Theorem. Let $A = (a_{ij})$ be an invertible matrix, c_{ij} the cofactor of element a_{ij} , and adj $A = (c_{ji})$ the adjugate matrix of A. Then $A^{-1} = \frac{adj A}{\det A}$.

Proof.

The **adjugate** c_{ij} is defined as $c_{ij} = (-1)^{i+j} M_{ij}$ where the minor M_{ij} is the determinant of the matrix obtained from A by removing row i and column j.

The (i, j) entry of A adj A

The (i, i) entry of A adj $A = a_{i1}c_{i1} + \cdots + a_{ij}c_{ij} + \cdots + a_{in}c_{in} = \det A$ since this is the cofactor expansion of A along row i.

We will show that the (i, j) entry of A adj A = 0 if $i \neq j$.

Start by generating a matrix B from A by replacing row j by row i:

$$B = \begin{pmatrix} a_{11} & \cdots & a_{1k-1} & a_{1k} & a_{1k+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & & \vdots \\ a_{j-11} & a_{j-1k-1} & a_{j-1k} & a_{j-1k+1} & a_{j-1n} \\ a_{i1} & \cdots & a_{ik-1} & a_{ik} & a_{ik+1} & \cdots & a_{in} \\ a_{j+11} & a_{j+1k-1} & a_{j+1k} & a_{j+1k+1} & a_{j+1n} \\ \vdots & & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nk-1} & a_{nk} & a_{nk+1} & \cdots & a_{nn} \end{pmatrix}$$

The cofactor of the (j, k) element of matrix B is $\left(-1\right)^{j+k}$ times the determinant of the matrix highlighted in magenta.

Next re-write matrix A so as to compare its (j, k) cofactor to that of B.

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1k-1} & a_{1k} & a_{1k+1} & \cdots & a_{1n} \\ \vdots & & \vdots & & & \vdots \\ a_{j-11} & a_{j-1k-1} & a_{j-1k} & a_{j-1k+1} & & a_{j-1n} \\ a_{j1} & \cdots & a_{jk-1} & a_{jk} & a_{jk+1} & \cdots & a_{jn} \\ a_{j+11} & a_{j+1k-1} & a_{j+1k} & a_{j+1k+1} & & a_{j+1n} \\ \vdots & & & \vdots & & \vdots \\ a_{n1} & \cdots & a_{nk-1} & a_{nk} & a_{nk+1} & \cdots & a_{nn} \end{pmatrix}$$

Observe that the magenta cofactor is the same. That is, c_{jk} is the common cofactor for matrices A and B as long as attention is restricted to row j.

Now generate the determinant of B by expanding B by cofactors along row j. Since B has two identical rows, its determinant is zero. From equation (1) we see that

$$0 = \det B = a_{i1} c_{j1} + \dots + a_{ik} c_{jk} + \dots + a_{in} c_{jn}$$

$$= (i, j) \text{ entry of } A \text{ adj } A$$

Therefore

$$A \text{ adj } A = \left(\delta_{ij} \det A\right) = \begin{bmatrix} \det A & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & \det A \end{bmatrix} = \left(\det A\right) \mathbf{I}$$

Left multiplying both sides by A^{-1} and dividing both sides by $\det A$ yields

$$A^{-1} = \frac{\operatorname{adj} A}{\operatorname{det} A}$$
.