

## STH145N8F7-2AG

# Automotive-grade N-channel 80 V, 3.3 mΩ typ., 90 A STripFET™ F7 Power MOSFET in a H²PAK-2 package

Datasheet - production data



Figure 1: Internal schematic diagram



#### **Features**

| Order code     | V <sub>DS</sub> R <sub>DS(on)</sub> max. |      | ΙD   | Ртот  |
|----------------|------------------------------------------|------|------|-------|
| STH145N8F7-2AG | 80 V                                     | 4 mΩ | 90 A | 200 W |

- Designed for automotive applications and AEC-Q101 qualified
- Among the lowest R<sub>DS(on)</sub> on the market
- Excellent figure of merit (FoM)
- Low C<sub>rss</sub>/C<sub>iss</sub> ratio for EMI immunity
- High avalanche ruggedness

### **Applications**

Switching applications

## **Description**

This N-channel Power MOSFET utilizes STripFET™ F7 technology with an enhanced trench gate structure that results in very low onstate resistance, while also reducing internal capacitance and gate charge for faster and more efficient switching.

**Table 1: Device summary** 

| Order code     | Marking | Package | Packaging     |
|----------------|---------|---------|---------------|
| STH145N8F7-2AG | 145N8F7 | H²PAK-2 | Tape and reel |

Contents STH145N8F7-2AG

## Contents

| 1 | Electric | al ratings                               | 3  |
|---|----------|------------------------------------------|----|
| 2 | Electric | cal characteristics                      | 4  |
|   | 2.1      | Electrical characteristics (curves)      | 6  |
| 3 | Test cir | cuits                                    | 8  |
| 4 | Packag   | e information                            | 9  |
|   | 4.1      | H <sup>2</sup> PAK-2 package information | 10 |
| 5 | Packing  | g information                            | 13 |
| 6 | Revisio  | n history                                | 15 |

STH145N8F7-2AG Electrical ratings

# 1 Electrical ratings

Table 2: Absolute maximum ratings

| Symbol                         | Parameter                                              | Value         | Unit |  |
|--------------------------------|--------------------------------------------------------|---------------|------|--|
| V <sub>DS</sub>                | Drain-source voltage                                   | 80            | V    |  |
| $V_{GS}$                       | Gate-source voltage                                    | ± 20          | V    |  |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>C</sub> = 25 ° C  | 90 (1)        | Α    |  |
| I <sub>D</sub>                 | Drain current (continuous) at T <sub>C</sub> = 100 ° C | 90            | Α    |  |
| I <sub>DM</sub> <sup>(2)</sup> | Drain current (pulsed)                                 | 360           | Α    |  |
| Ртот                           | Total dissipation at T <sub>C</sub> = 25 ° C           | 200           | W    |  |
| Eas <sup>(3)</sup>             | Single pulse avalanche energy                          | 515           | mJ   |  |
| Tj                             | Operating junction temperature                         |               | ° C  |  |
| T <sub>stg</sub>               | Storage temperature                                    | - 55 to 175 ° |      |  |

#### Notes:

Table 3: Thermal data

| Symbol                   | Parameter                        | Value | Unit  |
|--------------------------|----------------------------------|-------|-------|
| R <sub>thj-pcb</sub> (1) | Thermal resistance junction-pcb  | 35    | ° C/W |
| R <sub>thj-case</sub>    | Thermal resistance junction-case | 0.75  | ° C/W |

#### Notes:

<sup>&</sup>lt;sup>(1)</sup>Limited by package

<sup>&</sup>lt;sup>(2)</sup>Pulse width is limited by safe operating area

 $<sup>^{(3)}</sup>$ Starting Tj =25 ° C, Id = 18.5 A, Vdd = 50 V

 $<sup>^{(1)}</sup>$ When mounted on FR-4 board of 1inch<sup>2</sup> , 2oz Cu

Electrical characteristics STH145N8F7-2AG

## 2 Electrical characteristics

(T<sub>CASE</sub> = 25 ° C unless otherwise specified)

Table 4: On/off states

| Symbol               | Parameter                                        | Test conditions                                                         | Min. | Тур. | Max.     | Unit     |
|----------------------|--------------------------------------------------|-------------------------------------------------------------------------|------|------|----------|----------|
| V <sub>(BR)DSS</sub> | Drain-source breakdown voltage                   | $V_{GS} = 0$ , $I_D = 250 \mu A$                                        | 80   |      |          | <b>V</b> |
|                      | Zoro gato voltago                                | $V_{GS} = 0, V_{DS} = 80 \text{ V}$                                     |      |      | 1        | μΑ       |
| IDSS                 | I <sub>DSS</sub> Zero gate voltage Drain current | V <sub>GS</sub> = 0, V <sub>DS</sub> = 80 V,<br>T <sub>J</sub> =125 ° C |      |      | 10       | μΑ       |
| Igss                 | Gate-source leakage current                      | $V_{DS} = 0$ , $V_{GS} = \pm 20 \text{ V}$                              |      |      | ±<br>100 | nA       |
| V <sub>GS(th)</sub>  | Gate threshold voltage                           | $V_{DS} = V_{GS}$ , $I_D = 250 \mu A$                                   | 2.5  |      | 4.5      | V        |
| R <sub>DS(on)</sub>  | Static drain-source on-<br>resistance            | V <sub>G</sub> s=10 V, I <sub>D</sub> = 45 A                            |      | 3.3  | 4        | mΩ       |

Table 5: Dynamic

| Symbol   | Parameter                    | Test conditions                                                           | Min. | Тур. | Max. | Unit |
|----------|------------------------------|---------------------------------------------------------------------------|------|------|------|------|
| Ciss     | Input capacitance            |                                                                           | -    | 6340 | ı    | pF   |
| Coss     | Output capacitance           | V <sub>GS</sub> = 0, V <sub>DS</sub> = 40 V, f = 1 MHz                    | -    | 1195 | ı    | pF   |
| Crss     | Reverse transfer capacitance | V65 = 0, V65 = 10 V, 1 = 1 Willia                                         | -    | 105  | ı    | pF   |
| $Q_g$    | Total gate charge            | V 40 V 1 04 A                                                             | -    | 96   | •    | nC   |
| $Q_{gs}$ | Gate-source charge           | $V_{DD} = 40 \text{ V}, I_{D} = 64 \text{ A},$<br>$V_{GS} = 10 \text{ V}$ | -    | 30   | ı    | nC   |
| $Q_{gd}$ | Gate-drain charge            | VGS - 10 V                                                                | -    | 26   | -    | nC   |

Table 6: Switching times

| Symbol              | Parameter           | Test conditions                                                 | Min. | Тур. | Max. | Unit |
|---------------------|---------------------|-----------------------------------------------------------------|------|------|------|------|
| t <sub>d(on)</sub>  | Turn-on delay time  |                                                                 | -    | 26   | -    | ns   |
| tr                  | Rise time           | $V_{DD} = 40 \text{ V}, I_D = 45 \text{ A R}_{G} = 4.7 \Omega,$ | -    | 51   | -    | ns   |
| t <sub>d(off)</sub> | Turn-off-delay time | V <sub>GS</sub> = 10 V                                          | -    | 82   | -    | ns   |
| t <sub>f</sub>      | Fall time           |                                                                 | -    | 44   | -    | ns   |

Table 7: Source drain diode

| Symbol                          | Parameter                     | Test conditions                                                       | Min. | Тур. | Max. | Unit |
|---------------------------------|-------------------------------|-----------------------------------------------------------------------|------|------|------|------|
| I <sub>SD</sub>                 | Source-drain current          |                                                                       | 1    |      | 90   | Α    |
| I <sub>SDM</sub> <sup>(1)</sup> | Source-drain current (pulsed) |                                                                       | ı    |      | 360  | Α    |
| V <sub>SD</sub> (2)             | Forward on voltage            | $V_{GS} = 0$ , $I_{SD} = 90$ A                                        | -    |      | 1.2  | V    |
| t <sub>rr</sub>                 | Reverse recovery time         | $I_{SD} = 64 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu \text{ s},$ | ı    | 58   |      | ns   |
| $Q_{rr}$                        | Reverse recovery charge       | $V_{DD} = 60 \text{ V}$                                               | ı    | 92   |      | nC   |
| I <sub>RRM</sub>                | Reverse recovery current      | T <sub>j</sub> = 150 ° C                                              | -    | 3.2  |      | Α    |

#### Notes:

<sup>&</sup>lt;sup>(1)</sup>Pulse width is limited by safe operating area

 $<sup>^{(2)}\</sup>text{Pulse}$  test: pulse duration = 300  $\mu$  s, duty cycle 1.5%

## 2.1 Electrical characteristics (curves)



Figure 3: Thermal impedance GIPD130920131439FSR δ= 0.5 0.2 0.1 10<sup>-1</sup> 0.05  $Z_{th} = k R_{thJ-c}$  $\delta = t_p / \tau$ 0.02 0.01 10<sup>-2</sup> 10-7 10<sup>-6</sup> 10<sup>-5</sup> 10<sup>-2</sup> 10<sup>-1</sup> tp(s) 10<sup>-4</sup> 10<sup>-3</sup>







6/16



STH145N8F7-2AG Electrical characteristics





Figure 10: Normalized gate threshold voltage vs. temperature

VGS(th)
(norm)

1.2

ID= 250µA

0.6

0.4

-75
-25
0
25
75
125
175
TJ(°C)

Figure 11: Normalized on resistance vs. temperature GIPD12092013130**2**MT RDS(on (norm) VGS= 10V 1.8 1.6 1.4 1.2 0.8 0.6 -75 -25 0 25 175 TJ(°C) 125



Test circuits STH145N8F7-2AG

## 3 Test circuits







Figure 16: Unclamped inductive load test circuit

VD

VD

VD

VD

DU.T.

AM01471v1





577

AM01470v1

## 4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.



# 4.1 H<sup>2</sup>PAK-2 package information

Figure 19: H<sup>2</sup>PAK-2 package outline



Table 8: H<sup>2</sup>PAK-2 mechanical data

| Dim  | mm    |      |       |  |
|------|-------|------|-------|--|
| Dim. | Min.  | Тур. | Max.  |  |
| А    | 4.30  |      | 4.80  |  |
| A1   | 0.03  |      | 0.20  |  |
| С    | 1.17  |      | 1.37  |  |
| е    | 4.98  |      | 5.18  |  |
| Е    | 0.50  |      | 0.90  |  |
| F    | 0.78  |      | 0.85  |  |
| Н    | 10.00 |      | 10.40 |  |
| H1   | 7.40  |      | 7.80  |  |
| L    | 15.30 | -    | 15.80 |  |
| L1   | 1.27  |      | 1.40  |  |
| L2   | 4.93  |      | 5.23  |  |
| L3   | 6.85  |      | 7.25  |  |
| L4   | 1.5   |      | 1.7   |  |
| М    | 2.6   |      | 2.9   |  |
| R    | 0.20  |      | 0.60  |  |
| V    | 0°    |      | 8°    |  |

Figure 20: H<sup>2</sup>PAK-2 recommended footprint



# 5 Packing information

Figure 21: Tape outline



Packing information STH145N8F7-2AG

Figure 22: Reel outline



Table 9: Tape and reel mechanical data

| Table 3. Tabe and reel infection data |      |      |        |          |      |
|---------------------------------------|------|------|--------|----------|------|
| Tape Reel                             |      |      |        |          |      |
| D:                                    | n    | nm   | mm     |          | m    |
| Dim.                                  | Min. | Max. | Dim.   | Min.     | Max. |
| A0                                    | 10.5 | 10.7 | А      |          | 330  |
| В0                                    | 15.7 | 15.9 | В      | 1.5      |      |
| D                                     | 1.5  | 1.6  | С      | 12.8     | 13.2 |
| D1                                    | 1.59 | 1.61 | D      | 20.2     |      |
| E                                     | 1.65 | 1.85 | G      | 24.4     | 26.4 |
| F                                     | 11.4 | 11.6 | N      | 100      |      |
| K0                                    | 4.8  | 5.0  | Т      |          | 30.4 |
| P0                                    | 3.9  | 4.1  |        |          |      |
| P1                                    | 11.9 | 12.1 | Base o | quantity | 1000 |
| P2                                    | 1.9  | 2.1  | Bulk o | quantity | 1000 |
| R                                     | 50   |      |        |          |      |
| Т                                     | 0.25 | 0.35 |        |          |      |
| W                                     | 23.7 | 24.3 |        |          |      |

STH145N8F7-2AG Revision history

# 6 Revision history

**Table 10: Document revision history** 

| Date        | Revision | Changes        |  |
|-------------|----------|----------------|--|
| 05-Jun-2015 | 1        | First release. |  |

#### **IMPORTANT NOTICE - PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved