Técnicas de Concepção de Algoritmos (1ª parte): Programação Dinâmica

R. Rossetti, A. P. Rocha, L. Ferreira, J. P. Fernandes, F. Ramos, G. Leão CAL, MIEIC, FEUP

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

2

Programação dinâmica (dynamic programming)

Aplicabilidade e abordagem

- Problemas resolúveis recursivamente (solução é uma combinação de soluções de subproblemas similares)
- ... Mas, em que a resolução recursiva directa duplicaria trabalho (resolução repetida do mesmo subproblema)
- ♦ Abordagem:
 - > 1°) Economizar tempo (evitar repetir trabalho), memorizando as soluções parciais dos subproblemas (gastando memória!)
 - 2°) Economizar memória, resolvendo subproblemas por ordem que minimiza nº de soluções parciais a memorizar (bottom-up, começando pelos casos base)
- Termo "Programação" vem da Investigação Operacional, no sentido de "formular restrições ao problema que o tornam num método aplicável" e autocontido, de decisão.

Exemplo: ⁿC_k, versão recursiva

ⁿC_k - Programação dinâmica

Memorização de soluções parciais:

Implementação

Guardar apenas uma coluna, e calcular da esq. para dir. (também se podia guardar 1 linha e calc. cima p/ baixo):

```
static final int MAXN = 50;
static int c[] = new int[MAXN+1];

int comb(int n, int k) {
   int maxj = n - k;
   for (int j = 0; j <= maxj; j++)
      c[j] = 1;
   for (int i = 1; i <= k; i++)
      for (int j = i; j <= maxj; j++)
      c[j] += c[j-1];
   return c[maxj];
}</pre>
cn(cas de Concepção de Algoritmos, CAL - MEIC/FEUP
```

Problema da mochila

- Um ladrão encontra o cofre cheio de itens de vários tamanhos e valores, mas tem apenas uma mochila de capacidade limitada; qual a combinação de itens que deve levar para maximizar o valor do roubo?
 - > Tamanhos e capacidades inteiros
 - Vamos assumir nº ilimitado de itens de cada tipo

Estratégia de prog. dinâmica

- Calcular a melhor combinação para todas as mochilas de capacidade 1 até M (capacidade pretendida)
- Começar por considerar que só se pode usar o item 1, depois os itens 1 e 2, etc., e finalmente todos os itens de 1 a N (N = nº de itens)
- Cálculo é eficiente em tempo e espaço se efectuado pela ordem apropriada

Dados

Entradas:

- > N nº de itens (com nº de cópias ilimitado de cada item)
- > size[i] $(1 \le i \le N)$ tamanho (inteiro) do item i
- ightarrow val[i] $(1 \le i \le N)$ valor do item i
- > M capacidade da mochila (inteiro)
- ◆ Dados de trabalho, no final de cada iteração i (de 0 a N)
 - > cost[k] (1 \leq k \leq M) melhor valor que se consegue com mochila de capacidade k, usando apenas itens de 1 a i
 - > **best[k]** $(1 \le k \le M)$ último item seleccionado p/ obter melhor valor com mochila de capac. k, usando apenas itens de 1 a i
- Dados de saída:
 - > cost[M] melhor valor que se consegue c/ mochila de cap. M
 - best[M], best[M-size[best[M]], etc. itens seleccionados

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

Formulação recursiva

- Caso base (i = 0; k = 1, ..., M): $cost[k]^{(0)} = 0$ best $[k]^{(0)} = 0$
- ◆ Caso recursivo (i = 1, ..., N; k = 1, ..., M):

 $\cos[k]^{(i)} = \begin{cases} \operatorname{val}[i] + \operatorname{cost}[k - \operatorname{size}[i]]^{(i)}, & \operatorname{se} \begin{cases} \operatorname{size}[i] \le k \\ \wedge \\ \operatorname{val}[i] + \operatorname{cost}[k - \operatorname{size}[i]]^{(i)} \end{cases} > \operatorname{cost}[k]^{(i-1)} \\ \operatorname{best}[k]^{(i)} = \begin{cases} i, & \operatorname{no prime}(i) = (i, -1) \\ \operatorname{best}[k]^{(i-1)}, & \operatorname{no segundo caso acima (não usa o item } i) \end{cases} \\ \operatorname{Encher o resto} \end{cases}$

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

(senão, escrevíamos i-1)

			1																		
_	size	val	k	0		2		4		6		8			11	12		14			
0	-	-	cost[k]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	3	4	best[k]		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	3	4	cost[k]		0	0	4 1	4 1	4 1	8 1	8 1	1	12	12	12	16	16	10	20	1	20
2	4	5	Iteraç									_									
			i = 1;																		
3	7	10	size[i				М;														
4	8	11	size[i			AND		l[i]		cost	[k-:	i]		ost[[k]?						
5	9	13	THEN b	est	[k]			ost[k] :					st[}							

			i																		
i	size	val	k	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	-	-	cost[k]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			best[k]	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	3	4	cost[k]	0	0	0	4	4	4	8	8	8	12	12	12	16	16	16	20	20	20
			best[k]	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	4	5	cost[k]	0	0	0	4	5	5	8	9	10	12	13	14	16	17	18	20	21	22
			best[k]	0	0	0	1	2	2	1	2	2	1	2	2	1	2	2	1	2	2
3	7	10	cost[k]	0	0	0	4	5	5	8	10	10	12	14	15	16	18	20	20	22	24
			best[k]	0	0	0	1	2	2	1	3	2	1	3	3	1	3	3	1	3	3
4	8	11	cost[k]	0	0	0	4	5	5	8	10	11	12	14	15	16	18	20	21	22	24
			best[k]	0	0	0	1	2	2	1	3	4	1	3	3	1	3	3	4	3	3
5	9	13	cost[k]	0	0	0	4	5	5	8	10	11	13	14	15	17	18	20	21	23	24
			best[k]	0	0	0	1	2	2	1	3	4	5	<u>3</u>	3	5	3	3	4	5	<u>3</u>

Tempo: T(N,M) = O(NM)Codificação Espaço: S(N,M) = O(M)int[] cost = new int[M+1]; // iniciado c/ 0's int[] best = new int[M+1]; // iniciado c/ 0's for (int i = 1; i <= N; i++) for (int $k = size[i]; k \le M; k++$) if (val[i] + cost[k-size[i]] > cost[k]) { cost[k] = val[i] + cost[k-size[i]]; best[k] = i;Como k é percorrido por ordem crescente cost[k-size[i]] já tem o valor da iteração i // impressão de resultados (valor e itens) print(cost[M]); for (int k = M; k > 0; k -= size[best[k]]) print(best[k]); ricas de Concepção de Algoritmos, CAL - MIEIC/FEUP

Números de Fibonacci

 \bullet F = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...}

Fórmula de recorrência: F(n) = F(n-1) + F(n-2), n > 1
 F(0) = 0

 Para calcular F(n), basta memorizar os dois últimos elementos da sequência para calcular o seguinte:

```
int Fib(int n) {
  int a = 1, b = 0; // F(1), F(0)
  for (int i=1; i <= n; i++) {int t = a; a = b; b += t; }
  return b;
}</pre>
```

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

> F(1) = 1

R

Subsequência crescente mais comprida

Exemplo:

- Sequência S = (9, 5, 2, 8, 7, 3, 1, 6, 4)
- Subsequência crescente mais comprida (elem's não necessariamente contíguos): (2, 3, 4) ou (2, 3, 6)

♦ Formulação:

- > s₁, ..., s_n sequência
- \rightarrow l_i compr. da maior subseq. crescente de $(s_1, ..., s_i)$
- > p_i predecessor de s_i nessa subsequência crescente
- $\downarrow l_i = 1 + max \{ l_k \mid 0 < k < i \land s_k < s_i \} (max \{ \} = 0)$
- p_i = valor de k escolhido para o máx. na expr. de l_i
- > Comprimento final: max(l_i)

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

Cálculo para o exemplo dado

i 1 2 3 4 5 6 7 8 9

Sequência si 9 5 <u>2</u> 8 7 <u>3</u> 1 <u>6</u> 4

Tamanho li 1 1 1 2 2 2 1 <u>3</u> 3

Predecessor pi - - - 2 2 <u>3</u> - <u>6</u> 6

Resposta: (2, 3, 6)

Técnicas de Concepção de Algoritmos, CAL - MIEIC/FEUP

20

21

Referências

- ◆ Mark Allen Weiss. Data Structures & Algorithm Analysis in Java. Addison-Wesley, 1999
- ◆ Steven S. Skiena. The Algorithm Design Manual. Springer 1998
- ◆ Robert Sedgewick. Algorithms in C++. Addison-Wesley, 1992