RICERCA OPERATIVA prova scritta del 21 luglio 2010

GRUPPO

- 1. Dato il problema di programmazione lineare P) min $z = 6x_1 + 8x_2 + 5x_3$ max $y_1 + 2y_2$ $-2x_1 + 2x_2 + x_3 = 1$ $-2y_1 + 3y_2 \le 6$ $3x_1 + x_2 x_3 \ge 2$ $2y_1 + y_2 \le 8$ $x_1, x_2, x_3 \ge 0$ $y_1 y_2 \le 5$ $y_2 > 0$
 - a) costruirne il duale D; b) risolvere graficamente D; c) dire se P ammette soluzione ottima, e in caso affermativo determinarne il valore.

Disegnando la regione ammissibile del problema D e il vettore associato ai coefficienti della funzione obiettivo, si ottiene la soluzione ottima $\mathbf{y}^* = (^9/_4, ^7/_2)$, di valore $^{37}/_4$. Tale è dunque il valore della soluzione ottima di P.

- 2. Il vettore $\mathbf{w} = (3, 0, 0)$ è combinazione conica e non affine di $\mathbf{v}_1 = (2, 1, 0)$, $\mathbf{v}_2 = (-1, -2, -3)$, $\mathbf{v}_3 = (2, 1, 2)$, ottenuta con coefficienti $\frac{1}{2}$, $\frac{1}{2}$.
- **3.** Utilizzando il metodo di Fourier-Motzkin, risolvere il problema

min
$$x_1 + x_2 + x_3$$

 $x_2 - 3x_3 \ge 1$
 $x_1 + x_2 \ge 1$
 $x_1, x_2, x_3 \ge 0$

Z	x_1	x_2	x_3	<u>></u>		Z	x_2	x_3	<u>></u>	Z	x_3	>	Z	<u>></u>
1	-1	-1	-1	0		1	0	-1	1	1	-1	1	1	1
0	0	1	-3	1		1	-1	-1	0	1	-4	1	1	1
0	1	1	0	1	()	1	-3	1	1	-1	0	1	0
0	1	0	0	0	()	1	0	0	0	1	0		
0	0	1	0	0)	0	1	0					
			1						'					

Il valore minimo di z è $z^*=1$. Sostituendolo nella penultima tabella si ricava $x_3 \le 0$, $4x_3 \le 0$, $x_3 \le 1$, $x_3 \ge 0$, quindi $x_3^*=0$; sostituendo nella terzultima si ha $x_2 \le 1$, $x_2 \ge 1$, $x_2 \ge 0$, quindi $x_2^*=1$; infine con l'ultima sostituzione si ottiene $x_1 \le 0$, $x_1 \ge 0$: pertanto $x_1^*=0$.

4. Determinare con il metodo del simplesso una soluzione ammissibile del problema seguente e, in caso esista, stabilire se è ottima oppure no: $\min -x_1 + 3x_2 + 4x_3 - 2x_4$

$$-x_1 + 5x_2 + 4x_3 - 2x_4$$

$$5x_1 + x_2 + 2x_4 = 15$$

$$x_1 + 3x_3 + x_4 = 20$$

$$5x_1 + 8x_2 = 40$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Per trovare una soluzione ammissibile scriviamo il problema ausiliario:

min
$$z_1 + z_2$$

 $5x_1 + x_2 + 2x_4 + z_1$ = 15
 $x_1 + 3x_3 + x_4$ = 20
 $5x_1 + 8x_2 + z_2$ = 40
 $x_1, x_2, x_3, x_4, z_1, z_2$ ≥ 0

Non occorre introdurre una terza variabile ausiliaria: è sufficiente dividere il secondo vincolo per 3 e assumere in base la variabile x_3 .

	x_1	x_2	x_3	x_4	z_1	z_2	
I	0	0	0	0	1	1	0
	5	1	0	2	1	0	15 20,
	$^{1}/_{3}$	0	1	$^{1}/_{3}$	0	0	$^{20}/_{3}$
	5	8	0	0	0	1	40

La tabella canonica si scrive immediatamente sottraendo le righe 1 e 3 alla riga 0:

x_1	x_2	x_3	x_4	z_1	z_2	
-10	-9	0	-2	0	0	-55
5	1	0	2	1	0	15
$^{1}/_{3}$	0	1	$^{1}/_{3}$	0	0	$\frac{15}{^{20}/_3}$
5	8	0	0	0	1	40

Il criterio di ottimalità non è soddisfatto. Facendo entrare x_1 in base si ottiene

	x_1	x_2	x_3	x_4	z_1	z_2	
I	0	- 7	0	2	2	0	-25
ſ	1	¹ / ₅	0	$^{2}/_{5}$	$^{1}/_{5}$	0	3
	0	$-^{1}/_{15}$	1	$^{1}/_{5}$	$-^{1}/_{15}$	0	$^{17}/_{3}$
	0	7	0	-2	-1	1	25

Facendo ora entrare in base x_2 si ha

	x_1	x_2	x_3	x_4	z_1	z_2	
I	0	0	0	0	1	1	0
ľ	1	0	0	$^{16}/_{35}$	⁶ / ₃₅	$-^{1}/_{35}$	$^{16}/_{7}$
	0	0	1	$^{19}/_{105}$	$-8/_{105}$	$-^{1}/_{105}$	$^{124}/_{21}$
	0	1	0	$-\frac{2}{7}$	$-\frac{1}{7}$	$^{1}/_{7}$	$^{25}/_{7}$

Questa tabella fornisce una prima soluzione di base per il problema originale:

x_1	x_2	x_3	x_4	
-1	3	4	-2	0
1	0	0	$^{16}/_{35}$	$^{16}/_{7}$
0	0	1	$^{19}/_{105}$	$^{124}/_{21}$
0	1	0	$-^{2}/_{7}$	$^{25}/_{7}$

Per rendere canonica la tabella bisogna sommare alla riga 0 la riga 1 e sottrarle le righe 2 e 3 moltiplicate, rispettivamente, per 4 e 3. Si ricava:

	x_1	x_2	x_3	x_4	
Ī	0	0	0	$-^{148}/_{105}$	$-^{673}/_{21}$
ſ	1	0	0	$^{16}/_{35}$	$^{16}/_{7}$
	0	0	1	$^{19}/_{105}$	$^{124}/_{21}$
	0	1	0	$-\frac{2}{7}$	$^{25}/_{7}$

Il criterio di ottimalità non è soddisfatto e la soluzione trovata potrebbe non essere ottima. Per verificare, facciamo entrare x_4 in base e calcoliamo il nuovo valore della funzione obiettivo:

	x_1	x_2	x_3	x_4	
I	$^{37}/_{12}$	0	0	0	$-\frac{525}{21}$
ſ	$^{35}/_{16}$	0	0	1	5
	0	0	1	$^{19}/_{105}$	124/ ₂₁
	0	1	0	$-\frac{2}{7}$	$^{25}/_{7}$

La funzione obiettivo passa da $z = {}^{673}/{}_{21}$ a $z = {}^{525}/{}_{21} = 25$. La base precedente non era dunque ottima. Completando le operazioni di pivot si ottiene la soluzione $x_1 = 0$, $x_2 = x_3 = x_4 = 5$ (ottima, poiché tutte le componenti della riga 0 sono > 0).

5. Il filo di Arianna

E' nota la leggenda di Teseo che per uccidere il Minotauro si recò nel labirinto di Cnosso, e ne poté uscire seguendo a ritroso il filo che Arianna gli aveva donato e che lui aveva legato all'ingresso. Icaro, che si trovava a svolazzare di lì, vide la scena dall'alto e commentò: "Ingegnoso, però la via più breve per uscire era un'altra". Aveva ragione o torto?

Rispondete formulando un problema di programmazione lineare ed eseguendo un pivot con il simplesso su reti.

Suggerimento. Usate un grafo opportunamente pesato; ovviamente è inutile definire un nodo per ogni quadratino, ne basta uno per ogni quadratino con una porta (ad es. quelli indicati in figura).

Il grafo può essere quello rappresentato in figura. I pesi sugli archi contano il numero di quadratini da percorrere per andare da una porta all'altra. Ovviamente i quadratini con porta sono di più, perché ogni porta ha due lati: ma quelli rappresentati sono sufficienti.

Il problema consiste nel trovare un (1, 8)-cammino di peso minimo. Costruiamo una soluzione di base a partire dal cammino indicato nel testo del problema (archi blu a tratto pieno) aggiungendovi archi (blu a tratteggio) in modo tale da formare un albero ricoprente *B*. La soluzione iniziale ha costo 29.

Attribuendo un potenziale arbitrario $y_1 = 0$ al nodo 1, calcoliamo i potenziali degli altri nodi ricorrendo alla formula $y_j = c_{ij} + y_i$. Si ricava in successione $y_2 = 5$, $y_5 = 8$, $y_3 = 9$, $y_4 = 15$, $y_6 = 17$, $y_7 = 25$, $y_8 = 29$. I costi ridotti degli archi si calcolano con la formula $c_{ij}' = c_{ij} + y_i - y_j$. Trattandosi di un problema di minimo privo di capacità, converrà far entrare in base una variabile x_{ij} con costo ridotto $c_{ij}' < 0$. Notiamo che il grafo è simmetrico e per ogni arco $ij \in B$ si ha che $ji \notin B$. Il costo ridotto per questi archi è dato da $c_{ji}' = c_{ji} + y_j - y_i$, ma siccome $c_{ji} = c_{ij} = y_j - y_i$, si ha $c_{ji}' = y_j - y_i + y_j - y_i = 2(y_j - y_i)$. Nel nostro caso y_j è sempre maggiore di y_i per tutti gli archi $ij \in B$: quindi tutti gli archi ji hanno costo ridotto positivo e non possono entrare in base con vantaggio. Calcoliamo i costi ridotti per gli archi rimanenti (quelli neri).

$$c_{16}' = c_{16} + y_1 - y_6 = 5 + 0 - 17 = -12$$

$$c_{24}' = c_{24} + y_2 - y_4 = 4 + 5 - 15 = -6$$

$$c_{37}' = c_{37} + y_3 - y_7 = 12 + 9 - 25 = -4$$

$$c_{45}' = c_{45} + y_4 - y_5 = 2 + 15 - 8 = +9$$

$$c_{68}' = c_{68} + y_6 - y_8 = 6 + 17 - 29 = -6$$

$$c_{61}' = c_{61} + y_6 - y_1 = 5 + 17 - 0 = +22$$

$$c_{42}' = c_{42} + y_4 - y_2 = 4 + 15 - 5 = +14$$

$$c_{73}' = c_{73} + y_7 - y_3 = 12 + 25 - 9 = +28$$

$$c_{54}' = c_{54} + y_5 - y_4 = 2 + 8 - 17 = -7$$

$$c_{86}' = c_{86} + y_8 - y_6 = 6 + 29 - 17 = +18$$

La variabile più favorevole corrisponde all'arco 16 (in rosso nella figura). Facendola entrare in base si ottiene $x_{16} = 1$ e $x_{12} = x_{13} = x_{34} = x_{46} = 0$. La nuova base definisce un cammino di lunghezza 17, più breve quindi del precedente.

RICERCA OPERATIVA prova scritta del 21 luglio 2010

- 1. Dato il problema di programmazione lineare P) max $z = 4x_1 + 6x_2 2x_3$ min $y_1 2y_2$ $3x_1 + 2x_2 2x_3 \le 1$ $3y_1 2y_2 \ge 4$ $2x_1 + 3x_2 \ge 2$ $2y_1 3y_2 \ge 6$ $x_1, x_2, x_3 \ge 0$ $y_1 \le 1$ $y_1, y_2 \ge 0$
 - a) costruirne il duale D; b) risolvere graficamente D; c) dire se P ammette soluzione ottima, e in caso affermativo determinarne il valore.

Disegnando la regione ammissibile del duale e il vettore associato ai coefficienti della funzione obiettivo, si verifica che D non ammette soluzione. Nulla si può dedurre per P, ma si osserva che soluzioni della forma $(0, \lambda, \lambda)$ risultano sempre ammissibili per $\lambda \ge 2/3$ e hanno valore $z = 4\lambda$. Dunque P è illimitato.

- 2. Il vettore $\mathbf{w} = (5, 4, 6)$ è combinazione affine e non conica di $\mathbf{v}_1 = (2, 1, 0)$, $\mathbf{v}_2 = (-1, -2, -3)$, $\mathbf{v}_3 = (2, 1, 2)$, ottenuta con coefficienti $\frac{1}{2}$, -1, $\frac{3}{2}$.
- 3. Utilizzando il metodo di Fourier-Motzkin, risolvere il problema

$$\max x_1 + x_2 + 2x_3 x_1 + x_2 \le 4 x_2 + 2x_3 \le 4 x_1, x_2, x_3 \ge 0$$

Z	x_1	x_2	x_3	<	z	x_2	x_3	<	\boldsymbol{z}	x_3	<	z		<
 1	-1	-1	-2	0	1	0	-2	4	1	-2	4	1		8
0	1	1	0	4	0	1	2	4	0	2	4	0	'	4
0	0	1	2	4	0	1	0	4	0	0	4	0		0
0	-1	0	0	0	0	-1	0	0	0	-1	0		•	
							-1							
			-1											

Il valore massimo di z è $z^*=8$. Sostituendolo nella penultima tabella si ricava $x_3 \le 2$, $2x_3 \ge 4$, $x_3 \ge 0$, quindi $x_3^*=2$; sostituendo nella terzultima si ha $x_2 \le 0$, $x_2 \le 4$, $x_2 \ge 0$, quindi $x_2^*=0$; con l'ultima sostituzione si ottiene infine $x_1 \ge 4$, $x_1 \le 4$, $x_1 \le 0$: pertanto $x_1^*=4$.

4. Determinare con il metodo del simplesso il valore della funzione obiettivo in corrispondenza a una soluzione ottima del problema seguente (qualora esista): $\max 6x_1 + 3x_2 + 4x_3 + 6x_4$

$$2x_1 + 2x_2 + x_3 = 20$$

$$x_1 + x_3 + x_4 = 25$$

$$2x_1 + 5x_2 = 40$$

$$x_1, x_2, x_3, x_4 \ge 0$$

Per trovare una soluzione ammissibile scriviamo il problema ausiliario:

min
$$z_1 + z_2$$

 $2x_1 + 2x_2 + x_3 + z_1 = 20$
 $x_1 + x_3 + x_4 = 25$
 $2x_1 + 5x_2 + z_2 = 40$
 $x_1, x_2, x_3, x_4, z_1, z_2 \ge 0$

La tabella canonica si scrive immediatamente sottraendo le righe 1 e 3 alla riga 0:

x_1	x_2	x_3	x_4	z_1	z_2	
0	0	0	0	1	1	0
2	2	1	0	1	0	20 25 40
1	0	1	1	0	0	25
2	5	0	0	0	1	40

x_1	x_2	x_3	x_4	z_1	z_2	
-4	- 7	-1	0	0	0	-60
2	2	1	0	1	0	20 25 40
1	0	1	1	0	0	25
2	5	0	0	0	1	40

Il criterio di ottimalità non è soddisfatto. Facendo entrare x_2 in base si ottiene

	x_1	x_2	x_3	x_4	z_1	z_2	
Ì	$-^{6}/_{5}$	0	-1	0	0	$^{7}/_{5}$	-4
	⁶ / ₅	0	1	0	1	$-\frac{2}{5}$	4
	1	0	1	1	0	0	25
	$^{2}/_{5}$	1	0	0	0	$^{1}/_{5}$	8

Facendo ora entrare in base x_1 si ha

x_1	x_2	x_3	x_4	z_1	z_2	
0	0	0	0	1	1	0
1	0	⁵ / ₆	0	⁵ / ₆	$-^{1}/_{3}$	$^{20}/_{6}$
0	0	$^{1}/_{6}$	1	$-\frac{5}{6}$	$^{1}/_{3}$	$^{65}/_{3}$
0	1	$-\frac{1}{3}$	0	$-\frac{1}{3}$	$^{1}/_{3}$	$\frac{20}{3}$

Questa tabella fornisce una prima soluzione di base per il problema originale:

x_1	x_2	x_3	x_4	
6	3	4	6	0
1	0	⁵ / ₆	0	$^{20}/_{6}$
0	0	$^{1}/_{6}$	1	$^{65}/_{3}$
0	1	$-^{1}/_{3}$	0	$^{20}/_{3}$

Per rendere canonica la tabella bisogna moltiplicare le righe 1 e 2 per -6, la riga 3 per -3, e sommarle alla riga 0. Si ricava:

x_1	x_2	x_3	x_4	
0	0	-1	0	-170
1	0	⁵ / ₆	0	$^{20}/_{6}$
0	0	$^{1}/_{6}$	1	$\frac{65}{3}$
0	1	$-\frac{1}{3}$	0	$\frac{20}{3}$

Il criterio di ottimalità è soddisfatto. Il problema ammette soluzione ottima di valore $z^* = 170$.

5. Authority

La figura riporta una rete di distribuzione singlecommodity. La rete è proprietà della Società X, fino a oggi monopolista, ma l'Autorità per la Concorrenza ha autorizzato altre società alla realizzazione di tronchi di rete che connettano i nodi a, b tra di loro oppure a ai terminali pari e b a quelli dispari. I valori numerici associati a questi ultimi rappresentano la domanda dei terminali in un anno. Il primo valore associato a ciascuna tratta della rete rappresenta la capacità della tratta, il secondo rappresenta il prezzo che ciascun cliente paga a X per il trasferimento di un'unità di flusso lungo la tratta. La società Y intende valutare la convenienza a realizzare un nuovo tronco. Calcolate il massimo valore c del prezzo che Y può pensare di far pagare per il trasferimento di un'unità di flusso su ciascun tronco in progetto in modo che i clienti trovino convenienza a usarlo.

Con i dati a disposizione si ha immediatamente una soluzione di base corrispondente all'albero B rappresentato in figura dagli archi blu. Il terzo numero, anch'esso in blu, è il flusso che percorre l'arco. Il calcolo dei potenziali associati alla soluzione duale si ottiene come sempre annullando i costi ridotti in base. Si ha $y_0 = 0$, $y_a = 5$, $y_b = 4$, $y_1 = 8$, $y_2 = 6$, $y_3 = 8$, $y_4 = 5$. I tronchi che è possibile realizzare sono ab, ba, a2, a4, b1, b2. L'apertura di uno di questi tronchi sarà conveniente per il cliente se il costo ridotto corrispondente sarà negativo: c_{ij} ' = c_{ij} + y_i - y_j < 0, cioè c_{ij} < y_j - y_i . Il secondo membro di questa disequazione, se positivo, rappresenta il valore c cercato (ovviamente se c è negativo la società c non avrà convenienza nell'aprire quel tronco).

I valori di *c* per i tronchi fattibili sono riportati nella tabella seguente:

tronco	ba	a2	<i>b</i> 1	b2
С	$y_a - y_b = 1$	$y_2 - y_a = 1$	$y_1 - y_b = 4$	$y_2 - y_b = 2$