python		Created with Sdag	
Company Name	Pythons & Co	Project Title	Asimple block of flats
Group/Team Name	Flying Circus	Subtitle	Abattoir
Designer	Mr. Wiggin	Job Number	1.1.4.1.2
Date	20 /06 /2018	Client	Mr. Tid

Design Conclusion		
Seated Angle	Fail	
Seated Angle		
Connection Properties		
Connection		
Connection Title	Seated Angle	
Connection Type	Shear Connection	
Connection Category		
Connectivity	Column flange-Beam flange	
Beam Connection	Bolted	
Column Connection	Bolted	
Loading (Factored Load)		
Shear Force (kN)	140.0	
Components		
Column Section	SC 140	
Material	Fe 410	
Hole	Standard	
Beam Section	MB 200	
Material	Fe 410	
Hole	Standard	
Seated Angle Section	110 110 X 16	
Material	Fe 410	
Hole	Standard	
Top Angle Section	90 90 x 8	
Material	Fe 410	
Hole	Standard	
Bolts	·	
Type	Bearing Bolt	
Grade	6.8	
Diameter (mm)	12	
Bolts - Required	8	
Bolts - Provided	8	
Rows	2	
Columns	4	

Gauge (mm)	16
Pitch (mm)	31.0
End Distance (mm)	35
Edge Distance (mm)	25
Assembly	
Column-Beam Clearance (mm)	10.0

python		Created with Sdag	
Company Name	Pythons & Co	Project Title	Asimple block of flats
Group/Team Name	Flying Circus	Subtitle	Abattoir
Designer	Mr. Wiggin	Job Number	1.1.4.1.2
Date	20 /06 /2018	Client	Mr. Tid

Design Preferences	
Bolt	
Hole Type	Standard Hole
Material Grade Fu (MPa) (overwrite)	800
Detailing	
Type of Edge	Sheared or hand flame cut
Minimum Edge Distance check multiplier	1.7 * bolt_hole_diameter
Are members exposed to corrosive influences?	Yes
Gap between Beam and Column (mm)	10.0
Design	
Design Method	Limit State Design

python		Created with Sdag	
Company Name	Pythons & Co	Project Title	Asimple block of flats
Group/Team Name	Flying Circus	Subtitle	Abattoir
Designer	Mr. Wiggin	Job Number	1.1.4.1.2
Date	20 /06 /2018	Client	Mr. Tid

Design Chec	k		
Check	Required	Provided	Remark
Bolt Checks			
Bolt shear capacity (kN)	$V_{\rm dsb}$ = bolt_fu* (pi*0.78/4)*bolt_diameter^2/($\sqrt{3}$)/gamma _{mb} [cl. 10.3.3]	$V_{\text{dsb}} = 600^{*}$ (0.6126)*12^2/(\sqrt{3})/1.25/1000 = 23.4	
Bolt bearing capacity (kN)	V _{dpb} : [Cl. 10.3.4]	V _{dpb} = 2.5*0.519*12*5.7*410/1.25/1000) = 61.3 kN	
Bolt capacity (kN)	min (bolt_shear_capacity, bolt_bearing_capacity)	min (23.4, 61.3) = 23.4	
No. of bolts	140.0/23.4 = 6.0	8	Pass
No. of columns		4	
No. of row(s)	≤ 2	2	
Bolt pitch (mm)	$\geq 2.5^* \ 12 = 30,$ $\leq \min(32^*12.0, 300) = 300.0$ [cl. 10.2.2]	31.0	Pass
Bolt gauge (mm)	$\geq 2.5*12 = 30,$ $\leq \min(32*12.0, 300) = 300.0$ [cl. 10.2.2]	16	Fail
End distance (mm)	≥1.7*13 = 23	35	Pass
Edge distance (mm)	≥1.7*13 = 23 [cl. 10.2.4.2] As the members are exposed to corrosive influences: [Cl 10.2.4.3] ≤ min(12*12.0*sqrt(250/250), 40 + 4*12.0) = 88.0	25	Pass
Seated Angle	e 110 110 X 16		
Length (mm)	= min(100.0, 140.0)	100	

Outstanding leg length (mm)	[Cl. 8.7.4] = (140.0*1000*1.1/(250*5.7)) + 10.0	110	Fail
Shear capacity of outstanding leg (kN)	V _{dp} ≥ V V _{dp} ≥ 140.0kN [Cl. 8.4.1]	= (100*16.0)*250/ (√ 3 *1.1) = 254.0	Pass
capacity of	As $V \le 0.6 V_d$, [Cl 8.2.1.2] is applicable $M_d \ge Moment$ at root of angle $M_d \ge 4060.7$	M_d = min(beta _b Z _e f _y /gamma _{m0} , 1.5Z _e f _y /gamma _{m0}) = min(1.0* 100* (16.0^2/6)*250/1.1, 1.5*100* (16.0^2/6)*250/1.1) = 969.7	Fail
Top Angle			
Section	Recommended size (based on stability only): 55 55 X 6	User selected size: 90 90 x 8	
End distance (mm)	≥1.7*bolt_hole_diameter [cl. 10.2.4.2] ≥1.7*13 = 23	on leg connected to Beam: 40 on leg connected to Column: 40	

python		Created with	
Company Name	Pythons & Co	Project Title	Asimple block of flats
Group/Team Name	Flying Circus	Subtitle	Abattoir
Designer	Mr. Wiggin	Job Number	1.1.4.1.2
Date	20 /06 /2018	Client	Mr. Tid

Views

python		Created with Sdag	
Company Name	Pythons & Co	Project Title	Asimple block of flats
Group/Team Name	Flying Circus	Subtitle	Abattoir
Designer	Mr. Wiggin	Job Number	1.1.4.1.2
Date	20 /06 /2018	Client	Mr. Tid

Additional Comments	This is a sample design report generated in Osdag!