

Lecture 13: Vanishing gradient, Memory in RNNs

Radoslav Neychev

Spring 2021

Outline

- 1. Recap: RNNs
- 2. LSTM overview
 - Gates in LSTM
- 3. RNNs as encoders for sequential data
- 4. Vanishing gradient problem
- 5. Exploding gradient problem
- 6. Batch normalization
- 7. Q & A.

Vanilla RNN

How to train it?

Loss (e.g. Negative log-likelihood)

Vanilla RNN

LSTM

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

Cell state: erase ("forget") some content from last cell state, and write ("input") some new cell content

Hidden state: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$egin{aligned} oldsymbol{f}^{(t)} &= \sigma \left(oldsymbol{W}_f oldsymbol{h}^{(t-1)} + oldsymbol{U}_f oldsymbol{x}^{(t)} + oldsymbol{b}_f
ight) \ oldsymbol{i}^{(t)} &= \sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight) \ oldsymbol{o}^{(t)} &= \sigma \left(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o
ight) \end{aligned}$$

$$oldsymbol{i}^{(t)} = \sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight)$$

$$oldsymbol{o}^{(t)} = \sigma \left(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o
ight)$$

$$ilde{oldsymbol{c}}(ilde{oldsymbol{c}}^{(t)} = anh\left(oldsymbol{W}_coldsymbol{h}^{(t-1)} + oldsymbol{U}_coldsymbol{x}^{(t)} + oldsymbol{b}_c
ight)$$

$$\boldsymbol{c}^{(t)} = \boldsymbol{f}^{(t)} \circ \boldsymbol{c}^{(t-1)} + \boldsymbol{i}^{(t)} \circ \tilde{\boldsymbol{c}}^{(t)}$$

$$m{ ilde{\phi}} m{h}^{(t)} = m{o}^{(t)} \circ anh m{c}^{(t)}$$

Gates are applied using element-wise product

All these are vectors of same length *n*

$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$

$$i_t = \sigma \left(W_i \cdot [h_{t-1}, x_t] + b_i \right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)$$

$$C_t = f_t * C_{t-1} + i_t * \tilde{C}_t$$

$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$

$$h_t = o_t * \tanh (C_t)$$

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

Cell state: erase ("forget") some content from last cell state, and write ("input") some new cell content

Hidden state: read ("output") some content from the cell

$$egin{aligned} oldsymbol{f}^{(t)} &= \sigma \left(oldsymbol{W}_f oldsymbol{h}^{(t-1)} + oldsymbol{U}_f oldsymbol{x}^{(t)} + oldsymbol{b}_f
ight) \ oldsymbol{i}^{(t)} &= \sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight) \ oldsymbol{o}^{(t)} &= \sigma \left(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o
ight) \end{aligned}$$

$$oldsymbol{o}^{(t)} = \sigma \Big(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o \Big)$$

$$ilde{oldsymbol{c}}(t) = anh\left(oldsymbol{W}_coldsymbol{h}^{(t-1)} + oldsymbol{U}_coldsymbol{x}^{(t)} + oldsymbol{b}_c
ight)$$

$$oldsymbol{c}^{(t)} = oldsymbol{f}^{(t)} \circ oldsymbol{c}^{(t-1)} + oldsymbol{i}^{(t)} \circ ilde{oldsymbol{c}}^{(t)}$$

$$m{ ilde{\phi}} m{h}^{(t)} = m{o}^{(t)} \circ anh m{c}^{(t)}$$

Gates are applied using element-wise product

All these are vectors of same length *n*

RNN as encoder for sequential data

RNNs can be used to encode an input sequence in a fixed size vector.

This vector can be treated as a representation of input sequence.

Example problem: PoS tagging

Pred. Ta	ag	Actual Tag	Correct?	Token			
PUNCT		PUNCT	•	•	Po	S tagging can be	
DET		DET	✓	this			
NOUN		NOUN	✓	killing	pe	erformed using	
ADP		ADP	✓	of	μ •		
DET		DET	/	a	0	Rule-based taggers	
ADJ		ADJ	✓	respected	O		
NOUN		NOUN	✓	cleric		Dynamic programming	
AUX		AUX	✓	will	0		
AUX		AUX	✓	be			
VERB		VERB	✓	causing	0	Models based on CRF	
PRON		PRON	✓	us	Ŭ		
NOUN		NOUN	✓	trouble		(Conditional Dandom	
ADP		ADP	✓	for		(Conditional Random	
NOUN		NOUN	✓	years		- :	
PART		PART	✓	to		Field)	
VERB		VERB	✓	come		, , , ,	
PUNCT		PUNCT	✓		0	Neural Networks	
PUNCT		PUNCT	✓]	0	Neural Networks	
					0	etc.	

18

chain rule!

chain rule!

Vanishing gradient problem:

When the derivatives are small, the gradient signal gets smaller and smaller as it backpropagates further

More info: "On the difficulty of training recurrent neural networks", Pascanu et al, 2013 http://proceedings.mlr.press/v28/pascanu13.pdf

Gradient signal from far away is lost because it's much smaller than from close-by. So model weights updates will be based only on short-term effects. $oldsymbol{h}^{(3)}$ $h^{(1)}$ $h^{(2)}$ $h^{(4)}$ WWW

Vanishing gradient: LSTM

Based on: Lecture by Abigail See, CS224n Lecture 7

Vanishing gradient: LSTM

Forget gate: controls what is kept vs forgotten, from previous cell state

Input gate: controls what parts of the new cell content are written to cell

Output gate: controls what parts of cell are output to hidden state

New cell content: this is the new content to be written to the cell

Cell state: erase ("forget") some content from last cell state, and write ("input") some new cell content

Hidden state: read ("output") some content from the cell

Sigmoid function: all gate values are between 0 and 1

$$egin{aligned} oldsymbol{f}^{(t)} &= \sigma \left(oldsymbol{W}_f oldsymbol{h}^{(t-1)} + oldsymbol{U}_f oldsymbol{x}^{(t)} + oldsymbol{b}_f
ight) \ oldsymbol{i}^{(t)} &= \sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight) \ oldsymbol{o}^{(t)} &= \sigma \left(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o
ight) \end{aligned}$$

$$\sigma \left(oldsymbol{W}_i oldsymbol{h}^{(t-1)} + oldsymbol{U}_i oldsymbol{x}^{(t)} + oldsymbol{b}_i
ight)$$

$$oldsymbol{o}^{(t)} = \sigma igg| igg(oldsymbol{W}_o oldsymbol{h}^{(t-1)} + oldsymbol{U}_o oldsymbol{x}^{(t)} + oldsymbol{b}_o$$

 $ilde{oldsymbol{c}} ilde{oldsymbol{c}}^{(t)} = anh\left(oldsymbol{W}_c oldsymbol{h}^{(t-1)} + oldsymbol{U}_c oldsymbol{x}^{(t)} + oldsymbol{b}_c
ight)$ $oldsymbol{c}^{(t)} = oldsymbol{f}^{(t)} \circ \dot{oldsymbol{c}}^{(t-1)} + oldsymbol{i}^{(t)} \circ ilde{oldsymbol{c}}^{(t)}$

 $ightarrow oldsymbol{h}^{(t)} = oldsymbol{o}^{(t)} \circ anh oldsymbol{c}^{(t)}$

Gates are applied using element-wise product

All these are vectors of same length *n*

Vanishing gradient: GRU

Vanishing gradient: GRU

<u>Update gate:</u> controls what parts of hidden state are updated vs preserved

Reset gate: controls what parts of previous hidden state are used to compute new content

New hidden state content: reset gate selects useful parts of prev hidden state. Use this and current input to compute new hidden content.

Hidden state: update gate simultaneously controls what is kept from previous hidden state, and what is updated to new hidden state content

$$egin{aligned} oldsymbol{u}^{(t)} &= \sigma \left(oldsymbol{W}_u oldsymbol{h}^{(t-1)} + oldsymbol{U}_u oldsymbol{x}^{(t)} + oldsymbol{b}_u
ight) \ oldsymbol{ au}^{(t)} &= \sigma \left(oldsymbol{W}_r oldsymbol{h}^{(t-1)} + oldsymbol{U}_r oldsymbol{x}^{(t)} + oldsymbol{b}_r
ight) \end{aligned}$$

$$oldsymbol{ ilde{h}}^{(t)} = anh\left(oldsymbol{W}_h(oldsymbol{r}^{(t)} \circ oldsymbol{h}^{(t-1)}) + oldsymbol{U}_h oldsymbol{x}^{(t)} + oldsymbol{b}_h
ight), \ oldsymbol{h}^{(t)} = (1 - oldsymbol{u}^{(t)}) \circ oldsymbol{h}^{(t-1)} + oldsymbol{u}^{(t)} \circ oldsymbol{ ilde{h}}^{(t)}$$

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info long-term (e.g. by setting update gate to 0)

Vanishing gradient: LSTM vs GRU

- LSTM and GRU are both great
 - GRU is quicker to compute and has fewer parameters than LSTM
 - There is no conclusive evidence that one consistently performs better than the other
 - LSTM is a good default choice (especially if your data has particularly long dependencies, or you have lots of training data)

Rule of thumb: start with LSTM, but switch to GRU if you want something more efficient

Vanishing gradient in non-RNN

Vanishing gradient is present in all deep neural networks

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- Potential solution:

direct (or skip-) connections (just like in ResNet)

Figure 2. Residual learning: a building block.

Vanishing gradient in non-RNN

Vanishing gradient is present in **all** deep neural networks

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower
- Potential solution: dense connections (just like in DenseNet)

Vanishing gradient in non-RNN

Vanishing gradient is present in all deep neural networks

- Due to chain rule / choice of nonlinearity function, gradient can become vanishingly small during backpropagation
- Lower levels are hard to train and are trained slower

Conclusion:

Though vanishing/exploding gradients are a general problem, RNNs are particularly unstable due to the repeated multiplication by the same weight matrix [Bengio et al, 1994]

Exploding gradient problem

- If the gradient becomes too big, then the SGD update step becomes too big: $\theta^{new} = \theta^{old} \alpha \nabla_{\theta} J(\theta)$
- This can cause bad updates: we take too large a step and reach a bad parameter configuration (with large loss)
- In the worst case, this will result in Inf or NaN in your network (then you have to restart training from an earlier checkpoint)

Exploding gradient solution

 Gradient clipping: if the norm of the gradient is greater than some threshold, scale it down before applying SGD update

```
Algorithm 1 Pseudo-code for norm clipping  \hat{\mathbf{g}} \leftarrow \frac{\partial \mathcal{E}}{\partial \theta}  if \|\hat{\mathbf{g}}\| \geq threshold then  \hat{\mathbf{g}} \leftarrow \frac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}}  end if
```

 Intuition: take a step in the same direction, but a smaller step

Exploding gradient solution

Without clipping

With clipping

- RNN is a great choice for data with sequential structure
- Multi-layer RNN can also be of great use
- Rule of thumb: start with LSTM, but switch to GRU if you want something more efficient

Data Normalization

Data normalization

Data normalization

Before normalization: classification loss very sensitive to changes in weight matrix; hard to optimize

After normalization: less sensitive to small changes in weights; easier to optimize

Weights initialization

• Pitfall: all zero initialization.

Weights initialization

- Pitfall: all zero initialization.
- Small random numbers.

Weights initialization

- Pitfall: all zero initialization.
- Small random numbers.
- Calibrated random numbers.

$$S = \sum_{i}^{n} w_{i}x_{i}$$

$$Var(s) = Var(\sum_{i}^{n} w_{i}x_{i})$$

$$= \sum_{i}^{n} Var(w_{i}x_{i})$$

$$= \sum_{i}^{n} [E(w_{i})]^{2} Var(x_{i}) + E[(x_{i})]^{2} Var(w_{i}) + Var(x_{i}) Var(w_{i})$$

$$= \sum_{i}^{n} Var(x_{i}) Var(w_{i})$$

$$= (nVar(w)) Var(x)$$

Problem:

- Consider a neuron in any layer beyond first
- At each iteration we tune it's weights towards better loss function
- But we also tune it's inputs. Some of them become larger, some smaller
- Now the neuron needs to be re-tuned for it's new inputs

TL; DR:

It's usually a good idea to normalize linear model inputs

(c) Every machine learning lecturer, ever

 Normalize activation of a hidden layer (zero mean unit variance)

$$h_i = \frac{h_i - \mu_i}{\sqrt{\sigma_i^2}}$$

• Update μ_i , σ_i^2 with moving average while training

$$\mu_{i} := \alpha \cdot mean_{batch} + (1 - \alpha) \cdot \mu_{i}$$

$$\sigma_{i}^{2} := \alpha \cdot variance_{batch} + (1 - \alpha) \cdot \sigma_{i}^{2}$$

Original algorithm (2015)

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Original algorithm (2015)

What is this?

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

// mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$$

// mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$

// normalize

// scale and shift

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ , β

Output: $\{y_i = BN_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1} (x_i - \mu_{\mathcal{B}})^2$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_B}{\sqrt{\sigma_B^2 + \epsilon}}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i)$$

// scale and shift

Original algorithm (2015)

What is this?

This transformation should be able to represent the identity transform.

Input: Values of
$$x$$
 over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$;

Parameters to be learned: γ , β

Output: $\{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}$

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad // \text{mini-batch mean}$$

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad // \text{mini-batch variance}$$

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad // \text{normalize}$$

$$y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad // \text{scale and shift}$$

Q & A