Real Analysis Homework 10

National Taiwan University, Department of Mathematics R06221012 Yueh-Chou Lee

May 29, 2019

EXERCISE 1

Show that if $f \in C^0(\mathbb{R}^n)$, then its support is identical with the support of the distribution

$$\langle f, \phi \rangle = \int f \phi \, dx, \quad \phi \in C_c^{\infty}(\mathbb{R}^n).$$

Is this true when $f \in L^1_{loc}(\mathbb{R}^n)$?

Proof.

If ϕ is such that supp $\phi \cap \text{supp } f = \emptyset$, then $\int_{\mathbb{R}^n} f(x)\phi(x) dx = 0$, so supp $\mathcal{D}_f \subseteq \text{supp } f$.

Now fixed an x_0 such that $f(x_0) \neq 0$, $f(x_0) > 0$, then $f(x) > \frac{f(x_0)}{2}$ for some ball $B_{\eta}(x_0)$. Assume that $x_0 \notin \operatorname{supp} \mathcal{D}_f$, then we can find some $\delta > 0$ such that $B_{\delta}(x_0) \cap \operatorname{supp}(\mathcal{D}_f) = \emptyset$. We can assume that $\delta < \eta$.

Now find a ϕ such that supp $\phi \subseteq B_{\delta}(x_0)$ and that $\phi(x) = 1$ on $B_{\frac{\delta}{2}}(x_0)$. Then

$$\int_{\mathbb{R}^n} f(x)\phi(x) \, dx \ge \int_{B_{\frac{\delta}{2}}(x_0)} f(x)\phi(x) \, dx \ge \frac{(f(x_0)) \, \delta^n}{2^{n+1}} > 0,$$

so ϕ is such that supp $\phi \cap \text{supp } \mathcal{D}_f = \emptyset$ but $\int_{\mathbb{R}^n} f(x)\phi(x) dx \neq 0$, this is a contradiction. We conclude that $x_0 \in \text{supp } \mathcal{D}_f$ and hence supp $f \subseteq \text{supp } \mathcal{D}_f$. Thus

$$\operatorname{supp} f = \operatorname{supp} \mathcal{D}_f.$$

This will not be true when $f \in L^1_{loc}(\mathbb{R}^n)$, consider the function

$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{O} \end{cases}.$$

The supp $f = \mathbb{R}$, but supp $\mathcal{D}_f = \emptyset$.

EXERCISE 2

Show that the principal value integral

p.v.
$$\int \frac{\phi(x)}{x} dx = \lim_{\varepsilon \to 0^+} \left(\int_{-\infty}^{-\varepsilon} \frac{\phi(x)}{x} dx + \int_{\varepsilon}^{\infty} \frac{\phi(x)}{x} dx \right)$$

exists for all $\phi \in C_c^{\infty}(\mathbb{R}^n)$, and is a distribution. What is its order?

Proof.

p.v.
$$\int \frac{\phi(x)}{x} dx = \lim_{\varepsilon \to 0^+} \left(\int_{-\infty}^{-\varepsilon} \frac{\phi(x)}{x} dx + \int_{\varepsilon}^{\infty} \frac{\phi(x)}{x} dx \right)$$
$$= \lim_{\varepsilon \to 0^+} \int_{\varepsilon \le |x| < 1} \frac{\phi(x) - \phi(0)}{x} dx + \int_{1 \le |x|} \frac{\phi(x)}{x} dx$$

Since $\phi \in C_c^{\infty}(\mathbb{R}^n)$, ϕ has compact support. Then

$$\int_{1<|x|} \frac{\phi(x)}{x} \, dx = \int_{1<|x|} \frac{|x \, \phi(x)|}{x^2} \, dx \leq \sup_{x \in \mathbb{R}} \{|x \, \phi(x)|\} \, \int_{1<|x|} \frac{1}{x^2} \, dx = 2 \sup_{x \in \mathbb{R}} \{|x \, \phi(x)|\} < \infty.$$

Also, we see that

$$\chi_{\varepsilon \le |x| < 1} \left| \frac{\phi(x) - \phi(0)}{x} \right| \le \chi_{|x| < 1} ||\phi||_{\infty} \quad \text{and} \quad \chi_{|x| < 1} ||\phi||_{\infty} \in L^1(\mathbb{R}),$$

so by Lebesgue Dominated Convergence Theorem, we know that

$$\lim_{\varepsilon \to 0^+} \int_{\varepsilon < |x| < 1} \frac{\phi(x) - \phi(0)}{x} \, dx \le \chi_{|x| < 1} \, ||\phi||_{\infty} < \infty.$$

Hence

p.v.
$$\int \frac{\phi(x)}{x} dx = \lim_{\varepsilon \to 0^+} \left(\int_{-\infty}^{-\varepsilon} \frac{\phi(x)}{x} dx + \int_{\varepsilon}^{\infty} \frac{\phi(x)}{x} dx \right) \quad \text{exists.}$$

Moreover, if supp $\phi \subset [-a, a]$, then

$$\left| \text{p.v. } \int \frac{\phi(x)}{x} \, dx \right| \le 2a \, \sup\{ |\phi'| \}.$$

This implies that the p.v. of $\frac{1}{x}$ is a distribution of order at most 1.

Finally, the order cannot be 0. Indeed, if $0 \le \phi_{\varepsilon} \le 1$ such that supp $\phi_{\varepsilon} \subset [\varepsilon, 4\varepsilon]$ and $\phi_{\varepsilon} = 1$ on $[2\varepsilon, 3\varepsilon]$ then

p.v.
$$\int \frac{\phi(x)}{x} dx \ge \frac{1}{4\varepsilon} \sup\{|\phi_{\varepsilon}|\}.$$

EXERCISE 3

Find a distribution $u \in \mathcal{D}'(\mathbb{R})$ such that $u = \frac{1}{x}$ on $(0, \infty)$ and u = 0 on $(-\infty, 0)$.

Proof.

Consider the function $g(x) = \ln x$ for x > 0 and g(x) = 0 for $x \le 0$. Then $g \in L^1_{loc}$, so defines a distribution, and $g'(x) = \frac{1}{x}$ for x > 0. So g' is an admissible u. Therefore

$$\langle u, \phi \rangle = -\int_0^\infty \phi'(x) \ln x \, dx$$

works.

EXERCISE 4

Show that

$$\langle u, \phi \rangle = \sum_{k=1}^{\infty} \partial^k \phi(\frac{1}{k})$$

is a distribution in $(0, \infty)$? What is its order?

Proof.

Let ϕ be such that supp $\phi \subset [\frac{1}{N}, N]$. Then

$$\langle u, \phi \rangle = \sum_{k=1}^{N} \partial^{k} \phi(\frac{1}{k}) \le \sum_{k=1}^{N} \sup_{x \in [1/N, N]} |\partial^{k} \phi|.$$

Since the compacts [1/N, N] exhaust $(0, \infty)$, it follows that u is a distribution on $(0, \infty)$.

Suppose that $u = v|_{(0,\infty)}$ for $v \in \mathcal{D}'(\mathbb{R})$. Then there must exist N_0 and C_0 such that

$$|\langle v, \phi \rangle| \le C_0 \sum_{k=1}^{N_0} \sup |\partial^k \phi|, \quad \text{supp } \phi \subset [-1, 1].$$

So, if we take $N > N_0$, we will have

$$\left| \partial^N \phi(\frac{1}{N}) \right| \le |\langle u, \phi \rangle| \le |\langle v, \phi \rangle| \le C_0 \sum_{k=1}^{N_0} \sup |\partial^k \phi|,$$

if supp $\phi \subset \left(\frac{1}{N+1}, \frac{1}{N-1}\right)$. This would imply that $\partial^N \delta_{\frac{1}{N}}$ is order at most $N_0 < N$ and consequently that $\partial^N \delta$ is of order at most N_0 on a small interval $(-\varepsilon, \varepsilon)$.

We claim that this is impossible.

Indeed, let $\psi \in C_c^{\infty}((-\varepsilon,\varepsilon))$ be such that $\partial^N \psi(0) \neq 0$. Consider then the test functions

$$\psi_{\lambda}(x) = \lambda^{N} \psi(\frac{x}{\lambda})$$
 for small $\lambda > 0$.

We have supp $\psi_{\lambda} \subset (-\varepsilon \lambda, \varepsilon \lambda)$. Moreover,

$$\partial^N \psi_{\lambda}(0) = \partial^N \psi(0)$$
 and $\partial^k \psi_{\lambda} = \lambda^{N-k} \, \partial^k \psi$.

Thus, we would have an estimate

$$|\partial^N \psi(0)| \le C_0 \sum_{k=1}^{N_0} \lambda^{N-N_0} \sup |\partial^k \psi| \quad \text{for any } \lambda > 0.$$

This is clearly a contradiction for small λ .

EXERCISE 5

Let $u \in \mathcal{D}'(\mathbb{R}^n)$ have the property that $\langle u, \phi \rangle \geq 0$ for all real valued nonnegative $\phi \in C_c^{\infty}(\mathbb{R}^n)$. Show that u is of order 0.

Proof.

Let $K \subset \mathbb{R}^n$ and $\psi_K \in C_c^{\infty}(\mathbb{R}^n)$ non-negative cut-off function such that $\psi_K = 1$ on K. Then for real-valued test functions ϕ with supp $\phi \subset K$, we would have

$$\left(\sup_{K} |\phi|\right) \psi_K(x) - \phi(x) \ge 0.$$

Hence

$$\left\langle u, \left(\sup_{K} |\phi| \right) \psi_K(x) - \phi(x) \right\rangle \ge 0.$$

This implies

$$\langle u, \phi(x) \rangle \le \langle u, \psi_K \rangle \left(\sup_K |\phi| \right).$$

For complex valu ϕ we obtain

$$|\langle u, \phi(x) \rangle| \le 2 \langle u, \psi_K \rangle \left(\sup_K |\phi| \right)$$

by considering the real and imaginary parts of ϕ .

EXERCISE 6

Let $\{f_k\}_{k=1}^{\infty} \in L^1_{\mathrm{loc}}(\mathbb{R}^n)$ be a sequence of real valued functions such that

supp
$$f_k \subset \{|x| \le k^{-1}\}, \quad \int f_k(x) dx = 1, \quad k = 1, 2, \cdots.$$

Show that the sequence $\{f_k^2\}_{k=1}^{\infty}$ does not converge in $\mathcal{D}'(\mathbb{R}^n)$ as $k \to \infty$.

Proof.

Let $\phi \in C_c^{\infty}(\mathbb{R}^n)$ and

$$f_k(x) = \begin{cases} \frac{k}{2}, & |x| \le \frac{1}{k} \\ 0, & |x| > \frac{1}{k} \end{cases}$$

then $\{f_k\}_{k=1}^{\infty} \in L^1_{loc}(\mathbb{R}^n)$ and $\int f_k(x) dx = 1$. So

$$f_k^2(x) = \begin{cases} \frac{k^2}{4}, & |x| \le \frac{1}{k} \\ 0, & |x| > \frac{1}{k} \end{cases}$$

hence, if $\phi \in (\mathbb{R}^n)$ and $\phi = 1$ in $|x| \leq 1$, then

$$\left\langle f_k^2, \phi \right\rangle = \int f_k^2(x) \phi(x) \, dx \geq \inf_{|x| \leq \frac{1}{k}} \phi \, \int_{|x| < \frac{1}{k}} f_k^2(x) \, dx = \frac{k}{2},$$

which is divergent as $k \to \infty$. Therefore, the sequence $\{f_k^2\}_{k=1}^{\infty}$ does not converge in $\mathcal{D}'(\mathbb{R}^n)$ as $k \to \infty$.