## UNIVERSIDADE DE AVEIRO Departamento de Matemática

## Matemática Discreta

Exame de recurso 6 Julho de 2012

Responda de uma forma cuidada a cada uma das questões.

(2 horas e 30 minutos)

- 1- Considere a relação binária  $\mathcal{R}$  definida no conjunto dos números naturais  $\mathbb{N}$  tal que  $x\mathcal{R}y$  se e só se x é potência de y, i.e.,  $\exists k \in \mathbb{N}$  tal que  $x = y^k$ .
  - (2)a) Verifique que  $\mathcal{R}$  é uma relação de ordem parcial.
  - (1)b) Verifique se  $\mathcal{R}$  é uma relação de ordem total.
- (2)**2-** Prove, por indução sobre n, que  $4^{2n+1} + 3^{n+2}$  é um múltiplo de 13, qualquer que seja  $n \in \mathbb{N} \cup \{0\}$ .
- (3)3- Determine uma fórmula para o coeficiente de  $x^k$  na expansão de  $(x-\frac{1}{x})^{100}$ , sendo  $k \in \mathbb{Z}$ .
- (3)4- Resolva a equação de recorrência  $a_n = na_{n-1}$ , tal que  $a_0 = 1$ , com recurso à utilização da função geradora exponencial  $f(x) = \sum_{n=0}^{\infty} \frac{a_n}{n!} x^n$ .
- (3)5- Prove que o número de funções sobrejectivas cujo domínio é o conjunto  $\{1,\ldots,n\}$  e o contradomínio é o conjunto  $\{1,\ldots,k\}$  é igual a k!  $\binom{n}{k}$ , onde  $\binom{n}{k}$  denota o número de Stirling de segunda espécie com parâmetros n e k.
- (3)6- Determine o número de árvores abrangentes  $\tau(G)$  do grafo G a seguir representado, utilizando a fórmula recursiva  $\tau(G) = \tau(G-e) + \tau(G//e)$ , onde e denota uma aresta de G, tendo em conta o seguinte:
  - i) se G é desconexo, então  $\tau(G) = 0$ ;
  - ii) se G é uma árvore, então  $\tau(G) = 1$ ;
  - iii) se G é constituído por dois vértices ligados por k arestas, então  $\tau(G)=k$ .
  - iv) se G é um ciclo, com k arestas, então  $\tau(G) = k$ .



(3)7- Construa uma árvore abrangente de custo mínimo do grafo G definido pela matriz de custos nas arestas

com recurso ao algoritmo de Kruskal.