

Cluster Analysis on Suicides in the US from 1999-2016

Chris Cole

Which States stand out?

- Which States stand out?
- Why do they stand out?

- Which States stand out?
- Why do they stand out?
- Have suicides gone up since 1999?

- Which States stand out?
- Why do they stand out?
- Have suicides gone up since 1999?
- Will clusters group states together?

- Which States stand out?
- Why do they stand out?
- Have suicides gone up since 1999?
- Will clusters group states together?
- Commonalities between clusters?

Hypothesis?

Hypothesis?

 States with larger populations (or more suicides) will be clustered together

Our data

Our data

• N = 51 (Includes the nation's capital)

Our data

- N = 51 (Includes the nation's capital)
- Number of Deaths for that year

Cluster Analysis!

- Cluster Analysis!
- Hierarchical

- Cluster Analysis!
- Hierarchical
- K-means

Assumptions?

Assumptions?

Are the data multivariate normal?

Chi-Square Q-Q Plot

Let's get the means for number of deaths per year

• Let's get the means for number of deaths per year

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007
Death Count	572.529	575.490	600.431	620.686	617.333	636.059	639.941	652.941	678.392

Year	2008	2009	2010	2011	2012	2013	2014	2015	2016
Death	706.569	723.706	752.235	774.863	796.078	806.843	839.725	866.529	881.667
Count									

Now let's get the ranges for number of deaths per year

Range of Deaths

Now let's get the ranges for number of deaths per year

A==							•		
Year	1999	2000	2001	2002	2003	2004	2005	2006	2
Danma of Dootha	2047	20.46	9701	2107	2261	2225	2172	2204	2

Year	1999	2000	2001	2002	2003	2004	2005	2006	-
Range of Deaths	3047	2946	2791	3197	3361	3335	3173	3304	

Range of Deaths	3047	2946	2791	3197	3361	3335	3173	3304	,

Year	2008	2009	2010	2011	2012	2013	2014	2015	2016

 First we need the number of deaths for each state for each year

- First we need the number of deaths for each state for each year
- Then divide that by the range (max-min) of that specific year

- First we need the number of deaths for each state for each year
- Then divide that by the range (max-min) of that specific year
- Do this 18 times...

Hierarchical Analysis

Hierarchical Analysis

Euclidean Distance

Hierarchical Analysis

- Euclidean Distance
- Ward Method

1. Duda

1. Duda

Number of Clusters	${\bf Duda_Critical}$	Duda_Value
2	.719	.143
3	.783	.263
4	.696	.290
5	.732	.443
6	.363	.012
7	.539	.217
8	.617	.434
9	.676	.304
10	.650	.402
11	.617	.346
12	.498	1.246
13	.363	.437
14	.443	.333
15	.228	5.866

- 1. Duda
- 2. CH-Index

1.	Duda
2.	CH-Index

_
N
-
2
$\frac{1}{2}$
4
5
6
7
8
9
1
1
1
1

Number of Clusters	CHindex
2	51.175
3	185.638
4	190.257
5	214.022
6	207.767
7	487.420
8	612.349
9	680.482
10	673.418
11	680.196
12	718.734
13	767.039
14	874.342
15	940.256

- 1. Duda
- 2. CH-Index
- 3. C-Index

	· · · · · · · · · · · · · · · · · · ·	
1. Duda	Number of Clusters	Cindex
2. CH-Index	2	.119
	3	.240
3. C-Index	4	.170
	5	.129
	6	.092
	7	.098
	8	.088
	9	.078
	10	.075
	11	.067
	12	.058
	13	.053
	14	.050
	15	.046

- 1. Duda
- 2. CH-Index
- 3. C-Index
- 4. "Best" partition

- 1. Duda
- 2. CH-Index
- 3. C-Index
- 4. "Best" partition
- 5. Dendrogram

So how many clusters do we choose?

So how many clusters do we choose?

• Let's stick with 3 clusters (for now)

K-means

K-means

Euclidean

1. CH-Index

1. CH-Index

Number of Clusters	kCHindex	
2	98.971	
3	185.638	
4	212.794	
5	263.110	
6	409.560	
7	512.131	
8	472.612	
9	426.247	
10	683.995	
11	616.904	
12	556.666	
13	499.669	
14	534.792	
15	583.466	

- 1. CH-Index
- 2. C-Index

- 1. CH-Index
- 2. C-Index

Number of Clusters	kCindex
2	.293
3	.240
4	.164
5	.189
6	.130
7	.097
8	.095
9	.095
10	.075
11	.075
12	.077
13	.081
14	.073
15	.064

- 1. CH-Index
- 2. C-Index
- 3. "Best" Partition

Make centroids based on our HCA

Make centroids based on our HCA

Use K-means with the center being our three centroids

Clusters	States
Cluster 1	California, Florida, Texas
Cluster 2	Arizona, Colorado, Georgia,
	Illinois, Indiana, Michigan,
	Missouri, New York, North
	Carolina, Ohio, Pennsylvania,
	Tennessee, Virginia, Washington,
	Wisconsin
Cluster 3	Alabama, Alaska, Arkansas,
	Connecticut, Delaware, District
	of Columbia, Hawaii, Idaho,
	Iowa, Kansas, Kentucky,
	Louisiana, Maine, Maryland,
	Massachusetts, Minnesota,
	Mississippi, Montana, Nebraska,
	Nevada, New Hampshire, New
	Jersey, New Mexico, North
	Dakota, Oklahoma, Oregon,
	Rhode Island, South Carolina,
	South Dakota, Utah, Vermont,
	West Virginia, Wyoming

Why do this?

- Which States stand out?
- Why do they stand out?
- Have suicides gone up since 1999?
- Will clusters group states together?

Hypothesis?

 States with larger populations (or more suicides) will be clustered together

Why does this matter?

Questions?