Ponavljanje

1.1 Osnovno o matricama

- Neka ja zadana matrica A s m redaka, n stupaca i koeficijentima iz polja \mathbb{R} . Skup svih takvih matrica A označavat ćemo s $\mathbb{R}^{m \times n}$.
- Skup $\mathbb{R}^{m \times n}$ zajedno s operacijom zbrajanja matrica i množenja matrica skalarima iz \mathbb{R} je vektorski prostor ($\mathbb{R}^{m \times n}$, +, ·) tj. vrijedi 8 aksioma.
- Za matrice $A \in \mathbb{R}^{m \times n}$ i $B \in \mathbb{R}^{n \times r}$ kažemo da su ulančane. Za ulančane matrice možemo definirati produkt matrica $AB[i,j] = \sum_{k=1}^{r} a_{ik}b_{kj}$.
- Kažemo da je matrica $A \in \mathbb{R}^{n \times n}$ **regularna** ako postoji matrica $B \in \mathbb{R}^{n \times n}$ takva da vrijedi AB = BA = I. Tu matricu nazivamo **inverz** matrice A i označavamo s A^{-1} . Matrica koja nema inverz se naziva singularna matrica.
- **Transponirana** matrica matrice A u oznaci A^T dobivena je zamjenom redaka sa stupcima matrice A.
- Matrica je **simetrična** ako je $A = A^T$
- Determinantu možemo računati koristeći Laplaceov razvoj determinante tj. $det(A) = \sum_{j=i}^{n} a_{ij}Aij$, gdje je $A_{ij} = (-1)^{i+j}\delta_{ij}$, a δ_{ij} je determinanta matrice koja nastaje tako da iz matrice A uklonimo i-ti redak i j-ti stupac.
- Neka je $A \in \mathbb{R}^{n \times n}$. Adjunkta matrice A je matrica $\tilde{A} = [x_{ij}] \ x_{ij} = A_{ji}$, gdje je $A_{ji} = (-1)^{j+i} M_{ji}$
- Matrica $A\in\mathbb{R}^{n\times n}$ je regularna ako i samo ako je $det A\neq 0$. U tom slučaju je inverzna matrica A^{-1} dana formulom $A^{-1}=\frac{1}{det A}\tilde{A}$
- Za skup vektora $\{x_1, x_2, \cdots, x_n\}$ kažemo da je linearno nezavisan ako se niti jedan vektor ne može zapisati kao linearna kombinacija preostalih tj. $\sum_{i=1}^{n} \alpha_i x_i = 0 \Rightarrow a_i = 0 \forall i = 1,...,n$
- Neka je zadana $A \in \mathbb{R}^{m \times n}$ i neka su S_1, \dots, S_n njezini stupci. Rang matrice, $r(A) = dim[\{S_1, \dots, S_n\}]$. Dakle, **rang** matrice je broj linearno nezavisnih stupaca matrice A. Može se pokazati kako je rang matrice jednak broju linearno nezavisnih redaka matrice.
- $r(A) \le min\{m, n\}$, ako je $r(A) = min\{m, n\}$ kažemo da je A punog ranga

- Matrica $A \in \mathbb{R}^{n \times n}$ je regularna ako i samo ako je r(A) = n
- Sustav linearnih jednadžbi Ax = b je rješiv ako i samo ako vrijedi $r(A) = r(A_p)$, gdje je A_p proširena matrica sustava.
- Neka je V vektorski prostor nad \mathbb{R} . **Skalarni produkt** je preslikavanje $<\cdot,\cdot>$: $V\times V\to\mathbb{R}$ za koje vrijedi nenegativnost, aditivnost i homogenost u prvom argumentu, simetričnost.
- Norma na vektorskom prostoru je funkcija $||\cdot||:V\to\mathbb{R}$ definirana s $||x||=\sqrt{< x,x>}$

Primjer: euklidska (2) norma
$$||x||_2 = \sqrt{\sum_{i=1}^{n} |x_i|^2}$$

• Za dva vektora x, y kažemo da su **ortogonalni** ako je $x^Ty = 0$. Za vektor x kažemo da je **normaliziran** ako je ||x|| = 1. Za kvadratnu matricu A kažemo da je **ortogonalna** ako su joj svi stupci međusobno ortogonalni tj. $AA^T = A^TA = I$

1.2 Svojstvene vrijednosti

- Neka je dana matrica $A \in \mathbb{R}^{n \times n}$. Za skalar $\lambda \in \mathbb{C}$ kažemo da je **svojstvena vrijednost** matrice A ako postoji $x \in \mathbb{R}^n$, $x \neq 0$ takav da je $Ax = \lambda x$. Skup svih svojstvenih vrijednosti matrice A se naziva spektar, pripadni vektor x se naziva **svojstveni vektor**
- Neka je $A \in \mathbb{R}^{n \times n}$. Polinom $k_A(\lambda) = det(A \lambda I)$ naziva se svojstveni polinom matrice A.
- λ_0 je svojstvena vrijednost matrice A ako i samo ako je $k_A(\lambda_0)=0$

1.3 Kvadratna forma i definitnost matrice

- Neka je zadana matrica $A \in \mathbb{R}^{n \times n}$ i vektor $x \in \mathbb{R}^n$. Vrijednost $x^T A x$ se naziva kvadratna forma.
- Neka je $A \in \mathbb{R}^{n \times n}$ simetrična matrica.
 - Matrica A je **pozitivno (negativno)definitna** ako za svaki $x \in \mathbb{R}^n$, $x \neq 0$ vrijedi da je $x^T A x > 0$ ($x^T A x < 0$).
 - Matrica A je pozitivno (negativno) definitna ako i samo ako je $\lambda_i \geq 0$ ($\lambda_i \leq 0$) za svaki i
 - Matrica A je **pozitivno** (negativno)semidefinitna ako za svaki $x \in \mathbb{R}^n$, $x \neq 0$ vrijedi da je $x^T A x \geq 0$ ($x^T A x \leq 0$)

- Matrica A je pozitivno (negativno) semi definitna ako i samo ako je $\lambda_i>0$ ($\lambda_i<0$) za svaki i
- Matrica koja nije niti pozitivno niti negativno definitna je indefinitna
- Pozitivno (negativno) definitne matrice su uvijek punog ranga
- Jedna matrica od posebne važnosti je **Gramova** matrica G.
- Za zadanu matricu A, definiramo $G = A^T A$
- Gramova matrica *G* je simetrična
- Gramova matrica *G* je pozitivno semidefinitna
- G je regularna ako i samo ako je A regularna

Dijagonalizacija simetrične matrice

- Neka je zadana simetrična matrica $G \in \mathbb{R}^{n \times n}$ te neka su $\lambda_1, \dots, \lambda_n$ njene svojstvene vrijednosti i x_1, \dots, x_n pripadni svojstveni vektori.
- Za simetričnu matricu vrijedi da su joj sve svojstvene vrijednosti realni brojevi
- Matricu G možemo dijagonalizirati tj. zapisati kao $G = Q\Lambda Q^*$.
- Λ je dijagonalna matrica sa svojstvenim vrijednostima na dijagonali, a Q ortogonalna matrica čiji su stupci svojstveni vektori matrice G

SVD dekompozicija

Neka je $A \in \mathbb{R}^{m \times n}$ proizvoljna matrica. Matrica A se može rastaviti kao

$$A = \hat{U} \begin{bmatrix} \Sigma \\ 0 \end{bmatrix} V^* = U \Sigma V^*,$$

gdje su matrice $\hat{U} = [U, U_0] \in \times$ i $V \in \mathbb{R}^{n \times n}$ unitarne, a $\Sigma = diag(\sigma_1, \sigma_2, \cdots, \sigma_n)$ dijagonalna, uz $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$.

- Stupce matrice U nazivamo lijevim singularnim vektorima
- Stupce matrice *V* nazivamo desnim singularnim vektorima
- Dijagonalne vrijednosti $\sigma_i \ \forall i=1,\cdots,n$ nazivamo singularnim vrijednostima

1.4 Funkcije više varijabli

Neka je zadana funkcija $f: \Omega \subseteq \mathbb{R}^n \to \mathbb{R}$, diferencijabilna u $P_0 \in \Omega$ i neka su $\frac{\delta f}{\delta x i}(P_0)$ njene parcijalne derivacije u točki P_0 . Gradijent funkcije f u točki P_0 je $grad f(P_0) = \nabla f(P_0) = \left[\frac{\delta f}{\delta x_1}(P_0), \cdots, \frac{\delta f}{\delta x_n}(P_0)\right]$ Neka funkcija f ima drugi diferencijal u točki P_0 , tada definiramo

$$\mathcal{D}^{2}f(P_{0}) = \nabla^{2}f(P_{0}) = \begin{bmatrix} \delta_{11}f_{(}P_{0}) & \delta_{12}f(P_{0}) & \cdots & \delta_{1n}f(P_{0}) \\ \vdots & \vdots & & \vdots \\ \delta_{n1}f_{(}P_{0}) & \delta_{n2}f(P_{0}) & \cdots & \delta_{nn}f(P_{0}) \end{bmatrix}$$

Matrica $\mathcal{D}^2 f(P_0)$ se naziva Hessijan funkcije f s obzirom na x. Prijetimo kako je zbog *Schwarzove* leme, Hessijan simetrična matrica.

Neka je zadana funkcija $\mathbf{f}:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}^m$, $\mathbf{f}=(f_1,\cdots,f_m)$, gdje je svaka $f_i:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$.

Tada je
$$\frac{\delta \mathbf{f}}{\delta x_i}(P_0) = (\frac{\delta f_1}{\delta x_i}(P_0), \cdots, \frac{\delta f_m}{\delta x_i}(P_0))$$
 i

$$\mathcal{D}_{\mathbf{f}}(P_0) = \begin{bmatrix} \delta_1 f_1(P_0) & \delta_2 f_1(P_0) & \cdots & \delta_n f_1(P_0) \\ \vdots & \vdots & & \vdots \\ \delta_1 f_m(P_0) & \delta_2 f_m(P_0) & \cdots & \delta_n f_m(P_0) \end{bmatrix}.$$

 $\mathcal{D}_{\mathbf{f}}(P_0)$ se naziva Jacobijeva matrica.

1.5 Ekstremi funkcija više varijabli

- Neka je $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$. Kažemo da je $P_0\in\Omega$ točka [strogog] minimuma ako je $\forall P\in\Omega\setminus\{P_0\}$ $f(P)\geq f(P_0)$ [$f(P)>f(P_0)$]
- Kažemo da je $P_0 \in \Omega$ točka [strogog] lokalnog minimuma ako postoji okolina U točke P_0 tako da je $\forall P \in (\Omega \cap U) \setminus \{P_0\}$ $f(P) \geq f(P_0)$ $[f(P) > f(P_0)]$
- Ako je P_0 točka lokalnog ekstrema diferencijabilne funkcije $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$ onda je P_0 i stacionarna točka funkcije $(\frac{\delta f}{\delta x i}(P_0)=0\ \forall i=1,\cdots,n)$
- Neka je P_0 stacionarna točka funkcije $f:\Omega\subseteq\mathbb{R}^n\to\mathbb{R}$. Ako je $\mathcal{D}^2f(P_0)$ pozitivno definitna kvadratna forma onda je P_0 točka lokalnog minimuma.

1.6 Linearni problem najmanjih kvadrata

• Pretpostavimo da su nam zadane točke x_1, x_2, \cdots, x_m te vrijednost funkcije f u tim točkama, $f(x_1), f(x_2), \cdots, f(x_m)$. Želimo odrediti pravac $g(x) = \Theta_0 + \Theta_1 x$ koji najbolje aproksimira funkciju f.

Ako takav pravac g postoji onda mora zadovoljavati sljedeće jednadžbe

$$\Theta_0 + \Theta_1 x_1 = f(x_1) \cdots \Theta_0 + \Theta_1 x_m = f(x_m)$$

Što se može zapisati u matričnom obliku

kao
$$X\Theta = y$$
, $X = \begin{bmatrix} 1 & x_1 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix}$, $\Theta = [\Theta_0, \Theta_1]^T$, $y = [f(x_1), \cdots, f(x_m)]^T$.

$$\Theta = [\Theta_0, \Theta_1]^T, y = [f(x_1), \dots, f(x_m)]^T.$$

Općenito, gornji sustav ne mora imati rješenje stoga tražimo parametre Θ_0, Θ_1 takve da $||X\Theta - y||_2^2$ bude što manje.

1.7 Konveksna funkcija

- Kažemo da je skup $\Omega \subseteq \mathbb{R}^n$ konveksan ako za sve $x,y \in \Omega$ vrijedi $\lambda x + (1 \lambda$) $y \in \Omega$ za svaki $\lambda \in [0,1]$
- ullet Neka je $\Omega\subseteq\mathbb{R}^n$ konveksan. Kažemo da je funkcija $f:\Omega\to\mathbb{R}$ konveksna ako vrijedi $f(\lambda x + (1 - \lambda y)) \le \lambda f(x) + (1 - \lambda y) f(y) \ \forall x, y \in \Omega, \forall \lambda \in [0, 1].$
- Neka je $f:\Omega\to\mathbb{R}$ konveksan funkcija na konveksnome skupu. Ako je P_0 točka lokalnog minimuma funkcije f tada je P_0 i točka globalnog minimuma.

