Basic Concepts

Instructor: Yuanzhang Xiao

University of Hawaii at Manoa

Fall 2017

Operations

Today's Lecture

- 1 Basic Concepts Affine and Convex Sets
- 2 Important Examples
- 3 Operations That Preserve Convexity
- 4 Separating and Supporting Hyperplanes

Outline

- 1 Basic Concepts Affine and Convex Sets
- 2 Important Examples
- 3 Operations That Preserve Convexity
- Separating and Supporting Hyperplanes

Affine Sets

line through x_1 and x_2 : all the points x such that

$$x = \theta x_1 + (1 - \theta)x_2, \ \theta \in \mathbb{R}$$

affine set: contains the line through any 2 distinct points in the set

- What is the affine set containing 3 points in 2-D space?
 the whole space (or a line if these 3 points are on a line)
- Is the solution set of linear equations $\{x|Ax=b\}$ affine?

Affine Sets

line through x_1 and x_2 : all the points x such that

$$x = \theta x_1 + (1 - \theta)x_2, \ \theta \in \mathbb{R}$$

affine set: contains the line through any 2 distinct points in the set

- What is the affine set containing 3 points in 2-D space?
 the whole space (or a line if these 3 points are on a line)
- Is the solution set of linear equations $\{x|Ax = b\}$ affine? yes

Convex Sets

line segment between x_1 and x_2 : all the points x such that

$$x = \theta x_1 + (1 - \theta)x_2, \ \theta \in [0, 1]$$

convex set: contains line segment between any 2 distinct points in the set

$$x_1, x_2 \in C, \theta \in [0, 1] \Rightarrow \theta x_1 + (1 - \theta)x_2 \in C$$

Questions

Are the following sets convex?

ves: no: no

• Is convex set affine? Is affine set convex?

Convex Sets

line segment between x_1 and x_2 : all the points x such that

$$x = \theta x_1 + (1 - \theta)x_2, \ \theta \in [0, 1]$$

convex set: contains line segment between any 2 distinct points in the set

$$x_1, x_2 \in C, \theta \in [0,1] \Rightarrow \theta x_1 + (1-\theta)x_2 \in C$$

Questions

Are the following sets convex?

yes; no; no

Is convex set affine? Is affine set convex?
 no; yes

Convex Combination, Convex Hull

convex combination of x_1, \ldots, x_k : all points x such that

$$x = \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_k x_k$$

where $\theta_i \geq 0, \theta_1 + \cdots + \theta_k = 1$

convex hull conv(S): set of all convex combinations of points in S

Convex Cone

conic combination of x_1 and x_2 : all points x such that

$$x = \theta_1 x_1 + \theta_2 x_2$$

where $\theta_1 \geq 0, \theta_2 \geq 0$

convex cone: set that contains all conic combinations of points in the set

Operations

Basic Concepts

- Basic Concepts Affine and Convex Sets
- 2 Important Examples
- Operations That Preserve Convexity
- A Separating and Supporting Hyperplanes

Operations

hyperplane: set of the form $\{x|a^Tx=b\}$, $a\neq 0$

halfspace: set of the form $\{x|a^Tx \leq b\}$, $a \neq 0$

Hyperplanes, Halfspaces

Questions

• Is a hyperplane affine? Is it convex?

yes; yes

• Is a halfspace affine? Is it convex?

no; ves

Hyperplanes, Halfspaces

- Is a hyperplane affine? Is it convex?yes; yes
- Is a halfspace affine? Is it convex?
 no; yes

Euclidean Balls, Ellipsoids

Euclidean ball with center x_c and radius r:

$$B(x_c, r) = \{x | ||x - x_c||_2 \le r\} = \{x_c + r \cdot u | ||u||_2 \le 1\}$$

Ellipsoid: set of the form

$$\left\{x|(x-x_c)^TP^{-1}(x-x_c)\leq 1\right\},\ P$$
 is symmetric positive definite¹

¹positive definite: for all $x \in \mathbb{R}^n$, we have $x^T P x \ge 0$

Norm: a function $\|\cdot\|$ that satisfies

- $||x|| \ge 0$; ||x|| = 0 if and only if x = 0
- ||tx|| = |t|||x|| for $t \in \mathbb{R}$
- $||x + y|| \le ||x|| + ||y||$

Norm ball with center x_c and radius r:

$$\{x|\|x-x_c\|\leq r\}$$

Norm cone: set of the form $\{(x, t) | ||x|| \le t\}$

Norm Balls, Norm Cones

Questions

What is a norm ball with 1-norm?
 a square center at the origin and rotated by 45

Operations

Norm Balls, Norm Cones

Questions

What is a norm ball with 1-norm?
 a square center at the origin and rotated by 45°

Polyhedra

Polyhedra: the solution set of finitely many linear inequalities and equalities

Operations

$$Ax \le b$$
, $Cx = d$

where $A \in \mathbb{R}^{m \times n}$ and $C \in \mathbb{R}^{p \times n}$

intersection of finite number of halfspaces and hyperplanes

- \mathbb{S}^n : set of $n \times n$ symmetric matrices
- \mathbb{S}^n_+ : symmetric positive semidefinite $n \times n$ matrices

$$X \in \mathbb{S}^n_+ \Leftrightarrow z^T X z \geq 0$$

• \mathbb{S}_{++}^n : symmetric positive definite $n \times n$ matrices

$$X \in \mathbb{S}^n_+ \Leftrightarrow z^T X z > 0$$

Questions

• Is \mathbb{S}^n_+ convex? Is \mathbb{S}^n_{++} convex?

yes; yes

Positive Semidefinite Cones

- \mathbb{S}^n : set of $n \times n$ symmetric matrices
- \mathbb{S}^n_+ : symmetric positive semidefinite $n \times n$ matrices

$$X \in \mathbb{S}^n_+ \Leftrightarrow z^T X z \geq 0$$

• \mathbb{S}_{++}^n : symmetric positive definite $n \times n$ matrices

$$X \in \mathbb{S}^n_+ \Leftrightarrow z^T X z > 0$$

Questions

Is \$\mathbb{S}_{+}^{n}\$ convex? Is \$\mathbb{S}_{++}^{n}\$ convex?
 yes; yes

Operations •000000

Outline

- Basic Concepts Affine and Convex Sets
- 2 Important Examples
- 3 Operations That Preserve Convexity
- A Separating and Supporting Hyperplanes

Operations That Preserve Convexity

How to decide whether a set C is convex?

Method 1: By definition

$$x_1, x_2 \in C, \ \theta \in [0, 1] \Rightarrow \theta x_1 + (1 - \theta)x_2 \in C$$

Method 2: Show that C is obtained from convex sets (e.g., hyperplanes, norm balls) by operations that preserve convexity

- intersection
- affine functions
- perspective functions
- linear-fractional functions

the intersection of (finite or infinite number of) convex sets is convex

- How to prove the intersection rule? by definition (exercise on board)
- Prove a polyhedron is convex by the intersection rule? intersection of halfspaces and hyperplanes
- Prove positive semidefinite cone \mathbb{S}^n_+ is convex by the intersection rule?

$$\mathbb{S}^n_+ = \cap_{z \neq 0} \left\{ X \in \mathbb{S}^n | z^T X z \ge 0 \right\}$$

the intersection of (finite or infinite number of) convex sets is convex

- How to prove the intersection rule? by definition (exercise on board)
- Prove a polyhedron is convex by the intersection rule? intersection of halfspaces and hyperplanes
- Prove positive semidefinite cone \mathbb{S}^n_+ is convex by the intersection rule?

$$\mathbb{S}^n_+ = \cap_{z \neq 0} \left\{ X \in \mathbb{S}^n | z^T X z \ge 0 \right\}$$

the intersection of (finite or infinite number of) convex sets is convex

- How to prove the intersection rule?
 by definition (exercise on board)
- Prove a polyhedron is convex by the intersection rule? intersection of halfspaces and hyperplanes
- Prove positive semidefinite cone \mathbb{S}^n_+ is convex by the intersection rule?

$$\mathbb{S}^n_+ = \cap_{z \neq 0} \left\{ X \in \mathbb{S}^n | z^T X z \ge 0 \right\}$$

the intersection of (finite or infinite number of) convex sets is convex

- How to prove the intersection rule?
 by definition (exercise on board)
- Prove a polyhedron is convex by the intersection rule? intersection of halfspaces and hyperplanes
- Prove positive semidefinite cone \mathbb{S}^n_+ is convex by the intersection rule?

$$\mathbb{S}^n_+ = \cap_{z \neq 0} \left\{ X \in \mathbb{S}^n | z^T X z \ge 0 \right\}$$

affine function: $f: \mathbb{R}^n \to \mathbb{R}^m$ of the form

$$f(x) = Ax + b, A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^m$$

the image of a convex set S under f is convex

$$S \text{ convex} \Rightarrow f(S) = \{f(x) | x \in S\} \text{ convex}$$

the inverse image of a convex set S under f is convex

$$S ext{ convex} \Rightarrow f^{-1}(S) = \{x | f(x) \in S\} ext{ convex}$$

useful special cases:

- for $S \subseteq \mathbb{R}^n$, $\alpha \in \mathbb{R}$, scaling of S is $\alpha S = {\alpha x | x \in S}$
- for $S \subseteq \mathbb{R}^n$, $\alpha \in \mathbb{R}^n$, translation of S is $S + \alpha = \{x + \alpha | x \in S\}$
- for $S \subseteq \mathbb{R}^m \times \mathbb{R}^n$, $\alpha \in \mathbb{R}^n$, projection of S is $T = \{x_1 \in \mathbb{R}^m | (x_1, x_2) \in S, x_2 \in \mathbb{R}^n \}$

Questions

- How to prove the affine rule?
 by definition (exercise on board)
- Prove a polyhedron is convex by the affine rule? f(x) = (b Ax, d Cx), polyhedron is $f^{-1}(\mathbb{R}^m_+ \times \{0\})$
- Is the solution set to linear matrix inequality (LMI)

$$A(x) = x_1 A_1 + \cdots + x_n A_n \leq B, \ A_i, B \in \mathbb{S}^m$$

convex?
$$f(x) = B - A(x)$$
, the set is $f^{-1}(\mathbb{S}_+^m)$

Is hyperbolic cone

$$\left\{x|x^T P x \leq (c^T x)^2, \ c^T x \geq 0\right\}, \ P \in \mathbb{S}^n_+, \ c \in \mathbb{R}^n$$

convex?
$$f(x) = (P^{1/2}x, c^Tx)$$
, the set is f^{-1} (norm cone)

Questions

- How to prove the affine rule?
 by definition (exercise on board)
- Prove a polyhedron is convex by the affine rule?

$$f(x) = (b - Ax, d - Cx)$$
, polyhedron is $f^{-1}(\mathbb{R}^m_+ \times \{0\})$

Is the solution set to linear matrix inequality (LMI)

$$A(x) = x_1 A_1 + \cdots x_n A_n \leq B, \ A_i, B \in \mathbb{S}^m$$

convex?
$$f(x) = B - A(x)$$
, the set is $f^{-1}(\mathbb{S}_+^m)$

Is hyperbolic cone

$$\left\{x|x^T P x \leq (c^T x)^2, \ c^T x \geq 0\right\}, \ P \in \mathbb{S}^n_+, \ c \in \mathbb{R}^n$$

convex?
$$f(x) = (P^{1/2}x, c^Tx)$$
, the set is f^{-1} (norm cone)

Questions

- How to prove the affine rule?
 by definition (exercise on board)
- Prove a polyhedron is convex by the affine rule? f(x) = (b Ax, d Cx), polyhedron is $f^{-1}(\mathbb{R}^m_+ \times \{0\})$
- Is the solution set to linear matrix inequality (LMI)

$$A(x) = x_1 A_1 + \cdots x_n A_n \leq B, \ A_i, B \in \mathbb{S}^m$$

convex?
$$f(x) = B - A(x)$$
, the set is $f^{-1}(\mathbb{S}_+^m)$

Is hyperbolic cone

$$\left\{x|x^T P x \leq (c^T x)^2, \ c^T x \geq 0\right\}, \ P \in \mathbb{S}^n_+, \ c \in \mathbb{R}^n$$

convex? $f(x) = (P^{1/2}x, c^Tx)$, the set is f^{-1} (norm cone)

Questions

- How to prove the affine rule?
 by definition (exercise on board)
- Prove a polyhedron is convex by the affine rule? f(x) = (b Ax, d Cx), polyhedron is $f^{-1}(\mathbb{R}^m_+ \times \{0\})$
- Is the solution set to linear matrix inequality (LMI)

$$A(x) = x_1 A_1 + \cdots x_n A_n \leq B, \ A_i, B \in \mathbb{S}^m$$

convex?
$$f(x) = B - A(x)$$
, the set is $f^{-1}(\mathbb{S}_+^m)$

Is hyperbolic cone

$$\left\{x|x^T P x \leq (c^T x)^2, \ c^T x \geq 0\right\}, \ P \in \mathbb{S}^n_+, \ c \in \mathbb{R}^n$$

convex? $f(x) = (P^{1/2}x, c^Tx)$, the set is f^{-1} (norm cone)

Questions

- How to prove the affine rule?
 by definition (exercise on board)
- Prove a polyhedron is convex by the affine rule? f(x) = (b Ax, d Cx), polyhedron is $f^{-1}(\mathbb{R}^m_+ \times \{0\})$
- Is the solution set to linear matrix inequality (LMI)

$$A(x) = x_1 A_1 + \cdots x_n A_n \leq B, \ A_i, B \in \mathbb{S}^m$$

convex?
$$f(x) = B - A(x)$$
, the set is $f^{-1}(\mathbb{S}_+^m)$

Is hyperbolic cone

$$\left\{x|x^T P x \leq (c^T x)^2, \ c^T x \geq 0\right\}, \ P \in \mathbb{S}^n_+, \ c \in \mathbb{R}^n$$

convex?
$$f(x) = (P^{1/2}x, c^Tx)$$
, the set is f^{-1} (norm cone)

Perspective

perspective function: $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ of the form

$$P(x,t) = x/t$$
, with domain $\mathbb{R}^n \times \mathbb{R}_{++}$

- the image of a convex set under P is convex
- the inverse image of a convex set under P is convex

Questions

How to prove the above rules?
 by definition (see book 2.3.3)

Perspective

perspective function: $P: \mathbb{R}^{n+1} \to \mathbb{R}^n$ of the form

$$P(x,t) = x/t$$
, with domain $\mathbb{R}^n \times \mathbb{R}_{++}$

- the image of a convex set under *P* is convex
- the inverse image of a convex set under P is convex

Questions

How to prove the above rules?
 by definition (see book 2.3.3)

Linear-fractional function

linear-fractional function: $f: \mathbb{R}^n \to \mathbb{R}^m$ of the form

$$f(x) = \frac{Ax + b}{c^T x + d}$$
, with domain $x | c^T x + d > 0$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $d \in \mathbb{R}$

- the image of a convex set under f is convex
- the inverse image of a convex set under f is convex

Questions

How to prove the above rules?
 composition of affine and perspective function.

Linear-fractional function

linear-fractional function: $f: \mathbb{R}^n \to \mathbb{R}^m$ of the form

$$f(x) = \frac{Ax + b}{c^T x + d}$$
, with domain $x | c^T x + d > 0$

where $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, $d \in \mathbb{R}$

- the image of a convex set under f is convex
- the inverse image of a convex set under f is convex

Questions

How to prove the above rules?
 composition of affine and perspective functions

Operations

Outline

- Basic Concepts Affine and Convex Sets
- 2 Important Examples
- 3 Operations That Preserve Convexity
- 4 Separating and Supporting Hyperplanes

Separating Hyperplane Theorem

Separating Hyperplane Theorem

if C and D are nonempty disjoint convex sets, there exist $a \neq 0, b$ such that

$$a^T x \leq b$$
 for $x \in C$, and $a^T x \geq b$ for $x \in D$

supporting hyperplane to set C at boundary point x_0 :

$$\left\{ x|a^Tx = a^Tx_0 \right\}$$

where $a \neq 0$, and $a^T x \leq a^T x_0$ for all $x \in C$

the "tangent" line

Supporting Hyperplane Theorem

Supporting Hyperplane Theorem

If C is a convex set, then there exists a supporting hyperplane at every boundary point of C.

Questions

Prove supporting hyperplane theorem?

Supporting Hyperplane Theorem

Supporting Hyperplane Theorem

If C is a convex set, then there exists a supporting hyperplane at every boundary point of C.

Questions

 Prove supporting hyperplane theorem? use separating hyperplan theorem on the interior of C and the boundary point x_0