Double Integration: Theory, Rectangular & General Region

Sunday, 4 May 2025

10:30 pm

Double Integrals over Rectangles

Review of the Definite Integral

First let's recall the basic facts concerning definite integrals of functions of a single variable. If f(x) is defined for $a \le x \le b$, we start by dividing the interval [a, b] into n subintervals $[x_{t-1}, x_t]$ of equal width $\Delta x = (b-a)/n$ and we choose sample points x_t^* in these subintervals. Then we form the Riemann sum

$$\sum_{i=1}^{n} f(x_i^*) \Delta x$$

and take the limit of such sums as $n \to \infty$ to obtain the definite integral of f from a to b:

$$\int_a^b f(x) \ dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \ \Delta x$$

Volumes and Double Integrals

In a similar manner we consider a function f of two variables defined on a closed rectangle

$$R = [a, b] \times [c, d] = \{(x, y) \in \mathbb{R}^2 \mid a \le x \le b, c \le y \le d\}$$

and we first suppose that $f(x, y) \ge 0$. The graph of f is a surface with equation z = f(x, y). Let S be the solid that lies above R and under the graph of f, that is,

$$S = \left\{ (x, y, z) \in \mathbb{R}^3 \mid 0 \le z \le f(x, y), (x, y) \in R \right\}$$

 $R_{ij} = [x_{i-1}, x_i] \times [y_{j-1}, y_j] = \{(x, y) \mid x_{i-1} \le x \le x_i, \ y_{j-1} \le y \le y_j\}$ each with area $\Delta A = \Delta x \Delta y$.

$$f(x_{ij}^*, y_{ij}^*) \Delta A$$

$$V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^*, y_{ij}^*) \Delta A$$

5 Definition The **double integral** of f over the rectangle R is

$$\iint_{R} f(x, y) dA = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(x_{ij}^{*}, y_{ij}^{*}) \Delta A$$

if this limit exists.

EXAMPLE 1 Estimate the volume of the solid that lies above the square $R = [0, 2] \times [0, 2]$ and below the elliptic paraboloid $z = 16 - x^2 - 2y^2$. Divide R into four equal squares and choose the sample point to be the upper right corner of each square R_{U} . Sketch the solid and the approximating rectangular boxes.

SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of $f(x, y) = 16 - x^2 - 2y^2$ and the area of each square is $\Delta A = 1$. Approximating the volume by the Riemann sum with m = n = 2, we have

$$V \approx \sum_{i=1}^{2} \sum_{j=1}^{2} f(x_i, y_j) \Delta A$$

$$= f(1, 1) \Delta A + f(1, 2) \Delta A + f(2, 1) \Delta A + f(2, 2) \Delta A$$

$$= 13(1) + 7(1) + 10(1) + 4(1) = 34$$

This is the volume of the approximating rectangular boxes shown in Figure 7.

(a) m = n = 4, $V \approx 41.5$

(b) m = n = 8, $V \approx 44.875$

(c) m = n = 16, $V \approx 46.46875$

Definition of the double integral

The Midpoint Rule

Repeat the above question...

Iterated Integrals

EXAMPLE 1 Evaluate the iterated integrals.

(a)
$$\int_0^3 \int_1^2 x^2 y \, dy \, dx$$

(b)
$$\int_{1}^{2} \int_{0}^{3} x^{2} y \, dx \, dy$$

SOLUTION

(a) Regarding x as a constant, we obtain

$$\int_{1}^{2} x^{2} y \, dy = \left[x^{2} \frac{y^{2}}{2} \right]_{y-1}^{y-2} = x^{2} \left(\frac{2^{2}}{2} \right) - x^{2} \left(\frac{1^{2}}{2} \right) = \frac{3}{2} x^{2}$$

Thus the function A in the preceding discussion is given by $A(x) = \frac{3}{2}x^2$ in this example. We now integrate this function of x from 0 to 3:

$$\int_0^3 \int_1^2 x^2 y \, dy \, dx = \int_0^3 \left[\int_1^2 x^2 y \, dy \right] dx$$
$$= \int_0^3 \frac{3}{2} x^2 \, dx = \frac{x^3}{2} \right]_0^3 = \frac{27}{2}$$

(b) Here we first integrate with respect to *x*:

$$\int_{1}^{2} \int_{0}^{3} x^{2} y \, dx \, dy = \int_{1}^{2} \left[\int_{0}^{3} x^{2} y \, dx \right] dy = \int_{1}^{2} \left[\frac{x^{3}}{3} y \right]_{x=0}^{x=3} dy$$
$$= \int_{1}^{2} 9y \, dy = 9 \frac{y^{2}}{2} \right]_{1}^{2} = \frac{27}{2}$$

4 Fubini's Theorem If f is continuous on the rectangle $R = \{(x, y) \mid a \le x \le b, c \le y \le d\}$, then

$$\iint_{D} f(x, y) \, dA = \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \int_{c}^{d} \int_{a}^{b} f(x, y) \, dx \, dy$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

EXAMPLE 2 Evaluate the double integral $\iint_R (x - 3y^2) dA$, where $R = \{(x, y) \mid 0 \le x \le 2, 1 \le y \le 2\}$. (Compare with Example 3 in Section 15.1.)

SOLUTION 1 Fubini's Theorem gives

$$\iint\limits_{R} (x - 3y^2) dA = \int_{0}^{2} \int_{1}^{2} (x - 3y^2) dy dx = \int_{0}^{2} \left[xy - y^3 \right]_{y-1}^{y-2} dx$$
$$= \int_{0}^{2} (x - 7) dx = \frac{x^2}{2} - 7x \Big|_{0}^{2} = -12$$

EXAMPLE 3 Evaluate $\iint_{R} y \sin(xy) dA$, where $R = [1, 2] \times [0, \pi]$.

SOLUTION 1 If we first integrate with respect to x, we get

$$\iint_{R} y \sin(xy) \, dA = \int_{0}^{\pi} \int_{1}^{2} y \sin(xy) \, dx \, dy = \int_{0}^{\pi} \left[-\cos(xy) \right]_{x=1}^{x=2} \, dy$$
$$= \int_{0}^{\pi} \left(-\cos 2y + \cos y \right) \, dy$$
$$= -\frac{1}{2} \sin 2y + \sin y \Big|_{0}^{\pi} = 0$$

EXAMPLE 4 Find the volume of the solid *S* that is bounded by the elliptic paraboloid $x^2 + 2y^2 + z = 16$, the planes x = 2 and y = 2, and the three coordinate planes.

SOLUTION We first observe that S is the solid that lies under the surface $z = 16 - x^2 - 2y^2$ and above the square $R = [0, 2] \times [0, 2]$. (See Figure 5.) This solid was considered in Example 1 in Section 15.1, but we are now in a position to evaluate the double integral using Fubini's Theorem. Therefore

$$V = \iint_{R} (16 - x^{2} - 2y^{2}) dA = \int_{0}^{2} \int_{0}^{2} (16 - x^{2} - 2y^{2}) dx dy$$

$$= \int_{0}^{2} \left[16x - \frac{1}{3}x^{3} - 2y^{2}x \right]_{x=0}^{x=2} dy$$

$$= \int_{0}^{2} \left(\frac{88}{3} - 4y^{2} \right) dy = \left[\frac{88}{3}y - \frac{4}{3}y^{3} \right]_{0}^{2} = 48$$

Double Integrals over General Regions

If f is continuous on a type I region D such that

$$D = \{(x, y) \mid a \le x \le b, g_1(x) \le y \le g_2(x)\}$$

then

$$\iint\limits_D f(x, y) dA = \int_a^b \int_{g_1(x)}^{g_2(x)} f(x, y) dy dx$$

$$\iint_{D} f(x, y) dA = \int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) dx dy$$

EXAMPLE 1 Evaluate $\iint_D (x + 2y) dA$, where D is the region bounded by the parabolas $y = 2x^2$ and $y = 1 + x^2$.

SOLUTION The parabolas intersect when $2x^2 = 1 + x^2$, that is, $x^2 = 1$, so $x = \pm 1$. We note that the region D, sketched in Figure 8, is a type I region but not a type II region and we can write

$$D = \{(x, y) \mid -1 \le x \le 1, \ 2x^2 \le y \le 1 + x^2\}$$

Since the lower boundary is $y = 2x^2$ and the upper boundary is $y = 1 + x^2$, Equation 3 gives

$$\iint\limits_{D} (x + 2y) \, dA = \int_{-1}^{1} \int_{2x^{2}}^{1+x^{2}} (x + 2y) \, dy \, dx$$

$$\iint_{D} (x + 2y) dA = \int_{-1}^{1} \int_{2x^{2}}^{1+x^{2}} (x + 2y) dy dx$$

$$= \int_{-1}^{1} \left[xy + y^{2} \right]_{y-2x^{2}}^{y-1+x^{2}} dx$$

$$= \int_{-1}^{1} \left[x(1 + x^{2}) + (1 + x^{2})^{2} - x(2x^{2}) - (2x^{2})^{2} \right] dx$$

$$= \int_{-1}^{1} \left(-3x^{4} - x^{3} + 2x^{2} + x + 1 \right) dx$$

$$= -3 \frac{x^{5}}{5} - \frac{x^{4}}{4} + 2 \frac{x^{3}}{3} + \frac{x^{2}}{2} + x \right]_{-1}^{1} = \frac{32}{15}$$

EXAMPLE 2 Find the volume of the solid that lies under the paraboloid $z = x^2 + y^2$ and above the region D in the xy-plane bounded by the line y = 2x and the parabola $y = x^2$.

FIGURE 9

D as a type I region

SOLUTION 1 From Figure 9 we see that D is a type I region and

$$D = \{(x, y) \mid 0 \le x \le 2, \ x^2 \le y \le 2x\}$$

Therefore the volume under $z = x^2 + y^2$ and above D is

$$V = \iint_{D} (x^{2} + y^{2}) dA = \int_{0}^{2} \int_{x^{2}}^{2x} (x^{2} + y^{2}) dy dx$$

$$V = \iint_{D} (x^{2} + y^{2}) dA = \int_{0}^{2} \int_{x^{2}}^{2x} (x^{2} + y^{2}) dy dx$$

$$= \int_{0}^{2} \left[x^{2}y + \frac{y^{3}}{3} \right]_{y-x^{2}}^{y-2x} dx$$

$$= \int_{0}^{2} \left[x^{2}(2x) + \frac{(2x)^{3}}{3} - x^{2}x^{2} - \frac{(x^{2})^{3}}{3} \right] dx$$

$$= \int_{0}^{2} \left(-\frac{x^{6}}{3} - x^{4} + \frac{14x^{3}}{3} \right) dx$$

$$= -\frac{x^{7}}{21} - \frac{x^{5}}{5} + \frac{7x^{4}}{6} \right]_{0}^{2} = \frac{216}{35}$$

FIGURE 10 D as a type II region

SOLUTION 2 From Figure 10 we see that D can also be written as a type II region:

$$D = \left\{ (x, y) \mid 0 \le y \le 4, \frac{1}{2}y \le x \le \sqrt{y} \right\}$$

Therefore another expression for V is

$$V = \iint_{D} (x^{2} + y^{2}) dA = \int_{0}^{4} \int_{\frac{1}{2}y}^{\sqrt{y}} (x^{2} + y^{2}) dx dy$$

$$= \int_{0}^{4} \left[\frac{x^{3}}{3} + y^{2}x \right]_{x - \frac{1}{2}y}^{x - \sqrt{y}} dy = \int_{0}^{4} \left(\frac{y^{3/2}}{3} + y^{5/2} - \frac{y^{3}}{24} - \frac{y^{3}}{2} \right) dy$$

$$= \frac{2}{15}y^{5/2} + \frac{2}{7}y^{7/2} - \frac{13}{96}y^{4} \Big|_{0}^{4} = \frac{216}{35}$$