Подготовка к рубежному контролю №1 «Линейная алгебра»

Проект «Аполлон» $10 \ {\rm anpeлs} \ 2024 \ {\rm r}.$

1 Базовые теоретические вопросы

Вопрос 1. Дать определение линейного (векторного) пространства.

Ответ. Линейное пространство \mathcal{L} над множеством значений \mathcal{P} , для которого определены операции сложения и умножения на скаляр, а также верно:

- 1. $\forall x, y \in \mathcal{L}$ x + y = y + x
- 2. $\forall x, y \quad (x+y) + z = x + (y+z)$
- 3. $\exists 0 : \forall x \in \mathcal{L}x + 0 = x$
- 4. $\forall x \in \mathcal{L} \quad \exists y: x+y$ существование противоположного вектора (-x)
- 5. $\forall x \in \mathcal{L} \quad (\alpha \beta) x = \alpha(\beta x)$
- 6. $\forall x \quad 1x = x$
- 7. $(\alpha + \beta)x = \alpha x + \beta x$
- 8. $\alpha(x+y) = \alpha x + \alpha y$

Вопрос 2. Дать определение линейно зависимой и линейно независимой системы векторов.

Ответ. Система векторов называется *линейно зависимой*, если существует нетривиальная линейная комбинация, равная нулевому вектору.

Иначе система векторов называется линейно независимой.

Вопрос 3. Дать определение базиса и размерности линейного пространства

Ответ. E вазисом линейного пространства \mathcal{L} называют любую упорядоченную систему векторов, для которой выполнены два условия:

- 1. эта система векторов линейно независима;
- 2. каждый вектор в линейном пространстве может быть представлен в виде линейной комбинации векторов этой системы.

Максимальное количество линейно независимых векторов в данном линейном пространстве называют размерностью линейного пространства.

$$\dim(\mathcal{L}) = n$$

Вопрос 4. Дать определение матрицы перехода от одного базиса к другому.

Ответ. Матрицу U называют *матрицей перехода* от старого базиса bк новому базису, c.

$$c = bU \quad U = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

Вопрос 5. Записать формулу преобразования координат вектора при переходе от одного базиса линейного пространства к другому.

Ответ. Пусть в n-мерном линейном пространстве \mathcal{L} заданы два базиса: старый $b = (b_1 \dots b_n)$ и новый $c = (c_1 \dots c_n)$. Любой вектор можно разложить по базису b. В частности, каждый вектор из базиса c может быть представлен в виде линейной комбинации векторов базиса b:

$$c_i = \alpha_{1i}b_1 + \alpha_{2i}b_2 + \ldots + \alpha_{ni}b_n \quad i = \overline{1, n}$$

Вопрос 6. Дать определение подпространства линейного пространства и линейной оболочки системы векторов.

Ответ. Подмножество $\mathcal H$ линейного пространства $\mathcal L$ называют линейным подпространством, если выполнены следующие два условия:

- 1. Сумма любых двух векторов из \mathcal{H} принадлежит $\mathcal{H}: x,y \in \mathcal{H} \implies$ $x + y \in \mathcal{H}$;
- 2. Произведение любого вектора из ${\cal H}$ на любое действительное число снова принадлежит $\mathcal{H}: x \in \mathcal{H}, \lambda \in \mathbb{R} \implies \lambda x \in \mathcal{H}.$

 Λ инейной оболочкой системы векторов \mathcal{L} называется совокупность всех конечных линейных комбинаций векторов данной системы.

Вопрос 7. Дать определение скалярного произведения и евклидова пространства.

Ответ. Скалярным произведением называется операция, определенная следующим образом:

- 2. (x + y, z) = (x, z) + (y, z);3. $(\lambda x, y) = \lambda(x, y), \quad \lambda \in \mathbb{R};$
- 4. (x,x) > 0, причем (x,x) = 0 тогда и только тогда, когда x = 0.

Eвклидовым пространством называют линейное пространство \mathcal{E} , в котором определена операция *скалярного умножения*.

Вопрос 8. Записать неравенство Коши – Буняковского и неравенство треугольника.

Ответ. Неравенство Коши-Буняковского:

$$(x,y)^2 \le (x,x)(y,y) \quad \forall x,y \in \mathcal{E}$$

Неравенство треугольника:

$$||x+y|| \le ||x|| + ||y|| \quad \forall x, y \in \mathcal{L}$$

Вопрос 9. Дать определение ортогональной системы векторов и ортонормированного базиса евклидова пространства.

Ответ. Два вектора в евклидовом пространстве называют *ортогональными*, если их скалярное произведение равно нулю.

$$x \perp y \iff (x,y) = 0$$

Систему векторов евклидова пространства называют *ортогональной*, если любые два вектора из этой системы ортогональны.

Если базис евклидова пространства представляет собой ортогональную систему векторов, то этот *базис* называют *ортогональным*.

Bonpoc 10. Сформулировать теорему о связи линейной зависимости и ортогональности системы векторов.

Ответ. Любая ортогональная система ненулевых векторов линейно независима.

Вопрос 11. Дать определение линейного оператора и матрицы линейного оператора.

Ответ. Отображение $\mathcal{L} \to \mathcal{L}'$ из линейного пространства \mathcal{L} в линейное пространство \mathcal{L}' называют *линейным преобразованием* или *линейным оператором*, если выполнены условия:

1.
$$A(x+y) = A(x) + A(y) \quad \forall x, y \in \mathcal{L};$$

2.
$$\mathcal{A}(\lambda x) = \lambda \mathcal{A}(x) \quad \forall x \in \mathcal{L} \quad \forall \lambda \in R.$$

Матрицу $A = (a_1 \dots a_n)$, составленную из координатных столбцов векторов $\mathcal{A}b_1 \dots \mathcal{A}b_n$ в базисе $b = (b_1 \dots b_n)$ называют матрицей линейного оператора \mathcal{A} в базисе \mathcal{B} .

Bonpoc 12. Записать формулу преобразования матрицы линейного оператора при переходе к новому базису.

Ответ. Матрицы A_b и A_e линейного оператора $\mathcal{A}: \mathcal{L} \to \mathcal{L}'$, записанные в базисах b и e линейного пространства \mathcal{L} , связаны друг с другом соотношением:

$$A_e = U^{-1} A_b U$$

где $U=U_{b\rightarrow e}$ – матрица перехода от базиса b к базису e.

Вопрос 13. Дать определение характеристического уравнения, собственного числа и собственного вектора линейного оператора.

Ответ. Многочлен $\chi_A(\lambda) = \det(A - \lambda E)$ называют *характеристическим многочленом матрицы* A, а уравнение $\chi_a(\lambda) = 0$ – *характеристическим уравнением матрицы* A.

Ненулевой вектор x в линейном пространстве \mathcal{L} называют собственным вектором линейного оператора $A:\mathcal{L}\to\mathcal{L}$, если для некоторого действительного числа λ выполняется соотношение $Ax=\lambda x$. При этом число λ называют собственным значение линейного оператора A.

Вопрос 14. Сформулировать теорему о собственных векторах самосопряженного оператора, отвечающих разным собственным значениям.

Ответ. Собственные векторы самосопряженного оператора, отвечающие различным собственным значениям, ортогональны.

Вопрос 15. Дать определение самосопряженного линейного оператора на евклидовом пространстве и сформулировать теорему о виде матрицы самосопряженного оператора в ортонормированном базисе.

Ответ. Линейный оператор A, действующий в евклидовом пространстве, называют *самосопряженным*, если $A^* = A$.

Матрица оператора в любом ортонормированном базисе является симметрической тогда и только тогда, когда оператор *самосопряжеенный*.

Вопрос 16. Сформулировать теорему о корнях характеристического уравнения самосопряженного оператора.

Ответ. Все корни характеристического уравнения самосопряженного оператор действительны.

Вопрос 17. Сформулировать теорему о собственных векторах самосопряженного оператора, отвечающих разным собственным значениям.

Ответ. Собственные векторы самосопряженного оператора, отвечающие различным собственным значениям, ортогональны.

Вопрос 18. Сформулировать теорему о существовании ортонормированного базиса, в котором матрица заданного самосопряженного оператора имеет простой вид.

Ответ. Если собственные значения $\lambda_1, \ldots, \lambda_n$ самосопряженного оператора A, действующего в n-мерном евклидовом пространстве \mathcal{E} , попарно различны, то в \mathcal{E} существует *ортонормированный базис*, в котором матрица этого линейного оператора A имеет диагональный вид, причем диагональными элементами такой матрицы являются собственные значения $\lambda_1, \ldots, \lambda_n$.

Вопрос 19. Дать определение ортогонального линейного оператора и ортогональной матрицы.

Ответ. Квадратную матрицу O называют opmoгoнaльной, если она удовлетворяет условию

$$O^{\tau}O = E$$
.

где E – единичная матрица.

Линейный оператор $A:\mathcal{E}\to\mathcal{E}$, действующий в евклидовом пространстве \mathcal{E} , называют *ортогональный оператором* (или *ортогональный преобразованием*), если он сохраняет скалярное произведение в \mathcal{E} , то есть $\forall x,y\in\mathcal{E}$ выполняется равенство

$$(Ax, Ay) = (x, y)$$

Вопрос 20. Дать определение квадратичной формы, матрицы и канонического вида квадратичной формы.

Ответ. Однородный многочлен второй степени от n переменных с действительными коэффициентами

$$\sum_{i=1}^{n} a_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} a_{ij} x_i x_j$$

называют квадратичной формой.

Квадратичную форму можно записать в виде:

$$x^{\tau}Ax$$

где $x=(x_1x_2\dots x_n)^{\tau}$ – столбец, составленный из переменных; $A=(a_{ij})$ – симметричная матрица порядка n, называемая матрицей квадратичной формы.

Квадратичную форму

$$\alpha_1 x_1^2 + \ldots + a_n x_n^2, \quad \alpha_i \in \mathbb{R}, \quad i = \overline{1, n}.$$

называют квадратичной формой канонического вида.

Вопрос 21. Записать формулу преобразования матрицы квадратичной формы при переходе к новому базису.

Ответ. Матрица A квадратичной формы при переходе к другому базису изменяется по формуле $A' = U^{\tau}AU$, где U – матрица перехода.

Bonpoc 22. Дать определение положительно определенной, отрицательно определенной и неопределенной квадратичной формы.

Ответ. Квадратичная форма $f(x) = x^{\tau} A x, \ x = (x_1 x_2 \dots x_n)^{\tau}$ называется:

- положительно (отрицательно) определенной, если для любого ненулевого столбца x выполняется неравенство f(x) > 0 (f(x) < 0);
- неотрицательно (неположительно) определенной, если $f(x) \ge 0$ ($f(x) \le 0$) для любого столбца x, причем \exists ненулевой столбец x, для которого f(x) = 0;
- знакопеременной (неопределенной) , если существуют такие столбцы x и y , что f(x)>0 и f(y)<0.

Bonpoc 23. Сформулировать критерий Сильвестра положительной определенности квадратичной формы и его следствия для отрицательно определенных и неопределенных форм.

Ответ. Для того, чтобы квадратичная форма от n переменных была *положительно* определена, необходимо и достаточно, чтобы выполнялись неравенства $\Delta_i > 0, i = \overline{1,n}$, где Δ_i – угловые миноры матрицы квадратичной формы.

Вопрос 24. Сформулировать закон инерции квадратичных форм.

Ответ. Для любых двух канонических видов

$$f_1(y_1, ..., y_m) = \lambda_1 y_1^2 + ... + \lambda_m y_m^2, \quad \lambda_i \neq 0, i = \overline{1, m}$$

 $f_2(z_1, ..., z_k) = \mu_1 z_1^2 + ... + \mu_k z_k^2, \quad \mu_j \neq 0, j = \overline{1, k}$

одной и той же квадратичной формы:

• m = k и их общее значение равно рангу квадратичной формы;

1 БАЗОВЫЕ ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ

- количество положительных коэффициентов λ_i совпадает с количеством положительных коэффициентов μ_j ;
- количество отрицательных коэффициентов λ_i совпадает с количеством отрицательных коэффициентов μ_j ;

2 Теоретические вопросы повышенной сложности

Bonpoc 25. Вывести формулу преобразования координат вектора при переходе от одного базиса к другому.

Ответ. Пусть в n-мерном линейном пространстве \mathcal{L} заданы два базиса: старый $b=(b_1\dots b_n)$ и новый $c=(c_1\dots c_n)$. Любой вектор можно разложить по базису b. В частности, каждый вектор из базиса c может быть представлен в виде линейной комбинации векторов базиса b:

$$c_i = \alpha_{1i}b_1 + \alpha_{2i}b_2 + \ldots + \alpha_{ni}b_n \quad i = \overline{1,n}$$

Запишем эти представления в матричной форме:

$$c_i = b_i \begin{pmatrix} \alpha_{1i} \\ \dots \\ \alpha_{ni} \end{pmatrix}, \quad i = \overline{1, n}$$

или

$$c = bU$$

где

$$U = \begin{pmatrix} \alpha_{11} & \dots & \alpha_{1n} \\ \dots & \dots & \dots \\ \alpha_{n1} & \dots & \alpha_{nn} \end{pmatrix}$$

Вопрос 26. Доказать неравенство Коши-Буняковского и неравенство треугольника.

Теорема (Неравенство Коши-Буняковского). Для любых векторов x,y евклидова пространства $\mathcal E$ справедливо неравенство:

$$(x,y)^2 \le (x,x)(y,y)$$

Доказательство. Рассмотрим неравенство $(x,y) \le (x,x)(y,y)$. При x=0 обе части неравенства равны нулю согласно свойству; значит, неравенство выполняется. Для любого действительного числа λ , в силу аксиомы, выполняется неравенство

$$(\lambda x - y, \lambda x - y) \ge 0.$$

Преобразуем левую часть неравенства, используя аксиомы и свойства скалярного умножения:

$$(\lambda x - y)(\lambda x - y) = \lambda(x, \lambda x - y) - (y, \lambda x - y) = \lambda^{2}(x, x) - 2\lambda(x, y) + (y, y).$$

Мы получили квадратный трехчлен относительно параметра λ (коэффициент (x,x) при λ_2 согласно аксиоме ненулевой, так как $x \neq 0$), неотрицательный при всех действительных значениях параметра. Сле-

довательно, его дискриминант равен нулю или отрицательный, то есть:

$$(x,y)^2 \le (x,x)(y,y).$$

Теорема (Неравенство треугольника). Для любых векторов из евклидова пространства верно следующее неравенство:

$$||x + y|| \le ||x|| + ||y||.$$

Доказательство. Докажем, что $||x+y||^2 \le (||x|| + ||y||)^2$.

1. Из определения нормы в евклидовом пространстве

$$||x||^2 = (x, x)$$
 $||y||^2 = (y, y)$.

2. Из неравенства Коши-Буняковского

$$(x,y)^2 \le (x,x)(y,y).$$

3. Следовательно, получаем что

$$||x,y||^2 \le ||x||^2 ||y||^2$$
.

4. Из определения нормы в евклидовом пространстве

$$(x+y,x+y) = (x+y)^2 = (x,x) + 2(x,y) + (y,y) \le \le ||x||^2 + 2||x|| ||y|| + ||y||^2 = = (||x|| + ||y||)^2.$$

Извлечем корень из обеих частей неравенства и используя свойство нормы получаем

$$||x + y|| \le ||x|| + ||y||.$$

Вопрос 27. Вывести формулу преобразования матрицы линейного оператора при переходе к новому базису.

Ответ. Пусть y = Ax. Обозначим координаты векторов x и y в старом базисе через x_b b y_b , а в новом базисе e – через x_e и y_e . Поскольку:

$$y_b = A_b x_b$$
 $x_b = U x_e$ $y_b = U y_e$

То получаем:

$$y_e = U^{-1}y_b = U^{-1}(A_b x_b) = U^{-1}(A_b U x_e) = (U^{-1}A_b U)x_e$$

Равенство $y_e = (U^{-1}A_bU)x_e$ является матричной формой записи действия линейного оператора \mathcal{A} в базисе e, поэтому $U^{-1}A_bU = A_e$

Вопрос 28. Доказать инвариантность характеристического уравнения линейного оператора и инвариантность следа матрицы.

Теорема (Об инвариантности характеристического уравнения линейного оператора). Характеристическое уравнение линейного оператора не зависит от выбора базиса линейного пространства.

Доказательство. Пусть A и B – мтрицы линейного оператора $\mathfrak{A}: \mathcal{L} \to \mathcal{L}$ в базисах e_1 и e_2 линейного простанства \mathcal{L} . Рассмотрим характеристические многочлены $\chi_A(\lambda)$ и $\chi_B(\lambda)$; Пусть U – матрица перехода от A к B. Тогда:

$$\chi_B(\lambda) = \det(B - \lambda E) = \det(U^{-1}AU - \lambda U^{-1}EU) =$$

$$= \det(U^{-1}(A - \lambda E)U) = \det(U^{-1})\det(A - \lambda E)\det(U) =$$

$$= \det(A - \lambda E) = \chi_A(\lambda)$$

то есть для двух любых базисов линейного пространства $\mathcal L$ характеристическое уравнение линейного оператора $\mathfrak A$ совпадают.

Теорема (Об инвариантности следа). След матрицы линейного оператора не зависит от выбора базиса линейного пространства.

Доказательство. Запишем характеристический многочлен линейного оператора A в произвольном базисе

$$\chi_A(\lambda) = (-1)^n \lambda^n + p_{n-1} \lambda^{n-1} + \dots + p_1 \lambda + p_0.$$

След матрицы по определению

$$A = (-1)^{n-1} p_{n-1}$$

В предыдущей теореме было доказано, что коэффициенты p_i $i=\overline{0,n}$ не зависят от выбора базиса.

Вопрос 29. Доказать теорему о собственных векторах линейного оператора, отвечающих разным собственным значениям.

Теорема. Пусть собственные значения $\lambda_1, \dots, \lambda_r$ линейного оператора A попарно различимы. Тогда система соответствующих им собственных векторов e_1, \dots, e_r линейно независима.

Доказательство. Докажем методом математической индукции.

При r=1 утверждение верно, так как собственный вектор по определению является $\mathit{ненулевым}.$

Пусть утверждение верно при r=m, то есть для произвольной системы из m собственных векторов e_1,\ldots,e_m . Добавим к системе вектором еще один собственный вектор e_{m+1} , отвечающий собственному значению λ_{m+1} . Докажем, что расширенная система вектором осталась

линейно-независимой.

Предположим, что произвольная линейная комбинация полученной системы собственных векторов равна нулевому вектору:

$$\alpha_1 e_1 + \ldots + \alpha_m e_m + \alpha_{m+1} e_{m+1} = 0.$$
 (1)

K(1) применим линейный оператор A:

$$\alpha_1 A e_1 + \ldots + \alpha_m A e_m + \alpha_{m+1} A e_{m+1} = 0.$$
 (2)

Учтем, что векторы e_1, \dots, e_{m+1} – собственные:

$$\alpha_1 \lambda_1 e_1 + \ldots + \alpha_m \lambda_m e_m + \alpha_{m+1} \lambda_{m+1} e_{m+1} = 0. \tag{3}$$

Умножив (3) на λ_{m+1} и вычтя полученное выражение из (3) получаем линейную комбинацию векторов e_1, \ldots, e_m , равную нулевому вектору:

$$\alpha_1(\lambda_1 - \lambda_{m+1})e_1 + \ldots + \alpha_m(\lambda_m - \lambda_{m+1}) = 0.$$

Вспоминая, что система векторов e_1, \ldots, e_m по предположению линейно независима, делаем вывод, что у полученной линейной комбинации все коэффициенты равны нулю:

$$\alpha_k(\lambda_k - \lambda_{m+1}) = 0, \quad k = \overline{1, m}.$$
 (4)

Поскольку все собственные значения λ_i попарно различны, то из равенств (4) следует, что $\alpha_1=\alpha_2=\ldots=\alpha_m=0$. Значит, соотношение (2) можно записать в виде $\alpha_{m+1}e_{m+1}=0$, а так как вектор e_{m+1} ненулевой (как собственный вектор), то $\alpha_{m+1}=0$.

В итоге получаем, что равенство (2) выполняется лишь в том случае, когда все коэффициенты α_i $i=\overline{1,m+1}$ равны нулю. Тем самым мы доказали, что система вектором $e_1,\dots e_{m+1}$ линейно независим:

Bonpoc 30. Вывести формулу преобразования матрицы квадратичной формы при переходе к новому базису.

Ответ. Пусть дана квадратичная форма $x^{\tau}Ax$, где $x=(x_1x_2\dots x_n)$. В n-мерном линейном пространстве \mathcal{L} с фиксированным базисом b она определяет функцию $f(x)=x_b^{\tau}Ax_b$, заданную через координаты x_b вектора x в базисе b. Найдем представление этой же функции в некотором другом базисе e. Пусть U — матрица перехода от b к e. Тогда координаты x_b вектора x в старом базисе b и координаты хе того же вектора в новом базисе e будут связаны соотношением

$$x_b = Ux_e \tag{1}$$

Функция f(x) в новом базисе будет выражаться через новые координаты вектора x следующим образом:

$$x_b^{\tau} A x_b = (U x_e)^{\tau} A (U x_e) = x_e^{\tau} (U^{\tau} A U) x_e = x_e^{\tau} A' x_e.$$

2 ТЕОРЕТИЧЕСКИЕ ВОПРОСЫ ПОВЫШЕННОЙ СЛОЖНОСТИ

Функция f в новом базисе также записывается при помощи квадратичной формы, причем матрица A_0 этой квадратичной формы связана с матрицей A исходной квадратичной формы соотношением

$$A' = U^{\tau} A U. \tag{2}$$