Université De Batna Faculté des Sciences Médicales

Module d'Immunologie

Cours:

Hypersensibilité type IV

	Type I	Type II		Type III	Type IV		
Effecteur	IgE	IgG		IgG	T _H 1	T _H 2	CTL
Antigène	allergène	cellulaires ou de la matrice	Récepteurs membranaires	Aptigènes solubles (complexes immuns)	Antigènes solubles	Antigènes solubles	Antigènes cellulaires
Mécanisme effecteur	Activation des mastocytes	Complément et phagocytes	Signal via le récepteur	Complement, phagocytes	Activation des macrophages	Activation des éosinophiles, et mastocytes	cytotoxicité
	Ag	Plaquettes complement		Complexes immuns Vaisseau sanguin complement	IFN-y T _H 1 chemokines, cytokines, cytotoxins	IL-4 TH2 eotaxin cytotoxins, Inflammation	© CTL
délai d'apparition des symptômes	Immédiat 5-15 mn	Semi retardé 4-8 h	Semi retardé 4-8 h	Semi retardé 4-8 h	Retardé 1-3 j	Retardé 1-3 j	Retardé Quelques j
Exemple de pathologies	Rhinite et asthme allergique, eczéma atopique, choc anaphylactique	Allergies médicamenteus es, MHNN	Maladie de Basedow	Maladie sérique, Phénomène d'Arthus	Dermatite de contact; réaction tuberculinique	Certaines maladie parasitaires, asthme chronique	Diabète type 1

<u>Les états d'hypersensibilité type</u> <u>IV</u>

- Désigne un ensemble de réactions qui prennent plus de 12h pour se développer : hypersensibilité retardée
- Les effecteurs sont cellulaires (lymphocytes T, monocytes, macrophages etc.): hypersensibilité à médiation cellulaire
- Cette réponse cellulaire effectrice est :
 - Un composant normal de l'immunité adaptative (réponse cytotoxique et réponse Th1)
 - Est essentiel au contrôle des pathogènes intracellulaires et cellules tumorales
- Dans certaines circonstances, Si cette réponse est exacerbée, mal contrôlée et non régulée, elle entraine des dégâts tissulaires,

<u>Les différents types d'hypersensibilité type</u> <u>IV</u>

Hypersensibilité de	Délai maximal d'apparition	L'antigène inducteur	Exemple de pathologie
Contact	48 à 72 h	haptènes	Dermatite de contact
tuberculinique	48 à 72 h	Ag solubles de divers organismes	Tests diagnostic
Granulomateuse	21 à 28 j	Microorganismes vivant ou particules inertes	tuberculoselèpre

<u>L'hypersensibilité de</u> <u>contact</u>

 Définit cliniquement par une réaction eczémateuse au site de contact avec l'allergène.

Elle est due le plus souvent à des haptènes (PM<1kDa).

	Allergène résponsable de HS de contact
Métaux	Sels de chrome (ciment), nickel, cobalt, mercure
Matières plastiques	Résine époxy, résine acryliques et phénoliques
Solvant organiques	Colles, térébenthine, pesticides, teintures et produits cosmétiques
Médicaments	pénicillines, les sulfamides, l'allopurinol et les antiépileptiques
Produits végétaux	Poison ivy, poison aok, bulbe du tulipe, caoutchouc

Phase de sensibilisation

- L'haptène lipophile pénètre dans l'épiderme.
- Il se conjugue, le plus souvent de manière covalente à des protéines du soi pour former des néoantigènes.
- Les néoantigènes sont pris en charge par les cellules de Langerhans de l'épiderme.

Phase de sensibilisation

Rôle du kératinocyte:

- Activé par plusieurs stimuli, entre autre des agents sensibilisants et des irritants
- · Les kératinocytes activés peuvent sécrétés plusieurs cytokines :
 - Cytokines proinflammatoires: IL-1, TNF et GMCSF qui peuvent activer les cellules de Langerhans.
 - L'IL-3, qui peut induire la sécrétion de cytokines anti-inflammatoire comme l'IL-10 et TGF qui peuvent abolir les réaction HS

Phase de sensibilisation

- Les cellules de Langerhans immatures captent les néoantigènes par micropinocytose.
- Elles deviennent matures sous l'effet des cytokines proinflammatoires (IL-1 et TNF-a) produits par les kératinocytes et d'autres cellules.
- La maturation des cellules de Langerhans s'accompagne de changements morphologiques et fonctionnels
 - Diminue la fonction de phagocytose
 - Augmente la fonction de présentation de l'antigène (augmentation de l'expression des molécules HLA classe II et des molécules de costimulation)
 - Expriment le récepteur de chimiokine CCR7 et migrent sous forme de cellule voilée vers les ganglions lymphatiques de drainage.

Cellules de Langerhans

Granules de Birbeck

Phase de sensibilisation (10 à 14 jours)

Cellule de Langerhans

- Présentation des haptènes par :
- o Voie exogène : HLAII
- Voie endogène : HLAI
- Fixation directe de l'haptène sur les complexes HLA/peptide
- ↓ CCR6 et ↑ CCR7 et répond au CCL19 et CCl21
- Migre vers le gg sous forme de cellule voilée

Lymphocytes mémoires et effecteurs :

- CD4 ou CD8 effecteurs
- CD4 régulateurs (induits
- Expriment:
- o LFA-1 et VLA-4
- o CXCR4 et CCR5
- Circulent entre le sansg et les tissus enflammés

Phase de provocation et HSR (48 à 72h)

1: Cellule de Langerhans (30 min après application)

• Transcription des gènes du TNF, IL-1b et GM-CSF

· Induction des molécules VCAM-1 et ICAM-1 et E selectines sur l'endothélium

2: envahissement par les lymphocytes mémoires spécifiques de l'allergène

- Interaction avec les cellules de Langerhans
- Production de cytokines par les lymphocytes mémoires (IFN et TNF)

3, 4: activation des kératinocytes et production de cytokines proinflammatoires et chimiokines tels que CXCL2 et CXCL10

temps

5-6: envahissement du derme et épiderme par des cellules mononuclées (d'autres lymphocytes et monocytes) avec un pic entre 48 et 72h.

7: activation des macrophages et interaction avec les kératinocytes

- Amplification de la réaction inflammatoire si l'allergène est présent
- Résolution de l'inflammation et l'HSR si l'allergène est éliminé

résolution de l'HSR

<u>Suppression de l'HSR (rôle des macrophages et kératinocytes)</u>

• Le $TGF\beta$ produits par les mastocytes dermiques, les kératinocytes et les T reg, inhibe l'inflammation et bloque la prolifération induite par l'IL-2

Exemples de pathologies

(dermite de contact)

- Dans sa phase aigüe, elle associe
 érythème, suivi par
 œdème l'apparition papules,
 de vésicules, de
 suoimtements puis de croutes. d'un
- o Dans sa phase chronique, la peau devient lichénifiée, fissurée pigmentée mais de nouveaux de épisodes vésiculation, et suintements croutes survenir en raisopeuvede expositions avenouveaux

Exemples de pathologies

(formes généralisées)

Le syndrome DRESS (« Drug réaction with eosinophilia and systemic symptoms »)

- Due à des médicament (pris par voie parentérale) caractérisé par :
- Une éruption cutanée : un exanthème cutané maculeux très inflammatoire impliquant >50% de la surface corporelle.
- Atteinte systémique :
- un état fébrile,
- des lymphadénopathies
- Hépatite (+++), néphrite interstitielle, pneumopathie interstitielle, myocardite, sérosite, colite, pancréatite, méningite aseptique, encéphalite). Dans des cas sévères, des hépatites fulminantes peuvent survenir.

<u>Autres pathologies</u> (maladies auto-immunes spécifiques d'organes)

- Le diabète insulino dépendant (diabète type I) avec infiltration et destruction des ilots de Langerhans par des lymphocytes T auto réactifs (CD8 principalement et faiblement des CD4+).
- Thyroïdite d'Hashimoto: infiltration de la glande thyroïde par des lymphocytes auto réactifs entrainant des lésions tissulaires responsable de l'hypothyroïdie.
- La sclérose en plaque: infiltration du SNC par des lymphocytes T auto réactifs entrainant la destruction de la gaine de myéline par une destruction des oligodendrocytes.

llots de Langerhans

Le tissu thyroïdien est en partie détruit par inflammation lymphocytaire

<u>Autres pathologies</u> (le rejet cellulaire lors de la greffe d'organes)

- Dues à des lymphocytes T spécifiques des allo-antigène du greffon (le HLA principalement et les antigènes mineurs d'histocompatibilité)
- Ils infiltrent le greffon et entraine le recrutement d'autres cellules mononuclées,
- Une réaction inflammatoire : ex tubulite (greffe rénale) et nécrose du parenchyme
- o Entraine une dysfonction du greffon

Infiltration et destruction du greffon par les lymphocytes T

L'hypersensibilité de type tuberculinique

- Décrite à l'origine par Koch : Injection sous cutanée de tuberculine, provoque chez les patients tuberculeux :
 - Une réaction fébrile et un malaise général
 - o Tuméfaction et induration au site de l'injection

• Induite par des Ag solubles (protéines le plus souvent) appartenant

à plusieurs microorganismes.

L'hypersensibilité de type

L'hypersensibilité de type tuberculinique

- Les lymphocytes mémoires recrutés s'orientent vers le profil Th1 (produisent l'IFN- γ et TNF- α)
- Les monocytes représentent 80-90% des cellules de l'infiltrat
- Les monocytes et les macrophages s'activent par les cytokines Th1 et produisent des cytokines inflammatoires (TNF et IL-1)
- L'infiltrat augmente d'intensité jusqu'à la 48 heure
- L'infiltrat est localisé principalement dans le derme
- Les cellules de Langerhans ne semble pas intervenir dans ce type d'HSR
- La lésion tuberculinique disparait normalement en 5 à 7 jours

L'hypersensibilité de type tuberculinique en pratique

Les réactions de types tuberculinique sont utilisés en pratique :

- Dépistage d'infection : injection d'Ag solubles d'un pathogène
 - Primo infection ou infection latente
 - Mémoire immunologique (en cas de vaccination)
 - Une réaction positive ne témoigne pas obligatoirement d'une maladie active
- Évaluation de l'immunité cellulaire (diagnostiquer un déficit immunitaire): étude de l'HSR à des
 - Microbes fréquemment rencontrés : candida albicans
 - Antigènes vaccinaux : anaphylatoxine tétanique

<u>L'hypersensibilité retardée</u> <u>granulomateuse</u>

- Résulte en général de la persistance dans les macrophages de :
 - Microorganismes à multiplication intracellulaire capable de résister à la bactrécidie des macrophages (M.tb et M.leprae)
 - Des particules inertes que la cellule est incapable de détruire (talc, silice, zirconium et béryllium)
- Stimulation chronique des lymphocytes T qui activent les macrophages : formation d'un granulome à cellules épithélioïdes.
- Le délai de la réaction est de 21 à 28 jours

Les cellules épithélioïdes et cellules géantes

Cellule géante

Le granulome

Granulome non caséeux (non pathologique)

Granulome caséeux (pathologique: la tuberculose)

<u>L'hypersensibilité retardée granulomateuse en pathologie</u> <u>humaine</u>

- Un nombre considérable de maladies chroniques s'accompagnent d'une HSR granulomateuse, les plus importantes étant :
 - La lèpre;
 - La tuberculose
 - La schistosomiase
 - Leishmaniose cutanée
 - Listérioses
 - La sarcoïdose
 - La maladie de Crohn

L'immunité protectrice et hypersensibilité retardée ne coïncident pas nécessairement: certains sujets avec HSR peuvent ne pas être protégés contre la maladie,

L'hypersensibilité retardée granulomateuse en pathologie <u>humaine</u>

La lèpre :

- Maladie granulomateuse chronique de la peau et des nerfs due à une infection par M.leprae.
- La forme interpolaire s'accompagne d'une HSR granulomateuse

Importante infiltration lymphocytaire, des cellules épithélioïde et la présence du bacille

HSIII

lépromateuse

L'hypersensibilité retardée granulomateuse en pathologie humaine

L'hypersensibilité retardée granulomateuse en pathologie humaine

La sarcoïdose et la maladie de Crohn:

- L'étiologie est inconnue
- Granulomes non caséeux s'accompagnant d'une fibrose
- Dans la sarcoïdose : gg lymphatiques, poumons, os, tissus nerveux et peau
- Maladie de Crohn : iléon et colon

Biopsie d'un gg lymphatique chez un patient atteint de la sarcoïdose

<u>L'hypersensibilité retardée granulomateuse en pathologie</u> <u>humaine</u>

La schistosomiase:

- Il s'agit d'une parasitose par des vers trématodes du genre schistosoma,
- le patient est sensibilisé aux œufs des vers,
- une réaction granulomateuse typique dans les tissus parasités.
- La granulome est constitué surtout de lymphocytes Th2 qui par les cytokines IL-5 et IL-13 qu'elles produisent sont responsables du recrutement des éosinophiles et de la formation de granulomes autour des œufs.

Granulome au tours d'œuf de schistosome

Test in vivo

Patch test

La lecture se fait à 48h après l'application des patches (30 min après avoir enlevé le patch) et à 96h après l'application du patch. Les résultats sont rapportés selon les critères qui suivent

- douteux ; petite macule érythémateuse. Il ne s'agit pas d'un test positif, il ne faut pas en tenir compte dans les résultats.
- + : positif ; érythème, infiltration, parfois papules
- ++ : positif fort ; érythème, infiltration, papule, vésicules
- +++ : positif très fort ; confluence des vésicules, bulles

Test in vivo

IDR

- Les lectures sont effectuées de façon répétée à 30 minutes, 6 heures et 24 heures et de façon également très retardée avec des durées allant selon les équipes de 48, 72, 96 heures à une semaine.
- Pour l'IDR à la tuberculine la lecture est faite entre 48 à 72 h
- On mesure le diamètre de l'induration et de l'érythème

Test in vitro

Test in vitro

Test in vitro

Quantiféron

Prélèvement sur 3 tubes :

- Tube null
- Tube Ag TB
- Tube mitogène

Principe : dosage des l'IFN- γ par Elisa dans les 3 tubes

Une réaction positive se traduit par une productio significative de l'IFN γ dans le tube Ag TB

Cellules du patient

Test in vitro

Elispot

Secrétion d'IFN_γ par les cellules spécifique

Révélation de l'IFNγ sécrété (conjugué + substrat)

Lecture: formation de point « spots »

