03 THIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING

Examination Control Division

2067 Ashadh

Exam.	Regular/Back			
Level	BE	Full Marks	32	
Programme	All (Except B.Arch.)	Pass Marks		
Year / Part.	Ш/І	Time	3 hrs.	

[8]

[8]

[8]

[8]

[8]

[8]

116

Subject: - Numerical Methods

Candidates are required to give their answers in their own words as far as practicable.

Attempt any Five questions. Question No. 6 is compulsory.

✓ The figures in the margin indicate Full Marks.

✓ Assume suitable data if necessary.

1. 3	Find at least one root of	$x^3 - 2x - 5 = 0$ with the	accuracy of 0.08%, using Bisection
. /	method.	Control of the Contro	accuracy of 6.00%, using bisection

b) Find an approximate root of x $\log_{10} x - 1.2 = 0$ using secant method upto three decimal places of accuracy.

2. a) Use a suitable method to fit an exponential curve $y = ae^{bx}$ for the following data:

X	1	2 .	. 3	4	5
Y	1.65	2.7	4.5	7.35	12.2

b) The followings are the measurement of t (time) made on a curve recorded by an oscillograph representing a change in the conditions of an electric current (I).

t (time) 1.2 2.0 2.5 3.0 I 1.36 0.58 0.34 0.20

Find the value of I when t = 1.6 with appropriate Newton's Gregory Interpolation method.

3. a) Evaluate $I = \int_0^2 \frac{(x^2 + 2x + 1)}{1 + (x + 1)^4} dx$ using Gauss two point and three point formula.

Also, compare results obtained from both the methods.

b) Find the largest Eigen value of the matrix $A = \begin{bmatrix} 2 & -2 & 4 \\ 2 & 3 & 2 \\ -1 & 1 & 1 \end{bmatrix}$ using power method. [8]

4. a) Solve the system of equations given using the Gauss elimination method with partial pivoting.

 $2x_1 + x_2 + x_3 - 2x_4 = -10$

 $4x_1 + 2x_3 + x_4 = 8$

 $3x_1 + 2x_2 + 2x_3 = 7$

 $x_1 + 3x_2 + 2x_3 - x_4 = -5$

b) Solve the following differential equation within $0 \le x \le 0.4$ using RK 4th order

method.
$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - 3y = 6x$$
, with $y(0) = 0$ and $y'(0) = 1$. (take $h = 0.2$)

5. a) A rod is rotating in a plane. The following table gives the angle θ (radian) through which the rod has turned for various values of the time t seconds.

t	0	0.2	0.4	0.6	0.8	1.0	1.2
θ	0	0.12	0.49	1.12	2.02	3.20	4.67

Calculate the angular velocity and angular acceleration of the rod, when t = 0.1 second.

b) Solve the Poisson equation $\nabla^2 f = 2x^2y^2$, over the square domain of $0 \le x \le 3$ and $0 \le y \le 3$ with h = k = 1. Consider f = 0 at all its boundaries, x = 0, y = 0, x = 3 and y = 3.

6. Develop algorithm, flowchart and program coding to interpolate at any points within a given set of data using Lagrange's interpolation method.