Udacity Deep Reinforcement Learning Nanodegree Project

Navigation

Author: Piotr Bazan

Introduction

In order to solve the Navigation project I came up with an idea to split different parts of the problem into separate pieces (concerns) and implemented it in the object-orientated way so that each component could be either exchanged or re-implemented. This allowed experimenting and being open for future improvements.

Experiment

Experiment is a central class for conducting training and evaluation. In order to create it we need an agent and an environment.

- agent there is only one implementation DqnAgent
- environment there is only one implementation BananaEvn

Environment

BananaEnv is an environment with API similar to openAi gym. This allows an abstraction on Unity environment.

Agent

DqnAgent class implements DQN reinforcement learning algorithm and requires several things:

- model a pytorch model currently only there is one model DqnModel
- memory a reply buffer currently only there is one buffer ReplyBuffer
- train_strategy one of the strategies like LinearEpsilonGreedyStrategy or ExponentialEpsilonGreedyStrategy

The DqnModel

Model consists of:

- input laver
- · hidden layers
- output layer

All layers except last one have activation function RELU. I picked the following architecture:

```
DqnModel(
  (layers): ModuleList(
    (0): Linear(in_features=37, out_features=64, bias=True)
    (1): ReLU()
    (2): Linear(in_features=64, out_features=64, bias=True)
    (3): ReLU()
    (4): Linear(in_features=64, out_features=4, bias=True)
)
```

ReplyBuffer

Memory is a reply buffer with limited size - I have chosen limit of 50_000 items.

Action picking strategy

Agent requires training and evaluation strategy.

- for training we have two options: LinearEpsilonGreedyStrategy or ExponentialEpsilonGreedyStrategy
- for evaluation there should be GreedyStrategy

For training I picked ExponentialEpsilonGreedyStrategy with parameters:

- eps_start = 1. value at start
- eps_min = .1 min. value
- decay = .99 decay ratio.

Below is an example of strategy for 500 episodes

DqnAgent

The agent has two models

- · online model
- target model every several steps its weight are overwritten by online model weights

Hyperparameters:

- gamma discounted reward factor. I picked .95
- batch_size how many samples to train at once. I picked 64.
- warm_up_batches how many initials batches are required before starting training.
 Defaults to 5.
- lr learning rate. I picked 5e-4
- train_every_steps how often we want to train model. I picked 4 to speed things up.
- updatet_target_every_steps how often we copy online model to target model. I
 picked 4.
- tau factor for updating target model. When tau=1 there is a copy of weights. When tau
 1 there is a Polyak averaging. I picked .01

Dqn Experiment results

The experiment had set target of mean of 13 points in 100 consecutive trials.

Agent passed grading achieving min score: 3.0, mean score: 13.02

Evaluation

I evaluated agent on 100 episodes and obtained the following results:

scores	
count	100.000000
mean	14.710000
std	5.345242
min	0.000000
25%	12.000000
50%	15.500000
75%	19.000000
max	24.000000

Ideas for improvement

- · Hyper parameters tuning
 - gamma I would check lesser gamma 0.95 or .9
 - learning rate I would increase learning rate to speed up training
 - train/update every episodes I would increase to speed up training
 - tau other values to consider .001 and .1 see which gives better results
 - epsilon decay and min value perhaps lesser decay would be better
- model architecture
 - hidden layer I would check bigger and smaller architecture
- implementing DDQN model
- implementing Dueling DQN
- implementing prioritized replay buffer

Improvement

I picked implementing DDQN as an improvement. I did not change any hyper parameters.

Results

Agent passed grading achieving min score: 5.0, mean score: 13.03

Evaluation

I evaluated agent on 100 episodes and obtained the following results:

scores	
count	100.00000
mean	10.43000
std	6.82724
min	-1.00000
25%	4.75000
50%	10.00000
75%	17.00000
max	24.0000

The evaluation results of DDQN are a bit worse than DQN (lesser mean 10.4 vs 14.7 and bigger standard deviation 6.8 vs 5.3). I may be due to the fact of random seeds not being set for Banana Environment during evaluation. Another improvement would be to gather data for larger number of episodes.