

Gajendra Purohit

Legend in CSIR-UGC NET & IIT-JAM

- Unlock Code: GPSIR - PhD, CSIR NET (Maths) | Youtuber(800K+165K Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author

50M Watch mins

3M Watch mins (last 30 days)

44K Followers

2K Dedications

TOP EDUCATOR ON UNACADEMY FOR CSIR NET & IIT JAM

YouTuber with 800K Subscribers

AUTHOR OF BEST SELLER BOOK FOR CSIR NET & IIT JAM

> Get 10% Off

Referral Code: GP SIR

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

Series of real numbers

D'Alembert Ratio test – Let $\sum u_n$ be a positive terms series such that

- (A) $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = l$ Then the series is
 - (i) Convergent if l < 1
 - (ii) Divergent if l > 1
 - (iii) Test fails for l = 1
- (B) $\lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \infty$ then $\sum u_n$ is divergent.

Q.1. Suppose

$$a_n = \frac{3^n + 3}{5^n - 5}$$
 and $b_n = \frac{1}{(1 + n^2)^{1/4}}$ for $n = 2, 3, 4...$ Then

which of the following is true

- (a) Both $\sum_{n=2}^{\infty} a_n$ and $\sum_{n=2}^{\infty} b_n$ are convergent
- (b) Both $\sum_{n=2}^{\infty} a_n$ and $\sum_{n=2}^{\infty} b_n$ are divergent
- (c) $\sum_{n=2}^{\infty} a_n$ is convergent and $\sum_{n=2}^{\infty} b_n$ are divergent
- (d) $\sum_{n=2}^{\infty} a_n$ is divergent and $\sum_{n=2}^{\infty} b_n$ are convergent

Let <an> be a sequence of positive real numbers, the Q2. series $\sum_{n=0}^{\infty} a_n$ converges if the series

(a)
$$\sum_{n=1}^{\infty} a_n^2$$
 converges (b) $\sum_{n=1}^{\infty} \frac{a_n}{2^n}$ converges

(b)
$$\sum_{n=1}^{\infty} \frac{a_n}{2^n}$$
 converges

(c)
$$\sum_{n=1}^{\infty} \frac{a_{n+1}}{a_n}$$
 converges

(d)
$$\sum_{n=1}^{\infty} \frac{a_n}{a_{n+1}}$$
 converges

Q6. The series $x + \frac{2^2x^2}{2!} + \frac{3^3x^3}{3!} + \dots$ is convergent if x belong to the interval

(a)
$$\left(0, \frac{1}{e}\right)$$

(b)
$$\left(\frac{1}{e}, \infty\right)$$

(c)
$$\left(\frac{2}{e}, \frac{3}{e}\right)$$

(d)
$$\left(\frac{3}{e}, \frac{4}{e}\right)$$

Q3. What value of x, the series $\sum_{n=1}^{\infty} \frac{x^n}{n^2 + 1}$ is divergent?

(b)
$$(2, \infty)$$

$$(c)(1,\infty)$$

Cauchy's condensation test:

If f(n) is a positive monotonically decreasing function of n, then the two infinite series $\sum f(n)$ and $\sum a^n f(a^n)$ converge or diverge together, where a > 1, $a \in Z$.

Q4. For which value of 'p' the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ is

convergent?

(a) 1

(b) 2

(c) 1/2

(d) 1/3

Q5. Which of the following series is Divergent

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin^2 \frac{1}{n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n} \log n$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{1}{n}$$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n} \tan \frac{1}{n}$$

COMPLETE COURSE ON MATHEMATICS FOR IIT-JAM 2022

TOPICS TO BE COVERED

- REAL ANALYSIS
- FUNCTION OF ONE & TWO VARIABLE
- LINAER ALGEBRA
- MODERN ALGEBRA

TOPICS TO BE COVERED

- SEQUENCE & SERIES
- INTEGRAL CALCULUS
- VECTOR CALCULUS
- DIFFERENTIAL EQUATION

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

FOUNDATION COURSE OF MATHEMATICS FOR CSIR-NET

Cauchy's nth root test: Let $\sum u_n$ be a positive terms series

and let
$$\lim_{n\to\infty} (u_n)^{1/n} = l$$
.

Then the series is

- (a) Convergent if l < 1
- (b) Divergent if l > 1
- (c) Test fails if l = 1

Note: If nth term of series is in the power of n then we can use Cauchy's nth root test.

Q1. Which of the following series is/are convergent?

(a)
$$\sum_{n=1}^{\infty} \left(\frac{5n+1}{4n+1} \right)^n$$

(b)
$$\sum_{n=1}^{\infty} \frac{\sin \frac{1}{n}}{n^{1/n}}$$

(c)
$$\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^n$$

(d)
$$\sum_{n=1}^{\infty} \sqrt{n} \left(1 - \cos \left(\frac{1}{n} \right) \right)$$

Q2. For
$$n \ge 1$$
, let $a_n = \begin{cases} n2^{-n} & if & n \text{ is odd} \\ 3^{-n} & if & n \text{ is even} \end{cases}$. Which of the following statements is/are convergent?

- (a) The sequence <an> is convergent
- (b) The sequence <an> is divergent
- (c) The series $\sum_{n=1}^{\infty} a_n$ is convergent
- (d) The series $\sum_{n=1}^{\infty} a_n$ is divergent

Cauchy's integral test:

If u(x) is non-negative decreasing integrable function such that $u(n) = u_n$ then $\sum_{n=1}^{\infty} u_n$ is convergent iff the

value of
$$\int_{1}^{\infty} u(x)dx$$
 is finite.

Q3. The convergence for series $\sum_{n=1}^{\infty} \frac{1}{n(\log n)}$. is

- (a) Convergent
- (b) Oscillatory

- (b) Divergent
- (d) None of these

Which of the following series is divergent?

(a)
$$\sum_{n=1}^{\infty} \frac{1}{n} \sin^2 \frac{1}{n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{1}{n} \log n$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{1}{n}$$
 (d) $\sum_{n=1}^{\infty} \frac{1}{n} \tan \frac{1}{n}$

(d)
$$\sum_{n=1}^{\infty} \frac{1}{n} \tan \frac{1}{n}$$

Detailed Course 2.0 on Sequence and Series For IIT JAM' 23

October 26 9:00 AM

Gajendra Purohit

Enroll Now

Use code GPSIR for 10% off

Detailed Course on Group Theory For CSIR NET 2023

Gajendra Purohit

November 3

Enroll Now

Educator Profile

Dr.Gajendra Purohit PhD, CSIR NET (Maths) | Youtuber(330K+30k Sub.)/Dr.Gajendra Purohit (Maths), 17+ Yr. Experience, Author of Bestseller

11M Watch mins

1M Watch mins (last 30 days)

22k Followers

1k Dedications

Follow

CSIR-UGC NET

HINDI MATHEMATICAL SCIENCES

Course on Linear Algebra, Partial Diff. Equation & Calculus

Starts on Mar 1, 2021 - 24 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Course on Complex Analysis & Integral Equation

Starts on Jan 14, 2021 • 16 lessons

Gajendra Purohit

HINDI MATHEMATICAL SCIENCES

Foundation Course on Mathematics for CSIR 2021

Starts on Dec 7, 2020 • 20 lessons

Gajendra Purohit

Educator highlights

SEE ALL

Works at Pacific Science College

- Studied at M.Sc., NET,
 PhD(Algebra), MBA(Finance),
 BEd
- PhD, NET | Plus Educator For CSIR NET | Youtuber
 (260K+Subs.) | Director Pacific Science College |
- Lives in Udaipur, Rajasthan,
 India
- Unacademy Educator since

FEE DETAILS FOR IIT JAM SUBSCRIPTION

No cost EMI available on 6 months & above subscription plans

24 months	₹ 908 / mo
Save 67%	Total ₹ 21,780
You get 6 months extra for free	Offer expires 15 Jun 2022

You g	et 6 months extra for free	Offer expires 15 Jun 2022
Sa	ve 54%	Total ₹ 14,974
Ø 12	months	₹ 1,248 / mo

9 months	₹ 1,497 / mo
Save 45%	Total ₹ 13,475

6 months	₹ 2,042 / mo
Save 25%	Total ₹ 12,252

₹ 2,269 / mo
Total ₹ 6,807

1 month	₹2,723 / mo
	Total ₹ 2,723

To be paid as a one-time payment

Have a referral code?

Proceed to pay

After Using My Referral Code

No cost EMI available on 6 months & above subscription plans

You get 6 months extra for free	Offer expires 15 Jun 2022
Save 67%	₹ 21,700 ₹ 19,602
24 months	₹ 817 / mo

2 12 months	₹ 1,123 / mo
Save 54%	₹ 14,974 ₹ 13,477
You get 6 months extra for free	Offer expires 15 Jun 2022

9 months	₹ 1,348 / mo
Save 45%	₹ 13,475 ₹ 12,128

6 months	₹ 1,838 / mo
Save 25%	₹-12,252 ₹ 11,027

3 months	₹ 2,042 / mo
Save 17%	₹ -6,807 ₹ 6,126

Proceed to pay

THANK YOU VERY MUCH EVERYONE

GET THE UNACADEMY PLUS SUBSCRIPTION SOON.

TO GET 10% DISCOUNT IN TOTAL SUBSCRIPTION AMOUNT

USE REFERRAL CODE: GPSIR