1 Определения

Определение 1 (Искажение типа "Пропуск"). *Бинарное отношение* α : $\mathcal{M} \times \mathcal{M}$ *называется* искажением типа "Пропуск", *если*:

 $(u,v) \in \alpha \Leftrightarrow v$ получено из и вычеркиванием одной буквы

Определим также бинарное отношение $\rho: \mathcal{M} \times \mathcal{M}$:

$$(u,v) \in \rho \Leftrightarrow \begin{cases} \text{либо } (u,v) \in \alpha \\ \text{либо } u = v \end{cases}$$

Определение 2 (Шифр, не распространяющий искажений). Шифр (\mathcal{M}, E) не распространяет искажений типа "пропуск", ecnu:

$$\forall e \in E, \forall \vec{x}, \vec{y} \in \mathcal{M}, \forall k \le |\vec{x}| : \vec{x} \rho^k \vec{y} \Rightarrow e(x) \rho^k e(y)$$

- \bullet е биекция $\mathcal{M} \twoheadrightarrow \mathcal{M}$ (функция шифрования/расшифрования)
- \bullet \vec{x}, \vec{y} криптограммы (настоящая и испорченная)
- Если при передаче пропало не более k букв, то после расшифрования пропадёт тоже не более k букв

2 Леммы

Лемма 1. Для любого отображения $e: \mathcal{M} \to \mathcal{M}$ и бинарного отношения $\rho \subseteq \mathcal{M} \times \mathcal{M}$:

$$\forall x, y : x \rho y \Rightarrow e(x) \rho e(y) \Leftrightarrow (\rho \circ e \subseteq e \circ \rho)$$

Доказательство. (\Rightarrow) Пусть $(x,y) \in \rho \circ e$. Тогда:

- $\exists z : (x \rho z)$ и (zey)
- Из $(x\rho z) \Rightarrow e(x)\rho e(z)$
- Из $(zey) \Rightarrow y = e(z)$ (так как e функция)

Следовательно, $(e(x),y) \in \rho$ и $(x,e(x)) \in e$, поэтому $(x,y) \in e \circ \rho$.

Определение 3 (Стабильность). *Отношение* α стабильно *относительно операции* \star , *если:*

$$\forall (x,y) \in \alpha \Rightarrow \begin{cases} (x \star z, y \star z) \in \alpha \\ (z \star x, z \star y) \in \alpha \end{cases}$$

 ${\it где} \ \alpha$ - ${\it рефлексивное}, {\it транзитивное} \ {\it бинарное} \ {\it отношение}.$

Доказательство свойства стабильности. Пусть $\alpha \subseteq \beta$ и γ - отношения. Покажем $\alpha \circ \gamma \subseteq \beta \circ \gamma$:

Если $(x, y) \in \alpha \circ \gamma$, то $\exists z$:

- $(x,z) \in \alpha \Rightarrow (x,z) \in \beta$
- $(z, y) \in \gamma$

Следовательно, $(x, y) \in \beta \circ \gamma$.

Аналогично доказывается левая стабильность.

Замечание 1. Следующие условия эквивалентны:

1.
$$\forall e \in E, \forall \vec{x}, \vec{y} \in \mathcal{M}, \forall k \leq |\vec{x}| : \vec{x} \rho^k \vec{y} \Rightarrow e(x) \rho^k e(y)$$

2.
$$\forall x, y : x \rho y \to e(x) \rho e(y)$$

Доказательство. (⇒) Очевидно.

Доказательство. (\Leftarrow) По лемме 1:

$$\forall x, y : x \rho y \to e(x) \rho e(y) \Leftrightarrow \rho \circ e \subseteq e \circ \rho$$

Покажем по индукции, что $\forall k \leq |x| : \rho^k \circ e \subseteq e \circ \rho^k$:

- База (k = 1): следует из леммы
- IIIar: $\rho^{k+1} \circ e = (\rho \circ \rho^k) \circ e = \rho \circ (\rho^k \circ e) \subseteq \rho \circ (e \circ \rho^k) = (\rho \circ e) \circ \rho^k \subseteq (e \circ \rho) \circ \rho^k = e \circ \rho^{k+1}$

Определение 4 (Централизатор).

$$Z(\rho) = \{e : \mathcal{M} \twoheadrightarrow \mathcal{M} \mid \rho \circ e \subseteq e \circ \rho\}$$

называется централизатором *отношения* ρ .

Лемма 2 $Z(\rho) = \{e: M \mapsto M \mid \rho \circ e \subseteq e \circ \rho\}$ - централизатор. $Z(\rho) \leq S_M$ - группа всех биекций на множестве (с операцией суперпозиции \circ)

Устойчивость операций. Пусть $e, f \in Z(\rho)$. Покажем:

- 1. $e \circ f \in Z(\rho)$
- 2. $e^{-1} \in Z(\rho)$
- 1) $\rho\circ(e\circ f)=(\rho\circ e)\circ f\subseteq (e\circ \rho)\circ f=e\circ (\rho\circ f)\subseteq e\circ (f\circ \rho)=(e\circ f)\circ \rho$ 2) Так как $|\mathcal{M}|<\infty$, то $e^{-1}=e^{k-1}$ для некоторого k. Поскольку $Z(\rho)$ замкнуто относительно композиции, $e^{-1} \in Z(\rho)$.

Следствие 1.

$$\forall x, y \in \mathcal{M} : (x\rho y) \to e(x)\rho e(y) \Leftrightarrow e \circ \rho = \rho \circ e$$

Доказательство. (←) Следует из леммы 1.

(⇒) Из леммы 1: $\rho \circ e \subseteq e \circ \rho$. Так как $e \in Z(\rho)$, то $e^{-1} \in Z(\rho)$, следовательно:

$$\rho \circ e^{-1} \subseteq e^{-1} \circ \rho \Rightarrow e \circ \rho \subseteq \rho \circ e$$

Таким образом, $Z(\rho) = \{e : \mathcal{M} \twoheadrightarrow \mathcal{M} \mid \rho \circ e = e \circ \rho\}.$