CC4102/CC40A/CC53A - Diseño y Análisis de Algoritmos Auxiliar 3

Prof. Jérémy Barbay, Aux. Mauricio Quezada 13 de Abril, 2011

1 B-Árboles

- 1. Un B-Árbol T es un árbol con las siguientes propiedades:
 - Cada nodo x posee
 - -n[x] el número de llaves en x
 - -las n[x]llaves, en orden no-decreciente: $key_1[x] \leq \ldots \leq key_{n[x]}[x]$
 - -leaf[x] un valor booleano que indica si x es un nodo interno o no
 - Cada nodo interno además posee n[x]+1 punteros $c_1[x],\ldots,c_{n[x]+1}[x]$ a sus hijos. Las hojas no tienen hijos, por lo que sus c_i están indefinidos
 - Las llaves $key_i[x]$ separan los rangos de llaves almacenadas en cada subárbol. Si k_i es una llave almacenada en el subárbol con raíz $c_i[x]$, entonces

$$k_1 \le key_1[x] \le k_2 \le key_2[x] \le \ldots \le key_{n[x]}[x] \le k_{n[x]+1}$$

- $\bullet\,$ Todas las hojas tienen la misma profundidad, la cual es la altura del árbol h
- El grado de $T, t \ge 2$ es tal que
 - cada nodo distinto de la raíz debe tener al menos t-1 llaves.
 - cada nodo puede tener a lo más 2t-1 llaves
- 2. Pruebe que, si $n \ge 1$, para cualquier B-Árbol de n llaves, altura h y grado $t \ge 2$, $h \le \log_t \frac{n+1}{2}$
- 3. De el algoritmo de inserción en un B-Árbol

2 van Emde Boas Trees

- 1. Nos gustaria crear una estructura de datos con las siguientes propiedades
 - Mantener un conjunto dinámico S de tamaño n de un dominio $\mathcal{U} = \{0, \dots, u-1\}, |\mathcal{U}| = u$
 - Que soporte las siguientes operaciones:
 - (a) Insert $(x \in \mathcal{U}, x \notin S)$: Agregar x a S
 - (b) Delete $(x \in S)$: Eliminar x de S
 - (c) Succ $(x \in \mathcal{U})$: Encontrar el menor elemento $z \in S$ tal que z > x
 - (d) Pred $(x \in \mathcal{U})$: Encontrar el mayor elemento $z \in S$ tal que z < x

Describa un van Emde Boas Tree (o vEB Priority Queue)

- 2. Muestre que un van Emde Boas Tree soporta estas operaciones en tiempo $\mathcal{O}(\lg \lg u)$. ¿En qué casos las operaciones funcionan en $\mathcal{O}(\lg \lg n)$?
- 3. Pruebe que esta estructura utiliza espacio $\Theta(u)$
- 4. (Propuesto) Determine un algoritmo Find $(x \in \mathcal{U})$ que busca x en S en tiempo $\mathcal{O}(\lg \lg u)$