Machine Learning

Contents

Table of contents			1
1	Reg	gression	2
	1.1	Linear regression	2
		1.1.1 Squared error cost function	2
		1.1.2 Gradient descent	2
	1.2	Multiple linear regression	2
	1.3	Logistic regression	3
	1.4	Softmax regression	3
	1.5	Softmax regression	3
	1.6	Over / underfitting	4
		1.6.1 Regularization	
2	Neu	ıral networks	5
	2.1	Choosing an activation function	5
	2.2	Forward propagation	5
	2.3	Page propagation	-

1 Regression

Important: Gradient descent and predictions are different. When finding optimal parameters, a dataset will be used, while a single data point will be used in prediction, outputting a single prediction value.

1.1 Linear regression

1.1.1 Squared error cost function

Measures how well line fits training data m= num of training examples \vec{x} holds training example x values (length m) \vec{y} holds training example y values (length m) $\hat{y}^{(i)}=w\vec{x}^{(i)}+b$

$$J(w,b) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}^{(i)} - \vec{y}_i)^2$$

 $\frac{1}{m}$ finds average error for larger data sets, $\frac{1}{2m}$ makes later calculations neater

1.1.2 Gradient descent

Find w, b for minimum of cost function J(w, b)

- 1. Start with some w, b (commonly 0, 0)
- 2. Look around starting point and find direction that will move the point furthest downwards for a small step size

 $\alpha = \text{learning rate}$

Must simultaneously update w and b

$$w_1 = w_0 - \alpha \frac{\partial}{\partial w} J(w_0, b_0)$$

$$b_1 = b_0 - \alpha \frac{\partial}{\partial b} J(w_0, b_0)$$

$$\frac{\partial}{\partial w} J(w, b) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - \vec{y}_i) \vec{x}^{(i)}$$

$$\frac{\partial}{\partial b} J(w, b) = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}^{(i)} - \vec{y}_i)$$

1.2 Multiple linear regression

 $n_f = \text{number of features}$

m = number of data points

 $\vec{w} = \text{vector of weights (length } n_f)$

X is a list of x vectors which hold n_f features (size $m \times n_f$)

Sum of predictions of all features is the prediction of multiple linear reg

$$f_{\vec{w},b}(\vec{x}) = \vec{w} \cdot \vec{x} + b$$

Gradient descent

$$\vec{w}_j = \vec{w}_j - \alpha \frac{\partial}{\partial \vec{w}_j} J(\vec{w}, b)$$
$$b = b - \alpha \frac{\partial}{\partial b} J(\vec{w}, b)$$

Cost function and its partial derivatives

$$J(\vec{w}, b) = \frac{1}{2m} \sum_{i=1}^{m} (f_{\vec{w}, b}(X^{(i)}) - \vec{y}_i)^2$$
$$\frac{\partial}{\partial \vec{w}_j} J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w}, b}(X^{(i)}) - \vec{y}_i) X_j^{(i)}$$
$$\frac{\partial}{\partial b} J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} (f_{\vec{w}, b}(X^{(i)}) - \vec{y}_i)$$

1.3 Logistic regression

Sigmoid function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$z = f_{\vec{w},b}(\vec{x})$$

$$\hat{y}^{(i)} = g(f_{\vec{w},b}(X^{(i)}))$$

 $\hat{y}^{(i)}$ can be interpreted as the "probability" that class is $1, 0 \leq \hat{y}^{(i)} \leq 1$ ex. $\hat{y}^{(i)} = 0.7$ means there is a 70% chance y is 1

Logistic regression requires a new cost function because $f_{\vec{w},b}(\vec{x})$ for logistic regression is non-convex, trapping gradient descend in local minima.

Cost function

$$J(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^{m} L(\hat{y}^{(i)}, \vec{y}_i)$$
$$L(\hat{y}^{(i)}, \vec{y}_i) = \begin{cases} -\log(\hat{y}^{(i)}) & \text{if } \vec{y}_i = 1\\ -\log(1 - \hat{y}^{(i)}) & \text{if } \vec{y}_i = 0 \end{cases}$$

Simplified form

$$L(\hat{y}^{(i)}, \vec{y_i}) = -\vec{y_i} \log(\hat{y}^{(i)}) - (1 - \vec{y_i}) \log(1 - \hat{y}^{(i)})$$

The loss function will decrease as $\hat{y}^{(i)}$ approaches \vec{y}_i on a graph of L vs f. $\frac{\partial J(\vec{w},b)}{\partial \vec{w}_i}$ and $\frac{\partial J(\vec{w},b)}{\partial b}$ are the same as in linear regression, just the definition of f has changed.

1.4 Softmax regression

Generalization of logistic regression, y can have more than two possible values.

The most probable value of y is the value that when given to L yields the largest loss.

Calculate z_i with \vec{x} only consisting of data points that have label i. In implementation, set all y values of data points with label equal to i to 1, and 0 for everything else.

 $n_f = \text{num features}$

 $n_y = \text{number of possible } y \text{ outputs}$

W is a matrix of dimensions $n_y \times n_f$.

 \vec{b} , \vec{z} , \vec{a} are vectors of length n_y .

$$\frac{1 \le i \le n_y}{\vec{z}_i = W^{(i)} \cdot \vec{x} + \vec{b}_i}
\vec{a}_i = \frac{e^{\vec{z}_i}}{\sum_{k=1}^{n_y} e^{\vec{z}_k}}
L(\vec{a}, y) = \begin{cases}
-\log \vec{a}_1 & \text{if } y = 1 \\
-\log \vec{a}_2 & \text{if } y = 2 \\
\vdots \\
-\log \vec{a}_n & \text{if } y = n
\end{cases}$$
(1)

1.5 Feature scaling: z-score normalization

After z-score normalization, all features will have a mean of 0 and a standard deviation of 1

 $n_f = \text{num features}$

 $\vec{\mu}_j = \text{mean of all values for feature } j \text{ (length } n_f)$

 $\vec{\sigma}_j = \text{standard deviation of feature } j \text{ (length } n_f)$

$$\begin{split} X_j^{(i)} &= \frac{X_j^{(i)} - \vec{\mu}_j}{\vec{\sigma}_j} \\ \vec{\mu}_j &= \frac{1}{m} \sum_{i=0}^{m-1} X_j^{(i)} \\ \vec{\sigma}_j^2 &= \frac{1}{m} \sum_{i=0}^{m-1} (X_j^{(i)} - \vec{\mu}_j)^2 \end{split}$$

Over / underfitting

Underfit / high bias: does not fit training set well $(wx + b \text{ fit onto data points with } x + x^2 \text{ shape})$

Overfit / high variance: fits training set extremely well but does not generalize well $(w_1x + w_2x^2 +$ $w_3x^3 + w_4x^4 + b$ fit onto training set of shape $x + x^2$ can have zero cost but predicts values outside the training set inaccurately)

Addressing overfitting

- Collect more data
- Select features ("Feature selection")
- Reduce size of parameters ("Regularization")

1.6.1 Regularization

Small values of w_1, w_2, \dots, w_n, b for simpler model, less likely to overfit

Given n_f features, there is no way to tell which features are important and which features should be penalized, so all features are penalized.

$$J_r(\vec{w}, b) = J(\vec{w}, b) + \frac{\lambda}{2m} \sum_{j=1}^{n_f} \vec{w}_j^2$$

Can include b by adding $\frac{\lambda}{2m}b^2$ to J_r but typically doesn't make a large difference. The extra term in J_r is called the regularization term.

Effectively, $\lambda \propto \frac{1}{w}$. When trying to minimize cost, either the error term or the regularization term must decrease. The larger the lambda, the more the regularization term should decrease to minimize cost, decreasing w parameters.

Regularized linear regression

$$J_r(\vec{w}, b) = \frac{1}{2m} \sum_{i=1}^m \left[(f_{\vec{w}, b}(X^{(i)}) - \vec{y}_i)^2 \right] + \frac{\lambda}{2m} \sum_{i=1}^{n_f} \vec{w}_j^2$$

For gradient descent, only $\frac{\partial J_r}{\partial \vec{w_i}}$ changes (b is not regularized):

$$\frac{\partial J_r}{\partial \vec{w}_j} = \frac{1}{m} \sum_{i=1}^m \left[(f_{\vec{w},b}(X^{(i)}) - \vec{y}_i) X_j^{(i)} \right] + \frac{\lambda}{m} \vec{w}_j$$

Regularized logistic regression

$$J_r(\vec{w}, b) = \frac{1}{m} \sum_{i=1}^m L(f_{\vec{w}, b}(X^{(i)}), \vec{y}_i) + \frac{\lambda}{2m} \sum_{j=1}^{n_f} \vec{w}_j^2$$

For gradient descent, only $\frac{\partial J_r}{\partial w_i}$ changes (b is not regularized):

$$\frac{\partial J_r}{\partial \vec{w_j}} = \frac{1}{m} \sum_{i=1}^m \left[(f_{\vec{w},b}(X^{(i)}) - \vec{y_i}) X_j^{(i)} \right] + \frac{\lambda}{m} \vec{w_j}$$

2 Neural networks

 $n_{\ell} = \text{num layers excluding input}$ $n_n^{[\ell]} = \text{n neurons in layer } \ell$ $n_f = \text{num features}$ \vec{W} is a vector (length n_{ℓ}) of matrices of size $n_n^{[\ell]} \times n_f$ \vec{x} is a vector of outputs from each neuron in previous layer \vec{b} is a vector (length n_{ℓ}), holds a bias value for each layer Z and A: vector (length n_{ℓ}) of vectors (length $n_n^{[\ell]}$) g: activation function $1 \leq i \leq n_{\ell}$

$$\begin{split} Z_i^{[\ell]} &= \vec{W}_i^{[\ell]} \vec{x} + \vec{b}^{[\ell]} \\ A^{[\ell]} &= g(Z^{[\ell]}) \end{split}$$

a (activation) = scalar output of a single neuron Superscript [i] is used to notate information relating to the ith layer in a neural network.

2.1 Choosing an activation function

sigmoid: $g(z) = \frac{1}{1+e^{-z}}$ tanh: $g(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$ linear: g(z) = z

ReLU: $g(z) = \max(0, z)$

Leaky ReLU: $g(z) = \max(\epsilon z, z)$ where ϵ is a small nonzero positive value < 1

For output layer

Binary classification, y=0 or 1: use sigmoid Regression, $-\infty \le y \le \infty$: use linear activation function Regression, $y \ge 0$: use ReLU

For hidden layer

ReLU is most common

2.2 Forward propagation

Input $A^{[\ell-1]}$, output $A^{[\ell]}$, cache $Z^{[\ell]}$, $W^{[\ell]}$, $\vec{b}^{[\ell]}$

$$Z^{[\ell]} = W^{[\ell]} A^{[\ell-1]} + \vec{b}^{[\ell]}$$
$$A^{[\ell]} = g^{[\ell]} (Z^{[\ell]})$$

Up to $A^{[n_\ell]}$, in which case $\hat{y} = A_0^{[n_\ell]}$ assuming output layer has one unit

2.3 Back propagation

Input $da^{[\ell]}$, output $da^{[\ell-1]}$, $dW^{[\ell-1]}$, $d\vec{b}^{[\ell-1]}$

$$\begin{split} \mathrm{d}Z^{[\ell]} &= \mathrm{d}A^{[\ell]} \cdot \frac{\mathrm{d}g^{[\ell]}(Z^{[\ell]})}{\mathrm{d}Z^{[\ell]}} \\ \mathrm{d}W^{[\ell]} &= \frac{1}{m} \, \mathrm{d}Z^{[\ell]} \cdot A^{[\ell-1]T} \\ \mathrm{d}\vec{b}^{[\ell]} &= \frac{1}{m} \sum_i \mathrm{d}Z_i^{[\ell]} \\ \mathrm{d}A^{[\ell-1]} &= W^{[\ell]T} \cdot \mathrm{d}Z^{[\ell]} \end{split}$$

5