Modelado y Optimización

Nereo Manganiello

October 26, 2024

Parte 1. Descripción del Modelo

Para la parte 1, nuestro problema abarca encontrar la mínima cantidad de discos de tamaño Z, que se necesitan para guardar x cantidad de archivos de tamaño t_i cada uno. Para esto, debemos realizar un modelado del problema y posterior resolución en pySCIPOpt o SCIP. En mi caso, lo resolví utilizando pySCIPOpt.

Solucion

- n: Cantidad total de archivos.
- m: Cantidad total de discos.
- \bullet Z: Capacidad de cada disco en MB.
- t_i : Tamaño del i-ésimo archivo en MB, con i = 1, 2, ..., n.
- x_{ij} : 1 si el archivo i se almacena en el disco j, y 0 en caso contrario.
- y_i : Variable binaria que toma el valor 1 si el disco i es utilizado, y 0 en caso contrario.

$$\min \sum_{i=1}^{m} y_i$$

Sujeto a:

$$\sum_{j=1}^{m} x_{ij} = 1 \quad \forall j \in \{1, 2, \dots, m\}$$

$$\sum_{i=1}^{n} t_i \cdot x_{ij} \leq Z \cdot y_i \quad \forall i \in \{1, 2, \dots, n\}$$

$$x_{ij} \in \{0, 1\} \quad \forall i, j$$

$$y_i \in \{0, 1\} \quad \forall i$$

Parte 2. Descripción del Modelo

En este problema buscamos maximizar los indices de archivos de un subconjunto de archivos seleccionados para ser almacenados en un solo disco, sujeto a la restricción de capacidad del disco. En mi caso lo resolví utilizando pySCIPOpt.

Solución

- n: Número total de archivos disponibles.
- \bullet Z: Capacidad del disco en MB.
- t_i : Tamaño del i-ésimo archivo en MB, con $i=1,2,\ldots,n$.
- I_i : Indicador de importancia del archivo f.
- x_i : 1 si el archivo i es seleccionado para el disco, y 0 en caso contrario.

$$\max \sum_{i=1}^{n} I_i \cdot x_i$$

Sujeto a:

$$\sum_{i=1}^{n} t_i \cdot x_i \le Z$$

$$x_i \in \{0, 1\} \quad \forall i$$