Построение и анализ алгоритмов

Алгоритмические задачи

Построение алгоритмов

- Формулировка / постановка задачи
 - Точка А: Входные данные
 - Точка Б: Конечная цель
- Наивная реализация: «напрямую через поле»
 - Буквальная реализация формулировки задачи
 - Вычислительная сложность
- Улучшение / оптимизация алгоритма: «объезд по шоссе»
 - «Усложнение» алгоритма —> упрощение работы
 - Количество операций T(n)
 - Размер памяти M(n)

Оценка вычислительной сложности

- Время вычислений Т в зависимости от размера задачи п
 - T(n) = O(?)
- Теоретические оценки
 - Анализ псевдокода / исходного текста
 - Все операции выполняются за одинаковое время
 - Отбрасываем младшие степени и постоянные коэффициенты
- Хронометраж
 - Многократный прогон
 - Сводные таблицы

Точность таймера

```
using System;
using System.Diagnostics;
class Program
   static void Main()
       long frequency = Stopwatch.Frequency;
       Console.WriteLine($"Частота таймера: {frequency} Гц");
                  C:\00\bin\Release\net9.0>00
                  Частота таймера: 10000000 Гц
```

Простой таймер Python

```
n = 300 000
nums = [1] * n
import time
t = time.time()
m = max(nums)
dt = time.time() - t
print(f"{n};{dt:.10}")
```

```
C:\TMP\alg>python timer2.py
300000;0.01562452316
C:\TMP\alg>python timer2.py
300000;0.0
C:\TMP\alg>python timer2.py
300000;0.00651884079
C:\TMP\alg>python timer2.py
300000;0.01562333107
```

Точный таймер: High-resolution timer

```
n = 10
nums = [1] * n
import time
t = time.perf counter()
m = max(nums)
dt = time.perf counter()
print(f"{n};{dt:.10f}")
```

```
C:\TMP\alg>python timer3.py
10;0.0000022000
C:\TMP\alg>python timer3.py
10;0.0000027000
C:\TMP\alg>python timer3.py
10;0.0000023000
C:\TMP\alg>python timer3.py
10;0.0000022000
```

Формат вывода: cs / ру

• Число знаков дробной части

```
• .ToString("F10") или :F10 :.10f
```

- Версия Excel EN RU
 - Разделитель полей: запятая или точка с запятой
 - Десятичный разделитель: точка или запятая
- Региональные настройки EN RU
- Поиск и замена

```
• .Replace('.', ',') .replace('.', ',')
```

```
Console.WriteLine($"{n};{stopwatch.Elapsed.TotalSeconds.ToString("F10").Replace('.', ',')}");
print(f"{n};{dt:.10f}".replace(".",","))

© ADDROB B.HO.
```

Поиск максимума

Find max

Поиск максимального значения

- Однопроходный алгоритм
- Начальное значение
- Проверка условия
- Обновление максимума

- Наилучший и наихудший случаи
- Оценка сверху и оценка снизу

The Analysis of Algorithms

Схема алгоритма


```
def find max(nums):
    max num = nums[0]
    for i in range(1, len(nums)):
        if max num < nums[i]:</pre>
            max num = nums[i]
    return max num
import time
print("n;T(n)")
for n in range (20 000 000, 100 000 001, 20 000 000):
    nums = n * [1]
   nums = [2] + (n - 1) * [1]
    for i in range (10):
        t = time.perf counter()
        x max = find max(nums)
        dt = time.perf counter() - t
        print(f"{n};{dt:.10f}".replace(".",","), flush=True)
```

Python – Tee – CSV - Excel

```
C:\TMP\alg>python find_max_perf.py | tee py-max.csv
n;T(n)
```

20000000;0,9877449000

20000000;1,5730961000

20000000;1,1656624000

Текст влево					
		Α	В		
1	n		T(n)	_	
2		20000000	0,9877449		
3		20000000	1,5730961		
4		20000000	1,1656624		
	-		Числа вправо		

© Арьков В.Ю.

14

Время выполнения и линия тренда


```
using System;
                                         C:\00\bin\Release\net9.0>00
using System.Diagnostics;
                                         1000000000 0,0649237
class Program
   static int FindMax(int[] nums)
                                         C:\00\bin\Release\net9.0>00
       int max = nums[0];
                                         1000000000 0,0650805
       foreach (int num in nums)
           if (num > max)
                                         C:\00\bin\Release\net9.0>00
              max = num;
       return max;
                                         3000000000 0,1924222
   static void Main()
                                         C:\00\bin\Release\net9.0>00
       int n = 100_{-000_{-000}};
                                         3000000000 0,1977138
       int[] nums = new int[n];
       for (int i = 0; i < n; i++)
           nums[i] = i;
       Stopwatch stopwatch = Stopwatch.StartNew();
       int x_max = FindMax(nums);
       stopwatch.Stop();
       Console.WriteLine($"{n} {stopwatch.Elapsed.TotalSeconds}");
                                © Арьков В.Ю.
                                                                        19
```

11

12

13

14

15

16

18

19

20

21

22

23

24

```
using System;
       using System.Diagnostics;
     class Program
           static int FindMax(int[] nums)
               int max = nums[0];
               for (int i = 1; i < nums.Length; i++)</pre>
                   if (max < nums[i])</pre>
10
                                                C:\00\bin\x64\Release\net9.0>00 | tee find_max_cs.csv
                       max = nums[i];
11
                                                n;T(n)
12
               return max;
                                                100000000;0,1597439000
13
14
                                                100000000;0,1607086000
           static void Main()
15
                                                100000000;0,1595578000
16
               Console.WriteLine("n;T(n)");
17
               for (int n = 100_000_000; n <= 300_000_000; n += 50_000_000)
18
19
                   int[] nums = new int[n];
20
                   for (int i = 0; i < n; i++)
21
                       nums[i] = 1;
22
                   for (int i = 0; i < 10; i++)
23
24
                       Stopwatch stopwatch = Stopwatch.StartNew();
25
                       int x_max = FindMax(nums);
26
                       stopwatch.Stop();
27
                       Console.WriteLine($"{n};{stopwatch.Elapsed.TotalSeconds:F10}");
28
29
30
31
                                                        © Арьков В.Ю.
                                                                                                                20
```


Алгоритмические задачи

Algorithmic problems

Алгоритмические задачи

- Изучение технологии программирования
- Алгоритмическая секция собеседования
- Олимпиады и соревнования
- Сборники заданий
- Онлайн тренажеры и платформы

LeetCode https://leetcode.com/

LeetCode

- online platform for coding interview preparation
- https://leetcode.com/
- https://leetcode.com/studyplan/top-interview-150/

Environments for the programming languages

• https://support.leetcode.com/hc/en-us/articles/360011833974-What-are-the-environments-for-the-programming-languages-

Language	Version	Notes
Java	java 17	OpenJDK 17 . Java 8 features such as lambda expressions and stream API can be used. Most standard library headers are already included automatically for your convenience. Includes Pair class from https://docs.oracle.com/javase/8/javafx/api/javafx /util/Pair.html.
Python3	Python 3.10	Most libraries are already imported automatically for your convenience, such as array, bisect, collections. If you need more libraries, you can import it yourself. For Map/TreeMap data structure, you may use sortedcontainers library.
C#	C# 10 with .NET 6 runtime	

Скользящее окно

Sliding window

Метод скользящего окна

- 643. Maximum Average Subarray I
 - https://leetcode.com/problems/maximum-average-subarray-i/
 - https://wcademy.ru/sliding-window-method/
- Дан массив из п целых чисел
- Найдите непрерывный подмассив длины k, который имеет максимальное среднее значение.
- Вывести максимальное среднее значение
- Скользящее среднее

Простой / наивный алгоритм

- Высокие затраты ресурсов
- Низкая эффективность
- Понимание задачи и подходов к решению
- Основа для сравнения Benchmark
- Единственное решение (в некоторых случаях)
- Брутфорс *Brute Force*
 - Полный перебор всех возможных вариантов решений

Наивный алгоритм

```
class Solution:
        def findMaxAverage(self, nums: List[int], k: int) -> float:
            n = len(nums)
            if k > n:
                return -1
            subarray_sum = sum(nums[:k])
            max_avg = subarray_sum / k
            for i in range(1, n - k + 1):
                subarray sum = sum(nums[i:i + k])
                subarray_avg = subarray_sum / k
10
                max_avg = max(max_avg, subarray_avg)
11
12
            return max_avg
```

Testcase Result

Улучшенный алгоритм

Submissions

Accepted

Runtime

1004 ms

Beats 69.26% of users with Python3

Memory

27.87 MB

Beats 88.62% of users with Python3

```
i Python3 ∨
    class Solution:
        def findMaxAverage(self, nums: List[int], k: int) -> float:
            n = len(nums)
            if k > n:
                 return -1
             subarray_sum = sum(nums[:k])
            max_avg = subarray_sum / k
            for i in range(k, n):
                 subarray_sum += nums[i] - nums[i-k]
                 subarray_avg = subarray_sum / k
10
                 max_avg = max(max_avg, subarray_avg)
11
12
             return max avg
```

Два указателя

Two pointers

Метод двух указателей

- Дан массив целых чисел
- Вернуть индексы двух чисел, сумма которых равна заданному числу.
- Есть ровно одно решение.

- https://wcademy.ru/two-pointers-method/
- https://leetcode.com/problems/two-sum/

Метод двух указателей

- Two-pointer technique
 - https://leetcode.com/articles/two-pointer-technique/
- 167. Two Sum II Input Array Is Sorted
 - https://leetcode.com/problems/two-sum-ii-input-array-is-sorted/
- 26. Remove Duplicates from Sorted Array
 - https://leetcode.com/problems/remove-duplicates-from-sorted-array/
- 11. Container With Most Water
 - https://leetcode.com/problems/container-with-most-water/
- 27. Remove Element
 - https://leetcode.com/problems/remove-element/
- 125. Valid Palindrome
 - https://leetcode.com/problems/valid-palindrome/

Какой метод используется для нахождения максимального значения в массиве?

- а) Попарное сравнение
- b) Метод двух указателей
- с) Скользящее окно
- d) Ничего из вышеперечисленного

Какова временная сложность алгоритма поиска максимального значения в массиве?

- a) O(n)
- b) O(log n)
- c) O(n log n)
- d) O(n²)

Tect

Что представляет собой метод скользящего окна?

- а) Нахождение максимального значения в массиве
- b) Нахождение подмассива по заданному критерию
- с) Поиск двух элементов, сумма которых равна заданному числу
- d) Ничего из вышеперечисленного

Какие особенности имеет метод двух указателей?

- а) Используется для поиска двух элементов с заданной суммой
- b) Находит максимальное значение в массиве за O(n)
- с) Находит левую и правую границы подмассива за один проход
- d) Работает только на упорядоченных списках и массивах

Каково основное преимущество метода двух указателей?

- а) Меньшая вычислительная сложность
- b) Возможность работать с отсортированными массивами
- с) Более простая реализация
- d) Лучшие результаты на малых наборах данных