

FNDPro: Evaluating the Importance of Propagations during Fake News Spread

Herun Wan¹ & Ningnan Wang¹ & Xiang Zhao² & Rui Li¹ & Hui Yang³ & Minnan Luo¹™

Xi'an Jiaotong University¹, National University of Defense Technology², The 30th Research Institute of China Electronics Technology Group Corporation³

Background

• The rise of social media has led to an unprecedented spread of misinformation and disinformation.

• Fake news can disrupt social order and has harmful societal effects.

Previous Works

• The majority of the existing approaches are text-based and graph-based.

Text-based model, cite from dEFEND[1]

Graph-based model, cite from FANG[2]

^[1] Shu, Kai, et al. "defend: Explainable fake news detection." SIGKDD. 2019.

^[2] Nguyen, Van-Hoang, et al. "Fang: Leveraging social context for fake news detection using graph representation." CIKM. 2020.

Challenges

• Disguised fake news content makes it hard for content-based models to identify fake news.

• Echo chambers created by repeated fake news and manipulation of comments can confuse traditional graph-based models.

A model that can *dynamically evaluate the contribution of each propagation* and identify critical ones during the news spread.

Our Approach

Overview

- FNDPro models the news propagation process as a heterogeneous dynamic graph.
- It treats news as the first propagation and ℓ -hop neighbors as the $(\ell+1)$ -th propagation.

Our Approach

- Multi-modality encoder: Encodes each media.
- Propagation encoder: Encodes each propagation.
- **Propagation transformer module**: Interacts with propagation embeddings to obtain the importance score of each propagation.

Technical Approach

- Graph Construction
 - News, sources, users, comments, and different edges among the media form the heterogeneous dynamic graph.

Technical Approach

- Propagation Embedding
 - Multi-modality encoder extracts and fuses node information.
 - Time encoding and graph neural networks extract temporal and spatial information.

$$r_v = \overline{r}_v + \underset{(u,v) \in \mathcal{E}}{\text{mean}} (\text{enc}_{\psi(u,v)} (\mathcal{T}(u) - \mathcal{T}(v)))$$

$$h_{\mathcal{N}_{\mathcal{R}}(u)}^{(\ell)} = \operatorname{Prop}(\{h_v^{(\ell-1)} : v \in \mathcal{N}_{\mathcal{R}}(u)\}), \mathcal{R} \in \mathcal{R}^e,$$
$$h_u^{\ell} = \operatorname{Aggr}(\{h_{\mathcal{N}_{\mathcal{R}}(u)}^{\ell} : \mathcal{R} \in \mathcal{R}^e\}, h_u^{(\ell-1)}).$$

Technical Approach

- Propagation Transformer Module
 - Dynamically evaluates the contribution of different propagations.
 - Attention weights indicate the importance of each propagation.

Main Results

Type	Models	Merged		Politifact		Gossipcop	
		Accuracy	F1-score	Accuracy	F1-score	Accuracy	F1-score
Content-based	DEFEND [30] ROBERTA [19] UPF [†] [34] NEP [29] CMTR [9] FINERFACT [†] [14]	94.4 (±0.2)* 81.8 (±0.1)* 91.8 (±0.7)*	67.6 (±1.1)* 86.0 (±0.4)* 58.8 (±1.5)* 82.1 (±3.0)*	88.8 (±0.3)* 86.8 (±0.6)* 87.5 (±0.4)* 83.4 (±1.9)*	$78.5 (\pm 2.5)^*$ $86.4 (\pm 0.3)^*$ $84.4 (\pm 0.7)^*$ $84.0 (\pm 0.5)^*$ $77.3 (\pm 3.3)^*$ $88.1 (\pm 0.2)^*$	86.3 (±0.3)* 95.2 (±0.0)* 82.1 (±0.1)* 93.3 (±0.6)*	$73.0 (\pm 6.5)^*$ $69.7 (\pm 1.0)^*$ $88.0 (\pm 0.1)^*$ $59.9 (\pm 1.4)^*$ $86.2 (\pm 0.5)^*$ $93.1 (\pm 0.2)^*$
Graph-based	HPN [†] [32] BI-GCN [4] FANG [25] UPFN [†] [5] CROSS-D [†] [35] INFOP [22] GET [44]	$\begin{array}{c} 90.4 \ (\pm 0.5)^* \\ 81.3 \ (\pm 0.2)^* \\ 93.6 \ (\pm 1.0)^* \\ 89.8 \ (\pm 0.3)^* \\ \underline{95.8} \ (\pm 0.1)^* \end{array}$	$90.0 (\pm 0.7)^*$ $53.7 (\pm 1.5)^*$ $93.7 (\pm 0.8)^{***}$ $86.1 (\pm 0.4)^*$ $91.5 (\pm 0.2)^*$	$ \begin{vmatrix} 77.1 & (\pm 1.4) \\ 80.3 & (\pm 1.5) \\ 89.5 & (\pm 2.1) \\ 88.3 & (\pm 0.9) \\ 85.8 & (\pm 1.3) \\ \end{vmatrix} $	$74.7 (\pm 2.2)^*$ $75.4 (\pm 3.1)^*$ $87.2 (\pm 2.6)^*$ $87.8 (\pm 0.9)^*$ $81.7 (\pm 1.6)^*$	$82.7 (\pm 0.1)^*$ $95.8 (\pm 0.8)^*$ $90.3 (\pm 0.3)^*$ $96.1 (\pm 0.1)^*$	$90.4 (\pm 0.3)^*$ $51.2 (\pm 1.2)^*$ $95.8 (\pm 0.8)^{***}$
	FNDPro	97.0 (± 0.2)	93.9 (±0.3)	92.9 (± 0.5)	90.8 (±0.6)	97.4 (± 0.1)	$94.7 (\pm 0.2)$

Ablation Study

Module	Accuracy	Difference	F1-score	Difference
First	84.9 (±0.3)*	-12.1	64.9 (±1.3)*	-29.0
Last	$96.2 (\pm 0.5)**$	-0.9	$92.3 (\pm 0.7)**$	-1.6
Mean	$85.7 (\pm 1.0)*$	-11.3	$76.0 \ (\pm 1.2)^*$	-17.9
Max	$95.9 (\pm 0.4)*$	-1.1	$91.8 \ (\pm 0.7)^*$	-2.1
\mathbf{MLP}	$96.0 \ (\pm 0.6)**$	-1.0	$92.0 \ (\pm 1.1)**$	-1.9
GRU	$94.3 \ (\pm 0.9)^*$	-2.7	89.2 (±1.4)*	-4.7
FNDPro	97.0 (± 0.2)	0	93.9 (± 0.3)	0

Analysis

Case Study

Conclusion

- FNDPro dynamically evaluates the importance of propagations during fake news spread.
- It effectively addresses challenges posed by disguised content and echo chambers.

• Thank the conference organizers, collaborators, and funding agencies.

Q&A

Contact Details

Herun Wan: wanherun@stu.xjtu.edu.cn

• GitHub Repository

https://github.com/whr000001/FNDP ro