

Titulación de Sistemas Informáticos y Computación

Implementación de un ambiente de Ciencia de Datos a través de la Librería Open Source Rapids

José Alberto Guarnizo Romero

Tutor: Mgtr. René Rolando Elizalde Solano

2020

Agenda

- Objetivos
- Arquitectura Rapids
- Plataformas MERM
- Proceso ETL
- Proceso ML
- Comparativa Aceleración

Objetivos del TT

- Objetivo General
 - Implementar un ambiente de Ciencia de Datos a través de la Librería Open Source Rapids.
- Objetivos Específicos
 - Elaborar una investigación documentada sobre la Librería Open Source Rapids.
 - Realizar analítica de grandes volúmenes de datos a través del uso de las características de la Librería Open Source Rapids.
 - Implementar algoritmos de Machine Learning haciendo uso de la Librería Open Source Rapids.

Parte I

FASES DEL TRABAJO DE TITULACIÓN

Fases del Proyecto

Arquitectura Rapids

 Análisis de la Arquitectura implementada Rapids

Proceso de Instalación en Plataformas MERM

- Prerrequisitos de Instalación
- Docker
- Conda
- Google Colabority
- BlanzingSQL

Aceleración GPU.

¿De verdad es necesaria la aceleración en GPU?

Fuente: (Srinath & Kraus, 2019).

Arquitectura Rapids: Análisis de la Arquitectura implementada Rapids.

Proceso de Instalación en Plataformas MERM: Prerrequisitos de Instalación

Prerrequisitos de Instalación localmente.

Gpu Nvidia	Sistema Operativo Linux (Ubuntu)	Docker	Nvidia Drivers Cuda
Titan RTX Tesla GeForce	Versión 16.04 Versión 18.04	Versión 19.03	Versión 10.0 Versión 10.1 Versión 10.2

Computador portátil local

Marca Portátil	Intel	Sistema Operativo	Gpu
Dell	Core I7 8th Gen	Ubuntu 18.04	Nvidia GeForce MX150 4GB

Proceso de Instalación en Plataformas MERM: Docker.

Nvidia de computador local se encuentre en la imagen docker

oot@jose-Inspiron-7472:/home/jose# docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \ rapidsai/rapidsai:cuda10.2-runtime-ubuntu18.04-py3.7 rapids) root@697a8b7466ee:/rapids/notebooks# rapids) root@697a8b7466ee:/rapids/notebooks#

Ejecutando Imagen docker

Plataforma de Desarrollo

Proceso de Instalación en Plataformas MERM: Conda.

jose@jose-Inspiron-7472: ~

Archivo Editar Ver Buscar Terminal Ayuda

base) jose@jose-Inspiron-7472:~\$ conda activate datascience
datascience) jose@jose-Inspiron-7472:~\$

Activar entorno

Verificar Nvidia

Ejecutar jupyter

Plataforma de desarrollo

Proceso de Instalación en Plataformas MERM: Google Colabority.

Proceso de Instalación en Plataformas MERM: BlazingSQL.

Página BlanzingSQL

Plataforma de desarrollo

Proceso ETL: Extracción.

Data con datos Semiestructurados: 80 mil filas de información a analizar de OpenCampus.

```
/edx/var/log/|racking/tracking.log-20171110-1510327021.gz:{"username": "", "event_source": "server", "name": "edx.course.enrollment.activated", "accept_langu
/edx/var/log/tracking/tracking.log-20171110-1510327021.gz:{"username": "", "event_type": "/courses/course-v1:UTPL+EFHE-Ed7+2017_DIC/about", "ip": "66.249
/edx/var/log/tracking/tracking.log-20171110-1510330621.gz:{"username": "", "event_type": "/courses/course-v1:UTPL+EFHE-Ed7+2017_DIC/about", "ip": "190.11
/edx/var/log/tracking/tracking.log-20171110-1510330621.gz:{"username": "", "event_type": "/i18n.js", "ip": "190.110.206.116", "agent": "Mozilla/5.0 (Windows NT
/edx/var/log/tracking/tracking.log-20171110-1510334221.gz:{"username": "", "event type": "/courses/course-v1:UTPL+EFHE-Ed7+2017 DIC/about", "ip": "172.17
/edx/var/log/tracking/tracking.log-20171110-1510334221.gz:{"username": "", "event_type": "/i18n.js", "ip": "172.17.24.79", "agent": "Mozilla/5.0 (Windows NT 6.3
/edx/var/log/tracking/tracking.log-20171110-1510341421.gz:{"username": "", "event_type": "/courses/course-v1:UTPL+EFHE-Ed7+2017_DIC/about", "ip": "190.21
/edx/var/log/tracking/tracking.log-20171110-1510341421.gz:{"username": "", "event_type": "/i18n.js", "ip": "190.214.72.140", "agent": "Mozilla/5.0 (Windows NT |
/edx/var/log/tracking/tracking.log-20171110-1510341421.gz:{"username": "", "event type": "/courses/course-v1:UTPL+EFHE-Ed7+2017 DIC/about", "ip": "181.11
/edx/var/log/tracking/tracking.log-20171110-1510341421.gz:{"username": "", "event_type": "/i18n.js", "ip": "181.113.136.34", "agent": "Mozilla/5.0 (Windows NT |
/edx/var/log/tracking/tracking.log-20171110-1510341421.gz:{"username": "", "event type": "/courses/course-v1:UTPL+EFHE-Ed7+2017 DIC/about", "ip": "190.15
edx/var/log/tracking/tracking.log-20171110-1510341421.gz:{"username": "", "event_type": "/i18n.js", "ip": "190.152.18.66", "agent": "Mozilla/5.0 (X11; Ubuntu; L
/edx/var/log/tracking/tracking.log-20171110-1510345021.gz:{"username": "FrankVac", "event_type": "/courses/course-v1:UTPL+EFHE-Ed7+2017_DIC/about", "ip"
edx/var/log/tracking/tracking.log-20171110-1510345021.gz:{"username": "FrankVac", "event type": "/i18n.js", "ip": "200.105.237.152", "agent": "Mozilla/5.0 (Win
/edx/var/log/tracking/tracking.log-20171110-1510345021.gz:{"username": "FrankVac", "event_type": "/courses", "ip": "200.105.237.152", "agent": "Mozilla/5.0 (W
/edx/var/log/tracking/tracking.log-20171110-1510348621.gz:{"username": "", "event_type": "/courses/course-v1:UTPL+EFHE-Ed7+2017_DIC/about", "ip": "40.77.1
/edx/var/log/tracking/tracking.log-20171110-1510352221.gz:{"username": "", "event_type": "/courses/course-v1:UTPL+EFHE-Ed7+2017_DIC/about", "ip": "181.11
/edx/var/log/tracking/tracking.log-20171110-1510352221.gz:{"username": "", "event type": "/i18n.js", "ip": "181.113.157.145", "agent": "Mozilla/5.0 (Windows NT
/edx/var/log/tracking/tracking.log-20171110-1510352221.gz:{"username": "", "event_type": "/courses/course-v1:UTPL+EFHE-Ed7+2017_DIC/about", "ip": "181.11
/edx/var/log/tracking/tracking.log-20171110-1510352221.gz:{"username": "", "event type": "/i18n.js", "ip": "181.113.157.145", "agent": "Mozilla/5.0 (Windows NT
edx/var/log/tracking/tracking.log-20171110-1510352221.gz:{"username": "", "event_type": "/register", "ip": "181.113.157.145", "agent": "Mozilla/5.0 (Windows N
/edx/var/log/tracking/tracking.log-20171110-1510352221.gz:{"username": "", "event_type": "/courses/course-v1:UTPL+EFHE-Ed7+2017_DIC/about", "ip": "172.16
edx/var/log/tracking/tracking.log-20171110-1510352221.gz:{"username": "", "event_type": "/i18n.js", "ip": "172.16.44.31", "agent": "Mozilla/5.0 (Windows NT 6.1
/edx/var/log/tracking/tracking.log-20171110-1510366621.gz:{"username": "", "event_type": "/courses/course-v1:UTPL+EFHE-Ed7+2017_DIC/about", "ip": "181.19
/edx/var/log/tracking/tracking.log-20171110-1510366621.gz:{"username": "", "event_type": "/i18n.js", "ip": "181.196.52.93", "agent": "Mozilla/5.0 (Windows NT 6.
/edx/var/log/tracking/tracking.log-20171110-1510370221.gz:{"username": "", "event_type": "/courses/course-v1:UTPL+EFHE-Ed7+2017_DIC/about", "ip": "190.96
```

Data a Analizar

Proceso ETL: Extracción y lectura

e 2020

Proceso ETL: Transformación

Proceso ETL: Carga.

Proceso ML: Dividir dataset Train y Test

train test split

intercalados.

Proceso ML: Preprocesamiento.

rom cuml.preprocessing.LabelEncoder import LabelEncoder le = LabelEncoder() value_usernameX = le.fit_transform(X_train.username) value ipX = le.fit transform(X train.ip)

Datos sin categorizar			
X_train.username.head(3)	<pre>X_train.ip.head(3)</pre>		
0 MILTON 1 gcjuma 2 Mayra_2017 Name: username, dtype: object	0 181.196.160.40 1 186.46.207.242 2 186.70.132.111 Name: ip, dtype: object		

Datos categorizados			
<pre>value_usernameX.head(3)</pre> <pre>value_ipX.head(3)</pre>			
0 215 1 371 2 237 dtype: int16	0 209 1 390 2 459 dtype: int16		

cuML			
Clase	Descripción		
Preprocessing.Labe IEncoder	Permite categorizar datos.		

Proceso ML: Algoritmos Machine Learning.

cuML			
Regresión y Clasificación			
linear_model LinearRegression	Algoritmo regresión lineal		
Ensemble RandomForestClassifier	Algoritmo Random Forest		

Comparativa de resultados de Aceleración: Rapids y Pandas

	Proceso ETL	Tiempo en Segundos	Desarrollo	# filas
pandas -	Extracción	0.94	#exportación y lectura con pandas inicio = time:time() pd_Pandas = pd.read_csv('/df_data.csv',	80.000
11.	Transformación	3.04	print('Cálculo de transformación cpu-Pandas:', cpuPandas) Cálculo de transformación cpu-Pandas: 3.0437815189361572	80.000
	Carga	0.90	start = time.time() da_data = 'data_mejora.csv' generalData.to_csv(da_data) end = time.time() calculated = end - start print("Cálculo de_carga_cpu-Pandas = {}".format(calculated)) Cálculo de_carga_cpu-Pandas = 0.9098856449127197	80.000

	Proceso ETL	Tiempo en Segundos	Desarrollo	# filas
•	Extracción	0.41	start = time.time() gdf = cudf.read_csv('df_data.csv',	80.000
	Transformación	2.69	print('Cálculo de transformación gpu-RAPIDS:', calculatedGeneralRAPIDS) Cálculo de transformación gpu-RAPIDS: 2.696117401123047	80.000
	Carga	0.37	<pre>import time start = time.time() do_data = 'data_mejora.csv' newData.to_csv(da_data) end = time.time() calculated = end - start print('câlculo de carga_gpu-Rapids = {}".format(calculated)) Câlculo de carga_gpu-Rapids = 0.3737514019012451</pre>	80.000

Parte II

ESTADO DEL TRABAJO DE TITULACIÓN

Avance del TT

Nombre Fase	% Avance Estimado	% Avance Real	% Retraso
Arquitectura RAPIDS	100%	100%	0%
Proceso de Instalación			
plataformas MERM	100%	100%	0%
Proceso ETL	100%	85%	15%
Proceso ML	100%	69%	31%

Detalles del proceso de Desarrollo

Jose Guarnizo 09:25

Hi guys, when installing RAPIDS in google colabority i have problems with version 0.14 when importing cudf, can you help me please.

respuestas Última respuesta hace 21 días

rodrigo hace 21 días

hev @Jose Guarnizo vou should consider app.blazingsgl.com You get the same Tesla T4 GPU for free, it's vanilla JupyterLab, but all the RAPIDS packages are pre-installed and ready to go. No setup whatsoever. You can run the stable cuDF 0.14 or the nightly cuDF 0.15 inside the app. (editado)

Jose Guarnizo hace 21 días

Thanks @rodrigo, i will try with blazingsql, Thank you so much for everything.

Taurean hace 21 días

@Jose Guarnizo can you print your output from the install cell? 2 things could be happening

- 1. you got a K80
- 2. the installation failed somewhere. (editado)

Taurean hace 21 días

@Jose Guarnizo i see it....someone changed their files from what's on the yml created earlier this week and it failed to solve. I've reverted back to how we solved before and will look into condapack. It works as expected now. Thanks for bringing this to our attention!

Rapids

GPU DATA SCIENCE

(i) ACCELERATED DATA SCIENCE

The RAPIDS suite of open source software libraries gives you the freedom to execute end-toend data science and analytics pipelines entirely on GPUs.

SCALE OUT ON GPUS

Seamlessly scale from GPU workstations to multi-GPU servers and multi-node clusters with

Learn about Dask >>

PYTHON INTEGRATION

Accelerate your Python data science toolchain with minimal code changes and no new tools to

Learn about our libraries >>

RAPIDS NEWS

M NATURAL LANGUAGE PROCESSING: TEXT PREPROCESSING AND **VECTORIZING AT ROCKING** SPEED WITH RAPIDS CUML

post by Simon Andersen

JOHN MURRAY
RT @MurrayData: A time consuming task, in
#datascience, is exploratory analysis of new data
sources to understand field contents and relati...

retweet by @rapidsai

M TACKLING LARGE GRAPHS WITH RAPIDS CUGRAPH AND CUDA UNIFIED MEMORY ON **GPUS**

Out of Memory,@#\$!!The Out of Memory (OOM) error has to be one of the most frustrating errors to encounter. Unfortunately, when analyzing large graphs on GPUs using RAPIDS cuGraph, it's one of the errors most often encountered. Migrating...

post by Alex Fender

Y RAPIDS AI

@devnulling @adamlikesai @numba_jit @CuPy_Team My bad - here's the correct link https://t.co/XdlW8PaVnr

post by @rapidsai

M RUN YOUR PYTHON USER **DEFINED FUNCTIONS IN NATIVE CUDA KERNELS WITH RAPIDS** CUDF

post by Jigun Tu

Y RAPIDS AI

Exciting to see @rapidsai cuML is expanding support for #NLP! GPU-accelerated NLP transformers now perform blazing.. https://t.co/jK1jOG00yB

post by @rapidsai

GRACIAS

¿PREGUNTAS?