Stochastic formulation of generalized standard materials

Jérémy Bleyer

Laboratoire Navier, ENPC, Univ Gustave Eiffel, CNRS

CSMA 2024 Giens, 13-17 Mai 2024

Objectives

Material constitutive law: $\sigma = F(\varepsilon)$ uncertain material properties \Rightarrow need for an effective behavior

Objectives

Material constitutive law: $\sigma = F(\varepsilon)$ uncertain material properties \Rightarrow need for an effective behavior

must account for history-dependent behaviors and thermodynamic consistency

Generalized standard materials

Dissipative materials can be modeled using the GSM framework [Halphen & Nguyen, 1983]

- state variables: ε, α with $\alpha = p, \varepsilon^p, d, f$, etc.
- free energy: $\psi(\boldsymbol{\varepsilon}, \boldsymbol{\alpha})$
- pseudo-dissipation potential: $\phi(\dot{\varepsilon}, \dot{\alpha})$

 ψ and ϕ are convex, non-negative and zero at the origin

Evolution equations

$$\begin{split} \boldsymbol{\sigma} &= \boldsymbol{\sigma}^{\mathsf{nd}} + \boldsymbol{\sigma}^{\mathsf{d}} \\ 0 &= \boldsymbol{Y}^{\mathsf{nd}} + \boldsymbol{Y}^{\mathsf{d}} \\ (\boldsymbol{\sigma}^{\mathsf{nd}}, \boldsymbol{Y}^{\mathsf{nd}}) \in \partial_{(\boldsymbol{\varepsilon}, \boldsymbol{\alpha})} \psi(\boldsymbol{\varepsilon}, \boldsymbol{\alpha}) \\ (\boldsymbol{\sigma}^{\mathsf{d}}, \boldsymbol{Y}^{\mathsf{d}}) \in \partial_{(\dot{\boldsymbol{\varepsilon}}, \dot{\boldsymbol{\alpha}})} \phi(\dot{\boldsymbol{\varepsilon}}, \dot{\boldsymbol{\alpha}}) \end{split}$$

Generalized standard materials

Dissipative materials can be modeled using the GSM framework [Halphen & Nguyen, 1983]

- state variables: ε, α with $\alpha = p, \varepsilon^p, d, f$, etc.
- ullet free energy: $\psi(oldsymbol{arepsilon}, oldsymbol{lpha})$
- pseudo-dissipation potential: $\phi(\dot{\varepsilon}, \dot{\alpha})$

 ψ and ϕ are convex, non-negative and zero at the origin

Evolution equations

$$egin{aligned} oldsymbol{\sigma} &= oldsymbol{\sigma}^{\mathsf{nd}} + oldsymbol{\sigma}^{\mathsf{d}} \ 0 &= oldsymbol{Y}^{\mathsf{nd}} + oldsymbol{Y}^{\mathsf{d}} \ (oldsymbol{\sigma}^{\mathsf{nd}}, oldsymbol{Y}^{\mathsf{nd}}) \in \partial_{(oldsymbol{arepsilon}, \dot{oldsymbol{lpha}})} \psi(oldsymbol{arepsilon}, oldsymbol{lpha}) \ (oldsymbol{\sigma}^{\mathsf{d}}, oldsymbol{Y}^{\mathsf{d}}) \in \partial_{(\dot{oldsymbol{arepsilon}}, \dot{oldsymbol{lpha}})} \psi(\dot{oldsymbol{arepsilon}}, oldsymbol{lpha}) \end{aligned}$$

Advantages

- satisfies thermodynamic requirements such as positive dissipation, stability
- handles rate-dependent and rate-independent behaviors (for $\phi(x)$ homogeneous of degree 1)
- $\phi(x)$ usually **non-smooth** (plasticity)

Evolution equations

After time discretization, evolution equations are obtained from the incremental potential [Ortiz & Stainier, Mielke, etc.]

$$\psi(\boldsymbol{\varepsilon}, \boldsymbol{\alpha}) + \Delta t \phi\left(\frac{\boldsymbol{\varepsilon} - \boldsymbol{\varepsilon}_n}{\Delta t}, \frac{\boldsymbol{\alpha} - \boldsymbol{\alpha}_n}{\Delta t}\right)$$

Simplifying assumptions: $oldsymbol{arepsilon}$ is non-dissipative, ϕ is 1-homogeneous, single-step $oldsymbol{lpha}_n=0$

$$j(\varepsilon) := \inf_{\alpha} \psi(\varepsilon, \alpha) + \phi(\alpha)$$

 $\Rightarrow \sigma \in \partial_{\varepsilon} j$

Example: 1D linear elasticity + isotropic power-law hardening

$$\psi(\varepsilon, \alpha) = \psi_{el}(\varepsilon - \alpha) + \psi_{h}(\alpha)$$
$$= \frac{1}{2}E(\varepsilon - \alpha)^{2} + \frac{1}{m}H\alpha^{m}$$
$$\phi(\dot{\alpha}) = \sigma_{0}|\dot{\alpha}|$$

Uncertain case

Now j depends upon **stochastic parameters** ζ with known probability distribution **Goal**: formulate an **effective potential** to describe the effective behavior

$$j^{ ext{eff}}(arepsilon) = \mathcal{R}\left[j(arepsilon; \zeta)
ight]$$

Uncertain case

Now j depends upon stochastic parameters ζ with known probability distribution Goal: formulate an effective potential to describe the effective behavior

$$j^{ ext{eff}}(arepsilon) = \mathcal{R}\left[j(arepsilon; \zeta)
ight]$$

$$\psi(\varepsilon,\alpha) = \frac{1}{2} \mathbf{E}_{\zeta}(\varepsilon - \alpha)^{2} + \frac{1}{m} \mathbf{H}_{\zeta} \alpha^{m} \quad ; \quad \phi(\dot{\alpha}) = \sigma_{0\zeta} |\dot{\alpha}|$$

Outline

1 Average effective behavior

2 Risk-averse estimates

3 Optimisitic and pessimistic structural response

Average behavior

Uncertain convex potential: $j(\varepsilon;\zeta)$, conjugate potential $j^*(\sigma;\zeta)$

Stochastic programming framework

Two possibilities:

- $lacksymbol{arepsilon}$ $m{arepsilon}$ is a **first-stage** variable: $j^{ ext{eff}}(m{arepsilon}) = \mathbb{E}\left[j
 ight](m{arepsilon})$
- **2** σ is a **first-stage** variable $j^{*, eff}(\sigma) = \mathbb{E}[j^*](\sigma)$

(internal state variables α are always **second-stage** variables)

Average behavior

Uncertain convex potential: $j(\varepsilon;\zeta)$, conjugate potential $j^*(\sigma;\zeta)$

Stochastic programming framework

Two possibilities:

- **1** ε is a **first-stage** variable: $j^{\text{eff}}(\varepsilon) = \mathbb{E}[j](\varepsilon)$
- **2** $oldsymbol{\sigma}$ is a **first-stage** variable $j^{*, extsf{eff}}(oldsymbol{\sigma}) = \mathbb{E}\left[j^*
 ight](oldsymbol{\sigma})$

(internal state variables α are always **second-stage** variables)

e.g. Elasticity:
$$j(\varepsilon_{\zeta};\zeta) = \frac{1}{2}\varepsilon_{\zeta} : \mathbb{C}_{\zeta} : \varepsilon_{\zeta}$$

$$j^{\mathrm{eff}}(\varepsilon) = \mathbb{E}\left[\frac{1}{2}\varepsilon : \mathbb{C}_{\zeta} : \varepsilon\right] = \frac{1}{2}\varepsilon : \mathbb{E}\left[\mathbb{C}_{\zeta}\right] : \varepsilon$$
 or
$$j^{\mathrm{eff}}(\varepsilon) = \inf_{\substack{e_{\zeta} \\ e_{\zeta}}} \quad \mathbb{E}\left[\frac{1}{2}\varepsilon_{\zeta} : \mathbb{C}_{\zeta} : \varepsilon_{\zeta}\right] = \frac{1}{2}\varepsilon : \mathbb{E}\left[\mathbb{C}_{\zeta}^{-1}\right]^{-1} : \varepsilon$$
 s.t.
$$\mathbb{E}\left[\varepsilon_{\zeta}\right] = \varepsilon$$

Uncertain elastoplasticity with non-linear hardening

$$j(\varepsilon_{\zeta},\alpha_{\zeta}) = \frac{1}{2}E_{\zeta}(\varepsilon_{\zeta} - \alpha_{\zeta})^{2} + \frac{1}{m}H_{\zeta}(\alpha_{\zeta})^{m} + \sigma_{0\zeta}|\alpha_{\zeta}|$$

Primal formulation: ε as first-stage

$$j^{\text{eff}}(\varepsilon) = \inf_{\alpha_{\zeta}} \quad \frac{1}{2} \mathbb{E} \left[E_{\zeta} (\varepsilon - \alpha_{\zeta})^{2} \right] + \frac{1}{m} \mathbb{E} \left[H_{\zeta} (\alpha_{\zeta})^{m} \right] + \mathbb{E} \left[\sigma_{0\zeta} |\alpha_{\zeta}| \right]$$

Dual formulation: σ as first-stage

$$\begin{split} j^{\text{eff}}(\varepsilon) &= \inf_{\substack{e_{\zeta}, \alpha_{\zeta} \\ \zeta}} \quad \frac{1}{2} \mathbb{E} \left[E_{\zeta} (\varepsilon + e_{\zeta} - \alpha_{\zeta})^{2} \right] + \frac{1}{m} \mathbb{E} \left[H_{\zeta} (\alpha_{\zeta})^{m} \right] \\ &\quad + \sup_{\zeta} [\sigma_{0}(\zeta) |\alpha_{\zeta}|] \\ \text{s.t.} \quad \mathbb{E} \left[e_{\zeta} \right] &= 0 \end{split}$$

 \Rightarrow note how free energy and dissipation are **treated differently**! $\mathbb E$ vs sup

Monte-Carlo sampling approximation: GSM with \emph{N} internal variables solved using ${\tt cvxpy}$, 30 load steps

Hardening case $ar{H}=ar{E}/20$

Monte-Carlo sampling approximation: GSM with \emph{N} internal variables solved using ${\tt cvxpy}$, 30 load steps

Nearly perfectly plastic case $ar{H}=ar{E}/2000$

Monte-Carlo sampling approximation: GSM with N internal variables solved using cvxpy, 30 load steps

Nearly perfectly plastic case $\bar{H}=\bar{E}/2000$

some differences: progressive plasticity onset ("structural hardening"), almost similar yield strength $\mathbb{E}[X] \approx \mathbb{E}[X^{-1}]^{-1}$ for lognormal variables with small variance

Outline

1 Average effective behavior

2 Risk-averse estimates

3 Optimisitic and pessimistic structural response

Risk-averse measures

Risk-measure \mathcal{R} : assume X be a random cost: $\mathbb{E}[X] = \mathsf{OK}$ whereas $\mathcal{R}[X] = \mathsf{BAD}$ e.g.:

- the safety margin $\mathcal{R}[X] = \mathbb{E}[X] + k \operatorname{std}[X]$, for k > 0
- the worst-case value: $\mathcal{R}[X] = \sup X$
- the Value-at-Risk (VaR) for a level $\beta \in [0, 1]$ (or the β -quantile):

$$\mathcal{R}[X] = \mathsf{VaR}_{\beta}(X) = \mathsf{inf}\{Z \text{ s.t. } \mathbb{P}[Z \geq X] \geq \beta\}$$

• and many more...

Risk-averse measures

Risk-measure \mathcal{R} : assume X be a **random cost**: $\mathbb{E}[X] = \mathsf{OK}$ whereas $\mathcal{R}[X] = \mathsf{BAD}$ e.g.:

- the safety margin $\mathcal{R}[X] = \mathbb{E}[X] + k \operatorname{std}[X]$, for k > 0
- the worst-case value: $\mathcal{R}[X] = \sup X$
- the Value-at-Risk (VaR) for a level $\beta \in [0, 1]$ (or the β -quantile):

$$\mathcal{R}[X] = VaR_{\beta}(X) = \inf\{Z \text{ s.t. } \mathbb{P}[Z \geq X] \geq \beta\}$$

• and many more...

we look for good mathematical properties such as convexity, monotonicity, homogeneity ⇒ coherent risk measures [Artzner, 1999]

Risk-averse measures

Risk-measure \mathcal{R} : assume X be a **random cost**: $\mathbb{E}[X] = \mathsf{OK}$ whereas $\mathcal{R}[X] = \mathsf{BAD}$ e.g.:

- the safety margin $\mathcal{R}[X] = \mathbb{E}[X] + k \operatorname{std}[X]$, for k > 0
- the worst-case value: $\mathcal{R}[X] = \sup X$
- the Value-at-Risk (VaR) for a level $\beta \in [0, 1]$ (or the β -quantile):

$$\mathcal{R}[X] = VaR_{\beta}(X) = \inf\{Z \text{ s.t. } \mathbb{P}[Z \geq X] \geq \beta\}$$

• and many more...

we look for good mathematical properties such as convexity, monotonicity, homogeneity

- ⇒ coherent risk measures [Artzner, 1999]
 - safety margin and VaR are not coherent
 - worst-case value is coherent but too conservative
 - expected value is coherent but risk-neutral

Conditional Value-at-Risk (CVaR)

The Conditional Value-at-Risk (CVaR) is a coherent risk measure [Rockafellar, 2000]

$$\mathsf{CVaR}_{\beta}\left(X\right) = \mathbb{E}\left[X \text{ s.t. } X \geq \mathsf{VaR}_{\beta}(X)\right]$$

Conditional Value-at-Risk (CVaR)

The Conditional Value-at-Risk (CVaR) is a coherent risk measure [Rockafellar, 2000]

$$\mathsf{CVaR}_{\beta}(X) = \mathbb{E}\left[X \text{ s.t. } X \geq \mathsf{VaR}_{\beta}(X)\right]$$

Key result: convex optimization characterization

$$\mathsf{CVaR}_{\beta}\left(X\right) = \inf_{\lambda} \lambda + \frac{1}{1-\beta} \mathbb{E}\left[\left\langle X - \lambda \right\rangle_{+}\right]$$

Extends to random convex functions:

$$extstyle extstyle ext$$

Examples

1D elasticity:
$$j(\varepsilon_{\zeta};\zeta)=\frac{1}{2}E_{\zeta}\varepsilon_{\zeta}^{2}$$

$$j^{\mathsf{eff}}(\varepsilon) = \mathsf{CVaR}_{\beta}\left(\psi\right)\left(\varepsilon\right) = \frac{1}{2}\,\mathsf{CVaR}_{\beta}\left(E\right)\varepsilon^{2}$$

replaces uncertain Young modulus E_{ζ} with an **optimistic estimate** $\mathsf{CVaR}_{\beta}\left(E\right)$

General case

take CVaR on free-energy and dissipation potential + arepsilon first-stage

$$j^{\mathrm{eff}}(\varepsilon) = \inf_{\alpha_{\zeta}} \mathsf{CVaR}_{\beta} \left(\psi(\varepsilon, \alpha_{\zeta}; \zeta) \right) + \mathsf{CVaR}_{\beta} \left(\phi(\alpha_{\zeta}; \zeta) \right)$$

if $\beta=0$, $\mathsf{CVaR}=\mathbb{E}$ and we recover the **primal formulation** for the average behavior \Rightarrow results in **optimistic** stiffness, strength and hardening

Examples

1D elasticity:
$$j(\varepsilon_{\zeta};\zeta) = \frac{1}{2}E_{\zeta}\varepsilon_{\zeta}^{2}$$

$$j^{\mathrm{eff}}(\varepsilon) = \mathsf{CVaR}_{\beta}\left(\psi\right)\left(\varepsilon\right) = \frac{1}{2}\,\mathsf{CVaR}_{\beta}\left(E\right)\varepsilon^{2}$$

replaces uncertain Young modulus E_{ζ} with an **optimistic estimate** $\text{CVaR}_{\beta}(E)$

General case

take CVaR on free-energy and dissipation potential $+ \varepsilon$ first-stage

$$j^{\mathsf{eff}}(\varepsilon) = \inf_{\alpha_{\boldsymbol{\zeta}}} \mathsf{CVaR}_{\boldsymbol{\beta}} \left(\psi(\varepsilon, \alpha_{\boldsymbol{\zeta}}; \boldsymbol{\zeta}) \right) + \mathsf{CVaR}_{\boldsymbol{\beta}} \left(\phi(\alpha_{\boldsymbol{\zeta}}; \boldsymbol{\zeta}) \right)$$

if $\beta=0$, CVaR = $\mathbb E$ and we recover the **primal formulation** for the average behavior \Rightarrow results in **optimistic** stiffness, strength and hardening

what about pessimistic estimates?

need for a "left-tail" CVaR which still yields a **convex potential** we propose a **dual CVaR**, never seen in the literature.

need for a "left-tail" CVaR which still yields a **convex potential** we propose a **dual CVaR**, never seen in the literature.

Which definition? try...

$$\mathsf{dCVaR}_\beta\left(j\right) = \mathsf{CVaR}_\beta\left(j^*\right)^*$$

need for a "left-tail" CVaR which still yields a **convex potential** we propose a **dual CVaR**, never seen in the literature.

Which definition? try...

$$\mathsf{dCVaR}_{\beta}\left(j\right) = \mathsf{CVaR}_{\beta}\left(j^{*}\right)^{*}$$

1D elasticity:
$$j^*(\sigma;\zeta) = \frac{1}{2E_{\zeta}}\sigma^2$$

$$j^{\mathrm{eff}}(\varepsilon) = \mathsf{dCVaR}_{\beta}\left(j\right)\left(\varepsilon\right) = \frac{1}{2}\,\mathsf{CVaR}_{\beta}\left(E^{-1}\right)^{-1}\varepsilon^{2}$$

seems OK:
$$dCVaR_0(E)=\mathbb{E}\left[E^{-1}\right]^{-1}$$
 and $dCVaR_1(E)=sup\{E^{-1}\}^{-1}$

need for a "left-tail" CVaR which still yields a **convex potential** we propose a **dual CVaR**, never seen in the literature.

Which definition? try...

$$\mathsf{dCVaR}_{\beta}\left(j\right) = \mathsf{CVaR}_{\beta}\left(j^{*}\right)^{*}$$

1D elasticity:
$$j^*(\sigma;\zeta) = \frac{1}{2E_{\zeta}}\sigma^2$$

$$j^{\mathrm{eff}}(\varepsilon) = \mathsf{dCVaR}_{\beta}\left(j\right)\left(\varepsilon\right) = \frac{1}{2}\,\mathsf{CVaR}_{\beta}\left(E^{-1}\right)^{-1}\varepsilon^{2}$$

seems OK:
$$\mathsf{dCVaR}_0(E) = \mathbb{E}\left[E^{-1}\right]^{-1}$$
 and $\mathsf{dCVaR}_1(E) = \mathsf{sup}\{E^{-1}\}^{-1}$

But... not coherent, lacks homogeneity

 \Rightarrow for a plastic potential $\phi(\dot{lpha})=\sigma_{0\zeta}\dot{lpha}$, we show that

$$\mathsf{dCVaR}_{\beta}\left(\phi\right) = \inf_{\zeta} \sigma_{0\zeta} \dot{\alpha}$$

too pessimistic, irrespective of the confidence level β .

Correct dual CVaR

$$\mathsf{dCVaR}_{\beta}\left(j\right) = \mathsf{CVaR}_{\beta}\left(j^{\circ}\right)^{\circ}$$

where $f^{\circ}(\mathbf{x}) = \inf\{\mu \geq 0 \text{ s.t. } \mu f^{*}(\mathbf{x}/\mu) \leq 1\}$ is the **polar** of f [Rockafellar, 1970]

Properties:

- $f^{\circ} \geq g^{\circ}$ if $f \leq g$
- $ullet j^\circ = j^*$ if j quadratic
- $dCVaR_{\beta}(\phi)(\dot{\alpha}) = CVaR_{\beta}(\sigma_0^{-1})^{-1}|\dot{\alpha}|$ for the plastic potential
- $\mathcal{R}[j] = \mathsf{dCVaR}_{\beta}(j)$ is a coherent risk measure

Correct dual CVaR

$$\mathsf{dCVaR}_eta\left(j
ight) = \mathsf{CVaR}_eta\left(j^\circ
ight)^\circ$$

where $f^{\circ}(\mathbf{x}) = \inf\{\mu \geq 0 \text{ s.t. } \mu f^{*}(\mathbf{x}/\mu) \leq 1\}$ is the **polar** of f [Rockafellar, 1970]

Properties:

- $f^{\circ} > g^{\circ}$ if f < g
- $j^{\circ} = j^*$ if j quadratic
- $dCVaR_{\beta}(\phi)(\dot{\alpha}) = CVaR_{\beta}(\sigma_0^{-1})^{-1}|\dot{\alpha}|$ for the plastic potential
- $\mathcal{R}[j] = \mathsf{dCVaR}_{\beta}(j)$ is a coherent risk measure

Convex representation

$$\begin{aligned} \mathsf{dCVaR}_{\beta}\left(f\right)\left(\mathbf{x}\right) &= \inf_{v \geq 0, \widehat{\mathbf{x}}} \quad \max \left\{ \mathbb{E}\left[vf(\widehat{\mathbf{x}}/v; \boldsymbol{\zeta})\right]; \left(1-\beta\right) \sup_{\boldsymbol{\zeta}} \left\{vf(\widehat{\mathbf{x}}/v; \boldsymbol{\zeta})\right\} \right\} \\ &\text{s.t.} \quad \mathbb{E}\left[\widehat{\mathbf{x}}\right] = \mathbf{x} \\ &\mathbb{E}\left[v\right] = 1 \end{aligned}$$

Risk-averse behavior of stochastic GSM

Optimistic estimate: take CVaR of free-energy and dissipation potential $+ \varepsilon$ as first-stage

$$j^{\mathrm{eff}}(\varepsilon) = \inf_{\boldsymbol{\alpha}_{\boldsymbol{\zeta}}} \quad \mathsf{CVaR}_{\boldsymbol{\beta}}\left(\psi(\varepsilon, \boldsymbol{\alpha}_{\boldsymbol{\zeta}})\right) + \mathsf{CVaR}_{\boldsymbol{\beta}}\left(\phi\left(\boldsymbol{\alpha}_{\boldsymbol{\zeta}}\right)\right)$$

Pessimistic estimate: take dCVaR of free-energy and dissipation potential $+\sigma$ as first-stage variable

$$j^{\mathsf{eff}}(oldsymbol{arepsilon}) = \inf_{oldsymbol{lpha}_{oldsymbol{arepsilon}}, oldsymbol{arepsilon}_{\zeta}, oldsymbol{arepsilon}_{arepsilon}} \quad \mathsf{dCVaR}_{eta}\left(\psi(oldsymbol{arepsilon}_{\zeta}, oldsymbol{lpha}_{\zeta})
ight) + \mathsf{dCVaR}_{eta}\left(\phi\left(oldsymbol{lpha}_{\zeta}
ight)
ight)} \\ \mathbb{E}\left[oldsymbol{arepsilon}_{\zeta}\right] = oldsymbol{arepsilon}$$

we essentially recover the previous primal/dual risk-neutral formulations when $\beta=0$

risk-neutral case $\beta = 0$

moderate risk-aversion $\beta = 0.5$

strong risk-aversion $\beta = 0.95$

risk-neutral case $\beta = 0$

moderate risk-aversion $\beta = 0.5$

strong risk-aversion $\beta = 0.95$

Outline

1 Average effective behavior

2 Risk-averse estimates

3 Optimisitic and pessimistic structural response

A truss example

Truss structure with members obeying stochastic elastoplastic hardening behaviour

Global nominal variational principle:

$$\mathbf{\textit{u}}_{\textit{n}+1}, \alpha_{\textit{n}+1} = \mathop{\arg\inf}_{\mathbf{\textit{u}} \in \mathcal{U}_{\mathbf{\textit{ad}}}, \boldsymbol{\alpha}} \int_{\Omega} \psi(\boldsymbol{\varepsilon}, \boldsymbol{\alpha}) \, \mathrm{d}\Omega + \int_{\Omega} \phi(\boldsymbol{\alpha}) \, \mathrm{d}\Omega - \langle \boldsymbol{\textit{F}}, \boldsymbol{\textit{u}} \rangle$$

Risk-neutral case: effective global potential obtained from local effective properties

$$\mathcal{R}[J](\varepsilon) = \mathbb{E}\left[\int_{\Omega} j(\varepsilon; \zeta) \, \mathrm{d}\Omega\right] = \int_{\Omega} \mathbb{E}\left[j\right](\varepsilon) \, \mathrm{d}\Omega = \int_{\Omega} \mathcal{R}[j](\varepsilon) \, \mathrm{d}\Omega$$

A truss example

Truss structure with members obeying stochastic elastoplastic hardening behaviour

Global nominal variational principle:

$$oldsymbol{u}_{n+1}, lpha_{n+1} = rginf_{oldsymbol{u} \in \mathcal{U}_{oldsymbol{a}, oldsymbol{a}}} \int_{\Omega} \psi(oldsymbol{arepsilon}, oldsymbol{lpha}) \, \mathrm{d}\Omega + \int_{\Omega} \phi(oldsymbol{lpha}) \, \mathrm{d}\Omega - \langle oldsymbol{F}, oldsymbol{u}
angle$$

Risk-neutral case: effective global potential obtained from local effective properties

$$\mathcal{R}[J](\varepsilon) = \mathbb{E}\left[\int_{\Omega} j(\varepsilon; \zeta) \, \mathrm{d}\Omega\right] = \int_{\Omega} \mathbb{E}\left[j\right](\varepsilon) \, \mathrm{d}\Omega = \int_{\Omega} \mathcal{R}[j](\varepsilon) \, \mathrm{d}\Omega$$

Risk-averse case: does not work, $\mathcal{R} = \text{CVaR}/\text{dCVaR}$ not additive

Risk-averse stochastic programming formulation

Work directly on the global free-energy and dissipation potentials:

Optimistic formulation:

$$oldsymbol{u}_{n+1}, lpha_{oldsymbol{\zeta}, n+1} = \mathop{\mathsf{arg}}_{oldsymbol{u} \in \mathcal{U}_{\mathsf{ad}}, lpha_{oldsymbol{\zeta}}} \mathsf{CVaR}_{eta}\left(\Psi\right)\left(arepsilon, lpha_{oldsymbol{\zeta}}
ight) + \mathsf{CVaR}_{eta}\left(\Phi\right)\left(lpha_{oldsymbol{\zeta}}
ight) - \left\langle oldsymbol{F}, oldsymbol{u}
ight
angle$$

Pessimistic formulation:

$$\textit{\textbf{u}}_{\textit{n}+1}, \alpha_{\zeta,\textit{n}+1} = \mathop{\mathsf{arg}\inf}_{\textit{\textbf{u}} \in \mathcal{U}_{\mathsf{ad}}, \alpha_{\zeta}} \mathsf{dCVaR}_{\beta}\left(\Psi\right)\left(\varepsilon, \alpha_{\zeta}\right) + \mathsf{dCVaR}_{\beta}\left(\Phi\right)\left(\alpha_{\zeta}\right) - \left\langle \textit{\textbf{\textit{F}}}, \textit{\textbf{\textit{u}}} \right\rangle$$

Risk-averse stochastic programming formulation

Work directly on the global free-energy and dissipation potentials:

Optimistic formulation:

$$oldsymbol{u}_{n+1}, lpha_{oldsymbol{\zeta}, n+1} = \mathop{\mathsf{arg}}_{oldsymbol{u} \in \mathcal{U}_{\mathsf{ad}}, lpha_{oldsymbol{\zeta}}} \mathsf{CVaR}_{eta}\left(\Psi
ight)\left(arepsilon, lpha_{oldsymbol{\zeta}}
ight) + \mathsf{CVaR}_{eta}\left(\Phi
ight)\left(lpha_{oldsymbol{\zeta}}
ight) - \left\langle oldsymbol{F}, oldsymbol{u}
ight
angle$$

Pessimistic formulation:

$$\textit{\textbf{u}}_{\textit{n}+1}, \alpha_{\zeta,\textit{n}+1} = \mathop{\mathsf{arg}\inf}_{\textit{\textbf{u}} \in \mathcal{U}_{\mathsf{ad}}, \alpha_{\zeta}} \mathsf{dCVaR}_{\beta}\left(\Psi\right)\left(\varepsilon, \alpha_{\zeta}\right) + \mathsf{dCVaR}_{\beta}\left(\Phi\right)\left(\alpha_{\zeta}\right) - \left\langle \textit{\textbf{\textit{F}}}, \textit{\textbf{\textit{u}}} \right\rangle$$

Both of them are **2-stage convex stochastic programming** problems which can be solved using Monte-Carlo sampling approximation

Risk-neutral case

Risk-averse case: uncertainty on Young modulus only

Risk-averse case: uncertainty on hardening modulus only

Risk-averse case: uncertainty on yield stress only

Risk-averse case: combined uncertainty

Cyclic loading

Conclusions and Outlook

Conclusions

- consistent formulation of effective stochastic behaviour in the GSM setting
- introduce the concepts of risk measures to characterize tail distribution behaviors
- dCVaR as a novel coherent risk measure
- extension of risk-neutral and risk-averse formulations to global structural scale

https://hal.science/hal-04076581

Outlook

- reduce numerical cost of Monte-Carlo sampling approximation
- active scenarios strategies in Newton-Raphson loop
- non-linear decision rules, Polynomial Chaos expansions, etc.

Conclusions and Outlook

Conclusions

- consistent formulation of effective stochastic behaviour in the GSM setting
- introduce the concepts of risk measures to characterize tail distribution behaviors
- dCVaR as a novel coherent risk measure
- extension of risk-neutral and risk-averse formulations to global structural scale

https://hal.science/hal-04076581

Outlook

- reduce numerical cost of Monte-Carlo sampling approximation
- active scenarios strategies in Newton-Raphson loop
- non-linear decision rules, Polynomial Chaos expansions, etc.

Thank you for your attention!