Math 126, Fall 2019 Introduction to Partial Differential Equation

Tim Laux, 3106 Etcheverry, 9-10AM

Contents

1	where PDEs Come From
	1.1 What is a partial differential equation?
	1.2 Differentiation
	1.3 Integration
2	Derivatives of Integrals
3	Integrals of derivatives

Logistics

Question 0.1

Why study PDE?

Answer 0.2. TL;DR. It's useful.

Note 0.3. Office hour : MWF 9-10AM 895 Evans, GSI Office hour : MW 1-3 PM 1049 Evans

1 where PDEs Come From

1.1 What is a partial differential equation?

Example 1.1

This is an example of ODE:

$$u = u(x),$$
 $\frac{d}{dx}u = u.$

Example 1.2

A PDE consist of the form

$$u = u(x_1, x_2, \dots, x_d), \qquad u_{x_k} = \frac{\partial u}{\partial x_k}$$

Where x_i are scalars.

Example 1.3

The most general form of a PDE of first order in two dimension, say u = u(x, y) and of the form

$$F(x, y, u(x, y), u_x(x, y), u_y(x, y)) = 0$$
, or $F(x, y, u, u_x, u_y) = 0$

Example 1.4

The most general form of a PDE of second order in two dimension, say u = u(x, y) and of the form

$$G(x, y, u, u_x, u_y, u_{xx}, u_{yy}, u_{xy}) = 0$$

Definition 1.5

A vector x is defined as

$$x = \vec{x} = (x_1, x_2, \dots, x_n).$$

Definition 1.6

Let u be a function of vector x of n-dimension. The gradient of u is denoted as

$$\nabla u = (u_{x_1}, u_{x_2}, \dots, u_{x_n})$$

Example 1.7 1. Linear transport equation $u_t + bu_t = 0, b \in \mathbb{R}$

2. Burgher's Equation $u_t + u \cdot u_x = 0$

3. Laplace's Equation $u_{xx} + u_{yy} = 0$

4. Hermite Equation $-(u_{xx} + u_{yy}) = \lambda u, \quad \lambda \in \mathbb{R}$

5. Wave with interaction $u_{tt} - u_{xx} + u^3 = 0$

6. Linear diffusion with source $u_t - u_{xx} - f(x,t) = 0$

7. Schroedinger's equation $u_t - i \cdot u_{xx} = 0$

Example 1.8 (Cauchy-Riemann Equation)

$$\begin{cases} u_x = u_y \\ u_y = -u_x \end{cases}$$

Definition 1.9 (Digression to Linear Algebra)

Let ${\mathscr L}$ be a operator in a function space V. ${\mathscr L}$ is linear if

$$\mathscr{L}(u+v) = \mathscr{L}(u) + \mathscr{L}(v), \quad \mathscr{L}(cu) = c\mathscr{L}(u) \qquad \forall v,u \in V, \quad \forall c \in \mathbb{F}.$$

Definition 1.10

A PDE is called homogeneous linear PDE if it's of the form $\mathcal{L}(u) = 0$. If it's the form $\mathcal{L}(u) = f$, then it's called inhomogeneous PDE.

Remark 1.11

Things that we are interested in

- 1. Find analytical formulas for some specific PDE's
- 2. Well-possessedness
 - Existence (Does there exists a solution?)
 - Uniqueness (Is this the only solution?)
 - Stability (If I change the data slightly, does the solution changes just by a little bit?)
- 3. Predicting qualitative (and sometimes quantitative) behavior of the solution without having a solution formula.
- 4. Devise an analyze numerical algorithms to approximate solutions.

Example 1.12

Consider the equation

$$\cos(xy)u_x + \sin(e^x)u_y = e^{x^2\sin(y)}$$

Let

$$\mathscr{L}(u(x,y)) = \cos(xy)u_x + \sin(e^x)u_{yy}$$

 \mathscr{L} is a linear operator, so the PDE is an inhomogeneous linear PDE.

Theorem 1.13 (Principle of superposition)

Let u_1, u_2, \ldots, u_n be solutions of $\mathcal{L}(u_k) = 0$, and let c_1, c_2, \ldots, c_n be scalars. then

$$u(x) = \sum_{i=1}^{n} c_i u_i(x)$$
 solves $\mathscr{L}(u) = 0$

Example 1.14 (Cool problem)

$$\begin{cases} u_t + u \cdot \nabla u - \mu \triangle u = -\nabla p \\ \operatorname{div} u = 0 \end{cases}$$

 $\begin{cases} u_t + u \cdot \nabla u - \mu \triangle u = -\nabla p \\ \text{div } u = 0 \end{cases}$ where u = u(x, y, z, t), $u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}$ is a velocity field, where p is pressure and μ is the viscosity of the u-viscosity of uviscosity of the liquid.

Review of Multivariable Calculus

Definition 1.15

Let $\vec{x} \in \mathbb{R}^d$, the **Euclidean length** of \vec{x} is defined as

$$|\vec{x}| = \sqrt{\sum_{k=1}^{d} x_k^2}$$

Definition 1.16 (scalar product)

The dot product of two vectors x and \tilde{x} is defined as

$$x \cdot \tilde{x} = \sum_{k=1}^{d} x_k \cdot \tilde{x}_k$$

Remark 1.17

It's clear that $|x|^2 = x \cdot x$.

Definition 1.18

For r > 0 and $x_0 \in \mathbb{R}^d$ let

$$B_r = \{ x \in \mathbb{R}^d : |x - x_0| < r \}$$

This is a open ball of radius r centered at x_0 .

Definition 1.19

A set $A \subset \mathbb{R}^d$ is called **open** if for each $x \in A$, there exists r > 0 such that $B_r(x) \subset A$.

Definition 1.20

A set $V \subset \mathbb{R}^d$ is called closed if $\mathbb{R}^d \setminus V$ is open.

Definition 1.21

The **interior** of A, denoted as int A is are the points in A such that there exists r > 0 with $B_r(x) \subset A$.

Theorem 1.22

A set is open if and only if int A = A.

Definition 1.23

The closure of $A \subset \mathbb{R}^d$ is

$$\overline{A} := A \cup \{ \text{ limit points of } A \}$$

Definition 1.24

The boundary of the set $A \subset \mathbb{R}^d$ is

$$\partial A := A \setminus \mathrm{int} A$$

Theorem 1.25 (Heine-Borel Theorem)

A set is closed in \mathbb{R}^d if and only if it's closed and bounded.

1.2 Differentiation

Definition 1.26

For $u = u(\vec{x})$ we define the **gradient** of u as

$$\nabla u = \nabla u(x) := \left(\frac{\partial u}{\partial x_1}, \cdots, \frac{\partial u}{\partial x_d}\right)$$

Definition 1.27 (Laplace's operator)

$$\Delta u = \Delta u(\vec{x}) := \sum_{k=1}^{d} \frac{\partial^2 u}{\partial x_k^2} = \sum_{k=1}^{d} u x_k \cdot x_k.$$

Definition 1.28

For a vector field $F = F(\vec{x})$ we denote its divergence as

$$\operatorname{div} F(x) = \sum_{k=1}^{d} \frac{\partial F_k}{\partial x_k}$$

Remark 1.29

 $\triangle u = \operatorname{div} \nabla u$.

Exercise 1.30

Compute the divergence of $F(\vec{x}) = \frac{1}{2}\vec{x} = \frac{1}{2}(x_1, x_2), G(\vec{x}) = (-x_2, x_1).$

Solution. We have $\operatorname{div} F = 0$ and $\operatorname{div} G = 0$.

1.3 Integration

Definition 1.31

For $\omega \subset \mathbb{R}^2$, $\Omega \subset \mathbb{R}^3$ we definite the integral with respect to function f as

$$\int_{\omega} f(x,y) \, dx \, dy, \int_{\Omega} f(x,y,z) \, dx \, dy \, dz$$

Definition 1.32

We define the volume of $\Omega \subset \in \mathbb{R}^d$ as

$$\operatorname{vol}_d(\Omega) = \int_{\Omega} 1 d\vec{x}$$

Remark 1.33

If $|f(x)| \leq M$ for all $x \in \Omega$, then

$$\left| \int_{\Omega} f(\vec{x}) \, d\vec{x} \right| \le \int_{\Omega} |f(\vec{x})| \, d\vec{x} \le M \operatorname{vol}_d(\Omega)$$

2 Derivatives of Integrals

Question 2.1

Let I(t) defined as

$$\int_{a(t)}^{b(t)} f(x,t) \, dx$$

What is $\frac{dI}{dt}$

Theorem 2.2

Suppose that a, b are independent of t. If both f and $\frac{\partial f}{\partial t}$ are continuous on the rectangle $[a, b] \times [c, d]$ then

$$\frac{d}{dt}I(t) = \int_a^b \frac{\partial t}{\partial t}(x,t) dx \quad \text{for} \quad t \in [c,d].$$

Theorem 2.3

If f and $\frac{\partial f}{\partial t}$ are continuous on the rectangle $[A, B] \times [c, d]$, where $[a(t), b(t)] \subset [A, B]$ for all $t \in [c, d]$, and if a(t), b(t) are differentiable functions on the interval [c, d] then

$$\frac{d}{dt}I(t) = \int_{a(t)}^{b(t)} \frac{\partial f}{\partial t}(x,t) dx + b'(t)f(b(t),t) - a'(t)f(a(t),t) \quad \text{for} \quad t \in [c,d]$$

Remark 2.4

Theorem 2.2 works for any dimensions. What about theorem 2.3?

3 Integrals of derivatives

Theorem 3.1 (Divergence theorem)

Let Ω be a "nice" open set in \mathbb{R}^d , let $n(\vec{x})$ denote the upward pointing normal of $\partial\Omega$. If F is continuously differentiable in Ω , and continuous in $\overline{\Omega}$, then

$$\int_{\Omega} \operatorname{div} F \, dx = \int_{\partial \Omega} F(\vec{x}) \cdot n(\vec{x}) dS(x).$$

Remark 3.2

When d=1, this is really the fundamental theorem of calculus.

$$\int_{a}^{n} F'(x) dx = F(b) - F(a)$$

Theorem 3.3 (The first vanishing Theorem)

If $f \geq 0$ in Ω and continuous and $\int_{\Omega} f(\vec{x}) d\vec{x} = 0$, then f = 0 in Ω

Theorem 3.4 (The second vanishing Theorem)

If f is continuous in Ω and for all $D \subset \Omega$ that

$$\int_D f(\vec{x}) \, d\vec{x} = 0$$

then f = 0 in Ω .

Proof. Suppose there exists a point x such that $f(x) \neq 0$. Pick a region D around x and we can see that $\int_D f(x) dx \neq 0$, a contradiction.