

Noise Margins-Noise Budgets EMC &EMI and ESD, Shielding, and Typical Foundry Tolerance Parameters

Rashad.M.Ramzan, Ph.D FAST-NU, Islamabad

1

Today's Topic

- Noise Margins
- Noise Budgets
- EMI and EMC
- Shielding against EMI
- ESD
- Typical Foundry Tolerance Parametres

Typical CMOS IC Noise Margins

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

3

Low Voltage Logic Standards

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

VCX Standard Logic

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

5

Noise Budget

- Determine the BER (Bit Error Rate) if receiver can detect the signal with amplitude of 250mV. We are using 500mV signaling.
 - 15% High frequency attenuation
 - 5% cross talk from adjacent traces
 - 5% ISI from reflection
 - 20mV receiver offset and sensitivity
 - 10mV Gaussian Noise

	500	
	250	
0.05	25	
0.05	25	
0.15	75	
0.25	125	
Receiver offset+sensitivity		
	145	
	105	
	10	
	10.5	
	1.15E-24	
	0.05 0.15 0.25	

The Electromagnetic Interference (EMI)

- Electronic circuits produce and are subject to Electromagnetic Interference (EMI).
 - in particular when wavelengths ~ wire lengths
- EMI is a problem because it can severely and randomly affect analog and digital circuit functionality!!!

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

7

EMI at board, package and IC level

- Traces on PCB can pick up EMI and transmit it to IC's
- IC's can produce high frequency conducted emissions that can radiate from PCB's
- IC's themselves can directly produce radiated emissions
 - high-frequency current loops Vdddecap-gnd on package or inside IC's.
 - high-frequency current loops inside IC (near future)
 - IC radiation amplified by heat sinks!

EMI a problem for ICs design?

- So far: dimensions too small and wavelengths too large
- Trend: larger chip dies and higher frequencies

Today's PCB:

clocks ~ 300MHz

 harmonics ~ 3GHz

wavelengths ~ 10cm

 dimensions ~ 10cm

this gives resonances on PCB today, hence it might on IC tomorrow!

High Speed PCB Design:Lecture-9

Future's IC:

~ 3GHz clocks

harmonics ~ 30GHz

wavelengths ~ 1cm

 dimensions ~ 1cm

© Rashad.M.Ramzan 2010-11

Parasitic resonance Windows for RF Coupling

EMC/EMC Definitions

- Emissions: propagation of electromagnetic interference (EMI) from noncompliant devices and in particular radiated and conducted radio frequency interference (RF)
- Susceptibility: The detrimental effects on susceptible devices (victims) of EMI in forms that include electrostatic discharge (ESD) and other forms of electrical overstress (EOS)

EMC Regulatory:

North American -

FCC (Federal Communication Commission, US),

DOC (Department of Communication, Canada)

Worldwide —

IEC (International Electrotechnical Commission)

European Union: IEC and CISPR (International Special Committee on Radio Interference)

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

11

EMC/EMC Definitions

- EMC (Electromagnetic Compatibility)
 - The ability of product to co-exist in electromagnetic environment with out causing or suffering functional degradation or damage.
- EMI (Electromagnetic Interference)
 - A process by with disruptive electromagnetic energy is transmitted from one electronic device to another via radiated or conducted paths.
 EMI can occur from DC to day light frequencies.
- Susceptibility
 - A relative measure to be disrupted or damaged by EMI exposure
- Radiated Emissions
 - A relative measure to be disrupted or damaged by EMI exposure that arrive via free space propagation.
- Conducted Emissions
 - A relative measure to be disrupted or damaged by EMI exposure that arrive via external cables, power cords and IO Connectors

EMI Coupling Process

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

13

Noise Source Propagation Path Susceptor Control Emissions (Reduce noise source level) (Reduce propagation efficiency) (Reduce propagation efficiency) (Increase susceptor noise immunity) Conducted Radiated

Internal vs. External EMI Process

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

15

FCC Class A and B Emission Limit at 3m

High Speed PCB Design:Lecture-9

Emission Limit at 1m

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

17

Semi-anechoic Chamber

Radiation Pattern of a Circuit

Figure 3-4. As W is made smaller, connecting-current radiations cancel each other more and more; as L is made smaller, the circuit current path becomes more and more like that of a dipole antenna: (a) several circuits of length L and width W; (b) dipole antenna.

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

19

Differential Mode Radiation from PCB

Far Field and Near Field Radiation

For near field,
$$r < \lambda/2\pi$$

$$E_{dm near} = \frac{\eta_0 IA}{\lambda 2r^2} = \frac{\mu_0 IAf}{2r^2}$$

$$= 6.3 \times 10^{-7} \left(\frac{IAf}{r^2}\right) (V/m)$$

$$H_{dm near} = \frac{IA}{4\pi r^3} (A/m)$$

For far field,
$$r > \lambda/2\pi$$

$$E_{dm far} = \frac{\eta_0 \pi I A}{\lambda^2 r} = \frac{\eta_0 \pi I A f^2}{c^2 r}$$

$$= 1.32 \times 10^{-14} \left(\frac{I A f^2}{r}\right) (V/m)$$

$$H_{dm far} = \frac{\pi I A}{\lambda^2 r} = \frac{\pi I A f^2}{c^2 r} (A/m)$$

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

21

Input Signals in PCB: Spectrum

Radiated Differential Mode Radiation

FIGURE 10.5 Resultant differential radiation behavior when far-field characteristics are combined with spectral input.

10.4 Relative magnitude of far-field radiation as a function of frequency.

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

23

Radiation Control By Timing

Figure 6-4. The first modified source voltage waveform considered in Example 6-1, and predicted values of measured radiated electric field strength: (a) voltage waveform with $t_R = T/5$, $t_F = 2T/5$, and $t_d = T/2$; (b) meas $|E_n|$ (o) and Max(meas $|E_n|$) (···) for this voltage waveform, Max(meas $|E_n|$) (---) for the initial voltage waveform, and regulatory limits (—).

Figure 6-24. Reductions in meas $|E_n|$ obtained when the width W is reduced to kW over the length hL, and the source voltage is that of Example 6-1: (a) source voltage; (b) initial circuit; (c) modified circuit; (d) meas $|E_n|$ when h=0.6 and k=0.3; (e) meas $|E_n|$, when h=0.7 and k=0.2; (f) meas $|E_n|$, when h=0.8 and k=0.2; (g) meas $|E_n|$, when h=0.9 and k=0.1.

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

25

Radiation Control by Geometry

Figure 6-29. Circuit width can be effectively reduced with a finite ground plane, if negative symmetry of the connecting currents can be obtained: (a) circuit implementation to obtain connecting-current symmetry; (b) desired symmetrical current pattern.

i(t)

Figure 6-30. Progressively more effective methods of reducing connecting current radiations: (a) unmodified circuit; (b) closely parallel connecting currents; (c) closely twisted connecting currents; (d) coaxial connecting currents.

By Negative Symmetry

Radiation Control by Decoupling Capacitor

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

Controlling Differential Mode radiation

- Clock lines most critical. All clock leads must have adjacent ground-return lead. The total clock loop area should not exceed 1 cm². Homogenous ground plane close by.
- Clock circuitry must be located away from all I/O leads or circuitry
- Clock lines should not run parallel with data/address buses or other signal leads for minimized crosstalk.
- Line and bus drivers typically generate broad band noise due to random nature of data; teach
 will require at least one ground-return lead per 8 signal leads placed closed to least significant
 bit.
- Transient power supply currents are controlled by decoupling capacitors for minimized loop areas.

Figure 11-9. Typical radiated emission spectrum from a digital circuit: (A) with all circuits operational; (B) with only clock circuits operational.

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

29

Common Mode Radiation

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

Near and Far End CM Radiation

$$E_{\rm cm \ near} = \frac{I\ell\eta_0\lambda}{8\pi^2r^3} = 4.8\left(\frac{I\ell\lambda}{r^3}\right)$$
 V/m
$$H_{\rm cm \ near} = \frac{I\ell}{4\pi r^2}$$
 A/m

For far field,
$$r > \lambda/2\pi$$

$$E_{cm far} = \frac{\eta_0 Il}{2\lambda r}$$

$$= 6.28 \times 10^{-7} \left(\frac{Ilf}{r}\right) (V/m)$$

$$H_{cm far} = \frac{Il}{2\lambda r} = \frac{Ilf}{2cr} (A/m)$$

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

31

Diff and CM Radiation

Differential mode and common mode currents

$$\hat{I}_{D} = \frac{\hat{I}_{1} - \hat{I}_{2}}{2}$$

$$\hat{I}_{C} = \frac{\hat{I}_{1} + \hat{I}_{2}}{2}$$

FIGURE 8.1 Illustration of the relative effects of differential-mode currents \hat{I}_D and common-mode currents \hat{I}_C on radiated emissions for parallel conductors: (a) decomposition of the total currents into differential-mode and common-mode components; (b) radiated emissions of differential-mode currents; (c) radiated emissions of common-mode currents.

Common Mode Current Generation

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

33

Common Mode Chokes

$$Z_{CM} = j\omega(L + M),$$

For ideal case, L=M so Z_{CM} =2j ω L

Ferrite Beads: Chokes off HF Noise

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

35

Ferrite Beads: Chokes off HF Noise

Controlling Common Mode Radiation

- Common mode radiation is generated by wires/cables. The radiated frequencies are determined by the common-mode potential, usually the ground potential and its variations. I/O wires radiates these common mode signals (instead of signal!). Primary method is to decrease the common mode current
- Common mode radiation is more dominant than differential mode for the same conditions (typically 1000 time!)
- Keep all cables and wires short. However, from one quarter wavelength longer cables the emission is not increasing
- Common mode current is controlled by
 - Minimizing the source voltage that drive the antenna (mainly ground potential)
 - Providing a large common mode impedance (choke, e.g. ferrite beats) in series with cable
 - Shunting the current to ground
 - Shielding the cables
 - Reducing high frequency components in wires and interconnects

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

37

Shielding: Basic Mechanism

Holes in Boxes

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

39

- •Usually iron-based metal sheet is much better than copper for shielding materials because μ_r of that is 110-14800, though resistivity of copper is lower.
- •Near field electrical field is easier to be shielded due to higher wave impedance (the wave see metal as short circuits).
- •Near field magnetic field is very difficult to be shielded because of it's lower wave impedance.
- For far field, both electrical field and magnetic field have the same wave impedance $120\pi = 370 \ \Omega$.
- •Holes in the chassis will often be the dominant variable in shielding effectiveness. Common holes are viewing screens, thermal air flow, switch holes, cables holes etc.
- Apertures are usually difficult to estimate the exact shielding effect, but the amount can be reasonably predicted.

ESD (Electrostatic Discharge)

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

41

ESD Protection in Equipment

Figure 12-7. Electrostatic discharge to a metallic enclosure that does not have electrical contact across the seams.

Figure 12-8. Electrostatic discharge to a metallic enclosure that completely encloses a circuit. The circuit has no external connections.

ESD Protection in Equipment

EMC and **ESD**

ESD is a special case of the overall subject of EMC control. The primary difference between ESD and general EMC control is that with ESD much larger currents and voltages are involved; however, both can be controlled by the same techniques. Notice the similarities between the methods used to provide ESD protection, discussed in this chapter, and those used to control common-mode emissions from I/O cables

- All I/O cables should be in one area.
- A separate I/O ground should be used.
- 3. The I/O ground should have a low-impedance connection to the earth.
- 4. Cables should be bypassed to this separate I/O ground.
- All loop areas should be kept as small as possible.

A system properly designed for ESD control will usually perform well with respect to EMC susceptibility. Furthermore ESD testing can often be used to find flaws in the EMC design of a product (Mardiguian, 1985).

ESD Summery

- ◆ ESD protection should be part of original system design (not aftertought)
- ESD hardening of a system involves the electrical, mechanical, and software design (error correction codes, recovery, fault tolerance)
- All exposed metal must be grounded to chassis ground
- Multipoint ground should be used where ESD current flow is desired and single-point ground should be sued where discharge current flow is not acceptable
- Secondary shields may be needed between sensitive circuits and the chassis to prevent capacitive coupling from upsetting the circuits
- Inputs should not be edge triggered, but latched and strobed
- All shielded cables must be treated for ESD protection and 360 degree contact is necessary
- Cable bypassing must be done to the chassis or a separate I/O ground, not to a circuit ground
- Loop areas must be kept as small as possible on PCB layout
- A hardware timer can be used to check the sanity of microprocessor. Software filtering can be used to reduce input errors. Avoid unused interrupts
- EDS immune is almost equal to RF immune!

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

45

Typical Foundry Parameters

Description	Standard Advanced Inch (mm) Inch (mm)
Material	FR-4/POLYIMIDE/BT- Resin/High Tg FR-4/Lead Free FR-4
Max. Number of Layers	70 layer
Min. Copper Thickness	1/3 oz (12#m)
Min. Dielectric Thickness	0.004" 0.002" (0.100mm) (0.051mm)
Min. Board Thickness (a)	0.019"(0.48mm)
Max. Board Thickness (b)	0.190" 0.283" (4.8mm) (7.2mm)
Board Thickness Tolerance(%)	±10% ~ ±5%
Layer to Layer Registration	± 0.0035 " ± 0.0025 " $(\pm 0.089$ mm) $(\pm 0.063$ mm)
Impedance Control	±8% ±5%
Warpage (inch per inch)	0.008" 0.006"

Typical Foundry Parameters

Imaging	Standard Inch (mm)	Advanced Inch (mm)
Min. Trace Width (a)	0.0035" (0.089mm)	0.0028" (0.071mm)
Min. Trace Space (b)	0.058	0.0023"
Min. Annular Ring	0.065	0.00255"
BGA Pitch (b)	0.058	0.0023"
Solder Mask	Standard Inch (mm)	Advanced Inch (mm)
Min. Soldermask Dam (a)	0.004" (0.100mm)	0.003" (0.076mm)
Soldermask Clearance (b)	0.006" (0.150mm)	0.0035" (0.089mm)
Min. SMT Pad Spacing (*)	0.006" (0.150mm)	0.004" (0.100mm)
SokderMask Thickness	0.000	7"(0.018mm)

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

47

Typical Foundry Parameters

Hole	Standard Inch (mm)	Advanced Inch (mm)	
Min. Hole Size (a)	0.0039" (0.10mm)	0.005" (0.127mm)	
Max. Hole Size (a)	0.250" (6.35mm)	0.257" (6.50mm)	
Hole Tolerance (±)	±0.003" (±0.0762mm)	±0.002" (±0.051mm)	
Aspect Ratio	18:1	21:1	
Hole Registration	0.0025	0.00253"(0.076mm)	
Surface Finishing	Standard Inch (mm)	Advanced Inch (mm)	
HASL	300µ" ∼340	μ" (7.0μm ~ 8.0μm)	
Immersion Tin	30μ" ~ 50μ"	30μ " $\sim 50\mu$ " (0.762 μ m $\sim 1.27\mum)$	
Immersion Gold	2μ" ~3μ" (C	2μ " $\sim 3\mu$ " (0.05 μ m \sim 0.076 μ m)	
Gold Finger	30μ " $\sim 50\mu$ " (0.762 μ m $\sim 1.27\mum)$		
Nickel Plating	150µ" ~ 300ړ	"(3.81,4m ~ 7.62,4m)	
Electrolytic Hard Gold	50 _µ	"(1.27 _{#m})	

Typical Foundry Parameters

Outline	Standard Advanced Inch (mm) Inch (mm)	
Board Outline Tolerance(±)	±0.008"(±0.200mm)	
Guide Rail	0,400" ~ 0,300"(10,0mm ~ 7,6mm)	
Beveling	20", 30", 45"	
Panel	Standard Advanced Inch (mm) Inch (mm)	
Panel Size	24.0" × 27.5"(609mm × 700m	

Refrence: http://www.koreapcb.com/board/index.html

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

49

Typical Foundry Parameters

PCBs PAKISTAN

Max. board size (Double-sided): 475 x 533 mm (18" x 21") Max. board size (Multi-layer): 406 x 254 mm (16" x 10")

Board thickness: 0.5 - 3.0 mm

Min. track between tracks: 100 microns

Min. via/hole dia.: 300 microns

Range of Products

Single-sided and Double-sided Multilayer (up to 16 Layers)

Hybrid Circuits and Emersion Gold Substrate Material: FR-4 & Others

Engineering Systems

Schematic Capture & PCB Design using software tools

High Resolution Photo-plotting

File formats supported

RS 274 X; RS 274 D; DXF; DPF; IPC-D-356

Surface Finishing

and Hot Air Leveling **Gold Plating**

Quality Assurance

IPC Standards and Automatic Optical inspection (AOI)

Flying Probe Tester (FPT)

Summary

- Noise Margins
- Noise Budgets
- EMI and EMC
- Shielding against EMI
- ESD
- Typical Foundry Tolerance Parameters

High Speed PCB Design:Lecture-9

© Rashad.M.Ramzan 2010-11

51

Wakeup Please lets have Some Food....

