Reg No .: LENR 2/ EC105

Name:

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

Third Semester B.Tech Degree Regular and Supplementary Examination December 2022 (2019 scheme)

Course Code: ECT201	
Max. Marks: 100 Course Name: SOLID STATE DEVICES	
PART A Duration: 3	Hours
Answer all questions. Each question carries 3 marks	Marks
Define Fermi-Dirac distribution function of semiconductor.	(3)
Draw the energy band diagrams under equilibrium for i) Intrinsic ii) n-type	(3)
iii) p-type semiconductors.	
Differentiate drift and diffusion movement of carriers in semiconductors.	(3)
Derive continuity equation.	(3)
5 Explain the terms emitter injection efficiency and base transport factor of a BJT.	(3)
Differentiate Ohmic and rectifying contacts metal-Semiconductor contacts.	(3)
What is meant by body effect in MOSFET?	(3)
Draw and explain the transfer characteristics of an enhancement type MOSFET.	(3)
Define Sub threshold conduction in MOSFET	` ′
Define threshold Voltage of MOSFET. How it can be varied?	(3)
PART B	(3)
Answer any one full question from each module. Each question carries 14 marks	
Module 1	
11 (a) Derive the expression for electron concentration (n ₀) and hole concentration	(8)
(p_0) at equilibrium.	
For a silicon sample at 300K, the equilibrium hole concentration is 4×10^{12}	(6)
cm ⁻³ . Determine (j) equilibrium electron concentration (ii) the acceptor	
concentration if the donor concentration is 10 ¹² cm ⁻³ . (Assume ni for silicon	
is 1.5×10^{10} cm ⁻³).	
12 (a) Explain different types of recombination mechanisms.	(7)
(b) A silicon sample doped with 10 ¹⁶ cm ⁻³ donors at 300K is optically excited	. ,
such that the optical generation rate is 10^{20} EHP/(cm ⁻³ s ⁻¹). Find the	(7)

and quasi Fermi levels if $\tau_p = \tau_n = 2 \mu s$.

separation between Quasi Fermi levels and show the positions of equilibrium

0800ECT201122102

	Module 2	
£13	(a) State and prove Einstein's relation.	(9)
	(b) An n type silicon bar 0.1 cm long and 100 μm² in cross sectional area has a	(2)
	majority carrier concentration of 5×10^{15} cm ⁻³ and electron mobility $\mu_{\rm e} = 1300$	(5)
	cm ² /Vs at 300K. What is the resistance of the bar?	
14	(a) Explain Hall Effect? Derive the expression for carrier concentration and	(7)
	mobility in terms of Hall voltage.	(7)
	(b) Derive the expression for diffusion current density in a semiconductor.	(7)
		(,)
	Module 3	
15	(a) Derive ideal diode equation. State any two assumptions used.	(8)
	(b) Draw the energy band diagram of a metal-n type semiconductor with φm >	(6)
	φs when it is i) under equilibrium and ii) when it is biased. Is the contact	(0)
	rectifying or ohmic?	
16,		(7)
	equilibrium.	
1		(7)
	cm ⁻³ on the n-side. The area of cross section of the diode is 10 ⁻⁴ cm ² . The	
	relative permittivity of Si is 11.8. Calculate the built in voltage (V ₀) and	
	depletion layer width (W ₀) at 300K.	
	Module 4	
17	(a) Derive the expression for drain current at linear region and saturation region	(7)
	for a MOSFET.	
	(b) An Al-gate p-channel MOS transistor is made on an n-type Si substrate with	(7)
	$N_D = 5x10^{17}$ cm ⁻³ . The SiO ₂ thickness is 100 Å in the gate region, and the	
	effective interface charge Qi is 5 x 10^{10} q C/cm ² . Find W _m , V _{FB} , and V _T , if	
	the gate to substrate work function difference Φ ms = -0.15V.	
18	(a) With the help of necessary band diagrams, explain the working and CV	(8)
	characteristics of a MOS capacitor.	
	(b) Derive the equation for threshold voltage of MOSFET.	(6)

0800ECT201122102

	Module 5	(6)
19 (a)	What is drain induced barrier lowering. Discuss its effect on MOSFET	
	nerformance	100
(b) v	What is MOSFET scaling? Explain different types of scaling. Discuss the	
г	idvantage and disadvantage of scaling.	(8)
20 (a) I	Explain different types of short channel effects in MOSFET.	
(b) I	Draw and explain the structure and working of Fin FET.	(6)

Page 3of 3