Deep Learning

Stéphane Gentric, Ph. D. Senior Expert Research Unit Manager

Fev 2020

- Intro
- Deep @ Idemia
- Data
- Learning Frameworks
- Neural Network
- CNN Architecture

- Optimization
- Overfitting
- More DNN Architectures
- Adversaries
- Tips

AN

ARTIFICIAL INTELLIGENCE, MACHINE LEARNING, AND DEEP LEARNING

Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then deep learning, a subset of machine learning - have created ever larger disruptions.

In "Nature" 27 January 2016:

"DeepMind's program AlphaGo beat Fan Hui, the European Go champion, five times out of five in tournament conditions..."

"AlphaGo was not preprogrammed to play Go: rather, it learned using a general-purpose algorithm that allowed it to interpret the game's patterns."

"...AlphaGo program applied deep learning in neural networks (convolutional NN) — brain-inspired programs in which connections between layers of simulated neurons are strengthened through examples and experience."

ALPHAGO ZERO: LEARNING FROM SCRATCH

The ImageNet challenge

- Crucial in demonstrating the effectiveness of deep CNNs
- Problem: recognize object categories in Internet imagery
- The 2012 ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
 classification task classify image from Flickr and other search engines into
 1 of 1000 possible object categories
- Serves as a standard benchmark for deep learning
- The imagery was hand-labeled based on the presence or absence of an object belonging to these categories
- There are 1.2 million images in the training set with 732-1300 training images available per class
- A random subset of 50,000 images was used as the validation set, and 100,000 images were used for the test set where there are 50 and 100 images per class respectively

IMAGENET CHALLENGE: RECOGNIZE OBJECT CATEGORIES

- 1000 object categories
- Hand-labeled images
- 1.2 million images in the training set

A plateau, then rapid advances

"Top-5 error" is the % of times that the target label does not appear among the 5 highest-probability predictions

Visual recognition methods not based on deep CNNs hit a plateau in performance at 25%

Name	Layers	Top-5 Error (%)	References
AlexNet	8	15.3	Krizhevsky et al. (2012)
VGG Net	19	7.3	Simonyan and Zisserman (2014)
ResNet	152	3.6	He et al. (2016)

Deep Learning – from Research to Technology

Deep Learning - breakthrough in visual and speech recognition

Deep @ Idemia

2

A short history of Biometrics at Idemia

#1 Leader de l'Identité Augmentée dans un monde de plus en plus digital

N°1 des systèmes
d'identification biométriques
1 800 institutions
financières nous font
confiance
N°1 des solutions
d'identité civile
+ de 500
opérateurs mobiles nous
font confiance
Les plus grands OEM
industriels
nous font confiance

N°1 dans l'émission de permis

de conduire aux États-Unis

Global R&D - Research and Technology Unit

Face Recognition Markets

Global R&D / R&T Unit Overviev

March 2019

Identity Solution

- Secure Deliverance of a unique right (Vote, ID document)
- Statistically good Quality images ... but very large population

Forensic Application

- Heterogeneous image quality
- Police officer may spend time on a single case

Border Control Application

- Increase workflow & Maintain Security level
- Passenger cooperation level.

Connected Objects & Financial Institutions

Liveness, UI, low CPU/Memory

UIDAI

- ➤ Unique ID for India
- ➤ 10 fingers + 2 irises + 1 face
- > 1+ billion citizens

FBI

central US system for latent fingerprints, tenprints and faces

SmartGate

- Australian/New Zealand Airports
- ➤ 80+ Gates facial
- > 40+ millions crossing

Object & Face Recognition Pipeline

Static Image

Find the Objects/Faces in images. Mugshot, ID Doc, Selfie, in the wild

Understand and correct : pose, light sources, occlusions

Extract discriminative features and qualities

Optimize speed / accuracy trade-off

Detection Tracking

Registration

Features Extraction

Matching

Video Stream

Track objects/persons in video Limit false face detections.

Track and refine pose estimation to improve robustness.

Extract discriminative features and qualities
Select and fuse features.

Control False Alarm Rate.

Face Detection Algorithm

Classifier

- Robust features, ex: Haar, Filter bank, SIFT, SURF, HOG, color histograms
- Machine learning, ex: SVM, Ada-Float boost, decision tree

The classifiers are learned on a database of faces and non faces. Bootstrap and selection of hard examples. The detection pipeline is a fusion of those approaches for obtaining the best speed/accuracy tradeoff.

Traditional Approaches

These methods are composed of two steps

1. Agnostic features are extracted from the images

- > Most of the discriminative information is born by the gradients
- > Various representations of the gradients have been proposed
 - SIFT, HOG, LBP
 - Filter bank responses (Gaussian derivatives, Gabor, etc.)

2. A transformation of the initial feature space is learned

- It reduces the dimensionality and concentrates the discriminative information (remove noise and redundancy)
- Most methods simply use a linear transformation
 - LDA, ITML, LMNN, ...
- But more complex methods exist (e.g. local metric)

A well-engineered traditional method gives accurate results on well aligned images but lacks of robustness

Deep Networks for Face Recognition

A Face template is learned directly from the pixels.

Biometric Performances comes from:

- The size of the image database (thousands of identities, hundreds of images per id)
- The architecture of the Network (number of layers, maps ...)
- The loss functions

Deep Networks for Face Recognition

Coding = build a template from an image

- A chain of forward operation in the Network
- Coding is done on CPU or GPU. On a PC, a Smartphone or in the Cloud

Matching = compare 2 templates

- A simple Euclidian distance is used
- Very fast. Millions per second per core

Face Recognition Performances

- Median value on 40 different internal databases.
- Absolute performance varies with images quality

performance evolution

Vendor Benchmark

	Ranked 1 st - Minutiae Interoperability Exchange (MINEX III, Ongoing MINEX)		
	Ranked 1st - NIST Proprietary Fingerprint Template Test Phase II (PFT II)		
	Ranked 1st - NIST Evaluation of Latent Fingerprint Technologies: Extended Feature Sets (ELFT-EFS Image Only)		
	Ranked 2 nd - Fingerprint Vendor Technology Evaluation 2012 (FPVTE)		
	Ranked 1 st - Face Recognition Vendor Tests (FRVT), December 2017		
	Ranked 2 nd – Face in Video Evaluation (FIVE)		
	Ranked 1 st – Iris Recognition Vendor Test (IREX IV)		
[‡]	Ranked 1 st - Tattoo Recognition Technology – Challenge (Tatt-C 2015)		

DATA

HOW TO ACHIEVE?

Data and label for this session

Face images coming from the Web:

http://www.cbsr.ia.ac.cn/english/CASIA-WebFace-Database.html

♦ Dong Yi, Zhen Lei, Shengcai Liao and Stan Z. Li, "Learning Face Representation from Scratch". arXiv preprint arXiv:1411.7923. 2014.

Pre-processed:

centred on the face, 48*48 pixels, grey levels.

Labels:

gender automatically deduced from first name

4 databases:

training: 1000, 10k and 100k

testing: 10k

Goal:

finding Gender from Image

Learning FRAMEWORKs

4

obal R&D / Machine / Deep

January 2019

Three major recent evolutions

Deep Learning Frameworks available in OpenSource

Deep Learning Frameworks

theano

Deep learning software

<u>cuDNN</u> is a highly optimized GPU library for NVIDIA units that allows deep learning networks to be trained more quickly

It can dramatically accelerate the performance of a deep network and is often called by the other packages above.

TensorFlow CNN benchmarks

Deep Learning High Level Frameworks

Keras is a Python library that runs on top of either Theano or TensorFlow that allows one to quickly define a network architecture in terms of layers and also includes functionality for image and text preprocessing

Gluon is a framework built on top of MxNet or CNTK. It allows dynamic computation graph.

Neural NETWORK

5

Neural Network: A Neuron

A neuron is a computational unit in the neural network that exchanges messages with each other.

Input Links

Activation

Function

Output

Input

Function

Output Links

Neural Networks

A deep neural network

TRAINING PROCESS

TensorFlow Playground

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

Tensor Flow

5

Big picture

TensorFlow is a deep learning framework released by Google in November 2015 TF is open source

Software architecture

Core in C++

Front ends in Python and C++

computational graph

Graph nodes are operations which have any number of inputs and outputs Graph edges are tensors (n-dimensional arrays) which flow between nodes

$$h_i = \text{ReLU}(Wx + b)$$

computational graph

Graph nodes are operations which have any number of inputs and outputs Graph edges are tensors (n-dimensional arrays) which flow between nodes

$$h_i = \text{ReLU}(Wx + b)$$

Variables are nodes which output their current value. (Parameters to be learned)

Computational graph

Graph nodes are operations which have any number of inputs and outputs Graph edges are tensors (n-dimensional arrays) which flow between nodes

$$h_i = \text{ReLU}(Wx + b)$$

Mathematical operations:

MatMul: Multiply two matrix values.

Add elementwise (with broadcasting).

ReLU: Activate with elementwise rectified linear function.

A large variety of operators is available

Elementwise math: cos, exp, log, erf, modulo, abs, sqrt, pow, ceil, floor ...

Linear algebra: matrix multiplication, inverse, Cholesky, determinant...

Logical operators: and, or, xor

Comparison operators: >, <, =...

Reduction operators: min, max, argmin, argmax, mean, sum, product...

Slicing/joining: operators: split, concatenate, tile, pad...

Image operators: read/write jpg/png, crop, resize, flip, flop, brightness/contrast/hue adjustment...

Neural network: convolution, pooling, ReLU, sigmoid, dropout, batch normalization, local normalization

Python front end

Everything is writing python code, no prototype files or anything

1. Build python functions describing a graph

Graph contains parameter specifications

Graph contains model architecture

2. Define optimization process

Define values you want to optimize

Attach an optimizer

3. Fetch and feed data

. . .

You write your optimization loop in python

You can execute whatever python code want to in it!

Monitoring

TensorFlow allows you to monitor pretty much everything in real-time

Values,

Histograms,

Proportion of non-zero values,

Images.

You just have to

Start a web server on the computer where TensorFlow is running

Access to a web page from your own computer (with Chrome)

TensorBoard

Gender Classification with TensorFlow and Python

- nn1
 the simpliest script
- nn2 logs in tensorboard
- nn3
 Compute accuracy on a test database
- nn4
 use convolutional network
- nn5 use dropout
- From Session2 to Session3
 your turn => learn a CNN and fool it!

nn1 : A simple perceptron

Input layer 2304 neurons

Hidden layers 50 neurons

Output layer 2 neurons

nn1: simplest.py

```
import tensorflow as tf
import numpy as np
# nombre d images
nbdata = 1000
trainDataFile = '../DataBases/data 1k.bin'
LabelFile = '../DataBases/gender 1k.bin'
# taille des images 48*48 pixels en niveau de gris
dim = 2304
f = open(trainDataFile, 'rb')
data = np.empty([nbdata, dim], dtype=np.float32)
for i in range(nbdata):
   data[i, :] = np.fromfile(f, dtype=np.uint8,
count=dim).astype(np.float32)
f.close()
f = open(LabelFile, 'rb')
label = np.empty([nbdata, 2], dtype=np.float32)
for i in range(nbdata):
  label[i, :] = np.fromfile(f, dtype=np.float32, count=2)
f.close()
class fc layer(tf.Module):
   def init (self, input dim, output dim):
      w init = tf.random.truncated normal([input dim, output dim],
                          stddev=0.1)
      self.w = tf.Variable(w init)
                 ', self.w.get shape())
      print('w
      b init = tf.constant(0.0, shape=[output dim])
      self.b = tf.Variable(b init)
                    ', self.b.get shape())
      print('b
   def __call__(self, x):
      return tf.matmul(x, self.w) + self.b
```

```
class SimpleNet(tf.Module):
  def init (self, input dim):
     self.fc1 = fc layer(input dim,50)
     self.fc2 = fc layer(50,2)
  def call (self, x):
     x = self.fc1(x)
     x = tf.nn.sigmoid(x)
     x = self.fc2(x)
      return x
def train one step(model, optimizer, image, label):
  with tf.GradientTape() as tape:
     y = model(image)
     loss = tf.reduce sum(tf.square(y - label))
     grads = tape.gradient(loss, model.trainable variables)
     optimizer.apply gradients(zip(grads, model.trainable variables))
   return loss
optimizer = tf.optimizers.SGD(1e-5)
simple model = SimpleNet(dim)
curPos = 0
batchSize = 256
for it in range(5000):
   if curPos + batchSize > nbdata:
      curPos = 0
  loss = train one step(simple model, optimizer,
              data[curPos:curPos + batchSize, :],
              label[curPos:curPos + batchSize, :])
   curPos += batchSize
   if it % 100 == 0 or it < 10:
     print("it= %6d - loss= %f" % (it, loss.numpy()))
```


nn1: let's run

```
    urd27@Deep6: ~/Partage/Stephane/td/nn1

18:43:07 nn1> python simplest.py
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcublas.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcudnn.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcufft.so locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcuda.so.1 locally
I tensorflow/stream_executor/dso_loader.cc:108] successfully opened CUDA library libcurand.so locally
Tensor("truncated_normal:0", shape=(2304, 50), dtype=float32)
<tensorflow.python.ops.variables.Variable object at 0x7f7b7ce0f310>
Tensor("truncated_normal_1:0", shape=(50, 2), dtype=float32)
<tensorflow.python.ops.variables.Variable object at 0x7f7b586d38d0>
I tensorflow/core/common_runtime/gpu/gpu_init.cc:102] Found device 0 with properties:
name: GeForce GTX 1080
major: 6 minor: 1 memoryClockRate (GHz) 1.7335
pciBusID 0000:02:00.0
Total memory: 7.92GiB
Free memory: 7.81GiB
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:838] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:02:00.0)
it=
         0 - loss= 181.141205
it=
      1000 - loss= 35.203453
      2000 - loss= 39.134914
it=
it=
      3000 - loss= 53.792587
it=
      4000 - loss= 23.412951
it=
      5000 - loss= 30.071821
it=
      6000 - loss= 47.140503
it=
      7000 - loss= 20.690556
      8000 - loss= 26.863918
it=
it=
      9000 - loss= 45.297955
it=
     10000 - loss= 21.248180
     11000 - loss= 26.216721
     12000 - loss= 42.632809
     13000 - loss= 18.814625
    14000 - loss= 23.940264
    15000 - loss= 42.456089
```


nn1: simplest.py

What are the shapes of these tensors?

```
class fc_layer(tf.Module):
    def __init__(self, input_dim, output_dim):
        w_init = tf.random.truncated_normal([input_dim, output_dim], stddev=0.1)
        self.w = tf.Variable(w_init)
        print('w ', self.w.get_shape())
        b_init = tf.constant(0.0, shape=[output_dim])
        self.b = tf.Variable(b_init)
        print('b ', self.b.get_shape())

def __call__(self, x):
    return tf.matmul(x, self.w) + self.b
```

How many parameters to learn?

nn1: simplest.py

nn2: simplest_v2.py

```
Save and Load the network variables
         ckpt = tf.train.Checkpoint(step,optimizer,net)
         ckpt.save('filename')
         ckpt.restore('filename-step')
Following the learning process :
Summary
    t = tf.summary.create file writer('logs')
    with t.as default():
          tf.summary.scalar(name, tensor)
          tf.summary.histogram(name, tensor)
```


nn2: simplest_v2.py

tensorboard --logdir nn2 --port 8888

nn3: perceptron for gender classification ... does it work?

3 datasets for learning and 1 for testing

```
train = ds.DataSet('../DataBases/data_1k.bin','../DataBases/gender_1k.bin',1000)
train = ds.DataSet('../DataBases/data_10k.bin','../DataBases/gender_10k.bin',100000)
train = ds.DataSet('../DataBases/data_100k.bin','../DataBases/gender_100k.bin',100000)
test = ds.DataSet('../DataBases/data_test10k.bin','../DataBases/gender_test10k.bin',100000)
```

Compute Accuracy

```
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
```

On a complete dataset

```
def mean_accuracy(self, model):
    acc = 0
    for i in range(0, self.nbdata, self.batchSize):
        curBatchSize = min(self.batchSize, self.nbdata - i)
        images = self.data[i:i+curBatchSize,:]
        labels = self.label[i:i+curBatchSize,:]
        y = model(images, False)
        correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(labels, 1))
        accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
        acc += accuracy * curBatchSize
        acc /= self.nbdata
        tf.summary.scalar('Accuracy %s'%self.name, acc)
        return acc
```


CNN Architecture

6

- Fully Connected layer
- Activation layer
- Convolutional Layer
- Pooling Layer
- Loss Layer

Fully Connected layer

Fully Connected Layer

All the neurons of a layer are connected to the next layer.

If X is the input vector of values, Y the output vector and W the parameter matrix.

The computation of Y is a simple scalar product. Y=W.X

FC layers (Fully connected) are often named IP layers (Inner Product)

A regular 3-layer Fully Connected Neural Network

http://cs231n.github.io/convolutional-networks/

Activation Functions

6.2

Sigmoid function

 $f(u) = \frac{1}{1 + e^{-\beta u}} = \frac{1}{1 + e^{-u}}$, for simplicity set $\beta = 1$

$$\frac{df(u)}{du} = f'(u)$$

Hence

$$f'(u) = \frac{df(u)}{du} = \frac{d\left(\frac{1}{1+e^{-u}}\right)}{d(1+e^{-u})} \frac{d(1+e^{-u})}{du}$$
, (using chain rule)

$$f'(u) = \frac{-1}{(1+e^{-u})^2}(-e^{-u}) = \frac{1}{(1+e^{-u})^2}e^{-u}$$

$$=\frac{1}{(1+e^{-u})}\frac{e^{-u}}{(1+e^{-u})}=\frac{1}{(1+e^{-u})}\frac{\left[(1+e^{-u})-(1+e^{-u})\right]+e^{-u}}{(1+e^{-u})}$$

$$= \frac{1}{(1+e^{-u})} \left(1 - \frac{1}{(1+e^{-u})} \right) = f(u) \left(1 - f(u) \right)$$

Thus,
$$\frac{df(u)}{du} = f'(u) = f(u)(1 - f(u))$$

http://mathworld.wolfram.com/SigmoidFunction.html

Rectified Linear Units

Relu(x) = MAX(0,x)

More efficient gradient propagation, derivative is 0 or constant, just fold into learning rate

More efficient computation: Only comparison, addition and multiplication.

A variation : Leaky ReLU f(x) = x if > 0 else ax where $0 \le a \le 1$, so that derivate is not 0 and can do some learning for that case.

Lots of other variations

Sparse activation: For example, in a randomly initialized networks, only about 50% of hidden units are activated (having a non-zero output)

Convolutional Layer

6.3

Convolution is an operation on two functions f and g, which produces a third function that can be interpreted as a modified ("filtered") version of f. In this interpretation we call g the *filter* (or Kernel)

$$f(x) * g(x) = \int_{-\infty}^{\infty} f(\tau) \cdot g(x - \tau) d\tau$$

For functions of a discrete variable x, i.e. arrays of numbers, the definition is:

$$f[x] * g[x] = \sum_{k=-\infty}^{\infty} f[k] \cdot g[x-k]$$

Finally, for functions of two variables *x* and *y* (for example images), these definitions become:

$$f(x,y) * g(x,y) = \int_{\tau_1 = -\infty}^{\infty} \int_{\tau_2 = -\infty}^{\infty} f(\tau_1, \tau_2) \cdot g(x - \tau_1, y - \tau_2) d\tau_1 d\tau_2$$

And:

$$f[x,y] * g[x,y] = \sum_{n_1 = -\infty} \sum_{n_2 = -\infty} f[n_1,n_2] \cdot g[x-n_1,y-n_2]$$

Convolutional Neural Networks

Variation of multi-layer neural networks

Kernel (Convolution Matrix)

Convolutional Filter

Deep Learning = Learning Hierarchical Representations

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

A ConvNet looks at data in three dimensions (width, height, depth)

The activations of an example ConvNet architecture.

Input: "InDim" images with size H,W

A Convolution Layer: "outDim" filters with kernel size InDim x KsizeH x KsizeW.

Output: "outDim" images with size H,W (if stride == 1)

pooling Layer

6.4

Pooling

Pooling

Spatial Pooling

Non-overlapping / overlapping regions

Average or Max

Avg

max pooling

max pool with 2x2 filters and stride 2

6	8
3	4

Loss Layer

Minimum Mean Squared Error

Works generally well for learning tasks

$$\mathcal{L} = \sum_{n} \left(y^{(n)} - t^{(n)} \right)^2$$

 $y^{(n)}$ - output of the classifier

 $t^{(n)}$ - labels

$$y^{(n)} = F(x^{(n)})$$
$$F \in \mathcal{F}$$

 ${\mathcal F}$ - the set of all functions representable by the neural network architecture.

$$\min_{F \in \mathcal{F}} \sum_{n} \left(F(\mathbf{x}^{(n)}) - t^{(n)} \right)^{2}$$

Softmax function

Definition

$$y^{(n)}(i) = \frac{\exp(-\boldsymbol{a}^{(n)}(i))}{\sum_{j} \exp(-\boldsymbol{a}^{(n)}(j))}$$

It can be easily verify that

$$\sum_{i} \mathbf{y}^{(n)}(i) = 1$$

Cross Entropy

Definition: $p_X(i)$, $q_X(i)$

$$H(p_X|q_X) = -\sum_i p_X(i) \log q_X(i)$$

The cross entropy loss is closely related to the Kullback-Leibler divergence between the empirical distribution and the predicted distribution.

Cross Entropy as a Loss Function:

$$\ell^{(n)} = H(t^{(n)}|y^{(n)}) = -\sum_{i} t^{(n)}(i) \log y^{(n)}(i)$$

$$\mathcal{L} = \sum_{n} \ell^{(n)} = -\sum_{n} \sum_{i} t^{(n)}(i) \log y^{(n)}(i)$$

Another CNN visualization

https://cs.stanford.edu/people/karpathy/convnetjs/demo/mnist.html

Network Visualization

input (24x24x1)

max activation: 1, min: 0 max gradient: 0, min: -0.00001

Activations:

Activation Gradients:

conv (24x24x8)

filter size 5x5x1, stride 1 max activation: 3.49544, min: -4.78294

max gradient: 0, min: -0.00001 parameters: 8x5x5x1+8 = 208

Activations:

Activation Gradients:

Weights: (四)(司)(庫)(上)(高)(園)(區)(原)

Weight Gradients:

relu (24x24x8)

max activation: 3.49544, min: 0 max gradient: 0, min: -0.00001

Activations:

pool (12x12x8)

pooling size 2x2, stride 2 max activation: 3.49544, min: 0 max gradient: 0, min: -0.00001

Activations:

conv (12x12x16)

filter size 5x5x8, stride 1

max activation: 8.19594, min: -14.80998 max gradient: 0, min: -0.00001

parameters: 16x5x5x8+16 = 3216

Activations:

Weights:

(國際職員國際問題)(位民國委員司司管理)(自己教皇司司司管)(首副會議論副總統 河南西西州部門)(南南州江南江南南)(福州西南省省福州市)(南京南州市沿南南)(西京 海河医療養養(海療養養養養養養)(海療養養養養養養)(海海養養養養)(海海養養 我有问的"()(请我用的影響展示)(医學學展開發展)(但與學起展問題終)

Weight Gradients:

(学術演習物質別數別) 建氯乙基异异苯基八氢医酚铅医酚医八唑辛基苯甲酰苯基八甲 **美術園園園)(製剤可可製産業長)(世界新聞景景)(選高型の設定度)(成成2** 通过通过()(新加速等的现在分)(有效与对应可以可以为由于由于可以)

relu (12x12x16)

max activation: 8.19594, min: 0 max gradient: 0, min: -0.00001

Activations:

pool (4x4x16)

pooling size 3x3, stride 3 max activation: 8.19594, min: 0 max gradient: 0, min: -0.00001

Activations:

ESCUENCES ENGINE Activation Gradients: **医性视病病溃疡性肠炎病病疾病疾病**

fc (1x1x10)

max activation: 7.62757, min: -19.6438 max gradient: 0, min: -0.00001 parameters: 10x256+10 = 2570

Activations:

Activation Gradients:

softmax (1x1x10)

max activation: 0.99999, min: 0 max gradient: 0, min: 0

Activations:

Example of deep convolutional neural network for image classification

ImageNet: 12 M images

Networks : up to 60 M parameters

CNN Building Blocks

Fully Connected layer

tensor = tf.matmul(tensor, W) + B

Activation layer

tensor = tf.nn.relu(tensor)

Convolutional Layers

tensor = tf.nn.conv2d(tensor, W, strides, padding) + B

Pooling Layers

tensor = tf.nn.max_pool(tensor, ksize, strides,padding)

Loss Layer

tensor = tf.nn.log_softmax(tensor)

nn4: a CNN

Definition of the network:

```
class ConvNeuralNet(tf.Module):
  def init (self):
     self.unflat = Layers.unflat('unflat',48, 48, 1)
     self.cv1 = Layers.conv('conv_1', output_dim=3, filterSize=3, stride=1)
     self.mp = Layers.maxpool('pool', 2)
     self.cv2 = Layers.conv('conv_2', output_dim=6, filterSize=3, stride=1)
     self.cv3 = Layers.conv('conv 3', output dim=12, filterSize=3, stride=1)
     self.flat = Layers.flat()
     self.fc = Layers.fc('fc', 2)
  def call (self, x, log summary):
     x = self.unflat(x, log_summary)
     x = self.cv1(x, log summary)
     x = self.mp(x)
     x = self.cv2(x, log summary)
     x = self.mp(x)
     x = self.cv3(x, log summary)
     x = self.mp(x)
     x = self.flat(x)
     x = self.fc(x, log summary)
     return x
```


nn4: number of parameters and shapes ...

Total number of parameters learned in nn4?

Tensor shape as input for Conv_3?

In Dataset.py, default batchsize = 128

Shape = (128,24,24,3)