武汉大学计算机学院

2010~2011 学年第二学期 2010 级《数字逻辑》 期末考试试题 A 卷 (A 类)参考答案

- 一、解答(每空1分,共14分)
 - 1. $[x] \neq 1.0101$
 - 3. 917

- 2. $(22.5)_{10}$, $(26.4)_{8}$, $(16.8)_{16}$
- 4. 组合电路、存储电路
- 5. $\overline{F} = (\overline{A} + \overline{B}) \cdot (C + \overline{D})$, $F' = (A + B) \cdot (\overline{C} + D)$ 6. 11
- 7. 平均传输延迟时间 tpd

8. 增加冗余项,增加惯性延迟环节,选通法

- 二、解答(每小题2分,共16分)
 - 1. C 2. D 3. A 4. D 5. B 6. A 7. B 8. A
- 三、解答(8分)

画出 F 的卡诺图,圈为 1 的项,得到最简与一或表达式 $F = AD + \overline{B}D$ 。

- 四、解答(每小题12分,共24分)
 - 1. (1) 写出输出函数表达式并化简

$$F = \overline{AB + \overline{A + B}} \cdot \overline{C} + \overline{AB + \overline{A + B}} \cdot C$$

$$= \overline{AB} \cdot (A + B) \cdot \overline{C} + (AB + \overline{A + B}) \cdot C$$

$$= (\overline{AB} + A\overline{B}) \cdot \overline{C} + (AB + \overline{AB}) \cdot C$$

$$= (A \oplus B) \cdot \overline{C} + (\overline{A \oplus B}) \cdot C$$

$$= A \oplus B \oplus C$$

(2) 列真值表

	输入	输出	
A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

- (3) 功能:该电路是三变量奇检验电路。即当三个输入变量 ABC 中有奇数个 1 时,F 输出为 1,否则 F 为 0。
 - 2. (1) 写激励函数表达式: $D_3=Q_2$

 $D_2=Q_1$

 $D_1=Q_3 \oplus Q_1$

(2) 列次态真值表,作状态表和状态图

Q_3	Q_2	Q_1	D_3	D_2	D_1	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
0	0	0	0	0	0	0	0	0
0	0	1	0	1	1	0	1	1
0	1	0	1	0	0	1	0	0
0	1	1	1	1	1	1	1	1
1	0	0	0	0	1	0	0	1
1	0	1	0	1	0	0	1	0
1	1	0	1	0	1	1	0	1
1	1	1	1	1	0	1	1	0

状态表

_	Q_3	Q_2	Q_1	Q_3^{n+1}	Q_2^{n+1}	Q_1^{n+1}
_	0	0	0	0	0	0
	0	0	1	0	1	1
	0	1	0	1	0	0
	0	1	1	1	1	1
	1	0	0	0	0	1
	1	0	1	0	1	0
	1	1	0	1	0	1
	1	1	1	1	1	0

状态图如下:

(3) 功能: 该电路是一个模 7 计数器,电路不能自启动,没有自恢复功能。(或者说该电路是一个 1110100 序列信号发生器)

五、解答(14分)

1. 作状态图和状态表

现态		$y_2^{n+1}y_1^{n+1}/z$
<i>y</i> ₂	<i>y</i> ₁	x=1
0	0	01/0
0	1	10/0
1	0	11/0
1	1	00/1

2. 列次态真值表,确定激励函数和输出函数。

输入	次 态	输出	$\bigcup \setminus \setminus$	激	励	
x y_2 y_1	y_2^{n+1} y_1^{n+1}	z	C_2	T_2	C_1	T_1
1 0 0	0 1	0	0	d	1	1
1 0 1	1 0	0	1	1	1	1
1 1 0	1 1	0	0	d	1	1
1 1 1	0 0	1	1	1	1	1

化简得: $C_2=xy_1$, $T_2=1$, $C_1=x$, $T_1=1$, $z=xy_2y_1$ 。

(3) 画逻辑图

六、解答(每小题12分,共24分)

1. (1) 列全加器真值表

A_i	B_i	C_{i-1}	S_i	C_i	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	40	1	

(2) 写最小项表达式

 $S_i = \sum m (1, 2, 4, 7)$

 $C_i = \sum m (3, 5, 6, 7)$

(3) 变换表达式形式

$$S_i = m_1 + m_2 + m_4 + m_7$$

$$= m_1 \cdot m_2 \cdot m_4 \cdot m_7$$

$$C_i = m_3 + m_5 + m_6 + m_7$$

$$= \overline{m_3} \cdot \overline{m_5} \cdot \overline{m_6} \cdot \overline{m_7}$$

(4) 画逻辑图

- 2. (1) $Q_DQ_CQ_BQ_A$: 寄存器状态输出端; DCBA: 并行数据输入端; D_R : 右移串行数据输入端; D_L : 左移串行数据输入端; \overline{CLR} : 清零端, \overline{CLR} =0 时, $Q_DQ_CQ_BQ_A$ =0000,正常工作时 \overline{CLR} =1; CP: 工作脉冲; S_1S_0 : 工作方式控制端,可控制实现右移、左移、并入、保存。
- (2)a、因为序列周期 $T_P=8$,所以需要移位寄存器的级数 $n\geq 3$,假设选择 $Q_DQ_CQ_B$ 三位,要产生的序列从右移串行输入端 D_R 输入,在 CP 作用下,经 $Q_DQ_CQ_B$ 右移从 Q_B 端一位一位串行输出, $Q_DQ_CQ_B$ 的初态应为最先输出的右边三位,即 000。
 - b、令CLR=0,使 $Q_DQ_CQ_B=000$ 。
- c、再令 \overline{CLR} =1, S_1S_0 =01,在CP作用下, D_R 端依次输入10111000,即可从 Q_B 端循环产生11101000 序列。

d、求出 D_R 表达式

	CP	D_R	Q_D	Q_C	Q_B	
_	0	1	0	0	0	
	1	0	1	0	0	
	2	1	0	1	0	
	3	1	1	0	1	
	4	1	1	1	0	
	5	0	1	1	1	
	6	0	0	1	1	
	7	0	0	0	1	

 $D_R = \sum m (0, 2, 5, 6)$

$$D_R = \overline{Q_D} \overline{Q_B} + Q_C \overline{Q_B} + Q_D \overline{Q_C} Q_B$$

e、画电路图

