Tutorium 6

Aufgabe 1: Berechnungen und Sprachen einfacher Automaten

Gegeben seien das Alphabet $\Sigma \triangleq \{ a, b, c \}$ und die DFAs $M_1 \triangleq \{ \{ q_0, q_1, q_2 \}, \Sigma, \delta_1, q_0, \{ q_1 \} \}$ und $M_2 \triangleq \{\{q_0, q_1, q_2, q_3\}, \Sigma, \delta_2, q_0, \{q_0\}\}\}$ wobei δ_1 und δ_2 durch die folgenden Graphen gegeben sind:

1.a) Gib die Berechnung von M₁ für die Eingabeworte ccc, bca, cab an. Welche dieser Wörter gehören zu $L(M_1)$?

(Lösung)-

 $(q_0,\,ccc)\vdash_{M_1}(q_1,cc)\vdash_{M_1}(q_1,c)\vdash_{M_1}(q_1,\epsilon)\nvdash_{M_1}\text{und damit }ccc\in L(M_1).$ $(\mathsf{q}_0,\ \mathsf{bca}) \vdash_{\mathsf{M}_1} (\mathsf{q}_0,\mathsf{ca}) \vdash_{\mathsf{M}_1} (\mathsf{q}_1,\mathsf{a}) \vdash_{\mathsf{M}_1} (\mathsf{q}_2,\epsilon) \nvdash_{\mathsf{M}_1} \mathsf{und}\ \mathsf{damit}\ \mathsf{bca} \notin \mathsf{L}(\mathsf{M}_1).$ $(q_0, cab) \vdash_{M_1} (q_1, ab) \vdash_{M_1} (q_2, b) \vdash_{M_1} (q_2, \epsilon) \nvdash_{M_1} und damit cab \notin L(M_1)$

/Lösung

1.b) Gib die Sprache $L(M_1)$ an.

------Lösung -----

 $L(M_1) = L((a+b)^* cc^*) = \{xcc^n \mid x \in \{a, b\}^* \land n \in \mathbb{N}\} = \{xc^n \mid x \in \{a, b\}^* \land n \in \mathbb{N}^+\}$ /Lösung

1.c) Gib die Berechnung von M_2 für die Eingabeworte ε , bb, ba, ac an. Welche dieser Wörter gehören zu L(M₂)?

----- (Lösung)------

 $(q_0,\;\epsilon) \nvdash_{M_2} \text{ und damit } \epsilon \in L(M_2).$

 $(q_0, bb) \vdash_{M_2} (q_1, b) \vdash_{M_2} (q_0, \epsilon) \nvdash_{M_2} \text{ und damit } bb \in L(M_2).$

 $\begin{array}{l} (\mathsf{q}_0,\;\mathsf{ba}) \vdash_{\mathsf{M}_2} (\mathsf{q}_1,\;\mathsf{a}) \vdash_{\mathsf{M}_2} (\mathsf{q}_3,\;\epsilon) \nvdash_{\mathsf{M}_2} \text{ und damit ba} \notin L(\mathsf{M}_2). \\ (\mathsf{q}_0,\;\mathsf{ac}) \vdash_{\mathsf{M}_2} (\mathsf{q}_2,\;\mathsf{c}) \vdash_{\mathsf{M}_2} (\mathsf{q}_2,\;\epsilon) \nvdash_{\mathsf{M}_2} \text{ und damit ac} \notin L(\mathsf{M}_2). \end{array}$

/Lösung

1.d) Gib die Sprache $L(M_2)$ an.

[Lösung]

 $L(M_2) = \{ w \in \Sigma^* \mid |w|_a \mod 2 = |w|_b \mod 2 = 0 \}$ /Lösung

Aufgabe 2: Erstellen einfacher Automaten

Gegeben sei das Alphabet $\Sigma \triangleq \{0, 1\}.$

2.a) Gib einen DFA M_3 so an, dass $L(M_3) = \{ w \in \Sigma^* \mid w \text{ enthält das Teilwort } 0 \}$. ----- (Lösung)-----

 $M_3 \triangleq (\{q_0, q_1\}, \Sigma, \delta_3, q_0, \{q_1\}),$ wobei δ_3 wie folgt gegeben ist: Hinweis: Eine der folgenden drei Varianten genügt.

$$\text{als Funktion: } \delta_3(q,x) = \begin{cases} q_1 & \text{falls } q = q_0 \wedge x = 0 \\ q_0 & \text{falls } q = q_0 \wedge x = 1 \\ q_1 & \text{falls } q = q_1 \end{cases}$$

als Graph: δ_3 ist durch den folgenden Graphen gegeben

als Tabelle: δ_3 wird in der folgenden Tabelle definiert

δ_3	0	1
$S q_0$	q_1	q_0
F q ₁	q_1	q_1
/Lösung		

 $M_4 \triangleq (\{ q_0, q_1, q_2 \}, \Sigma, \delta_4, q_0, \{ q_2 \})$ mit δ_4 wie folgt definiert: *Hinweis: Eine der folgenden drei Varianten genügt.*

$$\textbf{als Funktion:} \ \, \delta_4(q,x) = \begin{cases} q_1 & \text{falls } q = q_0 \wedge x = 0 \\ q_0 & \text{falls } q = q_0 \wedge x = 1 \\ q_2 & \text{falls } q = q_1 \wedge x = 0 \\ q_0 & \text{falls } q = q_1 \wedge x = 1 \\ q_2 & \text{falls } q = q_2 \end{cases}$$

als Graph: δ_4 ist durch den folgenden Graphen gegeben ist:

als Tabelle: δ_4 ist durch die Tabelle definiert

2.c) Wie müsste man den Automaten $M_4 = (Q_4, \Sigma, \delta_4, q_0, F_4)$ aus 2.b) zu M_4' modifizieren, damit er genau die Sprache $A_4' = \{w \in \Sigma^* \mid w \text{ enthält nicht das Teilwort 00}\}$ akzeptiert? Hinweis: Es gilt $A_4 \subseteq \Sigma^*$ und $A_4' \subseteq \Sigma^*$.

Lösung -----
$$L$$
ösung -----

Es gilt $A_4' = \Sigma^* \setminus A_4$. Mit diesem Wissen lässt sich M_4' aus M_4 durch die Komplementbildung der Endzustände konstruieren:

$$M_{4}' = (\{ \ q_{0}, \ q_{1}, \ q_{2} \}, \Sigma, \delta_{4}, q_{0}, \{ \ q_{0}, \ q_{1}, \ q_{2} \} \setminus \{ \ q_{2} \}) = (\{ \ q_{0}, \ q_{1}, \ q_{2} \}, \Sigma, \delta_{4}, q_{0}, \{ \ q_{0}, \ q_{1} \})$$

$$- \frac{\left(\text{L\"{o}sung} \right)}{\left(\text{L\"{o}sung} \right)}$$

2.d) Gib einen DFA M_5 so an, dass $L(M_5) = \{ w \in \Sigma^* \mid |w|_1 \mod 3 = 1 \}$.

Lösung

 $M_5 \triangleq (\{q_0, q_1, q_2\}, \Sigma, \delta_5, q_0, \{q_1\}),$ wobei δ_5 durch den folgenden Graphen gegeben ist:

Aufgabe 3: Erstellen einer Grammatik aus einem Automaten

Gegeben seien $\Sigma \triangleq \{ a, b, c \}$ und der DFA $M_6 \triangleq (\{ q_0, q_1, q_2, q_3, q_4 \}, \Sigma, \delta_6, q_0, \{ q_3 \})$, wobei δ_6 durch den folgenden Graphen gegeben ist:

3.a) Gib die Sprache $L(M_6)$ an.

Hinweis: Um diese Grammatik zu erzeugen sind wir nach einem Algorithmus vorgegangen, der aus einem beliebigen DFA eine reguläre Grammatik erzeugt. Dazu erzeugen wir zunächst für jeden Zustand q_i im DFA eine eigene Variable Q_i in der Grammatik. Die Variable Q_0 , die sich aus dem Startzustand q_0 ergeben hat, wird zum Startsymbol. Für jeden Übergang $\delta_6(q_i,x)=q_j$ im DFA erzeugen wir die Regel $Q_i\to xQ_j$ in der Grammatik. Außerdem fügen wir für jeden Übergang $\delta_6(q_i,x)=q_j$, bei dem q_j ein Endzustand ist, auch noch eine Regel $Q_i\to x$ hinzu. (Wenn der Startzustand q_0 auch ein Endzustand ist, müssen wir noch eine weitere Variable S hinzufügen, statt Q_0 die Variable S als Startsymbol wählen, die Regel $S\to \varepsilon$ ergänzen und für jeden Übergang $\delta_6(q_0,x)=q_i$ die Regel $S\to xQ_i$ hinzufügen.) Dieser Algorithmus zur Überführung von DFAs in reguläre Grammatiken findet sich z.B. auf Seite 30 des Buches "Theoretische Informatik – kurzgefasst" von Uwe Schöning.

[/Lösung]

Aufgabe 4: Zeige, dass eine Sprache regulär ist.

4.a) Beweise, dass die Sprache A \triangleq { $w \mid w \in \{ a, b \}^* \}$ regulär ist. Lösung

Wir zeigen, dass die Sprache A gleich der Sprache $L((a+b)^*)$ ist.

$$L((a+b)^*) \stackrel{\text{FS 1.2.8}}{=} {}^*L(a+b)^* \stackrel{\text{FS 1.2.8}}{=} (L(a) \cup L(b))^* \stackrel{\text{FS 1.2.8}\{a, b\}}{=} (\{ a \} \cup \{ b \})^*$$

$$\stackrel{\text{Def. } \cup}{=} \{ a, b \}^* \stackrel{\text{Prop. } 0.3.5}{=} \{ w \mid w \in \{ a, b \}^* \} \stackrel{\text{Def. } A}{=} A$$

Da A durch einen regulären Ausdruck beschrieben wird, gibt es nach Theorem 1.4.5 eine reguläre Grammatik G mit L(G)=A. Nach Definition 1.4.2 ist A damit regulär.

/Lösung