#### **Project**

#### project groups

- groups of 3–4
- if needed, feel free to use "Search for Teammates!" feature on Piazza (pinned)
- send me an email (<a href="mailto:mvasconcelos@eng.ucsd.edu">mvasconcelos@eng.ucsd.edu</a>) stating who are the group <a href="mailto:members">members</a> (please use your official UCSD name) as soon as you know it, with deadline <a href="mailto:Tuesday">Tuesday</a>, 1/18

#### ▶ project proposal

- due Tuesday, 2/1 @ 11:59pm
- one-page maximum stating:
  - problem
  - data you will use
  - draft of proposed solution (can be updated later)
  - experiments you will run (can be updated later)
  - references (you can use an <u>additional</u> page for this)



# ECE 271B – Winter 2022 PCA and LDA

#### Disclaimer:

This class will be recorded and made available to students asynchronously.

Manuela Vasconcelos

ECE Department, UCSD

#### **Principal Component Analysis**

#### ▶ basic idea:

• if the data lives in a subspace, it is going to look very flat when viewed from the full space, e.g.



 this means that if we fit a Gaussian to the data, the equiprobability contours are going to be <u>highly skewed</u> ellipsoids

# Principal Component Analysis (Learning)

• if y is Gaussian with covariance Σ, the equiprobability contours are the ellipses whose  $y_2 \uparrow$ 

- principal components  $\phi_i$  are the eigenvectors of  $\Sigma$
- principal lengths  $\sigma_i$  are the eigenvalues of  $\Sigma$
- by computing the eigenvalues, we know if the data is flat







### **Principal Component Analysis (Learning)**

Given sample  $\mathcal{D} = \{\mathbf{x}_1, \cdots, \mathbf{x}_n\}, \mathbf{x}_i \in \mathbb{R}^d$ 

- compute sample mean:  $\widehat{\mu} = \frac{1}{n} \sum_i \mathbf{x}_i$
- compute sample covariance:  $\widehat{\Sigma} = \frac{1}{n} \sum_{i} (\mathbf{x}_{i} \widehat{\boldsymbol{\mu}}) (\mathbf{x}_{i} \widehat{\boldsymbol{\mu}})^{T}$
- compute eigenvalues and eigenvectors of  $\widehat{\Sigma}$

$$\widehat{\mathbf{\Sigma}} = \mathbf{\Phi} \mathbf{\Lambda} \mathbf{\Phi}^T$$
  $\mathbf{\Lambda} = diag(\sigma_1^2, \dots, \sigma_d^2)$   $\mathbf{\Phi} \mathbf{\Phi}^T = \mathbf{I}$ 

- order eigenvalues:  $\sigma_1^2 > \cdots > \sigma_n^2$
- if, for a certain k,  $\sigma_k \ll \sigma_1$ , eliminate the eigenvalues and eigenvectors above k

#### **Principal Component Analysis**

- ▶ Given a vector  $\mathbf{y}$  in the <u>original</u> space  $\mathbb{R}^d$ 
  - we can obtain the vector  $\mathbf{z}$  by applying the transformation  $\mathbf{\Phi}^{-1}$
  - since  $\Phi$  is orthogonal, this is just the transpose:  $\Phi^{-1} = \Phi^T$ note:  $\Phi^T$  is the matrix with principal components  $\phi_i$  as rows
  - elimination of components of small variance (eigenvalue) corresponds to eliminating all but k of these rows
  - in summary, PCA can be implemented with





#### **Principal Component Analysis**

Given principal components  $\phi_i$ ,  $i \in \{1, \dots, k\}$ , and a test sample  $\mathcal{T} = \{\mathbf{t}_1, \dots, \mathbf{t}_n\}$ ,  $\mathbf{t}_i \in \mathbb{R}^d$ 

- subtract mean to each point:  $\mathbf{t}_i' = \mathbf{t}_i \widehat{\boldsymbol{\mu}}$
- project onto eigenvector space

$$\mathbf{y}_i = \mathbf{A} \mathbf{t}_i'$$
 where  $\mathbf{A} = \begin{bmatrix} -\boldsymbol{\phi}_1^T - \\ \vdots \\ -\boldsymbol{\phi}_k^T - \end{bmatrix}$ 

• use  $T' = \{y_1, \dots, y_n\}$  to do all subsequent machine learning

$$\mathbf{y}_i = \begin{bmatrix} -\boldsymbol{\phi}_1^T - \\ \vdots \\ -\boldsymbol{\phi}_k^T - \end{bmatrix} [\mathbf{t}_i - \widehat{\boldsymbol{\mu}}]$$

$$k - \text{dimensional}$$

$$k \times d$$

#### **Principal Components**

- what are they? in some cases it is possible to see
- example: eigenfaces
  - face recognition problem: can you identify who is the person in this picture?
  - training:
    - assemble examples from people's faces
    - compute the PCA basis
    - project each image into PCA space
    - use image projections to learn a classifier in the PCA space
  - recognition:
    - project image to classify into PCA space
    - apply the classifier in the PCA space

# **Principal Components**

► face examples



#### **Principal Components**

- principal components (eigenfaces)
  - high-variance ones tend to have low-frequency
  - capture average face, illumination, etc.
  - at the intermediate—level, we have face detail
  - low-variance tends to be high-frequency noise



- ▶ there is an <u>alternative</u> manner to compute the principal components, based on <u>Singular Value Decomposition</u> (SVD)
- ► SVD:
  - any real  $n \times m$  (n > m) matrix **A** can be decomposed as

$$\mathbf{A} = \mathbf{M} \, \mathbf{\Pi} \, \mathbf{N}^T$$

- M is a  $n \times m$  column orthonormal matrix of left singular vectors (columns of M)
- $\Pi$  is a  $m \times m$  diagonal matrix of singular values
- $N^T$  is a  $m \times m$  row orthonormal matrix of right singular vectors (columns of N)

$$\mathbf{M}^T \mathbf{M} = \mathbf{I} \qquad \qquad \mathbf{N}^T \mathbf{N} = \mathbf{I}$$

▶ to relate this to PCA, we consider the data—matrix

▶ the sample mean is

$$\mu = \frac{1}{n} \sum_{i} \mathbf{x}_{i} = \frac{1}{n} \begin{bmatrix} \mathbf{1} & & \mathbf{1} \\ \mathbf{x}_{1} & \cdots & \mathbf{x}_{n} \\ \mathbf{1} & & \end{bmatrix} \begin{bmatrix} \mathbf{1} \\ \vdots \\ \mathbf{1} \end{bmatrix} = \frac{1}{n} \mathbf{X} \mathbf{1}$$

and we can center the data by subtracting the mean to each column of X – this is the centered data-matrix

$$\begin{bmatrix} \mathbf{X}_c \\ \mathbf{X}_1 \\ \mathbf{X}_1 \end{bmatrix} = \begin{bmatrix} \mathbf{X}_1 \\ \mathbf{\mu} \end{bmatrix} - \begin{bmatrix} \mathbf{I}_1 \\ \mathbf{\mu} \end{bmatrix} - \begin{bmatrix} \mathbf{I}_2 \\ \mathbf{\mu} \end{bmatrix}$$
$$= \mathbf{X} - \mathbf{\mu} \mathbf{1}^T = \mathbf{X} - \frac{1}{n} \mathbf{X} \mathbf{1} \mathbf{1}^T = \begin{bmatrix} \mathbf{X} \left( \mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}^T \right) \end{bmatrix}$$

▶ the sample covariance is

$$\Sigma = \frac{1}{n} \sum_{i} (\mathbf{x}_i - \boldsymbol{\mu}) (\mathbf{x}_i - \boldsymbol{\mu})^T = \frac{1}{n} \sum_{i} \mathbf{x}_i^c (\mathbf{x}_i^c)^T$$

where  $\mathbf{x}_i^c$  is the  $i^{\text{th}}$  column of  $\mathbf{X}_c$ 

this can be written as

$$\Sigma = \frac{1}{n} \begin{bmatrix} | & & | \\ \mathbf{x}_1^c & \cdots & \mathbf{x}_n^c \\ | & | \end{bmatrix} \begin{bmatrix} - & \mathbf{x}_1^c & - \\ & \vdots & \\ - & \mathbf{x}_n^c \end{bmatrix} = \frac{1}{n} \mathbf{X}_c \mathbf{X}_c^T$$

and the centered data-matrix contains all the covariance information

▶ the centered data—matrix

$$\mathbf{X}_c^T = \begin{bmatrix} - & \mathbf{x}_1^c & - \\ & \vdots & \\ - & \mathbf{x}_n^c & - \end{bmatrix}$$

is real  $n \times d$ . Assuming n > d, it has SVD decomposition

$$\mathbf{X}_c^T = \mathbf{M} \, \mathbf{\Pi} \, \mathbf{N}^T$$

**M** - orthonormal matrix

 $\Pi$  - diagonal matrix

 $N^T$  — orthonormal matrix

$$\mathbf{M}^T \mathbf{M} = \mathbf{I}$$

 $\mathbf{N}^T \mathbf{N} = \mathbf{I}$ 

and

$$\mathbf{\Sigma} = \frac{1}{n} \mathbf{X}_c \mathbf{X}_c^T = \frac{1}{n} \mathbf{N} \mathbf{\Pi} \mathbf{M}^T \mathbf{M} \mathbf{\Pi} \mathbf{N}^T = \frac{1}{n} \mathbf{N} \mathbf{\Pi}^2 \mathbf{N}^T$$



$$\mathbf{\Sigma} = \mathbf{N} \left( \frac{1}{n} \mathbf{\Pi}^2 \right) \mathbf{N}^T$$

- ▶ noting that N is  $d \times d$  and orthonormal and  $\Pi^2$  is diagonal, this is just the eigenvalue decomposition of  $\Sigma$
- ▶ it follows that
  - the eigenvectors of  $\Sigma$  are the columns of N
  - the eigenvalues of  $\Sigma$  are

$$\sigma_i = \frac{1}{n}\pi_i^2$$

▶ this gives an <u>alternative</u> algorithm for PCA

► computation of PCA by SVD

$$\mathbf{X} = \begin{bmatrix} | & & | \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ | & & | \end{bmatrix}$$

Given X with one example per column

1) create the centered data-matrix

$$\mathbf{X}_c^T = \left(\mathbf{I} - \frac{1}{n} \ \mathbf{1} \mathbf{1}^T\right) \mathbf{X}^T$$

2) compute its SVD

$$\mathbf{X}_c^T = \mathbf{M} \, \mathbf{\Pi} \, \mathbf{N}^T$$

3) principal components are columns of N, eigenvalues are

$$\sigma_i = \frac{1}{n}\pi_i^2$$

#### **Limitations of PCA**

- ► PCA is <u>not</u> optimal for classification
  - note that there is <u>no</u> mention of the <u>class label</u> in the definition of PCA
  - keeping the dimensions of largest energy (variance) is a good idea, but not always enough
  - certainly improves the density estimation since space has smaller dimension
  - but could be unwise from a classification point of view
  - the discriminant dimensions could be thrown out
- ▶ it is not hard to construct examples where PCA is the <u>worst</u> possible thing we could do

#### **Limitations of PCA: Example**

- consider a problem with
  - two n-D Gaussian classes with covariance  $\Sigma = \sigma^2 \mathbf{I}$ ,  $\sigma^2 = 10$

$$\mathbf{X} \sim N(\boldsymbol{\mu}_i, 10\mathbf{I})$$

we add an extra variable which is the class Y label itself

$$\mathbf{X}' = [X, Y]$$

- each of the n dimensions of **X** has variance 10
- what about the new dimension Y?
  - assuming that  $P_Y(0) = P_Y(1) = 0.5$

$$E[Y] = 0.5 \times 0 + 0.5 \times 1 = 0.5$$
$$var[Y] = 0.5 \times (0 - 0.5)^2 + 0.5 \times (1 - 0.5)^2 = 0.25 < 10$$

 the new dimension Y has the <u>smallest</u> variance and is the <u>first</u> to be discarded by PCA!

#### **Limitations of PCA**

- ▶ this is
  - a very contrived example
  - but shows that PCA can throw away all the discriminant info
- does this mean you should never use PCA?
  - no, typically it is a good method to find a suitable subset of variables as long as you are not too greedy
    - e.g. if you start with n=100 and know that there are only 5 variables of interest
    - picking the top 20 PCA components is likely to keep the desired 5
    - your classifier will be much better than for n=100, probably not much worse than the one with the best 5 features
- ▶ is there a <u>rule of thumb</u> for finding the <u>number of PCA components</u>?

#### **Principal Component Analysis**

- ightharpoonup a natural measure is to pick the eigenvectors that explain p% of the data variability
  - can be done by plotting the ratio  $r_k$  as a function of k



 e.g. we need 3 eigenvectors to cover 70% of the variability of this dataset

- ▶ what if we really need to find the <u>best</u> features?
  - harder question, usually <u>impossible</u> with <u>simple</u> methods
  - however, there are better methods at finding discriminant directions
- ▶ one good example is Linear Discriminant Analysis (LDA)
  - the idea is to find the line that best separates the two classes



 $\blacktriangleright$  we have two classes  $Y \in \{0,1\}$  such that

$$E_{\mathbf{X}|Y}[\mathbf{x}|y=i] = \boldsymbol{\mu}_i$$
  $E_{\mathbf{X}|Y}[(\mathbf{x}-\boldsymbol{\mu}_i)(\mathbf{x}-\boldsymbol{\mu}_i)^T|y=i] = \boldsymbol{\Sigma}_i$ 

and we want to find the line, i.e. the direction w, such that the projection

$$z = \mathbf{w}^T \mathbf{x}$$

best separates the classes

one possibility would be to maximize the distance between the means after the projection

$$(E_{Z|Y}[z|y=1] - E_{Z|Y}[z|y=0])^{2}$$

$$= (E_{X|Y}[\mathbf{w}^{T}\mathbf{x} | y=1] - E_{X|Y}[\mathbf{w}^{T}\mathbf{x} | y=0])^{2}$$

$$= (\mathbf{w}^{T}[\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0}])^{2}$$

 $z = \mathbf{w}^T \mathbf{x}$ 

however,

$$(\mathbf{w}^T[\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0])^2$$

$$(E_{Z|Y}[z|y=1] - E_{Z|Y}[z|y=0])^2 = (\mathbf{w}^T[\mu_1 - \mu_0])^2$$

can be made arbitrarily large by simply scaling  $\mathbf{w}$ 

- we are only interested in the direction, <u>not</u> the magnitude
- ▶ we need some type of normalization

max



Fisher, R. A.; The Use of Multiple Measurements in Taxonomic Problems.

Annals of Eugenics, v. 7, p. 179–188,1936.

measures separation between class means

measures variability inside the classes

$$\max_{\mathbf{w}} \frac{\left(E_{Z|Y}[z|y=1] - E_{Z|Y}[z|y=0]\right)^{2}}{\text{var}[z|y=1] + \text{var}[z|y=0]}$$

between class scatter

within class scatter

 $Y \in \{0,1\}$ 

 $E_{\mathbf{X}|Y}[\mathbf{x}|y=i] = \boldsymbol{\mu}_i$ 

 $E_{\mathbf{X}|Y}[(\mathbf{x} - \boldsymbol{\mu}_i)(\mathbf{x} - \boldsymbol{\mu}_i)^T | y = i] = \boldsymbol{\Sigma}_i$ 

 $z = \mathbf{w}^T \mathbf{x}$ 

▶ we have already seen that

$$(E_{Z|Y}[z|y = 1] - E_{Z|Y}[z|y = 0])^{2}$$

$$= (\mathbf{w}^{T}[\mu_{1} - \mu_{0}])^{2}$$

$$= \mathbf{w}^{T}[\mu_{1} - \mu_{0}][\mu_{1} - \mu_{0}]^{T}\mathbf{w}$$

also

$$\operatorname{var}[z|y=i] = E_{Z|Y} \left\{ \left( \mathbf{z} - E_{Z|Y}[z|y=i] \right)^{2} \middle| y=i \right\}$$

$$= E_{\mathbf{X}|Y} \left\{ \left( \mathbf{w}^{T} \mathbf{x} - E_{\mathbf{X}|Y}[\mathbf{w}^{T} \mathbf{x} \middle| y=i] \right)^{2} \middle| y=i \right\}$$

$$= E_{\mathbf{X}|Y} \left\{ \left( \mathbf{w}^{T} [\mathbf{x} - \boldsymbol{\mu}_{i}] \right)^{2} \middle| y=i \right\}$$

$$= E_{\mathbf{X}|Y} \left\{ \mathbf{w}^{T} [\mathbf{x} - \boldsymbol{\mu}_{i}] [\mathbf{x} - \boldsymbol{\mu}_{i}]^{T} \mathbf{w} \middle| y=i \right\}$$

$$= \mathbf{w}^{T} E_{\mathbf{X}|Y} \left\{ [\mathbf{x} - \boldsymbol{\mu}_{i}] [\mathbf{x} - \boldsymbol{\mu}_{i}]^{T} \middle| y=i \right\} \mathbf{w}$$

$$= \mathbf{w}^{T} \Sigma_{i} \mathbf{w}$$

and

$$J(\mathbf{w}) = \frac{\left(E_{Z|Y}[z|y=1] - E_{Z|Y}[z|y=0]\right)^2}{\operatorname{var}[z|y=1] + \operatorname{var}[z|y=0]}$$
$$= \frac{\mathbf{w}^T (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^T \mathbf{w}}{\mathbf{w}^T (\boldsymbol{\Sigma}_0 + \boldsymbol{\Sigma}_1) \mathbf{w}}$$

 $var[z|y = i] = \mathbf{w}^T \mathbf{\Sigma}_i \mathbf{w}$ 

which can be written as

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$



maximizing the ratio

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

• is equivalent to maximizing the numerator while keeping the denominator constant, i.e.

$$\max_{\mathbf{w}} \mathbf{w}^T \mathbf{S}_B \mathbf{w} \quad \text{subject to} \quad \mathbf{w}^T \mathbf{S}_W \mathbf{w} = K$$

and can be accomplished using Lagrange optimization

define the Lagrangian

$$L = \mathbf{w}^T \mathbf{S}_B \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{S}_W \mathbf{w} - K)$$

and maximize with respect to w

setting the gradient of

$$L = \mathbf{w}^T \mathbf{S}_B \mathbf{w} - \lambda (\mathbf{w}^T \mathbf{S}_W \mathbf{w} - K) = \mathbf{w}^T (\mathbf{S}_B - \lambda \mathbf{S}_W) \mathbf{w} + \lambda K$$

with respect to  $\mathbf{w}$  to zero, we get

$$\nabla_{\mathbf{w}}L = 2(\mathbf{S}_B - \lambda \mathbf{S}_W)\mathbf{w} = 0$$

or

$$\mathbf{S}_B \mathbf{w} = \lambda \mathbf{S}_W \mathbf{w}$$

- ▶ this is a generalized eigenvalue problem
- ▶ the solution is <u>easy</u> when  $S_W^{-1} = (\Sigma_0 + \Sigma_1)^{-1}$  exists

$$\mathbf{S}_B = (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)^T$$
$$\mathbf{S}_W = \boldsymbol{\Sigma}_0 + \boldsymbol{\Sigma}_1$$

$$J(\mathbf{w}) = \frac{\mathbf{w}^T \mathbf{S}_B \mathbf{w}}{\mathbf{w}^T \mathbf{S}_W \mathbf{w}}$$

▶ in this case, **w** is the <u>eigenvector with largest eigenvalue</u> of  $S_W^{-1}S_B$ 

$$\mathbf{S}_W^{-1} = (\mathbf{\Sigma}_0 + \mathbf{\Sigma}_1)^{-1}$$
 exists  $\mathbf{S}_B \mathbf{w} = \lambda \mathbf{S}_W \mathbf{w}$ 

$$\mathbf{S}_W^{-1}\mathbf{S}_B\mathbf{w} = \lambda\mathbf{w}$$

 $\blacktriangleright$  it can actually be computed by using the definition of  $S_B$ 

$$\mathbf{S}_{W}^{-1}(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0})(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0})^{T}\mathbf{w} = \lambda\mathbf{w}$$

▶ noting that  $(\mu_1 - \mu_0)^T \mathbf{w} = \alpha$  is a scalar, this can be written as

$$\mathbf{S}_W^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0) = \frac{\lambda}{\alpha} \mathbf{w}$$

and, since we don't care about the magnitude of w,

$$\mathbf{w}^* = \mathbf{S}_W^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0) = (\mathbf{\Sigma}_0 + \mathbf{\Sigma}_1)^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)$$

is the linear discriminant

- ▶ note that you have seen this <u>before</u>
  - for a classification problem with Gaussian classes of <u>equal</u> covariance  $\Sigma_1 = \Sigma_0$ , the BDR boundary is the plane of normal

$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)$$



• if  $\Sigma_1 = \Sigma_0$ , this is also the LDA solution

- ▶ this gives two different interpretations of LDA
  - classical Fisher interpretation, which is just about separating data (assumes <u>no</u> probability model)
  - 2. Bayes decision rule

$$i^* = \arg\max_{i} P(y = i | \mathbf{x})$$

after approximating the data by two Gaussians with equal covariance

- ▶ hence, LDA is usually better than PCA
  - it explicitly optimizes discrimination
- ▶ but not necessarily good enough
  - if the Gaussian approximation is a poor one

- what if there are more than two classes?
  - you simply compute the discriminants  $\mathbf{w}^{ij}$  between all pairs of classes i and j
  - e.g. for C = 3 classes



$$\mathbf{w}^{ij} = (\mathbf{\Sigma}_i + \mathbf{\Sigma}_j)^{-1} (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)$$

- note that there are C(C-1)/2 different pairs
- ▶ this constrains the dimension of LDA
  - you cannot simply pick what you want
  - the dimension after dimensionality reduction is C(C-1)/2

#### PCA + LDA

the main difficulty of LDA is that computation of the linear discriminant

$$\mathbf{w}^* = (\mathbf{\Sigma}_0 + \mathbf{\Sigma}_1)^{-1} (\boldsymbol{\mu}_1 - \boldsymbol{\mu}_0)$$

requires matrix inversion

- $\blacktriangleright$  the inversion can be very error prone when the matrix  $\Sigma_0 + \Sigma_1$  is close to singular
- $\blacktriangleright$  this happens when  $\Sigma_0 + \Sigma_1$  has eigenvalues close to zero
- ▶ to avoid this problem, it can be useful to adopt a two—step solution
  - 1. use PCA to eliminate the dimensions of small eigenvalues
  - 2. project into the remaining dimensions and apply LDA
- ► this is known as "PCA + LDA"