Machine Learning (CE 40717) Fall 2024

Ali Sharifi-Zarchi

CE Department Sharif University of Technology

December 24, 2024

- 1 Large Language Models
- 2 Adaptation
- **3** Parameter-Efficient Fine-Tuning (PEFT)
- 4 References

- 1 Large Language Models
- 2 Adaptation
- 3 Parameter-Efficient Fine-Tuning (PEFT)
- 4 References

Large Language Models

- Definition of a Language Model (LM)
 - A machine learning model designed to predict and generate plausible language by analyzing text patterns.
 - Operates by learning from large amounts of text data to understand linguistic structures, context, and vocabulary.
 - Common example: Autocomplete in text typing

- Purpose of Language Models
 - Estimate the probability of a word (token) or sequence of words within a longer text sequence.
 - Aim to understand and predict context in sentences.

Large Language Models

Example of Language Model Prediction

• When I hear rain on my roof, I _____ in my kitchen. Potential predictions with probabilities:

```
"cook soup" - 9.4%
"warm up a kettle" - 5.2%
"cower" - 3.6%
"nap" - 2.5%
"relax" - 2.2%
```

The LLM Era – Paradigm Shift in Machine Learning

Generalizing to Unseen Tasks

Large Language Models

- LMs can be used for different tasks by pre-training a "base" model and then fine-tuning for the task(s) of interest
- Practical Issues:
 - Too many copies of the model
 - Need for large-scale labeled data for fine-tuning
- Multi-task Training?
 - Data remains a challenge
 - Humans don't need such large volumes of data to learn can we do better?
- Train a model that can perform NLP tasks in a zero-shot manner

Task Specifications

 Primary shift comes from modeling assumptions from single-task to general model

 Task descriptions may be provided as text – for example, translate this French text to English

Perplexity

 Perplexity as a measure of uncertainty: Perplexity is the exponentiation of the average negative log-likelihood of a probability distribution, representing the uncertainty of a model in predicting the next item in a sequence.

Perplexity(P) =
$$\exp\left(-\frac{1}{N}\sum_{i=1}^{N}\log P(w_i)\right)$$

- *N* is the number of words (or tokens) in the dataset,
- $P(w_i)$ is the probability of the *i*-th word in the sequence.

Scaling

• Scaling improves the perplexity of the LM and improves performance

Power-Law Scaling

Why is this interesting? Look at data scaling

- Loss and dataset size is linear on a log-log plot
- This is "power-law scaling"

Large Language models

Large Language Models

- What are Large Language Models (LLMs)?
 - Large Language Models (LLMs) are advanced statistical models based on neural networks designed to process and generate natural language. Formally, an LLM can be defined as:

$$P(w_1, w_2, ..., w_N) = \prod_{i=1}^{N} P(w_i \mid w_1, w_2, ..., w_{i-1})$$

where:

- $w_1, w_2, ..., w_N$ are words (or tokens) in a sequence,
- $P(w_i | w_1, w_2, ..., w_{i-1})$ represents the conditional probability of the *i*-th word given the previous words.
- Key Characteristics of LLMs
 - **Architecture:** LLMs are typically built using Transformer-based architectures, where attention mechanisms are used to capture dependencies across the input sequence.
 - **Parameterization:** "Large" models have millions to billions of parameters (θ), optimized using a loss function.
 - **Training:** Trained on massive text corpora with unsupervised tasks like next-word prediction or masked token prediction.

Generative Pre-Training (GPT)

GPT: Based on Transformer decoder layers

GPTs

Large Language Models

GPT-2

Model Dimensionality: 768

Model Dimensionality: 1024

Model Dimensionality: 1280

Model Dimensionality: 1600

December 24, 2024

GPT-3

Large Language Models

GPT-3

Emergent Abilities

- Emergent abilities:
 - not present in smaller models but is present in larger models
 - Do LLMs like GPT3 have these?
- Findings:
 - GPT-3 trained on text can do arithmetic problems like addition and subtraction
 - Different abilities "emerge" at different scales
 - Model scale is not the only contributor to emergence for 14 BIG-Bench tasks, LaMDA 137B and GPT-3 175B models perform at near-random, but PaLM 62B achieves above-random performanceb
 - Problems LLMs can't solve today may be emergent for future LLMs

Attention patterns

Large Language Models

- Causal decoder each token attends to the previous tokens only.
- In both non-causal decoder and encoder-decoder, attention is allowed to be bidirectional on any conditioning information.
- For the encoder-decoder, that conditioning is fed into the encoder part of the model.

Llama 2 Architecture

Large Language Models

- Decoder-only model
- Changes in transformer module:
 - Norm after sublayer -> Norm before sublayer
 - LayerNorm -> RMSNorm for stability
 - Activation: ReLU -> SwiGLU(x)
 - Position Embedding: Absolute/Relative -> RoPE (Rotary PE)
 - Long contexts: Multi-head attention -> Grouped-query attention

Figure 2: Overview of grouped-query method. Multi-head attention has H query, key, and value heads. Multi-query attention shares single key and value heads across all query heads. Grouped-query attention instead shares single key and value heads for each group of query heads, interpolating between multi-head and multi-query attention.

Llama 2 Architecture

Training of Decoder-only LLMs – Llama 2

- Auto-regressive Pre-training Train to predict the next token on very large scale corpora (3 trillion tokens)
- Instruction Fine-tuning/ Supervised Fine-tuning (SFT) Fine-tune the pretrained model with pairs of (instruction+input,output) with large dataset and then with small high-quality dataset
- Safety / RLHF Design a reward model based on human feedback and use policy gradient methods with the trained reward model to update LLM parameters so that outputs align with human values

RLHF

Large Language Models 00000000000000000000000

Step 2

Collect comparison data. and train a reward model.

A prompt and several model outputs are sampled.

the outputs from hest to worst

A labeler ranks

This data is used to train our reward model.

Step 3

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

The reward model calculates a reward for the output.

The reward is used to update the policy

Model Fine-tuning for RLHF

Reward Model Structure

- Large Language Models
- 2 Adaptation
- 3 Parameter-Efficient Fine-Tuning (PEFT)
- 4 References

Pre-training and adaptation

• Pre-training

- Models are initially trained on massive datasets to learn general language patterns, grammar, and common knowledge.
- The pre-trained model is further trained on a smaller, task-specific dataset to specialize in a particular application (e.g., sentiment analysis, translation).

Adaptation

- The pre-trained model is further trained on a smaller, task-specific dataset to specialize in a particular application (e.g., sentiment analysis, translation).
- Fine-tuning tailors the model's responses and predictions to perform effectively on the target task.

Pre-training and adaptation

Figure 1: Overview of Model Training: Pre-training on large, unlabeled data builds foundational knowledge, while fine-tuning on smaller, labeled datasets adapts the model for specific tasks.

- Large Language Models
- 2 Adaptation
- 3 Parameter-Efficient Fine-Tuning (PEFT)

Fine-Tuning the Top Layers Only

Adapters

Bias-terms Fine-tuning (BitFit)

Reparametrization

Prefix Tuning

4 References

Parameter-Efficient Fine-Tuning (PEFT)

- Targeted Adaptation: PEFT involves fine-tuning a small subset of model parameters, allowing the pretrained model to adapt to specific tasks without retraining the entire model.
- Efficiency Gains: By preserving the majority of the pretrained model's structure,
 PEFT significantly reduces training time, memory usage, and computational cost.
- Scalability: PEFT enables large language models to be applied effectively to a wide range of tasks, making it feasible to use large models in resource-constrained environments.

- Fine-tuning an LLM for a specific downstream task
 - (a) illustrates vanilla fine-tuning, which requires updating the entire model, resulting in a new model for each task.
 - (b) PEFT instead learns a small subset of model parameters for each task with a fixed base LLM. The same base model can be re-used during inference for different tasks.

(a)

(b)

- Large Language Models
- 2 Adaptation
- 3 Parameter-Efficient Fine-Tuning (PEFT)
 Fine-Tuning the Top Layers Only
 Adapters
 - Adapters
 Bias-terms Fine-tuning (BitFit)
 Reparametrization
 Prefix Tuning
- 4 References

Fine-Tuning the Top Layers Only

- PEFT Baseline Efficiency: Freeze parameters except top K layers, reducing computation and memory usage.
- Flexible Application: Can be applied to most deep neural networks for efficient fine-tuning.

stop gradient here s.t. error does not backprop to lower layers

- Large Language Models
- 2 Adaptation
- 3 Parameter-Efficient Fine-Tuning (PEFT)

Fine-Tuning the Top Layers Only

Adapters

Bias-terms Fine-tuning (BitFit) Reparametrization Prefix Tuning

4 References

Adapters

- Adapters: New modules inserted between layers of a pre-trained model, with the original model weights fixed.
- Training Efficiency: Only adapter modules are tuned, initialized to ensure their output resembles that of the original model.

Adapters

- Adapter Design: Feedforward layer with one hidden layer and a residual connection.
- **Bottleneck Architecture:** Input and output dimensions are *d*, with a reduced dimension *r* in the middle.
- **Initialization:** Near-identity initialization with a skip connection and near-zero weights.

- 1 Large Language Models
- 2 Adaptation
- 3 Parameter-Efficient Fine-Tuning (PEFT)

Fine-Tuning the Top Layers Only Adapters

Bias-terms Fine-tuning (BitFit)

Reparametrization Prefix Tuning

4 References

BitFit

Large Language Models

- **Bias Fine-Tuning:** Only fine-tune the bias terms and final classification layer, reducing the number of parameters updated (<1% of the model).
- **Implementation:** Use a custom optimizer to fine-tune only the bias parameters by selecting them from the model's named parameters, but this approach may fail with large models.
- Fail when model size is large

Recall the equations for multi-head attention

$$Q^{m,\ell}(x) = W_q^{m,\ell} x + b_q^{m,\ell}$$

$$K^{m,\ell}(x) = W_k^{m,\ell} x + b_k^{m,\ell}$$

$$V^{m,\ell}(x) = W_v^{m,\ell} x + b_v^{m,\ell}$$

- ℓ is the layer index
- *m* is the attention head index
- Only the bias terms are updated.

- Large Language Models
- 2 Adaptation
- 3 Parameter-Efficient Fine-Tuning (PEFT)

Fine-Tuning the Top Layers Only

Bias-terms Fine-tuning (BitFit)

Reparametrization

Prefix Tuning

4 References

LoRA

Large Language Models

- **Key Idea:** Keep the original pretrained parameters W_0 fixed and learn an additive modification ΔW via low-rank decomposition $\Delta W = BA$, where **BA** has rank r, much smaller than k and d.
- **LoRA Linear Laver:** The modification $\Delta W = BA$ is added to the original linear transformation, where A and B have much smaller dimensions than the original weight matrix W_0 .

LoRA

Initialization

• We initialize the trainable parameters:

$$A_{ij} \sim \mathcal{N}(0, \sigma^2) \quad \forall i, j$$

- B=0
- Thus, at the start of fine-tuning, the parameters have their pretrained values:

$$\Delta W = BA = 0$$

$$W_0 + BA = W_0$$

Large Language Models

Hot Swapping Parameters

- W_0 and BA have the same dimension, so we can "swap" the LoRA parameters in and out of a Standard Linear Layer.
- To get a Standard Linear Layer with parameters W that includes our LoRA fine-tuning:

$$W \leftarrow W_0 + BA$$

To remove the LoRA fine-tuning from that Standard Linear Layer:

$$W \leftarrow W - BA = W_0$$

• If we do LoRA training on two tasks such that the parameters B'A' are for task 1 and B''A'' are for task 2, then we can swap back and forth between them.

LoRA

- **LoRA Linear Layers:** LoRA linear layers can replace every linear layer in the Transformer model.
- **Original Paper Focus:** The original LoRA paper specifically applies LoRA only to the attention weights (Q, K, V).
- Mathematical Formulation:

$$Q = LoRALinear(X; W_q, A_q, B_q)$$

$$K = LoRALinear(X; W_k, A_k, B_k)$$

$$V = LoRALinear(X; W_v, A_v, B_v)$$

Figure 2: Different finetuning methods and their memory requirements. QLORA improves over LoRA by quantizing the transformer model to 4-bit precision and using paged optimizers to handle memory spikes.

- 1 Large Language Models
- 2 Adaptation
- 3 Parameter-Efficient Fine-Tuning (PEFT)

Fine-Tuning the Top Layers Only

Adapters

Bias-terms Fine-tuning (BitFit)

Reparametrization

Prefix Tuning

4 References

Prefix Tuning

- Freeze all pretrained parameters and prepend trainable prefix tokens to the input and hidden activations.
- The prefix is processed by the model like real words, allowing each batch element to run a different tuned model during inference.

Prefix Tuning

$$h_i = \begin{cases} P_{\theta}[i,:], & \text{if } i \in \mathsf{P}_{\mathsf{idx}}, \\ \mathsf{LM}_{\phi}(z_i, h_{< i}), & \text{otherwise.} \end{cases}$$

$$\max_{\theta} \log p_{\phi, \theta}(y \mid x) = \sum_{\theta} \log p_{\phi, \theta}(z_i \mid h_{< i})$$

freeze LM parameters ϕ update prefix parameters θ

Prefix Tuning

Prefix Tuning with Multi-Head Attention

- The model uses prefix tokens (*P_k* and *P_v*) along with the attention matrices (*Q*, *K*, *V*) to guide the attention mechanism in the multi-headed transformer.
- The prefix tokens are processed and combined with the query, key, and value matrices (W_q , W_k , W_v) to form the final attention mechanism in the transformer architecture.

- Large Language Models
- 2 Adaptation
- 3 Parameter-Efficient Fine-Tuning (PEFT)
- 4 References

Contribution

- These slides were prepared with contributions from:
 - · Amirhossein Akbari

Any Questions?

