HW7_after burning rate 2

Due Nov 9 at 1:59pm **Allowed Attempts** 3

Points 9

Questions 5

Time Limit None

Take the Quiz Again

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	6,013 minutes	9 out of 9

(!) Correct answers are hidden.

Score for this attempt: **9** out of 9 Submitted Nov 9 at 12:18am This attempt took 6,013 minutes.

Question 1 5 / 5 pts

From the experiment in the lab that we conducted, the following data were obtained. What is the maximum flame spread rate in mm/s?

Round your answer to the first decimal place and do not include any unit.

Distance (mm)	0	20	40	60	80	100	120	140	160	180
Time to reach(s)	0	2	4	7.2	9.2	10.8	12.8	14.8	16.4	18.4

12.5

Question 2 1 / 1 pts

The bottom half of a vertically oriented 0.4 m long, 0.1 m wide, 2 mm thick plywood (thermally thick) was exposed to heat flux of 60 kW/m2. It was ignited at 5 s. The 60 kW/m2 heat source was removed after ignition and uniform heat flux of 20 kW/m2 was applied to the surface from a 0.3 m tall flame from the bottom of the plywood. Calculate the upward fire spread rate with the following properties.

Density = 540 kg/m3, thermal conductivity = 0.12 W/m-K, specific heat = 2.5 kJ/kg-K. Initial temperature = 20 °C with total radiative and convective heat transfer coefficient is 20 W/m2-K. Ts=120 °C.

○ 9 mm/s		
4 mm/s		
2 mm/s		
O 7 mm/s		

Question 3 1 / 1 pts

A 100 gallon of heptane is suddenly released from a storage tank to a 1.6 m by 2 m dike. Calculate the fuel burning rate in kg/s from the dike. Below are the heptane properties.

- Heat of combustion of heptane = 44.6 [kJ/g]
- Mass burning rate per unit area for infinite diameter = 0.101 [kg/m2-s]
- Extinction coefficient multiplied by the mean beam length corrector
 = 1.1 [1/m]
- Density = 675 [kg/m3]

0.09

0.29			
0.23			
0.07			

Question 4 1 / 1 pts

A 100 gallon of heptane is suddenly released from a storage tank to a 1.6 m by 2 m dike. Calculate the total burning period in seconds from the dike. Below are the heptane properties.

- Heat of combustion of heptane = 44.6 [kJ/g]
- Mass burning rate per unit area for infinite diameter = 0.101 [kg/m2-s]
- Extinction coefficient multiplied by the mean beam length corrector
 = 1.1 [1/m]
- Density = 675 [kg/m3]
 - 3550
 - 990
 - 3250
 - 960

Question 5 1 / 1 pts

A 100 gallon of heptane is suddenly released from a storage tank to a 1.6 m by 2 m dike. Calculate the heat release rate in kW from the dike. Below are the heptane properties.

Heat of combustion of heptane = 44.6 [kJ/g]

 Mass burning rate per unit area for infinite diameter = 0.101 [kg/m2-s]
 Extinction coefficient multiplied by the mean beam length corrector = 1.1 [1/m] Density = 675 [kg/m3]
- Bonsky 070 [kg/mo]
O 3960
12820
O 3200
O 12630

Quiz Score: 9 out of 9