ACTUATORS AND SENSORS

Andrea Calanca

- Most of DC motors in robotics make use of permanent magnets.
- Sometimes permanent magnets are substituted with electromagnet, powered by the same DC source

The electromagnet can be arranged in series or parallel

Permanent magnet dc motor

- Maximum Torque
 - Also called starting or stall torque
- Rated Torque
- Force-Velocity Curve

Fig. 2: Continuous operating range of a DC motor considering various conditions. The nominal current value is determined by the intersecting point between the torque/speed curve and the thermal curve. The maximum continuous torque of motor is determined by the nominal current multiplied by the torque constant. The motor speed v_m is limited due to various reasons: the mechanical wear and the electro-erosion of brushed and commutators of a brushed DC motor, and the service life of the bearings[26].

- Power
- Power to weight ratio
- Efficiency

MOTOR PERFORMANCE AT 24-V REFERENCE

Bandwidth

Can the motor follow a 100Hz sinusoid?

- · In electric motors the bandwidth depends on
 - Maximum force
 - Maximum velocity (strongly related to voltage saturation)
 - Motor inertia
 - Load impedance
 - Control Algorithm

Position Control

Power Electronics (DC Motors)

Voltage Control

 The circuits below can apply a desired voltage but implies power dissipation

- Use a switching mechanism (i.e. on-off transistor) to partialize the current.
- Use a desired logic to switch on and off the transistor

(Voltage) Control

Logic: Pulse Frequency Modulation

(Voltage) Control

Logic: Pulse Width Modulation

Voltage Control

Voltage Control

• The switching of the output voltage on the output of a drive by the IGBT bridge generates rapid variations in voltage (dV/dt).

H-Bridge

Voltage Control

H-Bridge

H-Bridge

- E.g. L293D
- 600mA OUTPUT CURRENT CAPABILITY PER CHANNEL
- 1.2A PEAK OUTPUT CURRENT (non repetitive) PER CHANNEL

Current Control

Brushless DC Motors (BLDC)

BLDC Motor

uses the same principle of standard DC motors

but

- the commutation is not given by brushes, instead it is implemented in firmware algorithms
- The computation is based on position measurements (or estimation)
 - FOC algorithm (based on position measurements, e.g. encoders)
 - Sensorless FOC algorithm
 - 6-steps algorithm (based on position measurements e.g. hall sensors)
- Chapter on BLDC motor Control

Brushless DC Motors (BLDC)

Brushless DC Motors (BLDC)

Mechanics

- The rotor is usually "outside"
- There exist also "inside" rotors

Sensors

 BLDC usually includes hall sensors, otherwise an external sensor must be provided for the FOC

Hall Effect

Six-Step algorithm

https://www.youtube.com/watch?v=ZAY5JInyHXY

- Inherently position controlled
- Sensorless (open loop positioning)
- Advantages:
 - Lightweight
 - Low Cost
- Disadvantages
 - Limited forces
 - May loose some step
 - Unprecise positioning in case of loads
 - Resolution (micro-steps can augment resolution)

Control of the position of the rotor in a stepper motor using multiple pole pairs

Reduction of the number of pole pairs to a minimum, groups of three that share the same coils:

Three phases stepper motor

Micro-step System

Sensors

- Precision & Accuracy
- Dynamics
- Robustness
- Conditioning

Sistema di Primo Ordine

Position Sensors

- Potentiometer
 - Simple and low cost
 - Deterioration because of sliding friction
 - Depending on the power supply, can be noisy
 The noise is at higher frequencies (not derivable!!)
 - Dissipative (choose high R!!)

$$P = \frac{V^2}{R}$$

- Absolute Encoders
 - Optical
 - Magnetic

- Absolute Encoders
 - Gray Code

- Incremental Encoders
 - The electronics counts the pulses

What about the direction?

- Incremental Encoders
 - A smarter manufacture
 - Resolution

Encoder reading is interrupt based!!
Signal reading and counting is usually provided by dedicated electronics.
Could Hard RT software be an option?

Incremental Encoders

Incremental Encoders

- Can we use them for estimating the velocity?
- The position signal is digital (discontinuous)
- The signal is more informa
 - In a sampling time we can av
- And less informative al low
 - In a sampling time we just se
- The velocity resolution is v
- The position resolution is c₂

Incremental Encoders

- Instead of counting the pulses within a period, lets measure the period inter-pulse duration!
 - You need a timer in the electronics

