





**ATFUQ** 

• 신경망의 정의

신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 신경망의 정의

- Neural Network (NN)
- 입력(input) 데이터와 출력(output) 데이터 사이의 관계를 하나의 함수 관계로 연결해 표현해주는 인공지능 모델
  - 모델 : 관찰한 데이터로부터 예측과 결정을 얻어내는 수학적 함수

- 신경망을 사용할 경우, 충분한 관계가 표현 되는지 보장되는가?
  - → Universal Approximation Thm. (교육자료 참고)





**ATFUQ** 

• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 신경망의 구조

- 입력(input) 데이터와 출력(output) 데이터 사이의 관계를 하나의 함수 관계로 연결해 표현해주는 인공지능 모델
  - 모델 : 관찰한 데이터로부터 예측과 결정을 얻어내는  $\frac{1}{1}$ 수학적 함수  $F(\mathbf{x})$

$$F(\{v_i\}, \{\mathbf{w}_i\}, \{b_i\} : \mathbf{x}) = \sum_{i=1}^N v_i \varphi(\mathbf{x} \cdot \mathbf{w}_i + b_i)$$
 까차원 실벡터 
$$(0, 1, 4, 5, \cdots 3)$$
 m개



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 신경망의 구조

- 입력(input) 데이터와 출력(output) 데이터 사이의 관계를 하나의 함수 관계로 연결해 표현해주는 인공지능 모델
  - 모델 : 관찰한 데이터로부터 예측과 결정을 얻어내는  $\frac{1}{1}$ 수학적 함수  $F(\mathbf{x})$

$$F(\{v_i\}, \{\mathbf{w}_i\}, \{b_i\} : \mathbf{x}) = \sum_{i=1}^{N} v_i \varphi(\mathbf{x} \cdot \mathbf{w}_i + b_i)$$
 지개 스칼라의 합 지개의 원소로 이루어진 집합  $= v_1 \varphi(xw_1 + b_1)$   $+ v_2 \varphi(xw_2 + b_2)$   $+ v_3 \varphi(xw_3 + b_2)$   $+ \cdots$   $+ v_N \varphi(xw_N + b_5)$ 



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 신경망의 구조

- 입력(input) 데이터와 출력(output) 데이터 사이의 관계를 하나의 함수 관계로 연결해 표현해주는 인공지능 모델
  - 모델 : 관찰한 데이터로부터 예측과 결정을 얻어내는 수학적 함수

$$F(\lbrace v_i \rbrace, \lbrace \mathbf{w}_i \rbrace, \lbrace b_i \rbrace : \mathbf{x}) = \sum_{i=1}^{N} v_i \varphi(\mathbf{x} \cdot \mathbf{w}_i + b_i)$$

"Universal Approximation Theorem"

입력값(x)에 적절한 상수와 벡터,

그리고 **비선형 함수**를 이용해 연산을 진행하면

어떠한 **수학적 함수** F를 **함수** f로 **근사**시킬 수 있다.

 $(단, f: R^m$ 의 닫힌 유계 부분집합  $\rightarrow R$  이며  $\varphi$ 와 독립인 연속함수)



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 신경망의 구조

- 입력(input) 데이터와 출력(output) 데이터 사이의 관계를 하나의 함수 관계로 연결해 표현해주는 인공지능 모델
  - 모델: 관찰한 데이터로부터 예측과 결정을 얻어내는 수학적 함수

#### "Universal Approximation Theorem"

| Notation  | Meaning                                                                            |
|-----------|------------------------------------------------------------------------------------|
| $\varphi$ | Nonconstant, continuous, bounded, and monotonically increasing non-linear function |
| $I_m$     | $R^m$ 의 닫힌 유계 부분집합                                                                 |
| $C(I_m)$  | $I_m$ 에서 $\mathbb R$ 로 가는 연속함수의 집합                                                 |
| f         | $C(I_m)$ 에 속하면서 $arphi$ 와 독립인 임의의 함수                                               |

위 표의 조건을 만족하는  $\varphi$  에 대해,

$$F(\left\{v_i
ight\},\left\{\mathbf{w}_i
ight\},\left\{b_i
ight\};\mathbf{x}) = \sum_{i=1}^N v_i arphi(\mathbf{x}\cdot\mathbf{w}_i+b_i)$$

와 같이 함수 F 를 정의하면, 역시 위 표의 조건을 만족하면서 정의된 임의의 함수 f 에 대해,

$$^{orall}\epsilon>0,^{\exists}\left\{ v_{i}
ight\} ,\left\{ \mathbf{w}_{i}
ight\} ,\left\{ b_{i}
ight\} s.t.|F(\mathbf{x})-f(\mathbf{x})|<\epsilon$$



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

## 신경망의 구조

- <mark>입력(input) 데이터</mark>와 출력(output) 데이터 사이의 관계를 하나의 함수 관계로 연결해 표현해주는 인공지능 모델





• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 신경망의 예시 1

- 일변수함수 F, 스칼라 x (1차원), N = 5

$$F(\{v_i\}, \{w_i\}, \{b_i\} : x) = \sum_{i=1}^{5} v_i \varphi(x \cdot w_i + b_i)$$

1차워

스칼라

- 기존에 살펴본 수식과의 비교 
$$F(\{v_i\},\{\mathbf{w}_i\},\{b_i\}:\mathbf{x}) = \sum_{i=1}^N v_i \varphi(\mathbf{x}\cdot\mathbf{w}_i+b_i)$$

• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 신경망의 예시 1

- 일변수함수 F, 스칼라 x (1차원), N = 5

$$F(\{v_i\}, \{w_i\}, \{b_i\} : x) = \sum_{i=1}^{5} v_i \varphi(x \cdot w_i + b_i)$$

$$= v_1 \varphi(xw_1 + b_1)$$

$$+ v_2 \varphi(xw_2 + b_2)$$

$$+ \cdots$$

$$+ v_5 \varphi(xw_5 + b_5)$$





• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

## 방향 그래프: 각 간선에서 이동할 수 있는 방향이 정해져 있음

- 구성 요소

- 1) 노드
- 2) 간선





• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 신경망의 예시 2

- 일변수함수 F, 스칼라 x (1차원), N = 5

$$F(\{v_i\}, \{w_i\}, \{b_i\} : x) = \sum_{i=1}^{5} v_i \varphi(x \cdot w_i + b_i)$$



- Q) 그래프의 **가중치**와 **편향**은?
  - 가중치 :  $w_i$  (입력값에 곱해주는 값)
  - 편향 :  $b_i$  (함수  $\varphi$ 에서 더해주는 값)
- Q) 편향을 가중치 처럼 보는 방법?



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 신경망의 예시 2

- 일변수함수 F, 스칼라 x (1차원), N = 5

A) 편향을 가중치 처럼 보는 방법

$$F(\{v_i\}, \{w_i\}, \{b_i\} : x) = \sum_{i=1}^{5} v_i \varphi(x \cdot w_i + \mathbf{1} \cdot b_i)$$





• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 신경망의 예시 3

- 이변수함수 F, 벡터  $\mathbf{x}$  (2차원), N = 5

$$F(\lbrace v_i \rbrace, \lbrace \mathbf{w}_i \rbrace, \lbrace b_i \rbrace : \mathbf{x}) = \sum_{i=1}^5 v_i \varphi(\mathbf{x} \cdot \mathbf{w}_i + b_i)$$
$$\mathbf{x} = (x_1, x_2)^T, \ \mathbf{w} = (w_1, w_2)^T$$





• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 신경망의 예시 3

- 이변수함수 F, 벡터  $\mathbf{x}$  (2차원), N = 5

$$F(\lbrace v_i \rbrace, \lbrace \mathbf{w}_i \rbrace, \lbrace b_i \rbrace : \mathbf{x}) = \sum_{i=1}^5 v_i \varphi(\mathbf{x} \cdot \mathbf{w}_i + b_i)$$
$$\mathbf{x} = (x_1, x_2)^T, \ \mathbf{w} = (w_1, w_2)^T$$

$$\varphi(x_1 w_{1_1} + x_2 w_{1_2} + b_1) 
= \varphi(x \bullet w_1 + b_1)$$

$$\varphi(x \bullet w_2 + b_2)$$

Q) 편향을 가중치처럼 본다면?

$$\varphi(x \circ w_4 + b_4)$$

$$\varphi(x \bullet w_5 + b_5)$$



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 신경망의 예시 4

- 이변수함수 F, 벡터  $\mathbf{x}$  (2차원), N = 5

$$F(\lbrace v_i \rbrace, \lbrace \mathbf{w_i} \rbrace, \lbrace b_i \rbrace : \mathbf{x}) = \sum_{i=1}^{5} v_i \varphi(\mathbf{x} \cdot \mathbf{w}_i + \mathbf{1} \cdot b_i)$$
$$\mathbf{x} = (x_1, x_2)^T, \ \mathbf{w} = (w_1, w_2)^T$$









• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 신경망의 구조

- 노드와 간선으로 이루어진, 방향 그래프
- 신경망 전체에 걸쳐 한 방향으로만 데이터가 전달됨
  - : 뉴런의 신호전달 기작과 유사한 양상
- 신경망 vs. 뉴런



신경망 (Neural Network, NN)



뉴런 (Neuron)



노드 = 뉴런

• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

# 계층 (Layer)

- 같은 선상에 있는 노드들의 집합





• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 심층 신경망

- 은닉층의 개수가 2개 이상인 신경망

# 딥러닝 (Deep Learning, DL)

- 심층 신경망에 대한 머신러닝
- 딥러닝 ⊂ 머신러닝
- 딥러닝과 머신러닝의 구체적인 차이 → <머신러닝 첫 단추 끼우기> 참고



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 각 뉴런의 역할 : 순전파

- 모든 뉴런 ( = 노드) 이 공유하는 동일한 규칙
  - 1) 각 뉴런에 입력되는 값은 여러 개 가능, 그러나 출력되는 값은 오직 하나
  - 2) 각 뉴런에 입력되는 값에는 가중치가 곱해짐
  - 3) 출력되는 값은 활성화 함수를 통과함

- <mark>순전파</mark> : 데이터가 입력층, 은닉층, 출력층을 차례로 통과해 출력값이 나오는 과정





• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 가중치 곱

- 밀집층 (Dense Layer) or 완전연결 계층 (Fully-Connected Layer)

: 모든 입력 데이터에 대해 가중치를 곱하는 뉴런들로 이루어진 계층

: 각 층의 <mark>노드들끼리 완전하게 연결</mark>된 신경망의 Layer





• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 가중치 곱

- 데이터가 2차원 이상인 경우?

벡터화 (Flatten, Vectorization) : n차원 이상의 데이터를 1차원으로 만들어 주는 과정





• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 가중치 곱

- 데이터가 2차원 이상인 경우?

벡터화 (Flatten, Vectorization) : n차원 이상의 데이터를 1차원으로 만들어 주는 과정



- 벡터화 과정의 문제점

: 데이터의 공간적인 정보가 무시됨

: 해결 합성곱 신경망 (CNN, Convolution Neural Network)



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

## 활성화 함수 (Activation Function)

- 뉴런에서 최종적인 값을 내보내기 전에 통과 시켜주는 <mark>비선형 함수</mark>

$$F(\{v_i\}, \{w_i\}, \{b_i\} : x) = \sum_{i=1}^{5} v_i \varphi(x \cdot w_i + b_i)$$





• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 활성화 함수의 종류

#### 1. 항등함수

- $\varphi(x) = x$
- 주로 출력층에서 사용
- 회귀 문제에서 많이 사용

#### 2. Sigmoid

$$-\varphi(x) = \frac{1}{1+e^{-x}}$$

- 분류 문제에서 많이 사용



- \* 출력값이 0과 1사이의 값 → 해당 Class에 속할 확률로써 해석 가능!
   Ex) 1에 가까울 경우 class A로 분류, 0에 가까울 경우 class B로 분류
- DL에서는 잘 활용되지 않음: Gradient Vanishing



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

# 활성화 함수의 종류

#### 3. ReLU

- $-\varphi(x) = \max(x,0)$
- Gradient Vanishing 문제 해결 가능
- 여전히 문제점을 가짐 → Leaky ReLU





• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 활성화 함수의 종류

#### 4. Softmax

- 입력값이  $x_1, x_2, \cdots, x_n$ , 출력값이  $y_1, y_2, \cdots, y_n$ 일 때

$$y_k = \operatorname{softmax}(x_k) = \frac{e^{x_k}}{\sum_{i=1}^n e^{x_i}}$$

$$-0 < \varphi(x_k) < 1$$

$$-\sum_{i=1}^{n} \varphi(x_k) = 1 \qquad \rightarrow$$

- 증가함수

분류 문제에서 **각 class 에 속할 확률**로 해석 가능 **다중 클래스 분류** 문제에 많이 사용됨



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 활성화 함수의 종류

#### 4. Softmax

- 입력값이  $x_1, x_2, \cdots, x_n$ , 출력값이  $y_1, y_2, \cdots, y_n$ 일 때

$$y_k = \operatorname{softmax}(x_k) = \frac{e^{x_k}}{\sum_{i=1}^n e^{x_i}}$$

X

| 1.5 |
|-----|
|-----|

y



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

## 활성화 함수의 종류

#### 4. Softmax

- 입력값이  $x_1, x_2, \cdots, x_n$ , 출력값이  $y_1, y_2, \cdots, y_n$ 일 때

$$y_k = \operatorname{softmax}(x_k) = \frac{e^{x_k}}{\sum_{i=1}^n e^{x_i}}$$

X

| 1 | 2 | 1.5 | 0.6 |
|---|---|-----|-----|
|   |   |     |     |
| y | • | •   |     |

| 2.72               | 7.39               | 4.48               | 1.82         |
|--------------------|--------------------|--------------------|--------------|
| $\overline{16.41}$ | $\overline{16.41}$ | $\overline{16.41}$ | <b>16.41</b> |



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 활성화 함수의 종류

#### 4. Softmax

- 입력값이  $x_1, x_2, \cdots, x_n$ , 출력값이  $y_1, y_2, \cdots, y_n$ 일 때

$$y_k = \operatorname{softmax}(x_k) = \frac{e^{x_k}}{\sum_{i=1}^n e^{x_i}}$$

X

| 1     | 2     | 1.5   | 0.6   |
|-------|-------|-------|-------|
|       |       |       |       |
| y     | •     |       |       |
| 0.166 | 0.450 | 0.273 | 0.111 |



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 활성화 함수의 종류

#### 4. Softmax

- 입력값이  $x_1, x_2, \cdots, x_n$ , 출력값이  $y_1, y_2, \cdots, y_n$ 일 때

$$y_k = \operatorname{softmax}(x_k) = \frac{e^{x_k}}{\sum_{i=1}^n e^{x_i}}$$

X

|   | 1     | 2     | 1.5   | 0.6   |
|---|-------|-------|-------|-------|
|   |       |       |       |       |
| y |       | •     | ,     |       |
|   | 0.166 | 0.450 | 0.273 | 0.111 |

0.166 + 0.450 + 0.273 + 0.111 = 1

소프트맥스 함수의 값은 '**확률**' 로써 해석 가능!



• 신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

## 활성화 함수의 필요성

- 1) 활성화 함수를 곱해주지 않는다면, 선형 모델밖에 표현하지 못함.
  - 가중치를 곱해주는 과정은 선형 결합!

$$x \cdot w_i \rightarrow (x \cdot w_i) \cdot w_j \rightarrow ((x \cdot w_i) \cdot w_j) \cdot w_k$$

- 비선형 함수를 추가해, **보다 일반적인 수학 모델** 표현가능
- 정교한 규칙성 모델링 가능

#### 2) 활성화 함수가 이용해야 신경망의 층 수를 증가시키는 것이 의미있음

- 선형 결합의 합성 = **선형 결합 → 하나의 층을 사용하는 것과 같은 효과**
- 활성화 함수를 사용할 경우, 층을 추가함에 따라 **비선형성이 같이 추가**됨

$$\mathbf{x} \cdot \mathbf{w_i} \rightarrow f(\mathbf{x} \cdot \mathbf{w_i}) \cdot \mathbf{w_j} \rightarrow f(f(\mathbf{x} \cdot \mathbf{w_i}) \cdot \mathbf{w_j}) \cdot \mathbf{w_k}$$





**ATFUQ** 

신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

- 0. 데이터 전처리
- 1. 신경망 모델 구성
- 2. 손실함수 정의 및 계산
- 3. 손실함수 최적화 (학습)
  - Backpropagation





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 0. 데이터 전처리

- 1) 특성 스케일링 (Feature Scaling) or 정규화 (Normalization)
  - Sample Data: Height and Weight

| ₹] (m) | 몸무게 (kg) | 성별 |
|--------|----------|----|
| 180    | 83       | 남  |
| 170    | 73       | 남  |
| 175    | 78       | 남  |
| 170    | 64       | 여  |
| 163    | 52       | 여  |
| 154    | 45       | 여  |
| 165    | 70       | 남  |
| 160    | 55       | 여  |
| 173    | 71       | 남  |



키와 몸무게의 스케일이 매우 다름.

발생할 수 있는 문제점은?



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 0. 데이터 전처리

- 1) 특성 스케일링 (Feature Scaling) or 정규화 (Normalization)
  - ML/DL 모델은 '**단위를 제외한 숫자**' 만을 이용해 학습
  - → 키 값의 중요도 증가
  - → '몸무게' 에 대한 가중치 업데이트가 느리게 진행됨 (실습 4에서 확인해보실 수 있습니다)



- 데이터의 **스케일을 맞춰 주는 과정**이 필요



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 0. 데이터 전처리

2-1) 해결방안 1 : 최소 - 최대 정규화

- 데이터의 최솟값 = 0 / 최댓값 = 1

$$x' = \frac{x - \min(Data)}{\max(Data) - \min(Data)}$$



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 0. 데이터 전처리

2-2) 해결방안 2 : Z-점수 정규화

- 표준화 (Standarization)

$$Z = \frac{X - \mu}{\sigma}$$

- 데이터 값의 **평균을 0**으로 만들어, 대칭적인 분포로 변환
- 최대-최소 정규화에 비해 Outlier 의 영향이 적음 (실습 4에서 확인해보실 수 있습니다)



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

#### 1. 신경망 모델 구성

- 선형 회귀의 경우: 수학적 함수 F(x)

$$F(m,b;x)=mx+b$$

- 학습을 진행시킬 모델 : 신경망 모델

Layer 수 / 각 Layer의 종류 / Activation Function

신경망이 F(x)의 값에 가까운 값을 도출하도록 학습시킬 예정



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 2. 손실함수 정의 및 계산

- 주어진 문제에 적합한 오차함수를 찾기 전에, 먼저 여러 오차함수에 대해 알아보자.
- 1) SSE (Sum of Squares for Error, 오차제곱합)

$$\mathcal{L}_{SSE} = \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2$$

Q) 모델의 출력값이 [0.1, 0.7, 0.2]이고, 실제 값이 [0, 1, 0]일 때 SSE는?

$$(0-0.1)^2 + (1-0.7)^2 + (0-0.2)^2 = 0.01 + 0.49 + 0.04 = 0.54$$

2) MSE (Mean Squared Error, 평균 제곱 오차)

$$\mathcal{L}_{MSE} = \frac{1}{n} \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2 = \frac{\mathcal{L}_{SSE}}{n}$$



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 2. 손실함수 정의 및 계산

- 주어진 문제에 적합한 오차함수를 찾기 전에, 먼저 여러 오차함수에 대해 알아보자.

### 3) |Residuals| (오차 절댓값의 합)

- N개의 데이터셋
- True data points :  $(x_i, \widehat{y}_i)$ ,  $0 \le i \le N-1$
- Expected data points :  $(x_i, y_i)$
- 잔차(Residual) :  $d_i = \widehat{y_i} y_i$

$$\mathcal{L}_{abs} = \sum_{i=1}^{n} |d_i|$$

4) CEE (Cross-Entropy Error, 교차 엔트로피 함수)

$$\mathcal{L}_{CEE} = -\sum_{i=1}^{n} y_i \log \widehat{y_i}$$



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 2. 손실함수 정의 및 계산

- ex) 선형 회귀 문제에 적합한 오차함수는?

SSE (Sum of Squares for Error, 오차제곱합)

$$\mathcal{L}_{SSE} = \sum_{i=1}^{n} (\widehat{y}_i - y_i)^2$$



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

### 3. 손실함수 최적화 (학습)

- 손실함수를 최적화 시키는 방법? Optimizer

#### Optimizer

- 경사하강법 (GD)를 기반으로 <mark>손실함수를 최소화하는 모델 파라미터</mark>를 찾는 알고리즘
- 기존 GD의 단점 보완 (Local minimum에 수렴하는 등의 문제)
- Adam, SGD

#### **Gradient Descent (Recap)**

$$w_{new} = w_{old} - \delta \cdot \left. \nabla \mathcal{L}(w) \right|_{w = w_{old}}$$

- 편미분 계수 계산 : <mark>오차역전파법</mark> (Backpropagation)



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

### Backpropagation



How to Calculate  $\nabla \mathcal{L}(w)$ 



손실함수의 값으로부터

가중치 (간선) 값 업데이트

? Use CHAIN RULE



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

## Recap: Quiz 01

1. 다음 행렬곱 결과의 전치행렬을 구하여라.

$$\left(\begin{array}{ccc}
2 & 3 & 1 \\
-1 & 2 & 3
\end{array}\right)
\left(\begin{array}{ccc}
5 \\
-2 \\
3
\end{array}\right)$$

- 결과 행렬의 Size: 2행 1열

$$2 \times 5 + 3 \times (-2) + 1 \times 3$$

$$(-1) \times 5 + 2 \times (-2) + 3 \times 3$$

- (3,6)
- (0,7)

신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Recap: Quiz 01

2. *f*(*x*,*y*,*z*)=*xy*+*yz*일 때, ∇*f* 는?



- (y, x+z,xy)
- $\bigcirc (0, x, y)$

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right)$$
$$= (y, x + z, y)$$

신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

## Recap: Quiz 01

3. 
$$L(x,y)=xy, f(a,b)=(ab,a+b)=(x,y)$$
 일 때,  $\frac{\partial L}{\partial a}$  를 구하시오.

Use **CHAIN RULE** 

$$\frac{\partial L}{\partial a} = \frac{\partial L}{\partial x} \cdot \frac{\partial x}{\partial a} + \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial a}$$

$$= y \cdot b + x \cdot 1$$

$$= yb + x$$

신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation



$$w_{new} = w_{old} - \delta \cdot \left. \nabla \mathcal{L}(w) \right|_{w = w_{old}}$$

Loss Function  $\mathcal{L}(w)$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

① 
$$\mathbf{w_{z1_2}}$$
:  $w_{z1_2 new} = w_{z1_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{z1_2 old}}$ 





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

①  $w_{z1_2}$  :  $w_{z1_2 new} = w_{z1_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{z1_2 old}}$ 





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

①  $w_{z1_2}$  :  $w_{z1_2 new} = w_{z1_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{z1_2 old}}$ 





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

①  $w_{z1_2}$  :  $w_{z1_2 new} = w_{z1_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{z1_2 old}}$ 





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

## Backpropagation

②  $\mathbf{w_{z2_2}}$ :  $w_{z2_2 new} = w_{z2_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{z2_2 old}}$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

②  $w_{z2_2}$ :  $w_{z2_2 new} = w_{z2_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{z2_2 old}}$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

②  $w_{z2_2}$ :  $w_{z2_2 new} = w_{z2_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{z2_2 old}}$ 





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

②  $w_{z2_2}$ :  $w_{z2_2 new} = w_{z2_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{z2_2 old}}$ 





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

③  $\mathbf{w}_{y2_2}$ :  $w_{y2_2 new} = w_{y2_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{y2_2 old}}$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

③  $w_{y2_2}$ :  $w_{y2_2 new} = w_{y2_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{y2_2 old}}$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

## Backpropagation

③  $w_{y2_2}$  :  $w_{y2_2 new} = w_{y2_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{y2_2 old}}$ 





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

③  $w_{y2_2}$  :  $w_{y2_2 new} = w_{y2_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{y2_2 old}}$ 





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

③  $w_{y2_2}$  :  $w_{y2_2 new} = w_{y2_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{y2_2 old}}$ 





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

③  $w_{y2_2}$ :  $w_{y2_2 new} = w_{y2_2 old} - \delta \cdot \nabla \mathcal{L}(w)|_{w=w_{y2_2 old}}$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

Another Example

What is  $\frac{\partial \mathcal{L}}{\partial w_{5_2}}$ ?



$$F(v_1, \dots, v_5) = v_1 \cdot v_2 + \frac{v_3}{v_4} - v_5$$
 활성화 함수  $1: \varphi(x) = \frac{1}{x}$  활성화 함수  $2: \varphi_2(x) = \frac{1}{1+e^{-x}}$  오차함수:  $\mathcal{L}(x) = (x-2)^2$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation



$$F(v_1, \dots, v_5) = v_1 \cdot v_2 + \frac{v_3}{v_4} - v_5$$
 활성화 함수  $1: \varphi(x) = \frac{1}{x}$  활성화 함수  $2: \varphi_2(x) = \frac{1}{1+e^{-x}}$  오차함수:  $\mathcal{L}(x) = (x-2)^2$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation



$$F(v_1, \dots, v_5) = v_1 \cdot v_2 + \frac{v_3}{v_4} - v_5$$
활성화함수  $1: \varphi(x) = \frac{1}{x}$ 
활성화함수  $2: \varphi_2(x) = \frac{1}{1+e^{-x}}$ 
오차함수:  $\mathcal{L}(x) = (x-2)^2$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation



$$F(v_1, \dots, v_5) = v_1 \cdot v_2 + \frac{v_3}{v_4} - v_5$$
활성화 함수  $1: \varphi(x) = \frac{1}{x}$ 
활성화 함수  $2: \varphi_2(x) = \frac{1}{1+e^{-x}}$ 
오차함수:  $\mathcal{L}(x) = (x-2)^2$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation



$$F(v_1, \dots, v_5) = v_1 \cdot v_2 + \frac{v_3}{v_4} - v_5$$

활성화 함수 1: 
$$\varphi(x) = \frac{1}{x}$$

활성화 함수 
$$2: \varphi_2(x) = \frac{1}{1+e^{-x}}$$

오차함수: 
$$\mathcal{L}(x) = (x-2)^2$$



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation



$$F(v_1, \dots, v_5) = v_1 \cdot v_2 + \frac{v_3}{v_4} - v_5$$
  
활성화 함수  $1: \varphi(x) = \frac{1}{x}$   
활성화 함수  $2: \varphi_2(x) = \frac{1}{1+e^{-x}}$   
오차함수:  $\mathcal{L}(x) = (x-2)^2$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation



$$F(v_1, \dots, v_5) = v_1 \cdot v_2 + \frac{v_3}{v_4} - v_5$$

활성화 함수 1: 
$$\varphi(x) = \frac{1}{x}$$

활성화 함수 
$$2: \varphi_2(x) = \frac{1}{1+e^{-x}}$$

오차함수: 
$$\mathcal{L}(x) = (x-2)^2$$



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

Another Example



$$F(v_1, \dots, v_5) = v_1 \cdot v_2 + \frac{v_3}{v_4} - v_5$$

활성화 함수 1: 
$$\varphi(x) = \frac{1}{x}$$

활성화 함수 
$$2: \varphi_2(x) = \frac{1}{1+e^{-x}}$$

오차함수: 
$$\mathcal{L}(x) = (x-2)^2$$



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

## Backpropagation

Sigmoid 함수 미분

$$\varphi_2(x) = \frac{1}{1 + e^{-x}}$$

$$\frac{\partial \varphi_2(x)}{\partial x} = \frac{-e^{-x}}{(1+e^{-x})^2} = (1-\varphi_2(x)) \cdot \varphi_2(x)$$



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

Another Example



$$F(v_1, \dots, v_5) = v_1 \cdot v_2 + \frac{v_3}{v_4} - v_5$$

활성화 함수 1: 
$$\varphi(x) = \frac{1}{x}$$

활성화 함수 
$$2: \varphi_2(x) = \frac{1}{1+e^{-x}}$$

오차함수: 
$$\mathcal{L}(x) = (x-2)^2$$



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

# Backpropagation

Another Example



$$F(v_1, \dots, v_5) = v_1 \cdot v_2 + \frac{v_3}{v_4} - v_5$$

활성화 함수 1: 
$$\varphi(x) = \frac{1}{x}$$

활성화 함수 
$$2: \varphi_2(x) = \frac{1}{1+e^{-x}}$$

오차함수: 
$$\mathcal{L}(x) = (x-2)^2$$



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

## Backpropagation

#### Another Example

(8) 
$$\varphi_2(x) = \frac{1}{1 + e^{-x}}$$

| $w_{1_1}$ | 0.1  | $w_{2_1}$       | 1.1  |
|-----------|------|-----------------|------|
| $w_{1_2}$ | 0.5  | $w_{2}$         | 0.0  |
| $w_{1_3}$ | 0.3  | $w_{2_3}$       | 0.4  |
| $w_{1_4}$ | 2.1  | $w_{2_4}$       | -0.1 |
| $w_{1_5}$ | -0.2 | w <sub>25</sub> | 1.3  |
| $x_1$     | 1.7  | $x_2$           | 3.5  |





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

## Backpropagation

#### **Another Example**

$$\frac{\partial \mathcal{L}}{\partial w_{5_2}} = \frac{\partial \mathcal{L}}{\partial u} \cdot x_2$$

$$\frac{\partial \mathcal{L}}{\partial \varphi(u)} = \frac{\partial \mathcal{L}}{\partial F} \cdot (-1)$$

$$(v_1, \dots, v_5) = v_1 \cdot v_2 + \frac{v_3}{v_4} - v_5$$

| $W_{1_1}$   | 0.1  | $W_{2_1}$            | 1.1  |
|-------------|------|----------------------|------|
| $W_{1}_{2}$ | 0.5  | $W_{2}$              | 0.0  |
| $W_{13}$    | 0.3  | $W_{2_3}$            | 0.4  |
| $W_{14}$    | 2.1  | $W_{2}$ <sub>4</sub> | -0.1 |
| $W_{15}$    | -0.2 | $W_{25}$             | 1.3  |
| $x_1$       | 1.7  |                      | 3.5  |

(2) 역전파 진행 
$$\varphi(x_1w_{1_1} + x_2w_{1_2} + b_1)$$
 $= \varphi(x \circ w_1 + b_1)$ 
 $w_{1_1} \quad w_{1_2}$ 
 $w_{2_1} \quad w_{2_2}$ 
 $w_{4_1} \quad w_{2_2}$ 
 $w_{4_1} \quad w_{3_2}$ 
 $\varphi(x \circ w_3 + b_3)$ 
 $v_3 = \varphi(u)$ 
 $w_{5_2} \quad \varphi(x \circ w_5 + b_5)$ 



신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

## Backpropagation

**Another Example** 

(1) 순전파 진행

$$\begin{array}{c|c}
\hline
\frac{\partial \mathcal{L}}{\partial w_{5_2}} = \frac{\partial \mathcal{L}}{\partial u} \cdot x_2 \\
??
\end{array}$$

| $w_{1_1}$   | 0.1  | $w_{2_1}$   | 1.1  |
|-------------|------|-------------|------|
| $w_{1_2}$   | 0.5  | $w_{2}$     | 0.0  |
| $w_{1_3}$   | 0.3  | $w_{2_3}$   | 0.4  |
| $w_{1_4}$   | 2.1  | $w_{2_4}$   | -0.1 |
| $w_{1_{5}}$ | -0.2 | $w_{2_{5}}$ | 1.3  |
| $x_1$       | 1.7  | $x_2$       | 3.5  |





신경망의 구조

• 신경망의 학습

순전파와 역전파 반복

Hyperparameter

## Backpropagation

Another Example

(2) 역전파 진행

|    | (0. (01) -       | _ 1        |
|----|------------------|------------|
| 8) | $\varphi_2(x) =$ | $1+e^{-x}$ |

| 9 | L(x) | = 0 | x — | $(2)^2$ |
|---|------|-----|-----|---------|

| $w_{1_1}$ | 0.1  | $w_{2_1}$ | 1.1  |
|-----------|------|-----------|------|
| $w_{1_2}$ | 0.5  | $w_{2}$   | 0.0  |
| $w_{1_3}$ | 0.3  | $w_{2_3}$ | 0.4  |
| $w_{1_4}$ | 2.1  | $w_{2_4}$ | -0.1 |
| $w_{1_5}$ | -0.2 | $w_{25}$  | 1.3  |
| $x_1$     | 1.7  | $x_2$     | 3.5  |







ATruc

신경망의 구조

신경망의 학습

• 순전파와 역전파 반복

> Hyperparameter

#### 1 Iteration 의 정의

- 데이터 집합에 대해 순전파, 역전파를 통해 가중치 업데이트가 1회 일어나는 것



- 신경망에 1개의 Data씩 입력해줄 때 (Data 총 개수: N개)
  - → 전체 데이터에 대해 가중치 업데이트를 하기 위해 N iteration 필요
- 신경망에 모든 Data를 한 번에 입력할 때
  - → 전체 데이터에 대해 가중치 업데이트를 하기 위해 1 iteration 필요



신경망의 구조

신경망의 학습

• 순전파와 역전파 반복

> Hyperparameter

### 실제 신경망에서는?

- N개의 전체 데이터를 **M개씩 묶어** 신경망에 입력

### Batch (배치) / Batch Size

- Batch : 한 번에 신경망에 입력하는 데이터 묶음

- Batch Size : 1개의 Batch 내의 데이터 수 ( = M)

- N개의 Data를 랜덤하게 섞고, M개씩 골라 Batch 생성





신경망의 구조

신경망의 학습

• 순전파와 역전파 반복

> Hyperparameter

### Batch에서의 순전파와 역전파



- 순전파 : 각 batch를 이루는 데이터에 대해 독립적으로 진행

- 역전파: 각 batch에서 계산된 손실함수의 평균을 이용해 진행

- More Details on ML LAB 5! (Next Seminar)



신경망의 구조

신경망의 학습

• 순전파와 역전파 반복

> Hyperparameter

## 1 epoch 의 정의



- 전체 데이터에 대해 순전파, 역전파를 통해 가중치 업데이트가 **1회** 일어나는 것
- Q) 전체 데이터가 D개, Batch Size가 M일 때
  - Batch 의 개수는? **D/M**
  - 1 epoch 는 몇 iteration으로 이루어져 있는가? **D/M**

### Batch 를 사용하는 이유?

In Next Seminar!







신경망의 구조

신경망의 학습

순전파와 역전파 반복

Hyperparameter

## What is Hyperparameter?

- 딥러닝 모델의 성능에 영향을 주는 변수
- 사용자가 직접 설정해 입력하며, 최적의 성능을 위해서는 Tuning 과정이 필요함
- "Parameter (가중치)를 효과적으로 업데이트 해 주기 위한 요소"

#### - Examples

- 가중치의 초깃값
- Learning rate
- 학습의 종료조건
- Layer Depth
- Numbers of nodes in 1 Layer
- Activation Function
- Loss Function
- Optimizer
- batch size







### Summary

- 수학적 모델을 신경망으로 근사할 수 있음
- 신경망 간선에 들어가는 **가중치 및 편향의 적절한 값**을 찾는 것이 해야할 일 (학습)
- 우선 파라미터 값을 적당히 초기화한 후, **순전파** 결과를 도출하고 **손실함수**를 통해 그 결과가 얼마나 좋은지 평가
- "손실함수 값을 작게 하려면 파라미터 값을 어떻게 변화시킬까?" 에 대한 답을 주는 것이 경사하강법
- 가중치 및 편향에 대한 미분값을 구하는 **역전파** 과정에서 연쇄법칙을 사용

