Lezione 1 – Problema dei cammini minimi (parte 2)

Algoritmi e Strutture Dati

Modulo 6 - Impatto delle strutture dati sulla complessità di un algoritmo

Unità didattica 1 - Cammini minimi

Roberto Aringhieri

Università degli Studi di Milano - Ssri - CDL ONLINE

Introduzione

In questa seconda parte della lezione, dimostriamo il teorema di Bellman che abbiamo utilizzato per derivare la procedura generale SPT di soluzione del problema dei cammini minimi.

Tratteremo:

- ullet richiamo della definizione di etichette d_u
- enunciazione teorema
- dimostrazione in due parti

Modulo 6 – U.D. 1 – Lez. 1 (parte 2)

Etichette d_u

Un'etichetta $d_u{\in}\mathbb{Z}$ sul generico nodo $u{\in}N$ è tale che:

- d_u distanza di u dal nodo r in T
- $d_u = C(P_{ru}) = \sum_{(i,j) \in P_{ru}} c_{ij}$

Teorema di Bellman

La soluzione **ammissibile** individuata dal generico albero di copertura T è **ottima**

se e solo se

 $\forall (i,j) \in A \text{ valgono le seguenti condizioni:}$

$$d_i + c_{ij} = d_{j}, \forall (i,j) \in T$$
 (a)

$$d_i + c_{ij} \ge d_j$$
, \forall $(i,j) \notin T$ (b)

Dimostrazione: ⇒

Tesi

 Dimostriamo che se T è un albero ottimo allora valgono (a) e (b)

Dimostrazione → **due casi**:

- 1) se $(i,j) \in T$ visto che T è ottimo \Rightarrow vale (a)
- 2) se $(i,j) \notin T$ deve valere (b) affinché T sia ottimo; supponiamo **per assurdo** che (b) non sia vera e che quindi valga di $d_i + c_{ij} < d_i$:
 - se d_i+c_{ij}<d_j allora esiste un cammino alternativo a quello in T che arriva nel nodo j con costo inferiore a d_i; di conseguenza, T non sarebbe la soluzione ottima;

questo **contraddice** l'ipotesi e quindi la tesi risulta dimostrata!

Dimostrazione: ← (1)

Tesi

• Dimostriamo che **se** valgono (a) e (b) **allora** *T* è un albero ottimo

Dimostrazione:

- ullet supponiamo ${f per assurdo}$ che il cammino P_{ru} con distanza d_u non sia ottimo
- allora **esiste** un cammino P_{ru} alternativo con distanza d_u tale che d_u < d_u
- ullet sia $d_{m{j}}'$ la distanza di un generico nodo $j \in P_{m{ru}}'$

Dimostrazione: ← (2)

Osserviamo che:

• poiché $d_r = d_r' = 0$ ma $d_u' < d_u$ allora esiste un arco (h,k) nel cammino alternativo per cui $d_h \le d_h'$ e $d_k > d_k'$

Risulta quindi che valgono le seguenti:

- (per costruzione) $d_h{}'+c_{hk}=d_k{}'$
- (per ipotesi), $d_h + c_{hk} \ge d_k$

Dimostrazione: ← (3)

Combiniamo le due relazioni per ottenere la seguente relazione:

$$d_k' = d_h' + c_{hk} \ge d_h + c_{hk} \ge d_k$$

ovvero che:

$$d_k' \geq d_k$$

La relazione ottenuta **contraddice** invece la condizione $d_k > d_k'$.

Otteniamo un **assurdo** e quindi è stata **dimostrata** la tesi iniziale.

In sintesi

- Dimostrato il teorema di Bellman
- Utilizzata una dimostrazione in due parti
- Metodo: dimostrazione per assurdo
- Sono disponibili altre dimostrazioni basate sulla teoria della dualità della programmazione matematica

