

Aula #17

Regressão Logística & Métricas de Classificação

Gabriel Cypriano 07/nov/2018

Classificação vs Regressão

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Τ

Classificação ou Regressão?

Entrada: características de um imóvel

Saída: valor/preço

Classificação ou Regressão?

Entrada: dados de uma transação bancária

Saída: fraude ou genuína?

Τ

Classificação ou Regressão?

Entrada: altura dos pais

Saída: altura do filho

T

Classificação ou Regressão?

Entrada: imagem

Saída: pessoa, carro ou sinal de trânsito?

Bank Marketing Data Set

Download: Data Folder, Data Set Description

Abstract: The data is related with direct marketing campaigns (phone calls) of a Portuguese banking institution. The classification goal is to predict if the client will subscribe a term dep

About Citation Policy

- Ligações de um banco português ofertando investimento financeiro
- Target: o cliente investiu ou não

T

Análise Exploratória

Discussão

A Acurácia é sempre a métrica ideal?

Accuracy Paradox

Predictive models with a given level of accuracy may have greater predictive power than models with higher accuracy.

Métricas relevantes

- Precisão
- Recall

How many selected items are relevant?

How many relevant items are selected?

T

Matriz de Confusão

- Azuis escuros
- Verdadeiros negativos (esq.)
- Verdadeiros positivos (dir.)

- Azuis claros
- Falsos negativos (esq.)
- Falsos positivos (dir.)

Matriz de Confusão: Acurácia

Matriz de Confusão: Precisão

T

Matriz de Confusão: Recall

T

Balanceando entre Precisão e Recall: F1-score

$$F_1 = 2 * \frac{precision * recall}{precision + recall}$$

Curva ROC

- Eixo y: verdadeiros positivos
- Eixo x: falsos positivos

AUC (Area Under Curve)

 0.50 equivale a um classificador aleatório

Quando mais próximo de 1,
melhor a ordenação

Detecção de Overfitting

Estratégia simples:
comparar qualidade
das predições nos
datasets de treino vs
validação/teste

Model complexity

Relembrando: regressão linear

Função sigmoid (ou logística)

Adapta a Regressão
Linear para problemas
de Classificação

Outliers

Modelos Lineares
não são robustos
contra outliers

É necessário
tratá-los

Balanceamento: undersampling

DÚVIDAS?

