

(19) BUNDESREPUBLIK

DEUTSCHLAND

DEUTSCHES

PATENTAMT

(12) Offenlegungsschrift

(11) DE 3434885 A1

(21) Aktenzeichen: P 34 34 885.9

(22) Anmeldetag: 22. 9. 84

(43) Offenlegungstag: 27. 3. 86

(51) Int. Cl. 4:

C 09 K 15/06

A 23 L 3/34

A 23 L 2/18

A 61 K 7/00

C 11 D 3/48

C 12 H 1/14

(71) Anmelder:

Thorn, Werner, Prof. Dr., 2000 Hamburg, DE

(72) Erfinder:

gleich Anmelder

Prüfungsantrag gem. § 44 PatG ist gestellt

(54) Oral verabreichbare Zusammensetzung

Mit der vorliegenden Erfindung wurden synergistisch wirkende Kombinationen von Benzoesäure, para-Hydroxybenzoesäureestern, Salicylsäure, Sorbinsäure und/oder Ameisensäure sowie deren Derivaten und Brenztraubensäure (Pyruvic acid) oder deren Salzen als antimikrobielle Mittel gefunden, die als Konservierungsmittel in Nahrungs- und Genussmitteln, Getränken, Pharmazeutika, Kosmetika sowie Produkten des täglichen Bedarfs eingesetzt werden, um die bekannten, negativen Einflüsse der genannten Konservierungsstoffe ohne Beeinträchtigung ihrer konservierenden Wirkung auszuschalten.

DE 3434885 A1

DE 3434885 A1

Patentansprüche

- 1 1.) Zusammensetzung aus Benzoesäure, para-Hydroxybenzoësäureestern, Salizylsäure, Sorbinsäure und/oder Ameisensäure sowie deren Derivate und Brenztraubensäure (Pyruvic acid) oder deren Salzen.
- 5 2.) Zusammensetzung nach Anspruch 1 gekennzeichnet durch einen Gehalt an Benzoesäure und Pyruvat im Verhältnis 10:1 bis 1:10, vorzugsweise 1:1
- 10 3.) Zusammensetzung nach Anspruch 1 gekennzeichnet durch einen Gehalt an para-Hydroxybenzoësäureester und Pyruvat im Verhältnis 10:1 bis 1:10, vorzugsweise 1:1
- 15 4.) Zusammensetzung nach Anspruch 1 gekennzeichnet durch einen Gehalt an Salizylsäure und Pyruvat im Verhältnis 10:1 bis 1:10, vorzugsweise 1:1
- 20 5.) Zusammensetzung nach Anspruch 1 gekennzeichnet durch einen Gehalt an Sorbinsäure und Pyruvat im Verhältnis 10:1 bis 1:10, vorzugsweise 1:1
- 25 6.) Zusammensetzung nach Anspruch 1 gekennzeichnet durch einen Gehalt an Ameisensäure und Pyruvat im Verhältnis 10:1 bis 1:10, vorzugsweise 1:1
- 20 7.) Zusammensetzung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie in flüssiger Form vorliegt, vorzugsweise in einer Konzentration von 0,01 bis 5,0 Gew.%.
- 25 8.) Zusammensetzung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie in fester Form vorliegt.
- 20 9.) Zusammensetzung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Komponenten getrennt voneinander vorliegen.
- 30 10.) Zusammensetzung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß das Pyruvat als Natriumsalz vorliegt.

- 1 11.) Mittel enthaltend eine Zusammensetzung nach einem
der Ansprüche 1 bis 10.
- 5 12.) Mittel nach Anspruch 11, dadurch gekennzeichnet,
daß das Konservierungsmittel und das Pyruvat getrennt
voneinander vorliegen, wobei das Pyruvat die äußere
Phase bildet oder darin enthalten ist und das Kon-
servierungsmittel die innere Phase des Mittels bil-
det oder darin enthalten ist.
- 10 13.) Verwendung der Zusammensetzung nach einem der An-
sprüche 1 bis 11 als Konservierungsmittel in bzw.
zur Herstellung von Getränken, Lebensmitteln, Kosme-
tika und sonstigen Mitteln des täglichen Bedarfs.
- 15 14.) Verwendung nach Anspruch 13, dadurch gekennzeichnet,
daß die Menge an der Zusammensetzung in Nahrungs-
und Genußmitteln, Kosmetika und sonstigen Mitteln
des täglichen Bedarfs 0,01 bis 5 Gew.%, vorzugsweise
0,1 bis 0,75 Gew.%, beträgt.
- 20 15.) Verfahren zum Konservieren von Getränken, Lebensmitteln,
Kosmetika oder Mitteln des täglichen Bedarfs, dadurch
gekennzeichnet, daß man ihnen die Zusammensetzung nach
den Ansprüchen 1 - 10 zusetzt.
- 25 16.) Verfahren zum Konservieren von Getränken, Lebensmit-
teln, Kosmetika oder Mitteln des täglichen Bedarfs,
dadurch gekennzeichnet, daß man sie mit der Zusammen-
setzung nach den Ansprüchen 1 - 10 in Berührung bringt.
- 17.) Verfahren zum Konservieren nach Anspruch 16, dadurch
gekennzeichnet, daß die Zusammensetzung in flüssiger
Form vorliegt.

Oral verabreichbare Zusammensetzung

1 Gegenstand der Erfindung ist eine oral verabreichbare
Zusammensetzung und synergistische Kombination von Brenz-
traubensäure (Pyruvic acid) oder deren Salzen mit Benzoe-
säure, p-Hydroxybenzoësäureestern, Sorbinsäure, Salizyl-
5 säure, Ameisensäure und/oder deren Derivaten als Konser-
vierungsmittel. Die erfindungsgemäße Zusammensetzung dient
als antimikrobielles Mittel, insbesondere zum Konservie-
ren von Lebensmitteln tierischen und pflanzlichen Ursprungs
sowie von Mitteln und Gegenständen des täglichen Bedarfs
10 gegenüber einem Verderb durch Mikroorganismen.

Es ist bereits bekannt, daß Konservierungsmittel, wie
Benzoesäure und ihre Salze, z.B. Natrium-, Kalium- und
Kalziumsalze, p-Chlorbenzoësäure ("Benzoesäure"),
15 para-Hydroxybenzoë-Methylester, para-Hydroxybenzoësäure-
Äthylester, para-Hydroxybenzoësäure-Propylester, para-
Hydroxybenzoësäure-Butylester und deren Natriumverbindun-
gen ("PHB-Ester"),
Sorbinsäure und ihre Salze, z.B. Natrium-, Kalium- und
Kalziumsalze ("Sorbinsäure"),
20 Ameisensäure und deren Salze, insbesondere Natrium-,
Kalium- und Kalziumsalz ("Ameisensäure") und
Salizylsäure und ihre Derivate ("Salizylsäure")
antimikrobielle Verbindungen mit guter Wirksamkeit dar-
stellen. Sie üben auf den tierischen und menschlichen
25 Organismus jedoch auch schädigende Wirkungen aus. Bei
Verwendung solcher antimikrobieller Substanzen ist es
daher wünschenswert, durch Einsatz möglichst geringer
Konzentrationen die bekannten nachteiligen pharmakologi-
schen Eigenschaften der Substanzen entweder auszuschalten
30 oder auf ein vertretbares Maß zu reduzieren, zumal, wie
im Fall der Salizylsäure und ihrer Derivate, sehr hohe
Konzentrationen angewandt werden müssen, um die gewünschte
konservierende Wirkung zu erzielen. Die Ausschaltung der
nachteiligen Einflüsse war bislang jedoch im gewünschtem
35 Maß nicht möglich.

1 Der vorliegenden Erfahrung liegt daher die Aufgabe zugrunde,
die nachteiligen pharmakologischen Eigenschaften dieser
antimikrobiellen Substanzen auf Basis von "Sorbinsäure",
"Salizylsäure", "Benzoesäure", "p-Hydroxybenzoësäureestern",
5 "Ameisensäure" und/oder deren Derivaten in Lebensmitteln
sowie Mitteln des täglichen Bedarfs erheblich zu senken,
ohne daß eine Einbuße ihrer antimikrobielle Wirksamkeit
stattfindet.

10 Diese Aufgabe wird erfindungsgemäß durch die Patentansprü-
che gelöst.

15 Die erfindungsgemäße Zusammensetzung kann für alle diejeni-
gen Zwecke eingesetzt werden, für welche die an sich be-
kannten Konservierungsmittel allein Verwendung finden.
Beispielsweise für Getränke, Nahrungs- und Genußmittel,
diätetische Nahrungsmittel, für Produkte und Gegenstände
des täglichen Bedarfs und zwar während des Lagerns oder
während ihrer Verarbeitung. Unter dem Begriff "Mittel
des täglichen Bedarfs" fallen insbesondere Kosmetika,
Pharmazeutika, unabhängig davon, ob sie als Fertigprodukte
20 oder als Rohstoffe vorliegen.

Bekanntlich können mit Hilfe der bekannten Konservierungs-
verfahren durch Einschränkung oder völliges Verhindern
des mikrobiellen Wachstums die Veränderungen der zu kon-
servierenden Produkt gezielt beeinflußt werden.

25 Die Konservierung erfolgt dabei mit chemischen Methoden
(durch Zugabe mikrobiocider Stoffe zu dem zu konservieren-
den Gut) oder mit physikalischen Methoden. Auswahl und
Anwendung dieser Methoden bestimmen die Haltbarkeit des
Mittels des täglichen Bedarfs, die Veränderung der senso-
30 rischen Qualitätsmerkmale, des Nährwerts, des Einsatzbe-
reichs und vor allem die Verhinderung gesundheitsschädi-
gender Auswirkungen.

35 Das Spektrum der für die Konservierung von Lebensmitteln,
Genußmitteln, Getränken, pharmazeutischen und kosmetischen
Erzeugnissen verwendeten Stoffe hat sich seit längerer
Zeit wenig verändert, da die Forderung nach neuen Verbin-
dungen mit breitem Wirkungsspektrum, welche für Säugetiere

1 nur eine geringe Toxizität aufweisen, schwer zu erfüllen
ist. Um so größer war das Bestreben, die bisher bekannten
Methoden und Mittel für die Konservierung hinsichtlich
ihrer Verträglichkeit und Verarbeitung im Rahmen der gesetz-
5 lichen Bestimmungen zu optimieren. Da wasser-, eiweiß-
und kohlenhydrathaltige Mittel nicht für unbegrenzte Zeit
haltbar sind, ist die Konservierung darauf abgestellt,
deren Haltbarkeit wenigstens für bestimmte Zeiträume unter
üblichen Außenbedingungen zu gewährleisten. Es muß daher
10 die Lebensmittelhaltbarmachung in engem Zusammenhang mit
der Beurteilung der Konservierung vom nahrungsmittelchemi-
schen, vom pharmakologischen und hygienischen Standpunkt
gesehen werden. Vor der Verwendung eines neuen Konservie-
rungsstoffes ist es daher notwendig, die Erfordernisse
15 zu prüfen und die gesundheitliche Unbedenklichkeit nach-
zuweisen.

Systematische pharmakologische Untersuchungen haben dabei
in den letzten Jahren zu bemerkenswerten Feststellungen
geföhrt. So sind toxische Wirkungen erst dadurch entdeckt
20 worden, daß der Konservierungsstoff am wachsenden Tier
verabreicht wurde. Andere Konservierungsmittel sind erst
im Stoffwechselversuch als stoffwechselschädigend erkannt
worden (Borsäure). Manche Konservierungsstoffe bleiben
nach ihrer Verabreichung im Körper, so daß bei Zuführung
25 weiterer Mengen an Konservierungsstoffen eine Anhäufung
(Kumulation) nachgewiesen werden konnte (Borsäure). Ferner
ist bei der Auswahl eines Konservierungsstoffes in Betracht
zu ziehen, daß neben diesem noch andere Konservierungsstof-
fe mit der täglichen Nahrung aufgenommen werden können,
30 so daß es dann ggf. zu einem Potenzierungseffekt kommen
kann, wodurch gesteigerte oder besonders gesundheitliche
Schäden beim Verbraucher entstehen können. Stoffe der
aromatischen Reihe entfalten ferner örtliche Reizwirkun-
gen, z.B. auf die Zellen der Magenschleimhaut (Salizyl-
35 säure), was zu Übelkeit, Erbrechen, Magenblutungen und
sonstigen Störungen im Magen-Darmtrakt führen kann.

- 6 .

1 Lebensmittel können neben den Konservierungsmitteln zu-
 sätzlich Spuren von Schädlingsbekämpfungsmitteln enthalten,
 wobei ein additiver Effekt des Konservierungsmittels mit
 dem Schädlingsbekämpfungsmittel in negativer Hinsicht
 5 auftreten kann. Ferner gilt es auch, einen evtl. auftre-
 tenden kumulierenden Mechanismus biocider Substanzen zu
 berücksichtigen. In allen Fällen kann es auf längere Sicht
 zu Organschäden kommen. Der Einfluß solcher chronischer
 10 Belastungen durch biocide Chemikalien auf den Gesundheits-
 zustand großer Bevölkerungsschichten lässt sich kaum voll-
 ständig erfassen, da die Aufnahme von Schadstoffen gewöhn-
 lich unbemerkt bleibt und selbst bei deren Erfassung sich
 die Krankheitssymptome von jenen, seit langem bekann-
 ter, allgemein verbreiteter Erkrankungen, wie beispiels-
 15 weise Magen-Darmstörungen kaum unterscheiden.

Aus der großen Anzahl chemischer Stoffe, die das Wachstum
 von Mikroorganismen hemmen und als Konservierungsmittel
 allgemein Verwendung finden, sind insbesondere "Benzoe-
 säure", "p-Hydroxybenzoësäureester", "Salizylsäure",
 20 "Sorbinsäure" und "Ameisensäure" zu nennen.

Die Benzoesäure ist eine mäßig starke Säure, die in Wasser
 schwer (etwa 3 %), in Alkohol und Äther aber leicht löslich,
 mit Wasserdampf flüchtig und lichtempfindlich ist. Ihre
 Alkalosalze reagieren neutral und sind in Wasser leicht
 25 löslich. Bemerkenswert ist ihre Lipoidlöslichkeit.

Sie dient vornehmlich zur Konservierung von Fettprodukten,
 Obsterzeugnissen, Gemüseprodukten sowie von Fischerei-
 erzeugnissen und von Eiprodukten. Sie wirkt einerseits
 auf die Zellwand und hemmt auf der anderen Seite die Enzyme
 30 des Citratcyclus (alpha-Ketoglutaräsäuredehydrogenase,
 Bernsteinsäuredehydrogenase) und der oxydativen Phosphory-
 lierung. Ihre Wirkung beruht auf der undissoziierten Säu-
 re ($pK_a = 4,10$). Ihre antiseptische Wirkung richtet sich
 vorwiegend gegen Hefen und Pilze, insbesondere gegen
 35 Schimmelpilze. In saurem Milieu wirkt sie in Mengen von
 0,1 %. Die maximale Tagesdosis an Benzoesäure soll nach
 dem Lebensmittelgesetz 0,6 g nicht überschreiten.

1 Die para-Hydroxybenzoësäureester (PHB-Ester) sind unter
dem Handelsnamen Nipagin-M, Nipagin-A, Nipasol und Nipa-
comb bekannt. Ein weiteres bekanntes Konservierungsmittel
5 ist die Ameisensäure. Als wasserklares, stechend riechende
Flüssigkeit ist sie mit Wasser, Alkohol und Ether in jedem
Verhältnis mischbar. In Konzentrationen bis maximal 0,5 %
wird sie meist in Form der ameisensauren Salze, z.B. als
10 Natriumformiat, zur Konservierung von Obst- und Gemüse-
säften eingesetzt. Die LD₅₀ Dosis oral beträgt bei Ratten
1210 mg/kg/KG, bei der Maus 1100 mg/kg/KG und bei Kanin-
chen 239 mg/kg/KG.

Als biocider Wirkstoff ist auch die Sorbinsäure schon
seit langem bekannt. Sie bildet weiße Kristalle aus, ist
15 sehr wenig in kaltem Wasser löslich, jedoch leicht löslich
in Alkohol und Ether. In Mengen von 0,05 bis 0,2 % wird
sie als Konservierungsmittel für kosmetische und pharma-
zeutische Erzeugnisse verwendet. Sie eignet sich außer-
dem sehr gut zur Konservierung von Wein und Margarine,
da sie sehr geschmacksneutral ist und daher auch empfind-
liche Nahrungsmittel nicht beeinträchtigt. Die konservie-
rende Wirkung beruht, wie bei der Benzoësäure, auf der
20 undissoziierten Säure, weswegen sie in pH-Bereichen über
5,5 nicht mehr keimhemmend wirkt.

Als nahrungsverwandte Substanz wird sie im menschlichen
25 Körper wie eine natürliche Fettsäure abgebaut. Ihre anti-
bakterielle Wirksamkeit beruht auf einem Redoxvorgang.
Die Sorbinsäure unterliegt der Autoxydation und wirkt
zugleich in Mengen von 0,05 bis 0,1 % bei Butter und
Schmalz prooxydativ. In diesem Fall müssen zusätzlich
30 Antioxydantien eingesetzt werden.

Sorbinsäure zeigt Hautreizungen bei Anwendung in Cremes,
wenn die Cremes 0,01 % und höhere Mengen an Sorbinsäure
enthalten. Gleichzeitig tritt eine Sensibilisierungsfähig-
keit der Haut auf, wenn höhere Konzentrationen angewendet
35 werden. Diese Eigenschaften, verbunden mit Hautrötungen
und Infiltrationen zeigen sich übrigens auch bei p-Hydroxy-
benzoësäurealkylestern. Histologisch entsprechen die Test-
reaktion einem allgemeinen Kontaktzekzem. Auch beim Meer-

schweinchen können nach Sensibilisierung mit Sorbinsäure durch Epikutantest Reaktionen ausgelöst werden, die histologisch dem feingeweblichen Kontaktekzem entsprechen.
Aufgrund dieser Erfahrungen ist deshalb der Einsatz von Sorbinsäure, sofern die Konzentration von 1 % nicht überschritten wird, ohne pharmakologische und dermatologische Bedenken zur Konservierung eingesetzt worden. Als Derivate der Sorbinsäure, die ebenfalls konservierende Eigenschaften aufweisen, gelten Propyl-, Butyl-, Allyl-, Isoamyl-, Hexyl-, Nonyl- und Decylsorbat.

Salizylsäure ist ein weiteres bekanntes Konservierungsmittel. Sie bildet weiße Kristalle aus und ist in kaltem Wasser nur zu etwa 0,2/100 g, in heißem Wasser dagegen besser löslich. Die Löslichkeit in fetten Ölen liegt bei 3 g/100 g. Die akute Toxizität der Salizylsäure beträgt beim Kaninchen etwa 1,1 bis 1,6 g/kg/KG, während die letale Dosis beim Hund mit 0,045 bis 0,5 g/kg/KG angegeben wird. Salizylsäure tritt in Reaktion mit dem Eiweiß des Plasmas der Mikrobenzellen. Sie wirkt besser gegen Pilze und Hefen als gegen Bakterien. Aufgrund ihrer phenolischen Gruppe ist ihre antibakterielle Wirksamkeit besser als die der Benzoësäure. Wegen ihres Dissoziationsverhaltens ist Salizylsäure nur für saure Lebensmittel einsetzbar, beispielsweise zur Konservierung von Gurken und Obst.
Nachteilig ist ihre Wirkung auf die Magenschleimhaut, wie bereits ausgeführt. Salizylsäure wird vom Körper vollständig resorbiert, jedoch nicht abgebaut. Sie wird vielmehr als Umsetzungsprodukt mit Glykocoll ausgeschieden, wobei aufgrund der langsamen Ausscheidung mit einer Kumulation zu rechnen ist.

Neben den aufgeführten Konservierungsmitteln zählen auch die anorganischen und organischen Salze der Brenztraubensäure (Pyruvate) zu den bekannten Stoffen. Die Brenztraubensäure ist eine starke Säure. Sie entsteht aus Glucose und Alanin und wird täglich in einer Menge bis zu 1.000 g im Körper aerob über Acetyl-CoA zu CO_2 und Wasser abgebaut, anaerob liefert sie Milchsäure. Mit dem aeroben Abbau von Brenztraubensäure sind die Reaktionen der oxydativen Phosphorylierung gekoppelt.

1 Die Pyruvate, vornehmlich das Natriumpyruvat, haben daher
den großen Vorteil, daß sie als körpereigene Substanzen
im Gegensatz zu anderen Stoffen vom Organismus ohne Kom-
plikationen aufgenommen und direkt umgesetzt werden, ohne
5 den Konservierungseffekt des mitverwendeten Konservierungs-
mittels zu beeinträchtigen. Brenztraubensäure und Na-Pyruvat
sind also physiologisch unschädlich und völlig unbedenklich.
10 Angesichts dessen, daß Konservierungsmittel unerwünschte,
nämlich den menschlichen Organismus schädigende Wirkungen
besitzen, war es überraschend, daß es mit der erfindungs-
gemäßen oralen Zusammensetzung auf einfache Weise gelingt,
die nachteiligen Einflüsse der Konservierungsmittel "Ben-
zoësäure", "p-Hydroxybenzoësäureester", "Sorbinsäure",
15 "Salizylsäure", "Ameisensäure" ohne Beeinträchtigung der
konservierenden Wirkung auszuschalten.
20 Die erreichten Vorteile sind auch deshalb überraschend,
weil mit der erfindungsgemäßen Zusammensetzung als anti-
mikrobielle Mittel der negative Einfluß der Konservierungs-
stoffe ausgeschaltet wird und zwar in synergistischer
Weise.
25 Untersuchungen für die Beurteilung der Schädlichkeit einer
Substanz hinsichtlich ihrer schädigenden Wirkung führten
nämlich zur Erkenntnis, daß durch die Verabreichung be-
stimmter Schadsubstanzen in menschlichen Placenten post
partum in-vitro eine Plasmapolypenbildung (PP-Bildung)
beobachtet werden konnte, welche ein allgemein brauchbarer
Indikator für eine bestimmte Art von zellschädigender
Wirkung ist.
30 Die Bildung von Plasmapolypen wurde zunächst in Placenten
bei Schwangerschaftsstörungen beobachtet.
35 Histologische Untersuchungen an menschlichen und tieri-
schen Placenten führten zu der Erkenntnis, daß es vom
Zottensyncytium ausgehend, gegen Ende der Schwangerschaft
zunehmend zur Ausbildung von zellorganellarmen Protrusio-
nen von 0,5 bis 1,0 µm Dicke und bis zu 20,0 µm Länge
kommt. Diese Protrusionen hat man als Plasmapolypen be-
zeichnet.

1 Während einer Praeeklampsie und einer Eklampsie wird die
Bildung von Plasmapolypen stark vermehrt gefunden, bis
zur Blockade des intervillösen Raums und einer sich daraus
entwickelnden Infarktenstehung in der Placenta. Darüber-
5 hinaus muß bei Einschleusung größerer Mengen an Plasma-
polypen in die mütterliche Blutbahn an einen Zusammenhang
zwischen Plasmapolypenbildung und Pathogenese der Gestose
gedacht werden.

10 So führten Vergiftungen trächtiger Meerschweinchen mit
Monojodacetat (MJA) oder Natriumfluorid (NaF), welche
den Kohlenhydratabbau hemmen, innerhalb von wenigen Minu-
ten zu signifikanten morphologischen Veränderungen an
Syncytiotrophoplasten der Placenta. Neben Schwellungen
15 der Mitochondrien, des endoplasmatischen Reticulums und
des Golinaapparates sowie einer Kernpyknose traten dabei
in großer Zahl Plasmapolypen auf (0,5 bis 2 μ m große,
zellorganellarme Protrusionen). Im Langzeitversuch kon-
trolliert bis zu 10 Tagen führten solche PP-Nester zu
Placentainfarkten. Auch die histologische Kontrolle an
20 Humanplacenten ergaben eine verstärkte Plasmapolypen-
bildung (Arch. Gynäk. 221, 203-210 (1976)).

Durch zusätzliche gleichzeitige oder kurz verzögerte in-
travenöse Gaben von Natriumpyruvat mit / nach der Mono-
jodataacetat- bzw. Natriumfluorid-Injektion ließ sich die
25 PP-Bildung unterbinden. Diese Ergebnisse wurden biochemisch
durch Substratbestimmungen und histologische Untersuchun-
gen licht- wie elektronenmikroskopisch sowie durch ver-
gleichbare Ermittlungen der Plasmapolypenzahl gesichert.

Eine vermehrte Plasmapolypenbildung als Ausdruck für eine
30 Schwangerschaftsstörung wurde auch aus "Archiv für Gynäko-
logie", 216 (1974), Seiten 175-176, bekannt.

Die Gewinnung der Plasmapolypen (PP) in einem Arbeitsgang
erfolgt durch die bekannte Methode der "Umgekehrten Zen-
trifugation" (vgl. Res. exp. Med. 171 (1977), Seiten 155-
35 162). Demnach wurden die besten Ergebnisse zur Reindar-
stellung von Plasmapolypen aus Meerschweinchenplacenten
unter Befreiung von sonstigen Partikeln in einem Arbeits-

1 gang durch Zentrifugieren unter Verwendung von einem Co-
5 polymeren aus Saccharose und Epichlorhydrin, MG 70 000
erhalten.

Das als "umgekehrte Zentrifugation" bezeichnete Verfahren
5 hatte die Vorteile

- a) eine gegenüber der histologischen Schätzung genau
gewebs- oder volumenbezogene Erfassung der Plasmapoly-
penzahl und
- b) die Möglichkeit, die Eigenschaften der Plasmapolypen
10 zu studieren.

Allerdings gelingt auch die beschriebene Methode der Er-
fassung an der Placenta nur nach völliger Blutfreispülung
und durch Bestimmung der PP mittels umgekehrter Zentrifu-
gation, was zum einen mit einem größeren Zeitaufwand und
15 zum anderen mit der Verfügbarkeit reifer Tiere- oder Human-
placenten verbunden ist. Dies gilt auch für die im Laufe
der Zeit ausgearbeiteten verfeinerten Bestimmungsmethoden
durch Registrierung des gesamten Auszählvorgangs und die
Möglichkeit, Schadstoffeinwirkungen an Einzelzotten aus
20 Humanplacenten speziell im Hinblick auf die Bildungsdauer
und Größe der PP zu verfolgen.

Die meisten Gewebe kommen jedoch für die quantitative
Erfassung der Zellprotrusionen (PP) nicht in Frage, weil
man die PP nicht quantitativ aus dem Gewebeverband gewin-
nen kann. So bedarf es zur quantitativen Erfassung rela-
tiv großer, leicht zugänglicher Geweboberflächen, wie
25 sie in der Placenta und der Magenschleimhaut vorhanden
sind (vgl. dazu DE-PS 28 10 425).

Wie festgestellt werden konnte, entstehen außer in der
30 Placenta und im Blut auch in der Magenschleimhaut Plasma-
polypen, welche durch die orale Einnahme von Schadstoffen,
wie den angeführten Konservierungsmitteln mit Lebensmitteln
hervorgerufen werden. Hierbei gelangen die abgeschnürten
Plasmapolypen im Gegensatz zu den Placentapolypen nicht
35 in die Blutbahn, sondern gelangen frei von Blut und sonsti-
gen Gewebepartikeln direkt in das Magenlumen und können
dort durch Herausnahme und Aufarbeitung des gesamten Magens

mit genormter Schnittführung an der Cardia und am Pylorus gewonnen werden. Damit ist eine gegenüber der Placenta verbesserte Möglichkeit ihrer quantitativen Erfassung unter Auszählung der Größenverteilung an der Magenschleimhaut einfach und übersichtlich gegeben.

Die Auszählung und Bestimmung der Größenverteilung der gebildeten PP wird mikroskopisch vorgenommen, wobei Besonderheiten nach Form und Inhalt zusätzlich fotografisch festgehalten werden können. Die Plasmapolypenbildung an der Magenschleimhaut erfolgt an Einzelzellen mit einer relativ einheitlichen Größenverteilung von 1,0 bis 3,0 μm Durchmesser (Grenze der Lichtoptik).

Wenngleich die Plasmapolypenbildung nach einer bestimmten Schadstoffeinwirkung allen tierischen und menschlichen Geweben, unabhängig vom Geschlecht, eigen ist (getestet an Blutstammzellen, Heptacyten, Fibroblasten, in Zellkulturen ect.), so erfolgt nicht auf jede Schadstoffeinwirkung auf den menschlichen oder tierischen Organismus eine Plasmapolypenbildung. Es gibt zellschädigende Wirkungen, welchen ein anderer Wirkungsmechanismus zugrunde liegt. Zugaben von Pyruvate zeigen in diesem Fall keine Reaktion. So führen beispielsweise Vergiftungen mit 2,4-Dinitrophenol, welches die oxydative Phosphorylierung von der Zellatmung abkoppelt und damit die Nutzung der in der Zelle freigesetzten Energie verhindert, zu keiner vermehrten Plasmapolypenbildung. Gleiches gilt für das hochgiftige Kaliumcyanid. Offenbar ist es wichtig für die Bildung von Plasmapolypen, das Fortbestehen der oxydativen Stoffwechselreaktionen während der Einwirkung des Schadstoffs zu gewährleisten.

Da die Bildung von Plasmapolypen die erste Stufe einer Zellschädigung darstellt und rasch in Erscheinung tritt, war es das Bestreben, gerade solche Stoffe aufzufinden, die bei normaler Anwendung keine auffallende Schadstoffwirkung und Zellschädigung zeigen.

1 Infofern war es weiterhin überraschend, daß aus der Vielzahl der Substanzen, die ständig auf den menschlichen und tierischen Organismus einwirken, die speziellen Konservierungsstoffe "Benzoesäure", "p-Hydroxybenzoesäureester", "Sorbinsäure", "Salizylsäure" und "Ameisensäure" 5 als Schadstoffe im Sinn einer vermehrten Plasmapolyenbildung erkannt wurden.

Wesentlich für die vorliegende Erfindung ist somit die Erkenntnis, daß zum einen die Konservierungsmittel "Benzoesäure", "p-Hydroxybenzoesäureester", "Sorbinsäure", "Salizylsäure" und "Ameisensäure" eine schädigende Wirkung 10 im Sinne einer Plasmapolyenbildung ausüben und zum andern, daß diese schädigende Wirkung durch Zusatz von Pyruvat verhindert werden kann.

15 Die Eigenschaften des Pyruvats, die zellschädigende Wirkung von Natriumfluorid (NaF) und Monojodacetat (MJA) zu verringern, ist zwar bekannt. Die entsprechenden Versuche wurden jedoch ausschließlich an Tieren vorgenommen und nicht mit den Konservierungsstoffen der Erfindung. Außerdem erfolgte die Verabreichung der oben genannten Schadstoffe an den Tieren nicht oral, sondern parenteral. 20 Unter diesen Gesichtspunkten konnte der Fachmann nicht vorhersehen, daß

- a) die Ergebnisse der Tierversuche auf den Menschen übertragbar sind
- b) die aufgeführten Konservierungsstoffe eine Plasmapolyenbildung verursachen und die Konservierungsstoffe auf Zugabe von Pyruvat in synergistischer Weise reagieren und daß
- c) die Verringerung der zellschädigenden Wirkung auch bei oraler Verabreichung der Konservierungsstoffe unter Verwendung von Pyruvat eintritt.

1 Versuchsergebnisse:

Die Erfindung wird anhand der nachfolgend aufgeführten Versuche und ihrer Ergebnisse belegt. Dabei wurden Ratten und Meerschweinchen die Konservierungsmittel der erfundensgemäßen Zusammensetzung mit und ohne Zugabe von Pyruvat appliziert und zwar parenteral und oral. Die dadurch erzeugten Plasmapolypen wurden in der Meerschweinchenglacenta und in der Magenschleimhaut quantitativ erfaßt und in Relation zu den Konservierungsmitteln gebracht. Das Ergebnis der Versuche ist in den Abbildungen grafisch dargestellt.

Durchführung der Test-Versuche.

1) Versuche unter Anwendung von Salizylsäure ohne und mit Zusatz von Na-Pyruvat an der Placenta von Meerschweinchen.

15 a) Kontrollversuch ohne Anwendung von Salizylsäure und Pyruvat
9 hochschwangeren Meerschweinchen mit einem Durchschnittsgewicht von 1 kg wurden in Nembutalnarkose (45 mg/kg) die rechte Jugularvene freigelegt und in ihr 4,0 ml Krebsringerlösung injiziert. Nach einer Zirkulationsdauer von 20 bis 25 min wurde die Placenta entnommen und die PP-Zahl ausgezählt. Das Gewicht der Placenten betrug im Durchschnitt 8,84 g, während die Anzahl der PP pro g Placenta-Feuchtgewicht bei etwa 80 000 lag.

20 b) Testversuch mit Salizylsäure ohne Pyruvat
9 Tiere wurden wie im Kontrollversuch a) behandelt, jedoch mit dem Unterschied, daß der Krebsringerlösung zusätzlich 25 mg (0,18 mMol) Salizylsäure zugesetzt wurden. Das Durchschnittsgewicht der Placenten lag hier bei 9,18 g, während die Anzahl der PP sich gegenüber dem Kontrollversuch auf etwa 210 000 erhöhte.

1

c) Testversuch mit Salizylsäure und Pyruvat

5

6 Tiere wurden wie im Testversuch b) mit Salizylsäure behandelt. Dieses Mal wurden den Tieren zusätzlich 2,25 mMol Pyruvat injiziert. Das Durchschnittsgewicht der Placenten dieser Tiere lag bei 8,98 g. Die Anzahl der PP ging gegenüber dem Testversuch b) von 210 000 auf 140 000 zurück.

10

Diese Versuche besagen, wie aus Abb. 1 ersichtlich, daß der Zusatz von 2,25 mMol Na-Pyruvat zu einer Krebsringerlösung mit einem Gehalt von 0,18 mMol Salizylsäure die Anzahl der PP in synergistischer Weise verringert.

15

2) Versuche unter oraler Verabreichung von Salizylsäure, Sorbinsäure, Benzoësäure und Ameisensäure ohne und mit einem Zusatz von Na-Pyruvat an der Magenschleimhaut von Ratten.

20

Diese Versuche wurden an mindestens 5, etwa 150 g schweren Ratten vorgenommen. Das Füllvolumen der Mägen betrug jeweils 4,5 ml. Es enthielt entweder das Pyruvat oder die Testsubstanz (Säure) oder beide Substanzen. Im Falle der Ameisensäure und Sorbinsäure wurden den Ratten zuerst das Pyruvat, dann erst die Ameisensäure verabreicht, weil die Ameisensäure und Sorbinsäure rascher in die Zellen der Magenschleimhaut gelangt als das Pyruvat. Im allgemeinen genügt ein Vorlauf des Pyruvats von 30 Sekunden. Bei den übrigen Testsubstanzen wurde diese gleichzeitig mit dem Pyruvat den Tieren verabreicht.

25

a) Kontrollversuch; Verabreichung von 4,5 ml Wasser

30

Als Ergebnis wurden im Durchschnitt 238 000 PP pro g Rattenmagen gezählt.

b) Kontrollversuch; Verabreichung von 1,0 mMol Pyruvat gelöst in 4,5 ml Wasser

Es wurden im Durchschnitt 230 000 PP pro g Rattenmagen gezählt.

- 1 c) Testversuch; es wurden 0,5 mMol Salizylsäure gelöst in 4,5 ml Wasser den Tieren verabreicht
Es wurden 955 000 PP pro g Magen gezählt.
- 5 c') Testversuch; den Tieren wurden 0,5 mMol Salizylsäure und 1,0 mMol Pyruvat verabreicht
Danach wurden 360 000 PP pro g Magen gezählt.
Das Ergebnis der Versuche a), b) und c) bzw. c') ist in Abb. 2 grafisch dargestellt. Es besagt, daß die Anzahl der PP im Versuch c') nicht wie rechnerisch erwartet bei etwa 955 000, sondern bei 360 000. Dieser Versuchsserie ist also das synergistische Verhalten von Salizylsäure und Pyruvat ebenfalls zu entnehmen.
- 10 d) Testversuch; den Tieren wurden 1,0 mMol Ameisensäure verabreicht
Es wurden durchschnittlich 912 000 PP gezählt.
- 15 d') Testversuch; den Tieren wurden 1,0 mMol Ameisensäure und 1,0 mMol Pyruvat verabreicht
Es wurden durchschnittlich 480 000 PP gezählt.
Das Ergebnis der Versuche a), b) und d) bzw. d'), in Abb. 3 grafisch dargestellt, macht deutlich, daß anstelle des theoretisch zu erwartenden Wertes von d') in Höhe von 912 000 PP der Wert d') = 480 000 ermittelt wurde. Auch hier zeigt sich also das synergistische Verhalten von Ameisensäure und Pyruvat.
- 20 e) Testversuch; den Tieren wurden 1,0 mMol Benzoesäure und 0,5 mMol NaHCO₃ verabreicht
Es wurden durchschnittlich 1 219 000 PP ermittelt.
- 25 e') Testversuch; den Tieren wurden 1,0 mMol Benzoesäure, 0,5 mMol NaHCO₃ und 1,0 mMol Pyruvat verabreicht
Es wurden durchschnittlich 618 000 PP ermittelt.

1 Aus den Werten dieser Testserie ist das synergistische
Verhalten von Pyruvat und Benzoësäure ebenfalls ohne wei-
teres ersichtlich. Die aufgefundenen Werte liegen deutlich
unter den theoretisch zu erwartenden Zahlenwerten (siehe
5 Abb. 4).

f) Testversuch; den Tieren wurde 1,0 mMol Sorbinsäure
gegeben

Es wurden durchschnittlich 1 440 000 PP gezählt.

10 f') Testversuch; den Tieren wurde 1,0 mMol Sorbinsäure
und 1,0 mMol Pyruvat gegeben

i. Hierbei wurden lediglich 713 000 PP ausgezählt.

Auch aus dieser letzten Testserie geht hervor, daß bei
Verabreichung von Sorbinsäure in Gegenwart von Pyruvat
die Anzahl der PP in synergistischer Weise verringert
15 wird (s. Abb. 5).

In der erfindungsgemäßen Zusammensetzung beträgt das Ge-
wichtsverhältnis von Benzoësäure, Sorbinsäure, Salizyl-
säure, Ameisensäure oder PHB-Estern zu Pyruvat vorzugs-
weise 10:1 bis 1:10, insbesondere 1:1.

20 Die Zusammensetzung kann dabei in fester wie in flüssiger
Form vorliegen.

Bei oraler Applikation von Ameisensäure und Sorbinsäure
wurde festgestellt, daß diese Verbindungen im Magen rascher
resorbiert werden als das Pyruvat. Deswegen ist in diesen
25 Fällen Vorsorge dafür zu treffen, daß im Magen das Pyruvat
zeitlich vor der Ameisensäure oder der Sorbinsäure in
gelöster Form vorliegt. Erreicht wird dies zunächst dadurch,
daß das Pyruvat z.B. in Form einer Kombinationspackung,
getrennt von den übrigen beiden Konservierungsstoffen
30 der Zusammensetzung vorliegt und somit zeitlich vorher
appliziert werden kann. Als Applikationsformen kommen
sämtliche hierfür in Betracht kommenden Formen, welche
die angegebenen Voraussetzungen erfüllen.

1 Die Erfindung betrifft ferner auch Mittel, welche die erfindungsgemäße Zusammensetzung enthalten. Beispiele hierfür sind vor allem Nahrungs- und Genußmittel, wie Obst- und Obstprodukte, Marmeladen, Obstsafte, Kompotte,
5 Gemüse, Gemüseprodukte, wie eingelegte Gurken, rote Beete, Getränke, wie Cola-Getränke, Bier, kohlensäurehaltige Wässer, Süßigkeiten aller Art, Speiseeis, Backwaren, wie Kuchen, Keks, Brot etc.. Als weitere Beispiele aus dem Lebensmittelbereich sind Aromastoffe, Gewürze, Schutzüber-
10 züge für Käse, Eiweißprodukte und Fischprodukte zu nennen.

Des weiteren können die erfindungsgemäßen Zusammensetzungen auch in Kosmetika zum Einsatz kommen, z.B. in Zahnpasten (Benzoesäure als Konservierungsstoff), Körperreinigungs- oder Körperpflegemittel.

15 Darüberhinaus existieren viele Anwendungsmöglichkeiten, die sich am Verwendungszweck der genannten Konservierungsmittel orientieren und die man als "Mittel des täglichen Bedarfs" zusammenfaßt.

20 Die Menge an der erfindungsgemäßen Zusammensetzung, welche in den Mitteln enthalten ist, hängt ab von dem zu konser- vierenden Produkt und auch vom Konservierungsmittel selbst. Im allgemeinen liegt sie zwischen 0,01 und 2,0 Gew.%, bezogen auf das Gesamtprodukt, vorzugsweise im Bereich zwischen 0,1 und 0,75 Gew.%. In Sonderfällen können diese Konzentrationsbereiche auch über- bzw. unterschritten werden.

25 Schließlich umfaßt die Erfindung auch ein Konservierungsverfahren. Bei einer Ausführungsform wird dabei die erfindungsgemäße Zusammensetzung dem zu konservierenden Produkt in fester oder flüssiger Form zugesetzt. Diese Methode stellt das am häufigsten angewandte Konservierungsverfahren dar, wie auch durch die nachstehend aufgeführten Beispiele demonstriert wird.

30 Eine weitere vorteilhafte Ausführungsform des erfindungsgemäßen Konservierungsverfahrens ist das Imprägnieren (Behandeln) des zu konservierenden Mittels oder Gegenstands

1 mit der erfindungsgemäßen Zusammensetzung in fester, vor-
zugsweise in flüssiger Form. Diese Arbeitsweise wird an-
gewandt, um Gegenstände oder Sachen zu konservieren, denen
kein Konservierungsmittel zugesetzt werden kann. Als Bei-
5 spiel hierfür kann die Haltbarmachung von Bananen ange-
sehen werden, wobei die ganzen Fruchtstände in die Lösung
der erfindungsgemäßen Zusammensetzung eingetaucht oder
mit dieser in Berührung (Besprühen) gebracht werden.

10 Die nachstehend aufgeführten Beispiele erläutern die Er-
findung:

Beispiel 1

15 200 Teile Apfelmark vom pH 4 mit einem Zuckergehalt von
10 % werden mit 0,12 Teilen Benzoësäure in Form des Na-
triumsalzes und der gleichen Menge an Natriumpyruvat ver-
mischt und alsbald verschlossen. Das so behandelte Gut
erwies sich als hervorragend konserviert.

Beispiel 2

20 100 Teile Grapefruitsaft vom pH 4,5 mit einem Zuckergehalt
von 8 % werden mit 0,03 Teilen Natriumbenzoat und 0,06
Teilen Natriumpyruvat versetzt und alsbald verschlossen.
Der so konservierte Saft zeigte nach längerer Lagerung
bei Temperaturen zwischen 20 und 30° C keinerlei Gärung
oder Schimmelbefall. Unkonservierte Gegenproben befinden
sich nach 48 Stunden in Gärung und setzten innerhalb wei-
25 terer 3 Tage Oberflächenschimmel an.

Beispiel 3

30 150 Teile einer auf der Grundlage von Trockenmilch auf-
gebauten kosmetischen Zubereitung, die aus 4 % Milchzucker,
3,5 % Eiweißstoffen, 0,9 % Mineralsalzen, 0,8 % Duftstoffen
und 90,8 % Wasser besteht, werden mit 0,075 Teilen eines
PHB-Esters in Gegenwart von 0,150 Teilen Natriumpyruvat
versetzt. Die Mischung wird homogenisiert und in einem
geschlossenen Gefäß bei Raumtemperatur aufbewahrt. Die
behandelte kosmetische Zubereitung ist unverändert halt-
bar, während eine kosmetische Zubereitung ohne Zugabe

1 des Konservierungsstoffes bereits nach 2 Tagen starke
Gärungs- und Fäulniserscheinungen aufwies.

Beispiel 4

5 Zur Frischhaltung von Seefisch wird Eis benutzt, bei des-
sen Herstellung dem Wasser ein Zusatz von 0,2 % Benzoe-
säure und 0,2 % Natriumpyruvat beigegeben wird. Die erhaltene
homogene Lösung wird abschließend mit Calciumcitrat und
Milchsäure in solchen Mengen vermischt, daß ein pH-Wert
von 5 erreicht wird. Das anschließende Gefrieren dieses
10 Ansatzes bewirkt eine Frischhaltung von Seefischen etwa
bis zu 5 Wochen.

Beispiel 5

Schaumbad mit antimikrobieller Wirkung

Kokosfettsäurediäthanolamid	5,0	Gewichtsteile
Natriumlaurylättersulfat	67,0	
PHB-Ester	0,01	
Natriumpyruvat	0,02	
Wasser	27,97	

Beispiel 6

Desinfizierende Waschpaste

Natriumlaurylsulfat	50,0	Gewichtsteile
Kokosfettsäuremonoäthanolamid	6,97	
feingemahlener Bimsstein	43,0	
Natriumbenzoat	0,01	
Natriumpyruvat	0,02	

Beispiel 7

Konservierung von Gurken

10 Liter Wasser werden mit einer Mischung von 0,6 g Salizyl-
säure und 1,2 g Natriumpyruvat versetzt und zum Kochen
30 erhitzt. Der erhitzte Aufguß wird anschließend über die
Gurken gegossen. Die Gurken bleiben ohne Geschmacksein-
buße unbegrenzte Zeit haltbar.

1 Beispiel 8

21.

Konservierung von roten Beeten

5 Liter Wasser werden mit einer Mischung aus 0,1 % Natriumsalizylat und 0,15 % Natriumbenzoat sowie 0,5 % Natriumpyruvat zum Sieden erhitzt und als heißer Aufguß über die zu konservierenden roten Beete gegossen.

Beispiel 9

Schutzüberzug für Käse

10 Die erfindungsgemäße antimikrobielle Mischung kann in Schutzüberzügen für Eßwaren, insbesondere für Käse, eingesetzt werden, um das Wachstum von Pilzen zu hemmen. Die Schutzüberzüge, die bekanntlich elastisch sein sollen und eine langfristige Wirksamkeit gegen Pilze besitzen, müssen physiologisch unbedenklich sein und die gesetzlichen Bestimmungen erfüllen. Als Träger für den Überzug dienen Emulsionen oder Suspensionen von Hemicelluloseprodukten, die ein Konzentrat bilden und mit Wasser verdünnt auf Eßwaren, hier Käse, aufgebracht werden. Als Träger kann auch Carboxyäthylcellulose dienen. Im allgemeinen wird bei Weich- oder Hartkäse der Schutzüberzug in der Regel nach dem Salzbad aufgebracht, z.B. durch Aufsprühen, Tauchen, Bürsten oder dgl.. Der so behandelte Käse bleibt während des gesamten Reifeprozesses frei von Schimmel, wenn er sogleich in eine Schrumpffolie verpackt gelagert wird, die zum Zweck des Wasserverlustes mit Wachs oder ähnlichem Material überzogen ist.

20 Als Zusammensetzung a) auf Basis von Hemicellulose, die als Träger und Emulgiermittel für den Schutzüberzug dienen kann, kommt folgende Mischung in Betracht:

25

Zitronensäure	0,5 kg
Zucker	4,0 kg
Citruspektin	4,0 kg
Wasser	<u>91,5 kg</u>
35	100,0 kg

1 Ein, das Wachstum von Pilzen hemmender Schutzüberzug
wird aus

Zusammensetzung a)	etwa 68,0 kg
Natriumbenzoat-Pyruvat (1:1 "	10,0 kg
5 natürliche Speisefett "	22,0 kg
hergestellt und vor dem Aufbringen verdünnt im Verhältnis	
Konzentrat	1,5 kg
Wasser	<u>98,5 kg</u>
	100,0 kg

10 Die antimikrobielle Zusammensetzung kann ferner in Mehl-
erzeugnissen verwendet werden, z.B. in Backwaren, wie
Kuchen, Keks, Zwieback, Brötchen, Brot, Schwarzbrot, Waffeln
usw.. Auch der Teigzubereitung kann bei deren Herstellung
die erfindungsgemäße Mischung zugesetzt werden. Dasselbe
15 gilt für Pasteten, Backwaren mit Zuckerguß, Aromen etc..

Beispiel 10

Napfkuchen

Aus einem Gemisch von Zucker, Kuchenmehl, Gewürz usw.
und Milch, die 0,2 % Natriumbenzoat und Natriumpyruvat
20 im Verhältnis 1:1 enthält, bereitet man in üblicher Weise
einen Kuchenteig und bäckt daraus den Napfkuchen.

Beispiel 11

Zuckerwerk

Weiches, nougatartiges Zuckerwerk wird in üblicher Weise
unter Zusatz von 0,4 % Natriumbenzoat und Pyruvat herge-
25 stellt.

Beispiel 13

Säfte

Insbesondere gezuckerte Fruchtsäfte, wie Traubensaft,
Zitronensaft, Apfel- und Ananassaft enthalten 0,4 % an
30 Natriumbenzoat und Pyruvat. Dabei wird die erfindungsgemäße
Mischung den Säften vorzugsweise vor dem Abfüllen bzw.

1 vor der letzten Hitzebehandlung in flüssiger Form beigegeben. Früchte in Dosen liegen in einer Flüssigkeit, einem stark Zucker haltigen Sirup vor. Diesem wird das Konservierungsmittel mit Pyruvat zugesetzt. Dasselbe gilt für
5 gefrorene Früchte.

Die erfindungsgemäße Mischung ist auch auf alle kohlensäure-haltigen Getränke, wie Bier, Cola-Getränke, anwendbar.

Beispiel 14

10 Ein übliches Lutschbonbon, welches Sorbinsäure und/oder Ameisensäure als Konservierungsmittel enthält, wird mit einem Pyruvat enthaltenden Überzug versehen.

Beispiel 15

15 Ein Bananenfruchtstand wird konserviert, indem er in eine wäßrige Lösung, die eine Zusammensetzung nach den Ansprüchen 1 - 10 in einer Menge von 0,5 Gew. % enthält, eingetaucht oder mit dieser Lösung begast.

Beispiel 16

20 Eine oral verabreichte Tablette bzw. ein Dragee enthält im Überzug 0,2 Gew.% an Natriumpyruvat und im Kern 0,2 Gew. % an Konservierungsmittel.

- 24-
- Leerseite -

Nummer: 34 34 885
Int. Cl. 4: C 09 K 15/06
Anmeldetag: 22. September 1984
Offenlegungstag: 27. März 1986

29

Abb. 1

Testversuche mit Salicylsäure und Pyruvat.

25

Abb. 2

Testversuche mit Salicylsäure und Pyruvat.

26

Abb. 3

Testversuche mit Ameisensäure und Pyruvat.

Abb. 4

Testversuche mit Benzoësäure und Pyruvat

3434885

28

Abb. 5

Testversuche mit Sorbinsäure und Pyruvat