CIFAR-10

airplane	
automobile	
bird	
cat	
deer	
dog	
frog	
horse	
ship	
truck	

CIFAR-10

- Shape of each data: [3, 32, 32]

- Range : 0 to 255

- You can see the image of each data. (available in the assignment code)

Code review

[Objective]

Your model should classifiy of the images into 10 classes.

[Classes]

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

[PyTorch Code structure]

- LeNet5_model.py
- LeNet5_train.py
- LeNet5_evaluation.py

[TensorFLow Code structure]

- lenet.py
- lenet_train.py
- lenet_eval.py
- data_helpers.py

LeNet-5 [1]

[6, 14, 14] [16, 10, 10]

[16, 10, 10] [16, 5, 5]

[Objective]

Your model should classifiy of the images into 10 classes.

[Requirements]

- 1. Implement LeNet5 model with Pytorch or Tensorflow. (Basic code is provided)
- 2. You should experiment with settings stated in the evaluation report, and report the result of each settings.
- 3. You should attach the plot of the validation dataset accuracy plot.
- 4. You should report the experimental results.
- (all kinds of additional experiments are recommended)

model

"Truck"

[Evaluation report]

LeNet Evaluation Report													
	Batch_size	Activation function	Weight initialization	Optimizer	Learning rate	Epoch	dropout	Weight decay	data augmentation	LR decay	training time (m)	Early stopping epoch	Accuracy
Setting #1	128	ReLU	0.01	Adam	0.001	200	0.1	X	Х	Х			
Setting #2	128	ReLU	0.01	Adam	0.001	200	0.1	0.0001	Х	Х			
Setting #3	128	ReLU	0.01	Adam	0.001	200	0.1	0.0001	0	Х			
Setting #4	128	ReLU	He	Adam	0.001	200	0.1	0.0001	0	0			
add setting													
Validation dataset accuracy plot													

Setting #1 Setting #2 Setting #3 Setting #4

[결과 정리]

• Evaluation Criteria

Simplicity	How concisely did you write the code? - 배점 6점 Convolution, pooling, and FC layers: 5점 Filter initialization: 1점 Learning rate decay: 1점
Performance	How well did the results of the code perform? - 배점 2점 - acc 73%이상 달성 시 만점
Brevity and Clarity	How concisely and clearly did you explain the results? - 배점 2점

- Due to : ~ 9.27(Sun)
- Submission: Online submission on blackboard
- Your submission should contain
 - 1) The whole code of your implementation
 - 2) The evaluation report
- You must implement the components yourself!
- File name : StudentID_Name.zip