Computing for Medicine

Google Classroom Code: dnd5qkt5

Monsoon 2025
Lecture 8
Transformer (Contd)

Recap Transformer

Scaled Dot Product (Similarity with Context)

Mechanics of Attention

Breaking it down with an Example

$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

- Q: queries $(n imes d_k)$
- K: keys $(m imes d_k)$
- V: values ($m imes d_v$)

Step 1: Generate a Similarity Score

$$S = QK^T \quad \Rightarrow \quad (n \times m)$$

E.g. n judges scoring m keys

Breaking it down with an Example

Step 2: Scale and Softmax

$$A = \operatorname{softmax}\left(\frac{S}{\sqrt{d_k}}\right) \quad \Rightarrow \quad (n \times m)$$

Softmax turns each row into a probability distribution

Step 3: Retrieve the values (output embeddings)

$$O = AV \Rightarrow (n \times d_v)$$

Analogies to understand Query, Key, Value

- Keys (K) → "Where should I look?" (addressing mechanism)
- Queries (Q) → "What am I asking about?" (the search intent)
- Values (V) → "What information do I retrieve once I've found the right spots?" (the actual content)
- Key = book's index card (used to locate it).
- Query = your search question.
- Value = the actual book content you take home once you've matched the index card.

Library Analogy: Query, Key, Value

Masked Attention

Look ahead mask

http://peterbloem.nl/blog/transformers

Multi-head attention

Mathematically: one big linear function, and then a splitting allows each subspace to compose with the full original vector. Splitting and then applying a linear function restricts the possibilities.

Positional Encodings

No convolution, no recurrence: Let's add a positional encoding!

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/dmodel})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/dmodel})$$

$$\sin\left(\frac{t}{f_1}\right)$$
 $\cos\left(\frac{t}{f_1}\right)$
 $\sin\left(\frac{t}{f_2}\right)$
 $\cos\left(\frac{t}{f_2}\right)$
 \vdots
 $\sin\left(\frac{t}{f_{\frac{d_{\text{model}}}{2}}}\right)$
 $\cos\left(\frac{t}{f_{\frac{d_{\text{model}}}{2}}}\right)$

Feed Forward Layers

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

- Fully Connected Dense Layers for learning
- Each FCN is different for each Nx
- Nx = 8 in original paper

Dropout

"We apply dropout to the output of each sub-layer before it is added to the sub-layer and normalized. In addition, we apply dropout to the sums of embeddings and positional encodings in both encoder and decoder stacks"

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Thanks for attending the class!