EPFL - Printemps 2021	Prof. Z. Patakfalvi
Anneaux et Corps	Exercices
Série 4	21 Mars 2022

1 Exercices

Exercice 1.

Dans chacun des cas suivants, déterminer si l'idéal proposé est premier ou maximal.

(a) $(0) \subset \mathbb{Z}$.

(f) (t^2-2) $\subset \mathbb{Z}[t]$.

(b) $(t) \subset \mathbb{Z}[t]$.

(g) $(t^2-2) \subset \mathbb{R}[t]$.

(c) $(t) \subset \mathbb{R}[t]$.

(h) $(t + 5, 10) \subset \mathbb{Z}[t]$.

(d) $(101) \subset \mathbb{Z}[t]$.

(i) $(t+5,11) \subset \mathbb{Z}[t]$.

(e) $(42) \subset \mathbb{Z}[t]$.

(j) $(t^2 + 1, 2) \subset \mathbb{Z}[t]$.

Indication : Pour prouver qu'un idéal bilatère $I \subset A$ est premier, il suffit de montrer que le quotient A/I est intègre.

Exercice 2. 1. Discuter les systèmes suivants : $\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 7 \pmod{12} \end{cases}$ et $\begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 8 \pmod{12} \end{cases}$

2. Montrer que $\mathbb{Z}/36\mathbb{Z}$ n'est pas isomorphisme à $\mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/12\mathbb{Z}$.

Exercice 3. 1. Soit $f: A \to B$ un homomorphisme d'anneaux surjectif tel que ker $f = (a_1, \ldots, a_m)$ pour certains $a_1, \ldots, a_m \in A$. Soit aussi $I = (b_1, \ldots, b_n) \subseteq B$ un idéal à gauche. Si $c_1, \ldots, c_n \in A$ sont tels que $f(c_i) = b_i$ pour chaque i, montrez que $f^{-1}(I) = (a_1, \ldots, a_m, c_1, \ldots, c_n)$.

2. Soit k un corps, $a, b \in k$ et considérons les homomorphismes d'anneaux k-linéaires

$$\operatorname{ev}_b \colon k[x,y] \to k[x], \ x \mapsto x, \ y \mapsto b$$
 et $\operatorname{ev}_a \colon k[x] \to k, \ x \mapsto a$

 et

$$\xi := \operatorname{ev}_a \circ \operatorname{ev}_h \colon k[x, y] \longrightarrow k.$$

Montrez que $\ker \xi = (x - a, y - b)$ et que $\ker \xi$ est un idéal maximal de k[x, y].

On peut en fait montrer que si k est algébriquement clos, alors tous les idéaux maximaux de k[x,y] sont de cette forme. C'est l'object du Nullstellensatz de Hilbert.

Exercice 4.

Dans cet exercice, nous étudions les anneaux $\mathbb{Z}[i]/(p)$ pour p un nombre premier. Nous écrirons $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$.

1. Montrez que $\mathbb{Z}[i]/(p) \cong \mathbb{F}_p[t]/(t^2+1)$. Indication: Combinez l'Exemple 1.4.18 et le quotient en deux temps.

2. Pour p = 5, montrez que $\mathbb{Z}[i]/(5) \cong \mathbb{F}_5 \times \mathbb{F}_5$. Indication: Le théorème des restes chinois peut être utile.

3. Sous quelles conditions sur p a-t-on un isomorphisme d'anneaux $\mathbb{Z}[i]/(p) \cong \mathbb{F}_p \times \mathbb{F}_p$? Indication : Si besoin, vous pouvez admettre l'existence d'une clôture algébrique de \mathbb{F}_p .

Exercice 5.

Soient A et B deux anneaux commutatifs. Quels sont les idéaux premiers de $A \times B$?

2 Exercice supplémentaire

Cet exercice était l'exercice bonus de l'année 2021 (l'exercice ne sera pas dans l'examen).

Exercice 6.

Gardons les notations de l'Exercice 6 et supposons encore que car(K) = 0.

- 1. Montrez que si $\theta, \theta' \in D(K[x])$ sont tels que $[\theta, m_x] = [\theta', m_x]$, alors il existe $\lambda \in K[x]$ tel que $\theta' = \theta + m_{\lambda}$.
- 2. Déduisez que si $\theta \in D(K[x])$ est tel que $[\theta, m_x] = i \left(\frac{\partial}{\partial x}\right)^{i-1}$, alors $\theta = \left(\frac{\partial}{\partial x}\right)^i + m_\lambda$ pour un certain $\lambda \in K[x]$.
- 3. Montrez que

$$D_{\leq s}(K[x]) = \left\{ \sum_{i=0}^{s} m_{p_i(x)} \left(\frac{\partial}{\partial x} \right)^i \mid p_i(x) \in K[x] \right\} \quad \forall s \geq 0.$$

Indication : Procédez par récurrence sur s. Si θ est de degré au plus s, alors $[\theta, m_x]$ est de degré au plus s-1. Utilisez ensuite les deux points précédents pour expliciter θ .

4. Montrez que D(K[x]) est simple. Indication : Observez pour commencer qu'un idéal bilatère est préservé par le crochet de Lie.

Exercice 7.

Soit K un corps. Rappelons que l'anneau des opérateurs différentiels D(K[x]), le crochet de Lie $[\cdot,\cdot]$ et les opérateurs $m_{p(x)}, \frac{\partial}{\partial x}$ ont été définis dans l'Exercice 8 de la série 3.

- 1. Montrez que $\left[\left(\frac{\partial}{\partial x}\right)^{i}, m_{x}\right] = i\left(\frac{\partial}{\partial x}\right)^{i-1}$ pour $i \geq 1$.

 Indication: Procédez par récurrence sur i.
- 2. Montrez que

$$\left[\left(\frac{\partial}{\partial x} \right)^i, m_{x^j} \right] = i \sum_{r=0}^{j-1} m_{x^r} \left(\frac{\partial}{\partial x} \right)^{i-1} m_{x^{j-1-r}}$$

pour $i, j \geq 1$.

Indication : Procédez par récurrence sur j et utilisez le point précédent.

3. Supposons que $\operatorname{car}(K) = 0$. Montrez que $\left(\frac{\partial}{\partial x}\right)^i \in D_{\leq i}(K[x])$.