

AL CASE STUDIES

CHAIBOTS

"computer programs designed to simulate human conversation through text on vaice."

use cases a someoned arranged that when it

- 1. customer senvices 2. lead generations 3. PA 4. tuben experience 5. refficiency
- Core Componento
- 17 upon input: text Ispeed by upon
- 2> natural language processing (NLP): gives computer ability to understand, translate, generate human language
- 3> natural language understanding (NIV)
 - · Intent Recognition: pro of figuring west what (treat chem down four name of
 - · Portity Portraction: pac of extracting specific pieres of estitus balles, tratai that the entities
- ur Dialouge management
 - · State tracking: Keeps track of comus history & context.
- \$7 Response Selection / Action Determination based on intent, entity and dialogue state, this

Data_____

module decides what the chattoot whould do next - aak a follow-up question, cretrieve in to

- (external data about were and other things)
 chatbot extracts there through API calls.
- Trepposable for matting the actual response in natural-sounding languages. (human like)

Types of Chatbab

- 1. Rule-Based thank broken
 - follow profileined (IF con THEN action corespondes)
 - working: bot matches cheywoods as pattern from user input to database
 - eg fræ bot, if werritypen skripping Creat, bæd might have mule that viecognize skripping & count and vieppands with Standard Shipping Count 35
- 2. AI powered (ML (DL)
 - They use me to dearn, NLP to understand

eg. The chatcept, copilot etc

3. Generative - Based

- · can generate novel nepponses on fly they learn pattern and language from massive datasets and construct unique neplies.
- eg a customen support bothhot can understand

 nuanced autotions like My delivery for

 ander #12345 in late, what Should I do? ' and

 provide a context aware inexpense automobics

 after making a APT call vitself

4. Retrieval -Based

- ond then cretrieve the most appropriate

 pre-written answer from large library of

 potential answers.
- eg. Pictet thanks app on and other type

 where you get same (exact) response

 on some (similar cvery) question

5. Button Based there cane bot where it doesn't take totally free user input, but gives user button

Oate Page

Chatapy generative Pre-trained Transformer

Sophisticated lange danguage model CLLM)

- Core Tech: LLM and transformen Achitecture

5 LLM: neural network with billions of
panameters, trained on massive datasets

G Jest and code.

Stransformen Architecture: Specific neural
metwork architecture by Google in 2017,
which nevolutionized natural language
processing.

This uses (Affention) Mechanism:

models ability to weight the importance of alifferent worker in its bequence.

How it work?

- 1. Input: you provide tot (audio (voice) (doc
- 2. Tokenization: input text in broken down into smaller units called taken (it can be words, parts of words, punctuations etc)
- 3. Neural Network Processing: token are broken into numeric representation and fed into the Transfer neural metwork.

It processes it toget most appropriate sequence

4. Output Generation: generates on old sequence of takens, one by one, based on probabilities these tokens again - human credeable teats. Key capabilities and Use Capes 1. Text Generation doc generation 2. Code generation & Debugging ima/video generation 3. Summanization understanding 4. Translation notes making s. Creative writing to paiting come imme. Limitations and challenges 1. Hallucinations: can generate true assending but factually incorrect data. 2. Bigo : if training dataset if baised then cutcome can be biased. 3. Bugging & lego: can log and bug. 4. Ethical concerns issues arround misinformation, job alipplacement, copyaigne 5. mione 6. No contral

Recommendation Algorithm

usen preferences bratings.

goal is to Juggest nelevant items (personalized)

Needs

· solve unto overlood · reused expensione

·Tenagement, eneach · 13ales, content consumption

· enable discovery of new whems

Core types

I. Content - Based Filtering

· necomendo itema similar to thane unen

· men item features + upen profile

" reson provie: build from explicit Cratings) an item wer interacted thively

· whemo features: each whem is calescribed by

Det 06 attributes (e.g. movie:

gence, actano, directar, etc)

· Motching: syp enecommends items whose features match the user's profile

· Adu: nice; vimple; addictive

no : limited space of recommendation; regulato about user when...

Work flow 1 activation (wake word they shri) 1 buttons 2. Audio capture contomatic Speech Recognition) 3. ASR > text 4. NLU -> intent + stat (Natural language understanden Calialange management) 5. bm updates estate 6. Action determination 7. Action execution 8. NICO -> text ener ponse (natural language generation) 9. TTS -> text to speech (text to appeach) 10. playback to upon. AII my concepts uses things like ASR NUMBER TO NICH TASIOICE Examples: Alexa, Siri, gaogle gamini, cortano Challenges · contextual understanding : Concasm, implicit inter · multimode input : voice + genture + vision · privacy (security · probustness · complexity · 1 bevoulgation c mare tayland restours redning)

Virtual Face Filters

- real time digital averlays on force in photoluides · defect face + averlays (Cr I > blends seemlessly AR, snap Pilters, BG12 etc

Core Techo

- · Face Detection: locate face(s) in the frame
- · Facil Landmanh cletection: Key points on face

68 total => (eyes, nose, mouth, jawline letc)

- · AR overlay: Align COXI to face geometry
- Real time processing smooth align with updates

working

- (most a prince (camena stream)
- 2. Pace aletection
- 3. Andmark extraction
- 4.30 pape estimation (pitch, you, Nou)
- S. Pilter application (CCRI etc)
- 6. Rendering B output (video + filter combined)

AIIML concepts

- · Computer vision: base field to interpret visuals
- · peop Leanning conn): defection + landmarks
- Training Data: labelled forces with CORT
- Pose estimation Conventation of face in 30)

