

AI ML(MCA 475)

Lab Assignment-05

BY

Himanshu Heda (24225013)

SUBMITTED TO

Prof. ManjulaShanbhog

SCHOOL OF SCIENCES 2024-2025

Multiple Regression on Tips Dataset

Libraries Used

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

from sklearn.metrics import r2_score,mean_squared_error

from scipy import stats

df=pd.read_csv("C:/Users/samdc/OneDrive/Desktop/AI ML/tips - tips.csv")

Exploratory Dataset Analysis

df.head()

	total_bill	tip	sex	smoker	day	time	size
0	16.99	1.01	Female	No	Sun	Dinner	2
1	10.34	1.66	Male	No	Sun	Dinner	3
2	21.01	3.50	Male	No	Sun	Dinner	3
3	23.68	3.31	Male	No	Sun	Dinner	2
4	24.59	3.61	Female	No	Sun	Dinner	4

df.sample(7)

	total_bill	tip	sex	smoker	day	time	size
30	9.55	1.45	Male	No	Sat	Dinner	2
164	17.51	3.00	Female	Yes	Sun	Dinner	2
100	11.35	2.50	Female	Yes	Fri	Dinner	2
224	13.42	1.58	Male	Yes	Fri	Lunch	2
41	17.46	2.54	Male	No	Sun	Dinner	2
42	13.94	3.06	Male	No	Sun	Dinner	2
115	17.31	3.50	Female	No	Sun	Dinner	2

df.describe()

	total_bill	tip	size
count	244.000000	244.000000	244.000000
mean	19.785943	2.998279	2.569672
std	8.902412	1.383638	0.951100
min	3.070000	1.000000	1.000000
25%	13.347500	2.000000	2.000000
50%	17.795000	2.900000	2.000000
75%	24.127500	3.562500	3.000000
max	50.810000	10.000000	6.000000

df.dtypes

total_bill	float64
tip	float64
sex	object
smoker	object
day	object
time	object
size	int64
dtype: object	

df.isnull().sum()

total_bill	0
tip	0
sex	0
smoker	0
day	0
time	0
size	0
dtype: int64	

Visualization plt.figure(figsize=(8, 5))

sns.histplot(df['total_bill'], bins=30, kde=True)
plt.title('Distribution of Total Bill')

plt.xlabel('Total Bill')
plt.ylabel('Frequency')
plt.show()

plt.figure(figsize=(8, 5))

sns.boxplot(x='day', y='tip', data=df

plt.title('Tip Distribution by Day')

plt.xlabel('Day')

plt.ylabel('Tip')

plt.show()

plt.figure(figsize=(6, 4)) sns.countplot(x='smoker', data=df)

plt.title('Count of Smokers vs Non-Smokers')

plt.show()

ill', y='tip', hue='sex', data=df)
plt.title('Tip vs Total Bill Colored by Sex')

olt.xlabel('Total Bill')

plt.ylabel('Tip')

nlt.show()

numeric df = df.select dtypes(include=['float64', 'int64']) # Select only numeric columns

plt.figure(figsize=(8, 6))

sns.heatmap(numeric_df.corr(), annot=True, cmap='coolwarm')

plt.title('Correlation Heatmap of Numeric Features') plt.show()

Outlier detection (IQR and Z-score) for numerical columns

num_cols=df.select_dtypes(include=[np.number]).columns

Q1=df[num_cols].quantile(0.25) Q3=df[num_cols].quantile(0.75)

<u>print("Quartile 1 :\n",Q1)</u> print("Quartile 3 :\n",Q3)

```
Quartile 1:

total_bill 13.3475

tip 2.0000

size 2.0000

Name: 0.25, dtype: float64

Quartile 3:

total_bill 24.1275

tip 3.5625

size 3.0000

Name: 0.75, dtype: float64
```

IQR=Q3-Q1

```
 \begin{aligned} & \text{iqr\_outlier\_mask} = \left( \text{df[num\_cols]} < \left( \text{Q1 - 1.5 * IQR} \right) \right) \mid \left( \text{df[num\_cols]} > \left( \text{Q3 + 1.5 * IQR} \right) \right) \\ & \text{iqr\_outlier=} \left( \left( \text{df[num\_cols]} < \text{Q1-}(1.5*IQR) \right) \mid \left( \text{df[num\_cols]} > \text{Q3 + }(1.5*IQR) \right) \right). \\ & \text{z = np.abs(stats.zscore(df[num\_cols]))} \\ & \text{zscore\_outlier\_mask} = z > 3 \\ & \text{outlier\_zscore} = (z > 3).sum(axis=0) \end{aligned}
```

print("IQR outliers:\n", iqr_outlier)
print("Z-score outliers:\n", outlier_zscore)

```
IQR outliers:
total bill
               9
tip
              9
size
              9
dtype: int64
Z-score outliers:
total bill
               4
tip
              3
size
              4
dtype: int64
```

```
for col in num_cols:

plt.figure(figsize=(10,4))

plt.subplot(1,2,1)

sns.histplot(df[col], kde=True)

plt.title(f'Histogram: {col}')

plt.subplot(1,2,2)

sns.boxplot(x=df[col])

plt.title(f'Boxplot: {col}')

plt.tight_layout()

plt.show()
```


Combine masks: rows with outliers by either method

combined_outlier_mask = iqr_outlier_mask.any(axis=1) | zscore_outlier_mask.any(axis=1)

Create cleaned dataset by removing outlier rows

 $df_cleaned = df[\sim combined_outlier_mask].copy()$

Check shapes before and after

print("Original shape:", df.shape)

print("Cleaned shape:", df_cleaned.shape)

Original shape: (244, 7)
Cleaned shape: (223, 7)

Multilinear regression

X = pd.get_dummies(df_cleaned.drop('tip', axis=1), drop_first=True) y = df_cleaned['tip']

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

model = LinearRegression()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)

print("Mean Squared Error:", mse)

print("R-squared:", r2)

Mean Squared Error: 0.5302606901799164 R-squared: 0.4395689103225353

print("Coefficients:", model.coef_)
print("Intercept:", model.intercept_)

-0.06041716 0.02335491] Intercept: 1.2112989953182727

Scatter plot: Actual vs Predicted

plt.figure(figsize=(8, 6))

sns.scatterplot(x=y_test, y=y_pred)

plt.xlabel('Actual Tip')

plt.ylabel('Predicted Tip')

plt.title('Actual vs Predicted Tips')

 $plt.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], 'r--') # Perfect fit line$

plt.show()

Histogram: Residuals
residuals = y_test - y_pred

plt.figure(figsize=(8, 6)) sns.histplot(residuals, kde=True, bins=20) plt.title('Residuals Distribution') plt.xlabel('Residuals')

plt.show()

plt.plot(y_test.values, label='Actual', color='red', linewidth=2) plt.scatter(range(len(y_pred)), y_pred, label='Predicted', color='blue')

