- 1. Demostrar las siguientes afirmaciones. Justificar **todos** los pasos, indicando las propiedades usadas.
 - (a) (Propiedad Cancelativa de +) Si a + b = a + c entonces b = c.
 - (b) (*Unicidad del inverso*) Probar que si $a, b, c \in \mathbb{R}$ con $a \neq 0$, cumplen que $a \cdot b = 1$ y $a \cdot c = 1$, entonces b = c.
 - (c) Si ax = a para algún número $a \neq 0$, entonces x = 1.
 - (d) $(x+y)^2 = x^2 + 2xy + y^2$.
 - (e) $(ab)^{-1} = a^{-1}b^{-1}$, si $a, b \neq 0$. ¿Cómo debería ser si · no fuera conmutativo?
 - (f) Probar que ab = 0 si y sólo si a = 0 ó b = 0.
 - (g) Probar que (-1)a = -a para todo $a \in \mathbb{R}$.
 - (h) Probar que (-1)(-1) = 1.
- 2. Demostrar las siguientes afirmaciones. Justificar todos los pasos usando los axiomas y las propiedades probadas en el Ejercicio 1.
 - (a) a(b-c) = ab ac, para todos $a, b, c \in \mathbb{R}$.
 - (b) $x^2 y^2 = (x y)(x + y)$.
 - (c) Si $x^2 = y^2$, entonces x = y ó x = -y.
 - (d) (-a)(-b) = ab, para todo par de números reales a, b.
- **3.** ¿Dónde está el error de la siguiente "demostración"? 1 Supongamos x=y. Entonces,

$$x^{2} = xy,$$

$$x^{2} - y^{2} = xy - y^{2},$$

$$(x+y)(x-y) = y(x-y),$$

$$x+y=y,$$

$$2y = y,$$

$$2 = 1.$$

- 4. Resolver las siguientes ecuaciones completando cuadrados.
 - (a) $x^2 10x + 25 = 0$.
 - (b) $2x^2 + x 6 = 30$.
 - (c) $ax^2 + bx + c = 0$ con $a \neq 0$. ¿Le es familiar el resultado obtenido?
- **5.** (a) Probar que si $a^3 = 1$, entonces a = 1.
 - (b) Usar el inciso anterior para deducir que si $a^3 = b^3$, entonces a = b.
- 6. Sean a,b,c números reales. Demostrar las siguientes afirmaciones:
 - (a) Si $a \le b$, entonces $a + c \le b + c$.
 - (b) Si a < b y c < d, entonces a + c < b + d.
 - (c) Si a < b y c < 0, entonces ac > bc.
 - (d) Si a > 1, entonces $a < a^2$.

¹El primero: ¡no justificó qué hizo en cada paso!

Práctico 1

((e)	ab > 0	\iff	(a > 0)	v h > 0) ó ((a < 0)	y h < 0)
١		1 u	$\overline{}$	(u > 0)	y <i>U</i> / U	, 0	$a \sim 0$, , , ,	, ,

(f) Si
$$a^2 < b^2$$
 y $a > 0$, entonces $b > a$ ó $b < -a$.

7. Para cada una de las siguientes desigualdades, hallar el conjunto de todos los números reales x que las satisfacen y graficar el resultado en la recta real.

(a)
$$4 - x < 3 - 3x$$
.

(a)
$$4 - x < 3 - 3x$$
.
(b) $5 - x^2 < 8$.
(c) $x^2 > 9$.
(d) $x^2 - 4x + 3 > 0$.
(e) $x + 1 > x$.
(f) $x - 1 > x$.
(g) $-\frac{3}{x} > 1$.
(h) $\frac{x-1}{x+1} > 0$.
(i) $\frac{1}{x} + \frac{1}{1-x}$

(g)
$$-\frac{3}{x} > 1$$
.

(b)
$$5 - x^2 < 8$$

(e)
$$x + 1 > x$$

(h)
$$\frac{x-1}{x+1} > 0$$
.

(c)
$$x^2 > 9$$

(f)
$$x - 1 > x$$

(i)
$$\frac{1}{x} + \frac{1}{1-x} > 0$$
.

8. Decidir si las siguientes afirmaciones son verdaderas o falsas, justificando cada respuesta.

(a) Si
$$a < b$$
 y $c < d$ entonces $a - c < b - d$.

(b) Si a < b y c no es negativo, entonces ac < bc.

(c)
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y < 0.$$

(d)
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, xy > 0.$$

9. Expresar lo siguiente prescindiendo de las barras de valor absoluto, tratando por separado distintos casos cuando sea necesario.

(a)
$$|(|x|-1)|$$
.

(b)
$$a - |(a - |a|)|$$
.

10. Demostrar las siguientes afirmaciones:

(a)
$$|x| = |-x|$$
 para todo $x \in \mathbb{R}$.

(b)
$$|xy| = |x||y|$$
 para todo $x, y \in \mathbb{R}$.

(c)
$$|x^{-1}| = |x|^{-1}$$
 para todo $x \in \mathbb{R}, x \neq 0$.

11. Resolver las siguientes ecuaciones.

(a)
$$|x-3| = c$$
 $(c \in \mathbb{R})$. (b) $|x-1||x+2| = 3$. (c) $|x-1| + |x+2| = 3$.

(b)
$$|x-1||x+2|=3$$
.

(c)
$$|x-1|+|x+2|=3$$
.

12. Resolver las siguientes desigualdades, interpretarlas en términos de distancias, y graficar en cada caso el conjunto de soluciones en la recta real.

$$(2) |x - 3| < 8$$

(b)
$$|x-3| > 8$$

(c)
$$|x-3| < 0$$

(a)
$$|x-3| < 8$$
. (b) $|x-3| \ge 8$. (c) $|x-3| < 0$. (d) $|2x-3| > 1$.

13. Probar que se cumplen las siguientes desigualdades para todos $x, y \in \mathbb{R}$.

(a)
$$|x-y| < |x| + |y|$$

(b)
$$|x - y| \ge |x| - |y|$$
.

(a)
$$|x - y| \le |x| + |y|$$
. (b) $|x - y| \ge |x| - |y|$. (c) $|x - y| \ge ||x| - |y||$.

14. Determinar cuáles de los siguientes subconjuntos de números reales tiene supremo, ínfimo, máximo o mínimo. Justificar con demostraciones.

(a)
$$[3,8)$$
.

(d)
$$\{\frac{1}{n} \mid n \in \mathbb{Z}, n \neq 0\}.$$

(d)
$$\{\frac{1}{n} \mid n \in \mathbb{Z}, n \neq 0\}.$$
 (g) $\{x \in \mathbb{N} \mid 0 < x < \sqrt{2}\}.$

(b)
$$(-\infty, \pi)$$
.

(e)
$$\{3 - \frac{1}{n} \mid n \in \mathbb{N}\}$$

(b)
$$(-\infty, \pi)$$
. (e) $\{3 - \frac{1}{n} \mid n \in \mathbb{N}\}$. (h) $\{x \in \mathbb{Q} \mid 0 < x < \sqrt{2}\}$. (c) $\{6k \mid k \in \mathbb{Z}\}$. (f) $\{x \in \mathbb{Q} \mid -\frac{3}{4} \le x \le 0\}$. (i) $\{x \in \mathbb{Q} \mid 0 \le x \le \sqrt{2}\}$.

(c)
$$\{6k \mid k \in \mathbb{Z}\}.$$

(f)
$$\{x \in \mathbb{Q} \mid -\frac{3}{4} \le x \le 0\}.$$

(i)
$$\{x \in \mathbb{Q} \mid 0 \le x \le \sqrt{2}\}$$

15. Probar que si A y B son subconjuntos de \mathbb{R} acotados superiormente, entonces $A \cup B$ es acotado superiormente.

- **16.** Sean A y B subconjuntos no vacíos de $\mathbb R$ tales que $x \leq y$ para todo $x \in A, y \in B$. Demostrar que:
 - (a) $\sup A \leq y$ para todo $y \in B$.
 - (b) $\sup A \leq \inf B$.
- 17. Determinar si los siguientes subconjuntos de \mathbb{R} son densos (Aquí, $X \setminus Y$ denota la resta de conjuntos).
 - (a) $\{x \in \mathbb{R} : x^3 < 100\}.$

(c) $\mathbb{R} \setminus (0, 10^{-5})$.

(b) $\mathbb{R} \setminus (0, 2]$.

- (d) $\mathbb{Q} \setminus \{0\}$.
- 18. Decidir si las siguientes afirmaciones son verdaderas o falsas, justificando cada respuesta.
 - (a) Si sup $A \leq \inf B$, entonces $A \cap B = \emptyset$.
 - (b) Un conjunto formado por todos los números reales salvo un número finito de ellos es denso.

EJERCICIOS EXTRA

- 19. Enunciar y probar una Propiedad Cancelativa para el producto.
- **20.** Escribir todas las versiones del Ejercicio 6 (b) que valen cambiando algunos (o todos) los < por \le .
- **21.** Determinar cuáles $a \in \mathbb{R}$ son mayores, iguales o menores a su cuadrado. (Ayuda: usar el Ejercicio 6 (d)).
- 22. Decidir si las siguientes afirmaciones son verdaderas o falsas, justificando cada respuesta.
 - (a) Si $a, b, c \in \mathbb{R}$ cumplen que $a \cdot b = a \cdot c = 1$ entonces b = c. (Comparar con el Ejercicio 1 (b)).
 - (b) Si $a^2 = 1$, entonces a = 1 ó a = -1.
 - (c) Si $a^2 = b^2$, entonces $a^3 = b^3$.
 - (d) $\max\{x, -x\} = |x|$ para todo $x \in \mathbb{R}$.
- **23.** Sea $P := \{x \in \mathbb{R} \mid 0 < x\}$, el conjunto de los números positivos.
 - (a) Probar que P satisface las siguientes propiedades:
 - (P10) Para todos los reales a, una y sólo una de las siguientes se cumple:
 - a = 0;

- $a \in P$;
- $-a \in P$.
- (P11') P es cerrado bajo +: para todos $a, b \in P$, $a + b \in P$. P es cerrado por
- (P12') P cerrado bajo el producto: para todos $a, b \in P$, $a \cdot b \in P$.
- (b) Recíprocamente, a partir de los axiomas (P1)–(P9) junto a la afirmación de que existe un conjunto $P \subseteq \mathbb{R}$ que satisface (P10')–(P12') y **definiendo** "a < b" como " $b a \in P$ ", entonces se pueden demostrar los axiomas originales (P10)–(P12).