

Data Structure & Algorithms

Augmenting Data Structures

Augmentation Process

Augmentation is a process of extending a data structure in order to support additional functionality. It consists of four steps:

- 1. Choose an underlying data structure.
- 2. Determine the additional information to be maintained in the underlying data structure.
- 3. Verify that the additional information can be maintained for the basic modifying operations on the underlying data structure.
- 4. Develop new operations.

Examples for Augmenting DS

- Dynamic order statistics: Augmenting binary search trees by size information
- Interval trees
- Priority search trees

Dynamic Order Statistics

Problem: Given a set S of numbers that changes under insertions and deletions, construct a data structure to store S that can be updated in $O(\log n)$ time and that can report the k-th order statistic for any k in $O(\log n)$ time.

Order Statistics Tree

Beside the usual red-black tree fields key[x], color[x], p[x], left[x], and right[x] in a node x, we have another field size[x]. This field contains the number of (internal) nodes in the subtree rooted at x (including x itself), that is the size of the subtree. If we define the sentinel's size to be 0, that is, we set size[nil[T]] to be 0, then we have the identity:

$$size[x] = size[left[x]] + size[right[x]] + 1$$

An order-statistic tree

Retrieving an element with a given rank

```
Note that: rank(x) = size[left[x]] + 1

OS-SELECT(x, i)

1 \quad r \leftarrow size[left[x]] + 1

2 \quad \text{if } i == r

3 \quad \text{then return } x

4 \quad \text{else if } i < r

5 \quad \text{then return OS-SELECT}(left[x], i)

6 \quad \text{else return OS-SELECT}(right[x], i - r)
```

Time complexity: O(lg n)

Because each level of tree has a constant cost, so overall cost will be equal to heightOfTree * ConstantTime > O(Ign).

Determining the rank of an element

```
OS-RANK(T, x)

1 \quad r \leftarrow size[left[x]] + 1
2 \quad y \leftarrow x
3 \quad \text{while } y \neq root[T]
4 \quad \text{do if } y == right[p[y]]
5 \quad \text{then } r \leftarrow r + size[left[p[y]]] + 1
6 \quad y \leftarrow p[y]
7 \quad \text{return } r
```

The running time of OS-RANK is at worst proportional to the height of the tree: O(lg n)

Maintaining subtree sizes

To use OS_Select & OS_Rank, the size property should be correct. So while insertion and deletion we should update it.

Maintaining subtree sizes in insertion

Each insertion has 2 phases as we mentioned in previous lectures:

1. Adding the new element:

In this phase, we should increment the sizes in added element to root by 1 which takes O(lg n) time.

1. Fixup:

Rotation is the only operation which affects size property, so we change it as explained in the next slide.

Updating subtree sizes during rotations

Referring to the code for LEFT-ROTATE(T, x) we add the following lines:

12 $size[y] \leftarrow size[x]$

13 $size[x] \leftarrow size[left[x]] + size[right[x]] + 1$

Maintaining subtree sizes in deletion

Each deletion has 2 phases as we mentioned in previous lectures:

1. Deleting the desired element:

In this phase, we should decrement the sizes from y to root by 1which takes O(lg n) time.

1. Fixup:

Rotation is the only operation which affects size property, so we change it as explained in the previous slide which also takes O(lg n) time.