Amendments to the claims:

This listing of claims will replace all prior versions, and listing, of claims in the application:

Listing of Claims:

1. (Previously Presented): A compound of formula (I)

wherein

 R^1 is $OC(O)(CH_2)_mXR^7$;

R² is hydrogen or a hydroxyl protecting group;

 ${
m R}^3$ is hydrogen, ${
m C}_{1-4}$ alkyl or ${
m C}_{3-6}$ alkenyl optionally substituted by 9 to 10 membered fused bicyclic heteroaryl;

 R^4 is hydrogen, C_{1-4} alkyl, C_{3-7} eycloalkyl, C_{3-6} alkenyl or a 5 or 6 membered heterocyclic group, wherein the alkyl, cycloalkyl, alkenyl and heterocyclic groups are optionally substituted by up to three substituents independently selected from optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heterocyclic group.

 R^5 is hydroxy, C_{3-6} alkenyloxy optionally substituted by 9 to 10 membered fused bicyclic heteroaryl, or $O(CH_2)_0O(CH_2)_0R^{10}$,

R6 is hydroxy, or

 ${\sf R}^5$ and ${\sf R}^6$ taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is a bivalent radical selected from -CH₂-, -CH(CN)-, -O-, -N(\mathbb{R}^{11})- and -CH(SR¹¹)-;

R⁷ is a heterocyclic group having the following structure:

or

R8 and R9 are each independently selected from hydrogen and C1-4alkyl;

- R10 is hydrogen or NR8R9;
- R¹¹ is hydrogen or C₁₋₄alkyl substituted by a group selected from optionally substituted phenyl, optionally substituted 5 or 6 membered heteroaryl and optionally substituted 9 to 10 membered fused bicyclic heteroaryl;
- R¹² is hydrogen, C(O)OR¹⁵, C(O)NHR¹⁵ or C(O)CH₂NO₂;
- R¹³ is C₁₋₄alkyl optionally substituted by hydroxy or C₁₋₄alkoxy,
- C_{3-7} cycloalkyl, or optionally substituted phenyl or benzyl;
- R^{14} is halogen, $C_{1\text{--}4}$ alkyl, $C_{1\text{--}4}$ thioalkyl, $C_{1\text{--}4}$ alkoxy, NH2, NH($C_{1\text{--}4}$ alkyl) or

N(C1_aalkvl)2;

 R^{15} is hydrogen or C_{1-4} alkyl optionally substituted by up to three groups independently selected from halogen, C_{1-4} alkoxy, OC(O) C_{1-4} alkyl and

OC(O)OC1_4alkyl;

 R^{16} is hydrogen, C_{1-4} alkyl, C_{3-7} cycloalkyl, optionally substituted phenyl or benzyl, acetyl or benzyl:

 R^{17} is hydrogen or $R^{14},$ or R^{17} and R^{13} are linked to form the bivalent radical -O(CH $_2$) $_2$ - or -(CH $_2$) $_y$ -;

X is -U(CH₂)_sZ- or X is a group selected from:

$$-N$$
 N $-$

and

$$\bigcup_{N}^{H} N -$$

U and Z independently are a divalent radical selected from -N(R16)-, -O-, -S(O)t-,

 $-N(R^{16})C(O)$ -, $-C(O)N(R^{16})$ - and $-N[C(O)R^{16}]$ -;

W is CR¹⁷ or a nitrogen atom;

m is 0 or an integer from 1 to 5;

n, r and t are each independently selected from 0, 1 and 2;

p and q are each independently selected from 1 to 6;

s is an integer from 2 to 8; and

v is 2 or 3;

or a pharmaceutically acceptable salt thereof.

 (Previously presented): A compound according to claim 1 wherein R² is hydrogen; or a pharmaceutically acceptable salt thereof.

- (Previously presented): A compound according to claim 1 wherein R³ is hydrogen; or a pharmaceutically acceptable salt thereof.
- 4. (Previously presented): A compound according to claim 3 wherein R⁴ is hydrogen or C₁₋₄alkyl optionally substituted by up to three substituents independently selected from optionally substituted 5 or 6 membered heteroaryl, OR⁸, S(O)_RR⁸, NR⁸R⁹, halogen and evano; or a pharmaceutically acceptable salt thereof.
- 5. (Currently amended): A compound according to $\underline{\text{claim 4}}$ wherein R^5 is hydroxy or $O(\text{CH}_2)_pO(\text{CH}_2)_qR^{10}$ and R^6 is hydroxy, or R^5 and R^6 taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is the bivalent radical -O-; or a pharmaceutically acceptable salt thereof.

6. (Previously presented): A compound according to claim 5 wherein \mathbb{R}^7 is a heterocyclic group having the following structure:

wherein W is CR¹⁷ where R¹⁷ is hydrogen; or a pharmaceutically acceptable salt thereof.

7. (Previously presented): A compound according to claim 6 wherein X is $-U(CH_2)_8Z$ - wherein U and Z are independently -NH- or -O-; or a pharmaceutically acceptable salt thereof.

8. (Canceled),

- 9. (Previously presented): A compound selected from:
 4"-O-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl-1,4-dihydro-4-oxo-6-quinolinyl) amino]ethyl]amino]propionyl]-11-O-(2-dimethylaminoethoxymethyl)-(9E)-methoximino erythromycin A.
- 4"-O-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl-1,4-dihydro-4-oxo-6-quinolinyl) amino]ethyl]amino]propionyl]-11,12-carbonate-(9E)-O-(2-propyl)oximino ervthromycin A,
- 4"-O-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl-1,4-dihydro-4-oxo-6-quinolinyl) amino]ethyl]amino]propionyl]-11,12-carbonate-(9E)-methoximino erythromycin A, and
- $\label{eq:condition} 4"-O-[3-[[2-[(3-carboxy-7-chloro-1-cyclopropyl]-1,4-dihydro-4-oxo-6-quinolinyl) amino]ethyl]amino]propionyl]-11,12-carbonate-(9E)-O-(ethoxymethyl)oximino erythromycin A,$
- or a pharmaceutically acceptable salt thereof.
- 10. (Currently amended): A process for the preparation of a compound as claimed in claim 1 which comprises:
- a) reacting a compound of formula (II)

with a suitable activated derivative of the acid (III), wherein m is an integer 1 to 5, X^a and R^7a are X and R^7 as defined in claim 1 or protected forms of X and R^7 , to produce a compound of formula (I) wherein m is an integer 1 to 5;

b) reacting a compound of formula (II), in which the 4" hydroxy is suitably activated, with a compound of formula X^aR^{7a} (IV), wherein R^{7a} is R^{7a} as defined in claim 1 or a protected form of R^7 , s and Z have the meanings defined in claim 1 and X^a is $-U(CH_2)_sZ$ - or a protected form of $-U(CH_2)_sZ$ -, in which U is a group selected from selected from $-N(R^{16})$ -, -O-, and -S-, to produce a compound of formula (I) wherein m is 0 and U is a group selected from $-N(R^{16})$ -, -O- and -S-;

c) reacting a compound of formula (V)

wherein R^{16} has the meaning defined in claim 1 with a suitable activated derivative of the carboxylic acid $HOC(O)(CH_2)_SZ^aR^{7a}$ (VI), wherein R^{7a} and Z^a are R^7 and Z as defined in claim 1 or protected forms of R^7 and Z, to produce a compound of formula (I) wherein m is 0 and U is $-N(R^{16})C(O)$ -:

- d) reacting a compound of formula (II) with a suitably activated derivative of the carboxylic acid HOC(O)C(O)N(R^{16})(CH2) $_8$ Z^aR^{7a} (VIIb) to produce a compound of formula (I) wherein m is 0 and U is $-C(O)N(R^{16})$:
- e) reacting a compound of formula (VII)

with a compound of formula X^aR^{7a} (IV), wherein R^{7a} and X^a are R^7 and X as defined in claim 1 or protected forms of R^7 and X, U is a group selected from $-N(R^{16})$ -, -0- and -S-, and L is suitable leaving group, to produce a compound of formula (I) wherein m is 1 to 5 and U is a group selected from $-N(R^{16})$ -, -0- and -S-; or

f) reacting a compound of formula (IX), with a compound of formula X^aR^{7a} (IV),

wherein R^{7a} and X^a are R^7 and X as defined in claim 1 or protected forms of R^7 and X, U is a group selected from -N(R^{16})-, -O- and -S-, to produce a compound of formula (I) wherein m is 2 and U is a group selected from -N(R^{16})-, -O- and -S-;

and thereafter, if required, subjecting the resulting compound to one or more of the following operations:

- i) removal of the protecting group R²,
- ii) conversion of XaR7a or ZaR7a to XR7 or ZR7 respectively, and
- iii) conversion of the resultant compound of formula (I) into a pharmaceutically acceptable salt thereof.

11-13. (Canceled).

- 14. (Previously presented): A pharmaceutical composition comprising a compound according to claim 1 or a pharmaceutically acceptable salt thereof in admixture with one or more pharmaceutically acceptable earriers or excipients.
- 15. (Previously presented): A method for the treatment of the human or non-human animal body to combat a bacterial infection comprising administration to said human or nonhuman animal body of an effective amount of a compound according to claim 1 or a pharmaceutically acceptable salt thereof.
 - 16. (Previously presented): A compound of formula (IA)

wherein

 R^1 is $OC(O)(CH_2)_mXR^7$;

R² is hydrogen or a hydroxyl protecting group;

 $m R^{3}$ is hydrogen, $\rm C_{1-4}$ alkyl or $\rm C_{3-6}$ alkenyl optionally substituted by 9 to 10 membered fused bievelic heteroarvl:

R⁴ is hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₆alkenyl or a 5 or 6 membered heterocyclic group, wherein the alkyl, cycloalkyl, alkenyl and heterocyclic groups are optionally substituted by up to three substitutents independently selected from optionally substituted 5 or 6 membered heterocyclic group, optionally substituted 5 or 6 membered heterocyclic group.

 R^5 is hydroxy, C_{3-6} alkenyloxy optionally substituted by 9 to 10 membered fused bicyclic heteroaryl or $O(CH_2)_0O(CH_2)_0R^{10}$,

R6 is hydroxy, or

 ${\sf R}^5$ and ${\sf R}^6$ taken together with the intervening atoms form a cyclic group having the following structure:

wherein Y is a bivalent radical selected from -CH $_2$ -, -CH(CN)-, -O-, -N(R 11)- and -CH(SR $_8$)-:

R⁷ is a heterocyclic group having the following structure:

$$(R^{14})_r$$
 O R^{12} P^{12}

or

 R^8 and R^9 are each independently selected from hydrogen and C_{1-4} alkyl;

R¹⁰ is hydrogen or NR⁸R⁹;

 R^{11} is hydrogen or C_{1-4} alkyl substituted by a group selected from optionally substituted phenyl, optionally substituted 5 or 6 membered heteroaryl and optionally substituted 9 to 10 membered fused bicyclic heteroaryl;

R¹² is hydrogen, C(O)OR¹⁵, C(O)NHR¹⁵ or C(O)CH₂NO₂;

R¹³ is C₁₋₄alkyl, C₃₋₇cycloalkyl, or optionally substituted phenyl or benzyl;

 R^{14} is halogen, $C_{1.4}$ alkyl, $C_{1.4}$ thioalkyl, $C_{1.4}$ alkoxy, NH_2 , $NH(C_{1.4}$ alkyl) or $N(C_{1.4}$ alkyl);

R15 is hydrogen or C1-4alkyl;

R¹⁶ is hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, optionally substituted phenyl or benzyl, acetyl or benzyl:

X is -U(CH₂)₈Z- or X is a group selected from:

$$-N$$
N $-$

and

U and Z independently are a divalent radical selected from $-N(R^{16})$ -, -O-, $-S(O)_{t^-}$, -

N(R¹⁶)C(O)-, -C(O)N(R¹⁶)- and -N[C(O)R¹⁶]-;

W is a carbon or a nitrogen atom;

m is 0 or an integer from 1 to 5;

n, r and t are each independently selected from 0, 1 and 2;

p and q are each independently selected from 1 and 2; and

s is an integer from 2 to 8;

or a pharmaceutically acceptable salt thereof.