

Programme Cirruculum

6 Terms 3 Projects 1 Elective

Preface

Foundation of Statistics		
	Term 2 Introduction to Python	
Term 3 Data Visualizati EDA ————		
		· Capstone Project
Term 4 Supervised Lea	arning ————	
		- Capstone Project
Term 5 Unsupervised	Learning ————	
Term 6 Natural Programming Language (BASIC)		
	—— Capstone Projec	t
		—— Advanced TABLEAU

Programme Curriculum

် Terms

3 Projects

1 Elective

Term 1

Foundation of Statistics

Term Duration: 1 Week

Software Skill: N/A

Assgnments: 2

Module 1 Statistics

Topic 1

What is Data Science?

What is Data Science?

Life cycle of data science

Skills required for data science

Applications of data science in different industries

Topic 2

What is Data Science?

Statistics in Data science

What is Statistics?

How is Statistics used in Data Science?

Population and Sample

Parameters and Statistics

Module 2

Statistics for Data Science

Topic 3

What is Data Science?

Data types

Variable and it's types

Sampling Techniques:

Convenience Sampling

Simple Random Sampling

Stratified Sampling

Systematic Sampling

Cluster Sampling

Term 1 Foundation of Statistics

Module 2 Statistics for Data Science

Topic 4

Descriptive Statistics

What is Univariate and Bi Variate Analysis?

Measures of Central Tendencies

Measures of Dispersion

-Normal Distribution

-Standard Normal Distribution

Skewness and Kurtosis

Box Plots and Outliers detection

Covariance and Correlation

Term 2 Introduction to **Python**

Term Duration: 2 Weeks

Software Skill: Python

Module 1 Core Python

Topic 1

Python Introduction

What is Python?

Why Data Science requires Python?

Installation of Anaconda

Understanding Jupyter Notebook

Basic commands in Jupyter Notebook

Understanding Python Syntax

Topic 2

Data Types & Data Structures

Variables

Strings

Lists

Sets

Tuples

Dictionaries

Topic 3

Control Flow & Conditional Statements

Conditional Operators, Arithmetic Operators &

Logical Operators

If, Else if and Else Statements

While Loops

For Loops

Nested Loops

List and Dictionary Comprehensions

Topic 4

Functions

Code Optimization

Scope

Lambda Functions

Map, Filter and Reduce

Modules and Packages

Module 2 Advanced Python

Topic 5

File Handling

Create, Read, Write files

Operations in File Handling

Errors and Exception Handling

Topic 6

Miscellaneous Python

Date and Time

OOPS Concepts

Topic 7

Regular Expressions

Structured Data and Unstructured Data

Literals and Meta Characters

How to Regular Expressions using Pandas?

Inbuilt Methods

Pattern Matching

Term 3

Data Visualization & EDA

Term Duration: 2 Weeks

Software Skill: Python

Assgnments: 4

Industry Project

Module 1 **Number Analytics**

Topic 1

Numpy

Arrays

Basic Operations in Numpy

Indexing

Array Processing

Case Study

Module 2 **Working with Data Frames**

Topic 1

Pandas

Series

DataFrames

Indexing and slicing

Groupby

Concatenating

Merging Joining

Missing Values

Operations

Data Input and Output

Pivot

Cross tab

Case Study

Capstone Project

Term 4

Supervised Learning

Term 4

Supervised Learning

Term Duration: 2 Weeks

Software Skill: Python

Assgnments: 4

Module 1 Regression

Topic 1

Introduction to Supervised Learning

What Is Machine Learning?

Why Estimate f?

How Do We Estimate f?

The Trade-Off Between Prediction Accuracy &

Model Interpretability

Supervised Versus Unsupervised Learning

Regression Versus Classification Problems Assessing

Model Accuracy

Topic 2

Linear Regression

Simple Linear Regression:

Multiple Linear Regression:

- · OLS Assumptions
- · Residual Analysis

Non-linear Transformations of the Predictors

Polynomial Regression

Topic 3

Regularization Techniques

Lasso Regularization

Ridge Regularization

Elastic Net Regularization

Topic 4

Classification Overview

An Overview of Classification

Why Not Linear Regression?

Topic 5

Logistic Regression

Logistic Regression:

- · The Logistic Model
- · Estimating the Regression Coefficients and Making Predictions
- · Multiple Logistic Regression
- · Logit and Sigmoid functions
- · Setting the threshold and understanding decision boundary

Topic 6

Evaluation Techniques

Evaluation Metrics for Classification Models:

- · Confusion Matrix
- \cdot Accuracy and Error rate
- · TPR and FPR
- · Precision and Recall
- ·F1Score
- · AUC ROC
- · Kappa Score

Concordant - Discordant Ratio

Term 4 Supervised Learning

Module 2 Tree Based Learning

Topic 7

Decision Tree

Decision Trees (Rule Based Learning):

- · Basic Terminology in Decision Tree
- · Root Node and Terminal Node
- · Regression Trees
- · Classification Trees
- · ID3 and C4.5 Decision Trees
- · Trees Versus Linear Models
- · Advantages and Disadvantages of Trees
- · Gini Index, Information Gain/Entropy and Reduction in Variance
- · Overfitting and Pruning
- · Stopping Criteria
- · Accuracy Estimation using Decision Trees

Case Study

Topic 8

Resampling Methods

Resampling Methods:

- · Cross-Validation
- · The Validation Set Approach Leave-One-Out Cross-Validation
- · k-Fold Cross-Validation
- · Bias-Variance Trade-Off for k-Fold Cross-Validation

Topic 10

Ensemble Learning

Ensemble Methods in Tree Based Models:

- $\cdot \, \text{What is Ensemble Learning?} \\$
- · What is Bagging and how does it work?
- · What is Random Forest and how does it work?
- · The Bootstrap
- $\cdot \ \text{Variable selection using RandomForest}$
- · What is Boosting and how does it work?
- · Ada Boosting
- · Gradient Boosting

Module 3 Distance Based Learning

Topic 11 Support Vector Machines

Support Vector Machines:

- · Hyperplane
- · The Maximal Margin Classifier
- · Support Vector Classifiers
- · Support Vector Machines
- · Hard and Soft Margin Classification
- · Classification with Non-linear Decision Boundaries
- · Kernel Trick
- · Linear, Polynomial and Radial
- · Tuning Hyperparameters for SVM
- · Gamma, Cost and Epsilon
- · SVMs with More than Two Classes

Case Study

Topic 12

K Nearest Neighbors

K Nearest Neighbors:

- · K-Nearest Neighbor Algorithm
- · Eager Vs Lazy learners
- · How does the KNN algorithm work?
- · How do you decide the number of neighbors in KNN?
- · Curse of Dimensionality
- · Pros and Cons of KNN
- · How to improve KNN performance?

Case Study

Industry Project

Capstone Project

Term 5

Unsupervised Learning

Term Duration: 2 Weeks

Software Skill: Python

Assgnments: 4

Module 1 Clustering & Dimensionality Reduction

Topic 1

Principal Component Analysis

Principal Components Analysis:

- · Introduction to Dimensionality Reduction and it's necessity
- · What Are Principal Components?
- · Demonstration of 2D PCA and 3D PCA
- · Eigen Values, Eigen Vectors and Orthogonality
- · Transforming Eigen values into a new data set
- · Proportion of variance explained in PCA

Case Study

Topic 2 Clustering

Clustering Methods:

- · K-Means Clustering
- · Centroids and Medoids
- · Deciding optimal value of 'k' using Elbow Method
- · Linkage Methods
- · Hierarchical Clustering
- · Divisive and Agglomerative Clustering
- · Dendrograms and their interpretation
- · Applications of Clustering
- · Practical Issues in Clustering
- · Improving Supervised Learning algorithms with clustering

Unsupervised Learning

Topic 3

Association Rules

Association Rules Mining:

- · Association Rules
- · Market Basket Analysis
- · Apriori/Support/Confidence/Lift

Case Study

Topic 4

Naive Bayes Algorithm

- ü Naive Bayes:
- · Principle of Naive Bayes Classifier
- $\cdot \, \mathsf{Bayes} \, \mathsf{Theorem}$
- · Terminology in Naive Bayes
- § Posterior probability
- § Prior probability of class
- § Likelihood
- · Types of Naive Bayes Classifier
- · Multinomial Naive Bayes
- · Bernoulli Naive Bayes
- · Gaussian Naive Bayes

Term 6 Natural Language Processing (BASIC)

Term 6 Natural Language Processing (BASIC)

Term Duration: 2 Weeks

Software Skill: Python

Assgnments: 4

Topic 1

Time Series (Forecasting)

What is Times Series Data?

Stationarity in Time Series Data and

Augmented Dickey Fuller Test

The Box-Jenkins Approach

The AR Process

The MA Process What is ARIMA?

SARIMA

ACF, PACF and IACF plots

Decomposition of Times Series Trend, Seasonality and Cyclic

Exponential Smoothing

EWMA

Module 2 Natural Language Processing (I)

Topic 2 Intro to NLP

What is NLP?

- · Why NLP?
- Applications of NLP
- Unstructured data
- · Life cycle of NLP
- Tools for NLP
- Libraries for NLP
- o NLTK
- o Spacy
- o TextBlob

Natural Language Processing (BASIC)

Topic 3

Extracting the Data

Potential data sources

- Reading a pdf file
- Reading a HTML file
- Reading a JSON file
- Data extraction through API and Intro to Webscraping
- Regular expressions
- Handling string

Module 2

Nuts & Bolts of NLP

Topic 4

Text Preprocessing

Text normalizing

- Spelling correction
- Stop words removal
- Stemming
- Lemmatization
- Tokenization
- Text standardization and exploratory data analysis

Topic 5

Text Indexing

Inverted Indexes

Boolean query processing

Handling phrase queries, proximity queries

Latent Sematic Analysis

Topic 6

Feature Engineering

One hot encoding

- N gram
- Feature hashing
- Count vectorizer
- TFIDF
- Co occurance matrix

Word embeddings - word2vec, fasttext etc

Case Study

Text Mining
Sentiment Analysis
Spam Detection
Dialogue Prediction

Industry Project

Elective

Capstone Project

Advanced TABLEAU