AI607: GRAPH MINING AND SOCIAL NETWORK ANALYSIS (FALL 2020)

Homework 5: Take-home Final Exam

Release: Dec 04, 2020, Due: Dec 18, 2020, 11:59pm

(Late submissions will not be accepted. Late passes cannot be used for this homework.)

1 Linear Threshold Model (25 points)

Recall the *linear threshold model*, which can be described below:

- Consider a graph G where every node starts with behavior B.
- A small set S of early adopters adopt A and never changes their behavior.
- Each of the other nodes switches from B to A if and only if at least a fraction q of their neighbors have adopted A.
- The process terminates if no node changes their behavior.

Definition 1. A cluster of density p is defined as a set of nodes such that each node in the set has at least a p fraction of its neighbors in the set.

Definition 2. We say that a **complete cascade** happens if eventually every node switches from B to A.

- 1. (15 points) Prove or disprove the following claim: "If there exists a cluster of density greater than 1-q such that no early adopter belongs to the cluster, then the set of initial adopters will not cause a complete cascade."
- 2. (10 points) Prove or disprove the following claim: "If a set of initial adopters does not cause a complete cascade, there must exists a cluster of density greater than 1-q such that no early adopter belongs to the cluster."

2 Triangle Counting (25 points)

Consider a graph G. G contains τ triangles (i.e., 3-cliques), and k (unordered) pairs of the triangles share an edge. We delete each edge in G independently with probability 1-p. Let G' be the remaining graph, and let X be the number of triangles in G'.

- 1. (15 points) Prove or disprove the following claim: $E[X] = p^3 \tau$.
- 2. (10 points) Prove or disprove the following claim: $Var(X) = \tau(p^3 p^6) + 2k(p^5 p^6)$

3 Kronecker Model (30 points)

Consider an initiator graph be G_1 without self-loops. In the (deterministic) Kronecker model, by recursion, we produce successively larger graphs G_2, G_3, \cdots .

- 1. (15 points) Prove or disprove the following claim: "If we let d_k^{max} be the maximum degree of nodes in G_k , then $d_k^{max} = (d_1^{max})^k$."
- 2. (15 points) Prove or disprove the following claim: "If we let D_k be the diameter of G_k , then $D_k = (D_1)^k$."

4 Graphlet (20 points)

Below, we show all 2-, 3-, and 4-node graphlets, from which we can calculate a Graphlet Degree Vectors of size 14 (GDV-14).

Consider the following graph *G*:

- 1. (10 points) What is the GDV-14 of node u?
- 2. (10 points) What is the GDV-14 of node v?

5 How to submit your assignment

- 1. Create hw5-[your student id].tar.gz, which should contain the following files:
 - report.pdf: this should contain your answers.
- 2. Make sure that no other files are included in the tar.gz file.
- 3. Submit the tar.gz file at KLMS (http://klms.kaist.ac.kr).
- 4. If you have any questions, please post them on CLASSUM. Any ideas can be taken into consideration when grading if they are written in the *readme* file.