1-11 Derive a função.

1.
$$f(x) = x^2 - 10x + 100$$

2.
$$g(x) = x^{100} + 50x + 1$$

3.
$$s(t) = t^3 - 3t^2 + 12t$$

4.
$$F(x) = (16x)^3$$

5.
$$H(s) = (s/2)^5$$

6.
$$v = \sqrt{5x}$$

7.
$$y = x^{4/3} - x^{2/3}$$

8.
$$y = 3x + 2e^x$$

9.
$$y = A + \frac{B}{r} + \frac{C}{r^2}$$

10.
$$y = x + \sqrt[5]{x^2}$$

11.
$$v = x\sqrt{x} + \frac{1}{x^2\sqrt{x}}$$

17-20 Encontre uma equação da reta tangente à curva no ponto dado. Ilustre com o gráfico da curva e da reta tangente na mesma tela.

17.
$$y = x + \frac{4}{x}$$
, (2, 4)

18.
$$y = x^{5/2}$$
, (4, 32)

19.
$$y = x + \sqrt{x}$$
, (1, 2)

20.
$$y = x^2 + 2e^x$$
, (0, 2)

1.
$$h(x) = \frac{x+2}{x-1}$$

2.
$$f(u) = \frac{1 - u^2}{1 + u^2}$$

3.
$$G(s) = (s^2 + s + 1)(s^2 + 2)$$

4.
$$g(x) = (1 + \sqrt{x})(x - x^3)$$

5.
$$H(x) = (x^3 - x + 1)(x^{-2} + 2x^{-3})$$

6.
$$H(t) = e^{t}(1 + 3t^{2} + 5t^{4})$$

7.
$$y = \frac{3t - 7}{t^2 + 5t - 4}$$

8.
$$y = \frac{4t+5}{2-3t}$$

9.
$$y = \frac{x^2 + 4x + 3}{\sqrt{x}}$$

10.
$$y = \frac{u^2 - u - 2}{u + 1}$$

$$11. \ \ y = \frac{e^x}{x + e^x}$$

12.
$$f(x) = \frac{x^5}{x^3 - 2}$$

13.
$$s = \sqrt{t}(t^3 - \sqrt{t} + 1)$$

14. Encontre a primeira e a segunda derivadas de
$$y = \frac{x^2}{x+1}$$
.

17-21 Encontre uma equação da reta tangente à curva no ponto dado.

17.
$$y = x\sqrt{x}$$
, (1, 1)

18.
$$y = \frac{x}{x-3}$$
, (6, 2)

19.
$$y = x + \frac{4}{x}$$
, (2, 4)

20.
$$y = x^{5/2}$$
, (4, 32)

21.
$$y = x + \sqrt{x}$$
, (1, 2)

3.3 DERIVADAS DE FUNÇÕES TRIGONOMÉTRICAS

1-8 Derive.

1.
$$y = \operatorname{sen} x + \cos x$$

2.
$$y = \cos x - 2 \log x$$

3.
$$y = e^x \operatorname{sen} x$$

$$4. \ \ y = \frac{\operatorname{tg} x}{x}$$

$$5. \ \ y = \frac{\sin x}{1 + \cos x}$$

$$\mathbf{6.} \ \ y = \frac{x}{\sin x + \cos x}$$

7.
$$y = \operatorname{tg} \theta (\operatorname{sen} \theta + \cos \theta)$$

8.
$$y = \operatorname{cossec} x \operatorname{cotg} x$$

9-10 Encontre uma equação da reta tangente à curva no ponto especificado.

9.
$$y = 2 \operatorname{sen} x$$
, $(\pi/6, 1)$

10.
$$y = \sec x - 2\cos x$$
, $(\pi/3, 1)$

1-4 Escreva a função composta na forma f(g(x)).

Identifique a função de dentro u = g(x) e a de fora y = f(u).] Então, encontre a derivada dy/dx.

1.
$$y = (x^2 + 4x + 6)^5$$

2.
$$y = \text{tg } 3x$$

3.
$$y = \cos(\operatorname{tg} x)$$

4.
$$y = \sqrt[3]{1 + x^3}$$

5-30 Encontre a derivada da função.

5.
$$F(x) = (x^3 - 5x)^4$$

6.
$$f(t) = (2t^2 + 6t + 1)^{-8}$$

7.
$$g(x) = \sqrt{x^2 - 7x}$$

8.
$$f(t) = \frac{1}{(t^2 - 2t - 5)^4}$$

9.
$$h(t) = \left(t - \frac{1}{t}\right)^{3/2}$$

10.
$$y = \sin \frac{1}{x}$$

11.
$$G(x) = (3x-2)^{10} (5x^2-x+1)^{12}$$

12.
$$g(t) = (6t^2 + 5)^3 (t^3 - 7)^4$$

13.
$$F(y) = \left(\frac{y-6}{y+7}\right)^3$$

14.
$$s(t) = \sqrt[4]{\frac{t^3 + 1}{t^3 - 1}}$$

15.
$$f(z) = \frac{1}{\sqrt[5]{2z-1}}$$

16.
$$f(x) = \frac{x}{\sqrt{7-3x}}$$

17.
$$y = 5^{-1/x}$$

18.
$$y = \sqrt{1 + 2 \lg x}$$

19.
$$y = \sin^3 x + \cos^3 x$$

20.
$$y = \sin^2(\cos kx)$$

21.
$$y = \frac{e^{3x}}{1 + e^x}$$

22.
$$y = e^{5 \sin \theta}$$

23.
$$y = \left(\sin \sqrt{x^2 + 1} \right)^{\sqrt{2}}$$

GABARITOS

3.1 RESPOSTAS

1.
$$f'(x) = 2x - 10$$

2.
$$g'(x) = 100x^{99} + 50$$

3.
$$s'(t) = 3t^2 - 6t + 12$$

4.
$$F'(x) = 12288x^2$$

5.
$$H'(s) = \frac{5}{32}s^4$$

6.
$$y' = \frac{\sqrt{5}}{2\sqrt{x}}$$

7.
$$y' = \frac{4}{3}x^{1/3} - \frac{2}{3}x^{-1/3}$$

8.
$$y' = 3 + 2e^x$$

9.
$$y' = -\frac{B}{x^2} - 2\frac{C}{x^3}$$

10.
$$y' = 1 + \frac{2}{5\sqrt[5]{x^3}}$$

11.
$$v' = \frac{3}{2}\sqrt{x} - \frac{5}{2x^3\sqrt{x}}$$

12.
$$4x - 4x^3$$

13.
$$1 - x^{-2/3}$$

14.
$$2x + 2e^x$$

17.
$$y = 4$$

18.
$$y = 20x - 48$$

19.
$$y = \frac{3}{2}x + \frac{1}{2}$$

20.
$$y = 2x + 2$$

21.
$$(1, 0), \left(-\frac{1}{2}, \frac{32}{27}\right)$$

2.
$$f'(u) = -\frac{4u}{(1+u^2)^2}$$

3.
$$G'(s) = (2s+1)(s^2+2) + (s^2+s+1)(2s)$$

[= $4s^3 + 3s^2 + 6s + 2$]

4.
$$g'(x) = 1 - 3x^2 + \frac{3}{2}x^{1/2} - \frac{7}{2}x^{5/2}$$

5.
$$H'(x) = 1 + x^{-2} + 2x^{-3} - 6x^{-4}$$

6.
$$H'(t) = e^{t}(5t^4 + 20t^3 + 3t^2 + 6t + 1)$$

7.
$$y' = \frac{-3t^2 + 14t + 23}{(t^2 + 5t - 4)^2}$$

8.
$$y' = \frac{23}{(2-3t)^2}$$

9.
$$y' = \frac{3}{2}\sqrt{x} + \frac{2}{\sqrt{x}} - \frac{3}{2x\sqrt{x}}$$

10.
$$y' = 1$$

11.
$$y' = \frac{e^x(x-1)}{(x+e^x)^2}$$

12.
$$f'(x) = \frac{2x^4(x^3 - 5)}{(x^3 - 2)^2}$$

13.
$$s' = \frac{7}{2}t^{5/2} - 1 + \frac{1}{2\sqrt{t}}$$

14.
$$y' = \frac{x^2 + 2x}{(x+1)^2}$$
, $y'' = \frac{2}{(x+1)^3}$

15.
$$24x(1-x^2)(1+x^2)^{-4}$$

16.
$$-12(1+x)^{-4}$$

17.
$$y = \frac{3}{2}x - \frac{1}{2}$$

18.
$$x + 3y = 12$$

19.
$$y = 4$$

20.
$$y = 20x - 48$$

21.
$$y = \frac{3}{2}x + \frac{1}{2}$$

3.3 RESPOSTAS

$$1. dy/dx = \cos x - \sin x$$

2.
$$dy/dx = -\sin x - 2 \sec^2 x$$

3.
$$dy/dx = e^x(\cos x + \sin x)$$

4.
$$\frac{dy}{dx} = \frac{x \sec^2 x - \tan x}{x^2}$$

5.
$$\frac{dy}{dx} = \frac{1}{1 + \cos x}$$

6.
$$\frac{dy}{dx} = \frac{(1+x)\sin x + (1-x)\cos x}{1 + \sin 2x}$$

7.
$$y' = \operatorname{sen} \theta - \operatorname{sen} \theta \operatorname{tg} \theta + \operatorname{sen} \theta \operatorname{sec}^2 \theta + \operatorname{sec} \theta$$

8.
$$dy/dx = -\csc x (\cot g^2 x + \csc^2 x)$$

9.
$$y = \sqrt{3}x + 1 - \frac{1}{6}\sqrt{3}\pi$$

10.
$$v = 3\sqrt{3}x + 1 - \pi\sqrt{3}$$

17.
$$\frac{1}{4}$$
 18. $\frac{1}{2}$ 19. -1 20. -1 21. 1 22.

11. 5 12. $\frac{8}{9}$ 13. 0 14. $\frac{1}{4}$ 15. $\frac{5}{3}$

1.
$$10(x^2 + 4x + 6)^4(x + 2)$$
 2. $3 \sec^2 3x$

2.
$$3 \sec^2 3x$$

3.
$$-\text{sen}(\text{tg } x) \text{ sec}^2 x$$
 4. $\frac{x^2}{(1+x^3)^{2/3}}$

4.
$$\frac{x^2}{(1+x^3)^{2/3}}$$

5.
$$F'(x) = 4(x^3 - 5x)^3(3x^2 - 5)$$

6.
$$f'(t) = -16(2t^2 - 6t + 1)^{-9}(2t - 3)$$

7.
$$g'(x) = \frac{2x - 7}{2\sqrt{x^2 - 7x}}$$

7.
$$g'(x) = \frac{2x-7}{2\sqrt{x^2-7x}}$$
 8. $f'(t) = \frac{8(1-t)}{(t^2-2t-5)^5}$

9.
$$h'(t) = \frac{3}{2}(t - 1/t)^{1/2}(1 + 1/t^2)$$

10.
$$y' = -\frac{1}{x^2} \cos \frac{1}{x}$$

11.
$$G'(x) = 6(3x-2)^9 (5x^2-x+1)^{11} (85x^2-51x+9)$$

12.
$$g'(t) = 12t(6t^2 + 5)^2(t^3 - 7)^3(9t^3 + 5t - 21)$$

13.
$$F'(y) = \frac{39(y-6)^2}{(y+7)^4}$$

14.
$$s'(t) = \frac{1}{2} \left(\frac{t^3 + 1}{t^3 - 1} \right)^{-3/4} \frac{-3t^2}{(t^3 - 1)^2}$$

15.
$$f'(z) = -\frac{2}{5}(2z-1)^{-6/5}$$

15.
$$f'(z) = -\frac{2}{5}(2z-1)^{-6/5}$$
 16. $f'(x) = \frac{14-3x}{2(7-3x)^{3/2}}$

17.
$$y' = 5^{-1/x} (\ln 5)/x^2$$

17.
$$y' = 5^{-1/x} (\ln 5)/x^2$$
 18. $y' = \frac{\sec^2 x}{\sqrt{1 + 2 \lg x}}$

19.
$$y' = 3 \operatorname{sen} x \cos x (\operatorname{sen} x - \cos x)$$

20.
$$y' = -k \operatorname{sen} kx \operatorname{sen} (2 \cos kx)$$

21.
$$y' = \frac{3e^{3x} + 2e^{4x}}{(1 + e^x)^2}$$

22.
$$y' = 5 \cos(5\theta) e^{\sin 5\theta}$$

23.
$$y' = \sqrt{2}x \left(\sin \sqrt{x^2 + 1} \right)^{\sqrt{2} - 1} \frac{\cos \sqrt{x^2 + 1}}{\sqrt{x^2 + 1}}$$
 24. $y' = 0$