SIMULACIÓN

Borras Joaquin, Meynet Luz & Bacella Juan Ignacio

¿Que es la simulación?

La simulación es una técnica que permite representar el comportamiento de un sistema real a través de un *modelo*.

¿Que es un modelo?

Un modelo es una <u>representación</u> simplificada de la realidad. Puede ser físico, matemático o computacional. En simulación, se utilizan modelos para imitar el funcionamiento de sistemas complejos.

Modelado y Simulación

¿Qué sistemas podemos modelar y simular?

Una fábrica: máquinas, personal, almacén, transporte

Servicios: clientes, mesas, ventanillas, cajero automático Emergencias: personal, habitaciones, equipos, transporte

Red de ordenadores: servidores, clientes, impresoras

¿Que beneficios trae la Simulación?

- Permite tomar decisiones sin riesgos.
- Reduce costos.
- Aumenta la comprensión del sistema.
- Permite obtener resultados sobre el funcionamiento del sistema.
- Mejora la planificación.

Tipos de modelo

- * **Físicos:** Maquetas, prototipos.
- Matemáticos: Basados en ecuaciones y fórmulas.
- Computacionales: Implementados en software para simular el comportamiento dinámico del sistema.

Modelos Deterministas y Estocàsticos

- Deterministas: No incluyen aleatoriedad. Cada ejecución produce el mismo resultado.
- Estocásticos: Incluyen componentes aleatorios, por lo que pueden dar distintos resultados en cada simulación.

Modelos Discretos, Continuos y de Agentes

- Discretos: Cambian en puntos específicos del tiempo.
- Continuos: Cambian constantemente en el tiempo.
- De Agentes: Modelan el comportamiento individual de múltiples agentes autónomos.

Etapas del Proceso de Simulación

- **1.** Definición del problema.
- 2. Formulación del modelo.
- 3. Recolección de datos.
- 4. Construcción del modelo.
- **5.** Verificación.
- 6. Validación.
- **7.** Experimentación.
- 8. Análisis de resultados.

1. Definición del Problema

Es identificar claramente qué situación se quiere analizar o mejorar mediante la simulación. Incluye entender los objetivos y las variables clave del sistema.

2. Formulación del modelo

Consiste en crear una representación teórica o conceptual del sistema real, incluyendo sus componentes, relaciones y comportamientos.

3. Recolección y Análisis de Datos

Es obtener la información necesaria del sistema real (tiempos, frecuencias, cantidades, etc.) para alimentar el modelo y hacerlo más realista.

4. Construcción del Modelo de Simulación

Implica crear el modelo en una herramienta computacional o matemática que permita simular el comportamiento del sistema.

5. Verificación

Que el modelo esté correctamente implementado y que su funcionamiento sea coherente con las reglas definidas.

6. Validación

Se trata de asegurar que el modelo refleje con fidelidad el sistema real, comparando sus resultados con datos reales conocidos.

7. Experimentación

Consiste en probar diferentes escenarios o cambios en el modelo para observar cómo afectan al comportamiento del sistema.

8. Análisis de Resultado

- Se interpretan los datos para determinar la mejor estrategia de optimización. Finalmente, se elabora un informe con:
 - Comparación de distintos escenarios simulados.
 - Recomendaciones basadas en los datos obtenidos.

Aplicaciones y casos de estudio

- Optimización de Redes de Datos.
- Simulación en la Gestión de la Cadena de Suministro.
- Desarrollo y Prueba de Software.
- Simulación en Salud.
- Simulación de Sistemas Ambientales.

Herramientas de Simulación

- Arena
- ❖ Simul8
- AnyLogic
- ❖ MATLAB
- ❖ Simio
- Lenguajes de programación como Python y Java

Arena 6.0

Tutorial Arena 6.0

Técnica de Simulación: Montecarlo

Surgió en los años 40

Es un tipo de algoritmo computacional que utiliza un *muestreo aleatorio* repetido para obtener la probabilidad de que ocurra una serie de resultados.

Técnica de Simulación: Montecarlo

- Cómo funciona: Genera números aleatorios para las variables inciertas de un modelo.
- Qué se obtiene: Una distribución de los posibles resultados.

- Cuándo se usa: Para analizar datos pasados y predecir resultados futuros.
- En qué campos se usa: Finanzas, gestión de proyectos, radiodiagnóstico, radioterapia, etc.
- Qué programas se usan: Excel, R Studio, Microsoft Project, @Risk, Cristal Ball, XLSTAT.

Técnica de Simulación: Orientada a objetos

Modelado Orientado a Objetos

- Objetos
- Clases
- Atributos / Propiedades
- Métodos

Conclusión

La simulación es una *herramienta* poderosa para <u>analizar</u> y <u>comprender</u> sistemas complejos, prever resultados y apoyar la toma de decisiones estratégicas en diversos campos.