Mathematik für die Informatik C Hausaufgabenserie 6

Henri Heyden, Nike Pulow stu240825, stu239549

$\mathbf{A1}$

Vor.: $a, b \in \mathbb{R}, a < b, C[a, b] := \{f : [a, b] \to \mathbb{R} \mid f \text{ ist stetig}\},$ $||\cdot||_1 : C[a, b] \to \mathbb{R}_{\geq 0}, f \mapsto \int |f|$

Beh.: $||\cdot||_1$ ist Norm auf C[a,b]

Bew.: Wir teilen die Aussage in drei Abschnitte auf:

1): $\forall f \in C[a,b] : ||f||_1 = 0 \Leftrightarrow f = 0$, wobei $0 : C[a,b], x \mapsto 0$ gemeint ist.

2):
$$\forall f \in C[a, b], \lambda \in \mathbb{R} : ||\lambda f||_1 = |\lambda| \cdot ||f||_1$$

3):
$$\forall f, g \in C[a, b] : ||f + g|| \le ||f||_1 + ||g||_1$$

Forab bemerke, dass $||\cdot||_1$ wohldefiniert ist, da jede Funktion in C[a, b] stetig auf eine kompakte, also beschränkte und abgeschlossene Menge und somit integrierbar.

Wir fangen mit der ersten Aussage an:

1): Es gilt: $0 = \int 0 = \int |0| = ||0||_1$.

Um die Eindeutigkeit zu zeigen, nehme an $0 \neq f \in C[a, b]$.

Dann existiert ein Intervall $I \subseteq [a, b]$, sodass $f^{\rightarrow}(I) > 0$ gilt.

Sei
$$\overline{I}:=[a,b]\setminus I$$
, dann gilt: $||f||_1=\int |f|=\int |f_{|I|}+\int |f_{|\overline{I}|}|\geq \int |f_{|I|}|>0$

Somit ist der erste Teil gezeigt. Fahre mit dem zweiten Teil fort:

2): Es gilt: $||\lambda f||_1 = \int |\lambda f| = \int (|\lambda| \cdot |f|) = |\lambda| \cdot \int |f| = |\lambda| \cdot ||f||_1$ Und nun die letzte Aussage:

3): Es gilt:
$$||f+g||_1 = \int |f+g|^{\text{Dreieck.}} \int (|f|+|g|) = \int |f|+\int |g| = ||f||_1+||g||_1$$

Somit ist alles gezeigt, was zu zeigen war.

Vor.: $||\cdot||_{\infty}, ||\cdot||_{1}$ Normen über C[0,1], wie auf Serie definiert,

Beh.: $||\cdot||_{\infty}$ und $||\cdot||_{1}$ sind nicht äquivalent.

Bew.: Wir zeigen, dass $\exists \alpha > 0 : \forall f \in C[0,1] : \alpha \cdot ||f||_{\infty} \leq ||f||_{1}$ nicht gilt, da somit die Aussage in Def. 4.18 (Äquivalente Normen) nicht gelten kann.

Also zeigen wir: $\forall \alpha > 0 : \exists f \in C[0,1] : \alpha \cdot ||f||_{\infty} > ||f||_{1}.$

Wähle $\alpha > 0$.

Hier werden wir zwei Fälle unterscheiden, 1.: $\alpha > \frac{1}{2}$ und 2.: $\alpha \leq \frac{1}{2}$:

Fall 1.: Sei $f \in C[0,1], x \mapsto -\alpha x + \alpha$, dann gilt:

$$\alpha \cdot ||f||_{\infty} = \alpha \cdot \sup_{x \in [0,1]} |f(x)| = \alpha \cdot \alpha = \alpha^2$$
, da $|f| = f$ gilt.

Des Weiteren gilt: $||f||_1 = \int_0^1 |f(x)| = \int_0^1 |-\alpha x + \alpha| = \int_0^1 -\alpha x + \alpha = \left[-\frac{\alpha}{2}x^2 + ax\right]_0^1 = -\frac{\alpha}{2} + \alpha = \frac{\alpha}{2}$

Da $a > \frac{1}{2}$, gilt: $\frac{\alpha}{2} < \alpha^2$, also ist der erste Fall gezeigt.

Fall 2.:1

Für $\alpha \leq \frac{1}{2}$ wählen wir $f \in C[0,1], x \mapsto \sqrt[\alpha]{\alpha(1-x)}$.

Dann ist f auch wirklich in C[0,1], größer 0 und streng monoton fallend mit Supremum $f(0) = \sqrt[\alpha]{\alpha}$.

Dann gilt: $\alpha \cdot \sup_{x \in [0,1]} |f(x)| = \alpha \cdot \sqrt[\alpha]{\alpha} = \alpha^{\frac{1}{\alpha}+1}$.

Es ergibt sich durch Finden der Stammfunktion von f durch einmalige Substitution und die bekannten Integrationsmethoden von ganzrationalen Funktionen: $\int_0^1 |f| = \int_0^1 f = \frac{\alpha^{\frac{1}{\alpha}+1}}{\alpha+1}$.

Dann gilt aufgrund des Nenners > 1: $\frac{\alpha^{\frac{1}{\alpha}+1}}{\alpha+1} < \alpha^{\frac{1}{\alpha}+1}$, – was zu zeigen war. \square

 $^{^1}$ Erst nach dem Aufschreiben ist dem "Autor" aufgefallen, dass folgendes sogar für jedes $\alpha>0$ gilt . . . toll. Deswegen schreibt man erst und denkt danach!

$\mathbf{A3}$

Vor.: V Vektorraum über \mathbb{R} mit $\dim(V) = n \in \mathbb{N}, ||\cdot||_2$ definiert, wie in

der Vorlesung, also: $||\cdot||_2: V \to \mathbb{K}, v \mapsto \sqrt{\sum_{i=0}^n v_i^2},$

des Weiteren sei definiert: $\bullet: V^2 \to \mathbb{R}, (w, v) \mapsto \sum_{i=1}^n v_i w_i$

Beh.: $||\cdot||_2$ ist Norm.

Bew.: Wieder spalten wir den Beweis in die drei Kriterien auf:

- 1): $\forall v \in V : ||v||_2 = 0 \iff v = 0$
- 2): $\forall v \in V, \lambda \in \mathbb{R} : ||\lambda v||_2 = |\lambda| \cdot ||v||_2$
- 3): $\forall v, w \in V : ||v + w||_2 \le ||v||_2 + ||w||_2$

Fangen wir mit dem ersten Kriterium an:

1):

Erste Richtung: "←":

Es gilt:
$$0 = \sqrt{0} = \sqrt{\sum_{i=1}^{n} 0} = ||0||_2$$

Zweite Richtung: "⇒":

Zeige mittels Kontraposition. Sei $v \in V, v \neq 0$, dann gilt folgendes:

 $\exists j \in [n]: v_j \neq 0.$ Für dieses j gilt dann folgendes:

$$\sqrt{\sum_{i=1}^{n} v_i^2} = \sqrt{\sum_{i=1}^{j} v_i^2 + v_j^2 + \sum_{i=j+1}^{n} v_i^2}$$

$$\geq \sqrt{v_i^2} > 0$$

Somit ist 1) gezeigt.

2): Wähle $v \in V, \lambda \in \mathbb{R}$. Dann gilt folgendes:

$$||\lambda v||_2 = \sqrt{\sum_{i=1}^n (\lambda v)^2} = \sqrt{\sum_{i=1}^n \lambda^2 v^2}$$
$$= \sqrt{\lambda^2 \cdot \sum_{i=1}^n v^2} = \lambda \cdot \sqrt{\sum_{i=1}^n v^2} = \lambda \cdot ||v||_2$$

Somit ist das zweite Kriterium auch gezeigt. Nun bleibt das Letzte.

3): Seien $v, w \in V$. Dann gilt:

$$||v + w||_2^2 = \sum_{i=1}^n (v_i + w_i)^2$$
 | Binomische Formel
$$= \sum_{i=1}^n (v_i^2 + w_i^2 + 2v_i w_i)$$
 | Summen rausziehen
$$= \sum_{i=1}^n v_i^2 + \sum_{i=1}^n w_i^2 + \sum_{i=1}^n 2v_i w_i$$
 | Def. •
$$= \sum_{i=1}^n v_i^2 + \sum_{i=1}^n w_i^2 + 2 \cdot v \cdot w$$
 | Def. | · |
$$\leq \sum_{i=1}^n v_i^2 + \sum_{i=1}^n w_i^2 + 2 \cdot |v \cdot w|$$
 | Magie
$$\leq \sum_{i=1}^n v_i^2 + \sum_{i=1}^n w_i^2 + 2 \cdot ||v||_2 \cdot ||w||_2$$
 | Def. || · ||₂ = ||v||_2^2 + ||w||_2^2 + 2 \cdot ||v||_2 \cdot ||w||_2 | Binomische Formeln = (||v||_2 + ||w||_2)²

Dann gilt $||v+w||_2 \le ||v||_2 + ||w||_2$, da img $(||\cdot||_2) = \mathbb{R}_{\ge 0}$, was gilt, da die Summe positiv ist und somit die Wurzel dies auch ist.²

 $^{^2}$ Interessanterweise sieht man hier, dass dies nicht für Vektorräume über $\mathbb C$ funktioniert, da die Wurzel negativ sein kann.