Aprendizaje Supervisado

Facundo Carrillo fcarrillo @udesa.edu.ar

Taller I 2022-09-10

Talleres

¿Cuándo?

- Sábado 10-09-2022:
 - Métricas
 - Validación cruzada
 - Naive Bayes
 - Gaussian Naive Bayes
- Sábado 24-09-2022: Árboles de decisión
- Sábado 01-10-2022: Vecinos más cercanos + Scikit-learn como framework + Presentación TP

Talleres

Organización:

- Clase expositiva cortas (esperemos <1hs)
- Taller con ejercicios

Comunicación (esperemos mucha):

- En Clase!
- Mail

Hoy: Taller I

Temas:

- Métricas
- Validación cruzada
- Naive Bayes
- Gaussian Naive Baye

¿Dónde estamos parados?

- ¿Qué es un clasificador?
- ¿Para qué sirve?
- ¿Qué diferencia hay con un regresor?

Bibliografía:

Mitchell Machine Learning: website libro, pdf

Scikit-learn: https://scikit-learn.org/

Clasificadores

- Modelos para resolver el problema de clasificación...
- Aprendizaje Supervisado
- Identificar cual o cuales categorías (finitas) son las correctas para una instancia a partir de muestras ya conocidas
- Las categorías:
 - No necesariamente tienen orden (total o parcial)
 - Ej: spam vs no-spam
 - No necesariamente son 2 (es decir puede ser multiclase).
 - Ej: predecir a qué idioma pertenece un texto
 - No necesariamente una sola categoría/etiqueta (multi label).
 - Ej: la descripción de un nuevo item en un marketplace podría indicarnos que el producto es de categoría electrodoméstico pero también de categoría cocina

Clasificadoresssssss

- Asunciones que hacemos
 - Árboles cortos vs árboles largos
 - K-vecinos: el más <u>cerca</u>, el más símil
 - Naive Bayes: independientes

Más en el Capítulo 2 Mitchell Concept Learning

Definiciones, objetos y flujo de trabajo

Instancias:

Elementos con los que queremos trabajar: un texto, un vector de números, una imagen, etc.

Instancias de entrenamiento:

Las instancias acompañadas por un valor de la categoría a predecir. Ej:

- Texto de un email acompañado por la etiqueta spam
- Una imagen acompañado por la etiqueta hay_un_perro

<u>Flujo:</u>

- 1. Entreno un modelo usando datos de entrenamiento
- 2. Predigo nuevos datos

Artesanal:

¿Qué modelo? ¿Cómo entreno? ¿Estoy seguro de que generaliza mi modelo? ¿Cuáles son las limitaciones que tiene? ¿Cuán bien anda?

Clasificadores: ¿Cuán bien funciona mi modelo?

```
¿Cómo sé si mi modelo funciona bien?
¿Qué significa que funcione bien mi modelo?
¿Generalizará bien para datos no vistos?
```

...

Muchas preguntas con muchas estrategias diferentes para contestarlas!

Matriz de confusión

Tabla de doble entrada (definamos SPAM como la clase positiva)

		Clase predicha		
		NO-SPAM	SPAM	
Clase	NO-SPAM	TN	FP	
real	SPAM	FN	TP	

Ejemplos: Supongamos que tenemos 50 spam y 50 no-spam y 3 clasificadores distintos

	N	S			
N	50	0			
S	10	40			
Clasificador 2					

	N	S				
N	45	5				
S	5	45				
	Clasificador 3					

Matriz de confusión

	N	S				
١	45	5				
3	5	45				
	01:610					

Clasificador 2

Clasificador 3

¿Cuál anda mejor?

Clasificador de **spam**:

- ¿Son igual de importantes los errores? FN vs FP
- Si un spam me llega al inbox ¿cuánto pierdo?
- Si un mail genuino me llega a spam ¿cuánto pierdo?

Métricas

Solución de compromiso de información parcial

Pensemos en variables categóricas binarias

```
1. Accuracy: (TP+TN) / TOTAL
En el ejemplo: (# Spam bien tageado + # no-spam bien tageado) / # mails
2. Precision: (TP) / (TP+FP)
En el ejemplo: (#spam predicho spam) / + (#spam predicho spam + #no-spam predicho spam)
3. recall (TP) / (TP+FN)
En el ejemplo: (#spam predicho spam) / + (#spam predicho spam + #spam predicho no-spam)
4. F1-score: 2 * (precision * recall) / (precision + recall)
              [(1 + beta<sup>2</sup>) * (precision * recall)] / [((b<sup>2</sup> * precision) + recall)]
5. Fb-score:
```

Métricas

Más métricas en Confusion matrix

accuracy (ACC)
$$ACC = \frac{TP + TN}{P + N} = \frac{TP + TN}{TP + TN + FP + FN}$$
 balanced accuracy (BA)
$$BA = \frac{TPR + TNR}{2}$$
 F1 score is the harmonic mean of precision and sensitivity
$$F_1 = 2 \cdot \frac{PPV \cdot TPR}{PPV + TPR} = \frac{2TP}{2TP + FP + FN}$$
 Matthews correlation coefficient (MCC)
$$MCC = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$
 Fowkes-Mallows index (FM)
$$FM = \sqrt{\frac{TP}{TP + FP}} \cdot \frac{TP}{TP + FN} = \sqrt{PPV \cdot TPR}$$
 informedness or bookmaker informedness (BM)
$$BM = TPR + TNR - 1$$
 markedness (MK) or deltaP
$$MK = PPV + NPV - 1$$

Métricas: Clase positiva SPAM

		N	S			N	S			N	S	
Clase	N	40	10		N	50	0		N	45	5	
real	S	0	50		s	10	40		S	5	45	
accuracy (TP+TN) / TOTAL		0.9 (40	+50 / 10	0)	().9 (50+ ₄	40 / 100))		0.9 (45	+45 / 100	0)
precision (TP) / (TP+FP)	0.	.8333 (5	50 / (50+	10))		1 (40 /	(40+0)			0.9 (45	5/ (45+5))
recall (TP) / (TP+FN)		1 (50	/(50+0))			0.8 (40/	(40+10))			0.9 (4	5/(45+5))
F1 2 * (pre * rec) / (prec + rec)		0.	9090			0.8	888				0.9	

Overfitting

- Generalizción
- ¿Entrenamos y testeamos en el mismo conjunto de datos?
- ¿Cómo mitigamos esto?
 - Cross validation, stratified cross validation, nested validation
 - Training Validation Test

Overfitting: Estrategias

Distintos parámetros de los modelos:

- Tamaño del árbol
- Cuantos árbol
- Cuantas capas ocultas
- etc

Distintos parámetros en la etapa de feature extraction (si existe):

- Nuevos pre-procesamientos
- Nuevos filtros
- etc

Overfitting: Estrategias

3 CROSS VALIDATION

Habiendo terminado la etapa de cross-validation: debemos tener **el mejor modelo encontrado** (es decir los mejores parámetros (o meta-parámetros), mejor pre-procesamiento, feature extraction, etc.

Entrenamos el modelo elegido anteriormente con todo el dataset de *Training* y luego predecimos en el set de *Test* y reportamos las diferentes métricas

No vale cambiar el modelo una vez que ya decidimos que era el mejor (para que cuando lo evaluamos en test estemos reproduciendo lo mejor posible el escenario de predecir sobre datos no vistos)

¿Cómo determinamos: #folds en el cross-validation, % de dataset para test, etc...? Con la experiencia, hay algunas buenas prácticas dependiendo de cada subdominio

Naive Bayes

Naive Bayes

1) ¿Qué queremos? (donde V son el conjunto de clases posibles)

$$\underset{v_j \in V}{\operatorname{argmax}} P(v_j | a_1, a_2 \dots a_n)$$

2) Lo re-escribimos:

$$\underset{v_j \in V}{\operatorname{argmax}} \frac{P(a_1, a_2 \dots a_n | v_j) P(v_j)}{P(a_1, a_2 \dots a_n)}$$

$$\underset{v_j \in V}{\operatorname{argmax}} P(a_1, a_2 \dots a_n | v_j) P(v_j)$$

3) Asumimos independencia (por eso Naive!)

$$\underset{v_j \in V}{\operatorname{argmax}} \ P(v_j) \prod_i P(a_i|v_j)$$

Ref: Capítulo 6 - BAYESIAN LEARNING. Mitchell Machine Learning - Bayes' theorem

Naive Bayes

¿Cómo calculamos la probabilidad de que el atributo i-ésimo tenga un cierto valor dado que suponemos que proviene de la categoría vj?

 $P(a_i|v_j)$

Caso discreto:

Si el atributo/feature i-ésimo es categórico/finito podemos medir la frecuencia.

Es decir, me fijo las instancias que tengan la clase vj, me fijo cuantas en el i-ésimo atributo tienen el valor ai y listo, con esto tengo la frecuencia.

Caso continuo:

Si el atributo/feature i-ésimo es numérico, podemos suponer alguna distribución (por ejemplo una normal) y fitearla para estimar la probabilidad para luego estimar la probabilidad de *ai*

Esto se conoce como Gaussian Naive Bayes

https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html

Dataset de entrenamiento:

Cielo	Temperatura	Humedad	Viento	Tenis
Sol	Calor	Alta	Débil	No
Sol	Calor	Alta	Fuerte	No
Lluvia	Frío	Normal	Fuerte	No
Sol	Templado	Alta	Débil	No
Lluvia	Templado	Alta	Fuerte	No
Nublado	Calor	Alta	Débil	Sí
Lluvia	Templado	Alta	Débil	Sí
Lluvia	Frío	Normal	Débil	Sí
Nublado	Frío	Normal	Fuerte	Sí
Sol	Frío	Normal	Débil	Sí
Lluvia	Templado	Normal	Débil	Sí
Sol	Templado	Normal	Fuerte	Sí
Nublado	Templado	Alta	Fuerte	Sí
Nublado	Calor	Normal	Débil	Sí

Quiero clasificar: < Cielo = Sol, Temperatura = Calor, Humedad=Alta, Viento= Debil>

Cielo	Temperatura	Humedad	Viento	Tenis
Sol	Calor	Alta	Débil	No
Sol	Calor	Alta	Fuerte	No
Lluvia	Frío	Normal	Fuerte	No
Sol	Templado	Alta	Débil	No
Lluvia	Templado	Alta	Fuerte	No
Nublado	Calor	Alta	Débil	Sí
Lluvia	Templado	Alta	Débil	Sí
Lluvia	Frío	Normal	Débil	Sí
Nublado	Frío	Normal	Fuerte	Sí
Sol	Frío	Normal	Débil	Sí
Lluvia	Templado	Normal	Débil	Sí
Sol	Templado	Normal	Fuerte	Sí
Nublado	Templado	Alta	Fuerte	Sí
Nublado	Calor	Normal	Débil	Sí

Quiero clasificar: < Cielo = Sol, Temperatura = Calor, Humedad=Alta, Viento= Debil>

Cielo	Temperatura	Humedad	Viento	Tenis
Sol	Calor	Alta	Débil	No
Sol	Calor	Alta	Fuerte	No
Lluvia	Frío	Normal	Fuerte	No
Sol	Templado	Alta	Débil	No
Lluvia	Templado	Alta	Fuerte	No
Nublado	Calor	Alta	Débil	Sí
Lluvia	Templado	Alta	Débil	Sí
Lluvia	Frío	Normal	Débil	Sí
Nublado	Frío	Normal	Fuerte	Sí
Sol	Frío	Normal	Débil	Sí
Lluvia	Templado	Normal	Débil	Sí
Sol	Templado	Normal	Fuerte	Sí
Nublado	Templado	Alta	Fuerte	Sí
Nublado	Calor	Normal	Débil	Sí

Voy armando calculando cada probabilidad:

Cielo	Tenis
Sol	No
Sol	No
Lluvia	No
Sol	No
Lluvia	No

Cielo	Tenis
Nublado	Sí
Lluvia	Sí
Lluvia	Sí
Nublado	Sí
Sol	Sí
Lluvia	Sí
Sol	Sí
Nublado	Sí
Nublado	Sí

$$\frac{3}{5} = 0.6$$

$$2/8 = 0.25$$

Quiero clasificar: < Cielo = Sol, Temperatura = Calor, Humedad=Alta, Viento= Debil>

Cielo	Temperatura	Humedad	Viento	Tenis
Sol	Calor	Alta	Débil	No
Sol	Calor	Alta	Fuerte	No
Lluvia	Frío	Normal	Fuerte	No
Sol	Templado	Alta	Débil	No
Lluvia	Templado	Alta	Fuerte	No
Nublado	Calor	Alta	Débil	Sí
Lluvia	Templado	Alta	Débil	Sí
Lluvia	Frío	Normal	Débil	Sí
Nublado	Frío	Normal	Fuerte	Sí
Sol	Frío	Normal	Débil	Sí
Lluvia	Templado	Normal	Débil	Sí
Sol	Templado	Normal	Fuerte	Sí
Nublado	Templado	Alta	Fuerte	Sí
Nublado	Calor	Normal	Débil	Sí

Voy armando calculando cada probabilidad:

P(Temperatura = Calor | No) P(Temperatura = Calor | Si)

Temperatura	Tenis
Calor	No
Calor	No
Frío	No
Templado	No
Templado	No

Temperatura	Tenis
Calor	Sí
Templado	Sí
Frío	Sí
Frío	Sí
Frío	Sí
Templado	Sí
Templado	Sí
Templado	Sí
Calor	Sí

$$2/5 = 0.4$$

$$2/8 = 0.25$$

Quiero clasificar: < Cielo = Sol, Temperatura = Calor, Humedad=Alta, Viento= Debil>

Cielo	Temperatura	Humedad	Viento	Tenis
Sol	Calor	Alta	Débil	No
Sol	Calor	Alta	Fuerte	No
Lluvia	Frío	Normal	Fuerte	No
Sol	Templado	Alta	Débil	No
Lluvia	Templado	Alta	Fuerte	No
Nublado	Calor	Alta	Débil	Sí
Lluvia	Templado	Alta	Débil	Sí
Lluvia	Frío	Normal	Débil	Sí
Nublado	Frío	Normal	Fuerte	Sí
Sol	Frío	Normal	Débil	Sí
Lluvia	Templado	Normal	Débil	Sí
Sol	Templado	Normal	Fuerte	Sí
Nublado	Templado	Alta	Fuerte	Sí
Nublado	Calor	Normal	Débil	Sí

Voy armando calculando cada probabilidad:

P(Humedad = Alta | No) P(Humedad = Ata | Si)

Humedad	Tenis
Alta	No
Alta	No
Normal	No
Alta	No
Alta	No

Humedad	Tenis
Alta	Sí
Alta	Sí
Normal	Sí
Alta	Sí
Normal	Sí

$$4/5 = 0.8$$

$$3/8 = 0.375$$

Quiero clasificar: < Cielo = Sol, Temperatura = Calor, Humedad=Alta, Viento= Débil>

Cielo	Temperatura	Humedad	Viento	Tenis
Sol	Calor	Alta	Débil	No
Sol	Calor	Alta	Fuerte	No
Lluvia	Frío	Normal	Fuerte	No
Sol	Templado	Alta	Débil	No
Lluvia	Templado	Alta	Fuerte	No
Nublado	Calor	Alta	Débil	Sí
Lluvia	Templado	Alta	Débil	Sí
Lluvia	Frío	Normal	Débil	Sí
Nublado	Frío	Normal	Fuerte	Sí
Sol	Frío	Normal	Débil	Sí
Lluvia	Templado	Normal	Débil	Sí
Sol	Templado	Normal	Fuerte	Sí
Nublado	Templado	Alta	Fuerte	Sí
Nublado	Calor	Normal	Débil	Sí

Voy armando calculando cada probabilidad:

P(Viento = Débil | No) P(Viento = Débil | Si)

Humedad	Tenis
Débil	No
Fuerte	No
Fuerte	No
Débil	No
Fuerte	No

Humedad	Tenis
Débil	Sí
Débil	Sí
Débil	Sí
Fuerte	Sí
Débil	Sí
Débil	Sí
Fuerte	Sí
Fuerte	Sí
Débil	Sí

$$2/5 = 0.4$$

Quiero clasificar: < Cielo = Sol, Temperatura = Calor, Humedad=Alta, Viento= Debil>

Caso v=No

```
P(Cielo = Sol | No) * P(Temperatura = Calor | No) * P(Humedad = Ata | No) * P(Viento = Débil | No) = 0.6 * 0.4*0.8*0.4 = 0.0768 = P( features | No)
```

Caso v=Sí

$$P(Cielo = Sol | Si) * P(Temperatura = Calor | Si) * P(Humedad = Ata | Si) * P(Viento = Débil | Si) = 0.25*0.25*0.375*0.75 = 0.017578125 = P(features | Si)$$

$$\underset{v_j \in V}{\operatorname{argmax}} \ P(v_j) \prod_i P(a_i | v_j)$$

Prior:

$$P(No) = 6/14 = 0.4285$$

 $P(Si) = 9/14 = 0.6428$

Quiero clasificar: < Cielo = Sol, Temperatura = Calor, Humedad=Alta, Viento= Debil>

Caso v=No

Caso v=Sí

P(Si) * P(features | Si) = 0.0112

¿Entonces cuál es el máximo v?

v=No

Taller

A programar!

Link Colab:

- Metricas
- 2. Cross validation
- 3. Naive Bayes

https://drive.google.com/file/d/17SMIK hFc_Jkgh5Chlf81UK1AG7iVxcC1/vie w?usp=sharing

Reglas:

- 1. Individual
- 2. Pueden charlar, discutir y aprender entre ustedes
- 3. No tienen que entregar nada
- 4. No hagan copy paste de internet porque no tiene mucho sentido (son todas funciones ya super programadas, las hacemos para aprender!)