Vorbere tung

Aufgabe 1

I_{ZMAX} in mA

Preis

Schaltdiode	1N4002	AA136 at 25°C,I _F 1000mA, U _R 50V	P600A at 25°C, I F 6000mA
T _{j min} in °C	-50	N.A.	-50
T _{j max} in °C	175	100	175
R thA in K/W	45	N.A.	20
U _{FMAX} in V	< 1.1	0.55	<1.1
U _{R MAX} in V	100	60	50
I FMAX in mA	1000-800	500	???
I _{R TYP} in μA	<5	6	<5
tin ns	1500	N.A.	1500
Preis	36,89€	2.950 €	140,00€

https://www.radiokostach.de/AA136-Germanium-Diods?n=10036c=2 3.05.2023, 10:57 Uhr		PRODUCE AT 2015, 17 600000000 101242/Chromo Correctal Annihiyofdusters-or-planic hest revolucile y 6000a y 6600-50 + 6 + 162 642, transi 16.85 2025, 15:00 Utav		Preis in 6 pro 1000 Stück https://www.buerklin.com/de/p/diotec/gleichrichterdioden/1n4002/285 Datum Zugriff: 16.05.2025, 14:58 Uhr		
Z-Dioden	ZPD2.7 8	at T _A 25°C, I _Z 5mA	ZPY8.2 at	T _A 50°C, I	_Z 100mA	
T _{j min} in °C		-50			-50	
T_{jmax} in °C		175			175	
R _{thAir} in K/W		<300			45,00	
U_{zMIN} in V		2,5			7,7	
U_{zMAX} in V		2,9			8,7	

172

261,80€ ZPY8.2 at T_A 50°C, I_Z 100mA https://www.mouser.de 16.05.2025, 13:25 Uhr

LTL4223 at T $_A$ 25°C, I $_F$ 20mA
-55
100,00
2,00
5,00
120,00
420,00€
623
36
19

Schalldiode 1N4002

Repetitive peak forward current – Periodischer Spitzenstrom	f > 15 Hz	T _A = 75°C	I_{FRM}	5.4 A ³)
Peak forward surge current	Half sine-wave	50 Hz (10 ms)	I_{PSM}	27 A
Stoßstrom in Fluss-Richtung	Sinus-Halbwelle	60 Hz (8.3 ms)		30 A

149

770,00€

ZE0	LTZ-4223	LTE4233	LTZ-4253	Z-7113MBDL	12383
Footber	rot	gion	gelb	blau	infraret

Legende

Jimin = Mindestemperatur

Fymax = Maximaltenperatur

RILLA & Warmewiderstand, Speisschildlungeburg

UFMAX - Maximale Forward Spanning

URMAX = Marimale Revesse Spanning IFMAX & Maximale Forward Strom

letyp = Speristrom

T = Schaltzeit

UZMIN & Minimale Zener Vollage UzMAX = Mailmale Zenes Vollage λd ≤ Wellenlänge

2012 = Viewing Angle

1, = Lunious Inknsity

Aufgabe 2.2

G=40pt Ve=4V Spitespanning SOV

 $C_S = \sqrt{\frac{\mathcal{E}_0 \text{tr} N_D e}{2 \cdot (N_0 + N_A) \cdot U_D}} \cdot A_{\text{RLZ}} \sim \frac{1}{\sqrt{U_S}}$

Autgabe 2.3.

a) Dotiering und die Länge des RLZ bestimmen die Spanningsgröße U= & Eds? (je größer die Dotiering, desto Weher RLZ -> Spanning sinht)

1. AANG (Wz=0,67eV) (; je korzer die Wellenlänge),

2. 1N4002, P600A (Wg=112eV) desto grolles der Bandabsland.

3. 18383 (infrarol)

4. LTZ-4223 (rot)

5. LTL-6253 (gelb)

6. LTL-4233 (gron)

7. L-7M3MBD2 (blau)

c) AANS6 größerer is wegen Weterer Bamolliche $|_{S} \sim n_{i}^{2} = \sqrt{N_{c}N_{v}} e^{-\frac{\omega_{g}}{2\kappa T}}$

Aufgabe 2.4.

ZPO2.7. Uzunar = 2,9VCSV -> Zener-Effeht (Tunnel-Effeht), Sanfler Durchbruch

<u>Aufgabe 2.4.</u>

ZPO2.7. Uzmax = 2,9VCSV -> Zenex-Effect (Tunnel-Effect), sanfler Durchbruch

ZPY.8.2. Uzmax = 7,7V >5V -> Lawinendwichbruch, scharfer Durchbruch

<u>Aufgabe B. 1.1</u> Sperschichthapazität P6001

Aufgabe B.1.2

Spertsköme 1N4002, AA136 (Stromrichtigenessung) $R_{min} = \frac{30V}{10mA} = 3k \Omega \rightarrow R_{min} >> 3k \Omega$

Mit Picoampermeter Rinn

Aufgabe B. 1.J.

Diode ungepolt

Aufgabe B.2.

Abbildung 2: Dynamische Messung der Kennlinie

B.2.1 Durchlaßkennlinien 1N4002 und AA136

Stellen Sie die Durchlaßkennlinien der Dioden 1N4002 und AA136 im Bereich Ip = 0..100mA auf je einem Bild dar.

- Verwenden Sie einen Meßwiderstand von R = 10Ω und A_u = 0,1.
- · Wählen Sie am Generator eine sinusförmige Spannung mit einer Frequenz f = 50Hz ohne negative Anteile.
- Wählen Sie die maximale Spannung so, daß der maximale Strom durch die Dioden 100mA beträgt.
- Wählen Sie die Position des Koordinatenursprungs und die Skalierung der Achsen so, daß der Bildschirm möglichst gut ausgenutzt wird. Achten Sie darauf, daß der Ursprung auf dem Schnittpunkt zweier Gitterlinien liegt, das erleichtert das Ablesen von Werten.

Abbildung 2: Dynamische Messung der Kennlinie

Aufgabe B.2.3

Abbildung 2: Dynamische Messung der Kennlinie

Stellen Sie nun mit der gleichen Meßschaltung die kompletten Kennlinien der Z-Dioden (Durchlaß- und Sperrkennlinie) auf einem einzigen Ausdruck dar.

- Verwenden Sie einen Meßwiderstand von R = 100Ω und am Differenzverstärker A_u = 0,1.
- Wählen Sie am Generator eine sinusförmige Spannung ohne Gleichanteil mit einer Frequenz f = 50Hz.
 Stellen Sie zunächst eine Amplitude von wenigen 100mV ein.
- Wählen Sie die Position des Koordinatenursprungs und die Skalierung der Achsen so, daß der Bildschirm möglichst gut ausgenutzt wird. Bedenken Sie dabei, daß der dritte Quadrant der Kennlinien mehr Platz benötigt, als der erste.
- Beginnen Sie mit der 8,2V Z-Diode und skalieren Sie die Kanäle so, daß deren Kennlinie gut dargestellt wird.
- Erhöhen Sie nun die Amplitude am Generator, bis im Durchbruch der Dioden ein Strom I = 8mA fließt.

Aufgabe B.3.1

Abbildung 3: Bestimmung der Schaltzeiten

B.3.1 Bestimmung von Speicher- und Abfallzeit

Es sollen die Speicherzeit sowie die Abfallzeit der Diode bestimmt werden. In z.B. Kurve F der Abbildung 4 sind ab t = 100ns die beiden Phasen des Abschaltens deutlich erkennbar.

- Wählen Sie als Triggerquelle am Oszilloskop Kanal 1 und triggern Sie das Signal auf die fallende Flanke.
- Stellen Sie die Zeitbasis so ein, daß der Ausschaltvorgang gut dargestellt wird.
- Nehmen Sie ein Bild auf, aus dem die Zeiten bestimmt werden können.

<u>Aufgabe B.3.2</u> 100Hz Us=20V, Schaltung aus Aufgebe R1

- · Wählen Sie als Triggerquelle am Oszilloskop Kanal 1 und triggern Sie das Signal auf die steigende Flanke.
- Stellen Sie die Zeitbasis so ein, daß der Einschaltvorgang gut dargestellt wird.
 Hinweis: Das Meßsignal kann durch Schwingungen aus Reflexionen überlagert sein. Um diese Störung etwas zu unterdrücken, sollte ein 100Ω Widerstand in die Leitung zu Kanal 2 eingefügt werden. Folgende Skalierungen führen zu einer günstigen Darstellung: Zeitbasis: 1µs/Div, Kanal 2: 1V/Div.
- · Nehmen Sie ein Bild auf, aus dem Anstiegszeit tr aus dem Stromverlauf bestimmt werden kann.

() danach mit symmetrishen Rechtechsignal bei 5kHz Us=20V

Augabe (1.3.3

- Legen Sie bei unveränderter Meßschaltung eine sinusförmige Spannung mit einer Amplitude von 10V (Upp = 20V) an.
- Nehmen Sie den Verlauf des Stroms für Frequenzen von 100Hz, 100kHz und 1MHz auf in ein Bild auf.
 Passen Sie dabei jeweils die Zeitbasis so an, daß die positiven Halbwellen trotz unterschiedlicher
 Frequenzen auf dem Bildschirm genau deckungsgleich dargestellt werden.

Aufgabe B.S.4

Abbildung 5: Dynamische Bestimmung des Bahnwiderstands