

Human Brucellosis Occurrences in Inner Mongolia of China and Surrounding Areas: A GIS and Ecological Niche Modeling Approach

Peng Jia Louisiana State University

Tweet about this presentation #gispro2014

Brucellosis

- An infectious disease from contact with animals carrying the pathogenic bacteria Brucella
- Primarily carried by sheep, goats, cattle, and swine
- The clinical presentation can be acute, subacute or chronic, varying from joint, muscle and back pain to flu-like symptoms, and even more serious conditions in different organ systems.

Features

- Occupational: agriculture worker, shepherd, butcher, slaughter-house worker, and cattle dealer
- Environmental: lower temperature and less sunshine

Geography

A major source of diseases in the Mediterranean region, Asia,
 Middle East, Sub-Saharan Africa, Latin America and Balkan
 Peninsula

 Inner Mongolia accounted for approximately 50% of the total reported cases in China during 2005-2010

Research Goals

 Examining spatial-temporal distribution of human Brucellosis cases in Inner Mongolia from 2006 to 2010

 Examine the association of the environment with human Brucellosis occurrences in Inner Mongolia region

Study Area

Data

- Disease
 - Aggregated Brucellosis cases over counties
- Environmental
 - EVI, LST, MIR, precipitation
 - 19 bioclimatic variables
- Socioeconomic
 - Small ruminants
 - Population
 - Accessibility

19 Bioclimatic Variables

(from WorldClim)

Variable	Name					
BIO1	Annual Mean Temperature					
BIO2	Mean Diurnal Range					
BIO3	Isothermality					
BIO4	Temperature Seasonality					
BIO5	Max Temperature of Warmest Month					
BIO6	Min Temperature of Coldest Month					
BIO7	Temperature Annual Range					
BIO8	Mean Temperature of Wettest Quarter					
BIO9	Mean Temperature of Driest Quarter					
BIO10	Mean Temperature of Warmest Quarter					
BIO11	Mean Temperature of Coldest Quarter					
BIO12	Annual Precipitation					
BIO13	Precipitation of Wettest Month					
BIO14	Precipitation of Driest Month					
BIO15	Precipitation Seasonality					
BIO16	Precipitation of Wettest Quarter					
BIO17	Precipitation of Driest Quarter					
BIO18	Precipitation of Warmest Quarter					
BIO19	Precipitation of Coldest Quarter					

Methods

- Statistical tests
- Mapping raw & smoothed rates
- Local Moran's I (LISA)
- Correlation analysis
- Ecological niche modeling (ENM) location
- Multiple stepwise regression county

Raw Rates & Smoothed Rates

Clustering

Tweet about

ENM outputs

County-level regression

	2006	2007	2008	2009	2010	Average
<u>Variables</u>				, 1		
bio 3	-0.436	// -	-	10		
LST mean	\rightarrow	-0.766	-0.767	-0.730	-0.965	-0.990
MIR mean	0.227	0.752	0.748	0.742	0.877	0.905
access		-	-		-0.235	-0.220
alt	0.339		-		1	7
ca05 tot	0.246	_	-	-		41 /
SHEEP10 tot	0.194	0.290	0.314	0.302	0.366	0.305
<u>Assessment</u>						
\mathbb{R}^2	0.317	0.357	0.377	0.356	0.466	0.425
adjusted R ²	0.275	0.334	0.355	0.333	0.441	0.397

Tweet about this presentation #gispro2014

Conclusions

- An increasing trend for human Brucellosis occurrence from the west to the east and central Inner Mongolia, with the incidence rates in central Inner Mongolia higher than other regions
- The major variables contributing to the model include the density of small ruminants (especially sheep), altitude, precipitation seasonality and temperature annual range.
- The incidence rates in the highest regions may be skewed by the small numbers of total population.

Conclusions (continued)

- The density of sheep (positively) and the mean of LST (negatively) and MIR (positively) were correlated with the incidence rates of human Brucellosis at the county level.
- Parts of Mongolia and northern Hebei, Shanxi and Shannxi, in addition to Inner Mongolia, have some risk for human Brucellosis occurrence, based on their suitable conditions.
- Counties in Inner Mongolia are classified into a series of categories with different levels of probability of presence of human Brucellosis.

Thanks for listening!

Questions?