Zoo Animal Classification using Machine Learning

Presented by
A. Laxmi Prasanna
S. Sameeksha

Introduction

- Machine Learning can classify animals using biological traits
- **Dataset:** Zoo dataset with 101 animals, 17 features
- *Goal:* Predict the class type (Mammal, Bird, Reptile, Fish, Amphibian, Insect, Others)
- Importance:
- ✓ Educational use in biology & AI
- ✓ Demonstrates ML on small categorical datasets
- ✓ Useful in zoology and data science training

Problem Statement

- *Input*: 17 binary/numeric features (hair, feathers, eggs, milk, aquatic, backbone, venomous, etc.)
- *Output:* Animal class (1–7)
- Challenges:
- ➤ Very small dataset (101 rows)
- Class imbalance (some classes only 1 animal)
- Similar species (e.g., Alligator vs Salamander) confuse the model

Dataset Overview

Files Used:

- $zoo.csv \rightarrow animal features$
- class.csv → mapping of class numbers
 → class labels

Structure:

- Features: 17 biological traits
- Target: class_type (1–7)

Class Distribution:

- Mammals dominate
- Some classes very rare
- challenge for ML

Data Preprocessing

Visual Exploration

Model Selection

Algorithms considered: Decision Tree, Logistic Regression

Chosen Model: XGBoost because:

Handles categorical-like binary/numeric features

Robust against overfitting

Performs well on small datasets

XGBoost Training & Tuning

 Hyperparameter tuning using GridSearchCV (5-fold CV)

Parameters tested:

- n_estimators: [50, 100, 200]
- max depth: [3, 6]
- learning_rate: [0.1, 0.01]
- Best Model saved as best_xgb_model.pkl
- Evaluation Metric: Accuracy

Results (Initial)

Test Accuracy: ~95%

Most classes predicted correctly

Misclassification:

Alligator → Amphibian (wrong)

Cause: Feature overlap with salamanders

Display Confusion Matrix (visual placeholder)

Feature Engineering

Added new features based on biological knowledge:

cold_blooded → reptiles, amphibians, fish

scales → reptiles, fish

metamorphosis → amphibians

Purpose: Improve separation between reptiles & amphibians

Results (After Feature Engineering)

Accuracy improved

Alligator → correctly predicted as Reptile (3)

Salamander → correctly predicted as Amphibian (5)

Cobra → correctly predicted as Reptile (3)

Updated Confusion Matrix shows fewer errors

Key Findings

 XGBoost is effective for small structured datasets Data quality and feature engineering matter more than model complexity

 Domain knowledge (biology) significantly improved predictions

 Even powerful ML models can fail without the right features

Built a robust animal classifier with XGBoost + engineered features

Conclusion

Achieved high accuracy and fixed misclassification issues

THANK YOU

Presented by

A. Laxmi Prasanna

S. Sameeksha

