Group Number:

NAMES (FIRST AND LAST NAME):

Group 9: Shiyu Te Mulia Widdaja (Noble) Venus Li

In-Class Assignment 3

ELEN 21/COEN 21 – Fall 2022

Instructor: Maria Kyrarini

Date: 11/15/2022

Time: 1 hour and 30 minutes

Number of pages: 3

Important Notes:

• Be sure to read all the problems carefully and answer all questions.

• Be sure to answer all parts of each question.

• Submit only one answer for each question.

• Multiple solutions for one question will not be graded.

• Clearly show all the steps of your work.

Answers without explanation will not be graded.

• The Engineering School Honor Code applies.

Problem 1 (30 points)

Design a counter using positive edge D flip-flops that will count as follows:

- when X=0 and Y=0, the counter runs through the following states: 3,2,1,0,3,2,...
- when X=0 and Y=1, the counter runs through the following states: 0,1,2,3,0,1,...
- when X=1 and Y=d, the counter runs through the following states: 0,2,0,2,...

Draw a simplified circuit with a minimum number of flip-flops and a minimum network of AND, OR, NOT, and XOR gates.

Note: You can use the following Boolean Expression without proving it:

 $\bullet \quad \overline{x \oplus y} = \overline{x} \cdot \overline{y} + x \cdot y$

Problem 2 (30 points)

A Moore state machine has an input w and an output z. The machine is a sequence detector that produces z = 1 when it detects 01; otherwise z = 0.

- a) Draw the state diagram and provide the state-assigned table with the one-hot encoding approach. [10 points]
- b) Derive a simplified circuit from the state-assigned table using JK flip-flops. **Note:** Do not draw the simplified circuit but describe it with equations. [20 points]

Problem 3 (30 points)

A Moore state machine has an input w and two outputs z1, z2. The machine is a sequence detector that produces z1 = 1 (z2 = 0) when it detects 111 and z2=1 (z1=0) when it detects 101; otherwise z1, z2=0.

- a) Draw the state diagram. [20 points]
- b) Provide the state table and the minimum state-assigned table. [10 points]

Problem 4 (10 points)

A universal shift register can shift in both the left-to-right and right-to-left directions, can hold values and it has parallel-load capability. Draw a circuit for such a 2-bit universal shift register. **Note:** The problem will NOT be graded if explanation is missing.

Boolean Algebra Properties

5a.

$$x \cdot 0 = 0$$
 $10a.$
 $x \cdot y = y \cdot x$
 Commutative

 5b.
 $x + 1 = 1$
 $10b.$
 $x + y = y + x$
 Associative

 6a.
 $x \cdot 1 = x$
 $11a.$
 $x \cdot (y \cdot z) = (x \cdot y) \cdot z$
 Associative

 6b.
 $x + 0 = x$
 $11b.$
 $x + (y + z) = (x + y) + z$
 Distributive

 7a.
 $x \cdot x = x$
 $12b.$
 $x + y \cdot z = (x + y) \cdot (x + z)$

 7b.
 $x + x = x$
 $13a.$
 $x + x \cdot y = x$
 Absorption

 8a.
 $x \cdot \overline{x} = 0$
 $13b.$
 $x \cdot (x + y) = x$
 Combining

 9.
 $\overline{x} = x$
 $14a.$
 $x \cdot y + x \cdot \overline{y} = x$
 DeMorgan's theorem

 $15b.$
 $\overline{x} + y = \overline{x} + \overline{y}$
 DeMorgan's theorem

 $15b.$
 $x + \overline{y} = x + y$
 $x \cdot y + x \cdot \overline{y} = x + y$
 $16a.$
 $x + \overline{x} \cdot y = x + y$
 $x \cdot y + y \cdot z + \overline{x} \cdot z = x \cdot y + \overline{x} \cdot z$
 Consensus

 $17b.$
 $(x + y) \cdot (y + z) \cdot (\overline{x} + z) = (x + y) \cdot (\overline{x} + z)$

				·	
·					
					·
				1	
	•				
	*				

Solution for D, (E): From truth table we observe:

For x=0: Y=1: D1(+) = Q(+)QQ(+)

For X=1: D, (+) = Q, (+)

(2)

(y.) state diggram state table one hot encoding estate output

State Table:

Present States	Next	States	outputs	
y	M=0	W=1	7	
A	B	1 4	0	A = 000 1
B	B	W (0	B= 010
C	B	A	Ī	\

	0	ne hot	Encoding		
00	A	pstate	b / w = 0	w=1	on trut
0 1	B	010	010	100	0
10	C	(00	010	00/	

JK	(O(4+1)
00	Q(t)
0 1	0
10	1
()	0(4)

•			
		*	
		•	
	•		

Problem 3

	0,	Cont	1	Next Sta	ste	<i>v</i>		
		Cur	rent.	W=O	[W=1	outp	ut	
	¥2	YI	you	Y2 Y1 Y0	Y2 Y1 Y0	71-4	72	B. 100 (1)
A	0	\bigcirc	0	0000	001	0	8	
B	0	0		010	100		0	
C	0	1		000	0 1 1			
D	0		· Constitution	0.10	100			
E	1	0	0	0 10	101	0	0	
F	(0		010	101	1	0	
X		***************************************	0	ddd	d dd	d	d	
X	1			ddd	ddd	o)		

,			
		·	
		•	
			,
		,	
			·
			·
			·
			·
			·

PLEASE REVIEW MY HW SOLUTIONS AND HW FEEDBACK! PLEASE REVIEW NIT HW SOLUTIONS.

AND HW FEEDBACK!