1) Последовательности заданы рекуррентным соотношением:

a)
$$a_1 = 2$$
, $a_2 = 1$, $a_{n+2} = 5a_{n+1} - 6a_n$;

6)
$$a_1 = 2$$
, $a_2 = 1$, $a_n = 4a_{n-1} - 4a_{n-2}$;

B)
$$a_1 = -2$$
, $a_{n+1} = 3a_n - 1$.

Вычислить a_3 , a_4 , a_5 . Найти формулу общего члена этих последовательностей.

Правило для решения любых линейных рекуррентных соотношений с постоянными коэффициентами.

▶ Пусть дано рекуррентное соотношение

$$a_{n+2} = k_1 \cdot a_{n+1} + k_2 \cdot a_n$$
.

Составим квадратное уравнение $r^2 = k_1 r + k_2$, которое называется характеристическим для данного соотношения.

ullet Если это уравнение имеет простые (различные) корни r_1 и r_2 , то общее решение соотношения имеет вид

$$a_n = C_1 r_1^{n-1} + C_2 r_2^{n-1} \tag{*}$$

Частный случай. Для рекуррентного соотношения $a_{n+2}=k_1+k_2\cdot a_n$ из характеристического уравнения $r^2=k_2$ получаем корень $r_{1,2}=\pm\sqrt{k_2}$ и общее решение соотношения запишем в виде (*).

- Если это уравнение имеет один корень r кратности 2, то общее решение соотношения имеет вид $a_n = C_1 r^{n-1} + C_2 n \cdot r^{n-1}$.
- ▶ Для рекуррентного соотношения

$$a_{n+1} = k_1 \cdot a_n + k_2$$

из характеристического уравнения $r^2 = k_1 \cdot r$ получаем корень $r = k_1$ и общее решение соотношения запишется в виде

$$a_n = C_1 k_1^{n-1} + C_2$$
.

a

▶ Члены a_3 , a_4 , a_5 последовательности $a_{n+2} = 5a_{n+1} - 6a_n$:

$$a_3 = 5a_2 - 6a_1 = 5 \cdot 1 - 6 \cdot 2 = -7$$

$$a_1 = 5a_2 - 6a_2 = 5 \cdot (-7) - 6 \cdot 1 = -41$$

$$a_5 = 5a_4 - 6a_3 = 5 \cdot (-41) - 6 \cdot (-7) = -163$$

▶ Найдём формулу общего члена последовательности.

Характеристическое уравнение для данного рекуррентного соотношения

$$r^2 = 5r - 6$$

имеет корни простые (различные)

$$r_1 = 2$$
, $r_2 = 3$.

Следовательно, общее решение соотношения:

$$a_n = C_1 \cdot 2^{n-1} + C_2 \cdot 3^{n-1}$$
.

Поскольку $a_1 = 2$, $a_2 = 1$, то

$$\begin{cases} 2 = C_1 \cdot 2^0 + C_2 \cdot 3^0 \\ 1 = C_1 \cdot 2^1 + C_2 \cdot 3^1 \end{cases} \Rightarrow \begin{cases} C_1 = 5 \\ C_2 = -3 \end{cases}$$

Общий член последовательности:

$$a_n = 5 \cdot 2^{n-1} - 3 \cdot 3^{n-1} = 5 \cdot 2^{n-1} - 3^n$$
.

Ответ: $a_n = 5 \cdot 2^{n-1} - 3^n$.

б)

▶ Члены a_3 , a_4 , a_5 последовательности $a_n = 4a_{n-1} - 4a_{n-2}$:

$$a_3 = 4 \cdot (a_2 - a_1) = 4 \cdot (1 - 2) = -4$$

$$a_4 = 4 \cdot (a_3 - a_2) = 4 \cdot (-4 - 1) = -20$$

$$a_5 = 4 \cdot (a_4 - a_3) = 4 \cdot (-20 - (-4)) = -64$$

▶ Находим формулу общего члена последовательности.

Характеристическое уравнение для данного рекуррентного соотношения

$$r^2 = 4r - 4$$

имеет один корень кратности 2

$$r_{1,2} = 2$$
.

Следовательно, общее решение соотношения:

$$a_n = C_1 \cdot 2^{n-1} + C_2 \cdot n \cdot 2^{n-1}$$
.

Поскольку $a_1 = 2$, $a_2 = 1$, то

$$\begin{cases} 2 = C_1 \cdot 2^0 + C_2 \\ 1 = C_1 \cdot 2^1 + C_2 \cdot 2 \cdot 2^1 \end{cases} \Rightarrow \begin{cases} C_1 = 7/2 \\ C_2 = -3/2 \end{cases}$$

Общий член последовательности:

$$a_n = \frac{7}{2} \cdot 2^{n-1} - \frac{3}{2} \cdot n \cdot 2^{n-1} = 7 \cdot 2^{n-2} - 3n \cdot 2^{n-2} = 2^{n-2} \cdot (7 - 3n).$$

Ответ: $a_n = 2^{n-2} \cdot (7-3n)$.

В

▶ Члены a_3 , a_4 , a_5 последовательности $a_{n+1} = 3a_n - 1$:

$$a_2 = 3 \cdot a_1 - 1 = 3 \cdot (-2) - 1 = -7$$

$$a_3 = 3 \cdot a_2 - 1 = 3 \cdot (-7) - 1 = -22$$

$$a_{1} = 3 \cdot a_{3} - 1 = 3 \cdot (-22) - 1 = -67$$

$$a_5 = 3 \cdot a_4 - 1 = 3 \cdot (-67) - 1 = -202$$

Находим формулу общего члена последовательности.

Для данного рекуррентного соотношения вида $a_{n+1} = k_1 \cdot a_n + k_2$ общее решение соотношения:

$$a_n = C_1 \cdot 3^{n-1} + C_2$$

Поскольку $a_1 = -2$, $a_2 = -7$, то

$$\begin{cases} -2 = C_1 \cdot 3^0 + C_2 \\ -7 = C_1 \cdot 3^1 + C_2 \end{cases} \Rightarrow \begin{cases} C_1 = -5/2 \\ C_2 = 1/2 \end{cases}$$

Общий член последовательности:

$$a_n = -\frac{5}{2} \cdot 3^{n-1} + \frac{1}{2}$$
.

ОТВЕТ:
$$a_n = \frac{1}{2} - \frac{5}{2} \cdot 3^{n-1}$$
.

Литература:

1) Анонимное издание "Дискретная математика. Курс лекций. Лекция 7", Московский государственный университет им. М.В. Ломоносова, экономический факультет; http://crow.academy.ru/dm/lectures_/, 2006, стр. 11.

2) Найти общий член рекуррентной последовательности

$$a_n = 4a_{n-2}, \quad a_1 = 1, \quad a_2 = 1.$$

Подставляя в рекуррентное соотношение $\,r^{\,n}\,$ вместо $\,a_{\,n}\,$, получим

$$r^{n} = 4 \cdot r^{n-2}$$
 или $r^{2} = 4$, откуда $r = \pm 2$.

Таким образом общее решение рекуррентного соотношения имеет вид

$$a_n = c_1 \cdot 2^n + c_2 \cdot (-2)^n$$
.

Подставляя в последнее соотношение n=1 и n=2, получим

$$\begin{cases} 1 = 2c_1 - 2c_2 \\ 1 = 4c_1 + 4c_2 \end{cases} \Rightarrow \begin{cases} c_1 = 3/8 \\ c_2 = -1/8 \end{cases}$$

Т.е. решение данного рекуррентного соотношения

$$a_n = 2^{n-3} \cdot (3 + (-1)^{n+1}).$$

Литература:

1) Кытманов А.М. "Итоговое задание по математике. Модуль 6 для 9 класса", заочная естественно-научная школа при Красноярском гос. университете; http://window.edu.ru/, 2006, стр. 31 (пример 8).