Recursión

Emmanuel Cruz Hernández emmanuel_cruzh@ciencias.unam.mx

5 de mayo de 2020

Contenido

- 1 ¿Qué es recursión?
- Características
- 3 Ejemplos en Java
- 4 Bibliografía

Recursión

La recursión, es una manera de especificar cosas basándose en su propia definición. [1]

Función recursiva

Es una función que está definida en términos de sí misma. Es decir, usa su propia definición para definirse.

Función recursiva válida

Para que una definición recursiva sea válida, en el sentido de que genere tipos de datos o funciones que no causen ciclos infinitos de evaluación, debe constar de dos partes:

- Un conjunto de casos base, los cuales son casos simples donde la definición se da directamente, es decir, sin usar auto-referencia.
- ② Un conjunto de reglas recursivas donde se define un nuevo elemento de la definición en términos de anteriores ya definidos. [2]

Def. Factorial

factorial (n):

1

si n=1

• n * factorial(n-1)

si n>1

Factorial en Java

```
public long factorial ( int n) {
    if (n = 1) {
        return 1;
    } else {
        return (n * factorial( n-1 ));
    }
}
```

Ejemplo de factorial

```
factorial(5)
= 5 * factorial(4)
= 5 * 4 * factorial(3)
= 5 * 4 * 3 * factorial(2)
= 5 * 4 * 3 * 2 * factorial(1)
= 5 * 4 * 3 * 2 * 1 = 120
```

Def. Fibonacci

fibonacci (n):

• 0

1

• fibonacci(n-1) + fibonacci(n-2)

si n=0

si n=1

en otro caso

Ejemplo fibonacci

```
fibonacci(4)

= fibonacci(3) + fibonacci(2)

= fibonacci(2) + fibonacci(1) + fibonacci(2)

= fibonacci(1) + fibonacci(0) + fibonacci(1) + fibonacci(2)

= 1 + 0 + 1 fibonacci(1) + fibonacci(2)

= 1 + 0 + 1 + fibonacci(2)

= 1 + 0 + 1 + fibonacci(1) + fibonacci(0)

= 1 + 0 + 1 + 1 + 0 = 3
```

Bibliografía

Favio E. Miranda Elisa Viso G. *Matemáticas Discretas*.