Winter semester 2013-2014

Solutions to Exercise Sheet no.2

Analysis for CS

(G 6)

a)
$$\lim_{n \to \infty} \frac{5^n + 1}{7^n + 1} = \lim_{n \to \infty} \left(\left(\frac{5}{7} \right)^n \cdot \frac{1 + \frac{1}{5^n}}{1 + \frac{1}{7^n}} \right) = 0.$$

b)
$$\lim_{n \to \infty} \frac{4^n + (-2)^n}{4^{n-1} + 2} = \lim_{n \to \infty} \frac{4^n (1 + (-\frac{1}{2})^n)}{4^{n-1} (1 + \frac{2}{4^{n-1}})} = 4.$$

c)
$$\lim_{n \to \infty} \left(\sin \frac{\pi}{10} \right)^n = 0$$
, since $-1 < \sin \frac{\pi}{10} < 1$.

d) We have that

$$\lim_{n \to \infty} \sqrt{9n^2 + 2n + 1} - 3n = \lim_{n \to \infty} \frac{2n + 1}{\sqrt{9n^2 + 2n + 1} + 3n} = \lim_{n \to \infty} \frac{2 + \frac{1}{n}}{\sqrt{9 + \frac{2}{n} + \frac{1}{n^2}} + 3} = \frac{1}{3}.$$

e)
$$\lim_{n \to \infty} \left(5 + \frac{1 - 2n^3}{3n^4 + 2} \right)^2 = 25.$$

f)
$$\lim_{n \to \infty} \sqrt{n^2 + 3} - \sqrt{n^3 + 1} = \lim_{n \to \infty} \sqrt{n^3 + 1} \left(\sqrt{\frac{n^2 + 3}{n^3 + 1}} - 1 \right) = -\infty.$$

g)
$$\lim_{n \to \infty} \left(\frac{n^3 + 5n + 1}{n^2 - 1} \right)^{\frac{1 - 5n^4}{6n^4 + 1}} = \infty^{-\frac{5}{6}} = 0.$$

h) Since

$$\left(1 - \frac{1}{2}\right)\left(1 - \frac{1}{3}\right)\dots\left(1 - \frac{1}{n}\right) = \frac{1}{n},$$

we get
$$\lim_{n\to\infty} \left(1-\frac{1}{2}\right) \left(1-\frac{1}{3}\right) \dots \left(1-\frac{1}{n}\right) = 0.$$

(G7)

- a) We first note that, if $q \in (0,1)$, then $q^n > q^{n+1}$, for every $n \in \mathbb{N}$. Thus the sequence $(q^n)_{n \in \mathbb{N}}$ is strictly decreasing. In our case $x_n = \left(\frac{2}{5}\right)^n + \left(\frac{3}{5}\right)^n$, for $n \in \mathbb{N}^*$. By the previous observation, we conclude that the sequence $(x_n)_{n \in \mathbb{N}^*}$ is strictly decreasing, hence it is bounded above. Since $x_n > 0$, for every $n \in \mathbb{N}^*$, the sequence is also bounded below. The sequence converges to 0.
- b) We notice that for n=2k, $x_{2k}=\frac{1}{k}$, while for n=2k-1, $x_{2k-1}=-\frac{1}{2k-1}$, for $k \in \mathbb{N}^*$. Since $x_1 < x_2$ and $x_2 > x_3$, the sequence $(x_n)_{n \in \mathbb{N}^*}$ is not monotonic. From $|x_n| = \frac{1}{n} \in [-1,1]$, for every $n \in \mathbb{N}^*$, we conclude that $(x_n)_{n \in \mathbb{N}^*}$ is bounded. Since $\lim_{n \to \infty} |x_n| = 0$, the sequence $(x_n)_{n \in \mathbb{N}^*}$ converges to 0.

c) We notice that

$$\frac{x_{n+1}}{x_n} = \frac{2^{n+1}}{(n+1)!} \cdot \frac{n!}{2^n} = \frac{2}{n+1} \le 1, \forall n \in \mathbb{N}^*.$$

Thus $(x_n)_{n\in\mathbb{N}^*}$ is a decreasing sequence. Moreover $x_n \leq x_1 = 2$ for all $n \in \mathbb{N}^*$. It is obvious that $x_n > 0$ for all $n \in \mathbb{N}^*$, implying thus that $(x_n)_{n\in\mathbb{N}^*}$ is bounded. But then $(x_n)_{n\in\mathbb{N}^*}$ converges to a real number ℓ . Assuming, by contradiction, that $\ell \neq 0$, we get that

$$1 = \lim_{n \to \infty} \frac{x_{n+1}}{x_n} = \lim_{n \to \infty} \frac{2}{n+1} = 0,$$

a contradiction. Thus $\ell = 0$.

d) We notice that

$$x_{n+1} - x_n = \frac{n+1}{n^2 + 2n + 2} - \frac{n}{n^2 + 1} = \frac{-n^2 - n + 1}{(n^2 + 2n + 2)(n^2 + 1)} < 0 \text{ for all } n \in \mathbb{N}^*.$$

Thus $(x_n)_{n\in\mathbb{N}^*}$ is a strictly decreasing sequence. Moreover $x_n \leq x_1 = \frac{1}{2}$ for all $n \in \mathbb{N}^*$. It is obvious that $x_n > 0$ for all $n \in \mathbb{N}^*$, implying thus that $(x_n)_{n\in\mathbb{N}^*}$ is bounded. The sequence $(x_n)_{n\in\mathbb{N}^*}$ converges to 0.

(G8)

Case 3 $x \in \mathbb{R}$ and $y = -\infty$.

From $\lim_{n\to\infty} x_n = x$ we have that $\exists n(1) \in \mathbb{N}$ such that $|x_n - x| < 1, \forall n \ge n(1)$.

From $\lim_{n \to \infty} x_n = -\infty$ we have that $\exists n(x-1) \in \mathbb{N}$ such that $x_n < x-1, \forall n \ge n(x-1)$.

Fix a natural number $n \ge \max\{n(1), n(x-1)\}$, then we have

$$|x_n - x| < 1$$
 and $x_n < x - 1$.

As $x_n < x - 1$ we have that $|x_n - x| = x - x_n$. Hence we get

$$x - x_n < 1$$
 and $1 < x - x_n$

which is a contradiction.

Case 3 $x = -\infty$ and $y = \infty$.

From $\lim_{n\to\infty} x_n = -\infty$ we have that $\exists n(1) \in \mathbb{N}$ such that $x_n < 1, \forall n \geq n(1)$.

From $\lim_{n\to\infty} x_n = \infty$ we have that $\exists m(1) \in \mathbb{N}$ such that $x_n > 1, \forall n \geq m(1)$.

Fix a natural number $n \ge \max\{n(1), m(1)\}$, then we have

$$x_n < 1$$
 and $x_n > 1$,

which is a contradiction.

Homework:

(H 8)

1) a)
$$\lim_{n \to \infty} \frac{3^n}{4^n} = \lim_{n \to \infty} \left(\frac{3}{4}\right)^n = 0$$
, since $-1 < \frac{3}{4} < 1$.

b)
$$\lim_{n \to \infty} \frac{2^n + (-2)^n}{3^n} = \lim_{n \to \infty} \left(\left(\frac{2}{3} \right)^n + \left(-\frac{2}{3} \right)^n \right) = 0.$$

c)
$$\lim_{n \to \infty} \frac{5 - n^3}{n^2 + 1} = -\infty$$
.

d)
$$\lim_{n \to \infty} \left(2 + \frac{4^n + (-5)^n}{7^n + 1} \right)^{2n^3 - n^2} = 2^\infty = \infty.$$

e) Since $1 + 2 + \dots + n = \frac{n(n+1)}{2}$, we get

$$\lim_{n \to \infty} \frac{1 + 2 + \dots + n}{n^2} = \lim_{n \to \infty} \frac{n^2 + n}{2n^2} = \frac{1}{2}.$$

f)
$$\lim_{n \to \infty} \left(\frac{n^3 + 4n + 1}{2n^3 + 5} \right)^{\frac{-2n^4 + 1}{n^4 + 3n + 1}} = \left(\frac{1}{2} \right)^{-2} = 4.$$

g) $\lim_{n \to \infty} (\cos(-2013))^n = 0$, since $-1 < \cos(-2013) < 1$.

h)
$$\lim_{n \to \infty} \left(\frac{n^5 + 3n + 1}{2n^5 - n^4 + 3} \right)^{\frac{3n - n^4}{n^3 + 1}} = \left(\frac{1}{2} \right)^{-\infty} = \infty.$$

2) Note that $x_n = \frac{1}{\sqrt{n+1}+\sqrt{n}}$, for every $n \in \mathbb{N}$. The sequence $(\sqrt{n})_{n \in \mathbb{N}}$ being strictly increasing, we conclude that $(x_n)_{n \in \mathbb{N}}$ is strictly decreasing, hence bounded above. Since $x_n > 0$, for every $n \in \mathbb{N}$, the sequence is also bounded below. We have that $\lim_{n \to \infty} x_n = 0$, thus the sequence converges to 0.

(H9)

For every $n \geq 2$ we have that

$$(2^{2}-1)\cdot \cdot \cdot \cdot \cdot (n^{2}-1) = \prod_{k=2}^{n} (k^{2}-1) = \prod_{k=2}^{n} (k-1)(k+1) = (n-1)! \frac{(n+1)!}{2}.$$

We obtain that

$$a_n = \frac{(n-1)!(n+1)!}{2n! \, n!} = \frac{n+1}{2n},$$

thus $\lim_{n\to\infty} a_n = \frac{1}{2}$.

(H 10)

Let $x \in \mathbb{R}$ be arbitrary. We prove that x is the limit of a decreasing sequence of real numbers. By the density property of the set \mathbb{Q} , there exists a rational number $x_1 \in (x, x+1)$. Using once again this property, there exists a rational number $x_2 \in (x, \min\{x_1, x + \frac{1}{2}\})$. Thus $x < x_2 < x_1$ and $x_2 < x + \frac{1}{2}$. We continue inductively this procedure: Assuming that $x_n \in \mathbb{Q}$, $n \geq 2$, has been chosen such that $x < x_n < x_{n-1}$ and $x_n < x + \frac{1}{n}$, there exists (according to the density property of the set \mathbb{Q}) a rational number x_{n+1} such that $x_{n+1} \in (x, \min\{x_n, x + \frac{1}{n+1}\})$. Hence $x < x_{n+1} < x_n$ and $x_{n+1} < x + \frac{1}{n+1}$. This way we obtain the strictly decreasing sequence $(x_n)_{n \in \mathbb{N}^*}$ of rational numbers with the property that

$$x < x_n < x + \frac{1}{n}, \forall n \in \mathbb{N}^*.$$

Applying the Sandwich-Theorem, we conclude that $\lim_{n\to\infty} x_n = x$. Hence every real number is the limit of a decreasing sequence of rational numbers.

In order to prove that every real number is the limit of an increasing sequence of rationals, consider an arbitrary $x \in \mathbb{R}$. We already know that -x is the limit of a decreasing sequence $(x_n)_{n \in \mathbb{N}^*}$ of rationals. Then $(-x_n)_{n \in \mathbb{N}^*}$ is an increasing sequence of rationals converging to x.