Combo 8

2 de julio de 2024

1. Lema 15

1.1. Enunciado

Supongamos $\Sigma \supseteq \Sigma_p$. Entonces $AutoHalt^{\Sigma}$ no es Σ -recursivo.

1.2. Demostración

Supongamos $AutoHalt^{\Sigma}$ es Σ -recursivo y por lo tanto Σ -computable. Por la proposicion de existencia de macros tenemos que hay un macro

[IF
$$AutoHalt^{\Sigma}(W1)$$
 GOTO A1]

Sea \mathcal{P}_0 el siguiente programa de \mathcal{S}^{Σ}

L1 [IF
$$AutoHalt^{\Sigma}(P1)$$
 GOTO L1]

Note que

- \mathcal{P}_0 termina partiendo desde $\|\mathcal{P}_0\|$ sii $AutoHalt^\Sigma(\mathcal{P}_0)=0,$

lo cual produce una contradiccion.

2. Teorema 16

2.1. Enunciado

Supongamos $\Sigma \supseteq \Sigma_p$. Entonces $AutoHalt^{\Sigma}$ no es Σ -efectivamente computable. Es decir no hay ningun procedimiento efectivo que decida si un programa de \mathcal{S}^{Σ} termina partiendo de si mismo.

2.2. Demostración

Si $AutoHalt^{\Sigma}$ fuera Σ -efectivamente computable, la Tesis de Church nos diria que es Σ -recursivo, contradiciendo el lema anterior.

3. Lema 17

3.1. Enunciado

Supongamos que $\Sigma \supseteq \Sigma_p$. Entonces

$$A = \{ \mathcal{P} \in \operatorname{Pro}^{\Sigma} : AutoHalt^{\Sigma}(\mathcal{P}) = 1 \}$$

es Σ -r.e. y no es Σ -recursivo. Mas aun el conjunto

$$N = \left\{ \mathcal{P} \in \operatorname{Pro}^{\Sigma} : AutoHalt^{\Sigma}(\mathcal{P}) = 0 \right\}$$

no es Σ -r.e.

3.2. Demostración

Sea $P=\lambda t\mathcal{P}\left[Halt^{0,1}(t,\mathcal{P},\mathcal{P})\right]$. Note que P es Σ -p.r. por lo que M(P) es Σ -r.. Ademas note que $D_{M(P)}=A$, lo cual implica que A es Σ -r.e..

Supongamos ahora que N es Σ -r.e.. Entonces la funcion $C_0^{0,1}|_N$ es Σ -recursiva ya que $C_0^{0,1}$ lo es. Ademas ya que A es Σ -r.e. tenemos que $C_1^{0,1}|_A$ es Σ -recursiva. Ya que

$$AutoHalt^{\Sigma} = C_1^{0,1}|_A \cup C_0^{0,1}|_N$$

el lema de division por casos nos dice que $AutoHalt^{\Sigma}$ es Σ -recursivo, contradiciendo el primer lema de este combo. Esto prueba que N no es Σ -r.e..

Finalmente supongamos A es Σ -recursivo. Entonces el conjunto

$$N = (\Sigma^* - A) \cap \operatorname{Pro}^{\Sigma}$$

deberia serlo, lo cual es absurdo. Hemos probado entonces que A no es Σ -recursivo.

4. Teorema 18: Neumann vence a Godel

4.1. Enunciado

Si h es Σ -recursiva, entonces h es Σ -computable. Nota: en la inducción de la prueba, hacer solo el caso h = M(P)

4.2. Demostración

Probaremos por induccion en k que

(*) Si $h \in \mathbf{R}_k^{\Sigma}$, entonces h es Σ -computable.

El caso k=0 es trivial porque son funciones ya conocidas. Supongamos (*) vale para k, veremos que vale para k+1. Sea $h\in \mathbf{R}_{k+1}^\Sigma-\mathbf{R}_k^\Sigma$. Hay varios casos, pero sólo nos concentraremos en esta demo en h=M(P). Supongamos h=M(P), con $P:\omega\times\omega^n\times\Sigma^{*m}\to\omega$, un predicado perteneciente a \mathbf{R}_k^Σ . Por hipotesis inductiva, P es Σ -computable y por lo tanto tenemos un macro

[IF
$$P(V1, ..., V\overline{n+1}, W1, ..., W\overline{m})$$
 GOTO A1]

lo cual nos permite realizar el siguiente programa ${\mathcal P}$

L2
$$\left[\text{IF } P(\overline{Nn+1}, N1, ..., N\bar{n}, P1, ..., P\bar{m}) \text{ GOTO L1} \right]$$

 $Nn+1 \leftarrow Nn+\bar{1}+1$
 GOTO L2
L1 $N1 \leftarrow Nn+\bar{1}$

Luego, tenemos que comprobar que este programa computa h. Para ello, tenemos que demostrar que $h = \Psi_{\mathcal{P}}^{n,m,\#}$, lo cual es sencillo de ver dado que \mathcal{P} se detiene siempre y con el menor valor $x \in \omega$ en N1 tal que $P(x, x_1, ..., x_n, \alpha_1, ..., \alpha_m) = 1$, donde $(\vec{x}, \vec{\alpha}) \in h$ y es la entrada para \mathcal{P} .

Finalmente, se demuestra que \mathcal{P} computa a h, por lo que h es Σ -computable.