Языки, семантика и исчисления

18 июля 2022 г.

Языки 1

Эпистемические языки

Ag – конечное множество агентов, Var – счетное множество пропозициональных переменных, $i \in Ag$, $G \subseteq Ag$, $p \in Var$

1.2 Сокращения

- $\varphi \to \psi := \neg(\varphi \land \neg \psi)$
- ullet $\top := \neg \bot$
- $\varphi \lor \psi := \neg(\neg \varphi \land \neg \psi)$ $\hat{K}_i \varphi := \neg K_i \neg \varphi$

• $\bot := p \land \neg p$

• $\langle !\varphi \rangle \psi := \neg [!\varphi] \neg \psi$

2 Семантика

2.1 Модель Крипке

$$M = (W, (\sim_i)_{i \in Aq}, V)$$

2.2 Ограничения на \sim_i

2.3 Семантика операторов

Базовая логика:

- $M, x \models p$ e.r.e.
- $M, x \models \neg \varphi$ e.t.e.
- $M, x \models \varphi \land \psi$ e.r.e.

Статические операторы:

- $M, x \models K_i \varphi$ e.r.e.
- $M, x \models D_G \varphi$ e.r.e.
- $M, x \models C_G \varphi$ e.r.e.
- $M, x \models C_G^{\psi} \varphi$ e.r.e.

Динамический оператор (публичное обновление)

• $M, x \models [!\varphi]\psi$ e.t.e. $M, x \models \varphi \Rightarrow M^{!\varphi}, x \models \psi$

Пусть $M = (W, (\sim_i)_{i \in Ag}, V)$ – модель Крипке, определим обновленную модель

$$M^{!\varphi} = (W^{!\varphi}, (\sim_i^{!\varphi})_{i \in Ag}, V^{!\varphi})$$

где

- $W^{!\varphi} := \{ w \in W \mid M, w \models \varphi \}$
- $\bullet \sim_i^{!\varphi} := \sim_i \cap (W^{!\varphi} \times W^{!\varphi})$
- $V^{!\varphi}(p) := V(p) \cap W^{!\varphi}$

3 Исчисления

- **3.1** K_m
- 3.2 K'_m
- 3.3 KT_m
- 3.4 KB_m
- **3.5** $K4_m$
- **3.6** $K5_m$
- 3.7 $S4_m$
- 3.8 $S5_m$
- 3.9 $S5_mC$
- 3.10 $S5_mC'$
- **3.11** $S5_mD$
- **3.12** $S5_mRC$
- 3.13 $PAL (= S5_m[])$
- **3.14** $PAL-C (= S5_m[]C)$
- 3.15 $PAL-D \ (= S5_m[]D)$
- **3.16** PAL-RC (= $S5_m[]RC$)