Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Carthage Ecole Nationale d'Ingénieurs de Carthage

وزارة التعليم العالي و الهمهم العلمي جامعة قرطله المحرسة الوطنية للممنحسين بقرطله

Nom :...... CIN :...... Salle :...... Salle :......

X

Correction Examen Final: Spécification formelle

Enseignantes : E. Menif & M. Fourati | Date | : 27/01/2021 | Nbre. de pages : 9
Filière / Classe : 3ème Ing. Inf. SI | Calculatrices/documents : non autorisés | Durée : 1h30

Vérification formelle : (10 points)

Exercice 1 : (Traduction en CTL et LTL: 1 point)

Exprimez, <u>lorsque c'est possible</u>, les propriétés suivantes en CTL et LTL. Lorsque la traduction n'est pas possible, dites qu'elle n'est pas exprimable.

1. Il est possible d'atteindre un état où p_1 est vrai et p_2 est vrai dans le prochain état.

LTL $\mathbf{F}(p_1 \wedge \mathbf{X}p_2)$ **0.25 pt** CTL : Non exprimable **0.25 pt**

2. Les propriétés p_1 et p_2 sont infiniment souvent vraies.

LTL : $\mathbf{GF}p_1 \wedge \mathbf{GF}p_2$ **0.25 pt** CTL : $\mathbf{AGAF}p_1 \wedge \mathbf{AGAF}p_2$ **0.25 pt**

Exercice 2 Model Checking LTL et Automate de Büchi (5.25 points):

1. Transformez la propriété de chemin $\varphi = (a \Rightarrow \mathbf{X}b)\mathbf{U}(\mathbf{G} \neg \mathbf{b})$ en automates de Büchi <u>minimal</u>. Rappelons qu'on dispose des règles d'expansions : $\varphi \mathbf{U} \psi = \psi \vee (\varphi \wedge \mathbf{X}(\varphi \mathbf{U}\psi))$, $\mathbf{G} \varphi = \varphi \wedge \mathbf{X}(\mathbf{G}\varphi)$, $\mathbf{F} \varphi = \varphi \vee \mathbf{X}(\mathbf{F}\varphi)$. 1.25 point

$$\varphi = (a \Rightarrow \mathbf{X}b)\mathbf{U}(\mathbf{G} \neg \mathbf{b}) = (\neg a \lor \mathbf{X}b)\mathbf{U}(\mathbf{G} \neg \mathbf{b}) = (\mathbf{G} \neg \mathbf{b}) \lor ((\neg a \lor \mathbf{X}b) \land \mathbf{X}\varphi))$$

$$= (\mathbf{G} \neg \mathbf{b}) \lor (\neg a \land \mathbf{X}\varphi) \lor (\mathbf{X}b \land \mathbf{X}\varphi) = (\neg \mathbf{b} \land \mathbf{X}(\mathbf{G} \neg \mathbf{b})) \lor (\neg a \land \mathbf{X}\varphi) \lor (\mathbf{X}b \land \mathbf{X}\varphi) \bullet \mathbf{b}$$
0.5 pt

$$(G \neg b) = \neg b \wedge X(G \neg b)$$
 0.25 pt

$$b \wedge \varphi = b \wedge \left(\left(\neg b \wedge \mathbf{X} (\mathbf{G} \neg b) \right) \vee \left(\neg a \wedge \mathbf{X} \varphi \right) \vee \left(\mathbf{X} b \wedge \mathbf{X} \varphi \right) \right) = \left(\left(b \wedge \neg b \wedge \mathbf{X} (\mathbf{G} \neg b) \right) \vee \left(b \wedge \neg a \wedge \mathbf{X} \varphi \right) \vee \left(b \wedge \mathbf{X} b \wedge \mathbf{X} \varphi \right) \right) = \left(b \wedge \neg a \wedge \mathbf{X} \varphi \right) \vee \left(b \wedge \mathbf{X} b \wedge \mathbf{X} \varphi \right) = \mathbf{0.5 \ pt}$$

Automate: 3.5+0.25 pour l'état final

Automate minimal:

Exercice 4 : (Model-Checking CTL 4,5 points)

1. Normalisez la formule $\varphi = \mathbf{AF}(\mathbf{AG}p)$ (l'écrire en terme de AU, EU, EX, \wedge , \neg et T). Rappelons que $\mathbf{AX}\phi = \neg \mathbf{EX} \neg \phi$, $\mathbf{AF}\phi = \mathbf{TAU}\phi$, $\mathbf{AG}\phi = \neg \mathbf{EF} \neg \phi$, $\mathbf{EF}\phi = \mathbf{TEU}\phi$, $\mathbf{EG}\phi = \neg \mathbf{AF} \neg \phi$.

Correction

$$AF(AGp) = TAU(\neg EF \neg p) = TAU(\neg TEU \neg p) (0,25 \text{ point})$$

2. Soit la structure de Kripke K suivant, P et R sont des propositions atomiques :

A l'aide de l'algorithme de marquage vu en cours (<u>et présenté ci-bas</u>), vérifiez la validité de la formule φ pour chaque état du modèle. Détaillez les itérations (précisez les valeurs de L,nb (degré de chaque état) et déjà vu pour toutes les variables q_i ainsi que les valeurs des sous formules φ_i pour chaque état). Toutes les itérations doivent être détaillées. Ensuite, remplissez la table ci-dessous (par les valeurs de vérité adéquates) pour chaque sous formule de φ . Le tableau ne sera pas noté si l'itération correspondante n'est pas explicitée.

$$\phi = TAU(\neg TEU \neg p)$$

$$\phi_1 = T\mathbf{E}\mathbf{U} \neg p$$

Marquage de T et $\neg p$ et initialisation de ϕ_I à faux.

marquage ac 1 et	p et illitialisation e	$\mu \in \varphi_I \text{ a rad} \Lambda$.		
	q_1	q_2	q_3	q_4
T	vrai	vrai	vrai	vrai
p	vrai	faux	vrai	faux
$\neg p$	faux	vrai	faux	vrai
$\phi_1 = T\mathbf{E}\mathbf{U} \neg p$	faux	faux	faux	faux
$\phi_2 = \neg \phi_1$				
$\phi = TAU\phi_2$				

Initialisation de déjà vu (dv).

	q_1	q_2	q_3	q_4
dv	faux	faux	faux	faux

Initialisation de L= \emptyset .

 $L=\{q_2, q_4\}\ (q_2.\neg p=vrai\ et\ q_4.\neg p=vrai)\ \textbf{0.25}\ \textbf{pt}$

1) Traitement de q_2 , $L=\{q_4\}$

$$q_2.\phi_1 := vrai \ 0.25 \ pt$$

a. $q_{1} \rightarrow q_{2}$ **0.25** pt

 $q_1.dv = faux$, $donc \underline{q_1.dv} = vrai \underline{avec} q_1.T = vrai \underline{donc} L = L \cup \{q_1\} = \{q_1, q_4\}$

b. $q_{4\rightarrow} q_2$ 0.25 pt

 $q_4.dv = faux$, $donc \underline{q_4.dv} = vrai \ avec \ q_4.T = vrai \ donc \ L = L \cup \{q_4\} = \{q_1, q_4\}$

Mise à jour de dv et de ϕ_1 .

		71.		
	q_1	q_2	q_3	q_4
T	vrai	vrai	vrai	vrai
p	vrai	faux	vrai	faux
$\neg p$	faux	vrai	faux	vrai
$\phi_1 = T\mathbf{E}\mathbf{U} \neg p$	faux	vrai	faux	faux
dv	vrai	faux	faux	vrai

2) Traitement de q_1 , $L = \{q_4\}$

 $q_1.\phi_1:=vrai \ 0.25 \ pt$

a. $q_{1} \rightarrow q_{1}$ 0.25 pt

 $q_1.dv=vrai$, rien à faire

Mise à jour de dv et de ϕ_I .

		7.1		
	q_1	q_2	q_3	q_4
T	vrai	vrai	vrai	vrai
p	vrai	faux	vrai	faux
$\neg p$	faux	vrai	faux	vrai
$\phi_1 = T\mathbf{E}\mathbf{U} \neg p$	vrai	vrai	faux	faux
dv	vrai	faux	faux	vrai

3) Traitement de $q_4, L=\{$

 $q_4. \phi_1 := vrai$ 0.25 pt

a. $q_{2} \rightarrow q_{4}$ 0.25 pt

 $q_2.dv = faux$, $donc \underline{q_2.dv} = vrai \underline{avec} s_2.T = vrai \underline{donc} L = L \cup \{q_2\} = \{q_2\}$

Mise à jour de dv et de ϕ_1

17113	c a jour uc av ci uc	ψ_{I} .		
	q_1	q_2	q_3	q_4
T	vrai	vrai	vrai	vrai
p	vrai	faux	vrai	faux
$\neg p$	faux	vrai	faux	vrai
$\phi_1 = T\mathbf{E}\mathbf{U} \neg p$	vrai	vrai	faux	vrai
dv	vrai	vrai	faux	vrai

4) *Traitement de* q_{2} , $L=\{ \}$ **0.25** *pt*

 $q_2.\phi_1 := vrai$

a. $q_1 \rightarrow q_2$ $q_1.dv = vrai$, donc rien à faire

b. $q_4 \rightarrow q_2$ $q_4.dv = vrai$, donc rien à faire

Mise à jour de dv et de ϕ_l : rien à faire

	q_1	q_2	q_3	q_4
T	vrai	vrai	vrai	vrai
p	vrai	faux	vrai	faux
$\neg p$	faux	vrai	faux	vrai
$\phi_1 = T\mathbf{E}\mathbf{U} \neg p$	vrai	vrai	faux	vrai
dv	vrai	vrai	faux	vrai

$\phi = T\mathbf{A}\mathbf{U}(\neg T\mathbf{E}\mathbf{U} \neg p)$

Calcul de $\phi_2 = \neg \phi_1$, initialisation de ϕ à faux et calcul de *nb*.

	1	a radir of carear ac	1	
	q_1	q_2	q_3	q_4
T	vrai	vrai	vrai	vrai
p	vrai	faux	vrai	faux
$\neg p$	faux	vrai	faux	vrai
$\phi_1 = T\mathbf{E}\mathbf{U} \neg p$	vrai	vrai	faux	vrai
$\phi_2 = \neg \phi_1 0.25 pt$	faux	faux	vrai	faux
$\phi = T\mathbf{A}\mathbf{U}\phi_2$	faux	faux	faux	faux
nb 0.25 pt	2	2	1	1

Initialisation de L= \emptyset .

$$L=\{q_3\}\ (q_3.\,\phi_2=vrai)\ \textbf{0.25}\ pt$$

1) Traitement de
$$q_3, L=\{ \}$$

$$q_3. \phi := vrai \quad 0.25 pt$$

a.
$$q_2 \rightarrow q_3 \ 0.25 \ pt$$

 $q_2 \ nh := q_2 \ nh = 1 - 1 \neq 0 \ ri$

$$q_2.nb := q_2.nb - 1 = 1 \neq 0$$
, rien à faire

b.
$$q_3 \rightarrow q_3$$
 0.25 pt
 $q_3.nb := q_3.nb - 1 = 0$, avec $q_3.T = vrai$, mais $q_3.\phi = vrai$ donc rien à faire

	q_1	q_2	q_3	q_4
T. 0.25	,	,	,	,
T 0.25 pt	vrai	vrai	vrai	vrai
p	vrai	faux	vrai	faux
$\neg p \ 0.25 \ pt$	faux	vrai	faux	vrai
$\phi_1 = T\mathbf{E}\mathbf{U} \neg p$	vrai	vrai	faux	vrai
$\phi_2 = \neg \phi_1$	faux	faux	vrai	faux
$\phi = TAU\phi_2$	faux	faux	vrai	faux

```
Entrées : formule CTL \phi, M= (Q,q_0,E,T,Prop,l)
                                                                      Entrées : formule CTL \phi, M= (Q,q_0,E,T,Prop,l)
\underline{\text{Cas 5}}: \phi = \psi_1 \mathbf{E} \mathbf{U} \psi_2
                                                                      \underline{\text{Cas } 6}: \phi = \psi_1 \mathbf{A} \mathbf{U} \psi_2
faire marquage(\psi_1,M); marquage(\psi_2,M);
                                                                      faire marquage(\psi_1,M); marquage(\psi_2,M);
pour tout q \in Q faire
                                                                      L{:=}\varnothing
           q.φ:=faux;
                                                                      pour tout q \in Q faire
          q.dejavu:=faux;
                                                                                 q.nb:=degre(q); q.\phi:=faux;
fin pour tout
                                                                                 si q.\psi_2=vrai alors L:=L\cup{q} fin si
L{:=}\varnothing
                                                                      fin pour tout
pour tout q \in Q faire
                                                                      tant que L≠Ø faire
   si q.\psi_2=vrai alors L:=L\cup{q} fin si
                                                                                 prendre un q \in L;
fin pour tout
                                                                                 L:=L\setminus\{q\};
tant que L≠Ø faire
                                                                                 q.φ:=vrai;
           prendre un q \in L;
                                                                                 pour tout (q',q) \in T faire
           L:=L\setminus\{q\};
                                                                                            q'.nb:=q'.nb-1
          q.φ:=vrai;
                                                                                            si (q'.nb=0) et (q'.\psi_1=vrai) et
           pour tout (q',q) \in T faire
                                                                                               (q'. \phi = faux) alors L:=L \cup \{q'\}
                      si q'.dejavu=faux alors
                                                                                            fin si
                        q'.dejavu := vrai;
                                                                                 fin pour tout
                                                                      fin tant que
                        si q'.\psi_1=vrai alors L:=L\cup{q'}
                        finsi
                      fin si
           fin pour tout
fin tant que
```

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université de Carthage Ecole Nationale d'Ingénieurs de Carthage وزارة التعليم العالي، و البحث العلمي جامعة فرطاج المدرمة الوطنية الممندمين، بفرطاج

Relations

Notation	Sens	Définition
dom R	Domaine	$\{x:X (\exists y:Y\bullet(x,y)\in\mathbb{R})\}$
ran R	Codomaine	$\{y:Y (\exists x:X\bullet(x,y)\in\mathbb{R})\}$
id R	Identité	$\{x:X \bullet x \mapsto x\}$
R~	Inverse	$\{y:Y,x:X\mid (x,y)\in\mathbb{R}\}$
R g°R'	Composition	$\{x:X, z:Z \mid (\exists y:Y \bullet (x,y) \in \mathbf{R} \land (y,z) \in \mathbf{R}')\}$
$\mathbf{R}^{\mathbf{k}}$	Composition récurrente	
R(S)	Image relationnelle	$\{y:Y/(\exists x:S \bullet (x,y) \in \mathbb{R})\}$
$S \triangleleft R$	Restriction du domaine	$\{x:X,y:Y\mid x\in S \land (x,y)\in R\}$
R⊳S'	Restriction du codomaine	$\{x:X,y:Y\mid y\in S' \land (x,y)\in R\}$
$S \triangleleft R$	Soustraction de domaine	$(X\backslash S)\triangleleft R$
R⊳S'	Soustraction de codomaine	$R \triangleright (Y \backslash S')$
R ⊕R'	Surcharge	$\{x:X, y:Y \mid (x,y) \in \mathbb{R}' \ \lor (x \notin \text{dom } \mathbb{R}' \land (x,y) \in \mathbb{R})\}$

Séquence

Sequence		
Notation	Sens	Définition
#s	Cardinal	
$\widehat{s}t$	concaténation	$\triangleq s \cup \{n: \text{dom } t^{\bullet} \ n + \#s \mapsto t(n)\}$
rev s	Inversion	$(\lambda n : \operatorname{dom} s \bullet s(\#s - n + 1))$
head s	Premier élément	$\forall s : \text{seq}_1 \ X^{\bullet} \ \text{head} \ s = s(1)$
tail s	Liste sans le premier élément	$\forall s : \text{seq}_1 \ X \bullet \ \text{tail} \ s = (\lambda n : 1 \# s - 1 \bullet s(n+1))$
last s	Dernier élément	$\forall s : \text{seq}_1 \ X^{\bullet} \ \text{last} \ s = s(\#s)$
front s	Liste sans le dernier élément	$\forall s : \text{seq}_1 \ X^{\bullet} \ \text{front} \ s = (1(\#s-1)) \triangleleft s$
squash f	Construit une séquence à partir d'une fonction	$(\mathbb{N} +\!\!\!\!+ X) \rightarrow \operatorname{seq} X$
$s \land A$	Filtre une séquence en ne considérant que les	squash (s⊳A)
S I A	éléments de A	
$_{\rm s}$ 1 A	Extrait une sous-séquence formée d'éléments	squash (A⊲s)
SIA	avec des indices de A	

Quelques opérations utiles

S\T	Différence	$S,T: \mathbb{P}X \triangleq \{x: X \mid x \in S \land x \notin T \}$
U SS	Union distribuée	$SS : \mathbb{P}(\mathbb{P}X) \triangleq \{x : X \mid \exists S : SS \cdot x \in S \}$
\cap SS	Intersection distribuée	$SS : \mathbb{P}(\mathbb{P}X) \triangleq \{x : X \mid \forall S : SS \bullet x \in S \}$
$\min S$	Minimum	$S: \mathbb{FN} \mid S \neq \emptyset \min S \in S \land (\forall x \in S \bullet x \ge \min S)$
max S	Maximum	$S: \mathbb{FN} \mid S \neq \emptyset \mod S \in S \land (\forall x \in S \bullet x \leq \max S)$
succ: N→N	Fonction successeur	$\triangle \forall n: \mathbb{N} \bullet succ(n) = n+1$