Caracterização da qualidade interna de ferrramentas de análise estática de código fonte

Joenio Marques da Costa Universidade Federal da Bahia (UFBA) joenio@colivre.coop.br

23 de abril de 2016

1 Introdução

(à fazer)

1.1 Contribuições esperadas

(à fazer)

2 Fundamentação teórica

(à fazer)

3 Metodologia

Neste capítulo será apresentada a metodologia utilizada no estudo como meio de validar as seguintes hipóteses:

H1: Existem publicações sobre ferramentas de análise estática com disponibilidade de código-fonte

H2: Existem ferramentas de análise estática disponíveis livremente na indústria com disponibilidade de código-fonte

H3: Existem valores de referência para métricas de código-fonte para ferramentas de análise estática

H3: Ferramentas da indústria possuem melhores valores de métricas de código-fonte

As seções à seguir descrevem as atividades de cada etapa da metodologia.

3.1 Planejamento do estudo

3.1.1 Seleção das métricas

(à fazer)

3.1.2 Seleção das fontes de ferramentas de análise estática

Para ser possível validar as hipóteses aqui levantadas é necessário realizar uma busca por ferramentas de análise estática desenvolvidas no contexto da academia e da indústria, para isso, será feito um planejamento detalhado para realizar a seleção de ferramentas em cada um destes contextos.

Academia No contexto acadêmica a busca por ferramentas será feita através de artigos publicados em conferências que tenham histórico de publicação sobre ferramentas de análise estática de código fonte. Estes artigos serão analisados e aqueles com publicação de ferramenta de análise estática serão selecionados.

Indústria Na indústria a busca por ferramentas será feita a partir de referências encontradas na internet, algumas organizações mantém listas de ferramentas para análise de código-fonte, a Wikipedia também mantém uma lista de ferramentas, estas referências serão utilizadas como ponto de partida e cada ferramenta será analisada a fim de validar se são da indústria ou surgiram em contexto acadêmico.

Uma vez que as ferramentas tenham sido selecionadas inicia-se a extração de seus atributos de qualidade interna.

3.1.3 Seleção da ferramenta de análise estática de código-fonte

Para realizar a caracterização das ferramentas através dos seus atributos de qualidade interna é necessário uma ferramenta capaz de analisar estaticamente o código-fonte destas ferramentas e extrair atributos relacionados à sua qualidade interna. Para isto utilizaremos o Analizo(KON, 2010). Falta Justificar! Quais vantagens? Referencias?

3.2 Coleta de dados

A partir das fontes selecionadas na etapa anterior serão realizadas duas atividades para identificar e mapear as ferramentas de análise estática com código-fonte disponível, uma atividade relacionada ao levantamento de ferramentas da academia, outra atividade relacionada ao levantamento de ferramentas da indústria.

3.2.1 Ferramentas da academia

A seleção de ferramentas será relizada através de uma revisão estruturada dos artigos selecionados a partir das seguintes conferências:

- ASE Automated Software Engineering¹
- \bullet CSMR² Conference on Software Maintenance and Reengineering³
- SCAM Source Code Analysis and Manipulation Working Conference⁴

Chamamos de revisão estruturada um processo disciplinado para seleção de artigos a partir de critérios bem definidos de forma que seja possível a reprodução do estudo por parte de pesquisadores interessados. Alguns resultados preliminares podem ser consultados na Tabela 1 da Seção 4.1.

¹http://ase-conferences.org

²A conferência CSMR tornou-se SANER - Software Analysis, Evolution, and Reengineering a partir da edição 2015.

³http://ansymore.uantwerpen.be/csmr-wcre

⁴http://www.ieee-scam.org

3.2.2 Ferramentas da indústria

Na indústria tomaremos como ponto de partida a lista de ferramentas de análise estática mantida pelo projeto SAMATE⁵ - Software Assurance Metrics and Tool Evaluation disponível em NIST (2016), mais sobre o projeto SAMATE pode ser encontrado em Ribeiro (2015).

O site do software Spin mantém uma lista de ferramentas comerciais e de pesquisa para análise estática de código-fonte para C em Spin (2016).

O Instituto de Engenharia de Software do CERT mantém uma lista de ferramentas de análise estática em CERT (2016).

O site da ferramenta Flawfinder leva a um link com referências para inúmeras ferramentas livres, proprietárias, gratuitas mas não-livres de ferramentas de análise estática e outros tipos de análise em Wheeler (2015).

Uma outra fonte contendo uma relação extensa de ferramentas é mantida na Wikipedia em Wikipedia (2016).

3.3 Caracterização dos artigos

Caracterização dos papers analisados na revisão estruturada e caracterização teórica do ecosistema das ferramentas da academia.

3.4 Caracterização das ferramentas

Será realizada uma caracterização prática das ferramentas, tanto acadêmica quando da indústria, através da análise e extração de métricas de código-fonte das mesmas.

3.5 Exemplo de uso

Por fim, os valores de métricas de referência encontradas serão utilizadas como guia para refatorar a ferramenta Analizo.

(à fazer)

4 Conclusão

4.1 Resultados preliminares

(à fazer)

(adicionar tabela com ferramentas do NIST aqui)

4.2 Cronograma

(à fazer)

⁵http://samate.nist.gov

Tabela 1: Total de artigos analisados por edições do SCAM

Edição	Total de artigos	Artigos com ferramenta
SCAM 2001	23	-
SCAM 2002	18	-
SCAM 2003	21	-
SCAM 2004	17	-
SCAM 2005	19	-
SCAM 2006	22	2
SCAM 2007	23	1
SCAM 2008	29	-
SCAM 2009	20	-
SCAM 2010	21	1
SCAM 2011	21	1
SCAM 2012	22	4
SCAM 2013	24	-
SCAM 2014	35	1
SCAM 2015	?? (pendente)	?
Total	315	10

Referências

CERT. Secure Coding Tools. 2016. [Online; acessado 23 Abril de 2016]. Disponível em: \(\text{http:} \) //www.cert.org/secure-coding/tools/index.cfm \(\text{.} \).

KON, A. T. J. C. J. M. P. M. L. R. R. L. A. C. C. F. Analizo: an extensible multi-language source code analysis and visualization toolkit. p. 6, 2010.

NIST. SAMATE - Source Code Security Analyzers. 2016. [Online; acessado 20 Abril de 2016]. Disponível em: (http://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html).

RIBEIRO, A. C. Análise estática de código-fonte com foco em segurança: Metodologia para avaliação de ferramentas. 2015.

SPIN. Static Source Code Analysis Tools for C. 2016. [Online; acessado 23 Abril de 2016]. Disponível em: http://www.spinroot.com/static.

WHEELER, D. A. Static analysis tools for security. 2015. [Online; acessado 23 de Abril de 2016]. Disponível em: (http://www.dwheeler.com/essays/static-analysis-tools.html).

WIKIPEDIA. List of tools for static code analysis. 2016. [Online; acessado 23 Abril de 2016]. Disponível em: $\langle \text{https://en.wikipedia.org/wiki/List_of_tools_for_static_code_analysis} \rangle$.