IN THE CLAIMS:

The text of all pending claims, (including withdrawn claims) is set forth below. Cancelled and not entered claims are indicated with claim number and status only. The claims as listed below show added text with <u>underlining</u> and deleted text with <u>strikethrough</u>. The status of each claim is indicated with one of (original), (currently amended), (cancelled), (withdrawn), (new), (previously presented), or (not entered).

Please AMEND claims 1 and 5 and ADD new claims 40 - 46 in accordance with the following:

1. (CURRENTLY AMENDED) A lithium-sulfur battery comprising:

a positive electrode having an electron-conductive path and an ion-conductive path and comprising: a positive active material including an active sulfur in the form of solid phase elemental sulfur (S8) and/or a polysulfide solution, and pores of an average size greater than or equal to substantially 5 μ m and less than and including 15 μ m having both electron-conductive and ion-conductive properties, where the active sulfur is disposed in the pores during an electrochemical reaction of the lithium-sulfur battery;

a negative electrode comprising a negative active material selected from the group consisting of a lithium metal, a lithium-containing alloy, materials which can reversibly intercalate/deintercalate lithium ions, or materials which can reversibly form a chemical compound with lithium;

a separator interposed between said positive and negative electrodes; and an ion-conductive electrolyte.

- 2. (PREVIOUSLY PRESENTED) The lithium-sulfur battery according to claim 1, wherein the average size of the pores is up to 10 μ m.
- 3. (PREVIOUSLY PRESENTED) The lithium-sulfur battery according to claim 1, wherein the average size of the pores is substantially 5 μ m.
- 4. (ORIGINAL) The lithium-sulfur battery according to claim 1, wherein said positive electrode is prepared by a method comprising:

mixing an elemental sulfur (S₈) powder, a conductive agent, and a binder to provide a positive active material slurry; and

coating the positive active material slurry on a current collector.

5. (CURRENTLY AMENDED) The lithium-sulfur battery according to claim 4, wherein an average particle size of the elemental sulfur is greater than 0 μ m and is up to $\frac{20-15}{4}$ μ m.

- 6. (PREVIOUSLY PRESENTED) The lithium-sulfur battery according to claim 4, wherein an average particle size of the elemental sulfur is greater than 0 μm and is up to 10 μm.
- 7. (PREVIOUSLY PRESENTED) The lithium-sulfur battery according to claim 4, wherein an average particle size of the elemental sulfur is greater than 0 μm and is up to 5 μm.
- 8. (ORIGINAL) The lithium-sulfur battery according to claim 4, wherein the mixing step is performed with a ball mill.
- 9. (ORIGINAL) The lithium-sulfur battery according to claim 4, wherein, after preparing said positive electrode, a polysulfide solution is added to the lithium-sulfur battery.

10 - 16. (CANCELED)

17. (ORIGINAL) The lithium-sulfur battery according to claim 1, wherein the ion-conductive properties are supplied using an ionic conductive medium selected from the group consisting of ethylene carbonate, propylene carbonate, dioxolane, sulfolane, xylene, diglyme, tetrahydro furan, tetraglyme, sulfone, dimethyl sulfone, dialkyl carbonate, butyrolactone, N-methyl pyrrolidone, tetramethyl urea, glyme, crown ether, dimethoxy ethane, N,N-diethyl formamide, N,N-diethyl acetamide, hexamethyl phosphoamide, pyridine, dimethyl sulfoxide, N,N-dimethyl acetamide, tributyl phosphate, trimethyl phosphate, N,N,N,N-tetraethyl sulfamide, tetramethylene diamine, tetramethyl propylene diamine, pentamethylene triamine, methanol, ethylene glycol, polyethylene glycol, nitromethane, trifluoro acetic acid, trifluoro methane sulfonic acid, sulfur dioxide, and boron trifluoride, and a mixture thereof.

18-28. (CANCELED)

- 29. (WITHDRAWN) The lithium-sulfur battery according to claim 1, wherein the positive electrode comprises:
 - a current collector coated with the positive active material and, during an electrochemical

reaction of the lithium-sulfur battery, has the pores of the average size greater than $5\mu m$ and up to 15 μm in which the active sulfur is disposed and having both electron-conductive and ion-conductive properties,

wherein the positive electrode has an electron-conductive path and an ion-conductive path.

- 30. (WITHDRAWN) The lithium-sulfur battery according to claim 29, wherein the average size of the pores is greater than 5μm and is up to 10 μm.
- 31. (WITHDRAWN) The lithium-sulfur battery according to claim 29, wherein the average size of the pores is $5 \, \mu m$.
- 32. (WITHDRAWN) The lithium-sulfur battery according to claim 29, wherein said positive active material comprises an elemental sulfur (S₈) powder, a conductive agent, and a binder coated on said current collector.
- 33. (WITHDRAWN) The lithium-sulfur battery according to claim 32, wherein an average particle size of the elemental sulfur is greater than 0μm and is up to 20 μm.
- 34. (WITHDRAWN) The lithium-sulfur battery according to claim 32, wherein an average particle size of the elemental sulfur is greater than 0μm and is up to 10 μm.
- 35. (WITHDRAWN) The lithium-sulfur battery according to claim 32, wherein an average particle size of the elemental sulfur is greater than 0μm and is up to 5 μm.
- 36. (WITHDRAWN) The lithium-sulfur battery according to claim 32, wherein the binder is selected from the group consisting of poly(vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, alkylated polyethylene oxide, cross linked polyethylene oxide, polyvinyl ether, poly(methyl methacrylate), polyvinylidene fluoride, copolymer of polyhexafluoropropylene and polyvinylidene fluoride, poly(ethyl acrylate), polytetrafluoro ethylene, polyvinyl chloride, polyacrylonitrile, polyvinylpyridine, polystyrene, poly(butyral-co-vinyl alcohol-co-vinyl acetate), poly(methyl metacrylate-co- ethyl acrylate), poly vinyl chloride co-vinyl acetate, polyalkylene oxide, poly(1-vinylpyrrolodone-co -vinyl acetate) and cellulose acetate, and a mixture thereof.

- 37. (WITHDRAWN) The lithium-sulfur battery according to claim 29, wherein the ionic conductive properties are supplied by an ionic conductive medium selected from the group consisting of ethylene carbonate, propylene carbonate, dioxolane, sulfolane, xylene, diglyme, tetrahydro furan, tetraglyme, sulfone, dimethyl sulfone, dialkyl carbonate, butyrolactone, N-methyl pyrrolidone, tetramethyl urea, glyme, crown ether, dimethoxy ethane, N,N-diethyl formamide, N,N-diethyl acetamide, hexamethyl phosphoamide, pyridine, dimethyl sulfoxide, N,N-dimethyl acetamide, tributyl phosphate, trimethyl phosphate, N,N,N,N-tetraethyl sulfamide, tetramethylene diamine, tetramethyl propylene diamine, pentamethylene triamine, methanol, ethylene glycol, polyethylene glycol, nitromethane, trifluoro acetic acid, trifluoro methane sulfonic acid, sulfur dioxide, and boron trifluoride, and a mixture thereof.
 - 38. (ORIGINAL) The lithium-sulfur battery of claim 1, wherein said electrolyte is a solid.
- 39. (PREVIOUSLY PRESENTED) The lithium sulfur battery of claim 38, wherein said solid electrolyte comprises one of a glass electrolyte, a polymer electrolyte, a ceramic electrolyte, and a mixture of polymer electrolyte with a supporting electrolyte salt.
- 40. (NEW) The lithium-sulfur battery according to claim 1, wherein the positive electrode is prepared by:

coating a composition including a conductive agent, a binder, and a plasticizer onto a current collector;

removing the plasticizer from the composition coated on the current collector with an organic solvent to generate pores in the composition coated on the current collector; and injecting a polysulfide solution into the generated pores.

- 41. (NEW) The lithium-sulfur battery according to claim 40, wherein the composition further comprises elemental sulfur (S_8) .
- 42. (NEW) The lithium-sulfur battery according to claim 40, wherein an amount of the plasticizer is 5 to 80% by weight of said positive electrode.
- 43. (NEW) The lithium-sulfur battery according to claim 40, wherein the plasticizer is at least one selected from the group consisting of dibutyl phthalate, dimethyl phthalate, diethyl phthalate, trishutoxyethyl phosphate, propylene carbonate, ethylene carbonate, trimethyl

trimellitata, and a mixture thereof.

44. (NEW) The lithium-sulfur battery according to claim 40, wherein the organic solvent is selected from the group consisting of ether, diethyl ether, hexane, petroleum ether, ligroin, cyclohexane, methanol, ethanol, dichloromethane, trichloroethylene, and trichloroethane, and a mixture thereof.

- 45. (NEW) The lithium-sulfur battery according to claim 40, wherein the binder is selected from the group consisting of poly(vinyl acetate), polyvinyl alcohol, polyethylene oxide, polyvinyl pyrrolidone, alkylated polyethylene oxide, cross linked polyethylene oxide, polyvinyl ether, poly(methyl methacrylate), polyvinylidene fluoride, copolymer of polyhexafluoropropylene and polyvinylidene fluoride, poly(ethyl acrylate), polytetrafluoro ethylene, polyvinyl chloride, polyacrylonitrile, polyvinylpyridine, polystyrene, poly(butyral-co-vinyl alcohol-co-vinyl acetate), poly(methyl metacrylate-co- ethyl acrylate), poly vinyl chloride co-vinyl acetate, polyalkylene oxide, poly(1-vinylpyrrolodone-co –vinyl acetate) and cellulose acetate, and a mixture thereof.
- 46. (NEW) The lithium-sulfur battery according to claim 40, wherein the current collector is rolled prior to removing the plasticizer.