

Eric Nowak

Lear

June 14, 2005

Contents

1	Introduction										
	1.1	Discriminative classifier , SEPARATE 2 classes	5								
	1.2	Linear and Non Linear boundary	6								
	1.3	Linear and Non Linear boundary	7								
	1.4	Maximum margin classifier	8								
2	$\operatorname{Th}\epsilon$	eory	9								
	2.1	constraints	9								
	2.2	optimization	10								
	2.3	non separable data	11								
	2.4	non separable data	12								
	2.5	non linear svm	13								

	2.6 2.7	non linear svm	
3	In p	practice	18
	3.1	Papers	18
	3.2	Softwares	18
	3.3	Action!	19
4	Con	nclusion	20

1 Introduction

SVMs are

- binary
- discriminative
- linear and non-linear
- maximum margin

classifiers

1 Introduction

SVMs are

- binary
- discriminative
- linear and non-linear
- maximum margin

classifiers

- extended to multiclass
- requiring parameters

1.1 Discriminative classifier, SEPARATE 2 classes

Table 1: Disciminative (left) vs Generative (right) classifiers

- \Rightarrow SVMs answer to is it A or B? but not to is it A?
- i.e. set label A or B to all points of the space

1.2 Linear and Non Linear boundary

1.3 Linear and Non Linear boundary

1.4 Maximum margin classifier

Trade-off Training set performance / Margin

 $Margin \Rightarrow Generalization$

2 Theory

2.1 constraints

- \mathbf{x}_i : ith sample, $y_i = \{0, 1\}$: ith label
- $g(x) = \mathbf{wx} + b = \sum w_j x_j + b$
- $\frac{1}{\|\mathbf{w}\|}$ = margin : maximized
- $\forall i \ y_i(\mathbf{w}\mathbf{x}_i + b) \ge 1$

2.2 optimization

- $g(x) = \mathbf{wx} + b = \sum w_j x_j + b$
- Lagrange:

$$-\mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

$$-L_D = \sum_i \alpha_i - 0.5 \sum_i \alpha_i \alpha_j y_i y_j \mathbf{x}_i \mathbf{x}_j$$

Conclusion:

- quadratic optimization problem : find the α_i
- problem defined in the $\mathbf{x}_i \mathbf{x}_j$

2.3 non separable data

- $\forall i \ y_i(\mathbf{w}\mathbf{x}_i + b) \ge 1 \xi_i \ , \ \xi_i \ge 0$
- minimize $||w|| + C \sum_{i} \xi_{i}$
- C is a parameter \Rightarrow 1D grid search

2.4 non separable data

minimize $||w|| + C \sum_{i} \xi_{i}$

Figure 1: Classifier 1 : C=0 - Classifier 2 : C=inf

2.5 non linear sym

Figure 2: In a higher dimensional space , it is easier to separate the classes

2.6 non linear sym

- $L_D = \sum_i \alpha_i 0.5 \sum_i \alpha_i \alpha_j y_i y_j \mathbf{x}_i \mathbf{x}_j$
- Throw the x_i into a higher dimensional space with $\Phi: E^n \to E^N, \ N >> n$
- $L_D \to \Phi(\mathbf{x}_i)\Phi(\mathbf{x}_j) \to K(\mathbf{x}_i,\mathbf{x}_j)$
- Kernels: no need to know Φ , K is enough
 - Linear : $K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i \mathbf{x}_j$
 - Polynomial: $K(\mathbf{x}_i, \mathbf{x}_j) = (1 + \mathbf{x}_i \mathbf{x}_j)^d$
 - RBF (+): $K(\mathbf{x}_i, \mathbf{x}_j) = e^{-\frac{\|x-y\|^2}{\sigma^2}}$

Parameters : d or σ AND $C \Rightarrow 2D$ grid search

Figure 3: RBF Kernel : medium sigma

2.7 multiclass SVMs

round	1-2	1-3	1-4	1-5	2-3	2-4	2-5	3-4	3-5	4-5
predict.	1	1	2	1	2	4	5	3	3	5

Table 2: One Versus One (1vs1) approach : max nb of votes - Cx(C-1)/2 classifiers - Real lab=1 - Predicted lab=1

2.7 multiclass SVMs

round	1-2	1-3	1-4	1-5	2-3	2-4	2-5	3-4	3-5	4-5
predict.	1	1	2	1	2	4	5	3	3	5

Table 2: One Versus One (1vs1) approach : max nb of votes - Cx(C-1)/2 classifiers - Real lab=1 - Predicted lab=1

round	1-r	2-r	3-r	4-r	5-r	
predict.	2.3	-0.8	-10	1.2	-1.5	

Table 3: One versus Rest (1vsR) approach : max prediction value - C classifiers - Real lab=1 - Predicted lab=1

1vs1 better: redundancy, specialization

3 In practice

3.1 Papers

- Vapnik 95
- C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. Knowledge Discovery and Data Mining, 2(2), 1998.

3.2 Softwares

http://kernel-machines.org/software.html

- C++: SVMLight (interface ; features +), LibSvm (contrary)
- Matlab : OsuSvm

3.3 Action!

```
1. // fL, fT : f.(i,j)= feat val j of object i
2. // labL, labT : l.(i) = label of object i
3. ScaleInfo si = fL.scaleEachDim(0,1);
4. fT.scaleEachDim(si);
5. ParamLin param(c);
6. //ParamRBF param(c,g);
7. Model model = param.train(fL,labL);
          = model.predict(fT);
8. pred
9. evalAccuracy(labT, pred);
```

Discriminative

Discriminative

Linear , non Linear : Occam's Razor

Discriminative

Linear , non Linear : Occam's Razor

Mutliclass strategy

Discriminative

Linear , non Linear : Occam's Razor

Mutliclass strategy

Margin parameter : C

Discriminative

Linear , non Linear : Occam's Razor

Mutliclass strategy

Margin parameter : C

RBF Kernel parameter : σ

Discriminative

Linear , non Linear : Occam's Razor

Mutliclass strategy

Margin parameter : C

RBF Kernel parameter : σ

Parameter(s): grid search

Discriminative

Linear , non Linear : Occam's Razor

Mutliclass strategy

Margin parameter : C

RBF Kernel parameter : σ

Parameter(s): grid search

Tricks

- Feature matrix normalization
- Never eval perf on training set

• ...