Ans to the question no.5

T(n) = T(n₂) + n-1; (T(1) = 0

Here,

$$T(n) = T(n2) + n-1$$
 $= [T(n2) + n-1$
 $= [T(n2) + n-1]$

Here; $M_{2K} = (2^{1})_{T}$

1 0 => K = 10g N

$$T(n) = T(1) + n \left[\frac{1}{2k-1} + \frac{1}{2k-2} + \dots + \frac{1}{2} + 1 \right] - 1$$

2)
$$T(n) = T(n-1) + n-1; T(1) = 0$$

$$= T(n-2) + (m-1) + m-1$$

$$z[t(n-2)+n-1]+n-1$$

$$= T(n-2)+(n-1)+n-1$$

$$= [T(n-3)+n-2]+(n-1)$$

$$+n-1$$

Now,

$$T(n) = T(n-1) + (n-1)$$

 $= [T(n-2) + n-2] + n-1$
 $= T(n-2) + 2n-3$
 $= T(n-4) + 4n-10$
:

$$T(n) = T(n-k) + Kn - 20C$$

$$[c=10]$$
**constant

$$T(n) = T(n-(n-1)) + (n-1)n - C$$

$$= T(1) + n^{2} - n - C$$

$$= 0 + n^{2} - n - C \approx n^{2} - n \approx n^{2}$$
[C is neglegable]

50, Fine wrost case complexity O(n)

3 T(n) = T(
$$\gamma_3$$
) + 2T(γ_3) + mont
= 3T(γ_3) + m
= 3(3T(γ_3) + γ_3) + m
= 9T(γ_3) + 2n
= 9T(γ_3) + 2n
= 27T(γ_3) + 3n
= :
= 3 KT(γ_3) + kn
Here, γ_3 = 1

=)
$$K = 1093^{n}$$

 $T(n) = 3^{k} + (1)$
Again, $3^{k} + (1) = 3^{1093^{n}} + (1) = n.1 = n$

Therefore, Therefore, (1) T(n) = 3KT (1/3 k) + kn 23 109, n T (1) + 10937, n S(3T(20)+3)+m rst (S) Te 15 + (15) + (15) + (16gn) = 27 T () + 3m = 3 KT (Ngm) + W.M Here, The = 1 Ortil - M CE T(63-35 F(2) MM 34I(1) - 2107I(1). M.1 - N 1 T(n) = 2T(1/2) +n2

Herre, Using the moster theorem we get,

the recurrence form is ; no?

T(n) = $aT(\frac{n}{6}) + \theta(n^{\frac{1}{6}}\log^{\frac{n}{6}})$ Where $a \ge 1$, b > 1, $u \ge 0$ and P is real number.

Here, \neq Now, \forall We can see that, a=2, b=2, K=2, P=0 so, mas Here $a < b^K$, and P=0. Therefore by the master theorem we get $T(h) = O(h^2)$

[Proved]