Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselective reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

 ${f Strategies:}\ {f none}\ {f selected}$

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

4 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 231.16

Figure 1: Outline of path 1

2.1.1 Synthesis of triazoles

Substrates:

- $1. \ 1\hbox{-azido-}3\hbox{-chlor-propan}$
- 2. Calcium carbide available at Sigma-Aldrich

Products:

1. C5H8ClN3

 $\textbf{Typical conditions:} \ \text{rt.water.Cu-catalyst}$

Protections: none

Reference: 10.1039/C4OB01350F

Retrosynthesis ID: 24030

2.1.2 Blanc bromomethylation

Substrates:

1. Formalin - available at Sigma-Aldrich

2. C5H8ClN3

Products:

1. ClCCCn1cc(CBr)nn1

Typical conditions: HBr.heat

Protections: none

Reference: 10.1021/ja011493q and 10.1021/ma012195g and 10.1016/S0040-

4039(02)01769-0 and 10.1021/ja002069c

2.1.3 Suzuki alkyl-alkyl coupling

Substrates:

1. ClCCCn1cc(CBr)nn1

2. Propene - available at Sigma-Aldrich

Products:

1. CCCCc1cn(CCCCl)nn1

Typical conditions: 1.9BBN-H or pinB-Bpin.Cu 2.[Pd].ligand.base

Protections: none

Reference: 10.1021/ja074008l and 10.1021/ja011306o and 10.1002/1521-3773(20011217)40:24<4544::AID-ANIE4544>3.0.CO;2-N and <math>10.1021/ol300575d

2.1.4 Iodination of aromatic compounds

${\bf Substrates:}$

1. CCCCc1cn(CCCCl)nn1

Products:

1. CCCCc1nnn(CCCCl)c1I

Typical conditions: I2 or other iodinating agent e.g. NIS

Protections: none

Reference: DOI: 10.1039/C5SC00964B and 10.1016/j.tetlet.2005.05.117 and

 $10.1007/s11178\hbox{-}005\hbox{-}0256\hbox{-}1$

2.1.5 Synthesis of aryl Grignard reagents

Substrates:

- $1. \ \ Magnesium \ \ \ \textit{available at Sigma-Aldrich}$
- $2.\ \ CCCCc1nnn(CCCCl)c1I$

Products:

 $1. \ \ CCCCc1nnn(CCCCl)c1[Mg]Br$

 $\begin{tabular}{ll} \textbf{Typical conditions:} & iPrMgCl.LiCl.THF or other conditions Mg.THF or tBuLi.MgBr2 \\ \end{tabular}$

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and

WO2014123793 p.137 and 10.1021/jm400491x and 10.3762/bjoc.12.36

2.1.6 Grignard-Type Reaction

Substrates:

 $1. \ CCCCc1nnn(CCCCl)c1[Mg]Br$

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

 $1. \ \ CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1$

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jm061429p or 10.1016/j.bmc.2012.11.015 or

10.1016/j.tetasy.2012.05.024

2.1.7 Alkylation of tertiary alcohols

Substrates:

 $1. \ \ CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1$

Products:

 $1. \ CCCCc1nnn2c1C1(C=CCCC1)OCCC2$

 $\textbf{Typical conditions:} \ \ \textbf{K2CO3}. acetone. heat$

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.2 Path 2

Score: 252.64

Figure 2: Outline of path 2

2.2.1 Synthesis of triazoles from azides

Substrates:

1. propynal - available at Sigma-Aldrich

 $2. \ 1\text{-}azido-3\text{-}chlor\text{-}propan$

Products:

1. O=Cc1cn(CCCCl)nn1

 $\textbf{Typical conditions:} \ \mathrm{Cu(I).Et3N.DMF}$

Protections: none

Reference: DOI:10.1080/00397911.2013.786090

2.2.2 Iodination of aromatic compounds

Substrates:

1. O=Cc1cn(CCCCl)nn1

Products:

1. O=Cc1nnn(CCCCl)c1I

Typical conditions: I2 or other iodinating agent e.g. NIS

 ${\bf Protections:}\ {\rm none}$

Reference: DOI: 10.1039/C5SC00964B and 10.1016/j.tetlet.2005.05.117 and

10.1007/s11178-005-0256-1

2.2.3 Tebbe Olefination

Substrates:

 $1. \ O{=}Cc1nnn(CCCCl)c1I$

Products:

 $1. \ C{=}Cc1nnn(CCCCl)c1I$

Typical conditions: Cp2TiCl2.AlMe3.toluene

Protections: none

Reference: 10.1016/j.tet.2007.03.015 and 10.1002/9780470638859.conrr617

2.2.4 Synthesis of aryl Grignard reagents

Substrates:

- 1. Magnesium available at Sigma-Aldrich
- 2. C=Cc1nnn(CCCCl)c1I

Products:

1. C=Cc1nnn(CCCCl)c1[Mg]Br

 $\begin{tabular}{ll} \textbf{Typical conditions:} & iPrMgCl.LiCl.THF or other conditions Mg.THF or tBuLi.MgBr2 \end{tabular}$

Protections: none

Reference: DOI: 10.1016/S0040-4039(99)01404-5 and 10.1021/jo0000574 and

WO2014123793 p.137 and 10.1021/jm400491x and 10.3762/bjoc.12.36

2.2.5 Grignard-Type Reaction

Substrates:

- $1. \ C{=}Cc1nnn(CCCCl)c1[Mg]Br$
- 2. 2-Cyclohexen-1-one available at Sigma-Aldrich

Products:

 $1. \ C = Cc1nnn(CCCCl)c1C1(O)C = CCCC1$

 $\textbf{Typical conditions:} \ \mathrm{Mg} \ \mathrm{or} \ \mathrm{Li.ether}$

Protections: none

Reference: 10.1021/jm061429p or 10.1016/j.bmc.2012.11.015 or 10.1016/j.tetasy.2012.05.024

Retrosynthesis ID: 25133

2.2.6 Alkylation of tertiary alcohols

Substrates:

1. C=Cc1nnn(CCCCl)c1C1(O)C=CCCC1

Products:

1. C=Cc1nnn2c1C1(C=CCCC1)OCCC2

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules24091643

Retrosynthesis ID: 31010930

2.2.7 Suzuki alkyl-alkyl coupling

Substrates:

1. C=Cc1nnn2c1C1(C=CCCC1)OCCC2

2. Bromoethane - available at Sigma-Aldrich

Products:

1. CCCCc1nnn2c1C1(C=CCCC1)OCCC2

Typical conditions: 1.9BBN-H or pinB-Bpin.Cu 2.[Pd].ligand.base

Protections: none

Reference: 10.1021/ja074008l and 10.1021/ja011306o and 10.1002/1521-3773(20011217)40:24<4544::AID-ANIE4544>3.0.CO;2-N and <math>10.1021/ol300575d

2.3 Path 3

Score: 252.64

Figure 3: Outline of path 3

2.3.1 One-pot synthesis of triazoles from alkyl halides

Substrates:

- 1. Potassium azide available at Sigma-Aldrich
- 2. 1-Hexyn-3-ol available at Sigma-Aldrich
- 3. 1,3-Dichloropropene available at Sigma-Aldrich

Products:

1. CCCC(O)c1cn(CC=CCl)nn1

Typical conditions: Cu(II).sodium ascorbate.DMF/H2O

Protections: none

Reference: DOI: 10.1021/ol048859z

2.3.2 Deoxygenation of alcohols with silanes

Substrates:

 $1. \ \mathrm{CCCC}(\mathrm{O}) \mathrm{c1cn}(\mathrm{CC}{=}\mathrm{CCl}) \mathrm{nn} 1$

Products:

1. CCCCc1cn(CC=CCl)nn1

Typical conditions: Et3SiH.Lewis.or.Bronsted.Acid

Protections: none

Reference: 10.1021/jo0158534 AND 10.1021/ol3020144

Retrosynthesis ID: 8162

2.3.3 Homogenous Reduction of C=C Double Bond

Substrates:

1. CCCCc1cn(CC=CCl)nn1

Products:

1. CCCCc1cn(CCCCl)nn1

Typical conditions: H2.Pd/C or Pd(OH)2/C

Protections: none

Reference: DOI: 10.1021/ja0629110 and 10.1021/jo0602367 and 10.1021/jo980467g and 10.1021/o1702231j (SI, page SI 22) and

10.1002/anie.200503303 and 10.1021/ja011338b (Pt/C tez)

Retrosynthesis ID: 9995778

2.3.4 Bromination of aromatic compounds

Substrates:

 $1. \ \ CCCCc1cn(CCCCl)nn1$

Products:

1. CCCCc1nnn(CCCCl)c1Br

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

2.3.5 Br/Li exchange

Substrates:

- 1. CCCCc1nnn(CCCCl)c1Br
- 2. n-BuLi available at Sigma-Aldrich

Products:

1. [Li]c1c(CCCC)nnn1CCCCl

Typical conditions: nBuLi.or.tBuLi.THF.-78C

Protections: none

Reference: 10.1002/ejoc.201101490 and 10.1016/j.tet.2012.03.058 and 10.1016/j.tetlet.2015.01.032 and 10.1021/ja0541175 and 10.1016/j.tetlet.2016.06.123

Retrosynthesis ID: 30672

2.3.6 Addition of electrophiles to lithiated arenes/heteroarenes

Substrates:

 $1. \ [\mathrm{Li}]c1c(\mathrm{CCCC})nnn1\mathrm{CCCCl}$

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

1. CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1

Typical conditions: THF.-78 deg C

Protections: none

Reference: 10.1021/ml300335r and 10.1021/acs.jmedchem.6b00866

Retrosynthesis ID: 31008139

2.3.7 Alkylation of tertiary alcohols

Substrates:

 $1. \ \ CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1$

Products:

 $1. \ \ CCCCc1nnn2c1C1(C=CCCC1)OCCC2$

 ${\bf Typical\ conditions:}\ {\rm K2CO3.acetone.heat}$

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

2.4 Path 4

Score: 252.64

Figure 4: Outline of path 4

2.4.1 Iodination of acetylene

Substrates:

1. hex-1-yn-3-one - available at Sigma-Aldrich

Products:

1. CCCC(=O)C#CI

Typical conditions: AgNO3.NIS.THF.rt

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1021/ja960040w

2.4.2 Synthesis of triazoles from azides and haloalkynes

$$+ \bigvee_{CI} \bigvee_{N=N^{+}=N^{-}} \bigvee_{N=N} \bigvee_{N} \bigvee_{N=N} \bigvee_{N} \bigvee_{N=N} \bigvee_{N} \bigvee_{N}$$

Substrates:

 $1. \ 1\text{-}azido\text{-}3\text{-}chlor\text{-}propan$

2. CCCC(=O)C#CI

Products:

 $1. \ \ CCCC(=O)c1nnn(CCCCl)c1I$

 $\textbf{Typical conditions:} \ \mathrm{CpRuCl}(\mathrm{cod}). A C N$

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1002/chem.201402559

2.4.3 Reduction of ketones with NaBH4

Substrates:

1. CCCC(=O)c1nnn(CCCCl)c1I

Products:

1. CCCC(O)c1nnn(CCCCl)c1I

Typical conditions: NaBH4.EtOH.0-20 C

Protections: none

Reference: 10.1016/j.ejmech.2020.112360 p. 3, 8 and

10.1016/j.ejmech.2010.10.012 p. 434, 436

2.4.4 Deoxygenation of alcohols with silanes

Substrates:

 $1. \ CCCC(O)c1nnn(CCCCl)c1I \\$

Products:

1. CCCCc1nnn(CCCCl)c1I

 $\textbf{Typical conditions:} \ Et 3 Si H. Lewis. or. Bronsted. Acid$

Protections: none

Reference: 10.1021/jo0158534 AND 10.1021/ol3020144

2.4.5 I/Li exchange

Substrates:

- 1. CCCCc1nnn(CCCCl)c1I
- 2. t-BuLi available at Sigma-Aldrich

Products:

1. [Li]c1c(CCCC)nnn1CCCCl

 $\textbf{Typical conditions:} \ nBuLi.or.tBuLi.THF.-78C$

Protections: none

Reference: 10.1016/j.tet.2004.09.111 and 10.1039/c3ob41082j And 10.1016/j.bmc.2012.03.056 And 10.1002/chem.201300292

Retrosynthesis ID: 30673

2.4.6 Addition of electrophiles to lithiated arenes/heteroarenes

Substrates:

 $1. \ [Li]c1c(CCCC)nnn1CCCCl$

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

 $1. \ \ CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1$

Typical conditions: THF.-78 \deg C

Protections: none

Reference: 10.1021/ml300335r and 10.1021/acs.jmedchem.6b00866

Retrosynthesis ID: 31008139

2.4.7 Alkylation of tertiary alcohols

Substrates:

1. CCCCc1nnn(CCCCl)c1C1(O)C=CCCC1

Products:

 $1. \ \ CCCCc1nnn2c1C1(C=CCCC1)OCCC2$

Typical conditions: K2CO3.acetone.heat

Protections: none

 $\textbf{Reference:} \ \ 10.1016/S0040\text{-}4020(01)90106\text{-}1 \ \ \text{and} \ \ 10.1021/acs.analchem.5b04461$

and 10.3390/molecules 24091643