Circuits Magnétiques Définitions

- Circuit magnétique
- Force magnéto motrice
- Réluctance
- Loi d'Hopkinson
- Caractéristiques des aimants permanents

Définitions

Ensemble fermé de matériaux magnétiques à haute perméabilité

Chemin privilégié pour le flux d'induction magnétique

Exemples : circuit magnétique de transformateur

Tore:

Autres exemples

Circuit magnétique d'alimentation à découpage (ferrite)

Empilement de tôles

Mise en évidence

Circuits Magnétiques Définitions

Cas général

- Chemin privilégié du flux d'induction magnétique
- Caractérisation du "bon" conducteur magnétique :
 perméabilité magnétique μ élevée
 (remarque : μ ≠ Cte)

Circuit Magnétique Parfait (C.M.P.)

il se confond avec le tube d'induction :

Le flux est le même sur toutes sections d'un C.M.P.

$$\phi = \int_{S_1} \vec{B} \cdot d\vec{S} = \int_{S_2} \vec{B} \cdot d\vec{S}$$

Un tore de matériau à haute perméabilité est pratiquement un C.M.P.

Circuit Magnétique Parfait (C.M.P.)

Exemple: Transformateur torique

Circuit Magnétique Parfait Filiforme (C.M.P.F.)

•Induction uniforme sur toute section droite

•Lignes de champs perpendiculaires aux sections droites

Définitions

Force Magnéto Motrice

Rappel du théorème d'Ampère:

Définitions

Force Magnéto Motrice

Application à un bobinage :

n spires parcourues par I

choix du contour orienté

On définit la force magnéto motrice par :

$$e = \oint_{C^{+}} \overrightarrow{H} \, \overrightarrow{dl} = \sum_{k} I_{k} = n \, I$$
Soit:
$$e = n \, I$$

Définitions

Différence de potentiel magnétique

Sur un tronçon de C.M.P.F.

On suppose le matériau

- •Homogène
- •Isotrope

Alors µ est scalaire

On appelle ddp magnétique scalaire :

$$\mathcal{V}_A - \mathcal{V}_B = \int_A^B \overrightarrow{H} \, d\overrightarrow{l}$$

Définitions Réluctance

$$\mathcal{V}_A - \mathcal{V}_B = \int_A^B \overrightarrow{H} \, d\overrightarrow{l}$$

Avec μ scalaire on a : $\vec{B} = \mu \vec{H}$

Soit:

$$\mathcal{V}_{A} - \mathcal{V}_{B} = \int_{A}^{B} \frac{\overrightarrow{B}}{\mu} \ \overrightarrow{dl} = \int_{A}^{B} \frac{B}{\mu} \ dl = \int_{A}^{B} \frac{\phi}{\mu} \ \frac{dl}{S}$$

$$\mathcal{V}_{A} - \mathcal{V}_{B} = \phi \frac{1}{\mu} \frac{1}{S} \int_{A}^{B} dl = \phi \frac{1}{\mu} \frac{l_{AB}}{S}$$

Car selon les hypothèses du CMPF:

•B et dl colinéaires

Car dans les CMPF:

$$\bullet \phi = B S$$

Réluctance

Finalement:

$$\mathcal{V}_A - \mathcal{V}_B = \phi \frac{1}{\mu} \frac{l_{AB}}{S}$$

$$V_A - V_B = \mathfrak{R}_{AB} \phi$$
Avec:
$$\mathfrak{R}_{AB} = \frac{1}{\mu} \frac{l_{AB}}{S} \text{ (En At/Wb)}$$

Loi d'Hopkinson

Loi d'HOPKINSON : $V_B - V_A = e - \mathfrak{R}_{AB} \phi$

Loi d'ohm

$$V_B - V_A = E - RI$$

Loi d'hopkinson

$$V_B - V_A = e - \Re \phi$$

f.e.m. et f.m.m.

Courant et Flux

Résistance et Réluctance

$$R = \frac{1}{\sigma} \frac{l}{S}$$

$$\mathfrak{R} = \frac{1}{\mu} \frac{l}{S}$$

Réluctances en série

$$R_{AB} = R_1 + R_2$$

$$\Re_{AB} = \Re_1 + \Re_2$$

Résistances en Parallèle

$$1/R_{AB} = 1/R_1 + 1/R_2$$

Réluctances en Parallèle

$$1/\Re_{AB} = 1/\Re_1 + 1/\Re_2$$

Limites de l'analogie formelle

Linéarité

$$\sigma = C^{te}$$
 Equations électriques linéaires

$$\mu \neq C^{te}$$
 Equations magnétiques

non-linéaires

Fuites

 σ Variable dans un rapport 10^{30}

μ Variable dans un rapport 10⁵

Le meilleur des isolants magnétiques (le vide) crée des fuites

Matériaux Magnétiques

Présentation générale

$$V_A - V_B = \Re_{AB} \phi$$
Avec: $\Re_{AB} = \frac{1}{\mu} \frac{l_{AB}}{S}$ (En At/Wb)

Remarque : on définit la perméabilité relative μ_r par rapport à celle du vide μ_0 en écrivant :

$$\mu = \mu_0 \; \mu_r \quad \text{et} \quad \mu_0 = 4\pi \; 10^{-7}$$

Nécessité de μ le plus grand possible (pour obtenir φ élevé avec une faible f.m.m.)

Différents types de matériaux

$$\mu = \mu_0 \mu_r$$
$$\mu_r = 1 + X$$

X est la susceptibilité magnétique relative du matériau

Milieux diamagnétiques : χ faible de valeur négative (de -10⁻⁹ à -10⁻⁵)

Azote, Silicium, Cuivre, Plomb, Diamant, ...

Milieux paramagnétiques : χ faible positif (de 10-3 à -10-6)

Oxygène, Aluminium, Titane, Platine, ...

Milieux ferromagnétiques : χ grand positif, dépend de B (saturation) (ordre de grandeur 10⁺³)

Fer, Nickel, Cobalt et leurs alliages

Différents types de matériaux

Interprétation

Spin de l'électron

Mo © O Ms

Domaines de Weiss: orientation

dans un champs magnétique

Barreau non aimanté

B

Barreau aim anté

Interprétation:

- bruit
- effet de la température (Curie)
- courbe de première aimantation

Caractéristique magnétique

Courbe de saturation et d'hystérésis

Caractéristique magnétique

Surface du cycle ←→ énergie dissipée en J/m³

Sensiblement proportionnelle à B_M²

Caractéristique magnétique

La forme du cycle d'hystérésis dépend de l'amplitude de B:

Matériaux durs: forte aimantation rémanente

Fe : $B_{sat} \rightarrow 2.2T$

FeSi : $B_{sat} \rightarrow 1.8T$ Bonne tenue i

FeCo : $B_{sat} \rightarrow 2.4T$ For Céramique : $B_{sat} \rightarrow 0.5T$

FeNi : $B_{sat} \rightarrow 1.3T$

Matériaux doux: cycle d'hystérésis petit

Figure 1-26 : Matériaux doux

Bonne tenue mécanique (Moteur, transformateur)

Faibles pertes, cher !! Très faibles pertes (H.F.)

Faible H_C (Alimentation à découpage)

Quelques exemples

Matériau	Composition	Perméabilité relative max	Utilisation
Fer Armco	Fer Pur	10 000	Relais, Electroaimant.
Acier Hypersyl	Si à 3%	40 000 à 50 000	Inductances, Transformateurs.
Mumétal Permalloy C	Ni à 80%	70 000 à 130 000	Blindages magnétiques, relais rapides.
Acier au Cobalt Permendur V	Co à 35-50%	3500	Tôles pour petites machines tournantes

Valeurs pour les faibles B

Energie magnétique

notation: $\Phi = n \varphi$

Alors:
$$dW_{mag} = u i dt = \frac{d\Phi}{dt} i dt = i d\Phi$$

$$dW_{mag} = i d\Phi = n i d\varphi$$

en J

Energie magnétique

$$dW_{el} = dW_{mag}$$

Bobine de R nulle

Circuit magnétique

Bobine de
$$dW_{el} = dW_{mag}$$
 Bobine de $dW_{el} = u i dt$ $u = e = \frac{d\Phi}{dt}$ $dW_{mag} = u i dt = \frac{d\Phi}{dt} i dt = i d\Phi$ Ou encore dans un CMPF:

En posant
$$\begin{cases} H \ l = n \ i \\ \Phi = n \ \phi \end{cases} \qquad dW_{mag} = i \ d\Phi = \frac{H \ l}{n} d(n \ B \ S) = S \ l \ H \ dB$$

Energie locale:

$$dW_{mag} = H dB$$

en J/m³

Energie Magnétique

2 formes possibles

en Joule

en Joule / m³

Inductances propres

Phénomène des fuites

Flux commun dans le circuit

Fuites dans l'air

Car μ_r n'est pas infini ...

Inductances propres

Inductances propres

Définition

Inductance propre totale:

$$\Phi = \Phi_c + \Phi_f$$

$$L = \frac{\Phi}{i}$$

D'où la modélisation d'une bobine à noyau magnétique :

Inductance de fuites:

$$l_f = \frac{\Phi_f}{i}$$

Inductance du tube de flux commun:

$$L_c = \frac{\Phi_c}{i}$$

 $L_{\rm c}$ dépend de i $l_{\rm f}$ ne dépend pas de i

Relation aux réluctances

Inductance de fuites:

$$l_f = \frac{\Phi_f}{i} = \frac{n \, \phi_f}{i} = \frac{n \, \phi_f}{i} = \frac{n \, n \, i}{i \, \Re_f} \qquad \text{donc} \qquad l_f = \frac{n^2}{\Re_f}$$

Inductance du tube de flux commun:

$$L_c = \frac{\Phi_c}{i} = \frac{n \, \phi_c}{i} = \frac{n \, n \, i}{i \, \Re_c} \qquad \text{donc} \qquad \frac{L_c = \frac{n}{\Re_c}}{\Re_c}$$

Inductance totale: $L = L_c + l_f$

Inductances, exemples de réalisation

Bobinage (cuivre)

Circuit magnétique (ferrite)

Inductances, exemples de réalisation

Circuit magnétique formé de 4 « U »

entrefer

cerclage en acier inox amagnétique

Inductances, exemples de réalisation

Inductances propres et mutuelles

Inductance mutuelle

Inductances propres et mutuelles

Inductance mutuelle

reprise des équations précédentes

$$\Re_{c} \phi_{c} = n_{1} i_{1} + n_{2} i_{2}$$

$$\Re_{f1} \phi_{f1} = n_{1} i_{1}$$

$$\Re_{f2} \phi_{f2} = n_{2} i_{2}$$

$$et: \Phi_1 = n_1 \left(\phi_c + \phi_{f1} \right)$$

$$\Phi_{1} = n_{1} \left(\frac{n_{1} i_{1}}{\Re_{c}} + \frac{n_{2} i_{2}}{\Re_{c}} + \frac{n_{1} i_{1}}{\Re_{f1}} \right)$$

$$\Phi_{1} = \left(\frac{n_{1}^{2}}{\Re_{c}} \right) i_{1} + \left(\frac{n_{1}^{2}}{\Re_{f1}} \right) i_{1} + \left(\frac{n_{1} n_{2}}{\Re_{c}} \right) i_{2}$$

$$L_{c} \qquad l_{f1} \qquad M_{12}$$

Inductances propres et mutuelles

Inductance mutuelle

$$M_{12} = M_{21} = \frac{n_1 n_2}{\Re_c} = \sqrt{L_{1c} L_{2c}}$$

Coefficient de couplage:

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

Caractéristiques des aimants permanents Historique

Années 20 : aimants en acier au Cobalt

Années 30 : développements des AlNiCo

Années 50 : aimants ferrites durs

Années 60 : terres rares SmCo (samarium-cobalt)

Années 80 : terres rares NdFeB (Néodyme Fer Bore)

Caractéristiques des aimants permanents

Différentes technologies

Alnico (ou Ticonal) en voie de disparition

Céramiques (ferrites) : intérêt du faible coût

Aimants terres rares : <u>SmCo et NdFeB</u> , les plus performants

Caractéristiques des aimants permanents

Propriétés principales

- Alnico (ou Ticonal) fonctionne à haute température (400°C), très faible dérive en température (appareils de mesure)

- Céramiques (ferrites) : faible coût
- Aimants terres rares : <u>SmCo et NdFeB</u> : performants mais température d'utilisation faible et dérive en température très importante

Caractéristiques des aimants permanents

Comparaison des différentes technologies

type	Date	$\mathrm{BH}_{\mathrm{max}}$	$B_{r}(T)$	$H_{\rm cJ}$	coeff B	coeff H _{cJ}	$T_{\rm max}$	Prix	Prix.	Prix.
	origine	kJ/m^3	à 25°C	kA/m	%/K	%/K	opération	€/kg	€/kJ¹	€/kJ ²
									à 20°C	à 150°C
NdFeB	1983	200-380	1,2 à 1,5	900 à	-0,1	- 0,4 à	140 à	80 à 150	3	4
				2000		- 0,6	220°C			
SmCo ₅	1966	140-200	1	2000	-0,04	-0,25	280°C	220	9	10
$\mathrm{Sm_2Co_{17}}$		180-240	1,05	2000	- 0,03		350 à	300	12	13
							550°C			
Alnico	1932	50-85	1,1 à 1,3	130	-0,02	+0,01	550°C	45	4,5	4,7
Ferrites	1950	27-35	0,3 à 0,4	250	-0,2	+0,4	250°C	6	0,9	1,6
strontium										
Ferrites		8 à 30	0,2 à 0,4	170	-0,2		100 à	4,5	0,6	1,1
barium							240°C			