Probability Formulas

Discrete Random Variables

	$0 \leq p_X(x) \leq 1$
Properties of Probability Mass Function (PMF)	$\sum_{x \in \mathcal{X}} p_X(x) = 1$
	$\sum_{x\in A} p_X(x) = Pr(X\in A)$
Expectation of X	$\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x.p_X(x)$
Properties of Expectation	$egin{aligned} \mathbb{E}[a] &= a \ \mathbb{E}[aX+b] &= a\mathbb{E}[X] + b \ \mathbb{E}[X+Y] &= \mathbb{E}[X] + \mathbb{E}[Y] \end{aligned}$
Expectation of a function of a random variable $g(\boldsymbol{X})$	$\mathbb{E}[g(X)] = \sum_{x \in \mathcal{X}} g(x) p_X(x)$
Mean	$\mu_X = E[X]$
Variance	$Var[X] = \mathbb{E}[(X - \mathbb{E}[X])^2 = \mathbb{E}[X^2] - \mathbb{E}[X]^2$
Variance	$Var(X) = \sum (x_i - \mu)^2 p_X(x_i) = E[(X - \mu)^2]$
Variance (better)	$Var(X) = \sum x_i^2 p_X(x_i) - \mu^2$
Properties of Variance	$egin{aligned} Var(kX) &= k^2 Var(X) \ Var(X+b) &= Var(X) \end{aligned}$
Standard Deviation (SD or SE)	$\mathrm{SD}(X) = \sigma_X = \sqrt{Var(X)}$
Standardized Random Variable (${\it Z}$)	$Z=rac{X-\mu}{\sigma}$
Properties of Z	$\mu_Z=0 \sigma_Z=1$
Joint distribution (Joint PMF) of X,Y	$p_{XY}(x,y) = Pr(X=x,Y=y)$
Properties of Joint PMF	$\sum_i \sum_j p_{XY}(x_i,y_j) = 1$
Marginal distribution (marginal PMF)	$p_X(x_i) = \sum_j p_{XY}(x_i,y_j)$
Conditional distribution (Conditional PMF)	$p_{Y X}(y x) = rac{p_{XY}(x,y)}{p_X(x)}$
Bayes Rule	$egin{aligned} P(X Y) &= P(Y X) \cdot rac{P(X)}{P(Y)} \ p_{X Y}(x y) &= p_{Y X}(y x) \cdot rac{p_X(x)}{P_Y(y)} \end{aligned}$
Independence and Joint PMF	$p_{XY}(x,y) = p_X(x) \cdot p_Y(y) \ ext{for all } x \in \mathcal{X} ext{ and } y \in \mathcal{Y}$
Independence and Conditional PMF	$p_{X Y}(x y) = p_X(x)$
Expectation of Joint PMF	$\mathbb{E}[X,Y] = \sum_i \sum_j (x_i,y_j) p_{XY}(x_i,y_j)$
Covariance	$egin{aligned} Cov[X,Y] &= \mathbb{E}[X,Y] - \mathbb{E}[X]\mathbb{E}[X] \ Cov[X,Y] &= \sum_{i,j} x_i \cdot y_j \cdot p_{XY}(x_i,y_j) - \ \mu_X \mu_Y \end{aligned}$
Variance and Covariance	$egin{aligned} Var[X+Y] &= Var[X] + Var[Y] + \ 2Cov[X,Y] \end{aligned}$
Joint Expectation, Variance and Covariance of Independent X, Y	$egin{aligned} \mathbb{E}[X,Y] &= \mathbb{E}[X] \cdot \mathbb{E}[Y] \ Var(X+Y) &= Var(X) + Var(Y) \ Cov(X,Y) &= 0 \end{aligned}$
Discrete Cumulative Distribution Function (CDF)	$F_X(x) = Pr(X \leq x) = \sum_{x_i \leq x} p_X(x_i)$

Continuous Random Variables

Properties of Probability Density	$f_X(x) \geq 0 \ \int_{-\infty}^{\infty} f_X(x) = 1$
Function (PDF)	$\int_{-\infty}^{\infty} f_X(x) = 1$ $Pr(a \le x \le b) = \int_a^b f_X(x) dx$
Probability of an event and PDF	, ou , ,
Expectation of X	$\mathbb{E}[X] = \int_{-\infty}^{\infty} x \cdot f_X(x) dx$
Expectation of $g(X)$	$\mathbb{E}[g(X)] = \int_{-\infty}^{\infty} g(x) \cdot f_X(x) dx$
Linearity of Expectations	$\mathbb{E}[f(X)+g(X)]=\mathbb{E}[f(X)]+\mathbb{E}[g(X)]$
Variance	$Var(X) == \int_{-\infty}^{\infty} x^2 \cdot f_X(x) dx - \mu^2$
Continuous Cumulative Distribution Function (CDF)	$F_X(x) = Pr(X \leq x) = \int_{-\infty}^{\infty} f_X(x) dx$
Probability of Joint Event	$Pr((x,y) \in A) = \int \int_{(x,y) \in A} f_{XY}(x,y) dx dy$
Marginal PDF	$f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x,y) dy$
Conditional PDF	$f_{Y X}(y x) = rac{f_{XY}(x,y)}{f_X(x)}$
Bayes Rule	$f_{X Y}(x y) = f_{Y X}(y x) \cdot rac{f_X(x)}{f_Y(y)}$
Independence and joint PDF	$f_{XY}(x,y) = f_X(x) \cdot f_Y(y) \ ext{ for all } x,y \in \mathbb{R}$
Independence and conditional PDF	$f_{X\mid Y}(x\mid y)=f_{X}(x)$
Joint Expectation	$\mathbb{E}[g(X,Y)] = \ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) dx dy$
Conditional Expectation	$\mathbb{E}(Y X=x) = \int_{-\infty}^{\infty} y \cdot f_{Y X}(y x) dy$

Distribution	PDF or PMF	Mean	Variance
Bernoulli(p)	$\left\{\begin{array}{ll} p, & \text{if } x = 1 \\ 1 - p, & \text{if } x = 0. \end{array}\right.$	p	p(1-p)
Binomial(n,p)	$\binom{n}{k} p^k (1-p)^{n-k}$ for $0 \le k \le n$	np	npq
Geometric(p)	$p(1-p)^{k-1}$ for $k = 1, 2, \dots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
$Poisson(\lambda)$	$e^{-\lambda}\lambda^x/x!$ for $k=1,2,\ldots$	λ	λ
Uniform(a,b)	$\frac{1}{b-a} \ \forall x \in (a,b)$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$\boxed{Gaussian(\mu,\sigma^2)}$	$\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2
$Exponential(\lambda)$	$\lambda e^{-\lambda x} \ x \ge 0, \lambda > 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Regression Formulas

Residual Sum of Squares	$RSS = \sum_{i=1}^n (y_i - \hat{y}_i)^2$	Sum of squared errors. Minimized during regression to estimate the coefficients.
Mean Squared Error	$MSE = rac{RSS}{n}$	Used as a metric of model quality. Can be computed on training set, validation set, or test set.
MSE as an Expectation	$MSE_{Te} = \mathbb{E}(y_0 - \hat{f}(x_0))^2$	
MSE's components	$egin{aligned} MSE_{Te} &= Var[\hat{f}(x_0)] + \ (Bias[\hat{f}(x_0)])^2 + Var[\epsilon] \end{aligned}$	$MSE = variance + bias^2 + irreducible\ error$
Residual Standard Error	$RSE = \sqrt{rac{RSS}{n-p-1}}$	Estimate of $\sigma(\epsilon)$. Has units of Y , so not as useful as R^2 which is unit-less. The smaller the RSE, the better the model fits the data.
Irreducible Error	$RSE^2 = rac{RSS}{n-p-1}$	Estimate of $\sigma^2 = Var(\epsilon)$
Total sum of squares	$TSS = \sum_{i=1}^n (y_i - ar{y})^2$	Measures the total variance in the response
R^2 statistic	$R^2 = rac{ ext{TSS-RSS}}{ ext{TSS}} = 1 - rac{ ext{RSS}}{ ext{TSS}}$	Range: $[0,1]$. The closer to 1, the better model fits the data. For simple linear regression, $R^2=r^2$. Measures the proportion of variance in response explained by the data.
Coefficients of simple linear regression	$\hat{eta}1 = rac{\sum i = 1^n (x_i - ar{x})(y_i - ar{y})}{\sum_{i = 1}^n (x_i - ar{x})^2} \ \hat{eta}_0 = ar{y} - \hat{eta}_1 ar{x}$	Closed form solution for simple linear regression.
Coefficients of linear regression (simple or multiple)	$eta = (\mathbf{X}^T \cdot \mathbf{X})^{-1} \cdot \mathbf{X}^T \cdot \mathbf{y}$	Closed form solution (linear algebra)
Variances of coefficients for simple linear regression	$egin{aligned} \operatorname{Var}\left[\hat{eta}_{1} ight] &= rac{\sigma^{2}}{\sum_{i=1}^{N}(x_{i}-ar{x})^{2}} \ \operatorname{Var}\left[\hat{eta}_{0} ight] &= \sigma^{2}\left(rac{1}{N} + rac{ar{x}^{2}}{\sum_{i=1}^{N}(x_{i}-ar{x})^{2}} ight) \end{aligned}$	$rac{\mathrm{SD}(\hat{eta_1})^2}{\mathrm{SD}(\hat{eta_0})^2}$
t- statistic	$t=rac{\hat{eta}_1}{{ m SD}(\hat{eta}_1)}$	t>2 rejects the null hypothesis with 95% confidence.
f-statistic (for multiple linear regression)	$F=rac{(ext{TSS-RSS})/p}{ ext{RSS}/(n-p-1)}$	Indicates if any of the coefficients are significant

Classification Formulas

Conditional Class Probability	$p_k(x_i) = \ Pr(Y=k X=x_i)$	$p_1(x_i) = Pr(Y=1 X=x_i) \ p_0(x_i) = Pr(Y=0 X=x_i)$
Sigmoid function	$\sigma(z)=rac{1}{1+e^{-z}}=rac{e^z}{e^z+1}$	$z=eta_0x_0+eta_1x_1+\cdots+eta_px_p$
Binary Classification with logistic regression	$egin{aligned} p_1(x) &= \sigma(eta_0 + \ eta_1 x) \ &= rac{e^{eta_0 + eta_1 x}}{1 + e^{eta_0 + eta_1 x}} \end{aligned}$	$egin{aligned} p_0(x) &= 1 - \sigma(eta_0 + eta_1 x) \ &= rac{1}{1 + e^{eta_0 + eta_1 x}} \end{aligned}$
Logit (log odds, z)	$\log\left(rac{p_1(x)}{1-p_1(x)} ight) = eta_0 + eta_1 x$	
z-statistic	$z_1=rac{\hat{eta}_1}{ ext{SD}(\hat{eta}_1)}$	Used exactly as $t-$ value is used for linear regression (for hypothesis testing)
Multi-class (multinomial) logistic regression (Softmax)	$egin{aligned} p_k(x) &= \ \Pr(Y = k \mid X = \ x) &= \ rac{e^{eta_{k0} + eta_{k1} x_1 + \cdots + eta_{kp} x_p}}{\sum_{l=1}^K e^{eta_{l0} + eta_{l1} x_1 + \cdots + eta_{lp} x_p}} \end{aligned}$	

LDA Formulas

Conditional Class Probability (Binary)	$Pr(Y=1 X=\mathbf{x})=rac{f_1(\mathbf{x})\cdot\pi_1}{f_1(\mathbf{x})\cdot\pi_1+f_0(\mathbf{x})\cdot\pi_0}$
Conditional class probability (multi-class)	$Pr(Y=k X=\mathbf{x}) = rac{f_k(\mathbf{x}) \cdot \pi_k}{\sum_{\ell=1}^K f_\ell(\mathbf{x}) \pi_\ell}$
Discriminant Function $\delta_k(x)$ for computing $f_k(x)\pi_k$ as a linear function of x	$\delta_k(x) = \! f_k(x) \pi_k = x \cdot rac{\mu_k}{\sigma^2} - rac{\mu_k^2}{2\sigma^2} + \log(\pi_k)$
Estimating LDA parameters $\hat{\mu_k}, \hat{\pi_k}, \hat{\sigma}^2$ from data	$egin{aligned} \hat{\pi}_k &= rac{N_k}{N} \ \hat{\mu}_k &= rac{1}{N_k} \sum_{i:y_i=k} x_i \ \hat{\sigma}^2 &= \sum_{k=1}^K rac{N_k-1}{N-K} \hat{\sigma}_k^2 \end{aligned}$
Submitting discriminant function to Bayes classifier	$C(x) = rg \max_k f_k(x) \pi_k \ C(x) = rg \max_k \delta_k(x)$

Classification Errors

	Actual Negative	Actual Positive	
Predicted Negative	TN	FN	
Predicted Positive	FP	TP	
	TNR = TN / (TN + FP) $TPR = TP / (TP + FN)$		
	TNR = Specificity	TPR = Sensitivity	
	FPR = 1 - TNR	FNR = 1 - TPR	

	FNR	Sensitivity = TPR = 1 - FNR	FPR	Specificity = TNR = 1 - FPR
$ au\downarrow$	↓	\uparrow	↑	↓
$ au\uparrow$	\uparrow	↓	↓	↑

