Claims

What is claimed is:

2

•	I	1.	A kit for the isolation and subsequent qualitative or quantitative characterization
	2		of target biomolecules present in biological fluid comprising: at least one MSIA-
	3		Tip having an affinity reagent present within the tip, at least one internal reference
	4		standard of predetermined concentration, and at least one mass spectrometer
	5		target.
かなののように	1	2.	The kit according to claim 1 wherein the affinity reagent further comprises an
Л	2		affinity ligand, said affinity ligand further comprises anti-human β -2-
F.	3		microglobulin antibody.
	1 2	3.	The kit according to claim 1 wherein the internal reference standard is an internal reference standard that shares sequence homology with the target biomolecule.
	1	4.	The kit according to claim 3 wherein the internal reference standard that shares
	2		sequence homology with the target biomolecule is selected from the group
	3		comprising enzymatic/chemically-modified versions of the target biomolecule,
	4		truncated/extended recombinant forms of the target biomolecules, the target
	5		biomolecule recombinantly expressed in isotopically-enriched media, and the
	6		target biomolecule from a different biological species.
	1	5.	The kit according to claim 3 wherein the internal reference standard that shares

sequence homology with the target biomolecule is equine β -2-microglobulin.

2

3

4

2

3

5

6

8

9

- 7. The kit according to claim 6 wherein the internal reference standard that shares sequence homology with the target biomolecule is selected from the group comprising enzymatic/chemically-modified versions of the target biomolecule, truncated/extended recombinant forms of the target biomolecules, the target biomolecule recombinantly expressed in isotopically-enriched media, and the target biomolecule from a different biological species.
- 8. The kit according to claim 6 wherein the internal reference standard that shares sequence homology with the target biomolecule is equine β -2-microglobulin.
- 9. A method for the isolation and subsequent qualitative characterization of target biomolecules present in biological fluid comprising the steps of:
 - a. providing a MSIA-Tip having an affinity reagent present,
 - b. separating and concentration the target biomolecule directly from the
 biological fluid by flowing a volume of the biological fluid through the
 MSIA-Tip, thereby binding the target biomolecules to the affinity reagent,
- 7 c. cluting the target biomolecules onto a mass spectrometer target,
 - d. performing mass spectrometric analysis on the target biomolecules in order to qualitatively determine the presence or absence of the target biomolecule in the biological fluid.

- 10. The method according to claim 9 wherein the affinity reagent further comprises 1 an affinity ligand, said affinity ligand further comprises anti-human β -2-2 microglobulin antibody. 3 The method according to claim 9 wherein the qualitative determination further 11. 1
- determines the presence of mass shifted variants of the target biomolecule. 2
- The method according to claim 10 wherein the qualitative determination further 12. 1 2 determines the presence of mass shifted variants of the target biomolecule.

- A method for the isolation and subsequent quantitative characterization of target 13. biomolecules present in biological fluid comprising the steps of:
 - adding a known amount of internal reference standard of predetermined a. concentration to a sample of the biological fluid,
 - b. providing a MSIA-Tip having an affinity reagent present,
- flowing a volume of the biological fluid through the pipettor tip, thereby c. 6 binding the target biomolecules to the affinity reagent, 7
- 8 d. eluting the target biomolecules to a mass spectrometer target,
- 9 performing mass spectrometric analysis on the target biomolecules in e. order to quantitatively determine the concentration of the target 10 biomolecule in the biological fluid. 11

- 1 14. The method according to claim 13 wherein the affinity reagent further comprises
 2 an affinity ligand, said affinity ligand further comprises anti-human β-23 microglobulin antibody.
- 1 15. The method according to claim 13 wherein the internal reference standard is an internal reference standard that shares sequence homology with the target biomolecule.
 - 16. The method according to claim 15 wherein the internal reference standard that shares sequence homology with the target biomolecule is selected from the group comprising enzymatic/chemically-modified versions of the target biomolecule, truncated/extended recombinant forms of the target biomolecules, the target biomolecule recombinantly expressed in isotopically-enriched media, and the target biomolecule from a different biological species.
- 1 17. The method according to claim 15 wherein the internal reference standard that
 2 shares sequence homology with the target biomolecule is equine β-23 microglobulin.
- 1 18. The method according to claim 14 wherein the internal reference standard is an
 internal reference standard that shares sequence homology with the target
 biomolecule.

ı

- 1 19. The method according to claim 18 wherein the internal reference standard that
 2 shares sequence homology with the target biomolecule is selected from the group
 3 comprising enzymatic/chemically-modified versions of the target biomolecule,
 4 truncated/extended recombinant forms of the target biomolecules, the target
 5 biomolecule recombinantly expressed in isotopically-enriched media, and the
 6 target biomolecule from a different biological species.
- The method according to claim 18 wherein the internal reference standard that
 shares sequence homology with the target biomolecule is equine β-2 microglobulin.
 - 21. The method according to claim 13 wherein the quantitative determination further determines the concentration of mass shifted variants of the target biomolecule.
- The method according to claim 14 wherein the quantitative determination further determines the concentration of mass shifted variants of the target biomolecule.
- The method according to claim 15 wherein the quantitative determination further determines the concentration of mass shifted variants of the target biomolecule.
- The method according to claim 16 wherein the quantitative determination further determines the concentration of mass shifted variants of the target biomolecule.
- The method according to claim 17 wherein the quantitative determination further determines the concentration of mass shifted variants of the target biomolecule.

- The method according to claim 18 wherein the quantitative determination further determines the concentration of mass shifted variants of the target biomolecule.
- The method according to claim 19 wherein the quantitative determination further determines the concentration of mass shifted variants of the target biomolecule.
- The method according to claim 20 wherein the quantitative determination further determines the concentration of mass shifted variants of the target biomolecule.