TD

Modèle DICE (Dynamic Integrated Climate Economy) de Nordhaus simplifié

Maël Forcier

November 27, 2024

A Modélisation économique

Le modèle DICE, imaginé en 1992 par Nordhaus, est un modèle de macroéconomie qui étudie l'évolution de l'économie mondiale. Le modèle est dynamique, les variables non-constantes seront indicés par les pas de temps n. La variable principale est le capital, noté K_n , c'est-à-dire la valeur en 0 de tous les biens matériels ou immatériels dans le monde. Le produit intérieur brut (PIB) en 1 noté 2 noté 2 noté 2 noté 3 somme de tous les revenus annuels d'une économie. La consommation notée 6 noté 1 noté 2 noté 3 somme en 5 de tous les biens et services perissables créés puis utilisés pendant une année. L'investissement en 5 noté 1 noté 1 noté 2 noté 3 noté 4 noté 5 noté 5 noté 6 noté 7 noté 8 noté 9 noté 9

- 1. On suppose que le PIB dépend uniquement de la consommation et l'investissement. Proposer une équation reliant Q_n , C_n et I_n .
- 2. Le capital accumulé se déprécie à un taux δ_K qui le fait diminuer entre chaque étape, mais l'investissement permet de générer du nouveau capital. Proposer une équation dite de dynamique reliant K_n , K_{n-1} , I_n et δ_K .

L'équation de Cobb-Douglas, classique en macroéconomie pour étudier la croissance, fait l'hypothèse que le PIB Q_n est égal au produit $AK_n^{\gamma}L_n^{1-\gamma}$ où A est appelé le facteur de productivité, γ l'élasticité du capital et L_n le travail, souvent approximé comme étant égal à la population. Pour simplifier, nous négligerons l'effet de la population et prendrons une élasticité du capital de $\gamma = 1$. Pour prendre en compte le réchauffement climatique, Nordhaus suppose que le PIB Q_n est également proportionnel à un facteur Ω_n qui modélise les effets du climat.

3. Proposer une équation de Cobb-Douglas simplifiée (sans le travail) et qui prend en compte le climat en reliant Q_n , A, Ω_n et K_n .

Selon Eurostat, l'investissement représente environ 23 % du PIB en Europe et cette part est stable entre 2005 et 2009. Pour simplifier, on considèrera que l'investissement représente un quart du PIB : $I_n = Q_n/4$.

4. Avec cette hypothèses, simplifier les équations pour obtenir une relation entre K_n , K_{n-1} , A, Ω_n et δ_K .

B Modélisation de l'effet du climat

Nous allons maintenant modéliser les dégâts causées par le réchauffement climatique. Nordhaus choisit de de modéliser Ω_n comme le rapport d'un accroissement du à un taux noté α_n modélisant les coûts d'investissement dans les technologies bas carbone et à une dépréciation du à un taux d_n modélisant les dommages que le réchauffement climatique cause sur le PIB :

$$\Omega_n = \frac{1 - \alpha_n}{1 + d_n}$$

On note T_n l'augmentation de la température en °C par rapport à l'ère préindustrielle soit 1850. En s'appuyant sur quelques papiers économiques de son époque, Nordhaus fait l'hypothèse qu'un réchauffement climatique de 3°C fait baisser le PIB de 1,33 %. Constatant que les dégats sur le PIB ne sont pas linéaires avec la température, Nordhaus suppose également que les dégâts évoluent comme une fonction dépendant linéairement du carré de la température.

5. Avec ces hypothèses, proposer une relation entre d_n et T_n .

On veut maintenant modéliser l'effet des émissions de gaz à effet de serre sur la température. On note M_n le total d'émissions cumulées dans l'atmosphère en $GtCO_2eq$. Pour rappel, le GIEC présente dans le graphique ci-dessous le lien entre les émissions cumulées et l'augmentation de la Température.

- 6. A partir du graphique ci-dessous, proposer une relation simple entre T_n et M_n
- 7. On commencera le modèle en 2000. On fixe alors la température T_0 comme la température de 2000 et les émissions cumulées M_0 comme celles de 2000. Proposer des valeurs arrondies de T_0 et M_0 , cohérentes avec l'équation précédente.

On note E_n les emissions à chaque pas de temps (flux), là où M_n constitue le stock. Les émissions évoluent selon une dynamique particulière entre les océans, l'atmosphère et le rayonnement solaire, qui suit les équations de la thermodynamique et de la mécanique des fluides. Pour simplifier, on considérera que toutes les émissions restent dans l'atmosphère.

8. Avec ces hypothèses simplifiées, proposer une équation entre M_n , M_{n-1} et E_n .

Enfin, Nordhaus considère une variable μ_n appelé "taux de contrôle des émissions". Elle modélise l'effort des gouvernements pour contrôler les émissions de l'économie mondiale :

$$E_n = (1 - \mu_n)\sigma Q_n$$

Avec σ une constante qui représente le facteur d'émission du PIB dans un scénario sans contrôle $\mu_n = 0$. Dans le cas $\mu_n = 1$, le contrôle est total, on n'émet pas de gaz à effet de serre.

9. Exprimer T_n en fonction de $\sigma, \, \mu_1, \cdots, \mu_n$ et Q_1, \cdots, Q_n

Enfin, Nordhaus estime que le coût de l'investissement α_n dans les technologies bas carbone s'exprime comme $0,0686\mu_n^{2,887}$. Pour simplifier, on pose $\alpha_n=0,05\mu_n^3$. Ceci donne

$$\Omega_n = \frac{1 - 0.05\mu_n^3}{1 + 0.0133(\frac{T_n}{3})^2}$$

Augmentation de la température à la surface du globe depuis 1850-1900 (°C) en fonction des émissions cumulées de CO₂ (GtCO₂)

C Scénario contrôle total

On considère dans cette partie un scénario où l'on décide de contrôler totalement les émissions : $\forall n, \mu_n = 1.$

- 10. Estimer à l'aide du graphique la température moyenne au début de l'expérience Calculer la température à tout temps n en fonction de la température T_0 au début de l'expérience.
- 11. Simplifier l'équation de la question 4 pour obtenir une relation entre K_n , K_{n-1} , A et δ_K .
- 12. Comment peut-on qualifier mathématiquement la suite $(K_n)_{n\in\mathbb{N}}$?
- 13. Calculer K_n pour tout n, en fonction de K_0 , δ_K et A.

D Scénario sans contrôle

On considère dans cette partie un scénario où l'on décide de ne pas du tout contrôler les émissions : $\forall n, \mu_n = 0$.

14. La suite $(K_n)_{n\in\mathbb{N}}$ vérifie-t-elle la même propriété qu'à la question 12 ?

E Discussion et critiques

- 15. Quelles variables sont endogènes, c'est-à-dire qu'elles sont calculés par le modèle ? Quelles variables sont exogènes, c'est-à-dire fixées par hypothèse grâce à des données d'autres études ?
- 16. Comment qualifier le modèle top-down/bottom-up, statique/dynamique, stochastique/déterministe, d'optimisation, discret/continu ?
- 17. Quelles hypothèses pourraient être ajoutées?

F Comparaison avec le papier d'origine

18. Quelles sont les simplifications que l'on a faites par rapport au modèle DICE du papier de Nordhaus de 1992 ?