PATENT ABSTRACTS OF JAPAN

3244314

(11)Publication number:

05-242891

(43)Date of publication of application: 21.09.1993

(51)Int.Cl.

H01M 4/58 H01M 4/02 H01M 10/40

(21)Application number: 04-300153

(71)Applicant:

SANYO ELECTRIC CO LTD

(22)Date of filing:

10.11.1992

(72)Inventor:

NOMA TOSHIYUKI

KUROKAWA HIROSHI

UEHARA MAYUMI NISHIO KOJI

SAITO TOSHIHIKO

(30)Priority

Priority number: 03296114

Priority date : 13.11.1991

Priority country: JP

(54) NON-AQUEOUS BATTERY

(57)Abstract:

PURPOSE: To provide a non-aqueous battery where an electric discharging capacity can be remarkably increased and thermal stability can be improved by reducing a change of crystal structure.

CONSTITUTION: In a non-aqueous battery provided with a negative electrode 2 and a positive electrode 1 each made of a material capable of storing and discharging lithium metal or lithium, an active material for the positive electrode 1 is LiaMbNicCodOe (wherein M represents at least one kind of metal selected from a group consisting of Al, Mn, Sn, In, Fe, V, Cu, Mg, Ti, Zn and Mo; 0<a<1.3, 0.02≤b≤0.5, 0.02≤d/c+d≤0.9, 1.8<e<2.2; and b+c+d=1).

LEGAL STATUS

[Date of request for examination]

28.08.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3244314

[Date of registration]

26.10.2001

[Number of appeal against examiner's decision of rejection] [Date of requesting appeal against examiner's decision of

rejection]

[Date of extinction of right]

(19) 日本国特許庁 (JP)

(12) 特 許 公 報 (B2)

(11)特許番号

特許第3244314号 (P3244314)

(45)発行日 平成14年1月7日(2002.1.7)

(24)登録日 平成13年10月26日(2001.10.26)

(51) Int.Cl. ⁷		酸別記号	FΙ		
H01M	4/58		H 0 1 M	4/58	
	4/02			4/02	С
	10/40			10/40	Z

請求項の数2(全 8 頁)

(21)出願番号	特顯平4-300153	(73)特許権者	000001889 三洋電機株式会社
(22)出顧日	平成4年11月10日(1992.11.10)	(72)発明者	大阪府守口市京阪本通2丁目5番5号 能間 俊之
(65)公開番号	特開平5-242891		守口市京阪本通2丁目18番地 三洋電機
(43)公開日	平成5年9月21日(1993.9.21)		株式会社内
審査請求日	平成10年8月28日(1998.8.28)	(72)発明者	黒河 宏史
(31)優先権主張番号	特願平3-296114		守口市京阪本通2丁目18番地 三洋電機
(32) 優先日	平成3年11月13日(1991.11.13)		株式会社内
(33)優先権主張国	日本 (JP)	(72)発明者	上原 真弓
			守口市京阪本通2丁目18番地 三洋電機
			株式会社内
		(74)代理人	100090446
			弁理士 中島 司朗
		審査官	高木 正博
			最終頁に続く

(54) 【発明の名称】 非水系電池

1

(57) 【特許請求の範囲】

【請求項1】 リチウム金属或いはリチウムを吸蔵放出 可能な材料から成る負極と、正極とを有する非水系電池 において、

上記正極の活物質として、 L_{ia} Mb N_{ic} C od Oe (\underline{M} \underline{U} \underline{U} \underline{U} \underline{U} \underline{M} \underline{U} \underline{U}

【請求項2】 前記 L ia Mb N ic C od Oe で示される正極活物質のMが、C u Dび F e から成る群から選択される少なくとも一種の金属であることを特徴とする請求項1記載の非水系電池。

2

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、リチウム、リチウム合 金或いはリチウムー炭素材を用いる負極と、正極とを備 えた非水系二次電池に関し、特に正極の改良に関するも のである。

[0002]

【従来の技術】この種の二次電池としては、電圧が高く、しかも高容量であることが要求される。このような ことを考慮して、MoO3、V2O5、リチウムーマンガン系複合酸化物、MoS2、LiCoO2、或いはLiNiO2等の正極活物質が提案されており、一部は実用化されている。

【0003】しかしながら、上記LiCoO2 等を正極活物質として用いた場合には、充放電時に結晶構造が大

きく変化することにより、結晶構造が少しずつ破壊され、この結果放電容量が小さくなるという課題を有していた。

[0004]

【発明が解決しようとする課題】そこで、LiCoOzとLiNiO₂とを改良したLiNixCoι-хО₂を正極活物質として用いるような電池が提案されているが、やはり充放電時に結晶構造が変化するため、放電容量が小さくなる。加えて、上記LiCoO₂等は、充電後の電解液の存在下において、熱的な安定性が低くなるという課題を有していた。

【0005】本発明は係る現状を考慮してなされたものであって、結晶構造の変化を低減して、放電容量を飛躍的に増大させることができ、しかも熱的な安定性を向上させることができる非水系電池の提供を目的としている。

[0006]

【課題を解決するための手段】本発明は上記目的を達成するために、リチウム金属或いはリチウムを吸蔵放出可能な材料から成る負極と、正極とを有する非水系電池に 20 おいて、上記正極の活物質として、LiaMbNicCodOe (MはA1、Mn、Sn、In、Fe、Cu、Mg、Ti、Zn、Moから成る群から選択される少なくとも一種の金属であり、且つ0<a<1.3、0.02 \leq b \leq 0.5、0.02 \leq d/c+d \leq 0.9、1.8<e<2.2の範囲であって、更にb+c+d=1であり、0.34<cである)を用いることを特徴とする。

【0007】また、前記LiaMbNicCodOeで示される正極活物質のMが、Cu及びFeから成る群から選択される少なくとも一種の金属であることを特徴と <math>30する。

[0008]

【作用】上記構成の如く、LiaNic Coa Oe に他の金属Mを添加したものを正極活物質として用いれば、理由は定かではないが、充電時にLiが抽出されても結晶構造が比較的安定となる。したがって、充放電を繰り返し行っても結晶構造が崩壊せず、可逆的な充放電が可能となる。

【0009】また、正極活物質のMを、Cu及びFeから成る群から選択される少なくとも一種の金属で構成し 40 た場合には、充電後における電解液の存在下において、熱的な安定性を飛躍的に向上させることができる。

[0010]

【実施例】

〔第1実施例〕本発明の第1実施例を図1~図3に基づいて、以下に説明する。

【実施例】図 I は本発明の一実施例に係る偏平型非水系 二次電池の断面図であり、リチウムから成る負極 2 は負 極集電体 7 の内面に圧着されており、この負極集電体 7 はフェライト系ステンレス鋼 (SUS 4 3 0) からなる 50 負極缶5の内底面に固着されている。上記負極缶5の周端はポリプロピレン製の絶縁パッキング8の内部に固定されており、絶縁パッキング8の外周にはステンレスから成る正極缶4が固定されている。この正極缶4の内底面には正極集電体6が固定されており、この正極集電体6の内面にはLiMn٥.1 Ni٥.45 С оо.45 О₂ を活物質とする正極1が固定されている。この正極1と前記負極2との間には、ポリプロピレン製微多孔性膜より成り電解液が含浸されたセパレータ3が介挿されている。上記電解液には、プロピレンカーボネートとジメトキシエタンとの等体積混合溶媒に、過塩素酸リチウムを1モルノ1の割合で溶解させたものを用いている。尚、電池寸法は、直径24.0mm,厚み3.0mmである。

【0011】ここで、上記正極1を、以下のようにして作製した。先ず、Li2 CO3 (炭酸リチウム)とMn CO3 (炭酸マンガン)とNiCO3 (炭酸ニッケル)とCoCO3 (炭酸コバルト)とを、LiとMnとNiとCoとのモル比が1:0.1:0.45:0.45となるように乳鉢で混合した後、この混合物を空気中で850℃で20時間熱処理して、LiMno.1 Nio.45 Coo.45O2 から成る正極活物質を作製する。次に、この正極活物質粉末と、導電剤としてのアセチレンブラックと、結着剤としてのフッ素樹脂粉末とを、重量比で90:6:4の比率で混合して正極合剤を作製した後、この正極合剤を2トン/cm²で直径20mmに加圧成型し、更に250℃で熱処理することにより作製した。

【0012】一方、負極2は、所定厚みのリチウム板を 直径20mmに打ち抜くことにより作製した。このよう にして作製した電池を、以下(A)電池と称する。

〔比較例〕MnCO3 を添加せず、且つLiとNiとCoとのモル比が1:0.5:0.5となるように、LizCO3 とNiCO3 とCoCO3 とを混合する他は、上記実施例と同様にして電池を作製した。

【0013】 このようにして作製した電池を、以下 (X) 電池と称する。

〔実験1〕本発明の(A)電池と、比較例の(X)電池とにおける放電容量を調べたので、その結果を表1に示す。尚、充放電条件は、充電電流1mAで充電終止電圧4.3Vまで充電した後、放電電流3mAで放電終止電圧3.0Vまで放電するという条件である。

[0014]

【表1】

電池	放電容量 (mAh)
Α	170
Х	1 5 9

【0015】上記表1より明らかなように、本発明の (A)電池は比較例の(X)電池に比べて放電容量が増

5

大していることが認められる。

【実験 2】 Li1.0 Nic Cod O2.0 (正極活物質) のd/c+dの値を変化させた電池 [即ち、上記比較例の (X) 電池と類似の電池]、及びLi1.0 Mno.1 Nic Cod O2.0 (正極活物質)のd'/c'+d'の値を変化させた電池 (即ち、上記本発明の (A) 電池と類似の電池であって、c'=0.9×c、d'=0.9×dで表される]における放電容量を調べたので、その結果を図 2 に示す。尚、実験条件は、上記実験 1 と同様の条件である。

【0016】図2から明らかなように、c(c')、 d(d')が何れの値の場合であっても、Mnを添加した電池の方がMnを添加しない電池より放電容量が大きくなっていることが認められる。特に、d/c+dの値が、 $0.02\sim0.9$ の間で、放電容量が大きくなっていることが認められる。

[実験 3] Mnの添加量を変化(Li1.0 Mnx Ni 0.5-x/2 C 00.5-x/2 O2.0 においてxを変化)させた場合の、放電容量の比較を行ったので、その結果を図3に示す。尚、実験条件は、上記実験1と同様の条件である。

【0017】図3から明らかなように、Mnの添加する割合がモル比で、0.02から0.5の間(即ち、Li1.0 Mnx Ni0.5-x/2 Co0.5-x/2 O2.0 という組成で $0.02 \le x \le 0.5$ の範囲)で放電容量が大きくなっていることが認められ、特に0.02から0.20間で放電容量が飛躍的に増大していることが認められる。【0018】したがって、Mnの添加する割合はモル比で、0.02から0.50間であることが必要であり、特に0.02から0.20間であることが望ましい。〔第2実施例〕

〔実施例〕 Li2 CO3 とCuOとNiCO3 とCoCO3 とを、LiとCuとNiとCoとのモル比が1:0.1:0.45:0.45となるように乳鉢で混合した後、この混合物を空気中で850℃で20時間熱処理して、Li1.0 Mno.1 Nio.45Coo.45O2.0 から成る正極活物質を作製する。そして、この正極活物質を用いる他は、前記第1実施例の実施例と同様にして電池を作製した。

【0019】 このようにして作製した電池を、以下(B)電池と称する。

〔実験1〕上記本発明の(B)電池と、前記第1実施例に示す比較例の(X)電池とにおける放電容量を調べたので、その結果を表2に示す。尚、充放電条件は、前記第1実施例の実験1と同様の条件である。

[0020]

【表2】

電池	放電容量 (mAh)		
В	173		
Х	1 5 9		

【0021】上記表2より明らかなように、本発明の (B)電池は比較例の(X)電池に比べて放電容量が増 大していることが認められる。

[実験2] Li1.0 Nic Cod O2.0 (正極活物質) のd/c+dの値を変化させた電池 [即ち、上記比較例の (X) 電池と類似の電池)、及びLi1.0 Cu0.1 Nic Cod O2.0 (正極活物質)のd'/c'+d'の値を変化させた電池 [即ち、上記本発明の (B) 電池と類似の電池であって、c'=0.9×c、d'=0.9×dで表される]における放電容量を調べたので、その結果を図4に示す。尚、実験条件は、前記第1実施例の実験1と同様の条件である。

【0022】図4から明らかなように、c(c')、d(d')が何れの値の場合であっても、Cuを添加した電池の方がCuを添加しない電池より放電容量が大きくなっていることが認められる。特に、d/c+dの値が、 $0.02\sim0.9$ の間で、放電容量が大きくなっていることが認められる。

[実験3] Cuの添加量を変化(Li1.0 Cux Ni0.5-x/2 C00.5-x/2 O2.0 においてxを変化)させた場合の、放電容量の比較を行ったので、その結果を図5 だ示す。尚、実験条件は、前記第1実施例の実験1と同様の条件である。

30 【0023】図5から明らかなように、Cuの添加する割合がモル比で、0.02から0.5の間(即ち、Li1.0 Cux Ni0.5-x/2 Co0.5-x/2 Oz.0 という組成で0.02≦x≦0.5の範囲)で放電容量が大きくなっていることが認められ、特に0.02から0.2の間で放電容量が飛躍的に増大していることが認められる。【0024】したがって、Cuの添加する割合はモル比で、0.02から0.5の間であることが必要であり、特に0.02から0.2の間であることが望ましい。【第3実施例】

[実施例] Li2 CO3 とFeOOHとNiCO3 とCoCO3 とを、LiとFeとNiとCoとのモル比が 1:0.1:0.45:0.45となるように乳鉢で混合した後、この混合物を空気中で850℃で20時間熱処理して、Li1.0 Fe0.1Ni0.45 Co0.45 O2.0 から成る正極活物質を作製する。そして、この正極活物質を用いる他は、前記第1実施例の実施例と同様にして電池を作製した。

【0025】このようにして作製した電池を、以下 (C)電池と称する。

50 [実験1]上記本発明の(C)電池と、前記第1実施例

40

に示す比較例の(X)電池とにおける放電容量を調べた ので、その結果を表3に示す。尚、充放電条件は、前記 第1実施例の実験1と同様の条件である。

[0026]

【表3】

電池	放電容量 (mAh)
С	175
х	1 5 9

【0027】上記表3より明らかなように、本発明の (C)電池は比較例の(X)電池に比べて放電容量が増大していることが認められる。

【実験 2】 Li1.0 Nic Cod O2.0 (正極活物質) のd/c+dの値を変化させた電池〔即ち、上記比較例の (X) 電池と類似の電池〕、及び Li1.0 Fe0.1 Nic Cod O2.0 (正極活物質)のd'/c'+d'の値を変化させた電池〔即ち、上記本発明の(C)電池と類似の電池であって、c'=0.9×c、d'=0.9×dで表される〕における放電容量を調べたので、その結果を図6に示す。尚、実験条件は、前記第1実施例の実験1と同様の条件である。

【0028】図6から明らかなように、c(c')、d(d')が何れの値の場合であっても、Feを添加した電池の方がFeを添加しない電池より放電容量が大きくなっていることが認められる。特に、d/c+dの値が、 $0.02\sim0.9$ の間で、放電容量が大きくなっていることが認められる。

[実験3] Feの添加量を変化(Li1.0 Fex Ni0.5-x/2 Co0.5-x/2 Oz.0 においてxを変化)させた場合の、放電容量の比較を行ったので、その結果を図7に示す。尚、実験条件は、前記第1実施例の実験1と同様の条件である。

【0029】図7から明らかなように、Feo添加する割合がモル比で、O.02からO.5の間(即ち、Li1.0 Fex Ni0.5-x/2 Coo.5-x/2 O2.0 という組成で $O.02 \le x \le 0.5$ の範囲)で放電容量が大きくなっていることが認められ、特にO.02からO.20間で放電容量が飛躍的に増大していることが認められる。【0030】したがって、Feo添加する割合はモル比で、O.02からO.5の間であることが必要であり、特にO.02からO.2の間であることが望ましい。また、添加金属としてO.02からO.020間であることが望ましい。また、添加金属としてO.020日であることが望ましい。また、添加金属とはより確認している。そして、これらの場合にも、添加割合は上記実験3と同様、O.02からO.500間であることが必要であり、特にO.02からO.500間であることが望ましいことも確認している。

〔実験 4〕

Li1.0 Mo.1 Nic CodO2.0 (Mとして、<u>Fe、Cu、Mn、Al、Sn、In、Mg、Ti、Zn、Mo</u>を使用)及びLi1.0 Nic CodO2.0から成る正極活物質(旧) d(c+dを変化)の熱的な安定性を調べるため

質(但し、d/c+dを変化)の熱的な安定性を調べるため に、これらの正極活物質を用いた正極を充電し、この充 電した正極と電解液とを加熱し、発熱反応を生じる温度 を熱分析により測定したので、その結果を図8に示す。

【0031】図8から明らかなように、本発明の電池に用いる正極活物質(Li1.0 Mo.1 Nic Co

10 a O2.0) は比較例の電池に用いる正極活物質(Li 1.0 Nic Coa O2.0) より熱的な安定性に優れ、特 にMとしてCu或いはFeを用いた正極活物質において は、熱的な安定性が飛躍的に向上していることが認めら れる。

(その他の事項)

①上記実施例においては、リチウム化合物及びコバルト化合物として各々炭酸リチウム、炭酸コバルトを用いたが、これらに限定するものではなく、水酸化リチウム、酸化リチウム、硝酸リチウム、リン酸リチウム、硝酸コバルト、炭酸コバルト或いはシュウ酸コバルト等或いはその他の酸化物、炭酸塩、水酸化物を用いることが可能である。また、ニッケル化合物及びその他の添加金属についても同様である。

②本発明は、実施例で示した非水電解液を用いる二次電池に限定するものではなく、固体電解質を用いる非水系二次電池にも適用できことは勿論である。また、非水電解液や固体電解質を用いる非水系一次電池にも適用することが可能である。

②上記実施例では、Li1.0 Mo.1 Ni0.45 Coo.45 O 2.0 を作成する際の熱処理温度を850℃としている が、500~1000℃であれば、同様の構成のLi 1.0 Mo.1 Nio.45 Coo.45 O2.0 を作成することがで きることを実験により確認している。

40 [0032]

【発明の効果】以上説明したように本発明によれば、結晶構造が安定するので、非水系一次電池、非水系二次電池の放電容量を高めることができ、且つ充放電を繰り返し行っても結晶構造が崩壊しないので、非水系二次電池のサイクル特性を向上させることができるという優れた効果を奏する。

【図面の簡単な説明】

【図1】本発明の一実施例に係る偏平型非水系二次電池の断面図である。

50 【図2】Mnを添加した電池とMnを添加しない電池と

において、Ni CO のとの混合比率を変化させた場合の 放電容量を示すグラフである。

【図3】Mnの添加量と放電容量との関係を示すグラフ である。

【図4】Cuを添加した電池とCuを添加しない電池とにおいて、NiとCoとの混合比率を変化させた場合の放電容量を示すグラフである。

【図5】Cuの添加量と放電容量との関係を示すグラフである。

【図 6 】 Fe を添加した電池と Fe を添加しない電池と 10 において、 Ni と Co との混合比率を変化させた場合の

放電容量を示すグラフである。

【図7】Feの添加量と放電容量との関係を示すグラフである。

10

【図8】M ($\underline{Fe \times Cu \times Mn \times Al \times Sn \times ln \times M}$ $\underline{g \times Ti \times Zn \times Mo \varepsilon}$ を添加した電池とMを添加しない電池とにおいて、NiとCoとの混合比率を変化させた場合の反応温度を示すグラフである。

【符号の説明】

1 正極

2 負極

3 セパレータ

170-160-放置 150-(mAh) 140-120-120-0.02 0.1 0.2 0.3 0.4 0.5 0.6 L i1.0Mn x N i o. 5-24C 0o. 5-24O 2.0 における x の値

[図8]

フロントページの続き

(72)発明者 西尾 晃治

守口市京阪本通2丁目18番地 三洋電機

株式会社内

(72)発明者 齋藤 俊彦

守口市京阪本通2丁目18番地 三洋電機

株式会社内

(56)参考文献 特開 平4-328260 (JP, A)

特開 平4-106875 (JP, A)

特開 昭63-121258 (JP, A)

(58)調査した分野(Int. Cl.⁷, DB名)

H01M 4/36 - 4/62

H01M 10/40