Department of Computer Applications 23MX11 - MFCS Calculation MODE of a grouped data

Already, this was discussed in a notes "23mx11 - Introduction to Statistics".

Formula to calculate MODE of a grouped Data.

MODE =
$$l + \left(\frac{(fm-f1)}{(fm-f1)+(fm-f2)}\right) x h$$

l = Lower limit of the modal class

fm = Frequency value of the modal class

f1 = Frequency of class preceding the modal class

f2 = Frequency of class succeeding the modal class

h = width of the modal class

Class with maximum frequency is called the Modal Class.

A Sample problem:

Heights [in cm] of 50 students are recorded and the values are tabulated as below. Compute the MODE.

Height(cm)	125-130	130-135	135-140	140-145	145-150
Number of	7	14	10	10	9
students					
	♠ f1	♠ fm	♠ f2		

Solution:

"Class with maximum frequency is called the Modal Class"

So, the modal class here is 130-135 [Frequency is 14 > all other frequencies]

l = lower limit of the class = 130

h = width of the modal class = 5 [difference between limits]

 f_m = Frequency of the modal class = 14

 f_1 = Frequency of class preceding the modal class = 7

 f_2 = Frequency of class succeeding the modal class = 10

Substituting all these values in the formula, you will get MODE.

MODE =
$$l + \left(\frac{(fm-f1)}{(fm-f1)+(fm-f2)}\right)x$$
 $h = 130 + \left(\frac{(14-7)}{(14-7)+(14-10)}\right)x$ 5 = 133.18

Exercise Problem

Compute the MODE for the given data.

Life times in hours	0-20	20-40	40-60	60-80	80-100	100-120
Frequency	10	35	52	61	38	29

Note:

Please note that, in all of these examples, the upper limit of the class is same as the lower limit of the succeeding class; like 0-20; 20-40; 40-60 and so on.

If the given grouped data is not in this format, convert it into the standard format before computing the MODE.

Example: [only the frequency interval is shown] - Here the upper limit of the class is not the same as lower limit of the succeeding class - so, need to convert the table.

1–10	11-20	21-30	31-40	41-50

Convert this into a standard format to compute the MODE.

Steps:

- 1. Find the difference between the upper limit of succeeding class and the lower limit of the preceding class. In this case it is 1.
- 2. Divide this number by 2: 0.5.
- 3. Subtract this 0.5 with every lower limit and add this with every upper limit.

Now the revised frequency is ready to compute the MODE.

0.5-10.5	10.5-20.5	20.5-30.5	30.5-40.5	40.5-50.5

[Discussed in the notes already].
