СОДЕРЖАНИЕ

СПИСОК СОКРАЩЕНИЙ	2
ВВЕДЕНИЕ	3
1 ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ КОРПОРАТИВНО	Й
ЛОКАЛЬНО-ВЫЧИСЛИТЕЛЬНОЙ СЕТИ	4
1.1 Общие сведения	4
1.2 Цели и назначение создания КЛВС	5
1.2.1 Цель создания КЛВС	5
1.2.2 Назначение создания КЛВС	6
1.3 Характеристика объекта автоматизации	6
1.3.1 Организационная структура предприятия	6
1.3.2 Характеристика автоматизированных рабочих мест (АРМ) и других	
устройств, подключаемых к КЛВС	7
1.3.3 Характеристика расположения АРМ	7
1.3.4 Характеристика окружения предприятия	9
1.3.5 Характеристика существующей инфраструктуры	9
2 ПЛАНИРОВАНИЕ КАНАЛЬНОГО УРОВНЯ	10
2.1 Планирование виртуальных локальных сетей	10
2.2 Планирование агрегирования каналов	21
2.3 Планирование предотвращения петель канального уровня	21
3 МОДЕЛИРОВАНИЕ КОРПОРАТИВНОЙ ЛОКАЛЬНО-	
ВЫЧИСЛИТЕЛЬНОЙ СЕТИ	23
3.1 Настройка планируемых конфигураций	
3.2 Тестирование топологии	23
ЗАКЛЮЧЕНИЕ	24
СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ	25

СПИСОК СОКРАЩЕНИЙ

ЛВС – локальная вычислительная сеть;

КЛВС – корпоративная локально-вычислительная сеть;

АХО – Административно-хозяйственный отдел

СКС – структурированная кабельная система;

000 - общество с ограниченной ответственностью;

ОКВЭД – общероссийский классификатор видов экономической деятельности;

ГОСТ – государственный стандарт;

МФУ – многофункциональное устройство;

IP – internet protocol (межсетевой протокол);

МГТС – московская городская телефонная сеть;

АРМ – автоматизированное рабочее место;

VLAN – Virtual Local Area Network (виртуальная локальная компьютерная сеть.);

LACP – Link Aggregation Control Protocol (протокол управления агрегированным каналом);

STP – Spanning Tree Protocol (Протокол связующего дерева);

RSTP – Rapid spanning tree protocol (Скоростной протокол связующего дерева);

ISO – International Organization for Standartization (Интернациональная организация стандартов);

IEC – International Electrotechnical Commission (Международная электротехнической комиссия);

PC – Personal computer (Персональный компьютер)

SW – Switch (Коммутатор)

ВВЕДЕНИЕ

В современном мире, где информационные технологии играют все более значимую роль, эффективная работа предприятия напрямую зависит от качества и надежности его локальной вычислительной сети (ЛВС). Особенно это актуально для компаний, деятельность которых связана с логистикой и перевозкой грузов, где требуется оперативный доступ к информации, контроль за движением транспорта и взаимодействие с клиентами.

Цель данной курсовой работы заключается в разработке технического задания на проектирование корпоративной локально-вычислительной сети, включая планирование физического, канального и сетевого уровней. В работе будут рассмотрены общие сведения о проекте, цель и назначение создания КЛВС, характеристика объекта автоматизации, планирование пропускной способности каналов передачи данных, создание IP-плана, планирование маршрутизации и другие аспекты, необходимые для успешного проектирования корпоративной сети.

Результатом работы станет проект корпоративной ЛВС, обеспечивающий высокую надежность, эффективность и безопасность информационных систем предприятия в условиях специализированных грузоперевозок.

1 ТЕХНИЧЕСКОЕ ЗАДАНИЕ НА ПРОЕКТИРОВАНИЕ КОРПОРАТИВНОЙ ЛОКАЛЬНО-ВЫЧИСЛИТЕЛЬНОЙ СЕТИ

1.1 Общие сведения

Заказчик поручает Исполнителю разработку Проекта и монтаж СКС ЛВС (структурированная кабельная система локальной вычислительной сети), активного и пассивного оборудования. По запросу Заказчика Исполнитель предоставляет на согласование совместно со спецификацией на оборудование и сметными расчетами стоимости монтажных и проектных работ предварительный Рабочий проект СКС в любом графическом формате.

Полное наименование автоматизированной системы: корпоративная локально-вычислительная сеть (КЛВС).

Заказчик — ООО «БРУКЛЭНДС». ОКВЭД 50.10 — Торговля автотранспортными средствами и мотоциклами, их техническое обслуживание и ремонт.

Исполнитель – ООО «Овощные технологии».

Перечень документов, на основании которых создается КЛВС – договор об оказании услуг №33421, техническое задание на КЛВС от компании Фруктовые технологии, действующие нормативные документы:

- 1. ГОСТ Р 53246-2008 «Системы кабельные структурированные. Проектирование основных узлов системы. Общие требования»;
- 2. ГОСТ Р 53245-2008 «Системы кабельные структурированные. Монтаж основных узлов системы»;
- 3. ISO/IEC 11801:2002 (вторая редакция) «Информационные технологии структурированных кабельных систем для помещений заказчика».

Плановые сроки начала и окончания работ -c 09.03.2024 по 09.06.2024.

1.2 Цели и назначение создания КЛВС

1.2.1 Цель создания КЛВС

Основными целями работ являются:

- организация надежной производительной и отказоустойчивой локальной вычислительной сети для взаимодействия средств вычислительной техники, телекоммуникационных и периферийных устройств;
- обеспечение эффективного обмена информацией между различными подразделениями компании;
- повышение оперативности работы сотрудников за счет улучшения доступа к ресурсам и инструментам, ускорение обмена информацией и оптимизация процессов взаимодействия между участниками бизнеса;
- улучшение управления складскими операциями: ЛВС позволяет отслеживать перемещение товаров, контролировать запасы и оптимизировать процессы хранения и отгрузки;
- оптимизация маршрутов и управление транспортом: ЛВС может использоваться для отслеживания транспортных средств, планирования оптимальных маршрутов доставки и управления логистическими процессами;
- обеспечение безопасности и контроля доступа: ЛВС помогает контролировать доступ к информации о грузах, складских запасах и других логистических данных, обеспечивая безопасность и конфиденциальность информации.

1.2.2 Назначение создания КЛВС

Назначением создания КЛВС является организация автоматизируемой передачи данных между устройствами сотрудников, что достигается за счёт соединения устройств сотрудников, а также благодаря предоставления им возможности выхода в Интернет сеть.

1.3 Характеристика объекта автоматизации

1.3.1 Организационная структура предприятия

Описание организационной структуры предприятия представлено на диаграмме (Рисунок 1.1).

Рисунок 1.1 – Схема отделов предприятия

1.3.2 Характеристика автоматизированных рабочих мест (APM) и других устройств, подключаемых к КЛВС

В главном офисе расположено 103 типовых персональных рабочих компьютеров, каждый из которых подключается посредством проводного соединения. Также в главном офисе находятся 36 МФУ, 37 IP-телефонов и 12 IP-камер.

В филиале расположено 26 типовых персональных рабочих компьютеров, каждый из которых подключается посредством проводного соединения. Также в главном офисе находятся 11 МФУ, 15 IP-телефонов и 10 IP-камер.

1.3.3 Характеристика расположения АРМ

На Рисунке 1.2 представлен план головного офиса предприятия.

Рисунок 1.2 - План помещений предприятия штаб-квартиры

На Рисунке цифрами отмечены следующие отделы:

- служба безопасности (1);
- бухгалтерия (2);
- административно-хозяйственный отдел (3);
- отдел маркетинга (4);

- ИТ отдел(серверная) (5);
- отдел кадров (6);
- отдел продаж (7);
- отдел закупок (8);
- отдел по работе с клиентами (9);
- генеральный директор (10);
- холл (11).

На Рисунке 1.3 представлен план филиала предприятия.

Рисунок 1.3 - План помещений предприятия филиала

На рисунке цифрами отмечены следующие точки:

- директор филиала (1);
- отдел продаж (2)
- отдел закупок (3);
- отдел по работе с клиентами (4);
- бухгалтерия (5);
- служба безопасности (6);
- отдел по ремонту автомобилей (7);

Холл(8).

1.3.4 Характеристика окружения предприятия

Главный офис компании расположен в городе Москва, район — Береговой проезд, улица Первомайская, дом 99. До метро «Библиотека имени Ленина» 340 метров. В шаговой доступности торговый центр, парковка, кафе, отели и ряд различных магазинов.

Филиал предприятия же расположен в Московской области, город Химки, Пролетарская улица, дом 5. Рядом находятся бизнес-центры, продуктовые магазины и парковочные места.

1.3.5 Характеристика существующей инфраструктуры

На предприятия присутствует система энергоснабжения. В Таблице 1.1 представлена сводка о энергоснабжении на предприятии.

Интернет-провайдером, предоставляющим услуги доступа к сети Интернет, является МГТС.

Таблица 1.1 — Энергоснабжении на предприятии

№	Площадка	Энергоснабжение
1	Главный офис	2 ввода 50 КВт
2	Филиал	1 ввод 25 КВт

В предприятии подведена, но не подключена, кабельная система к сетевым устройствам.

На предприятии присутствует система пожаротушения. В качестве огнетушащего вещества используется Фторкетон ФК-5-1-12 (сухая вода). Данный тип огнетушащего вещества полностью безопасен для человека и способен погасить очаг возгорания, не повредив при этом оборудование.

2 ПЛАНИРОВАНИЕ КАНАЛЬНОГО УРОВНЯ

2.1 Планирование виртуальных локальных сетей

Следующий этап планирования производится на уровне 2 – проектирование виртуальных локальных сетей. Виртуальные локальные сети можно разделить на сервисные VLAN, управляющие VLAN и взаимосвязанные VLAN.

В работе требуется описать преимущества и причины использования данной технологии в сетях передачи данных.

При проектировании сервисной виртуальной локальной сети следует руководствоваться тем, что она предназначена для обеспечения доступности сервисов для пользователей. Данные VLAN можно назначать на основе следующих критериев:

- назначение VLAN по географическому местоположению;
- назначение VLAN по логической области;
- назначение VLAN в зависимости от структуры персонала;
- назначение VLAN по типу услуги.

Требуется выбрать оптимальный критерий/критерии и произвести планирование сервисных VLAN для каждой площадки предприятия.

При проектировании управляющей VLAN следует руководствоваться тем, что данные VLAN используются для удаленного доступа к устройствам и управления ими. В большинстве случаев коммутаторы уровня 2 используют адреса виртуального интерфейса VLAN в качестве адресов управления. Рекомендуется, чтобы все коммутаторы в одной сети уровня 2 использовали одну и ту же управляющую VLAN, а их IP-адреса управления находились в одном сегменте сети.

При проектировании взаимосвязанных VLAN следует руководствоваться тем, что она нужна для соединения устройств при переходе с уровня агрегации на уровень ядра. При отсутствии уровня ядра речь идет о выходном уровне. Данные VLAN требуется при использовании способа маршрутизации между VLAN с использованием коммутаторов уровня агрегации.

Планирование VLAN для главного офиса представлено в Таблице 2.1 при условии того, что используется маршрутизация между VLAN с использованием коммутаторов уровня агрегации.

Таблица 2.1 — Результат планирования VLAN для главного офиса

ID	Наименование	Описание
VLAN		
10	IT	Объединение IT-отдела SW_5.1_L3, SW_5.2,
		SW_5.3_L3
11	SAL	Объединение отдела продаж SW 7.1- SW 7.2
12	BUY	Объединение отдела закупок SW_8.1-SW_8.2
13	ADM	Объединение отдела АХО SW_3
14	MAR	Объединение отдела маркетинга SW_4
15	SEC	Объединение отдела службы безопасности SW_1
16	ACC	Объединение отдела бухгалтерии SW_2
17	FR	Объединение отдела кадров SW_6
18	MAIN	Объединение отдела дирекции SW_10_D_L2,
		SW_10.1_D_L3, SW_10_D_L3
20	CL	Объединение отдела по работе с клиентами SW_11
50	CAM	VLAN для камер
60	PH	VLAN для IP-телефонов
100	controlVLAN	CONTROL VLAN
601	Vlan1	VLAN взаимодействия между R_1 и SW_1_Agg
602	Vlan2	VLAN взаимодействия между R_1 и SW_2_Agg
603	Vlan3	VLAN взаимодействия между R_1 и SW_3_Agg

Планирование VLAN для филиала выполняется по аналогии и представлено в Таблице 2.2.

Таблииа 2.2 — Результат планирования VLAN для филиала

ID	Наименование	Описание
VLAN		
10	HOST	Кабинет директора SW 1
11	ACC	Объединение отдела бухгалтерии SW 5
12	SEC	Объединение отдела охраны SW_6
13	SERV	Объединение отдела по ремонту автомобилей SW_7
14	CL	Объединение отдела работы с клиентами SW_4
15	SAL	Объединение отдела продаж SW_2
16	BUY	Объединение отдела закупок SW_3
50	CAM	VLAN для камер

60	PH	VLAN для IP-телефонов
100	controlVlan	CONTROL VLAN
600	Vlan1	VLAN взаимодействия между R_1 и SW_1.1_Agg
601	Vlan2	VLAN взаимодействия между R 1 и SW 1.2 Agg

Маршрутизация между VLAN будет осуществляться с помощью коммутаторов L3 уровня агрегации, так как использование подхода Router-on-a-stick будет излишне нагружать коммутатор в данной сети.

Следует упомянуть, что у большинства вендоров виртуальная локальная сеть под номером один, является сетью по умолчанию и не рекомендована к использованию. Также нужно обратить внимание на именование VLAN, у большей части вендоров есть возможность привязывать названия в настройках виртуальных локальных сетей для удобства конфигурирования и использования. После формирования основных виртуальных локальных сетей была описана конфигурация для последующей настройки, с добавлением столбцов с планом подключений. Планирование главного офиса представлено в Талице 2.3. Столбы VLAN: Access и Trunk описывают настройки для конечных типов портов устройств.

Таблица 2.3 – План подключений оборудования по портам в главном офисе

Название устройства	Порт	Описание подключения	Access	Trunk
SW_5.1_IT_L3_DAIKON	GigabitEthernet 0/1 – 0/4	SW_1_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet $0/5 - 0/8$	SW 3 Agg L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/19 – 0/16	PC 1 DAIKON -	10	-
		PC_8_DAIKON		
SW_5.3_IT_L3_DAIKON	GigabitEthernet 0/1 – 0/4	SW 1 Agg L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet $0/5 - 0/8$	SW 3 Agg L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/19 – 0/16	PC_9_DAIKON -	10	-
		PC_16_DAIKON		
SW_5.2 IT DAIKON	GigabitEthernet 0/1	SW_2 Agg L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/4$	IPTELEPHONE 1 DAIKON –	60	-
		IPTELEPHONE 4 DAIKON		
	FastEthernet $0/5 - 0/8$	PRINTER 1 DAIKON –	10	-
		PRINTER 4 DAIKON		
	FastEthernet 0/9	IPCAMERA_1_DAIKON	50	-
SW_7.1_SAL_DAIKON	GigabitEthernet 0/1	SW_1_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_3_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/4$	IPTELEPHONE 1 DAIKON –	60	-
		IPTELEPHONE_4_DAIKON		
	FastEthernet $0/5 - 0/8$	PRINTER_1_DAIKON -	11	-
		PRINTER_4_DAIKON		
	FastEthernet $0/9 - 0/16$	PC_1_DAIKON -	11	-
		PC_8_DAIKON		
	FastEthernet 0/17	IPCAMERA_1_DAIKON		-
			50	
SW_7.2_SAL_DAIKON	GigabitEthernet 0/1	SW_1_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW 3 Agg L3 DAIKON	-	10-20, 50, 60, 100
	FastEthernet 0/1 - 0/4	IPTELEPHONE_5_DAIKON -	60	-
		IPTELEPHONE 8 DAIKON		
	FastEthernet 0/5 – 0/8	PRINTER_5_DAIKON –	11	-
		PRINTER 8 DAIKON		

Продолжение таблицы 2.3				
	FastEthernet $0/9 - 0/16$	PC_9_DAIKON –	11	-
		PC_16_DAIKON		
SW_8.1_BUY_DAIKON	GigabitEthernet 0/1	SW_1_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_3_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/4$	IPTELEPHONE_1_DAIKON -	60	-
		IPTELEPHONE_4_DAIKON		
	FastEthernet $0/5 - 0/8$	PRINTER_1_DAIKON –	12	-
		PRINTER_4_DAIKON		
	FastEthernet $0/9 - 0/16$	PC_1_DAIKON-	12	-
		PC_8_DAIKON		
	FastEthernet 0/17	IPCAMERA 1 DAIKON	50	-
SW_8.2_BUY_DAIKON	GigabitEthernet 0/1	SW 2 Agg L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW 4 Agg L3 DAIKON	-	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/4$	IPTELEPHONE_5_DAIKON –	60	-
		IPTELEPHONE 8 DAIKON		
	FastEthernet $0/5 - 0/8$	PRINTER_5_DAIKON –	12	-
		PRINTER 8 DAIKON		
	FastEthernet $0/9 - 0/16$	PC_9_DAIKON –	12	-
		PC_16_DAIKON		
SW_3_ADM_DAIKON	GigabitEthernet 0/1	SW 2 Agg L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet 0/1	IPTELEPHONE_1_DAIKON	60	-
	FastEthernet 0/2	PRINTER_1_DAIKON	13	-
	FastEthernet $0/3 - 0/13$	PC_1_DAIKON –	13	-
		PC_11_DAIKON		
	FastEthernet 0/14	IPCAMERA_1_DAIKON	50	-
SW_4_MAR_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW 4 Agg L3 DAIKON	_	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/4$	IPTELEPHONE_1_DAIKON -	60	-
		IPTELEPHONE 4 DAIKON		
	FastEthernet $0/5 - 0/8$	PRINTER_1_DAIKON –	14	-
		PRINTER 4 DAIKON		

Прооолжение таолицы 2.5				
	FastEthernet 0/9-0/19	PC_1_DAIKON -	14	-
		PC_11_DAIKON		
	FastEthernet 0/20	IPCAMERA_1_DAIKON	50	-
SW_1_SEC_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet 0/1	IPTELEPHONE_1_DAIKON	60	-
	FastEthernet $0/2 - 0/10$	PC_1_DAIKON -	15	-
		PC_9_DAIKON		
	FastEthernet 0/11	IPCAMERA_1_DAIKON	50	-
SW_2_ACC_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/4$	IPTELEPHONE_1_DAIKON -	-	60
		IPTELEPHONE_4_DAIKON		
	FastEthernet 0/5 – 0/8	PRINTER_1_DAIKON –	16	-
		PRINTER_4_DAIKON		
	FastEthernet 0/9-0/19	PC_1_DAIKON –	16	-
		PC_11_DAIKON		
	FastEthernet 0/20	IPCAMERA_1_DAIKON	50	-
SW_6_FR_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	_	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	_	10-20, 50, 60, 100
	FastEthernet $0/1 - 0/3$	IPTELEPHONE_1_DAIKON –	60	-
		IPTELEPHONE_3_DAIKON		
	FastEthernet 0/4 – 0/6	PRINTER_1_DAIKON –	17	-
		PRINTER _3_DAIKON		
	FastEthernet 0/7 – 0/12	PC_1_DAIKON -	17	-
		PC_6_DAIKON		
	FastEthernet 0/13	IPCAMERA_1_DAIKON	50	-
SW_9/11_HC_L3_DAIKON	GigabitEthernet 0/1	SW 2 Agg L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100

Прооолжение таолицы 2.5				
	FastEthernet $0/1 - 0/3$	IPTELEPHONE_1_DAIKON -	60	-
		IPTELEPHONE_3_DAIKON		
	FastEthernet $0/4 - 0/6$	PRINTER_1_DAIKON –	20	-
		PRINTER _3_DAIKON		
	FastEthernet $0/7 - 0/12$	PC_1_DAIKON –	20	-
		PC_6_DAIKON		
	FastEthernet $0/13 - 0/15$	IPCAMERA_1_DAIKON -	50	-
		IPCAMERA_3_DAIKON		
SW_10_D_L2_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	FastEthernet 0/1	IPTELEPHONE 1 DAIKON	60	-
	FastEthernet 0/2	PRINTER 1 DAIKON	18	-
	FastEthernet 0/3	IPCAMERA 1 DAIKON	50	-
SW_10_D_L3_DAIKON	GigabitEthernet 0/1	SW_2_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_4_Agg_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/3	PC_1_DAIKON	18	-
SW_1_Agg_L3_DAIKON	GigabitEthernet 0/1 –0/4	SW_5.5_IT_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/5 –0/8	SW 5.3 IT L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/9 – 0/12	SW 5.4 IT L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/13 – 0/16	SW 5.1 IT L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/17	SW_7.1 SAL DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/18	SW_7.2_SAL_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/19	SW_7.3_SAL_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/20	SW_7.4_SAL_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/21	SW 8.1 BUY DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/22	SW 2 Agg L3 DAIKON	-	-
	GigabitEthernet 0/23	SW 4 Agg L3 DAIKON	-	-
	GigabitEthernet 0/24	R_1_DAIKON	-	601

Продолжение таблицы 2.3				
SW_3_Agg_L3_DAIKON	GigabitEthernet 0/1 –0/4	SW_5.5_IT_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/5 –0/8	SW_5.3_IT_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/9 – 0/12	SW 5.4 IT L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/13 – 0/16	SW 5.1 IT L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/17	SW 7.1 SAL DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/18	SW 7.2 SAL DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/19	SW_7.3_SAL_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/20	SW_7.4_SAL_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/21	SW_8.1_BUY_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/22	SW 2 Agg L3 DAIKON	-	-
	GigabitEthernet 0/23	SW 4 Agg L3 DAIKON	-	-
	GigabitEthernet 0/24	R 1 DAIKON	-	603
SW_2_Agg_L3_DAIKON	GigabitEthernet 0/1	SW_8.2_BUY_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_5.2_IT_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/3	SW_3_ADM_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/4	SW_4_MAR_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/5	SW 1.1 SEC DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/6	SW 2 ACC DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/7	SW 6 FR DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/8	SW_9/11_HC_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/9	SW_10_D_L2_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/10	SW_10.1_D_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/11	SW 10 D L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/12	SW 1 Agg L3 DAIKON	-	-
	GigabitEthernet 0/13	SW 3 Agg L3 DAIKON	-	-
	GigabitEthernet 0/14	R_1_DAIKON	-	602
SW_4_Agg_L3_DAIKON	GigabitEthernet 0/1	SW_8.2_BUY_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/2	SW_5.2_IT_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/3	SW_3_ADM_DAIKON	-	10-20, 50, 60, 100

Прооолжение таолицы 2.5				
	GigabitEthernet 0/4	SW_4_MAR_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/5	SW_1.1_SEC_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/6	SW 2 ACC DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/7	SW 6 FR DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/8	SW 9/11 HC L3 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/9	SW_10 D L2 DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/10	SW_10.1_D_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/11	SW_10_D_L3_DAIKON	-	10-20, 50, 60, 100
	GigabitEthernet 0/12	SW_1_Agg_L3_DAIKON	-	
	GigabitEthernet 0/13	SW 3 Agg L3 DAIKON	-	
	GigabitEthernet 0/14	R 1 DAIKON	-	604
R_1_DAIKON	GigabitEthernet 0/1	SW 1 Agg L3 DAIKON	-	-
	GigabitEthernet 0/2	SW_2_Agg_L3_DAIKON	-	-
	GigabitEthernet 0/3	SW_3_Agg_L3_DAIKON	_	-
	GigabitEthernet 0/4	SW_4_Agg_L3_DAIKON	_	-

По аналогии планирование филиала представлено в Таблице 2.4

Таблица 2.4 – План подключений оборудования по портам в филиале

Название устройства	Порт	Описание подключения V	VLAN	
	_		Access	Trunk
R_1_DAIKON	GigabitEthernet0/1	SW_1.1_Agg_L3_DAIKON	-	<mark>600</mark>
	GigabitEthernet0/2	SW 1.2 Agg L3 DAIKON	-	<mark>601</mark>
SW_1.1_Agg_L3_DAIKON	GigabitEthernet0/1	R_1_DAIKON	-	-
	GigabitEthernet0/2	SW 6/7/8 SSH L3 DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/3	SW 5 A L3 DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/4	SW 1 H L2 DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/5	SW 2 SAL DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/6	SW 3 BUY DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/7	SW 4 CL DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/1	R 1 DAIKON	-	601
SW_1.2_Agg_L3_DAIKON	GigabitEthernet0/2	SW 6/7/8 SSH L3 DAIKON	-	10-16, 50, 60, 100

Іродолжение таблицы 2.4				
	GigabitEthernet0/3	SW_5_A_L3_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/4	SW_1_H_L2_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/5	SW 2 SAL DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/6	SW 3 BUY DAIKON	_	10-16, 50, 60, 100
	GigabitEthernet0/7	SW 4 CL DAIKON	_	10-16, 50, 60, 100
SW_5_A_L3_DAIKON	GigabitEthernet0/1	SW 1.1 Agg L3 DAIKON	_	10-16, 50, 60, 100
	GigabitEthernet0/2	SW 1.2 Agg L3 DAIKON	_	10-16, 50, 60, 100
	FastEthernet 0/1–0/2	IPTELEPHONE 1 DAIKON	60	-
		IPTELEPHONE 2 DAIKON		
	FastEthernet 0/3 – 0/4	PRINTER 1 DAIKON –	11	-
		PRINTER 2 DAIKON		
	FastEthernet 0/5–0/7	PC_1_DAIKON -	11	-
		PC_3_DAIKON		
	FastEthernet 0/8	IPCAMERA_1_DAIKON	50	-
SW_6/7/8_SSH_L3_DAIKON	GigabitEthernet0/1	SW_1.1_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/2	SW 1.2 Agg L3 DAIKON	-	10-16, 50, 60, 100
	FastEthernet 0/1–0/2	IPTELEPHONE 1 DAIKON	60	-
		IPTELEPHONE_2_DAIKON		
	FastEthernet 0/3 – 0/8	PC_1_DAIKON -	12, 13	-
		PC_6_DAIKON		
	FastEthernet $0/9 - 0/13$	IPCAMERA_1_DAIKON -	50	-
		IPCAMERA_5_DAIKON		
SW_1_H_L2_DAIKON	GigabitEthernet0/1	SW_1.1_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/2	SW_1.2_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	FastEthernet 0/1	IPTELEPHONE_1_DAIKON	60	-
	FastEthernet 0/2	PRINTER 1 DAIKON	10	-
	FastEthernet 0/3	PC_1_DAIKON	10	-
	FastEthernet 0/4	IPCAMERA_1_DAIKON	50	-
SW_4_CL_DAIKON	GigabitEthernet0/1	SW_1.1_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/2	SW 1.2 Agg L3 DAIKON	_	10-16, 50, 60, 100

Іродолжение таблицы 2.4				
	FastEthernet 0/1–0/4	IPTELEPHONE_1_DAIKON	60	-
		_		
		IPTELEPHONE_4_DAIKON		
	FastEthernet 0/5–0/6	PRINTER_1_DAIKON –	14	-
		PRINTER_2_DAIKON		
	FastEthernet 0/7–0/10	PC_1_DAIKON –	14	-
		PC_4_DAIKON		
	FastEthernet	IPCAMERA_1_DAIKON	50	-
	0/11			
SW_2_SAL_DAIKON	GigabitEthernet0/1	SW_1.1_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/2	SW_1.2_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	FastEthernet 0/1–0/3	IPTELEPHONE_1_DAIKON	60	-
		_		
		IPTELEPHONE_3_DAIKON		
	FastEthernet 0/4–0/6	PRINTER_1_DAIKON –	15	-
		PRINTER_3_DAIKON		
	FastEthernet 0/7–0/12	PC_1_DAIKON –	15	-
		PC_6_DAIKON		
	FastEthernet 0/13	IPCAMERA_1_DAIKON	50	-
SW_3_BUY_DAIKON	GigabitEthernet0/1	SW_1.1_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	GigabitEthernet0/2	SW_1.2_Agg_L3_DAIKON	-	10-16, 50, 60, 100
	FastEthernet 0/1 – 0/3	IPTELEPHONE_1_DAIKON	60	-
		_		
		IPTELEPHONE_3_DAIKON		
	FastEthernet 0/4–0/6	PRINTER_1_DAIKON –	16	-
		PRINTER_3_DAIKON		
	FastEthernet 0/7–0/12	PC_1_DAIKON –	16	-
		PC_6_DAIKON		
	FastEthernet 0/13	IPCAMERA 1 DAIKON	50	-

2.2 Планирование агрегирования каналов

Следующий шаг – планирование агрегирования каналов.

Для основного офиса необходимо провести агрегирование каналов для коммутаторов:

- SW_1_Agg_L3_DAIKON[GigabitEthernet0/17-0/23] SW_5.1_IT_L3_DAIKON [GigabitEthernet 0/1-0/7]
- SW_1_Agg_L3_DAIKON[GigabitEthernet30/16-0/21] SW_5.3_IT_L3_DAIKON [GigabitEthernet 0/8–0/13]

Агрегирование каждого канала будет осуществляться с помощью LACP, так как ручной режим имеет большое количество недостатков и не подходит для нашей топологии сети. В данном случае LACP лишит нас необходимости каждый раз вручную подтверждать конфигурацию. Приоритет системы LACP будет иметь значение 32768 (по умолчанию).

При настройке режима балансировки нагрузки во всех случаях будет использоваться балансировка по IP-адресам источника и назначения.

Для филиалов необходимость проводить агрегирование каналов для коммутаторов отсутствует.

2.3 Планирование предотвращения петель канального уровня

Петли канального уровня (или петли трафика) возникают в сетях передачи данных, когда пакеты данных начинают циркулировать между устройствами канального уровня в сети без достижения конечной цели. Для предотвращения перегруженности сетей, вызванной бесконечной циркуляций кадров используется протокол STP.

Поскольку в рамках данной работы планирование производится с использованием оборудования Сіясо будет использован проприетарный протокол Сіясо Rapid-PVST, основанный на RSTP. RSTP является усовершенствованием протокола STP и обеспечивает быструю конвергенцию топологии сети. И STP, и RSTP имеют один недостаток: все VLAN в локальной сети используют одно связующее дерево. В условиях данного варианта топологии этот недостаток не будет являться проблемой, так как балансировка VLAN в данной сети не требуется, поскольку с каждого коммутатора уровня доступа трафик передаётся только на один коммутатор уровня агрегации.

В сети центрального офиса SW_1_Agg_L3_DAIKON будет являться корневым мостом и иметь приоритет 0. SW_2_Agg_L3_DAIKON будет иметь промежуточный приоритет 4098. SW_3_Agg_L3_DAIKON и SW_4_Agg_L3_DAIKON будут являться резервным корневыми мостами и иметь приоритет 8192.

В сети филиала коммутатор SW_1_Agg_L3_DAIKON будет являться корневым мостом и иметь приоритет 0. SW_1.2_Agg_L3_DAIKON будет являться резервным корневым мостом и иметь приоритет 4096.

3 МОДЕЛИРОВАНИЕ КОРПОРАТИВНОЙ ЛОКАЛЬНО-ВЫЧИСЛИТЕЛЬНОЙ СЕТИ

- 3.1 Настройка планируемых конфигураций
- 3.2 Тестирование топологии

ЗАКЛЮЧЕНИЕ

В данной курсовой работе был разработан проект корпоративной локально-вычислительной сети (ЛВС) для предприятия, осуществляющего деятельность по перевозке грузов специализированными автотранспортными средствами. Проект был выполнен с учетом специфических потребностей предприятия, включая обеспечение бесперебойной работы информационных систем, контроль за движением транспорта и эффективное взаимодействие с клиентами.

В разделе «Техническое задание» были определены общие сведения о проекте, цели и назначение создания корпоративной локально-вычислительной сети, а также проведена характеристика объекта автоматизации, включая организационную структуру предприятия, характеристики устройств и расположения АРМ, окружения предприятия и существующей инфраструктуры.

В разделе «Планирование канального уровня» было проведено планирование виртуальных локальных сетей, агрегирования каналов и предотвращения петель канального уровня. Далее было осуществлено планирование сетевого уровня, включая создание IP-плана, планирование избыточности шлюза по умолчанию, назначение адресации и планирование маршрутизации.

В результате проектирования была разработана оптимальная архитектура ЛВС, основанная на выбранной топологии, технологиях передачи данных и системах безопасности.

СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ

- 1. Олифер Виктор, Олифер Наталья Компьютерные сети. Принципы, технологии, протоколы: Юбилейное издание. СПб.: Питер, 2020. 1008 с.: ил. (Серия «Учебник для вузов»)
- 2. Требования к оформлению отчетов по практикам, курсовых работ и ВКР бакалавров и магистров [Электронный ресурс] : методические указания / Ю. В. Кириллина, А. Д. Лагунова, Е. Г. Бергер . М.: РТУ МИРЭА, 2022. Электрон. опт. диск (ISO).