ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Metallic AgInS₂ nanocrystals with sulfur vacancies boost atmospheric CO₂ photoreduction under near-infrared light illumination

Kai Wang ^a, Haotian Qin ^a, Jun Li ^{b,*}, Qiang Cheng ^a, Yanfang Zhu ^c, Haiyan Hu ^c, Jian Peng ^c, Shuangqiang Chen ^{d,*}, Guohong Wang ^a, Shulei Chou ^c, Shixue Dou ^e, Yao Xiao ^{c,f,**}

- ^a College of Urban and Environmental Sciences, Hubei Key Laboratory of Pollutant Analysis and Reuse Technology, Huangshi Key Laboratory of Prevention and Control of Soil Pollution, Hubei Normal University, Huangshi 435002, PR China
- ^b Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450052, PR China
- c Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China
- d Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China
- e Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, PR China
- f State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi an Jiaotong University, Xi an 710049, PR China

ARTICLE INFO

Keywords: Vacancy AgInS₂ Metallic catalyst CO₂ photoreduction Near-infrared light

ABSTRACT

Unraveling the function of vacancy engineering in influencing the intrinsic CO_2 photoreduction with low photon energy directly from air remains a significant challenge. Here, a metallic photocatalyst, ultrafine $AgInS_2$ nanocrystals with sulfur vacancies (V_S - $AgInS_2$) is designed to exhibit superior atmospheric CO_2 reduction performance under near-infrared (NIR) light. Theoretical calculations reveal that the presence of sulfur vacancies and metallic characteristics result in extended spectrum absorption to the NIR region and efficient separation of charge carriers. As evidenced by $In\ situ$ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) experiment and theoretical calculations, the unique properties of charge delocalization around the vacancy-induced dual sites at $AgInS_2$ nanocrystals contribute to $COOH^*$ intermediates for CO production while simultaneously inhibiting the formation of CHO^* intermediates. Consequently, the metallic V_S - $AgInS_2$ nanocrystals demonstrate nearly 100% selective CO production with a rate of $8.04\ \mu mol\ g^{-1}\ h^{-1}$ under NIR irradiation, even directly from atmospheric CO_2 in the air.

1. Introduction

Artificial photosynthesis systems can directly convert solar energy, carbon oxide, and water into hydrocarbons and oxygen, thus providing a promising pathway to address the energy crisis and greenhouse effect, and ultimately achieve carbon neutralization [1–4]. However, photocatalytic $\rm CO_2$ reduction reactions (RR) are still far from suitable for practical applications due to poor thermodynamic stability and low quantum efficiencies [5–7]. Previously reported semiconductor-based photocatalysts typically possess wide bandgap, limiting spectrum absorption to visible light region, while the near-infrared (NIR) light, accounting for approximately 50% of the solar spectrum, is incompatible with most photocatalyst systems [8–12]. Additionally, the rapid electron-hole recombination in photocatalysts and the high activation energy barrier in $\rm CO_2$ RR further hinder the development of NIR

light-responsive CO_2 RR [13–16]. As a result, exploring novel material systems with NIR light absorption, tunable carrier mobility, and intrinsic large carrier density is essential for achieving ideal CO_2 RR performance under NIR light illumination.

Although several photocatalyst systems , such as metal oxides, nitrides, and polymers have been reported as candidates for photocatalytic CO $_2$ RR—they usually undergo photo-corrosion under solar irradiation [17–22]. In contrast, metal sulfide-based semiconductor photocatalysts are generally more thermodynamically stable, thus making them appropriate candidates for CO $_2$ RR [23–27]. Among them, novel ternary metal chalcogenides have emerged as promising candidates for wide-spectrum responsive CO $_2$ reduction due to their suitable conduction band potential and tunable band gap [28–31]. Despite these advantages, pristine ternary metal chalcogenides typically suffer from low CO $_2$ photoconversion efficiency, primarily attributed to limited NIR

^{*} Corresponding authors.

^{**} Corresponding author at: Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, PR China. E-mail addresses: junli2019@zzu.edu.cn (J. Li), chensq@shu.edu.cn (S. Chen), xiaoyao@wzu.edu.cn (Y. Xiao).

light absorption, a very low density of coordinated surface-active sites, and intrinsically poor electrical conductivity.

Interestingly, vacancy-rich semiconductor photocatalysts appear to be the most promising materials for wide-spectrum visible lightresponsive photoredox reactions, owing to their adjusted bandgap, tunable carrier mobility, and high density of exposed surface-active sites [32-34]. The introduction of vacancies can create new defect levels and tailor the band structure, potentially acting as inter-band energy levels to accept photogenerated carriers and further extend spectrum absorption toward the NIR region [35-37]. Moreover, the presence of vacancies may tune the charge density distribution, reducing the activation energy barrier of CO2 RR and stabilizing the intermediates of CO₂ photoreduction [38-41]. Furthermore, vacancy-induced photocatalysts possess higher carrier concentration and electric conductivity than conventional semiconductors. The small bandgaps induced by surface defects endow the metallic photocatalysts with highly efficient solar spectrum harvesting, especially in the NIR region, which is considered one of the prerequisites for achieving NIR light driven CO₂ RR. Therefore, engineering surface defects in ternary metal chalcogenides as a metallic photocatalyst is a significant path to realizing high-efficiency photocatalytic CO₂ RR under NIR light.

As a proof-of-concept demonstration, ultrafine AgInS $_2$ nanocrystals are selected as the ideal photocatalyst system for investigation [42–45]. We first fabricate sulfur-vacancy modified AgInS $_2$ (Vs-AgInS $_2$) nanocrystals, wherein temperature-dependent resistivities, electron spin resonance (ESR), UV-vis-NIR DRS spectra, combined with density functional theory (DFT) study reveal that the sulfur vacancy-induced metallic nature is suitable for NIR light-triggered CO $_2$ RR. Femtosecond transient absorption spectroscopy (fs-TAS) under NIR-light unveils that the vacancy-rich surface of AgInS $_2$ nanocrystals significantly reduces the recombination of photogenerated electron-hole pairs. As such, the ultrathin AgInS $_2$ nanocrystals with a sulfur vacancy can implement NIR light-driven CO $_2$ RR, achieving a boosted CO formation rate of 8.04 µmol g $^{-1}$ h $^{-1}$ with remarkably high selectivity and reaching nearly 100% of selectivity in atmospheric CO $_2$.

2. Materials and methods

2.1. Photocatalyst preparation

Synthesis of AgInS₂ nanocrystal: First, 0.2 mmol of AgNO₃, 0.2 mmol of In(NO₃)₃·4 H₂O, and 4 mmol of thioacetamide (TAA) were mixed with 60 mL of deionized (DI) water under vigorous stirring. The mixed solution was then transferred into 100 mL Teflon-lined autoclaves, which were sealed and kept at 180 °C for 24 h before being allowed to cool down naturally. The precipitate was filtered, washed three times, and then dried overnight at 70 °C.

*Synthesis of V_S-AgInS*₂ nanocrystal: The as-obtained AgInS₂ nanocrystals were rapidly heated at 400 $^{\circ}$ C for 75 s in Ar with H₂/Ar. The sample was removed from the tube furnace immediately after the rapid heating process and then cooled in liquid nitrogen.

2.2. Characterization

The physical and chemical properties of the catalysts were characterized by XRD, SEM, TEM, Raman, FT-IR, ESR, BET, UV-vis-NIR DRS, XPS, TPD, SPV, fs-TAS, and in situ DRIFTS. The contents of characterization are described in Text S1 of the supplementary materials.

2.3. DFT calculation

DFT calculations were performed in the Vienna ab initio simulation package (VASP). The details of the calculation methodology are shown in Text S2 of the supplementary materials.

2.4. Photocatalytic CO2 reduction reaction

The photocatalyst (20 mg) was placed onto the bottom of a photochemistry reactor (PQ253, Beijing Perfectlight), and then 500 µL of deionized (DI) water was injected onto the surface of the catalyst. Highpurity CO₂ (99.999%) and low-concentration CO₂ (nitrogen equilibrium gas and 1000 ppm CO₂, nitrogen equilibrium gas and 500 ppm CO₂, and fresh air) served as the CO2 sources for the photocatalytic reactions. Each set of experiments was irradiated by xenon (Xe) lamp (PLS-SXE300D, Beijing Perfectlight) with cut-off filters (UVCUT 400, CUT800, Beijing Perfectlight). Moreover, the gas products were qualitatively analyzed by an online gas chromatography system (Labsolar-6A, Beijing Perfectlight) with a cooling water system and a gas chromatograph (GC2014C, Shimadzu) equipped with flame ionization detection (FID) and thermal conductivity detection (TCD). Furthermore, the ¹³Clabled products were analyzed by 6890 N/5975 (Agilent, United States of America) gas chromatography-mass spectrometry (GC-MS). The apparent quantum yield (AQY) was measured using a 300 W Xenon lamp (PLS-SXE300, Perfectlight, China) with bandpass filters of 710, 790, 850, 920, and 1050 nm. The AQY was calculated by Equation: AQY (%) = $\frac{\text{CO molecules}*2+\text{CH4molecules}*8}{\text{incident photons}} \times 100\%$.

2.5. Photoelectrochemical tests

Details about the photoelectrochemical methodology are shown in Text S3 of the supplementary materials.

3. Results and discussion

3.1. Morphological and structural characterizations

AgInS2 is a ternary metal chalcogenide with wide spectrum harvesting ability and durable, non-toxic properties, suggesting that it could be capable of photocatalytic CO2 RR. Because of its unique electronic properties and exposed metal sites, it is reasonable to infer that AgInS2 should be a promising catalyst with anionic vacancy to manipulate product selectivity in CO₂ RR under NIR light illumination. As such, we first fabricated pristine AgInS2 nanocrystals (Fig. S1), and then we purposely introduced surface sulfur vacancies (V_S-AgInS₂) using an ultrafast calcination process (Fig. S2). The X-ray diffraction (XRD) patterns for the obtained AgInS2 and Vs-AgInS2 nanocrystals (Fig. S3) can be indexed to tetragonal AgInS2 nanocrystal (JCPDS No. 25-1330), which illustrates that the ultrafast calcination process has no influence on the structure of AgInS2 nanocrystals. The field emission scanning electron microscopy (FESEM) images of the two samples display a similar sheet-like morphology (Figs. S4-5), and the TEM image of AgInS₂ nanocrystals exhibit the stable triangle-shape morphology in Fig. 1a. Meanwhile, the HRTEM image in Fig. 1b exhibits a high degree of orientation along the [112] direction. In addition, regional lattice disorder is also observed inside the red square [10]. High-angle annular dark field (HAADF) scanning TEM image and elemental mappings displayed in Fig. 1c verify the homogeneous distribution of Ag (blue), In (green), and S (red) elements.

Fig. 1d shows the Raman spectra of the AgInS₂ and V_S-AgInS₂ nanocrystals. Four Raman peaks at 217, 282, 322, and 471 cm⁻¹ can be assigned to the $E(L)/B_2(L)$, A_1 , E(L), and $E(L)/B_2(L)$ modes in AgInS₂ nanocrystal [44]. After the rapid heat treatment, the intensities of V_S-AgInS₂ are lower than AgInS₂, and the decreased thickness and vacancies could induce the disappearance of some characteristic peaks. This phenomenon is similar to some reported vacancy-rich photocatalysts, such as CuS, NiAl-LDH, and Bi₁₂O₁₇C₁₂ [17,28,33]. Remarkably, the S 2p XPS peak of Vs-AgInS₂ exhibits a 0.22 eV positive shift relative to that of pristine AgInS₂ nanocrystals (Fig. 1e), while their Ag 3d and In 3d XPS peaks show the negative shift (Fig. S6) [46,47]. Besides, the FT-IR spectra of AgInS₂, V_S-AgInS₂, and TAA were displayed in

Fig. 1. (a) TEM, (b) HRTEM and (c) HAADF-STEM image and corresponding EDX mapping images of V_S-AgInS₂ nanocrystals. (d) Raman spectra, (e) S 2p XPS spectra and (f) EPR singals of AgInS₂ and V_S-AgInS₂ nanocrystals.

Fig. S7. The peaks below 1700 cm⁻¹ were assigned to the C-H, C-C, and C-S stretching vibrations. The weaker peaks below 3000 cm⁻¹ in V_S -AgInS₂ confirm the lower content of H-S bonds due to the sulfur vacancy [43,44]. The higher binding energy of S with Ag and In in Vs-AgInS₂ results from the deficiency of S in the crystal structure, which again proves the existence of S vacancy sites. In addition, the presence of a higher concentration of sulfur vacancies in Vs-AgInS₂ can be further evidenced by the enhanced ESR signal at g = 2.003 (Fig. 1f).

As shown in Fig. 2a, the calculated density of states (DOS) of V_S -AgInS $_2$ extends over the Fermi level (0 eV), predicting its metallic nature. Meanwhile, the results of valence-band XPS measurements (Fig. 2b) confirm that there is an overlap between the valence band maximum and the Fermi level, which again verifies the metallicity of Vs-AgInS $_2$ [48]. In addition, the calculated band structure in Fig. 2c also implies a typical metallic band structure, consisting of the lowest unoccupied band (B $_1$), the partially occupied band (CB), and the highest fully occupied band (B $_1$). Moreover, for V_S -AgInS $_2$, the observed increase in resistance with temperature ranging from 160 to 300 K unambiguously affirms its metallic characteristics (Fig. 2d). Explicitly, the metallic characteristics of V_S -AgInS $_2$ can be attributed to the existence of sulfur vacancies.

At the same time, the sulfur vacancies introduce some inter-band defect energy levels, which allow photogenerated charge carriers to reside. However, for pristine AgInS₂, a conventional semiconductor type band structure can be expected. Consequently, apparently enhanced light harvesting performance, especially in the NIR range, is obtained for the V_S-AgInS₂ sample, while the pristine AgInS₂ sample only responds to visible light up to 700 nm (Fig. 2e). The energy gaps (E_g) of pristine AgInS₂ and V_S-AgInS₂ were determined to be 1.80 and 1.71 eV, respectively (Fig. S8). As displayed in Fig. S9, valence-band XPS measurements gave the VB positions of pristine AgInS₂ and V_S-AgInS₂. Therefore, the electronic band structures for AgInS₂ and V_S-AgInS₂ were

obtained in Fig. S10. V_S -AgInS $_2$ generated free charge carriers through intra-band transition (transitions in CB from the lower level to E_F) and inter-band transition (transitions from EF to B_1) even under NIR light illumination (Fig. 2f). The electrons in B_1 could convert CO_2 to solar fuels due to the more negative position.

3.2. CO₂ photoreduction performances

To evaluate the NIR light photoactivity, CO₂ RR experiments are conducted using an Xe lamp (> 780 nm) as a light source. As shown in Fig. 3a, in the dark, no detectable CO production is obtained for both AgInS₂ and metallic V_S-AgInS₂ nanocrystals. Meanwhile, under NIR light irradiation, only trace CO generation can be detected for AgInS₂. In contrast, the metallic V_S-AgInS₂ nanocrystals exhibit outstanding CO₂ RR performance under NIR light irradiation. As shown in Fig. 3a, the CO evolution rate of the V_S -AgInS₂ reaches 8.04 μ mol g⁻¹ h⁻¹, which is about 81 times higher than that of the AgInS2. Interestingly, as an oxidation product, a significant amount of O2 can also be detected for the metallic Vs-AgInS2, while still a trace amount of O2 is observed for AgInS2, manifesting the excellent NIR photoactivity of Vs-AgInS2. Moreover, the dependence of photocatalytic CO2 RR properties on light sources of the samples is evaluated (Fig. 3b, S11; control experiments in Fig. S12). Under full spectrum light (UV-vis-NIR) and visible light irradiation, for metallic V_S-AgInS₂ nanocrystals, the main reduction product is CO accompanied by a small amount of CH₄, indicating good selectivity. Moreover, high-resolution thermographic photographs in Fig. S13 clearly show that the full spectrum and NIR light irradiation (3 h) on the pristine AgInS2 and Vs-AgInS2 only caused a slight change, implying that NIR light illumination could be realized at ambient temperatures with the assistance of circulating water, further exclude the influence of photo-thermal effect [28]. For pristine AgInS2, the evolution rates of CO and CH4 are comparable. It is clear that, in the NIR

Fig. 2. (a) Calculated density of states, (b) valence band XPS spectrum and (c) calculated band structure of V_S -AgInS₂. (d) Temperature-dependent resistivities of V_S -AgInS₂ nanocrystals. (e) UV–vis–NIR diffuse reflectance spectra of AgInS₂ and V_S -AgInS₂ nanocrystals. (f) Schematics illustrating the photon transition processes in the metallic V_S -AgInS₂ nanocrystals.

region, the metallic V_S -AgInS $_2$ nanocrystals possess much higher photocatalytic activity for CO_2 RR than pristine AgInS $_2$, and even outperform some reported photocatalysts under NIR light irradiation (Table S1), such as Rb $_{0.33}$ WO $_3$, O $_Y$ -WO $_3$ and Bi $_{19}$ Br $_3$ S $_{27}$.

Furthermore, from Fig. 3c, it is clear that the metallic V_S-AgInS₂ catalyst exhibits a gradual upward trend towards CO generation in different concentrations of CO₂, such as 1000 ppm of CO₂, 500 ppm in simulated CO2, even directly from air under NIR light irradiation. Noteworthily, the fresh air containing atmospheric CO₂ was directly used as the carbon source. The results in Fig. S14 confirmed the TAA was not acting as the hole-sacrificing agent but restrained the photocatalytic CO2 RR under full spectrum and NIR light illumination. More importantly, the NIR light CO₂ reduction activities for the metallic V_S-AgInS₂ show no obvious decay after five cycles, which is up to 20 h successive photocatalytic reaction (Fig. 3d and S15), indicating its exceptional photocatalytic stability. Besides, the apparent quantum efficiency (AQY) test in the range of 700-1100 nm is also performed, and the results are shown in Fig. 3e. Clearly, the pristine AgInS2 nanocrystals exhibit negligible AQY (%). In contrast, at 790 nm, the metallic V_S-AgInS₂ nanocrystals exhibit a quantum efficiency of 0.055%, which is much higher than that of the pristine AgInS₂. Notably, the preponderance in AQY (%) of metallic Vs-AgInS2 is maintained even up to 1050 nm, denoting the high photoelectric conversion efficiency, which is critical for the high performance NIR photocatalytic reaction. To determine the origin of CO, isotope-labeled carbon dioxide (13CO₂) reduction over metallic V_S-AgInS₂ nanocrystals is performed. From Fig. 3f, the signal at m/z = 29 corresponds to ¹³CO, and the others (¹³C at m/z = 13 and ¹⁶O at m/z = 16) are assigned to the signals of ¹³CO, confirming that the CO generation originated from the CO₂ photoreduction. Additionally, the V_S-AgInS₂ nanocrystals could achieve water oxidation to form O₂ as further verified by an H_2^{18} O labeling experiment (Fig. S16).

Next, in situ Diffuse Reflectance Infrared Fourier Transform

Spectroscopy (in situ DRIFTS) measurements were performed to probe the reaction mechanism of the photocatalytic CO2 RR over the Vs-AgInS₂. The absorption peak at 1635, 1631, and 1648 cm⁻¹ might be attributed to *CO2 under full spectrum light with pure CO2, full spectrum light with air, and NIR light with air, respectively. Under full spectrum light irradiation, the peaks at about 1308, 1332 cm⁻¹ are assigned to the bidentate carbonate (b- CO_3^{2-}) over pristine AgInS₂ and V_S-AgInS₂, respectively (Fig. 3g and S17). The peaks at around 1430 cm⁻ ¹ correspond to *HCO₃. An obvious absorption peak at around 1590 cm ¹ over pristine AgInS₂ and V_S-AgInS₂ (Fig. 3g-i and S17) emerges, resulting in *COOH, which is a crucial intermediate for CO2 photoreduction to CO or CH₄ [48]. As displayed in Fig. 3g-h, the absorption bands at 1173 and 1102 cm⁻¹ belong to the *CH₃O group, which was an important intermediate for the generation of CH₄. Moreover, a sharp peak located at 1063 cm⁻¹ was assigned to the *CHO group. As exhibited in Fig. 3g-i, the peaks of *CH₃O and *CHO groups disappeared, which illustrated the lack of production of CH₄ in the air atmosphere. Further, the slight *CO peak at around 2080 cm⁻¹ was clearly detected in pure CO₂ atmosphere under both NIR light and full spectrum light irradiation, thus suggesting the weak *CO adsorption and release of gaseous CO.

3.3. Photoelectrochemical properties and charge dynamics

As shown in Fig. 4a, photoelectrodes of pristine $AgInS_2$ nanocrystals and metallic V_S - $AgInS_2$ nanocrystals deposited on F-doped tin oxide (FTO) substrates exhibit repeatable photocurrent response under full spectrum irradiation with on/off cycles. Interestingly, a much higher current intensity in the V_S - $AgInS_2$ photoelectrode is obtained, indicating its higher density of photogenerated charges. Under only NIR light irradiation (Fig. 4b), pristine $AgInS_2$ nanocrystals show negligible photocurrent. In comparison, the metallic V_S - $AgInS_2$ nanocrystals display strikingly enhanced photocurrent, which further confirms the

Fig. 3. (a) CO and O_2 production rates under NIR light irradiation as well as at 25 °C in the dark condition. Photocatalytic CO_2 RR (b) in pure CO_2 , (c) under different concentrations of CO_2 . (d) Cycling experiments of CO_2 RR under NIR light. (e) Wavelength-dependent AQY (%). (f) GC-MS spectra (inset of total ion chromatography) over V_S -AgInS₂. In-situ DRIFTS spectra of V_S -AgInS₂ (g) under full spectrum irradiation, (h) under NIR light irradiation, and (i) in air.

excellent NIR responsivity of V_S -AgInS $_2$. Additionally, surface photovoltage spectroscopy (SPV) is employed to evaluate the aforementioned samples. As displayed in Fig. 4c, the metallic V_S -AgInS $_2$ nanocrystals display significantly higher SPV signals and EIS plots (Fig. S19) relative to the pristine AgInS $_2$ nanocrystals. As displayed in Fig. 4d, the PL intensity of the V_S -AgInS $_2$ decreases sharply in comparison with the AgInS $_2$, which suggests that the carrier recombination rate is hindered effectively. The above results illustrate that sulfur vacancies can reduce the recombination rate of carriers in metallic V_S -AgInS $_2$ nanocrystals and thereby improve the potential ability of photocatalytic CO $_2$ RR.

To further study the microscopic dynamic behaviors of photoinduced charge carriers in the prepared samples, femtosecond transient absorbance spectra (fs-TAS) of AgInS₂ and metallic V_S-AgInS₂ nanocrystals in visible and NIR ranges are recorded (Figs. 4e and 4f). Notably, Figs. 4e and 4f show the multiple positive peaks in TA curves of V_S-AgInS₂ (ca. 500 nm) and V_S-AgInS₂ (ca. 550 nm) in the UV–vis region, which were ascribed to excited state absorption. In addition, a similar positive absorption peak above 800 nm was observed in both TAS signals of AgInS₂ in the NIR region (Fig. S19a). However, metallic V_S-AgInS₂ exhibited a stronger absorption than AgInS₂ near 1200 nm (Fig. S19b), thus suggesting more efficient charge generation and separation. Figs. 4g and 4h

depict 2D TA mappings of AgInS₂ and metallic V_S-AgInS₂ nanocrystals. Specifically, ground-state bleach (GSB), excited-state absorption (ESA), and stimulated emission (SE) signals are observed in the fs-TAS of both AgInS₂ and V_S-AgInS₂ [48,49]. Moreover, the GSB and ESA signals of V_S-AgInS₂ shift to the high wavelength in the presence of sulfur vacancy, which is coupled with the 2D TA mappings under NIR illumination (Fig. S20). For pristine AgInS₂, the TA decay curve could be expressed by a biexponential function, in which $\tau_1 = 5.47$ ps (62.2%), $\tau_2 = 32.56$ ps (37.8%), and the average lifetime was 26.71 ps. However, the TA curve of V_S -AgInS₂ could also be fitted by a biexponential decay function (τ_1 = 6.36 ps, 56.1%; $\tau_2 = 32.56$ ps, 43.9%; average lifetime was 27.46 ps). The longer lifetime of V_S -AgInS $_2$ might be due to its metallicity, resulting in the defect energy level created by sulfur vacancy can effectively suppressing the recombination of carriers. The inset in Fig. 4i depicted the possible electron relaxation processes over V_S-AgInS₂. The aforementioned analyses demonstrated the remarkable influence of sulfur vacancy on charge separation in metallic Vs-AgInS2 photocatalysts.

3.4. DFT study and photocatalytic mechanism

To unveil the interfacial catalysis reaction of CO2 to CO, surface

Fig. 4. Transient photocurrent over $AgInS_2$ and V_S - $AgInS_2$ under (a) full spectrum, (b) NIR light irradiation. (c) SPV spectra and (d) PL spectra over $AgInS_2$ and V_S - $AgInS_2$. Transient absorption signals of (e) $AgInS_2$ and (f) V_S - $AgInS_2$ nanocrystal. 2D transient absorption surface plots of (g) $AgInS_2$ and (h) V_S - $AgInS_2$. (i) The decay kinetics probed at 835 nm, and the inset shows the photophysical process of V_S - $AgInS_2$.

molecular contact, CO2 adsorption, and CO desorption processes of AgInS2 and Vs-AgInS2 nanocrystals are explored. From Fig. 5a, both samples display similar desorption peaks at about 510 K. However, for metallic V_S-AgInS₂, a visibly broader peak at 690 K is present, which might be due to CO2 desorption from the sulfur vacancy sites. The aforementioned interference is further supported by the CO2 adsorption isotherms (Fig. 5b), which exhibit apparently enhanced CO2 adsorption capacity of metallic Vs-AgInS $_2$ resulting from its surface sulfur vacancies [50,51]. As displayed in Fig. S21, the BET surface area of Vs-AgInS2 was measured to be 18.86 m²g⁻¹, which is higher than that of AgInS₂ (5.30 m²g⁻¹). From the CO temperature-programmed desorption (TPD) spectra of samples in Fig. 5c, the metallic V_S-AgInS₂ sample exhibits a higher overall amount of CO desorption and lower desorption temperature according to the total intensity of peaks, revealing that the formed *CO intermediates and gaseous CO can be released from the V_S-AgInS₂ nanocrystals surface much easier. Furthermore, as displayed by the contact angle analysis (Fig. S22), metallic V_S-AgInS₂ possesses a lower contact angle of 59.8° than that of the pristine AgInS₂ (83.2°), indicating its higher surface hydrophilicity for water adsorption on their surfaces, and hence possibly aiding subsequent proton transfer to participate in

the CO₂ RR.

To further verify the results of in situ DRIFTS analysis, Gibbs free energy calculations over these possible CO₂ photoreduction pathways are carried out based on DFT study from constructed models (Fig. S23). As displayed in Figs. 5d and 5e, it is suggested that the formation of *COOH is the rate-limiting step (Table S2) of AgInS2 and Vs-AgInS2 [52]. Under the circumstances, as revealed in Figs. 5d and 5e, the energy barrier for *CO2 protonation to form *COOH on pristine AgInS2 and V_S-AgInS₂ (step schematic representation in Figs. S24 and S25) is 1.40 and 1.25 eV, respectively, indicating that V_S-AgInS₂ is more likely to drive photocatalytic CO2 reduction, thus resulting in the high yield of CO and CH₄ under full spectrum and visible light irradiation. Subsequently, *CO protonation to *CHO on pristine AgInS₂ obtains an energy barrier of -0.17 eV; Meanwhile, *CO intermediate could transfer the gaseous CO spontaneously. Conversely, the V_S-AgInS₂ had an energy barrier of 0.26 eV from *CO protonation to *CHO, which illustrates the reason for the high selectivity of CO over V_S-AgInS₂ under NIR light illumination. More importantly, as exhibited by the charge difference distribution (Fig. 5f-g and S26), the *COOH intermediates also tend to bond in Ag-In dual sites of V_S-AgInS₂ nanocrystals, which perhaps helps

Fig. 5. (a) CO_2 TPD measurements, (b) CO_2 adsorption isotherms and (c) CO TPD measurements of AgInS₂ and V_S -AgInS₂. Free energy diagrams of CO_2 RR to CO and CH_4 over the (d) AgInS₂ and (e) V_S -AgInS₂, and the inset shows structural models of intermediates. Calculated electric charge density difference of (f) AgInS₂ and (g) V_S -AgInS₂ in the step of *COOH intermediate.

the following protonation step of CO_2 RR. Overall, V_S -AgInS $_2$ possessed a better photocatalytic performance regardless of photocatalytic CO_2 reduction to CO under NIR light illumination.

4. Conclusion

To our knowledge, this was the first study to realize NIR-driven $\rm CO_2$ RR by designing vacancy-engineered metal sulfides with metallic characteristics. As an example, ternary metal chalcogenide, AgInS2, and carefully engineered sulfur vacated samples, metallic Vs-AgInS2, were synthesized. UV–vis–NIR diffuse reflectance and fs-TAS analysis revealed that the presence of sulfur vacancies favored NIR light harvesting and promoted carrier separation. Moreover, in situ DRIFTS measurements and Gibbs free energy calculations together illustrated that the sulfur vacancies not only reduced the activation energy barrier of COOH* but also prohibited the protonation step of CHO* , thus resulting in CO formation instead of CH4. As a result, the metallic $\rm V_S$ -AgInS2 nanocrystals exhibited near 100% CO selectivity for IR light-driven $\rm CO_2$ RR directly from the air. This work provided a straightforward path to accelerate the charge separation in defect-mediated metallic photocatalysts.

CRediT authorship contribution statement

Kai Wang: Experiment, Data processing & analysis, Writing – original draft, Revised manuscript preparation, Resources. Haotian Qin, Qiang Cheng, Yanfang Zhu, Haiyan Hu, Jian Peng: Investigation,

Data analysis. Jun Li, Shuangqiang Chen: Formal analysis, Writing – review & editing, Resources. Guohong Wang, Shulei Chou and Shixue Dou: Resources. Yao Xiao: Investigation, Formal analysis, Writing – review & editing, Resources.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be made available on request.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (52104254, 52202284, 51971124, 52171217), Natural Science Foundation of Hubei Province (2021CFB242), Zhejiang Natural Science Foundation (LQ23E020002), WenZhou Natural Science Foundation (G20220019), Cooperation between industry and education project of Ministry of Education (220601318235513), State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University (EIPE22208). This study is dedicated to the 50th Anniversary of Hubei Normal University (HBNU).

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2023.122763.

References

- [1] Y. Wang, Q. Zhou, Y. Zhu, D. Xu, Ultrathin High efficiency reduction of CO₂ to CO and CH₄ via photothermal synergistic catalysis of lead-free perovskite Cs₃Sb₂I₉, Appl. Catal. B 294 (2021), 120236.
- [2] Z. Zhang, Y. Cao, F. Zhang, W. Li, Y. Li, H. Yu, M. Wang, H. Yu, Tungsten oxide quantum dots deposited onto ultrathin CdIn₂S₄ nanosheets for efficient S-scheme photocatalytic CO₂ reduction via cascade charge transfer, Chem. Eng. J. 428 (2022), 131218.
- [3] D. Gao, W. Li, H. Wang, G. Wang, R. Cai, Heterogeneous catalysis for CO₂ conversion into chemicals and fuels, Trans. Tianjin, Univ 28 (2022) 245–264.
- [4] K. Feng, S. Wang, D. Zhang, L. Wang, Y. Yu, K. Feng, Z. Li, Z. Zhu, C. Li, M. Cai, Z. Wu, N. Kong, B. Yan, J. Zhong, X. Zhang, G.A. Ozin, L. He, Cobalt plasmonic superstructures enable almost 100% broadband photon efficient CO₂ photocatalysis, Adv. Mater. 32 (2020) 2000014.
- [5] L. Zhou, X. Zhang, L. Lin, P. Li, K. Shao, C. Li, T. He, Visible-light photocatalytic reduction of CO₂ by CoTe prepared via a template-free hydrothermal method, Acta Phys. -Chim. Sin. 33 (9) (2017) 1884–1890.
- [6] D. Song, H. Guo, K. Huang, H. Zhang, J. Chen, L. Wang, C. Lian, Y. Wang, Carboxylated carbon quantum dot-induced binary metal-organic framework nanosheet synthesis to boost the electrocatalytic performance, Mater. Today 54 (2022) 42–51.
- [7] Y. Xia, Z. Tian, T. Heil, A. Meng, B. Cheng, S. Cao, J. Yu, M. Antonietti, Highly selective CO₂ capture and its direct photochemical conversion on ordered 2D/1D heterojunctions, Joule 3 (2019) 1–14.
- [8] K. Wang, H. Wang, Q. Cheng, C. Gao, G. Wang, X. Wu, Molecular-functionalized engineering of porous carbon nitride nanosheets for wide-spectrum responsive solar fuel generation, J. Colloid Interface Sci. 607 (2022) 1061–1070.
- [9] L. Chen, T. Liu, S. Liu, S. Cai, X. Zou, J. Jiang, Z. Mei, G. Zhao, X. Yang, H. Guo, S vacant CuIn₅S₈ confined in a few-layer MoSe₂ with interlayer expanded hollow heterostructures boost photocatalytic CO₂ reduction, Rare Met 41 (1) (2022) 144–154.
- [10] Z. Zhang, X. Liu, Y. Li, H. Yu, W. Li, H. Yu, Unveiling the role of Ag-Sb bimetallic S-scheme heterojunction for vis-NIR-light driven selective photoreduction CO₂ to CH₄, Appl. Catal. B 319 (2022), 121960.
- [11] H. Ge, Y. Kuwahara, K. Kusu, Z. Bian, H. Yamashita, Ru/H_xMoO_{3-y} with plasmonic effect for boosting photothermal catalytic CO₂ methanation, Appl. Catal. B 317 (2022), 121734.
- [12] R. Feng, W. Lei, G. Liu, M. Liu, Visible- and NIR-light responsive black-phosphorus based nanostructures in solar fuel production and environmental remediation, Adv. Mater. 30 (2018) 1804770.
- [13] K. Wang, X. Feng, Y. Shangguan, X. Wu, H. Chen, Selective CO₂ photoreduction to CH₄ mediated by dimension matched 2D/2D Bi₃NbO₇/g-C₃N₄ S-scheme heterojunction, Chin. J. Catal. 43 (2022) 246–254.
- [14] J. Hu, L. Yu, J. Deng, Y. Wang, K. Cheng, C. Ma, Q. Zhang, W. Wen, S. Yu, Y. Pan, J. Yang, H. Ma, F. Qi, Y. Wang, Y. Zheng, M. Chen, R. Huang, S. Zhang, Z. Zhao, J. Mao, X. Meng, Q. Ji, G. Hou, X. Han, X. Bao, Y. Wang, D. Deng, Sulfur vacancy-rich MoS₂ as a catalyst for the hydrogenation of CO₂ to methanol, Nat. Catal. 4 (3) (2021) 242–250.
- [15] K. Wang, Q. Wang, K. Zhang, G. Wang, H. Wang, Selective solar-driven CO₂ reduction mediated by 2D/2D Bi₂O₂SiO₃/MXene nanosheets heterojunction, J. Mater. Sci. Technol. 124 (2022) 202–208.
- [16] Y. Han, B. Tang, L. Wang, H. Bao, Y. Lu, C. Guan, L. Zhang, M. Le, Z. Liu, M. Wu, Machine learning driven synthesis of carbon dots with enhanced quantum yield, ACS Nano 14 (2020) 14761–14768.
- [17] L. Tan, S. Xu, Z. Wang, Y. Xu, X. Wang, X. Hao, S. Bai, C. Ning, Y. Wang, W. Zhang, Y. Jo, S. Hwang, X. Cao, X. Zheng, H. Yan, Y. Zhao, H. Duan, Y. Song, Highly selective photoreduction of CO₂ with suppressing H₂ evolution over monolayer layered double hydroxide under irradiation above 600 nm, Angew. Chem. Int. Ed. 58 (2019) 2–10.
- [18] Y. Zhao, G. Chen, T. Bian, C. Zhou, G. Waterhouse, L. Wu, C.H. Tung, L.J. Smith, D. O'Hare, T. Zhang, Defect-rich ultrathin ZnAl-layered double hydroxide nanosheets for efficient photoreduction of CO₂ to CO with water, Adv. Mater. 27 (2015) 7824–7831.
- [19] K. Wang, Y. Du, Y. Li, X. Wu, H. Hu, G. Wang, Y. Xiao, S. Chou, G. Zhang, Atomic-level insight of sulfidation-engineered Aurivillius-related Bi₂O₂SiO₃ nanosheets enabling visible light low-concentration CO₂ conversion, Carbon Energy (2022), https://doi.org/10.1002/cey2.264.
- [20] S. Wu, J. Wang, Q. Li, Z. Huang, Z. Rao, Y. Zhou, Bi/BiOCl nanosheets enriched with oxygen vacancies to enhance photocatalytic CO₂ reduction, Trans. Tianjin, Univ 27 (2021) 155–164.
- [21] K. Wang, L. Jiang, X. Wu, G. Zhang, Vacancy mediated Z-scheme charge transfer in a 2D/2D La₂Ti₂O₇/g-C₃N₄ nanojunction as a bifunctional photocatalyst for solarto-energy conversion, J. Mater. Chem. A 8 (2020) 13241–13247.
- [22] R. Niu, Q. Liu, B. Huang, Z. Liu, W. Zhang, Z. Peng, Z. Wang, Y. Yang, Z. Gu, J. Li, Black phosphorus/Bi₁₉Br₃S₂₇ van der Waals heterojunctions ensure the supply of activated hydrogen for effective CO₂ photoreduction, Appl. Catal. B 317 (2022), 121727.

- [23] C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, In situ grown monolayer N-doped graphene on CdS hollow spheres with seamless contact for photocatalytic CO₂ reduction, Adv. Mater.. 31 (2019) 1902868.
- [24] Q. Sun, J. Xu, F. Tao, W. Ye, C. Zhou, J. He, J. Lu, Boosted inner surface charge transfer in perovskite nanodots@mesoporous titania frameworks for efficient and selective photocatalytic CO₂ reduction to methane, Angew. Chem. Int. Ed. 61 (2022), e202200872.
- [25] J. Xu, Z. Ju, W. Zhang, Y. Pan, J. Zhu, J. Mao, X. Zheng, H. Fu, M. Yuan, H. Chen, R. Li, Efficient infrared-light-driven CO₂ reduction Over ultrathin metallic Nidoped CoS₂ nanosheets, Angew. Chem. Int. Ed. 60 (2021) 8705–8709.
- [26] F. You, J. Wan, J. Qi, D. Mao, N. Yang, Q. Zhang, L. Gu, D. Wang, Lattice distortion in hollow multi-shelled structures for efficient visible light CO₂ reduction with a SnS₂/SnO₂ junction, Angew. Chem. Int. Ed. 58 (2019) 1–5.
- [27] J. Li, W. Pan, Q. Liu, Z. Chen, Z. Chen, X. Feng, H. Chen, Interfacial engineering of Bi₁₉Br₃S₂₇ nanowires promotes metallic photocatalytic CO₂ reduction activity under near-infrared light irradiation, J. Am. Chem. Soc.. 143 (2021) 6551–6559.
- [28] X. Li, L. Liang, Y. Sun, J. Xu, X. Jiao, X. Xu, H. Ju, Y. Pan, J. Zhu, Y. Xie, Ultrathin conductor enabling efficient IR light CO₂ reduction, J. Am. Chem. Soc. 141 (2019) 423–430.
- [29] C. Zhan, B. Liu, Y. Huang, S. Hu, B. Ren, M. Moskovits, Z. Tian, Disentangling charge carrier from photothermal effects in plasmonic metal nanostructures, Nat. Commun. 10 (2019) 2671.
- [30] C. Du, B. Yan, G. Yang, Self-integrated effects of 2D ZnIn₂S₄ and amorphous Mo₂C nanoparticles composite for promoting solar hydrogen generation, Nano Energy 76 (2020), 105031.
- [31] X. Li, Y. Sun, J. Xu, Y. Shao, J. Wu, X. Xu, Y. Pan, H. Ju, J. Zhu, Y. Xie, Selective visible-light-driven photocatalytic CO₂ reduction to CH₄ mediated by atomically thin CuIn₅S₈ layers, Nat. Energy 4 (2019) 690–699.
- [32] Q. Cheng, K. Kang, Y. Li, J. Wang, Z. Wang, D. Selishchev, X. Wang, G. Zhang, Achieving efficient toluene mineralization over ordered porous LaMnO₃ catalyst: The synergistic effect of high valence manganese and surface lattice oxygen, Appl. Surf. Sci. 615 (2023), 156248.
- [33] J. Di, C. Zhu, M. Ji, M. Duan, R. Long, C. Yan, K. Gu, J. Xiong, Y. She, J. Xia, H. Li, Z. Liu, Defect-rich Bi₁₂O₁₇C₁₂ nanotubes self-accelerating charge separation for boosting photocatalytic CO₂ reduction, Angew. Chem. Int. Ed. 57 (2018) 14847–14851.
- [34] A. Meng, B. Cheng, H. Tan, J. Fan, C. Su, J. Yu, TiO₂/polydopamine S-scheme heterojunction photocatalyst with enhanced CO₂-reduction selectivity, Appl. Catal. B 289 (2021), 120039.
- [35] H. Huang, R. Shi, Z. Li, J. Zhao, C. Su, T. Zhang, Triphase photocatalytic CO₂ reduction over silver-decorated titanium oxide at a gas-water boundary, Angew. Chem. Int. Ed.. 61 (2022), e202200802.
- [36] Q. Cheng, Y. Li, Z. Wang, X. Wang, G. Zhang, Boosting full-spectrum light driven surface lattice oxygen activation of ZnMn₂O₄ by facet engineering for highly efficient photothermal mineralization of toluene, Appl. Catal. B 324 (2023), 122274.
- [37] Z. Zhao, D. Wang, R. Gao, G. Wen, M. Feng, G. Song, J. Zhu, D. Luo, H. Tan, X. Ge, W. Zhang, Y. Zhang, L. Zheng, H. Li, Z. Chen, Magnetic-field-stimulated efficient photocatalytic N₂ fixation over defective BaTiO₃ perovskites, Angew. Chem. 133 (2021) 2–11
- [38] X. Zhang, J. Liu, H. Zhang, Z. Wan, J. Li, Uncovering the pathway of peroxymonosulfate activation over Co_{0.5}Zn_{0.5}O nanosheets for singlet oxygen generation: Performance and membrane application, Appl. Catal. B 327 (2023), 122429.
- [39] K. Wang, L. Peng, X. Shao, Q. Cheng, J. Wang, K. Li, H. Wang, Nb–O–C charge transfer bridge in 2D/2D Nb₂O₅/g-C₃N₄ S-scheme heterojunction for boosting solar-driven CO₂ reduction: In situ illuminated X-ray photoelectron spectroscopy investigation and mechanism insight, Sol. RRL (2022) 2200434.
- [40] Q. Cheng, Z. Wang, X. Wang, J. Li, Y. Li, G. Zhang, A novel Cu1.5Mn1.5O4 photothermal catalyst with boosted surface lattice oxygen activation for efficiently photothermal mineralization of toluene, Nano Res (2022), https://doi.org/ 10.1007/s12274-022-4946-6.
- [41] L. Liu, S. Wang, H. Huang, Y. Zhang, T. Ma, Surface sites engineering on semiconductors to boost photocatalytic CO₂ reduction, Nano Energy 75 (2020), 104050
- [42] Z. Hu, T. Chen, Z. Xie, C. Guo, W. Jiang, Y. Chen, Y. Xu, Emission tunable AgInS₂ quantum dots synthesized via microwave method for white light-emitting diodes application, Opt. Mater. 124 (2022), 111975.
- [43] A. Hirase, Y. Hamanaka, T. Kuzuya, Ligand-induced luminescence transformation in AgInS₂ nanoparticles: From defect emission to band-edge emission, J. Phys. Chem. Lett. 11 (2020) 3969–3974.
- [44] S. Song, Z. Liang, W. Fu, T. Peng, Prepartion of single-crystalline AgIn₅S₈ octahedrons with exposed {111} facets and its visible-light-responsive photocatalytic H₂ production activity, ACS Appl. Mater. Interfaces 9 (2017) 17013–17023.
- [45] J. Qin, X. Hu, X. Li, Z. Yin, B. Liu, K. Lam, 0D/2D AgInS₂/MXene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N₂, Nano Energy 61 (2019) 27–35.
- [46] K. Wang, X. Shao, K. Zhang, J. Wang, X. Wu, H. Wang, 0D/3D Bi₃TaO₇/ZnIn₂S₄ heterojunction photocatalyst towards degradation of antibiotics coupled with simultaneous H₂ evolution: In situ irradiated XPS investigation and S-scheme mechanism insight, Appl. Surf. Sci. 596 (2022), 153444.
- [47] H. Cao, J. Xue, Z. Wang, J. Dong, W. Li, R. Wang, S. Sun, C. Gao, Y. Tan, X. Zhu, J. Bao, Construction of atomically dispersed Cu sites and S vacancies on CdS for enhanced photocatalytic CO₂, Reduct., J. Mater. Chem. A 9 (2021) 16339–16344.

- [48] X. Wu, W. Zhang, J. Li, Q. Xiang, Z. Liu, B. Liu, Identification of the active sites on metallic MoO_{2-x} nano-seaurchin for atmospheric CO₂ photoreduction under UV, visible, and near-infrared light illumination, Angew. Chem. Int. Ed. (2022), e202213124
- [49] C. Bie, B. Zhu, L. Wang, H. Yu, C. Jiang, T. Chen, J. Yu, A bifunctional CdS/MoO₂/ MoS₂ catalyst enhances photocatalytic H₂ evolution and pyruvic acid synthesis, Angew. Chem. Int. Ed. 61 (2022), e202212045.
- [50] K. Wang, X. Shao, Q. Cheng, K. Li, X. Le, G. Wang, H. Wang, In situ-illuminated X-ray photoelectron spectroscopy investigation of S-scheme Ta₂O₅/ZnIn₂S₄ core-shell
- hybrid nanofibers for highly efficient solar-driven ${\rm CO_2}$ overall splitting, Sol. RRL (2022) 2200736.
- [51] K. Wang, H. Qin, X. Shao, L. Jiang, K. Li, J. Wang, L. Zhou, Q. Cheng, G. Wang, H. Wang, Unveiling S-scheme charge transfer pathways in In₂S₃/Nb₂O₅ hybrid nanofiber photocatalysts for low-concentration CO₂ hydrogenation, Sol. RRL (2022) 2200963.
- [52] J. Di, C. Chen, S. Yang, S. Chen, M. Duan, J. Xiong, C. Zhu, R. Long, W. Hao, Z. Chi, H. Chen, Y. Weng, J. Xia, L. Song, S. Li, H. Li, Z. Liu, Isolated single atom cobalt in Bi₃O₄Br atomic layers to trigger efficient CO₂ photoreduction, Nat. Commun. 10 (2019) 2840.