Exercises: Coordinate descent

Pierre Ablin

1 Coordinate descent

Coordinate descent is another optimization method. We let $f : \mathbb{R}^p \to \mathbb{R}$. Coordinate descent tries to minimize f alternatively with respect to individual coordinates.

We denote w^t the iterates. At iteration t, we chose an index $i \in \{1, ..., p\}$ and try to minimize f with respect to w_i^t without changing the other coordinates w_j^t , $j \neq i$. More formally, we define $\phi_i(x, w) = f(w_1, ..., w_{i-1}, x, w_{i+1}, w_p)$ and set at each iteration:

$$w_i^{t+1} = \arg\min_{x} \phi_i(x, w^t)$$
 and $w_j^{t+1} = w_j^t$ for $j \neq i$

The index i is typically chosen as cyclic: $i = 1 + (t \mod p)$. Therefore, at iteration 1, the coordinate 1 is updated, at iteration 2, the coordinate 2 is updated, ..., at iteration p the coordinate p is updated and at iteration p+1 the coordinate 1 is modified again.

1.1

Assume that f is the quadratic function:

$$f(w) = \frac{1}{2} \langle w, Aw \rangle - \langle b, w \rangle$$

Compute the update rule to minimize ϕ_i .

1.2

At iteration t+1, we update the coordinate i. Demonstrate that

$$f(w^{t+1}) - f(w^t) = -\frac{(Aw^t - b)_i^2}{2A_{ii}} \le -\frac{(Aw^t - b)_i^2}{2A_{\max}}$$

where $A_{max} = \max_i A_{ii}$

1.3

At iteration t, the coordinate that is updated is i such that $(Aw^t - b)_i^2$ is maximal. Show that

$$f(w^{t+1}) - f(w^t) \le -\frac{\|Aw^t - b\|^2}{2pA_{\max}}$$

1.4

Let $w^* = A^{-1}b$. Demonstrate that $||Aw - b||^2 \ge 2\sigma_{\min}(A)(f(w) - f(w^*))$.

Provide a convergence rate for the coordinate descent method. What is the difference with gradient descent? When is it faster, or slower? Hint: what is the link between A_{max} and $\sigma_{max}(A)$?

1.5

Now, derive a coordinate descent rule for the Lasso problem.

$$\min_{w} \frac{1}{2} \|Xw - y\|^2 + \lambda \|w\|_1$$