Force de Laplace

Définition

Force de Laplace

Un conducteur *rectiligne* de longueur ℓ , dirigé par $\overrightarrow{e_\ell}$, parcouru par un courant d'intensité i selon $\overrightarrow{e_\ell}$ et placé dans un champ magnétique uniforme $\overrightarrow{B_0}$ subit une force dite de *Laplace*, notée $\overrightarrow{F_{\mathscr{L}a}}$, orthogonale à la direction du courant et à celle de $\overrightarrow{B_0}$ donnée par :

$$\overrightarrow{F_{\mathcal{L}a}} = i\ell \overrightarrow{e_{\ell}} \wedge \overrightarrow{B_0}.$$

Cas général

Force de Laplace élémentaire

La force de Laplace subie par un conducteur élémentaire $\delta\ell$ parcouru par un courant d'intensité i selon $\delta\ell$ s'écrit :

$$\delta \overrightarrow{F_{\mathcal{L}a}} = i \overrightarrow{\delta \ell} \wedge \overrightarrow{B}$$

Expression

Puissance de la force de Laplace

dans l'expérience du rail de Laplace, avec v_{ℓ} la composante de la vitesse selon $\overrightarrow{e_{\ell}} \wedge \overrightarrow{B_0}$ et avec $\overrightarrow{B_0} \perp \overrightarrow{e_{\ell}}$:

$$\mathscr{P}(\overrightarrow{F_{\mathcal{L}a}}) = iB_0\ell v_\ell$$

Actions exercées sur le cadre

Moment résultant d'une force linéique uniforme

Soit une force linéique \vec{f} s'exerçant sur un contour \mathscr{C} ; la force élémentaire $\delta \vec{F}$ sur un segment élémentaire $\delta \vec{\ell}$ au voisinage d'un point M est : $\delta \vec{F} = \vec{f}(M)\delta \ell$.

Si la force est *uniforme*, $ie \ \overrightarrow{f}(M) = \overrightarrow{f_0} = \overrightarrow{\text{cste}}$ pour tout point M, le moment des forces élémentaires s'exerçant sur le contour est le même que celui de la *résultante* de ces forces élémentaires appliquée au *barycentre* de \mathscr{C} .

En particulier pour un segment $[M_1M_2]$ de milieu C, on a, pour tout point O

$$\overrightarrow{\mathcal{M}}_{/O}(\overrightarrow{F}) = M_1 M_2 \overrightarrow{OC} \wedge \overrightarrow{f_0}$$

Expression en fonction du moment magnétique

Moment par rapport à l'axe des forces de Laplace

Le couple des forces de Laplace exercé sur un dipôle magnétique \vec{m} par un champ \vec{B} est :

$$\overrightarrow{\mathscr{C}}(\overrightarrow{F_{\mathscr{L}a}}) = \overrightarrow{m} \wedge \overrightarrow{B}_0.$$

Exercice : boussole des tangentes

On place une boussole au centre d'une paire de bobines de Helmholtz de rayon $R=15\,\mathrm{cm}$. Les bobines sont chacune formée d'un enroulement de N=10 tours de fils, parcourus par un courant d'intensité I. Le courant est initialement nul.

- 1. L'intensité de la composante horizontale du champ magnétique terrestre vaut, dans le laboratoire, $B_{HT}=2$ 10⁻⁵ T. On aligne l'axe de symétrie de révolution des bobines de Helmholtz orthogonalement à la direction initiale de la boussole.
 - a. Le champ magnétique sur l'axe d'une spire est donné par la formule :

$$B = \frac{\mu_0 I}{2R} (\sin(\theta))^3.$$

Déterminer l'expression du champ magnétique au centre des bobines de Helmholtz

b. En déduire la valeur du courant I_{45} pour laquelle la nouvelle position d'équilibre de la boussole est tournée de 45°.

- 2. Le courant étant initialement nul, on le bascule à t = 0 à la valeur I_{45} . On observe des oscillations peu amorties de période T = 0.8 s autour de la nouvelle position d'équilibre, quand leur amplitude est faible.
 - a. Établir l'équation différentielle d'évolution de l'angle α entre la boussole et sa position d'équilibre. On fera intervenir le moment d'inertie I de la boussole et son moment magnétique m.
 - b. En déduire la valeur du rapport I/m.

Puissance des force de Laplace sur un moment magnétique

La puissance des forces de Laplace subies par un moment magnétique \vec{m} plongé dans un champ magnétique \overrightarrow{B} et en rotation autour d'un axe Δ est :

$$\mathscr{P}(\overrightarrow{F_{\mathscr{L}a}}) = -m_{\perp}B_{\perp}\sin(\theta)\dot{\theta},$$

avec B_{\perp} et m_{\perp} les normes des composantes de \vec{B} et \vec{m} orthogonales à Δ et θ l'angle entre les projections de \vec{B} et de \vec{m} orthogonalement à Δ .

Énergie potentielle d'un moment magnétique rigide dans un champ magnétique

Les actions de Laplace exercées sur un dipôle magnétique rigide sont conservatives. On peut leur associer l'énergie potentielle:

$$\mathscr{E}_{\mathrm{pot}_{\mathscr{L}}} = -\overrightarrow{m} \cdot \overrightarrow{B}.$$

Positions d'équilibre

Il existe donc deux positions d'équilibre :

stable en $\theta = 0$. $ie \overrightarrow{m}$ et \overrightarrow{B} colinéaires et de même sens

instable en $\theta = \pi$, $ie \overrightarrow{m}$ et \overrightarrow{B} colinéaires et de sens opposés

Principe général

Champ tournant

Deux bobines identiques, d'axes de symétrie de révolution orthogonaux, placées à égale distance de l'intersection O de ces axes et parcourues par des courants sinusoïdaux de même fréquence f et en quadrature produisent, en O, un champ magnétique d'intensité constante dont la direction tourne à la même fréquence f.

Indispensable

Indispensable

- expressions pour une barre et élémentaire de la force de Laplace, avec les schémas
- savoir établir la force pour le rail de Laplace
- savoir refaire le calcul sur la spire rectangulaire, retenir le rôle de l'angle entre $\overrightarrow{B_0}$ et la normale à la spire, orientée par la convention pour le courant
- savoir calculer la puissance de Laplace dans les deux cas (spire et rail)
- connaître l'expression du couple et calculer la puissance pour un dipôle magnétique en rotation
- connaître le principe du champ tournant