

(19) BUNDESREPUBLIK
DEUTSCHLAND

DEUTSCHES
PATENTAMT

(12) **Offenlegungsschrift**
(10) **DE 42 41 439 A 1**

(51) Int. Cl. 5:
H 01 L 21/60
H 01 L 23/488
H 01 L 31/0224
B 23 K 35/22
H 01 R 43/02

DE 42 41 439 A 1

(21) Aktenzeichen: P 42 41 439.3
(22) Anmeldetag: 10. 12. 92
(43) Offenlegungstag: 16. 6. 94

(71) Anmelder:

Daimler-Benz Aktiengesellschaft, 70567 Stuttgart,
DE; Deutsche Aerospace AG, 80804 München, DE

(72) Erfinder:

Pchalek, Norbert, Dipl.-Phys., 2082 Moorrege, DE;
Wilde, Jürgen, Dr.-Ing., 6054 Rodgau, DE

(54) Verfahren zur Erzeugung einer formschlüssigen Verbindung zwischen metallischen Verbindern und metallischen Kontakten von Halbleiteroberflächen

(57) Verfahren zur Erzeugung einer formschlüssigen Verbindung zwischen metallischen Verbindern und metallischen Kontakten von Halbleiteroberflächen, insbesondere von zur Serien- und/oder Parallelschaltung von Solarzellen dienenden Verbindern und Solarzellenkontakten. Zwischen einem Verbinder und einem Kontakt wird eine Zwischenschicht aus einem gegenüber dem Verbinder und metallischen Kontakt niedrigschmelzendem Metall angeordnet und auf bzw. über die Schmelztemperatur derart erwärmt, daß die flüssige Zwischenschicht die Fügeoberflächen von Verbinder und Kontakt benetzt. Durch Diffusion der verschwindenden flüssigen Zwischenschicht in den Verbinder und Kontakt wird eine intermetallische Phase von Material der Zwischenschicht und des zu fügenden Verbinders und Kontakts gebildet, wobei abschließend durch Abkühlung und Erstarrung während des vorgegebenen Temperatur- und Anpreßdruckverlaufes die formschlüssige Verbindung zwischen Verbinder und Kontakt hergestellt wird, deren Schmelztemperatur höher ist als die der ursprünglichen Zwischenschicht.

DE 42 41 439 A 1

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

BUNDESDRUCKEREI 04. 94 408 024/77

6/39

Beschreibung

Die Erfindung betrifft ein Verfahren zur Erzeugung einer formschlüssigen Verbindung zwischen metallischen Verbindern und metallischen Kontakten von Halbleiteroberflächen, insbesondere von zur Serien- und/oder Parallelschaltung von Solarzellen dienenden Verbindern und Solarzellenkontakten.

Es ist bekannt, metallische Verbinder und metallische Kontakte von Halbleiteroberflächen durch Löt- oder Schweißverfahren miteinander zu verbinden. Während es bei derartigen, durch Löten hergestellten Verbindungen von Nachteil ist, daß diese keiner hohen Temperaturbelastung und nur wenigen Temperaturwechseln ausgesetzt werden können, ist es bei geschweißten Verbindungen nachteilig, daß die Halbleiter verhältnismäßig großen Anpreßdrücken und infolge der hohen Schweißtemperaturen einem Temperaturschock unterliegen.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Erzeugung einer zuverlässigen formschlüssigen Verbindung zwischen metallischen Verbinder und metallischen Halbleiterkontakten zu schaffen, die eine lange Lebensdauer aufweist und eine große Anzahl von Temperaturwechseln übersteht.

Die Aufgabe wird erfindungsgemäß durch folgende Verfahrensschritte gelöst:

- a) zwischen einem Verbinder und einem Kontakt wird eine Zwischenschicht aus einem gegenüber dem Verbinder und metallischen Kontakt niedrigschmelzendem Metall angeordnet,
- b) der höherschmelzende Verbinder, die niedrigschmelzende Zwischenschicht und der höherschmelzende Kontakt werden miteinander in Beziehung gebracht und unter einem vorgegebenen Temperatur- und Anpreßdruckverlauf auf bzw. über die Schmelztemperatur der Zwischenschicht derart erwärmt, daß die flüssige Zwischenschicht die Fügeoberflächen von Verbinder und Kontakt benetzt,
- c) daß durch Diffusion der verschwindenden flüssigen Zwischenschicht in den Verbinder und Kontakt eine intermetallische Phase vom Material der Zwischenschicht und des zu fügenden Verbinder und Kontakt gebildet wird, und
- d) daß abschließend durch Abkühlung und Erstarrung während des vorgegebenen Temperatur- und Anpreßdruckverlaufes die formschlüssige Verbindung zwischen Verbinder und Kontakt hergestellt wird, deren Schmelztemperatur höher ist, als die der ursprünglichen Zwischenschicht.

Das erfindungsgemäß Verfahren, welches als isotherme Erstarrung bezeichnet wird, kann als Fügeverfahren nicht eindeutig den Löt- oder den Schweißprozessen zugeordnet werden. Verfahrensprinzip ist die Erzeugung einer formschlüssigen Verbindung zwischen zwei Fügepartnern aus höherschmelzenden Metallen unter Zuhilfenahme einer verschwindenden flüssigen Zwischenschicht aus einem niedrigschmelzenden Metall. Der Prozeßverlauf wird am Beispiel des Systems Cu-Sn-Cu verdeutlicht. Die auf den koplanaren Fügefächern mit dünnen Schichten von Zinn versehenen Kupferenteile werden in Kontakt gebracht und über die Schmelztemperatur T_s des Zinns erwärmt. Die dünne Schmelzschicht benetzt die Fügeteile. Durch Diffusion von Zinn in das Kupfer bildet sich zunächst die interme-

tallische Phase Cu_3Sn unter Aufzehrung der schmelzflüssigen Phase. Hierdurch entsteht eine Festkörper-Verbindung. Bei weiterer Temperatureinwirkung, zum Beispiel bei der Verwendung der hergestellten Festkörper-Verbindung unter erhöhten Temperaturen, wird dann die intermetallische Phase mit höherem Cu-Gehalt, Cu_6Sn_5 gebildet.

Das erfindungsgemäß Verfahren bringt folgende Vorteile mit sich:

- Kontaktierung bei niedrigen Temperaturen von 160 bis 450°C, die dem Löten entsprechen.
- Hohe Temperaturstabilität der Verbindungen, da die Schmelztemperatur T_s intermetallischer Phasen um 100 bis 300 K über der Fügetemperatur liegt.
- Große Festigkeit der Verbindungen wegen geringer Verformbarkeit der intermetallischen Phasen.
- Geringe mechanische Belastung der Bauteile durch geringen Anpreßdruck.

Die Suche nach geeigneten binären Systemen für das obige Verfahren, bestehend aus einem hoch- und einem niedrigschmelzenden Metall, wurde unter den Randbedingungen der Kontaktierung von Solarzellen vorgenommen, wobei folgende Kriterien beachtet wurden:

- geringster Schmelzpunkt des Systems $T_s < 400^\circ C$,
- Bildung von hochlegierten Mischkristallen bzw. intermetallische Phasen,
- Vollständigkeit des Systems, und führte dazu, daß gemäß Ausgestaltungen des erfindungsgemäß Verfahrens als niedrigschmelzende Zwischenschicht Metalle mit einem Schmelzpunkt unter 450°C verwendet werden, wie Bi, Cd, Ga, In, Pb, Sn oder Zn, und daß als höherschmelzende Verbinder und Kontakte Metalle wie Ag, Au, Cu, Co, Fe, Mn, Ni, Pd, Pt, Ir, Os, Re, Rh oder Ru verwendet werden.

Weitere Ausgestaltungen des erfindungsgemäß Verfahrens gehen dahin, daß die Schmelztemperatur und der vorgegebene Anpreßdruck mittels einer Druck-Heiz-Zeit-Vorrichtung aufgebracht werden, wobei eine Vorrichtung mit einer Anpreßfläche von 0,5 mm × 7 mm, deren Temperaturbereich von 100 bis 500°C um 3K regelbar ist, verwendet werden kann, oder dahin, daß die Schmelztemperatur in einem Ofen bei gleichzeitiger Aufbringung des Anpreßdruckes mittels einer mechanischen Druckvorrichtung aufgebracht wird.

Das erfindungsgemäß Verfahren mit seinen erfinderrischen Ausgestaltungen eignet sich in vorteilhafterweise zur Herstellung von Verbindungen zwischen Dünnschichten. Hierbei erfolgt das Wachstum der gebildeten intermetallischen Phasen in Dünnschichtpaaren nicht in ebener Front, sondern in Form nippennartiger (Cu_3Sn) oder stengeliger (Ni_3Sn) Einkristalle. Es wird näherungsweise durch ein parabolisches Gesetz in Form

$$d_i = k \times t^n$$

beschrieben, wobei die Werte von n für Cu_6Sn_5 bei $n = 0,2$ bis $0,4$, bei Ni_3Sn_4 bei ca. $0,5$ liegen. Die Abweichungen vom Gesetz werden durch über lagerte Volumen- und Korngrenzendiffusion bedingt.

Zur Herstellung von formschlüssigen Verbindungen zwischen zur Serien- und/oder Parallelschaltung von

Solarzellen dienenden Verbindern und Solarzellenkontakte sind beispielsweise zwei verschiedene Systeme verwendbar. Das erste System weist einen Verbinder mit einem metallischen Träger aus Molybdän und eine Fügeoberfläche aus Silber sowie einen Solarzellenkontakt aus Silber und eine Zwischenschicht aus Zinn auf. Hingegen besteht das zweite System aus einem Verbinder mit einem Silberträger mit einer Fügeoberfläche aus Gold, einem Solarzellenkontakt aus Gold sowie einer Zwischenschicht aus Indium. Die Herstellung erfolgt nach den obengenannten Verfahrensschritten a bis d, wobei der Verbinder, die Zwischenschicht und der Kontakt auf eine der Löttemperatur entsprechende Schmelztemperatur der jeweiligen Zwischenschicht in einem Bereich von 160 bis 325°C für einen Zeitraum von 1 bis 10 min erwärmt werden, und wobei für diesen Zeitraum die vorgegebenen Anpreßdrücke zwischen Verbinder, Zwischenschicht und Kontakt zwischen 10 und 100 Newton betragen.

Eine Ausgestaltung der Erfindung besteht darin, daß vor der Zwischenschicht eine dünne Diffusionssperrschicht abgeschieden wird, welche eine Reaktion zwischen Trägermetall und der Zwischenschicht während der Lagerung verhindert und somit eine Verbesserung der Lagerfähigkeit erlaubt.

Hierbei wird als erforderliche Weiterbildung die Verwendung einer 6 bis 10 μ dicken Silberkontakte schicht auf der Solarzelloberfläche sowie die Verwendung einer Schichtdicke der Zinn-Zwischenschicht, die 1 bis 2 μ beträgt, angesehen.

Eine besondere Ausgestaltung der Erfindung ist dadurch gekennzeichnet, daß die Zwischenschicht aus Zinn bzw. Indium auf die Fügeoberfläche des Verbinder aus Silber oder aus Gold (gemäß Unteranspruch 12) oder aber auf die Fügeoberfläche des Solarzellenkontakte aus Silber oder aus Gold (gemäß Unteranspruch 16) lokal aufgebracht wird. So ist eine lokale Aufbringung der Zwischenschicht mittels Photolacktechnik (Photoresisttechnik) oder durch eine Bedampfung oder durch Galvanik mittels Maskentechnik auf die Fügeoberfläche des Verbinder oder des Solarzellenkontakte möglich.

Patentansprüche

1. Verfahren zur Erzeugung einer formschlüssigen Verbindung zwischen metallischen Verbinder und metallischen Kontakten von Halbleiteroberflächen, insbesondere von zur Serien- und/oder Parallelschaltung von Solarzellen dienenden Verbinder und Solarzellenkontakte, gekennzeichnet durch folgende Verfahrensschritte:

- zwischen einem Verbinder und einem Kontakt wird eine Zwischenschicht aus einem gegenüber dem Verbinder und metallischen Kontakt niedrigschmelzendem Metall angeordnet,
- der höherschmelzende Verbinder, die niedrigschmelzende Zwischenschicht und der höherschmelzende Kontakt werden miteinander in Berührung gebracht und unter einem vorgegebenen Temperatur- und Anpreßdruckverlauf auf bzw. über die Schmelztemperatur der Zwischenschicht derart erwärmt, daß die flüssige Zwischenschicht die Fügeoberflächen von Verbinder und Kontakt benetzt,
- daß durch Diffusion der verschwindenden flüssigen Zwischenschicht in den Verbinder

und Kontakt eine intermetallische Phase von Material der Zwischenschicht und des zu fügenden Verbinder und Kontakts gebildet wird, und

d) daß abschließend durch Abkühlung und Erstarrung während des vorgegebenen Temperatur- und Anpreßdruckverlaufes die formschlüssige Verbindung zwischen Verbinder und Kontakt hergestellt wird, deren Schmelztemperatur höher ist, als die der ursprünglichen Zwischenschicht.

2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als niedrigschmelzende Zwischenschicht Metalle mit einem Schmelzpunkt unter 450°C verwendet werden, wie Bi, Cd, Ga, In, Pb, Sn oder Zn.

3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß als höherschmelzende Verbinder und Kontakte Metalle wie Ag, Au, Cu, Co, Fe, Mn, Ni, Pd, Pt, Ir, Os, Re, Rh oder Ru verwendet werden.

4. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Schmelztemperatur und der vorgegebene Anpreßdruck mittels einer Druck-Heiz-Zeit-Vorrichtung aufgebracht werden.

5. Verfahren nach Anspruch 4, gekennzeichnet durch die Verwendung einer Druck-Heiz-Zeit-Vorrichtung mit einer Anpreßfläche von 0,5 mm × 7 mm, deren Temperurbereich von 100 bis 500°C um ± 3K regelbar ist.

6. Verfahren nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß die Schmelztemperatur in einem Ofen bei gleichzeitiger Aufbringung des Anpreßdruckes mittels einer mechanischen Druckvorrichtung aufgebracht wird.

7. Verfahren nach einem der Ansprüche 1 bis 6 zur Herstellung einer formschlüssigen Verbindung zwischen einem Verbinder und einem Solarzellenkontakt, dadurch gekennzeichnet, daß ein Verbinder aus einem metallischen Träger mit einer Fügeoberfläche aus Silber bzw. Gold, ein Solarzellenkontakt aus Silber bzw. Gold und eine Zwischenschicht aus Zinn bzw. Indium verwendet werden.

8. Verfahren nach Anspruch 7, gekennzeichnet durch die Verwendung von Molybdän als metallischen Träger für einen Verbinder mit einer Fügeoberfläche aus Silber.

9. Verfahren nach Anspruch 7, gekennzeichnet durch die Verwendung von Silber als metallischen Träger für einen Verbinder mit einer Fügeoberfläche aus Gold.

10. Verfahren nach Anspruch 7, gekennzeichnet durch die Verwendung einer 6 bis 10 μ dicken Silberkontakte schicht auf der Solarzelloberfläche.

11. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Schichtdicke der Zinn-Zwischenschicht 1 bis 2 μ beträgt.

12. Verfahren nach Anspruch 7, 8, 9, 10 oder 11, dadurch gekennzeichnet, daß die Zwischenschicht aus Zinn bzw. Indium auf die Fügeoberfläche des Verbinder aus Silber oder Gold lokal aufgebracht wird.

13. Verfahren nach Anspruch 12, gekennzeichnet durch eine lokale Aufbringung der Zwischenschicht auf die Fügeoberfläche des Verbinder mittels Photolacktechnik (Photoresisttechnik).

14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, daß die Zwischenschicht durch eine lokale Bedampfung durch Maskentechnik auf die Füge-

berfläche des Verbinder auf gebracht wird.

15. Verfahren nach Anspruch 12, gekennzeichnet durch eine lokale galvanische Aufbringung der Zwischenschicht auf die Fügeoberfläche des Verbinder mittels Maskentechnik.

5

16. Verfahren nach Anspruch 7, 8, 9, 10 oder 11, dadurch gekennzeichnet, daß die Zwischenschicht aus Zinn bzw. Indium auf die Fügeoberfläche des Solarzellenkontakte aus Silber bzw. Gold lokal aufgebracht wird.

10

17. Verfahren nach Anspruch 16, gekennzeichnet durch eine lokale Aufbringung der Zwischenschicht auf die Fügeoberfläche des Solarzellenkontakte mittels Photolacktechnik (Photoresisttechnik).

15

18. Verfahren nach Anspruch 16, dadurch gekennzeichnet, daß die Zwischenschicht durch eine lokale Bedampfung durch Maskentechnik auf die Fügeoberfläche des Solarzellenkontakte aufgebracht wird.

19. Verfahren nach Anspruch 16, gekennzeichnet durch eine lokale galvanische Aufbringung der Zwischenschicht auf die Fügeoberfläche des Solarzellenkontakte mittels Maskentechnik.

20
25
20. Verfahren nach einem der Ansprüche 8 bis 19, dadurch gekennzeichnet, daß der Verbinder, die Zwischenschicht und der Kontakt auf eine der Löttemperatur entsprechende Schmelztemperatur der Zwischenschicht in einem Bereich von 160 bis 325°C für einen Zeitraum von 4 bis 10 min erwärmt werden, daß für diesen Zeitraum die vorgegebenen Anpreßdrücke zwischen Verbinder, Zwischenschicht und Kontakt zwischen 10 und 100 Newton betragen.

21. Verfahren nach einem der Ansprüche 8 bis 20, dadurch gekennzeichnet, daß vor der Zwischenschicht eine dünne Diffusionssperrsicht abgeschieden wird, welche eine Reaktion zwischen Trägermetall und der Zwischenschicht während der Lagerung verhindert und somit eine Verbesserung der Lagerfähigkeit erlaubt.

30

35

40

45

50

55

60

65