df.head()

```
+ Code - + Text
```

#import necessary packages
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np

#reading data set
df=pd.read_csv('/content/drive/MyDrive/data set/Placement_Data_Full_Class.csv')

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	speci
0	1	М	67.00	Others	91.00	Others	Commerce	58.00	Sci&Tech	No	55.0	
1	2	М	79.33	Central	78.33	Others	Science	77.48	Sci&Tech	Yes	86.5	
2	3	М	65.00	Central	68.00	Central	Arts	64.00	Comm&Mgmt	No	75.0	
3	4	M	56.00	Central	52.00	Central	Science	52.00	Sci&Tech	No	66.0	
4	5	М	85.80	Central	73.60	Central	Commerce	73.30	Comm&Mgmt	No	96.8	

df.tail()

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	worke
210	211	М	80.6	Others	82.0	Others	Commerce	77.6	Comm&Mgmt	N
211	212	М	58.0	Others	60.0	Others	Science	72.0	Sci&Tech	N
212	213	М	67.0	Others	67.0	Others	Commerce	73.0	Comm&Mgmt	Ye
213	214	F	74.0	Others	66.0	Others	Commerce	58.0	Comm&Mgmt	N
111	045		00.0	0	F0 0	O41	0-1	F0 0	O	* 1

shape=df.shape
print(shape)

(215, 15)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 215 entries, 0 to 214
Data columns (total 15 columns):

df.describe()

```
sl_no
                              ssc_p
                                          hsc_p
                                                  degree_p
                                                               etest_p
                                                                              mba_p
                                                                                            salary
     count 215.000000 215.000000
                                    215.000000
                                                215.000000 215.000000
                                                                        215.000000
                                                                                        148.000000
             108.000000
                          67.303395
                                      66.333163
                                                  66.370186
                                                              72.100558
                                                                          62.278186 288655.405405
      mean
              62.209324
                          10.827205
                                      10.897509
                                                   7.358743
                                                              13.275956
                                                                           5.833385
                                                                                      93457.452420
       std
df.columns
     Index(['sl\_no', 'gender', 'ssc\_p', 'ssc\_b', 'hsc\_p', 'hsc\_b', 'hsc\_s',
            'degree_p', 'degree_t', 'workex', 'etest_p', 'specialisation', 'status', 'salary'],
           dtype='object')
            215 000000 80 400000 07 700000
      may
                                                  91 000000
                                                             08 000000
                                                                          77 800000 040000 000000
#to find missing values
df.isnull().sum()
     sl_no
                         0
     gender
                         0
                         0
     ssc_p
                         0
     ssc_b
                         0
    hsc_p
                         0
     hsc_b
     hsc_s
                         0
                         0
     degree_p
     degree_t
                         0
     workex
                         0
     etest_p
                         0
     specialisation
                         0
     mba_p
                         0
     status
                         0
     salary
                       67
     dtype: int64
null_values=[columns for columns in df.columns if df[columns].isnull().sum()>1]
print(null_values)
     ['salary']
```

→ OBSERVATION:

• It has been found that 'salary' field in the dataset contains 64 null values

```
df.salary.value_counts()
     300000.0
                  22
     250000.0
                  18
     240000.0
                  15
     260000.0
                   7
     360000.0
                   6
     200000.0
                   6
     265000.0
                   6
     220000.0
                   5
     275000.0
                   5
     210000.0
                   4
     400000.0
                   4
     270000.0
                   4
     216000.0
                   3
     350000.0
                   3
     500000.0
                   3
     252000.0
                   2
     236000.0
                   2
     230000.0
                   2
     280000.0
                   2
     218000.0
                   2
     204000.0
                   2
     276000.0
                   2
     255000.0
                   1
     285000.0
                   1
     340000.0
                   1
     690000.0
                   1
     233000.0
                   1
     290000.0
                   1
     650000.0
                   1
     264000.0
                   1
     225000.0
                   1
     940000.0
```

```
393000.0
                  1
     380000.0
                  1
     420000.0
                  1
     425000.0
                  1
     336000.0
                  1
     231000.0
                  1
     268000.0
                  1
     450000.0
                  1
     287000.0
     411000.0
                  1
     320000.0
                  1
     278000.0
                  1
     295000.0
                  1
     Name: salary, dtype: int64
## missing values have to be replaced with mode of the corresponding column
df.salary.mode()
          300000.0
     Name: salary, dtype: float64
df.salary=df['salary'].fillna(300000.0)
df.salary.isnull().sum()
#thus missing values are replaced
#Dealing with categorical values
df['gender']=df['gender'].map({'F':0,'M':1})
df.head()
```

```
sl_no gender ssc_p
                         ssc_b hsc_p
                                        hsc_b
                                                   hsc_s degree_p
                                                                       degree_t workex etest_p speci
                  67.00
                        Others
                                91.00
                                        Others
                                               Commerce
                                                              58.00
                                                                       Sci&Tech
                                                                                     No
                                                                                             55.0
1
       2
                  79.33 Central
                                78.33
                                        Others
                                                 Science
                                                              77.48
                                                                       Sci&Tech
                                                                                    Yes
                                                                                             86.5
2
       3
                  65.00 Central
                                 68.00 Central
                                                     Arts
                                                              64.00 Comm&Mgmt
                                                                                     No
                                                                                             75.0
                                                             52.00
                                                                       Sci&Tech
                                                                                             66.0
3
       4
                  56.00 Central
                                52 00 Central
                                                 Science
               1
                                                                                     Nο
4
       5
               1 85.80 Central
                                73.60 Central Commerce
                                                              73.30 Comm&Mgmt
                                                                                     No
                                                                                             96.8
```

```
df['ssc_b']=df['ssc_b'].map({'Others':0,'Central':1})
df['hsc_b']=df['hsc_b'].map({'Others':0,'Central':1})
df.head()
```

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	special
0	1	1	67.00	0	91.00	0	Commerce	58.00	Sci&Tech	No	55.0	
1	2	1	79.33	1	78.33	0	Science	77.48	Sci&Tech	Yes	86.5	
2	3	1	65.00	1	68.00	1	Arts	64.00	Comm&Mgmt	No	75.0	
3	4	1	56.00	1	52.00	1	Science	52.00	Sci&Tech	No	66.0	
4	5	1	85.80	1	73.60	1	Commerce	73.30	Comm&Mgmt	No	96.8	

```
df['hsc_s'].unique()
```

```
df['hsc_s']=df['hsc_s'].map({'Commerce':0,'Science':1,'Arts':2})
df.head()
```

array(['Commerce', 'Science', 'Arts'], dtype=object)

```
s1_no gender ssc_p ssc_b hsc_p hsc_b hsc_s degree_p
                                                              degree_t workex etest_p specialisat
                 67.00
                           0 91.00
                                                     58.00
                                                               Sci&Tech
                                                                           No
                                                                                   55.0
                                                                                               Mkt
      2
                           1 78.33
                                                     77.48
                                                               Sci&Tech
                                                                                   86.5
1
              1 79.33
                                        0
                                               1
                                                                           Yes
                                                                                               Mkt
```

df['degree_t'].unique()

array(['Sci&Tech', 'Comm&Mgmt', 'Others'], dtype=object)

df['degree_t']=df['degree_t'].map({'Sci&Tech':0,'Comm&Mgmt':1,'Others':2})
df.head()

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	specialisation
0	1	1	67.00	0	91.00	0	0	58.00	0	No	55.0	Mkt&HF
1	2	1	79.33	1	78.33	0	1	77.48	0	Yes	86.5	Mkt&Fir
2	3	1	65.00	1	68.00	1	2	64.00	1	No	75.0	Mkt&Fir
3	4	1	56.00	1	52.00	1	1	52.00	0	No	66.0	Mkt&HF
4	5	1	85.80	1	73.60	1	0	73.30	1	No	96.8	Mkt&Fir

df['workex'].unique()

array(['No', 'Yes'], dtype=object)

df['workex']=df['workex'].map({'No':0,'Yes':1})
df.head()

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	specialisation
0	1	1	67.00	0	91.00	0	0	58.00	0	0	55.0	Mkt&HF
1	2	1	79.33	1	78.33	0	1	77.48	0	1	86.5	Mkt&Fir
2	3	1	65.00	1	68.00	1	2	64.00	1	0	75.0	Mkt&Fir
3	4	1	56.00	1	52.00	1	1	52.00	0	0	66.0	Mkt&HF
4	5	1	85.80	1	73.60	1	0	73.30	1	0	96.8	Mkt&Fir

df['specialisation'].unique()

array(['Mkt&HR', 'Mkt&Fin'], dtype=object)

df['specialisation']=df['specialisation'].map({'Mkt&HR':0, 'Mkt&Fin':1})
df.head()

specialisation	etest_p	workex	degree_t	degree_p	hsc_s	hsc_b	hsc_p	ssc_b	ssc_p	gender	sl_no	
C	55.0	0	0	58.00	0	0	91.00	0	67.00	1	1	0
1	86.5	1	0	77.48	1	0	78.33	1	79.33	1	2	1
1	75.0	0	1	64.00	2	1	68.00	1	65.00	1	3	2
C	66.0	0	0	52.00	1	1	52.00	1	56.00	1	4	3
1	96.8	0	1	73.30	0	1	73.60	1	85.80	1	5	4

df['status'].unique()

array(['Placed', 'Not Placed'], dtype=object)

df['status']=df['status'].map({'Placed':1,'Not Placed':0})
df.head()

	sl_no	gender	ssc_p	ssc_b	hsc_p	hsc_b	hsc_s	degree_p	degree_t	workex	etest_p	specialisation
0	1	1	67.00	0	91.00	0	0	58.00	0	0	55.0	C
	0	4	70.00		70.00	_		77.40	0	4	00.5	4

▼ DATA VISUALISATION

plt.scatter(df['ssc_p'],df['salary'],c='orange')
plt.xlabel('ssc percentage')
plt.ylabel('salary')
plt.title('ssc percentage vs salary earnings')
plt.show()


```
plt.scatter(df['hsc_p'],df['salary'],c='green')
plt.xlabel('hsc percentage')
plt.ylabel('salary')
plt.title('hsc percentage vs salary earnings')
plt.show()
```



```
plt.scatter(df['degree_p'],df['salary'],c='pink')
plt.xlabel('degree percentage')
plt.ylabel('salary')
plt.title('degree percentage vs salary earnings')
plt.show()
```



```
plt.scatter(df['etest_p'],df['salary'],c='red')
plt.xlabel('entrance test percentage')
plt.ylabel('salary')
plt.title('entrance test percentage vs salary earnings')
plt.show()
```



```
plt.scatter(df['mba_p'],df['salary'],c='yellow')
plt.xlabel('MBA percentage')
plt.ylabel('salary')
plt.title('MBA percentage vs salary earnings')
plt.show()
```


→ OBSERVATION:

- *The person whose score is around 60 in sslc is earning higher salary
- *The person whose score is around 65 in hsc is earning higher salary
- *The person whose score is around 65 in degree is earning higher salary
- *The person whose score is around 65 in MBA is earning higher salary

```
plt.bar(df['gender'],df['salary'])
plt.xlabel('gender')
plt.ylabel('salary')
plt.title('Gender vs salary')
plt.show()
```



```
plt.bar(df['gender'],df['etest_p'])
plt.xlabel('gender')
plt.ylabel('etest_p')
plt.title('Entrance test percentage vs salary')
plt.show()
```



```
plt.bar(df['gender'],df['ssc_p'])
plt.xlabel('gender')
plt.ylabel('ssc_p')
plt.title('SSLC percentage vs salary')
plt.show()
```


→ OBSERVATION:

*Men is earning higher salary than women