ASR6601CB_FEM900_MD_V10

模组使用说明

一. ASR6601CB FEM900 MD V10 模组简介

ASR6601CB_FEM900_MD_V10 是 ASR 官方基于 ASR6601 做的一款加高频 FEM(860-930M)的 参考模组,其中 FEM 的型号为 ZD1420。

特别提醒: 由于 FEM 的 PA 为 0.5W 的 PA,其增益在 14dB 左右,建议 LoRa 的发送功率不要超过 12dBm, 此时效率最高,如果超过 7dBm, PA 达到饱和,发送电流迅速增大,但是输出功率增幅很小,且 PA 长期处于饱和状态会导致 PA 损坏。

客户可以基于该参考设计自行修改,也可以直接采用 ASR 官方参考设计,考虑到调 FEM 的参考电路比较费时费力,对于技术能力一般的客户,建议直接按照 ASR 的官方参考设计打样。

二. ASR6601CB_FEM900_MD_V10 射频电路

- 说明: 1) 匹配参数已 bomlist 的值为准。
 - 2) FEM 输入需要做阻抗匹配 (L4, C6, C7)。
 - 3) FEM 的电源输入部分也需要做匹配(L10, L11, C38, C12)。
 - 4) FEM 输出也需要做阻抗匹配和滤波(L6,C9,L10,L6,C11,C12)。

TX 调试说明:

- 1) FEM 输入需要做阻抗匹配,如果该阻抗匹配没有做好,对基波功率影响很大。
- 2) V10 版本原理图中,并没有设计 FEM 输入的匹配电路,因此直接在 LoRa 电路的高次滤波 网络上做的优化。
- 3) L12 和C38 对二次谐波影响比较大, L11 对基波功率影响比较大。
- 4) C12 对高次谐波影响比较大。
- 5) L5, C9, C10, C11 采用默认值即可,换其它的值效果都不太好。
- 6) L3 和C3 可以适当优化,调节不同频率点上的功率平坦度。

三. ASR6601CB_FEM900_MD_V10 测试软件修改

1) 模组硬件对应的逻辑如下:

- 2)测试软件基于 ASR6601 SDK/LoRa test 工程,需要修改的地方如下:
- A) sx1262x.c 文件中的函数 void SX126xCheckDeviceReady(void),修改 TX 和 RX mode 下控制逻辑

```
void SX126xCheckDeviceReady( void )
    if( ( SX126xGetOperatingMode( ) == MODE_SLEEP ) || ( SX126xGetOperatingMode( ) == MODE_RX_DC ) )
        SX126xWakeup();
        // Switch is turned off when device is in sleep mode and turned on is all other modes
        SX126xAntSwOn();
  //add by wood for ASR6601CB_FEM900,
          CRX (GPIO45) CTX (ANT_SW)
                                        CPS (GPIO47)
   LNA RX
                             0
    PA_TX
                 0
                             1
                                              0
// PA BP
                 0
                             0
// STDN
                 0
                             0
    if( SX126xGetOperatingMode( ) == MODE_TX )
        gpio_init(GPIOD, GPIO_PIN_11, GPIO_MODE_OUTPUT_PP_HIGH);//ANT_SW GPIO59
        gpio init(GPIOC, GPIO PIN 13, GPIO MODE OUTPUT PP LOW);//GPIO45
        gpio init (GPIOC, GPIO PIN 15, GPIO MODE OUTPUT PP LOW);//GPIO47
    else if( SX126xGetOperatingMode() == MODE RX )
        gpio_init(GPIOD, GPIO_PIN_11, GPIO_MODE_OUTPUT_PP_LOW);
gpio_init(GPIOC, GPIO_PIN_13, GPIO_MODE_OUTPUT_PP_HIGH);//GPIO45
        gpio_init(GPIOC, GPIO_PIN_15, GPIO_MODE_OUTPUT_PP_LOW);//GPIO47
    SX126xWaitOnBusy();
```

B) sx1262-board.c 的函数 SX126xAntSwOff(void),修改 Deepsleep 状态下的控制逻辑,即把 PA 和 LNA 都关掉。

```
void SX126xAntSwOff( void )

{
    //gpio_init(CONFIG_LORA_RFSW_VDD_GPIOX, CONFIG_LORA_RFSW_VDD_PIN, GPIO_MODE_OUTPUT_PP_LOW);
    gpio_init(GPIOA, GPIO_PIN_9, GPIO_MODE_OUTPUT_PP_LOW);
    gpio_init(GPIOC, GPIO_PIN_15, GPIO_MODE_OUTPUT_PP_LOW);
    gpio_init(GPIOA, GPIO_PIN_1, GPIO_MODE_OUTPUT_PP_LOW);//GPIO01:0
    gpio_init(GPIOC, GPIO_PIN_12, GPIO_MODE_OUTPUT_PP_HIGH);//GPIO44:1
}
```

C) sx1262x.c 文件中的函数 void SX126xInit(), 初始化时就把 FEM 关掉。

```
void SX126xInit()

{
    SX126xLoracInit();
    SX126xReset();
    SX126xReset();
    SX126xSetStandby(STDBY_RC);
    //add by wood for ASR6601CB_FEM900,
    gpio_init(GPIOC, GPIO_PIN_13, GPIO_MODE_OUTPUT_PP_LOW);//GPIO45
    gpio_init(GPIOC, GPIO_PIN_15, GPIO_MODE_OUTPUT_PP_LOW);//GPIO47

###ifdef CONFIG_LORA_USE_TCXO
    CalibrationParams_t calibParam;

    SX126xSetDio3AsTcxoCtrl(TCXO_CTRL_1_7V, SX126xGetBoardTcxoWakeupTime() << 6); // convert from ms to SX126x time bas calibParam.Value = 0x7F;
    SX126xCalibrate(calibParam);
#endif

    SX126xSetDio2AsRfSwitchCtrl(true);
    OperatingMode = MODE_STDBY_RC;
}</pre>
```

四. ASR6601CB_PA_LNA_MD_V11 射频测试

测试代码中支持的 AT 命令如下:

AT 命令格式	参数说明	说明	
AT+CTXCW= <freq> ,<pwr></pwr></freq>	1)Freq:发送频率 150-960MHz 2)Pwr:发送功率字,0-22;	发送一个连续波,用 于 TX 测试	
AT+CTX= <freq>,<data_rate>,<code_rate>, <pwr>,[tx_len]</pwr></code_rate></data_rate></freq>	3)Data_rate: 速率,0-5; (SF7:5,SF12:0) 4)Code_rate:码率,0-4 (1:4/5,2:4/6,3:4/7,4:4/8)	隔 1S 发送一个 lora 包,用于乒乓测试。	
AT+CRXS= <freq>,<data_rate>, <bw>,<code_rate>,[ldo]</code_rate></bw></data_rate></freq>	5) BW 带宽,0-4 (0:125KHz,1:250KHz, 2:250KHz		
AT+CSLEEP= <mode></mode>	0 低速率优化关闭,1 打开。 8)mode Sx1262 休眠设置; 0:warm start; 1:cold start	测试低功耗,用于低功耗测试。	

1) 发送测试

AT 命令: AT+CTXCW= fre pwr (pwr 建议不要超过 7)

测试仪器:频谱仪(keysight N9010/N9020/N9030/N9040B)

测试结果见下表

测试项	测试子项	AT命令	1号模组				2号模组				Spec	Pass/Fail	Remark
			863	868	915	928	863	868	915	928	Spec	1 433/1411	Kemark
	频偏	AT+CTXCW=FreE,7									<1ppm	pass	发送功率12dBm
	基波	AT+CTXCW=Fre,7	25.75	25.82	25.5	25.17	25.3	25.44	25.68	25.47	>25dBm	pass	发送功率12dBm
TX	二次谐波	AT+CTXCW=Fre,7	-44.87	-45.87	-44.68	-44.53	-39.25	-41.12	-48.04	-47.15	<-36dBm	pass	发送功率12dBm
ıx.	三次谐波	AT+CTXCW=Fre,7	-50.96	-51.65	-53.76	-54.62	-51.15	-51.54	-54.28	-53.72	<-36dBm	pass	发送功率12dBm
	四次谐波	AT+CTXCW=Fre,7	-53.37	-54.62	-54.77	-55.82	-56.17	-56.11	-51.8	-51.04	<-36dBm	pass	发送功率12dBm
	五次谐波	AT+CTXCW=Fre,7	-51.41	-52.4	-49.51	-50.48	-53.36	-53.88	-52.34	-52.37	<-36dBm	pass	发送功率12dBm

2) 接收测试

AT 命令: AT+CRXS = fre 0,0,20

测试仪器: 信号发生器 (keysight N5272/N5182B)

测试结果见下表:

测试项	测试子项	参数	1号模组				2号模组				Spec	Pass/Fail	Remark
			863	868	915	928	863	868	915	928	Spec	Pass/Faii	Remark
RX	125K@SF7	灵敏度 (dBm)	-138.5	-140	-139	-138.5	-138.5	-140	-139	-138	<=-138dBm	pass	
		RSSI											
		SNR											
		PER											

3) 低功耗测试

AT 命令: AT+CSLEEP = 1

测试仪器: 万用表

测试项	测试子项	AT命令	1号模组				2号模组				Cunn	Pass/Fail	Remark
			863	868	915	928	863	868	915	928	Spec	Pass/Faii	Kemark
Consumption	TX Current	AT+CTXCW=FRE,7	491	500	520	521	480	485	499	505	<550 mA	pass	
	RX Current	AT+CRXS=FRE,0,0,2,0		4	1				2	<50 mA	pass		
	Idle Current	NA		2	3		23				<30mA	pass	
	Deep Sleep	AT+CSLEEP=1									<2.5 uA	pass	