- src/
 - config.py: high-level instructions for scripts (controls the number of epochs plus type of augmentation, base (standard, unity) and active norm)
 - o datasets.py: script for loading data for denoising and classification tasks
 - losses.py: contains loss functions for denoising and classification tasks
 - o normalizations.py: all augmentations for relaxing the structure of the input
 - ∘ kfold/
 - kfold_cnn.py: trains the CNN classifier over all 50 folds and saves the best model for each split
 - kfold_combined.py: trains the transformer-CNN hybrid classifier over all 50 folds and saves the best model for each split
 - kfold_grad_cam.py : calculates attribution masks for each instance as aggregates over all 50 models
 - o plotting/
 - plot_x_x_masked.ipynb: plots a random example of input and masked input as seen in the paper
 - plot_tree_maps.ipynb : plots structure contributions in terms of TSS (relative square size)
 - plot_grad_cam.ipynb: plots a single example of aggregated Guided Grad-CAM over all 50 models as seen in the paper
 - plot_feature_ranking.ipynb : box plot for feature ranking via saliency maps as shown in the paper
 - running_metrics.py : collects metrics from all 50 folds for each type of data augmentation and saves to a CSV file
 - running_classifier.py : runs joint model on single fold
 - running_cnn.py : runs CNN on single fold
 - o running_grad_cam.py: runs guided grad-cam using a single model
 - running_inputter.py: runs denoising task for a single fold

Code map for the analysis of multivariate-time series in a data sparse regime

- src/
 - config.py: high-level instructions for scripts (controls the number of epochs plus type of augmentation, base (standard, unity) and active norm)
 - o datasets.py: script for loading data for denoising and classification tasks
 - losses.py: contains loss functions for denoising and classification tasks
 - o normalizations.py: all augmentations for relaxing the structure of the input
 - o kfold/
 - kfold_cnn.py: trains the CNN classifier over all 50 folds and saves the best model for each split
 - kfold_combined.py: trains the transformer-CNN hybrid classifier over all 50 folds and saves the best model for each split
 - kfold_grad_cam.py : calculates attribution masks for each instance as aggregates over all 50 models
 - o plotting/
 - plot x x masked.ipynb : plots a random example of input and masked input as seen in the paper
 - plot tree maps.ipynb: plots structure contributions in terms of TSS (relative square size)
 - plot_grad_cam.ipynb: plots a single example of aggregated Guided Grad-CAM over all 50 models as seen in the paper
 - plot_feature_ranking.ipynb : box plot for feature ranking via saliency maps as shown in the paper
 - running_metrics.py : collects metrics from all 50 folds for each type of data augmentation and saves to a CSV file
 - running_classifier.py : runs joint model on single fold
 - o running_cnn.py: runs CNN on single fold
 - o running_grad_cam.py: runs guided grad-cam using a single model
 - o running_inputter.py: runs denoising task for a single fold

Data format

All instances must be stored in CSV files. If your dataset consists of 1000 examples, then you need to populate a folder (in my case called long) with 1000 CSV files. Each CSV has column names associated with each feature in the multivariate time series, while each row represents a different time (time ordered). The CSV should look like follows:

	94	131	171	193	211	R_VALUE	XR_MAX	target
5	6.948843265893087	23.92038957436665	640.572746249489	804.4976653391947	337.67414279175216	4.719635179978764	6.7971e-07	1
5	6.864979570667067	23.261629814437313	633.1677645227642	799.3059947343635	335.24962964090787	4.703501962562543	7.056669230769231e-07	1
5	7.048615622996006	23.485013125945837	632.7253751156659	799.1419155793244	334.1861423976305	4.687368745146322	7.316238461538463e-07	1
5	6.817406259515682	23.12893834213854	634.1097486817505	799.1015170955628	334.6809585864472	4.7032741441210915	8.077638461538462e-07	1
5	6.72662247746867	22.908430594350097	631.6242477133627	792.701502862173	331.6906935257317	4.7209594662286944	8.866917948717949e-07	1
5	6.666772119475279	22.77720170058708	631.7489945767161	788.460283210315	329.97461265524987	4.712144795280475	1.747964102564102e-06	1
5	6.740538092006397	22.99587515696767	636.2131151166553	787.7879742989974	329.59306028955757	4.7002124780903936	2.701276923076922e-06	1

Note that the left-most column indicates the example index, while the right-most column is the target

Dataset

```
class MVTSDataset(Dataset):
    """Dynamically computes missingness (noise) mask for each sample"""

def __init__(self, indicies, norm_type='unity', mean_mask_length=3, masking_ratio=0.15):
    """

args:
    indicies: list of indicies of samples to include in dataset
    norm_type: 'unity' or 'standard'
    mean_mask_length: mean length of noise mask
    masking_ratio: ratio of values to mask
    Returns:
    x: (batch, seq_length, feat_dim)
    mask: (batch, seq_length, feat_dim) boolean array: 0s mask and predict, 1s: unaffected input
    label: (batch, 1) 1 or 0
```

Dataloader

- src/
 - config.py: high-level instructions for scripts (controls the number of epochs plus type of augmentation, base (standard, unity) and active norm)
 - o datasets.py: script for loading data for denoising and classification tasks
 - losses.py: contains loss functions for denoising and classification tasks
 - o normalizations.py: all augmentations for relaxing the structure of the input
 - o kfold/
 - kfold_cnn.py: trains the CNN classifier over all 50 folds and saves the best model for each split
 - kfold_combined.py: trains the transformer-CNN hybrid classifier over all 50 folds and saves the best model for each split
 - kfold_grad_cam.py : calculates attribution masks for each instance as aggregates over all 50 models
 - o plotting/
 - plot_x_x_masked.ipynb : plots a random example of input and masked input as seen in the paper
 - plot tree maps.ipynb : plots structure contributions in terms of TSS (relative square size)
 - plot_grad_cam.ipynb: plots a single example of aggregated Guided Grad-CAM over all 50 models as seen in the paper
 - plot_feature_ranking.ipynb : box plot for feature ranking via saliency maps as shown in the paper
 - running_metrics.py : collects metrics from all 50 folds for each type of data augmentation and saves to a CSV file
 - running_classifier.py : runs joint model on single fold
 - o running_cnn.py: runs CNN on single fold
 - o running_grad_cam.py: runs guided grad-cam using a single model
 - \circ <code>running_inputter.py</code> : runs denoising task for a single fold

BASE NORM

This is handled at the level of the dataset an can be either: "standard" or "unity"

Standard applies a robust standard scalar from sklearn while unity integrates out the intensity

ACTIVE NORM

This is handled dynamically during training loops and acts on top, i.e., in addition to the base norm

```
4 #? Function for first order topological shuffle (shuffle across time acess for each feature)
     def shuffle_tensor_along_time(tensor):
         # Runs dynamicaly on during traning loop on batches. Input shape (batch_size, time_steps, d_features)
         batch size, time steps, d features = tensor.size()
         indices = torch.stack([torch.randperm(time_steps) for _ in range(batch_size * d_features)]).view(batch_size,
         shuffled_tensor = tensor.permute(0, 2, 1).gather(2, indices).permute(0, 2, 1)
         return shuffled_tensor
11
     #? Function for second order topological shuffle (shuffle across time and feature access)
13
     def topological_shuffle(tensor):
         # Runs dynamicaly on during traning loop on batches. Input shape (batch_size, time_steps, d_features)
14
15
         batch_size, time_steps, d_features = tensor.size()
16
         shuffled_tensor = tensor.clone()
17
          for i in range(batch_size):
18
             indices = torch.randperm(time_steps * d_features)
19
             shuffled_tensor[i] = tensor[i].view(-1)[indices].view(time_steps, d_features)
20
          return shuffled tensor
21
     #? Integrates out the intensity by normalizing each feature from a single mvts by its maximum value
     def unity_based_normalization(data):
         # Applied implicitly in the dataloader but can be dynamicly run on single instances if batch size is 1: input
         shape (time_steps, d_features)
25
         max_vals = np.nanmax(data, axis=1)
26
         min vals = np.nanmin(data, axis=1)
27
         ranges = max_vals - min_vals
         eps = np.finfo(data.dtype).eps
         ranges [ranges < eps] = eps
         data = (data - min_vals[:, np.newaxis]) / ranges[:, np.newaxis]
31
         data = data + np.nanmax(data)
32
         data *= (1 / np.nanmax(data, axis=1)[:, np.newaxis])
33
         return data
35
     #? Identity normalization
     def identity_normalization(tensor):
37
         return tensor
     #? Robust Standardization
     # Applied implicitly in the dataloader and cannot be run dynamicaly on single batchs
```


- src/
 - config.py: high-level instructions for scripts (controls the number of epochs plus type of augmentation, base (standard, unity) and active norm)
 - datasets.py : script for loading data for denoising and classification tasks
 - losses.py: contains loss functions for denoising and classification tasks
 - o normalizations.py: all augmentations for relaxing the structure of the input
 - ∘ kfold/
 - kfold_cnn.py: trains the CNN classifier over all 50 folds and saves the best model for each split
 - kfold_combined.py: trains the transformer-CNN hybrid classifier over all 50 folds and saves the best model for each split
 - kfold_grad_cam.py : calculates attribution masks for each instance as aggregates over all 50 models
 - o plotting/
 - plot_x_x_masked.ipynb: plots a random example of input and masked input as seen in the paper
 - plot_tree_maps.ipynb : plots structure contributions in terms of TSS (relative square size)
 - plot_grad_cam.ipynb: plots a single example of aggregated Guided Grad-CAM over all 50 models as seen in the paper
 - plot_feature_ranking.ipynb : box plot for feature ranking via saliency maps as shown in the paper
 - running_metrics.py : collects metrics from all 50 folds for each type of data augmentation and saves to a CSV file
 - running_classifier.py : runs joint model on single fold
 - o running_cnn.py: runs CNN on single fold
 - o running_grad_cam.py: runs guided grad-cam using a single model
 - running_inputter.py: runs denoising task for a single fold

Trains model weights on a single fold

Warm up the weights by forcing the model to learn the dependencies between variables

- src/
 - config.py: high-level instructions for scripts (controls the number of epochs plus type of augmentation, base (standard, unity) and active norm)
 - datasets.py : script for loading data for denoising and classification tasks
 - losses.py: contains loss functions for denoising and classification tasks
 - o normalizations.py: all augmentations for relaxing the structure of the input
 - ∘ kfold/
 - kfold_cnn.py: trains the CNN classifier over all 50 folds and saves the best model for each split
 - kfold_combined.py: trains the transformer-CNN hybrid classifier over all 50 folds and saves the best model for each split
 - kfold_grad_cam.py : calculates attribution masks for each instance as aggregates over all 50 models
 - o plotting/
 - plot_x_x_masked.ipynb: plots a random example of input and masked input as seen in the paper
 - plot tree maps.ipynb: plots structure contributions in terms of TSS (relative square size)
 - plot_grad_cam.ipynb: plots a single example of aggregated Guided Grad-CAM over all 50 models as seen in the paper
 - plot_feature_ranking.ipynb : box plot for feature ranking via saliency maps as shown in the paper
 - running_metrics.py : collects metrics from all 50 folds for each type of data augmentation and saves to a CSV file
 - running_classifier.py : runs joint model on single fold
 - running_cnn.py : runs CNN on single fold
 - o running_grad_cam.py: runs guided grad-cam using a single model
 - running_inputter.py: runs denoising task for a single fold

Trains model weights on a single fold

Warm up the weights by forcing the model to learn the dependencies between variables

Loads warmed up weights and performs classification

- src/
 - config.py: high-level instructions for scripts (controls the number of epochs plus type of augmentation, base (standard, unity) and active norm)
 - o datasets.py: script for loading data for denoising and classification tasks
 - losses.py: contains loss functions for denoising and classification tasks
 - o normalizations.py: all augmentations for relaxing the structure of the input
 - ∘ kfold/
 - kfold_cnn.py: trains the CNN classifier over all 50 folds and saves the best model for each split
 - kfold_combined.py: trains the transformer-CNN hybrid classifier over all 50 folds and saves the best model for each split
 - kfold_grad_cam.py : calculates attribution masks for each instance as aggregates over all 50 models
 - o plotting/
 - plot_x_x_masked.ipynb: plots a random example of input and masked input as seen in the paper
 - plot_tree_maps.ipynb : plots structure contributions in terms of TSS (relative square size)
 - plot_grad_cam.ipynb: plots a single example of aggregated Guided Grad-CAM over all 50 models as seen in the paper
 - plot_feature_ranking.ipynb : box plot for feature ranking via saliency maps as shown in the paper
 - running_metrics.py : collects metrics from all 50 folds for each type of data augmentation and saves to a CSV file
 - running_classifier.py : runs joint model on single fold
 - running_cnn.py : runs CNN on single fold
 - o running_grad_cam.py: runs guided grad-cam using a single model
 - running_inputter.py: runs denoising task for a single fold

Trains model weights on a single fold

Warm up the weights by forcing the model to learn the dependencies between variables

Loads warmed up weights and performs classification

- src/
 - config.py: high-level instructions for scripts (controls the number of epochs plus type of augmentation, base (standard, unity) and active norm)
 - o datasets.py: script for loading data for denoising and classification tasks
 - losses.py: contains loss functions for denoising and classification tasks
 - o normalizations.py: all augmentations for relaxing the structure of the input
 - ∘ kfold/
 - kfold_cnn.py: trains the CNN classifier over all 50 folds and saves the best model for each split
 - kfold_combined.py: trains the transformer-CNN hybrid classifier over all 50 folds and saves the best model for each split
 - kfold_grad_cam.py: calculates attribution masks for each instance as aggregates over all 50 models
 - o plotting/
 - plot_x_x_masked.ipynb : plots a random example of input and masked input as seen in the paper
 - plot_tree_maps.ipynb : plots structure contributions in terms of TSS (relative square size)
 - plot_grad_cam.ipynb: plots a single example of aggregated Guided Grad-CAM over all 50 models as seen in the paper
 - plot_feature_ranking.ipynb : box plot for feature ranking via saliency maps as shown in the paper
 - running_metrics.py : collects metrics from all 50 folds for each type of data augmentation and saves to a CSV file
 - running_classifier.py : runs joint model on single fold
 - running_cnn.py : runs CNN on single fold
 - o running_grad_cam.py: runs guided grad-cam using a single model
 - o running_inputter.py: runs denoising task for a single fold

Same as single instance running routines but over 50 random folds and for a set base and active augmentation

- src/
 - config.py: high-level instructions for scripts (controls the number of epochs plus type of augmentation, base (standard, unity) and active norm)
 - o datasets.py: script for loading data for denoising and classification tasks
 - losses.py: contains loss functions for denoising and classification tasks
 - o normalizations.py: all augmentations for relaxing the structure of the input
 - ∘ kfold/
 - kfold_cnn.py: trains the CNN classifier over all 50 folds and saves the best model for each split
 - kfold_combined.py: trains the transformer-CNN hybrid classifier over all 50 folds and saves the best model for each split
 - kfold_grad_cam.py : calculates attribution masks for each instance as aggregates over all 50 models
 - o plotting/
 - plot_x_x_masked.ipynb: plots a random example of input and masked input as seen in the paper
 - plot_tree_maps.ipynb : plots structure contributions in terms of TSS (relative square size)
 - plot_grad_cam.ipynb: plots a single example of aggregated Guided Grad-CAM over all 50 models as seen in the paper
 - plot_feature_ranking.ipynb : box plot for feature ranking via saliency maps as shown in the paper
 - running_metrics.py: collects metrics from all 50 folds for each type of data augmentation and saves to a CSV file
 - running_classifier.py : runs joint model on single fold
 - running_cnn.py : runs CNN on single fold
 - o running_grad_cam.py: runs guided grad-cam using a single model
 - o running_inputter.py: runs denoising task for a single fold

Derives statistics for all folds and all augmentations and compiles them into a single SCV file

augmentation	tss	auc	hss	bss	accuracy
cnn_unity_topological	0.0	0.48471320346320346	1.0	-0.01353009943156458	0.45901639344262296
cnn_unity_topological	0.0	0.4491228070175438	1.0	-0.005673041956777425	0.4672131147540984
cnn_unity_topological	0.0	0.48185483870967744	1.0	-0.0006382308161057004	0.4918032786885246

- src/
 - config.py: high-level instructions for scripts (controls the number of epochs plus type of augmentation, base (standard, unity) and active norm)
 - datasets.py : script for loading data for denoising and classification tasks
 - losses.py: contains loss functions for denoising and classification tasks
 - o normalizations.py: all augmentations for relaxing the structure of the input
 - ∘ kfold/
 - kfold_cnn.py : trains the CNN classifier over all 50 folds and saves the best model for each split
 - kfold_combined.py: trains the transformer-CNN hybrid classifier over all 50 folds and saves the best model for each split
 - kfold_grad_cam.py : calculates attribution masks for each instance as aggregates over all 50 models
 - o plotting/
 - plot_x_x_masked.ipynb: plots a random example of input and masked input as seen in the paper
 - plot_tree_maps.ipynb : plots structure contributions in terms of TSS (relative square size)
 - plot_grad_cam.ipynb: plots a single example of aggregated Guided Grad-CAM over all 50 models as seen in the paper
 - plot_feature_ranking.ipynb : box plot for feature ranking via saliency maps as shown in the paper
 - running_metrics.py : collects metrics from all 50 folds for each type of data augmentation and saves to a CSV file
 - running_classifier.py : runs joint model on single fold
 - running_cnn.py : runs CNN on single fold
 - o running_grad_cam.py: runs guided grad-cam using a single model
 - \circ <code>running_inputter.py</code> : runs denoising task for a single fold

```
import torch
import numpy as np
from normalizations import shuffle_tensor_along_time, topological_shuffle, identity_normalization

N_EPOCHS = 50 # Number of epochs to train models for the binary classification task
N_EPOCHS_AR = 200 # Number of epochs to train models for the autoregressive denoising task
BASE_NORM = 'standard' # Normalization type for the binary classification task| Options: 'unity', 'standard'
ACTIVE_NORM = topological_shuffle # Normalization type for the autoregressive denoising task | Options:
shuffle_tensor_along_time, topological_shuffle, identity_normalization
RUN_NAME = 'combined_std_topological' # Name of the run
```

Controles how many epochs for each mode as well as the types of normalizations

- src/
 - config.py: high-level instructions for scripts (controls the number of epochs plus type of augmentation, base (standard, unity) and active norm)
 - o datasets.py: script for loading data for denoising and classification tasks
 - losses.py: contains loss functions for denoising and classification tasks
 - o normalizations.py: all augmentations for relaxing the structure of the input
 - ∘ kfold/
 - kfold_cnn.py: trains the CNN classifier over all 50 folds and saves the best model for each split
 - kfold_combined.py: trains the transformer-CNN hybrid classifier over all 50 folds and saves the best model for each split
 - kfold_grad_cam.py : calculates attribution masks for each instance as aggregates over all 50 models
 - o plotting/
 - plot_x_x_masked.ipynb: plots a random example of input and masked input as seen in the paper
 - plot tree maps.ipynb: plots structure contributions in terms of TSS (relative square size)
 - plot_grad_cam.ipynb : plots a single example of aggregated Guided Grad-CAM over all 50 models as seen in the paper
 - plot_feature_ranking.ipynb : box plot for feature ranking via saliency maps as shown in the paper
 - running_metrics.py : collects metrics from all 50 folds for each type of data augmentation and saves to a CSV file
 - running_classifier.py : runs joint model on single fold
 - o running_cnn.py: runs CNN on single fold
 - o running_grad_cam.py: runs guided grad-cam using a single model
 - running_inputter.py : runs denoising task for a single fold

