AOA Johnson's Algorithm

Zain Ali

57113

BSCS 4-1

Instructor: Usman Shareef

Riphah International University

Johnson's Algorithm for All-Pairs Shortest Path Problem

Introduction:

Johnson's Algorithm is a powerful method to compute the shortest paths between all pairs of nodes in a graph, even when some edges have negative weights (but no negative weight cycles). The algorithm handles this challenge by first using Bellman-Ford to check for negative cycles and re-weighting the graph, followed by Dijkstra's Algorithm for efficient calculation of shortest paths.

Core Concepts and Mechanisms:

• Graph Representation:

 The graph is represented as a collection of nodes and edges, where each edge has a weight (positive or negative). A new node is added to the graph to aid in re-weighting and to help with the **Bellman-Ford** procedure.

• Bellman-Ford Algorithm:

 Used to detect negative weight cycles and compute the shortest paths from the newly added node (a source node) to all other nodes.

• Re-weighting Process:

After running Bellman-Ford, the graph is re-weighted so that all edge weights become non-negative. The formula used is: new_weight(u,v)=weight(u,v)+h[u]-h[v]\text{new_weight}(u, v) = \text{weight}(u, v) + h[u] - h[v]new_weight(u,v)=weight(u,v)+h[u]-h[v] Where h[u]h[u]h[u] is the shortest path from the source node to uuu.

• Dijkstra's Algorithm:

 Once the graph is re-weighted, **Dijkstra's algorithm** is applied from each node to calculate the shortest path from that node to every other node in the graph.

Algorithm Phases:

• Graph Augmentation:

 A new node is added, connected to all other nodes with edges of weight zero.

• Bellman-Ford Execution:

 The Bellman-Ford algorithm is executed from the newly added node to compute the shortest path distances to all other nodes, ensuring no negative cycles.

• Re-weighting of the Graph:

 Based on the results from Bellman-Ford, the graph edges are re-weighted to ensure all edge weights are non-negative.

• Dijkstra's Execution:

 Dijkstra's algorithm is executed from each node in the graph to compute the shortest paths to every other node.

Convergence Properties:

• Asymptotic Convergence:

 As the number of iterations approaches infinity, the probability of finding the global optimum solution approaches 1, provided the algorithm maintains a proper balance between exploration (via the somersault process) and exploitation (via climbing).

• Exploration vs. Exploitation:

 The algorithm balances between **exploring** new areas of the search space and **exploiting** previously discovered good solutions to refine the search.

Time Complexity:

The time complexity of Johnson's Algorithm can be analyzed as follows:

- Initialization: O(n×d+n×f)O(n \times d + n \times f)O(n×d+n×f)
- Per iteration:
 - Climb process: O(n*d*f)O(n \times d \times f)O(n*d*f)
 - Watch-jump process: O(n*f)O(n \times f)O(n*f)
 - \circ Somersault process: $O(n \cdot d + n \cdot f)O(n \cdot d + n \cdot f)O(n \cdot d + n \cdot f)$

The overall complexity is:

 $O(n \cdot d + n \cdot f + n \cdot d \cdot n \cdot f + n \cdot d + n \cdot f))O(n \cdot d + n \cdot f + n$

Where:

- nnn is the population size (number of nodes)
- ddd is the dimension of the problem (number of nodes)
- fff is the cost of a single objective function evaluation
- ttt is the number of iterations

Search Space Characteristics:

Johnson's Algorithm performs well in a variety of situations based on the characteristics of the search space:

Modality:

 Works well for both unimodal and multimodal landscapes. In highly multimodal landscapes, a larger population size is beneficial for better exploration.

• Separability:

 Effective for separable functions but may struggle with non-separable problems where variables interact.

• Ruggedness:

 Johnson's Algorithm is robust against rugged functions with many local optima due to its combination of exploration and exploitation techniques.

• Deceptiveness:

• The algorithm can handle deceptive problems (where local optima might mislead the search) due to its global exploration process.

Extensions and Variants:

• Adaptive Parameter Control:

 Dynamically adjusts parameters (like climbing step and somersault range) to refine the search strategy over time.

• Hybrid Approaches:

 Combines Johnson's Algorithm with other local search methods or gradient-based approaches for faster convergence.

• Constraint Handling:

 Uses penalty functions for soft constraints or repair mechanisms for hard constraints.

• Parallel Implementation:

 Utilizes a parallel approach where multiple populations explore different parts of the solution space concurrently, speeding up the process.

Multi-objective Extensions:

 Adapted to handle problems with multiple objectives, where the algorithm maintains a set of non-dominated solutions (Pareto front).

Applications:

Johnson's Algorithm is widely used for solving **shortest path problems** in various fields such as:

- **Routing in Networks (Telecommunications)**: Optimizing communication paths between nodes in a network.
- **Logistics and Supply Chain**: Finding optimal transportation routes for goods between multiple points.
- **Urban Planning**: Identifying the shortest paths between different locations in a city.
- **Robotics**: Pathfinding for robot navigation in unknown environments with obstacles.

This summary of **Johnson's Algorithm** highlights the algorithm's core ideas, its efficiency in handling negative weights, and its application across a variety of optimization problems. You can adapt the algorithm to different scenarios where shortest path computations are needed, even in complex and large-scale networks.