Московский Физико-Технический Институт (государственный университет)

Лабораторная работа по курсу общей физики № 5.10.1

Электронный парамагнитный резонанс

Автор:

Филиппенко Павел Б01-009

Долгопрудный, 2022

Цель работы: Исследуется электронный парамагнитный резонанс в молекуле ДФПГ, определяется g-фактор электрона, измеряется ширина ЭПР.

Теоретическое введение

Энергетический уровень электрона в присутствии магнитного поля с индукцией B расщепляется на подуровня, расстояние между которыми равно

$$\Delta E = E_2 - E_1 = 2\mu B. \tag{1}$$

Здесь μ – абсолютная величина проекции магнитного момента на направление поля.

Между этими двумя уровнями возможны переходы. Эти переходы могут возбуждаться внешним высокочастотным электромагнитным полем, если оно имеет нужную частоту и нужное направление.

Резонансное значение частоты определяется из очевидной формулы:

$$\hbar\omega_0 = \Delta E. \tag{2}$$

При переходе с нижнего на верхний уровень энергии электрон поглощает квант электромагнитной энергии, а при обратном переходе такой же квант излучается. Возбуждение электронных резонансных переходов электромагнитным полем, имеющим частоту, определяемую формулой (2), носит название электронного парамагнитного резонанса (ЭПР).

В настоящей работе необходимо получить сигнал ЭПР на кристаллическом дифенилпикрилгидразиле (ДФПГ) и определить значение g-фактора для электрона. Как известно, связь между магнитным моментом μ электрона и его механическим моментом $\mathbf M$ выражается через гиромагнитное отношение γ с помощью формулы

$$\mu = \gamma M. \tag{3}$$

Если магнитный момент частицы, измеренный в магнитонах Бора, а механический - в \hbar , то их связь можно записать через g-фактор:

$$\frac{\mu}{\mu_{\rm B}} = \frac{gM}{\hbar} \tag{4}$$

Используя соотношения (1)-(4), нетрудно получить выражение для g-фактора через определяемые экспериментально величины:

$$g = \frac{\hbar\omega_0}{\mu_{\rm B}B}.\tag{*}$$

1 Экспериментальная установка

Образец (порошок ДФПГ) в стеклянной ампуле помещяется внутрь катушкииндуктивнсоти входящей в состав колебательного контура. Входящий в состав контура конденсатор состоит из двух платсин, разделенных воздушным зазором, одна из пластин может перемещаться поворотом штока. Колебания в контуре возбуждаются антенной, соединённой с генератором частоты (ВЧ) Г4-116. Амплитуда колебаний поля в катушке индуктивности измеряется по наводимой в петле связи ЭДС индукции. Высокочастотные колебания ЭДС индукции в приёмном контуре детектируются диодом, измеряемая при помощи осциллографа низкочастотная огибающая этого сигнала пропорциональна квадрату амплитуды колебаний поля в катушке.

Рис. 1: Схема установки.

Постоянной магнитное поле создаётся пропусканием тока от источника постоянного тока через основные катушки. При этом при помощи вольтметра измеряется падение напряжения на резисторе в цепи основных катушек. Переменное поле небольшой амплитуды создаётся подачей на модуляционные катушки напряжения с регулируемого трансформатора ЛАТР. Для измерения амплитуды колебаний переменного поля используется пробная катушка известной геометрии, подключенная к вольтметру.

Ход работы

Запишем параметры катушек в Таблицу 1:

Катушка	N	D, cm
Основная	6700	25 ± 1
Модуляционная	5000	30 ± 1
Пробная	45	1.52 ± 0.01

Таблица 1: Параметры катушек.

Резонанс

Настроим генератор на частоту колебательного конутра. Получаем резонансную частоту:

$$f_0 = (164 \pm 1)$$
 Мгц.

Подберем величину постоянного магнитного поля в катушках так, чтобы наблюдался сигнал резонанского поглощения. Для этого подадим на катушки достаточное напряжение.

Для более точной настройки и определения ширины линии резонасного поглощения будем наблюдать сигнал в XY-режиме. Запишем значение напряжения на резисторе в цепи основных катушек:

$$U_0 = (130 \pm 1) \text{ MB}.$$

Ширина линии поглощения

Определим ширину линии ЭПР (полуширина на на полувысоте линии резонасного поглощения):

$$\Delta B = \frac{A_{1/2}}{A_{\text{полн}}} B_{\text{мод}},$$

где $A_{\text{полн}}$ – полный размах модулирующего поля, $A_{1/2}$ – ширина кривой на полувысоте, $B_{\text{мод}}$ – амплитуда модулирующего поля.

$$A_{ ext{полн}}=(10\pm0.2)$$
 дел, $A_{1/2}=(3\pm0.2)$ дел $B_{ ext{mod}}=\sqrt{2}rac{2arepsilon}{\pi^2d^2N
u}=0.75\pm0.05 ext{mTл},$

где ε – ЭДС индукции при внесении пробной катушки, N – число витков катушки, d – диаметр катушки, ν – частота модулирующего напряжения (50 Γ ц).

Имеем:

$$\Delta B = (0.22 \pm 0.02) \text{ MT}_{\text{I}}$$

Калибровка основной катушки

Определим связь между падением напряжения на резисторе в цепи основных катушек и магнитным полем в центре магнита. Поле в центре будем измерять, поднося пробную катушку к основным с двух сторон - спереди и сзади. В качестве значения поля возьмем среднее этих величин. Результаты занесем в Таблицу 2:

По полученным данным построим калибровочный график (считаем, что он проходит через начало координат) и определим коэффициент наклона.

V_R , мВ	3.52	5.35	7.14	8.90	10.53
$V_{\text{перед}}$, мВ	0.46	0.61	0.83	1.06	1.25
$V_{\rm зад}$, мВ	0.42	0.69	0.87	1.08	1.26
$V_{\rm cpeg}$, мВ	0.44	0.65	0.85	1.07	1.255

Таблица 2: Калибровочные измерения.

Рис. 2: Калибровочный график

Значение коэффициента наклона

$$k = (11.7 \pm 0.1) \cdot 10^{-2}$$

Для упрощения расчетов будем считать, что $k \approx 0.12$. Рассчитав поле, создаваемое основными катушками,

$$B_0 = rac{4kU_0}{2\pi
u N\pi d^2} = (6.1 \pm 0.1)$$
мТл.

Найдем g-фактор электрона:

$$g = \frac{hf_0}{\mu_B B_0} = 1.9 \pm 0.1$$

Вывод

В данной работе был исследован ЭПР в молекуле ДФПГ, определяется g-фактор электрона $g=1.9\pm0.1$, а также измерена ширина линий ЭПР $\Delta B=0.22\pm0.2$ мТл. Измеренный g-фактор электрона совпадает с табличным значением для свободного электрона: $g_{free}=2,0$. Это обусловлено тем, что ПР происходит на неспаренных электронах так же, как на свободных.