Inversione della Trasformata di Fourier

Marco Fornoni

21 dicembre 2008

Sommario

Questo documento contiene una presentazione della Trasformata di Fourier. Esso sviluppa i concetti e le dimostrazioni contenute nel Cap. 9 del [WR70] ed è strutturato nel seguente modo: la prima sezione riprende una serie di nozini e concetti di analisi con cui si presume che il lettore abbia già familiarità e che saranno utili nelle successive sezioni; la seconda sezione definisce la trasformata e ne dimostra alcune utili proprietà; la terza sezione contiene invece tutti i teoremi necessari per arrivare alla dimostrazione del teorema di inversione; la quarta ed ultima sezione contiene alcuni esempi pratici di applicazione della trasformata.

1 Strumenti di Lavoro

- **1.1 Topologia.** Una collezione τ di sottoinsiemi di un insieme X è una *Topologia* in X se τ ha le seguenti proprietà:
 - 1. $\emptyset \in \tau \in X \in \tau$
 - 2. Se $V_i \in \tau \ \forall i = 1, 2, ..., n \implies V_1 \cap V_2 \cap ... \cap V_n \in \tau$
 - 3. Se V_α è una qualsiasi collezione (finita, numerabile, o non numerabile) di membri di τ , allora $\bigcup_\alpha V_\alpha~\in~\tau$

Se τ è una Topologia in X, X è chiamato $Spazio\ Topologico\ ed$ i suoi membri sono chiamati $Insiemi\ Aperti.$

- **1.2 Funzione Continua.** Se X ed Y sono spazi topologici e se f è una funzione da X ad Y, f è detta essere Continua, purché $f^{-1}(V)$ sia un insieme aperto per ogni insieme aperto V in Y.
- **1.3** σ -algebra. Una collezione \mathfrak{M} di sottoinsiemi di un insieme X è una σ -algebra in X se \mathfrak{M} gode delle seguenti proprietà:
 - $1. X \in \mathfrak{M}$
 - 2. Se $A \in \mathfrak{M}$, allora $A^c \in \mathfrak{M}$
 - 3. Se $A=\bigcup_{n=1}^{\infty}A_n$ e se $A_n\,\in\,\mathfrak{M}$ per n=1,2,3,,,,,,allora $A\,\in\,\mathfrak{M}$

Se \mathfrak{M} è una σ -algebra in X, allora X è chiamato $Spazio\ Misurabile\ ed i membri di <math>\mathfrak{M}$ sono chiamati $Insiemi\ Misurabili.$

- **1.4 Funzione Misurabile.** Sia X uno spazio misurabile, Y uno spazio topologico ed f è una funzione da X ad Y. Se per ogni insieme aperto V in Y, $f^{-1}(V)$ è un insieme misurabile in X, allora f è detta essere Misurabile.
- **1.5 Funzione Semplice.** Una funzione misurabile s su di uno spazio misurabile X, la cui immagine consista solo id un numero finito di punti in $[0, \infty)$ è detta essere Semplice.

Se $\alpha_1, \alpha_2, \ldots, \alpha_n$ sono tutti i distinti valori di s, e se $A_i = x : s(x) = \alpha_i$, possiamo scrivere:

$$s(x) = \sum_{i=1}^{n} \alpha_i I_{A_i}(x)$$

Dove I_{A_i} è la funzione indicatrice di A_i .

1.6 Misura e Spazio di Misura. Una Misura Positiva è una funzione μ , definita su di una σ -algebra $\mathfrak M$ il cui range sta in $[0,\infty]$ e che goda della proprietà di Numerabile Additività così definita:

se A_i è una collezione numerabile e disgiunta di membri di \mathfrak{M} , allora:

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i)$$

Uno Spazio di Misura è uno spazio misurabile dotato di una misura positiva. Esso verrà indicato dalla tripletta (X, \mathfrak{M}, μ) , mentre la coppia (X, \mathfrak{M}) starà ad indicare lo spazio misurabile, senza alcun riferimento alla misura.

Una Misura Complessa è invece una misura a valori nei complessi.

1.7 Misura σ -finita e spazio di misura σ -finito. Un sottoinsieme $E \subseteq X$ di uno spazio di misura (X, \mathfrak{M}, μ) è detto avere misura σ -finita se E è un'unione numerabile di insiemi E_i , aventi misura $\mu(E_i) < \infty$.

Inoltre, se $E \equiv X$ si dice che X è uno spazio di misura σ -finito.

1.8 Integrale di Lebesgue. Sia s una funzione misurabile semplice (vedere 1.5), su di uno spazio di misura (X, \mathfrak{M}, μ) . Se $E \in \mathfrak{M}$, definiamo:

$$\int_{E} s \, d\mu = \sum_{i=1}^{n} \alpha_{i} \mu(A_{i} \cap E) \tag{a}$$

In altre parole, l'integrale di una funzione semplice è definito come la sommatoria dei valori assunti dalla funzione, ognuno dei quali moltiplicato per la misura del sottoinsieme del dominio in cui la funzione assume quel valore.

Sia $f: X \to [0, \infty]$ una qualsiasi funzione misurabile (anche non semplice). Se $E \in \mathfrak{M}$, l'Integrale di Lebesgue di f su E rispetto alla misura μ è definito come:

$$\int_{E} f \, d\mu = \sup_{0 \le s \le f} \int_{E} s \, d\mu \tag{b}$$

Esso è quindi l'estremo superiore degli integrali di funzioni semplici minori od uguali alla funzione data.

In entrambe le suddette definizioni si applica la convenzione $0 \cdot \infty = 0$, nel caso in cui $\alpha_i = 0$ e $\mu(A_i \cap E) = \infty$ per qualche i.

1.9 Quasi Ovunque. Dato uno spazio di misura (X, \mathfrak{M}, μ) , si dice che un suo sottoinsieme $E \in \mathfrak{M}$ gode *quasi ovunque* (in inglese *a.e. almost everywhere*) di una certa proprietà \mathcal{P} se

$$N = \{x : \text{in } x \text{ non vale la proprietà } \mathcal{P}\}$$
 $(x \in E)$
 $\implies \mu(N) = 0$

Ovvero la misura dell'insieme dei punti N, in cui non vale la proprietà \mathcal{P} è 0 e, di conseguenza, $\mu(E-N)=\mu(E)$.

Per esempio, se f e g sono funzioni misurabili in uno spazio misurabile (X,\mathfrak{M},μ) e se:

$$\mu(\{x: f(x) \neq g(x)\}) = 0$$
 $(x \in X)$

diciamo che f=g quasi ovunque (anche scritto $f\sim g$) e notiamo che per ogni $E\in\mathfrak{M}$ vale che:

$$\int_E f \, d\mu = \int_E g \, d\mu$$

1.10 Spazio L^p . Sia 0 e sia <math>f una funzione misurabile complessa su di uno spazio di misura (X, \mathfrak{M}, μ) .

Definiamo la norma-p di f come:

$$||f||_p = \left\{ \int_X |f|^p d\mu \right\}^{\frac{1}{p}}$$
 (a)

Definiamo inoltre L^p come lo spazio delle funzioni f tali che:

$$||f||_p < \infty \tag{b}$$

1.11 Spazio delle funzioni rapidamente decrescenti. Lo spazio di Schwartz S su \mathbb{R} , altrimenti detto "Spazio delle funzioni rapidamente decrescenti su \mathbb{R} ", è lo spazio delle funzioni così definito:

$$\mathcal{S}\left(\mathbb{R}\right) = \left\{ f \in C^{\infty}(\mathbb{R}) \; \middle| \quad \left\| x^{m} \frac{d^{l} f}{dx^{l}} \right\|_{\infty} < \infty, \quad \forall \, m \geq 0, l \geq 0 \right\}$$

Esso è quindi lo spazio delle funzioni che decrescono più velocemente di qualsiasi polinomio. Si noti inoltre che $\mathcal{S} \subset L^1$, in quanto qualsiasi funzione in questo spazio decresce più velocemente, ad esempio, della funzione x^{-2} che è notoriamente in L^1

1.12 Misura di Lebesgue ed Invarianza Traslazionale. Sia R^k l'insieme dei punti $x=(\xi_1,\xi_2,\ldots,\xi_k)$, dove $\xi_i\in\mathbb{R}$. Se $x=(\xi_1,\xi_2,\ldots,\xi_k)$, $y=(\eta_1,\eta_2,\ldots,\eta_k)$ ed $\alpha\in\mathbb{R}$ definiamo su di esso le seguenti operazioni:

$$x + y = (\xi_1 + \eta_1, \dots, \xi_n + \eta_k), \quad \alpha x = (\alpha \xi_1, \dots, \alpha \xi_k)$$

$$x \cdot y = \sum_{i=1}^{k} \xi_i \eta_i, \quad |x| = (x \cdot x)^{\frac{1}{2}}$$

Ciò fa di \mathbb{R}^k uno spazio vettoriale e, definendo la distanza d(x,y)=|x-y|, anche uno spazio metrico.

Su ogni σ -algebra \mathfrak{M} in \mathbb{R}^k è possibile costruire una misura m che, per ogni $E \in \mathfrak{M}$ ed ogni $x \in \mathbb{R}^k$ goda della proprietà di *Invarianza Traslazionale*:

$$m(E+x) = m(E) \tag{a}$$

dove $E + x = \{y + x : y \in E\}.$

m è chiamata Misura di Lebesgue su R^k e la proprietà di invarianza traslazionale rispecchia l'intuizione che la misura di un segmento (o di un iper-piano in R^k) non varia se esso è traslato.

Se I è un qualunque insieme del tipo (a, b), (a, b], [a, b), [a, b], si può scrivere l'integrale di Lebesgue in misura di Lebesgue, come:

$$\int_{I} f \, dm = \int_{a}^{b} f(x) \, dx \tag{b}$$

ed è possibile dimostrare che esso coincide con l'integrale di Riemann su [a, b], per ogni funzione continua complessa su [a, b].

Inoltre le L^p -norme, rispetto alla misura di Lebesgue risultano essere invarianti per traslazione, ovvero

$$||f(x-s)||_p = ||f(x)||_p$$
 (c)

Dimostrazione.

$$||f(x-s)||_{p} = \left\{ \int_{\mathbb{R}} |f(x-s)|^{p} dx \right\}^{\frac{1}{p}} = \left\{ \int_{-\infty}^{+\infty} |f(z)|^{p} d(z+s) \right\}^{\frac{1}{p}}$$
$$= \left\{ \int_{-\infty}^{+\infty} |f(z)|^{p} d(z) \right\}^{\frac{1}{p}} = \left\{ \int_{-\infty}^{+\infty} |f(x)|^{p} d(x) \right\}^{\frac{1}{p}}$$
$$= ||f(x)||_{p}$$

operando la sostituzione di variabile z=x-s e sfruttando l'invarianza traslazionale della misura di Lebesgue.

NB: gli estremi di integrazione non cambiano in quanto se x varia tra $-\infty$ e $+\infty$, z assume valori compresi tra $-\infty - s = -\infty$ e $+\infty + s = +\infty$

1.13 Funzione Uniformemente Continua. Dati due spazi metrici (X, d_X) e (Y, d_Y) , si dice che una funzione $f: X \to Y$ è uniformemente continua se:

$$\forall \epsilon > 0 \; \exists \; \delta > 0 \; \forall x_1, x_2 \in X : d_X(x_1, x_2) < \delta \Rightarrow d_Y(f(x_1), f(x_2)) < \epsilon$$

Questa definizione rispecchia il concetto di "dipendenza continua dai dati", ovvero: a piccole variazioni della x, corrispondo piccole variazioni della sua immagine f(x), indipendentemente da dove sia preso il punto x all'interno del dominio della funzione.

La continuità uniforme differisce dal classico concetto di continuità in quanto quest'ultimo è una proprietà puntuale della funzione, mentre la continuità uniforme è una proprietà globale.

Un esempio molto semplice di funzione continua, ma non uniformemente continua è la funzione:

$$f:(0,1)\to\mathbb{R},\ x\mapsto\frac{1}{x}$$

Come si può notare infatti, facendo crescere δ arbitrariamente vicino ad 1 (ad esempio prendendo x_1 arbitrariamente vicino a 0 ed x_2 arbitrariamente vicino ad 1), $|f(x_1) - f(x_2)|$ cresce invece illimitatamente.

1.14 Funzioni pari e dispari. Sia f una funzione misurabile complessa. Chiamiamo f_{re} la parte reale di f ed f_{im} la sua parte immaginaria.

Se:

$$f_{re}(x) = f_{re}(-x)$$
 e $f_{im}(x) = f_{im}(-x)$ (a)

f è detta essere Pari (o simmetrica). Infatti

$$f(x) = f(-x) \implies f_{re}(x) + if_{im}(x) = f_{re}(-x) + if_{im}(-x)$$
$$\implies f_{re}(x) = f_{re}(-x) \quad \text{e} \quad f_{im}(x) = f_{im}(-x)$$

Se invece:

$$f_{re}(x) = -f_{re}(-x)$$
 e $f_{im}(x) = -f_{im}(-x)$ (b)

f è detta essere Dispari (o antisimmetrica).

Il prodotto di due funzioni pari f_p , g_p è una funzione pari:

$$h(x) = f_p(x)g_p(x) = f_p(-x)g_p(-x) = h(-x)$$
 (c)

Il prodotto di due funzioni dispari f_d , g_d è una funzione pari:

$$h(x) = f_d(x)g_d(x) = [-f_d(-x)][-g_d(-x)] = f_d(-x)g_d(-x) = h(-x)$$
 (d)

Il prodotto do una funzione pari f_p e di una funzione dispari g_d è una funzione dispari:

$$h(x) = f_p(x)g_d(x) = f_p(-x)[-g_d(-x)] = -f_p(-x)g_d(-x) = -h(-x)$$
 (e)

Se f_d è una funzione dispari, allora:

$$\int_{-\infty}^{\infty} f_d \, dx = 0 \tag{f}$$

Dimostrazione. Applicando la definzione di funzione dispari ed effettuando la sostituzione $-x \to x$ otteniamo:

$$\int_{-\infty}^{\infty} f_d(x) \, dx = \int_{-\infty}^{0} f_d(x) \, dx + \int_{0}^{\infty} f_d(x) \, dx$$

$$= \int_{-\infty}^{0} -f_d(-x) \, dx + \int_{0}^{\infty} f_d(x) \, dx$$

$$= -\int_{+\infty}^{0} -f_d(x) \, dx + \int_{0}^{\infty} f_d(x) \, dx$$

$$= \int_{0}^{+\infty} -f_d(x) \, dx + \int_{0}^{\infty} f_d(x) \, dx$$

$$= \int_{0}^{+\infty} [-f_d(x) + f_d(x)] \, dx = \int_{0}^{+\infty} 0 \, dx = 0$$

Se f_p è una funzione pari, allora:

$$\int_{-\infty}^{\infty} f_p(x) dx = 2 \int_{0}^{\infty} f_p(x) dx$$
 (g)

Dimostrazione. Applicando la definzione di funzioni pari ed effettuando la sostituzione $-x \to x$ otteniamo:

$$\int_{-\infty}^{\infty} f_p(x) \, dx = \int_{-\infty}^{0} f_p(x) \, dx + \int_{0}^{\infty} f_p(x) \, dx$$

$$= \int_{-\infty}^{0} f_p(-x) \, dx + \int_{0}^{\infty} f_p(x) \, dx$$

$$= \int_{+\infty}^{0} -f_p(x) \, dx + \int_{0}^{\infty} f_p(x) \, dx$$

$$= \int_{0}^{+\infty} f_p(x) \, dx + \int_{0}^{\infty} f_p(x) \, dx$$

$$= 2 \int_{0}^{\infty} f_p(x) \, dx$$

1.15 Teorema di Convergenza Dominata. $Sia \{f_n\}$ una successione di funzioni complesse e misurabili (aventi come dominio lo spazio di misura (X, \mathfrak{M}, μ) e come codominio il Campo complesso \mathbb{C}) tale che:

$$f(x) = \lim_{n \to \infty} f_n(x) \tag{a}$$

esiste per ogni $x \in X$. Se esiste una funzione $g \in L^1$ tale che:

$$|f_n(x)| \le g(x)$$
 $(n = 1, 2, 3, ...; x \in X)$ (b)

allora $f \in L^1$ e

$$\lim_{n \to \infty} \int_X f_n \, du = \int_X \lim_{n \to \infty} f_n \, du = \int_X f(x) \, du \tag{c}$$

1.16 Teorema di Fubini. Siano (X, \mathfrak{M}_1, μ) e $(Y, \mathfrak{M}_2, \lambda)$ due spazi di misura σ -finiti e sia f una funzione misurabile su $X \times Y$.

Se:

$$\int_{X} \left(\int_{Y} |f(x,y)| \, d\lambda \right) \, d\mu < \infty \tag{a}$$

oppure

$$\int_{Y} \left(\int_{X} |f(x,y)| \, d\mu \right) \, d\lambda < \infty \tag{b}$$

allora:

$$\int_{X \times Y} |f(x,y)| \, d(\mu,\lambda) < \infty \tag{c}$$

e

$$\int_{X} \left(\int_{Y} f(x, y) \, d\lambda \right) \, d\mu = \int_{Y} \left(\int_{X} f(x, y) \, d\mu \right) \, d\lambda = \int_{X \times Y} f(x, y) \, d(\mu, \lambda) \quad (\mathrm{d} x) = \int_{X \times Y} f(x, y) \, d\lambda$$

1.17 Convoluzione. Supponiamo che $f \in L^1$, $g \in L^1$. Vale allora che:

$$\int_{-\infty}^{\infty} |f(x-y)g(y)| \, dy < \infty \tag{a}$$

quasi per ogni x. Per queste x definiamo la funzione h(x) = f * g, chiamata convoluzione di f e g, nel seguente modo:

$$h(x) = \int_{-\infty}^{\infty} f(x - y)g(y) \, dy \tag{b}$$

ed affermiamo che $h \in L^1$ e:

$$||h||_1 \le ||f||_1 ||g||_1 \tag{c}$$

Dimostrazione. Questa dimostrazione è semplificata, per la versione completa riferirsi al [WR70] Cap. 7.13.

Calcoliamo:

$$\int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |f(x-y)g(y)| \ dx \right) \ dy$$
$$= \int_{-\infty}^{\infty} |g(y)| \left(\int_{-\infty}^{\infty} |f(x-y)| \ dx \right) \ dy$$

operiando la sostituzione v=x-y e sfruttando l'invarianza traslazionale della misura di Lebesgue (Teorema 1.12a) otteniamo:

$$\begin{split} \int_{-\infty}^{\infty} |g(y)| \left(\int_{-\infty}^{\infty} |f(v)| \ d(v+y) \right) \ dy &= \int_{-\infty}^{\infty} |g(y)| \left(\int_{-\infty}^{\infty} |f(v)| \ d(v) \right) \ dy \\ &= \int_{-\infty}^{\infty} |g(y)| \ dy \int_{-\infty}^{\infty} |f(v)| \ dv = \|g\|_1 \cdot \|f\|_1 < \infty \end{split}$$

Dato che questo integrale iterato converge converge allora anche l'altro integrale iterato ed i due integrali coincidono (vedere il Teorema di Fubini 1.16), quindi:

$$\int_{-\infty}^{\infty} |h(x)| \ dx = \int_{-\infty}^{\infty} \left| \int_{-\infty}^{\infty} f(x - y)g(y) \ dy \right| \ dx$$

$$\leq \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |f(x - y)g(y)| \ dy \right) \ dx$$

$$= \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |f(x - y)g(y)| \ dx \right) \ dy = ||g||_{1} \cdot ||f||_{1} < \infty$$

Il teorema è quindi dimostrato.

2 Trasformata di Fourier

Al fine di semplificare la discussione utilizzeremo la seguente convenzione notazionale:

$$\int_{-\infty}^{\infty} f(x) d_{\pi}x = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) dx$$

dove dx si riferisce all'integrale di Lebesgue ordinario e $d_{\pi}x = \frac{dx}{\sqrt{2\pi}}$.

2.1 Definizioni. Data una funzione $f \in L_1$ definiamo la *Trasformata di Fourier* di f come:

$$\hat{f}(t) = \int_{-\infty}^{\infty} f(x)e^{-ixt} d_{\pi}x \qquad (t \in \mathcal{R}^1)$$
 (a)

Dato che $f \in L^1$, questo integrale è ben definito per ogni $t \in \mathbb{R}$, in quanto $|e^{-ixt}| = \sqrt{(\cos xt)^2 + (\sin xt)^2} = 1$ e quindi:

$$|\hat{f}(t)||_{1} = \int_{-\infty}^{\infty} |f(x)e^{-ixt}| d_{\pi}x$$

$$= \int_{-\infty}^{\infty} |f(x)||e^{-ixt}| d_{\pi}x = \int_{-\infty}^{\infty} |f(x)| d_{\pi}x$$

$$= ||f(t)||_{1} < \infty$$

Se f e g sono due funzioni, definiamo inoltre l'operazione di ${\it Convoluzione}$ ${\it tra}~f~e~g$ come:

$$(f * g)(x) = \int_{-\infty}^{\infty} f(x - y)g(y)d_{\pi}y \qquad (x \in \mathcal{R}^1)$$
 (b)

Prestiamo attenzione al fatto che, per il teorema 1.17, se $f \in L^1$ e $g \in L^1$, allora anche $f * g \in L^1$.

Definiamo infine la $Norma\ di\ f$ come:

$$||f||_p = \left\{ \int_{-\infty}^{\infty} |f(x)|^p d_{\pi}x \right\}^{\frac{1}{p}} \qquad (1 \le p < \infty)$$
 (c)

2.2 Proprietà della Trasformata. Se $f \in L^1$ e $\alpha, \lambda \in \mathbb{R}$ valgono le seguenti proprietà:

$$g(x) = f(x)e^{i\alpha x} \implies \hat{g}(t) = \hat{f}(t - \alpha)$$
 (a)

Dimostrazione.

$$\hat{g}(t) = \int_{-\infty}^{\infty} f(x)e^{i\alpha x}e^{-itx} d_{\pi}x$$
$$= \int_{-\infty}^{\infty} f(x)e^{-ix(t-\alpha)} d_{\pi}x = \hat{f}(t-\alpha)$$

 $g(x) = f(x - \alpha) \implies \hat{g}(t) = \hat{f}(t)e^{-i\alpha t}$ (b)

Dimostrazione.

$$\hat{g}(t) = \int_{-\infty}^{\infty} f(x - \alpha)e^{-itx} d_{\pi}x =$$

Con il cambio di variabile $z = x - \alpha \implies x = z + \alpha \implies d_{\pi}x = d_{\pi}(z + \alpha) =$ per invarianza traslazionale della misura di Lebesgue $= d_{\pi}z$.

Inoltre, per quanto riguarda gli estremi di integrazione: se x era compreso tra $-\infty$ e $+\infty$, z è compreso tra $-\infty$ – α = $-\infty$ e $+\infty$ – α = $+\infty$. Quindi:

$$= \int_{-\infty}^{\infty} f(z)e^{-it(z+\alpha)} d_{\pi}z =$$

$$e^{-i\alpha t} \int_{-\infty}^{\infty} f(z)e^{-itz} d_{\pi}z = \hat{f}(t)e^{-i\alpha t}$$

Se $g \in L^1$ e h = f * g, allora $\hat{h}(t) = \hat{f}(t)\hat{g}(t)$ (c)

Dimostrazione.

$$\hat{h}(t) = \int_{-\infty}^{\infty} h(t)e^{-itx}d_{\pi}x = \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x-y)g(y)d_{\pi}y\right)e^{-itx}d_{\pi}x$$

Dato che $\left|e^{-itx}\right|=\left|\cos tx-i\sin tx\right|=\sqrt{\left(\cos tx\right)^2+\left(\sin tx\right)^2}=1$ e che -per il teorema 1.17- $h(t)\in L^1$ vale quindi che:

$$\left\| \hat{h}(t) \right\|_{1} = \int_{-\infty}^{\infty} \left| h(t)e^{-itx} \right| d_{\pi}x$$

$$= \int_{-\infty}^{\infty} \left| h(t) \right| \left| e^{-itx} \right| d_{\pi}x$$

$$= \int_{-\infty}^{\infty} \left| h(t) \right| d_{\pi}x < \infty$$

È quindi possibile applicare il teorema di Fubini 1.16 ed invertire l'ordine di integrazione

$$\hat{h}(t) = \int_{-\infty}^{\infty} g(y)e^{-ity} \left(\int_{-\infty}^{\infty} f(x-y)e^{-it(x-y)} d_{\pi}x \right) d_{\pi}y$$

Come in (b), si può effettuare il cambio di variabile $z=x-y \implies x=z+y \implies d_{\pi}x=d_{\pi}(z+y)=$ per invarianza traslazionale della misura di Lebesgue $=d_{\pi}z$. Anche in questo caso gli estremi di integrazione non cambiano, quindi:

$$= \int_{-\infty}^{\infty} g(y)e^{-ity} \left(\int_{-\infty}^{\infty} f(z)e^{-itz} d_{\pi}z \right) d_{\pi}y$$

$$= \int_{-\infty}^{\infty} g(y)e^{-ity} d_{\pi}y \int_{-\infty}^{\infty} f(z)e^{-itz} d_{\pi}z$$

$$= \hat{g}(t)\hat{f}(t)$$

$$g(x) = \overline{f(-x)} \implies \hat{g}(t) = \overline{\hat{f}(t)}$$
 (d)

Dimostrazione.

$$\hat{g}(t) = \int_{-\infty}^{+\infty} \overline{f(-x)} e^{-ixt} d_{\pi}x$$

In questo caso effettuiamo il cambio di variabile $z=-x \implies x=-z \implies d_{\pi}x=-d_{\pi}z$. Per quanto riguarda gli estremi di integrazione: se x andava da

 $-\infty$ a $+\infty$, z va da $-(-\infty) = +\infty$ a $-(+\infty) = -\infty$. Quindi:

$$= \hat{g}(t) = -\int_{+\infty}^{-\infty} \overline{f(z)} e^{izt} d_{\pi}z$$

$$= +\int_{-\infty}^{+\infty} \overline{f(z)} e^{izt} d_{\pi}z$$

$$= \int_{-\infty}^{+\infty} \overline{f(z)} e^{-izt} d_{\pi}z = \overline{\hat{f}(t)}$$

$$g(x) = f(x/\lambda), \quad \lambda > 0 \implies \hat{g}(t) = \lambda \hat{f}(t)$$
 (e)

Dimostrazione.

$$\hat{g}(t) = \int_{-\infty}^{\infty} f(x/\lambda) e^{-ixt} d_{\pi}x$$

Con il cambio di variabile $z = \frac{x}{\lambda} \implies x = z\lambda \implies d_{\pi}x = \lambda d_{\pi}z$, gli estremi di integrazione non cambiano, quindi:

$$\hat{g}(t) = \lambda \int_{-\infty}^{\infty} f(z)e^{-i(t\lambda)z} d_{\pi}z = \lambda \hat{f}(t\lambda)$$

$$g(x) = -ixf(x), g \in L^1, f \in \mathcal{S}$$
 \Longrightarrow \hat{f} è differenziabile e $\hat{f}'(t) = \hat{g}(t)$ (f)

Dimostrazione. Per dimostrare questo punto, discostandoci per un attimo dal testo di riferimento, assumiamo che f appartenga allo spazio delle funzioni di Schwartz \mathcal{S} , ovvero allo spazio delle funzioni rapidamente decrescenti, definito in 1.11.

Per prima cosa scriviamo la derivata della trasformata di Fourier, come:

$$\lim_{s \to t} \frac{\hat{f}(s) - \hat{f}(t)}{s - t}$$

$$= \lim_{s \to t} \int_{-\infty}^{+\infty} \frac{f(x)e^{-isx}}{s - t} d_{\pi}x - \int_{-\infty}^{+\infty} \frac{f(x)e^{-itx}}{s - t} d_{\pi}x$$

$$= \lim_{s \to t} \int_{-\infty}^{+\infty} f(x)e^{-itx} \left(\frac{e^{-ix(s - t)} - 1}{s - t}\right) d_{\pi}x$$

$$= \lim_{s \to t} \int_{-\infty}^{+\infty} f(x)e^{-itx} \phi(x, s - t) d_{\pi}x$$

Dove $\phi(x, \mu) = \frac{e^{-i\mu x} - 1}{\mu}$.

Ricordando che la serie di Taylor di una funzione analitica in x_0 è definita come:

$$f(x) = \sum_{k=0}^{+\infty} \frac{f^{(k)}(x_0)}{k!} f(x - x_0)^k$$

sviluppiamo ora $e^{-ix\mu}$ in serie di Taylor, centrata in $x_0=0$:

$$e^{-i\mu x} = \sum_{k=0}^{+\infty} \frac{(-i\mu x)^k}{k!} = 1 - ix\mu - \frac{x^2\mu^2}{2} + \frac{ix^3\mu^3}{6} + \frac{x^4\mu^4}{24} - \dots + \dots$$

Possiamo quindi scrivere:

$$\frac{e^{-ix\mu}-1}{\mu} = -ix - \frac{x^2\mu}{2} + \frac{ix^3\mu^2}{6} + \frac{x^4\mu^3}{24} - \ldots + \ldots$$

A questo punto dimostriamo che: $|\phi(x,\mu)| = \left|\frac{e^{-ix\mu}-1}{\mu}\right| \le |x|$:

$$\left| \frac{e^{-ix\mu} - 1}{\mu} \right| = \left| -ix - \frac{x^2\mu}{2} + \frac{ix^3\mu^2}{6} + \frac{x^4\mu^3}{24} - \dots + \dots \right|$$

$$\leq \left| -ix \right| + \left| -\frac{x^2\mu}{2} \right| + \left| \frac{ix^3\mu^2}{6} \right| + \left| \frac{x^4\mu^3}{24} \right| + \dots + \dots$$

$$\leq \left| -ix \right| = \sqrt{x^2} = |x|$$

Proviamo infine a calcolare il $\lim_{\mu\to 0} \phi(x,\mu)$:

$$\lim_{\mu \to 0} \phi(x,\mu) = \lim_{\mu \to 0} -ix - \frac{x^2\mu}{2} + \frac{ix^3\mu^2}{6} + \frac{x^4\mu^3}{24} - \dots + \dots = -ix$$

Giunti a questo punto abbiamo tutte le carte in tavola per concludere la dimostrazione:

• utilizzando il fatto che la funzione $|\phi(x,\mu)|$ è dominata, per ogni μ reale, dalla funzione |x|, scriviamo:

$$\int_{-\infty}^{+\infty} |f(x)e^{-itx}\phi(x,s-t)| d_{\pi}x$$

$$= \int_{-\infty}^{+\infty} |f(x)| |e^{-itx}| |\phi(x,s-t)| d_{\pi}x$$

$$= \int_{-\infty}^{+\infty} |f(x)| \cdot 1 \cdot |\phi(x,s-t)| d_{\pi}x$$

$$\leq \int_{-\infty}^{+\infty} |f(x)| \cdot |x| d_{\pi}x < \infty$$

dove l'ultimo passaggio è giustificato dal fatto che la funzione f è supposta appartenere allo spazio di Schwartz S, delle funzioni rapidamente decrescenti.

• per quanto sopra detto, la funzione $f(x)e^{-itx}\phi(x,s-t) \in L^1$. Possiamo quindi applicare il teorema di convergenza dominata (vedi 1.15) ed ottenere:

$$\hat{f}'(t) = \lim_{s \to t} \int_{-\infty}^{+\infty} f(x)e^{-itx}\phi(x, s - t) d_{\pi}x$$

$$= \int_{-\infty}^{+\infty} f(x)e^{-itx} \lim_{s \to t} \phi(x, s - t) d_{\pi}x$$

$$= \int_{-\infty}^{+\infty} f(x)e^{-itx} - ix d_{\pi}x = -i\int_{-\infty}^{+\infty} xf(x)e^{-itx} d_{\pi}x$$

C.V.D.

$$g(x) = f'(x), f \in L^1, g \in L^1 \Longrightarrow \hat{g}(t) = it\hat{f}(t)$$
 (g)

Dimostrazione. Per la proprietà 2.2b, se $l(x,\alpha) = \frac{f(x+\alpha) - f(x)}{\alpha}$

$$\hat{l}(t,\alpha) = \frac{\hat{f}(t)e^{i\alpha t} - \hat{f}(t)}{\alpha} = \hat{f}(t)\frac{e^{i\alpha t} - 1}{\alpha}$$

Sviluppiamo ora in serie di Taylor $e^{i\alpha t}$

$$e^{i\alpha t} = 1 + i\alpha t - \frac{\alpha^2 t^2}{2} - \frac{i\alpha^3 t^3}{6} + \frac{\alpha^4 t^4}{24} + \dots + \dots$$

da cui:

$$\frac{e^{i\alpha t}-1}{\alpha}=it-\frac{\alpha t^2}{2}-\frac{i\alpha^2t^3}{6}+\frac{\alpha^3t^4}{24}+\ldots\ldots+\ldots$$

quindi $\lim_{\alpha\to 0}\frac{e^{i\alpha t}-1}{\alpha}=it$. A questo punto possiamo facilmente calcolare la trasformata di Fourier di f'(x), come:

$$\hat{g}(x) = \int_{-\infty}^{+\infty} f'(x)e^{-itx} d_{\pi}x$$

$$= \int_{-\infty}^{+\infty} \lim_{\alpha \to 0} \frac{f(x+\alpha) - f(x)}{\alpha} e^{-itx} d_{\pi}x$$

$$= \int_{-\infty}^{+\infty} \lim_{\alpha \to 0} l(x,\alpha)e^{-itx} d_{\pi}x$$

Dato che $f' \in L^1$, possiamo applicare il teorema di convergenza dominata ed

ottenere:

$$\hat{g}(x) = \int_{-\infty}^{+\infty} \lim_{\alpha \to 0} \frac{f(x+\alpha) - f(x)}{\alpha} e^{-itx} d_{\pi}x$$

$$= \lim_{\alpha \to 0} \int_{-\infty}^{+\infty} \frac{f(x+\alpha) - f(x)}{\alpha} e^{-itx} d_{\pi}x$$

$$= \lim_{\alpha \to 0} \hat{l}(t,\alpha) = \hat{f}(t) \lim_{\alpha \to 0} \frac{e^{i\alpha t} - 1}{\alpha}$$

$$= \hat{f}(t)it$$

C.V.D.

Questa proprietà risulta essere molto importante nel calcolo delle equazioni differenziali e verrà sfruttata nell'esempio 4.2.

2.3 Trasformata di una funzione pari. Sia f_p una funzione complessa pari (vedere definizone 1.14a), vale allora che:

$$\hat{f}_p(t) = 2 \int_0^\infty f_p(x) cos(tx) \, d_\pi x$$

inoltre \hat{f}_p è anch'essa pari.

Dimostrazione. Utilizzando la formula di Eulero scriviamo:

$$\hat{f}_p(t) = \int_{-\infty}^{+\infty} f_p(x)e^{-itx} d_{\pi}x = \int_{-\infty}^{\infty} f_p(x)\cos tx d_{\pi}x - i\int_{-\infty}^{\infty} f_p(x)\sin tx d_{\pi}x$$

L'integrando nel secondo integrale è il prodotto di una funzione pari (f_p) e di una funzione dispari $(\sin tx)$ e, per il teorema 1.14e è quindi una funzione dispari. Applicando quindi il teorema 1.14f al secondo integrale questi risulta uguale a zero:

$$\int_{-\infty}^{\infty} f_p(x) \sin x \, d_{\pi} x = 0$$

Per quanto riguarda l'integrando del primo integrale invece notiamo che è il prodotto di due funzioni pari $(f_p e \cos tx)$ e quindi, per il teorema 1.14c è una funzione pari. Applicando quindi il teorema 1.14g al primo integrale otteniamo:

$$\int_{-\infty}^{\infty} f_p(x) \cos tx \, d_{\pi}x = 2 \int_{0}^{\infty} f_p(x) \cos tx \, d_{\pi}x$$

Perciò:

$$\hat{f}_p(t) = 2 \int_0^\infty f_p(x) \cos tx \, d_\pi x$$

È semplice dimostrare infine che anche $\hat{f}_p(t)$ è una funzione pari:

$$\hat{f}_p(-t) = 2 \int_0^\infty f_p(x) \cos(-tx) d_\pi x = 2 \int_0^\infty f_p(x) \cos tx d_\pi x = \hat{f}_p(t)$$

2.4 Trasformata di una funzione dispari. Sia f_d una funzione complessa dispari (vedere definizone 1.14b), vale allora che:

$$\hat{f}_d(t) = -2i \int_0^\infty f_d(x) \sin(tx) \, d_\pi x$$

 $inoltre \hat{f}_d$ è anch'essa dispari.

Dimostrazione. Utilizzando la formula di Eulero scriviamo:

$$\hat{f}_d(t) = \int_{-\infty}^{+\infty} f_d(x)e^{-itx} d_{\pi}x = \int_{-\infty}^{\infty} f_d(x)\cos tx \, d_{\pi}x - i\int_{-\infty}^{\infty} f_d(x)\sin tx \, d_{\pi}x$$

L'integrando nel primo integrale è il prodotto di una funzione dispari (f_d) e di una funzione pari $(\cos tx)$ e, per il teorema 1.14e è quindi una funzione dispari. Applicando quindi il teorema 1.14f al primo integrale questi risulta uguale a zero:

$$\int_{-\infty}^{\infty} f_d(x) \cos x \, d_{\pi} x = 0$$

Per quanto riguarda l'integrando del secondo integrale invece notiamo che è il prodotto di due funzioni dispari $(f_d \ e \ \sin tx)$ e quindi, per il teorema 1.14d è una funzione pari. Applicando quindi il teorema 1.14g al secondo integrale otteniamo:

$$\int_{-\infty}^{\infty} f_d(x) \sin tx \, d_{\pi}x = 2 \int_{0}^{\infty} f_d(x) \sin tx \, d_{\pi}x$$

Perciò:

$$\hat{f}_d(t) = -2i \int_0^\infty f_d(x) \sin tx \, d_\pi x$$

È altrettanto semplice dimostrare infine che anche $\hat{f}_d(t)$ è una funzione dispari:

$$\hat{f}_d(t) = -2i \int_0^\infty f_d(x) \sin(tx) \, d_\pi x = -2i \int_0^\infty -f_d(x) \sin(-tx) \, d_\pi x$$
$$= 2i \int_0^\infty f_d(x) \sin(-tx) \, d_\pi x = -\hat{f}_d(-t)$$

3 Inversione della Trasformata

La trasformata di Fourier gode quindi di alcune utili proprietà per cui certe operazioni sulle funzioni corrispondo ad altre operazioni sulle rispettive trasformate, ad esempio:

- la convoluzione tra due funzioni corrisponde al prodotto delle trasformate
- la derivata di una funzione corrisponde alla trasformata moltiplicata per it

Di quì il notevole interesse per una formula di inversione che, a partire da una trasformata, restituisca la funzione originale corrispondente. In questa sezione daremo quindi una dimostrazione rigorosa della formula di inversione della trasformata di Fourier.

3.1 Teorema. Per ogni funzione f su R^1 ed ogni $y \in R^1$, sia f_y la traslazione di f definita da:

$$f_y(x) = f(x - y) \qquad (x \in R^1). \tag{a}$$

Se $1 \le p < \infty$ e $f \in L^p$, la funzione: $f_y : \mathcal{R}^1 \to L^p$ è uniformemente continua, rispetto ad y.

Dimostrazione. Fissato un $\epsilon > 0$, dato che $f \in L^p$, esiste (vedere Teorema 3.14 del [WR70]) una funzione uniformemente continua g, il cui supporto -intervallo in cui la funzione assume valori diversi da 0- sta nell'intervallo ristretto [-A, A], tale che:

$$||f - g||_p < \epsilon$$

Dato che g è una funzione uniformemente continua, per ogni particolare ϵ esiste un particolare δ tale che $|s-t|<\delta$ implica che $|g(s)-g(t)|<\epsilon$. Esiste quindi un $\delta\in(0,A)$, tale che $|s-t|<\delta$ implica che:

$$|g(s) - g(t)| < (3A)^{-\frac{1}{p}}\epsilon$$

A questo punto, se $|s-t| < \delta < A$, vale la seguente disuguaglianza:

$$\int_{-\infty}^{+\infty} |g(x-s) - g(x-t)|^p dx < (3A)^{-1} \epsilon^p (2A + \delta) < \epsilon^p$$

Vediamo il perché:

• $2A + \delta$ è la lunghezza della base dell'integrale. Infatti (come si può vedere in Figura 1) se g(x) ha come supporto l'intervallo [-A, A], di lunghezza 2A, la funzione |g(x - s) - g(x - t)| ha come supporto un intervallo di lunghezza $2A + \delta$, dove $|s - t| < \delta$.

Figura 1: Intervallo di integrazione

 ${\bf Figura~2:~Approssimazione~integrale}$

La figura è disegnata supponendo, senza perdita di generalità, che s > t. Si vede così che gli estremi tra cui la funzione |g(x-s) - g(x-t)| può essere valutata sono, a sinistra x = -A + t:

$$|g(-A+t-s) - g(-A+t-t)| = |g(-A-(s-t)) - g(-A)|$$
$$= |g(-A-\delta) - g(-A)| = |0 - g(-A)| = g(-A)$$

a destra x = A + s:

$$|g(A+s-s) - g(A+s-t)| = |g(A) - g(A+\delta)|$$

= |g(A) - 0| = g(A)

Il supporto della funzione |g(x-s)-g(x-t)| è quindi l'intervallo [-A+t,A+s] (o in [-A+s,A+t] nel caso in cui t>s) che, come si può vedere dalla figura, ha lunghezza $2A+\delta$.

- $(3A)^{-1} \epsilon^p$ è invece il valore massimo assunto dalla funzione $|g(x-s) g(x-t)|^p$, per quanto detto più sopra.
- Il valore dell'integrale viene quindi maggiorato dal valore dell'area del rettangolo di base $2A + \delta$ ed altezza $(3A)^{-1} \epsilon^p$, come mostrato in Figura 2. La seconda maggiorazione è invece effettuata, considerando che, per come è stato definito $\delta < A$, quindi $2A + \delta < 2A + A = 3A$, quindi

$$\epsilon^p \frac{2A + \delta}{3A} < \epsilon^p \frac{3A}{3A} = \epsilon^p$$

Per quanto fin'ora detto vale quindi la diseguaglianza:

$$||g_s - g_t||_p < \epsilon$$

A questo punto possiamo scrivere la disuguaglianza:

$$||f_{s} - f_{t}||_{p} = ||f_{s} - g_{s} + g_{s} - g_{t} + g_{t} - f_{t}||_{p}$$

$$\leq ||f_{s} - g_{s}||_{p} + ||g_{s} - g_{t}||_{p} + ||g_{t} - f_{t}||_{p}$$

$$= ||(f - g)_{s}||_{p} + ||g_{s} - g_{t}||_{p} + ||(g - f)_{t}||_{p}$$

$$= ||f - g||_{p} + ||g_{s} - g_{t}||_{p} + ||g - f||_{p}$$

$$= 2\epsilon + ||g_{s} - g_{t}||_{p} < 3\epsilon$$

Sfruttando l'invarianza traslazionale delle norme L^p rispetto alla misura di Lebesgue (vedere 1.12c) ed i risultanti precedentemente ottenuti.

Concludendo, se
$$|s-t| < \delta$$
, allora $||f_s - f_t||_p < 3\epsilon$. C.V.D.

3.2 Teorema. Se $f \in L^1$, allora $\hat{f} \in C_0$ e

$$\|\hat{f}\|_{\infty} \leq \|f\|_{1}$$

Dimostrazione. Quest'ultima equazione può essere facilmente provata notando che:

$$\|\hat{f}\|_{\infty} = \sup \left| \int_{-\infty}^{+\infty} f(x)e^{-itx} d_{\pi}x \right| \le \left| \int_{-\infty}^{+\infty} f(x)e^{-itx} d_{\pi}x \right|$$

$$\le \int_{-\infty}^{+\infty} |f(x)e^{-itx}| d_{\pi}x = \int_{-\infty}^{+\infty} |f(x)| d_{\pi}x = \|f\|_{1}$$

Per dimostrare invece la continuità di f, invece, scriviamo la seguente disuguaglianza:

$$|\hat{f}(t_n) - \hat{f}(t)| = \left| \int_{-\infty}^{+\infty} f(x)e^{-it_n x} d_{\pi} x - \int_{-\infty}^{+\infty} f(x)e^{-itx} d_{\pi} x \right|$$
$$= \left| \int_{-\infty}^{+\infty} f(x)(e^{-it_n x} - e^{-itx}) d_{\pi} x \right| \le \int_{-\infty}^{+\infty} |f(x)| \left| e^{-it_n x} - e^{-itx} \right| d_{\pi} x$$

L'integrando a sua volta è maggiorato da:

$$|f(x)| (|e^{-it_n x}| + |-e^{-itx}|) \le |f(x)|2$$

Perciò, possiamo applicare il teorema di convergenza dominata (vedi 1.15) e scrivere che:

$$\lim_{t_n \to t} |\hat{f}(t_n) - \hat{f}(t)| = \lim_{t_n \to t} \left| \int_{-\infty}^{+\infty} f(x) (e^{-it_n x} - e^{-itx}) \, d_\pi x \right|$$
$$= \left| \int_{-\infty}^{+\infty} \lim_{t_n \to t} f(x) (e^{-it_n x} - e^{-itx}) \, d_\pi x \right| = 0$$

 \hat{f} è quindi una funzione continua. C.V.D.

3.3 Un paio di funzioni ausiliarie. Sia $H(t) = e^{-|t|}$, definiamo:

$$h_{\lambda}(x) = \int_{-\infty}^{+\infty} H(\lambda t) e^{itx} d_{\pi}t \qquad (\lambda > 0)$$

Se h_{λ} è definita come sopra, valgono inoltre i seguenti fatti:

$$h_{\lambda}(x) = \sqrt{\frac{2}{\pi}} \frac{\lambda}{\lambda^2 + x^2}$$
$$\int_{-\infty}^{+\infty} h_{\lambda} d_{\pi} x = 1$$

Dimostrazione. In primo luogo notiamo che $e^{-|\lambda t|}$ è una funzione pari. Applicando un procedimento simile a quello presentato nel teorema 2.3, otteniamo:

$$h_{\lambda}(x) = \int_{-\infty}^{\infty} e^{-|\lambda t|} e^{itx} d_{\pi}t = \int_{-\infty}^{\infty} e^{-|\lambda t|} (\cos tx + i \sin tx) d_{\pi}t$$
$$= \int_{-\infty}^{\infty} e^{-|\lambda t|} \cos tx d_{\pi}t + i \int_{-\infty}^{\infty} e^{-|\lambda t|} \sin tx d_{\pi}t$$
$$= \int_{-\infty}^{\infty} e^{-|\lambda t|} \cos tx d_{\pi}t = 2 \int_{0}^{+\infty} e^{-\lambda t} \cos tx d_{\pi}t$$

Sfruttando la formula di integrazione per parti calcoliamo ora $g(x) = \int_0^{+\infty} e^{-\lambda t} \cos(tx) d_{\pi}t$:

$$g(x) = \frac{1}{\sqrt{2\pi}} \int_0^{+\infty} e^{-\lambda t} \cos tx \, dt = \frac{1}{\sqrt{2\pi}} \left[-\frac{1}{\lambda} e^{-\lambda t} \cos tx \Big|_0^{+\infty} - \frac{x}{\lambda} \int_0^{+\infty} e^{-\lambda t} \sin tx \, dt \right]$$

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{1}{\lambda} - \frac{x}{\lambda} \left(-\frac{1}{\lambda} e^{-\lambda t} \sin tx \Big|_0^{+\infty} + \frac{x}{\lambda} \int_0^{+\infty} e^{-\lambda t} \cos tx \, dt \right) \right]$$

$$= \frac{1}{\sqrt{2\pi}} \left[\frac{1}{\lambda} - \frac{x}{\lambda} \left(\frac{x}{\lambda} \int_0^{+\infty} e^{-\lambda t} \cos tx \, dt \right) \right] = \frac{1}{\sqrt{2\pi}} \left[\frac{1}{\lambda} - \frac{x^2}{\lambda^2} \int_0^{+\infty} e^{-\lambda t} \cos tx \, dt \right]$$

$$= \frac{1}{\sqrt{2\pi}\lambda} - \frac{x^2}{\lambda^2} g(x)$$

Ripercorrendo l'uguaglianza otteniamo quindi $g(x) = \frac{1}{\sqrt{2\pi}\lambda} - \frac{x^2}{\lambda^2}g(x)$, da cui con poca semplice algebra otteniamo:

$$\begin{split} g(x) + \frac{x^2}{\lambda^2} g(x) &= \frac{1}{\sqrt{2\pi}\lambda} \implies g(x) \left(1 + \frac{x^2}{\lambda^2} \right) = \frac{1}{\sqrt{2\pi}\lambda} \\ \Longrightarrow g(x) &= \frac{1}{\sqrt{2\pi}\lambda \left(1 + \frac{x^2}{\lambda^2} \right)} \implies g(x) = \frac{1}{\sqrt{2\pi}} \frac{\lambda}{\lambda^2 + x^2} \end{split}$$

Vale quindi che:

$$h_{\lambda}(x) = 2g(x) = \frac{2}{\sqrt{2\pi}} \frac{\lambda}{\lambda^2 + x^2} = \sqrt{\frac{2}{\pi}} \frac{\lambda}{\lambda^2 + x^2}$$

Calcoliamo ora l'integrale su tutto \mathbb{R} di $h_{\lambda}(x)$:

$$\int_{-\infty}^{+\infty} h_{\lambda} d_{\pi} x = \frac{1}{\sqrt{2\pi}} \frac{2\lambda}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \frac{1}{\lambda^2 + x^2} dx$$
$$= \frac{\lambda}{\pi} \left| \frac{1}{\lambda} \arctan \frac{x}{\lambda} \right|_{-\infty}^{+\infty} = \frac{\lambda}{\pi} \frac{\pi/2 - (-\pi/2)}{\lambda}$$
$$= \frac{\lambda}{\pi} \frac{\pi}{\lambda} = 1$$

È di conseguenza evidente che $h_{\lambda} \in L^1$.

Evidenziamo infine i sequenti Fatti:

- 1. $0 < H(t) \le 1$
- 2. $\lim_{\lambda \to 0} H(\lambda t) = 1$
- 3. $h_{\lambda}(x) > 0$, dato che $\lambda > 0$.
- 4. $h_1\left(\frac{x}{\lambda}\right)\frac{1}{\lambda} = h_{\lambda}(x)$, infatti:

$$\frac{1}{\lambda} \frac{1}{1 + \frac{x^2}{\lambda^2}} = \frac{1}{\lambda + \frac{x^2}{\lambda}} = \frac{1}{\frac{\lambda^2 + x^2}{\lambda}} = \frac{\lambda}{\lambda^+ x^2}$$

5. $(h_{\lambda}(x))^p \leq h_{\lambda}(x)$, infatti:

•
$$\sqrt{\frac{2}{\pi}} \le 1$$
, quindi $\left(\sqrt{\frac{2}{\pi}}\right)^p \le \sqrt{\frac{2}{\pi}}$, lo stesso dicasi per $\frac{1}{\lambda}$;

•
$$1 + \frac{x^2}{\lambda^2} \ge 1$$
, $quindi \left(1 + \frac{x^2}{\lambda^2} \right)^p \ge 1 + \frac{x^2}{\lambda^2} \implies \left(\frac{1}{1 + \frac{x^2}{\lambda^2}} \right)^p \le \frac{1}{1 + \frac{x^2}{\lambda^2}}$

quindi:

$$(h_{\lambda}(x))^p = \left(\sqrt{\frac{2}{\pi}} \frac{1}{\lambda} \frac{1}{1 + \frac{x^2}{\lambda^2}}\right)^p \le \sqrt{\frac{2}{\pi}} \frac{1}{\lambda} \frac{1}{1 + \frac{x^2}{\lambda^2}} = h_{\lambda}(x)$$

3.4 Proposizione. Se $f \in L^1$, allora:

$$(f * h_{\lambda})(x) = \int_{-\infty}^{+\infty} H(\lambda t) \hat{f}(t) e^{ixt} d_{\pi}t$$

Dimostrazione.

$$(f * h_{\lambda})(x) = \int_{-\infty}^{+\infty} f(x - y) \left(\int_{-\infty}^{+\infty} H(\lambda t) e^{iyt} d_{\pi} t \right) d_{\pi} y$$

Dato che $f_y \in L^1$ (per il teorema 3.1) e $h_\lambda \in L^1$ (per quanto visto sopra) allora, per il teorema 1.17, $f * h_\lambda \in L^1$. Possiamo quindi applicare il teorema di Fubini e scrivere:

$$(f * h_{\lambda})(x) = \int_{-\infty}^{+\infty} H(\lambda t) \left(\int_{-\infty}^{+\infty} f(x - y)e^{iyt} d_{\pi}y \right) d_{\pi}t$$

$$= \int_{-\infty}^{+\infty} H(\lambda t) \left(\int_{+\infty}^{-\infty} f(z)e^{i(x - z)t} d_{\pi}(x - z) \right) d_{\pi}t$$

$$= \int_{-\infty}^{+\infty} H(\lambda t)e^{ixt} \left(\int_{-\infty}^{+\infty} f(z)e^{-izt} d_{\pi}z \right) d_{\pi}t$$

$$= \int_{-\infty}^{+\infty} H(\lambda t)e^{ixt} \hat{f}(t) d_{\pi}t$$

operando la sostituzione $z=x-y \implies y=x-z \implies dy=d(x-z)$ e sfruttando l'invarianza traslazionale della misura di Lebesgue.

3.5 Teorema. Se $g \in L^{\infty}$ e g è continua nel punto x, allora:

$$\lim_{\lambda \to 0} (g * h_{\lambda}) = g(x)$$

Dimostrazione. Dato che (come visto in 3.3) $\int_{-\infty}^{\infty} h_{\lambda}(x) d_{\pi}x = 1$, vale che:

$$(g * h_{\lambda})(x) - g(x) = \int_{-\infty}^{+\infty} g(x - y) h_{\lambda}(y) d_{\pi}y - g(x) \int_{-\infty}^{\infty} h_{\lambda}(y) d_{\pi}y$$

$$= \int_{-\infty}^{+\infty} [g(x - y) - g(x)] h_{\lambda}(y) d_{\pi}y = \int_{-\infty}^{+\infty} [g(x - y) - g(x)] h_{1}\left(\frac{y}{\lambda}\right) \frac{1}{\lambda} d_{\pi}y$$

$$= \int_{-\infty}^{+\infty} [g(x - \lambda s) - g(x)] h_{1}(s) d_{\pi}s$$

effettuando la sostituzione $s = \frac{y}{\lambda}$. Dato che $|g(x - \lambda s) - g(x)| \le |g(x - \lambda s)| + |g(x)| \le 2||g||_{\infty}$, l'integrando è dominato da $2||g||_{\infty}h_1(s) \in L^1$ e possiamo applicare il teorema di convergenza dominata:

$$\lim_{\lambda \to 0} (g * h_{\lambda})(x) - g(x) = \lim_{\lambda \to 0} \int_{-\infty}^{+\infty} [g(x - y) - g(x)] h_{\lambda}(y) d_{\pi}y$$
$$= \int_{-\infty}^{+\infty} \lim_{\lambda \to 0} [g(x - y) - g(x)] h_{\lambda}(y) d_{\pi}y = 0$$

 \Box C.V.D.

3.6 Teorema. Se $1 \le p < \infty$ e $f \in L^p$, allora

$$\lim_{\lambda \to 0} \|f * h_{\lambda} - f\|_p = 0$$

Dimostrazione. Dato che $h_{\lambda} \in L^{q}$, dove q è esponente coniugato di p (ovvero p+q=pq, vedere [WR70] 3.4, 3.5 e 3.8), allora $(f*h_{\lambda})(x)$ è definito per ogni x.

Come nel Teorema 3.5, scriviamo $(f * h_{\lambda})(x) - f(x)$ come:

$$(f * h_{\lambda})(x) - f(x) = \int_{-\infty}^{\infty} \left[f(x - y) - f(x) \right] h_{\lambda}(y) d_{\pi}y$$

Applicando la diseguaglianza di Jensen possiamo scrivere:

$$|(f * h_{\lambda})(x) - f(x)|^{p} \le \int_{-\infty}^{\infty} |f(x - y) - f(x)|^{p} |h_{\lambda}(y)|^{p} d_{\pi}y$$

e, utilizzando i Fatti 3 e 5, nel teorema 3.3:

$$|(f * h_{\lambda})(x) - f(x)|^{p} \le \int_{-\infty}^{\infty} |f(x - y) - f(x)|^{p} h_{\lambda}(y) d_{\pi}y$$

Integrando entrambe i membri della disequazione ed applicando Fubini, otteniamo:

$$\int_{-\infty}^{\infty} |(f * h_{\lambda}) - f|^{p} d_{\pi}x \le \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} |f_{y} - f|^{p} h_{\lambda}(y) d_{\pi}y \right) d_{\pi}x$$

$$\|f * h_{\lambda} - f\|_{p}^{p} \le \int_{-\infty}^{\infty} h_{\lambda}(y) \left(\int_{-\infty}^{\infty} |f_{y} - f|^{p} d_{\pi}x \right) d_{\pi}y$$

$$\|f * h_{\lambda} - f\|_{p}^{p} \le \int_{-\infty}^{\infty} h_{\lambda}(y) \|f_{y} - f\|_{p}^{p} d_{\pi}y$$

Se chiamiamo $g(y) = \|f_y - f\|_p^p$, per il teorema per il teorema 3.1 g è limitata

e continua e g(0) = 0. Quindi, per il teorema 3.5:

$$0 = \lim_{\lambda \to 0} (g * h_{\lambda})(y) - g(y) = \int_{-\infty}^{\infty} (g(y - y) - g(y)) h_{\lambda}(y) d_{\pi}y$$
$$= \lim_{\lambda \to 0} \int_{-\infty}^{\infty} (g(0) - g(y)) h_{\lambda}(y) d_{\pi}y = -\lim_{\lambda \to 0} \int_{-\infty}^{\infty} g(y) h_{\lambda}(y) d_{\pi}y$$
$$= \lim_{\lambda \to 0} \int_{-\infty}^{\infty} ||f_{y} - f||_{p}^{p} h_{\lambda}(y) d_{\pi}y$$

3.7 Teorema di Inversione. Se $f \in L^1$ e $\hat{f} \in L^1$ e se:

$$g(x) = \int_{-\infty}^{\infty} \hat{f}(t)e^{itx} d_{\pi}t \qquad (x \in R^{1})$$

allora $g \in C_0$ e f(x) = g(x) quasi ovunque (vedere la definzione 1.9).

Dimostrazione. Per la proposizione 3.4, vale che:

$$(f * h_{\lambda})(x) = \int_{-\infty}^{+\infty} H(\lambda t) \hat{f}(t) e^{ixt} d_{\pi}t$$

Dato che $f \in L^1$ e $h_{\lambda} \in L^1$, per il teorema 1.17 $f * h_{\lambda} \in L^1$. Possiamo quindi applicare il teorema di convergenza dominata e ottenere:

$$\lim_{\lambda \to 0} (f * h_{\lambda})(x) = \lim_{\lambda \to 0} \int_{-\infty}^{+\infty} H(\lambda t) \hat{f}(t) e^{ixt} d_{\pi} t$$

$$= \int_{-\infty}^{+\infty} \lim_{\lambda \to 0} H(\lambda t) \hat{f}(t) e^{ixt} d_{\pi} t$$

$$= \int_{-\infty}^{+\infty} \hat{f}(t) e^{ixt} d_{\pi} t = g(x)$$

per la proprietà 2 in 3.3.

In virtù del teorema 3.6, possiamo inoltre scrivere:

$$\lim_{\lambda \to 0} (f * h_{\lambda})(x) = f(x)$$
quasi ovunque ()

Di conseguenza g(x) = f(x) quasi ovunque. La continuità di g(x) si ottiene applicando il Teorema 3.2 alla funzione g(x), nel seguente modo:

$$|g(x_n) - g(x)| \le \int_{-\infty}^{+\infty} |\hat{f}(x)| \left| e^{itx_n} - e^{itx} \right| d_{\pi}t$$

L'integrando a sua volta è maggiorato da:

$$|\hat{f}(x)| \left(\left| e^{itx_n} \right| + \left| -e^{itx} \right| \right) \le |f(x)|^2$$

Per il teorema di convergenza dominata vale quindi che:

$$\lim_{x_n \to x} |g(x_n) - g(x)| = \left| \int_{-\infty}^{+\infty} \lim_{x_n \to t} \hat{f}(x) (e^{itx_n} - e^{itx}) \, d_{\pi} t \right| = 0$$

3.1 Trasformata di Plancherel

Dato che la misura di Lebesgue di \mathcal{R}^1 è infinita, L^2 non è un sottoinsieme di L^1 . Esistono infatti, in misura di Lebesgue, funzioni che appartengono ad L^2 ma non ad L^1 , quali ad esempio è la funzione $\frac{1}{x}$. Per questo motivo la trasformata di Fourier non è direttamente applicabile ad ogni $f \in L^2$. Ad ogni modo è ovviamente possibile applicare la trasformazione se $f \in L^1 \cap L^2$ e, sotto questa ipotesi, si verifica facilmente che $\|\hat{f}\|_2 = \|f\|_2$. Perciò, se $f \in L^1 \cap L^2$ allora sicuramente $\hat{f} \in L^2$. È inoltre possibile estendere ulteriormente questa isometria tra $L^1 \cap L^2$ e L^2 , all'isometria di L^2 in L^2 e questa isometria definisce quella che viene chiamatra Trasformata di Plancherel di ogni $f \in L^2$.

3.8 Teorema di Plancherel. È possibile associare ad oni $f \in L^2$, una funzione $\hat{f} \in L^2$, tale che:

- 1. se $f \in L^1 \cap L^2$, allora \hat{f} è la trasformata di Fourier come definita precedentemente
- 2. per ogni $f \in L^2$, $||\hat{f}||_2 = ||f||_2$.

Dimostrazione. da completare

4 Applicazioni pratiche

Come anticipato in 2.2g, la trasformata di Fourier è un'utile strumento per la soluzione di equazioni differenziali. Infatti essa trasforma l'operazione di derivazione in un'operazione di moltiplicazione per una variabile indipendentemente. Se si ha ad esempio un'equazione differenziale lineare a coefficienti costanti:

$$\phi(x) = y^{(n)} + \sum_{j=1}^{n} a_j y^{(n-j)} \qquad y = f(x), \ a_j \in \mathbb{R}$$
 (a)

essa viene trasformata in un'equazione del tipo:

$$\phi(\hat{t}) = (it)^n \hat{y} + \sum_{i=1}^n (it)^{n-j} a_j \hat{y}$$
 (b)

Tuttavia per le equazioni differenziali ordinarie questo procedimento non apre prospettive nuove, in quanto:

- 1. la soluzione di eq. differenziali a coefficienti costanti è già di per se molto semplice;
- 2. la trasformazione dell'equazione (a), nell'equazione (b) è possibile solo se la funzione incognita $y = f(x) \in L^1$, cosa che in generale non è vera.

La trasformata di Fourier è più efficace se applicata alle equazioni alle derivate parziali dove, sotto certe condizioni, permette di ridurre il problema alla soluzione di un'equazione differenziale ordinaria.

4.1 Espansione della funzione charatteristica

In questa sezione deriveremo una formula di espansione della funzione charatteristica valida per alcuni modelli probabilistici e ci serviremo di essa per calcolare la funzione charatteristica della Normale standard, senza utilizzare i concetti di derivazione/integrazione su percorsi nei complessi (vedi [PB86] 26):

4.1.1 Teorema. Sia X una V.C. con densità $\rho(x)$. Se per ogni t, $E[e^{|tx|}] < \infty$ e, per ogni n, $E[x^n] < \infty$, allora:

$$\chi(t) = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} E[x^k]$$

Dimostrazione. La dimostrazione procederà secondo il seguente ordine:

- 1. cercheremo due formule di espansione in serie (con resto) per la funzione e^{ix} , del tipo: $e^{ix} = \sum_{k=0}^{n} \frac{(ix)^k}{k!} + resto$
- 2. stimeremo la quantità $\left|e^{ix} \sum_{k=0}^{n} \frac{(ix)^k}{k!}\right|$
- 3. effetueremo l'integrazione della quantità $e^{ix}\rho(x) \sum_{k=0}^{n} \frac{(ix)^k}{k!}\rho(x)$ e verificheremo sotto quali condizioni questa operazione porterà (al limite per $n \to \infty$) al risultato finale.

Punto 1. Per prima cosa calcoliamo tramite integrazione per parti $\int_0^x (x-s)^n e^{is} ds$ (integrando $(x-s)^n$ e derivando e^{is}):

$$\int_0^x (x-s)^n e^{is} ds = \left[-\frac{(x-s)^{n+1}}{n+1} e^{is} \right]_0^x + \int_0^x \frac{(x-s)^{n+1}}{n+1} i e^{is} ds$$

$$= \frac{x^{n+1}}{n+1} + \frac{i}{n+1} \int_0^x (x-s)^{n+1} e^{is} ds$$
(a)

Iterando, si ottiene:

$$\int_0^x (x-s)^n e^{is} ds = \frac{x^{n+1}}{n+1} + \frac{i}{n+1} \int_0^x (x-s)^{n+1} e^{is} ds$$

$$= \frac{x^{n+1}}{n+1} + \frac{ix^{n+2}}{(n+1)(n+2)} + \frac{i^2}{(n+1)(n+2)} \int_0^x (x-s)^{n+2} e^{is} ds$$

$$= \frac{x^{n+1}}{n+1} + \frac{ix^{n+2}}{(n+1)(n+2)} + \frac{i^2x^{n+3}}{(n+1)(n+2)(n+3)} + \frac{i^3}{(n+1)(n+2)(n+3)} \int_0^x (x-s)^{n+2} e^{is} ds$$

e, per induzione:

$$\int_0^x (x-s)^n e^{is} \, ds = \lim_{m \to \infty} \sum_{k=n+1}^m \frac{x^k i^{k-(n+1)}}{\frac{k!}{n!}} + \frac{i^m}{\frac{m!}{n!}} \int_0^x (x-s)^m e^{is} \, ds$$

$$= \sum_{k=n+1}^\infty \frac{(ix)^k}{k!} \frac{n!}{i^{n+1}} + n! \lim_{m \to \infty} \int_0^x \frac{[i(x-s)]^m}{m!} e^{is} \, ds$$
(b)

Il limite al secondo membro converge uniformemente a zero, infatti:

$$0 \le \left| \lim_{m \to \infty} \int_0^x \frac{\left[i(x-s) \right]^m}{m!} e^{is} \, ds \right| \le \lim_{m \to \infty} \int_0^x \left| \frac{\left[i(x-s) \right]^m}{m!} \right| \left| e^{is} \right| \, ds$$

$$\le \lim_{m \to \infty} \int_0^x \left| \frac{\left[i(x-s) \right]^m}{m!} \right| \, ds \le \lim_{m \to \infty} x \cdot \sup_{s \in [0,x]} \left(\left| \frac{\left[i(x-s) \right]^m}{m!} \right| \right) \qquad (c)$$

$$= \lim_{m \to \infty} x \left| \frac{\left[i(x-s) \right]^m}{m!} \right| \bigg|_{s=0} = \lim_{m \to \infty} x \frac{\left| ix \right|^m}{m!} = \lim_{m \to \infty} \frac{x \left| x \right|^m}{m!} = 0$$

(in quanto il fattoriale cresce più di qualsiasi polinomio).

Dato che il secondo termine del secondo membro in (b) scompare, possiamo quindi scrivere:

$$\int_0^x (x-s)^n e^{is} \, ds = \frac{n!}{i^{n+1}} \sum_{k=n+1}^\infty \frac{(ix)^k}{k!}$$
$$\sum_{k=n+1}^\infty \frac{(ix)^k}{k!} = \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} \, ds$$

Utilizzando ora l'espansione in serie dell'esponenziale ed il risultato appena ottenuto possiamo riscrivere e^{ix} nel seguente modo:

$$e^{ix} = \sum_{k=0}^{\infty} \frac{(ix)^k}{k!} = \sum_{k=0}^{n} \frac{(ix)^k}{k!} + \sum_{k=n+1}^{\infty} \frac{(ix)^k}{k!}$$
$$= \sum_{k=0}^{n} \frac{(ix)^k}{k!} + \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds$$
 (d)

Per ottenere il secondo modo di calcolare e^{ix} , cerchiamo una diversa espressione di $\int_0^x (x-s)^n e^{is} ds$, da inserire nella precedente formula. Per prima cosa sostituiamo n con n-1 nella (a):

$$\int_0^x (x-s)^{n-1} e^{is} ds = \frac{x^n}{n} + \frac{i}{n} \int_0^x (x-s)^n e^{is} ds \implies$$

$$\implies \int_0^x (x-s)^n e^{is} = \frac{n}{i} \left(\int_0^x (x-s)^{n-1} e^{is} ds - \frac{x^n}{n} \right)$$

successivamente sfruttiamo il fatto che $\int_0^x (x-s)^{n-1} ds = \left[-\frac{(x-s)^n}{n}\right]_0^x = \frac{x^n}{n}$ e scriviamo:

$$\int_0^x (x-s)^n e^{is} \, ds = \frac{n}{i} \left(\int_0^x (x-s)^{n-1} (e^{is} - 1) \, ds \right)$$
 (e)

infine, inserendo la (e) nella (d) otteniamo la seconda espressione:

$$e^{ix} = \sum_{k=0}^{n} \frac{(ix)^k}{k!} + \frac{i^n}{(n-1)!} \int_0^x (x-s)^{n-1} (e^{is} - 1) ds$$
 (f)

Punto 2. A questo punto possiamo stimare la quantità $\left|e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!}\right|$, utilizzando le due definzioni (d) e (f).

Per quanto riguarda l'equazione (d) possiamo scrivere

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| = \left| \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} \, ds \right| = \frac{1}{n!} \left| \int_0^x (x-s)^n e^{is} \, ds \right|$$

$$\leq \begin{cases} x \geq 0 & \frac{1}{n!} \int_0^x (x-s)^n \, ds = \left[-\frac{(x-s)^{n+1}}{n!(n+1)} \right]_0^x = \frac{x^{n+1}}{(n+1)!} \end{cases}$$

$$\leq \begin{cases} x \geq 0 & \frac{1}{n!} \int_0^x (x-s)^n \, ds = \left[\frac{(s-x)^{n+1}}{n!(n+1)} \right]_0^x = \frac{(-x)^{n+1}}{(n+1)!} \end{cases}$$

$$= \frac{|x|^{n+1}}{(n+1)!}$$

Per quanto riguarda invece l'equazione (f) scriviamo:

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^{k}}{k!} \right| = \left| \frac{i^{n}}{(n-1)!} \int_{0}^{x} (x-s)^{n-1} (e^{is} - 1) \, ds \right|$$

$$= \frac{1}{(n-1)!} \left| \int_{0}^{x} (x-s)^{n-1} (e^{is} - 1) \, ds \right|$$

$$\leq \begin{cases} x \geq 0 & \frac{1}{(n-1)!} \int_{0}^{x} (x-s)^{n-1} \left| e^{is} - 1 \right| \, ds = \left[-\frac{2(x-s)^{n}}{(n-1)!n} \right]_{0}^{x} = \frac{2x^{n}}{n!} \end{cases}$$

$$\leq \begin{cases} x < 0 & \frac{1}{(n-1)!} \int_{x}^{0} (s-x)^{n-1} \left| e^{is} - 1 \right| \, ds = \left[\frac{2(s-x)^{n}}{(n-1)!n} \right]_{x}^{0} = \frac{2(-x)^{n}}{n!}$$

$$= \frac{2|x|^{n}}{n!}$$

In definitiva vale quindi che:

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \min\left\{ \frac{|x|^{n+1}}{(n+1)!}, \frac{2|x|^n}{n!} \right\}$$
 (g)

dove il primo elemento (tra graffe) del secondo membro è il minimo nel caso in cui $|x| \le 1$, mentre il secondo elemento è il minimo nel caso in cui |x| > 1.

Punto 3. Calcoliamo ora la diseguaglianza (g) in tx (con t costante) e moltiplichiamo a destra e a sinistra per la funzione densità $\rho(x)$ di una V.C. X:

$$\left| e^{itx} \rho(x) - \sum_{k=0}^{n} \frac{(itx)^k}{k!} \rho(x) \right| \le \min \left\{ \frac{|tx|^{n+1}}{(n+1)!} \rho(x), \frac{2|tx|^n}{n!} \rho(x) \right\}$$
 (h)

Possiamo quindi scrivere:

$$0 \le \left| \int_{-\infty}^{\infty} \left(e^{itx} \rho(x) - \sum_{k=0}^{n} \frac{(itx)^{k}}{k!} \rho(x) \right) dx \right|$$

$$\le \int_{-\infty}^{\infty} \left| e^{itx} \rho(x) - \sum_{k=0}^{n} \frac{(itx)^{k}}{k!} \rho(x) \right| dx \le \int_{-\infty}^{\infty} \frac{2|tx|^{n}}{n!} \rho(x) dx$$
(i)

Osserviano che se se la V.C. X ha momento assoluto di ordine n, allora $\frac{2|t|^n}{n!}x^n\rho(x) \in L^1$, ovvero:

$$\frac{2|t|^n}{n!} \int_{-\infty}^{\infty} |x|^n \rho(x) \ dx < \infty$$

inoltre, per il teorema di convergenza dominata 1.15 il primo membro della (h) appartiene ad L^1 e, infine:

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{2|tx|^n}{n!} \rho(x) \, dx = \int_{-\infty}^{\infty} \lim_{n \to \infty} \frac{2|tx|^n}{n!} \rho(x) \, dx = 0$$
 (j)

per ogni fissato t.

Vale inoltre che:

$$\left| \int_{-\infty}^{\infty} \left(e^{itx} \rho(x) - \sum_{k=0}^{n} \frac{(itx)^{k}}{k!} \rho(x) \right) dx \right| = \left| \chi(t) - \int_{-\infty}^{\infty} \sum_{k=0}^{n} \frac{(itx)^{k}}{k!} \rho(x) dx \right|$$

$$= \left| \chi(t) - \sum_{k=0}^{n} \frac{(it)^{k}}{k!} \int_{-\infty}^{\infty} x^{k} \rho(x) dx \right| = \left| \chi(t) - \sum_{k=0}^{n} \frac{(it)^{k}}{k!} E[x^{k}] \right|$$
(k)

Unendo quindi la (i), la (k) e la (j) possiamo scrivere (per il teorema di permanenza del segno):

$$0 \le \lim_{n \to \infty} \left| \chi(t) - \sum_{k=0}^{n} \frac{(it)^k}{k!} E[x^k] \right| \le \lim_{n \to \infty} \int_{-\infty}^{\infty} \frac{2|tx|^n}{n!} \rho(x) \, dx = 0$$

quindi:

$$\chi(t) = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} E[x^k] \tag{1}$$

Infine notiamo che se $E[e^{|tx|}] < \infty$, allora $\chi(t)$ è correttamente definita, infatti:

$$|\chi(t)| = \left| \sum_{k=0}^{\infty} \frac{(it)^k}{k!} E[x^k] \right| \le \sum_{k=0}^{\infty} \frac{|t|^k}{k!} E[|x|^k] = E[e^{|tx|}] < \infty$$
 (m)

Esempio: Distribuzione Normale Sia X una V.C. con distribuzione Normale Standard. Per ogni $k \lim_{x\to\infty} x^k e^{-\frac{x^2}{2}} = 0$ (esponenzialmente) e quindi esistono i momenti di ogni ordine, inoltre i momenti pari valgono:

$$E[x^{2k}] = (2k-1)(2k-3)\cdots 3\cdot 1 = \frac{(2k-1)!}{2^{k-1}(k-1)!}$$

i momenti dispari sono invece nulli.

Dimostrazione. Integrando per parti (integro $xe^{-\frac{x^2}{2}}$ e derivo x^{k-1}):

$$\int_{-\infty}^{\infty} x^k e^{-\frac{x^2}{2}} d_{\pi} x = \left[-e^{-\frac{x^2}{2}} x^{k-1} \right]_{-\infty}^{+\infty} + \int_{-\infty}^{\infty} (k-1) x^{k-2} e^{-\frac{x^2}{2}} d_{\pi} x$$
$$= (k-1) \int_{-\infty}^{\infty} x^{k-2} e^{-\frac{x^2}{2}} d_{\pi} x$$

iterando ottengo:

$$\int_{-\infty}^{\infty} x^k e^{-\frac{x^2}{2}} d_{\pi} x = (k-1) \int_{-\infty}^{\infty} x^{k-2} e^{-\frac{x^2}{2}} d_{\pi} x$$
$$= (k-1)(k-3) \int_{-\infty}^{\infty} x^{k-4} e^{-\frac{x^2}{2}} d_{\pi} x$$
$$= (k-1)(k-3)(k-5) \int_{-\infty}^{\infty} x^{k-6} e^{-\frac{x^2}{2}} d_{\pi} x$$

Ma, poiché $E[X^0] = 1$ e $E[X^1] = 0$, allora vale che:

$$E[x^{2k}] = (2k-1)(2k-3)\cdots(2k-(2k-1))\int_{-\infty}^{\infty} x^{2k-2k}e^{-\frac{x^2}{2}} d_{\pi}x$$

$$= (2k-1)(2k-3)\cdots 3\cdot 1 = \frac{(2k-1)(2k-2)(2k-3)(2k-4)\cdots 3\cdot 2\cdot 1}{(2k-2)(2k-4)\cdots 2}$$

$$= \frac{(2k-1)!}{2(k-1)2(k-2)2(k-3)\cdots 2(k-(k-1))} = \frac{(2k-1)!}{2^{k-1}(k-1)!}$$

mentre

$$E[x^{2k+1}] = (2k+1-1)(2k-2)\cdots(2k-(2k-2))\int_{-\infty}^{\infty} x^{2k-(2k-1)}e^{-\frac{x^2}{2}} d_{\pi}x$$
$$= (2k-2)(2k-4)\cdots\cdots 4\cdot 2\cdot 0 = 0$$

Funzione Charatteristica Per quanto sopra detto ed applicando il teorema 4.1.1 abbiamo che, se X è una V.C. normale standard:

$$\chi(t) = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} e^{itx} dx = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} E[x^k] = \sum_{k=0}^{\infty} \frac{(it)^{2k}}{2k!} \frac{(2k-1)!}{2^{k-1}(k-1)!}$$
$$= \sum_{k=0}^{\infty} \frac{(-t)^{2k}}{2k} \frac{1}{2^{k-1}(k-1)!} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(-\frac{t^2}{2}\right)^k = e^{-t^2/2}$$

4.2 Equazione del calore

Un esempio di applicazione della trasformata di Fourier si ha per la soluzione dell'equazione del calore (vedi [KF80] VIII.4-6). La soluzione di questa equazione consente di determinare la temperatura di un conduttore termico infinito in qualsiasi istante di tempo t>0, conoscendo la sua temperatura $u_0(x)$, all'istante iniziale $t_0=0$ ed in ciascun punto x.

Il problema di Cauchy corrispondente è il seguente¹:

$$\begin{cases} u_t(x,t) = u_{xx}(x,t) \\ u(x,t_0) = u_0(x) \end{cases}$$
 (a)

Per risolvere questo problema faremo le seguenti assunzioni:

- 1. $u(x,t) \in L^1$, per ogni fissato t > 0
- 2. $u_x(x,t) \in L^1$, per ogni fissato $t \geq 0$
- 3. $u_{xx}(x,t) \in L^1$, per ogni fissato $t \geq 0$
- 4. Esiste una funzione $q(x) \in L^1$, tale che $u_t(x,t) < q(x)$

A questo punto possiamo procedere con la trasformazione (rispetto ad x) 2 . Il secondo membro dell'equazione (a) appartiene ad L^1 per ipotesi, possiamo quindi applicare il teorema 2.2g ed ottenere:

$$\widehat{u_{xx}}(x,t) = (i\nu)(i\nu)\widehat{u}(\nu,t) = -\nu^2 \widehat{u}(\nu,t)$$

dove:

$$\hat{u}(\nu,t) = \int_{-\infty}^{\infty} u(x,t)e^{-i\nu x} d_{\pi}x$$

¹ In questo esempio, rifacendoci alla teoria delle equazioni differenziali a derivate parziali utilizzeremo la notazione abbreviata: $u_x = \frac{\partial u}{\partial x}, \ u_{xy} = \frac{\partial^2 u}{\partial x \partial y}$ e u $\underbrace{u_{xx..xx}}_{n-volte} = \frac{\partial^n u}{\partial x^n}$

 $^{^2}$ In questo esempio utilizzeremo per la variabile libera della trasformata di Fourier la lettera ν , dato che la lettera t è già utilizzata per rappresentare la temperatura del conduttore.

Al primo membro, in virtù dell'assunzione 4, possiamo applicare il Teorema di Convergenza Dominata 1.15 e scrivere:

$$\begin{split} \widehat{u_t}(\nu,t) &= \int_{-\infty}^{\infty} u_t(x,t) e^{-i\nu x} \; d_\pi x \\ &= \int_{-\infty}^{\infty} \lim_{\Delta \to 0} \frac{u(x,t+\Delta) - u(x,t)}{\Delta} e^{-i\nu x} \; d_\pi x \\ &= \lim_{\Delta \to 0} \int_{-\infty}^{\infty} \frac{u(x,t+\Delta) - u(x,t)}{\Delta} e^{-i\nu x} \; d_\pi x \\ &= \lim_{\Delta \to 0} \frac{\int_{-\infty}^{\infty} u(x,t+\Delta) e^{-i\nu x} \; d_\pi x - \int_{-\infty}^{\infty} u(x,t) e^{-i\nu x} \; d_\pi x}{\Delta} \\ &= \frac{\partial}{\partial t} \int_{-\infty}^{\infty} u(x,t) e^{-i\nu x} \; d_\pi x \\ &= \hat{u}_t(\nu,t) \end{split}$$

Il problema di Cauchy su equazioni a derivate parziali (a) si trasforma così nel problema di Cauchy per equazioni differenziali ordinarie del primo ordine:

$$\begin{cases} \hat{u}_t(\nu, t) = -\nu^2 \hat{u}(\nu, t) \\ \hat{u}(\nu, t_0) = \widehat{u_0}(\nu) \end{cases}$$
 (b)

dove:

$$\widehat{u_0}(\nu) = \int_{-\infty}^{\infty} u_0(x) e^{-i\nu x} d_{\pi} x$$

Questo problema è quindi del tipo

$$\begin{cases} y' = a(x)y + b(x) \\ y(x_0) = y_0 \end{cases}$$

e può facilmente essere risolto applicando la formula risolutiva (la soluzione esiste ed è unica):

$$y(x) = e^{\int_{x_0}^x a(t)dt} \cdot \left\{ y_0 + \int_{x_0}^x e^{-\int_{x_0}^t a(\sigma)d\sigma} b(t)dt \right\}$$

con la quale otteniamo (ricordando che $t_0 = 0$):

$$\hat{u}(\nu, t) = e^{\int_{t_0}^t -\nu^2 ds} \cdot \left\{ \widehat{u_0}(\nu) + \int_{t_0}^t e^{-\int_{t_0}^s -\lambda^2 d\sigma} \, 0 \, ds \right\}$$
$$= e^{-\nu^2 t} \widehat{u_0}(\nu)$$

Abbiamo quindi ottenuto la trasformata di Fourier dell'equazione voluta:

$$\hat{u}(\nu, t) = e^{-\nu^2 t} \widehat{u_0}(\nu) \tag{c}$$

Per il teorema 2.2c, il prodotto di due trasformate equivale alla convoluzione delle corrispondenti funzioni perciò, chiamado n(x,t) l'antitrasformata della funzione $e^{-\nu^2 t}$ vale che:

$$u(x,t) = n(x,t) * u_0(x)$$
(d)

Dobbiamo quindi trovare n(x,t). A tal fine applichiamo il teorema 4.1.1 che ci permette di calcolare l'inversa della Trasformata di Fourier di una certa famiglia di funzioni, tra cui $e^{-\nu^2 t}$ (provare a verificare la sussistenza delle condizioni di applicazione del teorema, se non si è convinti).

In primo luogo proviamo ad esprimere $\sqrt{t} \int_{-\infty}^{\infty} \nu^k e^{-\nu^2 t} d_{\pi} \nu$ in maniera conveniente. Utilizzando l'integrazione per parti (integrando $\nu e^{-\nu^2 t}$ e derivando ν^{k-1}), scriviamo:

$$\int_{-\infty}^{\infty} \nu^{k} \frac{1}{\sqrt{2\pi \frac{1}{t}}} e^{-\frac{\nu^{2}}{1/t}} d\nu = \sqrt{t} \int_{-\infty}^{\infty} \nu^{k} e^{-\nu^{2}t} d_{\pi} \nu$$

$$= \sqrt{t} \left(\left[-\frac{1}{2t} e^{-\nu^{2}t} \nu k - 1 \right]_{-\infty}^{+\infty} + \frac{(k-1)}{2t} \int_{-\infty}^{\infty} \nu^{k-2} e^{-\nu^{2}t} d_{\pi} \nu \right)$$

$$= \sqrt{t} \left(\frac{(k-1)}{2t} \int_{-\infty}^{\infty} \nu^{k-2} e^{-\nu^{2}t} d_{\pi} \nu \right)$$
(e)

inoltre, dato che

$$\sqrt{t} \int_{-\infty}^{\infty} \nu^0 e^{-\nu^2 t} d_{\pi} \nu = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \frac{1}{t}}} e^{-\frac{\nu^2}{1/t}} d\nu = 1$$
 (f)

е

$$E[X] = \sqrt{t} \int_{-\infty}^{\infty} \nu^1 e^{-\nu^2 t} d_{\pi} \nu = 0$$

sono gli integrali di una V.C. X distribuita come una Normale di media 0 e varianza $^1/t$. I momenti dispari valgono zero (iterando si arriva a moltipicare per E[X]), mentre quelli pari valgono:

$$= \frac{(2k-1)(2k-2)(2k-3)(2k-4)\cdots 3\cdot 2\cdot 1}{(2t)^k(2k-2)(2k-4)\cdots 2}$$

$$= \frac{(2k-1)!}{(2t)^k 2(k-1)2(k-2)2(k-3)\cdots 2(k-(k-1))} = \frac{(2k-1)!}{(2t)^k 2^{k-1}(k-1)!}$$
(g)
$$= 2\frac{(2k-1)!}{(4t)^k(k-1)!}$$

Riassumendo:

$$\int_{-\infty}^{\infty} \nu^{2k+1} \frac{1}{\sqrt{2\pi \frac{1}{t}}} e^{-\frac{\nu^2}{1/t}} d\nu = 0$$
 (h)

$$\int_{-\infty}^{\infty} \nu^{2k} \frac{1}{\sqrt{2\pi \frac{1}{t}}} e^{-\frac{\nu^2}{1/t}} d\nu = 2 \frac{(2k-1)!}{(4t)^k (k-1)!}$$
 (i)

A questo punto possimo calcolare l'antitrasformata inserendo quest'ultima espressione nella formula di espansione 4.1.1:

$$n(x,t) = \int_{-\infty}^{\infty} e^{-\nu^2 t} e^{i\nu x} d_{\pi} \nu = \frac{1}{\sqrt{t}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi \frac{1}{t}}} e^{-\frac{\nu^2}{1/t}} e^{i\nu x} d\nu$$

$$= \frac{1}{\sqrt{t}} \sum_{k=0}^{\infty} \frac{(ix)^{2k}}{2k!} \int_{-\infty}^{\infty} \nu^{2k} \frac{1}{\sqrt{2\pi \frac{1}{t}}} e^{-\frac{\nu^2}{1/t}} d\nu = \frac{1}{\sqrt{t}} \sum_{k=0}^{\infty} \frac{(ix)^{2k}}{2k!} 2 \frac{(2k-1)!}{(4t)^k (k-1)!}$$

$$= \frac{1}{\sqrt{t}} \sum_{k=0}^{\infty} \left(-\frac{x^2}{4t} \right)^k \frac{1}{k!} = \frac{1}{\sqrt{t}} e^{-\frac{x^2}{4t}}$$
(j)

Per arrivare alla soluzione finale non resta che eseguire la convoluzione di $\frac{1}{\sqrt{t}}e^{-\frac{x^2}{4t}}$ e $u_0(x)$:

$$u(x,t) = n(x,t) * u_0(x) = \frac{1}{\sqrt{t}} e^{-\frac{x^2}{4t}} * u_0(x)$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{t}} e^{-\frac{y^2}{4t}} u_0(x-y) d_{\pi}y = \frac{1}{\sqrt{2\pi t}} \int_{-\infty}^{\infty} e^{-\frac{y^2}{4t}} u_0(x-y) dy$$
(k)

Riferimenti bibliografici

[WR70] Walter Rudin Real and Complex Analysis. McGRAW-HILL, 1970.

[KF80] A.N. Kolmogorov - S.V. Fomine Elementi di teoria delle funzioni e di Analisi Funzionale. Ed. Mir, 1980.

[PB86] Patrick Billingsley Probability and measure. Wiley, 1986.