

# Department of Electronic & Telecommunication Engineering University of Moratuwa

## EN3013 - ANALOG CIRCUIT DESIGN

## DESIGN OF LINEAR POWER SUPPLY

Supervisors:

Dr. Thayaparan Subramaniam

MALANBAN K. MANIMOHAN T. PASQUAL A.C. 200373X 200377M 200445V

#### 1 INTRODUCTION OF LINEAR POWER SUPPLY

# 1.1 Objective

- \* We are designing a fast-charging power supply for modern devices.
- \* Load regulation and line regulation values apply to the output.
- \* Adjustable linear power supplies allow for variable output voltage.
- \* Linear regulators reduce output DC ripple and noise.
- \* Unregulated power supplies have variable output voltage depending on load and input voltage.



 ${\bf Figure}~1-{\bf Circuit}$ 

#### 1.2 Constrains

- \* Typical input voltage = 14V + Reminder of (19/5)= 16 V
- \* Current Limitation = 1.5 A (for all groups)
- \* Output voltage range = Mid output voltage  $\pm$  3 V = 9  $\pm$  3 V

#### 1.3 Components

- \*  $T_1 = \text{TIP31C (40 W)}$
- \*  $T_2 = BD139 (12 W)$
- \*  $T_3 = BC109$

#### 2 CALCULATIONS

#### 2.1 Selection of Zener

$$Vo_{min} > V_z + V_{be}$$
$$V_z < 5.3V$$

Therefore we decided to take 1N4732A zener diode, which has 4.7V zener voltage and 500 mW power rating.

### 2.2 Calculate R1 and R2

#### 2.2.1 For maximum voltage

$$V_{omax} \cdot \frac{R_2}{R_1 + R_2 + 1k} = (V_Z + V_{BE})$$

$$V_Z = 4.7V$$

$$V_{BE} = 1V$$

$$V_o \cdot \frac{R_2}{R_1 + R_2 + 1k} = 5.7V$$

$$6.3R_2 = 5.7R_1 + 5700$$

$$(1)$$

## 2.2.2 For minimum voltage

$$V_{omin} \cdot \frac{R_2 + 1k}{R_1 + R_2 + 1k} = (V_Z + V_{BE})$$

$$V_Z = 4.7V$$

$$V_{BE} = 1V$$

$$V_o \cdot \frac{R_2 + 1k}{R_1 + R_2 + 1k} = 5.7V$$

$$0.3R_2 + 300 = 5.7R_1$$

$$(2)$$

Therefore, we have selected R1 as 105.26 ohms R2 as 1 kohms

#### 2.3 Current Limiting

#### 2.3.1 Calculate value of r

To calculate the value of r

To make  $T_3$  transistor in active region, the voltage across the base and emitter must be 0.77V,

hence  $V_{\rm BE}$  must be 0.77V. Since 1.5 A should be the maximum current allowed to flow through the resistor,

$$r \ge \frac{0.77V}{1.5A}$$

$$r \ge 0.513\Omega$$
(3)

## 2.3.2 Power dissipation in r

$$power = 0.77V \times 1.5A$$

$$power = 1.155W$$
(4)

Due to lack of components we have selected 0.5  $\Omega$  resistor(1  $\Omega$  and 5 W resistors in parallel)

new maximum current = 
$$0.77 \text{ V}_{\overline{0.5\Omega}}$$
  
new maximum current =  $1.54 \text{ A}$   

$$power = (1.54)^2 \times 0.5\Omega$$

$$power = 1.1858W$$
(5)

#### 2.4 Calculate value of R

To calculate the value of R

$$V_{Rmin} = V_{i(max)} - (V_{o(max)} + 0.7)$$

$$V_{Rmin} = 14 - (12 + 0.7)V$$

$$V_{Rmin} = 1.3V$$
(6)

$$I_{Rmax} \ge I_{\beta Max} + I_{Knee}$$

$$I_{Rmax} \ge \frac{1}{40} + 1 \times 10^{-3}$$

$$I_{Rmax} \ge 26 \times 10^{-3} A$$

$$R \le \frac{1.3V}{26 \times 10^{-3} A}$$

$$R \le 50\Omega$$
(7)

Consider the tolerances

$$1.05R < 50\Omega$$

$$R < 47.62\Omega$$
(8)

Therefore, we have selected R as 47  $\Omega$ 

#### 2.5 Tolerance Consideration

$$1.1 \le \frac{(R_1 + 1k) \times 0.95}{R_2 \times 1.05} \to 1.55 R_2 = 0.95 R_1 + 0.95 k$$
$$0.05 \ge \frac{R_1 \times 1.05}{(R_2 + 1k) \times 0.95} \to 0.0475 R_2 + 0.0475 k = 1.55 R_1$$
(9)

Therefore, we have selected

R1 as 75  $\Omega$ 

R2 as 658.9  $\Omega$ 

$$i_{Z(max)} \rightarrow V_{O(min)}, V_{in(max)}, i_{b(min)}$$

$$i_{Z(max)} = \frac{11.3V}{47\Omega} - 1mA$$

$$i_{Z(max)} = 239.42mA$$

$$(10)$$

#### 2.6 Power Calculations of $T_1$

#### 2.6.1 No loading condition

$$P_{max} \rightarrow i_{c(max)}, V_{O(min)}, V_{in(max)}$$

$$P_{max} = i_{c(max)}[V_{in(max)} - V_{O(min)}]$$

$$P_{max} = 1A \times [18V - 6V]$$

$$P_{max} = 12W$$

$$(11)$$

#### 2.6.2 At 1 $\Omega$ loading condition

$$P_{max} = 1A \times [18V - (1+1)V]$$

$$P_{max} = 16W$$
(12)

## 2.7 Power Calculations of $T_2$

$$maximum\ possible\ voltage = 12.7 \text{V} - 4.7\ \text{V} = 8\ \text{V}$$
 
$$maximum\ possible\ current = 239.43\ \text{mA} \tag{13}$$
 
$$maximum\ possible\ Power\ dissipation = 8\ \text{V} \times 239.42 \text{mA} = 1.915 \text{W}$$

#### 2.8 Power Calculations of Zener maximum possible

$$P_{max} = 4.7V \times 239.42mA = 1.125W \tag{14}$$

Hence we used two zeners in parallel to withstand power dissipation

## 3 METHODOLOGY & OBSERVATIONS

# 3.1 Results of Laboratory Implementation

## 3.1.1 Line Variation

Line variance was calculated while setting the output voltage at 6V and at 12V. Then the input voltage was increased and the output voltage measured and the graph was plotted.

| Input Voltage(V) | Output Voltage(6V) | Output Voltage(12V) |
|------------------|--------------------|---------------------|
| 14.0             | 5.963              | 11.797              |
| 14.5             | 5.977              | 11.848              |
| 15.0             | 5.988              | 11.896              |
| 15.5             | 6.002              | 11.931              |
| 16.0             | 6.024              | 11.974              |
| 16.5             | 6.031              | 11.996              |
| 17.0             | 6.042              | 12.016              |
| 17.5             | 6.055              | 12.058              |
| 18.0             | 6.067              | 12.093              |



Figure 2 — Line Variation

#### 3.1.2 Load Variation

| Load Resistor(ohms) | Output Voltage(6V) | Output Voltage(12V) |
|---------------------|--------------------|---------------------|
| 5                   | 5.80               | 11.58               |
| 6                   | 5.90               | 11.73               |
| 10                  | 5.945              | 11.921              |
| 47                  | 5.993              | 11.937              |
| 100                 | 5.999              | 11.959              |
| 330                 | 6.002              | 11.977              |
| 470                 | 6.002              | 11.981              |
| 560                 | 6.008              | 11.984              |
| 810                 | 6.008              | 11.986              |
| 2.2k                | 6.008              | 11.990              |
| 3.9k                | 6.009              | 11.992              |
| 5.6k                | 6.009              | 11.995              |
| 10k                 | 6.009              | 11.996              |

Table 1 — Load variation



Figure 3 — Load Variation

#### 3.2 Discussions

There were various challenges that we had to face during the implementation of this circuit. The obstacles we had to overcome are as follows:

- \* Finding the appropriate zener diode and power transistor was difficult.
- \* We were unable to find exact values for R and r.
- \* Initially, we couldn't achieve the specified output range.
- $^{*}$  Some BD139 and BC109 transistors burnt due to improper connections.