Analisi II

Paolo Bettelini

Contents

1	Spazi metrici		1
	1.1	Definizioni	1
	1.2	Successioni in spazi metrici	6
	1.3	Funzioni	8
า	One	natori linooni fra anori vattoriali	1.5
4	Ope	eratori lineari fra spazi vettoriali	11

1 Spazi metrici

1.1 Definizioni

L'insieme vuoto e l'insieme X sono aperti e chiusi.

Proposition

L'unione di aperti non numerabile è aperta, mentre l'intersezione è aperta solo se finita.

Proof

Per dimostrare quest'ultima lo facciamo su due insiemi e il resto è per induzione. Prendiamo un punto nell'interezione e prendiamo le due bolle dentro gli insiemi centrate nel punto. Siccome hanno lo stesso centro la loro intersezione è sempre una bolla di raggio il minore fra i due.

La metrice discreta può generare una bolla che è un singoletto.

Proposition

L'unione di chiusi finiti è chiusa. L'intersezione qualsiasi è chiusa.

Ogni singoletto è chiuso. Per dimostrarlo mostriamo che nel complementare esiste una bolla che non interseca il punto (vero per proprietà di Hausdorff).

Tutti i punti di accumulazione sono dei punti aderenti. Tutti i punti di un sottoinsieme sono aderenti per il sottoinsieme. Ogni punto o è di accumulazione o è isolato.

Se x_0 è aderente ad E, x_0 può essere un punto di E oppure no. Se x_0 è punto di accumulazione per E, in ogni bolla centrata in x_0 cadono inifiniti punti.

Proposition

 E° è aperto. E è aperto se e solo se $E=E^{\circ}$. E° è il più grande aperto contenuto in E. \overline{E} è chiuso. E è chiuso se e solo se $E=\overline{E}$. La chiusura di E è il più piccolo chiuso contenente E.

Proof per l'interno

Dimostriamo che E° è aperto. Sia $x_0 \in E^{\circ}$. un punto interno ad E, quindi esiste una bolla centrata in tale punto che è contenuta in E. Prendiamo un altro punto y in questa bolla. Possiamo costruire una inner bolla centrata in y con un raggio sufficientemente piccolo da rimanere nella bolla più grande. Quindi il punto y è a sua volta interno, quindi tutta la bolla centrata in x_0 è in E° e quindi è aperto.

Dimostriamo ora che se E è aperto allora $E=E^\circ$ (l'altra implicazione è ovvia). Per fare ciò dimostriamo che E° è il più grande aperto in E. Osserviamo che E° fa parte della famiglia degli aperti di X contenuti in E. Sia A un aperto contenuto in E. VOglio dimostrare che $A\subseteq E^\circ$. Sia $x_0\in A$. A èunione di bolle quindi esiste unr aggio tale che la bolla centrata in x_0 di tale raggio è contenuta in A che è contenuto in E. Quindi, x_0 è interno ad E e $x_0\in E^\circ$ e $A\subseteq E^\circ$. Supponiamo ora che E sia aperto. Allora E fa parte della famiglia degli aperti di E contenuti in E. Devo avere $E\subseteq E^\circ$. Dato che $E^\circ\subseteq E$ allora $E^\circ=E$.

Dire che un insieme è dentro in un altro significa dire che la sua chiusura coincide con l'insieme. Tipo la chiusura di Q è R quindi Q è denso in R.

Definizione Limitato

Se è contenuto in una bolla

Definizione Diametro

è il sup della metrica su tutte le coppie.

Definizione Ricoprimento

Sia E un sottoinsieme di uno spazio metrico X. Una famiglia

$$\{G_{\alpha}\}_{\alpha\in A}$$

è un ricoprimento apert di E se

$$E \subseteq \bigcup_{\alpha \in A} G_{\alpha}$$

Definizione Sottoricoprimento

Un Sottoricoprimento di

$$\{G_{\alpha}\}_{\alpha\in A}$$

è una sottofamiglia di G_{α} tale che continua a ricoprire. Cioè ne scarto alcuni ma deve comunque rimanere una copertura.

Definizione Compatto

Uno spazio metrico X è compatto se ogni ricoprimento aperto di E ammette un sottoricoprimento finito.

Ogni insieme finito è compatto.

Teorema

Sia X uno spazio metrico e E un sottoinsieme di X compatto.

- 1. E è limitato;
- 2. E è chiuso;
- 3. Ogni sottoinsieme infinito di E ha almeno un punto di accumulazione in E.

Proof

1. Consideriamo $\{B_1(x) \mid x \in E\}$ che è un ricoprimento aperto di E. Siccome E è compatto esiste un sottoricoprimento finito aperto di E, ossia $x_1, \ldots, x_n \in E$ tali che

$$E \subseteq \bigcup_{i=1}^{n} B_1(x_i)$$

Posto

$$R = 1 + \max_{i=1,...,n} d(x_i, x_1)$$

Allora la bolla di raggio R centrata in x_1 contiene E, quindi E è limitato.

2. Supponiamo che non sia chiuso. Allora esiste $y \in E'$ ma $y \notin E$. Vogliamo costruire un ricoprimento aperto di E che non ammette sottoricoprimento finito. Sia $r(x) = \frac{1}{2}d(x,y)$ per ogni $x \in X$. Se $x \in E$ allora r(x) > 0 perchè $y \notin E$. Abbiamo il ricoprimento

$$\{B_{r(x)}(x) \mid x \in E\}$$

Ma per la compattezza esisterebbe un sottoricoprimento finito, cioè $x_1, \ldots, x_n \in E$ tali che

$$E \subseteq \bigcup_{i=1}^{n} B_{r(x_i)}(x_i)$$

Sia ora $R = \min_{i=1,...,n} r(x_i)$. Allora R > 0 e la bolla $B_R(y)$ non interseca nessuna delle $B_{r(x_i)}(x_i)$, assurdo poiché y è punto di accumulazione.

3. Sia F un sottoinsieme infinito di E. Supponiamo che F non abbia punti di accumulazione in E. Allora ogni punto di E ha una bolla che interseca F in al più un punto. Queste formano un ricoprimento aperto di E. Ma se esistesse un sottoricoprimento finito, F sarebbe finito, assurdo.

Proposition

Sia $E \subseteq X$ compatto. Se $F \subseteq E$ è chiuso allora F è compatto.

Proof

Sia $\{G_{\alpha}\}_{{\alpha}\in A}$ un ricoprimento aperto di F. Dobbiamo aggiungere degli insiemi aperti per coprire il resto. Siccome F è chiuso, $X\setminus F$ è aperto. Quindi $\{G_{\alpha}\}_{{\alpha}\in A}\cup \{X\setminus F\}$ è un ricoprimento aperto di E. Per la compattezza di E esiste un sottoricoprimento finito, che escludendo $X\setminus F$ è un sottoricoprimento finito di F.

Se $F \subseteq X$ è chiuso, ed $E \subseteq X$ è compatto, allora $F \cap E$ è compatto.

Teorema Teorema dell'intersezione finita

Sia $\{E_{\alpha}\}_{{\alpha}\in A}$ una famiglia di compatti tale che ogni intersezione finita è non vuota. Allora

$$\bigcap_{\alpha \in A} E_{\alpha} \neq \emptyset$$

Proof

Supponiamo che l'intersezione sia vuota. Allora e sia $E_{\overline{\alpha}}$ un compatto fissato nella famiglia.

$$E_{\overline{\alpha}} \cap \left(\bigcap_{\alpha \neq \overline{\alpha}} E_{\alpha}\right) = \emptyset$$

$$\implies E_{\overline{\alpha}} \subseteq \left(\bigcap_{\alpha \neq \overline{\alpha}} E_{\alpha}\right)^{c} = \bigcup_{\alpha \neq \overline{\alpha}} E_{\alpha}^{c}$$

 $\{E^c_{\alpha}\}_{\alpha\neq\overline{\alpha}}$ è un ricoprimento aperto di $E_{\overline{\alpha}}$. Esistono quindi $\alpha_1,\ldots,\alpha_n\neq\overline{\alpha}$ tali che

$$E_{\overline{\alpha}} \subseteq \bigcup_{i=1}^{n} E_{\alpha_{i}}^{c} = \left(\bigcap_{i=1}^{n} E_{\alpha_{i}}\right)^{c}$$

$$\implies E_{\overline{\alpha}} \cap \left(\bigcap_{i=1}^{n} E_{\alpha_{i}}\right) = \emptyset$$

assurdo.

Corollario caso particolare

Sia $\{E_n\}_{n\in\mathbb{N}}$ una famiglia di compatti tale che

$$E_{n+1} \subseteq E_n$$

Allora

$$\bigcap_{n\in\mathbb{N}} E_n \neq \emptyset$$

Teorema di Heine-Borel

Sia $E \subseteq \mathbb{R}^n$ con la metrica euclidea. Allora E è compatto se e solo se E è chiuso e limitato.

Lemma

Sia $\{I_k\}_{k\in\mathbb{N}}$ una famiglia di intervalli $I_k=[a_k,b_k]$ tali che $I_k\supseteq I_{k+1}$. Allora

$$\bigcap_{k\in\mathbb{N}}I_k\neq\emptyset$$

Proof

Gli intervalli sono annidati, quindi a_k è crescente e b_k è decrescente e $a_k \leq b_k$. In particolare $a_k \leq b_i$. Consideriamo l'insieme $E = \{a_k \mid k \in \mathbb{N}\}$. E è limitato superiormente, e ammette supremum x. Per definizione $x \geq a_k$. Ma $a_k \leq b_i$ per tutte le i. Quindi, $x \leq b_i$ per ogni i. Allora

$$x \in I_n \implies x \in \bigcap I_k$$

Definizione

Siano $a, b \in \mathbb{R}^n$ con $a_i < b_i$ per ogni i = 1, ..., n. Un rettangolo chiuso è il prodotto cartesiano

$$[a_1,b_1] \times [a_2,b_2] \times \ldots \times [a_n,b_n]$$

che indichiamo con [a, b].

Lemma

Sia $\{R_k\}_{k\in\mathbb{N}}$ una famiglia di rettangoli chiusi tali che $R_k\supseteq R_{k+1}$ per ogni k. Allora

$$\bigcap_{k\in\mathbb{N}} R_k \neq \emptyset$$

Proof

Siccome

$$R_k = I_{k,1} \times I_{k,2} \times \ldots \times I_{k,n}$$

possiamo applicare il primo lemma e quindi

$$\exists y_i \in \bigcap_{k \in \mathbb{N}} I_{k,i}$$

Il punto $y = (y_1, \ldots, y_n)$ è in ogni R_k .

Lemma Lemma 3

In \mathbb{R}^n con la metrica euclidea ogni rettangolo è compatto.

Proof Lemma 3

Sia R = [a, b] un rettangolo e supponiamo che non sia compatto. Sia $\{G_{\alpha}\}_{{\alpha}\in A}$ un ricoprimento aperto di R che non ammette sottoricoprimento finito. Vogliamo adesso dimezzare ambo i lati (quindi n tagli). Abbiamo adesso 2^n rettangoli.

$$[a_i, b_i] = [a_i, c_i] \cup [c_i, b_i], \quad c_i = \frac{a_i + b_i}{2}$$

Il diametro di R è ||b-a||. Il diametro di ogni rettangolo ottenuto è la metà. Almeno uno di questi rettangoli ha la proprietà di non ammettere sottoricoprimento finito. Lo chiamiamo R_1 . Iterando il procedimento otteniamo una successione di rettangoli

$$R \supseteq R_1 \supseteq R_2 \supseteq \dots$$

con diametro che tende a zero e che non ammettono sottoricoprimento finito, il diametro di R^k è dato da $\frac{1}{2^k}||b-a||$. Per il lemma precedente esiste $x\in\bigcap_{k\in\mathbb{N}}R_k$. Siccome $R_k\subseteq R$ per ogni $k,\ x\in R$. Siccome $\{G_\alpha\}_{\alpha\in A}$ è un ricoprimento di R, esiste $\alpha_0\in A$ tale che $x\in G_{\alpha_0}$. G_{α_0} è aperto, quindi esiste r>0 tale che $B_r(x)\subseteq G_{\alpha_0}$. Scegliamo k sufficientemente grande tale che $2^{-k}||b-a||< r$. Ma il diametro di R_k è minore di r, quindi $R_k\subseteq B_r(x)$. Quindi $R_k\subseteq G_{\alpha_0}$, assurdo perchè R_k non ammette sottoricoprimento finito.

Proof Heine-Borel

Dobbiamo dimostrare solo che se E è chiuso e limitato allora è compatto. Siccome E è limitato esiste M tale che ||x|| < M per ogni $x \in E$. Quindi,

$$E \subseteq [-M, M] \times [-M, M] \times \ldots \times [-M, M] = R$$

 ${\cal E}$ è un chiuso contenuto in un compatto, quindi è compatto.

Teorema Teorema di Bolzano-Weierstrass

Ogni sottoinsieme infinito e limitato di \mathbb{R}^n ha almeno un punto di accumulazione.

Proof Teorema di Bolzano-Weierstrass

Definizione Insiemi separati

Sia (X,d) uno spazio metrico e $A,B\subseteq X$ due sottoinsiemi. Diciamo che A e B sono separati se

$$A \cap \overline{B} = \emptyset \wedge \overline{A} \cap B = \emptyset$$

Devono sicuramente essere disgiunti, ma non basta. Serve che nessun punto di uno dei due insiemi è punto di accumulazione dell'altro.

Definizione

Sia (X,d) uno spazio metrico e $E\subseteq X$. E è connesso se non può essere scritto come unione di due sottoinsiemi non vuoti e separati.

I sottoinsiemi connessi di $\mathbb R$ sono tutti e soli gli intervalli.

Uno spazio metrico è connesso se e solo se l'unico sottoinsieme non vuoto di X che è anche aperto e chiuso è X stesso. (Dimostrazione per esercizio).

 \mathbb{R}^n con la metrica euclidea è connesso. (Dimostrazione per esercizio non proprio banale).

1.2 Successioni in spazi metrici

Mettere la definizione di convergenza ma con $d(x_m, y) < \varepsilon$. Oppure $x_m \in B_{\varepsilon}(y)$.

In particolare la successione metrica converge se e solo se $d(x_m, y) \to 0$ secondo la convergenza reale.

Il limite è unico per proprietà di Hausdorff.

Proposition

Sia (X,d) uno spazio metrico e $E \subseteq X$ e sia y un punto di accumulazione per E. Allora esiste una successione $\{x_n\} \subseteq E \setminus \{y\}$ che converge ad y. In particolare, E è chiuso se e solo se per ogni successione $\{x_n\} \subseteq E$ che converge ad y allora $y \in E$.

Proof

Dato che $y \in E'$, $\forall x_m \in \mathbb{N}$, esiste x_m tale che $x_m \in B_{\frac{1}{m}}(y) \cap E$ e $x_m \neq y$. La successione così costruita converge ad y. Infatti, $d(x_m, y) < \frac{1}{m} \to 0$.

Proposition

Sia (X, d) uno spazio metrico e sia $\{x_n\}$ una successione convergente in X. Una condizione necessaria per la convergenza è che ogni sottosuccessione converga allo stesso limite. La condizione sufficiente è che ogni sottosuccessione ammetta una sottosuccessione che converge allo stesso limite.

Definizione Compattezza sequenziale

Uno spazio metrico X è sequenzialmente compatto se ogni successione in X a valori in E ammette una sottosuccessione convergente ad un punto di E.

Proposition Equivalenza compattezza

E is compact is and only if E is sequentially compact.

Questa c'è solo negli spazi metrici.

Proof

- (\Longrightarrow) Sia $\{x_n\}$ una successione in E. Consideriamo $F = \{x_n \mid n \in \mathbb{N}\}$. Se F è finito, esiste un elemento che compare infiniti volte e la successione costante converge a tale elemento. Se F è infinito, per la compattezza F ammette un punto di accumulazione, $y \in E$. Costruiamo una sottosuccessione che converga ad y. Scegliamo x_m tale che $d(x_m, y) < 1$. Scegliamo x_{m_2} tale che $d(x_{m_2}, y) < \frac{1}{2}$ e $m_2 > m_1$, e così via. La sottosuccessione così costruita converge ad y in quanto $d(x_{m_k}, y) < \frac{1}{k} \to 0$.
- (**⇐**) XXX

Ogni successione convergente è di Cauchy.

Per esempio con la metrica discreta una successione è convergente se e solo se è definitamente costante, che è equivalente ad essere di Cauchy, quindi è completo.

Nel caso dei razionali nei reali con metrica euclidea, consideriamo la radice di due che è un punto di accumulazione per i razionali. Esiste una successione di razionali che converge a radice di due, quindi è di Cauchy. Ma essa non può convergere in Q, altrimenti convergerebbe anche in R e avrebbe due limiti. Tuttavia è una successione di Cauchy in Q perché è convergente in R e quindi è di Cauchy in R. (La condizione è la medesima). Quindi Q non è completo.

Definizione Spazio completo

Uno spazio metrico (X, d) è completo se ogni successione di Cauchy in X converge ad un punto di X.

Teorema

 \mathbb{R}^n con la metrica euclidea è completo.

Proof

Sia $\{x_n\}$ una successione di Cauchy in R^n . Scriviamo $E_n = \{x_k \mid k \geq n\}$. Notiamo che $E_n \supseteq E_{n+1}$. Ponendo la chiusura $\overline{E_n} \supseteq \overline{E_{n+1}}$. Inoltre, E_n è limitato e diam $E_n \to 0$. Infatti, dato $\varepsilon > 0$ esiste N tale che per ogni $m, n \geq N$ $d(x_n, x_m) < \varepsilon$. Notiamo inoltre che

$$diam E_n = \sup\{d(x_m, x_k)\} < \varepsilon$$

Dimostrazione per esercizio vale che diam $F = \text{diam}\overline{F}$. Quindi, diam $\overline{E_n} \to 0$. Adesso $\{\overline{E_n}\}$ è una successione di compatti in quanto chiusi e limitati, annidati. Quindi

$$E \triangleq \bigcap_{n \in \mathbb{N}} \overline{E_n} \neq \emptyset$$

Siccome diamE=0 o è vuoto o contiene un solo punto, quindi contiene un solo punto $E=\{y\}$. Mostriamo che $x_n \to y$. Abbiamo $d(x_n,y) \le \text{diam}\overline{E_n} \to 0$.

Teorema

Sia (X, d) uno spazio metrico compatto. Allora X è completo.

Proof

Sia $\{x_n\}$ una successione di Cauchy in X. Siccome è compatto è compatto per successioni, quindi esiste una sottosuccessione $\{x_{n_k}\}$ che converge ad un punto $y \in X$. Mostriamo che $x_n \to y$. Dato

 $\varepsilon > 0$ esiste N_0 tale che per ogni $m, n \geq N_0$ $d(x_n, x_m) < \frac{1}{2}\varepsilon$. Per la convergenza di $\{x_{n_k}\}$ esiste K tale che per ogni $k \geq K$ $d(x_{n_k}, y) < \frac{1}{2}\varepsilon$. Scegliamo $\overline{N} = \max\{N_0, n_K\}$. Allora per ogni $n \geq \overline{N}$ si ha

$$d(x_n, y) \le d(x_n, x_{n_K}) + d(x_{n_K}, y) < \frac{1}{2}\varepsilon + \frac{1}{2}\varepsilon = \varepsilon$$

Sia X uno spazio metrico completo, $Y \subseteq X$. Y è completo se e solo se Y è chiuso in X.

Teorema

E sequenzialmente comapt
to implica E compatto.

Proof

Sia $\{G_{\alpha}\}_{{\alpha}\in A}$ un ricoprimento aperto di E. Esiste $\delta>0$ tale che $\forall x\in E$ esiste $\overline{\alpha}$ tale che $B_{\delta}(x)\subseteq G_{\overline{\alpha}}$.

1. $claim 1: \forall m \in \mathbb{N}$, esiste x_m tale che $B_{1/m}(x_m)$ non è sottoinsieme di G_{α} per tutte le α . $\{x_m\}$ è una successione in E e quindi posso estrarre una sottosuccessione convrgente $x_{m_k} \to p \in E$. Esiste $\hat{\alpha}$ tale che $p \in G_{\hat{\alpha}}$. $G_{\hat{\alpha}}$ è aperto e quindi esiste una $\varepsilon > 0$ tale che $B_{\varepsilon}(p) \in G_{\hat{\alpha}}$. Ma $x_{m_k} \to p$ quindi con k sufficientemente grande

$$B_{1/m_k}(x_{m_k}) \subseteq B_{\varepsilon}(p) \subseteq G_{\hat{\alpha}}$$

che è assurdo lightning.

2. $claim\ 2$: E è contenuto nel'unione di un numero finito di bolle di raggio δ centrate in punto di E. Per assurdo, sia $x_1 \in E$. Sicuramente $B_\delta(x_1)$ non ricopre E quindi esiste $x_2 \in E \setminus B_\delta(x_1)$. Ma assieme $B_\delta(x_1) \cup B_\delta(x_2)$ non ricoprono E, quindi esiste un $x_3 \in E \setminus (B_\delta(x_1) \cup B_\delta(x_2))$ e così via. La successione $\{x_m\}$ deve ammettere una sottosuccessione convergente. Ma $d(x_i, x_j) \geq \delta$ se $i \neq j$ quindi la successione $\{x_m\}$ non è di Cauchy Lightning. Quindi $E \subseteq B_\delta(x_1) \cup B_\delta(x_2) \cup \cdots$.

In realtà abbiamo mostrato anche la terza.

Teorema

Sia X uno spazio metrico. Sono equivalenti:

- 1. X è compatto;
- 2. X è sequenzialmente compatto;
- 3. limit point compact: ogni sottoinsieme infinito di X ha almeno un punto di accumulazione.

Solo negli spazi metrici.

1.3 Funzioni

Definizione

Siano $(X_1, d_1), (X_2, d_2)$ due spazi metrici e sia $E \subseteq X_1$. Sia $f: E \to X_2$ e $p \in E'$. Diciamo che $l \in X_2$ è limite di f(x) per $x \to p$ e diciamo

$$\forall \varepsilon > 0, \exists \delta > 0 \mid x \in E \land 0 < d_1(x_1, p) < \delta \implies d_2(f(x), l) < \varepsilon$$

Equivalentemente $\forall \varepsilon > 0$ esiste $\delta > 0$ tale che

$$f((B_{\delta}(p) \cap E) \setminus \{p\}) \subseteq B_{\varepsilon}(l)$$

Proposition

Sia $f: E \subseteq X_1 \to X_2$. Allora $f(x) \to l$ per $x \to p$ se e solo se $f(x_n) = l$ per ogni successione $\{x_n\}$ tale che $x_n \in E$ e $x_n \neq p$ per tutte le n e $x_n \to p$.

Valgono i medesimi teoremi tipo l'unicità del limite e i teoremi di permanenza del segno, confronto etc.

Proposition

Sia $f \colon E \subseteq X \to \mathbb{R}^n$ per n > 1. Allora

$$f(x) \to l \iff f_i(x) \to l_i$$

per $x \to p$.

Proof Sketch

Conderiamo la norma per tutte le i

$$|f_i(x) - l_i| \le ||f(x) - l|| \le \sum_k |f_k(x) - l_k|$$

Definizione Continuità

Siano $(X_1, d_1), (X_2, d_2)$ due spazi metrici, $f: E \subseteq X_1 \to X_2, p \in E$. Diciamo che f è continua in p se $\forall \varepsilon > 0$ esiste $\delta > 0$ tale che

$$\forall x \in E \cap B_{\delta}(p) \implies f(x) \in B_{\varepsilon}((f(p)))$$

Euivalentemente $\forall \varepsilon > 0$ esiste $\delta > 0$ tale che $x \in E$ e $d_1(x, p) < \delta$ implica che $d_2(f(x), f(p)) < \varepsilon$. Oppure ancora $(f(B_\delta(p) \cap E)) \subseteq B_\varepsilon(f(p))$.

Se p è un punto isolato di E allora $\exists r > 0$ tale che $B_r(p) \cap E = \{p\}$. Scegliendo $\delta \leq r$ la definizione di continuità è automaticamente soddisfatta. Se p non è i solato, allora è un punto di accumulazione per E. In questo caso f è continua in p e vale che $f(x) \to f(p)$ per $x \to p$.

Proposition

f è continua in p se e solo se

$$\lim_{x \to p} f(x_n) = f(p)$$

per ogni successione $\{x_n\}$ tale che $x_n \in E$ per tutte le $n \in x_n \to p$.

Definizione

Sia $f: E \subseteq X_1 \to X_2$. Diciamo che f è continua nell'insieme E se f è continua in ogni punto di E.

Proposition

Siano $(X_1, d_1), (X_2, d_2)$ spazi metrici e sia $f: X_1 \to X_2$. Allora f è continua in X se e solo se $f^{-1}(V)$ è aperto in X_1 per tutti i V aperti in X_2 .

Proof

(\Longrightarrow) Sia V un aperto di X_2 . Se $f^{-1}(V) = \emptyset$ in questo caso abbiamo finito. Altrimenti, sia $p \in f^{-1}(V)$, cioè $f(p) \in V$. Essendo V aperto, riesco a trovare

$$B_{\varepsilon}(f(p)) \in V$$

Ma f è continua quindi riesco anche a trovare $\delta > 0$ tale che

$$f(B_{\delta}(p)) \subseteq B_{\varepsilon}(f(p))$$

Quindi $B_{\delta}(p) \subseteq f^{-1}(V)$ quindi p è un punto interno a $f^{-1}(V)$. Per l'arbitrarietà di p segue che $f^{-1}(V)$ è aperto.

(\Leftarrow) Sia $p \in X$ e dimostriamo che f è continua in p. Sia $\varepsilon > 0$ fissato. $B_{\varepsilon}(f(p))$ è un aperto di X_2 . $f^{-1}(B_{\varepsilon}(f(p)))$ è un aperto di X_1 e $p \in f^{-1}(B_{\varepsilon}(f(p)))$ e quindi esiste $\delta > 0$ tale che

$$B_{\delta}(p) \subseteq f^{-1}(B_{\varepsilon}(f(p)))$$

cioè

$$f(B_{\varepsilon}(p)) \subset B_{\varepsilon}(f(p))$$

che è la definizione di continuità.

Siccome $f^{-1}(E^c) = (f^{-1}(E))^c$ allora f è continua se e solo se $f^{-1}(C)$ è chiuso in X_1 per ogni chiuso in $C \in X_2$. Molto utile.

In generale le funzioni continue non mandano aperti in aperti. Per esempio $f: \mathbb{R} \to \mathbb{R}$ data da $x \to x^2$. Abbiamo che

$$f((-1,1)) = [0,1)$$

Definizione Funzione aperta

Una funzione viene detta aperta se f(U) è aperto in X_2 per tutti gli insiemi U aperto om X_1 . Analogamente funzione chiusa.

Sia $f:(X,d)\to\mathbb{R}^n$ con n>1 è continua se e solo se tutte le sue componenti sono continue.

Proposition

Siano $(X_1, d_1), (X_2, d_2)$ spazi metrici, $f: X_1 \to X_2$ una funzione continua. Se X_1 è compatto, allora $f(X_1)$ è compatto.

Proof

Sia $\{G_{\alpha}\}_{{\alpha}\in A}$ un ricoprimento aperto di $f(X_1)$. Consideriamo $\{f^{-1}(G_{\alpha})\}_{{\alpha}\in A}$ che sono degli aperti. Queste preimmagini sono un ricoprimento di X_1 , che è compatto e quindi posso estrarre un sottoricoprimento finito $f^{-1}(G_{\alpha_1}), \dots, f^{-1}(G_{\alpha_n})$. Vogliamo mostrare che $\{G_{\alpha_1}, \dots, G_{\alpha_n}\}$ sono un ricoprimento di $f(X_1)$.

$$f(X_1) = f\left(\bigcup_{i=1}^n f^{-1}(G_{\alpha_i})\right) = \bigcup_{i=1}^n f\left(f^{-1}(G_{\alpha_i})\right) \subseteq \bigcup_{i=1}^n G_{\alpha_i}$$

Teorema Teorema di Weierstrass

Sia (X, d) uno spazio metrico compatto e sia $f: X \to \mathbb{R}$ una funzione continua. Allora, $\exists x_1, x_2 \in X$ tali che

$$f(x_1) \le f(x) \le f(x_2), \quad \forall x \in X$$

cioè f possiede massimo e minimo assoluto.

Proof Teorema di Weierstrass

f(X) è compatto in \mathbb{R} , quindi è chiuso e limitato. Siccome <u>limitato</u>, f(X) ammette infimum e supremum reali. Siccome inf f(x) e sup f(x) appartengono a $\overline{f(x)}$ e f(x) è chiuso, appartengono allora ad f(X) e quindi sono massimi e minimi.

Teorema Teorema da compatto ad Hausdorff

Siano $(X_1, d_1), (X_2, d_2)$ spazi metrici con X_1 compatto e $f: X_1 \to X_2$ continua. Allora, f è chiusa.

In realtà questo funziona con domini compatti e codomini di Hausdorff.

Proof Teorema da compatto ad Hausdorff

Sia C un chiuso di X_1 . Voglio dimostrare che f(C) è un chiuso di X_2 . Sappiamo che C è chiuso in un compatto, quindi è compatto. La funzione è continua e quindi f(C) è compatto. Siccome i compatti sono chiusi allora è chiuso.

Corollario

Sia $f:(X_1,d_1)\to (X_2,d_2)$ continua, X_1 compatto e f biunivoca. Allora, f^{-1} è continua.

Proof

Dobbiamo mostrare che $(f^{-1})^{-1}(C)$ è chiuso per ogni C chiuso di X_2 . Ma questo coincide con f(C) che è chiusa per il teroema da compatto ad Hausdorff.

Teorema

Sia $f:(X_1,d_1)\to (X_2,d_2)$ continua e sia $E\subseteq X$ connesso. Allora f(E) è connesso.

Proof

Supponiamo che f(E) non sia connesso. Esistono quindi due sottoinsiemi non vuoti disgiunti e separati tali che

$$f(E) = A \cup B$$

Poniamo $F = f^{-1}(A) \cap E$ e $G = f^{-1}(B) \cap E$. Sicuramente $F, G \neq \emptyset$ e $E = F \cup G$. Vogliamo mostrare che E e G sono separati. Siccome $A \subseteq \overline{A}$ vale anche $f^{-1}(A) \subseteq f^{-1}(\overline{\overline{A}})$. L'applicazione f è continua e la chiusura di A è un chiuso. Quindi la preimmagine del chiuso \overline{A} è un chiuso. Consideriamo ora

$$\overline{F} \subseteq \overline{f^{-1}(A)} = f^{-1}(\overline{A})$$

perché f è continua se \overline{A} è chiuso. Quindi $\overline{F} \subseteq f^{-1}(\overline{A})$ che implica $f(\overline{F}) \subseteq \overline{A}$. D'altro canto $f(G) \subseteq B$ e $\overline{A} \cap B \neq 0$, e quindi $\overline{F} \cap G \neq 0$ perché altrimenti vi sarebbe un elemento sia in \overline{A} che in B. Dovrebbe essere $f(x) \in \overline{A}$ e $f(x) \in B$ lightinng. Analogamente si dimostra che $F \cap \overline{G} = \emptyset$ cioè abbiamo scritto E come unione di due sottoinsiemi non vuoti e separati. Ma E è connesso lightning.

Definizione

Siano $(X_1,d_1),(X_2,d_2)$ spazi metrici e $f\colon X_1\to X_2$. Allora f è uniformemente continua se $\forall \varepsilon>0$, esiste $\delta>0$ tale che $\forall x,y\in X_1$

$$d_1(x,y) < \delta \implies d_2(f(x),f(y)) < \varepsilon$$

Teorema Theorema di Heine-Cantor

Siano $(X_1,d_1),(X_2,d_2)$ spazi metrici e $f\colon (X_1,d_1)\to (X_2,d_2)$ continua e X_1 compatto. Alorra, f è uniformemente continua.

La dimostrazione è la medesima rispetto al caso banale.

Definizione Funzione di Lipschitz

Siano $(X_1,d_1),(X_2,d_2)$ spazi metrici, $f\colon X_1\to X_2$. Diciamo che f è lipschitz-continua o lipschitziana se $\exists \alpha>0$ tale che

$$d_2(f(x), f(y)) \le \alpha d_1(x, y)$$

per tutte le $x, y \in X_1$.

Proposition

Se f è Lipschitz-continua, allora è uniformemente continua.

Definizione

Siano $(X_1, d_1), (X_2, d_2)$ spazi metrici e $f: (X_1, d_1) \to (X_2, d_2)$. Diciamo che f è una contrazione se $f \in \text{Lip}_{\alpha}(X_1, X_2)$ con $\alpha < 1$.

Se il supremum è finito, allora questa è la miglior costante di Lipschitz (in generale)

$$\sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|}$$

Esempio

Consideriamo $f: \mathbb{R} \to \mathbb{R}$ data da $f(x) = x^2$. Non è di lipschitz inquanto non è uniformemente continua. Per mostrarlo possiamo dire

$$|f(x) - f(y)| = |x^2 - y^2| = |x + y| \cdot |x - y|$$

Se restringessimo il dominio di questa funzione ad un intervallo limitato, allora sarebbe di Lipschitz, per il supremum.

Proposition

Sia $f: I \subseteq \mathbb{R} \to \mathbb{R}$ differenziabile. Allora, $f \in \text{Lip}_{\alpha}(I, \mathbb{R})$ se e solo se $|f'(x)| \leq \alpha$ per tutte le x.

Proof

(⇒) Cominciamo con

$$|f'(x)| = \left| \lim_{t \to 0} \frac{f(x+t) - f(x)}{t} \right|$$

$$= \lim_{t \to 0} \left| \frac{f(x+t) - f(x)}{t} \right|$$

$$= \lim_{t \to 0} \frac{|f(x+t) - f(x)|}{|t|}$$

$$\leq \lim_{t \to 0} \frac{\alpha |x + t - x|}{|t|} = \alpha$$

Possiamo togliere il limite dal modulo in quanto il modulo è una funzione continua.

 (\Leftarrow) Per il teorema di Lagrange esiste $\theta \in (\min\{x,y\}, \max\{x,y\})$

$$f(x) - f(y) = f'(\theta)(x - y)$$
$$|f(x) - f(y)| = |f'(\theta)| \cdot |x - y|$$
$$\leq \alpha |x - y|$$

Esercizio

Per quali $a \leq b$ la funzione $f(t) = 1 + t - \arctan(t)$ è una contradizione in [a, b]. Stabiliamo quindi se la derivata è limitata

$$f'(t) = 1 + \frac{1}{1+t^2} = \frac{t^2}{1+t^2}$$

notiamo quindi che $0 \le f'(t) \le 1$. Quindi è sicuramente lipschitziana. Notiamo allora che

$$\sup_{\mathbb{R}} |f'(t)| = 1 = \alpha$$

Quindi per far sì che $\alpha < 1$ dobbiamo limitare il dominio ad un intervallo limitato. Quindi $-\infty < a \le b < \infty$. Porta l'intervallo [a,b] in sè? Siccome la funzione è crescente porta intervalli a intervalli di estremi f(a) e f(b). Mi basta quindi imporre che $f(a) \ge a$ e $f(b) \le b$. Abbiamo quindi

$$\begin{cases} 1+a-\arctan a\geq a\\ 1+b-\arctan b\leq b \end{cases} = \begin{cases} \arctan a\leq 1\\ \arctan b\geq 1 \end{cases}$$

e quindi $a \le \tan 1 \le b$. Notiamo che $f(\tan 1) = \tan 1$ quindi è un punto fisso per il teorema delle contrazioni.

Esempio

Sia $v \in \mathbb{R}^n$ e consideriamo $f : \mathbb{R}^n \to \mathbb{R}$ data da $f(x) = v \cdot x$. Dobbiamo studiare $|f(x) - f(y)| = |v \cdot x - v \cdot y|$ usando la bilinearità del prodotto scalare ottengo $|v \cdot (x - y)|$. Per Cacuhy-Schwarz

$$|v \cdot (x - y)| \le ||v|| \cdot ||x - y||$$

che è quindi di Lipschitz.

Teorema Teorema di Banach-Cacciopoli o delle contrazioni

Sia (X,d) uno spazio metrico completo e sia $f\colon X\to X$ una contrazione. Allora $\exists_{=1}\,x\in X$ tale che f(x)=x.

Le ipotesi sono necessarie. Togliamo per esempio la completezza e consideriamo quindi $X=(0,+\infty)$ con la contrazione f(x)=x/2. Questa contrazione non ha punti fissi. Togliamo invece l'ipotesi che sia una contrazione. Richiediamo solamente che sia una contrazione debole, cioè

$$d_2(f(x), f(y)) \le f_1(x, y)$$

Consideriamo $X = [0, +\infty)$ e prendiamo $f(t) = t + e^{-t}$. La derivata è $f'(t) = 1 - e^{-t}$ che è nulla nell'origine e poi tende ad 1 dal sotto. Chiaramente non ci sono punti fissi in quanto f(t) = t è come dire $e^{-t} = 0$.

Proof

Cominciamo mostrando l'esistenza del punto fisso. Sia $x_0 \in X$ un punto fissato e consideriamo la successione $x_{n+1} = f(x_n)$.

1. Mostriamo che $\{x_n\}$ è di Cauchy, quindi siccome lo spazio è completo converge. Dobbiamo mostrare che $d(x_n, x_m)$ tende a zero quando n, m crescono. Consideriamo inizialmente

$$d(x_{n+1}, x_n) = d(f(x_n), f(x - n - 1)) \le \alpha d(x_n, x_{n-1})$$

= $\alpha d(f(x_{n-1}), f(x_{n-2})) \le \alpha^2 d(x_{n-1}, x_{n-2})$
 $\le \alpha^n d(x_1, x_0)$

Calcoliamo ora la distanza generica e usiamo la disuguaglianza triangolare ripetutamente per ogni step

$$d(x_{n+k}, d_n) \leq \sum_{i=0}^{k-1} d(x_{n+k-i}, d_{n+k-i-1})$$

$$\leq d(x_1, x_0) \sum_{i=0}^{k-1} \alpha^{n+k-i}$$

$$= \alpha^n d(x_1, x_0) \sum_{i=0}^{k-1} \alpha^{n+k-i-1}$$

$$= \alpha^n \frac{\alpha^k - 1}{\alpha - 1} d(x_1, x_0)$$

$$= \frac{\alpha^n}{1 - \alpha} d(x_1, x_0) \to 0$$

Per sbarazzarci di k (siccome vogliamo k arbitrario e il ε nella definizione di Cauchy deve essere uniforme rispetto ad esso) maggioriamo la somma parziale della serie geometrica con il valore della serie geometrica. Siccome $0 < \alpha < 1$ il termine non esplode e la serie geometrica converge.

2. Detto x il limite di $\{x_n\}$ mostriamo che è un punto fisso di f. Consideriamo il limite per $n \to \infty$

$$\lim_{n \to \infty} f(x_n) = f\left(\lim_{n \to \infty} x_n\right) = f(x)$$

perché f è continua.

Mostriamo ora l'unicità del punto. Supponiamo che x, y siano due punti fissi. Vogliamo mostrare che d(x, y) = 0. Abbiamo

$$d(x,y) = d(f(x), f(y)) \le \alpha d(x,y)(1-\alpha)d(x,y)$$
 ≤ 0

siccome $1 - \alpha > 0$ ciò succede solo se d(x, y) = 0.

Abbiamo notato che

$$d(x_{n+k}, x_n) \le \frac{\alpha^n}{1 - \alpha} d(x_1, x_0)$$

Con $k \to \infty$ otteniamo

$$d(x, x_n) \le \frac{\alpha^n}{1 - \alpha} d(x_1, x_0)$$

quindi tende al punto fisso in maniera esponenziale.

Denotiamo $f^n = f \circ f \cdots f$. Se f è una contrazione, una qualsiasi sua iterazione è anch'essa una contrazione.

$$d(f(f(x)), f(f(y))) \le \alpha d(f(x), f(y)) \le \alpha^2 d(x, y)$$

Per induzione segue il resto. In generale la costante è α^n . Ci chiediamo se nel caso in cui f non sia una contrazione, una sua iterata lo possa essere.

Esempio

Per esempio $f(x) = \cos x$, che non è una contrazione in quanto il supremum della derivata è 1. Invece, $\cos(\cos(x))$ ha derivata

$$\sin(\cos(x)) \cdot \sin$$

Il suo modulo è dato da

$$|\sin(\cos(x))| \cdot |\sin x| \le \sin(1) < 1$$

Il secondo termine può solamente essere maggiorato da 1, mentre il secondo, siccome $-1 \le \cos(x) \le 1$, può essere maggiorato da sin 1. Quindi è una contrazione.

Con questo possiamo per esempio mostrare che il coseno ha un punto fisso, siccome una sua iterata è una contrazione.

Corollario Indebolimento del teorema delle contrazioni: teorema delle iterate contrazioni

Sia (X, d) uno spazio metrico completo e sia $f: X \to X$ un'applicazione tale che $\exists n \in \mathbb{N}$ tale che f^n sia una contrazione. Allora $\exists_{=1} x \in X$ tale che f(x) = x.

Proof

Mostriamo che i punti fissi di f (che sono uno solo) sono i punti fissi di f^n . Sia x un punto fisso di f. Allora $f^n(x) = f(f(\cdots(x))) = f(x) = x$. Quindi tutti i punti fissi di f sono anche punti fissi di f^n . Sia ora x tale che $f^n(x) = x$. Componendo otteniamo

$$f(f^n(x)) = f(x)$$
$$f^n(f(x)) = f(x)$$

quindi f(x) è un punto fisso di f^n , ma siccome f è una contrazione ha solo un punto fisso, quindi coincidono f(x) = x. Quindi tutti i punti fissi di f^n sono anche punti fissi di f.

Parametrizziamo ora la funzione

Consideriamo $T\colon X\times Y\to X$ come operatore parametrizzato dai valori di Y. Fissato y imponiamo che $T(-,y)\colon X\to X$ sia una contrazione. Per tutte le y esiste un solo $x\in X$ tale che T(x,y)=x. Data la dipendenza funzionale $x=\varphi(y)$ vogliamo capire come il punto fisso dipende dal parametro. In particolare, vogliamo mostrare che φ è continua sotto alcune ipotesi.

Teorema di dipendenza del punto tfisso del parametro

Sia X uno spazio metrico completo e sia Y uno spazio metrico (topologico). Sia $T: X \times Y \to X$ tale che $\exists \alpha < 1$ tale che $\forall y \in Y, T(-,y)$ è in $\operatorname{Lip}_{\alpha}(X)$. (α deve essere uniforme rispetto a y). Sia $y_0 \in Y$ tale che $\forall x \in X, T(x,y)$ sia continua in y_0 . Allora f è continua in y_0 .

Proof

Vogliamo mostrare che $d(f(y), f(y_0)) \to 0$ se $y \to y_0$. Vogliamo stimare $d(f(y), f(y_0))$ con f(y) = T(f(y), y). Sia x = f(y) e $f(y_0) = x_0$. Allora

$$d(f(y), f(y_0)) = d(T(x, y), T(x_0, y_0))$$

Usando la disuguaglianza triangolare

$$d(T(f(y_0), y_0)) \le d(T(f(y), y), T(f(y_0), y)) + d(T(f(y_0), y), T(f(y_0), y_0))$$

$$\le \alpha d(f(y), f(y_0)) + d(T(f(y_0), y), T(f(y_0), y_0))$$

$$(1 - \alpha)d(f(y), f(y_0)) \le d(T(f(y_0), y), T(f(y_0), y_0)) \to 0$$

La costante è positiva e indipendente da y. La funzione $T(f(y_0), -)$ è continua in y.

Lemma Sugli spazi normati

$$|||y|| - ||x||| \le ||y - x||$$

Proof

Sia y = x + (y - x). Allora

$$||y|| = ||x + (y - x)|| \le ||x|| + ||y - x||$$

Scambiando i ruoli di x e y si ottiene la proposizione.

Ciò mostra che la norma è lipschitz continua.

Ogni spazio normato è uno spazio metrico, ma non il viceversa.

Definizione Spazio di Banach

Uno spazio di Banach è uno spazio normato completo rispetto alla norma.

Definizione Equivalenza di norme

Diciamo che due norme $||\cdot||, |\cdot|$ sono equivalenti se $\exists 0 < \alpha \leq \beta$ tale che

$$\alpha |x| \le ||x|| \le \beta |x|, \quad \forall x \in X$$

Questa è una relazione di equivalenza.

Teorema Equivalenza di norme reali

Tutte le norme in \mathbb{R}^n sono equivalenti.

Proof

Basta mostrare che una norma $||\cdot||$ questa è equivalente alla $||\cdot||_2$. Dobbiamo trovare α, β tale che

$$\alpha ||x||_2 \le ||x|| \le \beta ||x||_2, \quad \forall x \in \mathbb{R}^n$$

Consideriamo la base canonica $\{e_1, \dots, e_n\}$ che è finito-dimensionale e quindi $x=(x_1, \dots, x_n)$.

$$||x|| = \left| \left| \sum_{i=1}^{n} x_{i} \cdot e_{i} \right| \right| \leq \sum_{i=1}^{n} |x_{1}| \cdot ||e_{i}||$$

$$\leq \left(n \max \bigcup_{i=1}^{n} \{ ||e_{i}|| \} \right) \left(\sum_{i=1}^{n} |x_{i}| \right)$$

$$\leq \left(n \max \bigcup_{i=1}^{n} \{ ||e_{i}|| \} \right) ||x||_{1} \leq \underbrace{\left(n \max \bigcup_{i=1}^{n} \{ ||e_{i}|| \} \right)}_{\beta} ||x||_{2}$$

Questo ci dice anche che $||\cdot||$ è continua rispetto alla topologia indotta da $||\cdot||_2$, e pure lipschitziana. Dobbiamo ora dimostrare l'altra metà della disuguaglianza e trovare α . Poniamo α in funzione dei vettori

$$\alpha = \inf_{||x||_2 = 1} ||x||$$

Mostriamo che $\alpha > 0$. Una volta fatto questo, possiam ottenere che la definizione di α dice che $||x||_2 = 1 \implies ||x|| \ge \alpha$. Voglio dimostrare che $||x|| \ge \alpha ||x||_2$ per tutte le $x \in \mathbb{R}^n$. Se x = 0 la disuguaglianza è soddisfstta. Altrimnti, normalizziamo $z = x/||x||_2$. Usando l'omogeneità assoluta

$$||z||_2 = \left| \left| \frac{x}{||x||_2} \right| \right| = \frac{1}{||x||_2} ||x||_2 \implies ||z||_2 = 1$$

Quindi $||z|| \ge \alpha$ and furthermore

$$\left| \left| \frac{x}{||x||_2} \right| \right| \ge \alpha \implies ||x|| \ge \alpha ||x||_2$$

We now need to show that α is positive. Siccome le normi sono non-negative, alla peggio sono nulle. In realtà α è un minimo

$$\alpha = \min_{||x||_2 = 1} ||x||$$

since the norm is continuous with the respect to the topology induced by $||\cdot||_2$. The set over which we are taking the minimum is clearly closed and bounded. Siccome siamo nella topologia reale con norma euclidea è quindi anche compatto. Per Weierstrass, α è un minimo. Quindi deve essere $\alpha > 0$. Se fosse $\alpha = 0$ allora esisterebbe \hat{x} tale che $||\hat{x}||_2 = 1$ e $||\hat{x}|| = 0$, che è assurdo lightning.

2 Operatori lineari fra spazi vettoriali

Lo spazio $\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m) \cong \mathrm{Mat}_{m \times n}(\mathbb{R}).$

Studiamo la continuità degli operatori lineari in spazi normati.

Proposition

Ogni $A \in \mathcal{L}(\mathbb{R}^n, \mathbb{R}^m)$ è continua rispetto alla topologia indotta dalla norma (qualsiasi visto che sono equivalenti in \mathbb{R}^n).

Proof

1. Mostriamo che la continuità dell'operatore in un singolo punto, come l'origine, implica la continuità di A in tutto \mathbb{R}^n . Questo è un fatto generale. Abbiamo quindi che se $\{x_n\} \to 0$ allora $\{Ax_n\} \to A0 = 0$. La continuità generale è data dal fatto che se $\{y_n\} \to x$ allora $\{Ay_n\} \to Ax$. Ma $\{Ay_n\} \to Ax$ se e solo se $\{Ay_m - Ax\} \to 0$ cioè $\{A(y_m - x)\} \to 0$ e per linearità $\{y_m - x\}$ è una successione che tende a zero, quindi A è continuo ovunque. Inoltre, per la continuità uniforme possiamo msotrare che $\forall \varepsilon > 0, \exists \delta > 0$ tale che

$$||y - x|| < \delta \implies ||Ay - Ax|| < \varepsilon$$

Ma ||Ay - Ax|| = ||A(x - y)||. Poniamo quindi z = y - x. Dobbiamo mostrare che se $||z|| < \delta$ allora $||Az|| < \varepsilon$. Ma questa è la continuità nell'origine che stiamo presupponendo.

2. Mostriamo ora la continuità nell'origine. Usiamo il fatto che \mathbb{R}^n ha dimensione finita. Sia $x=(x_1,\cdots,x_n)$ secondo la base canonica (e_1,\cdots,e_n) . Calcolo usando la disuguaglianza triangolare

$$||Ax|| = \left\| \sum_{i=1}^{n} x_i A e_i \right\| \le \sum_{i=1}^{n} |x_i| \cdot ||Ae_i||$$

$$\le C \sum_{i=1}^{n} |x_i|_1, \quad C = \max \bigcup_{i=1}^{n} \{||Ae_i||\}$$

Ciò dimostra quindi che la funzione è Lipschitz-continua.

Nel passo secondo abbiamo usato il fatto che lo spazio fosse finitamente generato (il dominio). In generale, con $A: X \to Y$ è un operatore lineare fra spazi normati qualunque, on è detto che A sia continuo.

Esempio Controesempio

Consideriamo lo spazio delle funzioni $f: \mathbb{R} \to \mathbb{R}$ limitate, in \mathcal{C}^1 e con derivata limitata $\mathcal{BC}^1(\mathbb{R})$. Come secondo spazio prendiamo delle funzioni continue e limitate $f: \mathbb{R} \to \mathbb{R}$, $\mathcal{BC}(\mathbb{R})$. Consideriamo quindi l'operatore della derivata $\mathcal{BC}^1(\mathbb{R}) \to \mathcal{BC}(\mathbb{R})$. Siccome questi non sono spazi finitamente generati, dobbiamo scegliere delle norme. Scegliamo come norma sia nel dominio che nel codominio $||\cdot||_{\infty}$, che ha senso siccome le funzioni sono limitate. Mostriamo quindi che l'operatore lineare non è continuo. Scegliamo l'origine. Vogliamo quindi trovare $\{f_n\} \to 0$ ma tale che $\{f'_n\}$ non tende a zero. Per farlo prendiamo una funzione oscillante che si schiaccia sull'ascisse, e quindi la sua derivata non si schiaccia come la funzione. Prendiamo

$$f_n(x) = \frac{1}{n}\sin(nx)$$

Abbiamo la norma

$$||f||_{\infty} = \sup_{\mathbb{R}} \frac{1}{n} |\sin(nx)| = \frac{1}{n}$$

Mentre la norma della derivata

$$||f'||_{\infty} = \sup_{\mathbb{R}} |\cos(nx)| = 1$$

Andiamo a definire una norma speciale su questo spazio, la norma operatoriale.

Definizione Norma operatoriale

$$||A||_* = \sup_{||x|| \le 1} ||Ax||$$

Proposition

Norma operatoriale è una norma.

Mostriamo che la norma è ben definita, e che questo è un numero reale. Infatti, $||A||_* < +\infty$, siccome l'insieme del supremum è chiuso e limitato e, quindi, compatto, e la funzione è continua allora il supremum è un massimo. Mostriamo che il massimo si ottiene sulla frontiera della bolla.

Proof

Mostriamo le due disuguaglianze. Il fatto che $||A||_* \ge \max ||Ax||$ è banale, infatti $\{x \mid ||x|| = 1\}$ è un sottoinsieme di $\{x \mid ||x|| \le 1\}$. D'altra parte se il massimo è ottenuto per x = 0 allora il max è 0 e quindi Ax = 0 sempre, e la disuguaglianza è banalmente soddisfatta. Supponiamo ora che il massimo sia ottenuto in un punto non nullo \hat{x} , possiamo normalizzare e ottenere norma unitaria.

$$\begin{split} ||A\hat{x}|| &= \left| \left| A \left(||\hat{x}|| \frac{\hat{x}}{||\hat{x}||} \right) \right| \right| = \left| \left| ||\hat{x}|| A \left(\frac{\hat{x}}{||\hat{x}||} \right) \right| \right| = ||\hat{x}|| \left| \left| A \left(\frac{\hat{x}}{||\hat{x}||} \right) \right| \right| \leq \left| \left| A \left(\frac{\hat{x}}{||\hat{x}||} \right) \right| \right| \\ ||A||_* &= \max_{||x|| = 1||Ax||} = |A\hat{x}| \leq \left| \left| A \frac{\hat{x}}{||\hat{x}||} \right| \right| \leq \max_{||x|| = 1} ||Ax|| \end{split}$$

Quindi il valore può essere calcolato solo sulla buccia in quanto lì viene raggiunto il massimo.

Proposition Stima fondamentale

Per ogni $x \in \mathbb{R}^n$ vale

$$||Ax||_* \le ||A|| \cdot ||x||$$

Proof

Se ||x|| = 1 vale $||Ax|| \le ||A||$ perché per la proprietà precedente,

$$||A|| = \max_{||x||=1} ||Ax||$$

Se x = 0, la disuguaglianza vale. Altrimenti, normalizziamo x per ritrovarci sulla frontiera.

$$||A||_* \ge \left| \left| A\left(\frac{x}{||x||}\right) \right| \right| = \frac{1}{||x||} ||Ax||$$

moltiplicando entr
mambi i membri epr $||\boldsymbol{x}||$ si ottiene la tesi.

In realtà questa costante è la migliore.

Proposition

Se $\exists \alpha \in \mathbb{R}$ tale che $||Ax|| \leq \alpha ||x||$ per tutte le $x \in \mathbb{R}^n$, allora

$$||A||_* \le \alpha$$

In realtà questo risultato vale anche se supponiamo che $||Ax|| \le \alpha ||x||$ solo per x tale che $||x|| \le 1$ oppure tale che $||x|| = \varepsilon$ per qualche $\varepsilon > 0$.

Proof

Supponiamo di avere una stima del tipo $||Ax|| \le \alpha ||x||$ per tutte le x. Sappiamo che

$$||A||_* = \max_{||x||=1} ||Ax|| \le \alpha \max_{||x||\le 1} ||x|| = \alpha$$

che è quindi chiaramente 1.

La medesima dimostrazione funziona supponendo che $||Ax|| \le \alpha ||x||$ per tutte le $||x|| \le 1$. Se invece sappiamo che $||Ax|| \le \alpha ||x||$ solo per gli x tale che $||x|| = \varepsilon$, allora è sufficiente normalizzare (per esercizio).

Proof La norma operatoriale è una norma

1. annullamento: Supponiamo che $||A||_* = 0$. Devo mostrare che A = 0. Siccome la norma è nulla,

$$\max_{||x|| \le 1} ||Ax|| = 0 \implies ||Ax|| = 0, \quad \forall x \, |\, ||x|| \le 1$$

e quindi anche per tutti le altre x visto che possiamo normalizzare. Quindi, Ax = 0.

2. positiva omogeneità:

$$||\lambda A||_* = \max_{||x||=1} ||\lambda Ax|| = \max_{||x||=1} |\lambda||Ax| = |\lambda| \max_{||x||=1} ||Ax|| = |\lambda|||A||_*$$

3. disuguaglianza triangolare:

$$||(A+B)x|| = ||Ax + Bx|| \le ||Ax|| + ||Bx||$$

$$\le ||A||_* ||x|| + ||B||_* ||x|| = ||x|| (||A||_* + ||B||_*)$$

Per la proposizion precedente, $||A + B||_*$ è la più piccola costante per cui vale una disuguaglianza di questo tipo.

La norma operatoriale è scelta tale precisamente per la stima.

Teorema

 $(\mathcal{L}(\mathbb{R}^n, \mathbb{R}^m), ||\cdot||)$ è uno spazio di Banach.

Proof

Siccome questo spazio è finito dimensionale è isomorfismo allo spazio $\mathbb{R}^{m\times n}$ che è completo per esempio rispetto alla norma seconda. Tuttavia, dimostramolo con le successioni di Cauchy. Cosideriamo quindi una successione di operatori lineari. Per tutte le $\varepsilon>0$ esiste N_{ε} tale che $\forall m,n>N_{\varepsilon}$ tale che

$$||A_m - A - n|| < \varepsilon$$

cioè per tutte le x

$$||(A_n - A_n)x|| \le \varepsilon(x)$$

Questo vuole dire che per x fissato la successione $\{A_nx\}$ è una successione di Cauchy in \mathbb{R}^n . Siccome \mathbb{R}^n è completo, la successione converge. Chiamiamo il limite di tale successione Ax. Verifichiamo che in questo modo abbiamo definito un operatore lineare $x \to Ax$. Sappiamo che A_n è lineare per ogni n, quindi $A_n(x+y) = A_nx + A_ny$. Sappiamo che A(x+y) tende ad Ax + Ay e quindi l'espressione sopra tende ad Ax + Ay. Analogamente per l'omogeneità. Mostriamo ora che $\{A_n\}$ effettivamente converge ad A, quindi $||A_n - A|| \to 0$. Sappiamo che $\{A_n\}$ è una successione di Cauchy. Quindi $\forall \varepsilon > 0$ esiste N_ε tale che $\forall n, m > N_\varepsilon$

$$||A_m x - A_n x| \le \varepsilon ||x||$$

Ma $A_n x \to A x$ per $n \to \infty$. passando al limite si ha che per tutte le $\varepsilon > 0$ esiste N_ε tale che $\forall n > N_\varepsilon$,

$$||A_n x - Ax|| \le \varepsilon |x|$$

cioè abbiamo trovato che $||A_n - A|| - \varepsilon$.

Notiamo che abbiamo sfruttato solo la completezza di $\mathbb{R}^n.$