Microcontroladores

Interfaceamento com Teclas, LCD e Motores

Prof. Guilherme Peron Prof. Heitor S. Lopes Prof. Ronnier Rohrich Prof. Rubão

- Teclas: contato mecânico com dispositivo de recuo (mola), reed-switch ou magnético
 - O Problema: ruído causado pelo efeito rebote (bounce) da tecla

- Técnicas de debouncing ou anti-bouncing
 - O tempo de bouncing (rebote) depende da qualidade da tecla e se é abertura/fechamento.
 - Duração: dezenas µs a centenas de ms.
 - Solução:
 - Por hardware (RC ou FF SR)
 - Por software (temporização)

Técnicas de debouncing por hardware

- Técnicas de debouncing por software
 - Aguardar um tempo fixo prolongado quando uma tecla mudar de estado (p. ex. < 0,5s)
 - Contar n estados estáveis da tecla (com um intervalo de tempo entre cada verificação (1-50ms). Se o estado não for estável, reinicializa o contador.

http://eletronworld.com.br/eletronica/efeito-bounce/

Teclado Matricial

- Utilizo uma tecla por pino?
- As teclas s\(\tilde{a}\) conectadas no formato de matriz, por exemplo 8x8;
- Técnica de multiplexação para realizar a leitura das teclas - utilização do mesmo barramento por diferentes dispositivos, um por vez;
- Quando pressionada a tecla conecta a linha com a coluna na qual está ligada;
- Para desconectar as colunas que não devem ser lidas deve-se configurá-las como entradas de alta impedância

- Os pinos conectados às linhas ou às colunas serão configurados como entradas com pull up ou pull down;
- Colunas ou linhas como entradas (alta impedância);
- A varredura consiste em ativar uma coluna por vez (saída em nível lógico alto ou baixo) e checar se houve uma alteração nas linhas;
- Caso uma alteração em uma linha seja identificada, o bounce da tecla deve ser devidamente tratado para que possa afirmar que o botão foi pressionado

- Quando pressionadas 3 ou mais teclas, o que ocorre?
- Tecla fantasma pode ocorrer;
- Caso a tecla fantasma seja pressionada

e em seguida uma das teclas anteriores

for solta, a tecla que foi solta ainda será considerada como pressionada;

 Para solucionar este problema deve-se adicionar um diodo em cada botão para evitar que estes caminhos indesejados sejam formados

Teclado Matricial (8 linhas x 2 colunas)

Teclado Matricial (4 linhas x 4 colunas)

Teclado Matricial (4 linhas x 4 colunas)

- Teclado Matricial
 - Varredura

- LCD Liquid Crystal Display
- Tipos de Displays
 - Modo Alfanumérico
 - Modo Gráfico

1 MC 000000 8 1

Alfanumérico

Tipos de LCDs comerciais

Número de colunas	Número de linhas	Quantidade de pinos
8	2	14
12	2	14/16
16	1	14/16
16	2	14/16
16	4	14/16
20	1	14/16
20	2	14/16
20	4	14/16
24	2	14/16
24	4	14/16
40	2	16
40	4	16

Alfanumérico - Controlador Interno HD44780

- Alfanumérico Controlador Interno HD44780
 - Carácter composto em uma matriz de pixels com 8x5

	CGRAM Data													
P7	P6	P5	P4	P3	P2	P1	P0							
×	×	×	0	1	1	1	0							
			1	0	0	0	1							
			1	0	0	0	1							
			1	1	1	1	1							
			1	0	0	0	1							
	:		1	0	0	0	1							
			1	0	0	0	1							
			0	0	0	0	0							

- Alfanumérico Controlador Interno HD44780
 - Pinagem: 14/16 pinos (15-16 para o backlight)

Pino	Símbolo	F	unção
1	V _{ss}	Alimentação - GND Terra	
2	V _{DD}	Alimentação - V _{CC} 5V	
3	V _o	Entrada de Contraste - Normalme ligado entre V _{CC} e terra	ente ligado a um <i>trimpot</i> de 10KΩ
4	RS	Seleção de dado/instrução	RS=0 => Instrução RS=1 => Dado
5	R/W	Seleção de escrita/leitura	R/W=0 => LCD em modo escrita R/W=1 => LCD em modo leitura
6	E ou EN	Seleção de ENABLE do LCD:	E=0 => Desabilitado E=1 => Habilitado
7-14	D ₀ -D ₇	Barramento de dados	
15	Α	Backlight 5V	
16	K	Backlight GND	

- Alfanumérico Controlador Interno HD44780
 - Temporização

Parâmetro	Descrição	Tempo
t _{AS}	Address set up time	140ns min
t _{AH}	Address hold time	10ns min
t _{DS}	Data set up time	200ns min
t _{DH}	Data hold time	20ns min
t _{DA}	Data access time	320ns max
t _{EH}	Enable high time	450ns min
t _{EL}	Enable low time	500ns min
t _{RF}	Rise/Fall time	25ns max

- Alfanumérico Controlador Interno HD44780
- Principais Comandos
 - RS=0, RW=0, EN=1 (<u>instruções</u> para o HD44780)
 - Reset: 01h (tempo: 1,64 ms)
 - Home: 02h (tempo: 1,64 ms)
 - Configuração (tempo: 40 μs): 20h +
 - 10h (modo 8 bits)
 - 08h (2 linhas)
 - 04h (caráter 5x10)
 - Configuração do cursor (tempo: 40 μs): 08 +
 - 04 (habilita display)
 - 02 (habilita cursor)
 - 01 (cursor pisca)

Alfanumérico - Controlador Interno HD44780

Descrição	Modo	RS	R/W	Código (Hexa)
Disaless	Liga (sem cursor)	0	0	0C
Display	Desliga	0	0	0A / 08
Limpa <i>Display</i> com <i>Home</i> cursor		0	0	01
	Liga	0	0	0E
	Desliga	0	0	0C
	Desloca para Esquerda	0	0	10
Controle do Cursor	Desloca para Direita	0	0	14
	Cursor Home	0	0	02
	Cursor Piscante	0	0	0D
	Cursor com Alternância	0	0	OF
Sentido de deslocamento do cursor ao	Para a Esquerda	0	0	04
entrar com caráter	Para a Direita	0	0	06
Deslocamento da mensagem ao entrar	Para a Esquerda	0	0	07
com caráter	Para a Direita	0	0	05
Deslocamento da mensagem sem entrada	Para a Esquerda	0	0	18
de caráter	Para a Direita	0	0	1C
F. danca de minatina accide:	Primeira Linha	0	0	80
Endereço da primeira posição	Segunda Linha	0	0	C0

- Alfanumérico Controlador Interno HD44780
- Outros Comandos
 - RS=1, RW=0, EN=1 (<u>dados</u> para o HD44780)
 - Envia caráter em ASCII através do barramento de dados
 DB0..DB7 (tempo: > 20 μs)
 - RS=0, RW=1, EN=1
 - Leitura do *Busy Flag* no bit 7. Se BF=1, a última operação ainda não terminou.
 - Não obrigatório.
 - RS=0, RW=1, EN=1
 - Estabelece a posição de escrita do próximo caráter enviando o comando da posição do display (próximo slide)

- Alfanumérico Controlador Interno HD44780
 - Endereços das posições no display
 - Módulo 16x1:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
80h	81h	82h	83h	84h	85h	86h	87h	C0h	C1h	C2h	C3h	C4h	C5h	C6h	C7h
	■ Módulo 16x2:														
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
80h	81h	82h	83h	84h	85h	86h	87h	88h	89h	8Ah	8Bh	8Ch	8Dh	8Eh	8Fh
C0h	C1h	C2h	C3h	C4h	C5h	C6h	C7h	C8h	C9h	CAh	CBh	CCh	CDh	CEh	CFh
	■ Módulo 16x4:														
		Mó	dulo	16	(4 :										
1	2	Mó	dulc 4	16 3	<4: 6	7	8	9	10	11	12	13	14	15	16
1 80h						7 86h	8 87h	9 88h	10 89h	11 8Ah	12 8Bh	13 8Ch	14 8Dh	15 8Eh	16 8Fh
	2	3	4	5	6										
80h	2 81h	3 82h	4 83h	5 84h	6 85h	86h	87h	88h	89h	8Ah	8Bh	8Ch	8Dh	8Eh	8Fh

- Alfanumérico Controlador Interno HD44780
 - Endereços das posições no display
 - Módulo 20x1:

80h 81h 82h 83h 84h 85h 86h 87h 88h 89h C0h C1h C2h C3h C4h	
	C5h C6h C7h C8h C9h
■ Módulo 20x2:	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	16 17 18 19 20
80h 81h 82h 83h 84h 85h 86h 87h 88h 89h 8Ah 8Bh 8Ch 8Dh 8Eh	8Fh 90h 91h 92h 93h
C0h C1h C2h C3h C4h C5h C6h C7h C8h C9h CAh CBh CCh CDh CEh	CFh D0h D1h D2h D3h

Módulo 20x4:

80h	81h	82h	83h	84h	85h	86h	87h	88h	89h	8Ah	8Bh	8Ch	8Dh	8Eh	8Fh	90h	91h	92h	93h
C0h	C1h	C2h	C3h	C4h	C5h	C6h	C7h	C8h	C9h	CAh	CBh	CCh	CDh	CEh	CFh	D0h	D1h	D2h	D3h
94h	95h	96h	97h	98h	99h	9Ah	9Bh	9Ch	9Dh	9Eh	9Fh	A0h	A1h	A2h	A3h	A4h	A5h	A6h	A7h
D4h	D5h	D6h	D7h	D8h	D9h	DAh	DBh	DCh	DDh	DEh	DFh	E0h	E1h	E2h	E3h	E4h	E5h	E6h	E7h

12

10

20

Interface com a P51USB

Gráfico

- Gráfico
 - Depende do controlador do display
 - Pode-se selecionar em pixels de 8 em 8
 - Ou selecionar colunas
 - Trabalhar com paginação
 - Além de ter um controlador de touch

Interfaceamento com Motores

Interfaceamento com Motores

Tipos de Motores

Motor DC

- Também chamado de motor digital
- Rotação independente da intensidade da corrente e tensão aplicada nas fases.

Passo:

 Incremento mecânico no rotor. Pode ser no sentido de cada passo do motor.

- Modos de Acionamento
 - Passo completo:
 - Energiza-se uma bobina por vez sequencialmente, ou duas de cada vez.
 - Exemplo: um motor de 200 passos por volta faz 360/200 = 1,8° por passo
 - Meio passo:
 - Energiza-se um enrolamento, depois dois enrolamentos alternadamente.
 - Exemplo: um motor de 200 passos por volta faz 360/400 = 0,9° por passo

- Modos de Acionamento
 - Micropasso:
 - Controla a corrente no enrolamento do motor a um determinado grau que chega a subdividir o número das posições entre os pólos.
 - Necessário acionadores especiais
 - Exemplo: um motor de 200 passos por volta faz 360/200 = 1,8° por passo que por sua vez podem ser divididos em 256 micropassos, resultando em 51200 passos por rotação ou (0,007°/passo).
 - Aplicações que exigem posicionamento exato e movimentos suaves.

- Termos importantes
 - o Fases:
 - Número de bobinas ou enrolamento (cada uma das metades das bobinas se houver derivação central).
 - Resolução:
 - Dada pelo número de pólos do rotor
 - Openition of the property o
 - Unipolar => corrente circula em um só sentido
 - Bipolar => corrente flui alternadamente em ambos os sentidos

Polaridade

- Polaridade
 - Unipolar: a corrente flui em um único sentido

- Polaridade
 - Bipolar: a corrente flui nos dois sentidos

- Polaridade
 - Para mais diferenças entre unipolares e bipolares, visitar o sítio:

https://www.youtube.com/watch?v=vxxnPJBxG3M

- Drivers para acionamento do motor <u>unipolar</u>
 - Para acionamento do motor unipolar utiliza-se um transistor de potência por fase.

Para até 500 mA pode-se utilizar o Cl ULN2003/ULN2805.

- Drivers para acionamento do motor <u>bipolar</u>
 - Para acionamento do motor bipolar é preciso quatro transistores por fase (ponte H)

- Drivers para acionamento do motor <u>bipolar</u>
 - Circuito integrado L298 (Ponte integrada)

- Possuem apenas dois fios os motores de baixa potência
- Motor "analógico" varia tensão e corrente, varia torque e velocidade
- Necessita de drivers de corrente para utilização em μC

- Controle de velocidade:
 - Variação da tensão média eficaz no enrolamento:
 - Reostato em série (dissipação por efeito Joule)
 - Modulação por Largura de Pulso PWM (chaveamento)

Mas Professor, por favor, o que seria um PWM?

PWM

- Circuito driver
 - Utiliza-se componentes de potência com proteção para o chaveamento
 - Transistores bipolares, MOSFETs, IGBTs

- Circuito driver para motores DC de baixa e média corrente
 - ST L298: dupla ponte-H:V
 - Entradas TTL, sensor de corrente, alta imunidade a ruído, até 4 A e 46

- Módulos de ponte H montados
 - Prontos para o interfaceamento com microcontroladores
 - Custo aproximado Mercado Livre:
 - L298 (p/4A) ~ R\$ 16
 - L9110 (p/ 0,8A) ~R\$ 10

Acionamento bidirecional de motor DC com ponte-H

- Realimentação da Velocidade
 - Analógica:
 - Taco-gerador: ligado ao eixo do motor
 - Limitação: ruído em baixa rotação

Digital

- Encoder: ligado ao eixo
- Limitação: máxima frequência de chaveamento dos sensores ópticos

Servomotor

- Dispositivo eletromecânico cujo posicionamento acompanha um sinal de entrada (<u>escravo</u> ou <u>servo</u> de um sinal)
- Exemplo: servomotor FUTABA S3003
 - Dimensões: (CxLxA) 41x21x36 mm
 - Peso 37,2g
 - Ângulo de operação: ~200graus
 - Velocidade:
 - 0,23 seg/60° @ 4.8V
 - 0,16 seg/60° @ 6V
 - o Torque:
 - 3,2 kg-cm @ 4,8V
 - 4,1 kg-cm @ 6V

Servomotor

- É um motor DC realimentado em malha fechada
 - Alta exatidão no controle
 - Torque alto
 - Alta velocidade

Servomotor

- Largura do pulso positivo com 60 pulsos/seg
- Modulação PWM:
 - Frequência: 40-60 Hz
 - Variação do duty-cycle
 - 1ms => -90 graus
 - 1,52 ms => 0 graus
 - 2 ms => +90 graus

