Nutrient	Function	Life Stage Group	RDA/AI*	UL ^a	Selected Food Sources	Adverse effects of excessive consumption	Special Considerations
Arsenic	No biological function in humans although animal data indicate a	Infants 0–6 mo 7–12 mo	ND ^b ND	ND ND	Dairy products, meat, poultry, fish, grains and cereal	No data on the possible adverse effects of organic arsenic compounds in food were found. Inorganic arsenic is a known toxic substance.	None
	requirement	Children 1–3 y	ND	ND		is a known toxic substance.	
	, roquiroment	4–8 y Males	ND	ND		Although the UL was not determined for arsenic, there is no justification for adding	
		9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	ND ND ND ND ND	ND ND ND ND ND		arsenic to food or supplements.	
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	ND ND ND ND ND	ND ND ND ND ND			
		Pregnancy ≤ 18 y 19-30y 31-50 y	ND ND ND	ND ND ND			
		Lactation ≤ 18 y 19-30y 31–50 y	ND ND ND	ND ND ND			
Boron	No clear biological function in humans although animal	Infants 0–6 mo 7–12 mo	ND ND	(mg/d) ND ND	Fruit-based beverages and products, potatoes, legumes, milk,	Reproductive and developmental effects as observed in animal studies.	None
	data indicate a functional role	Children 1–3 y 4–8 y	ND ND	3 6	avocado, peanut butter, peanuts		
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	ND ND ND ND ND	11 17 20 20 20 20			
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	ND ND ND ND ND	11 17 20 20 20 20			
		Pregnancy ≤ 18 y 19-30y 31-50 y	ND ND ND	17 20 20			
		Lactation ≤ 18 y 19-30y 31–50 y	ND ND ND	17 20 20			

NOTE: The table is adapted from the DRI reports, see www.nap.edu. It represents Recommended Dietary Allowances (RDAs) in **bold type**, Adequate Intakes (Als) in ordinary type followed by an asterisk (*), and Tolerable Upper Intake Levels (ULs)^a. RDAs and Als may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the Al is the mean intake. The Al for other life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data prevent being able to specify with confidence the percentage of individuals covered by this intake.

^aUL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B₁₂, pantothenic acid, biotin, or carotenoids. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.

^bND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin E, Selenium, and Carotenoids (2000); and Dietary Reference Intakes for Vitamin A, Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). These reports may be accessed via www.nap.edu. Copyright 2001 by The National Academies. All rights reserved.

Nutrient	Function	Life Stage Group	RDA/AI*	UL ^a	Selected Food Sources	Adverse effects of excessive consumption	Special Considerations
Calcium	Essential role in blood clotting, muscle contraction, nerve transmission, and	Infants 0-6 mo 7-12 mo Children	(mg/d) 210* 270*	(mg/d) ND ^b ND	Milk, cheese, yogurt, corn tortillas, calcium-set tofu, Chinese cabbage, kale, broccoli	Kidney stones, hypercalcemia, milk alkali syndrome, and renal insufficiency	Amenorrheic women (exercise- or anorexia nervosa-induced) have reduced net calcium absorption.
	bone and tooth formation	1–3 y 4–8 y	500* 800*	2,500 2,500			There is no consistent data to support that a high protein intake increases calcium requirement.
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	1,300* 1,300* 1,000* 1,000* 1,200* 1,200*	2,500 2,500 2,500 2,500 2,500 2,500			
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	1,300* 1,300* 1,000* 1,000* 1,200* 1,200*	2,500 2,500 2,500 2,500 2,500 2,500 2,500			
		Pregnancy ≤ 18 y 19-30y 31-50 y	1,300* 1,000* 1,000*	2,500 2,500 2,500			
		Lactation ≤ 18 y 19-30y 31–50 y	1,300* 1,000* 1,000*	2,500 2,500 2,500			
Chromium	Helps to maintain normal blood glucose levels	Infants 0-6 mo 7-12 mo	(μg/d) 0.2* 5.5*	ND ND	Some cereals, meats, poultry, fish, beer	Chronic renal failure	None
		Children 1–3 y 4–8 y	11* 15*	ND ND			
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	25* 35* 35* 35* 30* 30*	ND ND ND ND ND ND			
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	21* 24* 25* 25* 20* 20*	ND ND ND ND ND			
		Pregnancy ≤ 18 y 19-30y 31-50 y	29* 30* 30*	ND ND ND			
		Lactation ≤ 18 y 19-30y 31–50 y	44* 45* 45*	ND ND ND			

NOTE: The table is adapted from the DRI reports, see www.nap.edu. It represents Recommended Dietary Allowances (RDAs) in **bold type**, Adequate Intakes (Als) in ordinary type followed by an asterisk (*), and Tolerable Upper Intake Levels (ULS)^a. RDAs and Als may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the Al is the mean intake. The Al for other life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data prevent being able to specify with confidence the percentage of individuals covered by this intake.

^bND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); and Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). These reports may be accessed via www.nap.edu. Copyright 2001 by the National Academies. All rights reserved.

^aUL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B₁₂, pantothenic acid, biotin, or carotenoids. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.

Nutrient	Function	Life Stage Group	RDA/AI*	UL ^a	Selected Food Sources	Adverse effects of excessive consumption	Special Considerations
Copper	Component of enzymes in iron metabolism	Infants 0–6 mo 7–12 mo	(μg/d) 200* 220*	(μg/d) ND ^b ND	Organ meats, seafood, nuts, seeds, wheat bran cereals, whole grain	Gastrointestinal distress, liver damage	Individuals with Wilson's disease, Indian childhood cirrhosis and idiopathic copper toxicosis may be
		Children 1–3 y 4–8 y	340 440	1,000 3,000	products, cocoa products		at increased risk of adverse effects from excess copper intake.
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	700 890 900 900 900 900	5,000 8,000 10,000 10,000 10,000 10,000			
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	700 890 900 900 900 900	5,000 8,000 10,000 10,000 10,000 10,000			
		Pregnancy ≤ 18 y 19-30y 31-50 y	1000 1000 1000	8,000 10,000 10,000			
		Lactation ≤ 18 y 19-30y 31–50 y	1300 1300 1300	8,000 10,000 10,000			
Fluoride	Inhibits the initiation and progression of dental caries and	Infants 0–6 mo 7–12 mo	(mg/d) 0.01* 0.5*	(mg/d) 0.7 0.9	Fluoridated water, teas, marine fish, fluoridated dental products	Enamel and skeletal fluorosis	None
	stimulates new bone formation	Children 1–3 y 4–8 y	0.7* 1*	1.3 2.2	·		
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	2* 3* 4* 4* 4* 4*	10 10 10 10 10 10			
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	2* 3* 3* 3* 3* 3*	10 10 10 10 10 10			
		Pregnancy ≤ 18 y 19-30y 31-50 y	3* 3* 3*	10 10 10			
		Lactation ≤ 18 y 19-30y 31–50 y	3* 3* 3*	10 10 10			

NOTE: The table is adapted from the DRI reports, see www.nap.edu. It represents Recommended Dietary Allowances (RDAs) in **bold type**, Adequate Intakes (Als) in ordinary type followed by an asterisk (*), and Tolerable Upper Intake Levels (ULs)^a. RDAs and Als may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the Al is the mean intake. The Al for other life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data prevent being able to specify with confidence the percentage of individuals covered by this intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin E, Selenium, and Carotenoids (2000); and Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). These reports may be accessed via www.nap.edu. Copyright 2001 by The Nationhal Academies. All rights reserved.

^aUL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B₁₂, pantothenic acid, biotin, or carotenoids. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.

^bND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

Nutrient	Function	Life Stage Group	RDA/AI*	ULª	Selected Food Sources	Adverse effects of excessive consumption	Special Considerations
lodine	Component of the thyroid hormones; and prevents gotter and	Infants 0–6 mo 7–12 mo	(μg/d) 110* 130*	(μg/d) ND ^b ND	Marine origin, processed foods, iodized salt	Elevated thyroid stimulating hormone (TSH) concentration	Individuals with autoimmune thyroid disease, previous iodine deficiency, or nodular
	cretinism	Children 1–3 y 4–8 y	90 90	200 300			goiter are distinctly susceptible to the adverse effect of excess iodine intake. Therefore,
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	120 150 150 150 150 150	600 900 1,100 1,100 1,100 1,100			individuals with these conditions may not be protected by the UL for iodine intake for the general population.
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	120 150 150 150 150 150	600 900 1,100 1,100 1,100 1,100			
		Pregnancy ≤ 18 y 19-30y 31-50 y	220 220 220	900 1,100 1,100			
		Lactation ≤ 18 y 19-30y 31–50 y	290 290 290	900 1,100 1,100			
Iron (mg/d)	Component of hemoglobin and numerous enzymes;	Infants 0–6 mo 7–12 mo	(mg/d) 0.27* 11	(mg/d) 40 40	Fruits, vegetables and fortified bread and grain products such as cereal (non-	Gastrointestinal distress	Non-heme iron absorption is lower for those consuming vegetarian diets than for those eating
	prevents microcytic hypochromic anemia	Children 1–3 y 4–8 y	7 10	40 40	heme iron sources), meat and poultry (heme iron sources)	nonvegetarian diets. Therefore, it has been suggested that the iron requirement for those	
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y	8 11 8 8	40 45 45 45 45			consuming a vegetarian diet is approximately 2- fold greater than for those consuming a nonvegetarian diet.
		> 70 y Females 9–13 y	8	45 40			Recommended intake assumes 75% of iron is from heme iron sources.
		14–18 y 19–30 y 31-50 y 50-70 y > 70 y	15 18 18 8 8	45 45 45 45 45 45			
		Pregnancy ≤ 18 y 19-30y 31-50 y	27 27 27	45 45 45			
		Lactation ≤ 18 y 19-30y 31–50 y	10 9 9	45 45 45			

NOTE: The table is adapted from the DRI reports, see www.nap.edu. It represents Recommended Dietary Allowances (RDAs) in **bold type**, Adequate Intakes (Als) in ordinary type followed by an asterisk (*), and Tolerable Upper Intake Levels (ULs)^a. RDAs and Als may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the Al is the mean intake. The Al for other life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data prevent being able to specify with confidence the percentage of individuals covered by this intake.

^bND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids (2000); and Dietary Reference Intakes for Vitamin A, Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). These reports may be accessed via www.nap.edu. Copyright 2001 by the National Academies. All rights reserved.

^aUL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B₁₂, pantothenic acid, biotin, or carotenoids. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.

Nutrient	Function	Life Stage Group	RDA/AI*	ULª	Selected Food Sources	Adverse effects of excessive consumption	Special Considerations
Magnesium	Cofactor for enzyme systems	Infants 0–6 mo 7–12 mo Children	(mg/d) 30* 75*	(mg/d) ND ^b ND	Green leafy vegetables, unpolished grains, nuts, meat, starches, milk	There is no evidence of adverse effects from the consumption of naturally occurring magnesium in foods.	None
		1–3 y 4–8 y Males	80 130	65 110		Adverse effects from magnesium containing supplements may include osmotic diarrhea.	
		9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	240 410 400 420 420 420	350 350 350 350 350 350		The UL for magnesium represents intake from a pharmacological agent only and does not include intake from food and water.	
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	240 360 310 320 320 320	350 350 350 350 350 350			
		Pregnancy ≤ 18 y 19-30y 31-50 y	400 350 360	350 350 350			
		Lactation ≤ 18 y 19-30y 31–50 y	360 310 320	350 350 350			
Manganese	Involved in the formation of bone, as well as in enzymes involved in amino acid, cholesterol, and carbohydrate metabolism	Infants 0–6 mo 7–12 mo Children 1–3 y 4–8 y	(mg/d) 0.003* 0.6* 1.2* 1.5*	(mg/d) ND ND 2 3	Nuts, legumes, tea, and whole grains	Elevated blood concentration and neurotoxicity	Because manganese in drinking water and supplements may be more bioavailable than manganese from food, caution should be taken when using manganese
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	1.9* 2.2* 2.3* 2.3* 2.3* 2.3*	6 9 11 11 11			supplements especially among those persons already consuming large amounts of manganese from diets high in plant products. In addition, individuals with liver disease may be
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	1.6* 1.6* 1.8* 1.8* 1.8*	6 9 11 11 11			distinctly susceptible to the adverse effects of excess manganese intake.
		Pregnancy ≤ 18 y 19-30y 31-50 y	2.0* 2.0* 2.0*	9 11 11			
		Lactation ≤ 18 y 19-30y 31–50 y	2.6* 2.6* 2.6*	9 11 11			

NOTE: The table is adapted from the DRI reports, see www.nap.edu. It represents Recommended Dietary Allowances (RDAs) in **bold type**, Adequate Intakes (Als) in ordinary type followed by an asterisk (*), and Tolerable Upper Intake Levels (ULs)^a. RDAs and Als may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the Al is the mean intake. The Al for other life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data prevent being able to specify with confidence the percentage of individuals covered by this intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin E, Selenium, and Carotenoids (2000); and Dietary Reference Intakes for Vitamin A, Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). These reports may be accessed via www.nap.edu. Copyright 2001 by The National Academies. All rights reserved.

^aUL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B₁₂, pantothenic acid, biotin, or carotenoids. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.

^bND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

Nutrient	Function	Life Stage Group	RDA/AI*	UL ^a	Selected Food Sources	Adverse effects of excessive consumption	Special Considerations
Molybdenum	Cofactor for enzymes involved in catabolism of sulfur amino acids, purines	Infants 0-6 mo 7-12 mo Children	(μg/d) 2* 3*	(μg/d) ND ^b ND	Legumes, grain products and nuts	Reproductive effects as observed in animal studies.	Individuals who are deficient in dietary copper intake or have some dysfunction in copper metabolism that makes
	and pyridines.	1–3 y 4–8 y	17 22	300 600			them copper-deficient could be at increased risk of molybdenum toxicity.
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	34 43 45 45 45 45	1,100 1,700 2,000 2,000 2,000 2,000 2,000			
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	34 43 45 45 45 45	1,100 1,700 2,000 2,000 2,000 2,000 2,000			
		Pregnancy ≤ 18 y 19-30y 31-50 y	50 50 50	1,700 2,000 2,000			
		Lactation ≤ 18 y 19-30y 31–50 y	50 50 50	1,700 2,000 2,000			
Nickel	No clear biological function in humans has been identified. May serve as a cofactor of metalloenzymes	Infants 0–6 mo 7–12 mo Children 1–3 y	ND ND	(mg/d) ND ND	Nuts, legumes, cereals, sweeteners, chocolate milk powder, chocolate candy	Decreased body weight gain Note: As observed in animal studies	Individuals with preexisting nickel hypersensitivity (from previous dermal exposure) and kidney dysfunction are distinctly susceptible to the
	and facilitate iron absorption or metabolism in microorganisms.	4-8 y Males 9-13 y 14-18 y 19-30 y 31-50 y 50-70 y > 70 y	ND	0.3 0.6 1.0 1.0 1.0 1.0			adverse effects of excess nickel intake
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	ND ND ND ND ND ND	0.6 1.0 1.0 1.0 1.0			
		Pregnancy ≤ 18 y 19-30y 31-50 y	ND ND ND	1.0 1.0 1.0			
		Lactation ≤ 18 y 19-30y 31–50 y	ND ND ND	1.0 1.0 1.0			

NOTE: The table is adapted from the DRI reports, see www.nap.edu. It represents Recommended Dietary Allowances (RDAs) in **bold type**, Adequate Intakes (Als) in ordinary type followed by an asterisk (*), and Tolerable Upper Intake Levels (ULS)^a. RDAs and Als may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the Al is the mean intake. The Al for other life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data prevent being able to specify with confidence the percentage of individuals covered by this intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin E, Selenium, and Carotenoids (2000); and Dietary Reference Intakes for Vitamin A, Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). These reports may be accessed via www.nap.edu. Copyright 2001 by The National Academies. All rights reserved.

^aUL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B₁₂, pantothenic acid, biotin, or carotenoids. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.

^bND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

Nutrient	Function	Life Stage Group	RDA/AI*	UL ^a	Selected Food Sources	Adverse effects of excessive consumption	Special Considerations
Phosphorus	Maintenance of pH, storage and transfer of energy and nucleotide synthesis	Infants 0-6 mo 7-12 mo Children	(mg/d) 100* 275*	(mg/d) ND ^b ND	Milk, yogurt, ice cream, cheese, peas, meat, eggs, some cereals and	Metastatic calcification, skeletal porosity, interference with calcium absorption	Athletes and others with high energy expenditure frequently consume amounts from food greater than the UL
	synthesis	1–3 y 4–8 y	460 500	3,000 3,000	breads		without apparent effect.
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	1,250 1,250 700 700 700 700 700	4,000 4,000 4,000 4,000 4,000 3,000			
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	1,250 1,250 700 700 700 700	4,000 4,000 4,000 4,000 4,000 4,000 3,000			
		Pregnancy ≤ 18 y 19-30y 31-50 y	1,250 700 700	3,500 3,500 3,500			
		Lactation ≤ 18 y 19-30y 31–50 y	1,250 700 700	4,000 4,000 4,000			
Selenium	Defense against oxidative stress and regulation of thyroid hormone	Infants 0–6 mo 7–12 mo	(μg/d) 15* 20*	(μg/d) 45 60	Organ meats, seafood, plants (depending on soil selenium	Hair and nail brittleness and loss	None
	action, and the reduction and oxidation status of vitamin C and	Children 1–3 y 4–8 y	20 30	90 150	content)		
	other molecules	Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	40 55 55 55 55 55	280 400 400 400 400 400			
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	40 55 55 55 55 55	280 400 400 400 400 400 400			
		Pregnancy ≤ 18 y 19-30y 31-50 y	60 60 60	400 400 400			
		Lactation ≤ 18 y 19-30y 31–50 y	70 70 70	400 400 400			

NOTE: The table is adapted from the DRI reports, see www.nap.edu. It represents Recommended Dietary Allowances (RDAs) in **bold type**, Adequate Intakes (Als) in ordinary type followed by an asterisk (*), and Tolerable Upper Intake Levels (ULs)^a. RDAs and Als may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the Al is the mean intake. The Al for other life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data prevent being able to specify with confidence the percentage of individuals covered by this intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin E, Selenium, and Carotenoids (2000); and Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). These reports may be accessed via www.nap.edu. Copyright 2001 by The National Academeis. All rights reserved.

^aUL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B₁₂, pantothenic acid, biotin, or carotenoids. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.

^bND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

Nutrient	Function	Life Stage Group	RDA/AI*	ULª	Selected Food Sources	Adverse effects of excessive consumption	Special Considerations
Silicon	No biological function in humans has been identified.	Infants 0-6 mo 7-12 mo	ND ^b ND	ND ND	Plant-based foods	There is no evidence that silicon that occurs naturally in food and water produces adverse health effects.	None
	Involved in bone function in animal studies.	Children 1–3 y 4–8 y	ND ND	ND ND			
	studies.	Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	ND ND ND ND ND	ND ND ND ND ND			
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	ND ND ND ND ND	ND ND ND ND ND			
		Pregnancy ≤ 18 y 19-30y 31-50 y	ND ND ND	ND ND ND			
		Lactation ≤ 18 y 19-30y 31–50 y	ND ND ND	ND ND ND			
Vanadium	No biological function in humans has been identified.	Infants 0–6 mo 7–12 mo	ND ND	(mg/d) ND ND	Mushrooms, shellfish, black pepper, parsley, and dill seed.	Renal lesions as observed in animal studies.	None
		Children 1–3 y 4–8 y	ND ND	ND ND			
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	ND ND ND ND ND	ND ND 1.8 1.8 1.8			
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	ND ND ND ND ND	ND ND 1.8 1.8 1.8			
		Pregnancy ≤ 18 y 19-30y 31-50 y	ND ND ND	ND ND ND			
		Lactation ≤ 18 y 19-30y 31–50 y	ND ND ND	ND ND ND			

NOTE: The table is adapted from the DRI reports, see www.nap.edu. It represents Recommended Dietary Allowances (RDAs) in **bold type**, Adequate Intakes (Als) in ordinary type followed by an asterisk (*), and Tolerable Upper Intake Levels (ULs). RDAs and Als may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the Al is the mean intake. The Al for other life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data prevent being able to specify with confidence the percentage of individuals covered by this intake.

^bND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin E, Selenium, and Carotenoids (2000); and Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). These reports may be accessed via www.nap.edu. Copyright 2001 by The National Academies. All rights reserved.

^aUL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B₁₂, pantothenic acid, biotin, or carotenoids. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.

Nutrient	Function	Life Stage Group	RDA/AI*	ULª	Selected Food Sources	Adverse effects of excessive consumption	Special Considerations
Zinc	Component of multiple enzymes and proteins; involved in the	Infants 0–6 mo 7–12 mo	(mg/d) 2* 3	(mg/d) 4 5	Fortified cereals, red meats, certain seafood	Reduced copper status	Zinc absorption is lower for those consuming vegetarian diets than for those eating
	regulation of gene expression.	Children 1–3 y 4–8 y	3 5	7 12			nonvegetarian diets. Therefore, it has been suggested that the zinc requirement for those consuming a vegetarian
		Males 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	8 11 11 11 11	23 34 40 40 40 40			diet is approximately 2- fold greater than for those consuming a nonvegetarian diet.
		Females 9–13 y 14–18 y 19–30 y 31-50 y 50-70 y > 70 y	8 9 8 8 8	23 34 40 40 40 40			
		Pregnancy ≤ 18 y 19-30y 31-50 y	12 11 11	34 40 40			
		Lactation ≤ 18 y 19-30y 31–50 y	13 12 12	34 40 40			

NOTE: The table is adapted from the DRI reports, see www.nap.edu. It represents Recommended Dietary Allowances (RDAs) in **bold type**, Adequate Intakes (AIs) in ordinary type followed by an asterisk (*), and Tolerable Upper Intake Levels (ULs)^a. RDAs and AIs may both be used as goals for individual intake. RDAs are set to meet the needs of almost all (97 to 98 percent) individuals in a group. For healthy breastfed infants, the AI is the mean intake. The AI for other life stage and gender groups is believed to cover the needs of all individuals in the group, but lack of data prevent being able to specify with confidence the percentage of individuals covered by this intake.

^aUL = The maximum level of daily nutrient intake that is likely to pose no risk of adverse effects. Unless otherwise specified, the UL represents total intake from food, water, and supplements. Due to lack of suitable data, ULs could not be established for vitamin K, thiamin, riboflavin, vitamin B₁₂, pantothenic acid, biotin, or carotenoids. In the absence of ULs, extra caution may be warranted in consuming levels above recommended intakes.

^bND = Not determinable due to lack of data of adverse effects in this age group and concern with regard to lack of ability to handle excess amounts. Source of intake should be from food only to prevent high levels of intake.

SOURCES: Dietary Reference Intakes for Calcium, Phosphorous, Magnesium, Vitamin D, and Fluoride (1997); Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B₆, Folate, Vitamin B₁₂, Pantothenic Acid, Biotin, and Choline (1998); Dietary Reference Intakes for Vitamin E, Selenium, and Carotenoids (2000); and Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc (2001). These reports may be accessed via www.nap.edu. Copyright 2001 by The National Academies. All rights reserved.