STRUKTUR PEMROGRAMAN R

Norman Matloff (2009:67) dalam bukunya "The Art of R Programming" menyatakan sebagai berikut.

"R is a full programming language, similar to scripting languages such as Perl and Python. One can define functions, use constructs such as loops and conditionals, etc.

R is also block-structured, in a manner similar to those of the above languages, as well as C. Blocks are delineated by braces, though they are optional if the block consists of just a single statement."

Jadi, pernyataan di atas memberikan informasi bahwa R merupakan bahasa pemrograman, sama seperti bahasa pemrograman *Perl* dan *Python*. Dalam R, dapat mendefinisikan suatu fungsi, menggunakan konstruk-konstruk seperti pengulangan (*loops*) dan kondisi (*conditionals*), dan sebagainya. R juga merupakan *block-structured*, mirip dengan bahasa pemrograman *Perl* dan *Python*, dan juga C. Suatu blok diawali dengan buka kurawal (*braces*) dan diakhiri tutup kurawal, meskipun hal tersebut bersifat opsional jika dalam blok tersebut hanya terdiri dari satu pernyataan.

10.1 Pengulangan (Loop) dengan for dan Kondisi (Condition) dengan if

Gambar 10.1 diberikan ilustrasi mengenai pengulangan dalam R.

Gambar 10.1

Berdasarkan Gambar 10.1, kode R

```
for (n in x)
{
print(n^2)
print("hai")
}
```

merupakan contoh dari **pengulangan** (*loop*). Diketahui vektor **x** menyimpan bilangan 1, 2, 3, 4, dan 5. Bilangan-bilangan tersebut kemudian dikuadratkan, sehingga menghasilkan 1, 4, 9, 16, dan 25. Kode R

print(n^2)

bertujuan untuk mengkuadratkan bilangan-bilangan dalam n.

- \Rightarrow Pada iterasi pertama, n = 1, maka $n^2 = 1$.
- \Rightarrow Pada iterasi kedua, n = 2, maka $n^2 = 4$.
- \Rightarrow Pada iterasi ketiga, n = 3, maka $n^2 = 9$.
- \Rightarrow Pada iterasi keempat, n = 4, maka $n^2 = 16$.
- \Rightarrow Pada iterasi kelima, n = 5, maka $n^2 = 25$.

Perhatikan juga bahwa tulisan "hai" tercetak sebanyak 5 kali (hal ini menandakan terdapat 5 kali pengulangan).

Informasi:

Fungsi print() digunakan untuk mencetak.

10.2Contoh Ke-2: Pengulangan (Loop) dengan for dan Kondisi (Condition) dengan if

Gambar 10.2 diberikan contoh lagi mengenai pengulangan dalam R. Berdasarkan Gambar 10.2, kode R

```
x <- c(3,4,5,100,2)
for(n in x)
{
    if(n%2==0)
        {
        cat(sprintf("%d adalah bilangan genap \n",n))
     }
    else
        {
        cat(sprintf("%d adalah bilangan ganjil \n",n))
     }
}</pre>
```

merupakan contoh dari pengulangan yang juga melibatkan suatu kondisi.

⇒ Kondisi pertama, jika suatu bilangan dibagi 2, memiliki nilai sisa sama dengan 0, maka bilangan tersebut adalah bilangan genap, yakni dinyatakan dengan

⇒ Kondisi kedua, jika suatu bilangan dibagi 2, memiliki nilai sisa tidak sama 0, maka bilangan tersebut adalah bilangan ganjil.

Gambar 10.2

Diketahui vektor **x** menyimpan bilangan 3, 4, 5, 100, dan 2.

- \Rightarrow Pada iterasi pertama, n = 3. Nilai 3 dibagi 2 memiliki nilai sisa 1 (tidak sama dengan nol), maka 3 adalah bilangan ganjil.
- \Rightarrow Pada iterasi kedua, n=4. Nilai 4 dibagi 2 memiliki nilai sisa 0, maka 4 adalah bilangan genap.
- \Rightarrow Pada iterasi ketiga, n = 5. Nilai 5 dibagi 2 memiliki nilai sisa 1 (tidak sama dengan nol), maka 5 adalah bilangan ganjil.
- \Rightarrow Pada iterasi keempat, n=100. Nilai 100 dibagi 2 memiliki nilai sisa 0, maka 100 adalah bilangan genap.
- \Rightarrow Pada iterasi kelima, n=2. Nilai 2 dibagi 2 memiliki nilai sisa 0, maka 2 adalah bilangan genap.

Informasi:

- Fungsi cat(sprintf()) digunakan untuk mencetak.
- ⇒ Perhatikan bahwa %d digunakan untuk menyatakan bilangan bulat.

FUNGSI

11.1 Membuat Fungsi Sederhana dalam R dan Memanggil Fungsi

Berikut diberikan contoh kode R terkait pembuatan fungsi.

```
Console ~/ >> panggil <- function()
+ {
+    print("Hai")
+ }
> panggil()
[1] "Hai"
```

Gambar 11.1

Pada kode R Gambar 11.1, dibentuk suatu fungsi bernama panggil.

Suatu fungsi memiliki nama. Fungsi yang dibentuk pada Gambar 11.1 bernama panggil.

Berdasarkan kode R Gambar 11.1, fungsi bernama **panggil** dipanggil sebanyak 4 kali (Perhatikan Gambar 11.2).

```
panggil <- function()
         print("Hai")
                             Fungsi bernama panggil, dipanggil sebanyak
                             4 kali. Setiap pemanggilan fungsi tersebut,
 panggil()
[1] "Hai"
                             akan mencetak tulisan Hai. Karena fungsi
 panggil()
   "Hai"
                             bernama panggil dipanggil sebanyak 4 kali,
> panggil()
                             maka fungsi bernama panggil mencetak
[1] "Hai"
> panggil()
                             tulisan Hai sebanyak 4 kali.
    "Hai"
[1]
```

Gambar 11.2

Fungsi bernama **panggil**, dipanggil sebanyak 4 kali. Setiap pemanggilan fungsi tersebut, akan mencetak tulisan **Hai**. Karena fungsi bernama **panggil** dipanggil sebanyak 4 kali, maka fungsi bernama **panggil** mencetak tulisan **Hai** sebanyak 4 kali. Dimulai dari buka kurawal "{", sampai dengan tutup kurawal "}" disebut **tubuh fungsi** (*body of function*) (Gambar 11.3).

```
+ {
+ print("Hai")
+ }
```

Gambar 11.3 Tubuh Fungsi dari Fungsi Panggil

Tubuh fungsi dimulai dari buka kurawal "{", sampai dengan tutup kurawal "}".

Setelah suatu fungsi dibentuk/dibuat, maka suatu fungsi dapat dipanggil. Berikut sintaks untuk memanggil suatu fungsi yang telah dibentuk.

nama_fungsi()

Jadi untuk memanggil suatu fungsi yang telah dibentuk/dibuat, maka perlu disebutkan nama fungsi, kemudian ditambah buka kurung "(" dan tutup kurung ")".

Jadi untuk memanggil suatu fungsi yang telah dibentuk/dibuat, **maka perlu disebutkan nama fungsi**, kemudian ditambah buka kurung "(" dan tutup kurung ")".

11.2 Contoh Fungsi yang Melibatkan Dua Argumen

Berikut diberikan contoh kode R yang melibatkan dua argumen dalam suatu fungsi (Gambar 11.4).

```
Console ~/ 🖒
> hitung <- function(x,y)
     +
+
> hitung(5,2)
Penjumlahan 5 + 2 =
                                         Fungsi bernama hitung dipanggil
Pengurangan 5 - 2 = 3
                                         sebanyak 2 kali, yakni hitung(5,2)
Pembagian 5
             2 = 2.500000
           * 2 = 10
                                         untuk pemanggilan pertama, dan
Perkalian 5
> hitung(10,5)
                                         hitung(10,5) untuk pemanggilan
Penjumlahan 10 + 5 = 15
                                         yang kedua.
Pengurangan 10 - 5 = 5
Pembagian 10 / 5 = 2.000000
Perkalian 10 * 5 = 50
>
```

Gambar 11.4

Berdasarkan Gambar 11.4, dibentuk suatu fungsi bernama **hitung** yang memiliki argumen sebanyak 2, yakni **x** dan **y**.

Suatu fungsi **memiliki nama**. Fungsi yang dibentuk pada Gambar 11.4 bernama **hitung**, memiliki argumen sebanyak 2, yakni \mathbf{x} dan \mathbf{y} .

Berdasarkan kode R pada Gambar 11.4, fungsi bernama **hitung** dipanggil sebanyak 2 kali (Perhatikan Gambar 11.4).

Pada fungsi bernama hitung, kode R

$$cat(sprintf("Penjumlahan %d + %d = %d \n", x, y, x+y))$$

bertujuan untuk menjumlahkan dua buah bilangan. Perhatikan bahwa dalam sintaks tersebut terdapat "%d" yang berarti untuk menyatakan bilangan bulat.

Pada fungsi bernama hitung, kode R

bertujuan untuk mengurangkan dua buah bilangan. Perhatikan bahwa dalam sintaks tersebut terdapat "%d" yang berarti untuk menyatakan bilangan bulat.

Pada fungsi bernama hitung, kode R

cat(sprintf("Pembagian %d / %d = %f
$$n$$
", x, y, x/y))

bertujuan untuk pembagian dua buah bilangan. Perhatikan bahwa dalam sintaks tersebut terdapat "%d" yang berarti untuk menyatakan bilangan bulat, sementara "%f" untuk menyatakan bilangan pecahan.

Perhatikan bahwa %f digunakan karena hasil pembagian dari dua buah bilangan, yakni **x/y** dapat berupa **bilangan pecahan**.

Kode R

hitung(5,2)

berarti memanggil fungsi bernama **hitung**, kemudian nilai \mathbf{x} diisi dengan 5, sementara nilai \mathbf{y} diisi dengan 2.

11.3 Contoh Fungsi yang Melibatkan Argumen Vektor

Berikut diberikan contoh kode R yang melibatkan argumen vektor dalam suatu fungsi (Gambar 11.5).

Gambar 11.5

Pada kode R Gambar 11.5, dibentuk suatu fungsi bernama **kuadrat** yang memiliki argumen sebanyak 1, yakni \mathbf{x} .

Suatu fungsi **memiliki nama**. Fungsi yang dibentuk pada *G*ambar 11.5 bernama **kuadrat**, memiliki argumen sebanyak 1, yakni **x**.

Berdasarkan kode R Gambar 11.5, fungsi bernama kuadrat dipanggil sebanyak 1 kali.

11.4 Contoh Fungsi yang Melibatkan Pengembalian Nilai (*Return Value*)

Berikut diberikan contoh kode R yang melibatkan fungsi dengan pengembalian nilai (Gambar 11.6).

```
Console -/ >> kuadrat <- function(x) + {
+ return(x^2) + }
> a <- c(1,4,2,6) > a
[1] 1 4 2 6
> a <- kuadrat(a) > a
[1] 1 16 4 36
> |
```

Gambar 11.6

Pada kode R Gambar 11.6, dibentuk suatu fungsi bernama **kuadrat** yang memiliki argumen sebanyak 1, yakni **x**.

Suatu fungsi memiliki nama. Fungsi yang dibentuk pada Gambar 11.6 bernama **kuadrat**, memiliki argumen sebanyak 1, yakni \mathbf{x} .

Berdasarkan kode R Gambar 11.6, fungsi bernama kuadrat dipanggil sebanyak 1 kali.

