

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Pierre BLANCHARD, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

#13/pn
01-23-03

INTERNATIONAL APPLICATION NO.: PCT/IB99/01625

INTERNATIONAL FILING DATE: 01 October 1999

FOR: NOVEL RHEOLOGY REGULATORS OF THE CRUSHED NATURAL CALCIUM CARBONATE TYPE, POSSIBLY TREATED WITH A FATTY ACID OR ITS SALT, AND THEIR APPLICATION IN POLYMERIC COMPOSITIONS

REQUEST FOR PRIORITY UNDER 35 U.S.C. 119
AND THE INTERNATIONAL CONVENTIONAssistant Commissioner for Patents
Washington, D.C. 20231

Sir:

In the matter of the above-identified application for patent, notice is hereby given that the applicant claims as priority:

<u>COUNTRY</u>	<u>APPLICATION NO.</u>	<u>DAY/MONTH/YEAR</u>
FRANCE	98/12714	07 October 1998

A certified copy of the corresponding Convention application(s) was submitted to the International Bureau in PCT Application No. **PCT/IB99/01625**.

Respectfully submitted,

OBLON, SPIVAK, McCLELLAND,
MAIER & NEUSTADT, P.C.**22850**

Norman F. Oblon
Attorney of Record
Registration No. 24,618
Surinder Sachar
Registration No. 34,423

(703) 413-3000
Fax No. (703) 413-2220
(OSMMN 1/97)

John H. Smithwick

John H. Smithwick

01.10.99

E,

REC'D 13 OCT 1999
WIPO PCT

BREVET D'INVENTION

CERTIFICAT D'UTILITÉ - CERTIFICAT D'ADDITION

COPIE OFFICIELLE

Le Directeur général de l'Institut national de la propriété industrielle certifie que le document ci-annexé est la copie certifiée conforme d'une demande de titre de propriété industrielle déposée à l'Institut.

Fait à Paris, le 15 SEP. 1999

Pour le Directeur général de l'Institut
national de la propriété industrielle
Le Chef du Département des brevets

A handwritten signature in black ink, appearing to read 'Martine PLANCHE', is enclosed in an oval shape.

PRIORITY DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH
RULE 17.1(a) OR (b)

Martine PLANCHE

INSTITUT NATIONAL DE LA PROPRIETE INDUSTRIELLE	SIEGE 26 bis, rue de Saint Petersbourg 75800 PARIS Cedex 08 Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30
---	---

INSTITUT NATIONAL DE LA PROPRIÉTÉ INDUSTRIELLE

26 bis, rue de Saint Pétersbourg
75800 Paris Cedex 08

Téléphone : 01 53 04 53 04 Télécopie : 01 42 93 59 30

BREVET D'INVENTION, CERTIFICAT D'UTILITÉ

Code de la propriété intellectuelle-Livre VI

cerfa

N° 55-1323

REQUÊTE EN DÉLIVRANCE

Confirmation d'un dépôt par télécopie

Cet imprimé est à remplir à l'encre noire en lettres capitales

Réserve à l'INPI

DATE DE REMISE DES PIÈCES - 7 OCT. 1998

N° D'ENREGISTREMENT NATIONAL

98 12714 -

DÉPARTEMENT DE DÉPÔT

ly

07 OCT. 1998

DATE DE DÉPÔT

2 DEMANDE Nature du titre de propriété industrielle

 brevet d'invention demande divisionnaire

demande initiale

 certificat d'utilité transformation d'une demande de brevet européen brevet d'invention

Etablissement du rapport de recherche

 différé immédiatLe demandeur, personne physique, requiert le paiement échelonné de la redevance oui non

Titre de l'invention (200 caractères maximum)

Nouveaux carbonates de calcium naturels broyés, éventuellement traités avec un acide gras ou son sel, leur application comme régulateur de rhéologie dans des compositions polymériques.

3 DEMANDEUR (S)

n° SIREN

code APE-NAF

Nom et prénoms (souligner le nom patronymique) ou dénomination

PLÜSS-STAUFER AG

Forme juridique

Aktien Gesellschaft

Nationalité (s)

SUISSE

Adresse (s) complète (s)

PLÜSS-STAUFER AG
CH-4665 OFTRINGEN
SUISSE

Pays SUISSE

En cas d'insuffisance de place, poursuivre sur papier libre

4 INVENTEUR (S) Les inventeurs sont les demandeurs

 oui non

Si la réponse est non, fournir une désignation séparée

5 RÉDUCTION DU TAUX DES REDEVANCES

 requise pour la 1ère fois requise antérieurement au dépôt ; joindre copie de la décision d'admission

6 DÉCLARATION DE PRIORITÉ OU REQUÊTE DU BÉNÉFICE DE LA DATE DE DÉPÔT D'UNE DEMANDE ANTIÉRIEURE

pays d'origine

numéro

date de dépôt

nature de la demande

7 DIVISIONS antérieures à la présente demande n°

date

n°

date

8 SIGNATURE DU DEMANDEUR OU DU MANDATAIRE
(nom et qualité du signataire - n° d'inscription)E. HESSANT (PG n° 7246)
Mandataire PLÜSS-STAUFER AG

SIGNATURE DU PRÉPOSÉ À LA RÉCEPTION

SIGNATURE APRÈS ENREGISTREMENT DE LA DEMANDE À L'INPI

A. CHAPELAN
J. P. L.

Signature

DIVISION ADMINISTRATIVE DES BREVETS

26bis, rue de Saint-Pétersbourg
75800 Paris Cedex 08
Tél. : 01 53 04 53 04 - Télécopie : 01 42 93 59 30

DÉSIGNATION DE L'INVENTEUR
(si le demandeur n'est pas l'inventeur ou l'unique inventeur)

N° D'ENREGISTREMENT NATIONAL

98 12714

TITRE DE L'INVENTION :

Nouveaux carbonates de calcium naturels broyés, éventuellement traités avec un acide gras ou son sel, leur application comme régulateur de rhéologie dans des compositions polymériques.

LE(S) SOUSSIGNÉ(S)

Eric HESSANT (PG n° 7246)

DÉSIGNE(NT) EN TANT QU'INVENTEUR(S) (indiquer nom, prénoms, adresse et souligner le nom patronymique) :

BLANCHARD Pierre
Route de Veissieux Le Bas
Chemin de Budron n° 63
01600 REYRIEUX - FRANCE

GYSAU Detlef
Barengasse 17
CH-4800 Zofingen
SUISSE

LOMAN Henny
Obersumpfstrasse 38
CH-5745 SAFENWIL
SUISSE

TROUVE Patrick
45-47 rue Bonnelais
92140 CLAMART
FRANCE

NOTA : A titre exceptionnel, le nom de l'inventeur peut être suivi de celui de la société à laquelle il appartient (société d'appartenance) lorsque celle-ci est différente de la société déposante ou titulaire.

Date et signature (s) du (des) demandeur (s) ou du mandataire
Le 7 octobre 1998

Eric HESSANT (PG n° 7246)
Mandataire PLÜSS-STAUFER AG

**NOUVEAUX CARBONATES DE CALCIUM NATURELS BROYES,
EVENTUELLEMENT TRAITES AVEC UN ACIDE GRAS OU SON SEL, LEUR
APPLICATION COMME REGULATEUR DE RHEOLOGIE DANS DES
COMPOSITIONS POLYMERIQUES**

5

La présente invention concerne le secteur technique des mastics, des enduits, des adhésifs, des plastisols, ou encore des caoutchoucs.

10 On connaît, dans le domaine, des compositions polymériques chargées ou non, par exemple, les polyuréthannes à terminaison silane qui sont utilisés comme mastics ou adhésifs durcissables à l'humidité.

15 En présence d'humidité, les groupes silane terminaux subissent de manière connue une réaction d'hydrolyse et de condensation. Il se forme alors un réseau stable siloxane (Si-O-Si).

De tels produits ont de nombreuses applications dans divers domaines industriels tels que l'industrie du transport et du bâtiment.

20 On a donc recherché des formulations de plus en plus sophistiquées, notamment du type « mono-composant », et capables de s'appliquer sur divers substrats posant des problèmes de plus en plus difficiles à résoudre.

25 La composition de ce type de formulations comprend une ou plusieurs charges qui peuvent être un ou des carbonates de calcium habituellement qualifiés de « fins ».

Il a été découvert selon l'invention que, de manière surprenante, la sélection d'un carbonate de calcium naturel broyé à une grande finesse, qui sera décrit ci-dessous, ou de 30 ce carbonate de calcium traité également comme décrit ci-dessous, permet d'atteindre un ensemble inégalé de propriétés satisfaisantes pour le produit final. On peut notamment citer une bonne adaptabilité à l'adhérence sur des nombreux types de substrats, comme certains plastiques difficiles, y compris sans couche primaire ou « primer » préalable, une réduction de la quantité nécessaire de polymère (et donc une réduction du coût matières), ou encore une réduction notable du temps de mélange (pouvant atteindre un facteur 1/2 pour chaque étape, ce qui présente un grand intérêt économique évident).

Il est encore plus surprenant de constater que cette amélioration remarquable d'un ensemble de propriétés du produit final ne s'effectue pas, comme l'homme du métier le

prévoyait logiquement, au détriment des propriétés mécaniques finales, ou de propriétés comme la résistance aux agents chimiques ou aux rayons UV ou propriétés analogues demandées classiquement à de tels agents.

- 5 On connaît également les formulations de type plastisol à base de polychlorure de vinyle (PVC).

On rappellera ici qu'un plastisol désigne une suspension d'une ou plusieurs résines de PVC dans un plastifiant liquide ainsi que des adjuvants tels que charges minérales, 10 stabilisants, pigments minéraux et/ou organiques, agents d'expansion, promoteurs d'adhérence, fluidifiants et autres.

Après gélification thermique, le plastisol prend l'aspect d'une masse compacte plus ou moins souple.

- 15 Une des charges minérales habituellement utilisée consiste en un carbonate de calcium synthétique obtenu par voie chimique (carbonate de calcium précipité : PCC) comme par exemple le produit Winnofil SPT Premium™ de Zeneca.

Selon l'invention, il est proposé d'utiliser comme matière de charge minérale régulatrice 20 de rhéologie, un carbonate de calcium naturel broyé à une grande finesse, choisi parmi la craie, la calcite, le marbre, seul ou en mélange, ou ce même carbonate de calcium traité à l'aide d'au moins un acide gras ou son sel ou leur mélange et préférentiellement à l'aide d'acide stéarique ou son sel tel que notamment le stéarate de calcium, de magnésium, de zinc et très préférentiellement à l'aide de l'acide stéarique ou son sel de calcium, le tout 25 comme décrit plus en détail ci-dessous.

Le produit selon l'invention est caractérisé en ce qu'il s'agit d'un carbonate de calcium naturel, de surface spécifique de l'ordre de 14 à 30 m²/g, de préférence 16 à 24 m²/g, et très préférentiellement de l'ordre de 20 m²/g mesurée selon la méthode B.E.T. norme 30 ISO 4652.

Ce carbonate est éventuellement traité par au moins un acide gras ou son sel ou leur mélange, acide qui est un acide contenant 10 à 24 atomes de carbone, et plus particulièrement de l'acide stéarique ou son sel tel que notamment le stéarate de calcium, 35 de magnésium, de zinc et très préférentiellement à l'aide de l'acide stéarique ou son sel de calcium, de préférence à raison de 0,01 % à 5 % en poids et plus préférentiellement de 1 % à 4 % en poids.

On notera ici que par acide stéarique on entend les acides stéariques de qualité industrielle composés principalement de 50 % à 70 % d'acide octadécanoïque et de 30 % à 50 % d'acide hexadécanoïque.

- 5 Un avantage original est que cette charge remplit une fonction de régulateur de rhéologie. Cette fonction est habituellement dévolue aux polymères et aux additifs contenus dans la formulation polymérique tels que par exemple les dépresseurs de viscosité et la Demanderesse a été surprise de la voir remplie par un produit de type matière de charge minérale naturelle de grande finesse.

10

Le produit sélectionné selon l'invention consiste en un carbonate de calcium naturel broyé très finement, éventuellement traité par au moins un acide gras ou son sel ou leur mélange.

- 15 Une autre de ses caractéristiques réside dans sa prise d'huile qui est supérieure à 16, mesurée selon la norme ISO 787-V (Rub-out method).

Un carbonate de calcium de surface spécifique de 19 à 26 m²/g a été décrit dans le brevet EP 0 795 588. Il est connu selon ce document comme pigment apportant de la brillance 20 et de l'opacité dans le domaine du papier. Ce domaine d'application est totalement différent. Au surplus, une telle fonction est totalement différente de celle d'une action de régulateur de rhéologie, et rien ne suggérait ni la fonction mise en lumière par l'invention, ni le fait que cette nouvelle application pouvait conduire à un ensemble surprenant de propriétés présentant un très grand intérêt économique.

25

L'invention concerne encore l'utilisation, comme régulateur de rhéologie pour la préparation de mastics ou enduits, d'adhésifs, de plastisols ou encore de caoutchoucs, de ces carbonates de calcium naturels broyés à une très grande finesse, éventuellement traités à l'aide d'au moins un acide gras ou son sel notamment de calcium, de magnésium, ou de zinc ou leur mélange. Cet acide qui est un acide contenant 10 à 30 24 atomes de carbone, est plus particulièrement l'acide stéarique ou son sel tel que notamment le stéarate de calcium, de magnésium, de zinc et très préférentiellement l'acide stéarique ou son sel de calcium. Le traitement s'effectue de préférence à raison de 0,01 % à 5 % en poids et plus préférentiellement de 1 % à 4 % en poids d'au moins un acide gras ou son sel ou leur mélange.

L'invention concerne encore l'utilisation des dispersions ou suspensions, dans un milieu organique, de ces carbonates de calcium, traités ou non traités, comme régulateur de

rhéologie pour la préparation de mastics ou enduits, d'adhésifs, de plastisols ou encore de caoutchoucs.

5 L'invention concerne enfin les compositions polymériques de plastisols, de mastic ou enduit, d'élastomère ou de caoutchouc contenant, comme régulateur de rhéologie, lesdits carbonates de calcium naturels broyés à une très grande finesse, éventuellement traités à l'aide d'au moins un acide gras ou son sel ou leur mélange.

10 D'autres caractéristiques et avantages de l'invention seront mieux compris à la lecture de la description et des exemples qui vont suivre. Ces exemples ne sauraient représenter un quelconque aspect limitatif de l'invention.

Dans les exemples, les produits présentent les caractéristiques suivantes :

15 **PRODUIT A :**

Charge de l'art antérieur, constituée d'un carbonate de calcium naturel de type craie, broyé et séché, non traité, de diamètre moyen de grain 0,67 micromètre mesuré a l'aide du Sédigraph 5100 de la société Micromeritics, de surface spécifique 11 m²/g mesurée selon la méthode B.E.T. norme ISO 4652 .

20

PRODUIT B :

Charge selon l'invention, constituée d'un carbonate de calcium naturel de type craie, broyé et séché, non traité, de diamètre moyen de grain 0,60 micromètre mesuré a l'aide du Sédigraph 5100 de la société Micromeritics, de surface spécifique 19,5 m²/g mesurée 25 selon la méthode B.E.T. norme ISO 4652 et de prise d'huile égale à 18,75 mesurée selon la norme ISO 787-V (Rub-out method).

PRODUIT C :

Charge selon l'invention, constituée d'un carbonate de calcium naturel de type calcite urgonien, broyé en voie humide et séché, non traité, de diamètre moyen de grain 0,44 micromètre mesuré a l'aide du Sédigraph 5100 de la société Micromeritics, de surface spécifique de 16,5 m²/g mesurée selon la méthode B.E.T. norme ISO 4652 et de prise d'huile égale à 20 mesurée selon la norme ISO 787-V (Rub-out method).

35 **PRODUIT D :**

Charge selon l'invention, constituée d'un carbonate de calcium naturel de type craie, broyé en voie humide et séché, traité par la mise en œuvre de 3 % en poids d'acide stéarique, de diamètre moyen de grain 0,59 micromètre mesuré a l'aide du Sédigraph

5100 de la société Micromeritics, de surface spécifique, après traitement, égale à 16 m²/g mesurée selon la méthode B.E.T. norme ISO 4652 et de prise d'huile, après traitement, égale à 16,3 mesurée selon la norme ISO 787-V (Rub-out method).

5

PRODUIT E :

Charge selon l'invention, constituée d'un carbonate de calcium naturel de type calcite urgonien, broyé en voie humide et séché, non traité, de diamètre moyen de grain 0,58 micromètre mesuré a l'aide du Sédigraph 5100 de la société Micromeritics, de surface spécifique de 14,4 m²/g mesurée selon la méthode B.E.T. norme ISO 4652 et de prise d'huile égale à 17,9 mesurée selon la norme ISO 787-V (Rub-out method).

PRODUIT F :

Charge selon l'invention, constituée d'un carbonate de calcium naturel de type craie, 15 broyé en voie humide et séché, traité au moyen de 1 % en poids d'acide stéarique, de granulométrie résultante égale à 96 % < 1 micromètre et 39 % < 0,2 micromètre mesuré a l'aide du Sédigraph 5000 de la société Micromeritics, de surface spécifique, après traitement, égale à 28 m²/g mesurée selon la méthode B.E.T. norme ISO 4652 et de prise d'huile, après traitement, égale à 19,5 mesurée selon la norme ISO 787-V (Rub-out 20 method).

PRODUIT G :

Charge selon l'invention, constituée d'un carbonate de calcium naturel de type craie, broyé en voie humide et séché , non traité , de surface spécifique 22 m²/g mesurée selon 25 la méthode B.E.T. norme ISO 4652 et de prise d'huile égale à 19,4 mesurée selon la norme ISO 787-V (Rub-out method).

PRODUIT H :

Charge de l'art antérieur constituée d'un carbonate de calcium précipité commercialisé 30 par la société Zeneca sous le nom de Winnofil SPT™.

PRODUIT I :

Charge de l'art antérieur, constituée d'un carbonate de calcium naturel de type craie, 35 broyé en voie humide et séché, traité au moyen de 1 % d'acide stéarique, de diamètre moyen égal à 1,4 micromètre mesuré à l'aide du Sédigraph 5100 de la société Micromeritics et de surface spécifique égale à 6 m²/g mesurée selon la méthode B.E.T. norme ISO 4652.

PRODUIT J :

Charge de l'art antérieur, constituée d'un carbonate de calcium naturel de type craie, broyé en voie humide et séché, traité par la mise en œuvre de 1 % en poids d'acide stéarique, de diamètre moyen égal à 1 micromètre mesuré a l'aide du Sédigraph 5100 de 5 la société Micromeritics et surface spécifique 10 m²/g mesurée selon la méthode B.E.T. norme ISO 4652.

PRODUIT K :

Charge de l'art antérieur constituée d'un carbonate de calcium précipité traité 10 commercialisé par la société Solvay sous le nom de Socal U1S2.

EXEMPLE 1:

15

Cet exemple concerne l'utilisation de carbonates de calcium comme régulateur de rhéologie pour la préparation de plastisols.

On a testé dans ces essais le remplacement du carbonate de calcium synthétique obtenu 20 par précipitation, de l'art antérieur, ou carbonate de calcium précipité (PCC) par le carbonate de calcium naturel spécifique selon l'invention.

Dans une formulation type plastisol à base de PVC (chlorure de polyvinyle) ne contenant pas de carbonate de calcium, on a cherché à comparer l'influence de la substitution de 25 50 % à 100 % de la charge minérale habituellement utilisée à savoir un carbonate de calcium précipité par un carbonate de calcium naturel broyé à une grande finesse selon l'invention.

Pour ce faire, on mélange avec 75 g de plastisol non chargé, la charge d'essai à tester 30 dans un récipient de 7 cm de diamètre et on homogénéise à la spatule. On procède ensuite à la mise en dispersion du mélange durant 2 minutes à l'aide d'un appareillage de mélange de laboratoire « Pendraulik »™ LD50, le diamètre du disque de mise en dispersion étant de 5 cm, la vitesse de rotation du disque étant 2700 tr/min (réglage manuel en position 3).

35

La mise en dispersion étant terminée, on effectue la mesure de viscosité à l'aide de l'appareillage « Rheomat 120 »™, appareil de mesure selon la norme DIN 125, à 20°C.

Essai n° 1 :

- Cet essai illustre l'art antérieur et met en œuvre 20 g d'un carbonate de calcium précipité commercialisé par la société Zeneca sous le nom de Winnofil SPT™ (produit H) et 5 g de carbonate de calcium naturel vendu sous le nom Juraperle™ BS par la société 5 Juraweiss.

Essai n° 2 :

- Cet essai illustre l'art antérieur et met en œuvre 13 g d'un carbonate de calcium précipité commercialisé par la société Zeneca sous le nom de Winnofil SPT™ (produit H) et 12 g 10 du produit A selon l'invention.

Essai n° 3 :

- Cet essai illustre l'invention et met en œuvre 25 g du produit B selon l'invention.

15 Essai n° 4 :

- Cet essai illustre l'art antérieur et met en œuvre 20 g d'un carbonate de calcium précipité commercialisé par la société Zeneca sous le nom de Winnofil SPT™ (produit H).

Essai n° 5:

- 20 Cet essai illustre l'invention et met en œuvre 10g d'un carbonate de calcium précipité commercialisé par la société Zeneca sous le nom de Winnofil SPT™ (produit H) Set 15 g du produit D selon l'invention.

Essai n° 6 :

- 25 Cet essai illustre l'invention et met en œuvre 10 g d'un carbonate de calcium précipité commercialisé par la société Zeneca sous le nom de Winnofil SPT™ (produit H) et 15 g du produit C selon l'invention.

Essai n° 7 :

- 30 Cet essai illustre l'invention et met en œuvre 13 g d'un carbonate de calcium précipité commercialisé par la société Zeneca sous le nom de Winnofil SPT™ (produit H) et 12 g du produit E selon l'invention.

Essai n° 8 :

- 35 Cet essai illustre l'invention et met en œuvre 10 g d'un carbonate de calcium précipité commercialisé par la société Zeneca sous le nom de Winnofil SPT™ (produit H), 5 g de carbonate de calcium naturel vendu sous le nom Juraperle™ BS par la société Juraweiss et 10 g du produit D selon l'invention.

Essai n° 9 :

Cet essai illustre l'invention et met en œuvre 10 g d'un carbonate de calcium précipité commercialisé par la société Zeneca sous le nom de Winnofil SPT™ (produit H), 5 g de carbonate de calcium naturel vendu sous le nom Juraperle™ BS par la société Juraweiss 5 et 10 g du produit E selon l'invention.

Essai n° 10 :

Cet essai illustre l'invention et met en œuvre, pour un mélange avec 72 g de plastisol, 10 g d'un carbonate de calcium précipité commercialisé par la société Zeneca sous le 10 nom de Winnofil SPT™ (produit H), 5 g de carbonate de calcium naturel vendu sous le nom Juraperle™ BS par la société Juraweiss et 13 g du produit E selon l'invention.

Les résultats des mesures de viscosité en fonction de la vitesse d'écoulement selon la norme DIN 125 à 20°C sont rassemblés dans les tableaux Ia et Ib ci-après.

TABLEAU Ia

C O M P O S I T I O N	ESSAI n°	Art antérieur	Art antérieur	Invention	Art antérieur	Invention
		1	2	3	4	5
Plastisol non chargé (en g)	75,00	75,00	75,00	75,00	75,00	75,00
PCC (en g)	20,00	13,00	-	25,00	10,00	
Juraperte™ BS (en g)	5,00					
Produit A (en g)	-	12,00	-	-	-	
Produit B (en g)	-	-	25,00	-	-	
Produit D (en g)	-	-	-	-	15,00	
Poids du mélange (en g)	100,00	100,00	100,00	100,00	100,00	100,00
Viscosité mPa.s						
Vitesse d'écoulement s ⁻¹	1	2	3	4	5	
20	18200	17700	15200	17600	17100	
40	10040	9650	8430	9900	9650	
60	7260	7100	6280	7200	7100	
80	5890	5730	5170	5850	5700	
100	5100	4880	4390	5000	4800	
120	4490	4380	3980	4450	4350	
140	4100	4020	3550	3990	3990	
160	3780	3650	3310	3650	3650	
180	3460	3400	3110	3400	3380	
200	3320	3220	2950	3190	3170	
220	3140	3030	2780	3110	3000	
240	3000	2870	2620	2890	2820	
260	2870	2760	2520	2740	2700	
280	2760	2680	2420	2610	2600	
300	2660	2570	2350	2490	2490	

TABLEAU Ib

C O M P O S I T I O N R H E O L O G I E	ESSAI n°	Invention	Invention	Invention	Invention	Invention
		6	7	8	9	10
Plastisol non chargé (en g)	75,00	75,00	75,00	75,00	72,00	
PCC (en g)	10,00	13,00	10,00	10,00	10,00	
Juraperle™ BS (en g)	-	-	5,00	5,00	5,00	
Produit C (en g)	15,00	-	-	-	-	
Produit D (en g)	-	-	10,00	-	-	
Produit E (en g)	-	12,00	-	10,00	13,00	
Poids du mélange (en g)	100,00	100,00	100,00	100,00	100,00	
Viscosité mPa.s	Essai n°	Essai n°	Essai n°	Essai n°	Essai n°	
Vitesse d'écoulement s ⁻¹	6	7	8	9	10	
20	12700	17300	13100	12500	17000	
40	7280	9450	7600	7160	9500	
60	5360	6950	5630	5250	7030	
80	4430	5600	4850	4330	5580	
100	3820	4830	4040	3780	4800	
120	3400	4230	3600	3300	4320	
140	3110	3950	2290	3000	3790	
160	2860	3550	3040	2770	3550	
180	2680	3260	2850	2590	3280	
200	2520	3110	2680	2480	3080	
220	2400	2910	2550	2320	2950	
240	2290	2790	2430	2200	2800	
260	2190	2670	2340	2130	2710	
280	2120	2580	2250	2050	2610	
300	2040	2490	2180	1970	2490	

La lecture du tableau permet de voir que l'utilisation du carbonate de calcium selon l'invention permet de réguler le comportement rhéologique de la composition plastisol, même lorsque 100 % du carbonate de calcium précipité a été remplacé par le carbonate de calcium selon l'invention.

5

EXEMPLE 2 :

10 Cet exemple concerne l'étude des propriétés mécaniques classiques conférées par le produit F selon l'invention, soit une craie naturelle broyée de manière à obtenir une surface spécifique de 28 m²/g, à des mélanges à base de PVC plastifié, en comparaison des mélanges renfermant des carbonates de calcium naturels broyés de manière plus grossière c'est-à-dire de surface spécifique hors du domaine de l'invention.

15 Pour chacun des essais, on a réalisé le mélange suivant :

	PVC « SOLVIC 239 D » commercialisé par la société Solvay	100
	Phtalate de dioctyle (Jayflex™ DOP de Exxon)	50
	Sulfate dibasique de plomb	1
20	Sulfate tribasique de plomb	2
	Charge à tester	80

Préparation de la composition :

25 Les mélanges secs ou « dry-blends » sont préparés au mélangeur adiabatique « GUEDU »™, à 100°C durant une période de 15 minutes. Les mélanges sont ensuite gélifiés sur cylindres à 150°C au malaxeur à cylindre. Pour tous les mélanges, cette opération s'est effectuée en 12 minutes.

30 Des plaques de 90 x 90 x 2 mm ont ensuite été moulées à 160°C après préchauffage de l'ébauche durant 3 minutes et mise sous pression durant 2 minutes avant refroidissement, à l'aide d'une presse à compression.

35 Les éprouvettes nécessaires à la détermination des propriétés mécaniques ont été découpées dans ces plaques.

Les différentes charges testées sont :

Essai n° 11 :

Cet essai illustre l'art antérieur et met en œuvre une craie naturelle, traitée avec 1 % d'acide stéarique, de surface spécifique 6 m²/g mesurée selon la méthode B.E.T norme ISO 4652 (produit I).

5

Essai n° 12 :

Cet essai illustre l'art antérieur et met en œuvre une craie naturelle, traitée avec 1 % d'acide stéarique, de surface spécifique 10 m²/g mesurée selon la méthode B.E.T norme ISO 4652 (produit J).

10

Essai n° 13 :

Cet essai illustre l'invention et met en œuvre le produit F selon l'invention.

15 Les propriétés mécaniques sont appréciées par les essais dynamométriques (résistance à la rupture, allongement à la rupture, module 100 %) effectués par la mise en œuvre de l'appareillage Instron™ selon la norme ISO 37, à une température de 23°C et pour une vitesse de traction de 10 cm/min.

La résistance au déchirement ASTM-C est, elle, déterminée selon la méthode de la norme ISO R-34 et la dureté Shore C selon la méthode de la norme ISO 868.

20

Les résultats de ces mesures de propriétés mécaniques sont rassemblés dans le tableau II ci-après.

TABLEAU II

	Art antérieur	Art antérieur	Invention
Essai n°	11	12	13
Résistance à la rupture (daN/cm ²)	128	130	136
Allongement à la rupture (%)	300	260	172
Module 100 % (daN/cm ²)	83	106	127
Résistance au déchirement ASTM-C (daN/cm)	47	56	58
Dureté Shore C à 15 s (en daN/cm)	60	64	74

On voit que les propriétés mécaniques obtenues sont excellentes et sont supérieures à celles obtenues avec des carbonates de calcium naturels broyés mais de surface spécifique hors du domaine de l'invention.

5

L'invention permet donc d'optimiser les formulations de charges en fonction de la propriété mécanique à privilégier.

EXEMPLE 3 :

10

Cet exemple concerne l'utilisation de carbonates de calcium comme régulateur de rhéologie pour la préparation d'élastomère à base de caoutchouc naturel et synthétique.

15

On a cherché dans cet exemple à apprécier l'influence de la surface spécifique d'une craie naturelle broyée selon l'invention sur les propriétés de mélanges à base de caoutchoucs naturels et synthétiques, en comparaison avec un carbonate de calcium précipité de l'art antérieur.

Pour ce faire, on a réalisé pour chacun des essais n° 14 et 15, le mélange suivant :

20

Caoutchouc naturel (feuille fumée qualité RSS 1)	100
--	-----

Caoutchouc SBR (Styrène-butadiène, Cariflex™ 1502 de Shell)	40
---	----

Oxyde de zinc (Qualité neige) de Vieille Montagne	5
---	---

Acide stéarique	2
-----------------	---

25

Soufre	1,5
--------	-----

N-cyclohexyl 2 benzothiazyl sulfénamide (Vulcafor™ CBS de Vulnax)	1
---	---

Disulfure de tétraméthyle-thiuram (Vulkacit™ DTMT de Bayer)	0,5
---	-----

Charge à tester	100
-----------------	-----

Essai n° 14 :

Cet essai illustre l'art antérieur et met en œuvre un carbonate de calcium précipité commercialisé par la société Solvay sous le nom Socal U1S2 (produit K).

5 Essai n° 15 :

Cet essai illustre l'invention et met en œuvre le produit F selon l'invention.

Ces deux essais sont effectués de la manière suivante :

- 10 Un mélange-maître pure gomme est préparé, par incorporation successive des divers ingrédients sauf la charge selon la technique habituelle de l'homme de l'art, sur un malaxeur à cylindre réglé en température, par malaxage durant 10 minutes (friction I / I,4) à 60°C.
- 15 Sur ce mélange-maître, on a prélevé deux échantillons dans lesquels ont été incorporés les charges à tester, par malaxage à 60°C durant 12 minutes.

- Après détermination des optimums de vulcanisation à 155°C à l'aide du rhéomètre Monsanto, des plaques ont été moulées et vulcanisées à cet optimum pour effectuer la
20 mesure des propriétés mécaniques selon le même mode opératoire que celui des essais précédents.

Les résultats des propriétés mécaniques sont rassemblés dans le tableau III ci-après.

TABLEAU III

Essai n°	Art antérieur	Invention
	14	15
Optimum de vulcanisation à 155°C	5 min. 15 s	5 min.
Rupture daN/cm ²	119	109
Module 300 % daN/cm ²	41	39
Allongement %	500	485
Déchirement ASTM-C daN/cm	23	26
Dureté Shore A (15 s)	61	61

On voit que le produit selon l'invention réduit le temps de mise en œuvre (optimum de vulcanisation) ainsi que les propriétés de résistance au déchirement.

5

On effectue de même les essais n° 16, 17 et 18 par la mise en œuvre de la formulation suivante :

	Caoutchouc SBR (Styrène-butadiène, Cariflex™ 1502 de Shell)	40
10	Caoutchouc naturel (feuille fumée qualité RSS 1)	60
	Oxyde de zinc (Qualité neige) de Vieille Montagne	5
	Acide stéarique	2
	Soufre	2
	N-cyclohexyl 2 benzothiazyl sulfénamide (Vulcafor™ CBS de Vulnax)	0,9
15	Accélérateur diorthotolylguanidine (Vulcafor™ DOTG de Vulnax)	0,3
	Charge à tester	100

Essai n° 16 :

20 Cet essai illustre l'art antérieur et met en œuvre un carbonate de calcium précipité commercialisé par la société Solvay sous le nom Socal U1S2 (produit K).

Essai n° 17 :

Cet essai illustre l'art antérieur et met en œuvre un carbonate de calcium de type craie,
25 broyé en voie humide et séché, traité, de diamètre moyen égal à 1,4 micromètre mesuré à l'aide du Sédigraph 5100 de la société Micromeritics et de surface spécifique égale à 10 m²/g mesurée selon méthode B.E.T. norme ISO 4652 (produit J).

Essai n° 18 :

Cet essai illustre l'invention et met en œuvre le produit G selon l'invention.

Sur ce mélange-maître fabriqué avec le même mode opératoire que dans l'essai 5 précédent, on a prélevé trois échantillons dans lesquels ont été incorporées les charges à tester, par malaxage à 60°C durant 12 minutes.

Après détermination des optimums de vulcanisation, des plaques ont été moulées et vulcanisées à cet optimum pour effectuer la mesure des propriétés mécaniques selon le 10 même mode opératoire que pour les essais précédents.

Les résultats des propriétés mécaniques sont rassemblés dans le tableau IV ci-après.

TABLEAU IV

	Art antérieur	Art antérieur	Invention
Essai n°	16	17	18
Optimum de vulcanisation à 150°C	23 min. 30 s	16 min. 45 s	11 min.
Résistance à la rupture (daN/cm ²)	122	132	132
Module 300 % (daN/cm ²)	16,5	20	20
Allongement %	695	715	695
Résistance au déchirement ASTM-C (daN/cm)	23	28	28
Dureté Shore A (15 s) en (daN/cm)	51	50	50

On voit que le produit selon l'invention améliore le temps de mise en œuvre (Optimum de vulcanisation) et dans leur majorité les propriétés mécaniques.

EXEMPLE 4 :

- 10 On a procédé à une seconde série d'essais (essais n° 19 et 20) dans un caoutchouc naturel chargé à 40 pcr de charge minérale et de formule de base :

Caoutchouc naturel (feuille fumée qualité RSS 1)	100
Résine coumarone 60/70	5,6
Résine de colophane	3
Oxyde de zinc (Qualité neige) de Vieille Montagne	40
Acide stéarique	0,5
Huile	4,3
Accélérateur disulfure de benzothiazyle (Vulcafor™ MBTS de Vulnax)	1
Accélérateur diphenylguanidine (Vulcafor™ DPG de Vulnax)	0,36

Les charges à tester sont :

15

Essai n° 19 :

Un carbonate de calcium précipité (produit K) pour cet essai qui illustre l'art antérieur.

Essai n° 20 :

Un carbonate de calcium naturel selon l'invention (produit G) pour cet essai qui illustre l'invention.

- 5 Les résultats des propriétés mécaniques, mesurées avec le même mode opératoire que pour les essais suivants, sont rassemblés dans le tableau V ci-après.

TABLEAU V

10

	Art antérieur	Invention
Essai n°	19	20
Optimum de vulcanisation à 150°C	7 min. 15 s	8 min. 15 s
Résistance à la rupture (daN/cm ²)	246	246
Module 300 % (daN/cm ²)	32	31
Allongement %	710	710
Dureté Shore A (15 s) en (daN/cm)	45	46,5

- 15 On voit que le produit selon l'invention permet d'obtenir des résultats de propriétés mécaniques équivalentes, cela même en remplaçant en totalité le carbonate de calcium précipité par un carbonate de calcium naturel.

REVENDICATIONS

1. Carbonate de calcium naturel broyé à une grande finesse, caractérisé en ce qu'il s'agit d'un carbonate de calcium naturel, de surface spécifique de l'ordre de 14 à 30 m²/g, de préférence de l'ordre de 16 à 24 m²/g et très préférentiellement de l'ordre de 20 m²/g, mesurée selon la méthode B.E.T. norme ISO 4652.
2. Carbonate de calcium naturel broyé à une grande finesse selon la revendication 1, caractérisé en ce qu'il s'agit d'un carbonate de calcium naturel, de surface spécifique de 14,4 m²/g mesurée selon la méthode B.E.T. norme ISO 4652.
3. Carbonate de calcium naturel broyé à une grande finesse selon la revendication 1, caractérisé en ce qu'il s'agit d'un carbonate de calcium naturel, de surface spécifique de 16 m²/g mesurée selon la méthode B.E.T. norme ISO 4652.
4. Carbonate de calcium naturel broyé à une grande finesse selon la revendication 1, caractérisé en ce qu'il s'agit d'un carbonate de calcium naturel, de surface spécifique de 16,5 m²/g mesurée selon la méthode B.E.T. norme ISO 4652.
5. Carbonate de calcium naturel broyé à une grande finesse selon la revendication 1, caractérisé en ce qu'il s'agit d'un carbonate de calcium naturel, de surface spécifique de 22 m²/g mesurée selon la méthode B.E.T. norme ISO 4652.
6. Carbonate de calcium naturel broyé à une grande finesse selon la revendication 1, caractérisé en ce qu'il s'agit d'un carbonate de calcium naturel, de surface spécifique de 28 m²/g mesurée selon la méthode B.E.T. norme ISO 4652.
7. Carbonate de calcium naturel broyé à une grande finesse selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il est traité à l'aide d'au moins un acide gras contenant 10 à 24 atomes de carbone ou son sel choisi parmi les sels de calcium, de magnésium, de zinc ou leur mélange et plus particulièrement à l'aide d'acide stéarique ou son sel de calcium dans une proportion de l'ordre de 0,01 % à 5 % en poids.
8. Carbonate de calcium naturel broyé à une grande finesse selon la revendication 7, caractérisé en ce qu'il est traité à l'aide d'au moins un acide gras contenant 10 à 24 atomes de carbone ou son sel choisi parmi les sels de calcium, de magnésium, de

zinc ou leur mélange et plus particulièrement à l'aide d'acide stéarique ou son sel de calcium dans une proportion de l'ordre de 1 % à 4 % en poids.

9. Carbonate de calcium naturel broyé à une grande finesse selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il présente une prise d'huile qui est supérieure à 16 mesurée selon la norme ISO 787-V (Rub-out method).
10. Utilisation, comme régulateur de rhéologie, d'un carbonate de calcium naturel broyé à une grande finesse selon l'une quelconque des revendications 1 à 9, pour la préparation de mastics, d'adhésifs, de plastisols ou encore de caoutchoucs.
11. Utilisation, comme régulateur de rhéologie, des dispersions ou suspensions, dans un milieu organique, d'un carbonate de calcium naturel broyé à une grande finesse selon l'une quelconque des revendications 1 à 9 pour la préparation de mastics ou enduits, d'adhésifs, de plastisols ou encore de caoutchoucs.
12. Compositions ou formulations polymériques de plastisol, de mastic ou d'enduit ou d'adhésif, d'élastomère ou de caoutchouc, caractérisées en ce qu'elles contiennent, comme régulateur de rhéologie, un carbonate de calcium naturel broyé à une grande finesse selon l'une quelconque des revendications 1 à 9.
13. Plastisol caractérisé en ce qu'il comprend, comme régulateur de rhéologie, un carbonate de calcium naturel broyé à une grande finesse selon l'une quelconque des revendications 1 à 9.
14. Elastomère à base de caoutchouc, caractérisé en ce qu'il comprend, comme régulateur de rhéologie, un carbonate de calcium naturel broyé à une grande finesse selon l'une quelconque des revendications 1 à 9.
15. Mastic ou enduit ou adhésif caractérisé en ce qu'il comprend comme modificateur de rhéologie un carbonate de calcium naturel broyé à une grande finesse selon l'une quelconque des revendications 1 à 9.
16. Mastic ou enduit ou adhésif selon la revendication 15 caractérisé en ce qu'il comprend de plus un polyuréthane à groupes silane terminaux et un plastifiant du type phtalate.

17. Mastic ou enduit ou adhésif selon l'une quelconque des revendications 15 et 16, caractérisé en ce qu'il comprend de plus un ou plusieurs additifs choisis parmi de la silice fumée comme agent thixotrope, un agent de blancheur comme le TiO₂, des stabilisants UV, des agents favorisant l'adhérence, des catalyseurs comme le dilaurate de dibutylétain, des agents déshydratants comme un silane.
-
-

