Practical Notes: Study of Mitosis and Meiosis

1. Cell Cycle

The cell cycle is the sequence of events that a cell undergoes during its life. It includes phases of growth, DNA replication, and cell division. The main phases are:

- G1 phase: Cell growth and preparation for DNA synthesis.
- S phase: DNA replication (chromosomes duplicate from single chromatid to sister chromatids).
- G2 phase: Preparation for mitosis or meiosis.
- M phase: Cell division, which can be mitosis (equational division) or meiosis (reductional + equational).

Figure 1: The eukaryotic cell cycle showing G1, S, G2, and M phases.

2. Chromosomes Before and After S Phase

Before S phase: Chromosomes are single-stranded (single chromatid). After S phase: Each chromosome is duplicated and consists of two sister chromatids joined at the centromere.

Figure 2: Single chromosome before S phase and duplicated chromosome after S phase.

3. Study of Mitosis

Mitosis is the type of cell division that produces two genetically identical daughter cells (2n \rightarrow 2n). It occurs in somatic cells for growth and repair.

Stages of mitosis:

- Prophase: Chromosomes condense and become visible; spindle forms.
- Metaphase: Chromosomes align at the equatorial plate.
- Anaphase: Sister chromatids separate and move towards opposite poles.
- Telophase: Chromatids reach poles, nuclear envelope reforms, cytokinesis follows.

Purpose: Growth, tissue repair, asexual reproduction.

Example: Root tip cells of onion.

Video Reference: Mitosis practical demonstration:

https://voutu.be/pliZCq7vO2A?si=zUOg65OrmAKHgdvO

4. Study of Meiosis

Meiosis is the type of cell division that reduces the chromosome number by half $(2n \rightarrow n)$, producing four haploid cells. It occurs in reproductive organs to form gametes.

Meiosis involves two successive divisions:

- Meiosis I (Reductional Division): Homologous chromosomes separate; chromosome number is halved.
 - Prophase I: Crossing over occurs between homologous chromosomes.
 - Metaphase I: Homologous chromosomes (tetrads) align side by side at equator.

- Anaphase I: Homologous chromosomes move to opposite poles.
- Telophase I: Daughter cells with half chromosome number are formed.
- Meiosis II (Equational Division): Sister chromatids separate, similar to mitosis.
- Produces four haploid daughter cells.

Purpose: Gamete formation, maintenance of chromosome number across generations, and variation due to crossing-over.

Example: Formation of pollen grains in anthers.

Video Reference: Meiosis practical demonstration:

https://youtu.be/XCwyPkAAP1c?si=NfYstSP3bDRhKQM0

5. Mitosis vs Meiosis

- Location: Mitosis occurs in somatic cells; meiosis in germ cells.
- Purpose: Mitosis for growth/repair; meiosis for sexual reproduction.
- Chromosome number: Mitosis maintains $2n \rightarrow 2n$; meiosis reduces $2n \rightarrow n$.
- Stages: Mitosis has one division; meiosis has two successive divisions.
- Variation: No crossing over in mitosis; crossing over and genetic variation in meiosis.

Figure 3: Comparative stages of mitosis and meiosis.