Issue Date: 23 August 2013

Appendix 3. SAR Distribution Scans	
Scan Reference Number	Title
001	Touch Left UMTS FDD 5 CH4183
002	Tilt Left UMTS FDD 5 CH4183
003	Touch Right UMTS FDD 5 CH4183
004	Tilt Right UMTS FDD 5 CH4183
005	Touch Left UMTS FDD 5 CH4132
006	Touch Left UMTS FDD 5 CH4233
007	Front of EUT Open Facing Phantom UMTS FDD 5 CH4183
008	Back of EUT Open Facing Phantom UMTS FDD 5 CH4183
009	Front of EUT Closed Facing Phantom UMTS FDD 5 CH4183
010	Back of EUT Closed Facing Phantom UMTS FDD 5 CH4183
011	Back of EUT Closed Facing Phantom UMTS FDD 5 CH4132
012	Back of EUT Closed Facing Phantom UMTS FDD 5 CH4233
013	System Performance Check 900MHz Head 14 08 13
014	System Performance Check 900MHz Body 14 08 13
015	System Performance Check 900MHz Body 19 08 13
016	System Performance Check 900MHz Body 20 08 13

Page: 26 of 75 UL

Issue Date: 23 August 2013

001: Touch Left UMTS FDD 5 CH4183

Date 14/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.531 mW/g

Communication System: UMTS-FDD 5; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.929 mho/m; ε_r = 41.2; ρ = 1000 kg/m³

Phantom section: Left Section **DASY4** Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.24, 6.24, 6.24);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: SAM 12b (Site 57); Type: SAM 4.0; Serial: TP:1031
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186 **Touch Left Middle/Area Scan (71x131x1):** Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.540 mW/g **Touch Left - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0:** Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.09 V/m; Power Drift = -0.138 dB

Peak SAR (extrapolated) = 0.665 W/kg

SAR(1 g) = 0.499 mW/g; SAR(10 g) = 0.349 mW/gMaximum value of SAR (measured) = 0.531 mW/g

Page: 27 of 75 UL

Version 2.0 Issue Date: 23 August 2013

002: Tilt Left UMTS FDD 5 CH4183

Date 14/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.217 mW/g

Communication System: UMTS-FDD 5; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.929$ mho/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.24, 6.24, 6.24);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: SAM 12b (Site 57); Type: SAM 4.0; Serial: TP:1031
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Left - Middle/Area Scan (71x131x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.220 mW/g

Tilt Left - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.3 V/m; Power Drift = 0.054 dB

Peak SAR (extrapolated) = 0.252 W/kg

SAR(1 g) = 0.207 mW/g; SAR(10 g) = 0.157 mW/g Maximum value of SAR (measured) = 0.217 mW/g

Page: 28 of 75

Version 2.0 Issue Date: 23 August 2013

003: Touch Right UMTS FDD 5 CH4183

Date 14/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.471 mW/g

Communication System: UMTS-FDD 5; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.929 mho/m; ϵ_r = 41.2; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.24, 6.24, 6.24);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: SAM 12b (Site 57); Type: SAM 4.0; Serial: TP:1031
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch Right - Middle/Area Scan (71x131x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.458 mW/g

Touch Right - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.67 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 0.577 W/kg

SAR(1 g) = 0.444 mW/g; SAR(10 g) = 0.325 mW/g Maximum value of SAR (measured) = 0.471 mW/g

Page: 29 of 75 UL

Version 2.0 Issue Date: 23 August 2013

004: Tilt Right UMTS FDD 5 CH4183

Date 14/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.212 mW/g

Communication System: UMTS-FDD 5; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 836.6 MHz; σ = 0.929 mho/m; ϵ_r = 41.2; ρ = 1000 kg/m³

Phantom section: Right Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.24, 6.24, 6.24);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: SAM 12b (Site 57); Type: SAM 4.0; Serial: TP:1031
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Tilt Right - Middle/Area Scan (71x131x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.216 mW/g

Tilt Right - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 9.83 V/m; Power Drift = -0.046 dB

Peak SAR (extrapolated) = 0.251 W/kg

SAR(1 g) = 0.203 mW/g; SAR(10 g) = 0.153 mW/gMaximum value of SAR (measured) = 0.212 mW/g

Page: 30 of 75 UL

Test Report Serial No: UL-SAR-RPA10036246JD05 V2.0

Issue Date: 23 August 2013

005: Touch Left UMTS FDD 5 CH4132

Date 14/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.534 mW/g

Communication System: UMTS-FDD 5; Frequency: 826.4 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 826.4 MHz; σ = 0.92 mho/m; ϵ_r = 41.3; ρ = 1000 kg/m³

Phantom section: Left Section DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.24, 6.24, 6.24);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: SAM 12b (Site 57); Type: SAM 4.0; Serial: TP:1031
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch Left - Low/Area Scan (71x131x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.550 mW/g

Touch Left - Low/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.56 V/m; Power Drift = 0.188 dB

Peak SAR (extrapolated) = 0.676 W/kg

SAR(1 g) = 0.500 mW/g; SAR(10 g) = 0.352 mW/g Maximum value of SAR (measured) = 0.534 mW/g

Page: 31 of 75

Version 2.0 Issue Date: 23 August 2013

006: Touch Left UMTS FDD 5 CH4233

Date 14/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.618 mW/g

Communication System: UMTS-FDD 5; Frequency: 846.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used (interpolated): f = 846.6 MHz; σ = 0.937 mho/m; ϵ_r = 41.2; ρ = 1000 kg/m³

Phantom section: Left Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.24, 6.24, 6.24);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: SAM 12b (Site 57); Type: SAM 4.0; Serial: TP:1031
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Touch Left - High/Area Scan (71x131x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.629 mW/g

Touch Left - High/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.19 V/m; Power Drift = -0.063 dB

Peak SAR (extrapolated) = 0.791 W/kg

SAR(1 g) = 0.582 mW/g; SAR(10 g) = 0.409 mW/g Maximum value of SAR (measured) = 0.618 mW/g

Page: 32 of 75

Version 2.0 Issue Date: 23 August 2013

007: Front of EUT Open Facing Phantom UMTS FDD 5 CH4183

Date 14/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.322 mW/g

Communication System: UMTS-FDD 5; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.999$ mho/m; $\epsilon_r = 53.4$; $\rho = 1000$ kg/m³

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 - SN1529; ConvF(6.16, 6.16, 6.16);

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1177
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Front of EUT Facing Phantom - Middle/Area Scan (91x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.322 mW/g

Front of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.6 V/m; Power Drift = 0.019 dB

Peak SAR (extrapolated) = 0.389 W/kg

SAR(1 g) = 0.305 mW/g; SAR(10 g) = 0.223 mW/g Maximum value of SAR (measured) = 0.322 mW/g

Page: 33 of 75 UL

Version 2.0 Issue Date: 23 August 2013

008: Back of EUT Open Facing Phantom UMTS FDD 5 CH4183

Date 14/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.633 mW/g

Communication System: UMTS-FDD 5; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.999$ mho/m; $\varepsilon_r = 53.4$; $\rho = 4000$ km/s⁻³

1000 kg/m³

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.16, 6.16, 6.16);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1177
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Back of EUT Facing Phantom - Middle/Area Scan (91x181x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.641 mW/g

Back of EUT Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 15.1 V/m; Power Drift = 0.048 dB

Peak SAR (extrapolated) = 0.802 W/kg

SAR(1 g) = 0.593 mW/g; SAR(10 g) = 0.417 mW/g Maximum value of SAR (measured) = 0.633 mW/g

Page: 34 of 75

Version 2.0 Issue Date: 23 August 2013

009: Front of EUT Closed Facing Phantom UMTS FDD 5 CH4183

Date: 19/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.324 mW/g

Communication System: UMTS-FDD 5; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 52.9$; $\rho =$ 1000 kg/m³

Phantom section: Flat Section **DASY4** Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.16, 6.16, 6.16);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1177
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Front of EUT Closed Facing Phantom - Middle/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.326 mW/g

Front of EUT Closed Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.1 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 0.386 W/kg

SAR(1 g) = 0.308 mW/g; SAR(10 g) = 0.229 mW/gMaximum value of SAR (measured) = 0.324 mW/g

Page: 35 of 75 UL

Version 2.0 Issue Date: 23 August 2013

010: Back of EUT Closed Facing Phantom UMTS FDD 5 CH4183

Date: 19/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.691 mW/g

Communication System: UMTS-FDD 5; Frequency: 836.6 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 836.6 MHz; σ = 1.01 mho/m; ϵ_r = 52.9; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.16, 6.16, 6.16);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1177
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Back of EUT Closed Facing Phantom - Middle/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.694 mW/g

Back of EUT Closed Facing Phantom - Middle/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.2 V/m; Power Drift = -0.015 dB

Peak SAR (extrapolated) = 0.857 W/kg

SAR(1 g) = 0.648 mW/g; SAR(10 g) = 0.458 mW/g Maximum value of SAR (measured) = 0.691 mW/g

Page: 36 of 75

Version 2.0 Issue Date: 23 August 2013

011: Back of EUT Closed Facing Phantom UMTS FDD 5 CH4132

Date: 20/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.779 mW/g

Communication System: UMTS-FDD 5; Frequency: 826.4 MHz;Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 826.4 MHz; $\sigma = 1.01$ mho/m; $\varepsilon_r = 52.9$; $\rho =$ 1000 kg/m³

Phantom section: Flat Section DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.16, 6.16, 6.16);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1177
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Back of EUT Closed Facing Phantom - Low/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.769 mW/g

Back of EUT Closed Facing Phantom - Low/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.0 V/m; Power Drift = 0.004 dB

Peak SAR (extrapolated) = 0.960 W/kg

SAR(1 g) = 0.727 mW/g; SAR(10 g) = 0.512 mW/gMaximum value of SAR (measured) = 0.779 mW/g

Page: 37 of 75 UL

Version 2.0 Issue Date: 23 August 2013

012: Back of EUT Closed Facing Phantom UMTS FDD 5 CH4233

Date: 20/08/2013

DUT: Panasonic D32CS1; Type: Panasonic; Serial: C9

0 dB = 0.788 mW/g

Communication System: UMTS-FDD 5; Frequency: 846.6 MHz;Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used (interpolated): f = 846.6 MHz; σ = 1.02 mho/m; ϵ_r = 52.9; ρ =

1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.16, 6.16, 6.16);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1177
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

Back of EUT Closed Facing Phantom - High/Area Scan (71x121x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.800 mW/g

Back of EUT Closed Facing Phantom - High/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid:

dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.6 V/m; Power Drift = 0.018 dB

Peak SAR (extrapolated) = 0.974 W/kg

SAR(1 g) = 0.738 mW/g; SAR(10 g) = 0.521 mW/g Maximum value of SAR (measured) = 0.788 mW/g

Page: 38 of 75 UL

Version 2.0 Issue Date: 23 August 2013

013: System Performance Check 900MHz Head 14 08 13 Date 14/08/2013

DUT: Dipole 900 MHz; Type: D900V2; Serial: SN185

0 dB = 2.95 mW/g

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz HSL Medium parameters used: f = 900 MHz; σ = 0.968 mho/m; ϵ_r = 40.8; ρ = 1000 kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.13, 6.13, 6.13);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: SAM 12b (Site 57); Type: SAM 4.0; Serial: TP:1031
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.96 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 56.7 V/m; Power Drift = -0.009 dB

Peak SAR (extrapolated) = 4.05 W/kg

SAR(1 g) = 2.75 mW/g; SAR(10 g) = 1.78 mW/gMaximum value of SAR (measured) = 2.95 mW/g

Page: 39 of 75 UL

Version 2.0 Issue Date: 23 August 2013

014: System Performance Check 900MHz Body 14 08 13 Date14/08/2013

DUT: Dipole 900 MHz; Type: D900V2; Serial: SN185

0 dB = 2.89 mW/g

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used: f = 900 MHz; $\sigma = 1.04$ mho/m; $\epsilon_r = 53.1$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.12, 6.12, 6.12);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1177
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.90 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 54.3 V/m; Power Drift = -0.006 dB

Peak SAR (extrapolated) = 3.81 W/kg

SAR(1 g) = 2.68 mW/g; SAR(10 g) = 1.75 mW/g

Maximum value of SAR (measured) = 2.89 mW/g

Page: 40 of 75

Version 2.0 Issue Date: 23 August 2013

015: System Performance Check 900MHz Body 19 08 13

Date: 19/08/2013

DUT: Dipole 900 MHz; Type: D900V2; Serial: SN185

0 dB = 3.01 mW/g

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used: f = 900 MHz; σ = 1.05 mho/m; ϵ_r = 52.6; ρ = 1000 kg/m³ Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.12, 6.12, 6.12);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1177
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 3.03 mW/g

d=15mm, Pin=250mW/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 55.5 V/m; Power Drift = -0.011 dB

Peak SAR (extrapolated) = 3.93 W/kg

SAR(1 g) = 2.77 mW/g; SAR(10 g) = 1.81 mW/g

Maximum value of SAR (measured) = 3.01 mW/g

Page: 41 of 75

Version 2.0 Issue Date: 23 August 2013

016: System Performance Check 900MHz Body 20 08 13

Date: 20/08/2013

DUT: Dipole 900 MHz; Type: D900V2; Serial: SN185

0 dB = 2.82 mW/g

Communication System: CW; Frequency: 900 MHz; Duty Cycle: 1:1

Medium: 900 MHz MSL Medium parameters used: f = 900 MHz; $\sigma = 1.05$ mho/m; $\varepsilon_r = 52.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

- Probe: ET3DV6 SN1529; ConvF(6.12, 6.12, 6.12);
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn450; Calibrated: 22/01/2013
- Phantom: ELI v5.0; Type: QDOVA002AA; Serial: TP:1177
- Measurement SW: DASY4, V4.7 Build 80; Postprocessing SW: SEMCAD, V1.8 Build 186

d=15mm, Pin=250mW 2 2/Area Scan (61x61x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.82 mW/g

d=15mm, Pin=250mW 2 2/Zoom Scan (5x5x7) (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 53.9 V/m; Power Drift = -0.001 dB

Peak SAR (extrapolated) = 3.70 W/kg

SAR(1 g) = 2.6 mW/g; SAR(10 g) = 1.7 mW/g Maximum value of SAR (measured) = 2.82 mW/g

Page: 42 of 75 UL