

ABOUT STUDY BASIC STATS MACHINE LEARNING SOFTWARE TUTORIALS ▼ TOOLS ▼

■ JULY 24, 2020 BY ZACH

How to Perform Polynomial Regression in Python

Regression analysis is used to quantify the relationship between one or more explanatory variables and a response variable.

The most common type of regression analysis is simple linear regression, which is used when a predictor variable and a response variable have a linear relationship.

However, sometimes the relationship between a predictor variable and a response variable is nonlinear.

For example, the true relationship may be quadratic:

Or it may be cubic:

In these cases it makes sense to use **polynomial regression**, which can account for the nonlinear relationship between the variables.

This tutorial explains how to perform polynomial regression in Python.

Example: Polynomial Regression in Python

Suppose we have the following predictor variable (x) and response variable (y) in Python:

```
x = [2, 3, 4, 5, 6, 7, 7, 8, 9, 11, 12]
y = [18, 16, 15, 17, 20, 23, 25, 28, 31, 30, 29]
```

If we create a simple scatterplot of this data, we can see that the relationship between x and y is clearly not linear:

```
import matplotlib.pyplot as plt

#create scatterplot
plt.scatter(x, y)
```


Thus, it wouldn't make sense to fit a linear regression model to this data. Instead, we can attempt to fit a polynomial regression model with a degree of 3 using the numpy.polyfit() function:

```
import numpy as np

#polynomial fit with degree = 3
model = np.poly1d(np.polyfit(x, y, 3))

#add fitted polynomial line to scatterplot
polyline = np.linspace(1, 12, 50)
plt.scatter(x, y)
```

```
plt.plot(polyline, model(polyline))
plt.show()
```


We can obtain the fitted polynomial regression equation by printing the model coefficients:

```
print(model)
poly1d([ -0.10889554,  2.25592957, -11.83877127,  33.62640038])
```

The fitted polynomial regression equation is:

$$y = -0.109x^3 + 2.256x^2 - 11.839x + 33.626$$

This equation can be used to find the expected value for the response variable based on a given value for the explanatory variable. For example, suppose x = 4. The expected value for the response variable, y, would be:

$$y = -0.109(4)^3 + 2.256(4)^2 - 11.839(4) + 33.626 = 15.39$$
.

We can also write a short function to obtain the R-squared of the model, which is the proportion of the variance in the response variable that can be explained by the predictor variables.

```
#define function to calculate r-squared

def polyfit(x, y, degree):
    results = {}
    coeffs = numpy.polyfit(x, y, degree)
    p = numpy.poly1d(coeffs)
    #calculate r-squared
    yhat = p(x)
    ybar = numpy.sum(y)/len(y)
```

```
ssreg = numpy.sum((yhat-ybar)**2)
sstot = numpy.sum((y - ybar)**2)
results['r_squared'] = ssreg / sstot

return results

#find r-squared of polynomial model with degree = 3
polyfit(x, y, 3)

{'r_squared': 0.9841113454245183}
```

In this example, the R-squared of the model is **0.9841**. This means that 98.41% of the variation in the response variable can be explained by the predictor variables.

Published by Zach

PREV

A Complete Guide to Linear Regression in Python

NEXT

How to Calculate Point-Biserial Correlation in Python

Leave a Reply

Your email address will not be published. Required fields are marked *

Comment *

			/
lame *			
+			
mail *			
Vebsite			
VCD3ILC			

SEARCH

Search...

Q

ABOUT

Statology is a site that makes learning statistics easy by explaining topics in simple and straightforward ways. **Learn more about us**.

STATOLOGY STUDY

Statology Study is the ultimate online statistics study guide that helps you understand all of the core concepts taught in any elementary statistics course and makes your life so much easier as a student.

CALCULATORS

Try out our free **online statistics calculators** if you're looking for some help finding probabilities, p-values, critical values, sample sizes, expected values, summary statistics, or correlation coefficients.

RECENT POSTS

 ${\it Excel: Use COUNTIF with Multiple Criteria in Same Column}$

Excel: How to Filter Cells that Contain Multiple Words

How to Use groupby() and transform() Functions in Pandas

© 2021 Statology | Privacy Policy

Exclusive Member of Mediavine Food