Automatic Classification

Ritu Anilkumar

Scientist 'SD'

North Eastern Space Applications
Centre

ritu.anilkumar@nesac.gov.in

Color Composites

Software Visualization Channel	Satellite Band True Color	Satellite Band Standard False Color
Red	Red	900nm
Green	Green	660nm
Blue	Blue	550nm

Why Classification?

 A user / decision maker is not interested in brightness values, but the information relayed

a:True Color Image

b: Classified Image

Source: Anilkumar et al 2018

Thresholding Spectral Indices

NDVI=(NIR - Red) / (NIR + Red)

For veg: High NIR, low Red. So values will be high and close to I Urban: close to 0 as both NIR and Red is high Water: Negative as NIR is lower than Red

```
( "ndvi@1" >= 0 ) AND ( "ndvi@1" < 0.28 )
```

Types of Classification

- Based on Technique:
 - Unsupervised: Uses patterns in data. Eg K-means, ISODATA
 - Supervised: Uses inputs from expect (supervision)
- Based on target object:
 - Pixel based classification
 - Object based classification

Unsupervised Classification

- Also called Clustering as it groups the data based on similarity between the pixels (or objects!)
- It requires only a minimum amount of initial input from the user
- Once the groupings are known, we try to understand what they represent using visual interpretation.
- Some algorithms: K-Means, ISODATA

Unsupervised Classification: K-Means

- Select randomly 'k' number of pixels from the image. These are the initial centroids or "group leaders"
- Group all other pixels in the image into one of the k groups
- Group is assigned based on how similar the pixels are to the centroid
- Calculate new centroid by taking mean of all group members
- Repeat until no change or a fixed number of iterations
- ISODATA: Same process. Sets limits on the groups formed.
 - If the variance of the group formed is high, split that group into 2 groups
 - If number of pixels in a group is too less, merge with closest group

Supervised Classification

- Supervisor provides the computer some examples
- The computer learns from these examples and predicts other pixels (or objects).
- Learning is using similarity metrics in the FEATURE SPACE:
 distance or probability
- Eg: Minimum distance to mean, maximum likelihood, decision tree, random forest, support vector machine, neural networks
- Examples provided are called TRAINING SAMPLES:
 - Should be pure
 - Should represent all the classes of interest
 - Can be selected using: spectral signatures, user defined
 ROI or sampling from known images

Minimum Distance to Means

- Compute mean of each cluster
- For a new pixel, check distance to each mean and select class corresponding to lowest distance
- Distance can be Euclidean, Mahalanobis etc.

Maximum Likelihood

- Equal probability contours are plotted based on the spread of the data in the feature space
- For a new point, we assign to class with highest probability

Object Based Image Classification

- More features apart from spectral reflectance. Texture, size, shape
- Use object level features by (i) creating objects (ii) Applying classification as usual.

Source: Powell and Brooks 2008

Creation of Image Objects

Source: Freitas et al 2015

Accuracy Assessment

- Each reference location is checked with the map
- Omission errors or commission errors may occur
- CONFUSION MATRIX can give us accuracy estimates

THANK YOU!

In case of queries, drop me an email at ritu.anilkumar@nesac.gov.in