Assignment 4 Question 6 Report

Sai Gaurav Anugole 170070008 Titas Chakraborty 170070019 Jayesh Choudhary 170070038

September 2019

1 Part A

Proving $y^T P y \geq 0$ 1.1

$$y^T P y = y^T A^T A y$$

Here A is an $m \times n$ matrix. Hence y is an $n \times 1$ vector, meaning that Ay is a vector of size $m \times 1$.

Hence let Ay = v.

Therefore, $\tilde{y^T}Py = v^Tv = x_1^2 + ... + x_n^2 \ge 0$

Above $x_1, ..., x_n$ are elements of v.

Hence proved.

Proving $z^T P z \geq 0$ 1.2

$$z^T P y = z^T A A^T z$$

This proof is similar to the above proof. Here A is an $m \times n$ matrix. Hence y is an $m \times 1$ vector, meaning that $A^T z$ is a vector of size $n \times 1$.

Hence let $A^T z = v$.

Therefore, $z^T P z = v^T v = x_1^2 + ... + x_n^2 \ge 0$

Above $x_1, ..., x_n$ are elements of v.

Hence proved.

Eigen values of P and Q non-negative 1.3

Let $Pv = \lambda v$.

Hence $v^T P^T = \lambda v^T$

As $P^T = P$, $v^T P = \lambda v^T$

Multiplying on both sides by v,

 $v^T P v = \lambda v^T v \ge 0$ as we proved earlier.

But $v^T v \ge 0$ for all v as again we showed earlier.

Hence $\lambda \geq 0$, where λ is an eigen value of P.

Similarly for Q,

Let $Qv = \lambda v$.

Hence $v^TQ^T = \lambda v^T$ As $Q^T = Q$, $v^TP = \lambda v^T$

Multiplying on both sides by v,

 $v^TQv = \lambda v^Tv \ge 0$ as we proved earlier.

But $v^T v \ge 0$ for all v as again we showed earlier.

Hence $\lambda \geq 0$, where λ is an eigen value of Q.

$\mathbf{2}$ Part B

Proving Au is eigen vector of Q 2.1

If u is an eigen vector of P, we have,

$$A^T A u = \lambda U - (1)$$

Hence, we get,

 $QAu = AA^TAu = \lambda Au$ (Substituting 1)

Therefore, we get $QAu = \lambda Au$, implying that Au is an eigen vector of Q. Hence proved.

As A is $m \times n$ and Au is a valid multiplication, u must have n elements.

Proving $A^T v$ is eigen vector of P 2.2

If v is an eigen vector of P, we have,

$$AA^Tv = \mu v - (1)$$

Hence, we get,

 $PA^Tv = A^TAA^Tv = \mu A^Tv$ (Substituting 1) Therefore, we get $PA^Tv = \mu A^Tv$, implying that A^Tv is an eigen vector of P.

As A is $m \times n$ and $A^T v$ is a valid multiplication, v must have m elements.

3 Part C

Proving existence of real non-negative γ_i such that $Au_i = \gamma_i v_i$

As v_i is an eigen vector of Q, we have,

$$AA^T v_i = \lambda v_i - (1)$$

Hence, we get that,

 Au_i $\begin{aligned} &Au_i \\ &= \frac{AA^T v_i}{||A^T v_i||_2} \\ &= \frac{\lambda v_i}{||A^T v_i||_2} \text{ (From 1)} \end{aligned}$

Hence we can see that $\gamma_i = \frac{\lambda}{||A^T v_i||_2}$

Here the denominator is non-negative as it is the squared norm of a vector. The numerator is nonnegative as λ is an eigen value of Q which we have proved is non-negative in 1.3. Both the numerator and denominator are real.

Hence we have real, non-negative γ_i such that $Au_i = \gamma_i v_i$.

Hence proved.

4 Part D

Instead of proving straightaway that $A = U\Gamma V^T$, let us first prove that $AV = U\Gamma$.

If we multiply U and Γ as defined in the question, we get an $m \times m$ matrix of the form:

$$[\gamma_1 v_1 \gamma_2 v_2 \dots \gamma_m v_m]$$

If we multiply A and V as defined in the question, we get an $m \times m$ matrix of the form:

$$[Au_1Au_2...Au_m]$$

As proved in the earlier sub-part, $Au_i = \gamma_i v_i$

Hence if we compare the left hand side and the right hand side, we will get that they are equal.

Hence, $AV = U\Gamma$.

Let us multiply by V^T by both sides.

We get, $AVV^{T} = U\Gamma V^{T}$.

But V is a matrix of eigen vectors. Hence $v_i^T v_i = 1$ by definition and $v_i^T v_j = 0$ for j not equal to i as given in the question.

Hence we get that $VV^T = I$, which is an identity matrix.

Thus, we get $A = U\Gamma V^T$.

Hence Proved.

5 Conclusions

Hence we have proved all the results ending with the proof of singular value decompostion.