pXp analysis

Luiz Emediato (Sao Paulo)
Tom McDowell, Cory Rude, Brandon Williams,
Jane Nachtman (Ulowa)
Mike Albrow (FNAL)

Overview

- Mike's tasks
- new logic for the 4 pions mass distributions:
 ordering the pions by its momentum for the pair mass distributions (to do)
- using PID
- 4-track 2015 sample
- displacements: finding V0 class code on TOTEM Twiki

$M_{\pi_1\!\pi_2}\!\!+\!M_{\pi_3\!\pi_4}\!\!+\!M_{\pi_1\!\pi_3}\!\!+\!M_{\pi_2\!\pi_4}\;OS\;PID\!=\!pion\;\Sigma Q_{pair}\!\!=\!\!0$

$M_{\pi_1\!\pi_2}\!\!+\!M_{\pi_3\!\pi_4}\!\!+\!M_{\pi_1\!\pi_3}\!\!+\!M_{\pi_2\!\pi_4}\;OS\;PID\!=\!pion\;\Sigma Q_{pair}\!=\!0$

TTBB+DIAG variable bins

cut 2, Q=0

125 bins: 0.0 to 2.5 GeV/c²

60 bins: 2.5 to 4.0 GeV/c²

80 bins: 4.0 to 8.0 GeV/c²

TTBB+DIAG variable bins

TTBB+DIAG variable bins

ratio TTBB/DIAG variable bins

ratio TTBB/DIAG variable bins

ratio TTBB/DIAG variable bins

nvtx=1 only

nvtx=2 only

need to do:

momenta px and py correlated to x and y vertices for the central peaks and wings!

Plot a 2D x-y plot and the two 1D projections of the transverse position of that vertex:

- 1. Do that for the class where it said there was one vertex, and where it said there were two.
- 2. Do that for the events where you had a good px,py match, in the peaks and separately for the events outside those peaks in the wings.

We want to understand whether the events outside the central peaks are non-exclusive background (missing particles) or pile-up. (Not likely to be a bad track measurement I think).

to do:

- 1. fits
- 2. t1 and t2
- 3. slices of delta_phi
- 4. $pt = sqrt(px^2+py^2)$

from here I will keep Mike's slides

From PDG 2018 big book on f0(1500)

25

Physics Letters B

Volume 353, Issue 4, 6 July 1995, Pages 589-594

A further study of the centrally produced $\pi^+\pi^-$ and $\pi^+\pi^-\pi^+\pi^-$ channels in pp interactions at 300 and 450 GeV/c

WA91 Collaboration, F. Antinori ^d, D. Barberis ^d, A. Bayes ^c, W. Beusch ^d, J.N. Carney ^c, S. Clewer ^c, J.P. Davies ^c, D. Di Bari ^b, C.J. Dodenhoff ^c, D. Evans ^c, D. Elia ^b, R. Fini ^b, B.R. French ^d, B. Ghidini ^b, A. Jacholkowski ^d, J.B. Kinson ^c, A. F. M.F. Votruba ^c

Abstract

An analysis of the centrally produced $\pi^+\pi^-$ and $\pi^+\pi^-\pi^+\pi^-$ mass spectra from the WA76 and WA91 experiments is presented, which shows that in the $\pi^+\pi^-\pi^+\pi^-$ channel there are two new states, the $f_0(1450)$ and $f_2(1900)$. There is another new state in the $\pi^+\pi^-$ channel with $M=1497\pm30$ MeV and $T=199\pm30$ MeV, which is compatible with the $f_0(1520)$ observed by the Crystal Barrel experiment. Another interpretation is discussed, where the 1450 and 1497 GeV structures are explained as being due to an interference effect between the $f_0(1365)$ and $f_0(1520)$.

Thanks for your kind help and attention!