L-PICOLA Cosmology Equations

Cullan Howlett

8th June 2015

Here we go over the derivation of the cosmology factors within Version 1.1 of L-PICOLA. The terms we need are

$$a^{3}E(a)\frac{dD_{1}}{da}, \ a^{3}E(a)\frac{d}{da}\left[a^{3}E(a)\frac{dD_{1}}{da}\right], \ a^{3}E(a)\frac{dD_{2}}{da}, \text{ and } a^{3}E(a)\frac{d}{da}\left[a^{3}E(a)\frac{dD_{2}}{da}\right]$$
 (1)

In the notation of Tassev et al. (2013) these are $T[D_1]$, $T[D_2]$, $T^2[D_1]$, $T^2[D_2]$ (the notation of Howlett et. al. (in prep), the L-PICOLA paper, is different, sorry \odot). We'll start by going over the form for a flat Λ CDM cosmology in section 1, before moving on to the non-flat version currently implemented in L-PICOLA in section 2.

1 Flat Λ CDM cosmology

Let's start with a definition of the linear growth factor

$$D_1 = D_{1,0}E(a) \int_0^a \frac{da'}{a'^3 E^3(a')}.$$
 (2)

For a flat cosmology E(a) is given by

$$H(a) = H_0 E(a) = H_0 \sqrt{\Omega_{m,0} a^{-3} + \Omega_{\Lambda,0}},$$
 (3)

where H(a) is the Hubble parameter, with present value H_0 (at z=0 and a=1). a=1/(1+z) is the scale factor. The cosmological model is given by $\Omega_{m,0}$, the present day matter density, and $\Omega_{\Lambda,0}=1-\Omega_{m,0}$ is the present day dark energy density. The linear growth factor is normalised to 1 at z=0, i.e. the normalisation factor $D_{1,0}$ is given by

$$D_{1,0} = \left[\int_0^1 \frac{da'}{a'^3 E^3(a')} \right]^{-1}.$$
 (4)

Strictly speaking there should be an additional factor of $5\Omega_{m,0}/2$ infront of the expression for the linear growth factor, however as we will always be dealing with the normalised version, we will forget about this.

1.1 First expression

Taking the derivative of D_1 this with respect to a

$$\frac{dD_1}{da} = D_{1,0} \frac{dE}{da} \int_0^a \frac{da'}{a'^3 E^3(a')} + \frac{D_{1,0} E(a)}{a^3 E^3(a)}$$
 (5)

$$= -\frac{D_{1,0}}{2} \frac{1}{E(a)} \frac{3\Omega_{m,0}}{a^4} \int_0^a \frac{da'}{a'^3 E^3(a')} + \frac{D_{1,0}}{a^3 E^2(a)}$$
 (6)

hence

$$a^{3}E(a)\frac{dD_{1}}{da} = \frac{1}{E(a)}\left(D_{1,0} - \frac{3\Omega_{m,0}}{2a}D_{1,0}E(a)\int_{0}^{a} \frac{da'}{a'^{3}E^{3}(a')}\right)$$
(7)

and substituting the linear growth factor in again

$$a^{3}E(a)\frac{dD_{1}}{da} = \frac{1}{E(a)}\left(D_{1,0} - \frac{3\Omega_{m,0}}{2a}D_{1}(a)\right)$$
(8)

1.2 Second expression

To solve the next derivative of this expression, let's take a step back and look at the original differential equation from which the linear growth factor is actually derived. This is easier than actually differentiating the above expression.

$$\frac{d^2D_1}{dt^2} + 2H(t)\frac{dD_1}{dt} = \frac{3}{2}H^2(t)\Omega_m(t)D_1(t)$$
(9)

if we then look at changing variables from 't' to 'a

$$\frac{d}{dt} = \frac{da}{dt}\frac{d}{da} = aH(a)\frac{d}{da} \tag{10}$$

therefore

$$\frac{dD_{1}}{dt} = aH(a)\frac{dD_{1}}{da}\frac{d^{2}D_{1}}{dt^{2}} = aH(a)\frac{d}{da}\left(aH(a)\frac{dD_{1}}{da}\right) = aH(a)\left(H(a)\frac{dD_{1}}{da} + a\frac{dH}{da}\frac{dD_{1}}{da} + aH(a)\frac{d^{2}D_{1}}{da^{2}}\right) \tag{11}$$

Substituting this into Eq. 9 and rearranging, we find

$$a^{2}H^{2}(a)\frac{d^{2}D_{1}}{da^{2}} = \frac{3}{2}H^{2}(a)\Omega_{m}aD_{1}(a) - 3aH^{2}(a)\frac{dD_{1}}{da} - a^{2}H(a)\frac{dH}{da}\frac{dD_{1}}{da}$$
(12)

Want we really want, however, is

$$a^{3}E(a)\frac{d}{da}\left[a^{3}E(a)\frac{dD_{1}}{da}\right] = 3a^{5}\frac{H^{2}(a)}{H_{0}^{2}}\frac{dD_{1}}{da} + \frac{a^{6}H(a)}{H_{0}^{2}}\frac{dH}{da}\frac{dD_{1}}{da} + a^{6}\frac{H^{2}(a)}{H_{0}^{2}}\frac{d^{2}D_{1}}{da^{2}}$$
(13)

Conveniently, we have expressions for some of these terms already. Substituting Eq. (12)

$$a^{3}E(a)\frac{d}{da}\left[a^{3}E(a)\frac{dD_{1}}{da}\right] = 3a^{5}\frac{H^{2}(a)}{H_{0}^{2}}\frac{dD_{1}}{da} + \frac{a^{6}H(a)}{H_{0}^{2}}\frac{dH}{da}\frac{dD_{1}}{da} + \frac{3}{2}a^{4}\frac{H^{2}(a)}{H_{0}^{2}}\Omega_{m}aD_{1}(a) - 3a^{5}\frac{H^{2}}{H_{0}^{2}}(a)\frac{dD_{1}}{da} - a^{6}\frac{H(a)}{H_{0}^{2}}\frac{dH}{da}\frac{dD_{1}}{da}$$
(14)

and therefore,

$$a^{3}E(a)\frac{d}{da}\left[a^{3}E(a)\frac{dD_{1}}{da}\right] = \frac{3}{2}a^{4}\frac{H^{2}(a)}{H_{0}^{2}}\Omega_{m}aD_{1}(a).$$
(15)

Finally, using then the fact

$$\Omega_m(a) = \frac{\Omega_{m,0}}{a^3 E^2(a)},\tag{16}$$

we find

$$a^3 E(a) \frac{d}{da} \left[a^3 E(a) \frac{dD_1}{da} \right] = \frac{3}{2} \Omega_{m,0} a D_1(a)$$

$$\tag{17}$$

1.3 Third expression

To solve the same expressions for D_2 we use the approximation from Bouchet et al. (1995)

$$D_2(a) = -\frac{3}{7}D_1^2(a)\Omega_m^{-1/143}(a)$$
(18)

Hence

$$\frac{dD_2}{da} = -\frac{3}{7} \frac{dD_1^2}{da} \Omega_m^{-1/143}(a) + \frac{3}{7} \frac{D_1^2}{143} \frac{\Omega_m^{-1/143}(a)}{\Omega_m(a)} \frac{d\Omega_m}{da}$$
(19)

$$= -\frac{6}{7}D_1(a)\frac{dD_1}{da}\Omega_m^{-1/143}(a) - \frac{3}{7}\frac{D_1^2}{143}\frac{\Omega_m^{-1/143}(a)}{\Omega_m(a)}\left(\frac{3\Omega_{m,0}\Omega_{\Lambda,0}}{a^4E^4(a)}\right)$$
(20)

therefore, the expression we are looking for is

$$a^{3}E(a)\frac{dD_{2}}{da} = \frac{2D_{2}(a)}{D_{1}(a)}a^{3}E(a)\frac{dD_{1}}{da} + \frac{3}{143}D_{2}(a)\frac{\Omega_{m,0}\Omega_{\Lambda,0}}{\Omega_{m}(a)aE^{3}(a)}$$
(21)

Finally, using Eq. (refeq:oma) again

$$a^{3}E(a)\frac{dD_{2}}{da} = \frac{2D_{2}(a)}{D_{1}(a)}a^{3}E(a)\frac{dD_{1}}{da} + \frac{3}{143}D_{2}(a)\frac{\Omega_{\Lambda,0}a^{2}}{E(a)}$$
(22)

We'll leave it here as we can calculate the required terms from Eqs. (8) and (18).

1.4 Fourth expression

We'll derive the fourth and final expression in the same way as the second expression. Instead, however, we use differential equation for the second order growth factor.

$$\frac{d^2D_2}{dt^2} + 2H(t)\frac{dD_2}{dt} = \frac{3}{2}H^2(t)\Omega_m(t)(D_2(t) - D_1^2(t)). \tag{23}$$

Using a change of basis again from 't' to 'a', multiplying out the resultant expression and then substituting this into the expression we actually desire, we arrive at

$$a^{3}E(a)\frac{d}{da}\left[a^{3}E(a)\frac{dD_{2}}{da}\right] = \frac{3}{2}\Omega_{m,0}a(D_{2}(a) - D_{1}^{2}(a))$$
(24)

We can simply use Eq. (18) to evaluate this.

2 Non-Flat cosmology

The previous expressions only hold under the assumption of a flat cosmology, such that $\Omega_{\Lambda} = 1 - \Omega_m$. If there is a non-zero value of Ω_k , the curvature density, such that $\Omega_{\Lambda} = 1 - \Omega_m - \Omega_k$, then we need to reformulate these expression. These are the expressions used in Version 1.1 of L-PICOLA.

The expression for the linear growth factor remains the same, except now

$$H(a) = H_0 E(a) = H_0 \sqrt{\Omega_{m,0} a^{-3} + \Omega_{\Lambda,0} + \Omega_{k,0} a^{-2}},$$
(25)

2.1 First expression

The evaluation of the derivative of the linear growth factor can be calculated in a similar way except

$$\frac{dD_1}{da} = -\frac{D_{1,0}}{2} \frac{1}{E(a)} \left(\frac{3\Omega_{m,0}}{a^4} + \frac{2\Omega_{k,0}}{a^3} \right) \int_0^a \frac{da'}{a'^3 E^3(a')} + \frac{D_{1,0}}{a^3 E^2(a)}$$
(26)

therefore

$$a^{3}E(a)\frac{dD_{1}}{da} = \frac{1}{E(a)} \left(D_{1,0} - \left[\frac{3\Omega_{m,0}}{2a} + \Omega_{k,0} \right] D_{1}(a) \right)$$
(27)

2.2 Second expression

There was actually no cosmology dependence assumed in writing down the differential equation for the linear growth factor and so this expression still holds for a non-flat cosmology. Hence

$$a^{3}E(a)\frac{d}{da}\left[a^{3}E(a)\frac{dD_{1}}{da}\right] = \frac{3}{2}\Omega_{m,0}aD_{1}(a)$$
(28)

2.3 Third expression

There is quite a substantial difference for the $a^3E(a)dD_2/da$ expression. We no longer use Eq. (18) as this loses accuracy for non-flat cosmologies. Instead we use the expression from Matsubara (1995)

$$D_2(a) = -D_1^2(a) \left[\frac{\Omega_m}{4} - \frac{\Omega_\Lambda}{2} - \frac{1}{U_{3/2}} \left(1 - \frac{3U_{5/2}}{2U_{3/2}} \right) \right]$$
 (29)

where

$$U_{\alpha}(a) = \int_{0}^{1} \frac{da}{(\Omega_{m}a^{-1} + \Omega_{\Lambda}a^{2} + \Omega_{k})^{\alpha}} = a^{2\alpha - 1}E^{2\alpha}(a) \int_{0}^{a} \frac{da'}{a'^{2\alpha}E^{2\alpha}(a')}$$
(30)

Rather helpfully, Matsubara (1995) provide an expression, C, which we can use to ease the calculation of the derivative of the new second order growth factor.

$$C = \frac{dD_2}{dt} \frac{1}{2D_1(t)\frac{dD_1}{dt}} = \frac{1}{8f(a)} \left[-3\Omega_m(a) + \frac{1}{U_{3/2}^2(a)} \left(2 + 4U_{3/2}(a) - 3(2 + \Omega_m(a) - 2\Omega_{\Lambda}(a))U_{5/2}(a) \right) \right]$$
(31)

where

$$f = \frac{dD_1}{dt} \frac{1}{H(t)D_1(t)} = \frac{dD_1}{da} a D_1(a)$$
(32)

Taking the left hand expression for C and performing a change of variable from 't' to 'a'

$$\frac{dD_2}{da} = 2D_1(a)C\frac{dD_1}{da} \tag{33}$$

Finally substituting f and C into the above expression we find

$$\frac{dD_2}{da} = \frac{D_1^2}{4a} \left[-3\Omega_m(a) + \frac{1}{U_{3/2}^2(a)} \left(2 + 4U_{3/2}(a) - 3[2 + \Omega_m(a) - 2\Omega_{\Lambda}(a)]U_{5/2}(a) \right) \right]$$
(34)

such that

$$a^{3}E(a)\frac{dD_{2}}{da} = \frac{a^{2}E(a)D_{1}^{2}(a)}{4a} \left[-3\Omega_{m}(a) + \frac{1}{U_{3/2}^{2}(a)} \left(2 + 4U_{3/2}(a) - 3[2 + \Omega_{m}(a) - 2\Omega_{\Lambda}(a)]U_{5/2}(a) \right) \right]$$
(35)

Although complex looking, we can evaluate $U_{3/2}(a)$ and $U_{5/2}(a)$ using Eq. (30) quite easily and then use the above equation to evaluate this third expression in practice.

2.4 Fourth expression

Thankfully, and unlike the previous expression the non-flat version of this term still holds true as the differential equation on which it is based does not depend on the cosmology used. As such we can still use

$$a^{3}E(a)\frac{d}{da}\left[a^{3}E(a)\frac{dD_{2}}{da}\right] = \frac{3}{2}\Omega_{m,0}a(D_{2}(a) - D_{1}^{2}(a))$$
(36)

The only difference is that the non-flat versions of $D_1(a)$ and $D_2(a)$ must now be used.

References

Bouchet, F. R., Colombi, S., Hivon, E., & Juszkiewicz, R. 1995, A&A, 296, 575

Matsubara, T. 1995, Progress of Theoretical Physics, 94, 1151

Tassev, S., Zaldarriaga, M., & Eisenstein, D. J. 2013, J. Cosmo. Astroparticle Phys., 6, 036