Roll No.

TCS-548

B. TECH. (CSE) (FIFTH SEMESTER) END SEMESTER EXAMINATION, Dec., 2023

COMPUTER VISION

Time: Three Hours

Maximum Marks: 100

- Note: (i) All questions are compulsory.
 - (ii) Answer any two sub-questions among (a), (b) and (c) in each main question.
 - (iii) Total marks in each main question are twenty.
 - (iv) Each sub-question carries 10 marks.
- 1. (a) Write different steps which are automated by Computer Vision. Explain the working of Computer Vision. (CO1)

- (b) Explain Hough Transform. What are the possible applications where it can be used? Justify your selection of applications. (CO1)
- (c) What are the major open problems in computer vision? Explain in detail. (CO1)
- 2. (a) What is feature extraction in image processing, and why is this technique important in computer vision? Provide an example of an application of feature extraction in computer vision. (CO2)
 - (b) Explain the functioning of graph cut approach for image segmentation. (CO2)
 - (c) Suppose you want to make your village/town smart by using computer vision techniques. What are different applications where you will deploy vision-based framework. (CO2)
- 3. (a) Explain the following operations: (CO3)
 - (i) Contrast stretching
 - (ii) Bit-plane slicing

- (b) Perform region splitting and merging by taking suitable example. (CO3)
- (c) Why we require histogram equalization. Explain histogram equalization by taking suitable example. (CO3)
- 4. (a) Why coding system required for image compression? Explain by calculating the average code length for the Huffman code for below image matrix: (CO4)

1	0	4	0
0	0	Sepeni	2
2	1	7 1	3
0	2	0	3
4	0	1	0
	1 0 2 0 4	1 0 0 0 2 1 0 2 4 0	1 0 4 0 0 1 2 1 1 0 2 0 4 0 1

- (b) Compare Mean and median filters, in terms of their effectiveness for achieving image smoothness. Provide an explanation and demonstrate the potential differences by considering 7×7 image matrix. (CO4)
- (c) Describe application of Motion analysis using vision-based frameworks. How MHI can be used for encoding motion information. (CO4)

5. (a) Histogram of a 3 bit image is shown in the following table: (CO5)

Gray Level	Number of pixels	
0	higher example.	
if tel bortages may	5	
resultable 2 of missing	d noises 4 mag	
numilal 3 di soi dh	al el el code le le	
4	gamment4 no	
5	3	
6	2	
7.	2	

Find optimal threshold using Otsu.

- (b) Describe the architecture of a typical Convolutional Neural Network (CNN). Discuss which layer is responsible for dimensionality reduction particularly in CNN? Justify your answer with a suitable example. (CO5)
- (c) Perform Dilation on image X using structuring element Y. On resultant image (X') perform erosion using structuring element Z. X, Y and Z are as follows:

(CO5)

Image X

0	0	0	0	0	0	0
. 0	0	1	1	0	1	0
0	1	1	1	1	1	0
0	1	1	1	1	0	0
0	0	1	.1	0	1	0
0	0	1	0	0	0	0
0	0	0	0	0	0	0

Stru	cturing Eleme	nt Y
0	1	0
1	. 1.	1
0	1	0

Struct	turing Elemer	nt Z
1	1	0
1	1	1
0	1	1