Advanced Section: Variational Inference

CS109B Data Science 2

Pavlos Protopapas, Mark Glickman and Chris Tanner

Statistical Inference

Draw conclusions about an underlying distribution of probabilities from a sample

Outline

- 1. Bayesian Inference
- 2. Markov Chain Monte Carlo
- 3. Bayesian Neural Networks
- 4. Variational Inference
- 5. Drop Out as a Bayesian Approximation
- 6. Bootstrap for Inference

Bayesian Inference

Probability as a measure of believability in an event

$$p(\theta|y) \propto p(y|\theta)p(\theta)$$
Model Data

Bayesian Inference

 $n(\theta|v) \propto n(v|\theta)n(t)$

"When the facts change, I change my mind. What do you do, sir? "John Maynard Keynes

Bayesian Inference

 $n(\theta|v) \propto n(v|\theta)n(t)$

"When the facts change, I change my mind. What do you do, sir? "John Maynard Keynes

MCMC: Markov Chains

$$p(z^{(m+1)}|z^{(1)},...,z^{(m)}) = p(z^{(m+1)}|z^{(m+1$$

$$p(z^{(m+1)}) = \sum_{z^{(m)}} p(z^{(m+1)}|z^{(m)})p$$

MCMC: Sampling method

Unnormalised distribution whose normalisation factor computation is intractable

Samples
that can be obtained with MCMC and
without proceeding to the normalisation
CS109B, PROTOPAPAS, GLICKMAN AND TANNER

Statistics or estimations that can be computed based on the generated samples

MCMC

Credit: Towards Data Science

Bayesian Neural Networks: FCNN

Bayesian Neural Networks: FCNN

Bayesian Neural Networks

Bayesian Neural Networks

Priors

 $p(\theta) \sim p(y|\theta) = p(\theta|y)$

& Scale

Bayesian Neural Networks

$$n(\theta) \sim n(v|\theta) \sim n(\theta|v)$$

MCMC is eventually accurate, but not scalable to large models
Approximate Bayesian Inference: Variational Inference

Optimization approach -> Q a family of "nice" distributions

$$p(\theta | y) = \frac{p(y | \theta) p(\theta)}{\int p(y, \theta) d\theta}$$

$$p(\theta|y) = \frac{p(y|\theta)p(\theta)}{\int p(y,\theta)d\theta}$$

Kullback-Leibler divergence:

$$p(\theta|y) \approx q *= argmin_{a \in \Omega} f(q(\theta), p(\theta))$$

 $argmin_a KL(q, p) \equiv argmax_a EL$

Input

$$KL(q | | p(\cdot | x)) = \int_{\theta} q(\theta) \log \frac{q(\theta)}{p(\theta | x)} d\theta$$
$$q(\theta) = \prod_{i=1}^{J} q_{i}(\theta_{i})$$

Underestimates variance (sometimes severely)

Dropout

Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

Yarin Gal Zoubin Ghahramani

University of Cambridge

YG279@CAM.AC.UK ZG201@CAM.AC.UK arXiv:1506.02142

Variational Bayesian Inference The problem

Variational Bayesian Inference The right solution (MCMC)

Variational Bayesian Inference SVI

Variational Bayesian Inference Bootstrap

Model Mean 95% models

Variational Bayesian Inference Bootstrap

Model Mean 95% models

Extra

Variational Bayesian Inference SVI

DONE

