Вариационное исчисление. Неофициальный конспект

Лектор: Роман Владимирович Романов Конспектировал Леонид Данилевич

IV семестр, весна 2024 г.

Содержание

1	Что мы будем изучать 1.1 Интегральные функционалы	3
2	Формула первой вариации. Уравнение Эйлера — Лагранжа	4
	2.1 Лемма Дюбуа-Реймона	7
	2.2 Формула первой вариации	
	2.3 Уравнение Эйлера — Лагранжа	
	2.4 Случай свободных концов	
	2.5 Случай фиксированных концов	
3	Условные экстремумы	7
	3.1 Случай нескольких условий	8
4	Функционалы на кривых	1(

Лекция I

15 февраля 2023 г.

1 Что мы будем изучать

Вариационное исчисление занимается поиском экстремумов в задаче, где число переменных бесконечно.

Рассмотрим конечномерную ситуацию. Пусть имеется $f:M\to\mathbb{R}$, где M — какое-то многообразие.

При поиске экстремумов формируеются следующие направления:

- 1. Необходимое условие: $(\operatorname{grad} f)(x) = 0$.
- 2. Достаточное: форма $(D^2f)(x)$ знакоопределён (>< 0).
- 3. Поиск экстремумов сужения $f|_{N}$ на подмногообразие (метод множителей Лагранжа).

В случае вариационного исчисления вместо M стоит некоторое бесконечномерное пространство, например, пространство функций. В основном мы будем заниматься аналогами 1 и 3 пунктов.

Функция, которая в свою очередь задана на пространстве функций часто называется функционал. Чтобы визуально различать «обычные» функции, и функционалы, образ точки f под действием функционала J будем обозначать J[f].

Пускай X — (пока произвольное) метрическое пространство, $J:X \to \mathbb{R}$ — функция.

Определение 1.1 $(x \in X$ — строгий локальный минимум). $\exists \delta > 0 : \forall y \in U_{\delta}(x) : J[y] > J[x]$. Квадратные скобочки — косметическое.

Аналогично определяются нестрогий минимум и максимумы. Также стоит вспомнить про существование глобальных строгих и нестрогих минимумов и максимумов.

Пример (Чего такого особенного в бесконечномерии?). Пусть $X=\{f\in C[0,1]|f(0)=f(1)=1\},$ норма на C[0,1] определена формулой $\|f\|=\max_{x\in[0,1]}|f(x)|.$

Пусть $J[f] \coloneqq \int\limits_0^1 f^2(x) \,\mathrm{d}x$. Очевидно, J непрерывен.

Ясно, что $\forall f \in X: J[f] > 0.$ С другой стороны, $\inf_{f \in X} J[f] = 0$ — можно рассматривать функции вида

C третьей стороны, X замкнуто: равномерный предел равномерных непрерывен, и условия на значения на концах уважают предел. Получается, в данном случае теорема Кантора не работает. В чём дело?

Оказывается, проблема в том, что нет компактности: в бесконечномерном пространстве замкнутое ограниченное множество необязательно компактно.

1.1 Интегральные функционалы

В дальнейшем мы будем рассматривать не произвольные функционалы, а ограничимся некоторым их подмножеством.

Пусть задано непрерывное $L:[a,b]\times\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$, положим $J[u]:=\int\limits_a^b L(t,u(t),\dot{u}(t))\,\mathrm{d}t$. Мы будем заниматься множеством $X=C^1[a,b]=C^1([a,b]\to\mathbb{R}^n)$ (далее не будем указывать область значений, ясно из контекста) и его замкнутыми подмножествами.

Такие J называются *интегральные функционалы*. Мы их изучаем, так как на них возможна богатая теория, и вместе с тем, интегральные функционалы часто встречаются в приложениях.

Примеры.

- $X = \left\{u \in C^1[a,b] \middle| u(a) = u_a, u(b) = u_b\right\}, J[u] = \int\limits_a^b \sqrt{1+(u')^2} \,\mathrm{d}x$ функционал длин графиков кривых.
- $J=\int\limits_a^b(rac{\dot{u}^2}{2}-V(u))\,\mathrm{d}x$, где V заданная функция. В механике называется действием.

Сначала убедимся, что они непрерывны.

Замечание (О норме). Для $f \in C^1[a,b]$: $\|f\| = \max_{x \in [a,b]} |f(x)| + \max_{x \in [a,b]} |f'(x)|$ — очевидно норма. В дальнейшем мы всегда будем использовать такую норму для C^1 .

Предложение 1.1. Пусть $X = C^1[a,b], L \in C([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$. Тогда интегральный функционал J непрерывен на X.

Доказательство. Пусть $u, \widetilde{u} \in X, ||u - \widetilde{u}|| < \delta < 1$.

$$|J[u] - J[\widetilde{u}]| = \left| \int_{a}^{b} L(x, \widetilde{u}(x), \dot{\widetilde{u}}(x)) - L(x, u(x), \dot{u}(x)) \, \mathrm{d}x \right| \leqslant$$

Заметим, что $\|(x,\widetilde{u}(x),\dot{\widetilde{u}}(x))-(x,u(x),\dot{u}(x))\|_{\mathbb{R}^{2n+1}}<\delta$

Рассмотрим $K=[a,b] imes\overline{B_{\|u\|_X+1}} imes\overline{B_{\|u\|_X+1}}$ — компакт в $\mathbb{R}^{2n+1}.$

$$\bigotimes \int_{a}^{b} \omega_{L|_{K}}(\delta) \, \mathrm{d}x = (b-a)\omega_{L|_{K}}(\delta) \underset{\delta \to 0}{\longrightarrow} 0$$

где ω — модуль непрерывности. Он определён, так как $L|_{K}$ непрерывна на компакте.

Пусть X — нормированное пространство (необязательно замкнутое), $J: X \to \mathbb{R}$.

Определение 1.2 (Производная функционала J в точке x по направлению $h \in X$).

$$\delta J[x,h] = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} J[x+th]$$

Иначе эту штуку называют вариация J по направлению h.

Свойства (Вариация).

- Однородность: $\delta J[x,ch] = c \cdot \delta J[x,h]$.
- Не следует ожидать аддитивность. Так, $\exists \delta J[x,h_1], \delta J[x,h_2]$ не влечёт существование $\delta J[x,h_1+h_2]$, а если последнее и существует, то не обязано быть суммой.

Примеры этого были в анализе, здесь бесконечномерной специфики нет.

• Как и в конечномерном анализе, в критической (экстремальной) точке вариация (коли ∃) должна обращаться в нуль.

А именно, $x \in X$ — локальный экстремум J, тогда $\forall h : \exists \delta J[x,h] \Rightarrow \delta J[x,h] = 0$.

Доказательство. Сужение $\alpha(t) = J[x+th]$ тоже имеет локальный экстремум, значит, если производная в t=0 есть, то нуль.

2 Формула первой вариации. Уравнение Эйлера — Лагранжа

2.1 Лемма Дюбуа-Реймона

Лемма 2.1 (Дюбуа-Реймон). Пускай $f \in C[a,b]$, и для всех $\omega \in C^1[a,b]$, таких, что $\omega(a) = \omega(b) = 0$, известно, что $\int\limits_a^b f\omega' = 0$.

Тогда $f \equiv \text{const.}$

Доказательство. Если бы f сама была гладкой, то можно было бы интегрировать по частям. $\int f'\omega = 0 \Rightarrow f' \equiv 0$ — можно взять ω , сосредоточенную там, где f' одного знака.

Мы надеемся, что f — константа, то есть равна своему среднему $\overline{f} \stackrel{def}{=} \frac{1}{b-a} \int\limits_a^b f$.

Проинтегрируем $f-\overline{f}$: $\omega(x)\coloneqq\int\limits_a^x\left(f(x')-\overline{f}\right)\mathrm{d}x'$. Понятно, что $\omega\in C^1$. Более того, несложно видеть, что $\omega(a)=\omega(b)=0$.

Подставим данную ω в посылку теоремы.

$$0 = \int_{a}^{b} f\omega' = \int_{a}^{b} (f - \overline{f})\omega' = \int_{a}^{b} (f - \overline{f})^{2} dx$$

Так как интеграл нуль, то получаем $f \equiv \overline{f}$.

2.2 Формула первой вариации

Опять $X=C^1[a,b]$, и функционал того же самого вида $J[u]=\int\limits_a^b L(t,u(t),\dot{u}(t))\,\mathrm{d}t.$

Лемма 2.2 (Формула первой вариации). Пусть $L \in C^1([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$. Градиент L по второму и третьему аргументам будем обозначать $\nabla_u L$ и $\nabla_u L$ соответственно, это векторы из \mathbb{R}^n .

Tогда производная J в точке u по направлению h существует, u равна

$$\int_{a}^{b} \left[\left\langle (\nabla_{u}L)(t, u(t), \dot{u}(t)), h(t) \right\rangle + \left\langle (\nabla_{\dot{u}}L)(t, u(t), \dot{u}(t)), \dot{h}(t) \right\rangle \right] dt$$

Доказательство. $J[u+\tau h]-J[u]=\int\limits_a^b\left[L(t,u(t)+\tau h(t),\dot{u}(t)+\tau\dot{h}(t))-L(t,u(t),\dot{u}(t))
ight]\mathrm{d}t.$

Применяя формулу Лагранжа, получаем для некой $au_* = au_*(t) \in [0, au]$:

$$J[u+\tau h] - J[u] = \tau \int_{a}^{b} \left[\left\langle (\nabla_{u}L)(t, u(t) + \tau_{*}h(t), \dot{u}(t) + \tau_{*}\dot{h}(t)), h(t) \right\rangle + \left\langle (\nabla_{\dot{u}}L)(t, u(t) + \tau_{*}\dot{h}(t), \dot{u}(t) + \tau_{*}\dot{h}(t)), \dot{h}(t) \right\rangle \right] dt$$

Поделив на au, получаем $\frac{J[u+ au h]-J[u]}{ au}=\int\limits_a^b\dots$ вот тот, что выше.

Сперва разберёмся с первым слагаемым. Покажем, что

$$\underbrace{\int\limits_{a}^{b} \left\langle (\nabla_{u}L)(t,u(t) + \tau_{*}h(t),\dot{u}(t) + \tau_{*}\dot{h}(t)),h(t)\right\rangle \mathrm{d}t}_{I} \xrightarrow[\tau \to 0]{} \underbrace{\int\limits_{a}^{b} \left\langle (\nabla_{u}L)(t,u(t),\dot{u}(t)),h(t)\right\rangle \mathrm{d}t}_{I}$$

Модуль разности аргументов не превосходит $\tau_*\|h\|_X$. Отсюда $\|\nabla_u L(\dots) - \nabla_u L(\dots)\|_{\mathbb{R}^n} \leqslant \omega_{L_K}(\tau_*\|h\|_X)$, здесь $K \coloneqq [a,b] \times \overline{B_{\|u\|+\|h\|}} \times \overline{B_{\|u\|+\|h\|}}$ (мы считаем, что $\tau \leqslant 1$, откуда $\tau_* \leqslant 1$).

Значит,
$$|(I)-(I\!\!I)|\leqslant \int\limits_a^b\omega_{L_{K}}(\tau_*\|h\|)\,\mathrm{d}t\leqslant (b-a)\omega_{L_{K}}(\tau\|h\|)\,\mathrm{d}t\underset{\tau\to 0}{\longrightarrow}0.$$

Таким образом, у первого слагаемого под интегралом — естественный предел. Аналогично со вторым слагаемым, получаем утверждение леммы.

2.3 Уравнение Эйлера — Лагранжа

Пусть $u \in X$ — экстремум. Тогда $\forall h \in X : \delta J[u,h] = 0$

Условие обнуления градиента — некое уравнение на точку. Мы хотим уравнение на u(t), избавимся от h. Подгоним под лемму Дюбуа-Реймона (лемма 2.1).

Введём
$$R(x) \coloneqq \int\limits_a^x (\nabla_u L)(t,u(t),\dot{u}(t))\,\mathrm{d}t.$$
 Тогда $\delta J[x,h] = \int\limits_a^b \left\langle \dot{R}(t),h(t) \right\rangle + \left\langle (\nabla_{\dot{u}}L)(t,u(t),\dot{u}(t)),\dot{h}(t) \right\rangle \mathrm{d}t$ Интегируя по частям, получим (поскольку $R(a)=0$) $\langle R(b),h(b) \rangle + \int\limits_a^b \left\langle \underbrace{(\nabla_{\dot{u}}L)(t,u(t),\dot{u}(t))-R(t)}_{a},\dot{h}(t) \right\rangle \mathrm{d}t$

И это равно нулю $\forall h \in C^1[a,b]$. Рассмотрим h, обращающийся на концах в ноль: h(a)=h(b)=0. Теперь $\int\limits_a^b \left\langle \xi(t),\dot{h}(t)\right\rangle \mathrm{d}t=0$, и мы покомпонентно можем применить лемму Дюбуа-Реймона, получая $\xi(t)=C\equiv \mathrm{const.}$ Но $R(t)\in C^1$, значит, $\nabla_{\dot{u}}L(t,u(t),\dot{u}(t))\in C^1$ тоже.

Дифференцируя ξ , получаем уравнение: $\frac{\mathrm{d}}{\mathrm{d}t}(\nabla_{\dot{u}}L)(t,u(t),\dot{u}(t))-(\nabla_{u}L)(t,u(t),\dot{u}(t))=0$. Оно называется уравнение Эйлера — Лагранжа, это основное уравнение вариационного исчисления.

Замечание. В случае общего положения уравнение Эйлера — Лагранжа — дифференциальное второго порядка, что соответствует $u \in C^2$: при вычислении $\frac{\mathrm{d}}{\mathrm{d}t}(\nabla_{\dot{u}}L)(t,u(t),\dot{u}(t))$ появится в общем случае вторая производная u. Такая ситуация, на самом деле, довольно общая: экстремаль «регулярнее», чем произвольный элемент своего пространства.

2.4 Случай свободных концов

Теперь рассмотрим совсем произвольную $h \in C^1$, и получим уравнение на вариацию

$$0 = \delta J[u, h] = \langle R(b), h(b) \rangle + \int_{a}^{b} \langle C, \dot{h}(t) \rangle dt = \langle R(b), h(b) \rangle + \langle C, h(b) \rangle - \langle C, h(a) \rangle$$

- 1. Рассмотрим такую h, что h(b)=0, h(a)=C. Для неё $\delta J[u,h]=-\|C\|^2$, значит, $\xi=C=0$. Подставляя в определение ξ , получаем R(a)=0, то есть $(\nabla_{\dot{u}}L)(a,u(a),\dot{u}(a))=0$.
- 2. Теперь рассмотрим такую h, что h(b) = R(b). В этом случае $\delta J[u,h] = \|R(b)\|^2 \Rightarrow R(b) = 0$. Получили $(\nabla_{\dot{u}} L)(b,u(b),\dot{u}(b)) = 0$.

Итак, помимо уравнения Эйлера — Лагранжа, мы получили два условия (но в разных точках) на уравнение второго порядка, можно надеяться, что хватит, чтобы найти решения (но это совсем не факт — так, может существовать одно решение, а может их вовсе не быть, или быть бесконечно много).

Подытожим в теорему.

Теорема 2.1 (Задача со свободными концами). Пусть $L \in C^1([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$, пусть $X = C^1[a,b]$, пусть u — локальный экстремум J.

Тогда

- 1. $(\nabla_{\dot{u}}L)(t, u(t), \dot{u}(t)) \in C^1[a, b].$
- $2. \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\dot{u}} L = \nabla_u L$ уравнение Эйлера Лагранжа.
- 3. $(\nabla_{\dot{u}}L)(a, u(a), \dot{u}(a)) = 0$
- 4. $(\nabla_{\dot{u}}L)(b, u(b), \dot{u}(b)) = 0$

2.5 Случай фиксированных концов

Теперь обсудим, что происходит, если концы несвободны.

Рассмотрим $X = \{f \in C^1[a,b] | f(a) = f_a, f(b) = f_b\}$. Это не подпространство (не имеет линейной структуры), нельзя определить производную по направлению.

Функционал $J:X \to \mathbb{R}$ задан той же формулой.

Какая здесь характеризация локальных экстремумов?

Рассмотрим $\widetilde{J}:C^1[a,b]\to\mathbb{R}$ — с той же формулой, что и J. Тогда $\forall u,h:\exists\delta\widetilde{J}[u,h].$

С другой стороны, если $h\in C^1[a,b], h(a)=h(b)=0$, то $\forall u\in X, t\in \mathbb{R}: u+th\in X$ Имеем право рассмотреть J[u+th]. Если u- локальный экстремум, то $\frac{\mathrm{d}}{\mathrm{d}t}\big|_{t=0}J[u+th]=0$. Она существует, так как это $\frac{\mathrm{d}}{\mathrm{d}t}\widetilde{J}[u+th]$.

Тем самым, такие функции h прибавлять можно, будем это тоже называть вариацией: $\delta J[u,h]$ задаётся той же формулой. Дальше работает то же самое рассуждение, все действия те же самые, только при интегрировании по частям внеинтегральный член занулится, никаких дополнительных соотношений не возникнет.

Теорема 2.2 (Задача с фиксированными концами). Пусть $L \in C^1([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$, пусть $X = \{f \in C^1[a,b] | f(a) = f_a, f(b) = f_b\}$, пусть u — локальный экстремум J. Тогда

- 1. $(\nabla_{\dot{u}}L)(t, u(t), \dot{u}(t)) \in C^1[a, b].$
- $2. \frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\dot{u}} L = \nabla_{u} L$ уравнение Эйлера Лагранжа.

Заметим, что у нас по-прежнему два условия (теперь уже данные в самой задаче) и уравнение второго порядка, значит, по-прежнему, данных для решения задачи как раз столько, что стоит надеяться на получение решения.

Лекция II

29 февраля 2023 г.

Распишем чуть подробнее уравнение Эйлера — Лагранжа, пусть для определённости d=1.

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L}{\partial \dot{u}} = \frac{\partial^2 L}{\partial t \partial \dot{u}} + \frac{\partial^2 L}{\partial u \partial \dot{u}}\dot{u} + \frac{\partial^2 L}{\partial \dot{u}^2}\ddot{u} \tag{*}$$

Общая теорема говорит, что $\nabla_{\dot{u}}L$ имеет C^1 гладкость, однако совсем не утверждается, что при разложении (*) каждое слагаемое будет гладким, или даже просто будет существовать. И правда, такого и не наблюдается.

Контрпример. Рассмотрим функционал $J[u] = \int\limits_{-1}^1 u^2 (\dot{u} - 2x)^2 \,\mathrm{d}x$, где $X = \left\{ u \in C^1[-1,1] \middle| egin{array}{c} u(-1) = 0 \\ u(1) = 1 \end{array} \right\}$

и функцию $u\in X, u(t)=\begin{cases} 0, & x\in [-1,0]\\ x^2, & x\in [0,1] \end{cases}$. u — экстремаль, например, потому что это глобальный минимум. При этом $u\notin C^2$, хотя $\frac{\partial L}{\partial \dot{u}}=2u^2(\dot{u}-2x)\equiv 0$ — бесконечно гладкая.

Что нужно потребовать, чтобы все слагаемые (*) существовали?

В примере сам лагранжиан $L(x,u,\dot{u})=u^2(\dot{u}-2x^2)$ — бесконечно гладкий. Но \ddot{u} можно выразить из (*) только если $\frac{\partial^2}{\partial \dot{u}^2}L \neq 0$.

Следующее предложение формулируется в случае, когда L задан на $[a,b] \times \mathbb{R}^d \times \mathbb{R}^d$; в общем случае сужения L на некоторое подмножество принципиально ничего не поменяется.

Предложение 2.1. Пусть $L \in C^2(\Omega)$, где $\Omega = [a,b] \times \mathbb{R}^d \times \mathbb{R}^d$, пусть $\det d_v^2 L \neq 0$ везде в Ω .

Пусть u — локальный экстремум функционала J. Утверждается, что $u \in C^2[a,b]$.

Доказательство. Введём функцию

$$\xi: [a, b] \times \mathbb{R}^d \to \mathbb{R}^d$$
$$(t, v) \mapsto (\nabla_{\dot{u}} L)(t, u(t), \dot{u}(t)) - (\nabla_{\dot{u}} L)(t, u(t), v)$$

Согласно посылке теоремы, $d_v \xi \neq 0$ для всех t, v.

По теореме о неявной функции $\forall t_0 \in (a,b): \exists \delta > 0: \{(t,v)|\xi(t,v)=0, |t-t_0|<\delta\}$ — график некоторой функции $v \in C^1\left((t_0-\delta,t_0+\delta)\to\mathbb{R}^d\right)$. Но $v\equiv \dot{u}\big|_{(t_0-\delta,t_0+\delta)}$. Значит, $u\in C^2(a,b)$.

Случай концов
$$(t_0=a,b)$$
— упражнение.

3 Условные экстремумы

Согласно полу-исторической, полулегендарной справке, некогда Дидона прибыла на берег некоего африканского государства, и потребовала, на основании своего высокого происхождения, выделить ей столько земли, сколько можно опоясать ремешком из шкуры одного быка...

Напоминание конечномерного случая: Пусть $\Omega\subset\mathbb{R}^d$ — область, $f,g\in C^1(\Omega)$, $\mathcal{M}=\{x\in\Omega|g(x)=0\}$.

Заинтересуемся экстремумумами сужения $f\big|_{\mathcal{M}}$. Построим кривую x(t), условие $g(x(t))=0 \Rightarrow f(x(t))$ — тоже локальный экстремум. $\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} f(x(t)) = \langle (\nabla f)(x_0), \dot{x}(t) \rangle$.

Поскольку кривая любая, то $\nabla f \perp T_{x_0}\mathcal{M}$. В общем случае такой вектор очень легко найти: $g(x(t))=0 \Rightarrow \langle (\nabla g)(x_0),\dot{x}\rangle =0$

Иными словами $\exists \lambda: \operatorname{grad}(f-\lambda g)=0$. Ищем критические точки $f-\lambda g$, выделяем те, которые в \mathcal{M} . С обнулениями градиента разбираемся отдельно. Нам помогло, что коразмерность \mathcal{M} равна 1.

Пускай X — нормированное замкнутое пространство, $G \in C^1(X)$ — задающий условие функционал. Иными словами,

- $\forall x \in X: \exists G'(x) \in X^*: |G(x+s) G(x) G'(x)s| = o(\|s\|)$ сильная дифференциуремость в точке x.
- $G': X \to X^*$ непрерывно.

Лемма 3.1. Пусть $x_0 \in \mathcal{M} = \{x \in X | G(x) = 0\}$. Пусть $G'(x_0) \neq 0$.

Тогда
$$\forall h \in \text{Ker } G'(x_0) : \exists x : (\delta, \delta) \to \mathcal{M}, x \in C^1 : x(0) = x_0, \dot{x}(0) = h.$$

Доказательство. Фиксируем $\xi \notin \operatorname{Ker} G'(x_0)$. Рассмотрим функцию $G[x_0 + t\xi + \tau h] =: r(t,\tau)$. Это $C^1([-\varepsilon, \varepsilon] \times [-\varepsilon, \varepsilon])$.

 $r(0,0)=0, \ rac{\partial t}{\partial t}(0,0)=G'[x_0]\xi
eq 0.$ Применяя теорему о неявной функции, получаем $\exists \delta>0: \{(t,\tau)|\tau\in(-\delta,\delta), r(t,\tau)=0\}$ — график C^1 функции $t=t(\tau),t:(\delta,\delta)\to\mathbb{R}.$

 $x: \tau \mapsto x_0 + t(\tau)\xi + \tau h$ — искомая кривая.

- 1. По построению $x:(\delta,\delta)\to \mathcal{M}$ класса $C^1.$
- 2. $\dot{x}(0)=\dot{t}(0)\xi+h$, с другой стороны, дифференцируя тождество G(x(t))=0, получаем $G'[x(0)]\cdot\dot{x}(0)=0$ Отсюда $\dot{x}(0)\in \mathrm{Ker}\,G'[x_0]$. Значит, $\dot{t}(0)=0$ (так как $\xi\notin \mathrm{Ker}\,G'[x_0]$). Тем самым, $\dot{t}(0)=h$

Пускай $F\in C^1(X), x_0\in \mathcal{M}$ — точка локального экстремума сужения $F\big|_{\mathcal{M}}$

Рассмотрим только что построенную $x(\tau)$. Должно быть $\frac{\mathrm{d}}{\mathrm{d}\tau}\Big|_{\tau=0}F(x(\tau))=0$. С другой стороны, она же $F'(x_0)\cdot h$.

Значит, $\operatorname{Ker} G'[x_0] \subset \operatorname{Ker} F'[x_0]$, и $\exists \lambda \in \mathbb{R} : (F'(x_0) - \lambda G'(x_0)) = 0 - \operatorname{и} F'$, и G' обнуляются на пространстве коразмерности 1. Формальнее $\exists \eta \notin \operatorname{Ker} G'(x_0), \forall h \in X : h = \underbrace{(h - \frac{G'(x_0)h}{G'(x_0)\eta}\eta)}_{\in \operatorname{Ker} G'[x_0]} + \underbrace{\frac{G'(x_0)h}{G'(x_0)\eta}\eta}_{\in \operatorname{Ker} G'[x_0]}$

Значит,
$$(F' - \lambda G')(h) = F'(x_0)\eta - \lambda G'(x_0)\eta$$
. Подойдёт $\lambda = \frac{F'(x_0)\eta}{G'(x_0)\eta}$

Получилась теорема:

Теорема 3.1. Пускай $F,G\in C^1(X)$, пускай x_0 — точка локального экстремума F на $\mathcal{M}=\{x\in X|G[x]=0\}$, пусть $G'[x_0]\neq 0$.

Тогда $\exists \lambda \in \mathbb{R} : \forall h \in X : \delta(F - \lambda G)[x_0, h] = 0$ (отметим, что так как $F, G \in C^1$, то $\exists \delta(F - \lambda G)$.)

Упражнение 3.1. Задача с фиксированными концами

3.1 Случай нескольких условий

Имеется F, G_1, \dots, G) $n \in C^1(X), \mathcal{M} = \{x \in X | G_1[x] = \dots = G_n[x] = 0\}.$

Образуем линейный оператор
$$\mathbb{G}'(x_0)=\begin{pmatrix}G'_1(x_0)\\ \vdots\\ G'_n(x_0)\end{pmatrix}:X\to\mathbb{R}^n\ (\mathbb{G}'(x_0)h=\begin{pmatrix}G'_1(x_0)h\\ \vdots\\ G'_n(x_0)h\end{pmatrix})$$

Теорема 3.2. Пусть x_0 — точка локального экстремума F на \mathcal{M} , пусть $\operatorname{Ran} \mathbb{G}'(x_0) = \mathbb{R}^n$ (экви $\sum c_j G' j(x_0) = 0 \Rightarrow \forall j : c_j = 0$).

Тогда
$$\exists \lambda_1, \dots, \lambda_n \in \mathbb{R} : \forall h \in X : \delta(F - \sum \lambda_i G_i)[x_0, h] = 0$$

Доказательство.

Лемма 3.2. В тех же предположениях невырожденности $\operatorname{Ran} \mathbb{G}'(x) = \mathbb{R}^n$ Пусть $\forall j: h \in \operatorname{Ker} G_i'(x_0)$. Тогда $\exists x: (-\delta, \delta) \to \mathcal{M}, x \in C^1, x(0) = x_0, \dot{x}(0) = h$.

Доказательство леммы.

тоже теорема о неявной функции.

Полностью аналогично скалярному случаю.

Замечание. Применить скалярную теорему к $G[x] = \sum G_i^2[x]$ не получится, так как G'[x] = 0 везде на \mathcal{M} .

Упражнение 3.2. Задача с фиксированными концами

Пускай $L, r_1, \ldots, r_n \in C^1([a,b] \times \mathbb{R}^d \times \mathbb{R}^d)$, $J[u] = \int\limits_a^b L(t,u(t),\dot{u}(t))\,\mathrm{d}t$, $R_j[u] = \int\limits_a^b r_j(t,u(t),\dot{u}(t))\,\mathrm{d}t$.

Пускай u_0 — точка локального экстремума $J|_{\bigcap R_j}$. Пускай $\mathbb{R}(u_0)=egin{pmatrix} R'_1(u_0)\\ \vdots\\ R'_n(u_0) \end{pmatrix}$ имеет полный ранг:

 $\operatorname{Ran} \mathbb{R}(x_0) = \mathbb{R}^n$

Тогда

- 1. $\exists \lambda_1, \dots, \lambda_n : \nabla_{\dot{u}}(L \sum \lambda_j r_j)(t, u_0(t), \dot{u}_0(t)) \in C^1[a, b].$
- 2. Выполнено уравнение Э Л: $\frac{\mathrm{d}}{\mathrm{d}t} \nabla_{\dot{u}} (L \sum \lambda_j R_j) = \nabla_u (L \sum \lambda_j R_j)$

3.
$$\nabla_{\dot{u}}(L-\sum \lambda_j r_j)\Big|_{t=a,t=b}=0.$$

Доказательство. Вытекает из доказательства первой теоремы (там использовалось только то, что вариация обращается в нуль, а не то, что u_0 — экстремаль) и только что доказанного.

Пример. Пускай $\Omega \subset \mathbb{R}^3$ — ограниченная односвязная, граница — класса C^1 . $X = C(\partial\Omega)$.

Заведём
$$J[\sigma] = \iint_{\partial\Omega} \frac{\sigma(x)\sigma(y)\,\mathrm{d}S(x)\,\mathrm{d}S(y)}{|x-y|}.$$

J непрерывен на $X: \xi: y \mapsto \int_{\partial\Omega} \frac{\sigma(x)}{|x-y|} dS(x)$ непрерывно.

$$J[\sigma + s] - J[\sigma] = 2 \iint_{\partial\Omega} \frac{s(x)\sigma(y)}{|x - y|} dS(x) dS(y) + \mathcal{O}(\|s\|_C^2)$$

Значит, $s\mapsto\int\limits_{\partial\Omega}s(x)\xi(x)\,\mathrm{d}x$ непрерывен, откуда J — даже функционал класса $C^1(X)$.

Лекция III

14 марта 2023 г.

Заинтересуемся экстремумами с постоянным значением $G[\sigma] = \int\limits_{\partial\Omega} \sigma(x)\,\mathrm{d}x$. Это типа заряды на поверхности, минимизирующие энергию системы — физический принцип говорит, что конечное положение экстрмально.

$$J,G \in C^1(X)$$
.

Пусть σ — экстремаль $J|_{\sigma \in X}G(\sigma) = Q$.

Тогда $\delta(J - \lambda G)[\sigma, h] = 0 \forall h \in X$.

Посчитаем

$$\delta(J-\lambda G)[\sigma,h] = ()[\sigma+h]-()[\sigma] = 2\int\limits_{\partial\Omega}\int\limits_{\partial\Omega}\frac{\sigma(x)h(y)}{|x-y|}\,\mathrm{d}S(x)\,\mathrm{d}S(y) - \lambda\int\limits_{\partial\Omega}h(y)\,\mathrm{d}S(y) + \int\limits_{\partial\Omega}\int\limits_{\partial\Omega}\frac{h(x)h(y)}{|x-y|}\,\mathrm{d}S(x)\,\mathrm{d}S(y)$$

Третье слагаемое $\mathcal{O}(\|h\|_X^2)$: $\iint \frac{1}{|x-y|}$ сходится. Заметим, что остальная часть — линейный функционал от h, где коэффициент непрерывен от σ . Это в точности значит, что $J \in C^1$.

$$J[\sigma+h]-J[\sigma]=l(h)+o(\|h\|),$$
 где $l_\sigma:h\mapsto\intrac{\sigma(x)h(y)}{|x-y|}\,\mathrm{d}S(y)=\int\xi(y)h(y)\,\mathrm{d}S(y)$

Напишем

$$\delta(J - \lambda G)[\sigma, h] = 2 \int h(y) \, dS(y) \left(2 \int \frac{\sigma(x) \, dS(x)}{|x - y|} - \lambda \right) = 0 \forall h$$

По «нулевой лемме Дюбуа-Реймона, выражение в скобочках должен быть всегда нулём»

Получили

$$\lambda = 2 \int \frac{\sigma(x) \, \mathrm{d}S(x)}{|x - y|}$$

Экстремаль σ ищется, как решение «интегрального уранвения»: $K: f \mapsto \int \frac{f(x) \, \mathrm{d}S(x)}{|x-y|}$ — ограниченный непрерывный интегральный оператор. Таким образом, σ — решение $K\sigma = \frac{\lambda}{2}\mathbb{1}$.

Иными словами, потенциал, создаваемый распределением заряда на самой поверхности постоянен. Такая постановка задачи не очень естественна — бывают точечные заряды, что ещё? Естественнее было бы рассматривать задачи вида σ — борелевская мера на $\partial\Omega$, $J[\sigma]=\int \frac{\mathrm{d}\sigma(x)\,\mathrm{d}\sigma(y)}{|x-y|}$. Тут уже уместно задавать вопросы о существовании интеграла, сходимости, и прочем, мы не будем это выяснять по причине нехватки аппарата.

4 Функционалы на кривых

Фиксируем две точки, надо, чтобы длина была максимальна.

В зависимости от расположения параметра, ответ может не реализовываться, как график функции. С другой стороны, хотим независимость от параметризации, потому что зачем

Определение 4.1 (Кривая $\gamma \in C$). Непрерывное отображение $\gamma:[a,b] \to \mathbb{R}^n$

Определение 4.2 (Параметризованная кривая). $\gamma'(x) \neq 0 \forall x \in [a,b]$

.

Определение 4.3 (Кривая $\gamma \in C^j$). Кривая $\gamma \in C^j$

Пусть $\gamma_1: [a_1, b_1] \to \mathbb{R}^n, \gamma_2: [a_2, b_2] \to \mathbb{R}^n.$

Определение 4.4 (Эквивалентность кривых). $\exists \kappa \in C^j([a_1,b_1] \to [a_2,b_2]) -$ диффеоморфизм, такой, что $\gamma_1 = \gamma_2 \circ \kappa$ и $\kappa'(x) > 0 \forall x$

Ориентированная кривая — класс эквивалентности относительно данного отношения.

Класс эквивалентности Γ^j — кривые класса C^j . Ещё используют $\Gamma^j[a,b]$.

Пускай $\mathcal{F} \in C(\mathbb{R}^n \times \mathbb{R}^n)$, пусть она однородна порядка 1 по второму аргументу: $\mathcal{F}(\lambda, zw) = \lambda \mathcal{F}(z,w) \forall \lambda > 0.$ $\gamma: [a_{\gamma},b_{\gamma}] \to \mathbb{R}^d$ — кривая класса C^1 .

 $J[\sigma] = \int\limits_{a_{\gamma}}^{b_{\gamma}} \mathcal{F}[\gamma(t),\dot{\gamma(t)}] \,\mathrm{d}t$ — «квадратные скобки не несут никакого смысла».

Предложение 4.1. B этой ситуации J задаёт функционал на Γ^1 .

 \mathcal{A} оказательство. Пусть $\gamma_1:[a_1,b_1] \to \mathbb{R}^n, \gamma_2:[a_2,b_2] \to \mathbb{R}^n$ — два эквивалентных представителя.

$$J[\gamma_1] = \int \mathcal{F}[\gamma_1(t), \dot{\gamma}_1(t)] dt = \int \mathcal{F}[\gamma_2(\kappa(t)), \dot{\kappa}(t) \cdot \dot{\gamma}_2(\kappa(t))] dt =$$

$$= \int \mathcal{F}[\gamma_2(\kappa(t)), \dot{\gamma}_2(\kappa(t))] \dot{\kappa}(t) dt = \begin{vmatrix} \tau = \kappa(t) \\ d\tau = \dot{\kappa}(t) dt \end{vmatrix} = \int \mathcal{F}[\gamma_1(\tau), \dot{\gamma}_1(\tau)] d\tau$$

Примеры.

- ullet $\mathcal{F}(z,w)=|w|$. Функционал J длина кривой
- $\mathcal{F}(z,w)=|w|\cdot f(z)$, где, например, $n=2,\ f(z)=z_2^{\alpha}$ (здесь $z=\begin{pmatrix} z_1\\z_2\end{pmatrix}$).
 - При $\alpha = 0$ это предыдущий случай.

- При $\alpha = -1$ это длина в гиперболической плоскости (в модули Пуанкаре Лобачевского их?).
- При $\alpha=1$ это координата центра масс, или же площадь поверхности вращения.
- При $\alpha = -\frac{1}{2}$ это время, требуемое шарику, чтобы скатиться по жёлобу данной формы.

Пусть $L \in C([a,b] \times \mathbb{R}^n \times \mathbb{R}^n)$, $X = C^1[a,b]$, $J[u] = \int\limits_a^b L(t,u(t),\dot{u}(t))\,\mathrm{d}t$. Превратим его в функционал на кривой. Заведём $\mathcal{F}: \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}, \mathcal{F}(z,w) = L(z_1,z_2,\ldots,z_{n+1},\frac{w_2}{|w_1|},\ldots,\frac{w_{n+1}}{|w_1|})|w_1|$. Она имеет требуемую однородность. Типа сопоставим функции u(t) кривую $\gamma_u: t \mapsto (t,u(t))$.

Рассмотрим $\widetilde{J}[\gamma]\coloneqq\int \mathcal{F}(\gamma(t),\dot{\gamma}(t))\,\mathrm{d}t$ — если L «разумная», то \widetilde{J} — функционал на кривых.

Предложение 4.2. $\mathcal{F}[\gamma_u] = J[u]$.

Доказательство. $\dot{\gamma}_u(t)=(1,\dot{u}(t)).$

Утверждение 4.1. Пусть $\mathcal{F} \in C^2(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\}))$ (требование непрерывности по совокупности переменных $\mathcal{F} \in C(\mathbb{R}^n \times \mathbb{R}^n)$ накладывается всегда в данной теории).

Пусть $\forall \lambda > 0 : \mathcal{F}(z, \lambda w) = \lambda \mathcal{F}(z, w)$.

 $E\{\gamma\}=(\nabla_z\mathcal{F})(\gamma,\dot{\gamma})-\frac{\mathrm{d}}{\mathrm{d}t}\nabla_w\mathcal{F}(\gamma,\dot{\gamma})$, где $J=\int\mathcal{F}[\gamma,\dot{\gamma}]\,\mathrm{d}t$ — определение осмысленно, так как кривая параметризована, и $\dot{\gamma}\neq 0$, а $\mathcal{F}\in C^2(\dots)$. Пусть $\gamma\in\Gamma^2$, $\gamma:[a,b]\to\mathbb{R}^d$.

Теперь пусть $s \in C^2[a,b] \times [-\varepsilon,\varepsilon] \to \mathbb{R}^n$, и пусть $s(_,\tau)$ — кривая (производная ненулевая). $\frac{\mathrm{d}}{\mathrm{d}\tau} J[s(_,\tau)] = \int\limits_a^b E\{s(x,\tau)\}\,\mathrm{d}x + \left\langle (\nabla_w \mathcal{F})(s(x,\tau), \frac{\partial s}{\partial x}(x,\tau)), \frac{\partial s}{\partial \tau} \right\rangle \bigg|_a^b$

Доказательство. Упражнение.

Лемма 4.1. Пусть $\gamma_1 \sim \gamma_2 -$ представители кривой $\gamma \in \Gamma^2$ ($\gamma_1 = \gamma_2 \circ \kappa$). Тогда $E\{\gamma_1\} = \kappa' E\{\gamma_2\}$. Подробнее $(E\{\gamma_1\})(x) = \kappa'(x) (E\{\gamma_2\}) (\kappa(x))$.

Доказательство.

$$E\{\gamma_1\}(x) = (\nabla_z)\mathcal{F}(\underbrace{\gamma_1(x)}_{\kappa'(x)\gamma_2'(\kappa(x))}, \dot{\gamma}_1(x)) - \frac{\mathrm{d}}{\mathrm{d}x}(\nabla_w\mathcal{F})(\gamma_1(x), \dot{\gamma}_1(x)) = \kappa'(x)(\nabla_z\mathcal{F})\left[\gamma_2(\kappa(x)), \gamma_2'(\kappa(x))\right] - \frac{\mathrm{d}}{\mathrm{d}x}(\dots)$$

Дифференцируя $\mathcal{F}(z,\lambda w)=\lambda\mathcal{F}(z,w)$, получаем $\lambda(\nabla_w\mathcal{F})(z,\lambda w)=\lambda(\nabla_w\mathcal{F})(z,w)$

$$(\dots) - \frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=\kappa(x)} (\nabla_w \mathcal{F})(\gamma_2(s), \gamma_2'(s)) = \kappa'(x) \cdot (E\{\gamma_2\})(\kappa(x))$$

Следствие 4.1. $E\{\gamma_1\}\equiv 0\iff E\{\gamma_2\}\equiv 0$ при $\gamma_1\sim\gamma_2.$

Заведём метрику на Γ^2 , чтобы определить экстремумы

 $\xi, \nu: [a,b] \to \mathbb{R}^d$ — представители $\gamma_{\xi}, \gamma_{\nu} \in \Gamma^2$.

Пусть $|\dot{\xi}| \equiv c_{\mathcal{E}}, |\dot{\nu}| \equiv c_{\nu}$

Положим $\|\gamma_{\xi} - \gamma_{\nu}\| = \|\xi - \nu\|_{C^{2}[0,1]}$.

Упражнение 4.1. Проверить, что это метрика на Γ^2 .

С метрикой также пришли всевозможные локальные, глобальные, строгие, нестрогие, минмимумы и максимумы.

Теорема 4.1. Пусть γ — локальный максимум Γ^2 , $\mathcal{F} \in C^2(\mathbb{R}^n \times (\mathbb{R}^n \setminus \{0\})), \mathcal{F}(z, \lambda w) = \lambda \mathcal{F}(z, w), \lambda > 0$.

Пусть
$$\gamma_a, \gamma_b \in \mathbb{R}^n, \mathcal{D} = \left\{ \gamma \in \Gamma^2 \middle| \gamma(a_\gamma) = \gamma_a, \gamma(b_\gamma) = \gamma_b \right\}$$
. Тогда $E\{\gamma\} = 0$.

Доказательство. $\gamma+\tau h, h(a_\gamma)=h(b_\gamma)=0,\ h:[a_\gamma,b_\gamma]\to\mathbb{R}^d, h\in C^2$

Существует $\frac{\mathrm{d}}{\mathrm{d}\tau}J[\gamma+\tau h]=0$, так как $\dot{\gamma}(s)\neq0$, значит, $\|\dot{\gamma}(s)\|\neq0$, и при достаточно малых $\tau:\min\|\dot{\gamma}+\tau\dot{h}\|>\varepsilon$. Значит, при подстановке мы попадём в область, где $\mathcal{F}\in C^2$.

Раз γ — экстремум, то производная равна нулю.

$$J[\gamma + \tau h] - J[\gamma] = \tau \int \langle (\nabla_z \mathcal{F})(\gamma, \dot{\gamma}), h \rangle + \langle (\nabla_w \mathcal{F})(\gamma, \dot{\gamma}), h' \rangle dt + \mathcal{O}(\tau^2)$$

Интегируя по частям, получаем $\int\limits_a^b \langle E\{\gamma\},h\rangle\,\mathrm{d}t+0+\mathcal{O}(\tau^2)$. Применяя «нулевую лемму Дюбуа-Реймона», получаем $E\{\gamma\}=0$.