

基于深度学习和数据挖掘的 肺炎辅助诊断方法研究

林瑞凯

2022年5月29日

基于改进ResNet-50和特征金字塔网络的肺炎诊断算法研究

基于数据挖掘和Nomogram模型的免疫性肺炎无创预判方法研究

基于轻量化2.5D-UNet的肺炎病灶分割模型及三维重建技术

基于肺三维分割与定量分析技术的COVID-19变种影像学差异比较

使用深度学习与数据挖掘共同分析肺炎发展和预后,已发表(Q2,IF=5.25,共同第一作者)

基于改进ResNet-50和特征金字塔网络的肺炎诊断算法研究

该算法用于临床辅助诊断,快速、精准、实用性极强。

基于改进ResNet-50和特征金字塔网络的肺炎诊断算法研究

该算法用于临床辅助诊断,快速、精准、实用性极强。

对比实验

	Accuracy	AUC
本文的模型	97.22	0.88
ResNet-50-V2	96.35	0.75
Xception	95.83	0.72

基于数据挖掘和Nomogram模型的免疫性肺炎无创预判方法研究

该模型可用于诊前预测、疾病的早期发现。

深度学习模型诊断后,得到 每张CT Slices的概率值

CT score =
$$\mu \times \sum_{i=1}^{i=n} (i \times p(i))$$
 CT Score

经检验, 阳性与阴性的CT socre P<0.05

Mann-Whitney U 秩和检验

Kaplan-Meier生存曲线

基于数据挖掘和Nomogram模型的免疫性肺炎无创预判方法研究

该模型(工作流)可用于诊前预测、疾病的早期发现。

Nomogram得分 =

肺部既往病×1.987-

ALC × 0.888+

LDH × 0.005 +

CT Score × 0.019

-4.605

ROC曲线比较

本文模型 AUC = 0.900

单一深度学习模型 AUC = 0.856

单一临床数据挖掘模型 AUC = 0.869

基于轻量化2.5D-UNet的肺炎病灶分割模型及三维重建技术

该模型(工作流)可用于诊前预测、疾病的早期发现。

病灶语义分割

肺部三维重建

肺部分叶分段

病情定量分析

基于肺三维分割与定量分析技术的COVID-19变种影像学差异比较

对2021年下半年张家界市爆发的Delta疫情进行数据挖掘分析(回顾性研究)

	原代COVID-19	Delta 变种
潜伏期	4 (2-7)	4 (3-5)
早期	0-4	0-3
进展和高峰期	5-13	4-16
肺受累的峰值	11	15
吸收期	14-28	17-42
RT-PCR阴性时间	22 (17-30)	39 (31-44)
出院时间	28 (21-31)	42 (34-46)

Na Bai†, Ruikai Lin†, Zhiwei Wang, Shengyan Cai, et al.(2022). Exploring New Characteristics: Using Deep Learning, 3D Reconstruction to Compare Original COVID-19 and Its Delta Variant Based on Chest CT. Frontiers in Moleculer Biosciences. DOI:10.3389/fmolb.2022.836862. (IF=5.246, JCR Q2, 共同第一作者)

创新点总结

。 改进ResNet-50 + FPN结构,在肺炎诊断对比实验中击败了ResNet全系列模型、Xception及其变种。(临床重点关注的AUC值提升了**13个百分点**)

- 基于Nomogram的肺炎早期发现 / 预测,同类型研究中AUC值首次超过 0.9!
 注:检索了Web of Science、PubMed、CNKI搜索Nomogram在疾病早期预测领域的所有文章。
- · 肺炎辅助诊断的完整工作流(囊括:诊前预测、诊断、预后**全流程**)

。 发现并提出Delta变种和原代COVID-19患者的影像学分期差异

恳请各位专家老师

批评指正

三答辩人 林瑞凯

导 师 刘美玲副教授