DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING THE UNIVERSITY OF TEXAS AT ARLINGTON

ARCHITECTURAL DESIGN SPECIFICATION CSE 4316: SENIOR DESIGN I FALL 2019

TRANSACT TRANSLOCATE

Transact - Fall 2019 page 1 of 22

KOPAWID SARAWICHITR
NOLAN BOWDEN
PRANAV BHANDARI
JIAN MA
AN NGUYEN

Transact - Fall 2019 page 2 of 22

REVISION HISTORY

Revision	Date	Author(s)	Description
0.1	10.01.2019	KS	document creation
0.2	10.05.2019	KS, NB, PB, JM,	complete draft
		AN	
0.3	10.12.2019	KS, NB, PB, JM,	release candidate 1
		AN	
1.0	05.08.2020	KS	official release

Transact - Fall 2019 page 3 of 22

CONTENTS

1	Introduction	6
2	System Overview 2.1 Cloud Layer Description	7 7 7
3	Subsystem Definitions & Data Flow	8
4	Cloud Layer Subsystems	9
	4.1 Server	9
	4.2 Location Configuration Service Subsystem	10
	4.3 Pub/Sub Trigger Subsystem	
	4.4 Admin Portal Interface	
	4.5 Modify Location	13
	4.6 User Interface	15
5	Mobile Layer Subsystems	16
	5.1 Feature Interface Subsystem	16
	5.2 Data Processing Subsystem	17
	5.3 Cloud Connection Subsystem	17
	5.4 GPS	18
	5.5 BLE Detection	20

Transact - Fall 2019 page 4 of 22

LIST OF FIGURES

1	An overview of the software architectural design diagram	7
2	Data flow diagram	8
3	Server description diagram	9
4	Location Configuration subsystem description diagram	10
5	Pub/Sub subsystem description diagram	11
6	Admin portal diagram	13
7	Event Grid	14
8	User Interface subsystem description diagram	16
9	Data Processing subsystem description diagram	18
10	Cloud Connection subsystem description diagram	19
11	Example subsystem description diagram	19
12	Example subsystem description diagram	20
LIST	OF TABLES	
LIST 0	OF TABLES Mobile Handle Service Subsystem	10
	Mobile Handle Service Subsystem	10 11
2		
2 3	Mobile Handle Service Subsystem	11
2 3 4	Mobile Handle Service Subsystem	11 12
2 3 4 5	Mobile Handle Service Subsystem	11 12 13
2 3 4 5 6	Mobile Handle Service Subsystem	11 12 13 15
2 3 4 5 6 7	Mobile Handle Service Subsystem Location Configuration Service Subsystem Pub/Sub Subsystem Subsystem interfaces Modify Location User Interface	11 12 13 15 15
2 3 4 5 6 7 8	Mobile Handle Service Subsystem Location Configuration Service Subsystem Pub/Sub Subsystem Subsystem interfaces Modify Location User Interface Subsystem interfaces	11 12 13 15 15
2 3 4 5 6 7 8	Mobile Handle Service Subsystem Location Configuration Service Subsystem Pub/Sub Subsystem Subsystem interfaces Modify Location User Interface Subsystem interfaces Subsystem interfaces Subsystem interfaces	11 12 13 15 15 17

Transact - Fall 2019 page 5 of 22

1 Introduction

Our product is a Location Based Messaging engine. The concept of this product is to provide users with messages based on the location they are currently at. This product will use a system of location gathering technologies, a mobile application, and a cloud infrastructure to accomplish this task. How our product will work is as such, the location information is gained by the use of a combination of BLE and GPS which then is received by a mobile application, the app will then send the location data along with the user identity information to then be processed in the cloud, the cloud will then publish the user information and the corresponding location, so subscribers will be able to send a message to the user.

Transact - Fall 2019 page 6 of 22

2 System Overview

This project have two major components. There is a mobile application and a cloud infrastructure. Within the mobile app side, there are two app that are were design. App number one deal with the subscriber and app number two handle the location detection. On the cloud side, there is a Pub/Sub trigger system, a location configuration system, and an admin portal. With the combination of these systems, we are creating a location based messaging engine.

Figure 1: An overview of the software architectural design diagram

2.1 CLOUD LAYER DESCRIPTION

The Cloud layer will be developed to handle the location data received from the mobile devices, and then process and send that data to the event service. The data will flow within the cloud infrastructure through multiple subsystems. The server will be the first place the data will reach, here is where the data is received from the mobile device and sent to the Pub/Sub Trigger subsystem. The subscribers will receive the user identity and location from the pub/sub subsystem. The data will then move onto the Location Management Subsystem. The Location Management subsystem will determine if the user is in an existing location or not. It will check the database for validity. If all the data are valid they will receive a text massage. Admin Portal is an HTTP website which control all locations within the system. Admin can add, update, and delete locations and BLE beacons. All locations will be stored in Admin database. When a location is add, delete or update, admin database will also be updated. Then all admin interface will send a the update information to the location configuration.

2.2 MOBILE LAYER DESCRIPTION

The role of the mobile layer is to receive the signals from the location detecting technologies and send the data to the cloud, and for subscriber to register and sent messages to be add to the queue in the cloud. The Location Detection App will receive signal from the BLE Beacon, containing the BLE identification information's, and will get the GPS information's from the the mobile phone internal software. The data is then passed onto the Data Processing subsystem for packaging to be sent to the cloud. Before the packet is sent to the cloud, additional relevant device information is added. After processing stage is finish, the packet is sent to the Cloud Connection subsystem to be sent to the cloud. The Subscriber App will allow subscribers to register for an account to send message to a certain location. The Location detected layer is a key point for this project. The equipment for location detection are GPS and the BLE beacons. The equipment will detect the userâs phone and send that location information to the mobile phone application. The application will send data to the cloud server for next step data processing.

Transact - Fall 2019 page 7 of 22

3 Subsystem Definitions & Data Flow

Once the user gets into the detect area the BLE beacon and GPS will start to collect the userâs position data. BLE has more accuracy if the team can set up at least 3 BLE in same area, the cloud will using Algorithm to calculate the specific location information the accuracy can be within 3 meters. GPS can be used inside and outside buildings, since we have to detect users inside the build we should use other technology to support indoor detection. Once the equipment finished collecting data, the equipment will send those data to the application on the userâs phone. And the application will send it to the cloud server. The mobile system will be developed to receive the signal from multiple location detecting technologies, and process the data to send relevant details to the cloud. The signal is received in the first subsystem and processed in the other subsystems. The details of the cloud are extracted, and relevant device details are added to the packet before sending it to the cloud. The cloud then processes the packet received to perform actions. The Cloud layer will be developed to handle the location data received from the mobile devices, and then process and send that data to the event service. The data will flow within the cloud infrastructure through multiple subsystems. First, the server, where the data is received from the mobile device and sent to the location management subsystem. Then the Location Management subsystem will determine if the user is in an existing location stored by our system and if so send the data to be published via the pub/sub subsystem. The subscribers will then receive the user identity and location from the pub/sub subsystem and then the message in the queue will be sent to the user at a specific location being detected.

Figure 2: Data flow diagram

Transact - Fall 2019 page 8 of 22

4 CLOUD LAYER SUBSYSTEMS

The Cloud layer will be developed to handle the location data received from the mobile devices, and then process and send that data to the event service. The data will flow within the cloud infrastructure through multiple subsystems. The server will be the first place the data will reach, here is where the data is received from the mobile device and sent to the Pub/Sub Trigger subsystem. The subscribers will receive the user identity and location from the pub/sub subsystem. The data will then move onto the Location Management Subsystem. The Location Management subsystem will determine if the user is in an existing location or not. It will check the database for validity. If all the data are valid they will receive a text massage. Admin Portal is an HTTP website which control all locations within the system. Admin can add, update, and delete locations and BLE beacons. All locations will be stored in Admin database. When a location is add, delete or update, admin database will also be updated. Then all admin interface will send a the update information to the location configuration.

4.1 SERVER

The server will be communicating between the cloud and the mobile app. Data coming from the app will contain multiple location information and the individual personal's information. The data will than be send to the relevant subsystem in the cloud. The data is received in the first server and processed in the other subsystems.

Figure 3: Server description diagram

4.1.1 ASSUMPTIONS

All the data coming into the subsystem is in the correct structure and is valid.

4.1.2 RESPONSIBILITIES

The responsibility of the sever is to host and communicate with the other subsystems within the cloud as well as receive data sent from the mobile application.

Transact - Fall 2019 page 9 of 22

Table 2: Mobile Handle Service Subsystem

ID	Description	Inputs	Outputs
#SV1	Handle and host communication from the cloud and other platforms	Input 11 Input 12	Output 20

4.2 LOCATION CONFIGURATION SERVICE SUBSYSTEM

Location Configuration Service Subsystem will configure/determine a user location based on the data it receives from the Pub/Sub Subsystem. The data received will be looked up in a database to determine if it is a valid location we are monitoring. If the location exists a message will be sent to the mobile device via text message. If we do not have a location that matches the data then the subsystem will drop the location performing no further computations.

Figure 4: Location Configuration subsystem description diagram

4.2.1 ASSUMPTIONS

All the data coming into the subsystem is in the correct structure and is valid.

4.2.2 RESPONSIBILITIES

The responsibility of the Location Configuration Interface is to communicate with all of the other subsystems within the cloud. The responsibility of the Determining Location process is to query a database of locations known and determine if that location holds any significance. The Drop process is used if the location is not needed for use by the application, this process will cancel any further computation involving the received location data. The Location Database is responsible for containing all known locations that can be used by the engine, meaning that there is information that can be sent to a user as a message involving that location.

Transact - Fall 2019 page 10 of 22

Table 3: Location Configuration Service Subsystem

ID	Description	Inputs	Outputs
		Input 21	Output 19
#LC1	Handle the input and output of Loca-	Input 27	Output 21
	tion Configuration	Input 30	Output 27
		Input 27	Output 27
#LC2	Determine location based on the data	Input 28	Output 28
	from input and the database	Input 29	Output 29
#LC3	Drop the data/process if the location	Input 29	Output 29
	is not defined in the database		
#LC5	Database that contain all the define	Input 28	Output 28
	location		

4.3 PUB/SUB TRIGGER SUBSYSTEM

The Pub/Sub Trigger system exists within the cloud. Data is first received in the server, and after the server collects the data it will publish that data into a queue created on Azure. This queue will contain all location information sent to the server from the mobile devices. The data will be consumed from the queue by an Azure function designed to trigger anytime location data is published. After the data is consumed in the queue it is processed by the location configuration subsystem.

Figure 5: Pub/Sub subsystem description diagram

Transact - Fall 2019 page 11 of 22

4.3.1 Assumptions

All the data coming into the subsystem is in the correct structure and is valid.

4.3.2 RESPONSIBILITIES

The responsibility of the Pub/Sub Interface is to communicate with all of the other subsystems within the cloud. The responsibility of the publisher is to publish specific data to the cloud for a finite amount of time. The publisher will publish both the user information and their corresponding location. The responsibility of the queue is to store all of the data that is currently published. This data will persist within the queue for a specific amount of time, and if the subscriber is subscribed to a specific location corresponding to a user in the queue then it will consume that data to be used for a message. The responsibility of the subscriber is to consume user information held within the queue if they are in the specific location they subscriber has subscribed to.

ID Description Inputs Outputs Input 20 Output 22 #PS1 Handle the input and output of Input 21 Output 24 Pub/Sub Input 23 #PS2 Broadcast user location Input 22 Output 25 Input 25 #PS3 Queue location and message for Output 26 Input 24 broadcasting Output 23 #PS4 React to the message/data in the Input 26 queue

Table 4: Pub/Sub Subsystem

4.4 ADMIN PORTAL INTERFACE

Admin interface will handle all location configuration subsystem.

4.4.1 Assumptions

Admin portal will only take input and produce output from and to location configuration.

4.4.2 RESPONSIBILITIES

Admin portal interface is where all the communication happen within admin portal layer. Admin portal interface get notified from Admin on any update on location. Admin portal interface then send the update information to the location configuration.

Transact - Fall 2019 page 12 of 22

Figure 6: Admin portal diagram

4.4.3 ADMIN PORTAL INTERFACE INTERFACES

Table 5: Subsystem interfaces

ID	Description	Inputs	Outputs
#AD1	Handle communication between the admin portal and the rest of the cloud subsystem	Input 30 Input 31	Output 30 Output 31
#AD2	Update location to Location Configuration	Input 31 Input 32 Input 34	Output 31 Output 32 Output 34

4.5 MODIFY LOCATION

4.5.1 Assumptions

N/A

Transact - Fall 2019 page 13 of 22

Figure 7: Event Grid This is where location being modified.

4.5.2 RESPONSIBILITIES

Admin will receive request to update, delete or add location and BLE beacons from the user interface. Modify Location interface then will forward this request to according service. These services will then update the database. The database contain all the information regarding BLE beacons and GPS for a certain location. Beacon have detail regarding their range and UID. GPS contain details about their latitude, attitudes, and longitude.

Transact - Fall 2019 page 14 of 22

4.5.3 Subsystem Interfaces

Table 6: Modify Location

ID	Description	Inputs	Outputs
#AP1	Update location	input 35 input 38	output 35 output 38
#AP2	Delete location	input 41 input 40	output 41 output 40
#AP3	Add location	input 42 input 43	output 42 output 43
#AP4	Add BLE Beacon	input 36 input 37	output 36 output 37
#AP4	Delete BLE Beacon	input 39 input 44	output 39 output 44
#AP5	Receive and sending input at admin portal interface	Input 34 Input 35 Input 36 Input 39 Input 40 Input 43	Output 34 Output 35 Output 36 Output 39 Output 40 Output 43

4.6 USER INTERFACE

User Interface is where user make request through GUI

4.6.1 Assumptions

User input valid value. User know how to use GUI to input value.

4.6.2 RESPONSIBILITIES

User interface include 2 part: GUI and application interface. GUI is used by direct user to make request to modify location. The request then sent Application interface. Application interface took the request and forward to admin.

4.6.3 USER INTERFACE

Table 7: User Interface

ID	Description	Inputs	Outputs
#US1	Receive and forwarding request from	input 11	output 11
	user		
#US2	Receive request from GUI and for-	input 11	output 10
	warding to Admin		

Transact - Fall 2019 page 15 of 22

5 MOBILE LAYER SUBSYSTEMS

The role of the mobile layer is to receive the signals and data from the location detecting technologies and send the data to the cloud. The two IOS mobile app are the Location Detection App and the Subscriber App. The Location Detection App will receive signal from the BLE Beacon, containing the BLE identification information's, and will get the GPS information's from the the mobile phone internal software. The data is then passed onto the Data Processing subsystem for packaging to be sent to the cloud. Before the packet is sent to the cloud, additional relevant device information is added. After processing stage is finish, the packet is sent to the Cloud Connection subsystem to be sent to the cloud. The Subscriber App will allow subscribers to register for an account to send message to a certain location. The Location detected layer is a key point for this project. The equipment for location detection are GPS and the BLE beacons.

5.1 FEATURE INTERFACE SUBSYSTEM

The user interface subsystem handles the data received and also displays the data received from the cloud to the graphical user interface. It allows an individual to register to become a subscriber, login, subscribe to locations, and create message to sent out to publisher. After processing the user input, the updated data is then sent to the Cloud Connection subsystem.

Figure 8: User Interface subsystem description diagram

5.1.1 RESPONSIBILITIES

This subsystem is responsible for GUI and user actions.

Transact - Fall 2019 page 16 of 22

5.1.2 FEATURE INTERFACE SUBSYSTEM

Table 8: Subsystem interfaces

ID	Description	Inputs	Outputs
		Input 1	output 1
		Input 2	output 2
#FS1	Handle incoming and outgoing data	Input 3	output 3
#F51	Handle incoming and outgoing data	Input 4	output 4
		Input 5	output 5
		input 6	output 6
#FS2	Register for a subscriber account	Input 2	Output 2
#FS3	Login for a subscriber account	Input 3	Output 3
#FS4	Create a message to be sent to the	Input 4	Output 4
	queue		
#FS5	Subscribe to a location	Input 1	Output 1
#FS6	Graphical User Interface	Input 5	Output 5

5.2 DATA PROCESSING SUBSYSTEM

This subsystem is identical in both the Subscriber and Location Detection App. This subsystem will process any data leaving and entering the mobile app. It will extract and generate new packet to be transmit.

5.2.1 RESPONSIBILITIES

This subsystem is responsible for processing the data received and generating new packet.

5.2.2 FEATURE INTERFACE SUBSYSTEM

Table 9: Subsystem interfaces

ID	Description	Inputs	Outputs
		Input 7	output 7
#M21	Packet Processing	input 8	output 8
		input 9	output 9
#M22	Extracting Cloud Details	Input 7	Output 7
#M23	Generating New Packet	Input 8	Output 8

5.3 CLOUD CONNECTION SUBSYSTEM

The Cloud Connection subsystem is responsible for sending the data to the cloud. First, a secure connection to the cloud is established. Then the data is sent to the cloud for further processing. This subsystem is identical in both the Subscriber and Location Detection App.

5.3.1 Assumptions

The cloud details are valid

Transact - Fall 2019 page 17 of 22

Figure 9: Data Processing subsystem description diagram

5.3.2 RESPONSIBILITIES

This subsystem is responsible for establishing a secure connection with the cloud and sending the data to the cloud.

5.3.3 Subsystem Interfaces

Table 10: Cloud Connection Subsystem

ID	Description	Inputs	Outputs
		Input 9	Output 9
		Input 10	Output 10
#N/11	Establishing Cloud Connection	Input 11	Output 11
#M11	Establishing Cloud Connection	Input 12	Output 12
		Input 13	Output 13
		Input 14	Output 14

5.4 GPS

In this section, the GPS equipment will detect and collect user position information and send back to the application which runs on userâs phone. The GPS will be collected using software provided by IOS.

Transact - Fall 2019 page 18 of 22

Figure 10: Cloud Connection subsystem description diagram

Figure 11: Example subsystem description diagram

Transact - Fall 2019 page 19 of 22

5.4.1 ASSUMPTIONS

GPS interface receive application requirements to be able to start to track the user position then send back location data to the application

5.4.2 RESPONSIBILITIES

Application wake up the GPS tracker which the equipment embed inside userâs phone then start processing the location data and send back to the application

Table 11: GPS Subsystem

ID	Description	Inputs	Outputs
#GPS1	Get data from mobile internal GPS lo-	input NONE	output 16
	cation		

5.5 BLE DETECTION

In this section, the BLE equipment will detect and collected by the user phone. The data will then be sent to be process to create a packet for tranmission.

Figure 12: Example subsystem description diagram

5.5.1 ASSUMPTIONS

BLE interface send the broadcast signal wait for phone to join the BLE equipment and send back location data to the application

5.5.2 RESPONSIBILITIES

BLE equipment search for any available user in certain area and detect the user position then send back the information to the application

Transact - Fall 2019 page 20 of 22

Table 12: BLE Subsystem

ID	Description	Inputs	Outputs
#BLE1	Get data from BLE beacon	input NONE	output 15

Transact - Fall 2019 page 21 of 22

REFERENCES

Transact - Fall 2019 page 22 of 22