

⊚ 태그 완료

미니 배치 경사 하강법

- 배치 경사 하강법: 전체 훈련 샘플에 대해 훈련 후 경사 하강 진행
- 벡터화는 m개의 샘플에 대해 계산을 효율적으로 만들어준다.
 - → 만약 m = 5,000,000개라면? → 느림
- 미니 배치 경사 하강법: 전체 훈련 샘플을 작은 훈련 샘플인 미니 배치로 나눈 후, 미니 배치 훈련 후 경사 하강 진행
 - ⇒ mini batch 사용: mini batch 사이즈가 1,000개라면 5,000개의 mini batch가 있는 것

```
X<sup>(i)</sup>: i性째 铯 營 (X<sup>(i)</sup> ∈ (n_x, m))
```

E^[]: lym layer

 X^{ft} , Y^{ft} : typen mini batch $(X^{ft} \in (N_-X, 1000), Y^{ft}) \in (1, 1000)$

```
for t = 1, 2, ... 5000

forward propagation of • # 벡터화된 X

Z^{[1]} = W^{[1]}X^{t} + b^{[1]}

A^{[1]} = g(Z^{[1]})

...

A^{[L]} = g(Z^{[L]})

compute cost J^{{t}} = 1/1000• + \lambda/2*1000*froben.
```

```
backpropagation to compute gradient of J^{{t}} W^{[L]}:= W^{[L]} - \alpha dW^{[L]}, b^{[L]}:= b^{[L]}
```

미니 배치 경사 하강법 이해하기

 배치 경사 하강법에서는 비용 함수 J가 계속 감소하지만, 미니 배치 경사 하강법에서는 매 반복마다 다른 훈련 세트에서 훈련되기 때문에 전체적으로 비용 함수 J는 감소하나 약간의 노이즈가 발생한다.

Batch gradient descent

Mini-batch gradient descent

- 미니 배치 사이즈 고르기 (hyperparameter): 속도를 빠르게 하기 위한 최적의 미니 배 치 사이즈를 찾아내야 한다.
 - if mini batch size = m: 배치 경사 하강법 → 전체 훈련 데이터를 모두 훈련시키기
 때문에, too long time per iteration
 - if mini batch size = 1: stochastic gradient descent (하나의 샘플이 하나의 batch가 된다) → 한 번에 하나의 샘플만 훈련시키기 때문에 (vectorization이 진 행되지 않은 것과 마찬가지) 비효율적인 진행 방식이다.
 - o In practice: 1과 m 사이의 값을 사용한다. → 가장 좋음
 - 여러 개의 vectorization을 얻기 때문에 빠르다.
 - 전체를 여러 개의 epoch으로 나눔, 전체 훈련 세트가 진행되기를 기다리지 않고 진행할 수 있다.

- o how to choose the size of mini batch?
 - -If small train set (2000개 이): 배치 경사 하강법을 사용 (전체 훈련 샘플을 하나 의 batch로 설정)
 - -typical mini batch size: 64, 128, 256, 512 → 2의 제곱수를 사용하는 것을 추천
 - -make sure mini batch fits in CPU / GPU memory: 정해진 CPU / GPU memory 크기 이내에서 memory를 사용하도록 mini batch size를 잘 정해야 한다.

지수 가중 이동 평균

- 경사 하강법보다 빠른 최적화 알고리즘을 이해하기 위해선 지수 가중 이동 평균을 이해 해야 한다. 최근 데이터에 더 많은 영향을 받는 데이터의 평균 흐름을 계산하기 위해 지수 가중 이동 평균을 구한다. 지수 가중 이동 평균은 최근 데이터에 더 높은 가중치를 준다.
- θ_t 를 t번째 날의 온도, v_{t-1} 은 그 전 날의 온도라고 했을 때, 지수 가중 이동 평균의 식은 다음과 같다. v_t 는 t번째 날의 온도의 경향이다. 첫째 항은 과거의 경향성, 둘째 항은 새로운 경향성이다.

D

- v_t approximates to average over $\frac{1}{1-eta}*$ days temperature

-if β = 0.9, then v_t = 10일 동안 기온의 평균(red)

-if β = 0.98, then v_t = 50일 동안 기온의 평균(green)

 $\rightarrow \beta$ 값이 클수록 더 많은 날짜의 기온을 사용하기 때문에 곡선이 더 부드러워진다. 그러나 다양한 날짜의 기온을 사용하기 때문에, 이 곡선은 올바른 값에서 더 멀어진다.

-if β = 0.5, then v_t = 2일 동안 기온의 평균(yellow)

→ 온도 변화에 더욱 민감하게 반응한다.

지수 가중 이동 평균 이해하기

$$V_{100}=0.1*\theta_{100}+0.9*V_{99}$$
 이때 $V_{99}=0.1*\theta_{99}+0.9*V_{98}$ 그렇다면,
$$V_{100}=0.1*\theta_{100}+0.9*(0.1*\theta_{99}+0.9*V_{98}) \quad | \quad V_{98}=0.1*\theta_{98}+0.9*V_{98}$$
 $V_{100}=0.1*\theta_{100}+0.9*(0.1*\theta_{99}+0.9*[0.1*\theta_{98}+0.9*V_{98}])+\cdots$ $\Rightarrow V_{100}=0.1*\theta_{100}+0.1*0.9*\theta_{99}+0.1*0.9^2*\theta_{98}+0.1*0.9^3*\theta_{98}+\cdots$ 이런식으로 계속된다.

- 과거의 heta일수록 현재의 경향 v_t 를 표현하는 데 더 적은 영향을 끼치고 있다.
- 위의 그래프는 θ 의 그래프, 아래의 그래프는 θ 의 계수에 대한 그래프이다. 아래의 그래프는 지수적으로 감소하는 형태이다. v_t 는 두 그래프를 element-wise하게 곱함으로써구할 수 있다.

• 얼마의 기간에 걸쳐 구한 평균인가?

$$\circ (1-\varepsilon)^{\frac{1}{\varepsilon}} = \frac{1}{e}$$

- $1-\varepsilon=\beta$
- \blacksquare $\frac{1}{\varepsilon}$ 은 몇 일에 걸친 평균 온도인지를 알 수 있다.
- ullet 예를 들어 arepsilon이 0.1이라면 eta = 0.9이고 이는 10일에 걸친 온도의 평균이다.

```
v = 0
repeat{
    get next \theta_{t}
    v:= \beta*v + (1-\beta)*\theta_{t}
}
```

• 지수 가중 이동 평균의 장점: 반복해도 v에 계속 값을 덮어씌우면 되기 때문에 메모리를 적게 사용할 수 있다. 또한 업데이트 식도 한 줄이라서 편리 & 효율적이다.

지수 가중 이동 평균의 편향보정

bias correction

- 만약 지수 가중 이동 평균의 식대로만 v_t 를 구하면 (왼쪽 식) 실제로 그려지는 곡선은 보라색 곡선이 된다. 그러나 보라색 곡선에는 너무 낮은 값이 존재한다 \rightarrow 편향을 제거해야 한다!
- 오른쪽 식처럼 θ 들의 가중 평균인 v_t 를 $1-\beta^t$ 로 나눠주면 θ 들의 가중 평균에서 편향이 제거된 초록색 그래프가 그려지고, 실제 값과 비슷하게 된.
- t가 커질수록 β^t 는 0에 가까워지므로 편향 보정의 효과가 거의 없어지게 된다.
- 초기 단계에서 편향 보정으로 더 정확한 온도 평균의 추정값을 얻을 수 있다. (보라색 그 래프에서 초록색 그래프로)

Momentum 최적화 알고리즘

• 미니 배치 경사 하강법을 시행하면 다음과 같이 진동하며 최적점에 수렴한다. 그러나 이 방법은 경사 하강법의 속도를 느리게 하고 더 큰 learning rate를 사용하는 것을 막는다. 또한 수직축에서는 진동을 막기 위해 학습이 더 느려지기를 원하지만 수평축에서는 왼쪽에서 오른쪽으로 학습이 빠르게 이루어지기를 원한다.

- momentum 경사 하강법은 일반적인 경사 하강법보다 빠르게 작동한다.
 - 。 경사에 대한 지수 가중 평균 (VdW, Vdb)을 계산하고, 그 값으로 가중치를 업데이 트한다.
 - 。 따라서 momentum 경사 하강법은 아래와 같은 알고리즘을 따른다.

```
VdW = 0; Vdb = 0
Iteration t:
    compute dW, db on current mini-batch
    VdW = \beta*VdW + (1 - \beta)*dW
    Vdb = \beta*Vdb + (1 - \beta)*db

W:= W - \alpha*VdW
    b:= b -\alpha*VdW
# two hyperparameters: \alpha(learning rate), \beta
```

→ 이 알고리즘을 통해 진동을 줄여 훨씬 부드럽게 최적점에 수렴할 수 있게 된다. 수직축에 서는 진동을 줄이면서도 수평축에서는 속도를 빠르게 한다.

- \rightarrow 또한, 밥그릇 모양에서 공을 굴려 최적점으로 보낼 때, β 는 1보다 작은 값이므로 friction, VdW, Vdb는 공의 velocity, dW, db는 공의 momentum(acceleration)의 역할을 한다고 이해할 수 있다.
- → momentum 경사 하강법을 구현할 때는 편향 보정을 거의 하지 않는다. step이 10번 이상이면 이동 평균에 더 이상 편향 보정을 하는 효과가 미미하기 때문이다.
- ightarrow 몇몇 논문에서 VdW를 계산할 때 1-eta를 생략하는데, 이는 VdW를 1/(1-eta)로 scaling한 것이다. 따라서 $lpha=rac{1}{(1-eta)}$ 가 되어야 한다. 그러나 실제로는 두 가지 방법 모두 잘 작동한다. (교수님은 1-eta가 있는 수식을 더 선호한다)

RMSProp 최적화 알고리즘

- root mean square prop algorithm → 마찬가지로 경사 하강법을 빠르게 한다. 과거
 의 기울기는 적게 반영하고 최근의 기울기는 많이 반영하는 지수 가중 평균을 사용한다.
 - 수평 방향(W): 빠르게 이루어지기를 원함/ 수직 방향(b): 느리게 이루어지기를 원함(진동 적게)

```
Iteration t:
compute dW, db on current mini-batch
```

```
# 도함수의 제곱을 지수 가중 평균한 것
# dW^2은 element-wise하게 제곱한
Sdw = \beta*Sdw + (1 - \beta)*dW^2 <- small
Sdb = \beta*Sdb + (1 - \beta)*db^2 <- large
W:= W - \alpha*dW/\root{SdW}
b:= b - \alpha*db/\root{Sdb}
```

- 수평 방향(W)에서의 기울기는 완만해 미분값 SdW의 값은 상대적으로 작다. 따라서 수평 방향(W)은 기존의 learning rate보다 빠르게 업데이트되고, 이는 더 빠르게 수렴하도록 한다. 반면 수직 방향(b)에서의 기울기가 훨씬 가파르기 때문에 미분값 Sdb가 상대적으로 크다. 따라서 수직 방향(b)으로는 기존의 learning rate보다느리게 업데이트되고, 이는 진동을 줄인다.
- 이 알고리즘을 사용하면 진동을 줄이면서도 빠르게 최적점으로 수렴할 수 있다.

。 주의할 점: W, b 업데이트 식에서 SdW, Sdb의 값이 너무 작지 않도록 한다(폭발할수 있음) → SdW, Sdb에 ε = 10^(-8)을 더함으로써 보완 가능

Adam 최적화 알고리즘

- Adam 최적화 알고리즘 = momentum + RMSProp
- Adam = Adaptive moment estimation

```
# 초기화

VdW = 0; SdW = 0; Vdb = 0; Sdb = 0

Iteration t:
    compute dW, db using current mini-batch

# momentum

VdW = B1*VdW + (1 - B1)*dW

Vdb = B1*Vdb + (1 - B1)*db
```

```
# RMSProp
SdW = B2*SdW + (1 - B2)*dW^2
Sdb = B2*Sdb + (1 - B2)*db^2

# 편향 보정 (일반적으로 Adam에서는 편향 보정을 한다.)
VdW_corrected = VdW / (1 - B1^t)
Vdb_corrected = Vdb / (1 - B1^t)
SdW_corrected = SdW / (1 - B2^t)
Sdb_corrected = Sdb / (1 - B2^t)

# W, b 업데이트
W:= W-A*VdW_corrected / \root(SdW_corrected) + E
b:= b-A*Vdb_corrected / \root(Sdb_corrected) + E
```

- 여러 개의 hyperparameter가 있다 (lpha 빼고 대부분 보정하지 않는다)
 - α : learning rate \rightarrow needs to be tuned
 - β_1 : 0.9 (dW)
 - \circ β_2 : 0.999 (dW^2)
 - \circ ε : 10^(-8)

학습율 감쇠

- 학습율 감쇠: 시간에 따라 learning rate를 감소시키는 것 → 학습 알고리즘의 속도를 높이는 한 가지 방법
- 시간에 따라 학습율이 줄어들면 step size가 작아짐에 따라 최적점에 더 잘 수렴할 수 있다.
- 1 epoch = 1 pass through data
 - \circ $\; lpha = rac{1}{1 + decayrate * epochnum} * lpha_0$: hyperparameter $lpha_0$, decay_rate 조절
 - \circ exponential decay: $\alpha = 0.95^{epochnum} * \alpha_0$
 - $\circ \ \ \alpha = rac{k}{evochnum} * lpha_0$
 - $\circ \ \ lpha = rac{k}{t**0.5}*lpha_0$: t는 미니 배치 개수

지역 최적값 문제

- 고차원 비용함수에서 경사가 0인 경우는 대부분 지역 최적값이 아니라 안장점이다.
 - 。 안장점 주위는 대부분 경사가 0이므로 지역 최적값에 갇힐 위험이 있다 → 그러나 big neural network를 사용하면 괜찮다.
 - 지역 최적값에 빠지면 대부분 경사가 0에 가깝기 때문에 학습이 느려질 수 있다. 또한, 다른 방향으로의 전환이 없다면 안장 지대에서 벗어나기 힘들다 → Adam,
 RMSProp과 같은 최적화 알고리즘을 통해 빠져나올 수 있다.

Quiz

✗ 3. 왜 최적의 미니배치 크기는 1이나 m이 아니라, 그 중간 값일까요?★ 0/1

... 만약 미니배치 크기가 1이라면 미니배치 내의 예제들 간의 벡터화 장점을 상실

\checkmark	하게 됩니다.
	만약 미니배치 크기가 m이라면, 진전을 이루기 전에 전체 학습 데이터 집합을 처리해야 하는 배치 경사 하강법으로 빠지게 됩니다.
	만약 미니배치 크기가 1이라면, 진전을 이루기 전에 전체 학습 데이터 집합을 처리해야 하는 배치 경사 하강법으로 빠지게 됩니다.
	만약 미니배치 크기가 m이라면, 미니배치 내의 예제들 간의 벡터화 장점을 상실하게 됩니다.

정답

- 만약 미니배치 크기가 1이라면, 미니배치 내의 예제들 간의 벡터화 장점을 상실하게 됩니다.
- ▼ 만약 미니배치 크기가 m이라면, 진전을 이루기 전에 전체 학습 데이터 집합을 처리해야 하는 배치 경사 하강법으로 빠지게 됩니다.

- 만약 미니배치의 크기가 1이라면, 미니배치 내의 훈련 샘플들 간의 벡터화의 장점을 상실한다.
- 만약 미니배치의 크기가 m이라면, 한 번의 진전을 이루기 전에 모든 훈련 샘플들을 처리해야 하는 배치 경사 하강법으로 빠지게 된다.