基于离散选择模型的结直肠癌筛查偏好研究

苏锦华 * *中国人民大学统计学院

 $\{2017201620\}$ @ruc.edu.cn

Index Terms—癌症筛查偏好; DCE; 多元logit模型

I. 相关研究

为更好地开展癌症筛查工作,政策制定者需了解目标人群的筛查偏好,找到并权衡影响其参加癌症筛查的属性(如筛查效果),这是设计与实施科学合理筛查方案的关键。

陈述性偏好(stated preference)方法利用离散选择实验(discrete choice experiments, DCEs)研究目标人群癌症筛查偏好,系统分析影响其参加癌症筛查的重要因素图。

DCE对被调查对象的分析基于随机效用理论(random utility theory)[] 是]。在构建回归模型时,将筛查方案是否被受访者选中作为因变量,癌症筛查属性作为自变量。由于因变量是哑变量的属性,logit或probit模型常用于估计目标人群对各个癌症筛查属性的效用值,从而得到筛查方案总的效用值。

有关 DCE 的研究大多采用随机效果 probit 模型(random effects probit)、条件logit模型(conditional logit)、多项式 Logit 模型(multinomial logit)等经典模型;近年来,嵌套 logit 模型(nested logit)、混合 logit模型(mixed logit,考虑了受访者的选择异质性[milte2014cognitive](preference heterogeneity))、广义多项式 logit 模型(generalised multinomial logit,同时考虑了受访者的选择异质性[kjaer2008preference](scale heterogeneity))也逐渐成为研究人员开展DCE研究所采用的模型。

II. 数据

A. 数据处理

回收网络问卷525份,问卷设置了10道个人特质问题,3大类方案,其中选择方案是3种属性的组合。由于对不同个体,不同医院来说,三类选择方案中风险降低程度、复查频次是不存在唯一的客观值,通过改变风险、频次得到18种假设情景供受访者选择。

将每一种假设情景作为一条数据,每份问卷实际上可分成18条供模型训练的数据,总计9449条训练数据,数据变量取值与含义如下。

B. 数据描述

对9449条数据的各属性分别统计频次直方图。总体上三套方案选择人数相近,乙状结肠镜的筛查方案稍微低于另外两套方案。个人特征属性的数据分布情况各异:年龄分布上50-60岁人数居多,对健康的重视程度普遍较高,直结肠检查比例大致80%,慢性病比例70%,受教育程度平均为高中教育,选择复查间隔较短的人数较多,有住院经

TABLE I 数据变量解释

sex	性别:0表示男,1代表女
age	年龄:0 3表示50周岁到70周岁(5岁一挡),4表示70周岁以
	上
income	年收入:0表示五万一下,1表示5-10万,2表示10万以上
region	居住地区:0表示乡镇,1表示市区
edu	学历:0表示初中及以下,1表示高中及中专,2表示本科及
	大专,3表示研究生以上
work	就业状态:1表示工作,0表示不工作
retire	退休状态:1表示退休,0表示尚未退休
chronic	是否有慢性病史:1表示是,0表示否
check	是否做过结直肠检查:1表示是,0表示否
hospital	是否有过住院经历:1表示是,0表示否
attention	健康关注程度:0 4健康关注程度逐步提高
risk dec	筛查方案风险降低百分比(%)
frequency	筛查方案每隔x年需复查
pain	筛查方案检查机器深入肠道的长短 (cm)
choice	筛查方案选择:0表示粪便潜血试验,1表示乙状结肠

历的占60%,80%的人群年收入在5万以下,65%的人群居住在城市,55%的受访者尚未退休,65%的受访者为女性,大部分受访者更青睐风险降低程度较大的方案。

镜,2表示全结肠镜

III. 模型

本文选择多元逻辑回归来探究不同因素对筛查方案选择偏好的影响。因素分为个人特征因素与选择情景因素,本文构建了普通多元logit模型和带交互项的多元logit模型。普通多元logit模型假设各因素间相互独立互不影响,而带交互项的多元logit模型考虑个人特征对偏好的复合影响。

为了使模型具有较好的解释性,本文通过前进法依次选取对模型影响最显著的变量纳入模型,去除共线性较高使得模型训练难以收敛的变量。

A. 多元logit模型

1)模型公式: U是基于随机效用假设的效用,n代表第n个样本,j代表第j个选择方案,s代表选择情景,在本文中代表风险和频次不同的18个假设情景。V为多元logit模型估计的效用值,选择第j个方案概率是所有方案效用的softmax值。

$$U_{njs} = \beta_j x_{njs} + \epsilon_{njs} \tag{1}$$

$$V_{njs} = \beta_j x_{njs} \tag{2}$$

$$Pr_{njs}(\beta) = \frac{e^{\beta_j x_{njs}}}{\sum_{i=1}^{J} e^{\beta_i x_{nis}}}$$
(3)

Fig. 1. 数据直方图

2) 前进法选择变量:本文选择了前进法选择前10个变量拟合多元logit模型。在假设情景数据中,频次的影响最显著,风险降低的影响不显著,pain由于在不同情景中未发生变化,存在与choice较高的共线性未被选入。收入、性别、教育、工作情况对偏好的影响较显著,而年龄、就医经历、病史、对健康的重视程度则对偏好的影响不显著。

TABLE II 模型一前进法选择结果

 $\begin{array}{lll} frequency >> intercept >> income >> sex >> \\ edu >> work >> retire >> check >> hospital >> \\ age >> chronic >> region >> risk_dec >> \\ attention \end{array}$

B. 带交互项的多元logit模型

1) 模型公式: 在普通多元logit模型中, beta是需要拟合客观数值。现实情况中不同的个人特征对方案偏好有影响, 本文模型二假设beta是个人特征属性的线性加性函数, 将公式 (5) 带入公式 (4) 可以得到个人属性与情景属性的交互项。

$$U_{njs} = \beta'_{j}(character)situation_{njs} + \epsilon'_{njs}$$
 (4)

$$\beta_{j}^{'}(character) = \beta_{j0}^{'} + \beta_{j1}^{'}sex + \beta_{j2}^{'}age + \dots$$
 (5)

		-				
Dep. Variab Model: Method: Date: Time: converged: Covariance	Tu	e, 24 Mar 2 08:47	git Df Res MLE Df Mod 020 Pseudo :50 Log-Li rue LL-Nul	R-squ.: kelihood: l:		9449 9429 18 0.2449 -7782.6 -10307. 0.000
choice=1	coef	std err	z	P> z	[0.025	0.975]
frequency intercept income sex edu work retire check hospital age	0.7359 -1.6397 -0.5676 -0.3133 0.0927 -0.0975 0.1576 -0.3623 0.0792 0.0633	0.018 0.160 0.111 0.066 0.043 0.101 0.097 0.090 0.067 0.032	40.926 -10.226 -5.133 -4.740 2.170 -0.962 1.628 -4.031 1.181 1.971	0.000 0.000 0.000 0.000 0.030 0.336 0.104 0.000 0.238	0.701 -1.954 -0.784 -0.443 0.009 -0.296 -0.032 -0.538 -0.052 0.000	0.771 -1.325 -0.351 -0.184 0.176 0.101 0.347 -0.186 0.211 0.126
choice=2	coef	std err	Z	P> z	[0.025	0.975]
frequency intercept income sex edu work retire check hospital age	0.7855 -2.8482 0.4956 -0.1482 0.2307 -0.4721 -0.4964 -0.0785 0.2545 0.0704	0.018 0.149 0.095 0.066 0.042 0.096 0.093 0.087 0.066 0.032	43.533 -19.106 5.212 -2.252 5.544 -4.920 -5.340 -0.898 3.846 2.226	0.000 0.000 0.000 0.024 0.000 0.000 0.000 0.369 0.000 0.026	0.750 -3.140 0.309 -0.277 0.149 -0.660 -0.679 -0.250 0.125 0.008	0.821 -2.556 0.682 -0.019 0.312 -0.284 -0.314 0.093 0.384 0.132

Fig. 2. 多元logit模型

2) <u>前进法选择变量</u>:本文选择了前进法选择前15个变量拟合带交互项的多元logit模型。频次依旧是最显著的影响因素,其他被选入的重要变量均为交互项,剩余的较重要的非交互项只有受教育程度,说明不同个人特征的确对筛查偏好的选择有重要影响。含有收入、对健康的重视程度、是否工作与退休、受教育程度、年龄的交互项较显著,说明以上个人特质属性对筛查偏好有重要影响。

TABLE III 模型二前进法选择结果

 $\begin{array}{l} frequency >> intercept >> income * risk_dec >> \\ income * frequency >> attention * risk_dec >> \\ attention * frequency >> retire * risk_dec >> \\ retire * frequency >> work * risk_dec >> work * \\ frequency >> edu >> edu * frequency >> \\ age * risk_dec >> age * frequency >> sex * \\ pain >> chronic * risk_dec >> region >> chronic * \\ frequency >> region * frequency >> hospital * \\ risk_dec >> chronic * pain >> region * risk_dec >> \\ check* frequency >> check* risk_dec >> check* pain \\ \end{array}$

IV. 结论

模型有三个选项,以choice=0对基准,分别对剩余两个变量进行logit回归,其系数正负与大小均以choice=0的系数为0作为基准。

V. 模型一拟合结果解读

频率拟合系数均为正向高度显著,且choice=2;choice=1系数,说明复查间隔越大,第三个方案的边际对数效用提升最大,其次是第二个。可以理解当复查间隔越长,二三方案更可能被选择。

choice=1收入影响是负向显著, choice=2收入影响是正向显著,说明当收入越高,越可能选择方案三,其次是方(5)案一,选择方案二的概率减少。

Dep. Variable:						
Model: Method:	MN Tue, 24 Mar 09:	Logit Df MLE Df 2020 Pse 30:44 Log False LL-	Df Model:		9449 9419 28 0.8138 -1919.6 -10307. 0.000	
choice=1	coef	std err	z	P> z	[0.025	0.975]
frequency intercept income*risk dec income*frequency attention*risk dec attention*frequency retire*risk dec retire*frequency work*risk dec work*frequency edu*frequency age*risk, dec age*frequency age*risk, dec age*frequency age*risk.	3.2829 -11.9407 0.6650 -0.7803 0.0324 -0.3573 0.0435 -0.5776 0.6678 -0.7447 -0.7230 0.1940 0.0135 -0.1142	0.204 0.506 0.007 0.098 0.003 0.041 0.008 0.133 0.008 0.127 0.133 0.044 0.002 0.037	16.063 -23.5845 -7.989 11.886 -8.738 5.196 -4.359 8.280 -5.884 -5.446 4.451 5.441 -3.060 16.675	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	2.882 -12.933 0.652 -0.972 0.027 -0.437 0.027 -0.837 0.652 -0.993 -0.993 0.109 0.009 -1.187 0.105	3.684 -10.948 0.078 -0.589 0.038 -0.277 0.060 -0.318 0.084 -0.463 0.279 0.018 -0.018
choice=2	coef	std err	z	P> z	[0.025	0.975]
frequency intercept income*frequency attention*frequency attention*frequency retire*risk dec retire*frequency work*risk dec work*frequency edu edu*frequency age*risk dec age*frequency sex*oain	5.2919 -30.5320 0.2418 -2.1045 0.0487 -0.4930 0.0691 -0.8952 0.1013 -1.0616 -1.5767 0.3037 0.0185 -0.1581 0.1353	0.224 0.892 0.011 0.122 0.003 0.044 0.009 0.140 0.135 0.182 0.047 0.003 0.041	23.631 -34.233 21.890 -17.309 15.886 -11.272 7.518 -6.407 11.152 -7.876 -8.684 6.413 6.427 -3.903 18.578	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	4.853 -32.280 0.220 -2.343 0.043 -0.579 0.051 -1.169 0.083 -1.326 -1.933 0.211 0.013 -0.237 0.121	5.731 -28.784 0.263 -1.866 0.055 -0.407 0.087 -0.621 0.119 -0.797 -1.221 0.397 0.024 -0.079 0.024

Fig. 3. 带交互项的多元logit模型

性别的影响系数均为负向显著,且choice=1负值程度更大,说明女性相比男性更倾向与选择方案一,对方案二的拒绝程度比方案三更大。

教育的影响系数均为正向显著,且choice=2系数数值更大,说明受教育程度高的人更倾向于选择方案三,其次是方案二。

是否工作与是否退休的拟合系数的均仅有choice=2显著,都为负无论工作还是退休都更愿意选择方案一而非方案三。

是否经历过直结肠检查的系数仅有choice=1显著为负,说明经历过直结肠检查的人对方案三既不偏好也不厌恶,而在方案一与方案二中更愿意选择方案一。

是否有住院史的系数仅有choice=2显著为正,说明有住院史的人在方案一与方案三中更愿意选择方案三,对方案一和方案二则没有明显差别。

年龄系数均为正向显著, choice=2数值更大, 说明年龄越大, 越倾向于选择方案三, 其次是方案二。

VI. 模型二拟合结果解读

频率拟合系数规律仍然同模型一解读,差别是方案三和 方案二的边际偏好差值更大了。

收入与风险降低的交互系数均为正向显著,且choice=2数值更大,说明收入不同的人群对风险降低的效用感是不同,收入更高的人群对风险降低的偏好更大。

收入与频率拟合的系数可能存在与频率系数的共线性, 缺乏解读意义,正是因为这种共线性,模型二的系数数值 明显大于模型一。

对健康重视程度更高的人群、退休人群、年龄较高的人群均表现出和高收入人群相同的偏好变化,即更倾向于风险降低程度更高的方案,更偏好方案三而非方案二。而对频率的重视程度也呈现负值,也是由于与频率系数的共线性。

值得注意的是模型一中未被选入pain属性在模型二中与性别属性的交互呈现显著,说明女性比男性对深入直结肠的长度更加在意。