

Issues with Indirect Comparisons

Melvin (Skip) Olson, PhD Basel Biometrics Society May 10, 2011

Agenda

Agenda Items

Introduction to Health Economics

Methods for making Indirect Comparisons

Issue 1: Data Extraction

Issue 2: Metric

Issue 3: Multiple Endpoints

Registration only the first step towards market access

What challenges are we facing?

NHS 'preparing to cut millions of operations': Patients will lose out to ensure £20bn savings

- Primary care trusts, which commission care, are already compiling lists of "low value" operations that would no longer be provided
- These lists are clothed in the language of evidence but they represent target reductions based on cost and volume, sometimes ignoring the potential benefit to individual patients.
- Earlier this year, the Government's rationing body said more cuts in medical treatments are planned to save the NHS at least £600 million.

Payer Dilemma: not everything is affordable for all patients

Limited Resources

Infinite + Changing
Demand

U NOVARTIS

5 | Indirect Comparisons Training Seminar | M Olson | Feb 2011 | Business Use Only

Need to show overall value of products

- How do we measure "overall value"?
- How does it relate to development of pharmaceuticals?
- Consider the next couple examples to get a feel for how value is assessed.

Which one would you choose?

Lipstick A lasts 4 hours

costs €4

Lipstick B lasts 24 hours

costs €24

Extra 20 hours costs €20, are you willing to pay for this? Is this good overall value? Why or why not?

7 | Indirect Comparisons Training Seminar | M Olson | Feb 2011 | Business Use Only

Which one offers better overall value?

- What criteria did you use to make your decision?
- •What does this have to do with pharmaceuticals?

- Price: 9,990 EUR
- Passengers: 2
- Space: 220 340 L
- Fuel: 4.3 L/100 km (54mpg)
- CO₂ Emissions: 103 g/km
- Airbags: 2
- 0 100 km/h in 16.7 sec
- Fun factor: X

- Price: 46,150 EUR
- Passengers: 2
- Space: 280 L
- Fuel: 9.4 L/100 km (25mpg)
- CO₂ Emissions: 221 g/km
- Airbags: 2
- 0 100 km/h in 5.9 sec
- Fun factor: >>X

Reconsider the criteria...

• Price: 9,990 EUR

Cost

Price: 46,150 EUR

Passenners: 2

Passengers: 2

Space: 220 – 340 L

Efficacy

Fuel: 4.3 L/100 km (54mpg)

` ' '

n |

CO₂ Emissions: 103 g/km

Safety

Airbags: 2

■ 0 – 100 km/h in 16.7 sec

Fun factor: X

QoL

CO₂ Emissions: 221 g/km

Need to combine these

criteria to define overall value

Airbags: 2

■ 0 – 100 km/h in 5.9 sec

Fun factor: >>X

1 NOVARTIS

9 | Indirect Comparisons Training Seminar | M Olson | Feb 2011 | Business Use Only

Trading off benefits, harms and costs

How do you get cost/benefit?

Costs

More expensive ... but some cost savings

More effective ... but some side effects

Current treatment

New treatment

Benefit

Cost Effectiveness is a technique for quantifying overall value

If the ICER is within an acceptable range (threshold) defined by the healthcare payer/provider, then the treatment is likely to be accepted

Cost-effectiveness: Tool for decision making Good overall value?

Demonstrating Differential Value of our Products

Ideal Scenario

13 | Indirect Comparisons Training Seminar | M Olson | Feb 2011 | Business Use Only

Indirect Comparison

- Refers to a comparison of different healthcare interventions using data from separate studies, in contrast to a direct comparison within randomised controlled trials
- Often used because of a lack of, or insufficient, evidence from head-to-head comparative trials

Simple Comparison

Athena Nike

Parthenon

Athena Nike smaller than Parthenon

Poseidon at Sounion

A<B, B<C \rightarrow A<C Therefore, Nike smaller than Poseidon

Easy comparison because we can measure directly

NOVARTIS

15 | Indirect Comparisons Training Seminar | M Olson | Feb 2011 | Business Use Only

Indirect comparison – simple case

$$d_{AB} = d_{PB} - d_{PA}$$

Indirect Comparison – Simple Case 1

'Trial 1: Porsche versus Golf'

Porsche - Golf = 2s

'Trial 2: Volvo versus Golf'

Volvo - Golf = 8s

→ Indirect Comparison:Volvo versus Porsche: 8-2=6s

17 | Indirect Comparisons Training Seminar | M Olson | Feb 2011 | Business Use Only

Volvo faster than a Porsche?

- Do you believe it?
- Why or why not?
- Were the trials equal? Were they done in the same setting?
- Trial 1: Race was in the snow
- Trial 2: Race was on a dry road
- Road conditions might have influenced the results
- Can we adjust for the differences?

Standard Methods for making Indirect Comparisons

- **Bucher Indirect Treatment Comparison:**
- II. Lumley Network Meta-analysis for Indirect Treatment Comparisons
- III. Models for Multi-parameter Synthesis and Consistency of Evidence
- IV. Sampling method for indirect comparison using individual patient data for just one treatment
- V. Mixed Treatment Comparison Method

19 | Indirect Comparisons Training Seminar | M Olson | Feb 2011 | Business Use Only

Mixed Treatment Comparisons

Issue 1: Data Extraction

Example from Osteoporosis

Want to compare the RR on non-vertebral fractures of alendronate to etidronate

- Alendronate: multiple trials comparing alendronate to placebo
- Etidronate: the same

One approach is the Bucher approach, i.e. meta-analysis for each compound against placebo and a "comparison" of the meta-analysis results

- Canadian reimbursement agency: alendronate 5 studies
- UK NICE: alendronate 6 studies
- Cochrane analysis: alendronate 6 studies

But, it gets worse...

21 | Indirect Comparisons Training Seminar | M Olson | Feb 2011 | Business Use Only

Do we know our data? Different studies and denominators

Numbers are n/N for treatment groups, non-vertebral fracture

Study	NICE	DTH	Cochrane	
Bone	9/93	?	?	
Black 1996	122/1022	122/1022	122/1022	
Cummings 1998	261/2214	261/2214	261/2214	
Liberman 1995	45/ 597	45/ 500	45/ 597	
Lindsay	15/214	?	?	
Pols 1999	19/ 950	19/ 792	19/ 950	
Greenspan 1998	?	3/ 46	3/ 60	
Ascot Evans 2003	?	?	0/95	

Issue 2: Metric

How do we summarize results of an MTC?

Usually supplement point estimates and Crls with "probability of being best"

Let's look at an example of what can happen

23 | Indirect Comparisons Training Seminar | M Olson | Feb 2011 | Business Use Only

MTC: Relative effects vs. placebo

Treatment	ORª	95% Crl	Ranking	Probability of being the best treatment (%)			
Zoledronic acid	0.28	0.22-0.35	1	98.9			
Ibandronate	0.49	0.32-0.72	2	1.0			
Alendronate	0.51	0.41-0.63	3	0.1			
Risedronate	0.57	0.44-0.73	4	0.0			
^a OR < 1.0 shows an advantage of treatment over placebo.							

Jansen et al, Current Medical Research and Opinion, Vol 25, No. 8, 2009, 1861-1868

Issue 3: Multiple Endpoints

We typically have more than one efficacy endpoint

Multiple sclerosis: disability, relapses, MRI Osteoporosis: vertebral, hip, non-vertebral fractures

Question: Do we treat an endpoint or a patient?

Hopefully we're treating patients so we want to know which comparator works best at a patient level

Need to combine endpoints in our MTC

1 NOVARTIS

25 | Indirect Comparisons Training Seminar | M Olson | Feb 2011 | Business Use Only

MTC: Multiple endpoints

	Vertebral fractures			Hip fractures		Non-vertebral-non-hip fractures			
Treatment	OR*	95% Crl	P (Best)	OR*	95% Crl	P (Best)	OR*	95% Crl	P (Best)
Zoledronic acid	0.28	0.22 to 0.35	79.1%	0.59	0.41 to 0.82	46.5%	0.79	0.66 to 0.93	9.0%
Alendronate	0.51	0.41 to 0.63	0.0%	0.63	0.39 to 0.95	36.6%	0.87	0.75 to 1.00	1.0%
Risedronate	0.57	0.44 to 0.73	0.0%	0.84	0.44 to 1.43	10.6%	0.61	0.41 to 0.87	87.1%
Ibandronate	0.49	0.32 to 0.72	0.7%	2.02	0.43 to 6.45	5.4%	1.14	0.78 to 1.60	0.4%
Etidronate	0.45	0.16 to 0.95	20.2%	12.90	0.86 to >25	0.9%	1.18	0.65 to 1.99	2.5%

Jansen et al, Seminars in Arthritis and Rheumatism, Vol 40, No. 4, 2011, 275-284.e2

Weighing different endpoints

^{*}Weighted according to event costs: vertebral fractures £539 in the 1st year; hip fractures £7532 in the 1st year; non-vertebral-non-hip fractures £692.

^{***} Weighted according to incidence: vertebral fractures 0.0027 events per year; hip fractures 0.0021 events per year; non-vertebral-non-hip fractures 0.0068 events per year. Sources: Stevenson et al., 2005; Stevenson et al., 2007.

^{**} Weighted according to impact on Quality of life (i.e. utility as measured on a 0 to 1 scale): vertebral fractures 0.626 QALYs in the 1st year, hip fractures 0.792 QALYs in the 1st year, non-vertebral-non-hip fractures 0.886 QALYs.