МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №2

по дисциплине «Организация ЭВМ и систем»

Тема: Изучение режимов адресации и формирования исполнительного адреса

Студент гр. 0383	 Сабанов П.А.
Преподаватель	Ефремов М.А.

Санкт-Петербург 2021

Цель работы.

Изучить работу программы lr2_comp.asm, написанной на языке ассемблера masm, проанализировать и исправить ошибки в ней, изучить режимы адресации и формирования исполнительного адреса.

Текст задания.

Лабораторная работа 2 предназначена для изучения режимов адресации, использует готовую программу lr2_comp.asm на Ассемблере, которая в автоматическом режиме выполняться не должна, так как не имеет самостоятельного функционального назначения, а только тестирует режимы адресации. Поэтому ее выполнение должно производиться под управлением отладчика в пошаговом режиме.

В программу введен ряд ошибок, которые необходимо объяснить в отчете по работе, а соответствующие команды закомментировать для прохождения трансляции. Необходимо составить протокол выполнения программы в пошаговом режиме отладчика по типу таблицы 1 предыдущей лабораторной работы и подписать его у преподавателя. На защите студенты должны уметь объяснить результат выполнения каждой команды с учетом используемого вида адресации. Результаты, полученные с помощью отладчика, не являются объяснением, а только должны подтверждать ваши объяснения.

Порядок выполнения работы.

- 1. Получить у преподавателя вариант набора значений исходных данных (массивов) vec1, vec2 и matr из файла lr2.dat, приведенного в каталоге Задания и занести свои данные вместо значений, указанных в приведенной ниже программе.
- 2. Протранслировать программу с созданием файла диагностических сообщений; объяснить обнаруженные ошибки и закомментировать соответствующие операторы в тексте программы.

- 3. Снова протранслировать программу и скомпоновать загрузочный модуль.
- 4. Выполнить программу в пошаговом режиме под управлением отладчика с фиксацией содержимого используемых регистров и ячеек памяти до и после выполнения команды.
- 5. Результаты прогона программы под управлением отладчика должны быть подписаны преподавателем и представлены в отчете.

Ход работы.

Вариант 5.

Значения массивов:

```
| vec1 | 11, 12, 13, 14, 18, 17, 16, 15 |
| vec2 | 10, 20, -10, -20, 30, 40, -30, -40 |
| matr | 1, 2, -4, -3, 3, 4, -2, -1, 5, 6, -8, -7, 7, 8, -6, -5 |
```

Сообщение компилятора при компиляции программы с ошибками:

```
Microsoft (R) Macro Assembler Version 5.10
Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.
```

```
lr2_comp.ASM(42): error A2052: Improper operand type
lr2_comp.ASM(49): warning A4031: Operand types must match
lr2_comp.ASM(53): warning A4031: Operand types must match
lr2_comp.ASM(54): error A2055: Illegal register value
lr2_comp.ASM(73): error A2046: Multiple base registers
lr2_comp.ASM(74): error A2047: Multiple index registers
lr2_comp.ASM(81): error A2006: Phase error between passes
```

47262 + 459998 Bytes symbol space free

- 2 Warning Errors
- 5 Severe Errors

Ошибка в строчке 42: попытка записать данные из одной ячейки оперативной памяти в другую ячеку оперативной памяти одной командой.

Ошибка в строчке 54: неправильная адресация.

Ошибка в строчке 73: использование при адресации вместе регистров bp и bx.

Ошибка в строчке 74: использование при адресации вместе регистров di и si.

Ошибка в строчке 81 пропадает при закомментировании строчек, содержащих предыдущие ошибки.

Также в коде есть ошибка, из-за которой программа не прекращает своё выполнение. Вместо команды ret 2 в конце программы нужно написать две команды: add sp, 4 и ret.

Сообщение компилятора после компиляции исправленной программы: Microsoft (R) Macro Assembler Version 5.10

Copyright (C) Microsoft Corp 1981, 1988. All rights reserved.

lr2_comp.ASM(49): warning A4031: Operand types must match
lr2_comp.ASM(53): warning A4031: Operand types must match

47800 + 461507 Bytes symbol space free

2 Warning Errors

O Severe Errors

Выводы.

Была изучена работа программы lr2_comp.asm, написанной на языке ассемблера masm, были проанализированы и исправлены ошибки в ней, были изучены режимы адресации и форматирования исполнительного адреса.

протокол

Адрес команды	Символический	16-ричный код	Содержимое регистров и ячеек памяти			
	код команды	команды	до выполнения	после выполнения		
0000	PUSH DS	1E	(IP) = 0000 (SP) = 0018 (SS) = 1A05 [SS+SP] = 0000	(IP) = 0001 (SP) = 0016 (SS) = 1A05 [SS+SP] = 19F5		
0001	SUB AX, AX	2BC0	(AX) = 0000 (IP) = 0001	(AX) = 0000 (IP) = 0003		
0003	PUSH AX	50	(AX) = 0000 (IP) = 0003 (SP) = 0016 (SS) = 1A05 [SS+SP] = 19F5 [SS+SP+2] = 0000	(AX) = 0000 (IP) = 0004 (SP) = 0014 (SS) = 1A05 [SS+SP] = 0000 [SS+SP+2] = 19F5		
0004	MOV AX, 1A07	B8071A	(AX) = 0000 (IP) = 0004	(AX) = 1A07 (IP) = 0007		
0007	MOV DS, AX	8ED8	(AX) = 1A07 (DS) = 19F5 (IP) = 0007	(AX) = 1A07 (DS) = 1A07 (IP) = 0009		
0009	MOV AX, 01F4	B8F401	(AX) = 1A07 (IP) = 0009	(AX) = 01F4 (IP) = 000C		
000C	MOV CX, AX	8BC8	(AX) = 01F4 (CX) = 00B9 (IP) = 000C			
000E	MOV BL, 24	B324	(BL) = 00 (IP) = 000E	(BL) = 24 (IP) = 0010		
0010	MOV BH, CE	B7CE	(BH) = 00 (IP) = 0010	(BH) = CE (IP) = 0012		
0012	MOV [0002], FFCE	C7060200CEFF	(IP) = 0012 [DS+0002] = 0000	(IP) = 0018 [DS+0002] = CEFF		
0018	MOV BX, 0006	BB0600	(BX) = CE24 (IP) = 0018	(BX) = 0006 (IP) = 001B		
001B	MOV [0000], AX	A30000	(AX) = 01F4 (IP) = 001B [DS] = 0000	(AX) = 01F4 (IP) = 001E [DS] = F401		
001E	MOV AL, [BX]	8A07	(AL) = F4 (BX) = 0006 (IP) = 001E [DS+BX] = 0B	(AL) = 0B (BX) = 0006 (IP) = 0020 [DS+BX] = 0B		
0020	MOV AL, [BX+03]	8A4703	(AL) = 0B (BX) = 0006 (IP) = 0020 [DS+BX+3] = 0E	(AL) = 0E (BX) = 0006 (IP) = 0023 [DS+BX+3] = 0E		
0023	MOV CX, [BX+03]	8B4F03	(BX) = 0006 (CX) = 01F4 (IP) = 0023 [DS+BX+3] = 0E12	(BX) = 0006 (CX) = 120E (IP) = 0026 [DS+BX+3] = 0E12		

0026	MOV DI, 0002	BF0200	(DI) = 0000 (IP) = 0026	(DI) = 0002 (IP) = 0029
0029	MOV AL, [000E+DI]	8A850E00	(AL) = 0E (DI) = 0002 (IP) = 0029 [DS+DI+000E] = F6	(AL) = F6 (DI) = 0002 (IP) = 002D [DS+DI+000E] = F6
002D	MOV CX, [000E+DI]	8B8D0E00	(CX) = 120E (DI) = 0002 (IP) = 002D [DS+DI+000E] = F6EC	(CX) = ECF6 (DI) = 0002 (IP) = 0031 [DS+DI+000E] = F6EC
0031	MOV BX, 0003	BB0300	(BX) = 0006 (IP) = 0031	(BX) = 0003 (IP) = 0034
0034	MOV AL, [0016+BX+DI]	8A811600	(AL) = F6 (BX) = 0003 (DI) = 0002 (IP) = 0034 [DS+DI+BX+0016] = 04	(AL) = 04 (BX) = 0003 (DI) = 0002 (IP) = 0038 [DS+DI+BX+0016] = 04
0038	MOV CX, [0016+BX+DI]	8B891600	(CX) = ECF6 (BX) = 0003 (DI) = 0002 (IP) = 0038 [DS+DI+BX+0016] = 04FE	(CX) = FE04 (BX) = 0003 (DI) = 0002 (IP) = 003C [DS+DI+BX+0016] = 04FE
003C	MOV AX, 1A07	B8071A	(AX) = 0104 (IP) = 003C	(AX) = 1A07 (IP) = 003F
003F	MOV ES, AX	8EC0	(AX) = 1A07 (ES) = 19F5 (IP) = 003F	(AX) = 19F5 (ES) = 1A07 (IP) = 0041
0041	MOV AX, ES:[BX]	268B07	(AX) = 1A07 (IP) = 0041 [ES+BX] = FF00	(AX) = 00FF (IP) = 0044 [ES+BX] = FF00
0044	MOV AX, 0000	B80000	(AX) = 00FF (IP) = 0044	(AX) = 0000 (IP) = 0047
0047	MOV ES, AX	8EC0	(AX) = 0000 (ES) = 1A07 (IP) = 0047	(AX) = 0000 (ES) = 0000 (IP) = 0049
0049	PUSH DS	1E	(DS) = 1A07 (IP) = 0049 (SP) = 0014 (SS) = 1A05 [SS+SP] = 0000 [SS+SP+2] = 19F5 [SS+SP+4] = 0000	(DS) = 1A07 (IP) = 004A (SP) = 0012 (SS) = 1A05 [SS+SP] = 1A07 [SS+SP+2] = 0000 [SS+SP+4] = 19F5

004A	POP ES	07	(ES) = 0000 (IP) = 004A (SP) = 0012 (SS) = 1A05 [SS+SP] = 1A07 [SS+SP+2] = 0000 [SS+SP+4] = 19F5	(ES) = 1A07 (IP) = 004B (SP) = 0014 (SS) = 1A05 [SS+SP] = 0000 [SS+SP+2] = 19F5 [SS+SP+4] = 0000
004B	MOV CX, ES:[BX-01]	268B4FFF	(BX) = 0003 (CX) = FE04 (IP) = 004B [ES+BX-01] = CEFF	(BX) = 0003 (CX) = FFCE (IP) = 004F [ES+BX-01] = CEFF
004F	XCHG AX, CX	91	(AX) = 0000 (CX) = FFCE (IP) = 004F	(AX) = FFCE (CX) = 0000 (IP) = 0050
0050	MOV DI, 0002	BF0200	(DI) = 0002 (IP) = 0050	(DI) = 0002 (IP) = 0053
0053	MOV ES:[BX+DI], AX	268901	(AX) = FFCE (BX) = 0003 (DI) = 0002 (IP) = 0053 [ES+BX+DI] = 000B	(AX) = FFCE (BX) = 0003 (DI) = 0002 (IP) = 0056 [ES+BX+DI] = CEFF
0056	MOV BP, SP	8BEC	(BP) = 0000 (SP) = 0014 (IP) = 0056	(BP) = 0014 (SP) = 0014 (IP) = 0058
0058	PUSH [0000]	FF360000	(IP) = 0058 (SP) = 0014 (SS) = 1A05 [SS+SP] = 0000 [SS+SP+2] = 19F5 [SS+SP+4] = 0000 [DS] = F401	(IP) = 005C (SP) = 0012 (SS) = 1A05 [SS+SP] = 01F4 [SS+SP+2] = 0000 [SS+SP+4] = 19F5 [DS] = F401
005C	PUSH [0002]	FF360200	(IP) = 005C (SP) = 0012 (SS) = 1A05 [SS+SP] = 01F4 [SS+SP+2] = 0000 [SS+SP+4] = 19F5 [SS+SP+6] = 0000 [DS+0002] = CEFF	(IP) = 0060 (SP) = 0010 (SS) = 1A05 [SS+SP] = FFCE [SS+SP+2] = 01F4 [SS+SP+4] = 0000 [SS+SP+6] = 19F5 [DS+0002] = CEFF
0060	MOV BP, SP	8BEC	(BP) = 0014 (SP) = 0010 (IP) = 0060	(BP) = 0010 (SP) = 0010 (IP) = 0062
0062	MOV DX, [BP+02]	8B5602	(DX) = 0000 (BP) = 0010 (IP) = 0062 [SS+BP+02] = 01F4	(DX) = 01F4 (BP) = 0010 (IP) = 0065 [SS+BP+02] = 01F4

0065	ADD SP, 0004	83C404	(IP) = 0065 (SP) = 0010 (SS) = 1A05 [SS+SP] = FFCE [SS+SP+2] = 01F4 [SS+SP+4] = 0000 [SS+SP+6] = 19F5	(IP) = 0068 (SP) = 0014 (SS) = 1A05 [SS+SP] = 0000 [SS+SP+2] = 19F5 [SS+SP+4] = 0000 [SS+SP+6] = 0000
0068	RET Far	СВ	(CS) = 1A0A (IP) = 0068 (SP) = 0014 [SS+SP] = 0000 [SS+SP+2] = 19F5	(CS) = 19F5 (IP) = 0000 (SP) = 0018 [SS+SP] = 0000 [SS+SP+2] = 0000
0000	INT 20	CD20		

ПРИЛОЖЕНИЕ А

Исходный код программы с ошибками

```
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 E0U -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 11,12,13,14,18,17,16,15
vec2 DB 10,20,-10,-20,30,40,-30,-40
matr DB 1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-5
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
 push DS
sub AX,AX
 push AX
mov AX, DATA
mov DS,AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
mov ax,n1
mov cx,ax
mov bl,EOL
 mov bh,n2
; Прямая адресация
mov mem2,n2
mov bx, OFFSET vec1
mov mem1,ax
; Косвенная адресация
 mov al,[bx]
```

```
mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx,3[bx]
; Индексная адресация
mov di,ind
mov al, vec2[di]
mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al,matr[bx][di]
mov cx,matr[bx][di]
mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
; ----- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
mov ax,matr[bp+bx]
mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
ret 2
Main ENDP
CODE ENDS
END Main
```

ПРИЛОЖЕНИЕ Б

Листинг компиляции программы с ошибками

#Microsoft (R) Macro Assembler Version 5.10

10/15/21 20:39:3

Page 1-1

```
1
                         ; Программа изучения режимов адресации
                         процессора IntelX86
2 = 0024
                               EOL EQU '$'
3 = 0002
                               ind EQU 2
4 = 01F4
                               n1 EQU 500
5 = -0032
                               n2 EQU -50
                         ; Стек программы
7 0000
                         AStack SEGMENT STACK
8 0000 0000[
                                DW 12 DUP(?)
         ????
9
10
                   ]
11
12 0018
                         AStack ENDS
13
                         ; Данные программы
14 0000
                         DATA SEGMENT
15
                         ; Директивы описания данных
16 0000 0000
                         mem1 DW 0
17 0002 0000
                         mem2 DW 0
18 0004 0000
                         mem3 DW 0
19 0006 OB OC OD OE 12 11 vec1 DB 11,12,13,14,18,17,16,15
20
        10 OF
21 000E 0A 14 F6 EC 1E 28 vec2 DB 10,20,-10,-20,30,40,-30,-40
        E2 D8
22
,8,-6,-5
24
        FE FF 05 06 F8 F9
25
        07 08 FA FB
26 0026
                         DATA ENDS
27
                         ; Код программы
28 0000
                         CODE SEGMENT
29
                         ASSUME CS:CODE, DS:DATA, SS:AStack
30
                         ; Головная процедура
31 0000
                         Main PROC FAR
32 0000 1E
                          push DS
33 0001 2B C0
                                sub AX,AX
34 0003 50
                          push AX
35 0004 B8 ---- R
                          mov AX,DATA
```

```
36 0007 8E D8
                                        mov DS.AX
      37
                                 ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ
                                 СМЕЩЕНИЙ
      38
                                 ; Регистровая адресация
      39 0009 B8 01F4
                                        mov ax,n1
      40 000C 8B C8
                                        mov cx,ax
      41 000E B3 24
                                        mov bl,EOL
      42 0010 B7 CE
                                        mov bh,n2
      43
                                 ; Прямая адресация
      44 0012 C7 06 0002 R FFCE mov mem2,n2
      45 0018 BB 0006 R
                                 mov bx,0FFSET vec1
      46 001B A3 0000 R
                                 mov mem1,ax
      47
                                 ; Косвенная адресация
      48 001E 8A 07
                                        mov al,[bx]
      49
                                 mov mem3,[bx]
lr2_comp.ASM(42): error A2052: Improper operand type
      50
                                 ; Базированная адресация
      51 0020 8A 47 03
                                        mov al, [bx]+3
#Microsoft (R) Macro Assembler Version 5.10
                                                             10/15/21 20:39:3
                                                             Page
                                                                      1-2
      52 0023 8B 4F 03
                                        mov cx,3[bx]
      53
                                 ; Индексная адресация
      54 0026 BF 0002
                                        mov di,ind
      55 0029 8A 85 000E R
                                        mov al, vec2[di]
      56 002D 8B 8D 000E R
                                        mov cx,vec2[di]
lr2_comp.ASM(49): warning A4031: Operand types must match
      57
                                 ; Адресация с базированием и индексиров
                                 анием
      58 0031 BB 0003
                                        mov bx,3
      59 0034 8A 81 0016 R
                                        mov al,matr[bx][di]
      60 0038 8B 89 0016 R
                                        mov cx,matr[bx][di]
lr2_comp.ASM(53): warning A4031: Operand types must match
      61 003C 8B 85 0022 R
                                        mov ax,matr[bx*4][di]
lr2_comp.ASM(54): error A2055: Illegal register value
      62
                                 ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ С
                                 ЕГМЕНТОВ
      63
                                 ; Переопределение сегмента
      64
                                 ; ----- вариант 1
      65 0040 B8 ---- R
                                 mov ax, SEG vec2
      66 0043 8E C0
                                        mov es, ax
      67 0045 26: 8B 07
                                 mov ax, es:[bx]
      68 0048 B8 0000
                                        mov ax, 0
                                 ; ----- вариант 2
      69
      70 004B 8E C0
                                        mov es, ax
```

```
71 004D 1E
                             push ds
     72 004E 07
                             pop es
     73 004F 26: 8B 4F FF
                                   mov cx, es:[bx-1]
     74 0053 91
                             xchq cx,ax
     75
                            ; ----- вариант 3
     76 0054 BF 0002
                                   mov di,ind
     77 0057 26: 89 01
                             mov es:[bx+di],ax
     78
                            ; ----- вариант 4
     79 005A 8B EC
                                   mov bp,sp
     80 005C 3E: 8B 86 0016 R
                                  mov ax,matr[bp+bx]
lr2_comp.ASM(73): error A2046: Multiple base registers
     81 0061 3E: 8B 83 0016 R
                                  mov ax,matr[bp+di+si]
lr2_comp.ASM(74): error A2047: Multiple index registers
     82
                            ; Использование сегмента стека
     83 0066 FF 36 0000 R
                                   push mem1
     84 006A FF 36 0002 R
                                   push mem2
     85 006E 8B EC
                                   mov bp,sp
     86 0070 8B 56 02
                                   mov dx,[bp]+2
     87 0073 CA 0002
                                   ret 2
     88 0076
                            Main ENDP
lr2_comp.ASM(81): error A2006: Phase error between passes
     89 0076
                            CODE ENDS
     90
                             END Main
#Microsoft (R) Macro Assembler Version 5.10
                                                           10/15/21 20:39:3
                                                           Symbols-1
Segments and Groups:
               Name
                                  Length
                                              Align
                                                        Combine Class
0018 PARA STACK
0076 PARA NONE
0026 PARA NONE
Symbols:
               Name
                                  Type
                                        Value
                                                    Attr
EOL . . . . . . . . . . . . . . . .
                                  NUMBER
                                             0024
IND . . . . . . . . . . . . . . .
                                  NUMBER
                                             0002
```

MAIN .								F PROC	0000	CODE	Length = 0076
MATR .								L BYTE	0016	DATA	
MEM1 .								L WORD	0000	DATA	
MEM2 .								L WORD	0002	DATA	
MEM3 .								L WORD	0004	DATA	
N1								NUMBER	01F4		
N2								NUMBER	-0032		
VEC1 .								L BYTE	0006	DATA	
VEC2 .			•					L BYTE	000E	DATA	
@CPU .			•					TEXT 01	01h		
@FILEN	IAMI	Ε	•					TEXT lr	2_comp		
@VERSI	ON							TEXT 51	0		

- 83 Source Lines
- 83 Total Lines
- 19 Symbols

47262 + 459998 Bytes symbol space free

- 2 Warning Errors
- 5 Severe Errors

ПРИЛОЖЕНИЕ В

Исходный код исправленной программы

```
; Программа изучения режимов адресации процессора IntelX86
EOL EQU '$'
ind EQU 2
n1 EQU 500
n2 EQU -50
; Стек программы
AStack SEGMENT STACK
DW 12 DUP(?)
AStack ENDS
; Данные программы
DATA SEGMENT
; Директивы описания данных
mem1 DW 0
mem2 DW 0
mem3 DW 0
vec1 DB 11,12,13,14,18,17,16,15
vec2 DB 10,20,-10,-20,30,40,-30,-40
matr DB 1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-5
DATA ENDS
; Код программы
CODE SEGMENT
ASSUME CS:CODE, DS:DATA, SS:AStack
; Головная процедура
Main PROC FAR
 push DS
 sub AX,AX
 push AX
 mov AX, DATA
 mov DS,AX
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
; Регистровая адресация
 mov ax,n1
mov cx,ax
 mov bl,EOL
 mov bh,n2
; Прямая адресация
 mov mem2,n2
mov bx, OFFSET vec1
 mov mem1,ax
; Косвенная адресация
 mov al,[bx]
```

```
; mov mem3,[bx]
; Базированная адресация
mov al, [bx]+3
mov cx,3[bx]
; Индексная адресация
mov di,ind
mov al, vec2[di]
mov cx,vec2[di]
; Адресация с базированием и индексированием
mov bx,3
mov al,matr[bx][di]
mov cx,matr[bx][di]
; mov ax,matr[bx*4][di]
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
; Переопределение сегмента
; ----- вариант 1
mov ax, SEG vec2
mov es, ax
mov ax, es:[bx]
mov ax, 0
; ----- вариант 2
mov es, ax
push ds
pop es
mov cx, es:[bx-1]
xchg cx,ax
; ----- вариант 3
mov di,ind
mov es:[bx+di],ax
; ----- вариант 4
mov bp,sp
; mov ax,matr[bp+bx]
; mov ax,matr[bp+di+si]
; Использование сегмента стека
push mem1
push mem2
mov bp,sp
mov dx,[bp]+2
add sp, 4
 ret
Main ENDP
CODE ENDS
 END Main
```

ПРИЛОЖЕНИЕ Г

Листинг компиляции исправленной программы

#Microsoft (R) Macro Assembler Version 5.10 10/15/21 20:49:0 Page 1-1

```
; Программа изучения режимов адресации процессо
                         pa IntelX86
= 0024
                               EOL EQU '$'
= 0002
                               ind EQU 2
= 01F4
                               n1 EQU 500
=-0032
                               n2 EQU -50
                         ; Стек программы
0000
                         AStack SEGMENT STACK
0000
     000C[
                          DW 12 DUP(?)
        ????
                   ]
0018
                         AStack ENDS
                         ; Данные программы
0000
                         DATA SEGMENT
                         ; Директивы описания данных
0000
      0000
                         mem1 DW 0
0002
     0000
                         mem2 DW 0
0004
     0000
                         mem3 DW 0
0006
     OB OC OD OE 12 11 vec1 DB 11,12,13,14,18,17,16,15
      10 OF
000E 0A 14 F6 EC 1E 28 vec2 DB 10,20,-10,-20,30,40,-30,-40
      E2 D8
matr DB 1,2,-4,-3,3,4,-2,-1,5,6,-8,-7,7,8,-6,-5
      FE FF 05 06 F8 F9
      07 08 FA FB
0026
                         DATA ENDS
                         ; Код программы
0000
                         CODE SEGMENT
                          ASSUME CS:CODE, DS:DATA, SS:AStack
                         ; Головная процедура
0000
                         Main PROC FAR
0000 1E
                          push DS
0001 2B C0
                          sub AX,AX
0003
     50
                          push AX
0004 B8 ---- R
                          mov AX, DATA
0007 8E D8
                          mov DS,AX
```

```
; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ НА УРОВНЕ СМЕЩЕНИЙ
                          ; Регистровая адресация
 0009 B8 01F4
                                  mov ax,n1
 000C 8B C8
                           mov cx,ax
 000E B3 24
                           mov bl,EOL
 0010 B7 CE
                           mov bh,n2
                          ; Прямая адресация
0012 C7 06 0002 R FFCE
                           mov mem2,n2
 0018 BB 0006 R
                           mov bx, OFFSET vec1
 001B A3 0000 R
                           mov mem1,ax
                          ; Косвенная адресация
001E 8A 07
                           mov al,[bx]
                          ; mov mem3,[bx]
                          ; Базированная адресация
 0020 8A 47 03
                                  mov al, [bx]+3
 0023 8B 4F 03
                                  mov cx,3[bx]
                          ; Индексная адресация
#Microsoft (R) Macro Assembler Version 5.10
                                                             10/15/21 20:49:0
                                                             Page
                                                                      1-2
0026 BF 0002
                                  mov di,ind
0029 8A 85 000E R
                           mov al, vec2[di]
 002D 8B 8D 000E R
                           mov cx,vec2[di]
lr2_comp.ASM(49): warning A4031: Operand types must match
                          ; Адресация с базированием и индексированием
0031 BB 0003
                                  mov bx,3
0034 8A 81 0016 R
                           mov al,matr[bx][di]
0038 8B 89 0016 R
                           mov cx,matr[bx][di]
lr2_comp.ASM(53): warning A4031: Operand types must match
                          ; mov ax,matr[bx*4][di]
                          ; ПРОВЕРКА РЕЖИМОВ АДРЕСАЦИИ С УЧЕТОМ СЕГМЕНТОВ
                          ; Переопределение сегмента
                          ; ----- вариант 1
003C B8 ---- R
                           mov ax, SEG vec2
 003F 8E C0
                           mov es, ax
 0041 26: 8B 07
                           mov ax, es:[bx]
 0044 B8 0000
                                  mov ax, 0
                          ; ----- вариант 2
0047 8E C0
                           mov es, ax
 0049 1E
                           push ds
 004A 07
                           pop es
 004B 26: 8B 4F FF
                           mov cx, es:[bx-1]
 004F 91
                           xchg cx,ax
                          ; ----- вариант 3
 0050 BF 0002
                                  mov di,ind
```

0053	26: 89 01	mov es:[bx+	·di],ax		
		; вар	иант 4		
0056	8B EC	mov bp,sp			
		; mov ax,mat	r[bp+bx]		
		; mov ax,mat	r[bp+di+si]		
		; Использова	ние сегмента	стека	
0058	FF 36 0000 R	push mem1			
005C	FF 36 0002 R	push mem2			
0060		mov bp,sp			
0062			dx,[bp]+2		
0065			sp, 4		
0068	СВ	ret			
0069		Main ENDP			
0069		CODE ENDS			
#Micro	soft (R) Macro Asse	END Main	E 10		10/15/21 20:49:0
#MICIO	SUIL (N) MACIU ASSE	mbter version	3.10		Symbols-1
					Symbols-1
Segmen	ts and Groups:				
	Name	Lengtl	h Align Combir	ne Class	5
ASTACK			0018 PARA	STACK	
CODE .			0069 PARA	NONE	
DATA .			0026 PARA	NONE	
Symbol	s:				
	Name	Туре	Value Attr		
EOL .			NUMBER 0024		
IND .			NUMBER 0002		
MAIN .			F PROC 0000	CODE	Length = 0069
			L BYTE 0016	DATA	
			L WORD 0000	DATA	
MEM2 .			L WORD 0002	DATA	
MEM3 .			L WORD 0004	DATA	
N1			NUMBER 01F4		
N2			NUMBER -0032		
VEC1 .			L BYTE 0006	DATA	
VEC2 .			L BYTE 000E	DATA	

@CPU TEXT 0101h
@FILENAME TEXT lr2_comp
@VERSION TEXT 510

84 Source Lines

84 Total Lines

19 Symbols

47800 + 461507 Bytes symbol space free

- 2 Warning Errors
- 0 Severe Errors

приложение д

Карта памяти исправленной программы

Start Stop Length Name 00000H 00017H 00018H ASTACK

00020H 00045H 00026H DATA

00050H 000B8H 00069H CODE

Program entry point at 0005:0000

Class