Les singularités \mathcal{I} -bonnes — L'intersection entre la théorie analytique et la théorie algébrique

Mingchen Xia

IMJ-PRG

03/01/2023

Références

- Cet exposé concerne les articles suivants :
- DX20 The closures of test configurations and algebraic singularity types, (avec Tamás Darvas), Advances in Mathematics;
- DX21 The volume of pseudoeffective line bundles and partial equilibrium, (avec Tamás Darvas), Geometry & Topology;
- Xia20 Pluripotential-theoretic stability thresholds, IMRN;
- Xia21 Partial Okounkov bodies and Duistermaat–Heckman measures of non-Archimedean metrics;
- Xia22 Non-pluripolar products on vector bundles and Chern–Weil formulae on mixed Shimura varieties.

Contexte

- ullet X : variété Kählerienne equidimensionale compacte de dimension n.
- L : fibré en droite holomorphe sur X.
- h : métrique psh (peut-être singulière) sur L, i.e., h est semi-continue inférieurement et à courbure positive.

Nous allons comparer les invariants analytiques associés à (X,L,h) avec ceux algébriques.

Exemple

Supposons que L est ample et h est lisse, alors

$$\int_X c_1(L,h)^n = (L^n) = \lim_{k \to \infty} \frac{n!}{k^n} h^0(X,L^k).$$

Nous allons comparer les invariants analytiques associés à (X,L,h) avec ceux algébriques.

Exemple

Supposons que L est ample et h est lisse, alors

$$\int_X c_1(L,h)^n = (L^n) = \lim_{k \to \infty} \frac{n!}{k^n} h^0(X,L^k).$$

lci $\int_X c_1(L,h)^n$ est de nature analytique.

 (L^n) et $\lim_{k\to\infty}\frac{n!}{k^n}h^0(X,L^k)$ sont de nature algébrique.

Nous avons besoin de telles formules quand h est singulière. Pourquoi?

• Nous avons besoin de noyaux de Bergman partiels, c.-à-d., par rapport à des espaces de sections définis par des conditions L^2 , p.ex. quand on étudie les cone metrics à la Chen-Donaldson-Sun;

Nous avons besoin de telles formules quand h est singulière. Pourquoi?

- Nous avons besoin de noyaux de Bergman partiels, c.-à-d., par rapport à des espaces de sections définis par des conditions L^2 , p.ex. quand on étudie les cone metrics à la Chen-Donaldson-Sun;
- Sur la variété Abelienne universelle (par rapport à la structure de niveau ≥ 3), les métriques naturelles (Mumford–Lear) sur des fibrés automorphes (fibrés de Siegal–Jacobi) sont singulières à l'infini.

Quand h est singulière

Question principale, Version 1

Quand h est singulière,

$$\int_X c_1(L,h)^n \stackrel{?}{=} \lim_{k \to \infty} \frac{n!}{k^n} h^0(X,L^k).$$

Quand h est singulière

Question principale, Version 1

Quand h est singulière,

$$\int_X c_1(L,h)^n \stackrel{?}{=} \lim_{k \to \infty} \frac{n!}{k^n} h^0(X,L^k).$$

Il faut donner un sens à $\int_X c_1(L,h)^n$. Dans cet exposé, le produit $c_1(L,h)^n$ est toujours le produit non-pluripolaire (Boucksom-Eyssidieux-Guedj-Zeriahi), c.-à-d.,

- ullet Quand h est lisse, $c_1(L,h)^n$ est le produit des formes lisse $c_1(L,h)$;
- Quand h est bornée, $c_1(L,h)^n$ est le produit classique (Bedford–Taylor);
- \bullet En générale, $c_1(L,h)^n$ ne met aucunes masses aux ensembles pluripolaires.

Exemple

Exemple

 $X=\mathbb{P}^1$, $L=\mathcal{O}(1)$ et h la métrique sur L telle que $h\sim \exp(-\log|z|^2)$ sur $\mathbb{C}\subset X.$

Exemple

Exemple

 $X=\mathbb{P}^1$, $L=\mathcal{O}(1)$ et h la métrique sur L telle que $h\sim \exp(-\log|z|^2)$ sur $\mathbb{C}\subseteq X.$

Alors $c_1(L,h)=0$ (au sens non-pluripolaire). Donc

$$\int_X c_1(L,h)^n < \lim_{k \to \infty} \frac{n!}{k^n} h^0(X,L^k) = 1.$$

Exemple

Exemple

 $X=\mathbb{P}^1$, $L=\mathcal{O}(1)$ et h la métrique sur L telle que $h\sim \exp(-\log|z|^2)$ sur $\mathbb{C}\subseteq X.$

Alors $c_1(L,h)=0$ (au sens non-pluripolaire). Donc

$$\int_X c_1(L,h)^n < \lim_{k \to \infty} \frac{n!}{k^n} h^0(X,L^k) = 1.$$

À faire

Il faut rétrécir $H^0(X, L^k)$!

Faisceaux d'idéaux multiplicateurs

Définition

Le faisceau d'idéal multiplicateur associé à h est le faisceau suivant :

$$\mathcal{I}(h)(U) := \left\{ s \in \mathcal{O}_X(U) : |s|_h^2 \text{ est localement intégrable} \right\}.$$

D'après Nadel, $\mathcal{I}(h)$ est un faisceau cohérent.

En particulier,

$$H^0(X,L^k\otimes \mathcal{I}(h^{\otimes k})) = \left\{s \in H^0(X,L^k): \int_X |s|^2_{h^{\otimes k}} < \infty\right\}.$$

Volume algébrique

Définition

Le volume algébrique de (L,h) est

$$\operatorname{vol}(L,h) := \lim_{k \to \infty} \frac{n!}{k^n} h^0(X, L^k \otimes \mathcal{I}(h^{\otimes k})).$$

Théorème (DX20, DX21)

La limite existe.

Volume algébrique

Définition

Le volume algébrique de (L,h) est

$$\operatorname{vol}(L,h) := \lim_{k \to \infty} \frac{n!}{k^n} h^0(X, L^k \otimes \mathcal{I}(h^{\otimes k})).$$

Théorème (DX20, DX21)

La limite existe.

Question principale, version 2

$$\int_X c_1(L,h)^n \stackrel{?}{=} \operatorname{vol}(L,h).$$

Théorème de Bonavero

Définition

Quand les singularités de h (ou plus précisément de $-\log h$) sont localement de la forme $\log \sum_i |f_i|$, où f_i sont holomorphes, alors on dit h a des singularités analytiques.

Théorème (Bonavero)

Quand h a des singularités analytiques, notre question principale est vrai :

$$\int_{Y} c_1(L,h)^n = \operatorname{vol}(L,h).$$

Théorème de Bonavero

Définition

Quand les singularités de h (ou plus précisément de $-\log h$) sont localement de la forme $\log \sum_i |f_i|$, où f_i sont holomorphes, alors on dit h a des singularités analytiques.

Théorème (Bonavero)

Quand h a des singularités analytiques, notre question principale est vrai :

$$\int_X c_1(L,h)^n = \operatorname{vol}(L,h).$$

Par contre,

Exemple

Berman-Boucksom-Jonsson ont construit h sur $L=\mathcal{O}_{\mathbb{P}^1}(1)$ telle que $\int_X c_1(L,h)^n<\mathrm{vol}(L,h).$

Extension du théorème de Bonavero

Théorème (DX20, DX21)

En général,

$$\int_X c_1(L,h)^n \le \operatorname{vol}(L,h).$$

On aimerais comprendre quand on a l'égalité. Quand $\int_X c_1(L,h)^n={
m vol}(L,h)>0$, on dit que h est ${\mathcal I}$ -bonne.

Extension du théorème de Bonavero

Théorème (DX20, DX21)

En général,

$$\int_X c_1(L,h)^n \le \operatorname{vol}(L,h).$$

On aimerais comprendre quand on a l'égalité. Quand $\int_X c_1(L,h)^n = \operatorname{vol}(L,h) > 0, \text{ on dit que } h \text{ est } \mathcal{I}\text{-bonne}.$ Ce théorème se réduit essentiellement au théorème de Bonavero. Mais la réduction n'est pas du tout triviale!

Les métriques \mathcal{I} -bonnes

Pour que notre théorème soit utile, il faut comprendre la condition d'être $\mathcal{I}\text{-bonne}.$

Théorème (DX20, DX21)

Supposons que $\int_X c_1(L,h)^n>0$. Les conditions suivantes sont équivalentes :

- h est J-bonne;
- h est dans la clôture de l'espace des singularités analytiques (par rapport à la métrique de Darvas-Di Nezza-Lu);
- Si l'on prend une forme $\theta \in c_1(L)$ et représente h par $\varphi \in \mathrm{PSH}(X,\theta)$, alors

$$P[\varphi] = P[\varphi]_{\mathcal{I}}.$$

lci $P[\bullet]$ et $P[\bullet]_{\mathcal{I}}$ sont des opérateurs de projection.

Les métriques \mathcal{I} -bonnes

Définition

On dit $\varphi, \psi \in \mathrm{PSH}(X, \theta)$ sont \mathcal{I} -équivalents si les conditions équivalentes suivantes sont remplies :

- $\mathcal{I}(k\varphi) = \mathcal{I}(k\psi)$ pour tout k;
- Les nombres de Lelong de φ et ψ sur tous les modèles birationels de X sont égaux.

Les métriques \mathcal{I} -bonnes

Définition

On dit $\varphi, \psi \in \mathrm{PSH}(X, \theta)$ sont \mathcal{I} -équivalents si les conditions équivalentes suivantes sont remplies :

- $\mathcal{I}(k\varphi) = \mathcal{I}(k\psi)$ pour tout k;
- Les nombres de Lelong de φ et ψ sur tous les modèles birationels de X sont égaux.

Alors

$$P[\varphi] := \sup \{ \psi \in \mathrm{PSH}(X, \theta) : \psi \le 0, \psi \le \varphi + C \}$$

et

$$P[\varphi]_{\mathcal{I}} := \sup \left\{ \psi \in \mathrm{PSH}(X,\theta) : \psi \leq 0, \psi, \varphi \text{ sont } \mathcal{I}\text{-\'equivalents} \right\}.$$

Slogan

On voit que les singularités \mathcal{I} -bonnes sont exactement celles qui rendent le volume algébrique et le volume analytique égaux.

Slogan

D'être \mathcal{I} -bonne est exactement la condition qui garantit que les invariants analytiques sont égaux aux invariants algébriques.

Slogan

On voit que les singularités \mathcal{I} -bonnes sont exactement celles qui rendent le volume algébrique et le volume analytique égaux.

Slogan

D'être \mathcal{I} -bonne est exactement la condition qui garantit que les invariants analytiques sont égaux aux invariants algébriques.

On verra un autre exemple de notre slogan tout de suite.

Riemann-Roch

Rappelons que quand L est ample et h est lisse,

$$\int_{X} c_{1}(L,h)^{n} = \lim_{k \to \infty} \frac{k^{n}}{n!} h^{0}(X,L^{k}) = (L^{n}).$$

Riemann-Roch

Rappelons que quand L est ample et h est lisse,

$$\int_X c_1(L,h)^n = \lim_{k\to\infty} \frac{k^n}{n!} h^0(X,L^k) = (L^n).$$

En général, on a

$$\int_X c_1(L,h)^n = \lim_{k \to \infty} \frac{k^n}{n!} h^0(X,L^k \otimes \mathcal{I}(h^{\otimes k})) = ?.$$

Riemann-Roch

Rappelons que quand L est ample et h est lisse,

$$\int_X c_1(L,h)^n = \lim_{k\to\infty} \frac{k^n}{n!} h^0(X,L^k) = (L^n).$$

En général, on a

$$\int_X c_1(L,h)^n = \lim_{k \to \infty} \frac{k^n}{n!} h^0(X,L^k \otimes \mathcal{I}(h^{\otimes k})) = ?.$$

Il faut avoir une théorie d'intersection!

b-diviseur

Définition

Un b-diviseur $\mathbb D$ sur X est une collection de (classe numérique) de diviseurs $\mathbb D_Y$ sur tous les modèles birationels (propre) $Y \to X$ de X, compatible par rapport aux push-forwards.

Exemple, Xia20

Nous définissons un b-diviseur $\mathbb{D}(L,h)$ à partir de h. Soit $p:Y\to X$ un modèle birationel. Alors nous définissons

$$\mathbb{D}(L,h)_Y := p^*L - \text{partie divisorielle de } c_1(p^*L,p^*h).$$

b-diviseur

Théorème (Xia19, Xia22)

Supposons que $\int_X c_1(L,h)^n>0$. Le b-diviseur $\mathbb{D}(L,h)$ est nef (au sens de Dang-Favre) et les conditions suivantes sont équivalentes :

- h est I-bonne;
- $\bullet \ \int_X c_1(L,h)^n = (\mathbb{D}(L,h)^n).$

Un cas particulier a été prouvé par Botero–Burgos Gil–Holmes–de Jong (2022) aussi. Ils ont montré que l'anneau des formes automorphes de Siegel–Jacobi n'est pas de type fini.

b-diviseur

Théorème (Xia19, Xia22)

Supposons que $\int_X c_1(L,h)^n>0$. Le b-diviseur $\mathbb{D}(L,h)$ est nef (au sens de Dang-Favre) et les conditions suivantes sont équivalentes :

- h est J-bonne;
- $\bullet \ \int_X c_1(L,h)^n = (\mathbb{D}(L,h)^n).$

Un cas particulier a été prouvé par Botero-Burgos Gil-Holmes-de Jong (2022) aussi. Ils ont montré que l'anneau des formes automorphes de Siegel-Jacobi n'est pas de type fini.

Ce théorème est une autre manifestation de notre slogan.

Tous les résultats mentionnés sont généralisés aux fibrés vectoriels dans Xia22.

Théorème (DX21)

Soit ν un mesure de Berstein-Markov sur X (par exemple, une forme lisse de type (n,n)) et $v\in C^0(X)$, alors les noyaux de Bergman partiels $\beta^k_{v,h,\nu}$ définis par les données convergent vers le mesure équilibre.

Ce théorème généralise tout ce qu'on savait auparavant dans cette direction.

Théorème (DX21)

Soit ν un mesure de Berstein-Markov sur X (par exemple, une forme lisse de type (n,n)) et $v\in C^0(X)$, alors les noyaux de Bergman partiels $\beta^k_{v,h,\nu}$ définis par les données convergent vers le mesure équilibre.

Ce théorème généralise tout ce qu'on savait auparavant dans cette direction.

Pour la preuve, nous avons établit une direction à la force brutale et ensuite il suffit d'appliquer le fait que le volume algébrique est égal à celui analytique.

Pour tout (L,h) et toute valuation ν de $\mathbb{C}(X)^{\times}$. J'ai construit un corps d'Okounkov $\Delta_{\nu}(L,h)\subseteq\mathbb{R}^n$, qui dépend de manière continue de h.

Théorème (Xia21)

Les corps d'Okounkov $(\Delta_{\nu}(L,h))_{\nu}$ sont des invariants universels des singularités de h à \mathcal{I} -équivalence près.

Dans la preuve, les théorèmes précédents jouent un rôle indispensable.

La preuve de DX20 dépend de la théorie pluripotentielle non-Archimédienne de Boucksom-Jonsson.

Réciproquement, DX20+DX21 nous permet d'établir une généralisation de la théorie de Boucksom-Jonsson.

Théorème (Darvas-X.-Zhang, à paraître)

Pour une classe pseudoeffective de type (1,1) sur X (non nécessairement dans le groupe de Néron–Severi), on peut définir une théorie pluripotentielle non-Archimédienne (même si il n'y a pas un espace analytique au sens de Berkovich associé à X).

Corollaire (Boucksom-Jonsson)

La conjecture d'enveloppes de Boucksom-Jonsson est vrai si la variété est lisse.

Théorème (Xia20)

Si X est de Fano, on peut définir un invariant de δ en terme des singularités $\mathcal I$ -bonnes tel que $\delta>1$ ssi X est uniformément K-stable.

Théorème (Xia20)

Si X est de Fano, on peut définir un invariant de δ en terme des singularités $\mathcal I$ -bonnes tel que $\delta>1$ ssi X est uniformément K-stable.

L'étude récente sur Ding stabilité d'une big classe est basée sur nos résultats. Par exemple, Dervan–Reboulet 22, Darvas–Zhang 22, Darvas–Zhang (à paraître).

Merci!