インターネットの基本: その2

情報ネットワーク工学入門 2024 年度後期 佐賀大学理工学部 只木進一

- MACアドレス: Media Access Control Addresses
- 2 IP アドレスとネットワークアドレス: IP and network addresses
- VLAN
- 4 IP Routing
- アドレス空間の構造
- **⑥** サービスポート: Service Ports
- DNS: Domain Name System
- Mobile PC とネットワーク
- IPv4/IPv6

MAC (Media Access Control) アドレス

- 通信ハードウェアのアドレス
- 48 ビット
- 製造元と個体特定のアドレスで構成
- Ethernet では、同一ネットワーク内での識別に利用
- 最近のデバイスは、「プライベートアドレス」と言う名前で、 接続毎にランダムなアドレスで接続できる
 - MAC アドレス制限や、MAC アドレス登録がある場合には注意
- IP アドレスとの関係を調べる
 - arp -a

IP アドレスとネットワークアドレス IP and network addresses

- 通信デバイスにアドレスを付与
 - 32 ビットアドレス
 - 8 ビット (octet) 毎にピリオドで区切り 10 進表記 人間が見やすいように
 - 例: 133.49.4.7
- IP アドレスはネットワーク部とホスト部から構成される
 - 分かれる部分は、ネットマスクで指定

サブネットワーク: subnetworks

- インターネットはネットワークの相互接続
- 組織内のネットワークも小さなサブネットワークに分割
- ネットマスクを使ってサブネットワークへと分割

ネットマスク: netmasks

- 32bit
- 上位からあるビットまで1で、その下は全て0
- IP アドレスとネットマスクのビット毎の and 演算
- ネットワークアドレスを導出
- octet 毎の 10 進表記や 16 進表記

例:24ビットネットマスク

																																_
10 進	255							255							255								0									
16 進	FF							FF								FF								00								
2 進	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0
10 進	133								49								51							12								
2 進	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	0	0	1	1	0	0
2 進	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	0	0	0	0	0	0
10 進	133							49								51							0									

ネットワークアドレス標記

- 133.49.51.0/24
- 133.49.51.0/255.255.255.0
- 133.49.51.0/FFFFFF00

例:22ビットネットマスク

10 進	255								255								252								0							
16 進	FF							FF								FC							00									
2 進	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10 進	133								49								51								12							
2 進	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	0	0	1	1	0	0
2 進	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0
10 進	133							49								48								0								

ネットワークアドレス標記

- 133.49.48.0/22
- 133.49.48.0/255.255.252.0
- 133.49.48.0/FFFFFC00

```
import ipaddress

addr = ipaddress.IPv4Address('133.49.4.1')

print('IPAddress: '+format(int(addr),'#034b'))

mask = ipaddress.IPv4Address('255.255.255.0')

print('Netmask: '+format(int(mask),'#034b'))

netAddr = int(addr) & int(mask)

print('NetAddress:'+format(netAddr,'#034b'))

ipaddress.IPv4Address(netAddr)
```

ブロードキャストアドレス: Broadcast address

- ブロードキャスト
 - 同一ネットワーク内への一斉送信
- ネットワークアドレスの末尾のアドレスを使用

network に必須の addresses

- network address
 - netmask で定まる先頭
 - $192.168.1.5/24 \rightarrow 192.168.1.0$
- broadcast address
 - netmask で定まる末尾
 - $192.168.1.5/24 \rightarrow 192.168.1.255$
- 各サブネットの両端の2アドレスは、ホストアドレスとして使 えない

サブネットと VLAN

- サブネットを構成することで、ネットワークを論理的に分割
 - 部署単位でネットワークを分割
 - 余計な通信を遮断
- 論理的配置と物理的配置が不一致の場合は
 - 一つの部署が複数の場所に分散
 - 同一の部署が複数の論理的ネットワークを使いたい
- VLAN で論理構造と物理構造を分離

Virtual LAN: port VLAN

- LAN 構築で、論理構造と物理構造を柔軟に構成する技術
- Port VLAN
 - 一つのスイッチ中に複数のサブネットを構成

Virtual LAN: tag VLAN

- 複数のスイッチに跨って VLAN を定義
- 一本のケーブルに複数の VLAN

IP Routing

- 一つのネットワークには、一つのネットワークアドレス
- ルータ (router): 異なるネットワークを繋ぐ通信機器
- 宛先 IP アドレスから、宛先ネットワークアドレスを計算
 - ネットワークインターフェースのネットマスクを使用
 - 宛先ネットワークに応じて、パケットを送り出すネットワーク インターフェースを選択
- ルーティングテーブル
 - ネットワークアドレス → 使用するインターフェースを定義
 - デフォルトルート: 知らないネットワークアドレス宛に使用 する

例:クライアントPC など

- 宛先 IP アドレスから、宛先ネットワークアドレスを計算自身のネットマスクを使用
- 自身のネットワークでない場合には、デフォルトルートへ
- 自身のネットワークである場合には、イーサーネットプロトコルで通信

同一ネットワーク内

- Source:192.168.1.5/24
 - Network Addr:192.168.1.0/24
- Destination:192.168.1.9
 - Network Addr:192.168.1.0/24

他のネットワークへ

- Source:192.168.1.5/24
 - Network Addr:192.168.1.0/24
- Destination:133.49.4.1
 - Network Addr:133.49.4.0/24

ルータの機能

- ネットワークアドレス毎に次の転送先を保持
 - 知らないアドレスは、上位(デフォルト)へ転送
- パケット内の転送回数を一つ増やす
- 転送回数を超えたパケットを破棄
 - Too many hops エラー
- BGP (Border Gateway Protocol): ルータ間でルーティングテーブルを交換する

デフォルトルートアドレス: Default Route Address

- 次の転送先が分からない場合の転送先
- クライアントの場合には、最近接のルータのアドレス
- ルータの場合には、上位最近接のルータのアドレス

グローバルアドレス: Global Addresses

- 世界中で一意に設定しなければならない
- 使えるネットワークアドレスの割り当て組織が存在
 - JPNIC: 国内のアドレス割り当てを実施
 - 佐賀大学は 133.49.0.0/16 を保有
- 組織内のサブネット
 - 組織が自律的に管理

ネットワーククラス: Network Classes

クラス	アドレス範囲	説明
Α	0.0.0.0 - 127.255.255.255	8 ビットネットワークアドレス
		先頭は0
В	128.0.0.0 - 191.255.255.255	16 ビットネットワークアドレス
		先頭は 10
С	192.0.0.0 - 223.255.255.255	24 ビットネットワークアドレス
		先頭は 110

プライベートアドレス: Private Addresses

- プライベートアドレス
 - 組織内で自由に割り当てて良い
 - 外部に出してはいけない
- 10.0.0.0/8
- 172.16.0.0/12
- 192.168.0.0/16

サービスポート: Service Ports

- サーバ上で動作しているサービスを指定
- 例
 - 80: HTTP
 - 22: ssh
 - 25: smtp

```
https://www.iana.org/assignments/
service-names-port-numbers/
service-names-port-numbers.xhtml
```

ドメイン名: Domain Name

- IP アドレスは覚えられない
- 意味のある名前を付ける
- アプリケーションは、IP アドレスで接続することに注意

DNS の階層構造

FQDN: Fully Qualified Domain Name

- DNS によって指定されたホスト名
- ドメイン名の重要性
 - go.jp: 日本の中央政府機関
 - lg.jp: 日本の地方公共団体
 - ac.jp: 日本の高等教育機関及び 18 歳以上を対象とする専門学校・各種学校
 - co.jp: 国内で登記している会社組織
- 自組織の公式ドメインを使用することが重要

DNS を使ってみる

- コマンドプロンプトから
 - nslookup ホスト名

DHCP (Dynamic Host Configuration Protocol)

- コンピュータへの IP アドレス等の設定
 - ある程度知識が必要
 - 間違えると通信できない
 - 間違えると他人に迷惑がかかる
- エンドユーザが使うクライアントでは無理
- 自動的にネットワーク関連の設定を実行するプロトコル
 - サーバが同一ネットワーク内に必要

Mobile PC とネットワーク

- モバイル PC をネットワーク接続する
 - 誰が使ったかを記録する必要がある
 - 制限を掛ける必要がある場合がある
- Captive Portal
 - 認証や利用者登録をするまで、インターネットへ出られない
 - Web ブラウザを起動すると、認証ページに誘導されるなど
- MAC アドレス認証
 - 予め登録している MAC アドレスの機器のみ、接続でき
- 802.1x 認証
 - ネットワーク接続時に認証する

IPv4/IPv6

- IPv4: 従来のプロトコル
 - IP アドレスは 32 ビット: $2^{32} \simeq 4.3 \times 10^9$
 - 人口よりも少ない
 - アドレスの枯渇: アジア太平洋地域は 2011 年に枯渇
- lpv6: アドレス枯渇に対応した新プロトコル

- IPv6 の利点
 - 全てのデバイスに IP アドレスを
 - IP アドレス設定の自動化
- IPv6の課題
 - IPv4 からの移行の困難
 - 共存して利用中
- 共存の実情
 - IPv6 優先: IPv6 で接続できる場合には、IPv6 を利用
 - GAFAM は IPv6 対応
 - 佐賀大学総合情報基盤センターのホームページも IPv6

課題

大学で無線 LAN を使用している際に使っている IP アドレスを確認 しなさい。また、自宅や学外の無線 LAN サービスの場合について も、確認しなさい。