Progress Report on Black Arcs Problem

July 4, 2018

Problem Summary

Natural graphs of city layouts don't "look nice"

Problem Summary

What does it mean to "look nice"?

- Heuristic idea: sharp angles
- Ideal to have small set of allowable angles
- We take these to be multiples of $\pi/8$

Problem: how to translate graph nodes/edges to make angles more like multiples of $\pi/8$?

The Data

Get map data in list format:

- List of n_v vertices as (x_i, y_i) coordinates
- List of n_e edges as vertex pairs

Look to translate nodes $(x_i, y_i) \rightarrow (\tilde{x}_i, \tilde{y}_i)$ so to "improve" angles formed by edges

The Data

Get map data in list format:

- List of n_v vertices as (x_i, y_i) coordinates
- List of n_e edges as vertex pairs

Look to translate nodes $(x_i, y_i) \rightarrow (\tilde{x}_i, \tilde{y}_i)$ so to "improve" angles formed by edges

Three principles:

- 1. Don't let nodes move a lot
- 2. Don't let angles change a lot
- **3.** Make angles equal to $k\pi/8$ for some $k \in \mathbb{Z}$

Continuous Optimization Approach

Central idea: relax constraint

Compose fitness function from three terms

- **1.** Penalize node movement: $\sum_{i=1}^{n_v} \left((\tilde{x}_i x_i)^2 + (\tilde{y}_i y_i)^2 \right)$
- **2.** Penalize angle change: $\sum_{j=1}^{n_e} \left(\tilde{\theta}_j \theta_j \right)^2$
 - ► Given edge $e_j = \{(x_k, y_k), (x_\ell, y_\ell)\}$, define $\theta_i = \arctan 2(x_\ell x_k, y_\ell y_k)$
 - "Four-quadrant inverse tangent"
- **3.** Penalize difference from $k\pi/8$: $\sum_{i=1}^{n_e} \sin^2\left(8\tilde{\theta}_i\right)$

Fitness Function

Take weighted sum of these:

$$f(\tilde{x}, \tilde{y}) = \alpha \sum_{i=1}^{n_v} \left((\tilde{x}_i - x_i)^2 + (\tilde{y}_i - y_i)^2 \right)$$
$$+ \beta \sum_{j=1}^{n_e} \left(\tilde{\theta}_j - \theta_j \right)^2 + \gamma \sum_{j=1}^{n_e} \sin^2 \left(8\tilde{\theta}_j \right)$$

Problem: How to choose α , β , γ ?

- First pass: experiment!
 - ► Choosing equal weights leads to difficult optimization
 - Moving nodes a lot (in coordinate space) is okay
 - Roughly $\alpha = 10^{-5}$, $\beta = \gamma = 1$

Black-Box Optimization

Many black-box optimization tools available

- Derivative-free optimization
 - ▶ Nelder-Mead, Powell, ...
 - ▶ Try to identify search direction, go downhill
- Basin-hopping
 - Combine these with local searches above
- Differential Evolution
 - Metaheuristic method
 - Create population of candidate solutions, recombine to improve optimality
- Many others
 - Chose to use just those available in scipy

First results

Second results

Measuring Quality

Visual quality seems good, but what about some numbers?

- For first example
 - ▶ Reduce fitness function from 6.35 to 0.67
 - Reduce scaled deviation from angles of $k\pi/8$ from 0.45 to 0.10

Measuring Quality

Visual quality seems good, but what about some numbers?

- For second example
 - ▶ Reduce fitness function from 21.29 to 1.61
 - ▶ Reduce scaled deviation from angles of $k\pi/8$ from 0.48 to 0.15

Some choices

Two results from slightly different optimizer options

- Graph at right has much lower deviation in angles from $k\pi/8$
- Achieving lower deviation comes at trade-off with node displacement

Next steps

Working with Sackville map adds some complexity

 Direct application of optimization approach only reduces maximum deviation from 0.50 to 0.42

Idea: rotate first, then optimize relative to rotated map

- Eyeball 23° rotation, from histogram of initial angles
 - ► Can we automate this reliably?
- Working on optimization after rotation

Hot off the press!

Hot off the press!

(Integer) Linear Models

Linear Models

$$\max \sum_{(i,j) \in E} \langle z_{i,j}, w_{i,j}^* \rangle$$

$$z_{i,j} = (\tilde{v}_i - \tilde{v}_j) / I_{i,j}$$

$$w_{i,j}^* = \text{closest } w_d$$

$$\ell_{i,j} = \|v_i - v_j\|$$

In both cases we need penalties/bounds to prevent vertices from moving too far.