In [2]:

```
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
```

In [4]:

```
1 df=pd.read_csv(r"C:\Users\MY HOME\Desktop\loan1.csv")
2 df
```

Out[4]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	Yes	Single	125	No
1	No	Married	100	No
2	No	Single	70	No
3	Yes	Married	120	No
4	No	Divorced	95	Yes
5	No	Married	60	No
6	Yes	Divorced	220	No
7	No	Single	85	Yes
8	No	Married	75	No
9	No	Single	90	Yes

In [5]:

1 df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 4 columns):

#	Column	Non-Null Count	Dtype
0	Home Owner	10 non-null	object
1	Marital Status	10 non-null	object
2	Annual Income	10 non-null	int64
3	Defaulted Borrower	10 non-null	object

dtypes: int64(1), object(3)
memory usage: 452.0+ bytes

In [6]:

```
1 df.isna().any()
```

Out[6]:

Home Owner False
Marital Status False
Annual Income False
Defaulted Borrower False

dtype: bool

In [7]:

1 df.isnull()

Out[7]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	False	False	False	False
1	False	False	False	False
2	False	False	False	False
3	False	False	False	False
4	False	False	False	False
5	False	False	False	False
6	False	False	False	False
7	False	False	False	False
8	False	False	False	False
9	False	False	False	False

In [9]:

```
1 df["Marital Status"].value_counts()
```

Out[9]:

Marital Status Single 4 Married 4 Divorced 2

Name: count, dtype: int64

In [14]:

```
convert={"Home Owner":{"Yes":1,"No":0}}
df=df.replace(convert)
df
```

Out[14]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	Single	125	No
1	0	Married	100	No
2	0	Single	70	No
3	1	Married	120	No
4	0	Divorced	95	Yes
5	0	Married	60	No
6	1	Divorced	220	No
7	0	Single	85	Yes
8	0	Married	75	No
9	0	Single	90	Yes

In [15]:

```
convert={"Marital Status":{"Single":1,"Married":2,"Divorced":3}}
df=df.replace(convert)
df
```

Out[15]:

	Home Owner	Marital Status	Annual Income	Defaulted Borrower
0	1	1	125	No
1	0	2	100	No
2	0	1	70	No
3	1	2	120	No
4	0	3	95	Yes
5	0	2	60	No
6	1	3	220	No
7	0	1	85	Yes
8	0	2	75	No
9	0	1	90	Yes

In [16]:

```
1 x=["Home Owner","Marital Status","Annual Income"]
2 y=["Yes","No"]
3 all_inputs=df[x]
4 all_classes=df["Defaulted Borrower"]
5 x_train,x_test,y_train,y_test=train_test_split(all_inputs,all_classes,test_size=0.3)
```

In []:

```
clf=DecisionTreeClassifier(random_state=1)
clf.fit(x_train,y_train)
score=clf.score(x_test,y_test)
```