MAJOR PROJECT – 1

INTRODUCTION

NAME – DRISHTI SINGH

BRANCH – COMPUTER SCIENCE AND ENGINEERING

COLLEGE – CHANDIGARH UNIVERSITY

 $YEAR - 2^{ND}$

AIM - Choose any dataset of your choice and apply a suitable CLASSIFIER/REGRESSOR

SCREENSHOTS-

[] DataSet = get_data("blood")

	Recency	Frequency	Monetary	Time	Class
0	2	50	12500	98	1
1	0	13	3250	28	1
2	1	16	4000	35	1
3	2	20	5000	45	1
4	1	24	6000	77	0

```
[ ] from pycaret.datasets import get_data
     from pycaret.classification import *
     DataSet = get_data("blood")
     s = setup(data=DataSet, target='Class')
     sModel = create_model('svm')
                          rarget type
                                              Binary
      4
      3
                  Original data shape
                                             (748, 5)
      4
             Transformed data shape
                                             (748, 5)
      5
                                             (523, 5)
          Transformed train set shape
      6
           Transformed test set shape
                                             (225, 5)
      7
                    Numeric features
                                                   4
      8
                         Preprocess
                                                True
      9
                      Imputation type
                                              simple
      10
                  Numeric imputation
                                               mean
```

```
[ ]
           Accuracy
                      AUC Recall
                                 Prec.
                                                        MCC
                                            F1
                                                Kappa
     Fold
      0
             0.7547 0.0000
                           0.0000 0.0000 0.0000 0.0000
      1
             0.7547 0.0000
                           0.0000 0.0000 0.0000 0.0000 0.0000
                           0.0000 0.0000 0.0000
      2
             0.7547 0.0000
                                               0.0000 0.0000
      3
             0.7692 0.0000
                           0.0000 0.0000 0.0000 0.0000 0.0000
             0.5577 0.0000
                           0.9167 0.3333 0.4889
                                              0.2274 0.3208
      5
             0.7692 0.0000
                           0.0000 0.0000 0.0000 0.0000 0.0000
             0.7692 0.0000
                           0.0000 0.0000 0.0000 0.0000
      7
             0.7692 0.0000
                           0.0000 0.0000 0.0000 0.0000 0.0000
             0.3462 0.0000
                           1.0000 0.2609 0.4138 0.0753 0.1978
      9
             0.4615 0.0000
                           1.0000 0.3171 0.4815 0.1642 0.2990
             0.6706 0.0000
                           0.2917 0.0911 0.1384
     Mean
                                               0.0467
                                                      0.0818
     Std
             [ ] sm = save_model(sModel, 'sModelFile')
    Transformation Pipeline and Model Successfully Saved
[ ] sModel = load_model('sModelFile')
```

Transformation Pipeline and Model Successfully Loaded

Recency Frequency Monetary Time Class

12500

3250

4000

5000

98

28

35

45

1

1

1

50

13

16

20

[] # Select top 10 rows from diabetes dataset newDataSet = get_data("blood").iloc[:10]

0

1

2

3

2

0

1

2

[] newPredictions = predict_model(sModel, data = newDataSet)
newPredictions

		Model	Accuracy	AUC	Recall	Prec.	F1	Карра	MCC
0	SVM - Lin	ear Kernel	0.7000	0.5000	1.0000	0.7000	0.8235	0.0000	0.0000
	Recency	Frequency	Monetary	Time	Class	predicti	ion_labe	1	
0	2.0	50.0	12500.0	98.0	1			1	
1	0.0	13.0	3250.0	28.0	1			1	
2	1.0	16.0	4000.0	35.0	1			1	
3	2.0	20.0	5000.0	45.0	1			1	
4	1.0	24.0	6000.0	77.0	0			1	
5	4.0	4.0	1000.0	4.0	0			1	
6	2.0	7.0	1750.0	14.0	1			1	
7	1.0	12.0	3000.0	35.0	0			1	
8	2.0	9.0	2250.0	22.0	1			1	

[] newPredictions.to_csv("NewPredictions.csv")
No output

[] rfModel = create_model('svm')

	Α	ccuracy	AUC	Recall	Prec.	F1	Карра	MCC
Fol	ld							
0		0.7547	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1		0.7547	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2		0.7547	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3		0.7692	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
4		0.5577	0.0000	0.9167	0.3333	0.4889	0.2274	0.3208
5		0.7692	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
6		0.7692	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
7		0.7692	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
	8	0.346	62 0.000	00 1.000	00 0.260	09 0.413	38 0.07	53 0.1978
	9	0.46	15 0.000	00 1.000	00 0.31	71 0.48	15 0.164	42 0.2990
N	/lean	0.670	0.000	00 0.29	17 0.09	11 0.138	34 0.046	67 0.0818
	Std	0.148	39 0.000	00 0.440	60 0.140	02 0.212	22 0.079	91 0.1283

```
Looking in indexes: <a href="https://pypi.org/simple">https://us-python.pkg.dev/colab-wheels/public/simple/</a>
Requirement already satisfied: matplotlib==3.0.3 in /usr/local/lib/python3.7/dist-packages (3.0.3)
Requirement already satisfied: numpy>=1.10.0 in /usr/local/lib/python3.7/dist-packages (from matplotlib==3.0.3) (1.21.6)
Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-packages (from matplotlib==3.0.3) (0.11.0)
Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib==3.0.3) (2.8.2)
Requirement already satisfied: pyparsing!=2.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib==3.0.3) (2.8.2)
Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dist-packages (from matplotlib==3.0.3) (1.4.4)
Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dist-packages (from kiwisolver>=1.0.1->matplotlib==3.0.3) (4.1.1)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (from python-dateutil>=2.1->matplotlib==3.0.3) (1.15.0)

[] from google.colab import drive drive mount('/content/drive')
```


GIT HUB LINK -

https://github.com/Drishti412/Project/upload

Google drive link -

https://drive.google.com/drive/folders/114dMaYvw6iqDz5S PeXB9KHvEJE-lZL-1?usp=sharing