

10 Novembre, 2014, S1, Ing1.

Prénom, Nom	UID: 0 1 2 3 4 5 6 7 8 9
Question 1 La somme de tous les entiers pairs entre 0 et 100 (tous les deux inclus) est	Question 5 La solution de $T(n) = 2T(n/2) + \sqrt{n}$ est:
. 100 (1010 100 1101) 110110, 000	$\Theta(n)$ $\Theta(\log n)$ $\Theta(n^2 \log n)$

		456789	
0/2	0 1 2 3	1 4 1 5 1 6 1 7 1 8 1 9	
	0 1 2 3	1 4 1 1 1 1 1 1 1 1 1 1	
	0 1 2 3	4 5 6 7 8 9	

est à la position:

-1/2

Question 4 Sur un alphabet de
$$k$$
 lettres, combien de mots de n lettres peut-on construire?

$$\Theta(n)$$
 $\Theta(\log n)$ $\Theta(n^2 \log n)$ $\Theta(n^2 \log n)$ $\Theta(n^2 \log n)$ $\Theta(n \log n)$ $\Theta(1)$

Question 6 $\Theta(n^2)$ contient les polynômes de degré...

$$\square > 2 \qquad \square = 2 \qquad \square > 2$$

Question 8
$$\sum_{i=0}^{n} x^{i} =$$
 $(x^{n+1}-1)/(x-1)$ $(x^{n}-1)/(x-1)$ 0/2

Question 9 La solution de
$$T(n) = 2T(n/2) + \Theta(n)$$
 est:

$$\begin{tabular}{ll} \bf Question \ 10 & La \ suppression \ de \ la \ racine \ d'un \ tas \ de \ n \\ \it \'el\'ements \ est \ de \ complexit\'e \end{tabular}$$

2		
$\square \Theta(n)$		0/2
Θ(1)	\bigcirc O(log n)	

Rappel du théorème général. Pour une récurrence du type T(n) = aT(n/b + O(1)) + f(n) avec $a \ge 1$, b > 1:

- si $f(n) = O(n^{(\log_b a) \varepsilon})$ pour un $\varepsilon > 0$, alors $T(n) = \Theta(n^{\log_b a})$;
- si $f(n) = \Theta(n^{\log_b a})$, alors $T(n) = \Theta(n^{\log_b a} \log n)$;
- si $f(n) = \Omega(n^{(\log_b a) + \varepsilon})$ pour un $\varepsilon > 0$, et de plus $af(n/b) \le cf(n)$ pour un c < 1 et toutes les grandes valeurs de n, alors $T(n) = \Theta(f(n))$.