Segmentation des clients d'un site ecommerce

La page d'accueil du site Olist

Sommaire

Présentation de la problématique, de son interprétation et des pistes de recherche envisagées.

Présentation du cleaning effectué, du feature engineering et de l'exploration.

Présentation des différentes pistes de modélisation effectuées.

Présentation du modèle final sélectionné ainsi que des améliorations effectuées.

Demande client

La segmentation proposée doit être exploitable et facile d'utilisation pour l'équipe marketing.

Il faut évaluer de la fréquence à laquelle la segmentation doit être mise à jour. L'objectif est de pouvoir effectuer un devis de contrat de maintenance.

Le code fourni doit respecter la convention PEP8, pour être utilisable par Olist.

Interprétation

Choix des variables qui vont caractériser les groupes de clients

Fréquence de mise à jour du modèle.

Pistes de recherche envisagées

Nettoyage des données

Analyse des variables

Segmentation RFM

Algorithme K-means

Algorithme DBSCAN

Algorithme CAH

Présentation des données

96 096 clients référencés 99 441 commandes

Cleaning effectué

Suppression des valeurs manquantes

Conservation des seules commandes livrées

Suppression des variables de géolocalisation

Suppression des variables relatives aux vendeurs

Feature engineering

Création des variables RFM

Passage au log de la variable Montant

Création d'une variable de délai de livraison d'une commande (en jours)

Création d'une variable sur le volume d'un produit

Création de deux variables pour déterminer si le client a laissé un commentaire avec titre et/ou texte

Exploration

Exploration

Estimation des livraisons de commandes :

- 87005 estimations sont au dessus de la livraison réelle
- 1459 estimations correspondent exactement avec la livraison réelle
- 7824 estimations sont en dessous de la livraison réelle

Modélisation

Modélisation sur 3 mois du 29/08/2017 au 29/11/2017

15 572 clients

15 898 commandes.

Modélisation RFM

Évaluation selon 3 aspects:

- la récence du dernier achat (R)
- la fréquence des achats (F)
- le montant dépensé par transaction (M).

Meilleur Meilleur Bon	Fréquent Ponctuel
	Ponctuel
Bon	
	Fréquent
Bon	Ponctuel
Ancien bon	Fréquent
Ancien bon	Ponctuel
Bon à faible montant	Fréquent
Qui n'achète qu'une seule fois	Ponctuel
Perdu	-
	Bon Ancien bon Ancien bon Bon à faible montant Qui n'achète qu'une seule fois

Pourcentage des clients au sein des groupes

Bon client fréquent

Ancien bon client ponctuel

Modélisation choix des variables

Délais de livraison en jours

Note d'appréciation

Fréquence

Récence

Montant total (passage au log)

Pistes de recherche

Algorithme K-means

Algorithme DBSCAN

Algorithme CAH

Méthode de sélection des clusters

- Coefficient de silhouette
- Méthode « Elbow »

Coefficient de silhouette

Coefficient de silhouette mesure de la qualité d'une partition.

- la différence entre la distance moyenne avec les points du même groupe
- la distance moyenne avec les points des autres groupes voisins.

Méthode « Elbow »

Sélection du point d'inflexion

Regroupe en clusters les observations similaires (distance de séparation).

Modélisation K-means

- Silhouette Score(n=2): 0.450
- Silhouette Score(n=3): 0.454
- Silhouette Score(n=4): 0.456
- Silhouette Score(n=5): 0.419
- Silhouette Score(n=6): 0.392

Progression du score Silhouette

Segmentation en 4 groupes

Modélisation K-means

Groupe 0:

- Livraison rapide
- Bonne note
- Ne commande pas souvent
- Faible montant
- N'a pas commandé récemment

Groupe 1:

- Livraison standard
- Mauvaise note
- Ne commande pas souvent
- Montant moyen
- N'a pas commandé récemment

Groupe 2:

- Livraison rapide
- Bonne note
- Commande souvent
- Montant importants
- N'a pas commandé récemment

Groupe 3:

- Livraison très lente
- Mauvaise note
- Ne commande pas souvent
- Montant moyen
- A commandé récemment

Modélisation DBSCAN

L'algorithme DBSCAN utilise 2 paramètres : la distance ϵ et le nombre minimum de points « MinPts » devant se trouver dans un rayon ϵ pour que ces points soient considérés comme un cluster.

Groupe 0:

- Livraison rapide
- Bonne note
- Ne commande pas souvent
- Faible montant
- N'a pas commandé récemment

Groupe 1:

- Livraison lente
- Mauvaise note
- Commande peu souvent
- Montant élevé
- A commandé récemment

Groupe 2:

- Livraison moyenne
- Bonne note
- Commande peu souvent
- Montant importants
- N'a pas commandé récemment

Groupe 3:

- Livraison moyenne
- Note movenne
- Commande souvent
- Montant importants
- N'a pas commandé récemment

Estimation de 4 clusters 191 point considérés comme du bruit Silhouette Score: 0.25

Parallel Coordinates plot for the Centroids

Modélisation CAH

(Classification Ascendante Hiérarchique)

Cette méthode démarre avec un cluster par individu puis se regroupe à chaque étape selon un critère jusqu'à l'obtention d'un seul cluster contenant l'ensemble des individus.

Critère utilisé : distance

Silhouette Score: 0.15

Sélection du modèle

Modèle KMEANS avec 5 variables, une normalisation de type "MinMax" et une segmentation en 4 groupes

Modèle	nb groupes	Silhouette	Elbow	Commentaire
RFM				
KMEANS	2	0,58	3	Variables RFM uniquement
KMEANS	2	0,48	4	5 variables
KMEANS	2	0,48	3	normalisation robust
KMEANS	2	0,38	4	normalisation standard
KMEANS	2	0,31	4	variables numériques
CAH	3	0,28		
KMEANS	3	0,26	3	PCA
DBSCAN	5	0,24		
KMEANS	2	0,07	4	Toutes les variables

- Délai moyen entre la commande et la livraison (purchase_delivered)
- Moyenne de la récence (Recency)
- Moyenne des notes d'appréciation (review_score)
- Moyenne de la fréquence (Frequency)
- Montant total moyen (Monetary)

Modèle KMEANS avec 5 variables, une normalisation de type "MinMax" et une segmentation en 4 groupes

Stabilité

Période de référence sur 3 mois du 29/08/2017 au 29/11/2017

9 périodes de 1 mois

Stabilité

Stabilité

Période de référence

Période de 4 mois

Migration des clients du groupe « petits clients » vers le groupe « anciens petits clients » Migration des clients du groupe « bons clients » vers le groupe « anciens bons clients »

L'indice de Rand (ARI) mesure la similarité entre les groupes des deux périodes.

L'information mutuelle (AMI) est une quantité mesurant la dépendance statistique des groupes des deux périodes.

Récapitulatif

Variables

- Délai moyen entre la commande et la livraison (purchase_delivered)
- Moyenne de la récence (Recency)
- Moyenne des notes d'appréciation (review_score)
- Moyenne de la fréquence (Frequency)
- Montant total moyen (Monetary)

Chute du modèle après 8 mois

