The application layer

- Topics
 - DNS
 - CDNs
 - HTTP, HTTP/1.1, HTTP/2

Application

Presentation

Session

Transport

Network

Link

Physical

Application layer on top of other abstractions

What is the application? What is the application layer protocol?

Application layer protocol

- Support application
- E.g.,
 - HTTP allows transfer of objects. Used by mobile apps, Web, and many other applications
 - DASH allows transfer of video streams. Used by several video streaming applications
- Protocols can also be used for support of application
 - E.g., Domain Name Service or DNS

Domain Name Service*

Internet Names and Addresses

- Addresses, e.g. 129.49.2.176
 - Computer usable labels for machines
 - Conform to structure of the network
- Names, e.g. <u>www.stonybrook.edu</u>
 - Human usable labels for machines
 - Conform to organizational structure
- How do you map from one to the other?
 - Domain Name System (DNS)

History

- Before DNS, all mappings were in *hosts.txt*
 - /etc/hosts on Linux
 - *C*:\Windows\System32\drivers\etc\hosts on Windows
- Centralized, manual system
 - Changes were submitted to SRI via email
 - Machines periodically FTP new copies of hosts.txt
 - Administrators could pick names at their discretion

Towards DNS

- Eventually, the *hosts.txt* system fell apart
 - Not scalable, SRI couldn't handle the load
 - Hard to enforce uniqueness of names
 - e.g MIT
 - Massachusetts Institute of Technology?
 - Melbourne Institute of Technology?
 - Many machines had inaccurate copies of hosts.txt
- Thus, DNS was born

What are some of the desired properties of a DNS?

- Scalable
- Fault Tolerant
- Low latency
- Universally accessible

How can we achieve these properties?

- Hierarchical (Scalability)
- Geographically distributed (Universal accessibility)
- Several replicas (Fault tolerance)
- Anycast (Low latency)

DNS Structure

The key design choice: Hierarchy

arunab, SBU// CS 534, Fall 2022: DNS

DNS name resolution example

 host at cis.poly.edu wants IP address for gaia.cs.umass.edu

iterated query:

- contacted server replies with name of server to contact
- "I don't know this name, but ask this server"

root DNS server

Administration

Basic Domain Name Resolution

- Every host knows a local DNS server/resolver (How?)
 - Sends all queries to the local DNS server
- If the local DNS can answer the query, then you're done
- Otherwise, go down the hierarchy and search for the **authoritative name server**

Some terminology

- Top Level Domain
- Name server/DNS server
- Authoritative name server
- DNS resolver/Local DNS server
- DNS request
- DNS response

DNS: root name servers

- contacted by local name server that can not resolve name
- 13 root name servers worldwide.

2022: DNS

TLD, authoritative servers

top-level domain (TLD) servers:

- responsible for com, org, net, edu, aero, jobs, museums, and all toplevel country domains, e.g.: uk, fr, ca, jp
- Network Solutions maintains servers for .com TLD
- Educause for .edu TLD

authoritative DNS servers:

- organization's own DNS server(s), providing authoritative hostname to IP mappings for organization's named hosts
- can be maintained by organization or service provider

Local DNS name server

- does not strictly belong to hierarchy
- each Internet Service Provider (AT&T, Comcast, university, companies) have one
 - also called "default name server"
- when host makes DNS query, query is sent to its local DNS server
 - has local cache of recent name-to-address translation pairs (but may be out of date!)
 - acts as proxy, forwards query into hierarchy

DNS Caching

- Performing all these queries take time
 - And all this before the actual communication takes place
 - E.g., 1-second latency before starting Web download
- Caching can substantially reduce overhead
 - The top-level servers very rarely change
 - Popular sites (e.g., www.cnn.com) visited often
 - Local DNS server often has the information cached
- How DNS caching works
 - DNS servers cache responses to queries
 - Responses include a "time to live" (TTL) field
 - Server deletes the cached entry after TTL expires

DNS structure.

DNS packet format

arunab, SBU// CS 534, Fall 2022: DNS

DNS Resource Records

- Resource record has four fields: (name, value, type, TTL)
 - There may be multiple records returned for one query (Why?)
- Fields depends on the type of query and response.
 - Name: ID
 - TTL: time to live.
 - Type: MX Record (mail server), NS record (name server),
 CName record (canonical name), A record (IPv4)
 - Value: Address
- Use the "dig" command to get DNS records

DNS Types

- Type = A / AAAA
 - Name = domain name
 - Value = IP address
 - A is IPv4, AAAA is IPv6
- Type = NS
 - Name = partial domain
 - Value = name of DNS server for this domain
 - "Go send your query to this other server"

Name: <u>www.cs.stonybrook.edu</u>
Type: A

Resp.

Name: www.cs.stonybrook.edu Value: 129.10.116.81

Query

Name: <u>cs.stonybrook.edu</u>
Type: NS

Resp.

Name: cs.stonybrook.edu

Value: 129.10.116.51

DNS Types, Continued

- Type = CNAME
 - Name = hostname
 - Value = canonical hostname
 - Useful for aliasing
 - CDNs use this
- Type = MX
 - Name = domain in email address
 - Value = canonical name of mail server

Name: <u>foo.mysite.com</u>
Type: CNAME

Name: <u>foo.mysite.com</u>
Value: bar.mysite.com

Name: <u>cs.stonybrook.edu</u>
Type: MX

Name: <u>cs.stonybrook.edu</u>
Value: www.cs.sunysb.edu

arunab, SBU// CS 534, Fall 2022: DNS

A record versus NS record

foo.com. IN NS ns1.bar.com.

foo.com. IN A 192.168.100.1

A Record = "The host called foo.com lives at address 192.168.100.1"

NS Record = "If you want to know about hosts in the foo.com zone, ask the name server ns1.bar.com"

How to use DNS in practice.

DNS Bootstrapping

- Need to know IP addresses of root servers before we can make any queries
- Addresses for 13 root servers ([a-m].root-servers.net)
 https://www.iana.org/domains/root/servers

Who is my local DNS server?

- Need to know the local DNS server. (/etc/resolv.conf)
 - Who is your local DNS server at home?
 - At school?
 - Public DNS?
- What if I want to create my own domain?
 - Pay someone to add your DNS entry
 - E.g., Amazon Router 53

Importance of DNS

DNS as Indirection Service

Changing the IPs of machines becomes trivial

- e.g. you want to move your web server to a new host
- Just change the DNS record!
- What will you have to do if you used hosts.txt?

Aliasing and Load Balancing

One machine can have many aliases

One domain can map to multiple machines (basis of anycast)

DNS security

- DNS is the root of trust for the web
 - When a user types <u>www.bankofamerica.com</u>, they expect to be taken to their bank's website
 - What if the DNS record is compromised?
- Hacking your mail server
 - If an attacker hacks the MX record of your mail server, they can read all your mails (Lenova hack)
- DDos attacks.
 - Doesn't always work, especially against the top level domains.
 - A 2002 attack on the TLD records went virtually unnoticed.

DNSSec

- A new protocol that is designed for DNS security
- You will learn all about DNSSec in your first homework.