CHƯƠNG I:

CÁC LINH KIỆN ĐIỆN TỬ VÀ DỤNG CỤ ĐO

BÀI1: ĐIỆN TRỞ

// Điện trở

Điện trở là <u>đại lượng vật lý</u> đặc trưng cho tính chất cản trở <u>dòng điện</u> của một vật thể <u>dẫn</u> <u>điện</u>. Nó được định nghĩa là tỉ số của <u>hiệu điện thế</u> giữa hai đầu vật thể đó với <u>cường độ</u> <u>dòng điện</u> đi qua nó:

$$R = \frac{U}{I}$$

trong đó:

U: là hiệu điện thế giữa hai đầu vật dẫn điện, đo bằng <u>vôn</u> (V). I: là cường độ dòng điện đi qua vật dẫn điện, đo bằng <u>ămpe</u> (A). R: là điện trở của vật dẫn điện, đo bằng <u>Ohm</u> (Ω

II/ cấu tạo điện trở

Điện trở có các loại cơ bản : điện trở không phải dây quấn và điện trở dây quấn , điện trở nhiệt ...

1. Điện trở không phải dây quấn

Điện trở thường làm bằng hỗn hợp than hoặc kim loại trộn với chất kết dính rồi đem ép lại , vỏ được phủ lớp sơn than hay hỗn hợp kim loại trên một lõi sứ . Hai đầu có dây ra .

Điện trở không phải dây quấn có hai loại : trị số cố định và trị số biến đổi (chiết áp)

2. Điện trở dây quấn

Điện trở dây quấn có lõi bằng sứ và dây quấn là loại hợp kim có điện trở lớn (nicron,mangnin...)hai đầu cũng có dây dẫn và bên ngoài thường được bọc bằng một lớp nien ailicát để bảo vệ.

Điện trở dây quấn có hai loại : trị số cố định và chiết áp dây quấn .

b/ chiết áp dây quấn

3. Điện trở nhiệt

Có hai loai:

- Hệ số nhiệt dương khi nhiệt độ tăng thì giá trị điện trở tăng.
- Hệ số nhiệt âm khi nhiệt đô tặng thì giá tri điện trở giảm.

Các loại này thường dùng trong các mạch làm việc ổn định với nhiệt độ như mạch khuếch đại công suất âm tầng .

III/ Những thông số cơ bản của điện trở

1. Điện trở danh định

Trên điện trở không ghi giá trị thực của điện trở mà chỉ ghi giá trị gần đúng , làm tròn , đó là điên trở danh đinh .

Đơn vị điện trở : $\text{ôm}(\Omega)\text{,}kil\text{ôôm}(K\Omega)\text{,}m\text{êgaôm}(M\Omega)\text{,}gigaôm}(G\Omega)$

 $1G\Omega = 1000 \text{ M}\Omega = 1000.000 \text{ K}\Omega = 1000.000.000 \Omega$

2. Sai số

Điện trở danh định không hoàn toàn đúng mà có sai số . Sai số tính theo phần trăm (%) và chia thành ba cấp chính xác : cấp I có sai số +-5% , cấp II là +-10% , cấp III là +-20%.

3. Công suất định mức

Công suất định mức là công suất tổn hao lơn nhất mà điện trở chịu được một thời gian dài làm việc mà không ảnh hưởng đến trị số của điện trở.

4. Hệ số nhiệt của điện trở

Khi nhiệt độ làm việc thay đổi thì trị số điện trở cũng thay đổi . Sự thay đổi trị số tương đối khi nhiệt độ thay đổi 1°C gọi là hệ số nhiệt của điện trở . Khi tăng 1°C trị số tăng khoảng 0.2%(trừ loại điện trở nhiệt)

III/ Kí hiệu và ghi nhãn điện trở

- 1. **Kí hiệu** : R
- 2. Ghi nhãn:
- Điện trở ghi bằng số:

Giá trị ghi bằng số , sai số được ghi bằng % hoặc kí hiệu : M=5% ; J=15% ; P=20% Ngoài ra các kí hiệu công suất , hãng sản xuất... có hoặc không được ghi .

Ví du:

-Điện trở ghi bằng vòng màu:

Qui ước giá trị các màu:

Màu	Trị số	Sai số
Đen	1	
Nâu	2	
Đỏ	3	
Cam	4	
Vàng	5	
Xanh lục	6	
Tím	7	
Xám	8	
Trắng	9	
Nhũ vàng		5%
Nhũ bạc		10%

 Cách đọc : đọc bắt đầu vòng màu sát chân điện trở (không phải vòng màu nhũ)

Bài 2 : TŲ ĐIỆN

I/ Cấu tạo

Cấu tạo của tụ gồm hai phiến dẫn điện có dây dẫn ra . Ở giữa hai phiến là chất cách điện (điện môi) , toàn bộ được đặt trong vỏ bảo vệ . Tụ có các loại khác nhau : tụ giấy , tụ nica , tụ gốm , tụ hóa ...

Tụ có loại điện dung cố định và loại điện dung biến đổi . (Hình vẽ)

II/ Những thông số cơ bản của tụ điện

1. Điện dung danh định

Đại lượng đặt trưng cho khả năng chứa điện tích của tụ điện gọi là điện dung của tụ điện. Kí hiệu : C . Đơn vị : Fara (F)

2. Dung kháng của tụ điện

Tụ điện ngăn không cho dòng điện một chiều đi qua nhưng có thể có một dòng nạp ban đầu và lại ngừng ngay khi tụ điện vừa mới nạp đầy.

Đối với dòng điện xoay chiều thì dòng điện này tác động lên tụ điện với hai nữa chu kì ngược nhau, làm cho tụ điện có tác dụng dẫn dòng điện đi qua.

Tụ có điện dung nhỏ cho tần số cao đi qua dễ.

Tụ có điện dung lớn cho tần số thấp đi qua dễ.

Dung kháng của tu được tính theo công thức : $Xc = 1/2\pi fC$

Trong đó : Xc là điện kháng của tụ (Ω)

f là tần số dòng điện xoay chiều qua tụ (Hz)

C là điện dung (F), $\pi = 3.14$

3. Sai số

4. Điện áp công tác

Là điện áp lớn nhất cho phép đặt lên hai đầu của tụ điện mà tụ điện vẫn làm việc bình thường.

5. Tổn hao

6. Điện trở cách điện

Sau khi tích điện, tụ điện không giữ điện được lâu dài. Độ cách điện giảm sinh ra dòng điện rò. Dòng điện rò lớn hay nhỏ phụ thuộc vào chất điện môi.

7. Hệ số nhiệt của tụ điện

Sự biến đổi của điện dung tính theo % khi nhiệt độ thay đổi 1°C gọi là hệ số nhiệt của tu điên .

8. Điện cảm tạp tán

Do kết cấu của tụ điện các phiến, dây dẫn tạo thành điện cảm tạp tán ảnh hưởng khi tụ làm việc với dòng điện xoay chiều ở tần số cao . Để mạch điện làm việc ổn định thì tần số công tác lớn nhất của tụ điện phải nhỏ hơn 2 -:- 3 lần tần số cộng hưởng của tụ điện (điện dung của tụ và điện cảm tạp tán hình thành mạch cộng hưởng).

III/ Kí hiệu và phân loại

1. Kí hiệu : C

2. Phân loai:

Tụ điện được chia thành 2 loại chính:

- Loại không phân cực với nhiều dạng khác nhau.
- Loại phân cực có cực tính xác định khi làm việc và có thể bị hỏng nếu nối ngược cực.

* Ứng dụng một số loại tụ:

+ Tụ giấy:

Được dùng để phân đường , ngăn nối tầng , lọc trong những mạch điện tần số thấp và một chiều .

+ Tu mica:

Tổn hao năng lượng rất bé , điện trở cách điện cao . Được dùng chủ yếu trong mạch có tần số cao .

+ Tụ gốm sứ cao tần:

Tụ này chịu điện áp cao , kích thướt không lớn , được dùng trong các mạch cao tần , siêu cao tần .

+ Tụ màng nhựa, màng nhựa kim loại:

Trị số điện dung ổn đinh, điện trở cách điện lớn, nhiệt độ làm việc thấp.

+ Tu hóa:

Dùng trong các mạch điện như bộ lọc mạch nắn điện, nối tầng ở mạch tần số thấp. Khi để lâu không dùng thì trị số điện dung giảm. Nếu đấu ngược cực tụ sẽ hỏng.

+ Tu biên đổi (tu xoay):

Thường dùng trong các mạch cộng hưởng cao tấn ở máy thu , phát . Tụ biến đổi chỉ thay đổi trị số điện dung nhỏ từ 10 -:- 60 pF thường dùng để điều chỉnh lại các trị số điện dung gọi là tụ tinh chỉnh .

- * Trên tụ hóa và tụ giấy người ta có ghi các tham số như:
- Điện dung của tụ.
- Diện áp công tác.
- Sai số.

Đối với tụ khác có điện dung nhỏ pF người ta ghi điện dung theo mã số bằng 3 chữ số . Trong đó số thứ 3 là số 0 thêm vào hai số đầu .

Ví du : 403 = 40.000 pF ; 271 = 270 pF

Bài 3: **CUỘN CẨM VÀ BIẾN ÁP**

I/ Cuộn cảm

Cuộn cảm có các loại : cuộn cảm dao động , cuộn cảm ghép , cuộn cảm cao tần và cuôn cảm âm tần .

Cấu tạo cuộn cảm có các loại : một lớp , loại hình trụ , quấn tổ ong, loại có bọc kim ,loại khôn có lõi .

Hình : Kí hiệu cuôn cảm

1. Những thông số cơ bản của cuộn cảm

a/ Điện cảm : Điện cảm của cuộn dây phụ thuộc vào kích thướt , hình dáng , số vòng dây . Số vòng dây càng lớn thì điện cảm càng lớn . Kí hiệu : L ; đơn vị henry (H) . b/ Điện kháng (cảm kháng) :

Một cuộn dây có dòng điện chạy qua sẽ sinh ra một từ trường . Nếu giá trị của dòng điện thay đổi thì cường độ thừ trường phát sinh từ cuộn dây cũng thay đổi gây ra một sức điện động cảm ứng (tự cảm) trên cuộn dây và có xu thế đối lập lại dòng điện ban đầu . Một cuộn dây trong mạch điện xoay chiều sẽ có điện trở một chiều bình thường của nó tạo ra cộng thêm điện trở do điện cảm (điện trở xoay chiều) .

Trở kháng của cuộn dây : $Z_L = R_L + j2πfL$

Khi tín hiệu có tần số thấp tác động thì điện trở tổng cộng của cuộn dây tương đối nhỏ và khi tần tăng lên thì giá trị này sẽ tăng tỷ lệ với tần số.

c/ Hệ số phẩm chất:

Một cuộn cảm có chất lượng cao thì tổn hao năng lương nhỏ . Muốn nâng cao hệ số phẩm chất dùng lõi bằng vật liệu dẫn từ như :ferit , sắt cacbon...số vòng dây quấn ít vòng hơn .

d/ Điện dung tạp tán:

Những vòng dây quấn và các lớp dây tạo nên một điện dung và có thể xem như một tụ điện mắc song song với cuộn cảm . Điện dung làm giảm chất lượng cuộn dây . Khắc phục bằng cách quấn tổ ong,phân đoạn .

2/ Phân loại và ứng dụng

a/ Cuôn cảm âm tần:

Là cuộn dây quấn trên lõi sắt từ . Cuộn dây có nhiều vòng để có điện cảm L lớn .

Úng dụng : Dùng trong các mạch nắn điện (dùng làm bộ lọc) và trong các mạch điện xoay chiều âm tần .

b/ Cuôn cảm cao tần:

Cuộn cảm cao tần có số vòng dây ít hơn cuộn cảm âm tần và được quấn trên ống sứ , nhựa cách điện , bên trong không có lõi hoặc có lõi bằng chất ferit .

Úng dụng: Dùng trong mạch cao tần, trung tần của máy thu phát vô tuyến.

II/ Biến áp cảm ứng

Tác dụng:

Biến đổi điện áp và dòng điện xoay chiều.

Phối hợp trở kháng giữa bên sơ cấp và thứ cấp.

Nếu có một dòng điện xoay chiều đi qua cuộn dây sẽ sinh ra một từ trường biến đổi. Ta đặt cuộn dây thứ hai trong từ trường cuộn dây thứ nhất thì trong cuộn dây thứ hai xuất hiện dòng điện, gọi là dòng điện cảm ứng. Dòng điện trong cuộn dây thứ hai biến đổi như dòng điện trong cuôn dây thứ nhất sinh ra nó, đó là hiện tương cảm ứng điện từ. Hai cuộn dây càng sát nhau thì hiện tượng cảm ứng điện từ càng mạnh. Hiện tượng cảm ứng điện từ rất mạnh khi quấn cả hai cuộn dây trên cùng một lõi sắt từ. Nguyên lý làm việc của MBA cũng dưa trên hiện tương cảm ứng điện từ. Nếu ni là số vòng dây cuộn sơ cấp, Ui là điện áp vào cuộn sơ cấp, n2 số vòng dây

cuộn thứ cấp, U2 là diện áp ra ở cuộn thứ cấp. Ta có tỉ số biến áp:

$$K = n_1/n_2 = U_1/U_2 = I_2/I_1$$
.

Trong đó: I1 là dòng điện sơ cấp, I2 là dòng điện thứ cấp.

Nếu: K>1 ($U_1>U_2$) là biến áp giảm áp. K<1 (U₁<U₂) là biến áp tăng áp.

1. Biến áp trung tần

Biến áp trung tần có cuộn sơ cấp và thứ cấp, lõi dùng thường là ferit hình xuyến hoặc đoạn ferit

Úng dung: dùng để phối hợp trở kháng ghép giữa hai tầng của máy thu.

Hình : Biến áp trung tần

2. Biến áp âm tần

- Biến áp nối tầng(đảo pha) :Biến áp này dùng để phối hợp trở kháng ra của tầng trước cao với trở kháng vào của tần sau thấp để nâng cao độ khuếch đại của mạch. Biến áp đảo pha cũng là biến áp nối tầng mà cuộn thứ cấp có điểm ra ở giữa, dùng để đảo pha và kích thích transistor ở tầng công suất đẩy kéo.
- Biến áp ra phối hợp trở kháng gánh của transistor công suất và trở kháng loa đưa công suất ra loa .Biến áp ra tầng đơn có 4 đầu dây ra, tầng đẩy kéo có 5 đầu ra.

Hình : Kí hiệu biến áp cảm ứng

Bài 4: LINH KIỆN BÁN DẪN VÀ IC

I/ Diột bán dẫn

1. kí hiệu các loại diôt :

Cực (+) gọi là Anốt Cực (-) gọi là katốt

2. Diôt thường

P (Anốt)

a/ Kí hiệu : b/ Cấu tao :

Gồm hai lớp P (lỗ trống) và N(điện tích) ghép lại.

P: điện tích (+); N: điện tích âm (-)

Diốt tiếp điểm : Gồm một miếng bán dẫn germani hoặc silic loại N và 1 mũi nhọn vônfram đặt lên nó .

Đặt điểm: Dòng điện nhỏ, điện dung giữa các cực nhỏ (cỡ 1picofara). Điên áp ngược nhỏ (vài chuc vôn).

Diốt tiếp mặt: Gồm hai miếng bán dẫn p và n tiếp xúc với nhau Đặt điểm: Dòng lớn (vài chục miliampe đến vài chục ampe), điện áp ngược khá cao (vài chục vôn đến hàng nghìn vôn). Tiếp giáp pn Bán dẫn p Bán dẫn n Đầu ra

Hình : Cấu tạo diột tiếp điểm

Đầu ra

Műi kim loai

Tiếp giáp pn

Bán dẫn p

Bán dẫn n

Hình : Cấu tạo diốt tiếp mặt

c/ Nguyên lí hoạt động:

• Phân cực thuận (mở):

 Phân cực ngược (khóa)

d/ Úng dụng: chỉnh lưu dòng, áp xoay chiều thành một chiều

3. Một số ứng dụng của diốt đặc biệt

a . Diốt ổn áp :

- Kí hiệu :

- Úng dụng : Diốt ổn áp ổn định điện áp ở một giá trị nhất định (do nhà chế tạo qui định) . Diốt ổn áp dùng cho các mạch điện cần ổn định điện áp một chiều . b . Diốt biến dung :

- Kí hiệu:
- Úng dung : Dùng trong các khối cao tần để chon tín hiệu hoặc điều chỉnh tần số tư đông.
- c. Diốt đường hầm:
- Kí hiệu:

- Úng dụng: Diốt đường hầm có tần số rất cao, đến hàng nghìn megahec. Diốt đường hầm được dùng để khuếch đại, tạo sóng và chuyển mạch.
- d . Diốt phát sáng LED
- Kí hiệu
- Úng dụng: Điốt phát sáng thường được dùng trong các phần tử chỉ thị ở các sơ đồ bán dẫn, các thiết bi điện tử ...

II. Transistor (tranzito)

1. Cấu tạo và kí hiệu :

Transistor cấu tạo gồm có 3 vùng: Vùng giữa của transistor là vùng cực gốc bazơ (B), hai vùng bên là vùng cực phát hay emito (E), và vùng còn lại là cực góp hay colector (C).

Trong trnsistor có hai lớp tiếp giáp PN. Khoảng cách của hai lớp tiếp giáp (cũng có nghĩa là bề dày của cực gốc) rất bé cỡ vài chuc micrôn.

Transistor có 2 loai co bản sau:

a/Miền cấu trúc b/ Kí hiệu

Vùng giữa dẫn điện bằng electron, hai vùng bên dẫn điện bằng lỗ trống.

a/Miền cấu trúc b/ Kí hiệu

Vùng giữa dẫn điện bằng lỗ trống, hai vùng bên dẫn điện bằng electron.

2. Nguyên lí hoạt động:

Xét hoạt động của transistorPNP theo sơ đồ:

Các điện tích (lỗ trống) truyền qua tiếp giáp EB tạo nên dòng IE di chuyển đến vùng bazơ (B) trở thành hạt thiểu số và tiếp tục khuyếch tán sâu vào vùng bazơ hướng tới tiếp giáp BC.

Hình : Phân cực cho transistor

Trên đường khuếch tán, một phần nhỏ lỗ trống tác

hợp với hạt đa số của bazơ (điện tử) tạo nên dòng điện cực bazơ (IB). Do kết cấu miền bazơ mỏng nên gần như toàn bộ các hạt khuyếch tán tới được bờ của miền BC và bị trường gia tốc do BC phân cực ngược cuốn tới miền colecto tạo nên dòng điện cuc colecto(Ic).

Qua phân tích ta thấy:

$$I_E = I_C + I_B$$

Do IB rất bé nên:

 $I_E \approx I_C$

Mức độ hao hục dòng khuếch tán trong vùng bazơ, người ta định nghĩa hệ số truyền đạt dòng điện α của transistor : $\alpha = I_C / I_E$

Để đánh giá tác dụng điều khiển của dòng IB tới dòng colector Ic, ta định nghĩa hệ số khuếch đại dòng điện β của transistor : $\beta = Ic/IB$; β có giá trị từ vài chục đến vài trăm.

Vây transistor PNP hoat đông

khi $V_E > V_B v \dot{a} V_B > V_C$

Transistor NPN hoạt động được khi cấp nguồn cho B:

 $V_B > V_E v \dot{a} V_B < V_C$

3. Thông số kĩ thuật của transistor

- Transistor thuộc loại gì: PNP hay NPN.
- Icmax là trị số dòng điện lớn nhất qua cực C.
- U_{cmax} là tri số điện áp lớn nhất đặt vào hai cực CE.
- P_{cmax} là trị số công suất lớn nhất tiêu hao trên tiếp giáp CB.
- Hệ số khuếch đại dòng điện α hay β cho biết khả năng khuếch đại của transistor.
- Icr là trị số dòng colecto khi mạch vào hở (Iv = 0). Dòng này càng nhỏ thì chất lương transistor càng tốt.
- Nhiệt độ làm việc giới hạn cho phép transistor làm việc ổn định. Ick không tăng quá mức, Icmax, Ucmax, Pcmax không giảm quá mức.
- Tần số cắt fc là tầng số cao nhất transistor có thể làm việc mà hệ số khuếch đại dòng điện giảm đi còn 0,7 trị số ban đầu.

4. Môt số lưu ý khi sử dụng transistor

- Cần phân biệt được các chân (đầu ra) của transistor : E,B,C
- Cần đảm bảo các thông số kỹ thuật cho phép.

5. Úng dung

- Transisor sử dụng rộng rãi trong ngành điện tử, tin học, viễn thông, điện tử dân dụng và các ngành công nghiệp khác .Trong mạch điện , transistor làm nhiệm vụ khuếch đại dòng điện ,điện áp .

III. Thyristor

1. Cấu tao:

Gồm có bốn lớp bán dẫn khác loại đặt liền nhau : P-N-P-N . Hai lớp ngoài cùng gọi là hai miền phát. Miền phát P goi là Anốt (A), còn miền phát N gọi là Katốt (K), hai lớp giữa gọi là miền gốc. Tiếp giáp giữa hai miền gốc gọi là lớp gốc, tiếp giáp giữa hai miền gốc và miền phát gọi là lớp phát.

Hình : Cấu tạo thyristor

2. Kí hiệu:

SCR có hai loại cơ bản : SCR loại P và SCR loại N. G là cực điều khiển.

3. Nguên lí hoạt động thyristor:

a/Phân cực ngược:

Anốt âm so với katốt, thyristor ngắt điện theo chiều ngược chỉ có một dòng điện rò rất nhỏ chạy qua.

b/Phân cực thuận:

Anốt dương so với katốt nhưng không có tín hiệu điều khiển ở cực G, thyristor ngắt điện theo chiều thuận và có tác dụng như một điện trở lớn. Chỉ có dòng điện rò rất nhỏ chạy qua.

Hình : Sơ đồ nguyên lý mắc dây và sơ đồ tương đương của thyristor

c/ Phân cực thuận đồng thời có tín hiệu điều khiển ở cực G:

Khi có xung dương tác động vào cực điều khiển G, trong khi đó anốt dương hơn so với katốt ($V_A > V_K$),thì thyristor dẫn điện . Xung dòng điện tác động vào cực G càng lớn thì thyristor càng dễ mở thông .

Khi tín hiệu kích trên cực G đã mất thì thyristor vẫn còn dẫn điện bằng dòng duy trì . Thyristor chỉ ngưng dẫn khi dòng anốt thấp hơn dòng duy trì .

Trong mạch cung cấp bằng dòng xoay chiếu thì thyristor sẽ tự ngắt ở bán kì âm và chỉ thông ở bán kì dương.

Trong mạch điện một chiều (DC), để tắt thyristor hoàn toàn người ta tạo điện áp ngược giữa anốt và katốt.

Hình : Đường đặt tuyến von - Ampe của thyristor .

4. Úng dụng:

Được ứng dụng nhiều trong lĩ thuật bán dẫn để thành lập các sơ đồ nắn điện công suất lớn, các sơ đồ tự động khống chế trong mạch điện.

IV. Triac (1tiết)

- 1. Triac là hai thyristor ghép đối song (song song đối đầu) . Khi cổng G được kích thì triac dẫn được hai chiều từ $A_1 \iff A_2$ *Kí hiệu :*
- 2. Nguyên lí làm việc: Triac làm việc tương tự SCR, triac có khả năng điều khiển dòng xoay chiều (theo cả hai hướng). Triac thông hay tắt dòng điện theo cả hai chiều hoặc chiều này hay chiều kia là tùy thuộc tín hiệu tác động vào cực G là dương hay âm.

Dòng một chiều:

* Khi có dòng kích IG triac dẫn theo chiều T2 → T1

Dòng xoay chiều:

- * Bán kỳ dương : Cực G được kích xung dương , triac dẫn theo chiều $\ T_2 \longrightarrow T_1$
- * Bán kỳ âm : Cực G được kích xung âm , dòng điện đi theo chiều $T_1 {\longrightarrow\hspace{-2.8pt}{\longrightarrow}} T_2$

Hình : Đặc tuyến vôn - Ampe của triac

Triac có 4 chế độ làm việc:

- Chế độ 1 : Dòng A2 (+) dòng cực G (+)
- Chế độ 2 : Dòng A₂ (+) dòng cực G (-)
- Chế đô 3 : Dòng A₂ (-) dòng cực G (+)
- Chế độ 4 : Dòng A₂ (-) dòng cực G (-).

Triac có độ nhạy cao nhất khi điều khiển theo chế độ 1 và chế độ 4, độ nhạy gấp 2 lần chế độ còn lai.

3. Úng dụng:

Được sử dụng trong điện tử viễn thông và điện tử dân dụng:

- Kiểm tra và điều khiển vân tốc của mộtơ điện.
- Kiểm tra và điều khiển nhiệt đô.
- Kiểm tra và điều khiển cường độ ánh sáng.
- Làm các mạch quét trong màn hình vô tuyến.

III . Linh kiện quang bán dẫn (1tiết)

1. Quang điện trở

a/ Cấu tao :

Quang điện trở là một linh kiện bán dẫn điện không có lớp chuyển tiếp pn , thường làm từ loại vật liệu hỗn hợp giữa hai nguyên tố thuộc nhóm 3 và nhóm 5 bảng tuần hoàn hóa học Mendeleep) . Ví dụ :Cds(sufit Cadmi)CdSe(Selenit Cadmi),ZnS...

b/ Nguyên lí hoạt động:

Quang điện trở làm việc ở chế độ thụ động, khi được chiếu sáng sẽ xuất hiện các hạt dẫn tự do (quang hạt điện tử hay lỗ trống) làm độ dẫn điện tăng 1 lượng:

$$\Delta \sigma = e \left(\mu_n \Delta n + \mu_p \Delta p \right)$$

 Δn và Δp : độ gia tăng nồng độ khi được chiếu sáng.

 μ_n và μ_p : độ linh động của điện tử và lỗ trống.

c/ Các đặc tính quang trọng của quang điện trở:

- Độ dẫn quang điện σquang
- Đô nhay quang theo bước sóng ánh sáng vào.
- Tốc độ làm việc : thời gian cần thiết để quang điện trở thay đổi 65% giá trị của mình khi chuyển từ chế độ chiếu sáng sang chế độ tối và ngược lại .

- Điện trở lúc tối
- Hệ số nhiệt điện trở của quang điện trở (nhiễu nhiệt độ) là không đổi

d/ Úng dụng :

Quang điện trở được sử dụng rộng rãi trong nhiều lĩnh vực như: tự động tắt mở, tự động dừng trong máy ghi âm, biến đổi tín hiệu quang-điện.

• Mạch ứng dụng quang điện trở:

Rq càng nhỏ (< 0,7 $k\Omega$) thì role sẽ tác động .(ánh sáng chiếu vào)

 $Rq \geq 0.7 \; k\Omega$ thì role không tác động . (lúc tối

). Role sẽ đóng mạch , đèn hay chuồng sẽ hoạt động .

Mạch tự động điều khiển đèn , chuông dùng ánh sáng tác động tới quang trở

Hình: kí hiệu OA

VI. MẠCH KHUẾCH ĐẠI THUẬT TOÁN (IC OP AMP)

1/ Các khái niệm cơ bản:

Khuếch đại thuật toán: Operational Amplifier

IC OP_AMP là mạch khuếch đại tổ hợp có hệ số khuếch đại rất lớn, trở kháng vào lớn và trở kháng ra nhỏ ...Hiện nay các bộ khuếch đại được sử dụng để thiết kế các

mạch như: dao động, mạch tạo xung, mạch lọc, mạch so sánh, mạch khuyếch đại DC,AC,ổn áp....

OA khuếch đại điện áp : $U_d = U_1$ - U_2 với hệ số khuếch đại là Kd :

Do đó : $Ur = K_dU_d = K_d(U_1-U_2)$

Nếu : $U_2 = 0$ thì $U_r = K_d \cdot U_1$ nên U_r đồng pha với tín

hiệu vào U1, vì vậy đầu vào U1 được gọi là đầu vào không đảovà kí hiệu bởi dấu (+).

Nếu : $U_1 = 0$ thì $U_7 = -K_d$. U_2 nên U_7 ngược pha với tín hiệu vào U_2 , vì vậy đầu vào U_2 được gọi là đầu vào đảo và kí hiệu bởi dấu (-) .

Ngoài ra OA còn có hai chân để cấp nguồn đối xứng, các chân bù điện áp, bù tần số... Một bộ khuếch đại thuật toán lý tưởng có các tính chất sau :

- _ Trở kháng vào $Zv = \infty$.
- Trở kháng ra Zr = 0.
- $_$ Hệ số khuếch đại Kd = ∞ .

Theo sơ đồ tương đương OA lý tưởng có đặc điểm U1=U2 , dòng điện vào OA ở đầu 1 , 2 : $I_0^{\dagger}=I_0=0$.

Trên thực tế không có bộ khuếch đại thuật toán lý tưởng , thông thường OA có Zv cỡ hàng trăm $K\Omega$ tới hàng $M\Omega$, Zr cỡ hàng Ω tới hàng vài chục Ω , Kd khoảng vài trăm tới hàng triệu lần .

2/ Các ứng dụng của OA a/ Mạch khuếch đại đảo :

Hệ số khuếch đại điện áp : $K_u = -\frac{R_f}{R_1}$

Điện áp ngõ ra : $V_0 = -\frac{R_f}{R_1} V_{in}$

Dấu (-) thể hiện tín hiệu ra ngược pha với tín hiệu vào .

Bộ khuếch đại đảo

b/ Mạch khuếch đại không đảo:

Hệ số khuếch đại : $K_u = 1 + \frac{R_f}{R_1}$

Điện áp ngõ ra : $V_0 = \left(1 + \frac{R_f}{R_1}\right) V_{in}$

Bộ khuếch đại không đảo

Chương II: CÁC MẠCH ĐIỆN TỬ CƠ BẢN

Bài 1: MẠCH CHỈNH LƯU

I/ Mạch chỉnh lưu nữa chu kỳ

Sơ đồ mạch:

Nguyên lý hoạt động:

Khi cấp điện áp xoay chiều U1 vào hai đầu cuộn L1 thì ở hai đầu cuộn L2 xuất hiện điện áp cảm ứngU2.

Hình : Mạch chỉnh lưu nửa chu kỳ

Nếu nửa chu kỳ đầu điện thế tại A (+), diode D được phân cực thuận nên có dòng qua tải (đi từ A qua D , qua Rt tới B). Ở nửa chu kỳ tiếp theo điện thế tại A(-), diode bị phân cực ngược không cho dòng điên đi qua .

II/ Chính lưu hai nữa chu kỳ Sơ đồ mạch :

Mạch chình lưu toàn sóng có tụ lọc và dạng sóng điện áp ra

Dạng điện áp mạch chình lưu nừa sóng có tụ lọc

II/ Chỉnh lưu toàn sóng dạng cầu

Sơ đồ mạch:

Nguyên lý hoạt động:

Bài 2: MẠCH ỔN ÁP

Chức năng của ổn áp là ổn định điện áp một chiều ra tải khi điện áp và tần số lưới thay đổi , khi tải biến đổi .

I/ Mạch ổn áp dùng diode Zenner

Để Zenner hoạt động trong vùng nghịch phải lớn hơn U_z ($U_v > U_z$)

$$U_v = (1,2 \rightarrow 2,5) U_z$$

Thực tế: Uz = 3v,6v,7.5v,9v,12v,18v,15v,24v...Chú ý: Khi phân cực thuận Zenner cũng giống như Diode.

II/ Mạch ổn áp dùng transistor

1. Sơ đồ mạch ổn áp bù (ổn áp nối tiếp):

Hai điện trở R_1 và R_2 đóng vai trò như một mạch lấy mẫu , diode zener Dz cung cấp điện áp chuẩn và transistor T_2 điều khiển dòng bazơ của transistor T_1 để thay đổi dòng qua transistor T_1 duy trì được điện áp ở đầu ra .

Mạch ổn áp bù

Nếu điện áp đầu ra tăng qua phân áp R1,

R2, điện áp U2 tăng , làm điện áp UBE củ T2 tăng (Uz không đổi) , làm dòng qua T2 tăng dẫn đến dòng IB của T1 giảm làm cho dòng qua tải giảm . Điện áp đầu ra giảm , vì vậy duy trì được điện áp đầu ra của mạch . Trường hợp điện áp đầu ra giảm giải thích tương tự .

Công thức : $U_2 = U_{BE2} + U_Z = R_2 \cdot U_r / (R_1 + R_2)$; $U_r = (R_1 + R_2) \cdot (U_Z + U_{BE2}) / R_2$

2. Mạch ổn áp song song đơn giản dùng transistor:

Điện áp trên tải được xác định bởi điện áp zener và điện áp giữa base-emiter . Nếu điện trở tải giảm , dòng điều khiển cực B của T1 cũng giảm ,

dòng colector cũng giảm , sẽ làm dòng tải lớn lên và ổn định được điện áp trên tải . $Ut = Uz + U_{BE}$

II/ Ôn áp dùng IC

IC ổn áp có thể điều chỉnh được điện áp hoặc là cố định. Dòng tải của các IC từ hàng trăm mA đến hàng chục A, phù hợp với các mạch yêu cầu gọn nhẹ. IC ổn áp 3 chân có sự ghép nối như sau:

1. Ôn áp cố định dùng IC

Họ IC 78xx cung cấp điện áp cố định từ +5v đến +24v.

Kí hiệu: xx chỉ điện áp ra.

Ví dụ : IC 7812 có điện áp ra là +12v . sơ dồ mạch thực tế : Trong đó C = $0,1\mu F$ cải thiện quá trình quá độ và lọc nhiễu tần số cao .

Dòng điện ra họ IC 78xx thường $\leq 1A$.

Họ IC 79xx tương tự họ IC 78xx nhưng cấp điện áp cố định từ -5v đến -24v.

2. Ôn áp dùng IC có thể điều chỉnh được điện áp ra IC loại LM317 có thể hoạt động với điện áp ra từ 1,2v đến 37v, điện trở R1 và R2 xác định điện áp ra (1,2v đến 37v).

$$Ur = U_{Ref} (1+R_2/R_1) + I_{adj}R2$$
 Trong đó : $U_{Ref} = 1,25v$ và $I_{adj} = 100\mu A$

3. Một số mạch ổn áp ứng dụng IC 78xx, 79xx a/ Mạch tăng dòng ra

hình : Mạch tăng dòng ra

1 Vào 7812 + Ur GND Ur

Mạch ổn áp dùng IC 7812

Mạch ổn áp dùng LM317

b/ Mạch nâng điện áp ra

Để điện áp ra có thể điều chỉnh được, ta thay R2 bằng một biến trở.

Hình : Mạch tăng điện áp ra Ur = U_z + U_{r 78××}

Bài 3: MẠCH KHUẾCH ĐẠI TÍN HIỆU NHỎ

I/ Khái niệm về mạch khuếch đại

Mạch khuếch đại có tính chất là khi ta đưa vào một tín hiệu nhỏ, ở ngõ ra sẽ xuất hiện một tín hiệu có biên độ lớn hơn nhiều lần.

Ba chế độ khuếch đại cơ bản:

- Khuếch đại điện áp

Hê số khuếch đại : Kv = Vout/Vin

Khuếch đại dòng điện

Hê số khuếch đại : Ki = Iout/Iin

- Khuếch đại công suất

 $H\hat{e} s\hat{o} khu\hat{e} ch dai : Kp = Pout/Pin = Ki . Kv$

II/ Chế độ làm việc của mạch khuếch đại

Ta có thể thay đổi chế độ làm việc của transistor bằng cách thay đổi điện áp phân cực VBE của nó .

Các chế đô làm việc

- Chế đô A .
- Chế đô B .
- Chế đô AB.
- Chế độ C .

1. Mạch khuếch đại ở chế độ A :

Khi đưa một tín hiệu ngõ vào , ở ngõ ra sẽ lấy được tín hiệu có đủ cả hai bán kì âm , dương của tín hiệu đó (tín hiệu ra hoàn toàn giống tín hiệu vào) .

Phân cực sao cho:

- UBE = 0,2V đối với transistor
 Germanium .
- UBE = (0,3 0,4)V đối với transistor Silicon.

Hình : Transistor hoạt động ở chế độ A

Mạch khuếch đại ở chế độ A thường dùng khuếch đại cao tần RF trong TV ,radio, khuếch đại trung tần ,âm tần...

2. Mạch khuếch đại ở chế độ B

Khi ta cho một tín hiệu AC hình sin vào ngõ vào của mạch , ở ngõ ra ta chỉ lấy được *một phần của bán kỳ dương* (nếu dùng transistor NPN) hoặc một phần của bán kỳ âm (nếu dùng Transistor PNP) . Transistor ở chế độ B hoạt động không cần phân cực , mạch chỉ được phân cực và bắt đầu phân cực khi có tín hiệu vào .

Hình : Mạch khuếch đại ở chế độ B

Mạch khuếch đại ở chế độ B thường dùng trong mạch khuếch đại công suất ,mắc đẩy kéo . Mỗi transistor khuếch đại một bán kỳ tín hiệu , sau đó được ghép lại với nhau thành một chu kỳ.

Tín hiệu ghép từ ngõ ra của hai transistor luôn luôn bị mất một phần tại giao điểm của hai bàn kỳ , người ta gọi là méo giao điểm .

3. Mạch khuếch đại ở chế độ AB

Khi đưa một chu kỳ tín hiệu vào ngõ vào , ta lấy được *một bán kỳ tín hiệu ở ngỗ ra* của mạch khuếch đại .Do đó khắc phục được hiện tượng méo giao điểm ở chế độ B .

Để transistor hoạt động ở chế độ AB người ta phân cực :

UBE =0,1V (đối với transistor Germanium).

UBE = 0,3V(đối với transistor Silicon)

Hình : Mạch khuếch đại ở chế độ AB

4 . Mạch khếch đại ở chế độ C

Tín hiệu ngõ ra chỉ là một phần nhỏ của một bán kỳ của tín hiệu vào .

Transistor làm việc ở chế độ C khi được phân cực tiếp giáp B-E sao cho V_B<V_E .

Mạch khếch đại ở chế độ C thường dùng để tách một chỏm tín hiệu như tách xung đồng bộ ra khỏi tín hiệu hình tổng hợp trong TV.

Hình : Mạch khuếch đại ở chế độ C

III/ Ba cách ráp transistor căn bản

1. Mạch khuếch đại mắc theo kiểu E chung Sơ đồ mạch:

R1,R2: Cầu phân áp phân cực cho transistor.

R3: điện trở lấy điện cấp cho cực C của

transistor, và cũng là trở gánh của transistor.

R4: nhằm ổn định nhiệt.

C1,C2 : tụ liên lạc để đưa tín hiệu vào và lấy tín hiệu ra .

Hình : Mạch khuếch đại mắc theo kiểu E chung

C3: tu thoát thành phần xoay chiều từ cực E xuống mass.

C4: tu lọc điện nguồn.

a/ Hê số khuếch đai dòng điện:

 $i_{In} = i_{B}$ (i là dòng xoay chiều) . Kiểu ráp E chung có khả năng khuếch đại dòng điện .

hệ số khuếch đại : $ki = \beta = ic/ib$

b/ Hệ số khuếch đại điện áp:

 $Kv = Vout/Vin = ic.Rc/ib.Ri = \beta Rc/Ri$. (Do $ic = \beta ib$).

Mạch ghép kiểu E chung có khả năng khuếch đại điện áp.

d/ Hê số khuếch đai công suất

Do mạch vừa khuếch đại dòng điện , vừa khuếch đại điện áp nên có khả năng khuếch đại cộng suất.

Hệ số khuếch đại : Kp = Pout/Pin

e/Độ lệch pha giữa tín hiệu ra và tín hiệu vào Khi ở ngõ vào có bán kỳ dương thì ở ngõ ra có bán kỳ âm và ngược lại , nghĩa là điện áp của tín hiệu ngõ ra đảo pha so với điện áp tín hiệu ngõ vào .

Sóng ngỡ vào Sóng ngỡ ra

2. Mạch khuếch đại mắc theo kiểu B chung

Sơ đò mạch:

R1,R2: hình thành cầu phân áp phân cực cho transistor.

R3: điện trở cấp dòng cho cực C.

R4: điện trở cực E.

C1,C2: tụ liên lạc đưa tín hiệu vào và lấy tín

C3: nối tắt thành phần xoay chiều từ cực B xuống mass.

a/Hệ số khuếch đại dòng điện

 $K1 = iout/iIn = ie/iIn \approx 1$

Do: $I_E = i_C + i_b \approx i_C$

Vậy kiểu ráp b chung khong khuếch đại dòng điện.

b/ Hệ số khuếch đại điện áp

Kv = Vout/Vin

Mạch có khả năng khuếch đại điện áp.

c/Hê số khuếch đai công suất

Kiểu ráp B chung do chỉ khuếch đại điện áp mà không khuếch đại dòng điện nên hệ số khuếch đại công suất không lớn.

e/Đô lệch pha giữa tín hiệu vào và tín hiệu ra

Vin tăng – Ue tăng – Ube giảm – Q dẫn yếu - Ic giảm – Vout tăng.

Vin giảm – UE giảm – UBE tăng – Q dẫn mạnh - Uc giảm – Vout giảm .

Như vậy tín hiệu ra đồng pha với tín hiệu vào.

3. Mạch khuếch đại mắc theo kiểu C chung

Sơ đồ mạch:

R1,R2: phân cực cho B cho transistor.

R3: điện trở lấy tín hiệu ra.

C1,C2: tu liên lac.

Tín hiệu được đưa vào cực B và lấy ra ở cực E, cực C là điểm chung của tín hiệu.

a/ Hệ số khuếch đại dòng điện

Ki = iout/iIn . Rất lớn

Kiểu ráp C chung có khả năng khuếch đại

dòng điện.

b/ Hệ số khuếch đại điện áp

 $K_v = V_{out}/V_{in} < 1$

Trong đó : $V_{out} = V_E$; $V_{in} = V_B + V_E$ và $V_B > V_E$

Mạch C chung không có khả năng khuếch đại điện áp.

d/ Hê số khuếch đai công suất

Kp = Ki . Kv

Mạch C chung khuếch đại dòng, không khuếch đại áp nên hệ số khuếch đại công suất không lớn.

e/Đô lệch pha giữa tín hiệu ra và tín hiệu vào

Trong kiểu ráp C chung ta thấy: tín hiệu vào tăng lên, phân cực VBE tăng, Q dẫn mạnh, dòng ie tăng, áp Ue tăng lên tức Vout tăng lên.

Hình: Mach khuếch đại mắc theo kiểu B chung

Hình: Mach khuếch đại mắc theo kiểu C chung

Ngược lại : Vin giảm xuống thì V_{BE} giảm , Q dẫn yếu ,dòng I_{E} giảm , U_{E} giảm tức V_{OU} giảm .

Vậy mạch ráp kiểu C chung có tín hiệu ra đồng pha với tín hiệu vào .

Mạch C chung trở kháng vào lớn, trở kháng ra nhỏ nên thường dùng làm tầng đệm giữa các tầng khuếch đại để phối hợp trở kháng .

*Bảng so sánh các đặc điểm của ba kiểu ráp Transistor EC ,BC ,CC :

	EC	BC	CC
Điểm chung	Cực E	Cực B	Cực C
Tín hiệu vào	Cực B	Cực E	Cực B
Tín hiệu ra	Cực C	Cực C	Cực E
Độ lệch pha	Ngược pha	Cùng pha	Cùng pha
Khuếch đại dòng điện	Có	Không	Có
Khuếch đại điện áp	Có	Có	Không
Khuếch đại công suất	Lớn	Nhỏ	Nhỏ
Trở kháng vào	Nhỏ	Lớn	Lớn
Trở kháng ra	Lớn	Lớn	Nhỏ

Bài 4 : MẠCH DAO ĐỘNG VÀ TẠO XUNG

Các mạch dao động điều hòa được sử dụng rộng rãi trong các hệ thống thông tin, trong các máy đo, máy kiểm tra, thiết bị y tế

Các mạch tạo dao động có thể làm việc trong khoảng tần số vài Hz cho đến vài nghìn MHz. Để tạo ra dao động ta dùng các thành phần tích cực như: đèn điện tử, transistor, diode...

I/ Mạch dao động ba điểm điện cảm (mạch dao động Hartley)

Biến áp T được quấn theo tỷ lệ 2:8 tính từ điểm nguồn +Vcc xuống , điểm giữa biến áp cấp cho cực C transistor Q chính là điểm lấy nguồn +Vcc , đây cũng chính là điểm

mass AC , tức điểm chung của cuộn dao động , với cấu trúc này của cuộn biến áp , tín hiệu hồi tiếp trên hai cuộn dây từ cực thu về cực nền sẽ lệch pha 180° , hơn nữa , mạch chúng ta đang khảo sát là mạch cực E chung , do đó tín hiệu từ cực B ra cực C bị đảo pha 180° , góc lệch pha toàn mạch sẽ là :

φtoàn mạch = φhồi tiếp + φC-B = 180° + 180° = <math>360° (0°) (Thỏa mãn điều kiên dao đông)

φhồi tiếp: là góc lệch pha giữa cuộn dây cực thu và cuôn dây cực nền.

φc-B: là góc lệch pha giữa cực thu và cực nền Tần số dao động được tính theo công thức:

Hình : Mạch dao động Hartley

$$f = \frac{1}{2\pi\sqrt{(L_1 + L_2)C_2}}$$

Tác dụng của các linh kiện:

- Tụ C1 : liên lạc tín hiệu cảm ứng về cực B , cách ly điện áp DC giữa cực B và cực C transistor Q.
- Điện trở R1 : cấp dòng phân cực B cho transistor hoạt động.
- Tụ C2: kết hợp với cuộn biến áp T hình thành mạch cộng hưởng dao động.
- Tụ C3: thoát mass tín hiệu AC, suy giảm hồi tiếp âm trên cực E transistor Q.
- Điện trở R2 : ổn định nhiệt cho transistor.

III/ Mạch dao động ba điểm điện dung (mạch dao động Colpitts)

Trên mạch dao động ba điểm điện cảm , điểm giữa của tín hiệu là điểm chung của cuộn dây , bây giờ , nếu ta dùng một cuộn dây nhưng điểm chung tín hiệu là điểm chung tụ điện , mạch sẽ trở thành mạch dao động ba điểm điện dung hay mạch dao động Colpitts .

Tần số dao động của mạch:

$$f = \frac{1}{2\pi \sqrt{L \frac{C_l C_2}{C_l + C_2}}}$$

Trong đó: tụ C3 là tụ liên lạc tín hiệu cảm ứng về cực B ,cách ly điện áp DC giữa cực C và cực B transistor.

Hình : Mạch dao động Colpitts .

III/ Dao động sóng răng cưa

Sóng răng cưa là một trong những dạng sóng quan trong trong điện tử. Nó được sử dụng rộng rãi trong máy hiện sóng , trong các hiển thị của ra đa và trong nhiều ứng dụng khác .

Hình : Dạng sóng răng cưa

Tạo ra sóng rặng cưa:

Transistor T dẫn điện khi không có tín hiệu xung hình chữ nhật Uv được đưa đến đầu vào . Hằng số thời gian C_1R_1 ($t=0,69R_1C_1$)là dài so với chu kì (t_1+t_2) của xung . Trong khoảng thời gian t1 không có tín hiệu vào , transistor T dẫn đồng thời tụ C_2 được nạp thông qua điện trở R_2 .

Hình : Mạch Tạo sóng răng cưa

Dạng sóng vào và ra

Kể từ khi dạng sóng hình chữ nhật được ghép qua C₁R₁ tới cực bazơ và cực colector (nếu T dẫn). Trong khoảng thời gian t₂ này transistor bị khóa (Vb>Vc) tụ C₂ phóng

điện trong khi hằng số thời gian tích điện C_2R_2 lớn và hằng số thời gian phóng điện nhỏ nên tạo ra sóng răng cưa .

Phần tăng của Ura phụ thuộc vào đặc tính tích điện của tụ điện , mức tích điện sẽ tương đối tuyến tính (đường thẳng) .Hằng số thời gian C_2R_2 càng lớn thì thời gian tăng của Ura càng ngắn .

Một dạng mạch khác phát sóng răng cưa:

Hình : sơ đô phát sóng răng cưa

Cách phát sóng răng cưa ở trên làm việc như sau:

Khi không có tín hiệu vào , transistor T bị khóa do không phân cực (bazơ và emitor có điện thế đất) . Khi tín hiệu vào được cấp cho bazơ ,T chuyển sang dẫn trong thời gian xung t2 ngắn, C2 không tích điện qua REC . Trong thời gian âm của xung(tín hiệu vào), T không dẫn C2 tích điện qua R2 hướng về điện áp colector .

Phần tăng của sóng răng cưa được tạo ra ở colector xảy ra trong khoảng thời gian transistor khóa.

III/ Dao động sóng tam giác

Sóng tam giác có dạng: giá trị tăng lên tức thời từ giá trị cực tiểu đến giá trị cực đại, rồi lập tức đảo ngược hướng, không duy trì một giá trị cố định. Mức tín hiệu dạng sóng tam giác thay đổi theo đường thẳng.

Hình : Sóng tam giác

Hình : Mạch dao động tạo sóng tam giác và sóng vuông

III/ Dao động sóng chữ nhật (xung đa hài)

Hình : Dao động sóng hình chữ nhật dùng transistor

Mạch điện dao động đa hài trên có hai trạng thái ổn định không bền : T₁ T₂ và ngược lại : T₁ T₂

Khi ở T₁ T₂ (khoảng thời gian từ 0 đến t₁ trên đồ thi).

C1 phóng điện qua CE1 qua Ucc,RB1

C2 phóng điện qua RcBE1

Khi T₁ T₂ (khoảng thời gian từ t₁ đến t₂)

Đồ thị điện áp minh hoạ hoạt động

C1 nạp qua Rc , BE2 và C2 phóng qua CE2,Ucc , RB2 quá trình nạp , phóng điện của C1 và C2 đẩy mạch đến trạng thái tới hạn để lật giữa hai trạng thái đã nêu . Chú ý quá trình lật trạng thái đột biến do bộ lọc C1 RB1,hay C2 RB2,là cao tần , nghĩa là các độ biến từ mức cao về mức thấp (đột biến âp từ T1 sang T1) được tận dụng qua bộ lọc để dập tắt phần tử thứ hai (T2sang T2) .

Chu kỳ xung vuông góc tính bởi:

 $T_r = \tau_1 + \tau_2 \text{ trong d\'o } \tau_1 = 0.7 \text{ R}_{B1} \text{ C}_1 \text{ ; } \tau_2 = 0.7 \text{ R}_{B2} \text{ C}_2$ Khi chọn $R_{B1} = R_{B2} = R$, $C_1 = C_2 = C$ ta có T = 1.4RC

- 22 -