

H2 Mathematics (9758) Chapter 8 Applications of Differentiation Extra Practice Solutions

2018/MI Promo/1/5(a) $f(x) = x^2 e^{x^2}$, for $x \in \mathbb{R}$, **(i)** $f'(x) = x^2 (2xe^{x^2}) + 2xe^{x^2}$ $=2xe^{x^2}\left(x^2+1\right)$ For the function to be increasing, $f'(x) = 2xe^{x^2}(x^2+1) > 0$ Method 1: By GC, $y = 2xe^{x^2}\left(x^2 + 1\right)$ From the sketch, for $2xe^{x^2}(x^2+1) > 0$, $\therefore x > 0$ Method 2: Since $x^2 + 1 > 0$ and $e^{x^2} > 0$, for all $x \in \mathbb{R}$, When x = 1, f'(1) = 2(1)e(2) = 4e, f(1) = e(ii) Equation of tangent at x = 1: y - e = 4e(x-1) $\therefore y = 4ex - 3e$

Q2	2018/DHS Prelim/2/5(a)
(i)	$\left(x+y\right)^2 = 4e^{xy}$
	$2(x+y)\left(1+\frac{dy}{dx}\right) = 4e^{xy}\left(x\frac{dy}{dx} + y\right)$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2y\mathrm{e}^{xy} - y - x}{y + x - 2x\mathrm{e}^{xy}}$
(ii)	When $x = 0$,
	$(0+y)^2 = 4e^{(0)y}$
	y = 2 (:: y > 0)
	When at (0, 2), $\frac{dy}{dx} = \frac{2(2)-2}{2} = 1$
	Equation of the tangent to the curve at $(0, 2)$ is
	y-2=1(x-0)
	y = x + 2
(iii)	Substitute $y = x + 2$ into $(x + y)^2 = 4e^{xy}$,
	$(x+x+2)^2 = 4e^{x(x+2)}$
	$(2x+2)^2 = 4e^{x^2+2x}$
	$\left(x+1\right)^2 = \mathrm{e}^{x^2+2x}$
	Using G.C.,
	x = -2 or $x = 0$ (reject : it's point A)
	$\therefore B(-2,0)$

2018/HCI Prelim/1/6 (i) $\frac{\mathrm{d}x}{\mathrm{d}t} = 2\cos t$ $\frac{\mathrm{d}y}{\mathrm{d}t} = -\sin t$ $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-\sin t}{2\cos t} = -\frac{\tan t}{2}$ At P, t = pEquation of tangent at P: $y-1-\cos p = -\frac{\tan p}{2}(x-2\sin p)$ $y = 1 + \cos p - \frac{\tan p}{2} x + \frac{\sin^2 p}{\cos p}$ $=1+\frac{\cos^2 p + \sin^2 p}{\cos p} - \frac{\tan p}{2}x$ $=1+\sec p-\frac{\tan p}{2}x$ $2y + x \tan p = 2(1 + \sec p) \text{ (shown)}$ When y = 0, (ii) $\frac{\tan p}{2} x = 1 + \sec p$ $x = \frac{2 + 2\sec p}{\tan p}$ When x = 0, $y = 1 + \sec p$ Method 1: Coordinates of $M = \left(\frac{1 + \sec p}{\tan p}, \frac{1 + \sec p}{2}\right)$ $y = \frac{1 + \sec p}{2} \Rightarrow \sec p = 2y - 1$ $x = \frac{1 + \sec p}{\tan p} = \frac{2y}{\tan p}$ Using $1 + \tan^2 p = \sec^2 p$, $1 + \left(\frac{2y}{x}\right)^2 = (2y-1)^2$ $1 + \frac{4y^2}{x^2} = 4y^2 - 4y + 1$ $y = yx^2 - x^2$ $x^2 = y(x^2 - 1)$ $y = \frac{x^2}{x^2 - 1}$

Method 2:

Coordinates of
$$M = \left(\cot p + \csc p, \frac{1 + \sec p}{2}\right)$$

$$y = \frac{1 + \sec p}{2} \Rightarrow \sec p = 2y - 1$$

$$x = \cot p + \csc p = \frac{\cos p + 1}{\sin p}$$
Using $\sin^2 p + \cos^2 p = 1$,
$$\left(\frac{\cos p + 1}{x}\right)^2 + \left(\frac{1}{2y - 1}\right)^2 = 1$$

$$\frac{\left(\frac{1}{2y - 1} + 1\right)^2}{x^2} + \frac{1}{(2y - 1)^2} = 1$$

$$\frac{(2y)^2}{(2y - 1)^2 x^2} + \frac{1}{(2y - 1)^2} = 1$$

$$4y^2 + x^2 = (4y^2 - 4y + 1)x^2$$

$$y^2 = y^2 x^2 - yx^2$$

$$x^2 = y(x^2 - 1)$$

$$y = \frac{x^2}{x^2 - 1}$$

Q4	2018/MJC Promo/1/6		
(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2$, $\frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{4}{t^2}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \div \frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{2}{t^2}$		
	$dx dt dt t^2$		
	$c = t^2$		
	Gradient of normal = $\frac{t^2}{2}$		
	At point M, $t = 1$, gradient of normal $= \frac{1}{2}$		
	2		
	1.		
	Equation of normal: $y-4=\frac{1}{2}(x-3)$		
	2y = x + 5		
(ii)	At point N: $\left(\frac{4}{t}\right) = \frac{1}{2}(2t+1) + 5$		
	$t^2 + 3t - 4 = 0$		
	$\Rightarrow t=1$		
	(reject : this is point M) or $t = -4$		
	Coordinates of N is $(-7,-1)$		
(iii)			
	Equation of tangent at $P: y - \left(\frac{4}{p}\right) = \frac{-2}{p^2}(x-2p-1)$		
	At point $Q: y=0 \Rightarrow 0-\left(\frac{4}{p}\right)=\frac{-2}{p^2}(x-2p-1)$		
	At point $Q: y = 0 \Rightarrow 0 - \left(\frac{-p}{p}\right) = \frac{-p^2}{p^2}(x - 2p - 1)$		
	x = 4p + 1		
	At point $R: x = 0 \implies \qquad y - \left(\frac{4}{p}\right) = \frac{-2}{p^2}(-2p-1)$		
	$y = \frac{2(4p+1)}{p^2}$		
	Area of triangle $OQR = \frac{1}{2} \left(\frac{2(4p+1)}{p^2} \right) (4p+1)$		
	$= \left(\frac{4p+1}{p}\right)^2$		

Q5	2018/CJC Promo/1/7	
(i)	$kx^2 + 2xy - 3y^2 = 5$	
	$2kx + \left(2x\frac{dy}{dx} + 2y\right) - 6y\frac{dy}{dx} = 0$	
	$\frac{\mathrm{d}y}{\mathrm{d}y} = \frac{2kx + 2y}{\mathrm{d}y}$	
	dx - 6y - 2x	
	$=\frac{kx+y}{3y-x}(\text{shown})$	

For tangents parallel to x-axis, $\frac{dy}{dx} = 0$,

$$kx + y = 0$$

$$y = -kx$$
 or $x = -\frac{y}{k}$

Method 1: Substitute y = -kx into C,

$$kx^{2} + 2x(-kx) - 3(-kx)^{2} = 5$$

 $x^{2}(-k-3k^{2}) = 5$

$$x^2 = \frac{-5}{k + 3k^2}$$

Since k is a non-zero constant,

$$k + 3k^2 < 0$$

$$k(1+3k) < 0$$
$$-\frac{1}{3} < k < 0$$

Substitute $x = -\frac{y}{k}$ into C,

$$k\left(-\frac{y}{k}\right)^{2} + 2\left(-\frac{y}{k}\right)y - 3y^{2} = 5$$

$$ky^{2} - 2ky^{2} - 3k^{2}y^{2} = 5k^{2}$$

$$y^{2}\left(k + 3k^{2}\right) = -5k^{2}$$

$$y^{2} = \frac{-5k^{2}}{k + 3k^{2}}$$

$$= \frac{-5k}{1 + 3k}$$

Since k is a non-zero constant,

$$\frac{5k}{1+3k} < 0 + - + \\
-\frac{1}{3} < k < 0 -\frac{1}{3} = 0$$

Method 3: [Discriminant]

Substitute
$$y = -kx$$
 into C ,
 $kx^2 + 2x(-kx) - 3(-kx)^2 = 5$
 $x^2(-k-3k^2) = 5$ $\Rightarrow x^2 = \frac{-5}{k+3k^2}$
 $(k+3k^2)x^2 + 5 = 0$
 $b^2 - 4ac \ge 0$
 $0 - 4(k+3k^2)(5) \ge 0$
 $k + 3k^2 \le 0$
 $k(1+3k) \le 0$
 $-\frac{1}{3} \le k \le 0$
Since $k \ne 0$, $k \ne -\frac{1}{3}$, $-\frac{1}{3} < k < 0$
Method 4: [Discriminant]
Substitute $x = -\frac{y}{k}$ into C ,
 $k\left(-\frac{y}{k}\right)^2 + 2\left(-\frac{y}{k}\right)y - 3y^2 = 5$
 $ky^2 - 2ky^2 - 3k^2y^2 = 5k^2$
 $y^2(k+3k^2) + 5k^2 = 0$ $\Rightarrow y^2 = \frac{-5k^2}{k+3k^2}$
 $b^2 - 4ac \ge 0$
 $0 - 4(k+3k^2)(5k^2) \ge 0$
 $k+3k^2 \le 0$
 $k(1+3k) \le 0$
 $-\frac{1}{3} \le k \le 0$
Since $k \ne 0$, $k \ne -\frac{1}{3}$, $-\frac{1}{3} < k < 0$

(iii)
$$k = 13, x = 1 \text{ and } y = 2, \frac{dx}{dt} = 5$$
$$\frac{dy}{dx} = \frac{13(1) + (2)}{3(2) - (1)} = 3$$
$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} = 15 \text{ units per second.}$$

Q7	2020/SAJC Promo/1/11
(i)	$v = 2 \times \frac{1}{6} \pi \frac{r}{2} \left(3r^2 + \frac{1}{4}r^2 \right) + \pi r^2 h$
	$= \frac{13}{24}\pi r^3 + \pi r^2 h$
	$h = \frac{v}{\pi r^2} - \frac{13r}{24}$
	$A = 2\pi \left(r^2 + \frac{1}{4}r^2\right) + 2\pi rh$
	$= 2\pi \left(r^2 + \frac{1}{4}r^2\right) + 2\pi r \left(\frac{v}{\pi r^2} - \frac{13r}{24}\right)$
	$=\frac{17}{12}\pi r^2 + \frac{2v}{r}$
(ii)	$\frac{\mathrm{d}A}{\mathrm{d}r} = \frac{17}{6}\pi r - \frac{2v}{r^2}$
	For stationary values, let $\frac{dA}{dr} = 0$
	$\frac{17}{6}\pi r - \frac{2v}{r^2} = 0$
	$17\pi r^3 - 12v = 0$
	$r^3 = \frac{12v}{17\pi}$
	$r = \sqrt[3]{\frac{12v}{17\pi}}$
	$r = \sqrt[3]{\frac{17\pi}{1}}$
	Using second derivative test to check for minimum,
	$\frac{d^2 A}{dr^2} = \frac{17}{6} \pi + \frac{4v}{r^3}$
	When $r = \sqrt[3]{\frac{12\nu}{17\pi}}$,
	$\frac{d^2 A}{dr^2} = \frac{17}{6}\pi + \frac{17}{3}\pi = \frac{17}{2}\pi > 0$
	Therefore, A is minimum when $r = \sqrt[3]{\frac{12v}{17\pi}}$.

Alternative:
$$\frac{AC}{CB} = \frac{PC}{BQ}$$

$$\Rightarrow \frac{x}{y} = \frac{\sqrt{x^2 - 12^2}}{12 - y}$$

$$\Rightarrow x^2 (12 - y)^2 = y^2 (x^2 - 12^2)$$

$$\Rightarrow x^2 \left[y^2 - (12 - y)^2 \right] = 144y^2$$

Rearrange to make *x* the subject, to get the answer.

Let L be the length of the crease AB formed.

$$L^{2} = x^{2} + y^{2} = \frac{6y^{2}}{y - 6} + y^{2}$$

$$\Rightarrow L^{2} = \left[\frac{6y^{2} + y^{2}(y - 6)}{y - 6}\right] \quad \Rightarrow L^{2} = \left[\frac{y^{3}}{y - 6}\right]$$

Differentiating w.r.t. y.

$$\Rightarrow 2L \frac{dL}{dy} = \frac{(y-6)(3y^2) - y^3(1)}{(y-6)^2}$$

$$\Rightarrow 2L \frac{dL}{dy} = \frac{2y^3 - 18y^2}{(y-6)^2} = \frac{2y^2(y-9)}{(y-6)^2}$$

$$\Rightarrow \frac{dL}{dy} = \frac{y^2(y-9)}{(y-6)^2} \cdot \frac{1}{L}$$

When
$$\frac{dL}{dy} = 0 \implies y = 9 \quad (y > 0)$$

у	9-	9	9+
$\mathrm{d}L$	_	0	+
\overline{dy}			
sketch	/		/

$$\therefore L^2 = \frac{9^3}{9-3} = 243$$

$$\Rightarrow L = \sqrt{243} \text{ (since } L > 0) = 15.6 \text{ cm}$$

Chapter 8 Applications of Differentiation Extra Practice Solutions TMJC 2024 2018/MI Promo/1/11 (i) The surface area of the rim $=\pi\left(r+\frac{1}{5}\right)^2-\pi r^2$ $=\pi\left(r^2+\frac{2}{5}r+\frac{1}{25}-r^2\right)$ $= \frac{1}{25}\pi \left(10r + 1\right) \text{ (Shown)}$ $(ii) \quad V = \pi r^2 h = 150\pi$ $\Rightarrow h = \frac{150}{r^2}$ $\frac{\text{Method 1:}}{=\frac{1}{25}\pi(10r+1) + \pi r^2 + \pi\left(r + \frac{1}{5}\right)^2 + 2\pi rh + 2\pi\left(r + \frac{1}{5}\right)\left(h + \frac{1}{5}\right)}$ $= \frac{2}{5}\pi r + \frac{\pi}{25} + \pi r^2 + \pi \left(r^2 + \frac{2}{5}r + \frac{1}{25}\right) + 2\pi r \left(\frac{150}{r^2}\right) + 2\pi \left(rh + \frac{1}{5}r + \frac{1}{5}h + \frac{1}{25}\right)$ $=2\pi\left(r^{2}+\frac{2}{5}r+\frac{1}{25}\right)+2\pi\left(\frac{150}{r}\right)+2\pi\left(r\left(\frac{150}{r^{2}}\right)+\frac{1}{5}r+\frac{1}{5}\left(\frac{150}{r^{2}}\right)+\frac{1}{25}\right)$ $=2\pi\left(r^2+\frac{2}{5}r+\frac{1}{25}\right)+2\pi\left(\frac{150}{r}\right)+2\pi\left(\frac{150}{r}+\frac{1}{5}r+\frac{30}{r^2}+\frac{1}{25}\right)$ $=2\pi\left(r^2+\frac{3}{5}r+\frac{2}{25}+\frac{300}{r}+\frac{30}{r^2}\right)$ (Shown) Method 2: Total surface area = A

$$= 2\pi \left(r + \frac{1}{5}\right)^{2} + 2\pi r h + 2\pi \left(r + \frac{1}{5}\right) \left(h + \frac{1}{5}\right)$$

$$= 2\pi \left(r^{2} + \frac{2}{5}r + \frac{1}{25}\right) + 2\pi r \left(\frac{150}{r^{2}}\right) + 2\pi \left(rh + \frac{1}{5}r + \frac{1}{5}h + \frac{1}{25}\right)$$

$$= 2\pi \left(r^{2} + \frac{2}{5}r + \frac{1}{25}\right) + 2\pi \left(\frac{150}{r}\right) + 2\pi \left(r\left(\frac{150}{r^{2}}\right) + \frac{1}{5}r + \frac{1}{5}\left(\frac{150}{r^{2}}\right) + \frac{1}{25}\right)$$

$$= 2\pi \left(r^{2} + \frac{2}{5}r + \frac{1}{25}\right) + 2\pi \left(\frac{150}{r}\right) + 2\pi \left(\frac{150}{r} + \frac{1}{5}r + \frac{30}{r^{2}} + \frac{1}{25}\right)$$

$$= 2\pi \left(r^{2} + \frac{3}{5}r + \frac{2}{25} + \frac{300}{r} + \frac{30}{r^{2}}\right) \text{ (Shown)}$$

For stationary value of A, $\frac{dA}{dr} = 0$

$$\frac{dA}{dr} = 2\pi \left[2r + \frac{3}{5} - \frac{300}{r^2} - \frac{60}{r^3} \right] = 0$$

$$\Rightarrow 2r + \frac{3}{5} - \frac{300}{r^2} - \frac{60}{r^3} = 0$$

By GC,
$$r = 5.2814$$
 (:: $r > 0$)

1st Derivative test:

r	5.2814+	5.2814	5.2814^{-}
$\frac{\mathrm{d}A}{1}$	< 0	0	> 0
${\mathrm{d}r}$			
Slope	\	_	/

2nd Derivative test:

When
$$r = 5.2814$$
, $\frac{d^2 A}{dr^2} = \pi \left[2 + \frac{600}{r^3} + \frac{180}{r^4} \right] = 39.61 > 0$

Therefore, A is minimum when r = 5.2814.

The minimum
$$A = 2\pi \left(r^2 + \frac{3}{5}r + \frac{2}{25} + \frac{300}{r} + \frac{30}{r^2} \right) = 559.33 \approx 559 \text{ (3s.f.)}$$

Let x be the depth of water in the drinking glass. (iv)

Given
$$\frac{dV}{dt} = -0.5 \text{ cm}^3 \text{s}^{-1}$$
, find $\frac{dx}{dt}$.

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t}$$

Volume of water in the drinking glass, V:

$$V = \pi r^2 x \Rightarrow \frac{\mathrm{d}V}{\mathrm{d}x} = \pi r^2 \ (r \text{ is constant})$$

$$\frac{\mathrm{d}V}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} \implies -0.5 = \pi r^2 \times \frac{\mathrm{d}x}{\mathrm{d}t} \implies \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{-0.5}{\pi r^2}$$

Given h = 2r.

$$150\pi = \pi r^2 h = 2\pi r^3$$
$$r = \sqrt[3]{75}$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{-0.5}{\pi r^2} = \frac{-0.5}{\pi \left(\sqrt[3]{75}\right)^2} = -0.00895 \text{ cms}^{-1}$$

The rate of decrease of the depth of water is 0.00895 cms⁻¹.

2016/MJC Promo/1/10

Let the total time taken for the bird to travel via route *ACDE* be *T* hours.

$$T = \frac{2x}{65} + \frac{y}{90}$$

$$BC = \sqrt{x^2 - 5^2} = \sqrt{x^2 - 25}$$
$$y = k - 2\sqrt{x^2 - 25}$$

$$y = k - 2\sqrt{x^2 - 25}$$

$$T = \frac{2}{65}x + \frac{1}{90}\left(k - 2\sqrt{x^2 - 25}\right)$$

$$\frac{dT}{dx} = \frac{2}{65} + \frac{1}{90} \left(-\frac{4x}{2\sqrt{x^2 - 25}} \right)$$

$$\frac{\mathrm{d}T}{\mathrm{d}x} = \frac{2}{65} - \frac{1}{45} \left(\frac{x}{\sqrt{x^2 - 25}} \right)$$

At stationary point, $\frac{dT}{dx} = 0$

$$\frac{2}{65} - \frac{1}{45} \left(\frac{x}{\sqrt{x^2 - 25}} \right) = 0$$

Using GC, x = 7.2290 (5s.f)

$$x = 7.23 (3 \text{ s.f})$$

Using GC, at x = 7.2290, $\frac{d^2T}{dx^2} = 0.00390$ (3 s.f) > 0

 \therefore total time is minimised when x = 7.23.

Alternative method to prove minimum:

х	7.2290^{-}	7.2290	7.2290^{+}
$\frac{\mathrm{d}T}{\mathrm{d}x}$			
u.x	`		,

 \therefore total time is minimised when x = 7.23.

Time taken via route *ACDE*

$$= \frac{2}{65} (7.2290) + \frac{1}{90} \left(k - 2\sqrt{(7.2290)^2 - 25} \right)$$
$$= 0.10641 + \frac{k}{90}$$

Time taken from island A to island B directly

$$=\frac{k}{65}$$

To choose the route ACDE over flying from island A to island E directly,

$$0.10641 + \frac{k}{90} < \frac{k}{65}$$

$$\frac{k}{234} > 0.10641$$

 \therefore minimum value of k is 25 (nearest integer)