

Project		Job no.			
Calcs for				Start page no./Revision	
Calcs by	Calcs date 14.03.2019	Checked by	Checked date	Approved by	Approved date

RC MEMBER DESIGN

In accordance with EN1992-1-1:2004 incorporating Corrigenda January 2008 and the UK national annex

Tedds calculation version 3.2.00

Concrete details - Table 3.1. Strength and deformation characteristics for concrete

Concrete strength class C30/37

Aggregate type Quartzite

Aggregate adjustment factor - cl.3.1.3(2) AAF = 1.0Characteristic compressive cylinder strength $f_{ck} = 30 \text{ N/mm}^2$

Mean value of compressive cylinder strength $f_{cm} = f_{ck} + 8 \text{ N/mm}^2 = 38 \text{ N/mm}^2$

Mean value of axial tensile strength $f_{ctm} = 0.3 \text{ N/mm}^2 \times (f_{ck}/ 1 \text{ N/mm}^2)^{2/3} = 2.9 \text{ N/mm}^2$

Secant modulus of elasticity of concrete $E_{cm} = 22 \text{ kN/mm}^2 \times [f_{cm}/10 \text{ N/mm}^2]^{0.3} \times \text{AAF} = 32837 \text{ N/mm}^2$

Ultimate strain - Table 3.1 $\epsilon_{\text{cu2}} = \textbf{0.0035}$ Shortening strain - Table 3.1 $\epsilon_{\text{cu3}} = \textbf{0.0035}$ Effective compression zone height factor $\lambda = \textbf{0.80}$ Effective strength factor $\eta = \textbf{1.00}$ Coefficient k_1 $k_1 = \textbf{0.40}$

Coefficient $k_2 = 1.0 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$

Coefficient k_3 $k_3 = 0.40$

Coefficient $k_4 = 1.0 \times (0.6 + 0.0014 / \epsilon_{cu2}) = 1.00$

Partial factor for concrete -Table 2.1N $\gamma_{\rm C}$ = **1.50** Compressive strength coefficient - cl.3.1.6(1) $\alpha_{\rm cc}$ = **0.85**

Design compressive concrete strength - exp.3.15 $f_{cd} = \alpha_{cc} \times f_{ck} / \gamma_C = 17.0 \text{ N/mm}^2$

Compressive strength coefficient - cl.3.1.6(1) $\alpha_{ccw} = 1.00$

Design compressive concrete strength - exp.3.15 $f_{cwd} = \alpha_{ccw} \times f_{ck} / \gamma_C = 20.0 \text{ N/mm}^2$

Maximum aggregate size h_{agg} = **20** mm Monolithic simple support moment factor β_1 = **0.25**

Reinforcement details

Characteristic yield strength of reinforcement $f_{yk} = 500 \text{ N/mm}^2$

Partial factor for reinforcing steel - Table 2.1N $\gamma_S = 1.15$

Design yield strength of reinforcement $f_{yd} = f_{yk} / \gamma_S = 435 \text{ N/mm}^2$

Nominal cover to reinforcement

Nominal cover to top reinforcement $c_{nom_t} = 30 \text{ mm}$ Nominal cover to bottom reinforcement $c_{nom_b} = 30 \text{ mm}$ Nominal cover to side reinforcement $c_{nom_s} = 30 \text{ mm}$

Fire resistance

Standard fire resistance period R = **120** min

Number of sides exposed to fire 3

Minimum width of beam - EN1992-1-2 Table 5.5 b_{min} = **200** mm

Section 1 - Multiple layers

Rectangular section details

Section width b = 400 mmSection depth h = 600 mm

PASS - Minimum dimensions for fire resistance met

	Project				Job no.	
	Calcs for				Start page no./Revision	
•	Calcs by	Calcs date 14.03.2019	Checked by	Checked date	Approved by	Approved date

Positive moment - section 6.1

Design bending moment $M = M_{pos_s1} = 200.0 \text{ kNm}$

Effective depth of tension reinforcement d = **550** mm

Redistribution ratio $\delta = \min(\delta_{pos_s1}, 1) = 1.000$

 $K = M / (b \times d^2 \times f_{ck}) = 0.055$

 $K' = (2 \times \eta \times \alpha_{cc} / \gamma_C) \times (1 - \lambda \times (\delta - k_1) / (2 \times k_2)) \times (\lambda \times (\delta - k_1) / (2 \times k_2))$

= 0.207

K' > K - No compression reinforcement is required

Lever arm $z = min(0.5 \times d \times [1 + (1 - 2 \times K / (\eta \times \alpha_{cc} / \gamma_{c}))^{0.5}], 0.95 \times d) = 522 \text{ mm}$

Depth of neutral axis $x = 2 \times (d - z) / \lambda = 70 \text{ mm}$ Area of tension reinforcement required $A_{s,req} = M / (f_{yd} \times z) = 882 \text{ mm}^2$

Tension reinforcement provided $4 \times 20\phi$

Area of tension reinforcement provided A_{s,prov} = **1257** mm²

Minimum area of reinforcement - exp.9.1N $A_{s,min} = max(0.26 \times f_{ctm} / f_{yk}, 0.0013) \times b \times d = 331 \text{ mm}^2$

Maximum area of reinforcement - cl.9.2.1.1(3) $A_{s,max} = 0.04 \times b \times h = 9600 \text{ mm}^2$

PASS - Area of reinforcement provided is greater than area of reinforcement required

Crack control - Section 7.3

Maximum crack width $w_k = 0.3 \text{ mm}$

Design value modulus of elasticity reinf -3.2.7(4) $E_s = 200000 \text{ N/mm}^2$ Mean value of concrete tensile strength $f_{\text{ct,eff}} = f_{\text{ctm}} = 2.9 \text{ N/mm}^2$

Stress distribution coefficient $k_c = 0.4$

Non-uniform self-equilibrating stress coefficient $k = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min(h, b)) \times 0.35 / 500 \text{ mm}, 0.65), 1) = min(max(1 + (300 \text{ mm} - min($

0.93

Actual tension bar spacing $s_{bar} = \left(b - \left(2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1} \times N_{s1_b_L1}\right)\right) / \left(N_{s1_b_L1} - 1\right) + \left(2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1} \times N_{s1_b_L1}\right) / \left(N_{s1_b_L1} - 1\right) + \left(2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1} \times N_{s1_b_L1}\right) / \left(N_{s1_b_L1} - 1\right) + \left(2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1} \times N_{s1_b_L1}\right) / \left(N_{s1_b_L1} - 1\right) + \left(2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1} \times N_{s1_b_L1}\right) / \left(N_{s1_b_L1} - 1\right) + \left(2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1} \times N_{s1_b_L1}\right) / \left(N_{s1_b_L1} - 1\right) + \left(2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1} \times N_{s1_b_L1}\right) / \left(N_{s1_b_L1} - 1\right) + \left(2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1} \times N_{s1_b_L1}\right) / \left(N_{s1_b_L1} - 1\right) + \left(2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1}\right) / \left(N_{s1_b_L1} - 1\right) + \left(2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1}\right) / \left(N_{s1_b_L1} - 1\right) + \left(2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1}\right) / \left(N_{s1_b_L1} - 1\right) / \left(N_{s$

 $\phi_{s1\ b\ L1}$ = **100** mm

 $\label{eq:sigmass} \begin{array}{ll} \text{Maximum stress permitted - Table 7.3N} & \sigma_s = \textbf{320 N/mm}^2 \\ \text{Steel to concrete modulus of elast. ratio} & \alpha_{\text{cr}} = E_s \, / \, E_{\text{cm}} = \textbf{6.09} \end{array}$

Distance of the Elastic NA from bottom of beam $y = (b \times h^2 / 2 + A_{s,prov} \times (\alpha_{cr} - 1) \times (h - d)) / (b \times h + A_{s,prov} \times (\alpha_{cr} - 1)) = 0$

294 mm

Area of concrete in the tensile zone $A_{ct} = b \times y = 117404 \text{ mm}^2$

Minimum area of reinforcement required - exp.7.1 $A_{sc,min} = k_c \times k \times f_{ct,eff} \times A_{ct} / \sigma_s = 395 \text{ mm}^2$

PASS - Area of tension reinforcement provided exceeds minimum required for crack control

Quasi-permanent moment $M_{QP} = M_{pos_QP_s1} = 140.0$ kNm

Project	Project				Job no.	
Calcs for	Calcs for				Start page no./Revision	
Calcs by		Calcs date 14.03.2019	Checked by	Checked date	Approved by	Approved date

Permanent load ratio $R_{PL} = M_{QP} / M = 0.70$

Service stress in reinforcement $\sigma_{sr} = f_{yd} \times A_{s,req} / A_{s,prov} \times R_{PL} = 214 \text{ N/mm}^2$

Maximum bar spacing - Tables 7.3N $s_{bar,max} = 233.1 \text{ mm}$

PASS - Maximum bar spacing exceeds actual bar spacing for crack control

Minimum bar spacing (Section 8.2)

Top bar spacing $s_{top} = (b - (2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_t_L1} \times N_{s1_t_L1})) / (N_{s1_t_L1} - 1) = 90.7$

mm

Minimum allowable top bar spacing $s_{top,min} = max(\phi_{s1_t_L1} \times k_{s1}, \ h_{agg} + k_{s2}, \ 20mm) = 25.0 \ mm$

PASS - Actual bar spacing exceeds minimum allowable

Bottom bar spacing $s_{bot} = (b - (2 \times (c_{nom_s} + \phi_{s1_v}) + \phi_{s1_b_L1} \times N_{s1_b_L1})) / (N_{s1_b_L1} - 1) = 80.0$

mm

Minimum allowable bottom bar spacing $s_{bot,min} = max(\phi_{s_1,b_L,l} \times k_{s_1}, h_{agg} + k_{s_2}, 20mm) = 25.0 mm$

PASS - Actual bar spacing exceeds minimum allowable

Section in shear (section 6.2)

Angle of comp. shear strut for maximum shear $\theta_{max} = 45 \text{ deg}$

Strength reduction factor - cl.6.2.3(3) $v_1 = 0.6 \times (1 - f_{ck} / 250 \text{ N/mm}^2) = 0.528$

Compression chord coefficient - cl.6.2.3(3) $\alpha_{cw} = 1.00$

Minimum area of shear reinforcement - exp.9.5N $A_{sv,min} = 0.08 \text{ N/mm}^2 \times \text{b} \times (f_{ck} / 1 \text{ N/mm}^2)^{0.5} / f_{yk} = 351 \text{ mm}^2/\text{m}$

Design shear force at support $V_{Ed,max} = V_{Ed,max_s1} = 300 \text{ kN}$

Min lever arm in shear zone z = 522 mm

Maximum design shear resistance - exp.6.9 $V_{Rd,max} = \alpha_{cw} \times b \times z \times v_1 \times f_{cwd} / (\cot(\theta_{max}) + \tan(\theta_{max})) = 1102 \text{ kN}$

PASS - Design shear force at support is less than maximum design shear resistance

Design shear force $V_{Ed} = 300 \text{ kN}$

Design shear stress $v_{Ed} = V_{Ed} / (b \times z) = 1.437 \text{ N/mm}^2$

Angle of concrete compression strut - cl.6.2.3 $\theta = min(max(0.5 \times Asin(min(2 \times v_{Ed} / (\alpha_{cw} \times f_{cwd} \times v_1), 1)), 21.8 \text{ deg}),$

45deg) = 21.8 deg

Area of shear reinforcement required - exp.6.8 $A_{sv,des} = v_{Ed} \times b / (f_{yd} \times cot(\theta)) = 529 \text{ mm}^2/\text{m}$ Area of shear reinforcement required $A_{sv,req} = max(A_{sv,min}, A_{sv,des}) = 529 \text{ mm}^2/\text{m}$

Shear reinforcement provided $2 \times 10 \text{ legs } @ 150 \text{ c/c}$ Area of shear reinforcement provided $A_{\text{sv,prov}} = 1047 \text{ mm}^2/\text{m}$

PASS - Area of shear reinforcement provided exceeds minimum required

Maximum longitudinal spacing - exp.9.6N $s_{vl,max} = 0.75 \times d = 412 \text{ mm}$

PASS - Longitudinal spacing of shear reinforcement provided is less than maximum