

Car Number: 47

This form must be completed and submitted by all teams no later than the date specified in the Key Dates document on the Formula Student website. This Impact Attenuator Data (IAD) Report and supporting calculations must be submitted electronically in Adobe Acrobat Format (*.pdf). The submissions must be named as follows: carnumber_universityname_IAD.pdf using the complete university name, e.g. 087_UniversityofAnytown_IAD.pdf. Submit the IAD report as instructed on the event website. The IAD Judges will review all submissions. In the event that the judges request additional information or calculations, teams have one week from the date of the request to submit the requested information or ask for a deadline extension.

University Name: Pakistan Navy Engineering College

Team Contact: +923353280865

Email Address: ismailiqbal943@gmail.com Faculty Advisor: Dr Bilal Muhammad Khan Email Address: bmkhan@pnec.nust.edu.pk

Material(s) Used	Dow Impaxx® 700 foam
Description of form/shape	Standard FSAE IA
Length (longitudinal) /	355.6 mm
mm	
Width (lateral) / mm	304.8 mm
Height (vertical) / mm	254 mm
IA to Anti-Intrusion Plate	3M™ Scotch-Weld™ Epoxy Adhesive DP100FR
mounting method	
Anti-Intrusion Plate to	Electric Arc Welding
Front Bulkhead mounting	
method	
Peak deceleration (<= 40	N/A
g)	
Average deceleration (<=	N/A
20 g)	

Confirm that the attenuator contains the minimum volume 200mm wide x 100mm high x 200mm long $\overline{\text{Yes}}$

Energy Absorbed (J): Must be >= 7350 J	8200 J	Vehicle includes front wing in front of front bulkhead?	No
IA Max. Crushed Displacement (mm) ¹ :	N/A	Wing structure included in test?	No
IA Post Crush Displacement - demonstrating any return (mm) ² :	N/A	Test Type: (e.g. barrier test, drop test, quasi-static crush)	N/A
Anti-Intrusion Plate Deformation (mm)	N/A	Test Site:	N/A

Car Number: 47

Introduction:

For the season of 2022, despite the fact that the team is going with Standard FSAE Impact Attenuator, the team has been involved in self designing and testing of the IA, but due to certain reasons (mentioned below), the team intends to use the Standard FSAE IA.

Pictures:

Figure 1: FSAE Standard Impact Attenuator

PICTURES OF THE ATTACHMENT ON THE CAR:

We are currently in the process of ordering a Standard FSAE Impact Attenuator, but due to logistic supply chain issues, there has been a delay of 3 weeks in this process. We will install the Standard IA on our chassis, and will provide all relevant proofs before the competition.

Receipt/Proof of Purchase:

We are currently in the process of ordering a Standard FSAE Impact Attenuator, but due to logistic supply chain issues, there has been a delay of 3 weeks in this process. We will install the Standard IA on our chassis, and will provide all relevant proofs before the competition.

Car Number: 47

Diagrams:

Rule Compliance:

Bulk head dimensions: 362mm*322.7mm

Structural Members used: 25.4mm*1.6mm

Diagonal bracing: 512.93mm*25.4mm*1.6mm

AIP Dimensions: 350mm*310mm*1.5mm

AIP Material: AISI-1020

AIP to Bulkhead mounting method: Electric ARC welding

Figure 3: Front view of Chassis with AIP (Note: all dimensions in mm)

Figure 4: Impact Attenuator Mounted on Vehicle (CAD Model)

Car Number: 47

Self-Designing Approach

The team had the following design for a self-designed IA.

Figure 5: CAD Model and section view of Self-designed IA

The design consists of a pyramid structure of aluminium pipes and and sheets enclosed in an Aluminium housing as shown.

Material(s) Used		Aluminum 6061 T6		
Description of form/shape		Aluminum housing with pyramid		
		structure of aluminum pipes and		
		sheets		
Length (longitudinal) / mm		274.56mm		
Width (lateral) / mm		148.6mm		
Height (vertical) / mm		220mm		
IA to Anti-Intrusion Plate		4 x 8.8 grade M8 bolts with NY-lock		
mounting method		Nuts		
Anti-Intrusion Plate to Front		Electric Arc Welding		
	inting method			
Energy	7410 J	Vehicle	No	
Absorbed (J):		includes front		
Must be >=		wing in front of		
7350 J	405	front bulkhead?	N1 / A	
IA Max.	195mm	Wing structure	N/A	
Crushed		included in test?		
Displacement		test?		
(mm) ₁ : IA Post Crush	189mm	Test Type: (e.g.	Quasi-static	
Displacement -	103111111	barrier test,	crush	
demonstrating		drop test,	CluSii	
any return		quasi-static		
(mm) ₂ :		crush)		
Anti-Intrusion	23mm	Testing Site:	Pakistan Council	
Plate			of Scientific &	
Deformation			Industrial	
(mm)			Research,	
			Karachi	

Figure 6: Testing of Self-designed IA

Figure 7: Load Vs Displacement Curve

Figure 8: Energy Absorbed Vs Displacement Curve

Calculations:

Peak Load = 92000 N

Average Load = 46000 N

Mass = 300kg

Peak Deceleration (Should be < 40g):

Peak Load = Mass x acceleration

92000/ (300x9.81) = 33.41g

Avg deceleration (should be < 20g):

Avg Load = Mass x acceleration =16.7g

Total deflection of impact attenuator = 195mm

Energy Absorbed: 7410 J

Car Number: 47

Conclusion:

Despite the efforts and accomplishments, the team has decided to go with the standard FSAE IA because of the following reasons:

- 1) Lesser weight of Standard FSAE IA.
- 2) Large AIP deflection in self-designed IA.
- 3) Due to COVID-19 outbreak, the team was unable to complete its design and manufacturing to improve the results.

Testing Facility:

The test was conducted at Pakistan Council of Scientific & Industrial Research, Karachi. It is a dedicated testing facility which is not part of or affiliated with the university. The test was condicted by the team under complete supervision and guidance of professionals.