Lab 4

Student Name: Dillon Vu

Student NSID: 11100292

Functional coverage

Coverage group:

- Input_data_coverage
 - o Cover point: coverage point op code: 1 bin for each op code
 - Cover point: Coverage_point_alu_a : 6 bins from each different range value of input a
 - Cover point: Coverage_point_alu_b : 6 bins from each different range value of input b
- Cg min max value
 - Cover point: coverage_point_alu_a_min_max: 2 bins with value of 0 and 255 for a
 - Cover point: coverage_point_alu_b_min_max: 2 bins with value of 0 and 255 for
- Transition_cg
 - o Cover point: coverage transition: 256 bins for opcode transition for each range
- Cg reset
 - Cover point: cover 2 bins reset value 1 and 0
- Cg_alu_co_out
 - Cover point: cover 2 bins alu co out value 1 and 0
- Input_alu_in_toggle
 - Cover point bit_val: cover 2 bins value 0 and 1 of each bit
 - Cover point: bit_number: cover 8 bins value from 0 ->7 of each b

To cover the reset coverage group, reset bit was imported into testbench_top to generate reset. Virtual interface with reset object then would pass into coverage class then pass into coverage group.

Initially, when importing the report, a couple of errors appeared to the scoreboard due to reset value change which changed different output. Therefore, import reset==0 to each opcode case would reduce the errors.

There are 13 errors that appear after cover 100% coverage.

Test case:

100% functional coverage has been achieved however there are 13 errors appearing from the scoreboard.