# CMPS 101 Winter 2017 Midterm Exam 2

# **Solutions**

1. (20 Points) Use the Master Theorem to find tight asymptotic bounds for the following recurrences.

a. (10 Points) 
$$T(n) = 8T(n/4) + n\sqrt{n}$$

#### **Solution:**

We compare  $n\sqrt{n} = n^{3/2}$  to  $n^{\log_4(8)}$ . Since  $8 = 4^{3/2} \Rightarrow \log_4(8) = 3/2 \Rightarrow n^{\log_4(8)} = n^{3/2}$ , the two functions are asymptotically equivalent. Case 2 of the Master Theorem gives  $T(n) = \Theta(n^{3/2} \log(n))$ .

b. (10 Points)  $T(n) = 3T(n/2) + \log(n!)$ 

#### **Solution:**

First, we simplify the recurrence:  $T(n) = 3T(n/2) + n \log(n)$ . (Recall we showed using Stirling's formula that  $\log(n!) = \Theta(n \log(n))$ .) Now we compare  $n \log(n)$  to  $n^{\log_2(3)}$ .

Let  $\epsilon = \frac{1}{2}(\log_2(3) - 1)$ . Then  $3 > 2 \Rightarrow \log_2(3) > 1$ , so  $\epsilon > 0$ . Also  $1 + \epsilon = \log_2(3) - \epsilon$ , from which it follows that

$$\lim_{n \to \infty} \left( \frac{n \log(n)}{n^{\log_2(3) - \epsilon}} \right) = \lim_{n \to \infty} \left( \frac{n \log(n)}{n^{1 + \epsilon}} \right) = \lim_{n \to \infty} \left( \frac{\log(n)}{n^{\epsilon}} \right) = 0$$

Therefore  $n \log(n) = o(n^{\log_2(3) - \epsilon})$ , whence  $n \log(n) = O(n^{\log_2(3) - \epsilon})$ . Case 1 of the Master Theorem says  $T(n) = \theta(n^{\log_2(3)})$ .

2. (20 Points) Let T be a tree with n vertices and m edges. Use induction on m to prove that m = n - 1. **Proof:** 

- I. Suppose m = 0. Since T is connected it can have only one vertex, hence n = 1. Thus m = 0 = n 1, showing that the base case is satisfied.
- II. Let m>0, and assume any tree T' with fewer than m edges satisfies |E(T')|=|V(T')|-1. We must show that m=n-1. Pick an edge e in T and remove it. The resulting graph T-e consists of two trees  $T_1$  and  $T_2$ , each with fewer than m edges. Suppose  $T_i$  has  $m_i$  edges and  $n_i$  vertices (for i=1,2). The induction hypothesis yields  $m_i=n_i-1$  (for i=1,2). Observe also that  $n_1+n_2=n$  since no vertices were removed. Therefore

$$m = m_1 + m_2 + 1 = (n_1 - 1) + (n_2 - 1) + 1 = n_1 + n_2 - 1 = n - 1$$

The result holds for all trees by the second principle of mathematical induction.

3. (20 Points) Let G be an acyclic graph with n vertices, m edges, and k connected components. Prove that m = n - k. (Hint: use the result of problem 2.)

#### **Proof:**

Let  $T_1, T_2, ..., T_k$  be the connected components of G, and suppose  $T_i$  has  $n_i$  vertices and  $m_i$  edges respectively  $(1 \le i \le k)$ . Since each  $T_i$  is necessarily a tree, we can apply the result of the previous problem to get  $m_i = n_i - 1$   $(1 \le i \le k)$ . Then

$$m = \sum_{i=1}^{k} m_i = \sum_{i=1}^{k} (n_i - 1) = \sum_{i=1}^{k} n_i - \sum_{i=1}^{k} 1 = n - k$$
,

and m = n - k as required.

///

- 4. (20 Points) Run BFS on the digraph pictured on the back page of this exam, with source vertex s = 7. Process adjacency lists (the for loop on lines 12-17 of BFS) in increasing order by vertex label.
  - a. (10 Points) Fill in the following table, determine the order in which vertices enter the Queue, and draw the BFS Tree.

|    | Adjacency List | Color | Distance | Parent |
|----|----------------|-------|----------|--------|
| 1  | 2              | black | 4        | 4      |
| 2  | 5              | black | 2        | 3      |
| 3  | 2 5            | black | 1        | 7      |
| 4  | 1              | black | 3        | 5      |
| 5  | 4              | black | 2        | 3      |
| 6  | 3 5 9 10       | black | 1        | 7      |
| 7  | 3 6            | black | 0        | NIL    |
| 8  | 4              | black | 3        | 9      |
| 9  | 4 5 8          | black | 2        | 6      |
| 10 | 9 11           | black | 2        | 6      |
| 11 | 7              | black | 3        | 10     |

|--|--|

**BFS Tree:** 



b. (10 Points) Determine the shortest 7-1 path found by BFS. Find *all other* shortest 7-1 paths.

Shortest 7-1 path found by BFS: 7 3 5 4 1

Two other shortest 7-1 paths: 7 6 5 4 1 and 7 6 9 4 1

- 5. (20 Points) Run DFS on the digraph pictured on the back page of this exam. Execute the main loop of DFS (lines 5-7) and process adjacency lists (the for loop on lines 3-6 of Visit) in increasing order by vertex label.
  - a. (10 Points) Fill in the following table, and draw the DFS Forrest.

|    | Adjacency List | Discover | Finish | Parent |
|----|----------------|----------|--------|--------|
| 1  | 2              | 1        | 8      | NIL    |
| 2  | 5              | 2        | 7      | 1      |
| 3  | 2 5            | 9        | 10     | NIL    |
| 4  | 1              | 4        | 5      | 5      |
| 5  | 4              | 3        | 6      | 2      |
| 6  | 3 5 9 10       | 11       | 22     | NIL    |
| 7  | 3 6            | 18       | 19     | 11     |
| 8  | 4              | 13       | 14     | 9      |
| 9  | 4 5 8          | 12       | 15     | 6      |
| 10 | 9 11           | 16       | 21     | 6      |
| 11 | 7              | 17       | 20     | 10     |

### **DFS Forest:**



b. (10 Points) Classify all edges as tree, back, forward, or cross. Find all directed cycles in the digraph.

| Tree    | (1, 2), (2, 5), (5, 4), (6, 9), (9, 8), (6, 10), (10, 11), (11, 7)      |
|---------|-------------------------------------------------------------------------|
| Back    | (4, 1), (7, 6)                                                          |
| Forward |                                                                         |
| Cross   | (3, 2), (3, 5), (6, 3), (6, 5), (7, 3), (8, 4), (9, 4), (9, 5), (10, 9) |

Directed Cycles: 1 2 5 4 1 and 6 10 11 7 6

## Problems 4 and 5 both refer to the following digraph:



The following algorithms are included for reference.

### BFS(G, s)

- 1. for all  $x \in V(G) \{s\}$
- 2.  $\operatorname{color}[x] = \operatorname{white}$
- 3.  $d[x] = \infty$
- 4. p[x] = NIL
- 5. color[s] = gray
- 6. d[s] = 0
- 7. p[s] = NIL
- 8.  $\mathbf{Q} = \emptyset$
- 9. Enqueue(Q, s)
- 10. while  $Q \neq \emptyset$
- 11. x = Dequeue(Q)
- 12. for all  $y \in adj[x]$
- 13. if color[y] == white
- 14.  $\operatorname{color}[y] = \operatorname{gray}$
- 15. d[y] = d[x]+1
- 16. p[y] = x
- 17. Enqueue(Q, y)
- 18.  $\operatorname{color}[x] = \operatorname{black}$

### DFS(G)

- 1. for all  $x \in V(G)$
- 2.  $\operatorname{color}[x] = \operatorname{white}$
- 3. p[x] = NIL
- 4. time = 0
- 5. for all  $x \in V(G)$
- 6. if color[x] == white
- 7. Visit(x)

### Visit(x)

- 1.  $\operatorname{color}[x] = \operatorname{gray}$
- 2. d[x] = (++time)
- 3. for all  $y \in adj[x]$
- 4. if color[y] == white
- 5. p[y] = x
- 6. Visit(y)
- 7.  $\operatorname{color}[x] = \operatorname{black}$
- 8. f[x] = (++time)