Algorithms of Relational Algebra Join Algorithms

Unary versus Binary Operations

- Relational operators working on one table
 - Selection (scanning, indexes)
 - projection (duplicate elimination -> use sorting or hashing)
 - -O(1), O(log(N)), O(N), O(Nlog(N))
- On two tables
 - Product, Join, Semi-join, Intersection, Union,
 Difference
- Binary operators are usually more expensive
 - Binary: Look at each tuple of first table for each tuple of second table (naïve algorithm)
 - "Potentially" quadratic complexity in time and space $O(N^2)$

Unary relational operations

- Relation R; b(R) denotes number of blocks to hold records in R
- Selection

```
case (1) A = 'a' index lookup or scanning case (2) A <> | <= | < | >= | > 'a' B+-tree or scanning
```

Projection

```
sorting followed by duplicate elimination: O(b(R)log(b(R)) hashing followed by duplicate elimination: O(b(R))
```

Observation: output size is never larger than O(b(R))

Binary relational algebra operations

- Relation R; b(R) denotes numbers of blocks to hold records in R
 Relation S; b(S) denotes number of blocks to hold records in S
- Union, intersection, difference, join, semi-join, anti semi-join
- Naïve algorithm: Double nested loop algorithm for r in R
 for s in S {...}
- Time complexity O(b(R)b(S))
- Space complexity:

```
O(b(R) + b(S)) for union, intersection, difference, semi-join, anti semijoin possibly O(b(R)b(S)) for join
```

Join Operator

- JOIN: Most important relational operator
 - Potentially very expensive
 - Required in all practical queries and applications
 - Often appears in groups of joins
- Example: Relations R (A, B) and S (B, C)

```
SELECT *
FROM R JOIN S ON (R.B \theta S.B)
with \theta: =, \neq, <, \leq, >, \geq
```

Overview of Join Algorithms

- Nested-loop and block nested-loop join $R \bowtie_{\theta} S$
- Sort-merge join $R \bowtie S$
- Hash-based join strategies $R \bowtie S$
- Index join $R \bowtie S$

Nested-loop Join

Nested-loop join FOR EACH r IN R DO FOR EACH s IN S DO IF (r.Bθs.B) THEN OUTPUT (r ⋈θ s) Some improvement (block-based) FOR EACH block x IN R DO FOR EACH block y IN S DO FOR EACH r in x DO FOR EACH s in y DO IF (r.Bθs.B) THEN OUTPUT (r ⋈θ s)

Cost estimations

- b(R), b(S) number of blocks in R and in S, respectively
- Each block of outer relation is read once
- Inner relation is read once for each block of outer relation
- Inner two loops are free (only main memory operations)
- Altogether: b(R)+b(R)*b(S)

Example

- Assume b(R)=10,000, b(S)=2,000
- R as outer relation
 - -IO = 10,000 + 10,000*2,000 = 20,010,000
- S as outer relation
 - -IO = 2,000 + 2,000*10,000 = 20,002,000
- Use smaller relation as outer relation
 - For large relations, choice doesn't really matter
- Can we do better?

...

- There is no "M" in the formula
 - M is the size of main memory (buffer) in blocks
- We should use our available main memory (buffer)
- We will sometimes need a somewhat different parameter than M to discuss buffer size.

Block nested-loop join

- Rule of thumb: Use all memory you can get
 Use all memory the buffer manager allocates to the process
- Blocked-nested-loop

```
FOR i=1 TO b(R)/M DO
  READ NEXT R-chunk of M blocks of R into Memory buffer
  FOR EACH block y IN S DO
   FOR EACH r in R-chunk DO
     FOR EACH s in y do
       IF ( r.B \theta s.B) THEN OUTPUT (r\bowtie_{\theta} s)
```

- Cost estimation
 - Outer relation is read once
 - Inner relation is read once for every chunk of R
 - − There are ~b(R)/M chunks
 - IO = b(R) + b(R)*b(S)/M

- Example
 - Assume b(R)=10,000, b(S)=2,000, M=500
 - R as outer relation
 - IO = 10,000 + 10,000*2,000/500 = 50,000
 - S as outer relation
 - IO = 2,000 + 2,000*10,000/500 = 42,000
 - Compare to one-block NL: 20,002,000 IO
- Use smaller relation as outer relation
- But sizes of relations do matter:
 - If one relation fits into memory (min(b(R),b(S)) < M)
 - Total cost: b(R) + b(S)

Sort-Merge Join

- How does it work?
- Only works for Natural Join $R \bowtie S$
- What does it cost?
- Does it matter which is outer/inner relation?
- When is it better then block-nested loop?
- Be concerned about skew on join attribute

Sort-Merge Join

- How does it work?
 - –Sort both relations on join attribute(s)
 - Merge both sorted relations
- Caution if duplicates (skew) exists
 - -The result size still is |R|*|S| in worst case
 - If there are r/s tuples with value x in the join attribute
 in R / S, we need to output r*s tuples for x
 - More importantly, all these r/s must simultaneously fit in main memory (not always true if there is skew)

Example

Cost estimation (without skew)

- Sorting R costs 2*b(R) * ceil(log_M(b(R)))
- Sorting S costs 2*b(S) * ceil(log_M(b(S)))
- Merge phase reads each relation once
- Total IO
 - $-b(R) + b(S) + 2*b(R)*ceil(log_{M}(b(R))) + 2*b(S)*ceil(log_{M}(b(S)))$

This is only the case when, for each join-value b, the R and S blocks with that value b fit together in the buffer.

If this is not the case for value b, then the sort-merge algorithm needs to do a local block-nested join loop on the R and S blocks with value b.

Better than Block-Nested-Loop?

- Assume b(R)=10,000, b(S)=2,000, M=500
 - BNL costs 42,000
 - With S as outer relation
 - SM: 10,000+2,000+4*10,000+4*2,000 = 60,000since $ceil(log_{500}(10,000) = ceil(log_{500}(2,000)) = 2$
- Assume b(R)=1,000,000, b(S)=1,000, M=500
 - BNL costs 1,000 + 1,000,000*1000/500 = 2,001,000
 - SM: 1,000,000+1,000+6*1,000,000+4*1,000 = 7,005,000

Comparison

- Assume relations of equal size: B(R) = B(S) = B blocks
- SM: $2*B + 4*B*log_M(B)$
- BNL: B+B²/M
- BNL > SM
 - $B+B^2/M > 2*B + 4*B*log_M(B)$
 - $B/M > 1 + 4*log_M(B)$ (division by B)
 - $B > M + 4*M*log_{M}(B)$
 - $M^k > M + 4*M*k = (1+4k) M$ (when B = M^k)

Hash Join

- As always, we may save on sorting if good hash function is available
- Assume a very good hash function
 - Distributes hash values almost uniformly over hash table
 - -If we have uniform skew, a simple intervalbased hash function will usually work
- How can we apply hashing to joins?

Hashing a file on join attribute(s)

- Idea: partition a relation R into buckets, on disk
- Each bucket has size approx. B(R)/M

- Does each bucket fit in main memory?
 - Yes if $B(R)/M \le M$, i.e. $B(R) \le M^2$

Hash Join Idea

- Use join attributes as hash keys in both R and S
- Choose hash function for hash table of size M
 - Each bucket has size b(R)/M, b(S)/M
- Hash phase
 - Scan R, compute hash table, writing full blocks to disk immediately
 - Scan S, compute hash table, writing full blocks to disk immediately
- Merge phase
 - Iteratively, load same bucket of R and of S in memory
 - Compute join
- Total cost
 - Hash phase costs 2*b(R)+2*b(S)
 - Merge phase costs b(R) + b(S)
 - Total: 3*(b(R)+b(S))

Index Join

- Assume we have an index "B_Index" on one join attribute
- Choose indexed relation as inner relation
- Index join

S.B_Index auf S

- Actually, this is a one block-nested loop with index access
 - Using BNL possible (and better)

Semi Join

- Consider queries such as
 - SELECT DISTINCT R.* FROM S,R WHERE R.B=S.B
 - SELECT R.* FROM R WHERE R.B IN (SELECT S.B FROM S)
- What's special?
 - No values from S are requested in result
 - S (or inner query) acts as filter on R
- Semi-Join R ⋉ S

Implementing Semi-Join

- Using blocked-nested-loop join
 - Choose relation R as outer relation
 - Perform BNL
 - Whenever partner for R.B is found, exit inner loop
- Using sort-merge join
 - Sort R
 - Sort join attribute values from S, remove duplicates on the way
 - Perform merge phase as usual
- Using hash join
 - Hash R
 - Hash join values from S, remove duplicates on the way
 - Perform hash phase as usual

Implementing Intersection, Union, Difference

- Analogous with semi-join
- Using sort-merge join
 - Sort R, remove duplicates on the way
 - Sort S, remove duplicates on the way
 - Perform merge phase as usual (checking for and, or, not)
- Using hash join
 - Hash R, remove duplicates on the way
 - Hash R, remove duplicates on the way
 - Perform hash phase as usual (checking for and, or, not)

Observe that the performance is never O(R*S)