

Sample Paper-04 (unsolved) Mathematics Class - XI

Time allowed: 3 hours Maximum Marks: 100

General Instructions:

- a) All questions are compulsory.
- b) The question paper consists of 26 questions divided into three sections A, B and C. Section A comprises of 6 questions of one mark each, Section B comprises of 13 questions of four marks each and Section C comprises of 7 questions of six marks each.
- c) All questions in Section A are to be answered in one word, one sentence or as per the exact requirement of the question.
- d) Use of calculators is not permitted.

Section A

- **1.** Find the following $(a)A \cap B(b)A \cup B$, $(c)B \cap (A \cup C)$ if $A = \{1,3,5,8\}$; $B = \{3,5,7\}$ $C = \{2,4,6,8\}$
- 2. State whether the equation $x^2 + y^2 = 1$ defines y as a function of x
- 3. Find the Domain and Range of the following functions. (a) $\sin^{-1} x$, (b) $\cos^{-1} x$, (c) $\tan^{-1} x$
- **4.** Solve for x and y if (1+2i)x+(3-5i)y=1-3i
- **5.** Which of the following is a function from $\{1, 2, 3, 4, 5\}$ to $\{1, 2, 3, 4, 5\}$ that is one-to- one and on to
 - $(1) \{(1,2),(2,3),(3,4),(4,5),(5,5)\}$
 - (2) {(1,5),(2,4),(3,3),(4,2),(5,1)}
 - $(3) \{(1,3),(2,3),(3,3),(4,3),(5,3)\}$
 - (4) {(1,1),(2,4),(3,1),(4,2),(5,1)}
- **6**. Write an identity function

Section B

- 7. If α , β are the roots of the equation $ax^2 + bx + c = 0$ find the equation whose roots are $\frac{\alpha}{\beta}$, $\frac{\beta}{\alpha}$
- **8.** Find the rth term from the end of $(x+a)^n$.
- 9. Solve the inequality -5 < 3x 2 < 1
- **10.** Determine whether the graph of the equation $y = \frac{10x^2}{1+x^2}$ is symmetric about x-axis, y -axis, or about the origin
- **11.** Find $(f \circ f)(2)$ if $f: R \to R$ defined by $f(x) = x^2 + 2x$
- **12**. Evaluate $\cos 36 \cos 72$

- **13.** Find the limit $\lim_{x \to a^2} \frac{a^2 x}{a \sqrt{x}}$
- **14.** Prove that if $f: A \to B$ and $\phi: B \to C$ are one -to-one functions, show that then $\phi \circ f$ is one -to-one
- **15**. Find a polynomial of degree 3 with real coefficients whose roots are 2, (1-i) and f(1) = 3
- **16**. Find the equations to the bisectors of the angle formed by the intersection of lines 12x + 5y + -4 = 0 and 3x + 4y + 7 = 0
- 17. Prove that $\sqrt{\sin^4 \theta + 4\cos^2 \theta} \sqrt{\cos^4 \theta + 4\sin^2 \theta} = \cos 2\theta$
- **18**. Prove by mathematical induction that $1 + a + a^2 + a^3 + \dots + a^n = \frac{a^{n+1} 1}{a 1}$
- **19**. Prove that if $x \in (A \cap B)'$ then $x \in A' \cup B'$

Section C

- **20.** Prove that $2^a, 2^b, 2^c$ are in GP if a, b, c are in AP
- **21**. The letters of the word FIERY are rearranged at random. What is the probability that one arrangement chosen at random will begin and end with a vowel
- **22.** Find the number of terms in the expansion $(a+b+c)^{10}$
- **23.** Differentiate $a(b^{nlog_bx})$ with respect to x
- **24.** There are 4 ten rupee notes and 3 two rupee notes placed at random in a line. Find the probability that the both extreme notes are two rupee notes.
- **25**. Find the equation of hyperbola whose foci are at (10,2), (0,2) and whose eccentricity is $\frac{10}{3}$
- **26**. The variance of 7 observations is 16. If each observation is multiplied by 2, find the variance of the resulting observation