图像处理和分析技术

第一章 图像技术基础

主讲: 李子印

中国计量大学

研究背景和热点

一、研究背景:

地球数字化带来的任务,一方面要求处理对象的数字化,一方面要求处理时的直观性。因此给我们带来了许多的研究课题和研究方向。

二、几个当今热点的研究方向

- 1) 因特网上的图像检索
- 2) 图像在网上的传输
- 3) 图像的安全技术
- 4) 图像的处理技术
- 5) 图像的自动识别
- 6) 图像作为检测手段的一种
- 7) 其它视频方面的研究与需求

1.1.1 图像的定义

"图"是物体投射或反射光的分布, "像" 是人的视觉系统对图的接受在大脑中形成 的印象或反映。图像是客观和主观的结合。

》图像是用各种观测系统、以不同形式和手段观测客观世界而获得的,可以直接或间接 作用于人眼,进而产生视觉的实体。

1.1.2 图像的种类

1.1.2 图像的种类

- →模拟图像 -> 数字图像 picture->image f(x,y)
- ▶2-D图像 -> 3-D图像
- ▶二值图像->灰度图像->彩色图像->多光谱 图像
- ▶静止图像 -> 图像序列、运动图像等
- > 亮度 -> 深度值、纹理变化、物质吸收值等

1.1.2 图像的种类

1.1.3 像素的定义

图像中每个基本单元叫做图像元素,简称像素(picture element)。
pixel (pel)

分辨率与像素的关系

1.2.1概念

图像技术在广义上是各种与图像有关的技术的总称。

目前主要研究的是数字图像。数字图像是图像的数字表示,像素是其最小的单位。

1.2.2主要研究内容

1. 图像的数字化

如何将一幅光学图像表示成一组数字,既不失真又便于计算机分析处理。

主要包括的是图像的采样与量化。

1.2.2 主要研究内容

2. 图像的增强

加强图像的有用信息,消弱干扰和噪声。

1.2.2 主要研究内容

3. 图像的恢复

把退化、模糊了的图像复原。模 糊的原因有许多种,最常见的有运 动模糊,散焦模糊等等。

1.2.2 主要研究内容

4. 图像的编码

简化图像的表示,压缩表示图 像的数据,以便于存储和传输。

1.2.2 主要研究内容

5. 图像的重建

由二维图像重建三维图像。

1.2.2 主要研究内容

6. 图像分割与特征提取

图像分割是指将一幅图像的区域根据分析对象进行分割。

图像的特征提取包括了形状特征、纹理特征、颜色特征等等。

1.2.2 主要研究内容

7. 图像隐藏

是指媒体信息的相互隐藏。

- 1)数字水印
- 2) 图像的信息伪装

1.2.3 相关研究领域

1.数字图像处理与识别

- 1)将一幅图像变为另一幅经过加工的图像,是图像到图像的过程。
- 2)将一幅图像转化为一种非图像的表示,如一个决策等。

1.2.3 相关研究领域

2. 计算机图形学

用计算机将由概念所表示的物体(不是实物)图像进行处理和显示。侧重于根据给定的物体描述模型、光照及想象中的摄像机的成像几何,生成一幅图像。包括称之为"计算机艺术"的艺术创作。

1.2.3 相关研究领域

3. <u>计算机视觉</u>

计算机视觉的目的是发展出能够理解自然景物的系统。在机器人领域中,计算机视觉为机器人提供眼睛的功能。

1.2.4 图像技术的三个层次

1.2.4 图像技术的三个层次

1. 图像处理

强调图像之间的变换。对图像进行加工以改善图像质量并为自动识别等打基础;对图像进行压缩以减少所需存储空间或传输时间。

操作对象: 像素

1.2.4 图像技术的三个层次

2. 图像分析

对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息,从而建立对图像的描述。

操作对象:目标

返回

1.2.4 图像技术的三个层次

3. 图像理解

进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行动。

操作对象: 符号

返回

1.2.5 应用领域

- > 视频通信
- 文字档案
- > 生物医学
- > 遥感测绘
- > 工业生产
- > 军事公安
- > 交通

1.3.1 图像表示方法

1. 2-D矩阵

$$F = \begin{bmatrix} f_{11} & f_{12} & \cdots & f_{1N} \\ f_{21} & f_{22} & \cdots & f_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ f_{M1} & f_{M2} & \cdots & f_{MN} \end{bmatrix}$$

2. 矢量

$$F = \begin{bmatrix} f_1 & f_2 & \cdots & f_N \end{bmatrix}$$

其中
$$f_i = \begin{bmatrix} f_{1i} & f_{2i} & \cdots & f_{Mi} \end{bmatrix}^T, \quad i = 1, 2, \dots, N$$

1.3.1 图像表示方法

黑白图像

是指图像的每个像素只能是黑或者白,没有中间的过渡,故又称为2值图像。2值图像的像素值为0、1。

1.3.1 图像表示方法

灰度图像

灰度图像是指每个像素的信息由一个量化的灰度级 来描述的图像,没有彩色信息。

$$I = \begin{vmatrix} 0 & 130 & 200 \\ 120 & 50 & 180 \\ 250 & 220 & 100 \end{vmatrix}$$

1.3.1 图像表示方法 灰度图像举例

	0	1	2	3	4	5	6	7
0	130	146	133	95	71	71	62	78
1	130	146	133	92	62	71	62	71
2	139	146	146	120	62	55	55	55
3	139	139	139	146	117	112	117	110
4	139	139	139	139	139	139	139	139
5	146	142	139	139	139	143	125	139
6	156	159	159	159	159	146	159	159
7	168	159	156	159	159	159	139	159

1.3.1 图像表示方法

彩色图像

彩色图像是指每个像素的信息由RGB三原色构成 的图像,其中RBG是由不同的灰度级来描述的。

$$R = \begin{bmatrix} 255 & 240 & 240 \\ 255 & 0 & 80 \\ 255 & 0 & 0 \end{bmatrix} \qquad G = \begin{bmatrix} 0 & 160 & 80 \\ 255 & 255 & 160 \\ 0 & 255 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 80 & 160 \\ 0 & 0 & 240 \\ 255 & 255 & 255 \end{bmatrix}$$

$$G = \begin{vmatrix} 0 & 160 & 80 \\ 255 & 255 & 160 \\ 0 & 255 & 0 \end{vmatrix}$$

$$B = \begin{bmatrix} 0 & 80 & 160 \\ 0 & 0 & 240 \\ 255 & 255 & 255 \end{bmatrix}$$

1.3.1 图像表示方法 灰度直方图

在数字图像处理中,灰度直方图是最简单且最有用的工具,可以说,对图像的分析与观察直到形成一个有效的处理方法,都离不开直方图。

1.3.1 图像表示方法 灰度直方图定义

灰度直方图是灰度级的函数,描述的是图像中该灰度级的像素个数。即:横坐标表示灰度级,纵坐标表示图像中该灰度级出现的个数。

1.3.1 图像表示方法 灰度直方图举例

1	2	3	4	5	6
6	4	3	2	2	1
1	6	6	4	6	6
3	4	5	6	6	6
1	4	6	6	2	3
1	3	6	4	6	6

1	2	3	4	5	6
5	4	5	6	2	14

1.3.1 图像表示方法 彩色图像的直方图举例

1.3.1 图像表示方法 直方图的性质

- > 所有的空间信息全部丢失;
- > 每一灰度级的像素个数可直接得到。

1.3.1 图像表示方法 直方图的用途

1. 数字化参数

直方图给出了一个简单可见的指示,用来判断一幅图象是否合理的利用了全部被允许的灰度级范围。 一般一幅图应该利用全部或几乎全部可能的灰度级, 否则等于增加了量化间隔。丢失的信息将不能恢复

1.3.1 图像表示方法 直方图的用途

2. 边界阈值选取

假设某图象的灰度直方图具有 <u>二峰性</u>,则表明这个图象的较亮的区域和较暗的区域可以较好地分离,取这一点为阈值点,可以得到好的<u>2值处理</u>的效果。

1.3.2 图像中的领域

	r	
r	p	r
	r	

(a)

S		S
	p	
S		S

(b)

S	r	S
r	p	r
S	r	S

(c)

图1.3.1 像素的邻域

1.3.3 像素之间的距离

给定三个像素p, q, r,坐标分别为(x, y), (s, t), (u, v), 如果下列条件满足,则称函数D是距离量度函数:

(1)
$$D(p,q) \ge 0$$
 ($D(p,q) = 0$ 当且仅当 $p = q$);

(2)
$$D(p,q) = D(q,p);$$

(3)
$$D(p,r) \le D(p,q) + D(q,r)_{\circ}$$

1. 欧式距离

$$D_E(p,q) = \left[(x-s)^2 + (y-t)^2 \right]^{1/2}$$

2. 城区距离

$$D_4(p,q) = |x-s| + |y-t|$$

3. 棋盘距离

$$D_8(p,q) = \max(|x-s|, |y-t|)$$

1.3.4 距离度量方法

```
3
2.8 2.2 2 2.2 2.8
2.2 1.4 1 1.4 2.2
3 2 1 0 1 2 3
2.2 1.4 1 1.4 2.2
2.8 2.2 2 2.2 2.8
3
(a)
```


1.4.1 定义

图像显示指将图像数据以图的形式(一般情况下是亮度模式的空间排列)展示出来。

1.4 图像显示

1.4.2 显示设备

1. CRT: 电子枪束的水平和垂直位置可控制。在每个偏转位置,电子枪束的强度用电压来调整。每个点的电压都与该点所对应的灰度值成正比。这样灰度图就转化为光强度空间变化的模式。

2. 打印设备

1.4 图像显示

1.4.3 半调输出

原理:

▶用途: 在二值图像的输出设备上输出灰度图像;

➤原理: 利用人眼的集成特性,在每个像素位置打印一个其尺寸反比于该像素灰度的黑圆点。

1.4.3 半调输出

一种具体实现:

- ▶用途: 在二值图像的输出设备上输出灰度图像;
- ▶原理: 将图像区域细分,取临近的单元结合起来组成输出区域。

图 1.4.1 将一个区域分成 2×2 个单元输出 5 种灰度

- 一种具体实现:
- ▶用途: 在二值图像的输出设备上输出灰度图像;
- >原理: 将图像区域细分, 取临近的单元结合起来组成

输出区域。

将一个区域分成 3×3 个单元输出 10 种灰度

1.4 图像显示

1.4.4 抖动技术

▶用途: 改善量化过粗图像的显示质量;

➤原理:对原始图像加一个随机的小噪声,可帮助消除 图像中的虚假轮廓现象。

1.4 图像显示

1.4.4 抖动技术

▶噪声信号的获取办法: b为图像显示的比特数。

 $-2^{(6-b)}$, $-2^{(5-b)}$, 0, $2^{(5-b)}$, $2^{(6-b)}$

图 1.4.3 抖动实例图

1.5.1 定义和内容

》定义:将像素从图像中的一处移动到另一处,从而改变图像的布局。

>坐标变换包括: 平移、镜像、旋转和尺度变换等。

>有反变换,且可级联。

>统一的矩阵表达形式。

$$v' = Av$$

 $\checkmark A$ 是3x3的变换矩阵, ν 是包含原坐标的矢量 $\nu = [x \ y \ 1]^T$ $\nu = [x \ y \ 1]^T$

✓变换不同,A 不同。

1.5.2 平移变换

▶原理: 将图像中所有的点都按照指定的平移量水平、 垂直移动。

$$\begin{cases} x' = x + x_0 \\ y' = y + y_0 \end{cases}$$

1.5.2 平移变换

▶原理: 将图像中所有的点都按照指定的平移量水平、 垂直移动。

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad T = \begin{bmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

1.5.2 平移变换

▶原理: 将图像中所有的点都按照指定的平移量水平、 垂直移动。

1.5.3 尺度变换

▶原理:将图像沿X轴和Y轴进行缩放变换。

$$\begin{cases} x' = x * S_x \\ y' = y * S_y \end{cases}$$

1.5.3 平移变换

▶原理:将图像沿X轴和Y轴进行缩放变换。

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \mathbf{S} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

1.5.3 平移变换

▶原理:将图像沿X轴和Y轴进行缩放变换。

1.5.4 旋转变换

 \triangleright 原理:点(x,y)经过旋转 γ 度后坐标变成(x',y')。

$$\begin{cases} x' = l\cos(\beta - \gamma) = l\cos(\beta)\cos(\gamma) + l\sin(\beta)\sin(\gamma) \\ = x\cos(\gamma) + y\sin(\gamma) \\ y' = l\sin(\beta - \gamma) = l\sin(\beta)\cos(\gamma) - l\cos(\beta)\sin(\gamma) \\ = y\cos(\gamma) - x\sin(\gamma) \end{cases}$$

1.5.4 旋转变换

ightharpoonup原理:点(x,y)经过旋转 γ 度后坐标变成(x',y')。

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\gamma) & \sin(\gamma) & 0 \\ -\sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \qquad \mathbf{R} = \begin{bmatrix} \cos \gamma & \sin \gamma & 0 \\ -\sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

1.5.4 旋转变换

▶原理:点(x,y)经过旋转γ度后坐标变成(x',y')。

1.5.5 镜像变换

》原理:水平镜像以原图像的垂直中轴线为中心,将图像分为左右两部分进行对称变换;图像的垂直镜像以原图像的水平中轴线为中心,将图像分为上下两部分进行对称变换。

$$\begin{cases} x' = Width - x \\ y' = y \end{cases} \qquad \begin{cases} x' = x \\ y' = Height - y \end{cases}$$

1.5.5 镜像变换

$$\begin{cases} x' = Width - x \\ y' = y \end{cases}$$

$$\begin{cases} x' = x \\ y' = Height - y \end{cases}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & Width \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} -1 & 0 & Width \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & Height \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

1.5.5 镜像变换

1.5.5 镜像变换

1.5.6 转置变换

》原理:将图像像素的x坐标和y坐标互换。该操作将改变图像的大小,图像的高度和宽度将互换。

$$\begin{cases} x' = y \\ y' = x \end{cases} \begin{bmatrix} x' \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

1.5.6 转置变换

1.5.7 变换的级联

- >原理: 将几个变换级联起来以产生组合结果;
- >同样的变换,顺序不同结果也不同;

$$\begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} \cos(\gamma) & \sin(\gamma) & 0 \\ -\sin(\gamma) & \cos(\gamma) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

1.5.8 反变换

>原理:可借助变换的逆矩阵来实现;

$$T = \begin{bmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \qquad T^{-1} = \begin{bmatrix} 1 & 0 & -x_0 \\ 0 & 1 & -y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

1.6.1 图像存储

数字存储器类型

Bit->Byte->KB->MB->GB->TB

- 1. 处理和分析过程中使用的快速存储器 微机的内存, 帧缓存, 闪存等
- 2. 用于比较快地重新调用的在线或联机存储器 磁盘、光盘等
- 3. 不经常使用的数据库存储器
 - 一般采用磁带和光盘作为数据库存储器

1.6.2 图像格式概述

- > 存储图像信息
- ▶ 图像特点: 以象素为单位, 矩形区域
- > 信息量大
- > 与操作系统有关: windows、unix等
- > 编码方式: 无压缩、无损压缩、有损压缩
- ▶ 常用的图像文件格式: BMP、JPEG、TIFF、GIF

1.6.3 相关概念

> 颜色深度: 1,2,4,8,16,24bits/pixel

➤ 压缩方式: LZW、RLE

JPEG, JPEG2000等

1.6.4 图像文件格式的分类

1. 矢量形式 (DXF,SWF等)

图像用一系列线段或线段的组合体表示,主要用于人工绘制的图形数据文件。

2. 光栅形式

适合色彩、阴影或形状变化复杂的真实图像。缺点是缺少直接表示像素间相互关系的结构,且限定了分辨率。

1.6.5 BMP文件格式 图像举例

1.6.5 BMP文件格式 什么是BMP文件格式?

- > Windows操作系统的标准文件格式
- ▶ 虽然大部分BMP文件是不压缩的形式,它本身还是支持图像压缩的,如rle格式(行程长度编码,run length encoding)和LZW压缩格式等

BMP图像文件头

```
typedef struct taqBITMAPFILEHEADER
           bfType:
   WORD
           bfSize:
   DWORD
           bfReserved1:
   WORD
           bfReserved2:
   WORD
           bfOffBits:
   DWORD
  BITMAPFILEHEADER,
                     *PBITMAPFILEHEADER;
```

图像信息头(1)

BitmapHeaderSize	4 bytes	位图信息头(Bitmap Info Header)的 长度,用来描述位图的颜色、压缩 方法等。	
Width	4 bytes	位图的宽度,以像素为单位	
Height	4 bytes	位图的高度,以像素为单位	
Planes	4 bytes	位图的位面数 (该数值总为 1)	

图像信息头(2)

	-	每个像素的位数
Bits/Pixel		1 - 单色位图(实际上可有两种颜
		色,缺省情况下是黑色和白色。你
		可以自己定义这两种颜色)
		4-16 色位图
		8 - 256 色位图
		16 - 16bit 高彩色位图
		24 - 24bit 真彩色位图
		32 - 32bit 增强型真彩色位图
Compression		压缩说明:
		0 - 不压缩(使用 BI_RGB 表示)
		1 - RLE8-使用 8 位 RLE压缩方式
		(用 BI_RLE8 表示)
		2 - RLE4-使用 4位 RLE压缩方式
		(用 BI_RLE4表示)
		3 - Bitfields-位域存放方式(用
		BI_BITFIELDS 表示)

图像信息头(3)

Bitmap Data Size	用字节数表示的位图数据的大小。 该数必须是 4的倍数
Hresolution	用像素/米表示的水平分辨率
Vresolution	用像素/米表示的垂直分辨率
Colors	位图使用的颜色数。如 8-比特/像素表示为 100k或者 256。
Important Colors	指定重要的颜色数。当该域的值等 于颜色数时(或者等于 0 时),表 示所有颜色都一样重要。

图像信息头结构定义

```
typedef struct tagBITMAPINFOHEADER{
         biSize;
  DWORD.
         biWidth:
  LONG
         biHeight;
  LONG
         biPlanes:
  WORD
  WORD biBitCount
         biCompression:
  DWORD.
         biSizeImage:
  DWORD.
         biXPelsPerMeter:
  LONG
         biYPelsPerMeter:
  LONG
  DWORD biClrUsed;
         biClrImportant;
  DWORD
  BITMAPINFOHEADER, *PBITMAPINFOHEADER;
```

调色板和图像数据

调色板数据	Palette	N * 4 byte	调色板规范。对于调色板中的每个表项,这4个字节用下述方法来描述RGB的值:1字节用于蓝色分量1字节用于绿色分量1字节用于红色分量1字节用于红色分量1字节用于红色分量
图像数据	Bitmap Data		该域的大小取决于压缩方法及图像的尺寸和图像的位深度,它包含所有的位图数据字节,这些数据可能是彩色调色板的索引号,也可能是实际的 RGB 值,这将根据图像信息头中的位深度值来决定。

1.6.6 GIF文件格式 图像举例

1.6.6 GIF文件格式 特点

- > 8位的文件格式
- > 采用复杂的LZW编码方式
- ▶ 文件结构复杂 (文件头、通用调色板、图像数据区和4个补充区)
- ▶ 一个GIF文件可以存储多幅图像
- > 支持图像定序显示或覆盖

1.6.7 TIFF文件格式

图像举例

1.6.7 TIFF文件格式 什么是TIFF文件格式?

- ➤ TIFF是Tagged Image File Format的缩写,是一个广为 应用的光栅图像文件格式,它的来源有:
- 。 扫描仪
- 。 CAD系统
- 。 地理信息
- 0 ...
- > 由Adobe公司授权,包括TIF标记和文档
- > TIFF包括公共标记和私有标记

1.6.7 TIFF文件格式 TIFF文件构成

- 》文件头(表头):只有一个,且在文件前端,给出数据存放顺序、文件目录的字节偏移信息;
- 文件目录(标志信息区):给出文件目录项的个数信息,并有一组标示信息,给出图像数据区的地址。
- 文件目录项(图像数据区):存放数据的基本单位, 也称域。

1.6.7 TIFF文件格式 **TIFF**格式的特点?

- > 独立于操作系统和文件系统
- > 描述能力强,支持公共和私用的标记结构
- > 支持各种压缩格式,主要采用LZW压缩算法
- > 支持任意大小的图像
- 二值图像
- 灰度图像
- 调色板彩色图像
- 全彩色图像

1.6.8 JPEG文件格式 图像举例

1.6.8 JPEG文件格式 特点

- ▶ 静止图像压缩
- > 采用有损编码方式
- > 采用了变换编码
- > 对高频、低频信号区别对待

1.7 采样和量化一图像的数字化

1.7.1 定义

所谓的图像数字化是指将模拟图像经过离散化之后,得到用数字表示的图像。

一副图像必须要在空间和灰度上都离散化才能被计算机处理。空间坐标的离散化叫空间采样,而灰度的离散化叫做灰度量化。

图像的空间分辨率主要由采样所决定,而图像的幅度分辨率主要由量化所决定

1.7.2 <u>采样</u>

是将在空间上连续的图像转换成离散的采样点(即像素)集的操作。由于图像是二维分布的信息,所以采样是在x轴和y轴两个方向上进行。

采样时的注意点是:采样间隔的选取。采样间隔取得不合适除了画面出现马赛克之外,还会发生频率的混叠现象。

1.7.2 采样

$$f(x,y) = \begin{bmatrix} f(0,0) & f(0,1) & \cdots & f(0,M-1) \\ f(1,0) & f(1,1) & \cdots & f(1,M-1) \\ \vdots & \vdots & \ddots & \vdots \\ f(N-1,0) & f(N-1,1) & \cdots & f(N-1,M-1) \end{bmatrix}$$

空间分辨率为 $M \times N$

幅度分辨率为各个 $f(\bullet)$ 可取的离散灰度级数G

1.7.2 采样

为了方便计算机处理,一般将这些量取为2的整数幂

$$M=2^m$$

$$N = 2^{n}$$

$$G=2^k$$

1副图像需要的存储空间

$$b = M \times N \times k$$

如果 M = N ,则

$$b = N^2 k$$

1.7.3 量化

是将各个像素所含的明暗信息离散化后,用数字来表示称为图像的量化,一般的量化值用整数来表示。充分考虑到人眼的识别能力之后,目前非特殊用途的图像均为8bit量化,即用0~255描述"黑~白"。

在3bit以下的量化,会出现<u>伪轮廓现象</u>。

1.7.3 量化

量化可分为均匀量化和非均匀量化。<u>均匀量化</u>是简单 地在灰度范围内等间隔量化。<u>非均匀量化</u>是对像素出 现频度少的部分量化间隔取大,而对频度大的量化间 隔取小。

1.7.3 图像质量与数据量

> 图像空间分辨率变化产生的效果;

512->256->128->64->32->16

1.7.3 图像质量与数据量

> 图像幅度分辨率变化产生的效果;

256->64->16->8->4->2

1.7.3 图像质量与数据量

> 图像空间和幅度分辨率同时变化产生的效果;

256->181->128->90->64->45

128-> 64 -> 32 -> 16-> 8 -> 4

小节

1.1图像和像素;

定义、图像种类

✓ 1.2图像技术和分类;

图像的三个层次及其特点; 了解研究内容

✓ 1.3图像表示;

不同类型图像的表示、灰度直方图、图像邻域、距离:

✓ 1.4图像显示;

半调输出和抖动技术;

✓ 1.5图像坐标变换;

各种变换;级联、反变换

✓ 1.6图像存储与格式;

数据存储器类型、BMP图像格式;了解GIF、

TIFF、JPEG格式

✓ 1.7采样和量化

作业

1.图像处理、图像分析和图像理解各有什么特点?它们之间有哪些联系和区别?

风景照片

返回

条码

返回

图像隐藏例图

计算机图形学操作示意图

返回

数字图像处理操作示意图

数字图像处理操作示意图

这是一 辆敞车

这是一 辆罐车

计算机视觉操作示意图

图像增强示意图

信息与控制工程研究中心
The Research Center of Information
and Control Engineering

信息与控制工程研究中心

The Research Center of Information and Control Engineering

图像恢复示意图

<u>返回</u>

黑白图象

灰度图象

彩色图像

— 通道(C): 红 ▼ 平均值: 113.27 色阶: 标准偏差: 56.58 数量: 中间值: 99 百分位: 象素: 10000 高速缓存级别: 1

彩色图的灰度直方图

灰度图的灰度直方图

灰度图具有二峰性

具有二峰性的灰度图的2值化

灰度分布效果比较示意图

采样间隔效果示意图

返回

低bit量化的伪轮廓现象示意图

均匀量化效果示意图

非均匀量化效果示意图

