Modern Analysis II Solutions

Raneem Madani

January 23, 2021

Anyone with this link can view this project: https://www.overleaf.com/read/bgbhrtypyvxf

Contents

1	VI	I.METRIC SPACE	5
	1.1	35. The distance Function	5
	1.2	$36.\mathbb{R}^n, l^2$	7
	1.3	37. Sequences in Metric Spaces	12
	1.4	38. Closed Set	14
	1.5	39. Open Set	18
	1.6	40. Continuous Functions on Metric Spaces	21
	1.7	42.Compact Metric Space	25
	1.8	43. The Bolzano-Weierstrass Characterization	29
2	IX.	Γhe Riemann-Stieltjes Integral	31
	2.1	51.Riemann-Stieltjes Integration with Respect to an Increasing	
		Integrator	31
	2.2	54. Functions of Bounded Variation	38
	2.3	55. Riemann-Stieltjes Integration with Respect to Functions of	
		Bounded Variation	41
3	X.S	equences and Series of Functions	43
	3.1	60. Pointwise Convergence and Uniform Convergence	44
	3.2	61. Integration and Differentiation of Uniformly Convergent Se-	
		guences	46

4 CONTENTS

Chapter 1

VII.METRIC SPACE

1.1 35.The distance Function

Exercise 35.3: we have:

 $\underline{Solution:}$ By $Triangle\ Ineq$ we have:

$$d(x,z) \le d(x,y) + d(y,z)$$

$$\Leftrightarrow d(x,z) - d(y,z) \le d(x,y). . . (1)$$

Also by *Triangle Ineq* we have:

$$d(y,z) \le d(y,x) + d(x,z)$$

$$\Leftrightarrow d(y,z) - d(x,z) \le d(y,x)$$

$$\Leftrightarrow -d(y,x) \le d(x,z) - d(y,z). . . (2)$$

Hence d(x,y) = d(y,x) from (1),(2) we have $|d(x,z) - d(y,z)| \le d(x,y)$

Exercise 35.5:

Solution:

• Want to show that $d(x,y) = 0 \Leftrightarrow x = y$

$$\begin{split} \sum_{k=1}^{\infty} |x_k - y_k| &= 0 \\ \Leftrightarrow x_k - y_k &= 0 \\ \Leftrightarrow x &= y, \, \forall x, y \in L^1 \text{ and } x_k, y_k \in \mathbb{R} \end{split}$$

• Want to show that d(x, y) = d(y, x)

$$\begin{aligned} |x_k - y_k| &= |y_k - x_k| \\ \Leftrightarrow \sum_{k=1}^n |x_k - y_k| &= \sum_{k=1}^n |y_k - x_k|, \ \forall n = 1, 2, 3, \dots \end{aligned}$$

But $|x_k - y_k|$ is increasing and bounded $\Rightarrow |x_k - y_k|$ is convergent.

$$\Rightarrow \sum_{k=1}^{\infty} |x_k - y_k| = \sum_{k=1}^{\infty} |y_k - x_k|$$
$$\Rightarrow d(x, y) = d(y, x)$$

Exercise 35.6:

$\underline{Solution:}$

• l^1 denote the set of all seq $\{a_n\} \Rightarrow$ we have $\sum |a_n|$ is convergent

$$\therefore |a_n| \mapsto 0$$

$$\Rightarrow a_n \mapsto 0$$

$$\therefore \{a_n\} \subset c_0$$

$$\therefore l^1 \subset c_0$$

• Let $\{a_n\} \in c_0$

 $\Leftrightarrow a_n$ is convergent to 0

 $\therefore \{a_n\}$ is bounded

 $\therefore \{a_n\} \in l^{\infty}$

 $c_0 \subset l^\infty$

$$\therefore l^1 \subset c_0 \subset l^\infty$$

1.2. $36.\mathbb{R}^N, L^2$ 7

Exercise 35.8:

$$d[(x_1, x_2), (y_1, y_2)] = d_1(x_1, y_2) + d_2(x_2, y_2)$$

$$(1)$$
- $d(x,y) = 0 \iff x = y$ Trivial

$$(2)$$
- $d(x,y) = d(y,x)$ Trivial

(3)-Triangle inequality
$$d[(x_1, x_2), (z_1, z_2)] = d_1(x_1, x_2) + d_2(z_1, z_2) \le$$

$$d_1(x_1, y_1) + d_1(y_1, z_1) + d_2(x_2, y_2) + d_2(y_2, z_2) =$$

$$[d_1(x_1, y_1) + d_2(x_2, y_2)] + [d_1(y_1, z_1) + d_2(y_2, z_2)] =$$

$$d[(x_1,x_2),(y_1,y_2)]+d(y_1,y_2),(z_1,z_2)]\\$$

36. \mathbb{R}^n , l^2 1.2

(\mathbb{R}^n,d) is a metric space, $d=\sqrt{\sum_{i=1}^n(x_i-y_i)^2}:$:

Solution: To proof triangle inequality we need Cauchy-Schwarz Inequality:

$$\left| \sum_{k=1}^n a_k b_k \right| \le \sqrt{\sum_{k=1}^n a_k^2 \sum_{k=1}^n b_k^2}$$

$$d(x,z) \le d(x,y) + d(y,z)$$

$$\Leftrightarrow \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} \le \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}$$

$$\Leftrightarrow \sum_{i=1}^{n} (x_i - z_i)^2 \leq \sum_{i=1}^{n} (x_i - y_i)^2 + \sum_{i=1}^{n} (y_i - z_i)^2 + 2\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2 \sum_{i=1}^{n} (y_i - z_i)^2}$$

$$2\sqrt{\sum_{i=1}^{n}(x_i-y_i)^2\sum_{i=1}^{n}(y_i-z_i)^2}$$

Let
$$a_i = y_i - x_i$$
, $b_i = z_i - y_i$, $\forall i = 1, 2, 3...n$

$$\Leftrightarrow z_i - x_i = z_i - y_i + y_i - x_i = b_i + a_i$$

$$\Leftrightarrow \sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + 2 \sum_{i=1}^{n} a_i b_i \le \sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + \sum_{i=1}^{n} b_i^2$$

$$2\sqrt{\sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2} \Leftrightarrow \sum_{i=1}^n b_i a_i \leq \sqrt{\sum_{i=1}^n a_i^2 \sum_{i=1}^n b_i^2} \quad (Cauchy-base)$$

Schwarz Inequality)

(\mathbb{L}^n, d) is a metric space, $d = \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2}$::

Solution: To proof triangle inequality we need Cauchy-Schwarz Inequality:

$$\left| \sum_{k=1}^n a_k b_k \right| \le \sqrt{\sum_{k=1}^n a_k^2 \sum_{k=1}^n b_k^2}$$

$$d(x,z) \le d(x,y) + d(y,z)$$

$$\Leftrightarrow \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} \le \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}$$

$$d(x,z) \le d(x,y) + d(y,z)$$

$$\Leftrightarrow \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} \le \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}$$

$$\Leftrightarrow \sum_{i=1}^{n} (x_i - z_i)^2 \le \sum_{i=1}^{n} (x_i - y_i)^2 + \sum_{i=1}^{n} (y_i - z_i)^2 + 2\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2 \sum_{i=1}^{n} (y_i - z_i)^2}$$

$$2\sqrt{\sum_{i=1}^{n}(x_i-y_i)^2\sum_{i=1}^{n}(y_i-z_i)^2}$$

Let
$$a_i = y_i - x_i$$
, $b_i = z_i - y_i$, $\forall i = 1, 2, 3...n$

$$\Leftrightarrow z_i - x_i = z_i - y_i + y_i - x_i = b_i + a_i$$

$$\Leftrightarrow \sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + 2\sum_{i=1}^{n} a_i b_i \leq \sum_{i=1}^{n} a_i^2 + \sum_{i=1}^{n} b_i^2 + 2\sqrt{\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2} \Leftrightarrow \sum_{i=1}^{n} b_i a_i \leq \sqrt{\sum_{i=1}^{n} a_i^2 \sum_{i=1}^{n} b_i^2}$$
 (Cauchy-

$$2\sqrt{\sum_{i=1}^{n}a_i^2\sum_{i=1}^{n}b_i^2} \Leftrightarrow \sum_{i=1}^{n}b_ia_i \leq \sqrt{\sum_{i=1}^{n}a_i^2\sum_{i=1}^{n}b_i^2} \quad (Cauchy$$

Schwarz Inequality)

$$\Rightarrow \sqrt{\sum_{i=1}^{n} (x_i - z_i)^2} \le \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{n} (y_i - z_i)^2}$$

For every positive integer n take $n \mapsto \infty$, then we have:

$$d(x,z) = \sqrt{\sum_{i=1}^{\infty} (x_i - z_i)^2} \le \sqrt{\sum_{i=1}^{\infty} (x_i - y_i)^2} + \sqrt{\sum_{i=1}^{\infty} (y_i - z_i)^2}$$

$$= d(x, y) + d(y, z)$$

1.2. $36.\mathbb{R}^N, L^2$

9

$l^1 \subset l^2 \subset l^\infty$:

$\underline{Solution:}$

1. let
$$\{a_n\} \in l^1 \Rightarrow \sum_{k=1}^{\infty} |a_n| < \infty$$

 $|a_n| \mapsto 0$

 $\forall \epsilon > 0 \exists k \in \mathbb{N} \text{ such that:}$

$$a_k < \epsilon, \, \forall n \ge k \, \text{(Take } \epsilon = 1\text{)}$$

$$\Rightarrow a_k < 1$$

$$\Rightarrow a_k^2 < |a_k|$$

$$\sum_{k=1}^{\infty} a_k^2 < \sum_{k=1}^{\infty} a_k$$

2. let
$$\{a_n\} \in l^2 \Rightarrow \sum_{k=1}^{\infty} a_n^2 < \infty$$

$$\Rightarrow a_n$$
 is absolutely convergent

$$\Rightarrow a_n$$
 is bounded

$$\therefore a_n \in l^{\infty}$$

$$\therefore l^2 \subset l^\infty$$

Exercise 36.3:.

Solution:

- let $\{a_n\} \in l^1 \Rightarrow \sum_{k=1}^{\infty} |a_n| < \infty$ $|a_n| \mapsto 0$ $\forall \epsilon > 0, \exists k \in \mathbb{N} \text{ such that:}$ $a_k < \epsilon, \forall n \ge k \text{ (Take } \epsilon = 1)$ $\Rightarrow a_k < 1$ $\Rightarrow a_k^2 < |a_k|$ $\sum_{k=1}^{\infty} a_k^2 < \sum_{k=1}^{\infty} a_k$
- let $\{a_n\} \in l^2 \Rightarrow \sum_{n=0}^{\infty} a_n^2 < \infty$ $\Leftrightarrow a_n^2 \longmapsto 0$ $\Rightarrow \{a_n\} \in c_0 \Rightarrow l^2 \subset c_0$
- let $a_n = \frac{1}{n} \Rightarrow a_n \in l^2$, $a_n \notin l^1$ let $b_n = \frac{1}{\sqrt{n}} \Rightarrow b_n \in c_0$, $b_n \notin l^2$

 $l^1 \subset l^2 \subset c_0$.

Exercise 36.8:

Solution: Let
$$\{a_n\} \in l^1 \Rightarrow \sum_{k=1}^{\infty} |a_n| < \infty$$

since $\{b_n\} \in l^{\infty} \Leftrightarrow |b_n| < M$
 $\sum_{k=1}^{\infty} |a_n b_n| \le \sum_{k=1}^{\infty} |a_n| M$
 $= M \sum_{k=1}^{\infty} |a_n| < M.\infty = \infty$
 $\Rightarrow \sum_{k=1}^{\infty} |a_n b_n|$ is convergent.

 $\{a_nb_n\}\in l^1$

1.2. $36.\mathbb{R}^N, L^2$ 11

Exercise 36.9:

Solution: Let $\{a_n\} \in c_0 \Leftrightarrow a_n \longmapsto 0$

 $\forall \epsilon > 0, \exists k \in \mathbb{N} \text{ such that } |a_n| < \epsilon_0 \ \forall n \ge k$

let
$$\{b_n\} \in l^{\infty} \Leftrightarrow |b_n| \le M$$

let
$$\epsilon_0 = \frac{\epsilon}{M}$$

$$\Rightarrow |a_n b_n| \le M|a_n| < M \frac{\epsilon}{M} = \epsilon$$

$$\{a_nb_n\}\in c_0$$

Give an example:

Let
$$a_n = \frac{1}{\sqrt{n}} \in C_0$$
, and let $b_n = (-1)^n \in l^{\infty} \Rightarrow$

Let
$$a_n = \frac{1}{\sqrt{n}} \in C_0$$
, and let $b_n = (-1)^n \in l^\infty \Rightarrow$
$$a_n b_n = \frac{(-1)^n}{\sqrt{n}} \Rightarrow \sum (a_n b_n)^2 = \sum \frac{1}{n} \notin l^2 \Rightarrow \{a_n b_n\} \notin l^2$$

Exercise 36.10:

Solution: Let
$$\{a_n\} \in l^{\infty} \Leftrightarrow |a_n| \leq M$$

Let
$$\{b_n\} \in l^{\infty} \Leftrightarrow |b_n| < N, \forall N, M \in \mathbb{R}$$

$$\Rightarrow |a_n b_n| \le M.N \Rightarrow$$

$$\{a_nb_n\}\in l^\infty$$

Give an example:

Let
$$\{a_n\} = (-1)^n$$

Let
$$\{b_n\} = (-1)^{1-n} \Rightarrow$$

$$a_n b_n = (-1)^n (-1)^{1-n} = (-1)^{n+1-n} = -1$$

$$a_n b_n = -1 \Rightarrow a_n b_n \longmapsto -1$$

$$\{a_nb_n\} \notin c_0$$

37. Sequences in Metric Spaces 1.3

Exercise 37.7:

<u>Solution:</u> Let $\{a_n^{(k)}\}$ be a sequence in l^1 .

$$a \in l^1, a = (a_1, a_2, a_3, ...)$$

 $a \in l^1, \ a = (a_1, a_2, a_3, ...)$ if $\{a^{(k)}\}$ convergent to a then $\lim a_j^{(k)} = a_j, \ \forall j = 1, 2, 3...$ $|a_j^{(k)}| - |a_j| < |a_j^{(k)} - a_j| < \epsilon, \ \forall j = 1, 2, 3...$ Let $\epsilon = 1$ $\Rightarrow |a_j^{(k)}| < 1 + |a_j| = M$ $\Rightarrow |a^{(k)}| < M$

$$|a_j^{(k)}| - |a_j| < |a_j^{(k)} - a_j| < \epsilon, \forall j = 1, 2, 3...$$

Let
$$\epsilon = 1$$

$$\Rightarrow |a_i^{(k)}| < 1 + |a_j| = M$$

$$\Rightarrow |a^{(k)}| < M$$

$$\{a^{(k)}\} \in l^{\infty}$$

Exercise 37.9 (a):

<u>Solution:</u> $d: \mathbb{R}^n \times \mathbb{R}^n \longmapsto [0, \infty)$

- 1. $d(x,y) = 0 \Leftrightarrow x = y$ "Trivial"
- 2. d(x,y) = d(y,x)"Trivial"
- 3. Triangle inequality: $d(x,z) \le d(x,y) + d(y,z)$ $\sum_{i=1}^{n}|x_{i}-z_{i}|=\sum_{i=1}^{n}|x_{i}-y_{i}+y_{i}-z_{i}|\leq\sum_{i=1}^{n}|x_{i}-y_{i}|+|y_{i}-z_{i}|=$ $\sum_{i=1}^{n} |x_i - y_i| + \sum_{i=1}^{n} |y_i - z_i| = d(x, y) + d(y, z)$

Exercise 37.9 (b):

<u>Solution:</u> Let $\{a^{(k)}\}$ be a sequence in \mathbb{R}^n

$$d(a^{(k)},a)<\epsilon,\,\forall\epsilon>0$$

" \Rightarrow " Let $\{a^{(k)}\}$ convergent to a

$$d(a^{(k)}, a) < \epsilon$$

$$\begin{aligned} &d(a^{(k)},a) < \epsilon \\ &d(a^{(k)},a) = \sqrt{\sum_{j=1}^{n} (a_{j}^{(k)} - a_{j})^{2}} \end{aligned}$$

Let
$$\epsilon_0 = \frac{\epsilon}{n}$$

By Theorem: $|a_j^{(k)} - a_j| \le \sum_{j=1}^n (a_j^{(k)} - a_j)^2 = d(a^{(k)}, a) < \epsilon_0 \Rightarrow$

$$d'(a^{(k)}, a) = \sum_{j=1}^{n} |a_j^{(k)} - a_j| < \sum_{j=1}^{n} \frac{\epsilon}{n} = \frac{\epsilon}{n} n = \epsilon$$

" \Leftarrow " Let $\{a^{(k)}\}$ convergent to a

$$d'(a^{(k)}, a) = \sum_{i=1}^{n} |a_i^{(k)} - a_i| < \epsilon_0$$

$$d'(a^{(k)}, a) = \sum_{j=1}^{n} |a_j^{(k)} - a_j| < \epsilon_0$$

$$|a_j^{(k)} - a_j| < \sum_{j=1}^{n} |a_j^{(k)} - a_j| < \epsilon_0$$
Let $\epsilon_0 = \frac{\epsilon}{\sqrt{n}}$

Let
$$\epsilon_0 = \frac{\epsilon}{\sqrt{n}}$$

$$d(a^{(k)}, a) = \sqrt{\sum_{j=1}^{n} (a_j^{(k)} - a_j)^2} \le \sqrt{\sum_{j=1}^{n} (\frac{\epsilon^2}{n})} = \sqrt{\sum_{j=1}^{n} \frac{\epsilon^2}{n}} = \epsilon$$

1.4 38. Closed Set

Exercise 38.5(a):

Prove that x is closed $\iff x^{\alpha} \subseteq x$

Proof:

" \Rightarrow " let x be a closed set $\Rightarrow \overline{x} = x$

$$x^\alpha\subseteq \overline{x} \Longrightarrow x^\alpha\subseteq x$$

" \Leftarrow " Let $x^{\alpha} \subseteq x$

let a be a limit point then $\exists \{x_n\}$ such that $\lim x_n = a$

- $x_n = a$ for some n
 - $\Rightarrow a \in x$
- $x_n \neq a$ for some n
 - $\Rightarrow a \in x^{\alpha}$ and we suppose that $x^{\alpha} \subseteq x$
 - $\Rightarrow a \in x$

 $\therefore x$ is closed

Exercise 38.5(b):

Proof:

Let $x \subseteq \mathbb{R}$ and x is an infinite and bounded set then we have:

$$a_1 \in x$$

$$a_1 \neq a_2 \in x$$

:

$$a_2 \neq a_k \in x$$

$$\{a_k\} \subseteq x \subseteq \mathbb{R}$$

 $\exists \{a_{k_l}\}$ that convergent to a

$$\therefore a \in x^{\alpha} \Rightarrow x^{\alpha} \neq \phi$$

Exercise 38.5(c):

Proof: Suppose the contrary,

Let $X\subseteq\mathbb{R}$ be an uncountable and contains non of accumulation points.

 $\Rightarrow \forall x \in X, \exists \epsilon_x > 0 \text{ such that:}$

$$\nu_{\epsilon}(x) \cap X = \{x\}$$

 $\Rightarrow \exists n \in \mathbb{N} \text{ such that } X^{\alpha} = \{x \in X : \epsilon_x > \frac{1}{n}\} \text{ is uncountable.}$ consider the family:

$$\{(x-\frac{1}{2n},x+\frac{1}{2n}):x\in X^\alpha\}$$

this is an uncountable family of pairwise disjoint open subsets of \mathbb{R} which contradicts that the countable set \mathbb{Q} is a dense subset of \mathbb{R} .

Exercise 38.13:

(a)-
$$\overline{X} = \overline{\overline{X}}$$
.

It's clear that $\overline{X} \subseteq \overline{\overline{X}}$

Now want to show that $\overline{\overline{X}} \subseteq \overline{X}$, let $a \in \overline{\overline{X}} \Rightarrow \exists \{x_n\} \in \overline{X}$ such that $x_n\mapsto a$ so $\{x_n\}$ is a limit point of $X\Rightarrow\exists\{y_k\}_{k=1}^\infty$ is a sequence in Xsuch that $y_k^{k_n} \mapsto x_n$.claim that $y_k^{(k_n)} \mapsto a$ as $n \mapsto \infty$.

proof the claim : let $\epsilon_0=\frac{\epsilon}{2}>0, d(y_k^{(k_n)},a)\leq d(y_k^{(k_n)},x_n)+d(x_n,a)<$ $\frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \Rightarrow y_k^{(k_n)} \mapsto a \Rightarrow a \in \overline{X}$

(b)- \overline{X} is closed in M:

Let $a \in \overline{\overline{X}}$ i.e (a is a limit point of \overline{X} but $\overline{X} = \overline{\overline{X}} \Rightarrow a \in \overline{X}$

(c)-if $X \subset Y \subset M \Rightarrow \overline{X} \subset \overline{Y}$.

Let $a \in \overline{X} \Rightarrow \exists \{x_n\} \in X \text{ such that } x_n \mapsto a, \text{ since } \{x_n\} \subseteq X \subset Y \Rightarrow$

(d)- $\overline{X \cup Y} = \overline{X} \cap \overline{Y}$.

Let $a \in \overline{X \cup Y} \Rightarrow a$ is a limit point of $X \cup Y \Rightarrow \exists \{x_n\} \subset X \cup Y \text{ such }$ that $x_n \mapsto a$ in Y or $x_n \mapsto a$ in $X \Rightarrow a \in \overline{X}$ or $a \in \overline{Y} \Rightarrow a \in \overline{X} \cup \overline{Y} \Rightarrow$ $\overline{X \cup Y} \subset \overline{X} \cup \overline{Y}$

Now $X\subseteq X\cup Y$ and $Y\subseteq X\cup Y\Rightarrow \overline{X}\subseteq \overline{X\cup Y}$ and $\overline{Y}\subseteq \overline{X\cup Y}\Rightarrow$

(e)-) If Y is a closed subset of M such that $\overline{X} \subset Y$, then $X \subset Y$.

since Y is closed \Rightarrow Y contains all limit points.

and $X \subset \overline{X} \subset Y \Rightarrow X \subset Y$.

(f)- $\overline{X} = \cap \{Y | Y \text{ is closed and } X \subseteq Y\}.$ $*X \subseteq Y \Rightarrow \overline{X} \subseteq \overline{Y} = Y \Rightarrow \overline{X} \subseteq Y \subseteq \overline{X} \subseteq \cap Y.$

Exercise 38.14:

Let z be a limit point of $\{x_n : n \in \mathbb{N}\}$. So there is a sequence $\{z_k\}$ such that $z_k \in \{x_n : n \in \mathbb{N}\}$ for all k and $\lim_{k \to \infty} z_k = z$.

Suppose for a contradiction that $z \notin \{x_n : n \in \mathbb{N}\}$. By induction on m, we define a sequence $\{a_m\}$ which is a subsequence of both $\{x_n\}$ and $\{z_k\}$. For the base case, set $a_1 = z_1 = x_n$ for some integer n. For the inductive step, suppose we have defined $a_1, ..., a_m$ and $a_m = z_k = x_n$. Note the set $\{z_{k+1}, z_{k+2}, ...\}$ is infinite for otherwise some x_j appears in this set an infinite number of times, contradicting the fact that $\lim_{k \to \infty} z_k = z \neq x_j$. Since $x_1, x_2, ...$ is an enumeration of $\{x_n : n \in P\}$, and since the set $\{z_{k+1}, z_{k+2}, ...\}$ is infinite but $\{x_1, ..., x_n\}$ is finite, there exists some n' > n such that $x_{n'} = z_{k'}$ for some k' > k. Set $a_{m+1} = z_{k'} = x_{n'}$. Note that $\{a_m\}$ is a subsequence of both $\{z_k\}$ and $\{x_n\}$. Since $\{z_k\}$ converges, so does $\{a_m\}$, contradicting the assumption that $\{x_n\}$ has no convergent subsequence.

Prove that $B_{\epsilon}(x)$ is open set:

Proof: Let $y \in B_{\epsilon}(x)$, want to find $\delta > 0$ such that:

$$B_{\delta}(y) \subseteq B_{\epsilon}(x)$$

consider $\delta = \epsilon - d(x, y) > 0$

$$\Rightarrow d(x,y) < \epsilon \Rightarrow \epsilon - d(x,y) > 0$$

Let
$$z \in B_{\delta}(y) \Rightarrow d(z, y) < \delta$$

$$\Rightarrow d(z,y) < \epsilon - d(x,y)$$

$$d(x,z) \le d(x,y) + d(y,z) < d(x,y) + \epsilon$$

$$=d(x,y)+\epsilon-d(x,y)=\epsilon$$

$$\therefore d(x,z) < \epsilon \Rightarrow z \in B_{\epsilon}(x) \Rightarrow B_{\delta}(y) \subseteq B_{\epsilon}(x)$$

so $B_{\epsilon}(x)$ is an open set of M

39. Open Set 1.5

Exercise 39.9::

Proof: We want to show that X is open subset of $M \iff X = \bigcup B_{\epsilon}(x)$,

suppose that X is open, then by definition $\forall x \in X, \exists \epsilon > 0$ such that

since
$$x \in X \Rightarrow X = \bigcup_{x \in X} \{x\} \subset \bigcup B_{\epsilon}(x) \subset X \Longrightarrow X = \bigcup B_{\epsilon}(x)$$

$$" \Leftarrow "$$

Let $X = \bigcup B_{\epsilon}(x), \forall x \in X$, but each ball is open and by theorem 39.6(ii) $\Rightarrow X = \text{union of open sets} \Rightarrow X \text{ is open.}$

Exercise 39.10:

Proof: " \Rightarrow "

Suppose X is closed $X=\overline{X},$ so let $a\in M$ such that $B_{\frac{1}{k}}(a)\cap X\neq \phi$ pick

 $X_k \in B_{\frac{1}{k}} \cap X$ we have $\{x_k\}_{k=1}^{\infty}$ is a sequence in X and $x_k \in B_{\frac{1}{k}}(a), d(x_k, a) < \frac{1}{k}$ $x_k \mapsto a \text{ as } k \mapsto \infty$, so a is a limit point of x $a \in \overline{X} \Rightarrow a \in X$.

Let $a \in M$ such that if $B_{\epsilon}(\alpha) \cap X \neq \phi, \forall \epsilon > 0 \Rightarrow \alpha \in X$ Let α be a limit point of $X \Rightarrow \exists \{x_n\}_{n=1}^{\infty}$ in X such that $x_n \mapsto \alpha$, so

 $\forall \epsilon > 0 \exists k \in \mathbb{N} \text{ such that } d(x_n, \alpha) < \epsilon \Rightarrow x_n \in B_{\epsilon}(\alpha) \cap X, \forall n \geq k$

 $\Rightarrow B_{\epsilon}(\alpha) \cap X \neq \phi \text{ and } \alpha \in X \Rightarrow X \text{ is closed.}$

Exercise 39.11:

(a)- $X^0 \subset X$ for $X \subset M$.

Let $x \in X^0, \exists \epsilon > 0$ such that $B_{\epsilon}(x) \subseteq X \Rightarrow x \in X$.

(b)-X is open $\iff X^0 = X$.

"\Rightarrow" Let X be an open subset of $M \iff X = \bigcup B_{\epsilon}(x) \Rightarrow X^0 = X$

"\(=\)" Let $X^0=X \Rightarrow \forall x \in X, \exists \epsilon > 0$ such that $B_{\epsilon}(x) \subseteq X \Rightarrow X$ open.

 $(c)-(X^0)^0 = X^0.$

" \Rightarrow "Let $x \in (X^0)^0 \Rightarrow B_{\epsilon}(x) \subseteq X^0 \Rightarrow (X^0)^0 \subseteq X^0$

"\(\infty\)" Let $x \in X^0 \Rightarrow B_{\epsilon}(x) \subset X \Rightarrow x$ is interior point of $X^0 \Rightarrow x \in B_{\frac{\epsilon}{2}}(x)$ \(\Righta\) $\Rightarrow x \in (X^0)^0$ so $X^0 \subseteq (X^0)^0$

 $X^0 = (X^0)^0$.

(d)- X^0 is open for all $X \in M$.

Let $x \in X^0 \Rightarrow B_{\epsilon}(x) \subseteq X$, by definition the union of open set is open \Rightarrow $\bigcup B_{\epsilon}(x) = X^0$ is open.

(e)- if $X \subset Y \subset M$ then $X^0 \subset Y^0$, Proof:

Let $x \in X^0 \Rightarrow B_{\epsilon}(x) \subseteq X \subset Y$, since $X \subset Y \Rightarrow \exists x \in X$ then $x \in Y$ and $B_{\epsilon}(x) \subset Y \Rightarrow x \in Y^0, \Rightarrow X^0 \subset Y^0$

 $(f)-X^0 \cap Y^0 = (X \cap Y)^0.$

"\(\Righta\)" Let $a \in (X \cap Y)^0 \Rightarrow B_{\epsilon}(a) \subseteq X \cap Y \Rightarrow B_{\epsilon}(a) \subseteq X$ and $B_{\epsilon}(a) \subseteq Y \Rightarrow a \in X^0$ and $a \in Y^0 \Rightarrow a \in X^0 \cap Y^0 \cdots (1)$

"\(\infty\)" Let $a \in X^0 \cap Y^0 \Rightarrow a \in X^0$ and $a \in Y^0 \Rightarrow B_{\epsilon}(a) \subseteq X$ and $B_{\epsilon}(a) \subseteq Y \Rightarrow B_{\epsilon}(a) \subset X \cap Y \Rightarrow a \in (X \cap Y)^0 \cdots (2)$

from (1) and (2) we have $X^0 \cap Y^0 = (X \cap Y)^0$

(g)-If Y is an open subset of M such that $Y \subset X \subset M$, then $Y \subset X^0$.

Let $Y \subset X$ and Y be an open $\Rightarrow \forall y \in Y, \exists \epsilon > 0$ such that $B_{\epsilon}(y) \subseteq Y$, since $y \in Y \subset X \Rightarrow y \in X$ and $B_{\epsilon}(y) \subset X \Rightarrow y \in X^0 \Longrightarrow Y \subset X^0$

(h)- If $X \subset M$, then $X^0 = \bigcup \{Y | Y \subset X \text{ and } Y \text{ is open} \}$.

since X^0 is open then $X^0 \subseteq X$ and we know that $X^0 \subseteq \bigcup \{Y | Y \subset X \text{ and } Y \text{ is open } \}$. Now let $y \in Y \Rightarrow y \in \bigcup Y$, since Y is open $\Rightarrow \forall y \in Y, \exists \epsilon > 0$ such that $B_{\epsilon}(y) \subseteq Y \subseteq \bigcup Y$ and $\bigcup Y \subset X \Rightarrow B_{\epsilon}(y) \subseteq X \Rightarrow y \in X^0$.

(i)- $\overline{X^c} = (X^0)^c$ for all $X \subset M$.

Let $x \in \overline{X^c} \Rightarrow \exists \{x_n\} \subset X^c$ such that $x_n \mapsto x, \forall \epsilon > 0, \exists x_k \subset X^c$ such that $d(x_k, x) < \epsilon$ that mean $\forall B_{\epsilon}(x)$ you will find $x_k \not\subseteq X \Rightarrow a \notin X^0 \Rightarrow a \in (X^0)^c \Rightarrow \overline{X^c} \subseteq (X^0)^c$.

now let $x \in (x^0)^c \Rightarrow a \notin X^0 \Rightarrow$ for any ball around $x, \epsilon = \frac{1}{n}, \forall n = 1, 2, 3..., \exists x_n \notin X(x_n \in X^c)$ and $x_n \mapsto x \Rightarrow x \in X^c \Rightarrow (X^0)^c \subseteq \overline{X^c}$

Exercise 39.12:

Proof: $\delta X = \overline{X} \cap \overline{X^c}$

(a)- δX is closed

since δX is equal of union of closed set then δX closed.

(b)- $X \cup \delta X = \overline{X}$

- $X \subset \overline{X}$ and $\delta X \subset \overline{X} \Rightarrow X \cup \delta X \subseteq \overline{X}$.
- Now let $a \in \overline{X} \Rightarrow$ if $a \in X$ we are done, otherwise $a \in X^c$ and $X^c \subseteq \overline{X^c} \Rightarrow a \in \overline{X^c} \Rightarrow a \in \delta X \Rightarrow \overline{X} \subseteq X \cup \delta X$.

(c)-X except $\delta X = X^0$

- Let $a \in X$ except $\delta X \Rightarrow a \in X$ and $a \notin \delta X$, since $X \subseteq \overline{X} \Rightarrow a \in \overline{X}$, by theorem: $X^0 \cap \delta X = \phi \Rightarrow X^0 \cup \delta X = \overline{X}$ and $a \in X, a \notin \delta X \Rightarrow X^0 \cap \delta X = \phi$, so $\overline{X} = X^0 \cup \delta X$ and $a \notin \delta X \Rightarrow a \in X^0 \Rightarrow X$ except $\delta X \subseteq X^0$
- Now if $a \in X^0$ and $X^0 \subseteq X \Rightarrow a \in X$ and since $X^0 \cap \delta X = \phi$, since $a \in X^0 \Rightarrow a \notin \delta X$ therefore $a \in X$ and $a \notin \delta X \Rightarrow a \in X$ except $\delta X \Rightarrow X^0 \subseteq X$ except δX .

(d)-If X is a proper nonempty subset of \mathbb{R} , then $\delta X \neq \phi$.

suppose the contrary: $X \neq \phi, X \notin \mathbb{R}^n$ and $\delta = \phi$ since $\overline{X} = X^0 \cup \delta X \Rightarrow \overline{X} = X^0$ since $\delta X = \phi$ but X^0 is open and \overline{X} is closed \Rightarrow contradiction so $\delta X \neq \phi$.

1.6 40. Continuous Functions on Metric Spaces

Exercise 40.6:

<u>Proof:</u> Let f(x) = c, f is continuous $\iff \forall \epsilon > 0, \exists \delta > 0$ such that: if $d_1(x,y) < \delta \Rightarrow d_2(f(x),f(y)) < \epsilon, \forall x,y \in M$ $d_2(f(x),f(y)) = d_2(c,c) = 0 < \epsilon$ so f is continuous.

Exercise 40.7:

Proof:

• $(a) \Rightarrow (b)$

suppose that f is continuous at a, let U be subset of M_2 containing f(a) be given.since f(a) is continuous $\Rightarrow \forall \epsilon > 0, \exists \delta > 0$ such that $d(x,a) < \delta \Rightarrow d(f(x),f(a)) < \epsilon$, and $B_{\epsilon}(f(a))$ containing U Take $v := B_{\delta}(a)$ so by theorem:

Theorem 39.4: Let M be a metric space. Let $x \in M$ and let $\epsilon > 0$. Then the open ball $B_{\epsilon}(x)$ is an open subset of M.

$$a \in B_{\delta}(a)$$
 and $f(B_{\delta}(a) \subset B_{\epsilon}(f(a)) \subset U \Rightarrow B_{\delta}(a) \subset f^{-1}(U)$

• $(b) \Rightarrow (a)$

suppose that U is an open subset of M_2 which contains f(a), there exists an open subset V of M_1 which contains a such that contained $f^{-1}(U)$

Given an arbitrary $\epsilon > 0$, let $U := B_{\epsilon}(f(a))$. By Theorem 39.4 U is open, so there exists an open subset V containing a contained in $f^{-1}(B_{\epsilon}(f(a)))$. Since V is open,there exists $\delta > 0$ such that $B_{\delta}(a) \subset V$. Then:

$$B_{\delta}(a) \subset V \subset f^{-1}(B_{\epsilon}(f(a)))$$

so for all $x \in M_1$ with $d_1(x, a) < \delta$ we have that $d_2(f(x), f(a)) < \epsilon$. Thus, f is continuous at a.

Exercise 40.8:

Proof: The generalized statement is that if $f_1, ..., f_n$ are continuous functions from \mathbb{R}^m into \mathbb{R} .

 $h(x) = (f_1, f_2...f_i) : \mathbb{R}^m \longmapsto \mathbb{R}^n$, so We prove this generalized statement, which in particular proves the case m = 1 and n = 2.

let $a \in \mathbb{R}^m$, since f is continuous function for all i = 1, 2, ...n.

Definition 40.1: Definition 40.1: Let (M_1, d_1) and (M_2, d_2) be metric spaces, let, and let f be a function from M_1 into M_2 . We say that f is continuous at a if for every $\epsilon > 0$, there exists $\delta > 0$ such that if $d_1(x,a) < \delta$, then $d_2(f(x),f(a)) < \epsilon$. We say that f is continuous on M_1 if f is continuous at every point of M_1 .

 $\Longrightarrow \exists \delta_i \text{ such that if } d(x,a) < \delta_i \Rightarrow d(f_i(x),f_i(a)) < \sqrt{\frac{\epsilon^2}{n}} \text{ for all } i \Longrightarrow$

$$d(h(x), h(a)) = \sqrt{\sum_{i=1}^{n} |f_i(x) - f_i(a)|^2} < \sqrt{\sum_{i=1}^{n} \frac{\epsilon^2}{n}} = \epsilon$$

Hence h is a continuous function from \mathbb{R}^m into \mathbb{R}^n .

Exercise 40.10:

proof Let $\epsilon > 0$ be given

 $\Rightarrow \forall \epsilon > 0, \ \exists \delta > 0 \text{ such that:}$ $d_1(b_n, c_n) < \delta \text{ whenever } d_2(f(b_n), f(c_n)) < \epsilon$ $\text{Let } \{b_n\} \in l^1 \text{ since } \{a_n\} \in l^\infty \Rightarrow |a_n| \leq M$ $\text{Let } \{c_n\} \in l^1 \Rightarrow d(\{b_n\}, \{c_n\}) < \delta$ $\sum |b_n - c_n| < \delta, \text{ Let } \delta = \frac{\epsilon}{M}$ $|f(c_n) - f(b_n)| = |\sum a_n c_n - \sum a_n b_n|$

$$\sum |b_{ij} - c_{ij}| < \delta$$
 Let $\delta = \frac{\epsilon}{2}$

$$|f(c_n)-f(b_n)|=|\sum a_nc_n-\sum a_nb_n|$$

$$\leq \sum |a_n||c_n - b_n| < M \frac{\epsilon}{M} = \epsilon$$

want to show that f is continuous at $c = \{c_n\}$ and $b = \{b_n\}$

 $\forall \epsilon > 0, \, \exists \delta > 0 \text{ such that:}$

$$|c_n - b_n| < \delta$$
 whenever $|f(c_n) - f(b_n)| < \epsilon$

$$|f(c_n) - f(b_n)| = |\sum_{n=1}^{\infty} c_n a_n - \sum_{n=1}^{\infty} b_n a_n| = |\sum_{n=1}^{\infty} (a_n)(c_n - b_n)|$$

$$\leq \sqrt{\sum_{n=1}^{\infty} a_n^2} \sqrt{\sum_{n=1}^{\infty} (c_n - b_n)^2}$$

$$Let: \delta = \frac{\epsilon}{\sqrt{\sum_{n=1}^{\infty} a_n^2}}$$

$$= d(c_n, b_n) \sqrt{\sum_{n=1}^{\infty} a_n^2} < \frac{\epsilon}{\sqrt{\sum_{n=1}^{\infty} a_n^2}} \sqrt{\sum_{n=1}^{\infty} a_n^2} = \epsilon$$

Exercise 40.15:

<u>Proof:</u> suppose that f is continuous. Note that $(-\infty,c)$ and (c,∞) are open subsets of \mathbb{R} . Hence $\{x:f(x)< c\}=f^{-1}((-\infty,c))$ and $\{x:f(x)>c\}=f^{-1}((c,\infty))$ are open in M by Theorem

Theorem 40.5: Let f be a function from a metric space M_1 into a metric space M_2 . The following are equivalent:

- 1. f is continuous on M_1 .
- 2. $f^{-1}(C)$ is closed whenever C is a closed subset of M_2 .
- 3. $f^{-1}(U)$ is open whenever U is an open subset of M_2 . f is continuous.

Conversely, suppose the sets $\{x: f(x) < c\}$ and $\{x: f(x) > c\}$ are open in M for every $c \in \mathbb{R}$. any open subset U of \mathbb{R} can be written as the union of open balls $U = \cup_{\alpha} \in A(a_{\alpha}, b_{\alpha})$, where A is an arbitrary indexing set. Note $(a_{\alpha}, b_{\alpha}) = (-\infty, b_{\alpha}) \cup (a_{\alpha}, \infty)$ and $f^{-1}((a_{\alpha}, b_{\alpha})) = f^{-1}((-\infty, b_{\alpha})) \cup f^{-1}((a_{\alpha}, \infty)) = \{x: f(x) < b_{\alpha}\} \cap x: f(x) > a_{\alpha}$. Since the intersection of any two open sets is open, each set $f^{-1}((a_{\alpha}, b_{\alpha}))$ is open. Since the arbitrary union of open sets is open, the set $f^{-1}(U) = \cap_{\alpha \in A} f^{-1}((a_{\alpha}, b_{\alpha}))$ is open. Hence by Theorem 40.5(iii), f is continuous.

1.7 42.Compact Metric Space

Exercise 42.1:

• \mathbb{R}^n : let $U_k = \{B_{(k)}\}_{k=1}^{\infty}$ since U_k is the open ball of radius k, centred at 0.

so
$$\mathbb{R}^n \subseteq \bigcup_{k=1}^{\infty} \{U_k\}$$

but there is no subcover U_k^* such that $\bigcup_{k=1}^{\infty} U_k^* = \mathbb{R}^n$

• we know that $l^1 \subset l^2 \subset c_0 \subset l^{\infty}$, so it To show that the set is not compact if M is l^2, c_0 , or l^{∞} : take

$$\delta^{(1)} = \{1, 0, 0, 0...\}$$

$$\delta^{(2)} = \{0,1,0,0...\}$$

:

$$\delta^{(k)} = \{0, 0, 0, 0..., 1, ..\}$$

so we have:
$$\delta_n^{(k)} = \begin{cases} 1, n = k \\ 0, n \neq k \end{cases}$$

note that $\{\delta^{(k)}\}_{k=1}^{\infty}$ is a sequence of points in l^2 , c_0 , or l^{∞} that has no convergent subsequence. Therefore l^2 , c_0 , and l^{∞} are not compact. By Theorem 43.5.

Let M be a metric space. Then M is compact if and only if every sequence in M has a convergent subsequence.

Exercise 42.2:

<u>Proof:</u> To show that X is closed, it suffices to show the complement X^c of X is open.

Theorem: Let M be a metric space $X \subseteq M$, then X is closed X^c is open.

Let $x \in X$ and $y \in X^c$, since $x \neq y \Rightarrow d(x, y) = r$ consider the family:

$$x \in U_x = \{B_{\frac{r}{2}}(x)\}$$

$$y \in V_y = \{B_{\frac{r}{2}}(y)\}$$

and $U_x \cap V_y = \phi$, since $x \in X \Rightarrow X = \bigcup_{i=1}^n \{x_i\} \subset \bigcup_{i=1}^n U_{x_i}$

Definition: Let M be a metric space, we say that $U_x \subset M$ is open in M if $\forall x \in U_x, \exists \epsilon = \frac{r}{2} > 0$, such that $B_{\frac{r}{2}} \subset U_x$

so U_x is open.

since X is compact, we have finite subcover, $\exists x_1, x_2...x_n \in X \subset \bigcup_{i=1}^n U_{x_i}$ since $U_x \cap V_y = \phi \Longrightarrow$

$$\left(\bigcup_{i=1}^{n} U_{x_i}\right) \cap \left(\bigcap_{i=1}^{n} V_{y_i}\right) = \phi$$

Theorem: Let M be a metric space, if $V_{y_1}, V_{y_2}...V_{y_n}$ are open set $\Rightarrow \bigcap_{i=1}^n V_{y_i}$ is open.

so $V = \bigcap_{i=1}^n V_{y_i}$ is open.

so for every $y\in X^c, \exists$ an open set V such that $y\in V\subset X^c,$ Hence X^c is open $\Rightarrow X$ is closed.

Exercise 42.3:

Proof:

- since $U_k = \{x_k\}_{k=1}^n$ be a finite collection of compact subset of a metric space M, then for all $x_1, x_2, ..., x_n$ there is a finite subcover U^* of $\{x_k\}_{k=1}^n$, so $\bigcup_{k=1}^n U_k$ there exists subcover $\bigcup_{k=1}^n U_k^*$ so $x_1 \cup x_2 \cup ... \cup x_n$ is compact.
- Let $U = \{(n, n + \frac{3}{2}) : \forall n \in \mathbb{N}\}$ there is no finite subcover so U is not compact.

Exercise 42.6:

Proof: $f: M \longrightarrow \mathbb{R}$, By corollary:

Corollary 42.7 If f is a continuous real-valued function on a compact metric space M, there exist $c,d\in M$ such that $f(c)\leq f(x)\leq f(d)$ for all $x\in M$. That is, f attains a maximum and a minimum on M.

then f has an infimum value, let $x_0 \in M$ such that $f(x) \ge f(x_0) > 0$, so let $T = \frac{f(x_0)}{2}$ and f(x) > T > 0 for all $x, x_0 \in M$.

Exercise 42.12:

Proof: By definition:

A contraction mapping, on a metric space (M,d) is a function f from M to itself, with the property that there is some non negative real number $0 \le k < 1$, such that for all x and y in M, $d(f(x), f(y)) \le k d(x, y)$.

• consider the function g(x) = d(f(x), x) want to show that g(x) is continuous:(By triangle inequality) we have:

```
\begin{split} &d(f(x),x)-d(f(y),y) \ \leq \ (d(x,y)+d(y,f(x)))-(d(y,f(x))+d(f(x),f(y)))=d(x,y)-d(f(x),f(y))<2d(x,y)\\ &\text{as similar we have } d(f(y),y)-d(f(x),x)<2d(x,y)\\ &\Rightarrow |d(f(x),x)-d(f(y),y)|<2d(x,y),\ \forall \epsilon>0,\exists \delta>0 \text{ such that:}\\ &d(x,y)<\delta, \text{ whenever } d(f(x),f(y))<\epsilon \text{ so let } \delta=\frac{\epsilon}{2}\Rightarrow |d(f(x),x)-d(f(y),y)|<2d(x,y)<2\delta=2\frac{\epsilon}{2}=\epsilon\\ &\text{so } g(x) \text{ continuous function.} \end{split}
```

• since g(x) continuous and compact function $\Rightarrow g(x)$ has a minimum value.

```
let c be a minimum value, so d(f(x_0), x_0) = c
suppose the contrary, (f(x_0) \neq x_0) \Rightarrow c > 0
\Rightarrow d(f(f(x_0)), f(x_0)) < d(f(x_0), x_0) = c "contradiction"
so f(x_0) = x_0
```

• To show that f(x) = x is unique: suppose the contrary, let $x \neq y$, $\forall x,y \in M$ such that: f(x) = x, f(y) = y, then d(f(x), f(y)) < f(x, y)but f(x) = x and f(y) = yso d(f(x), f(y)) = d(x, y) "contradiction"

1.8 43. The Bolzano-Weierstrass Characterization

Exercise 43.1:

Proof:

• Want to show that the set $\{x \in M : d(x,0) = 1\}$ is closed: by theorem 40.3, let f(x) = d(x,0) =is cont on M and $f^{-1}(\{1\}) = \{x \in M : d(x,0) = 1\}$ is continuous preimage of a closed set, so f(x) is closed by theorem:

Theorem 40.5: Let f be a function from a metric space M_1 into a metric space M_2 . The following are equivalent:

- (i) f is continuous on M_1 .
- (ii) $f^{-1}(C)$ is closed whenever C is a closed subset of M_2 .
- Want to show that the set $\{x \in M : d(x,0) = 1\}$ is bounded: let $y,z \in M$ so $d(y,z) \leq d(y,0) + d(0,z) = 2$, so $d(y,z) \leq 2$, $\forall y,z \in M$ so by definition 43.6.
- To show that the set is not compact if M is l^2, c_0 , or l^{∞} : take

$$\delta^{(1)} = \{1, 0, 0, 0...\}$$

$$\delta^{(2)} = \{0, 1, 0, 0...\}$$

$$\vdots$$

$$\delta^{(k)} = \{0, 0, 0, 0..., 1, ..\}$$

so we have:
$$\delta_n^{(k)} = \begin{cases} 1, n = k \\ 0, n \neq k \end{cases}$$

note that $\{\delta^{(k)}\}_{k=1}^{\infty}$ is a sequence of points in l^2 , c_0 , or l^{∞} that has no convergent subsequence. Therefore l^2 , c_0 , and l^{∞} are not compact. By Theorem 43.5.

Let M be a metric space. Then M is compact if and only if every sequence in M has a convergent subsequence.

Exercise 43.4:

Proof: consider continuous function:

$$d: M \times M \longrightarrow \mathbb{R}: (a_1, a_2) \longmapsto d(a_1, a_2)$$

Corollary 42.7: If f is a continuous real-valued function on a compact metric space M, there exist $c,d\in M$ such that $f(c)\leq f(x)\leq f(d)$ for all $x\in M$. That is, f attains a maximum and a minimum on M.

so, since d defined on compact $M \times M$ then d has a maximum value.

Let
$$D = diam(M) = lup\{d(x, y) : \forall x, y \in M$$

By definition of supremum $\exists \{x_n\}, \{y_n\} \subset M$ such that:

$$\lim_{n\to\infty} d(x_n, y_n) = lup\{d(x_n, y_n)\}.$$

since (M,d) is compact then we have a subsequence $\{(x_{n_k},y_{n_k}): \forall k \in \mathbb{N}\}$ is convergent to some $(a_1,a_2) \in M \times M \Longrightarrow$

$$diam(M) = D = \lim_{n \to \infty} d(x_n, y_n) = \lim_{n \to \infty} d(x_{n_k}, y_{n_k})$$

$$=d\left(\lim_{n\to\infty}x_{n_k},\lim_{n\to\infty}y_{n_k}\right)=d(a_1,a_2)$$

Chapter 2

IX.The Riemann-Stieltjes Integral

2.1 51.Riemann-Stieltjes Integration with Respect to an Increasing Integrator

Solution: Let $p = \{x_0, x_1, \dots, x_n\}$, suppose S has one more point than p such that $S = \{p \cup \{x^*\} | x^* \notin p\}$, $x^* \in [x_{i-1}, x_i]$. Let $m^* = \inf\{f(x), x_{i-1} \le x \le x^*\}$, $m^{**} = \inf\{f(x), x^* \le x \le x_i\}$. So $m_i \le m^*$ and $m_i \le m^{**}$. Now $L(f, p) = \sum_{i=1}^n m_i \Delta \alpha_i$ $= m_1 \Delta \alpha_1 + \dots + m_i (\alpha(x_i) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $= m_1 \Delta \alpha_1 + \dots + m_i (\alpha(x_i) - \alpha(x^*) + \alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $= m_1 \Delta \alpha_1 + \dots + m_i (\alpha(x_i) \alpha(x^*)) + m_i (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^{**} (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^{**} (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^{**} (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^{**} (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^{**} (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^{**} (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^{**} (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^{**} (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^{**} (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^{**} (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^{**} (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$ $\le m_1 \Delta \alpha_1 + \dots + m^* (\alpha(x_i) \alpha(x^*)) + m^* (\alpha(x^*) - \alpha(x_{i-1})) + \dots + m_n \Delta \alpha_n$

Exercise 51.3:

Solution:

"\implies "Let $f \in \mathcal{R}_{\alpha}[a,b] \iff \forall \epsilon > 0, \exists P \text{ partition of } [a,b] \text{ such that:}$

$$U(f, P) - L(f, P) < \epsilon$$

Now we know that $L(f, P) \leq U(f, P) \Rightarrow 0 \leq U(f, P) - L(f, P)$, so

$$U(f,P) - L(f,P) < \epsilon_1$$

$$U(f,S) - L(f,S) < \epsilon_2$$

Since $0 \le U(f, P) - L(f, P) \Rightarrow$

$$U(f, P) - L(f, S) < \epsilon$$
.

" \longleftarrow " Let that there exist partitions P and S of [a,b] such that:

$$U(f, P) - L(f, S) < \epsilon$$

Let $T = S \cup P$ so:

$$U(f,T) \le U(f,P) \cdots (1)$$

$$(L(f,T) \geq L(f,S)) - 1$$

$$-L(f,T) \le -L(f,S)\cdots(2)$$

From 1 and 2 we have $U(f,T) - L(f,T) \le U(f,P) - L(f,S) < \epsilon \Rightarrow$

$$U(f,T) - L(f,T) < \epsilon \Rightarrow f \in \mathscr{R}_{\alpha}[a,b].$$

Exercise 51.4:

<u>Solution</u>: Let P be a partition of [a,b], let $P^* = P \cup \{c\}$, and $P_1 = P^* \cap [a,c]$ $P_2 = P^* \cap [c,b]$

$$U(f,P) = \sum_{k=1}^{n} M_k \Delta \alpha_k =$$

$$M_1 \Delta \alpha(x_1) + \dots + M_k [\alpha(x_k) - \alpha(x_{k-1})] + \dots + M_n \alpha(x_n) =$$

$$M_1 \Delta \alpha(x_1) + \dots + M_k [\alpha(x_k) - \alpha(c) + \alpha(c) - \alpha(x_{k-1})] + \dots + M_n \alpha(x_n) =$$

$$M_1 \Delta \alpha(x_1) + \dots + M_k [\alpha(x_k) - \alpha(c)] + M_k [\alpha(c) - \alpha(x_{k-1})] + \dots + M_n \alpha(x_n) =$$

$$\sum_{i=1}^{k} M_i \Delta \alpha(x_i) + \sum_{i=k}^{n} M_i \Delta \alpha(x_i) =$$

$$U(f, P_1) + U(f, P_2) \Longrightarrow$$

$$\overline{\int}_{a}^{b} f d\alpha = \overline{\int}_{a}^{c} f d\alpha + \overline{\int}_{c}^{b} f d\alpha.$$

Let P be a partition of [a,b], let $P^*=P\cup\{c\}$, and $P_1=P^*\cap [a,c]$ $P_2=P^*\cap [c,b]$

$$L(f,P) = \sum_{k=1}^{n} m_k \Delta \alpha_k =$$

$$m_1 \Delta \alpha(x_1) + \dots + m_k [\alpha(x_k) - \alpha(x_{k-1})] + \dots + m_n \alpha(x_n) =$$

$$m_1 \Delta \alpha(x_1) + \dots + m_k [\alpha(x_k) - \alpha(c) + \alpha(c) - \alpha(x_{k-1})] + \dots + m_n \alpha(x_n) =$$

$$m_1 \Delta \alpha(x_1) + \dots + m_k [\alpha(x_k) - \alpha(c)] + m_k [\alpha(c) - \alpha(x_{k-1})] + \dots + m_n \alpha(x_n) =$$

$$\sum_{i=1}^{k} m_i \Delta \alpha(x_i) + \sum_{i=k}^{n} m_i \Delta \alpha(x_i) =$$

$$L(f, P_1) + L(f, P_2) \Longrightarrow$$

$$\int_{a}^{b} f d\alpha = \int_{a}^{c} f d\alpha + \int_{a}^{b} f d\alpha.$$

Exercise 51.5:

<u>Solution</u>: f is bounded function on [a,b] and α increasing on [a,b]. We want to show that:

$$\int_{a}^{b} f d\alpha = -\int_{a}^{b} (-f) d\alpha$$

Let
$$p = \{x_0, x_1...x_n\}$$
 be any partion of $[a, b]$.
We know that $\overline{\int}_b^a f d\alpha = \inf U(f, p)$, so $\overline{\int}_b^a f d\alpha \leq U(f, p)$
And $\underline{\int}_a^b (-f) d\alpha = \sup L(-f, p)$, so $\underline{\int}_a^b (-f) d\alpha \geq L(-f, p)$.

Claim-1:
$$\overline{\int}_a^b f d\alpha \ge -\underline{\int}_a^b (-f) d\alpha$$
Proof the claim: we know that $(\overline{\int}_a^b f d\alpha \ge \underline{\int}_a^b f d\alpha) \times -1 \Rightarrow$

$$(-\overline{\int}_a^b f d\alpha \le -\underline{\int}_a^b f d\alpha = \underline{\int}_a^b - f d\alpha) \times -1 \Rightarrow$$

$$\overline{\int}_a^b f d\alpha \ge -\underline{\int}_a^b - f d\alpha.$$

Claim-2:
$$\overline{\int}_a^b f d\alpha \le -\underline{\int}_a^b (-f) d\alpha$$
Proof the claim: we know that $(\overline{\int}_a^b - f d\alpha \ge \underline{\int}_a^b - f d\alpha) \times -1 \Rightarrow$
 $\overline{\int}_a^b f d\alpha = \overline{\int}_a^b - (-f) d\alpha = -\overline{\int}_a^b - f d\alpha \le -\underline{\int}_a^b - f d\alpha \Rightarrow$
 $\overline{\int}_a^b f d\alpha \le -\underline{\int}_a^b (-f) d\alpha.$

so from claim 1 and claim 2 we have $\overline{\int}_a^b f d\alpha = -\underline{\int}_a^b (-f) d\alpha$, so we are done.

2.1. 51.RIEMANN-STIELTJES INTEGRATION WITH RESPECT TO AN INCREASING INTEGRATOR35

Exercise 51.6:

• $\int_0^1 x dx = \frac{1}{2}$ By Theorem 51.14 (Mean-Value Theorem of the Integral) since f(x) = x is continuous on [0,1] and $\alpha(x) = x$ is increasing on [0,1], there exists $c = \frac{1}{2} \in (0,1)$ such that:

$$\int_0^1 x dx = f\left(\frac{1}{2}\right) \left[\alpha(1) - \alpha(0)\right] = \frac{1}{2} [1 - 0] = \frac{1}{2}.$$

• $\int_0^1 x^2 dx = \frac{1}{3}$ By Theorem 51.14 (Mean-Value Theorem of the Integral) since $f(x) = x^2$ is continuous on [0,1] and $\alpha(x) = x$ is increasing on [0,1], there exists $c = \frac{1}{\sqrt{3}} \in (0,1)$ such that:

$$\int_0^1 x^2 dx = f\left(\frac{1}{\sqrt{3}}\right) \left[\alpha(1) - \alpha(0)\right] = \frac{1}{3} [1 - 0] = \frac{1}{3}.$$

Evercise 51 7

Solution: Let $\alpha(x) = \begin{cases} x & 0 \le x \le 1 \\ x+2 & 1 < x \le 2 \end{cases}$

So since $c=1\in[0,2],\ f(x)=x$ is continuous on [0,2] and $\alpha(x)$ increasing on $[0,2]\Rightarrow\int_0^2xd\alpha=f(c)[\alpha(b)-\alpha(a)]=1[4-0]=4.$

Exercise 51.12:

(a)-Let $p = \{x_0, x_n\}$ be a partition of [0, 2].

$$U(f,p) = \sum_{k=1}^{2} M_k \Delta \alpha_k$$
, and $M_k = 1$, so $\sum_{k=1}^{2} \Delta \alpha_k$

$$=x_n-x_0=1-0=1$$

 $U(f,p) = \sum_{k=1}^{2} M_k \Delta \alpha_k, \text{ and } M_k = 1, \text{ so } \sum_{k=1}^{2} \Delta \alpha_k$ $= x_n - x_0 = 1 - 0 = 1$ and $L(f,p) = \sum_{k=1}^{2} m_k \Delta \alpha_k, \text{ and } m_k = 0, \text{ so } 0 \sum_{k=1}^{2} \Delta \alpha_k = 0, \text{ since}$ $U(f,p) \neq L(f,P) \Rightarrow f \notin \mathcal{R}_{\alpha}[0,2].$

(b)-Let $s = \{x_0, x_n\}$ be a partition of [0, 2].

$$U(g,s) = \sum_{k=1}^{n} M_k \Delta \alpha_k$$
, and $M_k = 1$, so $\sum_{k=1}^{2} \Delta \alpha_k$

$$= x_n - x_0 = 1 - 0 = 1$$

 $U(g,s) = \sum_{k=1}^{n} M_k \Delta \alpha_k, \text{ and } M_k = 1, \text{ so } \sum_{k=1}^{2} \Delta \alpha_k$ $= x_n - x_0 = 1 - 0 = 1$ and $L(g,s) = \sum_{k=1}^{2} m_k \Delta \alpha_k, \text{ and } m_k = 0, \text{ so } 0 \sum_{k=1}^{2} \Delta \alpha_k = 0 \text{ since}$ $U(g,s) \neq L(g,s) \Rightarrow g \notin \mathcal{R}_{\alpha}[0,2].$

(c)-Let $p = \{x_0, x_n\}$ be a partition of [0, 2], $\alpha(x) = x$.

$$U(f,p) = \sum_{k=1}^{2} M_k \Delta \alpha_k$$
, and $M_k = 1$, so $\sum_{k=1}^{2} \Delta \alpha_k$

$$=x_n-x_0=2-0=2$$

 $U(f,p) = \sum_{k=1}^{2} M_k \Delta \alpha_k, \text{ and } M_k = 1, \text{ so } \sum_{k=1}^{2} \Delta \alpha_k$ $= x_n - x_0 = 2 - 0 = 2$ and $L(f,p) = \sum_{k=1}^{2} m_k \Delta \alpha_k, \text{ and } m_k = 0, \text{ so } 0 \sum_{k=1}^{2} \Delta \alpha_k = 0, \text{ since}$ $U(f,p) \neq L(f,p) \Rightarrow f \notin \mathcal{R}_{\alpha}[0,2].$

Let $s = \{x_0, x_n\}$ be a partition of [0, 2], $\alpha(x) = x$.

$$U(q,s) = \sum_{k=1}^{n} M_k \Delta \alpha_k$$
, and $M_k = 1$, so $\sum_{k=1}^{2} \Delta \alpha_k$

$$= x_n - x_0 = 2 - 0 = 2$$

 $U(g,s) = \sum_{k=1}^{n} M_k \Delta \alpha_k, \text{ and } M_k = 1, \text{ so } \sum_{k=1}^{2} \Delta \alpha_k$ $= x_n - x_0 = 2 - 0 = 2$ and $L(g,s) = \sum_{k=1}^{2} m_k \Delta \alpha_k, \text{ and } m_k = 0, \text{ so } 0 \sum_{k=1}^{2} \Delta \alpha_k = 0, \text{ since}$ $U(g,s) \neq L(g,s) \Rightarrow g \notin \mathcal{R}_{\alpha}[0,2].$

2.1. 51.RIEMANN-STIELTJES INTEGRATION WITH RESPECT TO AN INCREASING INTEGRATOR37

Exercise 51.18:

Solution:

- Let $\alpha(x) = x$ and $f(x) = \begin{cases} -1, & x \in \mathbb{Q} \cap [0, 1] \\ 1, & x \in \mathbb{Q}^c \cap [0, 1] \end{cases}$ Now $\overline{\int}_a^b f dx = \sum_{k=1}^n M_k \Delta \alpha_k$, and $M_k = 1$, so $\sum_{k=1}^n \Delta \alpha_k$ $= x_1 - x_0 + x_2 - x_1 + \dots + x_n - x_{n-1} = x_n - x_0 = 1 - 0 = 1$ and $\underline{\int}_a^b = \sum_{k=1}^n m_k \Delta \alpha_k$, and $m_k = 1$, so $-1 \sum_{k=1}^n \Delta \alpha_k = -1[x_1 - x_0 + x_2 - x_1 + \dots + x_n - x_{n-1}] = -1[x_n - x_0] = -1[1 - 0] = -1$ so $\overline{\int}_a^b = 1 \le -1 = \underline{\int}_a^b$ so $f \notin \mathcal{R}_\alpha[0, 1]$.
- But $|f(x)| = \begin{cases} 1, & x \in \mathbb{Q} \cap [0, 1] \\ 1, & x \in \mathbb{Q}^c \cap [0, 1] \end{cases}$ so $|f(x)| := \{1, x \in [0, 1]\}, \text{ and } \overline{\int}_a^b = 0 = \underline{\int}_a^b, \text{ so } |f| \in \mathscr{R}_{\alpha}[0, 1].$

So $|f| \in \mathscr{R}_{\alpha}[a,b]$, but $f \notin \mathscr{R}_{\alpha}[a,b]$.

2.2 54. Functions of Bounded Variation

Exercise 54.1:

Solution:

• $\alpha(x) = x^2[-2,1]$

Since $\alpha(x)$ is continuous on [-2,1] $\alpha(x)$ is differentiable on (-2,1)and $\alpha'(x)$ is bounded on (-2,1) \Rightarrow

$$\alpha \in BV[-2,1]$$

$$V_{-2}^{1}x^{2} = \underbrace{V_{-2}^{0}x^{2}}_{} + \underbrace{V_{0}^{1}x^{2}}_{}$$

decreasing increasing

$$\alpha(-2) - \alpha(0) + \alpha(1) - \alpha(0) = 4 + 1 = 5$$

• $\alpha(x) = x^3 + x^2 - x + 1[-2, 2]$

Since $\alpha(x)$ is continuous on [-2,2] $\alpha(x)$ is differentiable on (-2,2)and $\alpha'(x)$ is bounded on (-2,2) \Rightarrow

$$\alpha \in BV[-2,2]$$

$$V_{-2}^2(x^3+x^2-x+1) = \underbrace{V_{-2}^{-1}\alpha(x)}_{-2} + \underbrace{V_{-1}^{.5}\alpha(x)}_{-2} + \underbrace{V_{.5}^2\alpha(x)}_{-2}$$

increasing decreasing increasing

$$\alpha(-1) - \alpha(-2) + \alpha(-1) - \alpha(.5) + \alpha(2) - \alpha(.5)$$

$$= (2+1) + (2 - .875) + (11 - .875) = 14.25$$

Figure 2.1: $\alpha(x) = x^2[-2, 1]$

Figure 2.2: $\alpha(x) = x^3 + x^2 - x + 1[-2, 2]$

Exercise 54.4:

Solution: Let $\alpha \in BV[a, b]$

$$\alpha(x) \in BV[a,b] \Rightarrow \sum_{i=1}^{n} |\alpha(x_i) - \alpha(x_{i-1})| \le M$$

$$\alpha(x) \in BV[a, b] \Rightarrow \sum_{i=1}^{n} |\alpha(x_i) - \alpha(x_{i-1})| \le M$$

So $\Rightarrow \sum_{i=1}^{n} ||\alpha(x_i)| - |\alpha(x_{i-1})|| \le \sum_{i=1}^{n} |\alpha(x_i) - \alpha(x_{i-1})| \le M$

$$\Rightarrow \sum_{i=1}^{n} ||\alpha(x_i)| - |\alpha(x_{i-1})|| \le M$$
$$|\alpha(x)| \in BV[a, b]$$

Exercise 54.5:

<u>Solution:</u> Since $\alpha(x) \in BV[a,b]$ so $\sum_{k=1}^{n} |\alpha(x_k) - \alpha(x_{k-1})| \le c, c \in \mathbb{R}$,

and we have
$$|\alpha(x)| > M$$
, so $\frac{1}{\alpha(x)} \le \frac{1}{M}$.
Now $\sum_{k=1}^{n} \left| \frac{1}{\alpha(x_k)} - \frac{1}{\alpha(x_{k-1})} \right| = \sum_{k=1}^{n} \left| \frac{\alpha(x_{k-1}) - \alpha(x_k)}{\alpha(x_{k-1})\alpha(x_k)} \right| \le \frac{c}{M^2}$.
so $\sum_{k=1}^{n} \left| \frac{1}{\alpha(x_k)} - \frac{1}{\alpha(x_{k-1})} \right|$ bounded.

so
$$\sum_{k=1}^{n} \left| \frac{1}{\alpha(x_k)} - \frac{1}{\alpha(x_{k-1})} \right|$$
 bounded.

Exercise 54.6:

Solution:

$$Max\{\alpha, \beta\} = \frac{\alpha + \beta + |\alpha - \beta|}{2}$$

$$Min\{\alpha,\beta\} = \frac{\alpha + \beta - |\alpha - \beta|}{2}$$

By theorem if $\alpha, \beta \in BV[a, b], c \in \mathbb{R} \Rightarrow$

- $\bullet \ \alpha + \beta \in BV[a,b]$

So
$$Max\{\alpha,\beta\}=rac{lpha+eta+|lpha-eta|}{2},\ Min\{lpha,\beta\}=rac{lpha+eta-|lpha-eta|}{2}\in BV[a,b]$$

2.3 55. Riemann-Stieltjes Integration with Respect to Functions of Bounded Variation

Exercise 55.3:

(a) $\int_0^3 \sqrt{x} dx^3$

since $\alpha(x) = x^3$ is continuous and differentiable on $[0,3] \Rightarrow$

$$= \int_0^3 \sqrt{x} dx^3 = \int_0^3 \sqrt{x} 3x^2 dx = 3 \int_0^3 \sqrt{x} x^2 dx$$
$$3\left(\frac{x^{\frac{5}{2}+1}}{\frac{5}{2}+1}\right) = 6\frac{\sqrt{37}}{7}$$

(b) $\int_{1}^{4} \sqrt{x^2 + 1} d(x^2 + 3)$

since $\alpha(x) = (x^2 + 3)$ is continuous and differentiable on $[1, 4] \Rightarrow$

$$\int_{1}^{4} \sqrt{x^2 + 1} d(x^2 + 3) = \int_{1}^{4} \sqrt{x^2 + 1} 2x dx = 2 \int_{1}^{4} \sqrt{x^4 + x^2} dx = 44.8$$

(c) $\int_{1}^{4} x - [x] dx^2$

since $\alpha(x) = x^2$ is continuous and differentiable on $[1, 4] \Rightarrow$

$$\int_{1}^{4} x - [x]dx^{2} = \int_{1}^{2} x - [x]dx^{2} + \int_{2}^{3} x - [x]dx^{2} + \int_{3}^{4} x - [x]dx^{2}$$

$$\int_{1}^{4} x - [x]dx^{2} = \int_{1}^{2} x - 1dx^{2} + \int_{2}^{3} x - 2dx^{2} + \int_{3}^{4} x - 3dx^{2}$$

$$= \int_{1}^{2} 2x^{2} - 2xdx + \int_{2}^{3} 2x^{2} - 4xdx + \int_{3}^{4} 2x^{2} - 6xdx$$

$$\frac{2x^{3}}{3} - x^{2}|_{1}^{2} + \frac{2x^{3}}{3} - 2x^{2}|_{2}^{3} + \frac{2x^{3}}{3} - 3x^{2}|_{3}^{4} = 8$$

Exercise 55.6:

<u>Solution:</u> Since $\alpha \in BV[a,b]$ and f continuous, then by theorem $f \in \mathscr{R}[a,b]$

Now it's clearly that:

$$L(f, P, T) \le S(f, p, T) \le U(f, P)$$

$$\begin{split} &\Rightarrow \int_a^b f d\alpha - \epsilon < L \\ &\text{and } \int_a^b f d\alpha + \epsilon < U \Rightarrow \int_a^b f d\alpha - \epsilon < L(f,p) \leq S(f,p,T) \leq U(f,p) < \\ ∫_a^b f d\alpha + \epsilon \\ &\Rightarrow \int_a^b f d\alpha - \epsilon < S(f,p,T) < int_a^b f d\alpha + \epsilon \\ &|S(f,p,T) - \int_a^b f d\alpha| < \epsilon \Rightarrow \end{split}$$

$$\lim_{norm\ p\to 0} S(f,p,T) = \int_a^b f d\alpha$$

Exercise 55.9:

Solution:

$$Max\{f,g\} = \frac{f+g+|f-g|}{2}$$

By theorem if $f,g\in\mathscr{R}[a,b],c\in\mathbb{R}\Rightarrow$

- $\bullet \ f+g\in \mathscr{R}[a,b]$
- $|f| \in \mathcal{R}[a,b]$
- $cf \in \mathcal{R}[a,b]$

So $Max\{f,g\} = \frac{f+g+|f-g|}{2}$

Chapter 3

X.Sequences and Series of **Functions**

60. Pointwise Convergence and Uniform Con-3.1 vergence

Exercise 60.2:

$$f_n(x) = \frac{1}{1 + n^2 x^2} \Longrightarrow$$

$$\{f_n\}$$
 converges pointwise to f on $[0, 1]$, where:
$$f(x) = \begin{cases} 0 & 0 < x \le 1 \\ 1 & x = 0 \end{cases}$$

Since f is not continuous at point $0 \Rightarrow \{f_n\}$ is not uniformly convergent.

$$g_n(x) = xn(1-x)^n \Longrightarrow$$

$$\{g_n\}$$
 converges pointwise to g on $[0,1]$, where:
$$g(x) = \begin{cases} 0 & 0 < x \le 1 \\ c & x = 0 \ , where \ c \in [0,1] \end{cases}$$

Since g is not continuous at point $0 \Rightarrow \{g_n\}$ is not uniformly convergent.

3.1. 60. POINTWISE CONVERGENCE AND UNIFORM CONVERGENCE 45

Exercise 60.4:

Solution:
$$f_n(x) = \begin{cases} nx, & 0 \le x \le \frac{1}{n} \\ 2 - nx, & \frac{1}{n} \le x \le \frac{2}{n} \\ 0, & \frac{2}{n} \le x \le 1 \end{cases}$$

Exercise 60.5:

<u>Solution:</u> Let $\{f_n\}$ be a sequence of bounded functions on a set X and $\{f_n\}$ converges uniformly to f on X

So since $f_n \rightrightarrows f \Rightarrow \forall \epsilon > 0, \exists N \in \mathbb{N} \text{ such that } |f_n - f| < \epsilon.$

$$|f| = |f - f_n + f_n| \le |f_n - f| + |f_n| < \epsilon + M$$

So f is bounded.

Let $f_n = \frac{x}{n} + \frac{1}{x} \{0 < x \le 1\}$, so $f_n \to f$ such that $f = \frac{1}{x} \{0 < x \le 1\}$ and f is unbounded.

Exercise 60.9:

Solution:

$$d(f,g) := \sup\{|f(x) - g(x)|, x \in [a,b]\}\$$

- $\sup\{|f(x) g(x)|, x \in [a, b]\} = 0 \iff |f(x) g(x)| = 0 \iff f(x) = g(x)$
- $\sup\{|f(x) g(x)|, x \in [a, b]\} = \sup\{|g(x) f(x)|, x \in [a, b]\}$ "Trivial"
- "Triangle Inequality: $\sup\{|f(x)-h(x)| = \sup\{|f(x)-g(x)+g(x)-h(x)| \le \sup\{|f(x)-g(x)| + |g(x)-h(x)| = \sup\{|f(x)-g(x)| + \sup\{|g(x)-h(x)|\}$

Exercise 60.10:

<u>Solution:</u> let C[a,b] denote the set of continuous real-valued functions on [a,b]. We define a metric d on C[a,b] by the formula:

$$d(f,g) = \sup\{|f(x) - g(x)|, x \in [a,b]\}\$$

Let f_n be a Cauchy sequence in C[a,b], then $\forall \epsilon > 0$, there is N such that $||f_n - f_m|| < \epsilon$ for $n, m \ge N \Longrightarrow |f_n - f_m|| = \sup |f_n - f_m| < \epsilon$. $|f_n - f_m| \le \sup |f_n(x) - f_m(x)| < \epsilon, \forall n \ge N.$ So $f_n(x)$ converges uniformly to f(x).

And each f_n is continuous on [a, b], and $f_n \to f$ uniformly on [a, b].

Thus, $f \in C[a, b]$. So C[a, b] is complete.

3.2 61. Integration and Differentiation of Uniformly Convergent Sequences

$\overline{\text{Exercise } 61.1:}$

<u>Solution:</u> Let $f_n := \frac{x+n[x]}{n}|0 \le x \le 1$, f_n is convergent pointwise to f,

such that:
$$f(x) = [x]$$
, and
$$\lim_{n \to \infty} \int_0^2 \frac{x + n[x]}{n} = \lim_{n \to \infty} \int_0^1 \left(\frac{x}{n} + \int_1^2 \frac{x + n}{n}\right) = \lim_{n \to \infty} \left(\frac{x^2}{2n}|_0^1 + (\frac{x^2}{2n} + x|_1^2)\right) = \lim_{n \to \infty} \left(\frac{1}{2n} + \frac{4}{2n} + 2 - \frac{1}{2n} - 1\right) = 1$$
 and $\int_0^2 [x] = \int_0^1 0 + \int_1^2 1 = x|_1^2 = 1 \Rightarrow$

$$\lim_{n \to \infty} \int_0^2 f_n = \int_0^2 f$$