À rendre le lundi 22 avril.

Exercice 1. Essentiel.

Soit $\varepsilon \in]0,1[$. Justifier que

$$\sum \frac{\ln(n)}{n^{1+\varepsilon}}$$
 converge et $\sum \frac{1}{n^{1-\varepsilon}\ln(n)}$ diverge.

Exercice 2.

Soit a > 0. On pose

$$\forall n \in \mathbb{N}^* \quad u_n = \left(\frac{n}{n+a}\right)^{n\ln(n)}.$$

- 1. Calculer un équivalent de u_n (on discutera selon la valeur de a).
- 2. Donner la nature de $\sum u_n$ (toujours en discutant selon la valeurs de a).

Exercice 3.

Soit $(a,b) \in \mathbb{R}^2$. On pose

$$\forall n \in \mathbb{N} \quad u_n = \sqrt{n} + a\sqrt{n+1} + b\sqrt{n+2}$$

- 1. Calculer un équivalent de u_n (on discutera selon les valeurs de a et b).
- 2. Donner la nature de $\sum u_n$ (toujours en discutant selon les valeurs de a et b).

Exercice 4. Règle de Raabe-Duhamel et application.

1. Soit $\alpha > 0$ et u une suite réelle strictement positive telle que

$$\frac{u_{n+1}}{u_n} = 1 - \frac{\alpha}{n} + O\left(\frac{1}{n^2}\right).$$

- (a) On pose $b_n = \ln(n^{\alpha}u_n)$. Quelle est la nature de la série $\sum (b_{n+1} b_n)$?
- (b) En déduire qu'il existe $c \in \mathbb{R}^*$ tel que

$$u_n \sim \frac{c}{n^{\alpha}}.$$

2. On pose

$$\forall n \in \mathbb{N}^* \quad u_n = \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots (2n+2)}.$$

- (a) À l'aide de la question 1, prouver que $\sum u_n$ converge.
- (b) Sans l'aide de la question 1 mais avec celle de la formule de Stirling, redémontrer ce résultat.

Problème. Semi-convergence de la série $\sum \frac{e^{in\theta}}{\pi}$ $(\theta \notin 2\pi\mathbb{Z})$.

Dans ce problème, on fixe un réel $\theta \in]0, 2\pi[$ et on s'intéresse à la série.

$$\sum \frac{e^{in\theta}}{n}$$

- 1. Démontrer que cette série n'est pas absolument convergente.
- 2. Soient $(a_n)_{n>0}$ et $(b_n)_{n>0}$ deux suites complexes. Montrer pour un entier n donné

$$\sum_{k=1}^{n} (a_k - a_{k-1})b_k = a_n b_n - a_0 b_1 + \sum_{k=1}^{n-1} a_k (b_k - b_{k+1}).$$

Ce calcul s'appelle transformation d'Abel. C'est une sorte d'IPP discrète.

3. Soit $n \in \mathbb{N}$. Notons $D_n(\theta) = \sum_{k=0}^n e^{ik\theta}$

(la fonction de θ associée est appelée novau de Dirichlet).

- (a) Calculer une expression de $D_n(\theta)$ sans signe somme puis montrer que la suite $(D_n(\theta))_{n\in\mathbb{N}}$ est bornée.
- (b) À l'aide de la transformation d'Abel, prouver que

$$\sum_{k=1}^{n} \frac{e^{ik\theta}}{k} = \frac{D_n(\theta)}{n} - 1 + \sum_{k=1}^{n-1} \frac{D_k(\theta)}{k(k+1)}.$$

4. Démontrer que la série $\sum \frac{D_n(\theta)}{n(n+1)}$ est absolument convergente. Démontrer alors que la série étudiée converge.

Pourquoi parle-t-on de série semi-convergente?

5. Justifier que les séries

$$\sum \frac{\cos(n\theta)}{n}$$
 et $\sum \frac{\sin(n\theta)}{n}$

sont convergentes.

6. Démontrer que les deux séries ci-dessus ne sont pas absolument convergentes.