COUNTERFACTUAL EXPLANATION

- At its core, counterfactuals allows us to take action in order to cause a certain outcome.
- In terms of machine learning, the actions are the changes in the features of the model while the outcome is the desired target response.
- The data is essentially perturbed until new instances are returned that correspond to a model prediction class away from the original. Since there are various ways to reach the same outcome, there can be multiple counterfactuals.

Assessing human decision-making

Meryem Öztürk

Counterfactual reasoning has been used the social sciences to assess different aspects of huma decision-making [Bertrand and Mullainathan 2003, Weichselbaumer 2019]

Mervem Öztürk

Mervem Öztürk

Mervem Öztürk

Why does counterfactual reasoning work?

Because only the specific input is varied, provides the **causal effect** of the input, specific to the current context.

Also known as individual causal effect.

What is a counterfactual?

Given a system output y, a counterfactual $y_{X_i=x'}$ is the output of the system had some input X_i changed but everything else unaffected by X_i remained the same. [Pearl 2009]

 $(X_i = x)$

COUNTERFACTUAL WORLD $(X_i = x')$

Counterfactual: $P(Y_{X_i=x'}|X=x,Y=y)$ Since a ML model f is a deterministic model, counterfactual simplifies to $f(X_{X_i=x'})$

The many uses of a model counterfactual

Individual Effect of Input Feature X_i

$$=E(Y_{X_i=x'}|X=x,Y=y)-E(Y|X=x)$$

$$f(X_{X_i=x'}) - f(X)$$
 can provide:

- 1. Explanation of how important X_i feature is.
- 2. Bias in the model if X_i is a sensitive feature.
- 3. More generally, provides a natural way to debug ML models (ala fuzz testing).

Why use counterfactuals when there are many established methods of ML model explanation?

Explaining machine learning predictions

Techniques to explain machine predictions

```
LIME (Ribeiro et al., 2016); Local Rule-based (Guidotti et al., 2018); SHAP (Lundberg et al., 2017); Intelligible Models (Lou et al., 2012); .....
```

Feature importance-based methods are widely used in many practical applications

In many cases, feature importance is not enough

Suppose model predicts that the person should not get the loan.

Decision-maker: Why should this person not get the loan?

Person: What should I do to get the loan in the future?

Feature importance-based explanations

Counterfactual explanations (CF)

("what-if" scenarios) (Wachter et al., 2017)

You would have got the loan if your annual income had been 100,000

Feature importance-based explanations

Counterfactual explanations (CF)

("what-if" scenarios) (Wachter et al., 2017)

You would have got the loan if your annual income had been 100,000

Interpretable, but not high-fidelity

Interpretable, and high-fidelity

Catch: How to generate the right examples that are useful to end-user?

Wachter et al. suggest minimizing the following loss:

$$L(x, x', y', \lambda) = \lambda \cdot (\hat{f}(x') - y')^2 + d(x, x')$$

- The first term is the quadratic distance between the model prediction for the counterfactual x' and the desired outcome y', which the user must define in advance.
- The second term is the distance d between the instance x to be explained and the counterfactual x'.
- The loss measures how far the predicted outcome of the counterfactual is from the predefined outcome and how far the counterfactual is from the instance of interest.
- The distance function d is defined as the Manhattan distance weighted with the inverse median absolute deviation (MAD) of each feature.

```
# Using sklearn backend
m = dice_ml.Model(model=model, backend="sklearn")
# Using method=random for generating CFs
exp = dice_ml.Dice(d, m, method="random")
```

```
e1 = exp.generate_counterfactuals(x_train[0:1], total_CFs=2, desired_class="opposite") e1.visualize_as_dataframe(show_only_changes=True)
```

Query instance (original outcome : 0)

	age	workclass	education	marital_status	occupation	race	gender	hours_per_week	income
0	38	Private	HS-grad	Married	Blue-Collar	White	Male	44	0

4

Diverse Counterfactual set (new outcome: 1.0)

	age	workclass	education	marital_status	occupation	race	gender	hours_per_week	income
0	67.0	-	Masters	-		Other	-	-	1
1	66.0	-	Prof-school	-	-	Other	-	-	1

Query instance (original outcome : 0)

	age	workclass	education	marital_status	occupation	race	gender	hours_per_week	income
0	38	Private	HS-grad	Married	Blue-Collar	White	Male	44	0

Diverse Counterfactual set (new outcome: 1.0)

	age	workclass	education	marital_status	occupation	race	gender	hours_per_week	income
0	28.0	Self-Employed	Doctorate	•	Professional		Female	21.0	1
1	27.0	Self-Employed	Doctorate	-	Professional	-	Female	50.0	1

Thank you