Respostas da Primeira Lista Quinzenal

Daniel Alves de Lima

Exercício 1. Semigrupo: $\forall a, b, c \in \mathbb{R}$, $a \sim (b \sim c) = a \sim (b + c - bc) = a + (b + c - bc) - a(b + c - bc) = a + b + c - bc - ab - ac + abc = (a + b - ab) + c - (a + b - ab)c = (a + b - ab) \sim c = (a \sim b) \sim c$

Monoide: Temos que 0 é o elemento neutro: $\forall a \in \mathbb{R}, \ a \sim 0 = a + 0 - a0 = 0 + a - 0a = 0 \sim a = a$

Por último, (\mathbb{R}, \sim) não é grupo pois 1 não possui inverso. Com efeito, se houvesse um inverso $x \in \mathbb{R}$ de 1, teríamos $1 \sim x = 0$ ou seja 1 = 1 + x - 1x = 0 um absurdo.

Exercício 2. Se \sim é uma relação de equivalência, então são satisfeitas as condições:

1.
$$e = aa^{-1} \in S$$

$$2. ab^{-1} \in S \Longrightarrow ba^{-1} \in S$$

3.
$$ab^{-1} \in S \ e \ bc^{-1} \in S \Longrightarrow ac^{-1} \in S$$

Temos que $S \neq \emptyset$, pois $e \in S$. Sejam dados $a \in S$ e $b \in S$. Pelo item 2, temos $b = be = be^{-1} \in S \Longrightarrow b^{-1} = eb^{-1} \in S$. Pelo item 3, temos $a = ae^{-1} \in S$ e $b^{-1} = eb^{-1} \in S$ que implica $ab^{-1} \in S$. Logo, S é subgrupo de G.

Reciprocamente, por S ser subgrupo, temos:

1.
$$e = aa^{-1} \in S$$

2.
$$ab^{-1} \in S \Longrightarrow ba^{-1} = (ab^{-1})^{-1} \in S$$

3.
$$ab^{-1} \in S \ e \ bc^{-1} \in S \Longrightarrow ac^{-1} = (ab^{-1})(bc^{-1}) \in S$$

Logo, ~ é uma relação de equivalência.

Exercício 3. O grupo H gerado pelos elementos C e D é $\{I, C, C^2, C^3, D, CD, C^2D, C^3D\}$ bastando calcular as potencias do tipo C^iD^j e D^iC^j para determinar estes elementos. Com efeito,

$$C^{2} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, C^{3} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, C^{4} = D^{2} = I$$

$$CD = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = DC^3, C^2D = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} = DC^2$$

$$C^3D = \begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} = DC$$

Sendo $D_4 = \{R, R^2, R^3, id, T_x, T_y, T_{1,3}, T_{2,4}\}$ o grupo de simetrias do quadrado, definimos uma bijeção do seguinte modo:

 $id \mapsto I$

 $R \mapsto C$

 $R^2 \mapsto C^2$

 $R^3 \mapsto C^3$

 $T_x \mapsto D$

 $T_{1,3} \mapsto CD$

 $T_y \mapsto C^2 D$

 $T_{2.4} \mapsto C^3 D$

Notando que $RT_x = T_x R^3 = T_{1,3}$, $R^2T_x = T_x R^2 = T_y$ e $R^3T_x = T_x R = T_{2,4}$, vemos que esta função é um isomorfismo entre H e D_4 .

Exercício 4. A ida é trivial. Vejamos a recíproca. Dados $a \in S$ e $b \in S$, temos que $b^{-1} \in S$, e portanto, $ab^{-1} \in S$. Logo, S é subgrupo de G (Teorema 2.5 do capitulo 1, Hungerford).

Exercício 5. a) $(AutG, \circ)$ é associativa: $\forall f, g, h \in AutG, \forall x \in G; f \circ (g \circ h)(x) = f(g \circ h(x)) = f(g(h(x))) = (f \circ g)(h(x)) = (f \circ g) \circ h(x), \text{ ou seja, } f \circ (g \circ h) = (f \circ g) \circ h.$

Como a função identidade é o elemento neutro e todo $f \in AutG$ possui inversa $f^{-1} \in AutG$ à esquerda e direita, logo $(AutG, \circ)$ é um grupo.

b) $Aut\mathbb{Z} \simeq \mathbb{Z}_2 : Dado \ f \in Aut\mathbb{Z}, \ temos \ que \ f(n) = nf(1), \ \forall n \in \mathbb{Z}. \ Se \ fosse \ f(1) \neq -1, \ teríamos \ f(\mathbb{Z}) \neq \mathbb{Z} \ um \ absurdo. \ Então, \ deve \ ser \ f(1) = 1 \ ou \ f(1) = -1. \ Se \ f(1) = 1, \ temos \ f(n) = n = id(n) \ donde \ f = id. \ Se \ f(1) = -1, \ temos \ f(n) = -n = -id(n) \ donde \ f = -id. \ Logo, \ Aut\mathbb{Z} = \{id, -id\}. \ \acute{E} \ fácil \ verificar \ que \ a \ função \ \varphi : \mathbb{Z}_2 \longrightarrow Aut\mathbb{Z}, \ onde \ \varphi(\bar{0}) = id \ e \ \varphi(\bar{1}) = -id, \ \acute{e} \ um \ isomorfismo.$

 $Aut\mathbb{Z}_6 \simeq \mathbb{Z}_2 : Dado \ f \in Aut\mathbb{Z}_6, \ temos \ que \ f(\bar{n}) = \bar{n}f(\bar{1}). \ Temos \ que \ f(\bar{1}) = \bar{0} \Longrightarrow f(\mathbb{Z}_6) = \{0\}, \ f(\bar{1}) = \bar{2} \Longrightarrow f(\mathbb{Z}_6) = \{0,2,4\}, \ f(\bar{1}) = \bar{3} \Longrightarrow f(\mathbb{Z}_6) = \{0,3\}, \ f(\bar{1}) = \bar{4} \Longrightarrow f(\mathbb{Z}_6) = \{0,2,4\} \ e \ por \ \'{u}ltimo, \ f(\bar{1}) = \bar{5} = \bar{-1} \Longrightarrow f(\mathbb{Z}_6) = \mathbb{Z}_6.$ Portanto, devemos ter $f(\bar{1}) = \bar{1}$ ou $f(\bar{1}) = \bar{-1}$ (que são os $\'{u}nicos$ casos no qual se tem $f(\mathbb{Z}_6) = \mathbb{Z}_6$). Por um argumento análogo ao da letra a), conclui-se que $Aut\mathbb{Z}_6 = \{id, -id\} \ e \ Aut\mathbb{Z}_6 \simeq \mathbb{Z}_2.$