The Zeros of Elliptic Curve *L*-Functions

Simon Spicer

University of Washington mlungu@uw.edu

July 8, 2013

Overview

- Motivated by a challenge question from Barry Mazur in the upcoming paper "How Explicit is the Explicit Formula?"
- Prove an explicit version of the explicit formula for elliptic curve L-functions, i.e. one with explicit error bounds for truncated sums over L-function zeros
- Applicable to work of Mazur, Sarnak et al
- This talk more about what to do with elliptic curve L-function zeros once you have them, as apposed to how to compute them in the first place

• Let $\zeta(s)$ be the meromorphic continuation to \mathbb{C} of $\sum_{n=1}^{\infty} n^{-s}$.

- Let $\zeta(s)$ be the meromorphic continuation to \mathbb{C} of $\sum_{n=1}^{\infty} n^{-s}$.
- Then $\zeta(s)$ has a single simple pole at s=1, and simple zeros at $2\mathbb{Z}_{<0}$.

- Let $\zeta(s)$ be the meromorphic continuation to \mathbb{C} of $\sum_{n=1}^{\infty} n^{-s}$.
- Then $\zeta(s)$ has a single simple pole at s=1, and simple zeros at $2\mathbb{Z}_{<0}$.
- All other zeros lie in the vertical strip $0 < \Re(s) < 1$, symmetric about the real axis.

- Let $\zeta(s)$ be the meromorphic continuation to \mathbb{C} of $\sum_{n=1}^{\infty} n^{-s}$.
- Then $\zeta(s)$ has a single simple pole at s=1, and simple zeros at $2\mathbb{Z}_{<0}$.
- All other zeros lie in the vertical strip $0 < \Re(s) < 1$, symmetric about the real axis.

Conjecture (Riemann Hypothesis)

All nontrivial zeros of ζ are simple and lie on the line $\Re(s) = \frac{1}{2}$.

The Zeros of ζ

The imaginary parts of the first few zeros of $\zeta(s)$ in the upper half plane are

```
14.134725142...
21.022039639...
25.010857580...
30.424876126...
32.935061588...
37.586178159...
40.918719012...
43.327073281...
48.005150881...
49.773832478...
52.970321478...
56.446247697...
59.347044003...
60.831778525...
```

The Zeros of ζ

The imaginary parts of the first few zeros of $\zeta(s)$ in the upper half plane are

The Riemann zeta function $\zeta(s)$

Consider as a function of x > 1 the sum

$$S_{\zeta}(x,T) = \sum_{|\rho| < T} \frac{x^{\rho}}{\rho} = \sqrt{x} \left(\sum_{0 < \gamma < T} \frac{2 \sin(\gamma \log x)}{\gamma} \right)$$

The Riemann zeta function $\zeta(s)$

Consider as a function of x > 1 the sum

$$S_{\zeta}(x,T) = \sum_{|
ho| < T} rac{x^{
ho}}{
ho} = \sqrt{x} \left(\sum_{0 < \gamma < T} rac{2 \sin(\gamma \log x)}{\gamma}
ight)$$

The Riemann zeta function $\zeta(s)$

Consider as a function of x > 1 the sum

$$S_{\zeta}(x,T) = \sum_{|\rho| < T} \frac{x^{\rho}}{\rho} = \sqrt{x} \left(\sum_{0 < \gamma < T} \frac{2 \sin(\gamma \log x)}{\gamma} \right)$$

The Riemann zeta function $\zeta(s)$

Consider as a function of x > 1 the sum

$$S_{\zeta}(x,T) = \sum_{|\rho| < T} \frac{x^{\rho}}{\rho} = \sqrt{x} \left(\sum_{0 < \gamma < T} \frac{2 \sin(\gamma \log x)}{\gamma} \right)$$

The Riemann zeta function $\zeta(s)$

Consider as a function of x > 1 the sum

$$S_{\zeta}(x,T) = \sum_{|
ho| < T} rac{x^{
ho}}{
ho} = \sqrt{x} \left(\sum_{0 < \gamma < T} rac{2 \sin(\gamma \log x)}{\gamma}
ight)$$

The Riemann zeta function $\zeta(s)$

Consider as a function of x > 1 the sum

$$S_{\zeta}(x,T) = \sum_{|\rho| < T} \frac{x^{\rho}}{\rho} = \sqrt{x} \left(\sum_{0 < \gamma < T} \frac{2\sin(\gamma \log x)}{\gamma} \right)$$

The Riemann zeta function $\zeta(s)$

Consider as a function of x > 1 the sum

$$S_{\zeta}(x,T) = \sum_{|\rho| < T} \frac{x^{\rho}}{\rho} = \sqrt{x} \left(\sum_{0 < \gamma < T} \frac{2\sin(\gamma \log x)}{\gamma} \right)$$

The Riemann zeta function $\zeta(s)$

Consider as a function of x > 1 the sum

$$S_{\zeta}(x,T) = \sum_{|\rho| < T} \frac{x^{\rho}}{\rho} = \sqrt{x} \left(\sum_{0 < \gamma < T} \frac{2\sin(\gamma \log x)}{\gamma} \right)$$

The Riemann zeta function $\zeta(s)$

Consider as a function of x > 1 the sum

$$S_{\zeta}(x,T) = \sum_{|\rho| < T} \frac{x^{\rho}}{\rho} = \sqrt{x} \left(\sum_{0 < \gamma < T} \frac{2\sin(\gamma \log x)}{\gamma} \right)$$

The Riemann zeta function $\zeta(s)$

Consider as a function of x > 1 the sum

$$S_{\zeta}(x,T) = \sum_{|\rho| < T} \frac{x^{\rho}}{\rho} = \sqrt{x} \left(\sum_{0 < \gamma < T} \frac{2\sin(\gamma \log x)}{\gamma} \right)$$

What does this sum converge to?

What does this sum converge to?

Theorem (Riemann 1858, von Mangoldt 1905)

$$\sum_{
ho} rac{x^
ho}{
ho} = \lim_{T o\infty} S_\zeta(x,T) = x - rac{1}{2} \log \left(1 - 1/x^2
ight) - \log(2\pi) - \psi_\zeta(x)$$

where $\psi_{\zeta}(x) = \sum_{p^e \le x} \log p$ is the second Chebyshev function.

What does this sum converge to?

Theorem (Riemann 1858, von Mangoldt 1905)

$$\sum_{
ho} rac{x^
ho}{
ho} = \lim_{T o\infty} S_\zeta(x,T) = x - rac{1}{2} \log \left(1 - 1/x^2
ight) - \log(2\pi) - \psi_\zeta(x)$$

where $\psi_{\zeta}(x) = \sum_{p^e \le x}' \log p$ is the second Chebyshev function.

This is known as (one formulation of) the explicit formula for $\zeta(s)$.

My Goal

Prove the explicit formula for elliptic curve *L*-functions, with error bounds for $S_E(x, T)$.

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O} .

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O} .

For This Talk:

$$E/\mathbb{Q}:\ y^2=x^3{+}Ax{+}B,\quad A,B\in\mathbb{Z}$$

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O} .

For This Talk:

$$E/\mathbb{Q}:\ y^2=x^3{+}Ax{+}B,\quad A,B\in\mathbb{Z}$$

Example

$$E = 37a : y^2 = x^3 - 16x + 16$$

Figure: The Elliptic Curve 37a

Definition

An elliptic curve E is a smooth projective genus 1 algebraic curve with a marked point \mathcal{O} .

For This Talk:

$$E/\mathbb{Q}:\ y^2=x^3{+}Ax{+}B,\quad A,B\in\mathbb{Z}$$

Example

$$E = 37a : y^2 = x^3 - 16x + 16$$

Figure: The Elliptic Curve 37a

Theorem (Mordell 1922, Weil 1928)

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{TOR} \times \mathbb{Z}^r$$

where $E(\mathbb{Q})_{TOR}$ is a finite abelian group, and $r \in \mathbb{Z}_{\geq 0}$ is the algebraic rank of E/\mathbb{Q} .

Theorem (Mordell 1922, Weil 1928)

$$E(\mathbb{Q}) \approx E(\mathbb{Q})_{TOR} \times \mathbb{Z}^r$$

where $E(\mathbb{Q})_{TOR}$ is a finite abelian group, and $r \in \mathbb{Z}_{\geq 0}$ is the algebraic rank of E/\mathbb{Q} .

Example

For E=37a, we have $E(\mathbb{Q})\approx \mathbb{Z}^1$, generated by P=(0,4):

n	0	1	2	3	4	5	6
nΡ	0	(0,4)	(4,4)	(-4, -4)	(8, -20)	(1, -1)	(24, 116)

n	7	8	9
nΡ	$\left(-\frac{20}{9}, \frac{172}{27}\right)$	$\left(\frac{84}{25}, -\frac{52}{125}\right)$	$\left(-\frac{80}{49}, -\frac{2108}{343}\right)$

Example

$$E = 37a : y^2 = x^3 - 16x + 16$$

Consider its solutions (x, y) modulo 101, e.g. (40, 7):

Example

$$E = 37a : y^2 = x^3 - 16x + 16$$

Consider its solutions (x, y) modulo 101, e.g. (40, 7):

Definition

- ullet For p prime with good reduction, $a_p(E)=a_p:=p+1-\#E(\mathbb{F}_p)$
- For bad primes, $a_p := 0, 1$ or -1 depending on reduction type.

Theorem (Hasse, 1936)

$$|a_p| \le 2\sqrt{p}$$
 for all p .

Theorem (Hasse, 1936)

$$|a_p| \le 2\sqrt{p}$$
 for all p .

Example

For E = 37a,

p	2	3	5	7	11	13	17	19	23	29	31	37
a _p	-2	-3	-2	-1	-5	-2	0	0	2	6	-4	-1

The Conductor of a Curve

Definition

The conductor of E is $N = \prod_{p} p^{f_p(E)}$, where

$$f_p(E) = egin{cases} 0, & p \ ext{good} \ 1, & ext{mult. reduction at } p \ 2, & ext{add. reduction at } p, \end{cases}$$

for $p \neq 2,3$ and possibly more for 2 and 3.

The Conductor of a Curve

Definition

The conductor of E is $N = \prod_{p} p^{f_p(E)}$, where

$$f_p(E) = egin{cases} 0, & p \ ext{good} \ 1, & ext{mult. reduction at } p \ 2, & ext{add. reduction at } p, \end{cases}$$

for $p \neq 2,3$ and possibly more for 2 and 3.

Example

The conductor of 37a is N = 37, hence its name.

Elliptic Curve L-Functions

Definition

The L-function attached to E is

$$L_{E}(s) := \prod_{p \mid N} \frac{1}{1 - a_{p}p^{-s}} \prod_{p \mid N} \frac{1}{1 - a_{p}p^{-s} + p^{1-2s}} = \sum_{n=1}^{\infty} a_{n}n^{-s}$$

for $\Re(s) > \frac{3}{2}$.

The a_n are defined by multiplying out the Euler product.

Elliptic Curve L-Functions

Definition

The L-function attached to E is

$$L_{E}(s) := \prod_{p \mid N} \frac{1}{1 - a_{p}p^{-s}} \prod_{p \nmid N} \frac{1}{1 - a_{p}p^{-s} + p^{1-2s}} = \sum_{n=1}^{\infty} a_{n}n^{-s}$$

for $\Re(s) > \frac{3}{2}$.

The a_n are defined by multiplying out the Euler product.

Definition

The *completed* L-function attached to E is

$$\Lambda_E(s) := N^{s/2} (2\pi)^{-s} \Gamma(s) L_E(s)$$

Modularity & Analytic Continuation of $L_E(s)$

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al, 1999,2001)

There exists an integral newform $f \in S_2(\Gamma_0(N))$ s.t. $L_f(s) = L_E(s)$. That is, there exists a holomorphic function f on \mathbb{H} with Fourier decomposition $f(z) = \sum_n a_n(f) e^{2\pi i n z}$ such that $a_n(f) = a_n(E)$.

Modularity & Analytic Continuation of $L_E(s)$

Theorem (Breuille, Conrad, Diamond, Taylor, Wiles et al, 1999,2001)

There exists an integral newform $f \in S_2(\Gamma_0(N))$ s.t. $L_f(s) = L_E(s)$. That is, there exists a holomorphic function f on \mathbb{H} with Fourier decomposition $f(z) = \sum_n a_n(f) e^{2\pi i n z}$ such that $a_n(f) = a_n(E)$.

Corollary

 $L_E(s)$ extends to an entire function on \mathbb{C} . Specifically,

$$\Lambda(s) = w\Lambda(2-s),$$

where $w = \pm 1$.

The Zeros of $L_E(s)$

Three flavors:

- A simple zero at $0, -1, -2, -3, \dots$
- A zero of order r_{an} at s = 1; r_{an} is called the *analytic rank* of E
- Countably infinite zeros in the strip $0 < \Re(s) < 2$, symmetric about $\Re(s) = 1$ and x-axis.

The Zeros of $L_E(s)$

Three flavors:

- A simple zero at $0, -1, -2, -3, \dots$
- A zero of order r_{an} at s = 1; r_{an} is called the *analytic rank* of E
- Countably infinite zeros in the strip $0 < \Re(s) < 2$, symmetric about $\Re(s) = 1$ and x-axis.

Conjecture (Generalized Riemann Hypothesis for Elliptic Curves)

All nontrivial zeros of $L_E(s)$ are simple and lie on the line $\Re(s) = 1$.

The Zeros of $L_E(s)$

Three flavors:

- A simple zero at $0, -1, -2, -3, \dots$
- A zero of order r_{an} at s = 1; r_{an} is called the *analytic rank* of E
- Countably infinite zeros in the strip $0 < \Re(s) < 2$, symmetric about $\Re(s) = 1$ and x-axis.

Conjecture (Generalized Riemann Hypothesis for Elliptic Curves)

All nontrivial zeros of $L_E(s)$ are simple and lie on the line $\Re(s) = 1$.

Figure: The zeros of $L_E(s)$ for E=37a

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

• $r_{an}=r$, i.e. the order of vanishing of $L_E(s)$ at s=1 equals the rank of the free part of $E(\mathbb{Q})$

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

- $r_{an} = r$, i.e. the order of vanishing of $L_E(s)$ at s = 1 equals the rank of the free part of $E(\mathbb{Q})$
- The leading coefficient of $L_E(s)$ at s=1 is

$$\frac{\Omega_E \cdot Reg_E \cdot \# \mathrm{III}(E/\mathbb{Q}) \cdot \prod_p c_p}{(\# E_{Tor}(\mathbb{Q}))^2}$$

The BSD Conjecture

Conjecture (Birch, Swinnerton-Dyer 1960s)

- $r_{an}=r$, i.e. the order of vanishing of $L_E(s)$ at s=1 equals the rank of the free part of $E(\mathbb{Q})$
- The leading coefficient of $L_E(s)$ at s=1 is

$$\frac{\Omega_E \cdot Reg_E \cdot \# III(E/\mathbb{Q}) \cdot \prod_p c_p}{(\#E_{Tor}(\mathbb{Q}))^2}$$

where

- $ightharpoonup \Omega_E$ is the real period of (an optimal model of) E,
- ightharpoonup Reg_E is the regulator of E,
- # $\mathrm{III}(E/\mathbb{Q})$ is the order of the Shafarevich-Tate group attached to E/\mathbb{Q} ,
- $\prod_p c_p$ is the product of the Tamagawa numbers of E, and
- $F # E_{Tor}(\mathbb{Q})$ is the number of rational torsion points on E.

To state the explicit formula for elliptic curves, we will need to characterize $\frac{L_E'}{L_E} \, (s+1).$

To state the explicit formula for elliptic curves, we will need to characterize $\frac{L_E'}{L_E}(s+1)$.

Lemma 1 (S.)

 $\frac{L_E'}{L_E}(s+1) = \frac{d}{ds}\log(L_E)(s+1)$ has the Dirichlet series $\sum_n c_n(E)n^{-s}$ which converges absolutely for $\Re(s) > \frac{1}{2}$, where

$$c_n(E) := egin{cases} -\left(p^e+1-\#\widetilde{E}(\mathbb{F}_{p^e})
ight) \cdot rac{\log(p)}{p^e}, & n=p^e ext{ a prime power,} \ 0, & ext{otherwise} \end{cases}$$

and $\#\widetilde{E}(\mathbb{F}_{p^e})$ is the number of points on over \mathbb{F}_{p^e} on the (possibly singular) projective curve obtained by reducing E modulo p.

•
$$L_E(s) := \prod_{p \mid N} \frac{1}{1 - a_p p^{-s}} \prod_{p \nmid N} \frac{1}{1 - a_p p^{-s} + p^{1 - 2s}}$$
, so

•
$$L_E(s) := \prod_{p|N} \frac{1}{1 - a_p p^{-s}} \prod_{p \nmid N} \frac{1}{1 - a_p p^{-s} + p^{1-2s}}$$
, so
$$\frac{L_E'}{L_E}(s) = -\sum_{p|N} \frac{a_p \log(p) \cdot p^{-s}}{1 - a_p p^{-s}} - \sum_{p \nmid N} \frac{a_p \log(p) \cdot p^{-s} - 2p^{k-1} \log(p) \cdot p^{-2s}}{1 - a_p p^{-s} + p^{k-1} \cdot p^{-2s}}$$

- $L_E(s) := \prod_{\rho \mid N} \frac{1}{1 a_\rho \rho^{-s}} \prod_{\rho \nmid N} \frac{1}{1 a_\rho \rho^{-s} + \rho^{1-2s}}$, so $\frac{L_E'}{L_E}(s) = -\sum_{\rho \mid N} \frac{a_\rho \log(\rho) \cdot \rho^{-s}}{1 a_\rho \rho^{-s}} \sum_{\rho \nmid N} \frac{a_\rho \log(\rho) \cdot \rho^{-s} 2\rho^{k-1} \log(\rho) \cdot \rho^{-2s}}{1 a_\rho \rho^{-s} + \rho^{k-1} \cdot \rho^{-2s}}$
- For good p, write $1 a_p p^{-s} + p^{k-1} \cdot p^{-2s} = (1 \alpha_p p^{-s})(1 \beta_p p^{-s})$; invert each denominator as power series in p^{-s} and multiply out

- $L_E(s) := \prod_{\rho \mid N} \frac{1}{1 a_\rho \rho^{-s}} \prod_{\rho \nmid N} \frac{1}{1 a_\rho \rho^{-s} + \rho^{1-2s}}$, so $\frac{L_E'}{L_E}(s) = -\sum_{\rho \mid N} \frac{a_\rho \log(\rho) \cdot \rho^{-s}}{1 a_\rho \rho^{-s}} \sum_{\rho \nmid N} \frac{a_\rho \log(\rho) \cdot \rho^{-s} 2\rho^{k-1} \log(\rho) \cdot \rho^{-2s}}{1 a_\rho \rho^{-s} + \rho^{k-1} \cdot \rho^{-2s}}$
- For good p, write $1 a_p p^{-s} + p^{k-1} \cdot p^{-2s} = (1 \alpha_p p^{-s})(1 \beta_p p^{-s})$; invert each denominator as power series in p^{-s} and multiply out
- $\bullet \Rightarrow \frac{L_E'}{L_E}(s) = \sum_{p|N} \sum_{e \ge 1} -a_p^e \log(p) (p^e)^{-s} + \sum_{p\nmid N} \sum_{e \ge 1} -(\alpha_p^e + \beta_p^e) \log(p) (p^e)^{-s}$

Proof (Sketch).

- $L_E(s) := \prod_{p|N} \frac{1}{1 a_p p^{-s}} \prod_{p\nmid N} \frac{1}{1 a_p p^{-s} + p^{1-2s}}$, so $\frac{L_E'}{L_E}(s) = -\sum_{p|N} \frac{a_p \log(p) \cdot p^{-s}}{1 a_p p^{-s}} \sum_{p\nmid N} \frac{a_p \log(p) \cdot p^{-s} 2p^{k-1} \log(p) \cdot p^{-2s}}{1 a_p p^{-s} + p^{k-1} \cdot p^{-2s}}$
- For good p, write $1 a_p p^{-s} + p^{k-1} \cdot p^{-2s} = (1 \alpha_p p^{-s})(1 \beta_p p^{-s})$; invert each denominator as power series in p^{-s} and multiply out

$$\Rightarrow \frac{L_E'}{L_E}(s) = \sum_{p|N} \sum_{e \ge 1} -a_p^e \log(p) (p^e)^{-s}$$
$$+ \sum_{p \nmid N} \sum_{e \ge 1} -(\alpha_p^e + \beta_p^e) \log(p) (p^e)^{-s}$$

By Silverman etc.,

$$a_p^e = p^e + 1 - \#E(\mathbb{F}_{p^e})$$
 for bad p , and $\alpha_p^e + \beta_p^e = p^e + 1 - \#E(\mathbb{F}_{p^e})$ for good p

- $L_E(s) := \prod_{p \mid N} \frac{1}{1 a_p p^{-s}} \prod_{p \nmid N} \frac{1}{1 a_p p^{-s} + p^{1-2s}}$, so $\frac{L_E'}{L_E}(s) = -\sum_{p \mid N} \frac{a_p \log(p) \cdot p^{-s}}{1 a_p p^{-s}} \sum_{p \nmid N} \frac{a_p \log(p) \cdot p^{-s} 2p^{k-1} \log(p) \cdot p^{-2s}}{1 a_p p^{-s} + p^{k-1} \cdot p^{-2s}}$
- For good p, write $1 a_p p^{-s} + p^{k-1} \cdot p^{-2s} = (1 \alpha_p p^{-s})(1 \beta_p p^{-s})$; invert each denominator as power series in p^{-s} and multiply out
- $\Rightarrow \frac{L_E'}{L_E}(s) = \sum_{p|N} \sum_{e \ge 1} -a_p^e \log(p)(p^e)^{-s}$ $+ \sum_{p \nmid N} \sum_{e \ge 1} -(\alpha_p^e + \beta_p^e) \log(p)(p^e)^{-s}$
- By Silverman etc., $a_p^e = p^e + 1 \#\widetilde{E}(\mathbb{F}_{p^e})$ for bad p, and $\alpha_p^e + \beta_p^e = p^e + 1 \#E(\mathbb{F}_{p^e})$ for good p
- Finally, shift left by $1 \Rightarrow (p^e)^{-(s+1)} = \frac{1}{p^e}(p^e)^{-s}$ to pick up factor of $\frac{1}{p^e}$ in coefficients.

Lemma 2 (S.)

We may express $\frac{L_E'}{L_E}(s+1)$ as a sum over the zeros of $L_E(s)$. Specifically, assuming GRH then for any s not in the set of zeros of $L_E(s+1)$,

$$\frac{L_E'}{L_E}(s+1) = \left[\eta + \log\left(\frac{2\pi}{\sqrt{N}}\right)\right] - \sum_{k=1}^{\infty} \frac{s}{k(k+s)} + \sum_{\gamma} \frac{s}{s^2 + \gamma^2}$$

where η is the Euler-Mascheroni constant = 0.5772156649... and γ ranges over the imaginary parts of all nontrivial zeros of L_E .

Proof (Sketch).

• By definition, $L_E(s) = \left(\frac{2\pi}{\sqrt{N}}\right)^s \Gamma(s)^{-1} \Lambda_E(s)$

- By definition, $L_E(s) = \left(\frac{2\pi}{\sqrt{N}}\right)^s \Gamma(s)^{-1} \Lambda_E(s)$
- ⇒ Shifted logarithmic derivative

$$rac{L_E'}{L_E} \left(s + 1
ight) = \log \left(rac{2\pi}{\sqrt{N}}
ight) - rac{\Gamma'}{\Gamma} (s+1) + rac{\Lambda_E'}{\Lambda_E} \left(s + 1
ight)$$

Proof (Sketch).

- By definition, $L_E(s) = \left(\frac{2\pi}{\sqrt{N}}\right)^s \Gamma(s)^{-1} \Lambda_E(s)$
- ⇒ Shifted logarithmic derivative

$$rac{L_E'}{L_E} \left(s + 1
ight) = \log \left(rac{2\pi}{\sqrt{N}}
ight) - rac{\Gamma'}{\Gamma} (s+1) + rac{\Lambda_E'}{\Lambda_E} \left(s + 1
ight)$$

• $\frac{\Gamma'}{\Gamma}(s+1) = -\eta + \sum_{k=1}^{\infty} \frac{s}{k(k+s)}$ outside negative integers

- By definition, $L_E(s) = \left(\frac{2\pi}{\sqrt{N}}\right)^s \Gamma(s)^{-1} \Lambda_E(s)$
- ⇒ Shifted logarithmic derivative

$$rac{L_E'}{L_E} \left(s + 1
ight) = \log \left(rac{2\pi}{\sqrt{N}}
ight) - rac{\Gamma'}{\Gamma} (s+1) + rac{\Lambda_E'}{\Lambda_E} \left(s + 1
ight)$$

- $\frac{\Gamma'}{\Gamma}(s+1) = -\eta + \sum_{k=1}^{\infty} \frac{s}{k(k+s)}$ outside negative integers
- $\frac{\Lambda_E'}{\Lambda_E}(s+1) = \sum_{\gamma} \frac{s}{s^2 + \gamma^2}$, obtained by logarithmically differentiating Hadamard product of $\Lambda_E(s+1)$.

Corollary 1

If E/\mathbb{Q} has conductor N and analytic rank r then

 $N > 0.202e^{2r}$

Corollary 1

If E/\mathbb{Q} has conductor N and analytic rank r then

$$N > 0.202e^{2r}$$

Better results (S.), although nowhere close to effective yet:

r	$N \geq$	Smallest Known Conductor
0	3	11
1	6	37
2	16	389
3	55	5077
4	232	234446
5	1192	19047851
6	6696	5187563742

Contingent on GRH and BSD we have a complete description of the Taylor series of L_E about s=1. Specifically:

Contingent on GRH and BSD we have a complete description of the Taylor series of L_E about s=1. Specifically:

Corollary 2

Let $L_E(s+1) = s^r (a + b \cdot s + c \cdot s^2 + O(s^3))$, where a is the leading coefficient described by BSD. Then

$$\frac{b}{a} = \eta + \log\left(\frac{2\pi}{\sqrt{N}}\right)$$

$$\frac{c}{a} = \frac{1}{2}\left[\eta + \log\left(\frac{2\pi}{\sqrt{N}}\right)\right]^2 - \frac{\pi^2}{12} + \sum_{\gamma > 0} \gamma^{-2}$$

Recursive formulae exist for higher coefficients as well.

Definition

Let

•

$$S_E(x, T) := \sum_{|\gamma| < T} \frac{x^{i\gamma}}{i\gamma} = \sum_{0 < \gamma < T} \frac{2\sin(\gamma \log x)}{\gamma}$$

where γ runs over imaginary parts of nontrivial zeros other than $\emph{s}=1$

Definition

Let

•

•

$$S_E(x, T) := \sum_{|\gamma| < T} \frac{x^{i\gamma}}{i\gamma} = \sum_{0 < \gamma < T} \frac{2\sin(\gamma \log x)}{\gamma}$$

where γ runs over imaginary parts of nontrivial zeros other than s=1

$$\psi_E(x) := \sum_{n \le x}' c_n(E)$$

i.e. $\psi_E(x)$ is the cumulative sum function of the Dirichlet coefficients of $\frac{L_E'}{L_E}(s+1)$

(Recall
$$c_n(E) = \left(p^e + 1 - \#\widetilde{E}(\mathbb{F}_{p^e})\right) \cdot \frac{\log(p)}{p^e}$$
 for $n = p^e$ and 0 otherwise)

Figure: $\psi_E(x)$ for E = 37a

Theorem

For any any E/\mathbb{Q} with conductor N and for any x>1 the partial sum function $S_E(x,T)$ converges as $T\to\infty$. Specifically,

$$\lim_{T \to \infty} S_E(x, T) = \sum_{\gamma > 0} \frac{2\sin(\gamma \log x)}{\gamma}$$

$$= -\eta - \log\left(\frac{2\pi}{\sqrt{N}}\right) - r_{an}\log x - \log(1 - x^{-1}) + \psi_E(x)$$

where η is the Euler-Mascheroni constant = 0.5772156649...

$$\sum_{\gamma>0} \frac{2\sin(\gamma\log x)}{\gamma} = -\eta - \log\left(\frac{2\pi}{\sqrt{N}}\right) - r_{an}\log x - \log(1-x^{-1}) + \psi_E(x)$$

$$\sum_{\gamma>0} \frac{2\sin(\gamma\log x)}{\gamma} = -\eta - \log\left(\frac{2\pi}{\sqrt{N}}\right) - r_{an}\log x - \log(1-x^{-1}) + \psi_E(x)$$

$$\sum_{\gamma>0} \frac{2\sin(\gamma\log x)}{\gamma} = -\eta - \log\left(\frac{2\pi}{\sqrt{N}}\right) - r_{an}\log x - \log(1-x^{-1}) + \psi_E(x)$$

$$\sum_{\gamma>0} \frac{2\sin(\gamma\log x)}{\gamma} = -\eta - \log\left(\frac{2\pi}{\sqrt{N}}\right) - r_{an}\log x - \log(1-x^{-1}) + \psi_E(x)$$

$$\sum_{\gamma>0} \frac{2\sin(\gamma\log x)}{\gamma} = -\eta - \log\left(\frac{2\pi}{\sqrt{N}}\right) - r_{an}\log x - \log(1-x^{-1}) + \psi_E(x)$$

$$\sum_{\gamma>0} \frac{2\sin(\gamma\log x)}{\gamma} = -\eta - \log\left(\frac{2\pi}{\sqrt{N}}\right) - r_{an}\log x - \log(1-x^{-1}) + \psi_E(x)$$

$$\sum_{\gamma>0} \frac{2\sin(\gamma\log x)}{\gamma} = -\eta - \log\left(\frac{2\pi}{\sqrt{N}}\right) - r_{an}\log x - \log(1-x^{-1}) + \psi_E(x)$$

$$\sum_{\gamma>0} \frac{2\sin(\gamma\log x)}{\gamma} = -\eta - \log\left(\frac{2\pi}{\sqrt{N}}\right) - r_{an}\log x - \log(1-x^{-1}) + \psi_E(x)$$

$$\sum_{\gamma>0} \frac{2\sin(\gamma\log x)}{\gamma} = -\eta - \log\left(\frac{2\pi}{\sqrt{N}}\right) - r_{an}\log x - \log(1-x^{-1}) + \psi_E(x)$$

Proving the Explicit Formula

How do we go about proving this?:

Proving the Explicit Formula

How do we go about proving this?:

• Let $\sigma>\frac{1}{2}$ and consider the integral $\frac{-1}{2\pi i}\int_{\sigma-iT}^{\sigma+iT}\frac{L_E'}{L_E}\left(s+1\right)\frac{x^s}{s}\;ds$

Proving the Explicit Formula

How do we go about proving this?:

- Let $\sigma>\frac{1}{2}$ and consider the integral $\frac{-1}{2\pi i}\int_{\sigma-iT}^{\sigma+iT}\frac{L_E'}{L_E}\left(s+1\right)\frac{x^s}{s}\;ds$
- Replace $\frac{L_E'}{L_E}(s+1)$ with two different series representations and distribute
- \bullet Replace each integral with contour integral on $\mathbb C$ plus residues
- Contour integrals \to 0 as $T \to \infty$.

Using the Cauchy Residue Theorem

Example

$$\frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \frac{x^s}{s} ds = 1 + \frac{1}{2\pi i} \left(\int_{-\infty + iT}^{\sigma + iT} - \int_{-\infty - iT}^{\sigma - iT} \right) \frac{x^s}{s} ds$$

Using the Cauchy Residue Theorem

Example

$$\frac{1}{2\pi i} \int_{\sigma - iT}^{\sigma + iT} \frac{x^s}{s} ds = 1 + \frac{1}{2\pi i} \left(\int_{-\infty + iT}^{\sigma + iT} - \int_{-\infty - iT}^{\sigma - iT} \right) \frac{x^s}{s} ds$$

Improving the Explicit Formula

Current proofs (e.g. Iwaniec & Kowalski, Montgomery & Vaughn) only give asymptotic arguments for proofs.

Improving the Explicit Formula

Current proofs (e.g. Iwaniec & Kowalski, Montgomery & Vaughn) only give asymptotic arguments for proofs.

My Work:

Rework Proofs to include explicit constants on error terms.

Improving the Explicit Formula

Current proofs (e.g. Iwaniec & Kowalski, Montgomery & Vaughn) only give asymptotic arguments for proofs.

My Work:

Rework Proofs to include explicit constants on error terms.

Conjecture (S.)

Let
$$\epsilon(x, T) = S_E(x, T) + \eta + \log\left(\frac{2\pi}{\sqrt{N}}\right) + r_{an}\log x + \log(1 - x^{-1}) - \psi_E(x)$$
.
Then \exists a positive constant M such that

$$\epsilon(T,x) < M \cdot \frac{\log^2 T}{T} \cdot \frac{x+1/x}{\log x} \left(1 + \sum_{n \neq x} \left| \frac{c_n}{n \log(\frac{x}{n})} \right| \right)$$

for T >> 1.

The Gibbs Phenomenon

Conjecture (S.) $\epsilon(T,x) < M \cdot \frac{\log^2 T}{T} \cdot \frac{x+1/x}{\log x} \left(1 + \sum_{n \neq x} \left| \frac{c_n}{n \log(\frac{x}{n})} \right| \right) \text{ for } T >> 1.$

Figure: The Gibbs Phenomenon clearly visible at jump discontinuities for 37a.

The Hard Part

Why is this hard?

- Explicit proof requires us to bound integral of $\frac{\Lambda_E'}{\Lambda_E}(s+1)\frac{x^s}{s}$ across critical strip
- ⇒ require explicit bounds on zero density along critical strip for EC L-functions.

Loosely, {nontrivial zeros of L_E } \sim { $a_p(E): p$ prime} in an information theoretic sense. For example,

Loosely, {nontrivial zeros of L_E } \sim { $a_p(E): p$ prime} in an information theoretic sense. For example,

Corollary (S.)

$$a_p = \lim_{T \to \infty} \frac{-2\pi p}{\log p} \cdot \frac{1}{T} \sum_{0 < \gamma < T} \frac{\cos(\gamma \log p)}{\gamma}$$

Loosely, {nontrivial zeros of L_E } \sim { $a_p(E): p$ prime} in an information theoretic sense. For example,

Corollary (S.)

$$a_p = \lim_{T \to \infty} \frac{-2\pi p}{\log p} \cdot \frac{1}{T} \sum_{0 < \gamma < T} \frac{\cos(\gamma \log p)}{\gamma}$$

Figure: $\frac{-2\pi p}{\log p} \sum_{0 < \gamma < T} \frac{\cos(\gamma \log p)}{\gamma}$ as a function of T for various small p

Loosely, {nontrivial zeros of L_E } \sim { $a_p(E): p$ prime} in an information theoretic sense. For example,

Corollary (S.)

$$a_p = \lim_{T \to \infty} \frac{-2\pi p}{\log p} \cdot \frac{1}{T} \sum_{0 < \gamma < T} \frac{\cos(\gamma \log p)}{\gamma}$$

Figure: $\frac{-2\pi p}{\log p} \sum_{0 < \gamma < T} \frac{\cos(\gamma \log p)}{\gamma}$ as a function of T for various small p

Loosely, {nontrivial zeros of L_E } \sim { $a_p(E): p$ prime} in an information theoretic sense. For example,

Corollary (S.)

$$a_p = \lim_{T \to \infty} \frac{-2\pi p}{\log p} \cdot \frac{1}{T} \sum_{0 < \gamma < T} \frac{\cos(\gamma \log p)}{\gamma}$$

Figure: $\frac{-2\pi p}{\log p} \sum_{0 < \gamma < T} \frac{\cos(\gamma \log p)}{\gamma}$ as a function of T for various small p

Loosely, {nontrivial zeros of L_E } \sim { $a_p(E): p$ prime} in an information theoretic sense. For example,

Corollary (S.)

$$a_p = \lim_{T \to \infty} \frac{-2\pi p}{\log p} \cdot \frac{1}{T} \sum_{0 < \gamma < T} \frac{\cos(\gamma \log p)}{\gamma}$$

Figure: $\frac{-2\pi p}{\log p} \sum_{0 < \gamma < T} \frac{\cos(\gamma \log p)}{\gamma}$ as a function of T for various small p

Loosely, {nontrivial zeros of L_E } \sim { $a_p(E): p$ prime} in an information theoretic sense. For example,

Corollary (S.)

$$a_p = \lim_{T \to \infty} \frac{-2\pi p}{\log p} \cdot \frac{1}{T} \sum_{0 < \gamma < T} \frac{\cos(\gamma \log p)}{\gamma}$$

Figure: $\frac{-2\pi p}{\log p} \sum_{0 < \gamma < T} \frac{\cos(\gamma \log p)}{\gamma}$ as a function of T for various small p

Conjecture - Alternate BSD (Sarnak, Mazur)

For any given E/\mathbb{Q} ,

$$\lim_{x \to \infty} \frac{1}{\log(x)} \sum_{p \le x} \frac{-a_p \log(p)}{p} = r$$

Conjecture - Alternate BSD (Sarnak, Mazur)

For any given E/\mathbb{Q} ,

$$\lim_{x \to \infty} \frac{1}{\log(x)} \sum_{p \le x} \frac{-a_p \log(p)}{p} = r$$

Where does this comes from?

Take explicit formula:

$$\sum_{\gamma} \frac{\sin(\gamma \log x)}{\gamma} = -\eta - \log\left(\frac{2\pi}{\sqrt{N}}\right) - r \log x - \log(1 - 1/x) + \psi_{E}(x)$$

Divide both sides by log(x) and take limits*.

• Generalize to modular *L*-functions of arbitrary weight + twist

- Generalize to modular L-functions of arbitrary weight + twist
- Computing zeros more efficiently
 - Current best algorithms are polynomial in N
 - Would be great to get methods that are polynomial in log(N), or insensitive to N entirely

- Generalize to modular L-functions of arbitrary weight + twist
- Computing zeros more efficiently
 - Current best algorithms are polynomial in N
 - Would be great to get methods that are polynomial in log(N), or insensitive to N entirely
- Bounding rank analytically in an efficient way for given curves
 - Improve work of Bober et al

- Generalize to modular L-functions of arbitrary weight + twist
- Computing zeros more efficiently
 - Current best algorithms are polynomial in N
 - ▶ Would be great to get methods that are polynomial in log(N), or insensitive to N entirely
- Bounding rank analytically in an efficient way for given curves
 - ▶ Improve work of Bober et al
- Location of the first nontrivial zero
 - No theorems currently exist giving bounds on the location of the first nontrivial zero in terms of N, r etc.

- Generalize to modular L-functions of arbitrary weight + twist
- Computing zeros more efficiently
 - Current best algorithms are polynomial in N
 - Would be great to get methods that are polynomial in log(N), or insensitive to N entirely
- Bounding rank analytically in an efficient way for given curves
 - ▶ Improve work of Bober et al
- Location of the first nontrivial zero
 - No theorems currently exist giving bounds on the location of the first nontrivial zero in terms of N, r etc.
- Computing conductor efficiently via analytic methods?

Ngiyabonga Kakhulu

Ngiyabonga Kakhulu

Hamba Kahle!