Martin-Luther-Universität Halle-Wittenberg Juristische und Wirtschaftswissenschaftliche Fakultät

Wirtschaftswissenschaftlicher Bereich

Formelsammlung Statistik

für die Veranstaltungen Statistik I und Statistik II im Grundstudium bzw. Bachelorstudium

Prof. Dr. Claudia Becker Lehrstuhl für Statistik

Inhaltsverzeichnis

1	Summenzeichen	5
2	Häufigkeitsverteilungen 2.1 Absolute Häufigkeit	5 5 5 5
3		5 5 6 6 6 6 7
4	4.7 Standardabweichung	8 8 8 8 9 10 10 10
5	5.1 Lageregeln	10 10 10
6	6.1 Relative Konzentration	10 10 10 12 12
7	7.1 Kontingenztafeln 7.2 Bedingte Verteilungen 7.2.1 Bedingte Verteilung von X 7.2.2 Bedingte Verteilung von Y 7.2.3 Rekonstruktion der gemeinsamen Häufigkeiten 7.3 Zusammenhangsanalyse in Kontingenztafeln 7.3.1 Hypothetische absolute Häufigkeit (bei Unabhängigkeit der Merkmale) 7.3.2 Chi-Quadrat Koeffizent 7.3.3 Kontingenzkoeffizent 7.3.4 Korrigierter Kontingenzkoeffizent 7.4 Zusammenhangsmaße bei metrischen Merkmalen 7.4.1 Korrelationskoeffizient nach Bravais-Pearson (linearer Zusammenhang) 7.4.2 Empirische Kovarianz von X und Y 7.4.3 Rangkorrelationskoeffizient nach Spearman	12 12 12 12 13 13 13 13 13 13 13 13 14
8	Einfache lineare Regression 8.1 Kleinste Quadrate Methode für die Regressionskoeffizienten	14 14 14

9	Analyse zeitlicher Verläufe	14
	9.1 Komponentenmodelle für Zeitreihen	14
	9.2 Lineares Trendmodell	15
	9.3 Einfacher gleitender Durchschnitt der Ordnung p	15
	9.4 Indexzahlen	16
	9.4.1 Umsatzindex	16
	9.4.2 Preisindex nach Laspeyres	16
	9.4.3 Preisindex nach Paasche	16
	9.4.4 Mengenindex nach Laspeyres	16
	9.4.5 Mengenindex nach Paasche	16
	9.4.6 Index von March	16
10	Wahrscheinlichkeitsrechnung	17
	10.1 Mengenoperationen	17
	10.2 Wahrscheinlichkeiten	17
	10.2.1 Laplace-Wahrscheinlichkeiten	17
	10.2.2 Rechenregeln für Wahrscheinlichkeiten	17
	10.2.3 Bedingte Wahrscheinlichkeit von A gegeben B	17
	10.2.4 Satz von der totalen Wahrscheinlichkeit	17
	10.2.5 Satz von Bayes	18
	10.2.6 Unabhängigkeit von zwei Ereignissen	18
	10.2.0 Chabhangighert von Zwei Ereighissen	10
11	Zufallsstichproben	18
	11.1 Allgemeines	18
	11.2 Anzahl möglicher Stichproben	18
	Tinzam mognonor sucuproson	
12	Eindimensionale Zufallsvariablen	18
	12.1 Dichte	18
	12.2 Verteilungsfunktion	19
	12.3 Rechnen mit Verteilungsfunktion und Dichte	19
	12.4 Modus	19
	12.5 Erwartungswert	19
	12.5.1 Definition	19
	12.5.2 Transformationen	20
	12.6 Varianz und Standardabweichung	20
	12.7 Quantile	20
	12.1 Quantino	20
13	Mehrdimensionale Zufallsvariablen	21
	13.1 Gemeinsame Dichte und Randdichte	21
	13.2 Bedingte Dichte	21
	13.3 Unabhängigkeit von Zufallsvariablen	21
	13.4 Kovarianz	21
	13.4.1 Diskrete Zufallsvariablen	21
	13.4.2 Stetige Zufallsvariablen	21
	13.5 Rechenregeln Erwartungswert, Varianz, Kovarianz	22
	13.6 Korrelationskoeffizient	22
14	Diskrete Verteilungen	22
	14.1 Bernoulli-Verteilung	22
	14.2 Binomialverteilung	22
	14.3 Die hypergeometrische Verteilung	23
	14.4 Die Poisson-Verteilung	23
15	Stetige Verteilungen	2 3
	15.1 Die stetige Gleichverteilung (Rechteckverteilung) auf $[a,b]$	23
	15.2 Die Normalverteilung	23
	15.2.1 Eigenschaften	23
	15.2.2 Bestimmung von Wahrscheinlichkeiten $P(a \le X \le b)$	24
	15.2.3 Bestimmung von Quantilen	24
	15.3 t-Verteilung mit n Freiheitsgraden (Student t-Verteilung)	24
	- · · · · · · · · · · · · · · · · · · ·	

16	Schätzer	2 4
	16.1 Schätzer für Erwartungswert und Varianz	24
	16.2 Konfidenzintervalle für μ im Normalverteilungsmodell	25
	16.3 Approximative Konfidenzintervalle für μ	25
17	Statistische Hypothesentests	25
	17.1 Gauß-Test	25
	17.2 t-Test	26
	17.3 Approximativer Gauß-Test	26
	17.4 Test auf einen Anteil	26
	17.5 χ^2 Unabhängigkeitstest	27

1 Summenzeichen

$$\sum_{i=1}^{n} (x_i + y_i) = \sum_{i=1}^{n} x_i + \sum_{i=1}^{n} y_i$$
$$\sum_{i=1}^{n} c x_i = c \sum_{i=1}^{n} x_i$$
$$\sum_{i=1}^{n} c = n \cdot c$$

2 Häufigkeitsverteilungen

2.1 Absolute Häufigkeit

 $h_j=h(a_j)=$ Anzahl der Fälle in denen Ausprägung a_j auftritt $a_j=$ j-te Merkmalsausprägung mit j=1,...,k

Es gilt:
$$\sum_{j=1}^{k} h_j = n$$

2.2 Relative Häufigkeit

$$f_j = f(a_j) = \frac{h(a_j)}{n}$$
 Es gilt: $\sum_{j=1}^k f_j = 1$

2.3 Histogramm

Klasseneinteilung: bei
n Beobachtungen $\approx \sqrt{n}$ Klassenbreite (d_j) = obere Klassengrenze - untere Klassengrenze = $x_j^0 - x_j^u$

$$f_j^r = \text{H\"ohe} = \frac{f_j}{d_j}$$

2.4 Empirische Verteilungsfunktion

Für unklassierte Häufigkeitsverteilung (Urliste muss in Häufigkeitsverteilung überführt werden)

$$F(x) = \sum_{j: a_j \leq x} f(a_j) = \sum_{j: a_j \leq x} f_j \quad \text{ (kumulierte relative Häufigkeit)}$$

Für klassierte Häufigkeitsverteilung

$$F(x) = \begin{cases} 0, & x < x_1^u \\ kum f_{j-1} + \frac{x - x_j^u}{d_j} \cdot f_j, & x_1^u \le x < x_k^o \\ 1, & x_k^o \le x \end{cases}$$

3 Lagemaße

3.1 Lagemaße I: Daten als Urliste

3.1.1 Arithmetisches Mittel

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 (für Urliste)

Bei linearer Transformation: $x_i \mapsto y_i = a \cdot x_i + b \Rightarrow \overline{y} = a \cdot \overline{x} + b$

5

$$\overline{x} = \frac{1}{n} \sum_{j=1}^{r} n_j \ \overline{x}_j \ \left(\text{wobei} \quad n = \sum_{j=1}^{r} n_j \right), \text{ Mittelwert aus Teilgesamtheiten (r Schichten)}$$

3.1.2 Geometrisches Mittel

Beobachtete Reihe des Merkmals X (Zeitreihe): $x_0, x_1, ..., x_n$

$$r_t = \frac{x_t - x_{t-1}}{x_{t-1}} \qquad \text{(Wachstumsrate)}$$

$$w_t = 1 + r_t = \frac{x_t}{x_{t-1}} \quad \text{(Wachstumsfaktor)}$$

• durchschnittlicher Wachstumsfaktor \overline{w}_{qeom}

$$x_n = x_0 \cdot \overline{w}_{geom}^n$$

$$\overline{w}_{geom} = \sqrt[n]{\prod_{t=1}^n w_t} = \sqrt[n]{w_1 \cdot w_2 \cdot \dots \cdot w_n}$$

$$\overline{w}_{geom} = \sqrt[n]{\frac{x_n}{x_0}} = \sqrt[n]{(1+r_1) \cdot (1+r_2) \cdot \dots \cdot (1+r_n)}$$

• durchschnittliche Wachstumsrate \overline{r}_{geom}

$$\overline{r}_{geom} = \overline{w}_{geom} - 1$$

3.1.3 Median (Zentralwert)

Ordnungsstatistiken $x_{(1)} \leq \ldots \leq x_{(n)}$

$$x_{med} = \left\{ \begin{array}{ll} x_{(\frac{n+1}{2})} & \text{, falls n ungerade} \\ \\ \frac{1}{2}(x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}) & \text{, falls n gerade} \end{array} \right.$$

3.1.4 Modus (Modalwert)

Ausprägung mit größter relativer Häufigkeit.

Nicht bestimmbar, wenn mehrere Ausprägungen größte relative Häufigkeit besitzen.

Modalitätsgrad: relative Häufigkeit des Modus in Prozent = $f_{mod} \cdot 100\%$

3.1.5 p-Quantile (0

$$x_p = \left\{ \begin{array}{ll} x_{([n \cdot p] + 1)} & \text{, wenn } n \cdot p \text{ nicht ganzzahlig, wobei } [n \cdot p] \text{ die} \\ & \text{zu } n \cdot p \text{ nächst kleinere ganze Zahl} \\ \\ \frac{1}{2} \big(x_{(n \cdot p)} + x_{(n \cdot p \ + 1)} \big) & \text{, wenn } n \cdot p \text{ ganzzahlig} \end{array} \right.$$

Fünf-Punkte-Zusammenfassung:

Teilt den Wertebereich in 4 Intervalle die jeweils ca. ein Viertel der Werte enthalten.

 $\begin{array}{lll} x_{(1)} & \dots & \text{kleinster Wert} \\ x_{0.25} & \dots & \text{unteres Quartil} \\ x_{med} & \dots & \text{Median} \\ x_{0.75} & \dots & \text{oberes Quartil} \end{array}$

 $x_{(n)}$... größter Wert

Arithmetisches Mittel

Urliste	unklassierte Häufigkeitsverteilung	klassierte Häufigkeitsverteilung
$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$	$n \stackrel{i}{\underset{i=1}{\dots}} 1$	Nutze Klassenmitten $m_j = \frac{x_j^o + x_j^u}{2}$ $\overline{x} = \frac{1}{n} \sum_{j=1}^k m_j \cdot n_j = \sum_{j=1}^k m_j \cdot f_j \text{(N\"{a}herung)}$

p-Quantil

Urliste	unklassierte Häufigkeitsverteilung	klassierte Häufigkeitsverteilung
$x_p = \begin{cases} x_{([np]+1)} & , np \text{ nicht ganzzahl.} \\ \frac{1}{2}(x_{(np)} + x_{(np+1)}) & , np \text{ ganzzahlig} \end{cases}$	(1) Suche nach der Ausprägung a_j , bei der $kumf_j = p$ erstmals überschritten oder genau erreicht wird (2a) Wird p bei a_j überschritten: $x_p = a_j$ (2b) Wird p genau bei a_j erreicht: $x_p = \frac{a_j + a_{j+1}}{2}$	(1) Bestimme Klasse, in der $kumf_j = p$ erstmals überschritten wird (2) $x_p = x_j^u + (p - kumf_{j-1}) \cdot \frac{d_j}{f_j}$

Median

120022		
Urliste	unklassierte Häufigkeitsverteilung klassierte Häufigkeitsverteilung	
Nutze Rechenvorschriften für p-Quantile mit p=0.5		

Modus

Urliste	unklassierte Häufigkeitsverteilung	klassierte Häufigkeitsverteilung
Die Merkmalsausprägung a_j mit der größ	ten Häufigkeit $h(a_j)$ bildet den Modus	(1) Modalklasse: Klasse j mit größter Beset-
		zungsdichte $f_i^r = f_j/d_j$
		(2) Näherung für Modus:
		$x_{mod} = \frac{x_j^o + x_j^u}{2}$

4 Streuungsmaße

4.1 Spannweite (Range)

$$R = x_{(n)} - x_{(1)}$$

4.2 Interquartilsabstand

$$d_Q = x_{0.75} - x_{0.25}$$

4.3 Mediane absolute Abweichung vom Median (MAD)

$$MAD = med \{ |x_i - x_{med}|, i = 1, ..., n \}$$

4.4 Empirische Varianz I: Daten als Urliste

$$\widetilde{s}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 = \left(\frac{1}{n} \sum_{i=1}^n x_i^2\right) - \overline{x}^2$$
 (Verschiebungssatz)

$$\widetilde{s}^2 = \frac{1}{n} \left(\sum_{j=1}^r n_j \cdot \widetilde{s}_j^2 + \sum_{j=1}^r n_j \cdot (\overline{x}_j - \overline{x})^2 \right)$$
, Varianz aus Teilgesamtheiten (r Schichten)

Bei linearer Transformation: $x_i \mapsto y_i = a \cdot x_i + b \implies \widetilde{s}_y^2 = a^2 \cdot \widetilde{s}_x^2$

Ist X normalverteilt (großes n) gilt:

 $\overline{x} \pm \widetilde{s} \longrightarrow \text{ca. } 68\%$ aller Beobachtungen

 $\overline{x} \pm 2 \cdot \widetilde{s} \rightarrow \text{ca. 95}\%$ aller Beobachtungen

 $\overline{x}\pm 3\cdot \widetilde{s} \quad \rightarrow$ ca. 99% aller Beobachtungen

Varianz

Urliste	unklassierte Häufigkeitsverteilung	klassierte Häufigkeitsverteilung
$\widetilde{s}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$	$\widetilde{s}^2 = \frac{1}{n} \sum_{j=1}^k (a_j - \overline{x})^2 \cdot h(a_j)$ $= \sum_{j=1}^k (a_j - \overline{x})^2 \cdot f(a_j)$	$\widetilde{s}^2 = \widetilde{s}_{ext}^2 + \widetilde{s}_{int}^2$ Einzelwerte x_{ij} in den Klassen unbekannt; Klassenmittelwerte \overline{x}_j können nicht berechnet werden; Verwende daher die Klassenmitten $m_j = \frac{x_j^o + x_j^u}{2}$ (a) Es liegen Informationen über Klassenvarianzen \widetilde{s}_j^2 vor: $\widetilde{s}^2 = \frac{1}{n} \sum_{j=1}^k (m_j - \overline{x})^2 \cdot n_j + \frac{1}{n} \sum_{j=1}^k \widetilde{s}_j^2 \cdot n_j$ $= \sum_{j=1}^k (m_j - \overline{x})^2 \cdot f_j + \sum_{j=1}^k \widetilde{s}_j^2 \cdot f_j$ (b) Keine Informationen über \widetilde{s}_j^2 ; Setze $\widetilde{s}_j^2 = 0$: $\widetilde{s}^2 = \frac{1}{n} \sum_{j=1}^k (m_j - \overline{x})^2 \cdot n_j = \sum_{j=1}^k (m_j - \overline{x})^2 \cdot f_j$

Verschiebungssatz der Varianz

Urliste	unklassierte Häufigkeitsverteilung	klassierte Häufigkeitsverteilung
$\widetilde{s}^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \overline{x}^2$	$\widetilde{s}^2 = \frac{1}{n} \sum_{j=1}^k a_j^2 \cdot h(a_j) - \overline{x}^2$	(a) Es liegen Informationen über Klassenvarianzen \tilde{s}_j^2 vor:
	$=\sum_{i=1}^{k} a_j^2 \cdot f(a_j) - \overline{x}^2$	$\widetilde{s}^{2} = \frac{1}{n} \sum_{j=1}^{k} m_{j}^{2} \cdot n_{j} - \overline{x}^{2} + \frac{1}{n} \sum_{j=1}^{k} \widetilde{s}_{j}^{2} \cdot n_{j}$
	<i>J</i> -1	$=\sum_{j=1}^k m_j^2 \cdot f_j - \overline{x}^2 + \sum_{j=1}^k \widetilde{s}_j^2 \cdot f_j$
		(b) Keine Informationen über \tilde{s}_j^2 ; Setze $\tilde{s}_j^2 = 0$:
		$\widetilde{s}^2 = \frac{1}{n} \sum_{j=1}^k m_j^2 \cdot n_j - \overline{x}^2 = \sum_{j=1}^k m_j^2 \cdot f_j - \overline{x}^2$

4.6 Stichprobenvarianz

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} = \frac{1}{n-1} \left(\sum_{i=1}^{n} x_{i}^{2} - n \cdot \overline{x}^{2} \right) \quad \text{(Verschiebungssatz)}$$

4.7 Standardabweichung

$$\widetilde{s} = \sqrt{\widetilde{s}^2}$$

4.8 Standardisierung

$$x_i \mapsto z_i = \frac{x_i - \overline{x}}{\widetilde{s}_x} = \underbrace{\frac{1}{\widetilde{s}_x} \cdot x_i - \underbrace{\frac{1}{\widetilde{s}_x} \cdot \overline{x}}_{b}}_{}$$

Es gilt: $\overline{z} = 0$ und $\widetilde{s}_z^2 = 1$

4.9 Variationskoeffizient

$$v = \frac{\widetilde{s}}{\overline{x}}$$

5 Schiefemaße

5.1 Lageregeln

- $x_{mod} < x_{med} < \overline{x} \rightarrow \text{rechtsschief}$
- $x_{mod} = x_{med} = \overline{x} \rightarrow \text{symmetrisch}$
- $\overline{x} < x_{med} < x_{mod} \rightarrow \text{linksschief}$

5.2 Schiefekoeffizient nach Pearson (Momentenkoeffizient)

$$g_m = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^3}{\sqrt{(\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2)^3}}$$

- $g_m > 0 \rightarrow \text{rechtsschief}$
- $g_m = 0 \rightarrow \text{symmetrisch}$
- $g_m < 0 \rightarrow \text{linksschief}$

6 Konzentrationsmaße

6.1 Relative Konzentration

6.1.1 Gini-Koeffizient

Wertebereich: $0 \le G \le \frac{n-1}{n}$

Normierter Gini-Koeffizient

Wertebereich: $0 \le G^* \le 1$

$$G^* = \frac{n}{n-1} G$$

Relative Konzentration

	Urliste	unklassierte Häufigkeitsverteilung	klassierte Häufigkeitsverteilung (Merkmalssummen unbekannt)	klassierte Häufigkeitsverteilung (Merkmalssummen bekannt)
Gini-Koeffizient	$G = \sum_{i=1}^{n} u_i \cdot \widetilde{v}_i + \sum_{i=1}^{n} u_{i-1} \cdot \widetilde{v}_i - 1$	$G = \sum_{j}$	$\sum_{j=1}^{k} u_j \cdot \widetilde{v}_j + \sum_{j=1}^{k} u_{j-1} \cdot \widetilde{v}_j - 1$ $\in 1, 2,, k$	
q	\in 1, 2,, n		\in 1, 2,, k	
relative Häufigkeit	$f_q = \frac{n_q}{n} = \frac{1}{n}$	$f(a_q) = \frac{h(a_q)}{n} = \frac{h(a_q)}{\sum_{j=1}^{k} h(a_j)}$	$f_q = \frac{n_q}{n} = \frac{n_q}{\sum\limits_{j=1}^k n_j}$	$f_q = \frac{n_q}{n} = \frac{n_q}{\sum\limits_{j=1}^k n_j}$
kumulierte rel. Häufigkeit	$u_q = \sum_{i=1}^q f_i = \frac{q}{n}$	$u_q = \sum_{j=1}^q f(a_j)$	$u_q = \sum_{j=1}^q f_j$	$u_q = \sum_{j=1}^q f_j$
relativer Merkmalsanteil	$\widetilde{v}_q = \frac{x_{(q)}}{\sum\limits_{i=1}^n x_i}$	$\widetilde{v}_q = \frac{a_q \cdot h(a_q)}{\sum\limits_{j=1}^k a_j \cdot h(a_j)} = \frac{a_q \cdot f(a_q)}{\sum\limits_{j=1}^k a_j \cdot f(a_j)}$	$\widetilde{v}_q = \frac{m_q \cdot n_q}{\sum\limits_{j=1}^k m_j \cdot n_j} = \frac{m_q \cdot f_q}{\sum\limits_{j=1}^k m_j \cdot f_j}$	$\widetilde{v}_q = \frac{x_q}{\sum\limits_{j=1}^k x_j}$
kumulierter rel. Merkmalsanteil	$v_q = \sum_{i=1}^q \widetilde{v}_i$	$v_q = \sum_{j=1}^q \widetilde{v}_j$	$v_q = \sum_{j=1}^q \widetilde{v}_j$	$v_q = \sum_{j=1}^q \widetilde{v}_j$

6.1.2 Lorenzkurve

Streckenzug durch

$$(0,0) = (u_0, v_0), (u_1, v_1), ..., (u_n, v_n) = (1,1)$$
 (Urliste)

bzw

$$(0,0) = (u_0, v_0), (u_1, v_1), ..., (u_k, v_k) = (1,1)$$
 (unklassierte oder klassierte Häufigkeitsverteilung)

6.2 Absolute Konzentration

Index nach Hirschmann/Herfindahl. Beschreibt die absolute Konzentration.

Es muss gelten: $\sum_{i=1}^{n} x_i > 0$. Wertebereich: $\frac{1}{n} \leq H \leq 1$

$$H = \sum_{i=1}^{n} \widetilde{v}_i^2$$
 (Urliste)

$$H = \frac{V^2 + 1}{n}$$
mit $V = \frac{\widetilde{s}}{\overline{x}} \quad \text{(unklassierte Häufigkeitsverteilung)}$

$$H = \frac{V^2 + 1}{n}$$
mit $V = \frac{\widetilde{s}}{\overline{x}}$ (klassierte Häufigkeitsverteilung)

7 Mehrdimensionale Merkmale

7.1 Kontingenztafeln

(k x m)-Kontingenztafel

$$a_i$$
 - Zeilen $i = 1, \dots, k$

$$b_j$$
 - Spalten $j = 1, \ldots, m$

$$h_{ij} = h(a_i, b_j)$$
 ... absolute Häufigkeit der Kombination (a_i, b_j)

$$f_{ij} = f(a_i, b_j) = \frac{h_{ij}}{m}$$
 ... relative Häufigkeit der Kombination (a_i, b_j)

$$f_{i\bullet} = \sum_{i=1}^{m} f_{ij} = \frac{h_{i\bullet}}{n}$$
, $i = 1, \dots, k$... relative Randhäufigkeiten von X

$$f_{\bullet j} = \sum_{i=1}^k f_{ij} = \frac{h_{\bullet j}}{n}$$
 , $j=1,\dots,m$ $\,$... relative Randhäufigkeiten von Y

7.2 Bedingte Verteilungen

7.2.1 Bedingte Verteilung von X

$$f_X(a_i|b_j) = \frac{f_{ij}}{f_{\bullet j}} = \frac{h_{ij}}{h_{\bullet j}}$$

 $f_X(a_1|b_j), \dots, f_X(a_k|b_j)$ heißt bedingte Verteilung von X geg. Y = b_j

Es gilt:
$$\sum_{i=1}^{k} f_X(a_i|b_j) = 1$$
 für jedes feste j, $j = 1, \dots, m$

7.2.2 Bedingte Verteilung von Y

$$f_Y(b_j|a_i) = \frac{f_{ij}}{f_{i\bullet}} = \frac{h_{ij}}{h_{i\bullet}}$$

 $f_Y(b_1|a_i), \dots, f_Y(b_m|a_i)$ heißt bedingte Verteilung von Y geg. X = a_i

Es gilt:
$$\sum_{j=1}^{m} f_Y(b_j|a_i) = 1$$
 für jedes feste i, $i = 1, ..., k$

7.2.3 Rekonstruktion der gemeinsamen Häufigkeiten

$$f_{ij} = f_Y(b_j|a_i) \cdot f_{i\bullet}$$
 bzw. $f_{ij} = f_X(a_i|b_j) \cdot f_{\bullet j}$

Zusammenhangsanalyse in Kontingenztafeln

Hypothetische absolute Häufigkeit (bei Unabhängigkeit der Merkmale)

$$e_{ij} = \frac{h_{i\bullet} \cdot h_{\bullet j}}{n}$$

7.3.2 Chi-Quadrat Koeffizent

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{(h_{ij} - e_{ij})^2}{e_{ij}} \quad , \chi^2 \in [0, \infty)$$

Kontingenzkoeffizent 7.3.3

$$K = \sqrt{\frac{\chi^2}{n + \chi^2}} \quad , \, K \in \left[0, \sqrt{\frac{M-1}{M}}\right],$$
wobe
i $M = \min\{k, m\}$

7.3.4 Korrigierter Kontingenzkoeffizent

$$K^* = \frac{K}{\sqrt{\frac{M-1}{M}}}$$
 , $K^* \in [0,1]$

 $K^* \leq 0.2 \qquad \rightarrow$ kein wesentlicher Zusammenhang $0.2 < K^* \leq 0.5 \quad \rightarrow$ schwacher Zusammenhang

 $0.5 < K^* < 0.8 \rightarrow \text{deutlicher Zusammenhang}$

 \rightarrow starker Zusammenhang

7.4Zusammenhangsmaße bei metrischen Merkmalen

Korrelationskoeffizient nach Bravais-Pearson (linearer Zusammenhang)

Wertebereich: $-1 \le r_{XY} \le 1$

$$r_{XY} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \cdot \sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\widetilde{s}_X \cdot \widetilde{s}_Y}$$

$$\text{alternativ: } r_{XY} = \frac{\sum_{i=1}^n x_i \cdot y_i - n \cdot \overline{x} \cdot \overline{y}}{\sqrt{\sum_{i=1}^n x_i^2 - n \cdot \overline{x}^2} \cdot \sqrt{\sum_{i=1}^n y_i^2 - n \cdot \overline{y}^2}} \ = \ \frac{\frac{1}{n} \sum_{i=1}^n x_i \cdot y_i - \overline{x} \cdot \overline{y}}{\sqrt{\frac{1}{n} \sum_{i=1}^n x_i^2 - \overline{x}^2} \cdot \sqrt{\frac{1}{n} \sum_{i=1}^n y_i^2 - \overline{y}^2}}$$

Stärke des linearen Zusammenhangs: Betrachte $|r_{XY}|$, Einteilung wie in 7.3.4

7.4.2 Empirische Kovarianz von X und Y

Wertebereich: $-\infty \leq \tilde{s}_{XY} \leq \infty$

$$\widetilde{s}_{XY} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y}) = \frac{1}{n} \cdot \sum_{i=1}^{n} x_i \cdot y_i - \overline{x} \cdot \overline{y}$$

13

7.4.3 Rangkorrelationskoeffizient nach Spearman (monotoner Zusammenhang)

Wertebereich: $-1 \le r_{Sp} \le 1$

Basiert auf den Rängen der beobachteten Werte.

1. Allgemein

$$r_{Sp} = \frac{\sum_{i=1}^{n} (rg(x_i) - \frac{n+1}{2}) \cdot (rg(y_i) - \frac{n+1}{2})}{\sqrt{\left(\sum_{i=1}^{n} (rg(x_i))^2 - \frac{n \cdot (n+1)^2}{4}\right) \cdot \left(\sum_{i=1}^{n} (rg(y_i))^2 - \frac{n \cdot (n+1)^2}{4}\right)}}$$

$$= \frac{\sum_{i=1}^{n} rg(x_i) \cdot rg(y_i) - \frac{n \cdot (n+1)^2}{4}}{\sqrt{\left(\sum_{i=1}^{n} (rg(x_i))^2 - \frac{n \cdot (n+1)^2}{4}\right) \cdot \left(\sum_{i=1}^{n} (rg(y_i))^2 - \frac{n \cdot (n+1)^2}{4}\right)}}$$

2. Ohne Bindungen

$$r_{Sp} = 1 - \frac{6 \cdot \sum_{i=1}^n d_i^2}{n \cdot (n^2 - 1)}$$
, wobe
i $d_i = rg(x_i) - rg(y_i)$

Stärke des monotonen Zusammenhangs: Betrachte $|r_{Sp}|$, Einteilung wie in 7.3.4

8 Einfache lineare Regression

Sei Y eine interessierende Zielgröße mit den Beobachtungen y und x eine deterministische Einflussgröße. Modell:

$$y = a \cdot x + b + \varepsilon$$

8.1 Kleinste Quadrate Methode für die Regressionskoeffizienten

$$\widehat{a} = \frac{\sum_{i=1}^{n} (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \frac{\sum_{i=1}^{n} x_i \cdot y_i - n \cdot \overline{x} \cdot \overline{y}}{\sum_{i=1}^{n} x_i^2 - n \cdot \overline{x}^2}$$

$$\widehat{b} = \overline{y} - \widehat{a} \cdot \overline{x}$$

Die Werte $\hat{y_i} = \hat{a} \cdot x_i + \hat{b}$ sind Vorhersagen oder Prognosen für die y_i . Die Abweichungen $\hat{\varepsilon_i} = y_i - \hat{y_i}$ heißen **Residuen**.

8.2 Bestimmtheitsmaß

Güte der Anpassung der Daten an die berechnete Gerade.

$$R^{2} = \frac{\sum_{i=1}^{n} (\widehat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}}, \qquad R^{2} \in [0, 1]$$

Es gilt: $R^2 = r_{XY}^2$ (quadrierter Korrelationskoeffizient)

9 Analyse zeitlicher Verläufe

9.1 Komponentenmodelle für Zeitreihen

Trendkomponente (g): langfristiges Verhalten

Saisonkomponente (s): wiederkehrende zyklische Schwankungen

Irreguläre Komponente (ε) : Rest

1. Additives Modell:

$$y_t = g_t + s_t + \varepsilon_t, \qquad t = 1, \dots, T$$

2. Multiplikatives Modell:

$$y_t = g_t \cdot s_t \cdot \varepsilon_t, \qquad t = 1, \dots, T$$

Rückführung auf Additives Modell mit $log(y_t) = log(g_t) + log(s_t) + log(\varepsilon_t)$ möglich.

9.2 Lineares Trendmodell

• Reines Trendmodell:

$$y_t = g_t + \varepsilon_t$$

• Trendmodell mit im zeitlichem Verlauf linearer Trendkomponente:

$$y_t = \alpha \cdot t + \beta + \varepsilon_t$$
, $t = 1, \dots, T$ (Bestimmung mit KQ-Methode)

9.3 Einfacher gleitender Durchschnitt der Ordnung p

Betrachtet wird eine Zeitreihe y_1, \ldots, y_T .

Ordnung p des gleitenden Durchschnitts gibt die Anzahl der in die Mittelwertberechnung eingehenden Zeitreihenwerte an. Trend g_t durch ein lokales arithmetisches Mittel der Zeitreihenwerte y_{t-q}, \ldots, y_{t+q} approximieren:

• für ungerade Ordnung p: $q = \frac{p-1}{2}$

$$\widehat{g_t}^p = \frac{1}{2 \cdot q + 1} \sum_{j=-q}^q y_{t+j} = \frac{1}{p} \cdot (y_{t-q} + \dots + y_t + \dots + y_{t+q})$$

$$\text{mit} \quad t = q + 1, \dots, T - q$$

• für gerade Ordnungp: $q = \frac{p}{2}$

$$\widehat{g_t}^p = \frac{1}{p} (\frac{1}{2} \cdot y_{t-q} + \sum_{j=-q+1}^{q-1} y_{t+j} + \frac{1}{2} \cdot y_{t+q})$$

$$mit \quad t = q + 1, \dots, T - q$$

9.4 Indexzahlen

Bezeichnung: Basiszeit 0 mit Preisen $p_0(1), \dots, p_0(n)$ und Gütermengen $q_0(1), \dots, q_0(n)$ Berichtszeit t mit Preisen $p_t(1), \dots, p_t(n)$ und Gütermengen $q_t(1), \dots, q_t(n)$

9.4.1 Umsatzindex

$$W_{0,t} = \frac{\sum_{i=1}^{n} p_t(i) \cdot q_t(i)}{\sum_{i=1}^{n} p_0(i) \cdot q_0(i)} \cdot 100$$

9.4.2 Preisindex nach Laspeyres

$$P_{0,t}^{L} = \frac{\sum_{i=1}^{n} p_t(i) \cdot q_0(i)}{\sum_{i=1}^{n} p_0(i) \cdot q_0(i)} \cdot 100$$

9.4.3 Preisindex nach Paasche

$$P_{0,t}^{P} = \frac{\sum_{i=1}^{n} p_{t}(i) \cdot q_{t}(i)}{\sum_{i=1}^{n} p_{0}(i) \cdot q_{t}(i)} \cdot 100$$

9.4.4 Mengenindex nach Laspeyres

$$Q_{0,t}^L = \frac{\sum_{i=1}^n q_t(i) \cdot p_0(i)}{\sum_{i=1}^n q_0(i) \cdot p_0(i)} \cdot 100$$

9.4.5 Mengenindex nach Paasche

$$Q_{0,t}^{P} = \frac{\sum_{i=1}^{n} q_{t}(i) \cdot p_{t}(i)}{\sum_{i=1}^{n} q_{0}(i) \cdot p_{t}(i)} \cdot 100$$

9.4.6 Index von March

$$I_{M} = \frac{\sum_{i=1}^{n} \frac{p_{t}(i)}{p_{o}(i)} \cdot q_{t}(i)}{\sum_{i=1}^{n} q_{t}(i)}$$

10 Wahrscheinlichkeitsrechnung

10.1 Mengenoperationen

Seien A und B Teilmengen einer Menge Ω

• Schnittmenge: $A \cap B$

• Vereinigungsmenge: $A \cup B$

• Differenzmenge: $A \backslash B$

• Komplementärmenge oder Komplement: A^C

• Anzahl der Elemente von A: | A |

10.2 Wahrscheinlichkeiten

10.2.1 Laplace-Wahrscheinlichkeiten

P(A) ... Wahrscheinlichkeit des Ereignisses A Gilt für $\Omega = \{\omega_1, \ldots, \omega_n\}$, dass $P(\{\omega_i\}) = \frac{1}{n}$, i = 1,...,n dann gilt für A $\subseteq \Omega$, zusammengesetzt aus m Elementarereignissen:

$$P(A) = \frac{m}{n} = \frac{\text{Anzahl der Elementarereignisse in A}}{\text{Gesamtzahl der Elementarereignisse}}$$

10.2.2 Rechenregeln für Wahrscheinlichkeiten

Für eine Wahrscheinlichkeitsabbildung P und Ereignisse A,B,A_1,\ldots,A_k sowie eine Grundmenge Ω von Ergebnissen gilt:

- $0 \le P(A) \le 1$
- $P(\emptyset) = 0$
- Falls $A \subseteq B \Rightarrow P(A) \le P(B)$
- $P(A^C) = 1 P(A)$
- Sind A_1, \ldots, A_k paarweise disjunkt, dann gilt:

$$P(A_1 \cup \ldots \cup A_k) = P(A_1) + \ldots + P(A_k)$$

- $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- Ist Ω endlich mit Elementarereignissen $\{\omega_1\}, \ldots, \{\omega_n\}, \text{dann ist } P(A) = \sum_{w \in A} P(\{\omega\})$

17

10.2.3 Bedingte Wahrscheinlichkeit von A gegeben B

Seien $A, B \subset \Omega$ und P(B) > 0.

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(A|B) \cdot P(B) \quad (Produktsatz)$$

10.2.4 Satz von der totalen Wahrscheinlichkeit

Sei B_1, \ldots, B_k eine disjunkte Zerlegung von Ω . Dann gilt für $A \subset \Omega$:

$$P(A) = \sum_{i=1}^{k} P(A|B_i) \cdot P(B_i)$$

10.2.5 Satz von Bayes

Sei B_1, \ldots, B_k eine disjunkte Zerlegung von Ω , wobei $P(B_i) > 0$ und $P(A|B_i) > 0$ für mindestens ein i.

Dann gilt:

$$P(B_i|A) = \frac{P(A|B_i) \cdot P(B_i)}{\sum_{i=1}^k P(A|B_i) \cdot P(B_i)} = \frac{P(A|B_i) \cdot P(B_i)}{P(A)}, \quad i = 1, \dots, k$$

10.2.6 Unabhängigkeit von zwei Ereignissen

Seien $A, B \subset \Omega$ zwei Ereignisse.

A und B heißen (stochastisch) unabhängig, wenn gilt:

$$P(A \cap B) = P(A) \cdot P(B)$$

Alternativ: P(A|B) = P(A) mit P(B) > 0 oder P(B|A) = P(B) mit P(A) > 0 Falls P(B) = 0, so nennt man A und B stets unabhängig.

11 Zufallsstichproben

11.1 Allgemeines

Umfang Grundgesamtheit ... N

Umfang Stichprobe ... n

Einfache Zufallsstichprobe

Jede mögliche Stichprobe vom Umfang n aus der Grundgesamtheit hat die selbe Wahrscheinlichkeit realisiert zu werden.

11.2 Anzahl möglicher Stichproben

	ohne Zurücklegen	mit Zurücklegen
mit Beachtung der Reihenfolge	$\frac{N!}{(N-n)!}$	N^n
ohne Beachtung der Reihenfolge	$\binom{N}{n}$	$\binom{N+n-1}{n}$

12 Eindimensionale Zufallsvariablen

12.1 Dichte

1. **Diskrete Dichte** (f(x) Wahrscheinlichkeitsfunktion!)

$$f(x_i) = P(X = x_i)$$

Es gilt:
$$\forall i : 0 \le f(x_i) \le 1$$
 und $\sum_{i=1}^{\infty} f(x_i) = 1$.

2. **Stetige Dichte** (f(x) Dichtefunktion!)

$$f(x) = F^{\prime}(x)$$
, falls die Ableitung existiert

Es gilt:
$$\forall x : f(x) \ge 0$$
 und $\int_{-\infty}^{\infty} f(t)dt = 1$. $(f(x) \ge 1 \text{ ist möglich!})$

18

12.2 Verteilungsfunktion

$$F(x) = P(X \le x)$$

1. Diskreter Wertebereich

$$F(x) = \sum_{x_i \le x} f(x_i)$$

2. Stetiger Wertebereich

$$F(x) = \int_{-\infty}^{x} f(t)dt$$

12.3 Rechnen mit Verteilungsfunktion und Dichte

- 1. Diskrete Zufallsvariable X
 - $P(a < X \le b) = \sum_{x_i : a < x_i \le b} P(X = x_i)$
 - Alternativ mit Hilfe der Verteilungsfunktion:

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

- $P(a \le X \le b) = F(b) P(X < a)$
- $P(a \le X < b) = P(X < b) P(X < a)$
- $P(a < X < b) = P(X < b) P(X \le a) = P(X < b) F(a)$
- P(X > a) = 1 F(a)
- 2. Stetige Zufallsvariable X
 - $P(a < X \le b) = \int_a^b f(t) dt$
 - Alternativ mit Hilfe der Verteilungsfunktion:

$$P(a < X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$

- P(X = x) = 0 für jedes x, d.h. Wahrscheinlichkeit einen bestimmten Wert anzunehmen ist gleich Null.
- P(a < X < b) = P(a < X < b) = P(a < X < b) = P(a < X < b)
- $P(X > a) = P(X \ge a) = 1 F(a)$

12.4 Modus

Modus der Verteilung von X ist derjenige x-Wert x_{mod} , für den die Dichte f(x) von X maximal wird.

Gibt es keinen eindeutigen x-Wert der dies erfüllt, so ist der Modus nicht definiert.

12.5 Erwartungswert

12.5.1 Definition

Betrachtet wird eine Zufallsvariable X mit Dichtefunktion f(x).

1. Ist X diskrete Zufallsvariable:

$$E(X) = \sum_{i=1}^{\infty} x_i \cdot f(x_i) = x_1 \cdot f(x_1) + x_2 \cdot f(x_2) + \dots$$

19

2. Ist X stetige Zufallsvariable:

$$E(X) = \int_{-\infty}^{\infty} x \cdot f(x) \, dx$$

12.5.2 Transformationen

1. Lineare Transformation

$$Y = a \cdot X + b \rightarrow E(Y) = E(a \cdot X + b) = a \cdot E(X) + b$$

2. Transformation mit beliebiger Funktion

$$Y = g(X)$$

 \bullet X ist **diskrete** Zufallsvariable

$$E(Y) = E(g(X)) = \sum_{i=1}^{\infty} g(x_i) \cdot f(x_i)$$

ullet X ist **stetige** Zufallsvariable

$$E(Y) = E(g(X)) = \int_{-\infty}^{\infty} g(x) \cdot f(x) dx$$

12.6 Varianz und Standardabweichung

Sei X eine Zufallsvariable mit Dichtefunktion f und Erwartungswert E(X):

- Varianz
 - 1. Ist X diskret:

$$Var(X) = E((X - E(X))^{2}) = \sum_{i=1}^{\infty} (x_{i} - E(X))^{2} \cdot f(x_{i})$$
$$= \sum_{i=1}^{\infty} x_{i}^{2} \cdot f(x_{i}) - (E(X))^{2} \qquad \text{(Verschiebungssatz)}$$

2. Ist X **stetig**:

$$Var(X) = E((X - E(X))^{2}) = \int_{-\infty}^{\infty} (x - E(X))^{2} \cdot f(x) dx$$
$$= \int_{-\infty}^{\infty} x^{2} \cdot f(x) dx - (E(X))^{2} \qquad \text{(Verschiebungssatz)}$$

- Standardabweichung $\sigma_X = \sqrt{Var(X)}$
- Verschiebungssatz allgemein $Var(X) = E(X^2) (E(X))^2$
- Lineare Transformation

$$-Y = a \cdot X + b$$

$$-Var(Y) = Var(a \cdot X + b) = a^{2} \cdot Var(X)$$

$$-\sigma_{Y} = |a| \cdot \sigma_{X}$$

12.7 Quantile

1. Ist X diskrete Zufallsvariable:

p-Quantil x_p ist die Zahl, für die

$$P(X < x_p) \le p$$
 und $P(X > x_p) \le 1 - p$

2. Ist X stetige Zufallsvariable:

 x_p ist die Zahl, für die

$$F(x_p) = p$$

Falls x_p nicht eindeutig bestimmbar, wähle jeweils die kleinste Zahl, die dies erfüllt.

13 Mehrdimensionale Zufallsvariablen

13.1 Gemeinsame Dichte und Randdichte

	diskrete Zufallsvariable	stetige Zufallsvariable
Gemeinsame Dichte	$f_{X,Y}(x_i, y_j) = P(X = x_i, Y = y_j)$	$f_{X,Y}(x,y)$
Randdichten	$f_X(x_i) = P(X = x_i)$ $f_Y(y_j) = P(Y = y_j)$ $f_X(x_i) = \sum_{j=1}^{\infty} f_{X,Y}(x_i, y_j)$	$f_X(x)$ $f_Y(y)$ $f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dy$
	für f_Y analog	

13.2 Bedingte Dichte

 \bullet bedingte Dichte von X gegeben Y:

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

• bedingte Dichte von Y gegeben X:

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

13.3 Unabhängigkeit von Zufallsvariablen

X und Y sind stochastisch unabhängig, wenn gilt:

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y)$$
, für alle $x \in X(\Omega)$ und $y \in Y(\Omega)$

13.4 Kovarianz

$$Cov(X,Y) = E((X - E(X)) \cdot (Y - E(Y)))$$

13.4.1 Diskrete Zufallsvariablen

$$Cov(X,Y) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} (x_i - E(X)) \cdot (y_j - E(Y)) \cdot f_{X,Y}(x_i, y_j)$$

Zur vereinfachten Berechnung:

$$Cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$

mit
$$E(X \cdot Y) = \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} x_i \cdot y_j \cdot f_{X,Y}(x_i, y_j)$$

13.4.2 Stetige Zufallsvariablen

$$Cov(X,Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - E(X)) \cdot (y - E(Y)) \cdot f_{X,Y}(x,y) \, dx \, dy$$

Zur vereinfachten Berechnung:

$$Cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$

mit
$$E(X \cdot Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x \cdot y \cdot f_{X,Y}(x,y) \, dx \, dy$$

13.5 Rechenregeln Erwartungswert, Varianz, Kovarianz

•
$$E(X+Y) = E(X) + E(Y)$$

•
$$E(X - Y) = E(X) - E(Y)$$

$$\bullet \ E(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} E(X_i)$$

•
$$Var(X + Y) = Var(X) + Var(Y) + 2 \cdot Cov(X, Y)$$

•
$$Var(X - Y) = Var(X) + Var(Y) - 2 \cdot Cov(X, Y)$$

•
$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i)$$
, falls $X_1, ..., X_n$ unabhängig

•
$$Cov(aX + b, cY + d) = a \cdot c \cdot Cov(X, Y)$$

13.6 Korrelationskoeffizient

Wertebereich: $-1 \le \rho(x, y) \le 1$

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X) \cdot Var(Y)}}$$

14 Diskrete Verteilungen

14.1 Bernoulli-Verteilung

Dichtefunktion: $f(x_i) = p^{x_i} \cdot (1-p)^{1-x_i}$ für $x_i = 0, 1$

Schreibweise: $X \sim Bin(1, p)$

Erwartungswert: E(X) = p

Varianz: $Var(X) = p \cdot (1 - p)$

14.2 Binomialverteilung

Dichtefunktion: $f(x_i) = \binom{n}{x_i} \cdot p^{x_i} \cdot (1-p)^{n-x_i} \quad \text{für } x_i = 0, \dots, n$

Schreibweise: $X \sim Bin(n, p)$

Erwartungswert: $E(X) = n \cdot p$

Varianz: $Var(X) = n \cdot p \cdot (1 - p)$

Eigenschaften

- Beschreibt Situation des Ziehens mit Zurücklegen.
- \bullet Die Bernoulli-Verteilung ist ein Spezialfall der Binomialverteilung mit n=1.
- Sind X_1, \ldots, X_n stochastisch unabhängig mit $X \sim Bin(1, p), i = 1, \ldots, n$, dann ist $X = \sum_{i=1}^n X_i \sim Bin(n, p)$.
- Symmetrie: Sei $X \sim Bin(n, p)$ und Y = n X, dann gilt: $Y \sim Bin(n, 1 p)$.

14.3 Die hypergeometrische Verteilung

Dichtefunktion:
$$f(x_i) = \frac{\binom{M}{x_i} \cdot \binom{N-M}{n-x_i}}{\binom{N}{n}} \qquad \text{für } x_i = 0, \dots, n$$

Schreibweise:
$$X \sim Hyp(n, M, N)$$

Erwartungswert:
$$E(X) = n \cdot \frac{M}{N}$$

Varianz:
$$Var(X) = n \cdot \frac{M}{N} \cdot \frac{N-M}{N} \cdot \frac{N-n}{N-1}$$

Beschreibt Situation des Ziehens ohne Zurücklegen.

14.4 Die Poisson-Verteilung

Dichtefunktion:
$$f(x_i) = \frac{\lambda^{x_i}}{x_i!} e^{-\lambda}$$
 für $x_i = 0, 1, 2, ...$

Schreibweise:
$$X \sim Poi(\lambda)$$

EW und Varianz:
$$E(X) = Var(X) = \lambda$$

15 Stetige Verteilungen

15.1 Die stetige Gleichverteilung (Rechteckverteilung) auf [a,b]

Dichtefunktion:
$$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \\ 0 & \text{sonst} \end{cases}$$

Schreibweise:
$$X \sim G[a, b]$$

Erwartungswert:
$$E(X) = \frac{a+b}{2}$$

Varianz:
$$Var(X) = \frac{(b-a)^2}{12}$$

15.2 Die Normalverteilung

Dichtefunktion:
$$f(x) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \ exp \ \left(-\frac{(x-\mu)^2}{2\sigma^2} \right)$$

Schreibweise:
$$X \sim N(\mu, \sigma^2)$$

Erwartungswert:
$$E(X) = \mu$$

Varianz:
$$Var(X) = \sigma^2$$

15.2.1 Eigenschaften

- Standardnormalverteilung:
 - spezielle Normalverteilung N(0,1) mit Parametern $\mu=0$ und $\sigma^2=1$
 - Verteilungsfunktion: Φ
 - Speziell für die Verteilungsfunktion der Standardnormalverteilung gilt:

$$\Phi(-z) = P(Z \le -z) = P(Z \ge z) = 1 - \Phi(z)$$

• für p-Quantil
$$z_p$$
 gilt: $z_{1-p} = -z_p$

• Standardisierung einer $N(\mu, \sigma^2)$ -verteilten Zufallsvariable X, so dass Transformation Z N(0,1)-verteilt ist:

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1), \text{ d.h. } P(Z \le z) = \Phi(z).$$

- $X \sim N(\mu, \sigma^2), Y = aX + b \Rightarrow Y \sim N(a\mu + b, a^2 \cdot \sigma^2)$
- X_1, \ldots, X_n stochastisch unabhängig, $X_i \sim N(\mu, \sigma^2) \Rightarrow \overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$

15.2.2 Bestimmung von Wahrscheinlichkeiten $P(a \le X \le b)$

 $\bullet\,$ Für eine N(0,1)-verteilte Zufallsvariable Z ist

$$P(Z \le z) = \Phi(z)$$
 und

$$P(a \le Z \le b) = \Phi(b) - \Phi(a).$$

• Für eine $N(\mu, \sigma^2)$ -verteilte Zufallsvariable X ist

$$P(X \le x) = P\left(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}\right) = \Phi\left(\frac{x - \mu}{\sigma}\right)$$
 und

$$P(a \le X \le b) = \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right).$$

15.2.3 Bestimmung von Quantilen

- p-Quantil z_p der N(0,1)-Verteilung: z_p aus Tabelle
- p-Quantil x_p der $N(\mu, \sigma^2)$ -Verteilung: $x_p = \sigma \cdot z_p + \mu$, z_p aus Tabelle

15.3 t-Verteilung mit n Freiheitsgraden (Student t-Verteilung)

Schreibweise: $X \sim t_n$

- symmetrisch um 0
- für das p-Quantil gilt: $t_{n:p} = -t_{n:1-p}$
- $X \sim t_n$ und $n \ge 2 \Rightarrow E(X) = 0$
- $X \sim t_n$ und $n \ge 3 \Rightarrow Var(X) = \frac{n}{n-2}$
- Für $n \to \infty$ gilt $t_n \to N(0,1)$ (ca. ab $n \ge 30$)
- X_1, \ldots, X_n unabhängig und identisch $N(\mu, \sigma^2)$ -verteilt $\Rightarrow \sqrt{n} \cdot \frac{\overline{X} \mu}{S} \sim t_{n-1}$

24

16 Schätzer

16.1 Schätzer für Erwartungswert und Varianz

 X_1, \ldots, X_n Zufallsvariablen mit $E(X_i) = \mu, \ Var(X_i) = \sigma^2$

• Schätzer für μ :

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
 mit $E(\overline{X}) = \mu$

zusätzlich ist $Var(\overline{X}) = \frac{\sigma^2}{n}$, falls die X_i unabhängig

• Schätzer für σ^2 , falls die X_i unabhängig mit identischer Verteilung:

$$\widetilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$
 mit $E(\widetilde{S}^2) = \frac{n-1}{n} \sigma^2$

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
 mit $E(S^{2}) = \sigma^{2}$

Hinweis: Verschiebungssatz siehe 4.4 und 4.6

16.2 Konfidenzintervalle für μ im Normalverteilungsmodell

Betrachte eine Zufallsvariable X mit $X \sim N(\mu, \sigma^2)$; seien X_1, \ldots, X_n unabhängig und identisch verteilt wie X.

Gegeben sei weiter eine Irrtumswahrscheinlichkeit $\alpha, 0 < \alpha < 1$.

• Falls σ^2 bekannt, so ist

$$\left[\overline{X} - \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}, \overline{X} + \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}\right]$$

ein $(1 - \alpha)$ -Konfidenzintervall für μ .

Dabei bezeichnet $z_{1-\alpha/2}$ das $(1-\alpha/2)$ -Quantil der N(0,1).

• Falls σ^2 unbekannt ist, ist

$$\left[\overline{X} - \frac{S}{\sqrt{n}} \cdot t_{n-1;1-\alpha/2}, \overline{X} + \frac{S}{\sqrt{n}} \cdot t_{n-1;1-\alpha/2}\right]$$

ein $(1 - \alpha)$ -Konfidenzintervall für μ .

Dabei ist $S = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$, und $t_{n-1;1-\alpha/2}$ bezeichnet das $(1 - \alpha/2)$ -Quantil der t-Verteilung mit n-1 Freiheitsgraden.

16.3 Approximative Konfidenzintervalle für μ

Betrachte eine Zufallsvariable X mit $E(X) = \mu$, $Var(X) = \sigma^2$; seien X_1, \ldots, X_n unabhängig und identisch verteilt wie X, sei $n \geq 30$.

• Falls σ^2 bekannt, so ist

$$\left[\overline{X} - \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}, \ \overline{X} + \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}\right]$$

ein approximatives $(1 - \alpha)$ -Konfidenzintervall für μ .

• Falls σ^2 unbekannt, so ist

$$\left[\overline{X} - \frac{S}{\sqrt{n}} \cdot t_{n-1;1-\alpha/2}, \ \overline{X} + \frac{S}{\sqrt{n}} \cdot t_{n-1;1-\alpha/2} \right]$$

ein approximatives $(1-\alpha)$ -Konfidenzintervall für μ .

Dabei bezeichnet $t_{n-1;1-\alpha/2}$ das $(1-\alpha/2)$ -Quantil der t-Verteilung mit n-1 Freiheitsgraden.

17 Statistische Hypothesentests

17.1 Gauß-Test

Seien X_1, \ldots, X_n unabhängige und identisch normalverteilte Zufallsvariablen, $X_i \sim N(\mu, \sigma^2)$, und sei σ^2 bekannt.

Testproblem	Entscheidung
H_0 vs. H_1	Lehne H_0 ab, falls
$\mu = \mu_0 \text{ vs. } \mu \neq \mu_0$	$\left \sqrt{n} \ \frac{\overline{X} - \mu_0}{\sigma} \right > z_{1 - \alpha/2}$
$\mu \ge \mu_0 \text{ vs. } \mu < \mu_0$	$\sqrt{n} \; \frac{\overline{X} - \mu_0}{\sigma} < -z_{1-\alpha}$
$\mu \le \mu_0 \text{ vs. } \mu > \mu_0$	$\sqrt{n} \ \frac{\overline{X} - \mu_0}{\sigma} > z_{1 - \alpha}$

Dabei bezeichnet z_{α} das α -Quantil der Standardnormalverteilung.

17.2 t-Test

Seien X_1, \ldots, X_n unabhängige und identisch normalverteilte Zufallsvariablen, $X_i \sim N(\mu, \sigma^2)$, und sei σ^2 unbekannt.

Testproblem	Entscheidung
H_0 vs. H_1	Lehne H_0 ab, falls
$\mu = \mu_0 \text{ vs. } \mu \neq \mu_0$	$\left \sqrt{n} \frac{\overline{X} - \mu_0}{S} \right > t_{n-1;1-\alpha/2}$
$\mu \ge \mu_0 \text{ vs. } \mu < \mu_0$	$\sqrt{n} \; \frac{\overline{X} - \mu_0}{S} < -t_{n-1;1-\alpha}$
$\mu \le \mu_0 \text{ vs. } \mu > \mu_0$	$\sqrt{n} \ \frac{\overline{X} - \mu_0}{S} > t_{n-1;1-\alpha}$

Dabei bezeichnet $t_{n-1,\alpha}$ das α -Quantil der t-Verteilung mit n-1 Freiheitsgraden.

17.3 Approximativer Gauß-Test

Seien X_1, \ldots, X_n unabhängige und identisch verteilte Zufallsvariablen, die aber nicht notwendig normalverteilt sind, mit $E(X_i) = \mu$, $Var(X_i) = \sigma^2$. Sei σ^2 unbekannt und $n \geq 30$.

Testproblem	Entscheidung
H_0 vs. H_1	Lehne H_0 ab, falls
$\mu = \mu_0 \text{ vs. } \mu \neq \mu_0$	$\left \sqrt{n} \ \frac{\overline{X} - \mu_0}{S} \right > z_{1 - \alpha/2}$
$\mu \ge \mu_0 \text{ vs. } \mu < \mu_0$	$\sqrt{n} \; \frac{\overline{X} - \mu_0}{S} < -z_{1-\alpha}$
$\mu \le \mu_0 \text{ vs. } \mu > \mu_0$	$\sqrt{n} \ \frac{\overline{X} - \mu_0}{S} > z_{1 - \alpha}$

17.4 Test auf einen Anteil

Ein Anteil p
 der Grundgesamtheit besitze eine interessierende Eigenschaft. Seien
 X_1,\dots,X_n unabhängige und identisch verteilte Zufallsvariablen mit
 $X_i=1,$ falls das i-te Element die Eigenschaft besitzt,
 $X_i=0$ sonst.

Testproblem	Entscheidung
H_0 vs. H_1	Lehne H_0 ab, falls
$p = p_0 \text{ vs. } p \neq p_0$	$\left \sqrt{n} \frac{\overline{X} - p_0}{\sqrt{p_0 \cdot (1 - p_0)}} \right > z_{1 - \alpha/2}$
$p \ge p_0 \text{ vs. } p < p_0$	$\sqrt{n} \frac{\overline{X} - p_0}{\sqrt{p_0 \cdot (1 - p_0)}} < -z_{1 - \alpha}$
$p \le p_0 \text{ vs. } p > p_0$	$\sqrt{n} \frac{\overline{X} - p_0}{\sqrt{p_0 \cdot (1 - p_0)}} > z_{1 - \alpha}$

17.5 χ^2 Unabhängigkeitstest

Betrachtet werden zwei Zufallsvariablen X, Y. Die Beobachtungspaare (x_i, y_i) seien in einer $(k \times m)$ -Kontingenztafel zusammengefasst.

• Gemeinsame absolute Häufigkeiten in der Tafel: h_{ij}

• Randhäufigkeiten: $h_{i.}$ bzw. $h_{.j}$

 \bullet Unter Unabhängigkeit von X und Yerwartete Häufigkeiten:

$$e_{ij} = \frac{h_{i.} \cdot h_{.j}}{n}$$
, $i = 1, ..., k$, $j = 1, ..., m$

Testproblem: $\mathbf{H_0}: X, Y$ unabhängig vs. $\mathbf{H_1}: X, Y$ abhängig

Entscheidungsregel: H_0 wird zum Niveau α verworfen, falls

$$\chi^2 = \sum_{i=1}^k \sum_{j=1}^m \frac{(h_{ij} - e_{ij})^2}{e_{ij}} > \chi^2_{(k-1)\cdot(m-1);1-\alpha}$$

Dabei bezeichnet $\chi^2_{q;\alpha}$ das $\alpha\text{-Quantil der }\chi^2\text{-Verteilung mit q Freiheitsgraden.}$