Лабораторная работа 4

Вычисление наибольшего общего делителя

Греков Максим Сергеевич

Содержание

1	Цел	ь работы	4			
2	2 Описание					
3	Алгоритмы					
	3.1	Алгоритм Евклида	6			
	3.2	Бинарный алгоритм Евклида	7			
	3.3	Расширенный алгоритм Евклида	7			
		Расширенный бинарный алгоритм Евклида	8			
4	Pea.	лизация	9			
	4.1	Алгоритм Евклида	9			
	4.2	Бинарный алгоритм Евклида	9			
	4.3	Расширенный алгоритм Евклида	10			
	4.4	Расширенный бинарный алгоритм Евклида	10			
	4.5	Результат	11			
5	Выв	вод	12			

List of Figures

3.1	Алгоритм Евклида	6
	Бинарный алгоритм Евклида	7
	Расширенный алгоритм Евклида	7
3.4	Расширенный бинарный алгоритм Евклида	8
4.1	Реализация алгоритма Евклида	9
4.2	Реализация бинарного алгоритма Евклида	9
4.3	Реализация расширенного алгоритма Евклида	10
4.4	Реализация расширенного бинарного алгоритма Евклида (1)	10
4.5	Реализация расширенного бинарного алгоритма Евклида (2)	11
4.6	Результат	11

1 Цель работы

- Ознакомиться с алгоритмами вычисления наибольшего общего делителя.
- Реализовать рассмотренные алгоритмы программно.

2 Описание

Наибольшим общим делителем двух чисел a и b называется наибольшее число, на которое a и b делятся без остатка.

Для записи может использоваться аббревиатура НОД. Например:

- HOД(12345, 24690) = 12345
- НОД(12345, 54321) = 3
- НОД (12345, 12541) = 1

3 Алгоритмы

В данной работе будут рассматриваться следубщие алгоритмы вычисления наибольшего общего делителя:

- Алгоритм Евклида
- Бинарный алгоритм Евклида
- Расширенный алгоритм Евклида
- Расширенный бинарный алгоритм Евклида

3.1 Алгоритм Евклида

Для вычисления наибольшего общего делителя двух целых чисел применяется способ повторного деления с остатком, называемый алгоритмом Евклида (рис. 3.1), а также дополненную версию, называемую расширенным алгоритмом Евклида (рис. 3.3)

```
1. Алгоритм Евклида.
```

```
Bxo\partial. Целые числа a,b;0 < b \leq a. Bbixo\partial.d = HOД(a,b).
```

- 1. Положить $r_0 \leftarrow a, r_1 \leftarrow b, i \leftarrow 1$.
- 2. Найти остаток r_{i+1} от деления r_{i-1} на r_i .
- 3. Если $r_{i+1} = 0$, то положить $d \leftarrow r_i$. В противном случае положить $i \leftarrow i+1$ и вернуться на шаг 2.
- 4. Результат: *d*.

Figure 3.1: Алгоритм Евклида

3.2 Бинарный алгоритм Евклида

Бинарный алгоритм Евклида (рис. 3.2) и его дополненная версия под названием расширенный алгоритм Евклида (рис. 3.4) являются более быстрыми при реализации на компьютере, поскольку используют двоичное представление чисел a и b.

2. Бинарный алгоритм Евклида.

```
Вход. Целые числа a,b; 0 < b \le a.

Выход. d = \text{НОД}(a,b).

1. Положить g \leftarrow 1.

2. Пока оба числа a и b четные, выполнять a \leftarrow \frac{a}{2}, b \leftarrow \frac{b}{2}, g \leftarrow 2g до получения хотя бы одного нечетного значения a или b.

3. Положить u \leftarrow a, v \leftarrow b.

4. Пока u \neq 0 выполнять следующие действия:

4.1.Пока uчетное, полагать u \leftarrow \frac{u}{2}.

4.2.Пока uчетное, полагать v \leftarrow \frac{v}{2}.

4.3.При u \ge v положить u \leftarrow u - v. В противном случае положить v \leftarrow v - u.

5. Положить d \leftarrow gv.
```

Figure 3.2: Бинарный алгоритм Евклида

3.3 Расширенный алгоритм Евклида

6. Результат: *d*

3. Расширенный алгоритм Евклида.

```
Вход. Целые числа a,b;0 < b \leq a.

Выход. d = \text{НОД}(a,b); такие целые числа x,y, что ax + by = d.

1. Положить r_0 \leftarrow a, r_1 \leftarrow b, x_0 \leftarrow 1, x_1 \leftarrow 0, y_0 \leftarrow 0, y_1 \leftarrow 1, i \leftarrow 1.

2. Разделить с остатком r_{i-1} на r_i : r_{i-1} = q_i r_i + r_{i+1}.

3. Если r_{i+1} = 0, то положить d \leftarrow r_i, x \leftarrow x_i, y \leftarrow y_i. В противном случае положить x_{i+1} \leftarrow x_{i-1} - q_i x_i, y_{i+1} \leftarrow y_{i-1} - q_i y_i, i \leftarrow i+1 и вернуться на шаг 2.

4. Результат: d, x, y.
```

Figure 3.3: Расширенный алгоритм Евклида

3.4 Расширенный бинарный алгоритм Евклида

```
4. Расширенный бинарный алгоритм Евклида.
Bxo\partial. Целые числа a,b; 0 < b \le a.
Bыход. d = HOД(a,b).
2. Пока числа a и b метные, выполнять a\leftarrow \frac{a}{2},\,b\leftarrow \frac{b}{2},\,g\leftarrow 2g до получения хотя
   бы одного нечетного значения a или b.
3. Положить u \leftarrow a, v \leftarrow b, A \leftarrow 1, B \leftarrow 0, C \leftarrow 0, D \leftarrow 1.
4. Пока u \neq 0 выполнять следующие действия:
    4,1,Пока и четное:
        4.1.1. Положить u \leftarrow \frac{u}{2}.
       4.1.2. Если оба числа A и B четные, то положить A \leftarrow \frac{A}{2}, B \leftarrow \frac{B}{2}. В противном
            случае положить A \leftarrow \frac{A+b}{2}, B \leftarrow \frac{B-a}{2}.
    4.2.Пока v четное:
       4.2.1. Положить v \leftarrow \frac{v}{2}.
      4.2.2. Если оба числа C и D четные, то положить C \leftarrow \frac{C}{2}, D \leftarrow \frac{D}{2}. В противном
            случае положить C \leftarrow \frac{C+b}{2}, D \leftarrow \frac{D-a}{2}.
    4.3.
При u \geq v положить u \leftarrow u - v, A \leftarrow A - C, B \leftarrow B - D. В противном случае
положить v \leftarrow v - u, C \leftarrow C - A, D \leftarrow D - B.

5. Положить d \leftarrow gv, x \leftarrow C, y \leftarrow D.
Результат: d, x, y.
```

Figure 3.4: Расширенный бинарный алгоритм Евклида

4 Реализация

4.1 Алгоритм Евклида

```
def euclid(self, a: int, b: int) -> int:
    r0 = a
    r1 = b
    while r1!=0:
        r0 = r0%r1
        r0, r1 = r1, r0
    return r0
```

Figure 4.1: Реализация алгоритма Евклида

4.2 Бинарный алгоритм Евклида

```
def binary_euclid(self, a: int, b: int) -> int:
 even = lambda x: not x%2
  g = 1
  while even(a) and even(b):
   a //= 2
  b //= 2
  g *= 2
  u = a
  v = b
  while u!=0:
   while even(u):
     u //= 2
     v //= 2
   if u>=v:
    u -= v
   else:
  return g*v
```

Figure 4.2: Реализация бинарного алгоритма Евклида

4.3 Расширенный алгоритм Евклида

```
def extend_euclid(self, a: int, b: int) -> int:
 r1 = b
 x0 = 1
 x1 = 0
 y0 = 0
 y1 = 1
 i = 1
 while r1!=0:
   q = r0//r1
   r0 = r0%r1
    r0, r1 = r1, r0
   x0 -= q*x1
   x0, x1 = x1, x0
   y0 -= q*y1
   y0, y1 = y1, y0
 return f'\{a\}*(\{x0\}) + \{b\}*(\{y0\}) = \{r0\}'
```

Figure 4.3: Реализация расширенного алгоритма Евклида

4.4 Расширенный бинарный алгоритм Евклида

```
def extend_binary_euclid(self, a: int, b: int) -> int:
 even = lambda x: not x%2
 g = 1
 a_copy = a
 b_copy = b
  while even(a) and even(b):
   a //= 2
  b //= 2
  g *= 2
 B = 0
 C = 0
 D = 1
 while u!=0:
  while even(u):
     u //= 2
     if even(A) and even(B):
       A //= 2
     B //= 2
```

Figure 4.4: Реализация расширенного бинарного алгоритма Евклида (1)

```
else:
 A = (A+b) // 2

B = (B-a) // 2
  while even(v):
    v //= 2
    if even(C) and even(D):
     C //= 2
     D //= 2
    else:
     C = (C+b) // 2
D = (D-a) // 2
  if u>=v:
    u-=v
    A - = C
    B - = D
  else:
   v-=u
    C-=A
return f'\{a\_copy\}*(\{C\}) + \{b\_copy\}*(\{D\}) = \{g*v\}'
```

Figure 4.5: Реализация расширенного бинарного алгоритма Евклида (2)

4.5 Результат

method	GCD(12345,24690)	GCD(12345,54321)	GCD(12345,12541)	GCD(140,96)
binary_euclid euclid	12345 12345	3	1	4
	12345*(12345) + 24690*(-6172) = 12345 12345*(1) + 24690*(0) = 12345	12345*(-14490) + 54321*(3293) = 3 12345*(3617) + 54321*(-822) = 3		

Figure 4.6: Результат

5 Вывод

- Ознакомились с алгоритмами вычисления наибольшего общего делителя.
- Реализовали рассмотренные алгоритмы программно.