Primitivas Imediatas

Na lista de primitivas que se segue, $f: I \longrightarrow \mathbb{R}$ é uma função derivável no intervalo I e ${\mathcal C}$ denota uma constante real arbitrária.

1.
$$P(a) = ax + C$$

3.
$$P\left(\frac{f'}{f}\right) = \log|f| + C$$

5.
$$P(f'\cos f) = \sin f + C$$

7.
$$P\left(\frac{f'}{\cos^2 f}\right) = \operatorname{tg} f + C$$

9.
$$P(f' \operatorname{tg} f) = -\log|\cos f| + C$$

11.
$$P\left(\frac{f'}{\cos f}\right) = \log\left|\frac{1}{\cos f} + \operatorname{tg} f\right| + C$$

13.
$$P\left(\frac{f'}{\sqrt{1-f^2}}\right) = \arcsin f + C$$

15.
$$P\left(\frac{f'}{1+f^2}\right) = \operatorname{arctg} f + C$$

17.
$$P(f' \operatorname{ch} f) = \operatorname{sh} f + C$$

19.
$$P\left(\frac{f'}{\cosh^2 f}\right) = \sinh f + C$$

21.
$$P\left(\frac{f'}{\sqrt{f^2+1}}\right) = \operatorname{argsh} f + C$$

23.
$$P\left(\frac{f'}{1-f^2}\right) = \operatorname{argth} f + C$$

2.
$$P(f'f^{\alpha}) = \frac{f^{\alpha+1}}{\alpha+1} + C \ (\alpha \neq -1)$$

4.
$$P\left(a^f f'\right) = \frac{a^f}{\log a} + \mathcal{C} \ (a \in \mathbb{R}^+ \setminus 1)$$

6.
$$P(f' \operatorname{sen} f) = -\cos f + C$$

8.
$$P\left(\frac{f'}{\operatorname{sen}^2 f}\right) = -\cot g f + C$$

10.
$$P(f' \cot g f) = \log |\sin f| + C$$

11.
$$P\left(\frac{f'}{\cos f}\right) = \log\left|\frac{1}{\cos f} + \operatorname{tg} f\right| + C$$
 12. $P\left(\frac{f'}{\sin f}\right) = \log\left|\frac{1}{\sin f} - \operatorname{cotg} f\right| + C$

14.
$$P\left(\frac{-f'}{\sqrt{1-f^2}}\right) = \arccos f + C$$

16.
$$P\left(\frac{-f'}{1+f^2}\right) = \operatorname{arccotg} f + C$$

18.
$$P(f' \operatorname{sh} f) = \operatorname{ch} f + C$$

20.
$$P\left(\frac{f'}{\sinh^2 f}\right) = -\coth f + C$$

22.
$$P\left(\frac{f'}{\sqrt{f^2-1}}\right) = \operatorname{argch} f + C$$

24.
$$P\left(\frac{f'}{1-f^2}\right) = \operatorname{argcoth} f + C$$