Faster model inference with Tensorflow - TensorRT integration

Rajesh Shreedhar Bhat - Sr. Data Scientist, Walmart Global Tech

Agenda

- Deep learning
 - Overview
 - Deep learning in multiple domains
 - Model training vs inference
 - Challenges
- Nvidia-TensorRT
 - Overview
 - Optimizations for faster model inference.
- Tensorflow TensorRT code example.
- Key takeaways
- Q&A.

Deep Learning

Deep learning is part of a broader family of machine learning methods based on artificial neural networks with representation learning.

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Deep learning applications

- Speech Recognition
- RecommenderSystems
- Autonomous Driving
- Real-time object recognition.
- Language Translation
- Many more ...

Deep learning model training vs inference

Training

- Iterative
- Computationally intensive
- Training time several hours to days on GPU's!

Inference (Prod Environment)

- Real-time
- Batch jobs
- Cloud vs Edge

Challenges with model inference

Requirement of:

- High Throughput
 - Challenge: handling high volume, high velocity data
 - Impact : increased processing time resulting in higher compute costs.
- Low latency
 - Challenge: Delivering real-time results.
 - Impact : poor user experience.
- Power and memory efficiency
 - Challenge: in-efficient applications
 - Impact : Increased costs (scaling and cooling)

How do we overcome these challenges?

Nvidia-TensorRT to rescue !!

Nvidia-TensorRT

SDK for high-performance deep learning inference, includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for inference applications

Accelerates every inference platform

TensorRT Optimizations

Vertical layer fusion

- Multiple function calls for each layer.
- Each operation is performed on GPU -> multiple CUDA kernel launches.
- Multiple kernel launch overhead.

- TensorRT vertically fuses layers to perform the sequential operations together.
- Layer fusion reduces kernel launches and avoids writing into and reading from memory between layers.

Horizontal Layer Fusion

- TensorRT recognizes layers that share the same input data and filter size, but have different weights.
- Instead of three separate kernels, TensorRT fuses them horizontally into a single wider kernel as shown for the 1×1 CBR layer.

Overall result : layer fusion

- Smaller, faster and more efficient graph.
- Fewer layers -> reduced kernel launches.
- Reduced inference time!

Network	Layers	Layers after fusion	
VGG19	43	27	
Inception V3	309	113	
ResNet-152	670	159	

TensorRT's graph optimization for some common image classification networks.

Precision calibration

- Most deep learning frameworks train neural networks in full 32-bit precision (FP32).
- Inference computations can use half precision FP16 or even INT8 tensor operations (Since backpropagation is not required during inference)
- Lower precision results in
 - Smaller model size
 - Lower memory utilization
 - Lower latency
 - High throughput

Precision calibration ...

• Tensorflow-TensorRT: precision_mode=trt.TrtPrecisionMode.< FP32 or FP16 or INT8 >

	FP32 Top 1	INT8 Top 1	Difference
Googlenet	68.87%	68.49%	0.38%
VGG	68.56%	68.45%	0.11%
Resnet-50	73.11%	72.54%	0.57%
Resnet-152	75.18 %	74.56%	0.61%

Minimal difference in Top 1 accuracy post precision calibration for some common image classification networks.

Other optimizations

Kernel Auto-tuning

- TensorRT picks implementation from a library of kernels that delivers best performance based on target GPU, input data size, filter size, tensor layout, batch size, etc..
- Ensures that the deployed model is performance tuned for the specific deployment platform and neural network.

Dynamic Tensor Memory

 TensorRT reduces memory footprint and improves memory reuse by designating memory for each tensor only for the duration of its usage.

Tensorflow-TensorRT Code example

https://github.com/rajesh-bhat/faster_inference_tensorflow_tensorrt

Key Takeaways

 Generate optimized, deployment-ready runtime engines for low latency inference with Nvidia-TensorRT.

- TensorRT optimizations : fully automatic with very few lines of code
 - High throughput
 - Low response time
 - Memory and power efficient
 - Reduced cost !!

References

- "NVIDIA TensorRT." NVIDIA Developer
- "TensorRT 3: Faster TensorFlow Inference and Volta Support." NVIDIA Technical Blog
- "Deep learning deployment with Nvidia-TensorRT"
- "Optimize TensorFlow Models For Deployment with TensorRT." Coursera

Q & A

