Classify

Thiago Pires

2022-10-26

Table of contents

Introduction
Read data
About the attributes
Initial plan for data exploration
Manipulation (Actions taken for data cleaning and feature engineering)
Univariate analysis
Ticket class (Pclass)
Sex
Interaction between Sex and Ticket Class
Age
Modeling
Split in train and test
Logistic regression
Evaluation
Logistic regression with interaction effect
Evaluation
Random forest
Evaluation
Comparing models
Next steps

Introduction

This project presents some analyzes to predict if a passenger given some features could survive or not. I will use data of the famous ship Titanic that tragically wrecked in 1912.

Read data

```
train <- titanic::titanic_train
```

About the attributes

The variables used are:

Sex: sexAge: age

• Pclass: Passenger Class

• Survived: Passenger Survival Indicator

Initial plan for data exploration

Univariate analysis to identify more important features to multiple model. I will use plots and supervised modeling in the analysis.

Manipulation (Actions taken for data cleaning and feature engineering)

Univariate analysis

My three hypothesis about this data are:

- Relation between sex and survive
- Relation between pclass and survive
- Relation between age and survive

Ticket class (Pclass)

There were more survivors in first class than in the second and third class.

```
train |>
    ggplot2::ggplot(ggplot2::aes(Pclass, ..count../sum(..count..), fill = Survived)) +
    ggplot2::geom_bar(position = "fill") +
    ggplot2::scale_y_continuous(labels = scales::percent) +
    ggplot2::theme_light() +
    ggplot2::labs(x = "Ticket class", y = "", fill = "Survived")
```


Figure 1: Percentual distribution of survivors according to ticket class

Sex

There were more female survivors than male.

```
train |>
    ggplot2::ggplot(ggplot2::aes(Sex, ..count../sum(..count..), fill = Survived)) +
    ggplot2::geom_bar(position = "fill") +
```

```
ggplot2::scale_y_continuous(labels = scales::percent) +
ggplot2::theme_light() +
ggplot2::labs(x = "Sex", y = "", fill = "Survived")
```


Figure 2: Percentual distribution of survivors according to sex

Interaction between Sex and Ticket Class

There is a diffrence between sex survived and classes. More woman survived in 1st class (about 100%!) than in 3rd class (about 50%).

```
train |>
    ggplot2::ggplot() +
    ggplot2::aes(Sex, ..count../sum(..count..),
        group = Survived,
    fill = Survived) +
```

```
ggplot2::geom_bar(position = "fill") +
ggplot2::facet_grid(~Pclass) +
ggplot2::scale_y_continuous(labels = scales::percent) +
ggplot2::labs(x = "Sex", y = "", fill = "Survived") +
ggplot2::theme_light()
```


Figure 3: Percentual distribution of survivors according to sex and pclass

Age

There is no difference between the distribution of age according to survived status.

```
train |>
   ggplot2::ggplot(ggplot2::aes(Survived, Age)) + ggplot2::geom_boxplot() +
   ggplot2::theme_light()
```


Figure 4: Distribution of age according to survived status

Modeling

Three approaches to modeling:

- Logistic regression
- Logistic regression with interaction effect
- Random forest

Split in train and test

```
library(tidymodels)

data_split <-
   initial_split(train, prop = 3/4)</pre>
```

```
train_data <- training(data_split)
test_data <- testing(data_split)</pre>
```

Logistic regression

```
lr_mod <-
    logistic_reg() |>
    set_engine("glm")

lr_fit <-
    lr_mod |>
    fit(Survived ~ Sex + Pclass, data = train_data)

lr_fit |>
    broom::tidy() |> knitr::kable()
```

Table 1: Logistic regression

term	estimate	std.error	statistic	p.value
(Intercept)	2.376398	0.2484992	9.562997	0.0000000
Sexmale	-2.698232	0.2145046	-12.578898	0.0000000
Pclass2nd	-1.023282	0.2840604	-3.602340	0.0003154
Pclass3rd	-1.913812	0.2416938	-7.918335	0.0000000

Evaluation

```
measure <- function(data) {
    data |>
        accuracy(truth = Survived, .pred_class) |>
        bind_rows(
        data |>
            f_meas(truth = Survived, .pred_class))
}

predict(lr_fit, test_data) |>
    dplyr::bind_cols(predict(lr_fit,
```

```
test_data, type = "prob")) |>
dplyr::bind_cols(test_data |>
dplyr::select(Survived)) |>
measure() |>
knitr::kable()
```

Table 2: Evaluation

.metric	.estimator	.estimate
accuracy	binary	0.7892377
f_meas	binary	0.8395904

Logistic regression with interaction effect

```
lr_fit_i <-
    lr_mod |>
    fit(Survived ~ Sex * Pclass, data = train_data)

lr_fit_i |>
    broom::tidy() |> knitr::kable()
```

Table 3: Logistic regression with interaction effect

term	estimate	std.error	statistic	p.value
(Intercept)	3.6243409	0.7164675	5.0586260	0.0000004
Sexmale	-4.1251162	0.7439604	-5.5448059	0.0000000
Pclass2nd	-1.3019532	0.8561153	-1.5207685	0.1283179
Pclass3rd	-3.5866006	0.7423442	-4.8314523	0.0000014
Sexmale:Pclass2nd	-0.1897017	0.9483394	-0.2000356	0.8414527
Sexmale:Pclass3rd	2.2814318	0.7902485	2.8869802	0.0038896

Evaluation

```
dplyr::select(Survived)) |>
measure() |>
knitr::kable()
```

Table 4: Evaluation

.metric	.estimator	.estimate
accuracy f_meas	binary binary	$0.7892377 \\ 0.8395904$

Random forest

```
rf <-
    rand_forest(mode = "classification", mtry = 2, trees = 100) |>
    fit(Survived ~ Sex + Pclass, data = train_data)
```

Evaluation

Table 5: Evaluation

.metric	.estimator	.estimate
accuracy f_meas	binary binary	$0.7892377 \\ 0.8395904$

Comparing models

The three models get close metrics. But the logistic regression with iteraction get a $f1_{score}$ better than the others models. The results showed that the class and sex are the main effects on the target. Women and class (1st) have more effect in survive.

Next steps

- Use grid search
- Use ensemble