Optimization Algorithms 2: RMSprop, Adadelta & Adam

ASTR 502 Maria Gabriela Cota Moreira March 21st

Recap 1

AdaGrad

What it does?

Includes an adaptive learning rate that decreases the step-size with time

1.
$$oldsymbol{g}_t = \partial_w \mathcal{L}(oldsymbol{w_t})$$

Loss function gradient

2.
$${m s}_t = {m s}_{t-1} + {m g}_t^2$$

Learning rate scaling

3.
$$oldsymbol{w}_t = oldsymbol{w}_{t-1} - rac{\eta}{\sqrt{oldsymbol{s}_t + \epsilon}} oldsymbol{g}_t$$

Parameter update

Issue: The more you update the less you update

$$oldsymbol{s}_t = \sum_{ au=0}^{\iota} oldsymbol{g}_{ au}^2$$

 $\boldsymbol{w}_t = \boldsymbol{w}_{t-1} - (\boldsymbol{s}_t + \epsilon) \boldsymbol{g}_t$

Slow and sensitive to the learning rate!

RMSprop

Root-Mean-Square Propagation

What's new?

Includes a damping parameter to AdaGrad, eta w/ same $m{w}_t = m{w}_{t-1} - rac{\eta}{\sqrt{m{s}_t + \epsilon}} m{g}_t$

Leaky average of the squared gradients

$$\boldsymbol{s}_t = \beta \boldsymbol{s}_{t-1} + (1 - \beta) \boldsymbol{g}_t^2$$

Keeps the squares under a manageable and params size the whole time!

heigh linitial values and params $\begin{array}{c} \textbf{s}_0 = 0 \\ \beta = 0.9 \\ \vdots \\ \epsilon = 10^{-8} \end{array}$

How it works? We give more importance to recent gradients

$$0 < \beta < 1$$

$$\beta = 0.9$$

lower weight to previous gradients variance

Potential issue

Learning rate is still manual, because the suggested value is not always appropriate for every task.

ADADELTA

An Adaptive Learning Rate Method

What's new?

- I) Also Includes a damping parameter to AdaGrad
- II) Address the need for a manually selected global learning rate (kinda...)

1.
$$oldsymbol{g}_t = \partial_w \mathcal{L}(oldsymbol{w_t})$$

2.
$$s_t = \beta s_{t-1} + (1-\beta)g_t^2$$

Same as RMSprop

- 3. $oldsymbol{g}_t' = rac{\sqrt{\Delta oldsymbol{w}_{t-1} + \epsilon}}{\sqrt{oldsymbol{s}_t + \epsilon}} \odot oldsymbol{g}_t$
- **4.** $\Delta w_t = \beta \Delta w_{t-1} + (1 \beta) g_t'^2$
- 5. $w_t = w_{t-1} g'_t$

Step-size

Leaky average of the step-size

$$\beta = 0.9$$

Parameter update

Numerator arises from unit correction.

In AdaGrad,

RECAP 1

$$m{g}_t' = -rac{\eta}{\sqrt{m{s}_t + \epsilon}} \odot m{g}_t \quad ext{ is unitless } \quad m{g}_t' \propto rac{rac{\partial \mathcal{L}}{\partial m{w}}}{\sqrt{\left(rac{\partial \mathcal{L}}{\partial m{w}}
ight)^2}}$$

But it should have units of **w** since $w_t = w_{t-1} - g_t'$ Then,

$$m{y}_t' \propto rac{\Delta m{w}_t rac{\partial \mathcal{L}}{\partial m{w}}}{\sqrt{\left(rac{\partial \mathcal{L}}{\partial m{w}}
ight)^2}} \propto ext{units of } m{w}_t$$
 $m{w}_t = m{w}_{t-1} - rac{\sqrt{\Delta m{w}_{t-1} + \epsilon}}{\sqrt{m{s}_t + \epsilon}} \odot m{g}_t$ It acts as a "momentum" term

Potential issues (that I ran into)

When I chose a small ϵ the algorithm converges slowly

$$oldsymbol{g}_t' = rac{\sqrt{\Delta oldsymbol{w}_{t-1} + \epsilon}}{\sqrt{oldsymbol{s}_t + \epsilon}} \odot oldsymbol{g}_t$$

Is it really "learning-rate free"?

Changing the initial Δw_0 also leads to a similar effect: https://akyrillidis.github.io/notes/AdaDelta

Potential issues (that I ran into)

 ϵ is behaving as a **learning rate**. But why?

$$m{g}_t' = rac{\sqrt{\Delta m{w}_{t-1} + \epsilon}}{\sqrt{m{s}_t + \epsilon}} \odot m{g}_t$$
 at the first iteration/epoch (t=1) you have $m{s}_1 = (1-eta) m{g}_1^2$

then,

Recap 2

Momentum

Momentum accelerates motion towards the minima

$$\boldsymbol{v}_t = \beta \boldsymbol{v}_{t-1} + (1 - \beta) \boldsymbol{g}_t$$

$$\boldsymbol{w}_t = \boldsymbol{w}_{t-1} + \eta \boldsymbol{v}_t$$

 $\beta = 0.9$

2nd iteration (a typical momentum descent cycle)

3rd iteration starts, carrying over the momentum, so on and so forth...

Adam

Adaptive Moment Estimation

What's new?

Utilize the momentum concept and adaptive learning rate from RMSprop

Momentum

$$egin{aligned} oldsymbol{v}_t &= eta_1 oldsymbol{v}_{t-1} + (1-eta_1) oldsymbol{g}_t \ oldsymbol{w}_t &= oldsymbol{w}_{t-1} + \eta oldsymbol{v}_t \end{aligned}$$

RMSprop

 $\mathbf{s}_t = \beta_2 \mathbf{s}_{t-1} + (1 - \beta_2) \mathbf{g}_t^2$

$$oldsymbol{w}_t = oldsymbol{w}_{t-1} - rac{\eta}{\sqrt{oldsymbol{s}_t + \epsilon}} oldsymbol{g}_t$$

bias correction

Adam

$$\hat{m{v}}_t = rac{m{v}_t}{1-eta_1^t}$$
 $\hat{m{s}}_t = rac{m{s}_t}{1-eta_2^t}$

$$\boldsymbol{w}_t = \boldsymbol{w}_{t-1} - \frac{\eta}{\sqrt{\hat{\boldsymbol{s}}_t} + \epsilon} \odot \hat{\boldsymbol{v}}_t$$

$$\beta_1 = 0.9 \quad \beta_2 = 0.999 \quad \epsilon = 10^{-8}$$

RECAP 1 > RMSPROP > ADADELTA > RECAP 2 ADAM

How it works?

Momentum accelerates motion

RMSprop controls oscillations

Taking advantage of both is what makes Adam powerful and popular

Potential issues Don't trust on the default settings too much

Many hyperparameters to tune: $\beta_1, \beta_2, \eta, \epsilon, \boldsymbol{s}_0 \text{ and } \boldsymbol{v}_0$

The authors observe that the solutions found by adaptive methods generalize worse than SGD, even when these solutions have better training performance

Figure 1: Training (left) and top-1 test error (right) on CIFAR-10. The annotations indicate where the best performance is attained for each method. The shading represents \pm one standard deviation computed across five runs from random initial starting points. In all cases, adaptive methods are performing worse on both train and test than non-adaptive methods. https://arxiv.org/pdf/1705.08292.pdf

References

Dive into Deep Learning, Ch.11.8-11.10 (https://d2l.ai/)

https://akyrillidis.github.io/notes/AdaDelta

M. D. Zeiler "ADADELTA: An adaptive learning rate method" (arXiv:1212.5701, 2012)

D. P. Kingman and J. Lei Ba*"Adam: A method for stochastic optimization" (arXiv:1412.6980)

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Gradient Descent Visualization (https://github.com/lilipads/gradient_descent_viz)

A. C. Wilson et al. "The Marginal Value of Adaptive Gradient Methods in Machine Learning" (arXiv:1705.08292)