Assignment One

Name:	阻天宇
Student Number:	1950698

Direction:

Please answer all the questions below and hand in your answers before the due day. All work, must be handed in **on time**.

Due day:

April. 12, 2021

Please hand it in by the class time.

Questions:

1. For each of the following functions, indicate how much the function's value will change if its argument is increased fourfold.

a.
$$log_2 n$$
 b. \sqrt{n} c. n d. n^2 e. n^3 f. 2^n

解:
$$a. \log_2 4n - \log_2 n = \log_2 4 = 2$$

b,
$$\frac{\sqrt{4n}}{\sqrt{n}} = \lambda$$

C,
$$\frac{4n}{n}$$
 = 4

$$d.\frac{16n^2}{n^2} = 16$$

$$e \cdot \frac{64n^3}{n^3} = 64$$

$$f = (2^n)^3$$

```
2. Prove (by using the definitions of the notations involved) or disprove (by giving a specific counterexample) the following assertions.
```

a. If
$$t(n) \in O(g(n))$$
, then $g(n) \in \Omega(t(n))$.

b.
$$\Theta(\alpha g(n)) = \Theta(g(n))$$
, where $\alpha > 0$.

c.
$$\Theta(g(n)) = O(g(n)) \cap \Omega(g(n)).$$

d. For any two nonnegative functions t(n) and g(n) defined on the set of nonnegative integers, either $t(n) \in O(g(n))$, or $t(n) \in \Omega(g(n))$, or both.

解: a. 正确 证:由tin) E DIgin) 知 tin) < cgin) n>n。 AC>O

$$\Rightarrow \frac{1}{C} t(n) \leq g(n) \quad \text{xin} \Rightarrow n_0 \quad \text{i.gin} \in \Omega(t(n))$$

b.正确证:没fin)∈ Θ(dgin))下证fin)∈ Θ(gin))

bagun) \leq fin) \leq Cagin) \Diamond Ci = \Diamond Ci (\Diamond bi | gn) \leq fin) \leq Ci (\Diamond in) \Diamond Di = \Diamond bi = \Diamond

ixfin) E (Gin) 下证fin) E (Agin)

C、正确 证: 易证 fin) E 回(gim) 时 fin) E O(gin)) N I(gin))
下证 fin) E O(gin)) N I(gin)) 时 fin) E 回(gin))

illi finie Olgini) N sigini) => N>no 目b, C 使 b(gini) <fin) < Clgini)

由田民义得fin) E田(gin)) 二〇(gin)) 「瓜(gin))

(H) (gin))= O (gin)) N D (gin)) D (gin)) T D (gin))

d(不正确 tin)=cosn+1 gin)=sinn+1

3. Solve the following recurrence relations.

a.
$$x(n) = 3x(n-1)$$
 for $n > 1$, $x(1) = 4$

b.
$$x(n)=x(n-1)+n$$
 for $n>0$, $x(0)=0$

c.
$$x(n)=x(n/2)+n \ ext{ for } n>1$$
 , $x(1)=1$ (solve for $n=2^k$)

解、
$$(0, \chi(n) = 3\chi(n-1) = 3^2\chi(n-1) = \cdots = 3^{n-1}\chi(1) = 4\cdot3^{n-1}$$

b、
$$N=1$$
 时 $\chi(1)=1$ $N=1$ 时 $\chi(2)=3$ 指例 $\chi(N)=\frac{N(N+1)}{2}$ 下 用 数 写 内 沟 占 证 明

$$\chi(k+1) = \chi(k) + k+1 = (\frac{k}{2} + 1)(k+1) = \frac{(k+1)L(k+1)+1}{2}$$

That there is $\chi(n) = \frac{n(n+1)}{2}$ for $\frac{k}{2}$

C.
$$\chi(\lambda^k) = \chi(\lambda^{k-1}) + \lambda^k$$

$$= \chi(7_{\beta-7}) + 7_{\beta} + 7_{\beta-1}$$

$$= \dots = \sum_{k=1}^{k-1} + \dots + \sum_{l=1}^{l} + \chi_{l} \sum_{k=k}^{k-k}$$

$$= 2^{k+1} - 1 = 2.2^{k} - 1 = 2^{k-1}$$