Oznamy

- Body z DÚ 1 budú časom v Moodle
- DÚ 2 je na stránke, odovzdať do 4.12.
- Stretnutia journal clubu sa väčšinou uskutočnili, posledná skupina nezabudnite po stretnutí napísať krátky sumár do Moodle
- Ak máte nejaké otázky k článku, kontaktujte vyučujúcich
- Biológovia nájdu komentáre k návrhu projektu v Moodli, v prípade otázok kontaktujte B. Brejovú

Regulácia génovej expresie

Tomáš Vinař 21.11.2024

Aká informácia je uložená v DNA?

Gény: Predpisy na tvorbu proteínov a funkčných RNA molekúl.

Riadenie ich expresie: kedy a koľko sa má tvoriť.

Regulácia na úrovni transkripcie, spracovania, translácie, posttranslačných modifikácií, . . .

Ciele

- Zistiť, za akých podmienok je daný gén exprimovaný (súvisí s funkciou génu)
- Ktoré gény ho regulujú
- Detaily regulačného mechanizmu
 (väzobné miesta, zmeny v množstve expresie, ...)

Technológia: RNA-seq

Sekvenujeme RNA extrahovanú z bunky, mapujeme na genóm, hĺbka pokrytia zodpovedá úrovni expresie, opakujeme za rôznych podmienok

Používa sa aj staršia technológia microarray (expression array)

Príklad dát o expresii

Pomer expresie génu v meranej a kontrolnej vzorke fg/bg

	15min	30min	1hod	2hod	4hod	
W95909	0.72	0.1	0.57	1.08	0.66	
AA045003	1.58	1.05	1.15	1.22	0.54	
AA044605	1.1	0.97	1	0.9	0.67	
W88572	0.97	1	0.85	0.84	0.72	
AA029909	1.21	1.29	1.08	0.89	0.88	
AA059077	1.45	1.44	1.12	1.1	1.15	

. . .

Iyer et al 1999 The Transcriptional Program in the Response of Human Fibroblasts to Serum

Fibroblast: bunky generujúce zložky medzibunkovej hmoty pre delenie potrebujú rastové faktory dodávané ako "fetal bovine serum"

Vizualizácia

Červená: fg>bg

Zelená: fg<bg

517 génov (z 8600, ktoré boli merané)

19 experimentov

Dnes: iný typ dát

Všetky ostatné prednášky: pracujeme so sekvenciami

- zostavovanie genómov
- zarovnávanie sekvencií
- hľadanie génov
- fylogenetické stromy, populačná a komparatívna genomika
- štruktúra a funkcia proteínov a RNA

Dnes: tabuľka čísel

- typické dáta v štatistike
- možno použiť všeobecné metódy štatistiky, strojového učenia

Prvá sada problémov: predspracovanie dát

- Zarovnávanie čítaní na genóm
- Počet čítaní alebo fragmentov DNA zarovnaných ku každému génu
- Normalizácia, aby sme mali porovnateľné výsledky z rôznych experimentov
- Normalizácia vzhľadom na dĺžku a iné vlastnosti génu

Merania expresie nie veľmi presné, veľa šumu, rôzne zdroje chýb

Jednoduchý výsledok:

zoznam výrazne podexprimovaných / nadexprimovaných génov napr. fg / bg>2, resp. fg / bg<0.5 často na ďalšiu analýzu používame iba tieto

Zhlukovanie (clustering)

ďalšie gény asi robia to isté

Cieľ: nájsť skupiny génov s podobným profilom expresie. Ak veľa génov v skupine má rovnakú funkciu,

Meranie podobnosti profilov: napr. Pearsonov korelačný koeficient

Profil génu 1: x_1, x_2, \ldots, x_n , priemer \overline{x}

Profil génu 2: y_1, y_2, \ldots, y_n , priemer \overline{y}

$$C(x,y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}}$$

Číslo od -1 do 1, 1 pre lineárne korelované dáta Vzdialenosť d(x,y)=1-C(x,y)

Aj iné možnosti, napr. Euklidovská vzdialenosť

Hierarchické zhlukovanie

- Podobné na metódu spájania susedov vo fylogenetických stromoch
- Začneme s každým génom v samostatnej skupinke
- Nájdeme dve najbližšie skupinky a spojíme ich do jednej
- Opakujeme, kým nie sú všetky gény spolu
- Vzdialenosť skupiniek: napr. vzdialenosť najbližších génov z jednej a druhej, alebo priemer vzdialeností cez všetky páry
- Výsledkom je strom zobrazujúci postupnosť spájania

	А	В	С	D	E					
gén A	. 0	0.6	0.1	0.3	0.7]
gén B	0.6	0	0.5	0.5	0.4					
gén C	0.1	0.5	0	0.6	0.6					
gén D	0.3	0.5	0.6	0	0.8	A	C	D	В	E
gén E	0.7	0.4	0.6	0.8	0					

Hierarchické zhlukovanie - príklad

Vzdialenosť skupiniek ako vzdialenosť najbližších génov z jednej a druhej (single linkage clustering)

Príklad: časť dát o expresii

Zhlukovanie tiež pomáha vizualizácii dát, podobné gény sa dostanú ku sebe

Klasifikácia

- Typický problém v strojovom učení
- Chceme odlíšiť napr. rôzne typy tumorov podľa expresie génov
- Máme nejaké príklady, kde vieme expresiu aj typ tumoru
- Chceme napr. nájsť vzorec, ktorý nám z expresie vyráta záporné číslo pre typ
 1, kladné číslo pre typ 2.
- Vopred si vyberieme si typ vzorca s neznámymi parametrami (trieda hypotéz)
- Na trénovacích dátach hľadáme hodnoty parametrov, pre ktoré vzorec najlepšie funguje
- Fungovanie vzorca testujeme na testovacích dátach (nepoužité na trénovanie)
- Hotový vzorec použijeme na dáta s neznámym typom

Jednoduchý príklad: expresia 2 génov

Trénovacie dáta so známym typom:

Typ vzorca: lineárne funkcie (lineárny diskriminant)

 $\hbox{tumor typu 1 ak } ax + by + c < 0$

Hľadáme a,b,c také, aby na trénovacích dátach predpovedal dobre

Jednoduchý príklad: expresia 2 génov

Výsledný vzorec:

$$a=1, b=3, c=-2.85$$
 tumor typu 1 ak $x+3y-2.85<0$

Populárne techniky na klasifikáciu

Logistic regression, logistická regresia:

lineárny diskriminátor, vracia pravdepodobnosť jednotlivých tried, dobre známa štatistická metóda.

Support vector machines

(SVM): hľadanie lineárneho diskriminátora s nulovou trénovacou chybou, ktorý je najďalej od všetkých trénovacích dát.

Dá sa zovšeobecniť na nelineárne funkcie priemetom vektorov do väčšieho priestoru.

Populárne techniky na klasifikáciu

Neurónové siete:

"neuróny" poprepájané "synapsami", každý neurón na výstupe váhovaný priemer vstupov.

Bayesovské siete:

pravdepodobnostný model generujúci náhodné expresie typ tumoru je tiež náhodná premenná, ktorej hodnotu nepoznáme podobne ako stav v HMM

Regulačné siete z profilov expresie

Vstup: Profily expresie génov (napr. séria RNA-seq experimentov), možno so známymi podmienkami (časové rady, delečný mutant)

Výstup: regulačná sieť, vrcholy sú gény, orientovaná hrana $A \to B$, ak A reguluje B

Podobnosť profilov expresie nám môže dať neorientované hrany. Chceme vylúčiť hrany, ktoré vznikli tranzitivitou a správne orientovať hrany (ťažký problém)

Transkripčné faktory (TF)

Regulácia začatia transkripcie pomocou transkripčných faktorov: proteíny viažúce DNA, pomáhajú pritiahnuť RNA polymerázu

Človek má vyše 2000 TF-ov Môžu zvyšovať alebo znižovať mieru expresie, fungovať v skupinách

Príklad: transkripčný faktor E2F1

- Reguluje bunkový cyklus
- Viaže TTTCCCGC alebo TTTCGCGC, prípadne ďalšie varianty

A	0	0	0	0	0	0	0	0
С	0	0	0	4	2	10	0	9
G	0	0	0	6	8	0	10	1
Τ	10	10	10	0	0	0	0	0

 Sekvencie DNA, na ktoré sa viaže určitý TF chceme reprezentovať ako sekvenčný motív a hľadať ďalšie výskyty v genóme

Reprezentácia väzobných motívov

Ret'azec s nezhodami (konsenzus):

motív je reťazec, výskyty môžu mať vopred ohraničený počet nezhôd

Príklad: motív TTTGGCGC + 1 nezhoda
TTTGGCGC, TT**A**GGCGC, TTTG**C**CGC sú výskyty motívu
TTT**CC**CGC nie je výskyt

Zostavenie motívu: napr. vezmi najčastejšie písmeno na každej pozícii

Reprezentácia väzobných motívov 2

Regulárny výraz:

niektoré pozície motívu dovoľujú výber z viacej možností [GC] znamená pozíciu, na ktorej môže byť G alebo C N znamená hociktorú bázu

Príklad: motív TTT[CG][CG]CGC

TTTGGCGC, TTTCCCGC, TTTGCCGC sú výskyty motívu

TTAGGCGC nie je výskyt

Zostavenie motívu: povoľ najčastejšie bázy na každej pozícii

Reprezentácia väzobných motívov 3

Position specific scoring matrix (PSSM, PWM):

skórovacia matica, skóre pre každú bázu na každej pozícii Výskyty dosahujú skóre väčšie ako číslo ${\cal T}$

Príklad: T=8

TTTCCCGC je výskyt: 1.1+1.1+1.1+0.6+0.0+1.5+1.5+1.4=8.3

TTTGGCGG je výskyt: 1.1+1.1+1.0+1.3+1.5+1.5-0.5=8.1

TTAGGCGC nie je: 1.1+1.1-2.0+1.0+1.3+1.5+1.5+1.4=6.4

Zostavenie matice z frekvencií: budúca prednáška

Hľadanie výskytov motívu v genóme

- Zoberieme motív v niektorej reprezentácii:
 - Konsenzus, napr. TTTGGCGC + 1 nezhoda
 - Regulárny výraz, napr. TTT[CG][CG]CGC
 - Skórovacia matica, napr. prah T=8 a matica:

- Pre každú pozíciu v genóme testujeme, či je výskytom motívu
- Výskyty sú potenciálne väzobné miesta

Hľadanie výskytov motívu v genóme – problém

- Hľadanie motívu v genóme: skús každú pozíciu, či je výskytom
- Okrem väzobných miest často aj veľa náhodných výskytov
- Vieme spočítať E-hodnotu: koľko výskytov očakávame v náhodnej sekvencii
- Napr. TTT[CG][CG]CGC sa vyskytuje v priemere raz za 30 000 báz
- Na zlepšenie špecifickosti hľadáme
 - zhluky väzobných miest,
 - miesta podporené experimentálne,
 - evolučne zachované
- Databázy motívov, napr. TRANSFAC, JASPAR

Ako nájsť väzobné miesta experimentálne?

Chromatin immunoprecipitation (ChIP)

Pomocou protilátky (antibody) na špecifický transkripčný faktor zistí, kde približne sa tento faktor viaže:

- Väzba medzi TF a DNA sa spevní formaldehydom
- DNA sa naseká na kusy
- Kusy, na ktorých je TF, sa zachytia na protilátke
- DNA sa izoluje a sekvenuje (ChIP-seq)

Problém: zistíme len približnú polohu väzobného miesta

Ako nájsť motívy výpočtovými metódami?

- ...ak nemáme niekoľko príkladov väzobného miesta
 - Máme skupinu sekvencií, kde každá obsahuje väzobné miesto toho istého TF, ale väzobné preferencie TF nie sú známe
 - Snažíme sa nájsť čo najšpecifickejší motív, ktorý sa vyskytuje vo všetkých týchto sekvenciách
 resp. sa vyskytuje častejšie, ako by sme očakávali.
 - V súčasnosti: zoberieme oblasti detegované pomocou ChIP-seq okolo väzobných miest, nájdený motív použijeme na presnejšie určenie polohy väzby TF
 - Pôvodne: zoberieme skupinu génov s podobným profilom expresie a teda možno regulovaných tým istým TF, hľadáme motív v oblastiach pred týmito génmi

Príklad: Consensus Pattern Problem (CPP)

Jednoduchá formulácia problému hľadania motívov

Vstup: dĺžka motívu L, reťazce (sekvencie) S_1, S_2, \ldots, S_k

Výstup: motív (reťazec) M dĺžky L a výskyt motívu v každom S_i (reťazec s_i dĺžky L) také, že celkový počet nezhôd medzi M a s_i je najmenší možný

Príklad:

Vstup: CAAACAT, AGTAGC, TAACCA, TCTCCTC, L=4

Výstup: motív TAAC

výskyty a nezhody AAAC 1, TAGC 1, TAAC 0, TCTC 2

celkový počet nezhôd 4

Riešenie CPP

NP-ťažký problém

- ullet Idea 1: Vyskúšaj všetky možné motívy dĺžky L Problém: Nepraktické prečo?
- Idea 2: Vyskúšaj všetky možné podreťazce dĺžky L reťazcov S_1, \ldots, S_k

Problém: Nemusí fungovať — prečo? Ale dá sa dokázať, že cena riešenia bude najviac dvojnásobok optima (2-aproximačný algoritmus)

 Ďalšie vylepšenie: Skúšame všetky konsenzus sekvencie \(\ell \) podreťazcov.
 PTAS (polynomial-time approximation scheme) TCTCCTC

Výstup:
motív TAAC

výskyty a nezhody

AAAC 1,

TAGC 1,

TAAC 0,

TCTC 2

spolu 4 nezhody

Praktickejší prístup k hľadaniu motívov

Pravdepodobnostný model generujúci sekvenciu S pomocou matice frekvencií báz v motíve W a frekvencie báz q mimo motívu

Pozícia motívu v S sa zvolí náhodne, každá báza sa vygeneruje z q alebo z jedného stĺpca W Tento model definuje rozdelenie $\Pr(S \,|\, W)$.

Hľadanie motívov cez pravdepodobnostné modely

Vstup: dĺžka motívu L, sekvencie S_1, S_2, \ldots, S_k , frekvencie q

Výstup: spoločný motív ako matica frekvencií W maximalizujúca vierohodnosť dát $\Pr(S_1|W)\cdot\ldots\cdot\Pr(S_k|W)$

- Ťažký problém, používajú sa heuristické algoritmy
- Napríklad EM (expectation maximalization)
- Lokálna optimalizácia, ktorá konverguje k lokálnemu maximu vierohodnosti
- Softvér: MEME

Schéma algoritmu EM

• Inicializácia:

Zvoľ si počiatočnú maticu W (napr. zostavenú podľa jedného okna dĺžky L)

Iterácia:

- 1. Priraď každej pozícii j v sekvencii S_i váhu $p_{i,j}$, ktorá zodpovedá pravdepodobnosti, že na pozícii $S_i[j]$ začína výskyt motívu W
- 2. Spočítaj W zo všetkých možných výskytov v S_1,\dots,S_k váhovaných podľa $p_{i,j}$

Iterácie zvyšujú vierohodnosť dát, kým nedôjde ku konvergencii. Skúšame veľakrát z rôznych počiatočných ${\cal W}$

Príklad algoritmu EM

Α	0.10	0.10	0.10	0.10	0.10	Α	0.31	0.14	0.06	0.07	0.07
С	0.10	0.10	0.10	0.70	0.70	С	0.06	0.10	0.19	0.71	0.61
G	0.10	0.10	0.10	0.10	0.10	G	0.12	0.17	0.29	0.14	0.25
Τ	0.70	0.70	0.70	0.10	0.10	Т	0.51	0.60	0.46	0.08	0.07

Príklad algoritmu EM: d'alšia iterácia

Α	0.31	0.14	0.06	0.07	0.07	Α	0.47	0.09	0.01	0.02	0.03
С	0.06	0.10	0.19	0.71	0.61	С	0.02	0.11	0.20	0.80	0.58
G	0.12	0.17	0.29	0.14	0.25	G	0.08	0.22	0.48	0.15	0.35
Т	0.51	0.60	0.46	0.08	0.07	Т	0.42	0.58	0.30	0.03	0.03

Príklad algoritmu EM: po 20 iteráciách

Zhrnutie

- RNA-seq merá úroveň expresie pre všetky gény naraz, ale v dátach veľa šumu
- Zhlukovanie (clustering) nájde podobné gény,
 nepotrebujeme o dátach vopred nič vedieť (unsupervised learning)
- Klasifikácia môže rozlišovať napr. choroby podľa expresie,
 potrebuje dáta so známou odpoveďou (supervised learning)
- Dáta o expresii pomáhajú zostaviť regulačné siete
- Väzobné motívy môžeme reprezentovať rôznym spôsobom (reťazec, regulárny výraz, skórovacia matica)
- Tieto motívy nie sú dosť špecifické,
 okrem väzobných miest môžu mať aj ďalšie náhodné výskyty
- EM algoritmus na hľadanie nových motívov v sekvenciách