Espaces vectoriels normés

I. Généralités

I.1. Normes sur un espace vectoriel

Définition. Soit E un espace vectoriel sur \mathbb{K} . Une norme sur E est une application N définie sur E vérifiant

- $\forall x \in E \quad N(x) \in \mathbb{R}_+ \quad et \quad [N(x) = 0 \Longrightarrow x = 0_E];$
- $\forall x \in E \quad \forall \lambda \in \mathbb{K} \quad N(\lambda x) = |\lambda| N(x)$;
- $\forall (x,y) \in E^2$ $N(x+y) \leq N(x) + N(y)$.

Définition. Un espace vectoriel normé est un couple (E, N) où E est un espace $vectoriel\ et\ N\ une\ norme\ sur\ E.$

Dans toute la suite, on supposera donné un tel espace vectoriel E, et on notera $\| \| \|$ la norme choisie sur E.

Proposition I.1. *Pour tout* $(x, y) \in E^2$, *on* $a | ||x|| - ||y|| | \leq ||x - y||$.

Définition. On dit qu'un vecteur est unitaire si sa norme vaut 1.

I.2. Normes usuelles

I.2.1. En dimension finie

Proposition I.2. Si $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , les applications

- $\| \|_1 : x = (x_1, \dots, x_n) \longmapsto \|x\|_1 = \sum_{k=1}^n |x_k|$ $\| \|_{\infty} : x = (x_1, \dots, x_n) \longmapsto \|x\|_{\infty} = \max\{|x_k|; k \in [1, n]\}$

sont des normes sur \mathbb{K}^n .

L'application $\| \|_2 : x = (x_1, \dots, x_n) \longmapsto \|x\|_2 = \sqrt{\sum_{k=1}^n x_k^2}$ $sur \mathbb{R}^n$.

I.2.2. Espaces de suites

Proposition I.3. Sur l'espace $B(\mathbb{N}, \mathbb{K})$ des suites bornées d'éléments de \mathbb{K} , l'application $\| \|_{\infty} : u = (u_n)_{n \in \mathbb{N}} \longmapsto \|u\|_{\infty} = \sup\{|u_k|; k \in \mathbb{N}\} \text{ est une norme.}$

Sur l'espace $\ell^1(\mathbb{N},\mathbb{K})$ des suites (u_n) d'éléments de \mathbb{K} pour lesquels la série $\sum |u_n|$ converge (espace des séries absolument convergentes), l'application $\|\cdot\|_1$: $u = (u_n)_{n \in \mathbb{N}} \longmapsto ||u||_1 = \sum_{k=0}^{+\infty} |u_k| \text{ est une norme.}$

I.2.3. Espaces de fonctions

Proposition I.4. Soit A un ensemble quelconque, Sur l'espace $B(A, \mathbb{K})$ des fonctions bornées de A dans \mathbb{K} , l'application $\| \|_{\infty} : f \longmapsto \| f \|_{\infty} = \sup \{ |f(a)|; a \in A \}$ est une norme.

Soit I un intervalle de \mathbb{R} . Sur l'espace $\mathcal{L}^1(I,\mathbb{K})$ des fonctions continues et intégrables de I dans K, l'application $\| \cdot \|_1 : f \longmapsto \| f \|_1 = \int_T |f(t)| dt$ est une norme.

I.3. Distance

Définition. Si E est un espace vectoriel normé et $(x,y) \in E^2$, on appelle distance $de \ x \ a \ y \ le \ r\'eel \ d(x,y) = ||y-x||.$

Proposition I.5. • $\forall (x,y) \in E^2$ d(y,x) = d(x,y);

- $\forall (x,y) \in E^2$ $d(x,y) \in \mathbb{R}_+$ et $\left[d(x,y) = 0 \iff x = y\right]$; $\forall (x,y,z) \in E^3$ $d(x,z) \leqslant d(x,y) + d(y,z)$.

Définition. Soient $a \in E$ et $r \in \mathbb{R}_+$. On appelle boule ouverte de centre a et de rayon r l'ensemble $B(a,r) = \{x \in E \mid d(x,a) < r\}$; on appelle **boule fermée** de centre a et de rayon r l'ensemble $B'(a,r) = \{x \in E \mid d(x,a) \leq r\}.$

Définition. On dit qu'une partie A de E est bornée s'il existe un réel M tel que $||x|| \leq M$ pour tout $x \in A$.

Proposition I.6. Les boules (ouvertes ou fermées) sont des parties bornées.

Définition. Si A est une partie non vide de E, et si $x \in E$, on appelle distance $de\ x\ a\ A\ le\ nombre\ d(x,A) = \inf\{d(x,a)\ ;\ a\in A\}.$

I.4. Parties convexes

Définition. Soit $(a,b) \in E^2$; on appelle **segment** d'extrémités a et b, l'ensemble $de\ vecteurs\ [ab] = \{(1-t)a + tb; t \in [0,1]\}.$

On dit qu'une partie C de E est convexe si, pour tout $(a,b) \in C^2$, [ab] est inclus dans C.

Proposition I.7. Toute boule (ouverte ou fermée) est une partie convexe.

I.5. Applications lipschitziennes

Définition. On dit qu'une application f d'un espace vectoriel normé E dans un espace vectoriel normé F est lipschitzienne s'il existe un réel k vérifiant $\forall (x,y) \in E^2 \quad ||f(x) - f(y)|| \leq k||x - y||$. On dit alors que f est lipschitzienne de rapport k, ou k-lipschitzienne.

Proposition I.8. L'application $x \mapsto ||x||$ est 1-lipschitzienne.

Si A est une partie non vide de E, l'application $x \mapsto d(x,A)$ est 1-lipschitzienne.

Proposition I.9. Une combinaison linéaire d'applications lipschitziennes est lipschitzienne.

Une composée d'applications lipschitziennes est lipschitzienne.

I.6. Espace vectoriel normé produit

Proposition I.10. Soient $(E, || ||_E)$ et $(F, || ||_F)$ deux espaces vectoriels normés. L'application $N: E \times F \longrightarrow \mathbb{R}$, $(x, y) \longmapsto \max\{||x||_E, ||y||_F\}$ définit une norme sur $E \times F$.

L'espace $E \times F$, muni de cette norme, est appelé **espace vectoriel normé produit** de $(E, || \cdot ||_E)$ et $(F, || \cdot ||_F)$.

Proposition I.11. L'application $\pi_1 : E \times F \longrightarrow E$, $(x,y) \longmapsto x$ est une application linéaire et 1-lipschitzienne, appelée **première projection** associée à $E \times F$.

II. Suites dans un espace vectoriel normé

II.1. Convergence

Définition. Soit (u_n) une suite de vecteurs de E, et $\ell \in E$. On dit que la suite (u_n) a pour limite ℓ si

$$\forall \varepsilon > 0 \quad \exists n_0 \in \mathbb{N} \quad \forall n \geqslant n_0 \quad ||u_n - \ell|| \leqslant \varepsilon$$

Proposition II.1. La suite vectorielle (u_n) tend vers le vecteur ℓ si et seulement si la suite réelle $(\|u_n - \ell\|)$ a pour limite ℓ .

Proposition II.2. • Si une suite vectorielle admet une limite, alors elle en a une seule.

- Si la suite vectorielle (u_n) a pour limite ℓ , alors $(||u_n||)$ a pour limite $||\ell||$.
- Toute suite convergente est bornée.

Proposition II.3. Soit (f_n) une suite de fonctions bornées de $I \subset \mathbb{R}$ dans \mathbb{K} . La suite de vecteurs (f_n) converge vers f dans l'espace $B(I,\mathbb{K})$ muni de la norme $\| \|_{\infty}$, si et seulement si la suite de fonctions (f_n) converge uniformément sur I vers la fonction f.

La norme $\| \|_{\infty}$ est donc appelée norme de la convergence uniforme.

II.2. Opérations algébriques

Proposition II.4. Si les suites vectorielles (u_n) et (v_n) convergent respectivement vers ℓ_1 et ℓ_2 , alors $(u_n + v_n)$ a pour limite $\ell_1 + \ell_2$.

Si la suite numérique (λ_n) a pour limite λ , et si la suite vectorielle (u_n) a pour limite ℓ , alors la suite $(\lambda_n u_n)$ a pour limite $\lambda \ell$.

Proposition II.5. L'ensemble des suites bornées de vecteurs de E, muni de la norme $\| \|_{\infty}$, est un espace vectoriel normé; l'ensemble des suites convergentes de vecteurs de E en est un sous-espace.

II.3. Suites dans un espace produit

Proposition II.6. La suite (x_n, y_n) converge vers (x, y) dans l'espace produit $E \times F$ si et seulement si (x_n) converge vers x dans E et (y_n) vers y dans F.

II.4. Suites extraites

Définition. Une suite (v_n) est dite **extraite** d'une suite (u_n) s'il existe une application φ de \mathbb{N} dans \mathbb{N} strictement croissante telle que $v_n = u_{\varphi(n)}$ pour tout n.

Proposition II.7. Si (u_n) converge vers ℓ , alors toute suite extraite de (u_n) a pour limite ℓ .

Définition. On dit qu'un vecteur v est une valeur d'adhérence de la suite (u_n) s'il existe une suite extraite de (u_n) qui converge vers v.

III. Normes équivalentes

III.1. Définition

Définition. Deux normes N et N' sur un espace E sont dites **équivalentes** s'il existe deux réels A et B tels que $N'(x) \leq AN(x)$ et $N(x) \leq BN'(x)$ pour tout $x \in E$.

Proposition III.1. Si N et N' sont deux normes équivalentes, alors

- \circ une suite est bornée pour la norme N si et seulement si elle l'est pour la norme N';
- \circ une suite converge vers un vecteur ℓ pour la norme N, si et seulement si elle converge vers le même vecteur ℓ pour la norme N'.

III.2. Convergence des suites en dimension finie

Théorème III.2. Si E est de dimension finie, alors toutes les normes sur E sont équivalentes entre elles.

Théorème III.3. Soit E un espace de dimension finie, muni d'une base $\mathcal{B} = (e_1, \ldots, e_n)$. Soit $\ell = \sum_{k=1}^n \ell_k e_k$ un vecteur de E. Soit (u_n) une suite de vecteurs de E; pour tout n, on décompose u_n dans la base \mathcal{B} sous la forme $u_n = \sum_{k=1}^n u_{n,k} e_k$.

La suite (u_n) converge alors vers ℓ si et seulement si, pour tout $k \in [1, n]$, la suite numérique $(u_{n,k})_{n \in \mathbb{N}}$ converge vers la coordonnée ℓ_k de ℓ .

IV. Limite d'une fonction

IV.1. Point adhérent à une partie

Définition. Un vecteur a est dit **adhérent** à une partie A de E si, pour tout r > 0, la boule ouverte B(a, r) contient au moins un point de A.

L'ensemble des points adhérents à la partie A est appelé adhérence de A et not equal A.

Proposition IV.1. Un vecteur a est adhérent à une partie A si et seulement s'il existe une suite (a_n) d'éléments de A qui converge vers a.

IV.2. Limites

Définition. Soit f une fonction définie sur une partie A de E, à valeurs dans un deuxième espace vectoriel normé F; soient a un point adhérent à A, et ℓ un vecteur de F. On dit que f admet pour limite ℓ en a si

$$\forall \varepsilon > 0 \quad \exists \alpha > 0 \quad \forall x \in A \quad (\|x - a\| \leqslant \alpha \Longrightarrow \|f(x) - \ell\| \leqslant \varepsilon)$$

Théorème IV.2. Soit f une fonction définie sur une partie A de E, à valeurs dans un deuxième espace vectoriel normé F; soient a un point adhérent à A, et ℓ un vecteur de F. Il y a équivalence entre les deux propositions :

- **i.** f a pour limite ℓ en a;
- ii. pour toute suite (u_n) d'éléments de A qui converge vers a, la suite $(f(u_n))$ a pour limite ℓ .

Proposition IV.3. Sous les hypothèses du théorème précédent, si f admet une limite en a, alors elle en a une seule.

Pour étudier une limite en a, on peut toujours restreindre la fonction étudiée à une boule ouverte $B(a, r_0)$ (ou plutôt à l'intersection $B(a, r_0) \cap A$ de cette boule avec le domaine de définition).

IV.3. Cas de la dimension finie

Soit $f: A \subset E \longrightarrow F$. Si l'espace d'arrivée F est de dimension finie, on peut en choisir une base $\mathcal{C} = (e_1, \ldots, e_p)$. Pour tout $x \in A$, on peut alors poser $f(x) = \sum_{k=1}^p f_k(x)e_k$. Les applications f_k sont appelées **applications coordonnées** de f dans \mathcal{C} ; ce sont des applications à valeurs dans \mathbb{K} .

Proposition IV.4. Avec les notations précédentes, la fonction f admet pour limite $\ell = \sum_{k=1}^{p} \ell_k e_k$ en $a \in \overline{A}$ si et seulement si, pour tout $k \in [1, p]$, f_k a pour limite ℓ_k en a.

IV.4. Propriétés

Proposition IV.5. Si f et $g:A\subset E\longrightarrow F$ admettent pour limites respectives ℓ_1 et ℓ_2 en $a\in \overline{A}$, et si $(\lambda,\mu)\in \mathbb{K}^2$, alors $\lambda f+\mu g$ a pour limite $\lambda \ell_1+\mu \ell_2$ en a.

Proposition IV.6. On suppose que:

- $f: A \subset E \longrightarrow F$ admet pour limite b en $a \in \overline{A}$;
- $f(A) \subset B$ et $g: B \subset F \longrightarrow G$ admet pour limite ℓ en b.

Alors $g \circ f$ a pour limite ℓ en a.

Proposition IV.7. Soient f et g définies sur $A \subset E$, à valeurs dans $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et admettant respectivement les nombres ℓ_1 et ℓ_2 pour limites en a. Alors, le produit fg a pour limite $\ell_1\ell_2$ en a.

Si de plus $\ell_2 \neq 0$, alors il existe $r_0 > 0$ tel que g ne s'annule pas sur $B(a, r_0) \cap A$; et le rapport f/g a pour limite ℓ_1/ℓ_2 en a.

Proposition IV.8. Soient $f: A \subset E \longrightarrow F$ et $g: A \longrightarrow G$, $a \in \overline{A}$, $\ell_1 \in F$ et $\ell_2 \in G$; soit $h: A \longrightarrow F \times G$, $x \longmapsto (f(x), g(x))$.

Alors, la fonction h a pour limite (ℓ_1, ℓ_2) en a, si et seulement si f et g ont respectivement ℓ_1 et ℓ_2 pour limites en a.

IV.5. Extensions de la définition

Dans le cas où $E = \mathbb{R}$ et $A \subset \mathbb{R}$ n'est pas majorée (respectivement pas minorée), on dit que f admet pour limite $\ell \in F$ en $+\infty$ (respectivement $-\infty$) si

$$\forall \varepsilon > 0 \quad \exists M \in \mathbb{R} \quad \forall x \in A \cap [M, +\infty[\quad ||f(x) - \ell|| \le \varepsilon$$

(respectivement $\forall x \in A \cap]-\infty, M]$ $||f(x)-\ell|| \leq \varepsilon$). On définit de manière analogue les limites $-\infty$ et $+\infty$ en a si $F=\mathbb{R}$.

Enfin, dans le cas général, on dit que f a pour limite ℓ quand ||x|| tend vers $+\infty$, si

$$\forall \varepsilon > 0 \quad \exists M \in \mathbb{R} \quad \forall x \in A \quad (\|x\| \geqslant M \Longrightarrow \|f(x) - \ell\| \leqslant \varepsilon)$$

V. Continuité

V.1. Généralités

Définition. On dit qu'une fonction $f: A \subset E \longrightarrow F$ est **continue** en un point $a \in A$ si f a pour limite f(a) en a; on dit qu'elle est **continue** sur A si elle est continue en chaque point de A.

Proposition V.1. Toute application lipschitzienne est continue sur son domaine de définition.

Théorème V.2. Si l'espace d'arrivée est de dimension finie, et est muni d'une base, une application est continue si et seulement si ses fonctions coordonnées sont toutes continues.

V.2. Opérations sur les fonctions continues

Proposition V.3. Sous réserves d'existence, une combinaison linéaire, une composée, un produit, un rapport, d'applications continues, sont toutes continues.

Si E est de dimension finie, et muni d'une base (e_1, \ldots, e_n) , toute application de la forme $x = \sum_{i=1}^n x_i e_i \longmapsto f(x) = x_1^{q_1} x_2^{q_2} \cdots x_n^{q_n}$, où les q_i sont dans \mathbb{N} , est continue sur E; toute combinaison linéaire d'applications de ce type, c'est-à-dire toute fonction polynôme en les coordonnées, est donc aussi continue.

V.3. Continuité uniforme

Définition. On dit que $f:A\subset E\longrightarrow F$ est uniformément continue sur A si

$$\forall \varepsilon > 0 \quad \exists \alpha > 0 \quad \forall (x, y) \in A^2 \quad (\|x - y\| \leqslant \alpha \Longrightarrow \|f(x) - f(y)\| \leqslant \varepsilon)$$

Proposition V.4. Toute application lipschitzienne est uniformément continue sur son domaine de définition.

VI. Applications linéaires continues

VI.1. Caractérisation

Théorème VI.1. Une application linéaire $f \in \mathcal{L}(E,F)$ est continue si et seulement s'il existe $k \in \mathbb{R}$ tel que $||f(x)|| \leq k||x||$ pour tout x; elle est alors lipschitzienne de rapport k.

L'ensemble des applications linéaires continues de E dans F forme un sousespace de $\mathcal{L}(E,F)$, qui est noté $\mathcal{L}_c(E,F)$. **Théorème VI.2.** Si l'espace de départ E est de dimension finie et si F est quelconque, alors toute application linéaire de E dans F est continue.

VI.2. Norme d'opérateur

Définition. Soit f une application linéaire continue de E dans F. Le réel $\inf\{k \in \mathbb{R}_+ | \forall x \in E \mid |f(x)| \leq k||x||\}$ est appelé norme d'opérateur de f, ou norme subordonnée de f, et noté $||f||_{\text{op}}$.

Proposition VI.3. Soit f une application linéaire continue de E dans F. Alors $||f||_{\text{op}} = \sup \left\{ \frac{||f(x)||}{||x||} \; ; \; x \in E \setminus \{0_E\} \right\} = \sup \left\{ ||f(x)|| \; ; \; x \in B'(0_E, 1) \right\}.$

Proposition VI.4. Soit $f \in \mathcal{L}_c(E, F)$. Alors

- $\forall x \in E \quad ||f(x)|| \leq ||f||_{\text{op}} ||x||$;
- $si \ k \in \mathbb{R} \ et \ \forall x \in E \ \|f(x)\| \leqslant k\|x\|, \ alors \ \|f\|_{op} \leqslant k.$

De plus, ces deux propriétés caractérisent $||f||_{op}$.

Proposition VI.5. L'application $\| \|_{op}$ est une norme sur $\mathcal{L}_c(E,F)$.

Proposition VI.6. Si $f \in \mathcal{L}_c(E, F)$ et $g \in \mathcal{L}_c(F, G)$, alors

$$||g \circ f||_{\text{op}} \le ||g||_{\text{op}} ||f||_{\text{op}}$$

VI.3. Applications multilinéaires

Proposition VI.7. Une application f, p-linéaire de $E_1 \times \cdots \times E_p$ dans F, est continue si et seulement s'il existe $k \in \mathbb{R}$ tel que, pour tout (x_1, \ldots, x_p) , $||f(x_1, \ldots, x_p)|| \leq k||x_1|| \cdot ||x_2|| \cdots ||x_p||$.

Proposition VI.8. Si les espaces E_1, \ldots, E_p sont de dimension finie, toute application p-linéaire définie sur $E_1 \times E_2 \times \cdots \times E_p$ est continue.