Jianping Li

Computer and Information Science Department, University of Pennsylvania

EDUCATION

University of Pennsylvania

Master of Science in Engineering in Robotics (Artificial Intelligence Track)

Philadelphia, PA

Class of 2024

ShanghaiTech University

Shanghai, China

Email: jpli@seas.upenn.edu

Mobile: +1-267-307-9342

Bachelor of Engineering in Computer Science and Technology

Sept. 2018 - July 2022

Relevant Courses: Operating System, Computer Architecture, Machine Perception, Algorithm Design

TECHNICAL SKILLS

Languages: C/C++, Python System: Linux, Git, OpenMP AI: PyTorch, CUDA, OpenCV Tools: Vim. Docker, Kubernetes

SELECTED PROJECTS

• Efficient Convolutional Module for Semantic Understanding:

- Design a new computational operator for **general** semantic understanding tasks like semantic segmentation and visual grounding. As a useful plugin, it can be easily inserted into layers.
- Implement modules with CUDA to accelerate parallel computing speed. Use region-based sampling methods to
 derive directional feature and decrease computational complexity significantly. Performance of mIOU increases by
 3% with linear time-space complexity.

• Efficient Convolutional Module for Semantic Understanding:

- Design a new computational operator for **general** semantic understanding tasks like semantic segmentation and visual grounding. As a useful plugin, it can be easily inserted into layers.
- Implement modules with **CUDA** to accelerate parallel computing speed. Use region-based sampling methods to derive directional feature and decrease computational complexity significantly. Performance of mIOU increases by 3% with **linear** time-space complexity.

• Cryptocurrency Mining Hash Function Optimization:

- Optimize computing process for SHA256 calculation in **C**, which is a cryptographic hash function from current block to the previous block in blockchain.
- Techniques in optimization: Multithreading based on openMP and pthread, Loop unrolling in combination with SIMD instructions, Cache Blocking.

• Multi-modal Named Entity Recognition:

- Align images with text by captioning as **multi-modal** inputs for a **transformer-based** model implemented in **PyTorch**, which leads to a significant improvement.
- KL divergence is adopted to make predicted label distributions similar among different input views. Model is strengthened by cooperative learning which can be useful across industries since images may be unavailable.

• Pintos: An Operating System Supported by Stanford University:

- Implement a thread system which supports Alarm Clock, Priority Scheduling. Enable programs to interact with the OS via system calls.
- Design a virtual memory system which supports Stack Growth and Memory Mapped Files. Design a file system which enables Indexed and Extensible Files.

EXPERIENCE

SVIP Lab, ShanghaiTech University

Jan. 2021 - May 2022

Advisor: Shenghua Gao, Associate Professor

- Do research on computer vision and natural language processing.
- Teaching assistant for CS172: Computer Vision in Shanghaitech University