MINING BEHAVIORAL NETWORKS

MODELING COMPLEX BEHAVIORS IN SOCIAL MEDIA

Meng Jiang

mjiang89@gmail.com www.meng-jiang.com

ROADMAP

Background

Previous works (6 problems)

Thinking & Future works

Behavior-based Applications/Systems

Values, benefits and profits in social media

Post, forward text/image Give ratings to movies Zombie followers, fraud

News feed ranking

Recommender systems! Anti-spam, anti-fraud

Behavior Modeling in Social Media

ROADMAP

Background

Previous works (6 problems)

Thinking & Future works

FROM Behavior Modeling TO Mining Behavioral Networks

■ Problem 1. Information adoption behavior prediction (predicting who will retweet/share which message) [CIKM'12a, TKDE'14]

Social Contextual Behavioral Pattern

ContextMF: Social Contextual Model

Method	MAE	RMSE
	Renren Dataset	
Content-based [1]	0.3842	0.4769
Item CF [25]	0.3601	0.4513
FeedbackTrust [22]	0.3764	0.4684
Influence-based [9]	0.3859	0.4686
SoRec [19]	0.3276	0.4127
ScRog [20]	0.2005	0.3537
Influence MF	0.3102	0.3771
Preference MF	0.3032	0.3762
Context MF	0.2416	0.3086
COHECAE IIII	0.2410	0.3080
	ncent Weil	
Ter	ncent Weil	oo Datase
Ter Content-based [1]	ncent Weil	0.3643
Ten Content-based [1] Item CF [25]	0.2576 0.2375	0.3643 0.3372
Content-based [1] Item CF [25] FeedbackTrust [22]	0.2576 0.2375 0.2830	0.3643 0.3372 0.3887
Ten Content-based [1] Item CF [25] FeedbackTrust [22] Influence-based [9]	0.2576 0.2375 0.2830 0.2651	0.3643 0.3372 0.3887 0.3813
Ten Content-based [1] Item CF [25] FeedbackTrust [22] Influence-based [9] SoRec [19]	0.2576 0.2375 0.2830 0.2651 0.2256	0.3643 0.3372 0.3887 0.3813 0.3325
Ten Content-based [1] Item CF [25] FeedbackTrust [22] Influence-based [9] SoRec [19] SoRec [20]	0.2576 0.2375 0.2830 0.2651 0.2256	0.3643 0.3372 0.3887 0.3813 0.3325

FROM Behavior Modeling TO Mining Behavioral Networks

■ Problem 2. Content generation behavior prediction (predicting who will generate what content) [KDD'14]

Spatial Temporal Contextual Behavioral Pattern

Behavior

Space:

Multi-faceted

Time:

Dynamic

Tasks ----Behavior
modeling

Pattern discovery

Behavior prediction

time Location

Tensor sequence

Decomposition

& Completion

FEMA: Flexible Evolutionary Multi-faceted Analysis on Tensor Perturbation Theory

FROM Behavior Modeling TO Mining Behavioral Networks

■ Problem 3. Cross-domain behavior prediction (addressing cold-start problems if users adopt multiple types of items) [CIKM'12b, TKDE'15]

Hybrid Random Walk

- Star-structured graph with social domain in the center
- ■Auxiliary domain → Social domain → Target domain

$$\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{+}}(t+1) = \delta_{i}\mathbf{R}^{(\mathcal{U})}(t)\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{+}}(t) + (1-\delta_{i})\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{+}}(t)\mathbf{R}^{(\mathcal{D}_{i})}$$

$$\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{-}}(t+1) = \delta_{i}\mathbf{R}^{(\mathcal{U})}(t)\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{-}}(t) + (1-\delta_{i})\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{-}}(t)\mathbf{R}^{(\mathcal{D}_{i})}$$

$$\mathbf{R}^{(\mathcal{U})}(t+1) = \sum_{\mathcal{D}_{i}\in\mathcal{D}} \tau_{i}\mu_{i}\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{+}}(t)\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{+}}(t)^{T}$$

$$+ \sum_{\mathcal{D}_{i}\in\mathcal{D}} \tau_{i}(1-\mu_{i})\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{-}}(t)\mathbf{P}^{(\mathcal{U}\mathcal{D}_{i})^{-}}(t)^{T}$$

$$+ \tau^{(\mathcal{U})}\mathbf{R}^{(\mathcal{U})}(t)\mathbf{R}^{(\mathcal{U})}(t)^{T}$$

Performance on Cold-start Users

- ■Performance("social label" data + 3-day "web post" data)
 - = Performance(10-day "web post" data)

FROM Behavior Modeling TO Mining Behavioral Networks

■ Problem 4. Cross-platform behavior prediction (addressing cold-start problems if platform A and platform B have overlapped users) [New]

Cross-platform Behavior Modeling with Semi-Supervised MF

Input

- Tgt./Aux. platform <u>P/Q;</u>
- Behavior data <u>R^(P)/R^(Q)</u>;
- Observation <u>W^(P)/W^(Q);</u>
- Overlapping indicator <u>W(P,Q)</u>,

Output

- User latent representation <u>U(P)/U(Q)</u>;
- Item latent representation <u>V(P)/V(Q)</u>;
- Missing values in <u>R(P)</u>

Objective function

Target platform

 $\mathcal{J} = \sum_{i,j} W_{i,j}^{(P)} \left(R_{i,j}^{(P)} - \sum_{r} U_{i,r}^{(P)} V_{r,j}^{(P)} \right)^{2} + \lambda \sum_{i,j} W_{i,j}^{(Q)} \left(R_{i,j}^{(Q)} - \sum_{r} U_{i,r}^{(Q)} V_{r,j}^{(Q)} \right)^{2} + \mu \sum_{i_1,j_1,i_2,j_2} W_{i_1,j_1}^{(P,Q)} W_{i_2,j_2}^{(P,Q)} \left(A_{i_1,i_2}^{(P)} - A_{j_1,j_2}^{(Q)} \right)^{2}$

Pair-wise similarity of overlapped users

Supervised term

FROM Behavior Modeling TO Mining Behavioral Networks

■ Problem 5. Synchronized behavior detection (inferring zombie followers in Twitter networks) [PAKDD'14, KDD'14 best paper finalist, TKDD'15]

Synchronized Behavioral Patterns

Synchronized Behavioral Patterns

Recovering Distorted Out-degree Distribution

41M

FROM Behavior Modeling TO Mining Behavioral Networks

■ Problem 6. Suspicious behavior detection (catching astroturfing in Twitter retweeting and trending networks)

Measuring Suspiciousness: Multi-modal Dense Blocks

2 modes, and 3 modes, which is more suspicious?

Measuring Suspiciousness: Multi-modal Dense Blocks

2 modes, and 3 modes, which is more suspicious?

ROADMAP

Background

Previous works (6 problems)

Thinking & Future works

Challenges in Mining Behavioral Networks (Behavior Modeling)

- ■Sparse, massive, complex behavioral data
 - Social, spatial, temporal contexts (Problem 1,2)
 - Walking across domains and platforms (Problem 3,4)
 - Anomalies/Suspiciousness (Problem 5,6)
- ■Unified, structured, heterogeneous *networks*
 - Construction and integration
 - OLAP and mining
 - Network-based anomaly detection
- ■Effective, scalable algorithms
- Practical solutions: We are changing users' behaviors.
 - Mining "plans", "strategies" instead of "missing links"?

Construction and Integration of Behavioral Networks: Human-centered

Construction and Integration of Behavioral Networks: Human-centered

OLAP and Mining Behavioral Networks

Explainable citation recommendation (DBLP)

Affiliation
Author
Paper
Venue
Term

One-step explanation:

- : -Co-authored students'?
- -Co-authored advisors'?
- -Same affiliation?
- -Same venues?
- -Same terms?
- -Well-cited paper? (Award?)

OLAP and Mining Behavioral Networks

- Explainable submission recommendation (DBLP)
 - For paper, recommending venues:
 - Paper-<u>Author</u>-Paper-Venue
 - Paper-<u>Term</u>-Paper-Venue
 - For venue, recommending papers ("related to this conference?"):
 - Paper-Author-Paper-Venue
 - Paper-Term-<u>Paper</u>-Venue
- Explainable content/item recommendation (Social media)
 - User-ItemA-ItemA
 - User-<u>User</u>-ItemA
 - User-<u>ItemB</u>-ItemA
 - User-ItemB-User-ItemA
 - User-Context(Social, Spatial, Temporal, Domains, Platforms)-Item
- Explainable APP recommendation (Tencent App Store)
 - User-Context(?)-APP

Network-based Anomaly Detection

■Natural outbreaks vs. Artificial promotions

Practical Solutions

Promotional strategy

- How to promote a policy/news/product ("ObamaCare"/"Rh-Blood"/"Earthquake") on social media?
 - Given an item, a set of promoters, a network, contexts (time, etc.)
 - Find a set of strategies (what, how, when the promoters operate)
 - Maximize #infected_users_who_adopt_the_item
- How to promote a research topic/area/direction ("heterogeneous networks", "cascade prediction", "deep learning", etc.) in academic communities?
 - Given a topic, a set of authors (students, friends, etc.), contexts (conferences, journals, time, etc.)
 - Propose a set of papers
 - Maximize #infected_researchers_who_work_on_the_topic

THANK YOU

References coming ...

References: Journal Papers

- Meng Jiang, Peng Cui, Fei Wang, Wenwu Zhu and Shiqiang Yang.
 "Social Recommendation with Cross-Domain Transferable Knowledge", in IEEE TKDE 2015. (to appear. Regular. IF=1.815. CCF A)
- Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos and Shiqiang Yang. "Catching Synchronized Behaviors in Large Networks: A Graph Mining Approach", in ACM TKDD 2015. (to appear. Full. IF=1.147. CCF B)
- Meng Jiang, Peng Cui, Fei Wang, Wenwu Zhu and Shiqiang Yang. "Scalable Recommendation with Social Contextual Information", in IEEE TKDE 2014. (Regular. IF=1.815. CCF A)
- Lu Liu, Feida Zhu, Meng Jiang, Jiawei Han, Lifeng Sun and Shiqiang Yang. "Mining Diversity on Social Media Networks", in Multimedia Tools and Applications 2012. (CCF B)

References: Conference Papers

- Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos and Shiqiang Yang. "CatchSync: Catching Synchronized Behavior in Large Directed Graph", in ACM SIGKDD 2014. (Full. Best paper finalist. Acc. rate=14.6%. CCF A)
- Meng Jiang, Peng Cui, Fei Wang, Xinran Xu, Wenwu Zhu and Shiqiang Yang. "FEMA: Flexible Evolutionary Multi-faceted Analysis for Dynamic Behavioral Pattern Discovery", in ACM SIGKDD 2014. (Full. Acc. rate=14.6%. CCF A)
- Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos and Shiqiang Yang. "Inferring Strange Behavior from Connectivity Pattern in Social Networks", in PAKDD 2014. (Full. Acc. rate=10.8%. CCF C)
- Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos and Shiqiang Yang. "Detecting Suspicious Following Behavior in Multimillion-Node Social Networks", in WWW 2014. (*Poster*. CCF B)

References: Conference Papers

- Meng Jiang, Peng Cui, Rui Liu, Qiang Yang, Fei Wang, Wenwu Zhu and Shiqiang Yang. "Social Contextual Recommendation", in CIKM 2012. (Full. Acc. rate=13.4%. 65 citations till 06/2015. CCF B)
- Meng Jiang, Peng Cui, Fei Wang, Qiang Yang, Wenwu Zhu and Shiqiang Yang. "Social Recommendation across Multiple Relational Domains", in CIKM 2012. (Full. Acc. rate=13.4%. 26 citations till 06/2015. CCF B)
- Lu Liu, Jie Tang, Jiawei Han, Meng Jiang and Shiqiang Yang. "Mining Topic-Level Influence in Heterogeneous Networks", in CIKM 2010. (CCF B)

References: Submitted Papers

- Meng Jiang, Peng Cui, and Christos Faloutsos. "Suspicious Behavior Detection: Current Trends and Future Directions", to IEEE Intelligent Systems Magazine Special Issue on Online Behavioral Analysis and Modeling.
- Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos Faloutsos. "A General Suspiciousness Metric for Dense Blocks in Multi-Modal Data", to IEEE ICDM, 2015.
- Meng Jiang, Peng Cui, Nicholas Jing Yuan, Xing Xie, and Shiqiang Yang. "Little is Much: Bridging Cross-Platform Behaviors Through Small Overlapped Crowds", to IEEE ICDM, 2015.
- Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos and Shiqiang Yang. "Inferring Lockstep Behavior from Connectivity Pattern in Large Graphs", to Knowledge and Information Systems (KAIS).