Capítulo 2

Funciones Características

2.1. Introducción

Una variable aleatoria compleja X es una función medible $X:\omega\to\mathbb{C}$ de la forma $X(\omega)=U(\omega)+iV(\omega)$ donde U,V son funciones medibles de Ω a valores reales. U y V son, respectivamente, la parte real e imaginaria de X. Si U,V son integrables entonces X es integrable y tenemos que

$$E(X) = E(U) + i E(V).$$

Teniendo en cuenta las desigualdades

$$\max(|U|, |V|) \le |X| \le |U| + |V|$$

observamos que al igual que en el caso real, X es integrable si y sólo si |X| es integrable. También es posible demostrar la siguiente desigualdad, que queda como ejercicio:

$$|E(X)| \leq E(|X|).$$

2.2. Funciones Características

Definición 2.1 La función característica (f.c.) de una variables aleatoria X con f.d. F es la función a valores complejos definida por

$$\varphi_X(t) = \mathcal{E}(e^{itX}) = \int_{\mathbb{R}} e^{itx} dF(x).$$

Propiedades.

(a) Para cualquier v.a. X la función característica siempre existe:

$$|\operatorname{E} e^{itX}| \le \operatorname{E} |e^{itX}| = 1.$$

- (b) Toda función característica satisface $|\varphi(t)| \le 1$ y $\varphi(0) = 1$.
- (c) Toda f.c. es uniformemente continua:

$$\begin{split} |\varphi(t+h) - \varphi(t)| &= |\operatorname{E} e^{i(t+h)X} - \operatorname{E} e^{itX}| \\ &= |\operatorname{E} e^{itX}(e^{ihX} - 1)| \\ &\leq \operatorname{E} |e^{ihX} - 1| \to 0 \end{split}$$

cuando $h\downarrow 0$ por el TCD. Como la cota es independiente de t, la convergencia es uniforme.

(d) Si X es una v.a. con f.c. φ_X , Y = aX + b tiene f.c.

$$\varphi_Y(t) = \mathcal{E}(e^{itY}) = \mathcal{E}(e^{it(aX+b)}) = \varphi_X(at)e^{ibt}$$

(e) Si \bar{z} denota el conjugado complejo del número $z, \overline{\varphi_X(t)} = \varphi_X(-t) = \varphi_{-X}(t)$:

$$\overline{\varphi_X(t)} = \mathrm{E}(\overline{e^{itX}}) = \mathrm{E}(e^{-itX}) = \mathrm{E}(e^{i(-t)X}) = \mathrm{E}(e^{it(-X)})$$

(f) Tenemos

$$Re(\varphi(t)) = \int \cos(tx) dF(x); \qquad Im(\varphi(t)) = \int \sin(tx) dF(x)$$

donde la primera función es par mientras que la segunda es impar.

- (g) La f.c. φ_X es real si y sólo si $X\stackrel{d}{=} -X$ si y sólo si la medida asociada a F_X es simétrica. Esto es cierto porque φ_X es real si y sólo si $\varphi_X = \bar{\varphi}_X$ si y sólo si X y -X tienen la misma función característica. Por el teorema de unicidad que veremos más adelante, esto implica que $X\stackrel{d}{=} -X$.
- (h) Si X e Y son independientes se tiene $\varphi_{X+Y}(t) = \varphi_X(t)\varphi_Y(t)$:

$$\varphi_{X+Y}(t) = \mathbf{E}(e^{it(X+Y)}) = \mathbf{E}(e^{itX}e^{itY}) = \mathbf{E}(e^{itX})\mathbf{E}(e^{itY}) = \varphi_X(t)\varphi_Y(t)$$

(i) Podemos generalizar la propiedad anterior de la siguiente manera: Si X_1, \ldots, X_n son i.i.d. con f.c. común φ , entonces

$$E(e^{it(a_n^{-1}S_n - nb_n)}) = e^{-itnb_n}(\varphi(t/a_n))^n.$$

Distribución	Notación	Función Característica
Delta de Dirac	δ_a	e^{ita}
Bernoulli	Be(p)	$q + pe^{it}$
Binomial	Bin(n,p)	$(q+pe^{it})^n$
Geométrica	Ge(p)	$p/(1-qe^{it})$
Poisson	$Po(\lambda)$	$e^{\lambda(e^{it}-1)}$

Tabla 1. Funciones características de alguna distribuciones discretas.

Distribución	Notación	Función Característica
Uniforme	U(a,b)	$\frac{e^{itb} - e^{ita}}{it(b-a)}$
	U(0, 1)	$\frac{e^{it}-1}{it}$
	U(-1,1)	$\frac{it}{\frac{\sin t}{t}}$
Exponencial	$\operatorname{Exp}(\lambda)$	$1/(1-\lambda it)$
Gamma	$\Gamma(p,\theta)$	$\left(\frac{1}{1-\theta it}\right)^p$
Normal	$\mathcal{N}(\mu, \sigma^2)$	$e^{it\mu-\frac{1}{2}t^2\sigma^2}$
	$\mathcal{N}(0,1)$	$e^{-\frac{1}{2}t^2}$
Cauchy	C(0, 1)	$e^{- t }$
Estables Simétricas		$e^{-c t ^{\alpha}}$

Tabla 2. Funciones características de alguna distribuciones continuas.

2.3. DESARROLLOS 35

2.3. Desarrollos

2.3.1. Desarrollos de e^{ix}

Comenzamos con una integración por partes. Para $n \ge 0$ tenemos

$$\int_0^x e^{is} (x-s)^n ds = \frac{x^{n+1}}{n+1} + \frac{i}{n+1} \int_0^x (x-s)^{n+1} e^{is} ds.$$
 (2.1)

Para n=0 esta relación es

$$\int_0^x e^{is} ds = \frac{e^{ix} - 1}{i} = x + i \int_0^x (x - s)e^{is} ds,$$

de donde obtenemos

$$\begin{split} e^{ix} &= 1 + ix + i^2 \int_0^x (x-s)e^{is} \, ds \\ &= 1 + ix + i^2 \big[\frac{x^2}{2} + \frac{i}{2} \int_0^x (x-s)^2 e^{is} ds \big] \\ &= 1 + ix + \frac{(ix)^2}{2} + \frac{i^3}{2} \big[\frac{x^3}{3} + \frac{i}{3} \int_0^x (x-s)^3 e^{is} ds \big] \\ &\vdots \end{split}$$

En general obtenemos para $n \geq 0$ y $x \in \mathbb{R}$

$$e^{ix} = \sum_{k=0}^{n} \frac{(ix)^k}{k!} + \frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} \, ds.$$
 (2.2)

Por lo tanto

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \frac{|x|^{n+1}}{(n+1)!}.$$
 (2.3)

Concluimos que truncar el desarrollo de e^{ix} luego de un número finito de términos da una aproximación cuyo error está acotado por el módulo del primer término no tomado en cuenta.

Escribiendo ahora (2.1) con n-1 en lugar de n obtenemos

$$\int_0^x (x-s)^{n-1} e^{is} ds - \frac{x^n}{n} = \frac{i}{n} \int_0^x (x-s)^n e^{is} ds.$$

Si multiplicamos por $i^n/(n-1)!$ e intercambiamos ambos lados de la ecuación obtenemos

$$\frac{i^{n+1}}{n!} \int_0^x (x-s)^n e^{is} ds = \frac{i^n}{(n-1)!} \int_0^x (x-s)^{n-1} e^{is} ds - \frac{(ix)^n}{n!}.$$

Sustituyendo esta expresión en el lado derecho de (2.2) obtenemos

$$e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} = \frac{i^n}{(n-1)!} \int_0^x (x-s)^{n-1} e^{is} ds - \frac{(ix)^n}{n!},$$

y por lo tanto

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \frac{|x|^n}{n!} + \frac{|x|^n}{n!} = \frac{2|x|^n}{n!}.$$
 (2.4)

Combinando (2.3) y (2.4) obtenemos

$$\left| e^{ix} - \sum_{k=0}^{n} \frac{(ix)^k}{k!} \right| \le \frac{|x|^{n+1}}{(n+1)!} \wedge \frac{2|x|^n}{n!}. \tag{2.5}$$

Observamos que el primer término del lado derecho da una mejor estimación para x pequeño mientras que el segundo es mejor para x grande.

2.3.2. Desarrollos de la Función Característica

Supongamos que X es una v.a. cuyos n primeros momentos absolutos son finitos: $\mathrm{E}\,|X|^k < \infty$ para $1 \le k \le n$, entonces

$$\left| \varphi(t) - \sum_{k=0}^{n} \frac{(it)^{k}}{k!} \operatorname{E}(X^{k}) \right| = \left| \operatorname{E}(e^{itX}) - \operatorname{E}\left(\sum_{k=0}^{n} \frac{(it)^{k}}{k!} X^{k}\right) \right|$$

$$\leq \operatorname{E}\left| e^{itX} - \sum_{k=0}^{n} \frac{(itX)^{k}}{k!} \right|$$

y usando (2.5) con tX en lugar de x obtenemos

$$\left| \varphi(t) - \sum_{k=0}^{n} \frac{(it)^k \operatorname{E}(X^k)}{k!} \right| \le \operatorname{E}\left(\frac{|tX|^{n+1}}{(n+1)!} \wedge \frac{2|tX|^n}{n!}\right). \tag{2.6}$$

Supongamos ahora que existen momentos de todos los órdenes y que para todo $t \in \mathbb{R}$ se tiene

$$\lim_{n \to \infty} \frac{|t|^n E(|X|^n)}{n!} = 0.$$
 (2.7)

Si ahora hacemos $n \to \infty$ en (2.6) obtenemos

$$\varphi(t) = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} \, \mathrm{E}(X^k).$$

Una condición suficiente para (2.7) es

$$\sum_{k=0}^{\infty} \frac{|t|^k}{k!} \operatorname{E}(|X|^k) = \operatorname{E}(e^{|t||X|}) < \infty$$

la cual vale si $\Psi(t) = \mathrm{E}(e^{tX}) < \infty$ para todo $t \in \mathbb{R}$, es decir, si la función generadora de momentos existe en todo \mathbb{R} .

Ejemplo 2.1

Sea X una v.a. con distribución $\mathcal{N}(0,1)$. Para cualquier $t \in \mathbb{R}$

$$E(e^{tX}) = \int_{-\infty}^{\infty} e^{tu} \frac{e^{-u^2/2}}{\sqrt{2\pi}} du$$

$$= e^{t^2/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2}(u^2 - 2tu + t^2)\right\} du$$

$$= e^{t^2/2} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(u-t)^2} du$$

$$= e^{t^2/2}$$

y concluimos que, para todo $t \in \mathbb{R}$, $\mathrm{E}(e^{tX}) < \infty$. Por lo tanto podemos desarrollar tanto la fgm como $e^{t^2/2}$ para obtener

$$E(e^{tX}) = \sum_{k=0}^{\infty} \frac{t^k}{k!} E(X^k) = e^{t^2/2} = \sum_{k=0}^{\infty} \frac{1}{k!} (\frac{t^2}{2})^k,$$

es decir,

$$\sum_{k=0}^{\infty} \frac{E(X^k)}{k!} t^k = \sum_{l=0}^{\infty} \frac{2^{-l}}{l!} t^{2l}.$$

Igualando coeficientes obtenemos que

$$\frac{E(X^{2n})}{(2n)!} = \frac{2^{-n}}{n!}$$

y concluimos que

$$E(X^{2n}) = \frac{(2n)!}{n!} 2^{-n}, \qquad E(X^{2n+1}) = 0.$$

Ahora bien, como

$$\varphi(t) = \operatorname{E} e^{itX} = \sum_{k=0}^{\infty} \frac{(it)^k}{k!} \operatorname{E}(X^k),$$

obtenemos

$$\varphi(t) = \sum_{k=0}^{\infty} \frac{(it)^{2k}}{(2k)!} \operatorname{E}(X^{2k}) = \sum_{k=0}^{\infty} \frac{(it)^{2k}}{(2k)!} \frac{(2k)!}{k!} 2^{-k}$$
$$= \sum_{k=0}^{\infty} \frac{(i^2t^22^{-1})^k}{k!} = \sum_{k=0}^{\infty} \frac{1}{k!} \left(\frac{-t^2}{2}\right)^k$$
$$= e^{-t^2/2}$$

de modo que, salvo por constantes multiplicativas, la densidad normal típica y su f.c. son iguales.

2.4. Momentos y Derivadas

Si el k-ésimo momento absoluto de X existe, podemos calcularlo usando la késima derivada de la f.c.

Teorema 2.1 Sea X una v.a. con f.d. F y f.c. φ . Si $E |X|^n < \infty$ para algún $n \ge 1$, entonces $\varphi^{(k)}$ existe para k = 1, 2, ..., n, es uniformemente continua y

$$\varphi^{(k)}(t) = \int_{-\infty}^{\infty} (ix)^k e^{itx} dF(x), \qquad (2.8)$$

$$\varphi^{(k)}(0) = i^k \operatorname{E}(X^k) \tag{2.9}$$

$$\varphi(t) = 1 + \sum_{k=1}^{n} \frac{(it)^k}{k!} E(X^k) + o(|t|^n) \quad (t \to 0).$$
 (2.10)

Demostración. Supongamos que $E(|X|) < \infty$, entonces

$$\begin{split} \frac{\varphi(t+h)-\varphi(t)}{h} - \mathbf{E}(iXe^{itX}) &= \mathbf{E}\left(\frac{e^{i(t+h)X}-e^{itX}-ihXe^{itX}}{h}\right) \\ &= \mathbf{E}\left(e^{itX}\frac{e^{ihX}-1-ihX}{h}\right). \end{split}$$

Usando (2.4) con n = 1 obtenemos

$$\left| e^{itX} \right| \left| \frac{e^{ihX} - 1 - ihX}{h} \right| \le 2|X| \in L^1.$$

Por otro lado usando (2.3) obtenemos

$$\left| \frac{e^{ihX} - 1 - ihX}{h} \right| \le \frac{h^2 X^2}{2h} = h \frac{X^2}{2} \to 0$$

cuando $h \downarrow 0$ y por el TCD vemos que

$$\lim_{h\downarrow 0} \left(\frac{\varphi(t+h)-\varphi(t)}{h} - \mathrm{E}(iXe^{itX})\right) = \mathrm{E}\left(\lim_{h\downarrow 0} e^{itX} \left(\frac{e^{ihX}-1-ihX}{h}\right)\right) = 0.$$

En consecuencia

$$\varphi'(t) = \int_{-\infty}^{\infty} ixe^{itx} dF(x).$$

El caso general de la fórmula sigue por inducción: Usando el mismo procedimiento

$$\frac{\varphi^{(k)}(t+h) - \varphi^{(k)}(t)}{h} = \int_{-\infty}^{\infty} e^{itx} (ix)^k \frac{e^{ihx} - 1}{h} dF(x)$$
$$\to \int_{-\infty}^{\infty} (ix)^{k+1} e^{itx} dF(x) \qquad (h \to 0),$$

por el TCD, ya que el integrando converge a $(ix)^{k+1}e^{itx}$ cuando $h \to 0$, está acotado por $|x|^{k+1}$ para |h| < 1 y $\to |X|^{k+1} < \infty$. Además, el lado izquierdo converge a la derivada de orden k+1 cuando $h \to 0$, lo que demuestra la fórmula (2.8). (2.9) se obtiene poniendo t=0.

Veamos la continuidad uniforme. Para k = 1 tenemos

$$|\varphi'(t+h) - \varphi'(t)| = \left| \int_{-\infty}^{\infty} ixe^{itx} (e^{ihx} - 1)dF(x) \right| \le \int_{-\infty}^{\infty} |x| |e^{ihx} - 1|dF(x)|$$

$$\le \int_{|x| \le A} hx^2 dF(x) + 2 \int_{|x| > A} |x| dF(x)$$

$$\le hA^2 + 2 \int_{|x| > A} |x| dF(x)$$

Dado $\varepsilon > 0$ escogemos A de modo que la integral sea menor que $\varepsilon/2$ y luego escogemos h de modo que $hA^2 < \varepsilon/2$. Para el caso general usamos

$$|\varphi^{(k+1)}(t+h) - \varphi^{(k+1)}(t)| = \left| \int_{-\infty}^{\infty} (ix)^{k+1} e^{itx} (e^{ihx} - 1) dF(x) \right| \le hA^{k+2} + 2 \int_{|x| > A} |x|^{k+1} dF(x),$$

y completamos la demostración como antes.

Para ver la última fórmula del teorema recordamos (2.6):

$$\left| \varphi(t) - \sum_{k=0}^{n} \frac{(it)^k \operatorname{E}(X^k)}{k!} \right| \le |t|^n \operatorname{E}\left(\frac{|t||X|^{n+1}}{(n+1)|} \wedge \frac{2|X|^n}{n!}\right). \tag{2.11}$$

Pero

$$\min\{\frac{|t||X|^{n+1}}{(n+1)|},\ \frac{2|X|^n}{n!}\}\to 0 \qquad (t\to 0)$$

y está acotado por $2|X|^n/n!$ que es integrable por hipótesis, así que por el TCD

$$E\left[\min\left\{\frac{|t||X|^{n+1}}{(n+1)|}, \frac{2|X|^n}{n!}\right\}\right] \to 0 \qquad (t \to 0)$$

y en consecuencia la cota superior en (2.11) es $o(|t|^n)$ cuando $t \to 0$.

2.5. Unicidad y Continuidad

Teorema 2.2 (Unicidad) La función característica de una distribución de probabilidad determina de manera única la distribución de probabilidad.

Demostración. Sea X una v.a. con f.d. F y f.c. φ . Veamos que φ determina F. Para cualquier f.d. G con f.c. γ y cualquier real θ tenemos la siguiente versión de la relación de Parseval, que se obtiene aplicando el teorema de Fubini:

$$\int_{\mathbb{R}} e^{-i\theta y} \varphi(y) dG(y) = \int_{y \in \mathbb{R}} e^{-i\theta y} \Big[\int_{x \in \mathbb{R}} e^{iyx} dF(x) \Big] dG(y)$$

$$= \iint_{\mathbb{R}^2} e^{iy(x-\theta)} dF(x) dG(y)$$

$$= \int_{x \in \mathbb{R}} \Big[\int_{y \in \mathbb{R}} e^{iy(x-\theta)} dG(y) \Big] dF(x)$$

$$= \int_{\mathbb{R}} \gamma(x-\theta) dF(x). \tag{2.12}$$

Sea ahora $N \sim \mathcal{N}(0,1)$ con densidad $\phi(x)$, de modo que σN tiene densidad normal con varianza σ^2 . Reemplazamos dG(y) por $\frac{1}{\sigma}\phi(y/\sigma)dy$. Luego de hacer un cambio de variables en el lado izquierdo y usando la forma de la f.c. Gaussiana γ en el lado derecho obtenemos

$$\int_{\mathbb{R}} e^{-i\theta\sigma y} \varphi(\sigma y) \phi(y) \, dy = \int_{z \in \mathbb{R}} e^{-\sigma^2 (z-\theta)^2/2} dF(z). \tag{2.13}$$

Ahora integramos ambos lados de (2.13) sobre θ de $-\infty$ a x y obtenemos

$$\int_{-\infty}^{x} \int_{\mathbb{R}} e^{-i\theta\sigma y} \varphi(\sigma y) \phi(y) dy d\theta = \int_{-\infty}^{x} \int_{\mathbb{R}} e^{-\sigma^{2}(z-\theta)^{2}/2} dF(z) d\theta,$$

y usando el teorema de Fubini para invertir el orden de integración en el lado derecho obtenemos que la expresión anterior es

$$= \int_{\mathbb{R}} \sqrt{2\pi} [\int_{-\infty}^x \frac{e^{-\sigma^2(z-\theta)^2/2}}{\sqrt{2\pi}} d\theta] dF(z).$$

En la integral interior hacemos el cambio de variables $s=\theta-z$ para obtener

$$\int_{-\infty}^{x} \int_{\mathbb{R}} e^{-i\theta\sigma y} \varphi(\sigma y) \phi(y) dy d\theta = \frac{1}{\sigma} \int_{\mathbb{R}} \sqrt{2\pi} \left[\int_{-\infty}^{x-z} \frac{e^{-\sigma^{2}s^{2}/2}}{\sqrt{2\pi}\sigma^{-1}} ds \right] dF(z)$$

$$= \frac{\sqrt{2\pi}}{\sigma} \int_{\mathbb{R}} \left[\int_{-\infty}^{x-z} \phi(s; 0, \sigma^{-2}) ds \right] dF(z)$$

$$= \frac{\sqrt{2\pi}}{\sigma} P(\sigma^{-1}N + X \le x).$$

Dividimos por $\sqrt{2\pi}\sigma^{-1}$ y hacemos $\sigma\to\infty$. Dada la f.c. φ obtenemos por el Teorema de Slutsky

$$\lim_{\sigma \to \infty} \frac{\sigma}{\sqrt{2\pi}} \int_{-\infty}^{x} \int_{\mathbb{R}} e^{-i\theta\sigma y} \varphi(\sigma y) \phi(y) dy d\theta = \lim_{\sigma \to \infty} P(\sigma^{-1}N + X \le x) = F(x)$$
 (2.14)

para todo $x \in \mathcal{C}(F)$, de modo que φ determina el valor de F en sus puntos de continuidad y eso es suficiente.

Poniendo $\theta = 0$ en (2.12) obtenemos la siguiente identidad:

$$\int_{\mathbb{R}} \varphi(y) \, dG(y) = \int_{\mathbb{R}} \gamma(x) \, dF(x).$$

El siguiente corolario nos da una fórmula de inversión

Corolario 2.1 Sea F una f.d. con f.c. φ integrable:

$$\int_{\mathbb{R}} |\varphi(t)| \, dt < \infty.$$

Entonces F tiene una densidad f continua y acotada dada por

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-iyx} \varphi(y) \, dy.$$

Demostración. A partir de (2.14) definimos

$$F_{\sigma}(x) := P(\sigma^{-1}N + X \le x)$$

y observamos que esta f.d. tiene densidad, que llamamos f_{σ} , ya que $\sigma^{-1}N$ tiene densidad. A partir del lado izquierdo de (2.14) obtenemos

$$f_{\sigma}(\theta) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-i\theta y} \varphi(y) \phi(y/\sigma) \, dy = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\theta y} \varphi(y) e^{-y^2/2\sigma^2} dy.$$

Observamos que

$$\left|e^{-i\theta y}\varphi(y)e^{-y^2/2\sigma^2}\right| \le |\varphi(y)| \in L^1$$

y cuando $\sigma \to \infty$

$$e^{-i\theta y}\varphi(y)e^{-y^2/2\sigma^2} \to e^{-i\theta y}\varphi(y).$$

Por el TCD, $f_{\sigma}(\theta) \to f(\theta)$. Además, para todo intervalo finito I

$$\sup_{\theta \in I} f_{\sigma}(\theta) \le \frac{1}{2\pi} \int_{\mathbb{R}} |\varphi(y)| e^{-y^2/2\sigma^2} \, dy \le \frac{1}{2\pi} \int_{\mathbb{R}} |\varphi(y)| \, dy < \infty.$$

Así, cuando $\sigma \to \infty$, tenemos por el teorema de Slutsky y convergencia acotada

$$F(I) = \lim_{\sigma \to \infty} P(\sigma^{-1}N + X \in I) = \lim_{\sigma \to \infty} \int_{I} f_{\sigma}(\theta) d\theta = \int_{I} f(\theta) d\theta.$$

Por lo tanto f es la densidad de F.

Antes de demostrar el teorema de continuidad presentamos un lema preliminar.

Lema 2.1 Si F es una f.d. con f.c. φ , entonces existe $\alpha \in (0, \infty)$ tal que para todo x > 0

$$F([-x,x]^c) \le \alpha x \int_0^{1/x} (1 - \operatorname{Re} \varphi(t)) dt.$$

Demostración. Como

$$\operatorname{Re} \varphi(t) = \int_{-\infty}^{\infty} \cos ty \, dF(y),$$

tenemos, usando Fubini

$$x \int_0^{1/x} (1 - \operatorname{Re} \varphi(t)) dt = x \int_0^{1/x} \int_{-\infty}^{\infty} (1 - \cos ty) dF(y) dt$$
$$= x \int_{-\infty}^{\infty} \left[\int_0^{1/x} (1 - \cos ty) dt \right] dF(y)$$
$$= x \int_{-\infty}^{\infty} \left(\frac{1}{x} - \frac{\sin(y/x)}{y} \right) dF(y)$$
$$= \int_{-\infty}^{\infty} \left(1 - \frac{\sin(y/x)}{y/x} \right) dF(y).$$

Como el integrando es positivo, esto es mayor que

$$\int_{|y|>x} \left(1 - \frac{\sin(y/x)}{y/x}\right) dF(y) \ge \alpha^{-1} F([-x, x]^c),$$

donde

$$\alpha^{-1} = \inf_{|y/x| \ge 1} \left(1 - \frac{\operatorname{sen}(y/x)}{y/x} \right).$$

Teorema 2.3 (Continuidad, Lévy) (i) Sea $\{X_n, n \geq 1\}$ una sucesión de v.a. tal que X_n tiene f.d. F_n y f.c. φ_n . Si $X_n \stackrel{d}{\to} X_0$ entonces

$$\varphi_n(t) \to \varphi_0(t), \quad \forall t \in \mathbb{R}.$$

- (ii) Si
 - a) $\lim_{n\to\infty} \varphi_n(t)$ existe para todo t. Llamemos $\varphi_0(t)$ al límite.
 - b) $\varphi_0(t)$ es continua en 0.

Entonces para alguna f.d. F_0

$$F_n \stackrel{d}{\to} F_0$$

 $y \varphi_0$ es la f.c. de F_0 . Si $\varphi_0(0) = 1$ entonces F_0 es propia.

Demostración. (i) Si $X_n \stackrel{d}{\to} X_0$, como consecuencia del teorema de Skorohod tenemos que $e^{itX_n} \stackrel{d}{\to} e^{itX_0}$ y como $|e^{itX_n}| \le 1$, tenemos por convergencia dominada que

$$\varphi_n(t) = \operatorname{E} e^{itX_n} \to Ee^{itX_0} = \varphi_0(t).$$

(ii) Supongamos ahora que para todo $t \in \mathbb{R}$, se tiene que $\varphi_n(t) \to \varphi_0(t)$, con φ_0 continua en 0, entonces demostramos primero que $\{F_n\}$ es tensa. Sea M > 0 y usemos el lema 2.1 tenemos

$$\limsup_{n \to \infty} F_n([-M, M]^c) \le \limsup_{n \to \infty} \alpha M \int_0^{1/M} (1 - \operatorname{Re} \varphi_n(t)) dt.$$

Pero $\varphi_n(t) \to \varphi_0(t)$ implica que $\operatorname{Re} \varphi_n(t) \to \operatorname{Re} \varphi_0(t)$ y $1 - \operatorname{Re} \varphi_n(t) \to 1 - \operatorname{Re} \varphi_0(t)$. Y como $1 - \varphi_n$ está acotada, también lo está $\operatorname{Re}(1 - \varphi_n) = 1 - \operatorname{Re} \varphi_n$. Por el TCD

$$\limsup_{n \to \infty} F_n([-M, M]^c) \le \alpha M \int_0^{1/M} (1 - \operatorname{Re} \varphi_0(t)) dt.$$

Como φ_0 es continua en 0,

$$\lim_{t \to 0} \varphi_0(t) = \varphi_0(0) = \lim_{n \to \infty} \varphi_n(0) = 1.$$

En consecuencia, $1-\text{Re}\,\varphi_0(t)\to 0$ cuando $t\to 0$ y por lo tanto, dados $\varepsilon>0$ y M suficientemente grande tenemos

$$\alpha M \int_0^{1/M} (1 - \operatorname{Re} \varphi_0(t)) dt \le \alpha M \int_0^{1/M} \varepsilon dt = \alpha \varepsilon.$$

Por lo tanto $\{F_n\}$ es tensa y en consecuencia cualquier par de subsucesiones convergentes de $\{F_n\}$ tienen que converger al mismo límite, porque si

$$F_{n'} \stackrel{d}{\to} F$$
, y $F_{n''} \stackrel{d}{\to} G$,

entonces F y G son propias. Por la parte (i) del teorema que ya hemos probado

$$\varphi_{n'} \to \varphi_F = \varphi_0, \quad \text{y} \quad \varphi_{n''} \to \varphi_F = \varphi_0,$$

y por lo tanto $\varphi_F = \varphi_G$. Por el teorema de unicidad F = G. Por lo tanto cualquier par de subsucesiones convergentes convergen al mismo límite y por lo tanto $\{F_n\}$ converge a un límite cuya f.c. es φ_0 .

Ejemplo 2.2 (Aproximación Poisson a la Binomial)

Sea S_n una v.a. con distribución binomial de parámetros n y p:

$$P(S_n = k) = \binom{n}{k} p^k (1-p)^{n-k}, \quad k = 0, \dots, n.$$

Si $p=p(n)\to 0$ cuando $n\to \infty$ de modo que $np\to \lambda>0$ entonces

$$S_n \stackrel{d}{\to} Po(\lambda).$$

Para verificar este resultado calculamos inicialmente la f.c. de $Y \sim Po(\lambda)$. Tenemos

$$\mathbf{E} e^{itY} = \sum_{k=0}^{\infty} e^{itk} \frac{e^{-\lambda} \lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda e^{it})^k}{k!} = e^{-\lambda} e^{\lambda e^{it}} = e^{\lambda (e^{it} - 1)}.$$

Recordemos que podemos representar una variable binomial como suma de variables iid Bernoulli ξ_1, \ldots, ξ_n con $P(\xi_i = 1) = p = 1 - P(\xi_i = 0)$. Por lo tanto,

$$E e^{itS_n} = (E e^{it\xi_1})^n = (1 - p + e^{it}p)^n$$

$$= (1 + p(e^{it} - 1))^n = \left(1 + \frac{np(e^{it} - 1)}{n}\right)^n$$

$$\to e^{\lambda(e^{it} - 1)}.$$