1 Section 3.B Exercises

Exercises with solutions from Section 3.B of [LADR].

Exercise 3.B.1. Give an example of a linear map T such that dim null T=3 and dim range T=2.

Solution. Let $T: \mathbf{R}^5 \to \mathbf{R}^2$ be given by

$$T(x_1, x_2, x_3, x_4, x_5) = (x_1, x_2).$$

Then

null
$$T = \{(0, 0, x_3, x_4, x_5) \in \mathbf{R}^5 : x_3, x_4, x_5 \in \mathbf{R}\}$$
 and range $T = \mathbf{R}^2$.

Thus dim null T=3 and dim range T=2.

Exercise 3.B.2. Suppose V is a vector space and $S, T \in \mathcal{L}(V, V)$ are such that

range
$$S \subset \text{null } T$$
.

Prove that $(ST)^2 = 0$.

Solution. Let $v \in V$ be given. Then $S(Tv) \in \operatorname{range} S \subseteq \operatorname{null} T$, so T(S(Tv)) = 0. It follows that

$$(ST)^{2}(v) = S(T(S(Tv))) = S(0) = 0.$$

Thus $(ST)^2 = 0$.

Exercise 3.B.3. Suppose v_1, \ldots, v_m is a list of vectors in V. Define $T \in \mathcal{L}(\mathbf{F}^m, V)$ by

$$T(z_1,\ldots,z_m)=z_1v_1+\cdots+z_mv_m.$$

- (a) What property of T corresponds to v_1, \ldots, v_m spanning V?
- (b) What property of T corresponds to v_1, \ldots, v_m being linearly independent?
- Solution. (a) The surjectivity of T corresponds to v_1, \ldots, v_m spanning V, i.e. v_1, \ldots, v_m spans V if and only if T is surjective. To see this, observe that T is surjective if and only if for every $v \in V$ there exists $(z_1, \ldots, z_m) \in \mathbf{F}^m$ such that $T(z_1, \ldots, z_m) = z_1v_1 + \cdots + z_mv_m = v$. This is the case if and only if $V = \operatorname{span}(v_1, \ldots, v_m)$.
 - (b) The injectivity of T corresponds to v_1, \ldots, v_m being linearly independent, i.e. v_1, \ldots, v_m is linearly independent if and only if T is injective. To see this, observe that by 3.16, T is injective if and only if null $T = \{0\}$, i.e. if and only if the only choice of $(z_1, \ldots, z_m) \in \mathbf{F}^m$ which gives $z_1v_1 + \cdots + z_mv_m = 0$ is $(0, \ldots, 0)$; this is the definition of linear independence.

Exercise 3.B.4. Show that

$$\{T \in \mathcal{L}(\mathbf{R}^5, \mathbf{R}^4) : \dim \operatorname{null} T > 2\}$$

is not a subspace of $\mathcal{L}(\mathbf{R}^5, \mathbf{R}^4)$.

Solution. Let $W = \{T \in \mathcal{L}(\mathbf{R}^5, \mathbf{R}^4) : \dim \text{null } T > 2\}$. Define $S, T \in \mathcal{L}(\mathbf{R}^5, \mathbf{R}^4)$ by

$$S(x_1, x_2, x_3, x_4, x_5) = (x_1, x_2, 0, 0)$$
 and $T(x_1, x_2, x_3, x_4, x_5) = (0, 0, x_3, x_4)$.

Then

null
$$S = \{(0, 0, x_3, x_4, x_5) \in \mathbf{R}^5 : x_3, x_4, x_5 \in \mathbf{R}\}$$

and null $T = \{(x_1, x_2, 0, 0, x_5) \in \mathbf{R}^5 : x_1, x_2, x_5 \in \mathbf{R}\},$

so that dim null $S = \dim \operatorname{null} T = 3$ and thus $S, T \in W$. Observe that

$$(S+T)(x_1, x_2, x_3, x_4, x_5) = (x_1, x_2, x_3, x_4)$$

and so

$$\operatorname{null}(S+T) = \{(0,0,0,0,x_5) \in \mathbf{R}^5 : x_5 \in \mathbf{R}\}.$$

Then dim null (S+T)=1, so $S+T \notin W$. This shows that W is not closed under addition and hence is not a subspace of $\mathcal{L}(\mathbf{R}^5, \mathbf{R}^4)$.

Exercise 3.B.5. Give an example of a linear map $T: \mathbf{R}^4 \to \mathbf{R}^4$ such that

$$range T = null T.$$

Solution. Let $T \in \mathcal{L}(\mathbf{R}^4, \mathbf{R}^4)$ be given by

$$T(x_1, x_2, x_3, x_4) = (x_3, x_4, 0, 0).$$

Then

range
$$T = \{(x_3, x_4, 0, 0) \in \mathbf{R}^4 : x_3, x_4 \in \mathbf{R}\}$$
 and null $T = \{(x_1, x_2, 0, 0) \in \mathbf{R}^4 : x_1, x_2 \in \mathbf{R}\},$

which are the same subspace of \mathbb{R}^4 .

Exercise 3.B.6. Prove that there does not exist a linear map $T: \mathbf{R}^5 \to \mathbf{R}^5$ such that

$$range T = null T.$$

Solution. If V is a finite-dimensional vector space and $T: V \to W$ is a linear map such that range T = null T, then by the Fundamental Theorem of Linear Maps (3.22), we have

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T = 2 \dim \operatorname{null} T.$$

Thus dim V must be a non-negative even integer. Since dim $\mathbf{R}^5 = 5$, there can be no linear map $T : \mathbf{R}^5 \to \mathbf{R}^5$ satisfying range T = null T.

Exercise 3.B.7. Suppose V and W are finite-dimensional with $2 \leq \dim V \leq \dim W$. Show that $\{T \in \mathcal{L}(V, W) : T \text{ is not injective}\}$ is not a subspace of $\mathcal{L}(V, W)$.

Solution. Let $X = \{T \in \mathcal{L}(V, W) : T \text{ is not injective}\}$. By 3.16 we have

$$X = \{ T \in \mathcal{L}(V, W) : \text{null } T \neq \{0\} \}.$$

Let v_1, \ldots, v_m be a basis for V and let w_1, \ldots, w_n be a basis for W; by assumption, we have $2 \leq m \leq n$. We will define two linear maps $S, T \in \mathcal{L}(V, W)$ by specifying their effect on the basis vectors v_1, \ldots, v_m and appealing to 3.5. Let

$$Sv_1 = 0$$
, $Sv_2 = w_2$, $Sv_j = \frac{1}{2}w_j$ for $3 \le j \le m$ if $m \ge 3$,

$$Tv_1 = w_1$$
, $Tv_2 = 0$, $Tv_j = \frac{1}{2}w_j$ for $3 \le j \le m$ if $m \ge 3$.

S and T are not injective since $0 \neq v_1 \in \text{null } S$ and $0 \neq v_2 \in \text{null } T$, so S and T belong to X. Let L be the map S + T. Then L is given by

$$Lv_j = w_j \text{ for } 1 \le j \le m.$$

We claim that L is injective. To see this, suppose that Lv = 0 for some $v \in V$. There are scalars a_1, \ldots, a_m such that $v = a_1v_1 + \cdots + a_mv_m$. Then

$$0 = Lv = L(a_1v_1 + \dots + a_mv_m) = a_1Lv_1 + \dots + a_mLv_m = a_1w_1 + \dots + a_mw_m.$$

Since the list w_1, \ldots, w_m is linearly independent, we see that $a_1 = \cdots = a_m = 0$ and thus v = 0. It follows that L is injective and hence that X is not closed under addition and so cannot be a subspace.

Exercise 3.B.8. Suppose V and W are finite-dimensional with dim $V \ge \dim W \ge 2$. Show that $\{T \in \mathcal{L}(V, W) : T \text{ is not surjective}\}$ is not a subspace of $\mathcal{L}(V, W)$.

Solution. The solution is similar to Exercise 3.B.7. Let $X = \{T \in \mathcal{L}(V, W) : T \text{ is not surjective}\}$. Suppose v_1, \ldots, v_m is a basis for V and w_1, \ldots, w_n is a basis for W; by assumption, we have $m \geq n \geq 2$. Define $S, T \in \mathcal{L}(V, W)$ by

$$Sv_{j} = \begin{cases} 0 & \text{if } j = 1 \text{ or } n < j \leq m \text{ if } m > n, \\ w_{2} & \text{if } j = 2, \\ \frac{1}{2}w_{j} & \text{if } 3 \leq j \leq n \text{ if } n \geq 3. \end{cases} \qquad Tv_{j} = \begin{cases} w_{1} & \text{if } j = 1, \\ 0 & \text{if } j = 2 \text{ or } n < j \leq m \text{ if } m > n, \\ \frac{1}{2}w_{j} & \text{if } 3 \leq j \leq n \text{ if } n \geq 3. \end{cases}$$

We claim that S is not surjective. To see this, we will show that $w_1 \notin \text{range } S$. Suppose by way of contradiction that there exists $v \in V$ such that $Sv = w_1$. Then there are scalars a_1, \ldots, a_m such that $a_1v_1 + \cdots + a_mv_m = v$, which gives

$$w_1 = Sv = S(a_1v_1 + \dots + a_mv_m) = a_1Sv_1 + \dots + a_mSv_m = a_2w_2 + \dots + \frac{1}{2}a_nw_n.$$

Thus $w_1 \in \text{span}(w_2, \dots, w_n)$, contradicting the linear independence of the basis w_1, \dots, w_n . It follows that $w_1 \notin \text{range } S$, so that S is not surjective. Similarly, we see that T is not surjective, since $w_2 \notin \text{range } T$. Hence S and T belong to X. Let L be the map S + T. Then L is given by

$$Lv_j = \begin{cases} w_j & \text{if } 1 \le j \le n, \\ 0 & \text{if } n < j \le m \text{ if } m > n. \end{cases}$$

We claim that L is surjective. To see this, let $w \in W$ be given. Then there are scalars a_1, \ldots, a_n such that $w = a_1w_1 + \cdots + a_nw_n$. Observe that

$$L(a_1v_1 + \dots + a_nv_n) = a_1Lv_1 + \dots + a_nLv_n = a_1w_1 + \dots + a_nw_n = w.$$

It follows that L is surjective and hence that X is not closed under addition and so cannot be a subspace.

Exercise 3.B.9. Suppose $T \in \mathcal{L}(V, W)$ is injective and v_1, \ldots, v_n is linearly independent in V. Prove that Tv_1, \ldots, Tv_n is linearly independent in W.

Solution. Suppose we have scalars a_1, \ldots, a_n such that $a_1Tv_1 + \cdots + a_nTv_n = 0$. By linearity, this is equivalent to $T(a_1v_1 + \cdots + a_nv_n) = 0$. Then since T is injective, we have by 3.16 that $a_1v_1 + \cdots + a_nv_n = 0$. The linear independence of v_1, \ldots, v_n then implies that $a_1 = \cdots = a_n = 0$ and hence that Tv_1, \ldots, Tv_n is linearly independent.

Exercise 3.B.10. Suppose v_1, \ldots, v_n spans V and $T \in \mathcal{L}(V, W)$. Prove that the list Tv_1, \ldots, Tv_n spans range T.

Solution. Let $w \in \text{range } T$ be given, so that w = Tv for some $v \in V$. Since v_1, \ldots, v_n spans V, there are scalars a_1, \ldots, a_n such that $v = a_1v_1 + \cdots + a_nv_n$. Then:

$$a_1Tv_1 + \dots + a_nTv_n = T(a_1v_1 + \dots + a_nv_n) = Tv = w.$$

Thus Tv_1, \ldots, Tv_n spans range T.

Exercise 3.B.11. Suppose S_1, \ldots, S_n are injective linear maps such that $S_1 S_2 \cdots S_n$ makes sense. Prove that $S_1 S_2 \cdots S_n$ is injective.

Solution. We will prove this by induction. Let P(n) be the statement that for any collection of n injective linear maps S_1, \ldots, S_n such that $S_1 S_2 \cdots S_n$ makes sense, we have that $S_1 S_2 \cdots S_n$ is injective. The base case P(1) is clear. Suppose that P(n) is true for some $n \in \mathbb{N}$, and suppose we have n+1 linear maps S_1, \ldots, S_{n+1} such that $S_1 S_2 \cdots S_{n+1}$ makes sense. Let v be a vector in the domain of S_{n+1} such that

$$(S_1 S_2 \cdots S_{n+1})(v) = S_1((S_2 \cdots S_{n+1})(v)) = 0.$$

Since S_1 is injective, 3.16 implies that $(S_2 \cdots S_{n+1})(v) = 0$. Our induction hypothesis guarantees that $S_2 \cdots S_{n+1}$ is injective, so again by 3.16 we have that v = 0. It follows that null $(S_1 S_2 \cdots S_{n+1}) = \{0\}$ and hence by 3.16 the linear map $S_1 S_2 \cdots S_{n+1}$ is injective. This completes the induction step and the proof.

Exercise 3.B.12. Suppose that V is finite-dimensional and that $T \in \mathcal{L}(V, W)$. Prove that there exists a subspace U of V such that $U \cap \text{null } T = \{0\}$ and range $T = \{Tu : u \in U\}$.

Solution. Since null T is a subspace of V, 2.34 implies that there exists a subspace U of V such that $V = U \oplus \text{null } T$; 1.45 then gives us $U \cap \text{null } T = \{0\}$. Suppose that $w \in \text{range } T$, so that w = Tv for some $v \in V$. Since $V = U \oplus \text{null } T$, there are unique vectors $u \in U$ and $x \in \text{null } T$ such that v = u + x. Then

$$w = Tv = T(u + x) = Tu + Tx = Tu + 0 = Tu.$$

Thus range $T \subseteq \{Tu : u \in U\}$, and since the reverse inclusion is clear, we may conclude that range $T = \{Tu : u \in U\}$.

Exercise 3.B.13. Suppose T is a linear map from \mathbf{F}^4 to \mathbf{F}^2 such that

null
$$T = \{(x_1, x_2, x_3, x_4) \in \mathbf{F}^4 : x_1 = 5x_2 \text{ and } x_3 = 7x_4\}.$$

Prove that T is surjective.

Solution. It is not hard to see that (5, 1, 0, 0), (0, 0, 7, 1) is a basis for null T, so that dim null T = 2. Then by the Fundamental Theorem of Linear Maps (3.22), we have

$$\dim \mathbf{F}^4 = \dim \operatorname{null} T + \dim \operatorname{range} T$$
, i.e. $4 = 2 + \dim \operatorname{range} T$.

Thus dim range $T = 2 = \dim \mathbf{F}^2$. Since range T is a subspace of \mathbf{F}^2 , Exercise 2.C.1 allows us to conclude that range $T = \mathbf{F}^2$ and hence that T is surjective.

Exercise 3.B.14. Suppose U is a 3-dimensional subspace of \mathbb{R}^8 and that T is a linear map from \mathbb{R}^8 to \mathbb{R}^5 such that null T = U. Prove that T is surjective.

Solution. Since dim U=3, we also have dim null T=3. The Fundamental Theorem of Linear Maps (3.22) gives

$$\dim \mathbf{R}^8 = \dim \operatorname{null} T + \dim \operatorname{range} T$$
, i.e. $8 = 3 + \dim \operatorname{range} T$.

Thus dim range $T = 5 = \dim \mathbf{R}^5$. Exercise 2.C.1 allows us to conclude that range $T = \mathbf{R}^5$ and hence that T is surjective.

Exercise 3.B.15. Prove that there does not exist a linear map from \mathbf{F}^5 to \mathbf{F}^2 whose null space equals

$$\{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{F}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}.$$

Solution. Let $U = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbf{F}^5 : x_1 = 3x_2 \text{ and } x_3 = x_4 = x_5\}$. It is not hard to see that (3, 1, 0, 0, 0), (0, 0, 1, 1, 1) is a basis for U, so that dim U = 2. Let T be a linear map from \mathbf{F}^5 to \mathbf{F}^2 . The Fundamental Theorem of Linear Maps (3.22) implies that

$$\dim \mathbf{F}^5 = \dim \operatorname{null} T + \dim \operatorname{range} T$$
, i.e. $5 = \dim \operatorname{null} T + \dim \operatorname{range} T$.

Since range T is a subspace of \mathbf{F}^2 , we must have dim range $T \leq \dim \mathbf{F}^2 = 2$. Combining this with the equality $5 = \dim \operatorname{null} T + \dim \operatorname{range} T$, we see that $\dim \operatorname{null} T \geq 3$. It follows that U cannot be the null space of T.

Exercise 3.B.16. Suppose there exists a linear map on V whose null space and range are both finite-dimensional. Prove that V is finite-dimensional.

Solution. Let $T: V \to V$ be the linear map in question. There is a basis u_1, \ldots, u_m for range T and a basis w_1, \ldots, w_n for null T. Since each $u_i \in \text{range } T$, there exists a $v_i \in V$ such that $Tv_i = u_i$. We claim that the list $v_1, \ldots, v_m, w_1, \ldots, w_n$ spans V. To see this, let $v \in V$ be given. Then $Tv \in \text{range } T$, so there are scalars a_1, \ldots, a_m such that

$$Tv = a_1u_1 + \dots + a_mu_m = a_1Tv_1 + \dots + a_mTv_m = T(a_1v_1 + \dots + a_mv_m)$$

$$\Longrightarrow T(v - (a_1v_1 + \dots + a_mv_m)) = 0$$

$$\Longrightarrow v - (a_1v_1 + \dots + a_mv_m) \in \text{null } T.$$

Hence there are scalars b_1, \ldots, b_n such that

$$v - (a_1v_1 + \dots + a_mv_m) = b_1w_1 + \dots + b_nw_n$$

$$\Longrightarrow v = a_1v_1 + \dots + a_mv_m + b_1w_1 + \dots + b_nw_n.$$

Thus the list $v_1, \ldots, v_m, w_1, \ldots, w_n$ spans V. We may conclude that V is finite-dimensional.

Exercise 3.B.17. Suppose V and W are both finite-dimensional. Prove that there exists an injective linear map from V to W if and only if $\dim V \leq \dim W$.

Solution. If dim $V > \dim W$, then 3.23 guarantees that no linear map from V to W is injective. Suppose therefore that dim $V \le \dim W$. Then there is a basis v_1, \ldots, v_m for V and a basis w_1, \ldots, w_n for W, where $m \le n$. Define a linear map $T: V \to W$ by $Tv_j = w_j$. As shown in Exercise 3.B.7 (with the map L), such a map is injective.

Exercise 3.B.18. Suppose V and W are both finite-dimensional. Prove that there exists a surjective linear map from V onto W if and only if $\dim V \ge \dim W$.

Solution. If dim $V < \dim W$, then 3.24 guarantees that no linear map from V to W is surjective. Suppose therefore that dim $V \ge \dim W$. Then there is a basis v_1, \ldots, v_m for V and a basis w_1, \ldots, w_n for W, where $m \ge n$. Define a linear map $T: V \to W$ by $Tv_j = w_j$ for $1 \le j \le n$, and $Tv_j = 0$ for $n < j \le m$, if m > n. As shown in Exercise 3.B.8 (with the map L), such a map is surjective.

Exercise 3.B.19. Suppose V and W are finite-dimensional and that U is a subspace of V. Prove that there exists $T \in \mathcal{L}(V, W)$ such that null T = U if and only if $\dim U \ge \dim V - \dim W$.

Solution. Suppose that there exists $T \in \mathcal{L}(V, W)$ such that null T = U. The Fundamental Theorem of Linear Maps (3.22) implies that

$$\dim V = \dim \operatorname{null} T + \dim \operatorname{range} T = \dim U + \dim \operatorname{range} T.$$

Since range T is a subspace of W, we have $\dim \operatorname{range} T \leq \dim W$. Combining this with the equality $\dim V - \dim U = \dim \operatorname{range} T$, we see that $\dim U \geq \dim V - \dim W$.

Now suppose that dim $U \ge \dim V - \dim W$. Let u_1, \ldots, u_m be a basis of U, which we extend to a basis $u_1, \ldots, u_m, v_1, \ldots, v_n$ of V, and let w_1, \ldots, w_k be a basis of W. By assumption, we have $m \ge m + n - k$, or $k \ge n$. Define a map $T: V \to W$ by $Tu_i = 0$ for $1 \le i \le m$, and $Tv_i = w_i$ for $1 \le i \le n$; this is possible precisely because $k \ge n$, i.e. there are enough w_i 's to define this map. It is not hard to see that $U \subseteq \operatorname{null} T$. Suppose that $v \in \operatorname{null} T$. There are scalars $a_1, \ldots, a_m, b_1, \ldots, b_n$ such that $v = a_1u_1 + \cdots + a_mu_m + b_1v_1 + \cdots + b_nv_n$. Then

$$0 = Tv = T(a_1u_1 + \dots + a_mu_m + b_1v_1 + \dots + b_nv_n)$$

= $a_1Tu_1 + \dots + a_mTu_m + b_1Tv_1 + \dots + b_nTv_n = b_1w_1 + \dots + b_nw_n.$

The linear independence of w_1, \ldots, w_n then implies that $b_1 = \cdots = b_n = 0$, so that $v = a_1u_1 + \cdots + a_mu_m$. Hence $v \in U$ and we may conclude that null T = U.

Exercise 3.B.20. Suppose W is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is injective if and only if there exists $S \in \mathcal{L}(W, V)$ such that ST is the identity map on V.

Solution. Suppose there exists such a map S and suppose that $v \in V$ is such that Tv = 0. Then

$$(ST)(v) = S(0) = 0 \implies v = 0,$$

since ST is the identity map on V. Thus null $T = \{0\}$, which is the case if and only if T is injective.

Now suppose that T is injective. Let u_1, \ldots, u_m be a basis for range T, which we extend to a basis $u_1, \ldots, u_m, w_1, \ldots, w_n$ for W. Since each $u_i \in \text{range } T$, there is a $v_i \in V$ such that $u_i = Tv_i$. Define a linear map $S: W \to V$ by $Su_i = v_i$ and $Sw_i = 0$. We claim that ST is the identity map on V. To see this, let $v \in V$ be given. Then $Tv \in \text{range } T$, so there are scalars a_1, \ldots, a_m such that $Tv = a_1u_1 + \cdots + a_mu_m$, which gives

$$Tv = a_1Tv_1 + \dots + a_mTv_m = T(a_1v_1 + \dots + a_mv_m).$$

Since T is injective, we must then have $v = a_1v_1 + \cdots + a_mv_m$. Applying S to both sides of $Tv = a_1u_1 + \cdots + a_mu_m$ gives

$$(ST)(v) = a_1 S u_1 + \dots + a_m S u_m = a_1 v_1 + \dots + a_m v_m = v.$$

Thus ST is the identity map on V.

Exercise 3.B.21. Suppose V is finite-dimensional and $T \in \mathcal{L}(V, W)$. Prove that T is surjective if and only if there exists $S \in \mathcal{L}(W, V)$ such that TS is the identity map on W.

Solution. Suppose there exists such a map S and let $w \in W$ be given. Then T(Sw) = w and thus $w \in \text{range } T$. It follows that T is surjective.

Now suppose that T is surjective, i.e. that range T=W. Then by the Fundamental Theorem of Linear Maps (3.22), W is finite-dimensional, so let w_1, \ldots, w_n be a basis of W. Since range T=W, there are vectors v_1, \ldots, v_n such that $Tv_i=w_i$. Define a linear map $S:W\to V$ by $Sw_i=v_i$. We claim that TS is the identity map on W. To see this, let w be given. There are scalars a_1, \ldots, a_n such that $w=a_1w_1+\cdots+a_nw_n$. Then

$$(TS)(w) = (TS)(a_1w_1 + \dots + a_nw_n) = a_1(TS)(w_1) + \dots + a_n(TS)(w_n)$$
$$= a_1Tv_1 + \dots + a_nTv_n = a_1w_1 + \dots + a_nw_n = w.$$

Thus TS is the identity map on W.

Exercise 3.B.22. Suppose U and V are finite-dimensional vector spaces and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Prove that

$$\dim \operatorname{null} ST \leq \dim \operatorname{null} S + \dim \operatorname{null} T.$$

Solution. If $u \in U$ is such that Tu = 0, then (ST)(u) = S(0) = 0. It follows that $\operatorname{null} T$ is a subspace of $\operatorname{null} ST$. Thus if we let u_1, \ldots, u_m be a basis of $\operatorname{null} T$, then we can extend this to a basis $u_1, \ldots, u_m, x_1, \ldots, x_n$ of $\operatorname{null} ST$. Letting $X = \operatorname{span}(x_1, \ldots, x_n)$, we then have $\operatorname{null} ST = \operatorname{null} T \oplus X$. Let v_1, \ldots, v_k be a basis for $\operatorname{null} S$. Proving that $\operatorname{dim} \operatorname{null} ST \leq \operatorname{dim} \operatorname{null} S + \operatorname{dim} \operatorname{null} T$ is then equivalent to showing that $m + n \leq m + k$, i.e. $n \leq k$.

First, we claim that the list Tx_1, \ldots, Tx_n is linearly independent. To see this, suppose we have scalars a_1, \ldots, a_n such that

$$a_1Tx_1 + \dots + a_nTx_n = T(a_1x_1 + \dots + a_nx_n) = 0.$$

Then $a_1x_1 + \cdots + a_nx_n \in \text{null } T$. Evidently, we have $a_1x_1 + \cdots + a_nx_n \in X$. Since the sum $\text{null } T \oplus X$ is direct, we have $\text{null } T \cap X = \{0\}$; it follows that $a_1x_1 + \cdots + a_nx_n = 0$. The linear independence of the list x_1, \ldots, x_n then implies that $a_1 = \cdots = a_n = 0$ and our claim follows.

Now, since each $x_i \in \text{null } ST$, we have $S(Tx_i) = 0$, so that each Tx_i belongs to null S. Since null S has a basis of length k and we showed that the list Tx_1, \ldots, Tx_n is linearly independent, 2.23 implies that $n \leq k$, as desired.

Exercise 3.B.23. Suppose U and V are finite-dimensional vector spaces and $S \in \mathcal{L}(V, W)$ and $T \in \mathcal{L}(U, V)$. Prove that

$$\dim \operatorname{range} ST \leq \min \{\dim \operatorname{range} S, \dim \operatorname{range} T\}.$$

Solution. If $w \in \text{range } ST$, then w = S(Tu) for some $u \in U$, so that $w \in \text{range } S$ also. It follows that range ST is a subspace of range S, which implies that dim range $ST \leq \dim \text{range } S$.

Let w_1, \ldots, w_m be a basis for range ST and let v_1, \ldots, v_n be a basis for range T. We claim that the list Sv_1, \ldots, Sv_n spans range ST. To see this, let $w \in \text{range } ST$ be given, so that w = S(Tu) for some $u \in U$. Since $Tu \in \text{range } T$, there are scalars a_1, \ldots, a_n such that $Tu = a_1v_1 + \cdots + a_nv_n$. Then

$$w = S(Tu) = S(a_1v_1 + \dots + a_nv_n) = a_1Sv_1 + \dots + a_nSv_n.$$

Thus $w \in \text{span}(Sv_1, \ldots, Sv_n)$ and our claim follows. 2.23 now implies that $m \leq n$, i.e. $\dim \text{range } ST \leq \dim \text{range } T$.

We now have both the inequalities $\dim \operatorname{range} ST \leq \dim \operatorname{range} S$ and $\dim \operatorname{range} ST \leq \dim \operatorname{range} T$. It follows that

 $\dim \operatorname{range} ST \leq \min \{\dim \operatorname{range} S, \dim \operatorname{range} T\}.$

Exercise 3.B.24. Suppose W is finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that null $T_1 \subset \text{null } T_2$ if and only if there exists $S \in \mathcal{L}(W, W)$ such that $T_2 = ST_1$.

Solution. Suppose that there exists such a map S and let $v \in \text{null } T_1$. Then $T_2v = S(T_1v) = S(0) = 0$, so that $v \in \text{null } T_2$ also.

Now suppose that null $T_1 \subseteq \text{null } T_2$. Let x_1, \ldots, x_m be a basis of range T_1 , which we extend to a basis $x_1, \ldots, x_m, y_1, \ldots, y_n$ of W. Since each $x_j \in \text{range } T_1$, we have $x_j = T_1 v_j$ for some $v_j \in V$. Define a linear map $S: W \to W$ by $Sx_j = T_2 v_j$ for $1 \le j \le m$ and $Sy_j = 0$ for $1 \le j \le n$. We claim that $T_2 = ST_1$. To see this, let $v \in V$ be given. Then $T_1 v \in \text{range } T_1$, so there are scalars a_1, \ldots, a_m such that

$$T_1 v = a_1 x_1 + \dots + a_m x_m = a_1 T_1 v_1 + \dots + a_m T_1 v_m = T_1 (a_1 v_1 + \dots + a_m v_m)$$

$$\implies T_1 (v - (a_1 v_1 + \dots + a_m v_m)) = 0$$

$$\implies v - (a_1 v_1 + \dots + a_m v_m) \in \text{null } T_1.$$

Then since null $T_1 \subseteq \text{null } T_2$, we have $v - (a_1v_1 + \cdots + a_mv_m) \in \text{null } T_2$. Following the algebra above in reverse with T_2 in place of T_1 shows that $T_2v = a_1T_2v_1 + \cdots + a_mT_2v_m$, and applying S to both sides of the equality $T_1v = a_1x_1 + \cdots + a_mx_m$ gives us

$$S(T_1v) = a_1Sx_1 + \dots + a_mSx_m = a_1T_2v_1 + \dots + a_mT_2v_m = T_2v.$$

Thus $T_2 = ST_1$.

Exercise 3.B.25. Suppose V is finite-dimensional and $T_1, T_2 \in \mathcal{L}(V, W)$. Prove that range $T_1 \subset \text{range } T_2$ if and only if there exists $S \in \mathcal{L}(V, V)$ such that $T_1 = T_2 S$.

Solution. Suppose that there exists such a map S and let $w \in \operatorname{range} T_1$ be given, so that $w = T_1 v$ for some $v \in V$. Then

$$w = T_1 v = T_2(Sv) \in \operatorname{range} T_2.$$

Thus range $T_1 \subseteq \operatorname{range} T_2$.

Now suppose that range $T_1 \subseteq \text{range } T_2$. Let v_1, \ldots, v_m be a basis for V. By assumption, each T_1v_j belongs to range T_2 , so we have $T_1v_j = T_2u_j$ for some $u_j \in V$. Define a linear map $S: V \to V$ by $Sv_j = u_j$ for $1 \le j \le m$. We claim that $T_1 = T_2S$. To see this, let $v \in V$ be given. Then there are scalars a_1, \ldots, a_m such that $v = a_1v_1 + \cdots + a_mv_m$. Observe that

$$T_2(Sv) = T_2(S(a_1v_1 + \dots + a_mv_m)) = T_2(a_1Sv_1 + \dots + a_mSv_m) = T_2(a_1u_1 + \dots + a_mu_m)$$

= $a_1T_2u_1 + \dots + a_mT_2u_m = a_1T_1v_1 + \dots + a_mT_1v_m = T_1(a_1v_1 + \dots + a_mv_m) = T_1v.$

Thus $T_1 = T_2 S$.

Exercise 3.B.26. Suppose $D \in \mathcal{L}(\mathcal{P}(\mathbf{R}), \mathcal{P}(\mathbf{R}))$ is such that $\deg Dp = (\deg p) - 1$ for every nonconstant polynomial $p \in \mathcal{P}(\mathbf{R})$. Prove that D is surjective.

[The notation D is used above to remind you of the differentiation map that sends a polynomial p to p'. Without knowing the formula for the derivative of a polynomial (except that it reduces the degree by 1), you can use the exercise above to show that for every polynomial $q \in \mathcal{P}(\mathbf{R})$, there exists a polynomial $p \in \mathcal{P}(\mathbf{R})$ such that p' = q.]

Solution. For a non-negative integer n, let A(n) be the statement that there exists a polynomial $p_n \in \mathcal{P}(\mathbf{R})$ such that $D(p_n) = x^n$. We will use strong induction to show that A(n) holds for all non-negative integers n. For the base case n = 0, note that by assumption the polynomial D(x) must have degree 0, i.e. must be a non-zero constant, say $D(x) = b \neq 0$. Define $p_0 := b^{-1}x$. Then by linearity,

$$D(p_0) = D(b^{-1}x) = b^{-1}D(x) = b^{-1}b = 1.$$

Thus the base case A(0) holds.

Now suppose that $A(0), A(1), \ldots, A(n)$ all hold for some non-negative integer n. By assumption, the polynomial $D(x^{n+2})$ must have degree n+1, i.e. must be of the form

$$D(x^{n+2}) = b_{n+1}x^{n+1} + b_nx^n + \dots + b_1x + b_0,$$

where $b_{n+1} \neq 0$. Our induction hypothesis guarantees the existence of polynomials p_0, p_1, \ldots, p_n such that $D(p_j) = x^j$ for $1 \leq j \leq n$. Thus we can write

$$b_{n+1}^{-1}D(x^{n+2}) = x^{n+1} + b_{n+1}^{-1}(b_nD(p_n) + \dots + b_1D(p_1) + b_0D(p_0)),$$

which by the linearity of D implies

$$x^{n+1} = D(b_{n+1}^{-1}(x^{n+2} - (b_n p_n + \dots + b_1 p_1 + b_0 p_0))).$$

So if we define $p_{n+1} := b_{n+1}^{-1}(x^{n+2} - (b_n p_n + \dots + b_1 p_1 + b_0 p_0))$, then we have $D(p_{n+1}) = x^{n+1}$. Thus A(n+1) holds. This completes the induction step.

So A(n) holds for all non-negative integers n. We can now show that D is surjective. Let p be an arbitrary polynomial in $\mathcal{P}(\mathbf{R})$ and let $n = \deg p$. Then $p = \sum_{j=0}^{n} a_j x^j$ for some coefficients a_0, \ldots, a_n (with $a_n \neq 0$). Set $q = \sum_{j=0}^{n} a_j p_j$. Then we have

$$D(q) = \sum_{j=0}^{n} a_j D(p_j) = \sum_{j=0}^{n} a_j x^j = p.$$

Thus D is surjective.

Exercise 3.B.27. Suppose $p \in \mathcal{P}(\mathbf{R})$. Prove that there exists a polynomial $q \in \mathcal{P}(\mathbf{R})$ such that 5q'' + 3q' = p.

[This exercise can be done without linear algebra, but it's more fun to do it using linear algebra.]

Solution. Define a map $D: \mathcal{P}(\mathbf{R}) \to \mathcal{P}(\mathbf{R})$ by Dq = 5q'' + 3q'. It is not hard to see that this map is linear, since differentiation is a linear operation. Suppose $q \in \mathcal{P}(\mathbf{R})$ is a non-constant polynomial of degree $n \geq 1$, so that $q = \sum_{j=0}^{n} a_j x^j$ where $a_n \neq 0$. Some algebra gives

$$Dq = \begin{cases} 3a_n & \text{if } n = 1, \\ 3na_n x^{n-1} + \sum_{j=0}^{n-2} (j+1)[3a_{j+1} + 5(j+2)a_{j+2}]x^j & \text{if } n \ge 2. \end{cases}$$

In either case, since $a_n \neq 0$, Dq is a polynomial of degree n-1. Thus the linear map D satisfies the hypotheses of Exercise 3.B.26 and hence must be surjective.

Exercise 3.B.28. Suppose $T \in \mathcal{L}(V, W)$, and w_1, \ldots, w_m is a basis of range T. Prove that there exist $\varphi_1, \ldots, \varphi_m \in \mathcal{L}(V, \mathbf{F})$ such that

$$Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m$$

for every $v \in V$.

Solution. Let $v \in V$ be given. Since w_1, \ldots, w_m is a basis of range T, there are unique scalars b_1, \ldots, b_m such that $Tv = b_1 w_1 + \cdots + b_m w_m$. For $1 \le j \le m$, define $\varphi_j : V \to \mathbf{F}$ by $\varphi_j(v) := b_j$; since the scalars b_1, \ldots, b_m are unique, each φ_j is well-defined. We claim that each φ_j is linear. To see this, let $u, v \in V$ be given. Then

$$Tu = a_1w_1 + \dots + a_mw_m$$
 and $Tv = b_1w_1 + \dots + b_mw_m$

for unique scalars $a_1, \ldots, a_m, b_1, \ldots, b_m$. Since

$$T(u+v) = Tu + Tv = (a_1 + b_1)w_1 + \dots + (a_m + b_m)w_m,$$

the scalars $a_1 + b_1, \ldots, a_m + b_m$ must be the unique coefficients for T(u+v) as a linear combination of the basis vectors w_1, \ldots, w_m . Given this, for any $1 \le j \le m$ we have

$$\varphi_j(u) = a_j, \quad \varphi_j(v) = b_j, \quad \text{and} \quad \varphi_j(u+v) = a_j + b_j.$$

Thus $\varphi_j(u+v) = \varphi_j(u) + \varphi_j(v)$. Similarly, let $\lambda \in \mathbf{F}$ be a scalar. Then since

$$T(\lambda u) = \lambda T u = \lambda a_1 w_1 + \dots + \lambda a_m w_m,$$

the scalars $\lambda a_1, \ldots, \lambda a_m$ must be the unique coefficients for $T(\lambda u)$ as a linear combination of the basis vectors w_1, \ldots, w_m . Given this, for any $1 \leq j \leq m$ we have

$$\varphi_j(u) = a_j$$
 and $\varphi_j(\lambda u) = \lambda a_j$.

Thus $\varphi_j(\lambda u) = \lambda \varphi_j(u)$ and we see that each φ_j is linear, as claimed. Furthermore, given the definition of each φ_j , it is clear that

$$Tv = \varphi_1(v)w_1 + \dots + \varphi_m(v)w_m$$

for every $v \in V$.

Exercise 3.B.29. Suppose $\varphi \in \mathcal{L}(V, \mathbf{F})$. Suppose $u \in V$ is not in null φ . Prove that

$$V = \text{null } \varphi \oplus \{au : a \in \mathbf{F}\}.$$

Solution. Let $v \in V$ be given. If $\varphi(v) = 0$, then certainly $v \in \text{null } \varphi + \{au : a \in \mathbf{F}\}$. If $\varphi(v) \neq 0$, then observe that

$$\varphi\left(\frac{v}{\varphi(v)}\right) = 1 = \varphi\left(\frac{u}{\varphi(u)}\right)$$

$$\Longrightarrow \varphi\left(\frac{v}{\varphi(v)} - \frac{u}{\varphi(u)}\right) = 0$$

$$\Longrightarrow \frac{v}{\varphi(v)} - \frac{u}{\varphi(u)} \in \text{null } \varphi.$$

Thus $\frac{v}{\varphi(v)} - \frac{u}{\varphi(u)} = w$ for some $w \in \text{null } \varphi$, which gives

$$v = \varphi(v)w + \frac{\varphi(v)}{\varphi(u)}u \in \text{null } \varphi + \{au : a \in \mathbf{F}\}.$$

Hence V is the sum $\operatorname{null} \varphi + \{au : a \in \mathbf{F}\}\$. To see that this sum is direct, suppose that $v \in \operatorname{null} \varphi$ and $v \in \{au : a \in \mathbf{F}\}\$, so that v = au for some $a \in \mathbf{F}$. Then

$$0 = \varphi(v) = \varphi(au) = a\varphi(u).$$

Since $\varphi(u) \neq 0$, it must be the case that a = 0 and hence that v = 0. Thus

$$\operatorname{null}\varphi\cap\{au:a\in\mathbf{F}\}=\{0\}$$

and we see that the sum $\operatorname{null} \varphi + \{au : a \in \mathbf{F}\}\$ is direct.

Exercise 3.B.30. Suppose φ_1 and φ_2 are linear maps from V to \mathbf{F} that have the same null space. Show that there exists a constant $c \in \mathbf{F}$ such that $\varphi_1 = c\varphi_2$.

Solution. If null $\varphi_1 = \text{null } \varphi_2 = V$, then φ_1 and φ_2 are both the map $v \mapsto 0$, and so any $c \in \mathbf{F}$ will do. Suppose therefore that null $\varphi_1 \neq V$, so that there is a $u \in V$ with $u \notin \text{null } \varphi_1$ and $u \notin \text{null } \varphi_2$. Define $c := \frac{\varphi_1 u}{\varphi_2 u}$. We claim that $\varphi_1 = c\varphi_2$. To see this, first observe that by Exercise 3.B.29, we have

$$V = \operatorname{null} \varphi_1 \oplus \{au : a \in \mathbf{F}\}.$$

Let $v \in V$ be given, so that v = x + au for some $a \in \mathbf{F}$, where $x \in \text{null } \varphi_1 = \text{null } \varphi_2$. Then

$$c\varphi_2 v = \frac{\varphi_1 u}{\varphi_2 u} \varphi_2(x + au) = \frac{\varphi_1 u}{\varphi_2 u} a\varphi_2 u = a\varphi_1 u = \varphi_1(x + au) = \varphi_1 v.$$

Thus $\varphi_1 = c\varphi_2$.

Exercise 3.B.31. Give an example of two linear maps T_1 and T_2 from \mathbb{R}^5 to \mathbb{R}^2 that have the same null space but are such that T_1 is not a scalar multiple of T_2 .

Solution. Let T_1 and T_2 be the linear maps given by

$$T_1(x_1, x_2, x_3, x_4, x_5) = (x_4, x_5)$$
 and $T_2(x_1, x_2, x_3, x_4, x_5) = (x_5, x_4)$.

Then

$$\operatorname{null} T_1 = \operatorname{null} T_2 = \{(x_1, x_2, x_3, 0, 0) \in \mathbf{R}^5 : x_1, x_2, x_3 \in \mathbf{R}\}.$$

However, T_1 is not a scalar multiple of T_2 . To see this, note that

$$T_1(0,0,0,1,0) = (1,0)$$
 and $T_2(0,0,0,1,0) = (0,1)$,

which are two linearly independent vectors in \mathbb{R}^2 and thus not scalar multiples of one another.

[LADR] Axler, S. (2015) Linear Algebra Done Right. 3rd edition.