Question	Answer		Mark
Number			
18(a)	$^{48}_{20}\text{Ca} + ^{249}_{98}\text{Cf} \rightarrow ^{294}_{118}\text{Og} + 3 \times ^{1}_{0}\text{n}$	(1)	1
18(b)(i)	Cyclotron		
	Or Linac		
	Or Particle accelerator	(1)	1
18(b)(ii)	Conversion of energy to J	(1)	
	Conversion of mass to kg	(1)	
	Use of $E_{\rm k} = \frac{1}{2}mv^2$	(1)	
	$v = 3.1 \times 10^7 \mathrm{m \ s^{-1}}$	(1)	
	Comparison of calculated value of v and c and valid conclusion	(1)	5
	Example of calculation		
	$E_k = 245 \times 10^6 \text{ eV} \times 1.6 \times 10^{-19} \text{ J eV}^{-1} = 3.92 \times 10^{-11} \text{ J}$		
	$m = 47.95 \times 1.66 \times 10^{-27} \text{ kg} = 7.96 \times 10^{-27} \text{ kg}$		
	$v = \sqrt{\frac{2 \times 3.92 \times 10^{-11} \text{J}}{7.96 \times 10^{-26} \text{ kg}}} = 3.14 \times 10^7 \text{ m s}^{-1}$		
18(c)	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$	(1)	
	Use of $N = N_0 e^{-\lambda t}$	(1)	
	$N_0 = 3.5 \times 10^3$	(1)	3
	Example of calculation		
	$\lambda = \frac{0.693}{0.89 \times 10^{-3} \text{s}} = 779 \text{ s}^{-1}$		
	$500 = N_0 e^{-780 s^{-1} \times 2.5 \times 10^{-3} s}$		
ı	$N_0 = \frac{500}{0.142} = 3.50 \times 10^3$		

Question Number	Answer		Mark
18(d)	Handle the source with tongs	(1)	
	As alpha particles can only travel a few cm in air		
	[Accept alpha particles have a very short range]		
	Or The greater the distance, the lower the intensity of radiation received	(1)	
		(1)	
	OR		
	Handle the source for as short a time a possible	(1)	
	riandle the source for as short a time a possible		
	As the ionising effect is cumulative	(1)	2
	Total for question 18		12