Hybrid Movie Recommendation System (Approach-1)

Group Members:

- 1. Abhishek Pratap Singh (23911008)
- 2. Chanda Gupta (23911009)
- 3. Sanjeev Saharan (23911013)

Problem Statement:

Build a movie recommendation system based on 'MovieLens' dataset.

Hybrid merges both Collaborative Filtering and Content Based Filtering by reducing the limitations of them individually.

DataSet:

MovieLens review dataset (ml-latest-small)

o Ratings: 100k

o Movies: 9k

o Users: 600

Models:

- 1. Popularity based model
- 2. Content based model
- 3. Collaborative Filtering
- 4. Matrix Factorization method
- 5. Combined model (SVD + CF)
- 6. Hybrid model

Split the dataset into 80% training and 20% testing based on the User ID.

Genre Distribution:

1. Popularity based model:

- Genre wise popular movies
- · Computed on:
 - Popularity metric from TMDB data
 - Weighted Rating from IMDB

$$W = (v/(v+m) * R) + (m/(m+v) * C)$$

where, W=Weighted Rating

R = Average rating of a movie (scale: 1-10)

v = number of votes for the movie

m = minimum votes required to be listed in top

C = Mean vote average

Action Movies:

title	popularity	
788	Deadpool	514.569956
94	Guardians of the Galaxy	481.098624
127	Mad Max: Fury Road	434.278564
28	Jurassic World	418.708552
199	Pirates of the Caribbean: The Curse of the Bla	271.972889

Animated Movies:

title	popularity		
88	Big Hero 6	203.734590	
124	Frozen	165.125366	
506 Despicable Me 2		136.886704	
77	Inside Out	128.655964	

2- Content-Based Recommendation:

- 1. User profile based on item profiles
 - a. Genre
 - b. Year of release of movie
- 2. Movie Movie similarity

Metric	Content-based (Genre)
RMSE	0.935837
MAE	0.717817

3- Collaborative Filtering:

- KNN (k-nearest neighbours) algorithm using Surprise library.
- Variations of KNN based approaches:
 - o KNNBasic
 - KNNwithMeans
 - o KNNWithZScore
 - o KNNBaseline: integrates the baseline estimate rating.

• Similarity metrics:

- Cosine similarity
- Mean square difference-based similarity.
- Pearson coefficient (mean-centred cosine similarity)
- Pearson Baseline (uses global baselines for centring instead of means)

4 - CF and Latent Factor models (Combined Model):

- Matrix Factorization + CF
- Weighted linear combination of prediction ratings.
- Combined:
 - KNNBaseline (with pearson baseline similarity)
 - SVD
 - SVDpp: This model is an extension of SVD which considers implicit ratings.
 - BaselineOnly (takes the baseline predictor means of global ratings, user and the item/movie)

5- Hybrid Model:

Combination of recommendations using:

- 1. Combined model (SVD + CF)
- 2. Content Based Movie-Movie Similarity
- 3. Popularity model + User Profile (Genre Based)

Flow of the Hybrid recommendation model

REFERENCES

- 1-[Adomavicius G.Adomavicius G.[n.d.]] A. Adomavicius G., Tuzhilin. [n.d.]. Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions.. In Regional Conference Series in Mathematics.
- 2-[FermanFerman2002] Errico J. H. Beek P. V. Sezan M. I. Ferman, A. M. 2002. Content-based filtering and personalization using structured meta data. In Regional Conference Series in Mathematics.
- 3-[HugHug2017] Nicolas Hug. 2017. Surprise, a Python library for recommender systems. http://surpriselib.com.