Q.4. Write Logical Statements. p: You drive over 65 miles feer hour. q: You get a speeding ticket. (A) You will get a speeding ticket, if you drive over 65 miles feer hour. (B) You get a speeding ticket, but you don't drive over 65 miles feer hour. (C) You get a speeding ticket unless you are not driving over 65 miles feer hour. (A) p→q. (B) ¬p∧q. (C) p→ q.

Propositional Equivalences

A compound proposition that is always true, no matter what the truth values of the propositions that occur in it, it is called a **Tautology**. A compound proposition that is always false is called **Contradiction**. A compound proposition that is neither a tautology or contradiction is called a **Contingency**.

Logical Equivalences

The compound propositions p and q are called logically equivalent if $p \leftrightarrow q$ is a tautogy.

They have same truth table \uparrow

19	þng	pr(pvd)	Proprietable Propr
TT	T	T	-
T T	F	L	T
EF	F	E P	T

Imp Laws:

• Domination Law
$$bVT \equiv T$$
 , $bNF \equiv F$

• Identity Law
$$|p \land T \equiv |p|$$
 , $|p \lor F \equiv |p|$
• Domination Law $|p \lor T \equiv T|$, $|p \land F \equiv F|$
• Idempotent Law $|p \lor p \equiv |p|$, $|p \land p \equiv |p|$

• Double Negation Law
$$|V| = |V|$$

• Commutative Law $|V| = |V|$, $|V| = |V|$

• Associative Law
$$p \land (q \land x) \equiv (p \land q) \land x$$

 $p \lor (q \lor x) \equiv (p \lor q) \lor x$

• Distributive Law
$$\frac{p \wedge (q \vee x)}{p \vee (q \wedge x)} \equiv (p \wedge q) \vee (p \wedge x)$$
$$p \vee (q \wedge x) \equiv (p \vee q) \wedge (p \vee x)$$

• De Morgan's Law
$$7(\beta \wedge q) = 7\beta \vee 79$$

 $7(\beta \vee q) = 7\beta \wedge 79$

$$bv = T \qquad , \quad b \land \uparrow b = F$$

Q6. Use De Morgan's laws to find the negation of each of the following sentences.

(A) Kwame will take a job in industry or go to graduate school.

Kwame will not take a job in industry and will not go to graduale school. (B) James is young and strong.

James is teilher not young or not strong.

James is teilher not young or not strong.

Q7. Show that each of these conditional statements is tautology by using truth tables

(A)
$$\neg (p \rightarrow q) \rightarrow p$$

$$(B)[\neg p \land (p \lor q)] \to q$$

(C)
$$[(p \lor q) \land (p \to r) \land (q \to r)] \to r$$

Q8. Show that the conditional statement mentioned in above question is a tautology without using truth tables.

$$(A) \neg (p \rightarrow q) \rightarrow p$$

$$\equiv 7(7 \mid \forall \forall q) \rightarrow p$$

$$\equiv (p \land 7q) \rightarrow p$$

$$\equiv 7(p \land 7q) \lor p$$

$$\equiv (7 \mid \forall \forall q) \lor p$$

$$\equiv (7 \mid \forall q) \lor p$$