

NEW PYRIDINE-CONTAINING AZACROWN CHELATORS PATPy AND PAPPy FOR Pb2+ ION

Cite this: INEOS OPEN, **2025**, 8 (1–3), 16–17 DOI: 10.32931/io2504a

Received 9 September 2024,

Accepted 15 October 2024

^a Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, ul. Vavilova 28, str. 1, Moscow, 119334 Russia ^b Mendeleev University of Chemical Technology of Russia, Miusskaya pl. 9, Moscow, 125047 Russia

O. V. Tarasenko, *a,b A. A. Shchukina, A. D. Zubenko, and Yu. V. Fedorova

http://ineosopen.org

Abstract

New macrocyclic chelators with four and five pendant pyridine groups, PATPy and PAPPy, are synthesized and characterized. Their ability to coordinate with Pb²⁺ ion was studied using NMR spectroscopy and mass spectrometry. It was shown that both chelators form Pb^{2+} complexes of M:L = 1:1 composition. The NMR spectroscopic studies revealed the formation of a rigid asymmetric complex Pb·PATPy and rapid dynamic transitions between several different conformers of Pb·PAPPy in solution.

PATPv + Ph2 rigid asymmetric complex several different conformers

Key words: azacrown ether, chelator, ligand, metal complex, lead.

Introduction

In recent years, many investigations have been focused on finding the ligands capable of strong binding with Pb²⁺ ion [1– 3]. This is not only due to its high toxicity, which requires the development of effective lead extracting agents [1], but also due to the radiochemical properties of some lead isotopes [2–7]. Two prominent radioisotopes of lead are 203 Pb ($t_{1/2} = 51.9$ h) and ²¹²Pb ($t_{1/2} = 10.6$ h) [2]. ²⁰³Pb has γ-emission at 279 keV which is ideal for single-photon emission computed tomography (SPECT) [3–5]. ²¹²Pb decays via β^- particle emission to form the α -emitting daughter radionuclide ²¹²Bi ($t_{1/2} = 60.6$ min), which makes this isotope attractive for the therapy of oncological diseases [2–7].

According to Pearson's HSAB theory, lead(II) is considered to be a moderate Lewis acid. For the formation of stable complexes with this ion, a ligand should have pyridine and amide donor units, which are moderate bases [1, 8-10]. Macrocyclic chelators are more attractive than acyclic as they have a pre-organized cavity for binding metal cations, resulting in thermodynamically stable and kinetically inert complexes [9, 10]. In addition, incorporating rigid spacers such as a pyridine moiety into the ligand backbone may result in lower kinetic lability [10].

Herein, we report the synthesis of new macrocyclic ligands, PATPy and PAPPy, which are 15- and 18-membered pyridineazacrown ethers with pyridyl chelating groups for binding Pb²⁺ ion. The complexing features of these ligands towards Pb²⁺ ion were studied by NMR spectroscopy and mass spectrometry.

Results and discussion

The synthesis of the target ligands is shown in Scheme 1. Bisamide macrocycles 1 and 2, synthesized according to the method reported by us earlier [11], were reduced to obtain pyridine-azacrown ethers 3 and 4. To identify the most optimal reducing agent, three different borane complexes were used: BH₃·THF, BH₃·DMS, and BH₃·pyridine (Table 1). The amount of the reducing agent was also varied to achieve a maximum conversion of the initial macrocycle. The conversions were determined by analyzing the ¹H NMR spectra of the reaction mixtures. It was found that the most effective reducing agent for both of the macrocycles was BH₃·THF. However, compound 2 requires a larger excess of the borane complex (60 equiv.) than compound 1 (20 equiv.).

The introduction of chelating groups was accomplished by the alkylation of azacrown ethers **3** and **4** with 2-(chloromethyl)-

NH HN 2) HCI,
$$\Delta$$
 3) KOH NH HN C 1) BH3 'THF, 0°C NH HN C 10 HCI, Δ 3) KOH NH HN C 10 HCI, Δ 3) KOH NH HN C 10 HCI, Δ 10 HCI, Δ 10 HCI, Δ 11 HN Δ 12 HCI, Δ 12 HCI, Δ 13 HCI, Δ 15 HCI, Δ 16 HCI, Δ 16 HCI, Δ 17 HCI, Δ 18 HCI, Δ 18 HCI, Δ 19 HCI, Δ 10 HCI, Δ 19 HCI,

Scheme 1. Synthesis of ligands PATPy and PAPPy.

Table 1. Optimization of the reduction step using borane complexes

Macrocycle	Reducing agent	Excess (equiv.)	Conversion
1	BH ₃ ·THF	20	1.0
	BH ₃ ·DMS	20	0.9
	BH ₃ ·pyridine	20	0.3
2	BH ₃ ·THF	20	0.5
		40	0.7
		60	1.0
	BH ₃ ·DMS	20	0.4
		40	0.9
	BH ₃ ·pyridine	20	0.2

pyridine in MeCN in the presence of a base (Scheme 1). The target ligands were isolated after purification by column chromatography in 67 and 63% yields, respectively.

The complexation of the resulting ligands with Pb²⁺ ion was studied using ESI mass spectrometry and ¹H NMR spectroscopy. The mass spectrometry method afforded the data on the composition of the resulting species, showing that both chelators form a single complex with Pb²⁺ ion in solution with an M:L ratio of 1:1 (Fig. 1).

The structural studies of the Pb²⁺ complexes with **PATPy** and **PAPPy** were performed using NMR spectroscopy (Fig. 2). The ¹H NMR spectrum of complex **Pb·PATPy** was found to be significantly complicated compared to that of the free ligand. The presence of the well-resolved signals, their increased number and integral intensities indicated the formation of rigid asymmetric complex **Pb·PATPy** in solution. Of note is a singlet in the spectrum (highlighted in green) presumably assigned to one free pyridyl unit. In contrast to **Pb·PATPy**, the ¹H NMR spectrum of complex **Pb·PAPPy** contains broadened signals in the regions of both aliphatic and aromatic proton signals, which can be explained by the rapid dynamic transformations between different conformers. This feature indicates a discrepancy between the ligand structure and metal ion, as well as the lability of the resulting complex.

Figure 1. ESI MS of complexes Pb·PATPy and Pb·PAPPy.

Figure 2. ¹H NMR spectra of free ligands **PATPy** and **PAPPy** and their Pb²⁺ complexes in CD₃CN.

Conclusions

Two novel chelators for Pb²⁺ ion were synthesized and fully characterized. Their metal ion chelation was studied using ESI mass spectrometry and NMR spectroscopy. It was shown that only **PATPy** forms a complex with Pb²⁺ ion featuring a rigid asymmetric structure, while complex **Pb·PAPPy** was found to be labile. Hence, further studies of **PATPy** as a chelating agent for Pb²⁺ ion seems to be very promising.

Acknowledgements

This work was supported by the Russian Science Foundation (project no. 23-13-00424). The NMR and ESI/MS studies were performed using the equipment of the Center for Molecular Composition Studies of INEOS RAS.

Corresponding author

* E-mail: taraseoksana@yandex.ru (O. V. Tarasenko).

Electronic supplementary information

Electronic supplementary information (ESI) available online: the experimental section and NMR spectra of the compounds obtained. For ESI, see DOI: 10.32931/io2504a.

References

- F. Cuenot, M. Meyer, E. Espinosa, A. Bucaille, R. Burgat, R. Guilard, C. Marichal-Westrich, Eur. J. Inorg. Chem., 2008, 267–283. DOI: 10.1002/ejic.200700819
- A. Ingham, T. I. Kostelnik, B. L. McNeil, B. O. Patrick, N. Choudhary, M. Jaraquemada-Peláez, C. Orvig, *Dalton Trans.*, 2021, 50, 11579–11595. DOI: 10.1039/d1dt01653a
- L. L. Chappell, E. Dadachova, D. E. Milenic, K. Garmestani, C. C. Wu, M. W. Brechbiel, *Nucl. Med. Biol.*, 2000, 27, 93–100. DOI: 10.1016/s0969-8051(99)00086-4
- D. E. Milenic, M. Roselli, M. W. Brechbiel, C. G. Pippin, T. J. McMurray, J. A. Carrasquillo, D. Colcher, R. Lambrecht, O. A. Gansow, J. Schlom, Eur. J. Nucl. Med., 1998, 25, 471–480. DOI: 10.1007/s002590050246
- S. R. Banerjee, I. Minn, V. Kumar, A. Josefsson, A. Lisok, M. Brummet, J. Chen, A. P. Kiess, K. Baidoo, C. Brayton, R. C. Mease, M. Brechbiel, G. Sgouros, R. F. Hobbs, M. G. Pomper, J. Nucl. Med., 2020, 61, 80–88. DOI: 10.2967/jnumed.119.229393
- J. Li, T. Huang, J. Hua, Q. Wang, Y. Su, P. Chen, S. Bidlingmaier, A. Li, Z. Xie, A. P. Bidkar, S. Shen, W. Shi, Y. Seo, R. R. Flavell, D. Gioeli, R. Dreicer, H. Li, B. Liu, J. He, J. Exp. Clin. Cancer Res., 2023, 42, 61. DOI: 10.1186/s13046-023-02636-x
- B. Bartoś, K. Lyczko, A. Kasperek, S. Krajewski, A. Bilewicz, J. Radioanal. Nucl. Chem., 2013, 295, 205–209. DOI: 10.1007/s10967-012-2238-4
- M. Fernández-Fernández, R. Bastida, A. Macías, L. Valencia, P. Pérez-Lourido, *Polyhedron*, 2006, 25, 783–792. DOI: 10.1016/j.poly.2005.07.045
- B. L. McNeil, K. J. Kadassery, A. W. McDonagh, W. Zhou, P. Schaffer, J. J. Wilson, C. F. Ramogida, *Inorg. Chem.*, 2022, 61, 9638–9649. DOI: 10.1021/acs.inorgchem.2c01114
- C. Harriswangler, B. L. McNeil, I. Brandariz-Lendoiro, F. Lucio-Martínez, L. Valencia, D. Esteban-Gómez, C. F. Ramogida, C. Platas-Iglesias, *Inorg. Chem. Front.*, 2024, 11, 1070–1086. DOI: 10.1039/d3qi02354k
- Y. Fedorov, O. Fedorova, A. Peregudov, S. Kalmykov, B. Egorova, D. Arkhipov, A. Zubenko, M. Oshchepkov, J. Phys. Org. Chem., 2016, 29, 244–250. DOI: 10.1002/poc.3526

This article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

