Morse Code Encoder and Decoder

Team Members: Sricharan Vinoth Kumar, Saikiran S

December 1, 2024

Contents

1	Problem Statement	2
2	Aim of the Project	2
3	Components Used	2
4	Circuit Schematics and Process Diagrams	3
5	Flowchart	5
6	Description of the Project	6
7	Results	7
8	Short Video Demonstration	8
9	Photos	9
10	Bibliography	9

1 Problem Statement

To Implement a morse code encoder and decoder using Arduino.

2 Aim of the Project

To use Arduino to implement a Morse code encoder and decoder obtaining inputs in various forms and displaying output in various forms.

3 Components Used

- Arduino(with USB cable)
- Push Button
- Breadboard
- 2x16 LCD display
- Buzzer
- LED
- Jumper Wires
- Some Resistors
- ESP 8266
- Dip switch
- Potentiometer

4 Circuit Schematics and Process Diagrams

Figure 1: Circuit Schematic

Figure 2: Process Diagram

5 Flowchart

Figure 3: Flowchart

6 Description of the Project

Encoding/Decoding Process

For Encoding

- 1. The ESP takes input through Node-Red wirelessly.
- 2. The ESP writes the data to the Arduino via Serial port.
- 3. The Arduino takes the input and divides the input into characters.
- 4. The Arduino looks up the Morse Code equivalent of each character, outputs it, and moves to the next character, until it reaches the end.
- 5. The output is displayed by 2 methods:
 - (a) **Visual Output:** Flashing an LED in a pattern closely matching the standards of Morse Code, i.e.,
 - ON for 200ms for a dot,
 - ON for 600ms for a dash,
 - OFF for 600ms for character separation,
 - OFF for 1200ms for word separation.
 - (b) Audio Output: Toggling a buzzer in the same pattern mentioned above.
- 6. The user can select which output to enable or disable using switches on the PCB, which gate the output signal sent by the Arduino to these components.

For Decoding

- 1. The Arduino takes input through a push-button embedded in the PCB.
- 2. The input is processed into Morse Code using logic similar to the encoding process, with adjustments to account for human reaction times.
 - The press of a push-button is defined as HIGH, and the state of no press is defined as LOW.
 - The duration for which the button is HIGH or LOW determines the Morse Code.

- 3. When a character separation is detected and the input of the next letter begins, the decoded English letter is outputted.
- 4. When there is no input for 7 seconds, the decoded string is reset.
- 5. The output letters are written to the ESP via Serial port.
- 6. The ESP sends this data to Node-Red wirelessly.
- 7. The output is displayed in the Node-Red dashboard in textual format.
- 8. The user can switch between the two modes using a switch embedded in the PCB.

Data Transfer Mechanism

- The data transfer between the Arduino and the ESP module takes place through a Virtual Serial port.
- The data transfer between the ESP and the Node-Red server takes place through Wi-Fi using the MQTT Protocol, with the help of a Mosquitto Broker.

MQTT Protocol Topics

- Input given in the Node-Red dashboard is sent under the topic encoding/inp.
- Data sent to the Node-Red dashboard during encoding (the word being currently encoded) is sent under the topic arduino/serial, with the identifier 1...
- Data sent to the Node-Red dashboard during decoding (the decoded string) is sent under the topic decoding/out, with the identifier 0_.

7 Results

Thus the circuit for a morse code encoder and decoder has successfully been implemented and the conversion from and to morse code as per the table has been achieved.

Letter/Number	Morse Code	Letter/Number	Morse Code
A		N	
В		О	
С		P	
D		Q	
Е		R	
F		S	
G		T	-
Н		U	
I		V	
J		W	
K		X	
L		Y	
M		Z	
1		6	
2		7	
3		8	
4		9	
5		0	

Table 1: Morse Code for Letters and Numbers

8 Short Video Demonstration

• Demonstration Video: https://bit.ly/4icYdnE

9 Photos

Figure 4: Project Photo

10 Bibliography

References

- $[1] \ \mathtt{http://www.steves-internet-guide.com/mqtt/}$
- $[2] \ \mathtt{https://nodered.org/docs/getting-started/}$

- [3] https://science.howstuffworks.com/innovation/inventions/morse-code.htm
- [4] https://forum.arduino.cc/t/serial-communication-between-esp8266-and-arduino/590972
- $[5] \ \mathtt{https://www.javatpoint.com/what-is-a-serial-port}$