

AKADEMIA GÓRNICZO - HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

WYDZIAŁ INFORMATYKI, ELEKTRONIKI I TELEKOMUNIKACJI

Kalkulator równań różniczkowych - metoda Rungego - Kutty 4. rzędu

Autorzy: Marta Piechówka, Mateusz Powęska, Paweł Pycia

Kierunek studiów: Informatyka

Spis Treści

1. Teoria	
1.1. Metody Rungego - Kutty	3
1.2. Metoda Rungego - Kutty 4. rzędu	3
2. Przykład	5
3. Opis programu	6
3.1.Działanie programu	6
3.2. Obsługa programu	7
3.3. Rozwiązywanie problemów	9
3.4. Uruchomienie aplikacji	9
3.5. Wymagania sprzętowe	9

1. Teoria

1.1 Metody Rungego - Kutty

Nazwą metody Rungego - Kutty określa się rodzinę metod wielokrokowych, jak również pewne ich modyfikacje. Metody Rungego - Kutty to metody numeryczne stosowane do iteracyjnego rozwiązywania równań różniczkowych zwyczajnych. W metodach tych nachylenie szacowane jest na podstawie kilku punktów wewnątrz przedziału. Różne metody Rungego - Kutty klasyfikowane są ze względu na ich rząd (odpowiadający liczbie punktów wziętych do szacowania nachylenia).

1.2 Metoda Rungego - Kutty 4. rzędu

Metoda Rungego - Kutty 4. rzędu jest powszechnie stosowana ze względu na prostotę implementacji, relatywnie proste wzory, dużą szybkość oraz wysoki rząd metody.

Metoda przyjmuje równanie różniczkowe zwyczajne pierwszego rzędu $x'=f(t,\,x)$ wraz z warunkiem początkowym $x(t_0)=x_0$. Przyjmując dowolne h, będące wielkością kroku całkowania, iteracyjny wzór na x według metody Rungego - Kutty 4. rzędu to:

$$x_{i+1} = x_i + \frac{1}{6}(K_1 + 2K_2 + 2K_3 + K_4)h$$

$$K_1 = f(t_i, x_i)$$

$$K_2 = f(t_i + \frac{1}{2}h, x_i + \frac{1}{2}K_1h)$$

$$K_3 = f(t_i + \frac{1}{2}h, x_i + \frac{1}{2}K_2h)$$

$$K_4 = f(t_i + h, x_i + K_3h)$$

Metoda zwraca numeryczne rozwiązanie równania różniczkowego, czyli zbiór punktów, które przybliżają funkcję x(t).

Całkowity błąd obcięcia w metodzie Rungego - Kutty 4. rzędu to $O(h^4)$. Całkowity błąd obcięcia składa się z błędu lokalnego oraz z błędu akumulowanego. Błąd lokalny związany jest z pojedynczym krokiem, natomiast błąd akumulowany z nawarstwianiem się błędów z poprzednich kroków.

Na wykresach zostało pokazane jak kolejne obliczenia przybliżają obliczony punkt do rzeczywistego rozwiązania.

2. Przykład

Rozwiążmy równanie $x' = -2x + e^t$ z warunkiem początkowym x(0) = 1.

Dokładne rozwiązanie tego równania jest równe $x = \frac{1}{3}e^{-2t}(e^{3t} + 2)$.

W tabeli poniżej przedstawiono wyniki dla poszczególnych kroków. Przyjęto h=0.57142857 oraz $0 \le t \le 4$.

t	х	K1	K2	К3	K4	Wart. rzecz.
0	1	-0.57142857	-0.05591956	-0.35049613	0.26959270	1
0.57142857	0.81422212	0.08134326	0.36950339	0.20484046	0.62719406	0.80286935
1.14285714	1.12375963	0.50754029	0.81009962	0.63720858	1.16044084	1.11303918
1.71428571	1.88419255	1.01961301	1.48631885	1.21962980	2.07146422	1.87252478
2.28571429	3.30135497	1.84571265	2.64918894	2.19005963	3.67364506	3.28446447
2.85714286	5.83433078	3.28174086	4.69689707	3.88823638	6.50710310	5.80610169
3.42857143	10.32751593	5.81573309	8.31914575	6.88862423	11.52335413	10.27822286

Na wykresie dokładne rozwiązanie zaznaczone jest niebieską linią, natomiast rozwiązanie obliczone przez program żółtą linią z punktami.

Jak widać wykonano 8 kroków. Przy takich założeniach dla t=4 program obliczył $x_4=18.28662045$. Wartość rzeczywista dla takiego t wynosi x(t)=18.19960699. Dla tych założeń maksymalny błąd nie będzie większy niż 0.087013466. Można jednak polepszyć wyniki zwiększając liczbę kroków oraz zmniejszając wartość h. Dla tej samej funkcji, wykonując 32 kroki przy h=0.12903226, maksymalny błąd nie będzie większy niż 0.00018463.

3. Opis programu

3.1 Działanie programu

Program przyjmuje równanie różniczkowe zwyczajne pierwszego rzędu x'=f(t,x) wraz z warunkiem początkowym $x(t_0)=x_0$ oraz końcem przedziału t_n . Użytkownik może wybrać jedno z 3 podanych równań, które posiadają wbudowane rozwiązanie dokładne albo wpisać inne równanie w odpowiednich miejscach. Po wciśnięciu przycisku "calculate" program wyświetla wykres zawierający punkty obliczone metodą Rungego - Kutty 4.rzędu (niebieski) oraz dla podanych 3 rozwiązań, wykres rozwiązania dokładnego (czerwony). Za każdym razem program zaczyna od 2 kroków. Ich ilość można podwoić, klikając przycisk "next step". Dla podanych 3 równań program wyświetla "epsilon", czyli maksymalna wartość błędu metody. Użytkownik ma możliwość zapisania numerycznego rozwiązania, klikając przycisk "save". Może również zapisać wykres poprzez kliknięcie ikony dyskietki pod wyświetlanym wykresem.

3.2 Obsługa programu

Po uruchomieniu programu użytkownik powinien zobaczyć okno wyglądające w taki sposób:

- 1. Miejsce do wybrania funkcji do obliczenia. Wybranie pola "custom" pozwala na wpisanie dowolnego równania. Wybranie tej opcji nie wyświetli wykresu rozwiązania dokładnego ani epsilonu.
- 2. Pola, w które użytkownik może wpisać dowolne wartości w przypadku wybrania "custom" w punkcie 1. Należy użyć składni Pythona. Wybranie innych opcji w punkcie 1. automatycznie wypełnia te pola.
- 3. Przycisk "calculate" wyświetla wykres, ilość kroków oraz epsilon dla pierwszych 3 opcji w punkcie 1.
- 4. Przycisk "save" zapisuje numeryczne rozwiązanie metody do pliku w formacie txt w folderze z aplikacją. Wciśnięcie "save" więcej niż raz nie sprawi, że plik zostanie nadpisany, a utworzy nowe pliki w tym samym folderze.
- 5. Przycisk "next step" podwaja liczbę kroków w metodzie.

Po wciśnięciu przycisku "calculate" użytkownik powinien zobaczyć okno podobne do:

- 6. Ilość kroków obecnie użytych w metodzie.
- 7. "Epsilon" wartość, której nigdy nie przekroczy maksymalny błąd w metodzie przy obecnej ilości kroków.
- 8. Wykres przedstawiający obliczone rozwiązanie. Niebieski kolor przedstawia numeryczne rozwiązanie. Czerwony wykres pojawia się tylko dla 3 pierwszych opcji w punktu 1 i przedstawia rozwiązanie dokładne.
- 9. Pasek narzędzi obsługujący wykres. Po kolei od lewej:
 - a. "Home" wraca do domyślnego wyglądu wykresu
 - b. "Back" cofa zmianę wyglądu wykresu
 - c. "Forward" przywraca cofniętą zmianę wyglądu wykresu
 - d. "Pan/Zoom" kliknięcie lewym przyciskiem myszy pozwala panoramować wykres; kliknięcie prawym przyciskiem myszy pozwala przybliżać określony punkt
 - e. "Zoom-to-rectangle" pozwala zaznaczyć obszar, który zostanie powiększony
 - f. "Subplot-configuration" otwiera okno pozwalające zmienić wygląd wykresu
 - g. "Save" pozwala zapisać wykres.

3.3 Rozwiązywanie problemów

Użytkownik może spotkać się z 3 komunikatami:

- "Select functions!" wyświetla się, gdy nie zostało uzupełnione pole z punktu 1 (patrz wyżej).
- "There is no input!" wyświetla się, gdy przycisk "calculate" został wciśnięty przed wypełnieniem pól z punktu 1. i 2. (patrz wyżej).
- "No result!" wyświetla się, gdy przyciski "save" lub "next step" został wciśnięty przed przyciskiem "calculate".

3.4 Uruchomienie aplikacji

Należy zmienić rozszerzenie pliku z txt na exe i uruchomić aplikację.

3.5 Wymagania sprzętowe

Zalecane:

- Procesor 1.1 GHz lub szybszy, 2 rdzenie
- Pamięć 4 GB RAM
- Miejsce na dysku 40 MB
- Ekran rozdzielczość 1920x1080
- System operacyjny Windows 10