Date: __/__/ ____ a) For a turing decidable language L, the machine M decides language LEM, then the complament is As M' on input w. M'- on input w 1. Accepto if M rejects 2. Else regets M' decides the complement of L as it does the opposite of M. Do decidable languages are closed under complementakon

1.	let L1 and L2 be two decidable languages and M, and M2 be the tiving machines that decides them.
	Turing Machine Mo:
	L (Mo) = 40L2
	Mo= on input w.:
1.	Oplit winto 2 pato, w= w, w2
2	Rem M, on w, if M, rejected, then reject
3.	Run M2 on 62, If M2 rejected, then reject.
И.	Else accept.
	Try each possible combination of w. If the parts are accepted vice versa, then w is accepted by Mo. Else, it is rejected.
	Do, L(M.) = L, OL2
	The decidable languages are closed under concatanction.

and M be the Turing machine that decides L. There is a toring machine M' out that, it decides the star of L > L(m1): L*. M's on input of w. 1. aprit w into n para parts: w: w, wz. -- wn 2. Run M en lo: for i = 1,2...... n. If M accepts each of these strings, w; accept -. 3. All cuts have been tried without success, reject. If is cat into different substrings out that every stry is accepted by M, then w belongs to the star of L, and M' accepte Wafter finitens. of steps. Dince there are finitely many possible auto of is, M' will halt after finitely many steps. Po, L (Mi) = L* . The devidable languages are closed under star.

Date://
A DFA accepts some string if and only if reaching an accept state from the stat state by travelling along the arrows of the DFA is possible.
let X = " on input < A>, where A is a DFA":
Mark the start state of A.
Run on breadth first seach from that start state and mark all reachable states from the start state. Repeat until no new states get me ked.
If no accept state is marked, accept, otherwise reject.
4

Date: __/__/ __ Each element in B is an infinite sequence (b, b2, b, ...), where each b; E {0,1). Duppose B is countable. Then we can define a correspondance of between N= 11, 2, 1] and B. Openfiely for n EN, let f(n) = (bn, bn2--) where bn: is the ith bit in the n sequence. Now, we define the infinite sequence == (c1, CL, CL) C = (c, c2, c3, ...) (B, where c; = 1-b; for each i EN. The ith bit in C is the opposite of the ith bit in the ith sequence. For each n= 1,2,3..., CEB differs from the nth sequence in the nth bit, so a deces not equal flu) for any n, which is a Contradiction. Hence B is uncontable.

4.	
	ACB, BCA, AUB = Ex.
	A and B are recognizable by largrages MA and Mg.
	Ma and Mg will accept in a finite amount of time, so Me will accept or reject in a finite amount of time given that one of these mechines and accepts. As AUB = 50, one will accept.
	Thus for any string to E WE Ex, MC will halt. Cangrage C is thus decidable.
	Me input strong we Ex.
1-	step Ma and MB over W.
2.	IC Mo accept. accept
3.	If Ma acceptor reject reject.
	Otherwise, reflect.
	The definition of seperatability indicates that A and B are separable if there exists a decidable language C -> puch that A S C and B S C. As shown above, C is decidable. A S B S C and B C A S A C where A and B are disjoint. So the constraints of selected ability have keen pats fied.
	#learnthesmarterway

5

let P ke the set of all prohoun automata let language L = ExEP | x hos a useless state].

To show L is devidely use design a turing smachine which accepts only strong in L. We know that weather a PA has an empty language is decidable, and we may reduce the question of whether a given state q is useless to this question by making q the only accept state and then determing whether the resulting PDA has an empty language. If yes, then q is a useless state. Our Turing Machine may therefore solve the question of whether there are any useless states by performing this tost for each state in order

Date: __/_/_ 6. Assume A is defined as follows A = { anb In 203 and B = {b), over input E = le, b3. F: Ex> 5* := F(w) = {b if w \ A, } > Notre, if A is a contest free language. then it is Turing-decidable. f is a competable function. WEA iff f(w): b, which is true iff f(w) GA Hence, A is not a regular language, but B is as it is finite.

The Rice theorem states that whenever we try to analyze any non-trivial property of-a rewrively enemerable an agraye; then the property will always be undecidable. a) Here, infiniteness is a non-trivial property as it is satisfied by some languages (L= Ex) and not by others (L-E(ac) (ab)].) Do by Rice Theorem, we can pay that the given language is undecidable. b) Here, L(M) being equal to E+ signifies that we want LCM) to accept the same strings as Ex. This is a non-trivial property as it is satisfied by L= Ex, and rejected by other Janguago. So, by Rice Theorem, we can say that the given language is underidable.