Why3: Computational Real Numbers

MPRI Project Report

Younesse Kaddar

2019-13-02

Throughout this project, I installed and used the following solvers:

Solver	Version
Alt-Ergo	2.2.0
CVC4	1.6
Z3	4.8.4
CVC3	2.4.1
Eprover	2.2
Spass	3.7

Most of the assertions were proved with Alt-Ergo and CVC4 (less often with Z3, and even more rarely with CVC3, Eprover and Spass). As a macOS user, the installation of Z3 was problematic (its "counterexample" counterpart was the only one to be recognized by the Why3 IDE), so much so that I had choice but to modify my .why3.conf file by explicitely adding a block enforcing the use of Z3:

```
[prover]
command = "z3 -smt2 -T:%t sat.random_seed=42 nlsat.randomize=false smt.random_seed=42 %f"
command_steps = "z3 -smt2 sat.random_seed=42 nlsat.randomize=false smt.random_seed=42
    memory_max_alloc_count=%S %f"
driver = "z3_440"
editor = ""
in_place = false
interactive = false
name = "Z3"
shortcut = "z3"
version = "4.8.4"
```

2. Functions on Integers

Q1-4. Give an implementation of

power2, shift_left using power2

• power2 and shift_left are straightforward: the only notable point is the **for** loop invariant in power2:

```
let res = ref 1 in
for i=0 to l-1 do invariant { !res = power 2 i }
  res *= 2
done;
!res
```

which expresses the fact that the reference variable res stores the suitable power of 2 at each iteration, and trivially ensures that the postcondition holds:

- at the last iteration:

- * ! res contains 2^{l-1} at the beginning of the body loop
- * its value is then doubled, which results in ! res being equal to 2^l
- one exits the loop, and ! res yielded at the end, whence satisfying the postcondition result = power 2 l
 of power2

ediv_mod, and shift_right using ediv_mod.

- given ediv_mod and power2, shift_right is easily defined as let d, _ = ediv_mod z (power2 l) in d and poses no difficulty.
- ediv_mod is slightly more tricky, but nothing to be afraid of: d and r are respectively the quotient and the rest of the well-known euclidean division of x by y > 0.

denoted by x_abs

1. we first tackle the case where $x=\widehat{|x|} \geq 0$: as it happens,

```
let x_abs = if x >= 0 then x else -x in
let d = ref 0 in
let r = ref x_abs in
while !r >= y do
    invariant { !r >= 0 && x_abs = !d * y + !r}
    variant { !r }
    incr d;
    r -= y
done;
```

- the invariant $r \ge 0$ \land x_abs = dy + r is initially true, and remains so at each iteration of the loop as d (resp. r) is incremented (resp. decremented) by 1 (resp. y).
- the **while** loop condition $r \ge y$ and the fact that y > 0 (precondition requirement of ediv_mod) justify the decreasing and well-founded variant! r
- at the end the while loop:
 - * $0 \le r < y$
 - * $x_abs = dy + r$

which provides a trivially correct implementation of the euclidean division, provided $x \geq 0$

- 2. otherwise, if x < 0, we reduce this to the previous case, by computing the corresponding d_abs and r_abs for x_abs = |x| = -x
 - if $r_abs = 0$: then $x_abs = d_abs \times y$, and $x = (-d_abs) \times y$.

One yields $d \stackrel{\text{def}}{=} -d_abs$, $r \stackrel{\text{def}}{=} 0$. This is easily discharged by CVC4 (we can even go as far as to add the extra assertion assert $\{x = -!d * y \}$ to help the provers, but it shouldn't be necessary).

- else if r abs > 0: then

$$\begin{cases} 0 \leq y - \texttt{r_abs} < y \\ x = -\texttt{x_abs} = -\texttt{d_abs}\,y - \texttt{r_abs} = (-\texttt{d_abs}-1)\,y + (y - \texttt{r_abs}) \end{cases}$$

Therefore, one yields $d \stackrel{\text{def}}{=} -d_{abs} - 1$, $r \stackrel{\text{def}}{=} y - r_{abs}$.

This is discharged by CVC4 too, but we can add the assertion assert $\{x = (-!d - 1)*y + y - !r & 0 \le y - !r \le y \}$ to convince the provers.

Q5. Give an implementation of isqrt

When it comes to the sheer body of the function, as seen in class:

```
let function isqrt (n:int) : int
  requires { 0 <= n }
  ensures { result = floor (sqrt (from_int n)) }
=
  let count = ref 0 in
  let sum = ref 1 in
  while !sum <= n do
    incr count;
    sum += 2 * !count + 1
  done;
  !count</pre>
```

However, proving the postcondition result = floor (sqrt (from_int n)) turns out to be trickier than the one we saw in class (i.e. sqr !count <= !n < sqr (!count + 1)), in so far as all the specification pertaining to floor in the standard library is:

```
function floor real : int

axiom Floor_int :
    forall i:int. floor (from_int i) = i

axiom Floor_down:
    forall x:real. from_int (floor x) <= x < from_int (Int.(+) (floor x) 1)

axiom Floor_monotonic:
    forall x y:real. x <= y -> Int.(<=) (floor x) (floor y)</pre>
```

That is, the standard-library properties related to | ● | on which the provers can rely are:

- | | is increasing and left inverse of from_int
- and more importantly:

$$\forall n \in \mathbb{Z}, n = |x| \implies n \le x < n+1$$

On top of that, sqrt is only assumed to be increasing, and not strictly increasing.

As a result, we:

- neither have the converse of \circledast (which is exactly the direction needed to prove the postcondition!)
- nor do we have the fact that $\sqrt{\bullet}$ is strictly increasing (which is problematic when dealing with strict inequalities).

So, which assertions where added to prove isqrt?

• concerning the **while** loop: nothing special, we proceed exactly as seen in class, apart from the extra variant: variant {n - !sum} which is easily seen to be strictly decreasing and well-founded.

• at the end of the loop:

$$0 \le \text{count}$$
 and $\text{count}^2 \le n < \text{sum} = (\text{count} + 1)^2$

therefore, due to $\sqrt{\bullet}$ being strictly increasing and count ≥ 0 :

$$count < \sqrt{n} < count + 1$$

and the converse of ⊛ would yield the expected postcondition.

But to convince the provers, based solely on the standard-library specification, we proceed as follows:

- we first show that count $\leq \lfloor \sqrt{n} \rfloor$, which only resorts to $\lfloor \bullet \rfloor$ and $\sqrt{\bullet}$ being increasing and $\sqrt{\bullet}$ being a left inverse of \bullet^2 on \mathbb{R}^+ (axiom Square_sqrt of the standard library).
- we then show the reverse inequality, that is: $\lfloor \sqrt{n} \rfloor < \text{count} + 1$ in a similar fashion. Except that this one is a bit trickier, as $\sqrt{\bullet}$ is not assumed to be strictly increasing, but we can get away with it by treating strict inequalities as being equivalent to non-strict ones *and* non-equalities.

3. Difficulty with Non-linear Arithmetic on Real Numbers

3.1 Power Function

Q6-12. Prove that

- 1. _B is positive
- 2. $B n \times B m = B(n + m)$
- 3. $B n \times B(-n) = 1$
- 4. $0 \le a \implies \sqrt{a \times \mathsf{B}(2n)} = \sqrt{a} \times \mathsf{B}(2n)$
- 5. $0 \le y \implies _\mathsf{B}\, y = \mathsf{from_int}\ 4^y$
- 6. $y < 0 \implies _B y = \frac{1}{\text{from_int } 4^{-y}}$
- 7. $0 \le y \implies 2^{2y} = 4^y$

All theses lemmas but the 5th and the 6th ones are straightforwardly discharged:

• for the 5th one (_B_spec_pos): we lend a hand to the provers with the command assert (pow (from_int 4) (from_int n) = from_int (power 4 n)):

Figure 1: Why3 IDE: use of the assert command to prove _B_spec_pos

• for the 6th one (_B_spec_neg), we first prove an easily discharged (by Alt-Ergo) lemma:

```
lemma _B_spec_neg_0:
  forall n:int. n < 0 -> _B n *. from_int (power 4 (-n)) = 1.
```

from which _B_spec_neg immediately ensues.

4. Computational Real Numbers

Q13. Could you find a reason why this definition is better than the other for automatic provers?

When it comes to using to two inequalities rather the terser (and prehaps more elegant)

$$|x - p \, 4^{-n}| < 4^{-n}$$

the two-inequalities version has the advantage of not involving the absolute value abs, which would just be a burden when proving framing-related postconditions. Indeed, almost every time we would want to show a non-trivial framing (first needing to unfold abs), provers would eventually have to resort to the Abs_le lemma of the standard library, leading to unnecessary proof clutter.

As for using _B: this fosters the use of the relevant lemmas proved in section 3.6 by the provers, bringing about
more efficient proofs.

Q14. Prove these three functions

round_z_over_4

By dint of assertions, we show the two postconditions inequalities separately:

where // stands for the euclidean division quotient, which directly stems from

$$4((z+2) // 2^2) < z+2$$
 (euclidean division)

• Similarly (the from_int 's will be omitted from now on):

$$z-2 < 4 \times \underbrace{ \text{shift_right} \ \left(z+2\right) 2}_{= \left(z+2\right) / \hspace{-0.5em} / 2^2}$$

due to

$$z-2 < z+2 - (\underbrace{(z+2) \mod 2^2}_{\leq 4}) = 4((z+2) \mathbin{/\!/} 2^2)$$

compute_round and compute_add

• For compute_round, assuming

$$(z_n - 2) \times \mathsf{B}(-(n+1)) < z \le (z_n + 2) \times \mathsf{B}(-(n+1))$$

we show that

$$(\underbrace{\texttt{shift_right}\ (z_p+2)\,2}_{=(z_p+2)/\!\!/2^2}-1)\times _\mathsf{B}(-n) < z < ((z_p+2)\,/\!\!/\,2^2+1)\times _\mathsf{B}(-n)$$

by means of two assertions (one for each inequality). Indeed:

$$\begin{split} &((z_p+2) \, /\!\!/ \, 2^2-1) \times \, _\mathsf{B}(-n) \leq \left(\underbrace{\frac{z_p+2}{4}-1}_{=\frac{z_p}{4}-\frac{1}{2}} \right) \times \, _\mathsf{B}(-n) & \text{since } 4((z_p+2) \, /\!\!/ \, 2^2) \leq z_p+2 \\ &= \frac{z_p-2}{4} \times \, _\mathsf{B}(-n) \\ &= (z_p-2) \times \, _\mathsf{B}(-(n+1)) \\ &< z \\ &\leq \frac{z_p+2}{4} \times \, _\mathsf{B}(-n) \\ &= \left(\frac{z_p-2}{4}+1 \right) \times \, _\mathsf{B}(-n) \\ &< ((z_p+2) \, /\!\!/ \, 2^2+1) \times \, _\mathsf{B}(-n) & \text{since } z_p-2 < 4((z_p+2) \, /\!\!/ \, 2^2) \text{ as seen before} \end{split}$$

Given compute_round's contract, compute_add n x xp y yp is straightforwardly defined as compute_round
 n (x +. y)(xp + yp)

4.2 Subtraction

Q15-16. Define and prove the functions compute_neg, compute_sub using compute_neg and compute_add

Those pose no difficulty:

- compute_neg n x xp is nothing more than -xp, as demonstrated by multiplying the framing of x by -1
- compute_sub n x xp y yp compute_adds x and the compute_neg'ed approximation of y, owing to x and y being provided at approximation n + 1. A little help for the provers: asserting assert { framing (-.y)yp' (n +1)} just before yielding the result.

4.3 Conversion of Integer Constants

compute_cst is easy on paper, but is a bit thornier in Why3: we show the relevant inequalities in each case

• if n < 0:

- $(x /\!\!/ 2^{-2n} 1) \times _B(-n) < x$ stems from $(x /\!\!/ 2^{-2n}) \times _B(-n) \le x$ (by definition of the euclidean division) and $_B(-n) > 0$
- $\begin{array}{l} \text{and } _{\mathsf{B}}(-n) > 0 \\ -\ x < (x \mathbin{/\!/} 2^{-2n} + 1) \times _{\mathsf{B}}(-n) \text{ comes from } x \text{ being equal to } (x \mathbin{/\!/} 2^{-2n}) \times _{\mathsf{B}}(-n) + \underbrace{(x \mod _{\mathsf{B}}(-n))}_{<_{\mathsf{B}}(-n)} \\ \end{array}$
- if n > 0:

$$- \ (x \times 2^{2n} - 1) \times _\mathsf{B}(-n) = \underbrace{x \times 2^{2n} \times _\mathsf{B}(-n)}_{=x} - \underbrace{- \underbrace{\mathsf{B}(-n)}_{>0}}_{>0} < x$$

$$-x < x + \underbrace{-B(-n)}_{>0} = x \times 2^{2n} \times _B(-n) + _B(-n) = (x \times 2^{-2n} + 1) \times _B(-n)$$

4.4 Square Root

Q17. Prove these two relations

It can be noted that, for all $n \in \mathbb{N}$:

$$(\sqrt{n+1}-\sqrt{n})(\sqrt{n+1}+\sqrt{n})=(n+1)-n=1$$
 so that
$$\sqrt{n+1}=\sqrt{n}+\underbrace{\frac{1}{\sqrt{n+1}+\sqrt{n}}}_{\text{denoted by _sqrt_incr }n}$$
 where
$$0<_\text{sqrt_incr }n\leq 1$$

Based on this observation, we show two lemma functions

```
let lemma _sqrt_incr_spec (n:int) : unit
    requires { n >= 0 }
    ensures { sqrt (from_int (n+1)) = sqrt (from_int n) +. _sqrt_incr n }
    =
        (* [...] *); ()

let lemma _sqrt_incr_bounds (n:int) : unit
    requires { n >= 0 }
    ensures { 0. <. _sqrt_incr n <=. 1. }
    =
        (* [...] *); ()</pre>
```

that will come in handy in what follows.

Relation 1 (sqrt_ceil_floor lemma): $\lceil \sqrt{n+1} \rceil - 1 \le \lfloor \sqrt{n} \rfloor$

The outline of the proof on paper is:

$$\lceil \sqrt{n+1} \rceil - 1 < \lceil \sqrt{n+1} \rceil$$

$$= \lceil \sqrt{n} + _ \mathsf{sqrt_incr} \, n \rceil \qquad \mathsf{as} \, \sqrt{n+1} = \sqrt{n} + _ \mathsf{sqrt_incr} \, n$$

$$\leq \lceil \underbrace{(\lfloor \sqrt{n} \rfloor + 1) + 1}_{\in \mathbb{Z}} \qquad \mathsf{since} \, \begin{cases} \sqrt{n} \leq \lfloor \sqrt{n} \rfloor + 1 \\ _ \mathsf{sqrt_incr} \, n \leq 1 \end{cases} \qquad \mathsf{and} \, \lceil \bullet \rceil \, \mathsf{is} \, \mathsf{increasing}$$

$$= \underbrace{\lfloor \sqrt{n} \rfloor + 1}_{\mathsf{denoted} \, \mathsf{by} \, a}$$

But we have actually more than that: $\lceil \sqrt{n+1} \rceil$ is *strictly lower* than a+1.

Indeed: if, by contradiction, we had $\lceil \sqrt{n+1} \rceil = a+1$, given that:

$$\sqrt{n} < |\sqrt{n}| + 1 = a = \lceil \sqrt{n+1} \rceil - 1 < \sqrt{n+1}$$

it would come that $n < a^2 < n+1$, which is absurd, since a^2 is an integer. So

$$\lceil \sqrt{n+1} \rceil - 1 < \lceil \sqrt{n+1} \rceil < a+1 = \lceil \sqrt{n} \rceil + 2$$

and as all these are integers, the result follows.

The reasoning by contradiction is carried out in Why3 in this way:

```
if ceil x = a+1 then (
    assert { n-1 < a*a < n
        by (* [...] *) };
    absurd);
(* [...] *)</pre>
```

Relation 2 (sqrt_floor_floor lemma): $|\sqrt{n}| \le |\sqrt{n-1}| + 1$

We proceed analogously, everything is similar:

$$\begin{split} \lfloor \sqrt{n} \rfloor &= \lfloor \sqrt{n-1} + _\mathsf{sqrt_incr}\, n \rfloor \\ &\leq \lfloor (\lfloor \sqrt{n-1} \rfloor + 1) + 1 \rfloor \\ &= \underbrace{\lfloor \sqrt{n-1} \rfloor + 1}_{\mathsf{denoted by }a} + 1 \end{split}$$

and $\lfloor \sqrt{n} \rfloor = a+1$ is impossible, as otherwise $\sqrt{n-1} < \lfloor \sqrt{n-1} \rfloor + 1 = a = \lfloor \sqrt{n} \rfloor - 1 < \sqrt{n}$, which would imply $n-1 < a^2 < n$.

Q18. Prove compute_sqrt

Assuming that

$$x \geq 0 \quad \text{ and } \quad (x_p-1) \times _\mathsf{B}(-2n) < x < (x_p+1) \times _\mathsf{B}(-2n)$$

we show that

ensures that the result is an n-framing of \sqrt{x} .

• if $x_p \leq 0$, then:

$$- \, \underline{-} \mathsf{B}(-n) < 0 \leq \sqrt{x} < \sqrt{\underbrace{(x_p + 1)}_{=1} \times \underline{-} \mathsf{B}(-2n)} = \underline{-} \mathsf{B}(-n)$$

• if $x_p > 0$:

$$\begin{split} \sqrt{x} < \sqrt{x_p + 1} \times _\mathsf{B}(-n) & \leq \left\lceil \sqrt{x_p + 1} \, \right\rceil \times _\mathsf{B}(-n) \stackrel{\text{Relation 1}}{\leq} \left(\left\lfloor \sqrt{x_p} \right\rfloor + 1 \right) \times _\mathsf{B}(-n) \\ \sqrt{x} > \sqrt{x_p - 1} \times _\mathsf{B}(-n) & \geq \left\lfloor \sqrt{x_p - 1} \, \right\rfloor \times _\mathsf{B}(-n) \stackrel{\text{Relation 2}}{\geq} \left(\underbrace{\left\lfloor \sqrt{x_p} \right\rfloor}_{= \, \text{isgrt} \, x_p} - 1 \right) \times _\mathsf{B}(-n) \end{split}$$

In Why3, we use the same trick as in isqrt to get around the fact that sqrt is not strictly increasing, by turning some strict inequalities into conjunctions of non-strict ones and non-equalities.

4.5 Compute

Q19-20. Define: interp that gives real interpretation of a term, and wf_term that checks that square root is adequately applied.

- interp is resursively defined in a forthright manner
- wf_term is defined as an inductive predicate. For the time being, the only non-trivial constructor case (that actually does check something, rather than inductively propagating) is wf_sqrt: forall t:term. interp t >=. 0.
 -> wf_term t -> wf_term (Sqrt t), ensuring that Sqrt is exclusively applied to terms whose interpretation is non-negative.

Q21. define and prove the compute function

The first batch of the compute function is the following one:

```
let rec compute (t:term) (n:int) : int
  requires { wf_term t }
  ensures { framing (interp t) result n }
  variant { t }
=
  match t with
  | Cst x -> compute_cst n x
  | Add t' t'' ->
    let xp = compute t' (n+1) in
  let yp = compute t'' (n+1) in
```

```
compute_add n (interp t') xp (interp t'') yp
| Neg t' -> compute_neg n (interp t') (compute t' n)
| Sub t' t'' ->
| let xp = compute t' (n+1) in
| let yp = compute t'' (n+1) in
| compute_sub n (interp t') xp (interp t'') yp
| Sqrt t' -> compute_sqrt n (interp t') (compute t' (2*n))
end
```

It is defined by structural induction over the term t, which makes the variant trivially correct, and as all the contracts of the auxiliary compute_*** functions were specially written to ensure the correction of this final compute, CVC4 discharges the proof obligations with no trouble.

5 Division

Q22. Prove these two properties

Notations: in what follows, we will denote by d (resp. d', resp. d'') and r (resp. r', resp. r'') the quotient and the rest of the euclidean division of a by b (resp. b-1, resp. b+1). In other words:

$$a = db + r$$
 $0 \le r < b$
 $a = d'(b-1) + r'$ $0 \le r' < b-1$
 $a = d''(b+1) + r''$ $0 \le r'' < b+1$

Property 1 (dividend_incr)

$$\begin{cases} 0 < a \\ 0 < b \\ d \stackrel{\text{def}}{=} a \ \text{$/$} b < b \end{cases} \implies d'' \stackrel{\text{def}}{=} a \ \text{$/$} (b+1) = \begin{cases} d-1 & \text{if } r \stackrel{\text{def}}{=} a \mod b < d \\ d & \text{else} \end{cases} \text{ (P1.1)}$$

Assume a, b > 0 and $d \stackrel{\text{def}}{=} a /\!\!/ b < b$.

• if $r \stackrel{\text{def}}{=} a \mod b < d$: Let us show that $d'' \stackrel{\text{def}}{=} a \ /\!\!/ (b+1) = d-1$.

To do so, based on the lemma function suggested in the problem statement at the end of section 2 (which is easily proved by CVC4):

```
let lemma euclid_uniq (x y q : int) : unit
  requires { y > 0 }
  requires { q * y <= x < q * y + y }
  ensures { ED.div x y = q }
  = ()</pre>
```

it suffices to show that

$$(d-1)(b+1) \le a < d(b+1)$$

And indeed

-
$$(d-1)(b+1) = db+d-b-1 \le db+r = a$$
 since $d \le b-1 \le b+r+1$
- $a = db+r < db+b = d(b+1)$ as $r < b$

• if r > d:

Let us show that d'' = d. Similarly:

$$d(b+1) \le a < (d+1)(b+1)$$

in so far as

$$-d(b+1) = db + d < db + r = a$$

-
$$a = db + r < db + d + b + 1 = (d+1)(b+1)$$
 since $r < b$

Property 2 (dividend_decr)

Assume a > 0, b > 1 and $d \stackrel{\text{def}}{=} a /\!\!/ b < b - 1$.

• if $b-1-d < r \stackrel{\text{def}}{=} a \mod b$:

Let us show that $d' \stackrel{\text{\tiny def}}{=} a /\!\!/ (b-1) = d+1$. Indeed:

$$(d+1)(b-1) \le a < (d+2)(b-1)$$

because

-
$$(d+1)(b-1) = db+b-1-d \le db+r = a$$
 due to the hypothesis

$$-a = db + r < db - d + 2b - 2 = (d+2)(b-1) \text{ since } r < b + \underbrace{b - d - 2}_{\geq 0}$$

• if b - 1 - d > r:

Let us show that d' = d. Similarly:

$$d(b-1) \leq a < (d+1)(b-1)$$

owing to the fact that

-
$$d(b-1)=db-d\leq db+r=a$$
 as $0< a=db+r<(d+1)$ \hat{b} hence $d\geq 0$, and $-d\leq 0\leq r$

-
$$a = db + r < db - d + b - 1 = (d+1)(b-1)$$
 because of the hypothesis

The two lemma functions dividend_incr and dividend_decr closely follow the proof sketches above in the Why3 implementation.

Q23. Prove the function inv_simple_simple

We first prove two routine lemmas (inv_decreasing: the fact that inv is decreasing over \mathbb{R}_+^* and \mathbb{B}_- inv: $\forall n$, $\mathbb{B}_ \mathbb{B}_ \mathbb{B}_-$) that are subsequently used in inv_simple_simple.

```
let inv_simple_simple (ghost x:real) (p:int) (n:int)
    requires { framing x p (n+1) }
    requires { 0 ≤n }
    requires { 1. ≤. x }
    ensures { framing (inv x) result n }
    =
    let k = n + 1 in
    let d,r = ediv_mod (power2 (2*(n+k))) p in
    if 2*r ≤p then d
    else d+1
```

As far as I am concerned, inv_simple_simple was the most nettlesome function, and maybe the most confusing one too at first glance, for the following reason: as pointed out in the problem statement, we can (and we will) prove that

$$d = a /\!\!/ b \le b - 1 - a /\!\!/ b$$

which ensures that the conditions **P1.1** and **P2.1** cannot happen at the same time, that is: **P1.1** \Longrightarrow **P2.2** and **P2.1** \Longrightarrow **P1.2**. From there, it is tempting to try to show (in each branch of inv_simple_simple's if statement) one the first conditions of one property (**P1.1** or **P2.1**), since, as it happens, the second condition of the other property is obtained for free. But that's a misleading track! We will instead focus on the second conditions of one property (i.e. either **P1.2** or **P2.2**), disregarding the other property altogether (by just settling with the *coarsest upper/lower bound* we get from both of its conditions).

Let's delve into it in more details. Similarly to before, we set

$$(d,r) = (4^{n+k} /\!\!/ p, 4^{n+k} \mod p)$$

$$(d',r') = (4^{n+k} /\!\!/ (p-1), 4^{n+k} \mod (p-1))$$

$$(d'',r'') = (4^{n+k} /\!\!/ (p+1), 4^{n+k} \mod (p+1))$$

- Before entering the if statement: we prove a handful of useful assertions
 - $4 \le 4^k \le p$ and $4^n \le \frac{p}{4}$ since $1 \le x < (p+1)4^{-k}$, so $4^k < p+1$, whence $4^k \le p$. On top of that: k = n+1 (thus $4^n \le \frac{p}{4}$) and $k \ge 1$ (hence $p \ge 4$).
 - then, as we have the precondition framing x p (n+1) (i.e. framing x p k):

$$\frac{4^k}{p+1}<\frac{1}{x}<\frac{4^k}{p-1}$$

therefore

$$d'' \leq \frac{\overbrace{4^{n+k}}^{(p+1)d''+r''}}{p+1} < \frac{4^n}{x} < \frac{\overbrace{4^{n+k}}^{(p-1)d'+r'}}{p-1} \leq d'+1$$

- $d \leq \frac{p-1}{2}$. Indeed:

$$d = \frac{4^{n+k} - r}{p} \le \frac{p-1}{2}$$

$$\iff 4^{n+k} - r \le \frac{p(p-1)}{2}$$

$$\iff 4^{n+k} \le \frac{p(p-1)}{2}$$

$$\iff \frac{p^2}{4} \le \frac{p(p-1)}{2}$$

$$\iff \frac{p}{2} \le p - 1$$

$$\iff 2 \le p$$

which is true as $p \ge 4$

- last but not least (before entering the **if**): the *coarsest bounds* we hinted at earlier:
 - * due to **P2**: $d' \leq d+1$
 - * due to **P1**: d 1 < d''
- Inside the **if** statement:
 - if $2r \leq p$:
 - * Let us show that $r+1 \le p-1-d$:

$$\begin{array}{ccc} & r+d+1$$

which is true as $p \ge 4$

* Thus, by **P2.2**, d' = d. And consequently:

$$d-1 \overset{\text{coarse bound}}{\leq} d'' < \frac{4^n}{r} < d'+1 = d+1$$

- if 2r > p:

- * It comes that $\boxed{r \geq d}$, since $2r \geq \ p+1 \geq p-1 \geq \ 2d$
- * Thus, by **P1.2**, d'' = d. And consequently:

$$(d+1)-1=d''<\frac{4^n}{x}< d'+1 \overset{\text{coarse bound}}{\leq} (d+1)+1$$

Q24. Prove the function inv_simple

inv_simple take advantage of the fact that $1 \le x \times Bm$ to resort to inv_simple_simple. We are given a (n+1+2m)-framing of x:

$$(p-1) \, _{\mathsf{B}}(-(n+1+2m)) < x < (p+1) \, _{\mathsf{B}}(-(n+1+2m))$$
 hence $(p-1) \, _{\mathsf{B}}(-(n+1+m)) < x \times _{\mathsf{B}} \, m < (p+1) \, _{\mathsf{B}}(-(n+1+m))$

and as $1 \le x \times Bm$, res = inv_simple_simple (x *. _B m)p (n+m) provides a (n+m)-framing of $x \times Bm$:

$$(\operatorname{res}-1) \, \underline{\,\,} \operatorname{B}(-(n+m)) < x \times \underline{\,\,} \operatorname{B} m < (\operatorname{res}+1) \, \underline{\,\,} \operatorname{B}(-(n+m))$$

$$\operatorname{thus}(\operatorname{res}-1) \, \underline{\,\,} \operatorname{B}(-n) < \underbrace{x \times \underline{\,\,} \operatorname{B} m \times \underline{\,\,} \operatorname{B}(-m)}_{=x} < (\operatorname{res}+1) \, \underline{\,\,} \operatorname{B}(-n)$$

and the result follows.

Q25. extend the type term

We add

- the | Inv t' -> inv (interp t') case in interp
- the | wf_inv: forall t:term. interp t <> 0. -> wf_term t -> wf_term (Inv t) case ir wf_term

Q26-27. prove the correction and termination of both functions

• When it comes to the correction:

nothing really fancier than before: the only new case is Inv t', and msd (which is called only there in compute) yields an m such that $|interp\ t| > B(-m)$ (such an m always exists provided interp $t \neq 0$, which is what we assume).

mds recursively calls itself until $|c| \ge 2$ (where c is the integer approximating t), thus straightforwardly ensuring the correction of the algorithm.

In compute, the case where the sign is negative is easily treated, similarly to compute_neg, by taking the opposite.

- The termination is a bit more involved because of mds:
 - when compute t n is called:
 - * either t is structurally smaller
 - * either t remains the same and compute has been called inside mds

which hints at the fact that an adequate variant would follow a lexicographic order, with the size of t as first component (where size is defined as expected).

- mds stops recursively calling itself as soon as |c| > 1.
 - * if interp t>0: then if $4^n(\text{interp }t)>2$, i.e. $n>\log_4\frac{2}{\text{interp }t}=\log_4\frac{2}{|\text{interp }t|}$, it follows that $c>4^n(\text{interp }t)-1>1$
 - * if interp t<0: then if $4^n(\text{interp }t)<-2$, i.e. $n>\log_4\frac{-2}{\text{interp }t}=\log_4\frac{2}{|\text{interp }t|}$, it follows that $c<4^n(\text{interp }t)+1<-1$

and each time mds is recursively called, n is incremented (and it is originally set at 0).

So a good variant is $(\mathtt{size}\ t, \lceil \log_4 \frac{2}{\lceil \mathtt{interp}\ t \rceil} \rceil - n)$ for the lexicographic order, which we can routinely check in Why3 by asserting what was outlined before and adding axiom about the \log being increasing as suggested at the beginning of the problem statement.

Bonus

Here is a counter-example: with

- $x \stackrel{\text{def}}{=} -0.6161$
- n = 2

It comes that msd (x) = 1 with $x_0 = 0, x_1 = -2, ..., x_5 = -630$.

Let's run the proposed algorithm on this instance to compute, say, $\overline{1/x_n}$.

- n > -msd(x) = -1
- as $k=n+2\mathrm{msd}\ \ (x)+1=5$ and $x_5=-630\leq 1$: it comes that

$$\boxed{1/x_2 = \left| \begin{array}{c} -\mathsf{B}(k+n) \\ \hline x_k \end{array} \right| = -27}$$

However:

$$(\overline{1/x_n} + 1) \times _\mathsf{B}(-n) = \frac{-27 + 1}{16} \simeq -1.625 < \frac{1}{x} \simeq -1.623$$

so the framing is not correct.

Conclusion

I didn't find this project particularly easy (especially as I am not keen on real numbers computation usually), but it definitely was a good foray into Why3. The most difficult part was inv_simple_simple, due to the fact that I got bogged down in a misleading track (as explained before) by misinterpreting a cue in the problem statement.

With some of my friends, I have jotted down a handful of suggestions about axioms that I think could be good adjuncts to the standard library, and a few features that may enhance the user experience of the Why3 IDE. I will enclose them in a forthcoming email.