- E. Anderson, Z. Bai, C. Bischof, L. S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. C. Sorensen. *LAPACK Users' Guide*, 3rd ed. SIAM, Philadelphia, 1999.
- [2] ANSI/IEEE 754. Binary Floating Point Arithmetic. IEEE, New York, 1985.
- [3] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press, Addison-Wesley, New York, 1999.
- [4] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000.
- [5] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. van der Vorst. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, 1994.
- [6] B. Bergeron. Bioinformatics Computing. Prentice-Hall, New York, 2002.
- [7] P. Berkin. A survey on PageRank computing. Internet Math., 2:73–120, 2005.
- [8] M. Berry and M. Browne. Email surveillance using non-negative matrix factorization. *Comput. Math. Organization Theory*, 11:249–264, 2005.
- [9] M. W. Berry, S. T. Dumais, and G. W. O'Brien. Using linear algebra for intelligent information retrieval. SIAM Rev., 37:573-595, 1995.
- [10] M. J. A. Berry and G. Linoff. Mastering Data Mining. The Art and Science of Customer Relationship Management. John Wiley, New York, 2000.
- [11] M. W. Berry, ed. Computational Information Retrieval. SIAM, Philadelphia, 2001.
- [12] M. W. Berry and M. Browne. Understanding Search Engines. Mathematical Modeling and Text Retrieval, 2nd ed. SIAM, Philadelphia, 2005.

[13] M. W. Berry, M. Browne, A. Langville, V. P. Pauca, and R. J. Plemmons. Algorithms and Applications for Approximate Nonnegative Matrix Factorization. Technical report, Department of Computer Science, University of Tennessee, 2006.

- [14] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.
- [15] Å. Björck. The calculation of least squares problems. Acta Numer., 13:1–51, 2004.
- [16] K. Blom and A. Ruhe. A Krylov subspace method for information retrieval. SIAM J. Matrix Anal. Appl., 26:566–582, 2005.
- [17] V. D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. Van Dooren. A measure of similarity between graph vertices: Applications to synonym extraction and web searching. SIAM Rev., 46:647–666, 2004.
- [18] C. Boutsidis and E. Gallopoulos. On SVD-Based Initialization for Nonnegative Matrix Factorization. Technical Report HPCLAB-SCG-6/08-05, University of Patras, Patras, Greece, 2005.
- [19] S. Brin and L. Page. The anatomy of a large-scale hypertextual web search engine. Comput. Networks ISDN Syst., 30:107–117, 1998.
- [20] J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov. Metagenes and molecular pattern discovery using matrix factorization. *PNAS*, 101:4164–4169, 2004.
- [21] M. C. Burl, L. Asker, P. Smyth, U. Fayyad, P. Perona, L. Crumpler, and J. Aubele. Learning to recognize volcanoes on Venus. *Machine Learning*, 30:165–195, 1998.
- [22] P. A. Businger and G. H. Golub. Linear least squares solutions by Householder transformations. *Numer. Math.*, 7:269–276, 1965.
- [23] R. Chelappa, C. L. Wilson, and S. Sirohey. Human and machine recognition of faces: A survey. Proc. IEEE, 83:705–740, 1995.
- [24] N. Christianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge University Press, London, 2000.
- [25] K. J. Cios, W. Pedrycz, and R. W. Swiniarski. Data Mining. Methods for Knowledge Discovery. Kluwer, Boston, 1998.
- [26] J. M. Conroy, J. D. Schlesinger, D. P. O'Leary, and J. Goldstein. Back to basics: CLASSY 2006. In *DUC* 02 Conference Proceedings, 2006. Available at http://duc.nist.gov/pubs.html.
- [27] T. A. Davis. Direct Methods for Sparse Linear Systems. Fundamentals of Algorithms 2. SIAM, Philadelphia, 2006.

[28] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harsman. Indexing by latent semantic analysis. J. Amer. Soc. Inform. Sci., 41:391–407, 1990.

- [29] J. W. Demmel. Applied Numerical Linear Algebra. SIAM, Philadelphia, 1997.
- [30] I. S. Dhillon and D. S. Modha. Concept decompositions for large sparse text data using clustering. *Machine Learning*, 42:143–175, 2001.
- [31] R. O. Duda, P. E. Hart, and D. G. Storck. Pattern Classification, 2nd ed. Wiley-Interscience, New York, 2001.
- [32] L. Eldén. Partial least squares vs. Lanczos bidiagonalization I: Analysis of a projection method for multiple regression. *Comput. Statist. Data Anal.*, 46:11–31, 2004.
- [33] L. Eldén. Numerical linear algebra in data mining. *Acta Numer.*, 15:327–384, 2006.
- [34] L. Eldén, L. Wittmeyer-Koch, and H. Bruun Nielsen. *Introduction to Numerical Computation—Analysis and MATLAB Illustrations*. Studentlitteratur, Lund, 2004.
- [35] U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, eds. Advances in Knowledge Discovery and Data Mining. AAAI Press/The MIT Press, Menlo Park, CA, 1996.
- [36] J. H. Fowler and S. Jeon. The Authority of Supreme Court Precedent: A Network Analysis. Technical report, Department of Political Science, University of California, Davis, 2005.
- [37] Y. Gao and G. Church. Improving molecular cancer class discovery through sparse non-negative matrix factorization. *Bioinform.*, 21:3970–3975, 2005.
- [38] J. T. Giles, L. Wo, and M. W. Berry. GTP (General Text Parser) software for text mining. In *Statistical Data Mining and Knowledge Discovery*, H. Bozdogan, ed., CRC Press, Boca Raton, FL, 2003, pp. 455–471.
- [39] N. Goharian, A. Jain, and Q. Sun. Comparative analysis of sparse matrix algorithms for information retrieval. *J. System. Cybernet. Inform.*, 1, 2003.
- [40] G. H. Golub and C. Greif. An Arnoldi-type algorithm for computing pagerank. BIT, 46:759-771, 2006.
- [41] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix. SIAM J. Numer. Anal. Ser. B, 2:205–224, 1965.
- [42] G. H. Golub and C. F. Van Loan. *Matrix Computations*, 3rd ed. Johns Hopkins Press, Baltimore, 1996.
- [43] D. Grossman and O. Frieder. Information Retrieval: Algorithms and Heuristics. Kluwer, Boston, 1998.

[44] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen. Combating web spam with TrustRank. In Proc., 30th International Conference on Very Large Databases, Morgan Kaufmann, 2004, pp. 576–587.

- [45] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kaufmann, San Francisco, 2001.
- [46] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, Cambridge, MA, 2001.
- [47] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Data Mining, Inference and Prediction. Springer, New York, 2001.
- [48] T. H. Haveliwala and S. D. Kamvar. An Analytical Comparison of Approaches to Personalizing PageRank. Technical report, Computer Science Department, Stanford University, Stanford, CA, 2003.
- [49] M. Hegland. Data mining techniques. Acta Numer., 10:313–355, 2001.
- [50] N. J. Higham. Accuracy and Stability of Numerical Algorithms, 2nd ed. SIAM, Philadelphia, 2002.
- [51] I. C. F. Ipsen and S. Kirkland. Convergence analysis of a PageRank updating algorithm by Langville and Meyer. SIAM J. Matrix Anal. Appl., 27:952–967, 2006.
- [52] E. R. Jessup and J. H. Martin. Taking a new look at the latent semantic analysis approach to information retrieval. In *Computational Information Retrieval*, M. W. Berry, ed., SIAM, Philadelphia, 2001, pp. 121–144.
- [53] S. D. Kamvar, T. H. Haveliwala, and G. H. Golub. Adaptive methods for the computation of pagerank. *Linear Algebra Appl.*, 386:51–65, 2003.
- [54] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Exploiting the Block Structure of the Web for Computing PageRank. Technical report, Computer Science Department, Stanford University, Stanford, CA, 2003.
- [55] S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Extrapolation methods for accelerating PageRank computations. In *Proc.*, 12th International World Wide Web Conference, Budapest, 2003, pp. 261–270.
- [56] J. M. Kleinberg. Authoritative sources in a hyperlinked environment. J. Assoc. Comput. Mach., 46:604–632, 1999.
- [57] A. N. Langville and C. D. Meyer. Deeper inside PageRank. Internet Math., 1:335–380, 2005.
- [58] A. N. Langville and C. D. Meyer. A survey of eigenvector methods for web information retrieval. SIAM Rev., 47:135–161, 2005.

[59] A. N. Langville and C. D. Meyer. Google's PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton, NJ, 2006.

- [60] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl., 21:1253–1278, 2000.
- [61] C. L. Lawson and R. J. Hanson. Solving Least Squares Problems. Classics in Appl. Math. 15. SIAM, Philadelphia, 1995. Revised republication of work first published in 1974 by Prentice–Hall.
- [62] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. *Proc. IEEE*, 86:2278–2324, Nov. 1998.
- [63] D. Lee and H. Seung. Learning the parts of objects by non-negative matrix factorization. *Nature*, 401:788–791, Oct. 1999.
- [64] R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users' Guide: Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, 1998.
- [65] R. Lempel and S. Moran. Salsa: The stochastic approach for link-structure analysis. ACM Trans. Inform. Syst., 19:131–160, 2001.
- [66] O. Mangasarian and W. Wolberg. Cancer diagnosis via linear programming. SIAM News, 23:1,18, 1990.
- [67] I. Mani. Automatic Summarization. John Benjamins, Amsterdam, 2001.
- [68] Matlab User's Guide. Mathworks, Inc., Natick, MA, 1996.
- [69] J. Mena. Data Mining Your Website. Digital Press, Boston, 1999.
- [70] C. D. Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, Philadelphia, 2000.
- [71] C. Moler. The world's largest matrix computation. *Matlab News and Notes*, Oct. 2002, pp. 12–13.
- [72] J. L. Morrison, R. Breitling, D. J. Higham, and D. R. Gilbert. Generank: Using search engine technology for the analysis of microarray experiment. BMC Bioinform., 6:233, 2005.
- [73] P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. *Envi*ronmetrics, 5:111–126, 1994.
- [74] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation Ranking: Bringing Order to the Web. Stanford Digital Library Working Papers, Stanford, CA, 1998.

[75] C. C. Paige and M. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. *ACM Trans. Math. Software*, 8:43–71, 1982.

- [76] H. Park, M. Jeon, and J. Ben Rosen. Lower dimensional representation of text data in vector space based information retrieval. In *Computational Information Retrieval*, M. W. Berry, ed., SIAM, Philadelphia, 2001, pp. 3–23.
- [77] H. Park, M. Jeon, and J. B. Rosen. Lower dimensional representation of text data based on centroids and least squares. BIT, 43:427–448, 2003.
- [78] V. P. Pauca, J. Piper, and R. Plemmons. Nonnegative matrix factorization for spectral data analysis. *Linear Algebra Appl.*, 416:29–47, 2006.
- [79] Y. Saad. Numerical Methods for Large Eigenvalue Problems. Manchester University Press, Manchester, UK, 1992.
- [80] Y. Saad. *Iterative Methods for Sparse Linear Systems*, 2nd ed. SIAM, Philadelphia, 2003.
- [81] G. Salton, C. Yang, and A. Wong. A vector-space model for automatic indexing. Comm. Assoc. Comput. Mach., 18:613–620, 1975.
- [82] B. Savas. Analyses and Test of Handwritten Digit Algorithms. Master's thesis, Mathematics Department, Linköping University, 2002.
- [83] J. D. Schlesinger, J. M. Conroy, M. E. Okurowski, H. T. Wilson, D. P. O'Leary, A. Taylor, and J. Hobbs. Understanding machine performance in the context of human performance for multi-document summarization. In *DUC* 02 Conference Proceedings, 2002. Available at http://duc.nist.gov/pubs.html.
- [84] S. Serra-Capizzano. Jordan canonical form of the Google matrix: A potential contribution to the PageRank computation. SIAM J. Matrix Anal. Appl., 27:305–312, 2005.
- [85] F. Shahnaz, M. Berry, P. Pauca, and R. Plemmons. Document clustering using nonnegative matrix factorization. J. Inform. Proc. Management, 42:373–386, 2006.
- [86] P. Simard, Y. Le Cun, and J. S. Denker. Efficient pattern recognition using a new transformation distance. In *Advances in Neural Information Process*ing Systems 5, J. D. Cowan, S. J. Hanson, and C. L. Giles, eds., Morgan Kaufmann, San Francisco, 1993, pp. 50–58.
- [87] P. Y. Simard, Y.A. Le Cun, J. S. Denker, and B. Victorri. Transformation invariance in pattern recognition—tangent distance and tangent propagation. *Internat. J. Imaging System Tech.*, 11:181–194, 2001.
- [88] L. Sirovich and M. Kirby. Low dimensional procedures for the characterization of human faces. J. Optical Soc. Amer. A, 4:519–524, 1987.

[89] M. Sjöström and S. Wold. SIMCA: A pattern recognition method based on principal component models. In *Pattern Recognition in Practice*, E. S. Gelsema and L. N. Kanal, eds., North-Holland, Amsterdam, 1980, pp. 351– 359.

- [90] P. Smaragdis and J. Brown. Non-negative matrix factorization for polyphonic music transcription. In Proc., IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 2003, pp. 177–180.
- [91] A. Smilde, R. Bro, and P. Geladi. Multi-way Analysis: Applications in the Chemical Sciences. John Wiley, New York, 2004.
- [92] G. W. Stewart. Matrix Algorithms: Basic Decompositions. SIAM, Philadelphia, 1998.
- [93] G. W. Stewart. Matrix Algorithms Volume II: Eigensystems. SIAM, Philadelphia, 2001.
- [94] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory. Academic Press, Boston, 1990.
- [95] J. B. Tenenbaum and W. T. Freeman. Separating style and content with bilinear models. *Neural Comput.*, 12:1247–1283, 2000.
- [96] M. Totty and M. Mangalindan. As Google becomes Web's gatekeeper, sites fight to get in. Wall Street Journal, 39, Feb. 26, 2003.
- [97] L. N. Trefethen and D. B. Bau, III. Numerical Linear Algebra. SIAM Philadelphia, 1997.
- [98] L. R. Tucker. The extension of factor analysis to three-dimensional matrices. In *Contributions to Mathematical Psychology*, H. Gulliksen and N. Frederiksen, eds., Holt, Rinehart and Winston, New York, 1964, pp. 109–127.
- [99] L. R. Tucker. Some mathematical notes on three-mode factor analysis. *Psy-chometrika*, 31:279–311, 1966.
- [100] M. A. Turk and A. P. Pentland. Eigenfaces for recognition. J. Cognitive Neurosci., 3:71–86, 1991.
- [101] G. van den Bergen. Collision Detection in Interactive 3D Environments. Morgan Kaufmann, San Francisco, 2004.
- [102] M. A. O. Vasilescu. Human motion signatures: Analysis, synthesis, recognition. In Proc., International Conference on Pattern Recognition (ICPR '02), Quebec City, Canada, 2002.
- [103] M. A. O. Vasilescu and D. Terzopoulos. Multilinear analysis of image ensembles: Tensorfaces. In Proc., 7th European Conference on Computer Vision (ECCV '02), Copenhagen, Denmark, Lecture Notes in Computer Science 2350, Springer-Verlag, New York, 2002, pp. 447–460.

[104] M. A. O. Vasilescu and D. Terzopoulos. Multilinear image analysis for facial recognition. In Proc., International Conference on Pattern Recognition (ICPR '02), Quebec City, Canada, 2002, pp. 511–514.

- [105] M. A. O. Vasilescu and D. Terzopoulos. Multilinear subspace analysis of image ensembles. In Proc., IEEE Conference on Computer Vision and Pattern Recognition (CVPR '03), Madison, WI, 2003, pp. 93–99.
- [106] P. Å. Wedin. Perturbation theory for pseudoinverses. BIT, 13:344–354, 1973.
- [107] J. H. Wilkinson. Global convergene of tridiagonal qr algorithm with origin shifts. Linear Algebra Appl., 1:409–420, 1968.
- [108] I. H. Witten and E. Frank. Data Mining. Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann, San Francisco, 2000.
- [109] H. Wold. Soft modeling by latent variables: The nonlinear iterative partial least squares approach. In *Perspectives in Probability and Statistics, Papers* in *Honour of M. S. Bartlett*, J. Gani, ed., Academic Press, London, 1975.
- [110] S. Wold, A. Ruhe, H. Wold, and W. J. Dunn, III. The collinearity problem in linear regression. The partial least squares (PLS) approach to generalized inverses. SIAM J. Sci. Stat. Comput., 5:735–743, 1984.
- [111] S. Wold, M. Sjöström, and L. Eriksson. PLS-regression: A basic tool of chemometrics. *Chemometrics Intell. Lab. Systems*, 58:109–130, 2001.
- [112] S. Wolfram. *The Mathematica Book*, 4th ed. Cambridge University Press, London, 1999.
- [113] D. Zeimpekis and E. Gallopoulos. Design of a MATLAB toolbox for term-document matrix generation. In *Proc.*, Workshop on Clustering High Dimensional Data and Its Applications, I. S. Dhillon, J. Kogan, and J. Ghosh, eds., Newport Beach, CA, 2005, pp. 38–48.
- [114] H. Zha. Generic summarization and keyphrase extraction using mutual reinforcement principle and sentence clustering. In *Proc.*, 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Tampere, Finland, 2002, pp. 113–120.

1-norm, 17	analysis, 27
matrix, 19	stability, 54
vector, 17	band matrix, 29
2-norm, 17, 61	bandwidth, 29
matrix, 19	basis, 20, 37
vector, 17	matrix, 99
3-mode array, 91	orthogonal, 50
	orthonormal, 38, 65
absolute error, 17	vector, 14, 165, 173
adjacency matrix, 159	bidiagonal matrix, 81, 196
Aitken extrapolation, 159	bidiagonalization
algebra, multilinear, 91	Householder, 81
all-orthogonality, 95	Lanczos-Golub-Kahan, 80, 84, 85,
ALS, see alternating least squares	142, 146, 201, 206
alternating least squares, 106	partial, 206
angle, 18	bilinear form, 172
animation, 10	bioinformatics, 3, 108
approximation	BLAS, 14, 207
low-rank, 63, 89, 109, 135, 139,	breast cancer diagnosis, 103
145, 168	bulge, 195
rank-1, 164	
rank-k, 135, 165	cancellation, 11, 43, 76
Arnoldi	cancer, 103
decomposition, 203	centroid, 102, 114, 139
method, 159, 203, 204, 208	approximation, 146
implicitly restarted, 205	chemometrics, 92, 94
recursion, 203	Cholesky decomposition, 26, 30, 207
ARPACK, 72, 208	classification, 75, 114, 120, 127, 172-
array	174
n-mode, 91	cluster, 101, 114, 139
n-way, 91	coherence, 102
ATLAS, 207	clustering, 139, 165
authority, 159	coherence, cluster, 102
score, 159	column pivoting, 72, 165
	column-stochastic matrix, 150
backward	complete orthogonal decomposition, 72
error, 9, 46, 54	compressed column storage, 200

	- h
compressed row storage, 199	e-business, 3
computer games, 10	eigenfaces, 169
computer graphics, 10	eigenspace, 182
concept vector, 139	eigenvalue, 150
condition number, 26, 34, 35, 69	decomposition, 182, 200
coordinates, 14, 50, 89, 103, 165, 173	dominant, 152
core tensor, 95, 170	perturbation, 181, 183
cosine distance, 18, 114, 132, 136, 140,	problem, 7
141	sensitivity, 180
	similarity transformation, 180
data	eigenvector, 150, 196
compression, 63, 100, 175	perturbation, 181, 184
matrix, 66	email surveillance, 108
deflated, 66	equation, polynomial, 179
quality, 37	equivalent vector norms, 17
reduction, 20	error
decomposition	absolute, 17
Cholesky, 26, 30, 207	backward, 9, 46, 54
eigenvalue, 182, 200	backward analysis, 27
LDL^T , 25	floating point, 9, 46, 53
LU, 24, 207	forward, 9
tridiagonal, 30	relative, 9, 17
QR, 49, 161, 207	Euclidean
column pivoting, 72, 165	distance, 17, 113, 122
thin, 49	norm, 123
Schur, 182, 197, 200, 207	vector norm, 17, 19
complex, 183	explanatory variable, 75
partial, 182, 204	
real, 182	face recognition, 172
singular value, 57, 116, 135, 207	FIFA, 4, 79, 105
thin, 59	finite algorithm, 190
dense matrix, 31, 42, 179, 185	floating point
dependent variable, 75	arithmetic, 9, 46, 155, 190, 196
determinant, 179	error, $9, 46, 53$
diagonal matrix, 12	operation, 8
digits, handwritten, 6, 91, 97, 113–	overflow, 10, 156
128	standard (IEEE), 9
distance	underflow, 10, 156
cosine, 18, 114, 132, 136, 140, 141	flop, 8
Euclidean, 17, 113, 122	count, 45, 53, 195, 197
tangent, 122, 124	football, 4, 80, 110
document	forward error, 9
clustering, 108, 139	frequency, term, 132
weighting, 132, 162	Frobenius norm, $19, 40, 64, 92, 99$
dominant eigenvalue, 152	fundamental subspace, 62

Gauss transformation, 23 Gaussian elimination, 23 generank, 159 Gilbert–Johnson–Keerthi algorithm, 10 Givens rotation, see plane rotation Google, 4, 7, 79, 104, 109, 147 matrix, 153 Gram–Schmidt, 90 graph Internet, 148 link, 7, 149 strongly connected, 152	information retrieval, 3, 4, 103, 129, 133, 161, 200 initialization, SVD, 108 inlink, 7, 148, 159 inner product, 15, 17, 92 Internet, 3, 4, 7, 147, 164 graph, 148 invariant subspace, 182 inverse document frequency, 132 inverse iteration, 186, 196, 198 inverse matrix, 21, 31 inverted index, 130
GTP, see text parser	irreducible matrix, 151
handwritten digits, 6, 91, 97, 113–128 classification, 6, 91 U.S. Postal Service database, 6, 97, 113, 114, 121, 122, 128	k-means algorithm, 102, 139 Kahan matrix, 74 Karhunen–Loewe expansion, 58 Krylov subspace, 80, 89, 201, 203
Hessenberg matrix, 197 HITS, see hypertext induced topic search Hooke's law, 31 HOSVD, 94, 170 thin, 96, 170	Lanczos method, 72, 208 bidiagonalization, 84, 85 tridiagonalization, 206, 207 implicitly restarted, 206, 207 Lanczos-Golub-Kahan bidiagonaliza-
truncated, 175 Householder bidiagonalization, 81 matrix, 43 transformation, 43, 46, 47, 53, 80, 188, 196, 197	tion, 80, 84, 85, 142, 146, 201, 206 LAPACK, 14, 72, 179, 189, 207 latent semantic analysis, 135 latent semantic indexing, 130, 135, 146 LATEX, 161, 163
HTML, 132, 161 hub, 159	LDL^{T} decomposition, 25 least squares, 31, 85
score, 159 hypertext induced topic search, 159	alternating, 106 method, 32
IEEE arithmetic, 9 double precision, 9 floating point standard, 9 single precision, 9	nonnegative, 106 normal equations, 33, 54 perturbation, 69 prediction, 75 problem, 32, 51, 66, 85, 117
ill-conditioned matrix, 27 implicit Q theorem, 194	solution minimum norm, 70
implicit shift, 194, 197	QR decomposition, 51
index, 130, 137	SVD, 68
inverted, 130	lexical scanner, 163
infinity norm matrix, 19	library catalogue, 129 linear independence, 20

multiplication, 15, 93
outer product, 16
nonsingular, 21
null-space, 61
orthogonal, 39
permutation, 24, 72, 165
positive, 152
positive definite, 25
range, 61, 182
rank, 21
rank-1, 21, 152
rank-deficient, 70
rectangular, 23
reducible, 151
reflection, 43
rotation, 40, 47, 55, 197
sparse, 5, 132, 163, 185, 198, 200,
208
storage, 199, 200
symmetric, 25
term-document, 4, 91, 104, 130,
131, 135
term-sentence, 162
transition, 150
triangular, 23
tridiagonal, 29, 188, 197, 205
upper quasi-triangular, 182
upper triangular, 47
matrix norm, 18
1-norm, 19
2-norm, 61
Frobenius, 19, 40, 64
infinity norm, 19
matrix-vector multiplication, 13
max-norm, 17
vector, 17
medical abstracts, 129
Medline, 129, 136, 140, 142, 144, 145
microarray, 159
mode, 91
model, reduced rank, 77, 115
MPI, 207
multilinear algebra, 91
multiplication
i-mode, 92
matrix, 15, 93

matrix-vector, 13	outer product, 16, 59
tensor-matrix, 92	outlink, 7, 148, 159
music transcription, 108	overdetermined system, 23, 31, 32, 51,
mutual reinforcement principle, 162	66
	overflow, 10, 156
n-way array, 91	, ,
natural language processing, 161	p-norm, vector, 17
Netlib, 207	pagerank, 147–159, 161
network analysis, 159	parser, text, 132, 161, 163
noise	partial least squares, see PLS
reduction, 145	partial pivoting, 23, 30
removal, 63	pattern recognition, 6
nonnegative least squares, 106	PCA, see principal component analy-
nonnegative matrix factorization, 102,	sis
106, 141, 146, 161, 165, 168	performance modeling, 133
nonsingular matrix, 21	permutation matrix, 24, 72, 165
norm	Perron–Frobenius theorem, 152
1-norm, 17	personalization vector, 154
Euclidean, 123	perturbation
matrix, 18	eigenvalue, 181, 183
1-norm, 19	eigenvector, 181, 184
2-norm, 61	least squares, 69
Frobenius, 19, 40, 64	theory, 26, 28, 180
infinity, 19	plane rotation, 40, 46, 47, 55, 197
maximum, 17	PLS, see projection to latent struc-
operator, 18	tures
p-norm, 17	polynomial equation, 179
tensor, 92	Porter stemmer, 131
Frobenius, 92, 99	positive definite matrix, 25
vector, 17	positive matrix, 152
Euclidean, 17, 19	power method, 150, 154, 185, 201, 204
normal equations, 33, 54	precision, 133
null-space, 61	prediction, 75
numerical rank, 63, 72, 76	preprocessing, 130
an anatan nama 10	principal component, 58
operator norm, 18	analysis, 66, 169
orthogonal	regression, 78, 144
basis, 50	projection to latent structures, 80, 89,
decomposition, complete, 72	142
matrix, 39	pseudoinverse, 71
similarity transformation, 180, 187	psychometrics, 92, 94
transformation, floating point, 46	0.5 1 11 150 100
vectors, 18, 38	QR algorithm, 179, 180
orthonormal	convergence, 194, 198
basis, 38, 65	nonsymmetric, 197
vectors, 38	symmetric, 190, 192

QR decomposition, 49, 161, 207	Schur decomposition, 182, 197, 200,
column pivoting, 72, 165	207
thin, 49	partial, 182, 204
updating, 54	search engine, 3, 7, 130, 147, 161
gr function, 50	semantic structure, 135
query, 5, 79, 129–147, 159	shift, 186
matching, 132–146	implicit, 194, 197
maccining, 192 140	Wilkinson, 190
non dom	SIMCA, 121
random	similarity transformation, orthogonal,
surfer, 150	180, 187
walk, 150	singular
range, 61, 182	image, 116
rank, 21	value, 58, 163
numerical, 63, 72, 76	<i>i</i> -mode, 95
rank-1	tensor, 95
approximation, 164	vector, 58, 163
matrix, 21, 152	singular value decomposition, 57, 94,
rank-deficient matrix, 70	116, 130, 135, 163, 165, 168,
rank- k approximation, 135, 165	169, 200, 206, 207
ranking, 4, 147, 148, 159	computation, 72, 196
vector, 148	- · · · · · · · · · · · · · · · · · · ·
recall, 134	expansion, 59
rectangular matrix, 23	Lanczos-Golub-Kahan method, 108,
reduced rank model, 77, 115	206
reducible matrix, 151	outer product form, 59
reflection matrix, 43	tensor, 94
regression, principal component, 78,	thin, 59
144	truncated, 63, 78, 136
relative	slice (of a tensor), 93
error, 9, 17	software, 207
residual, 75	sparse matrix, 5, 132, 163, 185, 198,
reorthogonalization, 90, 204	200, 208
residual	storage, 199, 200
relative, 75	spectral analysis, 108
vector, 32, 117	spring constant, 31
rotation	SPSS, 208
Givens, 40	stemmer, Porter, 131
plane, 40, 46, 47, 55, 197	stemming, 130, 161
rotation matrix, 55, 197	stop word, 130, 161
rounding error, 9	strongly connected graph, 152
rounding error, 9	subspace
1 4 4 4 4	fundamental, 62
saliency score, 162	invariant, 182
SAS, 208	Krylov, 80, 89, 201, 203
SAXPY, 14, 15	summarization, text, 161–168
ScaLAPACK, 207	Supreme Court precedent, 159

surfer, random, 150	orthogonal, floating point, 46
SVD, see singular value decomposi-	parallel hyperbolic, 126
tion	rotation, 125
svd function, 60, 72	scaling, 126
svds function, 72, 108, 207	similarity, orthogonal, 180, 187
	thickening, 127
symmetric matrix, 25	
synonym extraction, 159	translation, 125
tag, 161	transition matrix, 150
	TREC, see Text Retrieval Conference
distance 122 124	triangle inequality, 17, 18
distance, 122, 124	triangular matrix, 23
plane, 123	tridiagonal matrix, 29, 188, 197, 205
teleportation, 153, 164	truncated HOSVD, 175
tensor, 11, 91–100, 169–176	truncated SVD, 63, 78, 136
core, 95, 170	Tucker model, 94
SVD, 94	
unfolding, 93	underdetermined system, 71
TensorFaces, 169	underflow, 10, 156
term, 130, 162	unfolding, 93
frequency, 132	unit roundoff, 9, 27, 46, 192, 196
weighting, 132, 162	updating QR decomposition, 54
term-document matrix, 4 , 91 , 104 , 130 ,	upper quasi-triangular matrix, 182
131, 135	upper triangular matrix, 47
term-sentence matrix, 162	U.S. Postal Service database, 6, 97,
test set, 114–116	113, 114, 121, 122, 128
text mining, 103, 129–146	
text parser, 132, 161	variable
GTP, 131	dependent, 75
TMG, 163	explanatory, 75
Text Retrieval Conference, 145	vector
text summarization, 161–168	basis, 14, 173
theorem	concept, 139
implicit Q, 194	norm, 17
Perron–Frobenius, 152	1-norm, 17
thin	2-norm, 17
HOSVD, 96, 170	equivalence, 17
QR, 49	Euclidean, 17, 19
SVD, 59	max-norm, 17
TMG, see text parser	personalization, 154
trace, 19, 92	ranking, 148
training set, 91, 114–116, 120, 127	residual, 117
transformation	singular, 163
diagonal hyperbolic, 126	vector space model, 130, 146, 161
Gauss, 23	vectors
Householder, 43, 46, 47, 53, 80,	orthogonal, 18, 38
188, 196, 197	orthonormal, 38
100, 100, 101	010110111101, 00

```
volcanos on Venus, 3
```

```
Web page, 4
Web search engine, see search engine weighting
document, 132, 162
term, 132, 162
Wilkinson shift, 190
```

XML, 132

Yale Face Database, 170

zip code, 113