Cadmium Alternative Coating Corrosion Performance on Steel; Non-Cr⁺⁶ Primer Considerations

Amy Hilgeman, Steve Brown, Andy Schwartz
AIR 4.3.4
Naval Air Warfare Center - Aircraft Division
Patuxent River, MD 20670

SERDP / ESTCP Sustainment Workshop, 26-28 February 2008, Tempe, AZ

NAVAIR Public Release 08-172

Distribution Statement A – "Approved for public release; distribution is unlimited"

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments is arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE FEB 2008		2. REPORT TYPE		3. DATES COVE 00-00-2008	RED 3 to 00-00-2008		
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER		
Cadmium Alternat	Steel;	5b. GRANT NUMBER					
Non-Cr+6Primer Considerations			5c. PROGRAM ELEMENT NUMBER				
6. AUTHOR(S)				5d. PROJECT NUMBER			
				5e. TASK NUMBER			
					5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Air Warfare Center - Aircraft Division, AIR 4.3.4,22347 Cedar Point Road, Patuxent River, MD, 20670 8. PERFORMING ORGANIZATION REPORT NUMBER							
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited					
_	otes and Repair Issues fo Sponsored by SERD	_	lilitary Aircraft V	Vorkshop, Fo	ebruary 26-28,		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 47	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- NAVAIR Test Result Summary / HSS JTP Sec. 4
 - Acidified Salt Fog, ASTM G 85.A4
 - Bare Inorganic Coatings w/Cr⁺⁶ post
 - Primed/Painted (MIL-PRF-23377 Class C2 and N; MIL-PRF-85582-N (non-chromate inhibitors); Topcoat: MIL-PRF-85285 polyurethane
 - Fatigue (Air & 3.5% NaCl), SCC, Residual Stress
 - NACE Dec. 07 (E. Lee, et. al.)
- Cd Alts Comparisons / Conclusions
- Non-Cr Primer Demonstration Status

Sulfur Dioxide (SO₂) Acidified Corrosion Test Results, ASTM G 85, Annex 4

Tested panel images, duration:

- 168 h (1 week)
- 500 h (3 weeks)
- 1000 h (6 weeks) Painted

Corrosion Ratings: ASTM D 1654

Sputtered AI, Unscribed – 500 h

IVD-AI, Unscribed – 500 h

Sputtered AI, Scribed – 500 h

IVD-AI, Scribed – 500 h

Graphical Representation of Bare, Unscribed Test Panel Ratings

Primed & Painted SO₂ Salt Fog,1000 h

Sputtered AI – 840 h

23377 C2

23377 N

85582 N

 Graphical Representation of Results, weekly through test (ASTM G 85.A4)

23377 Class N

1. Cadmium and LHE Zn-Ni were approximately equivalent in scribe ratings with all three tested primers (red rust contained to scribe);

85582 Class N

23377 Class C2

- Overview of Cd Alternatives Test Performance
 - Residual Stress (Coating)
 - Residual Stress / layer thickness (Substrate)
 - Air Fatigue
 - Corrosion Fatigue
 - -SCC
 - Acidic Salt Fog

Cd Alternative Coating Corrosion Performance Overview (4340 Steel)*

Coating	Thickness (mil), on SCC bars	Residual Stress (ksi) COATING	Residual Stress (ksi) Substrate	R.S. Layer Thickness (mil) Substrate	Open Circuit Potential (V)
Electroplated Al	2.20	+3.0	-113.2	4.57	-0.75
IVD-AI	0.50	-8.8	-79.6	2.17	-0.74
Cd	0.35	-3.2	-97.7	2.28	-0.76
LHE Zn-Ni	0.50	-3.6	-55.8	3.82	-0.75
Zn-6Ni	0.63	(+46.3)	-89.5	1.42	-1.00
	B.E.I.	X.R.D.			

^{*} Source: NACE Tri-Service, Dec. '07, P1792.

Cd Alternative Coating Corrosion Performance on 4340 Steel*

Coating	Stress Corrosion Cracking (Koscc)	SCC Ranking	Air Fatigue Ranking	Corrosion Fatigue Ranking	Acid SO2 Salt Fog, ASTM G85.A4
Sputtered Al	Not Tested	-1			≥IVD
Electroplated Al	101.0	Best	Best	Best	Best (bare)
IVD-AI	52.7	Comparable to Cd	Best	Best	Least among Al coatings
Cd	49.5	CONTROL	CONTROL	CONTROL	CONTROL
LHE Zn-Ni	56.2	> Cd	Debit	Debit	> Cd (bare); Comparable (painted)
Zn-6Ni	36.8	OK (less data)	Debit Debit		
Method→	RSL Method		ASTM E 466; R=0.1; f=10/s	ASTM E 466; R=0.1; f=10/s	ASTM G85.A4

^{*} Source: NACE Dec. '07, P1792.

(a)

ASTM E 466 Fatigue Test Protocol;

R = 0.1

F = 10 Hz

(b)

Comparison of Fatigue Lives of Bare and Coated Specimens in (a) Air; and (b) 3.5% NaCl Solution

Stress Corrosion Cracking – Rising Step Load Tests (Coated vs. Bare 4340)

Conclusions

- Coatings induced substrate compressive stress states of varying degrees
 - Zn-6Ni and Alumiplate retained tensile stress in coating
- Sacrificial coatings reduce inherent fatigue resistance of 4340 in air, but largely preserve that value in 3.5% NaCl
- Al-based coatings performed best in:
 - Air & Corrosion Fatigue, bare SO₂, SCC (Alumiplate)
 - Thickness dependence of SCC results not characterized
- LHE Zn-Ni appears to have some fatigue advantage over Zn-6Ni; SO₂ results comparable or better than Cd (painted and bare, respectively); process advantages
- A more complete comparison of these Cd Alts includes Phase II tests nearing completion at ARL: (1) GM9540;
 (2) B 117, Galvanic, ...

Non-Chromate Primer Demonstration

Phase I

- Qualification testing
- Enhanced requirement testing (3000⁺h ASTM B 117, ASTM G 85, D 3359...)

Phase II

- Primer down-select testing;
 review beach exposure data
- Vendor ReformulationValidation
- Depot Validation
- Field demonstrations

Paint hanger for North Island demonstrations.

Primer Candidates

- Primer downselection:
 - Waterborne MIL-PRF-85582 primer options:
 - EWDY048- Good beach results (5 yrs); Ltd. use on E-2/C-2; possible T-45 transition (2 yr demo).
 - 44-GN-098
 - Solvent borne MIL-PRF-23377 primer options:
 - 16708TEP—Army helo demonstrations (2 yr)
 - 02-GN-083
 - 02-GN-084
 - Mg-rich Primer Efforts

4.5 year Beach Data (NCAP Project), Matzdorf & Nickerson

Depot validation

- NAS North Island
 - 3 Primers Selected

 - PPG 85582-N (EWDY048) Control
 - Painters to conduct sprayouts on practice a/c sections for (a) sprayability, (b) thickness control, (c) pot life... Evaluation datasheets

E-2/C-2 platform

demonstration

- Using std hex chrome pretreatment
- FRC-SW (JAX)
 - Limited P-3 demo, several primers (wheel)

Acknowledgments

- NESDI (Naval Environmental Sustainability Development to Integration Program)
 - Fatigue, SCC, Residual Stress, G85
- ESTCP
 - Continuing support of Joint Cad Alts
- JG-PP
 - Demonstration setup (Cd Alts / LHE Zn-Ni), Cost-Benefit Analysis (through CTC); Non-Cr primer dem/val & test efforts
- FURTHER QUESTIONS ?

BACKUP SLIDES

Experimental Procedure

- Substrate Material & Specimen
 - Substrate Material: 4340 Steel Plate (3.8x15x30 cm)
 - Specimen: Round Tension Specimen, Round Hourglass Fatigue Specimen, Square Bar SCC Specimen with Center V-Notch of 60°
- Coating: Polished Specimens were
 - Electrocoated with Al, Cd, Zn-6Ni & Zn-13Ni
 - Vacuum-Coated with IVD Al
- Coating Thickness, Chemical Composition & Residual Stress Determination
- Tension & Fatigue Tests
- Open Circuit Potential Measurement
- SCC Test: Accelerated SCC Test, Using Rising Step Load Test System, K_{OSCC} & K_{ISCC} Determination

Tension & Fatigue Tests

- * Interlaken of 90 KN (20 kip) Capacity for Tension & Fatigue Tests
- * Tension Test in Air, following ASTM E8
- * Fatigue Test at R = 0.1 & f = 10 Hz in Air & 3.5% NaCl Solution of pH 7.3 under Load Control, following ASTM E466

OCP Measurement

- * Open Circuit Potential (OCP): Electrochemical Parameter of Corrosion Resistance, Measurable in Corrosion Cell
- * OCP Cell, consisting of Specimen Electrode & Reference Electrode (SCE) in 3.5% NaCl Solution of pH 7.3
- * Specimen Electrode: Flat Sheet of 38 x 7 x 1 mm, Bare & Coated
- * Electrode Potential, Stabilized in 24 Hours, Taken as OCP

SCC Test

- * Accelerated SCC Test in Rising Step Load (RSL) System
- * RSL System, consisting of Bending Frame, Electrolyte Reservoir, Circulation Pump, Reference Electrode (SCE), Pt Counter Electrode, Computer & Printer
- * Specimens: Bare (Unprecracked & Precracked) & Coated (Unprecracked)
- * Loading: Step Loading in Four Point Bending at a Given Potential
- * Load Drop: Indication of Threshold SCC, Calculation of Threshold Stress Intensity for SCC (K_{OSCC} & K_{ISCC})

Sketch of Rising Step Loading

(* Load Drop: Threshold Stress Intensity for SCC, K_{oscc} & K_{iscc})

Threshold Stress Intensity for SCC K_{OSCC} or K_{ISCC}

$$K_{OSCC}$$
 or $K_{ISCC} = \sigma \sqrt{\pi a * F(a/W)}$

where

 $\sigma = \text{gross stress} = 6\text{M/bW}^2$

M = bending moment = Px

P = applied load

x = moment arm length

b = specimen thickness

W = specimen width

a = notch depth or crack length

F(a/W): correction function

=
$$1.122 - 1.40(a/W) + 7.33(a/W)^2 - 12.08(a/W)^3 + 14.0(a/W)^4$$

Coating Composition (wt %)

Coating	<u>Al</u>	<u>Cr</u>	<u>Fe</u>	<u>Ni</u>	<u>Zn</u>	<u>Cd</u>	<u>Total</u>
Electrocoated Al	99.83	0.00	0.16	0.00	0.00	0.01	100.00
IVD Al	99.21	0.04	0.66	0.02	0.07	0.00	100.00
Cd	0.00	0.02	0.52	0.00	0.04	99.43	100.00
Zn-6Ni	0.02	0.03	1.30	6.42	92.23	0.00	100.00
Zn-13Ni	0.01	0.00	1.12	12.61	86.24	0.03	100.00

Residual Stress in Coating

Coating	Residual Stress, MPa (ksi)
Electrocoated Al	+ 21 (+ 3.0)
IVD Al	- 61 (- 8.8)
Cd	- 22 (- 3.2)
Zn-6Ni	+ 319 (+ 46.3)
Zn-13Ni	- 25 (-3.6)

Residual Stress in Substrate

Residual Stress in Substrate

	Peak Residual Stress		Residual Stress Layer
Coating	Magnitude, MPa (ksi)	Depth, mm (mil)	Thickness, mm (mil)
Bare	+ 621 (+ 90.0)	0.006 (0.24)	0.076 (2.99)
Electro Al	- 781 (- 113.2)	0.062 (2.44)	0.116 (4.57)
IVD Al	- 549 (- 79.6)	0 (0)	0.055 (2.17)
Cd	- 674 (- 97.7)	0.016 (0.63)	0.058 (2.28)
Zn-6Ni	- 617 (- 89.5)	0.049 (1.93)	0.097 (3.82)
Zn-13Ni	- 385 (-55.8)	0.023 (0.91)	0.036 (1,42)

Stress-Life Curves of Bare and Coated Specimens in Air and 3.5% NaCl Solution

Open Circuit Potential OCP & Threshold Stress Intensity for SCC K_{OSCC}

		$\underline{\mathbf{K}}_{\mathbf{OS}}$	$\underline{\mathbf{K}}_{\mathbf{OSCC}}$	
Coating	OCP (volt)	<u>MPa√m</u>	<u>ksi√in</u>	
Bare	- 0.64	98.5	89.6	
Electrocoated Al	- 0.75	111.0	101.0	
IVD Al	- 0.74	57.9	52.7	
Cd	- 0.76	54.4	49.5	
Zn-6Ni	- 1.00	40.4	36.8	
Zn-13Ni	- 0.75	61.8	56.2	

K_{oscc} & K_{iscc} (4340 Bare)

Variation of Threshold Stress Intensity for Stress Corrosion Cracking in As-Machined (Un-precracked) and Precracked Bare Specimens, K_{OSCC} and K_{ISCC} , with Applied Electric Potential V_{SCE} {At OCP = -0.64 volt, K_{OSCC} = 98.5 MPa \sqrt{m} (89.6 ksi \sqrt{in}) & K_{ISCC} = 11.5 MPa \sqrt{m} (10.5 ksi \sqrt{in})}

Discussion

- Residual Stress
- Fatigue
- SCC

Residual Stress

- Residual Stress in Structural Components
 - Beneficial, if Compressive
 - Detrimental, if Tensile
- Residual Stress in Coated Components Generated by:
 - Lattice Distortion due to Its Misfit at Interface between Coating & Substrate
 - Coating Condition & Bath Composition

Residual Stress in Bare Specimen

- * Residual Stress Determined: Tensile
- * Specimen Prepared by EDM and Hand Polishing with Emery Cloth
- * EDM, involving Electric Sparking, Thin Layer Melting, Cooling, Solidification & Shrinkage, inducing Tensile Residual Stress
- * Hand Polishing, inducing Compressive Residual Stress
- * Residual Stress by EDM > Residual Stress by Hand Polishing

Lattice Parameters of Coating & Substrate

<u>Element</u>	Crystal Structure	Lattice Parameter (Angstrom)
Al	fee	a = 4.0491
Cd	hcp	a = 2.9787, c = 5.6173
Zn	hcp	a = 2.6649, c = 4.9470
Fe-C, Martensite	bct	a = 2.8530, c = 2.9060
(0.4% C)		

Residual Stress (RS) in Coating

- * Lattice Parameter of Cd > Lattice Parameter of Martensite, and RS: Compressive in Cd Coating
- * Lattice Parameter of Al > Lattice Parameter of Martensite, but RS: Tensile in Electro Al & Compressive in IVD Al
- * Lattice Parameter of Zn > Lattice Parameter of Martensite, but RS: Tensile in Zn-6Ni & Compressive in Zn-13Ni

UTS of Coating & Substrate

<u>Material</u>	<u>UTS, MPa (ksi)</u>	
Al	$40-70 \ (6.5-10.2)$	
Cd	69 - 83 (10.0 - 12.0)	
Zn	283 - 324 (41.0 - 47.0)	
Ni	317 (46.0)	
4340	1,964 (284.8)	

[* UTS proportional to Fatigue Strength]

Open Circuit Potential OCP & Threshold Stress Intensity for SCC K_{OSCC}

		$\underline{\mathbf{K}}_{\mathbf{OS}}$	$\underline{\mathbf{K}}_{\mathbf{OSCC}}$	
Coating	OCP (volt)	<u>MPa√m</u>	<u>ksi√in</u>	
Bare	- 0.64	98.5	89.6	
Electrocoated Al	- 0.75	111.0	101.0	
IVD Al	- 0.74	57.9	52.7	
Cd	- 0.76	54.4	49.5	
Zn-6Ni	- 1.00	40.4	36.8	
Zn-13Ni	- 0.75	61.8	56.2	