Dynamic Mass of Photons and Its Implications for Nonlocality

in the T0 Model: Updated Framework with Complete Geometric Foundations

Johann Pascher

August 25, 2025

Abstract

This updated work examines the implications of assigning a dynamic, frequency-dependent effective mass to photons within the comprehensive framework of the T0 model, building upon the complete field-theoretic derivation and natural units system where $\hbar=c=\alpha_{\rm EM}=\beta_{\rm T}=1$. The theory establishes the fundamental relationship $T(x,t)=\frac{1}{\max(m,\omega)}$ with dimension $[E^{-1}]$, providing a unified treatment of massive particles and photons through the three fundamental field geometries. The dynamic photon mass $m_{\gamma}=\omega$ introduces energy-dependent nonlocality effects, with testable predictions. All formulations maintain strict dimensional consistency with the fixed T0 parameters $\beta=2Gm/r,\ \xi=2\sqrt{G}\cdot m$, and the cosmic screening factor $\xi_{\rm eff}=\xi/2$ for infinite fields.

Contents

1	Introduction: T0 Model Foundation for Photon Dynamics	2		
	1.1 Fundamental T0 Model Framework	2		
	1.2 Photon Integration in Time-Mass Duality	2		
2	Energy-Dependent Nonlocality and Quantum Correlations	3		
	2.1 Entangled Photon Systems	3		
	2.2 Modified Bell Inequality	3		
3	Experimental Predictions and Tests	3		
	3.1 High-Precision Quantum Optics Tests	3		
	3.1.1 Energy-Dependent Bell Tests			
4	Dimensional Consistency Verification			
5	Conclusions	4		
	5.1 Summary of Key Results	4		

Introduction: T0 Model Foundation for Photon Dy-1 namics

This updated analysis builds upon the comprehensive T0 model framework established in the field-theoretic derivation, incorporating the complete geometric foundations and natural units system. The dynamic effective mass concept for photons emerges naturally from the T0 model's fundamental time-mass duality principle.

1.1 Fundamental T0 Model Framework

The T0 model is based on the intrinsic time field definition:

$$T(x,t) = \frac{1}{\max(m(\vec{x},t),\omega)}$$
(1)

Dimensional verification: $[T(x,t)] = [1/E] = [E^{-1}]$ in natural units \checkmark This field satisfies the fundamental field equation:

$$\nabla^2 m(\vec{x}, t) = 4\pi G \rho(\vec{x}, t) \cdot m(\vec{x}, t) \tag{2}$$

From this foundation emerge the key parameters:

T0 Model Parameters for Photon Analysis

$$\beta = \frac{2Gm}{r} \quad [1] \text{ (dimensionless)} \tag{3}$$

$$\xi = 2\sqrt{G} \cdot m$$
 [1] (dimensionless) (4)

$$\beta_T = 1$$
 [1] (natural units) (5)

$$\alpha_{\rm EM} = 1$$
 [1] (natural units) (6)

Photon Integration in Time-Mass Duality 1.2

For photons, the T0 model assigns an effective mass:

$$m_{\gamma} = \omega \tag{7}$$

Dimensional verification: $[m_{\gamma}] = [\omega] = [E]$ in natural units \checkmark This gives the photon's intrinsic time field:

$$T(x,t)_{\gamma} = \frac{1}{\omega} \tag{8}$$

Praktische Vereinfachung

Vereinfachung: Da alle Messungen in unserem endlichen, beobachtbaren Universum lokal erfolgen, wird nur die lokalisierte Feldgeometrie verwendet:

 $\xi = 2\sqrt{G} \cdot m$ und $\beta = \frac{2Gm}{r}$ für alle Anwendungen. Der kosmische Abschirmfaktor $\xi_{\rm eff} = \xi/2$ entfällt.

Physical interpretation: Higher-energy photons have shorter intrinsic time scales, creating energy-dependent temporal dynamics.

2 Energy-Dependent Nonlocality and Quantum Correlations

2.1 Entangled Photon Systems

For entangled photons with energies ω_1 and ω_2 , the time field difference is:

$$\Delta T_{\gamma} = \left| \frac{1}{\omega_1} - \frac{1}{\omega_2} \right| \tag{9}$$

Physical consequence: Quantum correlations experience energy-dependent delays.

2.2 Modified Bell Inequality

The energy-dependent time fields lead to a modified Bell inequality:

$$|E(a,b) - E(a,c)| + |E(a',b) + E(a',c)| \le 2 + \epsilon(\omega_1, \omega_2)$$
 (10)

where:

$$\epsilon(\omega_1, \omega_2) = \alpha_{\text{corr}} \left| \frac{1}{\omega_1} - \frac{1}{\omega_2} \right| \frac{2G\langle m \rangle}{r}$$
(11)

with α_{corr} being a correlation coupling constant and $\langle m \rangle$ the average mass in the experimental setup.

3 Experimental Predictions and Tests

3.1 High-Precision Quantum Optics Tests

3.1.1 Energy-Dependent Bell Tests

Predicted time delay between entangled photons:

$$\Delta t_{\rm corr} = \frac{G\langle m \rangle}{r} \left| \frac{1}{\omega_1} - \frac{1}{\omega_2} \right| \tag{12}$$

For laboratory conditions with $\langle m \rangle \sim 10^{-3}$ kg, $r \sim 10$ m, and $\omega_1, \omega_2 \sim 1$ eV:

$$\Delta t_{\rm corr} \sim 10^{-21} \text{ s} \tag{13}$$

4 Dimensional Consistency Verification

Equation	Left Side	Right Side	Status
Photon effective mass	$[m_{\gamma}] = [E]$	$[\omega] = [E]$	\checkmark
Photon time field	$[T_{\gamma}] = [E^{-1}]$	$[1/\omega] = [E^{-1}]$	\checkmark
Energy loss rate	$[d\omega/dr] = [E^2]$	$[g_T\omega^2 2G/r^2] = [E^2]$	\checkmark
Time field difference	$[\Delta T_{\gamma}] = [E^{-1}]$	$[1/\omega_1 - 1/\omega_2] = [E^{-1}]$	\checkmark
Bell correction	$[\epsilon] = [1]$	$[\alpha_{\rm corr} \Delta T_{\gamma} \beta] = [1]$	✓

Table 1: Dimensional consistency verification for photon dynamics in T0 model

5 Conclusions

5.1 Summary of Key Results

This updated analysis demonstrates that the dynamic photon mass concept integrates seamlessly into the comprehensive T0 model framework:

- 1. **Unified treatment**: Photons and massive particles follow the same fundamental relationship $T=1/\max(m,\omega)$
- 2. **Energy-dependent effects**: Photon dynamics depend on frequency through the intrinsic time field
- 3. Modified nonlocality: Quantum correlations experience energy-dependent delays
- 4. **Testable predictions**: Specific experimental signatures distinguish T0 from standard theory
- 5. Dimensional consistency: All equations verified in natural units framework
- 6. Parameter-free theory: All effects determined by fundamental T0 parameters