

M2103 – Technologies Internet

Licence professionnelle Métiers de l'Electronique : Communication, Systèmes Embarqués (CSE)

*En base aux slides « M2103 – Technologies Internet », Dana MARINCA, 2017

M2103 - Chapitre 2.3 RIP v1 - RIP v2

RIP version 1

M2103 - Chapitre 2.3

RIP v1

Caractéristiques de RIP v1

Protocoles de routage

- Classful: Ne transmettent pas le masque de sous-réseau dans les mises à jour de routage
 - Utilise les classes d'adresses: A, B et C avec leurs masque par default /8, /16, /24
- vecteur de distance: le routeur connait la distance vers la destination finale (nombre de routeurs intermédiaires) et le vecteur ou sens d'acheminement du trafic

Métrique RIP = nombre de sauts (routeurs intermédiaires)

Métrique infinie : les routes avec un <u>nombre de saut > 15</u> sont inaccessibles Les <u>mises à jour sont diffusées toutes les 30 secondes</u>

Fonctionnement de RIP

RIP utilise 2 types de message:

- Message Request
 - Ce message est transmis au démarrage par chaque interface ayant RIP activé
 - Demande à tous les routeurs voisins, configuré avec RIP, de transmettre leur table de routage
- Message Response

Message par lequel le routeur transmet la table de routage au routeur qui l-a demandée.

RIPv1 - Configuration de Base

- Activer RIP sur toutes les interfaces qui appartiennent à ce réseau #configure terminal #router rip
- Utilisez la commande network pour annoncer ce réseau dans les mises à jour RIP vers les autres routeurs toutes les 30 secondes #network 192.168.2.0
- Pour vérifier RIP et résoudre les problèmes de routage:
 #show ip route

```
#show ip protocols
#debug ip rip
```



```
R1(config) #router rip
R1(config-router) #network 192.168.1.0
R1(config-router) #network 192.168.2.0
```

```
R2(config) #router rip
R2(config-router) #network 192.168.2.0
R2(config-router) #network 192.168.3.0
R2(config-router) #network 192.168.4.0
```

Distance Administrative de RIP v1

La distance administrative par défaut est 120

M2103 - Routage RIP

```
R3#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
      D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - CSPF external type 2, E - EGP
      i - IS-IS, 11 - IS-IS level-1, 12 - IS-IS level-2, is - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is not set
    192.168.1.0/24 [120/1] via 192.168.6.2, 00:00:05, Serial0/0/0
    192.168.2.0/24 [120/1] via 192.168.6.2, 00:00:05, Serial0/0/0
                    [120/1] via 192.168.4.2, 00:00:05, Serial0/0/1
    192.168.3.0/24 [120/1] via 192.168.4.2, 00:00:05, Serial0/0/1
    192.168.4.0/24 is directly connected, Seria10/0/1
     192.168.5.0/24 is directly connected, FastEthernet0/0
     192.168.6.0/24 is directly connected, Serial0/0/0
```

```
R3#show ip protocols
Routing Protocol is "rip"
  <output omitted>
  Redistributing: rip
  Default version control: send version 1, receive any version
    Interface
                          Send Recv Triggered RIP Key-chain
    FastEthernet0/0
    Serial0/0/0
    Seria10/0/1
  Automatic network summarization is in effect
  Routing for Networks:
   192,168,4.0
   192,168,5.0
   192,168,6.0
  Routing Information Sources:
    Gateway
                    Distance
                                  Last Update
   192,168,6,2
                         120
                                  00:00:10
   192,168,4,2
                                  00:00:18
  Distance: (default is 120)
```

RIPv1 – Configuration

Command debug ip rip


```
R2# debug ip rip
RIP protocol debugging is on
                                                           R2 reçoit une mise à jour de R1 annonçant le LAN de R1
RIP: received v1 updates from 192.168.2.1 on Serial0/0/0
     192.168.1.0in 1 hops
RIP: received v1 updates from 192.168.4.1 on Serial0/0/0 - R2 recoit une mise à jour de R3 annoncant le LAN de R3
    192.168.5.0in 1 hops
192.168.5.0 in 1 hops
RIP: sending v1 update to 255.255.255.255 via FastEthernetO/O (192.168.3.1)
RIP: build update entries
                                     - R2 transmet une mise à jour en sortie sur Fa0/0 vers tous les
      network 192.168.1.0 metric 2
                                       réseaux présents dans la table de routage excepté vers le
      network 192.168.2.0 metric 1
                                       réseau attaché à l'interface Fa0/0.
      network 192.168.4.0 metric 1
      network 192.168.5.0 metric 2
RIP: sending v1 update to 255.255.255.255 via Serial0/0/1 (192.168.4.2)
RIP: build update entries
                                     - R2 transmet une mise à jour en sortie sur S0/0/1 vers R3. Sont
      network 192.168.1.0 metric 2
                                      inclus dans la mise à jour le LAN de R1, le LAN de 2 et le WAN
      network 192.168.2.0 metric 1
                                      entre R1 et R2.
   network 192.168.4.0 metric 1
RIP: sending v1 update to 255.255.255.255 via Serial0/0/0 (192.168.2.2)
```

RIPv1 – Configuration

- Commande passive-interface
 - Utilisée pour éviter qu'un routeur transmet inutilement des mises à jour sur une interface qui ne mène pas vers un routeur

Router(config-router)# passive-interface interface-type interface-number

- Commande no router rip
 - Pour annuler le processus de routage RIP
- Commande show run
 - Pour vérifier la configuration

Agrégation automatique

- RIP agrège automatiquement les réseaux pleine classe
- Les routeurs frontière agrègent les sous-réseaux RIP à partir d'un réseau principal (majeur)
- RIP utilise l'agrégation automatique pour réduire la taille de la table de routage

Agrégation automatique

UNIVERSITE PARIS-SACLAY


```
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       <remaining codes omitted>
Gateway of last resort is not set
     172.30.0.0/24 is subnetted, 3 subnets
        172.30.1.0 is directly connected, FastSthernet0/0
        172.30.2.0 is directly connected, SerialO/0/0
        172.30.3.0 [120/1] vis 172.30.2.2, 00:00:17, Seris10/0/0
    192.168.4.0/24 [120/1] via 172.30.2.2, 00:00:17, Serial0/0/0
     192.168.5.0/24 [120/2] vis 172.30.2.2, 00:00:17, Seris10/0/0
R2fdebug ip rip
RIP protocol debugging is on
RIP: sending v1 update to 255,255,255,255 via Serial0/0/0 (172,30,2,2)
RIP: build update entries
      network 172,30,3,0 metric 1
      metwork 192,168.4.0 metric 1
      network 192,168,5,0 metric 2
RIP: sending v1 update to 255.255.255.255 via Serial0/0/1 (192.168.4.9)
RIP: build update entries
      network 172,30,0,0 metric 1
R2#undebug all
All possible debugging has been turned off
 Routes transmises ver R1
R3#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       <remaining codes omitted>
Cateway of last resort is not set
     172.30.0.0/16 [120/1] vis 192.168.4.9, 00:00:15, Seria10/0/1
    192.168.4.0/30 is subnetted, 1 subnets
        192.168.4.8 is directly connected, Seris10/0/1
    192.168.5.0/24 is directly connected, FastEthernet0/0
  Comparez les routes R1 et R3 pour le réseau 172.30.0.0
```

Agrégation automatique

UNIVERSITE PARIS-SACLAY


```
R1#show ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
       <remaining codes omitted>
Gateway of last resort is not set
    172.30.0.0/24 is subnetted, 3 subnets
       172.30.1.0 is directly connected, FastEthernet0/0
       172.30.2.0 is directly connected, SerialO/0/0
       172.30.3.0 [120/1] via 172.30.2.2, 00:00:17, Seria10/0/0
    192.168.4.0/24 [120/1] via 172.30.2.2, 00:00:17, Seria10/0/0
    192.168.5.0/24 [120/2] via 172.30.2.2, 00:00:17, Serial0/0/0
R2#debug ip rip
RIP protocol debugging is on
RIP: sending v1 update to 255,255,255,255 via Serisl0/0/0 (172,30,2,2)
RIP: build update entries
      network 172,30,3,0 metric 1
      metwork 192,168,4.0 metric 1
     network 192,168,5,0 metric 2
RIP: sending v1 update to 255,255,255,255 via Serial 0/0/1 (192,168,4,9)
RIP: build update entries
      network 172,30.0.0 metric 1
R2#undebug all
All possible debugging has been turned off
 Routes transmises ver R1
```

```
R3fabow ip route
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
<remaining codes omitted>

Sateway of last resort is not set

R 172.30.0.0/16 [120/1] vis 192.168.4.9, 00:00:15, Serial0/0/1
192.168.4.0/30 is submetted, I submets

C 192.168.4.8 is directly connected, Serial0/0/1
C 192.168.5.0/24 is directly connected, FastEthernet0/0

Comparez les routes R1 et R3 pour le réseau 172.30.0.0
```

Route par défaut et RIPv1

- Les paquets qui ne trouve pas une route définie de manière spécifique dans la table de routage seront acheminés sur l'interface pour <u>la route par</u> <u>défaut</u>.
- Exemple: Les routeurs des clients d'un opérateur utilisent des routes par défaut vers l'opérateur

ip route 0.0.0.0 0.0.0.0 s0/0/1

- Désactivez le routage RIP sur R2 uniquement pour le réseau 192.168.4.0.
- Configurez R2 avec une route par défaut pointant sur R3

```
R2(config) #router rip
R2(config-router) #no network 192.168.4.0
R2(config-router) #exit
R2(config) #ip route 0.0.0.0 0.0.0.0 serial 0/0/1
```

- Désactivez le routage RIP sur R3.
- Configurez une route statique pointant sur R2

R3(config)#no router rip R3(config)#ip route 172.30.0.0 255.255.252.0 serial 0/0/:

Propagation de la Route par défaut et RIPv1

Commande « default-information originate »

- Cette commande est utilisée pour spécifier que le routeur est à l'origine de la route par défaut et la propage dans les mises à jour de routage RIP
- Exemple:

```
#config terminal
#router rip
#default-information originate
```


RIP v1 - conclusions

Les caractéristiques de RIP sont:

- Protocole de routage vecteur distance, classful
- La métrique est « le nombre de sauts »
- Ne supporte pas le VLSM ou les sous-réseaux non contigus
- Mises à jour toutes les 30 secondes
- Les messages RIP sont encapsulés dans en un segment UDP avec les ports source et destination 520

RIP version 2

M2103 - Chapitre 2.3

Différences entre RIPv1 & RIPv2

RIP v1

- Protocole de routage vecteur distance classful
- Ne supporte pas de réseaux non contigus
- Ne supporte pas le VLSM
- Ne transmet pas le masque de sous-réseau dans les mises à jour de routage
- Les mises à jour de routage sont diffusées (broadcast)

RIP v2

- Protocole de routage vecteur distance classless qui est une amélioration de RIPv1
- Adresse de prochain saut incluse dans les mises à jour
- Les mises à jour de routage sont transmises en multicast
- If y a une option d'authentification

Similitudes entre RIPv1 & RIPv2

- Utilisation de timers pour éviter les boucles de routage
- Utilisation du "split horizon" ou du "split horizon avec poison reverse"
- Utilisation de mise à jour déclenchées
- Nombre maximum de saut égal à 15

Configurer RIPv2

- RIPv1 est configuré par default sur un routeur Cisco
- Pour utiliser la RIPv2 il faut utiliser la commande version 2 R1(config)#router rip R1(config-router)# version 2
- RIPv2 ignore les mises à jour RIPv1
- Commande show ip protocols
 - Pour vérifier que RIPv2 est configuré

Configurer RIPv2

R2(config) #router rip R2(config-router) #version 2 R2(config-router) #network 192.168.0.0 R2(config-router) #network 172.16.0.0 R2(config-router) #


```
R1(config) #router rip
R1(config-router) #version 2
R1(config-router) #network 10.0.0.0
R1(config-router) #network 172.16.0.0
R1(config-router) #
```

Configurer RIPv2

- UNIVERSITÉ DE VERSAILLES ST-QUENTIN-EN-YVELINES
- universite paris-saclay

- RIPv2 agrège de manière automatique les routes à la frontière de la classe de réseau et peut également agréger les routes avec un masque de sous-réseau qui est plus petit que celui de la classe
- commande no auto-summary
 - ✓ pour désactiver l'agrégation automatique
- ➤ Quand on utilise RIPv2 avec l'agrégation automatique désactivée, chaque sousréseau a sa propre entrée dans la table de routage avec l'interface de sortie et le prochain saut nécessaires pour atteindre le sous-réseau


```
R1(config) #router rip
R1(config-router) +no auto-sumnary
R1(config-router) #end
R1#show ip protocols
Routing Protocol is "rip"
<output omitted for brevity>
  Default version control: send version 2, receive version 2
    Interface
                                Recv Triggered RIP Key-chain
    FastEthernet0/0
    FastEthernet0/1
    Seria10/1/0
  Automatic network summarization is not in effect
  <output omitted for brevity>
R2(config) #router rip
R2(config-router) # no auto-summary
R3(config) #router rip
R3(config-router) #no auto-summary
```

RIPv1 & RIPv2

Protocole de routage	Vecteur Distance	Protocole de routage Classless	Hold Down timers	Split-horizon ou Split-horizon avec "Poison Reverse"	Nombre de sauts maximum (15)	Agrégation automatique	CIDR	VLSM	Authentification
RIPv1	Oui	Non	Oui	Oui	Oui	Oui	Non	Non	Non
RIPv2	Oui	Oui	Oui	Oui	Oui	Oui	Oui	Oui	Oui