Measure Theory and Integration

Luc Veldhuis

2 Oktober 2017

Lebesque measures

Lebesque measure λ^n

① The Lebesque measues is invariant under translation. If $r(B) = \lambda^n(x+B)$ with r a measure on B. $r(\bigcup_{i=1}^{\infty} B_i) = \lambda(x+\bigcup B_i) = \lambda(\bigcup (x+B_i)) = \sum_{i=1}^{\infty} r(B_i) = \sum_{i=1}^{\infty} \lambda(x+B_i)$. Take a rectangle I = [0,b), $r(I) = \lambda(x+I) = \lambda([x+a,x+b)) = b-a = \lambda I$.

Lebesque measures

Lebesque measure λ^n

If μ on B is invariant under translations, and $\mu([0,1]^n)=k<\infty$, then $\mu=k\lambda^n$. $(\mu(A)=k\lambda^n(A))$ If I is a rectangle, subdivide it in intervals of length $\frac{1}{M}$ with $M\in\mathbb{N}$. Claim: $\mu(I)=k(I)\mu([0,\frac{1}{M})^n)$, and $\lambda^n(I)=k(I)\lambda^n([0,\frac{1}{M})^n)$. Special case: $\mu([0,1)^n)=M^n\mu([0,\frac{1}{M})^n)$ and $\lambda([0,1)^n)=M^n\lambda^n([0,\frac{1}{M})^n)$. So $\mu(I)=\frac{k(I)}{M^n}\mu([0,1)^n)$ and $\lambda^n(I)=\frac{k(I)}{M^n}\mu([0,1)^n)$ and $\lambda^n(I)=\frac{k(I)}{M^n}\mu([0,1)^n)$

Outer measure

Theorem

 \mathcal{S} a semi-ring, μ countably additive in \mathcal{S} . If $S_i \in \mathcal{S}$ disjoint, $\cup S_i = S$, then $\mu(S) = \sum_{i=1}^{\infty} \mu(S_i)$. Goal: extend μ to $\sigma(\mathcal{S})$ (as a measure).

Outer-measure

 $A\subseteq X$ $C(A)=\{(S_j)_{i=1}^\infty|A\subseteq\bigcup_{j=1}^\infty S_j,S_j\in\mathcal{S}\}.$ $\mu^*(A)=\inf\{\sum_{j=1}^\infty \mu(S_j)|(S_i)_{j=1}^\infty\in C(A)\}$ is the outer measure of A relative to \mathcal{S} .

Properties

- $\mu^*(\emptyset) = 0$
- $A \subseteq B \Rightarrow \mu^*(A) \subseteq \mu^*(B)$
- \bullet $\mu^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} \mu^*(A_j)$ (countable subadditivity)

Outer measure

Proof

Find $\epsilon > 0$ such that for all $(S_k^j)_{k \in \mathbb{N}} \in C(A_j)$ we have that $\sum_{i=1}^{\infty} \mu(S_k^j) \leq \mu^*(A_j) + \frac{\epsilon}{2^j}$. $\mu^*(A_j) \leq \sum_{j=1}^{\infty} \mu^*(A_j) + \epsilon$

Claim

If $S \in \mathcal{S}$ then $\mu * (S) = \mu(S)$ so check:

- $\mu * (S) \le \mu(S)$ (trivial)
- $\mu * (S) \ge \mu(S)$ (difficult)

Proof sketch:

$$S_1, S_2 \in \mathcal{S}$$
, $S_1 \cap S_2 = \emptyset$.

$$\overline{\mu}(S_1 \cup S_2) = \mu(S_1) + \mu(S_2)$$

\mathcal{A}^* and σ algebra

Definition

 $\mathcal{A}^* = \{ A \subseteq X | \mu^*(A \cap Q) + \mu^*(Q \cap A^c) = \mu^*(Q) | \forall Q \in X \}$

Claim: $S \subseteq A^*$.

(trival) Claim: A^* is a σ -algebra Claim: μ^* is a measure on A^*

Semi-ring

Example

$$X = \{0,1\}^{\mathbb{N}} = \text{all } \infty \text{ sequences of 0's and 1's.}$$
 $s \in X, \ x = (x_0, x_1, x_2, \dots).$ Let 1 have probability p and 0 probability $1 - p$. Cylinder: $c_1 = \{x \in X | x_0 = 0, x_1 = 1, x_2 = 0\}$ $c_2 = \{x \in X | x_0 = 1, x_1 = 0, x_2 = 0, x_3 = 0\}$ $\mu(c_1) = p(1-p)^2$ $\mu(c_2) = p(1-p)^3$

Cylinders closed under intersection, either empty set or one of the 2 sets.

$$S,T\in\mathcal{S},\ S\setminus T=\cup_{i=1}^MS_i\in\mathcal{S}.$$
 $c_1\setminus c_2=\{x\in X|x_0=1,x_1=0,x_2=0,x_3=1\}$ again a cylinder. If $c_1\cap c_2=\emptyset$ then if $c_1\cup c_2$ is a cylinder, then $\mu(c_1)+\mu(c_2)=\mu(c_1\cup c_2).$ (Analog to lebesque proof, if union of intervals is again an interval, then...)

Semi-ring

Cylinders

If $C = \bigcup_{i=1}^{\infty} C_i$ then $\mu(C) = \sum_{i=1}^{\infty} \mu(C_i)$.

But $C = \bigcup_{i=1} C_i$ can never be true, so statement always holds. So semi-additivity is proven.

So you can extend this to a σ algebra generated by the cylinders.