Assignment #4

Due: October 20, 2022 9:00 PM

440 SA(8hr)= SA(0). edear y00000 x 37 M Bq 20.000-

specific activity. A cyclotron provides ¹⁸F with specific activity of 90,000 mCi/µg. From this, [¹⁸F]-FDG will be produced and shipped to nearby PET imaging facilities. If a 440 MBq dose is to be given to a patient 8 hr after ¹⁸F production from the cyclotron, what mass of [18F]-FDG will be injected?

coincidence detections 2 positrons

2. Look at the figure at the bottom of the page, and look up appropriate material characteristics for cortical bone and soft tissue from the NIST site (https://www.nist.gov/pml/x-ray-massattenuation-coefficients, tables 2 and 4; use values tabulated at the nearest energy value). A A(0)-0.25MJ positron emitter (assume ¹⁸F) has accumulated in the purple region and is producing an activity of 0.25 MBq along the horizontal path leading to the D+ and D- detectors. Compute the number of coincidence detections expected over a 2 min acquisition.

detector

blaton 511 heV 3. When imaging 99mTc with a NaI(Tl) scintillation screen with PMT array, photometrical screen with PMT array with PMT arra a. what is a typical photon energy window used to accept detections? Not + 140 heV

16. if a scintillation event results in a lower energy deposition that is below this window, why should you not count this event? Since Compton Scotlony 15 a note feter & startered photons ball baker energy compand to primary thing

if scintillation event results in a higher energy deposition that is above this window, why should you not count this event? This convolutes to

dose & adjacent

Compute the radiation dose to the liver for an injection of 100 MBq of 99mTc sulfur colloid. Assume that 60% of the activity is trapped in the liver, 30% is trapped in the spleen, and 10% in red bone marrow. Assume instantaneous uptake and no biological excretion.

[5] In a 18FDG abdominal scan made with a 90 cm diameter detector ring, how high a resolution are you likely to be able to get and why?

12cm

resolution

apartial resolution 0.002.D 2 cm

N(D)= Ma). e - Japus) ds

Z Nuclide Half-life Photon Energy										
		20.1	320							
24	Chromium-51	28d								
31	Gallium-67	79.2h	92, 184, 296							
34	Selenium-75	120d	265							
38	Strontium-87m	2.8h	388							
43	Technetium-99m	— 6h	140							
49	Indium-111	2.8d	173, 247							
	Indium-113m	1.73h	393							
53	Iodine-123	13.3h	159							
	Iodine-125	60d	35, 27							
	Iodine-131	8.04d	364							
54	Xenon-133	5.3d	81							
80	Mercury-197	2.7d	77							
81	Thallium-201	73h	135, 167							

Positron Emitters

4	Nuclide	Half-life	Positron Energ	y (keV)	
6	Carbon-11	20.3min	326		
7	Nitrogen-13	10.0min	432		- 44 (
8	Oxygen-15	2.1min	696	La ten	€ 5Nhe
9	Fluorine-18	(110min		WO 10 1	L
29	Copper-64	12.7h	656		
31	Gallium-68	68min	1900		
33	Arsenic-72	26h	3340		
35	Bromine-76	16.1h	3600		
37	Rubidium-82	1.3min	3150		
53	Iodine-122	3.5min	3100		

hydrogen 4	-				-	-	120	ē	10.50	2.0		10		2.2	0.7	20		helium 2
Ĥ																		Не
1.0079 lithium	beryllium											i	boron	carbon	nitrogen	oxygen	fluorine	4.0026 neon
3	_4												5	6	7	8	9	10
l Li	Be												В	С	N	0	F	Ne
6.941	9.0122												10.811	12.011	14.007	15.999	18.998	20.180
sodium 11	magnesium 12												aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine 17	argon 18
	0.00													57.5	2000			_
Na	Mg												ΑI	Si	Р	S	CI	Ar
22.990	24.305 calcium		scandium	titanium	vanadium	chromium	manaanaa	Lenn	cobalt	nickel	aonnar	zinc	26.982	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
potassium 19	20		21	22	23	24	manganese 25	iron 26	27	28	copper 29	30	gallium 31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098	40.078		44.956	47.867	50.942	51.996	54.938	55.845	58,933	58,693	63.546	65.39	69.723	72.61	74.922	78.96	79.904	83.80
rubidium	strontium		yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te		Xe
85.468	87.62		88.906	91.224	92.906	95.94	[98]	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.60	126.90	131.29
caesium 55	barium 56	57-70	lutetium 71	hafnium 72	tantalum 73	tungsten 74	rhenium 75	osmium 76	iridium 77	platinum 78	gold 79	mercury 80	thallium 81	lead 82	bismuth 83	polonium 84	astatine 85	radon 86
					_		2.55	_	2.0	100			T.		25.5%			
Cs	Ba	*	Lu	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	- 11	Pb	Bi	Po	At	Rn
132.91	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200,59 ununbium	204.38	207.2	208.98	[209]	[210]	[222]
francium 87	88	89-102	103	104	105	106	107	hassium 108	109	110	111	112		ununquadium 114				
Fr		* *		Rf		20	Bh	Hs	Mt		200000			5000000				
1.1	Ra	^ ^	Lr [262]	[261]	Db	Sg	D11 [264]	12691	[268]	[271]	Uuu	UUD [277]		Uuq				
[223]	[226]																	

Source: Wolbarst, 1993.

*Lan	thanide	series

* * Actinide series

	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70
1	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
- 1	138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.04
ı	actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium
- 1	89	90	91	92	93	94	95	96	97	98	99	100	101	102
	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No
- 1	[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	12471	[251]	[252]	[257]	[258]	[259]

Example Problem

M.0075

Your neighborhood radiochemist provides you with 68Ga labelled DOTATOC (molecular weight = 1502.333 g/mol), with a specific activity of 20 MBq/µg at Noon. You will inject 185 MBq intravenously at 1:00 PM.

Question:To what does 68Ga decay?

Therefore
$${}^{68}_{31}$$
 ${}^{68}_{1a} \longrightarrow {}^{68}_{30}$ ${}^{2}_{1}$

Question: What mass of this agent will you inject?

8 of 12

$$A(t=60 \text{ min}) = 185 \text{ MBz} = SA(t=60 \text{ min}) \times \text{ m}$$

$$SA(t=60 \text{ min}) = SA(t=0 \text{ min}) exp(-\frac{60 \text{ min}}{T})$$

$$V = \frac{Tv_2}{log(2)} = \frac{68 \text{ min}}{0.693} = 93.1 \text{ min}$$
where $T = \frac{Tv_2}{log(2)}$

$$T = \frac{110}{\ln(2)} = 15869$$

Log (naturally)

Q.3

a) NaI (TI) scintillectors has a \$10% energy resolution.

Since the produces photon at 140hoV.

Typical energy window for somto with NaI(II) scintillator and PMT array is 126-154 keV.

b) Events with lawer energy depositran can stem from Compton Scattering. The scattered photon got deflected from its original direction and has a lover energy, compared to primary photons comming. Straight into the detector.

c) This corresponds to an event where two or more photon arrive at the detector at the same time, and the culmulated energy is computed as I event.

PET resolveron depends on:

1.) Position range: 18 F: Rrange = 0.1 mm

2) annihilation photons' angle deviates from 180°, Repo = 0.25 x 2tt x (30 x 10) = 1.3625 mm

2) deviated in R land = 2.5 mm

Thus $R_{sys}^2 = R_{rmoe}^2 + R_{rbo}^2 + R_{detector}^2$ = $(0.1)^2 + (1.9625)^2 + (2.5)^2$

$$M = \frac{A(8hrs)}{SA(8hrs)} = \frac{A(8hrs)}{SA(0).e(\frac{-8\times60}{T})}$$
We have $oT_{1/2}$ for $F = 110$ min.

$$\bigcirc A (8hrs) = 440 MBq$$
 $\bigcirc SA(0) = 90,000 \times 37 = 3.33 \times 10^4 MBq$

Thus,
$$m = \frac{440}{3,33 \times 10^6 \times e^{\left(\frac{-9 \times 60}{159.69}\right)}} = 2.72 \times 10^{-3} \text{ Mg}$$

$$= 1.44 \times (6 \times 60 \times 60) \times 100$$

$$= 3,110,400 \text{ MBg.sec}$$
Thus dose is:

For the liver: E= Wher. D = 0.04 x 6.123 = 0.245 mgy

10% in read bore marrow Smarrow-liver = 8.93 xw.

Biological excretion is ignored so culmulated activity is $\tilde{A}=1.44T_{A/2}A_0$

$$A(t) = A(t=0) \cdot e^{-\alpha t}$$

$$Vhere \quad \alpha = \frac{1}{t} = \frac{\log(2)}{t} = \frac{\log(2)}{100(m) \cdot 60000} = 1.05 \times 10^{-4} \cdot 800^{-4}$$

Let TA be total activity or number of decays over 2 min or 120 see

The
$$A(t=0)$$
 e $A(t=0)$ e $A(t=0)$ e $A(t=0)$ e $A(t=0)$ e

$$=$$
 $A(+=0)(1-e^{-\alpha.120})=29811791.31$ decays

Thus N(+D,D) = (TA). e -0.102 x 18 x e -0,1732 x 2

23361892 comaidince detections