Gerald Amiel Ballena

Professional Summary

Versatile bioinformatics specialist with extensive experience in developing scalable workflows, computational biology, and machine learning. Successfully processed multi-terabyte datasets, streamlined bioinformatics pipelines to enhance reproducibility, and enabled actionable insights in environmental and public health projects.

Experience

2024 - Present

Project Technical Specialist

University of the Philippines, College of Public Health

- O Developed scalable bioinformatics workflows for high-throughput sequence analysis (2.5 Terabytes each).
- Automated data preprocessing workflows using Snakemake, reducing manual load by 90% when data is available while also enhancing reproducibility and removing human error.
- Collaborated with cross-disciplinary teams on projects involving public health, microbiology, and science of environmental engineering.
- o Enhanced data analysis pipelines, leading to actionable insights for surveillance and public health research.

Education

H CA DIO DO	
University of the Philippines Diliman	
Graduated: July 2022	
Thesis : In silico assessment of the association of patho Pre-print Link	genicity and metal-resistance potential of <i>Fusarium</i> spp.
Accomplishments: DOST ASTHRDP-Scholarship	
Calculated Effective GPA (MS): 1.72	
Relavant Courses.	
Industrial microbiology	 Epigenetics
Molecular Phylogenetics	 Advanced Cell and Molecular Biology
University of the Philippines Baguio	
Graduated: June 2018	
·	Alkaliphilic Bacteria <i>Bacillus</i> sp. BAB-3442 Using
Accomplishments: Advanced Placement Exam: Adva	anced Algebra
Philippine Science High School CAR Campu	S
Graduated: March 2014	

Accomplishments: Focused on STEM curriculum with a strong emphasis on research and scientific inquiry.

Skills

	hnical	1 01 •1	1
0.0	22100	1 7 4	

Programming Languages: Python (Fluent), R (Advanced), Bash (Intermediate), Perl & BioPerl (Intermediate), C++ (Fair).

Bioinformatics Tools: Kraken2, MetaPhlAn, MEGAHIT, Snakemake, Prokka, Jellyfish, BUSCO, and others.

Workflow Automation: Snakemake, Conda, YAML (Configuration Files).

Data Visualization: ggplot2, Plotly, matplotlib, QGIS.

High-Performance Computing: Slurm, Docker.

Soft Skills.

Collaboration: Proficient in leading cross-disciplinary projects and fostering effective team collaboration.

Technical Writing: Skilled in preparing technical reports and documentation using TeX tools such as TeXStudio and Overleaf.

Problem-Solving: Adept at diagnosing and optimizing bioinformatics pipelines to enhance efficiency, reproducibility, and both statistical and scientific robustness.

Certifications and Relevant Coursework

Certifications		
Data Analyst Associate: DataCamp		
Data Engineer Associate: DataCamp		
AI Fundamentals: DataCamp		
Data Literacy: DataCamp		
Principles, Statistical and Computational Tools for	Reproducible Data Science: Harvard EdX $ 2024$	
Relevant MOOCs.		
Introductory : Introduction to Data Engineering		
Introductory: COVID-19 Contact Tracing		
Introductory: Mind Control: Managing Your Mental Health During COVID-19		
Introductory: COVID-19: What You Need to Know		
Introductory: Essential Epidemiologic Tools for Public Health Practice		
Intermediate: Supervised Learning with sci-kit learn		
Intermediate: Visualizing GeoSpatial Data in Python		
Intermediate: Working with Geospatial Data in Python		
Intermediate: Unsupervised learning in Python		
Advanced: Ensemble Methods in Python (Bagging, Boosting, Stacking)		
Intermediate : Biostatistics in Public Health		
 Summary Statistics in Public Health 	O Simple Regression Analysis in Public Health	
 Hypothesis Testing In Public Health 	O Multiple Regression Analysis in Public Health	
Intermediate: Genomic Data Science		
Introduction to Genomic Technologies	O Tools for Genomic Data Science	
 Python for Genomic Data 	O Command line tools for Genomic Data Science	
Intermediate: Genomic Analysis track	2024	

Bioconductor in R
 RNA-Seq with Bioconductor
 CHIP-Seq with Bioconductor in R
 Intermediate: Visualizing Geospatial Data in R
 Advanced: Hyperparameter Tuning in R, Designing Machine Learning Workflows in Python
 2024
 Advanced: Bioinformatics via Coursera
 (University of California, San Diego)
 Finding Hidden Messages (with Honors)
 Professional Development
 Introduction to AWS

Scripts and Workflows

Key Pipelines and Workflows: Developed and implemented scalable workflows and pipelines using Snakemake, Python, and Bash for metagenomic analysis, diversity profiling, and bioinformatics tool management. Highlights include:

- Metagenomic Analysis Pipeline: Automated workflows for trimming, taxonomic profiling (Kraken2, Bracken), and diversity calculations (scikit-bio), ensuring high reproducibility and scalability.
- Comprehensive Binning Workflow: Designed workflows for assembly, binning (MetaWRAP, MEGAHIT), and MAG validation (CheckM2), streamlining large-scale metagenomic projects.
- **Plasmid and ARG Analysis:** Built pipelines for plasmid detection and antimicrobial resistance profiling using **metaSPAdes**, **PlasmidFinder**, and **RGI**.
- Diversity Analysis: Developed Python-based scripts and R workflows for alpha/beta diversity metrics (Shannon, Chao1, Bray-Curtis) and visualizations using ggplot2.

Automation and Custom Tools: Created tools and workflows for parameter optimization, repository mining, and bioinformatics tool management:

- Randomized Parameter Testing: Automated preprocessing parameter exploration for tools like Trimmomatic, Cutadapt, and fastp, enabling systematic optimization.
- **Bioconda Repository Mining:** Developed a Python-based scraper to extract and filter bioinformatics tools for metagenomics and AMR research.
- General Bootstrapping Workflow: Automated sampling of paired-end reads for diversity and functional analyses using seqtk.
- Tool Management: Streamlined dependency discovery, YAML updates, and Conda-based environment management for reproducible pipelines.
- Statistical Optimization for k-mer Profiles: Designed a Snakemake workflow integrated with custom
 Python scripts to identify the best statistical fit (non-parametric, parametric, or transformed parametric) for
 k-mer profiles, facilitating the selection of appropriate statistical tests for raw data analysis.

Advanced Analysis and Statistical Workflows: Designed workflows for k-mer analysis, contaminant detection, and statistical evaluations:

- **K-mer Analysis:** Automated frequency distribution fitting, entropy calculations, and alignment validation for metagenomic datasets (**Jellyfish**, **MASH**).
- Contaminant Filtering: Built pipelines for k-mer mapping and statistical testing against known contaminant databases (UniVec, PhiX, KMA).
- **Visualization Pipeline:** Developed R-based workflows for ridgeline and violin plots, NMDS, and heatmaps to visualize diversity and taxonomic profiles.