Number Theory Handout

January 3, 2008

Fundamental Theorem of Arithmetic: Every $n \ge 0$ Can be expressed in a unique way as

$$\prod_{1 \le (i) \le (k)} p_i^{a_i} = n \text{ With } p_i \text{ prime and } a_i \ge 0.$$

Fermat's little Theorem: For p prime and $(a, p) = 1, a^{p-1} = 1 \pmod{p}$ Wilson's Theorem: $(p-1)! = -1 \pmod{p}$

The above are also in the notes by Naoki Sato.

- 1: a) Prove that for all natural numbers n, 2n + 1 and 3n + 1 are relatively prime.
- b) Prove that kn+1 and (k+1)n+1 are relatively prime, where k is a natural number.
- 2: Let a, b be two relatively prime positive integers. Prove every integer greated than ab a b can be expressed as ax + by for whole numbers x, y. Can you generalize this to n variables?
- **3**: Prove that for p an odd prime such that $p = 1 \pmod{4}$, We must have $((p-1)/2)! = -1 \pmod{p}$ Hint: Use Wilson's theorem.
- **3**: Prove that for all whole numbers m, n, $m^3 + mn^3 + n^2 + 3$ cannot divide $m^2 + n^3 + 3n 1$
- 4: Prove that $a^2 + b^2 + c^2 = 2012$ has no solutions in positive integers.
- 5: Prove $n^4 + 4m^4$ isn't prime for m, n > 1.
- **6**: Let n be a positive integer relatively prime to 6. Prove that $2^{-1} + 3^{-1} + 6^{-1} = 1 \pmod{n}$ Where x^{-1} denotes the multiplicative inverse of x modulo n.

- **7**: Let r(n) be the sum of the remainders when n is divided by 1, 2, 3, ...n. Prove that for infinitely many positive integers k, we have r(k) = r(k-1).
- **8**: For each positive integer n, let g(n) be the numerator of $\frac{n}{\phi(n)}$, and $f(n) = \phi(g(n))^{n^2+1}$. For each n, find f(f(f(...f(n)...))) where there are n iterations of f. HINT: This is not as terrible as it looks.
- **9**: Find all natural numbers n such that n divides $2^n 1$
- **10**: Find all integer a such that $a^4 + 4^a$ is prime.
- ${\bf 11}$: Find all integer solutions to $x_1^9+x_2^9+\ldots+x_8^9=2005.$
- 12: Prove that every positive integer can be written as $x^2+y^2-5z^2$ with x,y,z integers.
- 13: Let P(x) be a polynomial with integer coefficients. n is an integer, and define a_i recursively by $a_0 = n$, $a_i = P(a_{i-1})$. Prove that if $a_k = n$ for some positive integer k, then $a_2 = n$.
- **14**: (APMO 1994) Find all n such that n can be written as $n = a^2 + b^2$ such that every prime not exceeding \sqrt{n} divides ab.
- 15: Prove that for any n > 1, there is a power of 10 with n digits either in base 2 or in base 5, but not in both.
- **16**: Given a set S of 100 positive integers ,prove that there are 11 numbers a_i in S such that EITHER a_1 divides a_2 divides a_3 ..., OR none of the a_i divide each other. Must there be at least 2 distinct, but not necessarily disjoint such sets?
- 17: Let $a_1, a_2, ... a_{n+1}$ be a sequence of positive integers with $a_1 = a_{n+1}$. Prove that $\prod_{1 \le i \le n} (a_i + 2a_{i+1})$ is not a power of 2.

The following problems are designed to get you more comfortable working modulo primes

- 18: Let p be an odd prime. Prove that exactly half of the numbers 1, 2, ..., p-1 are quadratic residue modulo p.
- 19: Prove that if x is a quadratic non-residue modulo a prime p, and S a set exhausting all quadratic residues, then the set xS, which consists of the elements xs with $s \in S$

exhausts the set of quadratic non-residues modulo p.

20: Let p be an odd prime. Prove that there exists an x such that $x^2 + 1$ is not a square modulo p.

21: p is a prime. Prove that every number n can be written as $x^2 + y^2$ modulo p.

22:(IMO 2003, problem 6) Prove that for each prime p, there is a prime q such that $n^p - p$ is not divisible by q for any integer n, by first solving the following 2 problems.

23: Let $N=1+p+p^2+..+p^{p-1}$. Prove that N has a prime factor q which is not equal to 1 (mod p^2)

24 Prove that q does not divide p-1.

Now show that this q solves problem 22