Home Work (6)

Task 16: (Y-gate operation and single-qubit measurement.)

Suppose, we have the state $|\phi\rangle = \frac{\sqrt{3}}{2}|00\rangle + \frac{1}{2}|11\rangle$ and that a Y-gate is applied to the first qubit. — What are the possible measurement outcomes if both qubits are measured, and what are the respective probabilities for each of these outcomes ??

Task 17: (Average value of various operators.)

Find the average value for the following operators and state:

- a) operator $\sigma_x(1)\sigma_z(2)$ for a two-qubit system in the state $|\psi\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle);$
- b) operator CNOT for the Bell states $|\Psi^{\pm}\rangle$;
- c) operator $(CNOT)_{12}(CNOT)_{23}$ for the 3-qubit GHZ and W states.

Task 18: (Measuring a state.)

Suppose, we have the 3-qubit GHZ state $|\psi_{\rm GHZ}\rangle=\frac{1}{\sqrt{2}}\left(|000\rangle+|111\rangle\right)$ and apply a Toffoli gate upon this state, $|\psi_{\rm T}\rangle:=G^{\rm Toffoli}|\psi_{\rm GHZ}\rangle$. What are the probabilties p_+ and p_- to find the system after a projective measurement in the states $|+++\rangle$ and $|---\rangle$, and where as usual $|\pm\rangle=\frac{1}{\sqrt{2}}\left(|0\rangle\pm|1\rangle\right)$.

Determine (and compare) these probabilities by:

- a) calculating the 'scalar products' $p_{+}=|\langle+++|\psi_{\mathrm{T}}\rangle|^{2}$ and $p_{-}=|\langle---|\psi_{\mathrm{T}}\rangle|^{2}$;
- b) by subsequent measurements on all three qubits along the x-axis;
- c) by performing a POVM measurement with the POVM elements $E_1 = |+++\rangle \langle +++|$, $E_2 = |---\rangle \langle ---|$ and $E_3 = I E_1 E_2$, respectively;
- c) by doing a generalized measurement with a proper set of measurement operators, M_i , i = 1..8, as given for instance by the projectors of the 3-qubit 'diagonal' basis.

Task 19: (Density operator of a pure state.)

Let ρ denote a density operator. Show that $\text{Tr}(\rho^2) \leq 1$ and that $\text{Tr}(\rho^2) = 1$ applies if and only if ρ represents a *pure* state.