Esercitazione 7

- Utilizzare i codici Python collaborative_filtering.py e recommendation_data.py, disponibili sulla piattaforma.
 - a. Eseguire il programma collaborative_filtering e verificare che il risultato sia quello atteso, confrontando l'output con quello illustrato nella Tabella 2.2 di [1]. Stampare anche gli indici di similarità di tutti gli utenti per Toby e il prodotto tra l'indice di similarità e ogni film. Stampare inoltre le previsioni di rating di Toby per i primi 3 film suggeriti.
 - b. Utilizzare la distanza euclidea per misurare la similarità tra gli utenti. Confrontare il risultato ottenuto rispetto al caso precedente. Stampare le previsioni di rating di Toby per i primi 3 film suggeriti.
 - c. Modificare il codice usando la seguente stima di valutazione

$$\hat{r}_{ki} = \mu_k + \frac{\sum_{j \in N(i)} sim(k, j) \left(r_{ji} - \mu_j\right)}{\sum_{j \in N(i)} sim(k, j)},$$

dove \hat{r}_{ki} è la raccomandazione fornita all'utente k per il prodotto i, μ_k è il voto medio dell'utente k, r_{ji} è il voto espresso dall'utente j per il prodotto i, N(i) è l'insieme di tutti gli utenti che hanno votato il prodotto i, sim(i,j) è la similarità tra gli utenti i e j, misurata secondo la formula di Pearson.

Confrontare i risultati ottenuti rispetto all'esercizio 1. Stampare le previsioni di rating di Toby per i primi 3 film suggeriti.

[1] Toby Segaran, *Programming collective intelligence: building smart web 2.0 applications*. O' Reilly Media, Inc.", 2007. Una copia elettronica del testo è disponibile sulla piattaforma e-learning.

2. (Facoltativo) Si consideri il sistema di raccomandazione basato sulla SVD troncata implementato nel codice Python **SVD_rs.py**. Esso è formulato sulla base delle valutazioni di alcuni utenti per sei stagioni:

	Ryne	Erin	Nathan	Pete
season 1	5	5	0	5
season 2	5	0	3	4
season 3	3	4	0	3
season 4	0	0	5	3
season 5	5	4	4	5
season 6	5	4	5	5

METODI NUMERICI PER L'INFORMATICA, PROF. A. CARDONE

- a. Nel codice, sulla base della SVD troncata con k=2, sono rappresentati gli utenti e i prodotti in uno spazio a due dimensioni. In tale spazio si lavora per fornire raccomandazioni al nuovo utente Luke. Luke aveva fornito queste valutazioni: [5 5 0 0 0 5]. Quali utenti risultano più simili a Luke?
- b. Si ripeta l'esercizio con k=3 e k=4. Quali utenti risultano più simili a Luke?
- 3. (Facoltativo) Utilizzare il codice **compression_svd.py** disponibile sulla piattaforma, calcolare la porzione di energia conservata con k=5, 20, 100, mediante la formula

$$\frac{\sum_{j=1}^{k} \sigma_j}{\sum_{j=1}^{n} \sigma_j}$$

dove σ_i sono i valori singolari della matrice X ed n è il numero totale dei valori singolari.

Determinare il valore minimo di k per cui si conserva l'80% dell'energia totale.