

概率论与数理统计习题

茆诗松版

作者: Mick Huang

目录

第一章	随机事件与概率	1
1.1	随机事件及其运算	1
第一	一章 练习	2
1.2	概率得定义及其确定方法	5
第一	−章 练习	5

第一章 随机事件与概率

1.1 随机事件及其运算

定理 1.1 (事件运算性质) — 1. 交换律:		
1. 2 1 1 1 1 1 1 1 1 1 1	$A \cup B = B \cup A$	(1.1)
	AB = BA	(1.2)
2. 结合律		
	$(A \cup B) \cup C = A \cup (B \cup C)$	(1.3)
	(AB)C = A(BC)	(1.4)
3. 分配律:		
	$(A \cup B) \cap C = AC \cup BC$	(1.5)
	$(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$	(1.6)
4. 对偶律 (德摩根公式):		
	$\overline{A \cup B} = \bar{A} \cap \bar{B}$	(1.7)
	$\overline{A \cap B} = \overline{A} \cup \overline{B}$	(1.8)
	$\bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} \bar{A}_i$	(1.9)
	$\overline{\bigcup_{i=1}^{\infty} A_i} = \bigcap_{i=1}^{\infty} \bar{A}_i$	(1.10)
	$\bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \bar{A}_i$	(1.11)
	$\bigcap_{i=1}^{\infty} A_i = \bigcup_{i=1}^{\infty} \bar{A}_i$	(1.12)
5. 差公式:	$A - B = A\bar{B}$	(1.13)

≫ 习题 1.1 ≈

- 1. 写出下列随机试验的样本空间:
- (1) 抛三枚硬币;
- (2) 抛三枚骰子;
- (3) 连续抛一枚硬币, 直至出现正面为止;
- (4) 口袋中有黑、白、红球各一, 从中任取2个球, 先从中取1, 放回去后再取1;
- (5) 口袋中有黑、白、红球各一,从中任取2个球,先从中取1,不放回再取1。

解

- (1) $\Omega = \{ZZZ, ZZF, ZFZ, ZFF, FZZ, FZF, FFZ, FFF\}$
- (2) $\Omega = \{x, y, z \in (1, 2, 3, 4, 5, 6) \mid (x, y, z)\}$
- (3) $\Omega = \{(Z), (F, Z), (F, F, Z), ..., (F, F, F, ..., F, Z)\}$
- $(4) \ \Omega = \{(B,B),(B,W),(B,R),(W,B),(W,W),(W,R),(R,B),(R,W),(R,R)\}$
- (5) $\Omega = \{(B, W), (B, R), (W, B), (W, R), (R, B), (R, W)\}$
- 2. 先抛一枚硬币,若出现正面(记为 Z),则再掷一枚骰子,试验停止;若出现反面(记为 F),则再抛一次硬币,试验停止。那么,该试验的样本空间 Ω 是什么?

解

 $\Omega = \{X \in (0, 1, 2, 3, 4, 5, 6) \mid (Z, X), (F, F), (F, Z)\}$

- 3. 设 A, B, C 为三事件, 试表示下列事件:
- (1) A, B, C 都发生或都不发生;
- (2) A, B, C 中不多于一个发生:
- (3) A, B, C 中不多于两个发生;
- (4) A, B, C 中至少有两个发生。

解

- (1) $ABC \cup \bar{A}\bar{B}\bar{C}$
- (2) $\bar{A}BC \cup A\bar{B}C \cup AB\bar{C} \cup \bar{A}\bar{B}\bar{C}$
- (3) \overline{ABC}
- (4) $ABC \cup \bar{A}\bar{B}\bar{C}$
- 4. 指出下列事件等式成立的条件。
- $1 A \cup B = A;$
- $2 AB = A_{\circ}$

解

- $1 B \subset A$
- $2\ A\subset B$

- 5. 设 X 为随机变量,其样本空间为 $\Omega = \{0 \le X \le 2\}$,记事件 $A = \{0.5 < X \le 1\}$, $B = \{0.25 \le X < 1.5\}$,写出下列各事件:
- (1) $\bar{A}B$;
- (2) $\bar{A} \cup B$;
- (3) \overline{AB} ;
- (4) $\overline{A \cup B}$

解

- $(1) \ \bar{A} = \{0 \leq X \leq 0.5\} \cup \{1 < X \leq 2\} \Rightarrow \bar{A}B = \{0.25 \leq X0.5\} \cup \{1 < X < 1.5\}$
- (2) $\bar{A} \cup B = \Omega$
- (3) $AB = A \Rightarrow \overline{AB} = \overline{A} = \{0 \le X \le 0.5\} \cup \{1 < X \le 2\}$
- (4) $\overline{A \cup B} = \overline{B} = \{0 \le X < 0.25\} \cup \{1.5 \le X \le 2\}$
- 6. 检查三件产品,只区分每件产品是合格品 (记为 0) 与不合格品 (记为 1),设X 为三件产品中的不合格品数,指出下列事件所含的样本点:

$$A = "X = 1"$$
, $B = "X > 2"$, $C = "X = 0"$, $D = "X = 4"$.

解

$$A = \{(1,0,0), (0,1,0), (0,0,1)\}$$

$$B = \{(1, 1, 1)\}$$

$$C = \{(0,0,0)\}$$

$$D = \emptyset$$

- 7. 试问下列命题是否成立?
- $(1)\ A-(B-C)=(A-B)\cup C$
- (2) 若 $AB = \emptyset$ 且 $C \subset A$,则 $BC = \emptyset$
- $(3) \ (A \cup B) B = A$
- $(4) (A B) \cup B = A$

解

- (1) $A (B C) = A B\bar{C} = A\bar{B}\bar{C} = A(\bar{B} \cup C) = A\bar{B} \cup AC = (A B) \cup AC \neq (A B) \cup C$ 不成立
- (2) 成立
- (3) $(A \cup B) B = (A \cup B)\overline{B} = A\overline{B} \cup B\overline{B} = A\overline{B} \neq A$ 不成立
- $(4) (A B) \cup B = (A\bar{B}) \cup B = (A \cup B) \cap (\bar{B} \cup B) = A \cup B \neq A$ 不成立
- 8. 若事件 $ABC = \emptyset$, 是否一定有 $AB = \emptyset$?

解

不一定,有可能 $AB \neq \emptyset$ 但 $AB \cap C = \emptyset$;或者 ABC 两两互不相交。

- 9. 请叙述下列事件的对立事件:
- (1) A = "掷两枚硬币, 皆为正面";
- (2) B = "射击三次, 皆命中目标";
- (3) A = "加工四个零件,至少有一个合格品"。

解

- (1) \bar{A} = "掷两枚硬币, 最多只有一枚为正面";
- (2) \bar{B} = "射击三次,没有全部命中目标";
- (3) \bar{C} = "加工四个零件,全部是不合格品"。
- 10. 证明下列事件的运算公式:
- (1) $A = AB \cup A\bar{B}$
- (2) $A \cup B = A \cup \bar{A}B$

证明

- (1) $AB \cup A\bar{B} = A(B \cup \bar{B}) = A$
- (2) $A \cup B = A \cup BA \cup B\overline{A} = A \cup \overline{A}B$
- 11. 设 \mathscr{F} 为一事件域, 若 $A_n \in \mathscr{F}$, n = 1, 2, ...,试证:
- (1) $\emptyset \in \mathcal{F}$;
- (2) 有限并 $\ddot{\bigcup} A_i \in \mathcal{F}, n \geq 1$;
- (3) 有限交 $\bigcap_{i=1}^{n} A_i \in \mathcal{F}, n \geq 1$;
- (4) 可列交 $\bigcap_{i=1}^{\infty} A_i \in \mathcal{F}$;
- (5) 差运算 $A_1 A_2 \in \mathcal{F}$ 。

证明

- (1) 因为 \mathscr{F} 为一事件域, 所以 $\Omega \in \mathscr{F}$, 故其对立事件 $\bar{\Omega} = \emptyset \in \mathscr{F}$
- (2) 因为 $A_n \in \mathcal{F}$, 所以任一事件满足 $X \in \bigcup_{i=1}^n \in \mathcal{F}$
- (3) 因为 $A_{i} \in \mathcal{F}$, 所以 $\bar{A}_{i} \in \mathcal{F}$, $\bar{A}_{i} \in \mathcal{F}$ $\bar{A}_{i} \in \mathcal{F}$
- (5) 因为 $A_2 \in \mathscr{F}$,所以 $\bar{A_2} \in \mathscr{F}$,由 (3) (有限交) 得 $A_1 A_2 = A_1 \cap \bar{A_2} \in \mathscr{F}$ 。

1.2 概率得定义及其确定方法

公理 1.1 (概率三公理)

设 Ω 为一个样本空间。 \mathscr{F} 为 Ω 得某些子集组成的一个事件域。如果对任一事件 $A \in \mathscr{F}$,定义在 \mathscr{F} 上的一个实值函数P(A)满足:

- (1) 非负性公理 如果 $A \in \mathcal{F}$, 那么 $P(A) \ge 0$ 。
- (2) 正则性公理 $P(\Omega)=1$
- (3) 可列可加性公理 如果 $A_1, A_2, ..., A_n, ...$ 互不相容, 那么:

$$P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$$

则称 P(A) 为事件 A 得概率,称三元素 (Ω, \mathcal{F}, P) 为概率空间。

 \heartsuit

≫ 习题 1.2 ≈

- 1. 对于组合数 $\binom{n}{r}$, 证明:
- $(1) \binom{n}{r} = \binom{n}{n-r};$
- $(2) \binom{n}{r} = \binom{n-1}{r-1} + \binom{n-1}{r};$
- (3) $\binom{n}{0} + \binom{n}{1} + \dots \binom{n}{n} = 2^n;$
- (4) $\binom{n}{1} + 2\binom{n}{2} + \dots + n\binom{n}{n} = n2^{n-1};$
- $(5) \quad \binom{a}{0} \binom{b}{n} + \binom{a}{1} \binom{b}{n-1} + \dots + \binom{a}{n} \binom{b}{0} = \binom{a+b}{n}, \quad n = min(a,b);$
- (6) $\binom{n}{0}^2 + \binom{n}{1}^2 + \dots + \binom{n}{n}^2 = \binom{2n}{n}^2.$

证明

$$(1) \binom{n}{r} = \frac{\frac{n!}{(n-r)!}}{r!} = \frac{n!}{r! \cdot (n-r)!}$$

$$\binom{n}{n-r} = \frac{n!}{(n-r)! \cdot [n-(n-r)]!} = \frac{n!}{(n-r)! \cdot r!} = \binom{n}{r}$$

$$(2) \binom{n-1}{r-1} = \frac{(n-1)!}{(r-1)! \cdot [n-1-(r-1)]!} = \frac{(n-1)!}{(r-1)! \cdot (n-r)!}$$

$$\binom{n-1}{r} = \frac{(n-1)!}{r! \cdot (n-1-r)!}$$

$$\binom{n-1}{r-1} + \binom{n-1}{r} = \cdot \left[\frac{(n-1)! \cdot r}{r! \cdot (n-r)!} + \frac{(n-1)! \cdot (n-r)}{r! \cdot (n-r)!} \right] = \frac{(n-1)! \cdot n}{r! \cdot (n-r)!} = \frac{n!}{r! \cdot (n-r)!} = \binom{n}{r}$$

$$\binom{n-1}{r-1} + \binom{n-1}{r} = \binom{n-1}{r! \cdot (n-r)!} = \binom{n-1}{r! \cdot (n-r$$

(3) 由二项式定理
$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^{n-i} b^i$$

(5)

(6)

2. 抛三枚硬币, 求至少出现一个正面的概率.

解

$$A = \{$$
 抛三枚硬币至少出现一个正面 $\}$ $\bar{A} = \{$ 抛三枚硬币全部都是反面 $\} \Rightarrow P(\bar{A}) = \frac{1}{2^3} = \frac{1}{8}$ $P(A) = 1 - P(\bar{A}) = 1 - \frac{1}{8} = \frac{7}{8}$

3. 任取两个正整数, 求它们的和为偶数的概率.

解

因为奇数 + 奇数 = 偶数,偶数 + 偶数 = 偶数,只有奇数 + 偶数 = 奇数 两个正整数之和的事件空间为
$$\Omega$$
 = $\{(E,E),(E,O),(O,E),(O,O)\}$ $P(A) = \frac{2}{4} = \frac{1}{2}$

- 4. 掷两颗骰子, 求下列事件的概率:
- (1) 点数之和为6;
- (2) 点数之和不超过 6;
- (3) 至少有一个6点。

解

两颗骰子掷出的可能性共有 $6^2 = 36$ 种。

(1) 点数之和为 6 的分别为 $A = \{(1,5), (2,4), (3,3), (3,3), (4,2), (5,1)\},$ 共 6 种。

$$P(A) = \frac{6}{36} = \frac{1}{6}$$

(2)
$$P(A) = \frac{5+4+3+2+1}{36} = \frac{15}{36} = \frac{5}{12}$$

(3)
$$P(A) = 1 - \frac{5^2}{36} = \frac{11}{36}$$

- 5. 从一副 52 张的扑克牌中任取 4 张,求下列事件的概率:
- (1) 全是黑桃;
- (2) 同花;
- (3) 没有两张同一花色;
- (4) 同色.

解

(1)
$$p = \frac{13}{52} \cdot \frac{12}{51} \cdot \frac{11}{50} \cdot \frac{10}{49} = \frac{11}{4165} = 0.002641$$

(2)
$$p = 4 \cdot \frac{11}{4165} = 0.01056$$

(3)
$$p = \frac{13^4}{\binom{52}{4}} = \frac{28561}{270725} = 0.105498$$

(4)
$$p = \frac{2 \cdot {26 \choose 4}}{{52 \choose 4}} = \frac{29900}{270725} = 0.110444$$

6. 抛三枚硬币, 求至少出现一个正面的概率.

解

7. 抛三枚硬币, 求至少出现一个正面的概率.

解