Higher-order aberrations

Lens Design OPTI 517

Higher order Aberrations

- Aberration function
- Six-order terms (fifth-order transverse)
- Wavefront shapes and field dependence
- Coefficients
- Pupil matching
- References.

References

- 1) J. Sasian, "Introduction to Aberrations in optical imaging systems."
- 2) O. N. Stavroudis, "Modular Optical Design"
- 3) Buchdahl, "Optical Aberration Coefficients"
- 4) M. Herzberger, "Modern Geometrical Optics"

"Back of the envelope"

* SPHERICHL ARERRATION

WO40 =
$$-\frac{1}{8}$$
 A^2 $Y = \begin{cases} \frac{1}{2} \\ \frac{1}{N} \end{cases}$
 $\lambda = \frac{Y}{R}$
 $N = 0$; $N' = \frac{2Y}{R}$
 $N = 0$; $N' = -1$
 $N = 0$; $N' = 0$
 $N = 0$; N

Coordinate system and reference sphere

Aberration function

$$\begin{split} W(\vec{H}, \vec{\rho}) &= \sum_{j,m,n} W_{k,l,m} (\vec{H} \cdot \vec{H})^{j} \cdot (\vec{H} \cdot \vec{\rho})^{m} \cdot (\vec{\rho} \cdot \vec{\rho})^{n} \\ &= W_{000} + W_{200} (\vec{H} \cdot \vec{H}) + W_{111} (\vec{H} \cdot \vec{\rho}) + W_{020} (\vec{\rho} \cdot \vec{\rho}) \\ &+ W_{040} (\vec{\rho} \cdot \vec{\rho})^{2} + W_{131} (\vec{H} \cdot \vec{\rho}) (\vec{\rho} \cdot \vec{\rho}) + W_{222} (\vec{H} \cdot \vec{\rho})^{2} \\ &+ W_{220} (\vec{H} \cdot \vec{H}) (\vec{\rho} \cdot \vec{\rho}) + W_{311} (\vec{H} \cdot \vec{H}) (\vec{H} \cdot \vec{\rho}) + W_{400} (\vec{H} \cdot \vec{H})^{2} \\ &+ W_{240} (\vec{H} \cdot \vec{H}) (\vec{\rho} \cdot \vec{\rho})^{2} + W_{331} (\vec{H} \cdot \vec{H}) (\vec{H} \cdot \vec{\rho}) (\vec{\rho} \cdot \vec{\rho}) + W_{422} (\vec{H} \cdot \vec{H}) (\vec{H} \cdot \vec{\rho})^{2} \\ &+ W_{420} (\vec{H} \cdot \vec{H})^{2} (\vec{\rho} \cdot \vec{\rho}) + W_{511} (\vec{H} \cdot \vec{H})^{2} (\vec{H} \cdot \vec{\rho}) + W_{600} (\vec{H} \cdot \vec{H})^{3} \\ &+ W_{060} (\vec{\rho} \cdot \vec{\rho})^{3} + W_{151} (\vec{H} \cdot \vec{\rho}) (\vec{\rho} \cdot \vec{\rho})^{2} + W_{242} (\vec{H} \cdot \vec{\rho})^{2} (\vec{\rho} \cdot \vec{\rho}) + W_{333} (\vec{H} \cdot \vec{\rho})^{3} \end{split}$$

	Wavefront aberrations				
Aberration name/order	Vector form	Algebraic form	j	m	n
Zero-order	***	***	_	^	_
Uniform piston	W_{000}	W_{000}	0	0	0
Second-order,	,				
Quadratic piston	$W_{200}ig(ec{H}\cdotec{H}ig)$	$W_{200}H^2$	1	0	0
Magnification	$W_{111}(\vec{H}\cdot\vec{\rho})$	$W_{111}H\rho\cos(\phi)$	0	1	0
Focus	$W_{020}(\vec{ ho}\cdot\vec{ ho})$	$W_{020} \rho^2$	0	0	1
Fourth-order,					
Spherical aberration	$W_{040}(\vec{\rho}\cdot\vec{\rho})^2$	$W_{040}\rho^4$	0	0	2
Coma	$W_{131}(\vec{H} \cdot \vec{\rho})(\vec{\rho} \cdot \vec{\rho})$	$W_{131}H\rho^3\cos(\phi)$	0	1	1
Astigmatism	$W_{222}(\vec{H} \cdot \vec{\rho})^2$	$W_{222}H^2\rho^2\cos^2(\phi)$	0	2	0
Field curvature	$W_{220}(\vec{H} \cdot \vec{H})(\vec{\rho} \cdot \vec{\rho})$	$W_{220}H^2\rho^2$	1	0	1
Distortion	$W_{311}(\vec{H} \cdot \vec{H})(\vec{H} \cdot \vec{\rho})$	$W_{311}H^3\rho\cos(\phi)$	1	1	0
Quartic piston	$W_{400}(\vec{H} \cdot \vec{H})^2$	$W_{400}H^4$	2	0	0
Sixth-order					
Oblique spherical aberration	$W_{240}(\vec{H} \cdot \vec{H})(\vec{p} \cdot \vec{p})^2$	$W_{240}H^2\rho^4$	1	0	2
Coma	$W_{331}(\vec{H} \cdot \vec{H})(\vec{H} \cdot \vec{\rho})(\vec{\rho} \cdot \vec{\rho})$	$W_{331}H^3\rho^3\cos(\phi)$	1	1	1
Astigmatism	$W_{422}(\vec{H} \cdot \vec{H})(\vec{H} \cdot \vec{\rho})^2$	$W_{422}H^4\rho^2\cos^2(\phi)$	1	2	0
Field curvature	$W_{420}(\vec{H} \cdot \vec{H})^2(\vec{\rho} \cdot \vec{\rho})$	$W_{420}H^4\rho^2$	2	0	1
Distortion	$W_{511}(\vec{H} \cdot \vec{H})^{\circ}(\vec{H} \cdot \vec{\rho})$	$W_{511}H^5\rho\cos(\phi)$	2	1	0
Piston	$W_{600}(\vec{H} \cdot \vec{H})^3$	$W_{600}H^{6}$	3	0	0
	, , ,				
Spherical aberration	$W_{060}(\vec{ ho}\cdot\vec{ ho})^3$	$W_{060} \rho^6$	0	0	3
Un-named	$W_{151}(\vec{H}\cdot\vec{\rho})(\vec{\rho}\cdot\vec{\rho})^2$	$W_{151}H\rho^5\cos(\phi)$	0	1	2
Un-named	$W_{242}(\vec{H}\cdot\vec{\rho})^2(\vec{\rho}\cdot\vec{\rho})$	$W_{242}H^2\rho^4\cos^2(\phi)$	0	2	1
Un-named	$W_{333}(\vec{H}\cdot\vec{\rho})^3$	$W_{333}H^3\rho^3\cos^3(\phi)$	0	3	0
	··· 333 (** P*)	- 77	oxdot		\vdash

Aberration orders

College of Optical Sciences

Prof. Jose Sasian

Roland Shack's

Terminology

- W₂₄₀ Oblique spherical aberration
- W₃₃₁ Cubic coma
- W₄₂₂ Quartic astigmatism
- W₄₂₀ Six order field curvature
- W₅₁₁ Six order distortion
- W₆₀₀ Six order piston
- W₀₆₀ Six order spherical aberration
- W₁₅₁
- W₂₄₂
- W₃₃₃

Some earlier terminology

- Oblique spherical aberration
- Elliptical coma
- Line coma
- Secondary spherical aberration
- Secondary coma
- Lateral coma
- Lateral image curvature/astigmatism
- Trefoil

Wavefront deformation shapes

Prof. Jose Sasian

Spherical aberration: W₀₆₀

$W_{151} \& W_{333}$

W_{242}

Higher-order aberration coefficients

- Harder to derive/calculate than fourthorder
- Intrinsic coefficients
- Extrinsic coefficients
- Depend highly on coordinate system

Intrinsic spherical aberration

$$W_{040} = -\frac{1}{8}A^2 y \Delta \left(\frac{u}{n}\right)$$

$$W_{060I}^{-} = W_{040} \left[\frac{1}{2} \frac{y^2}{r^2} - \frac{1}{2} A \left(\frac{u'}{n'} + \frac{u}{n} \right) + 2 \frac{y}{r} u \right] + \frac{8}{\mathcal{K}} W_{040} \cdot W_{040} \frac{\overline{y}}{y}$$

Aperture vector at entrance pupil

$$W_{060I}^{+} = W_{040} \left[\frac{1}{2} \frac{y^{2}}{r^{2}} - \frac{1}{2} A \left(\frac{u'}{n'} + \frac{u}{n} \right) + 2 \frac{y}{r} u' \right] - \frac{8}{\mathcal{K}} W_{040} \cdot W_{040} \frac{\overline{y}}{y}$$

Aperture vector at exit pupil

Pupil aberrations

$$\begin{split} & \overline{W} \left(\vec{H}, \vec{\rho} \right) = \overline{W}_{000} + \overline{W}_{200} \left(\vec{\rho} \cdot \vec{\rho} \right) + \overline{W}_{111} \left(\vec{H} \cdot \vec{\rho} \right) + \overline{W}_{020} \left(\vec{H} \cdot \vec{H} \right) \\ & + \overline{W}_{040} \left(\vec{H} \cdot \vec{H} \right)^2 + \overline{W}_{131} \left(\vec{H} \cdot \vec{H} \right) \left(\vec{H} \cdot \vec{\rho} \right) + \overline{W}_{222} \left(\vec{H} \cdot \vec{\rho} \right)^2 \\ & + \overline{W}_{220} \left(\vec{H} \cdot \vec{H} \right) \left(\vec{\rho} \cdot \vec{\rho} \right) + \overline{W}_{311} \left(\vec{\rho} \cdot \vec{\rho} \right) \left(\vec{H} \cdot \vec{\rho} \right) + \overline{W}_{400} \left(\vec{\rho} \cdot \vec{\rho} \right)^2 \end{split}$$

Distortion at entrance pupil represents a cross-section deformation

$$\begin{split} \Delta \vec{\rho} &= -\frac{1}{\mathcal{K}} \nabla_{H} \vec{W} \Big(\vec{H}, \vec{\rho} \Big) \\ &= -\frac{1}{\mathcal{K}} \cdot \left\{ \!\! \frac{4 \cdot \vec{W}_{040} \Big(\vec{H} \cdot \vec{H} \Big) \vec{H} + \vec{W}_{131} \Big\{ \! \Big(\vec{H} \cdot \vec{H} \Big) \vec{\rho} + 2 \cdot \Big(\vec{H} \cdot \vec{\rho} \Big) \vec{H} \Big\} + \right\} \\ &2 \cdot \vec{W}_{222} \Big(\vec{H} \cdot \vec{\rho} \Big) \vec{\rho} + 2 \cdot \vec{W}_{220} \Big(\vec{\rho} \cdot \vec{\rho} \Big) \vec{H} + \vec{W}_{311} \Big(\vec{\rho} \cdot \vec{\rho} \Big) \vec{\rho} \end{split} \right\} \end{split}$$

Pupil grid mapping effects due to pupil aberrations in relation to the Gaussian pupil (dotted line grid). There is no effect from pupil piston.

Image vs. Pupil aberrations

Basic wavefront deformation shapes

 W_{040}

 W_{131}

 W_{220}

 $W_{_{311}}$

Basic cross-section deformation shapes

 \overline{W}_{131}

 \overline{W}_{222}

 \overline{W}_{220}

 W_{311}

Concept of pupil matching

- Not traditionally discussed.
- Pupil matching concept is important.
- Optical system connect: exit pupil of one connects with the entrance pupil of the next.
- Any pupil mismatch produces an effect.
- In general we have pupil mismatch

Example: f/#

$$\Delta y = \frac{1}{\overline{u}} \overline{W}_{311}$$

$$f / \# = \frac{f}{d - 2\Delta y}$$

(fourth-order contribution)

Exit pupil becomes entrance pupil for next surface

Extrinsic aberrations

$$W_{A}\left(\vec{H},\vec{\rho}\right) = W_{A}^{4}\left(\vec{H},\vec{\rho}\right) + W_{A}^{6}\left(\vec{H},\vec{\rho}\right)$$

$$W_{B}\left(\vec{H},\vec{\rho}\right) = W_{B}^{4}\left(\vec{H},\vec{\rho}\right) + W_{B}^{6}\left(\vec{H},\vec{\rho}\right)$$

$$W_A^4 \left(\vec{H}, \vec{\rho} + \Delta \vec{\rho}_B \right) = W_A^4 \left(\vec{H}, \vec{\rho} + \Delta \vec{\rho}_B \right) - W_A^4 \left(\vec{H}, \vec{\rho} \right) + W_A^4 \left(\vec{H}, \vec{\rho} \right)$$
$$= \nabla W_A^4 \left(\vec{H}, \vec{\rho} \right) \cdot \Delta \vec{\rho}_B + W_A^4 \left(\vec{H}, \vec{\rho} \right)$$

$$W_{E}\left(\vec{H},\vec{\rho}\right) = -\frac{1}{\mathcal{K}}\vec{\nabla}_{\rho}W_{A}\left(\vec{H},\vec{\rho}\right)\cdot\vec{\nabla}_{H}\vec{W}_{B}\left(\vec{H},\vec{\rho}\right)$$

Extrinsic coefficients from the combination Of system A and system B

$$\begin{split} W_{060E} &= -\frac{1}{\mathcal{K}} \left(4W_{040}^{A} \overline{W}_{311}^{B} \right) \\ W_{331E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 5W_{131}^{A} \overline{W}_{131}^{B} + 4W_{220}^{A} \overline{W}_{220}^{B} \\ + 4W_{220}^{A} \overline{W}_{222}^{B} + 4W_{222}^{A} \overline{W}_{220}^{B} \end{pmatrix} \\ W_{151E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 3W_{131}^{A} \overline{W}_{311}^{B} + 8W_{040}^{A} \overline{W}_{220}^{B} \\ + 8W_{040}^{A} \overline{W}_{222}^{B} \end{pmatrix} \\ W_{242E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 2W_{311}^{A} \overline{W}_{222}^{B} + 4W_{220}^{A} \overline{W}_{131}^{B} \\ + 6W_{131}^{A} \overline{W}_{222}^{B} \end{pmatrix} \\ W_{242E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 2W_{22}^{A} \overline{W}_{131}^{B} + 8W_{131}^{A} \overline{W}_{040}^{B} \\ + 6W_{131}^{A} \overline{W}_{222}^{B} + 8W_{040}^{A} \overline{W}_{131}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 4W_{222}^{A} \overline{W}_{222}^{B} \\ + 8W_{222}^{A} \overline{W}_{040}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 4W_{222}^{A} \overline{W}_{222}^{B} \\ + 8W_{222}^{A} \overline{W}_{040}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 8W_{220}^{A} \overline{W}_{040}^{B} \\ + 8W_{222}^{A} \overline{W}_{040}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 8W_{220}^{A} \overline{W}_{040}^{B} \\ + 8W_{222}^{A} \overline{W}_{040}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 8W_{220}^{A} \overline{W}_{040}^{B} \\ + 8W_{222}^{A} \overline{W}_{040}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 8W_{220}^{A} \overline{W}_{040}^{B} \\ + 8W_{222}^{A} \overline{W}_{040}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 8W_{220}^{A} \overline{W}_{040}^{B} \\ + 8W_{222}^{A} \overline{W}_{040}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 8W_{220}^{A} \overline{W}_{040}^{B} \\ + 8W_{222}^{A} \overline{W}_{040}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 8W_{220}^{A} \overline{W}_{040}^{B} \\ + 8W_{220}^{A} \overline{W}_{040}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 8W_{220}^{A} \overline{W}_{131}^{B} \\ + 8W_{220}^{A} \overline{W}_{131}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 8W_{220}^{A} \overline{W}_{131}^{B} \\ + 8W_{220}^{A} \overline{W}_{131}^{B} \end{pmatrix} \\ W_{240E} &= -\frac{1}{\mathcal{K}} \begin{pmatrix} 4W_{131}^{A} \overline{W}_{131}^{B} + 8W_{220}^{A} \overline{W}_{131}^{B} \\ + 8W_{220}^{A} \overline{W}_{131}^{B} \end{pmatrix} \\ W_{$$

Buchdahl-Rimmer fifth-order aberrations

$$\varepsilon_{y} = B\cos(\phi)\rho^{3} + F(2 + \cos(2\phi))\rho^{2}H + (3C + \pi)\cos(\phi)\rho H^{2} + EH^{3}
+ B_{5}\cos(\phi)\rho^{5} + (F_{1} + F_{2}\cos(2\phi))\rho^{4}H + (M_{1} + M_{2} + M_{3}\cos^{2}(\phi))\cos(\phi)\rho^{3}H^{2}
+ (N_{1} + N_{2}\cos^{2}(\phi))\rho^{2}H^{3} + (5C_{5} + \pi_{5})\cos(\phi)\rho H^{4} + E_{5}H^{5}
\varepsilon_{x} = B\sin(\phi)\rho^{3} + F\sin(2\phi)\rho^{2}H + (C + \pi)\sin(\phi)\rho H^{2}
+ B_{5}\sin(\phi)\rho^{5} + F_{2}\sin(2\phi)\rho^{4}H + (M_{2} + M_{3}\cos^{2}(\phi))\sin(\phi)\rho^{3}H^{2}
+ N_{3}\sin(2\phi)\rho^{2}H^{3} + (C_{5} + \pi_{5})\sin(\phi)\rho H^{4}$$

12 fifth-order terms

Aberration correction concepts

- Destroy an aberration (early days)
- Aberration correction (compensation): Add the opposite amount to have a net zero residual
- Aberration balancing: Add a different aberration and minimize or trade-off performance; fourth vs. higher order.
- Minimize an aberration.
- Do not generate an aberration
- Main mechanism for aberration correction is compensation and balancing

Aberration balancing: 4th order vs. higher order

Surface	W_{040}	W_{131}	W_{222}	W_{220}	W_{311}	W_{400}	$\partial_{\lambda}W_{020}$	$\delta_{\lambda}W_{111}$
1	6.77	16.16	9.64	39.24	52.59	-4.83	-10.83	-12.93
2	3.78	-44.19	129.24	-2.33	-364.36	47.54	-5.91	34.58
3	-16.16	96.72	-144.77	-28.29	301.39	-0.57	15.92	-47.64
4	-8.01	-56.45	- 99.48	-42.55	-325.33	-4.7	13.9	48.99
5	1.34	20.24	76.6	13.42	391.53	57.08	-4.39	-33.26
6	14.94	-32.46	17.64	36.86	-49.63	-5.32	-10.24	11.13
Sum	2.66	0.02	-11.13	16.35	6.19	89.21	-1.57	0.87

Summary

- Higher-order aberrations
- Pupil aberrations
- Aberration correction and balancing

