{i}	\mathbf{n}_i	\mathbf{N}_i	\mathbf{f}_i	F_i	\mathbf{p}_i	\mathbf{P}_i
4	1	1	0.1	0.1	10	10
5	2	3	0.2	0.3	20	30
6	2	5	0.2	0.5	20	50
7	4	9	0.4	0.9	40	90
9	1	10	0.1	1.0	10	100

$$n = 10$$
 $f = 1$

▶ Exemple: **Percentils** $k = Int(\frac{n*p}{100}), d = \frac{n*p}{100} - k$,

$$P_p = \begin{cases} d_{k+1} & \text{si } d \neq 0\\ \frac{d_k + d_{k+1}}{2} & \text{si } d = 0 \end{cases}$$

\mathbf{x}_i	\mathbf{n}_i	\mathbf{N}_i	\mathbf{f}_i	F_i	\mathbf{p}_i	\mathbf{P}_i
4	1	1	0.1	0.1	10	10
5	2	3	0.2	0.3	20	30
6	2	5	0.2	0.5	20	50
7	4	9	0.4	0.9	40	90
9	1	10	0.1	1.0	10	100
	j=1	0 :	f = 1			

► Exemple: Quartils

$$Q_1 = P_{25}, Q_2 = P_{50} i Q_3 = P_{75}.$$

\mathbf{x}_{i}	n _i	N_i	f _i	F_i	\mathbf{p}_i	\mathbf{P}_i
4	1	1	0.1	0.1	10	10
5	2	3	0.2	0.3	20	30
6	2	5	0.2	0.5	20	50
7	4	9	0.4	0.9	40	90
9	1	10	0.1	1.0	10	100

$$n = 10$$
 $f = 1$

► Exemple: Mitjana

$$\bar{x} = \frac{d_1 + d_2 + \ldots + d_n}{n}$$

$$\bar{x} = \frac{x_1 n_1 + x_2 n_2 + \ldots + x_k n_k}{n}$$

\mathbf{d}_i	
4	
5	
5	
6	
6	
7	
7	
7	
7	

\mathbf{x}_{i}	\mathbf{n}_i	N_i	\mathbf{f}_i	F_i	\mathbf{p}_i	\mathbf{P}_i
4	1	1	0.1	0.1	10	10
5	2	3	0.2	0.3	0.3 20	
6	2	5	0.2	0.5	20	50
7	4	9	0.4	0.9	40	90
9	1	10	0.1	1.0	10	100

► Exemple: Mitjana

$$\bar{x} = \frac{d_1 + d_2 + \ldots + d_n}{n}$$

$$\bar{x} = \frac{x_1 n_1 + x_2 n_2 + \ldots + x_k n_k}{n}$$

\mathbf{d}_i	
4	
5	
4 5 5 6 6	
6	
6	\Rightarrow
7	
7	
7	
7	
,	

\mathbf{x}_{i}	\mathbf{n}_i	N_i	\mathbf{f}_i	\mathbf{F}_i	\mathbf{p}_i	\mathbf{P}_{i}
4	1	1	0.1	0.1	10	10
5	2	3	0.2	0.3	20	30
6	2	5	0.2	0.5 20		50
7	4	9	0.4	0.9	40	90
9	1	10	0.1	1.0	10	100

$$\bar{x} = 6.3$$

$$63 \rightarrow \bar{x} = \frac{63}{10} = 6.3$$

Mesures de tendència central, tablas con intervalos

▶ Moda: Sigui $[x_M, x_{M+1}]$ l'interval que conté la freqüència mès gran

$$\mathbf{moda} = \frac{x_M + x_{M+1}}{2}$$

\mathbf{x}_{i}	\mathbf{m}_i	\mathbf{n}_i	N_i	\mathbf{f}_i	F_i	\mathbf{p}_i	\mathbf{P}_i
[0,4)	2	1	1	0.05	0.05	5	5
[4,5)	4.5	3	4	0.15	0.20	15	20
[5,7)	6	9	13	0.45	0.65	45	65
[7,9)	8	5	18	0.25	0.90	25	90
[9, 10)	9.5	2	20	0.10	1.00	10	100

$$n = 10$$
 $f = 1$

Mesures de tendència central, tablas con intervalos

ightharpoonup Moda: Sigui $[x_M,x_{M+1}]$ l'interval que conté la freqüència mès gran

$$\mathbf{moda} = \frac{x_M + x_{M+1}}{2}$$

X _i	\mathbf{m}_i	n _i	N_i	\mathbf{f}_i	F_i	\mathbf{p}_i	\mathbf{P}_i
[0,4)	2	1	1	0.05	0.05	5	5
[4,5)	4.5	3	4	0.15	0.20	15	20
[5,7)	6	(9)	13	0.45	0.65	45	65
[7,9)	8	5	18	0.25	0.90	25	90
[9, 10)	9.5	2	20	0.10	1.00	10	100

$$n=10$$
 $f=1$

Mesures de tendència central, tablas con intervalos

▶ **Moda**: Sigui $[x_M, x_{M+1}]$ l'interval que conté la freqüència mès gran

$$\mathbf{moda} = \frac{x_M + x_{M+1}}{2} = \frac{5+7}{2} = 6$$

\mathbf{x}_{i}	\mathbf{m}_i	\mathbf{n}_i	N_i	\mathbf{f}_i	F_i	\mathbf{p}_i	\mathbf{P}_i
[0,4)	2	1	1	0.05	0.05	5	5
[4,5)	4.5	3	4	0.15	0.20	15	20
[5,7)	6	(9)	13	0.45	0.65	45	65
[7,9)	8	5	18	0.25	0.90	25	90
[9, 10)	9.5	2	20	0.10	1.00	10	100

$$n = 10$$
 $f = 1$

Percentil: Sigui $[x_k, x_{k+1}]$ l'interval que conté el percentil

$$P_p = x_k + \frac{\frac{p*n}{100} - N_{k-1}}{n_k} (x_{k+1} - x_k);$$

X i	\mathbf{m}_i	n _i	\mathbf{N}_i	\mathbf{f}_i	F _i	\mathbf{p}_i	\mathbf{P}_i
[0,4)	2	1	1	0.05	0.05	5	5
[4, 5)	4.5	3	4	0.15	0.20	15	20
[5,7)	6	9	13	0.45	0.65	45	65
[7, 9)	8	5	18	0.25	0.90	25	90
[9, 10)	9.5	2	20	0.10	1.00	10	100

$$n = 10$$
 $f = 1$

Percentil: Sigui $[x_k, x_{k+1}]$ l'interval que conté el percentil

$$P_p = x_k + \frac{\frac{p*n}{100} - N_{k-1}}{n_k} (x_{k+1} - x_k);$$

\mathbf{x}_{i}	\mathbf{m}_i	n _i	N_i	\mathbf{f}_i	\mathbf{F}_i	\mathbf{p}_i	\mathbf{P}_i
[0,4)	2	1	1	0.05	0.05	5	5
[4, 5)	4.5	3	4	0.15	0.20	15	20
[5,7)	6	9	13	0.45	0.65	45	65
[7, 9)	8	5	18	0.25	0.90	25	90
[9, 10)	9.5	2	20	0.10	1.00	10	100

$$n = 10$$
 $f = 1$

Percentil: Sigui $[x_k, x_{k+1}]$ l'interval que conté el percentil

$$P_p = x_k + \frac{\frac{p*n}{100} - N_{k-1}}{n_k} (x_{k+1} - x_k);$$
 $P_{75} = 7 + \frac{0.75*10 - 13}{5} (9 - 7) = 7.8$

Χį	\mathbf{m}_i	n _i	N_i	\mathbf{f}_i	F_i	p _i	\mathbf{P}_i
[0, 4)	2	1	1	0.05	0.05	5	5
[4,5)	4.5	3	4	0.15	0.20	15	20
[5,7)	6	9	13	0.45	0.65	45	65
[7, 9)	8	5	18	0.25	0.90	25	90
[9, 10)	9.5	2	20	0.10	1.00	10	100

$$n = 10$$
 $f = 1$

Mitjana:

$$\bar{x} = \frac{m_1n_1 + m_2n_2 + \ldots + m_kn_k}{n}$$

X _i	\mathbf{m}_i	n _i	\mathbf{N}_{i}	\mathbf{f}_i	F_i	\mathbf{p}_i	\mathbf{P}_i
[0,4)	2	1	1	0.05	0.05	5	5
[4,5)	4.5	3	4	0.15	0.20	15	20
[5,7)	6	9	13	0.45	0.65	45	65
[7,9)	8	5	18	0.25	0.90	25	90
[9, 10)	9.5	2	20	0.10	1.00	10	100

$$n = 10$$
 $f = 1$

Mitjana:

$$\bar{x} = \frac{m_1 n_1 + m_2 n_2 + \ldots + m_k n_k}{n}$$
 $\bar{x} = \frac{2*1+4.5*3+6*9+8*5+9.5*2}{10} = 6.425$

\mathbf{x}_i	\mathbf{m}_i	n _i	N_i	\mathbf{f}_i	F_i	\mathbf{p}_i	\mathbf{P}_i
[0,4)	2	1	1	0.05	0.05	5	5
[4,5)	4.5	3	4	0.15	0.20	15	20
[5,7)	6	9	13	0.45	0.65	45	65
[7,9)	8	5	18	0.25	0.90	25	90
[9, 10)	9.5	2	20	0.10	1.00	10	100

$$n = 10$$
 $f = 1$

