Responsive to the final Office Action mailed on: April 1, 2009 ·

612-455-3801

IN THE CLAIMS

Amendments To The Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently Amended) An information recording medium comprising a recording portion capable of storing information three-dimensionally only by irradiation with laser light,

wherein the recording portion includes at least one recording layer, the recording layer contains titanium oxide, and information is recorded by a change in configuration of the titanium oxide, and the change in configuration of the titanium oxide is a change from an anatase type or a brookite type to a rutile type, or from an amorphous type to an anatase type, a brookite type, or a rutile type, or from a rutile type to an amorphous type, an anatase type, or a brookite type.

- (Original) The information recording medium according to claim 1, wherein the 2. titanium oxide is at least one kind of an amorphous form and a crystal form, and the crystal form is at least one kind selected from the group consisting of an anatase type, a brookite type, and a rutile type.
- (Original) The information recording medium according to claim 1, wherein the 3. titanium oxide is at least one kind selected from the group consisting of an anatase type and a brookite type.
- (Original) The information recording medium according to claim 1, wherein the 4. recording layer is substantially made of titanium oxide.
- (Original) The information recording medium according to claim 1, wherein the 5.

Responsive to the final Office Action mailed on: April 1, 2009

recording layer contains the titanium oxide and a low refractive-index material having a refractive index smaller than that of the titanium oxide.

- 6. (Original) The information recording medium according to claim 5, wherein the recording layer contains 5 wt % to less than 100 wt % of the titanium oxide.
- 7. (Original) The information recording medium according to claim 5, wherein the titanium oxide is in a particle form, and an average particle size of the titanium oxide is shorter than a wavelength of recording light and a wavelength of reproducing light.
- 8. (Original) The information recording medium according to claim 7, wherein an average particle size of the titanium oxide is shorter than 1/4 of the wavelength of the recording light and the wavelength of the reproducing light.
- 9. (Original) The information recording medium according to claim 5, wherein the low refractive-index material is resin.
- 10. (Original) The information recording medium according to claim 5, wherein the low refractive-index material is an inorganic material.
- 11. (Original) The information recording medium according to claim 1, comprising a plurality of the recording layers, wherein the recording portion further includes a plurality of intermediate layers that are substantially transparent to recording light and reproducing light, and the recording layers and the intermediate layers are stacked alternately.
- 12. (Original) The information recording medium according to claim 1, further comprising a protective layer substantially transparent to recording light and reproducing light, wherein the protective layer is placed on a light incident side of the recording portion.
- 13. (Original) The information recording medium according to claim 5, further

Responsive to the final Office Action mailed on: April 1, 2009

612-455-3801

comprising a protective layer substantially transparent to recording light and reproducing light, wherein the protective layer is placed on a light incident side of the recording portion, and made of the same material as that for the low refractive-index material.

- 14. (Original) The information recording medium according to claim 11, wherein the recording layer contains the titanium oxide, and a low refractive-index material having a refractive index smaller than that of the titanium oxide, and the intermediate layer is made of the same material as that for the low refractive-index material.
- 15. (Original) The information recording medium according to claim 1, wherein information is recorded in a part of the recording layer, and assuming that a wavelength of reproducing light for reproducing the information is .lamda., a refractive index of a portion of the recording layer where the information is recorded is n', and a refractive index of a portion of the recording layer where the information is not recorded is n, a thickness L of the recording layer satisfies relationships: .lamda./(2n)<L<3.lamda./(4n'), or .lamda./n<L<5.lamda./(4n').
- 16. (Withdrawn Previously Presented) A method for producing an information recording medium according to claim 1, the method comprising the step of forming the recording layer by coating of a coating solution containing titanium oxide.
- 17. (Withdrawn) The method for producing an information recording medium according to claim 16, further comprising the step of forming an intermediate layer by coating of a coating solution made of a material substantially transparent to recording light and reproducing light, wherein the step of forming the recording layer and the step of forming the intermediate layer are repeated alternately in a predetermined order by a predetermined number.
- 18. (Withdrawn Previously Presented) An optical information recording and reproducing apparatus for recording and reproducing information with respect to the information recording medium according to claim 1 including a recording portion

Responsive to the final Office Action mailed on: April 1, 2009

capable of storing information three-dimensionally, the recording portion including at least one recording layer, and the recording layer containing titanium oxide, the apparatus comprising:

a light source for emitting recording light;

a light source for emitting reproducing light;

an objective lens for condensing light emitted from the light source for emitting the recording light and the light source for emitting the reproducing light onto the information recording medium; and

a photodetector for detecting light reflected from the information recording medium.

wherein information is recorded in the recording portion using a change in optical constant of the titanium oxide caused by a change in configuration of the titanium oxide, and the information is reproduced using the change in optical constant of the titanium oxide.

- 19. (Withdrawn) The optical information recording and reproducing apparatus according to claim 18, wherein the light source for emitting the recording light is a pulse laser light source, and a pulse width is 1 picosecond to 5 nanoseconds.
- 20. (Withdrawn) The optical information recording and reproducing apparatus according to claim 18, wherein a peak power of the light source for emitting the recording light is 2 W to 300 W.
- (Withdrawn) The optical information recording and reproducing apparatus 21. according to claim 18, wherein an information bit is formed in the recording portion of the information recording medium using a non-linear absorption phenomenon.
- (Withdrawn) The optical information recording and reproducing apparatus 22. according to claim 21, wherein the non-linear phenomenon includes two-photon absorption or multi-photon absorption.

Responsive to the final Office Action mailed on: April 1, 2009

- 23. (Withdrawn) The optical information recording and reproducing apparatus according to claim 18, wherein an information bit is recorded three-dimensionally in the recording portion of the information recording medium, in such an order not passing through an information bit recorded in the recording portion.
- 24. (Withdrawn) The optical information recording and reproducing apparatus according to claim 23, wherein an information bit is recorded successively from a position farther away from an objective lens in the recording portion to a position close to the objective lens.
- 25. (Withdrawn) The optical information recording and reproducing apparatus according to claim 18, wherein the light source for emitting the recording light and the light source for emitting the reproducing light are the same.
- 26. (Withdrawn) The optical information recording and reproducing apparatus according to claim 18, wherein a wavelength of the light source for emitting the reproducing light is 0.388 .mu.m to 0.413 .mu.m.
- 27. (Withdrawn) The optical information recording and reproducing apparatus according to claim 18, wherein the change in configuration of the titanium oxide is a change from an anatase type or a brookite type to a rutile type.
- 28. (Withdrawn) The optical information recording and reproducing apparatus according to claim 18, wherein the change in configuration of the titanium oxide is a change from an amorphous type to an anatase type, a brookite type, or a rutile type.