CSE 150 - 1/13/10

Motivation

- · Joint distribution $P(X_1 = x_1, X_2 = x_2, ..., X_n = x_n)$ involves O(2n) numbers for n binary random variables
- · More compact representations
- . More efficient algorithms for inference?

Alarm Example

· Binary random variables {0,13

* Joint distribution

$$P(B,E,A,J,M) = P(B)P(E|B)P(A|B,E)P(J|B,E,A)P(M|B,E,A,J,M)$$

* Conditional Independence

$$P(B, E, A, J, M) = P(B)P(E)P(A|B, E)P(J|A)P(M|A)$$

* Directed Acyclic Graph (DAG)

P(B=1)=0.001 B	P(E	==()	= 0.002
TOK	B	[E	P(A=1 B,E)
	0	1	0.29
		0	0.94
Of the	0	0	0.001
			0.95

A	P(J=1/A)
0	0.05
(1	0.9

* Conditional Probability Tubles (CPTs)

* Joint Probabilities

$$= P(B=1)P(E=0)P(A=1|B=1,E=0)P(J=1|A=1)P(M=1|A=1)$$

* Any query can be answered from joint distribution

From Product Rule: $P(B=1, E=0|M=1) = \frac{P(B=1, E=0, M=1)}{P(M=1)}$

$$P(B=1,E=0,M=1) = \sum_{\substack{a,j \in \{0,1\}\\b,j,a_{1} \in \{0,1\}}} P(B=1,E=0,M=1,A=a,J=j)$$

$$P(M=1) = \sum_{\substack{b,j,a_{1} \in \{0,1\}\\b,j}} P(M=1,B=b,E=e,A=a,J=j)$$

More efficient Algorithms? Yes. Exploit Structure of DAG.

Belief Network (BN)

A BN is a DAG in which

- (i) nodes represent random variables
- (ii) edges represent conditional dependenctes
- (iii) CPTs describe how each node depends on its parents

* Conditional Independence

Generally true from the product rule that

$$P(x_{1}, X_{2}, ..., X_{n}) = P(x_{1}) P(X_{2}|X_{1}) ... P(X_{n}|X_{1}, X_{2}, ..., X_{n-1})$$

$$= \prod_{i=1}^{n} P(x_{i}|X_{i}, X_{2}, ..., X_{i-1}) \qquad (A)$$

In a given domain, suppose that

$$P(X_{1}|X_{2},...,X_{n}) = \prod_{i=1}^{n} P(X_{i}|parents(X_{i}))$$

where parents (Xi) is some subset of {X1,..., Xi-i}

Big Idea: represent dependence relations by a DAG

* Constructing a BN

- (i) choose random varibles
- (2) choose ordering
- (3) while there are variables left.
 - (a) add node X;
 - (b) set the parents of Xi to the minimal subset satisfying (*)
 - (c) define CPT P(Xi | pa(Xi)) parent configuration

Ex: {B,E,A,J,M}

* advantages:

- complete, compact, consistant representation of joint distribution

Ex: for binary variables, if k= max # porents (in-degree) of graph, then O(n2k) numbers will be used versus O(2n) to represent joint distribution.

- clean separation of qualitative us quantitative knowledge DAG encodes conditional independencies CPTs encode numerical influences

* Node ordering

- Best order is to add "root causes", the the variables they influence, and so on ...
- wrong order: \(\SM, \), \(A, \), \(B, \) \(\) \(\) gives graph:

this DAG has two extra edgess us. original DAG.

- from "misordered" graph:

· conditional independencies in world not obvious

· more numbers in CPTs to specify the same joint distribution

· less matural, more difficult to assess CPTs or learn CPTs from data

* Representing CPTs

for simplicity consider

Xi & {0,13}

Y & {0,13}

How to represent (PT P(Y=1|X,,X2,-..,XE)?

(i) lookup table: O(z) can store arbitrary CPT

(ii) "deterministic" node

"AND" $P(Y=|X_1,...,X_k)= \underset{i=1}{\text{tr}} X_i$ "OR" P(4=0|X,,--,)* = # (1-Xi)

(iii) noisy-or node

use k numbers $p_i \in [0, i]$ to parameterize $O(2^k)$ elements of CPT. $P(Y=0|X_{1},...,X_{k}) = \prod_{i=1}^{k} (1-p_{i})^{X_{i}}$ for $X_{i} \in \{0,1\}$ $P(Y=1|X_{1},...,X_{k}) = 1 - \prod_{i=1}^{k} (1-p_{i})^{X_{i}}$

Why called "noisy-or"?

Look at P(== | X = X = 0) = |- # (1-pi) = 0

Look at $P(Y=1 \mid X_{i_1,...,X_k})$ when one and only one parent $X_i=1$; rest are zero. $P(Y=1 \mid X_{i_1,...,X_{i-1}}=0, X_{i_1}=1, X_{i_1+1}=1,...=X_k=0)$ $= P(Y=1 \mid X_{i_1}=1, X_{i_2}=0)$

$$= (-(1-p_i)^{1}) + (1-p_i)^{0} = p_i$$

Intuitively, Pi represents the probability that X; = 1 by itself triggers Y=1.