Chapitre 5 : COMPLEXES ET TRIGONOMÉTRIE

Un monde merveilleux dans lequel toute équation polynomiale de degré $\geqslant 1$ admet une racine (monde algébriquement clos), mais un monde dé-s-ordonné....

I Le corps $\mathbb C$

I.1 Définitions et opérations

DÉFINITION

 \mathbb{C} est l'ensemble des nombres $a+\mathrm{i} b$ où a et b sont réels et i vérifie $\mathrm{i}^2=-1$.

1▶

Addition: (a+ib) + (c+id) = (a+c) + i(b+d) (prolonge l'addition sur \mathbb{R})

Multiplication: (a+ib)(c+id) = (ac-bd) + i(ad+bc) (prolonge la multiplication sur \mathbb{R})

 $(\mathbb{C}, +, \times)$ est un corps commutatif.

Il n'y a pas de relation d'ordre total sur $\mathbb C$ compatible avec les opérations!!

2▶

Théorème - Définition :

Pour tout a et tout b réels : $a + ib = 0 \iff a = b = 0$.

L'écriture algébrique d'un complexe z = a + ib (avec a et b réels) est donc unique.

 $a = \Re(z)$ est la partie réelle de z, $b = \Im(z)$ est sa partie imaginaire.

Les réels sont les complexes de partie imaginaire nulle.

 $Si \Re (z) = 0$, z est dit imaginaire pur. Leur ensemble est noté $i\mathbb{R}$.

3▶

Pratique 1:

- 1) Donner les parties réelles et imaginaires de : (2+i) + (-3+2i) et de : (1+2i)(2-i)
- 2) Calculer la forme algébrique du carré et du cube d'un complexe.

Que se passe-t-il dans le cas d'un réel ou d'un imaginaire pur?

- 3) Calculer i^n pour n naturel.
- 4) Combien de solutions admet l'équation $z^4 = 1$ dans \mathbb{R} ? dans \mathbb{C} ?
- 5) Calculer les parties réelles et imaginaires de z + z' et de αz pour α réel, z et z' complexes.

DÉFINITION

On munit le plan \mathbb{R}^2 d'un repère orthonormé direct $(0, \vec{e_1}, \vec{e_2})$.

À tout complexe $z=a+\mathrm{i} b$ (a et b réels) correspond l'unique point M(a,b) du plan, appelé image de z, ou de manière équivalente le vecteur $\overrightarrow{OM}=a\vec{e}_1+b\vec{e}_2$.

z est alors l'affixe de M et l'affixe de \overrightarrow{OM} .

Le point M et le vecteur $\vec{u} = \overrightarrow{OM}$ d'affixes z sont notés M(z) et \vec{u}_z .

Dans ce cadre, on parle aussi du plan complexe qu'on notera \mathfrak{P} .

L'affixe d'une somme de vecteurs est la somme de leurs affixes.

Pour M et N d'affixes repectives m et n, l'affixe du vecteur $\overrightarrow{MN} = \overrightarrow{ON} - \overrightarrow{OM}$ est n - m.

4▶

Interprétation géométrique de l'addition : additionner a à z, c'est appliquer à M(z) la translation de vecteur \vec{u}_a .

5▶

Pratique 2:

Placer dans le plan complexe les points A(2), B(3+2i) et C(5-i), ainsi que leurs translatés de vecteur d'affixe -1+2i et -i.

I.2 Conjugaison

Soit z = a + ib un complexe de partie réelle a et de partie imaginaire b.

Le **conjugué de** z est $\overline{z} = a - ib$. Donc $\Re(\overline{z}) = \Re(z)$ et $\Im(\overline{z}) = -\Im(z)$.

Propriétés

Pour tout z complexe:

- 1) $\overline{\overline{z}} = z$ (la conjugaison est une involution sur \mathbb{C} , donc une bijection)
- 2) $\Re(z) = \frac{z + \overline{z}}{2}$ et $\Im(z) = \frac{z \overline{z}}{2i}$
- 3) z est réel si, et seulement si, $z=\overline{z}$ et z est imaginaire pur si, et seulement si, $z=-\overline{z}$
- 4) Le conjugué d'une somme, d'un produit, d'un quotient est respectivement la somme, le produit, le quotient des conjugués. La conjugaison est un isomorphisme de corps sur \mathbb{C} .

6▶

Interprétation géométrique de la conjugaison : conjuguer z, c'est transformer M(z) en son symétrique par rapport à l'axe des abscisses.

I.3 Module d'un complexe

Théorème -Définition:

On appelle module l'application :
$$\begin{vmatrix} | & | & | & \mathbb{C} & \longrightarrow & \mathbb{R}_+ \\ & z & \longmapsto & |z| = \sqrt{(\Re(z))^2 + (\Im(z))^2} = \sqrt{z\overline{z}} \end{vmatrix}$$

Ce module prolonge la valeur absolue réelle.

8▶

Propriétés : Pour tout z et z^\prime complexes :

1)
$$|z|^2 = z\overline{z}$$
 2) $|z| = |\overline{z}|$ 3) $|\Re(z)| \le |z|$ et $|\Im(z)| \le |z|$ 4) $|z| = 0 \iff z = 0$

5) Produit :
$$|zz'| = |z||z'|$$

6) Quotient (pour
$$z$$
 non nul): $\frac{1}{z} = \frac{\overline{z}}{z\overline{z}} = \frac{\overline{z}}{|z|^2}, \qquad |\frac{1}{z}| = \frac{1}{|z|}, \qquad \frac{1}{z} = \overline{z} \iff |z| = 1$

7) $(z,z')\mapsto |z'-z|$ prolonge la distance sur $\mathbb R$ en une distance sur $\mathbb C$. En particulier, on a les inégalités triangulaires : $||z|-|z'||\leqslant |z+z'|\leqslant |z|+|z'|$ avec égalité à droite si, et seulement si, z=0 ou «il existe $\lambda\geqslant 0$ tel que $z'=\lambda z$ ».

9▶

Pratique 3:

Soit z un complexe.

- 1. Calculer le conjugué de 1 + i iz.
- 2. Calculer le module de 1 + i, puis de 1 + z pour un complexe z quelconque.
- **3.** Trouver les complexes z tels que $\frac{z+i}{z+1}$ soit réel.

Interprétation géométrique du module : pour des complexes a et b, et $R \geqslant 0$:

|b-a| calcule la distance euclidienne entre A(a) et B(b).

En particulier, |z| est la distance de O à M(z), et la norme euclidienne du vecteur \overrightarrow{OM} .

$$\{M(z) \in \mathcal{P} \mid |z-a| = R\}$$
 est le cercle de centre $A(a)$ et de rayon R

$$\{M(z) \in \mathcal{P} \mid |z-a| \leqslant R\}$$
 est le disque fermé de centre $A(a)$ et de rayon R

$$\{M(z) \in \mathcal{P} \mid |z-a| < R\}$$
 est le disque ouvert de centre $A(a)$ et de rayon R .

I.4 Les complexes de module 1

DÉFINITION

On note \mathbb{U} l'ensemble des complexes de module $1: \mathbb{U} = \{z \in \mathbb{C} \mid |z| = 1\}$

On l'appelle aussi « cercle unité » ou « cercle trigonométrique ».

PROPOSITION: \mathbb{U} est un sous-groupe de (\mathbb{C}^*, \times) .

THÉORÈME - DÉFINITION :

a) Pour θ réel, on appelle « exponentielle de $i\theta$ » le complexe : $e^{i\theta} = \cos(\theta) + i\sin(\theta)$

b)
$$\mathbb{U}=\{\,e^{i\theta}\mid \theta\in\mathbb{R}\,\}.$$
 En particulier, pour tout réel $\theta:|\,e^{i\theta}\,|=1$

c)
$$e^{i\theta} = e^{i\theta'} \iff \theta \equiv \theta'$$
 [2 π]. En particulier : $\mathbb{U} = \{e^{i\theta} \mid \theta \in]-\pi,\pi]\}$

11▶

Propriétés : Régles de calcul pour θ et θ' réels, n entier relatif

1)
$$e^{i(\theta+\theta')} = e^{i\theta}e^{i\theta'}$$
 et $e^{-i\theta} = \frac{1}{e^{i\theta}} = \overline{e^{i\theta}}$

2) Formule de Moivre : $(e^{i\theta})^n = e^{in\theta}$ c'est-à-dire $(\cos(\theta) + i\sin(\theta))^n = \cos(n\theta) + i\sin(n\theta)$

3) Formules d'Euler :
$$\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$$
 et $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$

12▶

Pratique 4:

- 1. Placer $e^{i\theta}$ sur le cercle unité pour θ valant $0, \pi/6, \pi/4, \pi/3, \pi/2, 2\pi/3, 5\pi/6, 3\pi/2, -3\pi$.
- **2.** Calculer $\cos(3\theta)$ et $\sin(3\theta)$ en fonction de $\cos(\theta)$ et $\sin(\theta)$ respectivement.

I.5 Argument et forme trigonométrique d'un complexe

Si z est non nul, z/|z| est de module 1, il peut donc s'écrire sous la forme $e^{i\theta}$ pour un réel θ .

DÉFINITION

Soit z un complexe non nul.

On appelle argument de z tout réel θ tel que : $z=|z|{\rm e}^{{\rm i}\theta}$. On note ${\rm arg}(z)$ leur ensemble. Un seul argument appartient à $]-\pi,\pi]$, c'est l'argument principal de z noté ${\rm Arg}(z)$.

| On note souvent abusivement $\arg(z) \equiv \theta_0$ [2 π] par exemple...

Propriétés : Soit z un complexe non nul.

1) Les arguments de z sont ceux de z/|z|

2)
$$z \in \mathbb{R}_{+}^{*} \iff \arg(z) \equiv 0 \ [2\pi] \quad \text{et} \quad z \in \mathbb{R}_{-}^{*} \iff \arg(z) \equiv \pi \ [2\pi]$$

$$z \in i\mathbb{R}_{+}^{*} \iff \arg(z) \equiv \pi/2 \ [2\pi] \quad \text{et} \quad z \in i\mathbb{R}_{-}^{*} \iff \arg(z) \equiv -\pi/2 \ [2\pi]$$

ou encore : $z \in \mathbb{R}^* \iff \arg(z) \equiv 0 \ [\pi]$

DÉFINITION

Pour tout z complexe non nul on $a: z = \rho e^{i\theta}$ où $\rho = |z|$ appartient à \mathbb{R}_+^* et $\theta \in \arg(z)$. C'est la forme trigonométrique de z.

Lien entre les écritures algébriques et trigonométriques : z = a + ib et $z = \rho e^{i\theta}$ (avec $\rho > 0$)

$$\rho = |z| = \sqrt{a^2 + b^2} \text{ et } \cos(\theta) = \frac{a}{\sqrt{a^2 + b^2}}, \sin(\theta) = \frac{b}{\sqrt{a^2 + b^2}}$$

13▶

Proposition : Soit z et z' deux complexes non nuls. Alors :

$$\arg(zz') \equiv \arg(z) + \arg(z') [2\pi]$$
 et $\arg(\frac{z}{z'}) \equiv \arg(z) - \arg(z') [2\pi]$

14▶

Pratique 5:

- 1. Mettre sous forme trigonométrique : -3, 1+i, $1-i\sqrt{3}$, $-\frac{\sqrt{3}+i}{4}$
- **2.** Quel est l'argument principal de 2-2i? de $4e^{7i\pi/2}$? de $-4e^{i\pi/3}$?

Interprétation géométrique de l'argument : pour des complexes a et b :

arg(a) mesure l'**angle orienté de vecteurs** $\overrightarrow{e_1}, \overrightarrow{u_a} : mes(\overrightarrow{e_1}, \overrightarrow{u_a}) \equiv Arg(a)$ [2 π]

Plus généralement : $mes(\widehat{u_a}, \widehat{u_b}) \equiv \text{Arg}(b) - \text{Arg}(a) \equiv \text{Arg}(\frac{b}{a})$ [2 π]

Interprétation géométrique de la multiplication par un complexe :

Soit z et w deux complexes non nuls.

* Multiplier z par $e^{i\alpha}$, c'est transformer M(z) en M'(z') par rotation de centre O et d'angle α du vecteur $\overrightarrow{OM'}$.

La transformation complexe associée est donnée par : $z' = e^{i\theta}z$.

* Multiplier z par w, c'est transformer M(z) en M'(z') par rotation de centre O et d'angle Arg(w) suivie d'une homothétie de rapport |w| (ou la composée inverse).

La transformation complexe associée est : $z' = wz = |w|e^{i\operatorname{Arg}(w)}z$

15▶

Pratique 6:

- **1.** Soit z un complexe. Placer dans \mathcal{P} les points d'affixes $z, -z, \overline{z}$ et $-\overline{z}$.
- **2.** Placer ensuite les points d'affixes z+1, z+1+i, 2z, $2\overline{z}$, iz, $e^{i\pi/4}z-1$ et $2e^{2i\pi/3}z-i$.

I.6 L'exponentielle complexe

DÉFINITION

On appelle exponentielle du complexe z le complexe $e^{\Re(z)}e^{i\Im(z)}$ noté $\exp(z)$ ou e^z .

Cette fonction exp définie de \mathbb{C} dans \mathbb{C}^* prolonge l'exponentielle réelle et l'exponentielle définie précédemment sur $i\mathbb{R}$.

Propriétés : Pour z et z' complexes

1)
$$\exp(z + z') = \exp(z) \exp(z')$$
, $\frac{1}{\exp(z)} = \exp(-z)$ et $\exp(0) = 1$

2)
$$|\exp(z)| = e^{\Re(z)}$$
 et $\arg(\exp(z)) \equiv \Im(z)$ [2 π]

3)
$$\exp(z) = \exp(z')$$
 si, et seulement si, $z - z' \in 2i\pi\mathbb{Z}$

16▶

Théorème

Soit $a \in \mathbb{C}^*$. L'ensemble des solutions de l'équation : $\exp(z) = a$ d'inconnue z est

$$\{\ln(|a|) + i\operatorname{Arg}(a) + 2ik\pi \mid k \in \mathbb{Z}\}.$$

17▶

Pratique 7:

Résoudre l'équation $\exp(z) = 1 + i$ d'inconnue z complexe.

II Applications à la trigonométrie

II.1 La fonction «tangente»

DÉFINITION

La fonction tangente est définie par : $\tan = \frac{\sin}{\cos}$

On définit aussi la fonction cotangente par : $\cot an = \frac{\cos}{\sin} = \frac{1}{\tan}$

* tan est de période π , impaire, définie sur $]-\frac{\pi}{2}, \frac{\pi}{2}[+\pi\mathbb{Z}, \text{ de dérivée } \tan'=1+\tan^2=\frac{1}{\cos^2}]$

*
$$\lim_{x \to -\frac{\pi}{2}^+} \tan(x) = -\infty$$
 et $\lim_{x \to \frac{\pi}{2}^-} \tan(x) = +\infty$

* cotan est de période π , définie sur $]0,\pi[+\pi\mathbb{Z},$ et cotan' = $-1-\cot^2=-\frac{1}{\sin^2}$

*
$$\lim_{x \to 0_+} \cot a(x) = +\infty$$
 et $\lim_{x \to \pi_-} \cot a(x) = -\infty$

II.2 Linéariser (et dé-linéariser) des expressions trigonométriques

Il est plus facile de calculer $\int \cos(3x) dx$ que $\int \cos^3(x) dx...$

Soit p et q des naturels, et x un réel.

Linéariser $x \mapsto \cos^p(x) \sin^q(x)$, c'est l'écrire comme combinaison linéaire des $x \mapsto \cos(kx)$ et $x \mapsto \sin(kx)$ pour des k entiers naturels.

L'opération inverse (**dé-linéariser**) consiste à exprimer $x \mapsto \cos(p x)$ et $x \mapsto \sin(p x)$ en fonction des $x \mapsto \cos^k(x)$ et $x \mapsto \sin^k(x)$:

$$\cos(p\,x) = \Re\left((\cos(x) + i\sin(x))^p\right) = \sum_{k=0}^{\lfloor p/2 \rfloor} (-1)^k \binom{p}{2k} \cos^{p-2k}(x) \sin^{2k}(x)$$

$$\sin(p\,x) = \Im\mathrm{m}\left((\cos(x) + \mathrm{i}\sin(x))^p\right) = \sum_{k=0}^{\lfloor (p-1)/2\rfloor} (-1)^k \binom{p}{2k+1} \cos^{p-(2k+1)}(x) \sin^{2k+1}(x)$$

19▶

Les outils : formules d'Euler - formule du binôme de Newton - formule de Moivre

Pratique 8:

Linéariser $\sin^4(x)$, $\cos^4(x)$, $\sin^3(x)\cos^3(x)$.

II.3 Traiter les égalités

Soit a et b deux réels, z et z' deux complexes.

$$* e^z = e^{z'}$$
 équivaut à $(z - z' \in 2i\pi\mathbb{Z})$

$$*\cos(a) = \cos(b)$$
 équivaut à $(a \equiv b \ [2\pi] \text{ ou } a \equiv -b \ [2\pi])$

*
$$\sin(a) = \sin(b)$$
 équivaut à $(a \equiv b \ [2\pi] \text{ ou } a \equiv \pi - b \ [2\pi])$

*
$$tan(a) = tan(b)$$
 équivaut à $(a \equiv b \ [\pi])$

20▶

Pratique 9:

- 1. Trouver les réels a et b tels que : $\sin(2a) = \cos(b)$
- **2.** Résoudre : cos(2a) + 4cos(a) + 3 = 0 d'inconnue réelle a.
- **3.** Résoudre : $tan(3a) = \sqrt{3}$ d'inconnue réelle a.

II.4 La technique de l'angle moitié

La technique de l'angle moitié permet de factoriser $e^{ia} \pm e^{ib}$ (avec a et b réels).

On fait apparaître la demi-somme des arguments intervenant :

$$e^{ia} + e^{ib} = e^{\frac{i(a+b)}{2}} \cdot \left(e^{\frac{i(a-b)}{2}} + e^{-\frac{i(a-b)}{2}}\right) = 2e^{\frac{i(a+b)}{2}} \cdot \cos(\frac{a-b}{2})$$

et

$$e^{ia} - e^{ib} = e^{\frac{i(a+b)}{2}} \cdot \left(e^{\frac{i(a-b)}{2}} - e^{-\frac{i(a-b)}{2}}\right) = 2i e^{\frac{i(a+b)}{2}} \cdot \sin(\frac{a-b}{2})$$

On retrouve ainsi facilement les formules de transformations somme \leftrightarrow produit!

21▶

Pratique 10:

- 1. Récrire depuis cette dernière égalité les formules de $\cos(a) + \cos(b)$ et $\sin(a) + \sin(b)$.
- **2.** Faire de même pour cos(a) cos(b).

II.5 Transformer $a\cos(t) + b\sin(t)$ en $A\cos(t-\varphi)$

Très très utile en physique...

 $t\mapsto a\cos(t)+b\sin(t)$ représente un signal, A sera son amplitude et φ sa phase.

On suppose
$$ab \neq 0$$
: $a\cos(t) + b\sin(t) = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \cos(t) + \frac{b}{\sqrt{a^2 + b^2}} \sin(t) \right)$

L'amplitude est donnée par : $A = \sqrt{a^2 + b^2}$

La phase est :
$$\varphi = \text{Arg}(a + ib)$$
, car $\frac{a}{\sqrt{a^2 + b^2}} + i \frac{b}{\sqrt{a^2 + b^2}} = \cos(\varphi) + i \sin(\varphi)$ est de module 1.

II.6 Les formules à connaître!

Formulaire en fin de chapitre : le connaître et le revoir régulièrement!

Pratique 11:

- 1. Calculer $\sin(x+n\pi)$ et $\cos(x+n\pi)$ pour n entier relatif et x réel quelconques.
- 2. Donner une expression de $\sin(\pi/8)$ et de $\cos(\pi/8)$ à l'aide de radicaux.
- **3.** Calculer $tan(\pi/12)$.
- 4. À savoir faire: pour n naturel, calculer $C_n = \sum_{k=0}^n \cos(kx)$ et $S_n = \sum_{k=0}^n \sin(kx)$.

III Racines n-ièmes d'un complexe

On cherche à résoudre ici les équations de type : $x^n = constante$ d'inconnue x.

Définition

Soit z un complexe et n un naturel non nul.

On appelle racine n-ième de z tout complexe ζ tel que $\zeta^n = z$.

Les racines n-ièmes de 1 sont appelées racines n-ièmes de l'unité. Leur ensemble est noté \mathbb{U}_n .

Notation $\sqrt[n]{z}$ interdite!!

(réservée au cas $z \in \mathbb{R}_+$ pour désigner «sa» racine n-ième positive, voir le théorème suivant)

Théorème

Soit $n \in \mathbb{N}^*$ et $z = \rho e^{i\theta}$ avec $\rho > 0$ un complexe non nul.

*~0 admet une unique racine n-ième, qui est 0.

*~z~ possède n~ racines n-ièmes distinctes deux à deux : $\sqrt[n]{
ho}~e^{(\mathrm{i}rac{ heta}{n}+rac{2\mathrm{i}k\pi}{n})}~$ pour $k\in \llbracket 0,n-1
rbracket$

En particulier : l'ensemble des racines n-ièmes de l'unité est : $\mathbb{U}_n = \{\mathrm{e}^{\frac{2\mathrm{i}k\pi}{n}}\}_{k\in \llbracket 0,n-1\rrbracket}$

Propriétés

- a) \mathbb{U}_n est un sous-groupe de (\mathbb{U}, \times) , à n éléments dont 1, et qui contient -1 ssi n est pair.
- b) En posant $\omega_1 = e^{\frac{2i\pi}{n}}$, on a aussi : $\mathbb{U}_n = \{\omega_1^k\}_{k \in [0, n-1]} = \{\omega_1^k\}_{k \in \mathbb{Z}}$
- c) On obtient toutes les racines n-ièmes de z en multipliant l'une d'elle par les racines n-ièmes de l'unité.

Par exemple, si $z = \rho e^{i\theta}$, l'ensemble des racines n-ièmes de z est : $\{\sqrt[n]{\rho} \cdot e^{\frac{i\theta}{n}} \cdot \omega\}_{\omega \in \mathbb{U}_n}$

22▶

Pratique 12:

1. Calculer les racines cubiques de l'unité : on les note 1, j et $j^2 = \bar{j}$ (en tournant suivant le sens trigonométrique).

Les placer sur le cercle trigonométrique. Justifier que : $1 + j + j^2 = 0$

- 2. Faire la même chose avec les racines quatrièmes, respectivement cinquièmes de l'unité. Respectivement, quelle relation semblable les lie?
- 3. Faire la même chose avec les racines troisièmes de 8i.

Proposition

Soit n un naturel, $n \ge 2$, et ω une racine n-ième de l'unité distincte de 1. Alors :

$$\sum_{k=0}^{n-1} \omega^k = 1 + \omega + \omega^2 + \ldots + \omega^{n-1} = 0$$

Cas particulier : calcul des racines carrées de z à partir des formes algébriques :

On cherche ζ tel que $\zeta^2 = z = a + \mathrm{i} b$ en posant $\zeta = x + \mathrm{i} y$, avec a, b, x et y réels. Il vient :

$$\begin{cases} x^2 - y^2 = a \\ x^2 + y^2 = |\zeta|^2 = |z| = \sqrt{a^2 + b^2} \\ 2xy = b \end{cases}$$

Ce système donne facilement x^2 et y^2 , d'où 4 possibilités au plus pour (x, y): on sélectionne les deux bonnes en utilisant que xy est du signe de b.

Pratique 13:

- 1. Quelles sont les racines carrées de 3-4i? Le vérifier par le calcul des carrés.
- 2. Calculer les racines carrées de 1+i, et en déduire les cosinus et sinus de $\pi/8$.

IV Équations polynomiales de degré 2 à coefficients complexes

a est un complexe non nul, b et c des complexes, et $P=az^2+bz+c$ le trinôme étudié.

- Discrimant de $P: \Delta = b^2 4ac$
- Forme canonique de $P: \forall z \in \mathbb{C}, \ az^2 + bz + c = a\left((z + \frac{b}{2a})^2 \frac{\Delta}{4a^2}\right)$
- Résolution de (E): $az^2 + bz + c = 0$:

Elle est donnée par la forme canonique, en notant δ une racine carrée de Δ .

- * si $\Delta \neq 0$, (E) admet deux solutions complexes distinctes : $\frac{-b+\delta}{2a}$ et $\frac{-b-\delta}{2a}$
- * si $\Delta = 0$, (E) admet une seule racine, dite double : $-\frac{b}{2a}$
- Relations coefficients-racines : en notant z_1 et z_2 les deux racines de (E), éventuellement confondues :

$$az^{2} + bz + c = a(z - z_{1})(z - z_{2})$$
 et
$$\begin{cases} z_{1} + z_{2} = -b/a \\ z_{1}z_{2} = c/a \end{cases}$$

Ceci permet de trouver facilement la deuxième racine quand on en connaît déjà une...

24▶

Pratique 14:

- 1. Résoudre l'équation $z^2 \sqrt{3}z + i = 0$ d'inconnue z dans \mathbb{C} .
- **2.** Résoudre le système $\begin{cases} z_1+z_2=1\\ z_1^2+z_2^2=-1-\mathrm{i} \end{cases}$ d'inconnues z_1 et z_2 dans $\mathbb C$.

V Encore un peu de géométrie

V.1 Transformations géométriques du plan complexe

25▶

Pour résumer, les transformations étant définies de $\mathbb C$ vers $\mathbb C$:

Translation de vecteur $\vec{u}_a: z \mapsto z + a$

Rotation de centre ω et d'angle θ réel : $z \mapsto \omega + e^{i\theta}(z - \omega)$

Homothétie de centre ω et de rapport λ réel : $z \mapsto \omega + \lambda(z - \omega)$

Symétrie d'axe réel : $z \mapsto \overline{z}$

Symétrie d'axe imaginaire : $z \mapsto -\overline{z}$

Symétrie origine : $z \mapsto -z$

Similitude directe : $z \mapsto az + b$ (pour a non nul et b complexes)

Similitude indirecte : $z \mapsto a\overline{z} + b$ (idem)

PROPOSITION

Une similitude directe $z \mapsto az + b$ *est*

- a) soit une translation si a = 1,
- b) soit admet un unique point fixe d'affixe $\omega=\frac{b}{1-a}$, et c'est alors la composée commutative de la rotation de centre ω et d'angle Arg(a) et de l'homothétie de centre ω et de rapport |a|.

26▶

Pratique 15:

Identifier les transformations du plan complexe associées à :

- a) $z \mapsto iz$
- b) $z \mapsto z + 2i$
- c) $z \mapsto 2z + 1$ d) $z \mapsto (1+i)z + 1$

V.2 Alignement et orthogonalité

Théorème

Soit trois points distincts A, B et C du plan complexe, d'affixes respectives a, b et c.

Ces trois points sont alignés si, et seulement si, $\frac{c-a}{b-a}$ est réel.

Théorème

Soit deux vecteurs \vec{u} et \vec{v} d'affixes respectives u et v.

Ces deux vecteurs sont orthogonaux si, et seulement si, $u\overline{v}$ est imaginaire pur.

En particulier, soit A(a), B(b) et C(c) trois points distincts du plan complexe.

Alors \overrightarrow{AB} et \overrightarrow{AC} sont orthogonaux ssi $\frac{c-a}{b-a}$ est imaginaire pur.

28▶

Pratique 16:

- 1) Trouver l'ensemble des points M(z) du plan complexe tels que M(z), $M(z^2)$ et $M(z^3)$ forment un triangle rectangle en M(z).
- 2) Soit A(a) et B(b) deux points distincts du plan complexe.

Quel est l'ensemble des points M(z) tels que $\frac{z-b}{z-a}$ soit réel? imaginaire pur?

SAVOIR...

- (1) ... passer de l'écriture trigonométrique à l'écriture algébrique d'un complexe
- (2) ... tracer les graphes de cos, sin, tan
- (3) ... les formules...du formulaire!
- (4) ... appliquer la technique de l'angle moitié, calculer $\sum_{k=0}^{n} \cos(k\theta)$ et $\sum_{k=0}^{n} \sin(k\theta)$
- (5) ... calculer les racines n-ièmes d'un complexe, en particulier les racines carrées, et les décrire à l'aide des racines n-ièmes de l'unité
- (6) ... résoudre une équation de degré deux à coefficients complexes
- (7) ... donner l'amplitude et la phase d'un signal (transformer $a\cos(t) + b\sin(t)$ en $A\cos(t-\varphi)$)
- (8) ... reconnaître et décrire les transformations $z\mapsto az+b$ et $z\mapsto a\overline{z}+b$ du plan complexe

THÉORÈMES et PROPOSITIONS

... outils pour ...

Théorèmes pour l'exponentielle complexe $Calculs, résolution de \exp(z) = a$

Formule de Moivre et d'Euler Trigonométrie, (dé)-linéarisation

Racines n-ièmes Résolution d'équations polynomiales

Théorème de réduction d'une similitude Géométrie complexe et transformations

Alignement, orthogonalité Recherche d'ensemble de points du plan complexe