Normalisation and its types

Second Normal Form (2NF)

A relation is in 2NF if it satisfies the following conditions:

- 1. It is in First Normal Form (1NF).
- 2. It has no partial dependency, which means no non-prime attribute is dependent on a part of any candidate key.

When partial dependency is there in a table? (LHS is a proper subset of Candidate key AND RHS is a non-prime attribute)

non-prime: an attribute that is not part of any candidate key

Normalisation and its types

Second Normal Form (2NF)

Candidate key: Customerld+Orderld

Prime attribute :{CustomerId,OrderId}

Non-prime attribute : {OrderName}

		▼
CustomerId	Orderld	OrderName
1	1	Muffin
2	1	Muffin
1	2	Sugar
4	2	Sugar

In this relation OrderName is dependent on OrderId only, according to OrderId we provide the OrderName

OrderName is determined by only Orderld.

Normalisation and its types

2NF

CustomerId	Orderld	OrderName
1	1	Muffin
2	1	Muffin
1	2	Sugar
4	2	Sugar

CustomerId	Orderld
1	1
2	1
1	2
4	2

Orderld	OrderName
1	Muffin
1	Muffin
2	Sugar
2	Sugar

Normalisation and its types

Second Normal Form (2NF)

Consider there is a relation R(A,B,C,D) with FD : AB->C, AB->D, B->C. Find if this is in 2NF?

1.Identify the Candidate Key

$$A += \{A\}$$

$$B+=\{B,C\}$$

$$C += \{C\}$$

$$D+=\{D\}$$

$$AB+=\{A,B,C,D\}$$

So, AB is a candidate key here.

Normalisation and its types

Second Normal Form (2NF)

- 2. Check for Partial Dependencies
 - 1.LHS is a proper subset of Candidate key AND
 - 2.RHS is a non-prime attribute

FD: AB->C, AB->D, B->C

CK: AB

prime attribute : {A,B} non-prime : {C,D}

a. AB->C (fully dependent, AB is not a proper subset of candidate key)
b.AB->D (fully dependent, AB is not a proper subset of candidate key
c.B->C (partial dependency as B is a proper subset of CK and C is non-prime)

Not in 2NF.