In [1]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns

In [2]: df = pd.read_csv(r"C:\Users\user\Downloads\C10_air\csvs_per_year\csvs_per_year\
df

Out[2]:

	date	BEN	СН4	со	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	т
0	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	29.0	31.0	NaN	NaN	NaN	2.0	N
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1
2	2018- 03-01 01:00:00	0.4	NaN	NaN	0.2	NaN	4.0	41.0	47.0	NaN	NaN	NaN	NaN	N
3	2018- 03-01 01:00:00	NaN	NaN	0.3	NaN	NaN	1.0	35.0	37.0	54.0	NaN	NaN	NaN	N
4	2018- 03-01 01:00:00	NaN	NaN	NaN	NaN	NaN	1.0	27.0	29.0	49.0	NaN	NaN	3.0	N
69091	2018- 02-01 00:00:00	NaN	NaN	0.5	NaN	NaN	66.0	91.0	192.0	1.0	35.0	22.0	NaN	N
69092	2018- 02-01 00:00:00	NaN	NaN	0.7	NaN	NaN	87.0	107.0	241.0	NaN	29.0	NaN	15.0	N
69093	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	28.0	48.0	91.0	2.0	NaN	NaN	NaN	N
69094	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	141.0	103.0	320.0	2.0	NaN	NaN	NaN	N
69095	2018- 02-01 00:00:00	NaN	NaN	NaN	NaN	NaN	69.0	96.0	202.0	3.0	26.0	NaN	NaN	N

69096 rows × 16 columns

In [3]: df1 = df.fillna(0)
 df1

Out[3]:

	date	BEN	CH4	СО	EBE	NMHC	NO	NO_2	NOx	O_3	PM10	PM25	SO_2	тс
0	2018- 03-01 01:00:00	0.0	0.00	0.3	0.0	0.00	1.0	29.0	31.0	0.0	0.0	0.0	2.0	0.0
1	2018- 03-01 01:00:00	0.5	1.39	0.3	0.2	0.02	6.0	40.0	49.0	52.0	5.0	4.0	3.0	1.4
2	2018- 03-01 01:00:00	0.4	0.00	0.0	0.2	0.00	4.0	41.0	47.0	0.0	0.0	0.0	0.0	0.0
3	2018- 03-01 01:00:00	0.0	0.00	0.3	0.0	0.00	1.0	35.0	37.0	54.0	0.0	0.0	0.0	0.0
4	2018- 03-01 01:00:00	0.0	0.00	0.0	0.0	0.00	1.0	27.0	29.0	49.0	0.0	0.0	3.0	0.0
69091	2018- 02-01 00:00:00	0.0	0.00	0.5	0.0	0.00	66.0	91.0	192.0	1.0	35.0	22.0	0.0	0.0
69092	2018- 02-01 00:00:00	0.0	0.00	0.7	0.0	0.00	87.0	107.0	241.0	0.0	29.0	0.0	15.0	0.0
69093	2018- 02-01 00:00:00	0.0	0.00	0.0	0.0	0.00	28.0	48.0	91.0	2.0	0.0	0.0	0.0	0.0
69094	2018- 02-01 00:00:00	0.0	0.00	0.0	0.0	0.00	141.0	103.0	320.0	2.0	0.0	0.0	0.0	0.0
69095	2018- 02-01 00:00:00	0.0	0.00	0.0	0.0	0.00	69.0	96.0	202.0	3.0	26.0	0.0	0.0	0.0

69096 rows × 16 columns

```
In [4]: df1.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 69096 entries, 0 to 69095
        Data columns (total 16 columns):
             Column
                      Non-Null Count Dtvpe
         0
                      69096 non-null object
             date
                      69096 non-null float64
         1
             BEN
         2
             CH4
                      69096 non-null float64
         3
             CO
                      69096 non-null float64
         4
                      69096 non-null float64
             EBE
         5
                      69096 non-null float64
             NMHC
         6
                      69096 non-null float64
             NO
         7
                      69096 non-null float64
             NO 2
         8
             NOx
                      69096 non-null float64
         9
             0_3
                      69096 non-null float64
         10 PM10
                      69096 non-null float64
         11 PM25
                      69096 non-null float64
         12 SO 2
                      69096 non-null float64
         13 TCH
                      69096 non-null float64
         14 TOL
                      69096 non-null float64
         15 station 69096 non-null int64
        dtypes: float64(14), int64(1), object(1)
        memory usage: 8.4+ MB
In [5]: df1.columns
Out[5]: Index(['date', 'BEN', 'CH4', 'CO', 'EBE', 'NMHC', 'NO', 'NO 2', 'NOx', 'O 3',
               'PM10', 'PM25', 'SO_2', 'TCH', 'TOL', 'station'],
              dtype='object')
In [6]: df2 = df1[['BEN', 'CO', 'EBE', 'NMHC', 'NO', 'NO_2', 'O_3', 'PM10', 'PM25',
               'SO_2', 'TCH', 'TOL', 'station']]
```

In [7]: sns.pairplot(df2)

Out[7]: <seaborn.axisgrid.PairGrid at 0x24d5ba1f0d0>

In [8]: sns.distplot(df2['BEN'])

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='BEN', ylabel='Density'>

In [9]: sns.heatmap(df2.corr())

Out[9]: <AxesSubplot:>

Linear Regression

Out[14]:

	Co-efficient
BEN	2.394190
СО	0.156559
EBE	1.799070
NMHC	5.568408
NO_2	0.001102
O_3	0.000709
PM10	0.005639
SO_2	-0.001743
тсн	-0.413736

```
In [15]: prediction = lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[15]: <matplotlib.collections.PathCollection at 0x24d73917040>


```
In [16]: print(lr.score(x_test,y_test))
```

0.608862676725141

```
In [17]: lr.score(x_train,y_train)
```

Out[17]: 0.7944686110318933

Ridge and Lasso

```
In [20]: rr.score(x_test,y_test)
```

Out[20]: 0.6059052961232164

Lasso Regression

```
In [21]: ls = Lasso(alpha=10)
    ls.fit(x_train,y_train)
    ls.score(x_train,y_train)
```

Out[21]: 0.01929207195571936

```
In [22]: ls.score(x_test,y_test)
Out[22]: 0.01518357981381624
```

ElacticNET regression

```
In [23]: | from sklearn.linear_model import ElasticNet
         es = ElasticNet()
         es.fit(x_train,y_train)
Out[23]: ElasticNet()
In [24]: print(es.coef_)
                                 0.
                                             0.
                                                        0.01020351 0.
          0.02236037 0.
                                 0.
                                            1
In [25]: print(es.intercept_)
          -0.1512106487369515
In [26]: |print(es.score(x_test,y_test))
          0.1141549057267518
In [27]: | print(es.score(x_train,y_train))
         0.13797303550394302
```

LogisticRegression

```
In [28]: from sklearn.linear_model import LogisticRegression

In [29]: feature_matrix = df2.iloc[:,0:15]
    target_vector = df2.iloc[:,-1]

In [30]: feature_matrix.shape

Out[30]: (69096, 13)

In [31]: from sklearn.preprocessing import StandardScaler

In [32]: fs = StandardScaler().fit_transform(feature_matrix)
```

```
In [33]: logs = LogisticRegression()
         logs.fit(fs,target vector)
         C:\ProgramData\Anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:
         763: ConvergenceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max_iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://sciki
         t-learn.org/stable/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear model.html#logistic-regres
         sion (https://scikit-learn.org/stable/modules/linear model.html#logistic-regr
           n iter i = check optimize result(
Out[33]: LogisticRegression()
In [34]: observation = [[1.4,1.5,1.6,2.7,2.3,3.3,2.3,4.1,2.3,4.2,1.2,12,2]]
         prediction = logs.predict(observation)
In [35]: |print(prediction)
         [28079060]
In [36]: logs.classes
Out[36]: array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
                28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
                28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
                28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
               dtype=int64)
In [37]: from sklearn.model selection import train test split
         x_train,x_test,y_train,y_test = train_test_split(feature_matrix,target_vector,t
In [38]: |print(logs.score(x_test,y_test))
         0.040522938877900525
In [39]: |print(logs.score(x_train,y_train))
         0.042177517729030126
```

Conclusion

linear regression is bestfit model

linear regression is best fit model for dataset madrid_2001. The score of x_train,y_train is 0.7944686110318933 and x_test and y_test score is 0.608862676725141.

In []: