

Departamento de Matemática, Universidade de Aveiro Álgebra Linear e Geometria Analítica — Agrup. IV 1.ª Prova de Avaliação Discreta; 2 de novembro de 2018 Duração: 1h30min

- Justifique todas as respostas e indique os cálculos efetuados -

- 1. Considere as matrizes: $A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $B = \begin{bmatrix} 3 & 1 \\ 0 & 1 \end{bmatrix}$ e $C = \begin{bmatrix} 2 & -1 & 3 \\ -4 & 2 & 0 \end{bmatrix}$.
- [15pts] (a) Calcule um produto (que esteja definido) das três matrizes.
- [20pts] (b) Usando o método de eliminação de Gauss-Jordan, determine a matriz escalonada por linhas reduzida equivalente a C. Indique, justificando, a característica e a nulidade de C.
- [15pts] (c) Justifique que A é invertível. Sendo $D = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$, determine a matriz X tal que $XA^{-1} = D$.
 - $\text{2. Considere } A = \left[\begin{array}{ccc} 1 & 1 & a \\ 1 & a & 1 \\ a & 1 & 1 \end{array} \right], \ a \in \mathbb{R}, \ \ \mathbf{e} \ B = \left[\begin{array}{c} -1 \\ 2 \\ -1 \end{array} \right].$
- [40pts] (a) Discuta, em função do parâmetro a, o sistema AX = B.
- [12pts] (b) Para a = 3, B pertence ao espaço das colunas de A? Justifique.
- [13pts] (c) Para a=1, determine $\mathcal{N}(A)$, o espaço nulo de A.
 - 3. Sejam A(-1,0,2), B(1,2,3) e C(0,1,3) pontos de \mathbb{R}^3 .
- [15pts] (a) Calcule o volume do paralelepípedo com vértice em O=(0,0,0) e arestas \overrightarrow{OA} , \overrightarrow{OB} e \overrightarrow{OC} .
- [20pts] (b) Calcule a área de um dos paralelogramos com vértices em O, A e B.
 - $\text{4. Seja A a matriz 4×4 invertivel tal que } \quad \text{adj $A = \begin{bmatrix} 1 & 1 & 0 & 4 \\ 1 & 2 & 1 & 8 \\ 1 & 0 & 7 & 1 \\ 0 & 0 & 0 & -1 \end{bmatrix}.$
- [15pts] (a) Verifique que $\det(\operatorname{adj} A) = -8$
- [20pts] (b) Calcule A^{-1} .
- [15pts] 5. Diga, justificando, se é verdadeira ou falsa a seguinte afirmação. Caso seja falsa, apresente um contra-exemplo. $(X\times Y)\cdot (X+Y)=0, \text{ quaisquer que sejam } X,Y\in\mathbb{R}^3.$