TP relatif aux protocoles HSRP - VRRP

Public(s)	Section de BTS Informatique de gestion SIO SISR		
Savoir(s)	C21 Installer et configurer un microordinateur		
	C22 Installer et configurer un réseau		
	C31 Assurer les fonctions de base de l'administration d'un réseau		
	Table de routage		
	Création de Vlan		
	C22 Installer et configurer un réseau		
Capacité(s)	C26 Installer un périphérique		
Objectif(s)	Routage avec Tolérance de panne Continuité de service		
D/ff/			
Référence	Fichier HSRP VRRP avec ou sans Vlan PKT		
Professeur	Christophe CHITTARATH		

Partie I

Travail préparatif

I) 1a) Reproduire le schéma ci-dessus, avec les paramètres suivants

Nom	IP associés aux masques par défaut	Passerelle	Résultat des tests ICMP, entre PC1 et les autres
PC1	192.168.0.101	192.168.0.1	
PC2	192.168.0.102	192.168.0.2	
Routeur1	192.168.0.1		
	172.16.0.1		
Routeur2	192.168.0.2		
	172.16.0.2		
Serveur1	172.16.0.3	172.16.0.1	

- 1b) Tracer le parcours du PING envoyé par PC1 à la destination de l'adresse IP 172.16.0.2
- 1c) Supprimer le lien entre SW1 et Routeur1, puis le faire le test de la question 1b) quel est le résultat du PING ?
- 1d) Que doit-on faire sur le PC1 si on veut que le PC1 puisse communiquer avec l'IP 172.16.0.2

A remettre le lien qui a été supprimé dans 1b)

2) Mise en place de HSRP

A faire sur les routeurs R1 et R2

2a) Activer le service HSRP:

- Configure terminal Interface FaceEthernet 0/0 (ou GigabitEthernet 0/0) -
- Standby 1 ip 192.168.0.254 (cette interface fait partie du groupe HSRP n° 1, attribuer cette adresse en tant qu'IP virtuelle)
- Standby 1 priority 150 (cette interface a une valeur priorité à 150) cette ligne à faire uniquement sur le routeur 1)
- Satndby 1 preempt (activer la sélection du routeur primaire)
- End (pour aller à la racine)
- Show standby (affiche les paramètres HSRP)
- Sur les postes PC1 et PC2, modifier l'adresse IP passerelle en 192.168.0.254 (IP virtuelle).
- 2b) Tracer le parcours du PING envoyé par PC1 à la destination de l'adresse IP 172.16.0.3
- 2c) Supprimer le lien entre SW1 et Routeur1, puis le faire le test de la question 2b) quel est le résultat du PING ?
- 2d) Commenter les résultats obtenu en illustrant par les captures d'écran.

Partie II HSRP avec Vlan

Travail préparatif

I) 1a) Reproduire le schéma ci-dessus, avec les paramètres suivants

Nom	IP associés aux	Passerelle
	masques /24	
PC1	10.0.10.10	10.0.10.101
PC2	10.0.20.20	10.0.20.201
Routeur1	10.0.10.101	
	172.16.0.1	
Routeur2	10.0.20.201	
	172.16.0.2	
Serveur1	172.16.0.3	172.16.0.1

1b) Procéder les tests ICMP

	PC1	PC2	Serveur
PC1			
PC2			
Serveur			

1c) Expliquer les cas où les PING ont échoué, et proposer les éventuelles solutions.

II) Mettre en place deux Vlans VID=10 et VID=20

Les consignes :

- Le Vlan 10 sera associé au réseau 10.0.10/24, Le vlan 20 au 10.0.20.0/24
- Sur **routeur1**, à l'interface physique 0/0, on supprime les paramètres faits précédemment, on crée deux sous interfaces (0/0.10, 0/0.20).
- La sous interface 0/0.10 sera associée à l'IP 10.0.10.101 et 0/0.20 associée à l'IP 10.0.20.202;
- Sur **routeur2**, à l'interface physique 0/0, on supprime les paramètres faits précédemment, on crée deux sous interfaces (0/0.10, 0/0.20).
- La sous interface 0/0.10 sera associée à l'IP 10.0.10.102 et 0/0.20 associée à l'IP 10.0.20.201;
- Le PC1 a comme configuration: 10.0.10.10 /24, passerelles 10.0.10.101
- Le PC2 a comme configuration : 10.0.20.20 /24, passerelles 10.0.20.201
- Sur le commutateur SW1

On crée les liens trunk sur port 1 lié au routeur 1 et port 2 lié au routeur 2, qui laisseront passer les trames vlan 10 et 20 au routeur

On mappe (associe) respectivement les ports 3 et 4 au vlan 10 et 20.

Procéder les tests ICMP entre les postes.

A ce stade, les trois postes communiquent entre eux.

III) Mettre en place HSRP associé aux Vlan

3a) Utiliser les mêmes commandes que dans la première partie pour mettre en place HSRP.

Ce qui donne comme configuration suivante :

Intitulé	Paramètres IP	Passerelles	Vlan	remarque	HSRP
PC1	10.0.10.10/24	10.0.10.101	10	Port Access	
PC2	10.0.20.20/24	10.0.20.201	20	Port Access	
	0/0.10 :		10	Trunk	Groupe 10
R1	10.0.10.101		20	Trunk	10.0.10.254/24
	0/0.20 : 10.0.20.202				Groupe 20
	0/1:172.16.0.1				10.0.20.254/24
	0/0.10:		10	Trunk	Groupe 10
R2	10.0.10.102		20	Trunk	10.0.10.254/24
	0/0.20 :				Groupe 20
	10.0.20.201				·
	0/1 : 172.16.0.2				10.0.20.254/24
SW1	Port 1 et 2		10 et	Trunk	
	Port 3 et 4		20	Port Access	
			10 et		
			20		
Serveur	172.16.0.3	172.16.0.1			

Tester la connectivité par le protocole ICMP.

Tracer les routes empruntées par les paquets ICMP request et reply.

3b) Désactiver l'interface en lien avec SW1 du routeur R1 pour simuler une panne. PC1 peut-il toujours communiquer avec serveur (172.16.0.3) ?

Si oui expliquer la raison

Si non remédier la situation.