(19)日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-296580 (P2000-296580A)

(43)公開日 平成12年10月24日(2000.10.24)

旭化成工業株式会社内

(51) Int.Cl.7		戲別記号		FΙ				Ť	-マコード(参考)	
B32B	27/20			B 3	2 B	27/20		Z	4F006	
-	27/30					27/30		Λ	4 F 1 0 0	
C 0 8 J	7/04	CER		C 0	8 J	7/04		CERZ	4 J 0 0 2	
		CFD						CFDZ		
C 0 8 K	3/00			C 0	8 K	3/00				
			審査請求	未請求	請求	マスタッグ 後項の数 6	OL	(全 10 頁)	最終頁に続く	
(21)出顧番号	€	特願平11-109153		(71)	出願人	=	033 工業株	式会社		
(22) 出願日		平成11年4月16日(1999.4	1. 16)	(72)	発明和	Y 桜庭	健次	北区堂島浜1	丁目2番6号 1丁目3番1号	

最終頁に続く

(54) 【発明の名称】 耐衝撃性光拡散樹脂板

(57)【要約】

【課題】 耐衝撃性、光透過性、光拡散性、剛性等に優 れかつ艷消し性等の外観の風合いに優れた樹脂板を低コ ストで工業的に提供する。

【解決手段】 透明熱可塑性樹脂と艷消し剤である球状 粒子からなる厚み100μm以下の被覆層と透明熱可塑 性樹脂とアクリル系多層構造ゴム粒子と光拡散剤からな る基盤層の2つから形成される多層からなる樹脂板によ り上記課題を解決した。

【特許請求の範囲】

【請求項1】透明熱可塑性樹脂100重量部にアクリル系多層構造ゴム粒子3~50重量部と透明熱可塑性樹脂との屈折率の差の絶対値が0.05以上かつ平均粒径が0.5~10重量部を分散させた樹脂組成物からなるシート状基板層の両面あるいは片面に、透明熱可塑性樹脂100重量部に透明熱可塑性樹脂との屈折率との差の絶対値が0.05未満かつ重量平均粒径が5~50μmである球状粒子5~30重量部を分散させた樹脂組成物からなる被覆層が100μm以下の厚みで被覆された光拡散性樹脂板。

【請求項2】透明熱可塑性樹脂がメタクリル系樹脂あるいはMS樹脂であることを特徴とする請求項1記載の光拡散性樹脂板。

【請求項3】 被覆層の球状粒子がメタクリル系架橋粒子であることを特徴とする請求項1~2記載の光拡散性樹脂板。

【請求項4】 被覆層の厚みが5~50μmであることを特徴とする請求項1~3記載の光拡散性樹脂板。

【請求項5】共押出成形方法によって製造される請求項 1~4に記載の光拡散性樹脂板。

【請求項6】 照明用途に使用される請求項1~5に記載の光拡散性樹脂板。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は透明熱可塑性樹脂に アクリル系多層構造ゴム粒子と光拡散剤を分散させた樹 脂組成物からなるシート状基盤層の両面あるいは片面 に、透明熱可塑性樹脂に球状粒子を分散させた樹脂組成 物を被覆した被覆層を有す耐衝撃性に優れた光拡散性樹 脂板に関する。

[0002]

【従来の技術】透明熱可塑性樹脂と光拡散剤からなる樹 脂組成物から得られる成形体は照明器具、照明看板、グ レージング、スクリーン等に従来から使用されており、 その要求特性として光透過性及び光拡散性がこれまでは 重要視されてきた。しかしながら最近では特に照明器具 用途等において、これらの要求特性の他に成形体の表面 の質感が求められるようになり、いわゆる艶消し性能等 を付与する事が図られている。又、これらの用途では平 板で得られる原板を真空成形、圧空成形、突き上げ成形 等の、2次成形加工により所定の形状に加工する事が行 われるが、最近では成形技術の向上による成型品形状の 複雑化や成形体の軽量化を目的に、高延伸成形、或いは 薄肉の原板を用いた成形が行われるようになり、その結 果、成形体に薄肉部が発生し、この薄肉部が使用中に外 部からの衝撃により割れる現象が再々発生するようにな り、衝撃強度の向上が求められるようになってきた。こ れらの要求に対しては、これまでにも提案がなされてお り、例えば、特開平8-198976号公報ではメタク

リル酸メチルを主成分とするメタクリル系樹脂に、ゴム成分である多層構造弾性体と艶消し剤であるアクリル系 架橋重合体と光拡散剤を分散させた光拡散性メタクリル 樹脂板が開示されている。しかしながら、このようにゴム成分と艶消し剤と光拡散剤を共存させた単層からなる樹脂板では、成形体の表面だけに要求される艶消し効果を発現する為に、樹脂板全体に艶消し剤を分散させる必要があり、その為、高価な艶消し剤を多量に使用する事になる。

【0003】又、艷消し剤が樹脂板の衝撃強度を低下させる事から、衝撃強度の向上を目的に添加する高価なゴム成分も多量に使用する事が必要となり、製造コストが大きくなると共に、成形体の剛性が低下する事から薄肉の成形体では成形体が自重でたわみを起こしたり、変形する等の問題を起こしやすい欠点がある。又、特開平2-208036号公報には耐衝撃性アクリル樹脂層の両面に厚さ5 -100μ mの炭素数1-4のアルキル基を有するアルキルメタクリレート単位を有する一般アクリル樹脂層を設けた樹脂板が開示されているが、耐衝撃性は有するものの、光拡散性、艶消し性等については、その機能は全く無く本発明の目的とする樹脂板を得る事はできない。

[0004]

【発明が解決しようとする課題】本発明者らは上記の問題を解決する為、鋭意検討した結果、本発明の完成に到達した。すなわち、本発明の目的は光透過性、光拡散性に優れ、成形体の表面が良好な艷消し性を有し、耐衝撃性及び剛性に優れた樹脂板を容易且つ、低製造コストで提供する事にある。

[0005]

【課題を解決するための手段】本発明の耐衝撃性に優れた光拡散性樹脂板は、透明熱可塑性樹脂100重量部にアクリル系多層構造ゴム粒子3~50重量部と透明熱可塑性樹脂との屈折率の差の絶対値が0.05以上かつ重量平均粒径が0.5~20μmである光拡散剤0.5~10重量部を分散させた樹脂組成物からなるシート状基板層の両面あるいは片面に、透明熱可塑性樹脂100重量部に透明熱可塑性樹脂との屈折率の差の絶対値が0.05未満かつ重量平均粒径が5~50μmである球状粒子5~30重量部を分散させた樹脂成物からなる被覆層が100μm以下の厚みで被覆された耐衝撃性に優れた光拡散性樹脂板である。

【0006】本発明では樹脂板の表層部にあたる被覆層には、透明熱可塑性樹脂に艶消し剤である重量平均粒径 5~50μmの球状粒子のみを分散させた樹脂組成物を用いる。又、樹脂板の基盤層には、透明熱可塑性樹脂にアクリル系多層構造ゴム粒子と重量平均粒径が0.5~20μmである光拡散剤の2種類のみ分散させた樹脂組成物を用いる。このような樹脂板の構成により、被覆層は樹脂板表面に艶消し機能を発現させ、基盤層は樹脂板

に光拡散機能を発現させる。このように各々の層の機能を完全に分けた事から衝撃強度を低下させ且つ、高価である艶消し剤の使用量を必要最低量に抑える事が可能となり、その結果、耐衝撃改良剤ではあるが、反面、樹脂・板の剛性及び熱変形性等を低下させるアクリル系多層構造ゴム粒子の使用量も必要最低量に抑える事が可能となった。更に、耐衝撃性の向上には被覆層及び基盤層の両方にアクリル系多層構造ゴム粒子を用いる事が可能であり、被覆層については通常、艶消し剤を含有した場合には樹脂板表面の微細な凹凸がノッチ効果をもたらし被覆層の厚みに関係なく衝撃強度は低下するものと考えられていたが、本発明者らは、艶消し剤を含有していても、その厚みを薄くする事によりアクリル系多層構造ゴム粒子を添加しなくても樹脂板の衝撃強度は改良される事を見いだした。

【0007】本発明以外の単層からなる樹脂板では艷消し性及び光拡散性を発現する為には多量の球状粒子と光拡散剤を単一樹脂層に分散させる必要が有る為、機能上は表層のみに存在すれば良い球状粒子を必要量以上に多量に使用する事になり、その結果、衝撃強度の低下が大きくなる為、耐衝撃性改良剤である多層構造ゴム粒子も多量に使用する事となり、本発明で得られる優れた特性を持つ樹脂板は得られない。

【0008】以下、本発明を詳細に説明する。本発明で 用いられる透明熱可塑性樹脂は特に限定はないが、例え ばメタクリル系樹脂、スチレン系樹脂、ポリカーボネー ト、MS樹脂、アクリロニトリルースチレン共重合体、 透明ABS、透明耐衝撃ポリスチレンなどが挙げられ る。これらのうち特に光透過性が高いメタクリル系樹脂 あるいはMS樹脂を用いることが好ましい。メタクリル 系樹脂としてはメタクリル酸メチルあるいはメタクリル 酸エチルを主成分として、これとアクリル酸、メタクリ ル酸、アクリル酸メチル、アクリル酸エチル、アクリル 酸ブチル、メタクリル酸ブチル、アクリル酸シクロヘキ シル、メタクリル酸シクロヘキシル、アクリル酸2ーエ チルヘキシル、メタクリル酸2ーエチルヘキシル、アク リル酸フェニル、メタクリル酸フェニル等のアクリル酸 もしくはメタクリル酸のエステル、スチレン、αーメチ ルスチレン等のスチレン系単量体、フェニルマレイミ ド、シクロヘキシルマレイミド、無水マレイミド等のマ レイミド系単量体、エチレングリコールジメタクリレー ト、エチレングリコールジアクリレート、アリルメタク リレート等のアクリル系多官能単量体等から選ばれた1 種或いは2種以上を併用して共重合することにより得ら れる。又、MS樹脂はメタクリル酸メチル、メタクリル 酸エチル、メタクリル酸ブチル等のメタクリル酸エステ ルとスチレンあるいはαーメチルスチレン等のスチレン 系単量体と必要によりアクリル酸メチル、アクリル酸エ チル、アクリル酸ブチル等のアクリル酸エステルとを共 重合する事により得られるが、製造コストの面からはメ

タクリル酸メチルあるいはメタクリル酸エチルとスチレンとを共重合して得る事が好ましい。この時、得られた共重合体中に占めるメタクリル酸エステル基の割合は50重量%以上である事が好ましく、50重量%未満では共重合体の耐光性が悪くなり、例えば照明カバー等に用いた場合に黄変する等の不良現象が現れる。

【0009】次に、本発明のアクリル系多層構造ゴム粒 子は、ゴム弾性を有する層を内層に配置した少なくとも 2層以上の層で構成されたものが用いられるが、好まし くは、最内層がメタクリル酸メチル或いはメタクリル酸 エチル70~99.9重量%と他の共重合性単量体0~ 30重量%及び共重合性多官能単量体0.01~5重量 %とを共重合して得られる共重合体であり、中央層がア クリル酸エステル70~99.9重量%とその他の共重 合性単量体0~30重量%及び共重合性多官能単量体 0.1~5重量%とを共重合して得られる共重合体であ り、最外層がメタクリル酸メチル或いはメタクリル酸エ チル70~100重量%と他の共重合性単量体0~30 重量%を共重合して得られる共重合体からなる層構成を 有するアクリル系多層構造ゴム粒子が用いられる。この 時、最内層/中央層/最外層の構成比は重量比で(5~ 50)/(10~80)/(5~50)である。この範 囲を外れると衝撃強度の改良効果が小さくなったり、ア クリル系多層構造ゴム粒子の樹脂板中での分散が不良と なる等の欠点を生じる為、好ましくない。但し、本特許 の目的を達成する範囲で最内層と中央層の間、及び中央 層と最外層の間に組成の異なる共重合体からなる層を設 ける事は可能である。このアクリル系多層構造ゴム粒子 は樹脂板中の基盤層に透明熱可塑性樹脂100重量部に 対して3~50重量部分散させる。3重量部未満では衝 撃強度の向上効果が小さく、50重量部を超えると樹脂 板の熱変形性や剛性が小さくなり好ましくない。好まし くは5~30重量部である。又、その平均粒径は0.0 5~1.0µmであり、0.05µm未満では衝撃強度 の向上効果が小さく、1. 0μmを超えるとアクリル系 多層構造ゴム粒子自体の製造が困難となる為、好ましく は $0.05\sim0.5\mu$ mである。又、このアクリル系多 層構造ゴム粒子は乳化重合方法で得る事が好ましい。攪 拌、加熱下の水槽中で乳化剤、開始剤の存在下に初めに 最内層を形成する単量体混合物を添加し重合を完結さ せ、次に中央層を形成する単量体混合物を添加して重合 を完結させ、次いで最外層を形成する単量体混合物を添 加して重合させる事により容易にアクリル系多層構造ゴ ム粒子を含むラテックスが得られる。本発明に使用され るアクリル系多層構造ゴム粒子はラテックスから塩析、 噴霧乾燥、凍結乾燥等の公知の技術により粉体として回 収できる。

【0010】次に多層構造ゴム粒子の最内層のメタクリル酸エチル又はメタクリル酸エチルと共重合されるその他の共重合性単量体としては、アクリル酸メチル、アク

リル酸エチル、アクリル酸 n ーブチル等のアクリル酸エステル及びアクリロニトリル、メタクリロニトリル、アクリル酸、メタクリロニトリル、アクリル酸アミド、メタクリル酸、アクリル酸アミド、無水マレイン酸、スチレン、αーメチルス・チレン、メタクリル酸シクロヘキシル等が挙げられる。これらの単量体は1種或いは2種以上を併用して用いられる。又、共重合性多官能単量体としては特に限定はされないがエチレングリコールジ(メタ)アクリレート、1、3ブチレングリコールジ(メタ)アクリレート、1、4ブタンジオールジ(メタ)アクリレート、(メタ)アクリル酸アリル、ドリアリルイソシアヌレート、マレイン酸ジアリル、ジビニルベンゼン等が使用され、1種或いは2種以上を併用して用いられるが、これらの中では(メタ)アクリル酸アリルが好ましい。

【0011】次にアクリル系多層構造ゴム粒子のゴム弾性を有する中央層の重合に使用されるアクリル酸エステルは特に限定はされないが、アクリル酸 n ー ブチル、アクリル酸2エチルへキシル等が好ましい。その他の共重合性単量体としては最内層でメタクリル酸メチル(エチル)と共重合される共重合性単量体と同じものが使用できるが、好ましくは透明熱可塑性樹脂と屈折率を合わせるが、好ましくは透明熱可塑性樹脂と屈折率を合わせる為に、スチレン、αメチルスチレン等が使用される。また、共重合性多官能性単量体としては特に限定はされないが最内層で用いられるものと同じものが使用できる、1種あるいは2種以上を併用して用いられる。次に多層構造ゴム粒子の最外層のメタクリル酸メチル或いはメタクリル酸エチルと共重合される他の共重合性単量体は最内層でメタクリル酸メチル(エチル)と共重合される共重合性単量体と同じものが使用できる。

【0012】次に本発明に用いられる熱可塑性樹脂との 屈折率の差の絶対値が0.05以上かつ重量平均粒径が O. 5~20µmである光拡散剤は、目的とする光拡散 性能に応じて1種又は2種以上を併用して樹脂板の基盤 層に用いられる。光拡散剤の種類は特に限定はされない が有機系の光拡散剤としてはポリスチレン系架橋粒子、 シリコーン系架橋粒子、MS系架橋粒子、フッ素系粒子 等が挙げられ、無機系光拡散剤としては硫酸バリウム、 炭酸カルシウム、水酸化アルミニウム、リン酸カルシウ ム、シリカ等が挙げられる。これらの中ではシリコーン 系架橋粒子、硫酸バリウム、炭酸カルシウム等が光拡散 性能、或いは製造コストの点で好ましい。光拡散剤の重 量平均粒径はO.5μm未満では光拡散性が低下し、2 Oμmを超えても同様に光拡散性が低下する為、好まし くは0.5~10µmである。又、その屈折率は基盤層 に用いられる熱可塑性樹脂との屈折率の差の絶対値が 0.05以上である事が好ましい。0.05未満では光 拡散性が低下する傾向がみられる為、好ましくない。 又、その使用量は透明熱可塑性樹脂100重量部に対し て0.5~10重量部であり、0.5重量部未満では光 拡散性が低下し10重量部を超えると光透過性及び耐衝 撃性が低下する為、好ましくない。

【0013】次に本発明の被覆層に艶消し剤として用い られる球状粒子としてはアクリル系架橋粒子、スチレン 系架橋粒子、シリコーン系架橋粒子等が挙げられ、これ らの中ではアクリル系架橋粒子が樹脂板の耐光性或いは 製造コストの点で好ましい。この球状粒子の重量平均粒 径は5~50μmであり、5μm未満では艶消し効果が 小さくなり、50μmを超えると荒い艶消し面となり風 合いに欠ける為、好ましくない。又、球状粒子の屈折率 は被覆層に用いられる透明熱可塑性樹脂との屈折率の差 の絶対値が 0.05未満である事が好ましい。透明熱可 塑性樹脂との屈折率の差を小さくする事により、樹脂板 表面にほぼ透明な艷消し皮膜が形成される為と思われる が、樹脂板表面の風合いが良くなる。更に好ましくは 0.03以下である。又、その使用量は透明熱可塑性樹 脂100重量部に5~30重量部用いられるが5重量部 未満では艷消し効果が小さくなり、30重量部を超える と耐衝撃性が大幅に低下する為、好ましくない。

【〇〇14】本発明の耐衝撃性に優れた光拡散性樹脂板 を製造する方法としては、特に限定はされないが、例え ば、上記の透明熱可塑性樹脂と光拡散剤とアクリル系多 層構造粒子と必要があれば本発明の目的を損なわない範 囲の任意の添加剤をヘンシェルミキサーやブレンダーで 混合した後、押出成形機等で加熱溶融して分散させて基 盤層用樹脂組成物として調整し、別に透明熱可塑性樹脂 と球状粒子とアクリル系多層構造粒子と必要があれば本 発明の目的を損なわない範囲の任意の添加剤を上記と同 様に処理して被覆層用樹脂組成物として調整する。次い でこれらの樹脂組成物を公知の成形技術により本発明の 構造を有する積層板とする。例えば上記樹脂組成物から プレス成形方法、押出成形方法などの成形方法により基 盤層となるシート状成形体及び被覆層となるフィルム状 成形体を別々に得、その後両者を張り合わせる方法の 他、共押出設備を有するシート成形押出機により、上記 の樹脂組成物を同時に押出して一体成形する方法等が用 いられる。製造コストの点から共押出し方法による成形 方法が好ましい。この時、被覆層は基盤層の片面、或い は両面に積層されるがその厚みは目的とする樹脂板表面 の艶消し等の質感が得られる厚みに調整される。厚みが 薄いと均一な艷消し面が得られにくく、又、必要以上に 厚くすると樹脂板の耐衝撃性が大幅に低下する為、通常 100μm以下で積層され好ましくは5~50μmであ

【 0 0 1 5 】この被覆層には本発明の目的を損なわない 範囲で艶消し機能の他に帯電防止性能、防暴性能、反射 防止等の機能を目的に応じて付与する事ができる。例え ば帯電防止性能は帯電防止剤として、ポリエチレングリ コール、アルキルモノグリセライド、アルキルスルフォ ン酸ソーダ、アルキルベンゼンスルフォン酸ソーダ、ポ リエーテルエステルアミド、ポリエーテルエステル、等を皮膜層樹脂組成物中に含有させて積層することにより発現する。又、本発明の樹脂板を形成する樹脂組成物中には、着色剤、難燃剤、熱安定剤、酸化防止剤、紫外線、吸収剤等を本発明の目的を損なわない範囲で任意に配合することができる。

【0016】このようにして得られた本発明の耐衝撃性 に優れた光拡散性樹脂板から成形して得られる成形体は 薄肉部があっても衝撃に強くカバー、セード、グローブ 等の照明器具、照明看板、グレージング等に使用できる が、その優れた光透過性、光拡散性、外観の意匠性から 照明器具への使用が特に適している。

[0017]

【発明の実施の形態】以下実施例により本発明を詳細に 説明する。実施例中の部数は特に断らない限り重量部を 表す。

[0018]

【実施例1】(アクリル系多層構造ゴム粒子の製造)攪 拌機付き反応容器にイオン交換水300部を添加し、窒 素置換しながら70℃に昇温した後、ジヘキシルスルホ コハク酸ナトリウムを0.3部と過硫酸カリウム0.3 部を添加した。続いてメタクリル酸メチル28部とアク リル酸 n ブチル 2 部とメタクリル酸アリル 0.03 部か らなる単量体混合物を添加した後、1時間保持して反応 を完結させた。次いでアクリル酸 n ブチル32部とスチ レン8部とメタクリル酸アリル1.0部とからなる単量 体混合物を2時間かけて添加した後、2時間保持して反 応を完結させた。次いでメタクリル酸メチル27部とア クリル酸nブチル3部とnーオクチルメルカプタンO. 05部からなる単量体混合物を1時間かけて添加した 後、1時間保持して反応を完結させた。得られたラテッ クスを硫酸ナトリウムを塩析剤として用いて塩析した 後、脱水、水洗、脱水、乾燥を行い、粉体としてアクリ ル系多層構造ゴム粒子(A)を回収した。得られたアク リル系多層構造ゴム粒子(A)の平均粒径は0.25 μ mであった。又、得られたアクリル系多層構造ゴム粒子 をプレスを用いて厚さ0.2mmのフィルムに成形、ア ッベ屈折計を用いて屈折率を測定した結果、1.49で あった。

【0019】(基盤層用樹脂組成物の調整)透明熱可塑性樹脂としてメタクリル樹脂(旭化成工業株式会社製のデルペットLP-1:屈折率1.49)100部とアクリル系多層構造ゴム粒子(A)10部と光拡散剤として平均粒径6μmのシリコーン系架橋粒子(東芝シリコーン株式会社製、商品名トスパール2000B:屈折率1.42)を4部とをタンブラーで混合した。次いでこの混合物を30mm2軸押出機を用いて250℃の温度でペレット化し基盤層用樹脂組成物を得た。

【0020】(被覆層用樹脂組成物の調整)透明熱可塑性樹脂としてメタクリル樹脂(旭化成工業株式会社製のデルペットLP-1)100部と球状粒子として平均粒径12μmのアクリル系架橋粒子(積水化成品工業株式会社製、商品名テクポリマーMBX-12:屈折率1.49)を20部とをタンブラーで混合した。次いでこの混合物を30mm2軸押出機を用いて250℃の温度でペレット化し被覆層用樹脂組成物を得た

【0021】(樹脂板の製造及び評価)得られたペレッ トを350mm幅のマルチマニホールド型の積層用シー ト用ダイスを有する250℃に温調された基盤層用樹脂 組成物を押し出す50mm単軸押出機、及び皮膜層用樹 脂組成物を押し出す25mm単軸押出機、及び80~1 10℃に温調された3本のポリシングロールからなる共 押出シート成形設備を用いて300mm幅で厚み1.4 4mmの基盤層用樹脂からなる成形体の両面に厚み30 μmの被覆層用樹脂が積層された全体の厚みが1.5m mであるシート状成形体を得た。次に得られたシート状 成形体から30cm角の板を切り出し、表面温度を18 O℃に加熱した後、真空成形機を用いて直径95mmで 高さが40mmの底が平らな円筒形の形状に成形した。 成形品の厚みは、円筒形の底の平らな部分で、ほぼ0. 7mmであった。次いで得られた成形品の落球衝撃強度 を測定した。その結果、衝撃強度は0.9kg-cmで あった。次に得られたシート状成形体から試験片を切り 出し、曲げ弾性率、全光線透過率、光拡散率の測定、及 び目視によるシートの外観観察を実施した。その結果、 上記評価項目の値が順に2900MPa,70%,60 %の測定値を得、衝撃強度、剛性、光透過性、光拡散性 に優れ良好な艷消し表面を有する風合いに優れた樹脂板 である事が確認された。結果を表1に示した。尚、測定 にあたっては次に示す試験方法を用いて実施した。又、 実施例中に示した屈折率は25℃での値である。

【0022】落球衝撃強度 - 円筒形の成型品の底部の平らな面をコンクリートの床面に置き、重さが66gの鋼球を高さを変えて試験片に落とし50%の割れを示す高さを求めエネルギーに換算した。

曲げ弾性率 - JISK7203に準じて測定した。

【0023】全光線透過率 - JISK7105に準じて測定した。

光拡散率 - オプテック株式会社製ゴニオフォトメーターを用いて、白色光の光源で試験片に直角方向に入光させ試験片の反対側に透過した光を+70°~-70°の角度の範囲における輝度を測定し、下式により光拡散率を算出した。

[0024]

(20°の輝度) + (70°の輝度)

光拡散率=-----

(0°の輝度)×2

[0025]

【比較例1】比較例1では、本発明で示した多層からなる樹脂板と「単層板」の艶消し性と耐衝撃性を確認した。樹脂板の艶消し性能は、樹脂板表面の球状粒子の密度で決定される為、樹脂板の表面を形成する樹脂組成物中の球状粒子の濃度は板厚に関係なく同一にする必要がある。比較例1の単層板用の樹脂組成物中の球状粒子の濃度は被覆層の球状粒子の濃度とほぼ同一とした。

【0026】(単層板用樹脂組成物の調整)透明熱可塑性樹脂としてメタクリル樹脂(旭化成工業株式会社製のデルペットLP-1)100部とアクリル系多層構造ゴム粒子(A)10部と光拡散剤として平均粒径6μmのシリコーン系架橋粒子(東芝シリコン株式会社製、商品名トスパール2000B)を4部と球状粒子として平均粒径12μmのアクリル系架橋粒子(積水化成品工業株式会社製、商品名テクポリマーMBX-12)を20部とをタンブラーで混合した。次いでこの混合物を30m2軸押出機を用いて250℃の温度でペレット化し単層板用樹脂組成物を得た。

【0027】(単層板の製造及び評価)得られたペレットを350mm幅のコートハンガー型の単層用シート用ダイスを有する250℃に温調された50mm単軸押出機、及び80~110℃に温調された3本のポリシングロールからなる押出シート成形設備を用いて300mm幅で厚み1.5mmのシート状成形体を得た。得られたシート状成形体から試験片を切り出し実施例1と同様に試験した。結果を表2に示す。単層板では本発明の多層からなる樹脂板で得られる艷消し性(風合い)と光拡散性を得ようとするとその耐衝撃性は大幅に低下する。

[0028]

【比較例2】比較例2では、実施例1で被覆層に添加した球状粒子の量を単層板用樹脂組成物に添加した。その量を濃度(部数)に換算すると実施例1の被覆層では20部であるが単層用樹脂組成物では約0.69部となる。その他は比較例1と同様に実施した。結果を表2に示した。球状粒子の絶対量は実施例1と比較例2は、ほぼ同量であるが比較例2のように単層板では艶消し性が殆どなく風合いの劣るものとなった。

[0029]

【実施例2~4】基盤層のアクリル系多層構造ゴム粒子(A)の量を実施例2では5部、実施例3では25部、実施例4では40部に変えた他は実施例1と同様に実施した。結果を表1に示した。実施例1と同様に、衝撃強度、剛性、光透過性、光拡散性に優れ良好な艶消し表面を有する風合いに優れた樹脂板であった。

[0030]

【実施例5~7】被覆層の積層厚みを実施例5では10

μm、実施例6では45μm、実施例7では80μmに変えた他は実施例1と同様に実施した。結果を表1に示した。実施例1と同様に、衝撃強度、剛性、光透過性、光拡散性に優れ良好な艷消し表面を有する風合いに優れた樹脂板であった。

 $- \times 100$

[0031]

【実施例8~9】被覆層の球状粒子の量を実施例8では7部、実施例9では28部に変えた他は実施例1と同様に実施した。結果を表1に示した。実施例1と同様に、衝撃強度、剛性、光透過性、光拡散性に優れ良好な艷消し表面を有する風合いに優れた樹脂板であった。

[0032]

【実施例 $10\sim11$ 】基盤層の光拡散剤の種類と量を実施例10では平均粒径 0.7μ mの炭酸カルシウム(屈折率1.66)を1部と平均粒径 4μ mの沈降性硫酸バリウム(屈折率1.64)を1部に変え、実施例11では平均粒径 0.7μ mの炭酸カルシウムを1部とトスパール2000Bを3部に変えた他は実施例1と同様に実施した。結果を表1に示した。実施例1と同様に、衝撃強度、剛性、光透過性、光拡散性に優れ良好な艷消し表面を有する風合いに優れた樹脂板であった。

[0033]

【実施例12~13】被覆層の球状粒子の種類を実施例12では平均粒径8μmのアクリル系架橋粒子(積水化成品工業株式会社製、商品名テクポリマーMBX-8)に、実施例13では平均粒径40μmのアクリル系架橋粒子(積水化成品工業株式会社製、商品名テクポリマーMBX-40)に変えた他は実施例1と同様に実施した。結果を表1に示した。実施例1と同様に、衝撃強度、剛性、光透過性、光拡散性に優れ良好な艶消し表面を有する風合いに優れた樹脂板である事が確認された。【0034】

【実施例14】透明熱可塑性樹脂の種類を共重合体中に 占めるメタクリル酸メチル基の割合が80重量%である MS樹脂(新日鐵化学株式会社製、商品名エスチレンM S-800)に替えた他は実施例1と同様に実施した。 結果を表1に示す。実施例1と同様に、衝撃強度、剛 性、光透過性、光拡散性に優れ良好な艷消し表面を有す る風合いに優れた樹脂板である事が確認された。

【0035】

【実施例15】基盤層の厚みを1.47mmとし、その 片面に厚さ30μmの被覆層を積層した他は実施例1と 同様に実施した。尚、落球衝撃試験は樹脂板の被覆層側 に鋼球を落として試験した。又、樹脂板の外観は被覆層 側を観察した。結果を表1に示す。実施例1と同様に、 衝撃強度、剛性、光透過性、光拡散性に優れ良好な艷消 し表面を有する風合いに優れた樹脂板である事が確認さ れた。

[0036]

【比較例3】基盤層にアクリル系多層構造粒子を添加しない他は実施例1と同様に実施した。結果を表3に示 す。アクリル系多層構造粒子が添加されない樹脂板は衝撃強度が小さく本発明の目的を達成しない。

[0037]

・【比較例4】被覆層の厚みを120μmとした他は実施例1と同様に実施した結果を表3に示す。被覆層の厚みが厚すぎると衝撃強度が小さく本発明の目的を達成しない。

[0038]

【比較例5】基盤層のアクリル系多層構造粒子の量を6 0部にした他は実施例1と同様に実施した。結果を表3 に示す。基盤層にアクリル系多層構造粒子を多量に含む 樹脂板は曲げ弾性率(剛性)が小さく本発明の目的を達成しない。

[0039]

【比較例6】被覆層の球状粒子の量を3部にした他は実施例1と同様に実施した。結果を表3に示す。被覆層の球状粒子の量が少なすぎると殆ど艷消しされず風合いの劣るものであり本発明の目的を達成しない。

[0040]

【比較例7】被覆層の球状粒子の量を38部にした他は 実施例1と同様に実施した。結果を表3に示す。被覆層 の球状粒子の量が多すぎると樹脂板の表面が荒れた状態 となり質感に欠け又、衝撃強度も小さくなり為、本発明 の目的を達成しない。

[0041]

【比較例8】被覆層の球状粒子の種類を平均粒径100 μmのアクリル系架橋粒子(積水化成品工業株式会社製、商品名テクボリマーMBX-100)に変えた他は実施例1と同様に実施した。結果を表3に示す。被覆層の球状粒子の粒径が大きすぎると樹脂板の表面が荒れた状態となり質感に欠け又、衝撃強度も小さくなり為、本発明の目的を達成しない。

[0042]

【比較例9】被覆層の球状粒子を平均粒径6μmのシリコーン系架橋粒子(トスパール2000B)に変えた他は実施例1と同様に実施した。被覆層に熱可塑性樹脂との屈折率の差の絶対値の大きな球状粒子を用いた為に、実施例1に比較し風合いの劣る樹脂板であった。

[0043]

【比較例10】基盤層の光拡散剤をテクポリマーMBX-8とし、熱可塑性樹脂をMS樹脂に変えた他は実施例1と同様に実施した。熱可塑性樹脂との屈折率の差の絶対値が小さな光拡散剤を用いた樹脂板は光拡散性の劣るものであった。

[0044]

【表1】

z:7クリル系集格粒子(高品名:テクま。リマーMBX40, 現木化成品工業(株), 平均位を40μm, 配所率1.49) 22:7クリル系条格粒子(高品名:テクキ。リマーMBX100, 我木化成品工業(株), 平均位在100μm, 配所率1.49)

			•															脱率1.49)	配率1.49)	既年1.49)
																		x:7岁リル系集権登子(最品名:テクキ。4マーMBX12、積水化成品工業(株)、平均整度12gm、展	VE Sum, E	平均位在40月口,周
**	199	松素和学	C	C	C	0	C		C	C	C	C	C	C	C	0		株)、野	4),平均拉径	群),野
奉	蘇	%	0 9	6 0	5 9	5 4	0 9	0 9	0 9	0.9				6 1	0 9		7 0	(城品)集((路)港(化成品工款(
**	開	%	0 %	7	7 2	7.5	2 0	7 0	2 0	0 %	7 0	6 2		7 0	7 0 1	6 5	6 9	X12. 银	X 8,铁	X40, 琳
# #	都別	M.Pa	2,300	3000	2400	002	2900	2900	2900	2900	2900	2900	2900	2900	2900	2800	2900	47-MB	y:アクリル系集監査子(高品名:テクホ。リマーMBX 8, 抵水化成品工業(株),	ス:7クリル系撃隊粒子(商品名:テク4。リマーMBX40, 税水化成品工費(株),
1965 1965	新學速	kg-cm	60	0.5	ω Θ	<u>1</u> .3	0.9	0.6	0.5	ر ن	5.	0.6	1	0.6	0.5	0.6	9.	略:疗体	路:疗体	品:テクま
機關於		II II	88 温	調 30	600 種	200 温	01 屋	育 45	1980年	新 30	30	30	88	商 30	育 30	30 學	0.00 居 30	繁粒子()	果然 在 (整器粒子(商
	超光線	#B	0.00	0.0	0.00	0.00	.0 .00	0.00	0.00	0.00	0	0	0.0	000	9	0.02	9	:7/ JA	:795年	:79 JA
Design .	日子	位(10年	ಜ	22	ಙ	20	07	82	ಜ	~	83	22	22	ನ	౭	ಜ	ຂ	2	~	2 .
UES	4¥ 12t	iled iledi	×	×	×	×	X	×	×	×	×	×	×	þ	2	×	×	1, 图6年].		:
按	為可姓臨	編	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	MS-800	LP-1	早啦程6pm,		,
	整	の差	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.1<	0.1<	0.07	0.07	0.09	0.07	-/(#)/-		
	数差	1(重動	7	7	4	4	4	7	7	5	Þ	1/1	1/3	4	Þ	4	ħ	煮ぎシリコ	()	(4)
08Q	3 ₩	74657 7655	B	В	В	છ	В	8	а	ಶ	а	p/c	b/a	а	a	а	ಣ	-N2000B, 東芝ッリコーン(株),	配類1.66	B所¥1.64〕
±48 ≠48	J 4批子(A)	五(鱼量移)	10	ري	25	40	10	10	10	10	10	10	10	10	10	10	10	0	(平均性色0.7µm,	始胜4.0 pm ,
	多理性脂 コ	罐	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	®S-800	LP-1	系集格社子(百	ήλ (¥	C: 広岸住産産ハ「リウム(平均位配4.0
			紫	实验 例一 2	茲例-3	美斯 4	美師 - 5	李杨-6	美的- 7	8 - MVK	吴6月- 9.	实施另一10	美國-11	美斯列-12	实验例—1.3	美机列-14。 MS-800	英版第一15	a:シリコーン系集権社子(直品名:トスA	b:厳酷かがかな	C:此為性質酸

【0045】 【表2】

			単 層	板	組 成			接枝	·特性···	光学	特性	外規
	可塑性樹脂	多層構造	7、7.4粒子	技 1	支 剤	耸 状	粒子	治學強度	邮酬事	透過率	拡散率	風合い
	種類	種類	福量主	推順	量(重量部	種類	量(重量料	kg-cm	MPa	%	·%	視感判定
比较另一 1	LP-1	Α	10	а	4	х	20	0.3	3100	70	61	0
比较好一 2		A	10	а	4	х	0.69	1.0	2800	70	58	×

【0046】 · 【表3】

™	100	兤鞭	0	0	0	×	×	×	×	0
各性	14-4	%	0 9	0 9	53	5 8	6 3	5 8	65	2 8
2γ- Σ+ζ	100	%	7 0	7 0	7 6	7.1	6 9	7 0	6 5	8 3
茶	1	MPa	3300	3300	1300	2900	2900	2900	2900	2800
385 385	新學效度	kg-cm	0.2	0.3	1.5	0.7	3	0.3	0.6	0. E
被照解外		шn	强 30	桶120	福 30	题 30	福 30	福 30	麗 30	捅 30
	歌	9 株	0. 00	0.00	0.00	0.00	0.00	0.00	0.07	0.02
G-20	1231 1+	量(重量	92:	20	20	3	89	20	8	20
1885	#≤ ##		Х	×	×	X	х	22	В	×
±e≤	劉可變性朝間	養類	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	LP-1	MS-800
	医斯	の発	0.07	0.07	0.07	0.07	0.07	0.07	0.07	0.02
	極	量(重點	Þ	Þ	Þ	Þ	Þ	Þ	4	4
格图	128	APPENT PLEASE	а	а	а	а	а	a	a	у
蚰	ጋ ˆ	量(重量的)	0	10	09	10	10	10	10	10
	以呼性脂	魯	LP-1	LP-1	LP-1	LP-1	ĽP-i	LF-1	LP-1	NS-800
			比校码— 3	LUS- 4	k:09- 5	比校明 — 6	比散码— 7	比较例— 8	北校阿一 9	比较的-10

[0047]

【発明の効果】本発明の耐衝撃性に優れた光拡散性樹脂板は艶消し剤と樹脂からなる被覆層と光拡散剤とゴム成分と樹脂からなる基盤層で構成される多層板である。同様の耐衝撃性を有する単層板に比較して成型品の艶消し性等の風合いや、剛性に優れ且つ、工業的に低コストで製造できる。

【0048】耐衝撃性と共に光透過性、光拡散性、艶消 し性等の成形品表面の風合い、剛性等が優れている為、 特に薄肉成形される照明カバー用途に適している。

フロントページの続き

(51) Int. Cl. ⁷

識別記号

FΙ

(参考)

C08K 5/00 C08L 101/12 //(C08L 101/12 51:00) C08K 5/00 C08L 101/12

Fターム(参考) 4F006 AA15 AA22 AA36 AA55 AB16

AB24 AB35 AB56 BA14 CA08

4F100 AK01A AK01B AK01C AK25A

AK25B AK25C AN02A BA02

BAO3 BAO6 BA10B BA10C

BA13 CA30A DE01A DE01H

DE04B DE04C DE04H EH20A

EH20B EH20C GB90 JA20A

JA20B JA20C JA20H JB16A

JB16B JB16C JK01 JK10

JN01 JN01A JN01B JN01C

JN18A JN18B JN18C JN18H

YYOOA YYOOH

4J002 AA011 BC031 BC033 BC061

BC071 BC073 BD123 BG043

BG051 BN122 BN141 BN151

CG001 CP033 DE146 DE236

DG046 DH046 DJ016 FA083

FD203 FD206 GQ00