第八章 立体几何

【大纲要求】空间几何体:长方体、柱体、球体。

【备考要点】此部分主要考察长方体、柱体、球体等立体几何图形的表面积、体积以及和体积相关问题的求解。**开心提示**:重点考察体积和表面积的计算和运用。

【知识体系】

【考点剖析】

一、长方体

设3条相邻的棱边长是a,b,c.

- 1. 全面积: F=2 (ab+bc+ac).
- 2. 体积: V=abc.
- 3. 体对角线 $d=\sqrt{a^2+b^2+c^2}$.
- 4. 所有棱长和: L=4 (a+b+c).

当 a=b=c 时的长方体称为正方体,且有 $S_{\mathcal{L}}=6a^2$, $V=a^3$, $d=\sqrt{3}a$.

二、柱体

1. 柱体的分类

圆柱: 底面为圆的柱体称为圆柱.

棱柱: 底面为多边形的柱体称为棱柱, 底面为 n 边形的就成为 n 棱柱.

2. 柱体的一般公式

无论是圆柱还是棱柱,侧面展开图均为矩形,其中一边长为底面的周长,另一边为柱体的高.

侧面积: S=底面周长×高(展开矩形的面积).

体积: V=底面积×高.

3. 对于圆柱的公式

设高为 h, 底面半径为 r.

体积: V=πr²h.

侧面积: $S=2\pi rh$ (其侧面展开图为一个长为 $2\pi r$, 宽为 h 的长方形).

全面积: $F=S_{@} + 2S_{\bar{K}} = 2\pi rh + 2\pi r^{2}$

三、球

设球的半径为 r.

- 1. 球的表面积 $S=4\pi r^2$
- 2. 球的体积 $V = \frac{4}{3}\pi r^3$

四、长方体、正方体、圆柱与球的关系

设圆柱底面半径为r,球半径为R圆柱的高为h.

	内切球	外接球
长方体	无,只有正方体才有	体对角线 l = 2R
正方体	技长 a = 2R	体对角线 $l = 2R(2R = \sqrt{3}a)$
圆柱	只有轴截面是正方形的圆柱才有, 此时有 $2r = h = 2R$	$\sqrt{h^2 + (2r)^2} = 2R$