Missing Data in Dyadic Modeling: Issues and Opportunities

Alexander M. Schoemann ¹ John K. Sakaluk ²

¹East Carolina University

²University of Victoria

M3 2016

Overview

- Dyadic data analyses
- Missing data handling
- Missing data challenges in dyadic data
- Planned missing data designs with dyadic data

Dyadic Data

- Data collected from two individuals
 - Usually individuals have a social relationship
 - Usually measure the same variables on each member of the dyad
 - Responses within dyad are not independent

Dyadic Data

- Distinguishability whether dyad members can be "told apart"
 - AKA: Exchangeability
 - Distinguishable dyads (non-exchangeable): dyad where each member has a unique role
 - Heterosexual couples, parent and child, older and younger siblings
 - Indistinguishable dyads (exchangeable): dyad where both members have the same role
 - Homosexual couples, twins, friends, coworkers

Data Structures for dyadic data

- Three structures for dyadic data from a standard design
 - Individual (long)
 - Dyad (wide)
 - Pairwise
- Choice of the data structure depends on the analysis technique and the type of dyad

Individual data structure

- Each row represents an individual's score
 - There is a variable representing dyad membership
 - Between dyad variables are entered twice (once on each row)

Individual data structure

Dyad data structure

- Each row represents a dyad
 - Responses from different members of the dyad are in different variables

Dyad data structure

```
## d x.1 y.1 z.1 x.2 y.2 z.2
## 1 1 5 9 3 2 8 3
## 3 2 6 3 7 4 6 7
## 5 3 3 6 5 9 7 5
```

Dyadic Data: Models

- Common models with dyads include:
 - Actor-Partner Interdependence Model (APIM)
 - Common Fate Model (CFM)
 - Social Relations Model (SRM)

APIM

APIM

- APIMs can be fit with SEM, MLM, or regression
- APIMs are fit differently with indistinguishable and distinguishable dyads
 - In the APIM for indistinguishable dyads the values of all parameters are constrained to be equal across individuals.
 - In the APIM for distinguishable dyads the values of all parameters are freely estimated across individuals.

Missing data mechanisms

- Missing data comes in three "flavors"
 - Missing Completely at Random (MCAR)
 - No association between missingness and observed or unobserved variables
 - Missing at Random (MAR)
 - Association between missingness and observed variables, no association between missingness and unobserved variables
 - Missing Not at Random (MNAR or NMAR)
 - Association between missingness and unobserved variables

Old methods of handling missing data

- Listwise deletion
- Pairwise deletion
- Mean imputation
- Regression imputation
- Others
 - Hot deck imputation, last observation carried forward, averaging available items

Modern methods of handling missing data

- Full Information Maximum Likelihood (FIML)
- Multiple Imputation (MI)

Missing data in dyadic data

- Rarely discussed by dyadic researchers
 - Missing data strategies only mentioned in about 30% of dyadic papers
 - Deletion strategies tend to dominate (followed by FIML)
- Dependence in dyadic data provides special challenges with missing data.
 - Techniques need to incorporate distinguishability when recovering missing data

Patterns of missingness in dyadic data

- Two patterns of missingness
 - Missing data by item
 - Missing data by person
 - More on this later!

Missing data challenges: Distinguishable dyads

- Any missing data technique must allow parameters to differ across individuals
 - For FIML: specify the model with parameters allowed to differ across individuals
 - For MI: technique depends on the data structure

Missing data challenges: Distinguishable dyads MI

- With dyad (wide) data structure: imputation with an unconstrained model
- With individual (long) data structure:
 - MI must take into account nested data structure
 - Data needs to include variables representing the interaction between individual and each variable in the model

Missing data challenges: Indistinguishable dyads

- Any missing data technique must constrain parameters to equality across individuals
 - For FIML: specify the model with parameters constrained to equality across individuals
 - For MI: technique depends on the data structure

Missing data challenges: Indistinguishable dyads MI

- With dyad (wide) data structure:
 - Imputation model must include equality constraints on means, variances, and covariances across individuals in the dyad
 - Limited software support
- With individual (long) data structure:
 - MI must take into account nested data structure

Missing data challenges: Indistinguishable dyads

- What if we pretend data are distinguishable?
 - Impute with an unconstrained model in a dyad format
- Monte Carlo simulation study
 - Population values from Kenny, Kashy, & cook (2006)
 - Actor effect = -.591
 - Partner effect = .888
 - n dyads = 20
 - 20% MCAR missing
 - 20 imputations

Missing data challenges: Simulation results

Parameter estimates and bias

Parameter	listwise	FIML	MI
a	596 (0.8)	597 (0.9)	448 (31.8)
p	.894 (0.6)	.885 (3)	.700 (-26.9)

Power

Parameter	listwise	FIML	MI
a	.398	.506	.286
р	.636	.810	.620

- Missing data does not have to be a problem!
- Two types of planned missing data designs:
 - Time based planned missing data designs
 - Control participant entry into the study (e.g., cohort sequential design)
 - Participant based planned missing data designs
 - Randomly assign participants to receive only a subset of items

- For dyadic data both planned missing data designs can be used
 - Participant based designs to reduce questionnaire length (e.g. 3-Forms planned missing data designs)
 - Time based planned missing data designs (e.g. control when dyads are measured in a longitudinal study)

- A third type of planned missing data design is possible with dyadic data: dyad based planned missing
 - Some dyads have data from both members
 - Some dyads have data only collected from one dyad member
- This design can lead to cost savings/power increases compared to assessing all dyad members

Dyad	Person 1	Person 2
1	Χ	X
2	Χ	X
3	Χ	0
4	Ο	X

- Missing data in this designs can be assigned or naturally occurring
 - When missingness is assigned (dyads are randomly assigned to have 1 or 2 members measures) missingness is MCAR
 - When missingness is natural (only 1 member of a dyad responds) missingness is (probably) MAR or MNAR
 - Researchers should measure dyad/partner variables related to non-response

- Missing data should (if possible) be balanced across individuals
 - Equal missing for both members in distinguishable dyads
 - Missingness equally distributed across members for indistinguishable dyads
 - Data management

- Example power analysis with MCAR planned missing data
 - Total budget \$10000
 - Dyads: \$50 per dyad
 - Singles: \$10 per person
 - With no planned missing n = 200 dyads

Population model

N dyad	N individuals	Power
200	0	.637
190	50	.643
176	120	.667
111	445	.552

- Example: Relationship norms and relationship quality
 - Heterosexual couples surveyed on endorsement of relationship norms and relationship quality
 - Focus on agreement about relationship norms
 - 25 heterosexual couples, 11 individuals in relationships without partner data (evenly split between men and women)

Values in parentheses use only complete dyads

Future directions

- Provide guidance on dyadic planned missing data designs
 - Ratio of dyads to singles
 - Distribution of singles across dyad members
- Determine optimal methods for MI with indistinguishable dyads
 - Impact of MAR mechanisms

Thank you!

• Slides from today at:

http://MARlab.org/Supplemental_Materials/

• email: schoemanna@ecu.edu

References

Kenny, D. A., Kashy, D. A., & Cook, W. L. (2006). The analysis of dyadic data. *New York: Guilford.*

Olsen, J. A., & Kenny, D. A. (2006). Structural equation modeling with interchangeable dyads. *Psychological methods*, 11, 127.

Simulation population values I

This is lavaan 0.5-20

```
## lavaan is BETA software! Please report any bugs.
                         rhs label est
##
            lhs op
## 1 SATISFACTION ~ ACT_HOUSE a -0.591
## 2 SATISFACTION ~ PART_HOUSE p 0.888
         PSATIS ~ ACT_HOUSE p
## 3
                                  0.888
         PSATIS ~ PART_HOUSE a -0.591
## 4
## 5 SATISFACTION ~~ SATISFACTION v2 2.382
## 6
         PSATIS ~~
                      PSATIS v2 2.382
   ACT HOUSE ~~ ACT HOUSE v1 1.060
## 7
   PART HOUSE ~~ PART HOUSE v1 1.060
## 8
       ACT HOUSE ~~ PART HOUSE
                                  0.417
## 9
## 10 SATISFACTION ~1
                             int1
                                  4.791
```

Simulation population values II

```
## 11 PSATIS ~1 int1 4.791

## 12 ACT_HOUSE ~1 int2 1.630

## 13 PART_HOUSE ~1 int2 1.630

## 14 SATISFACTION ~~ PSATIS 0.812
```