

Лабораторная Работа №1.01

Исследование распределения случайной величины

выполнил: де Джофрой Мишель М3205

преподаватель: Хуснутдинова Наира Рустемовна

Цели работы:

1. Исследование распределения случайной величины на примере многократных измерений определённого интервала времени.

Задачи:

- 1. Провести многократные измерения определенного интервала времени (5 секунд).
- 2. Построить гистограмму распределения результатов измерения.
- 3. Вычислить среднее значение и дисперсию полученной выборки.
- 4. Сравнить гистограмму с графиком функции Гаусса с такими же как и у экспериментального распределения средним значением и дисперсией.

Экспериментальная установка:

В работе используются часы с секундной стрелкой - прибор, в котором происходит

периодический процесс с частотой порядка нескольких десятых долей герца, и цифровой

секундомер, с ценой деления не более 0,01 с. Первый прибор задает интервал времени,

который многократно измеряется цифровым секундомером.

Ход Работы:

Я провел исследование, в ходе которого я собрал 50 измерений процесса, который происходит с постоянной скоростью в течение 5 секунд. Все эти измерения я аккуратно записал и поместил в таблицу, где они расположены под столбцом В. Полученные данные представлены в виде чисел, отражающих значения данного процесса на протяжении указанного временного интервала. Это исследование позволяет более подробно изучить характеристики данного процесса, его изменения и распределение значений. После чего я рассяитал основные показатели этого набора данных:

Mean	4.9246
Median	4.97
Mode	4.72
Standard Deviation	0.279644131
Max	5.45
Min	4.12

Это позволяет построить более понятную картину о собранных данных. Вы могли заметить, что тут уже рассчитано **выборочное среднеквадратичное отклонение,** таблица для удобства предоставляет формулу **STDEVP**(data) которая под копотом работает вот так:

$$\sigma_N = \sqrt{rac{1}{N-1}\sum_{i=1}^n}(t_i - \langle t
angle_N)^2$$

Далее, чтобы построить гистограмму, нужно было разбить значения от t_{min} до t_{max} на промежутки, для этого мы находим Δt_{max} и делим на примерное колличество нужных промежутков (примерно корень из количества измерений).

Лабораторная Работа №1.01 2

$$egin{aligned} t_{min} &= 4.12 \ t_{max} &= 5.45 \ \sqrt{50} pprox 7 \ rac{t_{min} - t_{max}}{7} &= 0.19 \end{aligned}$$

Итого 7 промежутков с интервалом в 0.19.

Дальше, используя формулу =FREQUENCY(data, bins) мы можем найти колисечтво измерений попадающих в то или инное измерение.

		Bins
0.02	1	4.12
0	1	4.31
0.4	2	4.5
1	3	4.69
1	11	4.88
1	17	5.07
0.6	9	5.26
0.2	6	5.45
	0	

Получим значения плотности распределения p(t) используя формулу =NORM.DIST(x, mean, standard_deviation, cumulative) , это просто обёртка для формулы

$$p(t) = rac{1}{\sigma\sqrt{2\pi}}expigg(-rac{(t-\langle t
angle)^2}{2\sigma^2}igg)$$

Также, рассчитаем плотность распределения для наших данных $\frac{\Delta N}{N\Delta t}$.

t	Density
34806	0.1052631579
' 3242	0.1052631579
55317	0.2105263158
)8487	0.3157894737
7928	1.157894737
34626	1.789473684
96225	0.9473684211
22131	0.6315789474

И построим график, сравнения стандартной плотности распределения и плотность распределения в рамках наших данных.

Лабораторная Работа №1.01

Physics Labwork 1

Sheet1 4.73, Mean, 4.9246, Bins, 5

4.99,Median,4.97,3.5,0,0.00000330257025,0.00001651285125 4.72,Mode,4.72,3.6,0,0.00001915344622,0.00009576723111

https://docs.google.com/spreadsheets/d/1YCL32hn3cLY9DCRwp35FN5ICu3z-LmrqpBZuh4OuCa8/edit#gid=0

5

Тепепрь проверим насколько точно выполняется в наших опытах соотношение между вероятностями:

$$t \in [\langle t \rangle - \sigma, \langle t \rangle + \sigma], P_{\sigma} \approx 0.685$$

 $t \in [\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma], P_{2\sigma} \approx 0.954$
 $t \in [\langle t \rangle - 3\sigma, \langle t \rangle + 3\sigma], P_{3\sigma} \approx 0.997$

и долями
$$rac{\Delta N_{\sigma}}{N};rac{\Delta N_{2\sigma}}{N};rac{\Delta N_{3\sigma}}{N}.$$

From	То	Freq	Density	Р
4.644955869	5.204244131	35	0.7	0.685
4.365311738	5.483888262	47	0.94	0.954
4.085667607	5.763532393	50	1	0.997

Результаты:

N	t
1	4.73
2	4.99
3	4.72
4	4.9
5	5.12
6	4.72
7	4.9

8	5.12
9	4.72
10	4.83
11	5.3
12	5.3
13	5.27
14	4.49
15	4.35
16	4.89
17	4.54
18	4.97
19	5.1
20	5.32
21	4.54
22	4.22
23	4.97
24	5.19
25	4.97
26	4.77
27	5.35
28	4.82
29	5.05
30	4.79
31	4.95
32	5.04
33	5.45
34	4.12
35	5.09
36	4.97
37	4.85
38	5.12
39	5
- "	-

Лабораторная Работа №1.01 6

40	5.02
41	4.99
42	4.92
43	5.22
44	4.62
45	5.05
46	4.79
47	5.12
48	5
49	4.72
50	5.24

Bins	Freq	Norm Dist	Distribution
4.12	1	0.02273334806	0.1052631579
4.31	1	0.127473242	0.1052631579
4.5	2	0.4504955317	0.2105263158
4.69	3	1.003408487	0.3157894737
4.88	11	1.408577928	1.157894737
5.07	17	1.246234626	1.789473684
5.26	9	0.6949196225	0.9473684211
5.45	6	0.2442222131	0.6315789474

From	То	Freq	Distribution	P
4.644955869	5.204244131	35	0.7	0.685
4.365311738	5.483888262	47	0.94	0.954
4.085667607	5.763532393	50	1	0.997

Лабораторная Работа №1.01

Итоги:

Во время данной лабораторной работы мы провели исследование распределения случайной величины на основе множественных измерений определенного временного интервала. Мы измеряли этот интервал с помощью цифрового секундомера, который отображал время с часов и секундной стрелкой. В результате экспериментов, полученные значения оказались примерно соответствующими значениям плотности вероятности. Достаточно точно выполняется соотношение между вероятностями $P_{\sigma}\approx 0.685, P_{2\sigma}\approx 0.954, P_{3\sigma}\approx 0.997 P_{\sigma}\approx 0.685, P_{2\sigma}\approx 0.685, P_{3\sigma}\approx 0.685$ и долями $\frac{\Delta N_{\sigma}}{N}$; $\frac{\Delta N_{2\sigma}}{N}$; $\frac{\Delta N_{3\sigma}}{N}$.

Из графика видно, что распределение, которое мы исследовали, соответствует нормальному распределению.