Properties of $\mathbb{Z}[\omega]$

Gautham Anne

$\mathbb{Z}[\omega]$ 1 **Theorem 1.1.** The Norm of $Z[\omega]$ is $a^2 - ab + b^2$. *Proof.* Ummm do it yourself:) **Lemma 1.2.** If α prime in $\mathbb{Z}[\omega]$, then $N(\alpha) = p$ or p^2 , where p is a rational prime. Moreover, if $N(\alpha) = p^2$, then α and p are associates. **Lemma 1.3.** If $N(\alpha)$ prime in \mathbb{Z} , then α prime in $\mathbb{Z}[\omega]$. *Proof.* An exercise to the reader. **Lemma 1.4.** If p, a rational prime, is congruent to 2 mod 3, then it is prime in $\mathbb{Z}[\omega]$. If $p \equiv 1 \pmod{3}$, $p = \pi \overline{\pi}$, π prime in $\mathbb{Z}[\omega]$. Also, $\beta = -\omega^2(1-\omega)^2$. **Theorem 1.5.** Modding out $\mathbb{Z}[\omega]$ by a prime α will result in a field with $N(\alpha)$ elements. *Proof.* An exercise to the reader. Hint: $\mathbb{Z}[\omega]$ is a UFD, so π prime $\implies \pi$ irreducible. **Theorem 1.6.** If α prime in $\mathbb{Z}[\omega]$, and $\alpha \nmid \pi$ then $\alpha^{N(\pi)-1} \equiv 1 \pmod{\pi}$ Proof. Hint: Analog of FLT with Theorem 1.5. **Theorem 1.7.** If π prime in $Z[\omega]$ with norm $\neq 3$, $\alpha^{(N(\alpha)-1)/3} \equiv \omega^m \pmod{\pi}$

Lemma 1.8. Let F be a finite field with q elements, such that F^* is cyclic with q-1 elements. Then for $\alpha \in F^*$, $x^n = \alpha$ has solutions iff $\alpha^{(q-1)/d} = 1$, where d

Proof. Hint: Define a group isomorphism from F^* to \mathbb{Z}_{q-1} and take a look at

for unique m = 0, 1, or 2.

the generator. What can you set α to equal?

= gcd(q-1,n).

Definition 1.9. Define the Cubic Legendre Symbol as

$$\left(\frac{a}{\pi}\right)_3 = \begin{cases} a^{(N(\alpha)-1)/3}, & \text{if } \pi \nmid a \\ 0, & \pi \mid a \end{cases}$$

Theorem 1.10. (Properties of Cubic Legendre Symbol)

- 1. $a^{(N(\alpha)-1)/3} \equiv 1 \pmod{\pi}$
- ${\it 2. \ Is \ multiplicative}$
- 3. If $\alpha \equiv \beta \pmod{\pi}$ then $\left(\frac{\alpha}{\pi}\right)_3 = \left(\frac{\beta}{\pi}\right)_3$

Proof. You can prove these :0

Lemma 1.11. $\overline{\left(\frac{\alpha}{\pi}\right)_3} = \left(\frac{\overline{\alpha}}{\overline{\pi}}\right)_3 = \left(\frac{\alpha^2}{\pi}\right)_3$, where $\overline{\alpha}$ is the complex conjugate of α .

Proof. An exercise to the reader.

Theorem 1.12. Let π be a prime such that $N(\pi) = p \equiv 1 \pmod{3}$. Then exactly one of the associates of π are primary.

Theorem 1.13. If $q \equiv 2 \pmod{3}$, then every integer is a cubic residue mod q.

Proof. Yikeydoodles.

Lemma 1.14. If a and $b \in \mathbb{Z}[\omega]$ primary, then -ab is also primary.

Proof. Nah I'm good.

Theorem 1.15. Let π_1, π_2 be primes in $\mathbb{Z}[\omega]$. Then, $\left(\frac{\pi_1}{\pi_2}\right)_3 = \left(\frac{\pi_2}{\pi_1}\right)_3$ where $N(\pi_1) \neq N(\pi_2)$ and $N(\pi_1), N(\pi_2) \neq 3$.

Proof. Ummmmmmm