SOME CONCERNS ABOUT SPARSE APPROXIMATIONS FOR GAUSSIAN PROCESS REGRESSION

Joaquin Quiñonero Candela

Max Planck Institute for Biological Cybernetics

Gaussian Process Round Table Sheffield, June 9 and 10, 2005

Menu

- Concerns about the quality of the predictive distributions
- Augmentation: a bit more expensive, but gooood ...
- Dude, where's my prior?
- A short tale about sparse greedy support set selection

The Regression Task

- Simplest case, additive independent Gaussian noise of variance σ^2
- Gaussian process prior over functions:

$$p(\boldsymbol{y}|\boldsymbol{f}) \sim \mathcal{N}(\boldsymbol{f}, \sigma^2 \mathbf{I}) , \qquad p(\boldsymbol{f}) \sim \mathcal{N}(0, \boldsymbol{K})$$

• Task: obtain the predictive distribution of f_* at the new input x_* :

$$p(f_*|x_*, \boldsymbol{y}) = \int p(f_*|x_*, \boldsymbol{f}) p(\boldsymbol{f}|\boldsymbol{y}) d\boldsymbol{f}$$

Need to compute the posterior distribution (expensive):

$$p(\boldsymbol{f}|\boldsymbol{y}) \sim \mathcal{N}\left(\boldsymbol{K}(\boldsymbol{K} + \sigma^2 \mathbf{I})^{-1} \boldsymbol{y}, \sigma^2 \boldsymbol{K}(\boldsymbol{K} + \sigma^2 \mathbf{I})^{-1}\right)$$

• ... and integrate f from the conditional distribution of f_* :

$$p(f_*|x_*, \mathbf{f}) \sim \mathcal{N}\left(\mathbf{K}_{*, \cdot} \mathbf{K}^{-1} \mathbf{y}, \mathbf{K}_{*, *} - \mathbf{K}_{*, \cdot} \mathbf{K}^{-1} \mathbf{K}_{*, \cdot}^{\top}\right)$$

Usual Reduced Set Approximations

- Consider some very common approximations
 - Naïve process approximation on subset of the data
 - Subset of regressors (Wahba, Smola and Bartlett...)
 - Sparse online GPs (Csató and Opper)
 - Fast Sparse Projected Process Approx (Seeger et al.)
 - Relevance Vector Machines (Tipping)
 - Augmented Reduced Rank GPs (Rasmussen, Quiñonero Candela)
- All based on considering only a subset I of the latent variables

$$p(f_*|x_*, \boldsymbol{y}) = \int p(f_*|x_*, \boldsymbol{f}_I) p(\boldsymbol{f}_I|\boldsymbol{y}) d\boldsymbol{f}_I$$

- However they differ in:
 - the way the support set I and the hyperparameters are learnt
 - the likelihood and/or predictive distribution approximations
- This has important consequences on the resulting predictive distribution
 - risk of over-fitting
 - degenerate approximations with nonsense predictive uncertainties

Naïve Process Approximation

- Extremely simple idea: throw away all the data outside *I*!
- ullet The posterior only benefits from the information contained in y_I :

$$p(\boldsymbol{f}_I|\boldsymbol{y}_I) \sim \mathcal{N}\left(\boldsymbol{K}_I(\boldsymbol{K}_I + \sigma^2 \mathbf{I})^{-1} \boldsymbol{y}_I, \sigma^2 \boldsymbol{K}_I(\boldsymbol{K}_I + \sigma^2 \mathbf{I})^{-1}\right)$$

The model underfits and is under-confident:

$$p(f_*|x_*, \boldsymbol{y}_I) \sim \mathcal{N}(\mu_*, \sigma_*^2)$$

$$\mu_* = \boldsymbol{K}_{*,I} (\boldsymbol{K}_I + \sigma^2 \mathbf{I})^{-1} \boldsymbol{y} , \quad \sigma_*^2 = \boldsymbol{K}_{*,*} - \boldsymbol{K}_{*,I} (\boldsymbol{K}_I + \sigma^2 \mathbf{I})^{-1} \boldsymbol{K}_{*,I}^\top$$

- ullet Training scales with m^3 , predicting with m and m^2 (mean and var)
- Baseline approximation: we want higher accuracy and confidence

Subset Of Regressors

Finite linear model with peculiar prior on the weigths:

$$f_* = \boldsymbol{K}_{*,I} \, \boldsymbol{\alpha}_I$$
, $\boldsymbol{\alpha}_I \sim \mathcal{N}(0, K_I^{-1})$ \Rightarrow $f_* = \boldsymbol{K}_{*,I} \, \boldsymbol{K}_I^{-1} \boldsymbol{f}_I$, $\boldsymbol{f}_I \sim \mathcal{N}(0, K_I)$

Posterior now benefits from all of y:

$$q(\boldsymbol{f}_{I}|\boldsymbol{y}) \propto \mathcal{N}(\boldsymbol{K}_{I,\cdot}^{\top}\boldsymbol{K}_{I}^{-1}\boldsymbol{f}_{I}|\boldsymbol{y},\sigma^{2}\boldsymbol{\mathbf{I}}) \cdot \mathcal{N}(\boldsymbol{f}_{I}|0,\boldsymbol{K}_{I}),$$

$$\sim \mathcal{N}\left(\boldsymbol{K}_{I}[\boldsymbol{K}_{I,\cdot}\boldsymbol{K}_{I,\cdot}^{\top}+\sigma^{2}\boldsymbol{K}_{I}]^{-1}\boldsymbol{K}_{I,\cdot}\boldsymbol{y},\sigma^{2}\boldsymbol{K}_{I}[\boldsymbol{K}_{I,\cdot}\boldsymbol{K}_{I,\cdot}^{\top}+\sigma^{2}\boldsymbol{K}_{I}]^{-1}\boldsymbol{K}_{I}\right)$$

• The conditional distribution of f_* is degenerate!

$$p(f_*|oldsymbol{f}_I) \sim \mathcal{N}\left(oldsymbol{K}_{*,I} \, oldsymbol{K}_I^{-1} oldsymbol{f}_I, oldsymbol{0}
ight)^ op$$

The predictive distribution produces nonsense errorbars

$$\mu_* = \boldsymbol{K}_{*,I} \left[\boldsymbol{K}_{I,\cdot} \boldsymbol{K}_{I,\cdot}^{\top} + \sigma^2 \, \boldsymbol{K}_I \right]^{-1} \boldsymbol{K}_{I,\cdot} \boldsymbol{y} ,$$
 $\sigma_*^2 = \sigma^2 \, \boldsymbol{K}_{*,I} \left[\boldsymbol{K}_{I,\cdot} \boldsymbol{K}_{I,\cdot}^{\top} + \sigma^2 \, \boldsymbol{K}_I \right]^{-1} \boldsymbol{K}_{*,I}^{\top}$

ullet Under the prior, only functions with m degrees of freedom

Projected Process (Seeger et al)

Basic principle: likelihood approximation

$$p(\boldsymbol{y}|\boldsymbol{f}_I) \sim (\boldsymbol{K}_{I,\cdot}^{\top} \boldsymbol{K}_I^{-1} \boldsymbol{f}_I, \sigma^2 \mathbf{I})$$

- Leads to exactly the same posterior as for Subset of Regressors
- But the conditional distribution is now non-degenerate (process approximation)

$$p(f_*|\boldsymbol{f}_I) \sim \mathcal{N}\left(\boldsymbol{K}_{*,I}\,\boldsymbol{K}_I^{-1}\boldsymbol{f}_I, \boldsymbol{K}_{*,*} - \boldsymbol{K}_{*,I}\,\boldsymbol{K}_I^{-1}\boldsymbol{K}_{*,I}\right)^{ op}$$

 Predictive distribution with same mean as Subset of Regressors, but with way under-confident predictive variance!

$$\mu_* = \boldsymbol{K}_{*,I} \left[\boldsymbol{K}_{I,\cdot} \boldsymbol{K}_{I,\cdot}^\top + \sigma^2 \, \boldsymbol{K}_{I} \right]^{-1} \boldsymbol{K}_{I,\cdot} \boldsymbol{y}$$

$$\sigma_*^2 = \boldsymbol{K}_{*,*} - \boldsymbol{K}_{*,I} \, \boldsymbol{K}_{I}^{-1} \boldsymbol{K}_{*,I}^\top + \sigma^2 \, \boldsymbol{K}_{*,I} \left[\boldsymbol{K}_{I,\cdot} \boldsymbol{K}_{I,\cdot}^\top + \sigma^2 \, \boldsymbol{K}_{I} \right]^{-1} \boldsymbol{K}_{*,I}^\top$$

Augmented Subset Of Regressors

- For each x_* , augment f_I with f_* ; new active set I*
- ullet Augmented posterior: $q\left(\left[egin{array}{c} oldsymbol{f}_I \\ f_* \end{array}\right] \middle| oldsymbol{y}
 ight)$
- ullet ... at a cost of $\mathcal{O}(nm)$ per test case: need to compute $K_{*, \boldsymbol{\cdot}} K_{I, \boldsymbol{\cdot}}^{\top}$
- aSoR:

$$egin{align} \mu_* &= oldsymbol{K}_{*, oldsymbol{\cdot}} \left[oldsymbol{Q} + rac{oldsymbol{v}_* oldsymbol{v}_*^ op}{c_*}
ight]^{-1} oldsymbol{y} \ \sigma_*^2 &= oldsymbol{K}_{*, *} - oldsymbol{K}_{*, oldsymbol{\cdot}} \left[oldsymbol{Q} + rac{oldsymbol{v}_* oldsymbol{v}_*^ op}{c_*}
ight]^{-1} oldsymbol{K}_{*, oldsymbol{\cdot}}^ op \end{aligned}$$

with the ususal approximate covariance:

$$oldsymbol{Q} = oldsymbol{K}_{I, \cdot}^{ op} oldsymbol{K}_{I}^{-1} oldsymbol{K}_{I, \cdot} + \sigma^2 oldsymbol{\mathrm{I}}$$

with the difference between actual and projected covariance of f_* and f:

$$oldsymbol{v}_* = oldsymbol{K}_{*,\boldsymbol{\cdot}}^{ op} - oldsymbol{K}_{I,\boldsymbol{\cdot}}^{ op} oldsymbol{K}_{I,*}^{-1} oldsymbol{K}_{I,*}$$

with the difference between the prior variance of f_* and the projected:

$$c_* = \boldsymbol{K}_{*,*} - \boldsymbol{K}_{I,*}^{\top} \boldsymbol{K}_I^{-1} \boldsymbol{K}_{I,*}$$

The Priors

The equivalent prior on $[f, f_*]^{\top}$ is $\mathcal{N}(0, \mathbf{P})$ with:

$$\boldsymbol{Q} = \boldsymbol{K}_{I,\cdot}^{\top} \boldsymbol{K}_{I}^{-1} \, \boldsymbol{K}_{I,\cdot}$$

Subset of Regressors:

$$oldsymbol{P} = egin{bmatrix} oldsymbol{Q} & oldsymbol{K}_{I,\cdot}^ op oldsymbol{K}_I^ op oldsymbol{K}_{I,*}^ op oldsymbol{K}_I^ op oldsymbol{K}_{I,*}^ op oldsymbol{K}$$

Projected Process

$$oldsymbol{P} = \left[egin{array}{ccc} oldsymbol{Q} & oldsymbol{K}_{I, oldsymbol{\cdot}}^{ op} oldsymbol{K}_{I}^{-1} oldsymbol{K}_{I, st} \ oldsymbol{K}_{I, st} & oldsymbol{K}_{st, st} \end{array}
ight]$$

Nyström: (positive definiteness!)

$$oldsymbol{P} = \left[egin{array}{cc} oldsymbol{Q} & oldsymbol{K}_{*, \cdot}^{ op} \ oldsymbol{K}_{*, \cdot} & oldsymbol{K}_{*, *} \end{array}
ight]$$

Ed and Zoubin's funky thing

$$oldsymbol{P} = egin{bmatrix} oldsymbol{Q} + oldsymbol{\Lambda} & oldsymbol{K}_{I, \cdot}^ op oldsymbol{K}_{I}^{-1} oldsymbol{K}_{I, *} \ oldsymbol{K}_{I, *}^ op oldsymbol{K}_{I, \cdot} & oldsymbol{K}_{*, *} \end{bmatrix}$$

$$\Lambda = \operatorname{diag}(\boldsymbol{K}.) - \operatorname{diag}(\boldsymbol{Q})$$

Augmented Subset of Regressors:

$$oldsymbol{P} = \left[egin{array}{ccc} oldsymbol{Q} + rac{oldsymbol{v}_* oldsymbol{v}_*^ op}{c_*} & oldsymbol{K}_{*, \cdot}^ op \ oldsymbol{K}_{*, \cdot} & oldsymbol{K}_{*, *} \end{array}
ight]$$

with:

$$oldsymbol{v}_* = oldsymbol{K}_{*, \cdot}^ op - oldsymbol{K}_{I, \cdot}^ op oldsymbol{K}_{I}^{-1} oldsymbol{K}_{I, *} \ , \qquad c_* = oldsymbol{K}_{*, *} - oldsymbol{K}_{I, *}^ op oldsymbol{K}_{I, *}^{-1} oldsymbol{K}_{I, *}$$

More on Ed and Zoubin's Method

Here's a way of looking at it: the prior is a posterior process

$$f_*| \boldsymbol{f}_I = \mathcal{N}(\boldsymbol{K}_{*,I} \, \boldsymbol{K}_I^{-1} \boldsymbol{f}_I, \boldsymbol{K}_{*,*} - \boldsymbol{K}_{*,I} \, \boldsymbol{K}_I^{-1} \boldsymbol{K}_{*,I}^{\top})$$
,

... well, almost: $E[f_+, f_* | f_I] = 0$

- ullet And then of course $oldsymbol{f}_I \sim \mathcal{N}(0, oldsymbol{K}_I)$
- The corresponding prior is

$$p(\mathbf{f}) = \mathcal{N}(0, \mathbf{K}_{*,*} \mathbf{I} + \mathbf{Q} - \operatorname{diag}(\mathbf{Q}))$$
, $\mathbf{Q} = \mathbf{K}_{I,*} \mathbf{K}_{I}^{-1} \mathbf{K}_{I,*}^{\top}$

- With a bit of algebra you recover the marginal likelihood and the predictive distribution
- I finished this 30 minutes ago, which is why I won't show figures on it! (well, I now may)
- but ...

Naïve Process Approximation

Subset of Regressors (degenerate)

Projected Process Approximation

Ed and Zoubin's Projected Process Method

Augmented SoR (pred scales with nm)

Comparing the Predictive Uncertainties

Smola and Bartett's Greedy Selection

Wrap Up

- Training: from $\mathcal{O}(n^3)$ to $\mathcal{O}(nm^2)$
- Predicting: from $\mathcal{O}(n^2)$ to $\mathcal{O}(m^2)$ (or $\mathcal{O}(nm)$)
- Be sparse if you must, but only then
- Beware of over-fitting prone greedy selection methods
- Do worry about the prior implied by the approximation!

Appendix: Healing the RVM by Augmentation (joint work with Carl Rasmussen)

Finite Linear Model

A Bad Probabilistic Model

The Healing: Augmentation

Augmentation?

- ullet Train once your m-dimensional model
- At each new test point add a new basis function
- Update the m+1-dimensional model (update posterior)
- Testing is now more expensive

Wait a minute ...

I don't care about probabilistic predictions!

Another Symptom: Underfitting

Abalone

	Squared error loss			Absol	ute erro	or loss	- log test density loss		
	RVM	RVM*	GP	RVM	RVM*	GP	RVM	RVM*	GP
Loss:	0.138	0.135	0.092	0.259	0.253	0.209	0.469	0.408	0.219
RVM	٠	not sig.	< 0.01	٠	0.07	< 0.01	•	< 0.01	< 0.01
RVM*		•	0.02		•	< 0.01		•	< 0.01
GP			•			•			•

Robot Arm

	Squared error loss			Abso	lute erro	r loss	- log test density loss			
	RVM	RVM*	GP	RVM	RVM*	GP	RVM	RVM*	GP	
Loss:	0.0043	0.0040	0.0024	0.0482	0.0467	0.0334	-1.2162	-1.3295	-1.7446	
RVM	•	< 0.01	< 0.01	•	< 0.01	< 0.01	•	< 0.01	< 0.01	
RVM*		•	< 0.01		•	< 0.01		•	< 0.01	
GP			•			•			•	

- GP (Gaussian Process): infinitely augmented linear model
- Beats finite linear models in all datasets I've looked at

Interlude

None of this happens with non-localized basis functions

Finite Linear Model

A Bad Probabilistic Model

The Healing: Augmentation

Appendix: Augmentation in Sparse GPs

- $\mathcal{O}(nm^2)$ sparse approx. to Gaussian Processes (Smola and Bartlett, 2001)
- Augmentation: same training, more expensive testing
- Better mean based and probabilistic performance

		_non-augmented _			augmented					
method	tr. neg ev.	MAE	MSE	NTL	MAE	MSE	NTL			
SGGP	_	0.0481	0.0048	-0.3525	0.0460	0.0045	-0.4613			
SGEV	-1.1555	0.0484	0.0049	-0.3446	0.0463	0.0045	-0.4562			
HPEV-rand	-1.0978	0.0503	0.0047	-0.3694	0.0486	0.0045	-0.4269			
HPEV-SGEV	-1.3234	0.0425	0.0036	-0.4218	0.0404	0.0033	-0.5918			
HPEV-SGGP	-1.3274	0.0425	0.0036	-0.4217	0.0405	0.0033	-0.5920			
2000 training - 2000 test										
<u>. </u>				_						
SGEV	-1.4932	0.0371	0.0028	-0.6223	0.0346	0.0024	-0.6672			
HPEV-rand	-1.5378	0.0363	0.0026	-0.6417	0.0340	0.0023	-0.7004			
36000 training - 4000 test										

