

# UNIVERSITA DEGLI STUDI DI GENOVA RESEARCH TRACK II

Third Assignment Report

## Fundaments of Statistics

### **DIBRIS**

DEPARTMENT OF COMPUTER SCIENCE AND
TECHNOLOGY, BIOENGINEERING, ROBOTICS AND
SYSTEM ENGINEERING

Author

Mura Alessio

May 2023

### Contents

| 1 | Introduction          | 3 |
|---|-----------------------|---|
| 2 | Experiment Overview   | 3 |
| 3 | Testing of Hypotheses | 4 |
| 4 | Data and Analysis     | 5 |
| 5 | Final Inference       | 7 |

#### 1 Introduction

As far as the third assignment of Research Track II is concerned, we were asked to conduct a statistical analysis based on the first assignment of Research Track I. In order to achieve this analysis, we had to compare our implementation with that of another colleague. In my case, I collaborated with Pisano Davide (S4363394). The aim of the first assignment was to make a simulator for robotics. The simulator was able to simulate a robot in a 2D environment and made it move around it and interact with objects. The robot was able to sense the environment and use this information to make decisions. As far as the final result was concerned, the robot had to try to place silver tokens next to golden ones, in order to distribute them in pairs.



Figure 1: The arena and its setup.

The conducted experiments entailed modifying the visual aspects of the arena configuration in order to examine the effectiveness of two distinct robotic controllers. Through a comparative analysis of the results obtained from my implementation and that of my colleague, we can acquire valuable insights into the efficacy of diverse approaches when tackling the task. Utilizing statistical analysis, we can detect any notable disparities in performance between the two implementations and draw conclusive observations concerning the respective strengths and weaknesses of each approach.

#### 2 Experiment Overview

The primary objective of the experiment was to conduct a statistical analysis focused on measuring the average time required to complete the silver-gold token pairing task. To achieve this, various simulations were performed, incorporating deliberate variations in the radius of the circle containing the golden tokens to ensure diverse scenarios and paths for the robot. Modifications were made to the "two-colours-assignment-arena" file to introduce randomness and variability in the experiments. By adjusting the random seed parameter, multiple iterations were generated, resulting in different positions for the golden tokens in each simulation. This approach allowed for randomized token configurations, adding complexity to the task. A total of 30 simulations were conducted for each token assignment to ensure a robust analysis. Each simulation utilized a distinct random seed parameter, resulting in unique token placements and environmental setups.

By conducting a sufficient number of simulations, the reliability of the findings was increased, minimizing the impact of random fluctuations on the overall results. The collected data from these simulations provided a comprehensive dataset for statistical analysis. The average time required for completion was calculated for each set of simulations with varying token assignments, enabling a comparison of the performance between the two implementations. Additionally, the variability in the results was examined to determine the statistical significance of any observed differences. By employing multiple simulations with different random seed parameters, the statistical analysis captured the overall performance trends and accounted for the influence of random factors. This approach enhanced the reliability and validity of the analysis, enabling meaningful conclusions to be drawn regarding the relative efficiency of the robotic controllers in different token assignment scenarios.

### 3 Testing of Hypotheses

As we clearly know, a hypothesis is a statement which makes a prediction about something which is not proven. To initiate the analysis, we have formulated hypotheses that will guide our evaluation of the two implementations. The **Null Hypothesis** assumes that there is no significant difference between the two algorithms, implying that both algorithms are equally effective in completing the task. On the other hand, the **Alternative Hypothesis** challenges the null hypothesis by proposing that one algorithm performs differently from the other. It suggests that one algorithm may demonstrate superiority or inferiority compared to the other.

Starting the analysis, we assume the null hypothesis to be true and the alternative hypothesis to be false, indicating that there is no substantial difference between the two implementations. Our goal is to verify whether the means of completion times for the task are the same for both cases, signifying equal efficiency. To assess the validity of our assumption, we will conduct a T-Test, a statistical method enabling the comparison of means between two datasets to determine if they are significantly different. By performing the T-Test on the completion times of the two implementations, we can infer whether there is a statistically significant difference between them.

Furthermore, this report aims to examine and evaluate the performance of these two distinct programs that solve the same problem. The next step involves formulating the two hypotheses that will be tested and refuted through experiments. The null hypothesis posits that there are no significant differences in performance between the two algorithms. It assumes that the average execution time is substantially similar for both algorithms, indicating no clear preference in terms of speed. On the other hand, the alternative hypothesis suggests that the first algorithm exhibits greater speed compared to the second algorithm.

It proposes that the average execution time of the first algorithm is lower than that of the second algorithm, indicating a significant speed advantage for the first algorithm. This analysis aims to provide an objective and statistical evaluation of the differences between the two algorithms, utilizing a mathematical approach and data collected during the study. By testing and analyzing these hypotheses, we aim to draw meaningful conclusions regarding the performance disparity between the two implementations.

## 4 Data and Analysis

As stated earlier, the experiments revolve around the average duration necessary to complete the task. For conducting the analysis, we employed Microsoft Excel. Below we can find a table presenting the time required for task completion in both my implementation and my colleague's implementation. Additionally, a comparative plot showcasing the durations in the two scenarios is available.

| Angle-Offset | Execution time 1 (Davide) | Execution time 2 (Alessio) |
|--------------|---------------------------|----------------------------|
| value 1      | 124.152205944             | 123.747475147              |
| value 2      | 159.195235014             | 116.804877996              |
| value 3      | 164.201638937             | 123.395332098              |
| value 4      | 221.377575874             | 233.639571905              |
| value 5      | 162.199706078             | 123.160826921              |
| value 6      | 149.176033974             | 120.351647854              |
| value 7      | 132.163321972             | 118.255588055              |
| value 8      | 161.22991395              | 120.699299097              |
| value 9      | 121.148519039             | 122.128663063              |
| value 10     | 147.165704012             | 117.783178091              |
| value 11     | 179.233612061             | 116.354319096              |
| value 12     | 169.184362888             | 125.264173031              |
| value 13     | 181.251331806             | 125.269979                 |
| value 14     | 117.128409147             | 119.554562092              |
| value 15     | 174.235455036             | 121.574173927              |
| value 16     | 169.245977879             | 122.968338013              |
| value 17     | 168.253568172             | 172.331265926              |
| value 18     | 143.16601181              | 127.462956905              |
| value 19     | 199.246370792             | 117.754606962              |
| value 20     | 150.157207012             | 121.04955101               |
| value 21     | 114.144917011             | 124.151800156              |
| value 22     | 179.222509146             | 122.35408783               |
| value 23     | 125.145918131             | 124.468497038              |
| value 24     | 197.22224021              | 121.451179028              |
| value 25     | 147.151827812             | 125.957015038              |
| value 26     | 139.158722878             | 120.75873518               |
| value 27     | 134.208396196             | 125.157833099              |
| value 28     | 162.207538128             | 124.248339891              |
| value 29     | 201.222958088             | 124.968111992              |
| value 30     | 164.163652897             | 119.761034012              |





Figure 2: Task completion comparison

After gathering the time data, I proceeded to compute the arithmetic mean (x) by dividing the sum of the observed values by the total number of observations (n). The formula employed in both instances (Davide: 1, Alessio: 2) is as follows:

$$x_1 = \frac{\sum_{n=1}^{N_1} X_i}{N_1} = 158,5653613965$$
  $x_2 = \frac{\sum_{n=1}^{N_1} X_i}{N_2} = 127,4275673151$ 

Subsequently, the standard deviation was calculated to provide an indication of the proximity of the entire dataset to the mean value. The formula utilized in both scenarios is as follows:

$$\sigma_1 = \sqrt{\frac{\sum_{n=1}^{N_1} (X_i - \mu_1)^2}{N_1}} = 26,6915511 \qquad \sigma_2 = \sqrt{\frac{\sum_{n=1}^{N_1} (X_i - \mu_2)^2}{N_2}} = 22,24373644$$

where N1, N2 = 30 and Xi are the values of the times.

We will now proceed to conduct a statistical analysis, specifically utilizing the two-sample T-test, in order to ascertain the statistical significance of the observed difference. Performing this statistical analysis is crucial in obtaining a more precise conclusion regarding the equality or disparity between the two implementations. Furthermore, I have computed the pooled variance, represented by the following value:

$$\sigma_{pooled}^2 = \frac{(N_1 - 1) \cdot s_1 + (N_2 - 1) \cdot s_2}{N_1 + N_2 - 2} = 645,2397249$$

The computation of the pooled variance contributes to the determination of the pooled and estimated Standard Error of the sampling distribution of the difference of means. This estimation can be obtained using the following formula:

$$\sigma_{\bar{x_1} - \bar{x_2}} = \sqrt{\frac{\sigma_{pooled}^2}{N_1} + \frac{\sigma_{pooled}^2}{N_2}} = 6,558657001$$

Given our focus on examining the differences, the t-statistic transforms into the following form:

$$t_{\bar{x_1}-\bar{x_2}}^2 = \frac{x_1-x_2}{\sigma_{x_1-x_2}} = 4,747586903$$

#### 5 Final Inference

Given the knowledge that there are 30 degrees of freedom, we can determine the critical value of the t-score and ascertain the statistical significance of the observed difference. With a sufficiently large sample size (N = 30) that allows for a safe t-test and an approximate normal distribution of the data, we can employ a two-tailed t-test to evaluate statistical significance.

Considering the 30 degrees of freedom, the critical value of the t-score for a significance level of 5% ( $\alpha = 0.05$ ) is approximately  $\pm 2.042$  (obtained from the T-test table).

In your specific case, the calculated t-score is 4.747586903. Since the absolute value of the t-score surpasses 2.042, we can conclude that the observed difference between the two implementations is statistically significant. Based on the data provided in the report, we can reject the null hypothesis and favor the alternative hypothesis, which suggests that the first algorithm is significantly faster than the second algorithm. Based on the results depicted in the aforementioned graph, it is evident that the algorithm implemented by Alessio is significantly more performant and efficient than that of his colleague.