Quantitative Skills 4: The Chi-Square Test

"Goodness of Fit"

The Chi-Square (X²) Test is used to examine the difference between an actual sample and a hypothetical sample that would be expected due to chance.

Probably due to chance

Possibly due to chance

Probably not due to chance

Using Chi-Square, it is possible to discern whether experimental results are valid, or whether they are probably due to chance alone.

The Chi-Square test compares two rival hypotheses (the null hypothesis and an alternative hypothesis) to see which hypothesis is best supported by the data.

Establishing a null hypothesis (H_0) and an alternative hypothesis (H_A)

- A null hypothesis states that there is no relationship between two variables.
 - The finding probably occurred by chance.
 - An alternative hypothesis states that there is a relationship between two variables.
 - The finding probably did not occur by chance.

Example: "I think my cheese will mold if I leave it out on the counter too long."

Example null hypothesis (H_0) : If cheese is kept at room temperature for a week, then it will have the same amount of mold on it as the same amount of cheese kept in a refrigerator for a week.

Example alternative hypothesis (H_A) : If cheese is kept at room temperature for a week, then it will have more mold on it than the same amount of cheese kept in a refrigerator for a week.

The goal of the Chi-Square Test is to either fail to reject or reject the null hypothesis.

• If we **fail to reject** the null hypothesis, then there probably is **no relationship** between the two variables and the experimental results were probably due to chance alone.

If we reject the null hypothesis, then there probably
is a relationship between the two variables, and the
experimental results are probably not due to chance.

Observed and Expected Results

 Observed results are what you actually observed in your experiment. These are the data you collect.

 Expected results are a theoretical prediction of what the data would look like if the experimental results are due only to chance.

How do you get expected results?

- If you are working with a genetics problem, then use the Punnett square ratio as your expected result.
- If you are working with a another type of problem, use probability.

Obtaining the X² value:

Example: We flip a coin 200 times to determine if the coin is fair.

H₀: There is **no** statistically significant difference between our coin flips and what we would expect by chance. (The coin is fair.)

H_A: There **is** a statistically significant difference between our coin flips and what we would expect by chance. (The coin is not fair.)

The Chi-Square equation:

$$X^2 = \sum_{e} \frac{(o-e)^2}{e}$$

$$X^2 = \sum_{e} \frac{(o-e)^2}{e}$$

$$\chi^2$$
 = (sum of all) (observed – expected)² expected

Example: We flip a coin 200 times to determine if a coin is fair.

Setting up this kind of table is a VERY good idea!

classes	Observed	Expected	(o – e)	$(o-e)^2$	$\frac{(o-e)^2}{e}$
Heads	108	100	8	64	.64
Tails	92	100	-8	64	.64
X ²					1.28

Critical Value Table

Now you need to look up your X^2 value in a critical value table to see if it is over a certain critical value.

Degrees of Freedom									
р	1	2	3	4	5	6	7	8	
0.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51	
0.01	6.64	9.32	11.34	13.28	15.09	16.81	18.48	20.09	

Typically, in biology we use the p = 0.05 confidence interval.

The p-value is a predetermined choice of how certain we are. The smaller the p-value, the more confidence we can claim. p = 0.05 means that we can claim 95% confidence.

Degrees of Freedom									
р	1	2	3	4	5	6	7	8	
0.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51	
0.01	6.64	9.32	11.34	13.28	15.09	16.81	18.48	20.09	

Calculating Degrees of Freedom

Degrees of Freedom = # classes -1

- In our example experiment, the classes were heads and tails (2 classes).
- Degrees of Freedom in our experiment would be:

$$DF = 2 - 1 = 1$$

Degrees of Freedom									
р	1	2	3	4	5	6	7	8	
0.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51	
0.01	6.64	9.32	11.34	13.28	15.09	16.81	18.48	20.09	

Fail to reject or Reject the Null Hypothesis

- If the X² value is less than the critical value, fail
 to reject the null hypothesis. (The difference is
 not statistically significant.)
- If the X² value is **greater than or equal to** the critical value, **reject** the null hypothesis. (The difference is statistically significant.)

Degrees of Freedom									
р	1	2	3	4	5	6	7	8	
0.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51	
0.01	6.64	9.32	11.34	13.28	15.09	16.81	18.48	20.09	

In our example, the X^2 value we calculated was 1.28, which is less than the critical value of 3.84. Therefore:

- We fail to reject our null hypothesis.
- We reject our alternative hypothesis.
 - We determine that our coin is fair.

Degrees of Freedom									
р	1	2	3	4	5	6	7	8	
0.05	3.84	5.99	7.82	9.49	11.07	12.59	14.07	15.51	
0.01	6.64	9.32	11.34	13.28	15.09	16.81	18.48	20.09	