עבודת גמר קורס אנליזה נומרית תשפ"א

בעבודת הגמר ישנו מאגר בן 36 שאלות, בעל ארבעה (4) חלקים.

אתם נדרשים לפתור 6 שאלות מתוך המאגר תוך כדי שימוש ביישום מתאים שאתם כתבתם – בכל פתרון עליכם להסביר במפורט את מבנה היישום כולל הסבר לקלט ולפלט, כיצד – בדקתם את תוצאות הקוד, ולצרף את שורות הקוד.

אין להשתמש בפונקציה מובנית של השפה!

- 1. **משימה ראשונה עליכם** לפתח תוכנה (קובץ pdf בשם "1 הגרלת השאלות") <u>המשתמשת במספרי</u> תעודות הזהות של כל חברי הקבוצה שמטרתה להגריל אקראית את השאלות שאותם תדרשו לפתור, לפי הדרישה הבאה.
 - מתוך שאלות 1-9 עליכם להגריל שאלה אחת (1)
 - מתוך שאלות 10-18 עליכם להגריל שתי שאלות (2)
 - מתוך שאלות 19-30 עליכם להגריל שתי שאלות (2)
 - מתוך שאלות 31-36 עליכם להגריל שאלה אחת (1)

מבנה המסמך המסכם

1. תוצר עבודת הבית הוא ארבעה (4) מסמכים שאותם יש להגיש לתיבת ההגשה במודל – אוסף אחד לכל הקבוצה.

דרישות	פורמט	שם הקובץ	
קוד <u>המשתמש במספרי תעודות הזהות של כל חברי הקבוצה</u>		1 - הגרלת	1
שמטרתו להגריל אקראית את השאלות שאותם תדרשו לפתור.		השאלות	
יש לצרף אלגוריתם מפורט להגרלה			
1. כל שאלה יש להתחיל בעמוד נפרד	pdf	2 – עבודה	2
2. לתשובה הסופית יש להוסיף 5 אפסים + זמן הפתרון בפורמט		מסכמת קבוצה	
ddhhmm		XXX	
לדוגמא, במידה והתוצאה בחישוב היא 12.345 וזמן החישוב היה			
13/6 בתאריך 14: 27			
התוצאה הסופית שצריכה להכתב:			
12.34500000131427			
של Git -בשורה ראשונה לכל שאלה יש לציין את ההפניה לכתובת ה- 3			
הקוד שכתבתם לטובת השאלה.			
	pdf		
קבצי קוד שכתבתם		3 - נספח	3
הפניה לכתובת GiT ששם נמצאים כל הקודים.	pdf	4- הפנייה ל- Git	.4

- 2. את העבודה יש להגיש עד לתאריך 14/6/21 **בשעה** 20:11
- .3 את התשובות לשאלות, עליכם לספק באמצעות יישום מתאים.
 - 4. הניקוד לכל שאלה **16 נק׳**
 - 5. הניקוד לתוכנית ההגרלה 4 נק׳
- 6. לא תתקבל תשובה סופית ללא הצגת תוצאות ביניים וללא נוסחאות מלאות, תשובהסופית ללא הצגת תוצאות ביניים תקבל ניקוד 0.
- 7. כל תוצאה חייבת להתקבל על ידי שתי שיטות לפחות, אלא אם כן צוין אחרת במפורש.
- 8. ניתן להחליף את אחת השיטות הנדרשות לפתרון הבעיה בשיטה אותה חקרתם בהצגה.
- 9. בכל גודל מחושב יש להתייחס בדוח על פי מה נקבעה רמת הדיוק (מספר ספרות אחרי הנקודה).
 - 10. כל שאלה יש להתחיל בעמוד נפרד
- 11. לתשובה הסופית יש להוסיף 5 אפסים + זמן הפתרון בפורמט ddhhmm דוגמא, במידה והתוצאה בחישוב היא 12.345 וזמן החישוב היה 12 בתאריך 13/6 התוצאה הסופית שצריכה להיכתב: 12.34500000131427
 - 12. בשורה ראשונה לכל שאלה יש לציין את ההפניה לכתובת ה- Git של הקוד שכתבתם לטובת השאלה.
 - 13. אין להשתמש בשום פונקציה מובנית של השפה בה השתמשתם
- 14. שאלות הדורשות שימוש בשיטות איטראטיביות עליכם לצרף את משוואת האיטראציה כל תוצאות הביניים, ותוצאה סופית . תוצאה סופית בלבד אינה מקנה ניקוד כלל. לדוגמא אם בחרתם/נדרשתם להשתמש בשיטת גאוס זיידל, עליכם לצרף את המשוואות האיטראטיביות, את הניחוש הראשוני, את תוצאות הביניים ואת התוצאה הסופית.
- 15. שאלות הדורשות פיתוח נוסחת קירוב, עליכם לצרף את הנוסחה הסופית, את תוצרי הביניים (אם יש) ואת התוצאה הסופית. לדוגמא אם בחרתם/נדרשתם להשתמש בקירוב נוויל, יש לצרף את הנוסחה הסופית את תוצרי הביניים ואת התוצאה הסופית
- 16. שאלות הדורשות שימוש בפיתוח נוסחה עליכם להציג הנוסחה, תוצאות ביניים (אם יש) ואת התוצאה הסופית.
 - 17. הנספח לעבודה צריך לכלול את כל הקודים שהשתמשתם בהם.

כמובן, תמיד ניתן לפנות אלי דרך המייל

בהצלחה

מאגר השאלות

חלק אי (שאלות 1-9) – הגרלה של שאלה 1

שאלה מס׳ 1

עבור הפונקציה הבאה

$$f(x) = \frac{\sin(x^2 + 5x + 6)}{2e^{-x}}$$

- [-3,1] את כל השורשים האמיתיים הנמצאים בקטע את כל השורשים את מצאו באמצעות שתי שיטות.
- [0,1] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע.

2 שאלה מס׳ 2

עבור הפונקציה הבאה

$$f(x) = \frac{\cos(x^2 + 5x + 6)}{2e^{-x}}$$

- [-1.5,2] את כל השורשים האמיתיים הנמצאים בקטע שתי שיטות את כל השורשים האמיתיים הנמצאים בקטע .1
- [0,1] של האינטגרל במקטע השתמשו בקירוב סימפסון ובשיטת רומברג [0,1]

שאלה מס׳ 3 •

עבור הפונקציה הבאה

$$f(x) = \frac{\cos(2x^3 + 5x^2 - 6)}{2e^{-2x}}$$

- [1.,1.5] את כל השורשים האמיתיים הנמצאים בקטע שתי שיטות את כל השורשים האמיתיים הנמצאים בקטע 1.
- [0,1] של האינטגרל במקטע בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל.

שאלה מס׳ 4 •

עבור הפונקציה הבאה

$$f(x) = \frac{\sin(2x^3 + 5x^2 - 6)}{2e^{-2x}}$$

- [-1,1.5] את באמצעות שיטות את כל השורשים האמיתיים הנמצאים בקטע .1
- [0,1] של האינטגרל במקטע ובשיטת רומברג למציאת הערך של האינטגרל במקטע.

שאלה מס׳ 5 ●

עבור הפונקציה הבאה

$$f(x) = \frac{\sin(2e^{-2x})}{(2x^3 + 5x^2 - 6)}$$

- [-1.1,2] את כל השורשים האמיתיים הנמצאים בקטע את כל השורשים האמיתיים הנמצאים בקטע .1
- [-0.5,0.5] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע.

שאלה מס׳ 6 •

עבור הפונקציה הבאה

$$f(x) = \frac{\cos(2e^{-2x})}{(2x^3 + 5x^2 - 6)}$$

- [-1.1,2] את כל השורשים האמיתיים הנמצאים בקטע שתי שיטות את כל השורשים האמיתיים הנמצאים בקטע 3
- [-0.4,0.4] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע.

7 שאלה מס׳ 7

עבור הפונקציה הבאה

$$f(x) = \frac{\cos(2e^{-2x})}{x^2 + 5x + 6}$$

- [-1.1,0] את כל השורשים האמיתיים הנמצאים בקטע שתי שיטות את כל השורשים את מצאו באמצעות שתי
- [-0.4,0.4] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע.

8 שאלה מס׳

עבור הפונקציה הבאה

$$f(x) = \frac{\sin(2e^{-2x})}{x^2 + 5x + 6}$$

- [-1,2] את כל השורשים האמיתיים הנמצאים בקטע שתי שיטות את כל השורשים האמיתיים הנמצאים בקטע [-1,2]
- [-0.4,0.4] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע.

9 שאלה מס׳

עבור הפונקציה הבאה

$$f(x) = \frac{\sin(x^4 + 5x - 6)}{2e^{-2x+5}}$$

- [-1.5,1.5] את כל השורשים האמיתיים הנמצאים בקטע שתי שיטות את כל השורשים האמיתיים הנמצאים בקטע.
- [-0.5,0.5] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע.

חלק ב׳ (שאלות 10-18) – הגרלה של שתי שאלות

שאלה מס׳ 10 •

עבור הפונקציה הבאה

$$f(x) = (xe^{-x} + ln(x^2))(2x^3 + 2x^2 - 3x - 5)$$

- [0.,1.5] את כל השורשים האמיתיים הנמצאים בקטע שתי שיטות את כל השורשים האמיתיים הנמצאים בקטע [0.,1.5]
- [0.5,1] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע. [0.5,1]

11 שאלה מס'

עבור הפונקציה הבאה

$$f(x) = (2xe^{-x} + \ln(2x^2))(2x^3 + 2x^2 - 3x - 5)$$

- [0,1.5] את כל השורשים האמיתיים הנמצאים בקטע שתי שיטות את מצאו באמצעות שתי שיטות 1
- [0.5,1] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע. 2

12 שאלה מס׳ • •

עבור הפונקציה הבאה

$$f(x) = (2xe^{-x} + \ln(2x^2))(2x^4 + 2x^2 - 3x - 5)$$

- [0.,1.5] את באמצעות **שתי שיטות** את כל השורשים האמיתיים הנמצאים בקטע 3.
- 4. השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע [0.5,1]

שאלה מס׳ 13 •

עבור הפונקציה הבאה

$$f(x) = (2xe^{-x} + \ln(2x^2))(2x^2 - 3x - 5)$$

- [0,3] מצאו באמצעות **שתי שיטות** את כל השורשים האמיתיים הנמצאים בקטע .1
- [0.5,1] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע.

שאלה מס׳ 14 •

עבור הפונקציה הבאה

$$f(x) = (xe^{-x^2+5x})(2x^2 - 3x - 5)$$

- [0,3] את כל השורשים האמיתיים הנמצאים בקטע את כל השורשים האמיתיים הנמצאים בקטע .1
- [0.5,1] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע.

שאלה מס׳ 15

עבור הפונקציה הבאה

$$f(x) = (xe^{-x^2+5x-3})(x^2+3x-5)$$

- [0,1.5] את כל השורשים האמיתיים הנמצאים בקטע את כל השורשים האמיתיים הנמצאים בקטע .1
- [0.5,1] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע.

שאלה מס׳ 16

עבור הפונקציה הבאה

$$f(x) = (x^2 e^{-x^2 + 5x - 3})(3x - 5)$$

- [0,3] את באמצעות שתי שיטות את כל השורשים את מצאים בקטע שתי שיטות מצאו באמצעות .1
- [0.5,1] של האינטגרל ממציאת הערך למציאת רומברג ובשיטת ובשיטת בקירוב סימפסון.

17 שאלה מס׳ •

עבור הפונקציה הבאה

$$f(x) = (x^2 e^{-x^2 - 5x - 3})(3x - 1)$$

- [0,1.5] את כל השורשים האמיתיים הנמצאים בקטע ש**תי שיטות** את כל השורשים האמיתיים הנמצאים בקטע .1
- [0.5,1] השתמשו בקירוב סימפסון ובשיטת רומברג למציאת הערך של האינטגרל במקטע.

18 שאלה מס׳

 $\left[1.6,2\right]$ בקטע שורש שקיים וידוע וידוע $f\left(x\right)=-x^{3}+x^{2}+x+1$ בתונה המשוואה נתונה

: והן $x_{\scriptscriptstyle n} = g\left(x_{\scriptscriptstyle n-1}\right)$ הון מוצעות איטראציה שיטות שיטות שלוש מוצעות

$$g(x) = x^3 - x^2 - 1$$
 .1

$$g(x) = \sqrt[3]{x^2 + x + 1}$$
 .2

$$g(x) = \frac{1}{-x^2 + x + 1} \quad .3$$

- $x_0 \in \left[1.6, 2\right]$ לכל מתכנסת הנייל מתכנסת השיטות איזו מבין איזו איזו הנייל מתכנסת הנייל מתכנסת איזו מבין השיטות הנייל מתכנסת ה
 - ב. באמצעות השיטה המתכנסת מסעיף אי מצאו את ב.

חלק גי (שאלות 19-30) – הגרלה של שתי שאלות

19 שאלה מס׳

פתרו את המטריצה הבאה בשתי שיטות במקביל והשוו תוצאות

$$\begin{pmatrix} 1 & \frac{1}{2} & \frac{1}{3} \\ \frac{1}{2} & \frac{1}{3} & \frac{1}{4} \\ \frac{1}{3} & \frac{1}{4} & \frac{1}{5} \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

20 שאלה מס׳ •

פתרו את המטריצה הבאה בשתי שיטות במקביל והשוו תוצאות

$$\begin{pmatrix} 5 & 1 & 10 \\ 10 & 8 & 1 \\ 4 & 10 & -5 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1.5 \\ -7 \\ 2 \end{pmatrix}$$

21 שאלה מס׳ •

פתרו את המטריצה הבאה בשתי דרכים והשוו בין התוצאות

$$\begin{pmatrix} 10 & 8 & 1 \\ 4 & 10 & -5 \\ 5 & 1 & 10 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -7 \\ 2 \\ 1.5 \end{pmatrix}$$

22 שאלה מס׳

פתרו את המטריצה הבאה בשתי דרכים והשוו בין התוצאות

$$\begin{pmatrix} -1 & -2 & 5 \\ 4 & -1 & 1 \\ 1 & 6 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ 9 \end{pmatrix}$$

23 שאלה מס׳ •

פתרו את המטריצה הבאה בשתי דרכים והשוו בין התוצאות

$$\begin{pmatrix} 2 & 1 & 0 \\ 3 & -1 & 0 \\ 1 & 4 & -2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -3 \\ 1 \\ -5 \end{pmatrix}$$

24 שאלה מס׳ •

פתרו את המטריצה הבאה בשתי דרכים והשוו בין התוצאות

$$\begin{pmatrix} 0.04 & 0.01 & -0.01 \\ 0.2 & 0.5 & -0.2 \\ 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0.06 \\ 0.3 \\ 11 \end{pmatrix}$$

25 שאלה מס׳ •

פתרו את המטריצה הבאה בשתי דרכים והשוו בין התוצאות

$$\begin{pmatrix} -1 & 3 & 1 \\ 4 & 1 & -1 \\ 2 & 2 & 5 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -4 \\ 5 \\ 1 \end{pmatrix}$$

26 שאלה מסי

פתרו את המטריצה הבאה בשתי דרכים והשוו בין התוצאות

$$\begin{pmatrix} 0 & 1 & 2 \\ -2 & 1 & 0.5 \\ 1 & -2 & -0.5 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ -4 \end{pmatrix}$$

27 שאלה מס׳

פתרו את המטריצה הבאה בשתי דרכים והשוו בין התוצאות

$$\begin{pmatrix} -1 & -1 & 2 \\ 2 & -1 & 1 \\ 2 & 2 & 2 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} -5 \\ -1 \\ 4 \end{pmatrix}$$

28 שאלה מס׳

פתרו את המטריצה הבאה בשתי דרכים והשוו בין התוצאות

$$\begin{pmatrix} 1 & 2 & -2 \\ 1 & 1 & 1 \\ 2 & 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \\ 5 \end{pmatrix}$$

29 שאלה מס׳ •

פתרו את המטריצה הבאה בשתי דרכים והשוו בין התוצאות

$$\begin{pmatrix} 1 & 0 & -1 \\ -0.5 & 1 & -0.25 \\ 1 & -0.5 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0.2 \\ -1.425 \\ 2 \end{pmatrix}$$

שאלה מס' 30 •

פתרו את המטריצה הבאה בשתי דרכים והשוו בין התוצאות

$$\begin{pmatrix} 0 & 1 & 2 \\ -2 & 1 & 0.5 \\ 1 & -2 & -0.5 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ -4 \end{pmatrix}$$

חלק די (שאלות 31-36) – הגרלה של שאלה 1

שאלה מס׳ 31 •

x=1.47 בהינתן הטבלה הבאה, חשבו בשתי שיטות את ערך הפונקציה בנקודה

X	f(x)
1.2	1.5095
1.3	1.6984
1.4	1.9043
1.5	2.1293
1.6	2.3756

32 שאלה מסי •

: נתונה הטבלה הבאה

<u>x</u>	<u>F(x)</u>
0.2	13.7241
0.35	13.9776
0.45	14.0625
0.6	13.9776
0.75	13.7241
0.85	13.3056
0.9	12.7281

העריכו אינטרפולציה שתי שתי באמצעות באמצעות העריכו העריכו העריכו באמצעות באמצעות העריכו את העריכו את

שאלה מס׳ 33

: נתונה הטבלה הבאה

<u>x</u>	<u>F(x)</u>
0.35	-213.5991
0.4	-204.4416
0.55	-194.9375
0.65	-185.0256
0.7	-174.6711
0.85	-163.8656
0.9	-152.6271

העריכו את F(0.75) באמצעות שתי שיטות אינטרפולציה שונות

שאלה מס׳ 34 •

: נתונה הטבלה הבאה

X	f(x)
2	0
2.25	0.112463
2.3	0.167996
2.7	0.222709

העריכו אינטרפולציה פולינומיאלית של נוויל, ובאמצעות האלגוריתם פולינומיאלית באמצעות ל $f\left(2.4\right)$ העריכו את ריבועית.

שאלה מס' 35 •

: נתונה הטבלה הבאה

X	f(x)
1.2	3.5095
1.3	3.6984
1.4	3.9043
1.5	4.1293
1.6	4.3756

העריכו אינטרפולציה פולינומיאלית של נוויל, ובאמצעות האלגוריתם פולינומיאלית באמצעות העריכו לf(1.37)באמצעות ריבועית.

36 שאלה מס׳ •

נתונה הטבלה הבאה:

X	f(x)
6.5	2.14451
6.7	2.35585
7.0	2.74748
8.0	5.67127

העריכו אינטרפולציה אינטרפולציה נוויל ובאמצעות של נוויל באמצעות האלגוריתם ל $f\left(6.9\right)$ אינטרפולציה פי לגראנגי