PROIECT SACAP

- 1. Prezentarea schemei bloc funcționale aferentă SA-m.c.c. (Fig. B-1.1). Prezentarea MM aferente S.A.-m.c.c. (MM-II și MM-ISI) concretizate cu valorile numerice ale parametrilor; acestea se determină pe baza datelor numerice specifice (prezente în fișierul "Date numerice proiect tema nr. 1").
- B. Descrierea obiectivelor conducerii. 1. Schema bloc funcțională aferenta unui SCA cu m.c.c. este prezentată în fig.B-1.1. Semnificația mărimilor care apar:

Fig.B-1.1. Schema bloc funcțională aferenta unui SA- m.c.c.

ω - viteza unghiulară;
 m - moment / cuplu activ;
 u_ω - măsura vitezei unghiulare ω;

ua – tensiunea de alimentare; ms – moment de sarcină; mf – moment de frecări.

u_c - tensiunea de comanda; e - tensiune contra-electromotoare;

I_a – curentul prin indus; u_i – măsura curentului I_a.

Nr.crt	Pan	Uan	$\dot{1}$ an	η	ηn	ω an	Ta	Ra	Tm	Ucn	J	k E
U.M.	W	V	A		Rot/min	Rad/sec	Sec	Ω	Sec	٧	Nm2	V/V
Valoare	1000	150	6.67	0.83	2500	261.5	0.09	3.24	0.7	3.5	0.051	42.85

$$i_{an} = \frac{p_{an}}{u_{an}}$$

= 1000/150 = 6.67 A

$$\omega_n = \frac{2\pi}{60} n_n = 0.1046 \cdot n_n$$

= 0.1046*2500 = 261.5 Rad/sec

$$k_E = \frac{u_{an}}{u_{cn}}$$

=150/3.5=42.85

$$m_n = \eta * \frac{p_{an}}{0.97 \cdot \omega_{an}}$$

=3.27

$$e_n = \frac{m_n \cdot \omega_n}{i_{an}}$$

= (3.27*261.5)/6.67 = 128.2 V

$$k_m = \frac{m_n}{i_{an}}$$

=3.27/6.67=0.49

$$k_e = \frac{e_n}{\omega_n}$$

= 128.2/261.5 = 0.49

$$\Delta u = u_{an} - e_n$$

= 150 - 128.2 = 21.8V

$$R_a = \frac{\Delta u}{i_{an}}$$

 $= 21.8/6.67 = 3.24 \Omega$

$$J = \frac{k_m \cdot k_e}{R_a} T_m$$

= 0.49*0.49*0.7/3.24 = 0.051 N*m^2

$$k_{M\omega} = \frac{5}{\omega_n} V / rads^{-1}$$

 $= 0.019 \text{ V/rads} ^{(-1)}$

$$k_{Mi} = \frac{3.5}{i_{an}} V / A_{=0.52 \text{ V/A}}$$

$k_f = 0.001$

	e_n	Δu	$\omega_{\rm n}$	\mathbf{k}_{m}	k _e	m_n	$T_{\rm m}$	k_{Mi}	$K_{M\omega}$
UM	V	V	rads ⁻¹	Nm/A	V/rads ⁻¹	Nm	sec	V/A	V/rads ⁻¹
Valoare	128.2	21.8	261.5	0.49	0.49	3.27	0.7	0.52	0.019

MM-ISI

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} \frac{-1}{T_a} & \frac{-k_e}{L_a} & \frac{1}{L_a} \\ \frac{k_e}{J} & \frac{-k_f}{J} & 0 \\ 0 & 0 & \frac{-1}{T_\mu} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & \frac{-1}{J} \\ \frac{k_E}{T_\mu} & 0 \end{bmatrix} \begin{bmatrix} u_c \\ m_s \end{bmatrix},$$

unde:

$$x_{I} = i_{a}, x_{2} = \omega, x_{3} = u_{a} \text{ și } T\mu = 0 \Rightarrow$$

$$\begin{bmatrix} i_{a} \\ \omega \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix}$$

$$u_{i} = k_{Mi} i_{a}, \quad u_{\omega} = k_{M\omega} \omega$$

MM-II

$$H1=kE/(1+T\mu*s)=42.85$$

 $H2=(1/Ra)/(1+Ta*s)=0.3/(1+0.09*s)$
 $H3=km=0.49$

 $\begin{aligned} &\text{H4= 1/(1/J*s) = 1/(0.051*s)} \\ &\text{H5= kf = 0.001} \\ &\text{H6= ke = 0.49} \\ &\text{H7= Km}\omega = 0.01 \end{aligned}$

uc-> ω

 $m_s -> \omega$

m_s -> u_ω

Calcule VRSC pentru PC

Nr.	Intrări (VRSC)		VRSC - CALCULATE									
Crt.	$\mathbf{u}_{\mathbf{c}\infty}$	$m_{s\infty}$	$u_{a\infty}$	m _∞	$m_{\rm f\infty}$	i _{a∞}	e∞	Δu_{∞}	ω_{∞}	$\mathbf{u}_{\mathrm{i}\infty}$	$u_{\omega^{\infty}}$	
1	0	0	0	0	0	0	0	0	0	0	0	
2	U_{cn}	0	150	2.94	0.3	0.6	147	2	301	-	5.73	
3	U_{cn}	m_{sn}	150	3.5	0.25	7.15	126.1	23.9	257	-	4.88	
4	$u_{cn}/2$	0	75	1.47	0.150	3	74	1.02	150	-	2.86	
5	$u_{cn}/2$	$m_{sn}/2$	75	1.76	0.128	3.6	62.9	12	128	-	2.44	