Network QoS 371-2-0213

Lecture 2

Gabriel Scalosub

Outline

- IntServ
 - Key Components
 - Guaranteed Service
 - Controlled Load Service
- 2 RSVP Protocol
 - Basic Features
 - RSVP Messages
 - Reservation Styles

IntServ - Key Components

- Main motivation: Multimedia (e.g., video conferencing)
 - multicast
- Main concern: worst-case delay
- Main mechanism: BW reservation
- Key components:
 - per-flow reservation-based
 - installs state
 - robust to topology change
 - a³: authorization, authentication, accounting
 - reservation is independent of route selection
 - route selection is crucial
 - often NP-hard (especially with multiple objectives)
 - addressed via traffic engineering (and MPLS)
 - admission control:
 - accept/reject reservation
 - monitor/measure available resources
 - parameter based ("determ.") vs. measurement based ("prob.")

IntServ - Key Components

- Main motivation: Multimedia (e.g., video conferencing)
 - multicast
- Main concern: worst-case delay
- Main mechanism: BW reservation
- Key components:
 - flow identification (5-tuple)
 - source IP
 - destination IP
 - protocol ID
 - source port
 - destination port
 - scheduling
 - FIFO
 - priority scheduling
 - weighted fair queuing (WFQ)

Admission Control Metrics

- Common metrics for admission control
 - Simple sum
 - based on reservations: $L + r \le C$
 - Measured sum
 - based on measured load: $\overline{L} + r \leq \delta C$
 - δ : target utilization (allowing estimation error)
 - Acceptance region
 - requires statistical traffic model
 - maximizes utilization against loss
 - Equivalent bandwidth C(p)
 - · requires statistical traffic model
 - bandwidth requirement of all flows exceeds C(p) with probability $\leq p$.

r: new flow rate

L: committed load

 \overline{L} : estimated load

C: capacity

Load Estimation

- Approaches to load estimation $(E_t$: estimate at time t)
 - Exponential averaging:
 - Let M_t be the measurement at time t.
 - Updating estimate:

$$E_{t+1} = (1 - \alpha)E_t + \alpha M_t$$

- α is a smoothing factor (small: smooth, large: fast-adapting)
- Time-window estimation:
 - Series of intervals I_j , $j = 1, 2 \dots$
 - C_i is the average load during I_i
 - For any I_j ending at time t,

$$E_t = \max\{C_{j-n}, C_{j-n+1}, \dots, C_j\}$$

smoothing: depends on amount of overlap between consecutive intervals

IntServ Services

- Recall IntServ provides two services:
 - Guaranteed service: deterministic worst-case delay guarantees
 - RFC 2212
 - Controlled load service: similar to lightly-loaded best-effort
 - RFC 2211
- IntServ flow specification (flowspec):
 - Required service specification (*RSpec*)
 - Guaranteed / Controlled-load
 - Min-BW, Max-Delay, Max-Jitter, Max-Loss
 - Difficulty: for the network (admission control)
 - Traffic characteristics specification (TSpec)
 - Based on a token bucket envelope
 - Difficulty: for the user (traffic estimation)

Token/Leaky Bucket

- Two parameters:
 - r: token arrival rate
 - b: bucket depth

- Modus operandi:
 - tokens arrive at the bucket at constant rate r
 - tokens are used by incoming packets
 - a packet of size M uses M tokens when sent
 - if no sufficient tokens exist: packet waits
 - bucket depth bounds number of tokens accumulated
 - when bucket is full: additional tokens are discarded

Token/Leaky Bucket

- Two parameters:
 - r: token arrival rate
 - b: bucket depth

- Properties of token/leaky bucket:
 - amount of data source transmits during interval I is bounded:

$$r|I|+b$$

- long term average rate of traffic: at most r
- maximum burst size generated by source: b

Flow Specification (flowspec)

- TSpec parameters:
 - Bucket rate (r) (B/s)
 - Peak rate (p) (B/s)
 - as large as source's line rate
 - Bucket depth (b) (B)
 - Minimum policed unit (m) (B)
 - any smaller packet is considered as m
 - Maximum packet size (M) (B)
- RSpec parameters:
 - Service rate (R) (B/s)
 - the main factor influencing E2E delay
 - Slack term (S) (ms)
 - bounding delay variability between hops

Guaranteed Service Only!

Policing, Marking and Shaping

- Policing and marking
 - Traffic conformance to *TSpec* is monitored at network edge
 - Nonconforming packets:
 - treated as best-effort
 - marked with drop priority
 - Should be done by the application...
 - might introduce additional delay otherwise (see below)

Policing, Marking and Shaping

- Policing and marking
 - Traffic conformance to *TSpec* is monitored at network edge
 - Nonconforming packets:
 - treated as best-effort
 - marked with drop priority
 - Should be done by the application...
 - might introduce additional delay otherwise (see below)
- Shaping
 - buffering performed along the path
 - occurs at multicast branch/merge points
 - necessary due to upstream vs. downstream links TSpec variability

Guaranteed Service

Delay Bounds

- Fluid model single dedicated link:
 - assume $p \to \infty$ and $R \ge r$
 - E2E queuing delay:

$$\frac{b}{R}$$

- essentially experienced by the last packet of a burst
- Fluid model single dedicated link (arbitrary p):
 - E2E queuing delay:

$$\frac{b(p-R)}{R(p-r)} \quad (p > R \ge r)$$

- in a burst: some packets served before last packet arrives
- *p* < *R*: no delay
- r > R: unbounded delay

Guaranteed Service

Delay Bounds

- Rate-dependent error (C_{sum}, C_{tot})
 - due to store-forward architecture
 - · wait for packet last bit before forwarding
 - depends on packet size and transmission rate
 - sum over all nodes in the path
- Rate-independent error (system-dependent) (D_{sum} , D_{tot})
 - e.g., pipelining delay in router
 - route lookup, flow identification, etc.
- E2E queuing delay (with error terms):

$$\frac{(b-M)(p-R)}{R(p-r)} + \frac{M+C_{\mathsf{tot}}}{R} + D_{\mathsf{tot}} \quad p > R \ge r$$

- Additional delay factors:
 - propagation delay
 - shaping delay
 - end-systems processing delays

Controlled Load Service

- No strict reservations
 - no strict BW/delay assurance
- Suitable for adaptive applications (e.g., video)
- Considered as better-than-best-effort
- Similar to a lightly loaded network:
 - very low loss probability
 - very high probability of minimal delay
- What shouldn't happen:
 - long-term large delay
 - long-term loss
- Operation based on metering:
 - ensure guarantees to conforming flows
 - non-conforming traffic does not impact best-effort traffic
 - try and deliver non-conforming flow (subject to above)

RSVP - Basic Features

- Resource reSerVation Protocol
 - RFC 2205
- Signaling protocol
 - allows users to communicate requirements to network
- Simplex reservation
 - establishes a reservation in only one direction
 - need to establish 2 reservations in two-way communication
- Receiver oriented
 - receivers decide what reservation is required
 - receivers initiate reservation

RSVP - Basic Features

- Routing independent
 - works with any unicast/multicast routing protocol
 - based on deployed routing mechanisms (BGP, OSPF, MPLS, etc.)
- Policy independent
 - e.g., independent of admission control policy
- Soft state
 - reservation state times out if not refreshed
 - enables robustness:
 - changing multicast group membership
 - changing network topologies
 - end-hosts crash

RSVP Messages

- Two main types of messages:
 - PATH
 - from sender to receiver
 - establishes the path
 - contains *TSpec*
 - RFSV
 - from receiver back to sender
 - contains the actual reservation request
 - contains TSpec and RSpec (in GS)

- More messages
 - PATHErr
 - RESVErr
 - PATHTear
 - RESVTear
 - RESVConf

PATH Messages

- Contain:
 - Phop
 - address of previous RSVP-capable node along path
 - used for sending the *RESV* message on the way back
 - Sender Template
 - IP address and port of sender
 - necessary for sending error
 - TSpec
 - Adspec (optional)
 - · updated by nodes along path
 - One Pass with Advertising (OPWA) reservation model
 - used to collect info about path capabilities
 - e.g., path latency, min-BW, IntServ break bit, path MTU, etc.
 - for Guaranteed Service, also C_{tot} , C_{sum} , D_{tot} , D_{sum} .
 - enables receiver to pick RSpec parameters
- What do routers along path do?
 - init state with Phop, Sender Template, TSpec, and timer
 - update Adspec and Phop
 - forward PATH message over downstream links

RESV Messages

- Receiver uses Adspec and TSpec in PATH message
 - calculates required BW to ensure target delay
 - uses path MTU (not just M in sender TSpec)
- updates *flowspec*:
 - TSpec
 - may adjust parameters due to Adspec
 - RSpec
- RESV message also contains:
 - reservation style
 - filterspec
 - identifies sender, identical to Sender Template
 - RSpec
- What do routers along path do?
 - check *flowspec*: admission control + policy
 - init reservation state: filterspec, BW, etc.
 - possibly merge reservation (depends on reservation style)
 - forward RESV message over upstream links

Reservation Styles (Merging)

- Targeted towards multicast
 - recall video conferencing motivation...
 - single reservation style per session
- Determine how multiple reservation requests are merged
- Merging depends on:
 - sender (filterspec)
 - flowspec
 - router interface (in/out)
 - reservation style

Reservation Styles (Merging)

- Targeted towards multicast
 - recall video conferencing motivation...
 - single reservation style per session
- Determine how multiple reservation requests are merged
- Merging depends on:
 - sender (filterspec)
 - flowspec
 - router interface (in/out)
 - reservation style
- RSVP supports 3 reservation styles:
 - Fixed Filter (FF)
 - distinct reservation and explicit sender selection
 - Wildcard Filter (WF)
 - shared reservation and wildcard sender selection
 - Shared Explicit (SE)
 - shared reservation and explicit sender selection
- Format: style (filterspec{flowspec})

Fixed Filter (FF)

- Reservation made per-sender, per-downstream link
 - S2: 3 reservations (one/downstream link)
 - S4: 2 reservations
- Per-downstream link, per sender, reserve maximum over link
 - top, S2: $\max\{2B, 3B\} = 3B$
- Per-upstream link, per sender, request maximum reserved
 - top, S2: $\max\{3B, 6B, 3B\} = 6B$

Wildcard Filter (WF)

- Sender-oblivious
 - all senders can use reservations
- Reservation made per-downstream link, maximum requested
 - top: $\max\{5B, 2B\} = 5B$
 - middle: $\max\{2B, 3B\} = 3B$
- Per-upstream link, request maximum reserved
 - all: $\max\{5B, 3B, 4B\} = 5B$

Shared Explicit (SE)

- Explicit senders reservations
- Reservations made per-downstream link, maximum requested
 - all senders using that link can use reservations (union)
 - top: senders= $\{S1,S2,S4\}$, reservation= max $\{5B,2B\} = 5B$
- per-upstream link, request maximum reserved
 - all senders using that link can use reservations (union)
 - middle:
 - S3 has only 4B reserved on bottom downstream link
 - S3 shares requested $\max \{5B, 3B, 4B\} = 5B$

Summary – Router Architecture

References

- Kurose and Ross, "Computer Networking: A Top-Down Approach", 5th ed., Addison-Wesley, 2010.
- Peterson and Davie, "Computer Networks: A Systems Approach", 4th ed., Morgan Kaufmann, 2007.
- Wang, "Internet QoS: Architectures and Mechanisms for Quality of Service", Morgan Kaufmann, 2001.
- Farrel, "The Internet and Its Protocols: A Comparative Approach". Morgan Kaufmann, 2004.
- White, RSVP and Integrated Services in the Internet: A Tutorial. IEEE Communications Magazine, May 1997