# Introduction to File Systems

File systems are fundamental components of operating systems, responsible for organizing and managing data on storage devices. They provide a hierarchical structure for files and directories, enabling efficient access and storage.

by Pratham Borghare



### **Overview of Linux File System**

#### Ext4

Ext4 is the most widely used file system in Linux, known for its performance, reliability, and scalability.

It supports features like journaling, which which helps prevent data loss in case of of system crashes.

### XFS

XFS is another popular file system in Linux, designed for high-performance environments.

It's known for its excellent performance, particularly in read-intensive workloads.

### **Btrfs**

Btrfs is a newer file system with advanced features such as snapshots, copy-on-write, and data deduplication.

It's gaining popularity for its flexibility and data integrity.

```
machdep.cpu.thermai.senson
machdep.cpu.thermal.dynamic_acceleration: 1
machdep.cpu.thermal.invariant_APIC_timer: 1
machdep.cpu.thermal.thresholds: 2
machdep.cpu.thermal.ACNT_MCNT: 1
machdep.cpu.thermal.core_power_limits: 0
machdep.cpu.thermal.fine_grain_clock_mod: 1
machdep.cpu.thermal.package_thermal_intr: 1
machdep.cpu.thermal.hardware_feedback: 0
machdep.cpu.thermal.energy_policy: 0
machdep.opu.xsave.extended_state: 7 832 832 0
machdep.cpu.arch_perf.version: 3
machdep.cpu.arch_perf.number: 4
machdep.cpu.arch_perf.width: 48
machdep.cpu.arch_perf.events_number: 7
machdep.cpu.arch perf events:
```

### **Overview of Unix File System**

#### **UFS**

UFS is the traditional file system used in Unix-based operating systems.

It's known for its simplicity and reliability, and is widely used in systems like Solaris and macOS.

#### **ZFS**

ZFS is a modern file system that offers advanced features like data integrity, compression, and snapshots.

It's used in operating systems like Solaris, FreeBSD, and macOS.

#### HFS+

HFS+ is the standard file system used in macOS.

It's known for its performance and userfriendly features like journaling and file system permissions.



## Similarities between Linux and Unix File Systems

**1** Hierarchical Structure

Both Linux and Unix file systems follow a hierarchical tree structure, with directories and subdirectories organized under a root directory.

**2** File Permissions

Both systems employ file permissions to control access to files and directories.

**3** Standard Utilities

Both systems share common utilities for file manipulation, such as "Is," "cd," "mkdir," and "rm."

4 Concept of Inodes

Both file systems use inodes to store metadata about files, including file type, size, and permissions.



# Differences between Linux and Unix File Systems

| Feature      | Linux            | Unix                       |
|--------------|------------------|----------------------------|
| File Systems | Ext4, XFS, Btrfs | UFS, ZFS, HFS+             |
| Kernel       | Linux Kernel     | Unix Kernel                |
| Open Source  | Yes              | Often proprietary          |
| Portability  | Highly portable  | More platform-<br>specific |

### File System Hierarchy and Structure

1

### **Root Directory**

The root directory, represented by "/", is the top-level directory in the file system hierarchy.

2

### **Subdirectories**

Subdirectories are organized under the root directory, forming a tree structure.

3

### **Files and Directories**

Files and directories are stored within subdirectories, enabling efficient organization and retrieval.



# File Permissions and Access Control



### **Read Permission**

Allows users to view the contents of a file.



### **Execute Permission**

Allows users to run executable files.



### **Write Permission**

Allows users to modify the contents of a file.



### **Ownership**

Each file and directory has an owner, who has specific permissions.





### **Conclusion and Key Takeaways**

Understanding file systems is crucial for efficient data management and system administration.

Linux and Unix file systems share similarities in their structure and functionalities while offering distinct features and implementations.