СКС, методы кодирования

Содержание

- Структурированная кабельная система
- Бескабельные каналы
- Передача данных на физическом уровне (методы кодирования)

Структурированная кабельная система

CKC

• Структурированная кабельная система — это набор коммутационных элементов, а также методика их совместного использования, которая позволяет создавать регулярные, легко расширяемые структуры связей в вычислительных сетях

СКС Структура

- СКС имеет иерархическую структуру со следующими уровнями
 - Сетевая система предприятия
 - Подсистема комплекса (территория с несколькими зданиями)
 - Вертикальная подсистема (в пределах одного здания)
 - Горизонтальная подсистема (в пределах этажа)
 - Оконечные сетевые устройства
- Названия условны и отражают положение подсистемы в логической иерархии. "Горизонтальные" кабели могут быть проложены вертикально (т.е. горизонтальная подсистема может быть расположена на нескольких этажах) и наоборот

СКС Стандарты...

- Стандарты СКС относятся к следующим подсистемам
 - магистральная подсистема комплекса включает
 - магистральные кабели комплекса
 - механические окончания кабелей (разъемы) в распределительном пункте (далее РП) комплекса и РП зданий
 - коммутационные соединения в РП комплекса
 - вертикальная подсистема включает
 - магистральные кабели здания
 - механические окончания кабелей (разъемы) в РП здания и РП этажа (горизонтальном РП)
 - коммутационные соединения в РП здания
 - горизонтальная подсистема включает
 - горизонтальные кабели
 - механические окончания кабелей (разъемы) в РП этажа
 - коммутационные соединения в РП этажа
 - телекоммуникационные разъемы
- Активные элементы и адаптеры не входят в состав СКС
- Кабели для подключения оконечного оборудования не являются стационарными и находятся за рамками СКС

СКС Компоненты...

• Активное оборудование (не входит в состав СКС)

СКС Компоненты...

- Телекоммуникационные розетки точки подключения оконечных устройств
- Абонентские кабели не входят в СКС, но стандарты определяют параметры канала, в состав которого входят абонентские кабели

СКС Компоненты...

• Коммутационные панели и коммутационные кабели позволяют подключать активное оборудование к СКС

СКС Компоненты...

• Горизонтальные кабели соединяют коммутационные розетки и РП этажа

СКС Компоненты...

 Вертикальные кабели соединяют РП этажа и РП здания (в отсутствие РП здания – РП этажей)

• Магистральные кабели комплекса соединяют РП зданий и РП комплекса

CKC

Преимущества использования

- Универсальность СКС обеспечивает передачу данных, видео- и аудиоинформации, сигналов от датчиков пожарной безопасности либо охранных систем по единой кабельной системе
- Надежность стандарты СКС накладывают ограничения не только на характеристики отдельных компонент, но и на способы их совместного использования
- Расширяемость
- Гибкость простота управления перемещениями внутри и между зданиями
- Длительный срок службы срок морального старения тщательно спланированной СКС может составлять 5-10 лет
 - Большинство ведущих производителей дают гарантию на поставляемые ими СКС (при выполнении требуемых процедур сертификации) до 25 лет

Бескабельные каналы связи

Бескабельные каналы связи

- Бескабельные каналы не требуют создания кабельной системы и обеспечивают высокую мобильность оконечных устройств
 - Радиоканал
 - Инфракрасный канал

Бескабельные каналы связи Радиоканал

• Преимущества

- Теоретически может обеспечить передачу на тысячи километров с высокой скоростью
- Использование спутниковой связи позволяет связать любые две точки на земном шаре

• Недостатки

- Может возникнуть проблема совместимости с другим источником радиоволн
- Отсутствует защита от несанкционированного доступа
- Низкая помехозащищенность
- Технология Wi-Fi (Wireless Fidelity)
 - Позволяет организовать сеть из 2-15 узлов с помощью одного концентратора (Access Point, AP), или до 50 узлов, если концентраторов нескольких
 - Позволяет связать две локальные сети на расстоянии до 25 километров с помощью мощных беспроводных мостов

Бескабельные каналы связи Инфракрасный канал

- Инфракрасные каналы делятся на 2 группы
 - Каналы прямой видимости (до нескольких км)
 - Каналы рассеянного излучения (в пределах помещения)
- Скорость передачи от 5-10 Мбит/с (широко распространенный вариант) до 100 Мбит/с при использовании инфракрасных лазеров
- Преимущества
 - Устойчивость к электромагнитным помехам
- Недостатки
 - Плохая работа в условиях плохой видимости (запыленность и пр.) и при наличие источников тепла
 - Отсутствует защита от несанкционированного доступа

Передача данных на физическом уровне

Методы кодирования

- Для передачи данных на физическом уровне необходимо каждому биту передаваемых данных поставить в соответствие некоторый электрический (оптический, инфракрасный) сигнал
- Выделяют два основных типа кодирования
 - Аналоговая модуляция в качестве основы берется синусоидальный сигнал
 - Цифровое кодирование в качестве основы используется последовательность прямоугольных импульсов
- В качестве отдельного момента выделим логическое кодирование перекодирование данных перед передачей

Аналоговая модуляция Амплитудная модуляция

- Амплитудная модуляция для единицы выбирается один уровень амплитуды, для нуля другой
- Частота и фаза постоянные
- В чистом виде редко используется из-за низкой помехоустойчивости

Аналоговая модуляция Частотная модуляция

- Частотная модуляция для единицы выбирается одна частота, для нуля другая
- Амплитуда и фаза постоянные
- Используется в низкоскоростных модемах

Аналоговая модуляция Фазовая модуляция

- Фазовая модуляция для единицы выбирается одна фаза, для нуля – другая
- Амплитуда и частота постоянные
- Используется в низкоскоростных модемах

Цифровое кодирование

- При аналоговой модуляции физический сигнал несет информацию о начале и конце каждого следующего бита, при цифровом кодирование это условие не обязательно выполняется. Соответственно, выделяют
 - Самосинхронизирующиеся коды
 - Несамосинхронизирующиеся коды
- Далее мы рассмотрим следующие коды
 - Not Return to Zero (NRZ)
 - Not Return to Zero with ones Inverted (NRZi)
 - Multi-Level Transition-3 (MLT-3)
 - Return to Zero (RZ)
 - Манчестерский код
 - 2B1Q

Цифровое кодирование NRZ

- Not Return to Zero (NRZ) код без возврата к нулю
 - Нулевому биту соответствует высокий уровень напряжения в кабеле, единичному – низкий уровень (или наоборот)
 - В течение битового интервала (времени передачи одного бита) изменений уровня сигнала не происходит
 - Несамосинхронизирующийся код
 - Невозможно определить начало и конец данных
- Пример применения RS232

Цифровое кодирование NRZi

- Not Return to Zero with ones Inverted (NRZi) код без возврата к нулю с инверсией при единице
 - Единичному биту соответствует переключение уровня напряжения в начале битового интервала, нулевому – сохранение уровня
 - Несамосинхронизирующийся код
 - Невозможно определить начало и конец данных

Цифровое кодирование MLT-3

- Multi-Level Transition-3 (MLT-3) многоуровневая модуляция
 - Нулевому биту соответствует сохранение уровня напряжения
 - Единичному биту соответствует переключение уровня напряжения на следующий в цепочке: +U, 0, -U, 0, +U, 0,... в начале битового интервала
 - Требуемая полоса пропускания меньше, чем у NRZ
 - Несамосинхронизирующийся код
 - Невозможно определить начало и конец данных

Цифровое кодирование RZ

- Return to Zero (RZ) код с возвратом к нулю
 - Нулевому биту соответствует положительное переключение уровня напряжения в начале битового интервала, единичному – отрицательное переключение
 - В середине битового интервала происходит возврат к исходному уровню сигнала
 - Самосинхронизирующийся код
 - Приемник может определить начало и конец данных

Цифровое кодирование Манчестерский код

- Манчестерский код (Манчестер-II)
 - Нулевому биту соответствует положительное переключение в центре битового интервала, единичному – отрицательное переключение
 - Используется только 2 уровня сигнала
 - Самосинхронизирующийся код
 - Приемник может определить начало и конец данных
- Примеры применения Ethernet, Token Ring

Цифровое кодирование 2B1Q

• Koд 2B1Q

- Использует 4 уровня напряжения для кодирования 2 битов данных, например: 00 – -U1, 01 – -U2, 10 – +U2, 11 – +U1
- Несамосинхронизирующийся код
- Приемник не может определить начало и конец данных
- Требуется увеличенная мощность источника для четкого определения приемником уровней сигнала

Логическое кодирование Назначение

- Логическое кодирование применяется в следующих целях
 - Устранение длинных последовательностей нулей и единиц
 - после такого логического кодирования можно использовать несамосинхронизирующие коды для передачи
 - Предоставление приемнику возможности распознавать и, возможно, устранять ошибки в последовательности бит

Логическое кодирование Методы

• Избыточные коды

- Исходная последовательность бит разбивается на блоки одинакового размера, каждый блок заменяется на битовую последовательность согласно таблице кодирования
 - Код 4B/5B заменяет каждые 4 бита на 5, после чего выполняется передача (используется в FDDI и Fast Ethernet)
 - Код 8В/6Т для передачи 8 бит использует 6 битовых интервалов и 3 уровня напряжения

• Скремблирование

При передаче очередного бита вычисляется значение некоторой функции, зависящей от значения очередного бита исходной последовательности (A_i) и значений уже переданных бит (B_{i-1},B_{i-2},...), например B_i = A_i ^ B_{i-1} ^ B_{i-2}
Очевидно, приемник сможет восстановить данные

Заключение

- Структурированные кабельные сети позволяют построить надежную и управляемую сеть
- Методы кодирования аналоговая модуляция и цифровое кодирование – описывают способ кодирования данных с помощью физических сигналов
- Логическое кодирование позволяет улучшить в каком-то плане качество кодируемой последовательности