### CS557: Cryptography

Modern Ciphers (AES)

S. Tripathy IIT Patna

### **AES**

- AES-Rijndael parameters
  - key size 128/192/256/ -bit
  - input/output size 128-bit
  - number of rounds 10 12 14
  - round key size 128
- Decryption algorithm is different from encryption algorithm (non Feistel structure). (optimized for encryption)
- single 8 bit to 8 bit S-box.
- stronger & faster than Triple-DES

**AES-Rijndael** 



### **AES Round Function Components:**

### Add Round Key

- AddRoundKey proceeds one column at a time.
- AddRoundKey adds a round key word with each state column matrix; the operation in AddRoundKey is matrix addition



### **AES Round Function Components:**

### Byte Substitution

- uses one table of 16x16 bytes containing a permutation of all 256 8-bit values
- each byte of state is replaced by byte in row (left 4-bits) & column (right 4-bits)
  - eg.  $\frac{S_{1,1}}{S_{1,1}}$  byte  $\{4E\}$  is replaced by row 4 col E byte (in S-Table) which is the value  $\frac{S_{1,1}}{S_{1,1}}$



### S-box

|   |   |     |    |     |      |    |     |     |     | r  |     |            |    |     |    |    |     |
|---|---|-----|----|-----|------|----|-----|-----|-----|----|-----|------------|----|-----|----|----|-----|
|   |   | 0   | 1  | 2   | 3    | 4  | 5   | 6   | 7   | 8  | 9   | A          | В  | С   | D  | Е  | F   |
|   | 0 | 63  | 7C | 77  | 7B   | F2 | 6B  | 6F  | C.5 | 30 | 01  | 67         | 2B | FE  | D7 | AB | 76  |
|   | 1 | CA  | 82 | C9  | 7D   | FA | .59 | 47  | F0  | AD | D4  | A2         | AF | 9C  | A4 | 72 | C0  |
|   | 2 | B7  | FD | 93  | 26   | 36 | 3F  | F7  | CC  | 34 | A.5 | E5         | F1 | 71  | D8 | 31 | 1.5 |
|   | 3 | 04  | C7 | 23  | СЗ   | 18 | 96  | 0.5 | 9A  | 07 | 12  | 80         | E2 | EB  | 27 | B2 | 7.5 |
|   | 4 | 09  | 83 | 2C  | 1.A. | 1B | 6E  | 5A  | A0  | 52 | 3B  | <u>D</u> 6 | B3 | 29  | E3 | 2F | 84  |
|   | 5 | 53  | D1 | 00  | ED   | 20 | FC  | B1  | 5B  | 6A | CB  | BE         | 39 | 4A  | 4C | 58 | CF  |
|   | 6 | D0  | EF | AA  | FB   | 43 | 40  | 33  | 85  | 45 | F9  | 02         | 7F | 50  | 3C | 9F | A8  |
| × | 7 | .51 | A3 | 40  | 8F   | 92 | 9D  | 38  | F5  | BC | B6  | DA         | 21 | 10  | FF | F3 | D2  |
|   | 8 | CD  | OC | 13  | EC   | 5F | 97  | 44  | 17  | C4 | A7  | 7E         | 3D | 64  | 5D | 19 | 73  |
|   | 9 | 60  | 81 | 4F  | DC   | 22 | 2A. | 90  | 88  | 46 | EE  | В8         | 14 | DE  | 5E | 0B | DB  |
|   | A | E0  | 32 | 3A  | 0A   | 49 | 06  | 24  | 5C  | C2 | D3  | AC         | 62 | 91  | 95 | E4 | 79  |
|   | В | E7  | C8 | 37  | 6D   | 8D | D5  | 4E  | A9  | 6C | 56  | F4         | EA | 6.5 | 7A | AE | 08  |
|   | C | BA  | 78 | 2.5 | 2E   | 1C | A6  | B4  | C6  | E8 | DD  | 74         | 1F | 4B  | BD | 8B | 8A  |
|   | D | 70  | 3E | B.5 | 66   | 48 | 03  | F6  | Œ   | 61 | 35  | 57         | B9 | 86  | C1 | 1D | 9E  |
|   | Е | E1  | F8 | 98  | 11   | 69 | D9  | 8E  | 94  | 9B | 1E  | 87         | E9 | CE  | 55 | 28 | DF  |
|   | F | 8C  | A1 | 89  | OD   | BF | E6  | 42  | 68  | 41 | 99  | 2D         | 0F | B0  | 54 | BB | 16  |

### S-Box Byte Computation

S-box is constructed defined transformation of the values in  $GF(2^8)$  with irreducible polynomial  $(x^8 + x^4 + x^3 + x + 1)$  as  $y = Ax^{-1} + c$ 

$$\begin{bmatrix} s_0 \\ s_1 \\ s_2 \\ s_3 \\ s_4 \\ s_5 \\ s_6 \\ s_7 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \\ b_4 \\ b_5 \\ b_6 \\ b_7 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

Ex.: 
$$X = 0x11$$
,  $X^{-1} = 0xb4 = (10110100)$ ,  $A X^{-1} + C = 82$ 

$$s=b\oplus(b\lll 1)\oplus(b\lll 2)\oplus(b\lll 3)\oplus(b\lll 4)\oplus63_{16}$$

$$s_i = b_i \oplus b_{(i+4) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+6) \bmod 8} \oplus b_{(i+7) \bmod 8} \oplus c_i$$

### **AES Round Function Components:**

#### **Shift Rows**

A:

sij is a byte

| s00 | s01 | s02 | s03 |
|-----|-----|-----|-----|
| s10 | s11 | s12 | s13 |
| s20 | s21 | s22 | s23 |
| s30 | s31 | s32 | s33 |

Shift row i i positions (i = 0 to 3)

| s00 | s01 | s02 | s03 |
|-----|-----|-----|-----|
| s11 | s12 | s13 | s10 |
| s22 | s23 | s20 | s21 |
| s33 | s30 | s31 | s32 |

### **AES Round Function Components:**

#### Mix Columns

• Each column is multiplied modulo  $(x^4+1)$  by the fixed polynomial a(x), given by

 $a(x) = \{03\}x^3 + \{01\}x^2 + \{01\}x + \{02\}$ 

• effectively a matrix multiplication in  $GF(2^8)$  using prime poly  $m(x) = x^8 + x^4 + x^3 + x + 1$ 



 $s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$   $s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$   $s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$   $s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$ 

## **AES Decryption**

The AES Decryption Algorithm:

#### AddRoundKey:

Add Roundkey transformation is identical to the forward add round key transformation, because the XOR operation is its own inverse.

$$A \leftarrow round\_key \oplus A$$

#### Inverse SubBytes:

This operation can be performed using the inverse S-Box. It is read identically to the S-Box matrix.

#### InvShiftRows:

Inverse Shift Ro for each of the the second row, l

| s00 | s01 | s02 | s03 |   |
|-----|-----|-----|-----|---|
| s10 | s11 | s12 | s13 |   |
| s20 | s21 | s22 | s23 | þ |
| s30 | s31 | s32 | s33 |   |

| Shift row i    |        |
|----------------|--------|
| i positions    |        |
| (i = 0  to  3) | -<br>: |

|   | lar |     |   |    |   |
|---|-----|-----|---|----|---|
| a | one | e-t | y | te | C |

| s00 | s01 | s02 | s03 |
|-----|-----|-----|-----|
| s11 | s12 | s13 | s10 |
| s22 | s23 | s20 | s21 |
| s33 | s30 | s31 | s32 |

#### InvMixColumns:

The inverse mix column transformation is multiplication in Galois Field (28):

OD 09 OE OB ne following matrix





#### **AES Key Expansion**

- takes 128/192/256-bit (16/24/32-byte) key and expands into array of 44/52/60 32-bit words
- start by copying key into first 4 words
- then loop creating words that depend on values in previous and 4 places back

- in 3 of 4 cases just XOR these together

- every 4th has S-box + rotate + XO



| Key Words                                          | Auxiliary Function             |
|----------------------------------------------------|--------------------------------|
| w0 = 0f 15 71 c9                                   | RotWord(w3)= 7f 67 98 af = x1  |
| w1 = 47 d9 e8 59                                   | SubWord(x1)= d2 85 46 79 = y1  |
| w2 = 0c b7 ad                                      | Rcon(1)= 01 00 00 00           |
| w3 = af 7f 67 98                                   | y1 ⊕ Rcon(1)= d3 85 46 79 = z1 |
| w4 = w0 ⊕ z1 = dc 90 37 b0                         | RotWord(w7)= 81 15 a7 38 = x2  |
| w5 = w4 ⊕ w1 = 9b 49 df e9                         | SubWord(x4)= 0c 59 5c 07 = y2  |
| $w6 = w5 \oplus w2 = 97 \text{ fe } 72 \text{ 3f}$ | Rcon(2) = 02 00 00 00          |
| w7 = w6 ⊕ w3 = 38 81 15 a7                         | y2 ⊕ Rcon(2)= 0e 59 5c 07 = z2 |
| w8 = w4 ⊕ z2 = d2 c9 6b b7                         | RotWord(wll)= ff d3 c6 e6 = x3 |
| w9 = w8 ⊕ w5 = 49 80 b4 5e                         | SubWord(x2)= 16 66 b4 8e = y3  |
| w10 = w9 ⊕ w6 = de 7e c6 61                        | Rcon(3)= 04 00 00 00           |
| w11 = w10 ⊕ w7 = e6 ff d3 c6                       | y3 ⊕ Rcon(3)= 12 66 b4 8e = z3 |
| w12 = w8 ⊕ z3 = c0 af df 39                        | RotWord(w15)= ae 7e c0 b1 = x4 |
| w13 = w12 @ w9 = 89 2f 6b 67                       | SubWord(x3)= e4 f3 ba c8 = y4  |
| w14 = w13 ⊕ w10 = 57 51 ad 06                      | Rcon(4)= 08 00 00 00           |
| w15 = w14 ⊕ w11 = b1 ae 7e c0                      | y4 ⊕ Rcon(4)= ec f3 ba c8 = 4  |

#### Round 1

# AES Diffusion: Single Byte



Note: AddRoundKey has no impact on diffusion

### Avalanche effect

- Key: 0f1571c947d9e8590cb7add6af7f6798
- Plaintext:

0123456789abcdeffedcba9876543210 0023456789abcdeffedcba9876543210

Ciphertext

ffob844a0853bf7c6934ab4364148fb9 612b89398d0600cde11627ce72433f0



- Plaintext:
  - 0123456789abcdeffedcba9876543210
- Key:

Of1571c947d9e8590cb7add6af7f6798 Oe1571c947d9e8590cb7add6af7f6798

Ciphertext:

ffob844a0853bf7c6934ab4364148fb9 fc8923ee501a7d207ab670686839996b



### Important characteristics of AES

- Security
- Brute-Force Attack
  - AES is definitely more secure than DES due to the larger-size key.
- Differential and Linear Attacks
- There are no differential and linear attacks on AES as yet.

### Strength against known attacks

- Differential cryptanalysis(DC)
  - > First described by Eli Biham and Adi Shamir in 1991.
  - ➤ A differential propagation is composed of differential trails(DT), where its prop ratio(PR) is the sum of the PRs of all DTs that have the specified initial and final difference patterns.
  - $\triangleright$  Necessary condition to be resistant against DC: No DT with predicated PR >  $2^{-n+1}$ , n the block length.
  - For Rijndael: No 4-round DT with predicated PR above  $2^{-150}$  (no 8-round trails with PR above  $2^{-300}$ ).

### Strength against known attacks

- Linear cryptanalysis(LC)
  - First described by M. Matsui in 1994.
  - > An input-output correlation is composed of linear trails (LT) that have the specified initial and final selection patterns.
  - > Necessary condition to be resistant against LC: No LTs with a correlation coefficients >  $2^{n/2}$
  - For Rijndael: No 4-round LTs with a correlation above  $2^{-75}$  (no 8-round trails with a correlation above  $2^{-150}$ ).

### **Implementation**

- Implementation
  - AES can be implemented in software, hardware, and firmware. The implementation can use table lookup process or routines that use a well-defined algebraic structure
  - Each Encryption round Function
    - Can be collapsed to 4 table lookups and 4 XORs using 32-bit values (tables for last round differ - no MixColumns step)
    - XOR result with round key
- Simplicity
  - The algorithms used in AES are so simple that they can be easily implemented using cheap processors and a minimum amount of memory.

# •AES Block Ciphers Another Mode of Encryption

### **XTS-AES Mode**

- A mode, for block oriented storage use
  - in IEEE Std 1619-2007
  - different requirements to transmitted data
- concept of tweakable block cipher
  - uses AES twice for each block

$$T_{j} = E_{K2}(i) \text{ XOR } \alpha^{j}$$
 $C_{j} = E_{K1}(P_{j} \text{ XOR } T_{j}) \text{ XOR } T_{j}$ 

where i is tweak for the sector & j is block no

- each sector may have multiple blocks

# XTS-AES Mode per block



(a) Encryption



# XTS-AES Mode Overview





### • Thanks