

Resposta típica de sistemas de segunda ordem

A partir de um modelo matemático é possível analisar o desempenho de um dado sistema. Esse modelo pode ser representado através de uma função de transferência por meio de uma equação diferencial linear invariante no tempo, que relaciona o sinal de entrada e o de saída por meio da transformada de Laplace. Com esse modelo, o comportamento do sistema pode ser previsto, como sua estabilidade, erro, entre outros parâmetros.

Para um sistema de **segunda ordem**, a função de transferência na forma canônica apresenta duas raízes e pode ser parametrizada pela equação a seguir, em que:

$$H(s) = \frac{v_o(s)}{v_i(s)} = \frac{{\omega_n}^2}{s^2 + 2\xi \omega_n \cdot s + {\omega_n}^2}$$

 $\omega_n o$ frequência natural de oscilação

 $\xi \rightarrow$ coeficiente de amortecimento

Cada parâmetro da função de transferência influencia de uma forma no comportamento do sistema. Se $0 < \xi < 1$, os polos de malha fechada são complexos e conjugados e se situam no semiplano esquerdo do plano s.

Um sistema sub amortecido apresenta ξ variando entre 0,5 e 0,8 e se aproxima mais rapidamente do valor final do que um sistema criticamente amortecido ou um superamortecido. Para sistemas que apresentam respostas sem oscilação, um sistema criticamente amortecido é o que fornece a resposta mais rápida. Para um sistema superamortecido a resposta é sempre mais lenta, qualquer que seja o sinal de entrada.

Na especificação das características da resposta transitória de um sistema de controle a um degrau, é comum dizer:

- **Tempo de atraso t_d:** corresponde ao tempo requerido para que a resposta do sistema alcance metade do seu valor final pela primeira vez;
- **Tempo de subida** t_r : é o tempo requerido para que a resposta do sistema passe de 10 a 90%, de 5 a 95% ou então de 0 a 100% do valor final. Para sistemas de segunda ordem sub amortecidos, o tempo de subida de 0 a 100% do valor final é o mais utilizado. Já, para sistemas superamortecidos, o mais utilizado é o de 10 a 90% do valor final;
- Tempo de pico t_p : é o tempo necessário para ocorrer o máximo pico;
- Tempo de acomodação t_s: corresponde ao tempo em que o sistema demora para entrar em regime permanente, normalmente com valores na faixa de 95 a 98% do valor final. É a maior constante de tempo para qualquer sistema de controle;
- Máximo pico Mp: é o valor de pico da curva de resposta do sistema, medido em termos de porcentagem em relação ao valor final. Esse valor indica diretamente a estabilidade relativa do sistema.

O gráfico a seguir define e mostra cada um desses parâmetros:

Para o cálculo dos parâmetros de um sistema de segunda ordem tem-se:

$$t_r = \frac{\pi - \beta}{\omega_d} \qquad \qquad t_p = \frac{\pi}{\omega_d} \qquad \qquad t_s = \frac{4}{\xi \cdot \omega_n} \qquad \qquad Mp = e^{-\frac{\xi * \pi}{\sqrt{1 - \xi^2}}}$$

Os termos β e ω_d que aparecem nas fórmulas são dados por:

$$\omega_d = \omega_n * \sqrt{1 - \xi^2} \qquad \beta = t g^{-1} \left(\frac{\omega_d}{\xi \cdot \omega_n} \right)$$

1) Sistemas de controle em malha aberta

Os chamados sistemas de controle em malha aberta são aqueles em que o sinal de saída não exerce nenhuma ação de controle no sistema, ou seja, o sinal de saída não é medido para ser comparado com o valor estabelecido (*SetPoint*) na entrada. O exemplo a seguir ilustra um sistema de controle de segunda ordem em malha aberta:

2) Sistemas de controle em malha fechada

Um sistema de controle em malha fechada estabelece uma relação de comparação entre o valor medido na saída e o valor definido como referência na entrada, utilizando essa comparação como meio de controle. O exemplo a seguir ilustra um sistema de controle de segunda ordem operando em malha fechada:

Para um sistema em malha fechada, a equação de saída PV pode ser dada em função das funções de transferência equivalentes à H_1 e H_2 , da forma:

Função de transferencia equivalente:
$$H(s) = \frac{H_1(s)}{1 \pm H_1(s) \cdot H_2(s)}$$

O sinal no denominador ser positivo ou negativo depende de como a realimentação da malha acontece. A realimentação sendo na entrada negativa o denominador terá sinal positivo, e vice-versa.

Exemplo 1: Para o sistema a seguir em malha fechada, encontrar a função de transferência equivalente:

$$H_1(s) = \frac{1}{s(s+0.56)}$$

$$PV(s)$$

$$H_2(s) = 1$$

Solução: Perceba que o sinal no denominador deve ser positivo, porque a realimentação ocorre na entrada negativa. Dessa forma:

$$H(s) = \frac{\frac{1}{s^2 + 0.56s}}{1 + \frac{1}{s^2 + 0.56s} * 1} \rightarrow \boxed{\frac{H(s) = \frac{1}{s^2 + 0.56s + 1}}{}}$$

Simulação: Para realizar a simulação dessa função de transferência em malha fechada tem-se os comandos:

Lembrando que não é necessário carregar a biblioteca de controle no *MatLab*, apenas no *Octave*, sempre que o *software* for aberto.

Comparando-se as respostas do sistema em malha aberta e em malha fechada notase que a oscilação do sistema é maior quando opera em malha fechada, mas apresenta um máximo pico menor do que quando opera em malha aberta.

3) Máximo pico do sistema em função do fator de amortecimento

Como visto anteriormente na fórmula, o máximo pico de um sistema depende unicamente do valor do fator de amortecimento. Observe no modelo a seguir como cada valor de ξ muda o máximo pico do sistema:

No modelo é possível ver, por exemplo, que para um $\xi=0$, o máximo pico do sistema é de 100%. Para $\xi=0,1$, o máximo pico é de, aproximadamente, 75%. Dessa forma é possível saber o valor do fator de amortecimento do sistema caso seja de conhecimento o máximo pico. Perceba que não é necessário conhecer o valor exato do máximo pico, basta apenas ter uma noção de quantos porcento, aproximadamente, é esse valor.

4) Máximo pico na janela de comandos

Quando damos o comando *step* na janela de comandos, plotamos o gráfico da resposta ao degrau do sistema. Mas, ao invés de plotar o gráfico, podemos atribuir o valor do *step* a uma variável. Por dentro, o que o *software* faz é pegar os valores que usou para marcar os pontos do gráfico e cria um vetor com esses valores. Assim sendo, é possível

atribuir a resposta do sistema à um vetor e encontrando o maior valor desse vetor tem-se o máximo pico desse sistema.

Exemplo: Considere a função de transferência do sistema em malha fechada modelada no exemplo anterior. Para essa função, o máximo vem por:

```
>> fechada
Transfer function 'fechada' from input 'ul' to output ...
             1
      s^2 + 0.56 s + 1
Continuous-time model.
>> valores = step(fechada);
>> pico = 0;
>>
>> for k = 1:length(valores)
if valores(k) > pico
pico = valores(k);
endif
endfor
>>
>> pico
pico = 1.3989
```

Perceba no ambiente de trabalho que a variável que salva os valores de *step* é um vetor, e salvou os 51 valores que foram usados para os pontos desse gráfico. Além disso, note que o primeiro valor do vetor é 0, pois a resposta de um sistema começa na origem quando não são aplicadas condições iniciais. Logo a variável pico pode ser inicializada com 0 sem problemas.

Já, no *MatLab* especialmente, é que é possível selecionar com o botão direito do *mouse* algumas características desse gráfico para serem visualizadas de forma rápida, como, por exemplo, o valor do máximo pico e do tempo de acomodação, o tempo de subida, o valor final etc. Dependendo do tipo de sistemas, alguns outros parâmetros são válidos.

5) Erro em regime permanente do sistema

Para qualquer sistema de controle, o erro em regime permanente é dado pela diferença entre o valor aplicado na entrada e o valor observado na saída:

$$erro = SetPoint - ValorFinal$$

Lembrando que o valor final do sistema é calculado pelo teorema:

$$ValorFinal = \lim_{s \to 0} s * H(s) * v_i(s)$$

Pela interpretação do erro do sistema, erros negativos indicam que o valor final do sistema é maior do que o estímulo de entrada, da mesma forma que um erro positivo indica que o valor final é menor do que a amplitude da entrada.

Exercícios

(1) Considere a planta de um sistema de controle de temperatura apresentada na figura a seguir:

Nota:

Para multiplicar uma função de transferência por outra ou então por um valor constante utilize o comando:

>> series(sys1, sys2)

Em que sys1 e sys2 são duas funções de transferência. A função sys2 também pode ser uma constante, representando um bloco de ganho.

Para esse sistema, tem-se: SP(s) é o SetPoint, PV(s) é a saída do sistema ($Process\ Value$), TP(s) representa uma perturbação que age sobre o sistema, C(s) é um controlador e G(s) é a função de transferência do sistema que precisa ser controlado. Pede-se:

- (a) Determine a função de transferência do sistema $H(s) = \frac{PV(s)}{SP(s)}$ considerando que não há perturbação, TP(s) = 0.
- **(b)** Determine os parâmetros do sistema de segunda ordem para essa planta:

Tempo de atraso:

Tempo de subida:

Tempo de pico:

Máximo pico (máximo sobressinal ou apenas sobressinal:

Tempo de acomodação:

- (c) Calcule a temperatura em regime permanente para uma entrada de 60°C.
- (d) Considerando a mesma entrada, calcule o erro em regime permanente.
- (e) Determine a função de transferência do sistema em função da perturbação $H(s) = \frac{PV(s)}{TP(s)}$, considere SP(s) = 0.
- **(f)** Admitindo uma perturbação de 2°*C* agindo sobre o sistema, calcule a sua influência sobre a temperatura do sistema em regime permanente.
- (2) Considere um sistema modelado pela função de transferência a seguir:

$$\frac{C(s)}{R(s)} = \frac{1}{s^2 + 2\xi s + 1}$$

Escreva um *script* para observar as respostas desse sistema em um único gráfico considerando um degrau unitário aplicado à entrada. Para o coeficiente de amortecimento, considere os valores $\xi=0$: 0.2: 1, e veja a diferença na curva de resposta do sistema para diferentes valores de ξ .

(3) Considere que o gráfico a seguir representa a resposta de um determinado sistema a um degrau de amplitude 3. Pede-se:

Resposta a um degrau de amplitude 3

4

3

©

1

0

0

2

4

6

8

10

- (a) Determine a função de transferência do sistema.
- (b) Calcule o erro em regime permanente para um degrau unitário.
- (c) Determine os parâmetros do sistema de segunda ordem:

Tempo de subida:

Tempo de pico:

Máximo pico (máximo sobressinal ou apenas sobressinal:

Tempo de acomodação: