Thesis Progress Meeting

J. Raimbault^{1,2}

Géographie-cités (UMR 8504 CNRS)LVMT (UMR-T 9403 IFSTTAR)

September 29th 2016

Achieved Work (by projects)

- SFICSSS [4.7w] (+ holidays [2.5w])
- Network-Density (RGS) [1.7w] (ETA 1w)
- Interaction Gibrat (CCS) [1w] (//th. paper, ETA 1w)
- China [0.2w]
- Reviewing [0.3w]
- Transportation Eq [0.3w]
- Biblio/reading [1.2w]; Conference [1.9w]; Misc [1.4w]

For a Cautious Use of Big Data and Computation (RGS-AC 2016)

Presentation Rationale: Large scale computation and Big Data make no sense (are endangered) without theory and/or analytical preliminaries

Case Study: Static Correlations between urban form and network measures; insights into ergodicity and stationarity

Dataset construction

Computation of topological road network for all Europe, at 100m granularity scale (to be used consistently with population grid [EUROSTAT, 2014])

 \to Import of OSM into pgsq1, simplification at 100m granularity, topological simplification with split/merge algorithm

 $\simeq 44 \cdot 10^6$ links in initial OSM db, $\simeq 61 \cdot 10^6$ in first simplified layer, $\simeq 21 \cdot 10^6$ in final database

Results: Computation of Indicators

Computation of urban form indicators [Le Néchet, 2015] and network indicators on $l_0=10 \, \mathrm{km}$ side square

Results: Spatial Correlations

Computation of spatial correlation on square areas of width $\delta \cdot l_0$ (with typically $\delta = 4, \dots, 16$)

ightarrow local spatial stationarity of processes

Results: Multi-scale Processes

 \rightarrow Significant variation of mean correlation with δ (Left) and of normalized confidence interval (Right) given by $|\rho_+ - \rho_-| \cdot \delta$, as bounds theoretically vary as $\sqrt{N} \sim \sqrt{\delta^2}$: implies multi-scalarity

Empirical Findings (Formalization)

 $Y_i[\vec{x},t]$ spatio-temporal stochastic process, verifies empirically :

- Local spatial autocorrelation is present and bounded by I_{ρ} (in other words the processes are continuous in space) : at any \vec{x} and t, $\left|\rho_{\parallel\Delta\vec{x}\parallel< I_{\rho}}\left[Y_{i}(\vec{x}+\Delta\vec{x},t),Y_{i}(\vec{x},t)\right]\right|>0$.
- **②** Processes are locally parametrized : $Y_i = Y_i [\alpha_i]$, where $\alpha_i(\vec{x})$ varies with I_{α} , with $I_{\alpha} \gg I_{\rho}$ and weakly locally stationary in space.
- ① Processes are multi-scalar : since $\rho(\delta=\infty)>\rho(\delta=0)$, a necessary non-linear correction on processes spatial averages in correlation computation is present.

Analytical Deductions

1. **Regimes of temporal correlations.** Let assume local ergodicity in \vec{x}_0 at scale $\delta \cdot l_0$ (reasonable with urban growth and network extension in recent times). The Ergodic theorem implies that $\exists \mathcal{T}$ such that

$$< Y_i(t)>_{\|\vec{x}-\vec{x}_0\|<\delta\cdot I_0} = < Y_i(\vec{x}_0)>_{t\in\mathcal{T}}$$

With spatial stationarity, $\langle Y_i \rangle_{\vec{x_0}} = \langle Y_i \rangle_{\vec{x_1}}$, thus \mathcal{T} must be constant to be invariant by translation. By contraposition and (2), processes have different dynamical characteristics.

2. **Global non-ergodicity.** Let X_k a partition of space into local areas. We have $\langle \cdot \rangle_x = \sum_k w_k \langle \cdot \rangle_{x_k} =_{(1)} \sum_k w_k \langle \cdot \rangle_{\mathcal{T}_k}$. On the other hand, global ergodicity would give $\langle \cdot \rangle_t = \langle \cdot \rangle_{\mathcal{T}} = \sum_k w_k \langle \cdot \rangle_{\mathcal{T}}$ and $\sum_k w_k \langle \cdot \rangle_{\mathcal{T}} - \langle \cdot \rangle_{\mathcal{T}_k}) = 0$. Being true on each subset implies $\mathcal{T} = \mathcal{T}_k$, what contradicts (1).

Simple Models of Growth for System of Cities (CCS 2016)

Presentation Content:

- \rightarrow Gravity/Network feedback spatial interactions models of growth : presentation and current results
- ightarrow Proposition of an empirical AIC methodology, application to the model

Implementation

On the importance of visualization in spatial models : complementary implementations in NetLogo/R/Scala

Quantifying overfitting: Empirical AIC

Not clear nor well theorized how to deal with overfitting in models of simulation. **Intuitive idea:** Approximate gain of information by approaching models of simulation by statistical models.

Let $M_k^* = M_k \left[\alpha_k^* \right]$ computational models heuristically fitted to the same dataset. With $S_k \simeq M_k^*$, we show that $\Delta D_{KL} \left(M_k^*, M_{k'}^* \right) \simeq \Delta D_{KL} \left(S_k, S_{k'} \right)$ if fits of S_k are negligible compared to fit difference between computational models and models have same parameter number.

Application M_1 : gravity only model with $(r_0=0.0133,w_G=1.28e-4,\gamma_G=3.82,d_G=4e12)$; M_2 : full model with $(r_0=0.0128,w_G=1.30e-4,\gamma_G=3.80,d_G=8.4e14,w_N=0.603,\gamma_N=1.148,d_N=7.474)$ Fitting of independent polynomial models $(\tilde{P}_i(t)=Q\left[\tilde{P}_i(t-1)\right])$ with 4 and 7 parameters) gives $\Delta D_{KL}\simeq 19.7\to {\rm fit}$ improvement without overfitting

Extension/Application of Lutecia model

- \rightarrow Empirical description of governance structure for transportation within the MCR, associated issues.
- \rightarrow Application of the model to the real case (after refined exploration, sensitivity analysis and internal validation).
- \rightarrow Focus on specific questions involving the medium-sized city of Zhuhai : position and influence within MCR processes ; specific governance configuration (the city is a Special Economic Zone e.g.).

Towards a SimpopSino model

- ightarrow Extension of Gibrat-Interaction model, taking into account at least one economic dimension
- \rightarrow Meeting with Denise : ok for Elfie dataset ; importance of link mesomacro in transportation
- \rightarrow Rapidly growing network in China [Kenworthy and Hu, 2002, Lyu et al., 2016] : construction of a dynamical database ; test static/dynamic/co-evolution network extensions for SimpopSino

Next steps (until December 15th 2016)

- Lutecia : model [3w] ; fieldwork [2w]
- SimpopSino : theoretical/modeling [3w]
- Thesis/papers writing [2w]

Thesis Organisation (remainder)

References I

EUROSTAT (2014).

Eurostat geographical data.

Kenworthy, J. and Hu, G. (2002).

Transport and urban form in chinese cities: an international comparative and policy perspective with implications for sustainable urban transport in china.

disP-The Planning Review, 38(151):4–14.

Le Néchet, F. (2015).

De la forme urbaine à la structure métropolitaine: une typologie de la configuration interne des densités pour les principales métropoles européennes de l'audit urbain.

Cybergeo: European Journal of Geography.

Lyu, G., Bertolini, L., and Pfeffer, K. (2016).

Developing a tod typology for beijing metro station areas.

Journal of Transport Geography, 55:40–50.