(12)特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関 国際事務局

. I MEDIT BRIJERDE IN DIRIN BRIJER KINI I IN DENDE INGILIA BRIJER BRIJER IN IN DIRING IN IN DIRING IN DIRECTION

(43) 国際公開日 2002年10月31日 (31.10.2002)

PCT

(10) 国際公開番号 WO 02/086993 A1

(51) 国際特許分類?: H01M 4/58, 4/02, 10/40, C01G 53/00

(21) 国際出願番号:

PCT/JP02/03862

(22) 国際出願日:

2002年4月18日 (18.04.2002)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2001-121901 2001年4月20日 (20.04.2001) 特願2001-124842 2001年4月23日(23.04.2001) 特願2001-237084 Ъ 2001年8月3日(03.08.2001) 特願2001-249578 JP 2001年8月20日 (20.08.2001) 特願2001-28883] JP 2001年9月21日(21,09,2001) 特願2001-307173 JP 2001年10月3日(03.10.2001) 特願2001-354436 JP

2001年11月20日(20.11.2001) JI

(71) 出願人 (米国を除く全ての指定国について): 株式会社 ユアサ コーポレーション (YUASA CORPORATION) [JP/JP]; 〒569-1115 大阪府 高槻市 古曽部町二丁目 3番21号 Osaka (JP).

(72) 発明者; および

2 1 号株式会社 ユアサ コーポレーション内 Osaka (JP). 井口 隆明 (IGUCHI, Takaaki) [JP/JP]; 〒569-1115 大阪府 高槻市 古曽部町二丁目 3 番 2 1 号 株式会社 ユアサ コーポレーション内 Osaka (JP). 小島 敏明 (KOJIMA, Toshiaki) [JP/JP]; 〒569-1115 大阪府高槻市古曽部町二丁目 3 番 2 1 号株式会社 ユアサ コーポレーション内 Osaka (JP). 亘高志 (WATARI, Takashi) [JP/JP]; 〒569-1115 大阪府高槻市古曽部町二丁目 3 番 2 1 号 株式会社 ユアサ コーポレーション内 Osaka (JP). 油布 宏 (YUFU, Hiroshi) [JP/JP]; 〒569-1115 大阪府高槻市 古曽部町二丁目 3 番 2 1 号 株式会社 ユアサコーポレーション内 Osaka (JP).

- (74) 代理人: 内藤 照雄 (NAITO,Teruo); 〒107-6029 東京都 港区 赤坂一丁目12番32号 アーク森ビル29階 信栄特許事務所 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LY, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

一 国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: ANODE ACTIVE MATTER AND PRODUCTION METHOD THEREFOR, NON- AQUEOUS ELECTROLYTE SECONDARY BATTERY-USE ANODE, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY

(54) 発明の名称: 正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解質二次電池

(57) Abstract: An anode active matter capable of producing a non-aqueous electrolyte secondary battery having a high energy density and being excellent in charge/discharge cycle characteristics, and a non-aqueous electrolyte secondary battery-use anode and non-aqueous electrolyte secondary battery-use anode composition formula $\text{Li}_{\mathbf{a}}\text{Mn}_{0.5-\mathbf{x}}\text{Ni}_{0.5-\mathbf{y}}\text{M}_{\mathbf{x}+\mathbf{y}}\text{O}_2$ (0.98 \leq a < 1.1, -0.1 \leq x-y \leq 0.1, M being an element other than Li, Mn, Ni). An anode range where, on a ternary composition diagram, (x', y', z') exists on a line of or within a quadrangle ABCD having apexes point A (0.51, 0.49, 0), point B (0.45, 0.55, 0), point C (0.25, 0.35, 0.4) point D (0.31, 0.29, 0.4), and $0 \leq$ w/(x'+y'+z') \leq 1.30).

(57) 要約:

高いエネルギー密度を有し、充放電サイクル性能に優れた非水電解質二次電池 を製造できる正極活物質、並びに、これを用いた非水電解質二次電池用正極及び 非水電解質二次電池を提供する。

組成式Li $_s$ Mn $_{0.5-x}$ Ni $_{0.5-y}$ M $_{x+y}$ O $_z$ (但し0.98 \le a<1.1、 $-0.1\le$ x $-y\le0.1$ 、MはLi, Mn, Ni以外の元素)で表される複合酸化物を含有する正極活物質。また、組成式Li $_x$ Mn $_x$, Ni $_y$, Co $_x$, O $_z$ (但し、x'、y'、z'は、三元状態図上において、(x', y', z')が点A(0.51, 0.49, 0)と点B(0.45, 0.55, 0)と点C(0.25, 0.35, 0.4)と点D(0.31, 0.29, 0.4)とを頂点とする四角形ABCDの線上または内部に存在する範囲の値であり、0 \le w/(x'+y'+z') \le 1.30である)で表される複合酸化物を含有する正極活物質。

明細書

正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解 質二次電池

<技術分野>

本発明は、正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、非水電解質二次電池に関する。

<背景技術>

リチウム二次電池等の非水電解質二次電池は高いエネルギー密度を示し、高電 圧であることから小型携帯端末や移動体通信装置などへの電源として広く使用さ れている。リチウム二次電池用正極活物質には、リチウムの挿入・脱離の繰り返 しによっても結晶構造が安定で、かつ電気化学的作動容量が大きいことが要求さ れる。

現在、リチウム二次電池の正極活物質として、 $\alpha-N$ aFeO₂構造を有するLi-Co複合酸化物(以下、LiCoO₂と略す)が主に使用されているが、これはLiCoO₂が4Vという高い作動電位でリチウムイオンを安定的に吸蔵・放出でき、かつ、Liイオンの吸蔵・放出の繰り返しによっても結晶構造が安定に存在するため、LiCoO₂は高いエネルギー密度を示すと同時に高い充放電サイクル性能を示す。

しかしながら、 $LiCoO_2$ の構成元素であるコバルトは希少金属であり、価格が高いため、Li-Ni複合酸化物(以下、 $LiNiO_2$ と略す)を $LiCoO_2$ の代わりに用いる検討が数多くなされている。 $LiNiO_2$ も $LiCoO_2$ と同様の $\alpha-NaFeO_2$ 構造を有し、作動電位幅も近いことから、高い電気化学的性能が期待される。Ohzuku,O;Ueda,A;Nagayama,M. Electrochemistry and Structural Chemistry of $LiNiO_2$ (R3/m) for 4 Volt Secondary Lithium Cells. J. Electrochem. Soc. vol. 140, no. 7, 1993, p. 1862–1870 には、粉末エックス線回折法によるLi引き抜き量と結晶格子との関係に関する検討が報告されている。これによれば

、充電容量が200mAh/gまでは正極からのLiの引き抜きによっても層間隔が安定に保持されることを報告している。しかしながら、実際にはこのような深度で充放電を繰り返すと急激に放電容量が低下するといった問題があった。

この問題を解決する手段として、 $LiNiO_2$ 構造のNiサイトの一部を異種元素で固溶置換する技術が広く一般に検討されている。例えば、特開 $\Psi9-231973$ 号公報には、前記Vi1カイトの一部をVi2のやVi3のではながら、前記Vi3の大統電サイクル性能や熱安定性を改善する効果は認められるものの、依然としてVi4のVi5のと比較して充放電サイクル性能は必ずしも充分なものではなかった。

また、前記Niサイトの一部をMnで固溶置換したLi -Mn -Ni 系複合酸化物や、Mn 及びCo で固溶置換したLi -Mn -Ni -Co 系複合酸化物にかかる技術も数多く検討されている。

LiーMn-Ni系複合酸化物に関する技術としては、例えば米国特許5,626,635号公報、日本特許第3008793号公報、日本特許3047693号公報、日本特許第3064655号公報等に報告されている。しかしながら、本発明者らの検討によれば、これらいずれの技術を用いた場合でも、4V付近での初期容量はLiNiO₂と比較して大きく低下するばかりでなく、充放電サイクル性能も充分でないといった問題があった。

また前記Li-Mn-Ni-Co系複合酸化物に関する技術としては、例えば特開2000-58068号公報、特開2000-277151号公報、特開平10-255846号公報に、Coの存在により、前記Li-Mn-Ni系複合酸化物と比較して高いエネルギー密度を示すことが報告されている。しかしながら、本発明者らの検討によれば、これらの報告に記載の方法によって製造した活物質では、いずれも、依然としてサイクル性能が充分でないといった問題があった。

本発明者らは、リチウム二次電池用正極活物質としてLi-Mn-Ni系複合酸化物(特にLi-Mn-Ni-Co系複合酸化物)について鋭意検討するなかで、 $Li_aMn_bNi_cCo_dO_2$ 構造中において同じ6bサイトに位置するMn元素

、Ni元素及びCo元素の、組成中に占める含有比率(以下、単に「Mn、Ni 及びCo比率」ともいう)とそれらの電気化学的特性について詳細な検討を行っ た。

まず、Ni比率(Ni/(Mn+Ni+Co)、但し、Mn+Ni+Co=1)が増加することによって、放電容量を増加させることが期待できる。Ni比率=0.5以上の領域で同様の効果を期待した文献としては、例えば米国特許60、400、910号公報、特開2000-260480号公報、特開2000-260479号公報、特開2000-268878号公報、特開2000-353525号公報、特開平10-255846号公報、特開平8-37007号公報などがある。しかしながら、本発明者らの検討によれば、これらに記載される範囲の組成を持つ活物質は、確かに初期の放電容量は高いが、依然として充電時の熱安定性と充放電サイクル性能には劣る結果となった。

また、Mn比率(Mn/(Mn+Ni+Co)、但し、Mn+Ni+Co=1)が 0.5 を上回る組成に関する報告は、Li-Mn-Ni系では特開 2000-2 23157 号公報、特開 2000-294242 号公報が、またLi-Mn-Ni-Co系では特開 2000-149942 号公報がある。これらの報告はいずれもLiMnO2(単斜晶あるいは斜方晶)の正極活物質としての適用に関するものであるが、これらは例えば Croguennec, Li Deniard, P; Brec, R; Biensan, P; Broussely, M. Electrochemical behavior of orthorhombic LiMnO2 influence of the grain size and cationic disorder. Solid State Ionics. vol. 89, no. 1/2, 1996, p. 127-137 に指摘されているようにLiCoO2などと異なり作動電位幅が低電位側にシフトしており、4 V付近での容量を期待することができない。また前記文献の指摘する通り、充放電サイクル中にスピネル型の酸化物に転移することによる容量劣化の問題もある。このように、Mn比率が 0.5 を上回る領域では α -NaFeO2結晶構造が不安定であり、なおかつ生成する結晶相が電気化学的に不活性であるといった問題があった。

また、現在、作動電圧が4V級のリチウム二次電池は、正極活物質としては前記したような充放電に伴いリチウムイオンを放出・吸蔵しうるリチウム遷移金属

複合酸化物が、負極材料としては充放電に伴いリチウムイオンを吸蔵・放出しう る炭素質材料が使用されている。

しかしながら、正極活物質及び負極材料は、リチウムイオンの吸蔵や放出に伴って、結晶格子面間隔やa軸、c軸などの格子定数が変動する。このため、充放電に伴う結晶格子体積の変化が繰り返されるうち、結晶格子の歪みにより結晶構造が破壊されやすいという問題がある。

負極材料として用いられている炭素質材料は、充電により結晶格子体積が膨脹することが知られている。一方、正極活物質として現在多用されている菱面体晶系の $LiCoO_2$ もまた、充電により結晶格子体積が膨張することが知られている。このため、これらの材料を組み合わせた電池においては、充電時に双方の電極が膨張することになる。ここで、金属電槽缶などを電槽として使用した場合、充電時の電極膨張により電池ケースが膨れてしまい、放電時の電極収縮時にも電池ケースの膨れは元に戻らないため、電極への緊圧が緩んでしまい、集電体と活物質との結着性の低下や、電子伝導性の低下や、活物質の剥離などが生じる結果、電池性能を低下させる原因となっていた。

本発明は、前記問題点に鑑みてなされたものであり、その目的は、高いエネルギー密度を有し、充放電サイクル性能に優れた非水電解質二次電池を製造できる 正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、高いエネルギー密度を有し、充放電サイクル性能に優れた非水電解質二次電池を提供する ことである。

<発明の開示>

上記したように、Mn、Ni及びCo比率が0. 5以上の各領域では、たとえ Li Ni O_2 やLi Co O_2 のように結晶構造が層状の形態であっても、満足な電 池性能を発揮するには至らなかった。このような状況の中で本発明者らは、比較 的優れた単位重量当たりのエネルギー密度を有するLi $Mn_{0.5}$ $Ni_{0.5}$ O_2 や、Mn 、Ni 及びCo 比率がいずれも0. 5 を下回る領域の組成の活物質に着目して詳細に検討を行ったところ、特定の組成を有する複合酸化物を含有する正極活物質

を用いることによって、高いエネルギー密度であって、なおかつ充放電サイクル 性能にも優れた非水電解質二次電池を得ることができた。

従来のLiーMn-Ni系複合酸化物は、LiCoO₂などの他の層状酸化物と比較して結晶格子体積が大きいために、体積当たりのエネルギー密度が低いといった問題がある。エネルギー密度を向上させる手段として、プレス機などを用いた外的圧力により電極密度を高める方法が考えられるが、LiーMn-Ni系複合酸化物は、機械的強度が強く、電極密度を向上させることは一般に困難であることが本発明者らの検討により分かっている。一方で、Li-Mn-Ni系複合酸化物は放電、すなわち、Liの取り込み速度が、充電、すなわち、Liの引き抜き速度に対して制限される特性を持っているために、電極密度が著しく高い場合には電解液の浸透不良に起因して、高率放電性能が著しく低下するといった問題もあった。このため、本発明者らは、Li-Mn-Ni系複合酸化物の特性改良を重要課題ととらえ、電池性能を損なわずに高エネルギー密度を達成するための検討を行った。

また、前記したように、従来より知られる中和法を使用して、原料からLiM $n_{0.5}Ni_{0.5}O_2$ を製造する方法は、複合共沈物中に粒界や微細な割れが多く発生する為か、結晶性の低い(全細孔容積が多い)低密度な複合共沈物が製造されやすく、次いで、この複合共沈物にLiOH等のリチウム源を添加して焼成しても、高密度なリチウムーマンガンーニッケル複合酸化物は得られにくい。

そこで本発明者らは、ニッケル水素電池用高密度水酸化ニッケルの製造法に知られるように、マンガン化合物とニッケル化合物とが水に溶解された水溶液にアルカリ化合物と還元剤と錯化剤とを添加するとともに、p Hを一定に制御したところ、粒子内部に空孔が発達しないような複合共沈物を製造でき、さらに、この複合共沈物にリチウム源を添加して焼成すると、結晶性の高い(全細孔容積が少ない)高密度なL i M n 0.5 N i 0.5 O 2 が得られることを見い出した。

また、本発明者らは、 $LiMn_{0.45}Ni_{0.45}Co_{0.10}O_2$ に着目するとともに、焼成前粉体の合成条件や、焼成条件や、さらに添加するLi,Mn,Ni,Co以外の異種金属元素の種類と組成比率について鋭意検討を重ねたところ、同一組成の複合酸化物であっても、焼成前粉体の合成条件や焼成条件によって得られる結晶

粉末の結晶の構造が大きく異なり、結晶の形態によっては、放電容量や充放電サイクル性能が大きく改善できることがわかった。

そして、これらの知見に鑑みて開発された特定の製造方法を使用して、特定の組成および物性を有する複合酸化物を正極活物質として用いることにより、さらに優れた電池性能を備える非水電解質二次電池が得られることを見出し、本発明に至った。

また、本発明者らは、前記した特定の複合酸化物と、リチウムコバルト酸化物とを併用することにより、高率放電性能を上昇できることを見出した。

さらに、本発明者らは、前記した特定の複合酸化物と、「スピネル構造を有し、 かつ、特定の組成を有するリチウムマンガン化合物」とを併用することにより、 低温高率放電性能と保存性能とを高次元で両立する電池を得ることができること を見出した。

即ち、本発明の技術的構成および作用効果は以下の通りである。ただし、作用 機構については推定を含んでおり、その作用機構の正否は本発明を制限するもの ではない。

請求の範囲第1項に係る正極活物質は、組成式 $Li_{n}Mn_{0.5-x}Ni_{0.5-y}M_{x+y}O_{2}$ (但し0 < a < 1. 3、-0. $1 \le x - y \le 0$. 1、MはLi, Mn, Ni以外の元素)で表される複合酸化物を含有することを特徴としている。

このような構成によれば、高いエネルギー密度を有し、充放電サイクル性能に 優れた非水電解質二次電池を製造できる正極活物質とすることができる。

請求の範囲第2項に係る正極活物質は、前記Mが、A1, Mg及びCoからなる群から選ばれる少なくとも1種の元素であり、前記組成式中の係数が下記関係式を満たす複合酸化物を含有することを特徴としている。

- 0. $0.5 \le x < 0.3$
- 0. $0.5 \le y < 0.3$
- $-0.1 \le x y \le 0.02$
- 0 < a < 1. 3

WO 02/086993

x + y < 0.5

このような構成によれば、特に、高率放電性能及び充放電サイクル性能に優れ、高エネルギー密度の非水電解質二次電池を製造できる正極活物質とすることができる。

請求の範囲第3項に係る正極活物質は、前記Mが、Coであることを特徴としている。このような構成によれば、特に、高率放電性能及び充放電サイクル性能に優れた非水電解質二次電池を製造できる正極活物質とすることができる。

請求の範囲第4項に係る正極活物質は、組成式 $L_{i_{y}}Mn_{x'}$ N $_{i_{y'}}Co_{z'}O_{2}$ (但し、x'、y'、z' は、三元状態図上において、(x', y', z') が点A(0.51, 0.49, 0) と点B(0.45, 0.55, 0) と点C(0.25, 0.35, 0.4) と点D(0.31, 0.29, 0.4) とを頂点とする四角形ABCDの線上または内部に存在する範囲の値であり、 $0 \le w/(x'+y'+z') \le 1.30$ である)で表される複合酸化物を含有することを特徴としている

より具体的には、上記構成の複合酸化物は、 $LiNiO_2$ のNiサイトの約半分をMnに固溶置換したものである。このような構成においては、NiとMnとの間で配位子である酸素イオンを介する共鳴安定化が起こるので、層状構造が安定化するものと考えられる。

さらに、前記複合酸化物にLiCo〇 $_2$ を固溶させることで、放電時の結晶格子を引き締めて格子体積を小さく安定に保つ効果が現れる。事実、本発明者らは、LiNi $_{0.5}$ М $_{0.5}$ О $_2$ の結晶単位格子である六方晶は、格子定数 a=2. 894、格子定数 c=14. 32であり、結晶格子体積V=0. 1039n m^3 となるが、Ni,MnをCoで固溶置換するとСo量に応じてa 軸及びc 軸の格子定数の値が共に減少し、LiNi $_{0.333}$ М $_{0.333}$ С $_{0.333}$ О $_{2}$ では、格子定数 a=2. 865、格子定数 c=14. 25、結晶格子体積V=0. 1013n m^3 と小さくなることを確認している。

一方、前記組成式 Li_wMn_x , Ni_y , Co_z , O_2 においてz' = 0 の場合は、充電末の状態においてその結晶の格子体積は、放電末の状態に比べて大きく減少するが、z' > 0 とすれば、その結晶格子体積の値は小さくなるものの、充放電に伴う結晶格子体積の変化幅を小さく抑えることができる。この結果、充放電に伴う結晶構造の変化が小さいため、充放電サイクル性能を向上させることができる。

このことは、 $LiNiO_2$ においてNiO一部をCoで固溶置換すると、充電によるNiO方晶から単斜晶への変化領域が狭まり、充放電の大部分を六方晶のまま行えるようになるのと同じ原理であると考えられる。従って、Co置換量は適度に多い方が良く、好ましくは $O.15 \le z' \le 0.4$ である。

特に、三元状態図上において、(x', y', z') が上記した四角形ABCDの内部に存在するような(ただし、点Aと点Bとを結ぶ直線上の点は除く)組成とすることによって、複合酸化物を、より安定な結晶構造を有するLi-Ni-Mi-Co 複合酸化物とすることができる。ここで、(x', y', z') が、点Aと点Dとを結ぶ直線よりもMn が多くなる領域に存在すると結晶対称性が低くなり、点Bと点Cとを結ぶ直線よりもNi が多くなる領域に存在すると $LiMnO_2$ と Li_2MnO_3 との共晶領域となり、何れも充放電サイクル性能は低下する傾向となる。

また、 $0 \le w/(x'+y'+z') \le 1$. 30の範囲であるので、良好な充放電サイクル性能を保持した正極活物質とすることができる。

以上のように、請求の範囲第4項に記載の構成によれば、高いエネルギー密度を有し、充放電サイクル性能に優れた非水電解質二次電池を製造できる正極活物質とすることができ、z $^{\prime}$ $^{\prime}$

請求の範囲第5項に係る正極活物質は、前記複合酸化物が、全細孔容積が0.001m1/g以上0.006m1/g以下であり、かつ、 $CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:18.6\pm1$ °における回折ピークに対する $2\theta:44.1\pm1$ °における回折ピークの相対強度比が0.65以上1.05

以下であることを特徴としている。このような構成によれば、特に、高率放電性 能及び充放電サイクル性能に優れ、高エネルギー密度(高放電容量)の非水電解 質二次電池を製造できる正極活物質とすることができる。

請求の範囲第6項に係る正極活物質は、前記複合酸化物が、比表面積が0.3 m^2/g 以上 $1.6m^2/g$ 以下であり、かつ、 $CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:18.6\pm1$ °における回折ピークに対する $2\theta:44.1\pm1$ °における回折ピークの相対強度比が0.65以上1.05以下であることを特徴としている。このような構成によれば、特に、高率放電性能及び充放電サイクル性能に優れ、高エネルギー密度(高放電容量)の非水電解質二次電池を製造できる正極活物質とすることができる。

請求の範囲第7項に係る正極活物質は、前記 2θ : 18.6 ± 1 ° における回 折ピークの半値幅が 0.05° 以上 0.20° 以下であり、かつ、前記 2θ : 4.1 ± 1 ° における回折ピークの半値幅が 0.10° 以上 0.20° 以下であることを特徴としている。このような構成によれば、特に、高エネルギー密度(高放電容量)を有し、充放電サイクル性能に優れた非水電解質二次電池を製造できる正極活物質とすることができる。

請求の範囲第8項に係る正極活物質は、前記複合酸化物が、 $\alpha-NaFeO_2$ 型層状構造であるとともに、結晶単位格子が六方晶であり、金属リチウムが示す電位に対して3.2 $V\sim3$.3Vの状態における前記六方晶の格子定数aと格子定数cと結晶格子体積Vとが下記式を満たすように構成されたことを特徴としている。

- 2. $860 \le a \le 2$. 890
- 14. $20 \le c \le 14$. 33
- 0. $1007 \text{ nm}^3 \leq V \leq 0$. 1034 nm^3

式中、a, cは、格子定数であり、それぞれ単位結晶格子の a 軸方向の長さ及び c 軸方向の長さをオングストローム (A) 単位で表わしたものに等しい。

WO 02/086993

請求の範囲第9項に係る正極活物質は、前記複合酸化物が、900℃以上1100℃以下の温度で3時間以上焼成されて得られたものであることを特徴としている。焼成温度が900℃未満では、固相反応が進行しにくく、局所的な結晶構造に乱れが生じるためか、特に、放電容量及び高率放電性能が低く、特に850℃未満では充放電サイクル性能にも劣る結果となる。また、1100℃を超えると焼成時のLi揮発量の制御が困難になる。よって、焼成温度としては900℃以上1100℃以下が好ましい。より好ましくは、元素置換を完全に行うために950℃以上にすると良い。

以上により、請求の範囲第9項に記載の構成によれば、特に、高エネルギー密度(高放電容量)を有し、高率放電性能と充放電サイクル性能に優れた非水電解質二次電池を製造できる正極活物質とすることができる。

また、本発明者らは、上記複合酸化物を用いた正極活物質についてさらに詳細に検討したところ、前記複合酸化物の粒度分布を特定のものとすることによって、放電容量が高く、繰り返し充放電サイクルに伴う容量低下を極めて小さいものとすることができることを見いだした。

すなわち、請求の範囲第10項に係る正極活物質は、前記複合酸化物の粒度分布が、 $50\%粒子径が0.8\mu$ mより大きく 10μ m以下であり、且つ、10%粒子径が 0.4μ mより大きく 7μ m以下であることを特徴としている。

前記複合酸化物の50%粒子径を 10μ m以下とすることにより、活物質粒子と電解液との接触が良好となり、活物質表面近傍でのLiの移動を充分なものとすることができる。また50%粒子径を 0.8μ mより大きくすることにより、活物質粒子と電解液との接触面積が適度に制限されるので両者間の副反応を低減でき、特に高温時の電池性能を良好なものとすることができる。50%粒子径は、より好ましい上限は 7μ m以下であり、より好ましい下限は 2μ m以上である

また、前記複合酸化物の10%粒子径を7μm以下とすることにより、活物質 粒子と電解液との接触が良好となり、活物質表面近傍でのLiの移動を充分なも

のとすることができる。また10%粒子径を 0.4μ mより大きくすることにより、活物質粒子と電解液との接触面積が適度に制限されるので両者間の副反応を低減でき、特に高温時の電池性能を良好なものとすることができる。10%粒子径は、より好ましい上限は 3.4μ m以上である。

請求の範囲第11項に係る正極活物質は、前記正極活物質において、リチウムコバルト酸化物をさらに含有することを特徴としている。このような構成によれば、特に、電池の高率放電性能を上昇できる正極活物質とすることができる。

請求の範囲第12項に係る正極活物質は、前記正極活物質において、「スピネル構造を有し、 $Li_{1+s}Mn_{2-s-t}M'"_tO_4$ (但し、 $0 \le s \le 0$. 3、 $0 \le t \le 0$. 2、M'"は、Mg、Al、Ti、V、Cr、Fe、Co及びNiの中から選ばれる少なくとも1種以上の元素)で表されるリチウムマンガン化合物」をさらに含有することを特徴としている。このような構成によれば、特に、低温高率放電性能と保存性能とを高次元で両立する電池を得ることのできる正極活物質とすることができる。

質の製造方法とすることができる。

請求の範囲第14項に係る正極活物質の製造方法は、前記共沈工程において、 反応槽内に、ニッケル(Ni)化合物水溶液とマンガン(Mn)化合物水溶液と M'化合物水溶液(M'は、A1、Mg及びCoから選択される少なくとも1種の 元素)と錯化剤水溶液と還元剤水溶液とを、前記各水溶液として、または、前記 各水溶液の少なくとも2種以上が混合された混合水溶液として連続的に供給する ともに、前記反応槽内にアルカリ化合物水溶液を連続的に供給して、生成するN i-Mn-M'複合共沈物を連続的に取り出すことを特徴としている。このよう な構成によれば、特に、複合共沈物の生産性を向上できるので、生産性の高い正 極活物質の製造方法とすることができる。

また、本発明者らは、前記還元剤としてヒドラジンを使用することにより、特に、高率放電性能及び充放電サイクル性能に優れ、高エネルギー密度の非水電解質二次電池をより確実に製造できる正極活物質の製造方法とすることができることを見出した。よって、請求の範囲第15項に係る正極活物質の製造方法は、前記還元剤としてヒドラジンを使用することを特徴としている。

請求の範囲第16項に係る正極活物質の製造方法は、「"前記共沈工程により得られたNi-Mn複合共沈物またはNi-Mn-M"複合共沈物が分散されると共に、M"化合物(M"は、AI、Mg及びCoから選択される少なくとも1種の元素)が溶解された水溶解分散液"に、アルカリ化合物と、錯化剤とを添加して前記水溶解分散液のpHを10~13とし、前記共沈工程により得られたNi-Mn複合共沈物の表面またはNi-Mn-M"複合共沈物の化合物の表面に、元素M"(M"は前記と同様)の複合共沈物を沈殿させるコート共沈工程」を経由して、前記複合酸化物を作製することを特徴としている。このような構成によれば、組成がより確実に所望なものとされた複合酸化物を含有する正極活物質を製造できる。

また、本発明者らは、前記錯化剤として、「水溶液中でアンモニウムイオンを解離可能な化合物」を、より具体的には、硝酸アンモニウム、硫酸アンモニウム、塩酸アンモニウム及びアンモニア水からなる群から選択される1種以上の化合物を使用することにより、特に、高率放電性能及び充放電サイクル性能に優れ、高エネルギー密度の非水電解質二次電池をより確実に製造できる正極活物質の製造方法とすることができることを見出した。よって、請求の範囲第17項に係る正極活物質の製造方法は、錯化剤が、水溶液中でアンモニウムイオンを解離可能な化合物であることを特徴としている。また、請求の範囲第18項に係る正極活物質の製造方法は、前記「水溶液中でアンモニウムイオンを解離可能な化合物」が、硝酸アンモニウム、硫酸アンモニウム、塩酸アンモニウム及びアンモニア水からなる群から選択される1種以上の化合物であることを特徴としている。

請求の範囲第19項に係る正極活物質の製造方法は、前記M'をCoとすることを特徴としている。このような構成によれば、さらに、高率放電性能と充放電サイクル性能に優れた非水電解質二次電池を製造できる正極活物質の製造方法とすることができる。

請求の範囲第20項に係る正極活物質の製造方法は、「前記共沈工程もしくは前記コート共沈工程により得られた、Ni-Mn複合共沈物またはNi-Mn-Mnを会共沈物を、リチウム化合物と共に、900℃以上1100℃以下の温度で3時間以上焼成する焼成工程」を経由して、前記複合酸化物を作製することを特徴としている。このような構成によれば、特に、高エネルギー密度(高放電容量)であり、高率放電性能と充放電サイクル性能に優れた非水電解質二次電池を製造できる正極活物質の製造方法とすることができる。

請求の範囲第21項に係る正極活物質は、本発明に係る正極活物質の製造方法 によって製造されるので、高いエネルギー密度を有し、充放電サイクル性能に優 れた非水電解質二次電池を製造できる正極活物質とすることができる。

請求の範囲第22項に係る非水電解質二次電池用正極は、本発明に係る正極活物質を含有するので、高いエネルギー密度を有し、充放電サイクル性能に優れた 非水電解質二次電池を製造できる非水電解質二次電池用正極とすることができる。

請求の範囲第23項に係る非水電解質二次電池用正極は、本発明に係る正極活物質と、前記正極活物質に対して1重量%以上の導電性炭素材料と、電解液を含有することによってイオン伝導性を有する結着剤とを含有することを特徴としている。このような構成によれば、特に、高率放電性能及び充放電サイクル性能に優れ、高エネルギー密度の非水電解質二次電池を製造できる非水電解質二次電池用工極とすることができる。

請求の範囲第24項に係る非水電解質二次電池は、本発明に係る非水電解質二次電池用正極、または、本発明に係る非水電解質二次電池用正極の製造方法により製造された非水電解質二次電池用正極と、非水電解質二次電池用負極と、非水電解質とを具備することを特徴としている。このような構成によれば、高いエネルギー密度を有し、充放電サイクル性能に優れた非水電解質二次電池とすることができる。

請求の範囲第25項に係る非水電解質二次電池は、前記非水電解質二次電池用 負極が、リチウムイオンを吸蔵放出可能な負極材料を含むことを特徴としている 。このような構成によれば、高いエネルギー密度を有し、充放電サイクル性能に 優れた非水電解質二次電池とすることができる。

請求の範囲第26項に係る非水電解質二次電池は、本発明に係る非水電解質二 次電池であって、正極活物質は非水電解質二次電池の充電に伴うリチウムイオン の放出により、その結晶格子体積が収縮するものであり、結晶格子体積の収縮率 は非水電解質二次電池の放電末状態における正極活物質の結晶格子体積に対して 4%以下であり、負極材料は非水電解質二次電池の充電に伴うリチウムイオンの

吸蔵により、その結晶格子体積が膨張するものであり、結晶格子体積の膨脹率は 非水電解質二次電池の放電末状態における負極材料の結晶格子体積に対して6% 以下であり、非水電解質二次電池の通常の充放電範囲において、負極材料の膨張 率の値は、正極活物質の前記収縮率の値に比べて同じかまたは大きく、非水電解 質二次電池の通常の充放電範囲において、負極材料の膨張率の値と、正極活物質 の収縮率の値との差が0%以上3%未満であることを特徴としている。

このような構成によれば、充電に伴って結晶格子体積が収縮する正極活物質と、充電に伴って結晶格子体積が膨張する負極材料とを組み合わせ、しかも、正極活物質の体積変化率と負極材料の体積変化率との差が3%未満に抑えられているので、充電に伴う正極及び負極の結晶格子体積変化が効果的に相殺され、リチウムコバルト酸化物等を用いた電池に比べて充電中の発電要素(正極と負極と必要に応じてセパレータとが組み合わされたもの)の体積膨張が大幅に低減できる。同様に、正極活物質は放電に伴って膨張し、負極材料は放電に伴って収縮する。これにより、充放電サイクルを繰り返しても発電要素の体積変化が小さいため、金属電槽缶などを用いた場合でも、電極への緊圧が緩むことがなく、集電体と活物質との結着性が保たれ、電子伝導性が保たれ、活物質の剥離等が生じることがなく、電池性能が長期にわたって維持できる。

ここで、「通常の充放電範囲」とは、過充電や過放電が行われない範囲の電池の 定格使用範囲のことをいう。

また、正極活物質の体積変化が4%以下に、負極材料の体積変化が6%以下に 抑えられているので、充放電に伴う結晶格子面間隔やa軸、c軸などの結晶粒子 径の変化が小さく、充放電を繰り返しても結晶格子の歪みによる結晶構造破壊が 有効に抑えられる。

<図面の簡単な説明>

図1は、本実施例に用いた反応槽を示す概略図である。図2は、複合酸化物A 1のエックス線回折図である。図3は、複合酸化物A1の電子顕微鏡写真である 。図4は、複合酸化物A4の電子顕微鏡写真である。図5は、複合酸化物C1の 電子顕微鏡写真である。図6は、複合酸化物の組成を説明する三元状態図である

。図7は、実施例に用いたコイン型電池を示す概略図である。図8は、LiMn 0.5N i 0.5O2作製時の焼成温度に対する全細孔容積(比表面積)と充放電サイクル 性能の関係を示す図である。図9は、全細孔容積(比表面積)に対する放電容量 と充放電サイクル性能の関係を示す図である。図10は、LiMn_{0.5}Ni_{0.5}〇₂ の $CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:18.6\pm1^\circ$ におけ る回折ピークに対する $2 \; \theta : 4 \; 4 \; 1 \; \pm 1 \; ^{\circ}$ における回折ピークの相対強度比と 放電容量との関係を示す図である。図11は、LiMn_{0.5}Ni_{0.5}O₂のCuKα線 を使用した粉末エックス線回折図の、2 θ :18.6 \pm 1°における回折ピーク に対する 2θ : $44.1\pm1^\circ$ における回折ピークの相対強度比と充放電サイク ル性能との関係を示す図である。図12は、LiMn_{0.5}Ni_{0.5}O₂のCuKα線を 使用した粉末エックス線回折図の、 $2\theta:18.6\pm1$ °における半値幅と放電 容量との関係を示す図である。図13は、LiMn_{0.5}Ni_{0.5}O₂のCuKα線を使 用した粉末エックス線回折図の、 $2\theta:18.6\pm1$ °における半値幅と充放電 サイクル性能との関係を示す図である。図14は、LiMn₀.5Ni₀.5〇2のCuK α 線を使用した粉末エックス線回折図の、2 θ :44.1 \pm 1 $^{\circ}$ における半値幅 と放電容量との関係を示す図である。図15は、L i M n 0.5 N i 0.5 O 2 O C u K α 線を使用した粉末エックス線回折図の、 $2\theta:44.1\pm1°$ における半値幅と 充放電サイクル性能との関係を示す図である。図16は、実施例における、充電 量と格子間距離の関係を示す図である。図17は、実施例における、充電量と結 晶格子体積の関係を示す図である。図18は、複合酸化物の粒度分布を示す図で ある。図19は、実施例に使用した角型電池を示す概略図である。図20は、正 極活物質の結晶格子体積変化を示す図である。図21は、負極材料の結晶格子体 積変化を示す図である。図22は、負極材料の結晶格子体積変化を示す他の図で ある。図23は、負極材料の結晶格子体積変化を示す他の図である。図24は、 正極活物質の結晶格子体積変化を示す他の図である。図25は、サイクル数に伴 う容量維持率の変化を示す図である。図26は、サイクル数に伴う内部抵抗の変 化を示す図である。図27は、実施例に用いた電池を示す概略図である。

なお、図中の符号、1は安全弁、2は蓋、3はレーザ溶接部、4,33は負極端子、5,32は正極端子、6はガスケット、7は正極板、8,23はセパレー

タ、9は負極板、10は角形電槽、11は反応槽、12は撹拌機、13はオーバーフローパイプ、21は正極、22は負極、24はコイン電池電槽、25はコイン電池蓋、26は正極集電体、27は負極集電体、28は樹脂パッキン、31は極群、35は外装体、36は融着代である。

<発明を実施するための最良の形態>

以下に、本発明の実施の形態を例示するが、本発明は、以下の実施の形態に限 定されるものではない。

[第一実施形態に係る正極活物質]

本発明の第一実施形態に係る正極活物質は、組成式 $L_{i_a}Mn_{0.5-x}N_{i_{0.5-y}}M_{x+y}$ O_2 (但し0 < a < 1. 3、-0. $1 \le x - y \le 0$. 1、Mは L_i , Mn, N_i 以外の元素)で表される複合酸化物を含有している。

上記組成において、aが1.3以上であると、結晶構造中に取り込まれない過剰のLiが複合酸化物表面上に析出する結果、電解液の酸化分解を促進し、電池寿命を低下させるおそれがあるので好ましくない。

また、 $0.98 \le a < 1.1$ であるのが好ましい。すなわち、上記組成において、aが0.98より小さい場合、容量性能が低下する傾向があることから $0.98 \le a$ であるのが好ましく、 $0.98 \le a < 1.1$ を満足する場合、焼成時の結晶成長がしやすく焼成時間が短縮できる。好ましくは、aは1.00以上、1.04以下である。Liが0.98より少ない場合、電池の内部抵抗を増加させるためか、放電容量が低下する傾向となる。

また、上記組成において、Ni元素とMn元素との組成比はMn元素量が大きいと、Li₂MnO₃を始めとするリチウムマンガン酸化物が生成し、放電容量が

低下し、N i 量が大きいとサイクル性能が低下する傾向となる。この為、N i 元素とM n 元素との組成比は-0. $1 \le (0.5-x) - (0.5-y) \le 0.1$ である、すなわち、-0. $1 \le x - y \le 0$. 1 である。x - y が-0. 1 以上であることによって、L i N i O_2 に起因するサイクル性能と充電時の熱安定性を改善することができる。また、x - y が0. 1 以下であることによって、N i 量に対してM n 比が過剰な場合に認められるL i $_2$ M n O_3 などを始めとするリチウムマンガン酸化物の生成を抑制し、高い放電容量を達成することができる。

Li $Mn_{0.5}Ni_{0.5}O_2$ は充電時にLiTオンが引き抜かれると結晶格子サイズが縮小することが、小槻勉;牧村嘉也;有吉欽吾. "2D21 リチウム・ニッケル・マンガン複合酸化物のインサーション電極機能".第41回電池討論会 講演予稿集. 電気化学会電池技術委員会編. 名古屋, 2000-11, 電気化学会電池技術委員会. 2000, p. 462-463. に記載されており、これに基づけば、粒界や材料に微細な割れが多いなどによって全細孔容積(比表面積)が大きい材料は、充電時の収縮歪みによって、結晶粒子に割れが発生するなどの悪影響を及ぼして、電池の充放電サイクル性能を低下させるものと考えられる。

よって、必ずしも明らかではないが、 $Mn \ ENio$ 一部をCo 元素などの異種元素Mで固溶置換することによって、複合酸化物が充電時にLi イオンを引き抜かれると、結晶格子サイズが縮小するというリチウム・ニッケル・マンガン複合酸化物の特性と、結晶格子サイズが拡大するというLi Co O_2 の特性とが共に発現することによって、正極活物質の膨張収縮の度合いが緩和されるか、または収縮したとしても、異種元素Mで固溶置換しない場合と比較して、収縮歪みが少なくなり、これにより、充放電サイクル性能をより優れたものとし、かつ、より高

い容量を有する電池を得ることができるものと考えられる。

また、 $Li_{a}Mn_{0.5}Ni_{0.5}O_{2}$ は、粒子密度が過度に高くなると、放電容量が低下する傾向を有する。これは、必ずしも明らかではないが、例えば、Mn-Ni複合酸化物と、Li化合物とを焼成して、Li-Mn-Ni複合酸化物を得た場合、Li化合物が、Mn-Ni複合酸化物の内部に十分に拡散せず、局所的にLi欠損部位が存在している可能性が考えられる。また、Li-Mn-Ni系複合酸化物を用いて高い放電容量を達成するには、電解液一活物質間のLiイオンの授受を充分に行わせるため、前記電解液一活物質間の接触界面を充分に広く確保する必要があるが、粒子密度が高いと前記接触界面を充分に確保できなくなることに加え、活物質の固体内リチウムイオン拡散速度が電解液中のリチウムイオン拡散速度に比べて遅いにもかかわらず、電解液中のリチウムイオンの移動距離に対する固体内の移動距離の比を小さくすることができないため、放電容量が低下しやすくなるものと考えられる。

一方、異種元素Mで固溶置換した $Li_aMn_{0.5-x}Ni_{0.5-y}M_{x+y}O_2$ で表される複合酸化物は、 $LiMn_{0.5}Ni_{0.5}O_2$ と比較して、充電前のa 軸、c 軸の格子間距離は、異種元素Mで固溶置換されていない $LiMn_{0.5}Ni_{0.5}O_2$ と比較してわずかであるが共に縮小しており、結晶格子サイズは低下している。より具体的には、充電状態の格子間距離はc 軸で若干逆転するが、a 軸では縮小差をほぼ維持しており、結晶格子サイズは異種元素Mで固溶置換していないものより小さい。このため、異種元素Mによって複合酸化物の密度が高くなっても、放電容量が確保しやすい原因としては、結晶格子サイズが増加してLi イオンの動きの自由度が増加するのではなく、異種元素Mが結合する酸素の電子状態に影響を与え、Li イオンの動きの自由度が増すことによるものと考えられる。

次に、組成式 Li_{a} M $\text{n}_{0.5-x}$ N $\text{i}_{0.5-y}$ M $_{x+y}$ O $_{2}$ (但し0.98 \leq a<1.1、-0.1 \leq x-y \leq 0.1、MはLi, Mn, Ni以外の元素)で表される複合酸化物において、好ましい組成を説明する。

先ず、Ni含有量を示す 0.5-y については、 $0.2 \le 0.5-y \le 0.4$

5、すなわち0. 0 $5 \le y < 0$. 3 であるのが好ましく、これによりL i N i O 2 ∞ O N i D

また、複合酸化物は、その組成として、異種元素Mを有するのが好ましい。これにより、複合酸化物の高密度化を高次元で達成でき、充放電サイクル性能を優れたものとできるだけでなく、高容量の電池とすることができる。

異種元素Mとしては、Li, Mn, Ni以外の元素で、Mn及びNiと固溶置換しうる元素が好ましい。例えば、B, Be, V, C, Si, P, Sc, Cu, Zn, Ga, Ge, As, Se, Sr, Mo, Pd, Ag, Cd, In, Sn, Sb, Te, Ba, Ta, W, Pb, Bi, Fe, Cr, Ti, Zr, Nb, Mg, Y, Al, Na, K, Mg, Ca, Co, Cs, La, Ce, Nd, Sm, Eu, Tb等が挙げられる。

なかでも、A1、Mg及びCoのいずれかの元素、又は複数の元素を混合して用いると、少量の異種元素Mにより固相反応を促進し、高率放電性能に優れた電池を製造できるので好ましい。

異種元素Mの置換量は大きいほど理論放電容量が低下するため、0.4以下が望ましく、マンガン元素量、-yクル元素量より多いと放電容量が低下する為、x+y<(0.5-x)+(0.5-y)、すなわちx+y<0.5が好ましく、さらに好ましくは $0 \le x+y \le 0.3$ 3であり、これにより充放電時の熱安定性が高まる。また、x+yの下限値については、0以上であれば、高い放電容量を得ることができるが、より好ましくは下限値を0.2とすることで、とりわけ好ましくは下限値を0.2とすることで、たりわけ好ましくは下限値を0.25とすることで、充電時の熱安定性を兼ね備えるとともに、高率放電性能と充放電サイクル性能とを高次元で兼ね備える特性が達成され

る。

異種元素Mとして、特に、Coを用いた場合は、結晶構造を安定にする働きがあるのに加えて4Vで電気化学的に活性であり、特に、高率放電性能及び充放電サイクル性能に優れた電池を作製できるので、とりわけ好ましい。

また、上記組成式において、a、x及びyの値は、後述する熱処理(焼成)前の混合物に含まれるそれぞれの遷移金属化合物の混合比を定めることによって、任意に設定することができる。

[第二実施形態に係る正極活物質]

本発明の第二実施形態に係る正極活物質は、組成式 Li_vMn_x 、 Ni_y 、 Co_z 、 O_z (但し、x'、y'、z'は、三元状態図上において、(x', y', z')が点A(0.51, 0.49, 0)と点B(0.45, 0.55, 0)と点C(0.25, 0.35, 0.4)と点D(0.31, 0.29, 0.4)とを頂点とする四角形ABCDの線上または内部に存在する範囲の値であり、 $0 \le w/(x^2 + y^2 + z^2) \le 1.30$ である)で表される複合酸化物を含有している。このような構成によれば、高いエネルギー密度を有し、充放電サイクル性能に優れた電池を製造でき、 $z^2 > 0$ とすることによって、Coを含有する複合酸化物とした場合には、高率放電性能および充放電サイクル性能に極めて優れた電池を製造できる

また、組成式 Li_wMn_x 、 Ni_y Co $_z$ 、 O_z において、x'、y'、z'は、三元状態図上において、(x', y', z')が、点A'(0.41,0.39,0.2)と点B'(0.35,0.45,0.2)と点C(0.25,0.35,0.4)と点D(0.31,0.29,0.4)とを頂点とする四角形A'B'CDの線上または内部に存在する範囲の値であるのがより好ましく、点A''(0.375,0.375,0.25)と点B''(0.33,0.42,0.25)と点C(0.25,0.35,0.4)と点D(0.31,0.29,0.4)とを頂点とする四角形A''B''CDの線上または内部に存在する範囲の値であるのがとりわけ好ましい。これにより、高率放電性能と充放電サイクル性能とを高次元で兼

ね備える電池を得ることができる正極活物質とすることができる。

尚、上記組成式において、w'、x'、y' 及びz' の値は、後述する熱処理(焼成)前の混合物に含まれるそれぞれの遷移金属化合物の混合比を定めることに よって、任意に設定することができる。

上記組成式における好ましい範囲は、Mn量とNi量の相対関係で決定することができる。すなわち、Mn量がNi量と比較して多くなる場合は、 Li_2MnO_3 を始めとするリチウムマンガン酸化物が不純物として生成し、放電性能が低下するので好ましくない。一方で、Ni量がMn量に比較して大きい場合、結晶構造は安定な空間群R3/mに属する層状構造を形成するが、サイクル性能が低下する傾向となる。

第二実施形態に係わる正極活物質において、w/(x'+y'+z')は0から 1.3の範囲に入ることで、高いエネルギー密度を有し、充放電サイクル性能に優れた正極活物質とすることができる。w/(x'+y'+z')が 1.3を上回ると、正極活物質の表面でリチウム化合物が蓄積し、放電容量を低下せしめるとともに、電解液の分解反応が進行し、電池の保存性能の低下の要因となるので好ましくない。

なお正極活物質の作製上、w/(x'+y'+z') は $0.9\sim1.3$ が好ましく、より好ましくは $0.95\sim1.11$ 、さらに好ましくは $0.95\sim1.04$ である。w/(x'+y'+z')が0.90を下回った場合には、不足する電荷を保証するために酸素欠損が発生するなどして構造変化が起こるために、Li移動が阻害され、電池性能が低下する傾向となる。

[本発明の実施形態に係る正極活物質の物性]

第一実施形態及び第二実施形態に係る正極活物質(以下、本発明の実施形態に係る正極活物質ともいう)は、α-NaFeO₂結晶構造を有するのが好ましい。より具体的には、本発明の実施形態に係る正極活物質の好適な結晶構造は、Cu

 $K\alpha$ 線を使用した粉末エックス線回折の $2\theta:18.62\pm1^\circ$ 、 $36.44\pm1^\circ$ 、 $37.72\pm1^\circ$ 、 $38.08\pm1^\circ$ 、 $44.14\pm1^\circ$ 、 $48.3\pm1^\circ$ 、 $58.26\pm1^\circ$ 、 $64.14\pm1^\circ$ 、 $64.44\pm1^\circ$ 、 $64.64\pm1^\circ$ にピークを有する結晶構造である。

なお、空間群の表記について、本来「R3m」の数字「3」上にバー(横線)を付して表記すべきところ、本明細書内においては便宜上「R3/m」との表記をもって同一の意味を表すものとした。「C2/m」についても同様である。

" $\alpha-N$ a F e O_2 結晶構造"と"空間群 R 3/mに属する層状構造"とは同義であり、空間格子は六方晶である。

また、本発明の実施形態に係る正極活物質は、複合酸化物が、「全細孔容積が 0 . $001m1/g以上0.006m1/g以下であり、かつ、 <math>CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:18.6\pm1$ ° における回折ピークに対する $2\theta:44.1\pm1$ ° における回折ピークの相対強度比が 0.65以上1.05 以下である複合酸化物」であることが好ましい。

換言すれば、第一実施形態及び第二実施形態に係る正極活物質は、前記した複合酸化物が、「比表面積が $0.3m^2/g$ 以上 $1.6m^2/g$ 以下であり、かつ、 $CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:18.6\pm1$ ° における回折ピークに対する $2\theta:44.1\pm1$ ° における回折ピークの相対強度比が 0.65以上 1.05以下である複合酸化物」であることが好ましい。

複合酸化物の全細孔容積が 0.001 m l/gより少ないと(即ち、BETによる比表面積が 0.3 m²/gより少ない場合)、複合酸化物は固相でのイオン伝導性が悪いためか、低温に於いて高い放電容量を有しにくい。また、複合酸化物の粒子が高密度化することによって正極活物質の粉体が電解液と接触しにくくなり、充放電サイクル性能が低下しやすくなる。

一方、複合酸化物の全細孔容積が0.006m1/gを超える(即ち、1.6 m²/gを超える)場合、複合酸化物を構成する2次粒子が多孔質となる傾向となり、リチウムーマンガンーニッケル複合酸化物の密度が低下する。この場合、高率放電性能は良くなる傾向を示すが、一方で構成元素が溶解し、負極上で抵抗増

加を招いたり、電解液を酸化分解することで保存性能が低下したり、充電時の熱 安定性が低くなる傾向となる。

以上により、複合酸化物の全細孔容積を $0.001m1/g\sim0.006m1/g$ (比表面積: $0.3m^2/g\sim1.6m^2/g$)の範囲とすることで、特に、優れた高率放電性能と高い充放電サイクル性能とを兼ね備えた性能を得ることができる。

また、電池に対して、低温高率放電性能に代表される高率放電性能を求める場合においては、前述したように、電池のエネルギー密度が多少低下したとしても、複合酸化物の全細孔容積(比表面積)を大きくする必要があるが、全細孔容積(比表面積)を大きくしすぎた電池では、充放電サイクル性能が低下するという問題がある。ここで、全細孔容積(比表面積)が大きい材料は、一般に、粒界や微細な割れが多い材料となる。

さらに、本発明の実施形態に係る正極活物質は、複合酸化物が、前記したように、 $CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:18.6\pm1^\circ$ における回折ピークに対する $2\theta:44.1\pm1^\circ$ における回折ピークの相対強度比が 0.65以上 1.05以下であるのが好ましく、これによって、結晶構造が安定し、充放電サイクル性能の優れた電池を得ることができる。

この作用については必ずしも明らかではないが、前記粉末エックス線回折パターンにおいて、 $2\theta:18.6\pm1°$ における回折ピークに対する $2\theta:44.1\pm1°$ における回折ピークの相対強度比は結晶性を示す指標と考えられ、焼成温度が高いもの、焼成時間が長いもの、全細孔容積の少ないものほど相対強度が大きくなる傾向となる。よって、 $2\theta:18.6\pm1°$ における回折ピークに対する $2\theta:44.1\pm1°$ における回折ピークの相対強度比の値が0.65以上であることによって、全細孔容積が大きくなりすぎず、電池の充放電サイクル性能を優れたものとすることができる。一方、相対強度比の値が1.05以下であることによって、全細孔容積が小さくなりすぎず、低温高率放電性能に代表される高率放電性能を優れたものとすることができる。

また、 $2\theta:18.6\pm1$ °における回折ピークの半値幅が0.05°以上0.20°以下であり、かつ、 $2\theta:44.1\pm1$ °における回折ピークの半値幅が0.10°以上0.20°以下であるのがより好ましく、これにより、特に、放電容量と充放電サイクル性能とに優れた電池を得ることができる。

この作用効果についても必ずしも明らかではないが、半値幅は結晶性を示す指標であると考えられる。すなわち、複合酸化物粒子の結晶性が高く、均一な混合性の高い結晶は、半値幅が小さくなる傾向があり、例えば粉体の混合方法で製作した不均一な $LiMn_{0.5}Ni_{0.5}O_2$ は $2\theta:18.6\pm1°$ と $44.1\pm1°$ に於ける半値幅が大きく、充放電サイクル性能とが低下する傾向となる。このため、 $2\theta:18.6\pm1°$ に於ける半値幅は0.20°以下であることが好ましく、 $2\theta:44.1\pm1°$ に於ける半値幅は0.20°以下が好ましく、特に0.17°以下が好ましい。よって、異種元素Mは、 $2\theta:44.1\pm1°$ に於ける半値幅が0.20°以下となるように固溶置換されるのが好ましい。

半値幅は、一般には複合酸化物粒子の結晶性あるいは結晶化度と相関しており、放電容量は複合酸化物粒子の結晶性(粒子の緻密性)に応じて変動するものと考えられる。この値が小さい場合、すなわち結晶性が高い場合には、粒子が過度に緻密化することによって電解液との接触が不完全となり、放電容量は低下する。一方、元素の混合が不均一な場合には、固相反応が十分に進行せず、半値幅が大きくなることによって、放電容量が低下しやすくなるものと考えられる。従って、前記半値幅は、 $2\theta:18.6\pm1°$ に於いて0.05°以上、 $2\theta:44.1\pm1°$ に於いては0.10°以上が好ましく、これにより各元素の混合が均一で、なおかつ適度に電解液との接触を保った複合酸化物の好ましい形態とすることができる。

さらに、本発明の実施形態に係る正極活物質は、複合酸化物の結晶構造が α -NaFeO₂型層状構造であるとともに、結晶単位格子が六方晶であり、金属リチウムが示す電位に対して3.2V~3.3 Vの状態における六方晶の格子定数aと格子定数 c と結晶格子体積 V とが下記式を満たすように構成されるのが好まし

ひい。

- 2. $860 \le a \le 2$. 890
- $14.20 \le c \le 14.33$
- 0. $1007 \, \text{nm}^3 \leq V \leq 0$. $1034 \, \text{nm}^3$

式中、a,cは、格子定数であり、それぞれ単位結晶格子のa軸方向の長さ及び c軸方向の長さをオングストローム(A)単位で表わしたものに等しい。なお、結晶単位格子が六方晶であることから、b軸方向の長さbは、格子定数aと同じである。

格子定数 a が 2. 8 9 0 を超えると、複合酸化物中のMnの量が増え、結晶対称性が低下し、充放電サイクル性能に悪影響を及ぼす傾向となる。格子定数 c が 1 4. 3 0 を超える場合、及び結晶格子体積 V が 0. 1 0 3 4 n m³ を超える場合も同様である。

格子定数 a < 2. 8 6 0、格子定数 c < 1 4. 2 0、結晶格子体積 V < 0. 1 0 0 7 n m³であると、充放電サイクル性能及び充電時の熱安定性に劣る傾向となる。

より好ましくは、c≦14.30であり、これにより、特に、電池の高率放電性能を優れたものとすることができる。

[本発明の実施形態に係る正極活物質の製造方法]

本発明の正極活物質の製造方法は特に限定されないが、好ましい製造方法について以下に詳述する。

本発明に係る正極活物質は、高いエネルギー密度と高い充放電サイクル性能を示す電池を得るために、「少なくともLi成分、Mn成分及びNi成分を含有するLi一MnーNi複合酸化物前駆体」あるいは「少なくともLi成分、Mn成分、Ni成分及びM成分を含有するLi一MnーNiーM複合酸化物前駆体」を900℃以上の温度で焼成して得られるのが好ましい。ここで、焼成温度は、好ましくは900℃以上100℃以下、より好ましくは900℃以上1050℃以下、とりわけ好ましくは、とりわけ好ましくは950℃~1025℃である。

Li-Mn-Ni複合酸化物前駆体あるいはLi-Mn-Ni-M複合酸化物

前駆体の焼成は、 $\alpha-N$ a F e O₂結晶構造へ化学変化を起こすものであり、この相転移は700℃でも充分に完結するものの、上記のようにさらに高い温度(特に、900℃以上)で熱処理することによって、電池性能を著しく向上できる。

焼成温度が800℃を下回ると、充放電サイクル性能が低下するという問題が 生じやすい。

また、焼成温度が900℃を下回ると、エネルギー密度(放電容量)及び高率 放電性能が低下するという問題を生じやすい。これ以下の領域ではLiの移動を 妨げる構造的要因が内在している可能性がある。

一方、焼成温度が1100℃を上回ると、Lio7揮発によって目標とする組成の複合酸化物が得られにくいなどの作製上の問題や、粒子の高密度化によって電池性能が低下するという問題が生じやすい。これは、1100℃を上回ると、1次粒子成長速度が増加し、複合酸化物の結晶粒子が大きくなりすぎることに起因しているが、それに加えて、局所的にLi7万損量が増大して、構造的に不安定となっていることも原因ではないかと考えられる。さらに、高温になるほど、Li7元素の占有するサイトと、Mn、Ni、Co7元素の占有してなるサイト間の元素置換が極度に生じ、Li6項パスが抑制されることによって放電容量は低下する

焼成温度を950℃以上1025℃以下の範囲とすることによって、特に高い エネルギー密度(放電容量)を示し、充放電サイクル性能に優れた電池を作製で きる。

焼成時間は、3時間~50時間が好ましい。焼成時間が50時間を超えると、電池性能上問題はないが、Liの揮発によって実質的に電池性能に劣る傾向となる。焼成時間が3時間より少ないと、結晶の発達が悪く、電池性能が悪くなる傾向となる。

「少なくともLi成分、Mn成分及びNi成分を含有するLi-<math>Mn-Ni複合酸化物前駆体」は、Mn及びNiが均一に混合された化合物であることが好ましい。また、「少なくともLi成分、<math>Mn成分、Nⅰ成分及びM成分を含有するLi-<math>Mn-Nⅰ-M複合酸化物前駆体」は、Mn、Nⅰ及びMが均一に混合された化合物であることが好ましい。この条件を満たす製法であれば特に限定されな

いが、本発明に係る元素の構成範囲では、Liの吸蔵・放出による結晶構造の安定性が高いことが要求されるため、「Mn、Ni及びMの酸性水溶液を水酸化ナトリウム水溶液等のアルカリ水溶液で沈殿させる共沈製法」で、とりわけ高い電池性能を示す正極活物質を作製することができる。この際、特開平10-125319号公報に述べられているように、反応系中に金属に対して過剰量のアンモニウムイオンが共存する条件下で粒子を発生させると、極めて均質でなおかつ球状の粒子形状を有する前駆体粒子の作製が可能となる。この場合、Mnは空気中の酸素によって容易に酸化され、相分離の要因となるので、反応溶液に還元剤を添加したり、晶析反応槽内あるいは溶液内の雰囲気を不活性ガスで満たしたりするなどして還元雰囲気とする技術が公知となっている。前記Mnの還元を目的として還元剤を用いる技術としては、特開平11-317224号公報、特開2000-3706号公報に、そして、不活性ガスを流通させて反応槽内あるいは溶液内を還元雰囲気とする技術については特開平11-312519号公報、特開平11-307093号公報に記載がある。

Li-Mn-Ni複合酸化物前駆体としては、"Mn化合物及びNi化合物を粉砕・混合、熱的に分解混合、あるいは共沈させて得られる混合物"と、Li化合物との混合物を例示できる。

また、Li-Mn-Ni-M複合酸化物前駆体としては、"Mn化合物、Ni化合物及びM化合物を粉砕・混合、熱的に分解混合、あるいは共沈させて得られる混合物"と、Li化合物との混合物を例示できる。

ここで、"Mn化合物及びNi化合物を粉砕・混合、熱的に分解混合、あるいは 共沈させて得られる混合物"あるいは"Mn化合物、Ni化合物及びM化合物を 粉砕・混合、熱的に分解混合、あるいは共沈させて得られる混合物"と、Li化 合物との混合は、各々の粉体を機械的に混合することによって達成でき、これを 酸素雰囲気下で熱処理することで複合酸化物を好適に作製することができる。

Li化合物としては、水酸化リチウム、炭酸リチウム等を、Mn化合物としては、酸化マンガン、炭酸マンガン、硫酸マンガン、硝酸マンガン等を、Ni化合物としては、水酸化ニッケル、炭酸ニッケル、硫酸ニッケル、硝酸ニッケル等を挙げることができる。

また、本明細書において、M化合物とは、Li, Mn, Ni以外の元素を有する化合物を意味する。Mの具体例としては、前掲のものを例示できる。MがA1である化合物としては、硝酸アルミニウム等を、MがMgである化合物としては、硝酸マグネシウム、硝酸マグネシウム等を、MがCoである化合物としては、M0、M1、M1、M2 である化合物としては、M3 である化合物としては、M4 である化合物としては、M5 である化合物としては、M6 である化合物としては、M8 である化合物としては、M8 である化合物としては、M9 である化合物としては、M9 である化合物としては、M1 である化合物としては、M1 である化合物としては、M2 である化合物としては、M3 である化合物としては、M4 である化合物としては、M5 である化合物としては、M8 である化合物としては、M8 である化合物としては、M9 である化合物としては、M9 である化合物としては、M1 である化合物としては、M2 である化合物としては、M3 である化合物としては、M4 である化合物としては、M5 である化合物としては、M8 である化合物としては、M9 である化合物と

Li-Mn-Ni複合酸化物前駆体の構成成分となりうるMnとNiとの共沈物 (Mn-Ni複合共沈物)、及び、Li-Mn-Ni-M複合酸化物前駆体の構成成分となりうるMnとNiとMo共沈物 (Mn-Ni-M複合共沈物) の作製について以下に説明する。

Mn-Ni複合共沈物の作製は、MnとNiとが均一に混合された共沈物であることが好ましく、Mn-Ni-M複合共沈物の作製は、MnとNiとMとが均一に混合された共沈物であることが好ましい。Mn-Ni共沈物の作製の一例を挙げれば、Ni, Mnの酸性水溶液を水酸化ナトリウムで沈殿させることで好適に作製することができる。

Mn-Ni-M複合共沈物の作製は、Ni元素とMn元素とM元素とを含有する水溶液を水酸化ナトリウムで沈殿させることにより好適に作製することができる。この際、反応系中の金属に対して過剰量のアンモニウムイオンを共存させることで、均一形状であって、なおかつ高密度の前駆体粒子の作製が可能となる。

なお、Mn-Ni複合共沈物、Mn-Ni-Mn複合共沈物の作製は、バッチ式であっても、連続沈殿法であってもよいが、均一な球状の高密度粒子を得るためには連続沈殿法が好ましい。

また、正極活物質は、特定の共沈工程を有する本発明に係る正極活物質の製造方法によって、得られるのが好ましく、これにより、「全細孔容積が 0.001m $1/g以上 0.006m1/g以下(比表面積が <math>0.3m^2/g以上 1.6m^2/g以下)であり、かつ、<math>CuKa$ 線を使用した粉末エックス線回折図の、 $2\theta:18.6\pm1°$ における回折ピークに対する $2\theta:44.1\pm1°$ における回折

ピークの相対強度比が 0.65以上 1.05以下である複合酸化物」を好適に得ることができる。

すなわち、本発明に係る正極活物質の製造方法は、組成式 $Li_aMn_{0.5-x}Ni_{0.5-y}M'_{x+y}O_2$ (但し0 < a < 1. 3(好ましくは0. $98 \le a < 1$. 1)、-0. $1 \le x-y \le 0$. 1、M' は、A1, Mg及びCoから選択される少なくとも1種の元素)で表される複合酸化物を含有する正極活物質の製造方法であって、「ニッケル(Ni)化合物とマンガン(Mn)化合物とが水に溶解された水溶液、または、Ni化合物とMn化合物とM'化合物(M'は、前記と同様)とが水に溶解された水溶液に、Ni0. Ni1 化合物とNi2 化合物と、還元剤と、錯化剤とを添加して前記水溶液のNi3 といかり化合物と、還元剤と、錯化剤とを添加して前記水溶液のNi4 を終れた水溶液に、Ni6 で、Ni6 で、Ni7 で、Ni8 で、Ni8 で、Ni8 で、Ni8 で、Ni8 で、Ni9 で、Ni1 で、Ni1 で、Ni1 で、Ni1 で 、Ni1 で 、Ni2 で 、Ni3 で 、Ni4 で 、Ni5 で 、Ni6 で 、Ni7 で 、Ni8 で 、Ni8 で 、Ni8 で 、Ni9 で 、Ni1 で 、Ni1 で 、Ni1 で 、Ni1 で 、Ni2 で 、Ni3 で 、Ni4 で 、Ni4 で 、Ni5 で 、Ni6 で 、Ni7 で 、Ni8 で 、Ni8 で 、Ni8 で で 、Ni9 で 、Ni1 で 、Ni1 で 、Ni1 で 、Ni1 で で 、Ni1 で で 、Ni1 で で 、Ni2 で で 、Ni2 で で 、Ni3 で で 、Ni4 で で で 、Ni4 で で 、Ni4 で で 、Ni4 で で で 、Ni4 で で 、Ni4 で で で で で 、Ni4 で で で で Ni4 で で で で Ni4 で Ni4 で で Ni4 で で Ni4 で Ni4

前記共沈工程により得られたNi-Mn複合共沈物、または、Ni-Mn-M 複合共沈物(本明細書では、これらを、まとめて、単に"複合共沈物"ともいう)を用いて、正極活物質を構成する複合酸化物を製造することにより、放電容量が高く、充放電サイクル性能に優れた電池を作製でき、特にM 元素としてコバルトを用いた場合、160mAh/gに達する高い放電容量を有する電池を製造できる。

一般に、従来公知の粉体混合法に従って、出発原料をサブミクロンやミクロン粒子に微粉砕し、LiOHなどのリチウム源を加えて焼成しても、リチウムーマンガンーニッケル複合酸化物において、各元素が均一に固相混合した複合酸化物を得ることは技術的に可能だが、粉体を極めて微粉化する必要があることや、焼成時に粉体をプレス成形する必要があるなど、工程が煩雑となる。また、得られたとしても複合酸化物は微細化され、満足な電池性能を得ることができないといった問題がある。また、Ni-Mnの均一な混合状態は充電時の熱安定性と充放電サイクル性能に影響を与えるものであり、不均一な混合状態は、従来のLiNiO2に起因する熱安定性が良好でないという欠点と、Li2Mn3OなどのLi-Mn酸化物に起因する充放電サイクル性能が良好でないという欠点と、Li2Mn3OなどのLi-Mn酸化物に起因する充放電サイクル性能が良好でないという欠点とを生む粒子が部分的に存在した状態となり得るものと考えられる。

また、マンガン化合物とニッケル化合物とコバルト化合物とを共に焼成することによって $LiMn_\alpha Ni_\beta Co_\gamma O_2$ 型の複合酸化物を得ることはできるものの、Mn、Ni、Coの各元素の固溶置換が遅いので、複合酸化物が充分に得られにくく、複合酸化物を充分に得ようとして焼成時間を長くすると、複合酸化物の結晶が成長しすぎて、比表面積が小さくなるため、電池の放電容量が低下する傾向となる。

しかしながら、本発明に係る正極活物質の製造方法が有する共沈工程によれば、Ni化合物、Mn化合物、M'化合物を水に溶解させて、Ni元素、Mn元素、M'元素を均一に混合させることができるので、引き続く、アルカリ化合物の添加により、各元素が均一に混合された状態で複合共沈物を得ることができる。よって、この方法により得られた正極活物質は、少なくともNi元素とMn元素とが、従来のものに比して、より均一に混ざり合っているものと考えられ、これにより、放電容量に優れた電池を製造できるものと推測される。なお、上記複合共沈物は、Ni-Mn複合共沈物の場合は、Ni-Mn複合水酸化物やNi-Mn複合酸化物の形態となっているものと考えられ、Ni-Mn-M'複合酸化物の形態となっているものと考えられる。

ここで、Ni化合物、Mn化合物の具体例は、前掲のものと同様であり、M'化合物の具体例は、前掲のM化合物の具体例と同様である。還元剤としては、ヒドラジン等を挙げることができる。アルカリ化合物とては、水酸化ナトリウム、水酸化カリウム、水酸化リチウムなどを、単独あるいは組み合わせて使用できる。 錯化剤としては、水溶液中でアンモニウムイオンを解離可能な化合物を好適で使用でき、より具体的には、硝酸アンモニウム、硫酸アンモニウム及び塩酸アンモニウム等のアンモニウム塩化合物やアンモニア水を単独あるいは組み合わせて使用できる。

また、共沈工程における水溶液には、中和時のpHを一定に制御するのが好ましく、これにより、より確実に、元素M'の添加量、添加種類を制御できる。 前記共沈工程において、pHを変化させて複合共沈物を沈殿させる際、水溶液

にヒドラジンなどの還元剤が添加されないと、Mnが酸化された状態でMn-N i-M 複合共沈物の中に取り込まれ、MnとNiとが酸素を介して結合した層間に水や炭酸などのアニオン性分子が取り込まれて、 $\alpha-Ni$ (OH)。構造となる。この状態でLi化合物と混合して焼成すると、高次に酸化されたMnとLiが優先的に反応してLi2MnO3 などの4 V付近にLi6 作動電位を持たない不純物が生成し、放電容量が低下する。

よって、前記したように、共沈工程において、Mnの酸化を防止するためには、反応槽内が還元雰囲気にされているのが好ましく、これにより、 Mn_3O_4 などのMn酸化物や $\alpha-N$ i (OH) $_2$ 構造の生成を防止し、各元素が均一に混合された結晶粒子を有する複合共沈物をより確実に得ることができる。そして、このような複合共沈物を使用して後述する複合酸化物を製造し、この複合酸化物を含有する正極活物質を使用することによって、高率放電性能及び充放電サイクル性能に優れ、高エネルギー密度(高放電容量)の非水電解質二次電池を作製できる。

また、前記共沈工程においては、反応槽内に、ニッケル(Ni)化合物水溶液とマンガン(Mn)化合物水溶液とM'化合物水溶液(M'は、A1,Mg及びCoから選択される少なくとも1種の元素)と錯化剤水溶液と還元剤水溶液とを、前記各水溶液をそれぞれ、または、前記各水溶液の少なくとも2種以上が混合された混合水溶液として連続的に供給するともに、前記反応槽内にアルカリ化合物水溶液を連続的に供給して、生成するNi-Mn-M'複合共沈物を連続的に取り出す方法を使用してもよく、これにより、複合共沈物の生産性を向上できるだけでなく、Ni化合物(モル):Mn化合物(モル):M'化合物(モル)を、A:B:Cとすれば、Ni:Mn:M'が実質的にA:B:CとされたNi-Mn-M'複合共沈物を確実に得ることができる。

また、前記共沈工程に加え、さらに「"共沈工程により得られた N_i-M_n 複合共沈物または N_i-M_n-M "複合共沈物が分散されると共に、M"化合物(M"は、 A_i 1、 M_i 2 及び C_i 2 のから選択される少なくとも1種の元素)が溶解された水溶解分散液"に、アルカリ化合物と、錯化剤とを添加して前記水溶解分散液の

pHを10~13とし、前記共沈工程により得られたNi-Mn複合共沈物の表面またはNi-Mn-M'複合共沈物の化合物の表面に、元素M'(M'は前記と同様)の複合共沈物を沈殿させるコート共沈工程」を経由して、複合酸化物を製造しても良く、これにより、Ni-Mnの均一混合状態を壊すことなく、元素M の添加量の制御をより確実に行うことができる。アルカリ化合物および錯化剤としては、前掲のものを使用できる。

前記共沈工程において、Ni, Mn以外の異種元素を有する化合物を水溶液中に含有させた場合、異種元素の種類によっては、複合共沈物中に組み込まれにくいものがある。しかし、前記コート共沈工程により表面がこのような異種元素により被覆された複合共沈物を作製し、次いで、Li化合物との焼成を行うことによって、異種元素の全部又は一部が複合共沈物の元素と固溶置換されるので、異種元素がより確実に組み込まれた複合酸化物を得ることができる。よって、放電容量が高く、充放電サイクル性能に優れた電池を作製できる。すなわち、コート共沈工程によれば、複合共沈物に組み込める異種元素の選択の幅を増やすことができる。

また、前記M'をCoとすることが好ましく、これにより、さらに、高率放電性能と充放電サイクル性能に優れた非水電解質二次電池を製造できる。

なお、異種元素としてCoを選択した場合は、共沈工程によって複合共沈物を得ても、共沈工程とコート共沈工程との併用によって複合共沈物を得ても、最終的に得られる電池の放電容量に差は見られなかった。

また、上記元素M'の複合共沈物は、元素M'の複合水酸化物や元素M'の複合酸化物の形態となっているものと考えられる。

以上に説明した共沈工程を経由して得られた、もしくは、共沈工程とコート共 沈工程とを経由して得られた複合共沈物と、リチウム化合物とを共に焼成するこ とによって、本発明に係る正極活物質に含有される複合酸化物として好適な、L i-Ni-Mn複合酸化物またはLi-Ni-Mn-M'複合酸化物を製造でき

る。

ここで、リチウム化合物としては、水酸化リチウム、炭酸リチウム等を挙げる ことができるが、複合共沈物との固相反応をより低温で行うことができる点で、 水酸化リチウムが好ましい。

また、焼成条件は、900℃以上1100℃以下の温度で3時間以上とするのが好ましく、これにより、特に、高エネルギー密度(高放電容量)であり、高率放電性能と充放電サイクル性能に優れた電池を製造できる。

焼成温度が900℃より低いと、固相反応が進行せず、サイクル寿命性能が悪いだけでなく、初期容量の確保も難しく、容量に大きなばらつきが発生しやすく、また、高率放電容量にも劣る傾向となる。又、Li-Ni-Mn複合酸化物又はLi-Ni-Mn-M複合酸化物の焼成製造時に造粒が進みにくい事によって、複合共沈物に由来する細孔部分が残りやすく比表面積は大きく、高密度な活物質は得られにくく、又、このため、充放電サイクル性能に優れた電池を製造しにくい。

A1, Mg, Co等の異種元素が添加された複合共沈物を使用しうる場合は、これらの異種元素が造粒を助ける効果があるので、焼成時に焼結造粒が進みやすく、複合酸化物は高密度化する傾向にあるが、やはりNiとMnの固相内拡散は不完全であり、満足のいく性能を発揮することができない。よって、焼成温度は、前記したように、900C以上が望ましい。

一方、焼成温度が1100℃より高くなると、LiOHなどのリチウム源の揮発が進んで、複合酸化物の組成の制御が困難であり、好ましくないと考えられる

以上に、本発明に係る正極活物質を得るための製造方法について説明したが、複合酸化物の粒度分布は、50%粒子径(D_{50})が 0.8μ mより大きく 10μ m以下であり、且つ、10%粒子径(D_{10})が 0.4μ mより大きく 7μ m以下であるのが好ましく、高い放電電圧と高い放電容量のみならず、充放電サイクルに伴う容量維持率に関して高いレベルを維持できる。

このような粒子分布を有する粉体を得るためには、上記沈殿工程 (共沈工程)

の段階で、粒子分布を適切に調節するよう作製することが重要で、そうすることで製造効率や高い放電容量を得ることが可能となる。もしも、沈殿工程で、2次粒子径が増大しすぎ、なおかつ粒子が高密度化すると、Li化合物との混合・焼成の段階で2次粒子が緻密化し、粒子内部の空隙量の減少によって放電容量が低下する傾向にある。この種の複合酸化物は、放電反応時においてはLiイオンが電解質バルク側から複合酸化物粒子内に取り込まれる段階が律速となる特性を有しているので、上記の点は高い電池性能を発揮するために重要な制御項目となると考えられる。

このように緻密化した活物質の特性を改善する手段としては、機械的な粉砕が考えられるが、例えばボールミルのような手段によると 1μ m未満の微粒子を優先的に増大せしめ、活物質が電解質と広範囲に接触する結果、電解質の酸化分解などの副反応などが起こり、却って電池性能を劣化させる虞がある。また、粉砕時に、粒子同士の摩擦によって発生する剪断発熱によって、露出したMnが高次に酸化され、電池性能が低下する虞もある。

また、前記粒子分布を有する粉体を得るための沈殿工程では、主に沈殿の結晶成長速度を好適に抑制する必要がある。特に、D₁₀を増加させるため、即ち、細かい粒径の分率を上げ、広い粒度分布とするためには、ランダムな核発生を頻繁に起こせしめ、一方で結晶核の成長を抑制する必要がある。そのためには反応器形状や回転翼などの装置因子や、反応槽内に沈殿物が滞在する時間、反応槽温度、金属イオン量、液 p H、アンモニア濃度、酸化数調整剤の濃度、酸素濃度などが制御因子として重要となる。

上記した最適な粒子分布を有する複合酸化物を効率的に得るための詳細な条件については、さらに検討の余地が残されているものの、上述の製造条件の範囲で作製した複合酸化物を篩別により粒度分布を調整することによって、効果を発揮させることができる。

本発明の実施形態に係る正極活物質は、リチウムコバルト酸化物をさらに含有するのが好ましく、これにより、電池の高率放電性能を上昇できる。ここで、リチウムコバルト酸化物は、本発明による特定の複合酸化物に対して5重量%~9

5重量%で含有されるのが好ましい。5重量%より少ないと、前記リチウムコバルト酸化物の特徴となる電池の高い高率放電性能を発揮しにくくなる。また95重量%より多いと、本発明による特定の複合酸化物の持つ高い放電容量を期待することができなくなるので好ましくない。

Li_{1+s}Mn_{2-s-t}M'" $_tO_4$ におけるsの値は、0でも良いが、スピネル構造の充放電に伴う構造安定性を向上させるためにはMnサイトにLiが一部置換したいわゆるリチウムリッチ構造とするのが好ましい。s値は0 \le s \le 0.3であれば良いが、0 \le s \le 0.1とすると、高い放電容量を維持したまま前記効果を発現することができるのでより好ましい。また、異種元素M'"を用いると、前記リチウムリッチ型スピネルと同様の効果が発現する点で好ましい。このときの異種元素の量である tの値は0 \le t \le 0.2であれば放電容量を損なうことなく充放電サイクル性能が向上する点で好ましい。

ここで、異種元素M'"の種類としては、例えばMg、A1、Ti、V、Cr、Fe、Co、Niが挙げられる。Mg、A1、Ti、V、Cr、Fe Co、Niがでも、Mg、A1、V、Cr、Fe Co、Niを用いると、高温状態においてMn種の溶出が抑制され、電池性能が向上する点で好ましい。前記異種元素は1種を用いてもよく、2種以上を用いてもよい。

異種元素を用いる場合、異種元素を含む焼成原料としては特に限定されるものではないが、それぞれの塩あるいは酸化物を使用することができる。一例を挙げると、これら異種元素を含む化合物をLi OH及びMn O_2 と共に原料に用いて加熱処理を行うことで、Li $_{1+s}M$ n $_{2-s-t}M$ '" $_tO_4$ で示される化合物を合成することができる。

L i_{1+s} M n_{2-s-t} M'" $_tO_4$ で示される化合物は、本発明による特定の複合酸化物に対して 5 重量% ~ 9 5 重量%で含有されるのが好ましい。5 重量%より少ないと、前記リチウムマンガン酸化物の特徴となる低温高率放電性能を発揮しにくくなる。また 9 5 重量%より多いと、本発明による特定の複合酸化物の持つ高い放電容量を期待することができなくなるので好ましくない。

なお、正極活物質は、他の化合物をさらに含有しても良く、他の化合物としては、CuO, Cu_2O , Ag_2O , CuS, $CuSO_4$ 等のI族化合物、 TiS_2 , SiO_2 , SnO等のIV族化合物、 V_2O_5 , V_6O_{12} , VO_1 , Nb_2O_5 , Bi_2O_3 , Sb_2O_3 等のV族化合物、 CrO_3 , Cr_2O_3 , MoO_3 , MoS_2 , WO_3 , SeO_2 等のVI族化合物、 MnO_2 , Mn_2O_3 等のVII族化合物、 Fe_2O_3 , FeO, Fe_3O_4 , Ni_2O_3 , NiO, CoO_3 , CoO等のVIII族化合物等で表される、リチウムーコバルト系複合酸化物やリチウムーマンガン系複合酸化物等の化合物(前記したリチウムコバルト酸化物、及び、 $Li_{1+s}Mn_{2-s+t}M''_{t}O_4$ で表されるリチウムマンガン化合物以外の化合物)、さらに、ジスルフィド、ポリピロール、ポリアニリン、ポリパラフェニレン、ポリアセチレン、ポリアセン系材料等の導電性高分子化合物、擬グラファイト構造炭素質材料等が挙げられるが、これらに限定されるものではない。

正極活物質として、本発明による特定の複合酸化物以外の他の化合物を併用する場合、他の化合物の使用割合は、本発明の効果を損なわない程度であれば限定されるものではないが、他の化合物は、正極活物質の総重量に対して、1重量%~50重量%が好ましく、5重量%~30重量%であるのがより好ましい。

本発明に係る非水電解質二次電池(以下、単に"電池"ともいう)は、非水電解質二次電池用正極(以下、単に"正極"ともいう)と、非水電解質二次電池用負極(以下、単に"負極"ともいう)と、非水電解質とを具備し、一般的には、正極と負極との間に、非水電解質電池用セパレータが設けられる。非水電解質は、電解質塩が非水溶媒に含有されてなる形態を好適に例示できる。

非水電解質は、一般にリチウム電池等への使用が提案されているものが使用可能である。非水溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート等の環状炭酸エステル類;γーブチロラクトン、γーバレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3ージオキサン、1,4ージオキサン、1,2ージメトキシエタン、1,4ージブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独またはそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。

電解質塩としては、例えば、LiС1〇4、LiBF4、LiAsF6、LiPF6、LiSCN、LiBF,LiI,Li $_2$ S〇4、Li $_2$ В $_1$ 0С $_1$ 1の、NaC1O4、NaI,NaSCN、NaBr,KC1O4、KSCN等のリチウム(Li)、ナトリウム(Na)またはカリウム(K)の1種を含む無機イオン塩、LiСF $_3$ S〇 $_3$ 、LiN(С $_2$ 5 $_3$ 5O $_2$) $_2$ 、LiN(С $_2$ 5 $_5$ 5O $_2$) $_2$ 、LiN(С $_3$ 5O $_2$)(С $_4$ 6 $_3$ 5O $_2$)、LiN(С $_4$ 6 $_3$ 5O $_3$ 0、LiC(С $_4$ 6 $_4$ 6 $_4$ 7。(C $_4$ 7 $_5$ 6 $_4$ 8 $_5$ 7。 $_4$ 8 $_4$ 9、 $_4$ 8 $_4$ 9、 $_4$ 9、 $_4$ 1 $_4$ 1、 $_4$ 9、 $_4$ 9 $_4$ 1、 $_4$ 1、 $_4$ 1、 $_4$ 1 $_4$ 1 $_4$ 2 $_4$ 2 $_4$ 2 $_4$ 3 $_4$ 3 $_4$ 4 $_4$ 4 $_4$ 4 $_4$ 5 $_4$ 5 $_4$ 6 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 7 $_4$ 8 $_4$ 7 $_4$ 7 $_4$ 8 $_4$ 9 $_4$ 8 $_4$ 9 $_4$ 9 $_4$ 1 $_4$ 9 $_4$ 1 $_4$ 9 $_4$ 1 $_4$ 9 $_4$ 1 $_4$ 9 $_4$ 1 $_4$ 9 $_4$ 1 $_4$ 9 $_4$ 1 $_4$ 9 $_4$ 1 $_4$ 9 $_4$ 1 $_4$ 9 $_4$ 9 $_4$ 1 $_4$ 9 $_$

さらに、 $LiBF_4$, $LiPF_6$ のような無機イオン塩とLiN ($C_2F_5SO_2$) $_2$ のようなパーフルオロアルキル基を有するリチウム塩とを混合して用いることにより、さらに電解質の粘度を下げることができるので、低温特性をさらに高めることができ、より望ましい。

非水電解質における電解質塩の濃度としては、高い電池特性を有する電池を確

実に得るために、0.1モル/リットル ~ 5 モル/リットルが好ましく、さらに好ましくは、1モル/リットル ~ 2.5 モル/リットルである。

正極は、本発明に係る正極活物質を主要構成成分としており、本発明に係る正極活物質を、導電剤および結着剤、さらに必要に応じてフィラーと混練して正極合剤とした後、この正極合剤を集電体としての箔やラス板等に塗布、または圧着して50℃~250℃程度の温度で、2時間程度加熱処理することにより好適に作製される。正極活物質の正極に対する含有量は、通常、80重量%~99重量%とされ、好ましくは、85重量%~97重量%とされる。

負極は、負極材料を主要構成成分としている。負極材料としては、リチウムイオンを吸蔵放出可能な形態のものであればどれを選択しても良い。例えば、リチウム金属、リチウム合金(リチウムーアルミニウム、リチウムー鉛、リチウムー スズ、リチウムーアルミニウムースズ、リチウムーガリウム、およびウッド合金等のリチウム金属含有合金)、リチウム複合酸化物(リチウムーチタン)、窒化珪素の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)等が挙げられる。これらの中でもグラファイトは、金属リチウムに極めて近い作動電位を有するので電解質塩としてリチウム塩を採用した場合に自己放電を少なくでき、かつ充放電における不可逆容量を少なくできるので、負極材料として好ましい。例えば、人造黒鉛、天然黒鉛が好ましい。特に、負極材料表面を不定形炭素等で修飾してあるグラファイトは、充電中のガス発生が少ないことから望ましい。

以下に、好適に用いることのできるグラファイトのエックス線回折等による分 析結果を示す;

格子面間隔(d₀₀₂) 0.333~0.350nm

- a軸方向の結晶子の大きさLa 20nm 以上
- c 軸方向の結晶子の大きさLc 20nm 以上

真密度 2.00~2.25g/cm³

また、グラファイトに、スズ酸化物、ケイ素酸化物等の金属酸化物、リン、ホウ素、アモルファスカーボン等を添加して改質を行うことも可能である。特に、グラファイトの表面を上記の方法によって改質することで、電解質の分解を抑制し電池特性を高めることが可能であり望ましい。さらに、グラファイトに対して、リチウム金属、リチウムーアルミニウム、リチウム一鉛、リチウムースズ、リチウムーアルミニウム、リチウムーがリウム、およびウッド合金等のリチウム金属含有合金等を併用することや、あらかじめ電気化学的に還元することによってリチウムが挿入されたグラファイト等も負極材料として使用可能である。負極材料の負極に対する含有量は、通常、80重量%~99重量%とされ、好ましくは、90重量%~98重量%とされる。

正極活物質の粉体及び負極材料の粉体は、平均粒子サイズ100μm以下であることが望ましい。特に、正極活物質の粉体は、電池の高出力特性を向上する目的で10μm以下であることが望ましい。粉体を所定の形状で得るためには粉砕機や分級機が用いられる。例えば乳鉢、ボールミル、サンドミル、振動ボールミル、遊星ボールミル、ジェットミル、カウンタージェトミル、旋回気流型ジェットミルや篩等が用いられる。粉砕時には水、あるいはヘキサン等の有機溶剤を共存させた湿式粉砕を用いることもできる。分級方法としては、特に限定はなく、篩や風力分級機などが、乾式、湿式ともに必要に応じて用いられる。

また、本発明に係る電池は、正極活物質が、電池の充電に伴うリチウムイオンの放出により、その結晶格子体積が収縮するものであり、その結晶格子体積の収縮率は電池の放電末状態における正極活物質の結晶格子体積に対して4%以下であるとともに、負極材料は電池の充電に伴うリチウムイオンの吸蔵により、その結晶格子体積が膨張するものであり、その結晶格子体積の膨脹率は電池の放電末状態における負極材料の結晶格子体積に対して6%以下であり、かつ、電池の通常の充放電範囲において、負極材料の前記膨脹率の値は、正極活物質の前記収縮率の値に比べて同じかまたは大きいとともに、電池の通常の充放電範囲において、負極材料の前記膨脹率の値と、正極活物質の前記収縮率の値との差が0%以上3%未満となるように構成されるのが好ましい。

「充電によって体積が収縮する正極活物質」は、第一実施形態及び第二実施形態に記載した組成を有するとともに、α-NaFeO₂構造を有する化合物に多数存在する。

また、「充電によって体積が膨張する負極材料」は、リチウムイオンを構造内部 に取り組むことのできる形態であればどれを選択しても良いが、スズ、珪素など の酸化物や、充放電サイクルに伴う容量劣化が極めて少ない等の理由により、エ ックス線回折等による分析結果が以下の範囲となるグラファイトが好ましい。

格子面間隔 (d₀₀₂) 0.335~0.358nm

- a軸方向の結晶子の大きさLa 20nm~100nm
- c軸方向の結晶子の大きさLc 20nm~100nm

真密度 2.00~2.25g/cm3

ここで、前記した正極活物質と負極材料は、正極活物質の結晶格子体積の収縮率が電池の放電末状態における正極活物質の結晶格子体積に対して4%以下であるとともに、負極材料の結晶格子体積の膨張率が電池の放電末状態における負極材料の結晶格子体積に対して6%以下であり、さらに、電池の通常の充放電範囲において、負極材料の前記膨張率の値が、正極活物質の前記収縮率の値に比べて同じかまたは大きいとともに、電池の通常の充放電範囲において、負極材料の前記膨張率の値と、正極活物質の前記収縮率の値との差が0%以上3%未満となるような組み合わせが選択される。

通常の充放電範囲とは、過充電や過放電が行われない範囲の電池の定格使用範囲のことを言い、より具体的には、カタログに記載された定格の使用条件下での充放電範囲のことをいい、過充電・過放電などアブユース時までをも想定した充放電範囲のことではない。具体的に正極がLi金属基準に対して4.6 V程度までの範囲をいう。

以上、正極及び負極の主要構成成分である正極活物質および負極材料について 詳述したが、前記正極及び負極には、前記主要構成成分の他に、導電剤、結着剤

、増粘剤、フィラー等が、他の構成成分として含有されてもよい。

導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウィスカー、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金等)粉、金属繊維、薄電性セラミックス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。

これらの中で、導電剤としては、電子伝導性及び塗工性の観点よりアセチレンブラックが望ましい。導電剤の添加量は、正極又は負極の総重量に対して0.1 重量% ~ 50 重量%が好ましく、特に0.5 重量% ~ 30 重量%が好ましい。特にアセチレンブラックを $0.1\sim 0.5$ μ mの超微粒子に粉砕して用いると必要炭素量を削減できるため望ましい。これらの混合方法は、物理的な混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合機、E 指かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは湿式で混合することが可能である。

前記結着剤としては、通常、ポリテトラフルオロエチレン (PTFE),ポリフッ化ビニリデン (PVdF),ポリエチレン,ポリプロピレン等の熱可塑性樹脂、エチレンープロピレンージエンターポリマー (EPDM),スルホン化EPDM,スチレンブタジエンゴム (SBR)、フッ素ゴム等のゴム弾性を有するポリマーを1種または2種以上の混合物として用いることができる。結着剤の添加量は、正極または負極の総重量に対して1~50重量%が好ましく、特に2~30重量%が好ましい。

特に、本発明に係る正極は、正極活物質に対して1重量%以上の導電性炭素材料と、電解液を含有することによってイオン伝導性を有する結着剤とを含有するのが好ましい。"電解液を含有することによってイオン伝導性を有する結着剤"としては、電解液としてLiPF6を電解質としてエチレンカーボネートやジェチレンカーボネートやジメチルカーボネート等を溶媒として使用する場合に於いては、前掲の結着剤のうち、ポリフッ化ブニリデン(PVdF)やポリエチレン(ポ

リエチレンオキシド)を好適に用いることが出来る。

前記した、Li-Ni-Mn-Co複合酸化物、または、Li-Ni-Mn-Co-Mn-Co-M'複合酸化物(ここで、M'は、Li, Ni, Mn, Co-以外の元素)は、固体のイオン伝導性がLi-Co複合酸化物よりも優れないためか、Li-Co複合酸化物を使用する場合と比較して、得られる電池の高率放電性能がやや劣る。しかしながら、正極に"電解液を含有することによってイオン伝導性を有する結着剤"と、正極活物質に対して1重量%以上の導電性炭素材料とを添加し、該電解液を使用することによって、高率放電性能に優れた電池を作製できる。

これはかならずしも明らかではないが、Li-Ni-Mn-Co複合酸化物、または、Li-Ni-Mn-Co-M''複合酸化物は、固体の伝導性が優れないもしくは1次粒子間の粒界のイオン伝導が悪いため、リチウムイオンの伝導は、複合酸化物内の細孔に依存しているものと考えられる。この細孔にイオン伝導性が無い結着剤が入り込むとリチウムイオン伝導経路が減り、電池の高率放電性能を低下させやすくなるので、上記したように、イオン伝導性を有する結着剤を使用するのが好ましい。また、結着剤としてイオン伝導性を有する結着剤を使用しても、正極に少なくとも1重量%以上の導電性炭素材料を加えない場合は、前記正極活物質の電子パスを得ることが出来ず、部分的に反応しない正極活物質ができるためか、得られる電池において、低率放電での放電容量の低下が確認できる

前記増粘剤としては、通常、カルボキシメチルセルロース、メチルセルロース等の多糖類等を1種または2種以上の混合物として用いることができる。また、多糖類の様にリチウムと反応する官能基を有する増粘剤は、例えばメチル化等の処理によりその官能基を失活させておくことが望ましい。増粘剤の添加量は、正極または負極の総重量に対して $0.5\sim10$ 重量%が好ましく、特に $1\sim2$ 重量%が好ましい。

フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。 通常、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、無定形シリカ 、アルミナ、ゼオライト、ガラス、炭素等が用いられる。フィラーの添加量は、 正極または負極の総重量に対して添加量は30重量%以下が好ましい。

正極および負極は、主要構成成分(正極の場合は正極活物質であり、負極の場合は負極材料である)、導電剤および結着剤を、Nーメチルピロリドン,トルエン等の溶剤に混合させてスラリーを作製し、このスラリーを下記に詳述する集電体の上に塗布し、乾燥することによって、好適に作製される。前記塗布方法については、例えば、アプリケーターロールなどのローラーコーティング、スクリーンコーティング、ドクターブレード方式、スピンコーティング、バーコータ等の手段を用いて任意の厚さおよび任意の形状に塗布することが望ましいが、これらに限定されるものではない。

集電体としては、構成された電池において悪影響を及ぼさない電子伝導体であれば何でもよい。例えば、正極用集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導電性および耐酸化性向上の目的で、アルミニウムや鋼等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。負極用集電体としては、銅、ニッケル、鉄、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、A1-Cd合金等の他に、接着性、導電性、耐還元性の目的で、銅等の表面をカーボン、ニッケル、チタンや銀等で処理した物を用いることができる。これらの材料については表面を酸化処理することも可能である。

集電体の形状については、フォイル状の他、フィルム状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発泡体、繊維群の形成体等が用いられる。厚さの限定は特にないが、 $1\sim500\mu$ mのものが用いられる。これらの集電体の中で、正極としては、耐酸化性に優れているアルミニウム箔が、負極としては、耐還元性、且つ電導性に優れ、安価な銅箔、ニッケル箔、鉄箔、およびそれらの一部を含む合金箔を使用することが好ましい。さらに、粗面表面粗さが 0.2μ mRa以上の箔であることが好ましく、これにより正極活物質または負極材料と集電体との密着性は優れたものとなる。よって、このような粗面を有することから、電解箔を使用するのが好ましい。特に、ハナ付き処理を施した電解箔は最も好ましい。さらに、該箔に両面塗工する場合、箔の表面粗さが同じ、またはほぼ等しいことが望まれる。

非水電解質電池用セパレータの空孔率は強度の観点から98体積%以下が好ま しい。また、放電容量の観点から空孔率は20体積%以上が好ましい。

また、非水電解質電池用セパレータは、例えばアクリロニトリル、エチレンオキシド、プロピレンオキシド、メチルメタアクリレート、ビニルアセテート、ビニルピロリドン、ポリフッ化ビニリデン等のポリマーと電解質とで構成されるポリマーゲルを用いてもよい。

非水電解質を上記のようにゲル状態で用いると、漏液を防止する効果がある点で好ましい。

さらに、非水電解質電池用セパレータは、上述したような多孔膜や不織布等とポリマーゲルを併用して用いると、電解質の保液性が向上するため望ましい。即ち、ポリエチレン微孔膜の表面及び微孔壁面に厚さ数 μ m以下の親溶媒性ポリマーを被覆したフィルムを形成し、前記フィルムの微孔内に電解質を保持させることで、前記親溶媒性ポリマーがゲル化する。

前記親溶媒性ポリマーとしては、ポリフッ化ビニリデンの他、エチレンオキシ ド基やエステル基等を有するアクリレートモノマー、エポキシモノマー、イソシ

アナート基を有するモノマー等が架橋したポリマー等が挙げられる。該モノマーは、ラジカル開始剤を併用して加熱や紫外線(UV)を用いたり、電子線(EB)等の活性光線等を用いて架橋反応を行わせることが可能である。

前記親溶媒性ポリマーには、強度や物性制御の目的で、架橋体の形成を妨害しない範囲の物性調整剤を配合して使用することができる。前記物性調整剤の例としては、無機フィラー類 {酸化ケイ素、酸化チタン、酸化アルミニウム、酸化マグネシウム、酸化ジルコニウム、酸化亜鉛、酸化鉄などの金属酸化物、炭酸カルシウム、炭酸マグネシウムなどの金属炭酸塩 }、ポリマー類 {ポリフッ化ビニリデン、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、ポリアクリロニトリル、ポリメチルメタクリレート等 } 等が挙げられる。前記物性調整剤の添加量は、架橋性モノマーに対して通常50重量%以下、好ましくは20重量%以下である。

前記アクリレートモノマーについて例示すると、二官能以上の不飽和モノマー が好適に挙げられ、より具体例には、2官能(メタ)アクリレート {エチレング リコールジ(メタ)アクリレート、プロピレングリコールジ (メタ) アクリレー ト、アジピン酸・ジネオペンチルグリコールエステルジ(メタ)アクリレート、 重合度2以上のポリエチレングリコールジ(メタ)アクリレート、重合度2以上 のポリプロピレングリコールジ (メタ) アクリレート、ポリオキシエチレン/ポ リオキシプロピレン共重合体のジ(メタ)アクリレート、ブタンジオールジ(メ タ) アクリレート、ヘキサメチレングリコールジ (メタ) アクリレート等}、3官 能(メタ)アクリレート {トリメチロールプロパントリ(メタ)アクリレート、 グリセリントリ(メタ)アクリレート、グリセリンのエチレンオキシド付加物の トリ(メタ)アクリレート、グリセリンのプロピレンオキシド付加物のトリ(メ タ) アクリレート、グリセリンのエチレンオキシド、プロピレンオキシド付加物 のトリ(メタ)アクリレート等}、4官能以上の多官能(メタ)アクリレート {ペ ンタエリスリトールテトラ (メタ) アクリレート、ジグリセリンヘキサ (メタ) アクリレート等}が挙げられる。これらのモノマーを単独もしくは、併用して用 いることができる。

前記アクリレートモノマーには、物性調整等の目的で1官能モノマーを添加す

ることもできる。前記一官能モノマーの例としては、不飽和カルボン酸 {アクリ ル酸、メタクリル酸、クロトン酸、けい皮酸、ビニル安息香酸、マレイン酸、フ マール酸、イタコン酸、シトラコン酸、メサコン酸、メチレンマロン酸、アコニ ット酸等}、不飽和スルホン酸 {スチレンスルホン酸、アクリルアミドー2-メチ ルプロパンスルホン酸等}またはそれらの塩(Li塩、Na塩、K塩、アンモニ ウム塩、テトラアルキルアンモニウム塩等)、またこれらの不飽和カルボン酸をC 1~C18の脂肪族または脂環式アルコール、アルキレン(C2~C4)グリコ ール、ポリアルキレン (C2~C4) グリコール等で部分的にエステル化したも の(メチルマレート、モノヒドロキシエチルマレート、など)、およびアンモニア 、1級または2級アミンで部分的にアミド化したもの(マレイン酸モノアミド、 N-メチルマレイン酸モノアミド、N, N-ジエチルマレイン酸モノアミドなど)、(メタ) アクリル酸エステル [C1~C18の脂肪族(メチル、エチル、プロ ピル、ブチル、2-エチルヘキシル、ステアリル等) アルコールと (メタ) アク リル酸とのエステル、またはアルキレン(C2~C4)グリコール(エチレング リコール、プロピレングリコール、1,4ーブタンジオール等)およびポリアル キレン(C2~C4)グリコール(ポリエチレングリコール、ポリプロピレング リコール)と(メタ)アクリル酸とのエステル] ; (メタ) アクリルアミドまたは Nー置換(メタ)アクリルアミド [(メタ)アクリルアミド、N-メチル(メダ) アクリルアミド、N-メチロール (メタ) アクリルアミド等]: ビニルエステルま たはアリルエステル [酢酸ビニル、酢酸アリル等]; ビニルエーテルまたはアリル エーテル [ブチルビニルエーテル、ドデシルアリルエーテル等]; 不飽和ニトリル 化合物 [(メタ) アクリロニトリル、クロトンニトリル等]; 不飽和アルコール [(メタ)アリルアルコール等];不飽和アミン [(メタ) アリルアミン、ジメチルア ミノエチル(メタ)アクリルレート、ジエチルアミノエチル(メタ)アクリレート 等];複素環含有モノマー [Nービニルピロリドン、ビニルピリジン等]:オレフ ィン系脂肪族炭化水素[エチレン、プロピレン、ブチレン、イソブチレン、ペン テン、 $(C6 \sim C50)$ α ーオレフィン等]; オレフィン系脂環式炭化水素 [シク ロペンテン、シクロヘキセン、シクロヘプテン、ノルボルネン等]:オレフィン系 芳香族炭化水素 [スチレン、αーメチルスチレン、スチルベン等]: 不飽和イミド

[マレイミド等]; ハロゲン含有モノマー [塩化ビニル、塩化ビニリデン、フッ化ビニリデン、ヘキサフルオロプロピレン等]等が挙げられる。

前記エポキシモノマーについて例示すると、グリシジルエーテル類 {ビスフェノールAジグリシジルエーテル、ビスフェノールFジグリシジルエーテル、臭素化ビスフェノールAジグリシジルエーテル、フェノールノボラックグリシジルエーテル、クレゾールノボラックグリシジルエーテル等}、グリシジルエステル類 {ヘキサヒドロフタル酸グリシジルエステル、ダイマー酸グリシジルエステル等}、グリシジルアミン類 {トリグリシジルイソシアヌレート、テトラグリシジルジアミノフェニルメタン等}、線状脂肪族エポキサイド類 {エポキシ化ポリブタジエン、エポキシ化大豆油等}、脂環族エポキサイド類 {3,4エポキシー6メチルシクロヘキシルメチルカルボキシレート、3,4エポキシシクロヘキシルメチルカルボキシレート等}等が挙げられる。これらのエポキシ樹脂は、単独もしくは硬化剤を添加して硬化させて使用することができる。

前記硬化剤の例としては、脂肪族ポリアミン類 {ジエチレントリアミン、トリエチレンテトラミン、3,9-(3-アミノプロピル)-2,4,8,10-テトロオキサスピロ[5,5]ウンデカン等}、芳香族ポリアミン類 {メタキシレンジアミン、ジアミノフェニルメタン等}、ポリアミド類 {ダイマー酸ポリアミド等}、酸無水物類 {無水フタル酸、テトラヒドロメチル無水フタル酸、ヘキサヒドロ無水フタル酸、無水トリメリット酸、無水メチルナジック酸}、フェノール類 {フェノールノボラック等}、ポリメルカプタン {ポリサルファイド等}、第三アミン類 {トリス・(ジメチルアミノメチル) フェノール、2-エチルー4-メチルイミダゾール等}、ルイス酸錯体 {三フッ化ホウ素・エチルアミン錯体等} 等が挙げられる。

前記イソシアナート基を有するモノマーについて例示すると、トルエンジイソシアナート、ジフェニルメタンジイソシアナート、1,6ーへキサメチレンジイソシアナート、2,2,4(2,2,4)ートリメチルーへキサメチレンジイソシアナート、pーフェニレンジイソシアナート、4,4'ージシクロへキシルメタンジイソシアナート、3,3'ージメチルジフェニル4,4'ージイソシアナート、ジアニシジンジイソシアナート、mーキシレンジイソシアナート、トリメチ

ルキシレンジイソシアナート、イソフォロンジイソシアナート、1, 5 — ナフタレンジイソシアナート、t r a n s - 1, 4 — シクロヘキシルジイソシアナート、t r a n s - 1, 4 — シクロヘキシルジイソシアナート等が挙げられる。

前記イソシアナート基を有するモノマーを架橋するにあたって、ポリオール類 およびポリアミン類 [2官能化合物 {水、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール等}、3官能化合物 {グリセリン、トリメチロールプロパン、1,2,6ーへキサントリオール、トリエタノールアミン等}、4官能化合物 {ペンタエリスリトール、エチレンジアミン、トリレンジアミン、ジフェニルメタンジアミン、テトラメチロールシクロへキサン、メチルグルコシド等}、5官能化合物 {2,2,6,6-テトラキス(ヒドロキシメチル)シクロへキサノール、ジエチレントリアミンなど}、6官能化合物 {ソルビトール、マンニトール、ズルシトール等}、8官能化合物 {スークロース等}]、およびポリエーテルポリオール類 {前記ポリオールまたはポリアミンのプロピレンオキサイドおよび/またはエチレンオキサイド付加物}、ポリエステルポリオール [前記ポリオールと多塩基酸 {アジピン酸、0,m,pーフタル酸、コハク酸、アゼライン酸、セバシン酸、リシノール酸}との縮合物、ポリカプロラクトンポリオール {ポリェーカプロラクトン等}、ヒドロキシカルボン酸の重縮合物等]等、活性水素を有する化合物を併用することができる。

本発明に係る非水電解質二次電池は、電解質を、例えば、非水電解質電池用セパレータと正極と負極とを積層する前または積層した後に注液し、最終的に、外装材で封止することによって好適に作製される。また、正極と負極とが非水電解質電池用セパレータを介して積層された発電要素を巻回してなる電池においては、電解質は、前記巻回の前後に発電要素に注液されるのが好ましい。注液法としては、常圧で注液することも可能であるが、真空含浸方法や加圧含浸方法も使用可能である。

電池の外装体の材料としては、ニッケルメッキした鉄やステンレススチール、アルミニウム、金属樹脂複合フィルム等が一例として挙げられる。例えば、金属箔を樹脂フィルムで挟み込んだ構成の金属樹脂複合フィルムが好ましい。前記金属箔の具体例としては、アルミニウム、鉄、ニッケル、銅、ステンレス鋼、チタン、金、銀等、ピンホールのない箔であれば限定されないが、好ましくは軽量且つ安価なアルミニウム箔が好ましい。また、電池外部側の樹脂フィルムとしては、ポリエチレンテレフタレートフィルム,ナイロンフィルム等の突き刺し強度に優れた樹脂フィルムを、電池内部側の樹脂フィルムとしては、ポリエチレンフィルム,ナイロンフィルム等の、熱融着可能であり、かつ耐溶剤性を有するフィルムが好ましい。

電池の構成については特に限定されるものではなく、正極、負極および単層又は複層のセパレータを有するコイン電池やボタン電池、さらに、正極、負極およびロール状のセパレータを有する円筒型電池、角型電池、高平型電池等が一例として挙げられる。

<実施例>

以下に、実施例に基づき本発明をさらに詳細に説明するが、本発明は以下の記載により限定されるものではない。

[複合酸化物の合成]

(複合酸化物A1)

本実施例に用いた反応槽11は、図1に示すように、上部に反応晶析物スラリ

ーを常に一定流量で系外に排出するためのオーバーフローパイプ13を備えた円 筒形のもので、容積は15リットルである。

先ず、この反応槽に水を13リットル入れ、さらにpH=11.6となるように、32%水酸化ナトリウム水溶液を加えた。70mmφパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1000rpmで攪拌し、ヒーターにより反応槽内溶液温度を50℃に保った。

1. 7モル/リットル硫酸ニッケル水溶液、1. 1モル/リットル硫酸マンガン水溶液、6モル/リットル硫酸アンモニウム水溶液、及び4w t %ヒドラジン水溶液をそれぞれ体積比で11:17:11. 4:01. 36 (リットル) の割合で混合し、Ni/Mn=1/1(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50%と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後に、オーバーフローパイプ13から連続的に24時間、反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガン複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガン複合共沈物として平均粒径 $(D_{50})=11.4\mu$ mの乾燥粉末を得た。この粉末の比表面積を、ユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は35.6 m²/g であった。

得られたニッケルーマンガン複合共沈物の粉末と水酸化リチウムー水塩粉末とをLi/(Ni+Mn)=1. 02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1030℃まで昇温、1030℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、 75μ mのふるいを用いて分級し、 D_{50} =9. 1μ mのリチウムーニッケルーマンガン複合酸化物(複合酸化物A1)を得た。比表面積を、ユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は0.9m²/gであった。

この複合酸化物の全細孔容積は、Quantachrome 社製 Noval200 を用い、定容法で測定した。詳しくは、BJH法の脱離側によった。その結果、全細孔容積はO.003291m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、 $2\theta=18.62$ 度、36.44度、37.72度、38.08度、44.14度、48.30度、58.00度、63.96度、64.14度、64.44度、64.64度及び67.70度付近にそれぞれ回折ピークが認められ、空間群R3/mに属する層状構造($\alpha-NaFeO_2$ 型層状構造)と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2.889、格子定数c=14.29、結晶格子体積 $V=0.1033nm^3$ であることが分かった。

また、 $2\theta=18.62$ 度におけるピークに対する $2\theta=44.14$ 度におけるピークの相対強度比は0.86であり、各ピークの半値幅は、それぞれ0.141°及び0.141°であった。該粉末のエックス線回折図を図2に示す。また、電子顕微鏡写真(SEM写真)を図3に示す。 1μ m程度の1次粒子が多数凝集して、均一な球形状の2次粒子が観察された。

元素分析の結果、該粉末の組成はLi $_{1.02}$ Mn $_{0.5}$ Ni $_{0.5}$ O_2 であることがわかった

(複合酸化物A2)

前記(複合酸化物A1)に於いて得られたニッケルーマンガン複合共沈物の比表面積 $3.5.6\,\mathrm{m}^2/\mathrm{g}$ 、平均粒子径 $\mathrm{D}_{50}=1.1.4\,\mu\,\mathrm{m}$ の乾燥粉末と水酸化リチウム一水塩の混合物を、 $1.0.00\,\mathrm{C}$ で焼成したこと以外は、(複合酸化物A1)と同様にして、 $\mathrm{D}_{50}=1.0.5\,\mu\,\mathrm{m}$ のリチウムーニッケルーマンガン複合酸化物(複合酸化物A2)を得た。

比表面積は $1.2m^2/g$ であった。又、全細孔容積は0.004029m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2. 894、格

子定数 c=14.33、結晶格子体積V=0.1039 n m^3 であることが分かった。

また、 $2\theta=18.56$ 度におけるピークに対する $2\theta=44.06$ 度におけるピークの相対強度比は0.98であり、各ピークの半値幅は、それぞれ0.188°及び0.141°であった。元素分析の結果、該粉末の組成は $Li_{1.02}Mn_{0.5}Ni_{0.5}O_2$ であることがわかった。

(複合酸化物A3)

前記(複合酸化物A1)に於いて得られたニッケルーマンガン複合共沈物の比表面積 $35.6\,\mathrm{m}^2/\mathrm{g}$ 、平均粒子径 $D_{50}=11.4\,\mu\,\mathrm{m}$ の乾燥粉末と水酸化リチウム一水塩の混合物を、 $950\,\mathrm{C}$ で焼成したこと以外は、(複合酸化物A1)と同様にして、 $D_{50}=10.5\,\mu\,\mathrm{m}$ のリチウムーニッケルーマンガン複合酸化物(複合酸化物A3)を得た。

比表面積は $1.6 \,\mathrm{m}^2/\mathrm{g}$ であった。又、全細孔容積は $0.006015 \,\mathrm{m}1/\mathrm{g}$ であった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2.889、格子定数c=14.30、結晶格子体積V=0.1034nm³であることが分かった。

また、 $2\theta=18.60$ 度におけるピークに対する $2\theta=44.10$ 度におけるピークの相対強度比は0.72であり、各ピークの半値幅は、それぞれ0.118°及び0.118°であった。元素分析の結果、該粉末の組成は $Li_{1.02}$ Mn0.5N $i_{0.5}$ O₂であることがわかった。

(複合酸化物A4)

前記(複合酸化物A1)に於いて得られたニッケルーマンガン複合共沈物の比表面積 $3.5.6 \text{ m}^2/\text{g}$ 、平均粒子径 $D_{50}=1.1.4 \mu \text{ m}$ の乾燥粉末と水酸化リチウム一水塩の混合物を、8.5.0 Cで焼成したこと以外は、(複合酸化物A1)と同

様にして、 $D_{50}=10.4 \mu m$ のリチウムーニッケルーマンガン複合酸化物を得た。

比表面積は3.5 m²/gであった。又、全細孔容積は0.01220 m l/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2. 895、格子定数c=14. 28、結晶格子体積V=0. 1036 n m^3 であることが分かった。

また、 $2\theta=18.65$ 度におけるピークに対する $2\theta=44.15$ 度におけるピークの相対強度比は0.63であり、各ピークの半値幅は、それぞれ0.118°及び0.176°であった。元素分析の結果、該粉末の組成は $Li_{1.02}$ Mn0.5Ni0.5O2であることがわかった。電子顕微鏡写真(SEM写真)を図4に示す。図3とは異なり、1次粒子は 1μ mを大きく下回り、粒子の発達が悪いのが認められる。このような結晶性の悪さが充放電サイクル性能を低下させる一因となっていると考えられる。

(複合酸化物A5;従来の中和法)

前記(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=14.5となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

1. 7モル/リットル硫酸ニッケル水溶液、1. 1モル/リットル硫酸マンガン水溶液をそれぞれ体積比で11: 17 (リットル)の割合で混合し、Ni/M n=1/1 (モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが14.5と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50℃と一定になるよう断続的に

ヒーターで制御した。

原料溶液の投入を開始してから120時間後に、オーバーフローパイプ13から連続的に24時間、反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガン複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガン複合共沈物として平均粒径 $(D_{50})=5$. 2μ mの乾燥粉末を得た。この粉末の比表面積を、ユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は100m²/gであった。

得られたニッケルーマンガン複合共沈物の粉末と水酸化リチウム一水塩粉末とをLi/(Ni+Mn)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1030℃まで昇温、1030℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、 75μ mのふるいを用いて分級し、 $D_{50}=10.2\mu$ mのリチウムーニッケルーマンガン複合酸化物(複合酸化物A5)を得た。

比表面積は $1.8 \text{ m}^2/\text{ g}$ であった。又、全細孔容積は0.007 m 1/ gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2. 889、格子定数c=14. 30、結晶格子体積V=0. 1034 n m^3 であることが分かった。

また、 $2\theta=18.60$ 度におけるピークに対する $2\theta=44.12$ 度におけるピークの相対強度比は0.77であり、各ピークの半値幅は、それぞれ0.212°及び0.282°であった。元素分析の結果、該粉末の組成は $Li_{1.02}Mn_{0.5}Ni_{0.5}O_2$ であることがわかった。

(複合酸化物A6;従来の粉体混合法)

電解二酸化マンガン粉末(γ-MnO2、純度92%)を湿式粉砕器にて平均粒

径2. 0μmに粉砕した。水酸化ニッケル粉末を湿式粉砕器にて平均粒径2. 0μmに粉砕した。そして、二酸化マンガン粉末と水酸化ニッケル粉末とをリチウムとマンガンの元素比が1:1になるように混合した。

得られたニッケルーマンガン混合粉末と水酸化リチウムー水塩粉末を L_1 /(N_1+M_1)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 $D_{50}=9$.5 μ mのリチウムーニッケルーマンガン複合酸化物(複合酸化物A6)を得た。比表面積は1.8 m^2 /gであった。又、全細孔容積は0.006423m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2.891、格子定数c=14.30、結晶格子体積V=0.1035 nm^3 であることが分かった。

また、 $2\theta=18.58$ 度におけるピークに対する $2\theta=44.12$ 度におけるピークの相対強度比は0.77であり、各ピークの半値幅は、それぞれ0.188。及び0.259。であった。元素分析の結果、該粉末の組成は $L_{1.02}$ Mn $_{0.5}$ Ni $_{0.5}$ O₂であることがわかった。

(複合酸化物A7;従来の粉体混合法)

電解二酸化マンガン粉末($\gamma-MnO_2$ 、純度 9.2%)を湿式粉砕器にて平均粒径 2.0μ mに粉砕した。水酸化ニッケル粉末を湿式粉砕器にて平均粒径 2.0μ mに粉砕した。そして、二酸化マンガン粉末と水酸化ニッケル粉末とをリチウムとマンガンの元素比が 1:1 になるように混合した。得られたニッケルーマンガン混合粉末と水酸化リチウム一水塩粉末をLi/(Ni+Mn)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて 1.00% 一時間で 1.00% この 1.00% に 1.00%

し、100C/時間で600Cまで冷却し、その後放冷した。得られた焼結体を粉砕後、 75μ mのふるいを用いて分級し、 $D_{50}=13.2\mu$ mのリチウムーニッケルーマンガン複合酸化物(複合酸化物A7)を得た。比表面積は $0.8m^2$ /gであった。又、全細孔容積は0.002715m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2. 883、格子定数c=14. 30、結晶格子体積V=0. $1029nm^3$ であることが分かった。

また、 $2\theta=18.60$ 度におけるピークに対する $2\theta=44.24$ 度におけるピークの相対強度比は0.76であり、各ピークの半値幅は、それぞれ0.188°及び0.259°であった。元素分析の結果、該粉末の組成は $Li_{1.02}Mn_{0.5}Ni_{0.5}O_2$ であることがわかった。

(複合酸化物A8)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1000rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

1. 7モル/リットル硫酸ニッケル水溶液、1. 1モル/リットル硫酸マンガン水溶液、6モル/リットル硫酸アンモニウム水溶液、及び4w t %ヒドラジン水溶液をそれぞれ体積比で6. 59:15. 27:1. 40:0. 36 (リットル) の割合で混合し、Ni/Mn=0. 4/0. 60 (モル比) の原料溶液とした

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50 ∞ と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後に、オーバーフローパイプ13から連続的に24時間、反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガン複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガン複合共沈物として平均粒径 $(D_{50})=10.6\mu m$ の乾燥粉末を得た。この粉末の比表面積を、ユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は39.4 m^2/g であった。

得られたニッケルーマンガン複合共沈物の粉末と水酸化リチウムー水塩粉末とをLi/(Ni+Mn)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1030℃まで昇温、1030℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =10.4 μ mのリチウムーニッケルーマンガン複合酸化物(複合酸化物A8)を得た。比表面積を、ユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は0.9 m^2 /gであった。

この複合酸化物の全細孔容積は、Quantachrome 社製 Nova1200 を用い、定容法で測定した。詳しくは、BJH法の脱離側によった。その結果、全細孔容積は0.002964m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、空間群R3/mと空間群C2/mとに属する層状構造混晶となった。該空間群C2/mは Li_2MnO_3 と考えられる。また、 $2\theta=18$. 7度におけるピークに対する $2\theta=44$. 1度におけるピークの相対強度比は0. 70であり、各ピークの半値幅は、それぞれ0. 141° 及び0. 141° であった。

元素分析の結果、該粉末の組成は $Li_{1.02}Mn_{0.6}Ni_{0.4}O_2$ であることがわかった

(複合酸化物A9)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶

液を加えた。 $70 \text{ mm} \phi$ パドルタイプの攪拌羽根12 a を備えた攪拌機12 を用 いて1000 r pmで攪拌し、ヒーターにより反応槽内溶液温度は50 C に保った (図 1 参照)。

1. 7モル/リットル硫酸ニッケル水溶液、1. 1モル/リットル硫酸マンガン水溶液、6モル/リットル硫酸アンモニウム水溶液、及び4wt%ヒドラジン水溶液をそれぞれ体積比で9. 88:10.18:1.40:0.36(リットル)の割合で混合し、Ni/Mn=0.6/0.4(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50%と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後に、オーバーフローパイプ13から連続的に24時間、反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガン複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガン複合共沈物として平均粒径 $(D_{50})=10.5\mu$ mの乾燥粉末を得た。この粉末の比表面積を、ユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は28.2 m^2/g であった。

得られたニッケルーマンガン複合共沈物の粉末と水酸化リチウム一水塩粉末とをLi/(Ni+Mn)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1030℃まで昇温、1030℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =10.5 μ mのリチウムーニッケルーマンガン複合酸化物(複合酸化物A9)を得た。比表面積を、ユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は0.3 m^2 /gであった。

この複合酸化物の全細孔容積は、Quantachrome 社製 Nova1200 を用い、定容法で測定した。詳しくは、BJH法の脱離側によった。その結果、全細孔容積は0

. 000926m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2.885、格子定数c=14.29、結晶格子体積V=0.1030 nm^3 であることが分かった。

また、 $2\theta=18.9$ 度におけるピークに対する $2\theta=44.6$ 度におけるピークの相対強度比は0.88であり、各ピークの半値幅は、それぞれ0.141。及び0.094。であった。

元素分析の結果、該粉末の組成は $Li_{1.02}Mn_{0.4}Ni_{0.6}O_2$ であることがわかった

(複合酸化物A10)

前記(複合酸化物A1)に於いて得られたニッケルーマンガン複合共沈物の比表面積 $3.5.6 \,\mathrm{m}^2/\mathrm{g}$ 、平均粒子径 $D_{50}=1.1.4 \,\mu\,\mathrm{m}$ の乾燥粉末と水酸化リチウムー水塩の混合物を、 $1.100\,\mathrm{C}$ で焼成したこと以外は、(複合酸化物A1)と同様にして、 $D_{50}=9.1 \,\mu\,\mathrm{m}$ のリチウムーニッケルーマンガン複合酸化物(複合酸化物A10)を得た。

比表面積は0.4 m²/gであった。又、全細孔容積は0.001266 m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2.886、格子定数c=14.27、結晶格子体積V=0.10209 nm^3 であることが分かった。

また、 $2\theta=18.6$ 度におけるピークに対する $2\theta=44.1$ 度におけるピークの相対強度比は1.15であり、各ピークの半値幅は、それぞれ0.107°及び0.090°であった。元素分析の結果、該粉末の組成は $\text{Li}_{1.02}\text{Mn}_{0.5}\text{N}$ $\text{i}_{0.5}\text{O}_2$ であることがわかった。

(Li-Mn-Ni複合酸化物の三元状態図について)

図6に示すように、複合酸化物A1~A7, A10は、組成式 Li_wMn_x N i_y Co $_z$ O $_z$ において、(x', y', z')が点A(0.51, 0.49, 0)と点B(0.45, 0.55, 0)と点C(0.25, 0.35, 0.4)と点D(0.31, 0.29, 0.4)とを頂点とする四角形ABCDの線上または内部に存在する範囲(線分AB上)の値となるような複合酸化物である。

(複合酸化物C1)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70 \text{mm} \phi$ パドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50rCに保った(図1参照)。

1. 7モル/リットル硫酸ニッケル水溶液、1. 1モル/リットル硫酸マンガン水溶液、1. 5モル/リットル硫酸コバルト水溶液、6モル/リットル硫酸アンモニウム水溶液、及び4w t %ヒドラジン水溶液をそれぞれ体積比で11:17:5. 0:1. 4:0. 42 (リットル)の割合で混合し、Ni/Mn/Co=5/5/2 (モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.3と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50 Cと一定になるよう断続的に ヒーターで制御した。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素

の脱離側で測定した。その結果は23.1m²/gであった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Co)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で100℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =9.54 μ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C1)を得た。

比表面積は $0.6 \,\mathrm{m}^2/\mathrm{g}$ であった。又、全細孔容積は $0.002151 \,\mathrm{m}1/\mathrm{g}$ であった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2.869、格子定数c=14.31、結晶格子体積V=0.1020 nm^3 であることが分かった。

また、 $2\theta=18.60$ 度におけるピークに対する $2\theta=44.30$ 度におけるピークの相対強度比は0.81であり、各ピークの半値幅は、それぞれ0.118°及び0.118°であった。元素分析の結果、該粉末の組成は $Li_{1.02}$ Mn $_{5/12}$ Ni $_{5/12}$ Co $_{2/12}$ O $_{2}$ であることがわかった。電子顕微鏡写真(SEM写真)を図5に示す。 1μ m程度の1次粒子が観察されるが、図3と比べて、よりその形状は発達しているのが分かる。Coの存在によって固相反応が促進されたものと考えられる。

(複合酸化物C2)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

1. 7モル/リットル硫酸ニッケル水溶液、1. 1モル/リットル硫酸マンガン水溶液、1. 5モル/リットル硫酸コバルト水溶液、6モル/リットル硫酸アンモニウム水溶液、及び4w t%ヒドラジン水溶液をそれぞれ体積比で11:17:8.3:1.4:0.46(リットル)の割合で混合し、Ni/Mn/Co=3/3/2(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.3と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50%と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $D_{50}=12.9\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は6.6 m²/gであった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Co)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100 $^{\circ}$ $^{\circ}$ / 上 $^{\circ}$ $^{\circ}$

比表面積は $0.4 \,\mathrm{m}^2/\mathrm{g}$ であった。又、全細孔容積は $0.001562 \,\mathrm{m}\,1/\mathrm{g}$ であった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2. 867、格子定数c=14. 30、結晶格子体積V=0. $1018nm^3$ であることが分かっ

た。

また、 $2\theta=18.65$ 度におけるピークに対する $2\theta=44.40$ 度におけるピークの相対強度比は0.76であり、各ピークの半値幅は、それぞれ0.059°及び0.176°であった。元素分析の結果、該粉末の組成は $L_{1.02}$ Mn $_{3/8}$ Ni $_{3/8}$ Co $_{2/8}$ O $_2$ であることがわかった。

(複合酸化物 C 3)

複合酸化物A1に用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350<math>rpm$ で攪拌し、ヒーターにより反応槽内溶液温度は50Cに保った(図1参照)。

1. 7モル/リットル硫酸ニッケル水溶液、1. 1モル/リットル硫酸マンガン水溶液、1. 5モル/リットル硫酸コバルト水溶液、6モル/リットル硫酸アンモニウム水溶液、及び4w t %ヒドラジン水溶液をそれぞれ体積比で11:17:12. 4:1. 4:0. 49 (リットル)の割合で混合し、Ni/Mn/Co=1/1/1 (モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.3と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50 $^{\circ}$ と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $D_{50}=9.8\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は12.0m²/gであった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウム一水

塩粉末をLi/(Ni+Mn+Co)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100 $^{\circ}$ $^{\circ}$ / 「時間で1000 $^{\circ}$ にで子温、1000 $^{\circ}$ にて15 時間保持し、100 $^{\circ}$ / 「時間で600 $^{\circ}$ とまで冷却し、その後放冷した。得られた焼結体を粉砕後、 75μ mのふるいを用いて分級し、 $D_{50}=11.3\mu$ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C3)を得た。

比表面積は0.6 m²/gであった。又、全細孔容積は0.002195 m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2. 864、格子定数c=14. 25、結晶格子体積V=0. $1012nm^3$ であることが分かった。

また、 $2\theta=18.65$ 度におけるピークに対する $2\theta=44.45$ 度におけるピークの相対強度比は0.75であり、各ピークの半値幅は、それぞれ0.118°及び0.118°であった。元素分析の結果、該粉末の組成は $Li_{1.02}$ Mn $_{1/3}$ N $i_{1/3}$ C $_{01/3}$ O $_{2}$ であることがわかった。

(複合酸化物C4)

前記(複合酸化物 C1)に於いて得られたニッケルーマンガンーコバルト複合 共沈物の比表面積 $23.1 \text{ m}^2/\text{ g}$ 、平均粒子径 $D_{50}=9.3 \mu \text{ m}$ の乾燥粉末と水 酸化リチウム一水塩の混合物を、950 $\mathbb C$ で焼成したこと以外は、(複合酸化物 $\mathbb C$ 1)と同様にして、 $D_{50}=9.5 \mu \text{ m}$ のリチウムーニッケルーマンガン複合酸化 物(複合酸化物 $\mathbb C$ 4)を得た。比表面積は $0.9 \text{ m}^2/\text{ g}$ であった。又、全細孔容 積は 0.03421 m 1/ g であった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2. 874、格子定数c=14. 30、結晶格子体積V=0. 1023 n m^3 であることが分かっ

た。

また、 $2\theta=18.60$ 度におけるピークに対する $2\theta=44.30$ 度におけるピークの相対強度比は0.72であり、各ピークの半値幅は、それぞれ0.176°及び0.192°であった。元素分析の結果、該粉末の組成は $Li_{1.02}$ Mn $s_{5/12}$ N $i_{5/12}$ C $o_{2/12}$ O $_2$ であることがわかった。

(複合酸化物C5)

前記(複合酸化物 C 1)に於いて得られたニッケルーマンガンーコバルト複合 共沈物の比表面積 2 3. 1 m^2 / g 、平均粒子径 D_{50} = 9. 3 μ m の乾燥粉末と水 酸化リチウムー水塩の混合物を、900℃で焼成したこと以外は(複合酸化物 C 1)と同様にして、 D_{50} = 9. 4 μ m のリチウムーニッケルーマンガン複合酸化 物(複合酸化物 C 5)を得た。

比表面積は1.6 m²/gであった。又、全細孔容積は0.05863 m l / gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2.878、格子定数c=14.27、結晶格子体積V=0.1024 nm^3 であることが分かった。

また、 $2\theta=18.60$ 度におけるピークに対する $2\theta=44.20$ 度におけるピークの相対強度比は0.69であり、各ピークの半値幅は、それぞれ0.180°及び0.170°であった。元素分析の結果、該粉末の組成は $Li_{1.02}Mn_{5/12}Ni_{5/12}Co_{8/12}O_{2}$ であることがわかった。

(複合酸化物 C 6)

前記(複合酸化物 C1)に於いて得られたニッケルーマンガンーコバルト複合 共沈物の比表面積 $23.1 \text{ m}^2/\text{ g}$ 、平均粒子径 $D_{50}=9.3 \mu \text{ m}$ の乾燥粉末と水 酸化リチウム一水塩の混合物を、950で焼成したこと以外は(複合酸化物 C1)と同様にして、 $D_{50}=9.6 \mu \text{ m}$ のリチウムーニッケルーマンガン複合酸化

物(複合酸化物C6)を得た。

ボールミルによる粉砕によって比表面積を $2.0 \,\mathrm{m}^2/\mathrm{g}$ に調節した。又、全細孔容積は $0.07153\,\mathrm{m}1/\mathrm{g}$ であった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2. 881、格子定数c=14. 26、結晶格子体積V=0. 1025 n m^3 であることが分かった。

また、 $2\theta=18.60$ 度におけるピークに対する $2\theta=44.30$ 度におけるピークの相対強度比は0.72であり、各ピークの半値幅は、それぞれ0.182°及び0.200°であった。元素分析の結果、該粉末の組成は $Li_{1.02}Mn_{5/12}Ni_{5/12}Co_{2/12}O_2$ であることがわかった。

(複合酸化物C7)

前記(複合酸化物C1)に於いて得られた高密度ニッケルーマンガン複合共沈物50gを、pH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた水酸化ナトリウム水溶液1リットルに投入した。 $70mm\phiパドルタイプの攪拌羽根を備えた攪拌機を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は<math>50\%$ に保った。

1. 5モル/リットル硫酸コバルト水溶液、及び、6モル/リットル硫酸アン モニウム水溶液をそれぞれ体積比で5.0:1.4 (リットル)の割合で混合し、コート共沈用の原料溶液とした。

高密度ニッケルーマンガン複合共沈物 50g に対し、(Ni+Mn)/Co=10/2 (モル比)となるよう、コート共沈用の原料溶液を計量した。

この原料溶液を反応槽に滴下した。また、反応槽内溶液pHが11.3と一定になるよう、32%水酸化ナトリウム水溶液を断続的に投入した。また反応槽内溶液温度が50 Cと一定になるよう断続的にヒーターで制御した。

原料溶液の投入を終了してから5時間後に、反応晶析物である"水酸化物もしくは酸化物と思われるコバルト複合共沈物により表面が被覆されたニッケルーマ

ンガン複合共沈物"のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100で20時間乾燥し、コバルト複合共沈物により表面が被覆されたニッケルーマンガン複合共沈物の $D_{50}=11$. 2μ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 $U2を用い、窒素の脱離側で測定した。その結果は<math>15.6m^2/g$ であった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Co)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100 $^{\circ}$ C/時間で100 $^{\circ}$ Cまで昇温、1000 $^{\circ}$ Cにて15時間保持し、100 $^{\circ}$ C/時間で600 $^{\circ}$ Cまで冷却し、その後放冷した。得られた焼結体を粉砕後、75 $^{\circ}$ mのふるいを用いて分級し、 D_{50} =12.6 $^{\circ}$ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C7)を得た。

比表面積は0.3 m²/gであった。又、全細孔容積は0.001285m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2.877、格子定数c=14.28、結晶格子体積V=0.1023 nm^3 であることが分かった。

また、 $2\theta=18.60$ 度におけるピークに対する $2\theta=44.20$ 度におけるピークの相対強度比は0.66であり、各ピークの半値幅は、それぞれ0.059°及び0.118°であった。元素分析の結果、該粉末の組成は $Li_{1.02}Mn_{5/12}Ni_{5/12}Co_{2/12}O_{2}$ であることがわかった。

(複合酸化物C8)

前記(複合酸化物 C1)に於いて得られた高密度ニッケルーマンガン複合共沈物 50g を、pH=11. 6となるよう、32% 水酸化ナトリウム水溶液を加えた水酸化ナトリウム水溶液 1 リットルに投入した。70 mm ϕ パドルタイプの攪拌羽根を備えた攪拌機を用いて 1350 r p mで攪拌し、ヒーターにより反応槽

内溶液温度は50℃に保った。

1. 5モル/リットル硫酸コバルト水溶液、及び、6モル/リットル硫酸アンモニウム水溶液をそれぞれ体積比で5.0:1.4(リットル)の割合で混合し、コート共沈用の原料溶液とした。

高密度ニッケルーマンガン複合共沈物 50g に対し、(Ni+Mn)/Co=2 0/1(モル比)となるよう、コート共沈用の原料溶液を計量した。

この原料溶液を反応槽に滴下した。また、反応槽内溶液pHが11.3と一定になるよう、32%水酸化ナトリウム水溶液を断続的に投入した。また反応槽内溶液温度が50%と一定になるよう断続的にヒーターで制御した。

原料溶液の投入を終了してから 5 時間後に、反応晶析物である"水酸化物もしくは酸化物と思われるコバルト複合共沈物により表面が被覆されたニッケルーマンガン複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを 100 ℃で 20 時間乾燥し、コバルト複合共沈物により表面が被覆されたニッケルーマンガン複合共沈物の $D_{50}=11$. 0 μ m の乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は15.6 m^2/g であった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Co)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =10.8 μ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C8)を得た。

比表面積は0.4 m²/gであった。又、全細孔容積は0.001625 m l/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。また、格子定数a=2. 889、格

子定数 c = 1 4.3 3、結晶格子体積 V = 0.1036 n m³ であることが分かった。

また、 $2\theta=18.65$ 度におけるピークに対する $2\theta=44.20$ 度におけるピークの相対強度比は0.99であり、各ピークの半値幅は、それぞれ0.188。及び0.118。であった。元素分析の結果、該粉末の組成は $\mathrm{Li}_{1.02}\mathrm{Mn}_{10/21}\mathrm{Ni}_{10/21}\mathrm{Co}_{1/21}\mathrm{O}_{2}$ であることがわかった。

(複合酸化物C9)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

0.789モル/リットル硫酸ニッケル水溶液、0.789モル/リットル硫酸マンガン水溶液、0.175モル/リットル硫酸コバルト水溶液、1.0モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1(リットル)の割合で混合し、Ni/Mn/Co=0.45/0.45/0.1(モル比)の原料溶液とした。

この原料溶液を $1.3 \,\mathrm{m}\,1/\mathrm{m}\,i$ $\mathrm{n}\,0$ 流量で反応槽に連続的に滴下した。また、 反応槽内溶液 $\mathrm{p}\,H$ が 1.1.8と一定になるよう、 $3.2\,\%$ 水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が $5.0\,\%$ と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから 120 時間後にオーバーフローパイプ 13 から連続的に 24 時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを 100 で 20 時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $D_{50}=10.5$ μ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は26.0m²/gであった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウム一水塩粉末をLi/(Ni+Mn+Co)=1. 02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、 75μ mのふるいを用いて分級し、 D_{50} = 10.6μ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C9)を得た。

比表面積は $0.6 \,\mathrm{m}^2/\mathrm{g}$ であった。又、全細孔容積は $0.001979 \,\mathrm{m}\,1/\mathrm{g}$ であった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。

また、 $2\theta = 18.60$ 度におけるピークに対する $2\theta = 44.40$ 度におけるピークの相対強度比は0.85であり、各ピークの半値幅は、それぞれ0.172°及び0.142°であった。

複合酸化物C9はCu $K\alpha$ 線によるエックス線回折分析の結果、 $2\theta/\theta=1$ 8.58°、36.56°、37.72°、38.20°、44.28°、48.40°、58.40°、64.12°、63.76°、68.02° に回折ピークを持つ、結晶性が高い六方晶の単相からなる α -NaFeO₂型層状構造であり、格子定数 a=2.881、格子定数 c=14.33、結晶格子体積V=0.1030 nm³であることが分かった。また、元素分析の結果、この粉末の組成は $Li_{1.02}$ Mn_{0.45}Ni_{0.45}Co_{0.10}O₂であった。

(複合酸化物C10)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

0.526モル/リットル硫酸ニッケル水溶液、0.526モル/リットル硫酸マンガン水溶液、0.701モル/リットル硫酸コバルト水溶液、1.0モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1(リットル)の割合で混合し、Ni/Mn/Co=0.45/0.45/0.1(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50%と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $D_{50}=10.2\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は31.0 m^2/g であった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Co)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で100℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75μ mのふるいを用いて分級し、 D_{50} =10.4μ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C10)を得た。

比表面積は $0.8 \,\mathrm{m}^2/\mathrm{g}$ であった。又、全細孔容積は $0.002760 \,\mathrm{m}\,1/\mathrm{g}$ であった。

該粉末のCuKα線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。

また、 $2\theta = 18.60$ 度におけるピークに対する $2\theta = 44.60$ 度におけ

るピークの相対強度比は0.65であり、各ピークの半値幅は、それぞれ0.165°及び0.125°であった。

ここで、調製した複合酸化物は $CuK\alpha$ 線によるエックス線回折分析の結果、複合酸化物C9と同様な結晶性が高い六方晶の単相からなる $\alpha-NaFeO_2$ 型層状構造であり、格子定数a=2. 863、格子定数c=14. 22、結晶格子体積V=0. 1010 nm^3 であることが分かった。また、元素分析の結果、この粉末の組成は $Li_{1.02}Mn_{0.30}Ni_{0.30}Co_{0.40}O_2$ であった。

(複合酸化物C11)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

0.877モル/リットル硫酸ニッケル水溶液、0.701モル/リットル硫酸マンガン水溶液、0.175モル/リットル硫酸コバルト水溶液、1.0モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1(リットル)の割合で混合し、Ni/Mn/Co=0.5/0.4/0.1(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50%と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $D_{50}=9$.8 μ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素

の脱離側で測定した。その結果は26.1m²/gであった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Co)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =10.1 μ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C11)を得た。

比表面積は0.7 m²/gであった。又、全細孔容積は0.002149 m 1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。

また、 $2\theta=18.60$ 度におけるピークに対する $2\theta=44.40$ 度におけるピークの相対強度比は0.89であり、各ピークの半値幅は、それぞれ0.190°及び0.134°であった。

ここで、調製した複合酸化物は $CuK\alpha$ 線によるエックス線回折分析の結果、複合酸化物C9と同様な結晶性が高い六方晶の単相からなる層状構造であり、格子定数 a=2. 880、格子定数 c=14. 32、結晶格子体積V=0. 102 8 n m^3 であることが分かった。また、元素分析の結果、この粉末の組成は $Li_{1.02}$ $Mn_{0.40}$ N $i_{0.50}$ C $o_{0.10}$ O₂ であった。

(複合酸化物C12)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phi$ パドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50Cに保った(図1参照)。

0. 614モル/リットル硫酸ニッケル水溶液、0. 438モル/リットル硫

酸マンガン水溶液、0.701モル/リットル硫酸コバルト水溶液、1.0 モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1:1(リットル)の割合で混合し、 N_{i} Mn/ C_{o} =0.35/0.25/0.4(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液を断続的に投入した。また反応槽内溶液温度が50 C と一定になるよう断続的にヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $D_{50}=10.0\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は27.8 m^2/g であった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウム一水塩粉末をLi/(Ni+Mn+Co)=1.01となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =10.2 μ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C12)を得た。

比表面積は $0.6\,\mathrm{m}^2/\mathrm{g}$ であった。又、全細孔容積は $0.001843\mathrm{m}\,\mathrm{l}/\mathrm{g}$ であった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。

また、 $2\theta = 18.60$ 度におけるピークに対する $2\theta = 44.60$ 度におけるピークの相対強度比は0.62であり、各ピークの半値幅は、それぞれ0.1

PCT/JP02/03862

54°及び0.118°であった。

ここで、調製したリチウム複合酸化物は $CuK\alpha$ 線によるエックス線回折分析の結果、複合酸化物C9と同様な結晶性が高い六方晶の単相からなる $\alpha-NaFe$ eO_2 型層状構造であり、格子定数a=2. 861、格子定数c=14. 20、結晶格子体積V=0. $1007nm^3$ であることが分かった。また、元素分析の結果、この粉末の組成は $Li_{1.01}Mn_{0.25}Ni_{0.35}Co_{0.40}O_2$ であった。

(複合酸化物C13)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

1. 227モル/リットル硫酸ニッケル水溶液、0.351モル/リットル硫酸マンガン水溶液、0.175モル/リットル硫酸コバルト水溶液、1.0モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1:1(リットル)の割合で混合し、Ni i/Mii/0:0=0.7/0.2/0.1(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液を断続的に投入した。また反応槽内溶液温度が50 $^{\circ}$ と一定になるよう断続的にヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $D_{50}=9$. 4μ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製 4 S U U 2 を用い、窒素の脱離側で測定した。その結果は 2 1 . 8 m^2 / g であった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Co)=1.01となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =9.4 μ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C13)を得た。

比表面積は0.7 m²/gであった。又、全細孔容積は0.002386 m1/gであった。

該粉末のCuKα線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。

また、 $2\theta=18.50$ 度におけるピークに対する $2\theta=44.20$ 度におけるピークの相対強度比は0.71であり、各ピークの半値幅は、それぞれ0.178°及び0.134°であった。

ここで、調製したリチウム複合酸化物は $CuK\alpha$ 線によるエックス線回折分析の結果、複合酸化物C9と同様に六方晶の $\alpha-NaFeO_2$ 型層状構造を有し、格子定数 a=2. 875、格子定数 c=14. 27、結晶格子体積V=0. 102 $2nm^3$ であることが分かった。また、元素分析の結果、この粉末の組成は $Li_{1.00}Mn_{0.20}Ni_{0.70}Co_{0.10}O_2$ であった。

(複合酸化物C14)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350<math>rpm$ で攪拌し、ヒーターにより反応槽内溶液温度は50Cに保った(図1参照)。

0.771モル/リットル硫酸ニッケル水溶液、0.877モル/リットル硫酸マンガン水溶液、0.105モル/リットル硫酸コバルト水溶液、1.0モル

/リットル硫酸アンモニウム水溶液、及び0.010 モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1:1 (リットル) の割合で混合し、N i/Mn/Co=0.44/0.50/0.06 (モル比) の原料溶液とした。

この原料溶液を $1.3 \,\mathrm{m}\,1/\mathrm{m}\,i\,n\,$ の流量で反応槽に連続的に滴下した。また、 反応槽内溶液 $p\,H$ が1.1.8と一定になるよう、 $3.2\,\%$ 水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が $5.0\,\%$ と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100 $^{\circ}$ で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $D_{50}=11.0~\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は $27.4 \text{ m}^2/\text{g}$ であった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Co)=0.99となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で100℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75μmのふるいを用いて分級し、 D_{50} =11.2μmのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C14)を得た。

比表面積は0.9 m²/gであった。又、全細孔容積は0.003066 m l/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。

また、 $2\theta=18.80$ 度におけるピークに対する $2\theta=44.80$ 度におけるピークの相対強度比は0.92であり、各ピークの半値幅は、それぞれ0.155°及び0.130°であった。

ここで、調製したリチウム複合酸化物は $CuK\alpha$ 線によるエックス線回折分析の結果、結晶性の低下によるものと思われる複合酸化物C9では見られなかった極小さいピークが観測されたものの六方晶に帰属可能な層状構造を有し、格子定数a=2. 890、格子定数c=14. 31、結晶格子体積V=0. 1035n m^3 であることが分かった。また、元素分析の結果、この粉末の組成は $Li_{0.99}M$ $n_{0.50}Ni_{0.44}Co_{0.06}O_2$ であった。

(複合酸化物C15)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

0.351モル/リットル硫酸ニッケル水溶液、0.351モル/リットル硫酸マンガン水溶液、1.052モル/リットル硫酸コバルト水溶液、1.0モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1(リットル)の割合で混合し、Ni/Mn/Co=0.2/0.2/0.6(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50 $^{\circ}$ と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $D_{50}=10.1\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は $31.0m^2/g$ であった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウム一水塩粉末をLi/(Ni+Mn+Co)=1.01となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =10.2 μ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C15)を得た。

比表面積は0.4 m²/gであった。又、全細孔容積は0.0013000m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。

また、 $2\theta=18.70$ 度におけるピークに対する $2\theta=44.80$ 度におけるピークの相対強度比は0.62であり、各ピークの半値幅は、それぞれ0.142°及び0.120°であった。

ここで、調製したリチウム複合酸化物は $CuK\alpha$ 線によるエックス線回折分析の結果、複合酸化物C9と同様に六方晶の $\alpha-NaFeO_2$ 型層状構造を有し、格子定数a=2. 8 4 7、格子定数c=1 4. 1 7、結晶格子体積V=0. 0 9 5 2 nm^3 であることが分かった。また、元素分析の結果、この粉末の組成は $Li_{1.01}Mn_{0.20}Ni_{0.20}Co_{0.60}O_2$ であった。

(複合酸化物C16)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

0.789モル/リットル硫酸ニッケル水溶液、0.789モル/リットル硫酸マンガン水溶液、0.175モル/リットル硫酸コバルト水溶液、1.0モル

/リットル硫酸アンモニウム水溶液、及び 0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1(リットル)の割合で混合し、Ni/Mn/Co=0.45/0.45/0.1(モル比)の原料溶液とした。

この原料溶液を $1.3 \,\mathrm{m}\,1\,/\mathrm{m}\,i$ nの流量で反応槽に連続的に滴下した。また、 反応槽内溶液 $p\,H$ が1.1 8と一定になるよう、 $3.2 \,\mathrm{%}$ 水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が $5.0 \,\mathrm{C}$ と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $D_{50}=10.5\,\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は26.0m²/gであった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Co)=1.01となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100 $^{\circ}$ C/時間で 1000 $^{\circ}$ Cにて15時間保持し、100 $^{\circ}$ 一時間で 600 $^{\circ}$ Cまで冷却し、その後放冷した。得られた焼結体を粉砕後、75 $^{\circ}$ $^{\circ}$ $^{\circ}$ 用いて分級し、 $^{\circ}$ $^{\circ$

BET法で測定した比表面積は0.9m²/gであった。又、全細孔容積は0.0032350m1/gであった。

該粉末の $CuK\alpha$ 線源を用いたエックス線回折測定の結果、 $2\theta=18.56$ 度、36.56度、37.76度、38.24度、44.32度、48.40度、58.40度、64.16度、64.80度、68.80度付近にそれぞれ回折ピークが認められ、空間群R 3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。元素分析の結果、該粉末の組成は $LiMn_{0.45}$ N $i_{0.45}$ C $o_{0.1}$ O₂であることがわかった。

(複合酸化物C17)

本実施例に用いた反応槽は、上部に反応晶析物スラリーを常に一定流量で系外 に排出するためのオーバーフローパイプを備えた円筒形のもので、容積は5 リッ トルである。

この反応槽に純水を4L入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。パドルタイプの攪拌羽根を備えた攪拌機を用いて回転速度1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った。

濃度1.0mo1/1の硫酸ニッケル(NiSO4)水溶液、濃度1.0mo1/1の硫酸ニッガン(MnSO4)水溶液、濃度1.0mo1/1の硫酸ニバルト(CoSO4)水溶液、濃度6mo1/1の硫酸アンモニウム((NH4) $_2$ SO4)水溶液及び4 $_2$ * は、とドラジン(NH $_2$ NH $_2$)水溶液をそれぞれ体積比で0.3 3:0.33:0.05:0.01の割合で混合し、元素比Ni/Mn/Co=1/1/1の原料溶液を作製した。この原料溶液を13 $_2$ mL/ $_2$ minの流量で反応槽に連続的に滴下した。また、反応槽内溶液 $_2$ Hが11.3と一定になるよう、32%水酸化ナトリウム水溶液を断続的に投入した。また反応槽内溶液の投入を開始してから50時間後にオーバーフローパイプから連続的に24時間反応晶析物であるNi-Mn-Co複合酸化物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100 $_2$ 0時間乾燥し、Ni-Mn-Co複合酸化物の乾燥粉末を得た。

得られたNi-Mn-Co複合酸化物と水酸化リチウム一水塩粉末をLi/(Ni+Mn+Co)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて、ドライエア流通下、100%)時間で100%でデ盟、100%にて15時間保持し、100%)時間で60%できで冷却し、その後放冷した。エックス線回折(XRD)分析の結果、Li-Ni-Mn-Co複合酸化物(複合酸化物C17)は空間群R3/mに帰属される単一相であることがわかった。ICP組成分析の結果、 $LiMn_{0.33}Ni_{0.33}$

Co_{0.33}O₂組成を確認した。

このようにして得られた粉体をD50%が 5μ m、そしてD10%が 1.3μ mとなるよう篩別した。粉体分布の計測は、堀場製作所製レーザ回折/散乱式粒度分布測定装置(HORIBA LA-910)を使用した。このときのBET比表面積は $0.8m^2/g$ となった。

(複合酸化物C18)

得られた粉体をD 5 0 %が 7 μ m、そしてD 1 0 %が 3 . 4 μ m となるよう篩別したことを除いては(複合酸化物 C 1 7)と同様にして粉体(複合酸化物 C 2 0)を得た。このときのB E T 比表面積は 0 . 9 m^2 / g となった。

(複合酸化物C19)

得られた粉体をD50%が $10\mu m$ 、そしてD10%が $6\mu m$ となるよう篩別したことを除いては(複合酸化物C17)と同様にして粉体(複合酸化物C21)を得た。このときのBET比表面積は $1.2m^2/g$ となった。

(複合酸化物 C 2 O)

得られた粉体をD50%が $0.8\mu m$ 、そしてD10%が $0.4\mu m$ となるよう篩別したことを除いては(複合酸化物C17)と同様にして粉体(複合酸化物C22)を得た。このときのBET比表面積は $9.0m^2/g$ となった。

(複合酸化物C21)

得られた粉体をD 5 0 %が $2 \mu m$ 、そしてD 1 0 %が 0. $4 \mu m$ となるよう篩別したことを除いては(複合酸化物 C 1 7)と同様にして粉体(複合酸化物 C 2 3)を得た。このときのBET比表面積は 7. $0 m^2/g$ となった。

(複合酸化物C22)

得られた粉体をD50%が $12.5\mu m$ 、そしてD10%が $7\mu m$ となるよう 節別したことを除いては(複合酸化物C17)と同様にして粉体(複合酸化物C

24) を得た。このときのBET比表面積は0.3m²/gとなった。

複合酸化物C17~C22の粉体に対して測定した粒度分布曲線の要部を図18に示す。

(複合酸化物C23)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

0.701モル/リットル硫酸ニッケル水溶液、0.701モル/リットル硫酸マンガン水溶液、0.351モル/リットル硫酸コバルト水溶液、1.0モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1(リットル)の割合で混合し、Ni/Mn/Co=0.4/0.4/0.2(モル比)の原料溶液とした。

この原料溶液を $1.3 \,\mathrm{m}\,1/\mathrm{m}\,i\,n\,0$ 流量で反応槽に連続的に滴下した。また、 反応槽内溶液 $p\,H$ が1.1.8と一定になるよう、 $3.2\,\%$ 水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が $5.0\,\%$ と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100 $^{\circ}$ で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $^{\circ}$ 0 $^{\circ}$ 10.7 $^{\circ}$ 1 $^{\circ}$ 100乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は30.6 m^2/g であった。

合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100°C/時間で1000°Cまで昇温、1000°Cにて15時間保持し、100°C/時間で600°Cまで冷却し、その後放冷した。得られた焼結体を粉砕後、 75μ mのふるいを用いて分級し、 $D_{50}=10$. 6μ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C23)を得た。元素分析の結果、この粉末の組成は $i_{1.02}$ Mn_{0.40}Ni_{0.40}Co_{0.20}O₂であった。

(複合酸化物C24)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

1.227モル/リットル硫酸ニッケル水溶液、0.351モル/リットル硫酸マンガン水溶液、0.175モル/リットル硫酸コバルト水溶液、1.0モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1(リットル)の割合で混合し、Ni/Mn/Co=0.7/0.2/0.1(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50 Cと一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の D_{50} =9.8 μ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は26.6m²/gであった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウム一水塩粉末をLi/(Ni+Mn+Co)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =9.6 μ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物C24)を得た。元素分析の結果、この粉末の組成はLi1.02Mn_{0.20}Ni_{0.70}Co_{0.10}O2であった。

(複合酸化物C25)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

この原料溶液を1.3m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが1.1.8と一定になるよう、3.2%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が5.0でと一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーコバルト複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーコバルト複合共沈物の $D_{50}=10.1\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は32.8m²/gであった。

得られたニッケルーマンガンーコバルト複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Co)=1.02となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =10.0 μ mのリチウムーニッケルーマンガンーコバルト複合酸化物(複合酸化物 C 2 4)を得た。元素分析の結果、この粉末の組成はLi $_{1,02}$ M $_{1,035}$ Ni $_{0,42}$ Co $_{0,23}$ O $_{2}$ であった。

(Li-Mn-Ni-Co複合酸化物の三元状態図について)

図6に示すように、複合酸化物C1~C12, C16~22は、組成式Li、 Mn_x Ni, Co_z O₂において、(x', y', z')が点A(0.51, 0.49, 0)と点B(0.45, 0.55, 0)と点C(0.25, 0.35, 0.4)と点D(0.31, 0.29, 0.4)とを頂点とする四角形ABCDの線上または内部に存在する範囲の値となるような複合酸化物である。また、C2, C3, C10, C17~C22は、(x', y', z')が点A'(0.41, 0.39, 0.2)と点B'(0.35, 0.45, 0.2)と点C(0.25, 0.35, 0.4)と点D(0.31, 0.29, 0.4)とを頂点とする四角形A'B'CDの線上または内部に存在する範囲の値となるような複合酸化物でもある。

(複合酸化物D1)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

0.868モル/リットル硫酸ニッケル水溶液、0.868モル/リットル硫

酸マンガン水溶液、0.018モル/リットル硫酸マグネシウム水溶液、1.0 モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1:1(リットル)の割合で混合し、Ni/Mn/Mg=0.495/0.495/0.01(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50 Cと一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーマグネシウム複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーマグネシウム複合共沈物の $D_{50}=10.8\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は32.3m²/gであった。

得られたニッケルーマンガンーマグネシウム複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Mg)=1.00となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =10.5 μ mのリチウムーニッケルーマンガンーマグネシウム複合酸化物(複合酸化物D1)を得た。

比表面積は0.6 m²/gであった。又、全細孔容積は0.001945 m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。

また、 $2\theta = 18$. 6度におけるピークに対する $2\theta = 44$. 1度におけるピ

ークの相対強度比は0.95であり、各ピークの半値幅は、それぞれ0.14°及び0.144°であった。

複合酸化物D1は $CuK\alpha$ 線によるエックス線回折分析の結果、結晶性が高い 六方晶の単相からなる $\alpha-NaFeO_2$ 型層状構造であり、格子定数a=2.891、格子定数c=14.31、結晶格子体積V=0.1036 n m³であることが 分かった。また、元素分析の結果、この粉末の組成は $LiMn_{0.495}Ni_{0.495}Mg_{0.01}$ O_2 であった。

(複合酸化物D2)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

0.694モル/リットル硫酸ニッケル水溶液、1.041モル/リットル硫酸マンガン水溶液、0.018モル/リットル硫酸マグネシウム水溶液、1.0 モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1:1(リットル) の割合で混合し、Ni/Mn/Mg=0.396/0.594/0.01(モル比) の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50 $^{\circ}$ と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーマグネシウム複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーマグネシウム複合共沈物の $D_{50}=11.4\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 $U2を用い、窒素の脱離側で測定した。その結果は<math>35.1 \text{ m}^2/\text{g}$ であった。

得られたニッケルーマンガンーマグネシウム複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Mg)=1. 00となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100 $^{\circ}$ に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100 $^{\circ}$ に間で1000 $^{\circ}$ にて15時間保持し、100 $^{\circ}$ 一時間で600 $^{\circ}$ まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 $^{\circ}$ μ mのふるいを用いて分級し、 $^{\circ}$ し、9 $^{\circ}$ μ mのリチウムーニッケルーマンガンーマグネシウム複合酸化物(複合酸化物D2)を得た。

比表面積は $0.7 \,\mathrm{m}^2/\mathrm{g}$ であった。又、全細孔容積は $0.002285 \,\mathrm{m}\,1/\mathrm{g}$ であった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、空間群R3/mと空間 群C2/mとに属する層状構造混晶となった。該空間群C2/mは Li_2MnO_3 と考えられる。

また、 $2\theta=18.6$ 度におけるピークに対する $2\theta=44.7$ 度におけるピークの相対強度比は0.7であり、各ピークの半値幅は、それぞれ0.17°及び0.19°であった。また、元素分析の結果、この粉末の組成は $LiMn_{0.594}$ N $i_{0.396}$ M $g_{0.01}$ O $_2$ であった。

(複合酸化物D3)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

1. 041モル/リットル硫酸ニッケル水溶液、0. 694モル/リットル硫酸マンガン水溶液、0. 018モル/リットル硫酸マグネシウム水溶液、1. 0モル/リットル硫酸アンモニウム水溶液、及び0. 010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1:1(リットル)の割合で混合し

、Ni/Mn/Mg=0.594/0.396/0.01 (モル比) の原料溶液 とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11. 8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50%と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーマグネシウム複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーマグネシウム複合共沈物の $D_{50}=9$. $9~\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は $31\,\mathrm{m}^2/\mathrm{g}$ であった。

得られたニッケルーマンガンーマグネシウム複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+Mg)=1.00となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =9.7 μ mのリチウムーニッケルーマンガンーマグネシウム複合酸化物(複合酸化物D3)を得た。

比表面積は $0.6 \,\mathrm{m}^2/\mathrm{g}$ であった。又、全細孔容積は $0.001945 \,\mathrm{m}\,\mathrm{l}/\mathrm{g}$ であった。

該粉末のCu Kα線によるエックス線回折測定の結果、複合酸化物 A1と同様な回折ピークが認められ、空間群 R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。

また、 $2\theta=18.6$ 度におけるピークに対する $2\theta=44.2$ 度におけるピークの相対強度比は0.88であり、各ピークの半値幅は、それぞれ0.14°及び0.146°であった。

ここで、調製した複合酸化物はCuKα線によるエックス線回折分析の結果、

複合酸化物D1と同様な結晶性が高い六方晶の単相からなる α -NaFeO₂型層状構造であり、格子定数a=2.883、格子定数c=14.3、結晶格子体積V=0.1031nm³であることが分かった。また、元素分析の結果、この粉末の組成はLi Mn_{0,396}Ni _{0,594}Mg_{0,01}O2</sub>であった。

(複合酸化物E1)

(複合酸化物A1)で用いた反応槽 1 1 を用い、この反応槽 1 1 に水を1 3 リットル入れた。さらにpH=11. 6 となるよう、3 2 %水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図 1 参照)。$

0.868モル/リットル硫酸ニッケル水溶液、0.868モル/リットル硫酸マンガン水溶液、0.018モル/リットル硫酸アルミニウム水溶液、1.0 モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1:1(リットル) の割合で混合し、Ni/Mn/A1=0.495/0.495/0.01(モル比)の原料溶液とした。

この原料溶液を1.3 m 1 / m i nの流量で反応槽に連続的に滴下した。また、 反応槽内溶液p H が 1.1 8と一定になるよう、3.2 %水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が5.0 %と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーアルミニウム複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーアルミニウム複合共沈物の $D_{50}=9$.6 μ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は28.8 m^2/g であった。

得られたニッケルーマンガンーアルミニウム複合共沈物粉末と水酸化リチウム

一水塩粉末を L_i / (N_i + M_n + A_1) = 1. 00となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100 $\mathbb C$ /時間で1000 $\mathbb C$ まで昇温、1000 $\mathbb C$ にて15時間保持し、100 $\mathbb C$ /時間で600 $\mathbb C$ まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} = 9. 4μ mのリチウムーニッケルーマンガンーマグネシウム複合酸化物(複合酸化物E1)を得た。

比表面積は $0.5m^2/g$ であった。又、全細孔容積は0.001605m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。

また、 $2\theta=18.6$ 度におけるピークに対する $2\theta=44.1$ 度におけるピークの相対強度比は1であり、各ピークの半値幅は、それぞれ0.13°及び0.135°であった。

複合酸化物E1は $CuK\alpha$ 線によるエックス線回折分析の結果、結晶性が高い 六方晶の単相からなる $\alpha-NaFeO_2$ 型層状構造であり、格子定数a=2.89、格子定数c=14.34、結晶格子体積 $V=0.1037nm^3$ であることが分かった。また、元素分析の結果、この粉末の組成は $LiMn_{0.495}Ni_{0.495}Al_{0.01}$ O_2 であった。

(複合酸化物 E 2)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

0.694モル/リットル硫酸ニッケル水溶液、1.041モル/リットル硫酸マンガン水溶液、0.018モル/リットル硫酸アルミニウム水溶液、1.0 モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラ

ジン水溶液をそれぞれ体積比で1:1:1:1(リットル)の割合で混合し、Ni/Mn/Al=0. 396/0. 594/0. 01(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50%と一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーアルミニウム複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーアルミニウム複合共沈物の $D_{50}=10.4\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は33m²/gであった。

得られたニッケルーマンガンーアルミニウム複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+A1)=1.00となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100℃/時間で1000℃まで昇温、1000℃にて15時間保持し、100℃/時間で600℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、75 μ mのふるいを用いて分級し、 D_{50} =9.9 μ mのリチウムーニッケルーマンガンーアルミニウム複合酸化物(複合酸化物E2)を得た。

比表面積は0.6 m²/gであった。又、全細孔容積は0.001945m1/gであった。

該粉末の $CuK\alpha$ 線によるエックス線回折測定の結果、空間群R3/mと空間群C2/mとに属する層状構造混晶となった。該空間群C2/mは Li_2MnO_3 と考えられる。

また、 $2\theta=18$. 9度におけるピークに対する $2\theta=44$. 8度におけるピークの相対強度比は0. 75であり、各ピークの半値幅は、それぞれ0. 16°及び0. 18°であった。また、元素分析の結果、この粉末の組成は100.594

Ni_{0.396}Al_{0.01}O₂であった。

(複合酸化物 E 3)

(複合酸化物A1)で用いた反応槽11を用い、この反応槽11に水を13リットル入れた。さらにpH=11.6となるよう、32%水酸化ナトリウム水溶液を加えた。 $70mm\phiパドルタイプの攪拌羽根12aを備えた攪拌機12を用いて1350rpmで攪拌し、ヒーターにより反応槽内溶液温度は50℃に保った(図1参照)。$

1. 041モル/リットル硫酸ニッケル水溶液、0.694モル/リットル硫酸マンガン水溶液、0.018モル/リットル硫酸アルミニウム水溶液、1.0 モル/リットル硫酸アンモニウム水溶液、及び0.010モル/リットルヒドラジン水溶液をそれぞれ体積比で1:1:1:1:1(リットル)の割合で混合し、Ni/Mn/A1=0.594/0.396/0.01(モル比)の原料溶液とした。

この原料溶液を13m1/minの流量で反応槽に連続的に滴下した。また、 反応槽内溶液pHが11.8と一定になるよう、32%水酸化ナトリウム水溶液 を断続的に投入した。また反応槽内溶液温度が50 Cと一定になるよう断続的に ヒーターで制御した。

原料溶液の投入を開始してから120時間後にオーバーフローパイプ13から連続的に24時間反応晶析物である水酸化物もしくは酸化物と思われるニッケルーマンガンーアルミニウム複合共沈物のスラリーを採取した。採取したスラリーを水洗、ろ過した。これを100℃で20時間乾燥し、ニッケルーマンガンーアルミニウム複合共沈物の $D_{50}=11\mu$ mの乾燥粉末を得た。

この粉末の比表面積はユアサアイオニクス社製4SU-8 U2を用い、窒素の脱離側で測定した。その結果は26.9 m²/g であった。

得られたニッケルーマンガンーアルミニウム複合共沈物粉末と水酸化リチウムー水塩粉末をLi/(Ni+Mn+A1)=1.00となるように秤量し、十分に混合した。これをアルミナ製こう鉢に充てんし、電気炉を用いて100 $\mathbb{C}/$ 時間で100 \mathbb{C} まで昇温、100 \mathbb{C} にて15時間保持し、100 $\mathbb{C}/$ 時間で6

00 ℃まで冷却し、その後放冷した。得られた焼結体を粉砕後、 75μ mのふるいを用いて分級し、 $D_{50}=10$. 4μ mのリチウムーニッケルーマンガンーアルミニウム複合酸化物(複合酸化物E3)を得た。

比表面積は0.5 m²/gであった。又、全細孔容積は0.001605 m1/gであった。

該粉末のCu Kα線によるエックス線回折測定の結果、複合酸化物A1と同様な回折ピークが認められ、空間群R3/mに属する層状構造と思われる結晶性の高い単相が合成できていることがわかった。

また、 $2\theta=18.6$ 度におけるピークに対する $2\theta=44.1$ 度におけるピークの相対強度比は0.94であり、各ピークの半値幅は、それぞれ0.143。及び0.18。であった。

ここで、調製した複合酸化物は $CuK\alpha$ 線によるエックス線回折分析の結果、複合酸化物E1と同様な結晶性が高い六方晶の単相からなる $\alpha-NaFeO_2$ 型層状構造であり、格子定数a=2. 883、格子定数c=14. 33、結晶格子体積V=0. 1032 nm^3 であることが分かった。また、元素分析の結果、この粉末の組成は $LiMn_{0.896}Ni_{0.594}Al_{0.01}O_2$ であった。

以上の複合酸化物の組成について、表にまとめて記載する。

表 1

		焼成前 前駆体			焼成後 複合酸化物		
複合酸 化物	組成	比表 面積 (m²/g)	D ₅₀ (μm)	コート 共沈	比表 面積 (m²/g)	全細孔 容積 (m1/g)	D ₅₀ (μm)
A1	Li _{1.02} Mn _{0.5} Ni _{0.5} O ₂	35.6	11.4	無	0.9	0.003291	9.1
A2	Li _{1.02} Mn _{0.5} Ni _{0.5} O ₂	35.6	11.4	無	1.2	0.004029	10.5
А3	Li _{1.02} Mn _{0.5} Ni _{0.5} O ₂	35.6	11.4	無	1.6	0.006015	10.5
A4	Li _{1.02} Mn _{0.5} Ni _{0.5} O ₂	35.6	11.4	無	3. 5	0.01220	10.4
A5	Li _{1.02} Mn _{0.5} Ni _{0.5} O ₂	100	5.2		1.8	0.007	10.2
A6	Li _{1.02} Mn _{0.5} Ni _{0.5} O ₂		_		1.8	0.006423	9.5
A7	Li _{1.02} Mn _{0.5} Ni _{0.5} O ₂		-	_	0.8	0.002715	13.2
A8	Li _{1.02} Mn _{0.6} Ni _{0.4} O ₂	39.4	10.6	_	0.9	0.002964	10.4
A9	Li _{1.02} Mn _{0.4} Ni _{0.6} O ₂	28. 2	10.5		0.3	0.000926	10.5
A10	Li _{1.02} Mn _{0.5} Ni _{0.5} O ₂	35. 6	11.4	無	.0.4	0.001266	9.1

表 2

	結晶構造								
複合酸		t° ーク	半値幅	半値幅	格子	定数	結晶格子体		
化物	空間群	強度比	18.6±1°	44.1±1°	а	С	積V(nm³)		
A1	R3/m	0.86	0.141	0. 141	2.889	14. 29	0. 1033		
A2	R3/m	0.98	0.188	0.141	2.894	14. 33	0, 1039		
A3	R3/m	0.72	0.118	0.118	2. 889	14. 30	0. 1034		
A4	R3/m	0.63	0.118	0.176	2.895	14. 28	0.1036		
A5	R3/m	0.51	0.212	0. 282	2. 889	14.30	0.1034		
A6	R3/m	0.60	0. 188	0. 259	2. 891	14.30	0. 1035		
A7	R3/m	0.76	0. 188	0. 259	2. 883	14. 30	0. 1029		
A8	R3/m+C2/m	0.70	_	_					
A9	R3/m	0.88	0.141	0.094	2. 885	14. 29	0. 1030		
A10	R3/m	1, 15	0. 107	0.090	2.886	14. 27	0.1029		

格子定数 a , c 、結晶格子体積 V (n m^3) は、金属リチウムが示す電位に対して 3 . $2\sim3$. 3 V の状態における数値である。

表 3

			前前	駆体	焼成後	後 複合西	後化物
複合酸 化物	組成	比表 面積 (m²/g)	D ₅₀ (μm)	コート共沈	比表 面積 (m²/g)	全細孔 容積 (ml/g)	D ₅₀ (μm)
C1	$\text{Li}_{1.02}\text{Mn}_{5/12}\text{Ni}_{5/12}\text{Co}_{2/12}\text{O}_{2}$	23. 1	9.3	無	0.6	0.002151	9.54
C2	${ m Li}_{1.02}{ m Mn}_{3/8}{ m Ni}_{3/8}{ m Co}_{2/8}{ m O}_2$	6.6	12. 9	無	0.4	0.001562	13.7
C3	$\text{Li}_{1.02}\text{Mn}_{1/3}\text{Ni}_{1/3}\text{Co}_{1/3}\text{O}_2$	12.0	9.8	無	0.6	0.002195	11.3
C4	Li _{1.02} Mn _{5/12} Ni _{5/12} Co _{2/12} O ₂ _	23. 1	9. 3	無	0.9	0.003421	9.5
C5	Li _{1.02} Mn _{5/12} Ni _{5/12} Co _{2/12} O ₂	23. 1	9.3	無	1.6	0.005863	9.4
C6	Li _{1.02} Mn _{5/12} Ni _{5/12} Co _{2/12} O ₂	23. 1	9.3	無	2.0	0.007153	9.6
C7	$\text{Li}_{1.02}\text{Mn}_{5/12}\text{Ni}_{5/12}\text{Co}_{2/12}\text{O}_{2}$	15.6	11.2	有	0.3	0.001285	12.6
C8	Li _{1.02} Mn _{10/21} Ni _{10/21} Co _{1/12} O ₂	15.6	11.0	有	0.4	0.001625	10.8
C9	$\text{Li}_{1.02}\text{Mn}_{0.45}\text{Ni}_{0.45}\text{Co}_{0.10}\text{O}_{2}$	26.0	10.5	無	0.6	0.001979	10.6
C10	Li _{1.02} Mn _{0.30} Ni _{0.30} Co _{0.40} O ₂	31.0	10.2	無	0.8	0.002760	10.4
C11	Li _{1.02} Mn _{0.40} Ni _{0.50} Co _{0.10} O ₂	26. 1	9.8	無	0.7	0.002149	10.1
C12	Li _{1.01} Mn _{0.25} Ni _{0.35} Co _{0.40} O ₂	27.8	10.0	無	0.6	0.001843	10.2
C13	Li _{1.00} Mn _{0.20} Ni _{0.70} Co _{0.10} O ₂	21.8	9.4	無	0.7	0.002386	9.4
C14	Li _{0.99} Mn _{0.50} Ni _{0.44} Co _{0.06} O ₂	27. 4	11.0	無	0.9	0.003066	11.2
C15	Li _{1,01} Mn _{0,20} Ni _{0,20} Co _{0,60} O ₂	31.0	10.1	無	0.4	0.001300	10.2
C16	LiMn _{0.45} Ni _{0.45} Co _{0.10} O ₂	26.0	10.5	無	0.9	0.003235	10.5

表 4

複合酸	% - □ >	粒度分布						
化物	組成	比表面積(m²/g)	D ₁₀ (μm)	D ₅₀ (μm)				
C17	LiMn _{0.33} Ni _{0.33} Co _{0.33} O ₂	0.8	1. 3	5				
C18	LiMn _{0.33} Ni _{0.33} Co _{0.33} O ₂	0.9	3. 4	7				
C19	LiMn _{0.33} Ni _{0.33} Co _{0.33} O ₂	1.2	6	10				
C20	LiMn _{0.33} Ni _{0.33} Co _{0.33} O ₂	9. 0	0.4	0.8				
C21	LiMn _{0.33} Ni _{0.33} Co _{0.33} O ₂	7, 0	0.4	2				
C22	LiMn _{0.33} Ni _{0.33} Co _{0.33} O ₂	0.3	7	12, 5				

表 5

20	結晶構造							
複合酸		ቲ° ーク	半値幅	-値幅 半値幅		定数	結晶格子体積	
化物	空間群	強度比	18.6±1°	44.1±1°	а	С	V (nm³)	
C1	R3/m	0.81	0.118	0.118	2. 869	14.31	0, 1020	
C2	R3/m	0.76	0.059	0.176	2.867	14. 30	0. 1018	
C3	R3/m	0.75	0.118	0.118	2.864	14. 25	0. 1012	
C4	R3/m	0.72	0.176	0. 192	2.874	14. 30	0. 1023	
C5	R3/m	0.69	0. 180	0.170	2.878	14. 27	0. 1024	
C6	R3/m	0.72	0.182	0.200	2. 881	14. 26	0. 1025	
C7	R3/m	0.66	0.059	0.118	2.887	14. 28	0.1023	
C8	R3/m	0.99	0.118	0.118	2. 889	14. 33	0.1036	
Ç9	R3/m	0.85	0.172	0.142	2. 881	14.30	0. 1028	
C10	R3/m	0.65	0.165	0.125	2.863	14. 22	0. 1010	
C11	R3/m	0.89	0.190	0.134	2.880	14. 32	0. 1028	
C12	R3/m	0.62	0. 154	0.118	2.861	14. 20	0. 1007	
C13	R3/m	0.71	0.178	0.134	2.875	14. 27	0. 1022	
C14	R3/m	0.92	0. 155	0.130	2, 890	14. 31	0. 1035	
C15	R3/m	0.62	0.142	0.120	2.847	14. 17	0.9952	

表 6

		焼成前 前駆体			焼成後	複合酸化物	
複合酸 化物	組成	比表 面積 (m²/g)	D ₅₀ (μm)	コート	比表 面積 (m²/g)	全細孔 容積 (ml/g)	D ₅₀ (μm)
D1	LiMn _{0.495} Ni _{0.495} Mg _{0.01} O ₂	32, 3	10.8	無	0, 6	0.001945	10.5
D2	LiMn _{0.594} Ni _{0.396} Mg _{0.01} O ₂	35.1	11.4	無	0.7	0.002285	10.9
D3	LiMn _{0.396} Ni _{0.594} Mg _{0.01} O ₂	31	9, 9	無	0.6	0.001945	9. 7
EI	LiMn _{0.495} Ni _{0.495} Al _{0.01} O ₂	28.8	9.6	無	0, 5	0.001605	9.4
E2	LiMn _{0.594} Ni _{0.396} Al _{0.01} O ₂	33	10.4	無	0.6	0.001945	9.9
E3	LiMn _{0.396} Ni _{0.594} Al _{0.01} O ₂	26. 9	11	無	0.5	0.001605	10.4

表 7

複合酸 化物		結晶構造								
	空間群	ピーク 半値幅		半値幅	格子	定数	結晶格子体			
	2月杆	強度比	18.6±1°	44.1±1°	a	c	積V(nm³)			
D1	R3/m	0. 95	0.14	0. 144	2, 891	14. 31	0.1036			
D2	R3/m+C2/m	0.7	0.17	0.19	— — —	-				
D3	R3/m	0.88	0.14	0. 146	2.886	14.3	0. 1031			
E1	R3/m	1	0.13	0. 135	2. 89	14. 34	0.1037			
E2	R3/m+C2/m	0. 75	0.16	0.18			_			
E3	R3/m	0. 94	0.143	0.18	2.883	14. 33	0.1032			

格子定数 a , c 、結晶格子体積 V (n m^3) は、金属リチウムが示す電位に対して 3 . $2\sim3$. 3 V の状態における数値である。

[電池(正極活物質として、複合酸化物A1~A10, C1~C8, D1~D3, E1~E3を使用した電池)の作製]

複合酸化物A1~A10, C1~C8, D1~D3, E1~E3の各々を、各電池に使用する正極活物質とした。

正極活物質である粉末、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン (PVdF)を重量比91:4.5:4.5で混合し、溶剤としてNーメチルピロリドンを加え、混練分散し正極塗布液を調製した。なお、前記ポリフッ化ビニリデンは固形分が溶解分散された溶解液を用い、固形分として重量換算した。前記正極塗布液を厚さ20 μ mのアルミ箔集電体の片面に塗布し、全体の厚さを105 μ mに調整して、正極板を作製した。

正極単体の挙動を確認するために、対極が金属リチウムとされたコイン型電池を作製した。ここで、コイン型電池は、図7に示すように、コイン電池電槽24の中に正極21と負極22とがセパレータ23を介して収容された後にコイン電池蓋25によって蓋をされた構成となっており、コイン電池電槽24とコイン電池蓋25との間には樹脂パッキン28が挿入されている。

より具体的には、前記正極板を、プレス加工した後、直径16mmの円形に打ち抜き、26.6 Pa以下の減圧下、150℃で12時間乾燥し正極21を得た。正極21は正極集電体26がコイン電池電槽24を向くようにコイン電池電槽

24の中に収容した。

また、200μm厚さの金属リチウムを直径16mmの円形に打ち抜き、金属 リチウムの負極22を得た。負極22は負極集電体27を挟み込むようにしてコ イン電池蓋25に圧着させて用いた。

非水電解質は、エチレンカーボネートとジエチルカーボネートとの体積比3:7の混合溶剤にLiPF。を1モル/リットル溶解した非水電解質を用いた。セパレータ23は、ポリプロピレン製微多孔膜を用いた。

上記正極21、負極22、セパレータ23及び電解液を用い、直径20mm、厚さ1.6mmのコイン型電池(I型)を作製した。

この対極リチウムのコイン電池を用い、25 ℃において、0.1I t A (10) 時間率)、4.3V、15 時間の定電流定電圧充電を行い、0.1I t A 、終止電圧 3V の定電流放電を5 サイクル行った。その時の5 サイクル目放電容量を下表に記載した。また、6 サイクル目に25 ℃において0.1I t A 、4.3V、1 5 時間の定電流定電圧充電を行い、-20 ℃において0.2I t A (5 時間率)、終止電圧3V の定電流放電を行い、-20 ℃、0.2I t A 放電容量として下表に記載した。5 サイクル目放電容量に対す5 -20 ℃、0.2I t A 放電容量の比を放電効率とし、この値により高率放電性能(低温高率放電性能)を評価した。

次に、充放電サイクル性能を測定するための電池として、負極板を以下のようにした以外は、コイン型電池(I型)と同様にしてコイン型電池(II型)を作製した。

人造黒鉛(粒径 10μ m)を負極材料として用い、結着剤であるポリフッ化ビニリデン(PVdF)を前記負極材料に対して10重量%加え、溶剤としてN-メチルピロリドンを加え、混練分散し、負極塗布液を調製した。なお、前記ポリフッ化ビニリデンは固形分が溶解分散された溶解液を用い、固形分として重量換算した。前記負極塗布液を厚さ 10μ mの銅箔集電体の片面に塗布し、全体の厚さを 85μ mに調整して、負極板を作製した。

この電池を用い、25℃において、0.5 I t A (2時間率)、4.2 V、3時

間の定電流定電圧充電を行い、0.5 I t A、終止電圧 3 Vの定電流放電を行った。放電容量 5 サイクル目の放電容量の80%に達したときのサイクル数を充放電サイクル性能として記載した。

[電池(正極活物質として、複合酸化物C9~C15を使用した電池)の作製] (正極の作製)

複合酸化物 C 9~ C 1 5 の各々を、各電池に使用する正極活物質とした。

正極活物質と導電剤であるアセチレンブラックと結着剤であるポリフッ化ビニリデン (PVdF) とを重量比85:10:5の割合で混合し、Nーメチルー2ーピロリドン (NMP) を加えて十分混練し、正極ペーストを得た。前記正極ペーストを厚さ20 μ mのアルミニウム箔集電体の片面に塗布し、プレス加工し、 $1 cm^2$ の円盤状に裁断した。

(負極の作製)

負極材料である人造黒鉛(平均粒径 6μ m、エックス線回折分析による面間隔 (d_{002}) 0.337 n m、c 軸方向の結晶の大きさ(L c)55 n m)と結着剤であるポリフッ化ビニリデン(P V d F)とを重量比95:5の割合で混合し、N—メチルー2ーピロリドン(N M P)を加えて十分混練し、負極ペーストを得た。次に、前記負極ペーストを厚さ15 μ mの銅箔集電体の片面に塗布後、プレス加工し、1 c m² の円盤状に裁断した。

(非水電解質の調製)

エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒に、含フッ素系電解質塩である $LiPF_6$ を1mol/lo濃度で溶解させ、非水電解質を作成した。非水電解質中の水分量は<math>20ppm未満とした

(コイン型電池の作製)

上述した部材を用いて、コイン型電池 (III型) を、露点が-50℃以下の乾

燥雰囲気下において、コイン型電池(I型)と同様にして作製した。

(充放電サイクル性能試験)

コイン型電池 (III型)をそれぞれ2個作製し、初期充放電を5サイクル行った。このときの充電条件は、電流0.1 I t A (10時間率)、4.2 Vの定電流定電圧充電とし、放電条件は、電流0.1 I t A (10時間率)、終止電圧を3.0 Vの定電流放電とした。引き続き、充放電サイクル試験として、充電を電流0.5 I t A、4.2 V、3時間の定電流定電圧充電、放電を電流0.5 I t A、終止電圧3.0 Vの定電流放電のサイクルを行った。充電後及び放電後には、それぞれ30分間の休止時間を設けた。

充放電サイクル性能試験において、放電容量が充放電サイクル性能試験を開始 した初期の放電容量に対して80%にまで低下したときのサイクル数(2個の電 池についての平均値)を充放電サイクル性能とした。

(高率放電性能試験)

コイン型電池 (I型) (対極リチウムのコイン電池) を作製し、上記と同様に、 放電効率を算出し、この値により、高率放電性能の一つである低温高率放電性能 を評価した。

以上のように作製した電池と電池性能との関係をまとめて表8~10に示す。

表 8

		電池性能						
電池	正極活物質	5 サイクル目 放電容量 (mAh/g)	-20℃,0.2ItA 放電容量 (mAh/g)	サイクル 性能	放電効率 (%)			
実施例 1-1	複合酸化物 A1	146	48	500	32. 9			
実施例 1-2	複合酸化物 A2	148	52	480	35, 1			
実施例 1-3	複合酸化物 A3	149	53	470	35. 6			
実施例 1-4	複合酸化物 A4	149	45	200	30. 2			
実施例 1-5	複合酸化物 A5	152	62	300	40.8			
実施例 1-6	複合酸化物 A6	120	20	250	16. 7			
実施例 1-7	複合酸化物 A7	140	30	400	21. 4			
比較例 1-1	複合酸化物 A8	100	10	95	10, 0			
比較例 1-2	複合酸化物 A9	150	47	300	31. 3			
実施例 1-8	複合酸化物 A10	125	38	450	30. 4			

放電効率 (%): 「-20℃, 0.2ItA 放電容量」 / 「5 サイクル目放電容量」×100

表 9

- X 3			海 沙山 小叶	<u></u>				
		電池性能						
電池	正極活物質	5 サイクル目 放電容量	-20℃, 0. 2ItA 放電容量	サイクル 性能	放電効率 (%)			
		(mAh/g)_	(mAh/g)					
実施例 2-1	複合酸化物 C1	160	99	550	61. 9			
実施例 2-2	複合酸化物 C2	153	87	540	56. 9			
実施例 2-3	複合酸化物 C3	160	107	550	66. 9			
実施例 2-4	複合酸化物 C4	160	95	540	59. 4			
実施例 2-5	複合酸化物 C5	160	90	530	56. 3			
実施例 2-6	複合酸化物 C6	160	104	400	65.0			
実施例 2-7	複合酸化物 C7	140	99	550	70. 7			
実施例 2-8	複合酸化物 C8	128	84	560	65. 6			
実施例 2-9	複合酸化物 C9	160	94	610	58.8			
実施例 2-10	複合酸化物 C10	155	115	700	74. 2			
実施例 2-11	複合酸化物 C11	162	94	590	58. 0			
実施例 2-12	複合酸化物 C12	155	110	670	71.0			
比較例 2-1	複合酸化物 C13	166	100	460	60. 2			
実施例 2-13	複合酸化物 C14	160	60	400	37. 5			
実施例 2-14	複合酸化物 C15	158	120	560	75. 9			

放電効率 (%): 「-20℃, 0.2ItA 放電容量」/「5 サイクル目放電容量」×100

表10

		電池性能					
電池	正極活物質	5 サイクル目 放電容量 (mAh/g)	-20℃, 0. 2ItA 放電容量 (mAh/g)	サイクル 性能	放電効率 (%)		
実施例 3-1	複合酸化物 D1	145	45	510	31. 0		
比較例 3-1	複合酸化物 D2	130	40	500	30.8		
比較例 3-2	複合酸化物 D3	150	43	450	28. 7		
実施例 4-1	複合酸化物 E1	140	43	500	30. 7		
比較例 4-1	複合酸化物 E2	110	35	490	31. 8		
比較例 4-2	複合酸化物 E3	150	40	430	26. 7		

放電効率 (%): [-20℃, 0.2ItA 放電容量] / [5 サイクル目放電容量] × 1 0 0

また、以下、上記表に記載のデータに基づいて作製されたグラフを用いて、実施例と比較例とを比較する。グラフ中、"E1-1"とは"実施例1-1"のことを意味し、他の番号においても同様とする。グラフ中、放電容量とは、"5サイク

ル目放電容量"に相当する。

(共沈工程時のpH依存性)

リチウムーマンガンーニッケル複合酸化物の製造において、pHを変えて、複合共沈物 (複合酸化物前駆体)の作製を行ったところ、pHを10~13の範囲内とすることにより、好ましい物性を有する複合酸化物を得ることができることが分かった。すなわち、pHが10を下回る場合には、金属イオンとアンモニウムイオンとの錯体形成が不完全となってしまい、酸一塩基反応が優先的に起こる結果、全細孔容積が大きく、低密度の複合酸化物となる。一方、pHが13を上回る場合には、金属ーアンミン錯塩の形成が安定となって、共沈反応速度が抑制されるためか、全細孔容積の小さい、より高密度な複合酸化物が得られる。

全細孔容積は、異種元素の一定量添加、焼成温度の向上、焼成時間の長期化によって、内部細孔容積を縮小することが可能ではあるが、高い焼成温度、長い焼成時間は焼成時の生産性を低下させるため好ましくない。異種元素の添加によっても、一定の温度と一定の時間をかけて、ニッケルとマンガンと異種元素の固溶置換(特にニッケルとマンガンとの固溶置換)を均一に行う必要があり、焼成前粉体を、ニッケルとマンガンとの固溶置換がより均一に行われた緻密な原料とすることは、焼成時間を短く出来、生産性を上げられることから、非常に重要である。

p Hが上記範囲内とされた共沈工程を経由して製造されたリチウムーマンガン ーニッケル複合酸化物は、適度な全細孔容積を有するとともに、複合酸化物を構 成する二次粒子が球状であるので、従来の方法に準じて、異種元素の一定量添加 、焼成温度の向上、焼成時間の長期化などがなされたリチウムーマンガンーニッ ケル複合酸化物と比較して、内部細孔容積が比較的高いにもかかわらず、高密度 なリチウムーマンガンーニッケル複合酸化物である。

(比表面積と全細孔容積との関係)

従来法によるリチウムーマンガンーニッケル複合酸化物と本発明に係る製造方法に規定の共沈法による高密度活物質(リチウムーマンガンーニッケル複合酸化

物)の全細孔容積と比表面積を窒素吸着等温線の脱離側より算出した。

その結果、共沈工程時の水溶液のpHや攪拌速度、焼成時間や焼成温度、及び 異種元素の添加によって、得られる複合酸化物の全細孔容積と比表面積はともに 変化した。

(焼成条件に対する全細孔容積と比表面積の関係)

焼成温度が850 C とされた複合酸化物 A 4 は、比表面積が約 $3.5 \text{ m}^2/\text{g}$ となった。ここで、全細孔容積は0.122 m 1/g であり、粒子容積(0.22 0 m 1/g) の5.5% であった。

焼成温度が1030℃とされた複合酸化物A1は、比表面積が約0.89 m²/gとなったが、その全細孔容積は0.0033 m1/gであり、粒子容積(0.220 m1/g)の1.5%にまで低減することができた。

(焼成温度に対する比表面積と充放電サイクル性能の関係)

Li $Mn_{0.5}Ni_{0.5}O_2$ 作製時の焼成温度に対する比表面積と充放電サイクル性能の関係グラフ(図 8 参照)に示すように、焼成温度を高くすると、前記したように、全細孔容積が低下して高密度な $LiMn_{0.5}Ni_{0.5}O_2$ が得られ、優れた充放電サイクル性能を得ることができたが、焼成温度を低くすると、850 \sim 95 \sim 0 \sim 0間で、突如として充放電サイクル性能の低下が起こった。

これは、焼成温度が低いことによって、固相反応が進行せず、Lio拡散経路が阻害されたことに加えて、結晶粒子間の粒界や微細な割れなどの存在により、充電時にLi引き抜きに起因する粒子の歪みが大きくなり、正極活物質が割れるなどして、性能低下したものと考えられる。このことから、 $LiMn_{0.5}Ni_{0.5}O_2$ 組成に於いては、900C以上の焼成が好ましいことが判った。

(全細孔容積(比表面積)に対する放電容量と充放電サイクル性能の関係)

 $LiMn_{0.5}Ni_{0.5}O_2$ の全細孔容積(比表面積)に対する放電容量とサイクル性能の関係グラフ(図9参照)に示すように、全細孔容積が0.002m1/g以下において、放電容量が低下する傾向となった。

また、図9に示すように、全細孔容積が0.006m1/gを越えると、サイクル性能が低下する傾向となった。これは、充放電に於ける歪み、特に充電時の収縮歪みによる電極崩壊や、電解液の酸化分解による容量低下などが考えられる

以上により、複合酸化物の全細孔容積は、特に $LiMn_{0.5}Ni_{0.5}O_2$ については、全細孔容積が0.002m1/gから0.006m1/gの範囲が、高い放電容量と優れた充放電サイクル性能とを両立できるので、好ましいことが分かった

(Mn-Ni系酸化物へのCo元素の固溶置換効果)

共沈製法により作成されるとともに、MnとNiが等モル量で、同じ焼成条件 (1000°C、15時間)である実施例1-1、2-1~2-3、2-9~2-10の比較からわかるように、Co量と高率放電性能には、若干の誤差は認められるものの、比例関係となることが分かった。

しかしながら、Coo回溶置換によって、結果として、Lid ンの移動自由度が増加したのは、充電時において $LiMn_{0.5}Ni_{0.5}O_2$ のLid ンが引き抜かれる反応の自由度が、 $LiMn_{0.5}Ni_{0.5}O_2$ の酸素電子状態に影響するため、層状構造の構成体である-Mn-O-Ni-O-oMn、Ni&Co で固溶置換することによって、Oo電子状態が変化し、Lid ンの移動自由度を向上させることが出来たのではないかと考えられる。

また、前記したように、 $LiCoO_2$ は、充電時にLiTオンが引き抜かれる際に結晶格子サイズが膨張する材料であるが、このような特性を付与しうるCoによりMn、 $Niを一定量置換することで、<math>LiMn_{0.5-x}Ni_{0.5-y}Co_{x+y}O_2$ の収縮が

PCT/JP02/03862

緩和されたか、収縮が起こっても歪みが小さくなったかのいずれかが起こり、これによって、充放電サイクル性能をより優れたものとするとともに、比表面積と 細孔容積が大きくなっても、充放電サイクル性能をより高次元で維持できたもの

WO 02/086993

と考えられる。

実施例3-1にあるように、 $LiMn_{0.6}Ni_{0.6}O_2$ に対して、Mgを1%固溶置換したところ、未置換体と同様な層状構造を維持し、高密度な粒子が得られた。Mgの固溶置換によって、充放電サイクル性能は増加する傾向を示した。また、比較例3-1にあるように、Mn量がNi量を大きく上回る場合には、空間群C2/m構造を有する Li_2MnO_3 と思われる不純物の生成によって、放電容量はさらに低下した。また、比較例3-2にあるように、Ni量がMn量を上回る場合においては、初期の放電容量は未固溶置換体と比較して高くなるものの、充放電サイクル性能は逆に低下した。

また、実施例4-1にあるように $LiMn_{0.5}Ni_{0.5}O_2$ に対して、A1を1%固溶置換した場合においても実施例3-1と同様な傾向を示した。

これらの元素置換の効果としては、置換元素が結晶化を促進することによって 、充放電に伴う結晶構造の変化を抑制しているものと考えることができる。

(エックス線回折ピークの相対強度比に対する放電容量と充放電サイクル性能の 関係)

図10は、 $LiMn_{0.5}Ni_{0.5}O_2$ の $CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:18.6\pm1^\circ$ における回折ピークに対する $2\theta:44.1\pm1^\circ$ における回折ピークの相対強度比と放電容量の関係グラフである。

図10に示すように、相対強度が1.05を越えると、放電容量が大きく低下した。

これは、粉末エックス線回折図を用いたリーベルト解析によれば、前記相対強度比は各構成元素の占有しているサイト間の元素置換と関連づけることができる。 焼成温度が高い、焼成時間が長いなどによって、たとえば、ニッケル、マンガン、もしくはコバルト元素がリチウムとサイト交換を起こすことで、前記相対強度比が増加する傾向を示す。

以上より、 $2\theta:18.6\pm1^\circ$ における回折ピークに対する $2\theta:44.1\pm1^\circ$ における回折ピークの相対強度比の値が大きい $LiMn_{0.5-x}Ni_{0.5-y}M_{x+y}$ O_2 は、比表面積と全細孔容積が小さく高密度となるが、放電容量が低下するため、前記相対強度比は1.05以下であるのが望ましい。

図11は、 $LiMn_{0.5}Ni_{0.5}O_2$ の $CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:18.6\pm1$ °における回折ピークに対する $2\theta:44.1\pm1$ °における回折ピークの相対強度比と充放電サイクル性能の関係グラフである。

図11に示すように、相対強度比が0.65をより小さくなると、充放電サイクル性能が大きく低下した。

これは、固相反応が十分に進行しておらず、結晶構造が形成されていないために、Liの拡散が円滑に行われていないことに対応していると考えられる。

一方、従来の中和法あるいは粉体混合法で作製した $LiMn_{0.5}Ni_{0.5}O_2$ は、放電容量と充放電サイクル性能とが共に劣る結果となっているが、これは、前者の中和法の場合には、 Li_2MnO_3 などのR3/mとは異なる不純物の存在によるためで、これは、複合酸化物前駆体中のMn価数が制御されなかったことに起因していると考えられる。また、後者の粉体混合の場合には、焼成時に固相反応が十分に進行しないために、結晶構造の発達が不十分であることに起因している。

以上より、均一な混合状態をなされている材料として、 $2\theta:18.6\pm1^\circ$ における回折ピークに対する $2\theta:44.1\pm1^\circ$ における回折ピークの相対強度比は、0.65以上が望ましい。

(2 θ :18.6 \pm 1°における半値幅に対する放電容量と充放電サイクル性能の関係)

図12は、 $LiMn_{0.5}Ni_{0.5}O_2$ の $CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:18.6\pm1$ °における半値幅と放電容量の関係グラフである。18.6°に於ける半値幅は、0.050以上0.200以下の範囲において、放電容量と相関がないものと考えられる。

図13は、 $LiMn_{0.5}Ni_{0.5}O_2$ の $CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:18.1\pm1^\circ$ における半値幅と充放電サイクル性能の関係グラフで

ある。実施例の電池においては、2 θ :18.1 \pm 1°に於ける半値幅は、充放電サイクル性能と相関がないものと考えられる。

しかしながら、従来の中和法と粉体混合法に基づいて作製された $LiMn_{0.5}N$ $i_{0.5}O_2$ は、 $2\theta:18.1\pm1^\circ$ における半値幅が0.200 付近となり、充放 電サイクル性能は、低下する傾向が見られた。

これは、従来の中和法と粉体混合法で混合焼成した $LiMn_{0.5}Ni_{0.5}O_2$ は、 $Ni_{0.5}O_2$ は、

 $(2\theta:44.1\pm1^\circ$ における半値幅に対する放電容量と充放電サイクル性能の関係)

図14は、 $LiMn_{0.5}Ni_{0.5}O_2$ の $CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:44.1\pm1$ °における半値幅と放電容量の関係を示す。

 $L~i~Mn_{0.5}N~i_{0.5}O_2$ 組成の実施例の電池において、放電容量は、 $2~\theta:4~4.1$ 1 $\pm~1$ ° に於ける半値幅が0.~1~0~0付近で、低下の傾向を示した。

図15は、 $LiMn_{0.5}Ni_{0.5}O_2$ の $CuK\alpha$ 線を使用した粉末エックス線回折図の、2 $\theta:44.1\pm1$ °における半値幅と充放電サイクル性能の関係を示す。

 $Li Mn_{0.5} Ni_{0.5} O_2$ 組成の実施例の電池において、充放電サイクル性能は、 44.1 ± 1 ° に於ける半値幅が0.170° 付近で、低下の傾向を示した。尚、従来の中和法と粉体混合法に基づいて作製された電池は、 $2\theta:44.1\pm1$ ° に於いて、半値幅が0.250を越えており、結晶の均一性が不十分であるためか、充放電サイクル性能は、低下する傾向が見られた。

以上より、 $2\theta:44.1\pm1$ °に於ける半値幅が0.100°以上0.200°以下である場合、優れた充放電サイクル性能と高い放電容量とを維持することが判った。

(充電量に対する格子間距離と結晶格子体積との関係)

図16に示すように、異種元素Mで固溶置換したLi。 $Mn_{0.6-x}Ni_{0.5-y}M_{x+y}O_2$ で表される複合酸化物、特に、 $MをCoとしたLi。<math>Mn_{0.5-x}Ni_{0.5-y}Co_{x+y}O_2$ (実施例2-1の電池の正極活物質としての複合酸化物C1)は、充電前のa軸、c軸の格子間距離が共に、 $LiMn_{0.5}Ni_{0.5}O_2$ (実施例1-1の電池の正極活物質としての複合酸化物A1)と比較して、わずかに縮小しており、結晶格子体積は低下していることが確認された。また、充電状態におけるc軸の格子間距離においては、複合酸化物C1が複合酸化物A1を若干上回るものの、充電状態におけるa 軸の格子間距離においては、充電前の縮小差がほぼ維持されており、図17に示すように、異種元素Mで固溶置換した場合の結晶格子体積(複合酸化物C1)は、異種元素Mで固溶置換していない場合の結晶格子体積(複合酸化物A1)と比較して小さいことが確認された。

このため、異種元素Mによって全細孔容積が少なくても放電容量が確保しやすい原因として、結晶格子体積が増加してLiイオンの動きの自由度が増加したのではなく、異種元素Mが結合する酸素の電子状態に影響を与え、Liイオンの動き自由度が増したものと考えられる。

また、コート共沈法による高密度リチウムーニッケルーマンガンーコバルト複合酸化物は焼成によってほぼ単一層の複合酸化物になっているものの、共沈体に比較して、若干、充放電サイクル性能に優れていることから、Coの添加効果は表面場での収縮ひずみを低下させる効果があったものと思われる。

以上の実施例の結果より、置換量を10%以上とした $LiMn_{5/12}Ni_{5/12}Co_{2/12}O_2$ よりCoが多い $LiMn_{0.5-x}Ni_{0.5-y}M_{x+y}O_2$ を正極活物質として使用すれば、従来のリチウムイオン電池との互換性に優れた $4.3V\sim3.0V$ という作動電位が得られること、及び、160mAh/gという高い放電容量が得られることを確認した。

尚、正極活物質としてLiを多くした組成式Li $_a$ M $_{0.5-x}$ Ni $_{0.5-x}$ M $_{x+y}$ O $_2$ で表される複合酸化物を使用した場合についても、同様な評価を行った結果、 $_a$ が $_1$. 1を超えると初期放電容量が低下する傾向が得られた。これは、未反応のリチウムがLi $_a$ CO $_a$ となって電池の抵抗を増加させたものと考えられる。 $_a$ <1. 3においては、初期放電容量および充放電サイクル性能、共に、実施例と同様な

性能が得られ、電池性能が低下する傾向は見られなかった。Liをリッチにした場合、高温での焼成時に結晶の成長がしやすくなる傾向が得られており、焼成時間が短縮できるといった効果も確認できている。したがって、Liをリッチにした場合、Liイオン移動をしやすくする効果に加え、焼成時の結晶化を助ける効果があるものと考えられる。

(格子定数とCo固溶置換)

実施例2-9及び2-10の電池と実施例1-2の電池との比較などから分かるように、Ni, Mnの組成比が同じで有れば、Co置換量の多いリチウム複合酸化物ほど、格子定数 a、格子定数 c が小さくなり、結晶格子体積は、Li CoO2のそれに近づいていく。このことは、Li-Mn-Ni酸化物とLi CoO2とが固溶関係にあることを示唆している。

(充放電サイクル性能と格子定数)

結晶単位格子の格子定数および体積が上記した好適な範囲内とされた実施例2-9~実施例2-12などの電池は、上記した好適な範囲外とされた実施例2-13の電池と比較して、サイクル寿命が高いことが確認された。

また、充放電サイクル性能は、組成中のCo置換量が多く、格子定数が少なくなるにつれて、改善される方向に向かっている。

Li-Ni-Mn複合酸化物は、充電状態において格子定数 a は縮み、格子定数 c が広がるため、結晶格子が歪んだ構造となるが、この時、格子定数 a の縮みが大きいため、結果として、結晶単位格子の体積は減少する。

一方、Li-Ni-Mn複合酸化物と同じ層状構造を持つLiCoO2の充電末 状態は、格子定数cが酸素層間の静電斥力のため広がるものの、格子定数aはほ とんど変化しないため、結晶格子の歪みは小さく、結果として、結晶単位格子の 体積は、格子定数cの影響で増える。

従って、実施例のLi-Ni-Mn-Co複合酸化物は、Coの存在により、 充電状態における格子定数 a の減少が抑えられることにより結晶格子の歪みが小 さく、充放電の繰り返しによる劣化が抑えられているものと考えられる。 (充放電サイクル性能とNi/Mn比)

Ni/Mn比が1/1からNi側にずれている実施例2-11及び2-12の電池は、Niの増加に伴いLiNiO₂由来の充電時の熱的不安定性が増すものの、その不安定性を中和できる量のCoが存在するために良好な充放電サイクル性能を維持している。

しかしながら、比較例 2-1 の電池のようにN i が過剰に存在する場合は、特性的にはL i N i O_2 とほぼ同等であり、C o 置換による改善効果はほとんど皆無であるからだと考えられ、初期放電容量は高いものの充放電サイクル性能は悪くなった。

また、Mnが過剰に存在する場合には六方晶系単独で存在することが不可能となり、 Li_2MnO_3 を始めとするLi-Mn酸化物との共晶領域となる。これらの化合物群は、ほとんどが 4 V で電気化学的に不活性であり、放電容量と充放電サイクル性能の劣化に関与している。

上記実施例においては、正極活物質である複合酸化物としてL i $_{1.02}$ [M n $_{0.5}$ N i $_{0.5}$ O $_2$]、L i [M n $_{0.495}$ N i $_{0.495}$ A l $_{0.01}$ O $_2$]、L i [M n $_{0.495}$ N i $_{0.495}$ M g $_{0.01}$ O $_2$]、L i $_{1.02}$ [M n $_{5/12}$ N i $_{5/12}$ C o $_{2/12}$ O $_2$] などを用いることを記載したが、その他の元素を用いた場合についても同様な効果が得られる事が確認された。

実施例では、負極材料として人造黒鉛を用いた非水電解質二次電池について実施例を挙げたが、同様の効果がその他の負極材料を用いた場合についても確認された。

[電池(正極活物質として、複合酸化物C17~C22を使用した電池)の作製]

複合酸化物C17~C22の各々を、各電池に使用する正極活物質とした。正極活物質である粉末、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン (PVdF)を、重量比85:10:5の割合で混合し、Nーメチルー2-ピロリドン (NMP)を加えて十分混練し、正極ペーストを得た。前

記正極ペーストを厚さ20μmのアルミニウム箔集電体上の一方の面に塗布し、約25℃の常温中で自然乾燥後、減圧下130℃で12時間乾燥した後、プレス加工し、1cm²の円盤状に裁断し、正極とした。

負極材料である人造黒鉛(平均粒径 $6~\mu$ m、エックス線回折法による面間隔(d_{002}) 0. 3~3~7~n m、c軸方向の結晶子の大きさ(L c) 5~5~n m)及びポリフッ化ビニリデン(PV d F)を重量比 9~5:5 の割合で混合し、N 一メチルー2 一ピロリドン(NMP)を加えて十分混練し、負極ペーストを得た。次に、前記負極ペーストを厚さ $1~5~\mu$ mの銅箔集電体上の一方の面に塗布し、約 2~5 $^{\circ}$ の円盤状に裁断し、負極とした。

エチレンカーボネート及びジェチルカーボネートを体積比1:1の割合で混合した混合溶媒に、含フッ素系電解質塩である $LiPF_6$ を1mo1/1の濃度で溶解させ、非水電解質を作成した。前記電解質中の水分量は20ppm未満とした

上述した部材を用いてコイン型電池を露点が-50℃以下の乾燥雰囲気下において作製した。正極は正極集電体の付いた正極缶に圧着して用いた。負極は負極集電体の付いた負極缶に圧着して用いた。上記正極、負極、電解質及びセパレータを用いて直径20mm、厚さ1.6mmのコイン型電池(IV型)を作製した。

(サイクル試験)

前記コイン型電池(IV型)をそれぞれ多数個作製し、初期充放電を10サイクル行った。このときの充電条件は、電流0.1ItA(10時間率)、4.2V、15時間の定電流定電圧充電とし、放電条件は、電流0.1ItA(10時間率)、終止電圧を3.0Vの定電流放電とした。

続いて、サイクル試験を行った。該サイクル試験の充電条件は、1.0ItA (1時間率)、4.2V、15時間の定電流定電圧充電制御方式とし、放電条件は 、電流1.0ItA(1時間率)、終止電圧を3.0Vの定電流放電制御方式とし た。

以上のように作製した電池と電池性能との関係をまとめて表11に示す。

表11

	正極活物質	電池性能			
電池		初回 放電容量 (mAh/g)	50 サイクル目 放電容量 (mAh/g)	容量維持率 (%)	
実施例 5-1	複合酸化物 C17	160	160	100	
実施例 5-2	複合酸化物 C18	160	155	96, 9	
実施例 5-3	複合酸化物 C19	155	150	96.8	
実施例 5-4	複合酸化物 C20	162	. 130	80.2	
実施例 5-5	複合酸化物 C21	161	133	82.6	
実施例 5-6	複合酸化物 C22	155	140 ·	90.3	

容量維持率:「50 サイクル目放電容量」/「初回放電容量」

表11の結果から明らかなように、粒度分布の50%粒子径が0.8 μ mより大きく10 μ m以下であり、且つ、10%粒子径が0.4 μ mより大きく7 μ m以下である複合酸化物を正極活物質に用いた実施例5-1~5-3の電池は、実施例5-4~5-6の電池と比較して、高い放電容量を有し(50サイクル目放電容量を参照)、充放電サイクル性能(容量維持率を参照)に優れるものとなった。

(実施例 6-1)

(正極の作製)

正極活物質を複合酸化物C16とし、以下のようにして図19に示す角形非水 電解質電池を作製した。

複合酸化物C16、導電剤としてのアセチレンブラック及び結着剤としてのポリフッ化ビニリデン(PVdF)を重量比85:10:5の割合で混合し、溶剤としてNーメチルピロリドンを加え、混練分散し正極塗布液を調製した。なお、前記ポリフッ化ビニリデンは固形分が溶解分散された溶解液を用い、固形分として重量換算した。前記正極塗布液を厚さ20 μ mのアルミ箔集電体の両面に塗布し、全体の厚さを230 μ mに調整し、正極シートを作製した。前記正極シートを幅61mm、高さ107mmの形状に裁断して、シートの末端に厚さ20 μ m

、幅10mmのアルミニウムリード板を取り付け、正極板7とした。

ここで、該正極活物質 $L_{1-x}Mn_{0.45}Ni_{0.45}Co_{0.1}O_2$ のx値を種々変化させ、エックス線回折測定を行った。これより得られたa軸およびc軸の結晶子の大きさから算出した結晶格子体積変動を図 20に示す。x値が-0. 6のときの結晶格子体積は、x値が0のときの結晶格子体積に対して約 2. 8%収縮している。

(負極の作製)

エックス線回折測定による格子面(002)の面間隔 d_{002} 値が 0.335 nm、 a 軸方向の結晶粒子径の大きさし a が約 $80\sim100$ nm、 c 軸方向の結晶粒子径の大きさがし c 約 $60\sim100$ nmであり、真比重が 2.24 g / c c 、比表面積が 1.7 m²/g である炭素材料(グラファイト)を負極材料として用いた。負極材料としての前記炭素材料および結着剤としてのポリフッ化ビニリデン(PV d F)を重量比 90:10 の割合で混合し、溶剤としてNーメチルピロリドンを加え、混練分散し、負極塗布液を調製した。なお、前記ポリフッ化ビニリデンは固形分が溶解分散された溶解液を用い、固形分として重量換算した。前記負極塗布液を厚さ 10μ mの銅箔集電体の両面に塗布し、全体の厚さを 180μ mに調整し、負極シートを作製した。前記負極シートを幅 65 mm、高さ 111 mの形状に裁断して、シートの末端に厚さ 10μ m、幅 10 mmの銅リード板を取り付け、負極板 9 とした。

ここで、該負極材料 Li_yC_6 のy値を種々変化させ、エックス線回折測定を行った。これより得られたa軸およびc軸の結晶子の大きさから算出した結晶格子体積変動を図21に示す。y値が0.6のときの結晶格子体積は、y値が0のときの結晶格子体積に比べて約5%膨張している。

(電池の作製)

前記正極板7及び負極板9を150℃で12時間減圧乾燥した。次に、セパレータ8として、幅65mm、高さ111mmの袋形状に裁断したポリエチレン製 微多孔膜の袋に前記正極板7を挿入し、セパレータ8付き正極板7および負極板9を交互に積層し、40枚のセパレータ8付き正極板7及び41枚の負極板9か

PCT/JP02/03862

らなる極群を得た。

前記極群をポリエチレン樹脂からなる絶縁フィルムに包み込み、アルミニウム製の角形電槽10に収納し、安全弁1を有するアルミニウム製の蓋2に取り付けられた正極端子5及び負極端子4に、正極板7及び負極板9のリード板をそれぞれボルトによって接続した。なお、端子5,4はポリプロピレン樹脂からなるガスケット6を用いて前記蓋2との間を絶縁してある。

前記蓋2と電槽10とをレーザー溶接部3においてレーザー溶接し、前記電槽10の中に、エチレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶剤に $LiPF_6$ を1mol/1溶解した電解液を85g注入し、封口した後、25 ℃において、1.5A、4.2V、15時間の定電流定電圧充電を行い、<math>1.5A、終止電圧3Vの定電流放電を行った。このようにして、横70mm、高さ130mm(端子込み高さ136mm)、幅22mmの角形リチウム電池を得た。この電池を実施例6-1の電池とした。

(実施例 6-2)

エックス線回折測定による格子面(002)の面間隔 d_{002} 値が0.337nm、a 軸方向の結晶粒子径の大きさ L a が約 $40\sim60$ nm、c 軸方向の結晶粒子径の大きさ L c が約 $40\sim70$ nm、真比重が2.2 g / c c、比表面積が1.5 m²/g である炭素材料を負極材料として使用した以外は(実施例 6-1)と同様にして作製した電池を実施例 6-2 の電池とした。

ここで、該負極材料 Li_vC_6 のy値を種々変化させ、エックス線回折測定を行い、得られたa軸およびc軸の結晶子の大きさから算出した結晶格子体積変動を図22に示す。y値が0. 6のときの結晶格子体積は、y値が0のときの結晶格子体積に比べて約6%膨張している。

(実施例 6-3)

エックス線回折測定による格子面(002)の面間隔 d_{002} 値が0.375 nm、 a 軸方向の結晶粒子径の大きさL a が 1 0 0 n m以上、 c 軸方向の結晶粒子径の大きさL c が 5 \sim 20 n m、真比重が 1 .80 g / c c、比表面積が 3 .0 m²

/gである炭素材料を負極材料として使用した以外は(実施例 6-1)と同様にして作製した電池を実施例 6-3 の電池とした。

ここで、該負極材料 Li_yC_6 のy値を種々変化させ、エックス線回折測定を行い、得られたa軸およびc軸の結晶子の大きさから算出した結晶格子体積変動を図23に示す。y値が0. 6のときの結晶格子体積は、y値が0のときの結晶格子体積に比べて約2%膨張している。

(比較例 6-1)

正極活物質にLiCoO₂を使用した以外は、(実施例 6-1)の電池と同様に作製した電池を比較例 6-1 の電池とした。

ここで、該正極活物質 $Li_{1-x}CoO_2$ の x 値を種々変化させ、エックス線回折測定を行った。これより得られた a 軸および c 軸の結晶子の大きさから算出した結晶格子体積変動を図 2 4 に示す。 x 値が 0 . 6 のときの結晶格子体積に対して約 2 . 3 %膨張している。

なお、上記した正極活物質及び負極材料に対する結晶格子体積(V)の計算は、結晶構造の面を表す α 軸、 α 軸、 α 中部よび軸間の角度 α 、 α 、 α を用い、 α = α = α 0 。、 α 、 α = α = α 0 。、 α とし、次の計算式により算出した。

V=abc $(1-\cos^2\alpha-\cos^2\beta-\cos^2\gamma+2\cos\alpha\cos\beta\cos\gamma)^{1/2}$

(電池性能評価)

実施例 6-1~6-3 及び比較例 6-1 の電池を用いて充放電サイクル試験を行った。 試験条件は、室温状態下において、7.5 A、3時間、4.2 Vの定電流定電圧 充電および7.5 A、終止電圧3.0 Vの定電流放電とし、充電後および放電後 にはそれぞれ1時間の休止時間を設けた。

サイクル試験の結果を図25に示す。実施例6-1の電池では、約600サイクル経過時点まで初期容量に対して80%程度の容量維持を示した。また、初期容量に対して80%の容量を維持するサイクル数は、実施例6-2の電池では約350サイクルまで、実施例6-3の電池では約200サイクルまで、比較例6-1の電

池では約300サイクルまでとなった。

これは、実施例 6-1 の電池のように、充放電に伴う正負極の結晶格子体積変動の割合が上記好適な範囲内にある場合、充放電を繰り返しても極群に対して一定の均圧状態が保たれており、集電体と活物質の接着強度が常に強い状態であるため放電容量の低下が極めて少なくなったものと考えられる。一方、実施例 6-2,6-3及び比較例 6-1 の電池においては充放電に伴う活物質の膨張収縮による体積変動に対して追従することができず、集電体と活物質の結着性が低下し、電子伝導の低下を招いた事による容量低下が考えられる。

また、本サイクル試験においては電池に対しては外部からの圧力(緊圧)をかけることなく試験を行っており、実施例 6-1 の電池ではサイクル試験前と600サイクル経過後の電槽厚さの差が1mm以下であるのに対して、実施例 6-2 の電池では400サイクル経過時点で電槽厚さが約3mm膨れていた。また、比較例6-1 の電池においては300サイクル経過時点で実施例6-2 の電池と同様に約3mm膨れていた。

前記サイクル試験に際して、周波数1kHzの交流測定法により、実施例 6-1 ~6-3 及び比較例 6-1 の電池の内部抵抗を一定のサイクル毎に測定した。すべての測定は放電末状態で行った。結果を図26に示す。

図26より、400サイクル経過時点での内部抵抗増加は、実施例 6-1 の電池においては、試験前に比べて約0.04m Ω であるのに対して、実施例 6-2,6-3,比較例 6-1 の電池においては、試験前に比べて約0.07m Ω であった。この結果からも、充放電の繰り返しによる集電体と活物質との密着強度の変化がサイクル性能に影響を与えていることが考えられる。

尚、本実施例では、エックス線回折による格子面(002)の面間隔 d_{002} 値が 0.335 nm、a 軸方向の結晶粒子径の大きさL a が約80~100 nm、c 軸方向の結晶粒子径の大きさL c が約60~100 nm、真比重が2.24 g/c c 、比表面積が1.7 m^2 /g である炭素質材料を用いたが、正極活物質との結晶格子体積変動率の関係が前記に記載した範囲内の材料であれば、特に限定されるものではない。

また、前記(電池性能評価)では角型電池について説明したが、上記したような特性はこの構造に限定されるものではなく、円筒型、扁平型、コイン型などの形状の電池においても同様の効果が得られる。

(実施例 7-1)

次のようにして、図27に示す800mAhの非水電解質二次電池を試作した

リチウムコバルト酸化物(日本化学工業株式会社製 商品名 セルシードCー10)、複合酸化物C9、アセチレンブラック及びポリフッ化ビニリデン(PVdF)を重量比45:45:5:5で混合し、溶剤としてNーメチルピロリドンを加えて混練分散し、塗布液を調製した。なお、PVdFは固形分が溶解分散された液を用い、固形重量換算した。該塗布液を厚さ20μmのアルミ箔集電体の両面に塗布し、トータル厚さ100μmに調整して20mg/cm²の容量を持つ正極シートを作製した。前記正極シートを幅61mm長さ445mmの形状に裁断して、シートの末端の正極を除去し、厚さ100μm幅3mmのアルミニウム製正極端子32を超音波溶接により取り付け正極板とした。

人造黒鉛(粒径 $6~\mu$ m)を負極炭素材料として用い、結着剤としてスチレンーブタジエンゴム 2 重量%及び増粘剤としてカルボキシメチルセルロースのナトリウム塩 1 重量%を混合し、精製水を用いて混練し塗布液を得た。該塗布液を厚さ $1~0~\mu$ mの銅箔集電体の両面に塗布し、トータル厚さ $9~0~\mu$ mに調整して、1~2~m g/c m^2 の負極炭素材料を有する負極シートを作製した。前記負極シートを幅6~3~m m長さ 4~6~0~m の形状に裁断して、シートの末端の負極を除去し、厚さ $1~0~0~\mu$ m幅 3~m mのニッケル負極端子 3~3 を抵抗溶接により取り付け負極板とした。

前記正極板及び負極板を150℃で12時間減圧乾燥を行った。

ポリアクリレートで表面改質し、電解質の保持性を向上したポリプロピレン製の微孔膜をセパレータとし、負極板/セパレータ/正極板の順に積層し、扁平形状に捲回し、極群31を得た。

外装体35として、ポリエチレンテレフタレート (15μm) /アルミニウム

箔 (50μm) /金属接着性ポリプロピレンフィルム (50μm) からなる金属 樹脂複合フィルムを用い、前記正極端子32及び負極端子33の開放端部32A, 33Aが外部露出するように前記極群31を収納し、前記金属樹脂複合フィルムの内面同士が向かい合った融着代36を注液孔となる部分を除いて気密封止した

エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート及びビニレンカーボネートを50:20:30:2の体積比で混合した溶媒に1mo1/1の濃度でLiPF。を溶解し、電解液とした。前記注液孔から約3gの電解液を注液後、真空状態で前記注液孔部分を熱封口し、設計容量800mAhの扁平形の非水電解質二次電池30を作製した。20℃に於いて80mAで4.2Vの定電圧充電を施し、80mAで3Vまでの放電を施した。実施例7-1の電池とした。

(実施例 7-2)

リチウムコバルト酸化物(日本化学工業株式会社製 商品名 セルシードCー10)、複合酸化物C23、アセチレンブラック及びポリフッ化ビニリデン(PVdF)を重量比45:45:5:5で混合し、以降の工程は(実施例7-1)と同様にして非水電解質二次電池を作製した。これを(実施例7-2)の電池とした。

(比較例 7-1)

リチウムコバルト酸化物(日本化学工業株式会社製 商品名 セルシードCー10)、複合酸化物C24、アセチレンブラック及びポリフッ化ビニリデン(PVdF)を重量比45:45:5:5で混合し、以降の工程は(実施例7-1)と同様にして非水電解質二次電池を作製した。これを(比較例7-1)の電池とした。

(実施例 7-3)

リチウムコバルト酸化物 (日本化学工業株式会社製 商品名 セルシードCー10)、複合酸化物A1、アセチレンブラック及びポリフッ化ビニリデン (PVdF) を重量比45:45:5:5:5で混合し、以降の工程は (実施例7-1) と同様

にして非水電解質二次電池を作製した。これを(実施例7-3)の電池とした。

(実施例 7-4)

複合酸化物C9に溶剤としてN-メチルピロリドンを加えて混練分散し、塗布液を調製し、以降の工程は(実施例7-1)と同様にして非水電解質二次電池を作製した。これを(実施例7-4)の電池とした。

(比較例 7-2)

リチウムコバルト酸化物 (日本化学工業株式会社製 商品名 セルシードC-10)、アセチレンブラック及びポリフッ化ビニリデン (PVdF)を重量比90:5:5で混合し、以降の工程は(実施例7-1)と同様にして非水電解質二次電池を作製した。これを(比較例7-2)の電池とした。

(電池性能試験)

実施例7-1~実施例7-3,比較例7-1~7-2の電池を用いて充放電試験及び高率放電性能試験を行った。試験温度は25℃とした。充電条件は、800mA、4.2 Vの定電流定電圧充電とした。放電条件は、800mA、終止電圧3.0 Vの定電流放電とした。但し、高率放電試験条件は、2400mAhで終止電圧3.0 Vの定電流放電とした。表12に、電池性能試験の結果をまとめた。ここで、800mAでの放電容量に対する2400mAでの高率放電容量の比を高率放電性能(%)として示した。また、放電容量が70%以下に低下したときのサイクル数を充放電サイクル性能として示した。

表12

		電池性能			
電池	正極活物質	800mA 放電 容量 (mAh/g)	2400mA 放電 容量 (mAh/g)	高率 放電 性能 (%)	充放電 サイクル 性能
実施例 7-1	LiMn _{0.45} Ni _{0.45} Co _{0.1} O ₂ + LiCoO ₂	800	610	76.3	500
実施例 7-2	$LiMn_{0.4}Ni_{0.4}Co_{0.2}O_2 + LiCoO_2$	810	610	75. 3	500
比較例 7-1	$LiMn_{0.2}Ni_{0.7}Co_{0.1}O_2 + LiCoO_2$	810	610	75. 3	500
実施例 7-3	$LiMn_{0.5}Ni_{0.5}O_2 + LiCoO_2$	700	500	71.4	400
比較例 7-2	LiCoO ₂	790	600	75.9	500
実施例 7-4	LiMn _{0.45} Ni _{0.45} Co _{0.1} O ₂	760	530	69.7	510

先ず、実施例 7-1 の結果を、リチウムコバルト酸化物を添加しない実施例 7-4 の結果と比較すると、高率放電性能の上昇が確認された。

また、実施例 7-1, 7-2 の結果を、正極活物質にリチウムコバルト酸化物のみを用いた比較例 7-2 の結果と比較すると、実施例 7-1, 7-2 のほうが高容量であることがわかる。すなわち、 $LiMn_{0.45}Ni_{0.45}Co_{0.1}O_2$, $LiMn_{0.4}Ni_{0.4}Co_{0.2}O_2$ が電気化学的に高容量であるとともに、適度の不可逆容量を有しているため、負極の不可逆分を補うことができたためであると考えられる。

また、実施例 7-1 の電池の結果を、実施例 7-3 の電池の結果と比較すると、放電容量及び充放電サイクル性能が改善されている。すなわち、リチウムマンガンニッケル化合物中にコバルトが添加されることで放電容量が改善でき、さらに本発明粉末の結晶構造が安定になったため、サイクル性能も向上したものと推察される。

比較例 7-1 の放電容量は、実施例 7-1, 7-2 の電池と比較して全く遜色がない。 しかしながら、これら 3 種の電池に対し、8 0 0 m A、4 . 2 V で 1 5 時間の定 電圧充電を行った後、1 5 0 $^{\circ}$ のホットボックス中に保存する試験を行ったとこ ろ、実施例 7-1 の電池では電池の膨れは見られたものの、破裂、発火、白煙は認 められなかったのに対し、比較例 7-1 の電池では電池側面部の温度が約 4 0 0 $^{\circ}$ まで上昇し、白煙の発生が認められた。なお、比較例 7-2 の電池では、同様な試

験の結果、実施例の電池と同じく、破裂、発火、白煙の発生は認められなかった。このような安全性試験の結果の差異は、MnとNiとの相対量に関連していると推定される。すなわち、Mnに対してNi量が多い場合には、充電時の熱安定性が弱くなると考えられる。

上記実施例においては、正極活物質における主構成物質にLi[$Mn_{0.45}$ Ni $_{0.45}$ Co $_{0.1}$ O2]、Li[$Mn_{0.40}$ Ni $_{0.40}$ Co $_{0.2}$ O2]を用いることを記載したが、Li[$Mn_{0.425}$ Ni $_{0.425}$ Co $_{0.1}$ Bo $_{0.05}$ O2]、Li[$Mn_{0.425}$ Ni $_{0.425}$ Co $_{0.1}$ Vo $_{0.05}$ O2]、Li[$Mn_{0.425}$ Ni $_{0.425}$ Co $_{0.1}$ Vo $_{0.05}$ O2]、Li[$Mn_{0.425}$ Ni $_{0.425}$ Co $_{0.1}$ Mg $_{0.05}$ O2]、Li[$Mn_{0.425}$ Ni $_{0.425}$ Co $_{0.1}$ Mg $_{0.05}$ O2]、Li[$Mn_{0.425}$ Ni $_{0.425}$ Co $_{0.1}$ Ti $_{0.05}$ O2]、Li[$Mn_{0.425}$ Ni $_{0.425}$ Co $_{0.1}$ Ti $_{0.05}$ O2]、Li[$Mn_{0.425}$ Ni $_{0.425}$ Co $_{0.1}$ Ti $_{0.05}$ O2] 等、Mn,Nio一部を他の元素で固溶置換した場合についても同様な効果が得られることが確認された。

また、負極材料として人造黒鉛を用いた非水電解質二次電池について実施例を 挙げたが、同様の効果がその他の炭素材料を使用した場合についても確認された

(実施例 8-1)

(スピネル構造を有するリチウムマンガン化合物の合成)

 $LiOH及びMnO_2$ を、元素比Li:Mn=1.08:1.92の割合で含む 懸濁水溶液とし、ロータリーエバポレータを用いて前記懸濁水溶液を減圧乾燥し 、固形状の混合塩を得た。前記混合塩を乾燥空気(酸素分率20%)の気流下、 温度450℃で12時間仮焼成を行い、続いて温度800℃で24時間加熱処理 を行い、 $Li_{1.08}Mn_{1.92}O_4$ の組成のリチウムマンガン化合物(I)を得た。

(正極の作製)

複合酸化物C25、リチウムマンガン化合物(I)、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン(PVdF)を重量比80.75: 4.25:10:5の割合で混合し、N-メチルー2-ピロリドン(NMP)を加えて十分混練し、正極ペーストを得た。前記正極ペーストを厚さ 20μ mの

アルミニウム箔集電体上の一方の面に塗布し、約25℃の常温中で自然乾燥後、 減圧下130℃で12時間乾燥した後、プレス加工し、1cm²の円盤状に裁断した。

(負極の作製)

負極材料である人造黒鉛(平均粒径 6μ m、エックス線回折法による面間隔(d_{002}) O. 3 3 7 n m、 c 軸方向の結晶子の大きさ(Lc) 5 5 n m)及びポリフッ化ビニリデン(PVdF)を重量比 9 5:5 の割合で混合し、N-メチルー2-ピロリドン(NMP)を加えて十分混練し、負極ペーストを得た。次に、前記負極ペーストを厚さ 15μ mの銅箔集電体上厚さ 12μ mの電解銅箔の一方の面に塗布し、約 $25 \mathbb{C}$ の常温中で自然乾燥後、減圧下 $130 \mathbb{C}$ で 12 時間乾燥した後、プレス加工し、 $1cm^2$ の円盤状に裁断した。

(非水電解質の調製)

エチレンカーボネート及びジエチルカーボネートを体積比1:1の割合で混合した混合溶媒に、含フッ素系電解質塩である $LiPF_6$ を1mo1/1の濃度で溶解させ、非水電解質を作成した。前記電解質中の水分量は20ppm未満とした

(コイン型電池の作製)

上述した部材を用いて、前記したコイン型電池(I型)と同様の構成のコイン型電池を露点が-50℃以下の乾燥雰囲気下において作製した。これを実施例8-1の電池とする。

(実施例 8-2)

正極の作製において、複合酸化物 C 2 5、リチウムマンガン化合物 (I)、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン (P V d F) を重量比 7 6. 5:8.5:10:5の割合で混合する以外は、(実施例 8-1) と同様に、コイン型電池を作製した。これを実施例 8-2 の電池とする。

(実施例 8-3)

正極の作製において、複合酸化物C25、リチウムマンガン化合物(I)、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン(PVdF

-) を重量比 5 9 . 5 : 2 5 . 5 : 1 0 : 5 の割合で混合する以外は、(実施例 8-1
-)と同様に、コイン型電池を作製した。これを実施例 8-3 の電池とする。

(実施例 8-4)

正極の作製において、複合酸化物 C 2 5 、リチウムマンガン化合物 (I)、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン (P V d F) を重量比で 4 2 . 5 : 4 2 . 5 : 1 0 : 5 の割合で混合する以外は、(実施例 8-1)と同様に、コイン型電池を作製した。これを実施例 8-4 の電池とする。

(実施例 8-5)

正極の作製において、複合酸化物C25、リチウムマンガン化合物(I)、導電 剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン (PVdF

-) を重量比25.5:59.5:10:5の割合で混合する以外は、(実施例 8-1
-)と同様に、コイン型電池を作製した。これを実施例 8-5 の電池とする。

(実施例 8-6)

正極の作製において、複合酸化物C25、リチウムマンガン化合物(I)、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン(PVdF)を重量比8.5:76.5:10:5の割合で混合する以外は、(実施例8-1)と同様に、コイン型電池を作製した。これを実施例8-6の電池とする。

(実施例 8-7)

正極の作製において、複合酸化物C25、リチウムマンガン化合物(I)、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン(PVdF)を重量比4.25:80.75:10:5の割合で混合する以外は、(実施例

8-1) と同様に、コイン型電池を作製した。これを実施例8-7とする。

(比較例 8-1)

正極の作製において、リチウムマンガン化合物(I)、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン(PVdF)を重量比85:10:5の割合で混合する以外は、(実施例8-1)と同様に、コイン型電池を作製した。これを比較例8-1の電池とする。

(実施例 8-8)

正極の作製において、複合酸化物 C 2 5、導電剤であるアセチレンブラック及び結着剤であるポリフッ化ビニリデン (P V d F) を重量比 8 5 : 1 0 : 5 の割合で混合する以外は、(実施例 8-1) と同様に、コイン型電池を作製した。これを実施例 8-8 の電池とする。

(初期充放電)

実施例 8-1~8-8, 比較例 8-1 の電池をそれぞれ多数個作製し、初期充放電を10サイクル行った。このときの充電条件は、電流0.1 ItA(10時間率)、4.2 Vの定電流定電圧充電とし、放電条件は、電流0.1 ItA(10時間率)、終止電圧を3.0 Vの定電流放電とした。

(低温高率放電試験)

温度 25℃における通常放電試験と、温度 -10℃における高率放電試験とを行った。温度 25℃における通常放電試験は、0.2 I t A (5時間率)、4.2 Vの定電流定電圧充電の後、電流 0.2 I t A (5時間率)、終止電圧 3.0 Vの定電流放電を行った。温度 -10℃における高率放電試験は、まず温度 25℃において 0.2 I t A (5時間率)、4.2 Vの定電流定電圧充電を行った後、温度 -10℃において電流 5.0 I t A (0.2時間率)、終止電圧 2.5 Vの定電流放電を行った。25℃での放電容量に対する -10℃での放電容量の比を低温高率放電性能(%)として示した。結果を表 13に示す。

(保存性能試験)

前記初期充放電後、25℃において0.2 I t A (5時間率)の電流で4.2 Vの定電流定電圧充電を行った。該充電後、60℃に設定した防爆構造の恒温槽内に保存した。7日後、電池を取り出し、前記初期充放電と同一の条件を用いて放電及び引き続く充放電を行った。保存後の該充放電で測定された放電容量の、前記初期充放電で測定された放電容量に対する割合を算出し、「容量維持率(%)」して表13に併せて示す。

表13

	複合酸化物 C25/(複合酸化物 C25+リチウムマン がン化合物(I))(%)	25℃ 放電 容量 (mAh/g)	-10℃ 放電 容量 (mAh/g)	低温高率 放電性能 (%)	60℃保存後 容量維持率 (%)
実施例 8-1	95	157	36	22.9	99. 7
実施例 8-2	90	154	37	24.0	99.4
実施例 8-3	.70	142	41	28.9	97. 9
実施例 8-4	50	130	45	34.6	96. 2
実施例 8-5	30	118	49	41.5	94. 1
実施例 8-6	10	106	53	50.0	91.5
実施例 8-7	5	103	54	52.4	91
実施例 8-8	100	160	35	21.9	100
比較例 8-1	0	100	55	55.0	90

複合酸化物C25と、スピネル構造を有するリチウムマンガン化合物(I)とを併用した電池は、 $\alpha-N$ a FeO_2 結晶構造を有する複合酸化物C25のみを正極活物質に用いた実施例 8-8 の電池に比べ、低温高率放電性能が優れることがわかる。

また、複合酸化物 C 2 5 と、スピネル構造を有するリチウムマンガン化合物 (I) とを併用した電池は、スピネル構造を有するリチウムマンガン化合物 (I) を単独で使用する場合と比較して、60℃保存後容量維持率が高いことから、高温での保存性能に優れていることがわかる。一般にスピネル構造を有するリチウムマンガン化合物は、高温下でMn種の溶解による容量劣化を引き起こすが、正

極中に共存する複合酸化物の存在がMn種溶解の原因となる電解液中の酸成分を中和する働きなどの効果を持つことによって、Mn種溶解を抑制しているものと推定される。

なお、スピネル構造を有するリチウムマンガン化合物を添加する効果は、スピネル構造を有するリチウムマンガン化合物が前記規定の組成の範囲外であると、例えば、LiとMnとが量論組成のスピネル構造を有するリチウムマンガン化合物では、発揮することが困難となる。これは、リチウムマンガン化合物が充放電時に相転移を経るので、充放電サイクル性能が極めて劣るためである。

<産業上の利用可能性>

本発明によれば、高いエネルギー密度を有し、充放電サイクル性能に優れた非水電解質二次電池を製造できる正極活物質およびその製造方法、非水電解質二次電池用正極、並びに、高いエネルギー密度を有し、充放電サイクル性能に優れた非水電解質二次電池を提供できる。

請求の範囲

- 1. 組成式 $L_{i_a}Mn_{0.5-x}N_{i_{0.5-y}}M_{x+y}O_2$ (但し0 < a < 1. 3、-0. $1 \le x$ $-y \le 0$. 1、Mは L_{i_1} , Mn, N_{i_1} 以外の元素)で表される複合酸化物を含有する正極活物質。
- 2. 前記Mが、A1, Mg及びCoからなる群から選ばれる少なくとも1種の元素であり、前記組成式中の係数が下記関係式を満たす複合酸化物を含有することを特徴とする請求の範囲第1項に記載の正極活物質。
 - $0.05 \le x < 0.3$
 - 0. $0.5 \le y < 0.3$
 - $-0.1 \le x y \le 0.02$
 - 0 < a < 1. 3
 - x + y < 0.5
- 3. 前記Mが、Coであることを特徴とする請求の範囲第1項または第2項に 記載の正極活物質。
- 4. 組成式 $Li_{\mathbf{z}}Mn_{\mathbf{x}'}$ N $i_{\mathbf{y}'}$ Co $_{\mathbf{z}'}$ O $_{\mathbf{z}}$ (但し、 \mathbf{x}' 、 \mathbf{y}' 、 \mathbf{z}' は、三元状態図上において、(\mathbf{x}' , \mathbf{y}' , \mathbf{z}')が点A(0.51,0.49,0)と点B(0.45,0.55,0)と点C(0.25,0.35,0.4)と点D(0.31,0.29,0.4)とを頂点とする四角形ABCDの線上または内部に存在する範囲の値であり、 $0 \le \mathbf{w}/(\mathbf{x}'+\mathbf{y}'+\mathbf{z}') \le 1$.30である)で表される複合酸化物を含有する正極活物質。
- 5. 前記複合酸化物は、全細孔容積が0.001m1/g以上0.006m1/g以下であり、かつ、 $CuK\alpha$ 線を使用した粉末エックス線回折図の、 $2\theta:18.6\pm1$ °における回折ピークに対する $2\theta:44.1\pm1$ °における回折ピークの相対強度比が0.65以上1.05以下であることを特徴とする請求の範囲第1項~第4項のいずれかに記載の正極活物質。
- 6. 前記複合酸化物は、比表面積が 0. $3\,\mathrm{m}^2/\mathrm{g}\,\mathrm{以}$ 上1. $6\,\mathrm{m}^2/\mathrm{g}\,\mathrm{以}$ 下であり、かつ、 $C\,\mathrm{u}\,\mathrm{K}\,\alpha$ 線を使用した粉末エックス線回折図の、 $2\,\theta:1\,8.6\,\pm1$ 。 における回折ピークに対する $2\,\theta:4\,4.1\,\pm1$ 。 における回折ピークの相対

強度比が 0.65以上1.05以下であることを特徴とする請求の範囲第1項~ 第5項のいずれかに記載の正極活物質。

- 7. 前記 2θ : 18.6 ± 1 ° における回折ピークの半値幅が 0.05° 以上 0.20° 以下であり、かつ、前記 2θ : 44.1 ± 1 ° における回折ピークの半値幅が 0.10° 以上 0.20° 以下であることを特徴とする請求の範囲第 0 項または第 0 項に記載の正極活物質。
- 8. 前記複合酸化物は、 $\alpha-NaFeO_2$ 型層状構造であるとともに、結晶単位格子が六方晶であり、金属リチウムが示す電位に対して3.2 $V\sim3$.3Vの状態における前記六方晶の格子定数 a と格子定数 c と結晶格子体積Vとが下記式を満たすように構成されたことを特徴とする請求の範囲第1項~第7項のいずれかに記載の正極活物質。
 - 2. $860 \le a \le 2$. 890
 - 14. $20 \le c \le 14$. 33
 - 0. $1007 \text{ nm}^3 \leq V \leq 0$. 1034 nm^3

式中、a, cは、格子定数であり、それぞれ単位結晶格子の a 軸方向の長さ及び c 軸方向の長さをオングストローム (A) 単位で表わしたものに等しい。

- 9. 前記複合酸化物が、900℃以上1100℃以下の温度で3時間以上焼成されて得られたものであることを特徴とする請求の範囲第1項~第8項のいずれかに記載の正極活物質。
- 10. 前記複合酸化物の粒度分布は、50%粒子径が0.8μmより大きく10μm以下であり、且つ、10%粒子径が0.4μmより大きく7μm以下であることを特徴とする請求の範囲第1項~第9項のいずれかに記載の正極活物質。
- 11. 請求の範囲第1項~第10項のいずれかの正極活物質において、リチウムコバルト酸化物をさらに含有することを特徴とする正極活物質。

13. 組成式Li_aMn_{0.6-x}Ni_{0.6-y}M'_{x+y}O₂(但し0.98≦a<1.1、-0.1≦x-y≦0.1、M'は、B,Al,Mg及びCoから選択される少なくとも1種の元素)で表される複合酸化物を含有する正極活物質の製造方法であって、「-yケル (Ni)化合物とマンガン (Mn)化合物とが水に溶解された水溶液、または、Ni化合物とMn化合物とM'化合物 (M'は、前記と同様)とが水に溶解された水溶液に、アルカリ化合物と、還元剤と、錯化剤とを添加して前記水溶液のpHを10~13とし、前記水溶液中で、Ni-Mn複合共沈物、または、Ni-Mn-M'複合共沈物を沈殿させる共沈工程」を経由して、前記複合酸化物を作製することを特徴とする正極活物質の製造方法。

- 14. 前記共沈工程において、反応槽内に、ニッケル(Ni)化合物水溶液とマンガン(Mn)化合物水溶液とM'化合物水溶液(M'は、Al,Mg及びCoから選択される少なくとも1種の元素)と錯化剤水溶液と還元剤水溶液とを、前記各水溶液として、または、前記各水溶液の少なくとも2種以上が混合された混合水溶液として連続的に供給するともに、前記反応槽内にアルカリ化合物水溶液を連続的に供給して、生成するNi-Mn-M'複合共沈物を連続的に取り出すことを特徴とする請求の範囲第13項に記載の正極活物質の製造方法。
- 15. 前記還元剤としてヒドラジンを使用することを特徴とする請求の範囲第 13項または第14項のいずれかに記載の正極活物質の製造方法。
- 16. 「"前記共沈工程により得られたNi-Mn複合共沈物またはNi-Mn-M'複合共沈物が分散されると共に、M'化合物(M'は、A1, Mg及びCoから選択される少なくとも1種の元素)が溶解された水溶解分散液"に、アルカリ化合物と、錯化剤とを添加して前記水溶解分散液のpHを10~13とし、前記共沈工程により得られたNi-Mn複合共沈物の表面またはNi-Mn-M。複合共沈物の化合物の表面に、元素M'(M'は前記と同様)の複合共沈物を沈酸させるコート共沈工程」を経由して、前記複合酸化物を作製することを特徴とする請求の範囲第13項~第15項のいずれかに記載の正極活物質の製造方法。
- 17. 前記錯化剤が、水溶液中でアンモニウムイオンを解離可能な化合物であることを特徴とする請求の範囲第13項~第16項のいずれかに記載の正極活物質の製造方法。

18. 前記「水溶液中でアンモニウムイオンを解離可能な化合物」が、硝酸アンモニウム、硫酸アンモニウム、塩酸アンモニウム及びアンモニア水からなる群から選択される1種以上の化合物であることを特徴とする請求の範囲第13項~第17項のいずれかに記載の正極活物質の製造方法。

- 19. 前記M'をCoとすることを特徴とする請求の範囲第13項~第18項の いずれかに記載の正極活物質の製造方法。
- 20. 「前記共沈工程もしくは前記コート共沈工程により得られた、Ni-M n複合共沈物またはNi-Mn-M'複合共沈物を、リチウム化合物と共に、900℃以上1100℃以下の温度で3時間以上焼成する焼成工程」を経由して、前記複合酸化物を作製することを特徴とする請求の範囲第13項~第19項のいずれかに記載の正極活物質の製造方法。
- 21. 請求の範囲第13項~第20項のいずれかに記載の正極活物質の製造方法によって製造された正極活物質。
- 22. 請求の範囲第1項~第12項、第21項のいずれかに記載の正極活物質を含有する非水電解質二次電池用正極。
- 23. 請求の範囲第1項~第12項、第21項のいずれかに記載の正極活物質と、前記正極活物質に対して1重量%以上の導電性炭素材料と、電解液を含有することによってイオン伝導性を有する結着剤とを含有することを特徴とする非水電解質二次電池用正極。
- 24. 請求の範囲第22項または第23項に記載の非水電解質二次電池用正極 と、非水電解質二次電池用負極と、非水電解質とを具備する非水電解質二次電池
- 25. 前記非水電解質二次電池用負極が、リチウムイオンを吸蔵放出可能な負極材料を含むことを特徴とする請求の範囲第24項に記載の非水電解質二次電池
- 26. 請求の範囲第24項または第25項に記載の非水電解質二次電池であって、前記正極活物質は前記非水電解質二次電池の充電に伴うリチウムイオンの放出により、その結晶格子体積が収縮するものであり、前記結晶格子体積の収縮率は前記非水電解質二次電池の放電末状態における前記正極活物質の結晶格子体積

に対して4%以下であり、

前記負極材料は前記非水電解質二次電池の充電に伴うリチウムイオンの吸蔵により、その結晶格子体積が膨張するものであり、前記結晶格子体積の膨張率は前記 非水電解質二次電池の放電末状態における前記負極材料の結晶格子体積に対して 6%以下であり、

前記非水電解質二次電池の通常の充放電範囲において、前記負極材料の前記膨張 率の値は、前記正極活物質の前記収縮率の値に比べて同じかまたは大きく、

前記非水電解質二次電池の通常の充放電範囲において、前記負極材料の前記膨張率の値と、前記正極活物質の前記収縮率の値との差が0%以上3%未満であることを特徴とする非水電解質二次電池。

図 3

10 µm

図 8

図 9

図10

図11

図12

0.25 ♦E1-5 エックス線回折測定に於ける18。 半値幅と放電容量の関係 0.15 半値幅 ◇LiMn0.5Ni0.5O2混合链成 0.1 ♣ LiMn0.5Ni0.502 0.05 140 9 \$ 20 160 120 0 180

図13

図 1 4

図15

0,3 E1-5 従来法による混合焼成によって作製した 電池群 9-I3 0.25 エックス線回折測定に於ける44。半値幅とサイクル数の関係 0.2 E1--4 0.15 半値幅 E1-3 ◇LiMn0.5Ni0.502混合焼成 <u>.</u> ◆ LiMn0.5Ni0.502 0.05 **愛いな**とも 400 900 500 200 100 0

図16

充電量と格子間距離の関係

図 1 7

200 ··◆··実施例2一 実施例1-150 充電量と格子間距離の関係 充電量(Li引き抜き量) 100 20 充電部 新十十 6.102 0.1015 0.1005 n 0.103 0.0995 0.1045 0.104 0.1 ខួយប

図 1 8

図19

図20

0.7 0.00.5 正極結晶格子体積変動(実施例) 0.4 0.2 0.1 ·mm》 0.1035 0.1025 0.1025 0,1015 0.1005 0.1010 0.1045 0.1040

図21

0.7 0.6 O U 負極結晶格子体積変化(実施例 6-1) 0.3 0.2 0.1 0.0 0.0176 0.0186 0.0184 0.0174

図22

0.7 0.6 0.5 0.4 0.3 0.2 0.1 n 0.0184 0.0176 0.0174 0.018 0.0188 0.0186

負極結晶格子変化(実施例6-2)

図23

図24

0.7 0.0 0.5 正極結晶格子体積変動(比較例6-1) 0.4 0.3 0.2 0 0.0965 0.0970 0.0990 0.0995

図25

図26

図27

Form PCT/ISA/210 (second sheet) (July 1998)

International application No.
PCT/JP02/03862

<u></u>					
A. CLASSIFICATION OF SUBJECT Int.Cl ⁷ H01M4/58, 4		1G53/00			
According to International Patent Classification (IPC) or to both national classification and IPC					
B. FIELDS SEARCHED					
Minimum documentation searched (clas	sification system followed	by classification symbols)			
Int.Cl7 H01M4/58, 4	/00-4/04, 10/40), COTG23\00			
rigo (r	. •				
		e extent that such documents are included			
Jitsuyo Shinan Koho	1926-1996	■			
Kokai Jitsuyo Shinan Ko		-			
Electronic data base consulted during the	e international search (name	e of data base and, where practicable, sea	irch terms used)		
!					
C. DOCUMENTS CONSIDERED TO	BE RELEVANT				
		propriate, of the relevant passages	Relevant to claim No.		
Fukugo Sankabut	tsu no Insertion ronkai Koen Yok	ium, Nickel, Manganese n Denkyoku Kino", o, 2000. 11. 20-22,	1,9,22-26		
11 August, 2000	(11.08.00),	cric Co., Ltd.),	1,2,5-7,9, 10,22-26		
Claims 1 to 3, [0052] (Family: none)	7; Par. Nos. [(0029], [0049] to	13-19,21		
X JP 2000-195516 14 July, 2000 (Par. Nos. [0015 (Family: none)	(14.07.00),	cric Co., Ltd.),	1,9,10, 22-25		
		1	•		
			•		
	<u></u>	<u> </u>			
Further documents are listed in the		See patent family annex.			
 Special categories of cited documents: "A" document defining the general state of the 		"T" later document published after the inter priority date and not in conflict with the	national filing date or application but cited to		
considered to be of particular relevance "E" earlier document but published on or after		understand the principle or theory unde "X" document of particular relevance; the ci	rlying the invention		
date "L" document which may throw doubts on p.		considered novel or cannot be considered			
cited to establish the publication date of		step when the document is taken alone "Y" document of particular relevance; the cl			
special reason (as specified) "O" document referring to an oral disclosure,	, use, exhibition or other	considered to involve an inventive step combined with one or more other such o	documents, such		
means combination being obvious to a person skilled in the art document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed		skilled in the art			
Date of the actual completion of the intern		Date of mailing of the international search			
08 July, 2002 (08.07	.02)	23 July, 2002 (23.07	1.02)		
Name and mailing address of the ISA/		Authorized officer			
Japanese Patent Office					
Facsimile No.		relephone No.			

International application No. PCT/JP02/03862

		773.1
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х .	JP 8-213015 A (Sony Corp.), 20 August, 1996 (20.08.96), Claims 1, 2; Par. No. [0028] (Family: none)	1-4,8-10, 22-25
х	EP 872450 A1 (Sanyo Electric Co., Ltd.), 21 October, 1998 (21.10.98), Claim 2; page 12, lines 24 to 30 & US 6040090 A & JP 10-289731 A	1-4,9,10, 22-26
x	<pre>JP 5-242891 A (Sanyo Electric Co., Ltd.), 21 September, 1993 (21.09.93), Claim 1; Par. No. [0012] (Family: none)</pre>	1-4,9,10, 22-25
х	JP 8-37007 A (Tosoh Corp.), 06 February, 1996 (06.02.96), Claim 1; Par. No. [0067] (Family: none)	1,3,4,9, 10,22-25
Y	JP 2000-285918 A (Kawatetsu Mining Co., Ltd.), 13 October, 2000 (13.10.00), Par. No. [0010] (Family: none)	10
X Y A	JP 2001-106534 A (Kabushiki Kaisha Tanaka Kagaku Kenkyusho), 17 April, 2001 (17.04.01), Claim 1; Par. Nos. [0013], [0018], [0019], [0022] to [0024] (Family: none)	13-19,21 13-19,21 20
A	JP 2000-251892 A (Toyota Central Research And Development Laboratories, Inc.), 14 September, 2000 (14.09.00), (Family: none)	11, 12
	JP 10-255787 A (Kabushiki Kaisha Tanaka Kagaku Kenkyusho), 25 September, 1998 (25.09.98), (Family: none)	13-21

Form PCT/ISA/210 (continuation of second sheet) (July 1998)

International application No.
PCT/JP02/03862

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reason:
1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an
extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Whereas for a group of inventions to fulfill the requirement of unity of invention, there must exist special technical features for linking the group of the property of the p
of inventions so as to form a single general inventive concept, invention
in claims 1-26 are indeed linked in terms an anode active matter containing composite oxide represented by a composition formula $\text{Li}_a \text{Mn}_{0.5-x} \text{Ni}_{0.5-y} \text{M}_{x+y} \text{O}_2$ (
$\leq a < 1.3, -0.1 \leq x-y \leq 0.1, M$ being an element other than Li, Mn, Ni), but
this matter is disclosed in prior-art documents, such as
Document 1; Tutomu Koike et al., Insertion Electrode Function of Li-Ni-Mi Composite Oxide, 41-st Battery Forum Lecture Draft, 2000. 11. 20-22, p.
462-463 (continued to extra sheet)
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable
claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment
of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers
only those claims for which fees were paid, specifically claims Nos.:
<u>.</u>
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is
restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Towns to the months and members in the stating, it is covered by claims 1405
Remark on Protest The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

International application No.
PCT/JP02/03862

Continuation of Box No.II of continuation of first sheet(1)

Document 2: JP 2000-195516 A (Sanyo Electric Co.Ltd.), 2000. 07. 14, [0015] and [0026]

Document 3: JP 2000-223122 A (Sanyo Electric Co.Ltd.), 2000. 08. 11, [0029] and [0049], and therefor cannot constitute a special technical feature.

Accordingly, there exist no special technical features for linking the group of inventions so as to form a single general inventive concept. Therefore it is evident that the group of inventions in claims 1-26 do not fulfill the requirement of unity of invention.

Next, the number of groups of inventions, that is, the number of inventions described in the claims of this international application and linked so as to form a general inventive concept will be studied.

As described above, claim 1, claims 2 and 3, claim 4, claims 5-7, claim 8, claim 9, claim 10, claims 11 and 12 are indeed linked in terms of an anode active matter containing a composite oxide represented by a composition formula $\text{Li}_a\text{Mn}_{0.5-x}\text{Ni}_{0.5-y}\text{M}_{x+y}\text{O}_2$ (0 \leq a < 1.3, -0.1 \leq x-y \leq 0.1, M being an element other than Li, Mn, Ni), but this matter is disclosed in the prior-art documents 1-3 or the like; therefore the inventions do not constitute a special technical feature and they are separate inventions.

Claims 2 and 3 have a technical feature in terms of an anode active matter containing a composite oxide represented by a composition formula $\text{Li}_a\text{Mn}_{0.5-x}\text{Ni}_{0.5-y}\text{M}_{x+y}\text{O}_2$ with M substituted by Co, and therefore they are evidently so linked as to form a single general inventive concept.

Claims 5-7 are characterized in that an X-ray diffraction relative intensity ratio of a diffraction peak at 2θ =44.1±1° to a diffraction peak at 2θ =18.6±1° is at least 0.65 and up to 1.05, and therefore they are considered to be so linked as to form a single general inventive concept.

Claims 11 and 12 are characterized by containing other composite oxides in addition to a composite oxide described in claim 1, and therefore they are considered to be so linked as to form a single general inventive concept.

Claims 13-21 have a technical feature in terms of a method of producing an anode active matter which goes through a coprecipitation method in which an alkali compound, a reduction agent and a complexing agent are added to an aqueous solution in which a nickel compound and a manganese compound are dissolved into water, pH of the solution being set at 10-13, and a Ni-Mn composite coprecipitate is precipitated, and therefore they are evidently so linked as to form a single general inventive concept.

Claims 22-26 have a technical feature in that an anode containing an anode active matter described in claim 1 is used, and therefore they are evidently so linked as to form a single general inventive concept.

Accordingly, the claims of this international application are considered to describe 10 inventions classified as claim 1, claims 2 and 3, claim 4, claims 5-7, claim 8, claim 9, claim 10, claims 11 and 12, claims 13-21, claims 22-26.

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl H01M4/58, 4/02, 10/40, C01G53/00

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' H01M4/58, 4/00-4/04, 10/40, C01G53/00

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国実用新案公報

1926-1996年

日本国公開実用新案公報

1971-2002年

日本国登録実用新案公報日本国実用新案登録公報

1994-2002年1996-2002年

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

C. 関連すると認められる文献				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する請求の範囲の番号		
Х	小槻勉他, リチウム・ニッケル・マンガン複合酸化物のインサーション電極機能, 第41回電池討論会講演予稿, 2000. 11. 20-22, p. 462-463	1, 9, 22-26		
X	JP 2000-223122 A (三洋電機株式会社) 200 0.08.11,【請求項1】~【請求項3】,【請求項7】, 【0029】及び【0049】~【0052】 (ファミリーなし)	1, 2, 5-7, 9, 10,		
Y		$egin{array}{cccccccccccccccccccccccccccccccccccc$		

|X| C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

* 引用文献のカテゴリー

- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 08.07.02 国際調査報告の発送日 23.07.02 国際調査機関の名称及びあて先 特許庁審査官(権限のある職員) 4 X 3 0 3 3 原 野一 (印) 4 X 3 0 3 3 原 野一 (印) 4 X 3 0 3 3 6 3 3 4 7 7

		<u> </u>
C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP 2000-195516 A (三洋電機株式会社) 200 0.07.14,【0015】及び【0026】 (ファミリーな し)	1,9,10, 22-25
X	JP 8-213015 A (ソニー株式会社) 1996.0 8.20, 【請求項1】, 【請求項2】及び【0028】 (ファミリーなし)	$ \begin{array}{c c} 1-4, \\ 8-10, \\ 22-25 \end{array} $
X	EP 872450 A1 (SANYO ELECTRIC Co., Ltd.) 199 8.10.21, claim2, 第12ページ第24行~第30行 & US 6040090 A & JP 10-289731 A	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Х.	JP 5-242891 A (三洋電機株式会社) 1993.0 9.21, 【請求項1】及び【0012】 (ファミリーなし)	1-4, $9, 10,$ $22-25$
X	JP 8-37007 A (東ソー株式会社) 1996.02. 06,【請求項1】及び【0067】 (ファミリーなし)	1, 3, 4, 9, 10, 22-25
Υ .	JP 2000-285918 A (川鉄鉱業株式会社) 200 0.10.13,【0010】 (ファミリーなし)	10
X Y A	JP 2001-106534 A (株式会社田中化学研究所) 2001.04.17,【請求項1】,【0013】,【001 8】,【0019】及び【0022】~【0024】(ファミリーなし)	$ \begin{array}{c} 13-19, \\ 21 \\ 13-19, \\ 21 \\ 20 \end{array} $
A	JP 2000-251892 A (株式会社豊田中央研究所) 2000.09.14 (ファミリーなし)	11, 12
A	JP 10-255787 A (株式会社田中化学研究所) 19 98.09.25 (ファミリーなし)	13-21

様式PCT/ISA/210 (第2ページの続き) (1998年7月)

第1欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)	
法第8条第3項(PCT17条(2)(a))の規定により、この国際調査報告は次の理由により請求の範囲の一部について成しなかった。	. 1
1. 請求の範囲は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、	,
2. □ 請求の範囲は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、	, \
3. [] 請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。	Ξ
第Ⅱ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)	
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。	
請求の範囲に記載されている一群の発明が単一性の要件を満たすには、その一群の発明を単一の一般的発明概念を形成するように関連させるための、特別な技術的特徴の存在が必要であるところ、請求の範囲 $1-26$ に記載されている発明は、組成式 $Li_{Mno.s-x}Ni_{0.s-y}Ni_{0.s-y}Ni_{0.s-y}Ni_{0.s-y}Ni_{0.s-x}Ni_{0.s-y}Ni_{0.$	-
1. X 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求の範囲について作成した。	扵
2.	皀
3. □ 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の組付のあった次の請求の範囲のみについて作成した。	内
4. 出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。	ΔÞ?
追加調査手数料の異議の申立てに関する注意	}

第Ⅱ欄の続き

文献2:JP 2000-195516 A (三洋電機株式会社) 2000.0

7. 14, 【0015】及び【0026】

文献3: JP 2000-223122 A (三洋電機株式会社) 2000.0

8.11, 【0029】及び【0049】

等に記載されているため、特別な技術的特徴とはなり得ない。

そうすると、請求の範囲1-26に記載されている一群の発明の間には、単一の一般的発明概念を形成するように関連させるための、特別な技術的特徴は存在しないこととなる。そのため、請求の範囲1-26に記載されている一群の発明が発明の単一性を満たしていないことは明らかである。

次に、この国際出願の請求の範囲に記載されている、一般的発明概念を形成するように関連している発明の群の数すなわち、発明の数につき検討する。

請求の範囲1と請求の範囲2及び3と請求の範囲4と請求の範囲5-7と請求の範囲8と請求の範囲9と請求の範囲10と請求の範囲11及び12とは、前記したように、組成式L $i_1Mn_0.5-xNi_0.5-xMx+yO_2$ (0<a<1.3、-0.1 $\le x-y \le 0.1$ 、MはL i_1Mn_1 、Ni以外の元素)で表される複合酸化物を含有する正極活物質という点で一応関連しているものの、この事項は先行技術文献1-3等に記載されているため、特別な技術的特徴とはなり得ず、互いに別発明であると認められる。

請求の範囲2及び3は、組成式Li。Mno、5-xNio、5-yMx+yO2のMがCoである複合酸化物を含有する正極活物質という点を技術的特徴とすることによって、単一の一般的発明概念を形成するように関連していると認められる。

請求の範囲 5-7は、X線回折の $2\theta=18.6\pm1$ ° における回折ピークに対する $2\theta=44.1\pm1$ ° における回折ピークの相対強度比が 0.65以上 1.05以下であることを特徴とすることによって、単一の一般的発明概念を形成するように関連していると認められる。

請求の範囲11及び12は、請求の範囲1に記載された複合酸化物にさらに他の複合酸化物を含有することを特徴とすることによって、単一の一般的発明概念を形成するように関連していると認められる。

請求の範囲13-21は、ニッケル化合物とマンガン化合物とが水に溶解された水溶液に、アルカリ化合物と還元剤と錯化剤とを添加して、水溶液のpHを10~13とし、Ni-Mn複合共沈物を沈殿させる共沈工程を経由する正極活物質の製造方法を技術的特徴とすることによって、単一の一般的発明概念を形成するように関連していると認められる。

請求の範囲22-26は、請求の範囲1に記載されている正極活物質を含む正極を用いる ことを技術的特徴とすることによって、単一の一般的発明概念を形成するように関連してい ると認められる。

したがって、この国際出願の請求の範囲には、請求の範囲1と、請求の範囲2及び3と、 請求の範囲4と、請求の範囲5-7と、請求の範囲8と、請求の範囲9と、請求の範囲10 と、請求の範囲11及び12と、請求の範囲13-21と、請求の範囲22-26に区分される10個の発明が記載されているものと認められる。