Quest	ion 1: Supervised vs. Unsupervised Learning (4 points)
	ch of the following scenarios, select whether it is an example of supervised or ervised learning:
1.	A financial institution uses labeled data to predict whether a customer will default on a loan based on their credit history and income. (1p) a) Supervised b) Unsupervised
2.	A self-driving car is trained to recognize pedestrians by processing large amounts of labeled images and video data. (1p) a) Supervised b) Unsupervised
3.	A retailer uses a model to group customers into clusters based on purchasing patterns, without predefined labels, to personalize marketing strategies. (1p) a) Supervised

Name:

a) Supervised

Login:

b) Unsupervised

b) Unsupervised

Login:	Name:

Question 2: Linear Regression and Model Evaluation (4 points)

You are given the following dataset about advertising spend and product sales, and you need to perform linear regression:

Advertising Spend (\$k)	Sales (units)
10	200
20	450
30	700
40	850
50	1000

- 1. What is the equation of the best fit line (linear regression) for this data? (2p)
 - a) y = 20x + 100
 - b) y = 25x + 150
 - c) y = 15x + 150

Your solution:

- 2. Based on the regression equation, predict the number of units sold if \$35k is spent on advertising. (1p)
 - a) 725
 - b) 780
 - c) 800
 - d) 900
 - e) Other

Login:	Name:
--------	-------

- 3. Which method could you use to evaluate the linear regression model's performance in predicting new data? (1p)
 - a) Testing set error
 - b) Training set error
 - c) Euclidean distance
 - d) Classification accuracy

Question 3: K-Means Clustering (4 points)

You are given the following data points, each with two features:

Point	Feature 1	Feature 2
A	3	4
В	4	5
С	6	8
D	7	7
E	2	2
F	8	8
G	7	6
Н	3	3

Assume the initial cluster centroids are Point B and Point F.

1.	After the first iteration of K-Means, which points are assigned to Cluster 1 (centroid B)?
	(2p)

- a) A, B, H
- b) A, B, E
- c) A, B, H, E
- d) B, C, D
- e) Other

Login:	Name:
2. After the first iteration, what are	e the new centroids? (1p)

a) (3.0, 3.5) and (7, 7.25) b) (3.5, 4.0) and (8.0, 8.0) c) (2.5, 3.5) and (7.0, 7.0) d) (4.0, 4.0) and (7.5, 7.5) e) Other -

- 3. Which of the following is commonly used to determine the optimal number of clusters? (1p)
 - a) Gradient descent
 - b) Silhouette score
 - c) Cross-validation
 - d) Mean Absolute Error

Login: Name:	
--------------	--

Question 4: Clustering analysis (4 points)

You used K-Means clustering on a retail customer dataset based on two features: income and spending habits. The algorithm produced the following clusters:

- Cluster 1: Low income, low spending.
- Cluster 2: High income, high spending.
- Cluster 3: Medium income, medium spending.

Answer the following questions:

- 1. Which cluster should be targeted for luxury product promotions? (1p)
 - a) Cluster 1
 - b) Cluster 2
 - c) Cluster 3
 - d) None of the above

Why?

2. You have performed K-Means clustering on the dataset for various cluster numbers and calculated the Silhouette score.

Line plot between K and Silhouette score

Your goal is to estimate the optimal number of clusters. How many clusters would you pick? (2p)

- a) 2
- b) 3
- c) 5
- d) 8

Why?

- 3. If the clusters are well-separated, what does this suggest about the customer groups? (1p)
 - a) They have clear and distinct purchasing behaviors
 - b) They are very similar in spending habits
 - c) The clusters are overlapping
 - d) The clustering needs to be improved

Login:	Name:
--------	-------

Question 5: K-Nearest Neighbors (KNN) Classification (4 points)

You are given the following data to classify whether a person is "Healthy" (Yes) or "Not Healthy" (No) based on their hours of exercise per week and calorie intake.

Person	Hours of Exercise	Calorie Intake	Healthy?
1	1	3500	No
2	5	2500	Yes
3	4	2000	Yes
4	2	4000	No

A new person has 3 hours of exercise and a calorie intake of 2800.

- 1. Using KNN with k=3, what is the predicted classification for the new person? (2p) a) Healthy
 - b) Not Healthy

Your solution:

- $2. \quad \hbox{If k=1, what is the predicted classification? (1p)}\\$
 - a) Healthy
 - b) Not Healthy

- 3. How does increasing the value of k affect the model's bias and variance? (1p)
 - a) Increases bias, decreases variance
 - b) Decreases bias, increases variance
 - c) Increases both bias and variance
 - d) Decreases both bias and variance

Login:	Namas
LOSIU:	Name: