This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19日本国特許庁(JP)

① 特許出願公告

許 公 報(B2) 平5-81072⑫特

®Int. Cl. 5

識別配号

庁内整理番号

200公告 平成5年(1993)11月11日

29/788 H 01 L 29/792

H 01 L 29/78

3 7 1

発明の数 2 (全7頁)

❷発明の名称 半導体装置及びその製造方法

> 20特 90 昭62-72174

码公 開 昭63-237580

願 昭62(1987)3月26日 22出

❸昭63(1988)10月4日

@発 明 者 吉川

邦 良 神奈川県川崎市幸区小向東芝町 1 株式会社東芝総合研究

所内

外2名

加出 題 人 株式会社東芝 神奈川県川崎市幸区堀川町72番地

四代 理 人 弁理士 佐藤 一雄

審査官 北島 健次

1

2

切特許請求の範囲

1 半導体基板の表面領域に互いに分離して設け られ、夫々ソース或いはドレイン領域となる第 1、第2領域と、これら第1、第2領域間のチャ ンネル領域上に絶縁膜を介して設けられた電荷蓄 積領域及び制御ゲートを具備し、前記電荷蓄積領 域を具備し、前記制御ゲート側面の前記チャンネ ル領域上に配置すると共に、前記電荷蓄積領域と 前配制御ゲートの間に絶縁膜を介在させたことを 特徴とする半導体装置。

2 前記電荷蓄積領域が前記制御ゲート側面に形 成した酸化シリコン膜、窒化シリコン膜、酸化シ リコン膜から成る三層積層膜の窒化シリコン膜で あることを特徴とする特許請求の範囲第1項記載 の半導体装置。

3 前記電荷蓄積領域が前記第1又は第2領域の どちらか一方の近傍にのみ設けられていることを 特徴とする特許請求の範囲第1項に記載の半導体 装置。

される制御ゲートを形成する工程と、この制御ゲ - トの周囲に第1の絶縁膜を形成する工程と、こ の第1の絶縁膜を電荷蓄積領域となる第2の絶縁 膜で被覆する工程と、この第2の絶縁膜を第3の 絶縁膜でおおう工程と、前記三種の絶縁膜を異方 25 性エッチング法又は通常のエッチング法を使用し て順次除去し、前記制御ゲートの側面の全部又は

一部に前記三種の絶縁膜を残存させて電荷蓄積領 域を形成する工程と、前記三種の絶縁膜の形成前 から前記三種の絶縁膜の形成後までのいずれかの 時期に前記三種の絶縁膜あるいは前記制御電極を マスクとして第1及び第2の不純物を前記半導体 基板表面にドーピングしてソース或いはドレイン 領域となる第1、第2領域を形成する工程とを具 備したことを特徴とする半導体装置の製造方法。

5 前記第1の絶縁膜が酸化シリコン膜であり、 10 第2の絶縁膜が窒化シリコン膜であり、第3の絶 緑膜が酸化シリコン膜であることを特徴とする特 許請求の範囲第4項記載の半導体装置の製造方 法。

発明の詳細な説明

15 (発明の目的)

(産業上の利用分野)

本発明は、半導体装置及びその製造方法に関 し、特に電荷柱蓄積領域と制御ゲートとを有する 電気的に情報の再書換え可能な読み出し専用半導 4 半導体基板の表面一部に絶縁膜を介して配置 20 体メモリ (EEPROM: Electrically Erasable Programmable Read Only Memory) のメモリ セルを備えた半導体装置及びその製造方法に係わ る。

(従来の技術)

例えば、EEPROMのメモリセルは、従来より 第7図に示す構造のものが知られている。即ち、 図中の1はp型単結晶シリコン基板であり、この

基板 1 表面にはフィールド酸化膜 2 が選択的に設 けられている。このフィールド酸化報2で分離さ れた島状の基板 1 領域には、互いに電気的に分離 されたn⁺型のソース、ドレイン領域3、4が設 けられており、かつこれら領域3、4間のチャン 5 ネル領域を含む基板 1 領域上にはゲート酸化膜 5 を介して浮遊ゲート6が設けられている。この浮 遊ゲート6上には、絶縁膜7を介して制御ゲート 8が設けられている。そして、前記制御ゲート8 つ該絶縁膜 9 上にはコンタクトホールを通して前 記ソース、ドレイン領域3、4と接続するソース 電板10、ドレイン電極11が夫々設けられてい る (図中のA部)。一方、前記島状の基板 1 領域 レイン領域 4 の延在部であるn⁺型拡散領域4′が設 けられている。この拡散領域4'上には、絶縁薄膜 12を介して前記浮遊ゲート6の延在部6′が設 けられている。こうしたn⁺型拡散領域4′、絶縁薄 のBに示すMOSキャパシタを構成している。

上述した構成のメモリセルにおいて、ドレイン 電極11と制御ゲート8の間に高電圧、例えば 20V以上の電圧を印加することにより絶縁薄膜1 2を通して浮遊ゲートト6の延在部6'とn⁺型拡 25 て絶縁薄膜12を形成する必要がある。 散領域4′の間にトンネル電流が流れ、これによ つて浮遊ゲート6に対して電荷の注入、排出が行 われる。EEPROMでは、通常、浮遊ゲート6に 電荷が蓄積されている状態を「0」、電荷が存在 けるトランジスタの閾値働電圧 (Vn) が高い状 態及び低い状態に夫々対応する。つまり、かかる 構成のEEPROMにおいては、絶縁薄膜 1 2 を通 して浮遊ゲート6に対して電荷の注入を行ない、 電圧を検出することにより、そのメモリセルに設 定された情報を読み出している。

ところで、上記構成のメモリセルを製造する工 程はA部のトランジスタ領域について、通常のシ ーである。即ち、フイールド酸化膜2により分離 された島状の基板1領域の表面に熱酸化によりゲ ート酸化膜5を形成させ、多結晶シリコンよりな る浮遊ゲート6及びフィールド酸化膜2をマスク

としてn型導電型を与える不純物、例えば砒素を ィオン注入等により基板 1 表面にドープしてn⁺ 型のソース、ドレイン領域3、4を形成してい る。なお、前記浮遊ゲート6は同様な多結晶シリ コンからなる制御ゲート8のパターンと同時に制 御ゲート8に対して整合的に形成される。

(発明が解決しようとする問題点)

しかしながら、上述した構成のEEPROMメモ リセルにおいては、B部のMOSキャパシタ領域 を含む全面は層間絶縁膜9で被覆されており、か 10 存在するため、製造工程が著しく複雑となる。即 ち、B部におけるn⁺型拡散領域4'は、A部のドレ イン領域4の延在部であるが、この領域は同じく A部の浮遊ゲート6の延在部6′の下に形成する 必要があるため、前記工程のように浮遊ゲート 6 に隣接して繋がつた基板 1 領域表面には、前記ド 15 をマスクとして形成されるドレイン領域 4 と同一 工程で形成することができず、浮遊ゲート6 (6') を形成する以前に予め形成する必要があ る。しかし、n⁺型拡散領域4′と浮遊ゲートの延在 部6′間に形成される絶縁薄膜12は、トンネル 膜12及び浮遊ゲート6の延在部6′により図中 20 電流を流すに適当な厚さを持つていなければなら ない。従つて、前述したA部のトランジスタ領域 のゲート酸化膜5の形成前に同時に成長した酸化 膜をそのまま利用できず、この工程の後、一旦そ の部分の酸化膜を除去し、新たに熱酸化を行なつ

また、上記構成のメモリセルにおいて情報の読 み出しを行なう場合には、制御ゲート8及びドレ イン電極11に対して適当な読み出し電圧を印加 し、浮遊ゲート6中に存在する電荷の有無に応じ しない状態を「1」としており、図中のA部にお 30 てソース、ドレイン領域3、4間を流るれ電流の 大きさにより、書込まれた情報を判別している。 この時、浮遊ゲート6中に電荷が存在しない状態 は、トランジスタの閾値働圧の低い状態に対応し ており、かかる際には読み出し電圧の印加により その結果として生じるA部のトランジスタの閾値 35 ソース、ドレイン領域3、4間に電流が流れる。 しかしながら、デバイスの微細化に伴つてチャン ネル長が短くなつたEEPROMのメモリセルでは 読み出しに用いられるような比較的低い電圧(+ 5V)をドレイン4及び制御ゲート8に印加した リコンゲートMOSFETの作成工程と基本的に同 40 場合でも、ソース領域3からドレイン領域4に向 かつて流れるエレクトロンは充分加速され、ドレ イン領域 4 近傍のチャンネル領域でインパクトア イオニゼーションを起こし得るエネルギを持つよ うになる。従つて、高集馩化されてチャンネル長 5

の短くなつたEEPROMでは、情報の読み出しを 行なつている際に、本来「1」の情報を持つてい るばずのメモリセルの浮遊ゲート6にもエレクト ロンがトラップされ、遂には「0」の情報が書込 まれた時と同様の状態になつてしまう結果が生じ 5 したEEPROM等の半導体装置が実現できる。 る。このような現象を通常、情報の誤書込みと称 し、第7図に示す構成のメモリセルを高集積化し た場合、誤書込みの発生は電源電圧を低下しない 限り防止できない。しかしながら、電源電圧を低 下させると、メモリセルからの情報の読み出し速 10 度が低下してしまう。

本発明は、デパイスの微細化に適した構造の EEPROM等の半導体装置およびかかる半導体装 置を著しく簡単な工程により製造し得る方法を提 供しようとするものである。

〔発明の構成〕

(問題点を解決するための手段)

本願第1の発明は、半導体基体の表面領域に互 いに分離して設けられ、夫々ソース或いはドレイ 2領域間のチャンネル領域上に絶縁膜を介して設 けられた電荷蓄積領域及び制御ゲートを具備し、 前記電荷蓄積領域が前記制御ゲート側面の前記チ ヤンネル領域上に配置されたことを特徴とする半 導体装置である。

本願第2の発明は、半導体基体の表面一部に絶 縁膜を介して配置される制御ゲートを形成する工 程と、この制御ゲートの周囲に第1の絶縁膜を形 成する工程と、この第1の絶縁膜を電荷蓄積領域 の絶縁膜を第3の絶縁膜でおおう工程と、前記三 種の絶縁膜を異方性エッチング法又は通常のエッ チング法を使用して順次除去し、前記制御ゲート 側面の全部又は一部に前配三種の絶縁膜を残存さ 絶縁膜の形成前から前記三種の絶縁膜の形成後ま でのいずれかの時期に前記三種の絶縁膜あるいは 前記制御電極をマスクとして第1及び第2の不純 物を前記半導体基体表面にドーピングしてソース する工程とを具備したことを特徴とする半導体装 置の製造方法である。

(作用)

本発明によれば、電荷蓄積領域は制御ゲートの

側面に形成される。つまり電荷蓄積領域は、従来 のようにトランジスタとは別個に形成されるので はなく、トランジスタ内に形成される。従つて、 1トランジスタ/1セル構造となり、微細化に適

また、電荷蓄積層を制御ゲートの側面に設けた ことにより、ゲート電極は一層のみとなるため、 製造も極めて容易となる。

(実施例)

以下、本発明をnチャンネル型のEEPROMの メモリセルに適用した一実施例について第1図~ 第8図を参照して詳細に説明する。ここで、第1 図は本実施例の構造を示し、第2図~第6図はそ の製造工程の各段階を示し、これら各図において 15 aはセルの平面図、bはA-A方向の断面図、c はB-B方向の断面図である。

第1図に示すように、本実施例の特徴は一層の みの制御ゲート104を有し、この制御ゲート1 04の側面に、シリコン酸化薄膜105、電荷蓄 ン領域となる第1、第2領域と、これら第1、第 20 積層となる窒化シリコン膜106および酸化シリ コン膜107から成る三層積層膜108が形成さ れている点にある。

以下、製造工程に従って本実施例を説明する。 まず、p型シリコン基板101を選択酸化して **25 該基板 1 0 1 の表面を島状に分離するためのフィ** ールド酸化膜102を形成した後、900~1000℃ の酸化雰囲気中で熱酸化して島状の基板101表 面に厚さ250人程度の酸化膜103を形成する (第2図図示)。つづいて、全面にLPCVD法によ となる第2の絶縁膜で被覆する工程と、この第2 30 り厚さ3000人のn型又はp型不純物をドープした 多結晶シリコン膜を堆積した後、この多結晶シリ コン膜をパターニングして多結晶シリコンからな る制御ゲート 104を形成する (第3図図示)。 次いで900℃~1000℃の酸化雰囲気中で熱酸化し、 せて電荷蓄積領域を形成する工程と、前配三種の 35 多結晶からなる制御ゲート104の周囲に厚さ 100点の酸化膜105を成長させた後、その全面 に窒化シリコン膜 1 0 6 をLPCVD法により100 **Å~1000Å程度成長させ、さらに950℃ 6 水素燃** 焼酸化により窒化シリコン膜106表面に50Å程 或いはドレイン領域となる第1、第2領域を形成 40 度のシリコン酸化膜107を形成する(第4図図 示)。つづいて、異方性エッチング法、例えばり アクテイブイオンエッチング法(RIE法)を用い て、先に形成した三層積層膜(105,106, 107) 108をその膜厚分だけエッチング除去

する。この工程で制御ゲートの側面の周囲に三層 **積層膜108が残存する(第5図図示)。**

次いでフィールド酸化膜102、制御ゲート1 0.4及三層積層膜108をマスクとしてn型不純 プ量 3 × 10¹⁵ cm⁻²の条件でイオン注入する(第 6 図図示)。つづいて、熱処理により砒素を活性化 し、ドレイン、ソースとなるN⁺型拡散層112, 113を形成する。さらに全面にCVD法により コンタクトホール115、Aℓ電極116を形成 し第1図のようなEEPROMのメモリセルを作成 する。

この様なメモリセルにおいて、書込みは制御ゲ ば10Vと8Vを印加することにより、チャネル熱 電子を発生させてこれを前記三層膜108中の窒 化シリコン膜106にトラップさせることにより 行ない、これにより注入前には約IVのしきい値 しはセルのしきい値電圧の差を検知することによ り行ない、例えば制御ゲート104に5V、ドレ イン112に3Vを印加して電流量の差をみる。 また、情報の消去は、制御ゲート104に負電圧 例えばー6Vを印加し、ドレイン 1 1 2 に正の電 *25* 圧例えば9V印加することにより行なう。すなわ ち、ドレインブレークダウン電圧がゲート電圧に 依存し、制御ゲート104に負電圧を印加した場 合ドレインブレーク電圧が低下することを利用し て選択的に消去が可能となる。このように制御ゲ 30 断面図、cはB-B方向の断面図である。 ート電圧とドレイン電圧との組合わせにより消去 ができるので、ピット単位の消去が可能である。

上述のように、本発明を用いれば、一層のポリ シリコンゲート電極を有するピツト単位消去が可 ジスタ/1セル構成であるため、従来に比べ極め てセルの大きさが小さくなる。さらに、ゲート電 極が一層構造であるため、従来に比べ極めて簡単 な方法で高集積可能なEEPROMセルが実現され

なお、上記実施例では制御ゲート104を n型 又はp型不純物をドープしたポリシリコンから形 物、例えば砒素を打込みエネルギー35Kev、ドー 5 成したが、これに限定されず、例えばモリブデ ン、タングステン、チタン、タンタル等の高融点 金属の硅化物により形成してもよい。又、上記実 施例ではメモリセルとしてnチャネル型の場合に ついて説明したが、これに限定されず、pチャネ SiOz膜114を堆積した後、周知の方法により 10 ル型のものでも同様な効果を得ることができる。 さらに、上記実施例では電荷蓄積領域となる三層 **積層膜108はリアクティブイオンエッチング法** により、ドレイン、ソース両n⁺層113,11 2に近接するべく形成したが、勿論PEP法を用 ート104とドレインN⁺層112に高電圧例え 15 いてドレイン領域113側のみにもうけても良

〔発明の効果〕

以上詳述した如く、本発明によれば、ゲート電 極を一層とし、その側面に電荷蓄積領域を形成し 電圧が約10m秒で7V程度になる。情報の読み出 20 たので、高集積化に適したセル面積の小さい 1ト ランジスタ/1セル構造のEEPROMの半導体装 **置及びかかる半導体装置を極めて簡単に製造でき** る方法が提供できる。

図面の簡単な説明

第1図は本発明の一実施例におけるEEPROM のメモリセルの構成を示す図、第2図~第6図は **同実施例の製造工程を示す説明図、第7図は従来** のEEPROMのメモリセルを示す断面図であり、 第1図~第6図のaは平面図、bはA-A方向の

101…p型シリコン基板、102…フイール ド酸化膜、103…酸化膜、104…制御ゲー ト、105…酸化薄膜、106…窒化シリコン 膜、107…酸化シリコン膜、108…三層積層 能なEEPROMセルが実現される。また、トラン 35 膜、112, 113…n⁺型拡散領域、114… 酸化シリコン膜、116,117…Aℓ電極。

