§ 3. Пример: нелинейный маятник •

В этом разделе рассматриваются три модели, которые иллюстрируют различные виды нелинейных колебаний для системы с одной степенью свободы.

Гамильтониан и уравнения движения

Гамильтониан нелинейного маятника с единичной массой представлен как:

$$H = 1/2\dot{x}^2 - \omega_0^2 \cos x, (3.1)$$

где q = x и $p = \dot{x}$. Уравнения движения:

$$\ddot{x} + \omega_0^2 \sin x = 0. \tag{3.2}$$

Состояния равновесия

Состояния равновесия определяются уравнениями:

$$\dot{x}_s = 0, \quad \sin x_s = 0. \tag{3.3}$$

Решения: $\dot{x}_s = 0, x_s = \pi n, n = 0, \pm 1, \dots$

Фазовый портрет и сепаратриса

Фазовые траектории при $H<\omega_0^2$ и $H>\omega_0^2$ описываются, включая сепаратрису с энергией $H_s=\omega_0^2.$

Солитоноподобные решения

Решение на сепаратрисе:

$$v = \pm 2\omega_0/\operatorname{ch}(\omega_0 t) \tag{3.7}$$

Общее решение и переменные действие-угол

Используются переменные действие-угол для нахождения общего решения уравнения движения.

Частота нелинейных колебаний

Частота нелинейных колебаний маятника определяется как:

$$\omega(H) = \frac{\pi}{2}\omega_0 \begin{cases} \frac{1}{F(\pi/2;x)} & (x \le 1), \\ \frac{x}{F(\pi/2;1/x)} & (x \ge 1). \end{cases}$$
(3.12)

Спектр нелинейного маятника

Анализируется спектр колебаний маятника и его зависимость от энергии ${\cal H}.$

Общие свойства периода колебаний

Исследуется период колебаний системы в потенциальной яме и его зависимость от энергии.