

Department of Computer Science and Engineering

College of Engineering

Qatar University

Senior Project Report

- Intelligent Mobile Target Visitation of a UAV using DRL:
- A Practical Implementation of the Work by Hendawy *et al.*

8 Project Group Members

- 9 Abdelrahman Soliman (201701600)
- Mohamad Mohamad Ali Bahri (201806966)
- Mohamed Daniel Bin Mohamed Izham (201802738)

12 Supervisor

5

Dr. Amr Mahmoud Salem Mohamed

2021

- This project report is submitted to the Department of Computer Science and Engineering of
- Qatar University in partial fulfillment of the requirements of the Senior Project course.

17 Declaration

18	This report has not been submitted for any of	her degree at this or any other University. It is		
19	solely the work of us except where cited in the	text or the Acknowledgements page. It describes		
20	work carried out by us for the capstone design project. We are aware of the university's policy			
21	on plagiarism and the associated penalties and we declare that this report is the product of ou			
22	own work.			
	G. J.	D .		
23	Student:	Date:		
24	Signature:			
		_		
25	Student:	Date:		
26	Signature:			
27	Student:	Date:		
28	Signature:			

Abstract

- Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? 32 Kjift - not at all! A blind text like this gives you information about the selected font, how 33 the letters are written and an impression of the look. This text should contain all letters of the 34 alphabet and it should be written in of the original language. There is no need for special content, 35
- but the length of words should match the language.

Acknowledgment

- Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the
- alphabet and it should be written in of the original language. There is no need for special content,
- but the length of words should match the language.

Table of Contents

46	De	clara	tion	i		
47	Ab	strac	rt .	iii		
48	Ac	Acknowledgment				
49	Lis	st of I	Figures	vii		
50	Lis	st of T	Tables	vii		
51	1	Intro	oduction and Motivation	1		
52		1.1	Problem statement	1		
53		1.2	Project significance	1		
54		1.3	Project objectives	1		
55	2	Back	kground and Related Work	1		
56		2.1	Background	1		
57		2.2	Related work	2		
58	3	Requ	uirements Analysis	3		
59		3.1	Functional requirements	3		
60		3.2	Design constraints	3		
61		3.3	Design standards	3		
62		3.4	Professional code of ethics	3		
63		3.5	Assumptions	4		
64	4	Prop	posed Solution	4		
65		4.1	Solution overview	4		
66		4.2	High level architecture	4		
67		4.3	Hardware/software to be used	4		
68	5	Proc	of of Concept	4		
69	6	Mar	ket Research and Business Viability	5		
70	7	Proj	ect Plan	5		
71		7.1	Project milestones	5		
72		7.2	Project timeline	5		
73		7.3	Anticipated risks	5		
74	8	Shor	rt Guide	6		
75		8.1	Abbreviations	6		
76		8.2	Figure	6		
77		8.3	Equations	6		
78		8.4	Simple table	7		

83	Append	ix	12
82	8.8	Cross-references	9
81	8.7	Citations	9
80	8.6	Graph from a csv file	9
79	8.5	Table from a csv file	8

84 List of Figures

85	1	High-Level Architecture	4
86	2	The arch linux logo	7
87	3	The relationship between potential and kinetic energies	9
88	List (of Tables	
89	1	Slope, intercept and their uncertainties	7
90	2	Translational and rotational energies	8

1 Introduction and Motivation

2 1.1 Problem statement

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

1.2 Project significance

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

8 1.3 Project objectives

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

Background and Related Work

7 2.1 Background

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

2.2 Related work

The third and final concept of the project is hardware realization for drone visits. The hardware part is essential in the implementation in the real world, where the simulation sometimes strays from the truth. There is a lack of hardware implementations in the field of research regarding drones with deep reinforcement learning (DRL), and most of the research papers focus on the simulations. According to the literature review, the convolutional neural network (CNN) models were used in the majority of the papers for object detection. Also, the controller boards and custom drone kits were used instead of commercial drones. Those kits give the researcher and user more flexibility since the drone is customizable in hardware and software. But in our design, we will use a commercial drone so that we focus on the DRL, not the actual drone build process.

Quadcopter unmanned aerial vehicles (UAVs) with arducopter autopilot installed on raspberry pi microcomputer board and intel neural computer stick 2. Khan, Tufail, Khan, *et al.* used the drone in the agriculture field to spray pesticides and monitor the crops. Unlike our work, the drone was limited to specific boundaries and fixed targets such as crops. They used a Raspberry Pi microcomputer board attached to the drone, which will handle two different operations. Firstly, it will control the drone using an open-source software called Arducopter autopilot which will handle the trip of the drone and autonomous flight option. The second operation is to deal with the Intel neural computer stick 2, which will deploy the CNN model and deal with the computation part [1]. Although this work is close to ours, there are some differences, one of them is using a custom drone which is not considered since we are limited in time. Since we will use the Anafi drone, the Olympe program will take control of the drone, which will be installed on the Raspberry Pi. Finally, using CNN only is not enough without DRL which makes the drone more intelligent and accurate.

An example of commercial drone usage with onboard computer that transforms drones into autonomous and the usage of data and image filtration. The hardware architecture in Wang, Gu, Huang, *et al.* work for this paper includes a DJI commercial drone and an onboard computer called manifold, which is from the same manufacturer. Also, onboard sensors like camera, GPS and inertial sensor are included. Finally, external battery for the manifold computer and Wi-Fi adapter that is used for connection between the drone and the onboard computer. This hardware architecture is inspirational, and our design is somehow close to it with minor changes in the onboard computer and without the existence of the sensors. Image and video processing techniques were used, such as segmentation to keep detecting moving targets was presented in [2]. For the navigation part, they used predetermined waypoints related to historical path cost. However, in our work, probability and mobility patterns will be used to guess the target's location.

Use embedded system connected and attached on the UAV for image processing and mobility pattern recognition, which shortens response time and saves transmission bandwidth. Wang, Zhao, Yang, *et al.* work used a quadrotor UAV supported with GPS module and a Pix Hawk flight controller. The power sources in the architecture were two lithium batteries, one for the drone and one for the embedded system. The system uses NVIDIA Jetson development kits which give enough computing power for the processing and communication between the flight controller and the system. The Jetson board is connected to the flight controller using serial communication while connected to the ground controller using Wi-Fi. Communication tools

and protocols used inWang, Zhao, Yang, *et al.* work will help us in our work to determine the best way to communicate between the development board and the drone without any delay or interference [3].

3 Requirements Analysis

2 3.1 Functional requirements

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

180 3.2 Design constraints

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

3.3 Design standards

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

3.4 Professional code of ethics

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the

202 alphabet and it should be written in of the original language. There is no need for special content, 203 but the length of words should match the language.

204 3.5 Assumptions

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

4 Proposed Solution

3 4.1 Solution overview

14 4.2 High level architecture

Figure 1: High-Level Architecture

4.3 Hardware/software to be used

5 Proof of Concept

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"?

Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

6 Market Research and Business Viability

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

7 Project Plan

7.1 Project milestones

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

7.2 Project timeline

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.

7.3 Anticipated risks

249

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how

the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, 255 but the length of words should match the language. 256

Short Guide 8 257

Please read the guides available online about the right way to write LATEX such as how to include 258 a math symbol in text (e.g. x not x) and a proper noun with all capitals (e.g. SQL not SQL). 259

Below are examples of different constructs in a report. You can copy-paste and change the content. For more information, refer to the relevant package manual in CTAN.

8.1 **Abbreviations** 262

260

261

265

To add an abbreviation (e.g. UAV), append the following line in the list of abbreviations portion 263 in main.tex: 264

\newacronym{uav}{\textsc{uav}}{unmanned aerial vehicle}

To use the abbreviation, there are 3 ways to do so: 266

- 1. In a normal case: \gls{uav} 267
- 2. For its plural form: \glspl{uav} 268
- 3. In the beginning of a sentence: \Gls{uav} 269
- 4. A combination of cases 2 and 3: \Glspl{uav} 270
- For example: 271

An UAV has many unique features. UAVs have been used in many different applica-272 tions. 273

8.2 **Figure**

8.3 **Equations**

$$E_p = mgh = mg(x_f - x_i) (1)$$

$$E_k = E_t + E_r$$

$$E_t = \frac{1}{2}mv^2 \tag{2}$$

$$E_r = \frac{1}{2}I\omega^2 \tag{3}$$

$$I = \frac{1}{2}MR^2$$

$$\omega = \frac{v}{r}$$
(4)

$$\omega = \frac{\tau}{2}$$

$$E_k = \frac{1}{2}mv^2 + \frac{1}{2}I\left(\frac{v}{r}\right)^2 \tag{5}$$

Figure 2: The arch linux logo

where E_p is the potential energy, E_k the kinetic energy, E_t the translational energy and E_r the rotational energy.

$$\frac{\partial E_p}{\partial m} = \frac{\partial}{\partial m}(mgh)$$

$$= gh$$

$$\frac{\partial E_p}{\partial g} = \frac{\partial}{\partial g}(mgh)$$

$$= mh$$

$$\frac{\partial E_p}{\partial h} = \frac{\partial}{\partial h}(mgh)$$

$$= mg$$

278 8.4 Simple table

Table 1: Slope, intercept and their uncertainties

Slo	ppe	Intercept (J)		
Value	Error	Value	Error	
1.0933	0.0300	0.0148	0.0157	

8.5 Table from a csv file

Table 2: Translational and rotational energies.

$m \ \mathrm{kg}$	v_m m s ⁻¹	$egin{array}{c} E_t \ \mathrm{J} \end{array}$	$rac{\delta E_t}{ m J}$	E_r J	δE_r J
0.055 0.075 0.095 0.115 0.135	0.17 0.20 0.23 0.25 0.27	0.000 79 0.001 50 0.002 51 0.003 59 0.004 92	0.000 01 0.000 02 0.000 03 0.000 03 0.000 04	0.280 0.387 0.512 0.605 0.706	0.007 0.010 0.013 0.015 0.018

8.6 Graph from a csv file

Potential Versus Kinetic Energies

Figure 3: The relationship between potential and kinetic energies.

281 8.7 Citations

282

283

284

285

- in-text citation: use \cite{dirac} to produce [4] or \textcite{dirac} to produce Dirac [4]
 - citation in parentheses: \parencite{knuthwebsite} produces [5] (for IEEE, this has no difference to the \cite{} command above.)

286 8.8 Cross-references

Label using suitable names with the following format: figure \label {fig: <name>}, tables \label {tab: <name>}, sections \label {sec: <name>} and equations

```
289 \label{eq:<name>}.
290 Then when cross-referencing, use \cref{<type>:<name>}
291 (or \Cref{<type>:<name>} when used at the beginning of a sentence)
```

References

- 293 [1] S. Khan, M. Tufail, M. Khan, Z. Khan, J. Iqbal, and A. Wasim, "Real-time recognition of spraying area for uav sprayers using a deep learning approach," Apr. 2021. DOI: 10. 1371/journal.pone.0249436.
- Q. Wang, J. Gu, H. Huang, and Y. Zhao, "Online drone-based moving target detection system in dense-obstructer environment," IEEE, Dec. 2018. DOI: 10.1109/PADSW. 2018.8644908.
- ²⁹⁹ [3] C. Wang, R. Zhao, X. Yang, and Q. Wu, "Research of uav target detection and flight control based on deep learning," IEEE, May 2018. DOI: 10.1109/ICAIBD.2018.8396188.
- P. A. M. Dirac, *The Principles of Quantum Mechanics*, ser. International series of monographs on physics. Clarendon Press, 1981, ISBN: 9780198520115.
- D. Knuth. "Knuth: Computers and typesetting." (), [Online]. Available: http://www-cs-faculty.stanford.edu/~uno/abcde.html.

Appendix

Hello, here is some text without a meaning. This text should show what a printed text will look like at this place. If you read this text, you will get no information. Really? Is there no information? Is there a difference between this text and some nonsense like "Huardest gefburn"? Kjift – not at all! A blind text like this gives you information about the selected font, how the letters are written and an impression of the look. This text should contain all letters of the alphabet and it should be written in of the original language. There is no need for special content, but the length of words should match the language.