

SRI CHAITANYA EDUCATIONAL INSTITUTIONS,INDIA.

A.P,TELANGANA,KARNATAKA,TAMILNADU,MAHARAS HTRA,DELHI,RANCHI,CHANDIGARH SEC: INCOMING JR AIIMS S60,NEET MPL & MEDICON DATE: 04-07-2021

NEET WEEKEND TEST - 7 KEY

BOTANY

1)	2	2)	4	3)	4	4)	4	5)	2	6)	2	7)	1	8)	2	9)	4	10)	2
11)	3	12)	4	13)	3	14)	1	15)	2	16)	2	17)	2	18)	3	19)	1	20)	4
21)	4	22)	1	23)	1	24)	1	25)	3	26)	3	27)	3	28)	3	29)	2	30)	3
31)	1	32)	3	33)	4	34)	4	35)	4	36)	4	37)	1	38)	2	39)	1	40)	2
41)	3	42)	2	43)	4	44)	3	45)	1										

ZOOLOGY

46) 4	47) 4	48) 2	49) 1	50) 2	51) 3	52) 1	53) 1	54) 1	55) 2
56) 1	57) 3	58) 1	59) 3	60) 1	61) 2	62) 3	63) 1	64) 3	65) 1
66) 4	67) 4	68) 3	69) 3	70) 4	71) 2	72) 1	73) 1	74) 1	75) 4
76) 4	77) 4	78) 2	79) 2	80) 4	81) 4	82) 2	83) 3	84) 4	85) 3
86) 3	87) 2	88) 3	89) 1	90) 1					

PHYSICS

91)	1	92)	4	93)	1	94)	1	95)	1	96)	1	97)	3	98)	4	99)	4	100)	4
101)	2	102)	3	103)	2	104)	2	105)	2	106)	4	107)	1	108)	3	109)	1	110)	3
111)	4	112)	4	113)	1	114)	1	115)	4	116)	3	117)	1	118)	2	119)	2	120)	3
121)	1	122)	2	123)	2	124)	2	125)	4	126)	2	127)	3	128)	1	129)	1	130)	2
131)	4	132)	2	133)	3	134)	4	135)	2										

CHEMISTRY

136)	1	137)	3	138)	2	139)	1	140)	2	141)	4	142)	4	143)	3	144)	2	145)	3
146)	2	147)	1	148)	2	149)	3	150)	4	151)	2	152)	3	153)	1	154)	2	155)	2
156)	3	157)	1	158)	4	159)	4	160)	2	161)	4	162)	2	163)	2	164)	4	165)	1
166)	2	167)	3	168)	2	169)	4	170)	3	171)	3	172)	3	173)	2	174)	3	175)	2
176)	3	177)	2	178)	3	179)	4	180)	3										

Cni	Ch	aita	nvo
Sri	un	ana	ทงล

SOLUTIONS

- 1. NCERT XI Pg.No. 154
- 2. NCERT XI Pg.No. 157, 158
- 3. Concept
- 4. Concept
- 5. NCERT XI Pg.No. 154
- 6. NCERT XI Pg.No. 159
- 7. NCERT PAGE No:158
- 8. NCERT XI Pg.No. 159
- 9. NCERT XI Pg.No. 156
- 10. NCERT XI Pg.No. 154
- 11. NCERT XI Pg.No. 158
- 12. NCERT XI Pg.No. 159
- 13. NCERT XI Pg.No. 157
- 14. Application type
- 15. NCERT XI Pg.No. 157
- 16. NCERT XI Pg.No. 158
- 17. NCERT XI Pg.No. 156
- 18. NCERT XI Pg.No. 159
- 19. NCERT XI Pg.No. 155
- 20. NCERT XI Pg.No. 159
- 21. NCERT XI Pg.No. 158
- 22. NCERT page no:154
- 23 NCERT page no:157
- 24. NCERT XI Pg.No. 155
- 25. NCERT PAGE 158
- 26. NCERT XI Pg.No. 158
- 27. NCERT page no:159
- 28. NCERT page 155
- 29. NCERT XI Pg.No. 158
- 30. NCERT XI Pg.No. 156, 157
- 31. Application type
- 32. NCERT XI Pg.No. 157
- 33. NCERT XI Pg.No. 159
- 34. NCERT XI Pg.No. 154
- 35. NCERT XI Pg.No. 159

Sri Chaitanya

- 36. NCERT XI Pg.No. 158
- 37. NCERT XI Pg.No. 159
- 38. Previous NEET question
- 39. NCERT XI Pg.No. 157
- 40. NCERT XI Pg.No. 158
- 41. NCERT XI Pg.No. 159
- 42. NCERT XI Pg.No. 158
- 43. NCERT XI Pg.No. 159
- 44. NCERT XI Pg.No. 154
- 45. Ligase activity establishes bonds to synthesize new molecules. ATP is hydrolysed to provide bond energy
- 46. Cartilage is present at tip of nose, between adjacent bones and vertebral column
- 47. On above diagram
 - a Dense Regular (Tendon)
 - b Dense Irregular
- 48. Bone has hard and non-pliable ground substances rich in calcium salt and collagen fibres.
- 49. Given diagram adipose tissue cells of this tissue are specialised to store fats. Fat act as insulation.
- 50. Plasma contributes 55% of blood.
- 51. Ligaments joins bone to bone.
- 52. Dense irregular connective tissue present in skin.
- 53. Blood colloidal osmotic pressure maintained by Albumin.
- 54. Haversian canal is found in bones of mammals.
- 55. Hyaline cartilage is found in tracheal rings and bronchi etc.
- 56. Haversian system is present in bones
- 57. Abnormal rise of RBC count is called polycythaemia
- 58. Major constituent of bone is calcium phosphate.
- 59. Haversian system consists of Haversian canal, lamella and ostcocyte.

- 60. Strongest cartilage is white fibrous cartilage
- 61. Blood does not produce structural proteins like collagen, elastin, etc
- 62. Dense regular connective tissue examples are Tendon and ligaments.
- 63. Fibroblast secretes collagen fibres.
- 64. RBCs in humans are Biconcave and anucleated.
- 65. Most abundant leucocytes Neutrophils Least number of leucocytes – Basophiles
- 66. Blood contains 1) Plasma 2) Blood cells
- 67. Bone and cartilage are called skeletal tissue.
- 68. Hardest tissue of the body is bone
- 69. Mast cells produce histamine.
- 70. Lympocytes responsible for immune response of the body.
- 71. Serum contains plasma without clotting factors such as fibring en
- 72. Cartilage is also called gristle
- 73. Acidophil increase during allergy
- 74. Glass like cartilage is Hyaline cartilage
- 75. Haversian canals are interconnected by transverse canals known as volksman canals.
- 76. Epiglottis is composed of elastic cartilage.
- 77. Above three statements are correct.
- 78. Blubber of whale is an example of Adipose tissue
- 79. Basophils are involved in inflammatory reactions.
- 80. Thrombocytes are formed from megakaryocytes
- 81. Leucocytes are nucleated and generally short lived.
- 82. Neutrophils and monocytes are active phagocytic white blood cells.
- 83. Intercellular material of cartilage is solid, pliable and resists compression
- 84. Cartilage, blood and bone are set of specialised connective tissues
- 85. Plasma 55%; Formed elements 45%
- 86. Life span of RBC -120 days
- 87. Lympocytes contains large size spherical nucleus and peripheral cytoplasm
- 88. Adipose tissue loose connective tissue.

- 89. Proteins contribute in blood plasma 6-8 percent
- 90. In healthy person leucocytes count per cubic millimetre of blood (6000 to 8000)
- 91.

Displacement - $5\sqrt{2}$ m

Distance -
$$\frac{2\pi(5)}{4}$$
 = 2.5 π m

92. $200\hat{i} + 300\hat{j}$

 $Tan\alpha = \frac{200}{300}$

$$\alpha = \text{Tan}^{-1} \left(\frac{2}{3}\right) \text{E of N}$$

$$\sqrt{(200)^2 + (300)^2} = 360.5 \text{m}$$

94.
$$\vec{A} + \vec{B} = 2\hat{i} - 8\hat{j}$$

Tan $\alpha = \frac{8}{2} = 4$ clockwise with x-axis.

95.
$$2(\vec{A}) - 3\vec{B} + \vec{C} = 0$$

$$2(-2\hat{i}+\hat{j}-3\hat{k})-3(3\hat{i}+\hat{j}-3\hat{k})+\vec{c}=0$$

$$\vec{c} = 13\hat{i} + \hat{j} - 3\hat{k}$$

96.
$$20 = 40 \cos \theta$$

$$\cos \theta = \frac{1}{2}$$

$$\theta = \frac{\pi}{3}$$

$$40 \text{ gm } \frac{\pi}{3} = \frac{40\sqrt{3}}{2} = 20\sqrt{3}N$$

97.

$$mgsin\theta$$

$$= mg sin \theta$$

$$= (500) (10) \left(\frac{\sqrt{3}}{2}\right)$$

$$=2500 \sqrt{3} N$$

98. Conceptual

99. Conceptual

100.

 $(12 \cos 45 - 12 \cos 60^{\circ})\hat{i} + (12 \sin 45 + 12 \sin 60^{\circ})\hat{j}$

$$(12\sqrt{2}-12)\hat{i}+(12\sqrt{2}+12\sqrt{3})\hat{j}$$

101.
$$\tan \alpha = \frac{1}{\sqrt{3}}$$

$$\alpha = \frac{\pi}{6}$$

102.
$$24\hat{i} + 10\hat{j} + 4\hat{k}$$

$$\sqrt{(24)^2 + (10)^2 + (4)^2} = 26.3$$
m

103. Conceptual

104. Conceptual

$$105. \quad \cos\alpha = \frac{4}{5\sqrt{2}}$$

$$\cos\beta = \frac{5}{5\sqrt{2}}$$

$$\cos \gamma = \frac{3}{5\sqrt{2}}$$

$$\therefore \vec{p} = 4\hat{i} + 5\hat{j} + 3\hat{k}$$

106. XY plane
$$-\sqrt{(5)^2 + (2)^2}$$

= $\sqrt{29}$

YZ plane =
$$\sqrt{(2)^2 + (3)^2}$$

= $\sqrt{13}$

107.
$$\vec{P} + \vec{Q} = 7\hat{i} + \hat{j} + 2\hat{k}$$

$$\frac{\vec{P} + \vec{Q}}{|\vec{P} + \vec{Q}|} = \frac{7\hat{i} - \hat{j} + 2\hat{k}}{\sqrt{54}}$$

108.
$$|\vec{A}| = \sqrt{25} = 5$$

The direction of vector with x-axis is $\alpha = Tan^{-1} \left(\frac{3}{4}\right) = 37^{\circ}$

Total angle is 90° in anticlockwise direction means new vector is along y-axis 5j.

109. It is not necessary that $\vec{a} = \vec{b} = \vec{c} = \vec{d} = 0$

110.
$$P^2 = A^2 + B^2 + 2ABCos\theta$$

 $Q^2 = A^2 + B^2 - 2ABCos\theta$
 $P^2 + Q^2 = 2[A^2 + B^2]$

111. Conceptual

112. Conceptual

113. Conceptual

114. Magnitude of a vector of the form $\vec{A} = a\hat{i} + b\hat{j} + c\hat{k}$ is given by

$$\left| \vec{A} \right| = \sqrt{a^2 + b^2 + c^2}$$

 \therefore Magnitude of $\frac{\hat{i}}{\sqrt{2}} + \frac{\hat{j}}{\sqrt{2}}$ is

$$\sqrt{\left(\frac{1}{\sqrt{2}}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} = 1$$

115. Vector joining A: (4, -4, 0) and B: (-2, -2, 0) is given by

$$\overline{AB} = (-2 - 4)\hat{i} + (-2 - (4))\hat{j} + (0 - 0)\hat{k} = -6\hat{i} + 2\hat{j}$$
$$\left| \overline{AB} \right| = \sqrt{(-6)^2 + (2)^2} = \sqrt{40} = 2\sqrt{10}$$

116. Unit vector along a vector A is given by

$$\vec{A} = \frac{\vec{A}}{\left|\vec{A}\right|}$$

 $\hat{i} + \hat{i}$ Unit along vector

$$\frac{\hat{i}+\hat{j}}{\sqrt{l^2+l^2}} = \frac{\hat{i}+\hat{j}}{\sqrt{2}}$$

- 117. Conceptual
- 118. Conceptual
- 119. Angle made by vector $\vec{A} = a\hat{i} + b\hat{j}$ with xaxis is $\theta = \tan^{-1} \left(\frac{b}{a} \right)$

$$\therefore \theta = \tan^{-1} \left(\frac{1}{1} \right) = 45^{\circ}$$

120. Applying triangle's law of vector addition, we get $\vec{B} - = \vec{C} + \vec{A}$ (From tail of 1st vector to head of 2nd vector)

121. If
$$\theta = 120^{\circ}$$
 $\vec{P} = \vec{Q} = \vec{R}$

- 122. Conceptual
- 123. Conceptual

$$124. \sqrt{40P} = \sqrt{16P^2 + 8P^2 + 2(4P)(\sqrt{8PCos\theta})}$$

$$Cos\theta = \frac{1}{\sqrt{2}}$$

$$\theta = 45^{\circ}$$

125. Sum of two least forces should be greater than or equal to large force.

126.
$$P + Q = 8$$

 $P - Q = 4$
 $P = 6$

$$P = 6$$

$$Q = 2$$

$$P^1 = 8N \qquad \qquad Q^1 = 4N \qquad \quad \theta = 60^\circ$$

$$R^1 = \sqrt{(8)^2 + (4)^2 + 2(8)(4)(\cos 60)} = 33.2N$$

127. The sum of equal vectors of magnitude R = $2P \cos \theta/2$

In unit vectors $\Rightarrow 1 = 2 \times 1 \times \cos \theta / 2$

$$\cos \frac{\theta}{2} = \frac{1}{2} = \cos 60^\circ; \frac{\theta}{2} = 60^\circ \Rightarrow \theta = 120^\circ T$$

he magnitude of difference of equal vectors

$$S = 2P\sin\frac{\theta}{2}$$

In unit vectors

$$\Rightarrow S = 2 \times 1 \times \sin \frac{120^{\circ}}{2} = 2 \times \frac{\sqrt{3}}{2} = \sqrt{3} \text{ units}$$

- 128. After 9th turn the position is C, hence displacement is oc = 2(OA) = 100m.
- 129. Conceptual
- 130. Conceptual

131.
$$\left[\sqrt{4^2 + 3^2 + 24\cos\theta}\right]^2 = 12 + \left[\sqrt{4^2 + 3^2}\right]^2$$

132. Let the required vector be A.

$$\vec{A} + (\hat{i} - 2\hat{j} + 2\hat{k}) + (2\hat{i} + \hat{j} - \hat{k}) = i$$

$$\Rightarrow \vec{A} = -2\hat{i} + \hat{j} - \hat{k}$$

133. If a vector $\vec{A} = a\hat{i} + b\hat{j} + c\hat{k}$ makes angles $\alpha, \beta \& \gamma$ with x, y and z axes respectively then

$$\cos \alpha = \frac{a}{\sqrt{a^2 + b^2 + c^2}}, \cos \beta = \frac{b}{\sqrt{a^2 + b^2 + c^2}}$$

and
$$\cos \gamma = \frac{c}{\sqrt{a^2 + b^2 + c^2}}$$

$$\therefore \cos \alpha = \frac{1}{\sqrt{1^2 + 1^2 + \left(\sqrt{2}\right)^2}} = \frac{1}{2} \Rightarrow$$

$$\alpha = 60^{\circ}$$

$$\cos \beta = \frac{1}{\sqrt{1^2 + 1^2 + \left(\sqrt{2}\right)^2}} = \frac{1}{2} \Rightarrow$$

$$\beta = 60^{\circ}$$

- 134. Conceptual
- 135. Conceptual
- Atomic weight of 'Be' was corrected based 136. on valency.
- 137. Eka silicon days called now a Germanium.
- 138. Atomic weight of Ar is 40 and potassium is
- Na (atomic weight = 23) $\Rightarrow \frac{7+39}{2} = 23$ 139.
- 140. Conceptual

- 141. Elements of VIII group are transition triads
- 142. Conceptual
- 143. When l = 1, m cannot be -2 since m ranges from -l to +l through 0
- 144. $0-8-1s^22s^22p^4$ $n=2, \ell=1, m=-1, 0, +1, s=\pm\frac{1}{2}$
- 145. Each orbital can accommodate two electrons with opposite spin
- 146. Physical and chemical properties of elements are periodic functions of electronic configuration.
- 147. Conceptual
- 148. Fe⁺³ has 3d⁵ configuration $\mu = \sqrt{n(n+2)}$ $= \sqrt{5(5+2)} = \sqrt{35} \text{ B.M}$
- 149. $Cr = [Ar] 3d^5 4s^1$
- 150. Total number of gaseous elements in periodic table are 11 (H_2 , He, Ne, Ar, Kr, Xe, Rn, N_2 , O_2 , F_2 , Cl_2)
- 151. f-orbital has l = 3 then m = -3, -2, -1, 0, 1, 2, 3.
- 152. For P_z orbital m is 0 For P_x and P_y orbital m must be ± 1
- 153. 'm' value for s-orbital is zero only.
- 154. l = 1 for p-orbital and its shape is dumbbell.
- 155. An orbital can accommodate maximum 2-electrons only.
- 156. Number of orbital for quantum level is = n^2
- 157. l = 2 for all d-electrons
- 158. 'l' value should not be equal (or) greater than 'n' value
- 159. Four quantum numbers are required to complete description of an electron.
- 160. Azimuthal quantum number indicates shape of orbital.

- 161. 's' value may be $+\frac{1}{2}$ (or) $-\frac{1}{2}$
- 162. Cu has [Ar] $3d^{10}4s^1$
- 163. Both Fe^{+3} and Mn^{+2} have 23 electrons.
- 164. 4f orbital has n = 4, l = 3Total n + l value = 4 + 3 = 7
- 166. Total electrons are 15. So it is phosphorous (p)
- 167. Correct configuration is 2, 8, 13, 1 b has chromium has [Ar] $3d^54s^1$
- 168. f-orbital starts with 4th orbit.
- 170. Ti^+ ion $(21e^-)$ is not a isoelectronic with O^{-2} ion $(10e^-)$
- 171. As n + l value increases energy also increases. If n + l value is same then lower 'n' value orbital having lower energy.
- 172. Fe⁺² ion $\uparrow \downarrow$ $\uparrow \downarrow \uparrow \uparrow \uparrow \uparrow \uparrow$ No.of unpaired elect = 4
- 173. K = 2 L = 8 M = 13, N = 1Total electrons = 24, Element is chromium.
- 174. Pauli's exclusion principle.
- 175. Mg has 6 s-electrons and 6-p-electrons
- 176. Cesium ion has
 10 s-electrons (1s, 2s, 3s, 4s, 5s)
 24 p-electrons (2p, 3p, 4p, 5p)
 20 d-electrons (3d, 4d)
- 177. Nitrogen has $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \uparrow \uparrow \uparrow$
- 178. No. of electrons in f-orbital = 14
- 179. Conceptual
- 180. Magnetic quantum number = n^2