NATIONAL INSTITUTE OF TECHNOLOGY, KURUKSHETRA THEORY EXAMINATION

Question Paper

Month and year: Dec. 2019 Program: B.Tech.-CS

Subject: DAA

Maximum Marks: 50

Number of Questions to be attempted: 5

Total no. of pages used: 2

Semester: III

Course code: CSPC-21

Time allowed: 03 Hours

Total No of Questions: 5

Note 1: Question No. 5 has an internal choice. Attempt any one part of it.

Note 2: Unless stated otherwise, the symbols have their usual meanings in context with subject. Assume suitably and state, additional data required, if any.

(a). Define Heap and analyze the complexity of min heap function.	2
(b). Explain Prim's Algorithm for minimum Spanning tree. Also compute its time complexity.	2
(c). Define B-Tree with its terminology. Also insert following in a B-Tree having order 3. 7, 3, 5, 11, 16, 4, 9, 2	2
(d). How backtracking algorithm solves the Hamiltonian problem? Explain.	2
(e). Write pseudo code to find strongly connected component in a graph.	2
(a). Solve following recurrence relation using recursion tree method.	3
$T(n) = \begin{cases} 1 & \text{if } n = 1 \\ T(n) = T(n/3) + T(2n/3) + \theta(n). & \text{if } n > 1 \end{cases}$	
(b). What is graph coloring problem? Write the pseudo code to color a graph and also analyze	3
(c). Write the pseudo code to solve 8-queen problem using the backtracking algorithm. Show all the steps of 4-queen problem and analyze the complexity of n-queen problem.	4
(a). Prove the master theorem.	5
(b). Write the algorithms to solve the rod-cutting problem. Also analyze its time complexity.	5
(a) Define the elements of the Dynamic Programming. Write all the steps to find the LCS of two string X = < ABCDGH> and Y = < AEDFHR>.	4
(b) Write the pseudo code for Johnson's algorithm. Professor Greenstreet claims that there is a simpler way to reweight edges than the method used in Johnson's algorithm. Letting $w^* = \min_{(u, v) \in E} \{w(u, v)\}$, just define $\hat{w}(u, v) = w(u, v) - w^*$ for all edges $(u, v) \in E$. what is wrong with the professor's method of reweighting?	6
	 (c). Define B-Tree with its terminology. Also insert following in a B-Tree having order 3. 7, 3, 5, 11, 16, 4, 9, 2 (d). How backtracking algorithm solves the Hamiltonian problem? Explain. (e). Write pseudo code to find strongly connected component in a graph. (a). Solve following recurrence relation using recursion tree method. T(n) = {1 if n = 1 if n > 1 (b). What is graph coloring problem? Write the pseudo code to color a graph and also analyze its complexity. (c). Write the pseudo code to solve 8-queen problem using the backtracking algorithm. Show all the steps of 4-queen problem and analyze the complexity of n-queen problem. (a). Prove the master theorem. (b). Write the algorithms to solve the rod-cutting problem. Also analyze its time complexity. (a) Define the elements of the Dynamic Programming. Write all the steps to find the LCS of two string X = < ABCDGH> and Y = < AEDFHR>. (b) Write the pseudo code for Johnson's algorithm. Professor Greenstreet claims that there is a simpler way to reweight edges than the method used in Johnson's algorithm. Letting w*= min (u, v) ∈ E (w (u, v)), just define ŵ (u, v) = w (u, v) - w* for all edges (u, v) ∈ E. what is

												The state of the s				
Q-5.	(a)	What	is	task	scheduling	problem?	Find	optimal	sequence	of	Jobs	for	following	jobs	using	
		greed	y a	lgorit	hm.											

Job	\mathbf{J}_1	J_2	J_3	J_4	J_5
Deadline	2	1	3	2	1
Profit	60	100	20	40	20

3

4

3

3

4

- (b). Find the optimal parenthesis of matrix chain multiplication where sequence of dimensions is $A1:10\times100$, $A2:100\times5$, $A3:5\times50$, $A4:50\times20$
- (c) Explain Floyd-Warshall Algorithm to find all pair shortest path. Find all pair shortest path of following problem also analyze its complexity.

OR

(a) What is priority queue? Illustrate the operation of HEAP-EXTRACT-MAX on the heap A = <15, 13, 9, 5, 12, 8, 7, 4, 0, 6, 2, 1>.

(b) Write the pseudo code for Huffman codes. Generate the Huffman code for following symbols.

Symbol	a	ь	С	d	e	f
Frequency	6	11	9	2	20	5

(c) Let G = (V, E) be a weighted, directed graph with nonnegative weight function $w: E \rightarrow \{0, 1, ... W\}$ for some nonnegative integer W. Modify Dijkstra's algorithm to compute the shortest paths from a given source vertex s in O (W V + E) time.