Lecture 6: ILP HW Case Study— CDC 6600 Scoreboard & Tomasulo's Algorithm

Professor Alvin R. Lebeck Computer Science 220 Fall 2001

Admin

- HW #2
- Project Selection by October 2
 - Your own ideas?
- Short proposal due October 2
 - Content: problem definition, goal of project, metric for success
 - 3 5 page document
 - 5 10 minute presentation
- Status report due November 1.
 - document only
- Final report due December 6
 - 8-10 page document
 - 15-20 minute presentation

© Alvin R. Lebeck 1999 CPS 220

Review: ILP

- Instruction Level Parallelism in SW or HW
- · Loop level parallelism is easiest to see

Today

- SW parallelism dependencies defined for program, hazards if HW cannot resolve dependencies
- SW dependencies/Compiler sophistication determine if compiler can unroll loops
 - Memory dependencies hardest to determine

© Alvin R. Lebeck 1999

CPS 220

3

Review: FP Loop Showing Stalls

```
1 Loop: LD
               F0,0(R1) ;F0=vector element
         stall
3
         ADDD
              F4,F0,F2 ;add scalar in F2
4
         stall
5
         stall
6
         SD
               0(R1),F4 ;store result
7
         SUBI R1,R1,8
                          ;decrement pointer 8B (DW)
8
        BNEZ R1,Loop
                          ;branch R1!=zero
                          ;delayed branch slot
        stall
Instruction
                Instruction
                                    Latency in
producing result using result
                                    clock cycles
FP ALU op
                Another FP ALU op
                                    3
FP ALU op
                Store double
                                    2
Load double
                FP ALU op
```

© Alvin R. Lebeck 1999

CPS 220

Rewrite code to minimize stalls?

Review: Unrolled Loop That Minimizes Stalls

```
1 Loop: LD
              F0,0(R1)

    What assumptions

2
       LD
              F6,-8(R1)
                                    made when moved
3
       LD
              F10,-16(R1)
                                    code?
4
       LD
              F14,-24(R1)
5
       ADDD
              F4,F0,F2
                                      - OK to move store past
              F8,F6,F2
6
       ADDD
                                       SUBI even though changes
7
              F12,F10,F2
       ADDD
                                       register
8
       ADDD
              F16,F14,F2
                                      - OK to move loads before
9
       SD
              0(R1),F4
                                       stores: get right data?
10
       SD
              -8(R1),F8
                                      - When is it safe for
11
       SD
              -16(R1),F12
                                       compiler to do such
12
       SUBI
              R1,R1,#32
                                       changes?
13
       BNEZ
              R1,LOOP
14
       SD
              8(R1),F16
                            ; 8-32 = -24
```

14 clock cycles, or 3.5 per iteration

© Alvin R. Lebeck 1999 CPS 220

Review: Hazard Detection

- Assume all hazard detection in ID stage
- 1. Check for structural hazards.
- 2. Check for RAW data hazard.
- 3. Check for WAW data hazard.
- If any occur stall at ID stage
- This is called an in-order issue/execute machine, if any instruction stalls all later instructions stall.
 - Note that instructions may complete execution out of order.

© Alvin R. Lebeck 1999

Can we do better?

- Problem: Stall in ID stage if any data hazard.
- Your task: Teams of two, propose a design to eliminate these stalls.

MULD F2, F3, F4 Long latency...

ADDD F1, F2, F3

ADDD F3, F4, F5

ADDD F1, F4, F5

© Alvin R. Lebeck 1999

HW Schemes: Instruction Parallelism

- Why in HW at run time?
 - Works when can't know dependencies
 - Simpler Compiler
 - Code for one machine runs well on another machine
- Key Idea: Allow instructions behind stall to proceed

DIVD F0, F2, F4 ADD F10, F0, F8 SUBD F8, F8, F14

- Enables out-of-order execution => out-of-order completion
- ID stage check for both structural & data dependencies

© Alvin R. Lebeck 1999 CPS 220

HW Schemes: Instruction Parallelism

- Out-of-order execution divides ID stage:
 - 1. Issue: decode instructions, check for structural hazards
 - 2. Read: operands wait until no data hazards, then read operands
- Scoreboards allow instruction to execute whenever 1 & 2 hold, not waiting for prior instructions

© Alvin R. Lebeck 1999

CPS 220

9

Scoreboard Implications

- Out-of-order completion => WAR, WAW hazards?
- Solutions for WAR
 - Queue both the operation and copies of its operands
 - Read registers only during Read Operands stage
- For WAW, must detect hazard: stall until other completes
- Need to have multiple instructions in execution phase
 => multiple execution units or pipelined execution units
- Scoreboard keeps track of dependencies, state or operations
- Scoreboard replaces ID, EX, WB with 4 stages

© Alvin R. Lebeck 1999

CPS 220

Four Stages of Scoreboard Control

1. Issue: decode instructions & check for structural hazards (ID1)

If a functional unit for the instruction is free and no other active instruction has the same destination register (WAW), the scoreboard issues the instruction to the functional unit and updates its internal data structure. If a structural or WAW hazard exists, then the instruction issue stalls, and no further instructions will issue until these hazards are cleared.

2. Read operands: wait until no data hazards, then read operands (ID2)

A source operand is available if no earlier issued active instruction is going to write it, or if the register containing the operand is being written by a currently active functional unit. When the source operands are available, the scoreboard tells the functional unit to proceed to read the operands from the registers and begin execution. The scoreboard resolves RAW hazards dynamically in this step, and instructions may be sent into execution out of order.

© Alvin R. Lebeck 1999 CPS 220

Four Stages of Scoreboard Control

3. Execution: operate on operands

The functional unit begins execution upon receiving operands. When the result is ready, it notifies the scoreboard that it has completed execution.

4. Write Result: finish execution (WB)

Once the scoreboard is aware that the functional unit has completed execution, the scoreboard checks for WAR hazards. If none, it writes results. If WAR, then it stalls the instruction.

Example:

DIVD F0,F2,F4 ADDD F10,F0,F8 SUBD F8,F8,F14

CDC 6600 scoreboard would stall SUBD until ADDD reads operands

© Alvin R. Lebeck 1999 CPS 220

Three Parts of the Scoreboard

- 1. Instruction status: which of 4 steps the instruction is
- 2. Functional unit status: Indicates the state of the functional unit (FU). 9 fields for each functional unit

Busy--Indicates whether the unit is busy or not

Op--Operation to perform in the unit (e.g., + or -)

Fi--Destination register

Fj, Fk--Source-register numbers

Qj, Qk--Functional units producing source registers Fj, Fk

Rj, Rk--Flags indicating when Fj, Fk are ready

3. Register result status: Indicates which functional unit will write each register, if one exists. Blank when no pending instructions will write that register

© Alvin R. Lebeck 1999

CPS 220

13

INT ADD/SUB: 1 clock cycle

Load/store effective address computation ("execution" stage) combined with Memory access: 1 clock cycle

FP ADD/SUB: 2 clock cycles

FP MUL: 10 clock cycles

FP DIV: 40 clock cycles

Scoreboard Example Cycle 1

Insti	ruction	Status			Read	Execution	Write
Instructi	ion	j	k	Issue	Operand	Complete	Result
LD	F6	34+	R2	1			
LD	F2	45 +	R3				
MULT	F0	F2	F4				
SUBD	F8	F6	F2				
DIVD	F10	F0	F6				
ADDD	F6	F8	F2				

Functional Unit Status

Name	Busy	Op	Fi	Fj	Fk	Qj	Qk	Rj	Rk
Integer	Yes	Load	F6		R2				Yes
Mult1	No								
Mult2	No								
Add	No								
Divide	No								
Register	Result S	tatus							

CLOCK F6 F10 F12 ... F31 FU Int

© Alvin R. Lebeck 1999

CPS 220

Scoreboard Example Cycle 3 Instruction Status Read Execution Write Issue Operand Complete Result Instruction j LD 34+ R2 F6 1 2 3 LD F2 45+ R3 MULT F0 F2 F4 SUBD F8 F2 F6 DIVD F10 F0 F6 ADDD F6 F8 F2 Functional Unit Status Rk Fk Qj Qk Name Busy Op Fj Rj Yes Integer Load F6 R2 Yes Mult1 No Mult2 No Add No Divide No Register Result Status CLOCK F6 F4 F8 F10 F12 ... F31 3 Int © Alvin R. Lebeck 1999

Page 8

CPS 220

Page 9

Page 10

Scoreboard Example Cycle 8a

Insti	uction	Status			Read	Execution	Write
Instructi	on	j	k	Issue	Operand	Complete	Result
LD	F6	34+	R2	1	2	3	4
LD	F2	45+	R3	5	6	7	
MULT	F0	F2	F4	6			
SUBD	F8	F6	F2	7			
DIVD	F10	F0	F6	8			
ADDD	F6	F8	F2				

Functional	Unit Status
Tunctionar	Omi Status

Name	Busy	Op	F1	Fj	FK	Q _J	Qk	Rj	RK
Integer	Yes	Load	F2		R3				Yes
Mult1	Yes	Mult	F0	F2	F4	Integer		No	Yes
Mult2	No					-			
Add	Yes	Sub	F8	F6	F2		Int	Yes	No
Divide	Yes	Div	F10	F0	F6	Mult1		No	Yes
ъ	D 1, 0	1							

Register Result Status

CLOCK	_ F0	F2	F4	F6	F8	F10	F12	 F31
8	FU Muli	l Int			Add	Div		

© Alvin R. Lebeck 1999 CPS 220 21

Scoreboard Example Cycle 8b

Inst	ruction	Status			Read	Execution	Write
Instruct	ion	j	k	Issue	Operand	Complete	Result
LD	F6	34+	R2	1	2	3	4
LD	F2	45+	R3	5	6	7	8
MULT	F0	F2	F4	6			
SUBD	F8	F6	F2	7			
DIVD	F10	F0	F6	8			
ADDD	F6	F8	F2				

Functional Unit Status Name Busy Op

rvaine	Dusy	Op	1.1	1]	I.V	QJ	Дĸ	ĸj	ICK
Integer	No								
Mult1	Yes	Mult	F0	F2	F4			Yes	Yes
Mult2	No								
Add	Yes	Sub	F8	F6	F2		Int	Yes	Yes
Divide	Yes	Div	F10	F0	F6	Mult1		No	Yes
		-							

Register Result Status

CLOCK		F0	F2	F4	F6	F8	F10	F12	 F31
8	FU	Mul1				Add	Div		

© Alvin R. Lebeck 1999

CPS 220

Insti	uction	Status				Read		ead Exe		Execution		Write		
Instructi	on	j	k		Issue	(perand	Complete		Res	sult			
LD	F6	34 +	R2		1		2		3	4	1			
LD	F2	45 +	R3		5		6		7	8	3			
MULT	F0	F2	F4		6		9							
SUBD	F8	F6	F2		7		9							
DIVD	F10	F0	F6		8									
ADDD	F6	F8	F2											
Function	nal Uni	t Statu	IS											
Name	Busy	()p	Fi	Fj	Fk	Qj		Qk	Rj	Rk			
Integer	No													
Mult1	Yes	M	ult	F0	F2	F4				Yes	Yes			
Mult2	No													
Add	Yes	S	ub	F8	F6	F2			Int	Yes	Yes			
Divide	Yes	D	iv	F10	F0	F6	Mult	1		No	Yes			
Register	Result	Statu	S											
CLOC	CK		F0	F2	F4		F6	F8	F10	F1	2	 F31		
9		FU N	Iul1				A	Add	Div					

© Alvin R. Lebeck 1999 CPS 220 23

Page 12

	Write	kecution	E	Read					Status	uction	Instr
	Result	omplete	(perar	· O	Issue	_	k	j	on	Instructi
	4	3		2		1		R2	34+	F6	LD
	8	7		6		5		R3	45+	F2	LD
				9		6		F4	F2	F0	MULT
	12	11		9		7		F2	F6	F8	SUBD
						8		F6	F0	F10	DIVD
								F2	F8	F6	ADDD
	Rj Rk	Qk		(Fk	Fj	Fi	s Op		Busy	Function Name
	es Yes				F4	F2	F0	ult	M	No Yes	Integer Mult1
										No No	Mult2 Add
	Io Yes		t 1	Μı	F6	F0	F10	iv		Yes	Divide
											Register
F31	F12	F10	F8	F6		F4	F2	F0		CK	CLOC
		Div						Iul1	FU M		12

© Alvin R. Lebeck 1999 CPS 220 25

	te	Write	cution	Exe	Read					tatus	uction S	Insti
	ılt	Result	plete	Con	perand	О	Issue		k	j	on	Instructi
		4	3		2		1		R2	34+	F6	LD
		8	7		6		5		R3	45+	F2	LD
					9		6		F4	F2	F0	MULT
		12	11		9		7		F2	F6	F8	SUBD
							8		F6	F0	F10	DIVD
							13		F2	F8	F6	ADDD
	Rk	Rj R	Qk		Qi	Fk	Fi	Fi	s		al Unit Busy	Function Name
		Ng 10.	Qκ		(2)	IK	1 J	11	Ρ		No	Integer
	Yes	Yes Ye				F4	F2	F0	ult	М	Yes	Mult1
		100						• 0			No	Mult2
	Yes	Yes Ye				F2	F8	F6	d	Α	Yes	Add
	Yes	No Ye		1	Mul	F6	F0	F10	iv	D	Yes	Divide
									S	Status	Result	Register
F31		F12	F10	F8	F6		F4	F2	F0		K	CLOC
			Div		Add				Iul1	U M]	13

Page 13

CPS 220

© Alvin R. Lebeck 1999

Scoreboard Example Cycle 14

Inst	ruction	Status			Read	Execution	Write
Instruct	ion	j	k	Issue	Operand	Complete	Result
LD	F6	34+	R2	1	2	3	4
LD	F2	45+	R3	5	6	7	8
MULT	F0	F2	F4	6	9		
SUBD	F8	F6	F2	7	9	11	12
DIVD	F10	F0	F6	8			
ADDD	F6	F8	F2	13	14		
							,

Function	nai Unit S	tatus				
Name	Busy	Op	Fi	Fj	Fk	
Integer	No					

Name	Busy	Op	Fi	Fj	Fk	Qj	Qk	Rj	Rk
Integer	No								
Mult1	Yes	Mult	F0	F2	F4			Yes	Yes
Mult2	No								
Add	Yes	Ad	F6	F8	F2			Yes	Yes
Divide	Yes	Div	F10	F0	F6	Mult1		No	Yes

Register Result Status

CLOCK		F0	F2	F4	F6	F8	F10	F12	 F31
14	FU	Mul1			Add		Div		

© Alvin R. Lebeck 1999 27 CPS 220

Scoreboard Example Cycle 15

Inst	ruction	Status			Read	Execution	Write
Instruct	ion	j	k	Issue	Operand	Complete	Result
LD	F6	34+	R2	1	2	3	4
LD	F2	45+	R3	5	6	7	8
MULT	F0	F2	F4	6	9		
SUBD	F8	F6	F2	7	9	11	12
DIVD	F10	F0	F6	8			
ADDD	F6	F8	F2	13	14		

Functional Unit Status

rvaine	Busy	Op	1.1	T'J	I.V	QJ	ДΚ	ĸj	IVK
Integer	No								
Mult1	Yes	Mult	F0	F2	F4			Yes	Yes
Mult2	No								
Add	Yes	Add	F6	F8	F2			Yes	Yes
Divide	Yes	Div	F10	F0	F6	Mult1		No	Yes
	D 1. 0								

Register Result Status

CLOCK		F0	F2	F4	F6	F8	F10	F12	 F31
15	FU	Mul1			Add		Div		

© Alvin R. Lebeck 1999

CPS 220

Scoreboard Example Cycle 16

Insti	ruction	Status			Read	Execution	Write
Instruction j		j	k Issue		Operand	Complete	Result
LD	F6	34+	R2	1	2	3	4
LD	F2	45+	R3	5	6	7	8
MULT	F0	F2	F4	6	9		
SUBD	F8	F6	F2	7	9	11	12
DIVD	F10	F0	F6	8			
ADDD	F6	F8	F2	13	14	16	

Function	nal Unit S	Status							
Name	Busy	Op	Fi	Fj	Fk	Qj	Qk	Rj	Rk
Integer	No								
Mult1	Yes	Mult	F0	F2	F4			Yes	Yes
Mult2	No								
Add	Yes	Add	F6	F8	F2			Yes	Yes
Divide	Yes	Div	F10	F0	F6	Mult1		No	Yes

Divide Yes Register Result Status

CLOCK		F0	F2	F4	F6	F8	F10	F12	 F31
16	FU	Mul1			Add		Div		

© Alvin R. Lebeck 1999 CPS 220 29

Scoreboard Example Cycle 17

Insti	ruction	Status			Read	Execution	Write
Instructi	ion	j	k	Issue	Operand	Complete	Result
LD	F6	34+	R2	1	2	3	4
LD	F2	45+	R3	5	6	7	8
MULT	F0	F2	F4	6	9		
SUBD	F8	F6	F2	7	9	11	12
DIVD	F10	F0	F6	8			
ADDD	F6	F8	F2	13	14	16	

Functional Unit Status

Name	Busy	Op	F1	Fj	FK	Qj	Qk	Rj	RK
Integer	No								
Mult1	Yes	Mult	F0	F2	F4			Yes	Yes
Mult2	No								
Add	Yes	Add	F6	F8	F2			Yes	Yes
Divide	Yes	Div	F10	F0	F6	Mult1		No	Yes

Register Result Status

egister reest		-							
CLOCK		F0	F2	F4	F6	F8	F10	F12	 F31
17	FU	Mul1			Add		Div		

© Alvin R. Lebeck 1999

CPS 220

Scoreboard Example Cycle 18

Insti	ruction	Status			Read	Execution	Write
Instructi	ion	j	k	Issue	Operand	Complete	Result
LD	F6	34+	R2	1	2	3	4
LD	F2	45+	R3	5	6	7	8
MULT	F0	F2	F4	6	9		
SUBD	F8	F6	F2	7	9	11	12
DIVD	F10	F0	F6	8			
ADDD	F6	F8	F2	13	14	16	

Function	nal Unit	Status
Name	Rucy	On

Name	Busy	Op	F1	Fj	РK	Qj	Qĸ	Кj	KK
Integer	No								
Mult1	Yes	Mult	F0	F2	F4			Yes	Yes
Mult2	No								
Add	Yes	Add	F6	F8	F2			Yes	Yes
Divide	Yes	Div	F10	F0	F6	Mult1		No	Yes

Register Result Status

CLOCK		F0	F2	F4	F6	F8	F10	F12	 F31
18	FU 1	Mul1			Add		Div		

© Alvin R. Lebeck 1999

CPS 220

31

Scoreboard Example Cycle 19

Insti	ruction	Status			Read	Execution	Write
Instructi	ion	j	k	Issue	Operand	Complete	Result
LD	F6	34+	R2	1	2	3	4
LD	F2	45+	R3	5	6	7	8
MULT	F0	F2	F4	6	9	19	
SUBD	F8	F6	F2	7	9	11	12
DIVD	F10	F0	F6	8			
ADDD	F6	F8	F2	13	14	16	

Functional Unit Status Name Busy Op

rvanic	Dusy	Op	11	ı j	1 1	Q.J	VΛ	IX.J	Ith
Integer	No								
Mult1	Yes	Mult	F0	F2	F4			Yes	Yes
Mult2	No								
Add	Yes	Add	F6	F8	F2			Yes	Yes
Divide	Yes	Div	F10	F0	F6	Mult1		No	Yes

Register Result Status

CLOCK		F0	F2	F4	F6	F8	F10	F12	 F31
19	FU	Mul1			Add		Div		

© Alvin R. Lebeck 1999

CPS 220

		Sc	ore	bo	ard	ΙE	xam	ple	Су	cle	20)		
Instr	uction	Status					Read	Exe	cution	Wı	ite			
Instructi	on	j	k		Issue	. (perand	Cor	nplete	Res	sult			
LD	F6	34 +	R2		1		2		3	4	1			
LD	F2	45+	R3		5		6		7	8	3			
MULT	F0	F2	F4		6		9		19	2	0			
SUBD	F8	F6	F2		7		9		11	1	2			
DIVD	F10	F0	F6		8									
ADDD	F6	F8	F2		13		14		16					
Name Integer Mult1 Mult2	nal Uni Busy No No No)p	Fi	Fj	Fk	Qj		Qk	Rj	Rk			
Add	Yes	A	dd	F6	F8	F2				Yes	Yes			
Divide	Yes	D	iv	F10	F0	F6	Mult	1		Yes	Yes			
Register	Result	Statu	s									_		
CLOC	K		F0	F2	F4	ļ	F6	F8	F10	F1	2		F31	
20		FU					Add		Div					

CPS 220

33

34

© Alvin R. Lebeck 1999

© Alvin R. Lebeck 1999

Instr	uction	Statu	S				Read	Execution	Write	
Instructi	on	j	k		Issue	. 0	perand	Complete	Result	
LD	F6	34+	R2		1		2	3	4	
LD	F2	45+	R3		5		6	7	8	
MULT	F0	F2	F4		6		9	19	20	
SUBD	F8	F6	F2		7		9	11	12	
DIVD	F10	F0	F6		8		21			
ADDD	F6	F8	F2		13		14	16		
Function Name	nal Uni Busy		us Op	Fi	Fį	Fk	Qi	Qk	Rj Rk	
Integer	No								Ĭ	
Mult1	No									
Mult2	No									
Add	Yes	1	Add	F6	F8	F2			Yes Yes	
Divide	Yes]	Div	F10	F0	F6	Mult	1	Yes Yes	
Register	Result	Stati	18							
CLOC	K	_	F0	F2	F4		F6	F8 F10	F12 .	F31
21		FU					Add	Div		

Page 17

CPS 220

Insti	uction	Statu	ıs				Read	Execution	Write	
Instructi	on	j	k	_	Issue	C	perand	Complete	Result	
LD	F6	34+	- R2		1		2	3	4	
LD	F2	45+	- R3		5		6	7	8	
MULT	F0	F2	F4		6		9	19	20	
SUBD	F8	F6	F2		7		9	11	12	40 cycle
DIVD	F10	F0	F6		8		21			Divide
ADDD	F6	F8	F2		13		14	16	22	Divide
Function Name	nal Uni Busy No		Op	Fi	Fj	Fk	Qj	Qk	Rj Rk	٦
Integer Mult 1	No									
Mult2	No									
Add	No									
Divide	Yes		Div	F10	F0	F6	Mult	1	Yes Yes	
Register	Result	Stat	us							
CLOC			F0	F2	F4		F6	F8 F10	F12	F31
22		FU						Div		

CPS 220

35

© Alvin R. Lebeck 1999

Page 18

Scoreboard Summary

- Speedup 1.7 from compiler; 2.5 by hand BUT slow memory (no cache)
- · Limitations of 6600 scoreboard
 - No forwarding
 - Limited to instructions in basic block (small window)
 - Number of functional units (structural hazards)
 - Wait for WAR hazards
 - Prevent WAW hazards
- How to design a datapath that eliminates these problems?

© Alvin R. Lebeck 1999

CPS 220

37

Tomasulo's Algorithm: Another Dynamic Scheme

- For IBM 360/91 about 3 years after CDC 6600
- Goal: High Performance without special compilers
- Differences between IBM 360 & CDC 6600 ISA
 - IBM has only 2 register specifiers/instr vs. 3 in CDC 6600
 - IBM has 4 FP registers vs. 8 in CDC 6600
- Differences between Tomasulo Algorithm & Scoreboard
 - Control & buffers distributed with Function Units vs. centralized in scoreboard; called "reservation stations"
 - Register specifiers in instructions replaced by pointers to reservation station buffer (Everything can be solved with level of indirection!)
 - HW renaming of registers to avoid WAR, WAW hazards
 - Common Data Bus broadcasts results to all FUs
 - Load and Stores treated as FUs as well

© Alvin R. Lebeck 1999

CPS 220

Reservation Station Components

Op—Operation to perform in the unit (e.g., + or −)

Qj, Qk—Reservation stations producing source registers

Vj, Vk—Value of Source operands

Rj, Rk—Flags indicating when Vj, Vk are ready

Busy—Indicates reservation station and FU is busy

Register result status—Indicates which functional unit will write each register, if one exists. Blank when no pending instructions that will write that register.

© Alvin R. Lebeck 1999 CPS 220 40

INT ADD/SUB: 1 clock cycle

Load/store effective address computation: 1 clock cycle

Load/store memory access: 1 clock cycle

FP ADD/SUB: 2 clock cycles

FP MUL: 10 clock cycles

FP DIV: 40 clock cycles

Three Stages of Tomasulo Algorithm

1.Issue—get instruction from FP Op Queue

If reservation station free, the scoreboard issues instr & sends operands (renames registers).

2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch CDB for result

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting units; mark reservation station available.

© Alvin R. Lebeck 1999

CPS 220

41

INT ADD/SUB: 1 clock cycle

Load/store effective address computation: 1 clock cycle

Load/store memory access: 1 clock cycle

FP ADD/SUB: 2 clock cycles

FP MUL: 10 clock cycles

FP DIV: 40 clock cycles

of FP ADD/SUB Units: 3 # of FP MUL/DIV Units: 2 # of LD Units: 1

of SD Units: 1

Tomasulo Example Cycle 0 (initial state)

Note: the "Names" are reservation stations associated with the corresponding Functional Unit Load1, Load3 are Load Buffers, which are attached to only 1 Load unit Mult2 handles DIVD

© Alvin R. Lebeck 1999

CPS 220

CPS 220

Page 22

LD F2, 45(R3) cannot start execution at clock cycle #3 due to structural hazard!

LD F2, 45(R3) starts execution at clock cycle #4 MULT is stuck because of F2! F6 has been updated in the Register File, its value is the same as the value at M[34+R2]

MULT is still waiting! SUBD has got F6 ready because of CDB-based broadcast, but waiting for F2!

© Alvin R. Lebeck 1999 CPS 220 47

MULT starts execution SUBD starts execution

Page 25

Page 26

Page 27

Page 28

Page 29

Page 30

Page 31

Tomasulo vs. Scoreboard

- Is tomasulo better?
- Finish in 59 cycles vs. 61 for scoreboard, why?
- We do reach the divide 3 cycles earlier...
 Simultaneous read of operand for SUBD and MULT

© Alvin R. Lebeck 1999

3 LD Units 3 SD Units

LD/SD effective address computation: 1 clock cycle

1st LD: 7 clock cycles to get value from memory (after effective address is known) 2nd LD: 3 clock cycles to get value from memory (after effective address is known)

SD: cycles to send value to memory (after effective address is known)

SUBI is executed in INT unit (not shown here!), takes 1 clock cycle

Tomasulo Loop Example

Loop: LD F₀ 0 R1 **MULTD** F2 F4 F₀ SD F4 0 R1 **SUBI** R1 R1 #8 **BNEZ** R1 Loop

• Multiply takes 4 clocks

© Alvin R. Lebeck 1999

Loads may have cache misses

© Alvin R. Lebeck 1999 CPS 220 65

Loop Example Cycle 0 Execution Write Instruction status iteration complete Result Busy Address Instruction Issue 0 R1 LD F0 Load1 No MULT F4 F0 F2 Load2 No SD F4 0 R1 Load3 No Qi LD F0 0 R1 2 Store1 No MULT F4 F0 F2 2 Store2 No SD F4 0 R1 Store3 No Reservation Stations SIS2RS for j RS for kTime Name Busy Op V_j VkCode: Qk0 Add 1LD F0 0 R1 No 0 Add2 No MULT F4 F0 F2 0 Add3 No SD F4 0 R1 0 Mult1 No SUBI R1 R1 #8 0 Mult2 No BNEZ R1 Loop Register result status *F*2 F4 F6 F8 F10 F12 ... F30 Clock R1 F080

CPS 220

© Alvin R. Lebeck 1999 CPS 220 71

Page 37

Loop Example Cycle 10 Instruction status Execution Write iteration complete Result Busy Address Instruction Issue 0 R1 F0 Load1 No MULT F4 F0 F2 2 Load2 Yes 72 SD Load3 No Qi LD 0 R1 10 Store1 Yes 80 Mult1 MULT F4 F0 F2 2 Store2 Yes 72 Mult2 0 R1 SD F4 Store3 No Reservation Stations SIRS for j RS for k Time Name Code:Busy Op V_j VkQk0 Add 1LD F0 0 R1 No 0 Add2 No MULT F4 F0 F2 0 Add3 No SD F4 0 R1 4 Mult1 Yes MULTD SUBI R1 R1 #8 0 Mult2 MULTD R(F2) Load2 BNEZ R1 Loop Register result status F4 F8 F10 F12 ... F30 Clock R1 F0F6 Load2 Mult2 © Alvin R. Lebeck 1999

CPS 220

Page 39

Page 40

Alvin R. Lebeck 1999 CPS 220 81

© Alvin R. Lebeck 1999 CPS 220 82

© Alvin R. Lebeck 1999 CPS 220

© Alvin R. Lebeck 1999 CPS 220 87

Tomasulo Summary

- Prevents Register as bottleneck
- Avoids WAR, WAW hazards of Scoreboard
- Allows loop unrolling in HW
- Not limited to basic blocks (provided branch prediction)
- Lasting Contributions
 - Dynamic scheduling
 - Register renaming
 - Load/store disambiguation

© Alvin R. Lebeck 1999 CPS 220 88