	EMATURATICE AT HUMBER OUTET IE. HAUTE		***************************************
	[MATHEMATICS 1] EXERCISE SHEET 15: UMITS	(B) 4) Lise lected question >	
E)	lima e 3x = 0, the limit exists	b) to (+ 14) - L selected qu	ues fron >
53	lim e -2x = 00, the limit does not exist	e)/11m (7+e2m) = 0+7	
8)	lim to == = oo, the limit does not exist	AV IIM I C > C	
3 9)	$\lim_{a\to\infty} \frac{1}{1a} = 0$, the limit exists	CITE / SIO	selected Juestion >
b)/	$b = \infty$, the limit does not exist	= 2	
VEX	lim e-4c = 0, the limit exists	$\frac{e}{n^{2}-00}\left(\frac{1}{n+2}\right)=\frac{1}{0+2}$	
(d)	lim ln d = 00, the limit does not exist	= \frac{1}{2}	
ve)	tim e 2p = 00, the limit does not exist	$\frac{1100}{200} \left(\frac{5 + e^{22}}{2^2 + 15} \right) = \frac{5 + 0}{0 + 15}$	
LF)	$\lim_{q \to \infty} q^{-3} = \lim_{q \to \infty} \frac{1}{q^3}$	1 (23+15) 0+10	
	= 0, the limit exists	= - 3	
193	Jim o y 5 = - 00, the limit does not exist	© a) <selected question=""></selected>	"Investigate" must
us) z	lim z6 = 00, the limit does not exist	us) cos n oscillates between -1	if just "find" then don't med explanation
(P) a)	<pre> <selected question=""> </selected></pre>	and 1. as n > se and as n > so a particular number-	
	17 2 01 174 <u>2</u> 03 172 2 027	Thus, him (cos n) and him (cos o	nd do not exist
· · · · · · · · · · · · · · · · · · ·	1im (3 + 4) = 0+4	4 cos x oscillates between -4	and I as 21 > 10 and a
	= 4	n->-10 so 4cos n never con	verges to a particular
		number. Thus, Ilm (4 cos 21) and lis	m (4 as x) do not exis
c) .	Lselected question >		
199	m / 5) 5	$\frac{\partial q}{n \rightarrow N} \left(\frac{3 + 4n^2}{n^2} \right) = \lim_{n \rightarrow \infty} \left(\frac{3}{n^2} + \frac{3}{n^2} \right)$	4)
n	$\lim_{t\to\infty} \left(\frac{5}{e^{-3n+2}}\right) = \frac{5}{0+2}$	÷ 0+4	
	= 5	> 4	
		b) Lselected question >	
e) <	(selected question >		
v) i	$\lim_{r \to \infty} \left(\frac{4 + e^{-2x}}{4 + 12} \right) = \frac{4 + 0}{0 + 12}$	c) < selected question>	
	1	bazic™	

[MATHEMATICS 1] EXERCISE SHEET 15: LIMIT AND INTEGRATION TO INFINITY $\frac{(3\pi)^{3} + 5\pi^{3}}{(3\pi)^{3} + 5\pi^{3}} = \lim_{n \to \infty} \left(\frac{3 - \frac{2}{n^{3}}}{1 + \frac{5}{n^{3}}} \right) = 8$ - 3 =0 $\int_{1}^{\infty} \frac{1}{\pi^3} d\pi = \lim_{b \to \infty} \int_{1}^{b} \frac{1}{\pi^3} d\pi$ $\frac{9}{2\pi^{2}-00}\left(\frac{4\pi^{2}}{3-2\pi^{2}}\right)=\lim_{n\to-\infty}\left(\frac{4}{3}-2\right)$ - lim [1] b $=\lim_{b\to\infty}\left(-\frac{1}{2b^2}-\frac{1}{2(1)^2}\right)$ m>- n (e2x + 4ex) - 11m (ex+4) d) < selected question > e) $\int_{n\to -\infty}^{\infty} \left(\frac{e^{-x}+1+6e^{-2x}}{3e^{-2x}+2}\right) = \lim_{n\to -\infty} \left(\frac{e^{x}+e^{2x}+6}{3+2e^{2x}}\right) = \lim_{n\to -\infty$ = lim [-(n+1)-1]b $=\lim_{b\to\infty}\left(\frac{1}{b+1},\frac{1}{0+1}\right)$ $8a) \int_{2}^{\infty} \frac{1}{n^{2}} dn = \lim_{b \to \infty} \int_{2}^{b} \frac{1}{n^{2}} dn$ Selected question question

N	O: DATE:
æý	[MATHEMATICS 1] EXERCISE SAEET 15: LIMITS AND INTEGRATION TO INFINITY $\int_{1}^{\infty} \frac{1}{(\pi+1)^{2}} d\pi = \lim_{b \to \infty} \int_{1}^{b} (\pi+1)^{-2} d\pi \qquad \text{if } \int_{0}^{\infty} e^{-\pi} d\pi = \lim_{b \to \infty} \int_{0}^{b} e^{-\pi} d\pi$
•	[1] M] M]
	$=\lim_{b\to\infty}\left[-\left(n+1\right)^{-1}\right],$ $=\lim_{b\to\infty}\left[-e^{-n}\right]_{0}$
	$=\lim_{b\to\infty}\left(\frac{1}{b+1}-\frac{1}{i+1}\right)$ $=\lim_{b\to\infty}\left(\frac{1}{b+1}-\frac{1}{i+1}\right)$
	$=0+\frac{1}{2}$
	= 1 = 0+1
	=
<i>q</i>)	Legelected question? (1) $\int_{2}^{\infty} e^{-\pi} d\pi = \lim_{b \neq \infty} \int_{2}^{b} e^{-\pi} d\pi$
(A	$\rho^{n}/n - W = \rho^{n}/n$
	$-\infty \qquad \frac{1}{b-2\pi} \int_{b}^{b-2\pi} \int_{b}^{b} \frac{\ln 3}{b} \qquad \frac{1}{b-3\pi} \left[-e^{-x} \right]_{a}^{b}$ $= \lim_{b \to \infty} \left[e^{x} \right]_{b}^{\ln 3} \qquad \lim_{b \to \infty} \left[-e^{-x} \right]_{a}^{b}$ $= \lim_{b \to \infty} \left[-e^{-x} \right]_{a}^{b}$
	h->
	$=\lim_{b\to\infty}\left(e^{\ln 3}-e^{b}\right)$ $=0+\frac{1}{e^{2}}$
	= 3 - 0
	= 3
90)	$\frac{e^{2n} dn = \lim_{b \to \infty} \int_{b}^{0} e^{2n} dn$ $\sqrt{b} \int_{0}^{\infty} e^{-2n} dn = \lim_{b \to \infty} \int_{0}^{b} -e^{-2n} dn$
J.	10
	$= \lim_{b \to -\infty} \left[\frac{1}{2} e^{2n} \right]_{b}^{0}$ $= \lim_{b \to -\infty} \left[\frac{1}{2} e^{-2n} \right]_{0}^{b}$ $= \lim_{b \to \infty} \left[\frac{1}{2} e^{-2n} \right]_{0}^{b}$
	$= \lim_{b \to -\infty} \left(\frac{1}{2} e^{2(0)} - \frac{1}{2} e^{2b} \right) = \lim_{b \to \infty} \left(\frac{1}{2} e^{-2b} - \frac{1}{2} e^{-2(0)} \right)$
	$=\frac{1}{2}-0$
	=
	2
V) f	$\frac{1}{8} \frac{3}{8} \frac{2n}{8} dn = \frac{\lim_{b \to -\infty} \int_{b}^{\ln 3} \frac{2n}{8} dn}{\int_{b}^{\ln 2} \frac{1}{e^{-2n}} dn} = \frac{\lim_{b \to \infty} \int_{b}^{b} \frac{1}{e^{-2n}} dn}{\int_{\ln 2}^{\ln 2} \frac{1}{e^{-2n}} dn}$
	$-\lim_{b\to\infty} \left[\frac{1}{2}e^{2n}\right]^{\ln 3} = \lim_{b\to\infty} \left[\frac{1}{2}e^{-2n}\right]^{b}$
	$-\lim_{b \to \infty} \left(\frac{1}{2} e^{2(\ln 3)} \frac{1}{2} e^{2b} \right) \qquad -\lim_{b \to \infty} \left(\frac{1}{2} e^{-2b} \frac{1}{2} e^{-2(\ln 2)} \right)$
	$= \lim_{b \ge \infty} \left(\frac{1}{2} e^{\ln 3} - \frac{1}{2} e^{2b} \right) = 0 - \frac{1}{8}$
	$=\lim_{b\to\infty} \left(\frac{q}{2} - \frac{1}{2}e^{2b}\right) \text{PIP} \text{bazic}^{\text{TM}} \qquad = \frac{-1}{8}$
	$=\frac{9}{2}-0 = \frac{9}{2}$

	NO:	***************************************
	[MATHEMATICS 1] EXERCISE SHEET 15: LIMIT AND INTEGRATION TO INFINITY	
Ø.	(b) $\int_{-\infty}^{\infty} e^{-\frac{1}{2}\pi} d\pi = \lim_{b \to \infty} \int_{-\infty}^{b} e^{-\frac{1}{2}\pi} d\pi$ (c) $\int_{-\infty}^{\infty} f(\pi) d\pi \text{ where } f(\pi) = \int_{-\infty}^{e^{2\pi}} if$	n < -1
	02	
	$= \frac{1100}{6700} \left[-2e^{-\frac{1}{2}n} \right]_{2}^{6} \qquad \qquad \int_{-\infty}^{0} \frac{f(n) dn}{f(n) dn} = \int_{-\infty}^{-1} e^{2n} dn + \int_{-\infty}^{\infty} \frac{e^{2n} dn}{f(n) dn} dn = \int_{-\infty}^{\infty} e^{2n} dn + \int_{-\infty}^{\infty} \frac{e^{2n} dn}{f(n) dn} dn = \int_{-\infty}^{\infty} e^{2n} dn + \int_{-\infty}^{\infty} \frac{e^{2n} dn}{f(n) dn} dn = \int_{-\infty}^{\infty} e^{2n} dn + \int_{-\infty}^{\infty} \frac{e^{2n} dn}{f(n) dn} dn = \int_{-\infty}^{\infty} e^{2n} dn + \int_{-\infty}^{\infty} \frac{e^{2n} dn}{f(n) dn} dn = \int_{-\infty}^{\infty} e^{2n} dn + \int_{-\infty}^{\infty} \frac{e^{2n} dn}{f(n) dn} dn = \int_{-\infty}^{\infty} e^{2n} dn + \int_{-\infty}^{\infty} \frac{e^{2n} dn}{f(n) dn} dn = \int_{-\infty}^{\infty} e^{2n} dn + \int_{-\infty}^{\infty} \frac{e^{2n} dn}{f(n) dn} dn = \int_{-\infty}^{\infty} e^{2n} dn + \int_{-\infty}^{\infty} \frac{e^{2n} dn}{f(n) dn} dn = \int_{-\infty}^{\infty} e^{2n} dn + \int_{-\infty}^{$	n dn
	$= \lim_{b \to \infty} \left(-2e^{\frac{1}{2}b} - 2e^{-\frac{1}{2}(2)} \right) \qquad - \lim_{b \to \infty} \left[\frac{1}{2}e^{2\pi} \right]_{b}^{-1} + \left[\frac{1}{2}e^{2\pi} \right]_{b}^{-1}$	x²] °
	7	4-1
	$= 0 + \frac{2}{e}$ $= \frac{11m}{67-8} \left(\frac{1}{2} e^{2(-1)} - \frac{1}{2} e^{26} \right)$	$+\left(\frac{1}{2}(0)^2-\frac{1}{2}(-1)^2\right)$
	_ 2	
	$\frac{1}{e}$ $\frac{1}{2}e^2$ $\frac{1}{2}$	
, bi	10 10 -17 1010 1 -17 1010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	if 0 < x < 12
	$\int_{1000}^{\infty} e^{-\frac{1}{2}x} dx = \lim_{b \to \infty} \int_{1000}^{b} e^{-\frac{1}{2}x} dx (x) \int_{0}^{\infty} f(x) dx \text{where } f(x) = \left(\frac{1}{2x+1}\right)^{\frac{1}{2x+1}}$	if a>12
	$\frac{\lim_{b \to \infty} \left[-2e^{-\frac{1}{2}n} \right]_{ln(0)}^{b}}{\int_{4}^{\infty} f(n) dn} = \int_{4}^{12} \frac{1}{2n+1} dn + \int_{12}^{\infty} e^{-\frac{1}{2}n} e^{-\frac{1}{2}n} dn$	-n dn
	$= \lim_{b \to \infty} \left(-2e^{\frac{1}{2}(b)}2e^{-\frac{1}{2}(\ln n)} \right) = \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} \ln 2\pi + 1 \right]_{4}^{1/2} + \lim_{b \to \infty} \left[\frac{1}{2} $	$-e^{-\kappa}$
	$= \frac{\lim_{b\to\infty} \left(-2e^{-\frac{1}{2}b} + 2e^{\frac{1}{2}\ln 0 } + \frac{1}{2}\ln 2(2) + 1 - \frac{1}{2}\ln 2(4) + 1\right)}{\left(-2e^{-\frac{1}{2}b} + 2e^{\frac{1}{2}\ln 0 } + \frac{1}{2}\ln 2(2) + 1\right)}$	1)+(1im (-e-be-b)
	$= \frac{1}{2} \ln 25 - \frac{1}{2} \ln 9 + 0$	+ e
	$= \frac{1}{5}$	
(10)a)	$\int_{0}^{\infty} f(x) dx \text{where} f(x) = \int_{0}^{\infty} \sin(\pi x) dx dx = \frac{12}{3} + e^{-12}$	
	$\int_{0}^{\infty} f(n) dn \text{ where } f(n) = \begin{cases} \sin(\pi n) & \text{if } n \leq 1 \\ \frac{1}{n^{3}} & \text{if } n > 1 \end{cases}$	
	$\int_{0}^{\infty} f(n) dn = \int_{0}^{1} f(n) dn + \int_{1}^{\infty} f(n) dn$ $\int_{-\infty}^{4} f(n) dn + \int_{-\infty}^{4} f(n) dn \text{where} f(n) = \begin{cases} \frac{1}{2^{4}} \\ n^{2} \end{cases}$	if x<-1 if n>-1
	$= \int_{0}^{1} \sin(\pi x) dx + \int_{1}^{\infty} \frac{1}{\pi^{3}} dx \qquad \int_{-\infty}^{4} f(x) dx = \int_{-\infty}^{-1} \frac{1}{\pi^{4}} dx + \int_{-1}^{4} \pi^{2} dx$	
	· · · · · · · · · · · · · · · · · · ·	
	$= \left[\frac{1}{\pi} \cos(\pi n) \right]_0^1 + \lim_{b \to \infty} \left[\frac{1}{n^3} dn \right]_0^1 + \lim_{b \to \infty} \left[\frac{1}{3} n^3 dn \right]_0^1 + \left[\frac{1}{3} n^3 dn \right]_0^1 +$	3
	(π (361) ³ 3b ³ / (3" 3"/
	$= \left(\frac{-1}{\pi} \left(\cos \left(\pi(u) \right) - \frac{-1}{n} \cos \left(\pi(u) \right) \right) + \frac{1}{b \Rightarrow \infty} \left(\frac{1}{3613} - \frac{1}{3b^3} \right) + \left(\frac{1}{3613} - \frac{1}{3b^3} - \frac{1}{3b^3} \right) + \left(\frac{1}{3613} - \frac{1}{3b^3} - \frac{1}{3b^3} \right) + \left(\frac{1}{3613} - \frac{1}{3b^3} - \frac{1}{3b^3} - \frac{1}{3b^3} \right) + \left(\frac{1}{3613} - \frac{1}{3b^3} - \frac$	
	$= \frac{2}{\pi} + \lim_{b \to \infty} \left(\frac{1}{2b^2} - \frac{1}{2(1)^2} \right) = 22$	
	$=\frac{2}{\pi}+0+\frac{1}{2}$	
	$=\frac{2}{\pi}+\frac{1}{2}$	