

EE 201.3 (Section 03)
(Instructor: Denard Lynch)

Final Examination

Thursday, December 18, 2003

9:00 AM

Time Allowed: 3 Hours

**Materials allowed: One 8½" X 11" sheet of notes,
Calculators**

Instructions:

- **Answer all questions in the space provided (use page backs for rough work if necessary)**
- **State your assumptions; show all relevant work. Box, circle or otherwise highlight your answers. Please try to write neatly.**
- **Put your name and student number on the cover page; put *only* your student number on all remaining pages.**
- **Weighting for each question is indicated in the left margin (Total marks:50)**

2	3	4	5	6	7	Total
/9	/7	/7	/10	/6	/11	/50

Name: _____

Student Number: _____

For Questions 1.1 through 1.6, refer to the diagram of the electromagnet and associated circuit shown below:

The switch, S_1 has been closed for a long time ($>5\tau$) so that a steady-state current is flowing in the winding of 250 turns, and the electromagnet is holding up a 2kg bar as shown. All ferromagnetic components are also 2cm deep so that all relevant cross-sections are 2cm X 2cm. Assume the ferromagnetic material is the same throughout and has a μ_r of 1850.

- 1.1** Determine the reluctance, \mathfrak{R} of the total path the flux Φ must traverse.

[1]

- 1.2** What flux density, B , is required at the contact points to *just* support the 2kg bar?

[2]

⇒ For the remaining questions, assume that the total reluctance, \mathfrak{R} of the flux path is 350,000 A-t/Wb.
(Note: this *may* not be related in any way to the answer to 1.1 above.)

- 1.3** How much current would be required in the coil to produce a flux density, B of 0.35T in the core?

[2]

- 1.4** Assuming that μ is constant over the range of interest and the reluctance is as given above (350,000At/Wb), what is the inductance, L of the coil?

[1]

- 1.5** What is the steady-state current through the coil prior to the switch being opened?

[1]

- 1.6** If we assume that a current of 0.25A will *just* hold up the bar, *and* that the inductance of the coil is 250mH, determine the time after the switch S_1 is opened until the bar starts to fall.

[2]

- 2.1 Find the average and effective (RMS) values of the following waveform. (Hint: you do not need to use calculus to solve this problem – use known values for common waveforms.)

[2]

- 2.2 Use calculus to find the effective (RMS) value for waveform shown below:

[5]

3.1 For the circuit shown below, find the voltage at the node labeled V_a .

[6]

3.2 Find the Power Factor, F_P , seen by the source for a combined load which uses an *apparent power*, S of 3800VA and a *reactive power*, Q of 1800VAR_{Capacitive}.

[1]

- 4.1** Find the total real power, P , reactive power, Q , and apparent power, S , for the combination of all the loads shown in the figure below. Draw and label the Power Triangle showing P , Q , and S in the complex plane.

[5]

The individual load characteristics are as follows:

Load 1: $P = 600\text{W}$, $Q = 400\text{VAR}_{\text{IND}}$

Load 2: apparent power, S of 1060VA , $F_P = 0.73_{\text{leading}}$

Load 3: $800\text{VAR}_{\text{IND}}$, $Z = 10\angle 36.9^\circ \Omega$

Load 4: $P = 700\text{W}$, $S = 990\text{VA}$ (inductive load)

- 4.2** A small load, pictured below, consists of 500Watts of incandescent lighting (i.e. $F_P = \text{Unity}$), and a fully loaded 2.5Hp motor which is 100% efficient and has a Power Factor, F_P of 0.6_{lagging} . (Note: $1\text{Hp} = 746\text{Watts}$) Assume the load is supplied from a 240VAC, 60Hz source.

- a)** What is the Power Factor for the combined lights and motor?

[2]

- b)** Determine the *new* Power Factor if a $100\mu\text{F}$ capacitor is connected in parallel with the load.

[2]

- c)** What is the minimum VA rating for the $100\mu\text{F}$ capacitor in this situation?

[1]

5.1 Consider a source connected through a transmission line impedance to a load as shown below:

[6]

Determine the 2-element series equivalent circuit which will consume an amount of real power, $P = 2.5\text{W}$ and reactive power, $Q = 1.25\text{VAR}$ when the source, E is $1\angle 0^\circ\text{V}$. (Hint: You may need to use some algebra here!)

6.1 Consider a series resonant circuit as show in the diagram below (assume an ideal inductor):

- a) Given $R = 10\Omega$, $L = 100\text{mH}$ and $C = 0.068\mu\text{F}$, find the resonant frequency, ω_s in Radian per second (R/s).

[1]

- b) Given that $C = 0.1\mu\text{F}$, $R = 220\Omega$ and $f_s = 1000\text{Hz}$, find that Quality Factor, Q_s of the circuit at resonance.

[2]

- c) Given $R = 220$, $L = 100\text{mH}$ and $C = 0.068\mu\text{F}$, find the bandwidth of the circuit in Hz.

[2]

6.2 Design a series resonant circuit using a capacitor with a value of $0.022\mu\text{F}$ that will have half-power points (cut-off frequencies) of $f_1 = 3600\text{Hz}$ and f_2 of 4800Hz . (Assume an ideal inductor is available.)

- a) What is the true (i.e. exact) centre frequency in Hz?

[1]

- b) What value of inductor is needed to achieve this centre frequency?

[1]

- c) If we assume that an *estimated* centre frequency of 4200 Hz is exact, What value of resistor is needed to achieve a bandwidth of 1200Hz ?

[2]

6.3 Draw a phasor diagram showing v_R , v_L and v_C for a series resonant circuit with a total resistance, R of 220Ω and a Quality Factor at resonance, $Q_s = 5$ if the circuit is excited by a 10VAC source tuned to the resonant frequency.

[2]

6.4 If the average real power, P dissipated in the circuit described in 6.3 is measured to be 1W at resonance, what is the average reactive power, Q consumed by the circuit at resonance?

[1]