Joãozinho acabou de aprender sobre divisão na escola. A professora passou o dever de casa, com N divisões que Joãozinho deve fazer, e entregar o resultado. Para cada uma delas, Joãozinho deve calcular o valor de a_i/b_i , sendo $1 \le a_i, b_i$ inteiros e $1 \le i \le N$.

Porém, Joãozinho não é muito inteligente, e ele não entendeu muito bem como fazer quando há dízimas periódicas: ele acha que, se tiver que fazer 1/3 = 0.333333..., ele nunca mais vai conseguir terminar o dever! Joãozinho ficou desesperado.

Entretanto, Joãozinho é muito sagaz. Ele achou um furo: notou que a professora não especificou a base numérica em que os alunos devem representar o valor da divisão.

Sendo assim, ajude Joãozinho a descobrir a menor base $B \ge 2$ tal que, se escrevermos a_i/b_i na base B, para todo i, não teremos dízimas periódicas. Como a resposta pode ser muito grande, imprima o resto da divisão de B por $10^9 + 7$.

Input

A primeira linha contém um inteiro $1 \le N \le 10^5$. As próximas N linhas contém dois inteiros separados por um espaço $1 \le a_i, b_i \le 10^5$.

Output

Uma única linha com o menor valor da base $B \ge 2$ tal que nenhum dos a_i/b_i não forma dízima periódica na base B, módulo 998 244 353.

Sample input 1	Sample output 1
1	3
1 3	
Sample input 2	Sample output 2
2	2
9 3	
5 2	
Sample input 3	Sample output 3
2	6
5 2	
4 12	

Explicação do Exemplo 1: Em base 2, 1/3 é representado como 0.01010101.... Mas, em base 3, 1/3 é representado como 0.1.