4 Aritmetică

4.1

- **P** 1. Fie $a, b \in \mathbb{Z}$ două numere întregi, cu $b \neq 0$. Dacă $q, r \in \mathbb{Z}$ verifică a = bq + r, arătați că (a, b) = (b, r).
- **P 2.** (algoritmul lui Euclid) Fie $a, b \in \mathbb{Z}$ două numere întregi, cu $b \neq 0$, iar $q_1, q_2, \ldots, q_n, q_{n+1} \in \mathbb{Z}, r_1, r_2, \ldots, r_n \in \mathbb{N}^*$ astfel încât $|b| > r_1 > r_2 > \cdots > r_n > 0$ și

$$\begin{split} a &= bq_1 + r_1, \\ b &= r_1q_2 + r_2, \\ r_1 &= r_2q_3 + r_3, \\ \vdots \\ r_k &= r_{k+1}q_{k+2} + r_{k+2}, \\ \vdots \\ r_{n-2} &= r_{n-1}q_n + r_n, \\ r_{n-1} &= r_nq_{n+1}(+0). \end{split}$$

Arătați că $(a,b) = r_n$.

- **P** 3. a) Determinați (6188, 4709);
- b) Determinati (81719, 52003, 33649, 30107).
- **P 4.** Fie $a, b \in \mathbb{Z}$ două numere întregi și d = (a, b). Arătați că
- a) există două numere întregi u, v astfel încât au + bv = d.
- b) $d = min\{k \in \mathbb{N}^* | (\exists)u, v \in \mathbb{Z} : k = au + bv\}.$
- **P 5.** Fie $a, b \in \mathbb{Z}$ două numere întregi. Atunci (a, b) = 1 dacă și numai dacă există două numere întregi u, v cu proprietatea că au + bv = 1.
- **P 6.** (Lema lui Gauss) Arătați că dacă $a, b, c \in \mathbb{Z}$ sunt numere întregi cu proprietatea că a|bc și (a, b) = 1, atunci a|c.
- **P** 7. Fie $a,b,c\in\mathbb{Z}$ trei numere întregi și (a,b)=d. Arătați că ecuația liniară diofantică ax+by=c are soluții $(x,y)\in\mathbb{Z}\times\mathbb{Z}$ dacă și numai dacă d|c.
- **P 8.** Fie $a, b, c \in \mathbb{Z}$ trei numere întregi, (a, b) = d și $a, b_1 \in \mathbb{Z}$ astfel încât $a = da_1$ și $b = db_1$. Arătați că dacă (x_0, y_0) este o soluție particulară a ecuațieie liniare diofantice ax + by = c, atunci mulțimea tuturor soluțiilor ecuației este

$$S = \{(x_0 + kb_1, y_0 - ka_1) | k \in \mathbb{Z}\}.$$

- P 9. Rezolvați ecuațiile liniare diofantice:
- a) 47x 111y = 89;
- b) 51x 34y = 153.
- **P 10.** Fie $n \in \mathbb{N}^*$ un număr natural nenul. Relația de congruență modulo n este relația definită pe mulțimea numerelor întregi prin

$$a \equiv b \pmod{n} \stackrel{def}{\iff} n|a - b.$$

Arătați că relația de congruență modulo n este o relație de echivalență, compatibilă cu adunarea, scăderea și înmulțirea numerelor întregi.

- **P 11.** Fie $n \in \mathbb{N}^*$ un număr natural nenul. Un număr întreg $a \in \mathbb{Z}$ se numește inversabil modulo n dacă există un număr întreg u astfel încât $au \equiv 1 \pmod{n}$. Arătați că a este inversabil modulo n dacă și numai dacă (a, n) = 1.
- **P 12.** Fie $n \in \mathbb{N}^*$ un număr natural nenul, iar $a, b \in \mathbb{Z}$ două numere întregi astfel încât (a, n) = 1. Arătați că congruența $ax \equiv b \pmod{n}$ are exact o soluție x_1 în mulțimea $\{0, 1, \dots, n-1\}$ și orice soluție x a congruenței satisface relația $x \equiv x_1 \pmod{n}$.
- **P 13.** Fie $n \in \mathbb{N}^*$ un număr natural nenul, $a, b \in \mathbb{Z}$ două numere întregi și d = (a, n). Arătați că dacă d|b, atunci congruența $ax \equiv b \pmod{n}$ are exact d soluții x_1, x_2, \ldots, x_d în mulțimea $\{0, 1, \ldots, n-1\}$.
- P 14. Rezolvați următoarele congruențe:
- a) $256x \equiv 179 \pmod{337}$;
- b) $1215x \equiv 560 \pmod{2755}$;
- c) $1296x \equiv 1105 \pmod{2413}$.

4.2

- **P 15.** (teorema lui Wilson) Dacă $p \in \mathbb{N}^*$ este un număr prim, atunci $(p-1)! \equiv -1 \pmod{p}$.
- **P 16.** (mica teoremă a lui Fermat) Dacă $p \in \mathbb{N}^*$ este un număr prim şi $a \in \mathbb{Z}$ este relativ prim cu p, atunci $a^{p-1} \equiv 1 \pmod{p}$.
- P 17. (mica teoremă a lui Fermat, var.2) Dacă $p \in \mathbb{N}^*$ este un număr prim și $a \in \mathbb{Z}$ un număr întreg, atunci $a^p \equiv a \pmod{p}$.
- **P 18.** (teorema lui Euler) Fie $n \in \mathbb{N}^*$ un număr natural nenul şi $a \in \mathbb{Z}$ un număr întreg, relativ prim cu n. Atunci $a^{\varphi(n)} \equiv 1 \pmod{n}$, unde φ este funcția lui Euler, dată de $\varphi(n) = \text{numărul numerelor naturale } k$ cu proprietatea că k < n şi (k, n) = 1.
- **P 19.** Fie $n \in \mathbb{N}^*$ un număr natural nenul și $a \in \mathbb{Z}$ un număr întreg, relativ prim cu n. Arătați că congruența $ax \equiv b \pmod{n}$ este echivalentă cu $x \equiv a^{\varphi(n)-1}b \pmod{n}$.
- **P 20.** (Lema chinezească a resturilor.) Fie $m_1, m_2, \ldots, m_k \in \mathbb{N}^*$ numere naturale nenule cu proprietatea că $(m_i, m_j) = 1$ pentru $i \neq j$ și $r_1, r_2, \ldots, r_k \in \mathbb{Z}$ numere întregi oarecare. Arătați că există un unic număr natural $r \in \{0, 1, \ldots, m-1\}$, unde $m = m_1 m_2 \ldots m_k$, astfel încât sistemul de congruențe

$$\begin{cases} x \equiv r_1 \pmod{m_1} \\ x \equiv r_2 \pmod{m_2} \\ \vdots \\ x \equiv r_k \pmod{m_k} \end{cases}$$

să fie echivalent cu congruența $x \equiv r \pmod{m}$.

P 21. Rezolvați sistemele de congruențe:

- a) $x \equiv r_1 \pmod{13}, x \equiv r_2 \pmod{17}$;
- b) $x \equiv r_1 \pmod{25}$, $x \equiv r_2 \pmod{27}$, $x \equiv r_3 \pmod{59}$;
- c) $x \equiv 3 \pmod{8}, x \equiv 11 \pmod{20}, x \equiv 1 \pmod{15};$
- d) $x \equiv 1 \pmod{3}, x \equiv 4 \pmod{5}, x \equiv 2 \pmod{7}, x \equiv 9 \pmod{11}, x \equiv 3 \pmod{13};$
- e) $3x + 4y 29 \equiv 0 \pmod{143}$, $2x 9y + 84 \equiv 0 \pmod{143}$.

4.3

P 22. (criterii de divizibilitate) Fie $n = \overline{a_k a_{k-1} \dots a_2 a_1 a_0}_{(10)}$ un număr natural nenul, cu $a_0, a_1, \dots, a_k \in \{0, 1, \dots, 9\}$. Atunci au loc următoarele congruențe:

```
a) n \equiv a_0 \pmod{2, 5, 10};
```

- b) $n \equiv \overline{a_1 a_0} \pmod{4, 15, 100}$;
- c) $n \equiv \overline{a_{l-1} \dots a_1 a_0} \pmod{2^l, 5^l, 10^l};$
- d) $n \equiv a_0 + 2a_1 \pmod{4}$;
- e) $n \equiv a_0 + 2a_1 + 4a_2 \pmod{8}$;
- f) $n \equiv a_0 + a_1 + \dots + a_k \pmod{3,9}$;
- g) $n \equiv a_0 a_1 + \dots + (-1)^k a_k \pmod{11}$;
- h) Dacă $d \in \mathbb{N}^*$ este coprim cu 10, iar $m, m' \in \mathbb{N}^*$ au proprietatea că $10m \equiv 1 \pmod{d}$ şi $10m' \equiv -1 \pmod{d}$, atunci $d \mid n \iff d \mid \overline{a_k \dots a_2 a_1} + m a_0 \iff d \mid \overline{a_k \dots a_2 a_1} m' a_0$;
- i) $7|n \iff 7|\overline{a_k \dots a_2 a_1} + 5a_0 \iff 7|\overline{a_k \dots a_2 a_1} 2a_0;$
- j) $13|n \iff 13|\overline{a_k \dots a_2 a_1} + 4a_0;$
- k) $17|n \Longleftrightarrow 17|\overline{a_k \dots a_2 a_1} 5a_0;$
- 1) $19|n \Longleftrightarrow 19|\overline{a_k \dots a_2 a_1} + 2a_0;$
- m) $23|n \iff 23|\overline{a_k \dots a_2 a_1} + 7a_0;$
- n) $29|n \iff 29|\overline{a_k \dots a_2 a_1} + 3a_0;$
- p) $31|n \Longleftrightarrow 31|\overline{a_k \dots a_2 a_1} 3a_0;$
- q) $7(\text{sau }11, \text{sau }13)|n \iff 7(\text{sau }11, \text{sau }13)|\overline{a_k \dots a_4 a_3} \overline{a_2 a_1 a_0};$
- r) $27(\text{sau }37)|n \iff 27(\text{sau }37)|\overline{a_k \dots a_4 a_3} + \overline{a_2 a_1 a_0};$
- s) $11|n \iff 11|\overline{a_k \dots a_3 a_2} + \overline{a_1 a_0};$
- t) $101|n \iff 101|\overline{a_k \dots a_3 a_2} \overline{a_1 a_0}$.

P 23. Determinați descompunerile în factori primi ale următoarelor numere naturale: 82798848, 81057226635000, 125!, 244943325, 282321246671737.

 ${\bf P}$ 24. Determinați restul împărțirii numărului $\left(12371^{56}+34\right)^{28}$ prin 111.

4.4

P 25. Fie $a \in \mathbb{Z}$. Atunci:

- a) $a^2 \equiv 0$ sau $1 \pmod{4}$;
- b) $a^2 \equiv 0 \text{ sau } 1 \pmod{3}$;
- c) $a^2 \equiv 0, 1 \text{ sau } 4 \pmod{5}$;
- d) $a^2 \equiv 0, 1, 2 \text{ sau } 4 \pmod{7}$;
- e) $a^3 \equiv 0, 1 \text{ sau } 6 \pmod{7};$
- f) $a^3 \equiv 0, 1 \text{ sau } 8 \pmod{9}$.

P 26. Fie $n \in \mathbb{N}$, $n \equiv 3 \pmod{4}$. Arătați că nu există numere întregi a, b, astfel încât $n = a^2 + b^2$.

P 27. Fie $n \in \mathbb{N}$, $n \equiv 7 \pmod{8}$. Arătaţi că nu există numere întregi a, b, c, astfel încât $n = a^2 + b^2 + c^2$.

P 28. Fie $n \in \mathbb{N}$, cu (n, 6) = 1. Arătați că $24|n^2 - 1$.

P 29. Fie $m, n \in \mathbb{N}^*$, cu $\frac{m}{n} < \sqrt{7}$. Arătaţi că $\frac{m}{n} + \frac{1}{mn} < \sqrt{7}$.

P 30. Fie $x, y, z \in \mathbb{N}^*$. Arătați că $x^2 + y^2 = z^2$ dacă și numai dacă există $k, m, n \in \mathbb{N}^*$, cu m > n, (m, n) = 1 și $m \not\equiv n \pmod 2$, astfel că

 $\{x,y\} = \{2kmn, k(m^2 - n^2)\}, \quad z = k(m^2 + n^2).$

P 31. Arătați că nu există $x,y,z\in\mathbb{N}^*,$ astfel încât $x^4+y^4=z^2.$

4.5

P 32. Arătați că exponentul unui număr prim p în descompunerea în factori a numărului n! este

$$v_p(n!) = \left\lfloor \frac{n}{p} \right\rfloor + \left\lfloor \frac{n}{p^2} \right\rfloor + \left\lfloor \frac{n}{p^3} \right\rfloor + \dots$$

P 33. Fie $p \in \mathbb{P}$ un număr prim, iar $n \in \mathbb{N}^*$ un număr natural a cărui scriere în baza p este $n = \overline{a_k a_{k-1} \dots a_2 a_1 a_0}_{(p)}$. Arătați că

$$v_p(n!) = \frac{n - (a_k + a_{k-1} + \dots + a_2 + a_1 + a_0)}{p - 1}$$
.

P 34. Cu câte zerouri se termină numărul 2021!?

P 35. Arătați că dacă numărul $F_n = 2^n + 1$ este prim, atunci n este o putere a lui 2.

P 36. Arătați că $641|2^{32} + 1$.

P 37. Arătați că dacă numărul $M_n = 2^n - 1$ este prim, atunci n este prim.

P 38. Verificați că $2^{11} - 1 = 23 \cdot 89$.

4.6

P 39. Fie $p \in \mathbb{P}$ un număr prim, iar $a \in \{1, 2, \dots, p-1\}$. Arătați că simbolul lui Legendre verifică congruența

$$\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \pmod{p}.$$

P 40. Fie $p \in \mathbb{P}$ un număr prim, iar $a, b, c \in \mathbb{Z}$, cu $a \notin p\mathbb{Z}$. Arătați că congruența

$$ax^2 + bx + c \equiv 0 \pmod{p}$$

are soluții dacă și numai dacă $\left(\frac{\Delta}{p}\right)=1,$ unde $\Delta=b^2-4ac.$