Enhanced Performance Delay and Liveness Monitoring in Segment Routing Networks

draft-gandhi-spring-sr-enhanced-plm-02

```
Rakesh Gandhi - Cisco Systems (<u>rgandhi@cisco.com</u>) - Presenter
Clarence Filsfils - Cisco Systems (<u>cfilsfil@cisco.com</u>)
Navin Vaghamshi - Reliance (<u>Navin.Vaghamshi@ril.com</u>)
Moses Nagarajah - Telstra (<u>Moses.Nagarajah@team.telstra.com</u>)
```

Agenda

- Requirements and Scope
- Summary
- Next Steps

Requirements and Scope

Requirements:

- Performance Delay Monitoring & Liveness Monitoring in SR networks
 - ✓ End-to-end P2P/P2MP SR paths
 - ✓ Applicable to SR-MPLS/SRv6 data planes
- Running single protocol in SR networks
 - ✓ Simplify implementations and reduce development cost
 - ✓ Simplify deployment and reduce operational complexity
- No endpoint dependency
 - ✓ Stateless on endpoint (e.g. endpoint unaware of the protocol)
 - ✓ Higher scale and faster detection interval

Scope:

- Example RFC 5357 (TWAMP Light) defined probe messages
- Example RFC 8762 (STAMP) defined probe messages

History of the Draft

- March 2020
 - Draft was published
- April 2020
 - Presented version 00 in IETF MPLS WG Virtual Meeting

PM Probes in Loopback Mode for SR Policy

- Using PM probes (for example, TWAMP Light/STAMP delay measurement messages) in Loopback Mode
- Probe messages sent using Segment List(s) of the SR Policy Candidate Path(s)
- Probe messages are not punted on the reflector node out of fast-path
- Round-trip delay (t4 t1) metrics are notified when consecutive M number of probe messages have delay values exceed the configured thresholds
- Liveness failure is notified when consecutive N number of return probe messages are not received at the sender

Enhanced Performance Delay and Liveness Monitoring of SR Policy

- Using PM probes in loopback mode enabled with network programming function
 - The network programming function optimizes the "operations of punt, add receive timestamp and inject the probe packet" on the reflector node
- Reflector node adds the receive timestamp in the payload of the received probe message without punting the message
 - Only adds the receive timestamp if the source address or destination address in the probe message matches the local node address
- One-way delay (t2 t1) metrics are notified when consecutive M number of probe messages have delay values exceed the configured thresholds
- Liveness failure is notified when consecutive N number of return probe messages are not received at the sender

Example Probe Messages for Timestamp and Forward Function

- Sender adds Transmit Timestamp (t1)
- Reflector adds Receive Timestamp (t2) at fixed offset in payload locally provisioned (consistently in the network)
 - E.g. offset-byte 16 from the start of the payload

SR-MPLS with Timestamp and Forward Function

```
Label(1)
                                 |s|
         Label(n)
Timestamp Label (TBA1)
IP Header
  Source IP Address = Reflector IPv4 or IPv6 Address
  Destination IP Address = Sender IPv4 or IPv6 Address
 Protocol = UDP
 UDP Header
  Source Port = As chosen by Sender
  Destination Port = As chosen by Sender
 Payload
   Example Probe Message with Timestamp Label for SR-MPLS
```

- Extended Special-purpose label (TBA1) is defined for Timestamp and Forward network programming
- Reverse Path can be IP or SR-MPLS
- Source and Destination Addresses are swapped to represent the Reverse direction path

SRv6 with Timestamp and Forward Function

```
IP Header
 Source IP Address = Sender IPv6 Address
 Destination IP Address = Destination IPv6 Address
SRH as specified in RFC 8754
 <Segment List>
 END.TSF with Target SID
IP Header
 Source IP Address = Reflector IPv6 Address
 Destination IP Address = Sender IPv6 Address
UDP Header
 Source Port = As chosen by Sender
 Destination Port = As chosen by Sender
Payload
      Example Probe Message with Endpoint Function for SRv6
```

- Endpoint Function END.TSF is defined for Timestamp and Forward network programming and is carried for the Reflector node SID
- Reverse path can be IP
 - Reflector node removes SRH
- Reverse path can be SR
 - Reverse direction SR path carried in SRH
 - Reflector node does not remove the SRH
- Source and Destination Addresses are swapped to represent the Reverse direction path in the inner IPv6 header

ECMP Support for SR Paths

- SR Paths can have ECMP between the ingress and transit nodes, between transit nodes and between transit and egress nodes.
- PM probe messages can take advantage of the hashing function in forwarding plane.
- Existing forwarding mechanisms are applicable to PM probe messages. Examples are:
 - For IPv4
 - Sweeping destination address in IPv4 header (e.g. 127/8) if return path is also SR-MPLS
 - For IPv6
 - Sweeping flow label in IPv6 header

Example Provisioning Model

Next Steps

- Welcome your comments and suggestions
- Requesting SPRING WG adoption

Thank you

Enhanced Loopback Mode for SR-MPLS Policy

