

Instanzenbasiertes Lernen

M.Sc. Marc Zofka

Prof. Dr.-Ing. Rüdiger Dillmann

Prof. Dr.-Ing. J. Marius Zöllner

Informationen zur Prüfung

- Anmeldung für Master
 - über QUISPOS, ab SPO2015: Campus-Management-System → Prüfungen
 - Beides aus technischen Gründen noch nicht möglich
 - Anmeldung bis 22. Februar 12 Uhr
 - Keine Begrenzung der Teilnehmerliste
- Anmeldung: Bachelor- & Erasmus-Studierende
 - Per Email an Fr. Gheta, Studiengangservice, Fakultät Informatik
- Prüfung innerhalb großer Module
 - Information kommende Woche
- Nachklausur im SS2016, Termin wird 6 Wochen vorab bekannt gegeben

Überblick

- Einführung in das Instanzen-basierte Lernen (3-6)
- Der k-NN Algorithmus (7-13)
- Case-Based Reasoning: Motivation und Vorstellung (14-20)
- Der Case-Based Reasoning Zyklus (21-30)
- Beispiele für den Einsatz von CBR (32-40)
- Bewertung von CBR (41-44)

Lazy learning vs. Eager learning

"faules Lernen" - "fleißiges Lernen"

- Instanzen-basiertes Lernen: "Delayed / Lazy Learning"
- Lernen = (einfaches) Abspeichern der Trainingsbeispiele
- Weniger Rechenzeit während des Trainings, dafür mehr bei Anfragen zur Klassifikation
- Unterschiedliche Hypothesen/Lokale Approximation der Zielfunktion für jede Anfrage
- "Fleißige" Lernalgorithmen mit dem gleichen Hypothesenraum sind eingeschränkter

Instanzenbasiertes Lernen

- Bildet für jede neue Anfrage eine andere Annäherung an die Zielfunktion.
 - Lokale Approximation der Targetfunktion
 - Komplexere symbolische Repräsentationen für Instanzen
- Generalisierungsentscheidung wird bis zu einer konkreten Suchanfrage aufgeschoben
- Neue Instanzen werden analog zu ähnlichen Instanzen klassifiziert

Instanzenbasiertes Lernen: Beurteilung

- Komplexe Targetfunktionen können modelliert werden
- + Information aus den Trainingsbeispielen geht nicht verloren
- Evtl. komplexe Berechnungen bei Klassifizierung neuer Instanzen
- Schwierigkeit: Welche Instanzen sind sich ähnlich?
- Problem irrelevanter Eigenschaften

Beispiele für Instanzenbasiertes Lernen

- k-Nearest Neighbor
- Lokal gewichtete Regression (→ [1])
- Radial Basis Function
- Fallbasiertes Schliessen (Case-based Reasoning, CBR)

k-Nearest-Neighbor: Einführung

- Instanzen $x = \langle a_1(x), a_2(x), ... a_n(x) \rangle$ korrespondieren mit Punkten im n-dimensionalen Raum \mathbb{R}^n
- Nachbarschaftsbeziehungen sind definiert durch die Euklidische Distanz:

$$d(x_i,x_j) \equiv \sqrt{\sum_{r=1}^n (a_r(x_i) - a_r(x_j))^2}$$

- Lernen einer Funktion f: $\mathbb{R}^n \to V$ aus einer Menge von Trainingsbeispielen $< x_i, c(x_i) >$
- V endliche (diskrete) Menge

k-Nearest-Neighbor: Konzeptlernen I

- Trainingsalgorithmus:
 - Für jedes Trainingsbeispiel $< x_i, c(x_i) > mit c(x_i)$ aus V:
 - Füge das Trainingsbeispiel zu der Liste training_examples hinzu
- Klassifikationsalgorithmus: Anfrage x_q
 - x₁, ..., x_k seien die k Instanzen von training_examples, die am nächsten zu x_q liegen
 - Ergebnic $f(x_q) \leftarrow rg \max_{v \in V} \sum_{i=1}^k \delta(v, c(x_i))$ $\delta(a,b) = egin{cases} 1, & ext{falls a=b} \\ 0, & ext{sonst} \end{cases}$

k-Nearest-Neighbor: Konzeptlernen II

- 5-NN
 - Klassifikation: x_q negativ
- 1-NN
 - Klassifikation: x_q positiv

- Decision-boundary für k=1
 - entspricht Voronoi-Diagramm

k-Nearest-Neighbor Konzeptlernen III

- Normalisierung der Eingabevektoren oft sinnvoll
 - Verzerrung bei stark ungleichen Eingabedimensionen

Abstandsgewichteter k-NN Algorithmus

- Nahe Nachbarn gehen genauso stark in die Klassifikation ein wie weiter entfernte, haben aber u.U. viel größere Ähnlichkeit mit der neu zu klassifizierenden Instanz.
- Distanz-basierte Gewichtung:

$$f(x_q) \leftarrow rg \max_{v \in V} \sum_{i=1}^k w_i \, \delta(v, c(x_i))$$
 $w_i \equiv \frac{1}{d(x_q, x_i)^2}$

Bewertung k-NN Algorithmus

Induktiver Bias:

- Klassifikation einer Instanz x_q ähnlich zu Klassifikationen anderer, benachbarter Instanzen
- + Robust in Bezug auf verrauschte Trainingsdaten
 - Insbesondere mit Gewichtung
- Distanzmaß basiert auf allen Attributen
 - Evtl. nur eine kleine Untermenge relevant
 - "Curse of dimensionality"
- Speicherorganisation
- Haupt-Zeitaufwand in Klassifikation statt Training

Einordnung k-NN

Typ der Inferenz

Ebenen des Lernens

Lernvorgang

Beispielgebung

Umfang der Beispiele

Hintergrundwissen

CBR Motivation: Analogien

Analoges Schließen:

Ähnlichkeit von Größen hinsichtlich mehrerer Eigenschaften (Relationen) erlaubt Schluss auf Ähnlichkeit weiterer Eigenschaften.

Beispiel:

- Sonnensystem
- Bohrsches Atommodell

Analogien: Repräsentation

Analogien: Abbildung

Analogien: Analoger Schluß

Case-based Reasoning in der Literatur

- Leake [2]:
 - [...] In CBR, reasoning is based on remembering.
- Schank:
 - A case-based reasoner solves new problems by adapting solutions that were used to solve old problems.
- Kolodner [3]:
 - Case-based reasoning is both [...] the ways people use cases to solve problems and the ways we can make machines use them.

Case-based Reasoning: Überblick

- allgemeines (abstraktes) Framework
- kein direkt anwendbarer Algorithmus
- Wiederverwendung alter Fälle
- Suche nach Lösungen ähnlicher Probleme

Was ist ein Fall?

- Kognitionswissenschaften
 - Fälle sind Abstraktionen von Ereignissen, die in Zeit und Raum begrenzt sind
- Technische CBR Sichtweise
 - Ein Fall ist die Beschreibung einer bereits real aufgetretenen Problemsituation zusammen mit den Erfahrungen, die während der Bearbeitung des Problems gewonnen werden konnten

Ein Fall enthält ...

Mindestens:

- Problembeschreibung
- Lösung (-versuch)
- Ergebnis

Zusätzlich:

- Erklärung, warum das Ergebnis auftrat
- Lösungsmethode
- Pointer auf andere Fälle
- Güteinformation

CBR-Zyklus (Aamodt & Plaza, 1994)

Siehe [4]

Auffinden / Retrieve

- Aufgabe: Finde ähnliche Fälle
- Ähnlichkeitsmaß
 - (Euklidische Distanz)
 - Syntaktische Ähnlichkeiten ("knowledge-poor")
 - Semantische Ähnlichkeiten ("knowledge-intensive")
- Organisation der Fallbasis
 - Lineare Liste
 - Baumstruktur
 - Graphen, Netze, Indexstrukturen
 - Datenbanken

Effizientes Auffinden von Fällen

Indizierung: Probleme

- Beispiel, aus [3]:
- Problem:
 - Zwanzig Gäste kamen zum Abendessen, es war Sommer und gerade Tomatensaison. Wir wollten ein vegetarisches Menü und eine Person war allergisch gegen Milchprodukte
- Lösung:
 - Es gab Käse mit Tomatenkuchen. Statt normalem Käse wurde Tofu-Käse verwendet, da eine Person gegen Milchprodukte allergisch war.
- Indizes:
 - vegetarisches Hauptgericht, Tomaten, keine Milchprodukte
 - Aber: Indizierung muss die Umstände antizipieren, unter denen ein Fall wiederverwendet werden soll

Auswahl der Indizes I

- Manuell
 - Der Benutzer gibt entsprechende Indizes vor
- Check-Liste
 - Heuristiken zur Erstellung der Indizes
 - Beispiel:
 - Sammle Features, die Lösungen voraussagen
 - Sammle Features, die Ergebnisse voraussagen
 - Erstelle geeignete Generalisierungen

Auswahl der Indizes II

- Differenzbasiert
 - Lösche solche Attribute, die in fast allen Instanzen vorkommen
- Kombination beider Methoden
 - Erst Aufstellung der Checkliste
 - Dann Löschen der überflüssigen Attribute durch Differenzverfahren

CBR-Zyklus (Aamodt & Plaza, 1994)

Siehe [4]

Wiederverwenden / Reuse

Lösungsadaption

- Arten der Lösungsübertragung
 - Keine Adaption, einfaches Übertragen (Copy)
 - Durch Benutzer
 - (semi-)automatische Adaption
 - transformational reuse
 - derivational reuse
- Eingesetzte Methoden
 - Benutzerinteraktion
 - Regelbasiertes Schließen
 - Modellbasiertes Schließen
 - Planer
 - **..**.

Anpassen / Überarbeiten / Revise

- Überprüfung, Verbesserung der Lösung
- Evaluierung der Lösung
 - Überprüfung durch Simulation
 - Überprüfung in realer Welt
- Verbessern bzw. Reparieren der Lösung
 - Fehler erkennen und erklären
 - Beseitigen unter Berücksichtigung der Fehlererklärungen
- Potentiell iterativ!

Zurückbehalten (Retain)

- Bewahrung der gemachten Erfahrung
- Was wird gelernt?
 - Neue Erfahrung (neuer Fall)
 - Alten Fall generalisieren
 - Neue Merkmale (Indizes)
 - Organisation der Fallbasis (Effizienz)
- Methoden
 - Auswendiglernen (Speichern neuer Fälle)
 - Induktive/Deduktive Lernverfahren

Beispiel 1: CLAVIER

- Zusammenstellung von Teilepaletten für einen Vulkanisierungsofen.
- Einsatz bei Lockheed im Flugzeugbau
- Unterschiedliche Teile benötigen unterschiedliche Zeit im Ofen
- "Black Art"
- Maximierung des Durchfluss
- Begonnen mit 20 Fällen
- Mittlerweile über 300
- Siehe [5]

CLAVIER: Fallbasis

CLAVIER: Durchlauf

- Suche nach "ähnlichster" bekannter Zusammenstellung
- Adaption durch Ersetzen möglichst weniger Elemente

Beispiel 2: SFB/TR 28 "Kognitive Automobile"

- Ziel: Entwicklung autonomer Fahrzeug
 - Wahrnehmung der Umwelt
 - Verstehen aktueller Situationen
 - Auswahl und Ausführung von Verhalten
- Szenen repräsentiert mittels Beschreibungslogik
- Abbildung von quantitativen auf qualitative Daten mit zusätzlichen räumlichen und zeitlichen Relationen
- Verwendung von CBR zur Verhaltensauswahl

KogniMobil: Fallbasis

- Fall: Szenen-Beschreibung, aktuelles Verhalten, Bewertung
- Vererbungshierarchie zwischen Fällen (DAG)
- Fälle enthalten Verweise auf zeitlich nachfolgende Fälle (abhängig von gewählten Verhalten)

KogniMobil: Suche nach Fällen

- Tiefensuche in Hierarchie der Fälle
- Ergebnis: (auch teilweise) zutreffende Fälle
- Beispiel:
 - Anfragefall:

KogniMobil: Verhaltensauswahl

SFB/TR 28
"Kognitive Automobile"

- Verhalten mit bester Bewertung wird gewählt
- Mehrere Fälle gefunden:
 - Minimum für jedes Verhalten über alle gefundenen Fälle
 - Verhalten mit maximaler Bewertung wählen

KogniMobil: Aktualisierung () SFB/TR 28 "Kognitive Automobile" der Fallbasis

- Aktualisierung der Informationen in der Fallbasis:
 - Wahrscheinlichkeiten (im zeitlichen Verlauf)
 - Verbindungen (auswählbare Verhalten)
- Hinzufügen neuer Fälle zur Fallbasis
 - Neuen Fall anlegen
 - Bewertung der Situation berechnen
 - Verbindungen für den neuen Fall anlegen (Vererbungshierarchie, zeitliche Abfolge)

CBR: Weitere Anwendungen

- Case based reasoning kommt in verschiedenen Bereichen vor
- Zu den Anwendern gehören
 - British Airways
 - Canon
 - Compaq
 - DaimlerChysler
 - Microsoft
 - Nokia
 - Nestlé
 - Philips
 - Reuters
 - Volkswagen

- (Wartung der Flugzeuge)
- (Auswahl der Produkte)
- (intelligente Bedienanleitungen)
- (Qualitätskontrolle für Fahrwerke)
- (Intelligenter MS-Office Assistent)
- (Benutzerhilfen)
- (Prozesskontrollen)
- (Einstellung von Strahlungsgeräten)
- (Technische Dienstleistungen)
- (Qualitäts- Garantien)

CBR: Vorteile

- + Konzeptuell einfach, aber trotzdem können komplexe Entscheidungsgrenzen gebildet werden
- + Kann mit relativ wenig Information arbeiten
- + Analogie zu menschlichem Problemlösen
- + Lernen ist einfach ("one-shot learning")
- Günstig für mit Regeln schlecht erfassbare Probleme

CBR: Probleme

- Gedächtniskosten
- Klassifikation kann lange dauern
- Hängt stark von Repräsentation ab
- Problematisch bei komplexen Repräsentationen
- Problematisch: irrelevante Eigenschaften

Weiterführende Punkte zu CBR

- Komplexe symbolische Repräsentation
 - andere Ähnlichkeitsmaße als Euklidische Distanz können notwendig werden
 - (z.B. Größe des größten gemeinsamen Subgraphen)
- Mehrere passende Fälle können (sehr komplex) kombiniert werden, um neues Problem zu lösen
- Case Retrieval, wissensbasiertes Schließen und Problemlösen eng verknüpft

Einordnung CBR

Typ der Inferenz Lernvorgang

Ebenen des Lernens Beispielgebung Umfang der Beispiele Hintergrundwissen

Was wir heute gemacht haben...

- Einführung in das Instanzenbasierte Lernen
- k-NN
- Case-Based Reasoning Zyklus
- Beispiele für Anwendungen, die CBR einsetzen

Literatur

- [1] Tom Mitchell: Machine Learning, Kapitel 8. McGraw-Hill, New York, 1997.
- [2] David Leake: Case-Based Reasoning Experiences, Lessons & Future Directions. AAAI Press / MIT Press, Menlo Park, CA, Cambridge, MA, 1996.
- [3] Janet Kolodner.: Case-Based Reasoning. Morgan Kaufmann Publishers, Inc. San Mateo, CA, 1993.
- [4] A. Aamodt, E. Plaza: Case-Based Reasoning: Foundational Issues, Methodological Variations and System Approaches. Al Communications, IOS Press, Vol. 7/1, 1994.
- [5] *D. Hennessy, D. Hinkle*: **Applying Case-Based Reasoning to Autoclave Loading**. IEEE Expert, Vol. 7/5, 1992.

