Aperture Calculation

Spitzer Space Telescope: Star Imaging Data

Hannah Diamond-Lowe, Zakir Gowani

Project Dataset and Goals

- > Spitzer Space Telescope data of a star-plus-planet system
- Problem: background noise disrupts star analysis, and finding optimal aperture/mask by hand is tedious
- Solution: automate process using image processing and signal-tonoise ratio calculations
- Overall goal: find intelligent time-dependent apertures that conserves star signal and rejects noise

Prototype: Computational Methods

- Images processed into 32x32 numpy arrays
- Using midpoint circle algorithm, draw circular masks for different radii
- Calculate weighted ratios of signal flux to noise flux and compare to ratios of labeled data
- Output optimal mask radius and save image to file (currently png, in the future will opt for the original FITS format)

21.0 22.0 5.0 29.0 22.0 15.0 -0.0 14.0 1.0 13.0 -8.0 17.0 26.0 5.0 22.0 2.0 15.0 16.0 17.0 13.0 0.0 -5.0 25.0 27.0 12.0 14.0 13.0 -13.0 -6.0 24.0	
16.0 12.0 5.0 13.0 8.0 5.0 15.0 17.0 14.0 8.0 13.0 14.0 21.0 23.0 10.0 9.0 10.0 11.0 32.0 28.0 17.0 20.0 17.0 6.0 -2.0 17.0 10.0 15.0 -2.0 2.0 2.0	
38.0 -11.0 20.0 23.0 11.0 17.0 -12.0 17.0 4.0 20.0 15.0 31.0 -9.0 8.0 18.0 12.0 6.0 -3.0 19.0 6.0 18.0 5.0 11.0 18.0 19.0 19.0 27.0 10.0 16.0 10	
12.0 18.0 2.0 6.0 8.0 5.0 22.0 13.0 1.0 20.0 28.0 6.0 19.0 10.0 23.0 15.0 22.0 16.0 12.0 31.0 12.0 19.0 -6.0 -1399.0 12.0 10.0 25.0 23.0 20.0 14	
26.0 14.0 18.0 33.0 6.0 3.0 24.0 17.0 29.0 21.0 30.0 25.0 18.0 17.0 23.0 17.0 15.0 6.0 30.0 29.0 26.0 11.0 9.0 7.0 27.0 8.0 24.0 23.0 17.0 17.0 ;	
28.0 9.0 -11.0 28.0 6.0 -3.0 19.0 9.0 26.0 28.0 13.0 17.0 11.0 13.0 26.0 20.0 20.0 8.0 33.0 10.0 31.0 16.0 11.0 17.0 -4.0 24.0 18.0 14.0 20.0 -!	
20.0 16.0 5.0 24.0 24.0 13.0 17.0 12.0 36.0 25.0 -7.0 35.0 38.0 20.0 38.0 34.0 16.0 27.0 31.0 33.0 14.0 37.0 16.0 17.0 25.0 18.0 16.0 7.0 9.0 30	
19.0 17.0 55.0 27.0 27.0 16.0 16.0 19.0 24.0 68.0 21.0 25.0 18.0 44.0 49.0 33.0 31.0 14.0 33.0 26.0 21.0 28.0 19.0 16.0 14.0 24.0 11.0 26.0 20.0	
27.0 22.0 26.0 13.0 15.0 20.0 17.0 11.0 25.0 26.0 15.0 29.0 41.0 73.0 79.0 54.0 35.0 8.0 37.0 17.0 25.0 18.0 13.0 10.0 26.0 17.0 16.0 12.0 4.0	
16.0 13.0 13.0 28.0 15.0 11.0 24.0 38.0 46.0 33.0 34.0 31.0 43.0 70.0 96.0 53.0 36.0 32.0 25.0 11.0 40.0 23.0 37.0 44.0 12.0 11.0 21.0 12.0 43.0	
12.0 9.0 -4.0 15.0 28.0 40.0 15.0 14.0 14.0 15.0 23.0 53.0 69.0 454.0 756.0 136.0 51.0 42.0 34.0 30.0 18.0 2.0 9.0 6.0 18.0 27.0 23.0 6.0 26.0 :	
12.0 9.0 11.0 37.0 8.0 10.0 22.0 23.0 19.0 27.0 32.0 67.0 135.0 1404.0 2788.0 550.0 108.0 60.0 23.0 37.0 34.0 12.0 17.0 20.0 22.0 12.0 15.0 4.0	
14.0 -2.0 5.0 17.0 -19.0 17.0 19.0 27.0 25.0 34.0 31.0 49.0 530.0 4357.0 5854.0 1855.0 273.0 48.0 60.0 23.0 17.0 23.0 16.0 24.0 22.0 -2.0 10.0	
8.0 0.0 10.0 4.0 31.0 7.0 9.0 6.0 3.0 15.0 76.0 71.0 279.0 709.0 807.0 604.0 238.0 79.0 30.0 31.0 19.0 39.0 -2.0 9.0 2.0 15.0 12.0 1.0 28.0 28.0	
18.0 25.0 72.0 6.0 13.0 16.0 28.0 16.0 27.0 0.0 19.0 87.0 88.0 66.0 89.0 78.0 45.0 40.0 45.0 15.0 27.0 18.0 27.0 14.0 17.0 7.0 25.0 9.0 32.0 15.0 27.0 18.0 27.0 25.0 27.0 18.0 27.0 25.0 27.0 18.0 27.0 25.0 27.0 27.0 27.0 27.0 27.0 27.0 27.0 27	
22.0 2.0 9.0 3.0 12.0 21.0 -2.0 16.0 13.0 36.0 8.0 34.0 57.0 91.0 14.0 40.0 27.0 32.0 19.0 9.0 14.0 24.0 16.0 26.0 7.0 11.0 10.0 9.0 16.0 6.0 8.	
14.0 13.0 12.0 27.0 6.0 23.0 10.0 16.0 13.0 35.0 25.0 26.0 44.0 58.0 34.0 26.0 26.0 10.0 19.0 -1.0 22.0 0.0 15.0 -7.0 16.0 19.0 16.0 9.0 11.0 8.	
34.0 2.0 9.0 12.0 -6.0 9.0 17.0 22.0 16.0 25.0 38.0 8.0 28.0 40.0 15.0 12.0 37.0 26.0 29.0 12.0 -7.0 15.0 14.0 22.0 9.0 27.0 23.0 6.0 11.0 15.0	
30.0 32.0 18.0 12.0 17.0 21.0 14.0 14.0 -1.0 24.0 22.0 24.0 26.0 29.0 29.0 28.0 9.0 15.0 26.0 25.0 -15.0 15.0 18.0 -4.0 14.0 28.0 26.0 -6.0 12.0	
35.0 29.0 20.0 -1.0 6.0 12.0 -2.0 18.0 11.0 37.0 28.0 27.0 22.0 13.0 16.0 22.0 16.0 2.0 27.0 22.0 20.0 13.0 24.0 21.0 20.0 -0.0 16.0 14.0 12.0	
14.0 -4.0 9.0 12.0 21.0 30.0 36.0 8.0 27.0 15.0 11.0 22.0 13.0 -3.0 29.0 29.0 12.0 30.0 27.0 19.0 14.0 28.0 25.0 14.0 6.0 -3.0 15.0 11.0 9.0 28.0	
15.0 2.0 18.0 19.0 29.0 28.0 15.0 13.0 20.0 12.0 24.0 16.0 26.0 16.0 18.0 23.0 11.0 26.0 30.0 2.0 21.0 7.0 16.0 26.0 6.0 25.0 15.0 14.0 18.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16	
17.0 8.0 25.0 1.0 13.0 5.0 5.0 -7.0 11.0 47.0 17.0 16.0 21.0 15.0 2.0 11.0 33.0 18.0 10.0 29.0 24.0 12.0 18.0 7.0 17.0 5.0 22.0 1.0 3.0 3.0 3.0	
24.0 15.0 7.0 21.0 8.0 9.0 35.0 20.0 4.0 18.0 17.0 11.0 4.0 34.0 10.0 16.0 4.0 -8.0 -7.0 -2.0 16.0 25.0 16.0 9.0 -8.0 38.0 5.0 16.0 21.0 -2.0 1	

70.0 96.0 53.0 0 69.0 454.0 756.0 136.0 51.0 0 67.0 135.0 1404.0 2788.0 550.0 108.0 59.0 0 49.0 530.0 4357.0 5854.0 1855.0 273.0 48.0 0 71.0 279.0 709.0 807.0 604.0 238.0 79.0 0 88.0 66.0 89.0 78.0 45.0 0 91.0 14.0 39.0 0

Developing an Algorithm

- Subject of the data is a star
- Have to understand how light from a star behaves and how to approximate the data

Progress & Results

Spitzer image of HD 209458

Output of prototype: aperture radius = 2 pixels; noise spike is masked

What's Next

- Revise algorithm to use and learn from pre-masked images (labeled data)
- Extend algorithm to operate on ~1000 FITS files; each FITS file contains 64 frames
- > Parallelize with MPI library for Python

Timeline

May 12	Complete algorithm revisions, numpy optimizations, use of labeled data	
May 17	Complete small scale implementation of MPI	
May 25	Complete parallelized implementation on RCC cluster	
May 29	Test on new datasets - different star systems	
June 3	Complete debugging, speed improvements and accuracy of output	