CS 61BL Lab 11

Ryan Purpura

Announcements

- Midterm 1 scores are out; regrade requests are open and will close
 Friday at the end of the day.
- Gitlet is due next Friday, July 26 at the end of the day.

 One clarification from Friday's lab: I said that when adding new nodes, you always add the new node to a leaf; this is not always true. For example:

Announcements

- Midterm 1 scores are out; regrade requests are open and will close
 Friday at the end of the day.
- Gitlet is due next Friday, July 26 at the end of the day.
- One clarification from Friday's lab: I said that when adding new nodes, you always add the new node to a leaf; this is not always true. For example:

Tree Rotations

• The same elements can be organized into different binary search trees.

 We can use "tree rotations" to convert between equivalent binary search trees.

Rotate Left

- rotateLeft(G):
 Let x be the right child of G. Make G the new left child of x.
- Can think of it as temporarily merging G and P and then sending G down and to the left. Notice what happens to k!

Rotate Right

- rotateRight(P):
 Let x be the left child of P. Make P the new right child of x.
- Can think of it as temporarily merging G and P and then sending P down and to the right. Notice what happens to k!

Credit: Josh Hug

Bushy vs. Spindly Trees

• Binary trees come in many shapes and sizes:

Nice bushy tree.

Very spindly tree: basically a linked list!

- Idea 1: Smarter insertion order.
- Task: Make a balanced search tree with values 1, 2, 3, 4, 5, 6, 7
- Bad approach: add in order.

- Idea 1: Smarter insertion order.
- Task: Make a balanced search tree with values 1, 2, 3, 4, 5, 6, 7
- Bad approach: add in order.

1

- Idea 1: Smarter insertion order.
- Task: Make a balanced search tree with values 1, 2, 3, 4, 5, 6, 7
- Bad approach: add in order.

- Idea 1: Smarter insertion order.
- Task: Make a balanced search tree with values 1, 2, 3, 4, 5, 6, 7
- Bad approach: add in order.

- Idea 1: Smarter insertion order.
- Task: Make a balanced search tree with values 1, 2, 3, 4, 5, 6, 7
- Bad approach: add in order.

- Idea 1: Smarter insertion order.
- Task: Make a balanced search tree with values 1, 2, 3, 4, 5, 6, 7
- Bad approach: add in order.

- Idea 1: Smarter insertion order.
- Task: Make a balanced search tree with values 1, 2, 3, 4, 5, 6, 7
- Bad approach: add in order.

- Idea 1: Smarter insertion order.
- Task: Make a balanced search tree with values 1, 2, 3, 4, 5, 6, 7
- Bad approach: add in order.

- Start in the middle, so that we make sure each node will have an equal number of elements for both children.
- So start with 4.

- Start in the middle, so that we make sure each node will have an equal number of elements for both children.
- So start with 4.

4

- Start in the middle, so that we make sure each node will have an equal number of elements for both children.
- So start with 4.

- Start in the middle, so that we make sure each node will have an equal number of elements for both children.
- So start with 4.

- Start in the middle, so that we make sure each node will have an equal number of elements for both children.
- So start with 4.

- Start in the middle, so that we make sure each node will have an equal number of elements for both children.
- So start with 4.

- Start in the middle, so that we make sure each node will have an equal number of elements for both children.
- So start with 4.

- Start in the middle, so that we make sure each node will have an equal number of elements for both children.
- So start with 4.

What's the issue with this?

• We don't always have all the data in advance.

B-Trees

- The problem is adding leaves.
- So let's never add leaves!
- ...what do we do with insertions then?

B-Trees

- The problem is adding leaves.
- So let's never add leaves!
- ...what do we do with insertions then?

Let's keep going!

Let's keep going!

Let's keep going!

This is getting unwieldy...

Item Limit

- Idea: add an item limit for each node.
- If the leaf we want to add to is at its item limit, give the middle item to its parent and split, then add.
- Example: Given limit 3, what happens when we insert 19?

Adding 19 with Limit 3

Adding 19 with Limit 3

Adding 19 with Limit 3

Now we can easily fit in 19.

This is called a B-Tree

- "What, if anything, the B stands for has never been established."
 --Wikipedia
- What we were working with before is a type of B-tree called a
 2-3-4 tree, since each node can have two, three, or four children.

B-Tree limitations

- ullet B-trees are annoying to implement, but give us guaranteed $\log N$ height.
- Can we convert the 2-3-4 trees into binary trees and simplify our logic?

Idea: "Drop down" the Left and Right Items

Color nodes that we dropped down red. Color everything else black.

To convert back, just move all the red elements up.

This is called a "Red-Black Tree"

Now we can have a balanced binary search tree!

- Just use a red-black tree, and do the equivalent operation that a 2-3-4 tree would do.
- ...But this is hard to implement. Let's simplify further by using a 2-3 tree instead.
 - In a 2-3 tree, a node can have one or two elements
 - And each node has either 2 or 3 children.

Like before, we can make a red-black tree with it.

Facts for Left-Leaning Red-Black Trees

- By convention, the root is always black.
- Since we always drop the left element down, a red node MUST be the leftchild of a black node
- A black node CANNOT have two red children since that would correspond to a node with 3 elements

