

Education

Princeton University

2009

PhD in Electrical Engineering

- Wallace Fellow (top 24 recognition within PhD cohort)
- Wu Prize for Excellence

Princeton University

2006

MA in Electrical Engineering

- With coursework through the Woodrow Wilson School of Public & International Affairs
- National Science Foundation Graduate Research Fellowship

Colorado School of Mines

2004

BS in Physics

- Minors: Electrical Engineering, Public Affairs
- ► GPA 4.00/4.00 (1st in class)
- ▶ Dean's Service Award
- Member, Board of Trustees

Software Skills

Core Language Proficiencies: Python, Java, Bash, C

Substantial Language Experience: JavaScript, Go, Scala, R, LaTeX, LabVIEW, MATLAB, Mathematica

Relational Databases: MySQL, PostgreSQL, SQLite

Distributed Data Grids & Caching: Redis, Memcached, Terracotta, Hazelcast

NoSQL Databases: MongoDB, HBase, Cassandra

Message & Task Queues: RabbitMQ, AWS SQS, Celery

Application & Web Servers: nginx, Apache, uWSGI, Tomcat, Jetty, ejabberd

Cloud Infrastructure: Amazon Web Services, Google Cloud Platform, Digital Ocean

VMs & Containers: Docker, Vagrant, Packer, VitualBox, VMWare Fusion

Linux Distros: CentOS, Ubuntu, Debian

Packaging & Package Managers: RPM, pip, conda, Pants, npm, Mayen

Continuous Integration & Automation: Ansible, Fabric, Jenkins, TravisCI

Load Testing Frameworks: JMeter, Grinder, Tsung

TDD & BDD: JUnit, pytest, nose

E2E Testing: Selenium, SauceLabs

Frameworks: Django, AngularJS, jQuery, Foundation, Twitter Bootstrap, Qt, Swing, JavaFX

Protocols: HTTP, XMPP, Thrift

Microservices

Design Patterns

Algorithm Design and Development

RESTful APIs

Web and Network Security Best Practices (OWASP Member)
Agile / Scrum / Jira

Experience

23andMe, Inc

2013-present

El Segundo, CA

Cloud Infrastructure and Automation Tech Lead

Mountain View, CA

Started as a Senior Software Engineer in the Performance and Security Group

BioDiscovery, Inc Senior Software Engineer

2013

- ▶ Implemented numerically-efficient versions of several published algorithms for analyzing DNA microarray and Next Generation Sequencing data.
- Architected and initiated development on a secure and flexible license management system.
- ▶ Introduced and implemented modern software development practices, including a code and architecture documentation strategy, a transition from Subversion to Git version control, and a peer code review process.

Grindr LLC & Blendr LLC

2012-2013

Core Software Engineer

Hollywood, CA

- ▶ Developed proprietary location algorithm at the heart of the company's location-based technology offering. The algorithm eliminated the use of 3000 Google App Engine instances, which were replaced with a single AWS EC2 m1.large instance capable of handling production-scale traffic. The new algorithm resulted in a savings to the company of \$1.4 million per year.
- ▶ Architected scaling and redundancy strategies for multiple proprietary technologies.
- Authored 78% of server-side code for completely revamped technology platform.

NASA Jet Propulsion Laboratory

2010-2012 Pasadena, CA

Microdevices Engineer

Principal Investigator for JPL award "Low power consumption lasers".

- ▶ Developed ErwinJr software package for quantum cascade laser simulation; NTR #48342; released publicly as open source. Written in a combination of Python and C++.
- ▶ Demonstrated first near-room temperature continuous wave quantum cascade laser fabricated within NASA for AEMC (Advanced Environmental Monitoring and Control) project.
- ▶ Designed, fabricated, and tested 4.x µm quantum cascade lasers for CO detection.
- ▶ Demonstrated high power (>100 mW) room temperature continuous wave 2.05 μ m single spatial mode lasers for CO₂ lidar.
- Demonstrated world's first high power (>70 mW) room temperature continuous wave 2.05 μm distributed feedback lasers for NASA ASCENDS (Active Sensing of CO₂ Emissions over Nights, Days, and Seasons) deliverable.
- Developed advanced packaging techniques and procedures for high reliability laser operation.
- Mentored multiple graduate student interns.

Princeton University

2009-2010

Postdoc Research Engineer

Princeton, NJ

- Developed traditional heterodyne detection systems for trace gas sensing.
- ▶ Researched non-traditional heterodyne techniques.
- Designed and built opto-electronic systems from off-the-shelf and research-grade components.
- Authored detection and analysis algorithms in MATLAB.

Primis Technologies LLC

2006-2009

Founding Partner & Senior Engineer

Princeton, NJ

- ▶ Founded a startup company leveraging graduate research in mid-infrared laser and systems technology.
- Authored funding proposals for spectroscopic sensor systems and laser development.
- Developed core intellectual property, including
- advanced quantum cascade laser design software
- novel quantum cascade laser designs and strategies
- mid-infrared spectroscopic sensing systems

Non-Technical Strengths

Mentoring and teaching

Analytical writing

Interpersonal effectiveness

Public affairs and business foundation

Conflict resolution

Diversity of perspective through rural/farming youth

Political campaigning and public policy

Research and self-learning

Strategic and first-principles problem solving

Acute attention to detail

Hardware Specialization

Quantum cascade lasers

Compound semiconductor device fabrication

Opto-electronic packaging

Mid-infrared laser sources

Sensors and sensing applications

Analytical instrumentation

Awards

Jet Propulsion Laboratory Team Award	2011
Princeton University Wallace Fellow (signifying top 24	2008
recognition within PhD cohort)	
Princeton University Wu Prize for Excellence	2008
Sigma Xi	2008
IEEE Indium Phosphide and Related Materials Conference	2006
Best Student Paper Award	
National Science Foundation Graduate Research	2004
Fellowship	
Colorado School of Mines Highest Scholastic (first in	2004
class) Honors	
Colorado School of Mines McBride Honors Program	2004
Philipose Senior Award	
Colorado School of Mines Physics Faculty Distinguished	2004
Graduate Award	
Colorado School of Mines Dean's Service Award	2004
Tau Beta Pi	2002
American FFA Degree	2000

Experience (continued)

Princeton University

Research Assistant

2004–2009 Princeton, NJ

▶ Developed infrared lasers for applications in medical diagnostics, explosives sensors, and infrared countermeasures.

- Invented new mechanism for achieving lasing in quantum cascade lasers through "high k-space lasing"; U.S.Patent Application 11744508.
- ▶ Invented "short injector" quantum cascade lasers that led to lowered threshold current and deeper understanding of QC laser physics.
- ▶ Invented ultra-strong coupling quantum cascade laser designs that led to world record 50% wall-plug efficiencies; U.S. Patent Application 12795954.
- ▶ Demonstrated world's first intersubband emission from II-VI quantum cascade structures.
- Experience includes
 - Molecular beam epitaxy of III-V and II-VI materials and devices, including quantum cascade lasers
 - III-V and II-VI compound semiconductor micro- and nanofabrication tools and techniques
 - Optoelectronics production packaging
 - C++, MATLAB, and finite element programming and optimization for operational analysis
 - Commercial and self-coded software for electromagnetic, optical, and thermal modeling and simulation
 - Mid-infrared optoelectronic device characterization and analysis for sensing and communication systems
 - Spectroscopic analysis techniques

AdTech Optics, Inc.

2007

Technical Consultant

City of Industry, CA

- ▶ Collaborated on DARPA-funded quantum cascade laser design and development contract for infrared countermeasures.
- Developed instrumentation for automated quantum cascade laser test and analysis systems.
- Authored and performed test procedures for quality assurance of mission critical components.
- Advised on production flow improvements based on broad process knowledge.

National Renewable Energy Laboratory

2003-2004 Golden, CO

- Research Intern
 - Researched novel approaches to arc-discharge carbon nanotube synthesis.
 - Constructed an automated prototype nanotube growth system.
 - Synthesized carbon nanotubes through a laser vaporization process.
 - ▶ Used Raman spectroscopy, transmission electron microscopy, and thermogravimetric analysis characterization techniques.

Colorado State House of Representatives

2002 Denver, CO

Legislative Intern

Aid to Representative Brad Young, Chairman of the Joint Budget Committee

- ▶ Drafted responses to constituent mail
- ▶ Assisted in analysis of TaBOR effects on state budget

U.S. Department of Energy, Office of Science Intern

2001-2002 Washington, D.C.

- ▶ Traveled to DOE National Labs assisting University of Washington Center for Workforce Development in internship program review and evaluation, examining program value and customer (intern) satisfaction.
- Advised on strategic direction for individual programs and department mission.
- ▶ Editor and contributing author for first and second volumes of DOE Office of Science Journal of Undergraduate Research.
- Worked directly under an Office of Science director in policy-related matters, including program management and Congressional budget proposals.