Previsão Métodos Numéricos

Processo Médias Móveis

$$F_{t+1} = \frac{\sum_{t-N}^{t} D_t}{N}$$

t	D _t	F _t
1	5	
2	6	
3	7	$F_4 = \frac{5+6+7}{3} = 6$
4	5	$F_5 = \frac{6+7+5}{3} = 6$

MESTRADO EM GESTÃO

Previsão Métodos Numéricos

Processo Alisamento Exponencial

Modelo de Procura:

$$D_t = (a+bt).S_t + e_t$$

- **a** nível
- **b** tendência
- S_t sazonalidade
- e_t erro

Previsão Métodos Numéricos

Processo Alisamento Exponencial

Modelo com tendência constante

Modelo de Procura:

$$D_{t} = a + e_{t}$$

Modelo de Previsão:

$$F_{t+1} = \alpha D_t + (1 - \alpha) F_t$$

MESTRADO EM GESTÃO

Previsão Métodos Numéricos

Processo Alisamento Exponencial

$$\alpha = 0.2$$

t	D _t	F _t
1	4	4 (v. inic.)
2	8	4
3	3	4,8
4	7	4,4
5	14	5
6		6,8

Previsão Métodos Numéricos

Processo Alisamento Exponencial Simples

$$F_{t+1} = \alpha D_{t} + (1-\alpha)F_{t}$$

$$F_{t} = \alpha D_{t-1} + (1-\alpha)F_{t-1}$$

$$F_{t+1} = \alpha D_{t} + (1-\alpha)[\alpha D_{t-1} + (1-\alpha)F_{t-1}]$$

$$F_{t+1} = \alpha D_{t} + \alpha (1-\alpha)D_{t-1} + (1-\alpha)^{2}F_{t-1}$$

$$F_{t-1} = \alpha D_{t-2} + (1-\alpha)F_{t-2}$$

$$F_{t+1} = \alpha D_{t} + \alpha (1-\alpha)D_{t-1} + \alpha (1-\alpha)^{2}D_{t-2} + (1-\alpha)^{3}F_{t-2}$$

$$\vdots$$

$$F_{t+1} = \alpha D_{t} + \alpha (1-\alpha)D_{t-1} + \alpha (1-\alpha)^{2}D_{t-2} + \alpha (1-\alpha)^{3}D_{t-3} + \dots$$

$$F_{t+1} = \alpha D_{t} + \alpha (1-\alpha)D_{t-1} + \alpha (1-\alpha)^{2}D_{t-2} + \alpha (1-\alpha)^{3}D_{t-3} + \dots$$

MESTRADO EM GESTÃO

Previsão Métodos Numéricos

Processo Alisamento Exponencial Simples

NOTA: O valor escolhido para alpha está normalmente entre 0,3 e 0,5

Previsão Métodos Numéricos

Processo Alisamento Exponencial de HOLT

Modelo com tendência

NOTA: O valor escolhido para alpha está normalmente abaixo dos 0,3 e o valor de beta abaixo de 0,1 Modelo de Procura:

$$D_t = (a+bt) + e_t$$

Modelo de Previsão:

$$F_{\scriptscriptstyle t+1} = A_{\scriptscriptstyle t} + T_{\scriptscriptstyle t}$$

$$F_{t+k} = A_t + kT_t$$

Estimativa para o nível:

$$A_{t} = \alpha D_{t} + (1 - \alpha)(A_{t-1} + T_{t-1})$$

Estimativa para a tendência:

$$T_{t} = \beta (A_{t} - A_{t-1}) + (1 - \beta)T_{t-1}$$

MESTRADO EM GESTÃO

Previsão Métodos Numéricos

Processo Alisamento Exponencial de HOLT

t	D _t	A _t	T _t	F _{t+1}
1	5			
2	7	7(vi)	2(vi)	
3	3	8,4	1,97	10,37
4	9	9,73	1,94	11,67
				13,61

 $\alpha = 0.1$ $\beta = 0.05$

Exercício 1

 Conhecem-se os seguintes valores relativos às vendas de televisores em determinada loja:

Mês	Vendas
1	30
2	32
3	30
4	39
5	33
6	34

Utilizando o método Alisamento Exponencial Simples com α =0,1 calcule:

- a) O erro médio de previsão
- b) Uma previsão para as vendas no mês 7

NOTA: considere um valor inicial de 32

Exercício 2

 Conhecem-se os seguintes valores relativos às vendas de gravadores de CD em determinada loja:

Mês	Vendas
1	40
2	47
3	50
4	49
5	56
6	53

Utilizando o método Alisamento Exponencial de HOLT com $\alpha \text{=}0.3$ e $\beta \text{=}0.1$ calcule:

- a) O erro médio de previsão
- b) Uma previsão para as vendas no mês 7

NOTA: considere como valores iniciais A_0 =34 e T_0 =2.73

