Traditional ML Superalignment Our Analogy

Supervisor

Student

Supervisor

Student

Supervisor

Student

Table of contents

- 1. MedAligner
- 2. Al Alignment
 - Pre-training and Post-training
 - Reinforcement Learning with Human Feedback (RLHF)
- 3. Aligner
 - Correction is easier than generation
 - The training process of Aligner
 - Experiment Results
 - Weak-to-Strong Generalization via Aligner
- 4. Building a Large Language Model (LLM)
 - RAG
 - Fine-tuning
 - Alignment

MedAligner

Med-Aligner empowers LLM medical applications for complex medical scenarios

- 1. Reliability
 - limited high-quality data
 - closed-source model rigidity
 - reasoning degradation during fine-tuning
- 2. Achievements
 - plug-and-play, even for closed-source models
 - without requiring full re-optimization
 - significant enhancements across all 3H dimensions—helpfulness, harmlessness, and honesty
- 3. No technical details (even wrong huggingface link)

Al Alignment

How can we build Al systems that behave in line with human intentions and values?

- 1. Training process of LLMs:
 - Pre-training: Utilize large-scale text data to train a model for general capabilities through an autoregressive approach.
 - Post-training: Align the pre-trained model with specific tasks using instruction fine-tuning and reinforcement learning with human feedback (RLHF).
- 2. OpenAl demonstrated that RLHF enabled a smaller 1.3B parameter model to outperform a much larger 175B model.

Reinforcement Learning with Human Feedback (RLHF)

- 1. Requires access to model parameters
- 2. Optimization redundancy: target model, reward model, critic model...
- 3. Full parameter tuning is challenging
- 4. Reward models have poor generalization
- 5. Alignment objectives are hard to define

Aligner: Efficient Alignment by Learning to Correct

- 1. Correction is easier than generation
- 2. A lightweight model to correct the target model's response
 - applicable across different base models
 - Completely bypassing RLHF, Aligner requires only a single line of code modification from SFT
 - For a 70B-parameter model, using Aligner saves 22.5 times the resources compared to RLHF.

The training process of Aligner

1. SFT: high-quality instruction dataset: $\{x^{(i)}, y^{(i)}; i=1,\ldots,n\}$

$$\min_{ heta} \mathcal{L}(heta; \mathcal{D}_{ ext{sft}}) = -\mathbb{E}_{(x,y) \sim \mathcal{D}_{ ext{sft}}}[\log \pi_{ heta}(y|x)]$$

- 2. Aligner: $\{x^{(i)}, y_o^{(i)}, y_c^{(i)}; i=1,\ldots,n\}$
 - Copy: directly output the response from the upstream model
 - Correction:residual correct the response from the upstream model.

$$\min_{\phi} \mathcal{L}_{ ext{aligner}}(\phi; \mathcal{M}) = -\mathbb{E}_{\mathcal{M}}[\log \mu_{\phi}(y_c \mid y_0, x)]$$

Experiment Results

- 1. Improvements:
 - Improved Helpfulness
 - Enhanced Harmlessness
 - Reduced Hallucinations
- Aligner exhibits a Scale Law trend as the model parameters increase
- 3. bigger is better: e.g. the improvement from2B to 13B is significant, but the gain from13B to 70B is relatively limited.

Table 4: *Weak-to-Strong generalization* results demonstrate that *Aligner-7B* can achieve weak-to-strong generalization on 7B, 13B, and 70B upstream models with existing alignment methods using the labels given by the *Aligner*. This process entails enhancing the capabilities of a strong model by finetuning it with labels generated by a weak model.

$Method^{\dagger}$	BeaverTails		HarmfulQA		Average	
	Helpfulness	Harmlessness	Helpfulness	Harmlessness	Helpfulness	Harmlessness
Alpaca-7B	w/ Aligner-7B					
+SFT	+8.4%	+53.5%	+19.6%	+73.9%	+14.0%	+63.7%
+RLHF	-41.7%	+51.4%	-36.1%	+73.9%	-38.9%	+62.6%
+DPO	-48.2%	+45.6%	-54.4%	+68.6%	-51.3%	+57.1%
Alpaca2-13	B w/ Aligner-7B					
+SFT	+34.7%	+49.4%	+22.1%	+69.7%	+28.4%	+59.6%
+RLHF	+46.0%	+20.2%	-2.9%	+67.6%	+21.6%	+43.9%
+DPO	+1.3%	+57.3%	-20.4%	+79.6%	-9.6%	+68.4%
Alpaca2-70	B w/ Aligner-13B	i				
+SFT	+9.3%	+46.9%	+7.2%	+76.3%	+8.2%	+61.6%

[†] The weak-to-strong training dataset is composed of (q, a, a') triplets, with q representing queries from the *Aligner* training dataset-50K, a denoting answers generated by the Alpaca-7B model, and a' signifying the aligned answers produced by the *Aligner*-7B given (q, a). Unlike SFT, which solely utilizes a' as the ground-truth label, in RLHF and DPO training, a' is considered to be preferred over a.

Weak-to-Strong Generalization via Aligner

Building a Large Language Model

- 1. RAG: providing specific information for the model to draw from when answering questions
- 2. Fine-tuning: training the model on specific tasks
- 3. Alignment: ensuring the model's behavior aligns with human values and intentions