Graph Neural Networks Demystified

An overview of the essential concepts in Stanford CS224W (Lectures 1~9) with only oversimplified examples (and additional spectral material)

Ng Yen Kaow

Embeddings

- Relatively small vectors associated with each object where similar objects have similar embeddings
- Using the embeddings of graph elements, various tasks can be performed
 - Cluster nodes in a graph
 - Predict properties of a node
 - Predict if two nodes may be connected
 - Classify entire graphs
- To perform each task, use the embedding with a suitable ML method
 - e.g. clustering can be performed with k-means

Obtaining embeddings

- Embeddings can be formed with or learned from features
 - Node-level features
 - Degree
 - Centrality (eigenvector/ betweenness/ closeness)
 - Clustering coefficient
 - Graphlets
 - Structure-based features
 - Link-level features
 - Distance-based features
 - Local/global neighborhood overlap
 - Graph-level features
 - Graph kernels
- Task-independent embeddings can be learned from unsupervised learning

Task-independent embeddings

Unsupervised extraction by random walks

DeepWalk

- Estimate pairwise distance between nodes (hence their co-occurrence probability)
 - Usable for finding product relatedness in recommender
- Node embeddings
 - 1. Estimate node distances with random walks
 - 2. Train a neural network (with node input and embedding output) such that distances between embeddings agree with estimated distances

Anonymous Walk

- Embeddings for entire graphs
- Simpler method: just add up neighbors

Embeddings by adding neighbors

- Sum up the features of (self and) neighbor nodes
 - Features of nodes in close proximity will become similar

Example: Let h_i^j denote features of node i at iteration j and let $h_1^0 = (1 \ 0 \ 0)$, $h_2^0 = (0 \ 1 \ 0)$, and $h_3^0 = (0 \ 0 \ 1)$

Initial state

1st iteration

 $h_{1}^{2} = h_{1}^{1} + h_{2}^{1} = \boxed{2 \hspace{0.2cm} 2 \hspace{0.2cm} 0} \\ v_{1}$ $h_{2}^{2} = h_{1}^{1} + h_{2}^{1} = \boxed{2 \hspace{0.2cm} 2 \hspace{0.2cm} 0} \\ v_{2}$

• $h_1 \equiv h_2$ after only 1 iteration

CS224W Lecture 5 (skip Lecture 4)

Embeddings by adding neighbors

- To cluster nodes in a graph, will it work if we
 - 1. Start with a unique feature for each node, and
 - Repeatedly add up neighboring features, and
 - 3. Finally, cluster the resultant features with some method like *k*-means?

Let's try with karate club network

Embeddings by adding neighbors

- Let matrix H be a matrix where each row is a node and each column is a feature
 - \blacksquare *H* have dim $|V| \times d$
- □ Let *A* be an adjacency matrix
 - Let $\hat{A} = A + I$ where I is the identify matrix
- \Box Then, **sum** is simply $\hat{A}H$

$$\begin{pmatrix} a & b & c \\ & \dots & \\ & \dots & \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} ah_1 + bh_2 + ch_3 \\ & \dots \\ & \dots & \end{pmatrix}$$

Permutation invariant so that the outcome is the same regardless of node order within matrix

e.g.
$$v_1$$
 v_2 v_3

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} h_1 + h_2 \\ h_1 + h_2 \\ h_3 \end{pmatrix}$$

- Let matrix H be a matrix where each row is a node and each column is a feature
 - \blacksquare *H* have dim $|V| \times d$
- □ Let *A* be an adjacency matrix
 - Let $\hat{A} = A + I$ where I is the identify matrix
- \square Further **normalize** each row of \hat{A} to sum to 1

$$\begin{pmatrix} 1/3 & 1/3 & 1/3 \\ & \dots & \\ & \dots & \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \\ h_3 \end{pmatrix} = \begin{pmatrix} (h_1 + h_2 + h_3)/3 \\ & \dots & \\ & \dots & \end{pmatrix} \begin{bmatrix} \\ \\ \\ \\ \\ \end{bmatrix}$$

Note that normalize does the same thing as mean

- Let matrix H be a matrix where each row is a node and each column is a feature
 - \blacksquare *H* have dim $|V| \times d$
- □ Let *A* be an adjacency matrix
 - Let $\hat{A} = A + I$ where I is the identify matrix
- $\ \square$ Further **normalize** each row of \hat{A} to sum to 1
 - To perform this normalization, it suffices that we let $\hat{A} \leftarrow D^{-1}\hat{A}$ where D is the diagonal node degree matrix
 - In PyTorch, use
 torch.nn.functional.normalize(A, p=1, dim=1)
 - Or, use $\hat{A} \leftarrow D^{-\frac{1}{2}} \hat{A} D^{-\frac{1}{2}}$, the "spectral" variant
 - In PyTorch, use
 D = torch.diag(torch.sum(A, 1)).inverse().sqrt()
 D = torch.mm(torch.mm(D, A), D)

The "spectral" variant is symmetric, but **not normalized**

in general **not**

symmetric

Redo karate club with normalized $\hat{A} \leftarrow D^{-1}\hat{A}$

Adding neighbors: evaluation

- Why do we need normalization
 - Without normalization, feature values for the nodes of high centrality would quickly add up, making them distinct from the nodes of low centrality
- How many iterations should be used?

Early (RNN-like) GNNs are iterated until convergence but they quickly ran out of favor to Graph Convolutional Networks (GCNs) where the number of iterations is fixed as defined by the number of convolutional layers

- Each iteration would "bunch up" neighboring features of 1 hop away (receptive field)
- We should determine the number of iterations by the nature of the graph

The Cheeger constant (or expansion constant) of an unweighted graph G(E, V) is

$$h(G) = \min_{S \subseteq V} \frac{|\{(u,v)|u \in S, v \in \overline{S}\}|}{\min(|S|,|\overline{S}|)}$$

- $|\{(u,v)|u\in S,v\in \bar{S}\}|$ indicates how well vertices in S are connected to vertices in \bar{S}
- min(|S|, $|\overline{S}|$) favors S where $|S| \approx |\overline{S}|$
- For weighted graphs, a similar measure called conductance can be defined with edge weights (a_{uv})

$$\phi(G) = \min_{S \subseteq V} \frac{\sum_{v \in S, u \in \bar{S}} a_{vu}}{\min(\sum_{v \in S, u \in V} a_{vu}, \sum_{v \in \bar{S}, u \in V} a_{vu})}$$

□ The Cheeger constant (or expansion constant) of an unweighted graph G(E, V) is

$$h(G) = \min_{S \subseteq V} \frac{|\{(u,v)|u \in S, v \in \overline{S}\}|}{\min(|S|,|\overline{S}|)}$$

- \square A large h(G) indicates a **highly-connected graph**
 - A feature in a highly-connected graph will propagate in the graph very quickly
 - A random walk in a highly-connected graph converges in $O(\log|V|)$ steps to an almost uniform distribution (mixing time)
 - Upon which the embedding of every node is influenced almost equally by any other node

 Examine the number of steps required for the clusters in the karate club to mix

□ The clusters are respectively of sizes 18, 11, 5

$$\log(18) = 4.17$$

$$log(11) = 3.46$$

$$\log(5) = 2.32$$

 5 iterations/ steps suffice for nodes in the respective clusters to influence each other equally

- Examine the number of steps required for the clusters in the karate club to mix
- Will increasing the number of iterations eventually spread the features uniformly across the entire karate club graph?

Depends on whether the limiting distribution H^* (i.e. when $\hat{A}H^* = H^*$) is everywhere constant

Relationship to spectral clustering

For the (Ng, Weiss, and Jordan 2001) normalized
 Laplacian, spectral clustering finds the distribution x
 where

$$D^{-1/2}AD^{-1/2}x = x$$

That is, x is the eigenvector of eigenvalue 1

For single-valued feature $(H \rightarrow x)$ and at convergence $(\hat{A}x = x)$, our earlier GNN gives x where

$$D^{-1/2}\hat{A}D^{-1/2}x = x$$

where $\hat{A} = A + I$

- Note especially the difference between A (for the Laplacian) and \hat{A} (from our earlier GNN)
 - $D^{-1/2}\hat{A}D^{-1/2}$ in fact approximates the eigenspace (see Chebyshev approximation in later slides)

Adding neighbors: evaluation

- Benefits of strategy
 - Simplicity
 - Efficiently computed with adjacency matrix
- Disadvantage of strategy
 - Embeddings produced are of size of the number of nodes in the graph
 - ⇒ Learn a transformation matrix $W: R^{|V|} \to R^d$ for some smaller d

Transformation matrix W

- \square W is typically a linear transformation layer of size $|V| \times d$ where d is the target dimensionality of the embeddings
- $lue{}$ Combined with the adjacency matrix \hat{A} , we now have a complete matrix formulation for computing embedding h_v of a node v from (itself and) its neighbors, in the form of

$$h_v \leftarrow (\hat{A})_v HW$$

where

- $(\hat{A})_v$ is the row in \hat{A} for the node v, and
- H is a matrix containing the features/embeddings of all the nodes (of course, only the rows in H with non-zero entries in $(\hat{A})_n$ are needed for computing h_v)
- □ Variations in this formula lead to various frameworks © 2021. Ng Yen Kaow

Variations

- Message-aggregation (MSG-AGG)
 - First transform features/embeddings (MSG),
 then aggregate transformed embeddings (AGG)

$$h_v \leftarrow (\hat{A})_v (HW)$$
aggregate

Separate computation of self and neighbors

Exclude entry for v from $(\hat{A})_{v}$, and let

Aggregate only neighbors Self Learn a different transformation for self
$$h_v \leftarrow \mathrm{AGG}\left((\hat{A})_v^{HW}, h_v^{W'}\right)$$
 Also denoted as B

where AGG is, for instance, concatenation

Frameworks

Graph Convolutional Network (GCN)

$$h_v \leftarrow (\hat{A})_v(HW)$$
 (basically just MSG-AGG)

□ GraphSAGE

Exclude entry for v from $(\hat{A})_v$

$$h_v \leftarrow \left(\frac{\mathsf{CONCAT}\left(\mathsf{AGG}\left((\hat{A})_v H\right), h_v\right)}{\mathsf{Concatenate self \& aggregated neighbors}} \right) W$$

AGG can be one of many options including MLP, LSTM, etc.

⇒ AGG is learnable

(Why use these? See Graph Isomorphism Network)

Frameworks

- □ Graph Attention Networks (GAN)
 - Instead of learning AGG, learn Â
 - Generalize the adjacency matrix \hat{A} to **attention** weights $\Lambda = (\alpha_{vu})$

$$h_v \leftarrow (\hat{A})_v HW \Rightarrow h_v \leftarrow (A)_v HW$$
 where $\alpha_{vu} = \frac{\exp(e_{vu})}{\sum_{x \in N(v)} \exp(e_{vx})}$, and

 e_{mu} is a measure of how related u and v are

- e_{vu} is usually computed as LINEAR(CONCAT(h_vW , h_uW))
- Do not confuse with Generative Adversarial Networks which is for generating anime pics
- Implemented in PyTorch Geometric (PyG) as GCNConv (GCN), SAGEConv (GraphSAGE), and GATConv (GAN)
 - See https://pytorch-geometric.readthedocs.io/en/latest/modules/nn.html

Frameworks

■ Message Passing Neural Network (MPNN)

Involve N(v) in the transformation W for v

$$h_v \leftarrow (\hat{A})_v HW$$

$$\Rightarrow h_v \leftarrow H \bigoplus_{u \in N(v)} \phi(h_v, h_u)$$

This change allows us to incorporate edge features in the embedding

$$\Rightarrow h_v \leftarrow H \bigoplus_{u \in N(v)} \phi(h_v, h_u, e_{vu})$$

- How to compute $\phi(h_v, h_u, e_{vu})$ algebraically?
 - Let edge features be in a 3D matrix E
 - Then, $(\hat{A})_v H$ and $(\hat{A})_v (E)_v$ gives us two matrices with matching rows (each row corresponding to h_u and e_{vu} respectively)
 - Concatenate $(\hat{A})_v H$ and $(\hat{A})_v (E)_v$ and give as input to an NN
- A similar framework, Principal Neighborhood Aggregation (PNAConv), is implemented in PyG (these frameworks are not discussed in CS224W)

In practical use

- At this point we have not mentioned activation function or other elements of DL
 - For activation function just let $h_v \leftarrow \sigma(h_v)$
 - Mix and match as you like

- Embeddings can be used for many downstream tasks
 - We have earlier used k-means for clustering the final output
 - Better performed by constructing a neural network directly with the GNN layers

In practical use

- Adding graph elements
 - Features
 - Similar to feature engineering
 - Virtual nodes
 - Connecting all the nodes in a sparse but apparent subgraph to a virtual node will allow those nodes to better communicate
 - Virtual edges
 - Create new graph by systematically adding edges
 - Example: Given a bipartite graph, breaking the graph into two of only nodes of the same type is good for some analyses
 - Let *A* be the adjacency matrix of the bipartite graph *G*
 - A^2 then gives the number of paths of distance 2 between nodes in G \Rightarrow an adjacency matrix between nodes of the same type
 - \Rightarrow allows us to separate G into two graphs, each of same node type
 - \blacksquare $A + A^2$ can form an adjacency matrix with heterogeneous edges

Training GNNs

- Using node embeddings as input to a prediction function
 - Embedding of 1 node can be used directly
 - Embeddings of 2 nodes can be
 - Concatenated to form an edge embedding
 - Projected on each other to get their similarity
 - Embeddings of nodes of the entire graph can be
 - □ Summed, averaged, searched for max/min, etc.
 - Clustered, then the clusters summed, average, etc., in a hierarchical fashion
- Edge embeddings from edge features are also possible, though not discussed in CS224W
 - The framework Node and Edge features in graph Neural Networks (NENN) (not yet in PyG)

 Should C and D have the same embedding in the following graphs? Given that features are given by the colors and mutually exclusive (orthogonal)

- □ How about A and B?
- Idea: Two nodes should have the same embedding if they have the same feature and neighborhood structure, and vice versa

 Given a GCN of 2 layers, the embedding of A is computed as follows

Computation graph of A's embedding

- Given a GCN of 2 layers, the embedding of A is computed as follows
 - Let $h_A^0 = 100000$, $h_B^0 = 010000$, $h_C^0 = 001000$, $h_D^0 = 000100$, $h_D^0 = 000100$, $h_D^0 = 000010$, and let AGG be **addition**. Then
 - $h_{B}^{1} = AGG(\{h_{A}^{0}, h_{F}^{0}, h_{E}^{0}\}, \{h_{B}^{0}\}) = 1|1|0|0|1|1$ $h_{C}^{1} = AGG(\{h_{A}^{0}, h_{D}^{0}, h_{E}^{0}\}, \{h_{C}^{0}\}) = 1|0|1|1|1|0$
 - $h_{\rm D}^{1} = AGG(\{h_{\rm A}^{0}, h_{\rm F}^{0}, h_{\rm C}^{0}\}, \{h_{\rm D}^{0}\}) = 1|0|1|1|0|1$

Compute AGG(X) as $\hat{A}H$, where \hat{A} is the adjacency matrix (with self loop), and H is a matrix containing all the embeddings in X

Finally the embedding of A is

$$h_{A}^{2} = AGG(\{h_{B}^{1}, h_{C}^{1}, h_{D}^{1}\}, \{h_{A}^{1}\}) = 4|2|3|3|2|2$$

Similarly,
$$h_{\rm B}^2 = 2|4|2|2|2|2$$

 $h_{\rm C}^2 = 3|2|4|3|2|1$
 $h_{\rm D}^2 = 3|2|3|4|1|2$
 $h_E^2 = 2|2|2|1|3|1$
 $h_E^2 = 2|2|1|2|1|3$

- Given a GCN of 2 layers, the embedding of A is computed as follows
 - Let $h_{A}^{0} = \boxed{100000}$, $h_{B}^{0} = \boxed{010000}$, $h_{C}^{0} = \boxed{001000}$, $h_{D}^{0} = \boxed{000100}$, $h_{D}^{0} = \boxed{000100}$, $h_{D}^{0} = \boxed{000100}$, and let AGG be **addition**. Then

$$\begin{array}{ll} \bullet & h_A^2 = 4|2|3|3|2|2 \\ h_B^2 = 2|4|2|2|2|2 \\ h_C^2 = 3|2|4|3|2|1 \\ h_D^2 = 3|2|3|4|1|2 \\ h_E^2 = 2|2|2|1|3|1 \\ h_F^2 = 2|2|1|2|1|3 \end{array}$$

By induction they will be distinct for all subsequent iterations

- For a graph with distinct node features, the embeddings will be distinct under addition regardless of neighborhood structure or iterations
 - With the exception of "twin nodes" that are connected only to each other (in which case they will become equal after the first iteration)

- Given a GCN of 2 layers, the embedding of A is computed as follows
 - Let $h_A^0 = h_B^0 = \boxed{100}$, $h_C^0 = h_D^0 = \boxed{010}$, $h_E^0 = h_F^0 = \boxed{001}$, and let AGG be addition. Then, for the following graph

- Two nodes with the same feature will always have the same embedding under addition if and only if they have the same neighborhood structure
 - What about other AGG functions, e.g. mean?

Let $h_A^0 = h_D^0 = h_E^0 = \boxed{10}$, $h_B^0 = h_C^0 = \boxed{01}$, and let AGG be **mean**. Then, for the following graph

$$h_{\rm A}^1 = 0.5 \mid 0.5$$

 $h_{\rm B}^1 = 0.33 \mid 0.67$
 $h_{\rm C}^1 = 0.5 \mid 0.5$
 $h_{\rm D}^1 = 0.5 \mid 0.5$
 $h_{\rm E}^1 = 0.5 \mid 0.5$

 $\hat{A}H$ with normalized \hat{A}

- As expected, $h_{\rm A}^1 = h_{\rm D}^1 = h_{\rm E}^1$ due to the same feature and neighborhood structure (within 1 hop)
- However, $h_A^1 = h_C^1$ in spite of their differences in both features and neighborhood structure
 - ⇒ mean cannot get distinct embeddings for distinct nodes
 - Even though this is true only for the first iteration in this example, similar examples can be obtained for any number of layers

- While our earlier examples did not consider the transformation W or the activation function σ , the arguments are just as valid with them considered
- A function that can distinguish the nodes of distinct feature and neighborhood structure is one that is **injective**
 - mean and max are not injective
 - On the other hand, sum has problems as mentioned
- Theorem (Xu et al. 2019). Any injective AGG function can be expressed as $\Phi(\sum_{x \in S} f(x))$ for some non-linear Φ and linear f
- Since MLP is able to approximate any function, we can learn Φ and f with non-linear MLP_{Φ} and linear MLP_{f}

$$AGG = MLP_{\Phi} \left(\sum_{x \in S} MLP_f(x) \right)$$

⇒ Graph Isomorphism Network (GIN)

- GCN has an alternative theoretical basis in terms of graph Fourier transform
- Let *U* be a eigenbasis of some Laplacian *L*
- Then \(\bullet^T x \) is a projection of distribution \(x \) on eigenbasis \(\bullet \)

 $\mu_i x$ is the projection onto μ_i

The projected space is $\sum_i a_i \mu_i$

- GCN has an alternative theoretical basis in terms of graph Fourier transform
- Let *U* be a eigenbasis of some Laplacian *L*
- □ Then U^Tx is a projection of distribution x on eigenbasis U
- \square An application of U would transform \dot{x} back into x

$$U\dot{x} = \begin{bmatrix} \uparrow & \uparrow & \\ \mu_1 & \mu_2 & \dots \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} \mu_{11}a_1 + \mu_{21}a_2 + \dots \\ \mu_{12}a_1 + \mu_{22}a_2 + \dots \\ \vdots \end{bmatrix}$$

$$= \mu_1 a_1 + \mu_2 a_2 + \dots = \mu_1 \mu_1^\mathsf{T} x + \mu_2 \mu_2^\mathsf{T} x + \dots$$

$$= \left(\sum_i \mu_i \mu_i^\mathsf{T} \right) x = Ix = x$$
Homework: prove $\sum_i \mu_i \mu_i^\mathsf{T} = I$

© 2021. Ng Yen Kaow

- GCN has an alternative theoretical basis in terms of graph Fourier transform
- Let *U* be a eigenbasis of some Laplacian *L*
- Then U^Tx is a projection of distribution x on eigenbasis U
- An application of U would transform \dot{x} back into x, $U(\dot{x}) = U(U^{T}x) = x$ (Since $UU^{T} = I$, this is a no brainer)
- □ Denote $U^{\mathsf{T}}x$ as F(x) and $U\dot{x}$ as $F^{-1}(\dot{x})$

A convolution of x in the Fourier domain of a graph G is $x * g = F^{-1}(F(x) \odot F(g)) = U(U^{\top}x \odot U^{\top}g)$

where g is the filter corresponding to G, and \odot is the element-wise (Hadamard) product

$$\square \quad \text{Suppose } U^{\mathsf{T}}g = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \end{bmatrix} \text{. Let } g_\theta = \operatorname{diag}(U^{\mathsf{T}}g) = \begin{bmatrix} g_1 & 0 & 0 \\ 0 & g_2 & 0 \\ 0 & 0 & \ddots \end{bmatrix}$$

Then we can write $x * g_{\theta} = U g_{\theta} U^{T} x$

$$U^{\mathsf{T}}x \odot U^{\mathsf{T}}g = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix} \odot \begin{bmatrix} g_1 \\ g_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} a_1g_1 \\ a_2g_2 \\ \vdots \end{bmatrix} \\
g_{\theta}U^{\mathsf{T}}x = \begin{bmatrix} g_1 & 0 & 0 \\ 0 & g_2 & 0 \\ 0 & 0 & \ddots \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} a_1g_1 \\ a_2g_2 \\ \vdots \end{bmatrix}$$

A convolution of x in the Fourier domain of a graph G is $x * g = F^{-1}(F(x) \odot F(g)) = U(U^{\top}x \odot U^{\top}g)$ where g is the filter corresponding to G, and \odot is the element-wise (Hadamard) product

$$\square \quad \text{Suppose } U^{\mathsf{T}}g = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \end{bmatrix} \text{. Let } g_\theta = \operatorname{diag}(U^{\mathsf{T}}g) = \begin{bmatrix} g_1 & 0 & 0 \\ 0 & g_2 & 0 \\ 0 & 0 & \ddots \end{bmatrix}$$

Then we can write $x * g_{\theta} = U g_{\theta} U^{T} x$

- g_{θ} is a function of only the eigenvalues $g(L) = g(U\Lambda U^{T}) = Ug_{\theta}(\Lambda)U^{T}$
- g_{θ} can be seen as a scaling matrix where each g_i weights the significance of the eigenvector μ_i
- We call these eigenvector GNNs spectral and GNNs that aggregate neighbors spatial (or message passing)

Chebyshev approximation for U

- □ However, computing U is $O(N^3)$ and computing U^Tx is $O(N^2)$ ⇒ expensive
- \Box Approximate g_{θ} with Chebyshev polynomials

$$g_{\theta'}(\Lambda) \approx \sum_{i=0}^{K} \theta_i' T_i(\tilde{\Lambda})$$

where

- \square $\tilde{\Lambda} = \frac{2}{\lambda_{\text{max}}} \Lambda I_N \ (\lambda_{\text{max}} \text{ is the largest eigenvalue})$
- $\Box \theta' \in \mathbb{R}^K$ are Chebyshev coefficients, and
- \Box The polynomials $T_i(x)$ are computed with a recurrence relation
 - $T_0(x) = 1, T_1(x) = x$ (base case)
 - $T_{n+1}(x) = 2xT_n(x) T_{n-1}(x)$

Chebyshev approximation for U

- □ However, computing U is $O(N^3)$ and computing U^Tx is $O(N^2)$ ⇒ expensive
- \Box Approximate g_{θ} with Chebyshev polynomials

$$g_{\theta'}(\Lambda) \approx \sum_{i=0}^{K} \theta_i' T_i(\tilde{\Lambda})$$

□ Now

$$x * g_{\theta'} = Ug_{\theta}U^{\mathsf{T}}x \approx U\left(\sum_{i=0}^{K} \theta_{i}'T_{i}(\tilde{\Lambda})\right)U^{\mathsf{T}}x$$

 \Box Since $T(L) = UT(\Lambda)U^{\top}$

$$x * g_{\theta'} \approx \sum_{i=0}^{K} \theta_i' T_i(\tilde{L}) x$$

Chebyshev approximation for U

- □ Hence we have $x * g_{\theta'} \approx \sum_{i=0}^{K} \theta'_i T_i(\tilde{L}) x$
- □ Furthermore, from the Chebyshev recurrence

$$T_{n+1}(\tilde{L}) = 2\tilde{L}T_n(\tilde{L}) - T_{n-1}(\tilde{L})$$

 \square Denote $\bar{x}_k = T_k(\tilde{L})x$, this becomes

$$\bar{x}_{n+1} = 2\tilde{L}\bar{x}_n - \bar{x}_{n-1} \text{ (or } \bar{x}_n = 2\tilde{L}\bar{x}_{n-1} - \bar{x}_{n-2})$$

- - ...and can be computed in O(K|E|) time from \tilde{L}
- We precompute \bar{x}_0 , \bar{x}_1 , ..., with the recurrence relation, and learn θ'_0 , θ'_1 , ...

K = 1 approximation (GCN)

- □ Hence we have $x * g_{\theta'} \approx \sum_{i=0}^{K} \theta'_i T_i(\tilde{L}) x$
- \Box Finally, GCN takes K = 1 to obtain

$$x * g_{\theta'} \approx \theta'_0 x + \theta'_1 \tilde{L} x = \theta'_0 x + \theta'_1 \left(\frac{2}{\lambda_{\text{max}}} L - I_N\right) x$$

- Furthermore let $\lambda_{\text{max}} = 2 \Rightarrow x * g_{\theta'} \approx \theta'_0 x + \theta'_1 (L I_N) x$
- Let θ'_0 and θ'_1 be the parameters to be learned
- Using the unweighted normalized Laplacian, $L=D^{-1/2}(D-A)D^{-1/2}=I_N-D^{-1/2}AD^{-1/2}$, then $x*g_{\theta'}=\theta'_0x-\theta'_1D^{-1/2}AD^{-1/2}x$
- Further constraint the number of parameters by letting $\theta'_0 = -\theta'_1 = \theta$, $x * g_{\theta'} = \theta(I_N + D^{-1/2}AD^{-1/2})x$

K = 1 approximation (GCN)

- □ However, $x * g_{\theta'} = \theta (I_N + D^{-1/2}AD^{-1/2})x$ has eigenvalues in range of [0, 2]
 - ⇒ Numerical instability in repeated applications
- □ Merge I_N within A prior to the normalization with D^{-1}
 - Let $\hat{A} = A + I$ and normalize \hat{A} $\Rightarrow x * g_{\theta'} = \theta \hat{D}^{-1/2} \hat{A} \hat{D}^{-1/2} x$ where $\hat{D}_{ii} = \sum_{i} \hat{A}_{ij}$
- \Rightarrow After all the manipulations, $x * g_{\theta'}$ is finally a **spatial** operation where the neighbors are described by the graph adjacency matrix \hat{A}

GNN history: RecGNN to ConvGNN

1997 Sperduti and Starita Supervised neural networks for the classification of structures

LeNet-5 1998

		LCINCI-3	1000
2005	Gori et al. A new model for learning in graph domains		
2009	Scarselli et al. The graph neural network model		
	Hammond et al. Wavelets on graph via spectral graph theory		
	Micheli Neural networks for graph: A contextual constructive approach		
2010	Gallicchio and Micheli Graph echo state networks		
	AlexNet (U of T) wins	ILSVRC	2012
2013	Shuman et al. The emerging field of signal processing on graphs		2013
	Bruna et al. Spectral networks and locally-connected networks on graphs		
	ZFNet (NYU) wins ILSVRC		
	GoogLeNet and VGGNet wins	ILSVRC	2014
2015	Henaff et al. Deep convolutional networks on graph-structured data		2015
	ResNet wins	ILSVRC	
2016	Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering		
	Kipf and Welling Semi-supervised classification with graph convolutional networks		
	Atwood and Towsley Diffusion-convolutional neural networks		
	Niepert et al. Learning convolutional neural networks for graphs		
2017	Gilmer et al. Neural message passing for quantum chemistry	Re Graph Fourier Train	
2018	Battaglia et al. Relational inductive biases, deep learning, and graph networks		

RecGNN
Graph Fourier Transform
Spectral ConvGNN
Spatial ConvGNN

GNN history: RecGNN to ConvGNN

Sperduti and Starita Supervised neural networks for the classification of structures LeCun LeNet-5 1998 Gori et al. A new model for learning in graph domains (first use of the term GNN) 2005 Scarselli et al. The graph neural network model 2009 Hammond et al. Wavelets on graph via spectral graph theory Micheli Neural networks for graph: A contextual constructive approach 2010 Gallicchio and Micheli Graph echo state networks Sutskever+Hinton | AlexNet (U of T) wins ILSVRC 2012 2013 Shuman et al. The emerging field of signal processing on graphs 2013 LeCun Bruna et al. Spectral networks and locally-connected networks on graphs LeCun, sort of ZFNet (NYU) wins ILSVRC Google GoogLeNet and VGGNet wins ILSVRC 2014 LeCun 2015 Henaff et al. Deep convolutional networks on graph-structured data 2015 (First use of the term "deep" and "convolutional" for GNN) ResNet wins ILSVRC Microsoft 2016 Defferrard et al. Convolutional neural networks on graphs with fast localized spectral filtering Google Kipf and Welling Semi-supervised classification with graph convolutional networks (GCN) Atwood and Towsley Diffusion-convolutional neural networks Niepert et al. Learning convolutional neural networks for graphs Gilmer et al. Neural message passing for quantum chemistry 2017 Google **RecGNN Graph Fourier Transform** Battaglia et al. Relational inductive biases, deep learning, and graph networks 2018 Spectral ConvGNN

© 2021. Ng Yen Kaow

Spatial ConvGNN

Google