ITD105 Case Study #1

Comparing Machine Learning Algorithms

	IFICATION		
Evaluat		nachine learning algorithms designed for cl different resampling techniques and utilizing	
Classif	ication Dataset		
Datase	t Name :		
Feature	98:		
Set	a A sampling Technique :		
	ssification Metric : Confusion Matrix and C		
	ML Algorithm (Classification)	Confusion Matrix	
		(Provide the matrix and classification report of each algorithm)	
C	ART (Classification and Regression Trees)		
G	aussian Naive Bayes/Naive Bayes		
G	radient Boosting Machines (AdaBoost)		
K-	Nearest Neighbors (K-NN)		
Lo	ogistic Regression		
М	ulti-Layer Perceptron (MLP)		
Pe	erceptron		
Ra	andom Forest		
٥.	upport Vector Machines (SVM)		
50			-

ML Algorithm (Classification)	
CART (Classification and Regression Trees)	
Gaussian Naive Bayes/Naive Bayes	
Gradient Boosting Machines (AdaBoost)	
K-Nearest Neighbors (K-NN)	
Logistic Regression	
Multi-Layer Perceptron (MLP)	
Perceptron	
Random Forest	
Support Vector Machines (SVM)	

Resampling 1	Technique:	
Classification	n Metric:	
		ı
	ML Algorithm (Classification)	

Set C (should use different resampling technique and classification metric)

ML Algorithm (Classification)	
CART (Classification and Regression Trees)	
Gaussian Naive Bayes/Naive Bayes	
Gradient Boosting Machines (AdaBoost)	
K-Nearest Neighbors (K-NN)	
Logistic Regression	
Multi-Layer Perceptron (MLP)	
Perceptron	
Random Forest	
Support Vector Machines (SVM)	

Results interpretation (Set A , Set B and Set C):

Based on the results, perform algorithm/hyperparameter tuning (at least 3) of the chosen ML algorithm.

EXAMPLE:

ML Algorithm: Support Vector Machines (SVM)
Sampling Technique - Train/Test Split (80:20)

Classification Metrics - Accuracy

		SVM Hyperparameters			
	random_state	Kernel	С	Accuracy	
Model I	seed	linear	1.0	77.922	
Model II	5	poly	1.5	79.870	
Model III	10	poly	2	79.221	

Results interpretation:

II REGRESSION

Regression Dataset

Train the **regression dataset** using various machine learning algorithms designed for regression. Evaluate and compare these models by applying different resampling techniques and utilizing appropriate performance metrics.

Dataset Nam	e:	
Features:		
	ng Technique :	
Regressio	on Metric :	
	ML Algorithm (Regression)	
	CART (Classification and Regression Trees)	
	Elastic Net	
	Gradient Boosting Machines (AdaBoost)	
	K-Nearest Neighbors (K-NN)	
	Lasso Regression	
	Ridge Regression	
	Linear Regression	
	Multi-Layer Perceptron (MLP)	
	Random Forest	
Resampli	ould use different resampling technique and reg ng Technique: on Metric:	ression metric)
	ML Algorithm (Regression)	
	CART (Classification and Regression Trees)	
	Elastic Net	
	Gradient Boosting Machines (AdaBoost)	
	K-Nearest Neighbors (K-NN)	
	Lasso Regression	
	Ridge Regression	

Results interpretation (Set A and Set B):

Random Forest

Linear Regression

Multi-Layer Perceptron (MLP)

Based on the results, perform at algorithm tuning (at least 3) of the chosen ML algorithm.

EXAMPLE:

ML Algorithm: Support Vector Machines (SVM) Sampling Technique - Train/Test Split (80:20)

Regression Metrics - MAE

		SVM Hyperparameters			
	epsilon	Kernel	С	MAE	
Model I	0.1	rbf	1.0	5.754	
Model II	0.2	linear	1.5	3.754	
Model III	0.15	poly	1.25	5.761	

Results interpretation:

Submit the following:

- a. Pdf copy of the results.
- b. Video link demonstrating the case study.