Chem 1141 Fall 2012 Exam 4A

Name:	KEY	
-------	-----	--

Please write your full name, and which exam version (4A) you have on the scantron sheet.

Multiple Choice. [4 points each.] Record your answers to the multiple choice questions on the scantron 80 8pt, 8e sheet.

- Cyc. Q1. What is the effective nuclear charge felt by the valence electrons in an oxygen atom? b) 2+ c) 4+(d) 6+)
 - Q2. Which is the correct electron configuration of Cu⁺?

 - Q3. Which of the following is a valid Lewis structure for the sulfite ion, SO₃²⁻?
- (outside)
- Q4. What is the formal charge on the nitrogen atom in the following structure:

 - a) 2 +

ع المثلا

- d) 1-
- e) 2-

No start w/ 5 valence es

assigned 4+2=6 valence es

=) gained le== 1-

Q5. What is the hybridization of the carbon atom in the following molecule:
:F: 3 repulsions => trigonal planar (120°) geom region of the serbitals @120°. - O-C H => need 3 sp2 hybrids.
OFCH = need 3 sp2 hybrids.
a) sp (b) sp^2 (c) sp^3 (d) $\mathrm{sp}^3\mathrm{d}$ (e) $\mathrm{sp}^3\mathrm{d}^2$
Q6. How many sigma and pi bonds are there in the previously drawn molecule? a) 4 sigma, 0 pi b) 3 sigma, 1 pi c) 2 sigma, 2 pi d) 1 sigma, 3 pi e) 0 sigma, 4 pi Jh bond believed a town 7 Q7. Which of the following is isoelectronic to Cs ⁺ ?
Q7. Which of the following is isoelectronic to Cs ⁺ ? (a) Ba ²⁺ (b) I ⁺ (c) H ⁺ (d) Rb ⁺ (e) Te ⁴⁺ (c) + [Xe]
Q8. Breaking bonds releases energy, and making bonds requires energy. a) TRUE b) FALSE
Q9. Order the following atoms according to atomic radius: a) Li < B < Ga b) Li < Ga < B c) Ga < Li < B B) Li < Ga < B c) Ga < Li < B e) B < Li < Ga experience larger Zeff
Q10. What bond angles are present in a molecule with trigonal bipyramidal geometry? a) 90° and 109.5° b) 109.5° and 120° c) 90° and 120° d) 60° and 90° e) 109.5° and 180°
Q11. Give the number of protons (p), neutrons (n), and electrons (e) in one ion of ${}^{25}_{12}\text{Mg}^{2+}$ 6a: 2 extra shell of e3 12p, 25n, 10e b) 25p, 13n, 15e c) 13p, 12n, 11e than B, Li
Q12. Which is the correct formula for iron(III) nitride? a) FeN ₃ b) Fe(NO ₃) ₃ c) FeN d) Fe(NO ₂) ₃ e) Fe ₂ (NO ₃) ₃
Q13. Which substance is oxidized in the following chemical equation?
$PbO_2 + Pb + 2H_2SO_4 \longrightarrow 2PbSO_4 + 2H_2O$
a) PbO ₂ b) Pb c) H ₂ SO ₄ d) PbSO ₄ e) H ₂ O
if ox# 1, substance = oxidized.
Pb v elements = 0 (all elements have ONH=0)
PBS04 = PB2+ SO4 (monatomic 15Ms: 0x#=chaza)
<u>(+2)</u>

Short Response.

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

Q14. [8 pts.] Explain the trend in atomic radius moving (i) across and (ii) down the periodic table.

(i) I since Zeft 1 across a period (more pt in nucleus, but same # core es shelding = valence es are attracted more strongly!)

(ii) of since Zeff ~ same, and # e shells increases =) atom gets larger!

Q15. [10 pts.] Write out three possible resonance structures for the NCO anion. (C = central atom.) Calculate the formal charges on each atom, and explain which resonance structure(s) would be the most favored.

lowest set of FC = more favored!

(1st resonana structure is BEST since -ve FC is on most electronegative element.)

Q16. [12 pts.] Is SCl₄ polar or non-polar? As part of your answer, you should include a valid Lewis structure, a sketch of the molecular geometry. Be sure to <u>explain</u> your answer in detail.

VSEPP CA I I CA

lp on equatorial post has 2 lp-bpcsic

Bond dipoles:

Al Sala

equatorial bond μ 's reinforce: (x)

Cl 1 = Cl POLAR

Q17. [10 pts.] Give a valence bond description of the bonding in tetrachloroethylene:

$$F: 1s^{2}2s^{2}2p^{5}$$

309 K

Q18. [8 pts.] 82.0 mL of 1.44 M H₂SO₄(aq) is added to 1.09 g of LiHCO₃(s). What volume of gas is produced at a temperature of 36 °C and a pressure of 0.979 atm?

BONUS Question

Write the name and formula of eight polyatomic ions:

	FORMULA	NAME	
i)	NH4+	ammonium	
ii)	OH-	hydroxide	
iii)	NO3-	nikati	DON'T BE DISCOURAGED. TO IT OVER MONTOR THE RESULTS FOR THREE MONTHS. THEN, TO BE SURE DO IT AGAN FOR ANDTER FURE MONTHS. RELORD YOUR FINDINGS. WRITE RELORD YOUR FUNDINGS.
iv)	Noz	nitite	FOR MOSTER THREE MONTHS. FOR MOSTER THOMAS, WRITE PELORO YOUR FINDINGS, WRITE YOUR PAPER.
v)	CN-	cyanide	FAKE IT.
vi)	H(03	bicarbonate	
vii)	C2H302	acelati	
viii)	$(0_3^2 -$	carbonati	
	504	Sulfati	
	503-	sulfite	
	PO 3-	phosphati	

Useful Information:

$$pV=nRT$$

$$M_1 V_1 = M_2 V_2$$

$$N_{\rm A} = 6.022 \times 10^{23}$$

$$R = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$$

Periodic Table

1 IA																53	18 VIIIA
1 H	2											13 IIIA	14 IVA	15 VA	16 VIA	17 VIIA	2 He 4.00
3	IIA 4	1										5	6	7	8	9	10
Li 6.94	Be 9.01											B 10.81	C 12.01	N 14.01	O 16,00	F 19.00	Ne 20.18
11	12					_		_				13	14	15	16	17	18
Na 22.99	Mg 24.31	IIIB	4 IVB	5 VB	6 VIB	7 VIIB	8	9 VIIIB	10	11 IB	12 IIB	AI 26.98	Si 28.09	P 30.97	S 32.07	Cl 35,45	Ar 39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Se	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58,93	58.69	63,55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Те	Ru	Rh	Pd	Ag	Cd	Ln	Sn	Sb	Te	L	Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126.9	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138.9	178.5	180.9	183.9	186.2	190.2	192.2	195,1	197.0	200.6	204.4	207.2	209	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	Ac^	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	(272)	l						

ı	58	59	60	61	62	63	64	65	66	67	68	69	70	71
*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
ļ	140.1	140.9	144.2	(145)	150.4	152.0	157,3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
- 1	90	10	92	93	94	95	96	97	98	99	100	101	102	103
۸	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
- 1	232.0	(231)	238,0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Chem 1141 Fall 2012 Exam 4B

Name:	KEY	— /			
Please write your ful	ll name, and whic	h exam version	(4B) you have o	on the scantron sheet.	
Multiple Choice. [4 sheet.	4 points each.]	Record your as	nswers to the n	nultiple choice questi	ons on the scantron
Q1. What is the hyb	ridization of the	carbon atom in	the following m		1 L.)
a) sp	(b) sp ²	c) sp ³	d) sp ³ d	e) sp ³ d ²	See excum
Q2. How many sigma, 0 d) 1 sigma, 3	pi C	b) 3 sigma, 1 e) 0 sigma, 4	pi ,	n molecule? c) 2 sigma, 2 pi	See exam 4)
Q3. Which of the fo	llowing is isoelec b) I ⁺	tronic to Cs ⁺ ?	d) Rb ⁺	e) Te ⁴⁺	
Q4. Breaking bonds a) TRUE	releases energy, b) FALSE	and making bor	nds requires ene	rgy.	
Q5. What is the effe a) 1+	ctive nuclear cha b) 2+	rge felt by the v	d) 6+	s in an oxygen atom? e) 8+	
Q6. Which is the coa	rrect electron cor b) [Ar]		d) [Ar] 4s ² 3d	e) [Ar] 3d ¹⁰	
Q7. Give the number a) 12p, 25n, d) 12p, 13n,	10e	neutrons (n), as b) 25p, 13n, 1 e) 12p, 13n, 1	5e	in one ion of ²⁵ ₁₂ Mg ²⁺ c) 13p, 12n, 11e	
Q8. Which is the cost a) FeN ₃			e? d) Fe(NO ₂) ₃	e) Fe ₂ (NO ₃) ₃	
Q9. What bond angl a) 90° and 10 d) 60° and 90)9.5°	a molecule with b) 109.5° and e) 109.5° and	120°	midal geometry? c) 90° and 120°	

Q10. Which substance is **oxidized** in the following chemical equation?

$$PbO_2 + Pb + 2H_2SO_4 \longrightarrow 2PbSO_4 + 2H_2O$$

a) PbO₂

- b) Pb
- c) H₂SO₄
- d) PbSO₄
- e) H₂O
- Q11. Which of the following is a valid Lewis structure for the sulfite ion, SO₃²⁻?

Q12. What is the formal charge on the sulfur atom in the following structure:

(a) 2+

- [:N#S#CI:]²⁺
- d\ 1
- Si 6 valence es olig
 - e) 2- => missiz 2 es
- Q13. Order the following atoms according to atomic radius:
 - a) Li < B < Ga d) Ga < B < Li
- b) Li < Ga < B
- (e) B < Li < Ga
- c) Ga < Li < B

Short Response.

Show all work to receive credit. You must use the factor-label (conversion-factor) method for all conversions. Be sure to show all units and write your answers using the correct number of significant figures or decimal places.

Q14. [10 pts.] Give a valence bond description of the bonding in 1,2-difluoroacetylene:

(1) IET across period since Zeff ?	-
(ii) IE I down group since valued larger shell w/ same 2 (further away e is from a Q16. [10 pts.] Write out three possible resonance structures for the OCI formal charges on each atom, and explain which resonance structure(s) (1+) (0) (0-) (1+) (0) (0-) (1+) (0) (0-)	N- anion. (C = central atom.) Calculate the would be the most favored.
Best lewis structures are (1) + (-lowert set of F(s. (3) is actually botter than (1) sin -ve charge is on more electrication.)	

Q15. [8 pts.] Explain the trend in first ionization energy moving (i) across and (ii) down the periodic table.

Q17. [12 pts.] Is IF₃ polar or non-polar? As part of your answer, you should include a valid Lewis structure, a sketch of the molecular geometry. Be sure to <u>explain</u> your answer in detail.

Lew is F T F:

VSEPR / I Williams

(fewer lp-bp or lp-lp repulsions @90° if lp's are equatorial.)

Bond dipoles

molecular dipole

F

=) since

POLAR

Q18. [8 pts.] 82.0 mL of 1.44 M H₂SO₄(aq) is added to 2.09 g of KHCO₃(s). What volume of gas is produced at a temperature of 32 °C and a pressure of 0.924 atm?

$$PV = nRT$$
 = $0.020875 mol \times 0.08206 \frac{ahm \cdot L}{mol \cdot K} \times 305 K$
 $P = 0.565 L$

BONUS Question

i)

Write the name and formula of eight polyatomic ions:

FORMULA NAME

ii) See exam 4A

iii)

iv) v)

vi) vii)

viii)

Useful Information:

$$pV=nRT$$

$$M_1 \mathcal{V}_1 = M_2 \mathcal{V}_2$$

$$1 \text{ atm} = 760 \text{ mmHg} = 101325 \text{ Pa}$$

$$N_{\Lambda} = 6.022 \times 10^{23}$$

1 atm = 760 mmHg = 101325 Pa
$$R = 0.08206 \frac{\text{atm} \cdot \text{L}}{\text{mol} \cdot \text{K}}$$

Periodic Table

1																	18
IA	1																VIIIA 2
Ь'n	2											13	14	15	16	17	He
1.01	IIA											IIIA	IVA	VA	VIA	VIIA	4.00
3	4	1									1	5	6	7	8	9	10
Li	Be											В	C	N	0	F	Ne
6.94	9.01	l										10.81	12.01	14.01	16.00	19,00	20.18
11	12	1										13	14	15	16	17	18
Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	P	S	Cl	Ar
22.99	24,31	IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB	26.98	28,09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.1	40.08	44.96	47.88	50.94	52.00	54,94	55.85	58.93	58.69	63,55	65.39	69.72	72.61	74.92	78.96	79.90	83.80
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.47	87,62	88.91	91.22	92,91	95.94	(98)	101.07	102.91	106.42	107.87	112.41	114.82	118.71	121.76	127.6	126,9	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.9	137.3	138,9	178.5	180.9	183,9	186.2	190.2	192,2	195.1	197.0	200.6	204.4	207.2	209	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111			· · · · · · · · · · · · · · · · · · ·				
Fr	Ra	Ac^	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg							
(223)	(226)	(227)	(261)	(262)	(263)	(264)	(265)	(268)	(271)	(272)							

- 1	58	59	60	61	62	63	64	65	66	67	68	69	70	71
*	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(145)	150,4	152.0	157.3	158.9	162.5	164.9	167.3	168.9	173.0	175.0
- 1	90	91	92	93	94	95	96	97	98	99	100	101	102	103
^	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	(231)	238.0	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)