#### **Research Methods**

Confidence Intervals and Sampling Methods

Dr. Sven Magg, Prof. Dr. Stefan Wermter



http://www.informatik.uni-hamburg.de/WTM/

# Plan for today!



- 1. What are confidence intervals?
- 2. Empirical Sampling
  - a) Monte-Carlo Tests
  - b) Bootstrapping

#### **Parameter Estimation**

- Hypothesis Testing
  - helps to answer a yes/no question about our data
  - used to accept/reject a hypothesis in favour of another
  - helps us to estimate the error we might have made
- Parameter Estimation
  - We try to estimate a population parameter from a sample we have drawn
  - We have already learned about some estimators:

$$\hat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \qquad \hat{\sigma}_{\overline{x}} = \frac{s}{\sqrt{N}}$$

How accurate are those estimates?

## **Confidence Intervals**





- How wide should a CI be?
- $\mu = \overline{x} \pm \varepsilon$
- How often do you expect that  $\mu$  falls within  $\varepsilon$  of the sample mean?
- A 95% CI means you are 95% sure that this interval includes  $\mu$
- Remember:  $\mu$  is a constant, a CI says more about  $\overline{x}$

## **Confidence Intervals**

#### Example:

- We collect samples of size N and know  $\sigma$
- ⇒ sampling distribution of the means is normal
- $\Rightarrow$  95% of all sample means are in the interval given by  $\mu \pm 1.96\sigma_{\bar{x}}$
- This also means that if  $\varepsilon = 1.96\sigma_{\bar{x}}$ , then the interval  $\bar{x} \pm 1.96\sigma_{\bar{x}}$  will contain  $\mu$  in 95% of all samples we draw
- CI is dependent on standard error and therefore N



## **CI Example**

- Height and weight of 33 students
- Correlation Coefficient:

$$r_{XY} = (75)$$

$$z(r_{XY}) = 0.5ln \frac{1+0.64}{1-0.64} = 0.759$$

$$\hat{\sigma}_{z(r_{XY})} = \frac{1}{\sqrt{n-3}} = \frac{1}{\sqrt{30}} = 0.183$$

$$H_0(\rho_{XY} = 0): Z = 4.16$$

$$z(\rho) = z(r_{XY}) \pm 1.96\hat{\sigma}_{z(r_{XY})} = 0.759 \pm 0.358 = (0.40, 1.12)$$

 $\Rightarrow$  95% Confidence interval:  $0.38 \le \rho \le 0.81$ 

#### What if we don't know $\sigma$ ?

- If  $\sigma$  is not known, we estimate the sample error!  $\hat{\sigma}_{\bar{\chi}} = \frac{s}{\sqrt{N}}$
- The problem now: The sampling distribution of the mean is NOT normally distributed but rather t-distributed
- What do we do?
- We look up the critical values in a t-distribution table!
- Since a 95% CI is symmetric, we have to look up t<sub>97.5</sub> (or t<sub>.025</sub>)
- Then calculate  $\bar{x} \pm t_{97.5} \sigma_{\bar{x}}$
- t<sub>97.5</sub> will be different for different degrees of freedom

| df         | 1     | 2     | 5     | 20    | 60    |
|------------|-------|-------|-------|-------|-------|
| $t_{97.5}$ | 12.71 | 4.303 | 2.571 | 2.086 | 2.000 |

#### How to use Cls?

Show them in graphs as error bars!

- What can we see?
- Different sizes of CI
  - Due to different s?
  - Due to different number of samples?
  - Due to boundary effects?



Cls are useful as error bars 0.005 but be careful when interpreting Cls!

## CI and Hypothesis Testing

- It is tempting to test hypotheses with confidence intervals
- Confidence Interval:
   Estimated from standard error
   of individual means
- Hypothesis Tests, e.g. t-Test
   Uses standard error of the
   difference between the means



- Poor mans t-Test:
  If Cls of two means do not overlap
  - ⇒ Two-sample t-Test will show they are different
- If they overlap: Don't use them for hypothesis tests!

## Sampling distributions

- Different ways to get sampling distributions
  - Exact distributions
    - Derived analytically/mathematically
  - Estimated distributions
    - Central Limit Theorem (CLT)
    - Z-distribution (standard normal distribution)
    - t-Distributions
    - Fisher's z-distribution
- How to get sampling distributions in case there is no analytical distribution or good estimate
- ⇒ Computer-intensive methods through simulation of the sampling process

#### **Monte-Carlo Tests**

 We often know the population distribution from which we draw samples, but **not** the sampling distribution

0.12

- e.g. a hypothetic population as defined by H<sub>0</sub>
- Since we know the parameters, we can simulate the process
- Simple example:
  - $H_0$ : Same number of men and women at the Informatikum
- Samples of 30 students with P(male) = 0.5
- Select 10000 pseudo-samples of 30 students and record number of male students
- Empirical sampling

15

#males

#### **Monte-Carlo Tests**

- General approach
- Determine population parameters and test statistic T to use
- 2. For i = 1 to K
  - a. Draw pseudo-sample of size N from the population
  - b. Calculate test statistic  $T_i^*$  for pseudo-sample
  - c. Record the frequencies
- 3. Use the distribution of  $T^*$  to determine probability of original sample under  $H_0$

## Realistic Example

- Agent in a grid-world with 4 directions of movement
- We measure Euclidian distance travelled after 10 steps
- We hypothesise it has a 25% chance to turn left and 25% to turn right in each step
- What is the probability of a measure of 8 or more?
- How does the sampling distribution look?
- Frequency histogram for 10000 sample runs
- $P(x \ge 8) = 0.0392$



# **Monte-Carlo Sampling**

#### Advantages

- Straightforward and usually simple to calculate
- Cheap for most computer science problems
- Can be used for any statistic

#### Disadvantages

- We have to know the population parameters to know where to draw samples from
- Often the population distribution is not known

# **Bootstrapping**

- Let's assume
  - We have a sample S of a reasonable size N
  - We don't have the population parameters
- We can perform Monte-Carlo Sampling on the sample
  - Treat the sample as the population
  - Run Monte-Carlo Sampling with replacement
- 1. For i = 1 to K
  - a. Select a sample  $S_i^*$  of size N from S with replacement
  - b. Calculate and record pseudo-statistic for  $S_i^*$
- 2. Determine and use probability distribution of  $S^*$

## **Boostrapping**

- We now have an estimated sampling distribution S\* based on S itself
- We have to replace, because:
  - Obviously, without we only draw S k times
  - We assume a population that comprises all elements of S in the same proportions

#### Beware:

- We now have a sampling distribution for our sample S, NOT a null hypothesis
- Example:  $H_0$ :  $\mu = 50$ ,  $H_1$ :  $\mu \neq 50$ ,  $\bar{x} = 43$
- The mean of the sampling distribution is 43, not 50!

# Bootstrapping for $H_0$

#### Shift Method

- We assume that  $S^*$  and the distribution under  $H_0$  have the same shape, but different means
- We can "shift" all values in  $S^*$  by the difference of  $\mu \bar{x}$
- In our example: Shift all values in  $S^*$  by 50 43 = 7
- Normal Approximation Method
  - We assume that  $\bar{x} \mu$  is normally distributed
  - Then  $Z = \frac{(\bar{x} \mu)}{\sigma_{\bar{x}}}$ , but we don't know  $\sigma_{\bar{x}}$
  - We bootstrap the standard deviation from S\* and run a Z-Test

## **Bootstrap Example**

- Sample S: (23, 42, 67, 53, 43, 60, 45, 32, 41, 24)
- $\bar{x} = 43$ , s = 4.54
- Gather  $S_i^*$  for  $H_0$ :  $\mu = 50, H_1$ :  $\mu \neq 50$

|                         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | $\overline{oldsymbol{x}}^*$ |
|-------------------------|----|----|----|----|----|----|----|----|----|----|-----------------------------|
| $S_1^*$                 | 32 | 32 | 45 | 45 | 23 | 67 | 53 | 67 | 41 | 53 | 45.8                        |
| $S_2^*$                 | 43 | 24 | 42 | 23 | 23 | 43 | 23 | 60 | 32 | 41 | 35.4                        |
| $S_3^*$                 | 60 | 41 | 41 | 60 | 67 | 67 | 24 | 32 | 45 | 42 | 47.9                        |
| $S_4^*$                 | 45 | 23 | 32 | 67 | 43 | 67 | 43 | 41 | 42 | 43 | 44.6                        |
| <b>S</b> <sub>5</sub> * | 23 | 53 | 53 | 45 | 32 | 53 | 60 | 42 | 45 | 45 | 45.1                        |

• Run 5000 times:  $\overline{x}_{S^*} = 43.045$ ,  $\sigma_{\overline{x}_{S^*}} = 4.33$ 

## **Bootstrap Example**

#### Shift method:

- Sort  $S^*$  to get critical values at positions  $K * \alpha/2$  and  $K * (1 \alpha/2)$ .
- For  $\alpha = .05$ :  $c^- = 41.66$ ,  $c^+ = 58.56$
- Find p value by counting values below 43 and above 57:  $432 \Rightarrow p = 0.106$
- We can't reject  $H_0$  at the  $\alpha = .05$  level
- Normal Approximation Method
  - $Z = \frac{(43.045-50)}{4.33} = -1.6051$
  - 2-Tailed boundary: ±1.96, therefore not reject

• 
$$-1.96 = \frac{(c^{-}-50)}{4.33} \Rightarrow c^{-} = 41.507$$

## **Bootstrap Example**

t-Test:

• 
$$t = \frac{(43-50)}{s/\sqrt{N}} = \frac{7}{4.54} = 1.54$$

- $t_{.025} = 2.262$  for 9 degrees of freedom
- $t_{.1} < 1.54 < t_{.05}$
- All critical values close together
- Not surprising when we deal with means, i.e. a sampling distribution that can be considered normal
- In this case both shifting and normal approximation can be used

## What have we learned?

- 1. A confidence interval gives us the interval in which we can expect  $\mu$  with a given probability
- 2. Cls can be used as error bars around sample means
- 3. They become smaller with increasing N
- If we know the population parameters, we can get a sampling distribution empirically by Monte-Carlo Sampling
- 5. We can derive a sampling distribution directly from a sample by bootstrapping, generating pseudo-samples by drawing from the original with replacement
- 6. Beware that a bootstrapped  $S^*$  is not  $S_{H_0}$ , we have to use the shift or normal approximation method