

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS FÍSICAS

TRANSFERENCIA DE MOMENTO ANGULAR DE ELECTRONES RÁPIDOS A NANOPARTÍCULAS

TESIS

QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN CIENCIAS (FÍSICA)

PRESENTA:

JORGE LUIS BRISEÑO GÓMEZ

TUTOR:

DR. ALEJANDRO REYES CORONADO FACULTAD DE CIENCIAS, UNAM

MIEMBROS DEL COMITÉ TUTOR:

DR. RUBÉN GERARDO BARRERA Y PÉREZ INSTITUTO DE FÍSICA, UNAM DR. RAÚL PATRICIO ESQUIVEL SIRVENT INSTITUTO DE FÍSICA, UNAM

CIUDAD DE MÉXICO, JULIO DE 2023

A Any.
A mi madre, a Tita y a Robin.

«But still try, for who knows what is possible?» Michael Faraday.

«De ilusiones así va uno viviendo.» Julio Cortázar.

Índice general

Agradecimientos	5
Resumen	7
Abstract	9
1. Introducción	11
2. Teoría y métodos	13
2.0.1. Conservación del momento angular en electrodinámica	13
2.0.2. Transferencia de momento angular de un electrón rápido a una nanopartícula	18
3. Resultados y discusión	21
Conclusiones y perspectivas	23
Apéndice A	
Solución de Mie extendida	25
Referencias	29

Agradecimientos

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie 6 AGRADECIMIENTOS

ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Resumen

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie 8 RESUMEN

ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie

10 Abstract

ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Introducción

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Teoría y métodos

Las siguientes ecuaciones se encuentran en el sistema (cgs) Internacional; es decir, se proporciona en color **negro** la ecuación en sistema Internacional, y entre paréntesis y resaltado con color (magenta) el factor necesario para expresar la ecuación en el sistema cgs. Por ejemplo, la fuerza entre dos cargas puntuales q_1 y q_2 separadas una distancia r se escribiría como

$$\vec{\mathbf{F}} = (4\pi\epsilon_0) \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2} \hat{r} \tag{2.1}$$

2.0.1. Conservación del momento angular en electrodinámica

Trabajando en el sistema internacional, las ecuaciones de Maxwell se escriben como [1]

$$\nabla \cdot \vec{\mathbf{E}} = (4\pi\epsilon_0) \frac{\rho_{\text{tot}}}{\epsilon_0}, \qquad \nabla \times \vec{\mathbf{E}} = -\left(\frac{1}{c}\right) \frac{\partial \vec{\mathbf{B}}}{\partial t},$$

$$\nabla \cdot \vec{\mathbf{B}} = 0, \qquad \nabla \times \vec{\mathbf{B}} = \left(\frac{4\pi}{\mu_0 c}\right) \mu_0 \vec{\mathbf{J}}_{\text{tot}} + (c) \frac{1}{c^2} \frac{\partial \vec{\mathbf{E}}}{\partial t}, \qquad (2.2)$$

y pueden ser reescritas en términos de los potenciales ϕ y $\vec{\mathbf{A}}$ como [1]

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial}{\partial t}\right) \phi(\vec{\mathbf{r}}, t) = -\left(4\pi\epsilon_0\right) \frac{\rho_{\text{tot}}}{\epsilon_0} \left(\vec{\mathbf{r}}, t\right), \tag{2.3}$$

$$\left(\nabla^2 - \frac{1}{c^2} \frac{\partial}{\partial t}\right) \vec{\mathbf{A}} (\vec{\mathbf{r}}, t) = -\left(\frac{4\pi}{\mu_0 c}\right) \mu_0 \vec{\mathbf{J}}_{\text{tot}} (\vec{\mathbf{r}}, t), \qquad (2.4)$$

trabajando en la norma de Lorentz, donde se satisface que $\nabla \cdot \vec{\mathbf{A}} + (1/c)\partial_t \phi = 0$, y los campos electromagnéticos se escriben en términos de los potenciales como

$$\vec{\mathbf{E}}(\vec{\mathbf{r}},t) = -\nabla\phi(\vec{\mathbf{r}},t) - \left(\frac{1}{c}\right)\frac{\partial}{\partial t}\vec{\mathbf{A}}(\vec{\mathbf{r}},t), \qquad (2.5)$$

$$\vec{\mathbf{B}}(\vec{\mathbf{r}},t) = \nabla \times \vec{\mathbf{A}}(\vec{\mathbf{r}},t). \tag{2.6}$$

Partiendo de la expresión para la conservación del momento lineal [1]

$$\frac{\partial}{\partial t} \left[\vec{\mathbf{p}}^{\text{mec}} \left(\vec{\mathbf{r}}, t \right) + \vec{\mathbf{p}}^{\text{em}} \left(\vec{\mathbf{r}}, t \right) \right] = \nabla \cdot \stackrel{\leftrightarrow}{\mathbf{T}} \left(\vec{\mathbf{r}}, t \right), \tag{2.7}$$

donde $\vec{\mathbf{p}}^{\text{mec}}(\vec{\mathbf{r}},t)$ es la densidad de momento lineal mecánico, $\vec{\mathbf{p}}^{\text{em}}(\vec{\mathbf{r}},t)$ es la densidad de momento lineal electromagnético

$$\vec{\mathbf{p}}^{\text{em}}\left(\vec{\mathbf{r}},t\right) = \left(\frac{c}{4\pi}\right) \frac{1}{c^2} \vec{\mathbf{E}}\left(\vec{\mathbf{r}},t\right) \times \vec{\mathbf{B}}\left(\vec{\mathbf{r}},t\right)$$
(2.8)

y $\stackrel{\leftrightarrow}{\mathbf{T}}(\vec{\mathbf{r}},t)$ es el tensor de esfuerzos de Maxwell dado por [1]

$$T_{ij}\left(\vec{\mathbf{r}},t\right) = \frac{\epsilon_0}{\left(4\pi\epsilon_0\right)} \left[E_i\left(\vec{\mathbf{r}},t\right) E_j\left(\vec{\mathbf{r}},t\right) - \frac{\delta_{ij}}{2} E^2\left(\vec{\mathbf{r}},t\right) \right] + \frac{\mu_0}{\left(4\pi\mu_0\right)} \left[H_i\left(\vec{\mathbf{r}},t\right) H_j\left(\vec{\mathbf{r}},t\right) - \frac{\delta_{ij}}{2} H^2\left(\vec{\mathbf{r}},t\right) \right], \quad (2.9)$$

donde se ha asumido que $T_{ij}(\vec{\mathbf{r}},t)$ es la entrada ij de $\mathbf{T}(\vec{\mathbf{r}},t)$, ϵ_0 y μ_0 son la permitividad y permeabilidad del vacío respectivamente, $E_i(\vec{\mathbf{r}},t)$ es la i-ésima componente del campo eléctrico $\mathbf{E}(\vec{\mathbf{r}},t)$, $H_i(\vec{\mathbf{r}},t)$ es la i-ésima componente del campo magnético $\mathbf{H}(\vec{\mathbf{r}},t)$ y δ_{ij} es la delta de Kronecker.

Partiendo de la Ec. (2.7), la conservación de momento angular se puede escribir como

$$\frac{\partial}{\partial t} \left(\vec{\boldsymbol{\ell}}^{\text{mec}} \left(\vec{\mathbf{r}}, t \right) + \vec{\boldsymbol{\ell}}^{\text{em}} \left(\vec{\mathbf{r}}, t \right) \right) = \vec{\mathbf{r}} \times \nabla \cdot \stackrel{\leftrightarrow}{\mathbf{T}} \left(\vec{\mathbf{r}}, t \right), \tag{2.10}$$

donde $\vec{\boldsymbol{\ell}}^{\text{mec}}(\vec{\mathbf{r}},t) = \vec{\mathbf{r}} \times \vec{\mathbf{p}}^{\text{mec}}(\vec{\mathbf{r}},t)$ y $\vec{\boldsymbol{\ell}}^{\text{em}}(\vec{\mathbf{r}},t) = \vec{\mathbf{r}} \times \vec{\mathbf{p}}^{\text{em}}(\vec{\mathbf{r}},t)$ son las densidades volumétricas de momento angular mecánico y electromagnético respectivamente.

Si se define $\overrightarrow{\mathbf{M}}(\vec{\mathbf{r}},t) = \vec{\mathbf{r}} \times \overrightarrow{\mathbf{T}}(\vec{\mathbf{r}},t)$ —o usando notación de índices y convención de suma de Einstein $M_{jk}(\vec{\mathbf{r}},t) = \epsilon_j^{\ li} r_l T_{ik}(\vec{\mathbf{r}},t)$ —y se calcula la divergencia de $\overrightarrow{\mathbf{M}}$, se obtiene

$$\left(\nabla \cdot \overrightarrow{\mathbf{M}}\right)_{j} = \delta^{nk} \partial_{n} M_{jk} = \delta^{nk} \partial_{n} \epsilon_{j}^{li} r_{l} T_{ik} = \delta^{nk} \epsilon_{j}^{li} \partial_{n} r_{l} T_{ik},
= \delta^{nk} \epsilon_{j}^{li} \left(\delta_{nl} T_{ik} + r_{l} \partial_{n} T_{ik}\right) = \delta^{nk} \epsilon_{j}^{li} r_{l} \partial_{n} T_{ik},
= \delta^{nk} \epsilon_{j}^{li} r_{l} \partial_{n} T_{ik} = \epsilon_{j}^{li} r_{l} \partial^{k} T_{ik} = \epsilon_{j}^{li} r_{l} \left(\nabla \cdot \overrightarrow{\mathbf{T}}\right)_{i},
\left(\nabla \cdot \overrightarrow{\mathbf{M}}\right)_{j} = \left(\overrightarrow{\mathbf{r}} \times \nabla \cdot \overrightarrow{\mathbf{T}}\right)_{j},$$
(2.11)

donde se ha usado $\delta^{nk}\delta_{nl}\,\epsilon_j^{\ li}T_{ik}=\epsilon_j^{\ ni}T_{in}=0$, porque el tensor de esfuerzos de Maxwell es simétrico $(T_{in}=T_{ni})$ y el símbolo de Levi-Civita es antisimétirco $\left(\epsilon_j^{\ ni}=-\epsilon_j^{\ in}\right)$.

A partir de este resultado se puede escribir la conservación del momento angular como

$$\frac{\partial}{\partial t} \left(\vec{\boldsymbol{\ell}}^{\text{mec}} \left(\vec{\mathbf{r}}, t \right) + \vec{\boldsymbol{\ell}}^{\text{em}} \left(\vec{\mathbf{r}}, t \right) \right) = \nabla \cdot \vec{\mathbf{M}} \left(\vec{\mathbf{r}}, t \right), \tag{2.12}$$

que es una ecuación local. Para escribir la conservación del momento angular de forma global, se debe

Teoría y métodos 15

integrar la Ec. (2.12) sobre un volumen V delimitado por una superficie S de la siguiente manera

$$\frac{d}{dt} \left(\vec{\mathbf{L}}^{\text{mec}}(t) + \vec{\mathbf{L}}^{\text{em}}(t) \right) = \int_{V} \nabla \cdot \vec{\mathbf{M}} \left(\vec{\mathbf{r}}, t \right) dV,$$

$$\frac{d}{dt} \left(\vec{\mathbf{L}}^{\text{mec}}(t) + \vec{\mathbf{L}}^{\text{em}}(t) \right) = \oint_{S} \vec{\mathbf{M}} \left(\vec{\mathbf{r}}, t \right) \cdot d\vec{\mathbf{S}},$$
(2.13)

donde se ha usado el teorema de la divergencia en la última igualdad, y se han definido

$$\vec{\mathbf{L}}^{\text{mec}}(t) = \int_{V} \vec{\boldsymbol{\ell}}^{\text{mec}}(\vec{\mathbf{r}}, t) \ dV, \qquad \qquad \mathbf{y} \qquad \qquad \vec{\mathbf{L}}^{\text{em}}(t) = \int_{V} \vec{\boldsymbol{\ell}}^{\text{em}}(\vec{\mathbf{r}}, t) \ dV. \tag{2.14}$$

Figura 2.1: Nanopartícula caracterizada por una respuesta dieléctrica homogénea $\epsilon(\omega)$ centrada en el origen, junto a la trayectoria del electrón colocada en $\vec{\mathbf{r}} = (0, b, vt)$

Se define el sistema de estudio como el de una NP caracterizada por una respuesta dieléctrica homogénea $\epsilon(\omega)$ centrada en el origen, interactuando con un electrón cuya trayectoria se describe a través de $\vec{\mathbf{r}} = (0, b, vt)$, como se muestra en la Fig. 2.1. Para calcular la transferencia de momento angular del electrón a la NP $(\Delta \vec{\mathbf{L}})$ se integra la Ec. (2.13) en el tiempo de la siguiente manera

$$\Delta \vec{\mathbf{L}} = \int_{-\infty}^{\infty} \frac{d}{dt} \vec{\mathbf{L}}^{\text{mec}}(t) \ dt = \int_{-\infty}^{\infty} \oint_{S} \vec{\mathbf{M}} (\vec{\mathbf{r}}, t) \cdot d\vec{\mathbf{S}} \ dt - \Delta \vec{\mathbf{L}}^{\text{em}}, \tag{2.15}$$

donde

$$\Delta \vec{\mathbf{L}}^{\text{em}} = \int_{-\infty}^{\infty} \frac{d}{dt} \vec{\mathbf{L}}^{\text{em}} dt = \vec{\mathbf{L}}^{\text{em}} (t \to \infty) - \vec{\mathbf{L}}^{\text{em}} (t \to -\infty), \tag{2.16}$$

у

$$\vec{\mathbf{L}}^{\text{em}}(t \to \pm \infty) = \epsilon_0 \mu_0 \int_V \vec{\mathbf{r}} \times \left[\vec{\mathbf{E}} \left(t \to \pm \infty \right) \times \vec{\mathbf{H}} \left(t \to \pm \infty \right) \right] dV, \tag{2.17}$$

donde este último término, para el sistema de estudio de este trabajo, es nulo porque en el tiempo $t \to -\infty$ el electrón se encuentra infinitamente lejos y no ha interactuado con la NP, por lo que los campos electromagnéticos son nulos $-\vec{\mathbf{E}}(t\to-\infty)=\vec{\mathbf{0}}$ y $\vec{\mathbf{H}}(t\to-\infty)=\vec{\mathbf{0}}$; posteriormente, para cuando $t\to\infty$, el electrón se encontrará infinitamente lejos de la NP pero ya habrá interactuado con ella, por lo que se habrán inducido distribuciones de cargas y corrientes eléctricas dentro de la NP, que habrán desaparecido para cuando $t\to\infty$ debido a procesos disipativos. Por tanto $\vec{\mathbf{L}}^{\rm em}(t\to\pm\infty)=0$.

Entonces

$$\Delta \vec{\mathbf{L}} = \int_{-\infty}^{\infty} \oint_{S} \stackrel{\leftrightarrow}{\mathbf{M}} (\vec{\mathbf{r}}, t) \cdot d\vec{\mathbf{S}} dt, \qquad (2.18)$$

o usando notación de índices

$$\Delta L_i = \int_{-\infty}^{\infty} \oint_S \epsilon_i^{\ lj} r_l T_{jk} \left(\vec{\mathbf{r}}, t \right) n^k \, dS \, dt, \tag{2.19}$$

donde n_i es la *i*-ésima componente del vector normal a la superficie de S.

Como la función dieléctrica $\epsilon(\omega)$ se presenta usualmente en términos de la frecuencia, resulta conveniente expresar a los campos electromagnéticos en términos de ω . Mediante la transformada de Fourier temporal se pueden expresar los campos electromagnéticos en función de la frecuencia, de la sigueinte manera

$$\vec{\mathbf{F}}(\omega) = \int_{-\infty}^{\infty} \vec{\mathbf{F}}(t) e^{i\omega t} dt \qquad y \qquad \vec{\mathbf{F}}(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \vec{\mathbf{F}}(\omega) e^{-i\omega t} d\omega$$
 (2.20)

donde $\vec{\mathbf{F}} \in \{\vec{\mathbf{B}}, \vec{\mathbf{H}}\}$ y para que $\vec{\mathbf{F}}(t)$ sea una función de variable real se debe cumplir que $\vec{\mathbf{F}}(\omega)^* = \vec{\mathbf{F}}(-w)$ con la convención de exprezar al complejo conjugado de un número z como z^* . Además, para calcular la transferencia de momento angular a través de la Ec. (2.19) es importante notar que la dependencia en el tiempo está contenida únicamente en el tensor de esfuerzos de Maxwell $\dot{\mathbf{T}}(\vec{\mathbf{r}},t)$. De esta forma se puede reescribir la integrar en el tiempo de la siguiente manera

$$\int_{-\infty}^{\infty} E_{i}(\vec{\mathbf{r}},t) E_{j}(\vec{\mathbf{r}},t) dt = \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} E_{i}(\vec{\mathbf{r}},\omega) e^{-i\omega t} d\omega \right] \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} E_{j}(\vec{\mathbf{r}},\omega') e^{-i\omega' t} d\omega' \right] dt,$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-i(\omega+\omega')t} dt \right] E_{i}(\vec{\mathbf{r}},\omega) E_{j}(\vec{\mathbf{r}},\omega') d\omega d\omega',$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \delta \left(\omega + \omega' \right) E_{i}(\vec{\mathbf{r}},\omega) E_{j}(\vec{\mathbf{r}},\omega') d\omega d\omega',$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{i}(\vec{\mathbf{r}},\omega) E_{j}(\vec{\mathbf{r}},-\omega) d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} E_{i}(\vec{\mathbf{r}},\omega) E_{j}^{*}(\vec{\mathbf{r}},\omega) d\omega,$$

$$= \frac{1}{\pi} \int_{0}^{\infty} \operatorname{Re} \left[E_{i}(\vec{\mathbf{r}},\omega) E_{j}^{*}(\vec{\mathbf{r}},\omega) \right] d\omega$$
(2.21)

y se puede realizar el proceso análogo para las componentes del campo $\vec{\mathbf{H}}$.

De esta manera se puede reescribir la Ec. (2.19) como

$$\Delta L_i = \frac{1}{\pi} \int_0^\infty \oint_S \epsilon_i^{lj} r_l \Upsilon_{jk} (\vec{\mathbf{r}}, \omega) \, n^k \, dS \, d\omega, \qquad (2.22)$$

donde se ha definido

$$\dot{\vec{\mathbf{T}}}(\vec{\mathbf{r}},\omega) = \operatorname{Re}\left[\frac{\epsilon_0}{(4\pi\epsilon_0)}\vec{\mathbf{E}}(\vec{\mathbf{r}},\omega)\vec{\mathbf{E}}^*(\vec{\mathbf{r}},\omega) - \frac{\epsilon_0}{(4\pi\epsilon_0)}\frac{\vec{\mathbf{I}}}{2}\vec{\mathbf{E}}(\vec{\mathbf{r}},\omega)\cdot\vec{\mathbf{E}}_j^*(\vec{\mathbf{r}},\omega) + \frac{\mu_0}{(4\pi\mu_0)}\vec{\mathbf{H}}_i(\vec{\mathbf{r}},\omega)\vec{\mathbf{H}}_j^*(\vec{\mathbf{r}},\omega) - \frac{\mu_0}{(4\pi\mu_0)}\frac{\vec{\mathbf{I}}}{2}\vec{\mathbf{H}}(\vec{\mathbf{r}},\omega)\cdot\vec{\mathbf{H}}^*(\vec{\mathbf{r}},t)\right],$$
(2.23)

 ${\rm donde}\stackrel{\leftrightarrow}{\bf I}{\rm es} \ {\rm el} \ {\rm tensor} \ {\rm identidad} \ {\rm de} \ {\rm rango} \ {\rm 2.} \ {\rm De} \ {\rm esta} \ {\rm forma} \ {\rm se} \ {\rm puede} \ {\rm definir} \ {\rm finalmente} \ {\rm la} \ «{\rm densidad} \ {\rm espectral} »$

Teoría y métodos 17

de momento angular

$$\mathcal{L}_{i}(\omega) = \frac{1}{\pi} \oint_{S} \epsilon_{i}^{\ lj} r_{l} \mathcal{T}_{jk}(\vec{\mathbf{r}}, \omega) n^{k} dS. \tag{2.24}$$

y calcular la transferencia de momento angular a través de

$$\Delta \vec{\mathbf{L}} = \int_0^\infty \vec{\mathcal{L}} (\omega) \ d\omega. \tag{2.25}$$

Resulta adecuado separar la contribución eléctrica de la magnética de la densidad espectral de la Ec.(2.25). Para realizar esto se debe separar

$$\overset{\leftrightarrow}{\mathcal{T}}(\vec{\mathbf{r}},\omega) = \overset{\leftrightarrow}{\mathcal{T}}^{E}(\vec{\mathbf{r}},\omega) + \overset{\leftrightarrow}{\mathcal{T}}^{H}(\vec{\mathbf{r}},\omega)$$
(2.26)

con

$$\overset{\leftrightarrow}{\mathbf{J}}^{E} = \frac{\epsilon_{0}}{(4\pi\epsilon_{0})} \operatorname{Re} \left[\vec{\mathbf{E}} (\vec{\mathbf{r}}, \omega) \vec{\mathbf{E}}^{*} (\vec{\mathbf{r}}, \omega) - \frac{\overleftrightarrow{\mathbf{I}}}{2} \vec{\mathbf{E}} (\vec{\mathbf{r}}, \omega) \cdot \vec{\mathbf{E}}^{*} (\vec{\mathbf{r}}, \omega) \right],$$
(2.27)

$$\overset{\leftrightarrow}{\mathfrak{T}}^{H} = \frac{\mu_{0}}{(4\pi\mu_{0})} \operatorname{Re} \left[\vec{\mathbf{H}} (\vec{\mathbf{r}}, \omega) \vec{\mathbf{H}}^{*} (\vec{\mathbf{r}}, \omega) - \frac{\dot{\mathbf{I}}}{2} \vec{\mathbf{H}} (\vec{\mathbf{r}}, \omega) \cdot \vec{\mathbf{H}}^{*} (\vec{\mathbf{r}}, \omega) \right].$$
(2.28)

Si se elige una esfera como superficie de integración, y se denota a R como el radio de la superficie de integración esférica S y a \hat{r}_i como la i-ésima componente del vector unitario radial, es posible expresar a $\mathcal{L}_i(\omega)$ de la siguiente manera

$$\mathcal{L}_{i}(\omega) = \frac{R^{2}}{\pi} \int_{0}^{4\pi} \left[\epsilon_{i}^{\ lj} r_{l} \mathcal{T}_{jk}^{E}(\vec{\mathbf{r}}, \omega) n^{k} + \epsilon_{i}^{\ lj} r_{l} \mathcal{T}_{jk}^{H}(\vec{\mathbf{r}}, \omega) n^{k} \right] d\Omega, \tag{2.29}$$

donde únicamente falta integral en el ángulo sólido Ω .

Se pueden separar a los campos electromagnéticos $\vec{\mathbf{E}}$ y $\vec{\mathbf{H}}$ en sus contribuciones de campo externo (ext) y campo esparcido (scat) como

$$\vec{\mathbf{E}} = \vec{\mathbf{E}}_{\text{ext}} + \vec{\mathbf{E}}_{\text{scat}}, \qquad \qquad \mathbf{y} \qquad \qquad \vec{\mathbf{H}} = \vec{\mathbf{H}}_{\text{ext}} + \vec{\mathbf{H}}_{\text{scat}}, \qquad (2.30)$$

donde $\vec{\mathbf{E}}_{\mathrm{ext}}$ y $\vec{\mathbf{H}}_{\mathrm{ext}}$ son los campos electromagnéticos externos —es decir, los producidos por el electrón—, y $\vec{\mathbf{E}}_{\mathrm{scat}}$ y $\vec{\mathbf{H}}_{\mathrm{scat}}$ son los campos esparcidos por la nanopartícula (NP). Mediante esta separación se puede reescribir la componente eléctrica del tensor de esfuerzos como

$$\vec{\mathbf{J}}^{E} = \frac{\epsilon_{0}}{(4\pi\epsilon_{0})} \operatorname{Re} \left[\left(\vec{\mathbf{E}}_{\text{ext}} + \vec{\mathbf{E}}_{\text{scat}} \right) \left(\vec{\mathbf{E}}_{\text{ext}}^{*} + \vec{\mathbf{E}}_{\text{scat}}^{*} \right) - \frac{\vec{\mathbf{I}}}{2} \left(\vec{\mathbf{E}}_{\text{ext}} + \vec{\mathbf{E}}_{\text{scat}} \right) \cdot \left(\vec{\mathbf{E}}_{\text{ext}}^{*} + \vec{\mathbf{E}}_{\text{scat}}^{*} \right) \right],$$

$$= \frac{\epsilon_{0}}{(4\pi\epsilon_{0})} \operatorname{Re} \left[\left(\vec{\mathbf{E}}_{\text{scat}} \vec{\mathbf{E}}_{\text{scat}}^{*} + \vec{\mathbf{E}}_{\text{scat}} \vec{\mathbf{E}}_{\text{ext}}^{*} + \vec{\mathbf{E}}_{\text{ext}} \vec{\mathbf{E}}_{\text{scat}}^{*} + \vec{\mathbf{E}}_{\text{ext}} \vec{\mathbf{E}}_{\text{ext}}^{*} \right) \right] - \frac{\vec{\mathbf{I}}}{2} \left(\vec{\mathbf{E}}_{\text{scat}} \cdot \vec{\mathbf{E}}_{\text{scat}}^{*} + \vec{\mathbf{E}}_{\text{scat}} \cdot \vec{\mathbf{E}}_{\text{ext}}^{*} + \vec{\mathbf{E}}_{\text{ext}} \cdot \vec{\mathbf{E}}_{\text{ext}}^{*} \right) \right]. \tag{2.31}$$

Por medio de esta separación se puede escribir la componente eléctrica del tensor de esfuerzos como

$$\overset{\leftrightarrow}{\mathcal{T}}^{E} = \overset{\leftrightarrow}{\mathcal{T}}^{E}_{ss} + \overset{\leftrightarrow}{\mathcal{T}}^{E}_{int} + \overset{\leftrightarrow}{\mathcal{T}}^{E}_{ee}$$
(2.32)

en donde

$$\dot{\vec{\mathcal{T}}}_{ss}^{E} = \frac{\epsilon_0}{(4\pi\epsilon_0)} \operatorname{Re} \left[\vec{\mathbf{E}}_{scat} \vec{\mathbf{E}}_{scat}^* - \frac{\dot{\mathbf{I}}}{2} \vec{\mathbf{E}}_{scat} \cdot \vec{\mathbf{E}}_{scat}^* \right], \tag{2.33}$$

$$\overset{\leftrightarrow}{\mathbf{T}}^{\mathrm{E}}_{\mathrm{ee}} = \frac{\epsilon_{0}}{(4\pi\epsilon_{0})} \operatorname{Re} \left[\vec{\mathbf{E}}_{\mathrm{ext}} \vec{\mathbf{E}}_{\mathrm{ext}}^{*} - \frac{\overset{\leftrightarrow}{\mathbf{I}}}{2} \vec{\mathbf{E}}_{\mathrm{ext}} \cdot \vec{\mathbf{E}}_{\mathrm{ext}}^{*} \right], \tag{2.34}$$

$$\overset{\leftrightarrow}{\mathcal{T}}_{\text{int}}^{E} = \overset{\leftrightarrow}{\mathcal{T}}_{\text{se}}^{E} + \overset{\leftrightarrow}{\mathcal{T}}_{\text{es}}^{E} \tag{2.35}$$

con

$$\overset{\leftrightarrow}{\mathcal{T}}^{E}_{es} = \frac{\epsilon_{0}}{(4\pi\epsilon_{0})} \operatorname{Re} \left[\vec{\mathbf{E}}_{ext} \vec{\mathbf{E}}_{scat}^{*} - \frac{\overrightarrow{\mathbf{I}}}{2} \vec{\mathbf{E}}_{ext} \cdot \vec{\mathbf{E}}_{scat}^{*} \right],$$
(2.36)

$$\overset{\leftrightarrow}{\mathcal{T}}_{\text{se}}^{\text{E}} = \frac{\epsilon_0}{(4\pi\epsilon_0)} \operatorname{Re} \left[\vec{\mathbf{E}}_{\text{scat}} \vec{\mathbf{E}}_{\text{ext}}^* - \frac{\vec{\mathbf{I}}}{2} \vec{\mathbf{E}}_{\text{scat}} \cdot \vec{\mathbf{E}}_{\text{ext}}^* \right].$$
(2.37)

Análogamente al hacer la sustitución $\epsilon_0 \to \mu_0$ y $\vec{\mathbf{E}} \to \vec{\mathbf{H}}$ en las Ecs. (2.31) a (2.37), se obtiene las contribuciones magnéticas al tensor $\dot{\vec{\tau}}$.

2.0.2. Transferencia de momento angular de un electrón rápido a una nanopartícula

El campo electromagnético externo producido por un electrón rápido, considerado como una partícula puntual de carga q = -e, viajando a velocidad $\vec{\mathbf{v}}$ constante a lo largo del eje z [ver Fig. 2.1], se puede obtener mediante una transformación de Lorentz de un sistema de referencia en el que el electrón se encuentra en reposo, a un sistema de referencia en el que el electrón que se mueve a velocidad constante $\vec{\mathbf{v}}$, obteniendo [1]

$$\vec{\mathbf{E}}_{\text{ext}}(\vec{\mathbf{r}},t) = (4\pi\epsilon_0) \frac{-e}{4\pi\epsilon_0} \frac{\gamma \left[\vec{\mathbf{R}} + (z - vt)\hat{z}\right]}{\left[R^2 + \gamma^2(z - vt)^2\right]^{3/2}},$$
(2.38)

$$\vec{\mathbf{H}}_{\text{ext}}(\vec{\mathbf{r}},t) = (4\pi) \frac{-e}{4\pi} \frac{\gamma \vec{\mathbf{v}} \times \vec{\mathbf{R}}}{\left[R^2 + \gamma^2 (z - vt)^2\right]^{3/2}},$$
(2.39)

en donde $\gamma = (1 - \beta^2)^{-1/2}$, $\beta = v/c$, $\vec{\mathbf{R}} = (x - b)\hat{x} + y\hat{y}$, $R = \sqrt{(x - b)^2 + y^2}$ y $\vec{\mathbf{v}} \times \vec{\mathbf{R}} = v \left[(x - b)\hat{y} - y\hat{x} \right]$. Se pueden calcular los campos electromagnéticos externos en función de la frecuencia mediante una

Teoría y métodos 19

transformada de Fourier de las Ecs. (2.38) y (2.39) que se expresan como [2]

$$\vec{\mathbf{E}}_{\text{ext}}(\vec{\mathbf{r}}, \omega) = \frac{(4\pi\epsilon_0)}{4\pi\epsilon_0} \frac{-e}{v^2 \gamma} e^{i\omega(z/v)} \left\{ \text{sign}(\omega) K_1 \left(\frac{|\omega|R}{v\gamma} \right) \hat{R} - \frac{i}{\gamma} K_0 \left(\frac{|\omega|R}{v\gamma} \right) \hat{z} \right\}, \tag{2.40}$$

$$\vec{\mathbf{H}}_{\text{ext}}(\vec{\mathbf{r}},\omega) = (4\pi) \frac{-e}{4\pi} \frac{2e}{vc\gamma} |\omega| e^{i\omega z/v} K_1 \left(\frac{|\omega|R}{v\gamma}\right) \hat{v} \times \hat{R}, \tag{2.41}$$

que son expresiones cerradas con simetría cilíndrica. Como también se buscan los campos esparcidos por la NP, que tienen simetría esférica, conviene expresar a los campos electromagnéticos del electrón mediante una solución con simetría esférica.

El campo eléctrico producido por el electrón se puede obtener mediante la función de Green dependiente del tiempo [2]

$$\vec{\mathbf{E}}_{\text{ext}}(\vec{\mathbf{r}}, \omega) = (4\pi\epsilon_0) \frac{e}{4\pi\epsilon_0} \left(\nabla - i \frac{k\vec{\mathbf{v}}}{c} \right) \int_{-\infty}^{\infty} e^{i\omega t} G_0(\vec{\mathbf{r}} - \vec{\mathbf{r}}_t) dt, \qquad (2.42)$$

donde la función de Green $G_0(\vec{\mathbf{r}} - \vec{\mathbf{r}}_t)$ está dada por

$$G_0\left(\vec{\mathbf{r}} - \vec{\mathbf{r}}_t\right) = \frac{(4\pi\epsilon_0)}{4\pi\epsilon_0 2} \frac{e^{ik|\vec{\mathbf{r}} - \vec{\mathbf{r}}_t|}}{|\vec{\mathbf{r}} - \vec{\mathbf{r}}_t|},\tag{2.43}$$

con $k = \omega/c$ el número de onda en el vacío, $\vec{\mathbf{r}}_t = \vec{\mathbf{r}}_0 + \vec{\mathbf{v}}t$ la posición del electrón al tiempo t. Al expandir la función de Green en base esférica se obtiene [3]

$$G_0(\vec{\mathbf{r}}, \vec{\mathbf{r}}_t) = \frac{(4\pi\epsilon_0)}{\epsilon_0} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} j_{\ell}(kr) h_{\ell}^+(kr_t) Y_{\ell,m}(\Omega_r) Y_{\ell,m}(\Omega_{r_t})^*, \tag{2.44}$$

donde $h_{\ell}^+(x) = ih_{\ell}^1(x)$ es la función de Hankel esférica de orden ℓ [6]. Sustituyendo la Ec. 2.44 en la Ec. 2.42, se obtiene

$$\vec{\mathbf{E}}_{\text{ext}}\left(\vec{\mathbf{r}},t\right) = \tag{2.45}$$

De este modo, sustituyendo la Ec. (??) en la Ec. (??) se obtiene que

$$\frac{\partial}{\partial r_j} M_{kj} = \frac{\partial}{\partial t} \left(\ell_k^{\text{mec}} + \ell_k^{\text{em}} \right), \tag{2.46}$$

en donde

$$M_{kj} = \epsilon_{kli} r_l T_{ij}. \tag{2.47}$$

La Ec. (2.46) es la forma local de la conservación del momento angular. Integrando la Ec. (2.46) en el volumen interior V de alguna superficie diferenciable S, estática y cerrada, y utilizando el teorema de la divergencia, se encuentra que la forma global de la conservación del momento angular es [4]:

Conservación del momento angular en electrodinámica

$$\oint_{S} \vec{M} \cdot d\vec{\mathbf{a}} = \frac{d}{dt} \left(\vec{\mathbf{L}}^{\text{mec}} + \vec{\mathbf{L}}^{\text{em}} \right)$$
(2.48)

en donde

$$\vec{\mathbf{L}}^{\text{mec}} = \int_{V} \vec{\boldsymbol{\ell}}^{\text{mec}} dV \tag{2.49}$$

у

$$\vec{\mathbf{L}}^{\text{em}} = \int_{V} \vec{\boldsymbol{\ell}}^{\text{em}} dV. \tag{2.50}$$

En el Apéndice A se presentan los detalles de los métodos numéricos utilizados en este trabajo, incluyendo una discusión sobre CUHRE. Todos los resultados reportados en este trabajo han sido calculados asegurando que sus primeras tres cifras significativas sean correctas.

Resultados y discusión

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer

adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Conclusiones y perspectivas

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Apéndice A Solución de Mie extendida

Para construir la solución buscada se define ahora la transformada de Fourier espaciotemporal como

$$\vec{\mathbf{F}} \left(\vec{\mathbf{k}}, \omega \right) = \int_{-\infty}^{\infty} \int_{\text{T.E.}} \vec{\mathbf{F}} \left(\vec{\mathbf{r}}, t \right) e^{-i \left(\vec{\mathbf{k}} \cdot \vec{\mathbf{r}} - \omega t \right)} d^3 r \, dt,$$

$$\vec{\mathbf{F}} \left(\vec{\mathbf{r}}, t \right) = \frac{1}{(2\pi)^4} \int_{-\infty}^{\infty} \int_{\text{T.E.R.}} \vec{\mathbf{F}} \left(\vec{\mathbf{k}}, \omega \right) e^{i \left(\vec{\mathbf{k}} \cdot \vec{\mathbf{r}} - \omega t \right)} d^3 k \, d\omega,$$
(A.1)

donde T.E. significa integrar sobre todo el espacio y T.E.R. significa integrar sobre todo el espacio recíproco. Aplicando la transformada de Fourier a las Ecs. (2.3) y (2.4) se obtiene

$$\left(-k^2 + \frac{\omega^2}{c^2}\right)\phi\left(\vec{\mathbf{k}},\omega\right) = -\left(4\pi\epsilon_0\right)\frac{1}{\epsilon_0}\rho_{\text{tot}}\left(\vec{\mathbf{k}},\omega\right),\tag{A.2}$$

$$\left(-k^2 + \frac{\omega^2}{c^2}\right) \vec{\mathbf{A}} \left(\vec{\mathbf{k}}, \omega\right) = -\left(\frac{4\pi}{\mu_0 c}\right) \mu_0 \vec{\mathbf{J}}_{\text{tot}} \left(\vec{\mathbf{k}}, \omega\right), \tag{A.3}$$

y usando el hecho de que $\vec{\mathbf{J}}=\rho\vec{\mathbf{v}}$ y $\mu_0\epsilon_0c^2=1$ se obtiene

$$\phi\left(\vec{\mathbf{k}},\omega\right) = \frac{1}{k^2 - \omega^2/c^2} \frac{\rho_{\text{tot}}\left(\vec{\mathbf{k}},\omega\right)}{\epsilon_0},\tag{A.4}$$

$$\vec{\mathbf{A}} \left(\vec{\mathbf{k}}, \omega \right) = \left(\frac{4\pi}{\mu_0 c} \right) \frac{\mu_0}{k^2 - \omega^2 / c^2} \vec{\mathbf{J}}_{\text{tot}} \left(\vec{\mathbf{k}}, \omega \right) = (c) \frac{\vec{\mathbf{v}}}{c^2} \phi \left(\vec{\mathbf{k}}, \omega \right). \tag{A.5}$$

Ahora, calculando la transformada de Fourier de la Ec. (2.5) se obtiene

$$\vec{\mathbf{E}}\left(\vec{\mathbf{k}},\omega\right) = -i\vec{\mathbf{k}}\phi\left(\vec{\mathbf{k}},\omega\right) + \left(\frac{1}{c}\right)i\omega\vec{\mathbf{A}}\left(\vec{\mathbf{k}},\omega\right). \tag{A.6}$$

1 Sustituyendo la Ec. (A.5) en la Ec. (A.6) se obtiene

$$\vec{\mathbf{E}}\left(\vec{\mathbf{k}},\omega\right) = i\left(-\vec{\mathbf{k}} + \frac{\omega}{c^2}\vec{\mathbf{v}}\right)\phi\left(\vec{\mathbf{k}},\omega\right),\tag{A.7}$$

y calculando la transformada inversa de Fourier de la expresionan anterior, únicamente en el espacio $\vec{\mathbf{k}}$, se obtiene

$$\vec{\mathbf{E}}(\vec{\mathbf{r}},\omega) = \left(-\nabla + i\frac{\omega}{c^2}\vec{\mathbf{v}}\right)\phi(\vec{\mathbf{r}},\omega). \tag{A.8}$$

Realizando el proceso análogo para calcular el campo magnético $\vec{\mathbf{B}}(\vec{\mathbf{r}},\omega)$ se obtiene

$$\vec{\mathbf{B}}\left(\vec{\mathbf{k}},\omega\right) = i\vec{\mathbf{k}} \times \vec{\mathbf{A}}\left(\vec{\mathbf{k}},\omega\right) = i\vec{\mathbf{k}} \times \frac{\vec{\mathbf{v}}}{c^2}\phi\left(\vec{\mathbf{k}},\omega\right),\tag{A.9}$$

$$\vec{\mathbf{B}}(\vec{\mathbf{r}},\omega) = (c)\nabla\phi(\vec{\mathbf{r}},\omega) \times \frac{\vec{\mathbf{v}}}{c^2}.$$
(A.10)

Considerando la densidad de carga del electrón en movimiento es $\rho_{tot}(\vec{\mathbf{r}},t) = -e\delta(\vec{\mathbf{r}} - \vec{\mathbf{r}}_t)$, donde $\vec{\mathbf{r}}_t = (b,0,vt)$ es el vector posición del electrón, y calculando la transformada de Fourier de la Ec. (2.3) se obtiene la Ec. de Helmholtz

$$\nabla^2 \phi(\vec{\mathbf{r}}, \omega) + k^2 \phi(\vec{\mathbf{r}}, \omega) = -(4\pi\epsilon_0) \frac{e}{\epsilon_0} \int_{-\infty}^{\infty} e^{i\omega t} \delta(\vec{\mathbf{r}} - \vec{\mathbf{r}}_t) dt, \tag{A.11}$$

donde $k = \omega/c$ es el número de onda en el vacío y la solución para $\phi(\vec{\mathbf{r}}, \omega)$ se escribe como [2, 3, 5]

$$\phi(\vec{\mathbf{r}},\omega) = -e \int_{\text{T.E.}} G_0(\vec{\mathbf{r}} - \vec{\mathbf{r}}') \int_{-\infty}^{\infty} e^{i\omega t} \delta(\vec{\mathbf{r}} - \vec{\mathbf{r}}_t) dt d^3 r', \tag{A.12}$$

$$= -e \int_{-\infty}^{\infty} e^{i\omega t} \int_{\text{T.E.}} G_0(\vec{\mathbf{r}} - \vec{\mathbf{r}}') \delta(\vec{\mathbf{r}} - \vec{\mathbf{r}}_t) d^3 r' dt, \qquad (A.13)$$

$$= -e \int_{-\infty}^{\infty} e^{i\omega t} G_0 \left(\vec{\mathbf{r}} - \vec{\mathbf{r}}_t \right) dt, \tag{A.14}$$

con

$$G_0\left(\vec{\mathbf{r}} - \vec{\mathbf{r}}_t\right) = \frac{(4\pi\epsilon_0)}{4\pi\epsilon_0} \frac{e^{ik|\vec{\mathbf{r}} - \vec{\mathbf{r}}_t|}}{|\vec{\mathbf{r}} - \vec{\mathbf{r}}_t|},\tag{A.15}$$

la función de Green de la ecuación de Helmholtz. De esta forma, el campo eléctrico del electrón se puede escribir como

$$\vec{\mathbf{E}}_{\text{ext}}(\vec{\mathbf{r}}, \omega) = e\left(\nabla - i\frac{k\vec{\mathbf{v}}}{c}\right) \int_{-\infty}^{\infty} e^{i\omega t} G_0(\vec{\mathbf{r}} - \vec{\mathbf{r}}_t) dt.$$
(A.16)

Al reescribir la función de Green en una base esférica se obtiene

$$G_0(\vec{\mathbf{r}}, \vec{\mathbf{r}}_t) = \frac{(4\pi\epsilon_0)}{\epsilon_0} k \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} j_{\ell}(k\,r) h_{\ell}^{(+)}(k\,r_t) Y_{\ell,m}(\Omega_r) Y_{\ell,m}^*(\Omega_{r_t}), \qquad (A.17)$$

donde $h_{\ell}^{(+)}(x) = \mathrm{i}\,h_{\ell}^{(1)}(x)$ es la función esférica de Hankel de orden ℓ [6]. Sustituyendo la Ec. (A.17) en la Ec. (A.16) se obtiene

$$\vec{\mathbf{E}}_{\text{ext}}(\vec{\mathbf{r}},\omega) = (4\pi\epsilon_0) \frac{e}{4\pi\epsilon_0} \left(\nabla - i\frac{k\vec{\mathbf{v}}}{c}\right) \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} j_{\ell}(k\,r) Y_{\ell,m}(\Omega_r) \,\phi_{\ell,m},\tag{A.18}$$

donde

$$\phi_{\ell,m} = 4\pi k \int_{-\infty}^{\infty} e^{i\omega t} h_{\ell}^{(+)}(k \, r_t) Y_{\ell,m}^* \left(\Omega_{r_t}\right) \, dt. \tag{A.19}$$

Para calcular las constantes $\phi_{\ell,m}$ de la Ec. (A.19) se calcula la transformada de Fourier de la función de Green en el espacio de frecuencias [2]

$$\int_{-\infty}^{\infty} e^{i\omega t} \frac{e^{ik|\vec{\mathbf{r}} - \vec{\mathbf{r}}_t|}}{|\vec{\mathbf{r}} - \vec{\mathbf{r}}_t|} dt = \frac{2}{v} K_0 \left(\frac{|\omega|R}{v\gamma}\right) e^{i\omega z/v}, \tag{A.20}$$

donde $R = \sqrt{(x-b)^2 + y^2}$, v la rapidez de electrón y K_0 la función Bessel modificada del segundo tipo de orden cero. A partir de las Ecs. (A.16), (A.18) y (A.20) se puede obtener la ecuaciación

$$\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} j_{\ell}(k \, r) Y_{\ell,m}\left(\Omega_r\right) \phi_{\ell,m} = \frac{2}{v} K_0\left(\frac{|\omega|R}{v\gamma}\right) e^{i\omega z/v},\tag{A.21}$$

y al usar la ortonormalidad de los armónicos esféricos se obtiene

$$\phi_{\ell,m} = \frac{2}{v j_{\ell}(k r)} \int_0^{4\pi} Y_{\ell,m}^*(\Omega_r) K_0\left(\frac{|\omega|R}{v\gamma}\right) e^{i\omega z/v} d\Omega_r. \tag{A.22}$$

Al realizar la integral de la Ec. (A.22) se obtiene [3]

$$\phi_{\ell,m} = 4\pi k \frac{A_{\ell,m}^{+}}{\omega} K_m \left(\frac{\omega b}{v\gamma}\right), \tag{A.23}$$

donde K_m es la función Bessel modificada del segundo tipo de orden m, y los coeficientes $A_{\ell,m}^+$ están dados por

$$A_{\ell,m}^{+} = \frac{1}{\beta^{\ell+1}} \sum_{i=m}^{\ell} \frac{\mathrm{i}^{\ell-j} (2\ell+1)!! \alpha_{\ell,m}}{\gamma^{j} 2^{j} (l-j)! [(j-m)/2]! [(j+m)/2]!} I_{j,\ell-j}^{\ell,m}, \tag{A.24}$$

con

$$\alpha_{\ell,m} = \sqrt{\frac{2\ell + 1}{4\pi} \frac{(\ell - m)!}{(\ell + m)!}} \quad y \quad \beta = \frac{v}{c}.$$
 (A.25)

Los números $I_{j,\ell-j}^{\ell,m}$ se calculan mediante la siguiente relación de recurrencia

$$(\ell - m)I_{i_1, i_2}^{\ell, m} = (2\ell - 1)I_{i_1, i_2 + 1}^{\ell - 1, m} - (\ell + m - 1)I_{i_1, i_2}^{\ell - 2, m}, \tag{A.26}$$

con los valores iniciales $I_{i_1,i_2}^{m-1,m}=0,\,I_{i_1,i_2}^{m-2,m}=0$ y

$$I_{i_1,i_2}^{m,m} = \begin{cases} (-1)^m (2m-1)!! B\left(\frac{i_1+m+2}{2}, \frac{i_2+1}{2}\right), & \text{si } i_2 \text{ es par} \\ 0, & \text{si } i_2 \text{ es impar} \end{cases}, \tag{A.27}$$

y donde B(x,y) es la función beta [6].

Referencias

- [1] J. D. Jackson. Classical Electrodynamics. John Wiley & Sons, 2007. [citado en las págs. 13, 14 y 18.]
- [2] C. Maciel-Escudero y A. Reyes-Coronado. Electromagnetic fields produced by a swift electron: A source of white light. Wave Motion, 86:137–149, 2019. [citado en las págs. 19, 26 y 27.]
- [3] F. J. García de Abajo. Relativistic energy loss and induced photon emission in the interaction of a dielectric sphere with an external electron beam. *Phys. Rev. B*, 59:3095–3107, Jan 1999. [citado en las págs. 19, 26 y 27.]
- [4] R. H. Good y T. J. Nelson. Classical Theory of Electric and Magnetic Fields. Academic Press, 2013.
 [citado en la pág. 19.]
- [5] György Barton y Gabriel Barton. Elements of Green's functions and propagation: potentials, diffusion, and waves. Oxford University Press, 1989. [citado en la pág. 26.]
- [6] M. Abramowitz, I. A. Stegun y R. H. Romer. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. American Association of Physics Teachers, 1988. [citado en las págs. 19, 26 y 27.]