

Communications and Information Engineering Program Probability and Stochastic Processes (CIE 327)

Project on Random Variables and Their Statistics

ANALYSIS OF RANDOM VARIABLES

It is required to create a GUI-based tool that allows a user to:

- 1) Enter a single random variable and results in the statistics of such variable.
- 2) Enter multiple random variables and results in their joint statistics.
- 3) Enter functions of random variables and generate their probability distributions.

The GUI can be built using Matlab or any other software package.

GUI Description

The GUI should do the following:

1) Section 1: Random Variables

- Allow the user enter a random variable in the form of its sample space.
 - An example .m file of the sample space is attached.
- Allow the user to perform and display the following:
 - Plot the probability distribution and the CDF of the random variable.
 - Display the mean, the variance and the third moment of the random variable
 - Plot the MGF M(t) vs $0 < t < t_{\text{max}}$, where t_{max} is set by the user.
 - Plot the first and the second derivatives of M(t), and calculate their values at t=0

2) Section 2: Joint Random Variables

- Allow the user enter two random variables in the form of sample pairs.
 - An example .m file of the sample space is attached.
- Allow the user to perform and display the following:
 - Find and plot the joint probability distribution of the two random variables.
 - Find and plot the marginal probability distributions.
 - Calculate the covariance of the two random variables.
 - Calculate the correlation coefficient of the two random variables.

3) Section 3: Functions of Random Variables

- Allow the user enter two random variables, X and Y, in the form of sample pairs.
 - An example .m file of the sample space is attached.
- Allow the user to perform and display the following:
 - **Bonus** Allow the user to define Z and W as functions of X and Y.
 - Plot the probability distribution of Z = 2X 1.
 - Plot the probability distribution of W = 2 3Y.
 - Plot the joint probability distribution of Z and W.

Communications and Information Engineering Program Probability and Stochastic Processes (CIE 327)

Project on Random Variables and Their Statistics

Testing your GUI

Test your GUI for the following:

- 1) Testing Section 1
 - a) The RV in the sample file.
 - b) X_2 is a RV, where $X_2 \sim \mathcal{U}(-5, 2)$.
 - c) X_3 is a RV, where $X_3 \sim \mathcal{N}(3,4)$.
 - d) X_4 is a RV, where $X_4 \sim \mathcal{B}in(5, 0.3)$
 - e) X_5 is a RV, where $X_5 \sim Poisson(10)$
- 2) Testing Section 2 and Section 3
 - a) The two RVs in the sample file.
 - b) The random variables X_2 and Y_2 , where $X_2 \sim \mathcal{N}(3,4)$ and $Y_2 \sim \mathcal{N}(-5,2)$
 - c) The random variables X_3 and Y_3 , where $X_3 \sim \mathcal{G}amma(2, 10)$ and $Y_3 \sim \mathcal{B}in(4, 0.5)$
 - d) The random variables X_4 and Y_4 , where $X_4 \sim \mathcal{E}xp(0.05)$ and $Y_4 = 3X_4 + 2$
 - e) The random variables X_5 and Y_5 , where $X_5 \in \{-1, 1\}$ and is uniformly distributed, while $Y_5 = X_5 + n$, where $n \sim \mathcal{N}(0, 0.5)$.

Deliverable

Deliver the following:

- 1) An executable file for the GUI
 - **Note** You can have one GUI for the three sections, or a different GUI for each section.
- 2) All the source codes (.m files)
- 3) The outputs of the GUI for the test cases.
- 4) The file used to generate the RVs used for the test cases.
- 5) A complete .pdf report documenting all the previous outputs, with proper titles, subtitles, labeling, captioning and **commenting**.
- 6) A video recording showing the running GUI and how it is used to generate the required plots.

GENERAL INSTRUCTIONS & GRADING CRITERIA

Instructions

- 1) This is a team project, for teams of $2 \sim 3$ students.
- 2) All team members are accountable for all the parts of the project.
- 3) Reports are not to be shared with others.
- 4) Any copied reports, either fully or partially, will receive 0 points. This applies to both the original and the copy.
- 5) Late submission will be penalized at the rate of 10% per day for a maximum of 5 days, after which no submissions will be considered.

Project Grading Criteria

Grading of each part will depend on:

- 50%: Completeness and correctness of the deliverable.
- 10%: Clarity of the GUI design and ease of use.
- 20%: Report writing and organization.
- 20%: Comprehensiveness and clarity of content in the recorded video.