





Dibris ► My courses ► Robotics Engineering (Scuola Politecnica) ► Anno Assademico 2013/14 ► 65863-1314 ► Stereopsis ► Lab 6 - Stereo correspondences You are logged in as Muhammad

Farhan Ahmed (Logout)

| Navigation 🖃 🖸               | Lab C. Chaves sowered areas                                                                                                                                                                                    |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dibris                       | Lab 6 - Stereo correspondences                                                                                                                                                                                 |
| My home                      | The goal of the lab is to compute a disparity map between (rectified) image pairs.                                                                                                                             |
| Dibris                       | Try these images to assess your solution.                                                                                                                                                                      |
| My profile                   | Try these images to assess your solution.                                                                                                                                                                      |
| Current course               | You will find two synthetic pairs (rls and corridor) and two real pairs.                                                                                                                                       |
| 65863-1314                   | The rls pair is useful for debugging: it is formed by random noise translated of a constant quantity from the left to the right image, with the                                                                |
| Participants                 | exception of a square at the centre translated of a larger quantity. The disparity map you should obtain has a constant value in all the image and a                                                           |
| Badges                       | central square with a different (higher) constant value. Occlusions will affect the area surrounding the square. a "good" choice for [dmin, dmax] is [1,6] (from rls_l to rls_r).                              |
| General                      |                                                                                                                                                                                                                |
| Lab n. 1                     | Disparity maps                                                                                                                                                                                                 |
| Lab n. 2                     | As a first thing you need to write a function compute_disparity that takes:                                                                                                                                    |
| Lab n. 3                     | • two rectified images, I1 and I2                                                                                                                                                                              |
| Motion                       | • the size of pixel neighbourhoods W                                                                                                                                                                           |
| Projective                   | • a vector containing the minimum and maximum disparity possible from image I1 to I2 [dmin, dmax]                                                                                                              |
| transformations              | and produces (returns in output) the disparity map D (of I1 with respect to I2) where for each pixel we store its disparity value. Notice that the                                                             |
| Single view geometry and     | values in D are integers with a sign.                                                                                                                                                                          |
| camera calibration           | The function will visit all points $p=(i,j)$ of image I1 (with the exception of the ones in the external frame of thickness W/2) and find the "best"                                                           |
| Stereopsis                   | corresponding points in I2 (looking at the search range [j+dmin, j+dmax]). Remember to check you are not accessing out of the image size.                                                                      |
| SLIDES - stereo:correspor    | The similarity between image patches should be evaluated with SSD (we suggest you use an ad hoc function $my_sd$ that takes two neighbourhoods as inputs and returns an integer similarity value as an output) |
| Lab 6 - Stereo correspondenc | Left-Right Consistency                                                                                                                                                                                         |

1 of 3

SLIDES stereo: epipolar geometry

Lab 7 - 8 point algorithm

image rectification paper and software

SLIDES - stereo rectification

Image rectification: stuff

SLIDES - reconstruction (UPDATED on 17/12/2013)

Other methods for 3D reconstruction

My courses Courses

## Administration

Course administration

My profile settings

Write a function <code>left\_right\_consistency</code> that takes two disparity maps (from I1 to I2, and from I2 to I1) and then checks the consistency of the results, assigning a "special" value to points without correspondence: it could be a large value. An alternative is to use 0 (0 disparity is at the fixation point) since there should not be points at 0 disparity in a rectified stereo pair.

## Main

You are encouraged to provide a main file that reads two images and includes the following

```
W=...
dmin=...
dmax=...

D12=compute_disparity(I1,I2,W,[dmin,dmax]);
D21=compute_disparity(I2,I1,W,[-dmax,-dmin]);
D=left_right_consistency(D12,D21);
```

....visualize all three disparity maps noticing that they are integers with a sign and (<u>only for visualization purposes</u>) need to be shifted on the appropriate range of values (if needed) and possibly stretched to improve visibility

## **Submission status**

Submission status Submitted for grading

Grading status Graded

Due date Wednesday, 4 December 2013, 11:55 PM

Time remaining Assignment was submitted 51 mins 50 secs late

Last modified Thursday, 5 December 2013, 12:46 AM

File submissions LAB\_6\_AHMED.rar

Edit submission

Make changes to your submission

## Feedback

7/28/2014 5:52 PM

Grade 100.00 / 100.00

Graded on Friday, 31 January 2014, 11:40 AM

Graded by

Francesca Odone