

中华人民共和国密码行业标准

GM/T 0002-2012

SM4 分组密码算法

SM4 block cipher algorithm

2012-03-21 发布 2012-03-21 实施

目 次

甫	筒膏	. 11
1	,5,2	
2	术语和定义	1
3		
4	算法结构	1
5		
6	轮函数 F ·····	2
	6.1 轮函数结构	
	6.2 合成置换 T ······	2
7	算法描述	3
	7.1 加密算法	3
	7.2 解密算法	
	7.3 密钥扩展算法	3
附	寸录 Λ(资料性附录) 运算示例	4
	A.1 示例 1 ······	4
	Λ.2 示例 2 ······	5

前言

本标准依据 GB/T 1.1 2009 给出的规则起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。

本标准的附录△为资料性附录。

本标准由国家密码管理局提出并归口。

本标准起草单位:中国科学院数据与通信保护研究教育中心、国家密码管理局商用密码检测中心。本标准主要起草人: 吕述望、李大为、张超、张众、董芳、毛颖颖、刘振华。

SM4 分组密码算法

1 范围

本标准规定了 SM4 分组密码算法的算法结构和算法描述,并给出了运算示例。 本标准适用于密码应用中使用分组密码的需求。

2 术语和定义

下列术语和定义适用于本文件。

2.1

分组长度 block length

一个信息分组的比特位数。

2.2

密钥长度 key length

密钥的比特位数。

2.3

密钥扩展算法 key expansion algorithm

将密钥变换为轮密钥的运算单元。

2.4

轮数 rounds

轮函数的迭代次数。

2.5

字 word

长度为32比特的组(串)。

2.6

S 盒 S-box

S 盒为固定的 8 比特输入 8 比特输出的置换,记为 Sbox(.)。

3 符号和缩略语

下列符号和缩略语适用于本文件,

① 32 位异或

<<<ii>32 位循环左移 i 位

4 算法结构

SM4 密码算法是一个分组算法。该算法的分组长度为 128 比特,密钥长度为 128 比特。加密算法与密钥扩展算法都采用 32 轮非线性迭代结构。数据解密和数据加密的算法结构相同,只是轮密钥的使用顺序相反,解密轮密钥是加密轮密钥的逆序。

5 密钥及密钥参量

加密密钥长度为 128 比特,表示为 $MK-(MK_0,MK_1,MK_2,MK_3)$,其中 $MK_i(i-0,1,2,3)$ 为字。 轮密钥表示为 $(rk_0,rk_1,\cdots,rk_{31})$,其中 $rk_i(i-0,\cdots,31)$ 为 32 比特字。轮密钥由加密密钥生成。 $FK-(FK_0,FK_1,FK_2,FK_3)$ 为系统参数, $CK-(CK_0,CK_1,\cdots,CK_{31})$ 为固定参数,用于密钥扩展 算法,其中 $FK_i(i-0,\cdots,3)$ 、 $CK_i(i-0,\cdots,31)$ 为字。

6 轮函数 F

6.1 轮函数结构

设输入为 $(X_0, X_1, X_2, X_3) \in (Z_2^{32})^4$,轮密钥为 $rk \in Z_2^{32}$,则轮函数 F 为: $F(X_0, X_1, X_2, X_3, rk) - X_0 \oplus T(X_1 \oplus X_2 \oplus X_3 \oplus rk)$

6.2 合成置换 T

 $T: \mathbb{Z}_2^{32} \to \mathbb{Z}_2^{32}$ 是一个可逆变换,由非线性变换 τ 和线性变换 L 复合而成,即 $T(.) - L(\tau(.))$ 。

(1) 非线性变换 で

τ由 4 个并行的 S 盒构成。

设输入为 $\Lambda - (a_0, a_1, a_2, a_3) \in (Z_2^8)^4$,输出为 $B - (b_0, b_1, b_2, b_3) \in (Z_2^8)^4$,则 $(b_0, b_1, b_2, b_3) - \tau(\Lambda) - (\operatorname{Sbox}(a_0), \operatorname{Sbox}(a_1), \operatorname{Sbox}(a_2), \operatorname{Sbox}(a_3))$

其中,Sbox 数据如下:

	0	1	2	3	4	5	6	7	8	9	Λ	В	С	D	E	F
0	D6	90	E9	FE	CC	El	3D	В7	16	B6	14	C2	28	FB	2C	05
1	2B	67	9Λ	76	2Λ	BE	04	С3	ΛΛ	44	13	26	49	86	06	99
2	9C	42	50	F4	91	EF	98	7Λ	33	54	0B	43	ED	CF	ΛC	62
3	E4	B3	1C	Λ9	C9	08	E8	95	80	DF	94	FΛ	75	8 F	3 F	Λ6
4	47	07	Λ7	FC	F 3	73	17	ВΛ	83	59	3C	19	E6	85	4F	Λ8
5	68	6B	81	B2	71	64	DΛ	8B	F8	EB	0F	4B	70	56	9D	35
6	1E	24	0E	5E	63	58	D1	Λ2	25	22	7C	3B	01	21	78	87
7	D4	00	46	57	9 F	D3	27	52	4C	36	02	E7	Λ0	C4	C8	9E
8	EΛ	BF	8Λ	D2	40	C7	38	B 5	Λ3	F 7	F 2	CE	F9	61	15	. Λ1
9	E0	ΛE	5D	Λ4	9B	34	1Λ	55	ΛD	93	32	30	F 5	8C	Bl	E3
Λ	1D	F6	E2	2E	82	66	СЛ	60	Co	29	23	ΛВ	0D	53	4E	6F
В	D5	DB	37	45	DE	FD	8E	2 F	03	FF	6Λ	72	6D	6C	5B	51
С	8D	1B	ΛF	92	BB	DD	BC	7 F	11	D9	5C	41	1 F	10	5Λ	D8
D	0Λ	C1	31	88	Λ5	CD	7B	BD	2D	74	D0	12	B8	E5	B4	B0
E	89	69	97	4Λ	0C	96	77	7E	65	B9	Fl	09	C5	6E	C6	84
F	18	FO	7D	EC	3Λ	DC	4D	20	79	EE	5 F	3E	D7	СВ	39	48

注:输入'EF',则经S盒后的值为表中第E行和第F列的值,Sbox(EF) 84。

(2) 线性变换 L

非线性变换 τ 的输出是线性变换L的输入。设输入为 $B \in \mathbb{Z}_2^{32}$,输出为 $C \in \mathbb{Z}_2^{32}$,则:

 $C-L(B)-B \oplus (B <<<2) \oplus (B <<<10) \oplus (B <<<18) \oplus (B <<<24)$

7 算法描述

7.1 加密算法

本加密算法由 32 次迭代运算和 1 次反序变换 R 组成。

设明文输入为 $(X_0, X_1, X_2, X_3) \in (Z_2^{32})^4$,密文输出为 $(Y_0, Y_1, Y_2, Y_3) \in (Z_2^{32})^4$,轮密钥为 $rk_i \in Z_2^{32}$, $i=0,1,2,\cdots,31$ 。加密算法的运算过程如下:

- (1)32 次迭代运算: $X_{i+4} = F(X_i, X_{i+1}, X_{i+2}, X_{i+3}, rk_i)$, $i=0,1,\cdots,31$;
- (2) 反序变换: $(Y_0, Y_1, Y_2, Y_3) R(X_{32}, X_{33}, X_{34}, X_{35}) (X_{35}, X_{34}, X_{33}, X_{32})$.

7.2 解密算法

本算法的解密变换与加密变换结构相同,不同的仅是轮密钥的使用顺序。解密时,使用轮密钥序 $(rk_{31}, rk_{30}, \dots, rk_{0})$ 。

7.3 密钥扩展算法

本算法轮密钥由加密密钥通过密钥扩展算法生成。

加密密钥 $MK = (MK_0, MK_1, MK_2, MK_3) \in (Z_2^{32})^4$, 轮密钥生成方法为:

 $(K_0, K_1, K_2, K_3) = (MK_0 \oplus FK_0, MK_1 \oplus FK_1, MK_2 \oplus FK_2, MK_3 \oplus FK_3)$,

 $rk_i - K_{i+4} - K_i \oplus T'(K_{i+1} \oplus K_{i+2} \oplus K_{i+3} \oplus CK_i), i = 0, 1, \cdots, 31.$

其中:

- (1) T' 是将 6.2 中合成置换 T 的线性变换 L 替换为 L':
- $L'(B) = B \oplus (B < < 13) \oplus (B < < 23)$;
- (2) 系统参数 FK 的取值为:

 $FK_0 = (\Lambda 3B1B\Lambda C6), FK_1 = (56\Lambda\Lambda 3350), FK_2 = (677D9197), FK_3 = (B27022DC);$

(3) 固定参数 CK 取值方法为:

设 $ck_{i,j}$ 为 CK_i 的第 j 字节 $(i-0,1,\cdots,31;j-0,1,2,3)$,即 $CK_i-(ck_{i,0},ck_{i,1},ck_{i,2},ck_{i,3}) \in (Z_2^8)^4$,则 $ck_{i,j}-(4i+j)\times 7 \pmod{256}$ 。

固定参数 $CK_i(i-0,1,\cdots,31)$ 具体值为:

00070E15, 1C232Λ31, 383F464D, 545B6269,

70777E85, 8C939AA1, A8AFB6BD, C4CBD2D9,

E0E7EEF5, FC030A11, 181F262D, 343B4249,

50575E65, 6C737A81, 888F969D, A4ABB2B9,

COC7CED5, DCE3EAF1, F8FF060D, 141B2229,

30373E45, 4C535Λ61, 686F767D, 848B9299,

AOA7AEB5, BCC3CAD1, D8DFE6ED, F4FB0209,

10171E25, 2C333Λ41, 484F565D, 646B7279.

附 录 A (资料性附录) 运 算 示 例

A.1 示例 1

本部分为 SM4 分组密码算法对一组明文进行加密的运算示例。 输入明文: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 输入密钥: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 轮密钥与每轮输出状态:

```
rk \lceil 0 \rceil - F12186F9 \quad X \lceil 4 \rceil - 27F\Lambda D345
rk \lceil 1 \rceil - 41662B61 \quad X \lceil 5 \rceil - \Lambda 18B4CB2
rk \lceil 2 \rceil - 5\Lambda 6\Lambda B 19\Lambda X \lceil 6 \rceil - 11C1E22\Lambda
rk[3] = 7BA92077 X[7] = CC13E2EE
rk[4] = 367360F4 X[8] = F87C5BD5
rk [5] - 776 \Lambda 0 C61 X [9] - 33220757
rk [6] - B6BB89B3 X[10] - 77F4C297
rk[7]-24763151 X[11]-7A96F2EB
rk[8] - \Lambda520307C X[12] - 27D\LambdaC07F
rk \lceil 9 \rceil - B7584DBD X \lceil 13 \rceil - 42DD0F19
rk[10] - C30753ED X[14] - B8A5DA02
rk[11]-7EE55B57 X[15]-907127FA
rk[12] = 6988608C \quad X[16] = 8B952B83
rk[13] - 30D895B7 X[17] - D42B7C59
rk \lceil 14 \rceil - 44B\Lambda 14\Lambda F X \lceil 18 \rceil - 2FFC5831
rk \lceil 15 \rceil - 104495 \Lambda 1 \quad X \lceil 19 \rceil - F69E6888
rk \lceil 16 \rceil - D120B428 \quad X \lceil 20 \rceil - \Lambda F2432C4
rk \lceil 17 \rceil - 73B55FA3 X \lceil 21 \rceil - ED1EC85E
rk \lceil 18 \rceil - CC874966 \quad X \lceil 22 \rceil - 55 \Lambda 3B \Lambda 22
rk[19] - 92244439 \quad X[23] - 124B18\Lambda\Lambda
rk[20] - E89E641F X[24] - 6\LambdaE7725F
rk[21] - 98C\Lambda015\Lambda X[25] - F4CB\Lambda1F9
rk\lceil 22 \rceil - C7159060 \quad X\lceil 26 \rceil - 1DCDFA10
rk[23]-99E1FD2E X[27]-2FF60603
rk[24]-B79BD80C X[28]-EFF24FDC
rk[25] = 1D2115B0 X[29] = 6FE46B75
rk\lceil 26\rceil - 0E228\Lambda EB X\lceil 30\rceil - 893450\Lambda D
rk[27]-F1780C81 X[31]-7B938F4C
rk[28]-428D3654 X[32]-536E4246
rk[29]-62293496 X[33]-86B3E94F
```

rk[30] - 01CF72E5 X[34] - D206965E

rk[31]—9124A012 X[35]—681EDF34 输出密文: 68 1E DF 34 D2 06 96 5E 86 B3 E9 4F 53 6E 42 46

A.2 示例 2

本部分为 SM4 分组密码算法使用固定的加密密钥,对一组明文反复加密 1 000 000 次的运算示例。

输入明文: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 输入密钥: 01 23 45 67 89 AB CD EF FE DC BA 98 76 54 32 10 输出密文: 59 52 98 C7 C6 FD 27 1F 04 02 F8 04 C3 3D 3F 66

中华人民共和国密码 行业标准 SM4分组密码算法 GM/T 0002 2012

*

中 国标 准出 版社 出版 发行 北京市朝阳区和平里西街甲 2 号(100013) 北京市西城区三里河北街 16 号(100045)

网址 www.spc.net.cn 总编室:(010)64275323 发行中心:(010)51780235 读者服务部:(010)68523946

中国标准出版社秦皇岛印刷厂印刷 各地新华书店经销

开本 880×1230 1/16 印张 0.75 字数 11 千字 2012年8月第一版 2012年8月第一次印刷

书号: 155066 · 2-23741 定价 16.00 元

如有印装差错 由本社发行中心调换 版权专有 侵权必究 举报电话:(010)68510107

