Tarea de Inferencia Bayesiana

Fecha de entrega: Lunes 30 de noviembre de 2020

- 1. Sean $X_1, \ldots, X_n \sim Uniforme(0, \theta)$. Sea $f(\theta) \propto 1/\theta$. Calcule la densidad posteriori.
- 2. Sean X_1, \ldots, X_n Normal $(\mu, 1)$
 - a) Simule un conjunto de datos (use $\mu = 5$) de n = 100 observaciones.
 - b) Tome $f(\mu) = 1$ y halle la densidad posteriori. Grafique la densidad.
 - c) Simule 1000 observaciones de la posteriori. Grafique un histograma y compare con la densidad del punto anterior.
 - d) Sea $\theta = e^{\mu}$. Halle la densidad posteriori para θ de forma analítica y por simulación.
 - e) Halle un intervalo posteriori del 95 % para θ .
 - f) Halle un intervalo de confianza del 95 % para θ .
- 3. Sean $X_1, \ldots, X_n \sim Poisson(\lambda)$. Sea $\lambda \sim Gamma(\alpha, \beta)$ la priori. Demuestre que la densidad posteriori es también una Gamma.
- 4. Suponga que a 50 personas e les da un placebo y a otras 50 un nuevo tratamiento. 30 de los pacientes con placebo muestran mejoría, mientras que 40 pacientes con el tratamiento nuevo muestran mejoría. Sea $\tau = p_2 p_1$, donde p_2 es la probabilidad de mejorar bajo el tratamiento y p_1 es la probabilidad de mejorar bajo el placebo.
 - a) Calcule el EMV de τ . Halle el error estándar y un intervalo de confianza del 90 %.
 - b) Sea la priori $f(p_1, p_2) = 1$. Use simulación para hallar la media posterior y un intervalo posterior del 90 % para τ .
 - c) Sea

$$\psi = \log\left(\left(\frac{p_1}{1 - p_1}\right) \div \left(\frac{p_2}{1 - p_2}\right)\right),$$

el radio log-odds. Note que $\psi = 0$ si $p_1 = p_2$. Calcule el EMV de ψ .