LÖSUNG 63. Bestimmen Sie für die Boolesche Teileralgebra D_{70} die Werte $2 \oplus 14$, $\neg 14$ und $35 \odot 10$.

- $2 \oplus 14 = \text{kgV}(2, 14) = 14$
- $\neg 14 = \frac{70}{14} = 5$ $35 \odot 10 = ggT(35, 10) = 5$

LÖSUNG 64. Bestimmen Sie für die Boolesche Teileralgebra D_{42} die Werte $6 \oplus 21$, $\neg 14$ und $6 \odot 42$.

- $6 \oplus 21 = \text{kgV}(6, 21) = 42$
- $\neg 14 = \frac{42}{14} = 3$
- $6 \odot 42 = ggT(6, 42) = 6$

LÖSUNG 65. Mit der Relation $a \leq b \Leftrightarrow a \odot b = a$ ergibt sich eine Teilordnung auf einer Booleschen Algebra. Erstellen Sie daraus ein Hassediagramm aller Elemente in D_{70} .

Die Beziehung $a \odot b = a$ bedeutet in D_{70} , dass ggT(a,b) = a, also a ein Teiler von b ist. Damit handelt es sich um ein Hassediagramm zur Teilbarkeit der Teiler von $70 = 2 \cdot 5 \cdot 7$:

LÖSUNG 66. Mit der Relation $a \leq b \Leftrightarrow a \odot b = a$ ergibt sich eine Teilordnung auf einer Booleschen Algebra. Erstellen Sie daraus ein Hassediagramm aller Elemente in der Booleschen Mengenalgebra zu $\mathcal{P}(\{r,g,b\}).$

Die Beziehung $A \odot B = B$ bedeutet in $\mathcal{P}(\{r,g,b\})$, dass $A \cap B = A$, also A Teilmenge von B ist. Damit handelt es sich um ein Hassediagramm zur Teilmengenbeziehung der Potenzmenge über $\{r,g,b\}$.

LÖSUNG 67. Zeigen Sie, dass es in einer Booleschen Algebra B nur ein Element $e \in B$ gibt, so dass für alle $x \in B$ gilt: $x \oplus e = x$.

Beweis. Angenommen es gibt ein $d \in B$ mit $x \oplus d = x$ für alle $x \in B$.

- ullet Dann gilt $e\oplus d=e$ und $d\oplus e=d$ nach Prämisse und Annahme.
- Wegen Kommutativität gilt $e = e \oplus d = d \oplus e = d$.
- Damit gilt für jedes (weitere) $d \in B$ mit der gewünschten Eigenschaft, dass d = e = 0, also ist es eindeutig.

LÖSUNG 68. Zeigen Sie, dass es in einer Booleschen Algebra B für jedes Element $x \in B$ die Gleichung $x \odot x = x$ gilt.

Beweis. Es gilt für alle $x \in B$:

$$\begin{array}{ll} x = x \\ = x \odot \mathbb{1} & \text{(Identität)} \\ = x \odot (x \oplus \neg x) & \text{(Komplement)} \\ = (x \odot x) \oplus (x \odot \neg x) & \text{(Distributivität)} \\ = (x \odot x) \oplus \mathbb{0} & \text{(Komplement)} \\ = x \odot x & \text{(Identität)} \end{array}$$

LÖSUNG 69. Erstellen Sie eine Schaltung, die aus dezimal einstelligen 4-Bit Binärzahlen die einstelligen Primzahlen 2, 3, 5, 7 signalisiert.

Die Anforderungen von Eingängen (b_3, b_2, b_1, b_0) zu Ausgang p sind folgendermaßen:

x	b_3	b_2	b_1	b_0	p
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	1
3	0	0	1	1	1
4	0	1	0	0	0
5	0	1	0	1	1
6	0	1	1	0	0
7	0	1	1	1	1
8	1	0	0	0	0
9	1	0	0	1	0

Als KV-Diagramm ergibt sich dann die folgende Tableau mit beliebigen Werten für die Bitkombinationen für x>9:

		b_1b_0				
		00	01	11	10	
	00	0	0	1	1	
b_3b_2	01	0	1	1	0	
	11	-	-	-	-	
	10	0	0	-	-	

Der mittlere Block hat $b_2=1$ und $b_0=1$, ergibt also $b_2\wedge b_0$, der über die Kante hat $b_2=0$ und $b_1=1$ und ergibt $\overline{b_2}\wedge b_1$. Damit lautet der minimale boolesche Ausdruck, der b_3 überhaupt nicht benötigt:

$$p(b_3, b_2, b_1, b_0) = p(b_2, b_1, b_0) = (b_2 \wedge b_0) \vee (\overline{b_2} \wedge b_1)$$

Damit ergibt sich diese Schaltung:

LÖSUNG 70. Erstellen Sie eine Schaltung, die einen Wiederholungscode-Decoder mit Korrektur aus Beispiel 3.38 realisiert.

Die Anforderungen von Eingängen (d_0,d_1,d_2) zu Ausgang x sind folgendermaßen:

d_0	d_1	d_2	x
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Als KV-Diagramm ergibt sich dann das folgende Tableau:

		d_1d_0				
		00	01	11	10	
d_2	0	0	0	1	0	
u_2	1	0	1	1	1	

Als Blöcke ergeben sich $d_2=1$, $d_0=1$, also $d_0\wedge d_2$, und $d_2=1$, $d_1=1$, also $d_1\wedge d_2$ und $d_1=1$, $d_0=1$, also $d_0\wedge d_1$, also wahrscheinlich nicht ganz unerwartet

$$x(d_0, d_1, d_2) = (d_0 \wedge d_2) \vee (d_1 \wedge d_2) \vee (d_0 \wedge d_1)$$

Damit ergibt sich diese Schaltung:

LÖSUNG 71. Formulieren Sie den zugehörigen booleschen Ausdruck zum gegebenen Schaltungsdiagramm, bestimmen Sie die disjunktiven und konjunktiven Normalformen. Können Sie mit Hilfe eines KV-Diagramms eine vereinfachte Schaltung ableiten?

Als boolescher Ausdruck ergibt sich:

$$f(x_1, x_2, x_3) = (x_1 \wedge (\overline{x_2} \vee x_3)) \vee (\overline{x_2} \wedge \overline{x_3} \wedge \overline{x_1})$$

Damit ergibt sich:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Die disjunktive Normalform lautet:

$$f(x_1, x_2, x_3) = (\overline{x_1} \wedge \overline{x_2} \wedge \overline{x_3}) \vee (x_1 \wedge \overline{x_2} \wedge \overline{x_3}) \vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$$

Die konjunktive Normalform lautet:

$$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor \overline{x_3}) \land (x_1 \lor \overline{x_2} \lor x_3) \land (x_1 \lor \overline{x_2} \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor x_3)$$

Damit ergibt sich das KV-Diagramm:

Die minimalen Terme lauten so für $x_2=0, x_3=0$ einmal $\overline{x_2}\wedge \overline{x_3}$ und mit $x_1=1, x_3=1$ dann $x_1\wedge x_3$ und insgesamt

$$f(x_1, x_2, x_3) = (x_1 \wedge x_3) \vee (\overline{x_2} \wedge \overline{x_3})$$

und das entspricht der vereinfachten Schaltung:

LÖSUNG 72. Formulieren Sie den zugehörigen booleschen Ausdruck zum gegebenen Schaltungsdiagramm, bestimmen Sie die disjunktiven und konjunktiven Normalformen. Können Sie mit Hilfe eines KV-Diagramms eine vereinfachte Schaltung ableiten?

Als boolescher Ausdruck ergibt sich:

$$f(x_1, x_2, x_3) = (x_3 \wedge \overline{x_1}) \vee (x_1 \wedge \overline{x_2}) \vee (x_2 \wedge (x_3 \vee x_1))$$

Damit ergibt sich:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Die disjunktive Normalform lautet:

$$f(x_1, x_2, x_3) = (\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (\overline{x_1} \wedge x_2 \wedge x_3) \vee (x_1 \wedge \overline{x_2} \wedge \overline{x_3})$$
$$\vee (x_1 \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge x_2 \wedge \overline{x_3}) \vee (x_1 \wedge x_2 \wedge x_3)$$

Die konjunktive Normalform lautet:

$$f(x_1, x_2, x_3) = (x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3)$$

Damit ergibt sich das KV-Diagramm:

		x_2x_3				
		00	01	11	10	
x_1	0	0	1	1	0	
<i>w</i> 1	1	1	1	1	1	

Nach dem Maxterm-Verfahren lautet der Term für $x_1=0, x_3=0$ dann $x_1\vee x_3$ und insgesamt

$$f(x_1, x_2, x_3) = x_1 \vee x_3$$

und das entspricht der vereinfachten Schaltung:

LÖSUNG 73. Formulieren Sie die folgende logische Gatterschaltung als booleschen Ausdruck und als Schaltungsdiagramm. Ermitteln Sie mit einem KV-Diagramm eine Minimalform und stellen Sie diese als Schaltung und mit Logikgattern dar:

Als boolescher Ausdruck ergibt sich:

$$f(x_1, x_2, x_3) = (x_1 \lor (\overline{x_2} \land x_3)) \land (x_2 \lor x_3)$$

mit der Schaltung:

Damit ergibt sich:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

So lautet das KV-Diagramm:

		$x_2 x_3$				
		00	01	11	10	
x_1	0	0	1	0	0	
wı	1	0	1	1	1	

Nach dem Minterm-Verfahren lautet der Term für $x_2=0, x_3=1$ dann $\overline{x_2}\wedge x_3$ und für $x_1=1, x_2=1$ dann $x_1\wedge x_2$ und insgesamt

$$f(x_1, x_2, x_3) = (x_1 \wedge x_2) \vee (\overline{x_2} \wedge x_3)$$

und das entspricht der vereinfachten Schaltung:

Mit Logikgattern ergibt sich dann diese Gatterschaltung:

LÖSUNG 74. Formulieren Sie die folgenden logische Gatterschaltung als booleschen Ausdruck und als Schaltungsdiagramm. Ermitteln Sie mit einem KV-Diagramm eine Minimalform und stellen Sie diese als Schaltung und mit Logikgattern dar:

Als boolescher Ausdruck ergibt sich:

$$f(x_1, x_2, x_3) = ((\overline{x_1} \wedge \overline{x_3}) \vee (x_2 \wedge x_3)) \wedge x_1$$

mit der Schaltung:

Damit ergibt sich:

x_1	x_2	x_3	$f(x_1, x_2, x_3)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

So lautet das KV-Diagramm:

		$x_2 x_3$				
		00	01	11	10	
x_1	0	0	0	0	0	
w ₁	1	0	0	1	0	

Nach dem Minterm-Verfahren lautet der Term für $x_1=1, x_2=1, x_3=1$ dann $x_1\wedge x_2\wedge x_3$ und insgesamt $f(x_1,x_2,x_3)=x_1\wedge x_2\wedge x_3$ und das entspricht der vereinfachten Schaltung:

Mit Logikgattern ergibt sich dann diese Gatterschaltung:

