8. СТАТИЧНІ ІГРИ

8.1. Загальні положення

Статична гра – кожен гравець ходить тільки один раз одночасно з іншими гравцями і незалежно від них. Після цього — розподіл виграшів згідно з g_l . **Незалежний вибір стратегій** ⇒ *невизначеність* у грі. Означення 8.1. Біматрична гра: 2 осіб, кожен обирає 1-у стратегію зі скінченного числа стратегій, а після цього отримує виграш (1-й-3 матриці A, 2-й-B).

т стратегій 1-го гравця і п стратегій 2-го гравця;

парі стратегій (i,j) $(i=1,m;j=1,n) \Rightarrow a_{ij}/b_{ij} \Rightarrow$ окремо

 $A = (a_{ij})$ і $B = (b_{ij})$ чи *суміщена* матриця $((a_{ij}, b_{ij}))$.

Означення 8.2. *Матрична* гра (*МГ*)— це біматрична гра, в якій для \forall (*i*, *j*) суміщеної матриці: $a_{ij} + b_{ij} = 0$.

 $M\Gamma$ – *скінченна антагоністична* гра, тільки $A = (a_{ij})$:

- 1) $a_{ij} > 0$ виграш 1-го гравця ($-a_{ij}$ програш 2-го);
- 2) $a_{ii} = 0$ нічия;
- 3) $a_{ij} < 0$ програш 1-го гравця ($-a_{ij}$ виграш 2-го).

Приклад 8.1. Гру прикладу 7.1 зобра- $> \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix}$. < зити у формі матричної гри.

Позначення: $l \in K$ обирає $x_l \in X_l$, тоді:

 $x_{-l} \in X_{-l}$ — набір стратегій гравців з множини $K \setminus \{l\}$, (x_l, x_{-l}) — набір стратегій усіх гравців, тобто:

$$(x_l, x_{-l}) = (x_1, ..., x_{l-1}, x_l, x_{l+1}, ..., x_k) = x \in X.$$
 (8.1)

У (8.1) виокремлено довільного *І*-го гравця.

У біматричній грі: $(x_l, x_{-l}) \Rightarrow (i, j)$

Статична гра з <u>вичерпною</u> інформацією (СГВІ) —кожен гравець знає власні характеристики (множини стратегій та функції виграшів) і характеристики інших гравців.

Якщо у гравців відсутня інформація про функції виграшів інших гравців, то отримуємо статичну гру з частковою інформацією (СГЧІ).

- 8.2. Концепція домінування
- 8.2.1. Домінування стратегій

Означення 8.3. $x_l \in X_l$ гравця $l \in K$ строго домінує над стратегією $w_l \in X_l$ цього ж гравця $(x_l \succ w_l)$:

$$\forall x_{-l} \in X_{-l}: g_l(x_l, x_{-l}) > g_l(w_l, x_{-l}).$$
 (8.2)

w_l строго домінується (чи *строго домінована* страт.);

 SND_l – мн-на $cmporo\ недом.\ cm.\ (CHC)$ гравця $l\in K$;

множина $\operatorname{cumyauiu}$ СНС гравців: $SND = \prod_{l=1}^{\kappa} SND_l$.

Означення 8.4. $x_l \in X_l$ гравця $l \in K$ (l = 1, k) домінує (не строго чи слабо) над стратегією $w_l \in X_l$ $(x_l \succeq w_l)$:

$$\forall x_{-l} \in X_{-l} : g_l(x_l, x_{-l}) \ge g_l(w_l, x_{-l}), \tag{8.3}$$

де хоча б одна з нерівностей (8.3) є строгою.

w_l домінується (чи *домінована* стратегія);

 ND_l – мн-на nedominoваних страт. (HC) гравця $l \in K$;

множина $\operatorname{cumyauiu}$ HC гравців: $ND = \prod_{l=1}^{\kappa} ND_l$.

Домінування стратегій (строго/слабо) – ∀ типу СГ!

 \forall дві стратегії гравця $l \in K$ задовольняють $(8.2) \Rightarrow$ водночає задовольнятимуть і (8.3)

Kiлькiсть елементів $SND_l \ge$ кількості елементів ND_l

 $\Rightarrow ND_l \subseteq SND_l$, отож $ND \subseteq SND$

У біматричній грі: верхній індекс ↔ № стратегії:

ситуація $(2;3) \leftrightarrow (x_1^{(2)}; x_2^{(3)}),$

ситуація $(1; 4) \leftrightarrow (x_1^{(1)}; x_2^{(4)})$

Приклад 8.2. ND_1 і NSD_1 у грі:

$i \setminus j$	1	2	3
1	(2; 1)	(3; 3)	(5;3)
2	(3; 2)	(3;3)	(4; 2)
3	(2; 3)	(4; 4)	(5;4)
4	(1; 4)	(3; 5)	(3;5)
5	(1; 5)	(3; 6)	(4; 6)

$$x_1^{(3)} \succ x_1^{(4)}; x_1^{(3)} \succ x_1^{(5)}$$

 $\Rightarrow SND_1 = \{1; 2; 3\} \lt$

Означення 8.5. $x_l \in X_l - cmрого домінуюча страте-$

гія гравця $l \in K$, якщо вона строго домінує над \forall іншою стратегією цього ж гравця.

 SD_l – множина строго домінуючих стратегій гр. $l \in K$

Лема 8.1. У СГ $SD_l \neq \emptyset \Leftrightarrow$

- 1) SD_l містить *тільки одну* стратегію;
- $2) SND_l = SD_l.$

Оз-ня 8.6. Якщо $\forall l \in K \; \exists \; x'_l \in SD_l$, то $x' = (x'_l, \; x'_{-l}) -$ *ситуація рівноваги* (equilibrium) у строго домінуючих стратегіях (*СРСДС*).

 $SDE = \prod_{l=1}^{k} SD_l$ — множина СРСДС (лема 8.1 \Rightarrow міс-

тить не більше однієї СРСДС).

Приклад 8.3 (прик.
$$5.1$$
). $(3;4)$ $(4;1)$ $(5;6)$ $(2;5)$ $(3;7)$ $(3;8)$; SDE ?

$$ightharpoonup x_1^{(1)} \succ x_1^{(2)}; x_1^{(1)} \succ x_1^{(3)} \Rightarrow x_1^{(1)}$$
— строго домінуюча; $x_2^{(3)} \succ x_2^{(1)}; x_2^{(3)} \succ x_2^{(2)} \Rightarrow x_2^{(3)}$ — строго домінуюча; $SDE = \{(1; 3)\}.$

Озн-ня 8.7. $x_1 \in X_1$ еквівалентна $w_1 \in X_1$ $(x_1 \sim w_1)$:

$$\forall x_{-l} \in X_{-l} : g_l(x_l, x_{-l}) = g_l(w_l, x_{-l}).$$
 (8.4)

Означення 8.8. $x_l \in X_l$ домінуюча стратегія, якщо вона домінує над \forall іншою стратегією гравця $l \in K$ або їй еквівалентна.

 D_l — множина домінуючих стратегій гравця $l \in K$; якщо $SD_l
eq \varnothing$, то $D_l = SD_l$

Лема 8.2. У СГ $D_l \neq \emptyset \Leftrightarrow$

- 1) D_l містить *тільки одну* стратегію або декілька *еквівалентних* стратегій;
- **2**) $ND_l = D_l$.

 O_3 -ня 8.9. Якщо $\forall l \in K \; \exists \; x_l'' \in D_l$, то $x'' = (x_l'', \; x_{-l}'') -$ ситуація рівноваги у домінуючих стратегіях (*СРДС*).

$$DE = \prod_{l=1}^k D_l$$
 — множина СРДС (лема 8.2 \Rightarrow містить

одну або декілька еквівалентних СРСДС).

Якщо $SDE \neq \emptyset$, то DE = SDE.

Приклад 8.4. Дослідити біматричні ігри прикладів 7.1 — 7.6 на виявлення у них *домінуючих* і *строго домінуючих* стратегій.

7.1	(-1; 1) $(1; -1)$ $(1; -1)$	$DE = SDE = \emptyset$
7.2	(3; 2) (0; 0) (0; 0) (2; 3)	$DE = SDE = \emptyset$
7.3	(-1; -1) $(-10; 0)$ $(0; -10)$ $(-7; -7)$	$x_1^{(2)} \succ x_1^{(1)}; x_2^{(2)} \succ x_2^{(1)}$ $\Rightarrow SDE = \{(2; 2)\}; DE = SDE$
7.4	$ \begin{pmatrix} (1; 1) & (0; 3) \\ (3; 0) & (-9; -9) \end{pmatrix} $	$DE = SDE = \emptyset$

7.5	$(2;2) \qquad (3;1)$	$x_1^{(2)} \succeq x_1^{(2)}; x_2^{(1)} \succ x_2^{(2)} \Rightarrow$
	(2,5;1,5) $(3;1)$	$\Rightarrow DE = \{(2; 1)\}; SDE = \emptyset$
7.6	(2;2) (3;1)	$x_1^{(1)} \succ x_1^{(2)}; x_2^{(1)} \succ x_2^{(2)} \Rightarrow$
	(1,75;2,25) $(2,5;1,5)$	$\Rightarrow SDE = \{(1; 1)\}; DE = SDE$

8.2.2. Викреслювання домінованих стратегій Вик-ня строго домінованих стратегій (СДС) у <u>СГВІ</u>:

викреслюють СДС одного з гравців; в новій підмножині ситуацій викреслюють СДС цього ж чи іншого гравця і т.д. Викреслювання СДС триває доти, доки ці стратегії *наявні*. ISND — множина *ітераційно строго недомінованих* ситуації, які залишаються після послідовного викреслювання СДС).

ISND містить *тільки одну* ситуацію \Rightarrow раціональний гравець, зазвичай, *обиратиме* власну стратегію з цієї ситуації-залишку.

Приклад 8.5 (прик. 5.3). (3; 4) (4; 1) (3; 2) (2; 5) (3; 7) (5; 3) (1; 8) (2; 3) (4; 9)

$$ho$$
 $x_1^{(2)} \succ x_1^{(3)} \Rightarrow$ викресл. $x_1^{(3)}$: $\begin{pmatrix} (3;4) & (4;1) & (3;2) \\ (2;5) & (3;7) & (5;3) \end{pmatrix}$. $x_2^{(1)} \succ x_2^{(3)} \Rightarrow$ викреслюємо $x_2^{(3)}$: $\begin{pmatrix} (3;4) & (4;1) \\ (2;5) & (3;7) \end{pmatrix}$. $x_1^{(1)} \succ x_1^{(2)} \Rightarrow$ викреслюємо $x_1^{(2)}$: $((3;4) & (4;1))$. $x_2^{(1)} \succ x_2^{(2)} \Rightarrow$ викреслюємо $x_2^{(2)}$; $ISND = \{(1;1)\}$

Викреслювання (слабо) домінованих стратегій (ДС)

⇔ викреслюванню *строго домінованих* стратегій

IND – множина *ітераційно недомінованих* (слабо) ситуації після викреслювання ДС).

IND залежить від порядку викреслювання

Приклад 8.6 (прик. 5.4).
$$(20; 20)$$
 $(10; 10)$ $(20; 20)$ $(30; 20)$. $(10; 10)$ $(30; 20)$

$$> x_1^{(2)} \succeq x_1^{(1)} : \begin{pmatrix} (20; 20) & (30; 20) \\ (10; 10) & (30; 20) \end{pmatrix} \Rightarrow \begin{pmatrix} (30; 20) \\ (30; 20) \end{pmatrix}.$$

$$IND = \{(2; 2), (3; 2)\}$$

$$x_1^{(2)} \succeq x_1^{(3)} : \begin{pmatrix} (20; 20) & (10; 10) \\ (20; 20) & (30; 20) \end{pmatrix} \Rightarrow \begin{pmatrix} (20; 20) \\ (20; 20) \end{pmatrix}.$$

$$IND = \{(1; 1), (2; 1)\}$$

Викреслюють слабо доміновані стратегії ⇒

водночас викреслюють і строго доміновані стратегії.

Якщо $ISND \neq \emptyset$ містить *тільки одну* ситуацію або $IND \neq \emptyset$ і $\forall l \in K X_l$ містить *тільки еквівалентні стратегії*, то $SoE = ISND \ (SoE = IND)$ — множина *складних рівноваг* (sophisticated equilibrium); СГ розв'язана за домінуванням (строго/слабо)

Приклад $8.5 \Rightarrow SoE = ISND = \{(1; 1)\}$ Пр-д $8.6 \Rightarrow SoE = IND = \{(2; 2), (3; 2)\} / \{(1; 1), (2; 1)\}$

Якщо $IND \neq \emptyset$ тільки еквівалентні ситуації \Rightarrow не означає, що усі ситуації дають однакові виграші

Приклад 8.7.
$$\begin{pmatrix} (2;2) & (0;2) \\ (2;0) & (0;0) \end{pmatrix}$$

$$SoE = IND = \{(1; 1), (1; 2), (2; 1), (2; 2)\}$$

Якщо $ISND \neq \emptyset > odнie$ ситуації або $IND \neq \emptyset$ не тільки еквівалентні ситуації $\Rightarrow SoE = \emptyset \Rightarrow$

ISND / IND — звуження (можливо) X_l