排序算法比较

• 直接插入排序、折半插入排序和希尔排序 所用的策略都有这样的特点:依次将无序 序列中的一个记录,按关键字的大小插入 到已排好序的一个子序列的适当位置,直 到所有记录都插入为止。 • 冒泡排序和快速排序所用的策略都有这样的特点: 对于无序序列中的记录, 两两比较记录的关键字, 并对反序的两个记录进行交换, 直到整个序列中没有反序的记录为止。

简单选择排序和堆排序所用的策略都有这样的特点:不断地从无序序列中选取关键字最小或最大的记录,放在已排好序的序列的最后或最前,直到所有记录都被选取为止。

归并排序所用的策略有这样的特点:利用 归并技术不断对无序序列中的有序子序列 进行合并,直到合并成一个有序序列为止。

 希尔 改进版冒泡 O(n) O(n²) O(n²) O(1)	•	排序法	时间	可复杂度		空间复杂度	稳定性
 簡单选择 O(n²) O(n²) O(n²) O(1) 不稳定 希尔 O(1) 不稳定 改进版冒泡 O(n) O(n²) O(n²) O(1) 稳定 归并 O(nlog₂n) O(nlog₂n) O(nlog₂n) O(n) 稳定 快速 O(nlog₂n) O(n²) O(nlog₂n) O(log₂n)~O(n) 不稳定 	•		最好	最坏	平均		
 希尔 改进版冒泡 O(n) O(n²) O(n²) O(1)	•	直接插入	O(n)	$O(n^2)$	$O(n^2)$	O(1)	稳定
 改进版冒泡 O(n) O(n²) O(n²) O(1) 稳定 归并 O(nlog₂n) O(nlog₂n) O(nlog₂n) O(n) 稳定 快速 O(nlog₂n) O(n²) O(nlog₂n) O(log₂n)~O(n) 不稳定 	•	简单选择	$O(n^2)$	$O(n^2)$	$O(n^2)$	O(1)	不稳定
 归并 O(nlog₂n) O(nlog₂n) O(nlog₂n) O(n) 稳定 快速 O(nlog₂n) O(n²) O(nlog₂n) O(log₂n)~O(n) 不稳定 	•	希尔				O(1)	不稳定
• 快速 O(nlog ₂ n) O(n ²) O(nlog ₂ n) O(log ₂ n)~O(n) 不稳定	•	改进版冒泡	O(n)	$O(n^2)$	$O(n^2)$	O(1)	稳定
	•	归并	O(nlog ₂ n)	O(nlog ₂ n)	O(nlog ₂ n)	O(n)	稳定
• 堆 O(nlog ₂ n) O(nlog ₂ n) O(nlog ₂ n) O(1) 不稳定	•	快速	O(nlog ₂ n)	$O(n^2)$	O(nlog ₂ n)	$O(\log_2 n)^{\sim}O(n)$	不稳定
	•	堆	O(nlog ₂ n)	O(nlog ₂ n)	O(nlog ₂ n)	O(1)	不稳定

思考

• 排序算法的稳定性到底是由什么决定的?