

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE CÁLCULO PARA CIENCIA DE DATOS: IMT2220

Profesor: Joaquín Valenzuela

Ayudantes: Diego Rodríguez (drodrguez@uc.cl) y

Francisca Muñoz (fmur@uc.cl)

Ayudantía 6

Multiplicadores de Lagrange

Problema 1 (Ayudantía 8 2022.2)

Mediante multiplicadores de Lagrange, demuestre que el triángulo con área máxima que tiene un perímetro dado p es un triángulo equilátero. Para esto, use la fórmula de Herón para el área:

$$A = \sqrt{s(s-x)(s-y)(s-z)}$$

donde s = p/2 y x, y, z las longitudes de cada lado.

Problema 2

Determine los valores extremos de la función $f(x,y) = x^2 + 2y^2$

- a) Sobre la circunferencia $x^2 + y^2 = 1$.
- b) Sobre el disco $x^2+y^2\leq 1$

Determine los puntos de la esfera $x^2 + y^2 + z^2 = 1$ que están más cercanos al punto (3, 1, -1).

Problema 4

Determine el valor máximo de la función f(x, y, z) = x + 2y + 3z sobre la curva de intersección del plano x - y + z = 1 y del cilindro $x^2 + y^2 = 1$

Problema 1 (Ayudantía 8 2022.2)

Mediante multiplicadores de Lagrange, demuestre que el triángulo con área máxima que tiene un perímetro dado p es un triángulo equilátero. Para esto, use la fórmula de Herón para el área:

$$A = \sqrt{s(s-x)(s-y)(s-z)}$$

donde s=p/2y x,y,z las longitudes de cada lado.

deliae o P/2 y n, y, z nas lengredaes de edad le	
x	
J J J	
£	
(P) max $A(x,y,z) = \sqrt{S(s-x)(s-y)(s-z)}$	<u>+</u>)
5.0. x+y+z=25	
Problema equivalente:	
max s(s-x)(s-y)(s-z)	
Sa. x+y+2-2s=0	
L(x, y, z, x) = S(S-x)(S-y)(S-z) ->	(x +y + 2-2s)
$\frac{\partial x}{\partial x} = -S(s-3)(s-5) - \lambda = 0$	
5(S-y)(S-z) = S(S-x)(S-z) = S(S-x)(S-y)
$\frac{\partial \lambda}{\partial \lambda} = -s(z-x)(z-f) - y = 0$	S-y=S-x $S-z=S-y$ $y=x$ $y=z$ $y=z$
$\frac{\partial \mathcal{L}}{\partial z} = -s(s-x)(s-y) - \lambda = 0$	S - z = S - y
0%	2 25
$\frac{\partial \chi}{\partial \lambda} = -(x+y+z-2s)=0$	$2s = x + y + z$, $x = y = z = \frac{25}{3}$
: El siea se maximiza con	el trióngulo equilaten

Problema 2 Determine los valores extremos de la función $f(x, y) = x^2 + 2y^2$ a) Sobre la circunferencia $x^2 + y^2 = 1$. b) Sobre el disco $x^2 + y^2 \le 1$ $\max f(x,y) = x^2 + 2y^2$ a5.0. $x^2 + y^2 = 1$. $\mathcal{L}(x,y) = x^2 + 2y^2 - \lambda(x^2 + y^2 - 1)$ $\frac{\partial \mathcal{L}}{\partial x} = 2x - 2x \lambda = 0$ $\frac{\partial \mathcal{L}}{\partial y} = 4y - 2y \lambda = 0$ $\frac{\partial \mathcal{L}}{\partial y} = 0$ Caso 2: x = 0 $\rightarrow y = \pm 1$ (3) → 2°2 → × = 0 $\rightarrow X = \pm 1.(3)$ $3\frac{\partial \mathcal{L}}{\partial x} = -(x^2 + y^2 - 1) = 0$ f(1,0) = 1 f(0,1) = 2 f(-1,0) = 1 f(0,-1) = 2ط Debemos comparar los puntos críticos con los puntos de frontera fx = 2x → cnico punto crítico: (0,0) fy = 44 f(0,0)=0 \longrightarrow min f(±1,0)=1 $f(0,\pm 1)=2 \rightarrow max$

Problema 3

 $\rho_2 = \left(-\frac{6}{m}, -\frac{2}{m}, \frac{2}{m}\right)$

Determine los puntos de la esfera $x^2 + y^2 + z^2 = 4$ que están más cercanos al punto (3, 1, -1).

Ponto más cercano: P1

Problema 4

Determine el valor máximo de la función f(x,y,z)=x+2y+3z sobre la curva de intersección del plano x-y+z=1 y del cilindro $x^2+y^2=1$

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\mathcal{L}(x,y,z,\lambda,\mu) = x + \lambda y + 3z - \lambda(x-y+z-1) - \mu(x^2 + y^2 - 1)$ $1 \frac{\partial \mathcal{L}}{\partial x} = 1 - \lambda - 2\mu y = 0$ $2 \frac{\partial \mathcal{L}}{\partial y} = 2 + \lambda - 2\mu y = 0$ $3 \frac{\partial \mathcal{L}}{\partial z} = 3 - \lambda = 0$ $4 \frac{\partial \mathcal{L}}{\partial x} = -(x-y+z-1) = 0$ $5 = 2\mu y = 0$ $2 = \frac{2q}{4\mu^2} = 1$ $3 \frac{\partial \mathcal{L}}{\partial z} = 3 - \lambda = 0$ $2 = \frac{2q}{4\mu^2} = 1$ $3 \frac{\partial \mathcal{L}}{\partial z} = -(x-y+z-1) = 0$ $2 = 1 + \frac{2}{124}$ $3 + \frac{2}{124}$ $4 + \frac{2}{124}$ $3 + \frac{2}{124}$ $4 + $	
$ \frac{\partial \mathcal{L}}{\partial x} = 1 - \chi - 2 \mu x = 0 $ $ \frac{\partial \mathcal{L}}{\partial y} = 2 + \chi - 2 \mu y = 0 $ $ \frac{\partial \mathcal{L}}{\partial y} = 3 - \chi = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = 3 - \chi = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = 3 - \chi = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $\frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $\frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $\frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $\frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 - 1) = 0 $ $\frac{\partial \mathcal{L}}{\partial z} = -(x^2 + y^2 $	
$ \frac{\partial \mathcal{L}}{\partial x} = 1 - \chi - 2 \mu x = 0 $ $ \frac{\partial \mathcal{L}}{\partial y} = 2 + \chi - 2 \mu y = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = 3 - \chi = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = 3 - \chi = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z} = -(x - y + z - 1) = 0 $ $ \frac{\partial \mathcal{L}}{\partial z$	
$\frac{2}{2} \frac{\partial z}{\partial y} = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} + \frac{1}{2} = \frac{1}{2}$ $\frac{2}{2} \frac{\partial z}{\partial y} = \frac{1}{2} + \frac{1}{2} - \frac{1}{2} = \frac{1}{2}$ $\frac{2}{3} \frac{\partial z}{\partial z} = \frac{1}{3} - \frac{1}{3} = \frac{1}{3} = \frac{1}{3}$ $\frac{2}{3} \frac{\partial z}{\partial z} = \frac{1}{3} - \frac{1}{3} = \frac{1}{3$	
$ \frac{3}{3} \frac{\partial \mathcal{L}}{\partial z} = 3 - \lambda = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = 3 - \lambda = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \frac{\partial \mathcal{L}}{\partial z} = -(x - y + 2 - 1) = 0 $ $ \frac{1}{3} \partial \mathcal{L$	
$4 \frac{\partial \mathcal{L}}{\partial \lambda} = -(x-y-2-1)=0 \qquad \Rightarrow x = \pm \frac{2}{\sqrt{2}q} \qquad y = \frac{7.5}{\sqrt{2}q}$ $\frac{\partial \mathcal{L}}{\partial \mu} = -(x^2+y^2-1)=0 \qquad z = (\mp \frac{1}{\sqrt{2}q})$ $\frac{\partial \mathcal{L}}{\partial \mu} = -(x^2+y^2-1)=0 \qquad z = (\mp \frac{1}{\sqrt{2}q})$ $\frac{\partial \mathcal{L}}{\partial \mu} = -(x^2+y^2-1)=0 \qquad z = (\pm \frac{1}{\sqrt{2}q})$ $\frac{\partial \mathcal{L}}{\partial \mu} = -(x^2+y^2-1)=0 \qquad z = (\pm \frac{1}{\sqrt{2}q})$	t
$\frac{\partial \mathcal{L}}{\partial \mu} = -\left(x^2 + y^2 - 1\right) = 0$ $\frac{\partial}{\partial \mu} = -\left(x^2 + y^2 - 1\right) = 0$ $\frac{\partial}{\partial \mu} = \left(\frac{2}{\sqrt{2}\alpha}, \frac{-5}{\sqrt{2}\alpha}, \frac{1}{\sqrt{2}\alpha}, \frac{-1}{\sqrt{2}\alpha}\right)$ $\frac{\partial}{\partial \mu} = \left(\frac{2}{\sqrt{2}\alpha}, \frac{-5}{\sqrt{2}\alpha}, \frac{-1}{\sqrt{2}\alpha}, \frac{-1}{\sqrt{2}\alpha}\right)$	~µ=
$\rho_{\Lambda} = \begin{pmatrix} \frac{2}{\sqrt{2\alpha}} & -\frac{5}{\sqrt{2\alpha}} \\ \sqrt{2\alpha} & \sqrt{2\alpha} \end{pmatrix} \qquad \rho_{Z} = \begin{pmatrix} -\frac{2}{\sqrt{2\alpha}} & \frac{5}{\sqrt{2\alpha}} \\ \sqrt{2\alpha} & \sqrt{2\alpha} \end{pmatrix}$	
	7
V29 V29	
$f(P_2) = -2 + 10 + 3\sqrt{29} + 21 = 29 + 3\sqrt{29} = 3 + \sqrt{29}$	

Prof	pest)																	
		5	<i>→</i> d	يتعل	e d	٤ ٦	と=시	9- X ² -	.2 y2~										
				obre															
	V-	S((16	-x2-	-24 ²	-) dA	- [2 / 2	(16-	xz-2	y ²) (way							
		P.			O		Jo	10											
		= (`² [(6×-	1 3×3-	کام مکام	x=0	, d.	1										
		•					^		J										
		<u>-</u>	² (४१	- 4ر	5 ²) d	щ -	\(\frac{\k'\k'}{3}\)	y - 9	\ 3 y ³]	2 = =4	ð								
	Ļ	ř í	Z(x,y)	dA=	Ça	Ja b	g(x)	h (y)	dr 0	lej =	∫ d	(5.	5 9	(x) h	(y) d	y) d)		
		L			C														