NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Teo Wei Hao

MA4211 **Functional Analysis** AY 2008/2009 Sem 2

Question 1

(a) Notice that $T: X \to Y$ is a well-defined function, with T(x) = y iff Ax = By for all $x \in X$ and $y \in Y$. Also, for all $x \in X$, we have $Ax = (B \circ T)(x)$.

Now let $x_1, x_2 \in X$, $\alpha \in \mathbb{C}$, and $y_1, y_2 \in Y$ such that $T(x_1) = y_1$ and $T(x_2) = y_2$.

This implies that $Ax_1 = By_1$ and $Ax_2 = By_2$.

Thus $A(\alpha x_1 + x_2) = \alpha A x_1 + A x_2 = \alpha B y_1 + B y_2 = B(\alpha y_1 + y_2)$.

This give us $T(\alpha x_1 + x_2) = \alpha y_1 + y_2 = \alpha T(x_1) + T(x_2)$, i.e. T is linear.

We can now simplify the notation of T(x) to Tx now that it is linear.

Let $(x_n)_{n\in\mathbb{Z}^+}$ be a sequence in X such that $(x_n)_{n\in\mathbb{Z}^+}$ and $(Tx_n)_{n\in\mathbb{Z}^+}$ converges to $x\in X$ and $y\in Y$ respectively.

Since A is bounded linear, it is continuous, and so $(Ax_n)_{n\in\mathbb{Z}^+}$ converges to Ax.

Similarly, B is continuous, and so $(Ax_n)_{n\in\mathbb{Z}^+}=(BTx_n)_{n\in\mathbb{Z}^+}$ converges to By.

By uniqueness of limit, we have Ax = By, i.e. Tx = y, and thus the graph of T is closed in $X \oplus Y$.

Since X and Y are Banach spaces, by Closed Graph Theorem, we have T to be bounded.

(b) Let $(m_k)_{k\in\mathbb{Z}^+}$ be a sequence in M that converges to some $h\in H$. We are given that there exists $m \in M$ such that m is the projection of h in M, i.e. $h - m \perp M$.

Let $\varepsilon \in \mathbb{R}^+$. Then there exists $K \in \mathbb{Z}^+$ such that $||m_K - h||_H < \varepsilon$.

Since M is a subspace of H, we have $m - m_K \in M$, and so $\langle h - m, m - m_K \rangle = 0$. Thus,

$$||h - m||_H^2 \le ||h - m||_H^2 + 2\operatorname{Re}(\langle h - m, m - m_K \rangle) + ||m - m_K||_H^2$$

= $||(h - m) + (m - m_K)||_H^2$
= $||h - m_K||_H^2 < \varepsilon^2$,

i.e. $||h-m||_H < \varepsilon$. Thus we conclude that $||h-m||_H = 0$, i.e. $h = m \in M$, and so M is closed.

Question 2

(a) Since $z \in X - M$, we have M to be a proper closed subspace of X, and d(z, M) > 0. Let $N = \operatorname{span}(M \cup \{z\})$, and $\lambda: N \to \mathbb{C}$ be a linear functional such that $\lambda(x) = 0$ for all $x \in M$, and $\lambda(z) = d(z, M)$ (this can be constructed by extension from the zero functional on M).

For all $m \in M$, we have $|\lambda(m)| = 0$, and for all $\alpha \in \mathbb{C} - \{0\}$, we have,

$$|\lambda(m+\alpha z)| = |\alpha|d(z,M) \leq |\alpha| \left\|z - \frac{-m}{\alpha}\right\|_X = \|m+\alpha z\|_X.$$

And so λ is a bounded linear functional with $\|\lambda\| \leq 1$.

Let $(m_k)_{k\in\mathbb{Z}^+}$ be a sequence in M such that $(\|z-m_k\|_X)_{k\in\mathbb{Z}^+}$ converges to d(z,M) from above. Then for all $\varepsilon\in\mathbb{R}^+$, there exists $K\in\mathbb{Z}^+$ such that $\frac{d(z,M)}{\|z-m_K\|_X}>1-\varepsilon$.

This give us $|\lambda(z - m_K)| = d(z, M) = \frac{d(z, M)}{\|z - m_K\|_X} \|z - m_K\|_X > (1 - \varepsilon) \|z - m_K\|_X$.

Thus $\|\lambda\| > 1 - \varepsilon$ for all $\varepsilon \in \mathbb{R}^+$, i.e. $\|\lambda\| = 1$.

Therefore by Hahn-Banach Theorem, we can extend λ to $f \in X^*$ with $||f|| = ||\lambda|| = 1$.

Now we would like to deduce that $||x||_X = \sup\{|g(x)| \mid g \in X^*, ||g|| = 1\}$ for all $x \in X$ from the above.

Firstly, it is trivial to see that $\sup\{|g(0_X)| \mid g \in X^*, ||g|| = 1\} = 0 = ||0_X||_X$.

Next, we consider $z \in X - \{0_X\}$. For all $g \in X^*$, ||g|| = 1, we have $|g(z)| \le ||g|| ||z||_X = ||z||_X$.

Thus $\sup\{|g(z)| \mid g \in X^*, ||g|| = 1\} \le ||z||_X$.

Now, let $M = \{0_X\}$, which is a proper closed subspace of X.

Then by the above, there exists $f \in X^*$ such that ||f|| = 1 and $|f(z)| = |d(z, M)| = ||z||_X$.

Thus, we conclude that $\sup\{|g(z)| \mid g \in X^*, ||g|| = 1\} = ||z||_X$.

(b) For all $n \in \mathbb{Z}^+$, let $y_n = x_n - x_{n-1}$.

Then $(y_n)_{n\in\mathbb{Z}^+}$ is a sequence in X such that $y_1=b-a$, and for all $n\in\mathbb{Z}^+$, we have $y_{n+1}=\frac{-y_n}{2}$.

This give us $y_{n+1} = (-1)^n \frac{b-a}{2^n}$, and so $\sum_{k=1}^{\infty} \|y_k\|_X = \|b-a\|_X \sum_{k=1}^{\infty} \frac{1}{2^{k-1}} = 2\|b-a\|_X < \infty$.

Since X is Banach, we have $\sum_{k=1}^{\infty} y_k$ to exists.

Using the fact that $\sum_{k=1}^{\infty} \left(\frac{-1}{2}\right)^{k-1} = \frac{2}{3}$, we get $\sum_{k=1}^{\infty} y_k = \frac{2}{3}(b-a)$.

For all $n \in \mathbb{Z}^+$, since $\sum_{k=1}^n y_k = x_n - x_0$, we have,

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \left(x_0 + \sum_{k=1}^n y_k \right) = x_0 + \sum_{k=1}^\infty y_k = a + \frac{2}{3}(b - a) = \frac{2b + a}{3}.$$

Question 3

MA4211

(a) We notice that the fact that f is a well-defined function has been established in lecture.

For all $x \in H$, let $(x_n)_{n \in \mathbb{Z}^+}$ be a sequence in H that converges to x.

Let $\varepsilon \in \mathbb{R}^+$. Then there exists $N \in \mathbb{Z}^+$ such that for all $n \in \mathbb{Z}_{\geq N}$, we have $||x_n - x|| < 1$ and

$$||x_n - x|| < \frac{1}{8(||f(x) - x|| + 1)}.$$

For all $n \in \mathbb{Z}_{\geq N}$, since $f(x), f(x_n) \in S$, we have,

$$||f(x_n) - x|| \le ||f(x_n) - x_n|| + ||x_n - x|| \le ||f(x) - x_n|| + ||x_n - x|| \le ||f(x) - x_n|| + 2||x_n - x||.$$

Also, since S is convex, we have $\frac{f(x) + f(x_n)}{2} \in S$, and so $||x - f(x)|| \le \left| \left| x - \frac{f(x) + f(x_n)}{2} \right| \right|$.

Together with Parallelogram Law, we have,

$$||f(x_n) - f(x)||^2 = ||(x - f(x)) - (x - f(x_n))||^2$$

$$= 2(||x - f(x)||^2 + ||x - f(x_n)||^2) - ||(x - f(x)) + (x - f(x_n))||^2$$

$$= 2(||x - f(x)||^2 + ||x - f(x_n)||^2) - 4 \left| \left| x - \frac{f(x) + f(x_n)}{2} \right| \right|^2$$

$$\leq 2(||f(x_n) - x||^2 + ||f(x) - x||^2) - 4||f(x) - x||^2$$

$$= 2(||f(x_n) - x|| + ||f(x) - x||)(||f(x_n) - x|| - ||f(x) - x||)$$

$$\leq 8(||f(x) - x|| + ||x_n - x||)||x_n - x|| < \varepsilon,$$

i.e. $(f(x_n))_{n\in\mathbb{Z}^+}$ converges to f(x). This implies that f is continuous.

(b) Let us have $\langle x, y \rangle = 0$.

Then for all $\alpha \in \mathbb{C}$, we have,

$$||x + \alpha y||^2 = ||x||^2 + 2\operatorname{Re}(\overline{\alpha}\langle x, y \rangle) + |\alpha|^2 ||y||^2 = ||x||^2 + |\alpha|^2 ||y||^2 \ge ||x||^2,$$

and so $||x + \alpha y|| \ge ||x||$.

Next, instead let us have $||x + \alpha y|| \ge ||x||$ for all $\alpha \in \mathbb{C}$, i.e. $0 \le ||x + \alpha y||^2 - ||x||^2$.

Then by letting $\alpha = \frac{-\langle x, y \rangle}{\|y\|^2}$, we can get $\|x + \alpha y\|^2 - \|x\|^2 = -\frac{|\langle x, y \rangle|^2}{\|y\|^2}$.

This implies that $\frac{|\langle x,y\rangle|^2}{\|y\|^2} \le 0$, and so $|\langle x,y\rangle| = 0$, i.e. $\langle x,y\rangle = 0$.

Question 4

(a) Pythagoras Theorem tells us that in any inner product space X, if for $x, y \in X$ we have $\langle x, y \rangle = 0$, then $||x + y||^2 = ||x||^2 + ||y||^2$.

In a real inner product space X, let us have $x, y \in X$ such that $||x + y||^2 = ||x||^2 + ||y||^2$. We can simplify to $\langle x, y \rangle + \langle y, x \rangle = 0$, i.e. $2\langle x, y \rangle = 0$. Thus $\langle x, y \rangle = 0$.

The same is not necessarily true if X is instead a complex inner product space.

Let $X = \mathbb{C}$, with the usual inner product $\langle x, y \rangle = x\overline{y}$ for all $x, y \in X$.

Now $||i+1||^2 = 2 = ||i||^2 + ||1||^2$, however $\langle i, 1 \rangle = i \neq 0$.

(b) As a by-product of Riesz Representation Theorem, we have that for all $z \in X$, $||f_z||_{X^*} = ||z||_X$. Also, for all $x, z_1, z_2 \in X$, since $\langle x, z_1 - z_2 \rangle = \langle x, z_1 \rangle - \langle x, z_2 \rangle$, we have $f_{z_1 - z_2} = f_{z_1} - f_{z_2}$. This give us $||f_{z_1} - f_{z_2}||_{X^*} = ||z_1 - z_2||_X$.

Let $(z_n)_{n\in\mathbb{Z}^+}$ be a Cauchy sequence in X.

Then the above give us $(f_{z_n})_{n\in\mathbb{Z}^+}$ to be a Cauchy sequence in X^* .

Since X^* is complete, and T is bijective, there exists a unique $z \in X$ such that $(f_{z_n})_{n \in \mathbb{Z}^+}$ converges to f_z . The above norm relation again give us $(z_n)_{n \in \mathbb{Z}^+}$ to converges to z, and so X is complete, i.e. X is a Hilbert space.

Question 5

(a) It is not necessarily true that $T = 0_{\mathcal{B}(X)}$.

Let $X = \mathbb{R}^2$ be an inner product space with $\langle \cdot, \cdot \rangle$ being the usual real vector dot product.

Let $T \in \mathcal{B}(X)$ be such that for all $x_1, x_2 \in \mathbb{R}$, we have $T \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix}$.

For all $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}$, we have $\langle Tx, x \rangle = -x_1x_2 + x_2x_1 = 0$, however $T \neq 0_{\mathcal{B}(X)}$.

(b) We shall assume the notation $T^0 = I$. The below is briefly what was established in tutorial:

If ||T|| < 1, then since $\mathcal{B}(H)$ is complete, and $\sum_{k=0}^{\infty} ||T^k|| = \frac{1}{1 - ||T||} < \infty$, we have $\sum_{k=0}^{\infty} T^k \in \mathcal{B}(H)$.

Then we can verify that $(I-T)\left(\sum_{k=0}^{\infty}T^k\right)=I$, and so I-T is invertible.

This implies that if $x \in H$ is such that $(I - T)(x) = 0_H$, then $x = 0_H$.

Similarly since $||T^*|| = ||T||$, we can also conclude that $(I - T^*)(x) = 0_H$ implies that $x = 0_H$. Thus $\{x \in H \mid Tx = x\} = \{0_H\} = \{x \in H \mid T^*x = x\}$.

Else, we have ||T|| = 1. This also give us $||T^*|| = 1$.

Notice that we have $0_H \in \{x \in H \mid Tx = x\}$ and $0_H \in \{x \in H \mid T^*x = x\}$.

Let $z \in \{x \in H \mid Tx = x\} - \{0_H\}$. Then we have $||z||^2 = \langle z, Tz \rangle = \langle T^*z, z \rangle \le ||z|| ||T^*z||$.

This give us $||z|| \le ||T^*z||$.

Since $||T^*|| = 1$, we have $||T^*z|| \le ||z||$, and thus we conclude that $||T^*z|| = ||z||$.

This give us equality to the Cauchy-Schwarz Inequality $|\langle T^*z,z\rangle|=\|z\|\|T^*z\|$, which give us T^*z to be a scalar multiple of z. Since $\|T^*z\|=\|z\|$ and $\langle T^*z,z\rangle=\|z\|\|T^*z\|$, we get $T^*z=z$.

This implies that $\{x \in H \mid Tx = x\} \subseteq \{x \in H \mid T^*x = x\}.$

Using the fact that $(T^*)^* = T$, similarly we can get $\{x \in H \mid T^*x = x\} \subseteq \{x \in H \mid Tx = x\}$.

Therefore $\{x \in H \mid Tx = x\} = \{x \in H \mid T^*x = x\}.$

(c) Notice that the Fourier expansion and Bessel's equality with respect to the orthonormal basis $\{x_1, x_2, \ldots\}$ give us that for all $h \in H$, we have $h = \sum_{n=1}^{\infty} \langle h, x_n \rangle x_n$ and $||h||^2 = \sum_{n=1}^{\infty} |\langle h, x_n \rangle|^2$.

Let $T: H \to H$ be such that for all $h \in H$, $T(h) = \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right) \langle h, x_n \rangle x_n$.

Then for all $h_1, h_2 \in H$, $\alpha \in \mathbb{C}$, we have,

$$T(\alpha h_1 + h_2) = \sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) \langle \alpha h_1 + h_2, x_n \rangle x_n$$

$$= \sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) (\alpha \langle h_1, x_n \rangle + \langle h_2, x_n \rangle) x_n$$

$$= \alpha \sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) \langle h_1, x_n \rangle x_n + \sum_{n=1}^{\infty} \left(1 + \frac{1}{n} \right) \langle h_2, x_n \rangle x_n$$

$$= \alpha T(h_1) + T(h_2),$$

and so T is linear (we shall hereon write T(h) as Th). Also for all $h \in H$, we have,

$$||Th||^2 = \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 |\langle h, x_n \rangle|^2$$

$$\leq \sum_{n=1}^{\infty} 4|\langle h, x_n \rangle|^2$$

$$= 4||h||^2,$$

and so T is bounded, i.e. $T \in \mathcal{B}(H)$.

This give us $Y = \left\{ y \in H \mid \sum_{n=1}^{\infty} \left| \left(1 + \frac{1}{n} \right) \langle y, x_n \rangle \right|^2 \le 1 \right\} = \{ y \in H \mid ||Ty|| \le 1 \} = T^{-1}[S], \text{ where } S = \{ h \in H \mid ||h|| \le 1 \}.$ Since S is closed and T is continuous, we have $Y = T^{-1}[S]$ to be closed. Also for all $y \in Y$, we have,

$$||y||^2 = \sum_{n=1}^{\infty} |\langle y, x_n \rangle|^2 < \sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 |\langle y, x_n \rangle|^2 \le 1,$$

and so Y is bounded.

Let $y_1, y_2 \in Y$. Then for all $\alpha \in [0, 1]$, we have,

$$||T((1-\alpha)y_1 + \alpha y_2)|| = ||(1-\alpha)Ty_1 + Ty_2|| \le (1-\alpha)||Ty_1|| + \alpha||Ty_2|| = 1,$$

and so $(1 - \alpha)y_1 + \alpha y_2 \in Y$, i.e. Y is convex.

Let $\varepsilon \in \mathbb{R}^+$. By Archimedean's property, there exists $N \in \mathbb{Z}^+$ such that $N+1 > \frac{1}{\varepsilon}$.

We note that
$$T\left(\frac{N}{N+1}x_N\right) = x_n$$
 and $||x_n|| = 1$, and so $\frac{N}{N+1}x_N \in Y$.

As
$$\left\| \frac{N}{N+1} x_N \right\| = \frac{N}{N+1} = 1 - \frac{1}{N+1} > 1 - \varepsilon$$
, we conclude that $\sup\{ \|y\| \mid y \in Y \} \ge 1$.

Since we have ||y|| < 1 for all $y \in Y$ as a by-product from establishing boundedness above, we conclude that there does not exists $y_0 \in Y$ such that $||y_0|| = \sup\{||y|| \mid y \in Y\}$.

Question 6

(a) It has been established in lecture that if Y is a Banach space, then $\mathcal{B}(X,Y)$ is a Banach space.

Instead, let us have $\mathcal{B}(X,Y)$ to be Banach.

Since $X \neq \{0_X\}$, let us fix $x \in X - \{0_X\}$, such that $||x||_X = 1$.

By consequence of Hahn-Banach Theorem, there exists a bounded linear functional λ on X with $\|\lambda\|_{X^*} = 1$, such that $\lambda(x) = \|x\|_X = 1$.

Let $y \in Y$. Then we have $f_y \in \mathcal{B}(\mathbb{C}, Y)$ such that $f_y(\alpha) = \alpha y$.

We also note that $||f_y||_{\mathcal{B}(\mathbb{C},Y)} = ||y||_Y$ and $||f_{y_1} - f_{y_2}||_{\mathcal{B}(\mathbb{C},Y)} = ||y_1 - y_2||_Y$ for $y_1, y_2 \in Y$.

As the composition of 2 bounded linear operators, we have $T_y = f_y \lambda \in \mathcal{B}(X,Y)$. Also, $T_y(x) = y$.

Now, let $(y_n)_{n\in\mathbb{Z}^+}$ be a Cauchy sequence in Y.

For all $m_1, m_2 \in \mathbb{Z}^+$, $x' \in X$, since

$$\begin{aligned} \|(T_{y_{m_1}} - T_{y_{m_2}})x'\|_Y &= \|(f_{y_{m_1}} - f_{y_{m_2}})(\lambda x')\|_Y \\ &\leq \|f_{y_{m_1}} - f_{y_{m_2}}\|_{\mathcal{B}(\mathbb{C},Y)}|\lambda x'| \\ &\leq \|f_{y_{m_1}} - f_{y_{m_2}}\|_{\mathcal{B}(\mathbb{C},Y)}\|\lambda\|_{X^*}\|x'\|_X, \end{aligned}$$

we have $||T_{y_{m_1}} - T_{y_{m_2}}||_{\mathcal{B}(X,Y)} \le ||f_{y_{m_1}} - f_{y_{m_2}}||_{\mathcal{B}(\mathbb{C},Y)}||\lambda||_{X^*} = ||y_{m_1} - y_{m_1}||_Y ||\lambda||_{X^*}$. Thus we conclude that $(T_{y_n})_{n \in \mathbb{Z}^+}$ is Cauchy , and so it converges to some $T \in \mathcal{B}(X,Y)$.

Since for all $n \in \mathbb{Z}^+$, $||y_n - T(x)||_Y = ||(T_{y_n} - T)(x)||_Y \le ||T_{y_n} - T||_{\mathcal{B}(X,Y)} ||x||_X$, we have $(y_n)_{n \in \mathbb{Z}^+}$ to converges to T(x) in Y, and so Y is Banach.

(b) The statement may not be true.

Let us consider the complex Hilbert space ℓ^2 .

Let $A \in \mathcal{B}(\ell^2)$ be such that $A(x_k)_{k \in \mathbb{Z}^+} = (2x_{k+1})_{k \in \mathbb{Z}^+}$ for all $(x_k)_{k \in \mathbb{Z}^+} \in \ell^2$, i.e. a left shift followed

Notice that $\left(\frac{1}{2^k}\right)_{k\in\mathbb{Z}^+} \in \ell^2$, and $A\left(\frac{1}{2^k}\right)_{k\in\mathbb{Z}^+} = \left(\frac{1}{2^k}\right)_{k\in\mathbb{Z}^+}$. Thus 1 is an eigenvalue of A. Now, A^* is the right shift follow by scalar multiple by 2, i.e. for all $x=(x_k)_{k\in\mathbb{Z}^+} \in \ell^2$, we have,

$$A^*(x_1, x_2, x_3, \ldots) = (0, 2x_1, 2x_2, 2x_3, \ldots).$$

This give us $||A^*x||^2 = \sum_{k=1}^{\infty} (2x_k)^2 = 4||x||^2$, and so $A^*x = x$ must give us $x = 0_{\ell^2}$ (alternatively, comparing coefficient will give us the same conclusion), and so 1 is not eigenvalue of A^* .