这个数组的一个索引。在这个示例中,块偏移位是 100_2 ,它表明 w 的副本是从块中的字节 4 开始的(我们假设字长为 4 字节)。

4. 直接映射高速缓存中不命中时的行替换

如果缓存不命中,那么它需要从存储器层次结构中的下一层取出被请求的块,然后将 新的块存储在组索引位指示的组中的一个高速缓存行中。一般而言,如果组中都是有效高 速缓存行了,那么必须要驱逐出一个现存的行。对于直接映射高速缓存来说,每个组只包 含有一行,替换策略非常简单:用新取出的行替换当前的行。

5. 综合:运行中的直接映射高速缓存

高速缓存用来选择组和标识行的机制极其简单,因为硬件必须在几个纳秒的时间内完成这些工作。不过,用这种方式来处理位是很令人困惑的。一个具体的例子能帮助解释清楚这个过程。假设我们有一个直接映射高速缓存,描述如下

$$(S,E,B,m) = (4,1,2,4)$$

换句话说,高速缓存有 4 个组,每个组一行,每个块 2 个字节,而地址是 4 位的。我们还假设每个字都是单字节的。当然,这样一些假设完全是不现实的,但是它们能使示例保持简单。

当你初学高速缓存时,列举出整个地址空间并划分好位是很有帮助的,就像我们在图 6-30 对 4 位的示例所做的那样。关于这个列举出的空间,有一些有趣的事情值得注意:

地址(十进制)	地址位			
	标记位 (<i>t</i> =1)	索引位 (s=2)	偏移位 (b=1)	块号 (十进制)
0	0	00	0	0
1	0	00	1	0
2	0	01	0	1
3	0	01	1	1
4	0	10	0	2
5	0	10	1	2
6	0	11	0	3
7	0	11	1	3
8	1	00	0	4
9	1	00	1	4
10	1	01	0	5
11	1	01	1	5
12	1	10	0	6
13	1	10	1	6
14	1	11	0	7
15	1	11	1	7

图 6-30 示例直接映射高速缓存的 4 位地址空间

- ◆标记位和索引位连起来唯一地标识了内存中的每个块。例如,块0是由地址0和1组成的,块1是由地址2和3组成的,块2是由地址4和5组成的,依此类推。
- 因为有8个内存块,但是只有4个高速缓存组,所以多个块会映射到同一个高速缓存组(即它们有相同的组索引)。例如,块0和4都映射到组0,块1和5都映射到组1,等等。
- ●映射到同一个高速缓存组的块由标记位唯一地标识。例如,块0的标记位为0,而块4的标记位为1,块1的标记位为0,而块5的标记位为1,以此类推。 让我们来模拟一下当CPU执行一系列读的时候,高速缓存的执行情况。记住对于这