Termodynamik - Slafs Aron Granberg, Daniel Kempe, Mårten Wiman

Utvidgning

$$\begin{split} \kappa &= -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T \ [\text{Pa}^{-1}] \\ \text{Isobar volymutvidgningskoefficient} \\ \alpha_V &= \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \ [\text{K}^{-1}] \\ \text{Relativa volymändringen} \\ \frac{dV}{V} &= -\kappa \cdot dp + \alpha_V \cdot dT \end{split}$$

Kinetisk gasteori

The tisk gasteof I m= massan per partikel [kg] Molara massan $M=mN_A$ $\nu R=Nk_B$ $n=\frac{N}{V}$ $v_p=\sqrt{2}\cdot\sqrt{\frac{k_BT}{m}}$ $\langle v\rangle=\sqrt{\frac{8}{\pi}}\cdot\sqrt{\frac{k_BT}{m}}$ $\langle v\rangle=\sqrt{\frac{8}{\pi}}\cdot\sqrt{\frac{k_BT}{m}}$ $\langle v_{rms}=\sqrt{\langle v^2\rangle}=\sqrt{3}\cdot\sqrt{\frac{k_BT}{m}}$ $\langle E_k\rangle=\frac{3k_BT}{2}$ Ekvipartitionsprincipen $U=Nk_BT\cdot\frac{1}{2}\cdot(\#\text{frihetsgrader})$ [J] Energi i enatomig gas $U=N\frac{m\langle v^2\rangle}{2}=\frac{3}{2}Nk_BT$ [J] Notera $Nk_BT=pV$ $pV=\frac{2}{3}U$

Medelfri väg $l = \frac{k_BT}{p\pi d^2\sqrt{2}} = \frac{1}{n\pi d^2\sqrt{2}} [\text{m}]$ Där d = partikelns diameter Stöttal $\nu^* = \frac{p}{\sqrt{2\pi m k_B T}} = \frac{1}{4}n\langle v \rangle [\text{s}^{-1} \text{m}^{-2}]$ Maxwell-Boltzmanns hastighetsfördelning $n(v) = \text{K} \cdot v^2 \cdot e^{-\frac{mv^2}{2k_B T}}$ om $\int n(v) dv = \frac{N}{V}$, dvs om normaliserat $K = 4\pi n \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}}$

Värme

Energi för att förändra temp. $\Delta Q = mc\Delta T \ [\mathrm{J}]$ Molar isokor värmekapacitet ideal gas $C_V = \frac{1}{\nu} \left(\frac{\partial U}{\partial T}\right)_V \ [\mathrm{J} \ \mathrm{mol}^{-1} \ \mathrm{K}^{-1}]$ Enatomig ideal gas har $C_V = \frac{3}{2}R$ Molar isobar värmekapacitet ideal gas $C_p = C_V + R \ [\mathrm{J} \ \mathrm{mol}^{-1} \ \mathrm{K}^{-1}]$ Molar isobar värmekapacitet ideal gas $C_p = \frac{1}{\nu} \left(\frac{\partial U}{\partial T}\right)_p \ [\mathrm{J} \ \mathrm{mol}^{-1} \ \mathrm{K}^{-1}]$ Molar värmekapacitet fast kropp $C_m = 3R \ [\mathrm{J} \ \mathrm{mol}^{-1} \ \mathrm{K}^{-1}]$

Adiabatiska processer

 $C_p=$ isobara molara värmekapaciteten $C_V=$ isokora molara värmekapaciteten $\gamma=\frac{C_p}{C_V}=\frac{c_p}{c_V}$ p $V^\gamma=$ konst.

$$\begin{split} &Tp^{(1-\gamma)/\gamma} = \text{konst.} \\ &TV^{\gamma-1} = \text{konst.} \\ &\text{Adiabatiskt arbete på en gas} \\ &W = -\int_1^2 p dV = \frac{p_1 V_1 - p_2 V_2}{1-\gamma} \end{split}$$

Matematik

Sfär: $A = 4\pi r^2$; $V = \frac{4\pi r^3}{3}$

Värmetransport $\lambda = V$ ärmekonduktivitet

 $\alpha=$ Värmeövergångskoefficient Ledning $U=\frac{\lambda}{d}~[\mathrm{W}~\mathrm{K}^{-1}~\mathrm{m}^{-2}]$ Konvektion $U=\alpha~[\mathrm{W}~\mathrm{K}^{-1}~\mathrm{m}^{-2}]$ Värmemotstånd $\frac{1}{U}=\sum\frac{1}{U_i}$ Värmeflöde $\Phi=UA~(T_i-T_u)$ Kom ihåg: Vid jämvikt är värmeflödet konstant, och i t.ex en vägg är värmeflödet konstant genom hela väggen.

Första huvudsatsen

Arbete på en gas
$$\begin{split} dW &= -pdV \\ \text{Energiutbyte med omgivningen} \ dQ &= dU + pdV \\ \text{Derivatan av inre energi} \\ dU &= dQ + dW = dQ - pdV \\ \text{Vid isokor process} \\ dU &= \nu C_V dT \end{split}$$

Arbete på en gas
$$\begin{split} W &= -\int_1^2 p dV \\ \text{Isotermt kompressionsarbete på en gas} \\ W_T &= -\nu RT \ln \left(\frac{V^2}{V_1}\right) \\ \text{Isobart kompressionsarbete på en gas} \\ W_p &= -p_2(V_2 - V_1) \\ \text{Isokort arbete på en gas} \\ W_V &= 0 \end{split}$$

Andra huvudsatsen

Tillförs dQ reversibelt till ett system så är $dS = \frac{dQ}{T}$ Reversibel process i slutet system $\Delta S = 0$ Irreversibel process i slutet system $\Delta S > 0$

För ideal gas $\Delta S = \nu C_V \cdot \ln \frac{T_2}{T_4} + \nu R \cdot \ln \frac{V_2}{V_4}$

Övrigt om entropi

 $T=0\Rightarrow S=0$ W= antal möjliga mikroskopiska tillstånd $S=k_B\ln W$ Om S_A är entropi för system A och S_B entropi för system B så har S_A och S_B sett

som ett enda system entropin $S_{A\cup B} = S_A + S_B$ Entalpi H = U + pV dH = dU + pdV + Vdp Fria energin (Helmholtz funktion) F = U - TS dF = dU - TdS - SdT

Fria entalpin (Gibbs funktion) G = F + pV $\mu \text{ är en ämneskonstant}$ $dU = TdS - pdV + \mu dN$ $dF = -SdT - pdV + \mu dN$ $dH = TdS + Vdp + \mu dN$ $dG = -SdT + Vdp + \mu dN$

Vid isoterm process så är dW = dF

Vid fasövergång är H ej kontinuerlig (med avseende på temperatur), G är kontinuerlig men dess derivata är inte det H=G+TS

Carnotprocesser

 $T_H \geq T_C$

Var noga med tecken Q_H Värme som reservoaren vid T_H avger Q_C Värme som reservoaren vid T_C avger W Arbete som tillförs processen $Q_H = Q_C$

 $\begin{array}{l} \frac{Q_H}{T_H} = -\frac{Q_C}{T_C} & \text{Notera tecken} \\ -W = Q_H + Q_C \text{ (termer kan vara negativa)} \\ |W| = |Q_H| - |Q_C| \\ \eta = \frac{Q_H - Q_C}{Q_H} = \frac{T_H - T_C}{T_H} \end{array}$

Köldfaktor, värmefaktor

 $\begin{aligned} & \text{K\"oldfaktor} \\ & \varepsilon_C = \frac{Q_C}{W} = \frac{Q_C}{Q_H - Q_C} = \frac{T_C}{T_H - T_C} \\ & \text{V\"armefaktor} \\ & \varepsilon_H = \frac{Q_H}{W} = 1 + \varepsilon_C \end{aligned}$

Konstanter

Massenhet	u	$1.66054 \cdot 10^{-27}$	kg
Avogadros	N_A	$6.02214 \cdot 10^{23}$	mol^{-1}
Boltzmanns	k_B	$1.38065 \cdot 10^{-23}$	$\rm JK^{-1}$
Gaskonstanten	R	8.3145	$J \text{ mol}^{-1} \text{ K}^{-1}$
Stefan-Boltzmanns	σ	$5.6704 \cdot 10^{-8}$	${ m W}{ m m}^{-2}{ m K}^{-4}$
Plancks	h	$6.62607 \cdot 10^{-34}$	Js
Ljushastigheten	c	299 792 458	$\mathrm{m}\mathrm{s}^{-1}$

Vettiga värden

Arbete vid sömn	1	$\rm Wkg^{-1}$
Lätt arbete utvecklar vid 25% eff.	55-75	W
Energibehov människa (3000 kcal)	12	${ m MJd^{-1}}$
Jordens radie	$6.4 \cdot 10^{6}$	m
Månens radie	$1.7 \cdot 10^{6}$	m
Solens radie	$7.0 \cdot 10^{8}$	m
Sveriges area	$4.5 \cdot 10^{11}$	m^2
Solens yttemperatur	5800	K
Värmekapacitet c_{luft}	1.007	${ m kJkg^{-1}K^{-1}}$
Energidensitet Li-ion batteri	0.3 - 0.9	${ m MJkg^{-1}}$
Energidensitet trä	16	${ m MJkg^{-1}}$
Energidensitet kol	24	${ m MJkg^{-1}}$
Energidensitet fett	37	${ m MJkg^{-1}}$
Energidensitet bensin	44	${ m MJkg^{-1}}$
Energidensitet uran	$8.1 \cdot 10^{7}$	${ m MJkg^{-1}}$
Sveriges elkonsumption	$1.5 \cdot 10^{10}$	W
Världens elkonsumption	$2.1 \cdot 10^{12}$	W
Sveriges energikonsumption	$7.4 \cdot 10^{10}$	W
Världens energikonsumption	$1.5 \cdot 10^{13}$	W
Effekt (aktivt) kärnkraftverk	1-10	GW
Effekt (aktivt) vattenkraftverk	0.2 - 10	GW
Effekt (aktivt) vindkraftverk	1-5	MW

Kemi

1761111		G 1 .	C / D	¥	
Atom	Atomnummer	Substans	C_V/R	Ämne	γ
Kol	6	He	1.52	Luft	1.4
Kväve	7	H_2	2.44	H_2	1.4
Svre	8	N_2	2.49	CO_2	1.3
Neon	10	O_2	2.51	H_2O	1.3
	inte bort att	CO	2.53		
molekyl	er är flera atomer				
Ämne	Densitet	$[{\rm kg}{\rm m}^{-3}]$			
Kol		1050			
Vatter	1	1000			

Amne	Densitet	[kg m ⁻³]
Kol		1050
Vatten		1000
Järn		7844
Luft		1.275
Helium		0.1785
Väte		0.0899
Nysnö		60
Packad snö		400
Is		850

Tillståndsekvationer för gaser

$$\begin{split} M &= \text{molara massan [kg mol}^{-1}]; m = \text{totala massan i systemet [kg]} \\ \rho &= \frac{m}{V}; p = \frac{\rho RT}{M} = \frac{Nk_BT}{V} = \frac{\nu RT}{V}; \nu = \frac{m}{M} \\ b &\approx \text{molekylens volym; } a \approx \text{växelverkan mellan partiklar} \\ p &= \frac{Nk_BT}{V - Nb} - a\left(\frac{N}{V}\right)^2 \qquad \qquad \text{Van der Waals tillståndsekvation} \\ b_0 &= bN_A; a_0 = aN_A^2; v = \frac{V}{\nu} \\ \left(p + \frac{a_0}{v^2}\right) \cdot (v - b_0) = RT \qquad \qquad \text{Van der Waals tillståndsekvation} \end{split}$$

Strålning

 $\varepsilon = \text{emissivitet}; \alpha = \text{absorptionsfaktor}$

 $\rho = \text{reflexionsfaktor}; \tau = \text{transmissionsfaktor}$

 $\nu = \text{frekvens} = \frac{c}{\lambda}$

Svartkropp $\Rightarrow \varepsilon = 1$

 $\sigma = \frac{2\pi^5 k_B^4}{15c^2 h^3}$

 $\varepsilon(\nu) + \rho(\nu) + \tau(\nu) = 1$

 $\varepsilon(\nu) = \alpha(\nu)$

Kirchoffs lag

 $\varphi = \varepsilon \sigma T^4 \; [\mathrm{W/m^2}]$

Strålningstäthet

 $\Phi = A\varepsilon\sigma T^4 \text{ [W]}$

Strålningsintensitet

 $\frac{h\nu_{max}}{k_BT} = 2.821$

Wiens förskjutningslag frekvens

 $\lambda_{max}T = 2.898 \cdot 10^{-3} \text{m K}$

Wiens förskjutningslag våglängd

 $u(\nu, T) = \frac{8\pi h \nu^3}{c^3} \cdot \frac{1}{e^{\frac{h\nu}{k_B T}} - 1} [\text{J s m}^{-3}]$

Planck-fördelningen

 $U(T) = V \frac{\pi^5}{15} \cdot \frac{8h}{c^3} \left(\frac{k_B T}{h}\right)^4 \text{ [J]}$

Total energi hålrumsstrålning

 $\varphi = \frac{1}{4V}U(T)c = \sigma T^4$

Strålningstäthet hålrumsstrålning

 $E = h\nu = \frac{hc}{\lambda}$ [J]

Fotonenergi