# Operating Systems 2 (CS3523) Quiz 1

# SURAJ TELUGU CS20BTECH11050

#### 3sol

To minimise average response time the processes, have to be scheduled in order of their shortest run times (shortest job first algorithm).

if(X<3) {Shortest run time order is X,3,5,6,9}

else if(3<X<5) {Shortest run time order is 3,X,5,6,9}

else if(5<X<6) {Shortest run time order is 3,5,X,6,9}

else if(6<X<9) {Shortest run time order is 3,5,6,X,9}

else if(X>9) {Shortest run time order is 3,5,6,9,X}

#### 4sol

(a)

The CPU utilization of process P1 = t1/p1 = 25/40 = 0.625The CPU utilization of process P2 = t2/p2 = 30/75 = 0.4Total CPU utilization of processes P1, P2 = 0.625 + 0.4 = 1.025 (Not possible)

The CPU utilization of rate monotonic scheduling is limited and for 2 processes the total CPU utilization should be less than 83% for scheduling using rate monotonic scheduling algorithm.



In the above Gantt chart P2 missed its first deadline by 5 sec. Hence from above Gantt chart we can say that P1, P2 **cannot be scheduled** using rate monotonic scheduling.



This process can be scheduled using earliest deadline first as shown above. Since P1 has short period in an interval of 160s P1 can run 4 times where as P2 runs 2 times only. In second step since P1 deadline is 80 and P2 deadline is 75 so process P2 was chosen after P1 as per EDF scheduling algorithm.

#### 5sol

We know that for scheduling successfully in rate monotonic scheduling the total CPU utilization time must be at most  $N(2^{(1/N)}-1)$ 

Given Number of tasks = 5

RMS Max CPU utilization =  $5*(2^{(1/5)}-1) = 0.7435 = 74.35\%$ 

Therefore for 5 tasks CPU utilization can be utmost 74.35%

The CPU utilization of task P1 = C1/T1 = 20/90 = 0.2222

The CPU utilization of task P2 = C2/T2 = 30/250 = 0.1200

The CPU utilization of task P3 = C3/T3 = 70/370 = 0.1892

The CPU utilization of task P4 = C4/T4 = 50/330 = 0.1515

The CPU utilization of task P5 = C5/T5 = 125/2000 = 0.0625

Total CPU utilization time of all the 5 tasks = 0.2222+0.1200+0.1892+0.1515+0.0625

Since the maximum CPU utilization is less than total CPU utilization of tasks these 5 tasks the above tasks cannot be scheduled using RMS scheduling algorithm.

1sol Let the 5 processes be P1, P2, P3, P4, P5

| Process | Run Time | Priority |
|---------|----------|----------|
| P1      | 15       | 6        |
| P2      | 9        | 3        |
| Р3      | 3        | 7        |
| P4      | 6        | 9        |
| P5      | 12       | 4        |

(a)



## Using round robin scheduling algorithm

| Process | Turnaround time |
|---------|-----------------|
| P1      | 45              |
| P2      | 26              |
| P3      | 13              |
| P4      | 36              |
| P5      | 42              |

Average turnaround time using RR = 32.4 minutes

(b)



# Using priority based scheduling algorithm

| Process | Turnaround time |
|---------|-----------------|
| P1      | 36              |
| P2      | 9               |
| P3      | 39              |
| P4      | 45              |
| P5      | 21              |

Average turnaround time using PBS = 30 minutes

(c)



# Using FCFS scheduling algorithm

| Process | Turnaround time |
|---------|-----------------|
| P1      | 15              |
| P2      | 24              |

| Р3 | 27 |
|----|----|
| P4 | 33 |
| P5 | 45 |

Average turn around time using FCFS = 28.8 minute

(d)



Using SJF scheduling algorithm

| Process | Turnaround time |
|---------|-----------------|
| P1      | 3               |
| P2      | 9               |
| P3      | 18              |
| P4      | 30              |
| P5      | 45              |

Average turnaround time using SJF = 21 minutes



| Process | Waiting time |
|---------|--------------|
| P1      | 50           |
| P2      | 150          |
| P3      | 140          |
|         |              |

Average waiting time = 113.33 sec

### Advantages:

- 1) Without assigning priorities we can divide the processes into I/O bound and CPU bound
- 2) We can make the system more user interactive than normal RR

#### Disadvantages:

- 1) This may lead to large waiting time even for small processes like above
- 2) With only small time processes this algrorithm gives large waiting time for each process