

Representation Theory Lecture 12 (13/05)

√ak:	Naam:
Datum:	Studierichting:
Docent:	Collegekaartnummer:
	Frobenius's Theorem (reformulation)
	Let G be a finite group and MCG a subgroup such that for all gEG,
	$H \cap 9H9^{-1} = \begin{cases} H & \text{if } g \in H \\ \{1\} & \text{if } g \notin H \end{cases}$
	Then the set $N = (G \setminus UgHg^{-1}) \cup \{1\}$ is a rangel subgroup of G of arder $(G:H)$, and $G = N \times H$.
	The Carry, and Carry,
	Idea: Construct a representation of a with Kernel N. We will first define
	a map (of sets)
	(1) C) A A A Sold A Managery)
	or map $(g \text{ sets})$ $\forall: G/\sim_G \longrightarrow H/\sim_H (\sim_G, \sim_H: conjugacy)$ Lemma: Let $g \in G \setminus N$. Then the set $[g]_G \cap H$ is a conjugacy class of H .
	Proof: By assumption, g is in some carryagate of H , so $LGLa = LhJa$ for some $h \in H$. Suppose $x \in Ca$ is such that $xhx^{-1} \in H$, i.e. claim that h , xhx^{-1}
	are caryingate in M. Note: hEHAX HX, so xEH since HAX-HX = [1]
	for x € H. □
	Define y: Ci/va -> H/vn
	$[g]_a \longmapsto \{[g]_a \cap \mathcal{H} \mid f \notin \mathcal{N}$ $[1]_n f \in \mathcal{N}$
	(well defined by the lemma). Note that we also have a map
	$i: H/\sim_H \longrightarrow Ce/\sim_a$ induces $C_{uass}(C_I) \xrightarrow{i*} C_{uass}(H)$
	[h], -> [h]a
	and are checks that Yoi = id H/m. In particular, i in injective, Y is
	suyechve.
	We obtain an induced map
	$f \longrightarrow f \circ \gamma$
	$V^* C^{R/n} \longrightarrow C^{G/n}$
- 17	Cclass(H) Cclass(G) of C-algebras.

Lenna: Let E \(\xi\). Wrife \(\psi^*\)\(\xi\) = \(\frac{\xi}{\chi\) \(\chi\) \(\chi\ (X(G) is a Massace C-basis of Citass (G)). Then $\forall x \in X(G): Cx \in \mathbb{Z}$. Proofe Cx = (x, 4* E)a Write E as E'+ d In, where In(h) = 1, The Invial character of 1, and d = E(1H), so E'(1) = O. Then $C_X = \langle X, \Psi^* \xi' \rangle_{\alpha} + d \langle X, Y^* 1_H \rangle = \frac{\langle i^* X, \xi' \rangle_{H}}{\epsilon_{emma}} \langle i^* X, \xi' \rangle_{H} + d \langle X, 1_{\alpha} \rangle_{\alpha}$ = $\langle i*x, \xi \rangle_n - d \langle i*x, I_n \rangle_n + d \langle x, I_a \rangle_a$ Note: if $f: G \longrightarrow V_X$ is the irreducible representation of G then $j^* X$ is the character of $f|_H: H \longrightarrow Aut_G V_X$; if this is isomorphic to $\bigoplus_{E \in X(H)} V_{E'}^{m_E}$, then $\langle i^* X, E \rangle_H = m_E$ and $\langle i^* X, 1_H \rangle_H = m_{1_H}$. Hence $C_X \in \mathbb{Z}_{-\square}$ Corollary: for all EEX(H) we have Y*EEX(G). Proof By the lemma, Y*E = \(\times \tau_{\times \times (G)} \) \(\times_{\times \times (G)} \) Then $1 = \langle \xi, \xi \rangle_{H} = \langle i * \psi * \xi, \xi \rangle_{H} \stackrel{\text{lemmal}}{=} \langle \psi * \xi, \psi * \xi \rangle_{G} = \sum_{\chi \in \chi(G)} \eta_{\chi}^{\perp}$ Hence are of the Mx & # I and all the others are O; we get $Y^*\xi = \pm \chi$ with $\chi \in \chi(G)$. Note: $\xi(1_H) = (Y^*\xi)(1_G) = \pm \chi(1_G)$. But $\xi(1_H)$, $\chi(1_A)$ are positive, so $\psi^*\xi = \chi$. $\forall: G/_{\sim_{\mathsf{A}}} \longrightarrow \mathcal{H}/_{\sim_{\mathsf{H}}}$ $[g]_a \longmapsto [1]_H \quad \text{for } g \in N$ $(\Upsilon^*E)([g]_a) = E(\Upsilon G)_a) = E([1]_u)$ for all $g \in N$

Corollary: If E E Creas (H) is the character of some finite dimensional representation V of H, then Y*E is the character of some finite dimensional representation of a whose restriction to H is isomorphic to V.

Proof of brobenius's Therens: Representation $f: H \longrightarrow Aut_{\mathbb{C}}(V)$ such that f is injective, e.g. $V = \mathbb{C}[H]$. Let E be the character of f, then Y^*E is the character of anne finite-dimensional representation $\tilde{f}: G \longrightarrow Aut_{\mathbb{C}}W$.

For all $g \in G$, $(Y^*E)(g) = \{E(h) \text{ if } [g]_a = [h]_a \text{ with } h \in H \setminus \{1\}$ $E(1) = \dim V \text{ if } g \in N$.

So gacks brually an W ⇒ g∈N i.e. N= ker P.
Induced representations
If MCCr are finite groups, we can restrict representations of G to M. In general, a representation of M cannot be extended to a representa-
In general, a representation of Il cannot be extended to a representa-
for y (2 of the same almeration
Nowever, There is a very useful functor Indin: GIHS Mod -> CKGS Mod
That nutreplies dimensions by (G:H)
Exercise 8 of problem sheet 9g: V a C[H]-module. Define
$W = \{f: G \longrightarrow V \mid \forall x \in G, h \in H: f(hx) = hf(x)\} $ with left G-action
(9f)(x) = f(xg); This is a p. (left) ClCe)-module. There are cononical
Nonryphisms C[G] ⊗CIN] V ~ > W ~ > CIN] Hom (C[G], V) of left
C(H)-modules.
Notahan: Wu denoted by IndaV, the induced representation of
V to Cr.
Exercise: ce: V-> V' C[H]-linear map -> There is a rapid C[G]-lin-
ear map $\alpha_* = \operatorname{Ind}_n^a \alpha : \operatorname{Ind}_n^a \vee \longrightarrow \operatorname{Ind}_n^a \vee'$
Exercise: $\alpha: V \longrightarrow V'$ $C[H]$ -linear map \Rightarrow there is a natural $C[G]$ -linear map $\alpha_* = \operatorname{Ind}_H^G \alpha: \operatorname{Ind}_H^G V \longrightarrow \operatorname{Ind}_H^G V'.$ This makes Ind_H^G into an exact functor $\operatorname{CH} \operatorname{Mod} \longrightarrow \operatorname{CGJ} \operatorname{Mod}$
We have seen: if Y: R->S & a ring hamomorphism, Man R-module,
N as S-module, Then there is a constitute group isomorphism sHom (S&RM,N) ~~> RHom (M, Y*N)
sHom (S&RM,N) ~~> RHam (M, Y*N)
(Exercise 5 of sheet 6)
Exercise: RMom(S,M) is a left S-module and there is a constrict gray
is omaphion RMom (4*N,M) -> sHom (N, RMom (S,M))
Theren (brobenus reciprocity): Let G be a finile group. MCG a sub-
Theren (brobenius reciprocity): Let G be a finite group. MCG a sub- group. For any C[G]-module Wirnte Res" W= (W mewed as a City-mod.
ule). Then there are commical isomorphisms
CIGIHam(IndaV, W) ~> CINIHam(V, ResaW)
CINTHON (Res, W, V) ~ CIGT Hom (W, Inda V)
∀ C[4]-nodules V, C[G]-nodules W.