Efficient Hyperparameter Optimization of Deep Learning Algorithms Using Deterministic RBF Surrogates

Yakovlev Konstantin

BMM, March 2023

4□ > 4□ > 4 = > 4 = > = 90

1/12

Yakovlev Konstantin 2023

Goals of the research

Problem

Automatically searching for optimal hyperparameter configurations

Challenge

Probabilistic surrogates require accurate estimates of sufficient statistics. This makes them inefficient for optimizing hyperparameters of deep learning algorithms.

Solution

Consider radial basis functions as error surrogates. The proposed algorithm (HORD) requires fewer function evaluations.

Yakovley Konstantin

Problem statement

Geven a set of hyperparameters \mathbb{R}^D , train and validation datasets: $\mathfrak{D}_{\text{train/val}}$, model parameters θ , and black-box error function f.

$$\label{eq:problem} \begin{split} \min_{\mathbf{x} \in \mathbb{R}^D} \quad & f(\mathbf{x}, \boldsymbol{\theta}, \mathfrak{D}_{\mathsf{val}}), \\ \text{s.t.} \quad & \boldsymbol{\theta} = \arg\min_{\boldsymbol{\theta}} f(\mathbf{x}, \boldsymbol{\theta}, \mathfrak{D}_{\mathsf{train}}) \end{split}$$

Yakovlev Konstantin 3/12

The Method

The surrogate model

Given a hyperparameter configuration $\mathbf{x}_{1:n}$ of size n and its corresponding validation errors $f_{1:n}$. Define the RBF interpolation model as:

$$S_n(\mathbf{x}) = \sum_{i=1}^n \lambda_i \phi(\|\mathbf{x} - \mathbf{x}_i\|_2) + p(\mathbf{x}),$$

where $\phi(r) = r^3$ - cubic spline RBF, $p(\mathbf{x}) = \mathbf{b}^{\top} \mathbf{x} + a$. The parameters of the spline are determined by solving the following system:

$$\begin{cases} \mathbf{\Phi} \boldsymbol{\lambda} + \mathbf{P} \mathbf{c} = \mathbf{F}, & \mathbf{\Phi} = \{\phi(\|\mathbf{x}_i - \mathbf{x}_j\|_2)\}_{i,j=1}^n, \ \mathbf{P} = [\{\mathbf{x}_i^\top, 1\}_{i=1}^n]^\top \\ \mathbf{P}^\top \boldsymbol{\lambda} = \mathbf{0}, & \mathbf{F} = [\{f(\mathbf{x}_i)\}_{i=1}^n], \ \mathbf{c} = [\mathbf{b}, a]. \end{cases}$$

Yakovley Konstantin

Spline theory

Show that $\mathbf{P}^{\top} \boldsymbol{\lambda} = \mathbf{0}$ is necessary for minimizing energy. For simplicity, consider D=1.

$$J(S) = \int_{\mathbb{R}^1} [S''(\mathbf{x})]^2 d\mathbf{x} = 12 \sum_{i=1}^n \lambda_i S(\mathbf{x}_i) = 12(\boldsymbol{\lambda}^\top \mathbf{\Phi} \boldsymbol{\lambda} + \boldsymbol{\lambda}^\top \mathbf{P} \mathbf{c}) \to \min_{\mathbf{c}} \Rightarrow \mathbf{P}^\top \boldsymbol{\lambda} = \mathbf{0}.$$

Theorem

A matrix $\begin{pmatrix} \Phi & P \\ P^\top & 0 \end{pmatrix}$ is non singular \Leftrightarrow columns of P are linearly independent. a

^aSee (2.11) of Gutmann, 2001

Yakovlev Konstantin 5 / 12

Latin hypercube sampling¹

The task is to generate n_0 samples from $\mathbf{U}[0,1]^D$. Let U_{ij} be i.i.d. samples from U[0,1], and π is a uniform permutation of $\overline{0,n_0-1}$. Then

$$X_{ij}:=\frac{\pi_j(i-1)+U_{ij}}{n_0},\quad i=\overline{1,n_0},\ j=\overline{1,\overline{D}}.$$

Theorem

Let X_{ij} be a Litin hypercube samples. Then $\mathbf{X}_i \sim \mathbf{U}[0,1]^D$ for each $i = \overline{1, n_0}$.

4□ > 4□ > 4 = > 4 = > = 900

6/12

Yakovlev Konstantin 2023

¹https://artowen.su.domains/mc/Ch-var-adv.pdf

General algorithm

- Start by drawing $n_0 = 2(D+1)$ samples, using Latin hypercube sampling.
- 2 While $n < N_{\text{max}}$, maximum evaluation number, generate m = 100Dcandidates $\mathbf{t}_{n,1:m}$. The probability of perturbing a coordinate:

$$\varphi_n = \min(20/D, 1) \left[1 - \frac{\log(n - n_0 + 1)}{\log(N_{\mathsf{max}} - n_0)} \right].$$

The additive perturbation $\delta_i \sim \mathcal{N}(0, \sigma_n^2)$, where $\sigma_{n_0}^2 = 0.2$, after each $\max(5, D)$ iteration with no improvements $\sigma_{n+1}^2 = \min(\sigma_n^2/2, 0.005)$. After 3 consecutive iterations with improvement $\sigma_{n+1}^2 = \min(0.2, 2\sigma_n^2).$

Yakovley Konstantin

General algorithm

Select most promising point \mathbf{x}_{n+1} from \mathbf{t}_n . For each $1 \le j \le m$ define $\Delta(\mathbf{t}_{n,i}) = \min_{1 \le i \le n} \|\mathbf{t}_{n,i} - \mathbf{x}_i\|_2$. Let also $\Delta_{\max} = \max_i \Delta(\mathbf{t}_{n,i})$, $\Delta_{\min} = \min_i \Delta(\mathbf{t}_{n,i})$. We compute estimate value score:

$$V_{\mathsf{ev}}(\mathbf{t}_{n,j}) = rac{S(\mathbf{t}_{n,j}) - S_{\mathsf{min}}}{S_{\mathsf{max}} - S_{\mathsf{min}}}.$$

And distance metric:

$$V_{\sf dm}(\mathbf{t}_{n,j}) = rac{\Delta_{\sf max} - \Delta(\mathbf{t}_{n,j})}{\Delta_{\sf max} - \Delta_{\sf min}}.$$

The final score is $W(\mathbf{t}_{n,i}) = wV_{\text{ev}}(\mathbf{t}_{n,i}) + (1-w)V_{\text{dm}}(\mathbf{t}_{n,i})$. Select the next point:

$$\mathbf{x}_{n+1} = \arg\min_{\mathbf{t} \in \mathbf{t}_{n,1:m}} W(\mathbf{t}).$$

Yakovlev Konstantin 8 / 12

Pseudocode

Algorithm 1 Hyperparameter Optimization using RBFbased surrogate and DYCORS (HORD)

input $n_0 = 2(D+1)$, m = 100D and N_{max} .

output optimal hyperparameters \mathbf{x}_{best} .

- 1: Use Latin hypercube sampling to sample n_0 points and set $\mathcal{I} = \{\mathbf{x}_i\}_{i=1}^{n_0}$.
- 2: Evaluating f(x) for points in \mathcal{I} gives $\mathcal{A}_{n_0} = \{(\mathbf{x}_i, f(\mathbf{x}_i))\}_{i=1}^{n_0}$.
- 3: while $n < N_{\text{max}}$ do
- 4: Use A_n to fit or update the surrogate model $S_n(\mathbf{x})$ (Eq. 2).
- 5: Set $\mathbf{x}_{\text{best}} = \arg\min\{f(\mathbf{x}_i) : i = 1, \dots, n\}.$
- 6: Compute φ_n (Eq. 5), i.e, the probability of perturbing a coordinate.
- Populate Ω_n with m candidate points, t_{n,1:m}, where for each candidate y_j ∈ t_{n,1:m}, (a) Set y_j = x_{best}, (b) Select the coordinates of y_j to be perturbed with probability φ_n and (c) Add δ_i sampled from N(0, σ_n²) to the coordinates of y_j selected in (b) and round to nearest integer if required.
- 8: Calculate $V_n^{ev}(\mathbf{t}_{n,1:m})$ (Eq. 6), $V_n^{dm}(\mathbf{t}_{n,1:m})$ (Eq. 7), and the final weighted score $W_n(\mathbf{t}_{n,1:m})$ (Eq. 8).
- 9: Set $\mathbf{x}^* = \arg\min\{W_n(\mathbf{t}_{n,1:m})\}.$
- 10: Evaluate $f(\mathbf{x}^*)$.
- 11: Adjust the variance σ_n^2 (see text). 12: Update $A_{n+1} = \{A_n \cup (\mathbf{x}^*, f(\mathbf{x}^*))\}.$
- 13: end while
- 14: Return x_{best}.

Experimental setup

Experiments

- **1 6-MLP**: 4 continuous and 2 integer hyperparameters.
- **8-CNN**: 4 continuous and 4 integer hyperparameters.
- **15-CNN**: 10 continuous and 5 integer hyperparameters.
- **19-CNN**: 14 continuous and 5 integer hyperparameters.

Baselines

- **OP-EI**: Gaussian processes with expected improvemen.
- ② GP-PES: Gaussian processes with predictive entropy search
- TPE: Tree Parzen Estimator
- SMAC: Sequential Model-based Algorithm Configuration

Yakovlev Konstantin 2023 10 / 12

Experimental Results

Data Set	MNIST	MNIST	MNIST	CIFAR-10
Problem		8-CNN		19-CNN
GP-EI	78%(155)	73%(145)	18%(36)	17%(33)
GP-PES	16%(32)	50%(100)	10%(20)	_ ` '
TPE	38%(75)	50%(100)	29%(58)	25%(49)
SMAC	20%(39)	28%(55)	20%(40)	27%(54)

Data Set	MNIST	MNIST	MNIST	CIFAR-10
Problem	6-MLP	8-CNN	15-CNN	19-CNN
GP-EI	1.94(.11)	0.77(.07)	0.99(.11)	37.19(4.1)
GP-PES	1.94(.07)	0.87(.04)	1.06(.07)	_
TPE	2.00(.079)	0.96(.07)	0.97(.03)	27.13(3.2)
SMAC	2.13(.11)	0.85(.07)	1.10(.07)	29.74(2.1)
HORD	1.87(.06)	0.84(.04)	0.94(.07)	23.23(1.9)
HORD-ISP			0.82(.05)	20.54(1.2)

(a) Speed comparison.

(b) Test error comparison.

We see that HORD (HORD-ISP) outperforms the baselines in terms of accuracy and speed.

Yakovlev Konstantin 2023 11/12

References

- Gutmann H. M. (2001) A radial basis function method for global optimization, Journal of global optimization.
- https://artowen.su.domains/mc/Ch-var-adv.pdf
 - Ilievski I. et al. (2017) Efficient hyperparameter optimization for deep learning algorithms using deterministic rbf surrogates, Proceedings of the AAAI conference on artificial intelligence.

Yakovlev Konstantin 2023 12 / 12

