

Machine Learning

Regularization

The problem of overfitting

Example: Linear regression (housing prices)

Overfitting: If we have too many features, the learned hypothesis may fit the training set very well $(J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 \approx 0)$, but fail to generalize to new examples (predict prices on new examples).

Example: Logistic regression

Addressing overfitting:

```
x_1 =  size of house
x_2^- no. of bedrooms
x_3 = \text{ no. of floors}
x_4 = age of house
x_5 = average income in neighborhood
x_6 = \text{kitchen size}
```


Addressing overfitting:

Options:

- 1. Reduce number of features.
- → Manually select which features to keep.
- —> Model selection algorithm (later in course).
- 2. Regularization.
 - \rightarrow Keep all the features, but reduce magnitude/values of parameters $\theta_{\dot{r}}$
 - Works well when we have a lot of features, each of which contributes a bit to predicting y.

Machine Learning

Regularization

Cost function

Intuition

$$\theta_0 + \theta_1 x + \theta_2 x^2 + \theta_3 x^3 + \theta_4 x^4$$

Suppose we penalize and make θ_3 , θ_4 really small.

Regularization.

Small values for parameters $\theta_0, \theta_1, \dots, \theta_n \not\in$

- "Simpler" hypothesis
- Less prone to overfitting <

Housing:

- Features: x_1, x_2, \dots, x_{100}
- Parameters: $\theta_0, \theta_1, \theta_2, \dots, \theta_{100}$

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \right]$$

Regularization.

regularization

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

- Algorithm works fine; setting λ to be very large can't hurt it
- Algortihm fails to eliminate overfitting.
- Algorithm results in underfitting. (Fails to fit even training data well).
- Gradient descent will fail to converge.

In regularized linear regression, we choose θ to minimize

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \lambda \sum_{j=1}^{n} \theta_j^2 \right]$$

What if λ is set to an extremely large value (perhaps for too large for our problem, say $\lambda=10^{10}$)?

Machine Learning

Regularization

Regularized linear regression

Regularized linear regression

$$J(\theta) = \frac{1}{2m} \left[\sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2 + \left(\sum_{j=1}^{n} \theta_j^2 \right) \right]$$

$$\min_{\theta} J(\theta)$$

Gradient descent

$$\bigcirc$$
, \bigcirc , \bigcirc , \bigcirc n

$$\rightarrow \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_j := \theta_j - c$$

$$\frac{1}{m} \sum_{i=1}^{m} (i)$$

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)} + \frac{\lambda}{m}$$

$$(j=X, \underline{1, 2, 3, \ldots, n})$$

$$\sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{j}^{(i)}$$

Normal equation

$$X = \begin{bmatrix} (x^{(1)})^T \\ \vdots \\ (x^{(m)})^T \end{bmatrix} \leftarrow y = \begin{bmatrix} y^{(1)} \\ \vdots \\ y^{(m)} \end{bmatrix}$$

$$\Rightarrow \min_{\theta} J(\theta)$$

$$\Rightarrow 0 = (x^T \times + \lambda)$$

Non-invertibility (optional/advanced).

Suppose
$$m \le n$$
, (#examples) (#features)

$$\theta = \underbrace{(X^T X)^{-1} X^T y}_{\text{Non-invertible / singular}}$$

If
$$\lambda > 0$$
,

$$\theta = \left(X^T X + \lambda \begin{bmatrix} 0 & & & \\ & 1 & & \\ & & \ddots & \\ & & \ddots & \\ & & & 1 \end{bmatrix}\right)^{-1} X^T y$$

Machine Learning

Regularization

Regularized logistic regression

Regularized logistic regression.

Cost function:

$$\Rightarrow J(\theta) = -\left[\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))\right]$$

$$+ \frac{\lambda}{2m} \sum_{j=1}^{n} \Theta_{j}^{2} \qquad \boxed{\Theta_{i,j} \Theta_{i,...,\Theta_{n}}}$$

Gradient descent

Repeat {

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_{j} := \theta_{j} - \alpha \underbrace{\left[\frac{1}{m} \sum_{i=1}^{m} (\underline{h_{\theta}(x^{(i)})} - y^{(i)}) x_{j}^{(i)} + \frac{\lambda}{m} \Theta_{j} \right]}_{\{j = \mathbf{X}, 1, 2, 3, \dots, n\}}$$

$$\frac{\partial \Theta_{j}}{\partial \Theta_{j}} = \frac{1}{1 + e^{-\Theta_{j}}}$$

Advanced optimization

I minunce (e coetendium)? Toot theta(1) <

$$jVal = [code to compute J(\theta)];$$

$$J(\theta) = \left[-\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log (h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log 1 - h_{\theta}(x^{(i)}) \right] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_{j}^{2}$$

gradient (1) = [code to compute
$$\frac{\partial}{\partial \theta_0} J(\theta)$$
];

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_0^{(i)} \longleftarrow$$

gradient (2) = [code to compute
$$\left[\frac{\partial}{\partial \theta_1}J(\theta)\right]$$
;

$$\left(\underbrace{\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_{1}^{(i)}}_{i} - \underbrace{\frac{\lambda}{m} \theta_{1}}_{0} \leftarrow \right)$$

$$\Rightarrow \text{ gradient (3)} = [\text{code to compute } \underbrace{\frac{\partial}{\partial \theta_{2}} J(\theta)}_{m}];$$

$$\frac{1}{m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)}) x_2^{(i)} - \frac{\lambda}{m} \theta_2$$

gradient (n+1) = [code to compute $\frac{\partial}{\partial \theta_n} J(\theta)$];