

higher education & training

Department:
Higher Education and Training
REPUBLIC OF SOUTH AFRICA

MARKING GUIDELINE

NATIONAL CERTIFICATE FITTING AND MACHINING THEORY N2

6 April 2020

This marking guideline consists of 9 pages.

FITTING AND MACHINING THEORY N2

SECTION A

QUESTION 1: OCCUPATIONAL SAFETY

Answer QUESTION 1.1 OR QUESTION 1.2.

- Provides maximum positive protection.
 - Blocks access to danger zones during operation.
 - · Corrosion and fire resistant.
 - Does not create hazards such as splinters and pinch points.
 - Is a permanent part of the machine
 - Is easily repairable.
 - Complies with the requirements of the Departments of Labour and Mineral Resources.
 - Does not affect the efficient operation of the machine.
 - Is hinged if it is bulky, to allow for the servicing of belts and gears.

 $(Any 5 \times 1)$

OR

- No person should place, throw or leave any naked light or flame on or near any combustible material or inflammable substances.
 - No combustible waste material shall be stored anywhere in quantity.
 - No combustible waste material shall be stored or kept in the immediate vicinity where any electrical apparatus or heating apparatus is installed.
 - No welding, flame cutting or flame heating shall take place unless adequate means to extinguish the fire immediately is available.
 - No person shall smoke or carry an open light in any cage, skip or other conveyance in any shaft or winch or in any elevator car in a hatchway.
 - Calcium carbide is not to be taken underground unless it is in a lamp provided by the manager or in a water-tight container approved by the regional manager.
 - All machinery must be constructed, installed, operated and maintained so as to prevent any dangerous heating. (Any 5 × 1)

QUESTION 2: COUPLINGS

2.1 D

2.2 B

2.3 F

2.4 A 2.5 H

2.6 E

(6 × 1) **[6]**

[5]

FITTING AND MACHINING THEORY N2

QUESTION 3: LIMITS AND FITS

3.1	3.1.1 3.1.2	b – deviation/tolerance on shaftsA – deviation/tolerance on holes(2 × 1)	(2)
 3.2 • Clearance fit • Interference fit • Transition fit 			(3)
3.3		it must be of a permanent nature. it, like keying, can also be of a semipermanent nature.	(2) [7]
QUES	STION 4: BI	EARINGS	
LacExcForUnsCorDesFat	eign materi suitable lub rosion of be sign faults igue of bea	tion rating temperature al in oil supply	[5]
QUES	STION 5 : L	UBRICATION AND VALVES	
5.1	5.1.1	It is the pressure that is generated between a bearing and a shaft.	(1)
	5.1.2	It is the lowest temperature at which a lubricant will pour or flow at an adequate rate to fulfil its function.	(1)
	5.1.3	It is the ability of a substance to cling to another material or substance	(1)
5.2	5.2.1	Diaphragm valve	(1)
	5.2.2	It has a rubber diaphragm which is moved down by a screw ✓ onto a metal bridge to close off liquid flow. ✓	
			(2) [6]

compressed.

receiver.

FITTING AND MACHINING THEORY N2

QUESTION 6: PACKING, STUFFING BOXES, JOINTS AND WATER PIPE SYSTEMS

	SYSIEMS		
6.1	 It is strong. It can bond with other materials. It is resilient. It can be deformed in different directions. It is resistant to fatigue and abrasion. 		
6.2	6.2.1 Used where the hole is threaded to prevent any flow of liquid passing that point.		
	6.2.2 Used where the outside diameter of a pipe is threaded to prevent any flow of liquid passing that point.		
	6.2.3 Used where two pipes are to be connected, both having internal threads.		
	6.2.4 Used to connect two pipes having an external thread on its diameter.		
	(4 × 1)	(4) [9]	
QUES	TION 7: PUMPS		
7.1	 Gear pump Helical screw gear pump Herringbone gear pump Screw pump Vane pump 		
	(Any two)	(2)	
7.2	Reciprocating pumps		
7.3	ShaftImpellerVolute casing	(3) [6]	
QUES	TION 8: COMPRESSORS		
8.1	A – Inlet valve B – Discharge/Outlet valve	(2)	
8.2	The piston moves upwards causing the inlet valve to close and the air is		

Copyright reserved Please turn over

The outlet valve opens and the compressed air is forced out into the air

(2) **[4]**

-5-FITTING AND MACHINING THEORY N2

QUESTION 9: V-BELTS, GEAR DRIVES, CHAIN DRIVES AND REDUCTION GEARBOXES

- 9.1 They are less noisy.
 - Require no lubrication.
 - Slip occurs to prevent damage to the machine if there is a problem
 - Require little attention.
 - With a multiple V-belt drive the machine may still run when one belt breaks. (Any 4 × 1) (4)
- 9.2 A gear drive is referred to as a positive drive because no slip occurs between the gears in mesh.
- 9.3 It has no effect on the velocity ratio. (1)
- 9.4 Chain pitch
 - The number of teeth per sprocket
 - Distance between the sprockets
 - The arc of contact on the sprockets (4)
- 9.5 The main function of a reduction gearbox is to reduce the speed between a motor and the driven part or machine.✓ At the same time a reduction in speed allows for an increase in torque thus allowing heavier loads to be driven.✓

TOTAL SECTION A: 60

(1)

(2) [**12**]

SECTION B

Answer any TWO of the three questions in SECTION B.

QUESTION 10: HYDRAULICS AND PNEUMATICS

- 10.1 Control valves
 - Cylinder
 - Compressor
 - Tank
 - Piping
 - Service unit (filter, pressure valve and lubricator)
 - Filter with water trap
 - Pressure reducing valve
 - Lubricator (Any five) (5)
- 10.2 Power transmission
 - Lubrication
 - Cooling (3)

10.3 ● Pressure

FITTING AND MACHINING THEORY N2

• Volume (2)

- 10.4 10.4.1 The reservoir stores hydraulic fluid until it is ready for the operation of the system. ✓
 OR It also dissipates heat.
 - 10.4.2 The pressure relief valve protects the system from excessive pressure. ✓
 - 10.4.3 The primary function of a control valve is to alert, generate or cancel signals for the purpose of sensing processing and controlling. ✓
 - 10.4.4 The actuators change the hydraulic liquid pressure into mechanical movement. ✓
 - 10.4.5 Piping is necessary to channel fluid under pressure from the pump to the actuators. ✓

 $(5 \times 1) \qquad (5)$

10.5 10.5.1

10.5.2

10.5.3

10.5.4 (M)

10.5.5

 $(5 \times 1) \qquad (5)$

QUESTION 11: CENTRE LATHES

11.1 • Fixed steady

• Travelling steady (2)

11.2 11.2.1 Expanding mandrel

11.2.2 Cone mandrel

11.2.3 Screw mandrel

 $(3 \times 1) \qquad (3)$

• Long tapers can be turned.

A cross-slide can be automatically fed.

(2)

11.4
$$S = \pi DN$$

$$D = \frac{S}{\pi \times N} \checkmark$$
$$= \frac{95}{\pi \times 2 \ 100} \checkmark$$

 $D = 0.0144 \, \text{m} \checkmark$

$$\begin{array}{c}
\mathsf{OR} \\
\underline{D = 14.4 \, mm}
\end{array}$$

 $\underline{D = 14.4 \ mm} \tag{3}$

11.5 11.5.1 Lead = No. of starts \times Pitch of thread = 2×14 Lead = $28 \text{ mm} \checkmark$

 $Mean\ diameter\ (Dm) = Outside\ diameter\ - Depth$

= Outside diameter
$$-\frac{Pitch}{2}$$

= $56 - \frac{14}{2}$ \checkmark
= $56 - 7$

Mean diameter $(Dm) = 49 \text{ mm} \checkmark$

$$\tan \theta = \frac{Lead}{\pi Dm}$$

$$\tan\theta = \frac{28}{\pi \times 49}$$

$$\theta = tan^{-1}0,18189$$

$$\underline{\theta = 10^{\circ} 19'} \checkmark \tag{4}$$

11.5.2 Leading tool angle = 90° – (Helix angle + Clearance angle) = 90° – $(10^{\circ} 19' + 3^{\circ})$ \checkmark = 90° – $13^{\circ} 19'$

<u>Leading tool angle = $76^{\circ} 19'$ </u> \checkmark (2)

11.5.3 Following tool angle = 90° + (Helix angle – Clearance angle) = 90° + $(10^{\circ} 19' - 3^{\circ})$ \(= 90° + $7^{\circ} 19'$

Following tool angle = $97^{\circ} 19' \checkmark$ (2)

-8-FITTING AND MACHINING THEORY N2

11.6 11.6.1 Absolute programming 11.6.2 Incremental programming

(2 × 1) (2) **[20]**

QUESTION 12: MILLING MACHINES AND SURFACE GRINDERS

- 12.1 An index pin is used to turn the spindle through the worm gearing (1)
- 12.2 12.2.1 A Helical cutter
 B Slitting cutter
 C Side-and-face cutter (3)
 - 12.2.2 A A helical cutter is used for slab milling.
 - B A slitting cutter is used for cutting material to length or cutting narrow grooves or slots.
 - C A side-and-face cutter is used for cutting slots and used in pairs for straddle milling. (3)

12.3 Indexing =
$$\frac{40}{N}$$

$$= \frac{40}{18}$$

$$= 2 \frac{4}{18} \checkmark$$

$$= 2 \left[\frac{4}{18} \times \frac{3}{3} \right]$$

$$= 2 \frac{12}{54} \checkmark$$

Indexing = 2 full turns of the crank handle and 12 holes in a 54 hole plate \checkmark (3)

12.4
$$V = \pi DN$$

$$N = \frac{V}{\pi D} \checkmark$$

$$=\frac{25}{\pi\times0,075}\checkmark$$

 $N = 106,103 \, r/min \checkmark$

$$f = f_t \times T \times N$$

 $= 0.08 \times 14 \times 106,103 \checkmark$

$$\underline{f = 118,836 \, mm/min} \checkmark \tag{5}$$

- The dividing head divides the circumference of a work-piece equally into a number of parts.
 - It also holds the work-piece in the required position while work is done. (2)
- 12.6 Wider cutters may be used
 - Deeper cuts may be taken at once
 - Less power is required (3) [20]

TOTAL SECTION B: 40
GRAND TOTAL: 100