```
points_3d = [2,2,2; -2,2,2; -2,2,-2; 2,2,-2; 2,-2,2; -2,-2,2;
 -2, -2, -2; 2, -2, -2];
points_2d = [422,323; 178,323; 118,483; 482,483; 438,73; 162,73;
 78,117; 522,117];
%Question 1
% We draw the image points using small circles corresponding
% to each image point.
plot(points_2d(:,1),points_2d(:,2),'o')
title("Camera image points >> ")
%Question 2
% We write a matlab function that takes the arguments as the
homogenous
% coordinates of the cube and corresponding homogenous coordinates of
its
% image and returns the matrix P.
p = P_matrix(points_3d, points_2d);
%Question 3
%We display the matrix P obtained from the above function.
disp("Matrix P");
disp(p);
%Question 4
% Now we need to solve the system pm = 0.
% We first take the singular value decomposition of the matrix P.
% The last column vector V obtained will be the 12 elements in row
 order of
% the projection matrix that transformed the cube corner coordinates
into
% their images.
% We now print the obtained matrix M.
[U,sigma,V_transpose] = svd(p);
M(1,1:4) = V_{transpose}(1:4,end)';
M(2,1:4) = V_{transpose}(5:8,end)';
M(3,1:4) = V_{transpose}(9:12,end)';
disp("Matrix M");
disp(M);
%Question 5
% Now we need to obtain a translation vector which is a null vector of
% We first find the SVD of M.
% The 4 elements of the last column of V are the homogeneous
```

```
% coordinates of the position of the camera center of projection in
 the
% frame of reference of the cube.
[U,siqma,V transpose] = svd(M);
M.t = 0, where t = [X_c, Y_c, Z_c, 1]
t = V_transpose(:,end)'/V_transpose(end,end)';
disp("Translation vector: t");
disp(t);
%Question 6
% So now we consider a 3x3 matrix M', which is composed of the first 3
% columns of matrix M.
%Extracts the first 3 columns of M into M'
M_new = M(1:3,1:3);
*Rescale the elements of M' so that the element m_(3,3) becomes equal
to 1.
M \text{ new} = M \text{ new/M new(end,end)};
% Print matrix M( (M_new)
disp("M'")
disp(M_new)
%Question 7
% We now need to do the RQ factorization of M'
cos_x = M_new(3,3)/sqrt(M_new(3,3)^2 + M_new(3,2)^2);
sin_x = -M_new(3,2)/sqrt(M_new(3,3)^2 + M_new(3,2)^2);
%Take the inverse cosine to get theta x
theta_x = asin(sin_x);
R_x = [1,0,0; 0, \cos_x, -\sin_x; 0, \sin_x, \cos_x];
% Now once we hve the R x matrix, we can useit to compute matrix N.
% Using N = M' * R_x.
N = M \text{ new*R } x;
%We now print the rotation matrix R_x, theta_x and the matrix N.
disp("R_x = ")
disp(R x)
disp("theta_x = ")
disp(theta_x)
disp("Matrix N")
disp(N)
%Question 8
% We now compute the rotation matrix R_z using the cosine and sine
form.
cos_z = N(2,2)/sqrt(N(2,1)^2 + N(2,2)^2);
sin_z = -N(2,1)/sqrt(N(2,1)^2 + N(2,2)^2);
% Take the inverse sine to get theta z
theta_z = asin(sin_z);
```

```
R_z = [\cos_z, -\sin_z, 0; \sin_z, \cos_z, 0; 0, 0, 1];
%Display the value of theta_z which is very small
disp("theta z = ")
disp(theta_z)
%Question 9
R = R_1*R_2*R_3
R = R_x*eye(3)*R_z;
K = M_new * R;
Rescale so that its element K_{(3,3)} is set to 1.
K = K/K(3,3);
disp("Matrix K")
disp(K)
%u0 and v0 are the pixel coordinates of the camera center.
u0 = K(1,3);
v0 = K(2,3);
%We can compute the focal length as an average of K(1,1) and K(2,2)
f = (K(1,1)+K(2,2))/2;
disp("Focal length of camera in pixels = ")
disp(f)
disp("Pixel coordinates of Image center = ")
disp([u0,v0])
Matrix P
  Columns 1 through 6
                        2
                                                  1
  0
            0
                                                               2
  2
                        2
                                                  1
                                                               0
          -2
                                     2
  0
            0
                        0
                                     0
                                                  0
                                                              -2
  2
          -2
                        2
                                    -2
                                                  1
                                                               0
                        0
                                     0
                                                  0
            0
                                                              -2
  2
            2
                        2
                                    -2
                                                  1
                                                               0
  0
                        0
                                                               2
            0
                                     0
                                                  0
  2
            2
                       -2
                                     2
                                                  1
                                                               0
  0
            0
                        0
                                     0
                                                  0
                                                               2
 -2
           -2
                       -2
                                                  1
                                                               0
  0
            0
                        0
                                     0
                                                  0
                                                              -2
 -2
```

	-2	-2	-2	1	0
0	0	0	0	0	-2
-2	2	-2	-2	1	0
0	0	0	0	0	2
-2					
Columns 7 through 12					
422	0	0	844	844	844
	2	1	646	646	646
323	0	0	-356	356	356
178	2	1	-646	646	646
323	0	0	-236	236	-236
118	-2	1	-966	966	-966
483	0	0	964	964	-964
482	-2	1	966	966	-966
483					
438	0	0	876	-876	876
73	2	1	146	-146	146
162	0	0	-324	-324	324
73	2	1	-146	-146	146
78	0	0	-156	-156	-156
117	-2	1	-234	-234	-234
522	0	0	1044	-1044	-1044
	-2	1	234	-234	-234
117					
Matrix M -0.19 -0.000 0.000	25 -0.0283 00 -0.2044	-0.0786 -0.0001 0.0003	-0.7346 -0.6120 0.0024		
Translation vector: t -0.0000 -2.9912 -8.2695 1.0000					
M' -734.6289 -107.8955 -299.9999					

```
-0.0009 -780.1442 -0.2641
0.0000 0.3597 1.0000
```

 $R_x =$

1.0000 0 0 0 0.9410 0.3384 0 -0.3384 0.9410

theta $_x = -0.3452$

Matrix N

-734.6289 0.0000 -318.8125 -0.0009 -734.0199 -264.2723 0.0000 0 1.0627

 $theta_z = 1.2602e-06$

Matrix K

Focal length of camera in pixels = 690.9932

Pixel coordinates of Image center =
 -299.9999 -248.6780

Published with MATLAB® R2019a