Ensemble Methods

Bias Variance and Noise

- Error = Variance + Bias² + Noise²
- Variance: E[$(h(x^*) h(x^*))^2$]

Describes how much h(x*) varies from one training set S to another

• Bias: $[\underline{h(x^*)} - f(x^*)]$

Describes the average error of $h(x^*)$.

• Noise: $E[(y^* - f(x^*))^2] = E[\epsilon^2] = \sigma^2$

Describes how much y* varies from f(x*)

Bias and Variance Measurement Procedure

- Construct B bootstrap replicates of S (e.g.,
 - B = 200): S1, ..., S_B
- Apply learning algorithm to each replicate S_b to obtain hypothesis h_b
- Let $T_b = S \setminus S_b$ be the data points that do not appear in S_b (out of bag points)
- Compute predicted value h_b(x) for each x in T_b

Estimating B/V/N

- For each data point x, we will now have the observed corresponding value y and several predictions $y_1, ..., y_K$
- Compute the average prediction <u>h</u>
- Estimate bias as (h y)
- Estimate variance as $\Sigma_k (y_k h)2/(K 1)$

Assume noise is 0

Ensemble Learning

Traditional:

Learning Ensembles

 Learn multiple alternative definitions of a concept using different training data or different learning algorithms.

Combine decisions of multiple definitions, e.g. using weighted

voting.

How to generate ensembles?

- This is an active research area in machine learning
- We will study two popular methods
 - Bagging
 - Boosting
- Key Feature: They take a single learning algorithm and generate multiple variations (ensembles)

Why Ensembles?

- When combining multiple independent and diverse decisions each of which is at least more accurate than random guessing, random errors cancel each other out, correct decisions are reinforced.
- Human ensembles are demonstrably better
 - How many jelly beans in the jar?: Individual estimates vs. group average.
 - Who Wants to be a Millionaire: Expert friend vs. audience vote.
- Theoretically: They serve to reduce <u>bias</u> and/or <u>variance</u>

"Base" Learning Algorithm

 We can treat the base learning algorithm as a 'black box'.

Protocol to *Learn*:

Input:

set of labeled training instances.

Output:

a hypothesis from hypothesis space H.

Bagging Algorithm

Given training set S, bagging works as follows:

- 1. Create T bootstrap samples $\{S_1, ..., S_T\}$ of S as follows:
 - For each S_i : Randomly drawing |S| examples from S with replacement
- 2. For each i = 1, ..., T, $h_i = Learn(S_i)$
- 3. Output $H = \langle \{h_1, \dots, h_T\}, majorityVote \rangle$

With large |S|, each S_i will contain $1 - \frac{1}{e} \approx 63.2\%$ unique examples

Bagging

- Create ensembles by repeatedly randomly resampling the training data (Brieman, 1996).
- Given a training set of size n, create m samples of size n by drawing n examples from the original data, with replacement.
 - Each bootstrap sample will on average contain 63.2% of the unique training examples, the rest are replicates.
- Combine the m resulting models using simple majority vote.
- Decreases error by decreasing the variance in the results due to unstable learners, algorithms (like decision trees) whose output can change dramatically when the training data is slightly changed.

Bias Variance analysis of Bagging

- If we estimate bias and variance using the same B bootstrap samples, we will have:
 - Bias = (h y) [same as before]
 - Variance = $\Sigma_k (h h)^2 / (K 1) = 0$
- Hence, according to this approximate way of estimating variance, bagging removes the variance while leaving bias unchanged.
- In reality, bagging only reduces variance and tends to slightly increase bias

Bias Variance Heuristics

- Models that fit the data poorly have high bias: "inflexible models" such as linear regression, regression stumps
- Models that can fit the data very well have low bias but high variance: "flexible" models such as nearest neighbor regression, regression trees
- This suggests that bagging of a flexible model can reduce the variance while benefiting from the low bias

Stability of Learn

- A learning algorithm is unstable if small changes in the training data can produce large changes in the output hypothesis (otherwise stable).
- Clearly bagging will have little benefit when used with stable base learning algorithms (i.e., most ensemble members will be very similar).
- Bagging generally works best when used with unstable yet relatively accurate base learners

Bagging Decision Trees

(Freund & Schapire)

Case Analysis of Error

Mean prediction = y^m

Boosting

- Boosting seeks to find a weighted combination of classifiers that fits the data well
- Prediction: Boosting will primarily act to reduce bias

Boosting

Key difference compared to bagging?

- Its iterative.
 - Bagging: Individual classifiers were independent.
 - Boosting:
 - Look at errors from previous classifiers to decide what to focus on for the next iteration over data
 - Successive classifiers depends upon its predecessors.
 - Result: more weights on 'hard' examples. (the ones on which we committed mistakes in the previous iterations)

Boosting

- Originally developed by computational learning theorists to guarantee performance improvements on fitting training data for a weak learner that only needs to generate a hypothesis with a training accuracy greater than 0.5 (Schapire, 1990).
- Revised to be a practical algorithm, AdaBoost, for building ensembles that empirically improves generalization performance (Freund & Shapire, 1996).
- Examples are given weights. At each iteration, a new hypothesis is learned and the examples are reweighted to focus the system on examples that the most recently learned classifier got wrong.

Boosting – High-level algorithm

General Loop:

Set all examples to have equal uniform weights.

For *t* from 1 to *T* do:

Learn a hypothesis, h_t , from the weighted examples Decrease the weights of examples h_t classifies correctly

- Base (weak) learner must focus on correctly classifying the most highly weighted examples while strongly avoiding over-fitting.
- During testing, each of the T hypotheses get a weighted vote proportional to their accuracy on the training data.

AdaBoost

- The boosting algorithm derived from the original proof is impractical
 - requires to many calls to Learn, though only polynomially many
- Practically efficient boosting algorithm
 - Adaboost
 - Makes more effective use of each call of Learn

Specifying Input Distributions

- AdaBoost works by invoking Learn many times on different distributions over the training data set.
- Need to modify base learner protocol to accept a training set distribution as an input.

Protocol to *Learn*:

Input:

S - Set of N labelled training instances.

D - Distribution over S where D(i) is the weight of the *i'th* training instance (interpreted as the probability of observing *i'th* instance). Where $\sum_{i=1}^{N} D(i) = 1$.

Output:

h - a hypothesis from hypothesis space H

D(i) can be viewed as indicating to base learner *Learn* the importance of correctly classifying the *i'th* training instance

AdaBoost (High level steps)

- AdaBoost performs L boosting rounds, the operations in each boosting round l are:
 - 1. Call Learn on data set S with distribution D_l to produce l'th ensemble member h_l , where D_l is the distribution of round l.
 - 2. Compute the l+1 th round distribution D_{l+1} by putting more weight on instances that h_l makes mistakes on
 - 3. Compute a voting weight α_l for h_l

The ensemble hypothesis returned is:

$$H=<\{h_1,\ldots,h_L\}, weightedVote(\alpha_1,\ldots,\alpha_L)>$$

AdaBoost algorithm:

Input: Learn - Base learning algorithm.

Set of N labeled training instances.

Output: $H = \langle \{h_1, \dots, h_L\}, Weighted Vote(\alpha_1, \dots, \alpha_L) \rangle$

Initialize $D_1(i) = 1/N$, for all *i* from 1 to *N*. (uniform distribution)

FOR
$$l = 1, 2, ..., L$$
 DO

$$h_l = Learn(S, D_l)$$

$$\varepsilon_l = error(h_l, S, D_l)$$

$$\alpha_l = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_l}{\varepsilon_l} \right)$$
 ;; if $\varepsilon_l < 0.5$ implies $\alpha_l > 0$

$$D_{l+1}(i) = D_l(i) \times \begin{cases} e^{\alpha_l}, & h_l(x_i) \neq y_i \\ e^{-\alpha_l}, & h_l(x_i) = y_i \end{cases}$$
 for i from 1 to N

Normalize D_{l+1} ;; can show that h_l has 0.5 error on D_{l+1}

Note that $\varepsilon_1 < 0.5$ implies $\alpha_l > 0$ so weight is decreased for instances h_t predicts correctly and increases for incorrect instances

Learning with Weights

- It is often straightforward to convert a base learner to take into account an input distribution D.
 - Decision trees?
 - Neural nets?
 - Logistic regression?
- When it's not straightforward, we can resample the training data according to D

Base Learner: Decision Stump Learner (i.e. single test decision trees)

Original Training set: Equal Weights to all training samples

$$\epsilon_1 = 0.30$$
 $\alpha_1 = 0.42$

Taken from "A Tutorial on Boosting" by Yoav Freund and Rob Schapire

ROUND 3

H final

Property of Adaboost

- Suppose L is a weak learner
 - $\varepsilon_i < 0.5$ (slightly better than random guesses)
 - Training error goes to zero exponentially fast

Overfitting?

- Boosting drives training error to zero, will it overfit?
- Curious phenomenon

- Boosting is often robust to overfitting (not always)
- Test error continues to decrease even after training error goes to zero

Boosting Performance

- Comparing C4.5, boosting decision stumps, boosting C4.5 using 27 UCI data set
 - C4.5 is a popular decision tree learner

Boosting vs Bagging of Decision Trees

Pitfall of Boosting: sensitive to noise and outliers

- Good ©: Can identify outliers since focuses on examples that are hard to categorize
- Bad (3): Too many outliers can degrade classification performance dramatically increase time to convergence

Bias and Variance

- Bias arises when the classifier cannot represent the true function – that is, the classifier underfits the data
- Variance arises when the classifier overfits the data
- There is often a tradeoff between bias and variance

Effect of Boosting

- In the early iterations, boosting is primary a bias-reducing method
- In later iterations, it appears to be primarily a variance-reducing method

Effect of Bagging

- If the bootstrap replicate approximation were correct, then bagging would reduce variance without changing bias
- In practice, bagging can reduce both bias and variance
 - For high-bias classifiers, it can reduce bias (but may increase variance)
 - For high-variance classifiers, it can reduce variance

Summary: Bagging and Boosting

Bagging

- Resample data points
- Weight of each classifier is the same
- Only variance reduction
- Robust to noise and outliers

Boosting

- Reweight data points (modify data distribution)
- Weight of classifier vary depending on accuracy
- Reduces both bias and variance
- Can hurt performance with noise and outliers