Nested Free-Energy Loops with an Epistemic Bonus

Philosopher M. Sunny and OpenAI o3

April 2025

1 Preliminaries

The agent interacts with hidden states $\{s_t, o_t, a_t\}_{t=1}^{\infty}$. Its generative model p_{θ} contains both dynamics $p_{\theta}(s_{t+1} \mid s_t, a_t)$ and emissions $p_{\theta}(o_t \mid s_t)$. A variational distribution q_{φ} approximates the intractable true posterior.

Symbol	Meaning
$\overline{s_t}$	latent world state at step t
o_t	sensory input at t
a_t	action emitted at t
$p_{ heta}$	dynamics + emissions ("world model")
q_{arphi}	agent's belief over states
$\dot{\mathcal{H}}[p]$	Shannon entropy $-\sum_{x} p(x) \ln p(x)$

Table 1: Notation

Interpretation of $D_{KL}(q_{\varphi}(s_t) || p_{\theta}(s_t | o_t))$. It is the Kullback-Leibler divergence $D_{KL}(q_{\varphi}(s_t) || p_{\theta}(s_t | o_t))$ between

- 1. the agent's current belief $q_{\varphi}(s_t)$, and
- 2. the Bayesian ideal $p_{\theta}(s_t \mid o_t)$ after a perfect update.

Hence it measures residual inference error (a.k.a. surprise).

Inner free energy

$$F_t(\varphi, \theta) = D_{KL}(q_{\varphi}(s_t) \parallel p_{\theta}(s_t \mid o_t)), \tag{1}$$

with updates

$$\varphi \leftarrow \varphi - \eta_{\varphi} \nabla_{\varphi} F_t, \qquad \theta \leftarrow \theta - \eta_{\theta} \nabla_{\theta} F_t. \tag{2}$$

2 Outer (planning) loop

2.1 Counterfactual roll-outs

Before acting the agent *imagines* a sequence $\mathbf{a} = (a_t, \dots, a_{t+H-1})$ and rolls it out inside p_{θ} . These **counterfactual simulations** probe consequences without incurring physical cost or risk.

2.2 Expected free energy with epistemic bonus

$$G_{\beta}(\mathbf{a}) = \mathbb{E}\left[D_{\mathrm{KL}}(q_{\varphi}(s_{t+H}) \parallel p_{\mathrm{goal}})\right] \qquad (\text{risk / goal mismatch})$$

$$+ \mathbb{E}\left[\mathcal{H}\left[p_{\theta}(o_{t+1:t+H} \mid s_{t:t+H})\right]\right] \qquad (\text{ambiguity})$$

$$-\beta \mathbb{E}\left[D_{\mathrm{KL}}(q_{\varphi}(s_{t+H}) \parallel q_{\varphi}^{\mathrm{prior}})\right] \qquad (\text{information gain}). \qquad (3)$$

- $\beta = 0$ pure exploitation (no curiosity term).
- $\beta > 1$ strong drive for information gain.

2.3 Action selection

$$a_t^{\star} = \arg\min_{\mathbf{a}} G_{\beta}(\mathbf{a}).$$
 (4)

3 Energetic rationale

Planning is worthwhile only if computation plus execution costs less energy than repeated blind trials:

$$E_{\text{sim}} + E_{\text{execution}} < E_{\text{blind-trial}}.$$

Equivalently,

$$\mathbb{E}[F_{t+1:t+H} \mid a_t^{\star}] \ \leq \ \mathbb{E}[F_{t+1:t+H} \mid \text{uninformed actions}] \,.$$

4 Toy 1-D world (7 cells)

Cells 0...6 with cell 0 the abyss, 6 the goal, and 3 a potential hazard.

Hazard prior	β	Qualitative policy	Typical path
0.45	0	exploit	$1 \rightarrow 6$
	> 0	probe then exploit	$1\!\rightarrow\!2\!\rightarrow\!3\!\rightarrow 6$
0.90	large	avoid	$1 \rightarrow 2 \rightarrow 3 \text{ (halt)}$

Table 2: Regimes in the toy world.

Script toy_fep.py reproduces these behaviours.

How is D_{KL} evaluated?

For the discrete state space of our toy world $(s \in \{0, ..., 6\} \times \{\text{hazard_false}, \text{hazard_true}\})$ the divergence reduces to a finite sum

$$D_{KL}(q(s) \parallel p(s)) = \sum_{s} q(s) \ln \frac{q(s)}{p(s)} \quad (nats).$$
 (5)

Numerical details.

- Entries where q(s)=0 contribute 0 (since $\lim_{x\to 0^+}x\ln x=0$). If p(s)=0 while q(s)>0 the divergence is $+\infty$, signalling an impossible event under the model. In code we clip p(s) to a tiny floor (10⁻¹² in toy_fep.py) to keep the result finite and differentiable.
- The continuous analogue switches the sum for an integral $\int q(x) \ln \frac{q(x)}{p(x)} dx$, but all conceptual statements in the note carry over unchanged.

Equation (5) is what the entropy(...) helper in the Python script computes.

Broader links 5

- Eq. (1) is the inner (Friston) free energy.
- Eq. (3) shows the outer epistemic loop.
- In language models, sampling width/depth acts like tuning β .