Projeto - Fantasma

Consultores Responsáveis:

Bruno Boaventura Xavier

Requerente:

House of Excellence

Brasília, 11 de novembro de 2024.

Sumário

																							P	agi	na
1	Anális	ses																							3
	1.1	V	/ar	iaç	ão	Pe	esc	o p	oo	r A	۱t	ur	а												3

1 Análises

1.1 Variação Peso por Altura

O intuito neste momento é entender a relação entre o peso e altura dos medalhistas olímpicos e para isso a variável que armazena os pesos dos atletas em libras e a que representa as alturas em centímetros, ambas as variáveis são classificadas como quantitativas contínuas. Diante desses dados, visando atingir o interesse dessa análise, foram cotruídos o gráfico e aos quadros a seguir.

Figura 1: Gráfico de dispersão da altura pelo peso dos atletas

Figura 2: Boxplot da Altura dos atletas

Figura 3: Boxplot do Peso dos atletas

Quadro 1: Medidas resumo da Altura (m) e do Peso (kg) dos atletas

Estatística	Altura	Peso
Média	178,24	74,00
Desvio Padrão	11,80	16,26
Variância	139,23	264,26
Mínimo	137,00	28,00
1º Quartil	170,00	62,00
Mediana	178,00	72,00
3º Quartil	186,00	84,00
Máximo	219,00	175,00
Coeficiente de Variação	7%	22%

Quadro 2: Coeficiente de correlação de Pearson para Altura (m) e Peso (kg) dos atletas

Estatística	Valor				
Coeficiente de Correlação	0,805				

Ao observar a **Figura 1**, é perceptível que a maioria dos atletas, os quais são representados pelos pontos no gráfico estão agrupados abaixo das cem kilogramas, tal análise também pode ser feita percebendo que a maioria possui altura inferior aos a dois metros. Agora, visualmente, analisando a dispersão dos pontos na imagem é fácil compreender que a maior concentração deles sugere que quanto maior a altura dos atletas maior será seu peso, uma vez que o conjunto de pontos mais próximos uns dos outros supôem uma correlão positiva forte dos dados, isso acontece quando os pontos se assemelham a uma reta crescente. Ainda, nota-se que essa relação é evidenciada pelo **Quadro 2**,uma vez que para o coeficiente de correlação de Pearson valores próximos de 1 e -1 indicam associação, neste caso por obter 0,805 as duas variáveis são correlacionadas no sentido de serem diretamente proporcionais, o que quer dizer que ao passo que a Altura aumenta o peso também aumenta. Dessa forma, concluisse que a associação linear é de 80,53% entre as duas variáveis.

Através da **?@fig-box-altura** pode-se perceber que pelo valor de mediana (178 cm) estar centralizado na caixa, visualizado por meio da **?@fig-box-altura**, bem como, numericamente ela estar exatamente na metade dos quartis, observando na **??** o primeiro é 170 e o terceiro 186, concluisse, então que existe simetria dos valores, que significa dizer quea frequeência dos valores de altura estão distribuídos de forma simétrica em torno da média e da mediana. Ainda, nota-se que os valores de máximo e mínimo apresentam distancia semelhante em relação à caixa, além de possuir valores extremos que também se distribuem de maneira semelhante tanto para cima, quanto para baixo, contudo, importante ressaltar que a média (178,24 cm) é levemente influenciada por esses valores extremos acima.

Diante da **Figura 3** nota-se, diferentemente da altura, haver maior assimetria dos dados dos pesos dos atletas. Em primeira análise, destaca-se do gráfico que sua mediana está deslocada do centro da caixa em direção ao primeiro quartil, o que representa, neste caso, que há assimetria positiva, isso ocorre quando existe maior ocorrência de valores que númericamente são próximos no intervalo entre o primeiro quartil e a mediana. Para mais, observando os valores extremos, percebe-se que existe maior quantidade deles a acima do máximo estipulado na contrução do gráfico, tal fato corrobora à análise da **??** sobre a média ser influenciada por esses valores extremos e se distanciar da mediana.

Para mais, estudando a **??** destaca-se que a média de altura dos atletas é de 1,78 metros, assim como sua mediana - termo esse que divide em 50% porcento todas as observações em ordem cresecente, logo conclui-se que para este caso a média não tem seus valores afetados por valores extremos -ainda, verificam-se valores de mínimo em 1,37 e máximo em 2,19. Contudo, mesmo com uma disparidade alta entre máximo e mínimo, nota-se que os dados estão bastante concentrados, o que pode ser percebido pelo desvio padrão de 11,28 centímetros e reforçado ao analisar a medida do coeficiente de variação - índice que determina quando o desvio padrão representa em relação à média - observa-se apenas um valor de 7%, corroborando ao entendimento de uma alta homogeneidade dos dados e uma baixa dispersão da altura.

Outrossim, por meio da **??** analisa-se um valor médio de 74 kilogramas e com sua mediana em 72 kg, evidenciando que a média é influencidada por valores extremos. Ainda, destacam-se a mínima ser de 28 kg e a máxima de 175 kg. Diferentemente da altura, aqui, percebe-se haver uma maior dispersão dos valores de peso, isso porquê o desvio padrão aqui passa a ser de 16,26 kg e analisando seu coeficiente de variação em 22%, pela teoria, valores menores que 25% são considerados homogêneos, dessa forma, considerada homogênea mas próxima do limite teórico determinado.