INGENIERÍA DE MANUFACTURA

Robótica Integrada a la Manufactura

Contenido

PARTE I

- Concepto
- Antecedentes
- Clasificación
- Aplicaciones
- Actuador final
- Limitaciones
- Desventajas
- Justificación

PARTE II

- Marco de referencia
- Controlador
- Lenguajes de programación
- Simulación

PARTE III

Caso "Robot soldador"

Concepto de Robot

Robot Institute of America

Un manipulador multifuncional reprogramable diseñado para mover material, partes o dispositivos especiales a través de movimientos programados variables para la ejecución de una variedad de tareas. (Shlussel, 1985)

Concepto de Robot

Un robot es una máquina que puede ser programada para efectuar un número de tareas, de la misma manera que una computadora es un circuito electrónico que se puede programar para hacer una variedad de tareas. (Mckerrow, 1986)

Concepto de Robot

Robótica

Es una conexión inteligente de percepción a acción. (Brady, 1985)

¿Qué es un robot?

¿Qué es un robot?

 A mediados del siglo XX entra la computadora que permite un control de lazo cerrado de actuadores, transmisiones a través de engranes, tecnología de sensores.

Esto despertó un número de aplicaciones.

- Automatización flexible.
- Teleoperación.

Tendencias

Distribución de Aplicaciones de Robots

TAREA	1984	1990
	(%)	(% aprox.)
Manejo material, carga/descarga Operaciones de proceso	30-35	20-30
Soldadura de punto	32-40	5-10
Soldadura de arco	5-8	15-20
Recubrimiento por espreado 4-8	8	3-12
Otras operaciones de proceso	5	3-7
Ensamble e inspección 25-35	7	7-10
Otras operaciones de manufactura		2-8
Fuera del área de manufactura 2-6	1	I - 2

Clasificación

- Grados de libertad y envolvente
- Fuentes de energía
- Generaciones
- Nivel de inteligencia
- Nivel de control

Clasificación por Grados de Libertad

Clasificación por Fuentes de Energía

- Neumático
- Hidráulico
- Eléctrico
- Motor de combustión

Clasificación por Nivel de Inteligencia

- Dispositivos de manejo manual controlados por una persona.
- Robots de secuencia fija.
- Robots de secuencia variable, donde el operador modifica la secuencia con anterioridad.
- Robots de repetición.
- Robots controlados numéricamente, en donde el operador le proporciona un programa de movimientos.
- Robots inteligentes, los cuales pueden entender e interactuar con cambios en el medio ambiente.

Clasificación por Nivel de Control

Nivel de inteligencia artificial

El programa acepta una orden como "levanta un engrane" y la desglosa en una secuencia de ordenes de bajo nivel basadas en un modelo estratégico de una tarea.

Nivel de modo de control

Los movimientos del sistema son modelados, incluyendo las interacciones dinámicas entre los diferentes mecanismos, trayectorias planeadas y puntos seleccionados.

Nivel de servo control

Los actuadores controlan los parámetros del mecanismo usando retroalimentación de sensores internos.

Aplicaciones

- Soldadura.
- Pintura.
- Ensamble.
- Manejo de materiales.

- Transportación.
- Excavación de minas.
- Educación.
- Ensamble.

Actuadores Neumáticos

Ventajas

- Alta velocidad
- Fuente de energía común en la industria
- No se utilizan fluidos

Desventajas

- La compresibilidad del aire limita aspectos de control y precisión
- Ruido en los escapes
- Secado y filtrado del aire necesario

Actuadores Hidráulicos

Ventajas

- Alta razón de potencia a peso
- Muy buen servo control puede ser alcanzado.
- Velocidades moderadas, respuesta rápida

Desventajas

- Los sistemas hidráulicos son caros
- Problemas de mantenimiento con sellado puede causar pérdidas
- Necesitan una fuente remota de energía la cual ocupa espacio de piso

Actuadores Eléctricos

Ventajas

- Son rápidos y precisos
- Es posible aplicar sofisticadas técnicas de control al movimiento
- Precios relativamente bajos

Desventajas

- Problemas con el sobrecalentamiento
- Son necesarios frenos para fijarlo en una posición
- La energía eléctrica puede ser considerada como flamable

Limitaciones

- Un robot es ciego
- Un robot ciego es sensible a variación en el producto, el proceso y las tolerancias del producto.

Desventajas del Trabajo Robotizado

- El costo de un robot permanece constante con baja reducción
- Requieren gran capital al instalarse que se deprecia con los años vs el recurso humano que cuesta el tiempo trabajando
- Un robot se debe justificar económicamente

Desventajas del Trabajo Robotizado

 El recurso humano puede sentirse amenazado por el desempleo

Desuso del equipo al terminar el proyecto.

Justificación de un Robot

- Aumentar utilidades.
- Efectuar tareas imposibles para un humano.
- Realizar tareas que son muy peligrosas.
- Aumentar/mejorar calidad.

Los robots deben ser costeables y ahorrarle dinero a la compañía

Sugerencias e Implementación...

- Evitar complicaciones extremas e innecesarias (simplifica)
- Definir las operaciones tal que sean ordenadas y sistemáticas.
- La rapidez de un robot es aproximadamente igual a la de un humano.
- Para carreras muy cortas usa gente, para carreras muy largas usa automatización fija.

Sugerencias en Implementación

- Si no produce utilidades no tiene sentido
- Un robot no es necesariamente mejor que ninguno
- Si la gente no lo quiere, va a fallar

Recuperación de la Inversión

Normalmente debe ser menor a 2.5 años (depende de la empresa)

$$P = C$$

$$W + I + D - (M + S)$$

donde:

P= # de años para recuperar la inversión.

C= Costo total del sistema

W= Sueldo anual de trabajadores reemplazados

I= Ahorro en productividad

D= Depreciación permitida

M=Costo de mantenimiento

S= Costo del personal de apoyo

Ejemplo 1

Considerar:

Costo del sistema = \$125,000

Salario y prestaciones (12 hrs. y 250 días al año) = \$24,000

Ahorro por uso del robot = \$10,000

Depreciación (20%) = \$25,000

Costo de mantenimiento = \$5,000

Costo de personal de soporte = \$24,000

Ejemplo 2

Considerar:

El robot trabaja 2 turnos --> aumentar el costo por mantenimiento \$1,000 pero aumenta el ahorro por salario. Tomar en cuenta los datos del problema anterior

Retorno Anual en la Inversión

ROI =
$$\frac{W + I + D - [(C/N) + M + S]}{C}$$
 X 100

Donde:

ROI = Porciento anual de utilidad en inversión

C = Costo total del sistema

W = Sueldo anual de trabajadores reemplazados

I = Ahorro en productividad

D = Depreciación permitida

M = Costo de mantenimiento

S = Costo del personal de apoyo

Marcos de referencia

Controlador

- Topes mecánicos
- Lógica de Control
 Programable
- Teach pendant
- Lenguaje de programación

Lógica de Control Programable

Teach Pendant

Lenguajes de Programación

- Compiladores:
 - C, Lisp, Pascal, Fortran
- Wavw
- AL- Standford University Robotics Research Center
- AL- IBM RS/1 Robot
- RAIL
- RPL SRI
- VAL

Lenguaje de Programación VAL

- Opera en tiempo real
- Puede manejar diferentes sistemas de coordenadas
- Incluye rutinas de diagnostico del robot
- La programación es interactiva, se pueden realizar cambios mientras el robot esta en movimiento

Manejo de Materiales

Industria Automotriz

