NFAs accept the Regular Languages

Equivalence of Machines

Definition:

Machine $\,M_1\,$ is equivalent to machine $\,M_2\,$

if
$$L(M_1) = L(M_2)$$

Example of equivalent machines

$$L(M_1) = \{10\} *$$

We will prove:

Languages

accepted

by NFAs

Regular

Languages

Languages accepted by FAs

NFAs and FAs have the same computation power

Proof: Given M_N , we use the procedure nfa-to-dfa below to construct the transition graph G_D for M_D . To understand the construction, remember that G_D has to have certain properties. Every vertex must have exactly $|\Sigma|$ outgoing edges, each labeled with a different element of Σ . During the construction, some of the edges may be missing, but the procedure continues until they are all there. <u>procedure:</u> nfa-to-dfa

Deposit the fellowing stone until no more edges are missing

1. Create a graph G_D with vertex $\{q_0\}$. Identify this vertex as the initial vertex.

2. Repeat the following steps until no more edges are missing.

$$\begin{split} \delta_N^*\left(q_i,a\right), \delta_N^*\left(q_i,a\right), ..., \delta_N^*\left(q_k,a\right). \mathbf{If} \\ \delta_N^*\left(q_i,a\right) \cup \delta_N^*\left(q_i,a\right) \cup ... \cup \delta_N^*\left(q_k,a\right) = \{q_l,q_m,...,q_n\}, \end{split}$$

Take any vertex $\{q_i,q_j,...,q_k\}$ of G_D that has no outgoing edge for some $a \in \Sigma$ Compute

create a vertex for G_D labeled $\{q_l,q_m,\ldots,q_n\}$ if it does not already exist. Add to G_D an edge from $\{q_i,q_j,\ldots,q_k\}$ and label it with a.

3. Every state of G_D whose label contains any $q_f \in F_N$ is identified as a final vertex.

4. If M_N accepts λ , the vertex $\{q_0\}$ in G_D is also made a final vertex.

NFA to FA: Remarks

We are given an NFA M

We want to convert it to an equivalent $\mathsf{F} A$ M'

With
$$L(M) = L(M')$$

If the NFA has states

$$q_0, q_1, q_2, \dots$$

the FA has states in the powerset

$$\emptyset, \{q_0\}, \{q_1\}, \{q_1, q_2\}, \{q_3, q_4, q_7\}, \dots$$

Single Accepting State for NFAs

Any NFA can be converted

to an equivalent NFA

with a single accepting state

Example

NFA

In General

NFA

Equivalent NFA

Single accepting state

Extreme Case

NFA without accepting state

Add an accepting state without transitions

Minimization of DFA

Algorithm

First delete any state that is unreachable from the start state; For each pair of states where one is a final state and the other is non-final. mark them as distinguishable; For each pair of states q, and q, For each symbol in the alphabet, If q, takes the automaton to q_ and q, to q_ and If q, and q, are already marked as distinguishable, Then mark q_i and q_i as distinguishable; Repeat the above until no more pairs can be marked; All the pairs of states that are not marked are indistinguishable; Collapse indistinguishable pairs to single states and merge their transitions.

s0			
s1			
s2			
	s0	s1	s2

	s0	s1	s2
s2	X		
s1	X		
s0			

Label pairs with ε where one is a final state and the other is not

s0			
s1	X		
s2	X		
	s0	s1	s2

Main loop (no changes occur)

s0			
s1	X		
s2	X		
	s0	s1	s2

DISTINGUISHABLE(s1, s2) is empty, so s1 and s2 are equivalent stat

Example2

 $\{r, s\} = \{B, G\}, \{E, F\}$ with both unmarked, so put $\{A, G\}$ into lists of $\{B, G\}$ and $\{E, F\}$

 $\{r, s\} = \{B, G\}, \{F, C\} \text{ with } \{F, C\}$ already marked, so mark $\{p, q\} =$ $\{A, B\}$

Example 2 (contd..._

Final results are as follows.

Then, what????

Equivalence & Minimization of Automata

- If two states are not distinguishable by the table-filling algorithm, then they are equivalent.
- Minimization of DFA's
 - Group equivalent states into a block and regard each block as a new state in the minimized DFA.
 - Take the block containing the old start state as the new start state.
 - Take the new accepting states as those blocks which contain old accepting states.

Equivalence & Minimization of Automata

• The final result below says (A, E), (B, H), (D, F) are equivalent states and can be put into 3 blocks as states of the new DFA. The final new DFA is as follows (right).

Example 3

TABLE 3.4 Marking Distinguishable States for Minimizing a DFA

States	A	В	C	D	E	F	G
H		19 1 41	15.75.75				
G	?	on 1 (CxG)	on O	fuf	on 0	on 1 (ExG)	
F	on 1 (A×E)	?	on 0	fnf	on O		
<u>E</u>	on 0	on C	?	fnf		_	
D	fnf	fnf	fnf		_		
C	on 0	on O	<u> </u>	_			-
В	on 1 (A×C)						

Check for pairs with one state final and one not:

b			_				
c							
d							
е							
f	ϵ	ϵ	ϵ	ϵ	ϵ		
g	ϵ	ϵ	ϵ	ϵ	ϵ		
h						ϵ	ϵ
	a	b	c	d	е	f	g

First iteration of main loop:

b			_				
$^{\mathrm{c}}$	1	1					
d	1	1			_		
е	0	0	0	0			
f	ϵ	ϵ	ϵ	ϵ	ϵ		
g	ϵ	ϵ	ϵ	ϵ	ϵ		
h			1	1	0	ϵ	ϵ
	a	b	\mathbf{c}	d	е	f	g

Second iteration of main loop:

b							
$^{\mathrm{c}}$	1	1					
d	1	1					
е	0	0	0	0			
f	ϵ	ϵ	ϵ	ϵ	ϵ		
g	ϵ	ϵ	ϵ	ϵ	ϵ		
h	1	1	1	1	0	ϵ	ϵ
	a	b	\mathbf{c}	d	е	f	g

Third iteration makes no changes

Blank cells are equivalent pairs of states

Combine equivalent states for minimized DFA:

