m08 v01 store sales prediction

September 12, 2021

1 0.0. IMPORTS

```
[1]: import math
     import numpy as np
     import pandas as pd
     import random
     import pickle
     import warnings
     import inflection
     import seaborn as sns
     import xgboost as xgb
     from scipy
                                import stats as ss
     from boruta
                                import BorutaPy
     from matplotlib
                                import pyplot as plt
     from IPython.display
                                import Image
     from IPython.core.display import HTML
     from sklearn.metrics
                                import mean_absolute_error, mean_squared_error
                                import RandomForestRegressor
     from sklearn.ensemble
     from sklearn.linear_model import LinearRegression, Lasso
     from sklearn.preprocessing import RobustScaler, MinMaxScaler, LabelEncoder
     warnings.filterwarnings( 'ignore' )
```

1.1 0.1. Helper Functions

```
[2]: def cross_validation( x_training, kfold, model_name, model, verbose=False ):
    mae_list = []
    mape_list = []
    rmse_list = []
    for k in reversed( range( 1, kfold+1 ) ):
        if verbose:
            print( '\nKFold Number: {}'.format( k ) )
        # start and end date for validation
```

```
validation_start_date = x_training['date'].max() - datetime.timedelta(___
 \rightarrowdays=k*6*7)
        validation_end_date = x_training['date'].max() - datetime.timedelta(__
 \rightarrowdays=(k-1)*6*7)
        # filtering dataset
       training = x_training[x_training['date'] < validation_start_date]</pre>
        validation = x_training[(x_training['date'] >= validation_start_date) &__
 # training and validation dataset
        # training
        xtraining = training.drop( ['date', 'sales'], axis=1 )
        ytraining = training['sales']
        # validation
        xvalidation = validation.drop( ['date', 'sales'], axis=1 )
       yvalidation = validation['sales']
        # model
       m = model.fit( xtraining, ytraining )
        # prediction
       yhat = m.predict( xvalidation )
        # performance
       m_result = ml_error( model_name, np.expm1( yvalidation ), np.expm1(__
→yhat ) )
        # store performance of each kfold iteration
       mae_list.append( m_result['MAE'] )
       mape_list.append( m_result['MAPE'] )
       rmse_list.append( m_result['RMSE'] )
   return pd.DataFrame( {'Model Name': model name,
                          'MAE CV': np.round( np.mean( mae_list ), 2 ).astype(__
 \rightarrowstr ) + ' +/- ' + np.round( np.std( mae_list ), 2 ).astype( str ),
                          'MAPE CV': np.round( np.mean( mape_list ), 2 ).
\rightarrowastype(str) + '+/- ' + np.round(np.std(mape_list), 2).astype(str),
                          'RMSE CV': np.round( np.mean( rmse_list ), 2 ).
→astype(str) + ' +/- ' + np.round(np.std(rmse_list), 2).astype(str)
\rightarrow}, index=[0])
def mean_percentage_error( y, yhat ):
   return np.mean( ( y - yhat ) / y )
```

```
def mean_absolute_percentage_error( y, yhat ):
    return np.mean( np.abs( ( y - yhat ) / y ) )
def ml_error( model_name, y, yhat ):
    mae = mean_absolute_error( y, yhat )
    mape = mean_absolute_percentage_error( y, yhat )
    rmse = np.sqrt( mean_squared_error( y, yhat ) )
    return pd.DataFrame( { 'Model Name': model_name,
                           'MAE': mae,
                           'MAPE': mape,
                           'RMSE': rmse }, index=[0] )
def cramer_v( x, y ):
    cm = pd.crosstab( x, y ).as_matrix()
    n = cm.sum()
    r, k = cm.shape
    chi2 = ss.chi2_contingency( cm )[0]
    chi2corr = max( 0, chi2 - (k-1)*(r-1)/(n-1) )
    kcorr = k - (k-1)**2/(n-1)
   rcorr = r - (r-1)**2/(n-1)
    return np.sqrt( (chi2corr/n) / ( min( kcorr-1, rcorr-1 ) ) )
def jupyter_settings():
   %matplotlib inline
    %pylab inline
    plt.style.use( 'bmh' )
    plt.rcParams['figure.figsize'] = [25, 12]
    plt.rcParams['font.size'] = 24
    display( HTML( '<style>.container { width:100% !important; }</style>') )
    pd.options.display.max columns = None
    pd.options.display.max_rows = None
    pd.set_option( 'display.expand_frame_repr', False )
    sns.set()
```

```
[3]: jupyter_settings()
```

Populating the interactive namespace from numpy and matplotlib <IPython.core.display.HTML object>

1.2 0.2. Loading data

```
[5]: df_sales_raw = pd.read_csv( '../data/train.csv', low_memory=False )
    df_store_raw = pd.read_csv( '../data/store.csv', low_memory=False )

# merge
    df_raw = pd.merge( df_sales_raw, df_store_raw, how='left', on='Store' )
```

2 1.0. PASSO 01 - DESCRICAO DOS DADOS

```
[5]: df1 = df_raw.copy()
```

2.1 1.1. Rename Columns

2.2 1.2. Data Dimensions

```
[7]: print( 'Number of Rows: {}'.format( df1.shape[0] ) )
print( 'Number of Cols: {}'.format( df1.shape[1] ) )
```

Number of Rows: 1017209 Number of Cols: 18

2.3 1.3. Data Types

```
[8]: df1['date'] = pd.to_datetime( df1['date'] )
df1.dtypes
```

```
[8]: store int64
day_of_week int64
date datetime64[ns]
```

```
sales
                                           int64
                                           int64
customers
open
                                           int64
                                           int64
promo
state_holiday
                                          object
school_holiday
                                           int64
                                          object
store_type
assortment
                                          object
                                         float64
competition_distance
competition_open_since_month
                                         float64
competition_open_since_year
                                         float64
promo2
                                           int64
promo2_since_week
                                         float64
promo2_since_year
                                         float64
promo_interval
                                          object
dtype: object
```

2.4 1.4. Check NA

```
[9]: df1.isna().sum()
```

```
0
[9]: store
     day_of_week
                                             0
     date
                                             0
     sales
                                             0
     customers
                                             0
                                             0
     open
                                             0
     promo
                                             0
     state_holiday
     school_holiday
                                             0
                                             0
     store_type
     assortment
                                             0
     competition_distance
                                         2642
                                       323348
     competition_open_since_month
     competition_open_since_year
                                       323348
                                             0
     promo2
     promo2_since_week
                                       508031
                                       508031
     promo2_since_year
     promo_interval
                                       508031
     dtype: int64
```

2.5 1.5. Fillout NA

```
[10]: df1.sample()
```

[10]: store day_of_week date sales customers open promo state_holiday school_holiday store_type assortment competition_distance

```
promo_interval
     promo2_since_week promo2_since_year
                274
                                              3802
     1010793
                               7 2013-01-06
                                                         932
                                                                        0
     0
                                b
                                                           3640.0
     NaN
                                  NaN
                                            1
                                                           10.0
                                                                            2013.0
     Jan, Apr, Jul, Oct
[11]: #competition_distance
     df1['competition_distance'] = df1['competition_distance'].apply( lambda x:__
      \rightarrow200000.0 if math.isnan(x) else x)
      #competition_open_since_month
     df1['competition open since month'] = df1.apply( lambda x: x['date'].month if__
      →math.isnan(x['competition_open_since_month']) else_
      #competition_open_since_year
     df1['competition_open_since_year'] = df1.apply( lambda x: x['date'].year if_
      →math.isnan(x['competition_open_since_year']) else_
      →x['competition_open_since_year'], axis=1 )
      #promo2_since_week
     df1['promo2 since week'] = df1.apply( lambda x: x['date'].week if math.isnan(___

¬x['promo2_since_week'] ) else x['promo2_since_week'], axis=1 )
      #promo2 since year
     df1['promo2 since year'] = df1.apply( lambda x: x['date'].year if math.isnan(___
      →x['promo2_since_year'] ) else x['promo2_since_year'], axis=1 )
      #promo_interval
     month_map = {1: 'Jan', 2: 'Fev', 3: 'Mar', 4: 'Apr', 5: 'May', 6: 'Jun', _
      →7: 'Jul', 8: 'Aug', 9: 'Sep', 10: 'Oct', 11: 'Nov', 12: 'Dec'}
     df1['promo_interval'].fillna(0, inplace=True )
     df1['month_map'] = df1['date'].dt.month.map( month_map )
     df1['is_promo'] = df1[['promo_interval', 'month_map']].apply( lambda x: 0 if_
      →x['promo_interval'] == 0 else 1 if x['month_map'] in x['promo_interval'].
      ⇒split(',') else 0, axis=1)
[12]: df1.isna().sum()
[12]: store
                                     0
                                     0
     day_of_week
     date
                                     0
                                     0
     sales
```

competition_open_since_month competition_open_since_year promo2

```
customers
                                  0
                                  0
open
promo
                                  0
                                  0
state_holiday
school_holiday
                                  0
store_type
                                  0
assortment
                                  0
                                  0
competition_distance
competition open since month
                                  0
competition_open_since_year
                                  0
promo2
                                  0
promo2_since_week
                                  0
promo2_since_year
                                  0
promo_interval
                                  0
                                  0
month_map
is_promo
                                  0
dtype: int64
```

2.6 1.6. Change Data Types

2.7 1.7. Descriptive Statistics

2.7.1 1.7.1. Numerical Atributes

```
[15]: # Central Tendency - mean, meadina
ct1 = pd.DataFrame( num_attributes.apply( np.mean ) ).T
ct2 = pd.DataFrame( num_attributes.apply( np.median ) ).T

# dispersion - std, min, max, range, skew, kurtosis
d1 = pd.DataFrame( num_attributes.apply( np.std ) ).T
d2 = pd.DataFrame( num_attributes.apply( min ) ).T
d3 = pd.DataFrame( num_attributes.apply( max ) ).T
d4 = pd.DataFrame( num_attributes.apply( lambda x: x.max() - x.min() ) ).T
```

```
[15]:
                             attributes
                                            min
                                                      max
                                                               range
                                                                             mean
      median
                       std
                                  skew
                                          kurtosis
                                  store
                                            1.0
                                                   1115.0
                                                              1114.0
                                                                       558.429727
      558.0
                                        -1.200524
               321.908493
                           -0.000955
      1
                           day_of_week
                                            1.0
                                                      7.0
                                                                 6.0
                                                                         3.998341
      4.0
               1.997390
                          0.001593
                                     -1.246873
                                                            41551.0 5773.818972
                                  sales
                                            0.0
                                                  41551.0
      5744.0
               3849.924283
                             0.641460
                                          1.778375
                                            0.0
                                                   7388.0
                                                             7388.0
                                                                       633.145946
                              customers
      609.0
               464.411506
                             1.598650
                                         7.091773
                                            0.0
                                                      1.0
                                                                 1.0
                                                                         0.830107
                                   open
      1.0
               0.375539 -1.758045
                                       1.090723
      5
                                            0.0
                                                                 1.0
                                                                         0.381515
                                                      1.0
                                  promo
      0.0
               0.485758
                          0.487838
                                      -1.762018
                        school_holiday
                                                      1.0
                                                                 1.0
                                                                         0.178647
      6
                                            0.0
      0.0
               0.383056
                          1.677842
                                       0.815154
      7
                  competition distance
                                           20.0 200000.0
                                                          199980.0 5935.442677
              12547.646829 10.242344 147.789712
      2330.0
          competition_open_since_month
                                                                11.0
                                                                         6.786849
                                                     12.0
      7.0
               3.311085 -0.042076
                                     -1.232607
           competition_open_since_year 1900.0
                                                   2015.0
                                                               115.0 2010.324840
      2012.0
                  5.515591 -7.235657 124.071304
      10
                                 promo2
                                            0.0
                                                      1.0
                                                                 1.0
                                                                         0.500564
      1.0
               0.500000 -0.002255
                                      -1.999999
      11
                     promo2_since_week
                                            1.0
                                                     52.0
                                                                51.0
                                                                        23.619033
      22.0
               14.310057
                           0.178723
                                       -1.184046
      12
                     promo2_since_year 2009.0
                                                   2015.0
                                                                 6.0 2012.793297
      2013.0
                  1.662657 -0.784436
                                         -0.210075
      13
                                            0.0
                                                      1.0
                                                                 1.0
                                                                         0.155231
                               is_promo
      0.0
               0.362124
                          1.904152
                                       1.625796
```

```
[16]: sns.distplot( df1['competition_distance'], kde=False )
```

[16]: <matplotlib.axes._subplots.AxesSubplot at 0x1098a77f0>

2.7.2 1.7.2. Categorical Atributes

```
[17]: cat_attributes.apply( lambda x: x.unique().shape[0] )
[17]: state_holiday
     store_type
                         4
     assortment
                         3
     promo_interval
                         4
     month_map
                        12
      dtype: int64
[18]: aux = df1[(df1['state_holiday'] != '0') & (df1['sales'] > 0)]
      plt.subplot( 1, 3, 1 )
      sns.boxplot( x='state_holiday', y='sales', data=aux )
      plt.subplot( 1, 3, 2 )
      sns.boxplot( x='store_type', y='sales', data=aux )
      plt.subplot( 1, 3, 3 )
      sns.boxplot( x='assortment', y='sales', data=aux )
```

[18]: <matplotlib.axes._subplots.AxesSubplot at 0x109917760>

3 2.0. PASSO 02 - FEATURE ENGINEERING

[19]: df2 = df1.copy()

3.1 2.1. Mapa Mental de Hipoteses

[20]: Image('img/MindMapHypothesis.png') [20]: coggle Volume Compra Perto Escola Numeros Filhos Bairro Localizacao Salario Clientes Age Urbano Profissao Centro Perto Hospital Familia Numero de Funcionarios Frequencia Compra Estoque Lojas Tamanho DAILY STORE SALES Sortimento Marketing Competidores Exposicao Loja Feriados Preco **Produtos** Quantidade Em Stock Dia Promocao Temporal Mes Hora Final de Semana Saldao, Sales

3.2 2.2. Criacao das Hipoteses

3.2.1 2.2.1. Hipoteses Loja

- 1. Lojas com número maior de funcionários deveriam vender mais.
- 2. Lojas com maior capacidade de estoque deveriam vender mais.
- 3. Lojas com maior porte deveriam vender mais.
- 4. Lojas com maior sortimentos deveriam vender mais.
- 5. Lojas com competidores mais próximos deveriam vender menos.
- 6. Lojas com competidores à mais tempo deveriam vendem mais.

3.2.2 2.2.2. Hipoteses Produto

- 1. Lojas que investem mais em Marketing deveriam vender mais.
- 2. Lojas com maior exposição de produto deveriam vender mais.
- 3. Lojas com produtos com preço menor deveriam vender mais.
- 5. Lojas com promoções mais agressivas (descontos maiores), deveriam vender mais.
- 6. Lojas com promoções ativas por mais tempo deveriam vender mais.
- 7. Lojas com mais dias de promoção deveriam vender mais.
- 8. Lojas com mais promoções consecutivas deveriam vender mais.

3.2.3 2.2.3. Hipoteses Tempo

- 1. Lojas abertas durante o feriado de Natal deveriam vender mais.
- 2. Lojas deveriam vender mais ao longo dos anos.
- 3. Lojas deveriam vender mais no segundo semestre do ano.
- 4. Lojas deveriam vender mais depois do dia 10 de cada mês.
- 5. Lojas deveriam vender menos aos finais de semana.
- 6. Lojas deveriam vender menos durante os feriados escolares.

3.3 2.3. Lista Final de Hipóteses

- 1. Lojas com maior sortimentos deveriam vender mais.
- 2. Lojas com competidores mais próximos deveriam vender menos.
- 3. Lojas com competidores à mais tempo deveriam vendem mais.
- 4. Lojas com promoções ativas por mais tempo deveriam vender mais.

- 5. Lojas com mais dias de promoção deveriam vender mais.
- 7. Lojas com mais promoções consecutivas deveriam vender mais.
- 8. Lojas abertas durante o feriado de Natal deveriam vender mais.
- 9. Lojas deveriam vender mais ao longo dos anos.
- 10. Lojas deveriam vender mais no segundo semestre do ano.
- 11. Lojas deveriam vender mais depois do dia 10 de cada mês.
- 12. Lojas deveriam vender menos aos finais de semana.
- 13. Lojas deveriam vender menos durante os feriados escolares.

3.4 2.4. Feature Engineering

```
[21]: # year
     df2['year'] = df2['date'].dt.year
     df2['month'] = df2['date'].dt.month
      # day
     df2['day'] = df2['date'].dt.day
      # week of year
     df2['week_of_year'] = df2['date'].dt.weekofyear
      # year week
     df2['year_week'] = df2['date'].dt.strftime( '%Y-%W' )
      # competition since
     df2['competition_since'] = df2.apply( lambda x: datetime.datetime(__
      →month=x['competition_open_since_month'],day=1 ), axis=1 )
     df2['competition\_time\_month'] = ((df2['date'] - df2['competition\_since'])/30_{\cup}
      →).apply( lambda x: x.days ).astype( int )
      # promo since
     df2['promo_since'] = df2['promo2_since_year'].astype( str ) + '-' +__

→df2['promo2_since_week'].astype( str )
     df2['promo_since'] = df2['promo_since'].apply( lambda x: datetime.datetime.
      \rightarrowstrptime( x + '-1', '%Y-%W-%w' ) - datetime.timedelta( days=7 ) )
     df2['promo_time_week'] = ( ( df2['date'] - df2['promo_since'] )/7 ).apply(__
      →lambda x: x.days ).astype( int )
      # assortment
```

4 3.0. PASSO 03 - FILTRAGEM DE VARIÁVEIS

```
[22]: df3 = df2.copy()
```

4.1 3.1. Filtragem das Linhas

```
[23]: df3 = df3[(df3['open'] != 0) & (df3['sales'] > 0)]
```

4.2 3.2. Selecao das Colunas

```
[24]: cols_drop = ['customers', 'open', 'promo_interval', 'month_map']
df3 = df3.drop( cols_drop, axis=1 )
```

5 4.0. PASSO 04 - ANALISE EXPLORATORIA DOS DADOS

```
[25]: df4 = df3.copy()
```

5.1 4.1. Analise Univariada

5.1.1 4.1.1. Response Variable

```
[26]: sns.distplot( df4['sales'], kde=False )
```

[26]: <matplotlib.axes._subplots.AxesSubplot at 0x11f7a3910>

5.1.2 4.1.2. Numerical Variable

[27]: num_attributes.hist(bins=25);

5.1.3 4.1.3. Categorical Variable

```
[28]: # state_holiday
plt.subplot( 3, 2, 1 )
a = df4[df4['state_holiday'] != 'regular_day']
sns.countplot( a['state_holiday'] )
```

```
plt.subplot(3, 2, 2)
sns.kdeplot( df4[df4['state holiday'] == 'public holiday']['sales'],u
→label='public_holiday', shade=True )
sns.kdeplot( df4[df4['state_holiday'] == 'easter_holiday']['sales'],u
→label='easter holiday', shade=True )
sns.kdeplot( df4[df4['state_holiday'] == 'christmas']['sales'],__
⇒label='christmas', shade=True )
# store_type
plt.subplot(3, 2, 3)
sns.countplot( df4['store_type'] )
plt.subplot(3, 2, 4)
sns.kdeplot( df4[df4['store_type'] == 'a']['sales'], label='a', shade=True )
sns.kdeplot( df4[df4['store_type'] == 'b']['sales'], label='b', shade=True )
sns.kdeplot( df4[df4['store_type'] == 'c']['sales'], label='c', shade=True )
sns.kdeplot( df4[df4['store_type'] == 'd']['sales'], label='d', shade=True )
# assortment
plt.subplot(3, 2, 5)
sns.countplot( df4['assortment'] )
plt.subplot(3, 2, 6)
sns.kdeplot( df4[df4['assortment'] == 'extended']['sales'], label='extended', __
⇒shade=True )
sns.kdeplot( df4[df4['assortment'] == 'basic']['sales'], label='basic',__
→shade=True )
sns.kdeplot( df4[df4['assortment'] == 'extra']['sales'], label='extra', u
 →shade=True )
```

[28]: <matplotlib.axes._subplots.AxesSubplot at 0x15bf1af40>

5.2 4.2. Analise Bivariada

5.2.1 H1. Lojas com maior sortimentos deveriam vender mais.

FALSA Lojas com MAIOR SORTIMENTO vendem MENOS.

[29]: <matplotlib.axes._subplots.AxesSubplot at 0x171f91a30>

5.2.2 H2. Lojas com competidores mais próximos deveriam vender menos.

FALSA Lojas com COMPETIDORES MAIS PROXIMOS vendem MAIS.

```
[30]: | aux1 = df4[['competition_distance', 'sales']].groupby('competition_distance').

sum().reset_index()

     plt.subplot( 1, 3, 1 )
     sns.scatterplot( x ='competition distance', y='sales', data=aux1 );
     plt.subplot( 1, 3, 2 )
     bins = list( np.arange( 0, 20000, 1000) )
     aux1['competition_distance_binned'] = pd.cut( aux1['competition_distance'],
      →bins=bins )
     aux2 = aux1[['competition_distance_binned', 'sales']].groupby(__
      sns.barplot( x='competition_distance_binned', y='sales', data=aux2 );
     plt.xticks( rotation=90 );
     plt.subplot( 1, 3, 3 )
     x = sns.heatmap( aux1.corr( method='pearson' ), annot=True );
     bottom, top = x.get_ylim()
     x.set_ylim( bottom+0.5, top-0.5 );
```


5.2.3 H3. Lojas com competidores à mais tempo deveriam vendem mais.

FALSE Lojas com COMPETIDORES À MAIS TEMPO vendem MENOS.

5.2.4 H4. Lojas com promoções ativas por mais tempo deveriam vender mais.

FALSA Lojas com promocoes ativas por mais tempo vendem menos, depois de um certo periodo de promocao

```
[32]: aux1 = df4[['promo_time_week', 'sales']].groupby( 'promo_time_week').sum().
      →reset_index()
      grid = GridSpec( 2, 3 )
      plt.subplot( grid[0,0] )
      aux2 = aux1[aux1['promo_time_week'] > 0] # promo extendido
      sns.barplot( x='promo_time_week', y='sales', data=aux2 );
      plt.xticks( rotation=90 );
      plt.subplot( grid[0,1] )
      sns.regplot( x='promo_time_week', y='sales', data=aux2 );
      plt.subplot( grid[1,0] )
      aux3 = aux1[aux1['promo_time_week'] < 0] # promo regular</pre>
      sns.barplot( x='promo_time_week', y='sales', data=aux3 );
      plt.xticks( rotation=90 );
      plt.subplot( grid[1,1] )
      sns.regplot( x='promo_time_week', y='sales', data=aux3 );
      plt.subplot( grid[:,2] )
      sns.heatmap( aux1.corr( method='pearson' ), annot=True );
```


- 5.2.5 H5. Lojas com mais dias de promoção deveriam vender mais.
- 5.2.6 H7. Lojas com mais promoções consecutivas deveriam vender mais.

FALSA Lojas com mais promocoes consecutivas vendem menos

```
[33]: df4[['promo', 'promo2', 'sales']].groupby(['promo', 'promo2']).sum().
      →reset_index()
        promo
[33]:
              promo2
                          sales
                     1482612096
           0
                   0
     1
           0
                   1
                     1289362241
     2
                     1628930532
            1
                   0
            1
                     1472275754
                   1
[34]: | aux1 = df4[( df4['promo'] == 1 ) & ( df4['promo2'] == 1 )][['year_week',__
     ax = aux1.plot()
     aux2 = df4[( df4['promo'] == 1 ) & ( df4['promo2'] == 0 )][['year_week',__
      →'sales']].groupby( 'year_week' ).sum().reset_index()
     aux2.plot( ax=ax )
     ax.legend( labels=['Tradicional & Extendida', 'Extendida']);
```


5.2.7 H8. Lojas abertas durante o feriado de Natal deveriam vender mais.

FALSA Lojas abertas durante o feriado do Natal vendem menos.

5.2.8 H9. Lojas deveriam vender mais ao longo dos anos.

FALSA Lojas vendem menos ao longo dos anos

```
[36]: aux1 = df4[['year', 'sales']].groupby( 'year' ).sum().reset_index()

plt.subplot( 1, 3, 1 )
    sns.barplot( x='year', y='sales', data=aux1 );

plt.subplot( 1, 3, 2 )
    sns.regplot( x='year', y='sales', data=aux1 );

plt.subplot( 1, 3, 3 )
    sns.heatmap( aux1.corr( method='pearson' ), annot=True );
```


5.2.9 H10. Lojas deveriam vender mais no segundo semestre do ano.

FALSA Lojas vendem menos no segundo semestre do ano

```
[37]: aux1 = df4[['month', 'sales']].groupby( 'month' ).sum().reset_index()

plt.subplot( 1, 3, 1 )
    sns.barplot( x='month', y='sales', data=aux1 );

plt.subplot( 1, 3, 2 )
    sns.regplot( x='month', y='sales', data=aux1 );

plt.subplot( 1, 3, 3 )
    sns.heatmap( aux1.corr( method='pearson' ), annot=True );
```


5.2.10 H11. Lojas deveriam vender mais depois do dia 10 de cada mês.

VERDADEIRA Lojas vendem mais depois do dia 10 de cada mes.

5.2.11 H12. Lojas deveriam vender menos aos finais de semana.

VERDADEIRA Lojas vendem menos nos final de semana

5.2.12 H13. Lojas deveriam vender menos durante os feriados escolares.

VERDADEIRA Lojas vendem menos durante os feriadso escolares, except os meses de Julho e Agosto.

5.2.13 4.2.1. Resumo das Hipoteses

Hipoteses	Conclusao	Relevancia
H1	Falsa	Baixa
H2	Falsa	Media
Н3	Falsa	Media
H4	Falsa	Baixa
Н5	_	_
H7	Falsa	Baixa
Н8	Falsa	Media

```
H9 Falsa Alta
H10 Falsa Alta
H11 Verdadeira Alta
H12 Verdadeira Alta
H13 Verdadeira Baixa
```

5.3 4.3. Analise Multivariada

5.3.1 4.3.1. Numerical Attributes

```
[43]: correlation = num_attributes.corr( method='pearson' )
sns.heatmap( correlation, annot=True );
```


5.3.2 4.3.2. Categorical Attributes

```
[44]: # only categorical data
a = df4.select_dtypes( include='object' )

# Calculate cramer V
a1 = cramer_v( a['state_holiday'], a['state_holiday'] )
a2 = cramer_v( a['state_holiday'], a['store_type'] )
a3 = cramer_v( a['state_holiday'], a['assortment'] )

a4 = cramer_v( a['store_type'], a['state_holiday'] )
a5 = cramer_v( a['store_type'], a['store_type'] )
a6 = cramer_v( a['store_type'], a['assortment'] )
```

[44]: <matplotlib.axes._subplots.AxesSubplot at 0x122d1ad30>

[]:

6 5.0. PASSO 05 - DATA PREPARATION

[476]: df5 = df4.copy()

6.1 5.1. Normalização

[]:

6.2 5.2. Rescaling

6.3 5.3. Transformação

6.3.1 5.3.1. Encoding

```
[475]: # state_holiday - One Hot Encoding
df5 = pd.get_dummies( df5, prefix=['state_holiday'], columns=['state_holiday'])

# store_type - Label Encoding
le = LabelEncoder()
df5['store_type'] = le.fit_transform( df5['store_type'] )
pickle.dump( le, open( 'parameter/store_type_scaler.pkl', 'wb') )

# assortment - Ordinal Encoding
assortment_dict = {'basic': 1, 'extra': 2, 'extended': 3}
df5['assortment'] = df5['assortment'].map( assortment_dict )
```

6.3.2 5.3.2. Response Variable Transformation

```
[48]: df5['sales'] = np.log1p( df5['sales'] )
```

6.3.3 5.3.3. Nature Transformation

```
[49]: # day of week
                     df5['day_of_week_sin'] = df5['day_of_week'].apply(lambda x: np.sin(x * (2. *_lambda x: np.sin(x * (2
                         \rightarrownp.pi/7 ) )
                     df5['day_of_week_cos'] = df5['day_of_week'].apply(lambda x: np.cos(x * (2. *_
                         \rightarrow np.pi/7)))
                      # month
                     df5['month sin'] = df5['month'].apply( lambda x: np.sin( x * ( 2. * np.pi/12 )_{\sqcup}
                     df5['month_cos'] = df5['month'].apply(lambda x: np.cos(x * (2. * np.pi/12)_L)
                        →))
                      # day
                     df5['day_sin'] = df5['day'].apply(lambda x: np.sin(x * (2. * np.pi/30)))
                     df5['day_cos'] = df5['day'].apply(lambda x: np.cos(x * (2. * np.pi/30)))
                     # week of year
                     df5['week_of_year_sin'] = df5['week_of_year'].apply( lambda x: np.sin( x * ( 2._ u
                        \rightarrow* np.pi/52 ) )
                     df5['week_of_year_cos'] = df5['week_of_year'].apply( lambda x: np.cos( x * ( 2.__
                         →* np.pi/52 ) ) )
```

7 6.0. PASSO 06 - FEATURE SELECTION

```
[50]: df6 = df5.copy()
```

7.1 6.1. Split dataframe into training and test dataset

```
[51]: cols_drop = ['week_of_year', 'day', 'month', 'day_of_week', 'promo_since', 

\( \times' \) competition_since', 'year_week' ]

df6 = df6.drop( cols_drop, axis=1 )
```

```
[52]: # training dataset
X_train = df6[df6['date'] < '2015-06-19']
y_train = X_train['sales']

# test dataset
X_test = df6[df6['date'] >= '2015-06-19']
y_test = X_test['sales']

print( 'Training Min Date: {}'.format( X_train['date'].min() ) )
print( 'Training Max Date: {}'.format( X_train['date'].max() ) )

print( '\nTest Min Date: {}'.format( X_test['date'].min() ) )
```

```
print( 'Test Max Date: {}'.format( X_test['date'].max() ) )

Training Min Date: 2013-01-01 00:00:00

Training Max Date: 2015-06-18 00:00:00

Test Min Date: 2015-06-19 00:00:00

Test Max Date: 2015-07-31 00:00:00
```

7.2 6.2. Boruta as Feature Selector

```
[53]: ## training and test dataset for Boruta

#X_train_n = X_train.drop( ['date', 'sales'], axis=1 ).values

#y_train_n = y_train.values.ravel()

#

## define RandomForestRegressor

#rf = RandomForestRegressor( n_jobs=-1 )

#

## define Boruta

#boruta = BorutaPy( rf, n_estimators='auto', verbose=2, random_state=42 ).fit(
\[ \rightarrow X_train_n, y_train_n \]
```

7.2.1 6.2.1. Best Features from Boruta

```
[54]: #cols_selected = boruta.support_.tolist()

# # best features

#X_train_fs = X_train.drop( ['date', 'sales'], axis=1 )

#cols_selected_boruta = X_train_fs.iloc[:, cols_selected].columns.to_list()

# # not selected_boruta

#cols_not_selected_boruta = list( np.setdiff1d( X_train_fs.columns, □ → cols_selected_boruta ) )
```

7.3 6.3. Manual Feature Selection

```
[55]: cols_selected_boruta = [
    'store',
    'promo',
    'store_type',
    'assortment',
    'competition_distance',
    'competition_open_since_month',
    'competition_open_since_year',
    'promo2',
    'promo2_since_week',
    'promo2_since_year',
    'competition_time_month',
    'promo_time_week',
```

```
'day_of_week_sin',
  'day_of_week_cos',
  'month_sin',
  'month_cos',
  'day_sin',
  'day_cos',
  'week_of_year_sin',
  'week_of_year_cos']

# columns to add
feat_to_add = ['date', 'sales']

cols_selected_boruta_full = cols_selected_boruta.copy()
cols_selected_boruta_full.extend( feat_to_add )
```

8 7.0. PASSO 07 - MACHINE LEARNING MODELLING

```
[56]: x_train = X_train[ cols_selected_boruta ]
x_test = X_test[ cols_selected_boruta ]

# Time Series Data Preparation
x_training = X_train[ cols_selected_boruta_full ]
```

8.1 7.1. Average Model

[57]: Model Name MAE MAPE RMSE
0 Average Model 1354.800353 0.455051 1835.135542

```
8.2 7.2. Linear Regression Model
[58]: # model
      lr = LinearRegression().fit( x_train, y_train )
      # prediction
      yhat_lr = lr.predict( x_test )
      # performance
      lr_result = ml_error( 'Linear Regression', np.expm1( y_test ), np.expm1(__
      →yhat_lr ) )
      lr_result
[58]:
               Model Name
                                             MAPE
                                    MAE
                                                          RMSE
     O Linear Regression 1867.089774 0.292694 2671.049215
     8.2.1 7.2.1. Linear Regression Model - Cross Validation
[59]: | lr_result_cv = cross_validation(x_training, 5, 'Linear Regression', lr,
      →verbose=False )
```

```
lr_result_cv
```

[59]: Model Name MAE CV MAPE CV RMSE CV 0 Linear Regression 2081.73 +/- 295.63 0.3 +/- 0.02 2952.52 +/- 468.37

8.3 7.3. Linear Regression Regularized Model - Lasso

```
[60]: # model
      lrr = Lasso( alpha=0.01 ).fit( x_train, y_train )
      # prediction
      yhat_lrr = lrr.predict( x_test )
      # performance
      lrr_result = ml_error( 'Linear Regression - Lasso', np.expm1( y_test ), np.
      →expm1( yhat_lrr ) )
      lrr result
```

[60]: Model Name MAPE MAE RMSE O Linear Regression - Lasso 1891.704881 0.289106 2744.451737

8.3.1 7.3.1. Lasso - Cross Validation

```
[61]: | lrr_result_cv = cross_validation( x_training, 5, 'Lasso', lrr, verbose=False )
      lrr_result_cv
```

[61]: Model Name MAF. CV MAPE CV RMSE CV Lasso 2116.38 +/- 341.5 0.29 +/- 0.01 3057.75 +/- 504.26

8.4 7.4. Random Forest Regressor

```
[62]: # model
      rf = RandomForestRegressor( n_estimators=100, n_jobs=-1, random_state=42 ).fit(__
      →x_train, y_train )
      # prediction
      yhat rf = rf.predict( x test )
      # performance
      rf_result = ml_error( 'Random Forest Regressor', np.expm1( y_test ), np.expm1(_
      →yhat_rf ) )
      rf_result
[62]:
                     Model Name
                                                 MAPE
                                                              RMSE
                                         MAE
      O Random Forest Regressor 679.622763 0.09996 1011.191561
     8.4.1 7.4.1. Random Forest Regressor - Cross Validation
[63]: rf_result_cv = cross_validation(x_training, 5, 'Random Forest Regressor', rf, __
       →verbose=True )
      rf_result_cv
     KFold Number: 5
     KFold Number: 4
     KFold Number: 3
     KFold Number: 2
     KFold Number: 1
[63]:
                     Model Name
                                            MAE CV
                                                          MAPE CV
                                                                              RMSE CV
      0 Random Forest Regressor 837.68 +/- 219.1 0.12 +/- 0.02 1256.08 +/- 320.36
     8.5 7.5. XGBoost Regressor
[64]: # model
      model_xgb = xgb.XGBRegressor( objective='reg:squarederror',
                                    n_estimators=100,
                                    eta=0.01,
                                    max_depth=10,
                                    subsample=0.7,
                                    colsample_bytee=0.9 ).fit( x_train, y_train )
      # prediction
```

[64]: Model Name MAE MAPE RMSE

0 XGBoost Regressor 843.112292 0.122609 1250.952634

8.5.1 7.5.1. XGBoost Regressor - Cross Validation

```
[65]: xgb_result_cv = cross_validation(x_training, 5, 'XGBoost Regressor', □

→model_xgb, verbose=True)

xgb_result_cv
```

KFold Number: 5

KFold Number: 4

KFold Number: 3

KFold Number: 2

KFold Number: 1

[65]: Model Name MAE CV MAPE CV RMSE CV 0 XGBoost Regressor 1030.28 +/- 167.19 0.14 +/- 0.02 1478.26 +/- 229.79

8.6 7.6. Compare Model's Performance

8.6.1 7.6.1. Single Performance

```
[66]: modelling_result = pd.concat( [baseline_result, lr_result, lrr_result, ur_result, ur_result, xgb_result] )
modelling_result.sort_values( 'RMSE' )
```

```
[66]:
                       Model Name
                                          MAE
                                                   MAPE
                                                                RMSE
     0
          Random Forest Regressor
                                   679.622763 0.099960 1011.191561
     0
                XGBoost Regressor 843.112292 0.122609 1250.952634
     0
                    Average Model 1354.800353 0.455051 1835.135542
                Linear Regression
                                  1867.089774 0.292694
                                                         2671.049215
     O Linear Regression - Lasso
                                  1891.704881 0.289106 2744.451737
```

8.6.2 7.6.2. Real Performance - Cross Validation

```
[67]: modelling_result_cv = pd.concat( [lr_result_cv, lrr_result_cv, rf_result_cv, 

→xgb_result_cv] )
modelling_result_cv
```

```
[67]:
                     Model Name
                                             MAE CV
                                                           MAPE CV
                                                                               RMSE
     CV
              Linear Regression 2081.73 +/- 295.63 0.3 +/- 0.02 2952.52 +/-
     0
     468.37
                                  2116.38 +/- 341.5 0.29 +/- 0.01 3057.75 +/-
                          Lasso
     504.26
                                   837.68 +/- 219.1 0.12 +/- 0.02 1256.08 +/-
     O Random Forest Regressor
     320.36
              XGBoost Regressor 1030.28 +/- 167.19 0.14 +/- 0.02 1478.26 +/-
     229.79
```

9 8.0. PASSO 08 - HYPERPARAMETER FINE TUNING

9.1 8.1. Random Search

```
[69]: #final_result = pd.DataFrame()
      #for i in range( MAX EVAL ):
            # choose values for parameters randomly
            hp = \{ k: random.sample(v, 1)[0] \text{ for } k, v \text{ in } param.items() \}
      #
           print( hp )
      #
            # model
      #
      #
            model_xqb = xqb.XGBReqressor( objective='req:squarederror',
      #
                                            n_estimators=hp['n_estimators'],
      #
                                            eta=hp['eta'],
      #
                                            max_depth=hp['max_depth'],
      #
                                            subsample=hp['subsample'],
      #
                                            colsample_bytee=hp['colsample_bytree'],
      #
                                            min_child_weight=hp['min_child_weight'] )
```

```
#
# # performance
# result = cross_validation( x_training, 5, 'XGBoost Regressor', model_xgb,_\_
\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tint{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi{\text{\texi{\text{\texi{\texi{\text{\text{\text{\texi{\text{
```

 $[70]: \begin{tabular}{l} #final_result \\ \end{tabular}$

9.2 8.2. Final Model

```
[71]: param_tuned = {
          'n_estimators': 3000,
          'eta': 0.03,
          'max_depth': 5,
          'subsample': 0.7,
          'colsample_bytree': 0.7,
          'min_child_weight': 3
          }
}
```

[72]: Model Name MAE MAPE RMSE 0 XGBoost Regressor 664.974996 0.097529 957.774225