Examenul de bacalaureat 2011 Proba E. c) Proba scrisă la MATEMATICĂ BAREM DE EVALUARE ȘI DE NOTARE

Varianta 5

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare.

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului obținut la 10.

	o Sc acorda 10	puncte um officia. Nota finala se calculcaza prin imparții ca punctajului obținut la 10	•
SUB	IECTUL I	30 de puncte	,
	_	·	Т

1.	$\int a_2 = 5$	2
	$\begin{cases} a_2 = 5 \\ a_4 = 11 \end{cases} \Rightarrow r = 3$	3р
	$a_6 = 17$	2p
2.	Din ipoteză reiese $a+b=c+d$ și $3a+b=3c+d$	2p
	Deducem $a = c$, $b = d$	2p
	Finalizare $f(5) = g(5)$	1p
3.	$S = x_1 + x_2 = 5$	1p
	$P = x_1 \cdot x_2 = 3$	1p
	$\frac{1}{x_1} + \frac{1}{x_2} = \frac{S}{P}$	2n
		2p
	$\frac{1}{x_1} + \frac{1}{x_2} = \frac{5}{3}$	1p
	$\begin{bmatrix} x_1 & x_2 & 3 \end{bmatrix}$	
4.	$x^2 + x + 2 = 4$, deci $x^2 + x - 2 = 0$	3 p
	$S = \{-2, 1\}$	2p
5.	$\frac{AM}{MB} = 3, M \in [AB]$	2
		2p
	$\frac{AN}{NC} = 3, N \in [AC]$	2p
		•
	$\frac{AM}{MB} = \frac{AN}{NC} = 3 \Rightarrow MN \parallel BC$	1p
6.		3р
	$AC = 6\sqrt{3}$	2p

	·	
SUB	IECTUL al II-lea	30 de puncte

a)	$y*x = yx - 2y - 2x + 6 =$ $= xy - 2x - 2y + 6 = x*y$ Finalizare: $y*x = x*y$, oricare ar fi $x, y \in \mathbb{R}$	2p 2p 1p
b)	$(x*y)*z = xyz - 2xy - 2xz - 2yz + 4x + 4y + 4z - 6$ $x*(y*z) = xyz - 2xy - 2xz - 2yz + 4x + 4y + 4z - 6$ $(x*y)*z = x*(y*z), \text{ oricare ar fi} \ x, y, z \in \mathbb{R}$	2p 2p 1p
c)		2p 3p
d)	$x * x = x \Leftrightarrow x^2 - 4x + 6 = x$ $x = 2 \text{ sau } x = 3$	3p 2p
e)	Căutăm $e \in \mathbb{R}$ astfel încât $x * e = e * x = x$, oricare ar fi $x \in \mathbb{R}$ $x * e = e * x = xe - 2x - 2e + 6$ $xe - 2x - 2e + 6 = x \Rightarrow e = 3 \in \mathbb{R}$	1p 2p 2p

Ministerul Educației, Cercetării, Tineretului și Sportului Centrul Național de Evaluare și Examinare

f)	$(x+2)*\left(\frac{1}{x}+2\right)=(2-x-2)\left(2-\frac{1}{x}-2\right)+2=$	3 p
	$=(-x)\cdot\left(-\frac{1}{x}\right)+2=1+2=3$, oricare ar fi $x\in\mathbb{R}^*$	2p

SUB	JBIECTUL al III-lea 30 de pun	
a)	$\begin{pmatrix} 1 & a & 0 \end{pmatrix}$	
	$A+I_3=$ 0 1 $-a$	15
	$A + I_3 = \begin{pmatrix} 1 & a & 0 \\ 0 & 1 & -a \\ -a & 0 & 1 \end{pmatrix}$	1p
	$\det(A+I_3)=1+a^3$	3 p
	Finalizare: $a = 0$	1p
b)	$\begin{pmatrix} 0 & 0 & -a \end{pmatrix}$	
	${}^{t}A = \begin{vmatrix} a & 0 & 0 \end{vmatrix}$	1p
	${}^{t}A = \begin{pmatrix} 0 & 0 & -a \\ a & 0 & 0 \\ 0 & -a & 0 \end{pmatrix}$	- r
	$A + {}^{t}A = \begin{pmatrix} 0 & a & -a \\ a & 0 & -a \\ -a & -a & 0 \end{pmatrix}$	
	$A + {}^t A = \begin{vmatrix} a & 0 & -a \end{vmatrix}$	2p
	$\begin{pmatrix} -a & -a & 0 \end{pmatrix}$	
	$\det\left(A+{}^{t}A\right)=2a^{3}$	2p
c)	$a = 1 \Rightarrow A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}; \det A = 1 \neq 0 \Rightarrow A \text{ inversabil} \tilde{a}$	2
	$a=1 \Rightarrow A= \begin{bmatrix} 0 & 0 & -1 \end{bmatrix}$; det $A=1 \neq 0 \Rightarrow A$ inversabilă	2p
	$\begin{pmatrix} -1 & 0 & 0 \end{pmatrix}$	
	$\begin{pmatrix} 0 & 0 & -1 \end{pmatrix}$	3p
	Finalizare: $A^{-1} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$	Эp
-	$\begin{pmatrix} 0 & -1 & 0 \end{pmatrix}$	
d)	$\begin{pmatrix} 0 & 0 & -a^2 \end{pmatrix}$	
	$A^2 = \begin{vmatrix} a^2 & 0 & 0 \end{vmatrix}$	2p
	Finalizare: $A^{-1} = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & -1 & 0 \end{pmatrix}$ $A^{2} = \begin{pmatrix} 0 & 0 & -a^{2} \\ a^{2} & 0 & 0 \\ 0 & -a^{2} & 0 \end{pmatrix}$	
	$A^{3} = A^{2} \cdot A = \begin{pmatrix} a^{3} & 0 & 0 \\ 0 & a^{3} & 0 \\ 0 & 0 & a^{3} \end{pmatrix} = a^{3} \cdot I_{3}$	
	$\begin{vmatrix} A^3 = A^2 \cdot A = \begin{vmatrix} 0 & a^3 & 0 \end{vmatrix} = a^3 \cdot I_2$	3 p
	$\begin{bmatrix} 1 & -1 & 1 & - \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} -u & 1_3 \\ 0 & 0 & a^3 \end{bmatrix}$	
		2
e)	$(A+I_3)(A^2-A+I_3)=A^3+I_3$	3 p
	Finalizare: $A^3 + I_3 = 2I_3$	2p
f)	$\begin{pmatrix} 1 & a & -a \end{pmatrix}$	
	$A + {}^{t}A + I_{3} = \begin{pmatrix} 1 & a & -a \\ a & 1 & -a \\ -a & -a & 1 \end{pmatrix}$	1p
		2p
	$\det\left(A + {}^{t}A + I_{3}\right) = 2a^{3} - 3a^{2} + 1$	
	$2a^3 - 3a^2 + 1 = 1 \Leftrightarrow a^2(2a - 3) = 0$, deci $a = 0$ sau $a = \frac{3}{2}$	2p