

Report No.: SZ12100083W06

FCC Part 15C TEST REPORT AS L357

Issued to

Group Sense Mobile-Tech Limited

For

Handheld POS

Model Name : DT4000 Trade Name : Xplore

Brand Name : Group Sense Mobile Technology Limited

FCC ID : VRI-B176

Standard : 47 CFR Part 15 Subpart C
Test date : 2012-11-28 to 2013-1-24

Issue date : 2013-1-31

Shenzhen MORLAB Communication Technology Co., Ltd.

Tested by Vie Dung

Nie Quan

(Test Engineer)

Date 2013 . 1. 31

Approved be Carvisi Extion

Wu Xuewen ...

Date

1. System Carvisian ...

Review by

Peng Huarui

(Project Manager)

Date 2013 . | . 3]

IEEE 1725 OTA

Reg. No. 695796

The report refers only to the sample tested and does not apply to the bulk. This report is issued in confidence to the client and it will be strictly treated as such by the Shenzhen MORLAB Communication Technology Co., Ltd. It may not be reproduced rather in its entirety or in part and it may not be used for adverting. The client to whom the report is issued may, however, show or send it or a certified copy there of prepared by the Shenzhen MORLAB Telecommunication Co., Ltd to his customer. Supplier or others persons directly concerned. Shenzhen MORLAB Telecommunication Co., Ltd will not, without the consent of the client enter into any discussion of correspondence with any third party concerning the contents of the report. In the event of the improper use of the report, Shenzhen MORLAB Telecommunication Co., Ltd reserves the rights to withdraw it and to adopt any other remedies which may be appropriate.

DIRECTORY

1. (GENERAL INFORMATION	3
1.1.	EUT Description	3
1.2.	Test Standards and Results	4
1.3.	Facilities and Accreditations	5
2. 4	7 CFR PART 15C REQUIREMENTS	6
2.1.	Peak Output Power	6
2.2.	Bandwidth	8
2.3.	Conducted Spurious Emissions.	15
2.4.	Power spectral density (PSD)	22
2.5.	Band Edge	29
2.6.	Conducted Emission	38
2.7.	Radiated Emission	41
2.8.	RF exposure evaluation.	60

Change History						
Issue	Date	Reason for change				
1.0	January 31, 2013	First edition				

1. General Information

1.1. EUT Description

EUT Type Handheld POS

Serial No.....: (n.a, marked #1 by test site)

Hardware Version QA2

Applicant Group Sense Mobile-Tech Limited

6/F, Building 9, No. 5 Science Park West Avenue, Hong Kong

Science Park, Shatin, N.T., Hong Kong TCL COMMUNICATION

Manufacturer Group Sense Mobile Technology Limited

6/F, Building 9, No. 5 Science Park West Avenue, Hong Kong

Science Park, Shatin, N.T., Hong Kong

Channel Number.....: 802.11b/g/n-20MHz: 11

Antenna Type...... Patch
Antenna Gain...... 2.0dBi

Note 1: The EUT is a Handheld POS, it contains WIFI Module operating at 2.4GHz ISM band; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

Note 2: The frequencies allocated is F (MHz) =2412+5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

Note 3: For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.

Note 4: The antenna connector of EUT is designed with permanent attachment and no consideration of replacement.

1.2. Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Wi-Fi, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
	(10-1-09 Edition)	

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Result
1	15.247(b)	Peak Output Power	PASS
2	15.247(a)	Bandwidth	PASS
3	15.247(d)	Conducted Spurious Emission	PASS
4	15.247(d)	Band Edge	PASS
5	15.207	Conducted Emission	PASS
6	15.209 ,15.247(d)	Radiated Emission	PASS
7	15.247(d)	Power spectral density (PSD)	PASS
8	15.247(i),	RF exposure evaluation	PASS
	1.1307&2.1093		

The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.4 2009.

These RF tests were performed according to the method of measurements prescribed in KDB558074 D01 V02 10/04/2012.

1.3. Facilities and Accreditations

1.3.1. Facilities

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.1, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10 2009, ANSI C63.4 2009 and CISPR Publication 22; the FCC registration number is 695796.

1.3.2. Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35
Relative Humidity (%):	30 -60
Atmospheric Pressure (kPa):	86-106

2. 47 CFR Part 15C Requirements

2.1. Peak Output Power

2.1.1. Requirement

According to FCC section 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: The maximum peak conducted output power of the intentional radiator shall not exceed1 Watt.

2.1.2. Test Description

The measured output power was calculated by the reading of the Power Meter and calibration.

A. Test Setup:

The EUT (Equipment under the test) which is powered by the Battery is coupled to the Power Meter; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading, all test result in power meter.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
EPM Series Power	Agilent	E4418B	GB43318055	2012.05	2013.05
Meter					
Power Sensor	Agilent	8482A	MY41091706	2012.05	2013.05

2.1.3. Test Result

The lowest, middle and highest channels are selected to perform testing to verify the conducted RF output peak power of the Module.

2.1.3.1. 802.11b Test mode

Channel	Eraguanay (MIIg)	Measured Output Peak Power		Limit		Verdict
Chamiei	Frequency (MHz)	dBm	W	dBm	W	verdict
1	2412	9.310	0.008531			PASS
6	2437	12.13	0.016331	30	1	PASS
11	2462	12.16	0.016444			PASS

2.1.3.2. 802.11g Test mode

Channel	Eraguanay (MHz)	Measured Output Peak Power		Limit		Verdict
Chamilei	Frequency (MHz)	dBm	W	dBm	W	verdict
1	2412	10.50	0.011220			PASS
6	2437	11.30	0.013490	30	1	PASS
11	2462	11.19	0.013152			PASS

2.1.3.3. 802.11n-20MHz Test mode

Channal	Eraguanay (MIIz)	Measured Output Peak Power		Limit		Verdict
Channel	Frequency (MHz)	dBm	W	dBm	W	verdict
1	2412	7.610	0.005768			PASS
6	2437	8.760	0.007516	30	1	PASS
11	2462	8.610	0.007261			PASS

2.2. Bandwidth

2.2.1. Requirement

According to FCC section 15.247(a) (2), Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

2.2.2. Test Description

A. Test Set:

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2012.05	2013.05

2.2.3. Test Result

The lowest, middle and highest channels are selected to perform testing to record the 6 dB bandwidth of the Module.

2.2.3.1. 802.11b Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Refer to Plot	Limits(kHz)	Result
1	2412	10.5000	Plot A	≥500	PASS
6	2437	10.5000	Plot B	≥500	PASS
11	2462	10.5000	Plot C	≥500	PASS

(Plot A: Channel 1: 2412MHz @ 802.11b)

(Plot B: Channel 6: 2437 MHz @ 802.11b)

(Plot C: Channel 11: 2462MHz @ 802.11b)

2.2.3.2. 802.11g Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Refer to Plot	Limits (kHz)	Result
1	2412	16.5000	Plot D	≥500	PASS
6	2437	16.5000	Plot E	≥500	PASS
11	2462	16.5000	Plot F	≥500	PASS

(Plot D: Channel 1: 2412MHz @ 802.11g)

(Plot E: Channel 6: 2437MHz @ 802.11g)

(Plot F: Channel 11: 2462MHz @ 802.11g)

2.2.3.3. 802.11n-20 Test mode

A. Test Verdict:

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Refer to Plot	Limits (kHz)	Result
1	2412	17.6875	Plot G	≥500	PASS
6	2437	17.6875	Plot H	≥500	PASS
11	2462	17.7500	Plot I	≥500	PASS

(Plot G: Channel 1: 2412MHz @ 802.11n-20)

(Plot H: Channel 6: 2437MHz @ 802.11n-20)

(Plot I: Channel 11: 2462MHz @ 802.11n-20)

2.3. Conducted Spurious Emissions

2.3.1. Requirement

According to FCC section 15.247(c), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.3.2. Test Description

A. Test Set:

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2012.05	2013.05

2.3.3. Test Result

The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions.

2.3.3.1. 802.11b Test mode

A. Test Verdict:

Channel Frequency (MHz)	Eraguanav	Measured Max.		Limit (dBm)		
	Out of Band	Refer to Plot	Carrier	Calculated	Verdict	
	(MITZ)	Emission (dBm)		Level	-20dBc Limit	
1	2412	-46.87	Plot A.1	-0.579	-20.6	PASS
6	2437	-45.82	Plot B.1	2.270	-17.8	PASS
11	2462	-45.38	Plot C.1	1.754	-18.2	PASS

Note: the power of the Module transmitting frequency should be ignored. 🔆 Agilent 11:43:33 Jan 24, 2013 TS Mkr2 2.90 GHz Ref 15 dBm Atten 5 dB -46.87 dBm Peak Log 10 dB/ Offst 21 dB DI -20.6 dBm Stop 25 GHz Start 30 MHz #Res BW 100 kHz **#VBW 300 kHz** Sweep 2.587 s (401 pts) Amplitude Type

(Plot A.1: Channel = 1, 30MHz to 25GHz)

(Plot B.1: Channel = 6, 30MHz to 25GHz)

(Plot C.1: Channel = 11, 30MHz to 25GHz)

2.3.3.2. 802.11g Test mode

A. Test Verdict:

Channel Frequency (MHz)	Eroguanav	Measured Max.		Limit (dBm)		
	Out of Band	Refer to Plot	Carrier	Calculated	Verdict	
	(MITZ)	Emission (dBm)		Level	-20dBc Limit	
1	2412	-46.20	Plot D.1	-0.194	-20.2	PASS
6	2437	-45.36	Plot E.1	0.489	-19.5	PASS
11	2462	-46.43	Plot F.1	0.762	-19.2	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot D.1: Channel = 1, 30MHz to 25GHz)

(Plot E.1: Channel = 6, 30MHz to 25GHz)

(Plot F.1: Channel = 11, 30MHz to 25GHz)

2.3.3.3. 802.11n -20MHz Test mode

A. Test Verdict:

Channel Frequency (MHz)	Eraguanav	Measured Max.		Limit (dBm)		
	Out of Band	Refer to Plot	Carrier	Calculated	Verdict	
	(MITZ)	Emission (dBm)		Level	-20dBc Limit	
1	2412	-46.01	Plot G.1	-3.07	-23.1	PASS
6	2437	-45.96	Plot H.1	-2.318	-22.3	PASS
11	2462	-46.52	Plot I.1	-1.647	-21.6	PASS

B. Test Plots:

Note: the power of the Module transmitting frequency should be ignored.

(Plot G.1: Channel = 1, 30MHz to 25GHz)

(Plot H.1: Channel = 6, 30MHz to 25GHz)

(Plot I.1: Channel = 11, 30MHz to 25GHz)

2.4. Power spectral density (PSD)

2.4.1. Requirement

According to FCC section 15.247(d), the same method of determining the conducted output power shall be used to determine the power spectral density. If a peak output power is measured, then a peak power spectral density measurement is required. If an average output power is measured, then an average power spectral density measurement should be used.

2.4.2. Test Description

A. Test Set:

The EUT which is powered by the Battery, is coupled to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading.

Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2012.05	2013.05

2.4.3. Test Result

The lowest, middle and highest channels are tested to verify the band edge emissions.

2.4.3.1. 802.11b Test mode

A. Test Verdict:

	Spectral power density (dBm/3kHz)										
Channal	Frequency	Measured PSD	Dafanta Diat	Limit	Verdict						
Channel	(MHz)	(dBm/3kHz)	Refer to Plot	(dBm/3kHz)							
1	2412	-14.06	Plot A	8	PASS						
6	2437	-11.20	Plot B	8	PASS						
11	2462	-10.98	Plot C	8	PASS						
Measure	ement uncertair	nty: ±1.3dB									

(Plot A: Channel = 1 @ 802.11b)

(Plot B: Channel = 6 @ 802.11b)

(Plot C: Channel = 11 @ 802.11b)

2.4.3.2. 802.11g Test mode

A. Test Verdict:

	Spectral power density (dBm/3kHz)										
Channal	Frequency	Measured PSD	Refer to Plot	Limit	Verdict						
Channel	(MHz)	(dBm/3kHz)	Refer to Plot	(dBm/3kHz)							
1	2412	-15.43	Plot A	8	PASS						
6	2437	-14.34	Plot B	8	PASS						
11	2462	-14.64	Plot C	8	PASS						
Measure	ement uncertair	ntv: ±1 3dB									

Measurement uncertainty. ±1.3db

(Plot D: Channel = 1 @ 802.11g)

(Plot E: Channel = 6 @ 802.11g)

(Plot F: Channel = 11 @ 802.11g)

2.4.3.3. 802.11n-20MHz Test mode

A. Test Verdict:

	Spectral power density (dBm/3kHz)										
Channal	Frequency	Measured PSD	Refer to Plot	Limit	Verdict						
Channel	(MHz)	(dBm/3kHz)	Refer to Plot	(dBm/3kHz)							
1	2412	-18.88	Plot A	8	PASS						
6	2437	-17.41	Plot B	8	PASS						
11	2462	-15.80	Plot C	8	PASS						
Measure	ment uncertain	tv: ±1.3dB									

Test Plots:

(Plot G: Channel = 1 @ 802.11n)

(Plot H: Channel = 6 @ 802.11n)

(Plot I: Channel = 11 @ 802.11n)

2.5. Band Edge

2.5.1. Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

2.5.2. Test Description

A. Test Setup

The Module of the EUT is powered by the Battery charged with the AC Adapter. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2012.5	2013.05
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2012.5	2014.05
Test Antenna	Schwarzbeck	BBHA 9120C	9120C-384	2012.5	2013.05

2.5.3. Test Result

The lowest and highest channels are tested to verify the band edge emissions.

The measurement results are obtained as below:

 $E\left[dB \; \mu \; V/m\right] = U_{\text{R}} + A_{\text{T}} + A_{\text{Factor}} \; \left[dB\right]; \; A_{\text{T}} = L_{\text{Cable loss}} \; \left[dB\right] - G_{\text{preamp}} \; \left[dB\right]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading
G_{preamp}: Preamplifier Gain
A_{Factor}: Antenna Factor at 3m

2.5.3.1. 802.11b Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading UR (dBuV)	AT (dB)	AFactor (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
1	2398.84	PK	41.13	-30.93	32.56	42.76	74	Pass
1	2361.60	AV	36.13	-30.93	32.56	37.76	54	Pass
11	2490.22	PK	38.51	-29.05	32.50	41.96	74	Pass
11	2490.88	AV	37.44	-29.05	32.50	40.89	54	Pass

(Plot A1: Channel = 1 PEAK @ 802.11b)

(Plot A2: Channel = 1 AVG @ 802.11b)

(Plot B1: Channel = 11 PEAK @ 802.11b)

(Plot B2: Channel = 11 AVG @ 802.11b)

2.5.3.2. 802.11g Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading UR (dBuV)	AT (dB)	AFactor (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
1	2396.60	PK	43.72	-30.93	32.56	45.35	74	Pass
1	2398.28	AV	40.60	-30.93	32.56	42.23	54	Pass
11	2496.58	PK	38.76	-29.05	32.50	42.21	74	Pass
11	2485.94	AV	36.33	-29.05	32.50	39.78	54	Pass

(Plot C1: Channel = 1 PEAK @ 802.11g)

(Plot C2: Channel = 1 AVG @ 802.11g)

(Plot D1: Channel = 11 PEAK @ 802.11g)

(Plot D2: Channel = 11 AVG @ 802.11g)

2.5.3.3. 802.11n-20MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading UR (dBuV)	AT (dB)	AFactor (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
1	2398.84	PK	43.08	-30.93	32.56	44.71	74	Pass
1	2398.56	AV	38.37	-30.93	32.56	40.00	54	Pass
11	2486.99	PK	38.24	-29.05	32.50	41.69	74	Pass
11	2498.77	AV	37.54	-29.05	32.50	40.99	54	Pass

(Plot E1: Channel = 1 PEAK @ 802.11n-20)

(Plot E2: Channel = 1 AVG @ 802.11n-20)

(Plot F1: Channel = 11 PEAK @ 802.11n-20)

(Plot F2: Channel = 11 AVG @ 802.11n-20)

2.6. Conducted Emission

2.6.1. Requirement

According to FCC section 15.207, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency within the band 150kHz to 30MHz shall not exceed the limits in the following table, as measured using a $50\mu H/50\Omega$ line impedance stabilization network (LISN).

Frequency range (MHz)	Conducted Limit (dBµV)	
	Quai-peak	Average
0.15 - 0.50	66 to 56	56 to 46
0.50 - 5	56	46
5 - 30	60	50

NOTE:

- (a) The lower limit shall apply at the band edges.
- (b) The limit decreases linearly with the logarithm of the frequency in the range 0.15 0.50MHz.

2.6.2. Test Description

A. Test Setup:

The Table-top EUT was placed upon a non-metallic table 0.8m above the horizontal metal reference ground plane. EUT was connected to LISN and LISN was connected to reference Ground Plane. EUT was 80cm from LISN. The set-up and test methods were according to ANSI C63.4:2009

The EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The factors of the site are calibrated to correct the reading. During the measurement, the EUT is activated and controlled by the Wi-Fi Service Supplier (SS) via a Common Antenna.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Receiver	Agilent	E7405A	US44210471	2012.05	2013.05
LISN	Schwarzbeck	NSLK 8127	812744	2012.05	2013.05
Service Supplier	R&S	CMU200	100448	2012.05	2013.05
Pulse Limiter (20dB)	Schwarzbeck	VTSD 9561-D	9391	(n.a.)	(n.a.)

2.6.3. Test Result

The maximum conducted interference is searched using Peak (PK), if the emission levels more than the AV and QP limits, and that have narrow margins from the AV and QP limits will be re-measured with AV and QP detectors. Tests for both L phase and N phase lines of the power mains connected to the EUT are performed. Refer to recorded points and plots below.

A. Test setup:

The EUT configuration of the emission tests is $\underline{EUT + Charger}$.

B. Test Plots:

(Plot A: L Phase)

(Plot B: N Phase)

2.7. Radiated Emission

2.7.1. Requirement

According to FCC section 15.247(c), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3
Above 960	500	3

Note:

- 1. For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.
- 2. For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

2.7.2. Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.4 (2009). The EUT was set-up on insulator 80cm above the Ground Plane. The set-up and test methods were according to ANSI C63.4.

The EUT of the EUT is powered by the Battery charged with the AC Adapter which is powered by 120V, 60Hz AC mains supply. The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading. During the measurement, the EUT is activated and controlled by the Wireless Router via a Common Antenna, and is set to operate under hopping-on test mode.

For the Test Antenna:

- (a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna. The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.
- (b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 2GHz) and Horn Test Antenna (above 2GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
System Simulator	R&S	CMU200	100448	2012.05	2013.05
Receiver	Agilent	E7405A	US44210471	2012.05	2013.05
Full-Anechoic Chamber	Albatross	9m*6m*6m	(n.a.)	2012.05	2014.05
Test Antenna - Bi-Log	Schwarzbeck	VULB 9163	9163-274	2012.05	2013.05

Description	Manufacturer	Model	Serial No.	Cal. Date	Cal. Due
Test Antenna - Horn	Schwarzbeck	BBHA 9120D	9120C-963	2012.05	2013.05
Test Antenna - Horn	R&S	HL050S7	71688	2012.05	2013.05
Test Antenna -Loop	Schwarzbeck	FMZB 1519	1519-022	2012.05	2013.05

2.7.3. Test Result

According to ANSI C63.4 selection 4.2.2, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E\left[dB \; \mu \; V/m\right] = U_{\text{R}} + A_{\text{T}} + A_{\text{Factor}} \; \left[dB\right]; \; A_{\text{T}} = L_{\text{Cable loss}} \; \left[dB\right] - G_{\text{preamp}} \; \left[dB\right]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading
G_{preamp}: Preamplifier Gain
A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor AT and A_{Factor} were built in test software.

Note: All radiated emission tests were performed in X, Y, Z axis direction. And only the worst axis test condition was recorded in this test report.

2.7.3.1. 802.11b Test mode

A. Test Verdict for Harmonics:

The Fundamental Emissions

The field strength of {Fundamental Emission} listed below is recorded, and used in the next table.

Channel	Frequency	Fundamental Em	ission (dBµV/m)	Antenna	Refer to Plot
Channel	(MHz)	PK	AV	Polarization	Refer to Plot
1	2412	83.95	N/A	Horizontal	Plot A.2
1	2412	81.40 N/A Vertic		Vertical	Plot A.3
6	2437	80.05	N/A	Horizontal	Plot B.2
0	2437	79.79	N/A	Vertical	Plot B.3
11	2462	81.40	N/A	Horizontal	Plot C.2
11	2402	81.39	N/A	Vertical	Plot C.3

Also refer to following plots for the emissions falling in the restricted bands.

B. Test Plots for the Whole Measurement Frequency Range:

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
167.880	25.90	N.A	N.A	N.A	43.5	N.A	12.5	Horizontal	PASS
2412.000	83.95	N.A	N.A	N.A	N.A	N.A	86.9	Horizontal	N.A
14850.374	39.36	N.A	N.A	74.0	N.A	54.0	153.7	Horizontal	PASS

(Plot A.2: Antenna Horizontal, 30MHz to 25GHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
39.676	29.24	N.A	N.A	N.A	40.0	N.A	8.6	Vertical	PASS
2412.000	81.40	N.A	N.A	N.A	N.A	N.A	196.5	Vertical	N.A
16990.025	38.42	N.A	N.A	74.0	N.A	54.0	53.7	Vertical	PASS

(Plot A.3: Antenna Vertical, 30MHz to 25GHz)

Plot for Channel = 6

(Plot B.1: 9kHz to 30MHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
700.050	31.66	N.A	N.A	N.A	46.0	N.A	69.4	Horizontal	PASS
2437.000	80.05	N.A	N.A	N.A	N.A	N.A	173.5	Horizontal	N.A
14795.511	39.65	N.A	N.A	74.0	N.A	54.0	84.7	Horizontal	PASS

(Plot B.2: Antenna Horizontal, 30MHz to 25GHz)

		ı			ı	ı	ı	ı	
Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
39.676	29.27	N.A	N.A	N.A	40.0	N.A	83.6	Vertical	PASS
2437.000	79.79	N.A	N.A	N.A	N.A	N.A	172.5	Vertical	N.A
14795.511	39.00	N.A	N.A	74.0	N.A	54.0	62.4	Vertical	PASS

(Plot B.3: Antenna Vertical, 30MHz to 25GHz)

(Plot C.1: 9kHz to 30MHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
700.050	31.69	N.A	N.A	N.A	46.0	N.A	47.8	Horizontal	PASS
2462.000	81.40	N.A	N.A	N.A	N.A	N.A	114.2	Horizontal	N.A
16441.397	38.63	N.A	N.A	74.0	N.A	54.0	86.5	Horizontal	PASS

(Plot C.2: Antenna Horizontal, 30MHz to 25GHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
39.676	30.81	N.A	N.A	N.A	40.0	N.A	138.5	Vertical	PASS
2462.000	81.39	N.A	N.A	N.A	N.A	54.0	55.7	Vertical	N.A
16386.534	38.46	N.A	N.A	74.0	N.A	54.0	71.3	Vertical	PASS

(Plot C.3: Antenna Vertical, 30MHz to 25GHz)

2.7.3.2. 802.11g Test mode

A. Test Verdict for Harmonics:

The Fundamental Emissions

The field strength of {Fundamental Emission} listed below is recorded, and used in the next table.

Channal	Frequency	Fundamental Em	ission (dBµV/m)	Antenna	Refer to Plot	
Channel	(MHz)	PK	AV	Polarization	Refer to Flot	
1	2412	82.17	N/A	Horizontal	Plot D.2	
1	2412	81.94	N/A	Vertical	Plot D.3	
6	2437	80.35	N/A	Horizontal	Plot E.2	
6	2437	79.88	N/A	Vertical	Plot E.3	
11	2462	80.53	N/A	Horizontal	Plot F.2	
11	2402	80.54	N/A	Vertical	Plot F.3	

Also refer to following plots for the emissions falling in the restricted bands.

B. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 1

(Plot D.1: 9kHz to 30MHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
109.825	24.47	N.A	N.A	N.A	43.5	N.A	153.2	Horizontal	PASS
2412.000	82.17	N.A	N.A	N.A	N.A	N.A	36.3	Horizontal	N.A
14795.511	39.03	N.A	N.A	54.0	N.A	54.0	86.7	Horizontal	PASS

(Plot D.2: Antenna Horizontal, 30MHz to 25GHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
39.676	30.54	N.A	N.A	N.A	40.0	N.A	86.7	Vertical	PASS
2412.000	81.94	N.A	N.A	N.A	N.A	N.A	116.3	Vertical	N.A
12546.135	39.14	N.A	N.A	74.0	N.A	54.0	55.5	Vertical	PASS

(Plot D.3: Antenna Vertical, 30MHz to 25GHz)

30DBuV

10DBuV 9K10K

40K 50K60K70K80K00K00K

(Plot E.1: 9kHz to 30MHz)

300K 400K 500K00K00K00K0K1

3M

4M 5M 6M 7M8M9M 0M

20M 30M

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
700.050	31.38	N.A	N.A	N.A	46.0	N.A	131.5	Horizontal	PASS
2437.000	80.35	N.A	N.A	N.A	N.A	N.A	283.4	Horizontal	N.A
14795.511	39.10	N.A	N.A	74.0	N.A	54.0	5.7	Horizontal	PASS

(Plot E.2: Antenna Horizontal, 30MHz to 25GHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
32.419	31.20	N.A	N.A	N.A	40.0	N.A	75.6	Vertical	PASS
2437.000	79.88	N.A	N.A	N.A	N.A	N.A	195.2	Vertical	N.A
15289.277	39.35	N.A	N.A	74.0	N.A	54.0	55.7	Vertical	PASS

(Plot E.3: Antenna Vertical, 30MHz to 25GHz)

Plot for Channel = 11

(Plot F.1: 9kHz to 30MHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
700.050	32.36	N.A	N.A	N.A	46.0	N.A	128.4	Horizontal	PASS
2462.000	80.53	N.A	N.A	N.A	N.A	N.A	75.9	Horizontal	N.A
12052.369	38.44	N.A	N.A	74.0	N.A	54.0	47.6	Horizontal	PASS

(Plot F.2: Antenna Horizontal, 30MHz to 25GHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
42.095	28.24	N.A	N.A	N.A	40.0	N.A	72.9	Vertical	PASS
2462.000	80.54	N.A	N.A	N.A	N.A	N.A	117.5	Vertical	N.A
14850.374	40.49	N.A	N.A	74.0	N.A	54.0	53.4	Vertical	PASS

(Plot F.3: Antenna Vertical, 30MHz to 25GHz)

2.7.3.3. 802.11n-20MHz Test mode

A. Test Verdict for Harmonics:

The Fundamental Emissions

The field strength of {Fundamental Emission} listed below is recorded, and used in the next table.

Channe	Frequency	Fundamental Em	ission (dBµV/m)	Antenna	Refer to Plot
1	(MHz)	PK	AV	Polarization	Refer to Plot
1	2412	81.74	N/A	Horizontal	Plot G.2
1	2412	82.03	N/A	Vertical	Plot G.3
6	2437	80.21	N/A	Horizontal	Plot H.2
6	2437	79.37	N/A	Vertical	Plot H.3
11	2462	81.85	N/A	Horizontal	Plot I.2
11	2402	81.82	N/A	Vertical	Plot I.3

Also refer to following plots for the emissions falling in the restricted bands.

B. Test Plots for the Whole Measurement Frequency Range:

$\underline{Plots for Channel} = 1$

(Plot G.1: 9kHz to 30MHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
107.406	25.27	N.A	N.A	N.A	43.5	N.A	193.1	Horizontal	PASS
2412.000	81.74	N.A	N.A	N.A	N.A	N.A	286.5	Horizontal	N.A
12600.998	39.19	N.A	N.A	74.0	N.A	54.0	77.3	Horizontal	PASS

(Plot G.2: Antenna Horizontal, 30MHz to 25GHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
39.676	30.34	N.A	N.A	N.A	40.0	N.A	52.1	Vertical	PASS
2412.000	82.03	N.A	N.A	N.A	N.A	N.A	182.3	Vertical	N.A
14850.374	38.85	N.A	N.A	74.0	N.A	54.0	95.4	Vertical	PASS

(Plot G.3: Antenna Vertical, 30MHz to 25GHz)

(Plot H.1: 9kHz to 30MHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
697.631	32.25	N.A	N.A	N.A	46.0	N.A	76.5	Horizontal	PASS
2437.000	80.21	N.A	N.A	N.A	N.A	N.A	215.4	Horizontal	N.A
16386.534	39.76	N.A	N.A	54.0	N.A	54.0	51.8	Horizontal	PASS

(Plot H.2: Antenna Horizontal, 30MHz to 25GHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
39.676	29.93	N.A	N.A	N.A	40.0	N.A	181.5	Vertical	PASS
2437.000	79.37	N.A	N.A	N.A	N.A	N.A	304.8	Vertical	N.A
11064.838	38.68	N.A	N.A	54.0	N.A	54.0	8.9	Vertical	PASS

(Plot H.3: Antenna Vertical, 30MHz to 25GHz)

Plot for Channel = 11

(Plot I.1: 9kHz to 30MHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
697.631	31.05	N.A	N.A	N.A	46.0	N.A	172.9	Horizontal	PASS
2462.000	81.85	N.A	N.A	N.A	N.A	N.A	98.5	Horizontal	N.A
12546.135	37.75	N.A	N.A	74.0	N.A	54.0	36.7	Horizontal	PASS

(Plot I.2: Antenna Horizontal, 30MHz to 25GHz)

Fre. (MHz)	Pk	QP	AV	Limit-PK	Limit-QP	Limit-AV	Degree	Antenna	Verdict
42.095	29.08	N.A	N.A	N.A	40.0	N.A	101.3	Vertical	PASS
2462.000	81.82	N.A	N.A	N.A	N.A	54.0	76.4	Vertical	N.A
14795.511	38.59	N.A	N.A	74.0	N.A	54.0	85.8	Vertical	PASS

(Plot I.3: Antenna Vertical, 30MHz to 25GHz)

2.8. RF exposure evaluation

2.8.1. Requirement

According to § 1.1307(b)(1), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy lever in excess of Commission's guideline.

2.8.2. Result:

Please refer	to SAR	report.
--------------	--------	---------

** END OF REPORT **