4723 Core Mathematics 3

1	<u>Eith</u>	er: Obtain $x = 0$ Form linear equation with signs of $4x$ and $3x$ different State $4x - 5 = -3x + 5$ Obtain $\frac{10}{7}$ and no other non-zero value(s)	B1 M1 A1 A1	ignoring errors in working ignoring other sign errors or equiv without brackets or exact equiv
	<u>Or</u> :	Obtain $16x^2 - 40x + 25 = 9x^2 - 30x + 25$	B1	or equiv
		Attempt solution of quadratic equation	M1	at least as far as factorisation or use of formula
		Obtain $\frac{10}{7}$ and no other non-zero value(s)	A1	or exact equiv
		Obtain 0	B1	ignoring errors in working
2	(i)	Show graph indicating attempt at reflection in $y = x$	M1	with correct curvature and crossing negative y-axis and positive x-axis
		Show correct graph with <i>x</i> -coord 2 and <i>y</i> -coord -3 indicated	A1 2	
	(ii)	Show graph indicating attempt at reflection in <i>x</i> -axis	M1	with correct curvature and crossing each negative axis
		Show correct graph with <i>x</i> -coord -3 indicated and <i>y</i> -coord -4 indicated [SC: Incorrect curve earning M0 but both correct intercepts of the cor	A1 A1 pts indic	cated B1]
3		Attempt use of product rule	M1	+ form
		Obtain $2x \ln x + x^2 \cdot \frac{1}{x}$	A1	or equiv
		Substitute e to obtain 3e for gradient Attempt eqn of straight line with numerical gradient	A1 M1	or exact (unsimplified) equiv allowing approx values
		Obtain $y - e^2 = 3e(x - e)$	A1√	or equiv; following their gradient provided obtained by diffn attempt; allow approx values
		Obtain $y = 3ex - 2e^2$	A1	in terms of e now and in requested form
4	(i)	Differentiate to obtain form $kx(2x^2 + 9)^n$	M1	any constant k ; any $n < \frac{5}{2}$
		Obtain correct $10x(2x^2+9)^{\frac{3}{2}}$	A1	or (unsimplified) equiv
		Equate to 100 and confirm $x = 10(2x^2 + 9)^{-\frac{3}{2}}$	A1 3	AG; necessary detail required
	(ii)	Attempt relevant calculations with 0.3 and 0.4	M1	
		Obtain at least one correct value	A1	x $f(x)$ $x-f(x)$ $f'(x)$
				0.3 0.3595 -0.0595 83.4
		Obtain two correct values and conclude appropriately	A1	0.4 0.3515 0.0485 113.8 noting sign change or showing $0.3 < f(0.3)$ and $0.4 > f(0.4)$ or showing gradients either side of 100
			3	

(iii)	Obtain correct first iterate Carry out correct process Obtain 0.3553	B1 M1 A <u>1</u>	finding at least 3 iterates in all answer required to exactly 4 dp
	$ \begin{array}{c} [0.3 \rightarrow 0.35953 \rightarrow 0.35497 \rightarrow 0 \\ 0.35 \rightarrow 0.35575 \rightarrow 0.35528 \rightarrow \\ 0.4 \rightarrow 0.35146 \rightarrow 0.35563 \rightarrow 0 \end{array} $	0.35532	$(\to 0.35531);$
5 (a)	Obtain expression of form $\frac{a \tan \alpha}{b + c \tan^2 \alpha}$	M1	any non-zero constants a, b, c
	State correct $\frac{2 \tan \alpha}{1 - \tan^2 \alpha}$	A1	or equiv
	Attempt to produce polynomial equation in $\tan \alpha$	M1	using sound process
	Obtain at least one correct value of $\tan \alpha$	A1	$\tan \alpha = \pm \sqrt{\frac{4}{5}}$
	Obtain 41.8	A1	allow 42 or greater accuracy; allow 0.73
	Obtain 138.2 and no other values between 0 and 180	A1	allow 138 or greater accuracy
	[SC: Answers only 41.8 or B1; 138.2 or .	$\frac{1}{6}$	others B1]
(b)(i) State $\frac{7}{6}$	B1	
	, ,	1	
(ii	Attempt use of identity linking $\cot^2 \beta$ and $\csc^2 \beta$	M1	or equiv retaining exactness; condone sign errors
	Obtain $\frac{13}{36}$	A1	or exact equiv
		2	
6	Integrate $k_1 e^{nx}$ to obtain $k_2 e^{nx}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their k_1e^{nx}	A1	
	Substitute limits to obtain $\frac{1}{6}\pi(e^3-1)$ or $\frac{1}{6}(e^3-1)$	A1	or exact equiv perhaps involving e ⁰
	Integrate $k(2x-1)^n$ to obtain $k'(2x-1)^{n+1}$	M1	any constants involving π or not; any n
	Obtain correct indefinite integral of their $k(2x-1)^n$	A1	
	Substitute limits to obtain $\frac{1}{18}\pi$ or $\frac{1}{18}$	A1	or exact equiv
	Apply formula $\int \pi y^2 dx$ at least once	B 1	for $y = e^{3x}$ and/or $y = (2x-1)^4$
	Subtract, correct way round, attempts at volumes	M1	allow with π missing but must involve
y^2			
	Obtain $\frac{1}{6}\pi e^3 - \frac{2}{9}\pi$	A1	or similarly simplified exact equiv
		9	
7 (i)	State $A = 42$	B1	·
. (1)	State $k = \frac{1}{9}$	B1	or 0.11 or greater accuracy
	Attempt correct process for finding <i>m</i>	M1	involving logarithms or equiv
	Obtain $\frac{1}{9} \ln 2$ or 0.077	A1	or 0.08 or greater accuracy
(ii)	Attempt solution for <i>t</i> using either formula Obtain 11.3	M1 A1	using correct process (log'ms or T&I or or greater accuracy; allow 11.3 ± 0.1
	Differentiate to obtain form Be^{mt}	<u>2</u> M1	where B is different from A
(111)	Obtain 3.235e ^{0.077t}	M1 A1√	or equiv; following their A and m
	Obtain 47.9	A1 \(A1 \)	allow 48 or greater accuracy

8	(i)	Show at least correct $\cos\theta\cos 60 + \sin\theta\sin 60$ or $\cos\theta\cos 60 - \sin\theta\sin 60$ Attempt expansion of both with exact numerical values attempted Obtain $\frac{1}{2}\sqrt{3}\sin\theta + \frac{5}{2}\cos\theta$	B1 M1 A1	and with $\cos 60 \neq \sin 60$ or exact equiv
	(ii)	Attempt correct process for finding R Attempt recognisable process for finding α Obtain $\sqrt{7} \sin(\theta + 70.9)$	M1 M1 A1	whether exact or approx allowing $\sin / \cos muddles$ allow 2.65 for R ; allow 70.9 ± 0.1 for α
	(iii)	Attempt correct process to find any value of θ + their α Obtain any correct value for θ + 70.9 Attempt correct process to find θ + their α in 3rd quadrant Obtain 131 [SC for solutions with no working shown: Correct and	M1 A1 M1 A1	-158, -22, 202, 338, or several values including this or greater accuracy and no other nly B4; 131 with other answers B2]
9	(i)	Attempt use of quotient rule Obtain $\frac{75-15x^2}{(x^2+5)^2}$ Equate attempt at first derivative to zero and rearrange to solvable form Obtain $x = \sqrt{5}$ or 2.24 Recognise range as values less than <i>y</i> -coord of st pt Obtain $0 \le y \le \frac{3}{2}\sqrt{5}$	*M1 A1 M1 A1 M1 A1	or equiv; allow u / v muddles or (unsimplified) equiv; this M1A1 available at any stage of question dep * M or greater accuracy allowing < here any notation; with \leq now; any exact equiv
	(ii)	State $\sqrt{5}$	6 B1√ 1	following their x-coord of st pt; condone answer $x \ge \sqrt{5}$ but not inequality with k
	(iii)	Equate attempt at first derivative to -1 and attempt simplification Obtain $x^4 - 5x^2 + 100 = 0$ Attempt evaluation of discriminant or equiv Obtain -375 or equiv and conclude appropriately	*M1 A1 M1 A1	and dependent on first M in part (i) or equiv involving 3 non-zero terms dep * M