[320] Machine Learning: Intro

Meenakshi Syamkumar

Functions/Models

training data

training data

this is an example of a **regression** model, which in a type of **supervised machine learning**, which is one of the 3 main categories of ML

Machine Learning

Reinforcement Learning not covered in CS 320

https://en.wikipedia.org/wiki/Reinforcement learning

Supervised Machine Learning

data is labeled, we know what we want to predict

*Unsupervised Machine Learning

data is unlabeled, we're just looking for patterns

Machine Learning

Reinforcement Learning not covered in CS 320

https://en.wikipedia.org/wiki/Reinforcement learning

Supervised Machine Learning

data is labeled, we know what we want to predict

Regression predict a quantity

Classification

predict a category

*Unsupervised Machine Learning

data is unlabeled, we're just looking for patterns

Clustering

place rows in groups

Decomposition

represent rows as combos of "component" rows

features

(х0	х1	х2	х3	x4	y (label)
0	37	25	40	70	68	5
1	50	13	7	67	79	25
2	56	12	5	15	90	44
3	89	70	85	49	68	72
4	36	93	52	33	14	59
5	53	5	67	99	55	????
6	47	31	9	56	27	????
7	50	3	20	24	63	????
8	36	32	66	70	7	????
9	27	33	16	21	9	????

problem: can we predict an unknown quantity based on features?

train: fit a model to the relationship between some label (y) and feature (x's) values

test: make some predictions for known rows -- how close are we?

	x0	x1	x2	хЗ	х4	y (label)
0	37	25	40	70	68	5
1	50	13	7	67	79	25
2	56	12	5	15	90	44
3	89	70	85	49	68	72
4	36	93	52	33	14	59
5	53	5	67	99	55	????
6	47	31	9	56	27	????
7	50	3	20	2	nodel	????
8	36	32	66	70	7	????
9	27	33	16	21	9	????

predict: estimate for actual unknowns

predict: estimate for actual unknowns

	x0	x1	x2	х3	x4	y (label)
0	37	25	40	70	68	5
1	50	13	7	67	79	25
2	56	12	5	15	90	44
3	89	70	85	49	68	72
4	36	93	52	33	14	59
5	53	5	67	99	55	90
6	47	31	9	56	27	85
7	50	3	20	24	63	25
8	36	32	66	70	7	33
9	27	33	16	21	9	21

interpret: what can we learn by looking directly at the model?

a problem with some **categorical** features is still a regression as long as the lable is **quantitative**

2. Classification (Supervised)

	x0	x1	x2	х3	х4	y (label)
0	37	green	40	triangle	68	orange
1	50	green	7	circle	79	pear
2	56	red	5	circle	90	pear
3	89	blue	85	triangle	68	apple
4	36	blue	52	square	14	pear
5	53	green	67	triangle	55	????
6	47	blue	9	triangle	27	????
7	50	blue	20	circle	63	????
8	36	green	66	circle	7	????
9	27	red	16	circle	9	????

problem: can we predict an unknown category?

3. Clustering (Unsupervised)

	х0	x1	x2	х3	x4
0	37	25	40	70	68
1	50	13	7	67	79
2	56	12	5	15	90
3	89	70	85	49	68
4	36	93	52	33	14
5	53	5	67	99	55
6	47	31	9	56	27
7	50	3	20	24	63
8	36	32	66	70	7
9	27	33	16	21	9

problem: can we organize data into groups of similar rows?

3. Clustering (Unsupervised)

there is no official grouping to check the model against, but a good grouping places similar rows together

	x0	x1	x2	хЗ	х4
0	-11	-7	3	20	20
1	2	-19	-30	17	31
2	8	-20	-32	-35	42
3	41	38	48	-1	20
4	-12	61	15	-17	-34
5	5	-27	30	49	7
6	-1	-1	-28	6	-21
7	2	-29	-17	-26	15
8	-12	0	29	20	-41
9	-21	1	-21	-29	-39

original data

	х0	x1	x2	х3	х4
0	-11	-7	3	20	20
1	2	-19	-30	17	31
2	8	-20	-32	-35	42
3	41	38	48	-1	20
4	-12	61	15	-17	-34
5	5	-27	30	49	7
6	-1	-1	-28	6	-21
7	2	-29	-17	-26	15
8	-12	0	29	20	-41
9	-21	1	-21	-29	-39

components

-11		х0	x1	x2	x3	х4
01	0	-0.0	0.6	0.5	0.1	-0.6
21	1	0.3	-0.2	0.5	0.6	0.5
-8	2	0.4	0.5	0.1	-0.6	0.5

original data

x1 x2 x3 x4 x0 3 20 20 **0** -11 -7 2 -19 -30 17 31 **2** 8 -20 -32 -35 38 48 41 -1 20 **4** -12 61 15 -17 -34 5 -27 30 49 **6** -1 -1 -28 6 -21 2 -29 -17 -26 **8** -12 0 29 20 -41 1 -21 -29 -39 9 -21

components

-11		x0	x1	x2	хЗ	х4
01	0	-0.0	0.6	0.5	0.1	-0.6
21	1	0.3	-0.2	0.5	0.6	0.5
-8	2	0.4	0.5	0.1	-0.6	0.5

weights

		pc0	pc1	pc2
$\Big($	0	-11	21	-8
	1	-43	12	-6
	2	-58	-14	30
	3	36	41	53
	4	00	0.0	00

. .

original data

	x0	x1	x2	х3	х4
0	-11	-7	3	20	20
1	2	-19	-30	17	31
2	8	-20	-32	-35	42
3	41	38	48	-1	20
4	-12	61	15	-17	-34
5	5	-27	30	49	7
6	-1	-1	-28	6	-21
7	2	-29	-17	-26	15
8	-12	0	29	20	-41
9	-21	1	-21	-29	-39

components

		х0	х1	x2	хЗ	х4
-43	0	-0.0	0.6	0.5	0.1	-0.6
12	1	0.3	-0.2	0.5	0.6	0.5
-6	2	0.4	0.5	0.1	-0.6	0.5

weights

		pc0	pc1	pc2
	0	-11	21	-8
$\Big($	1	-43	12	-6
	2	-58	-14	30
	3	36	41	53
	4	00	00	00

. .

Machine Learning

this semester, we'll learn at least one technique in each of these four categories

+

2. Classification (Supervised)

```
linear_model.LogisticRegression([penalty, ...])
linear_model.LogisticRegressionCV(*[, Cs, ...])
linear_model.PassiveAggressiveClassifier(*)
linear_model.Perceptron(*[, penalty, alpha, ...])
linear_model.RidgeClassifier([alpha, ...])
linear_model.RidgeClassifierCV([alphas, ...])
linear_model.SGDClassifier([loss, penalty, ...])
```

```
linear_model.LinearRegression(*[, ...])
linear_model.Ridge([alpha, fit_intercept, ...])
linear_model.RidgeCV([alphas, ...])
linear_model.SGDRegressor([loss, penalty, ...])

svm.LinearSVC([penalty, loss, dual, tol, C, ...])
svm.LinearSVR(*[, epsilon, tol, C, loss, ...])

tree.DecisionTreeClassifier
tree.DecisionTreeRegressor
tree.ExtraTreeClassifier
tree.ExtraTreeRegressor
neighbors.KNeighborsClassifier([...])
neighbors.KNeighborsRegressor([n_neighbors, ...])
```

3. Clustering (Unsupervised)

```
cluster.AffinityPropagation(*[, damping, ...])
cluster.AgglomerativeClustering([...])
cluster.Birch(*[, threshold, ...])
cluster.DBSCAN([eps, min_samples, metric, ...])
cluster.FeatureAgglomeration([n_clusters, ...])
cluster.KMeans([n_clusters, init, n_init, ...])
cluster.MiniBatchKMeans([n_clusters, init, ...])
cluster.MeanShift(*[, bandwidth, seeds, ...])
cluster.OPTICS(*[, min_samples, max_eps, ...])
cluster.SpectralClustering([n_clusters, ...])
cluster.SpectralCoclustering([n_clusters, ...])
```

4. Decomposition (Unsupervised)

```
decomposition.DictionaryLearning([...])
decomposition.FactorAnalysis([n_components, ...])
decomposition.FastICA([n_components, ...])
decomposition.IncrementalPCA([n_components, ...])
decomposition.KernelPCA([n_components, ...])
decomposition.LatentDirichletAllocation([...])
decomposition.MiniBatchDictionaryLearning([...])
decomposition.MiniBatchSparsePCA([...])
decomposition.NMF([n_components, init, ...])
decomposition.PCA([n_components, copy, ...])
decomposition.SparsePCA([n_components, ...])
decomposition.SparseCoder(dictionary, *[, ...])
decomposition.TruncatedSVD([n_components, ...])
```

scikit-learn machine learning modules: https://scikit-learn.org/stable/modules/classes.html

Foundations: Modules and Math

Important Packages

We'll be learning the following to do ML and related calculations efficiently:

3 scikit-learn

```
pip3 install numpy scikit-learn
pip3 install torch torchvision
```


$$\begin{bmatrix} 2 & 1 & 1985 \\ 3 & 1 & 1998 \\ 4 & 3 & 2005 \\ 4 & 2 & 2020 \end{bmatrix} \longrightarrow \begin{bmatrix} y = Xc + b \\ 328000 \\ 343000 \end{bmatrix}$$

$$y = x ** 2$$
 not linear
 $y = x0*4 + x1*(-1) + x2*0.5 + ... + x10*3$ linear

Calculus: Minimizing Something

training data

		_	_		
beds	baths	year	price		
I	l	1980	\$140K		
3	l	1990	\$240K		
3	4	2004	\$295K	Machine Learning Algorithm	
				train	
				y = Xc + b	

Calculus: Minimizing Something

Calculus: Minimizing Something

how do we optimize **c** to minimize **loss**? Important concepts: derivative, gradient

(pytorch can do this)

Conclusion: Developers vs. Users

Conclusion: Our Focus

training data

beds	baths	year	price
		1980	\$140K
3		1990	\$240K
3	4	2004	\$295K
4	3	2018	\$350K

writing new algorithms (not our focus)

Machine Learning Algorithm

train

live data

predicted **price**

 \$190K
\$254K
\$328K
 \$343K

Conclusion: Our Focus

how can we clean this up?

