1.4 Regression

1.4.1 Linear Regression

Structure of input data

	Size (feet ²) x ₁	Number of bedrooms X2	Number of floors x ₃	age of home (years) 🔀	Price(\$1000) h ₀(x) = y	
A data	2104	5	1	45	460	
	1416	3	2	40	232	Г
	1534	2	2	30	315	

Features (x)

Label ($h_{\theta}(x) = y$)

Structure of linear regression model

$$h_{\theta}(x) = \theta_0 + 2104\theta_1 + 5\theta_2 + \theta_3 + 45\theta_4 = 460$$

$$h_{\theta}(x) = \theta_0 + 1416\theta_1 + 3\theta_2 + 2\theta_3 + 40\theta_4 = 232$$

$$h_{\theta}(x) = \theta_0 + 1534\theta_1 + 2\theta_2 + 2\theta_3 + 30\theta_4 = 315$$

Definition: In linear regression model, a variable, called dependent variable, is assumed to be normally distributed around linear combination of other variables, called independent variables.

$$p(y|x_1, x_2,...) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-\|y-x\theta\|^2}{2\sigma^2}}$$

Here y is the dependent variable and $x = x_1, x_2, ...$ are independent variables. (Multiple Linear Regression)

We need to find θ such that this probability is maximized.

This is equivalent to minimizing $||y-x\theta||^2$.

For multiple data points, the quantity to be minimized is $||y-X\theta||^2$

Taking derivative with respect to θ and equating to 0 gives the solution, $\theta = (X^T X)^{-1} X^T y$

Example 1

X: [1,0], [0,-1], [1,-2], [2,0], [0,-2]

y: 0, -1, -4, -1, -3

Example 2 (Homework)

X: 1, 0, 1, 2, 0

Y: 1.0, 2.0, 0.9, 0.0, 2.2

1.4.2 Logistic Regression

[As discussed on board.]

1.4.3 Non Linear Regression

Use linear regression after adding additional attributes derived by applying non-linear functions on original attributes. For example, x^2 and x^3 can be incorporated to use linear regression to fit cubic equation.