INF623

2024/1

Inteligência Artificial

A11: Representação do conhecimento l

Plano de aula

- ▶ Agentes baseados em conhecimento
- Lógica proposicional
 - Símbolos e conectivos lógicos
 - Modelo
 - ▶ Base de conhecimento
 - Consequência lógica
- ▶ Inferência
 - Verificação de modelos

Resolução de problemas com busca

Os agentes baseados em busca tomam decisões considerando apenas as ações possíveis ou sua vizinhança.

Exemplo 1: raciocínio lógico

- Considere as seguinte afirmações:
 - A: Se não houve greve, então Lucas foi à aula.
 - B: Lucas foi à aula ou para casa, mas não aos dois.
 - C: Lucas foi para casa.
- ► Houve greve? 🤪
 - C e B → Lucas não foi a aula.
 - $-A \rightarrow$ Houve greve!

Agentes baseados em conhecimento

Agentes baseados em conhecimento representam o mundo por uma **base de conhecimento** e derivam conclusões a partir de **consultas** utilizando **inferência** lógica.

- ▶ Base de conhecimento é composta por sentenças;
- ▶ **Sentenças** são afirmações sobre o mundo representadas em uma linguagem de representação do conhecimento;
- Consultas são sentenças que queremos verificar se são verdadeiras ou não.

Linguagem Natural

Sentenças em linguagem natural podem ser pouco precisas para inferência lógica:

- Sentenças:
 - 1 real é melhor do que nada
 - Nada é melhor do que a paz mundial
- Conclusões
 - 1 real é melhor do que a paz mundial ???

Precisamos de uma linguagem formal para representação e inferência!

Lógica proposicional

Linguagem formal para representação de conhecimento em forma de sentenças proposicionais:

▶ Proposições são afirmação à qual se pode associar uma valor Verdadeiro ou Falso:

"A UFV fica em Viçosa" - proposição Verdadeira

"Viçosa fica no estado de São Paulo" - proposição Falsa

Proposições são representadas por **símbolos proposicionais**, tradicionalmente escritos com letras do alfabeto latino (P, Q e R)

Sentenças são formadas combinando proposições com conectivos lógicos:

 \neg (não), \land (e), \lor (ou), \Rightarrow (implica), \Leftrightarrow (se e somente se)

Conectivos lógico ¬

\boldsymbol{P}	$\neg P$	
F	V	"Não P ", exemplo: • P : "Está chovendo"
V	F	$\neg P$: "Não está chovendo"

Conectivos lógico A

\boldsymbol{P}	Q	$P \wedge Q$
F	F	F
F	V	F
V	F	F
V	V	V

"P e Q", exemplo:

- ightharpoonup P: "Lucas vai estudar"
- ightharpoonup Q: "Lucas vai trabalhar"
- $\blacktriangleright P \land Q$: "Lucas vai estudar e trabalhar"

Conectivos lógico V

\boldsymbol{P}	Q	$P \lor Q$
F	F	F
F	V	V
V	F	V
V	V	V

"P ou Q", exemplo:

- ▶ P: "Lucas vai estudar"
- ightharpoonup Q: "Lucas vai trabalhar"
- $\blacktriangleright P \lor Q$: "Lucas vai estudar ou trabalhar"

Esse conectivo é chamado de OU inclusivo, mas existe também o OU exclusivo:

- ▶ OU inclusivo $(\lor) \{P = V, Q = V\}$ é Verdadeiro
- lacktriangledown OU exclusivo $(lacktriangledown) \{P = V, Q = V\}$ é Falso

Conectivos lógicos: Implicação ⇒

"Se P, então Q", exemplo:

- ▶ P: "Está chovendo"
- ightharpoonup Q: "Lucas vai estudar"
- $P \Rightarrow Q$:

"Se está chovendo, então Lucas vai estudar"

Se é Verdade que "está chovendo" e "Lucas vai estudar", então a afirmação "Se está chovendo, então Lucas vai estudar" é **Verdadeira**

Se é Verdade que *"está chovendo"*, mas "Lucas não vai estudar", então a afirmação "Se está chovendo, então Lucas vai estudar" é **Falsa**

Se "não está chovendo", Lucas pode ir estudar ou não, portanto a afirmação "Se está chovendo, então Lucas vai estudar" é **Trivialmente Verdadeira**

Conectivos lógicos: bicondicional \Leftrightarrow

\boldsymbol{P}	Q	$P \Leftrightarrow Q$
F	F	V
F	V	F
V	F	F
V	V	V

"Se e somente se P, então Q", exemplo:

- ▶ P: "Está chovendo"
- ightharpoonup Q: "Lucas vai estudar"
- $P \Leftrightarrow Q$

"Se e somente se estiver chovendo, Lucas vai estudar"

O "se e somente se" é uma implicação nas duas direções:

$$P \Leftrightarrow Q \text{ \'e igual a } (P \Rightarrow Q) \land (Q \Rightarrow P)$$

No exemplo acima, $P \Leftrightarrow Q$ significa que:

- ▶ Se "está chovendo", então "Lucas vai estudar";
- ▶ Se "Lucas vai estudar", então "está chovendo"

Exemplo 1: greve

- Se não houve greve, então Lucas foi à aula.
- Lucas foi à aula ou para casa, mas não aos dois.
- Lucas foi para casa.
- ightharpoonup P: houve greve
- \blacktriangleright Q: Lucas foi à aula
- ightharpoonup R: Lucas foi para casa

- $ightharpoonup \neg P \Rightarrow Q$
- ▶ $(Q \land \neg R) \lor (\neg Q \land R)$ ou exclusivo (XOR)
- \triangleright R

Exercício

Formalize o seguinte argumento a seguir usando lógica proposicional

- Se o time joga bem, ganha o campeonato.
- Se o time não joga bem, o técnico é culpado.
- Se o time ganha o campeonato, os torcedores ficam contentes.
- Os torcedores não estão contentes.

Exercício

Formalize o seguinte argumento a seguir usando lógica proposicional

- Se o time joga bem, ganha o campeonato.
- Se o time não joga bem, o técnico é culpado.
- Se o time ganha o campeonato, os torcedores ficam contentes.
- Os torcedores não estão contentes.
 - ightharpoonup P: 0 time joga bem
 - ightharpoonup Q: 0 time ganha o campeonato
 - ightharpoonup R: O técnico é culpado
 - \blacktriangleright S: Os torcedores ficam contentes

$$P \Rightarrow Q$$

$$ightharpoonup \neg P \Rightarrow R$$

$$\triangleright Q \Rightarrow S$$

$$\rightarrow S$$

Modelo

Um **modelo** é uma atribuição de um valor-verdade a cada proposição.

- ightharpoonup P: houve greve
- \blacktriangleright Q: Lucas foi à aula
- \blacktriangleright R: Lucas foi para casa

 $\{P = Verdadeiro, Q = Falso, R = Verdadeiro\}$

Um modelo pode ser pensado como uma configuração possível para o mundo.

Modelo

Existem 2^N modelos possíveis para um mundo com N proposições. No exemplo abaixo, temos $2^3=8$ modelos pois o mundo contém N=3 proposições.

$m{P}$: Houve greve	$oldsymbol{Q}$: Lucas foi à aula	R: Lucas foi para casa
F	F	F
F	F	V
F	V	F
F	V	V
V	F	F
V	F	V
V	V	
	V	V

Uma base de conhecimento (BC) é um conjunto de sentenças em lógica proposicional conhecidas por um agente:

Símbolos:

- ightharpoonup P: Houve greve.
- \triangleright Q: Lucas foi à aula.
- ightharpoonup R: Lucas foi para casa.

Base de conhecimento (BC):

- (Se não houve greve, então Lucas foi à aula) $\neg P \Rightarrow Q$
- lack (Lucas foi à aula ou para casa, mas não aos dois) $-(Q \land \neg R) \lor (\neg Q \land R)$
- (Lucas foi para casa) -R

Adicionar uma sentença à base de conhecimento BC: restringe o número de modelos possíveis: (Vazia)

P: Houve greve	$oldsymbol{\mathcal{Q}}$: Lucas foi à aula	R: Lucas foi para casa	
F	F	F	V
F	F	V	V
F	V	F	V
F	V	V	V
V	F	F	V
V	F	V	V
V	V	F	V
V	V	V	V

Adicionar uma sentença à base de conhecimento restringe o número de modelos possíveis:

BC:

 $ightharpoonup \neg P \Rightarrow Q$

$m{P}$: Houve greve	$oldsymbol{\mathcal{Q}}$: Lucas foi à aula	R: Lucas foi para casa	
F	F	F	F
F	F	V	F
F	V	F	V
F	V	V	V
	F	F	V
	F	V	V
	V	F	V
V	V	V	V

Adicionar uma sentença à base de conhecimento restringe o número de modelos possíveis:

BC:

 $ightharpoonup \neg P \Rightarrow Q$

 $(Q \land \neg R) \lor (\neg Q \land R)$

P: Houve greve	$oldsymbol{\mathcal{Q}}$: Lucas foi à aula	R: Lucas foi para casa	
F	F	V	F
F	V		V
F	V	V	F
V	F	F	F
V	F	V	V
V	V	F	V
V	V	V	F

Adicionar uma sentença à base de conhecimento restringe o número de modelos possíveis:

BC:

$$ightharpoonup \neg P \Rightarrow Q$$

$$(Q \land \neg R) \lor (\neg Q \land R)$$

 $\triangleright R$

P: Houve greve	$oldsymbol{\mathcal{Q}}$: Lucas foi à aula	R: Lucas foi para casa	▶ R
F	F	F	F
F	F	V	F
F	V	F	F
F	V	V	F
V	F	F	F
V	F	V	V
V	V	F	F
V	V	V	F

Consequência lógica

Dadas sentenças α e β , dizemos que β é uma **consequência lógica** de α se para todos os modelos em que α é Verdadeiro, β também é Verdadeiro.

$$\alpha \models \beta$$
Essa ideia que usaremos em nossos algoritmos de inferência!

A consequência lógica é diferente da implicação:

- ▶ A implicação (⇒) é um conectivo lógico entre duas proposições.
- \blacktriangleright A consequência lógica (\models) é uma relação entre conjuntos de modelos onde sentenças são verdadeiras $-M(\alpha)\subseteq M(\beta)$.
 - \blacktriangleright Se $\alpha \models \beta$, então α é uma afirmação *mais forte* que β : descarta *mais* mundos possíveis

Inferência

Inferência é o processo de derivar novas sentenças a partir de uma base de conhecimento. Em IA, o processo de inferência é iniciado por uma consulta:

Base de conhecimento (BC):

- lacktriangle (Se não houve greve, então Lucas foi à aula) $-\neg P\Rightarrow Q$
- ▶ (Lucas foi à aula ou para casa, mas não aos dois) $-(Q \land \neg R) \lor (\neg Q \land R)$
- (Lucas foi para casa) -R

Consulta:

- lacktriangle Houve greve? P é Verdadeiro?
- Formalmente, em inferência, queremos saber se $BC \models P$

Inferência por verificação de modelos

Dada uma base de conhecimento BC e uma consulta α , verificar se $BC \vDash \alpha$

Verificação de modelo:

- \blacktriangleright Para verificar se $BC \models \alpha$
 - Enumerar todos os modelos possíveis;
 - lacktriangle Se em todos modelos em que BC é Verdadeiro, lpha também é Verdadeiro, então BC Dash lpha
 - lacktriangle Caso contrário, lpha não é uma consequência lógica de BC

Inferência por verificação de modelos

Consulta: $\alpha = P$ (houve greve?)

- Enumerar todos os modelos possíveis;
- lacktriangle Se em todos modelos em que BC é V, lpha também é V, então BC Dash lpha

P: Houve greve

 $oldsymbol{Q}$: Lucas foi à aula

R: Lucas foi para casa

BC:

$$ightharpoonup \neg P \Rightarrow Q$$

$$\blacktriangleright (Q \land \neg R) \lor (\neg Q \land R)$$

 $\triangleright R$

F	F	F	F
F	F	V	F
F	V	F	F
F	V	V	F
V	F	F	F
. V	F	V	V
V	V	F	F
V	V	V	

Nesse exemplo, só existe um **modelo** em que BC é Verdadeiro, e nesse modelo, P também é Verdadeiro, P portanto P por isso "houve greve".

Inferência por verificação de modelos

```
def consequencia-logica (BC, alpha):
     simbolos = lista de símbolos proposicionais em BC e alpha
     return verificar-todos (BC, alpha, simbolos, {})
def verificar-todos (BC, alpha, simbolos, modelo):
     if len(simbolos) == 0: # Se o modelo tem um valor para cada símbolo
2.
         if verdadeiro-em-modelo(BC, modelo): # BC é verdadeira no modelo?
3.
             return verdadeiro-em-modelo(alpha, modelo) # Consulta é verdadeira no modelo?
4.
         return True # Quando BC for falso, sempre retornar verdadeiro
5.
      else:
6.
         p = simbolos[:1]  # p é uma lista com o primeiro elemento de símbolos
         rest = simbolos[1:] # rest é uma lista com elementos restantes de símbolos
7.
8.
         return verificar-todos(BC, alpha, rest, dict(modelo, p=True)) and
9.
                verificar-todos(BC, alpha, rest, dict(modelo, p=False))
```


Próxima aula

A12: Representação do conhecimento II

Engenharia de conhecimento, regras de inferência, prova de teoremas, forma normal conjuntiva, inferência por resolução, lógica de primeira ordem

