

### Radiation damage studies on DØ Silicon Sensors for Run IIb



- Lifetime studies on existing DØ Run IIa silicon detector
- Expectations for Run IIb
- Irradiation studies on Run IIb sensors
- Conclusions





Frank Lehner
U Zurich
6<sup>th</sup> International Conference RD'03
Florence, Sept 30, 2003



#### The Run IIa Silicon Detector



- existing Run IIa detector
  - commissioned during '01
  - designed for a luminosity of 2fb-1
    - ~250 pb<sup>-1</sup> now delivered
  - variety of different geometries, technologies and types
  - mainly double sided silicon sensors, i.e. HV across coupling capacitors

|  | Module             | Туре | Layer | Inner<br>Radius (cm) | Outer<br>Radius (cm) | Manufacturer       |
|--|--------------------|------|-------|----------------------|----------------------|--------------------|
|  | Central<br>Disk    | DS   | -     | 2.57                 | 9,96                 | Micron,<br>Eurisys |
|  | Outer<br>Disk      | SS   | -     | 9.5                  | 26                   | Elma               |
|  | Central<br>Barrels | DSDM | 1     | 2.715                | 3.645                | Micron             |
|  |                    | DS   | 2     | 4.55                 | 5.554                |                    |
|  |                    | DSDM | 3     | 6.768                | 7.582                |                    |
|  |                    | DS   | 4     | 9.101                | 10.51                |                    |
|  | Outer<br>Barrels   | SS   | 1     | 2.715                | 3.645                | Micron             |
|  |                    | DS   | 2     | 4.55                 | 5.554                |                    |
|  |                    | SS   | 3     | 6.768                | 7.582                |                    |
|  |                    | DS   | 4     | 9.101                | 10.51                |                    |







#### The Run IIa Silicon Detector -Lifetime expectations



- depletion voltage prediction for Run IIa
  - expect 150-200V after 4 fb<sup>-1</sup>
- unacceptable high values for bias voltage limit the lifetime for double sided sensors
  - coupling capacitors have breakdown at ~150V (specified)
  - aging or mechanical damage incurred during micro-bonding could lower breakdown threshold





## The Run IIa Silicon Detector - Radiation damage studies



- study radiation damage on Run IIa production spare ladders
- ladders identical to those in collision hall, i.e. mechanical support structures and R/O chips
- irradiation took place at 8 GeV proton Booster at Fermilab
  - irradiation in 5 steps up to 2 Mrad (~7·10<sup>13</sup> 8 GeV p/cm<sup>2</sup>)
  - equivalent to ~ 5 fb<sup>-1</sup> for innermost layer in Run IIa detector
  - detectors kept during irradiation at 5°C and then annealed
  - characterization by laser and burn-in stand









## The Run IIa Silicon Detector - Radiation damage studies



- measure depletion voltage as function of accumulated fluence for all DØ Run IIa silicon detector types
- most types perform as expected from RD48 studies
- double-sided double metal detectors (DSDM) show abnormal high depletion voltage
  - those detectors are in the inner central layer
  - made from 6"-wafers
  - sensors have ~1.5 μm PECVD layer between metal layers
- separate exposure on test diodes from DSDM wafers was behaved normal
- => PECVD layer has increased sensitivity to radiation





## The Run IIa Silicon Detector - Radiation damage studies



- look at noise after irradiation
- after type inversion junction has migrated to n-side
- observe larger noise possibly due to micro-discharge effects:
  - increase in the magnitude of the electric fields at the p-n junction caused by fields associated with AC coupling structure
  - enhanced by excess charge in oxide or misalignment of aluminium layers
  - sensitive to AC coupling voltage
- lifetime of detector limited to onset of micro discharge
- expect noise will be unacceptable between 130V-170V bias voltage
- inner layer will loose significantly in efficiency after 3.5 fb<sup>-1</sup>







# Lessons & consequences from this study for Run IIb



- useful lifetime of inner layers of existing Run IIa detector is limited by bias voltage applied across capacitors
- central inner layer detectors (DSDM) have increased sensitivity to radiation effects
- there is a capability of the detector to run up to 3.5 fb<sup>-1</sup>
- it will certainly not survive extended Tevatron period with a total expected luminosity of 12-15 fb<sup>-1</sup>
- a new Run IIb detector (see talk by Kazu Hanagaki) was designed as an improved, drop-in replacement of existing silicon for winter 2005
  - designed for at least 15 fb<sup>-1</sup> capability of up to 20 fb<sup>-1</sup>
  - use of single-sided sensors only
  - minimize number of detector types
  - number of layers increased from 4 to 6
  - eliminate disk design
- The director at Fermilab, Mike Witherell, announced on Sept 3 2003, that "we will not include the silicon detectors (CDF & DØ) in the continuing upgrade projects"



#### Run IIb - Radiation environment



#### Depletion Voltage Prediction:



'Hamburg' model: M. Moll DESY-Thesis-99-040

up to  $2 \cdot 10^{14}$  1 MeV eq. n/cm<sup>2</sup> in innermost layer (LO, r=1.7 cm from beam) after  $15 \text{fb}^{-1}$ 



## Sensor technology for Run IIb silicon detector



- Chosen sensor technology profited from R&D for LHC detectors:
  - single sided n+p
    - robust, simple and low number of dead channels <1%</li>
  - crystal orientation <100>
  - pitch: 25 & 29 μm, every 2<sup>nd</sup> strip read out
    - improve single hit resolution
  - integrated AC coupling and polysilicon bias resistor
    - both features will work reliable after irradiation
  - guard ring structure design for necessary radiation resistance:
    - either multi-guard ring structure
    - or single guard ring design with peripheral n-well (Hamamatsu development)
  - overhanging metal on readout strips
    - significantly reduced risk of HV breakdown after heavy irradiation



multiple guard ring ELMA





- use beam from 7MV Tandem Van de Graaff (mostly protons at 10 MeV) at James R. Mcdonald Lab at Kansas State University
- beam is rastered over sample using sawtooth pattern electric field
- current measured by Faraday cup/current integrator to 10pC least count
- runs are for fixed amount of charge with beam currents 10-100 nA









- sensors and test diodes are mounted (unbiased) in vacuum target chamber
- multiple fluence points are taken for sensors, single fluence points for test diodes
- sensors/test diodes annealed at 60°C for 80 minutes, then electrically tested
- long term storage of sensors at -20 °C











- detailed fluence (=integrated flux) cross checks
- Faraday cup is close behind target
  - only beam passing through samples in Al window is counted
  - acceptance corrections due to multiple Coulomb scattering are small (<10%)</li>
    - built acceptance model by simple GEANT simulation
    - measure ratio of counts at same beam setting for two runs: sensor mounted on target and no sensor mounted
    - uncertainty ~10% -> largest error on fluence
  - Faraday cup cross checked against other cup (<1%)</li>
  - independent fluence cross check by copper activation analysis





- 1.5 mil natural cooper foils irradiated in same beam with protons to produce Zn-63 ( $\tau$ =38 min) and Zn-65 ( $\tau$ =244 days), which  $\beta$ <sup>+</sup> or EC decay with accompanying  $\gamma$ 's
- Zn-63 & Zn-65 rates measured at KSU Nuclear reactor Lab using Gecounters -> agrees with direct fluence measurement to ~10%
- Zn-65 samples measured independently at FNAL -> 18%
- activation analysis are consistent with direct fluence measurements





#### Results on leakage currents



- best way to present our data is directly in terms of integrated proton fluence, rather than converting to 1 MeV eq. neutron fluence
- in doing this, we compare directly with measurements taken with a similar setup at Montreal (RD48/ROSE Collab., D. Bechevet et al., NIM A479:487-497, 2002)
- a fit to our 10 MeV proton data yields  $\alpha_{\rm p}$  = 11·10<sup>-17</sup> A·cm
  - approx. independent of sensor type & geometry
  - consistent with RD48 data ( $\alpha_p = 10 \cdot 10^{-17} \text{ A} \cdot \text{cm}$ )

#### 10 MeV p:





#### Results on leakage currents



- two sensors were exposed to an effective 7 MeV p beam
- $\alpha_p = 18.10^{-17} \text{ A.cm}$
- agrees with ROSE data set on 7 MeV  $(\alpha_p = 17.2 \cdot 10^{-17} A \cdot cm)$

#### 7 MeV p:





#### Hardness factor k of beam



- estimate equivalent 1 MeV n fluence:  $\Phi_n = \mathbf{k} \times \Phi_p$  from leakage current rise
- Theoretically:
  - values of k for protons tabulated in Summers et al. (on thin targets only!)
  - 10 MeV protons lose approximately 3.1 MeV in ~300 μm Si
  - calculate effective k:  $k_{eff} = 1/\Delta E \times \int k(E) \cdot dE = 4.5$
- Experimentally:
  - $k_{exp}$ =  $\alpha_p$  (10 MeV p) /  $\alpha_n$  (1 MeV eq. n)
  - k<sub>exp</sub> = 2.5, i.e. ~40% less damage than NIEL scaling predicts
  - for 7 MeV: k<sub>exp</sub>= 4, i.e. similar discrepancy to NIEL prediction (k=7.4)
- Bulk related damage in 7 MeV & 10 MeV p exposure ~40% lower than anticipated by NIEL

theoretical proton hardness factors based on NIEL:



G.P. Summers et al.: (IEEE NS40 (1993) 1372



### Depletion voltage I



- 5 test diodes from our production wafer lots have been exposed to 10 MeV p single irradiation
- adopt simple parameterization assuming complete donor removal in p-irradiation
- $N_{eff} = N_{eff,0} \cdot exp(-c \cdot \Phi) b \cdot \Phi$ 
  - Values for c, b as in ROSE publication:
    - c=1.13·10<sup>-13</sup> cm<sup>-2</sup>
    - $b=3.4\cdot10^{-2}$  cm<sup>-1</sup>
  - good description up to 1.32·10<sup>14</sup> p/cm<sup>2</sup>





### Depletion voltage II



- successive irradiation of sensors compared to 'Hamburg' model taking anneling and reverse annealing towards larger fluences into account
- good agreement to model if measured hardness is taken into account





### Other electrical tests:



- few Run IIb prototype sensors were tested after irradiation of up to  $1\cdot10^{14}$  10 MeV p/cm² for
  - breakdown voltage: no breakdown up to 800V bias
  - coupling capacitors: no change of capacitor value no additional pinholes
  - implant, polysilicon and interstrip resistances: no indication of resistor value changes
  - interstrip capacitance: increase by 40% (!) at 1 MHZ
  - Total capacitance: 1.1 pF/cm -> 1.5 pF/cm







#### Conclusions



- Radiation Damage studies on Run IIa silicon ladders
  - indications that useful lifetime is limited to 3.5 fb<sup>-1</sup> only
  - double-sided double-metal detectors show increased sensitivity to radiation, probably due to PECVD layer
  - onset of micro-discharge noise will limit the maximum bias voltage on ladders
- Radiation Damage studies on Run IIb silicon sensors
  - sensors & test diodes have been irradiated with 7 & 10 MeV protons
  - sensors behave well at doses exceeding the Run IIb expectations
  - observed damage for low energy protons is about 40% smaller than anticipated by NIEL scaling
  - good agreement to data measured by RD48
- While the Run IIb silicon tracker will not be built, we believe its design is sound and our R&D work may be helpful to others