در ابتدا باید ببینیم گیت nand چه تأخیرهایی با توجه به delay داده شده در صورت پروژه خواهد داشت. با توجه به ساختار زیر که برای nand در نظر گرفته می شود، بدترین تأخیر to1 و to0 برای یک nand برابر ۸ نانوثانیه می باشد.

با توجه به خواسته سوال (active low S, R and clock input with nands) ساختاری مشابه شکل زیر برای این SR-latch متصور می شود.

برای تعریف کردن این ماژول در سیستم وریلاگ، کد زیر نوشته شد.

```
timescale 1ns/1ns
 3
     module SR_latch(input S, R, clk, output Q, nQ);
 4
         wire i, j, nS, nR;
         nand #8 not_clk(nclk,clk,clk),
                 not_S(nS,S,S),
                 not_R(nR,R,R),
 8
                  nand1(i,nS,nclk),
 9
                  nand2(j,nR,nclk),
10
                  nand3(Q,i,nQ),
11
                 nand4(nQ,j,Q);
     endmodule
```

انتظار میرود این ماژول از جدول درستی زیر پیروی کند.

clk	S	R	Q+	Q'+
1	-	-	Q	Q'
0	1	1	Q	Q'
0	1	0	0	1
0	0	1	1	0
0	0	0	*	*

لازم به ذکر است تست این ماژول به طور کامل در قسمت بعدی (قسمت ۲) انجام شده است.

تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
۲۴۰۰/۳/۹ + زوز	CA4	۸۱·۱۹۸۴۷۵	سماره سوال

٢

برای بررسی نتیجه، تستبنچ زیر را اجرا می کنیم. مشاهده می گردد که خروجیها دقیقاً مطابق انتظار است. در قسمت پایانی هر دو ورودی S و می برای بررسی نتیجه، تستبنچ زیر را اجرا می کنیم. و R صفر می شوند تا از دست رفتن حافظه را مشاهده کنیم.

7/18

```
module TB ();
         reg S = 1, R = 0, clk = 0; //First Initialize
 3
         wire Q, nQ;
 4
         SR latch my ic(.S(S), .R(R), .clk(clk), .Q(Q), .nQ(nQ));
 5
         always #20 clk = ~clk;
 6 ₽
         initial begin
7
             #100 R = 1;
8
             #100 S = 0;
             #100 S = 1;
9
             #100 R = 0;
10
             #100 S = 0;
11
12
             #300 $stop;
13
         end
     endmodule
```


تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
	CA4	A1 • 1 9 A * V A	سوال

برای آنکه D-latch به همراه کلاک داشته باشیم، به کمک یک not مدار را به صورت زیر بازطراحی می کنیم (از آنجا که در صورت پروژه خواسته شده به کمک یک inverter اضافه این طراحی صورت گیرد، مدار به شکل زیر درآمد و گرنه می توانستیم بدون استفاده از آن نیز ساختاری ساده تر رسم کنیم.). تأخیر این not به سادگی برای to1 و to1، ۶ نانوثانیه به دست می آید.

٣روز + ۱۴۰۰/۳/۹

4/18

برای تعریف کردن این ماژول در سیستم وریلاگ، کد زیر نوشته شد.

```
timescale 1ns/1ns
3
     module D_latch(input D, clk, output Q, nQ);
4
         logic i, j, nD1, nD2, nclk, nnD;
5
         nand #8 Dnot(nD2, D, D),
                 Dnotnot(nnD, nD1, nD1),
6
7
                 clknot(nclk, clk, clk),
                 nand1(i, nnD, nclk),
8
9
                 nand2(j, nD2, nclk),
10
                 nand3(Q, i, nQ),
11
                 nand4(nQ, j, Q);
         not #6 SRnot(nD1, D);
12
     endmodule
```

انتظار می رود این ماژول از جدول درستی زیر پیروی کند.

clk	D	Q+
1	-	Q
0	1	1
0	0	0

تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
	CA4	۸۱۰۱۹۸۴۷۵	سوال

در اینجا، چند حالت متفاوت، تست و بررسی میشود تا نشان داده شود ماژول به درستی کار میکند.

```
15
   module TB ();
         reg D = 1, clk = 0; //First Initialize
         wire Q, nQ;
17
         D_latch my_ic(D, clk, Q, nQ);
18
19
         always #20 clk = ~clk;
20 戸
         initial begin
             repeat (20) #100
21
             #100 D = \$random;
22
23
             #100 $stop;
24
         end
25 endmodule
```

۳روز + ۱۴۰۰/۳/۹

4/19

برای ساختن شیفترجیستر خواسته شده مدار زیر بسته شد.

برای تعریف کردن این ماژول در سیستم وریلاگ، کد زیر نوشته شد. تست این ماژول در قسمتهای بعدی انجام میشود.

```
timescale 1ns/1ns
 2
 3
     module Shift_Reg_8bit(input sin, clk, output [7:0] Po);
 4
         wire [8:0] inputs;
 5
         assign inputs[8] = sin;
 6
         assign Po [7:0] = inputs [7:0];
 7
         genvar i;
 8
         generate
 9
             for(i=0;i<8;i=i+1)begin:dlatchs</pre>
                  D_latch dlatch(.D(inputs[8-i]), .clk(clk), .Q(inputs[7-i]));
10
11
             end
12
         endgenerate
13
     endmodule
```

۴

٣روز + ١۴٠٠/٣/٩

9/19

جهت تست و شبیه سازی ماژول قسمت قبل، تستبنچی که در تصویر زیر مشاهده می شود، نوشته شد.

```
module TB ();
         reg sin = 1, clk = 0; //First Initialize
         wire [7:0] Po;
4
         Shift_Reg_8bit my_ic(sin, clk, Po);
5
         always #500 clk = ~clk;
         initial begin
             #1000 sin=0;
8
             #1000 sin=1;
9
             #1000 $stop;
10
         end
11
    endmodule
```

شکل موج خروجی به صورت زیر میباشد.

مخصوصاً زمان کلاکها طولانی در نظر گرفته شد تا ایرادی که این شیفترجیستر دارد، نمایان شود. همانطور که مشاهده می گردد وقتی کلاک صفر می شود، با سرعت بالا ورودی به انتهای شیفتر جیستر می رسد و هیچ کنترلی روی داده ها وجود ندارد. ۵

سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
CA4	۸۱۰۱۹۸۴۷۵	سوال

مدار قطعه خواسته شده به صورت زیر می باشد.

۶

٣روز + ١۴٠٠/٣/٩ کا/٧

تاريخ تحويل:

برای تعریف کردن این ماژول در سیستم وریلاگ، کد زیر نوشته شد.

```
1    `timescale lns/lns
2
3    module MSDFF(input D, clk, output Q, nQ);
4         wire mid, nclk;
5         not #6 notclk(nclk, clk);
6         D_latch first_part(.D(D), .clk(clk), .Q(mid));
7         D_latch second_part(.D(mid), .clk(nclk), .Q(Q), .nQ(nQ));
8    endmodule
```

انتظار میرود این ماژول درست مانند بخش سوم کار کند ولی تغییرات خروجی صرفاً با صفر شدن کلاک نباشد. بلکه کلاک باید یک بار صفر و سپس صفر شود تا خروجی تغییر کند.

برای تست ماژول از همان تستبنچ سوال ۳ استفاده میشود. مشاهده می گردد که خروجی با تأخیر بیشتری تغییر می کند (منتظر یک شدن کلاک می ماند.).

برای مقایسه، تصویر دوم مربوط به قسمت سوم (D latch) میباشد و تصویر بالای آن مربوط به همین قسمت (Master Slave D FF).

تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
	CA4	A1.19A4VA	سوال

برای آن که ریستی بسازیم که هنگام یک بودن، خروجی بدون در نظر گرفتن داده D، صفر شود، طبق جدول درستی که در ادامه آمده است، می توان از مدار زیر استفاده کرد (ترجیح بر آن است که از nand و nand استفاده شود.).

۳روز + ۱۴۰۰/۳/۹

1/18

برای تعریف کردن این ماژول در سیستم وریلاگ، کد زیر نوشته شد.

```
`timescale 1ns/1ns
3
    module MSDFFSR(input D, clk, rs, output Q, nQ);
         wire mid, ni, nrs, nclk;
4
         not #6 notclk(nclk, clk),
 6
                 noti(ni, i),
7
                 notR(nrs, rs);
8
         nand #8 nand1(i, D, nrs);
         D_latch first_part(.D(ni), .clk(clk), .Q(mid));
10
         D_latch second_part(.D(mid), .clk(nclk), .Q(Q), .nQ(nQ));
11
     endmodule
```

انتظار میرود این ماژول از جدول درستی زیر پیروی کند به طوری که +Q را معادل Q بدانیم وقتی کلاک یک بار صفر و پس از آن یک شدهاست.

rs	D	Q+
1	-	0
0	1	1
0	0	0

در اینجا، چند حالت متفاوت، تست و بررسی می شود تا نشان داده شود ماژول به درستی کار می کند.

```
module TB ();
          reg D = 1, rs = 0, clk = 0; //First Initialize
14
15
          wire Q, nQ;
16
          MSDFFSR my_ic(D, clk, rs, Q, nQ);
17
          always #50 clk = ~clk;
          initial begin
18
19
              #200 \text{ rs} = 1;
20
              #200 D = 0;
              #200 \text{ rs} = 0;
21
              #200 D = 1;
22
23
              #200 \text{ rs} = 1;
24
              #200 $stop;
25
          end
     endmodule
```


٨

همچون قسمت ۴، کدی جهت طراحی شیفترجیستر نوشته شد. منتهی این بار به جای استفاده از D latch از D latch از Master Slave D Flip Flop که در قسمت ۷ طراحی و گسترش یافت، استفاده شده است.

```
`timescale 1ns/1ns
 2
 3
     module Shift_Reg_8bit_sr(input sin, clk, rs, output [7:0] Po);
         wire [8:0] inputs;
 4
 5
         assign inputs[8] = sin;
         assign Po [7:0] = inputs [7:0];
 6
 7
         genvar i;
 8
         generate
   早
 9
             for(i=0;i<8;i=i+1)begin:MSDFFSRs</pre>
                 MSDFFSR MSDFFSRi(.D(inputs[8-i]), .clk(clk), .rs(rs), .Q(inputs[7-i]));
10
11
             end
12
         endgenerate
13
     endmodule
```

جهت تست و شبیه سازی این ماژول، تست بنچی که در تصویر زیر مشاهده می شود، نوشته شد.

```
module TB ();
16
         reg sin = 1, clk = 0, rs = 0; //First Initialize
17
         wire [7:0] Po;
         Shift_Reg_8bit_sr my_ic(sin, clk, rs, Po);
19
         always #100 clk = ~clk;
         initial begin
20 ঢ়
21
             #1000 sin=0;
             #1000 sin=1;
             #3000 rs =1;
23
24
             #4000 $stop;
25
         end
26
     endmodule
```

	تاریخ تحویل:	سیستمهای دیجیتال	محمد مهدی معینی منش	١
				شماره
11/18	٣روز + ١۴٠٠/٣/٩	CA4	۸۱۰۱۹۸۴۷۵	سوال

شکل موج خروجی به صورت زیر میباشد.

٨

برای واضحتر بودن اتفاقاتی که رخ میدهد. دو تصویر زیر هنگامی که در نقاط مختلف شکل موج بزرگنمایی شده، آورده شده است.

اکنون کاملاً واضح است که هر بار صفر و یک شدن کلاک سبب می شود خروجی یکی به جلو شیفت کند. همانطور که قبلاً نیز گفته شد، دیگر صفر شدن کلاک به تنهایی سبب جلو رفتن ورودی به اندازه نامعلوم نمی شود و منتظر می ماند تا کلاک یک شود. این مثال درست شبیه این است که چند نفر می خواهند وارد خانه شوند و اگر در ورودی برای زمان محدود باز شود بسته به شرایط ممکن است هیچکس نتواند وارد شود یا اینکه تعداد نامعلومی از اشخاص وارد شوند. اما می توان یک در ثانویه گذاشت که هر بار یک نفر بین دو در گیر بیفتد و با باز شدن در ثانویه فقط کسی که بین دو در است بتواند وارد شود.

برای تعریف کردن این ماژول در سیستم وریلاگ به کمک always statement، کد زیر نوشته شد.

٩

```
`timescale 1ns/1ns
3
    module Shift Reg 8bit sr2(input sin, clk, rs, output reg [7:0] Po);
        always @(negedge clk) begin
4
5
            if (rs)
                Po = 8'd0;
6
            else
7
8
                Po = \{\sin, Po [7:1]\};
9
        end
    endmodule
```

برای تست این ماژول از همان تستبنچی که در سوال ۸ نوشته شد، استفاده می گردد. منتهی با توجه به اینکه خروجی Po این بار از نوع reg است، تغییرات کوچکی در تستبنچ صورت گرفته است.

```
module TB ();
13
         reg sin = 1, clk = 0, rs = 0; //First Initialize
14
         reg [7:0] Po;
15
         Shift_Reg_8bit_sr2 my_ic(sin, clk, rs, Po);
16
         always #100 clk = ~clk;
17 □
         initial begin
             #1000 sin=0;
18
19
             #1000 sin=1;
20
             #3000 rs =1;
21
             #4000 $stop;
22
         end
     endmodule
```

	تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
17/18	۳روز + ۱۴۰۰/۳/۹	CA4	۸۱۰۱۹۸۴۲۵	سوال
			شکل موج خروجی به صورت زیر میباشد.	0
	Msqs Msqs			٩
	Ф / ПВ/го Ороссоох			
	© 186	2000 ns 3000 ns 4000 ns 5000 ns 6000	ins 7000 ns 6000 ns 9000 ns	
	د: گنمار شده آم ده شده است	صویر زیر هنگامی که در نقاط مختلف شکل موج	رياء واضحت وود التفاقات كه خدو وهد وو ت	
	⋄	طویر ریز هنگامی که در هاط محتف سیل موج	برای واطعر بودن الفاقی که رخ می دهد. دو ه	
		1111boox 11111box 011111bx 0011111b 0001111 0000111 10000011 11000001	11100000 11110000 111111000 11111110 111111	
	New 9000 ns 500 ns 500 ns 1	1000 ns 1500 ns 2000 ns	2500 ns 3500 ns	
	→ /TB/dn 1 → /TB/dc 0 → /TB/h 0 			
	© ■ 4 New 9000 ns 3000 ns Cursor 1 0 ns	4500 ns 5000 ns	5500 ns 6500 ns 6500 ns	

	تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
14/18	۳روز + ۱۴۰۰/۳/۹	CA4	۸۱۰۱۹۸۴۲۵	سوال

برای ساختن مدار خواسته شده، از xor استفاده شده است. بنابراین لازم است ابتدا این ساختار آن را رسم و بدترین تأخیرهای آن را محاسبه کنیم.

برای xor بدترین تأخیر tol و tol برابر 12ns است و داریم:

١.

مدار بسته شده به صورت زیر می باشد.

١.

مشخص است که اگر مقادیر اولیه Po تماماً صفر باشد، با پالسهای وارد شده از طرف کلاک، تغییری در خروجی مشاهده نمی گردد و خروجی همیشه صفر باقی میماند. بنابراین، مدار به شکل زیر بازطراحی می گردد تا بتوان با صفر کردن preset) p ورودی اولیه را یک کرد.

برای تعریف کردن این ماژول در سیستم وریلاگ کد زیر نوشته شد.

```
timescale 1ns/1ns
 2
 3
     module LFSR(input p, clk, rs, output [7:0] Po);
4
         wire x, y, z, nz, t;
 5
         Shift Reg 8bit sr SR1(t, clk, rs, Po);
         xor #12 xor1(x, Po[0], Po[3]),
 6
 7
                 xor2(y, x,
                                Po[6]),
8
                 xor3(z, y,
9
         not #6 not1(nz, z);
10
         nand #8 nand1(t, nz, p);
     endmodule
```

تستبنچ این ماژول نیز به شکل زیر طراحی گردید.

```
module TB ();
         reg p = 0, clk = 0, rs = 1; //First Initialize
14
15
         wire [7:0] Po;
16
         LFSR my_ic(p, clk, rs, Po);
17
         always #100 clk = ~clk;
         initial begin
18
              #200 \text{ rs} = 0;
19
20
              #200 p = 1;
21
              #10000 $stop;
22
         end
     endmodule
23
```

تاريخ تحويل:	سیستمهای دیجیتال	محمد مهدی معینی منش	شماره
	CA4	۸۱۰۱۹۸۴۷۵	سوال

١.

چند تصویر از لحظات مختلف خروجی در اینجا آورده شده است و مشاهده می گردد اعداد تصادفی در حال تولید هستند.

18/18

۳روز + ۱۴۰۰/۳/۹

حداکثر دوره تناوب برای اعداد ساخته شده برابر است با 2^n-1 که n بالاترین درجهای از x در چندجملهای داده شده است به شرط آنکه چندجملهای اول باشد یعنی ریشه حقیقی نداشته باشد.