DOCUMENTATION OF CPAD

KRISHNENDRA SHEKHAWAT
DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF GENEVA, GENEVA
EMAIL: KRISHNENDRA.IITD@GMAIL.COM

1. Processing language and Introduction

Processing is an open source programming language and environment for people who want to create images, animations, and interactions (see [1-2]).

It was developed by Casey Reas and Benjamin Fry, both formerly of the Aesthetics and Computation Group at the MIT Media Lab. Software written using Processing is in the form of so-called *sketches*. These sketches are written in a specific *text editor*, which can have lots of tabs to manage different files.

After trying various other systems, we have written our code for the software CPAD in Processing. This code is subdivided into several components to make it more comprehensive and each component is written in a separate file (tab). CPAD has two external files and 16 tabs in total; one external file for input and another one for output. The 16 tabs are illustrated in Figure 1. In upcoming sections, we explain the functioning of each tab.

When we run CPAD, it generates a .jpg file having plus shape floor plan and its graph as shown in Figure 2.

For the better understanding of this documentation, first refer to the concepts given in [3].

2. Notations

Notations frequently used in the text are given as follows:

 A_T : a weighted adjacency matrix

Given spaces: rooms

 $(L^1,H^1),(L^2,H^2),(L^3,H^3),(L^4,H^4),(L^5,H^5)$: width and height of central, left, upper, right and lower F_S^R respectively

 L_i and H_i : width and height of a F_S^R after drawing i^{th} room

 l_i and h_i : width and height of i^{th} room

MOI: moment of inertia

 $R: i^{th}$ room

 F_S^{P} : spiral-based plus shape floor plan of order n i.e. having n rooms

 \vec{F}^R : rectangular floor plan or block

 F_S^R : spiral-based F^R

```
P CPAD | Processing 1.5.1
File Edit Sketch Tools Help
COBEED
     size(1300, 700);
                                          //gives size of screen
                                          //gets input from external file input.txt
     input();
     initialadjacency();
                                          //calculates initial adjacency pairs
     groups();
                                         //obtains number of required groups and their members
//change location of a space from one group to other
     changingroom();
                                          //arrange members in each group according to their sizes in ascending order
     arrangingsizes();
     plusshape();
                                          //gives plus shape floor plan
     adjacencypairs();
                                         //obtains final adjacency pairs
//obtains adjacency matrix, degree of all rooms
//gives eigen values and characteristic function of adjacency matrix
     adjacencymatrix();
     eigenvalue();
     distance();
                                          //gives distance and shortest path between all rooms
                                         //gives cut vertex and pair cut vertex of graph
//gives eccentricites of all rooms, tadius, diameter and center
//gives lst order moment and moment of inertia of all rooms
     cutvertex();
     eccentricity();
     print():
                                          //print all results in external file Output.txt, obtains chromatic number of obtained graph
    //prints following things on the screen
     PFont myFont = createFont("Times", 24);
     textFont(myFont);
     text("Plus shape floor plan ", 180, 30);
text("Graph ", 800, 25);
PFont myFont1 = createFont("Times", 20);
      textFont(myFont1);
     text("Total Area = " + nf(totalarea, 0, 2), 10, 590);
```

FIGURE 1. Screen of CPAD

FIGURE 2. A plus shape floor plan and its graph generated by CPAD

OCCURENTALION OF CIME

3. Input for CPAD

The input for the code is extracted from an external file *input.txt*. While writing the code, input.txt is kept external so that it can be more user-friendly. The file has the following 6 different inputs:

1. A weighted adjacency matrix

It gives the adjacency relation among all the rooms which need to be placed inside the plus shape floor plan.

Remark 1. The number of rooms(n) and a list of all the rooms are specified within the code in a tab input instead of Input.txt file.

- 2. The area of each room
- 3. The ratio of width over height for each room
- 4. Change of a room

For obtaining F_S^P , we divide rooms into 5 groups. The formation of groups is done by using an algorithm but it can sometimes happen that one is not pleased with the formed groups. Therefore, we kept an option which enables us to move a room from one group to another.

To move a room from one group to another, three numbers are required. The first one is the group number from which its member is moved, the second one is another group number to which a new room is added and the third number is the member number, i.e., the room number as given in the list of rooms. For example if numbers 2, 4, 14 are mentioned, this means 15^{th} room is moved from 3^{rd} group to 5^{th} group. We write -1 as the room number if we don't change the position of any room. Also, at the present stage of development of CPAD at most two members can be moved.

Remark 2. In Processing an array always starts from zero, therefore in programming all numbering begins with zero.

5. The position of groups

Five groups are required to form a plus shape floor plan. These groups are formed on the basis of weighted adjacency matrix. There are only five positions for groups therefore their positions are given in terms of five numbers. For example, the following sequence of five numbers 2, 0, 1, 3, 4 indicates that 3^{rd} , 1^{st} , 4^{th} and 5^{th} groups are the central, left, upper, right and lower groups respectively.

6. Assigning a spiral for each group

A group can be constructed in any of the eight ways, we say it is constructed with any of the eight spirals therefore any five numbers between 0 and 7 stand for the spirals in each corresponding group. For example, the sequence 2, 1, 4, 5, 1 indicates that the central, left, upper, right and lower groups are constructed with *spiral3*, *spiral2*, *spiral5*, *spiral6* and *spiral2* respectively. The eight spirals are shown in Figure 3.

4. CPAD CONSTRUCTION

In this section all tabs of the code are explained one by one in the order in which they occur.

FIGURE 3. 8 different spirals

4.1. **Getting input.** In the tab input, we import the input from the external file input.txt by calling a function input().

Also using the areas of all the rooms and the ratio between their width and height, the width and height of each room are computed.

- 4.2. **Initial adjacency pairs.** In the tab *initial adjacency* by calling function *initial adjacency()* all the initial adjacency pairs are obtained. For details, refer to Section 6.
- 4.3. **Groups.** Once we have the initial adjacency pairs, by using the tab *groups*, the required groups and their members are obtained. For details, refer to Section 7.
- 4.4. **Change of a room.** The function of the tab *changingroom* is to move a room from one group to another and simultaneously it revises the position of the room in the corresponding array.
- 4.5. Arranging the members of each group in ascending order. The tab arrangingsizes considers each group one by one and then arranges its members in the increasing order according to their areas.
- 4.6. Obtaining a spiral-based plus-shape floor plan(F_S^P). In the tab plusshape, by calling function plusshape() the required F_S^P is constructed and displayed on the screen. This function has two parts, the first one does the necessary calculations while the second one deals with the construction of a F_S^P .

First part: Interchanging the width and height of rooms and calculating the area of F_S^P

This part has many steps, some of which may call some other functions. The details of these newly-defined functions are provided later.

- 1. Set i = 0
- 2. Consider the $(i+1)^{th}$ group

Becchief in the

Remark 3. For all the upcoming steps, the 1st, 2nd, 3rd, 4th and 5th groups represent

Remark 3. For all the upcoming steps, the 1st, 2^{na}, 3^{ra}, 4th and 5th groups represent the central, left, upper, right and lower groups respectively. Let l_i and h_i be the width and height of i^{th} room.

3. Interchanging width and height of the 1st member of each group

This step is performed to reduce the area of F_S^P . It works well in most cases but sometimes it might work adversely.

For i = 0, 1 or 3, namely, for 1^{st} , 2^{nd} or 4^{th} group if $l_1 < h_1$, we swap l_1 and h_1 . This is to reduce height of F_S^P .

For i = 2 or 4, namely, for 3^{rd} or 5^{th} groups, if $l_1 > h_1$, we swap l_1 and h_1 . This is to reduce width of F_S^P .

4. Interchanging width and height of the members of $(i+1)^{th}$ group

If spiral1, spiral2, spiral5 or spiral6 is used for the $(i+1)^{th}$ group then we call function shape1(). If spiral3, spiral4, spiral7 or spiral8 is used for the $(i+1)^{th}$ group then we call function shape2().

The functions shape1() and shape2() swap the width and height of all the members of each group, if required to reduce the size of inner extra spaces.

5. Calculating the width and height of the $(i+1)^{th}$ group

All the functions defined in this step compute the width and height of corresponding groups. If spiral1, spiral2, spiral5 or spiral6 is used for the $(i+1)^{th}$ group and if

- 5.1. i = 0, we call function LandH1.1() otherwise for remaining spirals we call function LandH2.1().
- 5.2. i = 1, we call function LandH1.2() otherwise for remaining spirals we call function LandH2.2().
- 5.3. i = 2, we call function LandH1.3() otherwise for remaining spirals we call function LandH2.3().
- 5.4. i=3, we call function Land H1.4() otherwise for remaining spirals we call function Land H2.4().
- 5.5. i=4, we call function LandH1.5() otherwise for remaining spirals we call function LandH2.5().
- 6. If i = 4, we go to the next step otherwise we increase i by one and go to step 2.
- 7. Computing the area of F_S^P

Going through the details of all the functions used in the first part is lengthy and tedious; therefore to understand the concept of all these functions, we shall elaborate on the steps of only two functions, namely, shape1() and LandH1.1(). These two functions are given in Sections 8 and 9.

Second part: **Drawing** F_S^P

- 1. Let i = 0.
- 2. Consider the $(i+1)^{th}$ group.
- 3. Calculating the width and height of the inner extra spaces

Let F_S^R represents the rectangular block used to generate F_S^P . The construction of a F_S^R is explained in [4]. If R_j is drawn to the left or right of $F_S^R(j-1)$ and l_j is greater than the width of $F_S^R(j-1)$, we draw an inner extra space to the right of $F_S^R(j-1)$.

itioniverselection but mit in the manufacture of the mit in the mi

To obtain the starting point of $(i+1)^{th}$ group (e.g. second group), the width of the inner extra space is subtracted from x.

If spiral1, spiral2, spiral5 or spiral6 is used for the $(i+1)^{th}$ group, we call function shape1.1().

If spiral3, spiral4, spiral7 or spiral8 is used for the $(i+1)^{th}$, we call function shape 2.1().

Here the functions shape 1.1() and shape 2.1() calculate the width and height of some of the inner extra spaces of the $(i+1)^{th}$ group.

4. Obtaining starting point of each group and drawing the outer extra spaces

In this step first we compute the starting point of the $(i+1)^{th}$ group and then we draw an outer extra space if required.

For i = 0, 1, 2, 3, 4, we call functions extra $1.1(p_1, p_2)$, extra $1.2(p_1, p_2, p_3, p_4)$, extra $1.3(p_1, p_2, p_3)$, extra $1.4(p_1, p_2)$ or extra $1.5(p_1, p_2)$ respectively. Here p_1, p_2, p_3 and p_4 are variables which are passed to the corresponding function and the value of p_1, p_2, p_3 and p_4 may be different for each spiral.

5. Drawing the $(i+1)^{th}$ group

Corresponding to the *spiral*1, *spiral*2, *spiral*3, *spiral*4, *spiral*5, *spiral*6, *spiral*7 and *spiral*8, we call functions shape1.2(), shape2.2(), shape3.2(), shape4.2(), shape5.2(), shape6.2(), shape7.2() and shape8.2() respectively.

Each of these functions draws the corresponding group following the corresponding spiral at the starting point obtained in step 4.

6. If i = 4 we move to the next step otherwise we go back to the second step.

Again explaining all the functions is an extensive and verbose process so for clarification of the functions, shape1.1(), extra1.2(p_1, p_2, p_3, p_4) and shape1.2() are discussed. These functions are given in Sections 10, 11 and 12 respectively.

- Remark 4. For the upcoming computations, it is not feasible to draw rooms again and again, therefore we allocate the rooms for the required computations. Allocating does not mean drawing, it means drawing virtually. Allocating the rooms instead of drawing them reduces the complexity of the code and the code consumes less time for displaying the final output.
- 4.7. Obtaining the final adjacency pairs. The tab *adjacencypairs* computes the adjacency pairs among the components of each group and among members of different groups.

Function: adjacencypairs()

- 1. Set i = 0 and j = 0 where i and j are variables.
- 2. Obtaining adjacency pairs of the first group

To obtain adjacency pairs of two different groups, after allocating each member we calculate the width and height of corresponding F_S^R .

If
$$j = 0$$
,

If spiral1, spiral2, spiral5 or spiral6 is used, the first and second room is drawn one above the other. By calling function adjacencycal1() we compute the width and height of F_S^R after allocating each member.

BOCCMENTATION OF CITE

If spiral3, spiral4, spiral7 or spiral8 is used, the first and second room is drawn side by side. By calling function adjacencycal2() we compute the width and height of F_S^R after allocating each member.

If i = 0, to calculate adjacency pairs of the first group we call function adjacency1(). 3. Obtaining adjacent pairs of $(j + 1)^{th}$ group

If i = j + 1,

For $(j+1)^{th}$ group, after allocating each member we compute the width and height of corresponding F_S^R by calling any of the required functions adjacencycal1() or adjacencycal2().

We compute adjacency pairs of $(j+1)^{th}$ group by calling function adjacency1().

4. Obtaining adjacency pairs among the first and second group

If i = 0,

4.1 If j = 0, we obtain those members (and their heights) of the first group which can be adjacent to some members of the second group by calling function adjacencyHeight(p_3, p_4).

The values of p_3 and p_4 are different for each spiral. Since the second group is drawn to the left of the first group, adjacency among the members of these two groups is obtained by comparing their heights.

4.2 Obtaining the members (and their heights) of the second group which can be adjacent to the members of first group and then computing the adjacency pairs among these two groups

If j = 1, we first check which spiral is used and then call function adjacencyHeight (p_3, p_4) (the values of p_3 and p_4 are different for each spiral).

Afterwards we call function findingadjacencies (p_1, p_2) . This function computes the adjacency pairs among the members of two different groups. Here it computes the adjacency pairs among the members of the first and second group. The value of p_1 and p_2 can be same or different for different spirals.

5. Obtaining adjacent members of the first and third group

In this case we check if i = 1, j = 0 for the first group and j = 2 for the third group. To obtain steps 5.1 and 5.2, we replace function adjacencyHeight (p_3, p_4) by function adjacencyLength (p_3, p_4) in the steps 4.1 and 4.2.

Since the third group is drawn above the first group, we compare the widths of the members of these two groups and that is why we replaced adjacencyHeight (p_3, p_4) by adjacencyLength (p_3, p_4) .

6. Obtaining adjacent members of the first and fourth group

In this case we check if i=2, j=0 for the first group and j=3 for the fourth group. Steps 6.1 and 6.2 are same as the steps 4.1 and 4.2.

7. Obtaining adjacent members of the first and fifth group

In this case we check if i = 3, j = 0 for the first group and j = 4 for the fifth group. Steps 7.1 and 7.2 are same as the steps 5.1 and 5.2.

8. If j < 4, we increase j by one and go to step 2. If j = 4, we increase i by one. If i < 4, we consider j = 0 and go to step 2 otherwise stop the process.

Explaining all the functions is an extensive and verbose process so for clarification of the functions adjacencycal1(), adjacency1(), adjacencyHeight(p_3, p_4) and findingadjacency(p_1, p_2) are discussed. All these functions are given in Sections 13, 14, 15 and 18 respectively.

distinctive for the first of white the first of the first

4.8. Obtaining covariants associated with the graphs. The next five tabs are adjacencymatrix, distance, cutvertex, eccentricity and MOI. These tabs computes graph covariants associated with the obtained F_S^P . For the definition of graph terminology used in this section, refer [5].

- 1. Function adjacencymatrix()
 - 1.1 This function computes the adjacency matrix from obtained adjacency pairs.
 - 1.2 From the adjacency pairs it calculates degree of connectivity of the graph.
- 1.3 From the adjacency matrix, it obtains the *degree* of each vertex of graph of F_S^P i.e. G_S^P and then the mean, standard deviation, maximum and minimum of all degrees.
- 2. Function distance()

This function calculates the *distance* between any two vertices of G_S^P and then the mean, standard deviation, maximum and minimum of all distances.

3. Function cutvertex()

This function computes all the *cut vertices* and *cut pairs* of G_S^P .

4. Function eccentricity()

This function first provides the *eccentricity* of each vertex of G_S^P and then calculates the *diameter*, radius and centre of G_S^P . At the end, it computes the mean and standard deviation of all eccentricities.

5. Function MOI()

We compute moments of G_S^P relative to each vertex by the following two ways:

- 1. by considering the weight of each room equal to its area,
- 2. by considering the weight of each room as one unit.

The moments of inertia generally provide a more accurate measure of the centre of G_S^P than eccentricity, even when the graph is equipped only with the trivial weighting.

After having the first-order moments and the moments of inertia of G_S^P relative to each vertex, we compute the mean, standard deviation, maximum and minimum of all moments.

- 4.9. **Obtaining eigenvalues.** From the tab *eigenvalue*, we obtain the eigenvalues of the adjacency matrix and its characteristic polynomial, by using inbuilt library *Jama*. Afterwards the maximum and minimum of all eigenvalues are computed.
- 4.10. **Drawing the graph.** Using the tab graph, we draw the G_S^P on the same screen on which F_S^P is displayed.
- 4.11. **Print.** Using the tab *print*, all the results are displayed in an external file *out-put.txt*. A list of these results is given in next Section. In this tab the following calculations are made:
 - 1. Using the inbuilt library jgrapht, we obtain the chromatic number of G_S^P .
- 2. By means of the paths for calculating distances, we compute a *shortest path* between each pair of vertices of G_S^P using the Floyd's algorithm given in Section 19.
 - 3. We compute whether G_S^P is bipartite or not.
- 4.12. Calling all functions. In the tab CPAD the function setup() calls all the main functions defined in Sections 4.1 to 4.11.

Occure minimum of cime

5. OUTPUT OF CPAD

When we run CPAD, a F_S^P and its graph are displayed on the screen. In addition, some important covariants, like the area of F_S^P , spirals used for the central, left, upper, right and lower F_S^R , the minimum and maximum moments of inertia, the radius and diameter of G_S^P are also displayed. At the same time, a new file output.txt is obtained, which contains the following results:

- 1. The width and height of each room
- 2. All the five groups and their members
- 3. The number of inner and outer extra spaces
- 4. The area of F_S^P
- 5. The total area of all the extra spaces
- 6. The adjacency matrix
- 7. The number of edges
- 8. The degrees of all rooms, their mean, standard deviation, dispersion, maximum and minimum.
- 9. The eigenvalues of adjacency matrix and the corresponding polynomial. Also, the minimum and maximum of all eigenvalues.
 - 10. Whether the G_S^P is bipartite or not
- 11. The distance matrix and the mean, standard deviation, dispersion, maximum and minimum of all distances
 - 12. A shortest path between each pair of rooms
 - 13. All the cut vertices and cut pairs
- 14. The eccentricities of all rooms, their mean, standard deviation, and dispersion. The radius, diameter and centre of G_S^P
- 15. The moments and their mean, standard deviation, dispersion, maximum and minimum.
 - 16. The chromatic number
- 5.1. **Libraries.** To run CPAD, the following libraries are required:

7.1 jgrapht

This library is used to calculate the chromatic number.

7.2 Jama

This library is used to compute the eigenvalues.

6. Initial adjacency pair algorithm

This algorithm calculates the initial adjacency pairs from a given A_T .

- 1. Let $A_T = [a_{ij}]_{n \times n}$, $M = \max\{a_{ij}\}$ where i = 1, ..., n; j = 1, ..., n and n be the number of rooms. Initially M = 10, j = 1.
 - 2. Consider the j^{th} row.
- 3. If it corresponds to any room which is covered in any of the obtained initial adjacency pairs we skip this row otherwise we obtain all the pairs of rooms corresponding to number M in the A_T and consider them as adjacency pairs.
- 4. If all the rooms are covered in the obtained adjacency pairs, terminate the algorithm; otherwise go to the next step.
 - 5. Increase j by one.

- 6. If j < n + 1, go to step 2.
- 7. If j = n + 1, reduce i by one, consider j = 1 and go to step 2.

7. Algorithm for the grouping of rooms

This algorithm computes groups from the initial adjacency pairs. Here in particular, the algorithm is given for obtaining five groups which will be used to obtain a F_S^P . If the number of groups is greater or less than five, the initial adjacency pairs will require updating. Therefore this algorithm does not only obtain five groups, but also revises the initial adjacency pairs. Here are the steps of the algorithm:

- 1. Let the number of groups be i and initially i = 1.
- 2. Obtaining the 1^{st} member of the i^{th} group
- a. Consider each room one by one from the given list of rooms.
- b. Select the room which does not exist in any of the groups obtained so far.
- c. Now regard this room as the 1^{st} member of the i^{th} group.

Note: To start the process of forming groups, we consider the 1^{st} room as the 1^{st} member of the 1^{st} group.

- 3. Forming the i^{th} group
- a. Among the adjacency pairs, we find those rooms which are adjacent to the 1^{st} member of the group.
 - b. Then we include these rooms as members of the group.
- c. If newly included members are adjacent to other rooms from the initial adjacency pairs, we add those rooms to the group.
- d. We repeat Step 3.c until the remaining rooms from the initial adjacency pairs are adjacent to any other member of the group.
- e. When all members along with their adjacent rooms are included in the group we stop the process.
- 4. Review all the remaining rooms. If the number of rooms in the given list is equal to the number of all rooms included in the groups (i.e., if all the rooms are included in the groups)
 - a. Then proceed to step 5
 - b. Otherwise increase i by one and go to step 2 to form another group.
 - 5. To obtain a plus-shape tiling five groups are required, therefore
 - a. If i = 5, we stop.
 - b. If i < 5, we go to step 6 to increase the number of groups.
 - c. If i > 5, we go to step 7 to reduce the number of groups.
 - 6. When the number of groups is less than 5 (i < 5)
 - a. We search for the group having the maximum number of rooms as members.
 - b. If there is more than one group we consider the one which comes first.
 - c. Let this group be named G.
- d. We look in the A_T for a pair of elements of G with minimum weight. If there is more than one pair we consider the one which comes first.
 - e. Let the rooms from this pair be (R_i, R_i) .
- f. Now we update the initial adjacency pairs by deleting all those pairs which have any member in common with G.

g. Split G into two parts, so that i gets increased by one. Splitting has the effect of forming two new groups:

- (i). G_1 which contains R_i
- (ii). G_2 which contains R_i .
- h. To find the members of G_1 and G_2 , we look at the weight of each member of G_2 corresponding to R_i and R_i .
- i. If the obtained weight of any member corresponding to R_i is greater than the weight corresponding to R_i then this room forms an adjacency pair with R_i and we consider it as a member of G_1 otherwise it forms an adjacency pair with R_i and we consider it as a member of G_2 .
 - j. Repeat step 6.i until $G_1 \cup G_2 = G$.
 - k. Now G is replaced by G_1 and G_2 . Also, i got increased by one.
 - l. Go to step 5.
 - 7. When the number of groups is greater than 5 (i > 5)
 - a. From among the i groups, we choose two having a minimum number of members.
 - b. Let these groups be named G_1 and G_2 .
 - c. Combine G_1 and G_2 to form a new group.
- d. We look in the A_T for a pair of elements of G_1 and G_2 with maximum weight. If there is more than one pair we consider the one which comes first.
 - e. Consider this pair to be an adjacency pair.
 - f. Now G_1 , G_2 together form a new group. Also, i got reduced by one.
 - g. Go to step 5.

Note: The steps 6.h, 7.d, 7.e, 7.f are meant to update the initial adjacency pairs. They have nothing to do with the formation of groups.

8. Function shape1()

This function swaps the width and height of members of a group when spiral1, spiral2, spiral5 or spiral6 is used for the corresponding group.

- 1. When R_2 is going to be allocated above R_1
- 1.1 Calculating the area of extra spaces

If
$$\ell_1 > \ell_2$$
, then $A_O = (\ell_1 - \ell_2) \times h_2$ otherwise $A_O = (\ell_2 - \ell_1) \times h_1$

If
$$\ell_1 > h_2$$
, then $A_I = (\ell_1 - h_2) \times \ell_2$ otherwise $A_I = (h_2 - \ell_1) \times h_1$.

1.2 Interchanging the width and height (if required)

If $A_O > A_I$, then swap ℓ_2 and h_2 , i.e.,

temp = ℓ_2 , $\ell_2 = h_2$, $h_2 = \text{temp}$.

1.3 Calculating L_2 and H_2

Initially $L_1 = l_1$, $H_1 = h_1$. Now $L_2 = \max(\ell_2, \ell_1)$, $H_2 = H_1 + h_2$.

2. When R_i is going to be allocated to the left or right of R_{i-1}

We are calculating the heights of F_S^R only because either $H_i \geq h_i$ or $H_i < h_i$ but L_i is simply $L_{i-1} + l_i$. Also, for further calculations, when R_i is allocated to the left or right of R_{i-1} , only H_i will be used.

2.1 Calculating H_i

$$H_i = H_{i-2} + h_{i-1}.$$

2.2 Calculating the area of extra spaces

If
$$H_i > h_i$$
, $A_O = (H_i - h_i) \times \ell_i$ otherwise $A_O = (h_i - H_i) \times L_{i-1}$

Similar but the first of militarities, similar to determ, observed but it.

If $H_i > \ell_i$, $A_I = (H_i - \ell_i) \times h_i$ otherwise $A_I = (\ell_i - H_i) \times L_{i-1}$.

2.3 Interchanging the width and height (if required)

If $A_O > A_I$, then swap ℓ_i and h_i .

2.4 Updating H_i

If $h_i > H_i$, then $H_i = h_i$.

3. When R_i is going to be allocated above or below R_{i-1}

3.1 Calculating L_i

$$L_i = L_{i-2} + \ell_{i-1}.$$

3.2 Calculating the area of extra spaces

If $L_i > \ell_i$, $A_O = (L_i - \ell_i) \times h_i$ otherwise $A_O = (\ell_i - L_i) \times H_{i-1}$

If $L_i > h_i$, $A_I = (L_i - h_i) \times \ell_i$ otherwise $A_I = (h_i - L_i) \times H_{i-1}$

3.3 Interchanging the width and height (if required)

If $A_O > A_I$, then swap ℓ_i and h_i .

3.4 Updating L_i

If $\ell_i > L_i$, then $L_i = \ell_i$.

4. Keep repeating steps 2 and 3 until all members of the corresponding group are allocated.

9. Function LandH1.1()

This function calculates the width and height of the first group when spiral1, spiral2, spiral5 or spiral6 is used for the corresponding group.

1. If the number of rooms in the 1^{st} group is greater than one

1.1 If the number of rooms in this group is an even number then

$$L^1 = L_{n-1}$$
 and $H^1 = H_{n-1} + h_n$

In this case if spiral1, spiral2, spiral5 or spiral6 is used, then R_n will be allocated above or below $F_S^R(n-1)$. Therefore after allocating R_n , the width of the group will be L_{n-1} but for the height, H_{n-1} will be augmented by h_n .

1.2 If the number of rooms in this group is an odd number then

$$L^1 = L_{n-1} + l_n$$
 and $H^1 = H_{n-1}$

In this case if spiral1, spiral2, spiral5 or spiral6 is used, then R_n will be allocated to the left or right of $F_S^R(n-1)$. Therefore after allocating R_n , the height of the group will be H_{n-1} but for the width, L_{n-1} will be augmented by l_n .

2. If the number of rooms in the 1^{st} group is equal to one then L^1 and H^1 are ℓ_1 and h_1 respectively.

10. Function shape 1.1()

This function computes the width or height of the inner extra space corresponding to each member of every group.

1. Calculating L_2 and H_2

Initially $L_1 = l_1$, $H_1 = h_1$. Now $L_2 = \max(\ell_2, \ell_1)$, $H_2 = H_1 + h_2$.

2. Calculating the width of inner extra space after allocating R_2

Width(inner extra space) = $|\ell_2 - \ell_1|$

This value will be used while drawing the corresponding extra space.

3. When R_i is going to be allocated to the left or right of R_{i-1}

$$3.1 H_i = H_{i-2} + h_{i-1}.$$

3.2 If $h_i > H_i$ then height(inner extra space) = $h_i - H_i$ otherwise we consider it as 0 (the explanation for considering the height of inner extra space only when $h_i > H_i$ is given in upcoming function).

- 4. When R_i is going to be allocated above or below R_{i-1}
- $4.1 L_i = L_{i-2} + \ell_{i-1}.$
- 4.2 If $\ell_i > L_i$, then width(inner extra space) = $\ell_i L_i$ otherwise we consider it as 0.
- 5. Keep repeating steps 3 and 4 until all members of the corresponding group are covered.

11. FUNCTION EXTRA1.2 (p_1, p_2, p_3, p_4)

This function calculates the starting point of the second group and draw an outer extra space below the first or the second group.

1. Obtaining the starting point of the second group

Let (x,y) is the upper left corner of the first group and initially the starting point of the second group.

When a member R_i of the second group is drawn to the right of $F_S^R(i-1)$, it overlaps with some members of the first group (e.g. if spiral2 is used for the second group, its second member is drawn at position $(x + l_1, y)$; clearly this member overlaps with some members of the first group). Therefore we deduct the widths of all R_i , drawn to the right of corresponding $F_S^R(i-1)$, from x to obtain the starting point of second group.

In function extra $1.2(p_1, p_2, p_3, p_4)$, p_2 represents the first value of i for which R_i is drawn to the right of $F_S^R(i-1)$ and after R_{p_2} every fourth member (if exist) is drawn to the right of F_S^R . Using p_2 , we compute the widths of all R_i drawn to the right of corresponding $F_S^{\bar{R}}(i-1)$ and subtract them from x.

Also R_1 of the second group overlaps with some members of the first group. Therefore corresponding l_1 is subtracted from x. For some spirals, R_2 is drawn to the left or to the right of R_1 (e.g. spiral2, see Figure 3). In this case, $p_1 = 0$ and l_1 is subtracted from x. For some spirals, R_2 is drawn above or below R_1 (e.g. spiral1, see Figure 3). In this case $p_1 = 1$ and L_2 is deducted from x.

For the second group, we require (x, y) should be its upper right corner. When a member R_i of the second group is drawn above $F_S^R(i-1)$, (x,y) would not remain upper right corner of the second group. To obtain this position, the heights of all those R_i which are drawn above corresponding $F_S^R(i-1)$, are added to y.

Here p_3 represents the first value of i for which R_i is drawn above $F_S^R(i-1)$ and after R_{p_3} every fourth member (if exist) is drawn above some F_S^R .

If a member R_j of the second group is drawn to the left or right of $F_S^R(j-1)$ and l_j is greater than the width of $F_S^R(j-1)$, we draw an inner extra space to the right of $F_S^R(j-1)$. This extra space is a virtual part of $F_S^R(j-1)$ and it virtually increases the width of $F_S^R(j-1)$. To obtain the starting point of the second group, the width of the inner extra space is subtracted from x. The width of inner extra spaces has already been obtained in the previous function.

Here p_1 also represents the first value of i for which R_i is drawn above or below $F_S^R(i-1)$ where l_i is greater than the width of $F_S^R(i-1)$. For this case we have considered the upper and lower sides only, therefore every second member after R_{p1} is middling in the state of the st

drawn either above or below some F_S^R . Therefore using p_1 the width of all the inner extras are obtained and subtracted from x.

After all these calculations, obtained value of x and y gives the starting point of the second group.

Remark 5. We have not considered the members R_i whose height is greater than the height of $F_S^R(i-1)$ because the inner extra space is always drawn below a F_S^R . And to obtain the starting point, the heights of only those spaces which are drawn above some F_S^R are subtracted from y.

In case of the third group, we have not considered the cases when the width of members R_i is greater than the width of $F_S^R(i-1)$ because in these cases, inner extra space is always drawn to the right of $F_S^R(i-1)$. And to get the starting point, the widths of only those R_i which are drawn to the left of $F_S^R(i-1)$ are added to x.

Similarly for the first, fourth and fifth groups, any of the cases when the width or the height of R_i is greater than the width (or the height) of $F_S^R(i-1)$, have not considered.

2. Drawing an outer extra space

If $H^1 > H^2$, we draw an outer extra space below the second group such that its lower left vertex is the upper left vertex of the extra space. The width and height of this extra space is L^2 and $H^1 - H^2$ respectively having position $(x - L^2, y + H^2)$.

If $H^1 < H^2$, we draw an outer extra space below the first group such that its lower left vertex is the upper left vertex of the extra space. The width and height of this extra space is L^1 and $H^2 - H^1$ respectively having position $(x, y + H^1)$.

Remark 6. A particular colour is used for all the outer extra spaces to distinguish them from others spaces. Also after drawing an outer extra space, the number of outer extra spaces is increased by one so that in the end the total number of outer extra spaces is achieved.

12. FUNCTION SHAPE1.2()

This function is used to draw all the members of any group when spiral1 is used for the group. Suppose i^{th} group is going to be drawn and its starting point is (x, y).

1. Drawing R_1

 R_1 is drawn with the width and height ℓ_1 and h_1 respectively at position (x,y).

If the number of members of i^{th} group is greater than one, move to the next step otherwise stop here.

Remark 7. After drawing each member, its name is printed at its centre and a particular colour is used for all the members of each group to distinguish them from the extra spaces.

2. Drawing R_2 and the inner extra space

 R_2 is drawn with the width and height ℓ_2 and h_2 respectively at position $(x, y - h_2)$. If $\ell_2 < \ell_1$, then an inner extra space is drawn to the right side of R_2 with the width and height obtained in the function shape1.1() at position $(x + \ell_2, y - h_2)$.

If $\ell_2 > \ell_1$, then an inner extra space is drawn to the right R_1 , with the width and height obtained in the function shape1.1() at position $(x + \ell_1, y)$.

miles of ermb

Remark 8. A particular colour is used in all the inner extra spaces to distinguish them from other spaces. Also after drawing an inner extra space the number of inner extra spaces is increased by 1 so that in the last the total number of inner extra spaces will be achieved.

3. Calculating L_2 and H_2

Initially $L_1 = l_1$, $H_1 = h_1$. Now $L_2 = \max(\ell_2, \ell_1)$, $H_2 = H_1 + h_2$.

4. Obtaining a position for R_3

Since upper left vertex of R_3 should be upper right vertex of $F_S^R(2)$, we subtract h_2 from y, i.e. $y = y - h_2$, to obtain position of R_3 .

5. Drawing R_i to the right of $F_S^R(i-1)$

Add L_i to x to obtain position of R_i . We draw R_i with width ℓ_i and height h_i at position (x, y).

If $h_i < H_i$, we draw an inner extra space at position $(x, y + h_i)$ with width ℓ_i and height $H_i - h_i$. If $h_i > H_i$, we draw an inner extra space at position $(x - L_i, y + H_i)$ with width L_i and height $h_i - H_i$.

In this case we update H_i by $H_i = h_i$.

6. Drawing R_i below $F_S^R(i-1)$

Subtract L_i from x and add H_i to y to obtain position of R_i . We draw R_i with width ℓ_i and height h_i at position (x, y).

If $\ell_i < L_i$, we draw an inner extra space at position $(x + \ell_i, y)$ with width $L_i - \ell_i$ and height h_i .

If $\ell_i > L_i$, we draw an inner extra space at position $(x + L_i, y - H_i)$ with width $\ell_i - L_i$ and height H_i .

In this case we update L_i by $L_i = \ell_i$.

7. Drawing R_i to the left side of $F_S^R(i-1)$

Subtract ℓ_i from x and subtract H_i from y to obtain position of R_i . We draw R_i with width ℓ_i and height h_i at position (x, y).

If $h_i < H_i$, we draw an inner extra space at position $(x, y + h_i)$ with width ℓ_i and height $H_i - h_i$. If $h_i > H_i$, we draw an inner extra space at position $(x + \ell_i, y + H_i)$ with width L_i and height $h_i - H_i$.

In this case we update H_i by $H_i = h_i$.

8. Drawing R_i above $F_S^R(i-1)$

Subtract h_i from y to obtain position of R_i . We draw R_i with width ℓ_i and height h_i at position (x, y).

If $\ell_i < L_i$, we draw an inner extra space at position $(x + \ell_i, y)$ with width $L_i - \ell_i$ and height h_i . If $\ell_i > L_i$, we draw an inner extra space at position $(x + L_i, y + h_i)$ with width $\ell_i - L_i$ and height H_i .

In this case we update L_i by $L_i = \ell_i$.

9. Keep repeating the steps 5, 6, 7 and 8 until all the members are drawn.

13. FUNCTION ADJACENCYCAL1()

This function calculates the width (or the height) of F_S^R after allocating each room for each group when spiral1, spiral2, spiral5 or spiral6 is used for the corresponding group.

1. Initially $L_1 = l_1$, $H_1 = h_1$. Now $L_2 = \max(\ell_2, \ell_1)$, $H_2 = H_1 + h_2$.

individual control of the control of

- 2. When R_i is going to be allocated to the left or right of R_{i-1}
- $H_i = H_{i-2} + h_{i-1}$. If $h_i > H_i$ we have $H_i = h_i$.
- 3. When R_i is going to be allocated above or below R_{i-1} member
- $L_i = L_{i-2} + \ell_{i-1}$. If $\ell_i > L_i$ we have $L_i = \ell_i$.
- 4. Keep repeating steps 2 and 3 until all the members of corresponding group are covered.

14. FUNCTION ADJACENCY1()

This function calculates the adjacency pairs among each group.

- 1. Obtaining adjacency of the first member with other members of the same group
- 1.1. If n=2 then R_1 will be adjacent to R_2 .
- 1.2. If n=3 then R_1 will be adjacent to R_2 and R_3 .
- 1.3. If n > 3 then R_1 will be adjacent to R_2 , R_3 , R_4 and R_5 .
- 2. Obtaining adjacency with every next member

Starting from R_2 , each R_i will be adjacent to every R_{i+1} till i < n.

3. Obtaining adjacency with every third next member

Starting from R_2 , each R_i will be adjacent to every R_{i+3} till i < (n-2).

4. Obtaining adjacency with every fourth next member

Starting from R_2 , each R_i will be adjacent to every R_{i+4} till i < (n-3).

15. FUNCTION ADJACENCYHEIGHT (p_3, p_4)

This function calculates the members (and their heights) of the first and second group (resp. fourth group) which can be adjacent to each other.

There are four cases for the number of members of a group, namely n=1, n=2, n=3 or n>3. For n>3, there are four sub-cases namely $n\equiv 1\pmod 4,$ $n\equiv 2\pmod 4$, $n\equiv 3\pmod 4$ and $n\equiv 0\pmod 4$. We represent all these cases using p_3 .

We know that at most three members of the first group can be adjacent to at most three members of the second or the fourth group. We represent these members by r_1 , r_2 and r_3 and their heights by s_1 , s_2 and s_3 .

Here $p_4 = 1$ stands for the members (and their heights) of the first group which can be adjacent to the members of the second group (resp. fourth group) when spiral1, spiral2, spiral3 or spiral4 (resp. spiral5, spiral6, spiral7 or spiral8) is used for the first group.

- $p_4 = 2$ represents the members (and their heights) of the first group which can be adjacent to the members of the second group (resp. fourth group) when spiral5, spiral6, spiral7 or spiral8 (resp. spiral1, spiral2, spiral3 or spiral4) is used for the first group.
- $p_4 = 3$ corresponds to the members (and their heights) of the second group (resp. fourth group) which can be adjacent to the members of the first group when spiral5, spiral6, spiral7 or spiral8 (resp. spiral1, spiral2, spiral3 or spiral4) is used for the second group (resp. fourth group).
- $p_4 = 4$ symbolizes the members (and their heights) of the second group (resp. fourth group) which can be adjacent to the members of the first group when spiral1, spiral2, spiral3 or spiral4 (resp. spiral5, spiral6, spiral7 or spiral8) is used for the second group (resp. fourth group).

Let e_1 , e_2 and e_3 are the members of the first group and g_1 , g_2 and g_3 represent their heights respectively. If three members of a group (which can be adjacent to other members of any other group) are drawn one above the other such that e_3 at top, e_2 in middle and e_1 at bottom. Let f_1 , f_2 and f_3 represents members of the second or the fourth group and h_1 , h_2 and h_3 represents their height respectively. Similarly if f_1 , f_2 and f_3 are drawn one above the other then we have f_3 at top, f_2 in middle and f_1 at bottom. For example, in Figure 2 for the left F_S^R , R_5 , R_8 , R_8 are f_3 , f_2 , f_1 respectively.

```
1. Set p_1 = p_3 - 1.
```

```
2. If p_1 = 1 (here n = 1)
```

In this case, only one member of the first group can be adjacent to one member of the second or the fourth group.

Here r_1 is R_1 and $s_1 = h_1$. If $p_4 = 1$ or 2, we have $e_1 = r_1$, $g_1 = s_1$. If $p_4 = 3$ or 4, we have $f_1 = r_1, h_1 = s_1$.

```
3. If p_1 = 2
```

3.1 If n = 1, this step is same as Step 2.

3.2 If n = 2 we have r_2 is R_1 with $s_2 = h_1$, r_1 is R_2 with $s_2 = h_1$.

If $p_4 = 1$ we have $e_1 = r_1$, $e_2 = r_2$, $g_1 = s_1$, $g_2 = s_2$.

If $p_4 = 2$ we have $e_1 = r_2$, $e_2 = r_1$, $g_1 = s_2$, $g_2 = s_1$.

If $p_4 = 3$ we have $f_1 = r_1$, $f_2 = r_2$, $h_1 = s_1$, $h_2 = s_2$.

If $p_4 = 4$ we have $f_1 = r_2$, $f_2 = r_1$, $h_1 = s_2$, $h_2 = s_1$.

4. If $p_1 = 3$

4.1 If n=1, this step is same as Step 2.

4.2 If n=2 we have r_1 as the first member, $s_1=H_1$. The cases for $p_4=i$, $i = 1, \ldots, 4$ are same as in Step 2.

4.3 If n=3 we have r_2 as the first member, $s_2=H_1$, r_1 as the third member, $s_2 = h_3$. The cases for $p_4 = i$, $i = 1, \ldots, 4$ are same as in Step 3.2.

5. If $n > p_1$

5.1 If $n \equiv p_3 \pmod{4}$ ((n congruent to $p_3 \pmod{4}$) then r_1 is R_n , $s_1 = H_n$. The cases for $p_4 = i$, i = 1, ..., 4 are same as in Step 2.

5.2 If $n \equiv p_3 + 1 \pmod{4}$ then r_2 is R_n , $s_2 = h_n$, r_1 is R_{n-1} , $s_1 = H_{n-1}$. The cases for $p_4 = i$, $i = 1, \ldots, 4$ are same as in Step 3.2.

5.3 If $n \equiv p_3 + 2 \pmod{4}$ then r_2 is R_{n-1} , $s_2 = h_{n-1}$, r_1 is R_{n-2} , $s_1 = H_{n-2}$. The cases for $p_4 = i$, i = 1, ..., 4 are same as given in Step 3.2.

5.4 If $n \equiv p_3 + 3 \pmod{4}$ then r_3 is R_{n-2} , $s_3 = h_{n-2}$, r_2 is R_{n-3} , $s_2 = H_{n-3}$ and r_1 is R_n , $s_1 = h_n$.

If $p_4 = 1$ we have $e_1 = r_1, e_2 = r_2, e_3 = r_3, g_1 = s_1, g_2 = s_2, g_3 = s_3$.

If $p_4 = 2$ we have $e_1 = r_3$, $e_2 = r_2$, $e_3 = r_1$, $g_1 = s_3$, $g_2 = s_2$, $g_3 = s_1$.

If $p_4 = 3$ we have $f_1 = r_1$, $f_2 = r_2$, $f_3 = r_3$, $h_1 = s_1$, $h_2 = s_2$, $h_3 = s_3$.

If $p_4 = 4$ we have $f_1 = r_3$, $f_2 = r_2$, $f_3 = r_1$, $h_1 = s_3$, $h_2 = s_2$, $h_3 = s_1$.

6. If $p_4 = 1$ or $p_4 = 2$ we have $e_4 = n$. If $p_4 = 3$ or $p_4 = 4$ we have $f_4 = n$. The values of e_4 and f_4 will be used in the upcoming functions.

Example 1. Refer to Figure 2 where the members of the first group can be adjacent to the members of the second group, we have $p_4 = 2$ and $p_3 = 4$. From Step 5.2, we have $r_1 = R_2$, $r_2 = R_{15}$, hence $e_1 = R_{15}$, $e_2 = R_2$.

Before moving to the function finding adjacencies (p_1, p_2) , consider function

identification of the first of

adjacency $(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9)$ which is going to be used in the function findingadjacencies (p_1, p_2) .

At most three members of the first group can be adjacent to at most three members of another group, therefore there are nine possibilities to be considered for computing adjacency among the members of different groups. All these nine possibilities are given in the function adjacency $(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9)$.

16. FUNCTION ADJACENCY $(p_1, p_2, p_3, p_4, p_5, p_6, p_7, p_8, p_9)$

If $p_1 = 1$, $p_2 = 1$, $p_3 = 1$, we consider e_1 is adjacent to f_1 , f_2 , f_3 respectively.

If $p_4 = 1$, $p_5 = 1$, $p_6 = 1$, we consider e_2 is adjacent to f_1 , f_2 , f_3 respectively.

If $p_7 = 1$, $p_8 = 1$, $p_9 = 1$, we consider e_3 is adjacent to f_1 , f_2 , f_3 respectively.

As said before 1, 2 or 3 members of the first group can be adjacent to 1, 2 or 3 members of any other group. These possibilities are expressed by following functions:

adjacentrects11(), adjacentrects21(), adjacentrects31(), adjacentrects12(), adjacentrects22(), adjacentrects32(), adjacentrects33(), adjacentrects33().

For example function adjacentrects31() represents that only one member of the first group can be adjacent to at most three members of any other group. For these functions, adjacency pairs are obtained by comparing the width or height of the members of corresponding groups.

Here it is not possible to go through all these nine functions, therefore we consider only one of them. For an illustration, we discuss the steps of function adjacentrects 22().

17. FUNCTION ADJACENTRECTS22()

- 1. If $(h_2 + h_1) \leq g_2$ then f_1 , f_2 is adjacent to e_2 and we call function adjacency (0, 0, 1, 1, 0, 0, 0, 0) to obtain adjacency pairs (f_1, e_2) and (f_2, e_2) .
- 2. If $h_2 < g_2$ and $h_1 > (g_2 h_2)$ then f_2 is adjacent to e_2 and f_1 is adjacent to e_1 , e_2 . Here we call function adjacency (1, 0, 0, 1, 1, 0, 0, 0, 0) to obtain corresponding adjacency pairs.
- 3. If $h_2 > g_2$ and $h_2 < (g_2 + g_1)$ then f_2 is adjacent to e_1 , e_2 and f_1 is adjacent to e_1 . Therefore, we call function adjacency (1, 1, 0, 0, 1, 0, 0, 0, 0).
- 4. If $h_2 \ge (g_2 + g_1)$ then f_2 is adjacent to e_1 , e_2 and we call function adjacency (0, 1, 0, 0, 1, 0, 0, 0).
- 5. If $h_2 = g_2$ then f_2 is adjacent to e_2 and f_1 is adjacent to e_1 . Here we call function adjacency (1, 0, 0, 0, 1, 0, 0, 0, 0).

Now we discuss function findingadjacency (p_1, p_2) .

From functions adjacencyLength (p_3, p_4) or adjacencyHeight (p_3, p_4) , there are four cases for the values of f_4 and e_4 , namely $f_4 > i$ and $e_4 > j$ where $i = 0, \ldots, 3$, $j = 0, \ldots, 3$. For obtaining adjacency pairs, it is required to consider e_4 and f_4 together. Therefore, in total there are sixteen possibilities.

In function findingadjacency (p_1, p_2) , $p_1 = 2$ and $p_2 = 1$ represents the case $f_4 > 2$, $e_4 > 1$. These sixteen possibilities are divided into following four parts.

In the first part we consider $f_4 \leq p_1$ and $e_4 \leq p_2$ where the number of sub-cases is $p_1 \times p_2$. For example for $f_4 \leq 2$ and $e_4 \leq 1$, we consider the sub-cases $f_4 = 1$ and $e_4 = 1$, $f_4 = 2$ and $e_4 = 1$.

In the second part we consider $f_4 > p_1$ and $e_4 \le p_2$ where the number of sub-cases is $4 \times p_2$. For example for $f_4 > 2$ and $e_4 \le 1$, we consider the sub-cases $f_4 \equiv 1$ $\pmod{4}$ and $e_4 = 1$, $f_4 \equiv 2 \pmod{4}$ and $e_4 = 1$, $f_4 \equiv 3 \pmod{4}$ and $e_4 = 1$, $f_4 \equiv 0$ (mod 4) and $e_4 = 1$. In general, for this part we call function adjacent rects $1(p_3, p_1)$. For example for $f_4 > 2$ and $e_4 \le 1$, we have $p_3 = 1$, $p_1 = 2$.

In the third part we consider $f_4 \leq p_1$ and $e_4 > p_2$ where the number of sub-cases is $p_1 \times 4$. In general, for this part we call function adjacentrects $2(p_3, p_1)$. For example for $f_4 \le 2$ and $e_4 > 1$, we have $p_3 = 2$, $p_1 = 1$.

In the fourth part, we consider $f_4 > p_1$ and $e_4 > p_2$ where the number of sub-cases is $4 \times 4 = 16$.

It is not possible to go through all the sixteen cases, therefore for demonstration we discuss only one case.

Suppose the first and second group is drawn using spiral 1. This is the case $f_2 > 2$ and $e_4 > 0$ which implies that $p_1 = 2$ and $p_2 = 0$.

18. FUNCTION FINDINGADJACENCY(2, 0)

For $p_1 = 2$ and $p_2 = 0$, we first consider the case $f_4 \leq 2$ and $e_4 > 0$ and then consider the case $f_4 > 2$ and $e_4 > 0$.

1. $f_4 \leq 2$ and $e_4 > 0$

If $p_1 = 2$ and $p_2 = 0$ we call function adjacentrects 2(2, 0). For this particular example, the function adjacentrects 2(2, 0) has the following steps:

- 1.1 If $f_4 = 1$ and $e_4 \equiv 1 \pmod{4}$ we call function adjacent rects 11(). As an example, function adjacentrects22() has already been discussed (see Section 17).
- 1.2 If $f_4 = 1$ and $(e_4 \equiv 2 \pmod{4})$ or $e_4 \equiv 3 \pmod{4})$ we call function adjacentrects21().
 - 1.3 If $f_4 = 1$ and $e_4 \equiv 0 \pmod{4}$ we call function adjacentrects 31().
 - 1.4 If $f_4 = 2$ and $e_4 \equiv 1 \pmod{4}$ we call function adjacentrects 12().
- 1.5 If $f_4 = 2$ and $(e_4 \equiv 2 \pmod{4})$ or $e_4 \equiv 3 \pmod{4})$ we call function adjacentrects22().
 - 1.6 If $f_4 = 2$ and $e_4 \equiv 0 \pmod{4}$ we call function adjacentrects 32().
 - 2. $f_4 > 2$ and $e_4 > 0$
- 2.1 If $(f_4 \equiv 0 \pmod{4})$ or $f_4 \equiv 1 \pmod{4}$ and $e_4 \equiv 1 \pmod{4}$ we call function adjacentrects12().
- 2.2 If $(f_4 \equiv 0 \pmod{4})$ or $f_4 \equiv 1 \pmod{4}$ and $(e_4 \equiv 2 \pmod{4})$ or $e_4 \equiv 3 \pmod{4}$, we call function adjacentrects22().
- 2.3 If $(f_4 \equiv 0 \pmod{4})$ or $f_4 \equiv 1 \pmod{4}$ and $e_4 \equiv 0 \pmod{4}$ we call function adjacentrects32().
 - 2.4 If $f_4 \equiv 2 \pmod{4}$ and $e_4 \equiv 1 \pmod{4}$ we call function adjacentrects 13().
- 2.5 If $f_4 \equiv 2 \pmod{4}$ and $(e_4 \equiv 2 \pmod{4})$ or $e_4 \equiv 3 \pmod{4}$ we call function adjacentrects23().
 - 2.6 If $f_4 \equiv 2 \pmod{4}$ and $e_4 \equiv 0 \pmod{4}$ we call function adjacentrects 33().
 - 2.7 If $f_4 \equiv 3 \pmod{4}$ and $e_4 \equiv 1 \pmod{4}$ we call function adjacentrects11().
- 2.8 If $f_4 \equiv 3 \pmod{4}$ and $(e_4 \equiv 2 \pmod{4})$ or $e_4 \equiv 3 \pmod{4}$ we call function adjacentrects21().
 - 2.9 If $f_4 \equiv 3 \pmod{4}$ and $e_4 \equiv 0 \pmod{4}$ we call function adjacentrects 31().

and the state of t

19. Floyd's Algorithm

This algorithm (cf. Pemmaraju and Skiena [6], Chapter 8) is used to obtain the distance and a shortest path between any two vertices.

The algorithm works by updating two matrices, D_k and Q_k , n times for an n-vertex graph. The matrix D_k , in any iteration k, gives the value of the shortest distance among all pairs of vertices (i,j) as obtained till the k^{th} iteration. The matrix Q_k has q_{ij}^k as its elements. The value of q_{ij}^k gives the immediate predecessor vertex from vertex i to vertex j on the shortest path as determined by the k^{th} iteration. The starting matrix D_0 , with entries d_{ij}^0 , is defined as follows:

 $d_{ij}^0 = 1$ if $i \neq j$ and vertex i is adjacent to vertex j $d_{ij}^0 = \infty$ if $i \neq j$ and vertex i is not adjacent to vertex j $d_{ij}^0 = 0$ if i = j

The entries q_{ij}^0 of the predecessor matrix Q_0 are defined as follows: $q_{ij}^0 = i$, for $i \neq j$, i.e., for every pair of distinct vertices (i, j), the immediate predecessor of vertex j on a shortest path leading from vertex i to vertex j is (temporarily) assumed to be vertex i. After defining D_0 and Q_0 the following steps are used repeatedly to determine D_n and Q_n .

Step 1 : Set k = 1

Step 2: The entries d_{ij}^k of the shortest path matrix D_k are defined by:

$$d_{ij}^{k} = \min(d_{ij}^{k-1}, d_{ik}^{k-1} + d_{kj}^{k-1})$$

Step 3: The entries q_{ij}^k of the predecessor matrix Q_k are defined as follows:

If $d_{ij}^k \neq d_{ij}^{k-1}$ then $q_{ij}^k = q_{kj}^{k-1}$ else $q_{ij}^k = q_{ij}^{k-1}$.

Step 4: If k = n, the algorithm is terminated. If k < n, increase k by 1, and return to step 2.

Now we take a look at the algorithm in a little more detail. In step 2, each time one goes through the algorithm, it is checked whether a shorter path exists between vertex i and vertex j. In step 3, if it is established that $d_{ij}^k \neq d_{ij}^{k-1}$, i.e., the length of the shortest path d_{ij}^k between vertices i and j is less than the length of the shortest path d_{ij}^{k-1} , it is required to change the immediate predecessor vertex to vertex j. Since the length of the new shortest path is:

$$d_{ij}^k = d_{ik}^{k-1} + d_{kj}^{k-1}$$

it is clear that here node k is the new immediate predecessor vertex to k, and therefore:

$$q_{ij}^k = q_{kj}^{k-1}$$

After passing through the algorithm n times, the entries d_{ij}^n of the final matrix D_n will constitute a shortest path going from vertex i to vertex j.

Matrix Q gives the immediate predecessor vertex to vertex j on the shortest path. To have all vertices of the shortest path between vertex i and j, starting from vertex j obtain the immediate predecessor one by one till vertex i.

The obtained shortest path is of course not unique in general.

- [1] www.processing.org
- [2] Terzidis, K., Algorithms For Visual Design (Using the Processing Language), Wiley Publishing, Inc, Indianapolis, 2009.

References

- [3] Shekhawat, K., Automated space allocation using mathematical techniques, Ain Shams Engineering Journal, Elsevier, ASEJ402, 2015.
- [4] Shekhawat, K., Algorithm for constructing an optimally connected rectangular floor plan, Frontiers of architectural research, 3, 324-330, 2014.
- [5] Gross, J. L. and Yellen, J., Graph Theory and Its Applications (Second Edition), Chapman & Hall/CRC, Boca Raton, 2006.
- [6] Pemmaraju, S. and Skiena, S., Computational Discrete Mathematics (Combinatorics and Graph Theory with Mathematica), Cambridge University Press, 2003.