Movielens-Project-Report

Harshad B.

Introduction

Machine learning helps us to describe data and deduce useful patterns from the same. The aim of machine learning is to process data into helpful information and naturally intuitive solutions. In 2006, Netflix placed a seven-figure bounty on a verified improvement to their movie recommendation system.

The following project is based on the Netflix Challenge. In this project, we use the MovieLens 10M dataset that consists of 10 million ratings and 100,000 tag applications applied to 10,000 movies by 72,000 users.

The dataset is divided into edx and validation sets in a 90-10 ratio.

Approach:

First, the edx set has been divided into two sets: edx_train and edx_test. Various models will be created using the edx_train set and their RMSEs will be calculated on the edx_test set. When a model with RMSE close to the expected RMSE is achieved, then the edx set will be used to train and predict on the vaildation set.

Partitioning of edx dataset

```
testindex <- createDataPartition(edx$rating, times = 1, p = 0.2, list = FALSE)
edx_train <- edx[-testindex,]
edx_test <- edx[testindex,]
edx_test <- edx_test %>%
  semi_join(edx_train, by = "movieId") %>%
  semi_join(edx_train, by = "userId")
```

Method:

Calculating rmse of Average Method on edx_test set

```
mean_tt <- mean(edx_train$rating)
rmse_avg <- RMSE(edx_test$rating, mean_tt)</pre>
```

Results

Method	RMSE
Just the Average (edx_test)	1.060448

Method:

Calculating rmse of movie effect on edx_test set

```
movie_tt <- edx_train %>%
  group_by(movieId) %>%
  summarize(bi = mean(rating - mean_tt), .groups = 'drop')
pred_bi <- mean_tt + edx_test %>%
  left_join(movie_tt, by='movieId') %>%
  .$bi
rmse_movie <- RMSE(pred_bi, edx_test$rating)</pre>
```

Results

Method	RMSE
Just the Average (edx_test) Movie Effect Model (edx_test)	1.0604483 0.9437588

Method:

Calculating rmse of movie and user model on edx_test set

```
user_tt <- edx_test %>%
  left_join(movie_tt, by='movieId') %>%
  group_by(userId) %>%
  summarize(bu = mean(rating - mean_tt), .groups = 'drop')
pred_bu <- edx_test %>%
  left_join(movie_tt, by='movieId') %>%
  left_join(user_tt, by='userId') %>%
  mutate(pred = mean_tt + bi + bu) %>%
  .$pred
rmse_user <- RMSE(pred_bu, edx_test$rating)</pre>
```

Results

Method	RMSE
Just the Average (edx_test)	1.0604483
Movie Effect Model (edx_test)	0.9437588
$User + Movie Effect Model (edx_test)$	0.8678670

Method:

Calculating rmse of regularized movie and user model on edx_test set

```
lambdas <- seq(0, 10, 0.25)
rmses <- sapply(lambdas, function(1){</pre>
  mu <- mean(edx_train$rating)</pre>
  bi <- edx_train %>%
    group_by(movieId) %>%
    summarize(bi = sum(rating - mean_tt)/(n()+1), .groups = 'drop')
  bu <- edx_train %>%
    left_join(bi, by="movieId") %>%
    group_by(userId) %>%
    summarize(bu = sum(rating - bi - mean_tt)/(n()+1), .groups = 'drop')
  pred <-
    edx_test %>%
    left_join(bi, by = "movieId") %>%
    left_join(bu, by = "userId") %>%
    mutate(pred = mean_tt + bi + bu) %>%
    .$pred
  return(RMSE(pred, edx_test$rating))
})
```

The plot below shows us qq-plot of $lambdas\ vs.\ rmses$ for the regularized movie and user model on $\mathbf{edx_test}$

set

[1] 5

Results

Method	RMSE
Just the Average (edx_test)	1.0604483
Movie Effect Model (edx_test)	0.9437588
User + Movie Effect Model (edx_test)	0.8678670
$Regularized\ Movie + User\ Effect\ Model\ (edx_test)$	0.8661004

Method

calculating rmse of regularized movie and user model on validation set

```
val_lambdas \leftarrow seq(0, 10, 0.25)
val_rmses <- sapply(lambdas, function(1){</pre>
  mu <- mean(edx$rating)</pre>
  bi <- edx %>%
    group_by(movieId) %>%
    summarize(bi = sum(rating - mu)/(n()+1), .groups = 'drop')
  bu <- edx %>%
    left_join(bi, by="movieId") %>%
    group_by(userId) %>%
    summarize(bu = sum(rating - bi - mu)/(n()+1), .groups = 'drop')
  pred <- validation %>%
    left_join(bi, by = "movieId") %>%
    left_join(bu, by = "userId") %>%
    mutate(pred = mu + bi + bu) %>%
    .$pred
  return(RMSE(pred, validation$rating))
final_rmse <- min(val_rmses)</pre>
```

The plot below shows us qq-plot of $val_lambdas\ vs.\ val_rmses$ for the regularized movie and user model on **validation** set

[1] 5

Results

Method	RMSE
Just the Average (edx_test)	1.0604483
Movie Effect Model (edx_test)	0.9437588
User + Movie Effect Model (edx_test)	0.8678670
Regularized Movie + User Effect Model (edx_test)	0.8661004
Regularized Movie + User Effect Model (validation set)	0.8648170

Conclusion

From the above table, we can see incremental improvements to the RMSE as we supplant our model with bias terms and regularization. Because of the simplicity of the linear model, we are able to predict movie ratings without a serious toll on the computer resources.