KUPC2020 spring J: 接頭辞分解

原案, 作成: yamunaku

定義など

文字列 y をいくつかの部分文字列に分割して、その部分文字列すべてが文字列 x の接頭辞となるようにできるとき、「 x は y を分解する」と言うことにする。

整数 $l, r(0 \le l \le r \le |S|-1)$ について、S の l 文字目から r 文字目までの部分文字列を S[l:r] と表すことにする。

アルゴリズム

次のようなアルゴリズムを考える。

- 1. 文字列 $m_0 = S[0:0]$ とする。
- 2. k を 1 から |S|-1 まで動かしながら、以下を行う。
 - m_{k-1} が S[0:k] を分解するとき、文字列 m_k を m_{k-1} とする。
 - m_{k-1} が S[0:k] を分解しないとき、 $S[x:x+|m_{k-1}|-1]=m_{k-1}$ となるような最大の x $(0 \le x \le k-|m_{k-1}|)$ を求め、文字列 m_k を S[x:k] とする。

 $m_{|S|-1}$ が求める答えであることが示せる。

証明

 $V_0 = \{S[0:0]\}$ とする。また、 V_{k-1} の中で長さが最小となるある要素 m_{k-1} について、

- m_{k-1} が S[0:k] を分解するとき、 $V_k = V_{k-1}$
- そうでないとき、 $V_k = \{S[l:k] \mid \exists r (l \leq r < k), S[l:r] \in V_{k-1}\}$

とする。すべての $k(0 \le k \le N-1)$ について、以下の (1) から (6) が成立することが示せる。

- (1) V_k の長さが最小となる要素はただ 1 つ存在する。
- (2) k > 0 ならば、 m_{k-1} は m_k の接頭辞である。
- (3) m_k は S[0:k] を分解する。
- (4) 任意の $p_k \in V_k$ について、 m_k は p_k に含まれ、 m_k は p_k を分解する。
- (5) S[0:k] を分解する任意の文字列 T について、 $p_k \in V_k$ が存在して、 p_k は T の接頭辞となる。
- (6) m_k は S[0:k] を分解する文字列の中で長さが最小となるものである。

次のような流れで証明する。

- 1. (1) を帰納的に示す。
- 2. (2),(3),(4) を同時に帰納的に示す。
- 3. (4) を用いて、(5) を帰納的に示す。
- 4. (3),(5) を用いて、(6) を示す。

1. (1) の証明

 V_k の作り方から、 V_k は 1 つ以上の文字列を含み、 V_k が含む文字列の長さはすべて異なる。したがって、 V_k の長さが最小となる要素はただ 1 つである。

2. (2),(3),(4) の証明

k=0 のとき、(2),(3),(4) は成立する。

- (2) k = 0 だから。
- (3) $m_0 = S[0:0] \ \mathcal{E}bb.$
- (4) V_0 の要素は $m_0 = S[0:0]$ だけだから。

k=k'-1 のときの (2),(3),(4) を仮定し、k=k' のときの (2),(3),(4) を証明する。以下では、視認性のために k' を k に置き換えている。

(2) の証明

 m_{k-1} が S[0:k] を分解するときは $m_k = m_{k-1}$ なので成立。

 m_{k-1} が S[0:k] を分解しないときは、 m_k のある接頭辞 pm が存在して、pm は V_{k-1} の要素となる。 k-1 における (4) の仮定から、pm は m_{k-1} を含む。つまり、 m_k は m_{k-1} を含む。したがって、 m_{k-1} は m_k の接頭辞でなければならない。なぜなら、もしそうでないとすると、 m_k の m_{k-1} が現れる部分以降を 抜き出して作った文字列が V_k に含まれることになり、 m_k の長さが V_k 内の文字列の中で最小であることに 矛盾する。

(3) の証明

 $|m_k|=l_k$ とおく。 m_{k-1} は S[0:k-1] を分解するから、 $S[0:k-l_k]$ も分解する。また、 $S[k-l_k+1:k]=m_k$ である。上で証明した k における (2) より、 m_{k-1} は m_k の接頭辞なのだから、 m_k は S[0:k] を分解する。

(4) の証明

 $|m_k|=l_k$ とおく。 m_{k-1} が S[0:k] を分解するときは $V_k=V_{k-1}$ なので成立。 m_{k-1} が S[0:k] を分解しないとき、 $p_k=S[x:k]\in V_k$ は次の 3 つの場合に分けられる。

- $(a) l_{k-1} < x$
- (b) $k l_k < x \le l_{k-1}$

(c) $x \leq k - l_k$

- (a) のとき、 m_{k-1} は S[0:k-1] を分解するから、S[0:x-1] も分解する。また、S[x:k] は m_{k-1} の接頭辞である。したがって、 m_{k-1} が S[0:k] を分解できてしまうことになり、仮定に反する。
- (b) のとき、k-1 における (4) の仮定から p_k は m_{k-1} を含む。この p_k から m_{k-1} が現れる部分以降を抜き出して作った文字列は、 V_k に含まれる。これは m_k の長さが V_k の中で最小であることに矛盾する。

したがって、(c) の場合しかありえない。k-1 における (3) の仮定より、 m_{k-1} は S[0:k-1] を分解する。上で証明した k における (2) より、 m_{k-1} は m_k の接頭辞である。また V_k の作り方から、ある $p_{k-1} \in V_{k-1}$ が存在して、 p_{k-1} は p_k の接頭辞である。k-1 における (4) の仮定より、 p_{k-1} は m_{k-1} を含み、 m_{k-1} は p_{k-1} を分解する。これらから、 m_k が p_k を分解できることを示せる。以下の図のようにして分解できる。

3. (5) の証明

k=0 のとき、S[0:0] を分解する文字列の先頭の文字は S[0] でなければならないから、(5) は成立する。 k=k'-1 のときの (5) を仮定し、k=k' のときの (5) を証明する。以下では、視認性のために k' を k に置き換えている。

 m_{k-1} が S[0:k] を分解するときは $V_k=V_{k-1}$ である。S[0:k] を分解する文字列は S[0:k-1] も分解するので成立する。

 m_{k-1} が S[0:k] を分解しないとき、S[0:k] を分解するような文字列 t を好きにとる。t は S[0:k-1] を分解するので、(5) の仮定より、 $p_{k-1} \in V_{k-1}$ が存在して、 p_{k-1} は t の接頭辞となる。S[0:k] をいくつ

かの部分文字列に分解して、できた部分文字列すべてが t の接頭辞になったとする。分解してできた部分文字列のうち、最後のものに注目し、これを S[x:k] とおく。定義から S[x:k] は t の接頭辞である。x について、次の 2 つの場合に分けることができる。

- (a) $k |p_{k-1}| < x$
- (b) $x \le k |p_{k-1}|$

 p_{k-1} は t の接頭辞だったから、(a) のとき、S[x:k] は p_{k-1} の接頭辞である。すると、(4) から、S[x:k] は m_{k-1} で分解できることになる。S[0:x-1] は m_{k-1} で分解できていたのだから、S[0:k] も m_{k-1} で分解できてしまい、矛盾する。

したがって、(b) の場合しかありえない。このとき、 p_{k-1} は S[x:k] の接頭辞となるから、 $S[x:k] \in V_k$ でなければならない。したがって $p_k \in V_k$ が存在して、 p_k は t の接頭辞となる。

4. (6) の証明

(3) より、 m_k は S[0:k] を分解する。(5) より、S[0:k] を分解する任意の文字列 t について、 $p_k \in V_k$ が存在して、 p_k は t の接頭辞となるから、 $|t| \geq |p_k| \geq |m_k|$ が成立する。したがって、 m_k は S[0:k] を分解する文字列の中で長さが最小となるものである。

実装

上記のアルゴリズムは、Suffix Array + Longest Common Prefix Array および Segment Tree を用いて 高速に実装できる。計算量は、 $O(|S|(\log |S|)^2)$ である。