MATEMÁTICA UNINOVE

Módulo - V

Noções de estatística

Medidas dispersão

Objetivo: Calcular e interpretar o desvio médio, a variância, o desvio-padrão e o coeficiente de variação de um conjunto de valores.

Este material faz parte da UNINOVE. Acesse atividades, conteúdos, encontros virtuais e fóruns diretamente na plataforma.

Pense no meio ambiente: imprima apenas se necessário.

"Se uma pessoa comeu dois frangos e outra não comeu nenhum, em média cada uma comeu um frango."

Essa frase, que tem relação com a Estatística, não agradaria muito aquele que ficou com fome. Ao calcular a média, há sempre informação que se perde. A média, apesar de ser uma medida muito utilizada em Estatística, é muitas vezes insuficiente para caracterizar aceitavelmente uma distribuição. A moda e a mediana também são medidas que nem sempre são suficientes para caracterizar um conjunto de dados.

Em alguns casos, temos que recorrer a outros parâmetros que são chamados medidas de dispersão.

As **medidas de dispersão** são medidas estatísticas utilizadas para avaliar o grau de variabilidade ou dispersão dos valores em torno da média. Servem para medir a representatividade da média.

EXEMPLO

Sejam as séries:

a) 10, 1, 18, 20, 35, 3, 7, 15, 11, 10

b) 12, 13, 13, 14, 12, 14, 12, 14, 13, 13

c) 13, 13, 13, 13, 13, 13, 13, 13, 13, 13

Esses dados possuem a mesma média 13. No entanto, são sequências completamente distintas do ponto de vista da variabilidade de dados. Na série "c" não se tem dispersão. Comparando-se as séries "a" e "b", percebe-se que "a" apresenta maior dispersão em torno da média do que "b". Isso indica que necessitamos de outro tipo de medida para distinguir e comparar os três conjuntos de dados.

O critério frequentemente usado para tal fim é aquele que mede a maior ou menor dispersão dos dados em torno da média e as medidas mais usadas são: o desvio médio, a variância, o desvio-padrão e o coeficiente de variação.

Desvio Médio (Dm)

É a análise dos desvios em torno da média.

Calculamos inicialmente a média da amostra (\bar{x}) .

Em seguida, identificamos a distância de cada elemento da amostra para sua média: $(x_i - \overline{x})$

Finalmente, calculamos o desvio médio.

$$|d_i| = |x_i - \overline{x}|, \text{logo o desvio médio será} \ \frac{\sum |d_i|F_i}{n} \ ou \ \frac{\sum |x_i - \bar{x}|F_i}{n}$$

em que x_i é a variável, $\overline{\mathbf{x}}$ a média e n o número de dados da amostra.

DICA: $|x_i - \overline{x}|$ é o módulo, isto é, distância de x_i até, (logo um número positivo). Se não usássemos o módulo da diferença $x_i - \overline{x}|$, a soma de todos x_i – poderia ser igual a zero.

EXEMPLO

Dada a amostra:

Xi	Fi	X _i F _i	$ \mathbf{d}_{i} = \mathbf{x}_{i} - \overline{\mathbf{x}} $	d _i F _i
2	5	10	2,17	10,85
3	4	12	1,17	4,68
5	4	20	0,83	3,32
6	2	12	1,83	3,66
7	3	21	2,83	8,49
Total	18	75	-	31

$$\bar{x} = \frac{\sum x_i F_i}{n} = \frac{75}{18} = 4.17$$

$$Dm = \frac{\sum |di| F_i}{n} = \frac{31}{18} = 1,72$$

Variância (S²)

Neste caso considera-se o quadrado de cada desvio $(x_i - \bar{x})^2 = d_i^2$. Logo:

$$S^2 = \frac{\sum di^2 Fi}{n-1}$$

EXEMPLO

No caso da tabela acima, temos.

Xi	Fi	X _i F _i	$ \mathbf{d}_{i} = \mathbf{x}_{i} - \overline{x} $	d _i ²	d _i ² F _i
2	5	10	2,17	4,71	23,55
3	4	12	1,17	1,37	5,48
5	4	20	0,83	0,69	2,76
6	2	12	1,83	3,35	6,7
7	3	21	2,83	8,01	24,03
Total	18	75	-	-	62,52

$$S^2 = \frac{\sum di^2 Fi}{n-1} = \frac{62,52}{18-1} = \frac{62,52}{17} = 3,68$$

Desvio-padrão (S)

É a raiz quadrada da variância: $S = \sqrt{S^2}$

EXEMPLO

No caso da tabela acima, temos: $S^2 = 3,68$, então $S = \sqrt{3,68} = 1,92$

Resumindo: A distribuição possui média 4,17, isto é, seus valores estão em torno de 4,17 e seu grau de concentração é de 1,72, medido pelo desvio médio e de 1,92, medido pelo desvio-padrão.

Coeficiente de variação (CV)

O desvio-padrão por si só não nos diz muita coisa; para contornar essa dificuldade, usamos o coeficiente de variação.

Trata-se de uma medida relativa de dispersão útil para a comparação em termos relativos do grau de concentração em torno da média de séries distintas.

É expresso em porcentagens e dado por:

$$CV = \frac{S}{\bar{x}} \cdot 100$$

(em que S é o desvio-padrão e \overline{x} a média da distribuição)

Diz-se que a distribuição possui pequena variabilidade (dispersão)

quando o CV der até 15%; média dispersão quando estiver acima de

15% até 30% e grande dispersão quando superar 30%:

Baixa dispersão: CV ≤ 15%

Média dispersão: 15% < CV < 30%

Alta dispersão: CV ≥ 30%

EXEMPLO

No caso da tabela acima, temos:

$$CV = \frac{1,92}{4.17} \cdot 100 = 46,04\%$$
 (alta dispersão)

Outro exemplo: Numa empresa, o salário médio dos homens é de R\$ 4.000,00, com desvio-padrão de R\$ 1.500,00 e, o das mulheres, é em média de R\$ 3.000,00, com desvio-padrão de R\$ 1.200,00. Então:

$$CV_H = \frac{1500}{4000} \cdot 100 = 37,5\%eCV_M = \frac{1200}{3000} \cdot 100 = 40\%$$

Logo, podemos concluir que os salários das mulheres apresentam maior dispersão que os dos homens.

De modo geral, quanto menor o CV, menos dispersos estão os dados em torno da média, que passa a ser mais representativa do conjunto de dados.

Outro exemplo: Encontre o desvio médio, o desvio-padrão e o coeficiente de variação da distribuição.

Classes	Fi	x _i Ponto médio	x _i F _i	[d _i]	d _i = F _i	d _i ²	d _i ² F _i
2 4	2	3	6	4,2	8,4	17,64	35,28
4 6	4	5	20	2,2	8,8	4,84	19,36
6 8	7	7	49	0,2	1,4	0,04	0,28
8 10	4	9	36	1,8	7,2	3,24	12,96
10 12	3	11	33	3,8	11,4	14,44	43,32
Total	20	-	144	-	37,2	-	111,20

$$\bar{x} = \frac{\sum x_i F_i}{n} = \frac{144}{20} = 7,2$$

$$Dm = \frac{\sum |d_i|F_i}{n} = \frac{37,2}{20} = 1,86$$

$$S^2 = \frac{\sum di^2 Fi}{n-1} = \frac{111,20}{20-1} = 5,85$$

$$S = \sqrt{S^2} = \sqrt{5,85} = 2,42$$

$$CV = \frac{S}{\bar{x}} \cdot 100 = \frac{2,42}{7,2} \cdot 100 = 33,61\% \text{ (alta dispersão)}$$

Agora é a sua vez! Resolva os exercícios, verifique seu conhecimento e acesse o espaço online da UNINOVE para assistir à videoaula referente ao conteúdo assimilado.

REFERÊNCIAS

AKANIME, C.T., YAMAMOTO, R.K. Estudo dirigido de estatística descritiva. São Paulo: Érica Ltda, 1998.

BUSSAB, W. O.; MORETTIN, P.A. Estatística básica. São Paulo: Atual, 1987.

FONSECA, J. S.; MARTINS, G.A. Curso de Estatística. São Paulo: Atlas, 1996.

MELLO, J. L. P. *Matemática: construção e significado*. São Paulo: Moderna, 2005.