МНОГОМЕРНЫЕ СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Пример 1. Задан закон распределения двумерной СВ $(\xi; \eta)$:

ξ\η	-2	0	2	
1	0,15	λ	0	
2	0,1	0,2	0,1	
3	λ	0,1	0,25	

Требуется:

- **а)** определить значение параметра λ ;
- б) найти законы распределения компонент двумерной СВ;
- **в)** выяснить, зависимы ли компоненты двумерной СВ $(\xi; \eta)$;
- Γ) вычислить математические ожидания $M\xi$ и $M\eta$;
- д) вычислить дисперсии $D\xi$ и $D\eta$;
- е) найти коэффициент корреляции между ξ и η;
- ж) найти $P(\eta \ge \xi)$.

Решение. а) Для нахождения значения параметра λ воспользуемся условием нормировки $\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} = 1$ (сумма всех вероятностей должна быть равна 1):

$$\sum_{i=1}^{n} \sum_{j=1}^{m} p_{ij} = 0.15 + \lambda + 0 + 0.1 + 0.2 + 0.1 + \lambda + 0.1 + 0.25 = 0.9 + 2\lambda = 1.$$

Следовательно, $\lambda = 0.05$.

б) Подставив найденное значение параметра λ в таблицу, получим закон распределения двумерной СВ (ξ ; η). Суммируя вероятности по строкам, получим вероятности различных значений СВ ξ ; суммируя по столбцам – вероятности для СВ η .

ξ\η	-2	0	2	p^*	
1	0,15	0,05	0	0,2	
2	0,1	0,2	0,1	0,4	
3	0,05	0,1	0,25	0,4	
p^{**}	0,3	0,35	0,35		

Законы распределения компонент двумерной СВ $(\xi;\eta)$ запишутся в следующем виде:

ξ	1	2	3	η	-2	0	2
P	0,2	0,4	0,4	P	0,3	0,35	0,35

в) Для проверки зависимости СВ ξ и η используем критерий независимости дискретных СВ: СВ ξ и η с совместным распределением $p_{ij} = P(\xi = x_i; \eta = y_j)$, $1 \le i \le n, 1 \le j \le m$, независимы тогда и только тогда, когда $p_{ij} = P(\xi = x_i) \cdot P(\eta = y_j)$ для всех $1 \le i \le n, 1 \le j \le m$. Поскольку

$$P(\xi=1;\eta=-2)=0,15\neq P(\xi=1)\cdot P(\eta=-2)=0,2\cdot 0,3=0,06\,,$$
 то CB ξ и η зависимы.

г) Зная законы распределения СВ ξ и η , вычислим их математические ожидания:

$$M\xi = \sum_{i=1}^{n} x_i p_i^* = 1 \cdot 0,2 + 2 \cdot 0,4 + 3 \cdot 0,4 = 2,2;$$

$$M\eta = \sum_{j=1}^{m} y_j p_j^{**} = -2 \cdot 0,3 + 0 \cdot 0,35 + 2 \cdot 0,35 = 0,1.$$

д) Для вычисления дисперсий воспользуемся формулой $D\xi = M(\xi^2) - (M\xi)^2$:

$$M(\xi^{2}) = \sum_{i=1}^{n} x_{i}^{2} p_{i}^{*} = 1^{2} \cdot 0.2 + 2^{2} \cdot 0.4 + 3^{2} \cdot 0.4 = 0.2 + 1.6 + 3.6 = 5.4;$$

$$D\xi = 5.4 - (2.2)^{2} = 5.4 - 4.84 = 0.56;$$

$$M(\eta^{2}) = \sum_{j=1}^{m} y_{j}^{2} p_{j}^{**} = (-2)^{2} \cdot 0.3 + 0^{2} \cdot 0.35 + 2^{2} \cdot 0.35 = 1.2 + 1.4 = 2.6;$$

$$D\eta = 2.6 - (0.1)^{2} = 2.59.$$

е) Для вычисления коэффициента корреляции найдем:

$$M(\xi \eta) = \sum_{i=1}^{n} \sum_{j=1}^{m} x_{i} y_{j} p_{ij} = 1 \cdot (-2) \cdot 0,15 + 1 \cdot 0 \cdot 0,05 + 1 \cdot 2 \cdot 0 +$$

$$+ 2 \cdot (-2) \cdot 0,1 + 2 \cdot 0 \cdot 0,2 + 2 \cdot 2 \cdot 0,1 + 3 \cdot (-2) \cdot 0,05 + 3 \cdot 0 \cdot 0,1 + 3 \cdot 2 \cdot 0,25 =$$

$$= -0,3 + 0 + 0 - 0,4 + 0 + 0,4 - 0,3 + 0 + 1,5 = 0,9;$$

$$r_{\xi;\eta} = \frac{M(\xi \eta) - M\xi \cdot M\eta}{\sqrt{D\xi \cdot D\eta}} = \frac{0,9 - 2,2 \cdot 0,1}{\sqrt{0,56 \cdot 2,59}} \approx 0,5646.$$

Поскольку $r_{\xi,\eta} \neq 0$, это также свидетельствует о том, что СВ ξ и η зависимы.

ж) Для вычисления вероятности $P(\eta \ge \xi)$ выберем те пары значений СВ ξ и η , которые удовлетворяют неравенству $\eta \ge \xi$:

$$P(\eta \ge \xi) = P(\xi = 1; \eta = 2) + P(\xi = 2; \eta = 2) = 0 + 0, 1 = 0, 1.$$

Пример 2. Задана плотность распределения двумерной СВ $(\xi;\eta)$

$$p(x;y) = \begin{cases} axy, & \text{если } (x;y) \in D, \\ 0, & \text{если } (x;y) \notin D, \end{cases}$$

где D — треугольник, ограниченный осями координат и прямой x+y=1 .

Требуется найти:

- a) коэффициент a;
- **б)** математические ожидания $M\xi$ и $M\eta$;
- **в)** дисперсии $D\xi$ и $D\eta$;
- Γ) коэффициент корреляции между ξ и η ;
- **д)** выяснить, зависимы ли компоненты двумерной СВ $(\xi;\eta)$;
- е) найти плотности распределения СВ ξ и η;
- ж) вероятность $P(\xi + \eta < 0.5)$.

Решение. **а)** Для нахождения значения параметра a воспользуемся свойством плотности распределения: $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x;y) dx dy = 1$.

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} p(x;y) dx dy = a \int_{0}^{1} dx \int_{0}^{1-x} xy dy = a \int_{0}^{1} \frac{xy^{2}}{2} \bigg|_{0}^{1-x} dx = a \int_{0}^{1} \frac{x(1-x)^{2}}{2} dx =$$

$$= \frac{a}{2} \int_{0}^{1} (x - 2x^{2} + x^{3}) dx = \frac{a}{2} \left(\frac{x^{2}}{2} - \frac{2x^{3}}{3} + \frac{x^{4}}{4} \right) \bigg|_{0}^{1} = \frac{a}{2} \cdot \left(\frac{1}{2} - \frac{2}{3} + \frac{1}{4} \right) = \frac{a}{2} \cdot \frac{1}{12} = \frac{a}{24} = 1.$$

Следовательно, a = 24.

б) Вычислим математическое ожидание CB ξ:

$$M\xi = \int_{-\infty - \infty}^{+\infty + \infty} xp(x; y) dx dy = 24 \int_{0}^{1} dx \int_{0}^{1-x} x^{2} y dy = 24 \int_{0}^{1} \frac{x^{2} y^{2}}{2} \bigg|_{0}^{1-x} dx =$$

$$= 24 \int_{0}^{1} \frac{x^{2} (1-x)^{2}}{2} dx = 12 \int_{0}^{1} \left(x^{2} - 2x^{3} + x^{4}\right) dx = 12 \cdot \left(\frac{x^{3}}{3} - \frac{x^{4}}{2} + \frac{x^{5}}{5}\right) \bigg|_{0}^{1} =$$

$$= 12 \cdot \left(\frac{1}{3} - \frac{1}{2} + \frac{1}{5}\right) = 12 \cdot \frac{1}{30} = \frac{2}{5} = 0, 4.$$

Аналогично получим $M\eta = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y p(x;y) dx dy = 24 \int_{0}^{1} dx \int_{0}^{1-x} x y^2 dy = 0,4$.

в) Поскольку

$$M(\xi^{2}) = \int_{-\infty - \infty}^{+\infty + \infty} x^{2} p(x; y) dx dy = 24 \int_{0}^{1} dx \int_{0}^{1-x} x^{3} y dy = 24 \int_{0}^{1} \frac{x^{3} y^{2}}{2} \Big|_{0}^{1-x} dx =$$

$$= 24 \int_{0}^{1} \frac{x^{3} (1-x)^{2}}{2} dx = 12 \int_{0}^{1} (x^{3} - 2x^{4} + x^{5}) dx = 12 \cdot \left(\frac{x^{4}}{4} - \frac{2x^{5}}{5} + \frac{x^{6}}{6}\right) \Big|_{0}^{1} =$$

$$= 12 \cdot \left(\frac{1}{4} - \frac{2}{5} + \frac{1}{6}\right) = 12 \cdot \frac{1}{60} = \frac{1}{5} = 0,2;$$

$$D\xi = 0,2 - (0,4)^{2} = 0,2 - 0,16 = 0,04.$$

Аналогично имеем $M(\eta^2) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y^2 p(x;y) dx dy = 24 \int_{0}^{1} dx \int_{0}^{1-x} xy^3 dy = 0,2;$ $D\eta = 0,2 - (0,4)^2 = 0,2 - 0,16 = 0,04.$

г) Для вычисления коэффициента корреляции найдем:

$$M(\xi \eta) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xyp(x;y) dxdy = 24 \int_{0}^{1} dx \int_{0}^{1-x} x^{2} y^{2} dy = 24 \int_{0}^{1} \frac{x^{2} y^{3}}{3} \bigg|_{0}^{1-x} dx = \frac{1}{2} \int_{0}^{1-x} xyp(x;y) dxdy = \frac{1}{2} \int_{0}^{1} \frac{x^{2} y^{3}}{3} \int_{0}^{1-x} dx = \frac{1}{2} \int_{0}^{1-x} xyp(x;y) dxdy = \frac{1}{2} \int_{0$$

$$=24\int_{0}^{1} \frac{x^{2}(1-x)^{3}}{3} dx = 8\int_{0}^{1} \left(x^{2} - 3x^{3} + 3x^{4} - x^{5}\right) dx = 8 \cdot \left(\frac{x^{3}}{3} - \frac{3x^{4}}{4} + \frac{3x^{5}}{5} - \frac{x^{6}}{6}\right)\Big|_{0}^{1} =$$

$$=8 \cdot \left(\frac{1}{3} - \frac{3}{4} + \frac{3}{5} - \frac{1}{6}\right) = 8 \cdot \frac{1}{60} = \frac{2}{15};$$

$$r_{\xi,\eta} = \frac{M(\xi\eta) - M\xi \cdot M\eta}{\sqrt{D\xi \cdot D\eta}} = \frac{\frac{2}{15} - \frac{2}{5} \cdot \frac{2}{5}}{\sqrt{0,04 \cdot 0,04}} = -\frac{2}{3}.$$

- д) Поскольку $r_{\xi;\eta} \neq 0$, то CB ξ и η зависимы.
- е) Найдем плотность распределения СВ ξ по формуле $p_{\xi}(x) = \int\limits_{-\infty}^{+\infty} p(x;y) dy$:

если
$$x \in [0;1]$$
, то $p_{\xi}(x) = \int_{-\infty}^{+\infty} p(x;y) dy = 24x \int_{0}^{1-x} y dy = 24x \frac{y^2}{2} \Big|_{0}^{1-x} = 12x(1-x)^2;$ если $x \notin [0;1]$, то $p_{\xi}(x) = \int_{-\infty}^{+\infty} p(x;y) dy = \int_{0}^{+\infty} 0 dy = 0.$

Таким образом,
$$p_{\xi}(x) = \begin{cases} 12x(1-x)^2, & \text{если } x \in [0;1], \\ 0, & \text{если } x \notin [0;1]. \end{cases}$$

Аналогично получаем, что $p_{\eta}(y) = \begin{cases} 12y(1-y)^2, & \text{если } y \in [0;1], \\ 0, & \text{если } y \notin [0;1]. \end{cases}$

ж) Вычислим вероятность

$$P(\xi + \eta < 0.5) = \iint_{x+y<0.5} p(x;y) dx dy = 24 \int_{0}^{0.5} dx \int_{0}^{0.5-x} xy dy = 24 \int_{0}^{0.5} \frac{xy^2}{2} \bigg|_{0}^{0.5-x} dx =$$

$$= 24 \int_{0}^{0.5} \frac{x(0.5-x)^2}{2} dx = 12 \int_{0}^{0.5} \left(\frac{x}{4} - x^2 + x^3\right) dx = 12 \left(\frac{x^2}{8} - \frac{x^3}{3} + \frac{x^4}{4}\right) \bigg|_{0}^{1/2} =$$

$$= 12 \cdot \left(\frac{1}{32} - \frac{1}{24} + \frac{1}{64}\right) = 12 \cdot \frac{1}{192} = \frac{1}{16}.$$