Задачи районных олимпиад по информатике в Нижегородской области, 2009—2021

Собраны с разных ресурсов в интернете

Петр Калинин petr@kalinin.nnov.ru https://algoprog.ru

О формате олимпиад и тестах

До 2016 года включительно олимпиада проводилась в «классическом» формате: в течение тура школьники писали решения, после тура решения проверялись отдельно в каждом районе.

Поэтому в комплекты задач, рассылаемые по районам, до 2016 года входили тесты, и в большинстве случаев они приведены в этом сборнике.

Начиная с 2017 года олимпиада проводится в системе Яндекс.Контест с онлайн-тестированием в течение тура. Поэтому в комплекты задач, рассылаемые по районам, тесты не входят, и их вообще как правило нет в свободном доступе. Поэтому тестов нет и в этом сборнике. С другой стороны, как правило, соответствующие задачи взяты с разных старых олимпиад, поэтому нередко тесты по этим задачам можно найти в интернете. Правда, как показывает опыт, нередко тесты на муниципальном этапе оказываются очень слабыми, и/или ограничение по времени выставляется так, что проходят даже слишком медленные решения.

2021-22

1. Числовая лестница

Ограничение времени	1 секунда
Ограничение памяти	64Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Натуральные числа расположены в виде числовой лестницы, начиная с 1: на первой строке одно число, на второй – два числа, на следующей – три и так далее.

Затем в каждой строке удаляются все числа так, чтобы в ней остались только первые К чисел. Если в строке изначально менее К чисел, то эта строка не изменяется.

Для заданных чисел A, B и K необходимо вывести все строки с номерами от A до B включительно, которые будут получены в результате такого удаления.

Формат ввода

На ввод подаются три строки: первая содержит число A, вторая — число B, третья — число K ($1 \le A \le B \le 10^9$, $B - A \le 100$, $1 \le K \le 100$).

Формат вывода

Вам необходимо вывести В – A + 1 строку, содержащую числа, разделенные пробелами.

Пример

Ввод 🗇	Вывод 🗇	
1	1	
5	2 3	
3	4 5 6	
	7 8 9	
	11 12 13	

2. Точное время

Ограничение времени	1 секунда
Ограничение памяти	64Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Чтобы компьютер мог установить у себя точное время, он может использовать специальные сервера, рассылающие значения точного времени. Но при этом просто запросить значение времени у сервера недостаточно, так как данные передаются через сеть с определенной задержкой, и пока значение текущего времени дойдет от сервера до компьютера, оно потеряет свою актуальность.

Поэтому разработан специальный протокол, определяющий взаимодействие клиента (запрашивающего значение времени компьютера) и севера (рассылающего значение времени компьютера), содержащий следующие шаги:

- Клиентский компьютер отсылает серверу свой запрос и сохраняет (по времени клиента) момент отправления А этого запроса;
- В момент получения запроса клиента севером его точные часы показывают В.
 Это значение сервер и отправляет клиенту;
- Ответ сервера приходит клиенту в момент С по клиентскому времени, это значение клиентом также сохраняется. Теперь он в состоянии установить значение точного времени, располагая известными значениями А, В и С.

Предполагается, что значения задержки при передаче данных в направлениях клиент-сервер и сервер-клиент совпадают.

Требуется реализовать алгоритм, который с точностью до одной секунды находит точное значение времени для установки на клиентском компьютере по известным значениям А, В и С. При получении дробного результата необходимо округлить его до целого числа секунд по обычным правилам арифметики (если дробная часть числа меньше 0.5, то в меньшую сторону, иначе – в большую)

Нужно принять во внимание, что пока клиент ожидает ответа, по его клиентскому времени могут начаться новые сутки. При этом известно, что между моментом отправки запроса и получением ответа от сервера проходит менее 24 часов.

Формат ввода

Программа получает на вводе три момента времени, каждый записан в отдельной строке. Моменты времени представлены в формате «hh:mm:ss» (hh -- часы, mm минуты, ss - секунды). Часы, минуты и секунды записываются ровно двумя цифрами с добавлением при необходимости ведущих нулей.

Формат вывода

Необходимо вывести в том же формате, что и на вводе единственный момент времени –- точное время, которое нужно установить на клиенте.

Пример

Ввод 🗇	Вывод 🗇	
15:01:00	18:10:05	
18:09:45		
15:01:40		

3. Неквадратные пары

Ограничение времени	1 секунда
Ограничение памяти	64Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Целое число x назовем неквадратным, если не существует такого целого числа у > 1, что x делится на y^2 , то есть $x = y^2z$ для какого-либо целого z. Даны два целых числа L и R. Необходимо определить сколько существует таких пар целых чисел (a, b), что $L \le a < b \le R$, и оба числа a и b, а также их произведение $a \times b$ являются неквадратными.

Формат ввода

В первой строке стандартного ввода содержится целое число L, а во второй — целое число R ($1 \le L \le R \le 10^9$, $R - L \le 1000$).

Формат вывода

Необходимо вывести в стандартный вывод одно целое число — найденное число пар.

Пример

Ввод 🗇	Вывод 🗇	
3	2	
6		

Примечания

В примере подходят пары a = 3, b = 5, a = 5, b = 6. Число 4 не может быть в паре с другим числом, так как $4 = 2^2 \cdot 1$, a пара a = 3, b = 6 не удовлетворяет условиям задачи, так как $ab = 3 \cdot 6 = 18 = 3^2 \cdot 2$.

4. Не подпоследовательность

Ограничение времени	2 секунды
Ограничение памяти	244Mb
Ввод	стандартный ввод или input.txt
Вывод	стандартный вывод или output.txt

Назовем последовательность $X = (x_1, x_2, ..., x_t)$ подпоследовательностью другой последовательности $Y = (y_1, y_2, ..., y_s)$, если какие-то элементы (возможно ни одного) можно удалить из последовательности Y, чтобы получить последовательность X.

Например, последовательность (1, 2, 3, 2) является подпоследовательностью последовательности (1, 1, 2, 2, 1, 3, 2, 1), а последовательность (1, 2, 3, 1, 2) – нет.

Заданы две последовательности $A = (a_1, a_2, ..., a_m)$ и $B = (b_1, b_2, ..., b_n)$, состоящие из целых чисел в диапазоне от 1 до k. Необходимо найти наименьшую по длине последовательность $C = (c_1, c_2, ..., c_p)$, которая не являлась бы подпоследовательностью ни A, ни B. Элементы последовательности C также должны являться целыми числами в диапазоне от 1 до k.

Формат ввода

В первой строке стандартного ввода содержится число k – максимальное значение элемента последовательности ($1 \le k \le 5\,000$).

Во второй строке содержится число m — длина первой последовательности A ($1 \le m \le 5\,000$). В третьей строке содержатся m целых чисел в интервале от 1 до k — последовательность A.

В четвертой строке содержится число n — длина второй последовательности В ($1 \le n \le 5\,000$). В пятой строке содержатся n целых чисел в диапазоне от 1 до k — последовательность В.

Формат вывода

В первой строке стандартного вывода необходимо вывести р – длину искомой последовательности. Во второй строке — саму последовательность С. Если последовательностей такой длины несколько, можно вывести любую из них.

Пример 1

Ввод 🗇	Вывод 🗇
2	4
2 5	1 2 2 2
1 2 1 2 1	
5	
2 1 2 1 2	

2020-21

Радиолюбитель

Ограничение времени	1 секунда
Ограничение памяти	244Mb
Ввод	grass.in
Вывод	grass.out

Джон решил заняться радиолюбительством, прочитал в сети Интернет о технологии ЛУТ (лазерно-утюжная технология) и решил попробовать. Суть технологии упрощённо состоит в следующем: сначала на лазерном принтере печатают маску (схему проводников), которую накладывают на заготовку платы, покрытую медью, и травят кислотным раствором. В результате медь растворяется там, где нет маски (т.е. чернил). Однако, принтер у Джона очень старый, в результате чего некоторые дорожки перетравились и оказались разорванными. Он решил их дорисовать дорогим контактным клеем "Контактол". Естественно, он хочет потратить как можно меньше этого клея.

Джон раньше занимался математикой, поэтому быстро формализовал и упростил задачу. Во-первых, каждый раз достаточно рассматривать только два целых участка повреждённого проводника. Во-вторых, если для соединения каждой пары таких участков потратить минимум клея, то минимум клея уйдёт и на весь проводник.

Осталось дело за малым - научиться оптимально соединять два участка проводника. Участок платы представлен массивом символов N*M, например, так:

	X	X	х	X				x	x	x		
		X	x	X	x				x	x		
X	X	X	x						x	x	x	
						x	x	х	x	x		
							X	x	x			

Здесь каждый символ 'X' обозначает сохранившийся участок проводника, на котором медь осталась. Два символа 'X' принадлежат одному и тому же участку, если они вертикально или горизонтально соседние (диагонально соседние таковыми не считаются). Гарантируется, что в выбранном участке имеется только два участка проводника.

Джон хочет использовать как можно меньше клея, чтобы объединить два участка проводника в один. В примере выше, он может сделать это, закрасив только три дополнительных клетки (они помечены символами '*' на рисунке ниже).

	X	X	x	X					x	X	x		
		X	x	X	х	*				X	x		
X	X	X	x			*	*			x	x	x	
							X	X	x	X	X		
								x	х	x			

Помогите Джону определить минимальное количество клеток, которые нужно закрасить, чтобы объединить два участка в один.

Формат ввода

Строка 1: Два разделенных пробелом целых числа, N и M ($1 \le N, M \le 50$).

Строки 2..1+N: Каждая строка содержит строку из М символов 'X' и '.', указывающих состояние проводника.

Формат вывода

В единственной строке требуется вывести минимальное количество новых символов 'X', которые необходимо добавить.

Пример

Ввод	Вывод
6 16	3
xxxxxx	
xxxxx	
.xxxxxxx	
xxxxx	
xxx	

Примечания

На рис. участки проводника показаны цифрами 1 и 2:

	1	1	1	1				2	2	2		
		1	1	1	1				2	2		
1	1	1	1						2	2	2	
						2	2	2	2	2		
							2	2	2			

Три дополнительных символа 'Х' объединяют участки в один.

	1	1	1	1					2	2	2		
		1	1	1	1	X				2	2		
1	1	1	1			x	X			2	2	2	
							2	2	2	2	2		
								2	2	2			

• Странное сложение

Ограничение времени	1 секунда
Ограничение памяти	244Mb
Ввод	addition.in
Вывод	addition.out

Маленький мальчик нашёл учебник по арифметике и прочитал главу про сложение многоразрядных чисел. К сожалению, он не смог толком понять, что такое перенос и постоянно забывал его делать. Он решил изучить, а сколько максимально чисел можно сложить правильно, не сделав ни одного переноса. В качестве данных он взял числа $w_1 \dots w_n$ из какой-то таблицы в том же учебнике.

Формат ввода

Строка 1: Количество чисел, N ($1 \le N \le 20$).

Строки 2..N+1: Каждая строка содержит целое число от $1 \le w_i \le 10^s$.

Формат вывода

Единственная строка должна содержать максимальное количество чисел, которые могут быть сложены без переноса.

Пример

Ввод	Вывод
5	3
522	
6	
84	
7311	

Примечания

19

Имеется 5 чисел 522, 6, 84, 7311, 19. Три из них: 522, 6, 7311, - могут быть сложены без переноса.

• Постройка дорог

Ограничение времени	1 секунда
Ограничение памяти	244Mb
Ввод	roadbuild.in
Вывод	roadbuild.out

Область города Бездорожье славится тем, что в ней нет нормальных дорог. Она состоит из N населённых пунктов, которые соединены сетью из N-1 грунтовых дорог. Между каждой парой пунктов существует только один путь.

Жителям надоело каждые осень и весну "месить грязь" и они решили построить асфальтовые дороги вместо старых грунтовых. Строительство поручили строительной фирме. При этом жильцы не очень ей доверяли и периодически требовали отчёта о проделанной работе.

В итоге всё строительство дороги состоит из М шагов. На каждом шаге происходит одна из двух вещей:

- 1. Строительная компания выбирает два населённых пункта и строит между ними асфальтовую дорогу.
- 2. Жители требуют от компании отчёта в виде количества построенных на данный момент дорог между указанными населёнными пунктами.

Помогите строительной компании отвечать на вопросы.

Формат ввода

Строка 1: Два разделенных пробелом целых числа N и M ($2 \le N \le 100~000$, $1 \le M \le 100~000$).

Строки 2.. N: Два разделенных пробелом целых числа, описывающих конечные точки дороги.

Строки N+1..N+M: Каждая строка описывает очередной шаг. Первый символ этой строки: 'P' - постройка дороги или 'Q' - запрос отчёта. Затем следуют два разделенных пробелом целых числа A_i и B_i ($1 \le A_i$, $B_i \le N$), которые описывают путь (для постройки или запроса).

Формат вывода

Каждая строка содержит ответ на вопрос, в порядке поступления вопросов. При подсчёте количества дорог нужно учитывать, что некоторые дороги могут фигурировать в нескольких шагах постройки (считается, что они будут более качественными).

Пример 1

Ввод	Вывод
4 6	2
1 4	1
2 4	2
3 4	
P 2 3	
P 1 3	
Q 3 4	
P 1 4	
Q 2 4	
Q 1 4	

Пример 2

Ввод	Вывод
6 6	0
2 3	1
3 4	3
5 3	
6 1	
1 2	
Q 1 6	
P 6 4	

P 2 5	
Q 1 2 P 6 5	
P 6 5	
Q 2 3	

Пример 3

Ввод	Вывод
15 17	1
1 2	0
1 3	2
4 2	0
5 4	5
3 6	0
7 1	2
5 8	
8 9	
8 10	
6 11	
12 4	
13 9	
11 14	
15 12	
P 6 12	
P 12 8	
Q 2 1	
P 4 6	
Q 9 13	
Q 1 2	
P 5 9	
P 9 14	
P 11 3	
P 9 15	
Q 1 7	
P 9 5	
Q 8 5	
P 6 9	
P 12 4	
Q 9 13	
Q 6 11	

• Ремонт дорог

Ограничение времени	1 секунда
Ограничение памяти	244Mb
Ввод	rfix.in
Вывод	rfix.out

Каждое утро Вася отправляется из дома на работу. Путь состоит из N остановок. Будем считать дом остановкой №1, а место работы - №N.

Все остановки соединены М дорогами, с каждой из которых ассоциировано время проезда. Никакие две остановки не соединены непосредственно более чем одной дорогой, и существует маршрут дорог от любой остановки к любой другой. Когда Вася едет от одной остановки к другой, он всегда выбирает маршрут с минимальным временем движения.

Злобные дорожники решили сделать Васе маленькую неприятность, начав ремонт одной из М дорог, тем самым удваивая время проезда по ней. Они хотят выбрать такую дорогу, чтобы максимально увеличить время движения, которое Вася проедет от дома до места работы. Помогите определить, насколько они способны увеличить время проезда на работу.

Вася активно пользуется системой Яндекс.Пробки и до начала пути знает об изменении времени движения по одной из дорог.

Формат ввода

Строка 1: Два разделенных пробелом целых числа, N ($1 \le N \le 100$) и М.

Строки 2..1+М: Строка j+1 описывает j-ую дорогу тремя разделенными пробелами целыми числами A_i , B_i и L_i , где A_i и B_i - это номера остановок, соединённые этой дорогой ($1 \le A_i$, $B_i \le N$), а L_i - время движения по этой дороге ($1 \le L_i \le 1~000~000$).

Формат вывода

Единственная строка выходного файла должна содержать максимально возможное увеличение времени движения Васи до места работы, которого можно добиться удвоением длины одной дороги.

Пример

Ввод	Вывод
5 7	2
2 1 5	
1 3 1	
3 2 8	
3 5 7	
3 4 3	
2 4 7	
4 5 2	

Примечания

Имеется 5 остановок и 7 дорог. Изначально, кратчайший путь от дома до места работы есть 1-3-4-5, а его время 1+3+2=6.

Если дорожники удвоят длину дороги от остановки 3 к 4 (с 3 до 6), тогда кратчайшим маршрутом станет путь 1-3-5, с общим временем 1+7=8, что на 2 больше, чем исходный кратчайший маршрут.

2019-20

Задача 1. Супердвоичная система счисления

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Недавно палеонтологи обнаружили останки динозавра Linhenykusmonodactylus, у которого на каждой передней конечности было только по одному пальцу. Распространение десятичной системы счисления связывают с количеством пальцев рук у человека. Значит, динозавры пользовались двоичной системой счисления. Точнее, супердвоичной системой, в которой для записи чисел использовались только «цифры» -1, 0 или 1. Супердвоичной записью числа n динозавры называли представление n в виде 2^k * a[k] + ... + a[k] + a[k]

Ваша задача – научиться записывать числа в супердвоичной системе динозавров.

Формат входного файла

В единственной строке записано целое число n ($1 \le n \le 10^{18}$).

Формат выходного файла

Единственная строка содержит последовательность из разделенных пробелом целых чисел a[k], ... a[1], a[0], образующих запись числа n в супердвоичной системе счисления. Число a[k] является первой (слева) цифрой в записи числа n, а a[0] — его последней цифрой.

Если таких представлений несколько, выведите любое из них.

Пример входных и выходных файлов

1	•		1
3			1 0 -1

Задача 2. Популярный рейтинг

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На конференцию по проблемам в области информационных технологий приехали n известных программистов и учёных со всего мира. Авторитет конференции зависит от рейтинга участников; рейтинг каждого учёного — это целое положительное число r, равное количеству его научных публикаций. Число r считается популярным, если более половины участников конференции имеют рейтинг r.

Вам необходимо составить программу, которая из данных n рейтингов учёных определяет популярный.

Формат входного файла

В первой строке записано одно число n – количество участников конференции ($2 \le n \le 10^6$). Во второй строке записаны n целых положительных чисел из промежутка [1; 10^9] – рейтинги участников. Гарантируется, что среди них есть популярный рейтинг.

Формат выходного файла

Выведите одно целое число – популярный рейтинг участников конференции.

Пример входных и выходных файлов

2 1 1	1
5 5 8 5 8 8	8

Задача 3. Шестерёночки

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны n шестерёнок, некоторые из них соединены между собой. Две сцепленные шестерёнки могут вращаться только в разных направлениях.

Вам необходимо выяснить, может ли вращаться вся система шестерёнок, и если может, указать наименьшее количество шестерёнок, которые нужно заставить вращаться.

Формат входного файла

В первой строке записаны два целых числа: n – количество шестерёнок и m – количество сцеплений между ними ($2 \le n \le 10^3$, $1 \le m \le 10^5$).

В каждой из следующих m строк записаны два различных числа i и j, которые определяют номера сцепленных шестерёнок. Все шестерёнки пронумерованы целыми числами от 1 до n.

Формат выходного файла

В первой строке запишите одно число k — наименьшее количество шестерёнок, которые нужно заставить вращаться.

В следующей строке k целых чисел – номера этих шестерёнок. Если решений несколько, выведите любое из них.

Если запустить все шестерёнки невозможно, выведите -1.

Пример входных и выходных файлов

6 3	3
6 3 4 5	1 4 6
2 1	
3 1	
4 3	-1
12	
2 4	
41	

Пояснение к примеру

В первом примере имеется n=6 шестерёнок, между ними m=3 соединения. Все они будут вращаться, если запустить три шестерёнки с номерами 1, 4 и 6.

Во втором примере все шестерёнки вращаться не смогут, поэтому в ответе -1.

Задача 4. Сортировочная

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Даны n целых чисел d[1], d[2], ..., d[n] ($2 \le n \le 20$). Вам разрешается менять местами любые два числа в этом наборе, если одно из них делится на другое.

Требуется отсортировать исходный набор по возрастанию, переставляя на каждом шаге только два числа.

Формат входного файла

В первой строке записано одно целое n – количество чисел в исходном наборе ($2 \le n \le 20$).

Во второй строке записано n различных целых положительных чисел из промежутка [1; 10^9].

Гарантируется, что количество требуемых перестановок не превышает 10^6 .

Формат выходного файла

В первой строке запишите целое число k – количество перестановок, которое вам понадобилось для сортировки исходного набора чисел по возрастанию.

В каждой из следующих k строк запишите по два целых числа из исходного набора, которые меняются местами в соответствии с правилами сортировки (одно из них обязательно должно делиться на другое).

Если решений несколько, выведите любое из них. Если требуемую сортировку сделать невозможно, запишите -1.

1
6 12
0
-1

2018-19

Задачи были отдельно для 7-8 классов и отдельно для 9-11. Ниже приведены задачи за 9-11 классы, потому что выступать за 7-8 классы нет смысла. Но для справки, за 7-8 классы были даны те же задачи, что и за 9-11 классы, за исключением самой сложной (4-й) задачи и с добавлением одной очень простой.

3. Простая математика

Имя входного файла:sm.inИмя выходного файла:sm.outОграничение по времени:1 секундаОграничение по памяти:256 мегабайт

Братья Петя и Вася делают успехи в изучении математики. Отец мальчиков даёт им сложные математические задачи, которые братья довольно быстро решают.

Однажды, отец задал новую задачку с простой формулировкой. Требуется найти сумму первых N членов последовательности, в которой і-ый элемент равен сумме квадратного корня из і, округлённого вверх, и кубического корня из і, округлённого вниз. Т.е. і-ый элемент последовательности равен

ceil(sqrt(i))+floor(cube_root(i)).

Мальчики легко выписали первые члены последовательности и суммировали их. Однако задумались над вопросом: как решить задачу, если N будет очень большим числом. В этом случае записать все числа последовательности будет непросто.

После некоторых размышлений мальчики решили задачу для больших N. Но теперь, прежде чем показывать ответы отцу, они хотят убедиться в их правильности. Они предлагают вам решить ту же задачу, чтобы сравнить ответы.

Формат входного файла

Единственная строка входного файла содержит число N ($1 \le N \le 10^{12}$) – количество элементов последовательности, сумму которых вы должны получить.

Формат выходного файла

Выходной файл должен содержать одно число – сумму N первых членов последовательности.

Примеры входных и выходных файлов

sm.in	sm.out
1	2
4	11

Пояснение к примерам

Первые члены последовательности равны: 2, 3, 3, 3,...

4. Эволюция

Имя входного файла:evo.inИмя выходного файла:evo.outОграничение по времени:1 секундаОграничение по памяти:256 мегабайт

Учёные Байтландии давно знают, что ДНК (ДезоксирибоНуклеиновая Кислота) содержит генетическую информацию организма. В настоящее время нетрудно извлечь ДНК любого организма, расшифровать этот код и рассмотреть интересующий сегмент для дальнейших исследований. В научных кругах под расшифровкой понимается представление генетического кода в виде строки, состоящей из символов A, C, T и G. Подобная строка полностью описывает код ДНК.

Учёным предстоит ещё очень много работы, чтобы понять все секреты природы, спрятанные в ДНК. Тем не менее, уже имеются большие успехи в этом направлении. Например, не так давно мир узнал о возможности определения уровня эволюции организма по отдельным участкам кода ДНК. Для этого берётся ДНК и выбирается участок из N нуклеотидов, по которому считается степень сложности. Чем выше степень сложности выбранного сегмента, тем большее количество стадий эволюции прошёл организм.

Степень сложности сегмента ДНК определяется следующим образом:

- Для сегмента из N нуклеотидов рассматриваются все подсегменты из K последовательных нуклеотидов;
- Для каждого подсегмента подсчитывается количество содержащихся в нём нуклеотидов каждого типа (иными словами, вычисляются четыре числа, которые определяют количественную композицию нуклеотидов в подсегменте);
- Степень сложности определяется как количество различных количественных композиций подсегментов. Две композиции считаются одинаковыми, если количества соответствующих нуклеотидов равны в обоих композициях.

После этого открытия учёные начали собирать информацию о степенях сложности ДНК различных организмов. У них уже имеются все необходимые коды ДНК, однако исследование каждой цепочки ДНК вручную занимает очень много времени. Поэтому они попросили вас написать программу, которая позволила бы быстро определять степень эволюции организма.

Формат входного файла

Первая строка входного файла содержит два целых числа N и K (\$1\le K\le N\le 100 000\$) – количество нуклеотидов в сегменте цепочки ДНК и длина подсегментов для рассмотрения. Числа разделены одним пробелом.

Вторая строка содержит N символов, соответствующих нуклеотидной цепочки. Каждый символ — это A, C, T или G.

Формат выходного файла

Единственная строка выходного файла должна содержать одно число – степень сложности организма.

Примеры входных и выходных файлов

evo.in	evo.ou
	t
5 1	4
ACGTA	
8 2	5
AACACGTA	

Пояснения к примерам

В первом примере имеется 4 различных подсегмента единичной длины.

Во втором примере имеется 7 подсегментов длины 2: AA, AC, CA, AC, CG, GT, TA. Подсегменты AC и CA имеют эквивалентные количественные композиции, поэтому степень сложности всего сегмента равна 5.

5. Сортировка

Имя входного файла: elective.in Имя выходного файла: elective.out

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Всеми любимый учитель Мистер Тринидад решил обновить программу своих занятий. Он выяснил, что учащиеся очень интересуются числовыми последовательностями и специальными преобразованиями.

На первом занятии М-р Тринидад сообщил учащимся, что последовательность чисел \$a_1, a_2, \ ldots, a_N\$ называется сортированной, если для любого индекса і < N выполняется условие \$a_i\le a_{i+1}\$. Затем учитель объяснил наиболее известные алгоритмы сортировки последовательностей. Т.к. учащиеся довольно быстро усвоили материал занятия, учитель решил рассказать о менее известном методе сортировки.

Суть метода проста: последовательность чисел a_1 , a_2 , d_3 , a_4 , d_4 , d_5 , d_6

С целью облегчить понимание этого метода сортировки учитель задал ученикам домашнее задание: разбить последовательность на минимальное количество сегментов таким образом, чтобы можно было применить вышеописанный метод сортировки.

Вы, как самый продвинутый ученик, решили написать программу, решающую задачу для любой числовой последовательности.

Формат входного файла

Первая строка входного файла содержит число N (\$1\le N\le 500 000\$) – длина последовательности.

Вторая строка содержит N целых чисел a_i (\$1\le a_i \le N\$) — элементы последовательности. Числа в строке разделяются пробелами.

Формат выходного файла

Единственная строка выходного файла должна содержать одно число – минимальное количество сегментов, на которое можно разбить исходную последовательность.

Примеры входных и выходных файлов

	Input			Output		
6						4
5	6	4	3	1	2	
3						2
1	2	1				

Пояснения к примерам

В первом примере последовательность можно разбить на 4 сегмента (5 6), (4), (3) and (1 2). Сегмент (1 2) должен быть размещён первым, (3) – вторым, (4) – третьим, а (5 6) – последним. Таким образом последовательность будет отсортирована.

Во втором примере последовательность делится на два сегмента: (1 2) и (1).

6. Статистическое шифрование

Имя входного файла: encrypt.in Имя выходного файла: encrypt.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В Институте Информационной Безопасности (ИИБ) Байтландии учёные разрабатывают новые способы защиты передаваемой и хранимой информации.

Недавно в ИИБ разработан метод безопасной передачи числовых последовательностей, названный «Статистическое шифрование». Идея метода проста: числовая последовательность подвергается процессу шифрования, в итоге получается две последовательности: шифр и ключ.

Сам процесс шифрования держится в секрете, но члены ИИБ хотят нанять программиста, который бы реализовал декодер. Декодер должен по зашифрованной последовательности и ключу получать исходную (незашифрованную) числовую последовательность.

В ИИБ вам сообщили детальную информацию о декодере. На вход поступают следующие данные:

- 3. шифрованная числовая последовательность;
- 4. ключ шифрования \$k_i\$ (\$1\le i\le K\$), который тоже является числовой последовательностью;
- 5. параметр M, который задаёт размер обрабатываемых блоков последовательности. Блок это непрерывный участок последовательности из M элементов.

Для восстановления i-го элемента исходной последовательности нужно вычислить статистику \$k_i\$-го порядка для каждого блока: число, которое будет стоять на \$k_i\$-м месте в блоке после его сортировки. Элемент в позиции i исходной последовательности равен максимальному значению из вычисленных статистик соответствующего порядка.

Напишите декодер, который будет расшифровывать зашифрованную информацию.

Формат входного файла

Первая строка входного файла содержит три числа N, M, K (\$1\le N\le 250 000\$, \$1\le K\le M\le N\$) – соответственно, количество элементов в зашифрованной последовательности, параметр декодера и количество элементов в исходной последовательности.

Вторая строка содержит N различных целых чисел \$a_i\$ (\$1\le a_i\le 250000\$) — зашифрованная последовательность.

Последняя строка содержит K различных целых чисел k_i (\$1\le k_i\le M\$) – элементы ключа шифрования.

Все числа в строках разделены одинарными пробелами.

Формат выходного файла

Выходной файл должен содержать К целых чисел, представляющих исходную последовательность.

Примеры входных и выходных файлов

-	2121 900000100						
		Input				0	utput
	5	2	2			3	6
	1	5	3	2	6		
	1	2					
	4	3	2			7	5
	5	7	3	4			
	3	2					

Пояснения к примерам

К первому примеру: Рассмотрим все блоки последовательности: (1, 5), (5, 3), (3, 2) и (2, 6). Первый элемент исходной последовательности равен максимуму из минимумов в блоках (т.е. 3). Второй элемент – наибольшему из максимумов в блоках (т.е. 6).

Ко второму примеру: Здесь имеется только два блока: (5, 7, 3), (7, 3, 4). Первый элемент равен наибольшему из максимумов в блоках (т.е. 7). Второй – наибольшему из медиан (вторые элементы по значимости) в блоках (т.е. 5).

2017-18

Задачи были отдельно для 7-8 классов и отдельно для 9-11. Ниже приведены задачи за 9-11 классы, потому что выступать за 7-8 классы нет смысла. Но для справки, за 7-8 классы были даны те же задачи, что и за 9-11 классы, за исключением самой сложной (4-й) задачи и с добавлением одной очень простой.

Надо еще отметить, что результаты олимпиады оказались очень плотными в районе 200+ерѕ баллов: 238 баллов — это было 8-10 место в общем зачете (по всем классам), а 200 баллов — это 83-95 место. Поэтому проходные баллы оказались примерно 210-214 по всем классам.

Задача 1. Урок физкультуры

Имя входного файла: gym.in Имя выходного файла: gym.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

На уроке физкультуры тренер Андрей Сергеевич выстраивает учеников в одну шеренгу. В шеренге сначала идут мальчики, а потом девочки. При этом мальчики в шеренге стоят по убыванию роста, аналогично девочки тоже стоят по убыванию роста. Таким образом, следом за самым низким мальчиком стоит самая высокая девочка.

Андрея Сергеевича заинтересовал вопрос, какое максимальное различие в росте двух стоящих рядом учеников. Напишете программу, которая поможет Андрею Сергеевичу ответить на этот важный для него вопрос.

Формат входного файла

Первая строка содержит целое число п - число учеников в классе (2≤n≤50).

Следующие n строк содержат по два целых числа каждая: аі и hі – пол и рост в сантиметрах i-го ученика (аі равно 0 или 1, 100≤hi≤200). Значение аі=0 означает, что і-й ученик – мальчик, а значение аі=1 означает, что і-й ученик – девочка.

Формат выходного файла

Выведите одно число – максимальное различие в росте стоящих рядом учеников после того, как они выстроятся в шеренгу на уроке физкультуры.

Пример входных и выходных файлов

6	22
0 120	
1 130	
1 142	
1 115	
0 145 0 134	
0 134	

Задача 2. Пятница, 13-е

Имя входного файла: friday.in Имя выходного файла: friday.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Календарь жителей планеты Плюк состоит из N месяцев, каждый месяц состоит ровно из 30 дней, неделя состоит из 7 дней. Особо несчастливыми на планете Плюк считается 13-е число месяца, если оно выпадает на пятницу.

Известно, что Новый год на планете Плюк начался в k-й по счету день недели (1-й день недели – понедельник, 2-й – вторник, 3-й – среда, ... ,7-й – воскресенье).

Определите, сколько в этом году на планете Плюк будет особо несчастливых пятниц, 13-е.

Формат входного файла

Программа получает на вход два натуральных числа, записанных в отдельных строках. Первое число – количество месяцев в календаре планеты Плюк N, не превосходящее 10^9 . Второе число – номер дня недели, на который приходится первое число первого месяца нового года, может принимать значения от 1 до 7.

Формат выходного файла

Программа должна вывести единственное целое число - количество несчастливых дней в этом году.

Пример входных и выходных файлов

12	2
1	

Пояснение к примеру

На 13-е число будут приходиться пятницы четвертого и одиннадцатого месяцев.

Задача 3. Сумма минимумов

Имя входного файла: summin.in Имя выходного файла: summin.out Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

У Саши есть блокнот, состоящий из n листочков, пронумерованных от 1 до n. На i-м листочке написано целое число ai.

Аня собирается разорвать блокнот на k частей, для этого она выбирает k-1 число $1 \le r1 < r2 < ... < rk-1 < n$ и разрывает блокнот так, что листки с 1 по r1-й оказываются в первой части, листки с (r1+1)-го по r2-й оказываются во второй части, и т.д., последняя k-я часть содержит листки с (rk-1+1)-го по n-й.

После того, как Аня разорвет блокнот, Саша найдет минимальное число в каждой из получившихся частей и сложит их. Аня хочет разорвать блокнот таким образом, чтобы получившаяся сумма была как можно больше. Помогите ей выбрать способ разорвать блокнот, чтобы максимизировать сумму минимальных значений.

Формат входного файла

Первая строка ввода содержит два числа: n и k (2≤k≤n≤300).

Вторая строка содержит n целых чисел: a1, a2, ..., an $(1 \le ai \le 10^9)$.

Формат выходного файла

На первой строке выведите максимальное значение суммы, которое удастся достичь Ане.

На второй строке выведите значения r 1, r2, ..., rk-1, которые ей необходимо выбрать. Если вариантов разорвать блокнот, чтобы максимизировать искомую сумму несколько, выведите любой из них.

Пример входных и выходных файлов

10 5	27
1 10 2 8 9 3 5 4 7 6	3 4 5 8

Пояснение к примеру

В приведенном примере Аня разорвала блокнот на части [1, 10, 2], [8], [9], [3, 5, 4] и [7, 6].

Искомая сумма равна 1 + 8 + 9 + 3 + 6 = 27.

Задача 4. Урюк

Имя входного файла: appricot.in Имя выходного файла: appricot.out Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

В давние времена Золотая Орда ежегодно собирала дань золотыми монетами. Известный крымский хан Гирей решил схитрить: выплачивая дань из N золотых монет, он подложил среди них одну фальшивую – более легкую монету. Об этом донесли казначею Золотой Орды. Для обнаружения подделки он решил использовать магические весы, работающие на урюке.

На чаши магических весов кладутся две кучи монет. Весы устанавливают, совпадает или различается вес этих куч. При этом, если кучи имеют разный вес, то весы указывают, какая из куч легче.

При совпадении веса обеих куч весы требуют R плодов урюка, а при несовпадении – U плодов. Казначей, сам любитель урюка, хочет и фальшивую монету обнаружить, и сэкономить на урюке.

Требуется написать программу, которая по заданному количеству монет N, при условии, что только одна из них легче других, укажет минимальное количество урюка, с помощью которого эта фальшивая монета гарантированно будет обнаружена.

Формат входного файла

Во входном файле в единственной строке находятся три целых числа N, R и U (2 ≤ N ≤ 1 000 000, 1 ≤ R, U ≤ 1 000 000), где N – количество монет, R – количество плодов урюка, затрачиваемых в случае совпадения веса куч монет, U – количество плодов урюка, затрачиваемых в случае их различия. Все числа разделены пробелом.

Формат выходного файла

Выходной файл должен содержать одно число – минимальное количество урюка, с помощью которого гарантированно будет обнаружена фальшивая монета.

Пример входных и выходных файлов

431	2
3 3 1	3
15 2 3	8
10 2 1	3

2016-17

В 2016 году и ранее олимпиада проводилась не в Яндекс. Контесте, а с тестированием решений после тура.

В 2016-17 году задания были отдельно по 9 классам и отдельно по 10-11 классам.

2016-17 год, 8-9 классы

Речные гонки

Имя входного файла:river.inИмя выходного файла:river.outОграничение по времени:1 секундаОграничение по памяти:64 мегабайта

Егор и Петр участвуют в речной гонке на лодках: участники одновременно стартуют в пункте **A** и должны проплыть против течения реки в пункт **B**. Тот, кто приплывет первым, объявляется победителем. В результате жеребьевки Егору и Петру выпало участвовать в одном заплыве. Нам известны скорости движения лодок ребят и скорость течения реки. Ваша задача – определить, кто же из них победит.

Формат входного файла

В первой строке ввода содержатся три целых числа: **V1** – скорость лодки Егора, **V2** – скорость лодки Петра и **V3** – скорость течения реки $(0 \le V1, V2, V3 \le 10^6)$.

Формат выходного файла

Выведите одну строку, содержащую следующий текст:

- 1. "EGOR", если первым приплывет Егор;
- 2. "РЕТК", если первым приплывет Петр;
- 3. "RIVER", если победителя определить не удалось.

Пример входных и выходных файлов

river.in	river.out
10 5 1	EGOR
4 5 2	PETR
6 6 2	RIVER

Сеть

Имя входного файла: network.in Имя выходного файла: network.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Для проведения олимпиады организаторы планируют объединить компьютеры участников в сеть. Из сетевого оборудования в наличии есть N коммутаторов и неограниченное количество сетевых кабелей. Коммутатор с номером і $(1 \le i \le n)$ характеризуется числом a_i — количеством портов в этом коммутаторе.

Организаторы могут соединить кабелем либо два коммутатора, либо два компьютера, либо коммутатор и компьютер. Каждый коммутатор может быть соединен кабелями не более чем с а; устройствами (коммутаторами или компьютерами), каждый компьютер — не более чем с одним.

Два компьютера могут обмениваться данными, если от одного из них до другого можно добраться по кабелям, возможно, пройдя при этом по цепочке из коммутаторов. Организаторы хотят построить сеть таким образом, чтобы каждые два компьютера могли обмениваться данными.

Какое максимальное количество компьютеров организаторы могут объединить в сеть, используя имеющиеся коммутаторы?

Формат входного файла

В первой строке входного файла находится одно число N — количество коммутаторов, имеющихся у организаторов ($0 \le N \le 10^5$).

Во второй строке файла находится N чисел a_i — количество портов в коммутаторе с номером і $(1 \le a_i \le 10^\circ, 1 \le i \le N)$.

Формат выходного файла

Выведите единственное число — максимальное количество компьютеров, которое удастся объединить в сеть, используя имеющиеся коммутаторы.

Пример входных и выходных файлов

network.in	network.out
3	15
10 4 5	
2	10
1 10	
2	11
3 10	

Большое число

Имя входного файла: bignum.in Имя выходного файла: bignum.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Дано целое число N, состоящее из четного количества десятичных цифр. Над ним последовательно производятся следующие действия:

- 1. цифры числа разделяются на две равные половины;
- 2. левая и правая половины разворачиваются, то есть порядок следования цифр меняется на противоположный;
 - 3. аналогичные действия выполняются для частей числа без первой и последней цифры, и так далее.

Когда останется последняя цифра первой половины числа и первая — второй, процесс останавливается, так как разворачивать их не имеет смысла.

Рассмотрим пример. Пусть N = 1234567890. Тогда в процессе выполнения указанных действий будет получена следующая цепочка: 5432109876, 5123478906, 5143298706, 5142389706. Ваша задача — узнать результат последовательности указанных преобразований.

Формат входного файла

Входной файл содержит единственное число N (не более 10000 цифр). Допускаются нули в начале записи числа.

Формат выходного файла

Выходной файл должен содержать единственное число — результат применения всех действий.

Пример входных и выходных файлов

bignum.in	bignum.out
1234567890	5142389706
000123	000231
012039	201390

Ох, уж эти скобки

Имя входного файла: brackets.in Имя выходного файла: brackets.out

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Математическое выражение записано в виде произведения:

$$(\pm a_2 x^2 \pm a_1 x \pm a_0) \cdot (\pm b_2 x^2 \pm b_1 x \pm b_0) \cdot (\pm c_2 x^2 \pm c_1 x \pm c_0) \dots$$

Внутри каждой из N скобок произведения находится выражение вида:

$$\pm a_2 x^2 \pm a_1 x \pm a_0$$

где хотя бы один из коэффициентов a_i не равен нулю (b_i, c_i и т. д., аналогично). Требуется составить программу, которая перемножает выражения в скобках и выводит полученную функцию в виде многочлена с приведенными по степеням х слагаемыми, то есть в виде:

$$\pm q_{2N}x^{2N} \pm q_{2N-1}x^{2N-1} \pm \ldots \pm q_3x^3 \pm q_2x^2 \pm q_1x \pm q_0$$

Формат входного файла

В первой строке входного файла находится число N (1 ≤ N ≤ 6).

Во второй строке находится выражение из N пар скобок. Внутри каждой пары скобок находится выражение в виде « $\pm a_2 x^2 \pm a_1 x \pm a_0$ », где « $\pm x^2 + a_0 = a_0 + a_0 = a_0$

- Всё выражение записывается, начиная со старшей степени переменной по убыванию степеней.
- Если какой-то коэффициент равен нулю, то этот коэффициент и соответствующий ему х опускаются в записи вместе с арифметическим знаком. Исключением является случай, когда все коэффициенты равны нулю. В этом случае вместо всего выражения указывается единственный коэффициент 0.
- Если a_i=±1 и i>0, то единица перед соответствующим ему x не ставится.
- Если первый отличный от нуля коэффициент положителен, то знак «+» перед ним опускается.
- В выражении отсутствуют пробельные символы (пробел, табуляция) и знаки умножения.

Формат выходного файла

В первой строке выходного файла выведите результат раскрытия скобок в исходном выражении в следующем формате:

$$\pm q_{2N}x^{(2N)}\pm q_{2N-1}x^{(2N-1)}\pm...\pm q_{1}x\pm q_{0}$$

Формат выражения должен полностью соответствовать описанию для входного файла. Скобки вокруг степеней ставить не нужно, они приведены здесь только для читабельности.

Пример входных и выходных файлов

brackets.in	brackets.out
1	3x^2+2x-1
$(3x^2+2x-1)$	
2	8x^4+22x^3+26x^2+23x+5
$(4x^2+3x+5)(2x^2+4x+1)$	
3	x^4+6x^3+6x^2+7x
$(-x+7)(x)(x^2+x+1)$	
6	720
(1)(2)(3)(4)(5)(6)	

2016-17 год, 10-11 класс

Большое число

Имя входного файла:bignum.inИмя выходного файла:bignum.outОграничение по времени:1 секундаОграничение по памяти:64 мегабайта

Дано целое число N, состоящее из четного количества десятичных цифр. Над ним последовательно производятся следующие действия:

- 1. цифры числа разделяются на две равные половины;
- 2. левая и правая половины разворачиваются, то есть порядок следования цифр меняется на противоположный;
- 3. аналогичные действия выполняются для частей числа без первой и последней цифры, и так далее.

Когда останется последняя цифра первой половины числа и первая — второй, процесс останавливается, так как разворачивать их не имеет смысла.

Рассмотрим пример. Пусть N = 1234567890. Тогда в процессе выполнения указанных действий будет получена следующая цепочка: 5432109876, 5123478906, 5143298706, 5142389706. Ваша задача — узнать результат последовательности указанных преобразований.

Формат входного файла

Входной файл содержит единственное число N (не более 10000 цифр). Допускаются нули в начале записи числа.

Формат выходного файла

Выходной файл должен содержать единственное число — результат применения всех действий.

Пример входных и выходных файлов

bignum.in	bignum.out
1234567890	5142389706
000123	000231
012039	201390

Ох, уж эти скобки

Имя входного файла: brackets.in Имя выходного файла: brackets.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Математическое выражение записано в виде произведения:

$$(\pm a_2 x^2 \pm a_1 x \pm a_0) \cdot (\pm b_2 x^2 \pm b_1 x \pm b_0) \cdot (\pm c_2 x^2 \pm c_1 x \pm c_0) \dots$$

Внутри каждой из N скобок произведения находится выражение вида:

$$\pm a_2 x^2 \pm a_1 x \pm a_0$$

где хотя бы один из коэффициентов a_i не равен нулю (b_i , c_i и т. д., аналогично). Требуется составить программу, которая перемножает выражения в скобках и выводит полученную функцию в виде многочлена с приведенными по степеням х слагаемыми, то есть в виде:

$$\pm q_{2N}x^{2N} \pm q_{2N-1}x^{2N-1} \pm \ldots \pm q_3x^3 \pm q_2x^2 \pm q_1x \pm q_0$$
.

Формат входного файла

В первой строке входного файла находится число N ($1 \le N \le 6$).

Во второй строке находится выражение из N пар скобок. Внутри каждой пары скобок находится выражение в виде $= a_2x^2 \pm a_1x \pm a_0$, где $= a_i$, где $= a_i$, или знак $= a_i$, или знак $= a_i$. Выражение составлено по следующим правилам:

- 7. Всё выражение записывается, начиная со старшей степени переменной по убыванию степеней.
- 8. Если какой-то коэффициент равен нулю, то этот коэффициент и соответствующий ему х опускаются в записи вместе с арифметическим знаком. Исключением является случай, когда все коэффициенты равны нулю. В этом случае вместо всего выражения указывается единственный коэффициент 0.

- 9. Если a_i =±1 и i>0, то единица перед соответствующим ему x не ставится.
- 10. Если первый отличный от нуля коэффициент положителен, то знак «+» перед ним опускается.
- 11. В выражении отсутствуют пробельные символы (пробел, табуляция) и знаки умножения.

Формат выходного файла

В первой строке выходного файла выведите результат раскрытия скобок в исходном выражении в следующем формате: $\pm q_{2N}x^{\wedge}(2N) \pm q_{2N-1}x^{\wedge}(2N-1) \pm ... \pm q_1x \pm q_0$.

Формат выражения должен полностью соответствовать описанию для входного файла. Скобки вокруг степеней ставить не нужно, они приведены здесь только для читабельности.

Пример входных и выходных файлов

brackets.in	brackets.out
1	3x^2+2x-1
(3x^2+2x-1)	
2	8x^4+22x^3+26x^2+23x+5
(4x^2+3x+5)(2x^2+4x+1)	
3	x^4+6x^3+6x^2+7x
$(-x+7)(x)(x^2+x+1)$	
6	720
(1)(2)(3)(4)(5)(6)	

Разбиение числа

Имя входного файла: decomp.in Имя выходного файла: decomp.out Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Факториалом числа n называется произведение $n!=1\cdot 2\cdot ...\cdot n$ при n>0 и n!=1 при n=0.

Количество сочетаний из n элементов по k определяется следующим образом:

$$\binom{n}{k} = \begin{cases} \frac{n!}{k! \cdot (n-k)!}, 0 \le k \le n; \\ 0, k > n. \end{cases}$$

В математике такие числа называются также биномиальными коэффициентами. Требуется представить заданное число Р в виде суммы трех биномиальных коэффициентов:

$$P = \binom{a}{1} + \binom{b}{2} + \binom{c}{3}, 0 \le a < b < c.$$

Формат входного файла

Входной файл содержит единственное число $P (1 \le P \le 10^{18})$.

Формат выходного файла

В выходной файл выведите искомые числа a, b, c ($0 \le a \le b \le c$), разделённые пробелами. Если задача не имеет решения, выведите три нуля.

Пример входных и выходных файлов

decomp.in	decomp.out
42	1 4 7
31	1 5 6

нок

 Имя входного файла:
 lcm.in

 Имя выходного файла:
 lcm.out

 Ограничение по времени:
 1 секунда

 Ограничение по памяти:
 64 мегабайта

Наименьшим общим кратным (НОК) нескольких чисел называется наименьшее натуральное число, которое делится на каждое из этих чисел. Заданы два числа N и K. Требуется найти набор из N различных натуральных чисел, наименьшее общее кратное которых равняется K. Среди всех этих чисел не должно быть единицы и самого числа K.

Формат входного файла

В первой строке входного файла записаны через пробел два числа N и K ($1 \le N \le 1000, 1 \le K \le 10^9$).

Формат выходного файла

В выходной файл в первой строке выведите искомый набор из N чисел, разделённых пробелами. Если Вы смогли найти несколько наборов, то выведите любой из них.

Если требуемого набора не существует, тогда выведите -1.

Пример входных и выходных файлов

lcm.in	lcm.out
2 14	2 7
12 20736	3 9 27 81 256 128 64 32 16 8 4 2
17 42	-1
7 123456	2 3 4 6 30864 41152 61728

Тесты 2016-17

Речные гонки (100 баллов)

N₂	Исходные данные	Правильный ответ
1	10 5 1	EGOR
2	452	PETR
3	662	RIVER
4	100 1 2	EGOR
5	4 50 10	PETR
6	333	RIVER
7	10 12 20	RIVER
8	1000000 1000000 100	RIVER
9	100 1000000 10	PETR
10	1000000 100000 10000	EGOR

По 10 баллов за каждый успешно пройденный тест.

Сеть (100 баллов)

N₂	Исходные данные	Правильный ответ
1	0	2
2	1	10
	10	
3	2	15
	10 7	
4	15	2
	11111111111111	
5	4	21
	10 5 6 6	
6	5	36
	8 6 10 10 10	
7	15	2
	1212121212121	
8	6	599999990
	1000000000 1000000000 1000000000	
	1000000000 1000000000 1000000000	
9	7	44109858
	3336772 536366 1 4446832 2 35789893 3	
10	8	536368
	2 536366 1 1 2 2 3 3	

По 10 баллов за каждый успешно пройденный тест.

Большое число (сложность 100 баллов)

N₂	Исходные данные	Правильный ответ
1	31	31
2	1234	2143
3	4887009903	0478890930
4	50445572516225079820935171007348	1570145435950722859176025294611639167671281493978
	16696149613177219987	070
5	72172199516845062641563483807757	2712812792217949457156787405803682463461560239898
	44729281278734623998541087992603	708601164959829491372069433874807
	880616992417093840	

По 10 баллов за успешно пройденные тесты 1 и 2.

20 баллов за успешно пройденный тест 3.

По 30 баллов за успешно пройденные тесты 4 и 5.

Ох, уж эти скобки (100 баллов)

N₂	Исходные данные	Правильный ответ
1	1 (x+1)	x+1
2	2 (x^2+x+1)(x^2+x+1)	x^4+2x^3+3x^2+2x+1
3	3 (9x^2+9x+10)(9x^2+9x+9) (9x^2+10x+10)	729x^6+2268x^5+4698x^4+5679x^3+5040x^2+2610x+90 0
4	4 (-8x^2+5x+9)(-x^2-6x+9)(7x^2-5x- 10)(9x^2+3x+7)	504x^8+2517x^7-8473x^6- 831x^5+8180x^4+2765x^3+3819x^2-4635x-5670
5	5 (9x^2+4x-1)(8x+3)(-4x^2-9x-6)(- 2x^2-3x-1)(-x^2+9x-5)	-576x^9+2552x^8+15910x^7+26345x^6+14596x^5- 4255x^4-7481x^3-2160x^2+123x+90
6	6 (10x^2-2x-5)(2x^2+x)(7x^2-10x+7)(- 9x^2+x-8)(9x^2-5x+1)(4x^2+10x-10)	-45360x^12-31968x^11+235988x^10- 370760x^9+300162x^8-99962x^7- 86718x^6+153360x^5-61382x^4-16510x^3+14430x^2- 2800x
7	4 (-8x^2+5x+9)(-x^2-6x+9)(0) (9x^2+3x+7)	0
8	2 (-2x^2+x+2)(-2x^2-x+1)	4x^4-7x^2-x+2
9	5 (1)(x^2)(x^2)(x^2+1)(x+1)	x^7+x^6+x^5+x^4
10	5 (-x-1)(x^2)(-x^2-x)(x^2)(-x^2-x-1)	-x^9-3x^8-4x^7-3x^6-x^5

По 10 баллов за каждый успешно пройденный тест.

Разбиение числа (100 баллов)

N₂	Исходные данные	Правильный ответ
1	2	000
2	3	123
3	53803	31 53 69
4	9242384	193 222 382
5	979763401	1263 1593 1805
6	68057018561	3151 7162 7419
7	8314493051849	18792 26819 36813
8	823282321691624	42740 98208 170308
9	77767858026820071	411949 607499 775623
10	1000000000000000000	378767 1399103 1817121

По 10 баллов за каждый успешно пройденный тест.

НОК (100 баллов)

11OK (100 0a/1/10B)		
No	Исходные данные	Пример правильного ответа
1	4 90	2 45 3 30
2	3 68	34 4 2
3	10 6592	3296 64 2 4 1648 8 824 16 412 32
4	7 1024	-1
5	3 42	237
6	3 210	-1
7	5 67264	33632 64 2 4 16816
8	11 6343552	3171776 128 2 4 1585888 8 792944 16 396472 32 198236
9	10 71791232	35895616 128 2 4 17947808 8 8973904 16 4486952 32
10	7 130856528	65428264 11896048 2 4 32714132 8 16357066

По 10 баллов за каждый успешно пройденный тест.

В данной задаче возможны другие правильные решения. Для проверки правильности полученного результата можно воспользоваться функцией MS Excel HOK() или любым сервисом, обеспечивающим получение НОК нескольких чисел.

2015-16

Текст муниципальной (районной/городской) олимпиады по информатике 2015–2016 учебного года

Примечание: в 2015 году очень много школьников, особенно в 10 и 11 классах, набрали на районной олимпиаде полный балл (400). Это обозначает, что задачи и/или тесты были на самом деле довольно простыми. (П. Калинин)

«Хоккей» – 100 баллов

Финал чемпионата проводился по новой системе: две команды, вышедшие в него должны сыграть между собой \mathbf{n} матчей ($\mathbf{n} \leq 16$). За победу в каждом матче команда получает 2 очка, за ничью -1 очко, за поражение - не получает. При равенстве очков в \mathbf{n} матчах победитель определяется по лучшей разности забитых и пропущенных шайб, а если эта разность у обеих команд равна нулю, то обе команды считаются победителями

Входные данные

Входной файл **task1.in** содержит в первой строке число матчей **n**, а в каждой из последующих **n** строк находится по два целых числа **a** и **b** — итоговый счет в соответствующем матче. **a** — количество шайб, забитых первой командой, **b** — количество шайб, забитых второй командой. (0 \leq **a**,**b** \leq 100).

Выходные данные

Выходной файл task1.out должен содержать номер выигравшей команды, в случае равенства очков и разности шайб следует вывести 0.

Примеры:

րու	
task1.in	task1.out
4	2
6 7	
3 5	
9 11	
12 12	
3	1
14 5	
15 8	
2 20	
2	0
5 6	
6 5	

«Эксперимент» – 100 баллов

В лаборатории проводятся эксперименты. В журнале учета фиксируется время начала эксперимента и его окончания. Необходимо по этим показателям определить его продолжительность. Эксперимент длится менее суток

Входные данные

В первой строке входного файла **task2.in** записано время начала эксперимента в формате ЧЧ:ММ:СС (с ведущими нулями), а во второй строке время его окончания в том же формате.

Выходные данные

В выходной файл **task2.out** следует вывести продолжительность эксперимента в том же формате.

Примеры:

task2.in	task2.out
01:01:01	11:04:05
12:05:06	
01:01:01	0:59:59
02:01:00	
23:59:59	00:00:01
00:00:00	

Назовем натуральное число подходящим, если

- 12. в его записи используются только цифры 1, 2, 3 и 4.
- 13. соседние цифры этого числа отличаются на единицу.

Подсчитать число подходящих **n**-значных чисел ($1 \le \mathbf{n} \le 40$).

Входные данные

Исходный файл task3.in содержит в единственной строке натуральное число n – число знаков.

Выходные

Выходной файл **task3.out** должен содержать натуральное число подходящих **n**–значных чисел. Ваша программа должна

- прочитать из файла **task3.in** исходное число $\bf n$;
- подсчитать и вывести **task3.out** количество подходящих **n**–значных чисел (возможно длинное целое).

Пример:

task3.in	task3.out
3	10

Примечание. Имеются в виду числа 121, 123, 212, 232, 234, 321, 323, 324, 432, 434.

«Покраска» – 100 баллов.

На прямой окрасили \mathbf{n} отрезков. Известны координата $\mathbf{L}[\mathbf{i}]$ левого конца отрезка и координата $\mathbf{R}[\mathbf{i}]$ правого конца \mathbf{i} -го отрезка для \mathbf{i} =1, ..., \mathbf{n} . Найти длину самой большой образовавшейся окрашенной части прямой.

Входные данные

Исходный файл **task4.in** содержит в первой строке натуральное число \mathbf{n} – число отрезков ($\mathbf{n} \leq 10000$). Следующие \mathbf{n} строк содержат пары целых чисел, не превышающих по модулю 10^8 разделенных пробелами – координаты левого и правого концов окрашенного отрезка.

Выходные данные

Выходной файл **task4.out** должен содержать целое число – длину самой большой образовавшейся окрашенной части прямой.

Ваша программа должна

-7

-1 1

- прочитать из файла **task4.in** исходное число отрезков **n** и координаты левых и правых концов окрашенных отрезков;
- подсчитать и вывести в файл **task4.out** длину самой большой образовавшейся окрашенной части прямой.

17

14

Пример:

ŀ		ask4.in				task4.out
	4	13K -1 ,111			1.0	task4.out
	4				16	
	-11					
	69					
	-76					
	14 17					
	L(3)	L(1) R(1)	L(2)=R(3)	R(2)	L(4)	R(4)

9

Примечание. Для всех программ ограничение по времени прохождения одного теста — 1 секунда.

Тесты и рекомендации по оценке 2015-16

14. Задание «Хоккей» – 100 баллов

Тест	ие «хоккеи» — 100 оаллов task1.in	task1.out
1	2	0
	21	
	56	
2	4	1
	10	
	5 2	
	4 4	
	2 10	
3	6	1
	11	
	2 2	
	34	
	53	
	76	
4	0 1	2
4	11	2
	22	
	34	
	53	
	76	
	01	
5	10	2
	7 2	
	54	
	05	
	86	
	11	
	44	
	43	
	39	
	29	
	15	

За каждый тест по 20 баллов

15. Задание «Эксперимент» – 100 баллов

Тест	task2.in	task2.out
1	06:12:34	12:23:25
	18:35:59	
2	06:12:34	12:22:50
	18:35:24	
3	06:12:34	23:22:50
	05:35:24	
4	06:12:34	23:01:50
	05:14:24	
5	20:12:34	05:08:06
	01:20:40	

За каждый тест по 20 баллов

16. Задание «Числа» – 100 баллов

Тест	task3.in	task3.out
1	4	16
2	10	288
3	21	57314
4	34	29860704
5	40	535828592

За каждый тест по 20 баллов

Задание 4. «Покраска» – 100 баллов

Тест	task4.in		task4.out
1	3		6
	5 9		
	0 2		
	14 20		
2	4		7
	8 10		
	-6 -3		
	3 8		
	-9 -5		
3	6		10
	-2 0		
	4 7		
	5 13		
	15 25		
	-4 1		
	5 13		
4	8		15
	-18 -4		
	-18 -3		
	5 14		
	-10 -8		
	-1 4		
	1 4		
	0 -2		
	-2 0	T m	C11
5	20 565 955	Продолжение	611
	656 970	40 69 41 65	
	461 854	42 83	
	549 802	42	
	88 286	485 881	
	24 227	762 894	
	512 907	649 710	
	509 831	487 725	
	74 306	359 950	
	94 279	32 43	

За каждый тест по 20 баллов

Ограничение по времени прохождения одного теста — 1 секунда.

2014-15

Текст муниципальной (районной/городской) олимпиады по информатике 2014–2015 учебного года

17. «Конфеты» – 100 баллов

В конце каждого урока физкультуры учитель проводит забег и дает победителю забега четыре конфеты, а всем остальным ученикам – по одной. К концу четверти Петя заслужил \mathbf{a} – конфет, Ваня – \mathbf{b} , а Толя – \mathbf{c} (\mathbf{a} , \mathbf{b} , $\mathbf{c} \le 10^9$). Известно, что один из них пропустил ровно один урок физкультуры, участвуя в олимпиаде по математике, остальные же уроков не пропускали. Кто из детей пропустил урок?

Исходный файл **task1.in** содержит в единственной строке три натуральных числа, количества конфет, полученных мальчиками Петей, Ваней и Толей. Соседние числа разделены ровно одним пробелом. Выходной файл **task1.out** должен в первой строке содержать имя ученика, который пропустил урок.

Ваша программа должна

- прочитать из файла **task1.in** число конфет, полученных Петей, Ваней и Толей;
- найти и вывести в файл **task1.out** имя ученика, который пропустил урок.

Пример:

task1.in	task1.out
29 32 25	Толя

18. **Числа**« – **100** баллов

Из соседних цифр натурального числа \mathbf{n} (\mathbf{n} < 10^9) без изменения порядка их следования образуют число, не содержащее ведущих нулей. Сколько разных чисел (включая \mathbf{n} и однозначные числа) при этом могут получиться?

Исходный файл **task2.in** содержит в единственной строке натуральное число **n**. Выходной файл **task2.out** должен содержать натуральное число – ответ.

Ваша программа должна

- прочитать из файла **task2.in** исходное число **n**;
- подсчитать и вывести в файл **task2.out** количество чисел, которые могут получиться.

Пример:

task2.in	task2.out
101	4

Примечание. Имеются в виду числа 101, 10, 0, 1.

6. «Пять делителей» – 100 баллов.

Найти сумму целых чисел из промежутка от 1 до \mathbf{n} (\mathbf{n} ≤200000000), у каждого из которых ровно 5 делителей, включая 1 и само число.

Исходный файл **task3.in** содержит в единственной строке натуральное число **n**. Выходной файл **task3.out** должен содержать натуральное число – ответ, возможно очень длинное.

Ваша программа должна

- прочитать из файла task3.in исходное число n;
- подсчитать и вывести в файл **task3.out** сумму чисел из промежутка от 1 до **n**, которые имеют ровно 5 делителей.

Пример:

task3.in	task3.out
2014	722

Продолжение на следующей странице

Текст муниципальной (районной/городской) олимпиады по информатике 2014–2015 учебного года, продолжение

4. «Вирус» – 100 баллов

Некоторые \mathbf{v} (0< \mathbf{v} ≤10) клеток квадратного поля \mathbf{n} × \mathbf{n} (\mathbf{n} ≤1000) заражены вирусом. За каждый ход вирус заражает 4 соседние с ним клетки (от угловых клеток заражаются – 2 клетки, от прилежащих к границе поля – 3 клетки). Положение вирусов задано координатами (\mathbf{x} , \mathbf{y}) клеток на поле. Определите, за какое минимальное количество ходов будет заражено все поле.

Исходный файл task4.in содержит в первой строке два натуральных числа n и v, разделенных ровно одним пробелом. Каждая из последующих v строк содержит два разделенных пробелом числа – координаты x и y клетки поля, зараженной вирусом. Строки и столбцы нумеруются с единицы. Выходной файл task4.out должен содержать натуральное число – ответ.

Ваша программа должна

- прочитать из файла **task4.in** размер поля **n** и число вирусов **v**;
- прочитать из файла **task4.in** координаты клеток **x** и **y**, зараженных вирусом;
- подсчитать и вывести в файл **task4.out,** за какое минимальное количество ходов будет заражено все поле.

Пример:

task4.in	task4.out
6 1	7
2 3	

Тесты и рекомендации по оценке 2014-15

19. **Задание 1.** «Конфеты » – **100** баллов

Тест	task1.in	task1.out
1	27 26 27	Ваня
2	35 48 33	Петя
3	50 48 30	Петя
4	31 34 27	Толя
5	35 37 32	Ваня

За каждый тест по 20 баллов

20. **Задание 2. Числа**« – **100 баллов**

Тест	task2.in	task2.out
1	114	5
2	2014	8
3	102003	12
4	123456789	45
5	10020233	18

За каждый тест по 20 баллов

• Задание 3. «Пять делителей» – 100 баллов.

Тест	task3.in	task3.out
1	50	16
2	200	97
3	3000	3123
4	1500000	2170810
5	199999999	161673334846

За каждый тест по 20 баллов

Тесты и рекомендации по оценке 2014-15, продолжение

Задание 4. «Вирус» – 100 баллов

Тест	task4.in	task4.out
1	7 1	8
	4 2	
2	25 2	27
	2 21	
	20 3	
3	250 5	137
	1 1	
	125 110	
	250 250	
	3 222	
	250 1	
4	499 8	385
	50 250	
	100 200	
	100 300	
	50 150	
	50 350	
	299 250	
	199 325	
	400 287	
5	1000 10	543
	182 440	
	454 119	
	251 55	
	411 957	
	789 1	
	775 567	
	890 734	
	569 930	
	287 567	
	476 972	

За каждый тест по 20 баллов

Ограничение по времени прохождения одного теста — 1 секунда.

2013-14

Текст районной/городской олимпиады по информатике 2013-2014

1. «Многотомник» – 100 баллов

Многотомное собрание сочинений (не более 32 томов) стоит в произвольном порядке на полке. Разрешается брать любой том, и ставить его последним. Составить программу, которая определяет наименьшее число перестановок необходимое для того, чтобы упорядочить слева направо собрание сочинений, состоящее из п томов.

Ваша программа должна

запросить или прочитать из файла **order.in** число томов;

запросить или прочитать из того же файла начальный порядок томов;

найти и вывести на экран или в файл order.out наименьшее число перестановок, которое необходимо для упорядочения собрания сочинений.

Число томов Пример:

Начальный порядок томов

32415

Минимальное число перестановок

Примечание. Исходный текстовый файл **order.in** содержит в первой строке одно число \mathbf{n} – количество томов в собрании. В второй строке n – чисел. Соседние числа разделены ровно одним пробелом. Выходной текстовый файл order.out должен в первой строке содержать единственное число – ответ

2. «Неравенства» - 100 баллов

Про числа **a**, **b** и **c** известно, что среди них нет равных, а также результаты их попарного сравнения в виде трех <u>непротиворечивых</u> неравенств вида $\mathbf{x} < \mathbf{y}$ или $\mathbf{x} > \mathbf{y}$ в произвольном порядке. Необходимо записать соотношение между этими величинами в виде правильного двойного неравенства вида x < y < z.

Ваша программа должна

принять с клавиатуры или прочитать из файла ineg.in три результата попарного сравнения;

найти и вывести на экран или в файл ineg.out правильное двойное неравенство для величин a, b и c.

Пример:

Первое неравенство Второе неравенство a<c Третье неравенство a>b Ответ b<a<c

Примечание. Исходный текстовый файл ineg.in содержит в каждой из первых трех строк один из результатов сравнения. Выходной текстовый файл ineg.out должен содержать двойное неравенство – ответ.

«К единице-2 – 100 баллов».

За один ход с числом делается такая операция: если число не делится на 3, то вычитаем 1, а если делится, то делим на 3. Так из числа 39 единица получается за 5 таких ходов (имеется в виду цепочка 39 - 13 - 12 - 4 - 3 - 1). Сколько существует натуральных чисел, каждое из которых превращается в единицу ровно за \mathbf{k} ($0 \le \mathbf{k} \le 35$) таких ходов

Программа должна

Запросить число ходов \mathbf{k} (натуральное число, $0 \le \mathbf{k} \le 35$);

Найти и вывести на экран количество натуральных чисел, которые превращаются в единицу за k таких

Пример:

Число ходов

3

Всего натуральных чисел

6

Примечание. Для ввода и вывода информации можно использовать текстовые файлы number.in и number.out соответственно.

4. «Отрезки» – 100 баллов

На числовой оси заданы \mathbf{n} (\mathbf{n} < $\mathbf{100}$) точек в порядке возрастания их координат (натуральные числа не превосходящие 1000). Соседние точки соединяются отрезками, но так, чтобы ни одна из точек не оказалась принадлежащей сразу двум отрезкам. При этом сумма длин проведенных отрезков должна быть максимальной.

Число точек:

Координаты точек:

1 3 5 12 15 16

Максимальная длина отрезков 10

Всего отрезков 4

Выбранные отрезки:

1-2 3-4 5-6 Всего отрезков — 3

Исходные данные должны вводиться с клавиатуры или читаться из текстового файла section.in, а найденные результаты выводиться на экран или в текстовый файл section.out. Исходный файл section.in содержит в первой строке одно число \mathbf{n} – количество точек. Во второй строке \mathbf{n} чисел – координаты точек. Соседние числа разделены ровно одним Выходной текстовый файл section.out должен в первой строке содержать единственное число максимальную длину отрезков, во второй строке – число выбранных отрезков, а в последующих – по два числа, задающих номера точек-концов очередного выбранного отрезка, разделенных тире (без пробелов).

Тесты и рекомендации по оценке 2013-14

Задание 1. «Многотомник» – 100 баллов

Тест	Исходные данные (файл order.in)	Ответ
1	5	4
	5 4 3 2 1	
2	7	3
	1726354	
3	10	3
	89101234567	
4	15	8
	1 12 2 15 13 14 3 4 11 10 5 6 8 9 7	
5	20	0
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	

За каждый тест по 20 баллов

Задание 2. «Неравенства » – 100 баллов

Тест	Исходные данные (файл ineg.in)	Ответ
1	c>b	a <b<c< th=""></b<c<>
	a <c< th=""><th></th></c<>	
	b>a	
2	a <b< th=""><th>a<c<b< th=""></c<b<></th></b<>	a <c<b< th=""></c<b<>
	a <c< th=""><th></th></c<>	
	c <b< th=""><th></th></b<>	
3	c>b	b <c<a< th=""></c<a<>
	a>c	
	a>b	
4	a <b< th=""><th>c<a<b< th=""></a<b<></th></b<>	c <a<b< th=""></a<b<>
	a>c	
	c <b< th=""><th></th></b<>	
5	a>c	c <b<a< th=""></b<a<>
	b <a< th=""><th></th></a<>	
	c <b< th=""><th></th></b<>	

За каждый тест по 20 баллов

Задание 3. «К единице-2» – 100 баллов

Тест	Число ходов (файл number.in)	Количество чисел
1	5	20
2	10	423
3	12	1431
4	30	830047505
5	35	1748130326

Оценка: 20 баллов за тест.

Задание 4. «Отрезки» – 100 баллов

Тест	Число точек и их координаты (файл section.in)	Ответ
1	3	2
	1 2 4	1
		2-3
2	4	7
	1 3 10 14	1
		2-3
3	7	23
	1 11 19 20 22 25 36	3
		1-2
		4-5
		6-7
4	10	23
	10 12 29 37 38 39 40 44 48 49	4
		2-3
		4-5
		6-7
		8-9
5	19	182
	1 4 24 26 27 57 60 62 102 103 108 148 152 155 185 187 191 213 216	6
		2-3
		5-6
		8-9
		11-12
		14-15
		17-18

За каждый тест по 20 баллов

Ограничение по времени прохождения одного теста — 1 секунда.

2012-13

Текст районной/городской олимпиады по информатике 2012–2013 учебного года

1. «Сделал дело – гуляй смело» – 100 баллов

Вовочка и Марья Ивановна (школьная учительница Вовочки) должны проверить **30** школьных заданий. Учительница не отпустит его играть с папой в футбол прежде, чем закончится проверка всех заданий - ее и Вовочкиных. Папа ждет Вовочку с нетерпением, и уже разминается на футбольном поле. Как Вовочке и учительнице лучше распределить между собой задания, чтобы Вовочка смог пораньше освободиться? На проверку одного задания он тратит в среднем **m** минут, а Марья Ивановна - **k** минут. Найдите наименьшее время (в минутах), которое им необходимо будет потратить на проверку всех заданий.

Ваша программа должна

- запросить m и k;
- найти и сообщить наименьшее время, которое необходимо будет потратить на проверку всех заданий.

Пример:

Исходные данные

17 5

Наименьшее время

119

2. «Прогрессия» — 100 баллов

От записанной на доске арифметической прогрессии, состоящей из натуральных чисел, остались только первый член \mathbf{a} , последний член \mathbf{c} и еще один член \mathbf{b} .

Ваша программа должна

- запросить значения a, b и c (натуральные числа, $0 < a < b < c < 2^{31}$ -1);
- найти и сообщить разность этой прогрессии. Если таких прогрессий несколько, то той, которая имеет меньше всего членов.

Пример:

Исходные данные

23 113

Ответ

3 10

3. «Кенгуру» - 100 баллов

Суперкенгуру может прыгать по прямой вправо и влево и совершать гигантские прыжки. Длина его первого прыжка составляет 1 м, второго — 2 м, третьего — 3 м и так далее (длина каждого прыжка всегда на 1 метр больше, чем предыдущего). Через какое минимальное количество прыжков суперкенгуру окажется на расстоянии **d** метров от исходной точки O?

Программа должна

- запросить расстояние **d** (натуральное число, $0 < \mathbf{d} < 2^{28} 2$);
- найти и вывести на экран минимальное количество прыжков для попадания в точку на расстоянии d.

Примеры:

Расстояние 17

Минимальное число шагов 6

Примечание. Имеется в виду последовательность прыжков 1-2+3+4+5+6, дающая расстояние 17.

4. «Число» – 100 баллов

Вася Пупкин из цифр 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 пытается составить число $\mathbf{a_1 a_2 ... a_n}$ такое, в котором

- 1. Первая цифра не ноль;
- 2. Нет повторяющихся цифр;
- 3. Число a_1a_2 делится на 2, $a_1a_2a_3$ делится на 3, ..., $a_1a_2...a_n$ делится на n.

Помогите ему. Составьте программу, которая находит наибольшее число, начинающееся на введенную пользователем по запросу первую цифру **a**₁ и удовлетворяющую поставленным Васей условиям.

Например:

Первая цифра

5

Искомое число

5612047

Примечание. Для всех программ ограничение по времени прохождения одного теста — 1 секунда.

Тесты и рекомендации по оценке

1. Задание 1. «Сделал дело – гуляй смело» – 100 баллов

Тест	Исходные данные	Ответ
1	8 3	66
2	8 4	. 80
3	31 1	30
4	2 65	60
5	10 7	126

За каждый тест по 20 баллов

Задание 2. «Прогрессия» – 100 баллов

Тест	Исходные данные		Исходные данные	ые	Ответ
1	14	56	60	2	
2	2012	3001	101901	989	
3	14	5014	10014	5000	
4	323	1208	197324	177	
5	123456	1339671	1474806	135135	

За каждый тест по 20 баллов

Задание 3. «Кенгуру» – 100 баллов

Тест	Исходные данные	Ответ
1	18	7
2	21	6
3	3000	79
4	2025078	2012
5	30000000	24495

За каждый тест по 20 баллов

Задание 4. «Число» – 100 баллов

Тест	Исходные данные	Ответ
1	4	48965
2	6	6812043
3	1	12965408
4	8	801654723
5	3	3816547290

За каждый тест по 20 баллов

Рекомендуется для всех программ использовать ограничение по времени прохождения одного теста — 1 секунда.

Справки по телефону 417–76–49, E-mail a-g-b@mail.ru (Баханский А.Г.)

2011-12

Текст районной/городской олимпиады по информатике 2011-2012 учебного года

1. «Акция» – 100 баллов

3АО «Титан» выпустила первую опытную партию новых катеров. В рамках рекламной компании решено организовать водно-моторный переход Н.Новгород-Астрахань. В походе запланировано участие \mathbf{n} (\mathbf{n} ≤100) катеров. На место сбора прибыли катера, на которых находились соответственно \mathbf{a}_1 , \mathbf{a}_2 , ..., \mathbf{a}_n участников похода (\mathbf{a}_i ≤32).

Для обеспечения максимально возможной равномерности загрузки катеров было решено перераспределить часть участников, но так чтобы число пересадок было минимально.

Ваша программа должна по введенным исходным данным сообщать единственное число, минимально возможное количество пересадок, обеспечивающих максимально равномерную загрузку катеров.

Например:

Число катеров 3

Число участников похода по катерам 1, 2, 4

Минимальное число пересадок 1 (соответствующее распределение 2, 2, 3).

2. «Квадрат» – 100 баллов

На координатной плоскости задан квадрат. Одна из его диагоналей соединяет точки (0, 0) и (1000, 1000). На периметре квадрата заданы целочисленными координатами две точки $\mathbf{A}(\mathbf{x_1}, \mathbf{y_1})$ и $\mathbf{B}(\mathbf{x_2}, \mathbf{y_2})$. Найти длину наименьшего пути от точки \mathbf{A} до \mathbf{B} , если перемещение возможно только по периметру.

Ваша программа должна по введенным исходным данным сообщать единственное число, длину минимального пути от ${f A}$ до ${f B}$ по периметру.

Пример:

 Координаты точки А
 300, 0

 Координаты точки В
 500, 1000

 Длина наименьшего пути
 1800

3. «Декодирование» – 100 баллов

Агент 0013 (позывной Вася) придумал такой способ кодирования пересылаемых сообщений:

- **1.** Определяется длина пересылаемого сообщения (например, для сообщения « $\Gamma py3$ $\Gamma oto B$ » это 10).
- **2.** Заготавливается квадратная таблица минимального размера, но содержащая ячеек не менее чем длина сообщения (в примере это 4×4).

B

- **3.** Ячейки таблицы последовательно заполняются символами сообщения слева направо сверху вниз, а оставшиеся пустыми пробелами (смотри рисунок).
- **4.** Кодированное сообщение читается по направлению параллельному вспомогательной диагонали в соответствии со стрелками на рисунке. Возможные последние незначащие пробелы игнорируются. Таким образом, кодированное сообщение будет «**Г_рогу_воз__т**» (для предупреждения ошибок здесь пробелы обозначены символом «_,»).

Вам необходимо составить программу раскодирования сообщений агента, содержащих до 127 символов. Еще один пример:

Кодированная строка Пцрсеооср Сообщение Процессор

4. «Делители» – 100 баллов

Составьте программу, которая по натуральному \mathbf{n} ($\mathbf{n} \le 100$) находит и сообщает число различных натуральных делителей (включая 1 и само число) числа $\mathbf{n}!$ ($\mathbf{n}! = 1 \times 2 \times 3 \times ... \times \mathbf{n}$).

Например:

 Число п
 8

 Число делителей
 96

Примечание. Для всех программ ограничение по времени прохождения одного теста — 1 секунда.

Тесты и рекомендации по оценке 2011-12

Задание 1. «Акция» – 100 баллов

Бидин	5идиние 1: «Тисил» 100 от 100			
Тест	Исходные данные	Пример правильного ответа		
1	5	3		
	1, 2, 3, 4, 5			
2	6	0		
	5, 6, 6, 5, 6, 5			
3	7	6		
	1, 8, 2, 7, 3, 6, 4			
4	8	48		
	32, 31, 30, 1, 2, 3, 24, 25			
5	10	43		
	1, 10, 20, 30, 25, 15, 5, 2, 3, 18			

За каждый тест по 20 баллов

Задание 2. «Квадрат» — 100 баллов

Тест	Исходные данные	Ответ
1	(666, 1000), (1000, 1000)	334
2	(0, 255), (700, 1000)	1 445
3	(1000, 100), (10, 1000)	1 890
4	(0, 150), (1000, 950)	1 900
5	(200, 0), (850, 1000)	1 950

За каждый тест по 20 баллов

Задание 3. «Декодирование» – 100 баллов

Тест	Исходные данные	Ответ
1	Ирнимф_као_ат	Информатика
2	Оилпаифодмто апири кмнеа	Олимпиада по информатике
3	Влсооег_жлвес_у_ну	Все сложено в углу
4	Пмрииооергар_ортма-ва_ьоя_амт_вннгторс	Программирование – вторая
		грамотность
5	Жпд2еуб4х_1р_оуа1янвсог2я_о0_д	Жду успехов 24 ноября
		2011 года

За каждый тест по 20 баллов

Задание 4. «Делители» – 100 баллов

Тест	Исходные данные	Ответ			
1	6	30			
2	9	160			
3	16	5 376			
4	32	5 529 600			
5	100	39 001 250 856 960 000			

За каждый тест по 20 баллов

Рекомендуется для всех программ использовать ограничение по времени прохождения одного теста — 1 секундf.

Текст районной/городской олимпиады по информатике 2010–2011 учебного года

1. «Палиндром» – 100 баллов

Про вводимую с клавиатуры строку символов известно, что каждый ее символ содержится в ней четное число раз. Необходимо переставить символы так, чтобы получился палиндром — строка, которая одинаково читается слева направо и справа налево.

Например:

Исходная строка

12123333.

Результат

12333321 (другие возможные ответы 13233231 или 13322331 или 21333312 или 23133132 или 23311332 или 31233213 или 32133123 или 32311323 или

33122133 или 33211233).

Ваша программа должна

- принять исходную строку с клавиатуры (не более 40 символов);
- переставить символы в строке так, чтобы получился палиндром (любой один из возможных для заданной строки);
- вывести полученную строку на экран.

2. «Excel» – 100 баллов

Известно, что в электронных таблицах Excel-2007 столбцы обозначаются латинскими заглавными буквами и их комбинациями A, B, ..., Z, AA, AB, ..., AZ, BA, BB, ..., BZ, ..., ZZ, AAA, AAB, ..., XVD. Каждому столбцу соответствует номер 1, 2, ..., 26, 27, 28, ..., 52, 53, 54, ..., 78, ..., 702, 703, 704, ..., 16384 соответственно. Необходимо составить программу, которая по имени столбца определят его номер.

Примеры:

Если имя столбца K, то его номер 11. Если номер столбца PC, то его номер 419.

Программа должна

- запросить имя столбца;
- найти и сообщить его номер.

3. «Число» - 100 баллов

Вася Пупкин стал выписывать в порядке возрастания натуральные числа, в записи которых используются только цифры 1, 3, 7: 1, 3, 7, 11,13, 17, 31, 33, 37, ..., стремясь узнать, какое число будет записано 10-м. Вероятно, его заинтересуют потом и числа стоящие на других местах. Помогите ему. Составьте программу, которая по номеру места (целое) находит нужное число.

Например:

Место

10 71

Число

Ваша программа должна

- запросить номер места (целое);
- найти и сообщить число, записанное с помощью цифр 1, 3, 7, стоящее на этом месте.

4. «Двупростые числа» - 100 баллов

Скучающий Вася Пупкин решил посчитать количество двузначных простых чисел. Их оказалось 21: 11, 13,17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97. Он так увлекся этим занятием, что начал изучать «двупростые» числа. Так Вася назвал числа, у которых любые 2 подряд идущие цифры образуют двузначное простое число.

Вам предстоит продолжить дело Васи и выяснить, насколько часты (или редки) «двупростые» числа.

Составите программу, которая

- Запрашивает число N цифр в числе (2≤N≤20);
- Находит и сообщает число N-значных «двупростых» чисел (возможно, длинное целое).

Например:

Число разрядов N

4 142

Число N-разрядных «двупростых» чисел

Примечание. Решение этой задачи для №8 оценивается из 60 баллов.

Текст районной/городской олимпиады по информатике 2009–2010 учебного года

1. «Маршрут» (25 баллов)

Строка, содержащая символы «1», «2», «3», «4», «5», «6»,«7», «8», является описанием маршрута передвижения фишки по узлам решетки со стороной равной 1. Переход осуществляется в соседний узел, заданный символом (см. рисунок). Приведенный на рисунке маршрут задается строкой «81233445557».

Составить программу, которая по маршруту, заданному строкой, вычисляет и сообщает максимальное отклонение фишки от начальной точки. Результат должен быть выведен с точностью до трех знаков после запятой.

Например, для приведенного на рисунке маршрута ответ 4,472.

2. «Число» (25 баллов).

Для заданного натурального числа N (N \leq 32000) найти наименьшее натуральное число K такое, что K^N делится на N.

Например, если N=24, то K=6.

3. «Билеты» (25 баллов)

Написать программу определения количества 2*N -значных билетов, у которых сумма первых N десятичных цифр равна сумме N последних десятичных цифр; при этом $N \le 10$ -натуральное число. Например, если N = 2, то счастливых билетов K = 670.

4. «Монеты» (25 баллов)

На столе разложено N монет. Из них K монет лежат гербом вниз (решка), а остальные вверх (орел). За один ход разрешается одновременно перевернуть любые 7 монет. Окончательная цель повернуть монеты так, чтобы они все лежали гербом вниз за наименьшее количество ходов.

Составить программу, которая

- Запрашивает число монет N (7≤N≤100);
- Запрашивает число монет лежащих гербом вниз К (0≤K<N);
- Находит и сообщает наименьшее число ходов, за которое можно перевернуть все монеты гербом вниз или сообщить что это невозможно.

Например, если N=13 и перевернута 1-я монета (K=1), то это достигается за 2 хода:

ход 1 – переворачиваем монеты с номерами 1, 8–13;

ход 2 - переворачиваем монеты с номерами 1-7.