User Guide for the MUX

*MultiplexÔ*2019-07-16

Contents

1	Reasons for the MUX 1.1 The versions available	5			
2	Introduction	7			
3	Literature	9			
4	Methods				
5	Applications5.1 Example one5.2 Example two				
К	Final Words	15			

4 CONTENTS

Reasons for the MUX

The first prototype of the system was built in 2010. The idea was that current water quality sensors are expensive and they are designed to be installed to obtain high frequency data at a particular station. In the field of hydrology, agrohydrology, ecohydrology, and limnology, to only name a few, there is a tight coupling between concentration variations in time and those in space. In other words, concentrations may vary by several folds within minutes and meters. To be able to track constituents and their fate over short distances (\sim < 50 m), one would ideally need not **one** but **several** sensors... But then the price of such monitoring system would be prohibitive in the vast majority of cases. Not to mention that maintenance and chances of failure would be multiplied by the number of sensors deployed.

A more promising idea was to create a system that would be able to provide access to high enough frequency data for $multiple\ points$ in the vicinity of $one\ sensor$. This solves the affordability problem as one sensor only is necessary, and it also solves the problem of multiplying maintenance on multiple sensors. Our solution is the MultiPlexed, MultiPoint Sampler or MPS, which we have now decided to call the MUX, because it is just easier to say! And since you have the instrument with you now, you probably already have a pretty good idea of how it works.

Our solution is thus to bring water to the sensor, rather than the opposite. And once this idea became a promising solution, then expanding the 'bringing of water to the sensor' to multiple points was a natural extension of the idea. All the MUX is, is a peristaltic pump for pumping and purging, a bunch of three-way solenoid valves (we chose 12 for now) that dictate which sampling point is activated, and a micro controller system to control and log all the MUX activities in synchrony with the sensor. The MUX sequentially pumps water from all the desired point to the sensor, and once all the points have been sampled, the sequence starts over again. In theory, it is very simple. In practice,

we have discovered that it takes a lot of attention to details to have a system that is robust enough to work over long periods of time reliably. We feel the version we have now is robust enough for others to use, although we are quite aware that there is still room for improvement, and we are dedicated to keep improving our system.

1.1 The versions available

Right now, we have three versions available. One specifically dedicated to work with the S::CAN field spectrophotometer called Spectro::lyser, one version that works with any sensor, and, a third version coupled with a synchronous syringe based sampler designed to sample rather small volumes of water at very low pumping rates (~around 1 ml/min).

Introduction

You can label chapter and section titles using {#label} after them, e.g., we can reference Chapter 2. If you do not manually label them, there will be automatic labels anyway, e.g., Chapter 4.

Figures and tables with captions will be placed in figure and table environments, respectively.

```
par(mar = c(4, 4, .1, .1))
plot(pressure, type = 'b', pch = 19)
```

Reference a figure by its code chunk label with the fig: prefix, e.g., see Figure 2.1. Similarly, you can reference tables generated from knitr::kable(), e.g., see Table 2.1.

```
knitr::kable(
  head(iris, 20), caption = 'Here is a nice table!',
  booktabs = TRUE
)
```

You can write citations, too. For example, we are using the **bookdown** package (Xie, 2019) in this sample book, which was built on top of R Markdown and **knitr** (Xie, 2015).

Figure 2.1: Here is a nice figure!

Table 2.1: Here is a nice table!

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
5.1	3.5	1.4	0.2	setosa
4.9	3.0	1.4	0.2	setosa
4.7	3.2	1.3	0.2	setosa
4.6	3.1	1.5	0.2	setosa
5.0	3.6	1.4	0.2	setosa
5.4	3.9	1.7	0.4	setosa
4.6	3.4	1.4	0.3	setosa
5.0	3.4	1.5	0.2	setosa
4.4	2.9	1.4	0.2	setosa
4.9	3.1	1.5	0.1	setosa
5.4	3.7	1.5	0.2	setosa
4.8	3.4	1.6	0.2	setosa
4.8	3.0	1.4	0.1	setosa
4.3	3.0	1.1	0.1	setosa
5.8	4.0	1.2	0.2	setosa
5.7	4.4	1.5	0.4	setosa
5.4	3.9	1.3	0.4	setosa
5.1	3.5	1.4	0.3	setosa
5.7	3.8	1.7	0.3	setosa
5.1	3.8	1.5	0.3	setosa

Literature

Here is a review of existing methods.

Methods

We describe our methods in this chapter.

Applications

Some significant applications are demonstrated in this chapter.

- 5.1 Example one
- 5.2 Example two

Final Words

We have finished a nice book.

Bibliography

Xie, Y. (2015). Dynamic Documents with R and knitr. Chapman and Hall/CRC, Boca Raton, Florida, 2nd edition. ISBN 978-1498716963.

Xie, Y. (2019). bookdown: Authoring Books and Technical Documents with R Markdown. R package version 0.12.