

YOUR TOURNAMENT GUIDE

PROBLEM STATEMENT

THIS PROJECT IS AIMED TO DEVELOP A PLATFORM FOR MANAGING EVENTS LIKE MATCH SCHEDULING, **VENUE MANAGEMENT, AND** SPECTATOR LOGISTICS TO ENSURE SMOOTH **EFFICIENT** AND **TOURNAMENT** OPERATIONS.

ABSTRACT

THIS PROJECT FOCUSES ON DEVELOPING "ATHLEAD," A FEATURE-RICH APPLICATION **DESIGNED** TO STREAMLINE ORGANIZATION OF COLLEGE **ATHLETIC** EVENTS. THE SYSTEM AUTOMATES CRITICAL TASKS SUCH AS STUDENT REGISTRATON, FIXTURE CREATION, AND SCHEDULING. OFFERS A USER-FRIENDLY ATHLEAD INTERFACE THAT SIMPLIFIES PARTICIPANT REGISTRATION AND PROVIDES EASY ACCESS TO EVENT DETAILS AND UPDATES.

OBJECTIVES

- 1. STREAMLINED EVENT MANAGEMENT: ATHLEAD OPTIMIZES FIXTURE CREATION, SCHEDULING, AND RESOURCE ALLOCATION WITH ADVANCED ALGORITHMS.
- 2. ROBUST DATA HANDLING: IT USES EFFICIENT DATA STRUCTURES AND DATABASES TO MAINTAIN ACCURATE EVENT RECORDS.
- 3. ENHANCED USER EXPERIENCE: ATHLEAD ENSURES A SMOOTH EXPERIENCE FOR PARTICIPANTS, ORGANIZERS, AND SPECTATORS BY RESOLVING SCHEDULING AND RESOURCE ISSUES.
- 4. COMPREHENSIVE SOLUTION: IT COVERS COURT ALLOCATION, SPECTATOR MANAGEMENT, AND OPTIMIZED SCHEDULING FOR SEAMLESS ATHLETIC EVENT ORGANIZATION.
- MAKES MATCHES FIXTURES
- SCHEDULE MATCHES
- > COURT/REFREE ALLOCATION
- KEEPS RECORD OF POINTS TABLE

DATA FLOW DIAGRAM

DATA STRUCTURES

- PCB
- OUEUES
- CIRCULAR LINKED LIST
- PRIORITY **QUEUES**

ALGORITHMS

FIRST-COME, FIRST-SERVED (FCFS):

FCFS IS THE SIMPLEST SCHEDULING ALGORITHM WHERE PROCESSES ARE HANDLED IN THE ORDER THEY ARRIVE. THIS NON-PREEMPTIVE ALGORITHM IS STRAIGHTFORWARD BUT CAN LEAD TO INEFFICIENCIES.

ROUND ROBIN (RR):

RR ASSIGNS A FIXED TIME SLICE, OR QUANTUM, TO EACH PROCESS AND CYCLES THROUGH THEM, ENSURING THAT NO PROCESS IS STARVED. THIS ALGORITHM IS PARTICULARLY SUITED TO TIME-SHARING SYSTEMS.

MULTILEVEL FEEDBACK OUEUE SCHEDULING:

SIMILAR TO MULTILEVEL QUEUE SCHEDULING BUT WITH DYNAMIC ADJUSTMENT, PROCESSES CAN MOVE BETWEEN QUEUES BASED ON THEIR BEHAVIOR (E.G., CPU BURST TIMES).

TEAM

VAISHNAVI DUBEY RISHI RAJ JAIN PARTH SONI CHITRANSH SONI

METHODOLOGY

REQUIREMENT GATHERING AND ANALYSIS: COLLABORATE WITH STAKEHOLDERS TO IDENTIFY NEEDS, INCLUDING SCHEDULING, FIXTURE GENERATION, GROUND ALLOCATION, AND RECORD MANAGEMENT.

SYSTEM DESIGN AND ARCHITECTURE: DEVELOP MODULAR, SCALABLE ARCHITECTURE WITH CLASS DIAGRAMS, ERDS, AND DFDS.

MODULE DEVELOPMENT: BUILD MODULES FOR PARTICIPANT MANAGEMENT, MATCH SCHEDULING (ROUND ROBIN, FCFS), AND RESOURCE ALLOCATION USING DATA STRUCTURES LIKE PRIORITY OUEUES TO OPTIMIZE COURT AND GROUND USAGE.

SYNOPSIS

- 1. KROTEE, M., & BUCHER, C. (2007), MANAGEMENT OF PHYSICAL EDUCATION AND SPORT, MCGRAW-HILL
- 2. ALI, M., & PARMAR, J. (2022). "AÚTOMATED FIXTURE SCHEDULING IN SPORTS TOURNAMENTS,, INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS. 3. SMITH, J., & GREEN, T. (2019). "TECHNOLOGICAL INNOVATIONS IN SPORTS EVENT MANAGEMENT". JOURNAL OF SPORTS TECHNOLOGY.
- 4. RAM, S., & MISHRA, P. (2020). "COMPARATIVE STUDY OF DIGITAL SOLUTIONS FOR UNIVERSITY SPORTS MANAGEMENT". INTERNATIONAL JOURNAL OF SPORTS SCIENCE.