Laboratory 2: Resistor Combinations, KCL, KVL, Voltage and Current Dividers

Adrian Darian, Elaine Huang, Federico Del Castillo Carnero

9/16/2020

Objectives

- \bullet Verify KCL and KVL
- Measure resistor combinations
- Measure branch currents and node voltages

Equipment and Components

- A computer
- Matlab software

Preliminary

- 1. Refer to Chapters 2 and 3 of the textbook if necessary.
- 2. Complete the theoretical calculations related to this lab.

Procedure

- 1 Open Matlab
- 2 Create Simulink model of the circuit shown below by following the procedure in Lab 1
- 3 Fill up your simulation results in the following table.

Source = $200V$	Simulation Results	Theoretical Results
i	2A	2A
i_a	0.4A	0.4A
i_b	1.6A	1.6A
v	80V	80V
v_o	120V	120V

 $i_a = \frac{v_o}{R_a}$ $= \frac{120}{300}$ = 0.4A = = = =

a. What is the sum of i_a and i_b ? Sum = 2. What is i? Explain.

Answer: i is the initial current flowing out of the voltage source. Also Current does not change when passing through resistors it only splits at forks in the ciruit.

- b. What is the sum of v and v_o ? Sum = 200. Explain.
- c. Are your simulation results consistent with your theoretical results of Problem 2.18 in Assignment 2?
- d. Set the voltage source to be 100V and repeat the above steps. Fill up the table below. Comparing the results in Table 2 with those in Table 1, what do you find?

Answer: We found that when comparing the results between a 200V and a 100V source the 100V is exactly half the readings of the 200V

Source = $100V$	Simulation Results	Theoretical Results
i	1A	
i_a	0.2A	
i_b	0.8A	
v	40V	
v_o	60V	

e. Set the voltage source to be -200V repeat the above steps 1, 2, and 3. Fill up the table below. Comparing the results in Table 3 with those in Table 1, what do you find? **Answer:** We found that when comparing the results between a 200V and a -200V source the -200V contains the same results except negative of the 200V

=

Source = $-200V$	Simulation Results	Theoretical Results
i	-2A	
i_a	-0.4A	
i_b	-1.6A	
v	-80V	
v_o	-120V	

4 Create the Simulink of the following circuit and find i_g and i_o . Fill up the table shown below. Are the simulation solutions with your theoretical solutions of Problem 3.28 in Assignment 3?

	Simulation Results	Theoretical Results
i_g	12.5A	
i_o	2A	

5 Create the Simulink model of the following circuit and find v_1 and v_2 . Are the simulation solutions consistent with your theoretical solutions of Problem 3.30 in Assignment 3? Fill up the table shown below.

Questions and Conclusions

- \bullet Use tables and graphs to explain your results.
- Summarize your findings and explanations in response to the questions posed in this lab.