Data-Driven 3D Voxel Patterns for Object Category Recognition

Computational Vision GL & Geometry Lab

Yu Xiang^{1,2}, Wongun Choi³, Yuanqing Lin³, and Silvio Savarese¹

¹Stanford University, ²University of Michigan at Ann Arbor, ³NEC Laboratories America, Inc. yuxiang@umich.edu, {wongun, ylin}@nec-labs.com, ssilvio@stanford.edu

Pepik et al. CVPR'13

Zia et al., CVPR'14

Occlusion

3D representation

Xiang et al., CVPR'12

Viewpoint variation

Su et al., ICCV'09

Experiments

☐ Car Detection and Orientation Estimation on KITTI

	Object Detection (AP)			Orientation Estimation (AOS)		
Method	Easy	Moderate	Hard	Easy	Moderate	Hard
ACF [2]	55.89	54.77	42.98	N/A	N/A	N/A
DPM [3]	71.19	62.16	48.43	67.27	55.77	43.59
DPM-VOC+VP [4]	74.59	64.71	48.76	72.28	61.84	46.54
OC-DPM [5]	74.94	65.95	53.86	73.50	64.42	52.40
SubCat [6]	81.94	66.32	51.10	80.92	64.94	50.03
AOG [7]	84.36	71.88	59.27	43.81	38.21	31.53
SubCat [8]	84.14	75.46	59.71	83.41	74.42	58.83
Regionlets [9]	84.75	76.45	59.70	N/A	N/A	N/A
Ours NMS	84.81	73.02	63.22	84.31	71.99	62.11
Ours Occlusion	87.46	75.77	65.38	86.92	74.59	64.11

Evaluation on test set

☐ Joint Car Detection and Segmentation on KITTI

Method	thod Easy		Hard
DPM [3] + box	38.09	29.42	22.65
Ours NMS + box	57.52	47.84	40.01
Ours Occlusion + box	59.21	49.74	41.71
Ours NMS + 3DVP	63.88	52.57	43.82
Ours Occlusion + 3DVP	65.73	54.60	45.62

Evaluation on validation set

Metric: Average Segmentation Accuracy (ASA)

☐ Joint Car Detection and 3D Localization on KITTI

Method	Easy	Moderate	Hard
DPM [3] < 2m	40.21	29.02	22.36
Ours NMS < 2m	64.85	49.97	41.14
Ours Occlusion < 2m	66.56	51.52	42.39
DPM [3] < 1m	24.44	18.04	14.13
Ours NMS < 1m	44.47	33.25	26.93
Ours Occlusion < 1m	45.61	34.28	27.72

Evaluation on validation set

Metric: Average Localization Precision (ALP)

References

[1] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In CVPR, 2012. [2] P. Doll'ar, R. Appel, S. Belongie, and P. Perona. Fast feature pyramids for object detection. TPAMI, 2014. [3] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan. Object detection with discriminatively trained partbased models. TPAMI, 2010.

[4] B. Pepik, M. Stark, P. Gehler, and B. Schiele. Multi-view and 3d deformable part models. TPAMI, 2015. [5] B. Pepikj, M. Stark, P. Gehler, and B. Schiele. Occlusion patterns for object class detection. In CVPR, 2013. [6] E. Ohn-Bar and M. M. Trivedi. Fast and robust object detection using visual subcategories. In CVPRW, 2014. [7] B. Li, T. Wu, and S.-C. Zhu. Integrating context and occlusion for car detection by hierarchical and-or model. In ECCV,

[8] E. Ohn-Bar and M. M. Trivedi. Learning to detect vehicles by clustering appearance patterns. T-ITS, 2015. [9] X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.

Metrics: Average Precision (AP) and Average Orientation Similarity (AOS)