1 Malthus

- introduit en 1798
- "Population, when unchecked, increase in a geometrical ratio"
- Population homogène d'une seule espèce animale
- On néglige :
 - l'âge
 - la taille
 - la périodicité de naissance et de mort
- Elle vit dans un milieu invariant soit seul ou sans relation de coexistence avec d'autres espèces

Principe 1. On suppose que la croissance de la densité de population de l'espèce considérée est proportionnel à la densité pendant un court intervalle de temps.

Définition 1.1. On appelle "croissance Malthusienne":

$$\frac{dN(t)}{dt} = kN(t)$$

où:

- N(t) est la densité de l'espèce au cours du temps.
- $k \in \mathbb{R}_+$ le coefficient d'accroissement

Remarque 1. Le modèle de Malthus ne prend pas en compte la capacité maximale d'un territoire qui imposerait une limite à la croissance.

Propriété 1.1. On considère la "croissance Malthusienne" précédemment définie.

- $si \ k < 0$: on dit que la population est en extinction exponentielle
- $\underline{si \ k = 0}$: on dit que la population est en équilibre démographique
- $\underline{si \ k > 0}$: on dit que la population est en croissance exponentielle

Remarque 2. un solution du l'équation différentielle est

$$N(t) = N(0) \exp(kt)$$

Preuve 1. Soit k < 0 alors

$$\lim_{t \to \infty} N(t) = 0$$

Soit k = 0 alors

$$\lim_{t \to \infty} N(t) = N(0)$$

 $Soit \ k > 0 \ alors$

$$\lim_{t \to \infty} N(t) = +\infty$$

k > 0

k = 0

k < 0

Conclusion 1. Le modèle reste donc valable pour une densité faible de la population i.e. tant que la population ne sature pas le milieu.

Figure 1: densité de population

2 Vehulst

2.1 Présentation et hypothèse

"Notice sur la loi que suit la population dans son accroissement"

- population homogène d'une seule espèce animale
- on néglige:
 - l'âge
 - la taille
 - la périodicité de naissance et de mort
- vit dans un milieu invariant seul ou sans interactions avec d'autres espèces

Principe 2. En opposition au modèle de Malthus, on considère que le taux de croissance change avec la densité de la population.

Définition 2.1. On appelle **équation logistique de Verhulst**, l'équation différentielle:

$$\frac{dN(t)}{dt} = kN(t)(1 - \frac{N(t)}{l})$$

où:

- N(t) est la densité de l'espèce au cours du temps
- $k \in \mathbb{R}_+$ le coefficient d'accroissement
- $l \in \mathbb{R}_+^*$ la capacité du milieu à supporter la croissance i.e. population limite

2.2 Etude de l'équation fonctionnelle

Définition 2.2. $\bar{x} \in \mathbb{R}^n$ est un point d'équilibre ssi $f(\bar{x}) = 0$

Définition 2.3. Soit $\bar{x} \in \mathbb{R}^n$ un point d'équilibre, \bar{x} est stable ssi

$$\forall \epsilon > 0, \exists \eta > 0, \|x_0 - \bar{x}\| < \eta \Longrightarrow \forall t > 0, \|x(t) - \bar{x}\| < \epsilon$$

On dit que \bar{x} est asymptotiquement stable si:

$$\lim_{t \to \infty} \|x(t) - \bar{x}\| = 0$$

Propriété 2.1. L'équation logistique de Verhulst admet deux points d'équilibre $a_0 = 0$ et $a_1 = l$.

Preuve 2. On note $\frac{dN(t)}{dt} = f(N(t))$ alors, pour tout $i \in 0, 1$, $f(a_i) = 0$ et, donc, $\frac{dN(t)}{dt} = 0$. On en déduit que N(t) est constant.

Propriété 2.2. Un seul des points d'équilibre est stable : $a_1 = l$

Preuve 3. On note \bar{N} un point d'équilibre quelconque. Alors

$$\frac{d}{dt}N = k(1 - \frac{2}{l}\bar{N})N + o(\|\bar{N} - N\|)$$

On linéarise et on a:

$$\frac{d}{dt}N \sim k(1 - \frac{2}{l}\bar{N})N$$

<u>en 0:</u>

$$\frac{d}{dt}N \sim kN$$

<u>en l:</u>

$$\frac{d}{dt}N \sim -kN$$

N(0) = l

N(0) > l

N(0) < l

3 Lotka-Volterra

3.1 Présentation et hypothèses

- 1925-1926: Alfred James Lotka et Vito Volterra
- neurologie
- environnement

On considère deux espèces:

Figure 2: Portrait de phase

Figure 3: densité de population

- mouton notée m
- loup notée l

Leurs quantités seront données respectivement par $t \mapsto m(t)$ et $t \mapsto l(t)$

- les moutons ont accès à une quantité illimitée de nourriture
- seul les loups s'opposent à leur croissance
- quantité de loups limitée par le nombre de moutons
- croissance et décroissance des loups proportionnelles aux rencontres

Définition 3.1.

$$\begin{cases}
m'(t) = am(t) - bm(t)l(t) \\
l'(t) = -cl(t) + dl(t)m(t) \\
(m(0), l(0)) = (m_0, l_0), m_0, l_0 > 0
\end{cases}$$

- a: taux d'accroissement des moutons
- b : taux de mortalité des moutons en fonction des rencontres
- c : taux de mortalité des loups
- d: taux de reproduction des loups en fonction des rencontres

3.2 Résolution et étude de la périodicité

Propriété 3.1. Si $m_0 = 0$ alors, pour tout t, m(t) = 0. S'il existe t_0 tel que $m(t_0) = 0$ alors pout tout t, m(t) = 0. Si $m_0 > 0$ alors pour tout t > 0, m(t) > 0. Ceci est aussi valable pour l

Preuve 4. On suppose que $m_0 = 0$ alors $(0, l_0 \exp(ct))$ est solution de (1). D'après l'unicité dû à Cauchy-Lipschitz, pour tout t, m(t) = 0. On suppose qu'il existe t_0 tq $m(t_0) = 0$.

Solution 1. • deux solutions triviales:

$$- (0, l(t0) \exp(-ct)) - (m(t0) \exp(at), 0)$$

• deux solutions constantes:

$$- (0,0)$$
$$- (\frac{c}{d}, \frac{a}{b})$$

On peut écrire (1) comme le système suivant:

$$\begin{cases} x'(t) = f(x(t)) \\ x(0) = \binom{m_0}{l_0} \end{cases} (3)$$
avec $f\binom{m}{l} = \binom{m(a - by)}{l(-c + dm)}$
où (1):
$$\begin{cases} m'(t) = am(t) - bm(t)l(t) \\ l'(t) = -cl(t) + dl(t)m(t) \\ (m(0), l(0)) = (m_0, l_0), m_0, l_0 > 0 \end{cases}$$

Figure 4: Graphe des effectifs des moutons (en) et des loups dans le cas où $\mathrm{M}(0){=}3$ et L(0)=2

Théorème 3.1. Les solutions de Lotka-Volterra sont périodiques.

On introduit d'abord:

Propriété 3.2. Soit $H: \mathbb{R}^2 \to \mathbb{R}^2$ définie pour tout m, l > 0 par:

$$H(m, l) = c \ln(m) - dm + a \ln(l) - bl$$

On appelle H une intégrale première du mouvement i.e.

$$si \binom{m(t)}{l(t)}$$
 est solution de (3) alors:

$$\forall t, H(m(t), l(t)) = c^{te}$$

Preuve 5. Recherche d'une intégrale première du mouvement:

$$\frac{c - dm}{m}m' + \frac{a - bm}{m}l' = 0$$

donc:

$$\frac{d}{dt}(c\ln(m) - dm + a\ln(l) - bl) = 0$$

Figure 5: trajectoire dans le portrait de phase où M(0)=3 et L(0)=2

On en déduit que:

$$c \ln(m) - dm + a \ln(l) - bl = c^{te} = H(m, l)$$

On considère un système différentiel autonome :

 $\begin{cases} x'(t) = f(x(t)) \\ x(0) = x_0 \end{cases}$ (2)

où $f: \mathbb{R}^n \to \mathbb{R}^n$ et $x_0 \in \mathbb{R}^n$

Théorème 3.2 (Cauchy-Lipschitz). On suppose que f est localement lipschitzienne, alors il existe une unique solution $x \in C(\mathbb{R}^n, \mathbb{R}^n)$ de (2).

On choisit un point initial quelconque (m_0, l_0) dans la 1^{ere} zone.

Lemme 1. Pour $i \in \mathbb{N}^*$, il existe $t_i > 0$ tel que $\tau(t) = (m(t), l(t))$ rentre dans la zone i + 1.

Preuve 6. Raisonnons par l'absurde:

On suppose que, pour tout t, $\tau(t)$ reste dans la zone 1.

On en déduit que m et l sont bornée et d'après l'étude des solutions m et l sont monotones. Alors m et l admettent une limite finie qu'on note m_{∞} et l_{∞} .

De plus avec l'expression de m' et l', on a que les dérivées admettent donc également une limite finies.

Or la limite de ces fonctions ne peut être que 0. Car si $\lim_{t\to\infty} m'(t) = m'_{\infty} \neq 0$ et/ou $\lim_{t\to\infty} l'(t) = l'_{\infty} \neq 0$ alors $m \sim m'_{\infty} t$ donc m ne peut pas converger et/ou de même pour l.

Or m est croissant donc $m_{\infty} > 0$ de même parce que l décroît, on a $l_{\infty} < \frac{a}{b}$. Ceci est absurde car les seuls points stationnaires sont (0,0) et $(\frac{c}{d},\frac{a}{b})$.

On en déduit que $\tau(t)$ sort de la zone 1.

Figure 6: Déterminations des champs de vecteurs:

Montrons maintenant que après un tour la trajectoire repasse par un même point i.e. $\tau(t_1) = \tau(t_5)$.

On sait déjà que $m(t_1) = m(t_5)$. Il reste à montrer que $l(t_1) = l(t_5)$. Par définition de H, on a:

$$H(m(t_1), l(t_1)) = H(m(t_5), l(t_5))$$

On introduit:

$$h: l \mapsto \ln(l) - bl$$

Alors:

$$h(l(t_1)) = h((t_5))$$

Par injectivité de h:

$$l(t_1) = l(t_5)$$

Périodicité: On note :

$$m_1(t) = m(t_1 + t)$$
 $m_5(t) = m(t_5 + t)$
 $l_1(t) = l(t_1 + t)$ $l_5(t) = l(t_5 + t)$

Alors (m_1, l_1) et (m_5, l_5) vérifie un même problème de Cauchy.

Par unicité dû au théorème de Cauchy , on peut conclure à l'égalité de $(m_1,l_1)=(m_5,l_5)$.

Ainsi,

$$T(t_1 + t_5 + t) = T(t)$$

3.3 Stabilité des positions d'équilibre

Autour des positions d'équilibre, on peut linéariser:

On note \bar{x} un point d'équilibre alors $f(\bar{x}) = 0$ On suppose que f est différentiable en \bar{x} .

Ainsi, on peut écrire que (3) est environ équivalent à :

$$\begin{cases} x'(t) = Df(\bar{x})x(t) \\ x(0) = x_0 \end{cases}$$
 (4)

On a alors le théorème suivant:

Théorème 3.3. On suppose f différentiable en \bar{x} et $f(\bar{x}) = 0$, alors

- Si pour tout $\lambda \in Sp(Df(0))$ tq $Re(\lambda) < 0$ alors \bar{x} est asymptotiquement stable
- Si il existe $\lambda \in Sp(Df(0))$ tq $Re(\lambda) > 0$ alors \bar{x} est instable.

On a comme position d'équilibre deux points (0,0) et $(\frac{c}{d},\frac{a}{h}).$

f est différentiable en chacun de ses points

On note $J_{\bar{x}}(f)$ la matrice dans la base canonique de $Df(\bar{x})$, c'est la jacobienne de f en \bar{x} . Pour (2) elle s'écrit :

$$Df(\bar{m}, \bar{l}) = \begin{pmatrix} \frac{\partial f_1}{\partial m} & \frac{\partial f_1}{\partial l} \\ \frac{\partial f_2}{\partial m} & \frac{\partial f_2}{\partial l} \end{pmatrix} = \begin{pmatrix} a - b\bar{l} & -b\bar{m} \\ d\bar{l} & -c + d\bar{m} \end{pmatrix}$$

On en déduit que (4) s'écrit :

$$\begin{cases} x'(t) = \begin{pmatrix} a - b\bar{l} & -b\bar{m} \\ d\bar{l} & -c + d\bar{m} \end{pmatrix} \begin{pmatrix} m \\ l \end{pmatrix} \quad (4) \\ x(0) = x_0 \end{cases}$$

en (0,0):

$$\frac{d}{dt} \begin{pmatrix} m \\ l \end{pmatrix} \sim \begin{pmatrix} a & 0 \\ 0 & -c \end{pmatrix} \begin{pmatrix} m \\ l \end{pmatrix} \sim \begin{pmatrix} am \\ -cl \end{pmatrix}$$

On en déduit que :

$$\binom{m}{l} = \binom{m(t_0) \exp(at)}{l(t_0) \exp(-ct)}$$

Les valeurs propres sont:

$$\lambda = a \text{ et } \lambda = -c$$

Alors en appliquant le théorème, on en déduit que (0,0) est instable.

On sait même que (0,0) est asymptotiquement stable selon l et instable selon

 $\frac{en}{\frac{c}{d},\frac{a}{b}}$:

$$\frac{d}{dt} \begin{pmatrix} m \\ l \end{pmatrix} \sim \begin{pmatrix} 0 & -\frac{cb}{d} \\ \frac{ad}{b} & 0 \end{pmatrix} \begin{pmatrix} m \\ l \end{pmatrix}$$

diagonalisation

$$\chi_{J} \underset{(\overline{d}, \overline{b})}{c} \underbrace{a}_{(f)} = det(XI_2 - J \underbrace{c}_{(\overline{d}, \overline{b})} \underbrace{a}_{(f)}) = X^2 - ac$$

Les valeurs propres sont :

$$\lambda = \pm i\sqrt{ac}$$

donc $\lambda \in i\mathbb{R}$

4 Modèle de Lotka-Volterra-Modèle régulé

4.1 Complément du modèle précédent

On obtient le modèle amélioré suivant:

$$\begin{cases} m'(t) = m(t)(a - em(t) - bl(t)) \\ l'(t) = -cl(t) + dl(t)m(t)) \end{cases}$$
 (5)

• capacité d'accueil

4.2 Résolution et étude de la périodicité

$$F: \begin{cases} \mathbb{R}^2 \to \mathbb{R}^2 \\ X = \binom{m}{l} \mapsto \binom{f(X)}{g(X)} = \binom{m(a - em - bl)}{-cl + dlm} \end{cases}$$
 (5)

Propriété 4.1. Les points d'équilibre de ce système sont:

$$(0,0), (\frac{a}{e},0) \ et (\frac{c}{d},\frac{da-ec}{db})$$

Preuve 7. Un point d'équilibre vérifie $f(\bar{X}) = 0$ i.e.

$$\begin{cases} m(a - em - bl) = 0 \\ -cl + dlm = 0 \end{cases}$$

$$\iff \begin{cases} m = 0 \\ l = 0 \end{cases} ou \begin{cases} a - em - bl = 0 \\ l = 0 \end{cases} ou \begin{cases} a - em - bl = 0 \\ -c + bl = 0 \end{cases}$$

4.3 Stabilité des positions d'équilibre

On peut écrire (5):

$$\frac{d}{dt} \begin{pmatrix} m \\ l \end{pmatrix} \sim J_{(\bar{m},\bar{l})}(f,g) \begin{pmatrix} m \\ l \end{pmatrix}$$

avec

$$J_{(\bar{m},\bar{l})}(f,g) = \begin{pmatrix} a - 2e\bar{m} - b\bar{l} & -b\bar{m} \\ d\bar{l} & -c + d\bar{m} \end{pmatrix}$$

10

en
$$(0,0)$$
:

$$J_{(0,0)}(f,g) = \begin{pmatrix} a & 0\\ 0 & -c \end{pmatrix}$$

On obtient les mêmes résultats que pour le modèle non régulé. $\underline{ \stackrel{(\frac{a}{e},0):}{=} }$

en
$$(\frac{a}{e}, 0)$$
:

$$J_{(\frac{a}{e},0)}(f,g) = \begin{pmatrix} -a & -\frac{ba}{e} \\ 0 & -c + \frac{da}{e} \end{pmatrix}$$

On a:

$$\chi_J = det(XI_2 - J) = (X + a)(X - (-c + \frac{da}{e}))$$

On obtient une condition nécessaire de stabilité:

$$-c + \frac{da}{e} < 0 \Longleftrightarrow e > \frac{da}{c}$$

$$\underline{\text{en } \left(\frac{c}{d}, \frac{da - ec}{db}\right)}$$

$$J(f,g) = \begin{pmatrix} a - 2e\frac{c}{d} - \frac{da - ec}{d} & -b\frac{c}{d} \\ \frac{da - ec}{b} & 0 \end{pmatrix}$$