Μέρος Β

Στο μέρος αυτό θα ασχοληθούμε με την αριθμητική επίλυση των επιδιημιολογικών μοντέλων SIR και SIS με χρήση του Matlab.

Α) Στο πρώτος μέρος θα ασχοληθούμε με το **SIR** μοντέλο το οποίο δίνεται απο το ακόλουθο διάγραμμα καταστάσεων και το παρακάτω σύνολο διαφορικών εξισώσεων:

Για τις παραμέτρους που υπάρχουν στον επόμενο πίνακα παρουσιάζονται τα διαγράμματα των S,I,R ως προς το χρόνο :

Πίνακας 3 – Παράμετροι μελέτης μοντέλου SIR

Παράμετροι	Τιμές					
β	10-3	10-3	10-3	10-3	10-3	10-3
γ	10-6	10-5	10-4	10-3	10-2	10-1
S(0)	5x0					
I(0)	1x					
R(0)	0					

όπου x = 3 διότι AM : 03112083.

Σχολιασμός Αποτελεσμάτων : Για το μοντέλο SIR γνωρίζουμε οτι το S αφορά τους κόμβους οι οποίοι δεν έχουν μολυνθεί ακόμα, το I εκείνους που έχουν μολυνθεί και μεταδίδουν τη μόλυνση στους S και R οι κόμβοι που δεν αλληλεπιδρούν δηλαδή δεν μπορούν να μολυνθούν για κάποιο λόγο. Επίσης η παράμετρος β αφορά τον ρυθμό με τον οποίο οι κόμβοι αλληλεπιδρούν και είναι ίσος με 10^{-3} για τις παραπάνω γραφικές. Η παράμετρος γ (r στους τίτλους των παραπάνω γραφικών) μεταβάλλεται όπως φαίνεται και αφορά το μέσο ρυθμό ανάρρωσης. Επίσης γνωρίζουμε οτι N = S + I + R και $R0 = \beta/\gamma$, άρα οι δυο αυτές σχέσεις σε συνδυασμό με τις παραπάνω διαφορικές εξισώσεις που διέπουν το μοντέλο αυτό μας δίνουν την σχέση :

$$\frac{\partial I}{\partial t} = \frac{R_0 \cdot S}{N-1} \cdot \gamma \cdot I$$

Επομένως διακρίνουμε τις ακόλουθες περιπτώσεις:

Αν
$$R_0>\frac{N}{\mathrm{S}(0)}$$
 , $\frac{\partial I}{\partial t}(0)>0$ τότε έχω καταπίεση του ιού αφού ο ρυθμός θεραπείας

ξεπερνάει το ρυθμό επαφής.

Α ν
$$R_0 < \frac{N}{\mathrm{S}(0)}$$
 , $\frac{\partial I}{\partial t}(0) < 0$ τότε έχω ξέπασμα του ιού.

Αν θέλουμε να μιλήσουμε συγκεκριμένα για τα παραπάνω διαγράμματα μπορούμε να πούμε οτι στα δυο πρώτα διαγράμματα εφόσον το γ είναι μεγαλύτερο απο το β μετά απο ενα αρχικό ξεσπασμα ο πληθυσμός τείνει να θεραπεύτει καθολικά απο την ασθένεια. Προφανώς οταν το β είναι πολύ μεγαλύτερο απο το γ η σύγκλιση είναι πιο γρήγορη. Στη περίπτωση όπου β=γ η σύγκλιση προς την θεραπεία είναι πολύ αργή όπως φαίνεται και απο το αντίστοιχο διάγραμμα. Στις περιπτώσεις όπου β > γ παρατηρείται σύγκλιση προς την καθολική μόλυνση του πληθυσμού, η οποία σύγκλιση γίνεται γρηγορότερη όσο το β μεγαλώνει.

Β) Στο μέρος αυτό καλούμαστε να μελετήσουμε το μοντέλο **SIS**, το οποίο περιγράφετε απο το παρακάτω σύνολο διαφορικών εξισώσεων :

$$\frac{dI}{dt} = (\beta(t)N - a)I - \beta(t)I^{2}$$

$$\beta(t) = 2 - 1.8\cos(5t)$$

Στη συνέχεια παρατίθεται ο πίνακας που ορίζει ποιές παραμέτρους θα μεταβάλλουμε για να μελετήσουμε το μοντέλο αυτό :

Πίνακας 4 - Παράμετροι μελέτης μοντέλου SIS

Παράμετροι	Τιμές					
а	6	5	4	3	2	1
N	1					

Έπειτα φαίνονται οι ζητούμενες γραφικές παραστάσεις:

Σχολιασμός Αποτελεσμάτων: Με το SIS μοντελό μπορούμε να περιγράψουμε ιούς γρίπης στους οποίους υπάρχει συνεχής εναλλαγή καταστάσεων, δηλαδή περιοδικού ρυθμού επαφής κόμβων. Απο τα παραπάνω διαγράμματα έχουμε οτι όσο αυξάνεται η παράμετρος α τόσο ο αριθμός των μολύνσεων έχει μικρότερες διακυμάνσεις και μειώνεται σταδιακά. Άρα αυξάνοντας αρκετά το α μπορούμε να μηδενίσουμε τις διακυμάνσεις και τον αριθμό των μολύνσεων για σταθερή τιμή του Ν. Κάτι τέτοιο συμβαίνει διότι αυξάνοντας το α, μειώνεται η επίδραση του cos και για το λόγω αυτό σταδιακά μειώνεται ο κίνδυνος να προκύψει επιδημία. Τα συμπεράσματα αυτά συμφωνούν και με τα παραπάνω διαγράμματα.