Summer Student Report 2019

FLC group presentation

Matthew Koster 1,2

¹DESY Hamburg

 $^2 \mbox{University of Cambridge}$

September 2, 2019

Presentation Structure

- Motivation
- ► My Processor
 - Funciton
 - ▶ Neutrino and ISR Corrections
 - Angle Extrctions
- Efficiencies
- Conclusions
- Outlook

Motivation Jakobs thesis I want to extract some angles and do some efficinecies because UPDATE ME

My Processor Overview

- ► Register Inputs
 - ► IsolatedLeptonTagger isolated lepton
 - Fastjet quark jets and overlay removal
 - MCParticle hard collision particles
- Analyses Reconstructed particles extracting W bosons 4-momenta
- Analyses MC collection extracting angles
- Outputs a root file with various relevant variables

The system

- Visible 4-momenta $p^{\mu} = (E, p_x, p_y, p_z)$
- Neutrino 4-momenta $p_{\nu}^{\mu} = (E_{\nu}, p_{x,\nu}, p_{y,\nu}, p_{z,\nu})$
- ► ISR Photon 4-momenta $p^{\mu}_{\nu} = (E_{\gamma}, 0, 0, p_{\gamma})$

c.f The unconventional ordering of the 4-momenta is because that is how TLorentzVector handels 4-vectors

Consider only energy and momentum conservation, where the invarient mass of the neutrino and ISR photon is zero.

Simple energy equation (I. Marchesini ***CITE***)

$$E_{\gamma} = \frac{(500 - E)^2 - p^2}{1000 - 2E \mp 2p_z} \tag{1}$$

- Negative energies arise!
- lt often boils down to negative invisible invarient mass
- ► This is because of Reconstruction
- Handel carefully in code
- Perhaps energy assumption is invalid
- Perhaps zero invarient mass of photon is invalid
- What else can we check?

The e⁻e⁺ collision is not in the center of mass frame, the inital state has a 4-momentum of,

$$p^{\mu} = (500\sin{(\frac{0.014}{2})}, 0, 0, 500) \,GeV. \tag{1}$$

- ► Lorentz Boost into center of mass frame to conduct calculations
- Improvement

- Perhaps the overlay removal processor is not performing properly
- Try Cheat Overlay using TJJetOverlayRemoval (Jakob ***CITE***)
- Improves m_W^{had} as expected
- Slightly worsens m_W^{lep}
 - → statistical fluctuation?
- m_W^{lep} is not particularly sensitive to it due to the complicated nature of the E_{γ} formula

Consider only energy and momentum conservation, where the invarient mass of the neutrino and ISR photon is nolonger assumed zero.

Full energy equation

$$E_{\gamma} = \frac{\lambda(500 - E) \pm p_z \sqrt{\lambda^2 - [(500 - E)^2 - p_z^2]m_{\gamma}^2}}{(500 - E)^2 - p_z^2}$$
(1)

Where for convenience I have defined lambda,

$$\lambda = \frac{1}{2} [(500 - E)^2 - p^2 + m_{\gamma}^2 - m_{\nu}^2]. \tag{2}$$

- Using this formula with $m_{\nu}=0$ and m_{γ} extracted from the MonteCarlo collection
- At low statistics there appeard to be a difference but at high statistics it was seen to be negligable
- The reconstruction is not sensitive to the ISR invairent mass

- Add a third option of there being no ISR photon such that $E_{\gamma}=0$
- Mhen this option is chosen, the formula struggles to reconstruct small E_{γ} values, so it is an improvement.

- The E_{γ} forumula is an improvement on the solution that neglects ISR
- Adding a solution for no ISR improves the estimate again

My Processor Angle Extractions

From the MC collection I extracted the appropriate angles $(\theta_{W^-}, \theta_l^*, \phi_l^*)$ for Jakob as defined by R.Karl ***CITE*** slightly edited such that we boost into the W^{lep} frame

My Processor Angle Extractions

Efficiencies Applying cuts

Table: Selection efficiency of sequantially applied cuts. Where the post ISR correction m_W^{lep} was calculated using all 3 possible E_γ solutions. (*) Means my and Ivan's cuts differ slightly

Order	Cut description	Efficiency [%]			
		My Results			Ivan's Results
		n - 2129	n — 99419		n = 107233
			no cheat	cheat	
0	muon signal	100.00	100.00	100.00	100.00
1	track multiplicity $n_{tracks} \ge 10$	97.13	97.01	96.23	99.996
2	center of mass energy $\sqrt{s} > 100 \text{ GeV}$	92.29	91.69	84.35	97.96
3	total transverse momentum $P_T > 5 \text{ GeV}$	91.16	90.47	83.28	96.69
4	total energy $Esv_M < 500 \text{ GeV}$	89.66	89.28	82.70	95.36
5	$\ln (y_+) \in [-12, -3]$ (*)	88.69	88.08	82.47	95.01
6	1 lepton found (*)	80.65	80.77	81.50	78.75
7	pre ISR correction $m_W^{lep} \in [20, 250]$ GeV	78.23	77.94	77.84	76.61
8	tau discrimination	76.05	75.60	75.73	74.07
9	charged lepton (*)	76.05	75.60	75.73	73.51
10	isolation variable $\Delta\Omega_{iso}>0.5$	76.01	75.58	75.72	73.42
11	post ISR correction $m_W^{lep} \in [40, 120]$ GeV	72.90	72.77	72.33	70.13
12	post ISR correction $m_W^{\rm had} \in [40, 120] \; {\rm GeV}$	63.21	62.92	70.52	66.93
13	$\cos \theta_W > -0.95$	63.02	62.65	70.21	66.78

Efficiencies Applying cuts

- track mulitplicity was taken as the number of reconstructed charged particles.
- $ightharpoonup \Delta\Omega_{iso}$ defined as,

$$(\phi_{lep} - \phi_{had}) < \pi \to \Delta\Omega_{iso} = \sqrt{(\theta_{lep} - \theta_{had})^2 + (\phi_{lep} - \phi_{had})^2}$$
 (1)

$$(\phi_{lep} - \phi_{had}) \ge \pi \to \Delta\Omega_{iso} = \sqrt{(\theta_{lep} - \theta_{had})^2 + (2\pi - |\phi_{lep} - \phi_{had}|)^2}.$$
 (2)

ightharpoonup au_{discr} defined by

$$\tau_{discr} = \left(\frac{2E_{lep}}{\sqrt{s}}\right)^2 + \left(\frac{m_W^{lep}}{m_W^{true}}\right)^2 \tag{3}$$

Efficiencies Applying cuts

The selection efficiencies of the extracted angles after applying all the previous cuts (binomal errors), with the angular distribution below for reference

Conclusions do tacheyons exist?

Outlook do things

Back Up Slides Low Statistics

Back Up Slides Low Statistics

Back Up Slides Low Statistics

Back Up Slides Log Plots

Back Up Slides $E_{\gamma} < 1$ Efficiencies

Back Up Slides $E_{\gamma} < 1$ Efficiencies

