TECHNISCHE UNIVERSITÄT BERLIN

SoSe 09 05.10.09

Fakultät II - Mathematik und Naturwissenschaften Dozenten: Bärwolff/Garcke/Penn-Karras/Tröltzsch

Assistent: Dhamo, Döring, Sète

Musterlösung Oktober-Klausur Rechenteil SoSe 09 Analysis II für Ingenieure

1. Aufgabe

Für die Potenzreihe $\sum_{n=0}^{\infty} a_n x^n$ berechnet sich der Konvergenzradius aus $R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$. Die Reihe konvergiert dann für alle |x| < R und divergiert für alle |x| > R. Hier ist

$$R = \lim_{n \to \infty} \left| \frac{\frac{2^n}{n+2}}{\frac{2^{n+1}}{n+3}} \right| = \lim_{n \to \infty} \frac{1}{2} \cdot \frac{n+3}{n+2} = \frac{1}{2},$$

Also konvergiert die Potenzreihe für alle $x \in]-\frac{1}{2},\frac{1}{2}[$ und divergiert für alle $x \in \mathbb{R} \setminus [-\frac{1}{2},\frac{1}{2}].$

Fall $x=-\frac{1}{2}$: $\sum_{n=0}^{\infty}\frac{2^n}{n+2}\frac{1}{(-2)^n}=\sum_{n=0}^{\infty}(-1)^n\frac{1}{n+2}$. Die Folge $\frac{1}{n+2}$ ist streng monoton fallend und $\lim_{n\to\infty}\frac{1}{n+2}=0$. Damit konvergiert die Potenzreihe für $x=-\frac{1}{2}$ nach dem Leibnizkriterium.

Fall $x = \frac{1}{2}$: $\sum_{n=0}^{\infty} \frac{2^n}{n+2} \frac{1}{2^n} = \sum_{n=0}^{\infty} \frac{1}{n+2} = \frac{1}{2} + \sum_{n=1}^{\infty} \frac{1}{n+2}$ ist divergent, da für $n \in \mathbb{N}$, $n \ge 2$:

$$\frac{1}{n+2} \ge \frac{1}{n+n} = \frac{1}{2n} \,.$$

Damit ist $\frac{1}{2}\sum_{n=1}^{\infty}\frac{1}{n}$ eine divergente Minorante und die Potenzreihe für $x=\frac{1}{2}$ divergent.

2. Aufgabe (9 Punkte)

 $f'(x,y) = (-\sin(x), 2y + 2) = (0,0)$ ist erfüllt für y = -1 und $\sin(x) = 0 \Rightarrow x = k\pi$, $k \in \mathbb{Z}$. Die Hessematrix ist

$$f''(x,y) = \begin{pmatrix} -\cos(x) & 0\\ 0 & 2 \end{pmatrix}.$$

Dies ergibt für die kritischen Punkte

$$f''(k\pi,-1) = \begin{pmatrix} -1 & 0 \\ 0 & 2 \end{pmatrix} \text{falls } k \text{ gerade} \,, \quad f''(k\pi,-1) = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \text{falls } k \text{ ungerade} \,.$$

Im ersten Fall sind es somit Sattelpunkte, da $\det(f''(k\pi,-1)) < 0$. Im zweiten Fall lokale Minima mit $f(k\pi,-1) = -2$, da $\det(f''(k\pi,-1)) > 0$ und $\frac{\partial^2 f}{\partial x^2}(k\pi,-1) > 0$. Da $\cos(x) \ge -1$, kann f bzgl. x nicht kleiner werden als in den lokalen Minima. Weiterhin gilt $y(y+2) = (x+1)^2$

 $(y+1)^2-1 \ge -1$, somit sind die lokalen Minima auch globale Minima. f besitzt keine Maxima (weder lokal, noch global).

3. Aufgabe (7 Punkte)

Die Funktion f ist stetig auf \mathbb{R}^2 und die Menge M ist kompakt. Daher besitzt f auf M mind. ein globales Minimum und Maximum. Die Nebenbedingung lautet

$$g(x,y) = x^2 + 4y^2 - 4 = 0$$
.

Wir untersuchen zunächst den singulären Fall:

$$\begin{cases} \operatorname{grad}_{(x,y)^T} g = \vec{0} \\ g(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} \begin{pmatrix} 2x \\ 8y \end{pmatrix} = \vec{0} \\ x^2 + 4y^2 - 4 = 0 \end{cases} \Leftrightarrow \begin{cases} 2x = 0 \\ 8y = 0 \\ x^2 + 4y^2 - 4 = 0 \end{cases}.$$

Dieses Gleichungssystem besitzt keine Lösung, da aus den ersten beiden Gleichungen folgt, dass x =y = 0, folglich 0 - 4 = 0, was falsch ist.

Aufstellen des Gleichungssystems im regulären Fall:

$$\begin{cases} \operatorname{grad}_{(x,y)^T} f = \lambda \operatorname{grad}_{(x,y)^T} g \\ g(x,y) = 0 \end{cases} \Leftrightarrow \begin{cases} \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \lambda \begin{pmatrix} 2x \\ 8y \end{pmatrix} \\ x^2 + 4y^2 - 4 = 0 \end{cases} \Leftrightarrow \begin{cases} 2x = 2\lambda x \\ 2y = 8\lambda y \\ x^2 + 4y^2 - 4 = 0 \end{cases}.$$

Fall 1: x=0. Dann folgt aus der 3. Gleichung, dass $y=\pm 1$. In beiden Fällen folgt dann aus der 2. Gleichung : $\lambda = \frac{1}{4}$.

Fall 2: $x \neq 0$. Aus der 1. Gleichung folgt $\lambda = 1$. In die 2. Gleichung eingesetzt, ergibt dies: y = 0. Aus der 3. Gleichung folgt schließlich: $x = \pm 2$.

Die einzigen Kandidaten für Extrema sind also $(0,\pm 1)^T$ und $(\pm 2,0)^T$ mit den Funktionswerten $f(0,\pm 1)=$ 1 und $f(\pm 2, 0) = 4$.

Damit nimmt f (auf M) in $(0,\pm 1)^T$ globale Minima und in $(\pm 2,0)^T$ globale Maxima an.

4. Aufgabe (8 Punkte)

Zu (i): (qualitativ, Schnittpunkte)

Zu (i): Wir unterteilen zunächst die Menge M in M^+ und M^+ , wobei $M^+ = M_1^+ \cup M_2^+$ mit $M_1^+ = \{(x,y)^T \in \mathbb{R}^2 \mid 0 \le x \le \frac{1}{2}, \ \frac{1}{4}x \le y \le 4x\}$ und $M_2^+ = \{(x,y)^T \in \mathbb{R}^2 \mid \frac{1}{2} \le x \le 2, \ \frac{1}{4}x \le y \le \frac{1}{x}\}$. Analog dazu $M^- = M_1^- \cup M_2^-$ mit $M_1^- = \{(x,y)^T \in \mathbb{R}^2 \mid -\frac{1}{2} \le x \le 0, \ 4x \le y \le \frac{1}{4}x\}$ und $M_2^- = \{(x,y)^T \in \mathbb{R}^2 \mid -2 \le x \le -\frac{1}{2}, \ \frac{1}{x} \le y \le \frac{1}{4}x\}$. Dann gilt $M = M^+ \cup M^-$,

$$\iint_{M^+} dx dy = \int_0^{1/2} \int_{x/4}^{4x} dy dx + \int_{1/2}^2 \int_{x/4}^{1/x} dy dx = \int_0^{1/2} x (4 - \frac{1}{4}) dx + \int_{1/2}^2 \left\{ \frac{1}{x} - \frac{1}{4} x \right\} dx$$
$$= \left[\frac{1}{2} x^2 (4 - \frac{1}{4}) \right]_0^{1/2} + \left[\ln(x) - \frac{1}{8} x^2 \right]_{1/2}^2 = \frac{15}{32} + 2 \ln(2) - \frac{15}{32} = 2 \ln(2) ,$$

 $\iint\limits_{M^+} dx dy = \iint\limits_{M^-} dx dy, \text{ also } \iint\limits_{M} = 4 \ln(2).$

5. Aufgabe (8 Punkte)

Es ist

$$\vec{dO} = \frac{\partial \Phi}{\partial u} \times \frac{\partial \Phi}{\partial v} \, du dv = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} du dv = \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} du dv \,.$$

Dann gilt nach Definition des Flußintegrals

$$\int_{F} \vec{v} \cdot d\vec{O} = \int_{0}^{2\pi} \int_{0}^{2} \begin{pmatrix} 1\\0\\-2uv \end{pmatrix} \cdot \begin{pmatrix} -1\\-1\\1 \end{pmatrix} du dv
= -\int_{0}^{2\pi} \int_{0}^{2} \{1 + 2uv\} du dv
= -\int_{0}^{2\pi} \left[u + u^{2}v \right]_{u=0}^{u=2} dv
= -\int_{0}^{2\pi} \{2 + 4v\} dv = -\left[2v + 2v^{2} \right]_{0}^{2\pi} = -8\pi^{2} - 4\pi.$$

Fakultät II - Mathematik und Naturwissenschaften Dozenten: Bärwolff/Garcke/Penn-Karras/Tröltzsch

Assistent: Dhamo, Döring, Sète

Musterlösung Oktober-Klausur Verständnisteil SoSe 09 Analysis II für Ingenieure

1. Aufgabe (5 Punkte)

Pro richtige Antwort: +; pro falsche Antwort: -. Die minimale Punktzahl dieser Aufgabe beträgt 0.

- (i) falsch,
- (ii) falsch,
- (iii) falsch,
- (iv) richtig,
- (v) falsch.

2. Aufgabe (10 Punkte)

Die Funktion ist differenzierbar und damit auch stetig in den Punkten mit y > 1 und y < 1, denn in diesen offenen Mengen handelt es sich um eine konstante Funktion. In x-Richtung ist g überall partiell differenzierbar, da g partiell konstant ist. In y-Richtung ist g genau für $y \neq 1$ partiell differenzierbar. Für $y \neq 1$ ist g lokal konstant und für y = 1 ist g nicht partiell stetig. Dies kann folgenderweise gezeigt werden: Wäre g partiell stetig in $(x,1)^T$, so müsste $g(x,y_n)=g(x,1)$ gelten für jede Folge y_n die gegen 1 konvergiert. Wähle wir aber zum Beispiel $y_n=1-1/n$, so konvergiert (x,y_n) gegen den Punkt (x,1) aber $g(x,y_n)=-5$ für alle $n\in\mathbb{N}$ und damit $\lim_{n\to\infty}g(x,y_n)=-5\neq 5=g(x,y)$ Dies beweist auch die Unstetigkeit in Punkten mit y=1. g'(x,y) ist der Nullvektor für all $(x,y)^T$ mit $y\neq 1$. Für $(x,1)^T$ ist g nicht stetig und damit auch nicht differenzierbar. Ableitungsmatrix für $y\neq 1$: g'(x,y)=(0,0).

3. Aufgabe (10 Punkte)

zu 1.: Da \mathbb{R}^3 konvex ist, ist die Bedingung rot $\vec{v} = \vec{0}$ ausreichend für die Existenz eines Potenzials.

$$\operatorname{rot} \vec{v}(x,y,z) = \begin{pmatrix} 0 - 0 \\ \lambda x \cos(x^2) - 2x \cos(x^2) \\ 1 - 1 \end{pmatrix} = \begin{pmatrix} 0 \\ (\lambda - 2)x \cos(x^2) \\ 0 \end{pmatrix} = \vec{0} \iff \lambda = 2.$$

zu 2.: Sei also $\lambda = 2$. Gesucht ist eine Funktion $\Phi : \mathbb{R}^3 \to \mathbb{R}$, so dass $\operatorname{grad}_{(x,y,z)} \Phi = \vec{v}(x,y,z)$, also

$$\frac{\partial \Phi}{\partial x}(x,y,z) = 2xz\cos(x^2) + y \;, \\ \frac{\partial \Phi}{\partial y}(x,y,z) = x \text{ und } \\ \frac{\partial \Phi}{\partial z}(x,y,z) = \sin(x^2) + 2z \;.$$

Die erste Gleichung ergibt

$$\Phi(x, y, z) = z\sin(x^2) + yx + c(y, z).$$

Einsetzen in die 2. Gleichung liefert

$$x + \frac{\partial c}{\partial y}(y, z) = x,$$

folglich ist c unabhängig von y, c(y,z)=c(z). Daraus folgt mit der 3. Gleichung schließlich

$$\sin(x^2) + c'(z) = \sin(x^2) + 2z \Rightarrow c(z) = z^2 + C \quad (C \in \mathbb{R}).$$

Eine Stammfunktion von \vec{v} ist $\Phi(x, y, z) = z \sin(x^2) + yx + z^2$.

zu 3.: Zunächst gilt $\vec{c}(0) = \vec{0}$ und $\vec{c}(1) = (0, 1, 1)^T$. Mit Φ aus (ii) folgt dann

$$\int_{c} \vec{v} \cdot \vec{ds} = \Phi(\vec{c}(1)) - \Phi(\vec{c}(0)) = \Phi(0, 1, 1) - \Phi(0, 0, 0) = 1 - 0 = 1.$$

4. Aufgabe (10 Punkte)

- 1. Es handelt sich um eine Kreisscheibe in der xy-Ebene um den Mittelpunkt (1,0,0) mit Radius 1.
- 2. Eine Parametrisierung ist gegeben durch $\vec{x}(r,\phi) = (r\cos(\phi) + 1, r\sin(\phi), 0)^T$ mit $r \in [0,1], \phi \in [0,2\pi]$. Damit ist das vektorielle Oberflächenelement gegeben als

$$\vec{dO} = \cos(\phi), \sin(\phi), 0)^T \times (-r\sin(\phi), r\cos(\phi), 0)^T dr d\phi = (0, 0, r)^T dr d\phi.$$

3. Um mit dem Satz von Stokes ($\,$ für den Satz) das Kurvenintegral über den Kreis zu berechnen, berechnen wir das Flussintegral über F der Rotation von \vec{v} . Die Rotation ist gegeben durch

$$\operatorname{rot} \vec{v}(x, y, z) = (0, 0, -2)^{T}$$
.

Damit ist aber das Flussintegral $\int_F \vec{v} \cdot \vec{dO} \neq 0$ und somit nach Stokes das Kurvenintegral ungleich null.

5. Aufgabe (5 Punkte)

Es gibt je einen Punkt pro Beispiel.

- (i) abgeschlossene Einheitskugel,
- (ii) $\vec{a}_n = (n, n, n)^T$,
- (iii) f(x,y) = -x,
- (iv) f(x, y) = 1,
- (v) f(x,y) = 1.