Lenguajes de programación

Paradigma de la programación LÓGICA

<mark>Introducció</mark>n al lenguaje PROLOG

Programación lógica

- Perteneciente al grupo de los lenguajes declarativos.
 - Planteamiento de la solución a un problema basado en un QUE y no en un COMO.
- Paradigma de mayor abstracción.
- Basado en el pensamiento lógico del ser humano (Lógica como área de estudio: Aristóteles, Boole).
- Formalmente basado en el cálculo de predicados de primer orden (CP1).

Características generales

- Programas no determinísticos.
- No se utilizan declaraciones de tipos de datos.
- Ambiente de traducción basado en interpretación.
- Modularización. Parámetros de entrada y/o salida pero sin distinción en su declaración.

Características generales

- Abstracción de control basada en la recursividad.
- Abstracción de datos basada en la estructura de la lista y en describir relaciones entre objetos.
- Internamente, se generan estructuras jerárquicas de búsqueda.
- Automatización del proceso de búsqueda de soluciones -> Mayor abstracción, pero menor eficiencia.

Cálculo de predicados (lógica de primer orden)

- Mundo constituido por objetos.
- Los objetos poseen propiedades.
- Entre los objetos existen relaciones.
- Algunas relaciones son funciones

Ejemplos y tipos de símbolos

- Términos
 - Objetos en el mundo
 - carros, fábricas, Michael Jordan, ...
- Predicados
 - Unarios: propiedades de objetos
 - color, forma, altura, ...
 - n-arios: relaciones entre objetos
 - mayor que, entre, enseñar, ...
- **Funciones**
 - Mapeo de objetos a objetos
 - padre-de, suma, ...

Sintaxis CP1

```
Oración → OraciónAtómica

Oración Conectivo Oración
Cuantificador Variable ... Oración
¬ Oración
( Oración)

OraciónAtómica → Predicado(Término ....)
Término = Término

Término → Función (Término ...)
Constante | Variable
```

Sintaxis CP1

Ejemplos de Oraciones

- Mujer(Maria)
- Muerde(Fido)
- Quiere(Fido,Maria)
- ∀x Izquierda(x,A)
- $\forall x [Perro(x) \Rightarrow Muerde(x)]$
- $\exists x [Mexicano(x) \land \neg Valiente(x)]$
- $\forall x [Persona(x) \Rightarrow \exists y Amigo(x,y)]$

Lógica de primer orden...

- Un programa es un conjunto de oraciones lógicas que modelan el conocimiento de un dominio.
- La ejecución consiste en la realización de pruebas de verdad por medio de deducciones o consecuencias de las reglas, dándole así un significado al programa.

Aplicaciones

- Inteligencia artificial
- Bases de datos relacionales
- Procesamiento de lenguaje natural
- Sistemas basados en el conocimiento
-

Lenguaje PROLOG

- Lenguaje de propósito general cuyo nombre viene del francés
 Programation et Logique
- Surge a finales de los años 70's.
- Originario de la Universidad de Marsella en Francia, con los antecedentes de la Universidad de Edimburgo.
 - Sus creadores son Alan Colmenauer y Philipe Roussel, basados en los estudios previos de Robert Kowalski.

Intérprete de PROLOG

 Obtener la versión gratuita de SWI Prolog en:

http://www.swi-prolog.org/

 Checar el manual en línea que contiene el Help.

SWI-Prolog

- SWI-Prolog ofrece un ambiente de software gratis para programar en Prolog.
- Se ofrece junto con la herramienta gráfica XPCE, para cubrir las necesidades de aplicaciones en el mundo real.
- SWI-Prolog es ampliamente usado en investigación y educación, así como en aplicaciones comerciales.

Usando SWI-Prolog

- Ejecutarlo por medio del shorcut o con doble-click sobre un programa .pl
- Para cargar un programa desde la consola de SWI-Prolog, usar una de las siguientes:
 - ◆ ?- ['archivo.pl'].
 - ◆ ?- consult('archivo.pl').
 - Se asume que el archivo se encuentra en la carpeta de trabajo.
- Ejecutar consultas (<u>queries</u>) acerca del programa.

Algunos Comandos Útiles

- pwd. despliega el nombre del archivo de trabajo
- ls. lista los archivos en el directorio de trabajo
- edit(+Spec). edita archivos, predicados, etc. especificados en Spec.
- apropos (+Key). busca todos los predicados que contienen Key en su nombre o descripción corta
- help(Pred). despliega la ayuda sobre el predicado Pred.
- listing. Lista el programa en memoria.
- emacs. Ejecuta un editor tipo emacs (recomendado).

Cláusulas de Horn

 Los programas en Prolog se componen de cláusulas de Horn que constituyen oraciones del tipo "Si es verdad el antecedente, entonces es verdad el consecuente".

Forma LPO:

$$\mathbf{a_1} \wedge \mathbf{a_2} \wedge \mathbf{a_3} \wedge \dots \wedge \mathbf{a_n} \Rightarrow \mathbf{b}$$

◆ b es verdad si todas las a_i son verdaderas.

Cuerpo

- Representa una implicación.
- No obstante, en Prolog se escribe el consecuente antes que el antecedente.

Cabeza

b:- a₁, a₂, a₃,, a_n

Un programa en Prolog se compone de...

- Declaraciones de HECHOS acerca de los objetos y sus relaciones.
 - ◆ Son cláusulas de Horn sin cuerpo.
- Declaración de REGLAS acerca de los objetos y sus relaciones.
 - ◆ Son cláusulas de Horn con cuerpo.
- Consultas, interrogaciones o queries.
 - Provocan el proceso de resolución y unificación de reglas y/o hechos para instanciar variables y dar resultados.
 - Son cláusulas de Horn sin cabeza.

Hechos

- La sintaxis de un hecho es pred(arg₁, arg₂, ..., arg_n)
- Donde *pred* es el nombre de una relación
- Donde los argumentos pueden ser:
 - Constantes
 - Numéricas (reales o enteros)
 - Strings (delimitadas con apóstrofes)
 - Atómicas (representadas por símbolos que comienzan con minúsculas)
 - Variables
 - Con nombre (comienzan con mayúsculas)
 - Sin nombre (guion bajo '_')
 - ◆ Estructuras (normalmente funciones)

Ejemplos de Hechos

- masculino(juan).
- femenino(maria).
- papa(juan, maria).
- hija(maria, juan).
- mama(maria, pedro).
- regalo(maria, juguete, pedro).
- suma(0,1,1).

Consultas

- Comprobación de la veracidad de un hecho, o bien, relaciones entre objetos.
- Las consultas se denominan metas.
- Se plantean directamente a nivel del intérprete.
- Se responden siguiendo el principio de la correspondencia de patrones ("pattern matching").

Ejemplos de CONSULTAS

```
?- papa(juan, maria). --> SI
```

?- suma(1, 2, 3). --> NO

Negación como falla: se

considera falso si no se puede probar (<u>Suposición del Mundo</u> Cerrado)

Consultas cuantificadas

- Uso de variables para cuantificar la consulta.
- Ejemplos:

```
?- masculino(X). X = juan
```

?- suma(X, Y, 1). X = 0, Y = 1

?- papa(juan, X). X = maria

Uso de conjunciones

Ejemplos:

?- papa(juan, X), femenino(X).

X = maria

?- papa(juan, X), mama(X, Y).

X =maria, Y = pedro

Definición de REGLAS

Útiles cuando un hecho depende del cumplimiento de otros hechos (cláusula de Horn).

Observar que las variables son locales a cada regla

Ejemplos:

```
hijo(X, Y) :- papa(Y, X), masculino(X).
hijo(X, Y) :- mama(Y, X), masculino(X).
padre(X, Y) :- papa(X, Y); mama(X, Y).
hijo(X, Y) :- padre(Y, X), masculino(X).
Disyunción (OR)
```

Ejemplo Completo

Sintaxis Procedimientos: hechos + reglas Variables: mayúscula Predicados, constantes y funciones: minúscula

Cláusulas:

```
empleado(juan, 22, e1).
empleado(pedro, 19, e2).
empleado(rosa, 22, e3).
estudiante(rosa, informatica).
estudiante(alberto, farmacia).
estudiante_trabajador(X):-
    estudiante(X,Y),
    empleado(X,Z,W).

    Variable anónima
```

Consultas:

```
?- empleado(N,22, ).
N = juan ;
N = rosa
?- estudiante_trabajador(X).
X = rosa
```