The Base Measure Problem and its Solution

Alexey Radul, Boris Alexeev {axch,alexeev}@google.com

PROBPROG 2020, October 22-24

Example: What is the density after stretching a distribution on the circle?

x, y ~ uniform_on_unit_circle
x', y' =
$$2x$$
, $20y$

$$p(x', y') = ?$$

Easy, right?

- $p(x, y) = 1/2\pi$ when $x^2 + y^2 = 1$
- Let f(x, y) = (2x, 20y)
- $|\det J_f| = 40$ everywhere
- Ergo $p(x', y') = 1/80\pi$ when $(x'/2)^2 + (y'/20)^2 = 1$

Wrong!

Perimeter of ellipse $(x'/2)^2 + (y'/20)^2 = 1$ is about 81.28, much less than 80π .

The distribution isn't uniform!

3000 samples of x', y' in orange. 3000 samples from the uniform distribution on the unit circle in blue for comparison.

Right answer

The density $1/2\pi$ is with respect to Lebesgue measure on the *circle*, not all of \mathbb{R}^2 .

- Circle's tangent at (x, y) is (-y, x).
- Directional derivative of f is (-2y, 20x).
- Change of arclength is $sqrt(4y^2 + 400x^2)$.
- $p(x', y') = 1/2\pi sqrt(100x'^2 + y'^2/100)$.

In general:

p(x') = p(x) sqrt(det(VV^T)/det($V'V'^T$)) where v_i is an arbitrary basis for the tangent space, and v_i are those directional derivatives of f

When does this happen?

Whenever the base measure matters and is not Lebesgue on \mathbb{R}^n .

- Transforming discrete distributions embedded in Rⁿ.
- Transforming distributions on symmetric matrices, simplexes, spheres, etc.
- Reversible-jump MCMC on any of the above.
- MCMC or SMC with discrete + continuous observation model (e.g., Indian GPA problem).

Computation:

Log Jacobian determinants of bijections not enough.

Explicitly represent tangent space of support.

Automatic differentiation to compute directional derivatives.

Two-argument dispatch or Visitor pattern to cover efficient special cases.