

Notas de aula: Análise de Algoritmos Centro de Matemática, Computação e Cognição Universidade Federal do ABC Profa. Carla Negri Lintzmayer

Conceitos matemáticos e técnicas de prova

(Última atualização: 12 de fevereiro de 2019)

Referências e materiais complementares desse tópico

PDF O que é uma prova matemática, do prof. Paulo Feofiloff, da USP.

PDF Matemática discreta para computação, dos profs. Anamaria Gomide e Jorge Stolfi, da Unicamp.

Livro Cormen, T. H.; Leiserson, C. E.; Rivest, R. L.; Stein, C.. Introduction to Algorithms. 2nd ed. MIT Press. 2002. Capítulo 3.2, A, B, C.

Sumário

1	Lógica matemática	1
2	Miscelânea	2
3	Prova ou demonstração	3
4	Métodos de prova	3
5	Indução	7
6	Exercícios	9

1 Lógica matemática

- Como ter certeza que nosso raciocínio é correto?
- Como transmitir aos outros essa certeza?
- Começamos por *axiomas*: fatos simples que todos concordam que são verdade.
- Desenvolvemos um raciocínio a partir deles usando regras de inferência.
- Usamos:
 - Proposições: sentenças declarativas que são verdadeiras ou falsas
 - Conectivos: conjunção ∧, disjunção ∨, negação ¬, implicação ⇒, equivalência ⇔
 - Contrapositiva: $P \Rightarrow Q \leadsto \neg Q \Rightarrow \neg P$
 - Quantificadores: \forall , \exists

2 Miscelânea

• Conjuntos:

- Notações básicas: \in , \notin , \subset , \subseteq , \nsubseteq
- Conjuntos especiais: \mathbb{Z} , \mathbb{N} , \mathbb{R} , \emptyset
- Cardinalidade: |A|
- Operações: \cup , \cap , \setminus

• Somatórios:

- $-a_1+a_2+\cdots+a_n=\sum_{k=1}^n a_k$ onde $a_1,\,a_2,\,\ldots,\,a_n$ é uma sequência de n números
- $-\sum_{k=1}^n (ca_k+b_k)=c\sum_{k=1}^n a_k+\sum_{k=1}^n b_k$ para qualquer c real e quaisquer duas sequências de números

$$-\sum_{k=1}^{n} k = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

$$-\sum_{k=0}^{n} x^{k} = 1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1}-1}{x-1}$$
 para $x \neq 1$

• Funções: dados dois conjuntos A e B, uma função f é uma relação binária em $A \times B$ tal que, para $a \in A$, existe exatamente um $b \in B$ tal que $(a,b) \in f$. Também escrevemos $f: A \to B$ e, se $(a,b) \in f$, escrevemos b = f(a).

• Contagem:

- Número de permutações de n elementos: n!
- Número de permutações de k elementos de um conjunto de n elementos: $\frac{n!}{(n-k)!}$
- Número de combinações de k elementos de um conjunto de n elementos: $\frac{n!}{k!(n-k)!}$

• Pisos e tetos:

$$- \ x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1$$

$$-\lceil n/2 \rceil + \lfloor n/2 \rfloor = n$$
 para qualquer inteiro n

• Exponenciais: para todo $a \ge 0$, m e n reais,

$$-a^0=1, a^1=1, a^{-1}=1/a$$

$$-(a^m)^n = (a^n)^m = a^{mn}$$

$$-a^n a^m = a^{n+m}$$

• Logaritmos: para todo a > 0, b > 0, c > 0 e n real,

$$-\log n = \log_2 n$$

$$-\log_a^k n = (\log_a n)^k$$

$$-a = b^{\log_b a}$$

$$-\log_c(ab) = \log_c a + \log_c b$$

$$-\log_b a^n = n\log_b a$$

$$-\log_b a = \frac{\log_c a}{\log_c b}$$

$$- a^{\log_b c} = c^{\log_b a}$$

3 Prova ou demonstração

- Uma prova é uma argumentação precisa que procura convencer o leitor de que uma certa proposição, previamente enunciada, está correta.
- É uma história escrita em linguagem humana e feita de sentenças completas.
- É uma sequência de afirmações organizada da seguinte maneira:
 - cada afirmação é consequência simples das afirmações anteriores e das hipóteses da proposição em discussão
 - a última afirmação é a proposição que se deseja provar.

• Exemplo:

Teorema 1. Se m e n são números inteiros pares, então m + n é par.

Demonstração. 1. Suponha que m é par (hipótese).

- 2. Então existe inteiro r tal que m=2r (por definição de "par").
- 3. Suponha que n é par (hipótese).
- 4. Então existe inteiro s tal que n=2s (por definição de "par").
- 5. Podemos escrever, portanto m + n = 2r + 2s = 2(r + s) (usando 2 e 4 acima e álgebra).

- 6. Então existe t tal que m+n=2t (tome, por exemplo, t=r+s).
- 7. Logo, por definição, m + n é par.

• Terminologias:

Teorema Uma afirmação devidamente demonstrada.

Lema Um teorema que é demonstrado apenas para ajudar na prova de outro teorema.

Corolário Um teorema que é consequência de um outro, cuja demonstração é relativamente simples.

Conjectura Uma afirmação para a qual ainda não existe prova (mas em geral, há suspeita de que seja verdadeira). Ou provamos uma conjectura e ela se torna um teorema, ou a refutamos. Enquanto isso, ela está em aberto.

4 Métodos de prova

Prova direta Supomos que vale a hipótese e usamos uma sequência de deduções até chegar na conclusão.

Prova contrapositiva Para provar resultados do tipo $P \Rightarrow Q$, supomos que Q é falso e provamos que P é falso $(\neg Q \Rightarrow \neg P)$.

Prova por contradição Supomos que a hipótese vale e que a conclusão não vale e usamos uma sequência de deduções que termina em uma contradição.

- Prova por análise de casos Particionamos o universo de possibilidades em um número finito de casos e provamos a veracidade de cada um deles.
- **Prova por construção** Alguns teoremas afirmam a existência de certos objetos. Um método para prová-lo é exibir um tal objeto.
- Prova de afirmações "se e somente se" Para provar $A \Leftrightarrow B$, dividimos a demonstração em duas partes. A primeira prova "a ida" $(A \Rightarrow B)$ e a segunda prova "a volta" $(B \Rightarrow A)$.
- Prova por contra-exemplo minimal Supomos que o resultado é falso e consideramos uma estrutura de "menor tamanho" possível em que o resultado é falso. Mostramos que existe uma estrutura menor em que o resultado é falso, obtendo contradição.
- **Prova por indução** Seja P(n) é uma sentença que depende de uma variável natural n. Provamos que P(1) vale e que se P(k) vale todo $1 \le k < n$, então P(n) vale.

4.1 Exemplo de prova direta

Teorema 2. Se m e n são números inteiros pares, então m + n é par.

Demonstração. 1. Suponha que m é par (hipótese).

- 2. Então existe inteiro r tal que m = 2r (por definição de "par").
- 3. Suponha que n é par (hipótese).
- 4. Então existe inteiro s tal que n = 2s (por definição de "par").
- 5. Podemos escrever, portanto m + n = 2r + 2s = 2(r + s) (usando 2 e 4 acima e álgebra).
- 6. Então existe t tal que m+n=2t (tome, por exemplo, t=r+s).
- 7. Logo, por definição, m + n é par.

4.2 Exemplo de prova contrapositiva

Teorema 3. Se m e n são números inteiros pares, então m + n é par.

Demonstração. 1. Vamos provar por contrapositiva que se m+n é impar, então m é impar ou n é impar.

- 2. Suponha que m + n é impar.
- 3. Então existe inteiro k tal que m + n = 2k + 1.
- 4. Se n é impar, então o resultado vale.
- 5. Assuma que n é par.
- 6. Então existe inteiro r tal que n=2r.
- 7. Temos que m = 2k + 1 n = 2k + 1 2r = 2(k r) + 1.
- 8. Como k-r é inteiro, então concluímos que m é impar.

4.3 Exemplo de prova por contradição

Teorema 4. Se m e n são números inteiros pares, então m+n é par.

Demonstração. 1. Para fins de contradição, assuma que m e n são pares e que m+n é ímpar.

- 2. Por definição, existem inteiros r e s tais que m=2r e n=2s.
- 3. Também por definição, existe inteiro k tal que m + n = 2k + 1.
- 4. Logo, 2r + 2s = 2k + 1, ou seja, 2(r + s k) = 1.
- 5. Mas isso é uma contradição, pois r + s k é um inteiro e 1 é impar.
- 6. Então m + n deve ser par.

4.4 Exemplo de prova por contra-exemplo minimal

Teorema 5. Se m e n são números inteiros pares, então m + n é par.

Demonstração. 1. Seja m o menor número par tal que m+n é ímpar $(m \ge 2)$.

- 2. Então existe inteiro k tal que m + n = 2k + 1.
- 3. Se tomarmos o número m' = m-2, temos que m'+n = m-2+n = 2k+1-2 = 2(k-1)+1
- 4. Mas então m não era o menor número par que somado com n dava um número ímpar.

4.5 Exemplo de prova por indução

Teorema 6. Se m e n são números inteiros pares, então m + n é par.

Demonstração. 1. Supondo m e n pares, então existem inteiros r e s tais que m=2r e n=2s, respectivamente.

- 2. Vamos provar por indução em r que m + n é par.
- 3. Base: quando r = 1 temos m = 2 e n + 2 = 2s + 2 = 2(s + 1) é par.
- 4. Hipótese: n + m é par, onde m = 2r', para $1 \le r' < r$.
- 5. Passo: seja que m = 2r, com r > 1.
 - Note que 2r = 2r 2 + 2 = 2(r 1) + 2.
 - Por hipótese de indução, n + 2(r 1) é par.
 - Então n + 2(r 1) = 2k para algum inteiro k.
 - Como n + m = n + 2(r 1) + 2 = 2k + 2 = 2(k + 1), temos que n + m é par.

4.6 Exemplo de prova por análise de casos

Teorema 7. Se p é um número primo, então $p^2 - 1$ é divisível por 3.

Demonstração. Temos três casos a considerar, dependendo do resto da divisão de p por 3:

- 1. Resto 0. Então p = 3k, o que não é possível pois p não seria primo.
- 2. Resto 1. Então p = 3k + 1 e $p^2 1 = (3k + 1)^2 1 = 9k^2 + 6k = 3(3k^2 + 2k)$ é de fato divisível por 3.
- 3. Resto 2. Então p = 3k + 2 e $p^2 1 = 9k^2 + 12k + 3 = 3(3k^2 + 4k + 1)$ é de fato divisível por 3.

4.7 Exemplo de prova "se e somente se"

Teorema 8. Os inteiros m e n são ambos ímpares se, e somente se, mn é ímpar.

Demonstração. Ida: Se m e n são impares, então mn é impar.

- 1. Suponha que m e n são impares.
- 2. Então existem inteiros r e s tais que m = 2r + 1 e n = 2s + 1.
- 3. Assim, mn = (2r+1)(2s+1) = 4rs + 2r + 2s + 1 = 2(2rs + r + s) + 1, que é impar.

Volta: Se mn é impar, então m e n são impares.

- 1. Provaremos por contrapositiva que se m ou n são pares, então mn é par.
 - (a) Se m é par, então existe inteiro r tal que m=2r.
 - Então mn = (2r)n = 2(rn) é par (pois rn é inteiro).
 - (b) Se n é par, então existe inteiro s tal que n=2s.
 - Então mn = m(2s) = 2(ms) é par (pois ms é inteiro).

4.8 Exemplo de prova por construção

Teorema 9. Para todo número natural n, se $2^n - 1$ é primo, então n é primo.

Demonstração. Seja n natural. Vamos provar a contrapositiva: se n não é primo, então 2^n-1 não é primo.

Claramente, se n=0 ou n=1, a afirmação vale. Podemos supor então que n>1 e n não é primo, ou seja, existem r e s maiores que 1 e menores que n tais que n=rs. Basta mostrar que existe algum inteiro x que divide 2^n-1 , com $x\neq 1, 2^n-1$.

Tome
$$x = 2^s - 1$$
 e $y = 1 + 2^s + 2^{2s} + \dots + 2^{(r-1)s}$. Temos
$$xy = (2^s - 1)(1 + 2^s + 2^{2s} + \dots + 2^{(r-1)s})$$

$$= 2^s(1 + 2^s + 2^{2s} + \dots + 2^{(r-1)s}) - (1 + 2^s + 2^{2s} + \dots + 2^{(r-1)s})$$

$$= (2^s + 2^{2s} + \dots + 2^{rs}) - (1 + 2^s + 2^{2s} + \dots + 2^{(r-1)s})$$

$$= 2^{rs} - 1$$

$$= 2^n .$$

Como 1 < s < n e $x = 2^s - 1$, então $2^1 - 1 < x < 2^n - 1$. Logo, x é divisor de $2^n - 1$ diferente de 1 e de $2^n - 1$ e, portanto, $2^n - 1$ não é primo.

5 Indução

- Se $n \in \mathbb{N}$, então $n^2 + n + 41$ é primo?
 - Vale para $n = 1, 2, ..., 39 \text{ mas } 40^2 + 40 + 41 = 41^2$, que não é primo.
- Se n é inteiro positivo, então $991n^2 + 1$ não é quadrado perfeito?
 - Não vale para x=12055735790331359447442538767 mas vale para todos os números n < x.
- A soma dos n primeiros números ímpares é n^2 ?
 - Note que $1 = 1^2$, $1+3=2^2$, $1+3+5=3^2$, $1+3+5+7=4^2$ e $1+3+5+7+9=5^2$, mas é possível que seja apenas uma coincidência.

Teorema 10. A soma dos n primeiros naturais impares é n^2 .

Demonstração. • Vamos provar por indução em n.

- Base: quando n=1, o primeiro natural ímpar é 1, que é igual a 1^2 .
- Hipótese: a soma dos k primeiros naturais ímpares é k^2 , para qualquer $1 \le k < n$.
- Passo: vamos verificar se a soma dos n primeiros naturais ímpares $(1+3+5+\ldots+(2n-3)+(2n-1))$ é n^2 .
 - Note que $1+3+5+\ldots+(2n-3)=(n-1)^2$, por hipótese de indução.
 - Então

$$1+3+5+\ldots+(2n-3)+(2n-1) = (n-1)^2+(2n-1)$$

= $n^2-2n+1+2n-1=n^2$.

Teorema 11. Seja n um inteiro positivo. Todo tabuleiro de damas de tamanho $2^n \times 2^n$ com

um quadrado removido pode ser ladrilhado por triminós em forma de "L".

Demonstração. • Vamos provar por indução em n.

- Base: quando n=1, o tabuleiro 2×2 certamente pode ser coberto por um triminó, independente de onde está o quadrado removido.
- Hipótese: todo tabuleiro de tamanho $2^k \times 2^k$ com um quadrado removido pode ser ladrilhado por triminós, para $1 \le k < n$.
- Passo: suponha que temos um tabuleiro $2^n \times 2^n$ com um quadrado removido.
 - Podemos dividir o tabuleiro em 4 subtabuleiros menores de tamanho $2^{n-1} \times 2^{n-1}$ cada.
 - Suponha, s.p.g., que o quadrado removido do tabuleiro original está no subtabuleiro superior esquerdo.
 - Por hipótese, o subtabuleiro superior esquerdo pode ser ladrilhado.
 - Escolhemos quadrados específicos para remover nos outros três subtabuleiros (as

casas centrais) 1 .

- Por hipótese, podemos cobrir os outros três subtabuleiros.
- Os quadrados removidos podem ser ladrilhados por um triminó extra.
- Então o tabuleiro original pode ser totalmente ladrilhado.

Teorema 12. Para todo natural $n \ge 1$, vale que $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} < 1$.

Demonstração. • Vamos provar por indução em n.

- Base: quando n=1, a soma é $\frac{1}{2},$ que é obviamente menor do que 1.
- Hipótese: $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^k} < 1$ para todo $1 \le k < n$.
- Passo: vamos verificar se $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n}$ é menor do que 1.
 - Note que

$$\frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^{n-1}} \right)$$

- Por hipótese, $\frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^{n-1}} < 1$.
- Então

$$\frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{4} + \ldots + \frac{1}{2^{n-1}} \right) < \frac{1}{2}$$

- Assim,

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \ldots + \frac{1}{2^n} < \frac{1}{2} + \frac{1}{2} = 1$$
.

¹Por que fizemos isso? Por que não podemos simplesmente usar a hipótese nos outros três subtabuleiros, que são menores do que o tabuleiro inicial?

6 Exercícios

- 1. Escreva explicitamente os elementos dos seguintes conjuntos:
 - (a) $A = \{x : x \in \mathbb{Z} \text{ e } x^2 2x + 1 \le 0\}$
 - (b) $B = \{x \colon x \in \mathbb{Z}, 2 \le x \le 20 \text{ e } x \text{ \'e primo}\}$
- 2. Considere o conjunto $A = \{\emptyset, \{2,3\}, \{2,4\}, \{2,4,7\}\}$. Escreva quais são os elementos de A e escreva **todos** os subconjuntos de A.
- 3. Prove que para todos os números reais a e b, se a < b e b < 0, então $a^2 > b^2$.
- 4. Prove que se x, y e z são números reais, então pelo menos um deles é maior ou igual à média aritmética dos três.
- 5. Prove que para todo n natural, $2^n > n$.
- 6. Prove que $2^{2n} 1 = 4^n 1$ é divisível por 3 para todo $n \ge 1$.
- 7. Prove que $1^3 + 2^3 + \ldots + n^3 = (1 + 2 + \ldots + n)^2$ para todo n > 1.
- 8. Seja (a_n) uma sequência de números reais positivos tal que $a_1 = 1$ e $a_1^3 + a_2^3 + \ldots + a_n^3 = (a_1 + a_2 + \ldots + a_n)^2$, para todo $n \ge 1$. Mostre que $a_n = n$ para todo $n \ge 1$.
- 9. Encontre o erro da prova por indução a seguir:

Teorema 13. Em um conjunto de n cavalos, todos têm a mesma cor.²

Demonstração. • Vamos provar por indução em n.

- Base: para n = 1, obviamente o resultado vale.
- Hipótese de indução: suponha que em todo conjunto com k cavalos, para $1 \le k < n$, todos têm a mesma cor.
- Passo: considere um conjunto $C = \{c_1, c_2, \dots, c_n\}$ com n cavalos.
 - Podemos escrever $C = C' \cup C''$ onde $C' = \{c_1, \dots, c_{n-1}\}$ e $C'' = \{c_2, \dots, c_n\}$.
 - Por hipótese de indução, todos os cavalos de C' têm a mesma cor.
 - Da mesma forma, todos os cavalos de C'' têm a mesma cor.
 - Como $c_2 \in C'$ e $c_2 \in C''$, então os cavalos de C' têm a mesma cor dos cavalos de C''.
 - Concluímos que todos os cavalos em C têm a mesma cor.

 $^{^2}$ Falso.