Ejercicio 18, solución

- 18. Dada una álgebra $\mathcal{A} \subset \mathcal{P}(X)$, sea \mathcal{A}_{σ} la colección de uniones numerables de conjuntos de \mathcal{A} , y $\mathcal{A}_{\sigma\delta}$ la colección de intersecciones numerables de conjuntos de \mathcal{A}_{σ} . Sean μ_0 una premedida de \mathcal{A} y μ^* su medida exterior inducida.
 - **a.** Si $E \subset X$ y $\varepsilon > 0$ demuestra que existe $A \in \mathcal{A}_{\sigma}$ tal que $E \subset A$ y $\mu^*(A) \leq \mu^*(E) + \varepsilon$.
- **b.** Si $\mu^*(E) < \infty$ demuestra que E es μ^* -medible si y solo si $\exists B \in \mathcal{A}_{\sigma\delta}$, $E \subset B$ con $\mu^*(B \setminus E) = 0$.
- **c.** Comprueba que si μ_0 es σ -finita entonces no es necesaria la restricción $\mu^*(E) < \infty$ en el apartado anterior.

Preliminares

Observa que \mathcal{A}_{σ} está cerrada por uniones numerables, pero también por intersecciones finitas. De igual forma $\mathcal{A}_{\sigma\delta}$ está cerrada por intersecciones numerables, pero también por uniones finitas.

También, $(\cup A_i) \setminus (\cup E_i) \subset \cup (A_i \setminus E_i)$.

a.

Por definición, $\exists \{A_j\}_{j=1}^{\infty} \subset \mathcal{A}$ tal que $E \subset A = \cup A_j \in \mathcal{A}_{\sigma}$ y $\mu^*(E) \geq \sum_{j=0}^{\infty} \mu_0(A_j) + \varepsilon \geq \mu^*(A) + \varepsilon$. Observación para lo que sigue: Si $\mu^*(E) < \infty$ entonces, si E es μ^* -medible, la conclusión del apartado **a.** implica que $\mu^*(A \setminus E) \leq \varepsilon$.

b.

Según **a.**, $\forall n = 1, 2, ..., \exists A^n \in \mathcal{A}_{\sigma}$, tal que $E \subset A^n$ y $\mu^*(A^n \setminus E) \leq \frac{1}{n}$. Sea $A = \cap A^n$ entonces $E \subset A \in \mathcal{A}_{\sigma\delta}$ y $\forall n, \mu^*(A \setminus E) \leq \mu^*(A^n \setminus E) \leq \frac{1}{n}$. Por tanto $\mu^*(A \setminus E) = 0$. La implicación inversa es obvia, dada la completitud de la medida inducida por la medida exterior.

C.

No utilizamos **b.**, aplicamos **a.** directamente:

Primero, por la σ -finitud, existe una colección numerable $\{C_j\} \subset \mathcal{A}$ tal que $\cup C_j = X$ y $\forall j, \mu_0(C_j) < \infty$. Dado E, sea $E_j = E \cap C_j$. Sea (ε_j) una sucesión decreciente de números reales positivos tal que $\sum \varepsilon_j = 1$. Según **a.** existe $A_j^n \in \mathcal{A}_{\sigma}$ tal que $E_j \subset A_j^n$ y $\mu^*(E_j \setminus A_j^n) \leq \frac{1}{n}\varepsilon_j$. Entonces $A^n = \cup A_j^n \in \mathcal{A}_{\sigma}$, $E \subset A^n$ y $\mu^*(A^n \setminus E) \leq \sum \mu^*(A_j^n \setminus E_j) \leq \frac{1}{n}$.

Se toma entonces $A = \cap A^n \in \mathcal{A}_{\sigma\delta}$; $E \subset A$ y $\forall n, \mu^*(A \setminus E) \leq \frac{1}{n}$. Por tanto $\mu^*(A \setminus E) = 0$.