(11) EP 1 108 790 A2

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 20.06.2001 Bulletin 2001/25
- (21) Application number: 00127688.0
- (22) Date of filing: 18.12.2000

- (51) Int CI.7: **C12Q 1/68**, C07H 21/04, C12N 15/63, C07K 14/34, C12R 1/15, G06F 17/00, C12R 1/13, G01N 33/50
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE TR

 Designated Extension States:

 AL LT LV MK RO SI
- (30) Priority: 16.12.1999 JP 37748499 07.04.2000 JP 2000159162 03.08.2000 JP 2000280988
- (83) Declaration under Rule 28(4) EPC (expert solution)
- (71) Applicant: KYOWA HAKKO KOGYO CO., LTD. Chiyoda-ku, Tokyo 100-8185 (JP)
- (72) Inventors:
 - Nakagawa, Satochi,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
 - Mizoguchi, Hiroshi,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Wachida-shi, Tokyo 194-8533 (JP)

- Ando, Seiko, c/o Kyowa Hakko Kogyo Co., Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Hayashi, Mikiro,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Ochiai, Keiko, c/o Kyowa Hakko Kogy C ..Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Yokoi, Haruhiko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Tateishi, Naoko,
 c/o Kyowa Hakko Kogyo Co.,Ltd.
 Machida-shi, Tokyo 194-8533 (JP)
- Senoh, Akihiro, c/o Kyowa Hakko Kogyo Co.,Ltd. Wachida-shi, Tokyo 194-8533 (JP)
- Ikeda, Masato, c/o Kyowa Hakko Kogyo Co.,Ltd. Machida-shi, Tokyo 194-8533 (JP)
- Ozaki, Akio, c/o Kyowa Hakko Kogyo Co., Ltd. Hofu-shi, Yamaguchi 747-8522 (JP)
- (74) Representative: VOSSIUS & PARTNER
 Siebertstrasse 4
 81675 München (DE)

(54) Novel polynucleotides

(57) Novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polypeptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays

comprising the polynucleotides and fragments thereof, recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded which are readable in a computer, and use of them.

RECEIVED

JAN 0 8 2002

TECH CENTER 1600/2900

EP 1 108 790 A.

Description

10

20

25

30

35

50

55

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to novel polynucleotides derived from microorganisms belonging to coryneform bacteria and fragments thereof, polyneptides encoded by the polynucleotides and fragments thereof, polynucleotide arrays comprising the polynucleotides and fragments thereof, computer readable recording media in which the nucleotide sequences of the polynucleotide and fragments thereof have been recorded, and use of them as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

2. Brief Description of the Background Art

[0002] Coryneform bacteria are used in producing various useful substances, such as amino acids, nucleic acids, vitamins, saccharides (for example, ribulose), organic acids (for example, pyruvic acid), and analogues of the above-described substances (for example, N-acetylamino acids) and are very useful microorganisms industrially. Many mutants thereof are known.

[0003] For example, Corynebacterium glutamicum is a Gram-positive bacterium identified as a glutamic acid-producing bacterium, and many amino acids are produced by mutants thereof. For example, 1,000,000 tor/year of L-glutamic acid which is useful as a seasoning for umami (delicious taste), 250,000 tor/year of L-tysine which is a valuable additive for livestock feeds and the like, and several hundred tor/year or more of other amino acids, such as L-arginin, L-proline, L-glutamine, L-tryptophan, and the like, have been produced in the world (Nikkei Bio Yearbook 99, published by Nikkei BP (1998)).

[0004] The production of amino acids by Corynebacterium glutamicum is mainly carried out by its mutants (metabolic mutants) which have a mutated metabolic pathway and regulatory systems. In general, an organism is provided with various metabolic regulatory systems so as not to produce more amino acids than it needs. In the biosynthesis of L-lysine, for example, a microorganism belonging to the genus Corynebacterium is under such regulation as preventing the excessive production by concerted inhibition by lysine and threonine against the activity of a biosynthesis enzyme common to lysine, threonine and methionine, i.e., an aspartokinase, (J. Biochem., 65: 849-859 (1969)). The biosynthesis of arginine is controlled by repressing the expression of its biosynthesis gene by arginine so as not to biosynthesize an excessive amount of arginine (Microbiology, 142: 99-108 (1996)). It is considered that these metabolic regulatory mechanisms are deregulated in amino acid-producing mutants. Similarly, the metabolic regulation is d regulated in mutants producing nucleic acids, vitamins, saccharides, organic acids and analogues of the above-described substances so as to improve the productivity of the objective product.

[0005] However, accumulation of basic genetic, biochemical and molecular biological data on coryneform bacteria is insufficient in comparison with *Escherichia coli, Bacillus subtilis*, and the like. Also, few findings have been obtain d on mutated genes in amino acid-producing mutants. Thus, there are various mechanisms, which are still unknown, of regulating the growth and metabolism of these microorganisms.

[0006] A chromosomal physical map of *Corynebacterium glutamicum* ATCC 13032 is reported and it is known that its genome size is about 3,100 kb (*Mol. Gen. Genet., 252*: 255-265 (1996)). Calculating on the basis of the usual g n density of bacteria, it is presumed that about 3,000 genes are present in this genome of about 3,100 kb. Howev r, only about 100 genes mainly concerning amino acid biosynthesis genes are known in *Corynebacterium glutamicum*, and the nucleotide sequences of most genes have not been clanfied hitherto.

[0007] In recent years, the full nucleotide sequence of the genomes of several microorganisms, such as Escherichia coli, Mycobacterium tuberculosis, yeast, and the like, have been determined (Science, 277: 1453-62 (1997); Nature, 393: 537-544 (1998); Nature, 387: 5-105 (1997)). Based on the thus determined full nucleotide sequences, assumption of gene regions and prediction of their function by comparison with the nucleotide sequences of known gen is have been carried out. Thus, the functions of a great number of genes have been presumed, without genetic, biochemical or molecular biological experiments.

[0008] In recent years, moreover, techniques for monitoring expression levels of a great number of genes simultaneously or detecting mutations, using DNA chips, DNA arrays or the like in which a partial nucleic acid fragment of a gene or a partial nucleic acid fragment in genomic DNA other than a gene is fixed to a solid support, have been diveloped. The techniquesic intribute to the analysis of microorganisms, such as yeasts, *Mycobacterium tuberculosis*, *Mycobacterium bovis* used in BCG vaccines, and the like (*Science*, 278: 680-686 (1997); *Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999); *Science*, 284: 1520-23 (1999)).

SUMMARY OF THE INVENTION

5

10

25

30

40

45

50

55

[0009] An object of the present invention is to provide a polynucleotide and a polypeptide derived from a microorganism of coryneform bacteria which are industrially useful, sequence information of the polynucleotide and the polypeptide, a method for analyzing the microorganism, an apparatus and a system for use in the analysis, and a method for breeding the microorganism.

[0010] The present invention provides a polynucleotide and an oligonucleotide derived from a microorganism belonging to coryneform bacteria, oligonucleotide arrays to which the polynucleotides and the oligonucleotides are fixed, a polypeptide encoded by the polynucleotide, an antibody which recognizes the polypeptide, polypeptide arrays to which the polypeptides or the antibodies are fixed, a computer readable recording medium in which the nucleotide sequences of the polynucleotide and the oligonucleotide and the amino acid sequence of the polypeptide have been recorded, and a system based on the computer using the recording medium as well as a method of using the polynucleotide and/or polypeptide sequence information to make comparisons.

15 BRIEF DESCRIPTION OF THE DRAWING

[0011] Fig. 1 is a map showing the positions of typical genes on the genome of *Corynebacterium glutamicum* ATCC 13032.

[0012] Fig. 2 is electrophoresis showing the results of proteome analyses using proteins derived from (A) Coryne-bacterium glutamicum ATCC 13032, (B) FERM BP-7134, and (C) FERM BP-158.

[0013] Fig. 3 is a flow chart of an example of a system using the computer readable media according to the pre invention.

[0014] Fig. 4 is a flow chart of an example of a system using the computer readable media according to the pr s nt invention.

DETAILED DESCRIPTION OF THE INVENTION

[0015] This application is based on Japanese applications No. Hei. 11-377484 filed on December 16, 1999, No. 2000-159162 filed on April 7, 2000 and No. 2000-280988 filed on August 3, 2000, the entire contents of which are

[0016] From the viewpoint that the determination of the full nucleotide sequence of *Corynebacterium glutamicum* would make it possible to specify gene regions which had not been previously identified, to determine the function of an unknown gene derived from the microorganism through comparison with nucleotide sequences of known genes and amino acid sequences of known genes, and to obtain a useful mutant based on the presumption of the metabolic regulatory mechanism of a useful product by the microorganism, the inventors conducted intensive studies and, as a whole genome shotgun method.

[0017] Specifically, the present invention relates to the following (1) to (65):

- A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium, said method comprising:

(a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides silected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides.

(b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bact rium, a labeled polynucleotide d rived from a mutant of the coryneform bact rium or a lab led polynucleotide to be examined, under hybridization conditions.

- (c) detecting any hybridizati n, and
- (d) analyzing the r sult of the hybridization.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at I ast two of the third polynucleotides, or at I ast two of the first, second and third polynucleotides.

- (2) The method according to (1), wher in the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (3) The method according to (2), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (4) The method according to (1), wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
 - (5) The method according to (1), wherein the polynucleotide to be examined is derived from Escherichia coli.
 - (6) A polynucleotide array, comprising:

5

10

15

20

25

30

35

40

45

50

55

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

As used herein, for example, the at least two polynucleotides can be at least two of the first polynucleotides, at least two of the second polynucleotides, at least two of the third polynucleotides, or at least two of the first, second and third polynucleotides.

- (7) A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- (8) A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
- (9) A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
- (10) A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotid sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- (11) A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of (7) to (10), or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
- (12) A recombinant DNA comprising the polynucleotide of any one of (8) to (11).
- (13) A transformant comprising the polynucleotide of any one of (8) to (11) or the recombinant DNA of (12).
- (14) A method for producing a polypeptide, comprising:

culturing the transformant of (13) in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of (8) or (9) in the medium, and recovering the polypeptide from the medium.

- (15) A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:
 - culturing the transformant of (13) in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.
- (16) A polypeptide encoded by a polynucle tide comprising the nucleotide sequence selected from SEQ ID NOS: 2 to 3431.
 - (17) A polypeptide comprising the amino acid si quence selected from SEQ ID NOS:3502 to 6931.
 - (18) The polypeptide according to (16) or (17), wherein at I ast one amino acid is deleted, replac d, inserted or

added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.

- (19) A polypeptide comprising an amino acid si quenc having a homology of at least 60% with the amino acid sequince of the polypeptide of (16) or (17), and having an activity which is substantially the same as that of the polypeptide.
- (20) An antibody which recognizes the polypeptide of any one of (16) to (19).
- (21) A polypeptide array, comprising:

5

10

15

25

30

35

40

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- (22) A polypeptide array, comprising:
 - at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of (16) to (19) and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.
- (23) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storaged vice for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - (24) A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and
 - (iv) screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
 - (25) A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (I) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous t the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - (26) A method based on a computer for identifying a target sequence or a target structure motif derived from a corynef rm bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;

(ii) at least temporarily storing said information; (iii) comparing the at least one amino acid's quenc information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and (iv) screening and analyzing amino acid sequ nce information which is coincident with or analogous to the target sequence or target structure motif information. (27) A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following: (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) a data storage device for at least temporarily storing the input information; (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information, and determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and (iv) an output devices that shows a function obtained by the comparator. (28) A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encod d by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following: (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information; (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence s lected from SEQ ID NOS:2 to 3501. (29) A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:

- (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
- (ii) a data storing device for at least temporarily storing the input information;
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polyp ptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- (30) A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;

5

10

15

20

25

30

35

40

45

50

55

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or anal gous to the p lypeptide having at I ast one amino acid sequence s lected from SEQ ID NOS:3502 to 7001.
- (31) The system according to any one of (23), (25), (27) and (29), wher in a coryneform bacterium is a micro r-

ganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*. (32) The method according to any one of (24), (26), (28) and (30), while rein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.

- (33) The system according to (31), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (34) The method according to (32), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- (35) A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of (23) or (27) or the method of (24) or (28).
- (36) A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of (25) or (29) or the method of (26) or (30).
 - (37) The recording medium or storage device according to
- (35) or (36), which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
 - (38) A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryn form bacterium is replaced with an amino acid residue other than a Val residue.
 - (39) A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.

 (40) The polypeptide according to (38) or (39), wherein the Val residue at the 59th position is replaced with an Ala residue.
 - (41) A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
 - (42) A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence represented by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue. (43) The polypeptide according to (41) or (42), wherein the Pro residue at the 458th position is replaced with a Ser residue.
 - (44) The polypeptide according to any one of (38) to (43), which is derived from Corynebacterium glutamicum.
 - (45) A DNA encoding the polypeptide of any one of (38) to (44).
 - (46) A recombinant DNA comprising the DNA of (45).
 - (47) A transformant comprising the recombinant DNA of (46).
 - (48) A transformant comprising in its chromosome the DNA of (45).
 - (49) The transformant according to (47) or (48), which is derived from a coryneform bacterium.
 - (50) The transformant according to (49), which is derived from Corynebacterium glutamicum.
 - (51) A method for producing L-lysine, comprising:
 - culturing the transformant of any one of (47) to (50) in a medium to produce and accumulate L-lysine in th medium, and recovering the L-lysine from the culture.
- (52) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a ferm intation methic, with a circ sponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation p int present in the production strain bas d on a result obtained by (i);
 - (iii) introducing the mutation p int into a coryneform bacterium which is free of the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the corynef rm

5

10

15

25

30

35

40

45

bacterium obtained in (iii).

5

10

15

20

25

30

35

40

45

50

55

- (53) The method according to (52), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (54) The method according to (52), wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- (55) A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (ili).
- (56) The method according to (55), wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- (57) The method according to (55), wherein the mutation point is a mutation point which decreases or destabiliz s the productivity.
- (58) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide s quence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
- (59) A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (lv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
 - (60) A coryneform bacterium, bred by the method of any one of (52) to (59).
 - (61) The coryneform bacterium according to (60), which is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (62) The coryneform bacterium according to (61), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (63) A method for producing at least one c mpound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an anal gue thereof, comprising:

culturing a coryneform bacterium of any one of (60) to (62) in a medium to produce and accumulat at least

one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues ther of;

- r covering the compound from the culture.
- (64) The method according to (63), while rein the compound is L-lysine. 5
 - (65) A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

10

15

20

30

45

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

- (ii) separating the proteins prepared in (i) by two dimensional electrophoresis;
- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a p ptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- 25 As used herein, the term "proteome", which is a coined word by combining "protein" with "genome", refers to a method for examining of a gene at the polypeptide level.
 - (66) The method according to (65), wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - (67) The method according to (66), wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, corynebacterium herculis, Corynebacterium lilium Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - (68) A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382).
- [0018] The present invention will be described below in more detail, based on the determination of the full nucl otid 35 sequence of coryneform bacteria.
 - 1. Determination of full nucleotide sequence of coryneform bacteria
- 40 [0019] The term "coryneform bacteria" as used herein means a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium or the genus Microbacterium as defined in Bergeys Manual of Determinative Bacteriology, 8: 599 (1974).
 - [0020] Examples include Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium glutamicum, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, Brevibacterium saccharolyticum, Brevibacterium immariophilum, Brevibacterium roseum, Brevibacterium thiogenitalis, Microbacterium ammoniaphilum, and the like
- [0021] Specific examples include Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium acetoglutamicum ATCC 15806, Corynebacterium callunae ATCC 15991, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13060, Corynebacterium glutamicum ATCC 13826 (prior genus and species: Brevibacterium flavum, or Corynebacterium lactofermentum), Corynebacterium glutamicum ATCC 14020 (prior genus and species: Brevibacterium divaricatum), Corynebacterium glutamicum ATCC 13869 (prior genus and species: Brevibacterium lactofermentum), Corynebacterium herculis ATCC 13868, Corynebacterium lilium ATCC 15990, Corynebacterium melassecola ATCC 17965, Corynebacterium thermoaminogenes FERM 9244, Brevibacterium saccharolyticum ATCC 14066, Brevibacterium immariophilum ATCC 14068, Brevibacterium roseum ATCC 13825, Brevibacterium thiogenitalis 55
- ATCC 19240, Microbacterium ammoniaphilum ATCC 15354, and the like.

(1) Preparation of genome DNA of coryn form bacteria

[0022] Coryneform bacteria can be cultured by a conventional method.

[0023] Any of a natural medium and a synthetic medium can be used, so long as it is a medium suitable for efficient culturing of the microorganism, and it contains a carbon source, a nitrogen source, an inorganic salt, and the like which can be assimilated by the microorganism.

[0024] In Corynebacterium glutamicum, for example, a BY medium (7 g/l meat extract, 10 g/l peptone, 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine and the like can be used. The culturing is carried out at 25 to 35°C overnight.

[0025] After the completion of the culture, the cells are recovered from the culture by centrifugation. The resulting cells are washed with a washing solution.

[0026] Examples of the washing solution include STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/ I ethylenediaminetetraacetic acid (hereinafter referred to as "EDTA"), pH 8.0), and the like.

[0027] Genome DNA can be obtained from the washed cells according to a conventional method for obtaining genome DNA, namely, lysing the cell wall of the cells using a lysozyme and a surfactant (SDS, etc.), eliminating proteins and the like using a phenol solution and a phenol/chloroform solution, and then precipitating the genome DNA with ethanol or the like. Specifically, the following method can be illustrated.

[0028] The washed cells are suspended in a washing solution containing 5 to 20 mg/l lysozyme. After shaking, 5 to 20% SDS is added to lyse the cells. In usual, shaking is gently performed at 25 to 40°C for 30 minutes to 2 hours. After shaking, the suspension is maintained at 60 to 70°C for 5 to 15 minutes for the lysis.

[0029] After the lysis, the suspension is cooled to ordinary temperature, and 5 to 20 ml of Tris-neutralized phenol is added thereto, followed by gently shaking at room temperature for 15 to 45 minutes.

[0030] After shaking, centrifugation (15,000 \times g, 20 minutes, 20°C) is carried out to fractionate the aqueous layer.

[0031] After performing extraction with phenol/chloroform and extraction with chloroform (twice) in the same manner,

3 mol/l sodium acetate solution (pH 5.2) and isopropanol are added to the aqueous layer at 1/10 times volume and 2 times volume, of the aqueous layer, respectively, followed by gently stirring to precipitate the genome DNA.

[0032] The genome DNA is dissolved again in a buffer containing 0.01 to 0.04 mg/ml RNase. As an example of th buffer, TE buffer (10 mmol/l Tris hydrochloride, 1 mol/l EDTA, pH 8.0) can be used. After dissolving, the resultant solution is maintained at 25 to 40°C for 20 to 50 minutes and then extracted successively with phenol, phenol/chl roform and chloroform as in the above case.

[0033] After the extraction, isopropanol precipitation is carried out and the resulting DNA precipitate is washed with 70% ethanol, followed by air drying, and then dissolved in TE buffer to obtain a genome DNA solution.

(2) Production of shotgun library

15

20

25

30

35

45

50

55

[0034] A method for produce a genome DNA library using the genome DNA of the coryneform bacteria prepared in the above (1) include a method described in Molecular Cloning, A laboratory Manual, Second Edition (1989) (hereinaft r referred to as "Molecular Cloning, 2nd ed."). In particular, the following method can be exemplified to prepare a g nome DNA library appropriately usable in determining the full nucleotide sequence by the shotgun method.

[0035] To 0.01 mg of the genome DNA of the coryneform bacteria prepared in the above (1), a buffer, such as TE buffer or the like, is added to give a total volume of 0.4 ml. Then, the genome DNA is digested into fragments of 1 to 10 kb with a sonicator (Yamato Powersonic Model 50). The treatment with the sonicator is performed at an output of 20 continuously for 5 seconds.

[0036] The resulting genome DNA fragments are blunt-ended using DNA blunting kit (manufactured by Takara Shuzo) or the like.

[0037] The blunt-ended genome fragments are fractionated by agarose gel or polyacrylamide gel electrophoresis and genome fragments of 1 to 2 kb are cut out from the gel.

[0038] To the gel, 0.2 to 0.5 ml of a buffer for eluting DNA, such as MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) or the like, is added, followed by shaking at 25 to 40°C overnight to elute DNA.

[0039] The resulting DNA eluate is treated with phenol/chloroform and then precipitated with ethanol to obtain a genome library insert.

[0040] This insert is ligated into a suitable vector, such as pUC18 Smal/SAP (manufactured by Amersham Pharmacia Biotech) or the like, using T4 ligase (manufactured by Takara Shuzo) or the like. The ligation can be carried out by allowing a mixture to stand at 10 to 20°C for 20 to 50 h urs.

[0041] The resulting ligation product is precipitated with ethanol and dissolv d in 5 to 20 μ l of TE buffer.

[0042] Escherichia coli is transformed in accordance with a conventional method using 0.5 to 2 µl of the ligation solution. Examples of the transformation method include the electroporation method using ELECTRO MAX DHIOB

(manufactured by Life T chnologies) for Escherichia coli. The electroporation method can be carried out under the conditions as discribed in the manufacturer's instructions.

[0043] The transformed Escherichia coli is spread on a suitable selection medium containing agar, for example, LB plate medium containing 10 to 100 mg/l ampicillin (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) when pUC18 is used as the cloning vector, and cultured therein.

[0044] The transformant can be obtained as colonies formed on the plate medium. In this step, it is possible to select the transformant having the recombinant DNA containing the genome DNA as white colonies by adding X-gal and IPTG (isopropyl-β-thiogalactopyranoside) to the plate medium.

[0045] The transformant is allowed to stand for culturing in a 96-well titer plate to which 0.05 ml of the LB medium containing 0.1 mg/ml of ampicillin has been added in each well. The resulting culture can be used in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any

15 (3) Production of cosmid library

20

30

40

45

[0046] The genome DNA (0.1 mg) of the coryneform bacteria prepared in the above (1) is partially digested with a restriction enzyme, such as Sau3Al or the like, and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under a 10 to 40% sucrose density gradient using a 10% sucrose buffer (1 mol/l Nacl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% sucrose, pH 8.0) and a 40% sucrose buffer (elevating the concentration of the 10% sucrose buffer to 40%).

[0047] After the centrifugation, the thus separated solution is fractionated into tubes in 1 ml per each tub. Aft r confirming the DNA fragment size of each fraction by agarose gel electrophoresis, a fraction nch in DNA fragm into of about 40 kb is precipitated with ethanol.

[0048] The resulting DNA fragment is ligated to a cosmid vector having a cohesive end which can be ligated to the fragment. When the genome DNA is partially digested with SauSAI, the partially digested product can be ligated to, for example, the BamHI site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instruc-

[0049] The resulting ligation product is packaged using a packaging extract which can be prepared by a method described in Molecular Cloning, 2nd ed. and then used in transforming Escherichia coli. More specifically, the ligation product is packaged using, for example, a commercially available packaging extract, Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions and then introduced into Escherichia coli XL-1-BlueMR (manufactured by Stratagene) or the like.

[0050] The thus transformed Escherichia coli is spread on an LB plate medium containing ampicillin, and cultured therein.

35 [0051] The transformant can be obtained as colonies formed on the plate medium.

The transformant is subjected to standing culture in a 96-well titer plate to which 0.05 ml of the LB medium [0052] containing 0.1 mg/ml ampicillin has been added.

[0053] The resulting culture can be employed in an experiment of (4) described below. Also, the culture solution can be stored at -80°C by adding 0.05 ml per well of the LB medium containing 20% glycerol to the culture solution, followed by mixing, and the stored culture solution can be used at any time.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0054] The full nucleotide sequence of genome DNA of coryneform bacteria can be determined basically according lo the whole genome sholgun method (Science, 269: 496-512 (1995)).

[0055] The template used in the whole genome shotgun method can be prepared by PCR using the library prepared in the above (2) (DNA Research, 5: 1-9 (1998)).

[0056] Specifically, the template can be prepared as follows.

The clone derived from the whole genome shotgun library is inoculated by using a replicator (manufactured by GENETIX) into each well of a 96-well plate to which 0.08 ml per well of the LB medium containing 0.1 mg/ml ampicillin has been added, followed by stationarily culturing at 37°C overnight.

[0058] Next, the culture solution is transported, using a copy plate (manufactured by Tokken), into each will of a 55 96-well reaction plat (manufactured by PE Bi systems) to which 0.025 ml p r well of a PCR r action s lution has been added using TaKaRa Ex Taq (manufactured by Takara Shuzo). Then, PCR is carried out in accordance with th protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the ins rted fragments.

[0059] The excessive primers and nucleotid is are eliminated using a kit for purifying a PCR product, and the product is used as the template in the sequencing reaction.

[0060] It is also possible to determine the nucleotide sequence using a double-strand d DNA plasmid as a template.

[0061] The double-stranded DNA plasmid used as the template can be obtained by the following method.

[0062] The clone derived from the whole genome shotgun library is inoculated into each well of a 24- or 96-well plat to which 1.5 ml per well of a 2 × YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin has been added, followed by culturing under shaking at 37°C overnight.

[0063] The double-stranded DNA plasmid can be prepared from the culture solution using an automatic plasmid preparing machine KURABO PI-50 (manufactured by Kurabo Industries), a multiscreen (manufactured by Millipore) or the like, according to each protocol.

[0064] To purify the plasmid, Biomek 2000 manufactured by Beckman Coulter and the like can be used.

[0065] The resulting purified double-stranded DNA plasmid is dissolved in water to give a concentration of about 0.1 mg/ml. Then, it can be used as the template in sequencing.

(4-2) Sequencing reaction

10

15

25

30

35

40

45

[0066] The sequencing reaction can be carried out according to a commercially available sequence kit or the like. A specific method is exemplified below.

[0067] To 6 µl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), 1 to 2 pmol of an M13 regular direction primer (M13-21) or an M13 reverse direction prim r (MI3REV) (DNA Research, 5: 1-9 (1998)) and 50 to 200 ng of the template prepared in the above (4-1) (the PCR product or plasmid) to give 10 µl of a sequencing reaction solution.

[0068] A dye terminator sequencing reaction (35 to 55 cycles) is carried out using this reaction solution and GeneAmp PCR System 9700 (manufactured by PE Biosystems) or the like. The cycle parameter can be determined in accordance with a commercially available kit, for example, the manufacture's instructions attached with ABI PRISM Big Dye T reminator Cycle Sequencing Ready Reaction Kit.

[0069] The sample can be purified using a commercially available product, such as Multi Screen HV plate (manufactured by Millipore) or the like, according to the manufacture's instructions.

[0070] The thus purified reaction product is precipitated with ethanol, dried and then used for the analysis. The dried reaction product can be stored in the dark at -30°C and the stored reaction product can be used at any time.

[0071] The dried reaction product can be analyzed using a commercially available sequencer and an analyzer according to the manufacture's instructions.

[0072] Examples of the commercially available sequencer include ABI PRISM 377 DNA Sequencer (manufactured by PE Biosystems). Example of the analyzer include ABI PRISM 3700 DNA Analyzer (manufactured by PE Biosystems).

(5) Assembly

[0073] A software, such as phred (The University of Washington) or the like, can be used as base call for us in analyzing the sequence information obtained in the above (4). A software, such as Cross_Match (The Univ rsity of Washington) or SPS Cross_Match (manufactured by Southwest Parallel Software) or the like, can be used to mask the vector sequence information.

[0074] For the assembly, a software, such as phrap (The University of Washington), SPS phrap (manufactur d by Southwest Parallel Software) or the like, can be used.

[0075] In the above, analysis and output of the results thereof, a computer such as UNIX, PC, Macintosh, and the like can be used.

[0076] Contig obtained by the assembly can be analyzed using a graphical editor such as consed (The University of Washington) or the like.

[0077] It is also possible to perform a series of the operations from the base call to the assembly in a lump using a script phredPhrap attached to the consed.

[0078] As used herein, software will be understood to also be referred to as a comparator.

(6) Determination of nucleotide sequence in gap part

[0079] Each of the cosmids in the cosmid library constructed in the above (3) is prepared in the same mann r as in the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the insert fragment of the cosmid is determined using a commercially available kit, such as ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0080] About 800 cosmid clon's arising quenced at both ends of the insert difragm into detict a nucleotide sequence in the contig derived from the shotgun sequincing obtained in (5) which is coincident with the singular quence. Thus, the chain linkage between rispective cosmid clones and respective contigs are clarified, and mutual alignment is carried out. Furth imore, the results are compared with known physical maps to map the cosmids and the contigs. In case of Corynebacterium glutamicum ATCC 13032, a physical map of Mol. Gen. Genet., 252: 255-265 (1996) can be usid. [0081] The sequence in the region which cannot be covered with the contigs (gap part) can be determined by the following method.

[0082] Clones containing sequences positioned at the ends of the contigs are selected. Among these, a clone whi in only one end of the inserted fragment has been determined is selected and the sequence at the opposite end of the inserted fragment is determined.

[0083] A shotgun library clone or a cosmid clone derived therefrom containing the sequences at the respective ends of the inserted fragments in the two contigs is identified and the full nucleotide sequence of the inserted fragment of the clone is determined.

[0084] According to this method, the nucleotide sequence of the gap part can be determined.

[0085] When no shotgun library clone or cosmid clone covering the gap part is available, primers complementary to the end sequences of the two different contigs are prepared and the DNA fragment in the gap part is amplified. Then, sequencing is performed by the primer walking method using the amplified DNA fragment as a templat or by the shotgun method in which the sequence of a shotgun clone prepared from the amplified DNA fragment is det rmined. Thus, the nucleotide sequence of the above-described region can be determined.

[0086] In a region showing a low sequence accuracy, primers are synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington), and the sequence is determined by the primer walking method to improve the sequence accuracy.

[0087] Examples of the thus determined nucleotide sequence of the full genome include the full nucleotide sequence of genome of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1.

(7) Determination of nucleotide sequence of microorganism genome DNA using the nucleotide sequence repres nted by SEQ ID NO:1

[0088] A nucleotide sequence of a polynucleotide having a homology of 80% or more with the full nucleotide sequence of Corynebacterium glutamicum ATCC 13032 represented by SEQ ID NO:1 as determined above can also be determined using the nucleotide sequence represented by SEQ ID NO:1, and the polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is within the scope of the present invention. The term "polynucleotide having a nucleotide sequence having a homology of 80% or more with the nucleotide sequence represented by SEQ ID NO:1 of the present invention is a polynucleotide in which a full nucleotide sequence of the chromosome DNA can be determined using as a primer an oligonucleotide composed of continuous 5 to 50 nucleotides in the nucleotide sequence represented by SEQ ID NO: 1, for example, according to PCR using the chromosome DNA as a template. A particularly preferred primer in determination of the full nucleotide sequence is an oligonucleotide having nucleotide sequences which are position dat the interval of about 300 to 500 bp, and among such oligonucleotides, an oligonucleotide having a nucleotide sequ nce selected from DNAs encoding a protein relating to a main metabolic pathway is particularly preferred. The polynucleotide in which the full nucleotide sequence of the chromosome DNA can be determined using the oligonucleotide includes polynucleotides constituting a chromosome DNA derived from a microorganism belonging to coryneform bacteria. Such a polynucleotide is preferably a polynucleotide constituting chromosome DNA derived from a microorganism belonging to the genus Corynebacterium, more preferably a polynucleotide constituting a chromosome DNA of Corynebacterium glutamicum.

2. Identification of ORF (open reading frame) and expression regulatory fragment and determination of the function of ORF

[0089] Based on the full nucleotide sequence data of the genome derived from coryneform bacteria determined in the above item 1, an ORF and an expression modulating fragment can be identified. Furthermore, the function of the thus determined ORF can be determined.

[0090] The ORF means a continuous region in the nucleotide sequence of mRNA which can be translated as an amino acid sequence to mature to a protein. A region of the DNA coding for the ORF of mRNA is also called ORF.

[0091] The xpr ssi n modulating fragm in the character of the CRF of thinks is also called CRF. polynucleotide fragments which modulate the xpressi n of the ORF or another sequence ligated operatably thereto. The expression "modulate the expression of a sequence ligated peratably" is used her in to refer to changes in the expression of a sequence due to the presence of the EMF. Examples of the EMF include a promoter, an perator, an

20

25

30

35

enhancer, a sill incer, a ribosome-binding significant of the like of the like

[0092] The term "target sequence" is used herein to refer to a nucleotide sequence composed of 6 or more nucleotides, an amino acid sequence composed of 2 or more amino acids, or a nucleotide sequence encoding this amino acid sequence composed of 2 or more amino acids. A longer target sequence appears at random in a data base at the lower possibility. The target sequence is preferably about 10 to 100 amino acid residues or about 30 to 300 nucleotide residues.

10

20

25

30

35

40

50

[0093] The term "target structural motif" or "target motif" is used herein to refer to a sequence or a combination of sequences selected optionally and reasonably. Such a motif is selected on the basis of the threedimensional structure formed by the folding of a polypeptide by means known to one of ordinary skill in the art. Various motives are known.

[0094] Examples of the target motif of a polypeptide include, but are not limited to, an enzyme activity site, a protein-protein interaction site, a signal sequence, and the like. Examples of the target motif of a nucleic acid include a promoter sequence, a transcriptional regulatory factor binding sequence, a hair pin structure, and the like.

[0095] Examples of highly useful EMF include a high-expression promoter, an inducible-expression promoter, and the like. Such an EMF can be obtained by positionally determining the nucleotide sequence of a gene which is known or expected as achieving high expression (for example, ribosomal RNA gene: GenBank Accession No. M16175 r Z46753) or a gene showing a desired induction pattern (for example, isocitrate lyase gene induced by acetic acid: Japanese Published Unexamined Patent Application No. 56782/93) via the alignment with the full genome nucle tide sequence determined in the above item 1, and isolating the genome fragment in the upstream part (usually 200 to 500 nucleotides from the translation initiation site). It is also possible to obtain a highly useful EMF by selecting an EMF showing a high expression efficiency or a desired induction pattern from among promoters captured by the EMF-capturing vector as described above.

[0096] The ORF can be identified by extracting characteristics common to individual ORFs, constructing a general model based on these characteristics, and measuring the conformity of the subject sequence with the model. In the identification, a software, such as GeneMark (*Nuc. Acids. Res., 22*: 4756-67 (1994): manufactured by GenePro)), GeneMark.hmm (manufactured by GenePro), GeneHacker (*Protein, Nucleic Acid and Enzyme, 42*: 3001-07 (1997)). Glimmer (*Nuc. Acids. Res., 26*: 544-548 (1998): manufactured by The Institute of Genomic Research), or the lik, can be used. In using the software, the default (initial setting) parameters are usually used, though the parameters can be optionally changed.

[0097] In the above-described comparisons, a computer, such as UNIX, PC, Macintosh, or the like, can be used.
[0098] Examples of the ORF determined by the method of the present invention include ORFs having the nucl otide sequences represented by SEQ ID NOS:2 to 3501 present in the genome of *Corynebacterium glutamicum* as represented by SEQ ID NO:1. In these ORFs, polypeptides having the amino acid sequences represented by SEQ ID NOS:

3502 to 7001 are encoded.

[0099] The function of an ORF can be determined by comparing the identified amino acid sequence of the ORF with known homologous sequences using a homology searching software or comparator, such as BLAST, FAST, Smith & Waterman (Meth. Enzym., 164: 765 (1988)) or the like on an amino acid data base, such as Swith-Prot, PIR, GenBank-nr-aa, GenPept constituted by protein-encoding domains derived from GenBank data base, OWL or the like.

[0100] Furthermore, by the homology searching, the identity and similarity with the amino acid sequences of known proteins can also be analyzed.

[0101] With respect of the term "identity" used herein, where two polypeptides each having 10 amino acids are different in the positions of 3 amino acids, these polypeptides have an identity of 70% with each other. In case wherein one of the different 3 amino acids is analogue (for example, leucine and isoleucine), these polypeptides have a similarity of 80%.

[0102] As a specific example, Table 1 shows the registration numbers in known data bases of sequences which are judged as having the highest similarity with the nucleotide sequence of the ORF derived from Corynebacterium glutamicum ATCC 13032, genes of these sequences, functions of these genes, and identities thereof compared with known amino acid translation sequences.

[0103] Thus, a great number of novel genes derived from coryn form bacteria can be identified by determining the full nucleotide sequence of the genomederived from coryneform bacterium by the means of the present invention. Moreover, the function of the proteins encoded by these genes can be determined. Since coryneform bacteria are industrially highly useful microorganisms, many of the identified genes are industrially useful.

[0104] Moreover, the characteristics of respective microorganisms can be clarified by classifying the functions thus determined. As a result, valuable information in breeding is obtained.

[0105] Furthermore, from the ORF information derived from coryneform bacteria, the ORF corresponding to the microorganism is prepared and obtained according to the general method as disclosed in *Molecular Cloning*, 2nd ed. or the like. Specifically, an oligonucleotide having a nucleotide sequence adjacent to the ORF is synthesized, and the ORF can be isolated and obtained using the oligonucleotide as a primer and a chromosome DNA derived from coryneform bacteria as a template according to the general PCR cloning technique. Thus obtained ORF sequences include polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3501.

[0106] The ORF or primer can be prepared using a polypeptide synthesizer based on the above sequence information.

[0107] Examples of the polynucleotide of the present invention include a polynucleotide containing the nucleotide sequence of the ORF obtained in the above, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0108] The polynucleotide of the present invention can be a single-stranded DNA, a double-stranded DNA and a single-stranded RNA, though it is not limited thereto.

[0109] The polynucleotide which hybridizes with the polynucleotide containing the nucleotide sequence of the ORF obtained in the above under stringent conditions includes a degenerated mutant of the ORF. A degenerated mutant is a polynucleotide fragment having a nucleotide sequence which is different from the sequence of the ORF of the present invention which encodes the same amino acid sequence by degeneracy of a gene code.

[0110] Specific examples include a polynucleotide comprising the nucleotide sequence represented by any one of SEQ ID NOS:2 to 3431, and a polynucleotide which hybridizes with the polynucleotide under stringent conditions.

[0111] A polynucleotide which hybridizes under stringent conditions is a polynucleotide obtained by colony hybridization, plaque hybridization, Southern blot hybridization or the like using, as a probe, the polynucleotide having the nucleotide sequence of the ORF identified in the above. Specific examples include a polynucleotide which can be identified by carrying out hybridization at 65°C in the presence of 0.7-1.0 M NaCl using a filter on which a polynucle tide prepared from colonies or plaques is immobilized, and then washing the filter with 0.1x to 2x SSC solution (the composition of lx SSC contains 150 mM sodium chloride and 15 mM sodium citrate) at 65°C.

[0112] The hybridization can be carried out in accordance with known methods described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, DNA Cloning 1: Core Techniques, A Practical Approach*, Second Edition, Oxford University (1995) or the like. Specific examples of the polynucleotide which can be hybridized include a DNA having a homology of 60% or more, preferably 80% or more, and particularly preferably 95% or more, with the nucleotide sequence represented by any one of SEQ ID NO:2 to 3431 when calculated using default (initial setting) parameters of a homology searching software, such as BLAST, FASTA, Smith-Waterman or the like.

[0113] Also, the polynucleotide of the present invention includes a polynucleotide encoding a polypeptide comprising the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931 and a polynucleotide which hybridiz s with the polynucleotide under stringent conditions.

[0114] Furthermore, the polynucleotide of the present invention includes a polynucleotide which is present in the 5' upstream or 3' downstream region of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS: 2 to 3431 in a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of a polypeptide encoded by the polynucleotide. Specific examples of the polynucleotide having an activity of regulating an expression of a polypeptide encoded by the polynucleotide includes a polynucleotide encoding the above described EMF, such as a promoter, an operator, an enhancer, a silencer, a ribosome-binding sequence, a transcriptional termination sequence, and the like.

[0115] The primer used for obtaining the ORF according to the above PCR cloning technique includes an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides in the nucleotide sequence of the ORF and an adjacent region or an oligonucleotide comprising a sequence which is complementary to the oligonucleotide. Specific examples include an oligonucleotide comprising a sequence which is the same as a sequence of 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431, and an oligonucleotide comprising a sequence complementary to the oligonucleotide comprising a sequence of at least 10 to 20 continuous nucleotide of any one of SEQ ID NOS:1 to 3431. When the primers are used as a since primer and an antisense primer, the above-described oligonucleotides in which melting temperature (T_m) and the number of nucleotides are not significantly different from each other are preferred.

[0116] The oligonucleotide of the present invention includes an oligonucleotide comprising a sequence which is the same as 10 to 200 continuous nucleotides of the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3431 ran oligonucleotid comprising a sequence complementary to the ligonucleotide.

[0117] Also, analogues of these oligonucleotid is (hereinafter also riferred to as "analogous oligonucliotides") ar also provided by the presint invention and are useful in the methods described herein.

[0118] Examples of the analogous oligonucleotides include analogous oligonucleotides in which a phosphodiest r

10

20

30

35

45

bond in an oligonucleotide is converted to a phosphorothioate bond, analogous oligonucleotides in which a phosphodiester bond in an oligonucleotide is converted to an N3'-P5' phosphoamidate bond, analogous oligonucleotides in which ribose and a phosphodiester bond in an oligonucleotide is converted to a peptide nucleic acid bond, analogous oligonucleotides in which uracil in an oligonucleotide is replaced with C-5 propynyluracil, analogous oligonucleotides in which uracil in an oligonucl otide is replaced with C-5 thiazoluracil, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with C-5 propynylcytosine, analogous oligonucleotides in which cytosine in an oligonucleotide is replaced with phenoxazine-modified cytosine, analogous oligonucleotides in which ribose in an oligonucleotide is replaced with 2'-O-propylribose, analogous oligonucleotides in which ribose in an oligonucleotide with 2'-methoxyethoxyribose, and the like (*Cell Engineering*, 16: 1463 (1997)).

[0119] The above oligonucleotides and analogous oligonucleotides of the present invention can be used as probes for hybridization and antisense nucleic acids described below in addition to as primers.

[0120] Examples of a primer for the antisense nucleic acid techniques known in the art include an oligonucleotide which hybridizes the oligonucleotide of the present invention under stringent conditions and has an activity regulating expression of the polypeptide encoded by the polynucleotide, in addition to the above oligonucleotide.

3. Determination of isozymes

15

25

30

35

40

55

[0121] Many mutants of coryneform bacteria which are useful in the production of useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, are obtained by the present invention.

[0122] However, since the gene sequence data of the microorganism has been, to date, insufficient, useful mutants have been obtained by mutagenic techniques using a mutagen, such as nitrosoguanidine (NTG) or the like.

[0123] Although genes can be mutated randomly by the mutagenic method using the above-described mutagen, all genes encoding respective isozymes having similar properties relating to the metabolism of intermediates cannot be mutated. In the mutagenic method using a mutagen, genes are mutated randomly. Accordingly, harmful mutati ns worsening culture characteristics, such as delay in growth, accelerated foaming, and the like, might be imparted at a great frequency, in a random manner.

[0124] However, if gene sequence information is available, such as is provided by the present invention, it is possible to mutate all of the genes encoding target isozymes. In this case, harmful mutations may be avoided and the target mutation can be incorporated.

[0125] Namely, an accurate number and sequence information of the target isozymes in coryneform bacteria can b obtained based on the ORF data obtained in the above item 2. By using the sequence information, all of the target isozyme genes can be mutated into genes having the desired properties by, for example, the site-specific mutaginesis method described in *Molecular Cloning*, 2nd ed. to obtain useful mutants having elevated productivity of useful substances.

4. Clarification or determination of biosynthesis pathway and signal transmission pathway

[0126] Attempts have been made to elucidate biosynthesis pathways and signal transmission pathways in a numb r of organisms, and many findings have been reported. However, there are many unknown aspects of coryneform bacteria since a number of genes have not been identified so far.

[0127] These unknown points can be clarified by the following method.

[0128] The functional information of ORF derived from coryneform bacteria as identified by the method of abovitem 2 is arranged. The term "arranged" means that the ORF is classified based on the biosynthesis pathway of a substance or the signal transmission pathway to which the ORF belongs using known information according to the functional information. Next, the arranged ORF sequence information is compared with enzymes on the biosynthesis pathways or signal transmission pathways of other known organisms. The resulting information is combined with known data on coryneform bacteria. Thus, the biosynthesis pathways and signal transmission pathways in coryneform bacteria, which have been unknown so far, can be determined.

[0129] As a result that these pathways which have been unknown or unclear hitherto are clarified, a useful mutant for producing a target useful substance can be efficiently obtained.

[0130] When the thus clarified pathway is judged as important in the synthesis of a useful product, a useful mutant can be obtained by selecting a mutant wherein this pathway has been strengthened. Also, when the thus clarified pathway is judged as not important in the biosynthesis of the target useful product, a useful mutant can be obtain d by selecting a mutant wherein the utilization frequency of this pathway is low red.

5. Clarification or determination of us ful mutation point

[0131] Many useful mutants of coryneform bacteria which are suitable for the production of us ful substances, such

as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, have been obtained. However, it is hardly known which mutation point is imparted to a gene to improve the productivity.

[0132] However, mutation points contained in production strains can be identified by comparing desired sequences of the genome DNA of the production strains obtained from coryneform bacteria by the mutagenic technique with the nucleotide sequences of the corresponding genome DNA and ORF derived from coryneform bacteria determined by the methods of the above items 1 and 2 and analyzing them

[0133] Moreover, effective mutation points contributing to the production can be easily specified from among these mutation points on the basis of known information relating to the metabolic pathways, the metabolic regulatory mechanisms, the structure activity correlation of enzymes, and the like.

[0134] When any efficient mutation can be hardly specified based on known data, the mutation points thus identified can be introduced into a wild strain of coryneform bacteria or a production strain free of the mutation. Then, it is examined whether or not any positive effect can be achieved on the production.

[0135] For example, by comparing the nucleotide sequence of homoserine dehydrogenase gene hom of a lysine-producing B-6 strain of Corynebacterium glutamicum (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)) with the nucleotide sequence corresponding to the genome of Corynebacterium glutamicum ATCC 13032 according to the present invention, a mutation of amino acid replacement in which valine at the 59-position is replaced with alanine (Val59Ala) was identified. A strain obtained by introducing this mutation into the ATCC 13032 strain by the gene replacement method can produce lysine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0136] Similarly, by comparing the nucleotide sequence of pyruvate carboxylase gene pyc of the B-6 strain with the nucleotide sequence corresponding to the ATCC 13032 genome, a mutation of amino acid replacement in which profine at the 458-position was replaced with serine (Pro458Ser) was identified. A strain obtained by introducing this mutation into a lysine-producing strain of No. 58 (FERM BP-7134) of Corynebacterium glutamicum free of this mutation shows an improved lysine productivity in comparison with the No. 58 strain, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0137] In addition, a mutation A1a213Thr in glucose-6-phosphate dehydrogenase was specified as an effective mutation relating to the production of lysine by detecting glucose-6-phosphate dehydrogenase gene zwf of the B-6 strain.

[0138] Furthermore, the lysine-productivity of Corynebacterium glutamicum was improved by replacing the base at the 932-position of aspartokinase gene lysC of the Corynebacterium glutamicum ATCC 13032 genome with cyt sine to thereby replace threonine at the 311-position by isoleucine, which indicates that this mutation is an effective mutation contributing to the production of lysine.

[0139] Also, as another method to examine whether or not the identified mutation point is an effective mutation, there is a method in which the mutation possessed by the lysine-producing strain is returned to the sequence of a wild typ strain by the gene replacement method and whether or not it has a negative influence on the lysine productivity. For example, when the amino acid replacement mutation Val59Ala possessed by *hom* of the lysine-producing B-6 strain was returned to a wild type amino acid sequence, the lysine productivity was lowered in comparison with the B-6 strain. Thus, it was found that this mutation is an effective mutation contributing to the production of lysine.

[0140] Effective mutation points can be more efficiently and comprehensively extracted by combining, if needed, the DNA array analysis or proteome analysis described below.

6. Method of breeding industrially advantageous production strain

[0141] It has been a general practice to construct production strains, which are used industrially in the fermentation production of the target useful substances, such as amino acids, nucleic acids, vitamins, saccharides, organic acids, and the like, by repeating mutagenesis and breeding based on random mutagenesis using mutagens, such as NTG or the like, and screening.

[0142] In recent years, many examples of improved production strains have been made through the use of recombinant DNA techniques. In breeding, however, most of the parent production strains to be improved are mutants obtained by a conventional mutagenic procedure (W. Leuchtenberger, *Amino Acids - Technical Production and Use.* In: Roehr (ed) Biotechnology, second edition, vol. 6, products of primary metabolism. VCH Verlagsgesellschaft mbH, Weinheim, P 465 (1996)).

[0143] Although mutagenesis methods have largely contributed to the progress of the fermentation industry, they suffer from a serious problem of multiple, random introduction of mutations into every part of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain—btained by the random mutation and s lecting is generally inferiment of the chromosome procedure in the properties of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain—btained by the random mutation and s lecting is generally inferiment of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain—btained by the random mutation and s lecting is generally inferiment of the chromosome. Since many mutations are accumulated in a single chromosome each time a strain is improved, a production strain—btained by the random mutation and s lecting is generally inferiment of the chromosome procedure as train is improved, a production strain—btained by the random mutations and s lecting is generally inferiment as the chromosome procedure and oxygen) to a wild type strain, which brings about troubles such as failing t—establish a sufficiently elevated productivity, being frequently contaminated with miscellaneous bacteria, requiring troublesome procedures in culture maintenance, and the like, and, in its

5

20

25

30

35

40

45

50

turn, elevating the production cost in practice. In addition, the improvement in the productivity is based on random mutations and thus the mechanism thereof is unclear. Therefore, it is very difficult to plan a rational breeding strategy for the subsequent improvement in the productivity.

[0144] According to the present invention, effective mutation points contributing to the production can be efficiently specified from among many mutation points accumulated in the chromosome of a production strain which has been bred from coryneform bacteria and, therefore, a novel breeding method of assembling these effective mutations in the coryneform bacteria can be established. Thus, a useful production strain can be reconstructed. It is also possible to construct a useful production strain from a wild type strain.

[0145] Specifically, a useful mutant can be constructed in the following manner.

[0146] One of the mutation points is incorporated into a wild type strain of coryneform bacteria. Then, it is examined whether or not a positive effect is established on the production. When a positive effect is obtained, the mutation point is saved. When no effect is obtained, the mutation point is removed. Subsequently, only a strain having the effective mutation point is used as the parent strain, and the same procedure is repeated. In general, the effectiveness of a mutation positioned upstream cannot be clearly evaluated in some cases when there is a rate-determining point in the downstream of a biosynthesis pathway. It is therefore preferred to successively evaluate mutation points upward from downstream

[0147] By reconstituting effective mutations by the method as described above in a wild type strain or a strain which has a high growth speed or the same ability to consume saccharides as the wild type strain, it is possible to construct an industrially advantageous strain which is free of troubles in the previous methods as described above and to conduct fermentation production using such strains within a short time or at a higher temperature.

[0148] For example, a lysine-producing mutant B-6 (Appl. Microbiol. Biotechnol., 32: 262-273 (1989)), which is obtained by multiple rounds of random mutagenesis from a wild type strain Corynebacterium glutamicum ATCC 13032, enables lysine fermentation to be performed at a temperature between 30 and 34°C but shows lowered growth and lysine productivity at a temperature exceeding 34°C. Therefore, the fermentation temperature should be maintained at 34°C or lower. In contrast thereto, the production strain described in the above item 5, which is obtained by reconstituting effective mutations relating to lysine production, can achieve a productivity at 40 to 42°C equal or sup rior to the result obtained by culturing at 30 to 34°C. Therefore, this strain is industrially advantageous since it can save the load of cooling during the fermentation.

[0149] When culture should be carried out at a high temperature exceeding 43°C, a production strain capable of conducting fermentation production at a high temperature exceeding 43°C can be obtained by reconstituting useful mutations in a microorganism belonging to the genus *Corynebacterium* which can grow at high temperature exceeding 43°C. Examples of the microorganism capable of growing at a high temperature exceeding 43°C include *Corynebacterium thermoaminogenes*, such as *Corynebacterium thermoaminogenes* FERM 9244, FERM 9245, FERM 9246 and FERM 9247.

[0150] A strain having a further improved productivity of the target product can be obtained using the thus reconstructed strain as the parent strain and further breeding it using the conventional mutagenesis method, the gene amplification method, the gene replacement method using the recombinant DNA technique, the transduction method or the cell fusion method. Accordingly, the microorganism of the present invention includes, but is not limited to, a mutant, a cell fusion strain, a transformant, a transductant or a recombinant strain constructed by using recombinant DNA techniques, so long as it is a producing strain obtained via the step of accumulating at least two effective mutations in a coryneform bacteria in the course of breeding.

[0151] When a mutation point judged as being harmful to the growth or production is specified, on the other hand, it is examined whether or not the producing strain used at present contains the mutation point. When it has the mutation, it can be returned to the wild type gene and thus a further useful production strain can be bred.

[0152] The breeding method as described above is applicable to microorganisms, other than coryneform bact ria, which have industrially advantageous properties (for example, microorganisms capable of quickly utilizing less expensive carbon sources, microorganisms capable of growing at higher temperatures).

- 7. Production and utilization of polynucleotide array
- (1) Production of polynucleotide array

10

15

25

30

35

40

50

[0153] A polynucleotide array can be produced using the polynucleotide or oligonucleotide of the present invintion obtained in this above items 1 and 2.

[0154] Examples include a polynucleotide array comprising a solid supp int to which at least one of a polynucleotide comprising the nucleotide sequence represented by SEQ ID NOS:2 to 3501, a pilynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous nucleotides in the nucleotide sequence of the polynucleotide is adhered; and a polynucleotide array comprising a solid support to

which at least one of a polynucleotide incoding a polypeptide comprising the amino acid silvance represented by any one of SEQ ID NOS:3502 to 7001, a polynucleotide which hybridizes with the polynucleotide under stringent conditions, and a polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequences of the polynucleotides is adhered.

[0155] Polynucleotide arrays of the present invention include substrates known in the art, such as a DNA chip, a DNA microarray and a DNA macroarray, and the like, and comprises a solid support and plural polynucleotides or fragments thereof which are adhered to the surface of the solid support.

[0156] Examples of the solid support include a glass plate, a nylon membrane, and the like.

[0157] The polynucleotides or fragments thereof adhered to the surface of the solid support can be adhered to the surface of the solid support using the general technique for preparing arrays. Namely, a method in which they are adhered to a chemically surface-treated solid support, for example, to which a polycation such as polylysine or the like has been adhered (*Nat. Genet.*, 21: 15-19 (1999)). The chemically surface-treated supports are commercially available and the commercially available solid product can be used as the solid support of the polynucleotide array according to the present invention.

[0158] As the polynucleotides or oligonucleotides adhered to the solid support, the polynucleotides and oligonucleotides of the present invention obtained in the above items 1 and 2 can be used.

[0159] The analysis described below can be efficiently performed by adhering the polynucleotides or oligonucleotides to the solid support at a high density, though a high fixation density is not always necessary.

[0160] Apparatus for achieving a high fixation density, such as an arrayer robot or the like, is commercially available from Takara Shuzo (GMS417 Arrayer), and the commercially available product can be used.

[0161] Also, the oligonucleotides of the present invention can be synthesized directly on the solid support by the photolithography method or the like (*Nat. Genet., 21*: 20-24 (1999)). In this method, a linker having a protective group which can be removed by light irradiation is first adhered to a solid support, such as a slide glass or the like. Th n, it is irradiated with light through a mask (a photolithograph mask) permeating light exclusively at a definite part of the adhesion part. Next, an oligonucleotide having a protective group which can be removed by light irradiation is added to the part. Thus, a ligation reaction with the nucleotide arises exclusively at the irradiated part. By repeating this procedure, oligonucleotides, each having a desired sequence, different from each other can be synthesized in respective parts. Usually, the oligonucleotides to be synthesized have a length of 10 to 30 nucleotides.

30 (2) Use of polynucleotide array

10

20

25

40

45

[0162] The following procedures (a) and (b) can be carried out using the polynucleotide array prepared in the above (1).

(a) Identification of mutation point of coryneform bacterium mutant and analysis of expression amount and expr ssion profile of gene encoded by genome

[0163] By subjecting a gene derived from a mutant of coryneform bacteria or an examined gene to the following steps (i) to (iv), the mutation point of the gene can be identified or the expression amount and expression profil of the gene can be analyzed:

- (i) producing a polynucleotide array by the method of the above (1);
- (ii) incubating polynucleotides immobilized on the polynucleotide array together with the labeled gene derived from a mutant of the coryneform bacterium using the polynucleotide array produced in the above (i) under hybridization conditions:
- (iii) detecting the hybridization; and
- (iv) analyzing the hybridization data.

[0164] The gene derived from a mutant of coryneform bacteria or the examined gene include a gene relating to biosynthesis of at least one selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof.

[0165] The method will be described in detail.

[0166] A single nucleotide polymorphism (SNP) in a human region of 2,300 kb has been identified using polynucleotide arrays (*Science, 280*: 1077-82 (1998)). In accordance with the method of identifying SNP and methods described in *Science, 278*: 680-686 (1997); *Proc. Natl. Acad. Sci. USA, 96*: 12833-38 (1999); *Science, 284*: 1520-23 (1999), and the like using the polynucleotide array produced in the above (1) and a nucleic acid molecule (DNA, RNA) d rived from coryneform bacteria in the method of the hybridizati n, a mutation p int of a useful mutant, which is us ful in producing an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, or the like can b identified and the gene

expression amount and the xpression profile thir of can be analyzed.

20

35

40

45

50

55

[0167] The nucleic acid molecul (DNA, RNA) dirived from the coryneform bacteria can be obtained according to the general method described in *Molecular Cloning*, 2nd ed. or the lik in mRNA derived from *Corynebacterium glutamicum* can also be obtained by the method of Bormann et al. (*Molecular Microbiology*, 6: 317-326 (1992)) or the like.

[0168] Although ribosomal RNA (rRNA) is usually obtained in large excess in addition to the target mRNA, the analysis is not seriously disturbed thereby.

[0169] The resulting nucleic acid molecule derived from coryneform bacteria is labeled. Labeling can be carried out according to a method using a fluorescent dye, a method using a radioisotope or the like.

[0170] Specific examples include a labeling method in which psoralen-biotin is crosslinked with RNA extracted from a microorganism and, after hybridization reaction, a fluorescent dye having streptoavidin bound thereto is bound to the biotin moiety (*Nat. Biotechnol.*, 16: 45-48 (1998)); a labeling method in which a reverse transcription reaction is carried out using RNA extracted from a microorganism as a template and random primers as primers, and dUTP having a fluorescent dye (for example, Cy3, Cy5) (manufactured by Amersham Pharmacia Biotech) is incorporated into cDNA (*Proc. Natl. Acad. Sci. USA*, 96: 12833-38 (1999)); and the like.

[0171] The labeling specificity can be improved by replacing the random primers by sequences complementary to the 3'-end of ORF (*J. Bacteriol.*, 181: 6425-40 (1999)).

[0172] In the hybridization method, the hybridization and subsequent washing can be carried out by the general method (Nat. Bioctechnol., 14: 1675-80 (1996), or the like).

[0173] Subsequently, the hybridization intensity is measured depending on the hybridization amount of the nucleic acid molecule used in the labeling. Thus, the mutation point can be identified and the expression amount of the gene can be calculated.

[0174] The hybridization intensity can be measured by visualizing the fluorescent signal, radioactivity, luminescenc dose, and the like, using a laser confocal microscope, a CCD camera, a radiation imaging device (for example, STORM manufactured by Amersham Pharmacia Biotech), and the like, and then quantifying the thus visualized data.

[0175] A polynucleotide array on a solid support can also be analyzed and quantified using a commercially available apparatus, such as GMS418 Array Scanner (manufactured by Takara Shuzo) or the like.

[0176] The gene expression amount can be analyzed using a commercially available software (for example, ImaG ne manufactured by Takara Shuzo; Array Gauge manufactured by Fuji Photo Film; ImageQuant manufactured by Amersham Pharmacia Biotech, or the like).

[0177] A fluctuation in the expression amount of a specific gene can be monitored using a nucleic acid molecule obtained in the time course of culture as the nucleic acid molecule derived from coryneform bacteria. The culture conditions can be optimized by analyzing the fluctuation.

[0178] The expression profile of the microorganism at the total gene level (namely, which genes among a great number of genes encoded by the genome have been expressed and the expression ratio thereof) can be determined using a nucleic acid molecule having the sequences of many genes determined from the full genome sequence of the microorganism. Thus, the expression amount of the genes determined by the full genome sequence can be analyzed and, in its turn, the biological conditions of the microorganism can be recognized as the expression pattern at the full gene level.

(b) Confirmation of the presence of gene homologous to examined gene in coryneform bacteria

[0179] Whether or not a gene homologous to the examined gene, which is present in an organism other than coryneform bacteria, is present in coryneform bacteria can be detected using the polynucleotide array prepared in the above (1).

[0180] This detection can be carried out by a method in which an examined gene which is present in an organism other than coryneform bacteria is used instead of the nucleic acid molecule derived from coryneform bacteria us d in the above identification/analysis method of (1).

8. Recording medium storing full genome nucleotide sequence and ORF data and being readable by a computer and methods for using the same

[0181] The term "recording medium or storage device which is readable by a computer" means a recording medium or storage medium which can be directly readout and accessed with a computer. Examples include magnetic recording m dia, such as a floppy disk, a hard disk, a magnitic tapi, and the like; optical recording media, such as CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM, DVD-RW, and the like; lectric recording midia, such as RAM, ROM, and the like; and hybrids in these categories (for example, magnetic/optical recording media, such as MO and the like).

[0182] Instruments for recording or inputting in or on the recording medium or instruments or devices for reading out the information in the recording medium can be appropriately selected, depending on the type of the recording medium

and the access device utilized. Also, various data processing programs, software, comparator and formats are used for recording and utilizing the polynucleotide sequence information or the like, of the present invention in the recording medium. The information can be expressed in the form of a binary file, a text file or an ASCII file formatted with commercially available software, for example. Moreover, software for accessing the sequence information is available and known to one of ordinary skill in the art.

[0183] Examples of the information to be recorded in the above-described medium include the full genome nucleotide sequence information of coryneform bacteria as obtained in the above item 2, the nucleotide sequence information of ORF, the amino acid sequence information encoded by the ORF, and the functional information of polynucleotides coding for the amino acid sequences.

[0184] The recording medium or storage device which is readable by a computer according to the present invention refers to a medium in which the information of the present invention has been recorded. Examples include recording media or storage devices which are readable by a computer storing the nucleotide sequence information represented by SEQ ID NOS:1 to 3501, the amino acid sequence information represented by SEQ ID NOS:3502 to 7001, the functional information of the nucleotide sequences represented by SEQ ID NOS:1 to 3501, the functional information of the amino acid sequences represented by SEQ ID NOS:3502 to 7001, and the information listed in Table 1 below and the like.

9. System based on a computer using the recording medium of the present invention which is readable by a computer

[0185] The term "system based on a computer" as used herein refers a system composed of hardware divice(s), software device(s), and data recording device(s) which are used for analyzing the data recorded in the recording medium of the present invention which is readable by a computer.

[0186] The hardware device(s) are, for example, composed of an input unit, a data recording unit, a central processing unit and an output unit collectively or individually.

25 [0187] By the software device(s), the data recorded in the recording medium of the present invention are searched or analyzed using the recorded data and the hardware device(s) as described herein. Specifically, the software d vic (s) contain at least one program which acts on or with the system in order to screen, analyze or compare biologically meaningful structures or information from the nucleotide sequences, amino acid sequences and the like recorded in the recording medium according to the present invention.

30 [0188] Examples of the software device(s) for identifying ORF and EMF domains include GeneMark (Nuc. Acids. Res., 22: 4756-67 (1994)), GeneHacker (Protein, Nucleic Acid and Enzyme, 42: 3001-07 (1997)), Glimmer (The Institute of Genomic Research; Nuc. Acids. Res., 26: 544-548 (1998)) and the like. In the process of using such a softwar device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

35 [0189] Examples of the software device(s) for identifying a genome domain or a polypeptide domain analogous to the target sequence or the target structural motif (homology searching) include FASTA, BLAST, Smith-Waterman, GenetyxMac (manufactured by Software Development), GCG Package (manufactured by Genetic Computer Group), GenCore (manufactured by Compugen), and the like. In the process of using such a software device, the default (initial setting) parameters are usually used, although the parameters can be changed, if necessary, in a manner known to one of ordinary skill in the art.

[0190] Such a recording medium storing the full genome sequence data is useful in preparing a polynucleotid array by which the expression amount of a gene encoded by the genome DNA of coryneform bacteria and the expression profile at the total gene level of the microorganism, namely, which genes among many genes encoded by the genom have been expressed and the expression ratio thereof, can be determined.

[0191] The data recording device(s) provided by the present invention are, for example, memory device(s) for recording the data recorded in the recording medium of the present invention and target sequence or target structural molif data, or the like, and a memory accessing device(s) for accessing the same.

[0192] Namely, the system based on a computer according to the present invention comprises the following:

- (i) a user input device that inputs the information stored in the recording medium of the present invention, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
- (iii) a comparator that compares the information stored in the recording medium of the present invention with the target sequence or target structure motif information, recorded by the data storing device of (ii) for screening and analyzing nucle tide sequence information which is coincident with or analogous to the target sequence or target structure motif inf mation; and
- (iv) an output device that shows a screening or analyzing result obtained by the cimparatiir.

5

10

15

40

50

[0193] This system is usable in the methods in items 2 to 5 as described above for silenching and analyzing the ORF and EMF domains, targit sequence, target structural motification of a coryn form bacterium, searching homologs, searching and analyzing isozymes, determining the biosynthesis pathway and the signal transmission pathway, and identifying spots which have been found in the proteome analysis. The term "homologs" as using the derein includes both of orthologs and paralogs.

10. Production of polypeptide using ORF derived from coryneform bacteria

10

25

30

35

40

by Novagen), and the like.

[0194] The polypeptide of the present invention can be produced using a polynucleotide comprising the ORF obtained in the above item 2. Specifically, the polypeptide of the present invention can be produced by expressing the polynucleotide of the present invention or a fragment thereof in a host cell, using the method described in *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology*, and the like, for example, according to the following method.

[0195] A DNA fragment having a suitable length containing a part encoding the polypeptide is prepared from the full length ORF sequence, if necessary.

[0196] Also, DNA in which nucleotides in a nucleotide sequence at a part encoding the polypeptide of the present invention are replaced to give a codon suitable for expression of the host cell, if necessary. The DNA is useful for efficiently producing the polypeptide of the present invention.

[0197] A recombinant vector is prepared by inserting the DNA fragment into the downstream of a promoter in a suitable expression vector.

[0198] The recombinant vector is introduced to a host cell suitable for the expression vector.

[0199] Any of bacteria, yeasts, animal cells, insect cells, plant cells, and the like can be used as the host cell so I ing as it can be expressed in the gene of interest.

[0200] Examples of the expression vector include those which can replicate autonomously in the above-de-cribed host cell or can be integrated into chromosome and have a promoter at such a position that the DNA encoding the polypeptide of the present invention can be transcribed.

[0201] When a procaryote cell, such as a bacterium or the like, is used as the host cell, it is preferred that the recombinant vector containing the DNA encoding the polypeptide of the present invention can replicate autonomously in the bacterium and is a recombinant vector constituted by, at least a promoter, a ribosome binding sequence, th DNA of the present invention and a transcription termination sequence. A promoter controlling gene can also be contained therewith in operable combination.

[0202] Examples of the expression vectors include a vector plasmid which is replicable in Corynebacterium glutamicum, such as pCGI (Japanese Published Unexamined Patent Application No. 134500/82), pCG2 (Japanese Published Unexamined Patent Application No. 35197/83), pCG4 (Japanese Published Unexamined Patent Application No. 183799/82), pCG11 (Japanese Published Unexamined Patent Application No. 134500/82), pCG116, pCE54 and pCB101 (Japanese Published Unexamined Patent Application No. 105999/83), pCE51, pCE52 and pCE53 (Mol. Gen. Genet., 196: 175-178 (1984)), and the like; a vector plasmid which is replicable in Escherichia coli, such as pET3 and pET11 (manufactured by Stratagene), pBAD, pThioHis and pTrcHis (manufactured by Invitrogen), pKK223-3 and pGEX2T (manufactured by Amersham Pharmacia Biotech), and the like; and pBTrp2, pBTac1 and pBTac2 (manufactured by Boehringer Mannheim Co.), pSE280 (manufactured by Invitrogen), pGEMEX-1 (manufactured by Promega), pQE-8 (manufactured by QIAGEN), pKYP10 (Japanese Published Unexamined Patent Application No. 110600/83), pKYP200 (Agric. Biol. Chem., 48: 669 (1984)), pLSA1 (Agric. Biol. Chem., 53: 277 (1989)), pGEL1 (Proc. Natl. Acad. Sci. USA, 82: 4306 (1985)), pBluescript II SK(-) (manufactured by Stratagene), pTrs30 (prepared from Escherichia coli JM109/pTrS30 (FERM BP-5407)), pTrs32 (prepared from Escherichia coli JM109/pTrS32 (FERM BP-5408)), pGHA2 (prepared from Escherichia coli IGHA2 (FERM B-400), Japanese Published Unexamined Patent Application No. 221091/85), pGKA2 (prepared from Escherichia coli IGKA2 (FERM BP-6798), Japanese Published Unexamin d Patent Application No. 221091/85), pTerm2 (U.S. Patents 4,686,191, 4,939,094 and 5,160,735), pSupex, pUB110, pTP5, pC194 and pEG400 (J. Bacteriol., 172: 2392 (1990)), pGEX (manufactured by Pharmacia), pET system (manufactured

[0203] Any promoter can be used so long as it can function in the host cell. Examples include promoters derived from *Escherichia coli*, phage and the like, such as *trp* promoter (P_{trp}), *lac* promoter, P_L promoter, P_R promoter, P_R promoter, P_R promoter and the like. Also, artificially designed and modified promoters, such as a promoter in which two P_{trp} are linked in series ($P_{trp} \times 2$), *tac* promoter, *lac*T7 promoter *lct*I promoter and the like, can be used.

[0204] It is preferred to use a plasmid in which the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation cod in is adjust in the displacement of the displacement of the space between Shine-Dalgamo sequence which is the ribosome binding sequence and the initiation cod in its adjust in the appropriate distance (for example, 6 to 18 nucleotid is).

[0205] The transcription termination sequence is not always necessary for the expression of the DNA of the present invention. However, it is preferred to arrange the transcription terminating sequence at just downstream of the structural gene.

[0206] One of ordinary skill in the art will appreciate that the codons of the above-described elements may be opti-

mized, in a known manner, depending on the host cells and invironmental conditions utilized.

[0207] Examples of the host cell include microorganisms belonging to the genus Escherichia, the genus Serratia. the genus Bacillus, the genus Brevibacterium, the genus Corynebacterium, the genus Microbacterium. The genus Pseudomonas, and the like. Specific examples include Escherichia coli XL1-Blue. Escherichia coli XL2-Blue. Escherichia coli DH1, Escherichia coli MC1000. Escherichia coli KY3276, Escherichia coli W1485, Escherichia coli JM109. Escherichia coli HB101, Escherichia coli No. 49, Escherichia coli W3110, Escherichia coli NY49. Escherichia coli Gl698, Escherichia coli TB1, Serratia ficaria, Serratia fonticola, Serratia liquefaciens, Serratia marcescens, Bacillus subtilis, Bacillus amyloliquefaciens, Corynebacterium ammonia genes, Brevibacterium immariophilum ATCC 14068, Brevibacterium saccharolyticum ATCC 14066, Corynebacterium glutamicum ATCC 13032, Corynebacterium glutamicum ATCC 13869. Corynebacterium glutamicum ATCC 14067 (prior genus and species: Brevibacterium flavum), Corynebacterium lactofermentum), Corynebacterium acetoacidophilum ATCC 13870, Corynebacterium thermoaminogenes FERM 9244, Microbacterium ammoniaphilum ATCC 15354, Pseudomonas putida, Pseudomonas sp. D-0110, and the like.

[0208] When Corynebacterium glutamicum or an analogous microorganism is used as a host, an EMF necessary for expressing the polypeptide is not always contained in the vector so long as the polynucleotide of the present invention contains an EMF. When the EMF is not contained in the polynucleotide, it is necessary to prepare the EMF separately and ligate it so as to be in operable combination. Also, when a higher expression amount or specific expression regulation is necessary, it is necessary to ligate the EMF corresponding thereto so as to put the EMF in operable combination with the polynucleotide. Examples of using an externally ligated EMF are disclosed in Microbiology, 142: 1297-1309 (1996).

[0209] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into the above-described host cells, such as a method in which a calcium ion is used (*Proc. Natl. Acad. Sci. USA*, 69: 2110 (1972)), a protoplast method (Japanese Published Unexamined Patent Application No. 2483942/88), the meth ds described in *Gene, 17*: 107 (1982) and *Molecular & General Genetics, 168*: 111 (1979) and the like, can be used.

²⁵ [0210] When yeast is used as the host cell, examples of the expression vector include pYES2 (manufactured by Invitrogen), YEp13 (ATCC 37115), YEp24 (ATCC 37051), YCp50 (ATCC 37419), pHS19, pHS15, and the lik.

[0211] Any promoter can be used so long as it can be expressed in yeast. Examples include a promoter of a gene in the glycolytic pathway, such as hexose kinase and the like, PHO5 promoter, PGK promoter, GAP promoter, ADH promoter, gal 1 promoter, gal 10 promoter, a heat shock protein promoter, MF all promoter, CUP 1 promoter, and the like.

[0212] Examples of the host cell include microorganisms belonging to the genus Saccharomyces, the genus Schizosaccharomyces, the genus Trichosporon, the genus Schwanniomyces, the genus Pichia, the genus Candida and the like. Specific examples include Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyces lactis, Trichosporon pullulans, Schwanniomyces alluvius, Candida utilis and the like.

[0213] With regard to the method for the introduction of the recombinant vector, any method for introducing DNA into yeast, such as an electroporation method (*Methods. Enzymol., 194*: 182 (1990)), a spheroplast method (*Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978)), a lithium acetate method (*J. Bacteriol., 153*: 163 (1983)), a method described in *Proc. Natl. Acad. Sci. USA, 75*: 1929 (1978) and the like, can be used.

[0214] When animal cells are used as the host cells, examples of the expression vector include pcDNA3.1, pSinRep5 and pCEP4 (manufactured by Invitorogen), pRev-Tre (manufactured by Clontech), pAxCAwt (manufactured by Takara Shuzo), pcDNAI and pcDM8 (manufactured by Funakoshi), pAGE107 (Japanese Published Unexamined Pat nt Application No. 22979/91; Cytotechnology, 3:133 (1990)), pAS3-3 (Japanese Published Unexamined Patent Application No. 227075/90), pcDM8 (Nature, 329: 840 (1987)), pcDNAI/Amp (manufactured by Invitrogen), pREP4 (manufactured by Invitrogen), pAGE103 (J. Biochem., 101: 1307 (1987)), pAGE210, and the like.

[0215] Any promoter can be used so long as it can function in animal cells. Examples include a promoter of IE (immediate early) gene of cytomegalovirus (CMV), an early promoter of SV40, a promoter of retrovirus, a metal-lothionein promoter, a heat shock promoter, SR α promoter, and the like. Also, the enhancer of the IE gene of human CMV can be used together with the promoter.

[0216] Examples of the host cell include human Namalwa cell, monkey COS cell, Chinese hamster CHO cell, HST5637 (Japanese Published Unexamined Patent Application No. 299/88), and the like.

[0217] The method for introduction of the recombinant vector into animal cells is not particularly limited, so long as it is the general method for introducing DNA into animal cells, such as an electroporation method (*Cytotechnology, 3*: 133 (1990)), a calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), a lipofection method (*Proc. Natl. Acad. Sci. USA, 84*, 7413 (1987)), the method described in *Virology, 52*: 456 (1973), and the like.

[0218] When insect cells are used as thin sticells, the polypeptide can be expressed, for example, by the method described in *Bacurovirus Expression Vectors, A Laboratory Manual*, W.H. Freiman and Company, New York (1992), *Bio/Technology*, 6: 47 (1988), or the like.

[0219] Specifically, a recombinant gene transfer vector and bacurovirus are simultaneously inserted into insect cells

10

15

20

30

35

to obtain air combinant virus in an insect cell culture supernatant, and then the insect cells are infected with the resulting recombinant virus to express the polypiptide.

[0220] Examples of the gene introducing vector used in the method include pBlueBac4.5, pVL1392. pVL1393 and pBlueBacIII (manufactured by Invitrogen), and the like.

[0221] Examples of the bacurovirus include Autographa californica nuclear polyhedrosis virus with which insects of the family *Barathra* are infected, and the like.

[0222] Examples of the insect cells include *Spodoptera frugiperda* oocytes Sf9 and Sf21 (*Bacurovirus Expression Vectors, A Laboratory Manual, W.H.* Freeman and Company, New York (1992)), *Trichoplusia ni* oocyte High 5 (manufactured by Invitrogen) and the like.

[0223] The method for simultaneously incorporating the above-described recombinant gene transfer vector and the above-described bacurovirus for the preparation of the recombinant virus include calcium phosphate method (Japanese Published Unexamined Patent Application No. 227075/90), lipofection method (*Proc. Natl. Acad. Sci. USA, 84*: 7413 (1987)) and the like.

10

15

30

35

40

45

[0224] When plant cells are used as the host cells, examples of expression vector include a Ti plasmid, a tobacco mosaic virus vector, and the like.

[0225] Any promoter can be used so long as it can be expressed in plant cells. Examples include 35S promoter of cauliflower mosaic virus (CaMV), rice actin 1 promoter, and the like.

[0226] Examples of the host cells include plant cells and the like, such as tobacco, potato, tomato, carrot, soybean, rape, alfalfa, rice, wheat, barley, and the like.

[0227] The method for introducing the recombinant vector is not particularly limited, so long as it is the general method for introducing DNA into plant cells, such as the *Agrobacterium* method (Japanese Published Unexamined Patent Application No. 140885/84, Japanese Published Unexamined Patent Application No. 70080/85, WO 94/00977), the electroporation method (Japanese Published Unexamined Patent Application No. 251887/85), the particle gun method (Japanese Patents 2606856 and 2517813), and the like.

[0228] The transformant of the present invention includes a transformant containing the polypeptide of the present invention per se rather than as a recombinant vector, that is, a transformant containing the polypeptide of the present invention which is integrated into a chromosome of the host, in addition to the transformant containing the above recombinant vector.

[0229] When expressed in yeasts, animal cells, insect cells or plant cells, a glycopolypeptide or glycosylated polypeptide can be obtained.

[0230] The polypeptide can be produced by culturing the thus obtained transformant of the present invention in a culture medium to produce and accumulate the polypeptide of the present invention or any polypeptide expressed under the control of an EMF of the present invention, and recovering the polypeptide from the culture.

[0231] Culturing of the transformant of the present invention in a culture medium is carried out according to the conventional method as used in culturing of the host.

[0232] When the transformant of the present invention is obtained using a prokaryote, such as *Escherichia coli* or the like, or a eukaryote, such as yeast or the like, as the host, the transformant is cultured.

[0233] Any of a natural medium and a synthetic medium can be used, so long as it contains a carbon source, a nitrogen source, an inorganic salt and the like which can be assimilated by the transformant and can perform culturing of the transformant efficiently.

[0234] Examples of the carbon source include those which can be assimilated by the transformant, such as carbonydrates (for example, glucose, fructose, sucrose, molasses containing them, starch, starch hydrolysate, and the like), organic acids (for example, acetic acid, propionic acid, and the like), and alcohols (for example, ethanol, propanol, and the like).

[0235] Examples of the nitrogen source include ammonia, various ammonium salts of inorganic acids or organic acids (for example, ammonium chloride, ammonium sulfate, ammonium acetate, ammonium phosphate, and the like), other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn sleep liquor, casein hydrolysate, soybean meat and soybean meat hydrolysate, various fermented cells and hydrolysates thereof, and the like.

[0236] Examples of inorganic salt include potassium dihydrogen phosphate, dipotassium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate, calcium carbonate, and the like.

[0237] The culturing is carried out under aerobic conditions by shaking culture, submerged-aeration stirring culture or the like. The culturing temperature is preferably from 15 to 40°C, and the culturing time is generally from 16 hours to 7 days. The pH of the medium is pr ferably maintained at 3.0 to 9.0 during th culturing. The pH can be adjusted using an inorganic or organic acid, an alkali solution, urea, calcium carbonate, ammonia, or the like.

[0238] Also, antibiotics, such as ampicillin, tetracycline, and the like, can be added to the medium during the culturing, if necessary.

[0239] Whin a microorganism transformed with a recombinant vector containing an inducibling promoter is culturied,

an inducer can be added to the medium, if necessary.

5

10

20

30

40

[0240] For example, isopropyl-β-D-thiogalactopyranoside (IPTG) or the like can be added to the medium when a microorganism transformed with a recombinant vector containing *lac* promoter is cultured, or indoleacrylic acid (IAA) or the like can by added thereto when a microorganism transformed with an expression vector containing *trp* promoter is cultured.

[0241] Examples of the medium used in culturing a transformant obtained using animal cells as the host cells include RPMI 1640 medium (*The Journal of the American Medical Association, 199*: 519 (1967)), Eagle's MEM medium (*Science, 122*: 501 (1952)), Dulbecco's modified MEM medium (*Virology, 8*, 396 (1959)), 199 Medium (*Proceeding of the Society for the Biological Medicine, 73*:1 (1950)), the above-described media to which fetal calf serum has been added, and the like.

[0242] The culturing is carried out generally at a pH of 6 to 8 and a temperature of 30 to 40°C in the presence of 5% CO₂ for 1 to 7 days.

[0243] Also, if necessary, antibiotics, such as kanamycin, penicillin, and the like, can be added to the medium during the culturing.

[0244] Examples of the medium used in culturing a transformant obtained using insect cells as the host cells include TNM-FH medium (manufactured by Pharmingen), Sf-900 II SFM (manufactured by Life Technologies), ExCell 400 and ExCell 405 (manufactured by JRH Biosciences), Grace's Insect Medium (Nature, 195: 788 (1962)), and the like.

[0245] The culturing is carried out generally at a pH of 6 to 7 and a temperature of 25 to 30°C for 1 to 5 days.

[0246] Additionally, antibiotics, such as gentamicin and the like, can be added to the medium during the culturing, if necessary.

[0247] A transformant obtained by using a plant cell as the host cell can be used as the cell or after differentiating to a plant cell or organ. Examples of the medium used in the culturing of the transformant include Murashige and Sk og (MS) medium, White medium, media to which a plant hormone, such as auxin, cytokinine, or the like has been added, and the like.

25 [0248] The culturing is carried out generally at a pH of 5 to 9 and a temperature of 20 to 40°C for 3 to 60 days.

[0249] Also, antibiotics, such as kanamycin, hygromycin and the like, can be added to the medium during the culturing, if necessary.

[0250] As described above, the polypeptide can be produced by culturing a transformant derived from a microorganism, animal cell or plant cell containing a recombinant vector to which a DNA encoding the polypeptid of the present invention has been inserted according to the general culturing method to produce and accumulate the polypeptide, and recovering the polypeptide from the culture.

[0251] The process of gene expression may include secretion of the encoded protein production or fusion prot in expression and the like in accordance with the methods described in *Molecular Cloning*, 2nd ed., in addition t direct expression.

[0252] The method for producing the polypeptide of the present invention includes a method of intracellular expression in a host cell, a method of extracellular secretion from a host cell, or a method of production on a host cell membran outer envelope. The method can be selected by changing the host cell employed or the structure of the polyp ptid produced.

[0253] When the polypeptide of the present invention is produced in a host cell or on a host cell membrane outer envelope, the polypeptide can be positively secreted extracellularly according to, for example, the method of Paulson et al. (J. Biol. Chem., 264: 17619 (1989)), the method of Lowe et al. (Proc. Natl. Acad. Sci. USA, 86: 8227 (1989); Genes Develop., 4: 1288 (1990)), and/or the methods described in Japanese Published Unexamined Patent Application No. 336963/93, WO 94/23021, and the like.

[0254] Specifically, the polypeptide of the present invention can be positively secreted extracellularly by expr ssing it in the form that a signal peptide has been added to the foreground of a polypeptide containing an active site of the polypeptide of the present invention according to the recombinant DNA technique.

[0255] Furthermore, the amount produced can be increased using a gene amplification system, such as by use of a dihydrofolate reductase gene or the like according to the method described in Japanese Published Unexamined Patent Application No. 227075/90.

50 [0256] Moreover, the polypeptide of the present invention can be produced by a transgenic animal individual (transgenic nonhuman animal) or plant individual (transgenic plant).

[0257] When the transformant is the animal individual or plant individual, the polypeptide of the present invention can be produced by breeding or cultivating it so as to produce and accumulate the polypeptide, and recov ring the polypeptide from the animal individual or plant individual.

[0258] Exampl s of the method for producing the polyp ptide of the present invention using the animal individual include a method for producing the polyp ptide of the present invention in an animal develop d by inserting a gene according to methods known to those of ordinary skill in the art (American Journal of Clinical Nutrition, 63: 639S (1996), American Journal of Clinical Nutrition, 63: 627S (1996), Bio/Technology, 9: 830 (1991)).

10

20

25

30

35

40

45

55

EP 1 108 790 A2

[0259] In the animal individual, the polypiptid can be produced by breeding a transginic nonhuman animal to which the DNA encoding the polypeptide of thi present invention has be in inserted to produce and accumulate the polypeptide in the animal, and recoving the polypeptide from the animal. Examples of the production and accumulation place in the animal include milk (Japanese Published Unexamined Patent Application No. 309192/88), egg and the liking the animal. Any promoter can be used, so long as it can be expressed in the animal. Suitable examples includian α -casein promoter, a β -casein promoter, a β -lactoglobulin promoter, a whey acidic protein promoter, and the like, which are specific for mammary glandular cells.

[0260] Examples of the method for producing the polypeptide of the present invention using the plant individual include a method for producing the polypeptide of the present invention by cultivating a transgenic plant to which th DNA encoding the protein of the present invention by a known method (*Tissue Culture, 20* (1994), *Tissue Culture, 21* (1994), *Trends in Biotechnology, 15:* 45 (1997)) to produce and accumulate the polypeptide in the plant, and recovering the polypeptide from the plant.

[0261] The polypeptide according to the present invention can also be obtained by translation in vitro.

[0262] The polypeptide of the present invention can be produced by a translation system *in vitro*. There are, for example, two *in vitro* translation methods which may be used, namely, a method using RNA as a template and anoth in method using DNA as a template. The template RNA includes the whole RNA, mRNA, an *in vitro* transcription product, and the like. The template DNA includes a plasmid containing a transcriptional promoter and a target gene integrated therein and downstream of the initiation site, a PCR/RT-PCR product and the like. To select the most suitable system for the *in vitro* translation, the origin of the gene encoding the protein to be synthesized (prokaryotic cell/eucaryotic cell), the type of the template (DNA/RNA), the purpose of using the synthesized protein and the like should be considered. *In vitro* translation kits having various characteristics are commercially available from many companies (Boehringer Mannheim, Promega, Stratagene, or the like), and every kit can be used in producing the polypeptide according to the present invention.

[0263] Transcription/translation of a DNA nucleotide sequence cloned into a plasmid containing a T7 promoter can be carried out using an *in vitro* transcription/translation system *E. coli* T7 S30 Extract System for Circular DNA (manufactured by Promega, catalogue No. L1130). Also, transcription/translation using, as a template, a linear prokaryotic DNA of a supercoil non-sensitive promoter, such as *lac*UV5, *tac*, λ PL(con), λ PL, or the like, can be carried out using an *in vitro* transcription/translation system *E. coli* S30 Extract System for Linear Templates (manufactured by Promega, catalogue No. L1030). Examples of the linear prokaryotic DNA used as a template include a DNA fragment, a PCR-amplified DNA product, a duplicated oligonucleotide ligation, an *in vitro* transcriptional RNA, a prokaryotic RNA, and the like

[0264] In addition to the production of the polypeptide according to the present invention, synthesis of a radioactive labeled protein, confirmation of the expression capability of a cloned gene, analysis of the function of transcriptional reaction or translation reaction, and the like can be carried out using this system.

[0265] The polypeptide produced by the transformant of the present invention can be isolated and purified using the general method for isolating and purifying an enzyme. For example, when the polypeptide of the present invention is expressed as a soluble product in the host cells, the cells are collected by centrifugation after cultivation, suspend d in an aqueous buffer, and disrupted using an ultrasonicator, a French press, a Manton Gaulin homogenizer, a Dynomill, or the like to obtain a cell-free extract. From the supernatant obtained by centrifuging the cell-free extract, a purified product can be obtained by the general method used for isolating and purifying an enzyme, for example, solvent extraction, salting out using ammonium sulfate or the like, desalting, precipitation using an organic solvent, anion x-change chromatography using a resin, such as diethylaminoethyl (DEAE)-Sepharose. DIAION HPA-75 (manufactured by Mitsubishi Chemical) or the like, cation exchange chromatography using a resin, such as S-Sepharose FF (manufactured by Pharmacia) or the like, hydrophobic chromatography using a resin, such as butyl sepharose, phenyl sepharose or the like, gel filtration using a molecular sleve, affinity chromatography, chromatofocusing, or electrophoresis, such as isoelectronic focusing or the like, alone or in combination thereof.

[0266] When the polypeptide is expressed as an insoluble product in the host cells, the cells are collected in the same manner, disrupted and centrifuged to recover the insoluble product of the polypeptide as the precipitate fraction. Next, the insoluble product of the polypeptide is solubilized with a protein denaturing agent. The solubilized solution is diluted or dialyzed to lower the concentration of the protein denaturing agent in the solution. Thus, the normal configuration of the polypeptide is reconstituted. After the procedure, a purified product of the polypeptide can be obtained by a purification/isolation method similar to the above.

[0267] When the polypeptide of the present invention or its derivative (for example, a polypeptide formed by adding a sugar chain thereto) is secrited out of cells, the polypeptide or its dirivative can big lected in this culture supernatant. Namely, the culture supernatant is brained by treating the culture medium in a treatmint similar to the above (for example, centrifugation). Then, a purified product can be obtained from the culture medium using a purification/isolation method similar to the above.

[0268] The polypeptide obtained by the above method is within the scope of the polypeptide of the present invention,

and examples include a polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431, and a polypeptide comprising an amino acid sequence r presented by any one of SEQ ID NOS:3502 to 6931.

[0269] Furthermore, a polypeptide comprising an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide is included in the scope of the present invention. The term "substantially the same activity as that of the polypeptide means the same activity represented by the inherent function, enzyme activity or the like possessed by the polypeptide which has not been deleted, replaced, inserted or added. The polypeptide can be obtained using a method for introducing part-specific mutation(s) described in, for example, *Molecular Cloning*, 2nd ed., *Current Protocols in Molecular Biology, Nuc. Acids. Res.*, 10: 6487 (1982). *Proc. Natl. Acad. Sci. USA*, 79: 6409 (1982), *Gene*, 34: 315 (1985), *Nuc. Acids. Res.*, 13: 4431 (1985), *Proc. Natl. Acad. Sci. USA*, 82: 488 (1985) and the like. For example, the polypeptide can be obtained by introducing mutation(s) to DNA encoding a polypeptide having the amino acid sequence represented by any one of SEQ ID NOS:3502 to 6931. The number of the amino acids which are deleted, replaced, inserted or added is not particularly limited; however, it is usually 1 to the order of tens, preferably 1 to 20, more preferably 1 to 10, and most preferably 1 to 5, amino acids.

[0270] The at least one amino acid deletion, replacement, insertion or addition in the amino acid sequence of the polypeptide of the present invention is used herein to refer to that at least one amino acid is deleted, replaced, inserted or added to at one or plural positions in the amino acid sequence. The deletion, replacement, insertion or addition may be caused in the same amino acid sequence simultaneously. Also, the amino acid residue replaced, inserted or added can be natural or non-natural. Examples of the natural amino acid residue include L-alanine, L-asparagine, L-asparatic acid, L-glutamine, L-glutamic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine, L-cysteine, and the like.

[0271] Herein, examples of amino acid residues which are replaced with each other are shown below. The amino acid residues in the same group can be replaced with each other.

Group A:

10

15

20

25

30

40

50

[0272] leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, O-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;

Group B:

[0273] asparatic acid, glutamic acid, isoasparatic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;

35 Group C:

[0274] asparagine, glutamine;

Group D:

[0275] lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;

Group E:

45 [0276] proline, 3-hydroxyproline, 4-hydroxyproline;

Group F:

[0277] serine, threonine, homoserine;

Group G:

[0278] phenylalanine, tyrosine.

[0279] Also, in order that the resulting mutant polypeptide has substantially the same activity as that of the polypeptid which has n t been mutated, it is prefixed that the mutant polypeptide has a homology of 60% or mori, preferably 80% or more, and particularly priferably 95% or mire, with the polypeptide which has not bien mutated, when calculated, for example, using default (initial setting) parameters by a homology searching software, such as BLAST, FASTA, or the like.

[0280] Also, the polypeptide of the pris intrinvention can be produced by a chemical synth sis method, such as Fmoc (fluor intrinvention) method, tBoc (t-butyloxycarbonyl) method, or the like. It can also be synthesized using a peptide synthesizer manufactured by Advanced ChemTech, Perkin-Elmer, Pharmacia, Protein Technology Instrument, Synthecell-Vega, PerSeptive, Shimadzu Corporation, or the like.

[0281] The transformant of the present invention can be used for objects other than the production of the polypiptide of the present invention.

[0282] Specifically, at least one component selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof can be produced by culturing the transformant containing the polynucleotide or recombinant vector of the present invention in a medium to produce and accumulate at least one component selected from amino acids, nucleic acids, vitamins, saccharides, organic acids, and analogues thereof, and recovering the same from the medium.

[0283] The biosynthesis pathways, decomposition pathways and regulatory mechanisms of physiologically active substances such as amino acids, nucleic acids, vitamins, saccharides, organic acids and analogues thereof differ from organism to organism. The productivity of such a physiologically active substance can be improved using these differences, specifically by introducing a heterogeneous gene relating to the biosynthesis thereof. For example, the content of lysine, which is one of the essential amino acids, in a plant seed was improved by introducing a synthase gene derived from a bacterium (WO 93/19190). Also, arginine is excessively produced in a culture by introducing an arginine synthase gene derived from *Escherichia coli* (Japanese Examined Patent Publication 23750/93).

[0284] To produce such a physiologically active substance, the transformant according to the present invention in can be cultured by the same method as employed in culturing the transformant for producing the polypeptide of the present invention as described above. Also, the physiologically active substance can be recovered from the culture medium in combination with, for example, the ion exchange resin method, the precipitation method and other known methods. [0285] Examples of methods known to one of ordinary skill in the art include electroporation, calcium transfection, the protoplast method, the method using a phage, and the like, when the host is a bacterium; and microinjection, calcium phosphate transfection, the positively charged lipid-mediated method and the method using a virus, and the like, when the host is a eukaryote (*Molecular Cloning*, 2nd ed.; Spector et al., Cells/a laboratory manual, Cold Spring Harbour Laboratory Press, 1998)). Examples of the host include prokaryotes, lower eukaryotes (for example, yeasts), higher eukaryotes (for example, mammals), and cells isolated therefrom. As the state of a recombinant polynuclion otide fragment present in the host cells, it can be integrated into the chromosome of the host. Alternatively, it can be integrated into a factor (for example, a plasmid) having an independent replication unit outside the chromosome. These transformants are usable in producing the polypeptides of the present invention encoded by the ORF of the genom of Corynebacterium glutamicum, the polynucleotides of the present invention and fragments thereof. Alternatively, they can be used in producing arbitrary polypeptides under the regulation by an EMF of the present invention.

11. Preparation of antibody recognizing the polypeptide of the present invention

[0286] An antibody which recognizes the polypeptide of the present invention, such as a polyclonal antibody, a monoclonal antibody, or the like, can be produced using, as an antigen, a purified product of the polypeptide of the present invention or a partial fragment polypeptide of the polypeptide or a peptide having a partial amino acid sequence of the polypeptide of the present invention.

(1) Production of polyclonal antibody

5

10

25

30

35

40

[0287] A polyclonal antibody can be produced using, as an antigen, a purified product of the polypeptide of the present invention, a partial fragment polypeptide of the polypeptide, or a peptide having a partial amino acid sequence of the polypeptide of the present invention, and immunizing an animal with the same.

[0288] Examples of the animal to be immunized include rabbits, goats, rats, mice, hamsters, chickens and the like.

[0289] A dosage of the antigen is preferably 50 to 100 μg per animal.

[0290] When the peptide is used as the antigen, it is preferably a peptide covalently bonded to a carrier protein, such as keyhole limpet haemocyanin, bovine thyroglobulin, or the like. The peptide used as the antigen can be synthesized by a peptide synthesizer.

[0291] The administration of the antigen is, for example, carried out 3 to 10 times at the intervals of 1 or 2 weeks after the first administration. On the 3rd to 7th day after each administration, a blood sample is collected from th venous plexus of the eyeground, and it is confirmed that the serum reacts with the antigen by the enzyme immunoassay (Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies - A Laboratory Manual, Cold Spring Harbor Laboratory (1988)) or the like.

[0292] Serum is obtained from the immunized non-human mammal with a sufficient antibody tit in against the antiginused for the immunization, and the simum is isolated and purified to obtain a polyclonal antibody.

[0293] Examples of the method for the isolation and purification include centrifugation, salting out by 40-50% saturated ammonium sulfate, caprylic acid precipitation (*Antibodies, A Laboratory manual,* Cold Spring Harbor Laboratory (1988)), or chromatography using a DEAE-Sepharose column, an anion exchange column, a protein A- or G-column, a gel filtration column, and the like, alone or in combination thereof, by methods known to those of ordinary skill in the art.

(2) Production of monoclonal antibody

5

25

30

35

40

45

50

55

- (a) Preparation of antibody-producing cell
- 10 [0294] A rat having a serum showing an enough antibody titer against a partial fragment polypeptide of the polyp ptide of the present invention used for immunization is used as a supply source of an antibody-producing cell.
 - [0295] On the 3rd to 7th day after the antigen substance is finally administered the rat showing the antibody tit r, the spleen is excised.
 - [0296] The spleen is cut to pieces in MEM medium (manufactured by Nissui Pharmaceutical), loosened using a pair of forceps, followed by centrifugation at 1,200 rpm for 5 minutes, and the resulting supernatant is discarded.
 - [0297] The spleen in the precipitated fraction is treated with a Tris-ammonium chloride buffer (pH 7.65) for 1 to 2 minutes to eliminate erythrocytes and washed three times with MEM medium, and the resulting spleen cells are used as antibody-producing cells.
- 20 (b) Preparation of myeloma cells

[0298] As myeloma cells, an established cell line obtained from mouse or rat is used. Examples of useful cell lin s include those derived from a mouse, such as P3-X63Ag8-U1 (hereinafter referred to as "P3-U1") (*Curr. Topics in Microbiol. Immunol., 81*: 1 (1978); *Europ. J. Immunol., 6*: 511 (1976)); SP2/O-Agl4 (SP-2) (*Nature, 276*: 269 (1978)): P3-X63-Ag8653 (653) (*J. Immunol., 123*: 1548 (1979)); P3-X63-Ag8 (X63) cell line (*Nature, 256*: 495 (1975)), and th like, which are 8-azaguanine-resistant mouse (BALB/c) myeloma cell lines. These cell lines are subcultured in 8-azaguanine medium (medium in which, to a medium obtained by adding 1.5 mmoVl glutamine, 5×10-5 moVl 2-mercaptoethanol, 10 μg/ml gentamicin and 10% fetal calf serum (FCS) (manufactured by CSL) to RPMI-1640 medium (hereinafter referred to as the "normal medium"), 8-azaguanine is further added at 15 μg/ml) and cultured in the normal medium 3 or 4 days before cell fusion, and 2×10⁷ or more of the cells are used for the fusion.

(c) Production of hybridoma

[0299] The antibody-producing cells obtained in (a) and the myeloma cells obtained in (b) are washed with MEM medium or PBS (disodium hydrogen phosphate: 1.83 g, sodium dihydrogen phosphate: 0.21 g, sodium chloride: 7.65 g, distilled water: 1 liter, pH: 7.2) and mixed to give a ratio of antibody-producing cells: myeloma cells = 5:1 to 10:1, followed by centrifugation at 1,200 rpm for 5 minutes, and the supernatant is discarded.

[0300] The cells in the resulting precipitated fraction were thoroughly loosened, 0.2 to 1 ml of a mixed solution of 2 g of polyethylene glycol-1000 (PEG-1000), 2 ml of MEM medium and 0.7 ml of dimethylsulfoxide (DMSO) p r 108 antibody-producing cells is added to the cells under stirring at 37°C, and then 1 to 2 ml of MEM medium is furth r added thereto several times at 1 to 2 minute intervals.

[0301] After the addition, MEM medium is added to give a total amount of 50 ml. The resulting prepared solution is centrifuged at 900 rpm for 5 minutes, and then the supernatant is discarded. The cells in the resulting precipitated fraction were gently loosened and then gently suspended in 100 ml of HAT medium (the normal medium to which 10^{-4} mol/l hypoxanthine, 1.5×10^{-5} mol/l thymidine and 4×10^{-7} mol/l aminopterin have been added) by repeated drawing up into and discharging from a measuring pipette.

[0302] The suspension is poured into a 96 well culture plate at 100 μl/well and cultured at 37°C for 7 to 14 days in a 5% CO₂ incubator.

[0303] After culturing, a part of the culture supernatant is recovered, and a hybridoma which specifically reacts with a partial fragment polypeptide of the polypeptide of the present invention is selected according to the enzyme immunoassay described in *Antibodies, A Laboratory manual*, Cold Spring Harbor Laboratory, Chapter 14 (1998) and the like.

[0304] A specific example of the enzyme immunoassay is described below.

[0305] The partial fragment polypeptide of the polypeptide of the present invention used as the antigen in the immunization is spread on a suitable plate, is allowed to react with a hybridoma culturing supernatant or a purified antibody btained in (d) d scribed below as a first antibody, and is further allowed t react with an anti-rat or anti-mouse immunoglobulin antibody labeled with an enzyme, a chemical luminous substance, a radioactive substance or the like as a second antibody for reaction suitable for the labeled substance. A hybridoma which specifically reacts with the polypeptide of the present inventors in the present antibody of the present

invention.

[0306] Cloning is repeated using the hybridoma twice by limiting dilution analysis (HT medium (a medium in which aminopterin has been removed from HAT medium) is firstly used, and the normal medium is secondly used), and a hybridoma which is stable and contains a sufficient amount of antibody titer is selected as a hybridoma capable of producing a monoclonal antibody of the present invention.

- (d) Preparation of monoclonal antibody
- [0307] The monoclonal antibody-producing hybridoma cells obtained in (c) are injected intraperitoneally into 8- to 10-week-old mice or nude mice treated with pristane (intraperitoneal administration of 0.5 ml of 2,6,10,14-tetrameth-ylpentadecane (pristane), followed by 2 weeks of feeding) at 5×10^6 to 20×10^6 cells/animal. The hybridoma causes ascites tumor in 10 to 21 days.
 - [0308] The ascitic fluid is collected from the mice or nude mice, and centrifuged to remove solid contents at 3000 rpm for 5 minutes.
- 15 [0309] A monoclonal antibody can be purified and isolated from the resulting supernatant according to the method similar to that used in the polyclonal antibody.
 - [0310] The subclass of the antibody can be determined using a mouse monoclonal antibody typing kit or a rat monoclonal antibody typing kit. The polypeptide amount can be determined by the Lowry method or by calculation based on the absorbance at 280 nm.
- 20 [0311] The antibody obtained in the above is within the scope of the antibody of the present invention.
 - [0312] The antibody can be used for the general assay using an antibody, such as a radioactive material labeled immunoassay (RIA), competitive binding assay, an immunotissue chemical staining method (ABC method, CSA method, etc.), immunoprecipitation, Western blotting, ELISA assay, and the like (An introduction to Radioimmunoassay and Related Techniques, Elsevier Science (1986); Techniques in Immunocytochemistry, Academic Press, Vol. 1 (1982),
- Vol. 2 (1983) & Vol. 3 (1985); Practice and Theory of Enzyme Immunoassays, Elsevier Science (1985); Enzyme-linked Immunosorbent Assay (ELISA), Igaku Shoin (1976); Antibodies A Laboratory Manual, Cold Spring Harbor laboratory (1988); Monoclonal Antibody Experiment Manual, Kodansha Scientific (1987); Second Series Biochemical Experiment Course, Vol. 5, Immunobiochemistry Research Method, Tokyo Kagaku Dojin (1986)).
 - [0313] The antibody of the present invention can be used as it is or after being labeled with a label.
- [0314] Examples of the label include radioisotope, an affinity label (e.g., biotin, avidin, or the like), an enzyme label (e.g., horseradish peroxidase, alkaline phosphatase, or the like), a fluorescence label (e.g., FITC, rhodamine, or the like), a label using a rhodamine atom, (*J. Histochem. Cytochem.*, 18: 315 (1970); Meth. Enzym., 62: 308 (1979); Immunol., 109: 129 (1972); J. Immunol., Meth., 13: 215 (1979)), and the like.
 - [0315] Expression of the polypeptide of the present invention, fluctuation of the expression, the presence or absence of structural change of the polypeptide, and the presence or absence in an organism other than coryneform bact ria of a polypeptide corresponding to the polypeptide can be analyzed using the antibody or the labeled antibody by th above assay, or a polypeptide array or proteome analysis described below.
 - [0316] Furthermore, the polypeptide recognized by the antibody can be purified by immunoaffinity chromatography using the antibody of the present invention.
 - 12. Production and use of polypeptide array
 - (1) Production of polypeptide array

- [0317] A polypeptide array can be produced using the polypeptide of the present invention obtained in the above item 10 or the antibody of the present invention obtained in the above item 11.
 - [0318] The polypeptide array of the present invention includes protein chips, and comprises a solid support and the polypeptide or antibody of the present invention adhered to the surface of the solid support.
- [0319] Examples of the solid support include plastic such as polycarbonate or the like; an acrylic resin, such as polyacrylamide or the like; complex carbohydrates, such as agarose, sepharose, or the like; silica; a silica-based material, carbon, a metal, inorganic glass, latex beads, and the like.
 - [0320] The polypeptides or antibodies according to the present invention can be adhered to the surface of the solid support according to the method described in *Biotechniques*, 27: 1258-61 (1999); *Molecular Medicine Today*, 5: 326-7 (1999); *Handbook of Experimental Immunology*, 4th edition, Blackw II Scientific Publications, Chapter 10 (1986); *Meth.*
- 55 Enzym., 34 (1974); Advances in Experimental Medicine and Biology, 42 (1974); U.S. Patent 4,681,870; U.S. Patent 4,282,287; U.S. Patent 4,762,881, or the like.
 - [0321] The analysis described herein can be efficiently performed by adhering the polypeptide or antibody of the present invention to the solid support at a high density, though a high fixation density is not always necessary.

(2) Use of polyp ptide array

5

10

15

30

35

40

[0322] A polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention adhered to the array can be identified using the polypeptide array to which the polypeptides of the present invention have been adhered thereto as described in the above (1).

[0323] Specifically, a polypeptide or a compound capable of binding to and interacting with the polypeptides of the present invention can be identified by subjecting the polypeptides of the present invention to the following steps (i) to (iv):

- (i) preparing a polypeptide array having the polypeptide of the present invention adhered thereto by the method of the above (1);
- (ii) incubating the polypeptide immobilized on the polypeptide array together with at least one of a second polypeptide or compound;
- (iii) detecting any complex formed between the at least one of a second polypeptide or compound and the polypeptide immobilized on the array using, for example, a label bound to the at least one of a second polypeptid or compound, or a secondary label which specifically binds to the complex or to a component of the complex aft r unbound material has been removed: and
- (iv) analyzing the detection data.

[0324] Specific examples of the polypeptide array to which the polypeptide of the present invention has been adhered include a polypeptide array containing a solid support to which at least one of a polypeptide containing an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide containing an amino acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide containing an amino acid sequence having a homology of 60% or more with the amino acid sequences of the polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, and a peptide comprising an amino acid sequence of a part of a polypeptide.

[0325] The amount of production of a polypeptide derived from coryneform bacteria can be analyzed using a polypeptide array to which the antibody of the present invention has been adhered in the above (1).

[0326] Specifically, the expression amount of a gene derived from a mutant of coryneform bacteria can be analyzed by subjecting the gene to the following steps (i) to (iv):

- (i) preparing a polypeptide array by the method of the above (1);
- (ii) incubating the polypeptide array (the first antibody) together with a polypeptide derived from a mutant of coryneform bacteria;
- (iii) detecting the polypeptide bound to the polypeptide immobilized on the array using a labeled second antibody of the present invention; and
- (iv) analyzing the detection data.

[0327] Specific examples of the polypeptide array to which the antibody of the present invention is adhered includ a polypeptide array comprising a solid support to which at least one of an antibody which recognizes a polypeptid comprising an amino acid sequence selected from SEQ ID NOS:3502 to 7001, a polypeptide comprising an amin acid sequence in which at least one amino acids is deleted, replaced, inserted or added in the amino acid sequence of the polypeptide and having substantially the same activity as that of the polypeptide, a polypeptide and having substantially the same activity as that of the polypeptides, a partial fragment polypeptide, or a peptide comprising an amino acid sequence of a part of a polypeptide.

[0328] A fluctuation in an expression amount of a specific polypeptide can be monitored using a polypeptide obtained in the time course of culture as the polypeptide derived from coryneform bacteria. The culturing conditions can be optimized by analyzing the fluctuation.

50 [0329] When a polypeptide derived from a mutant of coryneform bacteria is used, a mutated polypeptid can be detected.

- 13. Identification of useful mutation in mutant by proteome analysis
- [0330] Usually, the proteome is used herein to refer to a method wherein a pelypeptide is separated by two dimensional electrophoresis and the separated polypeptide is digested with an enzyme, followed by identification of the polypeptide using a mass spectrometer (MS) and searching a data base.
 - [0331] The two dimensional electrophoresis means an electrophoretic method which is performed by combining tw

electrophoretic procedures having different principles. For xample, polypeptides are separated depending on molecular weight in the primary electrophoresis. Next, the gel is rotated by 90° or 180° and the secondary electrophoresis is carried out depending on isoelectric point. Thus, various separation patterns can be achieved (JIS K 3600 2474).

[0332] In searching the data base, the amino acid sequence information of the polypeptides of the present invention

and the recording medium of the present invention provide for in the above items 2 and 8 can be used.

[0333] The proteome analysis of a coryneform bacterium and its mutant makes it possible to identify a polypeptide showing a fluctuation therebetween.

[0334] The proteome analysis of a wild type strain of coryneform bacteria and a production strain showing an improved productivity of a target product makes it possible to efficiently identify a mutation protein which is useful in breeding for improving the productivity of a target product or a protein of which expression amount is fluctuated.

[0335] Specifically, a wild type strain of coryneform bacteria and a lysine-producing strain thereof are each subjected to the proteome analysis. Then, a spot increased in the lysine-producing strain, compared with the wild type strain, is found and a data base is searched so that a polypeptide showing an increase in yield in accordance with an increase in the lysine productivity can be identified. For example, as a result of the proteome analysis on a wild type strain and a lysine-producing strain, the productivity of the catalase having the amino acid sequence represented by SEQ ID NO: 3785 is increased in the lysine-producing mutant.

[0336] As a result that a protein having a high expression level is identified by proteome analysis using the nucleotide sequence information and the amino acid sequence information, of the genome of the coryneform bacteria of the present invention, and a recording medium storing the sequences, the nucleotide sequence of the gene encoding this protein and the nucleotide sequence in the upstream thereof can be searched at the same time, and thus, a nucleotid sequence having a high expression promoter can be efficiently selected.

[0337] In the proteome analysis, a spot on the two-dimentional electrophoresis gel showing a fluctuation is sometim is derived from a modified protein. However, the modified protein can be efficiently identified using the recording mindium storing the nucleotide sequence information, the amino acid sequence information, of the genome of coryneform bacteria, and the recording medium storing the sequences, according to the present invention.

[0338] Moreover, a useful mutation point in a useful mutant can be easily specified by searching a nucleotide squence (nucleotide sequence of promoters, ORF, or the like) relating to the thus identified protein using a recording medium storing the nucleotide sequence information and the amino acid sequence information, of the gen me of coryneform bacteria of the present invention, and a recording medium storing the sequences and using a primer designed on the basis of the detected nucleotide sequence. As a result that the useful mutation point is specified, an industrially useful mutant having the useful mutation or other useful mutation derived therefrom can be easily bred.

[0339] The present invention will be explained in detail below based on Examples. However, the present invention

35 Example 1

is not limited thereto.

10

15

25

30

40

45

50

Determination of the full nucleotide sequence of genome of Corynebacterium glutamicum

[0340] The full nucleotide sequence of the genome of *Corynebacterium glutamicum* was determined bas d on the whole genome shotgun method (*Science*, 269: 496-512 (1995)). In this method, a genome library was prepar d and the terminal sequences were determined at random. Subsequently, these sequences were ligated on a computer to cover the full genome. Specifically, the following procedure was carried out.

(1) Preparation of genome DNA of Corynebacterium glutamicum ATCC 13032

[0341] Corynebacterium glutamicum ATCC 13032 was cultured in BY medium (7 g/l meat extract, 10 g/l pepton , 3 g/l sodium chloride, 5 g/l yeast extract, pH 7.2) containing 1% of glycine at 30°C overnight and the cells were collected by centrifugation. After washing with STE buffer (10.3% sucrose, 25 mmol/l Tris hydrochloride, 25 mmol/l EDTA, pH 8.0), the cells were suspended in 10 ml of STE buffer containing 10 mg/ml lysozyme, followed by gently shaking at 37°C for 1 hour. Then, 2 ml of 10% SDS was added thereto to lyse the cells, and the resultant mixture was maintain d at 65°C for 10 minutes and then cooled to room temperature. Then, 10 ml of Tris-neutralized phenol was added thereto, followed by gently shaking at room temperature for 30 minutes and centrifugation (15,000 × g, 20 minutes, 20°C). The aqueous layer was separated and subjected to extraction with phenol/chloroform and extraction with chloroform (twice) in the sam manner. To the aqueous layer, 3 mol/l sodium acetate solution (pH 5.2) and isopropanol were added at 1/10 times volume and twice volume, respectively, followed by gently stirring to precipitate the genome DNA. The genome DNA was dissolved again in 3 ml of TE buffer (10 mmol/l Tris hydrochloride, 1 mmol/l EDTA, pH 8.0) containing 0.02 mg/ml of RNase and maintained at 37°C for 45 minutes. The extractions with phenol, phenologon by nol/chloroform and chloroform were carried out successively in the same manner as the above. The genome DNA was subject of to iso-

propanol precipitation. The thus formed genome DNA precipitate was wash id with 70% ethanol three times, followed by air-drying, and dissolved in 1.25 ml of TE buffer to give a genome DNA solution (concentration: 0.1 mg/ml).

(2) Construction of a shotgun library

5

10

15

20

30

35

40

45

50

55

[0342] TE buffer was added to 0.01 mg of the thus prepared genome DNA of *Corynebacterium glutamicum* ATCC 13032 to give a total volume of 0.4 ml, and the mixture was treated with a sonicator (Yamato Powersonic Model 150) at an output of 20 continuously for 5 seconds to obtain fragments of 1 to 10 kb. The genome fragments were blunt-ended using a DNA blunting kit (manufactured by Takara Shuzo) and then fractionated by 6% polyacrylamide gel electrophoresis. Genome fragments of 1 to 2 kb were cut out from the gel, and 0.3 ml MG elution buffer (0.5 mol/l ammonium acetate, 10 mmol/l magnesium acetate, 1 mmol/l EDTA, 0.1% SDS) was added thereto, followed by shaking at 37°C overnight to elute DNA. The DNA eluate was treated with phenol/chloroform, and then precipitated with ethanol to obtain a genome library insert. The total insert and 500 ng of pUC18 *Small*BAP (manufactured by Amersham Pharmacia Biotech) were ligated at 16°C for 40 hours.

[0343] The ligation product was precipitated with ethanol and dissolved in 0.01 ml of TE buffer. The ligation solution (0.001 ml) was introduced into 0.04 ml of *E. ∞li* ELECTRO MAX DH10B (manufactured by Life Technologies) by the electroporation under conditions according to the manufacture's instructions. The mixture was spread on LB plate medium (LB medium (10 g/l bactotrypton, 5 g/l yeast extract, 10 g/l sodium chloride, pH 7.0) containing 1.6% of agar) containing 0.1 mg/ml ampicillin, 0.1 mg/ml X-gal and 1 mmol/l isopropyl-β-D-thiogalactopyranoside (IPTG) and cultured at 37°C overnight.

[0344] The transformant obtained from colonies formed on the plate medium was stationarily cultured in a 96-w II titer plate having 0.05 ml of LB medium containing 0.1 mg/ml ampicillin at 37°C overnight. Then, 0.05 ml of LB medium containing 20% glycerol was added thereto, followed by stirring to obtain a glycerol stock.

25 (3) Construction of cosmid library

[0345] About 0.1 mg of the genome DNA of Corynebacterium glutamicum ATCC 13032 was partially digest d with SalBAI (manufactured by Takara Shuzo) and then ultracentrifuged (26,000 rpm, 18 hours, 20°C) under 10 to 40% sucrose density gradient obtained using 10% and 40% sucrose buffers (1 mol/l NaCl, 20 mmol/l Tris hydrochloride, 5 mmol/l EDTA, 10% or 40% sucrose, pH 8.0). After the centrifugation, the solution thus separated was fractionat d into tubes at 1 ml in each tube. After confirming the DNA fragment length of each fraction by agarose gel electrophoresis, a fraction containing a large amount of DNA fragment of about 40 kb was precipitated with ethanol.

[0346] The DNA fragment was ligated to the <code>BamHI</code> site of superCos1 (manufactured by Stratagene) in accordance with the manufacture's instructions. The ligation product was incorporated into <code>Escherichia coli XL-1-BlueMB</code> strain (manufactured by Stratagene) using Gigapack III Gold Packaging Extract (manufactured by Stratagene) in accordance with the manufacture's instructions. The <code>Escherichia coli</code> was spread on LB plate medium containing 0.1 mg/ml ampicillin and cultured therein at 37°C overnight to isolate colonies. The resulting colonies were stationarily cultured at 37°C overnight in a 96-well titer plate containing 0.05 ml of the LB medium containing 0.1 mg/ml ampicillin in ach well. LB medium containing 20% glycerol (0.05 ml) was added thereto, followed by stirring to obtain a glycerol stock.

(4) Determination of nucleotide sequence

(4-1) Preparation of template

[0347] The full nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 was determined mainly based on the whole genome shotgun method. The template used in the whole genome shotgun method was prepared by the PCR method using the library prepared in the above (2).

[0348] Specifically, the clone derived from the whole genome shotgun library was inoculated using a replicator (manufactured by GENETIX) into each well of a 96-well plate containing the LB medium containing 0.1 mg/ml of ampicillin at 0.08 ml per each well and then stationarily cultured at 37°C overnight.

[0349] Next, the culturing solution was transported using a copy plate (manufactured by Tokken) into a 96-well reaction plate (manufactured by PE Biosystems) containing a PCR reaction solution (TaKaRa Ex Taq (manufactured by Takara Shuzo)) at 0.08 ml per each well. Then, PCR was carried out in accordance with the protocol by Makino et al. (DNA Research, 5: 1-9 (1998)) using GeneAmp PCR System 9700 (manufactured by PE Biosystems) to amplify the instructed fragment.

[0350] The excessive prim is and nucli otides were eliminated using a kit for purifying a PCR production (manufactured by Amersham Pharmacia Biotech) and the residue was used as the template in the sequencing reaction.

[0351] Some nucleotide sequences were determined using a double-stranded DNA plasmid as a t implate.

[0352] The double-stranded DNA plasmid as the template was obtain d by the following method.

[0353] The clone derived from the whole genome shotgun library was inoculated into a 24- or 96-well plate containing a 2× YT medium (16 g/l bactotrypton, 10 g/l yeast extract, 5 g/l sodium chloride, pH 7.0) containing 0.05 mg/ml ampicillin at 1.5 ml per each well and then cultured under shaking at 37°C overnight.

[0354] The double-stranded DNA plasmid was prepared from the culturing solution using an automatic plasmid preparing machine, KURABO PI-50 (manufactured by Kurabo Industries) or a multiscreen (manufactured by Millipore) in accordance with the protocol provided by the manufacturer.

[0355] To purify the double-stranded DNA plasmid using the multiscreen, Biomek 2000 (manufactured by Beckman Coulter) or the like was employed.

[0356] The thus obtained double-stranded DNA plasmid was dissolved in water to give a concentration of about 0.1 mg/ml and used as the template in sequencing.

(4-2) Sequencing reaction

[0357] To 6 μl of a solution of ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems), an M13 regular direction primer (M13-21) or an M13 reverse direction primer (M13REV) (DNA Research, 5: 1-9 (1998) and the template prepared in the above (4-1) (the PCR product or the plasmid) were added to give 10 μl of a sequencing reaction solution. The primers and the templates were used in an amount of 1.6 pmol and an amount of 50 to 200 ng, respectively.

[0358] Dye terminator sequencing reaction of 45 cycles was carried out with GeneAmp PCR System 9700 (manufactured by PE Biosystems) using the reaction solution. The cycle parameter was determined in accordance with the manufacturer's instruction accompanying ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit. The sample was purified using MultiScreen HV plate (manufactured by Millipore) according to the manufacture's instructions. The thus purified reaction product was precipitated with ethanol, followed by drying, and then stored in the dark at -30°C.

[0359] The dry reaction product was analyzed by ABI PRISM 377 DNA Sequencer and ABI PRISM 3700 DNA Analyzer (both manufactured by PE Biosystems) each in accordance with the manufacture's instructions.

[0360] The data of about 50,000 sequences in total (i.e., about 42,000 sequences obtained using 377 DNA Sequencer and about 8,000 reactions obtained by 3700 DNA Analyser) were transferred to a server (Alpha Server 4100: manufactured by COMPAQ) and stored. The data of these about 50,000 sequences corresponded to 6 times as much as the genome size.

(5) Assembly

25

30

(0361) All operations were carried out on the basis of UNIX platform. The analytical data were output in Macintosh platform using X Window System. The base call was carried out using phred (The University of Washington). The vector sequence data was deleted using SPS Cross_Match (manufactured by Southwest Parallel Software). The assembly was carried out using SPS phrap (manufactured by Southwest Parallel Software; a high-speed version of phrap (The University of Washington)). The contig obtained by the assembly was analyzed using a graphical editor, consed (The University of Washington). A series of the operations from the base call to the assembly were carried out simultaneously using a script phredPhrap attached to consed.

(6) Determination of nucleotide sequence in gap part

[0362] Each cosmid in the cosmid library constructed in the above (3) was prepared by a method similar to the preparation of the double-stranded DNA plasmid described in the above (4-1). The nucleotide sequence at the end of the inserted fragment of the cosmid was determined by using ABI PRISM BigDye Terminator Cycle Sequencing Ready Reaction Kit (manufactured by PE Biosystems) according to the manufacture's instructions.

[0363] About 800 cosmid clones were sequenced at both ends to search a nucleotide sequence in the contig d riv d from the shotgun sequencing obtained in the above (5) coincident with the sequence. Thus, the linkage betw n respective cosmid clones and respective contigs were determined and mutual alignment was carried out. Furthermore, the results were compared with the physical map of Corynebacterium glutamicum ATCC 13032 (Mol. Gen. Genet., 252: 255-265 (1996) to carrying out mapping between the cosmids and the contigs.

[0364] The sequence in the region which was not covered with the contigs was determined by the following method.

[0365] Clones containing sequences positioned at the ends of contigs were selected. Among these clones, about 1,000 clones wherein only one end of the inserted fragment had been determined were selected and the sequence at the opposite end of the inserted fragment was determined. A shotgun library clone in a cosmid clone containing the sequences at the respective ends of the inserted fragment in two contigs was identified, the full nucleotide sequence

of the inserted fragment of this clone was determined, and thus the nucleotide sequence of the gap part was determined. When no shotgun library clon or cosmid clone covering the gap part was available, primers complemintary to the end sequences at the two contigs were prepared and the DNA fragment in the gap part was amplified by PCR. Then, sequencing was performed by the primer walking method using the amplified DNA fragment as a timplate or by the shotgun method in which the sequince of a shotgun clone prepared from the amplified DNA fragment was determined. Thus, the nucleotide sequence of the domain was determined.

[0366] In a region showing a low sequence precision, primers were synthesized using AUTOFINISH function and NAVIGATING function of consed (The University of Washington) and the sequence was determined by the primer walking method to improve the sequence precision. The thus determined full nucleotide sequence of the genome of Corynebacterium glutamicum ATCC 13032 strain is shown in SEQ ID NO:1.

(7) Identification of ORF and presumption of its function

[0367] ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified according to the following method. First, the ORF regions were determined using software for identifying ORF, i.e., Glimmer, GeneMark and GeneMark.hmm on UNIX platform according to the respective manual attached to the software.

[0368] Based on the data thus obtained, ORFs in the nucleotide sequence represented by SEQ ID NO:1 were identified.

[0369] The putative function of an ORF was determined by searching the homology of the identified amino acid sequence of the ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or Genpept database constituted by protein encoding domains derived from GenBank database, Fram Search (manufactured by Compugen), or by searching the homology of the identified amino acid sequence of th ORF against an amino acid database consisting of protein-encoding domains derived from Swiss-Prot, PIR or G npept database constituted by protein encoding domains derived from GenBank database, BLAST. The nucleotide sequences of the thus determined ORFs are shown in SEQ ID NOS:2 to 3501, and the amino acid sequences encoded by thes ORFs are shown in SEQ ID NOS:3502 to 7001.

[0370] In some cases of the sequence listings in the present invention, nucleotide sequences, such as TTG, TGT, GGT, and the like, other than ATG, are read as an initiating codon encoding Met.

[0371] Also, the preferred nucleotide sequences are SEQ ID NOS:2 to 355 and 357 to 3501, and the preferred amino acid sequences are shown in SEQ ID NOS:3502 to 3855 and 3857 to 7001

[0372] Table 1 shows the registration numbers in the above-described databases of sequences which were judged as having the highest homology with the nucleotide sequences of the ORFs as the results of the homology search in the amino acid sequences using the homology-searching software Frame Search (manufactured by Compugen), names of the genes of these sequences, the functions of the genes, and the matched length, identities and analogies compared with publicly known amino acid translation sequences. Moreover, the corresponding positions we reconfirmed via the alignment of the nucleotide sequence of an arbitrary ORF with the nucleotide sequence of SEQ ID NO: 1. Also, the positions of nucleotide sequences other than the ORFs (for example, ribosomal RNA genes, transfer RNA genes, IS sequences, and the like) on the genome were determined.

[0373] Fig. 1 shows the positions of typical genes of the Corynebacterium glutamicum ATCC 13032 on the g nome.

10

20

25

30

35

40

45

50

																				 ,		
5	Function	replication initiation protein DnaA		DNA polymerase III beta chain	DNA replication protein (recF protein)	hypothetical protein	ONA tcpoisomerase (ATP. hydrolyzing)					NAGC/XYLR repressor			DNA gyrase subunit A	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, LysR type		cytochrome c biogenesis protein	hypothetical protein	repressor
15	Natched 'ength (a.a.)	1	•	390	392 C	174 h	704 h					422 N			854	112 h	329 h	268 b		265 0	155 h	117
20	Similarity (%)	8.66		81.8	79.9	58.1	88.9					50.7			1.88	9.69	63.5	62.3		57.4	64.5	70.1
	Identity (%)	8.66		50.5	53.3	35.1	71.9					29.4			70.4	29.5	33.7	27.6		29.1	31.6	36.8
25 30 Lable 1	Homologous gene	Brev:bacterium flavum dnaA		Mycobacterium smegmatis dnaN	Nycobacterium smegmatis recF	Streptomyces coelicolor yreG	Mycobacterium tuberculosis H37Rv gyrB					Mycobacterium tuberculosis H37Rv			Mycobacterium tuberculosis H37Rv Rv0006 gyrA	Mycobacterium tuberculosis H37Rv Rv0007	Escherichia coli K12 yeiH	Hydrogenophilus thermoluteolus TH-1 cbbR		Rhodobacter capsulatus ccdA	Coxiella burnetii com 1	Wycobacterium tuberculosis H37Rv Rv1846c
40	db Match	gsp.R98523		SP. DP3B_MYCSM	SP. RECF_MYCSM	sp.YREG_STRCO	pir.S4<198					sp:YV:1_MYCTU			sp:GYRA_MYC."U	pir.E70698	Sp:YEIH_ECOLI	gp:A8042619_1		gp.AF*56103_2	pr:A49232	pir:F7C664
	ORF (bp)	1572	324	1182	1182	534	2133	996	699	510	441	1071	261	246	2568	342	1035	894	420	870	762	369
45	Terminal (nt)	1572	1597	3473	4766	5299	7486	8795	8798	10071	9474	10107	11253	11523	14398	14746	15209	1720?	17670	17860	18736	20073
50	Initial (nt)	1_	1920	2232	3585	4766	5354	7830	9465	9562	9514	11177	11523	11768	11831	14405	16243	16314	17251	18729	19497	19705
	SEQ NO (a.a)	3502	3503	3504	3505	3506	3507	3508	3509	3510	3511	3512	3513	3514	3515	3516	3517	3518	3519	3520	3521	3522
55	SEQ NO.	2 2	6	4	5	9	:	80	6	9	=	12	13	=	15	9	12	18	19	20	21	22

36

בייבייי בי יויסריםיאב

5		ç	ne protein	acic reductase	rsor	protein		e de:oxication	helitase		osidase		or integral	oort ATP.	r, periplasmic	Sport profein	incina profein	NF-180	s isomerase A	e protein
10		Function	hypothetical membrane protein	2,5-dikelo-D-gluconic acic reductase	5-nucleotidase precursor	5'-nucleotidase family protein	transposase	organic hydroperoxide de:oxication enzyme	ATP-dependent DNA helizase		glucan 1,4-alpha-glucosidase	lipoprctein	ABC 3 transport family or integral membiane protein	iron(III) dicitrate transport ATP biding protein	sugar ABC transporter, periplasmic sugar-binding protein	high affinity ribose transport profein	ribose transport ATP-bincing protein	neurofilament subunit NF-180	peptidyl-prolyl cis-trans isomerase A	hypothetical membrane protein
15		Natched ength	321	26	196	270	51	139	217		449	311	266	222	283	312	236	347	169	226
20		Similarity (%)	50.8	88.5	56.1	56.7	72.6	79.9	8.09		54.1	63.7	74.1	70.3	56.5	68.3	76.7	44.4	89.9	53.1
		Identity (%)	24.9	65.4	27.0	27.0	52.9	51.8	32.7		26.7	28.9	34.6	39.2	25.8	30.5	32.2	23.6	79.9	29.2
25	ontinued)	gene	36	. ATCC	licus nutA	urans	natum ORF 1	estris	dans recG		evisiae	pathiae	enes SF370	fecE	a MSB8	rbsC	bsA		e H37RV	/dôb/
30	Table 1 (continued)	Homologous gene	Mycobacterium leprae NLCB1788.18	Corynebacterium sp. ATCC 31090	Vibrio parahaemolyticus nutA	Deinococcus radiodurans DR0505	Corynebacterium striatum ORF1	Xanthomonas campestris phaseoli ohr	Thiobacillus ferrooxidans recG		Saccharomyces cerevisiae S288C YIR019C sta1	Erysipelothrix rhusiopathiae ewlA	Streptococcus pyogenes SF370 misC	Escherichia coli K12 fecE	Thermotoga maritima MSB8 TM0114	Escherichia coli K12 rbsC	Bacillus subtilis 168 rbsA	Petromyzon mannus	Mycobacterium leprae H37RV RV0009 ppiA	Bacillus subtilis 168 yagP
35				O E		00	٥	Χħ		-		ற் த	S E	<u> </u>	# £	Es	_ 1	Pe		$\overline{}$
40		db Match	9p:MLCB1788_6	pir. 40838	sp.5N ^T D_VIBPA	gp:AE001909_7	pri 25°3302C	prf.24*3353A	SP. RECG_THIFE		SP.AMYH_YEAST	gp:ERU52850_1	gp:AF180520_3	sp.FECE_ECOLI	pir.A72417	prf.1207243B	sp.RBSA_BACSU	pir 151116	sp:CYPA_MYCTU	sp YOGP_BACSU
		ORF (bp)	993	180	528	1236	165	435	1413	438	1278	954	849	657	981	1023	759	816	561	289
45		Termina' (nt)	21065	21074	22124	23399	23615	24729	24885	26775	26822	28164	29117	30651	31677	32699	33457	33465	34899	35668
50		Initial (nt)	20073	21253	21597	22164	23779	24295	26292	26338	28099	29117	29965	29995	30697	3.677	32699	34280	34339	34992
		SEQ NO (a.a.)	3523	3524	3525	3526	3527	3528	3529	3530	3531	3532	3533	3534	3535	3536	3537	3538	3539	3540
55		SEQ NO.	23	24	25	26	27_		59	33	5	32	33	36	35	98	Ť	88	66	6

		- 	_	_			-	\neg							\top	1	\top	1		Ī	
5	Function	ferric enterobactin transport system permease protein		Alrase	vulnibactin utilization protein	hypothetical membrane protein	serine/Ihreonine protein kinase	serineAhreonine protein kinase	penicillin-binding protein	stage V sporulation protein E	phosphoprotein phosphatase	hypothetical protein	hypothetical protein					phenol 2-monooxygenase	succinate-semialdehyde dehydrogenase (NAD(P)+)	hypothetical protein	hypothetical membrane protein
15	Matched length (a.a.)	332		十	260	95	\neg	486		375	469	155	526					117	490	242	262
20	Similarity (%)	70.5		81.8	52.7	72.6	68.7	59.1	2.99	9.59	70.8	66.5	38.8					63.3	78.2	57.0	64.1
	Identity (%)	40.4		51.8	26.2	40.0	40.6	31.7	33.5	31.2	44.1	38.7	23.8					29.9	46.7	27.3	29.0
<i>25</i> (pen	ē	ပ္ခ			4 viuB	losis	pknB	r pksC	PpA	oVE	llosis	ilosis	losis					n ATCC	abD		schii
os Table 1 (continued)	Homologous gene	Escherichia coli K12 fepG		Vibrio cholerae viuC	Vibrio vulnificus MO6-24 viuB	Mycobacterium tuberculosis H37Rv Rv0011c	Mycobacterium leprae pknB	Streptomyces coel·color pksC	Streptomyces griseus pbpA	Bacillus subtilis 168 spoVE	Mycobacterium tuberculosis H37Rv ppp	Mycobacterium tube culosis H37Rv Rv0019c	Mycobacterium tuberculosis H37Rv Rv0020c					Trichosporon cutaneum ATCC 48490	Escherichia coli K12 gabD	Bacillus subtilis yrkH	Methanococcus jannaschii MJ0441
<i>40</i>	do Match	SP. FEPG_ECOLI		gp:VCJ52150_9	V.UB_VIBVU	sp.YO11_MYCTU	SP. PKNB MYCLE		-,	SS		pir.A70700	pir:970700					sp.PH2M_TRICU	sp.GA3D_ECOLI	SP.YRKH_BACSU	sp:Y441_METJA
	ORF (bp)	978	966	777	922	270	1938	1407	+	1143	1353	462	864	147	720	219	471	954	1470	1467	789
45	Terminal (nt)	38198	36247	38978	39799	40189	40576	42513	43926	45347	46689	48024	48505	49455	49897	50754	50966	54008	51626	55546	55629
50	Initial (nt)	37221	37242	38202	38978	40458	425:3	43919	45347	46489	48021	48485	49368	49601	50616	50972	51436	53055	53095	54080	
	SEO	3541	3542	3543	3544	3545	3546	3547	3548	3543	3550	3551	3552	3553	3554	3555	3556	3557	3558	3559	3560
55	SEO		42	T		45	46	47	84	g	20	51	52	53	54	55	56	57	. S.B.	9	8

			1				-			1				,	, -		,		,			
5		Function	hypothetical protein	hypothelical protein	hypothetical protein		hypothetical protein			magnesium and coball transport prote:n		chloride channel protein	required for NMN transport	phosphate starvation-induced protein-like protein				Mg(2+//citrate complex secondary transporter	two-component system sensor histidine kinase		transcriptional regulator	D-isomer specific 2-hydroxyacid dehydrogenase
15		8.5		ł,	Ě	_	l d		ļ	E D	<u> </u>	흉	red	a g		-	-	Mg(tran	two hist	_	tran	D-is deh
		Matched length (a.a.)	74	179	62		310			390		5	241	340				497	563		229	293
20		Similarity (%)	74.3	70.4	83.9		50.7	1		59.5		64.8	53.1	0.09				68.8	9.09		63.3	73.7
		Identity (%)	40.5	36.3	53 2		26.8			29.5		30.0	24.1	29.1				42.3	27.2		33.2	43.3
25	ਰ			6								ą	ű							-		E
<i>30</i>	Table 1 (continued)	Homologous gene	Bacillus sublills yrkF	Synechocystis sp. PCC6803 slr1261	Mycobacterium tuberculosis H37Rv Rv1766		Leishmania major L4768.11			Mycobacterium tuberculosis H37Rv Rv1239c corA		Zymomonas mobilis ZM4 clcb	Salmonella typhimurium phuC	Mycobacterium tuberculosis H37Rv RV2368C				Bacillus subtilis citM	Escherichia coli K12 dpiB		Escherichia coli K12 criR	Corynebacterium glutamicum unkdh
40		db Match	sp.YRKF_BACSU	sp.YCE1_SYNY3	pir:G7C988		gp:LMFL4768_11			pir:F70952		gp AF179611_12	SP.PNUC_SALTY	sp:PHOL_MYCTU				sp CITM_BACSU	sp. DPIB_ECOLI		sp.DPIA_ECOLI	gp.A=134895_1
		ORF (bp)	291	591	174	855	840	711	1553	1113	447	1269	069	1122	132	384	765	1467	1653	570	654	912
45		Terminal (nt)	55386	55680	57651	58941	59930	60662	62321	62390	63594	65458	62208	67972	68301	68251	65824	68720	72158	71474	72814	72817
50		Initial (nt)	92995	57270	57478	58087	59091	59952	59909	63508	64040	64150	26199	66851	68170	68634	09069	70186	70506	72043	72161	73728
	، سر	SEO NO (a a)	3561	3562	3563	3564	3565	3566	3567	3568	3569	3570	3571	3572	3573	3574	3575	3576	3577	3578	3579	3580
55		SEQ NO (DNA)	61	62	63	9	65	99	29	89	69	6	=	72	73	74	75	76	77	78	6	90

	Function	hypotheticai protein	biotin synthase	hypothelical protein	hypothetical protein		hypothetical protein	hypothetical protein	integral membrane efflux protein	crealin:ne deaminase			SIR2 gene family (silent information regulator)	triacylglycerol Ilpase	triacylglycerol lipase		transcriptional regulator	urease gammma subunit or urease structural prolein	urease beta subunit	urease alpha subunit
Matched	length (a a)	127	334	43	85		42	84	507	394			279	251	262		171	100	162	570
Similarity	(%)	76.4	99.7	79 1	63.5		75.0	0.99	29.0	93.8			50.2	29.0	56.1		94.7	100 0	100 0	100 0
Li de Li	(%)	38.6	99.4	72.1	34.1		71.0	61.0	25.6	97.2			26.2	30.7	29.4		90.6	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SCM2 03	Corynebacterium glutamicum bioB	Mycobacterium tuberculosis H37Rv Rv1590	Saccharomyces cerevisiae YKL084w		Chlamydia muridarum Nigg TC0129	Chlamydia pneumoniae	Streptomyces virginiae varS	Bacillus sp.			Saccharomyces cerevisiae hst2	Propionibacterium acnes	Propionibacterium acres		Corynebacterium glutamicum ureR	Corynebacterium glutamicum ureA	Corynebacterium glutamicum ATCC 13032 ureB	Corynebacterium glutamicum ATCC 13032 ureC
	db Match	gp:SCM2_3	sp:BIOB_CORGL	pir H70542	sp:YK:4_YEAST		PIR:F81737	GSP:Y35914	pri 25:2333A	gp D38505_1			sp.HST2_YEAST	orf 2316378A	prf 23:6378A		gp.AB029154_1	gp AB029154_2	gp:CGL251883_2	gp CGL251883_3
	ORF (bp)	429	1002	237	339	117	141	273	1449	1245	306	615	924	972	906	888	513	300	486	1710
	Terminal (nt)	74272	75491	75742	76035	76469	80613	81002	82120	83691	85038	85663	87241	87561	88545	90445	90461	91473	91988	93701
	Initial (n!)	73844	74490	75506	75697	76353	80753	81274	83568	84935	85403	86277	86318	88532	89444			91174	91503	91992
0	NO (s	3581	3582	3583	3584	3585	3586	35.87	15.RB	3589	3590	3591	3592	2502	3594	3595	3596	3597	3598	3599
با ا	NO NO	-2-	-82	83	78	95	98	7,8	g	3 2	06	16	92	18	2 4	35	96	97	86	66

:																								
5		Function	urease accessory protein	u'ease accessory protein	u'ease accessory protein	u:ease accessory protein	epoxide hydrolase		valanimycin resistant profein			heat shock protein (hend) (amily)	AMP nucleosidase		acetolactate synthese large cultural		proline dehydrogenase/P5C dehydrogenase		aryl-alcohol dehydrogenase (NADP+)	pump protein (fransport)	indole-3-acetal Ace hydrolece	acein in the contract of the c	hypothetical membrane protein	
15		Matched length (a a)	†	226 u	205 u	283 u	279 e	1	347 v	1		668 h	\dagger	\top	196	 	1297 p		338 ar	513 pt	352 in	1	106 hy	
20		Similarity (%)	100.0	100 0	100.0	100.0	48.4		59.7			52.7	68.2		58.7		50.4		60.7	71.4	49.2		70.8	
		Identity (%)	100.0	100.0	100.0	100.0	21.2		26.5			23.8	410		29.6		25.8		30.2	36.5	23.0		35.9	
25 :	lable 1 (continued)	us gene	glutamicum	glutamicum	glutamicum	Jutamicum	iobacter echA		faciens vlmF			2 htpG	2 amn		K1 APE2509		urium putA		ysosporium	2 удан	merans		2 yidH	
35	lable 1 (Homologous gene	Corynebacterium glutamicum ATCC 13032 ureE	Corynebacterium glutamicum ATCC 13032 ureF	Corynebacterium glutamicum A.CC 13032 ureG	Corynebacterium glutamicum ATCC 13032 ureD	Agrobacterium radiobacter echA		Streptomyces viridifaciens vlmF			Escherichia coli K12 htpG	Escherichia coli K12 amn		Aeropyrum pernix K1 APE2509		I Salmonella typhimurium putA		Phanerochaete chrysosporium aad	Escherichia coli K12 ydaH	Enterobacter agglomerans		Escherichia coli K12 yidH	
40		db Matcn	gp:CGL251883_4	gp.CGL251883_5	gp.CGL251883_6	gp.CGL251883_7	prf.2318326B A		gp. AF148322_1 S			SP:HTPG_ECOLI E	SP. AMN_ECOLI E		pir:E72483 A		SP.PUTA_SALTY IS		SP. AAD_PHACH PI	SP. YDAH_ECOLI E	prf 2422424A E		Sp. YIDH ECOLI E	
45		(hp)	471	678	615	849	777	699	1152	675	2775	1824	1416	579	552	999	3456	114	945	1614	1332	669	366	315
		Term nal (nt)	94199	94879	955.3	95365	98368	98189	6.826	100493	80886	101612	104909	105173	105841	:06630	110890	111274	112318	114083	115478	114564	115943	116263
50		In tial (nt)	93729	94202	94899	95517	97144	97521	9847C	99819	101582	103435	103494	105751	105392	107289	107435	111161	111374	112470	114'47	115262	115578	115949
	\vdash	SEQ NO.	3600	3601	3602	3603	3604	3605	3606	3607	3608	3509	3610	361:	3512	3513	3514	3515	3616	3617	3618	3619	3620	3621
55	010	NO (DNA)	5	101	102	103	104	105	106	107	108	109	110	=	112	113	14	115	115	=	118	119		121

EP 1 108 790 A2

5		Function		transcriptional repressor	methyigiyoxalase	hypothetical protein	mannitol dehydrogenase	O-arabinitol transporter		galactitol utilization operon repressor	xylulose kinase		pantoate-beta-alanine ligase	3-methyl-2-oxobulanoale hydroxymethyllransferase		DNA-3-inethyladenine giycosylase		esterase		carbonate dehydralase	xylose operon repressor prolein	macrolide efflux protein		
15		Matched length (a.a.)			126	162	497	435	!	260	451		279	27.1		188		270		201	357	418		
20		Similarity (%)		597	78.6	64.8	70.4	68.3		64.6	68.1		100.0	100.0		67.6		69.3		53.2	49.3	61.2		
		Identity (%)		29.5	57.9	37.0	43.5	30.3		27.3	45.0		100.0	100.0		42.0		39.3		30.9	24.1	21.1		_
25	Table 1 (continued)	is gene		nefaciens	ſŢ	berculosis	prescens milD	niae dalT		12 gatR	iginosus xylB		glutamicum C	glutamicu.n B		па тад		ding bacterium		hermophila	V23 xyIR	is mef214		
30	Table 1 (c	Homologous gene		Agrobacterium tumefaciens accR	Bacillus subtilis yur?	Mycobacterium tuberculosis H37Rv Rv1278c	Pseudomonas fuorescens millo	Klebsiella pneumoniae dalT		Escherichia coli K12 gatR	Streptomyces rubiginosus xylB		Corynebacterium glutamicum ATCC 13032 panC	Corynebaclerlum glutamicu:n ATCC 13032 panB		Arabidopsis thaliana mag		Petroleum-degrading bacterium HD-1 hde		Methanosarcina thermophila	Bacillus subtilis W23 xylR	Lactococcus lactis mef214		
<i>35</i>		db Match		SP.ACCR_AGRTU	pir.C70019	IYCTU	prf 2309180A			Sp.GATR_ECOLI	STRRU		gp:CGPAN_2	gp.CGPAN_1		sp. 3MG_ARATH		gp:A8029896_1		SP.CAH_METTE	SP.XYLR BACSU	gp:LLLP42'4_12		
		ORF (bp)	2052	780 sp	390 pir	510 sp	1509 pri		 }	837 sp	1419 sp	822	837 gr	B13 gg	951	630 sp	654	924 91	627	558 \$	1143 S	: 2	T.	444
45		Terminal (nt)	116548	116810	120410	120413	120951			124965		127992	126353	127 192	128099	.29489	130798	130815	132424	132981	132971	134207	135519	136122
50		Initial (nt)	118599	119589	120021	120922	122259	123841	123842	124130	124932	127:71	127189	128004	129049			 -	131798	•	134113	135478	. : .	3543 136565
		SEQ NO.	3622	3623	3624	3625	36.26	3627	3628	3629	3630	3531	3632	3633	3634	3535	3636	3637	3638	⊣	7	:	_	
 55	۲۳ مسد	SEQ NO (DNA)	122	123	124	125	126	2 2	12R	120	133	131	132	133	134	135	136	137	138	2	\$	3	142	143

	_				- 1					-		1		-, -												
5		Function				cellulose synthase	hypothelical membrane protein				chloramphonical consilive profession	שניייין יייין יייין איייין	Typometical Tremorane protein		penor profess	hynothetical membrane motals	portencar richingane protein		O described heirest	מלחבות ביות וופיונים או	nodulation protein	DNA repair system specific for alkylated DNA	DNA-3-methyladocina olygonia	through office article	hypothetical protein	doxorubicin biosynthesis enzyme
15	Matched	length (aa)				420	553 hy				303	\top	\top		36.1		i		A 008	\top	188	219 DN	166 NG	\top	Ť	
20	Similarity					51.2	51.8		-		60.7	50.1	- 2	+	623	70.7			84.3		0.99	60.7	65.1	613	727	52.1
	Icentity	` %				24.3	25.1				34.7	30.3	23		32.4	34.7			33.8		40.4	34.7	39.8	34.1	50.9	31.0
30 F 6	Homology a second	anagonamon				Agrobacterium tumefaciens celA	Saccharomyces cerevisiae YDR420W hkr1				Oseudomonas aeruginosa rarD	Escherichia coli K12 vadS			Escherich a coli K12 abrB	Escherich a coli K12 yfcA			Escherich:a coli K12 hrpB		Rhizobium leguminosarum bv. viciae plasmid pRL1JI nodL	Escherich a coli o373#1 alkB	Escherich a coli K12 tag	Escherichia coli K12 rhtC	Bacillus subtilis yaaA	Streptomyces peucetius dnrV
35	-		_	_	_	Ag	Sac	ļ	<u> </u>	_	o.	Esc			Esct	Esch			Esch		Rhiz vicia	Esch	Esch	Esch	Bacill	Strep
40	db Match					pir 1397 14	SO HKR1_YEAST				SP. RARD_PSEAE	sp YADS ECOU			SP. ABRB_ECOLI	Sp. YFCA_ECOLI			SP HRPB_ECOLI		SP NODL_RHILV	sp ALKB_ECOLI	Sp.3MG1_ECOLI	Sp.RHTC_ECOL!	sp:YAAA_BACSU	pri 2510326B
	ORE	a a	1941	1539	636	1451	1731	621	1065	756	979	717	333	1659	1137	798	624	405	2388	315	675	069	525	678	291	852
45	Terminal	(Ju)	139744	140329	139226	141789	143526	143075	144639	145480	145518	147239	147570	149780	149794	152369	150966	152814	153226	156167	156147	157537	158138	158831	159159	160013
50	Initial		136804	138791	139861	140329	141796	142455	143575	144725	146396	146522	147238	148122	150930	151572	151589	152410	155613	155853	156821	156848	157614	158154	.58869	159162
			3644	3645	3646	3647	3649	3649	3650	3651	3652	3653	3654	3655	3656	3657	3658	3659	3660	3661	3662	3663	3664	3665	3666	3667
55	SEQ	(OttA)	144	145	145	147	148	149	- 53	15:		153	154	155	156		158	159	199	191	162		164	165 3		157 3

	_													· · · · [1				-				T^-]
5		Function	methyltransferase				ribonuclease			neprilysin-like metallopepiidase i	diene Care	transcriptional regulator, Unity acyl-responsive regulator	fructokinase or carbohydrate kinase	hypothetical protein	methylmalonic acid semialdehyde dehydrogenase	myo-inositol catabolism	myo-inositol catabolism	rhizopine catabolism prolein	myo-inositol 2-dehydrogenase	myo-inositol catabolism	metabolite export pump of tetracenomycin C resistance		ovidoreductase		
15		Matched length (a.a.)	104 m	+			118		T	722 n	:	238 tr	332 fr	296 H	498	268	586	290	335	287	457		75,4	1	
20		Similarity (%)	56.7				76.3			57.2		65.6	63.0	80.7	1.98	58.2	8.69	51.0	72.2	72.1	61.5		3 3 3	2.50	
		Identity (%)	35.6				41.5			28.5		29.8	28.6	52.7	61.0	33.2	41.0	29.7	39.1	44.6	30.9		;	5	
25	ntinued)		es pombe				iis MC58					2 farR		color A3(2)	color msdA	8		mocC	or iolG		cescens tcmA			аУ	
30	Table 1 (continued)	Homologous gene	Schizosaccharomyces pombe SPAC1250.04c				Neissena meningitidis MC58 NMB0662			Mus musculus nil		Escherichia coli K12 farR	Beta vulgaris	Streptomyces coelicolor A3(2)	Streptomyces coelicolor msdA	Aprillis empliis infl	Oloi subtilis ioli	Rhizobium meliloti mocC	Bacillus subtiis ich or iolG	Bacillus subtilis joli	Streptomyces glaucescens tcmA			Bacillus subtilis yvaA	
35		db Match	gp.SPAC1250_3 SI				9p.AE002420_13 N			gp.AF176569_1 N		ECOLI		6		1	1	1,,	+-	1	1		_	sp. vvAA_BACSU	
40			gp.SP/			ļ	:		_	+		Sp.FARR	7 nir 14544	+	- i	_	- 6	D -	. 1 -	-1,	, -	, 1	-	3	و
		ORF (bp)	342	930	557	933	405	639	741	2067	953	i i	1017	1	'	i	- 1	2/1/20	+	\vdash		- 1	1 62		17 45
45		Terminal (nt)	160370	161360	162352	161363	162867	163603	166457	163689	167419	167837	183001	170916		-+	1/3355	275271		+		0006/1	178461	! 	181297
50		Initial (nt)	160029	160431	161696	162295	162463	162965	165717	165755	166457	3677 168595	150075	16006		. 1 .	1	_ .i	_1_	- 1		1/8285	179081	179689	180842
		SEQ	3658	3659	<u>.</u>	3671	3672	3673	3674	3675	3676	3677	6,56	0/00	999	2005 —	3681		. [- †	- 1	3686	3687	3688	3689
55		SEO	168	169	170		172	173	174	175	178	2 2	1	B/1	6	2	181	182	193	184	185	186	187	8	<u>8</u>

5										slerase								kinase	Jici	, init			
10	Function		regulatory protein	oxidoreductase	hypothetical protein		cold shock protein			caffeoyl-CoA 3-O-methyltransferase		glucose-resistance amylase regulator regulator			D-xylose proton symporter		fransposase (ISCg2)	signal-transducing histidine kinase	glutamine 2-oxoglutarate aminotransferase large subunit	glutamine 2-oxoglutarate aminofransferase small subunit		hypothetical protein	
15	Matched length (a.a.)		331	442	303		64			134		338			458		401	145	1510	506		496	
20	Similarity (%)		619	52.5	64.7		92.2			58.2		62.1			70.5		100.C	60.7	100 0	8.66		72.8	
	Identity (%)		32.0	24.4	33.7		70.3			30.6		28.7			36.0		100.0	27.6	6.99	99 4		44.6	
30 Fauritiue 1	us gene		culi cebR	3R234 y4hM	Ξ		licolor A3(2)					pA			is xylT		glutamicum	fxL	glutamicum	glutamicum		oerculosis .	
30 J	Homo:ogous gene		Streptomyces reticuli cebR	Rhizobium sp. NGR234 y4hM	Bacillus subtilis yfiH		Streptomyces coelicolor A3(2) csp			Stellaria longipes		Bacillus subtilis ccpA			Lactobacillus brevis xylT		Corynebacterium glutamicum ATCC 13032 tnp	Rhizobium meliloti f.xL	Corynebacterium glutamicum gltB	Corynebacterium glutamicum gltD		Mycobacterium tuberculosis H37Rv Rv3698	
35		<u> </u>	S							5							ა∡		ਹ ਛੋ	ठ ड ू		ΣÏ	
40	db Match		gp:SRE9798_1		SP YFIH BACSU		sp.CSP_ARTGO	_		pri 2" 13413A		sp.ccPA_BACSU			SP.XYLT_LACBR		gp:AF189147_1	SP:FIXL_RHIME	gp: AB024708_1	gp.AB024708_2		pir:C70793	
	ORF (tp)	384	993	1233	1011	429	201	534	306	414	426	066	402	240	1473	300	1203	435	4530	1518	240	1485	369
45	Terminal (nt)	181647	181687	184051	185087	185642	186708	187302	187607	188100	188300	188747	190321	190389	190703	192949	194464	194604	199769	201289	201341	201760	205956
50	Initial (11)	18:264	182679	182819	184077	3654 185214	186508	186769	187302	187687	188725	189736	189920	190628	192175	193248	193262	195038	195240		231580		205588
	SEQ NO (a a)	3690	3691	3692	3633	3694	3695	3696	3697	3698	3696	3700	3701	3702	3703	3704	3705	3706	3707	3708	3709	3710	371-
55	SEQ NO (DNA)	190	191	192	5	192	195	8	197	198	5	200	231	202	203	204	205	202	207	208	508	210	211

10	Function		arabinosyl transferase	hypothetical membrane protein	acetoacetyl CoA reductase	oxidoreductasc				proteophosphoglycan	hypothetical protein		hypothetical protein	rhamnosyl transferase		hypothetical protein	O-antigen export system ATP- binding protein	O-antigen export system permease protein	hypothetical protein	NADPH quinone oxidoreductase
15	Matched length (aa)	十	1122 ara		223 ace	464 oxi			1	350 pro	124 hyr	+	206 hy	302 rhe		214 hy	236 O.	262 O-	416 hy	302 N/
20	Similarity (%)		70.6	66.1	56.5	85.1	- -		-	57.4	83.9		73.8	79.1		55.1	78.4	75.6	63.0	71.5
	Identity (%)		39.8	35.0	31.4	0.09				24.3	60.5		43.2	63.6		31.3	47.0	31.3	36.5	41.1
25 Table 1 (continued)	is gene		ium embB	oerculosis	phbB	perculosis				ppg1	berculosis		berculosis	berculosis bE		mefaciens JRA tlorf100	litica rfbE	litica rfbD	berculosis	93
Table 1 (c	Homologous gene		Mycobacterium avium embB	Mycobacterium tuberculosis H37Rv Rv3792	Pseudomonas sp. phbB	Mycobacterium tuberculosis H37Rv Rv3790				Leishmania major ppg 1	Mycobacterium tube:culosis H37Rv Rv3789		Mycobacterium tuberculosis H37Rv Rv1864c	Mycobacterium tuberculosis H37Rv Rv3782 rfbE		Agrobacterium tumefaciens olasmid pTi-SAKURA tlorf100	Yersinia enterocolitica rfbE	Yersinia enterocolitica rfbD	Nycobacterium Iuberculosis 437Rv Rv3778c	Homo sapiens pig3
35			Σ	ΣÏ	ď	ΣÏ							≥ I.	≥I			-	 		П
40	db Match		prl.2224383C	pir.D70697	prf.2504279B	pir.B70697				gp:LMA243459_1	Sp:Y0GN_MYCTU		pir:H70666	pir:870696		gp:AB016260_100	sp.RFBE_YEREN	sp.RFBD_YEREN	pir.F70695	gp:AF010309_1
	ORF (bp)	318	3471	1983	759	1464	234	5:37	453	1002	396	402	633	939	342	765	789	804	1173	88
45	Terminal (nt)	206385	203541	207007	209210	209992	211535	212283	212735	213657	214107	214522	215159	215162	216605	216116	217141	217943	220151	220154
50	Initial (nt)	206068	207011	208589	209968	211455	211768	211777	212283	212656	213712	214121	214527	216100	2.6264	2:6712	217929	218746	216979	221107
	SEQ NO (a.a.)	3712	3713	3714	3715	3716	3717	3718	3719	3725	3721	3722	3723	3724	3725	3726	3727	3728	3729	3730
55	SEQ NO.	212	213	214	215		217	218	219	220	221	222	223	224	225	226	727	228	229	230

		,						 -								r			
5	Function		probable electron fransfer protein	arrino acid carrier protein		mctybdopterin biosynthesis protein mce8 (sulfurylase)	mclybdopterin synthase, large subunit	mclybdenum cofactor biosynthesis protein CB	co-factor synthesis protein	molybdopterin co-factor synthesis protein	hypothetical membrane protein	molybdate-binding periplasmic protein	molybdopterin converting factor subunit 1	maltose transport protein	hypothetical membrane protein	histidinol-phosphate aminolransferase			
			prob	arrin		mcty mcet	mclybd subunit	mcly prote	co-fa	molybd protein	Һуро	molybd protein	molybdo subunit	malto	hypo	histic			İ
15	Matched ength (a a)		78	475		368	150	158	154	377	227	256	96	355	121	330			
20	Similarity (%)		51.0	75.8		70.1	75.3	63.3	84.4	58.6	20.5	68.0	70.8	8.09	76.9	65.8			
	Idertity (%)		35.0	46.7		43.8	44.7	33.5	61.7	34.5	44.1	34.0	37.5	34.3	36.4	37.3			
6 57 72 72 72 72 72 72 72 72 72 72 72 72 72	Homologous gene		luberculosis	alsT		sp. PCC 7942	olinoverans	sp. PCC 7942	olinovorans	olinovorans	otinovorans	olinovorans	luberculosis	toralis malK	selicolor A3(2)	bil:s hisC			
Table 1	Homolog		Mycobacterium tuberculosis H37Rv Rv3571	Bacillus subtilis alsT		Synechococcus sp. PCC 7942 moeB	Arthrobacter nicotinovorans moaE	Synechococcus sp. PCC 7942 moaCB	Arthrobacter nicotinovorans nioaC	Arthrobacter nicotinovorans moeA	Arthrobacter nicotinovorans modB	Arthrobacter nicolinovorans modA	Aycobacterium tuberculosis H37Rv moaD2	Thermococcus litoralis malk	Streptomyces coelicolor A3(2) ORF3	Zymomonas mobilis hisC			
35	db Match			BACSU				SYNP7							CO				
40	db N		PIR:A70606	SP'ALST_BACSU		go:SYPCCMOEB_	pri 2403296D	sp:MOCB_	p4 2403296C	gp:ANY10817_2	p.f.2403296F	pri.2403296E	pir:D70816	prf 2518354A	sp.YPT3_STRCO	Sp.HISB_ZYMMO			
	CRF (bp)	582	297	1476	606	1083	456	471	468	1185	723	804	321	912	420	1023	906	294	120
45	Terminal (nt)	221131	222207	2222.0	225244	225242	226312	226760	227218	227703	228991	229711	230928	230931	231848	232260	234818	234910	235409
50	Initial (nt)	221712	221911	223685	224336	226324	226767	227230	227685	228887	229513	230514	230608	231842	232267	233282	233913	235203	235290
	SEO NO (a.a.)	3731	3732	3733	3734	3735	3736	3737	3738	3735	374C	3741	3742	3743	3744	3745	3746	3747	3748
55	SEQ NO (DNA)		232	233	234	235	236	237	238	239	240	241	242	243	244	245	246	247	

																		1	_				_
5	Function	actor	rogenase	dase	in transporter		Na/dicarboxylate cotransporter	به	ırotein	on protein			membrane transport protein	queuine tRNA-ribosyltransferase	hypothetical membrane protein			ıter	glutamyt-tRNA synthetase				
10	-	transcript on factor	alcohol dehydrogenase	pulrescine oxidase	magnesium ion transporter		Na/dicartoxyl	oxidoreductase	hypothetical protein	nitrogen fixation protein			membrane tra	quenine tRN	hypothetical r			AEC transporter	glutamyl-tRN		transposase		
15	Matched length (a.a.)	252	335	451	444		295	317	160	144			266	400	203			526	316		360		
20	Similarity (%)	57.1	66.0	38.1	68.5		9.65	69.1	73.8	70.1			45.7	68.0	62.1			49.6	63.3		55.0		
	identity (%)	29 4	34 0	215	30 9		33.2	46 1	48.8	45.1			20.7	41.3	28.1			24.3	34.8		34.2		
55 (panulured)	gene	æ	ophilus	ond :	mgtE			erculosis	erculosis	onicum			erculosis IpL2	9	۵			sescens strW			ngae tnpA		
& Table 1 (continued)	Homologous gene	Brucella abortus oxyR	Bacillus stearothermophilus DSM 2334 adh	Micrococcus rubens puo	Borrelia burgdorferi mgtE		Xenopus laevis	Mycobacterium tuberculosis H37Rv ty A	Mycobacterium tuberculosis H37Rv Rv3753c	Bradyrhizobium japonicum			Mycobacterium tuberculosis H37Rv Rv0507 mmpL2	Zymomonas mobilis	Bacillus subtilis ypdP			Streptomyces glaucescens strW	Bacillus subtilis gltX		Pseudomonas syringae tnpA		
35 40	db Match	gp.BAU8:286_1	sp:ADH2_BACST	sp.PUO_M:CRU	prf:2305239.A		prf.2320140A	pir.C70800	pir.B70800	gp.RHBNFXP_1			sp:YV34_MYCTU	SP.TGT_ZYMMO	sp:YPDP_BACSU			pr.S65588	sp:SYE_BACSU		go:PSESTBCBAD_1		
	ORF (bp)	762		28	1350	174	1530	1020	525	417	201	351	2403	1263	738	103C	879	1437	879	066	1110	303	138
45	Terminal (nt)	235451	237342	238145	239525	239945	241515	241883	243431	243910	244215	244816	247304	248572	248557	250507	249722	251939	252830	252830	254329	255492	258204
50	Initial (nt)	236212	236326	237345	238176	239772	239986	242902	24291C	243494	244015	244466	244902	247310	249294	249428	250369	250503	25152	253919	255438	255794	256067
	SEQ NO (88)	3749	3750	3751	37.52	3753	: 3754	3755	3756	3757	3758	3759	3760	3761	3762	3763	3764	3765	3766	3767	3768	3769	3776
55	SEQ NO.	249	250	251	252	253		255	256	257	258	259	263	251	262	263	264	292	265	267	268	269	270

5 .	Function	aspartate transaminase		DNA polymerase III holoenzyme tau sukunit		hypothetical protein	recombination protein	cobyric acid synthase	UDP-N-acetylmuramyl tripeptide synthetase	DNA polymerase III epsilon chain	hypothelical membrane protein	aspartate kinase alpha chain		-	extracytoplasmic function atternative sigma factor	vegetalive catalase			leucine-responsive regulatory protein	branched chain amino acid fransport
15	Matched length (aa)	432		642		101	214	248	444	346	270	421			189	492			143	203
20	Similarity (%)	100.0		53.1		74.3	72.4	61.7	9.09	55.2	100.0	8 66			63.5	76.4			72.0	68.0
	Iden:ity (%)	98.6		31.6		41.6	42.5	38.3	31.3	25.7	100.0	99.5			31.2	52.9			37.1	30.5
52 September 1 (Continued)	Homologous gene	Brev bacterium lactofermentum aspC		Thermus thermophitus dnaX		Bacillus subtilis yaaK	Bacillus subtilis recR	Heliobacil us mobilis cobO	Heliobacilius mobilis murC	Mycobacterium tuberculosis H37Rv dnaQ	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum lysC-alpha			Mycobacterium smegmatis sigE	Bacillus subtilis katA			Klebsiella pneumoniae Irp	Bacillus subtilis 1A1 azIC
<i>35</i>	db Malch	gsp:W69554 B		gp:AF025391_1 T		Sp. YAAK_BACSU B	SP. RECR_BACSU B	рл.2503462В Н	рศ.2503462С Н	м ріт.Н70794	sp:YLEU_CORGL (E	SP. AKAB_CORGL IN				SP. CATV_BACSU B			SP.LRP_KLEPN IK	Sp. AZLC_BACSU_B
	ORF (bp)	1296	630	2325	717	339	654	750	1269	1080	857	1263	1053	1434	579	1506	342	291	462	753
45	Terminal (nt)	257894	258529	260875	258596	261252	262055	262546	263298	264599	268258	270633	269524	273194	273542	275871	276232	275957	276302	27758:
50	nitial (nt)	256599	257900	258551	259312	230987	251402	253295	264566	265579	269124	269371	270576	271761	274120	274365	275891	276247	276763	276829
	SEQ NO (88)	3771	3772	3773	3774	3775	3776	3777	3778	3779	3780	3781	3782	3783	3784	3785	3786	3787	3788	3.89
55 į	SEQ NO (DNA)	172	272	273	274	275	276	277	278	279	280	281	282	283	284	285	286	207	288	289

	Table 1 (continued) db Match Homologous gene gp.AF178758_1 Sirorhizobium sp. As4 arsR sp.ARSC_STAXY Staphylococcus xylosus arsC Sp.ARSC_STAXY Staphylococcus xylosus arsC Sp.ARSC_STAXY Staphylococcus aureus mnhC pri_25042850 Staphylococcus aureus mnhC gp.AF097740_1 Baciilus firmus OF4 mrpA sp.CZCR_ALCE-J czcR Mycobacterium tuberculosis mtrB sp.APL_LACLA Lactococcus lactis MG1363 arguments	genes eutrophus CH34 bacterium tuberculosis coccus lactis MG1363 apt	aligenes eutrophus CH34 38.6 cobacterium tuberculosis 26.7 Bancoccus lactis MG1363 apl 28.3	us firmus OF4 mrpA genes eutrophus CH34 bacterium tuberculosis	acterium tuberculosis
. 	2 4 (AXX (S) 2 4 (E 3 m 3
Terminal (nt) (nt) 277987 277987 277987 280279 280279 280949 281404 281787 287966 283317 287966 289777 289777 2992597 2992597	CRF (5p) 324 345 345 345 345 346 348 348 566 666 666 666 669 561 561 561	LCEJ B SLA			B B STA

				Τ.	i		I	τ			г		ı	1					. —	_	
5	Function	class A penicillin-binding protein(PBP1)	regulatory protein		hypothetical protein	transcriptional regulator	shikimate transport protein		long-chain-fatty-acid-CoA ligase	ranscriptional regulator	3-oxoacyl-(acyl-carrier-protein) reductase	glutamine synthetase	short-chain acyl CoA oxidase	nodulation protein	hydrolase			cAMP receptor protein		ultraviolet N-glycosylase/AP lyase	cytochrome c biogenesis protein
15	Matched length (a a)	782	71		50	149 :	440		534	127	251	254 g	394 8	153 n	272 h			207 c		240 u	211 c
20	Similarity (%)	77.1	63.4		0.96	89.9	689		59.9	65.4	72.5	52.0	66.5	72.6	72.4			65.7		77.1	58.3
	Identity (%)	48.3	40.9		84.0	65.1	37.3		31.1	33.9	41.0	27.2	38.8	45.8	41.2			30.9		57.5	34.6
25 D		=	3(2)		3(2)	. <u>v</u>				3(2)				Npou	is						S
© Sable 1 (continued)	Homologous gene	Mycobacterium leprae pon 1	Streptomyces coelicolor A3(2) whiB		Streplomyces coelicolor A3(2) SCH-7.10c	Mycobacterium tuberculosis H37Rv Rv3678c	Escherichia coli K12 shiA		Bacillus subtilis IcfA	Streptomyces coelicolor A3(2) SCJ4.28c	Bacillus subtilis fabG	Emericella nidulans fluG	Arabidopsis thaliana atg6	Rhizobium leguminosarum nodN	Mycobacterium tuberculosis H37Rv Rv3877c			Vibrio cholerae crp		Micrococcus luteus pdg	Mycobacterium tuberculosis H37Rv Rv3673c
35		2	ÿ ≯	 	SS	ΣI				20.00			A		ΣÏ	_		V			ΣÏ
40	db Match	prf 2209359A	pir.S20912		gp:SCH17_10	pir:G70790	SP. SHIA_ECOLI		sp.LCFA_BACSU	gp:SCJ4_28	sp.FABG_BACSU	SP.FLUG_EMENI	prf.2512386A	SP. NODN_RHILV	pir.F70790			prf:2323349A		SP: UVEN_MICLU	pir.B73790
	ORF (bp)	2385	338	192	153	459	1353	909	1536	525	633	942	194	47.	843	1173	705	189	192	780	558
45	Termina! (nt)	294034	297402	297622	297783	298250	298332	300695	299726	301512	303088	304074	305283	305758	306790	305195	307524	306782	307727	308734	309302
50	Initial (r.t)	296388	297064	297431	297631	297792	299684	300087	301261	302036	302167	303133	304070	305288	305858	306387	306890	307452	307918	307955	308745
:بمد	SEQ NO (2 3)	3810	3811	3812	3313	3314	3315	3316	3917	3918	3819	3920	3821	3822	3823	3824	3825	3826	3827	3828	3829
55	SEQ NO.	310	311	312	313	314	315	316	317	318	319	320	321	322	323	324	325	326	327	328	329

		\top	i	\top				\top	7				_	\neg				\neg		_
5	Function	iin		a)	brane protein	nosphatase	nie	region protein		brane protein	ein	nie				RNA helicase	C		ase I	
10	Fur	hypothetical protein	serine proteinase	epoxide hydrolase	hypothetical membrane protein	phosphoserine phosphatase	hypothetical prolein	conjugal transfer region protein		hypothetical membrane protein	hypothetical protein	hypothetical protein				ATP-dependent RNA helicase	cold shock protein		DNA topoisomerase I	
15	Matched length (a.a.)	192	396	280	156	287	349	319	<u> </u>	262	201	59				764	67		977	
20	Similarity (%)	56.3	71.0	52.1	77.6	65.5	60.2	66.5		63.7	64.2	84.8				66.1	88.1		81.6	
	identity (%)	30.7	38.6	29.6	46.8	29.6	35.0	32.9		30.5	33.8	47.5		_		33.8	68.7		61.7	_
25 Octioned)	s gene	2 yeaB	oercu!osis	р. С12 сЕН	erculosis	orae serB	oerculosis	98		berculosis	berculosis	berculosis				ΙĀ	lormis S155		berculosis op A	
30 telder	Homologous gene	Escherichia coli K12 yeaB	Mycobacterium tubercuiosis 1137Rv Rv367 ic	Corynebacterium sp. C12 cEH	Mycobacterium tuberculosis H37Rv Rv3669	Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv3660c	Escherich a coli trbB		Mycobacterium tuberculosis H37Rv Rv3658c	Mycobacterium tuberculosis H37Rv Rv3657c	Mycobacterium tuberculosis H37Rv Rv3656c				Bacillus subtilis yprA	Arthrobacter g obiformis SISS csp		Mycobacterium tubercutosis H37Rv Rv3646c topA	
35	-	ES	<u>Ş</u> <u> </u>	ပိ	₹£	žΣ	ξΞ	Es		źΪ	£Ξ	M ₃	 		_		Arth		ΣÏ	\dashv
40	db Match	sp.YEAB_ECOL!	pir.H70789	prf.2411250A	pir.F70789	pir.S72914	pir.E70788	pir.C44020		pir.C7C788	pir.B70788	pir.A70788				sp:YPRA_BACSU	sp.CSP_ARTGO		pir:G70563	
	ORF (bp)	699	1191	993	546	396	1023	1023	615	816	546	198	318	414	345	2355	201	225	2988	711
45	Termina' (nt)	310038	311325	311839	312909	313625	316002	317132	316350	317893	318465	318699	319013	318545	319335	3:9336	322207	321992	325897	326614
50	Initial (nt)	305370	310135	312891	313457	314590	314980	316110	316964	317078	317920	318492	318596	318958	318991	321690	322007	322216	322910	325904
	SEO	3830	3831	3832	3833	3834	3835	3836	3837	3839	3839	3840	3841	3842	3843	3844	3845	3846	3847	384E
55	SEQ NO.	_ }	 	332	·	334	335	336	337	338	339	340	341	342	343	344	345	346	347	348

metallo-beta-factamase superfamily dTDP-glucose 4,6-dehydratase 3-oxoacyl-(acyl-carrier-protein) NAD/mycothiol-dependenl formaldehyde dehydrogenase dolichol phosphate mannose synthase valanimycin resistant protein beta-glucosidase/xylosidase nucleotide sugar synthetase DNA polymerase III subunit tau/gamma pseudouridine synthase ribosomal large subunit Function UDP-sugar hydrolase hypothetical protein **Eypothetical protein** hypothetical protein adenylate cyclase beta-glucosidase reductase Matched length (a a) 260 263 415 423 144 172 558 101 160 320 586 108 230 362 251 Similarity 62.4 65.0 60.2 61.4 47.5 57.3 54.4 S 8 52. 59 63 55 56 99 86 88 99 dentity 326 38.6 25.3 39.0 43.E 34.8 9.99 32.5 25.9 26.3 33.8 25.8 26.1 59.3 33.9 8 32.7 Streptomyces viridifaciens vlmF Stigmatella aurantiaca B17R23 cyaB Ureaplasma urealyticum uu033 Erwinia chrysantherni D1 bgxA Methanococcus jannaschii JAL 1 MJ1222 Rhodococcus enythropolis orf5 Salmonella typhimurium ushA Table 1 (continued) Mycobacterium tuberculosis Amycolatopsis methano ica Azospiri Jum irakense salB Homologous gene Deinococcus radiodurans DR0202 Escherichia coli K12 fabG Escherichia coli K12 yefJ Escherichia coli K12 rluC Actinoplanes sp. acbB Bacillus subtilis dnaX H37Rv Rv3632 SP.BGLX_ERWCH Sp.FADH_AMYME SP.YTHS_RHOSN sp.DF3X_BACSU SP USHA_SALTY Sp.YC22_METJA Sp.CYAB STIAU sp:FABG_ECOLI sp:RLUC_ECOLI Sp. YEFJ ECOLI gp AE002103_3 gp: AEC01882_8 1989 gp: AF090429_2 gp:AF148322_1 db Match prf.2512357B pir:A70562 1041 .644 1104 1230 1035 2082 1257 474 537 699 933 1029 561 882 375 759 ORF (bo) 162 621 162 336112 Terminal 335185 326695 329539 329909 330376 331533 332433 334562 334953 337449 342375 343451 345717 345814 336748 338768 339725 340195 340539 3 345975 343636 335009 328283 329933 330973 332919 332965 335805 338793 327735 329748 331552 336212 337539 340569 341327 341347 342417 336781 3853 3868 3649 3650 3851 3654 3855 3856 3257 3958 3860 3861 3862 3963 3864 3965 3966 3967 (8.8) 2 349 365 368 361 366 2 350 355 355 358 367 351 352 353 354 360 362 363 357 364

5

10

15

20

25

30

35

40

45

50

5		Function		NADP-dependent alcohol dehydrogenase	glucose-1-phosphale thymidylyllransferase	dTDP-4-keto-L-ihamnose reductase	dTDP-glucose 4,6-dehydratase	NADH dehydrogenase	Fe-regulated protein		hypothetical membrane protein	metallopeptidase	prolyl endopeptidase		hypothetical membrane protein	cell surface layer protein	autophosphorylating protein Tyr kinase	protein phosphatase		caosular polysaccharide biosynthesis	ORF 3	I popolysaccharide biosynthesis / aminotransferase
15		Matched length (a.a.)		343	285	192	343	206	325		423	461	708		258	363	453	:05		613	06	394
20		Similarity (%)		74.9	84.9	74.0	83.4	61.2	66.5		683	62.5	56.4		46.0	76.6	57.2	68.6		65.7	51.0	68.3
		Identity (%)		52.2	62.8	49.5	61.8	35.4	33.2		37.4	34.1	28.4		26.0	50.7	28.5	39.2		33.0	41.0	37.1
25	Table 1 (continued)	us gene		berculosis	n M32 rfbA	tans rmIC	tans XC rmlB	s HB8 nox	ureus sirA		berculosis	licolor	psulata		licolor A3(2)	TCC 6872	nsorii ptk	nsonii ptp		ureus M capD		juni wlaK
30	Table 1 (Homologous gene		Mycobacterium tuberculosis H37Rv adhC	Salmonella anatum M32 rfbA	Streptococcus mutans milC	Streptococcus mutans XC rmlB	Thermus aquaticus HB8 nox	Staphylococcus aureus sirA		Mycobacterium tuberculosis H37Rv Rv3630	Streptomyces coelicolor SC5F2A, 19c	Sphingomonas capsulata		Streptornyces coelicolor A3(2)	Corynebacterium ammoniagenes ATCC 6872	Acinetobacter johnsorii ptk	Acinetobacter Johnsonii ptp		Staphylococcus aureus M capD	Vibrio cholerae	Campylobacter jejuni wlaK
35						55	 	; 	St		i	क्ष छ	S		ĩ	ਤੋਂ ਨ	ĕ	Ă		·	 	0
40		db Match		sp.ADH_MYCTU	SP. RFBA_SALAN	gp: D78182_5	SP. RM.B. STRVU	SP NOX_THETH	pd:2510361A		sp:v17M_MYCTU	gp:SC5F2A_19	prf.2502226A		gp.SCF43_2	gsp W56:55	prf.2404346B	prf. 2404346A		sp.CAPD_STAAU	PRF.2109288X	prf.2423410L
		ORF (bp)	351	1059	855	1359	1131	579	945	639	1308	1380	2118	573	.092	1095	1434	603	984	1812	942	1155
45		Terminal (nt)	346110	346961	348098	348952	350313	351370	353637	353749	354599	355849	357237	359762	360814	362057	365257	365852	366838	368643	36770*	369801
50		Initial (nt)	346460	346019	348952	350310	351443	351949	352693	354387	355906	357228	359354	360334	361905	363151	363824	365250	365855	366832	368642	368647
	نة م	SEQ NO (a.a.)	3869	3870	3871	3872	3873	3874	3875	3876	3877	3878	3879	3880	3881	3882	3883	3884	3885	3885	3887	3888
55		SEO NO (DNA)	369	370	37.1	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	397	388

	Similarity Matched Function (%) (aa)	75.0 196 pilin glycosylation protein	69.2 380 capsular polysaccharide biosynthesis	69.8 504 Ipopolysaccharide biosynthesis / export protein	64.6 427 UDP-N-acetylglucosamine 1-	UDP-N- 68.5 273 acetylenolpyruvoylglucosamine reductase	57.3 356 sugar Iransferase	79.3 53 transposase		94.3 70 transposase (Insertion sequence		57.4 404 hypothetical protein	60.2 354 acetyltransferase	53.0 65 hypothetical prote n B	89.7 388 I UDP-glucose 6-dehydrogenase			65.0 243 glycosyl transferase	
	Identity (%)	54.6	33.4	34.3	31.4	34.8	32.0	60.4		75.7		28.0	34.5	44.0	63.7			32.1	2,5
(confined)	Homologo:us gene	Neisseria meningitidis pglB	Staphylococcus aureus M capM	Xanthomonas campestris gumJ	Enterobacter cloacae murA	Bacillus subtilis murB	Vibrio cholerae ORF39x2	Corynebacterium glutamicum		Corynebacterium glutamicum ATCC 31831		Mycobacterium tuberculosis H37Rv Rv1565c	Pseudomonas aeruginosa PAO1 psbC	Corynebacterium glutamicum	Escherich'a coli ugd			Escherichia coli wbnA	Escherichie coli 0157 white
	db Match	9p. AF014804_1	sp.CAPM_STAAU	pir:S67859	sp MURA_ENTC:	sp:MURB_BACSU	gp.VCLPSS_9	prf 2211295A		pir.S43613		pir.G70539	gsp.W37352	PIR: S60890	sp:UDG8_ECOLI			gp:AF172324_3	40000876 13
	ORF (tp)	612	1161	:491	1314	500.	.035	150	135	327	278	1170	993	231	1161	273	1209	822	645
	Termina! (nt)	370405	371773	373419	374813	375837	376876	377832	378227	378511	378287	378668	379850	381495	383108	383496	383982	385374	387200
	Initia' (nt)	369794	370613	371929	373500	374833	375842	377683	378093	378185	378562	379837	380842	381265	381948	383769	385190	386195	386556
	SEQ NO (a.a.)	3889	3890	3891	3892	3893	3894	3895	3896	3897	3898	3899	3900	3901	3902	3903	3904	3905	3906
! 	SEO NO (DNA)	389	350	39.1	392		394	395	396	397	398	399	8	401	402	403	404	405	406

	_					-,							-	+1	. —— - т	-	r				
5		Function	dihydrolipoamlde dehydrogenase	UTPglucose-1-phosphale uridylyltransferase	protein	Iranscriptional regulator	cytochrame b subunit	succinate dehydrogenase Ilavoprotein	succinate dehydrogenase subunit B						hypothelical protein	hypothelical protein			letracenomycin C transcription repressor),
			dihydrolip	UTP-glucose-1-ph uridylyltransferase	regulatory prote ⁱ n	transcripti	cytochram	succinate de flavoprotein	succinate						hypothetic	hypothetic			tetracenor repressor		transporter
15		Matched length (a.a.)	469	295	153	477	230	608	258						259	431			197		499
20		Similarity (%)	100.0	68.1	71.9	81.3	67.4	61.2	56.2						49.8	64.3			53.8		74.6
		Identity (%)	9.66	41.7	43.8	57.0	34.8	32.4	27.5						26.3	32.7			26.4		36.1
30 F	couring co)	us gene	glutamicum	npestris	uginosa PAO1	berculosis	licolor A3(2)	hA	erans sdhB						licolor	12 yjiN			rescens		liae T#2717
30 T	ישמפי	Homologous gene	Corynebaclerium glutamicum A⁺CC 13032 lpd	Xanthomonas campestris	Pseudomonas aeruginosa PAO1 ortX	Mycobacterium tuberculosis H37Rv Rv0465c	Streptomyces coelicolor A3(2) SCM10.12c	Bacillus subtilis sdhA	Paenibacillus macerans sdhB						Streptomyces coelicolor SCC78.05	Escherichia coli K12 yjiN			Streptomyces glaucescens GLA 0 tcmR		Streptomyces fradiae T#2717 urdJ
35	ŀ		ÖΑ	×	a b	ΣÏ	20.00	a a	1						S SS	Ë		_		-	<i>ι</i> ο 5
40		db Watch	gp.cGLPD_1	pir.JC4985	gp:PAU49666_2	pir.E70828	gp:SCM10_12	pir.A27763	gp.BMSDHCAB_4						9p:SCC78_5	Sp:YJIN_ECOLI			sp.TCMR_STRGA		gp:AF164961_8
		ORF (bp)	1407	921	49B	:422	77:	1875	837	336	261	630	96	339	975	1251	420	303	879	204	1647
45		Term:nal (nt)	389098	390168	390730	390787	393475	395513	396262	396650	396932	396411	397825	398222	397232	399579	400017	400341	401150	401253	402796
50	i	Initial (nt)	387692	389248	390233	3911 392208	392705	393639	395428	396315	396672	397040	397730	397884	398206	398329	399598	400039	400473	401050	401:50
		SEQ NO (2 a.)	3908	3909	3910	3911	3912	3913	3914	3915	3916	3917	3918	3919	3920	3921	3922	3923	3924	3925	3925
55		SEQ NO (DNA)	408	409	410	+	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426

			-1' -	,		Τ-	, <u>-</u>		-,	_	1			,	·	,				
5	no		le deformylase	ate aldolase						-type ATPase B		cosidase	asmic protein		-binding protein					
10	Function	fransporter	formyltetrahydrofolate deformylase	deoxyribose-phosphate aldolase			hypothetical protein	hypothetical protein		cation-transporting P-type ATPase		glucan 1,4-alpha-glucosidase	hemin-binding periplasmic protein	ABC transporter	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			
15	Matched length	508	286	208			280	95		748		929	348	330	254	266	258			
20	Similarity (%)	74.6	72.7	74.0			53.6	85.9		75.3		56.1	83.6	6.06	85.0	56.4	61.6	:		
	Identity (%)	39.6	40.9	38.5			26.8	58.7		45.7		27.3	57.2	65.2	63.8	28.6	32.6			
<i>25</i>	6 e	1#27:7	-1 purt				SIR10	ilosis		ctpB		siae	heriae	neriae	neriae	r C75A	r C75A			
30 Table 1 (continued)	Homologous gene	Streptomyces fradiae T#27:7 urdJ	Corynebacterium sp. P-1 purt	Bacillus subtifis deoC			Mycobacterium avium GIR10 mav346	Mycobacterium tuberculosis H37Rv Rv0190		Mycobacterium leprae ctpB		Saccharomyces cerevisiae S288C YIR019C stat	Corynebacterium diphtheriae hmuT	Corynebacterium diphtheriae hmuU	Corynebacterium diphtheriae hmuV	Streptomyces coelicolor C75A SCC75A.17c	Streptomyces coelicolor C75A SCC75A: 1c			
35	-	O 3	1	İΤ	_		≥ E	ΣÏ	<u> </u>	1			ŏξ	ŏΕ	<u>ა</u>	လ လ	တ် တိ	_		Н
40	db Match	gp AF 164961_8	sp.PURU_CORSP	sp DEOC_BACSU			prf.2413441K	pir A70907		SP:CTPB_MYCLE		SP. AMYH_YEAST	gp:AF109162_1	gp.AF109162_2	gp:AF109162_3	gp.SCC75A_17	gp:SCC75A_17			
	ORF (bp)	1632	912	999	150	897	667	300	200	2265	450	1863	1077	.068	813	957	837	810	813	501
45	Term·nal (nt)	404430	404508	406145	406161	405521	407416	407409	409145	40?711	410027	412545	413633	414710	415528	416599	417439	417545	418441	419257
50	Initial (nt)	402799	405419	405480	406310	406417	406553	407708	406546	405975	410476	410683	412557	413643	414714	415643	416603	418354	419253	419757
	SEQ NO (a a)	3927	3928	3929	3930	393	3932	3933	3934	3935	3936।	3937	3938	3939	3940	3941	3942	3943	3944	3945
55	SEQ NO (DNA)	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	144	445

EP 1 108 790 A2

		a L		T						ō	Ī	olein	 		:	6			
5	Function	UDP-N-acetylpyruvoylglucosamıne reductase				long-chain-fatty-acidCoA ligase		ate mutase	two-component system sensor histidine kinase	two-component response regulator		ABC transporter ATP-binding protein	50	atase	hypothetical membrane protein	pyr:oline-5-carboxylate reductase	coprotein	otein	
10		:UDP-N-acetylp reductase				long-chain-fath	transferase	phosphoglycera!e mutase	two-component histidine kinase	two-componen		ABC transporte	cytochrome P450	exopolyphosphatase	hypo!hetical m	pyr:oline-5-car	membrane glycoprotein	hypothetical protein	
15	Matched length (a a)	356				558	416	246	417	231		921	269	306	302	269	394	55	
20	Similarity (%)	58.4				68.1	58.7	84.2	74.8	6.06		60.7	6.99	57.8	57.3	100.0	52.0	94.6	
	Identity (%)	30.1				35.5	33.9	70.7	49.2	75.8		31.3	45.0	28.8	28.8	100.0	25.4	76.4	
5 G Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	ans gene	RDD312 murB				cíA	elicotor	elicolor A3(2)	ovis senX3	ovis BCG		elicolor A3(2)	uberculosis	eruginosa ppx	uberculosis	- glutamicum oC	rus 1 ORF71	eprae	
S Table 1	Homologous gene	Escherichia coli RDD312 mu:B				Bacillus subtilis IcfA	Streptomyces coelicolor SC2G5.06	Streptomyces coelicolor A3(2) gpm	Mycobacterium bovis senX3	Mycobacterium bovis BCG regX3		Streptomyces coelicolor A3(2) SCE25.30	Mycobacterium tuberculosis H37Rv RV3121	Pseudomonas aeruginosa ppx	Mycobacterium tuberculosis H37Rv Rv0497	Corynebacter um glutamicum ATCC 17965 proC	Equine herpesvirus 1 ORF71	Mycobacterium leprae B2168_C1_172	
35		` 					0, 0,					0, 0,							
40	db Match	gp.ECOMURBA_1				sp:LCFA_BACSU	gp SC2G5_6	sp.PNGY_STRCO	prf 2404234A	pri.2404234B		gp SCE25_30	sp:YV21_MYCTU	pri 2512277A	sp:YV23_MYCTU	sp.PROC_CORGL	gp D88733_1	pir S72921	
	ORF (bp)	1101	651	735	174	1704	1254	744	1239	969	879	2586	903	927	813	9 0 0	1122	198	219
45	Terminal (nt)	420885	421516	420309	422031	422090	425131	425920	427172	427867	429439	429438	432126	433988	434822	435695	433865	436137	436103
50	Initial (nt)	419785	420866	421043	421858	423793	423878	425177	425934	427172	428561	432023	433028	433062	434510	434886	434986	435940	436321
	SEQ NO (a.a)	3946	3947	3948	3949	3950	3951	3952	3953	3954	3955	3955	3957	3958	3959	3960	3961	3962	3963
55	SEO NO (DNA)	445	447	448	449	450	451	452	453	454	455	455	457	458	459	460	46:	462	463

	<u></u>	T	ī		Γ	Γ	T	T-	T	$\overline{}$	1	T -			_	т-	Τ-		1	<u> </u>	1 -	
5	tion				sphatase			clase	e synthase		tional regulator	protein	dehydratase	enase		protein		stem permease		ding protein	ethyltransferase	
10	Function	hypothetical protein			phosphoserine phosphatase	hypothetical protein		glutamyl-tRNA reductase	hydroxymethylbilane synthase	<u> </u>	cal operon transcriptional regulator	shikimate transport protein	3-dehydroshikimate dehydratase	shikimate dehydrogenase		putrescine transport protein		iron(III)-transport system permease protein		periplasmic-iron-binding protein	croporphyrin-III C-methyltransferase	
15	Matched lergth (aa)	29			296	74		455	308		321	417	309	282		363		578 ii		347 p	486	
20	Similarity (%)	100 C			77.4	66.2		74.3	75.3		57.6	72.2	67.3	98.6		9.89		55.2		59.9	71.6	
	Identity (%)	89.7			510	40.5		44.4	50.7		27.1	35.5	282	98.2		34.7		25.1		25.1	46.5	
25 5	96					osis		emA	em3b		icus	⋖		icum		S		8		rae bitA	36	
30 Shirting Continued to Shirting Shirt	Homologous gene	Streptomyces coel·color SCE68.25c			Mycobacterium leprae MTCY20G9.32C. serB	Mycobacterium tuberculosis H37Rv Rv0508		Mycobacterium leprae hemA	Mycobacterium leprae hem3b		Acinetobacter calcoaceticus catiV	Escherichia coli K12 shiA	Neurospora crassa qa4	Corynebaclerium glutamicum ASO19 aroE		Escherichia coli K12 polG		Serratia marcescens sfuB		Brachyspira hyodysenter:ae bitA	Mycobacterium leprae cysG	
35		22.22	<u> </u>		≥ ≥			1-	2			E	1	0 ¥ 2 ×							Σ	
40	db Match	gp:SCE68_25			pi: S72914	sp:YV35_MYCTU		SP HEM1_MYCLE	pir.S72887		Sp.CATM_ACICA	sp. SH.A_ECOLI	Sp. 3SHD_NEUCR	gp:AF124518_2		SP. POTG_ECOL!		sp.SFUB_SERMA		gp.SHU75349_1	pir:S72903	
	ORF (bp)	8	192	618	1065	246	258	1389	906	372	882	1401	1854	849	273	1050	615	1644	1113	1059	1770	426
45	Terminal (nt)	436561	436764	437850	436380	438424	438037	439904	440814	441591	441501	444158	446038	447386	447398	448130	449100	449183	451961	450837	454430	454875
50	Initial (nt)	3964 435463	436573	437233	439044	438179	438294	439516	439909	441220	442482	442758	444.85	446538	447670	449179	449714	450826	450849	451895	452661	454450
	SEQ NO (a a)	3964	3965	3966	3967	3968	3969	3970	3971	3972	3973	3974	3975	3976	3977	3978	3979	3980	3981	3982	3983	3984
55	SEQ NO (DNA)	464	465	466	467	468	469	470	47.1	472	473	474	475	476	477	478	479	480	481	482	183	484

		i			80			$\neg \gamma$								-				i
5	Function	delta-am:nolevulinic acid dehydratase			cation-transporting P-type ATPase E		uroporphyrinogen decarboxylase	proloporphyrinogen IX oxidase	glutamate-1-semialdehyde 2,1- aminomutase	phosphoglycerate mutase	al protein	cytochrome c-type biogenesis protein	hypothelical membrane protein	cytochrome c biogenesis protein		ranscriptional regulator	Zn/Co transport repressor		typothetical membrane protein	1,4-dihydroxy.2-naphthoale cctaprenyltransferase
		delta-aminolo dehydratase			cation-tran		uroporphyr	protoporph	glutamate-1-s aminomutase	phosphogl	hypothetical protein	cytochrom protein	hypothetic	cytochrom	- 1	transcriptic	Zn/Co tran	<u>-</u>	hypothetic	1,4-dihydro cctaprenyll
15	Matched length (a.a.)	337			858	_	364	464	425	161	208	245	533	338		144	06		82	301
20	Similarity (%)	83.1			56.5		7.97	59.9	83.5	32.7	71.2	35.3	76.0	77.8		69.4	72.2		78.1	61.5
	Identity (%)	8.09		!	27.4		55.0	28.0	61.7	28.0	44.7	53.5	50.7	44.1		38.9	31.1		39.0	33.6
Table 1 (continued)	Homologous gene	elicolor A3(2)			eprae ctpB		elicolor A3(2)	ıemY	eprae hemL	K12 gpmB	uberculosis	uberculosis	uberculosis	uberculosis		uberculosis pb5	aureus zntR		uberculosis	K12 menA
	Homolog	Streptomyces coelicolor A3(2) hemB			Mycobacterium leprae clpB		Streptomyces coelicolor A3(2) hemE	Bacillus subtilis hemY	Nycobacterium leprae hemL	Escherichia co i K12 gpmB	Mycobacterium tuberculosis H37Rv Rv3526	Mycobacterium Iuberculosis H37Rv ccsA	Mycobacterium tuberculosis H37Rv Rv0528	Mycobacterium tuberculosis H37Rv ccsB		Mycobacterium tuberculosis H37Rv Rv3678c pb5	Staphylococcus aureus zntR		Mycobacterium tuberculosis H37Rv २v0531	Escherichia col [°] K12 menA
<i>35</i>	db Match	sp HEM2_STRCO			sp:CTPB_MYCLE		sp.DCUP_STRCO	sp POOX_BACSU	Sp.GSA_NYCLE	sp. PNG2_ECOLI	pir.A70545	pir:B70545	pir:C70545			pir.G70790	prf:242C312A		pir:F70545	sp WENA_ECOLI
	ORF (bb)	1017 sp H	582	510	2544 sp.C	843	1074 sp:D	1344 sp. P	1311 sp.G	606 sp.P	621 pir.A	792 pir.B	1623 pir.C	1011 pir.D	801	471 pir.G	357 prf.2	300	333 pir.F	854 sp V
45	Terminal O (nt)	455983 10	456597 5	457150 5	459900 2	458583 8	461093 10	462455 1.	463867 13	464472 6	465102 6	7 606597	457571 10	468658 10	470170 8	470654 4	470657 3	471121 3	471847 3	471915 8
50	In tial (nt)	454967	456016	456641	457357	459425	46C02D	461112	462557	463867	464482	465118	465949	467648	469370	470184	471013	471420	471515	472808
	SEQ NO. (a a)	3985	3986	3987	3988	3989	3950	3991	3992	3993	3994	3995	3596	3997	3698	3999	0002	4001	4002	4003
55	SEQ NO (DNA)	485	987	487	488	489	490	491	492	493	494	495	496	497	498	499	SS S	<u>8</u>	502	503

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

low-affinity inorganic phosphate transporter hypothetical membrane protein 2-pyrone-4,6-dicarboxylic acid als operon regulatory protein malonyl-CoA-decarboxylase 5-dehydro-4-deoxyglucarate ketoglutarate semialdehyde dehydrogenase naphthoate synthase glycosyl transferase hypothetical protein dehydratase Matched length (a.a.) 238 421 139 520 293 303 410 293 267 8 Similarity 62.6 51.5 65.5 76.0 75.6 66.2 64.9 83.2 703 8 54 Identity 32.4 25.4 35.3 50.4 48.5 36.9 33.0 9.09 0.09 8 28 LB126 NdB Pseudomonas putida KDGDH Mycobacterium tuberculosis Mycobacterium tuberculosis H37Rv pitA Homologous gene Bacteroides fragilis wcgB Escherichia coli K12 yqiF Bacillus subtilis 168 als R Rhizobium trifolii matB Pseudomonas pulida Sphingomonas sp H37Rv Rv0543c sp:KDGD_PSEPU SP. ALSR BACSU O Sp.YQJF ECOLI gp:SS277235 cb Match gp.AF125164 prf 242327CB pir:S27612 pir.B70547 pir D70547 1323 864 411 ORF (bp) 1560 940 879 750 1275 315 444 378 417 261 222 306 Terminal 473811 473914 474997 478092 479452 480208 480624 475489 477048 478989 480597 481131 481394 483366 483637 Ξ 475136 472948 475407 478970 480154 480624 477048 477995 479303 480201 483942 48.001 482668 481391 483587 3 4006 4004 4005 4008 4009 4013 9 (8 8) 4007 4010 4011 4012 4014 4015 4016 4017 4018 504 (D):(A) 909 505 507 509

pterin-4a-carbinolamine dehydratase

11

68 82

pep!idase E

202

muconate cycloisomerase

335

76.7

508

5	Function	2-oxog!utarate decarboxylase and 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate	hypothetical membrane protein	alpha-D-mannose-alpha(1- 6)phosphatidyl myo-inositol monomannoside transferase	D-serine/D-alanine/glycine transporter	ubiquinone/menaquinone biosynthesis methyltransferase		oxidoreductase	heptaprenyl diphosphate synthase component II	preprotein translocase SecE subunit	transcriptional antiterminator protein	50S ribosomal protein L11	50S ribosomal protein L1	regulatory protein	4-aminobutyrate aminotransferase
15	Matched length (a.a.)	909	148	408	447	237		412	316	111	318	145	236	564	443
20	Identity Similarity (%) (%)	54.0	64.9	54.2	6.68	66.7		76.7	67.1	100.0	100.0	100 0	100 0	50.2	82.4
	identity (%)	29.4	37.2	22.8	66.2	37.1		49.0	39.2	100.0	100 0	100.0	100.0	23.1	60.5
55 Table 1 (continued)	Homologous gene	menD .	tuberculosis	tubercutosis	K12 cycA	K12 ubiE		tuberculosis	hermophilus epT	m glutamicum ecE	m glutamicum ısG	m glutamicum	m glutamicum IIA	oelicolor	tuberculosis gabT
	Нотова	Bacillus subtilis menD	Mycobacterium tuberculosis H37Rv Rv0556	Mycobacterium tubercutosls H37Rv pimB	Escherichia coli K12 cycA	Escherichia coli K12 ubiE		Mycobacterium tuberculosis H37Rv Rv0581c	Bacillus stearothermophilus ATCC 10149 hepT	Corynebacterium glutamicum ATCC 13032 secE	Corynebacterium glutamicum ATCC 13032 nusG	Corynebacterium glutamicum ATCC 13032 rolK	Corynebacterium glutamicum ATCC 13032 rpIA	Streptornyces coelicolor SC5H4.02	Mycobacterium tuberculosis H37Rv RV2589 gabT
40	db Match	sp.MEND_BACSU	pir.G70548	pir.H70548	sp.CYCA_ECOLI	sp.UBIE_ECCLI		pir.D70549	sp.HEP2_BACST	gp:AF130462_2	gp.A=130462_3	gp.AF130462_4	gp:AF130462_5	gp.SC5H4_2	sp.GABT_MYCTU
	ORF (bp)	1629 sı	441 p	1239 p	1359 sı	ls 069	699	1272 p	1050 , sı	333 8	954 9	435 9	708	1512 9	1344 s
45	Terminal (nt)	488656	489100	490447	791938	492655	493583	492645	495110	497142	498327	499032	499869	499925	522920
50	Initial (nt)	487C28	468660	489209	490580	491965	492915	493916	494061	495810	497374	493598	499162	501436	501577
	SEQ NO	4023	4024	4025	4026	4027	4028	4229	4030	4031	4032	4033	4034	4035	4036
55	SEQ NO (DNA)	523	524	525	526	527	528	529	530	531	532	533	534	535	536

						,												
5		Function	ildehyde (NAD(P)+)	novel two-component regulatory system	lyrosine specific fransport protein	ng ATPase G	lein or		rotein L 10	rotein L7/L12		nbrane protein	DNA-directed RNA polymerase bela chain	DNA-directed RNA polymerase heta chain	ein		tein	eln
10		Ē	succinate-semialdehyde dehydrogenase (NAD(P)+)	novel two-comp system	tyrosine-specific	cation-transporting ATPase	hypothetical protein or dehydrogenase		50S ribosomal protein L10	50S ribosomal protein L7/L12		hypothelical membrane protein	DNA-directed RN chain	DNA-directed RI chain	hypothetical protein		DNA-binding protein	hypothetical protein
15		Matched , length (aa)	461	150	447	615	468		170	130		283	1180	1332	169		232	215
20		Similarity (%)	71.8	38.0	49.9	64.4	66.2		84.7	89.2		55.5	90 4	68.7	52.0		63.8	57.7
		Identity (%)	40.8	32.0	25.5	33.2	40.2		52.9	72.3		25.8	75.4	72.9	39.0	ļ ,	39.2	29.3
25	Table 1 (continued)	us gene	12 gabD	lense carR	12 0341#7	berculosis ctpG	ans P49		eus N2-3-11	berculosis IL		berculosis	perculosis oB	serculosis cC	serculosis		icolor A3(2)	erculosis
30	Table 1 (Horrologous gene	Escherichia coli K12 gabD	Azospirillum brasilense carR	Escherichia coli K12 o341#7 tyrP	Mycobacterium tuberculosis H37Rv RV1992C ctpG	Streptomyces lividans P49		Streptomyces griseus N2-3-11 rpU	Mycobacterium tuberculosis H37Rv RV0652 rplL		Mycobacterium tubercutosis H37Rv Rv0227c	Mycobacterium tuberculosis H37Rv RV0667 rpoB	Mycobacterium tuberculosis H37Rv RV0668 rpcC	Mycobacterium tuberculosis H37Rv Jv0166c		Streptomyces coelicolor A3(2) SCJ9A 15c	Mycobacterium tuberculosis H37Rv RV29C8C
35		1	- "									~ -					0, 0,	
40		db Malch	sp.GABD_ECOLI	GP.ABCARRA_2	sp.TYRP_ECOLI	sp.CTPG_MYCTU	Sp P49_STRLI		sp RL1C_STRGR	Sp RL7_MYCTU		p r A70962	sp:RPOB_MYCTU	sp.RPOC_MYCTU	GF:AF12:004_1		gp:SCJ9A_15	sp:YT38_MYCTU
		ORF (bp)	1359	468	1191	1950	1413	503	513	384	138	972	3495	3999	582	180	760	799
45		Terminal (nt)	504283	503272	505569	507647	509081	969509	510510	510974	510989	512507	5:6407	520492	518696	520950	521644	521679
50		nitial (nt)	52525	503739	504379	505698	507669	509094	509998	5:0591	5.1126	511536	512913	516494	519277	520671	520855	522476
		SEQ NO	4037	4038	4039	404C	4041	4042	4043	4044	4045	4046	4047	404B	4049	4050	405;	4352
55		SEQ NO (DNA)	537	538	539	540	541	542	543	544	545	546	54?	548	549	550	551	552

																						
5	Function	30S ribosomal prolein S12	30S ribosomal protein S7	elongation factor G			nie			ferric enterobactin transport ATP. binding protein	ferric enterobactin transport protein	ferric enterobactin transport protein	butyryl-CoA acetate coenzyme A transferase	30S ilbosomal protein S10	50S ribosomal protein L3		50S ribosomal protein L4	50S ribosomal protein L23		50S ribosomal protein L2	30S ribosomal protein S19	
		30S ribo	30S ribo	elongat			lipoprotein			ferric enterobac binding protein	ferric en	ferric en	butyryl-CoA transferase	30S ribo	50S ribo		50S ribo	50S ribo		50S rib	30S ribo	
15	Matched length (a.a.)	121	154	709			44			258	329	335	145	101	212		212	96		280	92	
20	Similarity (%)	97.5	94.8	88.9			78.0			83.7	77.8	9.08	79.3	0.66	93.6		90.1	9.06		92.9	98.9	
	Identity (%)	6.06	81.8	71.7			56.0			56.2	1 45.6	48.1	56.6	84.2	99		71.2	74.0		60.7	87.0	
25 Ulinued)	gene	ellulare	matis	JsA			lis			lepC	lepG	lepD	ium im actA	NTCC	BCG rplC		BCG rpID	BCG rpfW		BCG rplB	culosis	
% Table 1 (continued)	Homologous gene	Mycobacterium intracellulare rpsL	Mycobacterium smegmatis LR222 rpsG	Micrococcus luteus fusA			Chlamydia trachomalis			Escherichia coli K12 fepC	Escherichla coll K12 fepG	Escherichia coli K12 fepD	Thermoanaerobacterium :hermosaccharolyticum actA	Planobispora rosea ATCC 53733 rpsJ	Mycobacterium bovis BCG rplC		Mycobacterium bovis BCG rplD	Mycobacterium bovis BCG rpfW		Mycobacterium bovis BCG rplB	Mycobacterium tuberculosis H37Rv RvC705 rpsS	
35	 -	i ≥ E	≥ ⊃	≥			၁			<u>ū</u>	Ü	W.		G S	2	_	Σ			≥		
40	db Match	sp:3S12_MYCIT	sp 387_MYCSM	sp.EFG_MICLU			GSP: Y37841			sp:FEPC_ECOLI	SP.FEPG_ECOLI	sp.FEPD_ECOLI	gp.CTACTAGEN_1	sp.RS10_PLARO	SP: 3L3_MYCBO		Sp:RL4_MYCBO	sp:RL23_MYCBO		SP:RL2_MYCLE	sp.RS19_MYCTU	
	ORF (bp)	365	465	2115	2160	144	228	153	729	792	1035	1035	516	303	654	687	654	303	327	840	276	285
45	Termina: (nt)	523059	523533	526010	523911	526013	526894	527607	528768	624829	529592	530748	532523	533401	534090	533401	534743	535048	534746	535915	536210	535899
50	Initiat (r.t)	522694	523369	523896	525070	526156	527121	527759	528040	529570	530628	531782	532008	533099	533437	534087	534090	534746	535072	535075	535935	536183
	SEQ NO (a.a)	4053	4054	4055	4056	4057	4058	4059	4060	4961	4062	4063	4364	4065	4066	4067	4068	4069	4070	4071	4072	4073
55	SEO NO (DNA)	553	554		929	587	558	559	260		562	563	564	565	999	567	999	596	570	57:	572	573

		Ţ	T	<u> </u>		Ι-	_		Ţ-	Τ		Τ-	_	a)		i	ī		ī	-	E	ı —	
5	Function	rotein L22	rotein S3	rotein L18	rotein L29	rotein S:7				rotein L 14	rotein L24	rotein L5		2,5-diketo-D-gluconic acid reductase		genase chain D	molybdopterin-guanine dinucleotide biosynthesis protein	formale dehydrogenase H or alpha chain			ABC transporter ATP-binding protein		
10	2	50S ribosomal protein L22	30S ribosomal protein S3	50S ribosomal protein L16	50S ribosomal protein L29	30S ribosomal protein S17				50S ribosomal protein L 14	50S ribosomal protein L24	50S ribosomal protein		2,5-diketo-D-gluc		formate dehydrogenase chain D	molybdopterin-guani biosynthesis protein	formate dehydroc chain			ABC transporter		
15	Matched length (a a)	109	239	137	19	82				122	105	183		260		298	94	756			524		
20	Similarity (%)	91.7	91.2	88.3	1.88	99.0				95.1	91.4	92.3		74.2		59.7	68.1	53.4			52.6		
	identity (%)	74.3	77.4	69.3	65.7	69.5				83.6	. 73.2	73.6		52.3		28.9	37.2	24.3	-		26.9		
Table 1 (continued)	vus gene	uberculosis SIV	ovis BCG rpsC	ovis BCG rpIP	ovis BCG rpmC	ovis BCG rpsQ				iberculosis aiN	berculosis	is rplE		Sp.		genes (dhD	licolor A3(2)	F			berculosis ppD		
30	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0706 rplV	Mycobacterium bovis BCG rpsC	Mycobacterium bovis BCG rpIP	Mycobacterium bovis BCG rpmC	Mycobacterium bovis BCG rpsQ				Mycobacterium tuberculosis H37Rv Rv3714 rptN	Mycobacterium tuberculosis H37Rv Rv0715 rp!X	Micrococcus luteus rplE		Corynebacterium sp.		Wolinella succinogenes (dhD	Streptomyces coelicolor A3(2) SCGD3.29c	Escherichia coli fdiF			Mycobacterium tuberculosis H37Rv Rv1281c oppD		
40	db Match	sp.RL22_MYCTU	sp:383_MYCBO		sp:3L29_MYCBO	Sp. 3517_MYCBO				sp.RL;4_MYCTU	Sp.RL24_MYCTU	sp.RL5_MICLU		sp.2DKG_CORSP (SP: FDHD_WOLSU	gp.scGD3_29	SP.FDHF_ECOLI			sp:YC81_MYCTU		
	0.RF (bp.)	353	744	414	229	276	294	313	969	366	312	573	1032	208	492	915	336	2133	756	804	1662	1146	1074
45	Terminal (nt)	536576	537322	537741	537971	538252	537974	538381	538718	540106	540423	540998	542079	542090	542921	543415	544335	544757	548084	549187	548990	550699	551854
50	taitial (nt)	536217	536579	537328		537977	538267	538698	539413		540112	540426	541048	542856	543412	544329	544670	546889	547329	548990	550651	551844	552927
	SEQ NO (8.8)	4074	4075	4078	4077	4078	4079	4080	4081	4082	4083	4084	4085	4086	4087	4088	4089	4090	4004	7007	4093	4094	4095
55	SEQ VO (DNA)	574	575	576	577	578	579	580	581	582	583	584	585	586	587	288	585	290	29.	592	593	594	595

									Ī			yde		2	or betaine					یو		3Se	ase .	
5		Function	i.	E	tein S8	lein L6	Itein L 18	tein S5	itein L30	lein L15		d semialdehy		ent regulato		1				ehydrogenas	ri	vate syntheta	vate syntheta	
10		Fun	hypothetical protein	hypothetical protein	30S ribosomal protein S8	50S ribosomal prolein L6	50S ribosomal protein L 18	30S ribosomal protein	50S ribosomal protein L30	50S ribosomal protein L15		methylmalonic acid semialdehyde dehydrogenase		novel two-component regulalory system	aldehyde dehydrogenase aldehyde dehydrogenase			reductase	2Fe2S ferredoxin	p-cumic alcohol dehydrogenase	hypothetical protein	phosphoeno!pyruvale synthelase	phosphoenolpyruvate synthetase	cytochrome P450
15		Matched length (a a)	405	150	132	179	110	171	22	143		128		125	487			409	107	257	20	629	378	422
20		Similarity (%)	50.4	66.7	7.76	87.7	6.06	88.3	78.4	87.4		68.8		52.0	71.5			71.6	66.4	70.8	26 0	45.0	2 99	65.2
		Identity (%)	24.7	42.7	75.8	59.2	67.3	8.78	54.8	66.4		46.9		47.0	41.7			41.1	47.7	35.8	50.0	22.9	386	34 8
25	niinuea)	gene	dus AF1398	urans			rpIR	rpsE	2 rpmJ	rplO		color msdA		nse carR	chrous			recA2	latus fdxE	la cymB	(1 APE0029	s Vc1 DSM	furiosus Vc1 DSM	ropolis thcB
30 <u>.</u>	lable I (conlinued)	Homologous gene	Archaeoglobus fulgidus AF1398	Delnococcus radiodurans DR0763	Micrococcus luteus	Micrococcus luteus	Micrococcus luteus rpIR	Micrococcus luteus rpsE	Escherichia coli K12 rpmJ	Micrococcus luteus rplO		Streptomyces coelicolor msdA		Azospirillum brasilense carR	Rhodococcus rhodochrous plasmid pRTL1 orf5			Sphingomonas sp. recA2	Rhodobacter capsulatus fdxE	Pseudomonas putida cymB	Aeropyrum pernix K1 APE0029	Pyrococcus furiosus Vc1 DSM 3638 ppsA	Pyrococcus furiosu 3638 ppsA	Rhodccoccus erythropolis thcB
35		1:			-	¥														2		<u> </u>	ш. ()	
40		db Match	pir.E69424	gp:AE001531_13	pir. S29885	pir.S29886	Sp.RL18_MICLU	SP.RS5_MICLU	SP.RL30_ECOLI	Sp:RL15_MICLU		prf:2204281A		GP ABCARRA_2	prf.2518399E			pri.24112579	prf.2313249B	gp:PPU24215_	PIR:H72754	pir.JC4175	pir.JC4176	1290 pr 2104333G
		ORF (bp)	1182	468	396	534	402	633	183	444	729	321	363	456	1491	735	306	1266	318	744	213	1740	1080	1230
45		Terminal (nt)	552948	554452	555726	556282	556690	557366	557555	558008	556860	558197	558607	560260	559144	560634	562937	561368	562646	562993	564083	563732	265680	566799
50		Initial (nt)	554129	554919	555331	555749	556289	556734	557373	557565	557588	558517	558969	559805	560634	561368	262632	562633	562963	563736	563871	565471	566759	568088
		SEO NO (a.a.)	4096	4097	4098	4099	4100	410	4102	4103	4104	4105	4106	4107	4108	4109	4110	4111	4112	4113	4114	4115	4116	4117
55	-	SEQ NO (DNA)	296	597	298	299	900	9	602	603	604	909	909	607	809	609	6:0	611	612	613	614	615	9,9	6:7

5	Function	transcriptional repressor	adenylale kinase		methionine aminopeptidase		translation initiation factor IF-1	30S ribosomal protein S13	30S ribosomal protein S11	30S ribosomal protein S4	RNA polymerase alpha subunit		50S ribosomal protein L17	pseudouridylate synthase A	hypothetical membrane protein			hypothetical protein	cell elongation protein	cyclopropane fatty acyl-phospholipid synthase	hypothetical membrane protein
15	Matched length (a a)	256 tra	184 ad	T	253 me	7	72 tra	122 30	134 30	:32 30	311 R		122 50	265 ps	786 hy			485 hy	505 ce	423 ^{C)} sy	100 ţ
20	Similarity (%)	66.0	81.0		74.7		96.0	91.0	93.3	93 9	77.8		77.1	61.1	51.2			53.8	50.9	56.0	59.0
	Identity (%)	28.5	48.9		43.1		77.0	66.4	81.3	82.6	51.1		51.6	37.0	24.8			27.4	22.8	30.7	28.0
25 9	gene	arotovora	ąķ		map			us HB8	olor A3(2)	rculosis sD	rpoA		rplQ	truA	rculosis			erculosis	S CV DIM	2 cfa	solor A3(2)
30 to McT	Homologous gene	Erwinia carotovora carotovora kdgR	Micrococcus luteus adk		Bacillus subtilis 168 map		Bacillus subtilis infA	Thermus thermophilus HBB rps13	Streptomyces coelicolor A3(2) SC8G4.38. rpsK	Mycobacterium tuberculosis H37Rv RV3458C rpsD	Bacillus subtilis 168 rpoA		Escherichia coli K12 rplQ	Escherichia coli K12 truA	Mycobacterium tuberculosis H37Rv Rv3779			Mycobacterium tuberculosis H37Rv Rv3283	Arabidoosis thaliana CV DIM	Escherichia coli K12 cfa	Streptomyces coelicolor A3(2) SCL2.30c
40	db Malch	pri.2512309A k	SP.KAD_MICLU N		SP. AMPM_BACSU B		pir.F69644 B	pr.25053538	Sp.RS11_STRCO	pri.2211297F	SP. RPOA_BACSU		Sp.RL17_ECOLI	_	pir:G70695			pir.A70836	Sp. DIM_ARATH		gp.SCL2_30
	ORF (bp)	804 p	543 s	612	792	828	21E p	365 p	402 s	603 p	1014 s	156	489 s	867	2397	456	303	1257	1545	1353	426
45	Terminal (tr.)	568272	571316	570756	572267	573176	573622	574181	574588	575217	576351	575211	576998	577923	580429	580436	580919	582562	584228	\$85520	586248
50	Initial (Int)	569075	570774	571367	571476	572349	573407	573816	574187	574615	575338	575366	576410	577057	578033	580891	581221	561406	562884		565823
	SEO	4118	4119	4120	4121	4122	4123	4124	4125	4126	4127	4128	14129	4130	4131	4132	4133	4134	4135	4136	4137
55	SEQ.	618	619	029	T. 7	622	623	624	625	626	627	628	629	630	631	632	633	634	635	636	637

5		inase	notein	orotein					irget ESAT-	3		ıtase							
10	Function	high-alkaline serine proteinase	hypothetical membrane protein	Pypothetical membrane protein				hypothetical protein	early secretory antigen target ESAT- 6 protein	50S ribosomal protein L13	30S ribosomal protein S9	phosphoglucosamine mutase		hypothetical protein			hypothetical protein	alanine racemase	hypothetical protein
15	Matched length (a.a.)	273	516	1260				103	80	145	181	450		318			259	368	154
20	Similarity (%)	58.0	50.6	38.4				6.69	81.3	82.1	72.4	76.4		45.6			72.2	68 5	78.6
	Identity (%)	31.3	24.0	65.0	·			31.1	36.3	58.6	49.2	48.9		29.3			44.0	41.6	48.7
25 9	9U9		or A3(2)	ulosis				ulosis	ulosis	or A3(2)	or A3(2)	S		C6803				culosis	culosis
30 t offer	Homologous gene	Bacillus alcalophilus	Streptomyces coelicolor A3(2) SC3C3.21	Mycobacterium tuberculosis H37Rv Rv3447c				Mycobacterium tuberculosis H37Rv Rv3445c	Mycobacterium tuberculosis	Streptomyces coelicolor A3(2) SC6G4.12. rpIM	Streptomyces coelicolor A3(2) SC6G4.13. rpsl	Staphylococcus aureus femR315		Synechocystis sp. PCC6803 str1753			Mycobacterium leprae B229_F1_20	Myccbacterium tuberculosis H37Rv RV3423C alr	Myccbacterium tuberculosis H37Rv Rv3422c
<i>35</i>	db Match	SP.ELYA_BACAO B	S pir T10930 S	pir.E70977				pir.C70977	prf.2111376A N	sp.RL13_STRCO	sp.RS9_STRCO	pri:2320260A (6		pir.S75138 s	•		pir:S73000 E	SP.ALR_MYCTU	sp:Y097_MYCTU
4.5	ORF (bp)	1359	1371	3567	822	663	906	324	288	441	546	1341	303	1509	573	234	855	1083	495
45	Terminal (nt)	586399	587645	592862	589590	589898	593761	594258	594580	595379	595927	597449	598194	599702	598778	599932	600022	602053	602574
50	Initial (nt)	587757	589015	589296	590411	590560	592862	593935	594293	594939	595382	596109	597892	590194	599350	299699	600876	600971	602080
	SEQ NO.		4139	4140	4141	4142	4143	4144	4145	4146	4147	4148	4149	4150	4151	4152	4153	4154	4155
55	SEQ NO (DVA)	638	639	640	641	642	643	644	645	646	647	648	649	650	651	652	653	654	655

Table 1 (continued)	db Match Homologous gene (%) (%) (aa) Function	E_ECOLI Escherichia coli K12 yidE 28.9 66.2 550 hypothetical membrane protein	J00161 1 Propionibacterium shermanii pip 51.3 77.6 411 proline iminopeptidase	p:Y098_MYCTU Mycobacterium tuberculosis 52.2 75.4 207 hypothetical protein H37Rv Rv3421c	11_ECOLI Escherichia coli K12 riml 30.3 59.9 132 ribosomal-protein-alanine N-acetyltransferase	P_PASHA SERCTYPE A1 gcp 46.1 75.2 319 O-sialoglycoprotein endopeptidase	p-Y115_MYCTU Mycobacterium tuberculosis 38.4 59.4 571 hypothetical protein			p.CH10_MYCTU Mycobacterium tuberculosis 78.0 94.0 100 heat shock protein groES	p CH61_MYCLE Mycobacterium leprae 63.3 85.1 537 heat shock protein groEL	P:MSGTCWPA_1 Mycobacterium tuberculosis 50.0 56.0 75 hypothetical protein	P:MSGTCWPA_3 Mycobacterium tuberculosis 34.0 45.0 138 hypothetical protein	Mycobacterium smegmalis 64.9 88.3 94 regulatory protein whiB3	p Y09F_MYCTU Mycobacterium tuberculosis 55.2 81.6 174 RNA polymerase sigma factor H37Rv Rv3414c sigD		p Y03H_MYCLE Mycobacterium leprae 41.4 69.8 116 hypothetical protein	Corynebacterium 203154_1 ammoniagenes ATCC 6872 80.8 93.9 504 IMP dehydrogenase guaß	
Table 1 (conlinued		_	-,										WPA_3 Mycobacterium tuberculosis						
	Terminal ORF db Mai	604409 1599 sp. YIDE_ECOLI	605708 1239 gp PSJ00161	606392 675 sp:Y098_M	606898 507 Sp.RIMI_ECOLI	607936 1032 sp.GCP_PASHA	609679 1722 sp Y115_M	610175 429	609816 453	610544 297 sp.CH10_M	612272 1614 sp CH61_M	610946 255 GP:MSGTC	611109 1158 GP:MSGTC	612418 297 gp.AF073302_1	613719 564 sp Y09F_M	614747 1026	614903 378 Sp.Y03H_M	616853 1518 gp.AB003154_1	
	SEQ Initial Te	4156 602811 60	4157 604470 60	4158 605719 60	4159 606392 60	4160 606905 60	4161 607958 60	4162 609747 61	4163 610268 60	4164 610348 61	4165 610659 61	4166 611200 61	4167 612266 61	4168 612714 61	4169 613156 61	4170 613722 61	4171 615180 61	4172 615336 61	-
	SEQ NO.	656	657	658	659	099	661	299	663	664	665	666	299	668	669	670	671	672	

EP 1 108 790 A2

		r——	 :								,									
5	Function	IMP dehydrogenase	hypothetical membrane protein	glutamate synthetase positive regulator	GMP synthetase				hypothetical membrane protein	two-component system sensor histidine kinase	transcriptional regulator or extracellular proteinase response regulator				hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	
		IMP d	hypot	glutamate regulator	GMP				hypot	two-c histid	transcript exfracellu regulator				hypol	hypot		hypot	hypot	
15	Matched length (a.a.)	381	274	262	517				513	411	218		-		201	563		275	288	
20	Similarity (%)	86.1	67.5	58.4	92.8				39.6	18.7	65.1			-	64.2	64.1	•	62.9	58.3	
	Identity (%)	6.07	38.0	29.0	81.6				20.5	26.8	33.5				30.9	37.5		33.8	27.8	
25 Q		72							43(2)	۲3(2)		1			sis	sis		43(2)		
os Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6872	Escherichia coli K12 ybiF	Bacillus subtilis gltC	Corynebacterium ammoniagenes guad				Streptomyces coelicolor A3(2)	Streptomyces coelicolor A3(2) SC6E10.15c	Bacillus subtilis 168 degU				Mycobacterium tuberculosis H37Rv Rv3395c	Mycobacterium tuberculosis H37Rv Rv3394c		Streptomyces coelicolor A3(2) SC5B8.20c	Deinococcus radiodurans DR0809	
35									0,	0, 0,								0, 0,		
40	db Match	gp:AB003154_2	Sp. YBIF_ECOLI	prf 1516239A	sp.GUAA_CORAM				gp:SCD63_22	6_	sp.DEGU_BACSU				pir 870975	pir.A70975		gp:SC588_20	gp.AE001935_7	
	ORE (bp)	1122	921	606	1569	663	441	189	1.76	1140	069	324	489	963	825	1590	099	861	861	380
45	Terminal (nt)	618094	618093	619994	621572	620264	622157	622457	622460	524939	525674	526000	626370	626577	528551	630140	63015	531809	631824	532590
50	Initial (nt)	615973	619013	619086	620004	620926	621717	622269	623635	623800	624985	625677	625558	627539	627727	628551	630810	633949	632684	633079
	SEQ NO.	4174	4175	4176	4177	4178	4179	416C	4181	4102	4183	4184	4185	4186	4187	4188	4189	419C	4191	4192
55	SEQ NO.	674	675	929	677	878	979	980	681		683	684	285	989		588	289	069	591	692 41

70

Driewoin - ED ++0030043

5		lion	ane protein	Ð		nsport protein	phospha!e	ator (MarR	oprotein												
10		Function	hypothetical membrane protein	phytoene desaturase	phytoene synthase	transmembrane transport protein	geranylgeranyl pyrophosphale (GGPP) synthase	transcriptional regulator (MarR family)	outer membrane lipoprotein	Eypothetical protein	DNA photolyase	glycosyl transferase	ABC transporter	ABC transporter		ABC transporter		ABC transporter	lipoprotein	DNA polymerase III	hypothetical protein
15		Matched length (a.a.)	95	524	288	722	367	188	145	462	497	205 6	7 268	223		206 /		346 /	268	1101	159
20		Similarity (%)	67.4	76.2	71.2	75.6	63.8	68.1	62.1	74.2	63.2	53.7	54.9	72.2		75.2		75.4	67.2	57.5	62.3
		Identity (%)	36.8	50.4	42.0	48.6	32.7	38.3	33.1	48.7	40.0	25.9	24.3	35.4		35.9		43.6	28.7	30.2	41.5
25 :	ontinued)	gene	บกน	ns ATCC	ns ATCC	color A3(2)	is crtE	sı	olc OS60 blc	SI	is ATCC	cps1K	o!or A3(2)	yvrO		abcD		³ 90 abc	ızae	dnaE	olor A3(2)
30	lable 1 (continued)	Homologous gene	Mycobacterluni mar num	Brevibacterium linens ATCC 9175 crtl	Brevibacterium linens ATCC 9175 crtB	Streptomyces coelicolor A3(2) SCF43A, 29c	Brevibacterium linens crtE	Brevibacterium linens	Citrobacter freundii olc OS60 blc	Brevibacterium linens	Brevibacterium linens ATCC 9175 cpd1	Streptococcus suis cps1K	Streptomyces coelicolor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Helicobacter pylori abcD		Escherichia coli TAP90 abc	Haemophilus influenzae SEROTYPE B hlpA	Thermus aquaticus dnaE	Streptomyces coelicolor A3(2) SCE126.11
35			Σ	8 6	æ 6	N N	œ.	<u> </u>	Ö	B	<u> </u>	S	8 8	B		Ĭ		ŭ	Ϊ̈́̈́	Ĕ	8 8
40		cb Match	gp:MMU92075_3	gp:AF139916_3	gp:AF139916_2	gp:SCF43A_29	gp:AF138916_11	gp.AF139916_14	SP.BLC_CITFR	gp.AF139916_1	gp.AF139916_5	gp AF155804_7	gp SCE25_33	pri 2420410P		prf.2320284D		sp ABC_ECOLI	sp.HLPA_HAEIN	prt.2517386A	gp:SCE126_11
		03F (bp)	336	1644	912	2190	1146	585	648	1425	1404	753	2415	717	153	999	846	1090	897	3012	44.7
45		Terminal (nt)	633079	633532	635178	636089	638317	640208	640232	642557	642556	844778	545176	647593	648315	648440	650187	649114	650332	654612	655122
50		tritia (nt)	633474	635*75	636089	638278	639462	639624	640879	641133	643959	644026	647590	648309	648467	649105	649342	650193	651288	651601	654676
		SEQ NO.	4193	4194	4195	4196	4197	4198	4199	1200	4201	4202	4203	4204	4205	4206	4207	4208	4209	42:0	42.1
55		SEQ NO (DNA)	593	594	969	969	269	969	669	700	701	702	703	704	705	90/	707	708	602	710	71.
	-																				<u> </u>

5		Function	hypothetical membrane protein		transcriptional repressor	hypothetical protein		transcriptional regulator (Sir2 family)	hypothetical protein	iron-regulated lipoprote:n precursor	rRNA methylase	methylenetelrahydrofolate dehydrogenase	hypothetical membrane protein	hypothetical protein		Lomoserine O-acelyltransferase	O-acelylhomoserine sulfhydrylase	carbon starvation protein		hypothelical protein	
15		Matched length (aa)	468	-	203	264		245	157	357	151	278	80	489		379	429	069		20	
20		Slmilarity (%)	26.0		76.4	61.7		71.8	78.3	62.2	86.1	87.4	76.3	63.2		99.5	76.2	78.4		0.99	
		Identity (%)	26.1		50.3	34.9		42.5	45.2	31.1	62.9	70.9	31.3	34.0		99.5	49.7	53.9		40.0	
30 25 (Continued)		Homologous gene	Streptomyces coelicolor A3(2) SCE9 01		Mycobacterium tuberculosis H37Rv Rv2788 sirR	Streptomyces coelicolor A3(2) SCG8A.05c		Archaeoglobus fulgidus AF 1676	Straptomyces coe'icolor A3(2) SC5H1.34	Corynebacterium diphtheriae irp1	Mycobacterium tuberculosis H37Rv Rv3366 spoU	Mycobacterium tuberculosis H37Rv Rv3356c folD	Mycobacterium leprae MLCB1779.16c	Streptomyces coelicolor A3(2) SC66T3.18c		Corynebacterium glutamicum metA	Leptospira meyeri metY	Escherichia coli K12 cstA		Escherichia coli K12 yjiX	
<u>a</u> 35	3	H	Streptomyc SCE9 01		Mycobacterium tube H37Rv Rv2788 sirR	Streptomyo SCG8A.05		Archaeoglo	Streptomy SC5H1.34	Corynebac irp1	Mycobacte H37Rv Rv	Mycobacte H37Rv Rv	Mycobacte MLCB1779	Streptomy SC66T3.1		Corynebac	Leptospira	Escherich		Escherich	
40		db Match	gp:SCE9_1		pir.C70884	gp:SCG8A_5		pir.C69459	gp:SC5H1_34	gp.CDU02617_1	pir.E70971	pir.C70970	gp:MLCB1779_8	gp SC6613_18		gp.AF052652_1	pri 2317335A	SP.CSTA_ECOLI		sp:YJX_ECOL!	
		ORF (bp)	1413	738	699	798	138	774	492	966	471	852	255	1380	963	1131	1311	2202	609	ő	609
45		Terminal (nt)	656534	655397	657215	657205	658142	658928	659424	660538	059099	662017	662374	562382	664126	565183	666460	670465	669445	670672	671045
50		Initial (nt)	655122	655834	656547	658002	658005	653155	658933	659543	661120	661.66	682120	663761	665088	666313	667770	668264	670053	670472	671653
		SEQ NO (a a.)	4212	4213	4214	4215	4216	4217	4218	4215	4220	4221	4222	4223	4224	4225	4226	4227	4228	4229	4230
55	İ	SEQ NO (DNA)		713	714	715	716	717	718	719	720	721	722	723	724	725	726	121	728	729	730

						i						tei		T	ъ	ع. ا	١		_
	Function	hypothetical protein	carboxy phosphoenolpyruvate	citrale synthase		hunothetical protein	Thomsered protein	L-malate dehydrogenase	regulatory protein		vibriobactin utilization protein	ABC transporter ATP-binding protein	ABC transporter	ABC transporter	iron-regulated lipoprotein precursor	chforamphenicol resistance protein	catabolite repression control profein	hypothetical protein	
	Matched length	317	281	380		53	3	338	226		284	269	339	330	356	395	303	219 h	
	Similarity (%)	86.4	76.2	81.3		623		67.5	62.8		54.2	85.1	96.4	88.2	82.3	9.69	58.1	85.8	
	Identity (%)	71.0	41.6	56.1		34.0		37.6	26.1		25.4	55.4	56.3	63.0	53.	32.2	30.4	56.2	
lable 1 (confinued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1130	Streptomyces hygroscopicus	Mycobacterium smegmatis		Escherichia coli K12 yneC		Methanothermus fervidus V24S mdh	Bacillus stearothermophilus T-6 uxuR		Vibrio cholerae OGAWA 395 viu8	Corynebacterium diphtheriae irp 1D	Corynebacterium diphtheriae irp1C	Corynebacterium diphtheriae irp1B	Conynebacterium diphtheriae	Streptomyces venezuelae cmlv	Pseudomonas aeruginosa crc	Haemophilus influenzae Rd H:1240	
	db Match	pir C73539	prf. 1902224A	sp:CISY_MYCSM		SP:YNEC_ECOL!		Sp:MDH_METFE	prf.25:4353L		sp.V.tB_VIBCH	gp.AF176902_3	gp.AF176902_2	gp:AF-76902_1	gp:CD!J02617_1	pd:22C2262A	prf.222220B	Sp:YICS_HAEIN	
-	ORF (tp)	954	912	1149	930	192	672	1041	720	702	897	907	1059	966	1050	1272	912	657	1
	Terminal (nt)	672653	673576	674756	672710	674799	675846	675082	676218	677047	680131	681040	681846	682871	683876	686380	687346	688007	20000
	Initial (nt)	671703	672665	673608	673639	674990	675175	676122	676937	677748	691027	681846	682904	683866	684925	685109	586435	4247 - 687351	47.40 CD CA.44
_	SEO NO (a.a.)	4231	4232	4233	4234	4235	4236	4237	4238	4239	4240	4241	4242	4243	4244	4245	4245	4247	9707
	SEQ NO (DNA)	731	732	733	734	735	736	737	738	739	740	741	742	743			746	747	7.48

5		Function		ferrichrome ABC transporter	hemin permease	Iryptophanyl-thnA synthetase	hypothetical protein		precursor	hypothetical protein	hypothetical protein			uracil phosphoribosyliransierase	bacterial regulatory protein, fact family	N-acy-L-amino acid amidohydrolase or peptidase	phosphomannomutase	dihydrolipoamide dehydrogenase	pyruvate carboxylase	hypothetical protein	hypothetical protein
15		Matched length (a a)	-	1			278		301	417	323			209	77	385	561	468	1140	263	127
20		Similarity (%)		73.8	69.1	79.8	72.3		57.5	70.7	52.6			72.3	66.2	80.5	538	65.0	100.0	60.1	6.99
		Identity (%)		45.1	38.7	54.4	37.1		30.9	34.1	29.4			46.4	41.6	51.4	22.1	31.6	100.0	26.2	30.7
25 (penujitu	(200	s gene		iphtheriae	ica hemU	2 trpS	2 yhįD		urium LT2	erculosis	icolor A3(2)			cbb	icolar A3(2)	perculosis miA	n JER manB	canii ATCC	glutamicum	berculosis	licolor A3(2)
So Table 1 (continued)	a) i aigni	Homologous gene		Corynebacterium diphtheriae hmuV	Yersinia enterocolitica hemU	Escherichia coli K12 trpS	Escherichia co'i K12 yhjD		Salmonella typhimurium LT2 dacD	Mycobacterium tuberculosis H37Rv Rv3311	Streptomyces coelicolor A3(2) SC6G10.08c			Lactococcus lactis upp	Streptomyces coelicolor A3(2) SC1A2.11	Mycobacterium tuberculosis H37Rv Rv3305c amiA	Mycoplasma pirum 3ER manB	Halobacterium volcanii ATCC 29605 lpd	Corynebacterium glutamicum strain21253 pyc	Mycobacterium tuberculosis H37Rv Rv1324	Streptomyces coelicolor A3(2) SCF11.30
35		db Match		gp.AF109162_3	pir.S54438	Sp.SYW_ECOLI	ECOLI		SP.DACD_SALTY	pir.F73842	gp.SC6G10_8			Sp.UFP_LACLA		pir H70841	SP. MANB_MYCPI	1	prf.2415454A	Sp YD24_MYCTU	gp:SCF11_30
		ORF (bp)	975	190 91	1017 pi	1035 s	1083 5	903	1137 \$	1227 p	858 9	195	351	633	384 g	1182	1725 s	1407	3420	870	486
45		Terminal (nt)	688916	689917	90/069	692916	694110	695074	695077	696769	698065	699266	698922	699913	700381	703262	700384	704811	708630	709708	710278
50		Initial (nt)	68989	969069	691722	691882	693028	694172	696213	697995	698922	699072	699272	699281	866669	702081	702108	703405	705211	708839	709793
		SEO NO.	4249	4250	4251	+-		4254	4255	4256	4257	4258	4259	4260	4261	4262	4263	4264	4265	4266	4257
55		SEQ NO (DNA)	749	750	751	752	753	754	755	756	757	758	759	760	76:	762	763	764	765	766	767

			i						Τ		Τ-					Τ	Ţ	···		
5		Function	hypothetical protein	thioredoxin reductase	PrpD protein for propionate catabolism	carboxy phosphoenolpyruvate mutase	hypothetical protein	citrate synthase		hypothetical protein			thiosulfate sulfurtransferase	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	hypothetical protein	delergent sensitivity rescuer or carboxyl transferase	delergent sensitivity rescuer or carboxyl transferase
15		Matched length (a.a.)	381	305	521	278	96	383		456			225	352	133	718	192	63	537	543
20		Similarity (%)	0.69	59.3	49.5	74.5	47.0	78.9		72.6			100.0	79.8	76.7	63.4	66.2	8.69	100.0	100.0
		Identity (%)	44.6	24.6	24 0	42.5	39.0	546		408			100.0	61.1	51.1	35.1	31.8	33.3	8.66	966
25 30	Table 1 (continued)	Homologous gene	Bacillus subtilis 168 yciC	Bacillus subtilis ISS9 trxB	Salmonella typhimurium LT2 prpD	Streptomyces hygroscopicus	Aeropyrum pernix K1 APE0223	Mycobacterium smegmatis ATCC 607 gltA		Mycobacterium tuberculosis H37Rv Rv1129c			Corynebacterium glutamicum ATCC 13032 thtR	Campylobacter jejuni Cj0069	Mycobacterium leprae MLCB4.27c	Mycobacterium tuberculosis H37Rv Rv1565c	Escherichia coli K12 yceF	Mycobacterium leprae B1308. C3-211	Corynebacterium glutamicum AJ11060 dtsR2	Corynebacterium glutamicum AJ11060 dtsR1
35			Bacil		Salmo	Strep	Aero			Myco H37R					Myco	Myco H37R	Esche	Mycoba C3-211	Coryr AJ110	Conyr AJ11(
40		db Match	pir:B69760	sp.TRXB_BACSU	SP.PRPD_SALTY	prf. 1502224A	PIR E72779	sp:CISY_MYCSM		pir.B70539			sp.THTR_CORGL	gp:C_11168X1_62	gp:MLCB4_16	pir.G70539	sp.YCEF_ECOLI	prf.2323363CF	gp.A8018531_2	pir.JC4991
		ORF (bp)	1086	924	1494	689	378	1182	375	1323	246	1359	903	1065	414	2148	591	246	1611	1629
45	 	Terminal (nt)	710520	712647	714231	715145	714380	716283	716286	716687	718350	720016	720547	722841	722925	725559	725872	726470	726742	726696
50	[Initial (nt)	7*1635	7.1724	712738	714258	714757	7:5102	7.6630	7*8009	7:8105	7:8658	721449	721777	723338	7234:2	726452	726715	728352	730324
		SEQ NO	4258	4259	4270	4271	4272	4273	4274	4275	4276	4277	4278	4279	4280	4281	4282	4283	4284	4285
55] ::سر	SEQ NO (DNA)	768	769	770	171	772	773	77.1	27.5	776	777	778	779	780	781	782	783	784	785

	,	,			· · · · · · · · · · · · · · · · · · ·					— ¬	<u> </u>					Т	- ¬		$\overline{}$
5		Function	bifunctional protein (biotin synthesis repressor and biotin acetyl-CoA carboxylase ligase)	hypothetical membrane protein	5-phosphonbosyl-5-amino-4- imidasol carboxylase	itein			5-phosphoribosyl-5-amiro-4- imidasol carboxylase	rolein	rotein	nitrilotriacetate monooxygenase	ISA0963-5)	nydrogenase	hypothelical membrane protein		orotein	orotein	
10			bifunctional protein repressor and biotin carboxylase ligase)	hypothetical m	5-phosphoribosyl-5-a imidasol carboxylase	K+-uptake protein			5'-phosphoribosyl-5-a imidasol carboxylase	hypothetical protein	hypothetical protein	nitrilotriacetat	transposase (ISA0963-5)	glucose 1-dehydrogenase	hypothetical n		hypothetical protein	hypothetical protein	
15		Matched length (a.a.)	293	165	394	628			147	152	255	426	303	256	96		175	142	
20		Similarity (%)	61.8	58.8	83.8	73.6			93.2	60.5	9.07	73.0	52.5	64.8	68.8		66.3	76.8	
		Identity (%)	28.7	23.0	69.0	41.1			85.7	36.2	42.8	43.2	23.4	31.3	29.2		28.6	35.9	
<i>25</i>	nuea)	ne ne	4	losis	6872	<u>G</u>			6872	Шn	ır A3(2)	ATCC	۰	M 1030	MSBB		Βĺ	or A3(2)	
·	lable 1 (continued)	Homologous gene	Escherichia coli K12 birA	Mycobacterium tuberculosis H37Rv Rv3278c	Corynebacterium ammonlagenes ATCC 6872 purk	Escherichia coli K12 kup			Corynebaclerium ammoniagenes ATCC 6872 purE	Actinosynnema pretiosum	Streptomyces coelicolor A3(2) SCF43A.36	Chelatobacter heintzil ATCC 29600 ntaA	Archaeoglobus fulgidus	Bacillus megaterium IAM 1030 gdhll	Thermotoga maritima MSB8 TM1408		Bacillus subtills 168 ywjB	Streptomyces coelicolor A3(2) SCJ9A 21	
35 40		cb Match	sp BIRA_ECOLI	pir.G70979	SP.PURK_CORAM	Sp.KLP_ECOLI			sp.PUR6_CORAM	gp:APU33059_5	gp:SCF43A_36	sp:NTAA_CHEHE	pir.A69426	sp DHG2_BACME	pir.A72258		sp:YWJB_BACSU	gp:SCJ9A_21	
		ORF (bp)	854	486	1161	1872	615	357	495	453	792	1314	1500	789	369	342	295	420	222
45		Terminal (nt)	731299	731797	733017	734943	733183	735340	735896	736351	737204	737216	738673	74C228	741765	742195	741818	742828	742831
50		Initial (nt)	730436	731312	731857	733072	733797	734984	735402	735899	736413	738529	740172	741016	741397	741854	742384	742409	743052
		SEQ NO.	4286	4287	4288	4289	4290	4291	4292	4293	4294	4295	4296	4297	4298	4299	4300	4301	4302
55		SEQ NO.	786	787	788	789	750	52.	792	793	794	795	796	797	798	799	800	108	802

																						
5		Function	trehalose/mattose-binding protein	trehalose/maltose-binding protein		trehalose/maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein		RNA helicase			hypothetical protein	hypothetical protein	DNA helicase II					RNA helicase	hypothetical protein	RNA polymerase associated protein (ATP-dependent helicase)
15		Matched length (a.a.)	27.1	306		417		332		1783			240	720	701					2033	698	873
20		Similarity (%)	75.3	70.3		62.4		73.9		49.9			59.2	62.5	41.1					45.8	53.2	48.6
		Identity (%)	42.4	37.3		30.9		57.2		25.1			31.7	30.0	20.7					22.4	24.4	23 1
25 3	(panullu	gene	alis malG	lis malF		lis malE		i msiK		urans R1			rculosis	199 jhp0462	. rvrD					olor	IRC-1 11130	hepA
30 35	lable 1 (confinued)	Hcmologous gene	Thermococcus litoralis malG	Thermococcus litoralis malF		Thermococcus literalis malE		Streptomyces reticuli msiK		Deinococcus radiodurans R1 DRB0135			Mycobacterium tuberculosis H37Rv Rv3268	Helicobacter pylori J99 jhp0462	Escherichia co'i K12 uvrD					Streptomyces coelicolor SCH5, 13	Halobacterium sp. NRC-1 plasmid pNRC100 H1130	Escherichia coli K12 hepA
40		db Match	prf 2406355C	prf.2406355B		prf.2406355A		prf.2308356A		pir B75633			633 pir.E70978	pir C71929	sp:UVRD_ECOLI					pir.T36671	pir.T08313	sp HEPA_ECOLI
		ORF (bp)	834	1032	468	1272	423	966	369	4800	372	3699	633	2433	1563	357	393	396	825	6207	4596	2886
45		Terminal (n:)	743067	743900	745046	745622	748442	747031	748814	748386	757434	753697	757630	758364	760906	762853	763122	762582	767367	763237	769547	774150
50		initial (nt)	743900	744931	745513	746893	748020	748C26	748446	753685	757063	757395	759262	760796	762468	762497	762730	762977	768191	769443	774142	777035
	į	SEQ NO (a a)	4303	4304	4305	4306	4307	4308	4309	43.0	4311	4312	43:3	43.4	43.5	4316	4317	4318	4319	4320	4321	4322
55	j	SEQ NO (DNA)	803		805	809	607	808	609	613	811	812	813	814	815	816	817	918	819	820	821	822

20 SEQ Iritia Termin (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt																			
Table 1 (continued) Table 1 (continued)	5	ıction	in	IcNAc- prenol, a-3·L- grase	ohate se		in	in	utase	gin	phate isomerase			onsive pratein		nocysteine	***************************************		9
Table 1 (continued) Initia	10	Ţ.	hypothetical prote	dTDP-Rha:a-D-G diphosphoryl poly rhamnosyl transfe	mannose-1-phos guanylyltransfera	regulatory protein	hypothetical prote	hypothetical profe	phosphomannom	hypothetical prote	mannose-6-phos			pheromone-respo		S-adenosyl-L-hor hydrolase			thymidylate kinas
Table 1 (continued) Table 1 (continued)	15		527	289	353	94	139	136	460	327	420			180		476			209
Fritia Terminal ORF Cb Match Homologous gene	20		71.4	77.9		81.9	74.8	713	66.3	56.3	66.2			57.8	_	83.0			26.0
Table 1 (continued) Table 1 (continued)		identity (%)	45.5	56.4	29.8	73.4	48.9	51.5	38.0	31.2	36.9			35.6		29.0			25.8
Firtia Terminal ORF Cb Match (nt) (nt) (nt) (bp) Cb Match (nt) (nt) (pp) Cb Match (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	25 continued)	Js gene	oerculosis .	negmatis	erevisiae	negmatis	berculosis	licolor A3(2)	video M40	berculosis	12 manA			alis plasmid		nalis WAA38			lgidus VC-16
Firtia Terminal ORF Cb Match (nt) (nt) (nt) (bp) Cb Match (nt) (nt) (pp) Cb Match (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	Table 1 ((Нотогово	Aycobacterium tu 137Rv Rv3267	Aycobaclerium sn nc2155 wbbl.	Saccharomyces of DL055C MPG1	Aycobacterium sn vhmD	Aycobacterium tu 137Rv Rv3259	Streptomyces coe SCE34.11c	Salmonella monte nanB	Aycobacterium tu 137Rv Rv3256c	scherichia coli K			Enterococcus faer oCF10 prgC		Trichomonas vagi			Archaeoglobus fu AFC061
Fig. 1 Fig. 2 Fig. 3 Fig. 4 F	35		ZI				<u> </u>	00 00	1	a2 ⊥				ш а.					
Iritia Terminal (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	40	cb Match	pir.070978	gp.AF187550_	sp:MPG1_YE/	gp.AF164439_	pir B70847	gp SCE34_11	sp.MANB_SAI	pir B70594	SP.MANA_EC			prf: 1804279K					sp KTHY_AR(
779014 779014 779014 782712 782617 782712 782643 782643 785643 785643 785643 785643 785643 785643 785643 785643 785643 785643 785643 785643 785643 785643		ORF (bp)	1554	897	1044	408	456	390	1374	1005	1182	150	360	564	351	1422	708	720	609
	45	Terminal (nt)	777158	779910	78117	781875	782162	783104	784557	785639	786824	787045	787983	787170	788546	790093	788719	789002	790704
SEQ SEQ NO NO NO NO NO NO NO NO NO NO NO NO NO	50	Iritia (nt)	778711	<u> </u>	783128	781468	782617	 		<u> </u>	<u>. </u>		⊥ _	↓ - · —	↓		Ц		<u> </u>
SEQ NO. (DNA) NO	:س	SEQ NO	4323	4324	4325	4326	4327	4328	4329	4330	4331	4332	4333	4334	4335	4336	4337	4338	4339
	55	SEQ NO (DNA)	823	824	825	826	827	828	829	830	831	832	833	834	835	836	837	838	839

	ı ———	1	1	1		1		,	т	т—	,			,		, -	- · -
10	Function	two-component system response regulator		two-component system sensor histidine kinase	lipoprotein	typothetical protein		30S ribosomal protein or chloroplast precursor	preprotein translocase SecA subunit		hypothetical protein	hypothelical protein	5-enolpyruvylshikimate 3-phosphate synthase	hypothetical protein	5-enolpyruvylshikimale 3-phosphale synthase	hypothetical protein	RNA polymerase sigma factor
15	Matched lergth (aa)	224		484	595	213 h		203	845 p	-	170 h)	322 h	461 5.	180 円	23 5.	380 h)	188 RI
20	Similarity (%)	9 06		78.9	65.6	72.8		61.6	9.66		78.8	82.9	0.66	63.9	100.0	42.4	87.2
	Identity (%)	73.7		53.1	29.6	38.3		34.5	1 66		47.1	64.6	0.66	38.3	100.0	21.6	61.2
Table 1 (continued)	us gene	berculosis ntrA		berculosis ntrB	berculosis pqB	berculosis		CV rps22	vum glutamicum)		berculosis	serculosis	glutamicum	oerculosis .	Jutamicum	erculosis	erculosis
Table 1 (Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA		Mycobacterium tuberculosis H37Rv Rv3245c mtiB	Mycobacterium tuberculosis H37Rv Rv3244c IpqB	Mycobacterium tuberculosis H37Rv Rv3242c		Spinacia oleracea CV rps22	Brevibacterium flavum (Corynebacterium glutamicum) MJ-233 secA		Mycobacterium tubercutosis H37Rv Rv3231c	Mycobacterium tuberculosis H37Rv Rv3228	Corynebacterium glutamicum ASO19 aroA	Mycobacterium tuberculosis H37Rv Rv3228c	Corynebacterium glutamicum	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis sigH
35		ΣÏ		ΣÏ	ΣÏ	ΣÏ	_		E O ₹		H ₃	My H3	Co	₹£		My H3	Myco sigH
40	db Match	pri 2214304A		prf.2214304B	pir F70592	pir D70592		sp.RR33_SPIOL	gsp:R74093		pir.A70591	pir.F73590	gp:AF114233_1	pir:D70590	GP-AF114233_1	pir.G70506	pri 2515333D
	ORF (bp)	678	684	1497	1704	588	156	663	2535	672	504	987	1413	480	123	1110	618
45	Terminal (nt)	791409	790730	793308	79471	79530	795292	796110	798784	799691	800200	800208	801190	803128	802565	903131	805025
50	Initiat (nt)	790732	791421	791512	793008	794714	795447	795448	795250	799020	799697	801194	802602	802649	802687	804240	804408
	SEO NO (a a)	434C	4341	4342	4343	4344	4345	4346	4347	4348	4349	4350	4351	4352	4353	4354	4355
55	SEQ NO. (Dr.A)	840	941	842	943	844	945	846	847	848	849	850	951	952	853	954	855

EP 1 108 790 A2

	٦٢		T						—· 7		\top		- -	- 7	<u> </u>	T	Т		\neg
5		Function	regulatory protein	hypothetical protein	hypothetical protein	DEAD box ATP-dependent RNA helicase		hypothetical prote:n	hypothetical protein	ATP-dependent DNA helicase		ATP-dependent ONA helicase		polassium channel	hypothetical protein	DNA helicase II		hypothetical protein	
15		Matched length (aa)	84	129	415	458		291	249	1155		1125		302	230	099		280	
20		Similarity (%)	96.4	65.1	62.2	64.0		69.8	62.9	48.9		65.7		64.2	58.3	588		49.3	
		Identity (%)	78.6	33.3	29.6	37.3		46.4	37.0	23.9		41.4		26.2	30.4	32.6		26.8	
25	ontinued)	s gene	erculosis B 1	erculosis	erculosis	riae CG43		erculosis	erculosis	erculosis		erculosis		nnaschii JAL-	erculosis	12 uvrD		perculosis	
30	Table 1 (continued)	Homologous gene	Mycobacterium Iuberculosis H37Rv Rv3219 whiB1	Mycobacterium Iuberculosis H37Rv Rv3217c	Mycobacterium tuberculosis H37Rv Rv3212	Klebsiella pneumoniae CG43 deaD		Mycobacterium tuberculosis H37Rv Rv3207c	Mycobacterium tuberculosis H37Rv Rv3205c	Mycobacterium tuberculosis H37Rv Rv3201c		Mycobacterium tuberculosis H37Rv Rv3201c		Methanococcus jannaschii JAL- 1 MJ0138-1.	Mycobaclerium tuberculosis H37Rv Rv3199c	Escherichia coli K12 uvrD		Mycobacterium tuberculosis 1137Rv Rv3196	
<i>35</i>		db Match	pir.D70596	pir.B70596	oir.E70595	sp DEAD_KLEPN		pir.H70594	pir.F70594	pir.G70951		pir:G70951		sp:Y13B_METJA	pir.E70951	sp:UVRD_ECOLI		pir:B70951	
		ORF (bo)	258 p	420 p	1200	1272 s	225	846	759	3048	780	3219	1332	1005	714	2034	591	9.8	603
45		Terminal (rt)	805535	806737	806740	807946	809510	810394	811153	814217	811386	817422	814210	818523	815236	821287	822669	821290	823391
50		Initial (nt)	805792	806318	807939	809217	809286	809549	810405	811170	812165	814204	8.5541	8:75:8	818523	819254	822079	822105	822799
		SEQ NO (a a)	4356	4357	4358	4359	4360	435	4352	4363	4364	4365	4366	4357	4358	4369	4370	4371	4372
55		SEQ NO.	856	857	858	859	860	861	862	863	864	998	998	967	998	698	870	87.1	872

					1	T	T -	T	\top	T	T	T -		T			\top	Т	1	
5	Function	hypothetical protein	hypothetical protein			hypothetical protein	regulatory protein	ethylene-inducible protein	hypothetical protein	hynothetical protein		alpha-lytic proteinase precursor		DNA-directed DNA polymerase	major secreted protein PS1 protein precursor					monophosphalase
15	Matched length (a.a.)		350			1023 h	463	301	T		T	408 al		208 D	363 m				-	255 m
20	Similarity (%)	76.4	74.9			73.5	57.7	0.68	53.0	736		444		514	51.5					74.9
	Identity (%)	42.8	43.4			47.2	34.3	67.4	49.0	40.8		26.7		25.0	27.0					51.8
25 (D) Julian	losis	losis			losis	S ₁	er er!	>E0247	Ш		s ATCC		aBelle-	ATCC					pur3
os Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3195	Mycobacterium tuberculosis H37Rv Rv3194			Mycobacterium tuberculosis H37Rv Rv3193c	Deinococcus radiodurans DR0840	Hevea brasiliensis laticifer er 1	Aeropyrum pernix K1 APE0247	Bacilius subtilis 168 yaaE		Lysobacter enzymogenes ATCC 29487		Neurospora intermedia LaBelle- 1b milochondrion plasmid	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1					Strepto:nyces alboniger pur3
35		Z 1	21		-	≥ I			<	İ		2.55	_	žΫ				-		5
40	db Match	pir.A70951	pir H70950			pir G70950	gp:AE001938_5	sp:ER1_HEVBR	PIR:F72782	Sp:YAAE_BACSU		pir.TRYX94		pir S03722	sp.CSP1_CORGL					рл.2207273Н
	Cpp)	1446	1050	675	522	2955	1359	951	345	909	363	1062	501	585	1581	429	510	222	308	780
45	Terminal (rt)	822680	825239	925242	825996	929570	829627	831971	831578	832570	832795	834633	835388	835837	838892	839353	840139	840210	840437	841517
50	Initial (nt)	824.25	824190	825916	626517	825616	830985	831021	831922	831971	833157	833572	834888	835253	837312	838925	839630	840431	840745	842298
	SEQ NO	4373	4374	4375	437E	4377	4378	4379	4380	4381	4382	4383	4384	4385	4386	4387	4388	4389	4390	4391
55	SEO NO (DNA)	873	874	.875	976	877	878	979	980	881	882	883	884	885	886	887	888	889	060	.: 68

EP 1 108 790 A2

5	Function	myo-inositol monophosphatase	peptide chain release factor 2	cell division ATP-binding protein	hypothetical protein	celi division protein	small protein B (SSRA-binding protein)	hypothetical protein		-		vibriobactın utilization protein	Fe-regulated protein	hypothetical membrane protein	ferric anguibactin-binding protein precursor	lerrichrome ABC transporter (permease)	ferrichrome ABC transporter (permease)	Ierrichrome ABC transporter (ATP-binding protein)
15	Matched length (a.a.)	243	359	226	72	361	145	116				272	319	191	325	313	312	250
20	Similarity (%)	59 3	986	91.2	54.0	74.8	75.9	73.3				52.9	58.3	71.2	61.5	80.8	76.0	82.0
	Identity (%)	33.7	0.89	70.4	43.0	40.5	43.5	44.0				26.8	29.5	36.1	27.7	39.3	35.6	48.4
55 (panijuned)	gere	persicus	color A3(2)	erculosis E	(1 APE2061	erculosis X	2 smpB	2 yeaO				AWA 395	reus sirA	rae	775 tatB	8 yclN	8 yclO	8 yclP
os Table 1 (continued)	Homologous gene	Streptomyces flavopersicus spcA	Streptomyces coelicolor A3(2) prtB	Mycobacterium tuberculosis H37Rv Rv3102c ftsE	Aeropyrum pernix K1 APE2061	Mycobacterium tuberculosis H37Rv Rv3101c ftsX	Escherichia coli K12 smpB	Escherichia coli K12 yeaO				Vibrio cholerae OGAWA 395 viuB	Staphylococcus aureus sirA	Mycobacterium leprae MLCB1243.07	Vibrio anguillarum 775 fatB	Bacillus subtilis 168 yclN	Bacillus subtilis 168 yclO	Bacillus subtilis 168 yclP
35				2I	4	51	† "	<u> </u>				-						
40	db Match	gp:U70376_9	sp:RF2_STRCO	pir.E70919	PIR:G72510	pir:D70919	sp.SMPB_ECOL!	sp.YEAO_ECOLI				sp VIUB_VIBCH	prf 2510361A	gp.MLCB1243_5	SP.FATB_VIBAN	pir B69763	pir.C69763	pir. D69763
	ORF (bp.)	819	1104	687	264	006	492	351	537	300	405	825	918	588	1014	666	942	753
45	Terminal (n.)	842306	844360	845181	844842	846097	846628	846982	846269	848028	847718	848499	849326	850412	852364	853616	854724	855476
50	initiat (nt)	843124	843257	844495	845105	845198	845137	845632	046805	847727	848122	849323	850243	850999	851351	852618	853783	854724
	SEQ NO	4392	4353	4394	4395	4396	4397	4398	4399	4400	1401	4402	4403	4404	4405	4406	4407	4408
55	SEQ NO	892	893	894	895	696	897	868	669	S 6	9	605	903	904	906	906	907	806

		—								₁	٠ ۲	[-		
5 10	Function	hypothelical protein	hypothetica; protein	kynurenine aminotransferase/glutamine transaminase K		DNA repair helicase	hypothetical prolein	hypothetical protein		resuscitation-promoting factor	cold shock prolein	hypothelical protein	glutamine cyclotransferase			permease		I rRNA(adenosine-2-0-). methy transferase	
15	Matched length (a.a.)	48	84	442		613	764	57		198	61	159	273			477	,	319	
20	Similarity (%)	72.0	0.99	64.9		62.3	65.2	62.0		64.7	75.4	58.5	8 2 9			79.3		51.7	
	Identity (%)	0.99	61.0	33.5		30.7	36.1	44.0		39.4	42.6	28.3	41.8			43.6		27.9	
52 Table 1 (continued)	is gene	rum Nigg	oriae	(Rat)		erevislae AD25	oer culos is	erculosis		s rpf	сѕрВ	ırae	durans			licolor A3(2)		reus IsnR	
So Table 1 (c	Homologous gene	Chlamydia muridarum Nigg TC0129	Chlamydia pneumoriae	Rattus norvegicus (Rat)		Saccharomyces cerevislae S288C YIL 143C RAD25	Mycobacterium tuberculosis H37Rv Rv0862c	Mycobacterium tuberculosis H37Rv Rv0863		Micrococcus luteus rpf	Lactococcus factis cspB	Mycobacterium leprae MLCB57,27c	Deinococcus radiodurans DR0112			Streptomyces coelicolor A3(2) SC6C5.09		Streptomyces azureus IsnR	
35		5 <u></u>	ō	₩.		<u> </u>	ΣI	ΣÏ	-	Σ	تد	22	٥٥			S	\dashv		-
40	db Match	PIR. = 81737	GSP: Y35814	pir.S66270		sp:RA25_YEAST	pir F70815	pir G70815		prf.2420502A	prf.2320271A	gp:MLCB57_11	gp.AE001874_1			6_23625.gg		SP.TSNR_STRAZ	
	ORF (bp)	147	273	1209	639	1671	2199	219	843	597	381	525	774	669	138	1473	912	828	876
45	Termina' (nt)	860078	860473	862752	862753	863396	865119	867571	868830	867803	869318	869379	869918	870721	871660	873210	872016	87404C	874269
50	Initia: (nt)	850224	850745	851544	853391	992598	867317	867353	867788	868399	868938	869903	870691	871419	871523	871738	872927	873213	874944
	SEQ NO (a a.)	4409	4410	4411	4412	4413	4414	4415	44.6	4417	44:8	44.9	4420	4421	4422	4423	4424	4425	4426
55	SEO NO (DNA)	606	910	911	912		914	915	515	917	!	919	920	921	i		924	925	926

	_										 ;			_				 -		· · · · · · · · · · · · · · · · · · ·	
5		Function	prolein	phosphoserine transaminase	acetyl-coenzyme A carboxylase carboxy transferase subunit beta	protein	ie symporter		orotein	thase			homoserine O-acelyltransferase		•		reductase	ynthase	ansporter	ATP dependent DNA helicase	formamidopyrimidine-DNA glycosidase
10			hypothetical protein	phosphaserir	acetyl-coenz carboxy trans	hypothetical protein	sodium/proline symporter		hypothelical protein	fatty-acid synthase			homoserine (glutaredoxin	dihydrofolate reductase	thymidylate synthase	ammonium transporter	ATP depend	formamidop) glycosidase
15		Matched fength (a.a.)	316	374	236	103	549		243	3026			335			62	171	261	202	1715	298
20		Similarity (%)	55 1	52 9	69 5	908	58 1		77.4	83.4			59.7			72.5	62.0	6.98	56.4	68.1	51.0
		Identity (%)	32.6	21.9	36.0	51.5	28.4		49.0	63.1			29.0			43.6	38.0	64.8	32.2	47.4	29.2
25 :	lable 1 (continued)	is gene	ercuiosis	ATCC 21783	2 accD	icolor A3(2)	rescens		erculosis				metX			durans	ium folA	12thyA	12 cysQ	licolor A3(2)	orgatus
	lable 1 (c	Homo.ogous gene	Mycobacterium tuberculosis H37Rv Rv0883c	Bacilus circulans ATCC 21783	Escherichia coli K12 accD	Streptomyces coelicolor A3(2) SCIB.08c	Pseudomonas fluorescens		Mycobacterium tuberculosis H37Rv Rv2525c	Corynebacterium ammoniagenes fas			Leptospira meyeri metX			Deinococcus radiodurans DR2085	Mycobacterium avium fol A	Escherichia coli K12thyA	Escherichia coli K12 cysQ	Streptomyces coelicalar A3(2) SC7C7, 18c	Synechococcus elorgatus naegeli mutM
35 40		db Match	P.YZ11_MYCTU H	pir:S71439 E	p:Accd_Ecoll E	p:SCI8_8	pir.JC2382 F		pir.A70657	ir:S55505			orf.23173358			p.AE002044_8	prf:2408256A	SP.TYSY_ECOLI	sp:cysa_ecoul		sp:FPG_SYNEN
		ОЯР (bp)	933 sp	1128 pi	1473 sp	339 95	:653 pi	916	840 pi	iq 7068	489	186	1047 pr	426	797	237 gr	456 pr	798 St	756 S	4560 gi	768 \$1
45		Termina ¹ (nt)	874951	875985	879642	881985	883647	884541	884549	894578	895191	895593	895596	896719	69268	897727	897979	898434	899253	904602	905382
50		Initial (nt)	875883	877112	88:114	881647	88.995	883726	885388	895672	894703	8954CB	896642	897144	897423	897963	898434	899231	800006	900043	904615
		SEQ NO (a a)	4427	4428	4429	4430	4431	4432	4433	4434	4435	4435	4437	4438	4439	4440	4441	4442	4443	4444	4445
55		SEQ NO.	927	928	929	930	931	932	933	934	935	936	937	938	939	940	941	942	943	944	945

					,			,	,			,	+		,	,			
5	Function	hypothelical protein	alkaline phosphatase	integral membrane transporter		glucose-6-phosphate isomease	hypothetical protein		hypothetical protein	ATP-dependent helicase	ABC transporter	ABC transporter		peplidase	hypothelical protein		5-phosphoribosylg/ycinamide formyltransferase	5'-phosphoribosyl-5-aminoimidazole- 4-carboxamide formyltransferase	citrate lyase (subunit)
15	Matched length (a a)	128	196	403		557	195		7.8	763	885	217		236	434		189	525	217
20	Similarity (%)	86.7	71.9	67.0		77.0	52.3		85.9	73.1	48.6	71.4		73.3	60.8		86.2	87.8	100.0
	Identity (%)	55.5	38.8	33.8		52.4	24.6		29.0	46.1	21.8	43.8		43.6	31.1		64.6	74.5	100.0
25 (panuji	ene	culosis	31363 apl	lor A3(2)		1 pgi	s soln:		:nlos:s	philus	or A3(2)	ą		ulosis	ulosis				micum
8 8 Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0870c	Lactococcus factis MG1363 apl	Streptomyces coelicolor A3(2) SC128.06c		Escherichia coli JM101 pgi	Mycobacterium tuberculos s H37Rv Rv0336		Mycobacterium tuberculos:s H37Rv Rv0948c	Bacilus stearotherrrophilus NCA 1503 pcrA	Streptomyces coelicalor A3(2) SCE25.30	Bacillus subtilis 168 yvrO		Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv0955		Corynebacterlum ammoniagenes purN	Corynebacterium ammoniagenes purH	Corynebacterium glutamicum ATCC 13032 citE
35		* 1		0, 0,	-	Э.	4 .	<u> </u> 			SS	80		ΣI					
40	db Match	pir.F70816	SP. AP. LACLA	pir T36776		pir.NUEC	pir.G70506		sp:YT26_MYCTU	sp.PCRA_BACST	gp:SCE25_30	prf.2420410P		pir.D73716	sp:YT19_MYCTU		gp AB003159_2	gp.AB003159_3	gp:CGL133719_3
	ORF (bp)	408	609	1173	717	1620	1176	381	309	2289	2223 _. gi	999	205	711	1425	228	627	1560	819
45	Terminal (n:)	905796	905792	906559	909328	907759	909521	911223	910855	913514	913477	915699	916368	916970	919352	917827	919958	921526	922412
50	Initial (nt)	905389	160906	907731	909612	903378	910696	910843	911163	911226	915699	915364	916874	917680	917928	919054	919330	919987	921594
	SEQ NO.	4446	4447	4448	4449	4450	4451	4452	4453	4454	4455	4456	4457	4458	4459	4460	4461	4462	4463
55	SEO NO.	946	547	ç49	£49	655	951	552	653	954	955	956	957	928	959	ည္တ	961	962	963

5			affinity (methyl)		0,0	910	S14	L33	1.128	ansporter)	SSOF	1131	n L32		-component		000000	ISOI	rofactor coractor			1011161	:	late cyclo-ligase
10		· Function	repressor of the high-affinity (methyl) ammonium uptake system	hypothelical protein		30S ribosomai protein 3 la	30S ribosomal protein S14	50S ribosomal protein L33	50S ribosornal protein L28	transporter (sulfate transporter)	Zn/Co transport repressor	50S ribosomal protein L31	50S ribosomal protein L32		copper-inducible two-component	regulator	two-component system	proteinase UO precursor	molybdopterin biosynthesis chxi protein (molybdenum cofactor biosynthesis enzyme chx1)		large-conductance	mechanosensilive citatine	hypothetical protein	5-tormyltetrahydrofolate cyclo-ligase
15		Matched length (a.a.)	222	109		\dashv	100	49	77	529	80	82	55				T	406	188		131		210	191
20		Similarity (%)	100.0	100.0		76.1	0.08	83.7	81.8	71.1	77.5	65 4	78.2		,	2.0	90.1	59.9	54.3		77 1		60.0	59.7
		Identity (%)	100.0	100.0		52.2	540	55.1	52.0	34.4	37.5	37.2	0.09		!	48.0	24.4	33.3	27.7		50.4	3	286	25.1
<i>25</i>	Kinuea)	gene	tamicum	tamicum		ca rps18	rpsN	rpmG	rpmB	yvdB	eus zntR	i rpmE	olor A3(2)			gae copR	baeS	2 htrA	a CV cnx1		erculosis	ig.	erculosis	SH
<i>30</i>	Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 amtR	Corynebacterium glutamicum ATCC 13032 yjcC		Cyanophera paradoxa rps18	Escherichia coli K12 rpsN	Escherichia coli K12 rpmG	Escherichia coli K12 rpmB	Bacillus subtilis 168 yvdB	Staphylococcus aureus zntR	Haemophilus ducreyi rpmE	Streptomyces coelicolor A3(2) SCF51A.14			Pseudomonas syrirgae copR	Escherichia coli K12 baeS	Escherichia coli K12 htrA	Arabidopsis thaliana CV cnx1		Mycobacterium tubi	H37Rv Rv0985c mscL	Mycobacterium tuberculosis H37Rv Rv0990	Homo sapiens MTHFS
35 40		db Match	p:CGL133719_2 C	p.CGL133719_1 C		D.RR18 CYAPA	\top				\delta \	3			+	Sp.COPR_PSESM	Sp. BAES_ECOLI		RATH		_	sp.MSCL_WYCIU	pir.A70601	pir.JC4389
		ORF (bp)	999	327 gp	321	. "	10		_	``	-	+-	 -	447		969	1365 sp	1239 pi		40,	$\overline{}$	405	651 p	670 p
45		Terminal (nt)	922396	923138	923981	924159	92,475	Pr. 2700	024001	25530	67676	757776	927922	000000	927339	928812	930248	931648	932290	027487	104766	932570	933060	933733
50		toitial (nt)	923061	923464	923661	024407	767770	9034805	924333	201026	55555	92/242	927752		92//85	928117	928884	930410	931706	00000	932290	932974	933710	934302
		SEQ	+	4465	4466							44/2	4474		4475	2476	4477	447R	4479	18	4480	4481	4482	4483
<i>55</i>		SEO	(Lina) (aa)	965	990	- 1	:	8 8	200	2 3	7	9/2	974		975	976	176	970	979		2	981	982	983

						_													
5		د	phate	hesis protein	ine N-	e protein	ein		e protein	e protein		e protein		elase	elicase				
10		Function	UTP-glucose-1-phosphate uridyly transferase	molybdoplerin biosynthesis protein	ribosomal-protein-alanine N- acetyltransferase	hypothetical membrane protein	cyanate transport protein		hypothetical membrane protein	hypothetical membrane prolein	cyclomallodextrinase	hypothetical membrane protein	hypothelical protein	methionyl-IRNA synthetase	ATP-dependent DNA helicase	hypothetical protein	hypothetical protein		transposase
15		Matched length (a.a.)	296	390	193	367	380		137	225	444	488	272	615	741 ./	210	363 h		94
20		Similarity (%)	689	62 5	549	548	62.4	 	9.09	59.6	536	75.2	78.3	66.7	49.0	53.3	59.0		59.6
		Identity (%)	42.2	31.8	29 0	30.3	26.6		32.1	25.3	26.8	43.0	54.0	33.8	26.2	27.6	30.0		33.0
<i>25</i>	onlinued)	s gene	pestris	ovorans	2 rimJ	erculosis	2 cynX		nzae Rd	erculosis	5-244	srculosis	erculosis	n Delta H	C	n Delta H	yxaG		ε
	Table 1 (continued)	Homo:ogous gene	Xanthomonas campestris	Arthrobacter nicotinovorans mceA	Escherichia coli K12 rimJ	Mycobacterium tuberculosis H37Rv Rv0996	Escherichia coli K12 cynX		Haemophilus influenzae Rd H11602	Mycobacterium tuberculos s H37Rv Rv0093c	Bacillus sphaericus ⊑-244 CDase	Mycobacterium tuberculosis H37Rv	Mycobacterium tuberculosis H37Rv Rv1003	Methanobacterium thermoautotrophicum Delta H MTH587 metG	Escherichia coli recQ	Methanobacterium thermoautotrophicum Delta H MTH796	Bacillus subtilis 168 yxaG		Enterococcus faecium
35	}		×	₹ E		ΣI						ΣÏ			ŭ	ž Š Z	_		
40		do Match	pir.JC4985	prf.2403296B	sp:RIMJ_ECOL:	pir.G73601	SP.CYNX_ECOLI		sp:YG02_HAEIN	sp:Y05C_MYCTU	sp.CDAS_BACSH	pir.E70602	sp Y19J_MYCTU	SP:SYM_METTH	prf. 1336383A	pir. B69206	sp:YXAG_BACSU		gp.AF029727_1
	j-	ORF (bp)	897	1257	099	1020	1200	1419	405	714	1167	1560	825	1830	2049	633	1158	531	294
45		Terminal (nt)	935319	9366C7	937274	938401	939626	937799	940090	940754	941925	942381	944833	948669	950939	950928	951934	953043	954266
50		In:tia: (nt)	934423	935351	936615	937382	938427	939217	939686	943041	940759	943940	944009	946840	948791	951460	952991	953573	953973
	- :-	(a.a.)	4484	4485	4486	4487	4468	4489	4490	4491	4492	4493	4494	4495	4496	4497	4458	4499	4500
55	7	N ON O	984	985	986	987	988	989	C66	991	265	993	994	995	966	397	986	666	80

5		Function	transposase	transposase subunit		D-lactate dehydrogenase	site-specific DNA-methyltransferase			transposase	transposase	transcriptional regulator	cadmium resistance protein		hypothetical protein	hypothetical protein	dimethyladenosine transferase	isopentenyl monophosphate kinase		ABC transporter	pyridoxine kinase	hypothetical protein	hypothetical protein
15		Matched length (a.a.)	139	112		565	234	107		94	139	91	205		263	362	265	315		478	242	159	108
20		Similarity (%)	67.6	88.4		75.6	9 63	0.20		59.6	9.79	84.6	8.99		7.07	63.5	65.3	67.0		85.8	67.4	58.5	78.7
		Identity (%)	41.7	73.2		48.4	9 5	30.8		33.0	41.7	62.6	31.7		46.4	34.8	34.3	42.5		65.5	40.1	27.0	45.4
25	ntinued)	gene		to to A			iae OK8		,	ш	2	erculos·s	reus cadD		erculosis	erculosis	2 ksgA	erculosis		s erythraea	Z pdxK	erculosis	icolor A3(2)
30 ·	Table 1 (continued)	Homologous gene	Fe-herichia coli K12	Court acterium financ tun	SIEVIDACIETURI III.E	Alta indicate and alta	Klebsiella pneumoniae OK8	kpnlM		Enterococcus faecium	Escherichia coli K12	Mycobacterium tuberculos:s H37Rv Rv1994c	Staphylococcus aureus cadD		Mycobacterium tuberculosis H37Rv Rv1008	Mycobacterium tuberculosis H37Rv Rv1009 rpf	Escherichia coli K12 ksgA	Mycobacterium tuberculosis H37Rv Rv1011		Saccharopolyspora erythraea ertX	Escherichia coli K12 pdxK	Mycobacterium tuberculosis 1137Rv :RV2874	Streptomyces coelicolor A3(2) SCF1.02
40		db Match		1.	gp.AF.052035	Ť	- <u>†</u>	SP.MTK1_KLEPN		qp AF329727_1	-) (C:U	pri 2514367A		pir C73603	pir.D73603	SP.KS3A ECOLI	pir F70603		pir.S47441	SP PDXK ECOLI	Sp YX05_MYCTU	gp:SCF1_2
		ORF (bp)	1	\neg			1713	840 s	219	294	•	357 \$	621	342	;	1071	879	1	642	1833	792	1	321
45		Terminal (nt)	25,130	954733	955354	956774	955686	957844	959185	960374	960961	961653	962249	961321	963639	964934	965852	966784	965950	968660	969458	969461	970349
50		Iritial (nt)		9542//	954941	955911	957399	959683	959403	963081	960385	961297	961679	061662	962809	963864	964974	965852	965591	966828	968667		970029
		SEO	÷	_		_	4504	4505	4506		4508	4509	45.10	4511	4512	4513	45.4	4515	4516	4517	4518		4520
55			- 	_			1004	1005	1006		1		1010	_		1013	1714	1315	1016	1017	101	1019	1020

	ſ		T-	\top			\neg			<u> </u>			-	_ <u>.</u>					· · · · ·
5		Function	hypothetical protein	regulator	hypothetical protein	enoyl-CoA hydratase				major secreted protein PS1 protein precursor	transcriptional regulator (tetR	membrane transport protein	S-adenosylmethionine:2- demethylmenaquinone	meinyilransierase	hypothetical protein	hypothetical protein		Deblide Chain-release factor 1	amide-urea transport protein
15		Matched length (a.a.)	107	261	276					440	100	802	157 d		121 h	482 h	-	546 0	1
20		Similarity (%)	69.2	1.88	59.1	70.9				56.8	70.0	70.0	75.8		63.6	48.3		68.0	72.8
		Identity (%)	35.5	64.8	27.2	35.6				7.72	44.0	42.6	38.2		29.8	24.9	-	39.2	42.8
<i>25</i>	ned)	o)	A3(2)	43(2)		Sis				TCC	3(2)	3(2)	10		A1953	<u>s</u>	-		Snc
30 ÷	(continued)	Homologous gene	Streptomyces coelicolor A3(2) SCF1 02	Streptomyces coelicolor A3(2) SCJ1 15	Bacil'us subtilis 168 yxeH	Mycobacterium tuberculosis H37Rv echA9				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Streptomyces coelicolor A3(2) SCF56.06	Streptomyces coelicolor A3(2) SCE97, 17c	Haemophilus influenzae Rd H10508 menG		Neisseria meningitidis NMA1953	Mycobacterium tuberculosis H37Rv Rv1128c		Escherichia coli K12 prfC	Methylophilus methylotrophus fmdD
40		db Match	gp:SCF1_2	gp:SCJ1_15	SP:YXEH_BACSU	pir.E7C893				sp:CSP1_CORGL ((gp:SCF56_6	gp:SCE87_17 S	SP:MENG_HAEIN H		gp:NMA622491_21	pir.A70539 H.		pir:159305 Es	prf.2405311A Me
45		<u>a</u>	321	960	792	:017	654	777	1212	1385	579	2373	498	999	381	1551	936	1547	1269
	Termina	(c)	970738	971823	972244	974155	973304	974962	974965	977734	977800	978368	981493	982287	982294	984650	985845	984864	988007
50	Laino	(uf)	370418	370864	973035	4524 973139	973957	974186	976176	976349	978379	980740	980993	981622	982674	983100	984910	986510	986739
<u>برسر</u>	-	O 6	4521		4523	4524	4525	4526	4527	4528	4529	4530	4531	4532	4533	4534	4535	4536	4537
55	SEO	0 (V)	1021	1022	1023	1024	1025	1026	1027	1029	1029	1030		1032	1033	1034	- —	1036	1037

	_																	1	-
5		Function	amide-urea transport protein	amide-urea transport protein	high-affinily branched-chain amino acid transport ATP-binding protein	high-affinity branched-chain amino acid transport ATP-binding protein	peptidyl-tRNA hydrolase	2-nitropropane dioxygenase	giyceraldehyde. 3-phosphate dehydrogenase	polypeptides predicted to be useful antigens for vaccines and diagnostics	peptidyl-tRNA hydrolase	50S ribosomal protein L25	lactoylglutathione lyase	DNA alkylation repair enzyme	ribose-phosphale pyrophosphokinase	UDP-N-acetylglucosamine pyrophosphorylase		sufl protein precursor	nodulation ATP-binding protein I
15		Matched length (a.a.)	77	234	253	236	187	361	342	51	174	194	143	208	3.6	452		909	310
20		Similarity (%)	61.0	68.0	0.07	69.1	902	540	72.8	61.0	63 2	65.0	546	62.5	79.1	71.9		61.7	64.8
		Identity (%)	40.8	34.6	37.9	35.2	39.0	25.2	39.5	54.0	38.5	47.0	28.7	38.9	44.0	42.0		30.8	35.8
25	intinued)	gene	ylotrophus	Aotrophus	ginosa PAO	ginosa PAO	2 pth	3 0895	deg snvinjo	s	2 pth	ercu!osis	ırium D21	CC 10987		٥		2 sufl	lpou
30	Table 1 (continued)	Homo'ogous gene	Methylophilus methylotrophus fmdE	Methylophilus methylotrophus fmdF	Pseudomoras aerucinosa PAO braf	Pseudomonas aeruçinosa PAO braG	Escherichia coli K12 pth	Williopsis mrakii IFO 0895	Streptomyces roseofulvus gap	Neisseria meningitid s	Escherichia coli K12 pth	Mycobacterium tuberculosis H37Rv rplY	Salmonella typhimurium D21 gloA	Bacillus cereus ATCC 10987 alkD	Bacillus subtilis prs	Baci'lus subtilis gcaD		Escherichia coli K12 sufl	Rhizobium sp. N33 nodl
<i>35</i>		db Match	prf.24063118 In	pri.2406311C fm	P. BRAF_PSEAE bu	P.BRAG_PSEAE b	SP PTH ECOLI	<u> </u>		3SP-Y75094 N	Sp.PTH_ECOLI E		Sp.LGUL_SALTY 9	ori.25.6401BW a	SP.KPRS_BACCL B	oir. S66080 B		Sp.Sufl_ECOLI E	П
		ORF (bp)	882 prf	1077 prf	726 sp	ds 669	612 sp	1023 Sp	ds 290:	369 G8	531 sp	600 pir	429 sp	524 pr	975 sp	1455 pi	1221	1533 sp	918 Sr
45		Terminal (nt)	988904	086686	990705	991414	991417	993080	 	994106	994845	995527	996830	996833	997466	998455	1000016	1302864	1203930
50		Initial (nt)	988023	938904	086666	990716	992028	932058	993549	994474	995375	996126	996402	997456	998440	606666	10C1242	1001332	1003013
		SEQ NO (a.a.)	4538	4539	4540	4541	4542	4543	4544	4545	4546	4547	4548	4549	4550	4551	4552	4553	
55		SEQ NO (DNA)	1038	1039	1040	1041	1042	1043	1044	1045	1046	1047	1048	1049	1050	1051	1052	1053	1054

	Similarity Matched Function (%) (a.a.)	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	multidrug resistance-like ATP-62.7 632 binding protein, ABC-type transport protein	81.9 574 ABC transporter	100.0 368 hypothetical membrane protein		7.4 183 hypothetical protein			3.9 241 IpqU protein	enolase (2-phosphoglycerate 86 0 422 dehydratase)(2-phospho-D- glycerate hydro-lyase)	58.0 41 hypothelical protein	55.0 191 hypothelical protein	7.8 153 hypothelical protein	55 0 329 guanosine pentaphosphalase or exopolyphosphalase		64.7 314 (threonine dehydralase	
}	Identity Similar (%)	48.0 69	31.3 62	50.2 81	100.0	_	33.4 57			46.5 68	64.5 86	68.0 56	31.9 55	59.5	25.2 58	_	30.3 6	
Table 1 (continued)	Homologous gene	Neisseria gonorrhoeae	Escherichia coli mdlB	Mycobacterium tuberculosis H37Rv Rv1273c	Corynebacterium glutamicum ATCC 13032 orf3		Bacillus subtilis yabN			Mycobacterium tuberculosis H37Rv Rv1022 IpqU	Bacillus subtilis eno	Aeropyrum pernix K1 APE2459	Mycobacterium tuberculosis H37Rv Rv1024	Mycobacterium tuberculosis H37Rv Rv1025	Escherichia coli gpp.\		Escherichia coli tdc6	
	db Match	GS ² ,Y75301	sp:MDLB_ECOLI	sp.YC73_MYCTU	sp YLI3_CORGL		SP. YABN_BACSU			pir.A70623	sp.ENO_BACSU	PIR:872477	pir:C70623	pir:D70623	sp:GP2A_ECOLI		sp THD2_ECOLI	
	ORF (bp)	228	1968	1731	2382	297	585	426	378	786	.275	144	540	546	963	984	930	195
	Terminal (nt)	1021078	1022699	1024566	1026505	103218	1032780	1032760	1333269	1034739	1036223	1036016	1036855	1037445	1038410	1036498	1038721	1039977
	Initial (nt)	1021305	1024666	1025396	1028886	1031885	1032196	1033185	1033646	1033954	1034949	1036159	4587 1036316	1036900	1037448	1037461	1039650	1039783
	SEQ NO	4576	4577	4578	4579	4580	4581	4582	4583	4584	4585	4585	4587	4588	4589	4590	4591	45.02
	SEQ		1077	1078	1079	1090		1082	1083	1084	1085	1086	1067	1088	1089	1090	1091	1092

	f									, .												
5		_			of L-rhamnose				n factor				ptulosonate-7-		undecaprenyl lase					ransferase	ynthase	
10		Function		hypothetical protein	transcription activator of Lirhamnose operon	hypothetical protein		hypothetical protein	transcr ption elongation factor	hypothetical protein	lincomycin-production		3-deoxy-D-arabino-heptulosonate-7- phosphale synthase		hypothetical protein or undecaprenyl pyrophosphale synthetase	hypothetical protein			pantothenate kinase	serine hydroxymethyl transferase	p-aminobenzoic acid synthase	
15		Matched length (a.a.)		56	242	282		140	143	140	300		367		97	28			308	434	969	
20		Similarity (%)		74.1	55.8	1.08		57.1	60.1	72.1	56.3		99.5		97.3	100.C			6'62	100.0	70.1	
		Identity (%)		46.3	24.8	57.8		30.0	35.0	34.3	31.7		99.2		96.0	100.0			53.9	99.5	47.6	
25 6	חבח)	æ		SB8		osis		A3(2)		sis	is ImbE		icum		icum	icum				J-233	pS	
30 to July 1	ומחוברו (בחווווו	Homologous gene		Thermotoga maritima MSB8	Escherichia coli rhaR	Mycobacterium tuberculosis H37Rv Rv1072		Streptomyces coelicolor A3(2) SCF55, 39	Escherichia coli greA	Mycobacterium tuberculosis H37Rv Rv1081c	Streptomyces lincolnensis ImbE		Corynebacterium glutamicum aroG		Corynebaclerium glutamicum CCRC18310	Corynebacterium glutamicum (Brevibacterium flavcm)			Escherichia coli coaA	Brevibacterium flavum MJ-233 glyA	Streptomyces griseus pabS	
35				F		ΣÏ		S		ΣÏ	Σ									<u> </u>		
40		db Match		pir. 972287	SP RHAR_ECOLI	pir:=7C893		gp.SCF55_39	sp.GREA_ECOLI	pir:G70894	pir.S44952		sp:AROG_CORGL		sp.YARF_CORGL	SP:YARF_CORGL			sp.COAA_ECOLI	gsp:R€7745	Sp. PABS_STRGR	
	 - -	ORF (bp)	330	189	663	816	387	450	522	483	873	318	1098	633	675	174	519	318	936	1302	1860	723
45		Terminal (nt)	1040325	1040682	1041917	1042842	1042850	1043298	1043/74	1644477	1046930	1046390	1C47707	1046820	1048501	1048529	1049043	1049068	1049427	1051925	1053880	1054602
50		In.tial (nt)	1039595	1040494	1040925	1042027	1043235	.043747	.044295	.044959	.045158	-046073	.045610	.047452	.047827	.048356	.048525	1049385	1053362	.050624	.0250.	4612 053880
	Ĺ	SEQ NO (a a)	4593	4594	4595	4596	4597	4598	4599	091	14601	4602	4603	1604	4605	4605	4607	4608	4609	4610	4611	
55		SEQ NO (DNA)	1093	1094	1095	1095	1097	1098	1099	1:00	1101	1102	1103	1104	1105	1106	1107	1108	1109	1110	=	1112

	_						<u> </u>	1	_	Т		$\overline{}$	-1-		1	-			_	<u>-</u> -				\neg	\neg
5		Function			phosphinothricin resistance protin	hypothetical protein			nypometical protein	lactam utilization protein	hypothetical membrane protein			transcriptional regulator		furnarate hydratase precursor	NADH-dependent FMN oxydoreductase			reductase	dibenzothiophene desulfurization enzyme A	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)	dibenzothiophene desulfurization enzyme C (DBT sulfur dioxygenase)		
15	-	P -	-				+	\top	1			\dashv			-			\dashv	\dashv	İ					\dashv
		Matched length (a.a.)			165	300			225	276	165			204		456	159			184	443	372	391		
20	-	Similarity (%)			58.8	59.0			57.8	52.2	81.2			63.2		79.4	65 4			810	67.7	51.3	61.6		
		Identity (%)			30.3	30.3			37.8	30.8	40.6			26.0		52.0	32.7			55.4	39 '	25.8	28.9		
<i>25</i>	6															пH				3(2)	Υ×c	ပ္တ	υ S O		
·	lable 1 (conlinued)	Homologous gene			Alcalinenes faecalis otcR	Echerichia coli vhak	6-1		Escherichia coli ybgJ	Emericella nidulans lamB	Bacillus subtilis ycsH			Bacillus subtilis ydhC		Rattus norvegicus (Rat) fumH	Rhodococcus erythropolis IGTS8 dszD			Streptomyces coelicator A3(2) StAH10.16	Rhodococcus sp. IGTS8 soxA	Rhodococcus sp. IGTS8 soxC	Rhodococcus sp. IGTS8 soxC		
35 40		do Match			5.40.504 1	- 10	1		sp:Y9GJ_ECOU	SP LAMB_EMENI	Sp:YCSH_BACSU			SP. YDHC_BACSU		Sp.FUMH_RAT				gp:SCAH10_16	sp.SOXA_RHOSO	sp.SOXC_RHOSO	sp.SOXC_RHOSO		
		ORF (bp)	864	5	-	\neg	6/0	1056	699	756	591	572	603	681	.278	1419	489	261	447	564	1488	1080	1197	780	90
45	:	Terminal (nt)	1055722	105 46 40	1024040	2000	1030322	1058628	1057200	1057843	1058624	1259889	1059962	1060792	1062146	1962211	1064424	1064478	1064754	1065304	1067570	1068649	1069845	1068913	1069119
50		Initial (nt)	1054859		+	-	-	1057573	1057868	1058598	1059214	1059218	1059360	1060112	1060869	1063629	4625 1063936	1064738	1065200	1065867	1066083	4631 1067570	1068649	1069692	1069838
		SEO NO B	 -		7 07		0107	4617	4613	4619	4620	4621	4622	4623	4624		4625	4627	4628	4629	4630	4631	4632	4633	4634
55		SEQ NO (DNA)			7 1		0	1117	1118	1119	1120	1121	1122	+	1124		+	1127	1128	1129	1130	133	1132	1133	1134

5	Function	dent aliphatic oxygenase	lism	ıtein	stein		efflux protein	exodeoxyribonuclease small subunit	exodeoxyribonuclease large subunit	ıce	polypeptides predicted to be useful antigens for vaccines and diagnostics				ent proline	major secreted protein PS1 protein precursor	lein.	ated protein	noyll ansferase	lein
10		FMNH2-dependent aliphatic sulfonale monooxygenase	glycerol metabolism	hypothetical protein	hypothetical protein		transmembrane efflux protein	exodeoxyribonu	exodeoxyribonu	penicillin tolerance	polypeptides predicted to antigens for vaccines and diagnostics		permease		sodium-dependent proline transporter	major secreted r	GTP-binding protein	virulence-associated protein	ornithine carbamoyll ansferase	hypothetical protein
15	Matched length (aa)	397	325	211	227	<u> </u> 	82	62	466	311	131		338		552	412	361	75	30.	143
20	Similarity (%)	73.1	75.7	56.4	1.99	!	78.1	67.7	55.6	78.6	47.0		63.9		61.4	0.09	9.88	0.08	58.8	6 69
25	Identity (%)	45.3	44.3	27.5	31.3	! ! !	36.6	40.3	30.0	50.2	33.0		26.3		30.3	29.9	70.1	57.3	29.6	39.2
able 1 (continued)	Fomologous gene	Escherichia coli K12 ssuD	Escherichia coʻi K12 glpX	Myccbacterium tuberculosis H37Rv Rv1100	Bacillus subtilis ywmD		Streptomyces coelicolor A3(2) SCH24.37	Escherichia coli K12 MG1655 xseB	Escherichia colı K12 MG1655 xseA	Escherichia coli K12 lytB	Neisseria gonorrhoeae		Escherichia coli K12 perM		Rattus norvegicus (Rat) SLC6A7 ntpR	Corynebacterium glutamicum (Brev:bacterium f:avum) ATCC 17965 csp1	Bacillus subtilis yyaF	Dichelobacter nodosus intA	Pseudomonas aeruginosa argF	Bacillus subtilis 168 ykkB
35			Esche	Mycet H37R	Bacille		Streptomy SCH24.37	Esche xseB	Esche xseA	Esche	Neisse	 	Eschel		Rattus	Corynebact (Brev:bacte 17965 csp1	Bacillu	Dichel	Pseud	Bacillu
40	db Match		Sp. GLPX_ECOLI	pir.B70897	pir:H70062		gp:SCH24_37	sp:EX7S_ECOLI	Sp.EX7L_ECOLI	sp:LYTB_ECOLI	GSP: Y75421		SP. FERM_ECOLI		sp:NTPR_RAT	sp.CSP1_CORGL	sp:YYAF_BACSU	Sp. VAPI_BACNO	sp.OTCA_PSEAE	sp.YKKB_BACSU
45	1 ORF (bp)	1176	696	— — i	1902	285	225	243	1251	975	429	828	1320	180	1737	1233	1083	297	822	501
	Terminal (nt)	1071134	1071479	1073245	1073340	1075641	1075329	1075667	1075933	1078271	1077306	1078319	1079221	1080786	1380972	1082951	1085462	1086087	1086917	1087044
50	In tia! (nt)	1069959	1072441	1072676	1075241	1075357	1075553	1075909	1077183	1077297	1077734	1079145	1080540	.080965	.082708	1084183	1084380	4651 1085791	1086095	1087544
	SEO NO (a a)	4535	4636	4637	1638	4639	4640	4641	4642	4643	4644	4645	4645	4647	4649	4649	4650	4651	4652	4653
55	SEQ NO (DNA)	1135	1.36	1:37	1138	1139	. 140	141	1142	1143	1144	1145	1146	1147	1148	1149	1150	1151	1152	1153

	Function	9-cis retinol dehydrogenase or oxidoreductase	transposase/integrase (IS110)	hypothetical membrane protein	N-acetylglucosaminyltransferase			transposase (insertion sequence IS31831)	transposase	Iransposase				oxidoreductase or morpyine-6- dehydrogenase (naloxone reductase)	4-carboxymuconolactone decarboxlyase			frenolicin gene cluster protein involved in frenolicin blosynthetic
	Matched length (a.a.)	198	396	1153	259			97	125	48				264	108			146
	Similarity (%)	60.6	73.0	52.2	47.1			93.8	94.4	95.8				65.3	63.9			66.4
	Identity (%)	33.8	42.2	23 0	22.8			82.5	79.2	87.5				37.5	33.3			34.9
Table 1 (conlinued)	Homologous gene	Mus musculus RDH4	Streptomyces coelicolor SC3C8.10	Escherichia coli K12 yegE	Rhizobium meliloti nodC			Corynebacterium glutamicum ATCC 31831	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC *3869				Pseudomonas putida M10 norA	Acinetobacter calcoaceticus de4c			Streptomyces roseo'ulvus frnS
	db Match	gp:AF013289_1	sp.YIS1_STRCO	sp.YEGE_ECOLI	Sp.NCDC_RHIME			pir.S43613	pir.JC4742	pir.JC4742				sp:MORA_PSEPU	sp.DC4C_ACICA			gp.AF056302_19
	ORF (tp)	630	1206	3042	765	219	333	291	375	144	141	366	498	843	321	663	195	654
	Terminal (n:)	1087664	1088535	1093216	1094693	1094911	1095384	1095387	1095719	1096188	1096331	1096746	1097726	1098592	1098929	1099750	1099015	1099768 1099115
	Initial (nt)	1088293	1089740	1090175	1093929	1094693	1095052	4660 1095677	1096093	1096331	1096471	1097111	1097229	1097753	1098609	1099088	1099209	1099768
	SEO NO.	4654	4655	4656	4657	4658	4659	4660	46E1	1662	4663	4664	4665	4666	466?	4658	4659	4670
	SEC NO (DNA)	+	1155	1156	T .	1158	1159	1160	116:	1162	1163	1164	1165	1166	1167	1168	1169	1170

		_	_		,					,					,		
Function	biotin carboxylase						hypothetical protein	magnesium chelatase subunit	2,3-PDG dependent phosphoglycerate mutase	hypothetical protein	carboxyphosphonoenolpyruvate phosphonomulase	tyrosin resistance ATP-binding protein	hypothetical protein	alkylphosphonate uptake protein	transcriptional regulator	multi-drug resistance efflux pump	transposase (insertion sequence IS31831)
Matched length (a.a.)	563				 		655	329	160	262	248	593	136	111	134	367	436
Similarity (%)	78.5						80.3	52.6	62.5	60.7	59.3	54.1	6.99	82.0	62.7	59.4	93.8
Identity (%)	48.1						57.9	27.7	33.8	38.2	29.4	31.7	29.4	55.0	32.1	22.6	99.5
Homologous gene	Synechococcus sp. PCC 7942 accC						Mycobacterium tuberculosis H37Rv Rv0959	Rhodobacter sphaeroides ATCC 17023 bchl	Amycolatopsis methanolica pgm	Mycobacterium tuberculosis H37Rv Rv2133c	Streptomyces hygroscopicus SF 1293 BcpA	Streptomyces fradiae tIrC	Mycobacterium tuberculosis H37Rv Rv2923c	Escherichia coli K12 MG1655 phnA	Bacillus sublilis 168 yxaD	Streptococcus pneumoniae pmrA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 31831
db Match	gp.SPU59234_3						SP.YT15_MYCTU	PSCHI_RHD8.4	gp:AM:J73808_1	pir:A70577	gp:STMBCPA_1	SO.TLRC_STRFR	sp:Y06C_MYCTU	Sp.PHNA_ECOL!	sp:YXAD_BACSU	gp:SPN7367_1	pir.S43613
ORF (bp)	1737	597	498	345	153	639	1956	1296	642	705	762	1641	396	342	474	1218	1308
Terminal (nt)	1101653	1102639	1103192	1103524	1104103	1105561	1104103	1106086	1108201	1108905	1109754	1111432	1111425	1112230	1112484	1114319	1115793
Initial (nt)	1099917	1102043	1102695	1103180	1103951	1104923	1106058	1107391	1107560	1108201	1108993	1109792	11:1820	1111899	1112957	1113102	1114486
SEQ NO (a.a.)	4571	4672	4673	4574	4975	4676	4677	4678	4679	4680	4681	4682	4683	4634	4685	4586	4687
SEQ NO (DIMA)	11711	1172	1173	1174	1175	1176	1177	1178	1179	1180	1161	1182	1183	1184	1185	1166	1187
	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity length (a.a.)	SEQ Initial Terminal (nt) ORF db Match Homologous gene Identity Similarity Matched length (a.a.) (nt) (bp) (bp) <td< td=""><td>SEQ Initial (a.a.) Terminal (bp) ORF (bp) db Match (bp) Homologous gene (ca.a.) Identity (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (</td><td>SEQ Initial Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Matched (%) Matched (%) 4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 biotin carboxy 4673 1102693 1103192 498 1102693 1102693 1103192 498</td><td>SEQ Initial NO. Terminal (nt) (nt) (nt) (bp) db Match Homologous gene (%) (%) (%) (%) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt</td><td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) NO (nt) (nt) (pp) (pp)</td><td>SEQ Initial NO. (i.) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) A571 (ii) (iii) (iii) (bp) Synechococcus sp. PCC 7942 48.1 78.5 563 biotin carboxy 4672 1102693 1102639 597 accC 563 biotin carboxy 4673 1102695 1103192 498 Biotin carboxy 4674 1103180 1104103 153 Biotin carboxy 4675 1104923 1105561 639 Biotin carboxy Biotin carboxy Biotin carboxy</td><td>SEQ hO (a.1) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched</td><td>SEO Initial (nt) Initial (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) <t< td=""><td>SEQ NO. (n1) Initial (n1) Terminal (n1) ORF (n1) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td><td>SEQ Initial Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td><td>SEQ Initial Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) A571 Ing9917 1101653 1737 gp. SPU59234_3 Synechococcus sp. PCC 7942 48. 1 78. 5 563 4672 1102695 1101653 1737 gp. SPU59234_3 Synechococcus sp. PCC 7942 48. 1 78. 5 563 4673 1102695 1103192 498 C. C. C. C. C. C. C. C. C. C. C. C. C. C</td><td>SEQ (n;) Initial (n;) Terminal (n;) ORF (n) db Match (p) Homologous gene (p) Identity (p) Similarity (p) Matched (p) 4672 1099917 1101663 1737 gp.SPU59234_3 Synechococus sp PCC 7942 48.1 78.5 563 4672 1102093 1102639 597 A. 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0<!--</td--><td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td> SEO Initial Terrinal ORF db Match Homologous gene Identity Similarity Initial Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity</td><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEO (nt) Initial (nt) Temmal (oRF (nt)) db Match (nt) Homologous gene (nt) Identity (%) Similarity (m) Matched (nt) 4671 (10204) 1102630 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48 t 7 78.5 563 4672 (10204) 1102691 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48 t 7 78.5 563 4673 (10204) 1102692 498 Sp. Charles Sp. Charles Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.</td></td></t<></td></td<>	SEQ Initial (a.a.) Terminal (bp) ORF (bp) db Match (bp) Homologous gene (ca.a.) Identity (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (ca.a.) Matched (SEQ Initial Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Matched (%) Matched (%) 4671 1099917 1101653 1737 gp:SPU59234_3 Synechococcus sp. PCC 7942 48.1 78.5 563 biotin carboxy 4673 1102693 1103192 498 1102693 1102693 1103192 498	SEQ Initial NO. Terminal (nt) (nt) (nt) (bp) db Match Homologous gene (%) (%) (%) (%) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) NO (nt) (nt) (pp) (pp)	SEQ Initial NO. (i.) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) A571 (ii) (iii) (iii) (bp) Synechococcus sp. PCC 7942 48.1 78.5 563 biotin carboxy 4672 1102693 1102639 597 accC 563 biotin carboxy 4673 1102695 1103192 498 Biotin carboxy 4674 1103180 1104103 153 Biotin carboxy 4675 1104923 1105561 639 Biotin carboxy Biotin carboxy Biotin carboxy	SEQ hO (a.1) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Similarity (%) Matched (%) Matched	SEO Initial (nt) Initial (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity length (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) <t< td=""><td>SEQ NO. (n1) Initial (n1) Terminal (n1) ORF (n1) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td><td>SEQ Initial Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)</td><td>SEQ Initial Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) A571 Ing9917 1101653 1737 gp. SPU59234_3 Synechococcus sp. PCC 7942 48. 1 78. 5 563 4672 1102695 1101653 1737 gp. SPU59234_3 Synechococcus sp. PCC 7942 48. 1 78. 5 563 4673 1102695 1103192 498 C. C. C. C. C. C. C. C. C. C. C. C. C. C</td><td>SEQ (n;) Initial (n;) Terminal (n;) ORF (n) db Match (p) Homologous gene (p) Identity (p) Similarity (p) Matched (p) 4672 1099917 1101663 1737 gp.SPU59234_3 Synechococus sp PCC 7942 48.1 78.5 563 4672 1102093 1102639 597 A. 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0<!--</td--><td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td> SEO Initial Terrinal ORF db Match Homologous gene Identity Similarity Initial Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity</td><td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td><td>SEO (nt) Initial (nt) Temmal (oRF (nt)) db Match (nt) Homologous gene (nt) Identity (%) Similarity (m) Matched (nt) 4671 (10204) 1102630 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48 t 7 78.5 563 4672 (10204) 1102691 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48 t 7 78.5 563 4673 (10204) 1102692 498 Sp. Charles Sp. Charles Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.</td></td></t<>	SEQ NO. (n1) Initial (n1) Terminal (n1) ORF (n1) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ Initial Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) Matched (%)	SEQ Initial Terminal (nt) ORF (bp) db Match Homologous gene Identity (%) Similarity (%) Matched (%) A571 Ing9917 1101653 1737 gp. SPU59234_3 Synechococcus sp. PCC 7942 48. 1 78. 5 563 4672 1102695 1101653 1737 gp. SPU59234_3 Synechococcus sp. PCC 7942 48. 1 78. 5 563 4673 1102695 1103192 498 C. C. C. C. C. C. C. C. C. C. C. C. C. C	SEQ (n;) Initial (n;) Terminal (n;) ORF (n) db Match (p) Homologous gene (p) Identity (p) Similarity (p) Matched (p) 4672 1099917 1101663 1737 gp.SPU59234_3 Synechococus sp PCC 7942 48.1 78.5 563 4672 1102093 1102639 597 A. 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 </td <td>SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td> SEO Initial Terrinal ORF db Match Homologous gene Identity Similarity Initial Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity</td> <td>SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)</td> <td>SEO (nt) Initial (nt) Temmal (oRF (nt)) db Match (nt) Homologous gene (nt) Identity (%) Similarity (m) Matched (nt) 4671 (10204) 1102630 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48 t 7 78.5 563 4672 (10204) 1102691 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48 t 7 78.5 563 4673 (10204) 1102692 498 Sp. Charles Sp. Charles Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.</td>	SEO (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO Initial Terrinal ORF db Match Homologous gene Identity Similarity Initial Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity Identity	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEO (nt) Initial (nt) Temmal (oRF (nt)) db Match (nt) Homologous gene (nt) Identity (%) Similarity (m) Matched (nt) 4671 (10204) 1102630 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48 t 7 78.5 563 4672 (10204) 1102691 1737 gp.SPU59234_3 Synechococcus sp. PCC 7942 48 t 7 78.5 563 4673 (10204) 1102692 498 Sp. Charles Sp. Charles Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.

5	Function	cysteine desulphurase	nicolinate nucleolide pyrophosphorylase	quinolinate synthetase A	DNA hydrolase	hypothetical membrane protein	hypothetical protein	hypothetical protein	lipoate-prote n ligase A	alkylphosphonale uptake protein and C-P lyase activity	transmembrane transport protein or 4-hydroxybenzoate transporter	p-hydroxybenzoate hydroxylase (4- hydroxybenzoate 3- monoxygenase)	hypothetical membrane protein	ABC transporter ATP-binding protein	hypothetical membrane protein		Ca2+/H+ anliporter ChaA	hypothetical protein	hypothetical membrane protein
15	Matched length (a.a.)	376 cy	283 nic	361 qu	235 Dr	192 hy	214 hy	108 hy	216 lip	148 all	420 tra	395 hy	191 hy		250 h	\top	339 C		221
20	Similarity (%)	73.4	68.9	77.6	6.09	54.7	66.4	74.1	2 09	60.8	64.3	68.6	9 69	47.6	61.6		0.69	57.6	61.1
	Identity (%)	43.9	42.1	49.3	37.0	23.4	36.0	41.7	30.1	29.7	28.9	40.8	36.7	24.8	25.6		33.3	28.4	27.6
25 (panuji	jene	ac:ens e gene	cutosis		lor	rans R1	olor	MG1655	IpIA	phnB	pcaK	inosa phhy	ykoE		ykoC		A	Jrsay	L
& Table 1 (continued)	Homologous gene	Ruminococcus flavefaciens cysteine desulphurase gene	Mycobacterium tuberculosis	Bacillus subtilis nadA	Streptomyces coelicolor SC5B8.07	Deinococcus radiodurans R1 DR1112	Streptomyces coelicolor SC3A7.08	Escherichia coli K12 MG1655 ybdF	Escherichia coli K12 IplA	Escherichia coli K12 phnB	Pseudoinenas putida peaK	Pseudomonas aeruginosa phhy	Bacillus subtilis 168 ykoE	Escherichia coli yijK	Bacillus subtilis 168 ykoC		Escherichla co'l chaA	Pyrococcus abyssi Orsay PAB1341	Bacillus subtilis ywaF
<i>35</i>	db Match	gp:RFAJ3152_2 C	SP.NACC_MYCTU N	pir.E69663 B	~	gp AE001961_5	gp.SC3A7_e	Sp.YBCF_ECOU	gp:AAA21740_1	_	SP.PCAK_PSEPU	Sp. PIHHY_PSEAE	pir.A69859	COLI			SP.CHAA_ECOLI	pir C75001	sp:YWAF_BACSU
	ORF (bp)	1074 gp	837 sp	1182 pi	642 9p	6 009	6009	342 sp	799 94	+	1293 sp	1185 sp	588 p	1-	753 p	531	1050 s	708 p	723 \$
45	Terminal (nt)	1115832	1116908	1117751	1119086	1120804	1120833	1121468	1121818	1123461	1123534	1124835	1127009	1128350	1129102	1129632	1136704	1131428	1131401
50	fritial (nt)	1116905	1117744	1118932	11:9727	1120205 1120804	1121432	1121809	1122606	1123051	1124826	1126020	1126422	1127013	<u> </u>	1129102	129655		4705 :132:23
	SEO NC		4699	4630		4692	4693	4664	7695	·+ - · · ·	4667	4698	4699	-+-		4702		 -	4705
55	SEG	1188	1189	1190	1191	1192	1193	1194	1105		1197	198	19	200	120	. 202	1203	1204	1205

									1	T		Ī		g E		<u> </u>	Ī		Γ		T	
5		lion	subunit A	ase			ane protein	niamin						(arsenical pu	ane protein			(tyrosine in A)				
10		Function	excinuclease ABC subunit A	thioredoxin peroxidase			hypothetical membrane protein	oxidoreductase or thiamin biosynthesis protein					chymotrypsin BII	arsenate reductase (arsenical pump modifier)	hypothetical membrane protein	hypothetical protein	hypothetical protein	GTP-binding protein (tyrosine phsphorylated protein A)	hypothetical protein	hypothetical protein		ferredoxin [4Fe-4S]
15		Matched length (a.a.)	946	164			318	282					27.1	111	340	147	221	614	506	315		103
20		Similarity (%)	58.7	81.7			72.0	490					51.3	72.1	62.4	71.4	62.9	7.97	54.9	61.9		91.3
		Identity (%)	35.5	57.3			39.9	34.0					28.8	43.2	23.5	43.5	35.8	46.3	27.9	38.7		78.6
25	(pa		Æ	S				3(2)			-					v	s		9	5	-	
3 0	Table 1 (continued)	Homologo.us gene	Thermus thermophilus unrA	Mycobacterium tuberculosis H37국v tpx			Escherichia coli yedL	Streptomyces coelicalor A3(2)					Penaeus vannamei	Escherichia coli	Bacillus subtilis yyaD	Mycobacterium tuberculosis H37Rv Rv1632c	Mycobacterium tuberculosis H37Rv Rv1157c	Escherichia coli K12 typA	Mycobacterium tuberculosis H37Rv Rv1166	Mycobacterium tuberculosis H37Rv Rv1170		Streptomyces griseus fer
40		db Watch	SP UVRA_THETH	sp:TPX_MYCTU			sp:YEDI_ECOLI	gp.SCF76_2					sp:CTR2_PENVA	sp:ARC2_ECOLI	sp:YYAD_BACSU	pir:F70559	pir:F70555	sp:TYPA_ECOLI	pir:F70874	pir.B70875		sp.FER_STRGR
		ORF (bp)	2340	495	215	1776	954	006	365	297	261	387	834	345	1200	537	714	1911	1506	679	438	315
45		Terminal (nt)	1132133	1135055	1135691	1135058	1136938	1138859	1139245	1139492	1139617	1139635	1140028	1140501	1142472	1142479	1143026	1146028	1147602	1148461	1148882	1149267
50		'nitial (tc)	1134472	1134561	1135476	1136833	1137891	1137960	1138880	1139196	1139357	1.40021	1:40861	1141245	1141273	1143015	1143739	1144118	1146097	1147592	1148445	1148953
		SEQ NO.	4706	4707	4708	4709	4710	4711	4712	4713	4714	4715	4716	4717	4718	4719	4720	4721	4722	4723	4724	4725
55	:	SEQ NO (DNA)	1206	1207	1208	1209	1210	1211	1212	1213	1214	1215	1215	1217	1218	1219	1220	1221	1222	1223	1224	1225

5	Function	aspartate aminotransferase		No de families	tetranyarodiptioninate succinyase of succinylasion of piperidine-2,6-dicarboxylate		hypothetical protein	dihydropleroate synthase	hypothetical protein	hypothetical protein	antigen TbAAMK, useful in vaccines for prevention or treatment of tuberculosis	mycinamicin-resistance gene	sucrose-6-phosphate hydrolase	ADPglucosestarch(bacterial glycogen) glucosyltransferase	glucose-1-phosphale adenylyltransferase	methyltransferase	RNA polymerase sigma factor (sigma-24); heat shock and oxidalive stress	
15	Matched length (a.a.)	397			229		211	273	245	66	47	286	524	433	400	93	194	
20	Similarity (%)	52.9			100.0		100.0	0 69	73.1	67.7	91.5	67.8	51.0	51.3	81.8	62.4	57.2	
	Identity (%)	25.9			100.0		100.0	29.0	45.7	31.3	72.3	39.2	23.5	24.7	61.0	25.8	27.3	
25 (penujiuo	gene	strain YM-2 aat			lutamicum		lutamicum	color A3(2)	rae u17561	erculosis	oerculosis	r seorubida	saceus scrB	12 MG1655	licolor A3(2)	arofaciens	300	
So Table 1 (continued)	Homologous gene	Bacillus sp. strain Y			Corynebacterium glutamicum ATCC 13032 dapD		Corynebacterium glutam cum ATCC 13032 crf2	Streptomyces coelicolor A3(2), dhpS	Mycobacterium leprae u17561	Mycobacterium tubercutosis H37Rv Rv1209	Mycobacterium tuberculosis	Micromonospora gr seorubida myrA	Pediococcus pentosaceus scrB	Escherichia coli K12 MG1655 glgA	Streptomyces coelicalor A3(2) glgC	Streptomyces mycarofaciens MdmC	Escherichia coli rpoE	
<i>35</i>	db Match	SP. AAT BACSP			gp:CGAJ4934_1		pir.S60064	gp:SCP8_4	qp.MLU15180 14		gsp.W32443	Sp.MYRA_MICGR	SP. SCRB PEDPE	sp.GLGA_ECOLI	sp GLGC_STRCO	SP.MDMC_STRMY	sp.RPOE_ECOLI	
	ORF (bp)		_	1185	891	663	-i	R31 g	729 0	1	165 3	864 s	1494 s	1227 s	1215	639	639	492
45	Terminal (nt)	1150379	1151028	1152370	1152373	1155875	1157669	1158524	1159252	1159572	1159799	1150728	1150739	1162379	1164916	1164974	1166384	1167067
50	initial (nt)	70		-	1153263	1158537	1155902	1157694	1158524	1159267	1159635	1159865	1162231	1153605	1163702	1165512	1165746	1166576
	SEO	(8.8)	 -		4729	4730		4732	47.33		4735	4736	4737		4739	4740	4741	4742
55		(DNA)	-+	_	1229	1230	1231	.232	1223	1234	1235	1236	1227	1239	1239	1240	1241	1242

5									genase	tidrug glycoprotein		se	se				protein	ance	
10	Function	hypothetical protein	ATPase	hypothetical protein	hypothetical protein	hypothetical protein			2-oxoglutarate dehydrogenase	ABC transporter or multidrug resistance protein 2 (P-glycoprotein 2)	hypothetical protein	sh.kimate dehydrogenase	para-nitrobenzyl esterase				tetracycline resistance protein	metabolite export pump of letracenomycin C resistance	
15	Matched length (a.a.)	112	257	154	434	140			1257	1288	240	255	501				409	444	
20	Similarity (%)	73.2	72.0	83.8	77.0	87.1			93.8	60.4	72.1	61.2	64.7				61.4	64.2	
	Identity (%)	45.5	43.6	60.4	498	57.9			99.4	28.8	31.7	25.5	35.7				27.1	32.4	
25 (ponujuo	gene	erculosis	0	erculosis	erculosis	erculosis			utamicum	Chinese	erculosis	ш	V				ısposon	escens tcmA	
% Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1224	Escherichia coli mrp	Mycobacterlum tuberculosis H37Rv Rv1231c	Mycobacterium tuberculosis H37Rv Rv1232c	Mycobacterium tuberculosis H37Rv Rv1234			Corynebacterium glutamicum AJ12036 odhA	Cricetulus griseus (Chinese hamster) MDR2	Mycobacterium tuberculosis H37Rv Rv1249c	Escherichia coli aroE	Bacillus subtilis pnbA				Escherichia coli transposon Tn1721 tetA	Streptomyces glaucescens tomA	
<i>35</i>	db Malch	pir.C70508	SP:MRP_ECOLI	pir.B70509	pir.C70509	pir.A70952	-		prf.2306367A	sp.MDR2_CRIGR	pir.H70953	Sp. AROE_ECOLI E	sp.PNBA_BACSU				Sp.TCR1_ECCLI	sp.TCMA_STRGA	
	ORF (bp)	468	1125	579	1290	516	999	594	3771	3741	717	804	1811	651	928	525	1215	1347	705
45	Terminal (nt)	1157577	1157587	1158747	1159321	1171187	1171871	1171869	1172501	176308	1183121	180872	183603	184257	1185155	.185218	. 187039	.188389	1190526
50	nitial (nt)	1167110	1168711	1169325	1170610	1:70672	1:71206	1:72462	1176271	1180048	1180837	1181675	1181993	4755 1183607	4756 1184280	1185742	4758,1185825	4759 1167043	4760 1189822
	SEQ NO.	4743	4744	4745	4746	4747	4748	4749	4750	4751	4752	4753	4754	4755	4756	4757	475B	4759	
55	SEO NO (DNA)	1243	1244	1245	1246	1247	1248	1249	1250	1251	1252	1253	1254	1255	1256	1257	1258	1259	1260

5	Function	5- methyltetrahydropteroyltriglulamate- -homocysteine S-methyltransferase		thiophene biotrans:ormation protein						ABC transporter	ABC transporter	cytochrome bd.type menaquinol oxidase subunil I!	cytochrome bd-type menaquinol oxidase subunit l	helicase		mutator mutT protein ((7,8-dihydro-8-oxoguanine triphosphatase)(8-oxo-dGTPase)(dGTP		proline-specific permease
15	Matched length (a.a.)	774		444						526	551	333	512	402		86		433
20	Similarity (%)	72.2		79.5						63.5	58.4	93.0	99.0	55.0		65 6		850
	Identity (%)	45.2		55.2						28.7	29.4	92.0	9 66	26.4		36.9		51.3
25 (Danultuo) 1 aldeT	Homologous gene	Catharanthus roseus metE		Nocardia asteroides strain KGB1						Escherichia coli K12 MG1655 cydC.	Escherichia coli K12 MG1655 cydD	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydB	Corynebacterium glutamicum (Brevibacterium lactofermentum) cydA	Escherichia coli K12 MG1655 yejH		Proteus vulgaris mutT		Salmonella typhimurium proY
35		Cath		Noc					_		Ī	Coryn (Brevi cydB	Coryr (Brev cydA	Esch. yejH				
40	db Match	pir.S57636		.gsp:Y29930						sp.CYDC_ECOL!	sp.cydb_Ecol!	gp:AB035066_2	gp.AB035066_1	sp.YEJH_ECOLI		sp.MUTT_PROVU		SP. PROY_SALTY
	ORF (bp)	2235	455	1398	324	945	792	1647	192	1554	1533	666	1539	2265	342	393	765	
45	Terminal (nt)	1188389	119:542	1193807	1194190	1195109	1195125	1197620	1197815	1197993	1199543	1231090	1202094	1203916	1206657	1206831	1208138	1208212
50	Initial (nt)	1190622	1191087	1192410	1193867	1194165	1195916	1195974	1197624	1199543	1201075	1202088	1203632	1206180	1206316		1237374	1239615
	SEO	4761	4762	4763	4764	4765	4766	4767	4768	4769	4770	4771	4772	4773	4774		4776	4777
55	SEO	1261	1262	1263	1264	1265	1266	1267	1268	1269	1270	1271	1272	1273	1274	1275	1276	1277

			T	T	Ī		T	1	T	T	Τ	т—	Τ	_	Τ-	1		 -
5	Function	DEAD box ATP-dependent RNA helicase	bacterial regulatory protein, tet? family	pentachlorophenol 4- monooxygenase	maleylacetate reductase	catechol 1,2-dioxygenase		hypothelica: protein	transcriptional regulator		hypothelical protein	phosphoesterase	hypo!heticai protein			esterase or lipase		
15	hed th	!	İ — —		1				T	-			1	<u> </u> 	\vdash	Ì		\vdash
,5	Matched length (a.a.)	643	247	595	354	278		185	878		203	395	915			220		
20	Identity Similarity (%)	74.3	47.4	47.7	720	59.4		58.4	55.4		56.2	67.3	59.6			64.6		
	Identity (%)	48.1	24.7	24.5	40.4	30.6		31.9	24.9		29.6	39.2	29.7			37.3		
25 08 Table 1 (continued)	us gene	oniae CG43 ependent RNA	p.ae	туа рсрВ	B13 clcE	coaceticus		berculosis	erevisiae		licolor A3(2)	berculosis	berculosis			ng bacterium		
Table 1	Homologous gene	Klebsiella pneumoniae CG43 DEAD box ATP-dependent RNA helicase deaD	Mycobacterium leprae B1308_C2_181	Sphingomonas flava pcpB	Pseudomonas sp. B13 clcE	Acinetobacter calcoaceticus catA		Mycobacterium tuberculosis H37Rv Rv2972c	Saccharomyces cerevisiae SNF2		Streptomyces coelicolor A3(2) or 2	Mycobacterium tuberculosis H37Rv Rv1277	Mycobacterium tuberculosis H37Rv Rv1278			Petroleum-degrading bacterium HD-1 hde		
35			2 6					ΣI				ΣÏ				ZI		
40	db Match	sp.DEAD_KLEPN	prf 2323363BT		SOCICE FSESS	SD.CATA_ACICA		pir.A70672	sp.SNF2_YEAST		gp:SCO007731_6	pir:E70755	sp:Y084_MYCTU			gp.AB029896_1		
	ORF (bp)	2196	697	1590	1068	895	471	540	3102	1065	828	1173	2628	306	318	774	378	786
45	Terminal (nt)	1212129	1212429	1214858	1215938	1216836	1215904	1217443	1222996	1221841	1223843	1225059	1227693	1227282	1227340	1229636	1229095	1229935
50	Inital (nt)	1209934	1213115	1213269	1214971	1215952	12.7374	12,7382	12:9995	1222905	1222986	1223887	1225066	1227587	1227657	1227863	1228718	1229150
	SEQ NO (a a)	4778	4779	4780	4781	4782	4783	4784	4785	4786	4787	4788	4789	4790	4791	4792	4793	4794
55	SEQ NO (DNA)	1278	1279	1280	1281	1282	1283	1284	1285	1286	1287	1288	1289	1290	1291	1292	1293	1294

בי באפרותות בים ביים ביים

	Function	short-chain fatty acids transporter	regulatory protein			fumarale (and nitrate) reduction regulatory protein	mercuric transort protein periplasmic component precursor	zinc-transporting ATPase Zn(!!)- translocating P-type ATPase	GTP pyrophosphokinase (ATP GTP 3-pyrophospholransferase) (ppGpp synthetase I)	tripeptidyl aminopeptidase			homoserine dehydrogenase			nitrate reductase gamma chain	nitrate reductase della chain	nitrate reductase bela chain	hypothetical protein	hypothetical protein	nitrate reductase alpha chain	nitrate extrusion protein
	Matched tength (aa)	122	166			228	81	605	137	.09			24			220	175	505	137	93	1271	461
	Similarity (%)	69.7	56.6			57.9	66.7	706	58.4	49.3			98.0			9.39	63.4	82.4	46.0	55.0	73.8	67.9
	Identity (%)	37.7	24.7			25.0	33.3	38 0	32.9	26.6			95.0			45.0	30.3	56.6	36.0	36.0	46.9	328
Table 1 (continued)	Homologous gene	Streptomyces coelicolor SC1C2.14c atoE	Erwinia chrysanthemi recS			Escherichia coli K12 MG1655 fnr	Shewanella putrefaciens merP	Escherichia coli K12 MG1655 atzN	Vibrio sp. S14 relA	Streptomyces lividans tap			Corynebacterium glutamicum			Bacillus subtilis narl	Bacillus subtilis narJ	Bacillus subtilis narH	Aeropyrum pernix K1 APE1291	Aeropyrum pernix K1 APE1289	Bacillus subtilis narG	Escherichia coli K12 narK
	db Match	Sp.ATOE_ECOLI	SP. PECS_ERWCH			Sp.FNR_ECOLI	Sp.MERP_SHEPU	sp ATZN_ECOL!	sp.RELA_VIBSS	gsp:R80504			GSP P61449			Sp:NARI_BACSU	sp:NARJ_BACSU		PIR-D72603	PIR B72603	sp.NARG_BACSU	
	ORF (bp)	537	486	222	519	750	234	1875	630	1581	603	120	108	1260	069	111	732	1593	594	273	3744	1350
	Terminal (rt)	1229180	1230480	1230831	1230914	1232479	1232836	1234881	1235612	.238545	.241554	1242156	1243728	. 243942	1244843	1245720	1246508	.247199	.250444	ᆚ_	┷	
	luitial (nt)	1229716	1229995	1230610	1231432	1231730	1232603	1233007	1234983	1238125	4804 1242156	1242275	1243521	4807 1245201	1245532	1246496	1247239	1248791	4812 1249851	4813.1251545	1252537	
	SEQ NO.	4795	4796	4797	4798	4799	4800	4801	4802	4803	4824	4805	4806	4807	4808	4809		4811	4812		 -	48.5
	SEQ NO.		1295	+	<u>+</u> -		1300	1301	1302	1303	1304	1305	1306	1307	1308	1309	1310	1311	1312	1313	1314	1315

		ıxı.			Ē	ڍ	eotide	otein	olein	gase									a.N.
5	Function	osynthesis c num cofacto /me cn×1)	e protease		brane prote	brane prote	anine dinuci	synthesis pr	synthsisi prossybdenum	acid-CoA fi					ase factor 1	n oxidase		ے	sphate alphiltransferase
10	Fut	molybdopterin biosynthesis cnx1 protein (molybdenum cofactor biosynthesis enzyme cnx1)	extracellular serine protease precurosor		hypothetical membrane protein	hypothetical membrane protein	mo ybdopterin guanine dinucleotide synthase	mo ybdoptein biosynthesis protein	mo ybdopterin biosynthsisi protein Moybdenume (mosybdenum cofastor biosythesis enzyme)	edium-chain fatty acid-CoA ligase	Rho factor				peptide chain release factor	protoporphyrinogen oxidase		hypothetical protein	undecaprenyl-phosphate alpha.N. acetylglucosaminyltransferase
15	Matched length (aa)	157	738		334	472	178	366	354	572	753				363	280		215	322
20	Similarity (%)	0.59	45.9		62.6	60.2	52.3	58.2	73.7	65.7	73.8				71.9	57.9		0.98	58.4
	Identity (%)	32.5	21.1		30.8	31.6	27.5	32.8	51.4	36.7	50.7				41.9	31.1		62.3	31.1
ontinued)	gene	a CV cnx1	s strain IFO-	İ	rculosis	rculosis	а торА	rculosis eA	cnx2	orans	ho				RF-1			rculosis	rle
8 Table 1 (continued)	Hamologous gene	Arabidopsis thaliana CV cnx1	Serratia marcescens strain IFO- 3046 prtS		Mycobacterium tuberculosis H37Rv Rv1841c	Mycobacterium tuberculosis H37Rv Rv f842c	Pseudomonas putida mobA	Mycobacterium tuberculosis H37Rv Rv0438c moeA	Arabidopsis thaliana cnx2	Pseudomonas oleovorans	Micrococcus luteus rho				Escherichia coli K12 RF-1	Escherich a coli K12		Mycobacterium tuberculosis H37Rv Rv1301	Escherich a coli K12 rfe
35 40	db Match	Sp.CNX1_ARATH	SP:PRTS_SERWA		sp:Y0D3_MYCTU	sp.Y0D2_MYCTU	gp: PPU242952_2	Sp.MOEA_ECOLI	SP.CNX2_ARATH	SP ALKK_PSEOL P	SP.RHO_MICLU				sp:RF1_ECOLI E	SP.HEMK_ECOLI		sp:YD01_MYCTU	sp:RFE_ECOLI E
	ОЧF (bp)	499 sp	. 866 sp	684	1008 sp	1401 sp.	531 gp:	1209 sp.	1:31 sp.	1725 sp	2286 sp.	603	969	1023	1074 sp.	837 sp.	774	648 sp.	1146 sp.
45	Terminal (nt)	1254634	1254737	1257750	1255851	1257865	1259429	1259993	1261688	1262986	1267427	1266267	1265611	1265427	1268503	1269343	1268267	1270043	1271192
50	Initial (nt)	-254146	1256602	1257067	1257858	1259265	1259989	:261201	1262818	1264610	1265142	1265665	1266306	1266449	1267430	1268507	126904C	1269396	1270047
	SEO NO (a a)	4616	4617	4618	4619	4620	4621	4622	4623	4524	4£25	4826	4627	4628	4E29	4630	4631	4632	4633
55	SEO NO (DrIA)	1316	1317	1318	1319	1320	1321	1322	1323	1324	1325	1326	1327	1328	1329	1330	1331	1332	1333

ין האתרניתיים בחי יחודתחפואם ו

_			 -	1			1			na i	_ .	1					
	Function		hypothetical protein	ATP synthase chain a (protein 6)	H+.transporling ATP synthase lipid- birding protein. ATP synthase C chane	H+-transporting ATP synthase chain b	H+-transporting ATP synthase delta chain	H+-Iransporling ATP synthase alpha chain	H+-Iransporting ATP synthase gamma chain	H+-Iransporting ATP synthase beta chain	H+-transporting ATP synthase epsilon chain	hypothetical protein	hypothetical protein	putative ATP/GTP-binding protein	hypothetical protein	hypothetical protein	thioredoxin
	Matched length (a.a.)		80	245	7.1	151	274	516	320	483	122	132	230	95	134	101	301
	Similarity (%)		0.99	26.7	85.9	6.99	67.2	88.4	9.92	100.0	73.0	67.4	85.7	96.0	68.7	79.2	71.4
	Identity (%)		98.0	24.1	54.9	27.8	34.3	6.99	46.3	93.8	41.0	38.6	70.0	45.0	35.8	54 5	37.9
Table 1 (continued)	Homologous gene		Corynebacterium glutamicum atpl	Escherichia coli K12 atpB	Streptomyces lividans atpL	Streptomyces lividans atpF	Streptomyces lividans atpD	Streptomyces lividans atpA	Streptomyces lividans atpG	Corynebacterium glutamicum AS019 atpB	Streptomyces lividans atpE	Mycobacterium tuberculosis H37Rv Rv1312	Mycobacterium tuberculosis H37Rv Rv1321	Streptomyces coelicolor A3(2)	Bacillus subtilis yqjC	Mycobacterium tuberculosis H37Rv Rv1898	Mycobacterium tuberculosis H37Rv Rv1324
	db Match		GPU:AB046112_1	Sp.ATP6_ECOLI	sp.ATPL_STRLI	SP.ATPF_STRLI	SP.ATPD_STRLI	sp.ATPA_STRLI	SP.ATPG_STRLI	sp.ATPB_CORGL	SP.ATPE_STRLI	sp:Y02W_MYCTU	sp:Y036_MYCTU	GP:SC26G5_35	sp.YQJC_BACSU	sp:YC20_MYCTU	sp.YD24_MYCTU
!	ORF (bp)	486	249	610	240	564	£13	1674	975	1449	372	471	069	285	453	312	921
	Terminal (nt)	1271698	1272119	1273149	1273525	1274122	1274943	1276648	1277682	1279136	1279522	1280240	1280959	1281251	1281262	1282105	1283114
,	Initial (nt)	1271213	1271871	1272340	1273286	1273559	1274131	1274975	1276709	1277688	1279151	1279770	1280270	1280967	1281714	1281794	1282194
	SEQ NO (a a)	4834	4835	4836	4837	4838	4839	4840	4841	4842	4843	4844	4845	4846	4847	4848	4849
İ	SEQ NO.	1334	1335	1336		1338	1339	1340	1341	256.	1343	1344	1345	1346	1347	1348	1349

5	Function	FMNH2-dependent aliphatic sulfonate monooxygenase	alphatic sulfonates transport permease protein	alphatic sulfonates transport permease protein	sulfonate binding protein precursor	1,4-alpha-glucan branching enzyme (glycogen branching enzyme)	alpha-amylase		ferric enterobactin transport ATP- binding protein or ABC transport ATP-binding protein	hypothetical protein	hypothetical protein		electron transfer flavoprotein beta- subunit	electron transfer flavoprotein alpha subunit for various dehydrogenases		nitrogenase cofactor sythesis protein		hypothetical protein
15	Matched ength (a.a.)	366	240	228	311	7.10	467 a		211 B	260 h	367		244	335		375 n		397 h
20	Similarity (%)	74.3	75.8	72.8	62.1	72.7	50.5		87.6	68.5	0.07		64.8	61.8		67.7		55.7
	Identity (%)	50.3	40.8	50.4	35.1	46.1	22.9		31.8	39.6	43.1		31.2	33.1		35.2		29 5
35 Table 1 (continued)	Homologous gene	Escherichia coli K12 ssuD	Escherichia coli K12 ssuC	Escherichia coli K12 ssuB	Escherichia coli K12 ssuA	Mycobacter-um tuberculosis H37Rv Rv1326c glgB	Dictyoglomus thermophilum amyC		Escherichia coli K12 lepC	Mycobacterium tuberculosis H37Rv Rv3040c	Mycobacterium tuberculosis H37Rv Rv3037c		Rhizobium meʻiloti fixA	Rhizobium meliloti fixB		Azotobacter vinelandii nifS		Rhizobium sp. NGR234 plasmid pNGR234a y4mE
40	db Match	gp ECO237695_3	sp.SSUC_ECOLI	sp. SSUB_ECO	SP. SSUA_ECOLI	s GLGB_ECOLI	sp AMY3_D.CTH		sp.FEPC_ECOLI	pir C70860	or H70859		sp.FIXA_RHIME	sp.FIXB_RHIME		sp NIFS_AZOVI		sp Y4ME_RHISN
	ORF (bo)	1143	758	729	957	2193	1434	348	879	804	1056	612	786	951	615	1128	312	1146
45	Terminal (nt)	.284466	1285284	1286030	1286999	:287281	1289514	129:373	1292577	1294025	1295206	:294436	1296220	1297203	1297093	1298339	1298342	:299000
50	Initial (nt)	1283324	1284517	1295302	1286043	1289473	1291307	1291026	1291599	1293222	1294151	1295047	1295435	1296253	4863 1296479	4864 1297212	1298553	4366 1333:45
	SEQ NO.	4950	4951	4952	4953	4854	4955	4856	4957	4858	4959	4860	4861	4952	4863	4864	4955	4366
55	SEO NO (DNA)	1350	1351	1352	1353	1354	1355	1356	1357	1358	1359	1360	1361	1362	1363	1364	1365	1366

DECOMINGED

	Г			 -						 -							-		
5		Function	ulator					ninomethyl-2- nyltransferase		r.	resistance and		sleotide synthase	ŗ.	n) subunit C	n) subunit A	vibriobactin utilization protein / iron- chelator utilization protein	brane profein	uctose 6. sphotransrefase
10		Fun	Iranscriptional regulator	acety!transferase				IRNA (5-methylaminomethyl-2-thiouridylate)-methyltransferase		hypothetical protein	tetracenomycin C resistance and export protin		DNA ligase (polydeoxyribonucleotide synthase [NAD+]	hypothetical protein	glutamył-tRNA(Gln) amidotransferase subunit C	glutamyl-tRNA(Gln) amidotransferase subunit A	vibriobactin utilization prot chelator utilization protein	hypothetical membrane profein	pyrophosphatefructose 6- phosphate 1-phosphutransrefase
15		Vatched length (aa)	59	181		1		361		332	200		677	220	97	484	263	96	358
20		Similarity (%)	76.3	55.3				6.08		0.99	65.8		70.6	6.07	64.0	83.0	54.0	79.2	6.77
		ldentäy (%)	47.5	34.6				616		33.7	30.2		42.6	40.0	53.0	74.0	28.1	46.5	54.8
25 :	Table 1 (continued)	s gene	R234 plasmid	12 MG1655				oerculosis		berculosis	scescens tcmA		Irinus dn'J	berculosis	licolor A3(2)	berculosis	nB	lico.or A3(2)	thanolica pfp
	Table 1 (c	Homologous gene	Rhizobium sp. NGR234 plasmid pNGR234a Y4mF	Escherichia coli K12 MG1655 yhbS				Mycobacterium tuberculosis H37Rv Rv3024c		Mycobacterium tuberculosis H37Rv Rv3015c	Steptomyces glaucescens tcmA		Rhodothermus marinus dn'J	Mycobacterium tuberculosis H37Rv Rv3013	Streptomyces coelicolor A3(2) gatC	Mycobacterium tuberculosis H37Rv gatA	Vibrio vulnificus viuB	Streptomyces coelico.or A3(2) SCE6.24	Amycolatopsis methanolica píp
40		db Match	SP.Y4MF_RHISN	sp:YHBS_ECOLI			-	pir.C70858		pir:B70857	sp.TCMA_STRGA !		Sp.DNLRHOMR_F	pir:H70856	sp.GATC_STRCO	SP GATA_MYCTU	NUBIN BOIN ds	gp:SCE6_24	SP PFP_AMYME
		ORF (bp)	225 \$	504	942	1149	396	1095 p	654	d 066	1461	735	·	663 p	297 s	1491 \$	849 s	306	1071 s
45		Terminal (11)	1300145	1301055	1300988	1301975	1303694	1304923	1303883	1305921	1305924	1307462	1310369	1310435	1311616	1313115	1314118	1314479	1316083
50		Initial (nt)	4867 1300369 1300145	1368 4868 1300552 1301055	1301929	1303123	1303299	1303829	1304536	4874 1304932	4875 1307384	1308196	1377 4877 1308330	1311097	1311320 1311616	1311625	488: 1313270	1314775	13150*3
		SEQ NO (a a)	4867	4868	369 4869	4870	4871		4873	4874	4875	48.76	4877	4878	4879	4880	488	1382 4882	4883
55		SEQ NC (DNA)	1367	1368	1369	1370	1371	1372	1373	1374	1375	1376	1377	1378	1379	1380	1381	1382	1383

						Table 1 (continued)				
SEQ NO (DNA)	SEO NC	Initial (nt)	Terminal (nl)	ORF (tp)	db Match	Homologous gene	Identily (%)	Similarity (%)	Matched length (a a)	Function
1384	4884	1315954	1315325	630						
1385	4885	1316338	1317444	1107	sp.CCPA_BACME	Bacillus megaterium ccpA	31.4	31 4	328	glucose-resistance amylase regulator (catabolite control protein)
1386	4886	1317434	1319005	1572	sp.RBSA_ECO:	Escherichia coli K12 rbsA	44.7	76.2	499	ripose transport ATP-binding protein
1387	4887	1319005	1319976	972	sp.RBSC_ECOLI	Escherichia coli K12 MG1655 rbsC	45.6	76.9	329	high affinity ribose transport protein
1388	4888	1320001	1320942	942	sp. RBSB_ECOLI	Escherichia coli K12 MG1655 rbsB	45.9	7.77	305	periplasmic ribose-binding protein
1389	4889	1320952	1321326	369	sp RBSD_ECOL	Escherichia coli K12 MG1655 rbsD	41.7	68.4	139	high affinity ribose transport protern
1390	4890	1321475	1322111	636	sp:YIW2_YEAST	Saccharomyces cerevisiae YIR042c	31.0	58.0	200	hypothetical protein
1391	4891	1322393	1323406	1014	gp:SCF34_13	Streptomyces coelicolor SCF34, 13c	31.4	60.2	354	iron-siderophore binding lipoprotein
1392	2685	1323533	1324537	-005	SO NTC'_RAT	Rattus norvegicus (Rat) NTCI	35.8	61.9	268	Na-dependent bile acid transporter
1393	4893	1324778	1326256	479	gso W61467	Staphylococcus aureus WHU 29 ratB	43.1	71.8	485	RNA-dependent amidotransferase B
1394	4834	1326379	1327049	672	Sp F4RE_METJA	Methanococcus jannaschii MJ1501 (4re	32.6	61.1	172	pulative F420-dependent NAOH reductase
1395	4835	1330967	1329891	1077	sp.YQJG_ECOLI	Escherichla coli K12 yajG	39.8	6.99	317	hypo:hetical protein
1396	4896	331102	1331875	774	pır.A70672	Mycobacter um tuberculosis H37Rv Rv2972c	39.3	62.4	234	hypothelical protein
1397	4897	1331953	1333008	1056	pr.H70855	Mycobacterium tuberculosis H37Rv Rv3005c	27.4	52.6	325	hypothetica membrane protein
1398	498	1333424	1333188	237				<u> </u>		
1399	4899	335280	1333442	1839	gp:AJ012293_1	Corynebacterium glutamicum ATCC 13032 itvD	99.2	99.4	513	dihydroxy-acid dehydralase
.400	4900	1335975	1335412	564	pir.G70855	Mycobacterium tuberculos s H37Rv Rv3004	33.3	68.6	105	nypothetical protein

Table 1 (continued)	RE db Match Homologous gene (%) (%) (aa) Function	473 sp.YILV_CORGL Corynebacterium glutamicum 100.0 100.0 62 hypothetical membrane protein	31 GP-SSU18930_26 Sulfolobus solfataricus 45.0 55.0 66 hypothetical protein	90:	98 sp NRTD_SYNP7 Synechococcus sp. nrtD 50.9 80.8 167 nitrate transport ATP-binding polein	167 sp MALK_ENTAE Enterobacter aerogenes 46.0 78.2 87 maltose/mallodextrin transport ATP. (Aerobacter aerogenes) malk	182 sp NRTA_ANASP Anabaena sp. strain PCC 7120 28.1 56.8 324 nitrate transporter protein			186 sp DIM6_STRCO Streptomyces coelicolor 39.4 73.2 142 actinorhocin polyketide dimerase	39.1 72.7 304 coball-zinc-cadimium resistance procedure.	53		815 sp.Y686_METJA Methanococcus jannaschii 22.9 53.7 642 hypothetical protein	743	590 gsp:Y22646 Brevibacterium flavum serA 99.8 100 0 530 D-3-phosphoglycerate dehydrogenase	SP:YEN1_SCHPO Sch zosaccharomyces pombe 29 0 52 0 105 hypothetica' serine-rich protein	191	062	855 prr T03476 Rhodobacler capsulatus strain 32.9 63.1 620 hypothetical protein SB 1003	102
lable 1 (.												
	ORF (bp)	1473	231	909	498	267	882	447	369	486	954	153	069	1815	1743	1590	327	198	1062	1835	402
	Terminal (rt)	1336055	1338379	1342677	134.960	1342461	1342794	1344464	1344808	1345420	1346439	1345335	1345642	1348272	1350076	1352444	.351727	:353451	1354540	1357554	.356853
	Initial (nt)	1337557	1338639	1342972	4934 1342457	1342727	1406 4935 1343575	1344019	1344440	1344935	1345485	1345497	1345331	1346458	1348334	1350855	4916 1352053	1352585	1355601	1355589	1355452
-	SEQ NO (a a)	4901	4932	4933	4924	4935	4905		4939	4939	4910	4911	4912	4913	4914	4915	4916	4917	4918	4919	702
	SEQ NO (DNA)	1401	1402	1403	1404	1405	1406	1407 4937	1408	1409	14:0	14.1	14.2	1413	1414	14.5	14.6	14.7	14:8	1419	1420

								 +		,	,	_	- · ,								
5				calabolism ase (includes ene-1,7-dioate erase), 5- nex-3-ene-1,7- opet	3-0-	8	ase	20] 	rotein
10		Function		homoprolocalechiuale calabolism bifunctional isomerase/decarboxy/ase [includes 2-hydroxyhepta-2,4-diene-1,7-dioale isomerase(hhdd isomerase); 5- carboxymethyl.2-oxo-hex-3-ene-1,7- dioale decarboxylase(opet	methyltransferase or 3- deme:hylubiquinone-9 3-O- methyltransferase	isochorismate synthase	glutamyl-tRNA synthetase	transcriptional regulator													thiam n biosynthesis protein
15		Matched length (aa)		228	192	371	485	67							_						599
20		Similarity (%)		59.2	55.7	70.4	69.7	0 06													81.0
25		Identity (%)		33.3	23.4	38.0	37.3	77.0									_	·			65.1
30	Table 1 (continued)	Hemologous gene		Escher chia coli C hpcE	Escherichia coli K12	Bacillus subtilis dhbC	Bacillus sublilis gltX	Streptomyces coelicolor A3(2)													Bacillus subtilis thiA or thiC
35					Eso	T:	_	Stre	,								-		-	-	- 1
40		db Match		se:HPCE_ECOL!	sp. JBIG_ECOLI	sp CHBC_BACSU		gp SCJ33_10													sp. THIC_BACSU
		ORF (3p)	654	804	618	1128	1488	213	516	525	342	621	303	180	330	213	183	318	1152	324	176.
45		Terminal (nt)	1358210	1359062	1359669	1360158	1362848	1362926	1363142	1363732	1365256	1364340	1364878	1365217	1366137	1367505	1367888	1368395	1369551	1369874	1369877
50		Initial (rt)	1357557	4922 1358255	1423 4925 1359052	1361295	1361361	1363138	1363657	1364253	1364915।	1364960	1365180	1365396	1365808	1367293	1368070	13680/8	1368400	1369551	1371637
	, es	SEQ NO (a.a.)	1921	4922	4923	4924	4925	4926	4927	4928	4929	4930	4931	4932	4933	4934	4935	4936	4937	4938	4939
55	التصور ا	SEQ NO (D'4A)	1421	1422	1423	1424	1425	1426	1427	1428	1429	1430	1431	1432	1433	1434	1435	1435	1437	1438	:439

	Function			lipoprotein		glycogen phosphorylase			hypothetical protein	hypothetical membrane protein		guanosine 3',5'-bis(diphosphate) 3'- pyrophosphalase	acetate repressor protein	3-isopropylmalate dehydratase large subunit	3-isopropylmalate dehydratase small subunit		mutator mut T protein ((7,8-dihydro- B-oxoguanine-triphosphatase)(8- oxo-dGTPase)(dGTP pyrophosphohydrolase)		NAD(P)H-dependent dihydroxyacetone phosphate reductase	D-alanine-D-alanine ligase
	Matched length (a.a.)			44		797			299	256		178	257	473	195		294		331	374
	Similar ty (%)			74.0		74.0			52.8	64.8		60.1	2.09	87.5	89.2		71.4		72.2	67.4
	Identity (%)			61.0		44.2			25.4	25.4		29.8	26.1	68.1	67.7		45.9		45.0	40.4
Table 1 (continued)	Homologous gene			Ch!amydia trachomatis		Rattus norvegicus (Rat)			Bacillus subtilis yrkH	Methanocccus jannaschii Y441		Escherichia coli K12 spoT	Escherichia coli K12 IcIR	Actinoplanes teichomyceticus leu2	Salmonella typhimurium		Mycobacterium tuberculosis H37Rv MLCB637.35c		Bacillus subtilis gpdA	Escherichia coli K12 MG1655 dclA
	db Malch			GSP:Y37857		sp.PHS1_RAT			Sp. YRKH_BACSU			sp:SPCT_ECOLI	Sp.ICLR_ECOLI		sp:LEUD_SALTY		gp:MLCB637_35		sp.GPDA_BACSU	sp.DDLA_ECOLI
	ORF (bp)	348	53:	132	936	2427	183	156	1407	750	477	564	705	1443	591	318	954	156	966	1080
	Termina (nt)	1271979	1373131	1273929	1375491	1273350	1375805	1375933	1376149	1377666	137846E	137956€	1379555	1381882	1382492	1382502	1382845	1384085	1385125	1386232
	Initial (nt)	1372326	1372601	1373798	1374556	1375776	1375987	4945 1376088	1377555	1378415	1378942	4950 1379003	1380259		4953 1381902	1382819	1383798	1383930	1384130	4958 1385153
	SEQ NO.	4940	4541	4942	4943	4944	4945	4945	4947	4948	4949	4950	4951		4953	4954	4955	4956	4957	
	SEQ NO (DNA)	1440	1441	1442	1443	1444	1445	1445	1447	1449	1449	1450	1451	1452	1453	1454	1455	1455	1457	1459

5	
10	
15	
20	
25	
<i>30</i>	
35	
40	
45	
50	

	Function		thiamin-phosphate kinase:	uracil-DNA glycosylase precursor	hypothetical protein	ATP-dependent DNA helicase	polypeptides predicted to be useful antigens for vaccines and diagnostics	biotin carboxyl carrier protein	methylase	lipopolysaccharide core biosynthesis protein		Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter or glutamine ABC transporter, ATP-binding protein	nopaline transport protein	glutamine-binding protein precursor		hypothetical membrane protein		phage integrase
	Matched ength (a a)	i	335	245	568	693	108	29	167	155		65	252	220	234		322		223
	Similarity (%)		57.6	9.69	56.3	0.09	48.0	67.2	63.5	7.87		74.0	982	75.0	29.0	_	60.3		52.5
	Identity (%)		32.2	38.8	23.1	35.4	31.0	38.8	37.1	42.6		0.78	56.4	32.7	27.4		28.6		56.9
Table 1 (continued)	Homologous gene		Escherichia coli K12 thil.	Mus musculus ung	Mycoplasma genita'ium (SGC3) MG369	Escherichia coli K12 recG	Neisseria meningilidis	Proplonibacterium freudenreichii subsp. Shermanii	Escherichia coli K12 yhhF	Escherichia ccli K12 MG1655 kdtB		Neisseria gonorrhoeae	Bacillus stearothermophilus glnQ	Agrobacterium tumefaciens nocM	Escherichia coli K12 MG1655 glnH		Methanobacterium thermoautotrophicum MTH465		Bacteriophage L54a vinT
	db Match		sp: THIL_ECOLI	as ung_mouse	sp:Y369_MYCGE	sp:RECG_ECOLI	GSP:Y75303	sp.BCCP_PROFR	Sp. YHHF_ECOLI	sp. KDTB_ECOLI		GSP.Y75358	sp. GLNQ_BACST	Sp:NOCM_AGRTS	Sp. GLNH_ECOLI		pir:H69160		sp.VINT_BPL54
	(bp)	978	993	762	158	2121	324	213	582	480	1080	204	750	843	861	807	978	408	756
	Terminal (nt)	1386293	1388324	1389073	1390788	1392916	1391638	1393151	1393735	1394221	1395933	1395097	1394800	1395568	1396561	1398468	1398557	1401333	1400185
	In tial (nt)	1387270	1387332	1389312	1389208	1392796	1391951	1392939	1393154	1393742	1394854	1394894	1395549	1396410	1397421	1397662	1399534	4975 1400926	1476 4976 1403945
	SEQ NO (a.a.)	4959	4960	496.	4962	4963	4964	4965	4966	4967	1468 4968	4969	4970	4971		4973	4974	4975	1976
	SEO NO (DNA)	:459	1460	1461	1462	1463	1464	1465	1466	1467	1468	1469	1470	1471	1472 4972	1473	1474	1475	1476

						_					Γ		ĺ							<u> </u>		i i	
10	Function						insertion element (IS3 related)		al protein										nerase l	cephamycin export protein	ng protein	morphine-6-dehydrogenase	
	-						insertion e		hypothetical protein										DNA polymerase	cephamyci	DNA-binding protein	morphine-	
15	Matched length (a.a.)						26		1 37		:								968	456	283	284	
20	Similarity (%)				_		96.2		97.0										80.8	67.8	65.4	76.1	
	i Identity (%)	<u>.</u> .	_				88.5		0.68										56.3	33.8	41.3	46.5	
52 Table 1 (continued)	- dene						glutamicum		glutamicum										erculosis	mdurans	icolor A3(2)	da morA	
Table 1 (Homologous gene						Corynebacterium glutamicum orf2		Corynebacterium glutamicum										Mycobacterium tuberculosis polA	Streptomyces lactamdurans cmcT	Streptomyces coelicolor A3(2) SCJ9A, 15c	Pseudomonas putida morA	
35	 -				-	<u></u> -	0 0	-													တ တ	_	
40	db Match				_		pir:S60890		PIR S60890		!								sp.DPO1_MYCTU	sp:CMCT_NOCLA	gp:SCJ9A_15	Sp.MORA_PSEPU	
	CRF (bp)	744	432	207	864	219	192	855	111	369	315	321	375	948	306	564	222	291	2715	1422	606	873	:29
45	Terminal (nt)	1402076	1402703	1402368	1403991	1404215	1404694	1405320	1406999	.407167	. 407559	.408703	1405428	1410064	1411119	1411437	1412572	1412626	1416459	1416462	1418870	1419748	1419878
50	In tial (nt)	4977 : 1401333	4978 1402272	1402874	1403128	4981 1403997	1404885	1406174	1407109	1407535	:407873	.409023	1409802	1411011	1411424	1412000 1411437	1412351	1412916	1413745	1417883	1417962	1418876	1420036
. دم.	SEQ NO. (8.8)	4977	4978	4979	4980	4981	4582	1983	4984	4985	4986	4987	4988	4989	4990	4991	4992	4993	4994	1995	4996	4997	4998
55	SEQ NO. (DNA)	1477	1479	1479	1480	1481	1482	1483	1484	1485	.486	.487	1488	:483	1490	1491	1492	1453	1494	1495	1496	1497	1498

			1		ī		Ī	_	_	e	i	-	1							i	 -	_
5	Function	hypothetical protein	30S ribosomal protein S1		hypothetical protein					inosine-uridine preferring nucleoside hypolase (purine nucleosidase)	aniseptic resistance protein	ribose kinase	criplic asc operon repressor, ranscription regulator		excinuclease ABC subunit B	typothetical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothelical protein	Pydrolase
		hypo	30S		hуро		_			inosi hypo	anis	rbo	cript		excii	rypc	ryp (γğ		hyp	P.ypc	l'yd
15	Matched length (a a)	163	451		195				ļ	310	517	293	337	-	671	152	121	279		939	150	214
20	Similarity (%)	583	71.4		93.9					810	53.8	67.6	65.6		83.3	59.2	80.2	77.1		47.2	0.89	58 4
	Identity (%)	31.9	39.5		80.5					61.9	23.6	35.5	30.0		57.4	33.6	38.8	53.8		23.2	32 7	30.4
<i>25</i> (pənu	ane.)r	PSA		rmentum					ž	s)sK	ScG		oniae	schii	tfH	tfG			or A3(2)	cbL
So Table 1 (continued)	Homologous gene	Streptomyces coelicolor SCH5 13 yafE	Escherichia coli K12 rpsA		Brevibacterium lactofermentum ATCC 13859 yacE					Crithidia fasciculata ıunH	Staphylococcus aureus	Escherichia coli K12 rbsK	Escherichia coli K12 ascG		Streptococcus pneumoniae plasmid pSB470 uvrB	Methanococcus jannaschii MJ0531	Escherichia coli K12 ytfH	Escherichia coli K12 ytlG		Bacillus sublilis yvgS	Streptomyces coelicolor A3(2) SC9H11.26c	Escher chia coli K12 ycbL
35	db Match	Sp YAFE_ECCLI	Sp.RS1_ECOLI E		BRELA					Sp.IUNH_CRIFA	SP. QACA_STAAU	\vdash	İ		sp.UVRB_STRPN	sp.Y531_METJA	ECO.1	ECOLI			gp.SC9H11_26	sp:YCBL_ECOLI
40		 		10	so:YACE_	_				- -		1			4 -		SP.YTFH_	 -	_	9 pir H7004C		+
	ORF (bp)	654	1458	1476	ວວອ	1098	582	246	957	936	1449	921	1038	798	2097	441	381	978	684	2349	9.5	000
45	Terminal (rt)	1420071	1422556	142,096	1425878	1427354	1427376	-427804	1429246	1428224	1429194	1430659	1431575	1433547	1436201	1436775	.436869	1439201	.440025	1438212	:440675	:441793
50	Initial (nt)	1420724	1421099	142257:	1425279	1426257	1427957	1428049	1428290	5007 1429159	1430642	1431579	:432612	5011 1432750	5012 :434105	1513 5013 1436335	1514 5014 1437249	1437356	1439343	1440560	1518 5018 1441586	1442392
	SEQ NO		5033	5031	5032		•	5005	5005	5007	5008	5009		5011	5012	5013	5014	5015	5016	5017	5018	5019
55	SEQ NC DNA	1499 4939	1500	1501	1502 ,	1503 5003	1504 5034	1505	1506		1508			1511	1512	1513	1514	1515 5015	1516	1517	1518	1519

phenylalanyl-tRNA synthetase alpha chain sn-glycerol-3-phosphate transport sn-glycerol-3-phosphate transport sn-glycerol-3-phosphate transport sn-glycerol-3-phosphate transport ATP-binding protein hypothetical protein ;245 (uvrA region) hypothetical protein 1246 (uvrA region) translation initiation factor IF-3 5 excinuclease ABC subunit A 50S ribosomal protein L35 50S ribosomal protein L20 glycerophosphoryl diester system permease protein system permease proein IRNA(guanosine-2-0-)-Function hypothetical profein phosphodiesterase methlytransferase 10 system protein 15 Matched length (a a) 952 8 179 142 292 436 393 244 117 153 9 74 Similarity 56.0 50.0 78.2 71.3 71.2 9 9 8 20 8 57. 47 76 92 7 6 27 Identity 56.2 52.5 75.0 44.0 470 28.2 8 41.7 33.2 33 2 34 띘 25 Aeropyrum pernix K1 APE0042 Rhodobacter sphaeroides infC Escherichia coli K12 MG1655 trmH Escherichia coll K12 MG1655 Escherichia coli K12 MG1655 Escherichia coli K12 VG1655 Escherichia coli K12 VIG1655 Table 1 (continued) Pseudomonas syringae pv. syringae Escherichia coli K12 uvrA Homologous gene Mycoplasma fermentans Bacillus subtilis 168 syfA Bacillus subtilis glpQ Micrococcus luteus Micrococcus Inteus 30 ngpB ugpA upgE ngpC 35 SP.GLPQ_BACSU SP:SYFA_BACSU SP. RL35_ MYCFE Sp:UVRA_ECOLI SP.TRMH_ECOLI Sp:UGPC_ECULI sp:UGPA_ECOLI sp:UGPE_ECOLI sp:UGPB_ECOLI sp.QL20_PSESY Sp. IF3_RHOSH db Match PIR J00406 PIR:E72756 PIR JQ0406 40 1314 1224 1020 2847 2124 249 ORF (bp) 306 267 192 381 903 834 7.7 594 450 717 822 567 1445333 1450692 45 1456948 1458066 Terminal 1443810 1444944 1445323 1448358 1448390 1448581 1449025 1449119 1452653 1454115 | 1455338 1454102 1455350 1446874 1454071 1451820 Ē 1450918 1456036 1456355 1444115; 1452758 1448645 1454350 1457047 1446159 1447446 1450125 1442487 1445333 1447732 1449940 1451820 Ξ 50 5020 9 5036 5021 5023 5024 5026 5027 502B 5028 5033 5034 5035 5037 (8.8.) 5022 5025 5030 5031 5032 1520 .524 (ANC) .523 525 528 .528 533 525 527 -529 532 55

DN:EU. - EU

			 ;		-	—		 -								_					
5		Function	phenylalanyl-tRNA synthetase beta chain			3-O-acyltransferase		N-acetylglufamate-5-semialdehyde dehydrogenasa	glutamate N-acetyltransferase	acetylornithine aminotransferase	argininosuccinate synthetase		argininosuccinate lyese				hypothetical protein	tyrosyl-IRNA synthase (tyrosine tRNA ligase)	hypothetical protein		hypothetical protein
			phenylala chain		esterase	macrolide		N-acetylglutama dehydrogenase	glutamate	acetylorni	argininosu		argininosu				hypothetic	tyrosyl-tRNA (RNA ligase)	hypothetic		hypothetic
15		Matched length (a.a.)	343		363	423		347	388	391	401		478				50	417	149		42
20		Similarity (%)	71.7		55.1	56.3		99.1	99.7	99.2	99.5		0.06				72.0	9.62	64.4		75.0
		Identity (%)	42.6		26.5	30.0		98.3	99.5	0.66	99.5		83.3				48.0	48.4	26.9		71.0
25	inued)	90	IG1855		estA	aciens		micum	micum	micum	micum		micum				SaR		chii		N.gg
30	Table 1 (continued)	Homologous gene	Escherichia coli K12 MG1855 syf8		S:reptomyces scables estA	S:reptomyces mycarofaciens mdm3		Corynebaclerium glutamicum ASO19 argC	Corynebaclerium glutamicum ATCC 13032 argJ	Corynebacterium glutamicum ATCC 13032 argD	Corynebac:erium glutamicum ASO19 argG		Corynebacterium glutamicum ASO19 argH				Escherichia coil K12 ycaR	Bacillus subtilis syy1	Methanococcus jannaschii MJ0531		Chlamydia muridarum N.gg TC0:29
35								2 8 8					28			1					45
40		db Match	sp.SYFB_ECOU		SP.ESTA_STRSC	Sp.MDMB_STRMY		gp.AF005242_1	sp ARGJ_CORGL	sp:ARGD_CORGL	sp.A.SSY_CORGL		gp:AF048764_1				sp:YCAR_ECOLI	sp.SYY1_BACSU	sp:Y531_METJA		PIR-F81737
		ORF (bp)	2484	17.1	972	1383	402	1041	1164	1173	1203	1209	1431	1143	1575	612	177	1260	465	390	141
45		Terminal (nt)	1460516	1458198	1462128	1453516	1463934	1465123	1466373	1468548	147-413	1470154	1472907	1474119	1475693	1476294	1476519	1477809	14/7929	1478503	1483335
50		Initial (nt)	5038 1458133.	5039 1458966	5040 1461157	1462134	1463533	5043 1464083	1455210	5045 1457376	5046 1470211	1471362	5048 1471477	1472577	1474119	1475683	1476343	1476550	1478293	1478892	1483475
		SEO NO (a a)	5038	5039	5040	5041	5042	5043	5044	5045	5046	5047	5048	5049	5050	5051	5052	5053	5054	5055	5056
55		SEQ VO (JNA)	1538	1539	1540	1541	1542	1543	1544	1545	1546	1547	1548	1549	1550	1551	1552	1553	1554	1555	1556

ſ			T	1	Τ-		\neg				T	i.	- _T			· — ·	T	T		
5		2	711 10								mmonia			-binding	ng protein or ive nacterial			rase		e B
10	Furction	hypothetical protein	translation initiation factor if -2	hypothetical protein	richard and and	hypothetical protein	hypothetical protein	DNA repair protein	hypothetical protein	hypothetical protein	CTP synthase (UTP-ammonia ligase)	nypothetical protein	tyrosine recombinase	tyrosin resistance ATP-binding protein	coromosome partitioning protein or ATPase involved in active partitioning of diverse bacterial plasmids	hypothelical protein		thiosulfate sulfurfransferase	hypothetical protein	ribosomal large subunit pseudouridine synthase B
15	Matched length (a a)	84	182	311		260	ì	574	394	313	549	157	300	551	258	251		270	172	229
20	Similarity (%)	0.99	67.0	1 00		9.69	31.6	63.4	73.1	68.1	76.7	71.3	71.7	59.7	73.6	64 5		67.0	65.7	72.5
	identity (%)	61.0	36.3	29.6		38.5	31.6	31.4	41.9	30.4	55.0	36.3	39.7	30.5	44.6	28.3		35.6	33.1	45.9
25 (pant	92		ļ				losis	C.N	losis	losis	ပ္		s xerD	<u>5</u>	s perA					
% Table 1 (continued)	Homologous gene	Ch'amydia oneumoniae	Borrelia burgdorferi IF2	Bacillus subtilis yzgO		Bacillus subtilis yaxC	Mycobacterium tuberculosis H37Rv Rv1695	Escherichia coli K12 recN	Nycobacterium tuberculosis H37Rv Rv1697	Nycobacterium tuberculosis H37Rv Rv1698	Escherichia coli K12 pyrG	Bacillus subtilis yakG	Staphylococcus aureus xerD	Streptomyces fradiae thC	Caulobacter crescentus parA	Bacillus subtitis ypuG		Datisca glomerata tst	Bacillus subtilis ypuH	Eacillus subtilis rluB
35		ြင်	8				≨Î	ű	ΣÏ	žχ	 	+-	 					0	+-	
40	db Match	GSP: Y35814	sp.!F2_BORBU	sp.YZGD_BACSU		sp:Yaxc_BAcsU	sp.YFJB_HAEIN	SP. RECN_ECOLI	pir.H70502	pir:A70503	sp.PYRG_ECOLI	SP.YOKG_BACSU	go AF093543 1	sp.TLRC_STR=R	gp CCU87804_4	sp YPUG_BACSU		ap AF109153_1	SPUH BACSU	
	ORF (0p)	273	1353	984	162	819	873	1779	1191	963	1662	657	912	1530	783	765	561	┿	+	756
45	Terminal (nt)	1483724	1486327	1497025	1487193	1488056	1489018	1490881	1492134	1493109	1495174	1495861	1496772		1499645	1500695	1500911	1502578	1503.76	
50	Initial (nt)	1483936	1484675	1486042	1487032	1487238	5062 1489145	1489103	5064 1490944	1492147	1493513	1495205	_1_	1498324	1570 5070 1498863	1499931	150147:			
	SEU	5057			5060		5062	5063	5064	5005	9905	5067	506a	9095	5070	1571 5071	5072	5073	1574 5774	1575 5075
55	<u></u>	(UNA)	_			 -	-	1563		1565	1556	1567	4 7 A	1569	1570	1571	1572	15.73	1574	1575

subunit

preprotein translocase SecA signal transduction protein

93.2

75.8

Mycobacterium smegmatis garA

Bacillus subtilis secA

2289 SP.SECA_BACSU

1515458

5091 5092

pir C69334

1164

1515799

1516962

5090

1593 1591 1592

gp: AF173844_2

429

1520029

1519601

61.7

74.4

41.9

Mycobacterium tuberculosis H37Rv Rv1828

sp:YODF_MYCTU

756

1520945

5093, 1520190

1593

hypothetical protein

hypothetical protein

133

63

30.8

Mycobacterium tuberculosis H37Rv Rv1828

Sp.YODE_MYCTU

633

1521589

1520557

5094

1594

2-hydroxy-6-oxohepla-2,4-dienoale liydrolase

> 210 805 132 234

8

25.2

Archaeoglobus fulgidus AF0675

hypothetical membrane protein 5 Function GTP binding protein hypothetical protein methyl:ransferase Na+/H+ antiporter cytidylate kinase ABC fransporter 10 ABC transporter 15 Matched length (a a) 220 435 232 499 602 257 499 30 Similarity 736 740 67.2 73.2 က S 3 20 8 ၾ 57 61 Identity 42.8 38.6 36.2 31.2 39.7 3 29.7 25.7 36 25 Corynebacterium striatum M82B tetA Corynebacterium striatum M82B tetB Table 1 (continued) Mycobacterium tuberculosis Rv3342 Escherichia ccli K12 o249#9 ychJ Bacillus subtilis ATCC 9372 Homologous gene Escherichia coli K12 ygiE Bacillus subtilis yphC Bacillus subtilis cmk 30 35 SP YPHC_BACSU sp:YX42_MYCTU SPIKCY BACSU ECOL Sp:YCHJ_ECOLI gp:AB029555_1 db Match prf 25°3302B prf 25-3302A sp:YGIE 40 2RF (bp) C69 1557 813 1554 1767 1548 789 699 493 925 375 189 186 420 45 Terminal 1504945 1506573 1507917 1512977 5078 | 1597327 | 1506662 1507405 1510366 1512132 1512980 1510843 1514693 1514974 1515815 1515408 1505017 1508813 1515159 1515782 1507932 1508729 1512189 1514505 1504256 1510366 1511667 1515396 1514527 in: Ê 50 5082 5076 5079 5080 5081 5085 5086 5083 5084 5088 5089 (a a) 5077 5087 ş

119

55

(ANC)

1576

1577

1578

1579

1580

581

585

1583

1584

1586 1587 1589

SEQ

Ş

5		Function	hypothetical protein					hemolysin	hemolysin		DEAD box RNA helicase	ABC transporter ATP-binding protein	6-phosphogluconate dehydrogenase	thioesterase		nodulation ATP-binding protein I	hypothetical membrane protein	transcriptional regulator	posphonates transport system permease protein	phosphonates transport system permease protein	phosphonates transport ATP-binding protein		
15	-	Matched length (a.a.)	178				+	342	65	\dashv	374	245	492	121		235	232	27.7	281	268	250		
20		Similarity: (%)	84.3					0.69	65.5		69.5	1 99	99.2	8.79		68.1	76.3	63.9	63.4	62.3	72.0	<u> </u>	
		Identity (%)	71.4					33.9	31.4		41.2	34 3	0 66	39 7		39.6	43.1	26.7	29.9	27.2	44.8		_
30 Ferring 35	lable I (commused)	Homologous gere	Mycobacterium tuberculosis H37Rv Rv1828					Bacilus subtilis yhdP	Bacilus subtilis yhdT		Thermus thermophilus herA	Mycobacterium tuberculosis H37Rv Rv1348	Brevibacterium flavum	Mycobacterium tuberculosis H37Rv Rv1847		Rhizobium sp. N33 nod!	Mycobacterium tuberculosis H37Rv Rv1686c	Escherichia coli K12 yfhH	Escherichia coli K12 phr.E	Escherichia coli K12 phnE	Escherichia coli K12 phnC		
40		db Match	sp.YODE_MYCTU	:				SP. YHDP_BACSU	SP YHDT BACSU		gD TTHERAGEN_1	sp YD48_MYCTU	gsp:W27613	pir G70664		Sp. NODI_RHIS3	pir.E70501	SP.YFHH_ECOLI	sp.PHNE_ECOL:	sp.PHNE_ECOL!	sp PHNC_ECOLI		
		OQF (bp)	573	510	1449	009	930	1062	1380	219	1344	735	1476	462	675	741	741	973	846	. 80	80.	210	1050
45		Termina (n:)	1522343	1522432	1523052	1525973	1524568	1525473	1526534	1528185	1527987	1530220	1530341	1532394	1532996	1533781	1534521	1534529	1535382	1536227	1537030	1538968	1537870
50		Initial (nt)	1521771	1522941	1524500	1525374	1525497	1526534	.527913	.527969	.529330	1529485	1531816	1531933	1532322	1533041		1535431		1537033	1537833	657862	1538919
		SEQ NO		9609	5097	5398	5399	:	5101	5102	5103	5104	5105	5106	5107	5108	5109	5110	5111	5112	5113	5114	5115
55		SEQ NO.		1596	1597	1598	1599	1600 3100	1601	1602	+	1604	1605	1606	1607	1608	1609	1610	1611	1612	1613	1614	1615

10	Function		phosphomethylpyrimidine kinase	hydoxyethylthiazole kinase	cyclopropane-fatty-acyl-phospholipid synthase	sugar transporter or 4-methyl-o- puthalate/phthalate permease	purine phosphoribosyltransferase	hypothetical protein	arsenic oxyan·on-translocation pump membrane subunit		hypothetical protein	sulfate permease	hypothetical protein					hypothetical protein	dolichol phosphate mannose synthase	apolipoprotein N-acyltransferase		secretory lipase
15	Matched length (a.a)		262	249	451	468	156	206	361		222	469	97					110	217	527		392
20	Similarity (%)		70.2	77.5	55.C	66.9	59.0	68.5	54.6		83.8	83.6	20.0					87.3	71.0	55.6		55.6
	Identity (%)		47.3	46.6	28.6	32.5	36.5	39.8	23.3		62.2	51.8	39.0					71.8	39.2	25.1		23.7
35 Table 1 (continued)	Homologous gene		Salmonella typhimurium thiD	Salmonella typhimurium LT2 thiM	Mycobacterium tuberculosis H37Rv JfaA1	Burkholderia cepacia Pc701 mopB	Thermus flavus AT-62 gpt	Escherichia coli K12 yebN	Sinorhizobium sp. As4 arsB		Streptomyces coelicolor A3(2) SCI7.33	Pseudomonas sp. R9 ORFA	Pseudomonas sp. R9 CRFG					Mycobacterium tuberculosis H37Rv Rv2050	Schizosaccharomyces pombe dpm1	Escherichia coli K12 Int		Candida albicans lip1
40	db Match		SP.TH.D_SALTY	SP.THIM_SALTY	p:r.H70830	prf 2223339B	prt 2120352B	SP YEBN_ECOLI	gp AF178758_2		gp.SCI7_33	gp.PSTRTETC1_6	GP.PSTRTETC1_7					pir:A70945	prf.2317468A	sp LNT_FCOLI		gp:AF188894_1
	ORF (bp)	702	1584	834	1314	1386	474	669	966	483	693	1455	426	615	207	189	750	366	9 30	1635	741	1224
45	Terminat (nt)	1538963	1539820	1542115	1546289	1546307	1547567	1545349	1550398	1550951	1552237	1553972	1553297	1554070	1555067	1554891	1555086	1556771	1557014	1557859	1559497	1560437
50	Initial (nt)	1539664	1541403	1542922	.544976	1547692	1548440	15486511		1550469	1551545	1552518	1553722	5128 1554684	1554861	1555079	1555835	1556376	1557823	1559493	1560237	1561660
	SEQ NO.	5116	5117	5118	5119	5120	5121	5122		5124	5125	5126	5127	5128	5129	5130	5131	5132	5133	5134	5135	5136
55	SEO NO.	1616	1617	1618	1619	1620	1621	1622	1623	1624	1625	1626	1627	1628	1629	1630	1631	1632	1633	1634	1635	1636

		T	-т	-т	Т			7		v			<u>_</u>	₁	٠,	1		\neg
5		erase					oeptidase		elicase	rensloces								
10	Function	precorrin 2 methyltransferase	precornin-6Y C5, 15 methyltransferase			oxidoreductase	dipeptidase or X-Pro dipeptidase		A ⁻ P-dependent RNA helicase	sec-independent protein translocase protein	hypothetical prote.n	hypothelical protein	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical protein	hypothetical protein
15	Matched length (a a)	291	411			244	382		1030	268	95	317	324	467		61	516	159
20	Similarity (%)	26.7	8.09			75.4	61.3		55.7	62.7	69.4	61.2	64.8	77.3		80.3	74.2	20.0
	Identity (%)	31.3	32.4			54.1	36.1		26.5	28.7	. 44.7	31.9	32.4	53.1		54.1	48.6	42.0
<i>25</i>		s				s	_					<u>s</u>		ي.		<u>.e.</u>	. <u>s</u> .	2014
35 Octioned)	Homologous gene	Mycobacterium tuberculosis H37Rv cobG	Pseudornonas denitrificans SC510 cobL			Mycobacterium tuberculosis H37Rv RV3412	Streptococcus mutans LT11 pepQ		Saccharomyces cerevisiae YJL050W dob1	Escherichia coli K12 latC	Mycobacterium leprae MLCB2533.27	Mycobacterium tuberculosis H37Rv Rv2095c	Mycobacterium leprae MLCB2533.25	Mycobacterium tuberculosis H37Rv Rv2097c		Mycobacterium tuberculosis H37Rv Rv2111c	Mycobacterium tuberculosis H37Rv Rv2112c	Aeropyrum pernix K1 APE2014
		-	1								l							
40	db Match	pir:C70764	sp.COBL_PSEDE			sp:YY12_MYCTU	gp.AF0:4460_1		sp:WTR4_YEAST	sp.TATC_ECOLI	sp:YY34_MYCLE	sp:YY35_MYCTU	Sp:YY36_MYCLE	sp:YY37_MYCTU		pir:870512	pir:C70512	21R:H72504
	CRF (b3)	774	1278	386	246	738	1137	639	2787	1002	315	981	972	1425	249	192	1542	480
45	Term:nal (rt)	1562553	1562525	1564237	1564482	1564565	1565302	156/106	.567117	1569932	1571068	1571506	1572492	1573491	1575205	-574945	1576947 1575406	1577805
50	Initial (nf)	1561780	1563802	1563872	1564237	1565302	1566438	1566468	5144 1569903	1570933	1571382	1572486	1573463	1574915	1574957	1575136		1577327
	SEQ NC		5138	5139	5140	5141	5142	5143	5144	5145	5.46	5147	5148	5.49	5150	5151	5152	5153
55	SEQ NO (DNA)		1638	.639	1640	.641	-642	1643	.644	.645	1646	.647	.648	.649	1 059.	:65:	.652	:653

		ne-like							e:		ise							
5	Function	se (chaperor	ırtate	ptidase	Ē	ted protein	ce protein	ia-lyase	syltransfera	comutase	ofolate ihyitransfera		de reductase	ce protein	se	;e		nthetase
10	Fu	AAA family ATPase (chaperone-like (unction)	protein-bela-aspartale methyltransferase	aspartyl aminopeptidase	hypothelical protein	virulence-associated protein	quinolon resistance protein	aspartate ammonia-lyase	ATP phosphor bosyltransferase	beta-phosphoglucomutase	5-methylletrahydrofolate homocysteine methyltransferase		alkyl hydroperoxide reductase subunit F	arsenical-resistance protein	arsenate reductase	arsenate reductase	•	cysteinyl-IRNA synthetase
15	ļ	₹5	pro	asb	hyp	viru	qui	asp	ATF	pet	5-m hon		alk)	arse	ars	a.s		cys
15	Matched length (a.a.)	545	281	436	269	69	385	526	281	195	1254		366	388	129	123		387
20	Similarity (%)	78.5	79.0	67.2	71.4	72.5	61.0	8 66	97.5	63.1	62.4		49.5	63.9	64.3	75.6		64.3
	Identity (%)	51.6	57.3	38.1	45.4	40.6	21.8	99 B	96.8	30.8	31.6		22.4	33 0	32.6	47.2		35.8
25		u					23	33	•				Ä		nid			
30 - dect	Hornologous gene	Rhodococcus erythropolis arc	Mycobacterium leprae pim T	Ното sapiens	Mycobacterium tuberculosis H37Rv Rv2119	Dichelobacter nodosus A198 vapl	Staphylococcus aureus norA23	Corynebacterium glutarricum (Brevibacterium flavum) MJ233 aspA	Corynebaclerium glutamicum ASO19 hisG	Thermotoga maritima MSB8 TM1254	Escherichia coli K12 metH		Xanthomonas campestris ahpF	Saccharomyces cerevisiae S288C YPR201W acr3	Slaphylococcus aureus plasmid pl258 arsC	Mycobacterium tuberculosis H37Rv arsC		Escherichia coli K12 cysS
35		- Shods	Aycob	ошо	Aycob 137R\	Dichel vapl	Staph)	Conya (Brevil aspA	Soryn \SO1	Thermo: TM1254	sche		antho	sacch 3288C	Staphyloco pi258 arsC	Aycob 137Rv		sche
40	db Match	prf 2422382Q	pi::S72844 N	gp AF005050_1 H	or:870513	Sp.VAPI_BACNO	prf.2513299A	sp.ASPA_CORGL	gp:AF050166_1	pir:H72277	sp:METH_ECOL! E		6 SP. AHPF_XANCH X	sp.ACR3_YEAST	sp ARSC_STAAU p	pir G70964		2 sp SYC_ECOLI : E
	CRF (bp)	1581	834	1323	834	264	1209	1578	843	693	3663	570	1026	1176	420	639	378	1212
45	Term ral (nl)	1576951	1578567	1579449	1581640	1582114	1582273	1583913	1595603	1586812	1587573	1591912	1591941	1594512	1594951	1595668	1595844	1596249
50	Iritial (nt)	1578531	1575400	158C771	1580807	1581851	1583481	1585490	1586445	1587504	1591235	:591343	1592966	7553337	1594532	1595030	159621	1597450
	SEQ NO (a a.)	5154	5155	5156	5157	5158	5159	5160	5161	5162	5163	5154	5155	5166	5167	5168	5169	51/0
رر 55	SEQ NO (DNA)	.654	:655	1656	.657	1659	1659	1660	1661	1562	1563	1564	1565	1666	1667	1660	1669	1670

	_					-1					U I		T		- T					
5		Function	bacitracin resistance protein	oxidoreductase	ıtein	dihydroorotate dehydrogenase			osase		bio operon ORF I (blotin biosynthelic enzyme)	Neisserial polypeptides predicted to the useful anligens for vaccines and diagnostics		ABC transporter		ABC transporter		puromycin N-acetyltransferase	LAO(lysine, arginine, and ornithine)/AO (arginine and ornithine)/ransport system kinase	methylmalonyl-CoA mutase alpha subunit
			bacitra	oxidor	Ipoprotein	dihydr			Iransposase		bio operc enzyme)	Neisserial p he useful ar diagnostics		ABC tr		ABC tr		purom	LAO(I) ornithi ornithi	methyln subunit
15		Matched length (a.a.)	255	326	359	334			360		152	198		597		535		56	339	741
20		Similarity (%)	69.4	62.6	53.5	67.1			55.3		75.0	33.0		68.7		1.79		58 4	723	87.5
		Identity (%)	37.3	33.4	27.0	44.0			34.7		44.1	26.0		43.6		36.8		32.4	43.1	72.2
25	nen)	c c	Ą	ens	osis				trpA		ω			m M82B		m M82B)ac	~	ensis
30 +	lable I (commueu)	Homologous gene	Escherichia coli K12 bacA	Agrobacterium tumefaciens mocA	Mycobacterium tuberculosis H37Rv lppL	Agrocybe aegerita ura1			Pseudomonas syringae trpA		Escherichia coli K12 ybhB	Neisser a meningitidis		Corynebacterium striatum M82B tetB		Corynebacterium striatum M82B tetA		Streptomyces anulatus pac	Escherichia coli K12 argK	Streptomyces cinnamonensis A3823.5 mutB
35				∢ E	≥I	\vdash		L	AD_ P			2		0 2		0 2		S		1
40		db Match	SP. BACA_ECOLI	prf.2214302=	pir.F70577	1113 sp. PYRD_AGRAE			go PSESTBCBAD_1		sp:YB-4B_ECOLI	GSP:Y74829		7 prf 2513302A		prf.2513302B		pir.JU0052	1089 sp. ARGK_ECOLI	sp.MUTB_STRCM
		ORF (bp)	879	948	666	1113	351	807	1110	488	531	729	633	1797	249	1587	351	609	1089	2211
45		Terminal (nt)	1597745	1595614	1600677	1501804	1501931	1603466	1504629	1604830	1505281	1606689	1608248	1505861	1609335	1507661	1509842	1610844	1311150	1512234
50		nitial (nt)	1598623	5172 1598667	1599679	1600692	1602281	1602660	1603520	:605215	1605811	1605061	1607645	1607657	1609087	1639247	1610192	.610236	:612238	-614444
		SEO NO	5171	5172	5173	5174	5175	5175	5177	5178	5179	5180	5181	5182	5183	1684 5184	5105	5186	5187	5188
55		SEO NO (DNA)	1671	1672	1573	1674	1675	1576	1577	1578	1679	1680	1681	1682	1683	1684	1605	1686	1687	1588

f		i			т	1	 ;	i		Т							٠,	
5	-	utase beta	e prolein		le protein	e protein	 						٥ر					
10	Function	methylmalonyl-CoA mutase bela subunit	hypothetical membrane protein		hypothetical membrane protein	hypothetical membrane protein	hypothelical protein		ferrochelatase	invasin		aconitate hydratase	transcriptional regulator	GMP synthetase	hypothetical protein	hypothetical protein		hypothetical protein
15	Matched length (a.a.)	610	224		370	141	261		364	611		959	174	235 (221	98		446
20	Similarity (%)	68.2	70.1		0.78	787	72.8		65.7	56.5		85.9	81.5	51.9	62.0	80 2		1 96.1
	identity (%)	41.6	39.7		64.1	44.7	51.0		36.8	25.5		6.69	54.6	21.3	32.6	37.2		61.2
<i>25</i> (p _e		nsis	sis		sis	sis	(3(5)		reichil			SiS	sis	=	(2)6	:=		58
S Table 1 (continued)	Homologous gene	Strep:omyces cinnamonensis A3823.5 mutA	Mycobacterium tuberculosis H37Rv Rv1491c		Mycobacterium tuberculosis H37Rv Rv1488	Mycobacterium tuberculosis H37Rv Rv1487	Streptomyces coelicolor A3(2) SCC77.24		Propionibacterium freudenreichll subsp. Shermanii hemH	Streptococcus faecium		Mycobacterium tuberculosis H37Rv acn	Mycobacterium tuberculosis H37Rv Rv1474c	Methanococcus janraschli N.J1575 guaA	Streptomyces coelicolor A3(2) SCD82.04c	Methanococcus jannaschii MJ1558		Neisseria meningitidis MC58 NMB1652
35						21			i -			21	2 1	22	S	22		<u>o</u>
40	db Match	sp.MUTA_STRCM	sp:YS13_MYCTU		sp:YS09_MYCTU	p.r B70711	gp SCC77_24		sp HEM2_PROFR	Sp.P54_ENTFC		pir F70873	pir E70873	pir F54496	gp:SCD82_4	pir:E64494		2 gp: AE002515_
	ORF (bp)	1848	723	297	1296	435	843	783	1110	1800	498	2829	564	756	663	267	393	1392
45	Terminal (nt)	1614451	1617300	1617994	1318321	1519672	1620167	1621838	1621841	1823027	1625428	1629107	1629861	1630668	1630667	1631926	1631353	-633324
50	Initial (nt)	1616298	16.6578	.617398	1619616	1620105	1621009	1621056	1622950	1624826	5198 1625925	1626279	1629298	1629913	1531329	1631660 1631926	1631745	1631933
	SEQ NO (e a.)	5189	5130	5191	5192	5193	5194	5195	5196	5137	5198	5199	5200	5201	5202	5203	5204	5205
55	SEO NO (DNA)	1689	1690	1691	1697	1693	1694	1695	1696	1697	1698	1699	1700	1701	1702	1703	170	1705

5		Function	antigenic protein	antigenic protein	cation-transporting ATPase P		hypothetical protein					host cell surface-exposed lipoprotein	integrase	ABC transporter ATP-binding protein		sialidase	Iransposase (IS1628)	Iransposase protein fraginent	hypothetical protein		dTDP-4-keto-L-rhamnose reductase	nitrogen fixation protein
15		Matched length (a.a.)	113	152	883		120					107	154	497		387	236	37	88		107	149
20		Similarity (%)	0.09	0.69	73.2		58.3			;		73.8	60 4	64 4		72.4	100 0	72.0	43.0		70.1	85.2
		identity (%)	54.0	59.0	42.6		35.8					43.0	34.4	32.8		51.9	9.66	64.0	32.0		32.7	63.8
25	ontinued)	s gene	eae ORF24	eae	PCC6803		icolor A3(2)					rmophilus	L int	12 yıjK		didifaciens A	glutamicum pAG1 tnpB	glutamicum			si Orsay	prae U7
30	Table 1 (continued)	Homologous gene	Neisseria gonorrhoeae ORF24	Neisseria gonorrhoeae	Synechocystis sp. PCC6803 sl11614 pma1		Streptomyces coelicolor A3(2) SC3D11.02c					Streptococcus thermophilus phage TP-J34	Conynephage 304L int	Escherichia coli K12 yjjK		Micromonospora vindifaciens ATCC 31146 nedA	Corynebacterium glutamicum 22243 R-plasmid pAG1 InpB	Corynebacterium glutamicum TnpNC	Plasmid NTP16		Pyrococcus abyssi Orsay PAB1C87	Mycobacterium leprae MLCL536.24c nifU7
35		<u> </u>	Z	Z			ຫ ທ					o a							2			
40		db Match	GSP-Y38838	GSP Y38838	SP. ATA1_SYNY3		gp:SC3D11_2		-			pri 2408488H	prf 2510491A			SP. NANH_MICVI	gp.AF121000_8	G>U.AF164956_23	GP:NT11NIS		pir B75015	pir. S72754
		ORF (bp)	480	456	2676	783	489	1362	357	156	162	375	458	1629	1476	1182	708	243	261	285	423	447
45		Terminal (nt)	1612109	1612682	1	1633781	.636244	:638442	1638775	1639520	1639817	1640155	1641001	1641046	1642743	1644318	1646368	1645063	1645601	1647133	1547212	1647651
50		Initial (nt)	483758A	1633137	1633566	1634563	1636732	1637381	1639132	1639365	1639656	163978:	16,0546		1644218		1645661	164582;	1645861	1723 5223 1646549	1724 : 5224 -647634	-648097
		SEO	(8.6)			5209		5211				5215	57.6	5217	5213	5219	5220	5221	5222	5223	5224	1725 5225
55	:مد				17.08	1709		1711	 -			1715	1746		1718	1719	1720	1221	1722	1723	1724	1725

5	Function	hypothetical protein	nitrogen fixation protein	ABC transporter ATP-binding protein	hypothetical protein	ABC transporter	DNA-binding pretein	hypothetical membrane protein	ABC transporter	hypothetical protein	hypothetical protein		se	quinone oxidcreductase	cytochrome o ubiquinol oxidase assembly factor / heme O synthase	Iransketolase	transaldolase	
15	Matched length (a.a.)	52 hypoth	4.; nıtroge	252 ABC tr	377 hypoth	493 ABC 1r	217 DNA-b	518 hypoth	317 ABC tr	266 hypoth	291 hypoth		418 Felicase	323 quinor	cytochron 295 assembly synthase	875 transk	358 transa	
20	Similarity (%)	57.0	84.4	89.3	83.0	73.0	71.4	87.8	77.3	74.8	748		51.0	6.07	8.99	100 0	85.2	
	Identity (%)	48.0	64.7	70.2	55.2	41.0	46.1	36.3	50.2	41.0	43.0		23.4	37.5	37.6	150.0	62.0	
55 Table 1 (continued)	Homologous gene	Aeropyrum pernix K1 APE2025	Mycobacterium leprae nifS	Streptomyces coelicolor A3(2) SCC22.04c	Mycobacterium tuberculosis H37Rv Rv1462	Synechocystis sp. PCC6803 slr0074	Streptomyces coelicolor A3(2) SCC22 08c	Mycobacterium tuberculosis H37Rv Rv1459c	Mycobacterium leprae MLCL536.31 abc2	Mycobacterium leprae MLCL536.32	Mycobacterium tuberculosis H37Rv Rv1456c		Pyrococcus horikoshii PHC450	Escherichia coli 'K12 qor	Nitrohacter winogradskyi coxC	Corynebacterium glutamicum ATCC 31833 tkt	Mycobaclerium leprae MLCL536.39 tal	
35 40	db Match	PIR: C72506 A	pir.S72761 N	gp.SCC22_4	pir.A70872	sp:Y074_SYNY3	gp:SCC22_8	pir F70871	pir.S72783 A	pir.S72778	pir.C70871		pir.C71156 F	Sp. GOR_ECOLI	gp:NWCOXABC_3 h	gp:AB023377_1	SP:TAL_MYCLE	
	ORF (bp)	162	1263	756	176	.443	693	1629	1020	804	666	357	1629	975	696	2100	1080	1164
45	Terminal (~t)	1648709	1648100	1649367	1650249	1651433	1652894	1655671	1655700	1657515	:858675	•659140	-661136	1662552	1662630	1666502	1667752	1666601
50	Initial (nt)	1648548	1649362	1650122	1651424	1652875	1653586	1654043	1655681	5234 1656712	5235 1557677	1659496	1659508	1661578	1663598	1664403	1666673	1667764
	SEO NO (a.a.)	5226	5227	5228	5229	5230	5231	5232	5233	5234	5235	5236	5237	5238	5239	5240	5241	5242
55	SEQ NO.		17271	1728	1729	1730	1731	1732	1733	1734	1735	1736	1737	1738	1739	1740	1741	1742

r	,	-	···				-		_	_								
5			e 6.	Se							Se	ein		ate				it C
10	Function	glucose 6 phosphate dehydrogenase	oxppcycle protein (glucose phosphate dehydrogenase assembly protein)	6-phosphogluconolactonase	sercosine oxidase	transposase (IS1676)	sarcosine oxidase				triose-phosphate isomerase	probable membrane prolein	phosphoglycerate kinase	głyceraldehyde-3-phosphate dehydrogenase	hypothetical protein	hypothelical protein	hypothetical protein	excinuclease ABC subunit C
15	Matched length (a.a.)	484	318	258	128	500	205				259	128	405	333	324	309	281	701
20	Similarity (%)	100.0	71.7	58.1	57.8	46.6	100.0				9.66	51.0	98.5	99.7	87.4	82.5	76.2	61.5
25	Identity (%)	8.99.8	40.6	28.7	35.2	24.6	100.0				99.2	37.0	98.0	99 1	63.9	56.3	52.0	34 4
30 Table 1 (continued)	Hornologous gene	Brev:bacterium flavum	Mycobacterium tuberculosis H37Rv Rv1446c opcA	Saccharomyces cerevisiae S288C YHR163W so.3	Bacillus sp. NS-129	Rhodococcus erythropolis	Corynebacterium glutam:cum ATCC 13032 soxA				Corynebacterium glutamicum AS019 ATCC 13059 tpiA	Saccharomyces cerevisiae YCR013c	Corynebacterium glu:amicum AS019 ATCC 13059 pgk	Corynebacterium glutamicum AS019 ATCC 13059 gap	Mycobacterium tuberculosis H37Rv Rv1423	Mycobacterium tuberculosis H37Rv Rv1422	Mycobacterium tuberculosis H37Rv Rv1421	Synechacyslis sp. PCC6803 uvrC
40	db Match	gsp:W27612	pir.A70917	sp SOL3_YEAST	SP. SAOX BACSN	 	S,				sp.TPIS_CORGL	SP.YCQ3_YEAST	sp PGK_CORGL	sp.G3P_CORGL	pir.D70903	sp:YR40_MYCTU	sp:YR39_MYCTU	sp.UVRC_PSEFL
	ORF (bp)	1452	256	205	405	1401	840	174	687	186	111	408	1215	1002	186	1023	927	2088
45	Termiral (nt)	1669401	1670375	1671099	1671273	+	1673266	1677384	1678070	1580128	1693332	1681670	1581190	1582624	1684117	1585115	1586152	1687103
50	Iritial (1r)	1667950	1669419 1670375	1670395	1671677		1674105	1677211	1678756	1679148	1681108	1681263	1682404	1683625	1685097	1686132	1687078	5259 1689190
	SEO	5243	5244		5246	5247	5248	5249	5250	5251	5252	5253	5254	5255	5256	5257	5258	
55	SEQ		1744	-745 5245	-745		1748	1749	1750	1751	17.52	:753	1754	1755	1756	1757	1758	1759

1						-			. 1	₁								!	
5			mazine	y rib operon	protein	y rib operon	and 3, 4- 4-phosphate nthesis)	ha chain	ninase	epimerase	1/NOP2	ltransferase	se		synthetase	tabolism			
10	Function	hypothetical protein	6,7-dimethyl-8-ribityllumazine synthase	polypeptide encoded by rib operon	riboflavin blosynthetic protein	polypeptide encoded by rib operon	GTP cyclohydrolase II and 3, 4- d:hydroxy-2-butanone 4-phosphate synthase (riboflavin synthesis)	riboflavin synthase alpha chain	riboflavin-specific deaminase	ribulose-phosphale 3-epimerase	nucleolar protein NOL 1/NOP2 (eukaryotes) family	methionyl-tRNA formyltransferase	polypeptide deformylase	primosoma! protein n	S-adenosylmethionine synthetase	DNA/bantothenate metabolism flavoprotein	hypothetical protein	guanylate kinase	integration host factor
15	Matched length (a a)	150 h	154 6	72 ip	217	106 ip	404 d	211	365	234	448	308	150 p	725 p	407	409	18	186	103
20	Similarity (%)	68.7	72.1	0.89	48.0	52.0	84.7	79.2	62.7	73.1	60.7	67.9	72.7	46.3	99.5	80.9	87.7	74.7	90.3
25	Identity (%)	32.7	43.5	29.0	26.0	44.0	65.6	47.4	37.3	43.6	30.8	4.6	44.7	22.9	99.3	58.0	70.4	39.8	90.6
	gene	ercutosis					erculosis ribA	SU-178 ribE	rbD	evisiae e1	sun s	ginosa fmt	def	1	Jm MJ-233	erculosis	erculosis	evisiae guk1	erculosis IF
ss SS Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv1417	Escher chia coli K12	Bacillus subtilis	Bacillus subtills	Bacillus sublilis	Mycobacterium tuberculosis ribA	Actinobacillus pleuropneumoniae ISU-178 ribE	Escherichia co'i K12 r bD	Saccharomyces cerevisiae S288C YJL121C rpe1	Escherichia coli K12 sun	Pseudomonas aeruginosa fml	Bacillus sublilis 168 def	Escherichia coli priA	Brevioaderium flavum MJ-233	Mycobacterium tuberculosis H37Fv RV139: dfp	Mycobacterium tuberculosis H37Rv Rv1390	Saccharomyces cerevisiae guk1	Mycobacterium tuberculosis H37Rv Rv1388 m!HF
40	db Match	SP.YR35_MYCTU	sp.RISB_ECOLI E	GSP.Y83273 B	GSP Y83272 B	GSP: Y83273 E	gp:AF001929_1 N	Sp.RISA_ACTPL P	sp.RIBD_ECOLI E	sp.RPE_YEAST	Sp. SUN_ECOL!	SP.FMT_PSEAE F	sp.DEF_BACSU E	Sp. PRIA_ECOLI E	gsp:R80060 E	Sp.DFP_MYCTU	sp:YD90_MYCTU	pirKIBYGU	pir.B70899
45	ORF (bp)	579	477	228	714	336	1266	933	984	557	:332	945	507	2064	1221	1260	291	627	348
	Terminal (nt)	1689201	1699869	1690921	1691421	1691347	1693360	1691639	1692275	1593262	1693967	1695499	1596466	1697084	1699177	1700508	1702032	1702411	1702991
50	Infiel (nt)	1689779	1690345	1690654	1590708	1691012	1691625	1692271	1693258	1693918	1695298	1656443	1696972	1699147	1700397	1201737	1702322	1703337	5277 1703308
	SEQ NO	52BC	5261	5262	5263	5264	5265	5266	5267	5268	5269	5270	5271	5272	5273	5274	5275	5276	
55	SEQ NO (DNA)	1760	1781	1762	1763	1764	1765	1766	1767	1768	1769	1770	1771	2772	1773	1774	1775	1775	111.

5		רעהכונסה	orolidine-5'-phosphate decarboxylase	carbamoyl-phosphate synthase large chain	carbamoyl-phosphate synthase small chain	dihydrcorotase	asparlate carbamcyltransferase	phosphoribosyl transferase or pyrimidine operon regulatory protein	cell division inhibitor				N utilization substance protein B (regulation of rRNA biosynthesis by transcriptional antitermination)	elongation factor P	cytoplasmic peptidase	3-dehydroquinate synthase	shikimate kinase	type IV prepilin-like protein specific leader peptidase
15	Matched	length (a a)	276	1122	381	402	311	:76	297				137	187	217	1 361	166	142
20	SimBarity		73.6	77.5	70.1	67.7	7.67	80.1	734				69.3	98.4	100.0	99.7	100.0	549
	Identity	(%)	51.8	53.1	45.4	42.8	48.6	54.0	39.7				33.6	97.9	99.5	98.6	100.0	35.2
25 30	lable (confined)	Hamologous gene	Mycobacterium tuberculosis H37Rv uraA	Escherichia coli ca:B	Pseudomonas aeruginosa ATCC 15692 carA	Bacillus caldolyticus DSM 405 pyrC	Pseudomonas aeruginosa ATCC 15692	Bacillus caldolyticus DSM 405 pyriR	Mycobacter um tuberculosis H37Rv Rv2216				Bacillus subtilis nusB	Brevibacterium lactofermentum ATCC 13859 efp	Corynebacterium glutamicum AS019 pepQ	Corynebacterium glutamicum AS019 aroE	Corynebacterium glutamicum ASO19 aroK	Aeromonas hydrophila tapD
40		db Match	sp DCOP_MYCTU	pir.SYECCP	SP.CARA_PSEAE	sp.PYRC_BACCL	Sp. PYRB_PSEAE	Sp. PYRR_BACCL	Sp.YOOR_MYCTU				sp.NUSB_BACSU	sp.EFP_BRELA	gp:AF124600_4	gp:AF124600_3	gp AF 124600_2	Sp.LEP3_AERHY
	700	£ ê	834	3339	1173	1341	936	576	1164	477	462	210	: 89	561	1089	1095	492	411
45		erminal (nt)	17035:7	1704359	1707706	1709017	1710413	1711352	1713759	1714306	1714760	1714950	1715382	1716:32	1716780	1717938	1719107	1720971
50		(rt)	1704350	1707697	1708884	17:0357	5282 1711348	1711927	1712596	1713830	1714299	1714741	.716052	1716692	17.7869	1719032	1719598	:721381
	SEO	NO B B	5278	5279	5280	5281	5282	5283	5284	5285	5286	5287	5289	5289	5290	5291	5232	5293
55	SFO	NO (aNO)	1778	1779	1780	1.87	782	:783	1784	:785	:786	1787	.788	.789	062.	167:	1792	1793

٢		i	1	_			1					\neg						
5	Function	ory protein, arsR			sporter, ing profein	ferrichrome transport ATP-binding protein	rdrogenase	ein	ein	helase	ein		nthetase	ein	-glucosidase	protein		gulator
10	J. T.	bacterial regulatory protein, arsR family	ABC transporter		iron(III) ABC transporter, periplasmic-binding protein	ferrichrome trans protein	shikimate 5-dehydrogenase	hypothetical protein	hypothetical protein	alanyi-IRNA synthetase	hypothetical protein		aspartyl-tRNA synthetase	hypothetical protein	glucan 1,4-alpha-glucosidase	phage infection protein		transcriptional regulator
15	Matched length (a a)	83	340		373	230	259	395	161	894	454		591	297	839	742		192
20	Similarity (%)	68.7	73.2		50.7	71.7	0.09	70.1	9.69	71.8	84.8		89.2	74.1	53.6	54.0		62.0
	Identity (%)	45.8	35.9		23.6	38.3	20.0	41.8	52.8	43.3	65.4		71.1	46.1	26.1	23.1		29.2
S 52	aua deue	elicolor A3(2)	diphtheriae		si Orsay	68 fhuC	berculosis	ıberculosis	berculosis	oxidans ATCC	sperculosis		prae aspS	uberculosis	cerevisiae sta 1	hgE		elicolor A3(2)
	Homalogous gene	Streptomyces coelicolor A3(2) SC1A2.22	Corynebacterium diphtheriae hmuU		Pyrococcus abyssi Orsay PAB0349	Bacil'us subtilis 168 fhuC	Mycobacterium tuberculosis H37Rv aroE	Mycobacterium tuberculosis H37Rv Rv2553c	Mycobacterium tuberculosis H37Rv Rv2554c	Thiobacillus ferrooxidans ATCC 33020 alaS	Mycobacterium tuberculosis H37Rv Rv2559c		Mycobacterium leprae aspS	Mycobacterium tuberculosis H37Rv RV2575	Saccharomyces cerevisiae S288C YIR019C sta1	Bacillus subtilis yhgE		Streptomyces coelicolor A3(2) SCE68.13
35					<u> </u>	i	2 I	<u> </u>	S T							-		
40	db Match	gp:SC1A2_22	gp.AF109162_2	; ;	pir.A75169	sp FHUC_BACSU	pir.D70660	pi: E70660	pir:=70660	sp:SYA_THIFE	sp.Y0A9_MYCTU		SP.SYD_MYCLE	sp:Y08Q_MYCTU	sp.AMYH_YEAST	SP:YHGE_BACSU		gp.SCE68_13
	ORF (bp)	303	1074	909	957	753	828	1167	546	2664	1377	1224	1824	891	2676	185/	648	28,
45	Terminal (nt)	172:423	1722853	1722202	1723826	1724578	17246:2	1726625 1725459	1725625	1727385	1730166	1731599	1732988	1735946	1736004	1740559 1738713	1741219 1740572	1741906
50	In:lial (nt)	.721725	1721780	1722807	1722870	1723826	1725439	i	1727170	1730248	1731542	1732822	1734811	1735056	1738679			1741313
	SEQ NO	5294	5295	5296	5207	5299	5299	5300	5301	1802 5302	1803 5303	5304	5305	5306	5307	5308	5309	53:0
55	SEQ NO (DNA)	1794	1795	1796	1797	1798	1739	1800	1801	1802	1803	1804	1805	1806	1807	1808	1809	1810

	ſ				T			_	\neg		1						e .				
5		Function		oxidoreductase		NADH-dependent FMN reductase	L-serine dehydralase		alpha-glycerolphosphate oxidase	hislidyl-IRNA synthetase	hydrolase	cyclophilin		hypothelical protein		GTP pyrophosphokinase	adenine phosphoribosyltransferase	dipeplide transport system	λγροthetical protein	protein export membrane protein	
15		Matched length (a.a.)		37.1		116	462		598	421	211	175		128		760	185	49	558	332	
20		Similarity (%)		88.1		77.6	71.4		53.9	72.2	62.1	61.1		100.0		6 66	100.0	98.8	6.09	57.2	
		Identity (%)		72.8		37.1	46.8		28.4	43.2	40.3	35.4		98.4		99.9	99.5	98.0	30.7	25.9	
25	ontinued)	s gene		color A3(2)		iginosa PAO1	2 sdaA		eliflavus glpO	reus	.ni 9c	somallus		utamicum		uta:mlcum	lutamicum	lutamicum	erculosis	2 secF	
<i>30</i>	Table 1 (continued)	Homologous gene		Streptomyces cael color A3(2) SCE 15, 13c		Pseudorronas aeruginosa PAO1 sIfA	Escherichia coli K12 sdaA		Enterococcus casseliflavus glpO	Staphylococcus aureus SR17238 his S	Campylobacter jejuni NCTC11168 Cj0809c	Streptomyces chrysomallus sccypB		Corynebacterium giutamicum ATCC 13032 orf4		Corynebacterium g utamicum ATCC 13032 rei	Corynebacterium glutamicum ATCC 13032 apt	Corynebacterium glutamicum ATCC 13032 dciAE	Mycobacterium tuberculosis H37Rv RV2585c	Escherichia coli K12	
<i>35</i>		db Match		gp.SCE15_13		sp.SLFA_PSEAE	sp:SDHL_ECOLI		prf.2423362A	sp.SYH_STAAU	gp:CJ11168X3_12 7	1 (2)		gc:AF03865*_4		gp. AF038651_3	gp.A=038651_2	gp:A=038651_1	sp Y0BG_MYCTU	sp SECF_ECOLI	
		ORF (bp)	714	1113	126	495	1347	861	1685	1287	639	507	237	555	342	2280	555	150	1743	1209	630
45		Terminal (nt)	.742605	1743813	1743968	1744519	1746230	1747588	1746233	1747990	1749325	1750933	1751200	1752051	1752527	1752615	1754925	1755599	1755486	1757599	1760336
50		In:tial (nt)	1741893	174270	1743843	1744025	1744884	1746728	1747918	1749276	1749563	1750427	1750564	5322 1751497 1752051	1752186	5224 1754894	1755479	1755/48	1757228	158797	5329 1759707
		SEQ NO	5311	5312	5313	5314	5315	5316	5317	5318	5319	5320	532.	5322	5323	5324	5325	532E	5327	5328	
55		SEC NO CNA)	1811	1912	1813	1914	1815	1816	.817	1818	1819	1820	1821	1822	1823	1824	1825	1826	1827	1828	1879

		-			_			7			.								
5	Function	profein-export membrane profein	hypothetical protein	holliday junction DNA helicase	holliday junction DNA helicase	crossover junction endodeoxyribonuclease	hypothetical protein	acyl-CoA thiolesterase	hypoth etical protein	hypothetical protein	hexosyltransferase or N-acetylglucosaminyl-phosphatidylinositol biosynthetic proteir	ferase	CDP-diacylglycerol-glycerol-3. phosphate phosphalidyltransferace	histidine triad (HIT) family protein	threonyl-tRNA synthetase	hypothetical profein			
	73	profein.	hypothe	holliday	holliday	crossov	hypothel	acyl-Co/	hypotr et	hypoth et	hexosyltr acetylglu phosphal proteir	acyltransferase	CDP-diac	histidine	threonyl-t	hypotheti			
15	Matched length	616	106	331	210	180	250	283	Ξ	170	414	295	78	194	647	604	1		
20	Similarity (%)	52.0	66.0	91.9	74.3	63.3	78.4	68.6	613	61.2	493	67.8	78.0	78.4	6.89	51.8			
	Identity (%)	24.4	39.6	55.3	45.2	35.6	49.2	38.5	31.5	38.2	21.7	46.4	48.2	54.6	42.0	34.3	-		
30 elder (bendling) t	Homologous gene	psulatus sec0	leprae	K12 ruv8	eprae ruvA	K12 ruvC	K12 ORF246	K12 tesB	elicolor A3(2)	ubercu!osis	ce evisiae	elicolor A3(2)	speculosis pgsA	berculosis	17	vbN			
30 ed	Homolog	Rhodobacter capsulatus secD	Mycobacterium leprae MLCB1259.04	Escherichia col: K12 ruvB	Mycobacterium leprae ruvA	Escherichia coli K12 ruvC	Escherichia coli K12 ORF246 yebC	Escherichia coli K12 tesB	Streplomyces coelicolor A3(2) SC10A5.09c	Mycobacterium tuberculosis H37Rv Rv2609c	Saccharomyces ce evisiae S288C spi14	Streptomyces coelicolor A3(2) SCL2, 16c	Mycobacterium tuberculosis H37Rv Rv2612c pgsA	Mycobacterium tuberculosis H37Rv Rv2613c	Bacillus subtilis thrZ	Bacillus subtilis ywbN			
35	db Match	85A		1 7	MYCLE	ECOLI						16			BACSU	BACSU			
40		pri.2313285A	SD YOBD_MYCLE	10 Sp. RUVB_ECOLI	8 Sp RUVA_MYCLE	sp.RUVC_ECOLI	SP:YEBC_ECOU	sp.TES3_ECOLI	gp.SC10A5_9	pir H73570	sp.GPl3_YEAST	gp:SC:2	pir:C70571	pir:070571	sp.SYT2_(SD: YWBN			
	ORF (bp)	1932	363	1080	618	663	753	846	474	462	1083	963	557	660	2058	1206	564	545	735
45	Terminal (nt)	1758833	1761005	1761419	1762517	1763.77	1753990	1765015	1756442	1756487	1766948	1768034	1769322	1769681	1770327	1772658	1774444	1773893	1774457
50	In.tial (nl)	1760734	1761357		1763134	.763839		1765860	1765969	1766948	5335 1768030	1768996	1769678	1770340	—-	:773863	:773881	1774438	1775191
	SEQ NC	5330	5331	5332	5333	5334	5335	5336	5337	5338	5335	5340	5341		5343	5344	5345.	5346	5347
55	SEQ VO (DNA)	1830	1831	1832	1833	1834	1835	1836	1837	1838	1839	1840	1841	1842			1845		1847

{					_			7		_T		\neg		_	i				 -						
5	Function						Itransferase											-binding proteir					bolism		
10	Func						puroniycin N-acetyltransferase											ferric transport ATP-binding protein					pantothenate metabolism flavoprotein		
15	Matched length (a a)						190											202					129		
20	Similarity (%)						54.2											28.7					2.99		
	Identity (%)						36.3								_			28.7					27.1		
52 52 Fable 1 (continued)	s gene						atus pac											afuC					s díp		
os Table 1 (c	Homologous gene						Streptomyces anulatus pac											Actinobacillus pleuropneumoniae afuC	1				Zymomonas mobilis díp		
<i>35</i>	db Match						Sp.PUAC_STRLP 8											Sp AFUC_ACTPL P					gp:AF088896_20 Z		
	۲۶ ۲)	8	14	07	5	6		98	01			13	23	13	61	2	6			60	20	0.		9	0.
	al ORF (bp)	16 378		1407	615	399	9 567	1086	1101	669 21	2580	11:13	1923	12 483	189	312	1 429	IA 597	666 9	159	1107	1 420	11 591	9 864	9 450
45	Terminal (nt)	1777646	1778037	1778102	1779554	1780507	1781019	1782793	1784391	1783382	1782894	1785732	1786907	1789562	1789769	1790057	1790461	1792438	1793426	1793496	1794820	1795621	1796181	1797049	1797769
50	Initial (nt)	1777269	1777444	1779508	.780158	1780935	1781595	1781705	1783281	1784080	1785473	5358 1786944	1788929	1789090	1789580	1789746	1790889	5364 1791R42	1792428	1793654	1793714	1795202	1795591	1796186	1797350
	SEO NO (8.8)	5348	5349	5350	5351	5352	5353	5354	5355	5356	5357	5358	5359	5360	5361	5362	5363	5364	5365	5366	5367	5368	5369	5270	527
55	SEO NO (DNA)	1848	1849	1850	1851	1852	1853	1854	1855	1856	1857	1858	1859	1860	1861	, 1862	1863	1864	1865	1866	1867	1868	1869	1870	1871

			<u> </u>		Т		т—	1	Τ	γ	_	1	τ-	Τ	·;-	_	T	<u>-</u>	Τ-	Τ-	1		-	1		
5		L.																			olvase			ohatase		
10		Function																			transposon TN21 resolvase			protein-tyrosine phosphatase		
15		Matched length (a a)													-						186		 	164 . p		
20		Similarity (%)																			78.0		 	51.8		
		Identity (%)																			51.1			29.3		
25	inued)	Ju G																			 			ae		
30	Table 1 (continued)	Homologous gene																			Escherichia coli tnpR			Saccharomyces cerevis ae S288C YIR026C yvh1		
35						_	_	_													Esch			Sacc S288		
40		db Match																			sp:TNP2_ECOL!			sp.PVH1_YEAST		
		OR? (bp)	120	/35	225	894	156	474	753	423	289	429	465	237	681	960	480	.89	285	375	612	1005	375	47.7	726	423
45		Term·nal (nt)	1797850	1798023	1799406	1800366	1800449	1901307	1802096	1802155	1803419	1803893	1804598	1804865	1805599	1806586	1807396	1808113	1808421	1808832	1910372	1811545	1811938	1912691	1913606	1912460
50		Initial (nt)	1797969	1798757	1799182	1799473	1800504	1800834	1801344	1802577	1892733	1833465	1894134	:804629	1804919	1805727	.805917	1807433	1808137	1808458	1809761	1810541	5392 1811564	1812215	1812881	5395 1812882
	ا نترسی	SEQ NO	5372	5373	5374	5375	5376	5377	5378	5379	5380	5381	5382	5383	5384	5385	5386	5387	5388	5389	5390	5391	5392	5393	5394	5395
55		SEQ NO (DNA)	1872	1873	1874	1875	1876	1877	1878	1879	1880	1881	1882	1883	1884	1885	1886	1887	1889	1889		1891	1892	1893	1894	1895

	1				_			- 1 -							[-	<u>_</u>								 -
5		Function	sporulation transcription factor									hypothetical protein					hypothetical protein	insertion element (IS3 related)	insertion element (IS3 related)			single-stranded-DNA-specific exonuclease		primase
15		Matched length (a.a.)	216		1							545					166	298	101			622		381
20		Similarity (%)	65.7									55.2					75.0	92.6	84.2			9 09		£4.3
		Identity (%)	34.3									22.6					63.0	6.78	72.3			24.0		31.8
25	Table 1 (continued)	us gene	licolor A3(2)									ima MSB9					glutamicum	glutamicum	glutamicum			nemi recJ		age phi-O1205
30	Table 1 (Homologous gene	Streptomyces coelicolor A3(2) whiH									Thermo:oga maritima MSB9 TM1189					Corynebacterium glutamicum	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf 1			Erwinia chrysanthemi recJ		Streptococcus phage phi-O1205 ORF13
35			 					_				FF					ِ ٽ	0 6) 10					80
40		db Match	gp:SCA32WHIH_6									pir.C72285					PIR S60831	pir.S60890	pir. S60889			sp RECJ_ERWCH		pir:T13302
		ORF (bp)	738	789	456	186	672	417	315	369	207	2202	1746	219	144	429	534	894	294	213	1299	1878	780	1650
45		Terminal (nt)	1814517	1815651	1815128	1816636	1817803	1818219	1818774	1819166	1819748	1820181	1824322	1824589	1824927	1825178	1826557	1825751	1826644	1829688	1832063	1834044	1834149	1838324
50		Initial (nt)	5396 1813780	1814863	1815673	18.6451	1817132	1817803	1818460	1818798	1819954	1822382	1822577	1824371	1824784	1825606	1826024	1826644	1826937	1829900	1830765	1832167	1834928	5417 1836675
		SEO NO (a.a.)	5356	5397	5399	5399	5400	5401	5402	5403	5404	5405	5406	5407	5408	5409	5410	5411	5412	5413	5414	5415	5416	5417
55		SEQ NO.	1896	1897	1858	1899	1900	1901	7.602	.603	.604	306:	1906	1907	806,	606	.e10	1611	1912	1913	1914	1915	1916	1917

5																	H3							ese ATP-
10	Function				helicase		phage N15 protein qp57										actin binding protein with SH3 domains					A*P/GTP binding protein		ATP-dependent CIp proteinase ATP-binding subunit
15	Matched length				620		109		 -								422					347		630
20	Similarity (%)				44.7		64.2										49.8					52.5		6.2
	Identity (%)				22.1		36.7										28.7					23.6		30.2
25 Table 1 (continued)	Homologous gene				Mycoplasma preumoniae ATCC 29342 yb95		N15 gene57										Schizosaccharomyces pombe SPAPJ760.02c					celicolor		i K12 clpA
25 Table	Ношо			-	Mycoplesma p 29342 yb95		Bacteriophage N15 gene57										Schizosacchar SPAPJ760.02c					Streptomyces coelicolor SCSC7.14		Escherichia coli K12 cipA
40	db Match				sp.YC18_MYCPN		pir:T13144										gp:SPAPJ760_2					gp:SC5C7_14		sp:CLPA_ECOLI
	ORF (bp)	3789	447	534	1839	375	336	366	618	537	529	198	186	372	438	576	1221	852	1395	594	180	1257	1854	1965
45	Terminal (nt)	1842137	184268	1843337	1845356	1845857	1846207	1846333	1847932	1848474	1849036	1849785	1849966	1850406	1849978	1850474	1852440	1852324	1853873	1854854	1855237	1856788	1858738	1860727
50	Initial (nt)	1838349	1842235	1842804	1843518	1845483	1845872	1846698	1847315	:847938	.848509	,848988	:849781	5430 1850035	1850415	1851049	5433 1851220	1851473	1852479	1854261	1855058	1855532	1856885	1958763
	SEQ NO.	5418	5419	5420	5421	5422	5423	5424	5425	5426	5427	5428	5429	5430	5431	5432	5433	5434	5435	5436	5437	5436	5439	5440
55	SEQ NO (DNA)	1918	1919	1920	1921	1922	1923	1924	1925	1925	1927	1928	1929	1930	1931	1932	1933	1934	1935	1936	1937	1538	1939	1940

	_		_		_												<u> </u>						
5							Se Se						phosphate						nuclease				
10		Function					ATP-dependent helicase					hypothetical protein	deoxynucleotide monophosphate kinase					type II 5-cytosoine methyltransferase	type II restriction endonuclease			hypothetical protein	
15		Matched length (a.a.)					693					224	208					363	358			504	
20		Similarity (%)					45.9					47.8	61.5					7.66	99.7			45.8	
		Identity (%)	-		_	_	21.4					25.9	31.7					99.2	99.7			24.6	
25	ntinued)	auaß	1				eus SA20					olor A3(2)	331 gp52					utamicum	utamicum			color A3(2)	
30	Table 1 (continued)	Homologous gene					Staphylococcus aureus SA20 pcrA					Streptomyces coelicolor A3(2) SCH17.07c	Bacteriophage phi-C31 gp52					Corynebacterium glutamicum ATCC 13032 cgllM	Corynebaclerium glutamicum ATCC 13032 cgllR			Streptomyces coelicolor A3(2) SC1A2.16c	
35												\$ \$ \$					ı		N A				
40		db Natch					sp PCRA_STAAU					gp:SCH17_7	pr.25:4444Y					prf.2403350A	pir A55225			gp:SC1A2_16	
		ORF (bp)	474	156	324	312	2355	559	378	465	264	777	702	225	2166	273	6507	1089	1074	1521	717	1818	196
45		Terminal (nt)	1861225	1861475	1861519	1862399	1865299	1865822	1866219	1866792	1867095	:867874	1868587	1 2 9898 : 1	1868927	1871101	:871380	1879400	1880485	1882470	1884220	1887047	1887590
50		Initial (nt)	1850752	5442 1861320		1862088	5445 1862945	1855265	1855842	5448 1856328	5449 1856832	1867098	5451 1867886	1863895	1871092	1871373	1877886	5456 1878312	1879412	1883990	1884936	1885230	1887405
	التاسد	SEQ NO (a.a.)	5441		5443		5445	5446	5447	5448	5449	1950 5450	5451	5452	5453	5454	5455	5456	5457	5458	5459	5460	5461
55		SEO NO (DNA)	1941	1942	1943	1944	1945	1945	1947	1948	1949	1953	1951	1952	1953	1954	1955	1955	1957	1958	1959	1960	1961

	ſ			т	—-т														_							
5		Function	ase-related	Ľ		u				o ATP-binding							paratus profein									
10		Fun	SNF2/Rad54 helicase-related protein	hypothetical protein		hypothetical protein				endopeptidase Clp ATP-binding chain B							nuclear mitotic apparatus protein									
15		Matched length (a a)	06	163		537				724							1004	-								
20		Similarity (%)	70.0	56 4		47.9				52 5							49.1									
		Identity (%)	46.7	33.1		20.7				25.3			_	į			20.1									
25	inued)	eue	sus	j-gle		12-16																				
30	Table 1 (continued)	Homologous gene	Deinococcus radiodurans DR1258	Lactobacillus phage phi-gle Rorf232		Bacillus anthracis pXO2-16				Escherichia coll clp3							Homo sapiens numA									
35		£				16		-									_								- - 	
40		db Match	gp:AE001973_4	pir:T:3226		gp: AF 188935				sp.CLPB_ECOL!							pir. S23647									
		ORF (bp)	351	864	330	1680	1206	1293	2493	1785	621	1113	846	981	879	198	2766	900	1251	969	714	1308	1659	1486	339	1509
45		Terminal (nt)	1887688	1888231	1889859	1892028	1891832	1893388	1894739	1897374	1899233	1899804	1901066	1902955	1902005	1903225	1903113	1905973	1906664	1907965	1908785	1909501	1910642	1912333	1913973	1914725
50		initial (nt)	1888338	1889094	1989530	5465 1891707	1893037	5467 1894680	1897231	1899159	1895853	1900916	1901911	1901975	1902883	1903028	1905878	1906572	1907914	1908660	5480 1909498	5481 1910508	1912300	5483 1913820	1914371	1916233
		SEQ NO (a a)	5462	5463	5464		5456	5467	5468	5469	5470	5471	5472	5473	5474	5475	5476	5477	5478	5479	5480	5481	5482		·984 5484	.985 5485
55		SEQ NO (DNA)	1962	1963	1964	1965	1966	1967	1968	1960	1970	1971	1972	1973	1974	1975	1976	1977	1978	1979	086	:981	1982	1983	.684	. 685

		_		_	_	·	7				₁ —	,		_		,		 -							
5	tion										cin			986											
10	Function										submaxillary apomucin			modification methylase					hypothetical protein			hypothetical protein			
15	Matched length	/80)						-		-	1408 St	-	-	61 m	1	+-		-	114 hy			328 hy			
20	Similarity (%)										49.2		-	65.6			-		58.8			54.6			
	Identity (%)					 -					23.2			42.6					38.6			27.1			
<i>25</i> (pen																			sis						
s Sable 1 (continued)	Homologous gene										Sus scrofa domestica			Escherichia coli ecoR1					Mycobacterium tuberculosis H37Rv Rv1956			Methanococcus jannaschii MJ0137			
<i>35</i>	db Match										pir T03099	. —		sp:MTE1_ECOLI					pir:H70638			sp:Y137_METJA			
	ORF (bp)	360	222	312	645	759	549	930	908	357	4464	579	945	171	375	1821	201	468	381	202	837	942	624	210	534
45	Terminat (nt)	1916733	1917165	1917329	1917564	1918703	1919646	1920347	1925695	1926038	1921547	1926259	1927245	1928381	1928908	1929059	1933990	1931421	193:935	1932373	1933522	1934971	1936849	1937411	1937485
50	Inital (nt)	1916374	1916944	1917640	1918208	1919461	1920194	1921276	1925390	1925682	1926010	5496 1926837	1928189	5498 1928211	1928534	5520 1930879	1931190	1931888	1932315	1932879	1934358	5506 1935912	1936226	19372021	1938C19
	SEQ NO	5486	5487	5488	5485	5490	5491	5492	5493	5494	5495	5496	5497	8679	5499		5501	5502		5504	5505	5506	5507	5508	5509
55	SEQ VC) (DNA)	1986	1987	1988	1939	1990	1991	1992	1993	1994	1995	1936	1997	1998	1999	2300	2001	2002 5502	2003 5503	2004	2005	2006	2007	2008	2009

	<u> </u>		1			T	T		T	Ī		Ī		T	Ē	Τ	Γ	T	Τ	1	1			
5	Function														major secreted protein PS1 protein precursor			rase III					major secreted protein PS1 protein pracursor	
10											surface protein				major secreted precursor			DNA topo.somerase III				•	major secreted p	
15	Matched length										304	;			270			597					344	
20	Similarity (%)										44 1				54.4			50.9					54.7	
	Identity (%)	 									23.0				30.7			23.8					29.7	
30 elder	Hamologous gene										calis esp				glutamicum lavum) ATCC	-		Bd.					glutamicum avum) ATCC	
·	Hemolog										Enterococcus faecalis esp				Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Escherichia coli topB					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	
<i>35</i>	db Match										prl.2509434A				sp.CSP1_CORGL			sp:TOP3_ECOL!					sp.CSP1_CORGL (
	ORF (3p)	1191	534	588	444	753	303	216	309	885	828 pr	297	381	429	1581 sp	2430	296	2277 sp	2085	891	432	744	1887 sp	291
45	Terminal (1.1)	1940135	1938531	1940844	1941550	1941732	1942812	1943310	1943653	1944564	1944608	1945595	1945952	1946609	1947070	1949021 2	1951619	1952546 2	1956203 2	958450	1959765	1960371 7	1961114 1	1963139 2
50	ritial (nt)	1936945	1939064	194C257	1941107	1942484	1942510	1943095	1943345	1943680	1945435	1945891	1946332	1947037	5523 1948553	1951450	1952495	1954922	5527 1958287	2028 5528 195934C	5529 1960196	1961114	5531 1963000	1963429
	SEQ NO (3.8.)	5510	5511	5512	5513	5514	5515	5516	5517	5518	5519	5520	5521	5522		5524	5525	5526	5527	5528		5530		5532
55	SEQ NO (DNA)	2010	2011	2012	2013	2014	20:5	50:6	2017	2018	2019	2020	202	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032

5	Function				thermonuclease										single stranded DNA-binding protein								serine protease				
15	Matched length (a.a.)				227						<u>. </u>				225 si		 :						249 se				
20	Similarity (%)				57.7										59.1								52 E				
	Identity (%)	_			30.4										24.9			_		-	_		25.7				
20 Table 1 (continued)	Homologous gene	!			Staphylococcus aureus nuc										p ssb								Ancpheles gambiae AgSP24D				
35 Jdst	Homo	_			Staphylococc			 							Shewanella sp. ssb												
40	db Match			 	SP NUC_STABU										prf.2313347B								Sp.S24D_ANOGA				
	ORF (tp)	1230	1176	357	684	147	564	1452	459	1221	1419	591	396	237	624	579	462	507	288	333	558	570	912	693	365	747	183
45	Terminal (nt)	.963514	1964727	1965911	1966964	1967269	1968167	1969715	1570203	1971474	1973090	1973737	1974204	1974503	1975794	1976494	1976983	1977549	1978329	1978721	1979217	1979809	1980885	1381657	1982028	1982817	1981912
50	initial (nt)	1964743	5534 1965902	5535 1966267	5536 1566301	1967435	1967604	5539 1968264	5540 1969745	5541 1970254	.97.672	1973.47	1973809 1974204	:974267	1975-71	1975916	1976522	1977C43	1977742	1978389	5552 1978E6C	1979239	1979974	1980965	1981663	1982071	1982091
	SEQ NO (a a)	5533	5534	5535	5536	5537	5536	5539	5540	5541	5542	5543	5544	5545	5546	5547	5548	5549		5551	5552	5553	5554	5555	5556	5557	5550
55	SEQ NO (DNA)	2033	2034	2035	2036	2037	2039	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048 5548	2049	2050	2051	2022	2053	2054	2055	2056	2057	2050

											 										lein	
5		Function								integrase	transposase (divided)	(ransposase (divided)		iransposition repressor	insertion element (IS3 related)	fransposase					major secreted protein PS1 protein precursor	nlegrase
15		Watched lergth (a.a.)	-	-	-					406	124 tr	117 tr		31	43 in	270 tr.		-		-	153 m	223 in
			<u>.</u>	·-	ļ 	-		_		4	¥	-		£	7	27	_	_	_		"	22
20		Slmi arity (%)								55.9	94.4	84.6		96.8	88.4	53.7					37.0	56.1
		Identity (%)								29.6	83.9	6.07		80.7	74.4	31.1					25.0	28.7
25 25	minued)	gene								e L5 int	ermentum	ermentum		ermentum	amicum	lor A3(2)					amicum n) ATCC	L5 int
30 adet	00) I alge!	Homo!agous gene								Mycobacterium phage L5 int	Brevibacterium lactofermentum CGL2005 ISaB 1	Brevibacterium lactofermentum CGL 2005 ISaB1		Brevibacterium lactofermentum CGL2005 ISaB1	Corynebacterium glutamicum orf t	Streptomyces coelicolor A3(2) SCJ11.12					Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1	Mycobacterium phage L5 int
35	-					-	-	-			ш О	ВО			0 0	S						
40	1	db Match								SP.VINT_BPM_S	gsp:R23011	gsp:R23011		gsp:R21601	pir.S60889	gp:SCJ11_12			_	-	sp.CSP1_CORGL	SP.VINT_BPML5
	-	ORF (bo)	363	273	264	234	342	273	303	1149	380	417	207	114	135	828	354	891	432	744	1584	697
45		: Terminal (nt)	1983548	1983883	1984181	1984450	1984728	1985384	1985071	1985442	1987507	1987887	1988589	1988370	1988530	1988778	1991020	1989874	1991189	1991795	1992538	1954608
50		Initial (rt)	1983185	1983611	1983918	1984217	1984387	1985092	1985373	1986590	1987896	1986303	1986383	1988483	1988664	1985605	1990661	1990764	1991620	1992538	5577, 1994121	1995294
		SEO NO (a a.)	5559	2560	5561	5995	5563	5564	5565	5566	5567	5568	5569	5570	5571	5572	5573	5574	5575	5576	5577	5578
55		SEQ NO (CNA)	2059	2060	2061	2062	2063	2064	2065	2066	2067	2068	2069	2070	207:	2072	2073	2074	2075	2076	2077	2078

5	Function	sodium-dependent transporter	hypothetical prolein			riboflavin biosynthesis protein	potential membrane protein	methionine sulfoxide reductase		hypothetical protein	hypothetical protein	ribonuclease D	1-deoxy-D-xylulose-5-phosphale synthase	RNA methyllransferase		hypotheticai protein	deoxyuridine 5'-triphosphate nucleotidohydrolase	hypothetical protein	
15	Matched length (a.a.)	88	92			233	384	126		232	201	37:	618	472		268	140	150	
20	Similarity (%)	76.1	81.5			64.4	71.9	67.5		77.2	786	52 8	78.5	52.3		62.7	82 1	70.7	
	Identity (%)	39.8	48.9			33.5	42.5	41.3		55.2	55.7	25.9	55.3	25.4		38.1	55.0	46.0	_
25 (panujung)	gene	26895	A			erculosis)	erculosis	lonii msrA		erculosis	erculosis	enzae Rd	CL 190 dxs	ma MSB8		berculosis	licolor A3(2)	berculosis	! !
os Table 1 (conlinued)	Homologous gene	Hel cobacter pylori 26595 HP0214	Bacillus subtilis yxaA			Mycobacterium tuberculosis H37Rv Rv2671 ribD	Mycobacterium tuberculosis H37Rv Rv2673	Streptococcus gordonii msrA		Mycobacterium tuberculosis H37Rv Rv2676c	Mycobacterium tuberculosis H37Rv Rv2680	Haemophilus influenzae Rd KW20 H10390 rnd	Streptomyces sp. CL190 dxs	Thermotoga maritima MSB8 TM1094		Mycobacterium luberculosis H37Rv Rv2696c	Streptomyces coelicolor A3(2) SC2E9.09 dut	Mycobacterium tuberculosis H37Rv Rv2698	
<i>35</i>	db Match	pi:,F64546	sp.YXAA_BACSU			pir.C70968	pir:E70968	gp.AF128264_2		pir:H70968	pir.C70528	Sp. RND_HAEIN	gp AB02663	pir.E72298		pir.C70530	sp.DUT_STRCO	pir.E70530	
	03F (bp)	306 p	432 5	345	336	d 969	1254 p	408 g	426	969	624	1263	1908	1236	282	861	447	549	207
45	Terminal (rt)	1995783	1996537	1997112	1997503	1998240	1999542	1959949	1999707	2500521	2002112	2203334	2003402	2005452	2006979	2006777	2007738	2008798	2008876
50	Initial (nt)	1996088	1996106	1995769	1997168	1997545	1998289	1999542	2000132	2001216	2001489	2002002	2005309	2006697	2006698		2006184	2006250	2009062
	SEO	5579	5580	.I	5582		5584	5585	_		5589	5589	5590	5591	5592		5594	5595	2096 5596
55	SEQ	2079	2080	2081	2002	2083	2084	2085	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	5036

-																		
	Function	hypothetical protein	extragenic suppressor protein	polyphosphate glucokinase	sigma factor or RNA polymerase transcription factor	hypothetical membrane protein		hypothetical protein	hypothetical membrane protein	hypothetical protein	transferase	hypothetical protein	iron dependent repressor or diphtheria toxin repressor	putative sporulation protein	UDP-glucose 4-epimerase		hypothetical protein	ATP-dependent RNA helicase
i	Matched length (a.a.)	100	198	248	200	422		578	127	76	523	144	228	77	329		305	661
	Similarity (%)	81.0	68.2	80.2	98.6	51.4		80.8	59.1	85.5	61.2	100.0	9.66	64.0	99.1		79.0	50.7
	tdentity (%)	58.0	38.4	54.4	98.0	23.9		61.3	32.3	65.8	33.5	97.2	98.7	62.0	99.1		45.3	24.4
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2699c	Escherichia coli K12 suhB	Mycobacterium tuberculosis H37Rv RV2702 ppgK	Corynebacterium glutamicum sigA	Bacillus subtilis yrkO		Mycobacterium tuberculosis H37Rv Rv2917	Mycobacterium tuberculosis H37Rv Rv2709	Mycobacterium tuberculosis H37Rv Rv2708c	Streptomyces coelicolor A3(2) SCH5.08c	Corynebacterium glutamicum ATCC 13869 ORF1	Corynebacterium glutamicum ATCC 13869 dbR	Streptomyces aureofaciens	Corynebacterium glutamicum ATCC 13869 (Brevibacterium lactofermentum) galE		Mycobacterium tuberculosis H37Rv Rv2714	Saccharomyces cerevisiae YJL050W dob1
	db Match	pir:F70530	Sp. SUHB_ECOLI	sp:PPGK_MYCTU	prf.2204286A	sp:YRKO_BACSU		sp:Y065_MYCTU	pir:H70531	pir.G70531	gp:SCH5_8	prf:2204286C	pir:140339	GP:AF010134_1	sp.GALE_BRELA		pir.E70532	sp:MTR4_YEAST
	ORF (bp)	291	816	828	1494	1335	537	1710	636	237	1533	432	684	234	987	1323	957	2550
	Terminal (nt)	2009280	2009724	2011382	2013356	2014162	2015585	2016257	2018754	2017966	2020276	2020724	2022949	2022313	2023945	2023948	2026379	2029043
	Initial (nt)	2009570	2010539	2010555	2011863	2015496	2016121	2017966	2018119	2018202	2018744	2020293	2022266	2022546		2025270		2026494
	SEQ NO.	5597	5598	5599	5600	5601	5602	5603	5604	5605	9095	5607	5608	5609		5611	5612	5613
	SEQ NO. (DNA)	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107	2108	2109	2110	2111	2112	2113

diaminopimelate epimerase

569

64.7

33.5

Haemophilus influenzae Rd KW20 Hl0750 dapF

SP.DAPF_HAEIN

831

5632 2052675 2051845

2132

•																				
5	uo	peroxide-inducible genes		ase			sin	peron repressor	(fructose 1-	e-protein	e regulon	se or 6-	e-specific IIBC	yin.			otein			
10	Function	hydrogen peroxide-ii activator		ATP-dependent helicase	regulatory protein		SOS regulatory protein	galactitol utilization operon repressor	phosphofructokinase (fructose 1- phosphate kinase)	phosphoenolpyruvate-protein phosphotransferase	glycerol-3-phosphate regulon repressor	1-phosphofructokinase or phosphofructokinase	PTS system, fructose-specific IIBC component	phosphocarrier protein		uracil permease	ATP/GTP-binding protein			
15	Matched length (a.a.)	299		1298	145		222	245	320	592	262	345	549	81		407	419			
20	Similarity (%)	65.6		76.2	86.2		71.6	67.8	55.6	64.0	62.6	55.7	9.69	71.6		70.5	80.0			
	Identity (%)	35.8		49.2	61.4		46.9	33.9	27.2	34.3	26.7	33.0	43.0	37.0		39.1	54.4			
olinued)	gene	~			gerus nrdR			gatR	olor A3(2)	ophilus ptsl	glpR	atus fruK	fruA	ophilus XL-		pyrP	e orf11*			2
% Table 1 (continued)	Homologous gene	Escherichia coli oxyR		Escherichia coli hrpA	Streptomyces clavuligerus nrdR		Bacillus subtilis dinR	Escherichia coli K12 gatR	Streptomyces coelicolor A3(2) SCE22.14c	Bacillus stearothermophilus ptsl	Escherichia coli K12 glpR	Rhodobacter capsulatus fruK	Escherichia coli K12 fruA	Bacillus stearothermophilus XL- 65-6 ptsH		Bacillus caldolyticus pyrP	Streptomyces fradiae orf11*			•
35	db Match											 					80,			
40	M db	sp.OXYR_ECOLI		SP:HRPA_ECOLI	gp:SCAJ4870_3		sp:LEXA_BACSU	SP.GATR_ECOLI	gp:SCE22_14	sp:PT1_BACST	sp:GLPR_ECOLI	sp.K1PF_RHOCA	sp.PTFB_ECOLI	sp:PTHP_BACST		SP: PYRP_BACCL	gp:AF145049			
	ORF (bp)	981	1089	3906	450	420	969	777	096	1704	792	066	1836	267	582	1287	1458	786	537	
45	Terminal (nt)	2030157	2030277	2035383	2035431	2035990	2037507	2038591	2039550	2039618	2042519	2043508	2045571	2046028	2046714	2047320	2048650	2051106	2051842	
50	Initial (nt)	2029177	2031365	2031478	2035880	2036409	2036812	2037815		2041321	2041728	2042519	2043736	2045762	2047295	2048606	2050107	2050321	2051306	
	SEQ NO.		5615	5616	5617	5618	5619	5620		5622	5623	5624	5625	5626	5627	5628	5629	5630	5631	+
55	SEQ	2114	2115	2116	2117	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2129	2130	2131	

5	Function	tRNA delta-2- isopentenylpyrophosphate transferase		hypothetical protein			hypothetical membrane protein	hypothetical protein	glutamate transport ATP-binding protein	Neisserial polypeptides predicted to Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	glutamate transport system permease protein	glutamate transport system permease protein	regulatory protein	hypothetical protein		biotin synthase	putrescine transport ATP-binding protein	hypothetical membrane protein
15	Matched length (a.a.)	300		445			190	494	242	7.1	225	273	142	67		197	223	228
20	Similarity (%)	68.7		75.7			63.7	86.4	9.66	73.0	100.0	9.66	6.99	71.6		61.4	69.5	58.8
	Identity (%)	40.0		48.5			29.0	68.4	93.6	66.0	100.0	99.3	34.5	40.3		33.0	33.2	24.6
52 Gontinued)	Homologous gene	Escherichia coli K12 miaA		Mycobacterium tuberculosis H37Rv Rv2731			Mycobacterium tuberculosis H37Rv Rv2732c	Mycobacterium leprae B2235_C2_195	Corynebacterium glutamicum ATCC 13032 gluA	Neisseria gonorrhoeae	Corynebacterium glutamicum ATCC 13032 gluC	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 13032 gluD	Mycobacterium leprae recX	Mycobacterium tuberculosis H37Rv Rv2738c		Bacillus sphaericus bioY	Escherichia coli K12 potG	Bacillus subtilis ybaF
35		Esche		Mycob H37R\			Mycob H37Rv	Mycob B2235	Coryn	Neisse	Coryn	Corynebact (Brevibacter 13032 gluD	Mycob	Mycob H37R		Bacillu	Esche	Bacillu
40	db Match	sp:MIAA_ECOL!		pir.B70506			pir.C70506	sp.Y195_MYCLE	sp:GLUA_CORGL	GSP:Y75358	sp.GLUC_CORGL	sp:GLUD_CORGL	SP.RECX_MYCLE	pir:A70878		sp:BIOY_BACSH	sp.POTG_ECOLI	pir.F69742
	ORF (bp)	903	675	1359	1020	1023	699	1566	726	219	684	819	597	234	738	576	669	609
45	Terminal (nt)	2052684	2053609	2055761	2054724	2056787	2057120	2057855	2060499	2060196	2062312	2063259	2063298	2065394	2065667	2067141	2067866	2068474
50	Initial (nt)	2053586	2054283	2054403	2055743	2055765	2057788	2059420	2059774	2060414	2061629	2062441	2063894	2065627	2066404	2066566	2067168	2067866
	SEQ NO.		5634	5635	5636	5637	5638	5639	5640	5641	5642	5643	5644		5646	5647		5649
55	SEQ NO.	2133	2134	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149

	$\overline{}$								-					$-\tau$	\neg			
Function	hypothetical protein	hypothetical protein (35kD protein)	regulator (DNA-binding protein)	competence damage induced proteins	phosphotidylglycerophosphate synthase	hypothetical protein	surface protein (Peumococcal surface protein A)		tellurite resistance protein tenume resistance protein	stage III sporulation protein E	hypothetical protein	hypothetical protein	hypothetical protein			guanosine pentaphosphate synthetase	30S ribosomal protein S15	nucleoside hydrolase
Matched length (a.a.)	228	269	83	165	160	117	30		358	845	216	645	250			742	88	319
Similarity (%)	78.5	9.68	78.3	68.5	72.5	52.1	0.07		59.8 59.8	64.6	61.0	99.4	9.66			85.3	88.8	63.3
Identity (%)	41.7	72.5	54.2	41.8	38.8	24.8	60.0		31.0	38.0	33.3	99.1	99.2			65.4	64.0	35.1
Homologous gene	Mycobacterium tuberculosis	Mycobacterium tuberculosis H37Rv RV2744C	Mycobacterium tuberculosis H37Rv Rv2745c	Streptococcus pneumoniae R6X cinA	Streptococcus pyogenes pgsA	Arabidopsis thaliana ATSP:T16118.20	Streptococcus pneumoniae DBL5 pspA		Escherichia coli ter&	Bacillus subtilis 168 spolllE	Streptomyces coelicolor A3(2) SC4G6.14	Corynebacterium glutamicum ATCC 13032 orf4	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 orf2			Streptomyces antibioticus gpsl	Bacillus subtilis rpsO	Leishmania major
db Match	pir:B60176	sp:35KD_MYCTU	pir:H70878	sp.CINA_STRPN	prf.2421334D	pir:T10688	gp:AF071810_1		pf.2118285B	sp:SP3E_BACSU	gp:SC4G6_14	sp:YOR4_CORGL	sp:YDAP_BRELA			prf.2217311A	pir.F69700	prf.2518365A
ORF (bp)	069	828	321	516	603	285	117	813	1107	2763	633	2154	750	669	264	2259	267	948
Terminal (nt)	2069392	2068556	2069616	2069997	2070519	2071599	2071740	2072878			2076392	2077122	2080387	2082813	2082105	2082932	2085436	2085879
Initial (nt)	2068703	2069383	2069936	2070512	2071121	2071315	2071624				*	2079275	2081136					1
SEO	5650	5651	5652	5653	5654	5655	5656	5657			2660	5661	5662	5663	5664	5665	~	+
SEQ	(DINA)	2151	2152	2153	2154	2155	2156	2157	2158 2158	2159	2160	2161	2162	2163	2164	2165	2166	2167
	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (bp) (bp) (bp) (bp) (aa)	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (hp) pir:B60176 Mycobacterium tuberculosis 41.7 78.5 228 hypothetical p	SEQ Initial NO. (nt) Terminal (bp) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (aa) NO. (nt) (nt) (nt) (bp) (bp) (nt) t) (nt) (nt) (nt) (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) NO. (nt) (nt) (nt) (a.a.) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 8550 2068703 2068392 690 pir.B60176 Mycobacterium tuberculosis 72.5 89.6 228 5651 2069383 2068556 828 sp.35KD_MYCTU Mycobacterium tuberculosis 72.5 89.6 269 5652 2069936 2069616 321 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5653 2070512 2069997 516 sp.CINA_STRPN Streptococcus pneumoniae R6X 41.8 68.5 165	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) NO. (nt) (nt) (nt) (hp) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) NO (nt) (nt) (nt) (nt) (nt) (nt) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td> <td>SED Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%a) >SEC Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) NO (n1) (n2) Initial Terminal (bp) ORF (bb) Ab Match (bc) Homologous gene (cb) Identity (cb) Imilarity (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb)</td><td>SEG Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO (nt) (nt) (bp) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <t< td=""><td>SEC Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO (n1) (n1) (hp) (hp) Most Deaterium tuberculosis 41.7 78.5 228 5651 2068703 2068556 8.28 8.935KD_MYCTU Mycobacterium tuberculosis 72.5 89.6 269 5652 2069936 2069616 3.21 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2069936 2069616 3.2 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2069936 2.0 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2070519 6.03 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5654 2071624 2071624 3.0 pir.T4241334D Streptococcus processes poses 38.8 72.5 165 5655 2071624 2071624 <td< td=""><td>SEC Innitial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)</td></td<></td></t<><td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) SED Initial Terminal ORF db Match Homologous gene (%) (%) (%) Matched (%) Matched (%) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <th< td=""></th<></td></td></td>	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) NO (nt) (nt) (nt) (nt) (nt) (nt) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SED Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%a) Initial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) NO (n1) (n2) Initial Terminal (bp) ORF (bb) Ab Match (bc) Homologous gene (cb) Identity (cb) Imilarity (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb)</td> <td>SEG Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO (nt) (nt) (bp) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <t< td=""><td>SEC Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO (n1) (n1) (hp) (hp) Most Deaterium tuberculosis 41.7 78.5 228 5651 2068703 2068556 8.28 8.935KD_MYCTU Mycobacterium tuberculosis 72.5 89.6 269 5652 2069936 2069616 3.21 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2069936 2069616 3.2 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2069936 2.0 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2070519 6.03 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5654 2071624 2071624 3.0 pir.T4241334D Streptococcus processes poses 38.8 72.5 165 5655 2071624 2071624 <td< td=""><td>SEC Innitial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)</td></td<></td></t<><td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) SED Initial Terminal ORF db Match Homologous gene (%) (%) (%) Matched (%) Matched (%) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <th< td=""></th<></td></td>	SEC Initial Terminal (bp) ORF (bb) Ab Match (bc) Homologous gene (cb) Identity (cb) Imilarity (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb) Matched (cb)	SEG Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO (nt) (nt) (bp) db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <t< td=""><td>SEC Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO (n1) (n1) (hp) (hp) Most Deaterium tuberculosis 41.7 78.5 228 5651 2068703 2068556 8.28 8.935KD_MYCTU Mycobacterium tuberculosis 72.5 89.6 269 5652 2069936 2069616 3.21 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2069936 2069616 3.2 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2069936 2.0 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2070519 6.03 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5654 2071624 2071624 3.0 pir.T4241334D Streptococcus processes poses 38.8 72.5 165 5655 2071624 2071624 <td< td=""><td>SEC Innitial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)</td></td<></td></t<> <td>SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) >SED Initial Terminal ORF db Match Homologous gene (%) (%) (%) Matched (%) Matched (%) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <th< td=""></th<></td>	SEC Initial Terminal ORF db Match Homologous gene Identity (%) Similarity (%) Matched (%) NO (n1) (n1) (hp) (hp) Most Deaterium tuberculosis 41.7 78.5 228 5651 2068703 2068556 8.28 8.935KD_MYCTU Mycobacterium tuberculosis 72.5 89.6 269 5652 2069936 2069616 3.21 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2069936 2069616 3.2 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2069936 2.0 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5652 2070519 6.03 pir.H70878 Mycobacterium tuberculosis 54.2 78.3 83 5654 2071624 2071624 3.0 pir.T4241334D Streptococcus processes poses 38.8 72.5 165 5655 2071624 2071624 <td< td=""><td>SEC Innitial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)</td></td<>	SEC Innitial Terminal ORF db Match Homologous gene Identity Similarity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%)	SEQ Initial Terminal ORF db Match Homologous gene Identity Similarity Matched (%) Initial Terminal ORF db Match Homologous gene (%) (%) (%) Matched (%) Matched (%) Matched (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) <th< td=""></th<>			

	Function	bifunctional protein (riboflavin kinase	and FAU synthetase)	tana pseudouridine symmese o	hypothetical protein	hypothetical protein	phosphoesterase	DNA damaged inducible protein f		hypothetical protein	ribosome-binding factor A	translation initiation factor IE 0	franslation intilation lactor if -2	hypothetical protein	a utilization substance protein	(transcriptional termination factor)	-	hypothetical protein	peptide-binding protein	peptidetransport system permease	oligopeptide permease	peptidetransport system ABC-	transporter ATP-binding protein
	Matched length (a.a.)	329	\dashv	303	47	237	273	433		308	108	****	1103	83		352		165	534	337	292		552
	Similarity (%)	79.0	2	61.7	73.0	62.5	6.89	78.8		70.8	70.4	c C	62.9	66.3		71.0		65.5	6.09	69.4	69 2		81.3
	Identity (%)	56.7	30.5	32.7	65.0	42.2	46.9	51.0		36.7	32.4	21.1	37.7	44.6		42.3		34.6	25.3	37.7	38.4		57.6
Table 1 (continued)	Hamologous gene	Corynebacterium	ammoniagenes ATCC 6872 ribF	Bacillus subtilis 168 truB	Corynebacterium ammoniagenes	Streptomyces coelicolor A3(2)	Mycobacterium tuberculosis	Mycobacterium tuberculosis	H37Rv Rv2836c dinF	Mycobacterium tuberculosis H37Rv Rv2837c	Dazillus subtilis 168 rbfA	Cacillas succins to the same succession of th	Stigmatella aurantiaca DW4 infB	Streptomyces coelicolor A3(2)	SC5H4.29	Bacillus subtilis 168 nusA		Mycobacterium tuberculosis H37Rv Rv2842c	Bacillus subtilis 168 dppE	Georgichia coli K10 dooB		Bacillus sunuilla spoods	Mycobacterium tuberculosis H37Rv Rv3663c dppD
	db Match		Sp.RIBF_CORAM	SP.TRUB BACSU		qp:SC5A7_23			pir.G70693	pir.H70693	10040 4100	SP:KBFA_BACSO	sn IF2 STIAU		gp. acana_23	sp:NUSA_BACSU		pir.E70588	LISONE BACSI	יין יין ניין ניין ניין ניין ניין ניין נ	Sp.UPPB_ECUL	prf.1709239C	pir.H70788
	ORF (hn)		1023	891	T .	651	804	3	1305	966	!	447	3012	3 8	330	966	1254	534	\dashv	- -	- +	666	1731
	Ja.	(mm)	2086919	208883	2087954	2089218	200084	2000007	2090751	2092051		2093055	2003712	71 10607	2096844	2097380	2099815	2098412	-			2103973	2105703
	Initial	(m)	2087941	2007000	2088181	ЯЗВОВОС		7090604	2092055	2093046		2093501	11		2097179	2098375	2098562	2098945		<u>-</u> -	2102023	2102975	2103973
	SEQ	(a.a.)	5668	0000	5670	5671		2017	5673	5674		5675		26/6	2677	5678	5679			5681	5682	5683	
	SEQ	(DNA)	2168		2170		1/17	2172	2173	2174		2175		21/6	2177	2178	2179	2180	3	2181	2182	2183	2184

												\top	\top	\top		1	=		
	Function	prolyl-tRNA synthetase	hypothetical protein	magnesium-chelatase subunit	magnesium-chelatase subunit	uroporphyrinogen III methyltransferase	hypothetical protein	hypothetical protein	hypothetical protein	glutathione reductase					methionine aminopeptidase	penicillin binding protein	response regulator (two-component system response regulator)	two-component system sensor histidine kinase	hypothetical membrane protein
	Matched length (a.a.)	578	243	37	342	237	488	151	338	466					252	630	216	424	360
	Similarity (%)	84.6	65.0	2.09	9.69	73.8	68.7	62.3	65.7	76.6					75.8	56.5	72.2	56.8	58.1
	Identity (%)	67.0	39.5	32.4	46.5	49.0	41.2	35.1	37.6	53.0					47.2	27.3	44.0	29.5	24.4
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2845c proS	Streptomyces coelicolor A3(2) SCC30.05	Rhodobacter sphaeroides ATCC 17023 bchD	Heliobacillus mobilis bchl	Propionibacterium freudenreichii cobA	Clostridium perfringens NCIB 10662 ORF2	Streptomyces coelicolor A3(2) SC5H1.10c	Mycobacterium tuberculosis H37Rv Rv2854	Burkholderia cepacia AC1100 gor					Escherichia coli K12 map	Streptomyces clavuligerus pcbR	Corynebacterium diphtheriae chrA	Corynebacterium diphtheriae chrS	Deinococcus radiodurans DRA0279
	db Match	sp:SYP_MYCTU	gp:Scc30_5	Sp:BCHD_RHOSH	prf. 2503462AA	prf.2108318B	sp:YPLC_CLOPE	gp:SC5H1_10	pir.A70590	sp:GSHR_BURCE					SP. AMPM_ECOLI	prf.2224268A	prf.2518330B	prf.2518330A	gp:AE001863_70
	ORF (bp)	1764	735	759	1101	750	1422	006	1014	1395	942	474	357	729	789	1866	630	1149	957
	Terminal (nt)	2105801	2108386	2108389	2109155	2110434	2112659	2112717	2116774	2118310	2117015	2119080	2119495	2120356	2120359	2121296	2123219	2123848	2126045
	Initial (nt)	2107564	2107652	2109147	2110255	2111183	2111238	2113616	2115761	2116916	2117956	2118607	2119139	2119628				2124996	2125089
	SEO	5685	5686	5687	5688		2690	5691	5695	 5693	5694	5695	9699	5697	5698	5699	5700	5701	5702
	<u> </u>	2185	2186	2187	218B	-i	2190	2191	2192	 2193	2194	2195	2196	2197	2198	2199	2200	2201	2202

ন
ă
.Ē
Ĕ
ق
_
윩
ď

						(500) 1 200				
SEO	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
2203		2126064	2126753	069	prf:2420410P	Bacillus subtilis 168 yvrO	37.3	71.1	225	ABC transporter
2204	5704	2127087	2126926	162						
2205		_1	2127350	1134	sp:GCPE_ECOLI	Escherichia coli K12 gcpE	44.3	73.8	359	hypothetical protein (gcpE protein)
2206		2128850	2129461	612						
2207			2128669	1212	pir:G70886	Mycobacterium tuberculosis H37Rv Rv2869c	43.0	73.6	405	hypothelical membrane protein
2208	5708	2130306	2130950	645	GSP:Y37145	Chlamydia trachomatis	36.0	43.0	147	polypeptides can be used as vaccines against Chlamydia trachomatis
2209	5709	2131078	2129903	1176	sp:DXR_ECOLI	Escherichia coli K12 dxr	22.8	42.0	312	1-deoxy-D-xylulose-5-phosphate reductoisomerase
2210	5710	2131322	2131762	441						
2211	5711	2131726	2131247	480						
2212	5712	2133402	2131825	1578						
2213		2134260		855	pir:B72334	Thermotoga maritima MSB8 TM0793	37.1	75.1	245	ABC transporter ATP-binding protein
2214	5714	2135551	2134454	1098	sp:YS80_MYCTU	Mycobacterium tuberculosis H37Rv	66.0	78.0	356	pyruvate formate-lyase 1 activating enzyme
2215	5715	2135884	2136141	258	pir.A70801	Mycobacterium tuberculosis H37Rv Rv3760	41.5	74.5	94	hypothetical membrane protein
2216	5716	2137089	2136235	855	sp:CDSA_PSEAE	Pseudomonas aeruginosa ATCC 15692 cdsA	33.3	56.5	294	phosphatidate cytidylyltransferase
2217	5717	2137840	2137286	555	sp.RRF_BACSU	Bacillus subtilis 168 frr	47.0	84.3	185	ribosome recycling factor
2218			2137936	729	prf.2510355C	Pseudomonas aeruginosa pyrH	28.4	43.1	109	uridylate kinase
2219	5719	2138994	2139854	861						
2220	+	2139827	2139003	825	sp.EFTS_STRCO	Streptomyces coelicolor A3(2) SC2E1.42 tsf	49.6	76.8	280	elongation factor Ts
2221	5721	2140886	2140071	816	pir.A69699	Bacillus subtilis rpsB	54.7	83.5	254	30S ribosomal protein S2

thiamine biosynthetic enzyme thiG protein

thiamine biosynthetic enzyme thiS (thiG1) protein

62

74.2

37.1

Escherichia coli K12 thiS

Sp. THIS_ECOLI

195

2152329

2152135

5736

2236

2235

2234

2229

2228

2230 2231 2232 2233 molybdopterin biosynthesis protein

437 251

56.8

30.2

76.9

48.2

Escherichia coli K12 thiG Emericella nidulans cnxF

sp:THIG_ECOLI

780

2152334

5737

2237

1134 prf.2417383A

2154191 2153113

2238 5738 2153058

5	Function	ni	nbinase	in	family protein	ain	sin				lein		otein L19	ate se		C. 14
10	Fun	hypothetical protein	site-specific recombinase	hypothetical protein	Mg(2+) chelatase family protein	hypothetical protein	hypothetical protein	ribonuclease HII		signal peptidase	Fe-regulated protein		50S ribosomal protein L19	thiamine phosphate pyrophosphorylase	oxidoreductase	
15	Matched length (a.a.)	120	297	395	504	119	101	190		285	323		11	225	376	_
20	Similarity (%)	58.0	68.7	8.99	75.8	72.3	96.0	69.5		61.1	59.1		88.3	6.09	64.1	
	Identity (%)	46.0	40.1	39.8	46.6	40.3	68.3	42.6		32.3	25.4		70.3	28.4	34.0	L
25 1	gene	rculosis	0	rculosis	rculosis	rculosis	rculosis	zae Rd		lividans TK21	eus sirA		ophilus rplS	thiE	olor A3(2)	
30 Short Continued	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2891	Proteus mirabilis xerD	Mycobacterium tuberculosis H37Rv Rv2896c	Mycobacterium tuberculosis H37Rv Rv2897c	Mycobacterium tuberculosis H37Rv Rv2898c	Mycobacterium tuberculosis H37Rv Rv2901c	Haemophilus influenzae Rd H11059 rnhB		Streptomyces lividans TK21 sip?	Staphylococcus aureus sirA		Bacillus stearothermophilus rplS	Bacillus subtilis 168 thiE	Streptomyces coelicolor A3(2) SC6E10.01	
<i>35</i>	db Match	sp:YS91_MYCTU	prf:2417318A	U±S	sp:YX28_MYCTU	sp:YX29_MYCTU	sp:YT01_MYCTU	sp.RNH2_HAEIN		prf.2514288H	prf.2510361A		sp.RL19_BACST	sp:THIE_BACSU	gp:SC6E10_1	
	ORF (bp)	<u> </u>	924 p	1182 S	1521 8	366 s	303 s	627 s	792	786 p	936 p	213	339 8	663 s	1080	
45	Terminal (nt)	2141760	2141763	2142885	2144066	2145576	2146264	2146566	2148022	2147261	2149166	2149359	2149634	2150997	2152118	
50	Initial (nt)	2141257	2142686	2144066	2145586	2145941	2146566	2147192	2147231		2148231	2149571	2149972		2151039	
	SEO	(a.a.) 5722	5723	5724	5725	5726	5727	5728	5729	5730	5731	5732	5733	5734	5735	_

SEQ NO. (DNA)

55

2222

2224

2223

2225

2226

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

ed)
ontino
le 1 (c
Tab

																	$\overline{}$				\neg	_
	Function	transcriptional accessory protein	sporulation-specific degradation regulator protein	dicarboxylase translocator	2-oxoglutarate/malate translocator	3-carboxy-cis, cis-muconate cycloisomerase				tRNA (guanine-N1)- methyltransferase	hypothetical protein	16S rRNA processing protein	hypothetical protein	30S ribosomal protein S16	inversin	ABC transporter	ABC transporter	signal recognition particle protein				cell division protein
	Matched length (a.a.)	776	334	456	65	350				273	210	172	69	83	196	256	318	559				505
	Similarity (%)	78.7	65.3	78.3	80.0	66.3				64.8	9.73	72.1	2.99	79.5	61.7	69.1	63.8	78.2				66.1
	Identity (%)	9.99	27.0	45.8	40.0	39.1				34.8	30.5	52.3	29.0	47.0	32.1	26.6	35.5	58.7				37.0
lable i (cominued)	Homologous gene	Bordetella pertussis TOHAMA I tex	Bacillus subtilis 168 degA	Chlamydophila pneumoniae CWL029 ybhl	Spinacia oleracea chloroplast	Pseudomonas putida pcaB				Escherichia coli K12 trmD	Streptomyces coelicolor A3(2) SCF81.27	Mycobacterium leprae MLCB250.34. rimM	Helicobacter pylori J99 jhp0839	Bacillus subtilis 168 rpsP	Mus musculus inv	Streptococcus agalactiae cylB	Pyrococcus horikoshii OT3 mtrA	Bacillus subtilis 168 ffh				Escherichia coli K12 ftsY
	db Match	sp.TEX_BORPE	pir.A36940	pir:H72105	prf.2108268A	sp:PCAB_PSEPU				sp:TRMD_ECOL!	gp:SCF81_27	SP.RIMM_MYCLE	pir.B71881	pir:C47154	pir.T14151	prf.2512328G	prf:2220349C	sp:SR54_BACSU				sp:FTSY_ECOLI
	ORF (bp)	2274	975	1428	219	1251	8	393	069	819	648	513	348	495	576	867	876	1641	633	417	699	1530
	Terminal (nt)	2154460	2156747	2157754	2159019	2159287	2160768	2161111	2161507	2162196	2163745	2163748	2164737	2164815	2166098	2166124	2166990	2167944	2171058	2172131	2172877	2173759
	Initial (nt)	2156733	2157721	2159181	2159237		2160670				2163098	2164260	2164390						2170426		2172209	2175288
	SEO		5740	5741	5742	5743	5744	5745	5746	5747	5748	5749	5750			_	_					
	SEO	2239	2240	2241	2242		2244	2245	2246	2247	2248	2249	2250	2254	2252	2253	2254	2255	2256	2257	2258	2259

Table 1 (continued)

	Function glucan 1,4-alpha-glucosidase or glucoamylase S1/S2 precursor chromosome segregation protein acylphosphatase transcriptional regulator hypothetical membrane protein formamidopyrimidine-DNA glycosylase ribonuclease III hypothetical protein	× - -	Similarity (%) (%) (%) 72.6 73.9 73.5 73.5 76.6 66.7 76.5 62.5 62.5 76.9	1dentity (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	Homologous gene Saccharomyces cerevisiae S288C YIR019C sta1 Mycobacterium tuberculosis H37Rv Rv2922 1C Mycobacterium tuberculosis H37Rv RV2922 1C Scherichia coli K12 yfeR Mycobacterium leprae MLCL581.28c Dichelobacter nodosus gep Escherichia coli K12 mutM or fpg Mycobacterium tuberculosis H37Rv Rv2926c Mycobacterium tuberculosis H37Rv Rv2927c	Sac Sac	db Match sp.:AMYH_YEAST sp.:Y06B_MYCTU sp.:ACYP_MYCTU sp.:YFER_ECOLI pir:S72748 sp.:YFER_ECOLI pir:B69693 sp:Y06G_MYCTU		Terminal ORF db Match (nt) (bp) 2175888 159 2177103 702 2176110 3393 sp.AMYH_YEAST 2181880 963 2179628 3465 sp.Y068_MYCTU 2183405 1854 2187351 858 sp.YFER_ECOLI 2187342 183 2187342 183 2187892 615 gp.DNINTREG_3 2188913 858 sp.Y06F_MYCTU 2189906 534 sp.Y06F_MYCTU 2189906 534 sp.Y06F_MYCTU 2190540 789 sp.Y06G_MYCTU	Initial Terminal (hp) ORF (hp) db Match (hp) 2176046 2175888 159 Ab Match 2176402 2177103 702 2176402 2177103 702 2176502 2176110 3393 sp:AMYH_YEAST 2183092 2179628 3465 sp:Y068_MYCTU 2185258 2183110 282 sp:Y068_MYCTU 2186299 2187129 831 pir.S72748 2187629 2187351 858 sp:YFER_ECOLI 2187679 218733 47 Apr. Apr. 2189306 2187632 615 gp:DNINTREG_3 2189306 218966 741 pir.B69693 2190439 2189906 534 sp:Y06F_MYCTU 2191328 2190540 789 sp:Y06G_MYCTU	Terminal ORF db Match (nt) (bp) 2175888 159 2177103 702 21776110 3393 sp.AMYH_YEAST 2181880 963 2179628 3465 sp.Y068_MYCTU 218310 282 sp.ACYP_MYCTU 2183110 282 sp.YER_ECOLI 218723 447 218723 447 2188313 858 sp.YPEG_ECOLI 2188313 858 sp.Y06F_MYCTU 2189906 534 sp.Y06F_MYCTU 2189906 534 sp.Y06G_MYCTU 2190540 789 sp.Y06G_MYCTU
1dentity Similarity Matcheol (%) (%) (aa) (aa) (aa) (aa) (ab) (ab) (ab) (ab		007	5. 1	20.0	275	H37Rv Rv2927c	sp:Yu6G_MYCIU	sp:Yu6G_MYCTU	2190540 /89 sp:Y06G_MYC1U	2191328 2190540 789 sp:Yd6G_MYCTU	5775 2191328 2190540 /89 sp:Y06G_MYCIU
Identity Similarity Imatrical (%) (%) (a.a.)	hypothetical protein	176	62.5	35.8	10m tuberculosis 926c	Mycobacter H37Rv Rv2	i	sp.Y06F_MYCTU	2189906 534 sp:Y06F_MYCTU	2190439 2189906 534 sp:Y06F_MYCTU	2190439 2189906 534 sp:Y06F_MYCTU
Identity Similarity Inagth (%) (%) (a.a.)	ribonuclease III	221	76.5	40.3	tilis 168 rncS	Bacillus sub		1 pir.B69693	2189166 741 pir.B69693	2189906 2189166 741 pir.B69693	2189906 2189166 741 pir.B69693
1dentity Similarity (%) (%) (%) (8a) (aa) (22.4 46.2 1144 48.3 72.6 1206 51.1 73.9 92 23.9 60.0 305 39.3 73.5 257	formamidopyrimidine-DNA glycosylase	285	66.7	36.1	coli K12 mutM or	Escherichia (fpg		sp:FPG_ECOLI	2188313 858 sp.FPG_ECOLI	2189170 2188313 858 sp.FPG_ECOLI	2189170 2188313 858 sp.FPG_ECOLI
1dentity Similarity (%) (%) (%) (8a) (aa) (22.4 46.2 1144 48.3 72.6 1206 51.1 73.9 92 23.9 60.0 305 39.3 73.5 257	cation efflux system protein	188	9.97	46.8	r nodosus gep	Dichelobacte	ຕຸ	gp:DNINTREG_3	2187692 615 gp:DNINTREG_3	2188306 2187692 615 gp:DNINTREG_3	2188306 2187692 615 gp:DNINTREG_3
1dentity Similarity (%) (%) (%) (8a) (aa) (22.4 46.2 1144 48.3 72.6 1206 51.1 73.9 92 23.9 60.0 305 39.3 73.5 257								447	2187233	2187679 2187233	2187679 2187233
1dentity Similarity Matched (%) (%) (aa) (aa) (aa) (ab) (ab) (ab) (ab) (ab								183	2187342	2187160 2187342	2187160 2187342
1dentity Similarity (%) (%) (%) (aa) (aa) (22.4 46.2 1144 48.3 72.6 1206 51.1 73.9 92 23.9 60.0 305	hypothetical membrane protein	257	73.5	39.3	n leprae	Mycobacterius MLCL581.28c	-	pir:S72748	2187129 831 pir.S72748	2186299 2187129 831 pir:S72748	2186299 2187129 831 pir:S72748
1dentity Similarity Indiatricus (%) (%) (a.a.) 22.4 46.2 1144 48.3 72.6 1206 51.1 73.9 92	transcriptional regulator	305	0.09	23.9	ii K12 yfeR	Escherichia co		sp:YFER_ECOLI	858 SP.YFER_ECOLI	2186208 2185351 858 sp.YFER_ECOLI	2186208 2185351 858 sp.YFER_ECOLI
1dentity Similarity Indiatorical (%) (%) (a.a.) 22.4 46.2 1144 48.3 72.6 1206 51.1 73.9 92								1854	185	2185258 2183405 185	2185258 2183405 185
1dentity Similarity indicinal (%) (%) (aa) (aa) (aa) (ab) (ab) (ab) (ab) (ab	acylphosphatase	92	73.9	51.1	n tuberculosis 2.1C	Mycobacteriun H37Rv RV292		sp.ACYP_MYCTU	282 sp.ACYP_MYCTU	2183391 2183110 282 sp.ACYP_MYCTU	2183391 2183110 282 sp.ACYP_MYCTU
1dentity Similarity induction (%) (%) (aa) (aa) (22.4 46.2 1144	chromosome segregation protein	1206	72.6	48.3	n tuberculosis 2c smc	Mycobacterium H37Rv Rv2922	sp:Y06B_MYCTU	sp:Y06B_MYCTU	3465 sp:Y068_MYCTU	2183092 2179628 3465 sp:Y06B_MYCTU	2183092 2179628 3465 sp:Y06B_MYCTU
1dentity Similarity induction (%) (%) (aa) (aa) (22.4 46.2 1144								963	├-	2180918 2181880	2180918 2181880
Identity Similarity length (%) (%) (a.a.)	glucan 1, 4-alpha-glucosidase or glucoamylase S1/S2 precursor	1144	46.2	22.4	s cerevisiae C sta1	Saccharomyce S288C YIR019		3 sp:AMYH_YEAST	3393 SP.AMYH_YEAST	2179502 2176110 3393 sp.AMYH_YEAST	2179502 2176110 3393 sp.AMYH_YEAST
identity Similarity machine (%) (%) (aa)								702		2176402 2177103	2176402 2177103
identity Similarity Machined (%) (%) (aa)								159	+	2176046 2175888	2176046 2175888
	Function		Similarity (%)	Identity (%)	auab snob	Нотою		db Match	ORF db Match (bp)	Terminal ORF db Match (ht) (bp)	Initial Terminal ORF db Match (nt) (bp)

	Function	hypothetical protein	peptidase	sucrose transport protein			maltodextrin phosphorylase / glycogen phosphorylase	hypothetical protein	prolipoprotein diacylglyceryl transferase	indole-3-glycerol-phosphate synthase / anthranilate synthase component II	hypothetical membrane protein	phosphoribosyl-AMP cyclohydrolase	cyclase	inositol monophosphate phosphatase	phosphoribosylformimino-5- aminoimidazole carboxamide ribotide isomerase	glutamine amidotransferase	chloramphenicol resistance protein or transmembrane transport protein
	Matched length (a.a.)	405	353	133			814	295	264	169	228	89	258	241	245	210	402
	Similarity (%)	43.7	64.3	51.9			67.4	66.4	65.5	62.1	58.8	79.8	97.7	94.0	97.6	92.4	54.0
	Identity (%)	21.0	32.9	27.1			36.1	33.9	31.4	29.6	29.4	52.8	97.3	94.0	95.9	86.7	25.6
Table 1 (continued)	Homologous gene	Thermotoga maritima MSB8 TM0896	Campylobacter jejuni ATCC 43431 hipO	Arabidopsis thaliana SUC1			Thermococcus litoralis malP	Bacillus subtilis 168 yfiE	Staphylococcus aureus FDA 485	Emericella nidulans trpC	Mycobacterium tuberculosis H37Rv Rv1610	Rhodobacter sphaeroides ATCC 17023 hisl	Corynebacterium glutamicum AS019 hisF	Corynebacterium glutamicum AS019 impA	Corynebacterium glutamicum AS019 hisA	Corynebacterium glutamicum AS019 hisH	Streptomyces lividans 66 cmIR
	db Match	pir.A72322	sp:HIPO_CAMJE	pir:S38197			prf.2513410A	SD: YFIE BACSU	sp:LGT_STAAU	sp:TRPG_EMEN!	pir.H70556	sp:HIS3_RHOSH	sp:HIS6_CORG	prt.2419176B	gp:AF051846_1	gp:AF060558_1	sp.CMLR_STRLI
	ORF (bp)	1284	1263	336	135	276	2550	900	+	801	657	354	774	825	738	633	1266
	Terminal (nt)	2199758	2201070	2201073	2201450	2201594	2201992	2204591	2207302	2208367	2209232	2209920	2210273	2211051	2211882	2212641	2214321
	Initial (nt)	2198475	2199808	2201408	-	2201869	2204541	2205490	2208249	2209167	2209888	2210273	2211046	2211875	2212619	2213273	2215586
	SEQ NO		5781	5782		5784		578G		5788	5789	5790	5791	5792	5793	5794	5795
	SEQ NO.		2281	2282	-;		+	2000	-i	2288	2289	2290	2291	2292	2293	2294	2295

	Function		imidazoleglycerol-phosphate dehydratase	histidinol-phosphate aminotransferase	histidinol dehydrogenase	serine-rich secreted protein			histidine secretory acid phosphatase	tet repressor protein	glycogen debranching enzyme glycogen debranching enzyme	hypothetical protein	oxidoreductase	myo-inositol 2-dehydrogenase	galactitol utilization operon repressor	ferrichrome transport ATP-binding protein or ferrichrome ABC transporter	hemin permease	iron-binding protein	iron-binding protein	hypothetical protein
	Matched length (a.a.)		198	362	439	342			211	204	723	258	268	343	329	246	332	103	182	113
	Similarity (%)		81.8	79.3	85.7	54.4			59.7	60.8	75.5	76.0	55.2	6.09	64.4	68.3	71.1	68.0	9'29	73.5
	Identity (%)		52.5	57.2	63.8	27.2			29.4	28.9	47.4	50.0	29.9	35.0	30.4	32.9	36.8	30.1	34.6	38.1
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) hisB	Streptomyces coelicolor A3(2) hisC	Mycobacterium smegmatis ATCC 607 hisD	Schizosaccharomyces pombe SPBC215.13			Leishmania donovani SAcP-1	Escherichia coli plasmid RP1 tetR	Sulfolobus acidocaldarius freX	Mycobacterium tuberculosis H37Rv Rv2622	Streptomyces coelicolor A3(2) SC2G5.27c gip	Sinorhizobium meliloti idhA	Escherichia coli K12 galR	Bacillus subtilis 168 fhuC	Vibrio cholerae hutC	Bacillus subtilis 168 yvrC	Bacillus subtilis 168 yvrC	Escherichia coli K12 yffH
	db Match		sp.HIS7_STRCO	sp:HIS8_STRCO	sp.HISX_MYCSM	gp:SPBC215_13			prf.2321269A	pir.RPECR1	pri 2387283B	pir.E70572	gp:SC2G5_27	prf.2503399A	sp:GALR_ECOLI	sp:FHUC_BACSU	prf.2423441E	pir:G70046	pir:G70046	sp:YTFH_ECOLI
	ORF (bp)	225	909	1098	1326	1200	651	309	642	561	2588	801	774	1011	966	798	1038	348	594	441
	Terminal (nt)	2215639	2215869	2216494	2217600	2220358	2220459	2221919	2221187	2222518	2225835	2225949	2225990	2226769	2228901	2229099	2229900	2230947	2231339	2232016
	Initial (nt)	2215863	2216474	2217591	2218925	2219159	2221109	2221611	2221828	2221958	2222528	2225149	2226763	2227779	2227906	2229896	2230937	2231294	2231932	2232456
	SEQ NO.	5796	5797	5798	5799	5800	5801	5802	5803	5804	5885	5806	5807	5808	5809	5810	5811	5812	5813	5814
	SEQ NO (DNA)	2296	2297	2298	2299	2300	2301	2302	2303	2304	2305	2306	2307	2308	2309	2310	2311	2312	2313	2314

chloramphenicol sensitive protein histidine-binding protein precursor

DNA polymerase III

1183

80.5

53.3

Streptomyces coelicolor A3(2) dnaE

279 149 198

73.8 55.7 64.7

37.6

Escherichia coli K12 rarD

2333 2334 2335

2332

468 sp. HISJ_CAMJE

918 pir.D69548

22.7

Campylobacter jejuni DZ72 hisJ Archaeoglobus fulgidus AF2388

hypothetical membrane protein

Function DNA polymerase III epsilon chain maltooligosyl trehalose synthase hypothetical protein hypothetical protein maltooligosyltrehalose trehalohydrolase hypothetical protein theonine dehydralase	Corynebacterium glutamicum AS019
Matched length (aa) 355 355 375 120 120 214 436	415
Similarity (%) (%) 50.1 50.1 52.8 52.8 79.2 72.4 72.4	49.6
1dentity (%) 23.4 42.0 27.6 20.5 20.5 36.3 36.5	22.7
Table 1 (continued) Homologous gene Streptomyces coelicolor A3(2) SCI8.12 Arthrobacter sp. Q36 treY Deinococcus radiodurans DR1631 Photorhabdus luminescens ATCC 29999 luxA Streptomyces coelicolor A3(2) SC7H2.05 Bacillus subtilis 168 Corynebacterium glutamicum ATCC 13032 ilvA	Catharanthus roseus metE
db Match gp:SCI8_12 pir:S65769 gp:AE002006_4 sp:LXA1_PHOLU gp:SC7H2_5 pir:S65770 sp:YVYE_BACSU sp:THD1_CORGL	pir.S57636
ORF (bp) 1143 606 2433 1023 399 1189 11044 1785 651	507 156 1203
Terminal (nt) 2234070 22337284 22338945 2239845 22241724 2241738 2241739 2242393 2244864 2224864	2246295 2246295 2247006
Initial (nt) 2232928 22334158 2234852 22340042 2240563 2240563 2240581 2243335 2243335 2243335 22433043 2246171	2246386 2246450 2248208
SEO NO. (a a.) 5815 5816 5817 5818 5822 5822 5823 5826 5827 5826 5827 5826 5828 5828 5828 5828 5828 5828	5829 5830 5831
SEQ NO. (DNA) 2315 2316 2317 2318 2322 2322 2323 2324 2325 2325 2328 2328 2328 2328 2328	2329 2330 2331

5

10

15

20

25

30

35

40

45

50

eg)
itinu
(co
흄
ם

					_			ein					lu P	Ē					Ī	
Function	short chain dehydrogenase or general stress protein	diaminopimelate (DAP) decarboxylase	cysteine synthase		ribosomal large subunit pseudouridine synthase D	lipoprotein signal peptidase		oleandomycin resistance protein		hypothetical protein	ilyportiencal process	L-asparaginase	DNA-damage-inducible protein P	hypothetical membrane protein	transcriptional regulator		hypothetical protein	isoleucyl-tRNA synthetase		
Matched length (a.a.)	280	445	314		326	154		550		15.8	5	321	371	286	334		212	1066		
Similarity (%)	80.0	47.6	64.3		61.0	61.7		64.0		57.6	0.70	62.0	60.7	61.5	73.1		0.79	65.4		
Identity (%)	48.2	22.9	32.8		36.5	33.8		36.4		7. 20	20.7	31.2	31.8	31.5	44.3		42.0	38.5		
Homologous gene	Bacillus subtilis 168 ydaD	Pseudomonas aeruginosa lysA	Alcaligenes eutrophus CH34 cysM		Escherichia coli K12 rluD	Pseudomonas fluorescens NCIB 10586 IspA		Streptomyces antibioticus ofeB		D. J. J. J. J. J. J. J. J. J. J. J. J. J.	Knodocaccus erythropolis off 17	Bacillus licheniformis	Escherichia coli K12 dinP	Escherichia coli K12 ybiF	Streptomyces coelicolar A3(2) SCF51.06		Streptomyces coelicolor A3(2) SCF51.05	Saccharomyces cerevisiae A364A YBL076C ILS1		
db Match	sp:GS39_BACSU	sp.DCDA_PSEAE	sp:CYSM_ALCEU		sp:RLUD_ECOLI	sp.LSPA_PSEFL		pir:S67863		00000000	prt.2422382P	sp:ASPG_BACLI	1401 Sp.DINP_ECOLI	sp:YBIF_ECOLI	gp:SCF51_6		gp:SCF51_5	3162 sp.SYIC_YEAST		
ORF (bp)	876	1287	951	579	930	534	1002	1650	303		909	975	1401	828	1002	132	627	3162	216	1095
Terminal (nt)	2254683	2255738	2258362	2259421	2260002	2260934	2262689	2264499	2265298		2264509	2266394	2266897	2268388	2269260	2270435	2270258	2270988	2274473	2274767
Initial (nt)	225558	2257024	2259312	2259999	2260931	2261467	2261688	2262850	2264996		2265108	2265420	2268297	2269245	2270261	2270304	2270884	2274149	2274688	2275861
SEQ NO.		5837	5838	5839		5841	5842	5843			5845	5846	5847	_	5849	5850		5852	5853	5854
SEQ NO.	2336	2337	2338	2339	2340	2341	2342	2343	2344		2345	2346	2347	2348	2349	2350	2351	2352	2353	

Table 1 (continued)	Homologous gene (%) (%) (a.a.) Homologous gene (%) (%) (a.a.)	Mycobacterium tuberculosis 46.3 73.2 82 hypothetical membrane protein 437Rv Rv2146c	3 152 hypothetical protein (putative YAK 1 protein)	Sorynebacterium glutamicum 97.7 99.6 221 hypothetical protein	3revibacterium lactofermentum 99.2 100.0 246 hypothetical protein	Mus musculus P4(21)n 39.0 51.0 117 hypothetical protein	3revibacterium lactofermentum 98.6 98.6 442 cell division protein ts.2	Sorynebacterium glutamicum 99.6 100.0 222 cell division initiation protein or cell taxo.	Corynebacterium glutamicum 99.4 99.8 486 ligase ligase	372 hyrophosphoryl-undecaprenol N-acetylglucosamine-N-acetylglucosamine-N-acetylglucosamine-N-acetylglucosamine-N-acetylglucosamine-N-acetylglucosamine-N-acetylglucosamine-N-acetylglucosamine-N-acetylglucosamine-N-acetylglucosamine	Grevibacterium lactofermentum 99.4 99.6 490 cell division protein	3revibacterium lactofermentum 99.1 99.1 110 UDP-N-acetylmuramoylalanine-D-ATCC 13869 murD			Escherichia coli K12 mraY 38.6 63.8 365 pentapeptide	UDP-N-acetylmuramoytalanyl-D- Escherichia coli K12 murF 35.0 64.2 494 glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl igase
	larity %)	3.2	9.3	9.6	0.0	0.	3.6	0.0	9.8	9.5	9.6	<u>-</u>			8.8	1.2
	Simis (°)	7.	66	6	10	5,	- 	9	66)6 	36	66			9	9
	identity (%)	46.3	99.3	97.7	99.2	39.0	98.6	93.6	99.4	98.9	99.4	99.1			38.6	35.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2146c	Brevibacterium lactofermentum orf6	Corynebacterium glutamicum	Brevibacterium lactofermentum yfih	Mus musculus P4(21)n	Brevibacterium lactofermentum ftsZ	Corynebacterium glutamicum ftsQ	Corynebacterium glutamicum murC	Brevibacterium lactofermentum ATCC 13869 murG	Brevibacterium lactofermentum ATCC 13869 ftsW	Brevibacterium lactofermentum ATCC 13869 murD			Escherichia coli K12 mraY	Escherichia coli K12 murF
	db Match	pir:F70578	gp:BLFTSZ_6	sp:YFZ1_CORGL	prf.2420425C	GP. AB028868_1	sp.FTSZ_BRELA	gsp:W70502	gp:AB015023_1	gp:BLA242646_3	gp:BLA242646_2	gp:BLA242646_1			sp:MRAY_ECOLI	sp:MURF_ECOLI
	ORF (bp)	285	456	663	738	486	1326	999	1458	1116	1650	468	384	333	1098	1542
	Terminal (nt)	2276353	2276881	2277416	2278122	2279640	2278890	2280470	2281166	2282661	2283782	2285437	2286655	2286831	2286862	2287969
	Initial (nt)	2276637	2277336	2278078	2278859	2279155	2280215	2281135	2282623	2283776	2285431	2285904	2286272	2286499	2287959	2289510
	SEQ NO.	5855	5856	5857	5858	5859	5860	5861	5862	5863	5864	5865	5866	5867	5868	5869
	SEQ NO (DNA)	2355	2356	2357	2358	2359	2360	2361	2362	2363	2364	2365	2366	2367	2368	2369

10	Function	UDP-N-acetylmuramoylafanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical protein	143 hypothetical membrane protein
15	Matched length (a.a.)	491	57	650		323	143
20	Identity Similarity Matched (%) (%) (aa)	9.79	100.0	58.8		79.3	8 88
	Identity (%)	37.7	100.0	28.2		55.1	72.0
S 52	us gene	38 murE	ctofermentum	ruginosa pbpB		berculosis	prae
	Homologous gene	1551 sp:MURE_BACSU Bacillus subtilis 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium leprae
35	db Match	BACSU					
40	M db	sp. MURE	225 GSP:Y33117	1953 pir.S54872		1011 pir.A70581	
	ORF (bp)	1551	225	1953	795	1011	
45	Terminal (nt)	2289523	2290973	2291212	2293323	5874 2295127 2294117	
50	Initial (nt)	5870 2291073	5871 2291197	5872 2293164	5873 2294117	2295127	
	SEQ NO.	5870	5871	5872	5873	5874	
		. : _		l .	1 .	1	i

				-	 -	 -				·	—т				·		
Function	UDP-N-acetylmuramoylalanyl-D- glutamyl-2,6-diaminopimelate-D- alanyl-D-alanyl ligase	penicillin binding protein	penicillin-binding protein		hypothetical protein	hypothetical membrane protein	hypothetical protein		hypothetical protein	5,10-methylenetetrahydrofolate reductase	dimethylallyltranstransferase	hypothetical membrane protein		hypothetical protein	eukaryotic-type protain kinase		hypothetical membrane protein
Matched length (a.a.)	491	57	650		323	143	137		190	303	329	484		125	684		411
Similarity (%)	9.29	100.0	58.8		79.3	88.8	69.3		65.3	9.07	62.0	69.6		68.8	62.4		58.4
Identity (%)	37.7	100.0	28.2		55.1	72.0	39.4		36.3	42.6	30.1	35.7		43.2	34.2		30.7
Homologous gene	Bacillus subtilis 168 murE	Brevibacterium lactofermentum ORF2 pbp	Pseudomonas aeruginosa pbpB		Mycobacterium tuberculosis H37Rv Rv2165c	Mycobacterium leprae MLCB268,11c	Mycobacterium tuberculosis H37Rv Rv2169c		Mycobacterium leprae MLCB268.13	Streptomyces lividans 1326 metF	Myxococcus xanthus DK1050 ORF1	Mycobacterium leprae MLCB268.17		Mycobacterium tuberculosis H37Rv Rv2175c	Streptomyces coelicolor A3(2) pkaF		Mycobacterium leprae MLCB268.23
db Match	sp.MURE_BACSU	GSP:Y33117	pir:S54872		pir.A70581	gp:MLCB268_11	pir.C70935		gp:MLCB268_13	sp:METF_STRLI	pir.S32168	gp:MLCB268_16		pir.A70936	gp:AB019394_1		gp:MLCB268_21
ORF (bp)	1551	225	1953	795	1011	429	387	423	573	978	1113	1470	507	369	2148	651	1236
Terminal (nt)	2289523	2290973	2291212	2293323	2294117	2295376	2296512	2297231	2298438	2298451	2300636	2302175	2302685	2302251	2304980	2303040	2306218
Initial (nt)	2291073	2291197	2293164	2294117	1	2295804	2296898	2297653	2297866	2299428	2299524	2300706	2302179	2302619	2302833	2303690	2304983
SEQ NO.	5870	5871	5872	5873	5874	5875	5876	5877	5878	5879	5880	5881	5882	5883	5884	5885	
SEQ.	2370	2371	2372	2373	2374	2375	2376	2377	2378	2379	2380	2381	2382	2383	2384	2385	2386

	Function	hypothetical membrane protein	3-deoxy-D-arabino-heptulosonate-7- phosphate synthase	hypothetical protein	hypothetical membrane protein	major secreted protein PS1 protein precursor			hypothetical membrane protein	acyltransferase	glycosyl transferase	protein P60 precursor (invasion- associated-protein)	protein P60 precursor (invasion- associated-protein)	ubiquinal-cytochrame c reductase cytochrame b subunit	ubiquinol-cytochrome c reductase iron-sultur subunit (Rieske (eFe-2S) iron-sultur protein cyoB	ubiquinol-cytochrome c reductase cytochrome c
	Matched length (a.a.)	434	462	166	428	440			249	245	383	296	191	201	203	278
	Similarity (%)	62.0	87.9	7.77	64.5	57.1			100.0	100.0	75.7	8.09	61.3	64.7	57.1	83.1
	Identity (%)	30.4	6.99	58.4	35.1	28.2			100.0	100.0	50.1	26.4	33.0	34.3	37.9	58.6
Table 1 (continued)	Homolagaus gene	Mycobacterium tuberculosis H37Rv Rv2181	Amycolatopsis mediterranei	Mycobacterium leprae MLCB268.21c	Mycobacterium tuberculosis H37Rv Rv2181	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1			Corynebacterium glutamicum ATCC 13032	Corynebacterium glutamicum ATCC 13032	Streptomyces coelicolor A3(2) SC6G10.05c	Listeria ivanovii iap	Listeria grayi iap	Heliobacillus mobilis petB	Streptomyces lividans qcrA	Mycobacterium tuberculosis H37Rv Rv2194 qcrC
	db Match	pir.G70936	gp:AF260581_2	gp:MLCB268_20	pir.G70936	sp.CSP1_CORGL			gp:AF096280_3	gp:AF096280_2	gp:SC6G10_5	sp:P60_LISIV	sp.P60_LISGR	prf.2503462K	gp:AF107888_1	sp:Y005_MYCTU
	ORF (bp)	1308	1386	504	2418	1449	204	177	1188	735	1143	1047	627	1602	672	885
	Terminal (nt)	2307621	2307697	2309173	2312252	2313808	2314036	2313916	2314236	2315678	2317633	2318804	2319968	2321472	2323088	2324311
	Initial (nt)	2306314	2309082	2309676	2309835	2312360	2313833	2314092	2315423	2316412	2318775	2319850	2320594	2323073	2323759	2325195
	SEQ NO. (a.a.)	5887	5888	5889	5890	5891	5892	5893	5894	5895	5896	5897	5898	5899	2900	5901
	SEQ NO. (DNA)	2387	2388	2389	2390	2391	2392	2393	2394	2395	2396	2397	2398	2399	2400	2401

	Function	cytochrome c oxidase subunit III		hypothetical membrane protein	cytochrome c oxidase subunit II	glutamine-dependent amidotransferase or asparagine synthetase (lysozyme insensitivity protein)	hypothetical protein	hypothetical membrane protein	cobinamide kinase	nicotinate-nucleotide dimethylbenzimidazole phosphoribosyltransferase	cobalamin (5'-phosphate) synthase		clavulanate-9-aldehyde reductase	branched-chain amino acid aminotransferase	leucyl aminopeptidase	hypothetical protein	dihydrolipoamide acetyltransferase		lipoyltransferase
	Matched length (a.a.)	188		145	317	640	114	246	172	341	305		241	364	493	97	691		210
	Similarity (%)	7.07		71.0	53.9	99.8	100.0	60.2	64.0	6.99	49.8		68.5	70.3	62.9	0.79	68.5		65.7
	Identity (%)	36.7		38.6	28.7	99.7	100.0	35.0	43.0	37.8	25.3		38.6	40.1	36.3	40.2	48.9		36.7
Table 1 (continued)	Homologous gene	Synechococcus vulcanus		Mycobacterium tuberculosis H37Rv Rv2199c	Rhodobacter sphaeroides ctaC	Corynebacterium glutamicum KY9611 IIsA	Corynebacterium glutamicum KY9611 orf1	Mycobacterium leprae MLCB22.07	Rhodobacter capsulatus cobP	Pseudomonas denitrificans cobU	Pseudomonas denitrificans cobV		Streptomyces clavuligerus car	Mus musculus BCAT1	Pseudomonas putida ATCC 12633 pepA	Saccharopolyspora erythraea ORF1	Streptomyces seoulensis pdhB		Arabidopsis thaliana
	db Match	Sp.COX3_SYNVU		sp:Y00A_MYCTU	sp.COX2_RHOSH	gp:AB029550_1	gp:AB029550_2	gp:MLCB22_2	pir.S52220	sp:COBU_PSEDE	sp.coBV_PSEDE		prf:2414335A	sp:ILVE_MYCTU	gp:PPU010261_1	prf:2110282A	gp:AF047034_2		gp:AB020975_1
	ORF (bp)	615	153	429	1077	1920	342	768	522	1089	921	237	714	1137	1500	393	2025	1365	753
	Terminal (nt)	2325273	2326121	2326472	2326921	2330435	2330586	2331967	2332495	2333600	2334535	2334481	2335028	2335915	2338734	2338748	2341293	2339440	2342164
	Initial (nt)	2325887	2326273	2326900	2327997	2328516	2330927	2331200	2331974	2332512	2333615	2334717	2335741	2337051	2337235	2339140	2339269	2340804	2341412
	SEQ NO.	5902	5903	5904	5905	5906	5907	5908	5909	5910	5911	5912	5913	5914	5915	5916	5917	5918	5919
	SEQ NO.	2402	2403	2404	2405	2406	2407	2408	2409	2410	2411	2412	2413	2414	2415	2416	2417	2418	2419

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

_																				
	Function	lipoic acid synthetase	hypothetical membrane protein	hypothetical membrane protein	transposase (ISCg2)		hypothetical membrane protein		mutator mutT domain protein	hypothetical protein		alkanal monooxygenase alpha chain (bacterial luciferase alpha chain)	protein synthesis inhibitor (translation initiation inhibitor)			4-hydroxyphenylacetate permease	transmembrane transport protein	transmembrane transport protein		
	Matched length (a.a.)	285	257	559	401		157		145	128		220	111			433	158	118		
	Similarity (%)	6.07	76.7	67.8	100.0		63.7		44.0	65.6		6.09	73.0			53.4	72.8	66.1		
	Identity (%)	44.6	45.5	32.9	100.0		41.4		31.0	36.7		25.0	40.5			21.9	42.4	31.4		
Table 1 (continued)	Homologous gene	Pelobacter carbinolicus GRA BD 1 lipA	Mycobacterium tuberculosis H37Rv Rv2219	Escherichia coli K12 yidE	Corynebacterium glutamicum ATCC 13032 tnp		Streptomyces coelicolor A3(2) SC5F7 04c			Thermotoga maritima MSB8 TM1010		Vibrio harveyi luxA	Thermotoga maritima MSB8 TM0215			Escherichia coli hpaX	Streptomyces coelicolor A3(2) SCGD3.10c	Streptomyces coelicolor A3(2) SCGD3.10c		
	db Match	sp:LIPA_PELCA	sp:Y00U_MYCTU	sp:YIDE_ECOLI	gp:AF189147_1		gp:SC5F7_34			pir:872308		sp:LUXA_VIBHA	pir.A72404			prf:2203345H	gp:SCGD3_10	gp:SCGD3_10		
	ORF (bp)	1044	780	1617	1203	300	47.1	213	975	399	900	849	393	243	261	1323	561	444	195	405
	Terminal (nt)	2343347	2344258	2346047	2346289	2347804	2348078	2350408	2351996	2350912	2351310	2352828	2353225	2355398	2355180	2356843	2357354	2357707	2357290	2358130
	Initial (nt)	2342304	2343479	2344431	2347491	2347505	2348548	2350620	2351022	2351310	2351909	2351980	2352833	2355156	2355440	2355521	2356794	2357264	2357484	2357726
	SEQ NO.	5920	5921	5922	5923	5924	5925	5926	5927	5928	5929	5930	5931	5932	5933	5934	5935	5936	5937	5938
	SEQ NO.	2420	2421	2422	2423	2424	2425	2426	2427	2428	2429	2430	2431	2432	2433	2434	2435	2436	2437	2438

Table 1 (continued)

Fig. SEC Initial Circle Continue Circle Continue Circle C	r		-						—-т	-		_		Т	— т				 r	
SEQ Initial Terminal ORF db Match Homologous gene (%)		Function		heme oxygenase	glutamate-ammonia-ligase adenylylltansferase	glutamine synthetase	hypothetical protein	hypothetical protein	hypothetical protein	galactokinase	virulence-associated protein		bifunctional protein (ribonuclease H and phosphoglycerate mutase)		hypothetical protein	hypothetical protein	phosphoglycolate phosphatase	low molecular weight protein- tyrosine-phosphatase	hypothetical protein	insertion element (IS402)
SEQ (a.1) Initial (nl) (pp) (pp) db Match (bp) Homologous gene (bp) Identity (bp) 5940 2358695 2388153 543 Corynebacterium diphtheriae C7 (br) 57.9 5941 2358695 2358614 3135 gp.SCY17736_4 Streptomyces coelicolor A3(2) (br) 43.4 5942 2358416 2358618 1338 sp.CV17736_4 Streptomyces coelicolor A3(2) (br) 43.4 5943 2362436 1104 gp.SCC17736_4 Streptomyces coelicolor A3(2) (br) 43.4 5944 2365587 2367473 180 gp.SCC18A_11 Mycobacterium tuberculosis (br) 33.4 5946 2367791 12369083 1293 sp.GLII_HUMAN Homo sapiens galk1 24.9 5948 2367652 2367473 180 gp.SCC75A_11 Streptomyces coelicolor A3(2) (br) 38.9 5948 2370481 1346 sp.Y011_MNACTU Mycobacterium tuberculosis (br) 27.1 5948 2372561 1146 sp.Y014_MYCTU Mycobacterium tuberculosis (br) 2373286 2373289<		Matched length (a.a.)		214	809	441	392	601	54	374	358		382		249	378	204	156	281	129
SEQ (a.a.) Initial (nt) (nt) (nt) (nt) <		Similarity (%)		78.0	0.79	73.0	54.1	58.2	55.6	53.7	54.5		75.1		58.6	76.2	54.4	63.5	65.5	56.6
SEQ Initial (nt) (bp) (bp) db Match (a.a.) (nt) (nt) (bp) (bp) db Match (a.a.) (at) (nt) (nt) (bp) db Match (a.a.) (at) 2358955 2358153 543 (at) 2358416 2358172 645 sp.HMUO_CORDI 5942 2364155 2362818 1338 sp.GLNA_THEMA 5942 2364352 2367413 1827 sp.Y017_MYCTU 5946 2367791 2369083 1293 sp.GAL1_HUMAN 5947 2370381 2369083 1293 sp.GAL1_HUMAN 5948 2370423 2370408 486 gp.AF174645_1 5949 2372557 2371412 1146 sp.Y019_MYCTU 5950 2372561 2373289 729 sp.GPH_ECOLI 5953 2374462 2373323 1140 sp.Y018_MYCTU 5953 2374462 2373584 471 sp.Y01G_MYCTU 5954 2375147 2375197 654 sp.Y01G_MYCTU 5955 2375474 2375197 654 sp.Y01G_MYCTU 5955 2375767 2375720 954 sp.Y01G_MYCTU 5955 2375767 2375720 954 sp.Y01G_MYCTU 5955 2375767 2375720 954 sp.Y01G_MYCTU 5955 2375767 2375720 954 sp.Y01G_MYCTU 5955 2375767 2375720 954 sp.Y01G_MYCTU		Identity (%)		6.73	43.4	43.5	26.8	33.4	38.9	24.9	27.1		54.7		26.5	49.2	26.0	46.2	40.9	32.6
SEQ Initial Terminal ORF (a.a.) (nt) (nt) (bp) (5939 2358695 2358153 543 5940 2359416 2358772 645 5941 2362748 2359614 3135 5942 2362748 2359614 3135 5944 2365587 2367473 180 5945 2370381 2369083 1293 5946 2370381 2369083 1293 5948 2370423 2370908 486 5950 2372557 2373289 729 5951 2373289 2372573 1140 5953 2374462 2373323 1140 5953 2375767 2376720 954	ומחום ו (בתוווותבת)	Homologous gene		Corynebacterium diphtheriae C7 hmuO	Streptomyces coelicolor A3(2) glnE	Thermotoga maritima MSB8 glnA	Streptomyces coelicalor A3(2) SCE9.39c	Mycobacterium tuberculosis H37Rv Rv2226	Streptomyces coelicolor A3(2) SCC75A.11c.	Homo sapiens galK1	Brucella abortus vacB		Mycobacterium tuberculosis H37Rv Rv2228c		Mycobacterium tuberculosis H37Rv Rv2229c	Mycobacterium tuberculosis H37Rv Rv2230c	Escherichia coli K12 gph	Streptomyces coelicolor A3(2) SCQ11.04c ptpA	Mycobacterium tuberculosis H37Rv Rv2235	Burkholderia cepacia
SEQ Initial Terminal (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		db Match		sp:HMUO_CORDI	gp:SCY17736_4	sp:GLNA_THEMA	gp:SCE9_39	sp:Y017_MYCTU	gp:SCC75A_11	sp.GAL1_HUMAN	gp:AF174645_1		sp:Y019_MYCTU		sp:Y01A_MYCTU	sp:Y01B_MYCTU	sp.GPH_ECOLI	sp:PTPA_STRCO	sp:Y01G_MYCTU	sp:YI21_BURCE
SEQ Initial (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)		ORF (bp)	543	645	3135	1338	1104	1827	180	1293	1266	486	1146	729	717	1140	654	471	954	393
SEO NO. (a.a.) 5939 5940 5944 5944 5948 5955 5955 5955 5955 5955		Terminal (nt)	2358153	2358772	2359614	2362818	2365455	2367413	2367473	2369083	2369116	2370908	2371412	2373289	2372573	2373323	2375197	2375684	2376720	2376998
SEQ NO. (a.a.) 5939 5940 5941 5942 5944 5945 5948 5948 5948 5948 5950 5950 5953		Initial (nt)	2358695	2359416	2362748	2364155		2365587	2367652	_	2370381				1		-		1	2377390
SEO NO. 2439 2440 2444 2445 2446 2446 2446 2446 2446 2446		SEO NO.	5939	5940			5943	5944	5945	5946	5947			+	+	5952	+	5954		5956
		SEQ NO (DNA)	2439	2440	2441	2442	2443	2444	2445	2446	2447	2448	2449	2450	2451	2452	2453	2454	2455	2456

N-acetylglucosamine-6-phosphate deacetylase

75.5

43.9

Escherichia coli K12 nagD

sp:NAGD_ECOLI

sp:ACP_MYXXA

acyl carier protein

80.0

42.7

hypothetical protein

65.

33.6

Deinococcus radiodurans DR1192

gp. AE001968_4

5974 2390904

pyruvate dehydrogenase component ribose transport system permease protein ABC transporter or glutamine transport ATP-binding protein transcriptional regulator calcium binding protein Function hypothetical protein hypothetical protein lipase or hydrolase Matched length (a.a) Similarity (%) 57.8 9.77 78.9 55.2 œ Identity 55.9 41.6 29.6 30.4 55.2 33.7 25.4 26.2 Rickettsia prowazekii Madrid E RP367 Streptomyces seoulensis pdhA Dictyostelium discoideum AX2 cbpA Streptomyces coelicolor A3(2) SC8F4.22c Streptomyces coelicolor A3(2) SC6G4.24 Table 1 (continued) Mycobacterium tuberculosis H37Rv Rv2239c Myxococcus xanthus ATCC 25232 acpP Escherichia coli K12 glnQ Homologous gene Bacillus subtilis 168 rbsC sp:RBSC_BACSU sp:Y01K_MYCTU sp.GLNQ_ECOLI gp: AF047034_4 sp:CBPA_DICDI db Match gp:SC6G4_24 gp:SC8F4_22 pir.H71693 ORF (bp) Terminal <u>E</u> Initial Ę (a.a.) (DNA)

					,	_,															
5	Function	hypothetical protein						alkaline phosphatase D precursor		hypothelical protein	hypothetical protein		DNA primase	ribonuclease Sa			L-glutamine: D-fructose-6-phosphate amidotransferase			deoxyguanosinetriphosphate triphosphohydrolase	hypothetical protein
		hypoth						alkalin		hypoth	hypoth		DNA p	ribonu			L-gluta amidot			deoxyg	hypoth
15	Matched length (a.a.)	271						530		594	89		633	96			929			414	171
20	Similarity (%)	75.3						64.7		73.1	72.1		82.9	67.4			82.2			76.3	59.7
	Identity (%)	52.4						34.2		44.4	41.2		59.1	49.0			59.1			54.6	30.4
<i>25</i> (pan	9	A3(2)						O		A3(2)	osis		stis	ens BMK			ıtis			itis dgt	MA0251
os Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) SC4A7.08						Bacillus subtilis 168 phoD		Streptomyces coelicolor A3(2) SCI51.17	Mycobacterium tuberculosis H37Rv Rv2342		Mycobacterium smegmatis dnaG	Streptomyces aureofaciens BMK			Mycobacterium smegmatis mc2155 glmS			Mycobacterium smegmatis dgt	Neisseria meningitidis NMA0251
35	ے	0, 0,								0, 0,	~ +			-1							91_23 N
40	db Match	gp:SC4A7_8						sp:PPBD_BACSU		gp:SCI51_17	pir.G70661		prf.2413330B	gp:XXU39467			gp:AF058788_1			prf.2413330A	gp:NMA1Z2491_23
	ORF (bp)	825	492	771	546	465	342	1560	714	1836	240	675	1899	462	243	989	1869	324	1152	1272	675
45	Terminal (nt)	2391184	2392075	2392579	2393970	2393973	2394935	2396763	2395273	2399099	2399397	2399668	2399405	2401834	2402080	2402530	2402144	2404846	2406822	2404987	2406262
50	Initial (nt)	2392008	2392566	2393349	2393425	2394437	2394594	2395204	2395986	2397264	2399158	2400342	2401303	2401373	2401838	2403165	2404012	2404523	2405671	2406258	2406936
	SEQ NO.	5975	5976	5977	5978	5979	5980	5981	5982	5983	5984	5985	5986	2987	5988	5989	2990	5991	2669	5993	5994
55	SEQ NO. (DNA)	2475	2476	2477	2478	2479	2480	2481	2482	2483	2484	2485	2486	2487	2488	2489	2490	2491	2492	2493	2494

5	Function	hypothetical protein	hypothetical protein		glycyl-tRNA synthetase	bacterial regulatory protein, arsR family	ferric uptake regulation protein	hypothetical protein (conserved in C. glutamicum?)	hypothetical membrane protein	undecaprenyl diphosphate synthase	hypothetical protein	Era-like GTP-binding protein	hypothetical membrane protein	hypothetical protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	phosphate starvation inducible protein	hypothetical protein	
15	Matched length (a.a.)	692	138		508	89	132	529	224	233	245	296	432	157	85	344	248	
20	Similarity (%)	63.6	54.4		6.69	73.0	70.5	46.7	67.0	71.2	74.3	70.3	82.4	86.0	50.0	84.6	75.4	
	Identity (%)	31.1	24.6		46.1	49.4	34.9	24.8	40.6	43.4	45.7	39.5	52.8	65.0	45.0	61.1	44.0	
Table 1 (continued)	ıs gene	berculosis	ogaster		s HB8	berculosis rB	12 fur	berculosis	licolor A3(2)	IS B-P 26 uppS	berculosis	eumoniae era	berculosis	berculosis	itidis	iberculosis ohoH	licalor A3(2)	
Table 1 (c	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2345	Drosophila melanogaster CG10592		Thermus aquaticus HB8	Mycobacterium tuberculosis H37Rv Rv2358 furB	Escherichia coli K12 fur	Mycobacterium tuberculosis H37Rv Rv1128c	Streptomyces coelicolor A3(2) h3u	Micrococcus luteus B-P 26 uppS	Mycobacterium tuberculosis H37Rv Rv2362c	Streptococcus pneumoniae era	Mycobacterium tuberculosis H37Rv Rv2366	Mycobacterium tuberculosis H37Rv Rv2367c	Neisseria meningitidis	Mycobacterium tuberculosis H37Rv Rv2368c phoH	Streptomyces coelicolor A3(2) SCC77.19c.	
35		2 +			1	21	ш	= -	0, 1			0,					3, 3,	\Box
40	db Match	pir.B70662	gp:AE003565_26		pir:S58522	pir.E70585	Sp.FUR_ECOLI	pir.A70539	gp:AF162938_1	Sp:UPPS_MICLU	pir.A70586	gp:AF072811_1		sp:YN67_MYCTU	GSP:Y75650	sp:PHOL_MYCTU	gp:SCC77_19	
	ORF (bp)	2037	486	582	1383	369	432	1551	792	729	726	915	1320	588	264	1050	723	942
45	Terminal (nt)	2409029	2409779	2410280	2410956	2412948	2413423	2415118	2415298	2416371	2417222	2417969	2418990	2420313	2421236	2420900	2421975	2423791
50	Initial (nt)	2406993	2410264	2410861	2412338		2412992		2416089	2417099	2417947	2418883	2420309	2420900	2420973	2421949	2422697	2422850
	SEQ NO.	5995	5996	5997	5998	5999	9009	6001	6002	6003	6004	6005	9009	6007	6008	6009	6010	6011
55	SEQ NO.		2496	2497	-	+	2500		2502	2503		2505	2506	2507	2508	2509	2510	2511

Table 1 (continued)

Function	heat shock protein dnaJ	heat-inducible transcriptional repressor (groEL repressor)	oxygen-independent coproporphyrinogen III oxidase	agglutinin attachment subunit precursor			long-chain-fatty-acidCoA ligase	4-alpha-glucanotransferase	ABC transporter, Hop-Resistance protein	Neisserial polypeptides predicted to be useful antigens for vaccines and diagnostics	polypeptides predicted to be useful antigens for vaccines and diagnostics			peptidyl-dipeptidase	carboxylesterase	glycosyl hydrolase or trehalose synthase	hypotnetical protein
Matched length (a.a.)	380	334	320	134			611	738	604	68	107			069	453	594	449
Similarity (%)	4.77	9.67	64.1	64.9			75.1	55.4	64.4	51.0	53.0			68.3	45.7	84.9	58.8
Identity (%)	47.1	48.2	33.1	36.6			48.0	28.3	29.5	44.0	47.0			40.3	24.1	65.2	32.1
Homologous gene	Streptomyces albus dnaJ2	Streptomyces albus hrcA	Bacillus stearothermophilus hemN	Saccharomyces cerevisiae YNR044W AGA1			Streptomyces coelicolor A3(2) SC6G10.04	Escherichia coli K12 malQ	Lactobacillus brevis plasmid horA	Neisseria gonorrhoeae	Neisseria meningitidis			Salmonella typhimurium dcp	Anisopteromatus catandrae	Mycobacterium tuberculosis H37Rv Rv0126	Mycobacterium tuberculosis H37Rv Rv0127
db Match	prf:2421342B	prt.2421342A	prf.2318256A	sp:AGA1_YEAST			gp:SC6G10_4	sp:MALQ_ECOLI	gp:A8005752_1	GSP:Y74827	GSP:Y74829			sp:DCP_SALTY	gp:AF064523_1	pir.G70983	pir:H70983
ORF (bp)	1146	1023	066	519	693	378	1845	2118	1863	255	333	180	204	2034	1179	1794	1089
Terminal (nt)	2422700	2423915	2424965	2426699	2426776	2427807	2428184	2432413	2434370	2433614	2433875	2434440	2434573	2434805	2438049	2439906	2440994
Initial (nt)	2423845	2424937	2425954	2426181	2427468	2428184	2430028	2430296	2432508	2433868	2434207	2434619	2434776	2436838	2436871	2438113	2439906
SEQ NO.	6012	6013	6014	6015	6016	6017	6018	6019	6020	6021	6022	6023	6024	6025	6026	6027	6028
SEQ NO.	2512	2513	2514	2515	2516	2517	2518	2519	2520	2521	2522	2523	2524	2525	2526	2527	2528

5

10	
15	
20	
25	
30	
35	
40	
45	
50	

r				_		- 7	_														
	Function	isopentenyl-diphosphate Delta- isomerase						beta C-S lyase (degradation of aminoethylcysteine)	branched-chain amino acid transport system carrier protein (isoleucine uptake)	alkanal monooxygenase alpha chain		malonate transporter	glycolate oxidase subunit	transcriptional regulator		hypothetical protein		heme-binding protein A precursor (hemin-binding lipoprotein)	oligopeptide ABC transporter (permease)	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein
	Matched length (a.a.)	189						325	426	343		324	483	203		467		546	315	271	372
	Similarity (%)	57.7						100.0	100.0	49.0		60.5	55.1	65.0		57.6		55.5	73.3	74.5	66.4
	Identity (%)	31.8						99.4	99.8	21.6		25.9	27.7	25.6		22.5		27.5	40.0	43.2	37.4
Table 1 (continued)	Homologous gene	Chlamydomonas reinhardtii ipi 1						Corynebacterium glutamicum ATCC 13032 aecD	Corynebacterium glutamicum ATCC 13032 brnQ	Vibrio harveyi luxA		Sinorhizobium meliloti mdcF	Escherichia coli K12 glcD	Escherichia coli K12 ydfH		Salmonella typhimurium ygiK		Haemophilus influenzae Rd H10853 hbpA	Bacillus subtilis 168 appB	Escherichia coli K12 dppC	Escherichia coli K12 oppD
	db Match	pir. T07979						gp:CORCSLYS_1	sp:BRNQ_CORGL	sp:LUXA_VIBHA		gp:AF155772_2	sp.GLCD_ECOLI	sp:YDFH_ECOLI		sp:YGIK_SALTY		sp.HBPA_HAEIN	sp:APPB_BACSU	sp:DPPC_ECOLI	prf.2306258MR
	ORF (bp)	585	222	438	1755	999	519	975	1278	978	522	927	2844	711	282	1347	423	1509	996	828	1437
	Terminal (nt)	2441005	2441890	2442792	2441602	2443356	2444033	2445709	2446993	2447998	2450323	2450859	2451794	2455435	2455452	2455720	2457337	2459371	2460336	2461167	2462599
	Initial (nt)	2441589	2441669	2442355	2443356	2444015	2444551	2444735	2445716	2447021	2450844	2451785	2454637	2454725	2455733	2457066	2457759	2457863	2459371	2460340	2461163
	SEQ NO.	6029	6030	6031	6032	6033	6034	6035	6036	6037	6038	6039	6040	6041	6042	6043	6044	6045	6046	6047	6048
	SEQ NO (DNA)	2529	2530	2531	2532	2533	2534		2536	2537	2538		2540	2541	2542	2543	2544	2545	2546	2547	2548

Table 1 (continued)

				- 1			т	 -	_r					· 						
	Function	hypothetical protein	hypothetical protein	ribose kinase	hypothetical membrane protein		sodium-dependent transporter or odium Bile acid symporter family	apospory-associated protein C		thiamine biosynthesis protein x	hypothetical protein	glycine betaine transporter				large integral C4-dicarboxylate membrane transport protein	small integral C4-dicarboxylate membrane transport protein	C4-dicarboxylate-binding periplasmic protein precursor	extensin l	GTP-binding protein
	Matched length (a.a.)	106	157	300	466		284	295		133	197	601				448	118	227	46	603
	Similarity (%)	44.0	58.0	65.0	64.6		61.6	51.2		100.0	65.5	71.7				71.9	73.7	59.0	73.0	83.6
	Identity (%)	35.0	29.3	41.0	39.9		31.3	28.5		100.0	42.6	39.8				34.6	33.9	28.2	63.0	58.7
(Homologous gene	Aeropyrum pernix K1 APE1580	Aquifex aeolicus VF5 aq_768	Rhizobium etli rbsK	Streptomyces coelicolor A3(2) SCM2.16c		Homo sapiens	Chlamydomonas reinhardtii		Corynebacterium glutamicum ATCC 13032 thiX	Mycobacteriophage D29 66	Corynebacterium glutamicum ATCC 13032 betP				Rhodobacter capsulatus dctM	Klebsiella pneumoniae dctQ	Rhodobacter capsulatus B10 dctP	Lycopersicon esculentum (tomato)	Bacillus subtilis 168 lepA
	db Match	PIR:G72536	pir.D70367	prf:2514301A	gp:SCM2_16		sp:NTCI_HUMAN	gp:AF195243_1		sp:THIX_CORGL	sp:VG66_BPMD	S				prf.2320266C	gp:AF186091_1	sp.DCTP_RHOCA	PRF:1806416A	sp:LEPA_BACSU
	ORF (bp)	507	549	903	1425	303	972	846	366	570	588	1890	966	1608	384	1311	480	747	243	1845
!	Terminal (nt)	2461543	2462602	2464143	2465768	2465465	2466038	2467922	2470678	2472819	2472893	2475542	2477492	2479251	2479762	2479898	2481213	2481734	2484087	2482548
	Initial (nt)	2462049	2463150	2463241		2465767		2467077	2470313	2472250	2473480		2476497	2477644	2479379	2481208	2481692	2482480	2483845	2484392
	SEQ NO.	6049		6051		6053	6054	6055	9509	2509	6058	6909	0909	6061	6062	6063	6064	909	9909	6067
	SEQ NO.					2553		2555	2556	2557	2558	2559	2560	2561	2562	2563	2564	2565	2566	2567

	Function	hypothetical protein	30S ribosomal protein S20	thrreonine efflux protein	ankyrin-like protein	hypothetical protein	late competence operon required for DNA binding and uptake	late competence operon required for ONA binding and uptake		hypothetical protein hypothetical protein	phosphoglycerate mutase	hypothetical protein	hypothetical protein		gamma-glutamyl phosphate reductase or glutamate-5- semialdehyde dehydrogenase	D-isomer specific 2-hydroxyacid dehydrogenase		GTP-binding protein
Matched	length (a.a.)	185	85	210	129	313	527	195		273	235	117	197		432	304		487
Identity Similarity	(%)	69.7	72.9	67.1	9.08	74.1	49.7	63.6		88 88 85 83	66.4	86.3	85.3		9.66	100.0		78.2
Identity	(%)	41.6	48.2	30.0	61.2	46.0	21.4	30.8		34.8	46.8	55.6	0.89		99.1	99.3		58.9
	Homologous gene	Mycobacterium tuberculosis H37Rv Rv2405	Escherichia coli K12 rpsT	Escherichia coli K12 rhtC	Streptomyces coelicolor A3(2) SC6D7.25.	Mycobacterium tuberculosis H37Rv Rv2413c	Bacillus subtilis 168 comEC	Bacillus subtilis 168 comEA		Streptomyces coelicolor A3(2) SCC 123.07c.	Mycobacterium tuberculosis H37Rv Rv2419c	Mycobacterium tuberculosis H37Rv Rv2420c	Streptomyces coelicolor A3(2) SCC123.17c.		Corynebacterium glutamicum ATCC 17965 proA	Corynebacterium glutamicum ATCC 17965 unkdh		Streptomyces coelicolor A3(2) obq
	db Match	pir.H70683	sp.RS20_ECOLI	Sp.RHTC_ECOLI	gp:SC6D7_25	pir.H70684	sp.cME3_BACSU	sp:CME1_BACSU		gp: \$868123_7	pir.F70685	pir.G70685	gp:SCC123_17		sp:PROA_CORGL	sp:YPRA_CORGL		gp:D87915_1
200	(ga)	609	261	699	405	975	1539	582	822	822	708	471	678	1023	1296	912	711	1503
Terimina	(nt)	2485269	2485733	2485801	2486477	2486910	2487912	2489573	2491732	2488288	2491151	2491873	2492501	2493215	2494339	2495696	2497513	2498009
0.11.	(nt)	2484661	2485473	2486469	2486881	2487884	2489450	2490154	2490911	2481111	2491858	2492343	2493178	2494237	2495634	2496607	2496803	2499511
SEQ	(a.a.)		6909	0709	6071	6072	6073	6074	6075	8878	6077	6078	6009	6080	6081	6082	6083	6084
SEQ			2569		+	2572	2573	2574	2575		2577	2578	2579	2580	2581	2582	2583	2584

5		Function	xanthine permease	2,5-diketo-D-gluconic acid reductase			50S ribosomal protein L27	50S ribosomal protein L21	ribonuclease E			hypothetical protein	transposase (insertion sequence IS31831)	hypothetical protein	hypothetical protein	nucleoside diphosphate kinase		hypothetical protein	hypothetical protein	hypothetical protein
15		Matched length (a.a.)	422 xai	276 2,5			81 50	101 50	886 rib			195 hy	436 tra	117 h)	143 h)	134 ni		92 h	112 h	118 h
20		Similarity (%)	77.3	81.9			92.6	82.2	56.6			82.6	100.0	6.97	67.8	9.68		67.4	64.3	68.6
		Identity (%)	39.1	61.2			80.3	56.4	30.1			61.0	99.1	51.3	37.8	70.9		34.8	36.6	33.9
<i>25</i>	ntinued)	gene	Xnqd	ATCC			ıs IFO13189	us IFO13189	2 rne			color A3(2)	utamicum	color A3(2)	color A3(2)	egmatis ndk		durans R1	erculosis	erculosis
30	Table 1 (continued)	Homologous gene	Bacillus subtilis 168 pbuX	Corynebacterium sp. ATCC 31090			Streptomyces griseus IFO13189 rpmA	Streptomyces griseus IFO13189 obg	Escherichia coli K12 rne			Streptomyces coelicolor A3(2) SCF76.08c	Corynebacterium glutamicum ATCC 31831	Streptomyces coelicolor A3(2) SCF76.08c	Streptomyces coelicolor A3(2) SCF76.09	Mycobacterium smegmatis ndk		Deinococcus radiodurans R1 DR1844	Mycobacterium tuberculosis H37Rv Rv1883c	Mycobacterium tuberculosis H37Rv Rv2446c
<i>35</i>		db Match	PRIIX BACSU				Sp.RL27_STRGR	prf:2304263A	Sp.RNE_ECOLI			gp:SCF76_8	pir.S43613	gp:SCF76_8	gp:SCF76_9	gp: AF069544_1		gp:AE002024_10	pir.H70515	pir.E70863
		ORF (bp)	1007		621	396	264 S	303 pr	2268 s	573	747	609	1308 p	378 g	450 g	408	360	342 6	465	423
45		Terminal (nt)	0204660		2503355	2504265	2503984	2504300	2504831	2507710	2508840	2509530	2509523	2511423	2511876	2511949	2512409	2513144	2513154	2513692
50		Initial (nt)	_	2502577	2502735			2504602	2507098	 2507138			2510830	2511046	2511427	2512356			2513618	2514114
		SEQ		6086	6087			0609	5091				9609	7609	8609	6609	_		6102	6103
55				2585	25.87			2590	2501		2594		2596	2597	2598	2599	2600	2601	2602	2603

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function	folyl-polyglutamate synthetase				valyl-tRNA synthetase	oligopeptide ABC transport system substrate-binding protein	heat shock protein dnaK	lysine decarboxylase	malate dehydrogenase	transcriptional regulator	hypothetical protein	vanillate demethylase (oxygenase)	pentachlorophenol 4- monooxygenase reductase	transport protein	malonate transporter	class-III heat-shock protein or ATP-dependent protease	hypothetical protein	succinyl CoA:3-oxoadipate CoA transferase beta subunit	succinyl CoA:3-oxoadipate CoA transferase alpha subunit
	Matched length (a.a.)	451				915	521	208	170	319	207	208	357	338	444	286	430	366	210	251
	Similarity (%)	79.6				72.1	58.5	54.9	71.2	76.5	56.5	51.4	68.6	59.2	76.8	58.4	85.8	73.0	85.7	84.5
	Identity (%)	55.4				45.5	24.2	26.2	42.9	56.4	24.6	26.0	39.5	32.8	40.8	28.0	59.8	45.6	63.3	60.2
Table 1 (continued)	Homologous gene	Streptomyces coelicolor A3(2) folC				Bacillus subtilis 168 balS	Bacillus subtilis 168 oppA	Bacillus subtilis 168 dnaK	Eikenella corrodens ATCC 23824	Thermus aquaticus ATCC 33923 mdh	Streptomyces coelicolor A3(2) streptomyces coelicolor A3(2) SC4A10.33	Vibrio cholerae aphA	Acinetobacter sp. vanA	Sphingomonas flava ATCC 39723 pcpD	Acinetobacter sp. vanK	Klebsiella pneumoniae mdcF	Bacillus subtilis clpX	Streptomyces coelicolor A3(2) SCF55.28c	Streptomyces sp. 2065 pcaJ	Streptomyces sp. 2065 pcal
	db Match	prf.2410252B				sp:SYV_BACSU	pir.A38447	sp:DNAK_BACSU	gp:ECU89166_1	sp:MDH_THEFL	gp:SC4A10_33	gp:AF065442_1	prf.2513416F	gp:FSU12290_2	prf.2513416G	9p:KPU95087_7	prf.2303274A	gp:SCF55_28	gp.AF109386_2	gp:AF109386_1
	ORF (bp)	1374	612	714	663	2700	1575	1452	585	984	777	576	1128	975	1425	930	1278	1086	633	750
	Terminal (nt)	2514114	2516273	2516956	2517751	2515637	2518398	2521660	2521667	2522265	2524337	2524340	2526226	2527207	2528559	2528551	2529484	2531976	2531969	2532604
	Initial (nt)	2515487	2515662	2516243	2517089	2518336	2519972	2520209	2522251	2523248	2523561	2524915	2525099	2526233	2527135	2529480	2530761	2530891	2532601	2533353
	SEQ NO.	6104	6105	6106	6107	6108	6109	6110	6111	6112	6113	6114	6115	6116	6117	6118	6119	6120	6121	6122
	SEQ NO. (DNA)	2604	2605	2606	2607	2608	2609	2610	2611	2612	2613	2614	2615	2616	2617	2618	2619	2620	2621	2622

EP 1 108 790 A2

5	Function	protocatechuate catabolic protein	beta-ketothiolase		3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase	transcriptional regulator	3-oxoadipate enol-lactone hydrolase and 4-carboxymuconolactone decarboxylase		3-carboxy-cis,cis-muconate cycloisomerase	protocatechuate dioxygenase alpha subunit	protocatechuate dioxygenase beta subunit	hypothetical protein	muconolactone isomerase		muconate cycloisomerase		catechol 1,2-dioxygenase		toluate 1,2 dioxygenase subunit
15	Matched length (a.a.)	251	406		256	825	115		437	214	217	273	92		372		285		437
20	Similarity (%)	82.5	71.9		76.6	43.0	89.6		63.4	70.6	91.2	48.7	81.5		84.7		88.4		85.6
	Identity (%)	58.2	44.8		50.8	23.6	78.3		39.8	49.5	74.7	26.4	54.4		60.8		72.3		62.2
os Table 1 (continued)	s gene	cus 1CP pcaR	bktB		us pcal.	icolor A3(2)	us pcal		vus pcaB	us pcaG	us pcaH	erculosis	erculosis		us 1CP catB		ochrous catA		da plasmid
06 Table 1 (c	Homologous gene	Rhodococcus opacus 1CP pcaR	Ralstonia eutropha bktB		Rhodococcus opacus pcaL	Streptomyces coelicolor A3(2) SCM1 10	Rhodococcus opacus pcaL		Rhodococcus opacus pcaB	Rhodococcus opacus pcaG	Rhodococcus opacus pcaH	Mycobacterium tuberculosis H37Rv Rv0336	Mycobacterium tuberculosis catC		Rhodococcus opacus 1CP catB		Rhodococcus rhodochrous catA		Pseudomonas putida plasmid pDK1 xylX
35		Ω.	άx		<u> </u>	रह स	<u> </u>		Ē.	R	₹	ΣΪ	S S				2		
40	db Match	prf.2408324F	prf:2411305D		prf.2408324E	gp:SCM1_10	prf:2408324E		prf.2408324D	prf:2408324C	prf.2408324B	pir:G70506	prf:2515333B		sp:CATB_RHOOP		prf.2503218A		gp:AF134348_1
	ORF (bp)	792	1224	912	753	2061	366	678	1116	612	069	1164	291	771	1119	909	855	141	1470
45	Terminal (nt)	2534182	2535424	2534257	2536182	2538256	2538248	2540230	2538616	2539709	2540335	2541187	2542512	2543813	2542818	2544867	2544022	2544928	2546784
50	Initial (nt)	2533391	2534201	2535168	2535430	2536196	2538613	2539553	2539731	2540320	2541024	2542350	2542802	2543043	2543936	2544262	2544876	2545068	2545315
	SEQ NO. (a.a.)	6123	6124	6125	6126	6127	6128	6129	6130	6131	6132	6133	6134	6135	6136	6137	6138	6139	6140
55	SEQ NO.	2623	2624	2625	2626	2627	2628	2629	2630	2631	2632	2633	2634	2635	2636	2637	2638	2639	2640

EP 1 108 790 A2

transmembrane transport protein or 1,2-dihydroxycyclohexa-3,5-diene regulator of LuxR family with ATPtoluate 1,2 dioxygenase subunit toluate 1,2 dioxygenase subunit 4-hydroxybenzoate transporter trigger factor (prolyl isomerase) benzoate membrane transport ATP-dependent Clp protease proteolytic subunit 2 ATP-dependent Clp protease carboxylate dehydrogenase penicillin-binding protein Function hypothetical protein (chaperone protein) hypothetical protein hypothetical protein hypothetical protein proteolytic subunit 10 transposase transposase binding site protein Matched length 115 (a.a.) 342 979 435 198 160 142 9 277 388 417 336 197 42 35 75 Similarity 83.2 85.9 48.6 61.4 64.4 66.2 71.4 66.4 50.9 58.3 73.2 82.9 78.7 63.1 8 8 88 Identity (%) 60.3 30.7 23.3 31.3 42.9 32.5 27.8 54.2 S 2 25.3 50.7 6 57.1 32.1 62 51 69 23 Corynebacterium striatum ORF1 Corynebacterium striatum ORF1 Corynebacterium striatum ORF1 Rhodococcus erythropolis thcG Streptomyces coelicolor M145 clpP2 Streptomyces coelicolor M145 clpP1 Sulfolobus islandicus ORF154 Nocardia lactamdurans LC411 pbp Pseudomonas putida plasmid pDK1 xylL Pseudomonas putida plasmid Pseudomonas putida plasmid Streptomyces coelicolor A3(2) SCD25.17 Table 1 (continued) Acinetobacter calcoaceticus pcaK Acinetobacter calcoaceticus benE Homologous gene Bacillus subtilis 168 tig Mus musculus Moa1 pDK1 xylY pDK1 xylZ Sp:PBP4_NOCLA sp:PCAK_ACICA Sp:BENE_ACICA gp:AF134348_3 gp:AF134348_4 gp:REU95170_1 sp:TIG_BACSU gp:AF134348_ gp: AF071885 gp:SIS243537 db Match gp:SCD25_17 gp:AF071885_ 126 prf.2513302C prf.2513302C prf:2301342A prf:2513302C 264 1380 1536 2685 1242 1347 ORF (bp) 438 492 456 828 624 603 495 975 150 249 150 2562341 2562078 2555978 2561363 2561990 Terminal 2547318 2548868 2549695 2552455 2553942 2555317 2560586 2561483 2562242 2555267 2556748 2556760 2559103 2560131 <u>E</u> 2562115 2556580 2561115 2547333 2554026 2555940 6153 2560131 2562093 2548868 2549771 2552563 2556599 2558106 2558609 2559157 2561920 2546827 Initial (nt) 50 6154 6148 6141 6142 6143 6145 6152 6155 6156 6158 SEO NO (a a.) 6144 6146 6147 6149 6150 6151 6157 DNA) 2641 2642 2643 2646 2648 2649 2653 2654 2655 2656 2644 2645 2647 2651 2652 2657 2650 8

5

15

20

25

30

35

40

45

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function			galactose-6-phosphate isomerase	hypothetical protein	hypothetical protein	aminopeptidase N	hypothetical protein				phytoene desaturase			phytoene dehydrogenase	phytoene synthase	multidrug resistance transporter		ABC transporter ATP-binding protein	dipeptide transport system permease protein	nickel transport system permease protein	
	Matched length (a.a.)			140 ga	248 hy	199 hy	890 ап	358 hy				104 ph			381 ph	290 ph	392 mi		538 AE	286 dip	316 nio	
	Similarity (%)			71.4	58.1	80.9	70.5	58.1				81.7			63.8	58.6	47.7		71.6	73.8	62.0	
	Identity (%)			40.0	26.2	56.8	47.5	25.1				61.5			31.2	31.4	25.8		41.3	38.8	33.2	
Table 1 (continued)	Homologous gene			Staphylococcus aureus NCTC 8325-4 facB	Bacillus acidopullulyticus ORF2	Mycobacterium tuberculosis H37Rv Rv2466c	Streptomyces lividans pepN	Borrelia burgdorferi BB0852				Brevibacterium linens ATCC धर्ग र त्मा 9175 cttl			Myxococcus xanthus DK1050 carA2	Streptomyces griseus JA3933 crtB	Listeria monocytogenes IItB		Synechococcus elongatus	Bacillus firmus OF4 dppC	Escherichia coli K12 nikB	
	db Match			sp:LACB_STAAU	Sp.YAMY_BACAD	pir:A70866	SP. AMPN_STRLI	pir.B70206				gp:AF139916_3			sp:CRTJ_MYXXA	sp:CRTB_STRGR	gp:LMAJ9627_3		gp:SYOATPBP_2	sp:DPPC_BACFI	pir:S47696	
	ORF (bp)	390	885	471	969	609	2601	1083	1152	999	156	327	171	378	1206	876	1119	1233	1641	882	939	1707
	Terminal (nt)	2562387	2563847	2563932	2564550	2565623	2568945	2570293	2570309	2572175	2572348	2572351	2572807	2573393	2572659	2573843	2574780	2575981	2577232	2578879	2579769	2580711
!	Initial (nt)	2562776	2562963	2564402	2565245	2566231	2566345	2569211	2571460	2571510	2572193	2572677	2572977	2573770	2573864	2574718	2575898	2577213	2578872	2579760	2580707	2582417
	SEQ NO. (a.a.)	6159	6160	6161	6162	6163	6164	6165	6166	6167	6168	6169	6170	6171	6172	6173	6174	6175	6176	6177	6178	6179
	SEQ NO. (DNA)	2659	2660	2661	2992	2663	2664	2665	2666	2667	2668	2669	2670	2671	2672	2673	2674	2675	2676	2677	2678	2679

5	Function		acetylornithine aminotransferase	hypothetical protein	hypothetical membrane protein	acetoacetyl CoA reductase	transcriptional regulator, TetR family	polypeptides predicted to be useful antigens for vaccines and diagnostics	ABC transporter ATP-binding protein	globin	chromate transport protein	hypothetical protein	hypothetical protein		hypothetical protein	ABC transporter ATP-binding protein	hypothetical protein	hypothetical membrane protein	alkaline phosphatase
15	Matched length (a.a.)		411	482	218	235	240	94	238	126	396	196	127		55	563	172	700	536
20	Similarity (%)		63.5	47.9	79.4	0.09	55.0	47.0	65.1	77.0	60.4	68.9	61.4		0.09	79.6	62.2	56.7	52.6
	Identity (%)		31.4	25.1	49.1	28.1	26.7	38.0	31.1	53.2	27.3	37.8	36.2		36.4	52.8	31.4	28.0	28.0
Table 1 (continued)	Homologous gene		Corynebacterium glutamicum ATCC 13032 argD	Mycobacterium tuberculosis H37Rv Rv1128c	Mycobacterium tuberculosis H37Rv Rv0364	Chromatium vinosum D phbB	Streptomyces coelicolor actil	Neisseria meningitidis	Pseudomonas putida GM73 ttg2A	Mycobacterium leprae MLCB1610.14c	Pseudomonas aeruginosa Plasmid pUM505 chrA	Mycobacterium tuberculosis H37Rv Rv2474c	Streptomyces coelicolor A3(2) SC6D10.19c		Aeropyrum pernix K1 APE1182	Escherichia coli K12 yjjK	Mycobacterium tuberculosis H37Rv Rv2478c	Mycobacterium leprae o659	Bacillus subtilis phoB
35			CORGL CC	ΣÏ								ΣI					≥ I		
40	db Match		sp:ARGD_C	pir.A70539	sp:YA26_MYCTU	Sp. PHBB_CHRVI	pir. A40046	GSP:Y74375	gp:AF106002_	gp:MLCB1610_9	sp.CHRA_PSEAE	pir.A70867	gp:SC6D10_19		pir.B72589	sp:YJJK_ECOLI	pir.E70867	Sp:Y05L_MYCLE	pir.C69676
	ORF (bp)	1941	1314	1584	747	708	738	441	792	393	1128	627	465	621	162	1668	615	2103	1419
45	Terminal (nt)	2584504	2585926	2587763	2588722	2588725	2590302	2591137	2591574	2592794	2593965	2593968	2594597	2595188	2595822	2596048	2597869	2598662	2602879
50	Initial (nt)	2582564	2584613	2586180	2587976	2589432			2592365	2592402	2592838	2594594	2595061	2595808	2595983	2597715	2598483	2600764	2601461
	SEQ NO	6180	6181	6182	6183	6184	6185		6187	6188	6189	6190	6191	6192	6193	_	6195	6196	6197
55	SEQ NO.	2680	2681	2682	2683	2684	2685	2686	2687	2688	2689	2690	2691	2692	2693	2694	2695	2696	2697

								,	,												
5		u			g transport stein	g transport stein		ein		-binding protein Isport protein) transport			lannose		ıase	fier		ne protein	protein		
10		Function			multiple sugar-binding transport system permease protein	multiple sugar-binding transport system permease protein		maltose-binding protein		ABC transporter ATP-binding protein (ABC-type sugar transport protein) or cellobiose/maltose transport protein			dolichol phosphate mannose synthase		aldehyde dehydrogenase	circadian phase modifier		hypothetical membrane protein	glyoxylate-induced pr	ketoacyl reductase	oligoribonuclease
15		Matched length (a.a.)			279	292		462		386			154		207	183		412	255	258	179
20		Similarity (%)			76.3	67.5		63.2		79.8			72.7		89.4	73.8		64.6	69.4	57.0	78.8
		Identity (%)			39.1	27.4		28.8		59.1			37.7		67.2	48.6		35.0	41.2	40.0	48.0
25	onunaea	s gene			sus	ans		erium		uli msiK			ces pombe		ochrous 5	PCC7942		na MSB8	2 gip	erculosis	2 orn
30	lable i (confillaeu)	Homologous gene			Streptococcus mutans INGBRITT msmG	Streptococcus mutans INGBRITT msmF		Thermoanaerobacterium thermosul amyE		Streptomyces reticuli msiK			Schizosaccharomyces pombe dpm1		Rhodococcus rhodochrous plasmid pRTL1 orf5	Synechococcus sp. PCC7942 cpmA		Thermotoga maritima MSB8 TM0964	Escherichia coli K12 gip	Mycobacterium tuberculosis H37Rv Rv1544	Escherichia coli K12 orn
35								≓£		S			S to		ST. QT	S		FF		ΣÏ	
40		db Match			sp:MSMG_STRMU	sp:MSMF_STRMU		prf.2206392C		prf.2308356A			prf.2317468A		prf:2516398E	prf.2513418A		pir:A72312	sp:GIP_ECOLI	pir.E70761	sp:ORN_ECOLI
		ORF (bp)	930	639	912	843	1674	1329	1242	1128	300	750	684	069	789	762	345	1182	750	798	657
45		Terminal (nt)	2605502	2603945	2604609	2605527	2608117	2606561	2608185	2609512	0200	2612272	2610848	2613151	2614500	2615410	2615795	2615939	2617995	2618869	2619538
50		Initial (nt)	2604573	2604583	2605520	2606369	2606444	2607889	2609426	2610639		2611523	2611531	2612462	2613712	2614649	2615451	2617120	2617246	2618072	2618882
		SEQ NO. (a.a.)	6198	6199	6200	6201	6202	6203	6204	6205	9000	6206	6207	6208	6209	6210	6211	6212	6213	6214	6215
55		SEQ NO.	2698	2699	2700	2701	2702	2703	2704	2705		2706	2707	2708	2709	2710	2711	2712	2713	2714	2715

5		Function	ferric enterochelin esterase	lipoprotein				transposase (IS1207)			transcriptional regulator	glutaminase	sporulation-specific degradation regulator protein		uronate isomerase		hypothetical protein	pyrazinamidase/nicotinamidase	hypothetical protein	bacterioferritin comigratory protein	bacterial regulatory protein, tetR family
15		Matched length (a.a.)	454	398				436 t			131	358	67		335		291	185	75	141	114
20		Similarity (%)	50.9	71.9				93.8			63.4	69.3	72.2		6.09		45.0	74.6	80.0	73.8	61.4
		Identity (%)	26.0	48.5				99.5			32.8	35.2	42.3		29.0		32.0	48.1	42.7	46.8	32.5
25	ontinued)	s gene	a iroD	erculosis pS				jlutamicum			urium KP1001	SPRAGUE-	8 degA		12 uxaC		perennial	ium pncA	berculosis	12 bcp	licolor A3(2)
30	Table 1 (continued)	Homologous gene	Salmonella enterica iroD	Mycobacterium tuberculosis H37Rv Rv2518c IppS				Corynebacterium glutamicum ATCC 21086			Salmonella typhimurium KP1001 cytR	Rattus norvegicus SPRAGUE. BAWLEY KIBNEY	Bacillus subtilis 168 degA		Escherichia coli K12 uxaC		Zea diploperennis perennial teosinte	Mycobacterium avium pncA	Mycobacterium tuberculosis H37Rv Rv2520c	Escherichia coli K12 bcp	Streptomyces coelicolor A3(2) SCI11.01c
40		db Match	pri.2409378A S	pir:C70870				gp:SCU53587_1 A			gp:AF085239_1 c	Sp.GLSK_RAT	pir.A36940 E		sp:UXAC_ECOLI E		prf.1814452C	prf:232444A		sp. BCP_ECOLI	gp:SCI11_1
		ORF (bp)	1188 pr	1209 pir	645	150	246	1308 gp	207	639	453 gp	1629 sp	477 pii	555	1554 sp	501	1197 pr	558 pr	273 pi	465 sp	636 95
45		Terminal (nt)	2619541	2620973	2623605	2623621	2624048	2624051	2625806	2625809	2628376	2626493	2628852	2628324	2630479	2631136	2632466	2633100	2633146	2634064	2634751
50		Initial (nt)	2620728	2622181	2622961	2623770	2623803	2625358	2625600	2626447	2627924	2628121	2628376	2628878	2628926	2630636	2631270	2632543	2633418	2633600	2634116
		SEQ.		6217	6218	6219	6220	6221	6222	6223	6224	6225	6226	6227	6228	6229	6230	6231		6233	
55		SEQ	2716	2717	2718	2719	2720	2721	2722	2723	2724	2725	2726	2727	2728	2729	2730	2731	2732	2733	2734

EP 1 108 790 A2

				\neg	-					\Box									
5	Function	phosphopantethiene protein transferase	lincomycin resistance protein	hypothetical membrane protein		fatty-acid synthase	hypothetical protein	peptidase	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	ribonuclease PH				hypothetical membrane protein	transposase (IS1628)		arylsulfatase
15	Matched length (a.a.)	145 pl	473 lir	113 h		3029 fa	404 h	230 p	112 h	113 h	202 h	236 ri				428 h	175 tr		250 a
20	Similarity (%)	75.9	85.6	54.0		83.6	55.2	6.09	67.9	0.69	76.7	81.4				58.2	97.2		74.4
	Identity (%)	56.6	52.4	30.1		62.3	25.3	40.4	40.2	37.2	55.0	60.2				29.0	92.1		46.0
25 (panujuned)	gone :	CC 6871 ppt1	utamicum	PCC6803			color A3(2)	ercutosis	erculosis	ae	erculosis	iginosa				erculosis	lutamicum AG1 tnpB		rae ats
© . Table 1 (continued)	Homologous gene	Corynebacterium ammoniagenes ATCC 6871 ppt1	Corynebacterium glutamicum ImrB	Synechocystis sp. F		Corynebacterium ammoniagenes fas	Streptomyces coelicolor A3(2) SC4A7.14	Mycobacterium tuberculosis H37Rv Rv0950c	Mycobacterium tuberculosis H37Rv Rv1343c	Mycobacterium leprae B1549_F2_59	Mycobacterium tuberculosis H37Rv Rv1341	Pseudomonas aeruginosa ATCC 15692 rph				Mycobacterium tuberculosis H37Rv SC8A6.09c	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB		Mycobacterium leprae ats
35		उ ह	ŭΕ	S		a C	रू २८	ΣÏ	ΣÏ	Σàο							38		
40	db Match	gp:BAY15081_1	gp:AF237667_1	pir:S76537		pir:S2047	gp:SC4A7_14	pir:D70716	sp:Y077_MYCT	sp:Y076_MYCLE	sp:Y03Q_MYCTU	sp:RNPH_PSEAE				sp.Y029_MYCTU	gp:AF121000_8		sp:Y03O_MYCLE
	ORF (bp)	405	1425	324	414	8979	1182	615	462	354	618	735	246	693	582	1362	534	999	765
45	Terminal (nt)	2634747	2635165	2637168	2637240	2638649	2648235	2650164	2650902	2651339	2651420	2652067	2653009	2653326	2654079	2654875	2656985	2656974	2657736
50	Initial (nt)	2635151	2636589	2636845	2637653	2647627	2649416	2649550	2650441	2650986	2652037	2652801	2653254	2654018	2654660	2656236	2656452	2657633	2658500
	SEQ NO (a.a.)	6235	6236	6237	6238	6239	6240	6241	6242	6243	6244	6245	6246	6247	6248	6249	6250	6251	6252
55	SEQ NO.	2735	2736	2737	2738	2739	2740	2741	2742	2743	2744	2745	2746	2747	2748	2749	2750	2751	2752

\bigcirc	(\circ	

ſ				1															
	Function	D-glutamate racemase		bacterial regulatory protein, marR family	hypothetical membrane protein		endo-type 6-aminohexanoate oligomer hydrolase	hypothetical protein	hypothetical protein	:	hypothetical protein		ATP-dependent helicase	hypothetical membrane protein	hypothetical protein	phosphoserine phosphatase		cytochrome c oxidase chain l	
	Matched length (a.a.)	284		147	225		321	200	105		428		647	313	222	310		575	
	Similarity (%)	99.3		70.8	69.3		58.3	58.5	77.1		80.8		53.3	60.1	52.0	61.0		74.4	
	Identity (%)	99.3		44.2	38.2		30.2	35.0	57.1		61.2		25.2	29.7	39.0	38.7		46.8	
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13869 murl		Streptomyces coelicolor A3(2) SCE22.22	Mycobacterium tuberculosis H37Rv Rv1337		Flavobacterium sp. nylC	Mycobacterium tuberculosis H37Rv Rv1332	Mycobacterium tuberculosis H37Rv Rv1331		Mycobacterium tuberculosis H37Rv Rv1330c		Escherichia coli dinG	Mycobacterium tuberculosis H37Rv Rv2560	Streptomyces coelicolor A3(2) SC1B5.06c	Escherichia coli K12 serB		Mycobacterium tuberculosis H37Rv Rv3043c	
	db Match	prf:2516259A		gp:SCE22_22	sp:Y03M_MYCTU		pir.A47039	sp:Y03H_MYCTU	sp:Y03G_MYCTU		sp.Y03F_MYCTU		prf.1816252A	sp:Y0A8_MYCTU	pir.T34684	sp.SERB_ECOLI		pir:D45335	
	ORF (bp)	852	636	492	747	891	096	537	300	624	1338	306	1740	891	723	1017	1596	1743	306
	Terminal (nt)	2658606	2660131	2660147	2660671	2662455	2661417	2662331	2662883	2664060	2665397	2665992	2667854	2667870	2668839	2669557	2672721	2671063	2673255
	Initial (nt)	2659457	2659496	2660638	2661417	2661565	2662376	2662867	2663182	2663437		2665687	2666115	2668760	2669561	2670573	2671126	2672805	2672950
	SEQ NO (a a)	6253	6254	6255	6256	6257	6258	6529	6260	6261	6262	6263	6264	6265	6266	6267	6268	6929	6270
	SEQ NO. (DNA)	2753	2754	2755	2756	2757	2758	2759	2760	2761	2762	2763	2764	2765	2766	2767	2768	2769	2770

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

ŕ	3
ă	5
=	3
-	Ξ
·Ξ	5
7	Ξ
7	5
č	ز
-	-
_	
_9	2
1	
c	t

EP 1 108 790 A2

	_					- 1			_,_	- 1		_						- T	— т	γ-		
		tion	rane protein	rane protein		76)	tein PS1 protein				(6)		glutamate symport					TP-binding proteir		-		dehydrogenase
0		Function	hypothetical membrane protein	hypothetical membrane protein	hypothetical protein	transposase (IS1676)	major secreted protein PS1 protein precursor				transposase (1516/6)	- 1	proton/sodium-glutamate symport	protein		ABC transporter		ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein		oxidoreductase or dehydrogenase
5	Matchad	Matched length (a.a.)	84	\neg	254	496	355				200		007	438		873		218	84	42		196
20		Similarity (%)	64.3	61.5	79.1	48.6	49.6				46.6			2.99		0.69		79.8	67.0	75.0		54.1
		Identity (%)	41.7	25.4	51.2	24.2	24.8				24.6			30.8		33.0		45.4	0.09	71.0		28.1
25 Q	(2001)	ane	ulosis) jhp1146	ısı	solis	amicum n) ATCC				polis					lor A3(2)	į	Sr	noniae	9 Nigg		s Tu 1892
Table 1 (continued)	uno) i orgal	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3069	Helicobacter pylori J99 jhp1146	Bacillus subtilis 168 yesl	Rhodococcus erythropolis	Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 csp1				Rhodococcus erythropolis			Bacillus subtilis 168		Streptomyces coelicolor A3(2) SCE25.30		Staphylococcus aureus	Chlamydophila pneumoniae AR39 CP0987	Chlamydia muridarum Nigg TC0129		Streptomyces collinus Tu 1892 ansG
35	-		ΣÏ	Ī	<u> </u>	2					~		•			o o		S	OQ	0 F		0) (6)
40		db Match	pir.F70650	pir:D71843	Sp.YCSI BACSU	gp:AF126281_1	sp.CSP1_CORGL				gp:AF126281_1			sp.GLTT_BACCA		gp:SCE25_30		gp:SAU18641_2	PIR:F81516	PIR:F81737		prf:2509388L
		ORF (bp)	288	324	792	1365	1620	354	165	447	1401	768		1338	663	2541	891	708	273	141	678	672
45		Terminaf (nt)	2690437	2690760	2691564	+-	2694918	2695279	2695718	2695320	2697212	2697383		2698194	2701612	2699926	2703356	2702487	2704586	2704975	2710555	2711308
50		Initial (nt)	2690150	2690437	+		2693299	2694926	2695554	2695766	2695812	2698150		2699531	2700920	2702466	2702466		2704314	2704835	2709878	2710637
		SEQ NO.	6290	6291				6295	6296	6297	6298	6539		6300	6301	6302	6303	6304	6305	9069	6307	6308
55		SEQ (2701				2795	2796	_	_	2799		2800	2801	2802	2803	_	2805	2806	2807	2808

succinyl-CoA synthetase beta chain succinyl-CoA synthetase alpha chain 5 UDP-N-acetylglucosamine succinyl-CoA coenzyme transferase O-acetylserine synthase produc carboxyvinyltransferase transcriptional regulator transcriptional regulator Function hypothetical protein hypothetical protein hypothetical protein hypothetical protein hypothetical protein cysteine synthase methyltransferase frenolicin gene E 15 Matched length 213 400 305 172 (a.a) 205 417 90 75 321 281 83 291 2 84 42 Similarity 43.0 73.0 71.8 S 84.6 51.2 0.99 75.0 75.3 84.2 0.69 79.7 65.1 79 68 17 Identity (%) 47.9 45.9 52.9 42.0 39.8 S ဖ 71.0 66.3 57.1 61.1 0 38 36. 38 25. 61 4 Aeropyrum pernix K1 APE1069 Streptomyces roseofulvus frnE Azospirillum brasilense ATCC 29145 ntrC Coxiella burnetii Nine Mile Ph sucD Streptomyces coelicolor A3(2) SC2G5.15c Deinococcus radiodurans R1 DR1844 Clostridium kluyveri cat1 cat1 Azotobacter vinelandii cysE2 Table 1 (continued) Acinetobacter calcoaceticus NCIB 8250 murA Mycobacterium tuberculosis H37Rv Rv1314c Mycobacterium tuberculosis H37Rv Rv0089 Chiamydia muridarum Nigg TC0129 Bacillus subtilis 168 sucC Homologous gene Bacillus subtilis 168 cysK Chlamydia pneumoniae sp:SUCD_COXBU sp:SUCC_BACSU sp.CYSK_BACSU gp:AE002024_10 sp:Y089_MYCTU sp:MURA_ACICA sp:Y02Y_MYCTU Sp.CAT1_CLOKL sp:NIR3_AZOBR 5 db Match gp:SC2G5_15 gp. AF058302 prf.2417357C GSP:Y35814 PIR:F72706 PIR:F81737 1539 1143 1194 1254 225 735 924 360 819 ORF (bp) 273 843 546 288 882 525 570 195 408 141 2722857 2729378 2732518 2723609 2724478 2725843 2725384 2727399 2720385 2723770 2726786 2728207 Terminal 2712374 2713453 2713842 2717993 2718436 2720319 2721295 45 Ę 2725359 2725619 2730916 2721934 2729025 2731376 2723064 2726577 2727145 2728133 2713702 2719689 2719750 2721702 2724057 2711850 2713181 2721227 2718187 Initial <u>f</u> 50 6319 6318 6326 6315 6320 6323 6325 6321 6322 6324 6309 6310 6312 6313 6314 6316 6327 6311 (a a.) SEQ NO 2823 2815 2816 2817 2818 2819 2821 2822 2824 2825 2827 2809 2811 (DNA) 2810 2812 2813 2814

10

20

25

30

35

40

amidophosphoribosyl transferase

482

89.0

70.3

Corynebacterium ammoniagenes ATCC 6872 purF

1482 | gp: AB003158_4

2842 | 6342 | 2747564 | 2746083

5	Function		phosphate transport system regulatory protein	phosphate-specific transport component	phosphate ABC transport system permease protein	phosphate ABC transport system permease protein	phosphate-binding protein S-3 precursor	acetyltransferase		hypothetical protein	hypothetical protein	branched-chain amino acid aminotransferase	hypothetical protein	hypothetical protein	5'-phosphoribosyl-5-aminoimidazole synthetase
15	Matched length (a.a.)		213	255	292	325	369	315		344	225	259	352	58	347
20	Similarity (%)		81.7	82.8	82.2	78.5	56.0	60.0		55.2	74.2	56.0	79.0	81.0	94.2
	identity (%)		46.5	58.B	51.4	50.2	40.0	34.3		24.7	44.9	28.6	58.5	58.6	81.0
25 Da			Sis	a pstB	sis	sis	sis	43(2))	Sis	\T2	272	sis	372
00 00 Table 1 (continued)	Homologous gene		Mycobacterium tuberculosis H37Rv Rv0821c phoY-2	Pseudomonas aeruginosa pstB	Mycobacterium tuberculosis H37Rv Rv0830 pstA1	Mycobacterium tuberculosis H37Rv Rv0829 pstC2	Mycobacterium tuberculosis H37Rv phoS2	Streptomyces coelicolor A3(2) SCD84 18c		Bacillus subtilis 168 bmrU	Mycobacterium tuberculosis H37Rv Rv0813c	Solanum tuberosum BCAT2	Corynebacterium ammoniagenes ATCC 6872 ORF4	Mycobacterium tuberculosis H37Rv Rv0810c	Corynebacterium ammoniagenes ATCC 6872 purM
40	db Match		pir:E70810	pir.S68595	gp:MTPSTA1_1	pir.A70584	pir:H70583	gp:SCD84_18		sp.BMRU_BACSU	pir.E70809	gp:AF193846_1	gp:AB003158_6	pir:B70809	gp.AB003158_5
	ORF (bp)	807	732	897	921	1014	1125	876	783	1095	687	942	1101	213	1074
45	Terminal (nt)	2731424	2733367	2733455	2734264	2735202	2736414	2737836	2739553	2739556	2741356	2741636	2743785	2744222	2744881
50	Initial (nt)	2732230	2732636	2734351	2735184	2736215	2737538	2738711	2738771	2740650	2740670	2742577	2742685	2744010	2745954
	SEQ NO.	6328	6329	6330	6331	6332	6333	6334	6335	6336	6337	6338	6339	6340	6341
55	SEO	2828	2829	2830	2831	2832	2833	2834	2835	2836	2837	2838	2839	2840	2841

-				————					·	<u> </u>	1		1			
5				ne protein		ynthetase		ynthetase			2	0			sporter	ldase
10	Function	hypothetical protein	hypothetical protein	hypothetical membrane protein	hypothetical protein	5'-phosphoribosyl-N- formylglycinamidine synthetase		5'-phosphoribosyl-N- o-pricoprioritionsyl-iv- formylglycinamidine synthetase	hypothetical protein	discrete discrete	מותנופווסווב הביסציתם	extracellular nuclease		hypothetical protein	C4-dicarboxylate transporter	dipeptidyl aminopeptidase
15	Matched length (a.a.)	124	315	217	42	763		223	79		80	965		211	414	697
20	Similarity (%)	75.8	94.0	87.1	71.0	89.5		93.3	93.7		6.77	51.5		68.7	81.6	70.6
	Identity (%)	57.3	75.9	67.7	64.0	97.7		80.3	81.0	!	46.2	28.0		37.4	49.0	41.8
25 (tiuned)	jene	culosis	C 6872	C 6872	ns	C 6872		.C 6872	C 6872		00	iila JMP636		erculosis	rium LT2	VO24 dapb1
© Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0807	Corynebacterium ammoniagenes ATCC 6872 ORF2	Corynebacterium ammoniagenes ATCC 6872 ORF1	Sulfolobus solfataricus	Corynebacterium ammoniagenes ATCC 6872 purL		Corynebacterium ammoniagenes ATCC purQ	Corynebacterium ammoniagenes ATCC 6872 purorf		Lactococcus lactis gpo	Aeromonas hydrophila JMP636 nucH		Mycobacterium tuberculosis H37Rv Rv0784	Salmonella typhimurium LT2 dctA	Pseudomonas sp. WO24 dapb1
35 40	db Match	pir:H70536	gp:AB003158_2	gp:AB003158_1	GP:SSU18930_21 8	gp:AB003162_3		gp:AB003162_2	gp:AB003162_1		prf.2420329A	prf.2216389A		pir.C70709	sp:DCTA_SALTY	prf:2408266A
	ORF (bp)	375	1017	741	186	2286	720	699	243	522	477	2748	276	687	1338	2118
45	Terminal (nt)	2747683	2749111	2749162	2752103	2750027	2753121	2752327	2752995	2753819	2753328	2756739	2757126	2757129	2757863	2759532
50	Initial (nt)	2748057	2748095	2749902	2751918	2752312	2752402	2752995	2753237	2753298	2753804	2753992	2756851	2757815	2759200	2761649
	SEQ.	6343	6344	6345	6346	6347	6348		6350	6351	6352	6353	6354		6356	6357
55	SEQ NO.	2843	2844	2845	2846	2847	2848	2849	2850	2851	2852	2853	2854	2855	2856	2857

5
10
15
20
25
30
35
40
45
50

	Function		5'-phosphoribosyl-4-N- succinocarboxamide-5-amino imidazole synthetase	adenylosuccino lyase	aspartate aminotransferase	5'-phosphoribosylglycinamide synthetase	histidine triad (HIT) family protein		hypothetical protein nypotnetical protein	di-/tripeptide transpoter	adenosylmethionine-8-amino-7- oxononanoate aminotransferase or 7,8-diaminopelargonic acid aminotransferase	dethiobiotin synthetase	two-component system sensor histidine kinase	two-component system regulatory protein	transcriptional activator	metal-activated pyridoxal enzyme or low specificity D-Thr aldolase
	Matched length (a.a.)		294	477	395	425	136		243	469	423	224	335	231	249	382
	Similarity (%)		89.1	95.0	62.3	86.4	80.2		56.4 56.4	9.79	98.8	99.6	70.5	72.7	69.5	53.9
	Identity (%)		70.1	85.3	28.1	71.1	53.7		26.8 26.8	30.1	95.7	98.7	31.3	42.0	37.4	30.9
Table 1 (continued)	Homologous gene		Corynebacterium ammoniagenes ATCC 6872 purC	Corynebacterium ammoniagenes ATCC 6872 purB	Sulfolobus solfataricus ATCC 49255	Corynebacterium ammoniagenes ATCC 6872 purD	Mycobacterium leprae u296a		Methanosarcina barkeri orf3 Methanosarcina barkeri orf3	Lactococcus lactis subsp. lactis dipT	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioA	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 bioD	Lactococcus lactis M71plasmid pND306	Thermotoga maritima drrA	Streptomyces lividans tipA	Arthrobacter sp. DK-38
	db Match		gp:AB003161_3	gp.A8003161_2	sp:AAT_SULSO	gp:AB003161_1	SP:YHIT_MYCLE		pir:§62195	sp:DTPT_LACLA	sp:BIOA_CORGL	sp:BIOD_CORGL	gp:AF049873_3	prf.2222216A	sp:TIPA_STRLI	prf:2419350A
	ORF (bp)	624	891	1428	1158	1263	414	435	753	1356	1269	672	1455	705	753	1140
	Terminal (nt)	2761829	2761785	2763504	2764978	2766158	2767993	2767703	2768343	2769156	2771982	2772660	2772644	2774110	2774937	2775740
	initial (nt)	2762452	2762675	2764931	2766135	2767420	2767580	2768137	2788885	2770511	2770714	2771989	2774098	2774814	2775689	2776879
i	SEQ NO.	6358	6329	6360	6361	6362	6363	6364	6365	6366	6367	6368	6369	6370	6371	6372
	SEQ NO (DNA)	2858	2859	2860	2861	2862	2863	2864	2865	2866	2867	2868	2869	2870	2871	2872

high-affinity zinc uptake system protein

353

46.7

22.4

Haemophilus influenzae Rd H10119 znuA

sp:ZNUA_HAEIN

942

2797806

2796865

6390

2890

Bacillus megaterium ccpA Escherichia coli K12 otsB

1074 sp:ccPA_BACME

2795676 2795637

sp.OTSB_ECOLI

768

513

2794812

2794300 2794870 2796749

6387 6388 6389

glucose-resistance amylase regulator

344

trehalose-phosphatase

245

57.6 60.2

27.4 24.7

2886 2887 2888

	Γ				\top		丁		_			ļ		}		Ĺ	
5		Function		rotein	ulator	brane protein		ydrogenase	transcriptional regulator, LysR family	sin .	ein		ein	nbrane protein	transcription initiation factor sigma	sphate synthase	
10		Fun	pyruvate oxidase	multidrug efflux protein	transcriptional regulator	hypothetical membrane protein		3-ketosteroid dehydrogenase	transcriptional rec	hypothetical protein	hypothetical protein		hypothetical protein	hypothetical membrane protein	transcription initia	trehalose-6-phosphate synthase	
15	1000	Matched length (a.a.)	574	504	92	421		303	232	278	288		140	464	155	487	
20		Similarity (%)	75.8	68.9	68.5	78.4		62.1	0.69	52.9	55.6		50.7	64.0	50.3	1.99	
		Identity (%)	46.3	33.3	30.4	45.6		34.3	37.1	28.4	26.7		28.6	36.0	32.3	38.8	
25 G	(papill	ene	охВ	s plasmid	cdC	ulosis		oolis SQ1	IsR	culosis	krA		s kidney	culosis	s hrdB	s pombe	
30 30 Table T	lane i (coll	Homologous gene	Escherichia coli K12 poxB	Staphylococcus aureus plasmid pSK23 qacB	Escherichia coli K12 ycdC	Mycobacterium tuberculosis H37Rv Rv2508c		Rhodococcus erythropolis SQ1 kstD1	Bacillus subtilis 168 alsR	Mycobacterium tuberculosis H37Rv Rv3298c lpqC	Bacillus subtilis 168 ykrA		Oryctolagus cuniculus kidney cortex rBAT	Mycobacterium tuberculosis H37Rv Rv3737	Streptomyces griseus hrdB	Schizosaccharomyces pombe tos1	
<i>35</i>		db Match	gp:ECOPOXB8G_ E	pri.2212334B S	Sp. YCDC ECOLI E			gp. AF096929_2 k	SD ALSR BACSU B	2	pir. C69862 E		pir.A45264	pir.B70798	pir.S41307	снРо	
		11.0		1482 prf.2	1-	9	2142		705 Sp. A		813 pir.C	459		1503 pir E	327 pir.		
45		Terminal ORF (hp)	2776768 173	2780446 14	2780969 53	 	10 0450870		2785651 7	+	2788587 8	2789477 4	+	2792448	2792857	1	_
50		Initial T	2778504	2778965			704401			2787782	2789399	2789935	→—	2790946	2792531	2792873	
		SEQ		6374	2762			6378		6380	6381	-1-000 B3B7	6383	6384	6385		
55		SEO		2874		2876		2877	1 0	2880	2881	2000	2883	2884	2885	2886	· •

5	Function	ABC transporter	hypothetical membrane protein	transposase (ISA0963-5)		3-ketosteroid dehydrogenase		lipopolysaccharide biosynthesis protein or oxidoreductase or dehydrogenase	dehydrogenase or myo-inositol 2- dehydrogenase	cition to a constant and a constant	shikimate transport protein	shikimate transport protein	transcriptional regulator	ribosomal RNA ribose methylase or tRNA/rRNA methyltransferase	cysteinyl-tRNA synthetase	PTS system, enzyme II sucrose protein (sucrose-specific IIABC component)	sucrose 6-phosphate hydrolase or sucrase	glucosamine-6-phosphate isomerase	N-acetylglucosamine-6-phosphate deacetylase
15	Matched length (a.a.)	223	135	303		561		204	128	500	292	130	212	334	464	668	473	248	368
20	Similarity (%)	63.2	87.4	52.5		62.0		56.4	69.5	27.0	67.5	80.8	55.7	47.3	68.8	77.0	56.9	69.4	60.3
	Identity (%)	31.4	0.09	23.4		32.1		34.3	35.2	J U C	30.5	43.1	32.6	22.8	42.2	47.0	35.3	38.3	30.2
25 (juned	ene	ıs 8325-4	culosis	US		polis SQ1		MSB8	dh or iolG	. L: A	shiA	shiA	olor A3(2)	visiae	cysS	асВ	ylicum	падВ	14 manD
os Table 1 (continued)	Homologous gene	Staphylococcus aureus 8325-4 mreA	Mycobacterium tuberculosis H37Rv Rv2060	Archaeoglobus fulgidus		Rhodococcus erythropolis SQ1 kstD1		Thermotoga maritima MSB8 bplA	Bacillus subtilis 168 idh or iolG	C. V. 11. 11. 11. 17. 17. 17. 17. 17. 17. 17	Escherichia coli K12 shiA	Escherichia coli K12 shiA	Streptomyces coelicolor A3(2) SC5A7.19c	Saccharomyces cerevisiae YOR201C PET56	Escherichia coli K12 cysS	Lactococcus lactis sacB	Clostridium acetobutylicum ATCC 824 scrB	Escherichia coli K12 nagB	Vibrio furnissii SR1514 manD
<i>35</i> <i>40</i>	db Match	gp:AF121672_2 n	pir.E70507	pir.A69426 /		gp:AF096929_2		pir.B72359	sp:MI2D_BACSU	\top	sp:SHIA_ECOLI	sp.SHIA_ECOLI	gp:SC5A7_19	sp.PT56_YEAST	SP. SYC ECOLI	prf.2511335C	gp:AF205034_4	sp.NAGB_ECOLI	sp:NAGA_VIBFU
	ORF (bp)	069	555	1500	201	1689	747	618	435	200	855	426	654	939	1380		1299	759	1152
45	Terminal (nt)	2798509	2799391	2801034	2801313	2801558	2803250	2804074	2804676		2805113	2806016	2806599	2807426	2808399		2811960	2813279	2814081
50	Initial (nt)	2797820	2798837	2799535	2801113	2803246	2803996	2804691	2805110		2805967	2806441	2807252	2808364	2809778		2813258	2814037	2815232
	SEO	6391	6392	6393			6396	6397	6398		6399			6402	6403		6405	6406	6407
55	SEQ	(UNA)	2892	2893	2894	2895	2896	2897	2898		2899	2900	2901	2905	2002	2904	2905	2906	2907

Table 1 (continued)

			<u> </u>		τ –		J			<u> </u>	T		1	-			
	Function	dihydrodipicolinate synthase	glucokinase	N-acetylmannosamine-6-phosphate epimerase		sialidase precursor	L-asparagine permease operon repressor	dipeptide transporter protein or heme-binding protein	dipeptide transport system permease protein	oligopeptide transport ATP-binding protein	oligopeptide transport ATP-binding protein	homoserine/homoserin lactone efflux protein or lysE type translocator	leucine-responsive regulatory protein	9	hypothetical protein	hypothetical protein	transcription factor
	Matched length (a.a.)	298	321	220		439	222	095	342	314	258	193	142		152	235	157
	Similarity (%)	62.1	9'29	9.89		50.3	57.2	51.4	64.3	78.3	78.7	62.7	66.2		86.2	71.5	91.1
	Identity (%)	28.2	28.7	36.4		24.8	26.6	22.5	31.9	46.5	43.4	28.5	31.0		55.9	46.4	73.3
(22)	Homologous gene	Escherichia coli K12 dapA	Streptomyces coelicolor A3(2) SC6E10.20c glk	Clostridium perfringens NCTC 8798 nanE		Micromonospora viridifaciens ATCC 31146 nadA	Rhizobium etli ansR	Bacillus firmus OF4 dppA	Bacillus firmus OF4 dappB	Bacillus subtilis 168 oppD	Lactococcus lactis oppF	Escherichia coli K12 rhtB	Bradyrhizobium japonicum Irp		Mycobacterium tuberculosis H37Rv Rv3581c	Mycobacterium tuberculosis H37Rv Rv3582c	Mycobacterium tuberculosis H37Rv Rv3583c
	db Match	sp.DAPA_ECOLI	sp:GLK_STRCO	prf.2516292A		sp:NANH_MICVI	gp:AF181498_1	gp:BFU64514_1	sp:DPPB_BACFI	sp:OPPD_BACSU	sp:OPPF_LACLA	sp:RHTB_ECOLI	prf.2309303A		pir:C70607	sp:Y18T_MYCTU	pir.H70803
	ORF (bp)	936	606	969	177	1215	729	1608	951	1068	816	621	483	360	480	768	594
	Terminal (nt)	2816393	2817317	2818058	2818137	2818350	2819557	2822191	2823337	2825341	2826156	2826215	2827404	2827458	2827904	2828379	2829156
	Initial (nt)	2815458	2816409	2817363	2818313	2819564	2820285	2820584	2822387	2824274	2825341	2826835	2826922	2827817	2828383	2829146	2829749
	SEQ NO (a a.)	6408	6409	6410	6411	6412	6413	6414	6415	6416	6417	6418	6419	6420	6421	6422	6423
	SEQ NO. (DNA)	2908	2909	2910	2911	2912	2913	2914	2915	2916	2917	2918	2919	2920	2921	2922	2923

5

	Function	two-component system response regulator	two-component system sensor histidine kinase		DNA repair protein RadA	hypothetical protein	hypothetical protein	p-hydroxybenzaldehyde dehydrogenase		mitochondrial carbonate dehydratase beta	A/G-specific adenine glycosylase				L-2.3-butanediol dehydrogenase				hypothetical protein	virulence factor	virulence factor
	Matched length (a.a.)	223 tv	341 tv		463	345 h	231 h	471 p		210 d	283 A	+			258 L				97 h	> 66	v 27
	Similarity (%)	70.0	67.7		74.3	73.3	53.3	85.1		66.2	70.7				9.66				69.1	63.0	55.0
	Identity (%)	43.5	29.3		41.5	40.3	29.4	59.5		36.7	48.4				99.2				48.5	57.0	54.0
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv3246c mtrA	Escherichia coli K12 baeS		Escherichia coli K12 radA	Bacillus subtilis 168 yacK	Mycobacterium tuberculosis H37Rv Rv3587c	Pseudomonas putida NCIMB 9866 plasmid pRA4000		Chlamydomonas reinhardtii ca 1	Streptomyces antibioticus IMRU	3/20 muly			Brevibacterium saccharolyticum				Mycobacterium tuberculosis H37Rv Rv3592	Pseudomonas aeruginosa ORF24222	Pseudomonas aeruginosa ORF25110
	db Match	prf:2214304A	sp:BAES_ECOLI		sp.RADA_ECOLI	sp:YACK_BACSU	pir.D70804	gp:PPU96338_1		pir. T08204	ap:AF121797 1				gp:AB009078_1				pir:E70552	GSP:Y29188	GSP:Y29193
	ORF (bp)	723	1116	582	1392	1098	289	1452	147	621	879		1155	306	774	324	741	312	291	420	213
	Terminal (nt)	2830779	2831894	2832666	2834181	2835285	2835283	2836048	2837591	2837956	2839521		2840716	2840758	2841848	2842453	2843233	2843716	2843432	2845558	2846101
	Initial (nt)	2830057	2830779	2832085	2832790	2834188	2835969	2837499	2837737	2838576	2838643		2839562	2841063	6436 2841075	2842130	2842493	2843405	2843722	2845139	2845889
	SEQ NO	6424	6425	6426	6427	6428	6459	6430	6431	6432	6433		6434	6435	6436	6437	6438	6439	6440	6441	6442
	SEQ NO (DNA)	2924	2925	2926	2927	2928	2929	2930	2931	2932	2933		2934	2935	2936	2937	2938	2939	2940	2941	2942

10	
15	
20	
25	
30	
<i>35</i>	
40	
45	

55

5

Table 1 (continued)

		<u> </u>	100				Identity	Similarity	Matched	
(nt) (nt)	(nt) (nt) (bp)	주(명)		db Match		Homologous gene	(%)	(%)	length (a.a.)	Function
6443 2846186 2846506 321 GSP.Y29193 ORF	2846186 2846506 321 GSP:Y29193	2846506 321 GSP:Y29193	GSP:Y29193		Pset ORF	Pseudomonas aeruginosa ORF25110	74.0	75.0	55	virulence factor
6444 2846940 2844166 2775 sp.MECB_BACSU Bacil	2846940 2844166 2775 sp.MECB_BACSU	2844166 2775 sp.MECB_BACSU	sp.MECB_BACSU	sp.MECB_BACSU	Bacil	Bacillus subtilis 168 mecB	58.5	86.2	832	CIpC adenosine triphosphatase / ATP-binding proteinase
6445 2847229 2848659 1431 gp.AB035643_1 Bacili	2847229 2848659 1431 gp:AB035643_1	2848659 1431 gp:AB035643_1	gp:AB035643_1		Bacil	Bacillus cereus ts-4 impdh	37.1	70.2	469	inosine monophosphate dehydrogenase
6446 2848769 2849779 1011 pir.JC6117 Rhor	2848769 2849779 1011 pir.JC6117	2849779 1011 pir.JC6117	pir.JC6117		Rho	Rhodococcus rhodochrous nitR	24.7	62.7	316	transcription factor
6447 2850031 2851815 1785 sp.PH2M_TRICU 46490	2850031 2851815 1785 sp.PH2M_TRICU	2851815 1785 sp.PH2M_TRICU	sp:PH2M_TRICU	sp:PH2M_TRICU	Trich 4649	Trichosporon cutaneum ATCC 46490	33.5	6.09	089	phenol 2-monooxygenase
6448 2852017 2853732 1716	2852017 2853732	2853732	1716							
6449 2853769 2855709 1941	2853769 2855709	2855709	1941							
6450 2855795 2857516 1722	2855795 2857516	2857516	1722							
6451 2859044 2859205 162	2859044 2859205	2859205	162							
6452 2859055 2857613 1443 gp.AF237667_1 lmrB	2859055 2857613 1443 gp.AF237667_1	2857613 1443 gp.AF237667_1	gp:AF237667_1	gp:AF237667_1	Coryn ImrB	Corynebacterium glutamicum Corynebacterium glutamicum ImrB	100.0	100.0	481	lincomycin resistance protein lincomycin resistance protein
6453 2860145 2859195 951 pir.G70807 H37Rv	2860145 2859195 951 pir.G70807	2859195 951 pir.G70807	pir.G70807		Mycob H37R	Mycobacterium tuberculosis H37Rv Rv3517	26.7	55.8	240	hypothetical protein
6454 2862082 2860505 1578 gp.AB012100_1 Bacill.	2862082 2860505 1578 gp.AB012100_1	2860505 1578 gp.AB012100_1	gp.AB012100_1	gp.AB012100_1	Bacill	Bacillus stearothermophilus lysS	41.7	71.2	511	lysyl-tRNA synthetase
	2862929 2862132 798 gp:CGPAN_2	2862132 798 gp:CGPAN_2	gp:CGPAN_2		Coryn ATCC	Corynebacterium glutamicum ATCC 13032 panC	29.9	52.6	268	pantoatebeta-alanine ligase
6456 2863621 2862929 693	2863621 2862929	2862929	693							
6457 2864421 2863624 798	2864421 2863624	2863624	798							
6458 2864848 2864384 465 gp.MLCB2548_4 MLCB	2864848 2864384 465 gp:MLCB2548_4	2864384 465 gp:MLCB2548_4	gp:MLCB2548_4		Mycot	Mycobacterium leprae MLCB2548.04c	29.0	9.69	138	hypothetical membrane protein
6459 2865343 2864867 477 sp.HPPK_METEX AM1 folk	2865343 2864867 477 sp.HPPK_METEX	2864867 477 sp.HPPK_METEX	sp:HPPK_METEX		Methy AM1	Methylobacterium extorquens AM1 folK	42.4	0.69	158	2-amino-4-hydroxy-6- hydroxymethyldihydropteridine pyrophosphokinase
6460 2865735 2865346 390 sp.FOLB_BACSU Bacil	2865735 2865346 390 sp.FOLB_BACSU	2865346 390 sp.FOLB_BACSU	sp. FOLB_BACSU		Baci	Bacillus subtilis 168 folB	38.1	69.5	118	dihydroneopterin aldolase
6461 2866567 2865731 837 gp.AB028656_1 Myo	2866567 2865731 837 gp.AB028656_1	2865731 837 gp:AB028656_1	gp:AB028656_1		Αy	Mycobacterium leprae folP	51.5	75.0	268	dihydropteroate synthase

F
ontinued
(S)
Table 1
-

_			-								 -								
	Function	GTP cyclohydrolase I		cell division protein FtsH	hypoxanthine phosphoribosyltransferase	cell cycle protein MesJ or cytosine dearninase-related protein	D-alanyl-D-alanine carboxypeptidase	inorganic pyrophosphatase		spermidine synthase	hypothetical membrane protein	hypothetical protein	hypothetical protein	hypothetical protein	PTS system, beta-glucosides- permease II ABC component		ferredoxin reductase	hypothetical protein	bacterial regulatory protein, marR family
	Matched length (a.a.)	188		782	165	310	459	159		507	132	144	173	202	89		411	97	135
	Similarity (%)	86.2		0.69	83.0	66.8	51.4	73.6		80.7	888 830 44	63.2	60.1	72.3	9.65		9.69	73.2	59.3
	Identity (%)	9.09		56.0	51.5	41.0	27.2	49.7		56.0	38.8	36.8	36.4	44.6	30.3		38.0	46.4	26.7
lable I (collillaed)	Homologous gene	Bacillus subtilis 168 mtrA			Salmonella typhimurium GP660 hprt	Mycobacterium tuberculosis H37Rv Rv3625c	Actinomadura sp. R39 dac	Escherichia coli K12 ppa		Mycobacterium tuberculosis H37Rv speE	Mycobacterium tuberculosis mycobacterium tuberculosis H37Rv Rv2600	Mycobacterium tuberculosis H37Rv Rv2599	Mycobacterium tuberculosis H37Rv Rv2598	Mycobacterium tuberculosis H37Rv Rv2597	Bacillus subtilis 168 bglP		Nocardioides sp. KP7 phdD	Streptomyces coelicolor A3(2) SCH69.09c	Burkholderia pseudomallei ORF E
	db Match	sp:GCH1_BACSU			gp:AF008931_1	sp:YZC5_MYCTU	sp.DAC_ACTSP	sp:IPYR_ECOLI		pir.H70886	sp.Y0B1_MYCTU	sp:Y0B2_MYCTU	sp:Y083_MYCTU	sp:Y0B4_MYCTU	sp:PTBA_BACSU		gp:AB017795_2	gp:SCH69_9	prf.2516298U
	ORF (bp)	588	915	2580	582	891	1233	474	219	1539	399	411	498	609	249	264	1233	288	444
	Terminal (nt)	2866586	2868385	2867169	2869863	2870499	2871445	2873399	2873393	2873905	2875434	2875870	2876280	2876777	2877455	2877595	2878478	2880252	2880987
	Initial (nt)	2867173	2867471	2869748	2870444	2871389	2872677	2872926	2873611	2875443	2875832	2876280	2876777	2877385	2877703	2877858	2879710	2879965	2880544
	SEQ NO.	6462	6463	6464	6465	6466	6467	6468	6469	6470	6471	6472	6473	6474	6475	6476	6477	6478	6479
	SEQ NO.	2962	2963	2964	2965	2966	2967	2968	2969	2970	2971	2972	2973	2974	2975	2976	2977	2978	2979

(pario	
(confi	
1	2
Ę	2

						Table 1 (continued)				
SEQ NO. (DNA)	SEQ NO. (a.a.)	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Identity Similarity (%)	Matched length (a.a.)	Function
2980	6480	2880998	2884882	3885	prf.2413335A	Streptomyces roseosporus cpsB	28.4	51.6	1241	peptide synthase
2981	6481	2883304	2881844	1461						
2982	6482	2886497	2884935	1563	prf.2310295A	Escherichia coli K12 padA	35.0	63.7	488	phenylacetaldehyde dehydrogenase
2983	6483	2887833	2886916	918	gp:CJ11168X2_25	Campylobacter jejuni Cj0604	57.3	79.7	241	hypothetical protein
2984	6484	2890185	2890346	162	GP:MSGTCWPA_1	Mycobacterium tuberculosis	62.0	63.0	54	hypothetical protein
2985	6485	2890377	2890553	177	GP:MSGTCWPA_1	GP.MSGTCWPA_1 Mycobacterium tuberculosis	74.0	80.0	31	hypothetical protein
2986	6486	2890540	2888897	1644	gsp:R94368	Brevibacterium flavum MJ-233	99.5	100.0	548	heat shock protein or chaperon or groEL protein
2987	6487	2890930	2890751	180						
2988	6488	2892138	2890930	1209						
2989	6489	2893100	2892138	963						
2990	6490	2895085	2893100	1986						
2001	6401	2807525	2895072	2454						
2992	6492		2897528	2799						
2993	6493	2903920	2900330	3591	prf.2309326A	Homo sapiens MUC5B	21.7	42.3	1236	hypothetical protein
2994	6494	2906738	2903964	2775						
2995	6495	2907250	2906639	612						
2996	6496	2907515	2908885	1371	pir.G70870	Mycobacterium tuberculosis H37Rv Rv2522c	37.1	68.0	447	peptidase
2997	6497	2909210	2909788	579						
2998	6498	2909830	2909231	900						
2999	6489	2910172	2913228	3057	prf.2504285B	Staphylococcus aureus mnhA	35.6	68.3	797	Na+/H+ antiporter or multiple resistance and pH regulation related protein A or NADH dehydrogenase

10	
15	
20	
25	
30	
35	

Table 1 (continued)

	Function	Na+/H+ antiporter or multiple resistance and pH regulation related protein C or cation transport system protein	Na+/H+ antiporter or multiple resistance and pH regulation related protein D	Na+/H+ antiporter or multiple resistance and pH regulation related protein E	K+ efflux system or multiple resistance and pH regulation related protein F	Na+/H+ antiporter or multiple resistance and pH regulation related protein G	hypothetical protein	hypothetical protein		polypeptide deformylase	hypothetical protein	acetyltransferase (GNAT) family or N terminal acetylating enzyma	2005		exodeoxyribonuclease III or exonuclease	cardiolipin synthase
	Matched length (a.a.)	104	523	161	7.7	121	178	334		184	17	339			31	513
	Similarity (%)	81.7	72.1	6.09	66.2	63.6	54.5	61.7		6.09	70.4	54.2			59.9	62.0
	Identity (%)	44.2	35.2	26.7	32.5	25.6	24.7	27.0		37.5	47.9	31.3			30.8	27.9
(populino) i piesi	Homologous gene	Bacillus firmus OF4 mrpC	Bacillus firmus OF4 mrpD	Bacillus firmus OF4 mrpE	Rhizobium meliloti phaF	Staphylococcus aureus mnhG	Mycobacterium tuberculosis H37Rv lipV	Escherichia coli K12 ybdK		Bacillus subtilis 168 def	Mycobacterium tuberculosis H37Rv Rv0430	Mycobacterium tuberculosis H37Rv Rv0428c			Salmonella typhimurium LT2 xthA	Bacillus firmus OF4 cls
	db Match	gp:AF097740_3	gp:AF097740_4	gp.AF097740_5	prf.2416476G	prf.2504285H	pir.D70594	sp:YBDK_ECOLI		sp:DEF_BACSU	pir:D70631	pir:870631			gp:AF108767_1	gp:BFU88888_2
	ORF (bp)	489	1668	441	273	378	594	1128	663	579	252	1005	699	630	789	1500
	Terminal (nt)	2913723	2915416	2915922	2916201	2916582	2917024	2917630	2918819	2920293	2919490	2921290	2919808	2920220	2922108	2923617
	Initial (nt)	2913235	2913749	2915482	2915929	2916205	2917617	2918757	2919481	2919715	2919741	2920286	2920476	2920849	2921320	2922118
	SEQ NO. (a.a.)	6500	6501	6502	6503	6504	6505	9059	6507	6508	6209	6510	6511	6512	6513	6514
	SEQ NO. (DNA)	3000	3001	3002	3003	3004	3005	3006	3007	3008	3009	3010	3011	3012	3013 (3014

Table 1 (continued)

	\neg		اءِ				i.												
Function		membrane transport protein or bicyclomycin resistance protein	sodium dependent phosphate pump	phenazine biosynthesis protein		ABC transporter	ABC transporter ATP-binding protein	mutator mutT protein	hypothetical membrane protein	glutamine-binding protein precursor	serine#hreonine kinase		ferredoxin/ferredoxin-NADP reductase	acetyltransferase (GNAT) family				phosphoribosylglycinamide formyltransferase	
Matched length (a.a.)		393	382	289		255	309	168	423	270	805		457	156				379	
Similarity (%)		67.2	68.9	56.4		60.8	66.3	68.5	70.2	64.8	63.5		67.8	60.3				82.6	
Identity (%)		31.6	28.5	38.8		24.3	36.9	47.6	35.0	31.5	41.2		37.2	34.0				59.1	
Homologous gene		Escherichia coli K12 bcr	Vibrio cholerae JS1569 nptA	Pseudomonas aureofaciens 30-84 phzC		Streptomyces coelicolor A3(2) SCE8.16c	Bacillus licheniformis ATCC 9945A bcrA	Mycobacterium tuberculosis H37Rv Rv0413	Mycobacterium tuberculosis	Bacillus stearothermophilus NUB36 glnH	Mycobacterium tuberculosis H37Rv Rv0410c pknG		Bos taurus	Escherichia coli K12 elaA				Bacillus subtilis 168 purT	
db Match		sp.BCR_ECOLI	gp:VCAJ10968_1	sp:PHZC_PSEAR		gp:SCE8_16	sp:BCRA_BACLI	pir.C70629	pir. B70629 pir. B70629	sp.GLNH_BACST	pir.H70628		sp.ADRO_BOVIN	sp.ELAA_ECOLI				sp:PURT_BACSU	
ORF (bp)	654	1194	1164	840	633	768	936	501	1386	1032	2253	747	1365	546	1062	1029	399	1194	888
Terminal (nt)	2924844	2923954	2926704	2926707	2927651	2927551	2928302	2929256	2831338	2932371	2934829	2932652	2939767	2940452	2940447	2941472	2942609	2943012	2945639
Initial (nt)	2924191	2925147	2925541	2927546	2928283	2928318	2929237	2929756	2929951	2931340	2932577	2933398	2938403	2939907	2941508	2942500	2943007	2944205	2946526
SEQ NO.	6515	6516	6517	6518	6519	6520	6521	6522	6523	6524	6525	6526	6527	6528	6529	6530	6531	6532	6533
SEQ NO.	3015	3016	3017	3018	3019	3020	3021	3022	3823	3024	3025	3026	3027	3028	3029	3030	3031	3032	3033

Table 1 (continued)

											······································							_
Function	insertion element (IS3 related)	insertion element (IS3 related)	two-component system sensor histidine kinase	transcriptional regulator		adenylosuccinate synthetase	hypothetical protein		hypothetical membrane protein	fructose-bisphosphate aldolase	hypothetical protein	methyltransferase	orotate phosphoribosyltransferase	hypothetical protein	3-mercaptopyruvate sulfurtransferase			
Matched length (a.a.)	295	89	349	218		427	204		359	344	304	182	174	250	294			
Similarity (%)	90.9	84.3	51.3	65.6		95.3	59.3		100.0	100.0	100.0	91.2	65.5	0.09	56.1			
Identity (%)	9'22	67.4	22.4	31.7		89.7	34.3		100.0	99.7	100.0	76.9	39.1	27.6	29.6			
Homologous gene	Corynebacterium glutamicum orf2	Corynebacterium glutamicum orf1	Streptomyces thermoviolaceus opc-520 chiS	Bacillus brevis ALK36 degU		Corynebacterium ammoniagenes purA	Mycobacterium tuberculosis H37Rv Rv0358		Corynebacterium glutamicum	Corynebacterium glutamicum AS019 ATCC 13059 fda	Corynebacterium glutamicum AS019 ATCC 13059 ORF1	Mycobacterium tuberculosis H37Rv Rv0380c	Pyrococcus abyssi pyrE	Mycobacterium tuberculosis H37Rv Rv0383c	Homo sapiens mpsT			
db Match	pir.S60890	pir S60889	gp:AB016841_1	sp.DEGU_BACBR		gp:AB003160_1	pir:G70575		SP:YFDA_CORGL	pir:S09283	gp:CGFDA_1	pir:G70833	gp:AF058713_1	pir:B70834	sp:THTM_HUMAN			
ORF (bp)	894	267	1140	618	225	1290	759	264	1167	1032	951	618	552	972	852	720	279	399
Terminal (nt)	2946698	2947620	2948049	2949265	2950431	2950434	2952691	2952972	2952975	2954241	2955523	2956830	2957485	2958139	2959520	2960468	2962730	2963198
Initial (nt)	2947591	2947886	2949188	2949882	2950207	2951723	2951933	2952709	2854141	2955272	2956473	2957447	2958036	2959110	2960371	2961187	2963008	2963596
SEQ NO.	6534	6535	6536	6537	6538	6239	6540	6541	6542	6543	6544	6545	6546	6547	6548	6549	6550	6551
SEQ NO.	3034	3035	3036	3037	3038	3039	3040	3041	3042	3043	3044	3045	3046	3047	3048	3049	3050	3051

10
15
20
25
30
35
40
45
50

55

5

able 1 (continued)

(Continued) (%) <th< th=""><th></th><th>Τ</th><th>Τ</th><th>_</th><th></th><th>1</th><th>1</th><th></th><th>1</th><th>i</th><th></th><th><u> </u></th><th>I</th><th></th><th></th><th></th><th></th></th<>		Τ	Τ	_		1	1		1	i		<u> </u>	I				
SEC Initial Terminal ORF db Match Homologous gene (%) (%	hypothetical protein	hypothetical protein	rifampin ADP-ribosyl transferase	rifampin ADP-ribosyl transferase	bacterial regulatory protein, lacl family	cystathionine gamma-lyase		alkanal monooxygenase alpha chair	monooxygenase or oxidoreductase or steroid monooxygenase	cation efflux system protein (zinc/cadmium)	cadmium resistance protein	sodium/glutamate symport carrier protein	virulence factor	virulence factor	virulence factor	Function	
SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (ht) (ht) (ht) (ht) (ht) (ht) (nt) (ht)	204	361	56	89	184	375		399	476	283	108	489	132	200	69		
SEQ Initial Terminal ORF Terminal	64.7	56.2	87.5	65.2	67.9	62.4		47.4	45.4	63.3	71.3	54.8	63.0	55.0	82.0	Similarity (%)	
SEQ (nt) Initial (nt) Terminal (nt) ORF (pp) db Match db Match 6552 2964258 2964434 177 GSP:Y29188 6553 2965076 2965837 762 GSP:Y29188 6554 2965188 2965583 396 GSP:Y29193 6556 2965188 2966458 1347 pir:S76683 6556 2968403 2966458 1347 pir:S76683 6556 2968403 2966458 1347 pir:S76683 6557 2968951 2966458 1347 pir:S76683 6558 2968951 2966458 1347 pir:S76683 6556 29689634 2971003 1170 gp:AB010439_1 6558 2972099 2971338 762 pir:ARYAS 6550 2973005 2974200 2974200 240 gp:SCE20_34 6564 2974200 2974382 183 gp:E70812 6566 2974467 2975591 1125 pir:E70812 6	33.8	30.5	73.2	49.4	40.2	36.5		21.1	22.5	23.7	37.0	24.7	62.0	38.0	76.0	Identity (%)	
SEQ Initial Terminal ORF (a.a.) (nt) (nt) (bp) (bb) (6552 2964258 2964434 177 6552 296518B 2965837 762 6555 2967804 2965458 1347 6556 2968403 2965458 1347 6556 2968403 2969808 858 6556 2969834 2971003 1170 6560 2972099 2971338 762 6561 2973205 2973396 2973396 567 6563 2973206 2973392 2974467 2975591 1125 6566 2975629 2976360 732	Mycobacterium tuberculosis H37Rv Rv0836c	Mycobacterium tuberculosis H37Rv Rv0837c	Streptomyces coelicolor A3(2) SCE20.34c arr	Streptomyces coelicolor A3(2) SCE20.34c arr	Streptomyces coelicalor A3(2) SC1A2.11	Escherichia coli K12 metB		Kryptophanaron alfredi symbiont luxA luxa	Rhodococcus rhodochrous IFO3338	Pyrococcus abyssi Orsay PAB0462	Staphylococcus aureus cadC	Synechocystis sp. PCC6803 str0625	Pseudomonas aeruginosa ORF25110	Pseudomonas aeruginosa ORF23228	Pseudomonas aeruginosa ORF24222	Homologous gene	Table 1 (continued)
SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt)	pir.D70812	pir.E70812	gp:SCE20_34	gp:SCE20_34	gp:SC1A2_11	sp:METB_ECOLI		sp.LUXA_KRYAS	gp:AB010439_1	pir.H75109	sp:CADF_STAAU	pir:S76683	GSP:Y29193	GSP: Y29182	GSP: Y29188	db Match	
SEQ initial (n) (n) (n) (n) (n) (n) (n) (n) (n) (n)	732	1125	183	240	567	1146	762	1041	1170	858	387	1347	396	762	177	ORF (bp)	
SEQ NO. (a.a.) (b.552 6553 6555 6555 6556 6556 6561 6564 7 6566 7	2976360	2975591	2974382	2974200	2973230	2972060	2971338	2972057	2971003	2969808	2968789	2966458	2965583	2965837	2964434	Terminal (nt)	
	2975629	2974467	2974200	2973961	2973796	2973205		2971017	2969834	2968951	2968403	<u> </u>	2965188		i	initial (nt)	
SEQ NO. (ONA) 3052 3053 3054 3055 3065 3065 3065 3065 3065 3065 3065	9959	6565	6564	6563	6562	6561	929	6223	6558	6557	6556	6555	6554	6553	6552		
	3066	3065	3064	3063	3062	3061	3060	3059	3058	3057	3056	3055	3054	3053	3052	SEQ NO.	
		6566 2975629 2976360 732 pir.D70812 Mycobacterium tuberculosis 33.8 64.7 204	6565 2974467 2975591 1125 pir.E70812 Mycobacterium tuberculosis 30.5 56.2 361 6566 2975629 2976360 732 pir.D70812 Mycobacterium tuberculosis 33.8 64.7 204	6564 2974200 2974382 183 gp.SCE20_34 Streptomyces coelicolor A3(2) 73.2 87.5 56 6565 2974467 2975591 1125 pir.E70812 Mycobacterium tuberculosis 33.8 64.7 204 6566 2975629 2976360 732 pir.D70812 Mycobacterium tuberculosis 33.8 64.7 204	6563 2973961 2974200 240 gp.SCE20_34 Streptomyces coelicolor A3(2) 49.4 65.2 89 6564 2974200 2974382 183 gp.SCE20_34 Streptomyces coelicolor A3(2) 73.2 87.5 56 6565 2974467 2975591 1125 pir.E70812 Mycobacterium tuberculosis 30.5 56.2 361 6566 2975629 2976360 732 pir.D70812 Mycobacterium tuberculosis 33.8 64.7 204	6562 2973796 2973230 567 gp:SC1A2_11 Streptomyces coelicolor A3(2) 40.2 67.9 184 6563 2973961 2974200 240 gp:SCE20_34 Streptomyces coelicolor A3(2) 49.4 65.2 89 6564 2974200 2974382 183 gp:SCE20_34 Streptomyces coelicolor A3(2) 73.2 87.5 56 6565 2974467 2975591 1125 pir.E70812 Mycobacterium tuberculosis 30.5 56.2 361 6566 2975629 2976360 73.2 pir.D70812 Mycobacterium tuberculosis 33.8 64.7 204	6561 2973205 2972060 1146 sp. METB_ECOLI Escherichia coli K12 metB 36.5 62.4 375 6562 2973796 2973230 567 gp. SC1A2_11 Streptomyces coelicolor A3(2) 40.2 67.9 184 6563 2973961 2974200 240 gp. SCE20_34 Streptomyces coelicolor A3(2) 49.4 65.2 89 6564 2974200 2974382 183 gp. SCE20_34 Streptomyces coelicolor A3(2) 73.2 87.5 56 6565 2974467 2975591 1125 pir.E70812 Mycobacterium tuberculosis 33.8 64.7 204 6566 2975629 2976360 73.2 pir.D70812 Mycobacterium tuberculosis 33.8 64.7 204	6560 2972099 2971338 762 Acceptable Escherichia coli K12 metB 36.5 62.4 375 6561 2973205 2972060 1146 sp:METB_ECOLI Escherichia coli K12 metB 36.5 62.4 375 6562 2973796 2973230 567 gp:SC1A2_11 Streptomyces coelicolor A3(2) 40.2 67.9 184 6563 2973961 2974200 240 gp:SCE20_34 Streptomyces coelicolor A3(2) 49.4 65.2 89 6564 2974200 2974382 183 gp:SCE20_34 Streptomyces coelicolor A3(2) 73.2 87.5 56 6565 2974467 2975591 1125 pir.E70812 Mycobacterium tuberculosis 33.8 64.7 204 6566 2975629 2975629 73.2 pir.D70812 Mycobacterium tuberculosis 33.8 64.7 204	6559 2971017 2972057 1041 sp.LUXA_KRYAS Kryptophanaron alfredi symbiont luxA 21.1 47.4 399 6560 2972099 2971338 762	6558 2969834 2971003 1170 gp.AB010439_1 Rhodococcus rhodochrous 22.5 45.4 476 6559 2971017 2972057 1041 sp.LUXA_KRYAS Kryptophanaron alfredi symbiont long s	6557 2968951 2969808 658 pir.H75109 Pytococcus abyssi Orsay 23.7 63.3 283 6558 2969834 2971003 1170 gp.AB010439_1 Rhodococcus rhodochrous 22.5 45.4 476 6559 2971017 2972057 1041 sp.LUXA_KRYAS Kryptophanaron alfredi symbiont 21.1 47.4 399 6560 2971039 2971338 762 1146 sp.LUXA_KRYAS Kryptophanaron alfredi symbiont 21.1 47.4 399 6560 2971039 2971338 762 1146 sp.LUXA_KRYAS Kryptophanaron alfredi symbiont 21.1 47.4 399 6561 2971099 1146 sp.METB_ECOLI Escherichia coli K12 metB 36.5 62.4 375 6562 2973796 2974200 240 gp.SCE20_34 Streptomyces coelicolor A3(2) 49.4 65.2 89 6563 2974200 240 gp.SCE20_34 Streptomyces coelicolor A3(2) 73.2 87.5 56 6565<	6556 2968403 2968 78 387 SP.CADF_STAAU Staphylococcus aureus cadC 37.0 71.3 108 6557 2968951 2968808 858 pir.H75109 Pyrococcus abyssi Orsay 23.7 63.3 283 6558 2969834 2971003 1170 gp.AB010439_1 Rhodococcus rhodochrous 22.5 45.4 476 6559 2971017 2972057 1041 sp.LUXA_KRYAS Kryptophanaron alfredi symbiont 21.1 47.4 399 6560 2972099 2971338 762 methonyces coelicolor A3(2) 40.2 62.4 375 6561 2973096 2973230 567 gp.SC1A2_11 Streptomyces coelicolor A3(2) 49.4 65.2 89 6563 2973296 2974200 240 gp.SCE20_34 Streptomyces coelicolor A3(2) 73.2 87.5 66.2 89 6563 2974200 2974382 183 gp.SCE20_34 Streptomyces coelicolor A3(2) 73.2 87.5 56 6564	6556 2967804 2966458 1347 pir.S76683 Synechocystis sp. PCC6803 24.7 54.8 489 6556 2968403 2968789 387 sp.CADE_STAAU Stanboloccus aureus cadC 37.0 71.3 108 6557 2968951 2968088 858 pir.H75109 Pyrococcus abyssi Orsay 23.7 63.3 283 6558 2968961 296908 858 pir.H75109 Pyrococcus abyssi Orsay 23.7 63.3 283 6558 2968961 2971007 2972067 1041 sp.LUXA_KRYAS Kryptophanaron alfredi symbiont 21.1 47.4 399 6550 2972097 1041 sp.LUXA_KRYAS Kryptophanaron alfredi symbiont 21.1 47.4 399 6560 2972097 1041 sp.LUXA_KRYAS Kryptophanaron alfredi symbiont 21.1 47.4 399 6561 2972095 1041 sp.METB_ECOLI Escherichia coli K12 metB 36.5 62.4 375 6562 2973706 2972000 <td>6554 296518B 2965583 396 GSP:Y29193 Pseudomonas aeruginosa 62.0 63.0 132 6555 2967804 296645B 134 pir.S76683 Synechocystis sp. PCC6803 24.7 54.8 489 6556 2968403 2968789 387 sp.CADF_STAAU Staphylococcus aureus cadC 37.0 71.3 108 6556 2968931 2971003 1170 gp.RH75109 Pyrococcus abyssi Oisay 23.7 63.3 283 6558 2972099 2971017 2972057 1041 sp.LUXA_KRYAS Kryptophanaron alfredi symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbion processor incording symbiont processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording sym</td> <td>6553 2965076 2965837 762 GSP-V29182 Pseudomonas aeruginosa 38.0 55.0 200 6554 2965188 2965583 396 GSP-V29193 Pseudomonas aeruginosa 62.0 63.0 132 6555 2967804 2966458 1347 pir.S76683 Synechocystis sp. PCC6803 24.7 54.8 489 6556 2967804 2966458 1347 pir.S76683 Synechocystis sp. PCC6803 24.7 54.8 489 6556 2968961 2968068 858 pir.H75109 Pytrococcus aureus cadC 37.0 71.3 108 6556 2968961 2971007 297005 1170 gp.AB010439_1 Rhodococcus incodochrous 22.5 45.4 476 6556 2971007 2971036 1146 sp.LUXA_KRYAS lixhylophanaron alfredi symbiont 21.1 47.4 399 6550 2972056 1146 sp.LUXA_KRYAS lixhylophanaron alfredi symbiont 21.1 47.4 399 6551 <td< td=""><td>6552 2964256 2964434 177 GSP-Y2918B Pseudomonas aeruginosa 76.0 82.0 59 6553 2965076 2965837 76.2 GSP-Y29182 Pseudomonas aeruginosa 38.0 55.0 200 6554 2965818 2965583 396 GSP-Y29193 Pseudomonas aeruginosa 62.0 63.0 132 6555 2967804 2966458 1347 pir.S76683 SyncAbo-ystis sp. PCC6803 24.7 54.8 489 6556 2967804 2966458 1347 pir.S76683 SyncAbo-ystis sp. PCC6803 24.7 54.8 489 6556 2967804 2966458 1347 pir.S76683 SyncAbo-ystis sp. PCC6803 24.7 54.8 489 6556 296809 858 pir.H75109 Pytroccccus arreus cadc 37.0 71.3 108 6556 296809 858 pir.H75109 Pytrocccus arreus cadc 37.0 71.4 399 6556 297209 11041 sp. LUXA_KRYAS K</td><td>SEC NO. Initial (III) Terminal (III) ORF (III) Homologous gene (%) -></td></td<></td>	6554 296518B 2965583 396 GSP:Y29193 Pseudomonas aeruginosa 62.0 63.0 132 6555 2967804 296645B 134 pir.S76683 Synechocystis sp. PCC6803 24.7 54.8 489 6556 2968403 2968789 387 sp.CADF_STAAU Staphylococcus aureus cadC 37.0 71.3 108 6556 2968931 2971003 1170 gp.RH75109 Pyrococcus abyssi Oisay 23.7 63.3 283 6558 2972099 2971017 2972057 1041 sp.LUXA_KRYAS Kryptophanaron alfredi symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbiont processor incording symbion processor incording symbiont processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording symbion processor incording sym	6553 2965076 2965837 762 GSP-V29182 Pseudomonas aeruginosa 38.0 55.0 200 6554 2965188 2965583 396 GSP-V29193 Pseudomonas aeruginosa 62.0 63.0 132 6555 2967804 2966458 1347 pir.S76683 Synechocystis sp. PCC6803 24.7 54.8 489 6556 2967804 2966458 1347 pir.S76683 Synechocystis sp. PCC6803 24.7 54.8 489 6556 2968961 2968068 858 pir.H75109 Pytrococcus aureus cadC 37.0 71.3 108 6556 2968961 2971007 297005 1170 gp.AB010439_1 Rhodococcus incodochrous 22.5 45.4 476 6556 2971007 2971036 1146 sp.LUXA_KRYAS lixhylophanaron alfredi symbiont 21.1 47.4 399 6550 2972056 1146 sp.LUXA_KRYAS lixhylophanaron alfredi symbiont 21.1 47.4 399 6551 <td< td=""><td>6552 2964256 2964434 177 GSP-Y2918B Pseudomonas aeruginosa 76.0 82.0 59 6553 2965076 2965837 76.2 GSP-Y29182 Pseudomonas aeruginosa 38.0 55.0 200 6554 2965818 2965583 396 GSP-Y29193 Pseudomonas aeruginosa 62.0 63.0 132 6555 2967804 2966458 1347 pir.S76683 SyncAbo-ystis sp. PCC6803 24.7 54.8 489 6556 2967804 2966458 1347 pir.S76683 SyncAbo-ystis sp. PCC6803 24.7 54.8 489 6556 2967804 2966458 1347 pir.S76683 SyncAbo-ystis sp. PCC6803 24.7 54.8 489 6556 296809 858 pir.H75109 Pytroccccus arreus cadc 37.0 71.3 108 6556 296809 858 pir.H75109 Pytrocccus arreus cadc 37.0 71.4 399 6556 297209 11041 sp. LUXA_KRYAS K</td><td>SEC NO. Initial (III) Terminal (III) ORF (III) Homologous gene (%) -></td></td<>	6552 2964256 2964434 177 GSP-Y2918B Pseudomonas aeruginosa 76.0 82.0 59 6553 2965076 2965837 76.2 GSP-Y29182 Pseudomonas aeruginosa 38.0 55.0 200 6554 2965818 2965583 396 GSP-Y29193 Pseudomonas aeruginosa 62.0 63.0 132 6555 2967804 2966458 1347 pir.S76683 SyncAbo-ystis sp. PCC6803 24.7 54.8 489 6556 2967804 2966458 1347 pir.S76683 SyncAbo-ystis sp. PCC6803 24.7 54.8 489 6556 2967804 2966458 1347 pir.S76683 SyncAbo-ystis sp. PCC6803 24.7 54.8 489 6556 296809 858 pir.H75109 Pytroccccus arreus cadc 37.0 71.3 108 6556 296809 858 pir.H75109 Pytrocccus arreus cadc 37.0 71.4 399 6556 297209 11041 sp. LUXA_KRYAS K	SEC NO. Initial (III) Terminal (III) ORF (III) Homologous gene (%) Table 1 (continued)

	<u> </u>			I				= 1			g)						 1
Function	N-carbamoyl-D-amino acid amidohydrolase		hypothetical protein	novel two-component regulatory system	aldehyde dehydrogenase	heat shock transcription regulator	heat shock protein dnaJ	nucleotide exchange factor grpE protein bound to the ATPase domain of the molecular chaperone DnaK	heat shock protein dnaK	hypothetical membrane protein	5'-methylthioadenosine nucleosidase and S- adenosylhomocysteine nucleosidase			chromosome segregation protein			alcohol dehydrogenase
Matched length	(a.a.) 275		289	108	202	135	397	212	618	338	195			1311			334
Identity Similarity (%)	67.3		55.4	44.0	90.3	70.4	80.1	66.5	99.8	79.0	60.0			48.4			81.7
Identity (%)	32.0		28.0	38.0	9.69	47.4	26.7	38.7	8.66	42.6	27.2			18.9			50.0
Homologous gene	Methanobacterium thermoautotrophicum Delta H MTH1811		Streptomyces coelicolor A3(2) SC4A7.03	Azospirillum brasilense carR	Rhodococcus erythropolis thcA	Streptomyces albus G hspR	Mycobacterium tuberculosis H37Rv RV0352 dnaJ	Streptomyces coelicolor grpE	Brevibacterium flavum MJ-233 dnaK	Streptomyces coelicolor A3(2) SCF6.09	Helicobacter pylori HP0089 mtn			Schizosaccharomyces pombe cut3			Bacillus stearothermophilus DSM 2334 adh
db Match	pir.B69109		gp:SC4A7_3	GP.ABCARRA_2	prf:2104333D	gp:SAU43299_2		sp:GRPE_STRCO	gsp:R94587	gp:SCF6_8	sp.PFS_HELPY	i		sp:CUT3_SCHPO			sp.ADH2_BACST
ORF (hn)	798	243	1134	330	1518	438	1185	636	1854	1332	633	1200	885	3333	636	1485	1035
Terminal	2977847	2978979	2980115	2981216	2980181	2982023	2982495	2983887	2984544	2988164	2988214	2988846	2992602	2989954	2993286	2993921	2995747
Initial	2978644	2978737	2978982	2980887	2981698	2982460	2983679	2984522	2986397	2986833	2988846	2990045	2991718	2993286	2993921	2995405	2996781
SEO	(a.a.) 6568	6959	6570	1759	6572	6573	6574	6575	6576	6577	6578	6259	6580	6581	6582	6583	6584
SEO	(DNA)	3069		3071	3072		3074	3075	3076	3077	3078	3079	3080	3081	3082	3083	3084

5
10
15
20
25
30
35
40
45
50

Table 1 (continued)

						/				
SEQ NO DNA)	SEQ NO	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	identity (%)	Similarity (%)	Matched length (a.a.)	Function
3085	-	2997151	2997366	216		·				
3086	6586	2997687	2997481	207						
3087	6587	2997688	2997876	189						
3088	6588	2998223	2997963	261						
3089	6289	2999454	2998528	927	pir:F69997	Bacillus subtilis ytnM	43.5	70.1	301	hypothetical membrane protein
3090	6590	3000200	2999478	723	gp:SC7A8_10	Streptomyces coelicolor A3(2) SC7A8.10c	32.5	53.2	252	hypothetical protein
3091	6591	3001512	3002426	915						
3092	6592	3001539	3000241	1299	sp:CYSN_ECOLI	Escherichia coli K12 cysN	47.3	78.3	414	sulfate adenylyltransferase, subunit
3093	6593	3002453	3001542	912	sp.cysp_ecoli	Escherichia coli K12 cysD	46.1	70.1	308	sulfate adenylyltransferase small chain
3094 3094	6594 6594	3883145	3882453	693 693	spicyH1_BACSU	Bacillus subtilis cysH Bacillus suotilis cysH	39.2	64.2	212	phosphoadenosine phosphosulfate
3095	6595	3005162	3003480	1683	sp:NIR_SYNP7	Synechococcus sp. PCC 7942	34.5	65.5	502	ferredoxinnitrate reductase
3096	+		3006915	1371	sp:ADRO_YEAST	Saccharomyces cerevisiae FL200 arh1	30.8	61.4	487	ferredoxin/ferredoxin-NADP reductase
3097	6597	3007294	3008376	1083	prf:2420294J	Homo sapiens hypE	32.6	59.7	144	huntingtin interactor
3098	6598	3008689	3008453	237						
3099	629	3008770	3009303	534						
3100	0099	3009162	3008749	414	sp.PHNB_ECOLI	Escherichia coli K12 phnB	26.8	59.9	142	alkylphosphonate uptake protein and C-P lyase activity
3101	6601	3009242	3009607	366	gp:SCE68_10	Streptornyces coelicolor A3(2) SCE68.10	50.0	66.3	80	hypothetical protein
3102	6602	3010231	3009710	522	gp:PPAMOA_1	Pseudomonas putida DSMZ ID 88-260 amoA	39.1	76.4	161	ammonia monooxygenase
3103	6603	3010659	3010979	321						
3104	6604	3010926	3010441	486						

EP 1 108 790 A2

10
15
20
25
30
35
40
45
50

5							rotein homolog			ate					ransport ATP-			ductase	ng nucleoside	e protein	glycosylase	
10	Function	hypothetical protein		hypothetical protein	ABC transporter	ABC transporter	metabolite transport protein homolog			succinyl-diaminopimelate desuccinylase				dehydrin-like protein	maltose/maltodextrin transport ATP-binding protein		cobalt transport protein	NADPH-flavin oxidoreductase	inosine-uridine preferring nucleoside hydrolase	hypothetical membrane protein	DNA-3-methyladenine glycosylase	flavohemoprotein
15	Matched length (a.a.)	89		337	199	211	416			466				114	373		179	231	317	276	179	406
20	Similarity (%)	58.0		67.9	64.8	73.0	8.79			48.5				46.0	50.1		67.6	71.4	59.3	59.4	78.8	63.8
	Identity (%)	41.0		26.1	35.7	39.3	30.8			21.5				33.0	24.9		30.2	37.2	28.4	31.2	50.3	33.5
25 (pənı	Đ.	FZ3		116	hmcB	hmcB				96					포		nid		_	A3(2)		16 fhp
S Table 1 (continued)	Homologous gene	Agrobacterium vitis ORFZ3		Alcaligenes eutrophus H16 ORF7	Haemophilus influenzae hmcB	Haemophilus influenzae hmcB	Bacillus subtilis ydeG			Escherichia coli K12 msgB				Daucus carota	Escherichia coli K12 malK		Lactococcus lactis Plasmid pNZ4000 Orf-200 cbiM	Vibrio harveyi MAV frp	Crithidia fasciculata iunH	Streptomyces coelicolor A3(2) SCE20.08c	Escherichia coli K12 tag	Alcaligenes eutrophus H16 fhp
35					Нае	Нае	Вас						1	1			Lact pNZ	Vibr	Crit	Stre	Esc	
40	db Match	SP:YTZ3_AGRVI	•	sp:YGB7_ALCEU	gp:HIU68399_3	gp:HIU68399_3	pir:A69778			sp:DAPE_ECOLI				GPU DCA297422_1	Sp:MALK_ECOLI		gp:AF036485_6	sp:FRP_VIBHA	sp:IUNH_CRIFA	gp:SCE20_8	sp:3MG1_ECOLI	sp:HMPA_ALCEU
	ORF (bp)	285	564	1002	693	714	1209	822	687	1323	1905	774	762	954	1068	642	618	816	903	975	588	1158
45	Terminal (nt)	3011273	3011242	3011808	3013106	3013837	3015824	3014648	3016924	3015827	3019220	3018312	3017420	3018123	3019542	3020561	3021208	3022113	3022998	3025353	3026139	3026142
50	Initial (nt)	3010989	3011805	3012809	3013798	3014550	3014616	3015469	3016238	3017149	3017316	3017539	3018181	3019076	3020609	3021202	3021825	3022928	3023900	3024379	3025552	3027299
	SEQ NO.	6605	6606	6607	8099	6099	6610	6611	6612	6613	6614	6615	9199	6617	6618	6619	6620	6621	2299	6623	6624	6625
55	SEQ NO (DNA)	3105	3106	3107	3108	3109	3110	3111	3112	3113	3114	3115	3116	3117	3118	3119	3120	3121	3122	3123	3124	3125

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

	Function		oxidoreductase		transcription antiterminator or beta- glucoside positive regulatory protein		6-phospho-beta-glucosidase		6-phospho-beta-glucosidase	aspartate aminotransferase		transposase (ISCg2)	hypothetical membrane protein		UDP-glucose dehydrogenase	deoxycytidine triphosphate deaminase		hypothetical protein		beta-N-Acetylglucosaminidase
	Matched length (a.a.)		210		192		167		99	402		401	399		442	188		229		410
	Similarity (%)		63.8		69.3		59.9		78.8	80.9		100.0	70.2		72.2	72.3		59.4		58.1
	Identity (%)		34.8		28.1		43.7		43.9	53.7		100.0	33.6		40.5	43.6		30.6		28.5
Table 1 (continued)	Homologous gene		Streptomyces coelicolor A3(2) mmyQ		Escherichia coli K12 bglC		Clostridium longisporum B6405 abgA		Clostridium longisporum B6405 abgA	Methylobacillus flagellatus aat		Corynebacterium glutamicum ATCC 13032 tnp	Streptomyces coelicolor A3(2) SCQ11 10c		Sinorhizobium meliloti rkpK	Escherichia coli K12 dcd		Streptomyces coelicolor A3(2) SCC75A. 16c		Streptomyces thermoviolaceus nagA
	db Match		gp:SCO276673_18		sp:BGLG_ECOLI		sp:ABGA_CLOLO		sp:ABGA_CLOLO	gp:L78665_2		gp:AF189147_1	gp:SCQ11_10		prf:2422381B	sp.DCD_ECOLI		gp:SCC75A_16		gp:AB008771_1
	ORF (bp)	603	624	156	591	279	360	381	240	1257	300	1203	1257	183	1317	267	237	771	1689	1185
	Terminal (nt)	3028163	3028891	3029033	3028884	3029782	3029702	3030535	3030101	3031979	3032348	3033863	3035437	3034105	3035440	3036845	3037911	3038942	3038993	3040748
	Initial (nt)	3027561	3028268	3028878	3029474	3029504	3030061	3030155	3030340	3030723	3032647	3032661	3034181	3034287	3036756	3037411	3037675	3038172	3040681	3041932
	SEQ NO.	9299	6627	6628	6299	0630	6631	6632	6633	6634	6635	6636	6637	6638	6639	6640	6641	6642	6643	6644
	SEQ NO. (DNA)	3126	3127	3128	3129	3130	3131	3132	3133	3134	3135	3136	3137	3138	3139	3140	3141	3142	3143	3144

5	
10	
15	
20	
25	
30	
35	
40	
45	
50	

Table 1 (continued)

Γ	1	П	1	Ţ		\neg	·							e .		Ι	<u> </u>		
	Function			hypothetical protein			hypothetical membrane protein	acyltransferase or macrolide 3-O-acyltransferase		hypothetical membrane protein		hexosyltransferase	methyl transferase	phosphoenolpyruvate carboxykinase (GTP)	C4-dicarboxylate transporter	hypothetical protein	hypothetical protein	mebrane transport protein	
	Matched length (a.a.)			1416			363	408		529		696	152	601	332	241	207	768	
	Similarity (%)			49.4			47.1	51.0		54.8		79.1	73.3	78.5	52.7	67.2	85.0	72.3	
	Identity (%)			29.6			24.8	27.7		31.2		53.4	58.6	54.7	24.4	35.7	69.1	42.3	
(505)	Homologous gene			Mycobacterium leprae MLCB1883.13c			Mycobacterium leprae MLCB1883.05c	Streptomyces sp. acyA		Mycobacterium leprae MLCB1883.04:		Mycobacterium tuberculosis H37Rv Rv0225	Mycobacterium tuberculosis H37Rv Rv0224c	Neocallimastix frontalis pepck	Pyrococcus abyssi Orsay PAB2393	Escherichia coli K12 yggH	Mycobacterium tuberculosis H37Rv Rv0207c	Mycobacterium tuberculosis H37Rv Rv0206c mmpL3	
	db Match			gp:MLCB1883_7			gp:MLCB1883_4	pir.JC4001		gp:MLCB1883_3		pir.G70961	pir.F70961	sp.PPCK_NEOFR	pir.E75125	sp:YGGH_ECOLI	pir:E70959	pir.C70839	
	ORF (bp)	444	201	3129	621	195	903	1068	708	1422	699 699	1137	171	1830	1011	765	705	2316	1422
	Terminal (nt)	3042437	3042703	3045788	3043022	3045990	3048048	3046122	3047197	3049479	3051190	3049456	3051964	3052062	3055769	3056631	3057317	3059643	3058096
	Initial (nt)	3041994	3042503	3042660	3043642	3045796	3047146	3047189	3047904	3048058	3050522	3050592	3051194	3053891	3054759	3055867	3056613	3057328	3059517
	SEQ NO. (a a.)	6645	6646	6647	6648	6649	6650	6651	6652	6653	6654 5654	6655	9599	6657	6658	6659	0999	6661	6662
	SEQ NO. (DNA)	3145	3146	3147	3148	3149	3150	3151	3152	3153	3154	3155	3156	3157	3158	3159	3160	3161	3162

10	
15	
20	
25	
30	
35	
40	
45	
50	

_										_									
	Function	hypothetical membrane protein	hypothetical membrane protein	propionyl-CoA carboxylase complex B subunit	polyketide synthase	acyl-CoA synthase	hypothetical protein		major secreted protein PS1 protein precursor				antigen 85-C	hypothetical membrane protein	nodulation protein	hypothetical protein	hypothetical protein		phosphatidic acid phosphatase
	Matched length (a.a.)	364	108	523	1747	592	319		657				331	667	295	168	656		170
	Similarity (%)	62.9	69.4	76.9	54.2	62.3	67.4		99.5				62.5	61.2	51.5	75.0	74.7		56.5
	Identity (%)	29.1	34.3	49.7	30.2	33.5	39.8		98.6				36.3	37.5	27.1	51.2	55.6		28.2
Table 1 (continued)	Homologous gene	Mycobacterium tuberculosis H37Rv Rv0204c	Mycobacterium tuberculosis H37Rv Rv0401	Streptomyces caelicolor A3(2) pccB	Streptomyces erythraeus eryA	Mycobacterium bovis BCG	Mycobacterium tuberculosis H37Rv Rv3802c		Corynebacterium glutamicum (Brevibacterium flavum) ATCC 17965 cop1				Mycobacterium tuberculosis ERDMANN RV0129C fbpC	Mycobacterium tuberculosis H37Rv Rv3805c	Azorhizobium caulinodans ORS571 noeC	Mycobacterium tuberculosis H37Rv Rv3807c	Mycobacterium tuberculosis H37Rv Rv3808c		Bacillus licheniformis ATCC 9945A bcrC
	db Match	pir:A70839	pir:H70633	gp:AF113605_1	sp:ERY1_SACER	prf:2310345A	pic.F70887	,	sp:CSP1_CORGL				sp:A85C_MYCTU	pir.A70888	sp.NOEC_AZOCA	pir.C70888	pir.D70888		sp:BCRC_BACLI
	ORF (bp)	1083	363	1548	4830	1788	927	498	1971	1	1401	219	1023	2058	966	504	1968	1494	477
	Terminal (nt)	3060733	3061095	3061380	3062951	3068143	3070214	3071147	3071650		3075447	3073857	3075540	3076715	3078853	3079848	3080344	3083960	3083935
	Initial (nt)	3059651	3060733	3062927	3067780	3069930	3071140	3071644	3073620	1	3074047	3074075	3076562	3078772	3079848	3080351	3082311	3082467	3084411
	SEQ NO (a a)	6999	6664	6665	9999	2999	8999	6999	6670		6671	6672	6673	6674	6675	9299	2299	6678	6679
	SEQ NO (DNA)	3163	3164	3165	3166	3167	3168	3169	3170		3171	3172	3173	3174	3175	3176	3177	3178	3179

10
15
20
25
30
35
40
45
50

	Function			dimethylaniline monooxygenase (Nooxide-forming)		UDP-galactopyranose mutase	hypothetical protein	glycerol kinase	hypothetical protein	acyltransferase	seryl-tRNA synthetase	transcriptional regulator, GntR family or fatty acyl-responsive regulator	hypothetical protein	hypothetical protein		2,3-PDG dependent phosphoglycerate mutase		nicotinamidase or pyrazinamidase	
	Matched length (a.a.)			377		377	629	499	279	261	419	235	356	113		218		460	
	Similarity (%)			50.4		72.9	47.8	78.8	70.3	72.0	87.6	61.7	61.2	7.67		62.8		50.9	
	Identity (%)			24.4		43.2	29.6	51.7	41.6	46.7	70.2	27.7	32.6	46.0		37.2		27.4	
Table 1 (continued)	Homologous gene			Sus scrofa fmo1		Escherichia coli K12 glf	Mycobacterium tuberculosis H37Rv Rv3811 csp	Pseudomonas aeruginosa ATCC 15692 glpK	Mycobacterium tuberculosis H37Rv Rv3813c	Mycobacterium tuberculosis H37Rv Rv3816c	Mycobacterium tuberculosis H37Rv	Escherichia coli K12 farR	Mycobacterium tuberculosis H37Rv Rv3835	Mycobacterium tuberculosis H37Rv Rv3836		Amycolatopsis methanolica pgm		Mycobacterium smegmatis pzaA	
	db Match			sp:FMO1_PIG		sp.GLF_ECOLI	pir:G70520	sp:GLPK_PSEAE	pir:A70521	pir:070521	gsp:W26465	sp:FARR_ECOLI	pir:H70652	pir.A70653		gp:AMU73808_1		prf:2501285A	
	ORF (bp)	777	510	1302	612	1203	2049	1527	834	876	1266	714	1113	342	66	699	630	1143	729
	Terminal (nt)	3084424	3085218	3087048	3088276	3087101	3090664	3090760	3092342	3093175	3094078	3096287	3097423	3097764	3097780	3097904	3099454	3100698	3101426
	Initial (nt)	3085200	3085727	3085747	3087665	3088303	3088616	3092286	3093175	3094050	3095343	3095574	3096311	3097423	3097878	3098572	3098825	3099556	3100698
	SEQ NO.	0899	6681	6682	6683	6684	6685	9899	6687	9899	6899	0699	6691	6692	6693	6694	9699	9699	2699
	SEQ NO.	3180	3181	3182	3183	3184	3185	3186	3187	3188	3189	3190	3191	3192	3193	3194	3195	3196	3197

transcription activator or transcriptional regulator GntR family glucan 1,4-alpha-glucosidase hydrolase or haloacid dehalogenase-like hydrolase shikimate transport protein glycerophosphoryl diester phosphodiesterase L-lactate dehydrogenase transcriptional regulator Function gluconate permease hypothetical protein hypothetical protein phosphoesterase pyruvate kinase efflux protein Matched length (a.a.) Similarity (%) 71.9 68.6 99.7 9.79 57.0 74.4 55.3 54.1 47.7 57.1 dentity 31.6 29.0 37.3 33.5 39.9 27.6 47.8 ð 32.1 25. Streptomyces coelicolor A3(2) SC6G4.33 Streptomyces coelicolor A3(2) SC1C2.30 Corynebacterium glutamicum Escherichia coli K12 MG1655 glcC Table 1 (continued) Mycobacterium tuberculosis Brevibacterium linens ORF1 tmpA Mycobacterium tuberculosis H37Rv Rv2795c Brevibacterium flavum lctA Saccharomyces cerevisiae S288C YIR019C sta1 Homologous gene Streptomyces lavendulae ORF372 Escherichia coli K12 shiA Bacillus subtilis glpQ Bacillus subtilis gntP H37Rv Rv1069c AS019 pyk BACSU sp.GLPQ_BACSU sp:KPYK_CORGL sp:AMYH_YEAST sp:GLCC_ECOLI sp:SHIA_ECOLI gp:AF030288_ gp:SC6G4_33 db Match gp:SC1C2_30 gsp:Y25997 pir:870885 pir. B26872 pir.C70893 sp:GNTP_ ORF (bp) Terminal (£ Initial (nt) 90/9 60/9 SEO NO (a.a.) (DNA) SEQ

_										<u> </u>				•				 +			
	Function	L-lactate dehydrogenase or FMN-dependent dehydrogenase		immunity repressor protein			phosphatase or reverse transcriptase (RNA-dependent)		peptidase or IAA-amino acid hydrolase		peptide methionine sulfoxide reductase	superoxide dismutase (Fe/Mn)	transcriptional regulator	multidrug resistance transporter				hypothetical protein	membrane transport protein	transcriptional regulator	two-component system response regulator
	Matched length (a.a.)	376		55			569		122		210	164	292	384				216	447	137	212
	Similarity (%)	68.9		80.0			51.3		63.1		69.1	92.7	65.8	49.0				64.8	59.3	65.0	75.5
	identity (%)	40.4		45.5			29.5		36.9		47.6	82.3	32.5	23.4				33.8	27.3	37.2	50.9
Table 1 (continued)	Homologous gene	Neisseria meningitidis IIdA		Bacillus phage phi-105 ORF1			Caenorhabditis elegans Y51B11A.1		Arabidopsis thaliana ill1		Escherichia coli B msrA	Corynebacterium pseudodiphtheriticum sod	Bacillus subtilis gltC	Corynebacterium glutamicum tetA				Mycobacterium tuberculosis H37Rv Rv3850	Streptomyces cyanogenus land	Bacillus subtilis 168 yxaD	Corynebacterium diphtheriae chrA
	db Match	prf.2219306A		sp:RPC_BPPH1			gp:CELY51B11A_1		SP:ILL1_ARATH		sp.PMSR_ECOLI	pir:140858	sp.GLTC_BACSU	gp:AF121000_10				pir:G70654	prf:2508244AB	sp.YXAD_BACSU	prf.2518330B
	ORF (bp)	1215	405	312	138	711	1617	546	402	150	651	900	924	1134	1611	111	1521	633	1491	456	636
	Terminal (nt)	3120879	3121313	3121909	3121992	3123932	3122556	3124341	3124897	3125492	3125495	3126991	3127494	3129739	3131395	3133030	3131508	3133747	3133778	3135752	3135856
	Initial (nt)	3119665	3120909	3121598	3122129	3123222	3124172	3124886		3125343	3126145	3126392	3128417	3128606	3129785	3132920	3133028	3133115	3135268	3135297	3136491
	SEQ NO.	6717	6718	6719	6720	6721	6722	6723	6724	6725	6726	6727	6728	6729	6730	6731	6732	6733	6734	6735	6736
	SEQ NO.	•	3218	3219	3220	3221	+ -	3223		3225		3227	3228		3230	3231	3232		3234	3235	

	Function			two-component system sensor histidine kinase	hypothetical protein	hypothetical protein	stage III sporulation protein	transcriptional repressor	transglycosylase-associated protein	hypothetical protein	hypothetical protein	RNA pseudouridylate synthase	hypothetical protein	The formation of the second of	hypothetical protein	C	bacterial regulatory protein, gnirk family or gic operon transcriptional activator	hypothetical protein	hypothetical protein
	Matched length (a.a.)			408	48	772	265	192	87	296	314	334	ā	5	42		109	488	267
	Similarity (%)			64.5	79.2	59.2	53.6	6.09	71.3	69.6	73.9	512	0 90	8	75.0		56.0	48.2	78.7
	Identity (%)			30.2	45.8	30.0	26.0	32.3	34.5	41.2	38.5	28.4		0.[0	71.0		30.3	26.0	48.3
Table 1 (continued)	Homologous gene			Corynebacterium diphtheriae chrS	Streptomyces coelicolor A3(2) SCH69.22c	Streptomyces coelicolor A3(2) SCH69.20c	Bacillus subtilis spottiJ	Mycobacterium tuberculosis H37Rv Rv3173c	Escherichia coli K12 MG1655 tag1	Myesbacterium tuberculosis	Escherichia coli K12 MG1655	Sody.	Chiarobium vibriologime year	Chlamydia pneumoniae	Chlamydia muridarum Nigg TC0129		Escherichia coli K12 MG1655 glcC	Streptomyces coelicolor SC4G6.31c	Mycobacterium tuberculosis H37Rv Rv2744c
	db Match			prf:2518330A	gp:SCH69_22	gp:SCH69_20	sp:SP3J BACSU	pir.C70948	sp.TAG1_ECOLI	sp:YW12_MYCTU	SD: YHBW ECOLI		sp:YBC5_CHLVI	GSP:Y35814	PIR:F81737		sp. GLCC_ECOLI	gp:SC4G6_31	
	ORF (bp)	639	3	1311	150	822	1302	639	261	903	987		996	273	141	207	363	1416	873
	Terminal (nt)	313755B	2010	31384/1	3138481	3138634	3140952	3140885	3141709	3142454	1143496		3145626	3146841	3147230	3151369	3151842	3153828	
	Initial (nt)	2136020	2130350	313/884	3138630	3139455	2139651	3141523	3141969	3143356			3144661	3146569		3151575		3152413	
	SEO NO.	+-		6738	6740	6741	67.42	6743	6744	6745	6746	0140	6747	6748		6750	6751	6752	
	SEQ		-	3238		3241	37.42	3243	3244	3245	3 26	3240	3247	324B	3249	3250	3251	2252	3253

			,																			
	Function						methyltransferase	nodulin 21-related protein				transposon tn501 resolvase		ferredoxin precursor	hypothetical protein	transposase	transposase protein fragment TnpNC		glyceraldehyde-3-phosphate dehydrogenase (pseudogene)	lipoprotein	copper/potassium-transporting ATPase B or cation transporting ATPase (E1-E2 family)	
	Matched length (a.a.)						217	241				56		62	- 22	27	46		38	180	717	
	Similarity (%)						58.1	55.2				92.9		98.4	85.5	84.0	0.06		84.2	59.4	73.4	
	Identity (%)						32.3	26.1				48.2		90.3	47.3	81.0	84.0		63.2	32.2	45.8	
Table 1 (continued)	Homologous gene						Streptomyces coelicolor A3(2) SCD35.11c	soybean NO21				Pseudomonas aeruginosa TNP5		Saccharopolyspora erythraea fer	Streptomyces coelicolor A3(2)	Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum		Pyrococcus woesei gap	Synechocystis sp. PCC6803 sl0788	Archaeoglobus fulgidus AF0152	
	db Match						gp:SCD35_11	sp:NO21_SOYBN				sp:TNP5_PSEAE		sp:FER_SACER	gp:SCD31_14	GPU.AF164956_8	GPU.AF164956_23		sp:G3P_PYRWO	pir.S77018	pir.H69268	
	ORF (bp)	153	1452	1068	249	309	711	720	204	378	186	216	483	321	333	111	162	1038	126	099	2217	171
	Terminal (nt)	3154969	3155246	3156306	3157223	3157479	3158834	3159081	3160419	3161065	3161001	3160723	3161701	3161087	3161682	3162804	3162871	3163889	3162858	3163074	3163789	3166267
	Initial (nt)	3154817	3156697	3157373	3157471	3157787	3158124	3159800	3160216	3160688	3160816	3160938	3161219	3161407	3162014	3162694	3162710	3162852	3162983	3163733	3166005	3166437
	SEQ NO. (a.a.)	6754	6755	6756	6757	6758	6229	6760	6761	6762	6763	6764	6929	9929	6767	6768	6929	6770	6771	6772	6773	6774
	SEQ NO. (DNA)	3254	3255	3256	3257	3258	3259	3260	3261	3262	3263	3264	3265	3266	3267	3268	3269	3270	3271	3272	3273	3274
			_			_																

	Function		two-component system sensor histidine kinase		two-component response regulator or alkaline phosphatase synthesis transcriptional regulatory protein		laccase or copper resistance protein precursor A	thiol:disulfide interchange protein (cytochrome c biogenesis protein)	quinone oxidoreductase (NADPH:quinone reductase)(seta- crystallin)		zinc-transporting ATPase (Zn(II)- translocating p-type ATPase			zinc-transporting ATPase (Zn(II)- translocating p-type ATPase	hypothetical protein		transposase	transposase
	Matched length (a.a.)		301		233		630	101	322		8/			909	7.5		73	7.0
	Similarity (%)		71.4		72.1		47.9	63.4	6.09		66.7			68.5	54.0		73.0	77.0
	Identity (%)		37.5		43.4		26.7	31.7	31.4		37.2			39.8	45.0		58.0	75.0
Table 1 (continued)	Homologous gene		Escherichia coli K12 baeS		Bacillus subtilis phoP		Pseudomonas syringae pv. tomato copA	Bradyrhizobium japonicum tlpA	Mus museulus qor		Synechocystis sp. PCC6803 atzN			Escherichia coli K12 MG1655 alzN	Aeropyrum pernix K1 APE2572		Corynebacterium glutamicum Tnp1673	Corynebacterium glutamicum Tnp1673
	db Match		sp:BAES_ECOLI		sp.PHOP_BACSU		sp.COPA_PSESM	sp.TLPA_BRAJA	SP:GOR_MOUSE		sp.ATZN_SYNY3			sp:ATZN_ECOLI	PIR:E72491		GPU.AF164956_8	GPU:AF164956_8
	ORF (bp)	192	1197	828	756	672	1479	363	918	471	234	315	207	1875	390	309	216	258
	Terminal (nt)	3167169	3166450	3168566	3167646	3169340	3170892	3171616	3171819	3173465	3173857	3174380	3174784	3176901	3175254	3177482	3177089	3177308
	Initial (nt)	3166978	3167646	3167739	3168401	3168669	3169414	3171254	3172538	3172995	3173624	3174066	3174990	3175027	3175643	3177174	3177304	3177565
	SEQ NO.	6775	6776	5777	6778	6779	6780	6781	8782	6783	6784	6785	6786	6787	6788	68/9	6790	6791
	SEQ NO. (DNA)	3275	3276	3277	3278	3279	3280	3281	3282	3283	3284	3285	3286	3287	3288	3289	3290	3291

ভ
Пe
텵
ಶ
<u>e</u>
Tab

						lable 1 (continued)				
SEQ SEQ Initial Terminal ORF db Match (DNA) (a.a.) (nt) (nt) (bp)	Terminal ORF (nt)	ORF (bp)			_	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
3292 6792 3177683 3177525 159 gp.AF121000_8	3177683 3177525 159	159	 	gp.AF121000	. ه	Corynebacterium glutamicum 22243 R-plasmid pAG1 tnpB	92.5	96.2	53	transposase (IS1628)
6793 3178558 3178112 447 sp.THI2_ECOLI	3178558 3178112 447	447	1	sp:THI2_ECOL	_	Escherichia coli K12 thi2	39.0	74.0	100	thioredoxin
6794 3178609 3178872 264	3178609 3178872	i —	264							
3295 6795 3179049 3180392 1344 sp:PCAK_PSEPU	3179049 3180392 1344	1344			Þ	Pseudomonas putida pcaK	27.1	60.1	421	transmembrane transport protein or 4-hydroxybenzoate transporter
3296 6796 3181104 3180946 159	3181104 3180946	├	159							
6797 3181126 3180551 576 sp:YQJI_ECOLI	3181126 3180551 576	576	_	sp:YQJI_ECOLI		Escherichia coli K12 yqil	35.1	62.5	208	hypothetical protein
6798 3182866 3181337 1530 sp.DNAB_ECOLI	3182866 3181337 1530	1530				Escherichia coli K12 dnaB	37.7	73.1	461	replicative DNA helicase
3299 6799 3183469 3183984 516	3183469 3183984		516							
3300 6800 3183927 3183478 450 Sp.RL9_ECOLI	3183927 3183478 450	450		sp:RL9_ECOLI		Escherichia coli K12 RL9	42.2	71.4	154	50S ribosomal protein L9
6801 3184661 3183987 675 sp.SSB_ECOLI	3184661 3183987 675	675		sp:SSB_ECOLI		Escherichia coli K12 ssb	30.6	51.5	229	single-strand DNA binding protein
6802 3184985 3184701 285 sp.RS6_ECOLI	3184985 3184701 285	285		sp:RS6_ECOLI		Escherichia coli K12 RS6	28.3	78.3	92	30S ribosomal protein S6
6803 3185536 3185348 189	3185536 3185348		189							
3304 6804 3186993 3185536 1458 gp.AF187306_1	3186993 3185536 1458	1458				Mycobacterium smegmatis mc(2)155	41.5	68.3	480	hypothetical protein
3305 6805 3187912 3188793 882	3187912 3188793	-	882							
6806 3189201 3187042 2160 sp:PBPA_BACSU	3189201 3187042 2160	2160				Bacillus subtilis ponA	29.1	60.1	647	penicillin-binding protein
6807 3189652 3189296 357 sp:Y0HC_MYCTU	3189652 3189296 357	357		sp:Y0HC_MYCTU		Mycobacterium tuberculosis H37Rv Rv0049	41.1	72.0	107	hypothetical protein
3308 6808 3189877 3190347 471 pir.B70912	3189877 3190347 471	471		pir.870912		Mycobacterium tuberculosis H37Rv Rv0042c	35.1	65.0	137	bacterial regulatory protein, marR family
3309 6809 3190378 3191319 942 sp.Y0FF_MYCTU	3190378 3191319 942	942		sp:Y0FF_MYCTU		Mycobacterium tuberculosis H37Rv Rv2319c yofF	29.7	61.8	296	hypothetical protein
3310 6810 3191354 3191848 495	3191354 3191848	-	495							
6811 3192242 3191922 321 sp.YHGC_BACSU	3191922 321	321		sp:YHGC_BACS	\supset	Bacillus subtilis yhgC	32.4	70.4	71	hypothetical protein
3312 6812 3193201 3192266 936 sp.YCEA_ECOLI	3193201 3192266 936	936		sp:YCEA_ECOL	_	Escherichia coli K12 yceA	30.2	63.8	298	hypothetical protein
3313 6813 3194514 3193252 1263 sp:YBJZ_ECOLI	3194514 3193252 1263	1263				Escherichia coli K12 ybjZ	31.2	64.0	433	ABC transporter ATP-binding protein

٢		ے ا	$\neg $	$\neg \tau$	Т	\neg	T			11				T		ပ္	T	\neg	_
	Function	ABC transporter ATP-binding protein	hypothetical protein	hypothetical protein			DNA protection during starvation protein	formamidopyrimidine-DNA glycosylase	hypothetical protein			methylated-DNAprotein-cysteine S-methyltransferase	zinc-binding dehydrogenase or quinone oxidoreductase (NADPH:quinone reductase) or alginate lyase		membrane transport protein	malate oxidoreductase {NAD} (malic enzyme)	gluconokinase or gluconate kinase	teicoplanin resistance protein	
	Matched length (a.a.)	221	237	360			154	268	404			166	231		398	392	486	169	
	Similarity (%)	80.1	42.0	0.06			64.9	55.6	9.99			63.3	63.6		66.3	99.5	53.7	60.4	
	Identity (%)	48.9	18.0	77.8			37.7	28.4	47.5			38.0	33.3		26.4	99.7	24.5	27.8	
	Homologous gene	Escherichia coli K12 MG1655 ybjZ	Campylobacter jejuni Cj0606	Mycobacterium tuberculosis H37Rv Rv0046c			Escherichia coli K12 dps	Escherichia coli K12 mutM or fpg	Escherichia coli K12 rtcB			Homo sapiens mgmT	Cavia porcellus (Guinea pig) qor		Mycobacterium tuberculosis H37Rv Rv0191 ydeA	Corynebacterium melassecola (Corynebacterium glutamicum) ATCC 17965 malE	Bacillus subtilis gntK	Enterococcus faecium van 2	
	db Match	sp:YBJZ_ECOLI	pir:E81408	pir.F70912			sp:DPS_ECOL!	sp:FPG_ECOLI	SP.RTCB_ECOLI			SP:MGMT_HUMAN	sp:QOR_CAVPO		sp:YDEA_ECOLI	gp.AF234535_1	SP.GNTK BACSU	SD VANZ ENTFC	
	ORF (bp)	069	1977	1089	909	1485	495	813	1149	1089	573	474	1011	Ξ	1176	1176	1482	591	
	Terminal (nt)	3194514	3195210	3198500	3198582	3199202	3201260	3202712	3204100	3202979	3204728	3204731	3205222	3206756	3208024	3209454	3209705	-	
	Initial (nt)	3195203	3197186	1	3199187	3200686	1	3201900	3202952	3204067			3206232	3206646		3208279	3211186		
	SEQ NO.	6814	6815	6816	6817	6818	6819	6820	6821	6822	6823	6824	6825	6826		6828	6829		
	SEO	3314	3315	3316	3317	3318	3319	3320	3321	3322	1173	3324	3325	3326	3327	3328	2220	2220	こうこう

						Table 1 (continued)				
SEQ NO	SEQ NO	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
3332		3212588	3213931	1344	Sp. MERA STAAU	Staphylococcus aureus merA	29.9	65.6	448	mercury(II) reductase
3333			3213934	1230	sp:DADA_ECOLI	Escherichia coli K12 dadA	27.3	54.5	444	D-amino acid dehydrogenase small subunit
3334	6834	3216759	3215257	1503						
3335	6835	3217215	3216886	330						
3336	6836	3217777	3217457	321						
3337	6837	3217993	3218601	609	sp:NOX_THETH	Thermus thermophilus nox	25.8	55.2	194	NAD(P)H nitroreductase
3338	-	6838 3218777	3219700	924						
3339	6839	3221044	3222495	1452						
3340		3222633	3219778	2856	sp:SYL_BACSU	Bacillus subtilis syl	47.7	68.1	943	leucyl-tRNA synthetase
3341		3222722	3223150	429	sp:YBAN_ECOLI	Escherichia coli K12	40.4	40.4	104	hypothetical membrane protein
3342	_	3223445	3223089	357	sp:VAPI_BACNO	Dichelobacter nodosus vapl	55.8	81.4	98	virulence-associated protein
3343		3224601	3225374	774						
3344	6844		3223992	723	gp:SCC54_19	Streptomyces coelicolor SCC54.19	31.6	53.8	247	hypothetical protein
3345	6845	3225554	3224718	837	sp:HPCE_ECOLI	Escherichia coli K12 hpcE	28.5	50.3	298	bifunctional protein (homoprotocatechuate catabolism bifunctional isomerase/decarboxylase) (2- hydroxyhepta-2,4-diene-1,7-dioate isomerase and 5-carboxymethyl-2- oxo-hex-3-ene-1,7dioate decarboxylase)
3346	6846	3226687	3225563	1125	gp:AF173167_1	Pseudomonas alcaligenes xInE	34.2	64.3	339	gentisate 1,2-dioxygenase or 1- hydroxy-2-naphthoate dioxygenase
3347	6847	3227689	3226910	780	sp.KDGR_ERWCH	Pectobacterium chrysanthemi kdgR	25.3	60.7	229	bacterial regulatory protein, lacl family or pectin degradation repressor protein
3348	6848	3227724	3229079	1356	1356 sp:PCAK_PSEPU	Pseudomonas putida pcaK	27.5	8.09	454	transmembrane transport protein or 4-hydroxybenzoate transporter
ا لـ	 -						i			

						Table 1 (continued)				
SEQ	SEQ.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	identity Similarity (%)	Matched length (a.a.)	Function
2340		1220110	3230444	1326	orf 1706191A	Pseudomonas putida	28.2	49.4	476	salicylate hydroxylase
3350				1251		Homo sapiens eal2	25.4	54.4	507	proton/glutamate symporter or excitatory amino acid transporter2
3351	6851	3232596	3233105	510	pir.JC2326	Corynebacterium glutamicum AS019 ORF1	99.4	99.4	170	tryptophan-specific permease
3352	6852	3233403	3234956	1554	sp:TRPE_BRELA	Brevibacterium lactofermentum trpE	99.2	8.66	515	anthranilate synthase component I
3353	6853	3233420	3233250	171						
3354		3234956	3235579	624	TRPG_BRELA	Brevibacterium lactofermentum trpG	99.0	100.0	208	anthranilate synthase component II
3355	6855	3235602	3236645	1044	sp.TRPD_CORGL	Corynebacterium glutamicum ATCC 21850 trpD	99.4	99.4	348	anthranilate phosphoribosyltransferase
3356	6856	6856 3236641	3238062	1422	1422 Sp:TRPC_BRELA	Brevibacterium lactofermentum trpC	97.3	98.3	474	indole-3-glycerol phosphate synthase (IGPS) and N-(5'- phosphoribosyl) anthranilate isomerase(PRAI)
7367	6067	2227213	3236518	969						
3358			3239332	1251	sp.TRPB_BRELA	Brevibacterium lactofermentum trpB	97.6	97.9	417	tryptophan synthase beta chain
3359	6889	3239332	3240171	840	sp:TRPA_BRELA	Brevibacterium lactofermentum trpA	95.4	96.5	283	tryptophan synthase alpha chain
3360	6860	3241851	3240313	1539	gp:SCJ21_17	Streptomyces coelicolor A3(2) SCJ21, 17c	9'99	86.8	521	hypothetical membrane protein
3361	6861	3242688	3241879	810	sp:PTXA_ECOLI	Escherichia coli K12 ptxA	30.3	7.1.7	152	PTS system, IIA component or unknown pentitol phosphotransferase enzyme II, A component
2367	5RR7	3242854	3243759	906	SP:NOSF PSEST	Pseudomonas stutzeri	32.5	63.6	305	ABC transporter ATP-binding proteil
3363		3243759		1584		Streptomyces coelicolor A3(2) SCH10.12	25.2	57.2	547	ABC transporter

bacterial regulatory protein, tetR family

188

50.5

26.1

sp.ACRR_ECOLI Escherichia coli K12 acrR

555

3255719 3255744

6879 3256298

3378 6878 3255549

di-/tripeptide transpoter

469

71.6

34.5

Lactococcus lactis subsp. lactis

1359 SP.DTPT_LACLA

6877 | 3255182 | 3253824

3377

3376

hydroxyquinol 1,2-dioxygenase

246

62.2

31.7

Acinetobacter calcoaceticus catA

903 | sp:CATA_ACICA

6880 3257373 3256471

3380

5	Function	cytchrome b6-F complex iron-sulfur subunit (Rieske iron-sulfur protein)	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical membrane protein	hypothetical protein	bacterial regulatory protein, arsR family or methylenomycin A resistance protein	NADH oxidase or NADH-dependent flavin oxidoreductase	hypothetical protein					acetoin(diacetyl) reductase (acetoin dehydrogenase)	hypothetical protein
15	Matched length (a.a.)	305	336	328	262	102	347	226					238	58
20	Similarity (%)	63.6	64.3	74.7	54.6	79.4	64.3	69.5					52.9	84.5
	Identity (%)	32.5	33.3	43.6	34.0	45.1	33.4	31.4					26.9	53.5
Table 1 (continued)	us gene	la petC	cter brockii	12 yfeH	licolor A3(2)	licolor Plasmid	ter brockii	erevisiae					a budC	berculosis
30 Table 1	Homologous gene	Chlorobium limicola petC	Thermoanaerobacter brockii nadO	Escherichia coli K12 yfeH	Streptomyces coelicolor A3(2) SC111.36c	Streptomyces coelicolor Plasmid SCP1 mmr	Thermoanaerobacter brockii nadO	Saccharomyces cerevisiae ymyO					Klebsiella terrigena budC	Mycobacterium tuberculosis H37Rv Rv2094c
40	db Match	sp:UCRI_CHLLT	sp:NADO_THEBR	sp:YFEH_ECOLI	gp:SCI11_36	pir:A29606	sp:NADO_THEBR	sp:YMY0_YEAST					sp:BUDC_KLETE	sp:YY34_MYCTU
	ORF (bp)	450 s	1110 s	972 s	774 g	348 р	1092 s	648 s	153	192	168	321	753 s	180 s
45	Terminal (nt)	3245766	3245822	3248205	3249165	3249187	3250742	3251405	3251466	3251743	3252133	3252316	3253480	3253739
50	Initial (nt)	3245317	3246931	3247234	3248392	3249534	3249651	3250758	3251618	3251934	3252300	3252636	3252728	3253560
	SEQ NO.	6864	6865	9989	6867	6868	6989	6870	6871	6872	6873	6874	6875	6876

SEQ NO.

55

3364

3365

3366

3367

3368

3369

3370

3372 3372 3375

		:
		:
		:
		ı

_
Ö
单
⋷
≘
Ξ
ಬ
_
Ψ-
<u>•</u>
요
<u>ت</u>

						(55,500)				
SEQ NO. (DNA)	SEQ NO.	Initial (nt)	Terminal (nt)	ORF (bp)	db Match	Homologous gene	Identity (%)	Similarity (%)	Matched length (a.a.)	Function
3381	6881	3258491	3257403	1089	sp.TCBF_PSESQ	Pseudomonas sp. P51	43.0	75.5	351	maleylacetate reductase
3382	6882	3260084	3258561	1524	sp:XYLE_ECOLI	Escherichia coli K12 xylE	31.4	58.3	513	sugar transporter or D-xylose-proton symporter (D-xylose transporter)
3383	6883	3261129	3261989	861	sp:ICLR_SALTY	Salmonella typhimurium icIR	25.7	60.7	280	bacterial transcriptional regulator or acetate operon repressor
3384	6884	3262145	3263221	1077	sp:YDGJ_ECOLI	Escherichia coli K12 ydgJ	27.2	55.7	357	oxidoreductase
3385	6885	3263237	3264115	879	gsp:W61761	Listeria innocua strain 4450	25.9	58.2	270	diagnostic fragment protein sequence
3386	9889	3264142	3265146	1005	sp:MI2D_BACSU	Sinorhizobium meliloti idhA	26.5	59.6	332	myo-inositol 2-dehydrogenase
3387	6887	3265184	3266266	1083		Streptomyces griseus strl	34.1	62.4	343	dehydrogenase or myo-inositol 2- dehydrogenase or streptomycin biosynthesis protein
3388	6888	3267062	3271093	4032	pir.C70044	Bacillus subtilis yvnB	33.3	62.7	1242	phosphoesterase
3389	6889	3268557	3267913	645						
3390	0689	3269235	3268618	618						
3391	6891	3271392	3272477	1086						
3392	6892	3275231	3274488	744	sp:UNC1_CAEEL	Caenorhabditis elegans unc1	28.6	57.3	206	stomatin
3393	6893	3276570	3275602	696						
3394	6894	3281599	3276671	4929	gp:MBO18605_3	Mycobacterium bovis BCG RvD1-Rv2024c	58.4	80.2	1660	DEAD box RNA helicase family
3395	6895	3282172	3281666	507	prf:2323363AAM	Mycobacterium leprae u2266k	34.8	61.0	141	hypothetical membrane protein
3396	9689	3282742	3283101	360						
3397	6897	3282946	3282347	900	sp.THID_BACSU	Bacillus subtilis thiO	50.4	76.8	125	phosphomethylpyrimidine kinase
3398	6898	3283141	3283383	243	pir.F70041	Bacillus subtilis yvgY	46.3	70.1	67	mercuric ion-binding protein or heavy-metal-associated domain containing protein
3399	6889	3284309	3283473	837	prf.2501295A	Corynebacterium glutamicum proP	29.9	62.3	297	ectoine/proline uptake protein

-																			
	Function	iron(III) dicitrate-binding periplasmic protein precursor or iron(III) dicitrate transport system permease protein	mitochondrial respiratory function protein or zinc-binding dehydrogenase or NADPH quinone oxidoreductase			phosphomethylpyrimidine kinase		mercuric ion-binding protein or heavy-metal-associated domain containing protein	branched-chain amino acid transport	branched-chain amino acid transport	hypothetical protein	tRNA nucleotidyltransferase	mutator mutT protein		hypothetical membrane protein	hypothetical membrane protein		RNA polymerase sigma-H factor or sigma-70 factor (ECF subfamily)	thioredoxin reductase
	Matched length (a.a.)	279	324			249		29	102	212	169	471	234		858	1201		189	308
	Similarity (%)	9.09	58.0			75.5		70.1	65.7	67.0	56.2	51.8	69.2		54.3	60.1		60.9	82.5
	Identity (%)	29.4	27.2			46.2		41.8	36.3	32.1	23.7	26.8	43.6		25.8	35.7		30.2	60.4
Table 1 (continued)	Homologous gene	Escherichia coli K12 fecB	Schizosaccharomyces pombe mrf1			Bacillus subtilis thiD		Bacillus subtilis yvgY	Bacillus subtilis azID	Bacillus subtilis azID	Escherichia coli K12 yqgE	Escherichia coli K12 cca	Mycobacterium tuberculosis H37Rv Rv3908		Mycobacterium tuberculosis H37Rv Rv3909	Mycobacterium tuberculosis H37Rv Rv3910		Pseudomonas aeruginosa algU	Streptomyces clavuligerus trxB
	db Match	sp:FECB_ECOLI	sp:MRF1_SCHPO			sp:THID_BACSU		pir.F70041	sp:AZLD_BACSU	sp:AZLC_BACSU	sp:YQGE_ECOLI	sp:ccA_Ecoti	pir.E70600		pir:F70600	pir:G70600		sp:RPSH_PSEAE	sp:TRXB_STRCL
	ORF (bp)	957	1122	384	219	798	345	201	345	711	267	1320	996	273	2511	3249	723	603	951
	Terminal (nt)	3284399	3286576	3287005	3287079	3287393	3288609	3288885	3288971	3289311	3290025	3290623	3293497	3292610	3296007	3299404	3298428	3300263	3301321
	Initial (nt)	3285355	3285455	3286622	3287297	3288190	3288265	3288685	3289315	3290021	3290591	3291942	3292532	3292882	3293497	3296156	3297706	3299661	3300371
	SEQ NO (a a)	0069	6901	6902	6903	6904	6905	9069	6907	8069	6069	6910	6911	6912	6913	6914	6915	6916	6917
	SEQ NO. (DNA)	3400	3401	3402	3403	3404	3405	3406	3407	3408	3409	3410	3411	3412	3413	3414	3415	3416	3417

5		Function		thioredoxin ch2, M-type	N-acetylmuramoyl-L-alanine amidase			hypothetical protein	hypothetical protein	partitioning or sporulation protein	glucose inhibited division protein B	hypothetical membrane protein	ribonuclease P protein component	50S ribosomal protein L34			L-aspartate-alpha-decarboxylase precursor	2-isopropylmalate synthase	hypothetical protein	aspartate-semialdehyde dehydrogenase	3-dehydroquinase
		p, c							hypoth		glucos		ribonuc	50S rib					hypoth	aspart	
15		Matched length (a.a.)		119	196			212	367	272	153	313	123	47			136	616	85	344	149
20		Similarity (%)		76.5	75.4			58.5	60.5	78.0	64.7	75.4	59.4	93.6			100.0	100.0	100.0	100.0	100.0
		Identity (%)		42.0	51.0			34.4	37.6	65.0	36.0	44.7	26.8	83.0			100.0	100.0	100.0	100.0	100.0
30 Sentiment (Sentiment)	columbaca)	us gene		reinhardtii thi2	иВ			berculosis	ida ygi2	berculosis	12 gidB	berculosis	pA	ıium rpmH			glutamicum	glutamicum	glutamicum avum) ATCC	glutamicum	glutamicum
30 ald ct	וממור	Homologous gene		Chlamydomonas reinhardtii thi2	Bacillus subtilis cwlB			Mycobacterium tuberculosis H37Rv Rv3916c	Pseudomonas putida ygi2	Mycobacterium tuberculosis H37Rv parB	Escherichia coli K12 gidB	Mycobacterium tuberculosis H37Rv Rv3921c	Bacillus subtilis rnpA	Mycobacterium avium rpmH			Corynebacterium glutamicum panD	Corynebacterium glutamicum ATCC 13032 leuA	Corynebacterium glufamicum (Brevibacterium flavum) ATCC 13032 orfX	Corynebacterium glutamicum asd	Corynebacterium glutamicum ASO19 aroD
35		db Match		sp:THI2_CHLRE	sp:CWLB_BACSU			pir:D70851	sp:YGI2_PSEPU	sp:YGI1_PSEPU	sp.GIDB_ECOLI	pir.A70852	sp.RNPA_BACSU	gp:MAU19185_1			gp:AF116184_1	sp.LEU1_CORGL	sp:YLEU_CORGL	sp:DHAS_CORGL	gp:AF124518_1
40		ORF (bp)	1185	372 sp.	2	777	1041	618 pir.	1152 sp.	837 sp.	.ds 699	951 pir.	399 sp.	336 gp:	294	222	408 gp.	1848 sp:	255 sp.	1032 sp:	447 gp:
45		Terminal O	3300119 1	3301729 3	3302996 124	3301989 7	3304475 11	3302999 6	3303636 1	3304835 8	3305864 6	3306682 9	3307971 3	3308412 3	3309321 2	3308822 2	147573 4	266154 11	268814 2	271691 10	446521 4
50	1	Initial (nt)	3301303	3301358	3301755	3302765	3303435	3303616	3304787	3305671	3306532	3307632	3308369	3308747	3309028	3309043	147980	268001	269068	270660	446075
		SEQ NO. (a.a.)	6918	6919	6920	6921	6922	6923	6924	6925	9269	6927	6928	6359	6930	6931	6932	6933	6934	6935	6936
55		SEQ NO. (DNA)	3418	3419	3420	3421	3422	3423	3424	3425	3426	3427	3428	3429	3430	3431	3432	3433	3434	3435	3436

٢															
	Function	elongation factor Tu	preprotein translocase secY subuit	isocitrate dehydrogenase (oxalosuccinatedecarboxylase)	acyl-CoA carboxylase or biotin- binding protein	citrate synthase	putative binding protein or peptidyl- prolyl cis-trans isomerase	glycine betaine transporter	hypothetical membrane protein	L-lysine permease	aromatic amino acid permease	hypothetical protein	succinyl diaminopimelate desuccinylase	proline transport system	arginyl-tRNA synthetase
	Matched length (a.a.)	968	440	738	591	437	118	565	426	501	463	316	369	524	550
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13059 tuf	Corynebacterium glutamicum (Brevibacterium flavum) MJ233 secY	Corynebacterium glutamicum ATCC 13032 icd	Corynebacterium glutamicum ATCC 13032 accBC	Corynebacterium glutamicum ATCC 13032 gltA	Corynebacterium glutamicum ATCC 13032 fkbA	Corynebacterium glutamicum ATCC 13032 betP	Corynebacterium glutamicum ATCC 13032 orf2	Corynebacterium glutamicum ATCC 13032 lysl	Corynebacterium glutamicum ATCC 13032 aroP	Corynebacterium glutamicum ATCC 13032 orf3	Corynebacterium glutamicum ATCC 13032 dapE	Corynebacterium glutamicum ATCC 13032 putP	Corynebacterium glutamicum AS019 ATCC 13059 argS
	db Match	sp:EFTU_CORGL	sp.SECY_CORGL	sp:IDH_CORGL	prf.2223173A	sp.CISY_CORGL	sp:FKBP_CORGL	sp:BETP_CORGL	sp:YLI2_CORGL	sp:LYSI_CORGL	sp:AROP_CORGL	pir.S52753	prf.2106301A	gp:CGPUTP_1	sp:SYR_CORGL
	ORF (bp)	1188	1320	2214	1773	1311	354	1785	1278	1503	1389	948	1107	1572	1650
	Terminal (nt)	527563	570771	577831	718580	879148	879629	946780	1029006	1030369	1153295	1154729	1156837	1218031	1239923
	Initial (nt)	526376	569452	680044	720352	877838	879276	944996	1030283	1031871	1154683	1155676	1155731	1219602	1238274
	SEQ NO.	6937	6938	6839	6940	6941	6942	6943	6944	6945	6946	6947	6948	6949	6950
!	SEQ NO (DNA)	3437	3438	3439	3440	3441	3442	3443	3444	3445	3446	3447	3448	3449	3450

	Function	diaminopimelate (DAP) decarboxylase (meso- diaminopimelate decarboxylase)	homoserine dehydrogenase	homoserine kinase	ion channel subunit	lysine exporter protein	lysine export regulator protein	acetohydroxy acid synthase, large subunit	acetohydroxy acid synthase, small subunit	acetohydroxy acid isomeroreductase	3-isopropylmalate dehydrogenase	PTS system, phosphoenolpyruvate sugar phosphotransferase (mannose and glucose transport)	acetylglutamate kinase	ornithine carbamoyltransferase	arginine repressor
	Matched length (a.a.)	445	445	309	216	236	290	626	172	338	340	683	294	319	171
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum AS019 ATCC 13059 lysA	Corynebacterium glutamicum AS019 ATCC 13059 hom	Corynebacterium glutamicum AS019 ATCC 13059 thrB	Corynebacterium glutamicum R127 orf3	Corynebacterium glutamicum R127 lysE	Corynebacterium glutamicum R127 lysG	Corynebacterium glutamicum ATCC 13032 ilvB	Corynebacterium glutamicum ATCC 13032 ilvN	Corynebacterium glutamicum ATCC 13032 ilvC	Corynebacterium glutamicum ATCC 13032 leuB	Corynebacterium glutamicum KCTC1445 ptsM	Corynebacterium glutamicum ATCC 13032 argB	Corynebacterium glutamicum ATCC 13032 argF	Corynebacterium glutamicum ASO19 argR
	db Match	sp.DCDA_CORGL	sp:DHOM_CORGL	sp:KHSE_CORGL	gsp:W37716	sp:LYSE_CORGL	sp:LYSG_CORGL	sp:ILVB_CORGL	pir:B48648	pir:C48648	sp:LEU3_CORGL	prf.2014259A	sp:ARGB_CORGL	sp.OTCA_CORGL	gp:AF041436_1
	ORF (bp)	1335	1335	927	627	708	870	1878	516	1014	1020	2049	882	957	513
	Terminal (nt)	1241263	1243841	1244781	1328243	1328246	1329884	1340008	1340540	1341737	1354508	1425265	1467372	1469521	1470040
	Initial (nt)	1239929	1242507	1243855	1327617	1328953	1329015	1338131	1340025	1340724	1353489	6961 1423217	1466491	1468565	3464 6964 1469528
	SEQ NO. (a.a.)		6952	6953	6954	6955	9569	6957	6958	6969	0969	6961	6962	6963	6964
	SEQ NO. (DNA)	3451	3452	3453	3454	3455	3456	3457	3458	3459	3460	3461	3462	3463	3464
														_	

_															
	Function	NADH dehydrogenase	phosphoribosyl-ATP- pyrophosphohydrolase	ornithine-cyclodecarboxylase	ammonium uptake protein, high affinity	protein-export membrane protein secG	phosphoenolpyruvate carboxylase	chorismate synthase (5- enolpyruvylshikimate-3-phosphate phospholyase)	restriction endonuclease	sigma factor or RNA polymerase transcription factor	glutamate-binding protein	recA protein	dihydrodipicolinate synthase	dihydrodipicolinate reductase	L-malate dehydrogenase (acceptor)
ĺ	Matched length (a.a.)	467	87	362	452	77	919	410	632	331	295	376	301	248	200
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Table 1 (continued)	Homologous gene	Corynebacterium glutamicum ATCC 13032 ndh	Corynebacterium glutamicum ASO19 hisE	Corynebacterium glutamicum ATCC 13032 ocd	Corynebacterium glutamicum ATCC 13032 amt	Corynebacterium glutamicum ATCC 13032 secG	Corynebacterium glutamicum ATCC 13032 ppc	Corynebacterium glutamicum AS019 aroC	Corynebacterium glutamicum ATCC 13032 cgllIR	Corynebacterium glutamicum ATCC 13869 sigB	Corynebacterium glutamicum ATCC 13032 gluB	Corynebacterium glutamicum AS019 recA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapA	Corynebacterium glutamicum (Brevibacterium lactofermentum) ATCC 13869 dapB	Corynebacterium glutamicum R127 mqo
	db Match	gp:CGL238250_1	gp:AF086704_1	gp:CGL007732_4	gp:CGL007732_3	gp:CGL007732_2	prf.1509267A	gp:AF124600_1	pir:855225	prf.2204286D	sp.GLUB_CORGL	sp:RECA_CORGL	sp:DAPA_BRELA	sp:DAPB_CORGL	gp:CGA224946_1
	ORF (bp)	1401	261	1086	1356	231	2757	1230	1896	993	885	1128	903	744	1500
	Terminal (nt)	1543154	1586465	1674123	1675268	1677049	1677387	1719669	1882385	2021846	2061504	2063989	2079281	2081191	2113864
	Initial (nt)	1544554	1586725	1675208	1676623	1677279	1680143	1720898	1880490	2020854	2060620	2065116	2080183	2081934	2115363
	SEQ NO. (a.a.)	6965	9969	2969	6968	6969	6970	6971	6972	6973	6974	6975	6976	2269	6978
	SEQ NO. (DNA)	3465	3466	3467	3468	3469	3470	3471	3472	3473	3474	3475	3476	3477	3478

_																
	ction	e, uridilylyl-	y protein P-II	orter	ogenase (NADP+)			ase	e e	cine betaine			eu	ıma-synthase	uctase	
	Fun	uridilylyltransferas removing enzyme	nitrogen regulator	ammonium transp	glutamate dehydre	pyruvate kinase	glucokinase	glutamine synthet	threonine synthas	ectoine/proline/gly carrier	malate synthase	isocitrate lyase	glutamate 5-kinas	cystathionine gam	ribonucleotide red	glutaredoxin
	Matched length (a.a.)	692	112	438	447	475	323	477	481	615	739	432	369	386	148	77
	Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
	Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
continued)	ans gene	glutamicum)	glutamicum 3	glutamicum P	glutamicum A	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum	glutamicum B	glutamicum A	glutamicum 3	glutamicum	glutamicum	glutamicum -
Table 1 (Homologo	Corynebacterium ATCC 13032 gln[Corynebacterium ATCC 13032 glnE	Corynebacterium ATCC 13032 amt	Corynebacterium ATCC 17965 gdh	Corynebacterium AS019 pyk	Corynebacterium ATCC 13032 glk	Corynebacterium ATCC 13032 gln/	Corynebacterium thrC	Corynebacterium ATCC 13032 ect	Corynebacterium ATCC 13032 ace	Corynebacterium ATCC 13032 ace	Corynebacterium ATCC 17965 prol	Corynebacterium ASO19 metB	Corynebacterium ATCC 13032 nrd	Corynebacterium glutamicum ATCC 13032 nrdH
	db Match	gp:CAJ10319_4	gp:CAJ10319_3	gp:CAJ10319_2	pir.S32227	sp:KPYK_CORGL	gp:AF096280_1	prf.2322244A	sp:THRC_CORGL	prf.2501295B	pir:140715	pir:140713	sp:PROB_CORGL	gp:AF126953_1	gp:AF112535_2	gp:AF112535_1
	ORF (bp)	2076	336	1314	1341	1425	696	1431	1443	1845	2217	1296	1107	1158	444	231
	Terminal (nt)	2169666	2171751	2172154	2194742	2205668	2316582	2350259	2353600	2448328	2467925	2472035	2496670	2590312	2679684	2680419
	Initial (nt)	2171741	2172086	2173467	2196082	2207092	2317550	2348829	2355042	2450172	2470141	2470740	2497776	2591469	2680127	2680649
	SEQ NO (a.a.)	6269	6980	6981	6982	6983	6984	6985	9869	6987	6988	6869	0669	6991	6992	6993
	SEQ NO. (DNA)	3479	3480	3481	3482	3483	3484	3485	3486	3487	3488	3489	3490	3491	3492	3493
	Table 1 (continued)	SEQ Initial Terminal ORF db Match Homologous gene (%) (nt) (nt) (bp)	SEQ Initial Terminal ORF db Match (a.a.) (nt) (bp) (bp) (a.a.) (bp) (a.a.) (bp) (a.a.) (bp) (a.a.) (bp) (a.a.) (a.a.) (bp) (a.a.) (a.a.) (bp) (a.a.) (a.a.) (bp) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a.a.) (a	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Matched (%) Matched (aa) 6979 2171741 2169666 2076 gp:CAJ10319_4 Corynebacterium glutamicum glutamicum 100.0 100.0 692 6980 2172086 2171751 336 gp:CAJ10319_3 ATCC 13032 glnB 100.0 100.0 112	SEQ (nt) (nt) Terminal (nt) Terminal (nt) Ab Match Homologous gene (mt) Identity (mt) Matched (mt) 6979 2171741 2169666 2076 gp:CAJ10319_4 Corynebacterium glutamicum 100.0 100.0 692 6980 2172086 2171751 336 gp:CAJ10319_3 Corynebacterium glutamicum 100.0 100.0 112 6981 2173467 2172154 1314 gp:CAJ10319_2 ATCC 13032 glnB 100.0 100.0 438	SEQ (nt) Initial (nt) Terminal (nt) ORF (bp) db Match (bp) Homologous gene (%) Identity (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) Matched (%) <td>SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (36) Identity (36) Similarity (36) Matched (3a) 6979 2171741 2169666 2076 gp:CAJ10319_4 Corynebacterium glutamicum (36) 100.0 100.0 692 6980 2171751 336 gp:CAJ10319_3 ATCC 13032 glnD 100.0 100.0 112 6981 2173467 2172154 1314 gp:CAJ10319_2 ATCC 13032 amtP 100.0 100.0 438 6982 2196082 2194742 1341 pir:S32227 Corynebacterium glutamicum glutamicum 100.0 100.0 400.0 475 6983 2207092 2205668 1425 sp:KPYK_CORGL Corynebacterium glutamicum 100.0 100.0 475</td> <td> SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%</td> <td> Table 1 (continued) CRF Lab Match Homologous gene Identity Similarity Hength (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (n</td> <td> Table 1 (continued) Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%</td> <td> Table 1 (continued) Terminal CRF db Match Homologous gene (%) (%) (%) (%) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (1</td> <td> Table 1 (continued) CRF Ab Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (</td> <td> Table 1 (continued) SEQ Initial (nt) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp)</td> <td> Table 1 (continued) SEG Intital Terminal ORF ab Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)</td> <td> SEG</td> <td> SEG</td>	SEQ Initial (nt) Terminal (nt) ORF (bp) db Match Homologous gene (36) Identity (36) Similarity (36) Matched (3a) 6979 2171741 2169666 2076 gp:CAJ10319_4 Corynebacterium glutamicum (36) 100.0 100.0 692 6980 2171751 336 gp:CAJ10319_3 ATCC 13032 glnD 100.0 100.0 112 6981 2173467 2172154 1314 gp:CAJ10319_2 ATCC 13032 amtP 100.0 100.0 438 6982 2196082 2194742 1341 pir:S32227 Corynebacterium glutamicum glutamicum 100.0 100.0 400.0 475 6983 2207092 2205668 1425 sp:KPYK_CORGL Corynebacterium glutamicum 100.0 100.0 475	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	Table 1 (continued) CRF Lab Match Homologous gene Identity Similarity Hength (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (n	Table 1 (continued) Terminal ORF db Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%	Table 1 (continued) Terminal CRF db Match Homologous gene (%) (%) (%) (%) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (10 cm) (1	Table 1 (continued) CRF Ab Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (Table 1 (continued) SEQ Initial (nt) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp) (pp)	Table 1 (continued) SEG Intital Terminal ORF ab Match Homologous gene (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)	SEG	SEG

Function	ate D.	l forming		a)	٥٢	gulatory		_
_	meso-diaminopimelate D- dehydrogenase	porin or cell wall channel forming protein	acetate kinase	phosphate acetyltransferase	multidrug resistance protein or macrolide-efflux pump or drug:proton antiporter	ATP-dependent protease regulatory subunit	prephenate dehydratase	ectoine/proline uptake protein
Matched length (a.a.)	320	45	397	329	459	852	315	504
Similarity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Identity (%)	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0
Homologous gene	Corynebacterium glutamicum KY10755 ddh	Corynebacterium glutamicum MH20-22B porA	Corynebacterium glutamicum ATCC 13032 ackA	Corynebacterium glutamicum ATCC 13032 pta	Corynebacterium glutamicum ATCC 13032 cmr	Corynebacterium glutamicum ATCC 13032 clpB	Corynebacterium glutamicum pheA	Corynebacterium glutamicum ATCC 13032 proP
db Match	sp:DDH_CORGL	gp.CGL238703_1	sp:ACKA_CORGL	prf.2516394A	prf.2309322A	sp:CLPB_CORGL	prf. 1210266A	prf.2501295A
ORF (bp)	960	135	1191	987	1377	2556	945	1512
Terminal (nt)	2786756	2887944	2935315	2936508	2962718	2963606	3098578	3272563
Initial (nt)	2787715	2888078	2936505	2937494	2961342	2966161	3099522	7001 3274074
		6995	9669	7669	8669	6669	7000	7001
SEQ NO DNA)	3494	3495	3496	3497	3498	3499	3500	3501
	SEQ Initial Terminal ORF db Match Homologous gene (%) (%) (a.a.)	SEQ (nt) Initial (nt) Terminal (bp) db Match Homologous gene (%) Identity (%) Similarity (matched) Matched (matched) (a.a.) (nt) (nt) (hp) (pp) (corynebacterium glutamicum) 100.0 100.0 320	SEQ (a.a.) Initial (nt) (nt) Terminal (nt) QRF (bp) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (match (a.a.)) 6994 2787715 2786756 960 sp:DDH_CORGL Corynebacterium glutamicum (matched) 100.0 100.0 320 6995 2887944 135 gp:CGL238703_1 MH20-22B porA 100.0 100.0 45	SEQ (nt) (nt) (nt) Terminal (nt) (nt) QRF (nt) (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%) 6994 2787715 2786756 960 sp:DDH_CORGL Corynebacterium glutamicum (no.0) 100.0 100.0 320 6995 2988078 2887944 135 gp:CGL238703_1 MH20-22B porA (no.0) 100.0 100.0 45 6996 2936505 2935315 1191 sp:ACKA_CORGL ATCC 13032 ackA 100.0 100.0 397	SEQ Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)	SEQ Initial (nt) Terminal (nt) ORF (nt) db Match Homologous gene (%) Identity (%) Similarity (%) Matched (%)	SEQ (nt) (nt) (nt) (nt) (nt) (nt) (nt) (NE) (nt) (nt) (nt) (nt) (NE) (nt) (nt) (nt) (nt) (NE) (nt) (nt) (nt) (nt) (nt) (NE) (nt) (nt) (nt) (nt) (nt) (NE) (nt) (nt) (nt) (nt) (nt) (nt) (NE) (nt) (nt) (nt) (nt) (nt) (nt) (NE) (nt) (nt) (nt) (nt) (nt) (nt) (nt) (nt	SEQ NO. (nt) Initial (nt) Terminal (nt) ORF (pp) db Match db Match Homologous gene Homologous gene (%) Identity (%) Similarity (%) Matched (%) xample 2

10

30

35

45

Determination of effective mutation site

(1) Identification of mutation site based on the comparison of the gine nucleotide sequence of lysine-producing B-6 strain with that of wild type strain ATCC 13032

[0374] Corynebacterium glutamicum B-6, which is resistant to S-(2-aminoethyl)cysteine (AEC), rifampicin, streptomycin and 6-azauracil, is a lysine-producing mutant having been mutated and bred by subjecting the wild type ATCC 13032 strain to multiple rounds of random mutagenesis with a mutagen, N-methyl-N' -nitro-N-nitrosoguanidine (NTG) and screening (Appl. Microbiol. Biotechnol., 32: 269-273 (1989)). First, the nucleotide sequences of genes derived from the B-6 strain and considered to relate to the lysine production were determined by a method similar to the above. The genes relating to the lysine production include lysE and lysG which are lysine-excreting genes; ddh, dapA, hom and IysC (encoding diaminopimelate dehydrogenase, dihydropicolinate synthase, homoserine dehydrogenase and aspartokinase, respectively) which are lysine-biosynthetic genes; and pyc and zwf (encoding pyruvate carboxylase and glucose-6-phosphate dehydrogenase, respectively) which are glucose-metabolizing genes. The nucleotide sequences of the genes derived from the production strain were compared with the corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed. As a result, mutation points wer observed in many genes. For example, no mutation site was observed in IysE, IysG, ddh, dapA, and the like, whereas amino acid replacement mutations were found in hom, lysC, pyc, zwf, and the like. Among these mutation points, those which are considered to contribute to the production were extracted on the basis of known biochemical or genetic information. Among the mutation points thus extracted, a mutation, Val59Ala, in hom and a mutation, Pro458Ser, in pyc were evaluated whether or not the mutations were effective according to the following method.

(2) Evaluation of mutation, Val59Ala, in hom and mutation, Pro458Ser, in pyc

[0375] It is known that a mutation in hom inducing requirement or partial requirement for homoserine imparts lysine productivity to a wild type strain (*Amino Acid Fermentation*, ed. by Hiroshi Aida *et al.*, Japan Scientific Societies Press). However, the relationship between the mutation, Val59Ala, in *hom* and lysine production is not known. It can be examined whether or not the mutation, Val59Ala, in *hom* is an effective mutation by introducing the mutation to the wild type strain and examining the lysine productivity of the resulting strain. On the other hand, it can be examined whether or not the mutation, Pro458Ser, in *pyc* is effective by introducing this mutation into a lysine-producing strain which has a deregulated lysine-bioxynthetic pathway and is free from the *pyc* mutation, and comparing the lysine productivity of the resulting strain with the parent strain. As such a lysine-producing bacterium, No. 58 strain (FERM BP-7134) was selected (hereinafter referred to the "lysine-producing No. 58 strain" or the "No. 58 strain"). Based on the above, it was determined that the mutation, Val59Ala, in *hom* and the mutation, Pro458Ser, in *pyc* were introduced into the wild type strain of *Corynebacterium glutamicum* ATCC 13032 (hereinafter referred to as the "wild type ATCC 13032 strain" or the "ATCC 13032 strain") and the lysine-producing No. 58 strain, respectively, using the gene replacement method. A plasmid vector pCES30 for the gene replacement for the introduction was constructed by the following method.

[0376] A plasmid vector pCE53 having a kanamycin-resistant gene and being capable of autonomously replicating in Coryneform bacteria (*Mol. Gen. Genet., 196*: 175-178 (1984)) and a plasmid pMOB3 (ATCC 77282) containing a levansucrase gene (*sacB*) of *Bacillus subtilis* (*Molecular Microbiology, 6*: 1195-1204 (1992)) were each digested with *Pst*l. Then, after agarose gel electrophoresis, a pCE53 fragment and a 2.6 kb DNA fragment containing *sacB* were each extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The pCE53 fragment and the 2.6 kb DNA fragment were ligated using Ligation Kit ver. 2 (manufactured by Takara Shuzo), introduced into the ATCC 13032 strain by the electroporation method (*FEMS Microbiology Letters*, 65: 299 (1989)), and cultured on BYG agar medium (medium prepared by adding 10 g of glucose, 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH to 7.2) containing 25 μg/ml kanamycin at 30°C for 2 days to obtain a transformant acquiring kanamycin-resistance. As a result of digestion analysis with restriction enzymes, it was confirmed that a plasmid extracted from the resulting transformant by the alkali SDS method had a structure in which the 2.6 kb DNA fragment had been inserted into the *Pst*l site of pCE53. This plasmid was named pCES30.

[0377] Next, two genes having a mutation point, *hom* and *pyc*, were amplified by PCR, and inserted into pCES30 according to the TA cloning method (Bio Experiment Illustrated vol. 3, published by Shujunsha). Specifically, pCES30 was digested with *Bam*HI (manufactured by Takara Shuzo), subjected to an agarose gel electrophoresis, and extracted and purified using GENECLEAN Kit (manufactured by BIO 101). The both ends of the resulting pCES30 fragment were blunted with DNA Blunting Kit (manufactured by Takara Shuzo) according to the attached protocol. The blunt-ended pCES30 fragment was concentrated by extraction with phenol/chloroform and precipitation with ethanol, and allowed

to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dTTP at 70°C for 2 hours so that a nucleotide, thymine (T), was added to the 3'-end to prepare a T vector of pCES30.

[0378] Separately, chromosomal DNA was prepar d from the lysine-producing B-6 strain according to the method of Saito et al. (*Biochem. Biophys. Acta, 72*: 619 (1963)). Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymelase (manufactured by Stratagene). In the mutated *hom* gene, the DNAs having the nucleotide sequenc s represent d by SEQ ID NOS:7002 and 7003 w re used as the primer set. In the mutated *pyc* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENE-GLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

10

15

25

30

35

40

50

55

[0379] The above pCES30 T vector fragment and the mutated *hom* gene (1.7 kb) or mutated *pyc* gene (3.6 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 μg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.7 kb or 3.6 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pChom59 and pCpyc458.

[0380] The introduction of the mutations to the wild type ATCC 13032 strain and the lysine-producing No. 58 strain according to the gene replacement method was carried out according to the following method. Specifically, pChom59 and pCpyc458 were introduced to the ATCC 13032 strain and the No. 58 strain, respectively, and strains in which the plasmid is integrated into the chromosomal DNA by homologous recombination were selected using the method of lkeda et al. (Microbiology 144: 1863 (1998)). Then, the stains in which the second homologous recombination was carried out were selected by a selection method, making use of the fact that the Bacillus subtilis levansucrase encoded by pCES30 produced a suicidal substance (J. of Bacteriol., 174: 5462 (1992)). Among the selected strains, strains in which the wild type hom and pyc genes possessed by the ATCC 13032 strain and the No. 58 strain were replaced with the mutated hom and pyc genes, respectively, were isolated. The method is specifically explained below.

[0381] One strain was selected from the transformants containing the plasmid, pChom59 or pCpyc458, and the selected strain was cultured in BYG medium containing 20 µg/ml kanamycin, and pCG11 (Japanese Published Examined Patent Application No. 91827/94) was introduced thereinto by the electroporation method. pCG11 is a plasmid vector having a spectinomycin-resistant gene and a replication origin which is the same as pCE53. After introduction of the pCGII, the strain was cultured on BYG agar medium containing 20 µg/ml kanamycin and 100 µg/ml spectinomycin at 30°C for 2 days to obtain both the kanamycin- and spectinomycin-resistant transformant. The chromosome of one strain of these transformants was examined by the Southern blotting hybridization according to the method reported by Ikeda *et al.* (*Microbiology, 144*: 1863 (1998)). As a result, it was confirmed that pChom59 or pCpyc458 had been integrated into the chromosome by the homologous recombination of the Cambell type. In such a strain, the wild type and mutated *hom* or *pyc* genes are present closely on the chromosome, and the second homologous recombination is liable to arise therebetween.

[0382] Each of these transformants (having been recombined once) was spread on Suc agar medium (medium prepared by adding 100 g of sucrose, 7 g of meat extract, 10 g of peptone, 3 g of sodium chloride, 5 g of yeast extract (manufactured by Difco), and 18 g of Bactoagar (manufactured by Difco) to 1 liter of water, and adjusting its pH 7.2) and cultured at 30°C for a day. Then the colonies thus growing were selected in each case. Since a strain in which the sacB gene is present converts sucrose into a suicide substrate, it cannot grow in this medium (J. Bacteriol., 174: 5462 (1992)). On the other hand, a strain in which the sacB gene was deleted due to the second homologous recombination between the wild type and the mutated hom or pyc genes positioned closely to each other forms no suicide substrate and, therefore, can grow in this medium. In the homologous recombination, either the wild type gene or the mutated gene is deleted together with the sacB gene. When the wild type is deleted together with the sacB gene, the gene replacement into the mutated type arises.

[0383] Chromosomal DNA of each the thus obtained second recombinants was prepared by the above method of Saito *et al.* PCR was carried out using Pfu turbo DNA polymerase (manufactured by Stratagene) and the attached buffer. In the *hom* gene, DNAs having the nucleotide sequences represented by SEQ ID NOS:7002 and 7003 were used as the primer set. Also, in the *pyc* gene was used, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 were used as the primer set. The nucleotide sequences of the PCR products were determined by the conventional method so that it was judged whether the *hom* or *pyc* gene of the second recombinant was a wild type or a mutant. As a result, the second recombinant which were called HD-1 and No. 58pyc were target strains having the mutated *hom* gene and *pyc* gene, respectively.

[0384] The HD-1 strain (strain obtain d by incorporating the mutation, Val59Ala, in the *hom* gene into the ATCC 13032 strain) and the No. 58pyc strain (strain obtained by incorporating the mutation, Pro458Ser, in the *pyc* gene into the lysine-producing No. 58 strain) were subjected to a culture test in a 5 I jar fermenter by using the ATCC 13032 strain and the lysine-producing No. 58 strain respectively as a control. Thus lysine production was examined.

[0385] After culturing on BYG agar medium at 30°C for 24 hours, each strain was inoculated into 250 ml of a seed medium (medium prepared by adding 50 g of sucrose, 40 g of corn steep liquor, 8.3 g of ammonium sulfate, 1 g of urea, 2 g of potassium dihydrogenphosphate, 0.83 g of magnesium sulfate heptahydrate, 10 mg of iron sulfate h ptahydrate, 1 mg of copper sulfate pentahydrate, 10 mg of zinc sulfate heptahydrate, 10 mg of β -alanine, 5 mg of nicotinic acid, 1.5 mg of thiamin hydrochloride, and 0.5 mg of biotin to 1 liter of water, and adjusting its pH to 7.2, then to which 30 g of calcium carbonate had been added) contained in a 2 1 buffle-attached Erlenmeyer flask and cultured therein at 30°C for 12 to 16 hours. A total amount of the seed culturing medium was inoculated into 1,400 ml of a main culture medium (medium prepared by adding 60 g of glucose, 20 g of corn steep liquor, 25 g of ammonium chloride, 2.5 g of potassium dihydrogenphosphate, 0.75 g of magnesium sulfate heptahydrate, 50 mg of iron sulfate heptahydrate, 13 mg of manganese sulfate pentahydrate, 50 mg of calcium chloride, 6.3 mg of copper sulfate pentahydrate, 1.3 mg of zinc sulfate heptahydrate, 5 mg of nickel chloride hexahydrate, 1.3 mg of cobalt chloride hexahydrate, 1.3 mg of ammonium molybdenate tetrahydrate, 14 mg of nicotinic acid, 23 mg of β-alanine, 7 mg of thiamin hydrochloride, and 0.42 mg of biotin to 1 liter of water) contained in a 5 1 jar fermenter and cultured therein at 32°C, 1 vvm and 800 rpm while controlling the pH to 7.0 with aqueous ammonia. When glucose in the medium had been consumed, a glucose feeding solution (medium prepared by adding 400 g glucose and 45 g of ammonium chloride to 1 liter of water) was continuously added. The addition of feeding solution was carried out at a controlled speed so as to maintain the dissolved oxygen concentration within a range of 0.5 to 3 ppm. After culturing for 29 hours, the culture was terminated. The cells were separated from the culture medium by centrifugation and then L-lysine hydrochloride in the supernatant was quantified by high performance liquid chromatography (HPLC). The results are shown in Table 2 below.

Table 2

Strain	L-Lysine hydrochloride yield (g/l)
ATCC 13032	0
HD-1	8
No. 58	45
No. 58pyc	51

[0386] As is apparent from the results shown in Table 2, the lysine productivity was improved by introducing the mutation, Val59Ala, in the *hom* gene or the mutation, Pro458Ser, in the pyc gene. Accordingly, it was found that the mutations are both effective mutations relating to the production of lysine. Strain, AHP-3, in which the mutation, Val59Ala, in the *hom* gene and the mutation, Pro458Ser, in the *pyc* gene have been introduced into the wild type ATCC 13032 strain together with the mutation, Thr331lle in the *lysC* gene has been deposited on December 5, 2000, in National Institute of Bioscience and Human Technology, Agency of Industrial Science and Technology (Higashi 1-1-3, Tsukuba-shi, Ibaraki, Japan) as FERM BP-7382.

Example 3

10

15

20

25

30

35

50

55

⁴⁵ Reconstruction of lysine-producing strain based on genome information

[0387] The lysine-producing mutant B-6 strain (*Appl. Microbiol. Biotechnol., 32*: 269-273 (1989)), which has been constructed by multiple round random mutagenesis with NTG and screening from the wild type ATCC 13032 strain, produces a remarkably large amount of lysine hydrochloride when cultured in a jar at 32°C using glucose as a carbon source. However, since the fermentation period is long, the production rate is less than 2.1 g/l/h. Breeding to reconstitute only effective mutations relating to the production of lysine among the estimated at least 300 mutations introduced into the B-6 strain in the wild type ATCC 13032 strain was performed.

(1) Identification of mutation point and effective mutation by comparing the gene nucleotide sequence of the B-6 strain with that of the ATCC 13032 strain

[0388] As described above, the nucleotide sequences of genes derived from this B-6 strain were compared with the

corresponding nucleotide sequences of the ATCC 13032 strain genome represented by SEQ ID NOS:1 to 3501 and analyzed to identify many mutation points accumulated in the chromosome of the B-6 strain. Among these, a mutation, Val591Ala, in *hom*, a mutation, Thr311lle, in *lysC*, a mutation, Pro458Ser, in *pyc* and a mutation, Ala213Thr, in *zwf* were specified as effective mutations relating to the production of lysine. Breeding to reconstitute the 4 mutations in the wild type strain and for constructing of an industrially important lysine-producing strain was carried out according to the method shown below.

(2) Construction of plasmid for gene replacem in having mutated gene

5

10

15

20

25

30

40

45

50

[0389] The plasmid for gene replacement, pChom59, having the mutated *hom* gene and the plasmid for gene replacement, pCpyc458, having the mutated *pyc* gene were prepared in the above Example 2(2). Plasmids for gene replacement having the mutated *lysC* and *zwf* were produced as described below.

[0390] The *lysC* and *zwf* having mutation points were amplified by PCR, and inserted into a plasmid for gene replacement, pCES30, according to the TA cloning method described in Example 2(2) (Bio Experiment Illustrated, Vol. 3). [0391] Separately, chromosomal DNA was prepared from the lysine-producing B-6 strain according to the above method of Saito *et al.* Using the chromosomal DNA as a template, PCR was carried out with Pfu turbo DNA polymerase (manufactured by Stratagene). In the mutated *lysC* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 were used as the primer set. In the mutated *zwf* gene, the DNAs having the nucleotide sequences represented by SEQ ID NOS:7008 and 7009 as the primer set. The resulting PCR product was subjected to agarose gel electrophoresis, and extracted and purified using GENEGLEAN Kit (manufactured by BIO 101). Then, the PCR product was allowed to react in the presence of Taq DNA polymerase (manufactured by Roche Diagnostics) and dATP at 72°C for 10 minutes so that a nucleotide, adenine (A), was added to the 3'-end.

[0392] The above pCES30 T vector fragment and the mutated *lysC* gene (1.5 kb) or mutated *zwf* gene (2.3 kb) to which the nucleotide A had been added of the PCR product were concentrated by extraction with phenol/chloroform and precipitation with ethanol, and then ligated using Ligation Kit ver. 2. The ligation products were introduced into the ATCC 13032 strain according to the electroporation method, and cultured on BYG agar medium containing 25 μg/ml kanamycin at 30°C for 2 days to obtain kanamycin-resistant transformants. Each of the resulting transformants was cultured overnight in BYG liquid medium containing 25 μg/ml kanamycin, and a plasmid was extracted from the culturing solution medium according to the alkali SDS method. As a result of digestion analysis using restriction enzymes, it was confirmed that the plasmid had a structure in which the 1.5 kb or 2.3 kb DNA fragment had been inserted into pCES30. The plasmids thus constructed were named respectively pClysC311 and pCzwf213.

(3) Introduction of mutation, Thr311lle, in IysC into one point mutant HD-1

[0393] Since the one mutation point mutant HD-1 in which the mutation, Val59Ala, in hom was introduced into the wild type ATCC 13032 strain had been obtained in Example 2(2), the mutation, Thr311lle, in lysC was introduced into the HD-1 strain using pClysC311 produced in the above (2) according to the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7006 and 7007 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-2 was a two point mutant having the mutated lysC gene in addition to the mutated hom gene.

(4) Introduction of mutation, Pro458Ser, in pyc into two point mutant AHD-2

[0394] The mutation, Pro458Ser, in *pyc* was introduced into the AHD-2 strain using the pCpyc458 produced in Example 2(2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS:7004 and 7005 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR product was determined in the usual manner, it was confirmed that the strain which was named AHD-3 was a three point mutant having the mutated *pyc* gene in addition to the mutated *hom* gene and *lysC* gene.

(5) Introduction of mutation, Ala213Thr, in zwf into three point mutant AHP-3

[0395] The mutation, Ala213Thr, in zwf was introduced into the AHP-3 strain using the pCzwf458 produced in the above (2) by the gene replacement method described in Example 2(2). PCR was carried out using chromosomal DNA of the resulting strain and, as the primer set, DNAs having the nucleotide sequences represented by SEQ ID NOS: 7008 and 7009 in the same manner as in Example 2(2). As a result of the fact that the nucleotide sequence of the PCR

product was determined in the usual manner, it was confirmed that the strain which was named APZ-4 was a four point mutant having the mutated zwf gene in addition to the mutated hom gene, lysC gene and pyc gene.

(6) Lysine production test on HD-1, AHD-2, AHP-3 and APZ-4 strains

[0396] The HD-1, AHD-2, AHP-3 and APZ-4 strains obtained above were subjected to a culture test in a 5 l jar fermenter in accordance with the method of Example 2(3).

[0397] Table 3 shows the results.

5

10

15

20

25

30

35

40

45

50

55

Table 3

Strain	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
HD-1	8	0.3
AHD-2	73	2.5
AHP-3	80	2.8
APZ-4	86	3.0

[0398] Since the lysine-producing mutant B-6 strain which has been bred based on the random mutation and selection shows a productivity of less than 2.1 g/l/h, the APZ-4 strain showing a high productivity of 3.0 g/l/h is useful in industry.

(7) Lysine fermentation by APZ-4 strain at high temperature

[0399] The APZ-4 strain, which had been reconstructed by introducing 4 effective mutations into the wild type strain, was subjected to the culturing test in a 5 l jar fermenter in the same manner as in Example 2(3), except that the culturing temperature was changed to 40°C.

[0400] The results are shown in Table 4.

Table 4

	Temperature (°C)	L-Lysine hydrochloride (g/l)	Productivity (g/l/h)
ļ	32	86	3.0
	40	95	3.3

[0401] As is apparent from the results shown in Table 4, the lysine hydrochloride titer and productivity in culturing at a high temperature of 40°C comparable to those at 32°C were obtained. In the mutated and bred lysine-producing B-6 strain constructed by repeating random mutation and selection, the growth and the lysine productivity are lowered at temperatures exceeding 34°C so that lysine fermentation cannot be carried out, whereas lysine fermentation can be carried out using the APZ-4 strain at a high temperature of 40°C so that the load of cooling is greatly reduced and it is industrially useful. The lysine fermentation at high temperatures can be achieved by reflecting the high temperature adaptability inherently possessed by the wild type strain on the APZ-4 strain.

[0402] As demonstrated in the reconstruction of the lysine-producing strain, the present invention provides a novel breeding method effective for eliminating the problems in the conventional mutants and acquiring industrially advantageous strains. This methodology which reconstitutes the production strain by reconstituting the effective mutation is an approach which is efficiently carried out using the nucleotide sequence information of the genome disclosed in the present invention, and its effectiveness was found for the first time in the present invention.

Example 4

Production of DNA microarray and use thereof

[0403] A DNA microarray was produced based on the nucleotide sequence information of the ORF deduced from the full nucleotide sequences of *Corynebacterium glutamicum* ATCC 13032 using software, and genes of which expression is fluctuated depending on the carbon source during culturing were searched.

(1) Production of DNA microarray

[0404] Chromosomal DNA was prepared from Corynebacterium glutamicum ATCC 13032 by the method of Saito et

al. (Biochem. Biophys. Acta, 72: 619 (1963)). Based on 24 genes having the nucleotide sequences represented by SEQ ID NOS:207, 3433, 281, 3435, 3439, 765, 3445, 1226, 1229, 3448, 3451, 3453, 3455, 1743, 3470, 2132, 3476, 3477, 3485, 3488, 3489, 3494, 3496, and 3497 from the ORFs shown in Table 1 deduced from the full genome nucleotide sequence of Corynebacterium glutamicum ATCC 13032 using software and the nucleotide sequence of rabbit globin gene (GenBank Accession No. V00882) used as an internal standard, oligo DNA primers for PCR amplification represented by SEQ ID NOS:7010 to 7059 targeting the nucleotide sequences of the genes were synthesized in a usual manner.

[0405] As the oligo DNA primers used for the PCR,

10

15

20

25

30

35

45

50

55

[0406] DNAs having the nucleotide sequence represented by SEQ ID NOS:7010 and 7011 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:207,

[0407] DNAs having the nucleotide sequence represented by SEQ ID NOS:7012 and 7013 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3433,

[0408] DNAs having the nucleotide sequence represented by SEQ ID NOS:7014 and 7015 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:281,

[0409] DNAs having the nucleotide sequence represented by SEQ ID NOS:7016 and 7017 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3435,

[0410] DNAs having the nucleotide sequence represented by SEQ ID NOS:7018 and 7019 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3439,

[0411] DNAs having the nucleotide sequence represented by SEQ ID NOS:7020 and 7021 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:765,

[0412] DNAs having the nucleotide sequence represented by SEQ ID NOS:7022 and 7023 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3445,

[0413] DNAs having the nucleotide sequence represented by SEQ ID NOS:7024 and 7025 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1226,

[0414] DNAs having the nucleotide sequence represented by SEQ ID NOS:7026 and 7027 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1229,

[0415] DNAs having the nucleotide sequence represented by SEQ ID NOS:7028 and 7029 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3448,

[0416] DNAs having the nucleotide sequence represented by SEQ ID NOS:7030 and 7031 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3451,

[0417] DNAs having the nucleotide sequence represented by SEQ ID NOS:7032 and 7033 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3453,

[0418] DNAs having the nucleotide sequence represented by SEQ ID NOS:7034 and 7035 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3455,

[0419] DNAs having the nucleotide sequence represented by SEQ ID NOS:7036 and 7037 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:1743,

[0420] DNAs having the nucleotide sequence represented by SEQ ID NOS:7038 and 7039 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3470,

[0421] DNAs having the nucleotide sequence represented by SEQ ID NOS:7040 and 7041 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:2132,

[0422] DNAs having the nucleotide sequence represented by SEQ ID NOS:7042 and 7043 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3476,

[0423] DNAs having the nucleotide sequence represented by SEQ ID NOS:7044 and 7045 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3477,

[0424] DNAs having the nucleotide sequence represented by SEQ ID NOS:7046 and 7047 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3485,

[0425] DNAs having the nucleotide sequence represented by SEQ ID NOS:7048 and 7049 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3488,

[0426] DNAs having the nucleotide sequence represented by SEQ ID NOS:7050 and 7051 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3489,

[0427] DNAs having the nucleotide sequence represented by SEQ ID NOS:7052 and 7053 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3494,

[0428] DNAs having the nucleotide sequence represented by SEQ ID NOS:7054 and 7055 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3496,

[0429] DNAs having the nucleotide sequence represented by SEQ ID NOS:7056 and 7057 were used for the amplification of the DNA having the nucleotide sequence represented by SEQ ID NO:3497, and

[0430] DNAs having the nucleotide sequence represented by SEQ ID NOS:7058 and 7059 were used for the amplification of the DNA having the nucleotide sequence of the rabbit globin gene,

[0431] The PCR was carried for 30 cycles with each cycle consisting of 15 seconds at 95°C and 3 minutes at 68°C using a thermal cycler (GeneAmp PCR system 9600, manufactured by Perkin Elmer), TaKaRa EX-Taq (manufactured by Takara Shuzo), 100 ng of the chromosomal DNA and the buff r attached to the TaKaRa Ex-Taq reagent. In the case of the rabbit globin gene, a single-stranded cDNA which had been synthesized from rabbit globin mRNA (manufactured by Life Technologies) according to the manufacture's instructions using a r vers transcriptase RAV-2 (manufactured by Takara Shuzo). The PCR product of each gene thus amplified was subjected to agarose gel electrophoresis and extracted and purified using QlAquick Gel Extraction Kit (manufactured by QlAGEN). The purified PCR product was concentrated by precipitating it with ethanol and adjusted to a concentration of 200 ng/μl. Each PCR product was spotted on a slide glass plate (manufactured by Matsunami Glass) having MAS coating in 2 runs using GTMASS SYSTEM (manufactured by Nippon Laser & Electronics Lab.) according to the manufacture's instructions.

(2) Synthesis of fluorescence labeled cDNA

10

15

20

25

30

35

40

45

50

55

[0432] The ATCC 13032 strain was spread on BY agar medium (medium prepared by adding 20 g of peptone (manufactured by Kyokuto Pharmaceutical), 5 g of yeast extract (manufactured by Difco), and 16 g of Bactoagar (manufactured by Difco) to in 1 liter of water and adjusting its pH to 7.2) and cultured at 30°C for 2 days. Then, the cultured strain was further inoculated into 5 ml of BY liquid medium and cultured at 30°C overnight. Then, the cultured strain was further inoculated into 30 ml of a minimum medium (medium prepared by adding 5 g of ammonium sulfate, 5 g of urea, 0.5 g of monopotassium dihydrogenphosphate, 0.5 g of dipotassium monohydrogenphosphate, 20.9 g of morpholinopropanesulfonic acid, 0.25 g of magnesium sulfate heptahydrate, 10 mg of calcium chloride dihydrate, 10 mg of manganese sulfate monohydrate, 10 mg of ferrous sulfate heptahydrate, 1 mg of zinc sulfate heptahydrate, 0.2 mg copper sulfate, and 0.2 mg biotin to 1 liter of water, and adjusting its pH to 6.5) containing 110 mmol/l glucose or 200 mmol/l ammonium acetate, and cultured in an Erlenmyer flask at 30° to give 1.0 of absorbance at 660 nm. After the cells were prepared by centrifuging at 4°C and 5,000 rpm for 10 minutes, total RNA was prepared from the resulting cells according to the method of Bormann et al. (Molecular Microbiology, 6: 317-326 (1992)). To avoid contamination with DNA, the RNA was treated with Dnasel (manufactured by Takara Shuzo) at 37°C for 30 minutes and then further purified using Qiagen RNeasy MiniKit (manufactured by QIAGEN) according to the manufacture's instructions. To 30 μg of the resulting total RNA, 0.6 μl of rabbit globin mRNA (50 ng/μl, manufactured by Life Technologies) and 1 μl of a random 6 mer primer (500 ng/µl, manufactured by Takara Shuzo) were added for denaturing at 65°C for 10 minutes, followed by quenching on ice. To the resulting solution, 6 µl of a buffer attached to Superscript II (manufactured by Lifetechnologies), 3 μl of 0.1 mol/l DTT, 1.5 μl of dNTPs (25 mmol/l dATP, 25 mmol/l dCTP, 25 mmol/l dGTP, 10 mmol/ I dTTP), 1.5 μl of Cy5-dUTP or Cy3-dUTP (manufactured by NEN) and 2 μl of Superscript II were added, and allowed to stand at 25°C for 10 minutes and then at 42°C for 110 minutes. The RNA extracted from the cells using glucose as the carbon source and the RNA extracted from the cells using ammonium acetate were labeled with Cy5-dUTP and Cy3-dUTP, respectively. After the fluorescence labeling reaction, the RNA was digested by adding 1.5 µl of 1 mol/l sodium hydroxide-20 mmol/l EDTA solution and 3.0 µl of 10% SDS solution, and allowed to stand at 65°C for 10 minutes. The two cDNA solutions after the labeling were mixed and purified using Qiagen PCR purification Kit (manufactured by QIAGEN) according to the manufacture's instructions to give a volume of 10 µl.

(3) Hybridization

[0433] UltraHyb (110 μ l) (manufactured by Ambion) and the fluorescence-labeled cDNA solution (10 μ l) were mixed and subjected to hybridization and the subsequent washing of slide glass using GeneTAC Hybridization Station (manufactured by Genomic Solutions) according to the manufacture's instructions. The hybridization was carried out at 50°C, and the washing was carried out at 25°C.

(4) Fluorescence analysis

[0434] The fluorescence amount of each DNA array having the fluorescent cDNA hybridized therewith was measured using ScanArray 4000 (manufactured by GSI Lumonics).

[0435] Table 5 shows the Cy3 and Cy5 signal intensities of the genes having been corrected on the basis of the data of the rabbit globin used as the internal standard and the Cy3/Cy5 ratios.

_			
т,		_	_
Ιć	m	æ	-

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
207	5248	3240	1.62

Table 5 (continued)

SEQ ID NO	Cy3 intensity	Cy5 intensity	Cy3/Cy5
3433	2239	2694	0.83
281	2370	2595	0.91
3435	2566	2515	1.02
3439	5597	6944	0.81
765	6134	4943	1.24
3455	1169	1284	0.91
1226	1301	1493	0.87
1229	1168	1131	1.03
3448	1187	1594	0.74
3451	2845	3859	0.74
3453	3498	1705	2.05
3455	1491	1144	1.30
1743	1972	1841	1.07
3470	4752	3764	1.26
2132	1173	1085	1.08
3476	1847	1420	1.30
3477	1284	1164	1.10
3485	4539	8014	0.57
3488	34289	1398	24.52
3489	43645	1497	29.16
3494	3199	2503	1.28
3496	3428	2364	1.45
3497	3848	3358	1.15

[0436] The ORF function data estimated by using software were searched for SEQ ID NOS:3488 and 3489 showing remarkably strong Cy3 signals. As a result, it was found that SEQ ID NOS:3488 and 3489 are a maleate synthase gene and an isocitrate lyase gene, respectively. It is known that these genes are transcriptionally induced by acetic acid in *Corynebacterium glutamicum* (*Archives of Microbiology, 168*: 262-269 (1997)).

[0437] As described above, a gene of which expression is fluctuates could be discovered by synthesizing appropriate oligo DNA primers based on the ORF nucleotide sequence information deduced from the full genomic nucleotide sequence information of *Corynebacterium glutamicum* ATCC 13032 using software, amplifying the nucleotide sequences of the gene using the genome DNA of *Corynebacterium glutamicum* as a template in the PCR reaction, and thus producing and using a DNA microarray.

[0438] This Example shows that the expression amount can be analyzed using a DNA microarray in the 24 genes. On the other hand, the present DNA microarray techniques make it possible to prepare DNA microarrays having thereon several thousand gene probes at once. Accordingly, it is also possible to prepare DNA microarrays having thereon all of the ORF gene probes deduced from the full genomic nucleotide sequence of *Corynebacterium glutamicum* ATCC 13032 determined by the present invention, and analyze the expression profile at the total gene level of *Corynebacterium glutamicum* using these arrays.

Example 5

5

10

15

20

25

30

35

40

45

50

Homology search using Corynebacterium glutamicum genome sequence

(1) Search of adenosine deaminase

[0439] The amino acid sequence (ADD_ECOLI) of Escherichia coli adenosine deaminase was obtained from Swiss-prot Database as the amino acid sequence of the protein of which function had been confirmed as adenosine deaminase (EC3.5.4.4). By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the amino acids in the ORF region deduced from the genome sequence using FASTA program (Proc. Natl. Acad. Sci. ISA, 85: 2444-2448 (1988)). A case where E-value was le-10 or 1 ss was judged as being significantly homologous. As a result,

no sequence significantly homologous with the *Escherichia coli* adenosine deaminase was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the amino acid sequences in the ORF region deduced from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having adenosine deaminase activity and thus has no activity of converting adenosine into inosine.

(2) Search of glycine cleavage enzyme

10

20

25

30

35

40

45

55

[0440] The sequences (GCSP_ECOLI, GCST_ECOLI and GCSH_ECOLI) of glycine decarboxylase, aminomethyl transferase and an aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme as the amino acid sequence of the protein, of which function had been confirmed as glycine cleavage enzyme (EC2.1.2.10), were obtained from Swiss-prot Database.

[0441] By using these full-length amino acid sequences as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or a database of the ORF amino acid sequences deduced from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, no sequence significantly homologous with the glycine decarboxylase, the aminomethyl transferase or the aminomethyl group carrier each of which is a component of *Escherichia coli* glycine cleavage enzyme, was found in the nucleotide sequence database of the genome sequence of *Corynebacterium glutamicum* or the database of the ORF amino acid sequences estimated from the genome sequence. Based on these results, it is assumed that *Corynebacterium glutamicum* contains no ORF having the activity of glycine decarboxylase, aminomethyl transferase or the aminomethyl group carrier and thus has no activity of the glycine cleavage enzyme.

(3) Search of IMP dehydrogenase

[0442] The amino acid sequence (IMDH ECOLI) of Escherichia coli IMP dehydrogenase as the amino acid sequence of the protein, of which function had been confirmed as IMP dehydrogenase (EC1.1.1.205), was obtained from Swissprot Database. By using the full length of this amino acid sequence as a query, a homology search was carried out on a nucleotide sequence database of the genome sequence of Corynebacterium glutamicum or a database of the ORF amino acid sequences predicted from the genome sequence using FASTA program. A case where E-value was le-10 or less was judged as being significantly homologous. As a result, the amino acid sequences encoded by two ORFs, namely, an ORF positioned in the region of the nucleotide sequence No. 615336 to 616853 (or ORF having the nucleotide sequence represented by SEQ ID NO:672) and another ORF positioned in the region of the nucleotide sequence No. 616973 to 618094 (or ORF having the nucleotide sequence represented by SEQ ID NO:674) were significantly homologous with the ORFs of Escherichia coli IMP dehydrogenase. By using the above-described predicted amino acid sequence as a query in order to examine the similarity of the amino acid sequences encoded by the ORFs with IMP dehydrogenases of other organisms in greater detail, a search was carried out on GenBank (http://www.ncbi.nlm. nih.gov/) nr-aa database (amino acid sequence database constructed on the basis of GenBankCDS translation products, PDB database, Swiss-Prot database, PIR database, PRF database by eliminating duplicated registrations) using BLAST program. As a result, both of the two amino acid sequences showed significant homologies with IMP dehdyrogenases of other organisms and clearly higher homologies with IMP dehdyrogenases than with amino acid sequences of other proteins, and thus, it was assumed that the two ORFs would function as IMP dehydrogenase. Based on these results, it was therefore assumed that Corynebacterium glutamicum has two ORFs having the IMP dehydrogenase activity.

Example 6

Proteome analysis of proteins derived from Corynebacterium glutamicum

(1) Preparations of proteins derived from Corynebacterium glutamicum ATCC 13032, FERM BP-7134 and FERM BP-158

[0443] Culturing tests of Corynebacterium glutamicum ATCC 13032 (wild type strain), Corynebacterium glutamicum FERM BP-7134 (lysine-producing strain) and Corynebacterium glutamicum (FERM BP-158, lysine-highly producing strain) were carried out in a 5 l jar fermenter according to the method in Example 2(3). The results are shown in Table 6.

10

20

25

30

35

40

45

50

55

Table 6

Strain	L-Lysine yield (g/l)
ATCC 13032	0
FERM BP-7134	45
FERM BP-158	60

[0444] After culturing, cells of each strain were recovered by centrifugation. These cells were washed with Tris-HCl buffer (10 mmol/l Tris-HCl, pH 6.5, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim)) three times to give washed cells which could be stored under freezing at -80°C. The freeze-stored cells were thawed before use, and used as washed cells.

[0445] The washed cells described above were suspended in a disruption buffer (10 mmol/l Tris-HCl, pH 7.4, 5 mmol/l magnesium chloride, 50 mg/l RNase, 1.6 mg/ml protease inhibitor (COMPLETE: manufactured by Boehringer Mannheim)), and disrupted with a disruptor (manufactured by Brown) under cooling. To the resulting disruption solution, DNase was added to give a concentration of 50 mg/l, and allowed to stand on ice for 10 minutes. The solution was centrifuged (5,000 \times g, 15 minutes, 4°C) to remove the undisrupted cells as the precipitate, and the supernatant was recovered.

[0446] To the supernatant, urea was added to give a concentration of 9 mol/l, and an equivalent amount of a lysis buffer (9.5 mol/l urea, 2% NP-40, 2% Ampholine, 5% mercaptoethanol, 1.6 mg/ml protease inhibitor (COMPLETE; manufactured by Boehringer Mannheim) was added thereto, followed by thoroughly stirring at room temperature for dissolving.

[0447] After being dissolved, the solution was centrifuged at $12,000 \times g$ for 15 minutes, and the supernatant was recovered.

[0448] To the supernatant, ammonium sulfate was added to the extent of 80% saturation, followed by thoroughly stirring for dissolving.

[0449] After being dissolved, the solution was centrifuged (16,000 \times g, 20 minutes, 4°C), and the precipitate was recovered. This precipitate was dissolved in the lysis buffer again and used in the subsequent procedures as a protein sample. The protein concentration of this sample was determined by the method for quantifying protein of Bradford.

(2) Separation of protein by two dimensional electrophoresis

[0450] The first dimensional electrophoresis was carried out as described below by the isoelectric electrophoresis method.

[0451] A molded dry IPG strip gel (pH 4-7, 13 cm, Immobiline DryStrips; manufactured by Amersham Pharmacia Biotech) was set in an electrophoretic apparatus (Multiphor II or IPGphor; manufactured by Amersham Pharmacia Biotech) and a swelling solution (8 mol/l urea, 0.5% Triton X-100, 0.6% dithiothreitol, 0.5% Ampholine, pH 3-10) was packed therein, and the gel was allowed to stand for swelling 12 to 16 hours.

[0452] The protein sample prepared above was dissolved in a sample solution (9 mol/l urea, 2% CHAPS, 1% dithiothreitol, 2% Ampholine, pH 3-10), and then about 100 to 500 μg (in terms of protein) portions thereof were taken and added to the swollen IPG strip gel.

[0453] The electrophoresis was carried out in the 4 steps as defined below under controlling the temperature to 20°C:

- step 1: 1 hour under a gradient mode of 0 to 500V;
- step 2: 1 hour under a gradient mode of 500 to 1,000 V;
- step 3: 4 hours under a gradient mode of 1,000 to 8,000 V; and
- step 4: 1 hour at a constant voltage of 8,000 V.

[0454] After the isoelectric electrophoresis, the IPG strip gel was put off from the holder and soaked in an equilibration buffer A (50 mmol/l Tris-HCl, pH 6.8, 30% glycerol, 1% SDS, 0.25% dithiothreitol) for 15 minutes and another equilibration buffer B (50 mmol/l Tris-HCl, pH 6.8, 6 mol/l urea, 30% glycerol, 1% SDS, 0.45% iodo acetamide) for 15 minutes to sufficiently equilibrate the gel.

[0455] After the equilibrium, the IPG strip gel was lightly rinsed in an SDS electrophoresis buffer (1.4% glycine, 0.1% SDS, 0.3% Tris-HCl, pH 8.5), and the second dimensional electrophoresis depending on molecular weight was carried out as described below to separate the proteins.

[0456] Specifically, the above IPG strip gel was closely placed on 14% polyacrylamide slub gel (14% polyacrylamide, 0.37% bisacrylamide, 37.5 mmol/l Tris-HCl, pH 8.8, 0.1% SDS, 0.1% TEMED, 0.1% ammonium persulfate) and sub-

jected to electrophoresis under a constant voltage of 30 mA at 20°C for 3 hours to separate the proteins.

(3) Detection of protein spot

10

15

20

25

30

35

40

45

50

[0457] Coomassie staining was performed by the method of Gorg et al. (*Electrophoresis, 9*: 531-546 (1988)) for the slub gel after the second dimensional electrophoresis. Specifically, the slub gel was stained under shaking at 25°C for about 3 hours, the excessive coloration was removed with a decoloring solution, and the gel was thoroughly washed with distilled water.

[0458] The results are shown in Fig. 2. The proteins derived from the ATCC 13032 strain (Fig. 2A), FERM BP-7134 strain (Fig. 2B) and FERM BP-158 strain (Fig. 2C) could be separated and detected as spots.

(4) In-gel digestion of detected protein spot

[0459] The detected spots were each cut out from the gel and transferred into siliconized tube, and 400 μ l of 100 mmol/1 ammonium bicarbonate: acetonitrile solution (1:1, v/v) was added thereto, followed by shaking overnight and freeze-dried as such. To the dried gel, 10 μ l of a lysylendopeptidase (LysC) solution (manufactured by WAKO, prepared with 0.1% SDS-containing 50 mmol/l ammonium bicarbonate to give a concentration of 100 ng/ μ l) was added and the gel was allowed to stand for swelling at 0°C for 45 minutes, and then allowed to stand at 37°C for 16 hours. After removing the LysC solution, 20 μ l of an extracting solution (a mixture of 60% acetonitrile and 5% formic acid) was added, followed by ultrasonication at room temperature for 5 minutes to disrupt the gel. After the disruption, the extract was recovered by centrifugation (12,000 rpm, 5 minutes, room temperature). This operation was repeated twice to recover the whole extract. The recovered extract was concentrated by centrifugation *in vacuo* to halve the liquid volume. To the concentrate, 20 μ l of 0.1% trifluoroacetic acid was added, followed by thoroughly stirring, and the mixture was subjected to desalting using ZipTip (manufactured by Millipore). The protein absorbed on the carriers of ZipTip was eluted with 5 μ l of α -cyano-4-hydroxycinnamic acid for use as a sample solution for analysis.

(5) Mass spectrometry and amino acid sequence analysis of protein spot with matrix assisted laser desorption ionization time of flight mass spectrometer (MALDI-TOFMS)

[0460] The sample solution for analysis was mixed in the equivalent amount with a solution of a peptide mixture for mass calibration (300 nmol/l Angiotensin II, 300 nmol/l Neurotensin, 150 nmol/l ACTHclip 18-39, 2.3 μmol/l bovine insulin B chain), and 1 μl of the obtained solution was spotted on a stainless probe and crystallized by spontaneously drying.

[0461] As measurement instruments, REFLEX MALDI-TOF mass spectrometer (manufactured by Bruker) and an N2 laser (337 nm) were used in combination.

[0462] The analysis by PMF (peptide-mass finger printing) was carried out using integration spectra data obtained by measuring 30 times at an accelerated voltage of 19.0 kV and a detector voltage of 1.50 kV under reflector mode conditions. Mass calibration was carried out by the internal standard method.

[0463] The PSD (post-source decay) analysis was carried out using integration spectra obtained by successively altering the reflection voltage and the detector voltage at an accelerated voltage of 27.5 kV.

[0464] The masses and amino acid sequences of the peptide fragments derived from the protein spot after digestion were thus determined.

(6) Identification of protein spot

[0465] From the amino acid sequence information of the digested peptide fragments derived from the protein spot obtained in the above (5), ORFs corresponding to the protein were searched on the genome sequence database of Corynebacterium glutamicum ATCC 13032 as constructed in Example 1 to identify the protein.

[0466] The identification of the protein was carried out using MS-Fit program and MS-Tag program of intranet protein prospector.

(a) Search and identification of gene encoding high-expression protein

[0467] In the proteins derived from Corynebacterium glutamicum ATCC 13032 showing high expression amounts in CBB-staining shown in Fig. 2A, the proteins corresponding to Spots-1, 2, 3, 4 and 5 were identified by the above method.

[0468] As a result, it was found that Spot-1 corresponded to enclase which was a protein having the amino acid sequence of SEQ ID NO:4585; Spot-2 corresponded to phosphoglycelate kinase which was a protein having the amino acid sequence of SEQ ID NO:5254; Spot-3 corresponded to glyceraldehyde-3-phosphate dehydrogenase which was

[0469] These genes, represented by SEQ ID NOS:1085, 1754, 1775, 3043 and 1752 encoding the proteins corresponding to Spots-1, 2, 3, 4 and 5, respectively, encoding the known proteins are important in the central metabolic pathway for maintaining the life of the microorganism. Particularly, it is suggested that the genes of Spots-2, 3 and 5 form an operon and a high-expression promoter is encoded in the upstream thereof (*J. of Eacteriol., 174*: 6067-6086 (1992)).

[0470] Also, the protein corresponding to Spot-9 in Fig. 2 was identified in the same manner as described above, and it was found that Spot-9 was an elongation factor Tu which was a protein having the amino acid sequence represented by SEQ ID No:6937, and that the protein was encoded by DNA having the nucleotide sequence represented by SEQ ID No:3437.

[0471] Based on these results, the proteins having high expression level were identified by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1. Thus, the nucleotide sequences of the genes encoding the proteins and the nucleotide sequences upstream thereof could be searched simultaneously. Accordingly, it is shown that nucleotide sequences having a function as a high-expression promoter can be efficiently selected.

(b) Search and identification of modified protein

[0472] Among the proteins derived from *Corynebacterium glutamicum* FERM BP-7134 shown in Fig. 2B, Spots-6, 7 and 8 were identified by the above method. As a result, these three spots all corresponded to catalase which was a protein having the amino acid sequence represented by SEQ ID NO:3785.

[0473] Accordingly, all of Spots-6, 7 and 8 detected as spots differing in isoelectric mobility were all products derived from a catalase gene having the nucleotide sequence represented by SEQ ID No:285. Accordingly, it is shown that the catalase derived from *Corynebacterium glutamicum* FERM BP-7134 was modified after the translation.

[0474] Based on these results, it is confirmed that various modified proteins can be efficiently searched by proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.

(c) Search and identification of expressed protein effective in lysine production

[0475] It was found out that in Fig. 2A (ATCC 13032: wild type strain), Fig. 2B (FERM BP-7134: lysine-producing strain) and Fig. 2C (FERM BP-158: lysine-highly producing strain), the catalase corresponding to Spot-8 and the elongation factor Tu corresponding to Spot-9 as identified above showed the higher expression level with an increase in the lysine productivity.

[0476] Based on these results, it was found that hopeful mutated proteins can be efficiently searched and identified in breeding aiming at strengthening the productivity of a target product by the proteome analysis using the genome sequence database of *Corynebacterium glutamicum* constructed in Example 1.

[0477] Moreover, useful mutation points of useful mutants can be easily specified by searching the nucleotide sequences (nucleotide sequences of promoter, ORF, or the like) relating to the identified proteins using the above database and using primers designed on the basis of the sequences. As a result of the fact that the mutation points are specified, industrially useful mutants which have the useful mutations or other useful mutations derived therefrom can be easily bred.

[0478] While the invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one of skill in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof. All references cited herein are incorporated in their entirety.

Claims

5

10

20

25

30

35

45

50

- 1. A method for at least one of the following:
 - (A) identifying a mutation point of a gene derived from a mutant of a coryneform bacterium,
 - (B) measuring an expression amount of a gene derived from a coryneform bacterium,
 - (C) analyzing an expression profile of a gene derived from a coryneform bacterium,
 - (D) analyzing expression patterns of genes derived from a coryneform bacterium, or
 - (E) identifying a gene homologous to a gene derived from a coryneform bacterium,

said method comprising:

5

10

15

20

25

30

35

55

- (a) producing a polynucleotide array by adhering to a solid support at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising a sequence of 10 to 200 continuous bases of the first or second polynucleotides.
- (b) incubating the polynucleotide array with at least one of a labeled polynucleotide derived from a coryneform bacterium, a labeled polynucleotide derived from a mutant of the coryneform bacterium or a labeled polynucleotide to be examined, under hybridization conditions,
- (c) detecting any hybridization, and
- (d) analyzing the result of the hybridization.
- 2. The method according to claim 1, wherein the coryneform bacterium is a microorganism belonging to the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
- 3. The method according to claim 2, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
- 4. The method according to claim 1, wherein the polynucleotide derived from a coryneform bacterium, the polynucleotide derived from a mutant of the coryneform bacterium or the polynucleotide to be examined is a gene relating to the biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof.
- 5. The method according to claim 1, wherein the polynucleotide to be examined is derived from Escherichia coli.
- 6. A polynucleotide array, comprising:

at least two polynucleotides selected from the group consisting of first polynucleotides comprising the nucleotide sequence represented by any one of SEQ ID NOS:1 to 3501, second polynucleotides which hybridize with the first polynucleotides under stringent conditions, and third polynucleotides comprising 10 to 200 continuous bases of the first or second polynucleotides, and a solid support adhered thereto.

- A polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1 or a polynucleotide having a homology of at least 80% with the polynucleotide.
- **8.** A polynucleotide comprising any one of the nucleotide sequences represented by SEQ ID NOS:2 to 3431, or a polynucleotide which hybridizes with the polynucleotide under stringent conditions.
 - A polynucleotide encoding a polypeptide having any one of the amino acid sequences represented by SEQ ID NOS:3502 to 6931, or a polynucleotide which hybridizes therewith under stringent conditions.
 - 10. A polynucleotide which is present in the 5' upstream or 3' downstream of a polynucleotide comprising the nucleotide sequence of any one of SEQ ID NOS:2 to 3431 in a whole polynucleotide comprising the nucleotide sequence represented by SEQ ID NO:1, and has an activity of regulating an expression of the polynucleotide.
- 50 11. A polynucleotide comprising 10 to 200 continuous bases in the nucleotide sequence of the polynucleotide of any one of claims 7 to 10, or a polynucleotide comprising a nucleotide sequence complementary to the polynucleotide comprising 10 to 200 continuous based.
 - 12. A recombinant DNA comprising the polynucleotide of any one of claims 8 to 11.
 - 13. A transformant comprising the polynucleotide of any one of claims 8 to 11 or the recombinant DNA of claim 12.
 - 14. A m thod for producing a polypeptide, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate a polypeptide encoded by the polynucleotide of claim 8 or 9 in the medium, and recoviring this polypeptide from the midium.

5 15. A method for producing at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, comprising:

culturing the transformant of claim 13 in a medium to produce and accumulate at least one of an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof in the medium, and recovering the at least one of the amino acid, the nucleic acid, the vitamin, the saccharide, the organic acid, and analogues thereof from the medium.

- 16. A polypeptide encoded by a polynucleotide comprising the nucleotide sequence selected from SEQ ID NOS:2 to 3431.
- 17. A polypeptide comprising the amino acid sequence selected from SEQ ID NOS:3502 to 6931.
- 18. The polypeptide according to claim 16 or 17, wherein at least one amino acid is deleted, replaced, inserted or added, said polypeptides having an activity which is substantially the same as that of the polypeptide without said at least one amino acid deletion, replacement, insertion or addition.
- 19. A polypeptide comprising an amino acid sequence having a homology of at least 60% with the amino acid sequence of the polypeptide of claim 16 or 17, and having an activity which is substantially the same as that of the polypeptide.
- 20. An antibody which recognizes the polypeptide of any one of claims 16 to 19.
 - 21. A polypeptide array, comprising:

10

15

20

25

30

35

45

50

55

at least one polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

22. A polypeptide array, comprising:

at least one antibody which recognizes a polypeptide or partial fragment polypeptide selected from the polypeptides of claims 16 to 19 and partial fragment polypeptides of the polypeptides, and a solid support adhered thereto.

- 23. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryne-form bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 1 to 3501 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
 - 24. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501, target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 with the target sequence or target structure motif information; and

- (iv) scr ening and analyzing nucleotide sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 25. A system based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, and target sequence or target structure motif information;
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target sequence or target structure motif information, recorded by the data storage device for screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information; and
 - (iv) an output device that shows a screening or analyzing result obtained by the comparator.
- 26. A method based on a computer for identifying a target sequence or a target structure motif derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, and target sequence information or target structure motif information into a user input device;
 - (ii) at least temporarily storing said information;

5

10

15

20

25

30

35

45

50

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target sequence or target structure motif information; and
- (iv) screening and analyzing amino acid sequence information which is coincident with or analogous to the target sequence or target structure motif information.
- 27. A system based on a computer for determining a function of a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information:
 - (ii) a data storage device for at least temporarily storing the input information;
 - (iii) a comparator that compares the at least one nucleotide sequence information selected from SEQ ID NOS: 2 to 3501 with the target nucleotide sequence information for determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501; and
 - (iv) an output devices that shows a function obtained by the comparator.
- 28. A method based on a computer for determining a function of a polypeptide encoded by a polypeptide encoded by a polynucleotide having a target nucleotide sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501, function information of a polypeptide encoded by the nucleotide sequence, and target nucleotide sequence information; (ii) at least temporarily storing said information;
 - (iii) comparing the at least one nucleotide sequence information selected from SEQ ID NOS:2 to 3501 with the target nucleotide sequence information; and
 - (iv) determining a function of a polypeptide encoded by a polynucleotide having the target nucleotide sequence which is coincident with or analogous to the polynucleotide having at least one nucleotide sequence selected from SEQ ID NOS:2 to 3501.
 - 29. A system based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) a user input device that inputs at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;

- (ii) a data storing device for at least temporarily storing the input information,
- (iii) a comparator that compares the at least one amino acid sequence information selected from SEQ ID NOS: 3502 to 7001 with the target amino acid sequence information for determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001; and
- (iv) an output device that shows a function obtained by the comparator.
- **30.** A method based on a computer for determining a function of a polypeptide having a target amino acid sequence derived from a coryneform bacterium, comprising the following:
 - (i) inputting at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001, function information based on the amino acid sequence, and target amino acid sequence information;
 - (ii) at least temporarily storing said information;

5

10

15

25

30

35

- (iii) comparing the at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 with the target amino acid sequence information; and
- (iv) determining a function of a polypeptide having the target amino acid sequence which is coincident with or analogous to the polypeptide having at least one amino acid sequence selected from SEQ ID NOS:3502 to 7001.
- 20 31. The system according to any one of claims 23, 25, 27 and 29, wherein a coryneform bacterium is a microorganism of the genus Corynebacterium, the genus Brevibacterium, or the genus Microbacterium.
 - 32. The method according to any one of claims 24, 26, 28 and 30, wherein a coryneform bacterium is a microorganism of the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 33. The system according to claim 31, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetogical tamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 34. The method according to claim 32, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 35. A recording medium or storage device which is readable by a computer in which at least one nucleotide sequence information selected from SEQ ID NOS:1 to 3501 or function information based on the nucleotide sequence is recorded, and is usable in the system of claim 23 or 27 or the method of claim 24 or 28.
- 36. A recording medium or storage device which is readable by a computer in which at least one amino acid sequence information selected from SEQ ID NOS:3502 to 7001 or function information based on the amino acid sequence is recorded, and is usable in the system of claim 25 or 29 or the method of claim 26 or 30.
- 37. The recording medium or storage device according to claim 35 or 36, which is a computer readable recording medium selected from the group consisting of a floppy disc, a hard disc, a magnetic tape, a random access memory (RAM), a read only memory (ROM), a magneto-optic disc (MO), CD-ROM, CD-R, CD-RW, DVD-ROM, DVD-RAM and DVD-RW.
- 38. A polypeptide having a homoserine dehydrogenase activity, comprising an amino acid sequence in which the Val residue at the 59th in the amino acid sequence of homoserine dehydrogenase derived from a coryneform bacterium is replaced with an amino acid residue other than a Val residue.
 - 39. A polypeptide comprising an amino acid sequence in which the Val residue at the 59th position in the amino acid sequence as represented by SEQ ID NO:6952 is replaced with an amino acid residue other than a Val residue.
 - **40.** The polypeptide according to claim 38 or 39, wherein the Val residue at the 59th position is replaced with an Ala residue.

- 41. A polypeptide having pyruvate carboxylase activity, comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence of pyruvate carboxylase derived from a coryneform bacterium is replaced with an amino acid residue other than a Pro residue.
- **42.** A polypeptide comprising an amino acid sequence in which the Pro residue at the 458th position in the amino acid sequence repr s nted by SEQ ID NO:4265 is replaced with an amino acid residue other than a Pro residue.
- 43. The polypeptide according to claim 41 or 42, wherein the Pro residue at the 458th position is replaced with a Ser residue.
- 44. The polypeptide according to any one of claims 38 to 43, which is derived from Corynebacterium glutamicum.
- 45. A DNA encoding the polypeptide of any one of claims 38 to 44.
- 46. A recombinant DNA comprising the DNA of claim 45.
 - 47. A transformant comprising the recombinant DNA of claim 46.
 - 48. A transformant comprising in its chromosome the DNA of claim 45.
 - 49. The transformant according to claim 47 or 48, which is derived from a coryneform bacterium.
 - 50. The transformant according to claim 49, which is derived from Corynebacterium glutamicum.
- 25 51. A method for producing L-lysine, comprising:

10

15

20

30

35

40

45

55

culturing the transformant of any one of claims 47 to 50 in a medium to produce and accumulate L-lysine in the medium, and recovering the L-lysine from the culture.

- 52. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising the following:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtained by (i);
 - (iii) introducing the mutation point into a coryneform bacterium which is free of the mutation point, or deleting the mutation point from a coryneform bacterium having the mutation point; and
 - (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 53. The method according to claim 52, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
- 54. The method according to claim 52, wherein the mutation point is a mutation point relating to a useful mutation which improves or stabilizes the productivity.
- 55. A method for breading a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:1 to 3431, comprising:
 - (i) comparing a nucleotide sequence of a genome or gene of a production strain derived a coryneform bacterium which has been subjected to mutation breeding so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof by a fermentation method, with a corresponding nucleotide sequence in SEQ ID NOS:1 to 3431;
 - (ii) identifying a mutation point present in the production strain based on a result obtain by (i);
 - (iii) deleting a mutation point from a coryneform bacterium having the mutation point; and

- (iv) examining productivity by the fermentation method of the compound selected in (i) of the coryneform bacterium obtained in (iii).
- 56. The method according to claim 55, wherein the gene is a gene encoding an enzyme in a biosynthetic pathway or a signal transmission pathway.
 - 57. The method according to claim 55, wherein the mutation point is a mutation point which decreases or destabilizes the productivity.
- 58. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) identifying an isozyme relating to biosynthesis of at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogous thereof, based on the nucleotide sequence information represented by SEQ ID NOS:2 to 3431;
 - (ii) classifying the isozyme identified in (i) into an isozyme having the same activity;
 - (iii) mutating all genes encoding the isozyme having the same activity simultaneously; and
 - (iv) examining productivity by a fermentation method of the compound selected in (i) of the coryneform bacterium which have been transformed with the gene obtained in (iii).
 - 59. A method for breeding a coryneform bacterium using the nucleotide sequence information represented by SEQ ID NOS:2 to 3431, comprising the following:
 - (i) arranging a function information of an open reading frame (ORF) represented by SEQ ID NOS:2 to 3431;
 - (ii) allowing the arranged ORF to correspond to an enzyme on a known biosynthesis or signal transmission pathway;
 - (iii) explicating an unknown biosynthesis pathway or signal transmission pathway of a coryneform bacterium in combination with information relating known biosynthesis pathway or signal transmission pathway of a coryneform bacterium;
 - (iv) comparing the pathway explicated in (iii) with a biosynthesis pathway of a target useful product; and
 - (v) transgenetically varying a coryneform bacterium based on the nucleotide sequence information to either strengthen a pathway which is judged to be important in the biosynthesis of the target useful product in (iv) or weaken a pathway which is judged not to be important in the biosynthesis of the target useful product in (iv).
- 35 **60.** A coryneform bacterium, bred by the method of any one of claims 52 to 59.
 - **61.** The coryneform bacterium according to claim 60, which is a microorganism belonging to the genus *Corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
- 62. The coryneform bacterium according to claim 61, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoamino genes, and Corynebacterium ammonia genes.
 - **63.** A method for producing at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid and an analogue thereof, comprising:
 - culturing a coryneform bacterium of any one of claims 60 to 62 in a medium to produce and accumulate at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof;
 - recovering the compound from the culture.
 - 64. The method according to claim 63, wherein the compound is L-lysine.
 - 65. A method for identifying a protein relating to useful mutation based on proteome analysis, comprising the following:
 - (i) preparing

5

15

20

25

30

45

50

a protein derived from a bacterium of a production strain of a coryneform bacterium which has been subjected to mutation breeding by a fermentation process so as to produce at least one compound selected from an amino acid, a nucleic acid, a vitamin, a saccharide, an organic acid, and analogues thereof, and a protein derived from a bacterium of a parent strain of the production strain;

(ii) separating the proteins prepared in (i) by two dimensional el ctrophoresis;

5

10

15

20

25

30

35

40

45

50

- (iii) detecting the separated proteins, and comparing an expression amount of the protein derived from the production strain with that derived from the parent strain;
- (iv) treating the protein showing different expression amounts as a result of the comparison with a peptidase to extract peptide fragments;
- (v) analyzing amino acid sequences of the peptide fragments obtained in (iv); and
- (vi) comparing the amino acid sequences obtained in (v) with the amino acid sequence represented by SEQ
- ID NOS:3502 to 7001 to identifying the protein having the amino acid sequences.
- **66.** The method according to claim 65, wherein the coryneform bacterium is a microorganism belonging to the genus *corynebacterium*, the genus *Brevibacterium*, or the genus *Microbacterium*.
 - 67. The method according to claim 66, wherein the microorganism belonging to the genus Corynebacterium is selected from the group consisting of Corynebacterium glutamicum, Corynebacterium acetoacidophilum, Corynebacterium acetoglutamicum, Corynebacterium callunae, Corynebacterium herculis, Corynebacterium lilium, Corynebacterium melassecola, Corynebacterium thermoaminogenes, and Corynebacterium ammoniagenes.
 - 68. A biologically pure culture of Corynebacterium glutamicum AHP-3 (FERM BP-7382) .

GENOME AND/OR SEQUENCE DATA POLYNUCLEOTIDE
AND/OR
POLYPEPTIDE
SEQUENCE
RECOGNIZER AND
QUERY BUFFER NETWORK REQUEST RESULT USER INPUT DEVICE

FIG. 4

