Hacettepe Üniversitesi Bilgisayar Mühendisliği Bölümü BBM341 Sistem Programlama Genel sınav – 13 Ocak 2014

Soru 1. C programla can a) 8bit b) 16bit	-	" tanımındaki p d) 64bit	değişkeninin boyu x80 e) Hiçbiri	6-64 mimarisi için nedir?
Soru 2. C programla c a) 8bit b) 16bit	=	tanımındaki p d d) 64bit	eğişkeninin boyu x86- e) Hiçbiri	32 mimarisi için nedir?
Soru 3. Aşağıdaki biri	32bit diğeri 8bit ola	an iki <u>işaretli</u> sa <u>y</u>	yıyı toplayınız.	
a=0x00235500	b=0x80 a+b=	?		
leal (%eax,%eax	:,2), %eax		x+x*2 rn t << 2;	
Soru 4. Yukarıdaki ör ile çarpan kod Soru 5. Aşağıda onlu t	u yazınız.			nde %eax yazmacını 3610
10.25 =				
7.5 =				
8.875 =				
Normalized Values	Denormalized	Bias = 2 ^{k-1} - 1		
Condition: $\exp \neq 000\cdots 0$	Values Condition:	Dias – 2 – 1	s exp	frac
and exp ≠ 111···1 E = exp – Bias	exp = 0000 E = -Bias + 1		1 4-bits	3-bits
Soru 6. Yukarıdaki bil	giler kapsamında 30	sayısını 8 bi	tlik kayan noktalı sayı	olarak kodlayınız.

Soru 7. Aşağıdaki komut kümesini uyguladığınızda sonuç ne olur? Şekili güncelleyiniz.

Soru 8. Doğrudan bellek erişim (DMA: *Direct Memory Access*) yöntemini kullanarak bir disk sektörüne yazmaya ilişkin adımları aşağıdaki şekiller üzerinde gösteriniz. Her adımı bir/iki cümle ile açıklayınız.


```
sum = 0;
for (i = 0; i < n; i++)
    sum += a[i];
return sum;</pre>
```

Soru 10. %98 "hit" oranıyla yapılan veri erişimleri %95 oranıyla yapılanlara göre kaç kat daha iyidir? Ön bellekten erişim zamanını 1 birim, ana bellekten erişim zamanını 100 birim alınız.

- a) 2 kat
- b) 3 kat
- c) 4 kat
- d) 6 kat
- e) Hiçbiri

Soru 11. Aşağıdaki kod kesimi uygulandığında çıktısı hangisi olamaz?

```
void fork4()
{
    printf("L0\n");
    if (fork() != 0) {
        printf("L1\n");
        if (fork() != 0) {
            printf("L2\n");
            fork();
        }
    }
    printf("Bye\n");
}
```

a)	L0	b)	L0	c)	L0	d)	LO	e)	L0
	L1		Bye		L1		Bye		Bye
	L2		L1		Bye		L1		L1
	Bye		L2		Bye		Bye		Bye
	Bye		Bye		L2		Bye		L2
	Bye		Bye		Bye		L2		Bye
	Bye								

Soru 12. Okunmak istenen verinin ön bellekte bulunaması (Read miss) durumunu içerecek şekilde veriye erişimin adımlarını çizim üzerinde gösteriniz ve her adımı kısa birer/ikişer cümleyle açıklayınız. (Örnek komut: movl (%edx), %ebx)

Soru 13. Aşağıdaki çizimde görev anahtarlama (*Context Switching*) için bir örnek verilmiştir. İşletim A görevinden B görevine aktarılırken uygulanan adımlarını sırasıyla birer cümleyle yazınız.

Soru 14. Aşağıdaki kod kesimi uygulandığında çıktısı ne olur? Kısaca açıklayınız.

<pre>void fork10()</pre>
{
<pre>pid_t pid[N];</pre>
int i;
<pre>int child_status;</pre>
for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)
exit(100+i); /* Child */
<pre>pid_t wpid = wait(&child_status);</pre>
<pre>printf("Child %d terminated with exit status %d\n",</pre>
<pre>wpid, WEXITSTATUS(child_status));</pre>
}

• • • •	• • •	• • •		• • •																																							
• • • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• •	• • •	• • •	• •		• • •	• • •	• •	• • •		• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •		•	
• • • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• •	• • •	• • •	• •		• • •	• • •	• •	• • •		• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •		•	
• • • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• •	• • •	• • •	• •		• • •	• • •	• •	• • •		• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •		•	
• • • •	• • •																						• • •																			•	
• • • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• •	• • •	• • •	• •		• • •	• • •	• •	• • •		• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •		•	
• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• •	• • •	• • •	• • •	• •	• • •	• •	• • •		• • •	• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • • •	• • •		• • •	• • •	• • •	• • •		۰	
Soi	u			İşl çık					em	i l	oii	g	Ö1	rev	ve	; "	si	gn	al	"	gö	nde	erc	liğ	ino	de	gö	rev	vir	ı g	ÖS1	ter	eb	ile	ce	ĕği	te	pŀ	κi	tüı	rle	rini	į
Soi	·u								em	i 1	oii	g	Ö1	rev	ve		si	gn	al	"	gö	nde	erc	liğ	ino	de	gö	rev	vir	ı g	ÖS1	ter	eb	ile	ce	ġi	te	pŀ	κi	tüı	rle	rini	į
Soi	u								em	i 1	oii	g	;ö1	rev	ve		si	gn	al	"	gö	nde	erc	liğ	ino	de	gö	rev	vir	n g	ÖS1	ter	eb	ile	ce	ği	te	pŀ	ςi	tüı	rle	rini •	
Soi	·u								em	i 1	oii	g	;Ö1	rev	we		si	gn	al	"" {	gö	nde	erc	liğ	ino	de	gö	rev	vir	n g	ÖS1	ter	eb	ile	ce	ġi	te	pŀ	κi	tü:	rle	rin	į
Soi	·u								em	i l	oii	g	;Ö1	rev	ve		si	gn	al	· · · · · · · · · · · · · · · · · · ·	gö	nde	erc	liğ	inc	de	gö	ore	wir	n g	ÖS	ter	eb	ile	ce	ġi	te	pl	αi	tüı	rle	rini	į