Toxic Comment Classification Project

Riccardo Frigerio 852226 Mattia Napoli 852239 Giulia Tremolada 861144

- Labeling Wikipedia comments based on various categories of toxicity
- Focus on the embedding layer to maximize performance
- Experiments using straightforward architectures

Dataset

Data Exploration

id	comment_text	toxic	severe toxic	obscene	threat	insult	Identity hate
0001d958c54c6e35	You, sir, are my hero. Any chance you remember what page that's on?	0	0	0	0	0	0
0002bcb3da6cb337	C**KSUCKER BEFORE YOU PISS AROUND ON MY WORK	1	1	1	0	1	0

Dataset Row Examples

toxic	12238	9.5%
severe toxic	1274	1%
obscene	6734	5.2%
threat	404	0.3%
insult	6263	4.9%
identity hate	1111	0.8%

Label Distribution in the Trainset

Preprocessing

- Removal of punctuation, numbers, non-alphanumeric characters
- Lemmatization
- Stopwords removal

- Tokenization
- Vectorization

```
3 from nltk.corpus import stopwords
4 from nltk.stem import WordNetLemmatizer
5 from nltk.tokenize import word tokenize
 7 nltk.download('stopwords')
 8 nltk.download('punkt')
 9 nltk.download('wordnet')
11 def preprocess(text):
    text = text.lower() # convert text to lowercase
    text = re.sub(r'\d+', '', text) # remove numbers
    text = str(text).replace("\n", " ") # remove newline characters
    text = re.sub(r'[^\w\s]', '', text) #
    text = text.strip() # remove whitespaces
    # remove stop words
    stop words = set(stopwords.words('english'))
    word_tokens = word_tokenize(text)
    filtered_tokens = [token.lower() for token in word_tokens if token.lower() not in stop_words]
    # Lemmatize the tokens
    lemmatizer=WordNetLemmatizer()
    lemmatized tokens = [lemmatizer.lemmatize(token) for token in filtered tokens]
    # Join the tokens back into a string
    preprocessed_text = " ".join(lemmatized_tokens)
    return preprocessed text
```

D'aww! He matches this background colour I'm seemingly stuck with. Thanks. (talk) 21:51, January 11, 2016 (UTC)

daww match background colour im seemingly stuck thanks talk january utc

Data Augmentation

- Very high imbalance between labels in the dataset
- Multilabel SMOTE for synthetic sample generation
- Unsatisfying results from this approach

Methodological Approach

Embeddings

Keras + positional encoding

Weights learnt from scratch

GloVe

Wikipedia based, 300D

FastText

Wikipedia based, 300D, handles OOV words

Frozen Weights + Fine-tuning

Models - Transformer

- Initial Model for Text Processing
- Multihead Attention Layer
- Maximize Embeddings' representation

Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 200)]	0
embedding (Embedding)	(None, 200, 300)	55737900
transformer_block_1 (Trans formerBlock)	(None, 200, 300)	1264800
global_average_pooling1d_1 (GlobalAveragePooling1D)	(None, 300)	0
dropout_6 (Dropout)	(None, 300)	0
dense_6 (Dense)	(None, 100)	30100
dropout_7 (Dropout)	(None, 100)	0
dense_7 (Dense)	(None, 6)	606

Total params: 57033406 (217.57 MB) Trainable params: 1295506 (4.94 MB)

Non-trainable params: 55737900 (212.62 MB)

Models - BiLSTM

- Processing of sequential data
- Multiple RNNs examined
- Bidirectional Layer to process Input in both Directions

Model: "model_1"		
Layer (type)	Output Shape	Param #
input_2 (InputLayer)	[(None, 200)]	0
embedding (Embedding)	(None, 200, 300)	55011900
bidirectional_1 (Bidirectional)	(None, 256)	439296
dropout_2 (Dropout)	(None, 256)	0
dense_2 (Dense)	(None, 128)	32896
dropout_3 (Dropout)	(None, 128)	0
dense_3 (Dense)	(None, 6)	774

Total params: 55484866 (211.66 MB)
Trainable params: 472966 (1.80 MB)

Non-trainable params: 55011900 (209.85 MB)

Models - CNN

- Introduced to solve difficulties with "Threat" and "Identity Hate"
- Weight sharing and translation invariance
- Most efficient implementation

Model: "model_1"								
Layer (type) Output Shape Param :								
input_2 (InputLayer) [(None, 200)] 0								
embedding (Embedding)	(None, 200, 300)	55011900						
conv1d_3 (Conv1D)	(None, 196, 500)	750500						
<pre>global_max_pooling1d_3 (Gl obalMaxPooling1D)</pre>	(None, 500)	0						
dense_2 (Dense)	(None, 500)	250500						
dropout_1 (Dropout)	(None, 500)	0						
dense_3 (Dense)	(None, 6)	3006						

Total params: 56015906 (213.68 MB)
Trainable params: 1004006 (3.83 MB)

Non-trainable params: 55011900 (209.85 MB)

Results & Discussion

Table 1: AUC Metric (in %) of Models

(a) Positional

(b) GloVe

Model	
Transformer	95.5
Bi-LSTM	96.1
$_{\rm CNN}$	96.1

Model	Frozen	Fine Tuning
Transformer	95.9	96.5
Bi-LSTM	96.6	97.0
CNN	95.9	96.2

(c) FastText

Model	Frozen	Fine Tuning
Transformer	95.3	96.8
Bi-LSTM	96.2	97.1
CNN	96.8	97.3

Kaggle Winner AUC: 98.8%

Table 2: F1-Measure (in %) of Models with Positional Embeddings

	Toxic	Severe Toxic	Obscene	Threat	Insult	Identity Hate
Transformer	61	5	67	0	58	0
$Bi ext{-}LSTM$	63	36	70	0	61	0
CNN	65	24	68	0	62	0

AUC and Keras Embeddings Evaluation

GloVe Vs FastText Embeddings

Table 3: Evaluation Metrics (in %) of Models with GloVe Embeddings

Label	Model	Frozen			Fine Tuning			
(count)	Model	Precision	Recall	F1	Precision	Recall	F1	
Toxic	Transformer	54	80	64	55	83	67	
(6090)	Bi-LSTM	57	80	66	55	84	67	
(0090)	CNN	54	82	65	53	85	65	
Severe	Transformer	21	5	8	32	33	32	
Toxic	Bi-LSTM	36	38	37	37	39	38	
(367)	CONTAT	35	13	19	32	48	38	
Obscene Transfe	Transformer	65	65	65	63	73	68	
(3691)	Bi-LSTM	69	64	66	62	74	68	
(3091)	CNN	66	66	66	62	73	67	
Threat	Transformer	0	0	0	0	0	0	
	Bi-LSTM	0	0	0	0	0	0	
(211) CNN	CNN	45	14	22	38	39	39	
T 11	Transformer	57	67	61	57	72	64	
Insult	Bi-LSTM	63	63	63	59	72	65	
(3427)	CNN	60	63	62	56	72	63	
Identity	Transformer	0	0	0	73	29	41	
Hate	Bi-LSTM	69	36	47	66	47	55	
(712)	CNN	73	31	44	61	53	57	

Table 4: Evaluation Metrics (in %) of Models with FastText Embeddings

Label	Model	Fr	ozen		Fine Tuning		
(count)	1110aci	Precision	Recall	F1	Precision	Recall	F1
Toxic	Transformer	51	87	64	50	90	64
(6090)	Bi-LSTM	57	79	66	55	86	67
(0090)	CNN	60	78	68	54	86	66
Severe	Transformer	32	33	33	31	54	39
Toxic	Bi-LSTM	35	18	24	37	41	39
(367)	CNN	42	27	33	40	42	41
Obscene Transform	Transformer	74	54	63	58	81	68
(3691)	Bi-LSTM	72	64	67	62	79	69
(3091)	CNN	71	62	66	60	78	68
Threat	Transformer	0	0	0	0	0	0
(211)	Bi-LSTM	0	0	0	0	0	0
(211)	CNN	32	11	17	34	25	29
Insult	Transformer	60	48	54	50	74	60
	Bi-LSTM	61	59	60	56	73	63
(3427)	CNN	69	57	62	59	72	65
Identity	Transformer	0	0	0	46	13	21
Hate	Bi-LSTM	63	5	10	59	22	32
(712)	CNN	80	16	27	69	45	54

Discussion

Embeddings

Performance of different embeddings reflected our expectations

Fine-tuned GloVe vs
Fine-tuned FastText

Similar F1-score, Precision and Recall to but FastText has better AUC. Glove Embeddings appear to be of higher starting quality for the task.

Models

Even performance without clear trends. CNN achieved best results overall

Approach Evaluation

AUC: 97.3% ---- AUC: 98.8%

Data Augmentation

Data Cleaning

Sophisticated Models

Conclusions

Embeddings

- Fine-tuned pretrained embeddings outperformed their frozen version and Keras version
- Fine-tuned Glove and FastText had similar performances

Models

 CNN was overall the best model because it was only one that was able to recognize all labels

