Package 'gen3DNet'

May 15, 2024

Title An R Package for Generating 3D Network Models
Version 0.0.0.9000
Author Tina Tang
Maintainer Tina Tang <tang.tina@wustl.edu></tang.tina@wustl.edu>
Description Generates 3D network from two correlated objects with shared common factors. Specifically, 'gen3DNet' builds the relationships between samples and shared factors using the non-negative matrix factorization, where three clustering techniques are evaluated to determine the number of functional modules. In addition, it builds the relationships between samples from the two distinct data objects based on a partial least squares regression model.
Imports plsdof, MASS, NbClust, cli, progress
Depends R ($>= 3.1.0$), NMF
License GPL (>= 2)
Encoding UTF-8
LazyData true
Roxygen list(markdown = TRUE)
RoxygenNote 7.1.1
Suggests testthat (>= 3.0.0)
Config/testthat/edition 3
R topics documented:
create_gen3DNet
gen3DNet
generate_nmf_modules
kneedle
kneedle_cophenetic
kneedle_silhouette_consensus
max_cophenetic
max_silhouette_consensus
max_ward_kl
normalize_nmf
user_pick_k
write_all_to_disk
Index 1

2 create_gen3DNet

create_gen3DNet

Create a general 3D network.

Description

This function performs calculations to generate a 3D network. It is not meant to be called directly. You should use the gen3DNet function, which sanitizes arguments and reads in data from file paths. See help(gen3DNet) for further documentation.

Usage

```
create_gen3DNet(
  left,
  right,
  nmf_nrun = 10,
  k = c(),
  k_picker = max_ward_kl,
  seed = 123456,
  p_val_threshold = 1e-04,
  out_folder = "gen3DNet",
  verbose = TRUE
)
```

Arguments

left Matrix of left objects right Matrix of right objects

nmf_nrun Number of iterations to use for NMF

k Number of clusters to use for NMF. This can be specified as a

• single number, or

consecutive range. If unspecified, k is picked from 1 to min(num_cols - 1, num_rows - 1)

k_picker

Method for picking k. If unspecified, k values are compared using the KL-index of Ward clusterings based on euclidean distance. Possible values:

- max_cophenetic
- kneedle_silhouette_consensus
- kneedle_cophenetic
- max_silhouette_consensus
- max_cophenetic
- max_ward_kl To learn more, use help() for each of these functions.

seed Seed to use for NMF.

p_val_threshold

Threshold for significant p-values in PLSR.

out_folder Folder used for outputting results.

verbose Whether to print output (default TRUE).

gen3DNet 3

Examples

```
library("gen3DNet")
histon_path <- system.file("extdata", "histon_data.csv", package="gen3DNet")
phospho_path <- system.file("extdata", "phospho_data.csv", package="gen3DNet")
result <- gen3DNet(
    histon_path,
    phospho_path,
    nmf_nrun = 10,
    p_val_threshold = 0.01,
    # k_picker = max_cophenetic
    # k_picker = kneedle_silhouette_consensus
    # k_picker = kneedle_cophenetic
    # k_picker = max_silhouette_consensus
    # k_picker = max_cophenetic
    # k_picker = max_cophenetic
    # k_picker = max_ward_kl
    k_picker = max_ward_kl
}</pre>
```

gen3DNet

Create a 3D network model.

Description

This function creates a 3D network model relating two matrices. The columns of each matrix should represent two sets of objects, with the rows of both matrices corresponding to observations under the same circumstances. For example, the columns might be phosphoproteins and histones, and the rows might correspond to drugs. In this case, the data values would represent the transcription or GCP activation level in cells treated with different drugs.

Usage

```
gen3DNet(
  left,
  right,
  nmf_nrun = 10,
  k = NULL,
  k_picker = max_ward_kl,
  seed = 123456,
  p_val_threshold = 1e-04,
  out_folder = NULL,
  verbose = TRUE
)
```

Arguments

4 gen3DNet

consecutive range. If unspecified, k is picked from 1 to min(num_cols - 1, num_rows - 1)

k_picker

Method for picking k. If unspecified, k values are compared using the KL-index of Ward clusterings based on euclidean distance. Possible values:

- · max cophenetic
- kneedle silhouette consensus
- kneedle_cophenetic
- max_silhouette_consensus
- max_cophenetic
- max_ward_kl

To learn more, use help() for each of these functions.

seed Seed to use for NMF.

p_val_threshold

Threshold for significant p-values in PLSR.

out_folder Folder used for outputting results.

verbose Whether to print output (default TRUE).

Details

The final 3D network model consists of connections between the rows and both sets of columns, as follows:

- Connections between the rows and the left columns. These are found using NMF (nonnegative matrix factorization). The data can contain negative values, as an antilog transformation is used internally. The number of NMF clusters can be specified, but otherwise it will be chosen automatically based on the value that gives the highest KL-index when using Ward hierarchical clustering. The connection weight between a given left column and row is the maximum basis value for the left column object. See the function generate_nmf_modules for further information.
- Connections between the rows of the right and left columns. These are found using PLSR. The connection strength is the absolute value of the PLSR regression coefficient. See the function generate_plsr for more information.

Examples

```
library("gen3DNet")
histon_path <- system.file("extdata", "histon_data.csv", package="gen3DNet")</pre>
phospho_path <- system.file("extdata", "phospho_data.csv", package="gen3DNet")</pre>
result <- gen3DNet(</pre>
   histon_path,
   phospho_path,
   nmf_nrun = 10,
   p_val_threshold = 0.01,
   # k_picker = max_cophenetic
   # k_picker = kneedle_silhouette_consensus
   # k_picker = kneedle_cophenetic
   # k_picker = max_silhouette_consensus
   # k_picker = max_cophenetic
   # k_picker = max_ward_kl
   k_picker = max_ward_kl
)
```

Description

This function uses NMF to generate functional modules representing interactions between the entities in the rows and columns of the dataframe. This has two components: Each entity is assigned to a cluster "Column signatures" are generated for each row object. For example, if rows are histones and columns are drugs, this function will generate "histone signatures" that express Because NMF relies on knowing the number of clusters (k) in advance, this function also determines this automatically. Currently, the default option uses the number of clusters that produces the lowest KL index with Ward clustering. The package depends on NbClust to implement this feature. However, the user can override this option with a custom function.

Usage

```
generate_nmf_modules(
  left_data,
  nmf_nrun,
  k_range,
  k_picker = gen3DNet::max_kl_ward,
  seed,
  verbose = FALSE
)
```

Arguments

left_data	This is the data that will be clustered using NMF. Signatures will be generated for the object type that is represented by rows.
nmf_nrun	The number of r
k_range	Either a) A consecutive range of possible k values, b) a single k value, or c) nothing, meaning that generate_nmf_modules will assume the range is from 2 to the number of rows.
k_picker	Any function that takes a dataframe and a consecutive range of potential k values
seed	The seed to use with NMF
verbose	Whether to print output.

generate_plsr

Identify significant PLSR coefficients for pairs of left and right objects.

Description

This function computes PLSR coefficients and p-values between the rows of the two matrices provided ("left" and "right"). This regression is performed separately for each left item; i.e. in each iteration, a separate PLS regression is performed which explains

Usage

```
generate_plsr(left, right, p_val_threshold = 1e-04, verbose = FALSE)
```

6 kneedle

Arguments

right

left Matrix of left objects

Matrix of right objects

p_val_threshold

Threshold for significant p-values in PLSR.

verbose Whether to print output.

Details

The maximum number of components for PLSR is the number of columns in the right matrix or the number of rows minus one, whichever is less.

Value

A list containing the following named values: p_list - A list containing left-right pairs with significant values (above p_val_threshold) non_p_list - A list containing left-right pairs with non-significant values comp - the maximum number of PLS components.

kneedle

Find the knee/elbow point in a vector using the Kneedle algorithm.

Description

This function uses the Kneedle algorithm (Satopaa 2011) to find the index of the knee point in the provided vector. If the values are mostly increasing, use sign = 1. If they are mostly decreasing, use sign = -1.

Usage

```
kneedle(values, sign)
```

Arguments

values The values to find a knee/elbow in.

sign -1 if the values are mostly decreasing, 1 if the values are mostly decreasing.

Value

The index of the knee/elbow.

kneedle_cophenetic 7

kneedle_cophenetic

Pick k based on the knee point in the cophenetic correlation

Description

This function uses the knee point (Satopaa 2011) of the cophenetic correlation (Lessig 1972), which is implemented in the NMF library (Gaujoux 2010).

Usage

```
kneedle_cophenetic(data, k_range)
```

Arguments

data The data with an unknown number of clusters.

k_range The range of possible k values

Value

The chosen value of k.

kneedle_silhouette_consensus

Pick k based on the knee point in the silhouette score

Description

This function uses the knee point (Satopaa 2011) of the average silhouette width (Lessig 1972), which is implemented in the NMF library (Gaujoux 2010).

Usage

```
kneedle_silhouette_consensus(data, k_range)
```

Arguments

data The data with an unknown number of clusters.

k_range The range of possible k values

Value

The chosen value of k.

max_cophenetic

Pick k based on the maximum cophenetic score

Description

This function uses the cophenetic correlation (Lessig 1972), which is implemented in the NMF library (Gaujoux 2010).

Usage

```
max_cophenetic(data, k_range)
```

Arguments

data The data with an unknown number of clusters.

k_range The range of possible k values

Value

The chosen value of k.

```
max_silhouette_consensus
```

Pick k based on the maximum silhouette score

Description

This function uses the average silhouette width (Rousseeuw 1987), as implemented in the NMF library (Gaujoux 2010).

Usage

```
max_silhouette_consensus(data, k_range)
```

Arguments

data The data with an unknown number of clusters.

k_range The range of possible k values

Value

The chosen value of k.

max_ward_kl 9

max_ward_kl

Pick k based on the maximum KL index of Ward clusterings

Description

This function uses the NbClust package (Charrad 2014) to estimate the number of clusters present.

Usage

```
max_ward_kl(data, k_range)
```

Arguments

data The data with an unknown number of clusters.

k_range The range of possible k values

Details

First, the data is repeatedly clustered with 1 cluster, then 2, and so on, using the Ward hierarchical clustering algorithm (Ward 1963). Afterwards, each set of clusters is scored using the Krzanowski-Lai index (Krzanowski 1988). The number of clusters with the highest index is then chosen.

Value

The chosen value of k.

normalize_nmf

Normalize NMF

Description

This function applies an antilog transformation to the data, ensuring that all values are positive, and then scales the result from 0 to 1.

Usage

```
normalize_nmf(left_data)
```

Arguments

left_data

The data to be normalized

10 write_all_to_disk

scale_0_1

Scale 0 to 1

Description

This function scales data from 0 to 1.

Usage

```
scale_0_1(x)
```

Arguments

Х

the data to be scaled from 0 to 1.

user_pick_k

User picks k

Description

This is a k_picker callback that simply plots the performance of NMF on every number of clusters in k_range, and asks the user for input.

Usage

```
user_pick_k(nmf_data, k_range)
```

Arguments

nmf_data	The data whose number of clusters is in question
k_range	The numbers of clusters (k values) being considered.

write_all_to_disk

Write a nested list as nested folders, with data.frame objects as csvs.

Description

Write a nested list as nested folders, with data.frame objects as csvs.

Usage

```
write_all_to_disk(name, object, folder)
```

Arguments

name The name of the top-level folder to be written

object The nested list

folder The parent folder where the top-level folder should be placed.

write_all_to_disk 11

Examples

```
\mbox{\tt\#} For example, if the object is
object = list(
    item1 = list(
        df1 = data.frame(a=c(1,2),b=c(3,4)),
        df2 = data.frame(a=c(1,2),b=c(3,4))
    ),
    item2 = list(
        df3=data.frame(a=c(1,2),b=c(3,4))
    ),
    df4 = data.frame(a=c(1,2),b=c(3,4))
)
# and the call is
write_all_to_disk("toplevelfolder", object, ".")
# The following files and folders would be written:
# toplevelfolder/
#
      item1/
#
          df1.csv
#
          df2.csv
#
      item2/
#
          df3.csv
#
      df4.csv
```

Index

```
create_gen3DNet, 2
gen3DNet, 3
generate_nmf_modules, 5
generate_plsr, 5
kneedle, 6
kneedle_cophenetic, 7
kneedle_silhouette_consensus, 7
max_cophenetic, 8
max_silhouette_consensus, 8
max_ward_kl, 9
normalize_nmf, 9
scale_0_1, 10
user_pick_k, 10
write_all_to_disk, 10
```