量子力学

PhyDuck

December 2022

Contents

Ι	理论		1
1	量子	力学的理论框架	2
	1.1	波函数, 态和态的表示	2
	1.2	左矢	3
	1.3	力学量与算符	4
		1.3.1 本征矢	5
		1.3.2 力学量的矩阵表示	6
	1.4	表象	8
		1.4.1 表象变换	8
2	平移	与动量	11
	2.1	连续谱与坐标	11
	2.2	平移	12
	2.3	动量-无穷小平移生成元	14
	2.4	有限长度平移	15
	2.5	坐标和动量表象	15
		2.5.1 坐标表象	15
		2.5.2 动量表象	17
		2.5.3 坐标和动量表象波函数的关系	18

Part I

理论

Chapter 1

量子力学的理论框架

在这一章中, 我会主要讲解量子力学的基本概念, 给出一些基本性质。

1.1 波函数, 态和态的表示

首先,量子力学研究的是微观低速粒子态的性质和态的演化,那么什么是态呢? 当然,态描述的是粒子所处于的"状态"。在经典力学中,粒子的状态可以由他所处的位置和动量完全确定,可以用 (r,p) 来表示粒子的状态,但在量子力学中,粒子的位置和动量是不能同时确定的(不确定性原理,后面会提到),而坐标和动量本身一般也不是确定的,一般对他们的测量不能得到一个确定的值,但是我们可以制造出一堆相同的粒子,使用一系列测粒子位置的仪器来捕获粒子,在某一小区间内的粒子会被在这个区间附近的仪器捕获,最终我们会观察到各个位置区间捕获的粒子数 n,再处以空间中我们放入的总粒子数 N,即 n/N 这就是粒子在空间某处出现的概率,所以粒子在空间中的位置实际上是以概率分布确定的。一般的,在概率论与数理统计中我们知道,用来表示一个连续的概率密度分布的函数是概率密度函数,概率密度函数在某一点的值是该点的概率密度(或者可以说成概率幅),在量子力学中也是类似,来表征粒子位置状态的函数被称为波函数 $\psi(r)$,这一般是一个复函数,其模方 $|\psi(r)|^2 = \psi^*\psi$ 被定义为粒子处在某位置的概率密度,例如给定波函数

$$\psi(x) = e^{-x} \quad (x > 0) \tag{1.1}$$

其意义是在 x 处,粒子出现的概率密度为 e^{-2x} ,而在 x_a 到 x_b 区间内,粒子出现的概率为

$$P = \int_{x_a}^{x_b} e^{-2x} dx = \frac{e^{-2x_a} - e^{-2x_b}}{2}$$
 (1.2)

现在我们得到了所谓的在坐标空间的粒子处于各个位置的概率函数,但是实际上我们还可以在动量空间内看这个问题,我们可以问:粒子处于动量 $p=p_0$ 的概率是多少?这意味着我们安排了一系列测量动量的机器,并且在上面进行读数并统计。与此类似,我们还可以问能量、自旋、角动量等等。事实上,无论在哪个空间进行测量,应当认同:粒子处于某一个确定的态 (state),我们可以用一个记号来表示这个态 $|\psi\rangle$,这被称为一个右矢 (ket),其在数学上是一个 N 维矢量

$$|\psi\rangle = \begin{pmatrix} a \\ b \\ \vdots \\ N \times 1 \end{pmatrix} \tag{1.3}$$

,具体的维数取决于你这个系统,但是注意,他们的维度一定是相同的,无论你用哪种仪器。 1 当然我们不可能一直说"仪器",我们需要发展一套专业的语言,用数学上的话讲,选取仪器实际上是用同一个空间中选用某组基来做展开。比如一个简单的例子:在 \mathbb{R}_3 空间中的某一矢量

$$\mathbf{v} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = 1 \times \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + 1 \times \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} + 1 \times \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$= 0 \times \begin{pmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \\ 0 \end{pmatrix} + \sqrt{2} \times \begin{pmatrix} \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \\ 0 \end{pmatrix} + 1 \times \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

$$(1.4)$$

在量子力学中,这些不同的基对应着不同的仪器的所有可能的测值的集合。当然,由于仪器所测量的都是可观测量,所以以后就称为力学量了。

1.2 左矢

有了表示量子态的右矢 $ket|\rangle$,我们还需要其对偶空间的左矢 $bra\langle|$,在右矢空间中的每一个 $|\psi_i\rangle$ 都在左矢空间一一对应,这些本征左矢 $\langle\psi_i|$ 张成了左矢空间。左矢可以

¹事实上,这在有限维下说得通,但是在无穷维中你可能会产生疑惑,比如对于束缚态来说,坐标空间的不可数无穷维显然比能量空间的可数无穷维空间要大的多,你为什么说他是相同的维度呢?在梁灿彬的书中,有这样一种解释:事实上坐标算符的本征函数 $\delta(x)$ 因为根本不算是函数而不属于 Hilbert 空间 \mathcal{H} ,而动量算符的本征函数 $e^{ipx/\hbar}$ 由于不可归一化也不属于 \mathcal{H} ,所以我们不能说:这是一组"基",我们是在用"基"做展开。但是 \mathcal{H} 必有基,根据泛函分析的理论,这组基一定是可数项之和,而绝不是积分, $|\psi\rangle=\sum_i c_i\,|\phi_i\rangle$,显然在束缚态中的哈密顿算符 \mathcal{H} 的本征矢是满足的,它才可以称得上是一组完备基,但是我在这篇文章中仍然会称那些为一组"正交归一完备基",但请追求数学严格性的读者知道,这种说法存在漏洞,但我们并不会因为这些漏洞得到错误的结果,这依赖着谱分解定理,有兴趣的读者可以去了解一下。

用行向量来表示,对于 1.3 表示的 $|\psi\rangle$,其对应的左矢为

$$\langle \psi | = \begin{pmatrix} a^* & b^* \cdots \end{pmatrix}_{1 \times N} \tag{1.5}$$

上标*表示取复共轭。在定义了左矢以后,我们可以定义内积:假设有

$$|\phi\rangle = \begin{pmatrix} \alpha \\ \beta \\ \vdots \end{pmatrix} \tag{1.6}$$

则内积

$$\langle \psi | \phi \rangle = a^* \alpha + b^* \beta + \cdots \tag{1.7}$$

1.3 力学量与算符

在量子力学中,力学量可以用算符来表示,习惯性的,我们会在经典力学量上面加一个尖尖 $(hat)^2$,比如哈密顿量算符 \hat{H} 。算符的作用是让系统的某个态转换为另外的一个态,即

$$\hat{A} |\psi\rangle = |\phi\rangle \tag{1.8}$$

当然,由于 $|\psi\rangle$, $|\phi\rangle$ 具有相同的维度,所以算符是一个方矩阵。一般的, $|\phi\rangle$ 与 $|\psi\rangle$ 是不同的态,但是有一些特殊的态能够在 \hat{A} 的作用下仍然保持,算符的作用结果只是得到了一个数,即

$$\hat{A} |\psi_i\rangle = \alpha_i |\psi_i\rangle \tag{1.9}$$

这种 $|\psi_i\rangle$ 称为算符 A 的本征矢,相应的 α_i 成为其对应的本征值,由矩阵的性质可以知道,对于 N 维系统,一定有 N 个本征矢(对应 N 个本征态),也就有 N 个本征值 (本征值也许会相同)。在量子力学中,如果这组本征矢要作为这个系统的基矢,我们要求这组本征矢应当是"正交归一完备"的。正交归一性是指:对于某力学量的任意两个本征态 $|\psi_i\rangle$, $|\psi_i\rangle$,有

$$\langle \psi_i | \psi_j \rangle = \delta_{ij} \tag{1.10}$$

,而完备性是指本征态系列 $|\psi_1\rangle, |\psi_2\rangle, \cdots, |\psi_N\rangle$ 足以张成这个系统的空间,这个空间中的任意态矢量都可以用这一系列本征态展开。

由于我们引入了左矢, 所以考虑算符如何作用在左矢是有意义的。可以从定义中看

²当然也许什么时候我就忘了加哈哈哈哈,在后面我们已经熟悉算符且不会引起歧义的情况下,我就不加了

到,左矢空间其实是右矢空间的转置共轭,而算符作用在某个右矢上的作用是从一个右矢转化为另一个右矢,得到的仍然是右矢,其结果对应在左矢空间仍然是转置共轭关系,即

$$A |\psi\rangle \to [(A |\psi\rangle)^T]^* = \langle \psi | (A^T)^*$$
(1.11)

但是这样写太难看了,我们可以定义一个新的标记 dagger† 为转置共轭符号(也称为 厄米共轭),所以在左矢空间中,算符从右边作用上来,表示为

$$\langle \psi | A^{\dagger}$$
 (1.12)

有一些算符满足

$$A = A^{\dagger} \tag{1.13}$$

,这种算符被称为厄米算符。厄米算符是非常重要的,事实上,我们接触到的力学量或可观测量算符一定是厄米的,厄米算符保证了本征值是实数。厄米算符有一些重要性质:厄米算符的本征态是完备的、厄米算符属于不同本征值的本征态是正交的,而属于相同本征值的本征态还可以通过施密特正交化来使其正交。由于以上几点,可以归一化的、本征态是函数的厄米算符所有本征态可以构造出一组基矢。

下面我们来看两个算符相乘。由于矩阵乘法运算的不可对易性,量子力学中算符的运算一般也是不可对易的,即:

$$AB \neq BA$$
 (1.14)

于是可以构造一个符号: 对易子 [A, B] = AB - BA 所以一般情况下,两个算符之间 有对易关系 $[A, B] \neq 0$,例如最为经典的对易关系: 坐标和动量的对易关系

$$[x_i, p_i] = i\hbar \delta_{ij} \tag{1.15}$$

1.3.1 本征矢

前面已经说过,我们量子力学中遇到的力学量一般都是厄米的,其保证了本征矢的 正交归一完备性,可以用本征态展开任意的一个态:假设 $|\alpha\rangle$ 是这个空间中任意的一个态,而 $\{|a_i\rangle\}$ 是算符 A 的本征矢集合

$$|\alpha\rangle = \sum_{i} c_i |a_i\rangle \tag{1.16}$$

我们下面要做的就是寻找 c_i , 由于正交归一性 (1.10), 两边左乘 $\langle a_i |$, 有

$$\langle a_j | \alpha \rangle = \sum_i c_i \langle a_j | a_i \rangle = \sum_i c_i \delta_{ij} = c_j$$
 (1.17)

将指标从j换为i,代入(1.16),有

$$|\alpha\rangle = \sum_{i} |a_{i}\rangle \langle a_{i}|\alpha\rangle$$
 (1.18)

我把它写成了这个形式, 注意到 ket 是一个 $N \times 1$ 的列向量, 而 bra 是一个 $1 \times N$ 的行向量, 这两者的矩阵乘积是一个 $N \times N$ 的方矩阵! 所以类似 $|\rangle$ (| 的形式实际上表示一个算符, 在这里

$$\sum_{i} |a_{i}\rangle\langle a_{i}| = 1 \tag{1.19}$$

是一个单位矩阵,事实上这也是容易理解的,由于总可以找到一种对算符对角化的方法,使得算符是一个对角阵,此时本征矢有

$$|a_1\rangle = \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \quad |a_2\rangle = \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}, \quad \cdots$$
 (1.20)

这样的形式,所以 $|a_i\rangle\langle a_i|$ 形成了第 i 个对角元为 1 的矩阵,其求和就是一个单位矩阵了。

(1.18) 给出的叫做单位分解,也就是你可以再任意的地方插入一套完备基,这在很多时候非常有用! 值得记住。

1.3.2 力学量的矩阵表示

我们已经把 braket 用行列向量表示了,而前面我们也看到,算符是作为一个方矩阵作用在列向量上的,那这个矩阵的具体形式是什么呢?在这一小节中我将给出力学量的矩阵表示。

由于任意的态都可以用一组正交归一完备基来展开,所以不妨来看力学量作用在

任意的正交归一完备基的情况3。

$$O|a_i\rangle = |\psi\rangle = \sum_j |a_j\rangle \langle a_j|\psi\rangle$$
 (1.21)

另一方面,

$$O|a_i\rangle = \sum_j |a_j\rangle \langle a_j| O|a_i\rangle$$
 (1.22)

考虑矩阵乘法规则,则

$$|\psi\rangle = \sum_{j} \underbrace{\left(\sum_{k} O_{jk} |a_{i}\rangle_{k1}\right)}_{\psi \text{ in } \hat{m} j \land \hat{m} \hat{m}} |a_{j}\rangle$$

$$= \sum_{j} O_{ji} |a_{j}\rangle$$
(1.23)

综合以上,有

$$O_{ii} = \langle a_i | O | a_i \rangle \tag{1.24}$$

所以力学量矩阵的矩阵元就是力学量作用在其对应的列的右矢上得到的态与其对应的 行的左矢的内积。上述表示方法也可以通过插入两个单位分解简单导出:

$$O = \sum_{i,j} |a_i\rangle \langle a_i| O |a_j\rangle \langle a_j|$$
(1.25)

考虑到 (1.20),所以 $O_{ij} = \langle a_i | O | a_i \rangle$ 。

上述的完备基是任意取的,但如果 $|a_i\rangle$ 是 O 的本征矢集,则

$$O|a_j\rangle = \lambda_j |a_j\rangle \tag{1.26}$$

于是

$$O_{ij} = \lambda_j \langle a_i | a_j \rangle = \lambda_j \delta_{ij} = \begin{cases} \lambda_j & i = j \\ 0 & i \neq j \end{cases}$$
 (1.27)

这表明如果我们把基矢取作力学量的本征矢,力学量就是一个对角化的矩阵了! 这个矩阵的第i个对角矩阵元就是其对应的本征值。

 $^{^3}$ 事实上因为力学量是 N 维矩阵,我们也需要作用在一组完备基上

1.4 表象

其实从上面说的这些内容,大家应该有一些些"力学量和态可以用不同的基展开"这样一种感觉。是的,我们可以用更专业一点的术语,我们选取不同的基也被称为选取不同的表象 (representation),我们可以利用不同的基写出不同表象下的态和力学量。比如 1.27 所描绘的力学量矩阵就是在其自身表象中写出的,在自身表象中,力学量为一对角阵,而在其他任意不对易的表象中,力学量没有对角阵这样高的对称性,一般只是一个普通的厄米矩阵。

1.4.1 表象变换

我们来考虑在不同表象下的力学量和态有什么关系,首先考虑力学量。在这里我们设力学量 A, B,其基分别为 $\{|a_i\rangle\}, \{|b_i\rangle\}$,于是

$$F_{mn}^{A} = \langle a_m | F | a_n \rangle, \quad F_{ij}^{B} = \langle b_i | F | b_j \rangle$$
 (1.28)

可以将 $\{b_i\}$ 这组基用 $\{a_i\}$ 展开: (其实就是插入了两个单位分解)

$$F_{ij}^{B} = \sum_{m,n} \langle b_i | a_m \rangle \langle a_m | F | a_n \rangle \langle a_n | b_j \rangle$$
(1.29)

如果令 S 矩阵的矩阵元(当然你也可以反着来,这都无所谓,只是习惯上的问题)

$$S_{in} = \langle b_i | a_n \rangle \tag{1.30}$$

于是

$$F_{ij}^{B} = \sum_{m,n} S_{in} F_{mn}^{A} S_{nj}^{\dagger} \tag{1.31}$$

这意味着

$$F^B = SF^A S^{\dagger} \tag{1.32}$$

随后我们再来考虑态的变换。同样的,一量子态可以由 $\{|a_i\rangle\},\{|b_i\rangle\}$ 展开,

$$|\psi^{A}\rangle = \sum_{m} |a_{m}\rangle \langle a_{m}|\psi\rangle, \quad |\psi^{B}\rangle = \sum_{i} |b_{i}\rangle \langle b_{i}|\psi\rangle$$
 (1.33)

做同样的事情,在 $|\psi^B\rangle$ 中再插入一个 A 的正交分解

$$|\psi^{B}\rangle = \sum_{i,m} |b_{i}\rangle \langle b_{i}|a_{m}\rangle \langle a_{m}|\psi\rangle$$

$$= \sum_{i,m} S_{im} |\psi^{A}\rangle_{m1} |b_{i}\rangle$$

$$= S |\psi^{A}\rangle$$
(1.34)

S 矩阵是一个幺正矩阵。考虑

$$(SS^{\dagger})_{ij} = \sum_{k} S_{ik} S_{kj}^{\dagger} = \sum_{k} \langle b_i | a_k \rangle \langle a_k | b_j \rangle = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$
 (1.35)

所以

$$SS^{\dagger} = 1 \Rightarrow S^{\dagger} = S^{-1} \tag{1.36}$$

于是, S 矩阵是一个幺正矩阵, 表象变换是一种幺正变换, 其保证了本征值不变4。

前面我们写出了 S 矩阵的矩阵元, 当然也可以写出 S 矩阵的形式, 从矩阵元到矩阵, 我们需要一个 |> 〈| 来把矩阵元放到应在的位置上,

$$S = \sum_{ij} |a_i\rangle S_{ij} \langle a_j|$$

$$= \sum_{ij} |a_i\rangle \langle b_i|a_j\rangle \langle a_j|$$

$$= \sum_{i} |a_i\rangle \langle b_i|$$
(1.37)

你可能注意到我的定义与某些教科书上的相反,但是实际上由于其是幺正矩阵,所 以

$$F^B = SF^A S^{\dagger} \Rightarrow F^A = S^{-1} F^B S = S^{\dagger} F^B S \tag{1.38}$$

这里的形式可能又和教科书上的形式是类似的,anyway,不用在乎他的位置。

 $^{^4}$ 由于量子力学中可观测量就是这些力学量,对其的测量为其本征值,所以幺正变换保证了无论如何选取这个基,不会对我们实际的观测产生影响

Bibliography

- [1] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloë. Quantum mechanics; 2nd ed. Wiley, New York, NY, 2020.
- [2] J. J. Sakurai and Jim Napolitano. *Modern Quantum Mechanics*. Cambridge University Press, 3 edition, 2020.

Chapter 2

平移与动量

2.1 连续谱与坐标

前面我们考虑的几乎都是分立谱,为了研究坐标、平移和动量的性质,我们先来看如何从分立谱过渡到连续谱。

首先要明确的事,分立谱和连续谱并没有什么物理上的不一样,甚至你也可以利用物理上的无穷小分割来将连续谱分割为分立谱,但是这显然不够方变,在连续谱的情形下,使用积分代替求和会使问题变得更方便。以坐标算符为例,考虑一个简单的一维情况。

考虑坐标算符的本征方程:

$$\hat{x} | x' \rangle = x' | x' \rangle \tag{2.1}$$

这表明对于本征态 $|x'\rangle$, 测量其 x 坐标会得到 x' 这个数, 也就是其坐标值。而任意的态可以用坐标算符的本征态进行展开:

$$|\psi\rangle = \sum |x'\rangle \langle x'|\psi\rangle \tag{2.2}$$

当然上式还是使用的求和,实际上在连续谱中,应当将求和化作积分

$$\sum \rightarrow \int dx' \tag{2.3}$$

所以

$$|\psi\rangle = \int dx' |x'\rangle \langle x'|\psi\rangle$$
 (2.4)

其中 $\langle x'|\psi\rangle$ 体现了 $|\psi\rangle$ 中具有坐标 $|x'\rangle$ 的成分的大小,所以在 $x'\to x'+\mathrm{d}x'$ 范围内找

到粒子的概率为

$$p(x') = \left| \langle x' | \psi \rangle \right|^2 \tag{2.5}$$

比较这个式子与 1.1 中我们提到的"波函数"的概念,可以发现,实际上

$$\psi(x') = \langle x' | \psi \rangle \tag{2.6}$$

这个展开系数,就是坐标空间中我们定义的波函数 (在 x' 处的取值)! 关于波函数,我们在后面再来讨论。

类似的,单位分解也应改变为

$$\int dx' |x'\rangle \langle x'| = 1 \tag{2.7}$$

而正交归一性也不再是 Kronecker delta, 应当改变为 Dirac delta

$$\langle x'|x''\rangle = \delta(x' - x'') \tag{2.8}$$

2.2 平移

下面定义一个平移算符,平移算符作用在一个态上,可以让这个态平移一段距离:

$$\widetilde{T}(a)|x\rangle = |x+a\rangle$$
 (2.9)

如果原来的态是归一化的,则新的态也应当归一化,这就要求

$$\langle x + a | x + a \rangle = \langle x | \tilde{T}^{\dagger}(a) \tilde{T}(a) | x \rangle = 1$$
 (2.10)

所以也就有

$$\tilde{T}^{\dagger}(a)\tilde{T}(a) = 1 \tag{2.11}$$

换句话说,这个平移算符应当是幺正的。¹由于平移一段距离可以分解为若干平移依次作用:即

$$\tilde{T}(a+b) = \tilde{T}(b)\tilde{T}(a) \tag{2.12}$$

所以考虑一个无穷小平移是有意义的²。定义无穷小平移

$$T = \tilde{T}(\mathrm{d}x) \tag{2.13}$$

下面我们来研究无穷小平移算符的性质。

无穷小平移算符作用在态上,有

$$T|x\rangle = |x + \mathrm{d}x\rangle \tag{2.14}$$

由于 dx 很小, T 和 1 只相差一阶小量

$$T = 1 + \kappa \mathrm{d}x \tag{2.15}$$

其中 κ 是一个算符, 考虑

$$T^{\dagger}T = \mathbb{1} + (\kappa + \kappa^{\dagger})dx \tag{2.16}$$

高阶量已略去,而由于其要求幺正性,由于一般算符是厄米的,这不能满足,于是可 以考虑加一虚数单位,令3

$$T = 1 - iKdx (2.17)$$

此时

$$T^{\dagger}T = \mathbb{1} - i\mathrm{d}x(K - K^{\dagger}) \tag{2.18}$$

由于算符是厄米的,这个形式下幺正性得以满足。

可以研究 T 和 x 的对易子

$$[x,T] = xT - Tx \tag{2.19}$$

将其作用在态 |x'> 上:

$$\begin{cases} xT |x'\rangle = x |x' + dx'\rangle = (x' + dx') |x' + dx'\rangle \\ Tx |x'\rangle = x'T |x'\rangle = x' |x' + dx'\rangle \end{cases}$$
(2.20)

于是

$$[x,T]|x'\rangle = dx'|x' + dx'\rangle \xrightarrow{\underline{\text{45.5}} \text{ - holimits}} dx'|x'\rangle \tag{2.21}$$

²任意平移都可以由无穷多无穷小平移作用累加 ³其实这个形式更多的是"猜"出来的,这里只是给出一个比较勉强的"推导"

于是有

$$[x,T] = \mathrm{d}x' \tag{2.22}$$

在这里可能看不出什么名堂,因为 dx' 不过是一无穷小量,但是如果进一步求与 K 的对易子,有

$$[x, K] = i (2.23)$$

2.3 动量-无穷小平移生成元

前面定义了无穷小平移算符和 K 算符,但是我们还不知道 K 的物理意义,为此,我们可以从经典力学中得到一些启发。

在经典力学中,一个无穷小平移可以看作正则变换

$$\begin{cases} x' = x + dx \\ p' = p \end{cases}$$
 (2.24)

, 这个正则变换可以由生成函数

$$U_2 = xp' + p\mathrm{d}x \tag{2.25}$$

中求得,由于 U_2 满足关系

$$\frac{\partial U_2}{\partial x} = p, \quad \frac{\partial U_2}{\partial p'} = x' \tag{2.26}$$

所以有

$$p = p', \quad x' = x + \mathrm{d}x \tag{2.27}$$

这就是 (2.24)。观察 U_2 的前一部分,

$$U_2' = xp' \tag{2.28}$$

有关系:

$$\frac{\partial U_2'}{\partial x} = p = p', \quad \frac{\partial U_2}{\partial p'} = x' = x \tag{2.29}$$

这对应着恒等变换(不进行变换),所以 U_2 事实上是一个恒等变换加上 pdx 的形式,比较这个形式和 (2.17),不难发现他们极其相似,所以可以想象,K 和动量 p 有着某种联系!

但 K 就是 p 吗? 恐怕不是,因为他们的量纲不一致。 K 有 1/x 的量纲,和 p 不一

致,不难联想到德布罗意关系

$$p = \hbar k \tag{2.30}$$

其中 k 是德布罗意波(角)波数,所以在无穷小平移生成元中,K 其实就是波数,于是 T 还可以写作

$$T = 1 - i\frac{p}{\hbar} dx \tag{2.31}$$

2.4 有限长度平移

在上面我们已经 get 了无穷小平移的一些性质,现在可以回到一般的情形了。如前所述,一个一般的平移可以由无穷多 (共 $N=a/\mathrm{d}x$ 个) 无穷小平移作用之和(矩阵相乘)来表示:

$$\tilde{T}(a) = \lim_{N \to \infty} \left[\mathbb{1} - i \frac{p}{\hbar} \frac{a}{N} \right]^N \tag{2.32}$$

由于

$$\lim_{x \to \infty} (1 + \frac{1}{x})^x = e \tag{2.33}$$

于是有

$$\tilde{T}(a) = \exp\{-ipa/\hbar\} \tag{2.34}$$

这就是有限长平移算符。

2.5 坐标和动量表象

2.5.1 坐标表象

现在我们可以来考虑坐标和动量表象中的一些问题了。首先是坐标表象,在 2.1 中 已经推得波函数

$$\psi(x') = \langle x' | \psi \rangle \tag{2.35}$$

也就是态在坐标表象的展开系数。

由于一些问题在坐标空间处理起来比较方便,所以建立一些从态的语言到波函数的语言的联系是有必要的,首先考虑两个态的内积

$$\langle \psi | \phi \rangle = \int dx' \langle \psi | x' \rangle \langle x' | \phi \rangle = \int dx' \psi^*(x') \phi(x')$$
 (2.36)

熟悉以波动力学为主线的读者可能会感到很亲切,但是请注意,从 Dirac Notation 到

波函数并不是直接的过渡,换句话说,你不能定义:

$$\langle \psi | \phi \rangle = \int dx' \psi^*(x') \phi(x') \tag{2.37}$$

尽管等号是成立的,但是你要记住的是,一个 ket|> 或 bra⟨| 指的是一个纯态而非波函数(后者是这个纯态在坐标表象中的形式)。本讲义从 Dirac Notation 谈起也是为了避免在首先接触波动力学后认为坐标表象具有什么特殊性。

除了内积,还可以考虑态用一组完备基展开(在波动力学中,这应该叫用本征函数 展开波函数):

$$|\psi\rangle = \sum_{i} |a_{i}\rangle\langle a_{i}|\psi\rangle$$
 (2.38)

取坐标表象

$$\psi(x') = \langle x' | \psi \rangle = \sum_{i} \langle x' | a_i \rangle \langle a_i | \psi \rangle = \sum_{i} c_i u_i(x')$$
 (2.39)

其中

$$u_i(x') = \langle x' | a_i \rangle \tag{2.40}$$

是 $|a_i\rangle$ 这一本征态在坐标表象中的值,称为本征函数。

最后来看动量算符在坐标表象的形式,考虑平移算符作用在波函数上(由于每一个坐标本征态都进行了平移,所以可以这么写,而由于基向左平移相当于波函数向右平移):

$$\tilde{T}(a)\psi(x') = \psi(x'-a) = \sum_{n} \frac{1}{n!} (-a)^n \frac{\partial^n}{\partial x^n} \psi(x')$$
(2.41)

另一方面

$$\tilde{T}(a) = \exp\{-ipa/\hbar\} = \sum_{n=1}^{\infty} \frac{1}{n!} \left(\frac{-ip}{\hbar}\right)^n a^n$$
(2.42)

两者比较可以得到 p 算符在坐标表象中的形式(这个形式只在作用在坐标空间的波函数上才有意义):

$$p_x = -i\hbar \frac{\partial}{\partial x} \tag{2.43}$$

或

$$\langle x'| p |\psi\rangle = -i\hbar \frac{\partial}{\partial x'} \langle x'|\psi\rangle$$
 (2.44)

即

$$\langle x'| p = -i\hbar \frac{\partial}{\partial x'} \langle x'|$$
 (2.45)

这是更严谨的定义。

有了这个关系,我们可以更方便的求出动量算符的本征函数 $\langle x'|p' \rangle = \psi_{p'}(x')$

$$\langle x'|p|p'\rangle = -i\hbar \frac{\partial}{\partial x'} \langle x'|p'\rangle = p' \langle x'|p'\rangle$$
 (2.46)

所以有

$$-ih\frac{\partial}{\partial x'}\psi_{p'}(x') = p'\psi_{p'}(x') \tag{2.47}$$

解得

$$\psi_{p'}(x') = A \exp\{ip'x'/\hbar\} \tag{2.48}$$

这是平面波的形式。A 是归一化常数,由于平面波不可以直接归一化(积分出来是无穷大),所以可以考虑将其利用正交归一关系归一化到 Dirac Delta⁴:

$$\delta(x - x') = \langle x | x' \rangle = \int dp' \langle x | p' \rangle \langle p' | x' \rangle$$

$$= \int dp' \psi_{p'}(x) \psi_{p'}^*(x')$$

$$= \int dp' |A|^2 \exp\{ip'(x - x')/\hbar\}$$

$$= |A|^2 2\pi \hbar \delta(x - x')$$
(2.49)

于是

$$A = \frac{1}{\sqrt{2\pi\hbar}} \tag{2.50}$$

$$\psi_{p'}(x') = \frac{1}{\sqrt{2\pi\hbar}} \exp\{ip'x'/\hbar\}$$
(2.51)

2.5.2 动量表象

在考虑过坐标表象和坐标表象中的动量算符后,我们可以考虑动量表象。类似的,动量表象中的波函数可以定义为

$$|\psi\rangle(p') = \langle p'|\psi\rangle \tag{2.52}$$

内积在动量空间中可以写作

$$\langle \psi | \phi \rangle = \int dp' \psi^*(p') \phi(p')$$
 (2.53)

⁴这个式子的最后一个等号的积分可以由 Dirac Delta 的傅立叶变换给出,Delta 函数傅立叶变换后做傅立叶反变换,得到的 积分式就是最后一个等号前的形式

同样的,这不应该是定义,原因见(2.37)前后的论述。动量空间波函数的展开为:

$$\psi(p') = \sum_{i} c_i \langle p' | a_i \rangle = \sum_{i} c_i u_i(p')$$
 (2.54)

 $u_i(p')$ 是动量空间对应的本征函数。

最后来求在动量空间中坐标算符的形式,即 $\langle p'|x$,为此,将其作用在一动量本征态上,有

$$\langle p'|x|p''\rangle = \int dx' \langle p'|x|x'\rangle \langle x'|p''\rangle$$

$$= \int dx'x' \langle p'|x'\rangle \langle x'|p''\rangle$$

$$= \int dx'x' \frac{1}{2\pi\hbar} \exp\{i(p'' - p')x'/\hbar\}$$

$$= i\hbar \frac{\partial}{\partial p'} \int dx' \frac{1}{2\pi\hbar} \exp\{i(p'' - p')x'/\hbar\}$$

$$= i\hbar \frac{\partial}{\partial p'} \int dx' \langle p'|x'\rangle \langle x'|p''\rangle$$

$$= i\hbar \frac{\partial}{\partial p'} \langle p'|p''\rangle$$

$$= i\hbar \frac{\partial}{\partial p'} \langle p'|p''\rangle$$
(2.55)

比较有

$$\langle p' | x = i\hbar \frac{\partial}{\partial p'} \langle p' |$$
 (2.56)

2.5.3 坐标和动量表象波函数的关系

在本章的最后,我们来讨论一下在波动力学中可能经常遇到的坐标和动量表象波 函数的关系。

对于一个坐标表象下的波函数:

$$\psi(x') = \langle x'|\psi\rangle = \int dp' \langle x'|p'\rangle \langle p'|\psi\rangle$$

$$= \int dp' \frac{1}{\sqrt{2\pi\hbar}} \exp\{ip'x'/\hbar\}\psi(p')$$

$$\frac{\$^{2}}{2\pi\hbar} \int dp'\psi(p') \exp\{ip'x'/\hbar\}$$
(2.57)

发现了没有! 这就是傅立叶变换呀! 同样可以证明

$$\psi(p') = \frac{1}{\sqrt{2\pi\hbar}} \int dx' \psi(x') \exp\{-ip'x'/\hbar\}$$
 (2.58)

所以坐标和动量空间的波函数是傅立叶变换和反变换的关系!

Bibliography

- [1] J. J. Sakurai and Jim Napolitano. *Modern Quantum Mechanics*. Cambridge University Press, 3 edition, 2020.
- [2] David J. Griffiths and Darrell F. Schroeter. *Introduction to Quantum Mechanics*. Cambridge University Press, 3 edition, 2018.