# Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/003661

International filing date: 25 February 2005 (25.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-055205

Filing date: 27 February 2004 (27.02.2004)

Date of receipt at the International Bureau: 14 April 2005 (14.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)





# 日本国特許庁 JAPAN PATENT OFFICE

25.02.2005

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application: 2004年 2月27日

出 願 番 号 Application Number: 特願2004-055205

[ST. 10/C]:

[JP2004-055205]

出 願 人 Applicant(s):

三菱重工業株式会社



2005年 3月31日

特許庁長官 Commissioner, Japan Patent Office





1/E

特許願 【書類名】 200301703 【整理番号】 平成16年 2月27日 【提出日】 特許庁長官殿 【あて先】 FO2M 45/10 【国際特許分類】 【発明者】 神奈川県相模原市田名3000番地 三菱重工業株式会社汎用機 【住所又は居所】 · 特車事業本部内 袴田 宣克 【氏名】 【特許出願人】 【識別番号】 000006208 三菱重工業株式会社 【氏名又は名称】 【代理人】 100083024 【識別番号】 【弁理士】 高橋 昌久 【氏名又は名称】 【選任した代理人】 100103986 【識別番号】 【弁理士】 花田 久丸 【氏名又は名称】 【手数料の表示】 【予納台帳番号】 019231 21,000円 【納付金額】 【提出物件の目録】 特許請求の範囲 1 【物件名】 明細書 1 【物件名】 図面 1 【物件名】

要約書 1

【包括委任状番号】 9812456

【物件名】



# 【書類名】特許請求の範囲

## 【請求項1】

燃料噴射ポンプから圧送される燃料の圧力により針弁スプリングのばね力に抗して針弁 を押し上げて該針弁を開弁し、前記燃料をノズルチップ先端部に形成された噴孔から燃焼 室内に噴射する燃料噴射弁を備えた内燃機関において、前記燃料噴射弁は、前記針弁スプ リングを2個備えるとともに、前記2個の針弁スプリングのそれぞれにばね力を調整する ためのねじ式の調整具を付設して、前記2個の調整具で対応する前記2個の針弁スプリン グのばね力を独立して調整可能に構成したことを特徴とする針弁ばね力調整機構付き燃料 噴射弁を備えた内燃機関。

### 【請求項2】

前記2個の針弁スプリングは、1個の前記針弁に対して開弁圧の異なる第1、第2のス プリングを該第1、第2のスプリングのそれぞれに対応する前記調整具と共に針弁の軸線 方向に連設してなることを特徴とする請求項1記載の針弁ばね力調整機構付き燃料噴射弁 を備えた内燃機関。

### 【請求項3】

前記第1のスプリングの上部ばね受に該第1のスプリングのばね力を調整する前記調整 具を連結して該調整具及び第1のスプリングで前記針弁を閉弁方向に押圧するとともに、 前記第1のスプリング用の前記調整具の上部に前記第2のスプリング及び該第2のスプリ ングのばね力を調整する前記調整具を配置して、該第2のスプリングで前記針弁を閉弁方 向に押圧可能に構成したことを特徴とする請求項2記載の針弁ばね力調整機構付き燃料噴 射弁を備えた内燃機関。

# 【請求項4】

前記第1のスプリングの上、下部ばね受の何れか1つの外周部と相手部材との間、及び 前記第2のスプリングの上、下部ばね受の何れか1つの外周部と相手部材との間に、前記 第1のスプリング及び第2のスプリングの倒れを吸収するための間隙部を形成したことを 特徴とする請求項2記載の針弁ばね力調整機構付き燃料噴射弁を備えた内燃機関。

### 【請求項5】

前記第1のスプリングの下部ばね受を前記針弁の頭部に当接せしめるとともにプッシュ ロッドを介して前記第2のスプリングの下部ばね受に連結し、前記第1のスプリングの上 部ばね受を前記第2のスプリング用調整具に連結し、前記第2のスプリングの上部ばね受 を該第2のスプリング用調整具に当接せしめ、さらに前記プッシュロッドと第1のスプリ ング用ばね受との当接部及び前記上部ばね受と該第2のスプリング用調整具との当接部に 球面接触部を形成したことを特徴とする請求項3記載の針弁ばね力調整機構付き燃料噴射 弁を備えた内燃機関。

### 【請求項6】

前記第1のスプリングの下部ばね受を前記針弁の頭部に当接せしめるとともにプッシュ ロッドを介して前記第2のスプリングの下部ばね受に連結し、該プッシュロッドと前記第 2のスプリングの下部ばね受とは平面接触部にて当接されたことを特徴とする請求項3記 載の針弁ばね力調整機構付き燃料噴射弁を備えた内燃機関。

### 【請求項7】

燃料噴射ポンプから圧送される燃料の圧力により針弁スプリングのばね力に抗して針弁 を押し上げて該針弁を開弁し、前記燃料をノズルチップ先端部に形成された噴孔から燃焼 室内に噴射する内燃機関用燃料噴射弁の調整方法において、前記針弁の頭部を閉弁方向に 押圧した形態で弁本体内に第1のスプリングを組み込み、ねじ式の低圧側調整具で該第1 のスプリングのばね力を変化させることにより低圧側の開弁圧を調整し、次いで前記第1 のスプリングの反針弁側端部を押圧した形態で第2のスプリングを弁本体内に組み込み、 ねじ式の高圧側調整具で該第2のスプリングのばね力を変化させることにより高圧側の開 弁圧を調整することを特徴とする内燃機関用燃料噴射弁の調整方法。

# 【請求項8】

燃料噴射ポンプから圧送される燃料の圧力により針弁スプリングのばね力に抗して針弁

を押し上げて該針弁を開弁し、前記燃料をノズルチップ先端部に形成された噴孔から燃焼室内に噴射する内燃機関用燃料噴射弁の調整方法において、前記燃料噴射弁を、1個の前記針弁に対して開弁圧の異なる第1、第2のスプリングを針弁の軸線方向に連設して、前記第1のスプリングの上部ばね受に該第1のスプリングのばね力を調整するねじ式の調整具を連結して、該調整具及び第1のスプリングで前記針弁を閉弁方向に押圧し、前記第1のスプリングのばね力調整用の前記調整具の上部に前記第2のスプリング及び該第2のスプリングのばね力を調整するねじ式の調整具を配置して該第2のスプリングで前記針弁を閉弁方向に押圧可能に構成し、前記燃料噴射弁から、前記第2のスプリング及びその付属部材を取外し、前記第1のスプリングのばね力をねじ式の前記調整具で調整することを特徴とする内燃機関用燃料噴射弁の調整方法。



【発明の名称】針弁ばね力調整機構付き燃料噴射弁を備えた内燃機関及び燃料噴射弁の調 整方法

# 【技術分野】

# [0001]

本発明は、ディーゼル機関、ガス機関等の燃料噴射弁を備えた内燃機関に適用され、燃 料噴射ポンプから圧送される燃料の圧力により針弁スプリングのばね力に抗して針弁を押 し上げて該針弁を開弁し、前記燃料をノズルチップ先端部に形成された噴孔から燃焼室内 に噴射するように構成されるとともに、前記針弁のばね力を調整する針弁ばね力調整機構 付きの燃料噴射弁を備えた内燃機関、及び前記燃料噴射弁の調整方法に関する。

## 【背景技術】

# [0002]

ディーゼル機関においては、燃料噴射ポンプから圧送される燃料の圧力により針弁スプ リングのばね力に抗して針弁を押し上げて該針弁を開弁し、前記燃料をノズルチップ先端 部に形成された噴孔から燃焼室内に噴射するように構成された燃料噴射弁の開弁圧を低圧 、高圧の2段に設定し、低圧、高圧の2段噴射を行うことにより、燃焼改善、及び排ガス 状態の改善を実現する技術が種々提供されている。

かかる技術の1つに特許文献1(特開平2-81948号公報)にて提供された技術が ある。

### [0003]

かかる技術においては、1個の針弁に対して開弁圧の異なる低圧、高圧のスプリングを 針弁の軸線方向に連設し、該針弁の頭部に前記低圧スプリングを連結して該低圧スプリン グで前記針弁を閉弁方向に押圧するとともに、該低圧スプリングの下部ばね受に前記高圧 スプリングを配置して、低圧噴射時は前記低圧スプリングを作動させて低い噴射圧での噴 射を可能とし、高圧噴射時は前記高圧スプリング及び低圧スプリングの双方で前記針弁を 閉弁方向に押圧して高い開弁圧を得て、かかる高い噴射圧での噴射を可能としている。

そして、特許文献1の技術においては、低圧側あるいは高圧側の開弁圧を調整する際に は、低圧あるいは高圧のばね受部にシムを挿入するように構成し、燃料噴射弁を分解して 目標厚さのシムに組み替えている。

# [0004]

【特許文献1】特開平2-81948号公報

### 【発明の開示】

【発明が解決しようとする課題】

## [0005]

特許文献1に示される従来技術にあっては、低圧あるいは高圧のばね受部に開弁圧調整 用のシムを挿入した構造となっており、低圧側あるいは高圧側の開弁圧を調整する際には 、燃料噴射弁を分解して目標厚さのシムに組み替えることにより、所要の低圧側開弁圧あ るいは高圧側開弁圧に設定するようになっている。

# [0006]

このため、かかる従来技術にあっては、燃料噴射弁の組立、調整時には、低圧側あるい は高圧側の開弁圧を調整する毎に該燃料噴射弁を分解してシムの厚さを調整する必要があ り、開弁圧の調整が煩雑で、燃料噴射弁の組立、調整に多大な工数を必要とする。またエ ンジンの運転中において、ある気筒の燃料噴射弁の開弁圧の調整を要する事態となった際 には、当該燃料噴射弁をシリンダヘッドから抜き出して分解し、シムの厚さを調整するこ とを繰り返す必要があり、エンジンの運転、整備性を大きく阻害する。 等の問題点を有している。

### [0007]

本発明はかかる従来技術の課題に鑑み、燃料噴射弁の組立、調整時には該燃料噴射弁を 分解することなく、該シリンダヘッド組み付けた状態で、開弁圧を2段階で容易にかつ高 精度で調整可能として、燃料噴射弁の組立、調整工数を大幅に低減するとともに、エンジ



ンの運転、整備性を向上し得る針弁ばね力調整機構付き燃料噴射弁を備えた内燃機関及び 燃料噴射弁の調整方法を提供することを目的とする。

# 【課題を解決するための手段】

# [0008]

本発明はかかる目的を達成するもので、燃料噴射ポンプから圧送される燃料の圧力によ り針弁スプリングのばね力に抗して針弁を押し上げて該針弁を開弁し、前記燃料をノズル チップ先端部に形成された噴孔から燃焼室内に噴射する燃料噴射弁を備えた内燃機関にお いて、前記燃料噴射弁は、前記針弁スプリングを2個備えるとともに、前記2個の針弁ス プリングのそれぞれにばね力を調整するためのねじ式の調整具を付設して、前記2個の調 整具で対応する前記2個の針弁スプリングのばね力を独立して調整可能に構成したことを 特徴とする。

# [0009]

かかる発明において好ましくは、前記2個の針弁スプリングは、1個の前記針弁に対し て開弁圧の異なる第1、第2のスプリングを該第1、第2のスプリングのそれぞれに対応 する前記調整具と共に針弁の軸線方向に連設してなる。

さらに詳細には、前記第1のスプリングの上部ばね受に該第1のスプリングのばね力を 調整する前記調整具を連結して、該調整具及び第1のスプリングで前記針弁を閉弁方向に 押圧するとともに、前記第1のスプリング用の調整具の上部に第2のスプリング及び該第 2のスプリングのばね力を調整する調整具を配置して、該第2のスプリングで前記針弁を 閉弁方向に押圧可能に構成するのが好ましい。

# [0010]

また前記内燃機関用燃料噴射弁の調整方法として、針弁の頭部を閉弁方向に押圧した形 態で弁本体内に第1のスプリングを組み込み、ねじ式の低圧側調整具で該第1のスプリン グのばね力を変化させることにより低圧側の開弁圧を調整し、次いで前記第1のスプリン グの反針弁側端部を押圧した形態で第2のスプリングを弁本体内に組み込み、ねじ式の高 圧側調整具で該第2のスプリングのばね力を変化させることにより高圧側の開弁圧を調整 することを特徴とする調整方法を提案する。

# [0011]

かかる発明によれば、針弁の開弁圧を、1個の針弁に対して該針弁の軸線方向に連設さ れ開弁圧の異なる第1、第2のスプリングのばね力(取付荷重)を変化させることにより 調整可能とし、1段目の開弁圧即ち低圧側の開弁圧は、前記第1のスプリングに対応して 設けられたねじ式の調整具によりそのねじ込み量を変化させ、該第1のスプリングのばね 力を調整することにより設定する。

また2段目の開弁圧即ち高圧側の開弁圧は、前記低圧側の第1のスプリングのばね力調 整値に加えて、前記第2のスプリングに対応して設けられたねじ式の調整具によりそのね じ込み量を変化させて該第2のスプリングのばね力を調整し、前記第1、第2のスプリン グのばね力の合力により設定する。

### [0012]

従ってかかる発明によれば、第1のスプリング用の調整具のねじ込み量を変化させるこ とにより1段目の開弁圧即ち低圧側の開弁圧を無段階で調整できるとともに、第2のスプ リング用の調整具のねじ込み量を変化させることにより2段目の開弁圧即ち高圧側の開弁 圧を無段階で調整できる。

従って、かかる発明によれば、燃料噴射弁の組立、調整時には、燃料噴射弁を分解する ことなく、第1のスプリング用の調整具のねじ込み量を変化させ、あるいは第2のスプリ ング用の調整具のねじ込み量を変化させることにより、1段目の開弁圧即ち低圧側の開弁 圧を単独に、あるいは前記1段目の開弁圧及び2段目の開弁圧即ち高圧側の開弁圧の双方 を、容易にかつ前記のように無段階で調整でき、特許文献1に示される従来技術のように 低圧側あるいは高圧側の開弁圧を調整する毎に燃料噴射弁を分解してシムの厚さを調整す ることを必要とせず、かかる従来技術に比べて燃料噴射弁の組立、調整工数を大幅に低減 できる。

# [0013]

また、かかる発明によれば、エンジンの運転中において、ある気筒の燃料噴射弁の開弁 圧の調整を要する事態となっても、当該燃料噴射弁をシリンダヘッドに組み付けた状態で 開弁圧を調整することが可能となり、また第1のスプリング用の調整具あるいは第2のス プリング用の調整具のねじ込み量を変化させるのみで1段目の開弁圧あるいは2段目の開 弁圧を容易に調整できるので、エンジンの運転、、整備性が従来技術に比べて各段に向上 する。

# [0014]

また、かかる発明において好ましくは、前記第1のスプリングの上、下部ばね受の何れ か1つの外周部と相手部材との間、及び前記第2のスプリングの上、下部ばね受の何れか 1つの外周部と相手部材との間に、前記第1のスプリング及び第2のスプリングの倒れを 吸収するための間隙部を形成してなる。

このように構成すれば、燃料噴射弁の軸線方向に連設した第1スプリングあるいは第2 のスプリングに倒れが生じても当該スプリングの上、下部ばね受の何れか1つの外周部と 相手部材との間に形成された間隙部により前記倒れを吸収できて、かかる倒れによる針弁 やスプリングの作動不良の発生を回避できる。

# [0015]

また、かかる発明において好ましくは、前記第1のスプリングの下部ばね受を前記針弁 の頭部に当接せしめるとともに、プッシュロッドを介して前記第2のスプリングの下部ば ね受に連結し、前記第1のスプリングの上部ばね受を前記第2のスプリング用調整具に連 結し、前記第2のスプリングの上部ばね受を該第2のスプリング用調整具の頭部に当接せ しめ、さらに前記プッシュロッドと第1のスプリング用ばね受との当接部及び前記上部ば ね受と該第2のスプリング用調整具との当接部に球面接触部を形成する。

このように構成すれば、比較的長尺のプッシュロッドと第1のスプリング用ばね受との 当接部に球面接触による逃げ部を形成することにより、プッシュロッドの倒れ及びこれに よるプッシュロッドの焼き付きや針弁の作動の発生を回避できる。また、該第2のスプリ ングの上部ばね受と調整具との当接部に球面接触部を形成することにより、調整具と第2 のスプリング及び上部ばね受との芯ずれによる焼き付きを回避できる。

# [0016]

また、かかる発明において好ましくは、前記第1のスプリングの下部ばね受を前記針弁 の頭部に当接せしめるとともに、プッシュロッドを介して前記第2のスプリングの下部ば ね受に連結し、該プッシュロッドと前記第2のスプリングの下部ばね受とは平面接触部に て当接される。

このように構成すれば、比較的長尺のプッシュロッドを第2のスプリング用下部ばね受 と切り離して平面接触部にて当接して組み付けるので、プッシュロッドの製作が容易とな るとともに、燃料噴射弁への組み付けも芯ずれを許容して容易にできる。

さらに本発明は、燃料噴射ポンプから圧送される燃料の圧力により針弁スプリングのば ね力に抗して針弁を押し上げて該針弁を開弁し、前記燃料をノズルチップ先端部に形成さ れた噴孔から燃焼室内に噴射する内燃機関用燃料噴射弁の調整方法において、前記燃料噴 射弁を、1個の前記針弁に対して開弁圧の異なる第1、第2のスプリングを針弁の軸線方 向に連設して、前記第1のスプリングの上部ばね受に該第1のスプリングのばね力を調整 するねじ式の調整具を連結して、該調整具及び第1のスプリングで前記針弁を閉弁方向に 押圧し、前記第1のスプリングのばね力調整用の前記調整具の上部に前記第2のスプリン グ及び該第2のスプリングのばね力を調整するねじ式の調整具を配置して該第2のスプリ ングで前記針弁を閉弁方向に押圧可能に構成し、前記燃料噴射弁から、前記第2のスプリ ング及びその付属部材を取外し、前記第1のスプリングのばね力をねじ式の前記調整具で 調整することを特徴とする。

## [0018]

かかる発明によれば、第1、第2のスプリング及びこれらのばね力を調整するねじ式の



調整具を燃料噴射弁に組み込み、低圧側の第1段目の開弁圧調整及び高圧側の第2段目の 開弁圧調整を行うことができるとともに、前記の形態から第2のスプリング及びこれの付 属部材を取外せば、第1のスプリング及びこれの調整具により低圧側の第1段目の開弁圧 調整を容易に行うことができる。

これにより、1つの燃料噴射弁で、低圧側1段の開弁圧調整試験及び低圧側及び高圧側 の2段の開弁圧調整試験を行うことができる。

# 【発明の効果】

### [0019]

本発明によれば、燃料噴射弁の組立、調整時には、燃料噴射弁を分解することなく、第 1のスプリング用の調整具のねじ込み量を変化させ、あるいは第2のスプリング用の調整 具のねじ込み量を変化させることにより、1段目(低圧側)の開弁圧を単独に、あるいは 前記1段目の開弁圧及び2段目(高圧側)の開弁圧の双方を、容易にかつ無段階で調整で き、従来技術のように低圧側あるいは高圧側の開弁圧を調整する毎に燃料噴射弁を分解し てシムの厚さを調整することを必要とせず、かかる従来技術に比べて燃料噴射弁の組立、 調整工数を大幅に低減できる。

また、本発明によれば、エンジンの運転中において、燃料噴射弁をシリンダヘッドに組 み付けた状態で開弁圧を調整することが可能となり、また第1のスプリング用の調整具あ るいは第2のスプリング用の調整具のねじ込み量を変化させるのみで、1段目の開弁圧あ るいは2段目の開弁圧を容易に調整できるので、エンジンの運転、、整備性が従来技術に 比べて各段に向上する。

# 【発明を実施するための最良の形態】

# [0020]

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載さ れている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り 、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。

## [0021]

図1は本発明の第1実施例に係る燃料噴射弁の軸線に沿う断面図である。図2は第2実 施例を示す図1対応図、図3は第3実施例を示す図1対応図、図4は第4実施例を示す図 1対応図である。

### [0022]

本発明の第1実施例を示す図1において、1は弁本体、2は該弁本体1の上部にねじ込 まれた本体カバー、18は該本体カバー2の上部にねじ込まれて後述する第2段スプリン グ14のばね力を調整する第2段調整具、19は該第2段調整具18の上部にねじ込まれ て該第2段調整具18をロックするロックナット、18aは流体シール用のガスケット、 20は前記ロックナット19の上部にねじ込まれた止めねじである。

3は前記弁本体1にノズルナット5を介して締着されたノズルチップ、4は該ノズルチ ップ5の先端部に複数穿孔された噴孔である。8は図示しない燃料噴射ポンプからの高圧 燃料が導入される燃料通路、7は該燃料通路8の出口端が開口するとともに前記噴孔4の 入口通路に連通される油溜めである。1 a は燃料のリーク通路である。

## [0023]

6は前記ノズルチップ3内に往復摺動自在に嵌合された針弁である。25aは前記ノズ ルチップ3と弁本体1の下端面との間に介装されたスペーサ、24は前記ノズルナット5 と図示しないシリンダヘッドとの間の流体シール用のガスケットである。

9は低圧側スプリングを構成する第1段スプリングで、該第1段スプリング9はこれの 下端面に当接される第1段下部ばね受10を介して前記針弁6の頭部を押圧するようにな っている。22は前記第1段スプリング9の上端面を支持する中空状の第1段上部ばね受 で、前記弁本体1内に摺動自在に嵌合され、上端面が後述する第1段調整具16の下端面 に、前記第1段スプリング9及び後述する第2段スプリング14のばね力により圧接され ている。21は該第1段調整具16をロックするためのロックナットである。

また、25は前記ノズルチップ3とスペーサ25aとの間の位置決め用のピン、11は



# [0024]

14は高圧側スプリングを構成する第2段スプリング、16は前記弁本体1の上部内周 にねじ込まれるとともに内部に前記第2段スプリング14が収納される中空状の第1段調 整具である。23は前記第2段スプリング14の上端面を支持する第2段上部ばね受で該 第2段上部ばね受23の上端面は前記第2段調整具18の下端面に前記第2段スプリング 14のばね力によって圧接されている。

13は前記第2段スプリング14の下端面を支持する第2段下部ばね受、12は前記中 空状の第1段上部ばね受22の内周に摺動自在に嵌合されたプッシュロッドである。

該プッシュロッド12は棒状に形成されて、前記第2段スプリング14のばね力によっ て下端面が前記第1段下部ばね受10の上端面に圧接されるとともに、上端面が前記第2 段下部ばね受13の下端面に圧接されている。

又、プッシュロッド12及び第2段下部ばね受13は一体にて製作も可能である。

# [0025]

前記プッシュロッド12の上端面と第2段下部ばね受13の下端面との間は平面接触部 12 a を形成している。このように形成することにより、比較的長尺のプッシュロッド1 2を前記第2段下部ばね受13と切り離して平面接触部12aにて当接して組み付けるの で、該プッシュロッド12を棒状に形成できてこれの製作が容易になるとともに、燃料噴 射弁への組み付けも芯ずれを許容して容易にできる。

又、プッシュロッド12及び第2段下部ばね受13を一体にして製作の場合は部品点数 の削減が図れると共に、組立工数の削減が可能となる。

## [0026]

かかる燃料噴射弁を備えたエンジンの運転時においては、図示しない燃料噴射ポンプか ら高圧噴射管を介して圧送された高圧燃料が燃料通路8を通って油溜め7に到達し、該高 圧燃料の圧力が前記第1段スプリング9のばね力に打ち勝つと、前記針弁6が前記第1段 スプリング9のばね力に抗して押し上げられてリフトすることにより開弁し、前記噴孔4 を介して第1段目の低圧噴射がなされる。

さらに前記高圧燃料の圧力が上昇して、前記第1段スプリング9及び第2段スプリング 14のばね力の合力に打ち勝つと前記針弁6がさらにリフトし、前記噴孔4を介して第2 段目の高圧噴射がなされる。

# [0027]

かかる燃料噴射弁において、前記針弁6の開弁圧を調整するにあたっては、該針弁6の 頭部を閉弁方向に押圧した形態で弁本体1内に第1段スプリング9を組み込み、低圧側の 第1段調整具16を第1段調整ねじ部15にてねじ込み量を変化させて前記第1段スプリ ングのばね力を変化させ、所要の開弁圧つまり低圧の開弁圧になったら、前記ロックナッ ト21を締めて該第1段調整具16を固定する。

次いで、前記第2段スプリング14を前記プッシュロッド12を押圧した形態で前記第 1段調整具16内に組み込み、前記第2段調整具18を第2段調整ねじ部17にてねじ込 み量を変化させて前記第2段スプリング14のばね力を変化させ、所要の開弁圧つまり高 圧の開弁圧になったら、前記ロックナット19を締めて該第2段調整具18を固定する。

以上の操作によって、第1段スプリング9による低圧噴射を行うための低圧の開弁圧と 、第2段スプリング14及び第1段スプリング9による高圧噴射を行うための高圧の開弁 圧とが適正値に設定される。

## [0028]

かかる実施例によれば、前記のように、針弁6の開弁圧を、1個の針弁6に対して該針 弁6の軸線方向に連設され開弁圧の異なる第1段スプリング9及び第2段スプリング14 のばね力(取付荷重)を変化させることにより調整可能とし、1段目の開弁圧即ち低圧側 の開弁圧は、前記第1段スプリング9に対応して設けられたねじ式の第1段調整具16に よりそのねじ込み量を変化させ該第1段スプリング9ばね力を調整することにより設定し



# [0029]

従ってかかる実施例によれば、第1段スプリング9用の第1段調整具16のねじ込み量 を変化させることにより、1段目の開弁圧即ち低圧側の開弁圧を無段階で調整できるとと もに、第2段スプリング14用の第2段調整具のねじ込み量を変化させることにより、2 段目の開弁圧即ち高圧側の開弁圧を無段階で調整できる。

即ち、燃料噴射弁の組立、調整時には、該燃料噴射弁を分解することなく、第1段スプ リング9用の第1段調整具16のねじ込み量を変化させ、あるいは第2段スプリング14 用の第1段調整具16のねじ込み量を変化させることにより、1段目の開弁圧即ち低圧側 の開弁圧を単独に、あるいは前記1段目の開弁圧及び2段目の開弁圧即ち高圧側の開弁圧 の双方を、容易にかつ前記のように無段階で調整できる。

従って、従来のもののように、低圧側あるいは高圧側の開弁圧を調整する毎に燃料噴射 弁を分解してシムの厚さを調整することを必要とせず、燃料噴射弁の組立、調整工数を大 幅に低減できる。

# [0030]

また、かかる実施例によれば、エンジンの運転中において、ある気筒の燃料噴射弁の開 弁圧の調整を要するような事態となっても、当該燃料噴射弁をシリンダヘッドに組み付け た状態で、前記第1段調整具16のねじ込み量を変化させることにより第1段スプリング 9側の低圧開弁圧を、前記第2段調整具18のねじ込み量を変化させることにより第2段 スプリング14側の高圧開弁圧を、それぞれ容易に調整できるので、エンジンの運転、整 備性が各段に向上する。

# [0031]

図2に示される第2実施例においては、前記第1段スプリング9用の第1段下部ばね受 10の外周と前記スペーサ25aの内周との間に寸法S2なる間隙31を形成するととも に、前記第2段スプリング14用の第2段上部ばね受23の外周と前記第1段調整具16 の内周との間に寸法S1 なる間隙30を形成している。

かかる第2実施例によれば、燃料噴射弁の軸線方向に連設した第1段スプリング9ある いは第2段スプリング14に倒れが生じても、第1段スプリング9側の第1段下部ばね受 10の外周と前記スペーサ25aの内周との間に形成された間隙31及び第2段上部ばね 受23の外周と第1段調整具16の内周との間に形成された間隙30により前記倒れを吸 収できて、かかる倒れによる針弁6やスプリング9、14の作動不良の発生を回避できる

その他の構成は前記第1実施と同様であり、これと同一の部材は同一の符号で示す。

# [0032]

図3に示される第3実施例においては、前記第2段スプリング14の第2段上部ばね受 23の上面35及び該第2段スプリング14用の第2段調整具18の下面36を球面に形 成して両者を球面接触にて当接し、また、前記プッシュロッド12の下面38と前記第1 段下部ばね受10の上面37を球面に形成して両者を球面接触にて当接している。

かかる実施例によれば、比較的長尺のプッシュロッド12と第1段下部ばね受10との 間に球面接触による逃げ部を形成することにより、該プッシュロッド12の倒れ及びこれ によるプッシュロッド12の焼き付きや針弁6の作動の発生を回避できる。また、第2段 上部ばね受23と第2段調整具18とを球面接触とすることにより、第2段調整具18と 第2段スプリング14及び第2段上部ばね受23との芯ずれによる焼き付きを回避できる

その他の構成は前記第1実施と同様であり、これと同一の部材は同一の符号で示す

図4に示される第4実施例においては、図1に示される第1実施例から、高圧側の開弁

圧を設定するための第2段スプリング14、第2段上部ばね受23、及び第2段下部ばね 受13を除去し(第2段調整具18も除去してもよい)、低圧側の第1段スプリング9及 び第1段調整具16により低圧側の開弁圧を設定している。

即ち、かかる第4実施例によれば、前記第1実施例のように第1段、第2段のスプリン グ9、14及びこれらのばね力を調整するねじ式の第1段、第2段調整具16、18を燃 料噴射弁に組み込み、低圧側の第1段目の開弁圧調整及び高圧側の第2段目の開弁圧調整 の双方を行うことができるとともに、前記第1実施例の形態から第2段スプリング14及 びこれの付属部材を取外して、図4の形態にすれば、第1段スプリング9及びこれの調整 具16により低圧側の1段の開弁圧調整を容易に行うことができる。

これにより、1つの燃料噴射弁で、低圧側1段の開弁圧調整試験及び低圧側及び高圧側 の2段の開弁圧調整試験を行うことができる。

その他の構成は前記第1実施と同様であり、これと同一の部材は同一の符号で示す。

# 【産業上の利用可能性】

# [0034]

本発明によれば、燃料噴射弁の組立、調整時には該燃料噴射弁を分解することなく、該 シリンダヘッドに組み付けた状態で、開弁圧を2段階で容易にかつ高精度で調整可能とな り、燃料噴射弁の組立、調整工数を大幅に低減することができるとともに、エンジンの運 転、整備性を向上可能な針弁ばね力調整機構付き燃料噴射弁を備えた内燃機関を提供でき る。

### 【図面の簡単な説明】

### [0035]

- 【図1】本発明の第1実施例に係る燃料噴射弁の軸線に沿う断面図である。
- 【図2】第2実施例を示す図1対応図である。
- 【図3】第3実施例を示す図1対応図である。
- 【図4】第4実施例を示す図1対応図である。

# 【符号の説明】

### [0036]

- 弁本体 1
- 本体カバー 2
- ノズルチップ 3
- 噴孔 4
- ノズルナット 5
- 針弁 6
- 油溜め 7
- 燃料通路 8
- 第1段スプリング 9
- 第1段下部ばね受 10
- プッシュロッド 1 2
- 平面接触部 1 2 a
- 第2段下部ばね受 1 3
- 第2段スプリング 1 4
- 第1段調整具 1 6
- 1 8 第2段調整具
- ロックナット 1 9
- 第1段上部ばね受 2 2
- 第2段上部ばね受 2 3
- 30,31 間隙









# 【図3】







# 【書類名】要約書

【要約】

燃料噴射弁の組立、調整時には該燃料噴射弁を分解することなく、当該燃料噴 【課題】 射弁をシリンダヘッドから抜き出すことなく該シリンダヘッドに組み付けた状態で、開弁 圧を2段階で容易にかつ高精度で調整可能として、燃料噴射弁の組立、調整工数を大幅に 低減するとともに、エンジンの運転、整備性を向上し得る針弁ばね力調整機構付き燃料噴 射弁を備えた内燃機関及び燃料噴射弁の調整方法を提供する。

燃料噴射ポンプから圧送される燃料の圧力により針弁スプリングのばね力 に抗して針弁を押し上げて該針弁を開弁し、前記燃料をノズルチップ先端部に形成された 噴孔から燃焼室内に噴射する燃料噴射弁を備えた内燃機関において、前記燃料噴射弁は、 前記針弁スプリングを2個備えるとともに、前記2個の針弁スプリングのそれぞれにばね 力を調整するためのねじ式の調整具を付設して、前記2個の調整具で対応する前記2個の 針弁スプリングのばね力を独立して調整可能に構成したことを特徴とする。

図 1 【選択図】

特願2004-055205

出願人履歴情報

識別番号

[000006208]

1. 変更年月日 [変更理由] 住 所

氏 名

2003年 5月 6日

住所変更

東京都港区港南二丁目16番5号

三菱重工業株式会社