

설명가능한 인공지능 (CAM)

Prof. Seungchul Lee Industrial AI Lab.

Issues on CNN (or Deep Learning)

- Deep learning performs well comparing with any other existing algorithms
- But works as a black box
 - A classification result is simply returned without knowing how the classification results are derived → little interpretability
- When we visually identify images, we do not look at the whole image
- Instead, we intuitively focus on the most important parts of the image
- When CNN weights are optimized, the more important parts are given higher weights
- Class activation map (CAM)
 - We can determine which parts of the image the model is focusing on, based on the learned weights
 - Highlighting the importance of the image region to the prediction

Visualizing Convolutional Neural Networks

- Class Activation Maps (CAMs)
- A class activation map (CAM) for a given class highlights the image regions used by the CNN to identify that class

Class activation maps of top 5 predictions

Class activation maps for one object class

Fully Connected Layer

Global Average Pooling

- Class Activation Map (CAM)
- (or Attention)

Global Average Pooling Implementation

Layer (type)	Output	Shape	Param #
conv2d (Conv2D)	(None,	28, 28, 32)	320
max_pooling2d (MaxPooling2D)	(None,	14, 14, 32)	0
conv2d_1 (Conv2D)	(None,	14, 14, 64)	18496
max_pooling2d_1 (MaxPooling2	(None,	7, 7, 64)	0
global_average_pooling2d (Gl	(None,	64)	0
dense (Dense)	(None,	2)	128

$$S_c = \sum_k \omega_k^c \sum_{x,y} f_k(x,y) = \sum_{x,y} \sum_k \omega_k^c \ f_k(x,y)$$

Example: MNIST

Cantilever

Cantilever

