IEEE WCNC 2020-Workshop, Intelligent IoT Connectivity, Automation and Applications (ICA)

Joint Active Device and Data Detection for Massive

MTC Relying on Spatial Modulation

Li Qiao, Zhen Gao

Beijing Institute of Technology (BIT), Beijing, China

gaozhen16@bit.edu.cn, qiaoli@bit.edu.cn

May 25th, 2020

CONTENTS

1 System Model

Massive access meets spatial modulation

- Proposed AMP-based massive access solution
 - A. Motivations and problem formulation
 - B. Proposed JS-AMP algorithm for joint active device and data detection
- **3** Simulation Results

System Model

- Massive machine-type communications (mMTC) meet spatial modulation
- The BS employs massive MIMO with N_r antennas for reliable detection.
- K machine-type devices adopt spatial modulation for enhanced throughput in <u>massive</u> access, and only K_a devices are active simultaneously, where $K_a \ll K$ [1]-[4].
- For spatial modulation, each device adopt an RF chain and N_t transmit antennas. For each device, if M-QAM is adopted, the throughput is $\eta = \log_2 M + \lfloor \log_2 N_t \rfloor$ bit per channel use (bpcu) [4]-[7].

Fig. 1. (a) Proposed spatial modulation based mMTC scheme; (b) A diagram of spatial modulation [4]-[7].

System Model

Uplink transmission

- we assume the active and inactive states of K devices remain unchanged in a frame (J successive time slots)
- The received signal $\mathbf{y}_{j} \in \mathbb{C}^{N_r \times 1}$ at the BS in the *j*-th $(\forall j \in [J])$ time slot can be expressed as $[N] = \{1, 2, ..., N\}$

$$\mathbf{y}_{j} = \sum_{k=1}^{K} a_{k} s_{k,j} \mathbf{H}_{k} \mathbf{d}_{k,j} + \mathbf{w}_{j} = \sum_{k=1}^{K} \mathbf{H}_{k} \mathbf{x}_{k,j} + \mathbf{w}_{j} = \mathbf{H} \mathbf{x}_{j} + \mathbf{w}_{j},$$
(1)

 a_k — activity indicator of the k-th device

 $s_{k,i} \in \mathbb{S}$, and \mathbb{S} is the conventional modulated constellation symbol set

 $\mathbf{d}_{k,j}$ is the spatial modulated symbol, and "supp $\{\mathbf{d}_{k,j}\} \in [N_t]$, $||\mathbf{d}_{k,j}||_0 = 1$, $||\mathbf{d}_{k,j}||_2 = 1$," (2)

 $\mathbf{x}_{k,i} = a_k s_{k,i} \mathbf{d}_{k,i} \in \mathbb{C}^{N_t \times 1}$ is the effective transmit symbol

 $\mathbf{H}_k \in \mathbb{C}^{N_r \times N_t}$ is the MIMO channel matrix associated with the k-th device

 $\mathbf{w}^{j} \in \mathbb{C}^{N_r \times 1}$ is the noise, whose elements obey i.i.d. complex Gaussian distribution $\mathcal{CN}(0, \sigma_w^2)$

 $\mathbf{H} = [\mathbf{H}_1, \mathbf{H}_2, ..., \mathbf{H}_K] \in \mathbb{C}^{N_r \times (KN_t)} \text{ can be obtained at the BS}$ $\tilde{\mathbf{x}}_i = [(\mathbf{x}_{1,i})^T, (\mathbf{x}_{2,i})^T, ..., (\mathbf{x}_{K,j})^T]^T \in \mathbb{C}^{(KN_t) \times 1}$

$$\tilde{\mathbf{x}}_{j} = [(\mathbf{x}_{1,j})^{T}, (\mathbf{x}_{2,j})^{T}, ..., (\mathbf{x}_{K,j})^{T}]^{T} \in \mathbb{C}^{(KN_{t}) \times T}$$

CONTENTS

1 System Model

Massive access meets spatial modulation

- Proposed AMP-based massive access solution
 - A. Motivations and problem formulation
 - B. Proposed JS-AMP algorithm for joint active device and data detection
- **3** Simulation Results

- A. Motivations and problem formulation
- Sporadic traffic [1]-[4] $\mathbf{a} = [a_1, a_2, ..., a_K]^T \in \mathbb{C}^{K \times 1}$ is a sparse vector, and $K_a = |\mathbf{a}|_0 \ll K$.
- Block sparsity [3],[4]
 The device activity is invariant in a frame.
- <u>Structured sparsity</u> [5],[7]
 As illustrated in (2), spatial modulated signal has structured sparsity.

motivated us to use CS-based framework

Considering the structured sparsity, we formulate the prior distribution of $\mathbf{x}_{k,j}$ as

$$p(\mathbf{x}_{k,j} \mid a_k) = (1 - a_k) \prod_{i=1}^{N_t} \delta([\mathbf{x}_{k,j}]_i) + a_k \left\{ \frac{1}{N_t} \sum_{i=1}^{N_t} [\frac{1}{M} \sum_{s \in \mathbb{S}} \delta([\mathbf{x}_{k,j}]_i - s) \prod_{n \in [N_t], n \neq i} \delta([\mathbf{x}_{k,j}]_n)] \right\},$$
Inactive
Activity indicator

Activity indicator

 $M = |\mathbb{S}|_c$, i.e., M is the size of the constellation symbol set \mathbb{S} , $\mathcal{S}(\cdot)$ is the Dirac delta function.

• A. Motivations and problem formulation

• We rewrite the received signals within a frame as

$$\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W}, \qquad \boxed{(4)}$$
where $\mathbf{Y} = [\mathbf{y}^1, \mathbf{y}^2, ..., \mathbf{y}^J] \in \mathbb{C}^{N_r \times J}, \quad \mathbf{X} = [\mathbf{x}^1, \mathbf{x}^2, ..., \mathbf{x}^J] \in \mathbb{C}^{(KN_t) \times J}, \text{ and } \mathbf{W} = [\mathbf{w}^1, \mathbf{w}^2, ..., \mathbf{w}^J] \in \mathbb{C}^{N_r \times J}.$

• Then, the massive access problem can be formulated as the following optimization problem

$$\min_{\mathbf{X}} \| \mathbf{Y} - \mathbf{H} \mathbf{X} \|_{F}^{2} = \min_{\{\mathbf{x}^{j}\}_{j=1}^{J}} \sum_{j=1}^{J} \| \mathbf{y}^{j} - \mathbf{H} \mathbf{x}^{j} \|_{2}^{2}$$

$$= \min_{\{a_{k}, \mathbf{d}_{k}^{j}, g_{k}^{j}\}_{j=1, k=1}^{J, K}} \sum_{j=1}^{J} \| \mathbf{y}^{j} - \sum_{k=1}^{K} a_{k} g_{k}^{j} \mathbf{H}_{k} \mathbf{d}_{k}^{j} \|_{2}^{2}$$
s.t. (2) and $\| \mathbf{a} \|_{0} \ll K$ (5)

• Our proposed joint structured approximate message passing (JS-AMP) algorithm estimates the posterior mean of the uplink signals and learns the activity indicators iteratively.

- B. Proposed JS-AMP algorithm for joint active device and data detection
- Approximate message passing (AMP) decouples Eq. (4) into KJN_t scalar problems as [3],[7],[8]

$$\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W} \rightarrow r_{l,j} = [\mathbf{x}_{k,j}]_i + \hat{w}_{l,j}, \quad (6)$$

$$\begin{cases} r_{l,j} \text{ is the posterior mean estimation of } [\mathbf{x}_{k,j}]_i \\ \hat{w}_{l,j} \in \mathcal{CN}\left(0, \ \phi_{l,j}\right) \text{ is the equivalent noise} \\ l = i + (k-1)N_t, k \in [K], j \in [J], i \in [N_t] \end{cases}$$

• Based on the Bayes' theorem, given any $k \in [K]$, $j \in [J]$ and $i \in [N_t]$, the posterior probability of $[\mathbf{x}_{k,j}]_i$ is expressed as

$$f([\mathbf{x}_{k,j}] | r_{l,j}, a_k) = \frac{f(r_{l,j} | [\mathbf{x}_{k,j}]) p([\mathbf{x}_{k,j}] | a_k)}{f(r_{l,j} | a_k)}, \quad [7]$$

How to calculate the distributions in (7)?

■ B. Proposed JS-AMP algorithm for joint active device and data detection

The likelihood function

$$f(r_{l,j}|[\mathbf{x}_{k,j}]_i) = \frac{1}{\pi \phi_{l,j}} \exp(-\frac{|r_{l,j} - [\mathbf{x}_{k,j}]_i|^2}{\phi_{l,j}}),$$
 (8)

The prior distributions of scalar signals

$$p(\mathbf{x}_{k,j} \mid a_k) = (1 - a_k) \prod_{i=1}^{N_t} \delta([\mathbf{x}_{k,j}]_i) + a_k \{ \frac{1}{N_t} \sum_{i=1}^{N_t} [\frac{1}{M} \sum_{s \in \mathbb{S}} \delta([\mathbf{x}_{k,j}]_i - s) \prod_{n \in [N_t], n \neq i} \delta([\mathbf{x}_{k,j}]_n)] \},$$
(3)

Calculate the marginal distribution of (3)
$$p([\mathbf{x}_{k,j}]_i \mid a_k) = (1 - \frac{a_k}{N_t}) \delta([\mathbf{x}_{k,j}]_i) + \frac{a_k}{N_t M} \sum_{s \in \mathbb{S}} \delta([\mathbf{x}_{k,j}]_i - s), \quad \boxed{(9)}$$

And

$$f(r_{l,j} | a_k) = \sum_{[\mathbf{x}_{k,j}]_i \in \bar{\mathbb{S}}} (r_{l,j} | [\mathbf{x}_{k,j}]_i) p([\mathbf{x}_{k,j}]_i | a_k)$$
 (10)

• Then, we calculate the posterior mean of $|\mathbf{x}_{k,j}|$ as

$$[\mathbf{x}_{k,j}]_i = \sum_{[\mathbf{x}_{k,j}]_i \in \bar{\mathbb{S}}} [\mathbf{x}_{k,j}]_i f([\mathbf{x}_{k,j}]_i \mid r_{l,j}, a_k)$$
And the associated posterior variance as

$$[\mathbf{v}_{k,j}]_{i} = \sum_{[\mathbf{x}_{k,j}]_{i} \in \mathbb{S}} |[\mathbf{x}_{k,j}]_{i}|^{2} f([\mathbf{x}_{k,j}]_{i} | r_{l,j}, a_{k}) - |[\mathbf{x}_{k,j}]_{i}|^{2}, (12)$$

9/16

 $\mathbb{S} = \{\mathbb{S}, 0\}$

- B. Proposed JS-AMP algorithm for joint active device and data detection
- Expectation maximization (EM) is used to learn the activity indicators [9],

$$a_k^{t+1} = \arg\max_{\hat{a}_k \in [0,1]} \sum_{j=1}^{J} E\left\{ \ln p(\mathbf{x}_{k,j} \mid \hat{a}_k) \mid \mathbf{Y}, \ a_k^t \right\}$$
 (13)

 $E(\cdot|\mathbf{Y},a_k^t)$ denotes the expectation conditioned on the received signal Y and a_k^t .

• Due to the decoupling of AMP,

$$f([\mathbf{x}_{k,j}]_i | \mathbf{Y}, a_k^t) = f([\mathbf{x}_{k,j}]_i | r_{l,j}, a_k^t),$$
 (16)

• The updated a_k^{t+1} is obtained as

$$a_k^{t+1} = \frac{1}{J} \sum_{j=1}^{J} \sum_{\mathbf{x}_{k,j} \in \Omega_0} \prod_{i=1}^{N_t} f([\mathbf{x}_{k,j}]_i | r_{l,j}, a_k^t), \tag{18}$$

• $\Omega = \{\Omega_0, \mathbf{0}_{N_t}\}$, Ω_0 is the set of all possible $\mathbf{X}_{k,j}$ for active devices

10/16

0000

■ B. Proposed JS-AMP algorithm for joint active device and data detection

Algorithm 1: Proposed JS-AMP Algorithm

Input: The observation $\mathbf{Y} = [\mathbf{y}_1, ..., \mathbf{y}_J] \in \mathbb{C}^{N_r \times J}$, and the channel matrix $\mathbf{H} = [\mathbf{H}_1, ..., \mathbf{H}_K] \in \mathbb{C}^{N_r \times (KN_t)}$, and noise variance σ_w^2 .

Output: The activity indicator vector $\mathbf{a} = [a_1, ..., a_K]^T$ and the reconstructed signal $\mathbf{X} = [\widetilde{\mathbf{x}}_1, \widetilde{\mathbf{x}}_2, ..., \widetilde{\mathbf{x}}_J]$.

1. Initialization:

The iterative index t=1, and $a_k^1=0.5$, $[\widehat{\mathbf{x}}_{k,j}^1]_i=a_k^1\sum_{s\in\mathbb{S}}s/MN_t$,

$$v_{k,j}^1 = a_k^1 \sum_{s \in \mathbb{S}} |s|^2 / M N_t - |[\widehat{\mathbf{x}}_{k,j}^1]_i|^2$$
, and $Z_{n,j}^0 = [\mathbf{y}_j]_n$,

 $V_{n,j}^{0} = 1$, for $k \in [K], i \in [N_t], j \in [J]$, and $n \in [N_r]$.

2. AMP operation:

Decoupling step: for $k \in [K]$, $i \in [N_t]$, $j \in [J]$, and $n \in [N_r]$,

$$V_{n,j}^t = \sum_{k=1}^K |\mathbf{H}_{\mathbf{k}[n,:]}|^2 \widehat{\mathbf{v}}_{k,j}^t,$$

$$Z_{n,j}^{t} = \sum_{k=1}^{K} \mathbf{H}_{\mathbf{k}[n,:]} \widehat{\mathbf{x}}_{k,j}^{t} - V_{n,j}^{t} \frac{[\mathbf{y}_{j}]_{n} - Z_{n,j}^{t-1}}{\sigma_{w}^{2} + V_{n,j}^{t-1}},$$

$$\phi_{l,j}^t = \left(\sum_{n=1}^{N_r} \frac{\mathbf{H}_{[n,l]}}{\sigma_w^2 + V_{n,j}^t}\right)^{-1},$$

$$r_{l,j}^{t} = [\widehat{\mathbf{x}}_{k,j}^{t}]_{i} + \phi_{l,j}^{t} \sum_{n=1}^{N_{r}} \frac{\mathbf{H}_{[n,l]}^{*}([\mathbf{y}_{j}]_{n} - Z_{n,j}^{t})}{\sigma_{w}^{2} + V_{n,j}^{t}}.$$

Denoising step: compute $[\widehat{\mathbf{x}}_{k,j}^{t+1}]_i$ and $v_{k,j}^{t+1}$, for $k \in [K]$, $i \in [N_t]$, and $j \in [J]$, using Eqs. (11) and (12).

3. EM operation:

Compute a_k^{t+1} , for $k \in [K]$, using Eq. (18).

4. Termination criteria:

If $t \ge T_0$ is reached, the algorithm stops; otherwise set t = t + 1 and start again step 2 and step 3.

Result:

Given $\forall k \in [K]$, if $a_k^{T_0} > 0.5$, then a_k is set to 1; otherwise a_k is set to 0. The reconstructed signal $\mathbf{X} = [\widetilde{\mathbf{x}}_1^{T_0}, \widetilde{\mathbf{x}}_2^{T_0}, ..., \widetilde{\mathbf{x}}_J^{T_0}]$, where $\widetilde{\mathbf{x}}_j^{T_0} = [(\widehat{\mathbf{x}}_{1,j}^{T_0})^T, (\widehat{\mathbf{x}}_{2,j}^{T_0})^T, ..., (\widehat{\mathbf{x}}_{K,j}^{T_0})^T]^T$.

Computational complexity

For each iteration, the number of matrix multiplications is on the order of $\mathcal{O}(JN_rKN_t)$, which scales linearly with the number of devices, transmit antennas and receive antennas.

CONTENTS

1 System Model

Massive access meets spatial modulation

- Proposed AMP-based massive access solution
 - A. Motivations and problem formulation
 - B. Proposed JS-AMP algorithm for joint active device and data detection
- **3** Simulation Results

12/16

Simulation Results //

Simulation Parameters

- $K=150, K_a=10, J=7$
- $N_r = 100, N_t = 4$
- $T_0 = 15$ for the proposed JS-AMP algorithm
- 4-QAM for devices with <u>spatial modulation</u>
- 16-QAM in Benchmark 1

Benchmark 1:Zero forcing multi-user detector with K_a single antenna devices

Benchmark 2:The state-of-the-art TLSSCS detector from [4]

Benchmark 3:Oracle LS detector

◆ The proposed JS-AMP has better BER and SER performance.

Fig. 2. (a) BER performance comparison of different solutions versus SNRs; (b) SER performance comparison of different solutions versus SNRs.

Simulation Results

Fig. 3. (a) BER performance comparison versus sparsity level K_a ; (b) BER performance comparison versus different frame lengths J; (c) BER performance of the proposed JS-AMP algorithm versus iteration numbers.

- ◆ Fig.3.(a): The proposed JS-AMP is robust to the sparsity level
- ◆ Fig.3.(b): The exploitation of the block sparsity improves BER performance
- ◆ Fig.3.(c): The convergence of the proposed JS-AMP is guaranteed.

References /

- [1] L. Qiao, J. Zhang, Z. Gao, S. Chen and L. Hanzo, "Compressive Sensing Based Massive Access for IoT Relying on Media Modulation Aided Machine Type Communications," *IEEE Trans. Veh. Technol.*, vol. 69, no. 9, pp. 10391-10397, Sep. 2020.
- [2] M. Ke, Z. Gao, Y. Wu, X. Gao, and R. Schober, "Compressive sensing based adaptive active user detection and channel estimation: Massive access meets massive MIMO," *IEEE Trans. Signal Process.*, vol. 68, pp. 764-779, 2020.
- [3] C. Wei, H. Liu, Z. Zhang, J. Dang and L. Wu, "Approximate message passing-based joint user activity and data detection for NOMA," *IEEE Commun. Lett.*, vol. 21, no. 3, pp. 640-643, Mar. 2017.
- [4] X. Ma, J. Kim, D. Yuan and H. Liu, "Two-level sparse structure based compressive sensing detector for uplink spatial modulation with massive connectivity," *IEEE Commun. Lett.*, vol. 23, no. 9, pp. 1594-1597, Sept. 2019.
- [5] Z. Gao, L. Dai, Z. Wang, S. Chen and L. Hanzo, "Compressive-sensing based multiuser detector for the large-scale SM-MIMO uplink," *IEEE Trans. Veh. Technol.*, vol. 65, no. 10, pp. 1860-1865, Feb. 2017.
- [6] L. Xiao, P. Xiao, Y. Xiao, H. Haas, A. Mohamed and L. Hanzo, "Compressive sensing assisted generalized quadrature spatial modulation for massive MIMO systems," *IEEE Trans. Commun.*, vol. 67, no. 7, pp. 4795-4810, Jul. 2019.
- [7] X. Meng, S. Wu, L. Kuang, D. Huang and J. Lu, "Multi-user detection for spatial modulation via structured approximate message passing," *IEEE Commun. Lett.*, vol. 20, no. 8, pp. 1527-1530, Aug. 2016.
- [8] D. L. Donoho, A. Maleki, and A. Montanari, "Message-passing algorithms for compressed sensing," *Proc. Nat. Acad. Sci.* USA, vol. 106,no. 45, pp. 18914-18919, Nov. 2009.
- [9] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from incomplete data via the EM algorithm," *J. Roy. Statist. Soc. B (Methodol.)*, vol. 39, no. 1, pp. 1-38, 1977.

