COSE474 - 2024F: Deep Learning HW 2

무함마드 파이즈 찬 2022320144

- 7.1. From Fully Connected Layers to Convolutions
- 7.1.1. Invariance
- 7.1.2. Constraining the MLP
- 7.1.2.1. Translation Invariance
- 7.1.2.2. Locality
- 7.1.3. Convolutions
- 7.1.4. Channels

Is it beneficial to add one more channel that tracks the location of the said object where in the case of characterizing cats, the ears will have a much higher weightage for the up part in the image instead of the lower part?

Key takeaways:

- · Convolutions are important in reducing the complexities of the task from computationally impossible models to one that are feasible
- In convolution, we are ignoring the location of the pixel in exchange for simplicity in computation, kinda like instead of regarding the whole picture, we are just putting a small box and scanned through the image

7.2. Convolutions for Images

!pip install d2l==1.0.3

 $\overline{\Rightarrow}$

```
kequirement aiready satistied: prometneus-ciient in /usr/iocai/iib/pytnon3.10/dist-packages (from notebook->jupyter==i.0...
Requirement already satisfied: nbclassic>=0.4.7 in /usr/local/lib/python3.10/dist-packages (from notebook->jupyter==1.0.0->d2l==1.0.3)
Requirement already satisfied: qtpy>=2.4.0 in /usr/local/lib/python3.10/dist-packages (from qtconsole->jupyter==1.0.0->d2l==1.0.3) (2
Requirement already satisfied: setuptools>=18.5 in /usr/local/lib/python3.10/dist-packages (from ipython>=5.0.0->ipykernel->jupyter==1
Requirement already satisfied: jedi>=0.16 in /usr/local/lib/python3.10/dist-packages (from ipython>=5.0.0->ipykernel->jupyter==1.0.0->
Requirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython>=5.0.0->ipykernel->jupyter==1.0.0->c
Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython>=5.0.0->ipykernel->jupyter==1.0.0-
Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython>=5.0.0->ipykernel->jupyter==1.0.0->d/
Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython>=5.0.0->ipykernel->jupyter==1.0.0-
Requirement already satisfied: platformdirs>=2.5 in /usr/local/lib/python3.10/dist-packages (from jupyter-core>=4.7->nbconvert->jupyte
Requirement already satisfied: notebook-shim>=0.2.3 in /usr/local/lib/python3.10/dist-packages (from nbclassic>=0.4.7->notebook->jupyt
Requirement already satisfied: fastjsonschema>=2.15 in /usr/local/lib/python3.10/dist-packages (from nbformat>=5.1->nbconvert->jupyter
Requirement already satisfied: jsonschema>=2.6 in /usr/local/lib/python3.10/dist-packages (from nbformat>=5.1->nbconvert->jupyter==1.0
Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->
Requirement already satisfied: ptyprocess in /usr/local/lib/python3.10/dist-packages (from terminado>=0.8.3->notebook->jupyter==1.0.0-
Requirement already satisfied: argon2-cffi-bindings in /usr/local/lib/python3.10/dist-packages (from argon2-cffi->notebook->jupyter==1
Requirement already satisfied: soupsieve>1.2 in /usr/local/lib/python3.10/dist-packages (from beautifulsoup4->nbconvert->jupyter==1.0
Requirement already satisfied: webencodings in /usr/local/lib/python3.10/dist-packages (from bleach->nbconvert->jupyter==1.0.0->d2l==1
Requirement already satisfied: parso<0.9.0,>=0.8.3 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython>=5.0.0->ipyker
Requirement already satisfied: attrs>=22.2.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat>=5.1->nbconver
Requirement already satisfied: jsonschema-specifications>=2023.03.6 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->
Requirement already satisfied: referencing>=0.28.4 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat>=5.1->nt
Requirement already satisfied: rpds-py>=0.7.1 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=2.6->nbformat>=5.1->nbconve
Requirement already satisfied: jupyter-server<3,>=1.8 in /usr/local/lib/python3.10/dist-packages (from notebook-shim>=0.2.3->nbclassic
Requirement already satisfied: cffi>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from argon2-cffi-bindings->argon2-cffi->notebox
Requirement already satisfied: pycparser in /usr/local/lib/python3.10/dist-packages (from cffi>=1.0.1->argon2-cffi-bindings->argon2-cf
Requirement already satisfied: anyio<4,>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from jupyter-server<3,>=1.8->notebook-shim>
Requirement already satisfied: websocket-client in /usr/local/lib/python3.10/dist-packages (from jupyter-server<3,>=1.8->notebook-shim
Requirement already satisfied: sniffio>=1.1 in /usr/local/lib/python3.10/dist-packages (from anyio<4,>=3.1.0->jupyter-server<3,>=1.8->
```

```
import torch
from torch import nn
from d21 import torch as d21
```

→ 7.2.1. The Cross-Correlation Operation

7.2.2. Convolutional Layers

```
class Conv2D(nn.Module):
    def __init__(self, kernel_size):
        super().__init__()
        self.weight = nn.Parameter(torch.rand(kernel_size))
        self.bias = nn.Parameter(torch.zeros(1))

def forward(self, x):
    return corr2d(x, self.weight) + self.bias
```

7.2.3. Object Edge Detection in Images

```
[1., 1., 0., 0., 0., 0., 1., 1.],
            [1., 1., 0., 0., 0., 0., 1., 1.],
            [1., 1., 0., 0., 0., 0., 1., 1.]])
K = torch.tensor([[1.0, -1.0]])
Y = corr2d(X, K)
Υ
→ tensor([[ 0., 1., 0., 0.,
                                 0., -1.,
              0., 1., 0., 0.,
                                 0., -1.,
                                           0.],
                                           0.],
            [ 0., 1., 0., 0., 0., -1.,
            [ 0., 1., 0., 0., 0., -1., 0.],
            [ 0., 1., 0., 0., 0., -1.,
            [ 0., 1., 0., 0., 0., -1., 0.]])
corr2d(X.t(), K)

    tensor([[0., 0., 0., 0., 0.],
            [0., 0., 0., 0., 0.],
            [0., 0., 0., 0., 0.],
            [0., 0., 0., 0., 0.],
            [0., 0., 0., 0., 0.],
            [0., 0., 0., 0., 0.],
            [0., 0., 0., 0., 0.]
            [0., 0., 0., 0., 0.]])
```

→ 7.2.4. Learning a Kernel

```
# Construct a two-dimensional convolutional layer with 1 output channel and a
\# kernel of shape (1, 2). For the sake of simplicity, we ignore the bias here
conv2d = nn.LazyConv2d(1, kernel_size=(1, 2), bias=False)
# The two-dimensional convolutional layer uses four-dimensional input and
# output in the format of (example, channel, height, width), where the batch
\# size (number of examples in the batch) and the number of channels are both 1
X = X.reshape((1, 1, 6, 8))
Y = Y.reshape((1, 1, 6, 7))
lr = 3e-2 # Learning rate
for i in range(10):
    Y_hat = conv2d(X)
    1 = (Y_hat - Y) ** 2
    conv2d.zero_grad()
    1.sum().backward()
    # Update the kernel
    conv2d.weight.data[:] -= lr * conv2d.weight.grad
    if (i + 1) \% 2 == 0:
        print(f'epoch {i + 1}, loss {l.sum():.3f}')
⇒ epoch 2, loss 5.257
     epoch 4, loss 1.551
     epoch 6, loss 0.535
     epoch 8, loss 0.202
     epoch 10, loss 0.080
conv2d.weight.data.reshape((1, 2))
→ tensor([[ 1.0206, -0.9630]])
```

7.2.5. Cross-Correlation and Convolution

7.2.6. Feature Map and Receptive Field

Key Takeaways:

• Cross correlation operation is straightforward and local as only a nested for-loop is required to compute them and in a higher dimensional model we can just use matrix-matrix multiplication for it.

7.3. Padding and Stride

```
import torch
from torch import nn
```

→ 7.3.1. Padding

```
# We define a helper function to calculate convolutions. It initializes the
# convolutional layer weights and performs corresponding dimensionality
# elevations and reductions on the input and output
def comp_conv2d(conv2d, X):
    # (1, 1) indicates that batch size and the number of channels are both 1
    X = X.reshape((1, 1) + X.shape)
    Y = conv2d(X)
    # Strip the first two dimensions: examples and channels
    return Y.reshape(Y.shape[2:])
# 1 row and column is padded on either side, so a total of 2 rows or columns
# are added
conv2d = nn.LazyConv2d(1, kernel_size=3, padding=1)
X = torch.rand(size=(8, 8))
comp_conv2d(conv2d, X).shape
→ torch.Size([8, 8])
```

```
# We use a convolution kernel with height 5 and width 3. The padding on either
# side of the height and width are 2 and 1, respectively
conv2d = nn.LazyConv2d(1, kernel_size=(5, 3), padding=(2, 1))
comp_conv2d(conv2d, X).shape
```

→ torch.Size([8, 8])

7.3.2. Stride

```
conv2d = nn.LazyConv2d(1, kernel_size=3, padding=1, stride=2)
comp_conv2d(conv2d, X).shape
→ torch.Size([4, 4])
conv2d = nn.LazyConv2d(1, kernel_size=(3, 5), padding=(0, 1), stride=(3, 4))
comp_conv2d(conv2d, X).shape
→ torch.Size([2, 2])
```

What are some instances where it is more beneficial to increase the striding amount?

7.3.3. Summary and Discussion

Key Takeaways:

- · Padding allows us to retain the dimensionality of our output which helps in retaining important information
- · Striding can help in computational efficiency and downsizing

7.4. Multiple Input and Multiple Output Channels

```
import torch
from d2l import torch as d2l
```

7.4.1. Multiple Input Channels

7.4.2. Multiple Output Channels

→ 7.4.3. 1 x 1 Convolutional Layer

```
def corr2d_multi_in_out_1x1(X, K):
    c_i, h, w = X.shape
    c_o = K.shape[0]
    X = X.reshape((c_i, h * w))
    K = K.reshape((c_o, c_i))
    # Matrix multiplication in the fully connected layer
    Y = torch.matmul(K, X)
    return Y.reshape((c_o, h, w))

X = torch.normal(0, 1, (3, 3, 3))
K = torch.normal(0, 1, (2, 3, 1, 1))
Y1 = corr2d_multi_in_out_1x1(X, K)
Y2 = corr2d_multi_in_out(X, K)
assert float(torch.abs(Y1 - Y2).sum()) < 1e-6</pre>
```

Key Takeaways:

- We have to use a seperate kernel for each channel because they are different in information
- By using multiple channels we effectively increase the computation time by a lot
- · Channels combine the perks of MLP and convolutions without any information tradeoff

7.5. Pooling

```
import torch
from torch import nn
from d21 import torch as d21
```

7.5.1. Maximum Pooling and Average Pooling

```
def pool2d(X, pool_size, mode='max'):
    p_h, p_w = pool_size
    Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1))
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            if mode == 'max':
               Y[i, j] = X[i: i + p_h, j: j + p_w].max()
            elif mode == 'avg':
               Y[i, j] = X[i: i + p_h, j: j + p_w].mean()
    return Y
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
→ tensor([[4., 5.],
             [7., 8.]])
pool2d(X, (2, 2), 'avg')
→ tensor([[2., 3.],
             [5., 6.]])
```

7.5.2. Padding and Stride

```
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4))
Χ
    tensor([[[[ 0., 1., 2., 3.],
               [ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
               [12., 13., 14., 15.]]])
pool2d = nn.MaxPool2d(3)
# Pooling has no model parameters, hence it needs no initialization
pool2d(X)
→ tensor([[[[10.]]]])
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
→ tensor([[[[ 5., 7.],
               [13., 15.]]])
pool2d = nn.MaxPool2d((2, 3), stride=(2, 3), padding=(0, 1))
pool2d(X)
→ tensor([[[[ 5., 7.],
               [13., 15.]]])
```

7.5.3. Multiple Channels

Key Takeaways:

- Pooling helps to make the model to be less sensitive to position changes by aggregating a patch of the larger images via maxing or averaging
- Even in inputs with multiple channels, we will pool it seperately for each channels

7.6. Convolutional Neural Networks (LeNet)

```
import torch
from torch import nn
from d21 import torch as d21
```

√ 7.6.1. LeNet

```
def init_cnn(module):
    """Initialize weights for CNNs."""
   if type(module) == nn.Linear or type(module) == nn.Conv2d:
       nn.init.xavier_uniform_(module.weight)
class LeNet(d21.Classifier):
    """The LeNet-5 model.""
   def __init__(self, lr=0.1, num_classes=10):
        super().__init__()
        self.save_hyperparameters()
        self.net = nn.Sequential(
           nn.LazyConv2d(6, kernel_size=5, padding=2), nn.Sigmoid(),
           nn.AvgPool2d(kernel_size=2, stride=2),
           nn.LazyConv2d(16, kernel_size=5), nn.Sigmoid(),
           nn.AvgPool2d(kernel_size=2, stride=2),
           nn.Flatten(),
           nn.LazyLinear(120), nn.Sigmoid(),
           nn.LazyLinear(84), nn.Sigmoid(),
           nn.LazyLinear(num_classes))
@d21.add_to_class(d21.Classifier)
def layer_summary(self, X_shape):
   X = torch.randn(*X_shape)
   for layer in self.net:
       X = layer(X)
       print(layer.__class__.__name__, 'output shape:\t', X.shape)
model = LeNet()
model.layer_summary((1, 1, 28, 28))

→ Conv2d output shape:
                              torch.Size([1, 6, 28, 28])
     Sigmoid output shape:
                              torch.Size([1, 6, 28, 28])
     AvgPool2d output shape: torch.Size([1, 6, 14, 14])
     Conv2d output shape:
                              torch.Size([1, 16, 10, 10])
     Sigmoid output shape:
                             torch.Size([1, 16, 10, 10])
     AvgPool2d output shape: torch.Size([1, 16, 5, 5])
     Flatten output shape:
                              torch.Size([1, 400])
     Linear output shape:
                              torch.Size([1, 120])
     Sigmoid output shape:
                             torch.Size([1, 120])
     Linear output shape:
                              torch.Size([1, 84])
     Sigmoid output shape:
                              torch.Size([1, 84])
     Linear output shape:
                              torch.Size([1, 10])
```

→ 7.6.2. Training

```
trainer = d21.Trainer(max_epochs=10, num_gpus=1)
data = d21.FashionMNIST(batch_size=128)
model = LeNet(lr=0.1)
model.apply_init([next(iter(data.get_dataloader(True)))[0]], init_cnn)
trainer.fit(model, data)
```


Key Takeaways:

· LeNet are one of the models that utilizes the things that we learnt so far which is convolution and pooling which manages to achieve an error rate less than 1%

8. Modern Convolutional Neural Networks

8.2. Networks Using Blocks (VGG)

```
import torch
from torch import nn
from d2l import torch as d2l
```

8.2.1. VGG Blocks

```
def vgg_block(num_convs, out_channels):
   layers = []
   for _ in range(num_convs):
        layers.append(nn.LazyConv2d(out channels, kernel size=3, padding=1))
        layers.append(nn.ReLU())
   layers.append(nn.MaxPool2d(kernel_size=2,stride=2))
    return nn.Sequential(*layers)
```

8.2.2. VGG Network

Sequential output shape: Sequential output shape:

```
class VGG(d21.Classifier):
    def __init__(self, arch, lr=0.1, num_classes=10):
        super().__init__()
        self.save_hyperparameters()
        conv_blks = []
        for (num_convs, out_channels) in arch:
            conv_blks.append(vgg_block(num_convs, out_channels))
        self.net = nn.Sequential(
            *conv_blks, nn.Flatten(),
            nn.LazyLinear(4096), nn.ReLU(), nn.Dropout(0.5),
            nn.LazyLinear(4096), nn.ReLU(), nn.Dropout(0.5),
            nn.LazyLinear(num_classes))
        self.net.apply(d21.init_cnn)
VGG(arch=((1,\ 64),\ (1,\ 128),\ (2,\ 256),\ (2,\ 512),\ (2,\ 512))).layer\_summary(
```

```
(1, 1, 224, 224))
→ Sequential output shape:
                                     torch.Size([1, 64, 112, 112])
    Sequential output shape:
                                     torch.Size([1, 128, 56, 56])
```

torch.Size([1, 256, 28, 28])

```
Sequential output shape:
                                 torch.Size([1, 512, 7, 7])
Flatten output shape:
                         torch.Size([1, 25088])
                         torch.Size([1, 4096])
Linear output shape:
                         torch.Size([1, 4096])
ReLU output shape:
                         torch.Size([1, 4096])
Dropout output shape:
Linear output shape:
                         torch.Size([1, 4096])
ReLU output shape:
                         torch.Size([1, 4096])
                         torch.Size([1, 4096])
Dropout output shape:
Linear output shape:
                         torch.Size([1, 10])
```

→ 8.2.3. Training

```
model = VGG(arch=((1, 16), (1, 32), (2, 64), (2, 128), (2, 128)), lr=0.01)
trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128, resize=(224, 224))
model.apply_init([next(iter(data.get_dataloader(True)))[0]], d2l.init_cnn)
trainer.fit(model, data)
```


Key Takeaways:

• Through VGG network, we learn that simple deeper network models are much more effective than wider more complex ones that have less layers. (Deeper meaning more layers)

8.6. Residual Networks (ResNet) and ResNeXt

```
import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
```

8.6.1. Function Classes

8.6.2. Residual Blocks

```
class Residual(nn.Module):
   """The Residual block of ResNet models."""
   def __init__(self, num_channels, use_1x1conv=False, strides=1):
       super().__init__()
       self.conv1 = nn.LazyConv2d(num_channels, kernel_size=3, padding=1,
                                   stride=strides)
        self.conv2 = nn.LazyConv2d(num_channels, kernel_size=3, padding=1)
       if use_1x1conv:
            self.conv3 = nn.LazyConv2d(num_channels, kernel_size=1,
                                       stride=strides)
            self.conv3 = None
       self.bn1 = nn.LazyBatchNorm2d()
       self.bn2 = nn.LazyBatchNorm2d()
   def forward(self, X):
       Y = F.relu(self.bn1(self.conv1(X)))
       Y = self.bn2(self.conv2(Y))
       if self.conv3:
           X = self.conv3(X)
```

```
Y += X
return F.relu(Y)

blk = Residual(3)
X = torch.randn(4, 3, 6, 6)
blk(X).shape

→ torch.Size([4, 3, 6, 6])

blk = Residual(6, use_1x1conv=True, strides=2)
blk(X).shape

→ torch.Size([4, 6, 3, 3])
```

▼ 8.6.3. ResNet Model

```
class ResNet(d21.Classifier):
    def b1(self):
        return nn.Sequential(
            nn.LazyConv2d(64, kernel_size=7, stride=2, padding=3),
            nn.LazyBatchNorm2d(), nn.ReLU(),
            nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
@d21.add_to_class(ResNet)
def block(self, num_residuals, num_channels, first_block=False):
   blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
           blk.append(Residual(num_channels, use_1x1conv=True, strides=2))
        else:
           blk.append(Residual(num_channels))
    return nn.Sequential(*blk)
@d21.add_to_class(ResNet)
def __init__(self, arch, lr=0.1, num_classes=10):
   super(ResNet, self).__init__()
   self.save_hyperparameters()
   self.net = nn.Sequential(self.b1())
   for i, b in enumerate(arch):
        self.net.add_module(f'b{i+2}', self.block(*b, first_block=(i==0)))
    self.net.add_module('last', nn.Sequential(
        nn.AdaptiveAvgPool2d((1, 1)), nn.Flatten(),
        nn.LazyLinear(num_classes)))
   self.net.apply(d21.init_cnn)
class ResNet18(ResNet):
   def __init__(self, lr=0.1, num_classes=10):
        super().__init__(((2, 64), (2, 128), (2, 256), (2, 512)),
                      lr, num_classes)
ResNet18().layer_summary((1, 1, 96, 96))

→ Sequential output shape:
                                      torch.Size([1, 64, 24, 24])
     Sequential output shape:
                                      torch.Size([1, 64, 24, 24])
                                      torch.Size([1, 128, 12, 12])
     Sequential output shape:
     Sequential output shape:
                                      torch.Size([1, 256, 6, 6])
                                      torch.Size([1, 512, 3, 3])
     Sequential output shape:
     Sequential output shape:
                                      torch.Size([1, 10])
```

8.6.4. Training

```
model = ResNet18(lr=0.01)
trainer = d2l.Trainer(max_epochs=10, num_gpus=1)
data = d2l.FashionMNIST(batch_size=128, resize=(96, 96))
model.apply_init([next(iter(data.get_dataloader(True)))[0]], d2l.init_cnn)
trainer.fit(model, data)
```


Key Takeaways:

- Residual blocks allow the information to forward propagate faster without going through certain layers which doesnt help in learning by allowing it to skip layers in the learning model
- ResNet uses residual blocks which makes it visible to train deep networks without the vanishing gradient problem