5.1. Stopped martingales are martingales. Let $(M_n, n = 0, 1, 2, ...)$ be a martingale in discrete time for the filtration (\mathcal{F}_n , $n \geq 0$). Let τ be a stopping time for the same filtration. Use the martingale transform with the process

$$X_n(\omega) = \begin{cases} +1 & \text{if } n < \tau(\omega), \\ 0 & \text{if } n \ge \tau(\omega) \end{cases}$$

to show that the stopped martingale $(M_{\tau \wedge n}, n \geq 0)$ is a martingale.

define Mn = No+ E XK-1 (MK-MK-1)

M is a narthyole. Kn is bounded and prealetable

So Mit B a martingale So the stopping process MINN Ba martingale

5.3. Convergence in L^2 implies convergence of first and second moments. Let $(X_n, n \ge 0)$ be a sequence of random variables that converge to X in $L^2(\Omega, \mathcal{F}, \mathbf{P})$.

(a) Show that $\mathbf{E}[X_n^2]$ converges to $\mathbf{E}[X^2]$.

- Hint: Write $X = (X X_n) + X_n$. The Cauchy-Schwarz inequality might be useful. (b) Show that $\mathbf{E}[X_n]$ converges to $\mathbf{E}[X]$.
- Hint: Write $|\mathbf{E}[X_n] \mathbf{E}[X]|$ and use Jensen's inequality twice.

$$E(x_n^2) = E[(X + (X_n - X_1)^2] = 2E(X^2) + 2E[(X_n - X_1)^2]$$

$$= \{(x, y) = \{(x, y), y \in Y \}$$

- (xx) - E(x2) = 0 => E(xx) -> E(x2)

(b)
$$|E(xn)-E(x)|=|E(xn-x)| = E(|xn-x|) = |E(xn-x)^2|$$

$$\Rightarrow E(Xn) \rightarrow E(X)$$