Logic Control

Prof. Dr. Ping Zhang WS 2017/2018

Overview of the course

- Introduction
- **Modeling of logic control systems**
 - **Boolean algebra**
 - > Finite state automata
 - Petri nets, SIPN
- Analysis of logic control systems
- Design of logic control systems
- Verification and validation
- Online diagnosis of logic control systems
- Implementation of logic control systems
 - > PLC
 - Programming languages (IEC 61131-3)
 - Automatic code generation
- Distributed control (optional)

Petri nets (PN)

- Proposed by Carl Petri in 1961
- Petri nets are suitable for the description of dynamic systems with discrete signals, especially concurrent processes.

- One of the basic forms of Petri nets: place transition net
- Two types of nodes in a place transition net: places and transitions.
- Directed arcs: either from a place to a transition or from a transition to a place.
- Each transition has pre-place(s) and post-place(s).
- Each place contains a number of **tokens**. The maximal number of tokens that can be put in one place is called the **capacity** of the place.
- The distribution of tokens in the petri net is called the marking.

- Tokens are moved by the firing of transitions. → system dynamics
- If a transition fires, then tokens will be removed from all its pre-places and all its post-places will receives tokens. The number of tokens that are removed from / added to one place is decided by the weight of the directed arc that is connected to that place.
- Firing conditions of a transition (i.e. the transition is activated / enabled):
 - > Each pre-place of the transition has enough tokens.
 - > Each post-place of the transition has enough capacity to receive the token.
- By the firing of transitions, the marking may change.
- Interpretation from the control perspective: A marking corresponds to a state of the dynamic system.
- If several transitions are enabled at the same time, it is assumed that these transitions can only fire individually and successively, but not simultaneously.

In summary, a place transition net is characterized by

$$N = (P, T, F, k, w, m_0)$$

 $P = \{p_1, p_2, \dots, p_{n_s}\}$: the finite set of places

 $T = \{t_1, t_2, \dots, t_{n_t}\}$: the finite set of **transitions**

 $F \subseteq (P \times T) \cup (T \times P)$: the set of **directed arcs** (**flow relation**) from places to transitions or from transitions to places.

k: the capacity of the places.

w: the **weight** of the arcs, which shows how many tokens should be taken away from the pre-places or how many token should be added to the post-places, if a transition fires.

 m_0 : the number of tokens in each place at the initial state (called **initial** marking)

$$P = \{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\}, \qquad T = \{t_{1}, t_{2}, t_{3}, t_{4}\},$$

$$F = \{(p_{1}, t_{1}), (p_{2}, t_{2}), (p_{3}, t_{3}), (p_{5}, t_{3}), (p_{4}, t_{4}),$$

$$(t_{1}, p_{2}), (t_{1}, p_{5}), (t_{2}, p_{1}), (t_{3}, p_{4}), (t_{4}, p_{3})\}$$

$$k(p_{1}) = 1, k(p_{2}) = 1, k(p_{3}) = 1, k(p_{4}) = 1, k(p_{5}) = 10$$

$$w(p_{1}, t_{1}) = 1, w(p_{2}, t_{2}) = 1, w(p_{3}, t_{3}) = 1, w(p_{5}, t_{3}) = 2, w(p_{4}, t_{4}) = 1,$$

$$w(t_{1}, p_{2}) = 1, w(t_{1}, p_{5}) = 4, w(t_{2}, p_{1}) = 1, w(t_{3}, p_{4}) = 1, w(t_{4}, p_{3}) = 1.$$

$$m_{0} = [1 \ 0 \ 1 \ 0 \ 4]'$$

- If the transition t₁ fires, then 1 token will be removed from its pre-place $\mathbf{p_1}$, simultaneously the post-place $\mathbf{p_2}$ receives 1 token and $\mathbf{p_5}$ receives 4 token.
- The conditions for t₁ to fire are: (1) its pre-place p₁ has at least 1 token, (2) its post-place **p**₂ has no token (i.e. unmarked) and its postplace **p**₅ has at most 6 tokens.
- In the above example, $\mathbf{t_1}$ and $\mathbf{t_3}$ can fire, $\mathbf{t_2}$ and $\mathbf{t_4}$ can not fire.

A Petri net can be described by its **incidence matrix**.

The incidence matrix can be used to describe the change of the marking.

$$m = m_0 + Nq$$

the current marking m:

the initial making m_0 :

the incidence matrix *N*:

the firing count vector q:

A tool for the algebraic analysis of petri net characteristics

Example

$$m_0 = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 4 \end{bmatrix}$$

$$q = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$m = \begin{bmatrix} 0\\1\\1\\0\\8 \end{bmatrix} = m_0 + Nq$$

Condition event nets:

- A special kind of place transition nets, in which the capacity of all places is 1 and the weight of all arcs is 1.
- The places in a condition event net is either marked or unmarked.
- A transition in a condition event net can fire, if all the pre-places of this transition are marked and all the post-places of this transition are unmarked.
- If a transition is fired, then all the pre-places of this transition become unmarked and all the post-places of this transition become marked.
- The pre-places represent the conditions, so that the transition can fire (i.e. the event happens).

Example

- 1. CE net?
- 2. Incidence matrix?
- 3. Which transition(s) can fire now?

Basic structures in Petri nets

Sequence

Splitting

Synchronization

Conflict:

Both transitions are ready to fire. The firing of one transition will disable the other transition.

Choice

Merging

Contact in petri nets

Contact:

The transition can not fire. The pre-places have enough tokens, but the post-places don't have enough capacity.

Typical examples of petri nets

Sequential execution

Synchronisation

Parallel process

Alternative process

Shared resource

Modelling by PN: Shared robot

Example 1: Flexible production process with shared robot

The robot serves two parallel production lines.

The production line handles, respectively, workpiece type A and workpiece type B.

Modelling by PN: Shared robot

Production line I:

p₁: Workpiece A is not being handled.

p₂: Workpiece A is being handled.

 p_3 : The robot is free.

p₄: Workpiece B is not being handled.

p₅: Workpiece B is being handled.

Production line II:

Modelling by PN: further examples

Example 2: Mixing tank

Modelling by PN: further examples

Example 3: Heated mixing tank

FSA vs. PN

Assume that there are two production line, which are independent and

asynchron.

production line 1

production line 2

FSA description

of the whole system

PN description

of the whole system

FSA vs. PN

Assume that there are two production line, which are independent and the state transitions $C \rightarrow A$ and $F \rightarrow D$ must happen simultaneously.

FSA description of the whole system

PN description of the whole system

FSA vs. PN

The FSA and the PN are complementary modeling approaches!

Summary of Petri nets

- Petri nets are convenient for the description of concurrent processes.
- Distributed information structure
- However, in the basic form the input and output signals have not been considered.

Overview of the course

- Introduction
- **Modeling of logic control systems**
 - **Boolean algebra**
 - > Finite state automata
 - > Petri nets, SIPN
- Analysis of logic control systems
- Design of logic control systems
- Verification and validation
- Online diagnosis of logic control systems
- Implementation of logic control systems
 - > PLC
 - Programming languages (IEC 61131-3)
 - Automatic code generation
- Distributed control (optional)

- The SIPN is introduced to describe the interaction of the petri nets with the environment.
- Input and output signals are taken into account.
- Defined based on the **condition event nets** (CE nets).

- Every transition is associated with a firing condition (for instance, Boolean function of input signals, timers).
- Every **place** is associated with an **output** vector (for instance, signals sent to actuators or other controllers, information to operators, etc).

- A transition in an SIPN is enabled, if
 - all the **pre-places** of this transition are **marked**,
 - all the **post-places** of this transition are **unmarked**.
- An enabled transition fires **immediately**, as soon as the **firing condition** of this transition is **fulfilled**.
- If a transition is fired, then all the pre-places of this transition become unmarked and all the post-places of this transition become marked.
- The current **output** signals are calculated based on the current marking of the SIPN.

- About firing of transitions:
 - Firing of transitions takes no time.
 - If several transitions in the SIPN can fire simultaneously, they fire **simultaneously**.
 - > The firing process is continued until a stable marking is reached. The transient marking(s) will not be shown in the reachability graph.

Input $e^T = [0 \ 1 \ 1 \ 0]$ Example 1:

Input $e^T = [0 \ 1 \ 0 \ 1]$ Example 2:

About output signals:

- > The output signals are calculated, after a new stable marking is reached.
- > The outputs of the marked places in the marking m are united together according to the **product operation** defined below:

$$\Omega(m) = \prod_{\substack{i,\\p_i \text{ is marked}}} \omega(p_i)$$

$x \cdot y$	1	0	1	С
1	1	С	1	С
0	С	0	0	С
-	1	0	-	С
C	С	С	С	С

Example 3:

$$\Omega(m) = \omega(p_B) \cdot \omega(p_D) = [0, 1, -, 1] \cdot [-, -, 1, -] = [0, 1, 1, 1]$$

The product operation used in the output function is defined by

$$\Omega(m) = \prod_{\substack{i,\\p_i \text{ is marked}}} \omega(p_i)$$

$$ightharpoonup$$
 Commutativity: $x \cdot y = y \cdot x$

$$ightharpoonup$$
 Contradition: $\mathbf{c} \coloneqq 1 \cdot 0$

$$\triangleright$$
 "one" element -: $-\cdot x = x$

$$ightharpoonup$$
 "zero" element \mathbf{c} : $\mathbf{c} \cdot \mathbf{x} = \mathbf{c}$

$x \cdot y$	1	0	•	С
1	1	С	1	O
0	С	0	0	С
-	1	0	-	С
С	С	С	С	С

In summary, an SIPN is characterized by

$$SIPN = (P, T, F, m_0, I, O, \varphi, \omega)$$

I: the finite set of **input signals**.

O: the finite set of **output signals**, $I \cap O = \phi$.

 φ : a mapping associating every transition with a firing condition.

 ω : a mapping associating every place with an output vector,

$$p_i \to \{0,1,-\}^{|O|}, i = 1,2,\cdots, n_p.$$