統計学I

早稲田大学政治経済学術院 西郷 浩

本日の目標

- 記述統計学と推測統計学
- 確率
- 加法定理

推測統計学とは(1)

- 記述統計学と推測統計学
 - 記述統計学
 - データの特徴の要約
 - 「統計学入門」のこれまでの学習内容
 - 推測統計学
 - データの発生の仕組みの解明
 - 一部の情報(抽出された標本からえられる情報)↓推測
 - 全体の情報(母集団に関する情報)

推測統計学とは(2)

• 例:世論調査

推測統計学とは(3)

- 一部の有権者から全有権者の情報を知る。
 - どのような方法で?
 - 確率標本の導入
 - くじ引きを使うことで、おのおのの有権者がどのくらいの確率 で標本に含まれるかを制御する。

一部の有権者の政党支持率と全体の有権者の支持率との (確率的な)関係が明らかにできる。

推測統計学とは(4)

・ 推測統計学の全体像

確率

- ・ 偶然性(ランダムネス)
 - 偶然をともなう試行
 - ・コイン・トス
 - 同一人物の 100m 走 のタイム
 - ・同一物の測定
 - いつも同じ結果が生じるとは限らない。
 - ⇒ 偶然性を理論的にあつかう手法?
 - 偶然性の中に法則性を見出す。それを利用する。

確率の定義(1)

- 結論からいうと...
 - 確率を「内容」によって定義することは困難。
 - 形式的(数学的)な条件を満たすものはすべて確率としてとりあつかう、という立場が主流である。
 - ・コルモゴロフによる、測度論にもとづく確率論

確率の定義(2)

- 「内容」からみた確率の定義
 - ラプラスの定義:
 - 同様に確からしい根元事象が全部でN個あり、事象Aに有利な根元事象がR個あったとするとき、P(A) = R/N
 - 「どの根元事象も同様に確からしい」ことが前提。
 - (経験的な)頻度による定義:
 - n回の試行のうち事象Aが n_A 回生じたとする。 $P(A) = (n_A/n$ の極限値)
 - 「同じ条件で繰り返し実験(観察)できる」ことが前提。

確率の定義(3)

- 主観による定義:
 - 人間の選好に一定の合理性を仮定すれば、主観的な確信の度合いが論理的整合性を持つ確率とみなせる。
 - 1回限りの現象にも、確率を考えることができる。
 - 偶然現象とみなせないようなことにも、確率を考えることができる。
 - » 例:「試験の山が当たる確率は…」

確率の定義(4)

- 公理主義的な定義(形式的な定義)
 - Ωの部分集合に対して、以下の3条件を満たす 関数を確率とみなす。
 - すべての集合Aに対して 0 ≤ P(A) ≤ 1
 - $P(\Omega) = 1$
 - 排反な系列 $A_1, A_2, ...$ に対して、 $P(A_1 \cup A_2 \cup \cdots) = P(A_1) + P(A_2) + \cdots$

標本空間と事象(1)

- 確率論
 - 測度論によって厳密に記述される。
 - 集合に関連する概念によって、確率の概念が整備されている。
 - 集合に関連する用語が使用される。
 - 集合演算が活用できる。

標本空間と事象(2)

- ・ 標本点と標本空間、事象
 - 標本点 ω:
 - 偶然をともなう試行の結果のひとつ
 - 標本空間 Ω:
 - ・標本点全体の集合
 - 事象 A:
 - ・標本空間の部分集合(標本点の集合)

標本空間と事象(3)

• 例:

- 試行:1枚のコインを投げる。
 - 標本点: $\omega_1 = H(表), \omega_2 = T(裏)$
 - 標本空間: $\Omega = \{\omega_1, \omega_2\} = \{H, T\}$
 - 事象:

$$-A = \{\omega_1\} = \{H\}$$

» 表になる事象ともよぶ。

 $-B = \{\omega_2\} = \{T\}$
 $-C = \{\omega_1, \omega_2\} = \{H, T\} = \Omega$
 $-D = \{\} = \emptyset$

標本空間と事象(4)

- ・ 事象の分類
 - 根元事象:
 - ただひとつの標本点から成る。
 - 複合事象:
 - 複数の標本点をふくむ。
 - ・根元事象への分解が可能である。

標本空間と事象(5)

- 和事象、積事象、補事象、排反な事象
 - 和(結合):
 - $A \cup B = \{\omega : \omega \in A \text{ or } \omega \in B\}$
 - 積(共通部分):
 - $A \cap B = \{\omega : \omega \in A \text{ and } \omega \in B\}$
 - 補事象(余事象):
 - $A^c = \{\omega : \omega \notin A\} (A \circ \tau \circ \Delta \circ \Phi)$
 - 排反な事象:
 - A∩B = Ø(同時には発生しない事象)

標本空間と事象(6)

- 例:試行:サイコロを1つ投げる。
 - $標本点: \omega_i = \{i$ の目が出る $\} (i = 1, 2, ..., 6)$
 - -標本空間: $\Omega = \{\omega_1, \omega_2, \omega_3, \omega_4, \omega_5, \omega_6\}$
 - 事象:
 - $A = \{2$ の倍数の目が出る $\} = \{\omega_2, \omega_4, \omega_6\}$
 - $B = \{3$ の倍数の目が出る $\} = \{\omega_3, \omega_6\}$
 - $C = \{$ 奇数の目が出る $\} = \{\omega_1, \omega_3, \omega_5\}$
 - $A \cap B = \{\omega_6\}; A \cup B = \{\omega_2, \omega_3, \omega_4, \omega_6\};$ $A \cap C = \emptyset; B^c = \{\omega_1, \omega_2, \omega_4, \omega_5\}$

標本空間と事象(7)

- ・集合に関連する公式
 - 分配法則
 - $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$
 - $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$
 - -ド・モルガンの法則
 - $(A \cap B)^c = A^c \cup B^c$
 - $(A \cup B)^c = A^c \cap B^c$
 - その他
 - $(A^c)^c = A$

加法定理(1)

- 排反な事象 A, B について
 - $-P(A \cup B) = P(A) + P(B)$
 - 例: サイコロをひとつ投げる試行において、
 - $-A = \{2以下の目が出る\}; B = \{5以上の目が出る\}$
 - $-P(A \cup B)$
 - $= P({2以下の目が出るまたは5以上の目が出る})$

$$= P(\{1, 2, 5, 6 \text{ on }$$
が出る $\}) = \frac{4}{6}$

- 他方

»
$$P(A) = P(\{1, 2 \text{ on })$$
が出る $\}) = \frac{2}{6}$

»
$$P(B) = P(\{5,6 \text{ on })$$
が出る $\}) = \frac{2}{6}$

加法定理(2)

- 排反性
 - » $A \cap B = \{2以下と5以上の目が同時に出る\} = \emptyset$
 - » 結果的に $P(A \cup B) = P(A) + P(B)$ が成り立つ。
- ・排反でない事象

$$-P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

- ・例:サイコロを1つ投げる。
 - C:2の倍数が出る。
 - D:3の倍数が出る。
 - $-P(C \cup D)$

$$= P(C) + P(D) - P(C \cap D) = \frac{3}{6} + \frac{2}{6} - \frac{1}{6} = \frac{4}{6}$$

加法定理(3)

図1:排反な2事象と排反でない2事象

AとBが排反

AとBが排反でない

加法定理(4)

- ジョーカーなしの52枚のトランプをよく切って1 枚抜き取る。
 - 問1
 - 抜き取るカードがハートかスペードである確率
 - 問2
 - 抜き取るカードがハートかキングである確率

加法定理(5)

- 解答:
 - 問1
 - A:ハートを抜き取る;B:スペードを抜き取るAとBとは排反
 - $P(A \cup B) = P(A) + P(B) = \frac{13}{52} + \frac{13}{52} = \frac{1}{2}$

加法定理(6)

- 問2

• *A*:ハートを抜き取る;*C*:キングを抜き取る

•
$$P(A \cup C) = P(A) + P(C) - P(A \cap C)$$

= $\frac{13}{52} + \frac{4}{52} - \frac{1}{52} = \frac{4}{13}$