# Sina Weibo as a Corpus for Studying Public Opinions

Christine Kuang, Siqi Wu, and Angie Zhu

Department of Statistics, UC Berkeley

May 3, 2012

#### **Outline**

- Introduction
- 2 Processing
- **B** EDA
- **4** Classification
  - LASSO
  - *I*<sub>1</sub>-Norm Support Vector Machine
- **5** Further Work

#### Introduction

- Opinions on microblogging and social networking websites
- Sina Weibo 新浪微博 is the largest microblogging website: accounted for 65% of China's microblog market as of December 2011
- Study public opinions using Sina Weibo as a corpus for a given topic

#### **Topic**

- Internet censorship in China
- Time sensitive
- Processing is topic-dependent
- Hot topic is preferred
- Chosen topic: Han Han 韩寒

## Background

- HAN Han 韩寒 (born 23 September 1982) is a Chinese best-selling author, professional rally driver, and wildly popular blogger
- Published his first novel *Triple*Gate 三重门 at age of 17
- High school dropout



Photograph by Tony Law / Redux. Source:

http://www.time.com/time/magazine/article/

0,9171,1931619,00.html

# Background (Cont'd)

- Ghostwriting allegation against Han from January 2012
- FANG Zhouzi 方舟子, a scientific author and anti-fraud crusader, created widespread debate on the Internet
- Light and Upright 光明与磊落: photocopied manuscripts set, including his first novel Triple Gate 三重门
- Han received a death threat on April 15, 2012

#### **Data Collection**

- Topic searching via API:
  - Only the latest results are returned
  - Up to 30 each time
- 22,398 posts collected on April 16 and 17, 2012
- UTF-8 encoding

## **Characteristics of Chinese Language**

- No explicit delimiter
- Ambiguities in phrases
  - Context ambiguition: e.g., 他好吃
  - Word definition ambiguition: e.g., 打
- Out-of-vocabulary words
- No 1-to-1 correspondence between traditional and simplified Chinese

#### **Characteristics of Sina Weibo Posts**

1714080953 2012-04-16 10:01:59 //@ 風笑巨石: 那尊神容不得別人 质疑? //@ 伯林 2011: 质疑派人士遭到人肉, 人身攻击, 甚至死亡威胁的时候, 从来没有污名化整个挺韩派, 也没有引起什么媒体关注, 相比之下, 韩寒如此炒作, 太无良了, 挺韩和批韩的双方本不至于如 此撕裂



一刀两段-两刀刀断☆: 涉合问题方舟子管不了,也不敢管。他只敢拿<mark>韩寒</mark>开心,只要不涉及官、贪、黑社会他才敢冒泡//@尿尿不分叉才最寂寞: 完了完了//@向右转-Lan:完了完了,@方舟子 要开始打马英九的假了!!



- Multiple forms
- Informal and short
- Reposting: "//@"
- Spams
- Emotion symbols
- Internet slangs
- Topic: "# 话题 #"

# **Pre-Tagging Processing**

1165303315 2012-04-16 09:55:40 《韩寒收到网友死亡威胁》 (来自 @ 新浪娱乐) http://t.cn/zOprKap 1165303315 2012-04-16 09:55:40 《Han Han received death threat online》 (from @ 新浪娱乐) http://t.cn/zOprKap

- Remove user identification number and time stamp
- Only the reposting user's comment is kept: If the resulting string is empty, it will be eliminated as well
- Remove URLs
- Remove duplicates
- 13,070 posts left

## **Tagging**

- Process: tagged 3000 total posts with four categories
- Examples:

Positive 支持韩寒! Support Han Han!
Negative 看到韩寒就恶心。Feel nauseous when I see
Han Han.

- Limitations:
  - Subjective responses:e.g., "that wasn't too bad"
  - Uncertain tags
    - Quotes
    - Posts without subjects
    - Posts that just mention opposing author

## **Pre-Segmentation Processing**

- Word segmentation is crucial for our word-based analysis
- Substitute mentioning of topic-related usernames by the corresponding proper nouns
- Remove other mentioned usernames
- Substitute emotional symbols and Internet slangs by the corresponding word surrounded by square brackets

# Segmentation

- 汉语词法分析系统 ICTCLAS (Institute of Computing Technology, Chinese Lexical Analysis System) is a well known Chinese word segmentation system
- Chinese word segmentation, lexical tagging, named entity recognition, unknown words detection, and the user-defined dictionary
- Examples from the user-defined dictionary:
  - 围脖 (wei2 bo2, means "scarf") refers to 微博 (Weibo, wei1 bo2)
  - **韩少** (韩: Han Han's surname, 少: abbreviation of 少爷, which means "young master of the house") refers to Han Han

# **Conjunction Rules**

[Lee and Renganathan, 2011] suggested that special consideration should be given to

- 1 Although (part A), (part B).
- 2 (Part A), but (part B).
- 3 Although (part A), but (part B).

For each case, only part B will be kept.

# **Stop Words and Punctuation Elimination**

- Remove prepositions, punctuation marks, English character strings, interjections, modal particles, onomatopoeia, and auxiliary words
- Remove pre-defined stop words and number strings

# **Word Frequency**

- **Extract** the word frequency vector  $x_i$  from the *i*-th post
- Focus on words with overall frequency  $\geq$  10, resulting in p = 795 words
- Construct the word frequency matrix  $X = (x_1, ..., x_n)^T$ , where n = 3000. This will be our design matrix.

# Word Frequency Visualization: Matrix Plot



## **Co-Occurrance**



# Co-Occurrance



Introduction

Goal: study the relation between words by graphical models

EDA

■ Fact: if  $x \in \mathbb{R}^p$  follows  $N(\mu, \Sigma)$ , then for  $i \neq j$ 

$$(x_i \perp x_j) \mid \{x_{\mathsf{all but }(i,j)}\} \text{ iff } (\Sigma^{-1})_{ij} = 0$$

- This motivates us to estimate  $\Sigma^{-1}$ .
- Let  $x_1, x_2, ... x_n$  be IID  $N(\mu, \Sigma)$  data. The joint likelihood of the data is

$$f(x_1, ..., x_n | \mu, \Sigma) = \frac{1}{(2\pi \det(\Sigma))^{n/2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^n (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)\right\}.$$

# Sparse Graphical Models (Cont'd)

■ Log-likelihood:

$$I(\mu, \Sigma^{-1}) = -\frac{n}{2} \log \det (\Sigma) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu)$$

■ Do a maximum likelihood estimation (optimize over  $\mu$  and  $S = \Sigma^{-1}$ ; easy to see that the MLE for  $\mu$  is  $\bar{x}$ ):

$$\max_{S} \left\{ \frac{n}{2} \log \det \left( S \right) - \frac{1}{2} \sum_{i=1}^{n} (x_i - \bar{x})^T S(x_i - \bar{x}) \right\}$$

Introduction

# Sparse Graphical Models (Cont'd)

■ Trace trick  $\sum_{i=1}^{n} (x_i - \bar{x})^T S(x_i - \bar{x}) =$  $\operatorname{Tr}(\sum_{i=1}^{n}(x_{i}-\bar{x})(x_{i}-\bar{x})^{T}S)=n\operatorname{Tr}(\hat{\Sigma}S)$ . We end up with:

$$\max_{S} \left\{ \log \det \left( S \right) - \mathbf{Tr}(\hat{\Sigma}S) \right\}$$

Fitting a sparse Gaussian graphical model:

$$\max_{S} \left\{ \log \det S - \mathbf{Tr}(\hat{\Sigma}S) - \lambda ||S||_1 \right\}$$

where  $||S||_1 = \sum_{i,i} |s_{ii}|$ . See, e.g. Banerjee et al. (2007) and Friedman et al. (2007).













#### Sparse Graphical Models v.s. Co-Occurence

#### **Sparse Graphical Models**



#### Co-occurence



Introduction

- $\mathbf{x}_i \in R^p$  be the *i*-th row of  $X \in R^{n \times p}$ , where n = 3000 and p = 395
- $y_i$ : the corresponding category. Assume  $y_i \in \{-1, +1\}$ , where the +1 can have one (and only one) of the following meanings (at a time):
  - positive feeling about Han Han
  - negative feeling about Han Han
  - netural or unidentifiable opinion
  - spam
- Two classification methods: LASSO and I<sub>1</sub>-norm SVM.

#### **LASSO**

■ The Lasso approach (Tibshirani, (1996)):

$$\hat{\beta}(\lambda) = \arg\min_{\beta} \frac{1}{2} ||\mathbf{y} - (\beta_0 + \mathbf{X}\beta)||_2^2 + \lambda ||\beta||_1$$

■ The classifier:

$$\mathsf{class}(x) = \mathbf{sign}(\beta_0 + x^T \beta) \in \{-1, +1\}$$

- Four models for each category for classification
- General overview of method
- General overview of application to data
  - for 4 categories
  - 10 fold CV
  - classification error

LASSO

# **Choosing** $\lambda$ : **Cross-Validation**



# **LASSO Coefficient interpretation**

■ The classifier:

$$\mathsf{class}(x) = \mathbf{sign}(\beta_0 + x^T \beta) \in \{-1, +1\}$$

- We can look at coefficients  $\beta$ 
  - Absolute value: most relevant/predictive words
  - Positive: more likely to classify the post in +1 category (all other covariates being fixed)
  - Negative: more likely to be in −1 category

LASSO

# Positive v.s. Nonpositive Classification Result

- $y_i \in \{-1, +1\};$
- $\blacksquare$  +1: positive opinion (about Han Han);
- -1: non-positive opinion, including negative, neutral and spam.

| Word         | Absolute Coef. | Word         | Positive Coef. | Word       | Negative Coef. |
|--------------|----------------|--------------|----------------|------------|----------------|
| 加油           | 0.820          | 加油           | 0.820          | 样子         | -0.396         |
| (keep going) |                | (keep going) |                | (manner)   |                |
| 韩少           | 0.644          | 韩少           | 0.644          | 恋          | -0.344         |
| (Master Han) |                | (Master Han) |                | (love)     |                |
| 成熟           | 0.546          | 成熟           | 0.546          | 发表         | -0.336         |
| (mature)     |                | (mature)     |                | (announce) |                |
| 顶            | 0.533          | 顶            | 0.533          | 道理         | -0.336         |
| (support)    |                | (support)    |                | (rational) |                |
| 宽容           | 0.518          | 宽容           | 0.518          | 利益         | -0.335         |
| (tolerant)   |                | (tolerant)   |                | (benefit)  |                |

LASSO word images for the positive v.s. nonpositive classification.

LASSO

# Negative v.s. Nonnegative Classification Result

- $\blacksquare$  +1: negative opinion;
- -1: non-negative opinion, including positive, neutral and spam.

| Word         | Absolute Coef. | Word         | Positive Coef. | Word      | Negative Coef. | ]     |
|--------------|----------------|--------------|----------------|-----------|----------------|-------|
| 讨厌           | 0.481          | 讨厌           | 0.481          | 支持        | -0.008         | 1     |
| (hate)       |                | (hate)       |                | (support) |                |       |
| 无耻           | 0.412          | 无耻           | 0.412          |           | -              | 1     |
| (shameless)  |                | (shameless)  |                | -         |                |       |
| 恶心           | 0.395          | 恶心           | 0.395          |           | -              | LASSO |
| (disgusting) |                | (disgusting) |                | -         |                |       |
| 骗子           | 0.380          | 骗子           | 0.380          |           | -              | 1     |
| (liar)       |                | (liar)       |                | -         |                |       |
| 扁            | 0.353          | 扁            | 0.353          | -         | -              | 1     |
| (beat up)    |                | (beat up)    | -              | -         |                | J     |

word images for the negative v.s. nonnegative classification.

Introduction

# **Standard Support Vector Machine**

- Again, linear decision function  $f(x) = \beta_0 + \beta x$ ;
- The classifier class(x) = sign(f(x)).
- The support vector machine (SVM) (see, e.g. Hastie et al 2001):

$$\min_{\beta_0,\beta} \sum_{i=1}^n (1 - y_i f(x_i))_+ + \frac{\lambda}{2} ||\beta||_2^2,$$

where  $z_+ = \max(0, z)$ .

/<sub>1</sub>-Norm Support Vector Machine

# /<sub>1</sub>-Norm Support Vector Machine

■ Replacing the  $I_2$ -norm by  $I_1$ -norm yields the sparse SVM (Zhu et al 2003):

$$\min_{\beta_0,\beta} \left\{ \sum_{i=1}^n (1 - y_i f(x_i))_+ + \lambda ||\beta||_1 \right\}.$$

■ Computation: use the matlab **Ipsvm** package by Fung and Mangasarian (2002)

1-Norm Support Vector Machine

# Positive v.s. Nonpositive Classification Result

- $\blacksquare$  +1: positive opinion;
- -1: non-positive opinion, including negative, neutral and spam.
- Cross validation result:
  - training sample misclassification rate: 16.9%
  - testing sample misclassification rate: 28.2%

| Word             | Absolute Coef. | Word         | Positive Coef. | Word             | Negative Coef. |
|------------------|----------------|--------------|----------------|------------------|----------------|
| 加油               | 2.340          | 加油           | 2.340          | 铁证               | 2.305          |
| (keep going)     |                | (keep going) |                | (clear evidence) |                |
| 铁证               | 2.305          | 家人           | 2.269          | 接受               | 2.061          |
| (clear evidence) |                | (family)     |                | (accept)         |                |
| 家人               | 2.269          | 韩少           | 1.969          | 媒体               | 1.907          |
| (family)         |                | (Master Han) |                | (media)          |                |
| 接受               | 2.061          | 成熟           | 1.806          | 默默               | 1.883          |
| (accept)         |                | (mature)     |                | (quietly)        |                |
| 韩少               | 1.969          | 顶            | 1.803          | 四娘               | 1.762          |
| (Master Han)     |                | (support)    |                | (GUO Jingming)   |                |

 $I_1$ -SVM word images for the positive v.s. positive classification.

Introduction

# Negative v.s. Nonnegative Classification Result

- $\blacksquare$  +1: negative opinion;
- -1: non-negative opinion, including positive, neutral and spam.
- Cross validation result:
  - training sample misclassification rate: 6.4%
  - testing sample misclassification rate: 11.5%

| Word               | Absolute Coef. | Word               | Positive Coef. | Word           | Negative Coef. |
|--------------------|----------------|--------------------|----------------|----------------|----------------|
| 扁                  | 1.777          | 扁                  | 1.777          | 脑子             | 1.447          |
| (beat up)          |                | (beat up)          |                | (mind)         |                |
| 苦肉计                | 1.708          | 苦肉计                | 1.708          | 彻底             | 1.290          |
| (the use of        |                | (the use of        |                | (completely)   |                |
| self-injury to win |                | self-injury to win |                |                |                |
| somebody's         |                | somebody's         |                |                |                |
| confidence)        |                | confidence)        |                |                |                |
| 恶心                 | 1.527          | 恶心                 | 1.527          | 送给             | 1.221          |
| (disgusting)       |                | (disgusting)       |                | (give)         |                |
| 脑子                 | 1.447          | 骗子                 | 1.301          | 感觉             | 1.109          |
| (asdf)             |                | (liar)             |                | (feel)         |                |
| 骗子                 | 1.301          | 公开                 | 1.220          | 热点             | 1.101          |
| (liar)             |                | (open)             |                | (hot interest) |                |

/<sub>1</sub>-Norm Support Vector Machine

### /<sub>1</sub>-Norm SVM v.s. LASSO

# Positive v.s. Nonpositive Classification Results Positive coefficients

| I <sub>1</sub> -Norm SVM |               | LASSO        |                |
|--------------------------|---------------|--------------|----------------|
| Word                     | Postive Coef. | Word         | Positive Coef. |
| 加油                       | 2.340         | 加油           | 0.820          |
| (keep going)             |               | (keep going) |                |
| 家人                       | 2.269         | 韩少           | 0.644          |
| (family)                 |               | (Master Han) |                |
| 韩少                       | 1.969         | 成熟           | 0.546          |
| (Master Han)             |               | (mature)     |                |
| 成熟                       | 1.806         | 顶            | 0.533          |
| (mature)                 |               | (support)    |                |
| 顶                        | 1.803         | 宽容           | 0.518          |
| (support)                |               | (tolerant)   |                |

#### **Further Work**

- Comparison with maximum entropy approach
- Graphical model to track reposting
- Statistical models for identifying Internet slangs
- Sampling from large graphs