Scikit Spectral Learning (SpLearn): a toolbox for the spectral learning of weighted automata

Denis Arrivault ¹ Dominique Benielli ¹ François Denis ² Rémi Evraud ²

¹LabEx Archimède, Aix-Marseille University, France

²QARMA team, Laboratoire d'Informatique Fondamentale de Marseille, France

ICGI 2016 (Delft)

Context

- ➤ A one year project founded by the Laboratoire d'Excellence Archiméde (ANR-11-LABX-0033)
- ▶ 2 (part time) research engineers
- 2 (very part time) researchers
- ► A first release as a baseline for the SPiCe competition (April 1st 2016)
- ► Final release as a ScikitLearn-like toolbox (October 5th 2016)

Outline

Spectral Learning of Weighted Automata (WA)

Scikit SpLearn toolbox

Conclusion and Future developments

Outline

Spectral Learning of Weighted Automata (WA)

Scikit SpLearn toolbox

Conclusion and Future developments

Linear representation of Weigthed Automata

$$a: 1/4 \\ b: 1/4 \\ b: 1/4 \\ 1 \rightarrow q_0 \\ b: 1/4 \\ I = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad T = \begin{bmatrix} 0 \\ 1/4 \end{bmatrix} \\ M_a = \begin{bmatrix} 1/2 & 1/6 \\ 0 & 1/4 \end{bmatrix} \quad M_b = \begin{bmatrix} 0 & 1/3 \\ 1/4 & 1/4 \end{bmatrix} \\ r(bba) = I^{\top} M_b M_b M_a T = 5/576$$

Hankel matrix

$$H = \begin{bmatrix} r(\epsilon \cdot \epsilon) & r(\epsilon \cdot a) & r(\epsilon \cdot b) & r(\epsilon \cdot aa) & r(\epsilon \cdot ab) & \dots \\ r(a \cdot \epsilon) & r(a \cdot a) & r(a \cdot b) & r(a \cdot aa) & r(a \cdot ab) & \dots \\ r(b \cdot \epsilon) & r(b \cdot a) & r(b \cdot b) & r(b \cdot aa) & r(b \cdot ab) & \dots \\ r(aa \cdot \epsilon) & r(aa \cdot a) & r(aa \cdot b) & r(aa \cdot aa) & r(aa \cdot ab) & \dots \\ r(ab \cdot \epsilon) & r(ab \cdot a) & r(ab \cdot b) & r(ab \cdot aa) & r(ab \cdot ab) & \dots \\ \dots & \dots & \dots & \dots & \dots \end{bmatrix}$$

- Only finite sub-blocks are of interest
- ▶ Defined over a basis $\mathcal{B} = (\mathcal{P}, \mathcal{S})$
 - $ightharpoonup \mathcal{P}$ is a set of rows (prefixes)
 - S is a set of columns (suffixes)
- $ightharpoonup H_{\mathcal{B}}$ is the Hankel matrix restricted to \mathcal{B}

Hankel matrix variants

- ► The prefix Hankel matrix: $H^p(u, v) = r(uv\Sigma^*)$ for any $u, v \in \Sigma^*$. Rows are indexed by prefixes and columns by factors (substrings).
- ▶ The suffix Hankel matrix: $H^s(u, v) = r(\Sigma^* uv)$ for any $u, v \in \Sigma^*$. Rows are indexed by factors and columns by suffixes.
- ▶ The factor Hankel matrix: $H^f(u, v) = r(\Sigma^* u v \Sigma^*)$ for any $u, v \in \Sigma^*$. In this matrix both rows and columns are indexed by factors.

From a Hankel matrix to a WA

[Balle et al., 2014]:

- ▶ Given H a Hankel matrix of a series r and $\mathcal{B} = (\mathcal{P}, \mathcal{S})$ a complete basis
- ▶ For $\sigma \in \Sigma$, let H_{σ} the sub-block on the basis $(\mathcal{P}\sigma, \mathcal{S})$
- \vdash $H_{\mathcal{B}} = PS$ a rank factorization
- ▶ Then $\langle I, (M_{\sigma})_{\sigma \in \Sigma}, T \rangle$ is a minimal WA for r with
 - $I^{\top} = h_{\epsilon,S}^{\top} S^{+}$
 - $T = P^+ h_{\mathcal{P},\epsilon}$
 - $M_{\sigma} = P^{+}H_{\sigma}S^{+}$

where $h_{\mathcal{P},\epsilon} \in \mathbb{R}^{\mathcal{P}}$ denotes the *p*-dimensional vector with coordinates $h_{\mathcal{P},\epsilon}(u) = r(u)$, and $h_{\epsilon,\mathcal{S}}$ the *s*-dimensional vector with coordinates $h_{\epsilon,\mathcal{S}}(v) = r(v)$

Spectral learning of WA

- Fix a Hankel variant, a basis, and a rank value
- Estimate the corresponding Hankel sub-block using the training data (positive examples only)
- Compute a singular value decomposition (SVD) (gives you a rank factorization)
- Generate the corresponding WA

Outline

Spectral Learning of Weighted Automata (WA)

Scikit SpLearn toolbox

Conclusion and Future developments

Toolbox environment

- Written in Python 3.5 (compatible 2.7)
- Easy installation: pip install scikit-splearn
- Sources easily downloadable (Free BSD license): https://pypi.python.org/pypi/scikit-splearn
- Detailed documentation: https://pythonhosted.org/scikit-splearn/

Content

4 classes:

- ► Automaton: a linear representation of WA, including useful methods (e.g. numerically stable PA minimization)
- Datasets.base: to load samples
- Hankel: for Hankel matrices, with a bunch of tools
- Spectral: main class, with functions fit, predict, score and many other

Load data

Function load_data_sample loads and returns a sample in Scikit-Learn format.

```
>>> from splearn.datasets.base import load_data_sample
>>> train = load_data_sample("1.pautomac.train")
>>> train.nbEx
20000
>>> train.nbL
```

Splearn-array

Inherit from python numpy ndarray object

Contains also the dictionaries train.data.sample, train.data.pref, train.data.suff, and train.data.fact (empty at that moment).

Estimator: Spectral

- Inherit from BaseEstimator (sklearn.base)
- parameters:
 - rank: the value for the rank factorization
 - version: the variant of Hankel matrix to use
 - sparse: if True, uses a sparse representation for the Hankel matrix
 - partial: if True, computes only a specified sub-block of the Hankel matrix
 - ▶ lrows and lcolumns: if partial is True, either integers corresponding to the max length of elements to consider, or list of strings to use for the Hankel matrix
 - smooth_method: 'none' or 'trigram' (so far)

Estimator: Spectral

Usage:

```
>>> from splearn.spectral import Spectral
>>> est = Spectral()
>>> est.get_params()
{'rank': 5, 'partial': True, 'smooth_method': 'none',
    'lrows': (), 'version': 'classic', 'sparse': True,
    'lcolumns': (), 'mode_quiet': False}
>>> est.set_params(lrows=5, lcolumns=5,
                   smooth_method='trigram',
                   version='factor')
Spectral(lcolumns=5, lrows=5, partial=True, rank=5,
     smooth_method='trigram', sparse=True,
     version='factor', mode_quiet=False)
```

Estimator: Spectral

Main methods:

- ▶ **fit**(self, X, y=None)
- predict(self, X)
- predict_proba(self,X)
- ▶ **loss**(self, X, y=None)
- score(self, X, y=None, scoring="perplexity")
- nb_trigram(self)

SpLearn use case

```
>>> est.fit(train.data)
Start Hankel matrix computation
End of Hankel matrix computation
Start Building Automaton from Hankel matrix
End of Automaton computation
Spectral(lcolumns=5, lrows=5, partial=True, rank=5,
     smooth_method='trigram', sparse=True, version='factor
>>> test = load_data_sample("3.pautomac.test")
>>> est.predict(test.data)
array([ 3.23849562e-02, 1.24285813e-04, ...
...1)
>>> est.loss(test.data), est.score(test.data)
(23.234189560218198, -23.234189560218198)
>>> est.nb_trigram()
61
```

SpLearn use case (cont'd)

```
>>> targets = open("1.pautomac_solution.txt", "r")
>>> targets.readline()
'1000\n'
>>> target_proba = [float(line[:-1]) for line in targets]
>>> est.loss(test.data, y=target_proba)
2.6569772687614514e-05
>>> est.score(test.data, y=target_proba)
46.56212657907001
```

SpLearn and Scikit methods

Cross-validation

SpLearn and Scikit methods

Gridsearch

And all (not contractual...) Scikit-learn methods

Outline

Spectral Learning of Weighted Automata (WA)

Scikit SpLearn toolbox

Conclusion and Future developments

Conclusion

- ► Tested (unitary, 95% coverage)
- ▶ Used on all 48 PAutomaC data (results in the article)
 - ▶ rank between 2 and 40
 - ▶ lrows and lcolumns between 2 and 6
 - for all 4 Hankel matrix variants
 - ▶ a total of 28 000+ runs

Future developments

- Data generation tools
- Basis selection function(s)
- ▶ Other scoring functions (WER, ...)
- Other smoothing methods (Baum-Welch)
- Other Method of Moments algorithms
- Moving to tree automata

Any comment (and help) welcomed!

Time comparison between sp2learn and splearn

