Practical Machine Learning Project

Sid M

Prerequisites

- First, download the training data and test data and have placed them in the same directory as the R files.
- Next, set the working directory to the place you have downloaded it to.
- Ensure you have the following R packages installed: caret, randomForest

Preprocessing

In this step, we:

- 1. Read the raw csv from files we downloaded in prerequisites
- 2. Remove features that have zero variance
- 3. Remove the descriptive columns [1 7]
- 4. Remove all columns that are NA

```
library(caret)
```

```
## Warning: package 'caret' was built under R version 3.1.3

## Loading required package: lattice
## Loading required package: ggplot2

loadAndCleanCSV <- function(file) {
  raw <- read.csv(file)
  zeroVCols <- nearZeroVar(raw)
  raw <- raw[, -zeroVCols]
  raw <- raw[-(1:7)]
  naCols <- apply(raw, 2, function(x) { sum(is.na(x)) })
  return(raw[, which(naCols == 0)])
}

trainingData <- loadAndCleanCSV("pml-training.csv")
testData <- loadAndCleanCSV("pml-testing.csv")</pre>
```

We then partition the training Data into a training and cross validation set. We set the seed to a constant number for the purposes of reproducibility.

```
set.seed(1337)
trainingIndices <- createDataPartition(trainingData$classe, p = 0.8, list = FALSE)
trainingSet <- trainingData[trainingIndices, ]
crossValidationSet <- trainingData[-trainingIndices, ]</pre>
```

Training the Model

We use the randomForest package for classification and regression.

```
library(randomForest)

## Warning: package 'randomForest' was built under R version 3.1.3

## randomForest 4.6-10

## Type rfNews() to see new features/changes/bug fixes.

model <- randomForest(classe ~ ., data = trainingSet)</pre>
```

Now that our model has been created, we use it to see how well we perform with cross validation.

Cross Validation accuracy (Out of Sample)

```
00Sample <- predict(model, crossValidationSet)
confusionMatrix(00Sample, crossValidationSet$classe)

## Confusion Matrix and Statistics
##
## Reference
## Prediction A B C D E
## A 1116 2 0 0 0</pre>
```

В 757 6 0 0 С 678 ## D 0 0 0 636 1 ##

Overall Statistics

##

Accuracy: 0.9954 ## 95% CI: (0.9928

95% CI : (0.9928, 0.9973)

No Information Rate : 0.2845 P-Value [Acc > NIR] : < 2.2e-16

##

##

Kappa: 0.9942

Mcnemar's Test P-Value : NA

Statistics by Class:

##

##						
##		Class: A	Class: B	Class: C	${\tt Class:}\ {\tt D}$	Class: E
##	Sensitivity	1.0000	0.9974	0.9912	0.9891	0.9958
##	Specificity	0.9993	0.9981	0.9978	0.9997	0.9994
##	Pos Pred Value	0.9982	0.9921	0.9898	0.9984	0.9972
##	Neg Pred Value	1.0000	0.9994	0.9981	0.9979	0.9991
##	Prevalence	0.2845	0.1935	0.1744	0.1639	0.1838
##	Detection Rate	0.2845	0.1930	0.1728	0.1621	0.1830
##	Detection Prevalence	0.2850	0.1945	0.1746	0.1624	0.1835
##	Balanced Accuracy	0.9996	0.9977	0.9945	0.9944	0.9976

As can be seen, our accuracy with the Cross Validation is: 99.54%. Thus, our out of sample error is 0.46%. So far, our model proves that it is good, so we now run it on the test data.

Test Set Prediction

```
testPrediction <- predict(model, testData)
testPrediction</pre>
```

```
## 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ## B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E
```

Finally, to conclude this assignment, we turn the prediction to a format that the submission page can accept given the pml_write_files function:

```
pml_write_files = function(x){
    n = length(x)
    for(i in 1:n){
        filename = paste0("problem_id_",i,".txt")
        write.table(x[i],file=filename,quote=FALSE,row.names=FALSE)
    }
}
pml_write_files(as.vector(testPrediction))
```