- 1. [16] A sequence detector is to be designed to detect both the sequence 11 and 010 simultaneously.
 - [8] Find a Mealy machine state graph and table for the network.
 - b. [8] Find a Moore machine state graph and table for the network.
- 2. [26] You are to design and draw the circuit to implement the state graphs from 1a and 1b.

For full credit you must show that you use the principles of state assignment discussed in class and explicitly show that you have eliminated all redundant states in your design. Use JK flip-flops for the implementation: Q+=JQ'+K'Q.

- a. [10] Draw the circuit for 1a.
- b. [10] Draw the circuit for 1b.
- c. [6] Comment on the relative merits of the design from 1a and 1b. Compare such things as difficulty of design and implementational complexity.

If you cannot answer 1a or 1b. SEE ME and I'll give you the state graphs to use for parts 2 a,b, and c.

- 3. [18] Complete the following short problems concerning multiple-output networks using the function f(a, b, c, d) = a'b + cd + ab'c + d'.
 - a. [5] Show how to implement the function f using an 8-to-1 multiplexer.
 - b. [5] Show how to implement the function f using a 4-to-16 line decoder.
 - c. [8] Show how you can create a 4-to-1 multiplexer using 2-to-1 multiplexers and no additional gates. Implement g(a, b, c) = a'b + bc + c' using this design.
- [18] Find the minimum SOP form for the following functions.
 - a. $[2\frac{1}{2}] f(a, b, c, d) = (b'+c'+d)(a'+b'+c')(a+b+c)(b+c+d)$
 - b. $[2\frac{1}{2}] f(a, b, c, d) = \sum m(0,1,3,5,7,8,9)$
 - c. $[2\frac{1}{2}]$ $f(a, b, c, d) = (\sum m(2,4,6,7,8,9)) \cdot (\sum m(0,1,3,5,7,8,9))$
 - d. $[2\frac{1}{2}]$ $f(a, b, c, d) = (\prod M(2,4,6,7,8,9)) \cdot (\prod M(0,1,3,5,7,8,9))$
 - e. $[2\frac{1}{2}] f(a, b, c, d) = (a+b+c+d')(a+b+c+d)(b+d')(a'+b'+c')$
 - f. $[2\frac{1}{2}]$ $f(a, b, c, d) = \prod M(1,3,5,13) + a'b'c + \sum m(1,3,5,13)$
 - g. [3] $f(w, x, y, z) = wxy' + (w'y' \equiv x) + (y \oplus wz)$. Recall $a \oplus b = a'b + ab'$, and $(a \equiv b) = (a \oplus b)'$
- [22] Answer the following short problems.
 - a. [5] Minimize the function $f(a, b, c, d) = \sum m(0,1,3,4,512,13) + \sum d(2,14,15)$ using QM.
 - b. [5] Design a minimum three-level NOR-gate network to realize f = a'b + ad' + ab'c'
 - c. [5] A combinational network has 4 inputs $(X_1, ..., X_4)$ and 1 output (Z). The output Z is to be 1 if and only if exactly two of the X_i are 1. Write Z in both minterm and maxterm form.
 - d. [4] Give two examples of where one may encounter incompletely specified functions in practice.
 - e. [3] Write (ab + ac + d)'(a + b + c)'(ad)' in SOP form.

STATE	/ X:	NEXT		ys1
	S	53	0	0
> 3	5,	52	0	٥
52	5,	53	1	/
3	5,	53	0	1

STATE	X =	O X=/	output
Sa	$\leq_{\mathfrak{t}}$	54	0
51	5,	52	0
52	53	55	0
53	5,	Sz	1_
Sy	5,	55	0
Sς	51	55	1

KEY 210) Show No redundancy:

> 10	52-53		
Sa	X	X	1
52	X	X	X
	_		

,		774			
Q	=	20	+	K	0

2 K Ø	<u> </u>	Q Q	JK
000	2	0 0	OX
0 (0	٥	0 '	1 ×
0 1 1	ъ	1 0	×
() 0	1	(B	XO
١ د	2	***	

assign states : Need 2 Ff's

Guideline (1) (50, 51, 52, 53), (50, 52, 53)

53: 10

STATE	we.	KT K21	0	Spot	JA X	JAKA 1X	1x	28KB
00	± 11	10	6	0	XO	×I	X D	XO
1.1	11	01	٥	0	/ ×	1 ×	XP	X [
01	1.7	10	1	1	V. s	14	1 ×	D X
1.7	1.1	10	0	Y	XO			

$$50$$
 $J_A = 1$ $K_A = X$ $J_B = X'$ $K_B = X'\alpha'$

5,	52/54				
5 2	3 - 5 3	31 53	7		
53	X	12	IX	Autorita and Aug	
Sq	54-55	32-55	53.253	17	t. E. waren all state (C. Farmer)
SF	X	X	8	55 ×55	\times
	50	15, 1	SZ	1531	54

State Assignment guideling:

$$S_{3} = 011$$
 $S_{2} = 011$
 $S_{3} = 001$
 $S_{4} = 110$
 $S_{5} = 015$

State	69	*=1
200	011	110
	011	111
011	000	010
111	p 1]	111
501	09/	010
w O		016
010	611	

J8 = 1	
1 1	14 10040
$k_b' = \alpha' + C'$	+X
12 0 0 V	
Kb = acx'	

15 5
1 /
x' a
Ž.

KEY

8. (a,b,c,d) = a'b+cd+ab'c+d'

= m(0,2,3,4,5,6,7,8,10,11,12,14,15)= a'b'c'(d') + a'b c'(4) + d' a'b'c(1) + a'b c(1) + d' a'b'c(1) + a'b c(1) + d'

=
$$abc'(d') + abc'(1) +$$

 $abc'(1) + abc(1) +$
 $abc'(d') + abc'(d') +$
 $abc(1) + ab'c(1)$

$$\begin{array}{c|c}
(c) & 2 \times 1 \\
\hline
12 & 3 & 2 \times 1 \\
\hline
13 & 0 & 1
\end{array}$$

$$\begin{array}{c}
(c) & 2 \times 1 \\
\hline
2 \times 1 & 3 & 3 \\
\hline
3 & 0 & 1
\end{array}$$

$$g = a'b + bc + c'$$
 $= a'b'(a'b + abc + a'bc)$
 $+ abc' + ab'c + a'bc + a'b'c$
 $= a'b'(c) + a'b(e+1)c)$
 $+ ab'(c) + ab(c+c')$

Use $I_0 = C$, $I_1 = 1$
 $I_2 = C$, $I_3 = 1$

9)
$$wxy' + ((w'y')x + (w'y')x')' + ((w'y')'x + w'y'x')$$

$$= xy' + wx' + w'y + yz'$$

c)
$$7 = \frac{2}{5}m(3,5,6,9,10,12)$$

 $-1TM(0,1,2,4,7,8,11,13,14,15)$