Et l'utilisateur là dedans ?

Octobre 2013 Colin de la Higuera

Transparent prise de notes

Ce dessin indique que le transparent résume un point particulier et doit être recopié

Quelques paradoxes

- Plus il y a d'informatique, et moins on la voit
- Notion d'informatique ubiquitaire

- Quel rapport entre la programmation et le monde numérique qui nous entoure?
- Quelle culture informatique?
- L'informatique et ses concepts :
 - La machine
 - Le codage
 - Le langage
 - L'algorithme

- Plus l'ordinateur disparaît, plus on doit s'occuper de l'utilisateur
- Comme modèle, pour faire de l'adaptation

Quelques exemples de liens hommeinformatique qu'on pourrait étudier

- La modélisation de l'utilisateur et l'adaptation
- L'intelligence humaine comme modèle : l'intelligence artificielle
- 3. La coopération entre l'homme et la machine pour résoudre des problèmes

1 Les réseaux sociaux

Les réseaux sociaux (les exemples connus)

- Facebook (200 millions d'utilisateurs (mars 09), 57 en décembre 2007), (sur?) valorisé à 104 Milliards d'euros
- 1 Milliard d'utilisateurs (Wall Street Journal du 4/10/2012)
- 620 millions d'utilisateurs, dont la moitié se connecte au moins une fois par jour, et passe 55 minutes (en moyenne) par jour sur le site. Il y a 1 milliard de contenus mis en ligne par jour (vidéos, statuts, photos, articles.. (Wikipedia, en 2011)
- Myspace (230 millions en 2008) En juin 2011, Rupert Murdoch cède Myspace à Specific Media pour 35 millions de dollars (soit 16 fois moins que le prix d'acquisition de 2005)
- <u>Viadeo</u> (45 millions d'inscrits)
- LinkedIn (238 millions d'inscrits)
- Twitter (500 millions en février 2012)

- L'ONU
- Toute société dans laquelle on étudie les relations entre les individus ou les éléments
- Les acheteurs sur Ebay
- Les utilisateurs d'Amazon
- Les participants à un MOOC

• L'effet du petit monde est l'hypothèse que la longueur de la chaîne des connaissances sociales requise pour lier une personne, arbitrairement choisie à n'importe qu'elle autre sur <u>Terre</u> est généralement courte.

Réf : wikipedia

• Le <u>concept</u> a engendré l'expression célèbre des "six degrés de séparation" après l'expérience du petit monde de 1967, réalisée par le psychologue Stanley Milgram. Il a constaté que deux citoyens aléatoirement choisis aux Etats-Unis sont reliés par, tout au plus, six connaissances, et en tout temps.

 Environ cinq à sept degrés de séparation sont suffisants pour connecter n'importe quelle personne à une autre par Internet

- Hatebook is an anti-social utility that disconnects you from the things YOU HATE.
- Everybody loves to HATE—
- The enemies of your enemies are your friends - find them here»

ma-residence.fr®

Suivez la vie de votre immeuble + d'infos

Echangez avec vos voisins + d'infos

Inscrivez-vous gratuitement sur le site de votre immeuble

Indiquez l'adresse de votre immeuble

S'inscrire

Réseaux sociaux et internet

- Les réseaux sociaux sont objets d'étude des sociologues depuis longtemps
- L'effet du petit monde : on trouve toujours une chaîne courte entre deux individus
- Réseaux sociaux et internet : enjeux sociétaux et économiques colossaux

2 Les réseaux sociaux comme graphes

- Les individus sont les sommets du graphe
- Les relations entre les individus sont des arcs ou des arêtes dans le graphe

Un réseau social (symbolique)

Licence Certains droits réservés par neil cummings

Toute petite portion d'un réseau social

Tous droits réservés par xericjames@flickr

La simulation comme outil

Si on sait générer automatiquement des graphes qui ont les propriétés voulues, on peut inférer le fonctionnement réel du système!

Le modèle mathématique

- Les graphes sont utilisés pour représenter un réseau social
- Les avantages graphiques sont plus difficiles à cerner quand le réseau est de très grande taille
- La simulation permet de vérifier la validité d'un modèle

3 Deux exemples de questions réseaux-graphes

 X a 3 amis qui ne se connaissent pas entre eux

• Y a 3 amis qui se connaissent entre eux

 Qui va joindre réseau?

 Argument « théorie de l'information » : les amis non connectés donnent un support indépendant

 Argumentaire du capital social : il y a un avantage (sécurité, confiance) à avoir des amis qui se connaissent entre eux

Des applications de la théorie des graphes dans l'analyse des réseaux sociaux

- Les graphes permettent d'étudier, par des propriétés de théorie des graphes, les réseaux sociaux
- Différents concepts : connexité, chemins, cliques, coupes du graphe, flux...

Un graphe

non orienté, (V,E), avec V un ensemble de sommets (vertex), et E un ensemble d'arêtes (edge).

- Peut avoir des boucles.
- Une arête n'est pas orientée, c'est donc un ensemble de 2 sommets {a,b}. Une arête est incidente à 2 sommets. Elle a 2 extremités.

Un graphe orienté

est un G=(V,A) où V est un ensemble de sommets et A est un ensemble d'arcs. Un arc est orienté et a une origine et une extrémité.

- L'isomorphisme de graphes
- Deux graphes sont isomorphes si ce sont les mêmes graphes au dessin près
- Exemple

Isomorphes?

Isomorphes?

 G_2

Isomorphes?

 G_{j}

L'isomorphisme de graphes

- Deux graphes sont isomorphes si on peut réétiqueter les sommets de l'un pour obtenir l'autre
- Vérifier si deux graphes sont isomorphes est un problème difficile

Pourquoi utiliser des graphes ?

- Peuvent être adaptés à de nombreuses situations
- En modélisation, des objets essentiels

Les graphes

- Les graphes permettent de modéliser :
 - des images
 - des molécules
 - des réseaux sociaux
 - des sites web
 - ...

5 Exemple de graphe-réseau social

- On veut représenter les interactions d'un réseau social de 5 membres qui se font confiance ou pas.
- On sait que
 - Alfred ne fait confiance à personne
 - Bea fait confiance à Charles et Didier
 - Charles fait confiance à Alfred
 - Didier fait confiance à Erwan et lui-même
 - Erwan fait confiance à Bea

- Le groupe est noté E
- Les membres sont notés a,b,c,d,e
- Donc E={a,b,c,d,e}

est une relation.

- Elle est composée de paires*
- Fait_confiance= {(b,c),(b,d),(c,a),(d,d),(d,e),(e,b)}
- On notera (b,c)∈Fait_confiance

On notera aussi

(x,b)∈Fait_confiance pour indiquer que quelqu'un (inconnu) a confiance en Bea

 $\{x \in E : (x,b) \in Fait_confiance\}$ pour l'ensemble des gens qui ont confiance en Bea

 $\{x \in E : (a,x) \in Fait_confiance\}$ pour l'ensemble des gens en qui Alfred a confiance

On définira avantageusement fait_confiance par une table

Fait_confiance= {(b,c),(b,d),(c,a), (d,d),(d,e),(e,b)}

a	b	С	d	e
F	F	F	F	F
F	F	V	V	F
V	F	F	F	F
F	F	F	V	V
F	V	F	F	F

9

La table pourra aussi être un autre objet mathématique : la matrice

	a	b	С	d	e
a					
b			٧	V	
С	V				
d				V	٧
e		V			

0	0	0	0	0
0	0	1	1	0
1	0	0	0	0
0	0	0	1	1
0	1	0	0	0

	а	Ь	С	d	e
а		V			
b	V		V	V	
С	V				
d				V	V
e		V			

Une relation

est un ensemble de paires

- Elle peut* être représentée par une table, par une matrice ou par un graphe
- Les trois représentations sont équivalentes, mais dans chaque cas un vocabulaire adapté sera utilisé

6 Un langage pour parler des relations

- Les gens qui n'ont effectué aucun achat
- Les personnes qui ont le plus acheté
- Les personnes qui sont acheteurs et vendeurs

Que veut-on?

- Un langage non ambigu
- Un langage (assez) simple
- Un langage (assez) expressif
- Un langage pouvant être interprété par une machine

Soit la logique des prédicats

- On pourra utiliser les opérateurs
- ^ (et), ∨ (ou), ¬ (non)
- Les quantificateurs
 - Quelque soit ∀
 - Il existe ∃
- L'appartenance ∈ ∉
- L'implication ⇒

- $\{x \in A : \forall y \in A (x,y) \in R\}$
- $\{x \in A : \exists y \in A \ (x,y) \in R\}$
- $\{x \in A : (x,y) \in \mathbb{R} \Rightarrow (y,x) \in \mathbb{R}\}$

Notation usuelle

- L'ensemble dans lequel on choisit x
- $\bullet \ \{x \in A : P(x)\}$

La propriété sur x qui doit être vérifiée

 Si le premier quantificateur de la propriété est ∀ la propriété est universelle. Si c'est ∃ la propriété est dite existentielle.

 $\{x \in E : (x,b) \in Fait_confiance\}$ l'ensemble des gens qui ont confiance en Bea

 $\{x \in E : (b,x) \in Fait confiance\}$

l'ensemble des gens en qui Bea a confiance

 $\{x \in E : (x,b) \in Fait_confiance \land$ $(b,x) \in Fait confiance$

l'ensemble des gens en qui Bea a confiance et qui ont confiance en Bea

	а	b	С	d	e
a		V			
Ь	V		V	V	
С	V				
d				V	V
e		٧			


```
\{x \in E : \exists y \in E (x,y) \in Fait\_confiance \land (y,x) \in Fait\_confiance \}
```

L'ensemble des personnes qui ont confiance en quelqu'un qui a confiance en eux

	а	b	С	d	e
а		V			
b	V		V	V	
С	V				
d				V	V
e		V			

 $\{x \in E : |\{y \in E : (y,x) \in Fait_confiance\}| \ge 2\}$

L'ensemble des personnes qui ont au moins deux personnes qui leur font confiance

Remarque: |A| est le cardinal de l'ensemble A

Solution={a,b,d}

	а	Ь	С	d	e
а		V			
b	V		V	V	
С	V				
d				V	V
e		V			


```
\{x \in E : (b,x) \in Fait\_confiance \Rightarrow (c,x) \in Fait\_confiance \}
```

Les personnes en qui, si Bea a confiance, alors Charles aussi

La logique du premier ordre

- Permet de définir des propriétés
- Repose sur le calcul booléen
- Les quantificateurs permettent de dire si la propriété s'applique à tous ou à au moins un élément

- Les gens qui ont confiance en exactement deux personnes
- Un groupe le plus grand possible tel que tout le monde a confiance en tout le monde
- Les personnes en qui les gens ont le plus confiance

