

Faculty of Engineering and Technology Computer Systems Engineering Department

ADVANCED DIGITAL SYSTEMS DESIGN ENCS3310

Homework 2

Designing sequential circuits

Prepared by: Abdel Rahman Shahen 1211753

Instructor:

Dr. Abdallatif Abuissa

Section: 2 Date: 6/7/2024

1) Given the following primitive flow table, go through design procedure steps and implement the circuit using SR latches. [20 points]

Stable	Inp	uts	output	Notos
State	x1	x2	Q	Notes
а	1	1	1	After c
b	0	1	0	After e
С	0	1	1	After a, f
d	1	0	0	After a, e, f
е	1	1	0	After b, d
f	0	0	1	After b, c, d

Step 1: translating primitive flow table

State/input	00	01	11	10
а		c, _	a,1	d, _
b	f, _	b,0	e, _	
С	f, _	c,1	a, _	
d	f, _		e, _	d,0
е		b, _	e,0	d, _
f	f,1	C, _		d, _

step 2: finding how many state variables we have:

count (a, b, c, d, e, f) = $6 \rightarrow \text{ceil (ln6/ln2)} = 3$. So, we need 3 state variables to implement this logic

step 3: now let's construct the table of reduction to reduce our state variables

b	c,b a, e /				
	a,e				
			_		
С	مما	4			
d	a,e		a,é		
е	<u>b,c</u>		c,b		
	a,e		a,e		
f		b, c			b,c
states	а	b	С	d	е

compatible pairs:

step 4: now we use merger diagram to see what pairs we still have:

we can take (b, e, d) and (a, f, c) and (d, f)

since we already cover a and f in the first two states we don't need them. Now we remain with states:

(b, e, d) let's call it A

(a, f, c) let's call it B

step 5: creating new table with new states

state/input	00	01	11	10
<mark>b, e, d</mark>	<mark>f,_</mark>	<mark>b,0</mark>	<mark>e,0</mark>	<mark>d,0</mark>
a, f, c	<mark>f,1</mark>	<mark>c,1</mark>	<mark>a,1</mark>	d,_

using this table: we can fill the above table:

State/input	00	01	11	10
a	_,_	C , _	<mark>a,1</mark>	<mark>d, _</mark>
<mark>b</mark>	f, _	<mark>b,0</mark>	<mark>e, _</mark>	
C	f, _	<mark>c,1</mark>	a, _	
d	f, _	_,_	<mark>e, _</mark>	<mark>d,0</mark>
e	_,_	<mark>b, _</mark>	e,0	<mark>d, _</mark>
f	f,1	c, _		d, _

new table with replaced state names:

state/input	00	01	11	10
Α	В, _	A,0	A,0	A,0
В	B,1	B,1	B,1	Α, _

our table reduced flow table is now ready

step 6: state assignment and table separating output and next State

output Q table:

state/input	00	01	11	10
0		7 0	0	/ O
1	1	1	1 —	_
1 → 0: x	$0 \rightarrow 1: x \mid$	0 → 0: ($0 \mid 1 \rightarrow 1$:	1

state/input	00	01	11	10
0	X	0	0	0
1	1	1	1	X

$$Q = y$$

next state table Y:

state/input	00	01	11	10
0	1	0	0	0
1	1	1	1	0

$$Y = (x1^x2^) + (y x2)$$

step 7: SR tables for Y

we need to use SR excitation table:

У	Υ	S	R
0	0	0	Х
0	1	1	0
1	0	0	1
1	1	х	0

S

state/input	00	01	11	10
0	1	0	0	0
1	Х	х	x	0

R

state/input	00	01	11	10
0	0	X	х	Х
1	0	0	0	1

$$R = (X1 X2)$$

Finally, we have:

$$Q = y$$

$$RY = (X1 X2)$$

step 8: designing circuit personally, I prefer using NI Multisim 14.1

2) Show the primitive flow table for positive edge T-FF [10 points]

	Inputs		Output	
State	Т	С	Q	Comments
а	1	0	0	After state d or f
b	1	1	1	After state a or g
С	1	0	1	After state b or h
d	1	1	0	After state c or e
е	0	1	0	After state d or f
f	0	0	0	After state a or e
g	0	1	1	After state b or h
h	0	0	1	After state c or g

2 laws:

- No more than 1 input change.
- $Q(t) = Q(t-1) @ C: 0 \rightarrow 1 \text{ else } Q(t) = Q(t-1) \text{ (no change)}$

final primitive flow table:

State/input	00	01	11	10
а	f, _		b, _	a, 0
b	<u>`</u>	g, _	b, 1	c, _
С	h, _		d, _	c,1
d	<u>`</u>	e, _	d, 0	a, _
е	f, _	e, 0	d, _	
f	f,0	e, _		a, _
g	h, _	g, 1	b, _	
h	h, 1	g, _	_,_	,