Lecture 4

Completely Randomized Designs: Model, Estimation, Inference

STAT 8050 Design and Analysis of Experiments January 21, 2020

> Whitney Huang Clemson University

Completely Randomized Designs: Model, Estimation, Inference

Means Model

Notes

Notes

Effects Model

 $Y_{ij} = \mu + \alpha_i + \epsilon_{ij}, \quad i = 1, \cdots, g, \quad j = 1, \cdots, n_i, \quad \epsilon_{ij} \sim \text{N}(0, \sigma^2)$

that the parameters are estimable.

Notes

Effects Model Cont'd

Suppose we let $\sum_{i=1}^g n_i \alpha_i = 0$

Effects Model Cont'd

Suppose we let $\alpha_1 = 0$

Notes

Notes

Data Layout & the Dot Notation

 y_{ij} is the "observed" response for the $j^{\rm th}$ experimental unit to treatment i.

Treatment	Observations				Totals	Averages
1	y ₁₁	<i>y</i> ₁₂		y_{1n_1}	<i>y</i> ₁ .	\bar{y}_{1} .
2	<i>y</i> 21	<i>y</i> 22		y_{2n_2}	<i>y</i> ₂ .	\bar{y}_2 .
:	:	:		÷	:	÷
g	y_{g1}	y_{g2}		y_{gn_g}	y_g .	\bar{y}_g .
					у	<u> </u>

Notes

ANOVA

Decomposition of y_{ij} : $y_{ij} = \bar{y}_{..} + (\bar{y}_{i.} - \bar{y}_{..}) + (y_{ij} - \bar{y}_{i.})$

$$\Rightarrow \underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{..})^{2}}_{SS_{TRT}} = \underbrace{\sum_{i=1}^{g} n_{i} (\bar{y}_{i.} - \bar{y}_{..})^{2}}_{SS_{TRT}} + \underbrace{\sum_{i=1}^{g} \sum_{j=1}^{n_{i}} (y_{ij} - \bar{y}_{i.})^{2}}_{SS_{E}}$$

ANOVA Table

Source	df	SS	MS	EMS
Treatment	g-1	SS _{TRT}	$MS_{TRT} = \frac{SS_{TRT}}{g-1}$	$\sigma^2 + \frac{\sum_{i=1}^g n_i \alpha_i^2}{g-1}$
Error	N-g	SS_E	$MS_E = rac{SS_E}{N-g}$	σ^2
Total	N-1	SS_T		

$$\begin{aligned} &\mathsf{SS}_T = \sum_{i=1}^g \sum_{j=1}^{n_i} \left(y_{ij} - \bar{y}_{\cdot \cdot} \right)^2 = \sum_{i=1}^g \sum_{j=1}^{n_i} y_{ij}^2 - \frac{y_{\cdot \cdot}^2}{N} \\ &\mathsf{SS}_{TRT} = \sum_{i=1}^g n_i \left(\bar{y}_{i\cdot} - \bar{y}_{\cdot \cdot} \right)^2 = \sum_{i=1}^g \frac{y_{i\cdot}^2}{n_i} - \frac{y_{\cdot \cdot}^2}{N} \\ &\mathsf{SS}_E = \sum_{i=1}^g \sum_{j=1}^{n_i} \left(y_{ij} - \bar{y}_{i\cdot} \right)^2 = \sum_{i=1}^g \sum_{j=1}^{n_i} y_{ij}^2 - \sum_{i=1}^g \frac{y_{i\cdot}^2}{n_i} = \mathsf{SS}_T - \mathsf{SS}_{TRT} \end{aligned}$$

Notes

Notes

Notes

F-Test

Testing for treatment effects

$$H_0: \alpha_i = 0 \quad \text{for all } i$$
 $H_a: \alpha_i \neq 0 \quad \text{for some } i$

Test statistics: $F = \frac{MS_{TRT}}{MS_F}$. Under H_0 , the test statistic follows an F-distribution with g-1 and N-g degrees of freedom Reject H_0 if

$$F_{obs} > F_{g-1,N-g;\alpha}$$

for an α -level test, $F_{g-1,N-g;\alpha}$ is the $100\times(1-\alpha)\%$ percentile of a central F-distribution with g-1 and N-gdegrees of freedom.

The P-value of the F-test is the probability of obtaining Fat least as extreme as F_{obs} , that is, $P(F > F_{obs}) \Rightarrow \text{reject}$ H_0 if P-value $< \alpha$.

F Distribution and the F-Test

Notes			

Example

Source: https://www.shutterstock.com/image-vector/find-your-way-cheese-mouse-maze-232569073

Completely Randomized Designs: Model, Estimation, Inference	
CLEMS N	

Notes			

Notes			