3 Regularization & Penalized Regression

Arthur Charpentier (Université du Québec à Montréal)

Machine Learning & Econometrics

SIDE Summer School - July 2019

Linear Model and Variable Selection

Let s denote a subset of $\{0, 1, \dots, p\}$, with cardinal |s|.

 X_s is the matrice with columns x_j where $j \in s$.

Consider the model $\boldsymbol{Y} = \boldsymbol{X}_s \boldsymbol{\beta}_s + \boldsymbol{\eta}$, so that $\widehat{\boldsymbol{\beta}}_s = \left(\boldsymbol{X}_s^{\top} \boldsymbol{X}_s\right)^{-1} \boldsymbol{X}_s^{\top} \boldsymbol{y}$

In general, $\widehat{\boldsymbol{\beta}}_s \neq (\widehat{\boldsymbol{\beta}})_s$

 \mathbb{R}^2 is usually not a good measure since $\mathbb{R}^2(s) \leq \mathbb{R}^2(t)$ when $s \subset t$.

Some use the adjusted
$$R^2$$
, $\overline{R}^2(s) = 1 - \frac{n-1}{n-|s|} (1 - R^2(s))$

The mean square error is

$$\operatorname{mse}(s) = \mathbb{E}\left[(\boldsymbol{X}\boldsymbol{\beta} - \boldsymbol{X}_s \widehat{\boldsymbol{\beta}}_s)^2 \right] = \mathbb{E}\left[RSS(s) \right] - n\sigma^2 + 2|s|\sigma^2$$

Define Mallows'
$$C_p$$
 as $C_p(s) = \frac{RSS(s)}{\widehat{\sigma}^2} - n + 2|s|$

Rule of thumb: model with variables s is valid if $C_p(s) \leq |s|$

Linear Model and Variable Selection

In a linear model,

$$\log \mathcal{L}(\boldsymbol{\beta}, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{n}{2} \log(2\pi) - \frac{1}{2\sigma^2} \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|^2$$

and

$$\log \mathcal{L}(\widehat{\boldsymbol{\beta}}_s, \widehat{\sigma}_s^2) = -\frac{n}{2} \log \frac{RSS(s)}{n} - \frac{n}{2} [1 + \log(2\pi)]$$

It is necessary to penalize too complex models

Akaike's
$$AIC$$
: $AIC(s) = \frac{n}{2}\log\frac{RSS(s)}{n} + \frac{n}{2}[1 + \log(2\pi)] + 2|s|$

Schwarz's *BIC*:
$$BIC(s) = \frac{n}{2} \log \frac{RSS(s)}{n} + \frac{n}{2} [1 + \log(2\pi)] + |s| \log n$$

Exhaustive search of all models, 2^{p+1} ... too complicated.

Stepwise procedure, forward or backward... not very stable and satisfactory.

Penalized Inference and Shrinkage

Consider a parametric model, with true (unknown) parameter θ , then

$$\operatorname{mse}(\hat{\theta}) = \mathbb{E}\left[(\hat{\theta} - \theta)^2\right] = \underbrace{\mathbb{E}\left[(\hat{\theta} - \mathbb{E}[\hat{\theta}])^2\right]}_{\text{variance}} + \underbrace{\mathbb{E}\left[(\mathbb{E}[\hat{\theta}] - \theta)^2\right]}_{\text{bias}^2}$$

One can think of a shrinkage of an unbiased estimator,

Let $\widetilde{\theta}$ denote an unbiased estimator of θ . Then

$$\hat{\theta} = \frac{\theta^2}{\theta^2 + \text{mse}(\widetilde{\theta})} \cdot \widetilde{\theta} = \widetilde{\theta} - \underbrace{\frac{\text{mse}(\widetilde{\theta})}{\theta^2 + \text{mse}(\widetilde{\theta})} \cdot \widetilde{\theta}}_{\text{penalty}}$$

satisfies $\operatorname{mse}(\hat{\theta}) \leq \operatorname{mse}(\widetilde{\theta})$.

Normalization : Euclidean ℓ_2 vs. Mahalonobis

We want to penalize complicated models: if β_k is "too small", we prefer to have $\beta_k = 0$.

Linear Regression Shortcoming

Least Squares Estimator $\widehat{\boldsymbol{\beta}} = (\boldsymbol{X}^\mathsf{T} \boldsymbol{X})^{-1} \boldsymbol{X}^\mathsf{T} \boldsymbol{y}$

Unbiased Estimator $\mathbb{E}[\widehat{\boldsymbol{\beta}}] = \boldsymbol{\beta}$

Variance $Var[\widehat{\boldsymbol{\beta}}] = \sigma^2(\boldsymbol{X}^\mathsf{T}\boldsymbol{X})^{-1}$

which can be (extremely) large when $\det[(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})] \sim 0$.

$$m{X} = egin{bmatrix} 1 & -1 & 2 \ 1 & 0 & 1 \ 1 & 2 & -1 \ 1 & 1 & 0 \end{bmatrix} ext{ then } m{X}^\mathsf{T} m{X} = egin{bmatrix} 4 & 2 & 2 \ 2 & 6 & -4 \ 2 & -4 & 6 \end{bmatrix} ext{ while } m{X}^\mathsf{T} m{X} + \mathbb{I} = egin{bmatrix} 5 & 2 & 2 \ 2 & 7 & -4 \ 2 & -4 & 7 \end{bmatrix}$$

eigenvalues: $\{10, 6, 0\}$

 $\{11, 7, 1\}$

Ad-hoc strategy: use $\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \boldsymbol{\lambda}\mathbb{I}$

... like the least square, but it shrinks estimated coefficients towards 0.

$$\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{ridge}} = \operatorname{argmin} \left\{ \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^\mathsf{T} \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

$$\widehat{oldsymbol{eta}}_{\lambda}^{\mathsf{ridge}} = \operatorname{argmin} \left\{ \underbrace{\left\| oldsymbol{y} - oldsymbol{X} oldsymbol{eta}
ight\|_{\ell_2}^2}_{= \mathrm{criteria}} + \underbrace{\lambda \| oldsymbol{eta} \|_{\ell_2}^2}_{= \mathrm{penalty}}
ight\}$$

 $\lambda \geq 0$ is a tuning parameter.

an Wieringen (2018 Lecture notes on ridge regression

Ridge Estimator (OLS)

$$\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{ridge}} = \operatorname{argmin} \left\{ \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\top} \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} \beta_j^2 \right\}$$

Ridge Estimator (GLM)

$$\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{ridge}} = \operatorname{argmin} \left\{ -\sum_{i=1}^{n} \log f(y_i | \mu_i = g^{-1}(\boldsymbol{x}_i^{\top} \boldsymbol{\beta})) + \frac{\lambda}{2} \sum_{j=1}^{p} \beta_j^2 \right\}$$

$$\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{ridge}} = \operatorname{argmin}\left\{ \left\| \boldsymbol{y} - (\beta_0 + \boldsymbol{X}\boldsymbol{\beta}) \right\|_{\ell_2}^2 + \lambda \left\| \boldsymbol{\beta} \right\|_{\ell_2}^2 \right\}$$

can be seen as a constrained optimization problem

$$\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{ridge}} = \operatorname*{argmin}_{\|\boldsymbol{\beta}\|_{\ell_2}^2 \leq h_{\lambda}} \left\{ \left\| \boldsymbol{y} - (\beta_0 + \boldsymbol{X} \boldsymbol{\beta}) \right\|_{\ell_2}^2 \right\}$$

Explicit solution

$$\widehat{\boldsymbol{eta}}_{\lambda} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \mathbb{I})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

If
$$\lambda \to 0$$
, $\widehat{\boldsymbol{\beta}}_0^{\mathsf{ridge}} = \widehat{\boldsymbol{\beta}}^{\mathsf{ols}}$
If $\lambda \to \infty$, $\widehat{\boldsymbol{\beta}}_{\infty}^{\mathsf{ridge}} = \mathbf{0}$.

If
$$\lambda o \infty,\, \widehat{oldsymbol{eta}}_{\infty}^{\mathsf{ridge}} = \mathbf{0}.$$

This penalty can be seen as rather unfair if components of \boldsymbol{x} are not expressed on the same scale

• center: $\overline{\boldsymbol{x}}_j = 0$, then $\widehat{\beta}_0 = \overline{\boldsymbol{y}}$

• scale: $\boldsymbol{x}_j^\mathsf{T} \boldsymbol{x}_j = 1$

Then compute

$$\widehat{oldsymbol{eta}}_{\lambda}^{\mathsf{ridge}} = \operatorname{argmin} \left\{ \underbrace{\|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|_{\ell_2}^2}_{=\mathrm{loss}} + \underbrace{\lambda \|oldsymbol{eta}\|_{\ell_2}^2}_{=\mathrm{penalty}}
ight\}$$

Observe that if $\boldsymbol{x}_{j_1} \perp \boldsymbol{x}_{j_2}$, then

$$\widehat{oldsymbol{eta}}_{\lambda}^{\mathsf{ridge}} = [1+\lambda]^{-1} \widehat{oldsymbol{eta}}_{\lambda}^{\mathsf{ols}}$$

which explain relationship with shrinkage.

But generally, it is not the case...

Smaller mse

There exists λ such that $\operatorname{mse}[\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{ridge}}] \leq \operatorname{mse}[\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{ols}}]$

$$\mathcal{L}_{\lambda}(\boldsymbol{\beta}) = \sum_{i=1}^{n} (y_i - \beta_0 - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$
$$\frac{\partial \mathcal{L}_{\lambda}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}} = -2\boldsymbol{X}^{\mathsf{T}} \boldsymbol{y} + 2(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \mathbb{I}) \boldsymbol{\beta}$$
$$\frac{\partial^2 \mathcal{L}_{\lambda}(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^{\mathsf{T}}} = 2(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \mathbb{I})$$

where $X^{\mathsf{T}}X$ is a semi-positive definite matrix, and $\lambda \mathbb{I}$ is a positive definite matrix, and

$$\widehat{\boldsymbol{\beta}}_{\lambda} = (\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} + \lambda \mathbb{I})^{-1}\boldsymbol{X}^{\mathsf{T}}\boldsymbol{y}$$

The Bayesian Interpretation

From a Bayesian perspective,

$$\underbrace{\mathbb{P}[\boldsymbol{\theta}|\boldsymbol{y}]}_{\text{posterior}} \propto \underbrace{\mathbb{P}[\boldsymbol{y}|\boldsymbol{\theta}]}_{\text{likelihood prior}} \cdot \underbrace{\mathbb{P}[\boldsymbol{\theta}]}_{\text{log likelihood}} \quad \text{i.e.} \quad \log \mathbb{P}[\boldsymbol{\theta}|\boldsymbol{y}] = \underbrace{\log \mathbb{P}[\boldsymbol{y}|\boldsymbol{\theta}]}_{\text{log likelihood}} + \underbrace{\log \mathbb{P}[\boldsymbol{\theta}]}_{\text{penalty}}$$

If β has a prior $\mathcal{N}(\mathbf{0}, \tau^2 \mathbb{I})$ distribution, then its posterior distribution has mean

$$\mathbb{E}[oldsymbol{eta}|oldsymbol{y},oldsymbol{X}] = \left(oldsymbol{X}^\mathsf{T}oldsymbol{X} + rac{\sigma^2}{ au^2}\mathbb{I}
ight)^{-1}oldsymbol{X}^\mathsf{T}oldsymbol{y}.$$

$$\widehat{\boldsymbol{\beta}}_{\lambda} = (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \mathbb{I})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{y}$$

$$\mathbb{E}[\widehat{oldsymbol{eta}}_{\lambda}] = oldsymbol{X}^{\mathsf{T}} oldsymbol{X} (\lambda \mathbb{I} + oldsymbol{X}^{\mathsf{T}} oldsymbol{X})^{-1} oldsymbol{eta}.$$

i.e. $\mathbb{E}[\widehat{\boldsymbol{\beta}}_{\lambda}] \neq \boldsymbol{\beta}$.

Observe that $\mathbb{E}[\widehat{\boldsymbol{\beta}}_{\lambda}] \to \mathbf{0}$ as $\lambda \to \infty$.

Ridge & Shrinkage

Assume that X is an orthogonal design matrix, i.e. $X^{\mathsf{T}}X = \mathbb{I}$, then

$$\widehat{\boldsymbol{\beta}}_{\lambda} = (1+\lambda)^{-1} \widehat{\boldsymbol{\beta}}^{\mathsf{ols}}.$$

Set $W_{\lambda} = (\mathbb{I} + \lambda [X^{\mathsf{T}}X]^{-1})^{-1}$. One can prove that

$$oldsymbol{W}_{\lambda}\widehat{oldsymbol{eta}}^{\mathsf{ols}} = \widehat{oldsymbol{eta}}_{\lambda}.$$

Thus,

$$\operatorname{Var}[\widehat{oldsymbol{eta}}_{\lambda}] = oldsymbol{W}_{\lambda} \operatorname{Var}[\widehat{oldsymbol{eta}}^{\mathsf{ols}}] oldsymbol{W}_{\lambda}^{\mathsf{T}}$$

and

$$\operatorname{Var}[\widehat{\boldsymbol{\beta}}_{\lambda}] = \sigma^{2} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \mathbb{I})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} [(\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \mathbb{I})^{-1}]^{\mathsf{T}}.$$

Observe that

$$\operatorname{Var}[\widehat{\boldsymbol{\beta}}^{\mathsf{ols}}] - \operatorname{Var}[\widehat{\boldsymbol{\beta}}_{\lambda}] = \sigma^2 \boldsymbol{W}_{\lambda}[2\lambda (\boldsymbol{X}^\mathsf{T} \boldsymbol{X})^{-2} + \lambda^2 (\boldsymbol{X}^\mathsf{T} \boldsymbol{X})^{-3}] \boldsymbol{W}_{\lambda}^\mathsf{T} \geq \boldsymbol{0}.$$

Hence, the confidence ellipsoid of ridge estimator is indeed smaller than the OLS,

If X is an orthogonal design matrix,

$$\operatorname{Var}[\widehat{\boldsymbol{\beta}}_{\lambda}] = \sigma^2 (1 + \lambda)^{-2} \mathbb{I}.$$

$$\operatorname{mse}[\widehat{\boldsymbol{\beta}}_{\lambda}] = \sigma^{2}\operatorname{trace}(\boldsymbol{W}_{\lambda}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X})^{-1}\boldsymbol{W}_{\lambda}^{\mathsf{T}}) + \boldsymbol{\beta}^{\mathsf{T}}(\boldsymbol{W}_{\lambda} - \mathbb{I})^{\mathsf{T}}(\boldsymbol{W}_{\lambda} - \mathbb{I})\boldsymbol{\beta}.$$

If X is an orthogonal design matrix,

$$\operatorname{mse}[\widehat{\boldsymbol{\beta}}_{\lambda}] = \frac{p\sigma^2}{(1+\lambda)^2} + \frac{\lambda^2}{(1+\lambda)^2} \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta}$$

$$\operatorname{mse}[\widehat{\boldsymbol{\beta}}_{\lambda}] = \frac{p\sigma^2}{(1+\lambda)^2} + \frac{\lambda^2}{(1+\lambda)^2} \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta}$$

is minimal for

$$\lambda^* = \frac{p\sigma^2}{\boldsymbol{\beta}^\mathsf{T}\boldsymbol{\beta}}$$

Note that there exists $\lambda > 0$ such that $\mathrm{mse}[\widehat{\boldsymbol{\beta}}_{\lambda}] < \mathrm{mse}[\widehat{\boldsymbol{\beta}}_{0}] = \mathrm{mse}[\widehat{\boldsymbol{\beta}}^{\mathsf{ols}}].$

SVD decomposition

For any matrix A, $m \times n$, there are orthogonal matrices U $(m \times m)$, V $(n \times n)$ and a "diagonal" matrix Σ $(m \times n)$ such that $A = U\Sigma V^{\mathsf{T}}$, or $AV = U\Sigma$.

Hence, there exists a special orthonormal set of vectors (i.e. the columns of V), that is mapped by the matrix A into an orthonormal set of vectors (i.e. the columns of U).

Let r = rank(A), then $A = \sum_{i=1}^{r} \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\mathsf{T}}$ (called the dyadic decomposition of A).

Observe that it can be used to compute (e.g.) the Frobenius norm of A,

$$||A|| = \sum a_{i,j}^2 = \sqrt{\sigma_1^2 + \dots + \sigma_{\min\{m,n\}}^2}.$$

Further $A^{\mathsf{T}}A = V\Sigma^{\mathsf{T}}\Sigma V^{\mathsf{T}}$ while $AA^{\mathsf{T}} = U\Sigma\Sigma^{\mathsf{T}}U^{\mathsf{T}}$.

Hence, σ_i^2 's are related to eigenvalues of $A^{\mathsf{T}}A$ and AA^{T} , and $\boldsymbol{u}_i, \boldsymbol{v}_i$ are associated eigenvectors.

Golub & Reinsh (1970, Singular Value Decomposition and Least Squares Solutions)

SVD decomposition

Consider the singular value decomposition of X, $X = UDV^{\mathsf{T}}$.

Then

$$\widehat{oldsymbol{eta}}^{\mathsf{ols}} = oldsymbol{V} oldsymbol{D}^{-2} oldsymbol{D} oldsymbol{U}^\mathsf{T} oldsymbol{y}$$

$$\widehat{oldsymbol{eta}}_{\lambda} = oldsymbol{V} (oldsymbol{D}^2 + \lambda \mathbb{I})^{-1} oldsymbol{D} oldsymbol{U}^\mathsf{T} oldsymbol{y}$$

Observe that

$$oldsymbol{D}_{i,i}^{-1} \geq rac{oldsymbol{D}_{i,i}}{oldsymbol{D}_{i,i}^2 + \lambda}$$

hence, the ridge penalty shrinks singular values.

Set now $\mathbf{R} = \mathbf{U}\mathbf{D}$ $(n \times n \text{ matrix})$, so that $\mathbf{X} = \mathbf{R}\mathbf{V}^{\mathsf{T}}$,

$$\widehat{oldsymbol{eta}}_{\lambda} = oldsymbol{V} (oldsymbol{R}^{\mathsf{T}} oldsymbol{R} + \lambda \mathbb{I})^{-1} oldsymbol{R}^{\mathsf{T}} oldsymbol{y}$$

Hat matrix and Degrees of Freedom

Recall that $\hat{Y} = HY$ with

$$oldsymbol{H} = oldsymbol{X} (oldsymbol{X}^\mathsf{T} oldsymbol{X})^{-1} oldsymbol{X}^\mathsf{T}$$

Similarly

$$\boldsymbol{H}_{\lambda} = \boldsymbol{X} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} + \lambda \mathbb{I})^{-1} \boldsymbol{X}^{\mathsf{T}}$$

trace
$$[\boldsymbol{H}_{\lambda}] = \sum_{j=1}^{p} \frac{d_{j,j}^{2}}{d_{j,j}^{2} + \lambda} \to 0$$
, as $\lambda \to \infty$.

Sparsity Issues

In several applications, k can be (very) large, but a lot of features are just noise: $\beta_j = 0$ for many j's. Let s denote the number of relevant features, with s << k, cf Hastie, Tibshirani & Wainwright (2015, Statistical Learning with Sparsity),

$$s = \operatorname{card}\{S\} \text{ where } S = \{j; \beta_j \neq 0\}$$

The model is now $y = X_{\mathcal{S}}^{\mathsf{T}} \beta_{\mathcal{S}} + \varepsilon$, where $X_{\mathcal{S}}^{\mathsf{T}} X_{\mathcal{S}}$ is a full rank matrix.

The Ridge regression problem was to solve

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \{\|\boldsymbol{\beta}\|_{\ell_2} \leq s\}} \{\|\boldsymbol{Y} - \boldsymbol{X}^\mathsf{T} \boldsymbol{\beta}\|_{\ell_2}^2\}$$

Define $\|a\|_{\ell_0} = \sum \mathbf{1}(|a_i| > 0)$.

Here $\dim(\beta) = k$ but $\|\beta\|_{\ell_0} = s$.

We wish we could solve

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \{\|\boldsymbol{\beta}\|_{\ell_0} = s\}} \{\|\boldsymbol{Y} - \boldsymbol{X}^\mathsf{T} \boldsymbol{\beta}\|_{\ell_2}^2\}$$

Problem: it is usually not possible to describe all possible constraints, since $\binom{s}{k}$ coefficients should be chosen here (with k (very) large).

In a convex problem, solve the dual problem, e.g. in the Ridge regression: primal problem

$$\min_{\boldsymbol{\beta} \in \{\|\boldsymbol{\beta}\|_{\ell_2} \leq s\}} \{\|\boldsymbol{Y} - \boldsymbol{X}^\mathsf{T} \boldsymbol{\beta}\|_{\ell_2}^2\}$$

and the dual problem

$$\min_{\boldsymbol{\beta} \in \{\|\boldsymbol{Y} - \boldsymbol{X}^\mathsf{T} \boldsymbol{\beta}\|_{\ell_2} \leq t\}} \{\|\boldsymbol{\beta}\|_{\ell_2}^2\}$$

Idea: solve the dual problem

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta} \in \{\|\boldsymbol{Y} - \boldsymbol{X}^{\mathsf{T}} \boldsymbol{\beta}\|_{\ell_2} \leq h\}} \{\|\boldsymbol{\beta}\|_{\ell_0}\}$$

where we might convexify the ℓ_0 norm, $\|\cdot\|_{\ell_0}$.

On $[-1,+1]^k$, the convex hull of $\|\boldsymbol{\beta}\|_{\ell_0}$ is $\|\boldsymbol{\beta}\|_{\ell_1}$

On $[-a, +a]^k$, the convex hull of $\|\boldsymbol{\beta}\|_{\ell_0}$ is $a^{-1}\|\boldsymbol{\beta}\|_{\ell_1}$

Hence, why not solve

$$\widehat{\boldsymbol{\beta}} = \operatorname*{argmin}_{\boldsymbol{\beta}; \|\boldsymbol{\beta}\|_{\ell_1} \leq \widetilde{s}} \{ \|\boldsymbol{Y} - \boldsymbol{X}^\mathsf{T} \boldsymbol{\beta}\|_{\ell_2} \}$$

which is equivalent (Kuhn-Tucker theorem) to the Lagragian optimization problem

$$\widehat{\boldsymbol{\beta}} = \operatorname{argmin}\{\|\boldsymbol{Y} - \boldsymbol{X}^\mathsf{T}\boldsymbol{\beta}\|_{\ell_2}^2 + \lambda\|\boldsymbol{\beta}\|_{\ell_1}\}$$

LASSO Least Absolute Shrinkage and Selection Operator

LASSO Estimator (OLS)

$$\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{lasso}} = \operatorname{argmin} \left\{ \sum_{i=1}^{n} (y_i - \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{\beta})^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}$$

LASSO Estimator (GLM)

$$\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{lasso}} = \operatorname{argmin} \left\{ -\sum_{i=1}^{n} \log f(y_i | \mu_i = g^{-1}(\boldsymbol{x}_i^{\top} \boldsymbol{\beta})) + \frac{\lambda}{2} \sum_{j=1}^{p} |\beta_j| \right\}$$

LASSO Regression

No explicit solution...

If
$$\lambda \to 0$$
, $\widehat{\boldsymbol{\beta}}_0^{\mathsf{lasso}} = \widehat{\boldsymbol{\beta}}^{\mathsf{ols}}$
If $\lambda \to \infty$, $\widehat{\boldsymbol{\beta}}_{\infty}^{\mathsf{lasso}} = \mathbf{0}$.

If
$$\lambda o \infty,\, \widehat{oldsymbol{eta}}_{\infty}^{\mathsf{lasso}} = \mathbf{0}.$$

LASSO Regression

For some λ , there are k's such that $\widehat{\boldsymbol{\beta}}_{k,\lambda}^{\mathsf{lasso}} = 0$. Further, $\lambda \mapsto \widehat{\boldsymbol{\beta}}_{k,\lambda}^{\mathsf{lasso}}$ is piecewise linear

LASSO Regression

In the orthogonal case, $\boldsymbol{X}^{\mathsf{T}}\boldsymbol{X} = \mathbb{I}$,

$$\widehat{\boldsymbol{\beta}}_{k,\lambda}^{\mathsf{lasso}} = \mathrm{sign}(\widehat{\boldsymbol{\beta}}_k^{\mathsf{ols}}) \left(|\widehat{\boldsymbol{\beta}}_k^{\mathsf{ols}}| - \frac{\lambda}{2} \right)$$

i.e. the LASSO estimate is related to the soft threshold function...

Optimal LASSO Penalty

Use cross validation, e.g. K-fold,

$$\widehat{\boldsymbol{\beta}}_{(-k)}(\lambda) = \operatorname{argmin} \left\{ \sum_{i \notin \mathcal{I}_k} [y_i - \boldsymbol{x}_i^\mathsf{T} \boldsymbol{\beta}]^2 + \lambda \|\boldsymbol{\beta}\|_{\ell_1} \right\}$$

then compute the sum of the squared errors,

$$Q_k(\lambda) = \sum_{i \in \mathcal{I}_k} [y_i - \boldsymbol{x}_i^\mathsf{T} \widehat{\boldsymbol{\beta}}_{(-k)}(\lambda)]^2$$

and finally solve

$$\lambda^* = \operatorname{argmin} \left\{ \overline{Q}(\lambda) = \frac{1}{K} \sum_k Q_k(\lambda) \right\}$$

Optimal LASSO Penalty

Note that this might overfit, so Hastie, Tibshiriani & Friedman (2009, Elements of Statistical Learning) suggest the largest λ such that

$$\overline{Q}(\lambda) \leq \overline{Q}(\lambda^*) + \operatorname{se}[\lambda^*] \text{ with } \operatorname{se}[\lambda]^2 = \frac{1}{K^2} \sum_{k=1}^K [Q_k(\lambda) - \overline{Q}(\lambda)]^2$$

LASSO and Ridge, with R

```
> library(glmnet)
2 > chicago=read.table("http://freakonometrics.free.fr/
      chicago.txt",header=TRUE,sep=";")
3 > standardize <- function(x) {(x-mean(x))/sd(x)}</pre>
4 > z0 <- standardize(chicago[, 1])
5 > z1 <- standardize(chicago[, 3])</pre>
6 > z2 <- standardize(chicago[, 4])
7 > ridge <-glmnet(cbind(z1, z2), z0, alpha=0, intercept=</pre>
     FALSE, lambda=1)
 > lasso <-glmnet(cbind(z1, z2), z0, alpha=1, intercept=
     FALSE, lambda=1)
 > elastic <-glmnet(cbind(z1, z2), z0, alpha=.5,
      intercept=FALSE, lambda=1)
```


Elastic net, $\lambda_1 \|\boldsymbol{\beta}\|_{\ell_1} + \lambda_2 \|\boldsymbol{\beta}\|_{\ell_2}^2$

Define

$$\|\boldsymbol{a}\|_{\ell_0} = \sum_{i=1}^d \mathbf{1}(a_i \neq 0), \|\boldsymbol{a}\|_{\ell_1} = \sum_{i=1}^d |a_i| \text{ and } \|\boldsymbol{a}\|_{\ell_2} = \left(\sum_{i=1}^d a_i^2\right)^{1/2}, \text{ for } \boldsymbol{a} \in \mathbb{R}^d.$$

constrained

penalized

optimization

optimization

$$\underset{\boldsymbol{\beta}; \|\boldsymbol{\beta}\|_{\ell_{0}} \leq s}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \ell(y_{i}, \beta_{0} + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}) \right\} \quad \underset{\boldsymbol{\beta}, \lambda}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \ell(y_{i}, \beta_{0} + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}) + \lambda \|\boldsymbol{\beta}\|_{\ell_{0}} \right\} \quad (\ell 0)$$

$$\underset{\boldsymbol{\beta}; \|\boldsymbol{\beta}\|_{\ell_{1}} \leq s}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \ell(y_{i}, \beta_{0} + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}) \right\} \quad \underset{\boldsymbol{\beta}, \lambda}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \ell(y_{i}, \beta_{0} + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}) + \lambda \|\boldsymbol{\beta}\|_{\ell_{1}} \right\} \quad (\ell 1)$$

$$\underset{\boldsymbol{\beta}; \|\boldsymbol{\beta}\|_{\ell_{2}} \leq s}{\operatorname{argmin}} \left\{ \sum_{i=1}^{n} \ell(y_{i}, \beta_{0} + \boldsymbol{x}^{\mathsf{T}}\boldsymbol{\beta}) + \lambda \|\boldsymbol{\beta}\|_{\ell_{2}} \right\} \quad (\ell 2)$$

Assume that ℓ is the quadratic norm.

The two problems ($\ell 2$) are equivalent: $\forall (\beta^*, s^*)$ solution of the left problem, $\exists \lambda^*$ such that (β^*, λ^*) is solution of the right problem. And conversely.

The two problems $(\ell 1)$ are equivalent: $\forall (\beta^*, s^*)$ solution of the left problem, $\exists \lambda^*$ such that (β^*, λ^*) is solution of the right problem. And conversely. Nevertheless, if there is a theoretical equivalence, there might be numerical issues since there is not necessarily unicity of the solution.

The two problems $(\ell 0)$ are not equivalent: if (β^*, λ^*) is solution of the right problem, $\exists s^*$ such that β^* is a solution of the left problem. But the converse is not true.

More generally, consider a ℓ_p norm,

- sparsity is obtained when $p \leq 1$
- convexity is obtained when $p \ge 1$

Foster & George (1994) the risk inflation criterion for multiple regression tried to solve directly the penalized problem of $(\ell 0)$.

But it is a complex combinatorial problem in high dimension (Natarajan (1995) sparse approximate solutions to linear systems proved that it was a NP-hard problem)

One can prove that if $\lambda \sim \sigma^2 \log(p)$, alors

$$\mathbb{E}([\boldsymbol{x}^\mathsf{T}\widehat{\boldsymbol{\beta}} - \boldsymbol{x}^\mathsf{T}\boldsymbol{\beta}_0]^2) \leq \underbrace{\mathbb{E}([\boldsymbol{x}_\mathcal{S}^\mathsf{T}\widehat{\boldsymbol{\beta}}_\mathcal{S} - \boldsymbol{x}^\mathsf{T}\boldsymbol{\beta}_0]^2)}_{=\sigma^2\#\mathcal{S}} \cdot (4\log p + 2 + o(1)).$$

In that case

$$\widehat{\boldsymbol{\beta}}_{\lambda,j}^{\mathsf{sub}} = \begin{cases} 0 \text{ si } j \notin \mathcal{S}_{\lambda}(\boldsymbol{\beta}) \\ \widehat{\boldsymbol{\beta}}_{j}^{\mathsf{ols}} \text{ si } j \in \mathcal{S}_{\lambda}(\boldsymbol{\beta}), \end{cases}$$

where $S_{\lambda}(\beta)$ is the set of non-null values in solutions of $(\ell 0)$.

If ℓ is no longer the quadratic norm but ℓ_1 , problem ($\ell 1$) is not always strictly convex, and optimum is not always unique (e.g. if X^TX is singular).

But in the quadratic case, ℓ is strictly convex, and at least $X\widehat{\beta}$ is unique.

Further, note that solutions are necessarily coherent (signs of coefficients): it is not possible to have $\widehat{\beta}_j < 0$ for one solution and $\widehat{\beta}_j > 0$ for another one.

In many cases, problem $(\ell 1)$ yields a corner-type solution, which can be seen as a "best subset" solution - like in $(\ell 0)$.

Going further, ℓ_0 , ℓ_1 and ℓ_2 penalty

Consider a simple regression $y_i = x_i\beta + \varepsilon$, with ℓ_1 -penalty and a ℓ_2 -loss function. ($\ell 1$) becomes

$$\min \left\{ \boldsymbol{y}^{\mathsf{T}} \boldsymbol{y} - 2 \boldsymbol{y}^{\mathsf{T}} \boldsymbol{x} \beta + \beta \boldsymbol{x}^{\mathsf{T}} \boldsymbol{x} \beta + 2 \lambda |\beta| \right\}$$

First order condition can be written

$$-2\boldsymbol{y}^{\mathsf{T}}\boldsymbol{x} + 2\boldsymbol{x}^{\mathsf{T}}\boldsymbol{x}\widehat{\boldsymbol{\beta}} \pm 2\lambda = 0.$$

(the sign in \pm being the sign of $\widehat{\beta}$). Assume that least-square estimate ($\lambda = 0$) is (strictly) positive, i.e. $\mathbf{y}^{\mathsf{T}}\mathbf{x} > 0$. If λ is not too large $\widehat{\beta}$ and $\widehat{\beta}^{\mathsf{ols}}$ have the same sign, and

$$-2\boldsymbol{y}^{\mathsf{T}}\boldsymbol{x} + 2\boldsymbol{x}^{\mathsf{T}}\boldsymbol{x}\widehat{\boldsymbol{\beta}} + 2\lambda = 0.$$

with solution $\widehat{\beta}_{\lambda}^{\mathsf{lasso}} = \frac{\boldsymbol{y}^{\mathsf{T}} \boldsymbol{x} - \lambda}{\boldsymbol{x}^{\mathsf{T}} \boldsymbol{x}}.$

Going further, ℓ_0 , ℓ_1 and ℓ_2 penalty

Increase λ so that $\widehat{\beta}_{\lambda} = 0$.

Increase slightly more, $\widehat{\beta}_{\lambda}$ cannot become negative, because the sign of the first order condition will change, and we should solve

$$-2\boldsymbol{y}^{\mathsf{T}}\boldsymbol{x} + 2\boldsymbol{x}^{\mathsf{T}}\boldsymbol{x}\widehat{\boldsymbol{\beta}} - 2\lambda = 0.$$

and solution would be $\widehat{\beta}_{\lambda}^{\mathsf{lasso}} = \frac{\boldsymbol{y}^{\mathsf{T}}\boldsymbol{x} + \lambda}{\boldsymbol{x}^{\mathsf{T}}\boldsymbol{x}}$. But that solution is positive (we assumed that $\boldsymbol{y}^{\mathsf{T}}\boldsymbol{x} > 0$), to we should have $\widehat{\beta}_{\lambda} < 0$.

Thus, at some point $\widehat{\beta}_{\lambda} = 0$, which is a corner solution.

In higher dimension, see Tibshirani & Wasserman (2016, a closer look at sparse regression) or Candès & Plan (2009, Near-ideal model selection by ℓ_1 minimization.)

With some additional technical assumption, that LASSO estimator is "sparsistent" in the sense that the support of $\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathrm{lasso}}$ is the same as $\boldsymbol{\beta}$,

Going further, ℓ_0 , ℓ_1 and ℓ_2 penalty

Thus, LASSO can be used for variable selection - see Hastie et al. (2001, The Elements of Statistical Learning).

Generally, $\widehat{\beta}_{\lambda}^{\text{lasso}}$ is a biased estimator but its variance can be small enough to have a smaller least squared error than the OLS estimate.

With orthonormal covariates, one can prove that

$$\widehat{\beta}_{\lambda,j}^{\mathsf{sub}} = \widehat{\beta}_{j}^{\mathsf{ols}} \mathbf{1}_{|\widehat{\beta}_{\lambda,j}^{\mathsf{sub}}| > b}, \quad \widehat{\beta}_{\lambda,j}^{\mathsf{ridge}} = \frac{\widehat{\beta}_{j}^{\mathsf{ols}}}{1 + \lambda} \quad \text{and} \quad \widehat{\beta}_{\lambda,j}^{\mathsf{lasso}} = \mathrm{signe}[\widehat{\beta}_{j}^{\mathsf{ols}}] \cdot (|\widehat{\beta}_{j}^{\mathsf{ols}}| - \lambda)_{+}.$$

LASSO for Autoregressive Time Series

Consider some AR(p) autoregressive time series,

$$X_{t} = \phi_{1} X_{t-1} + \phi_{2} X_{t-2} + \dots + \phi_{p-1} X_{t-p+1} + \phi_{p} X_{t-p} + \varepsilon_{t},$$

for some white noise (ε_t) , with a causal type representation. Write $y = \boldsymbol{x}^\mathsf{T} \boldsymbol{\phi} + \varepsilon$.

The LASSO estimator $\widehat{\boldsymbol{\phi}}$ is a minimizer of

$$\frac{1}{2T} ||y = \boldsymbol{x}^\mathsf{T} \boldsymbol{\phi}||^2 + \lambda \sum_{i=1}^p \lambda_i |\phi_i|,$$

for some tuning parameters $(\lambda, \lambda_1, \dots, \lambda_p)$.

See Nardi & Rinaldo (2011, Autoregressive process modeling via the Lasso procedure).

LASSO and **Non-Linearities**

Consider knots k_1, \dots, k_m , we want a function m which is a cubic polynomial between every pair of knots, continuous at each knot, and with ontinuous first and second derivatives at each knot.

We can write m as

$$m(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \beta_4 (x - k_1)_+^3 + \dots + \beta_{m+3} (x - k_m)_+^3$$

One strategy is the following

- fix the number of knots $m \ (m < n)$
- find the natural cubic spline \widehat{m} which minimizes $\sum_{i=1}^{n} (y_i m(x_i))^2$
- \bullet then choose m by cross validation

and alternative is to use a penalty based approach (Ridge type) to avoid overfit (since with m = n, the residual sum of square is null).

Consider a univariate nonlinear regression problem, so that $\mathbb{E}[Y|X=x]=m(x)$.

Given a sample $\{(y_1, x_1), \dots, (y_n, x_n)\}$, consider the following penalized problem

$$m^* = \underset{m \in \mathcal{C}^2}{\operatorname{argmin}} \left\{ \sum_{i=1}^n (y_i - m(x_i))^2 + \lambda \int_{\mathbb{R}} m''(x) dx \right\}$$

with the Residual sum of squares on the left, and a penalty for the roughness of the function.

The solution is a natural cubic spline with knots at unique values of x (see Eubanks (1999, Nonparametric Regression and Spline Smoothing)

Consider some spline basis $\{h_1, \dots, h_n\}$, and let $m(x) = \sum_{i=1}^n \beta_i h_i(x)$.

Let \boldsymbol{H} and $\boldsymbol{\Omega}$ be the $n \times n$ matrices $H_{i,j} = h_j(x_i)$, and $\Omega_{i,j} = \int_{\mathbb{R}} h_i''(x)h_j''(x)dx$.

Then the objective function can be written

$$(\boldsymbol{y} - \boldsymbol{H}\boldsymbol{\beta})^{\mathsf{T}}(\boldsymbol{y} - \boldsymbol{H}\boldsymbol{\beta}) + \lambda \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\Omega} \boldsymbol{\beta}$$

Recognize here a generalized Ridge regression, with solution

$$\widehat{\boldsymbol{\beta}}_{\lambda} = \left(\boldsymbol{H}^{\mathsf{T}} \boldsymbol{H} + \lambda \Omega \right)^{-1} \boldsymbol{H}^{\mathsf{T}} \boldsymbol{y}.$$

Note that predicted values are linear functions of the observed value since

$$\widehat{m{y}} = m{H}ig(m{H}^{\mathsf{T}}m{H} + \lambda\Omegaig)^{-1}m{H}^{\mathsf{T}}m{y} = m{S}_{\lambda}m{y},$$

with degrees of freedom trace(S_{λ}).

One can obtain the so-called Reinsch form by considering the singular value decomposition of $\mathbf{H} = \mathbf{U}\mathbf{D}\mathbf{V}^\mathsf{T}$.

Here U is orthogonal since H is square $(n \times n)$, and D is here invertible. Then

$$\boldsymbol{S}_{\lambda} = (\mathbb{I} + \lambda \boldsymbol{U}^{\mathsf{T}} \boldsymbol{D}^{-1} \boldsymbol{V}^{\mathsf{T}} \boldsymbol{\Omega} \boldsymbol{V} \boldsymbol{D}^{-1} \boldsymbol{U})^{-1} = (\mathbb{I} + \lambda \boldsymbol{K})^{-1}$$

where K is a positive semidefinite matrix, $K = B\Delta B^{\mathsf{T}}$, where columns of B are know as the Demmler-Reinsch basis.

In that (orthonormal) basis, S_{λ} is a diagonal matrix,

$$oldsymbol{S}_{\lambda} = oldsymbol{B}ig(\mathbb{I} + \lambdaoldsymbol{\Delta}ig)^{-1}oldsymbol{B}^{\mathsf{T}}$$

Observe that $S_{\lambda}B_{k} = \frac{1}{1 + \lambda \Delta_{k,k}}B_{k}$.

Here again, eigenvalues are shrinkage coefficients of basis vectors.

With more covariates, consider an additive problem

$$(h_1, \dots, h_p)^* = \operatorname*{argmin}^{h_1, \dots, h_p \in \mathcal{C}^2} \left\{ \sum_{i=1}^n \left(y_i - \sum_{j=1}^p m(x_{i,j}) \right)^2 + \lambda \sum_{j=1}^p \int_{\mathbb{R}} m_j''(x) dx \right\}$$

which can be written

$$\min \left\{ (\boldsymbol{y} - \sum_{j=1}^{p} \boldsymbol{H}_{j} \boldsymbol{\beta}_{j})^{\mathsf{T}} (\boldsymbol{y} - \sum_{j=1}^{p} \boldsymbol{H}_{j} \boldsymbol{\beta}_{j}) + \lambda (\boldsymbol{\beta}_{1}^{\mathsf{T}} \sum_{j=1}^{p} \boldsymbol{\Omega}_{j} \boldsymbol{\beta}_{j}) \right\}$$

where each matrix \mathbf{H}_j is a Demmler-Reinsch basis for variable x_j .

Chouldechova & Hastie (2015, Generalized Additive Model Selection)

Assume that the mean function for the jth variable is $m_j(x) = \alpha_j x + \boldsymbol{m}_j(x)^{\mathsf{T}} \boldsymbol{\beta}_j$. One can write

$$\min \left\{ (\boldsymbol{y} - \alpha_0 - \sum_{j=1}^p \alpha_j x_j - \sum_{j=1}^p \boldsymbol{H}_j \boldsymbol{\beta}_j)^{\mathsf{T}} (\boldsymbol{y} - \alpha_0 - \sum_{j=1}^p \alpha_j x_j - \sum_{j=1}^p \boldsymbol{H}_j \boldsymbol{\beta}_j) + (\boldsymbol{\gamma} |\alpha_1| + (1 - \boldsymbol{\gamma}) ||\boldsymbol{\beta}_j||_{\Omega_j}) + (\boldsymbol{\psi}_1 \boldsymbol{\beta}_1^{\mathsf{T}} \boldsymbol{\Omega}_1 \boldsymbol{\beta}_1 + \dots + \boldsymbol{\psi}_p \boldsymbol{\beta}_p^{\mathsf{T}} \boldsymbol{\Omega}_p \boldsymbol{\beta}_p) \right\}$$

where
$$\|\boldsymbol{\beta}_j\|_{\Omega_j} = \sqrt{\boldsymbol{\beta}_j^{\mathsf{T}}} \boldsymbol{\Omega}_j \boldsymbol{\beta}_j$$
.

The second term is the selection penalty, with a mixture of ℓ_1 and ℓ_2 (type) norm-based penalty

The third term is the end-to-path penalty (GAM type when $\lambda = 0$).

For each predictor x_j , there are three possibilities

- zero, $\alpha_j = 0$ and $\boldsymbol{\beta}_j = \mathbf{0}$
- linear, $\alpha_j \neq 0$ and $\boldsymbol{\beta}_j = \mathbf{0}$
- nonlinear, $\beta_i \neq 0$

Coordinate Descent

LASSO Coordinate Descent Algorithm

1. Set
$$\beta_0 = \widehat{\beta}$$

2. For
$$k=1,\cdots$$

for
$$j = 1, \dots, p$$

(i) compute
$$R_j = \boldsymbol{x}_j^{\top} (\boldsymbol{y} - \boldsymbol{X}_{-j} \boldsymbol{\beta}_{k-1(-j)})$$

(ii) set
$$\boldsymbol{\beta}_{k,j} = R_j \cdot \left(1 - \frac{\lambda}{2|R_j|}\right)_+$$

3. The final estimate β_{κ} is $\widehat{\beta}_{\lambda}$

ELASTIC NET: when covariates are highly correlated

See glmnet::elasticnet()

From LASSO to Dantzig Selection

Candès & Tao (2007, The Dantzig selector: Statistical estimation when p is much larger than n) defined

$$\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{dantzig}} \in \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \big\{ \|\boldsymbol{\beta}\|_{\ell_1} \big\} \text{ s.t. } \|\boldsymbol{X}^\top (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})\|_{\ell_\infty} \leq \lambda$$

From LASSO to Adaptative Lasso

Zou (2006, The Adaptive Lasso)

$$egin{aligned} \widehat{oldsymbol{eta}}_{\lambda}^{ ext{a-lasso}} &\in \operatorname*{argmin}_{oldsymbol{eta} \in \mathbb{R}^p} \left\{ \|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|_{\ell_2}^2 + \lambda \sum_{j=1}^p rac{|eta_j|}{|\widehat{eta}_{\lambda,j}^{\gamma ext{-lasso}}|}
ight\} \end{aligned}$$

where $\widehat{\boldsymbol{\beta}}_{\lambda}^{\gamma\text{-lasso}} = \Pi_{\boldsymbol{X}_{s(\lambda)}} \boldsymbol{y}$ where $s(\lambda)$ is the set of non null components $\widehat{\boldsymbol{\beta}}_{\lambda}^{\mathsf{lasso}}$

See library lqa or lassogrp

From LASSO to Group Lasso

Assume that variables $\boldsymbol{x} \in \mathbb{R}^p$ can be grouped in L subgroups, $\boldsymbol{x} = (\boldsymbol{x}_1 \cdots, \boldsymbol{x}_L)$, where $\dim[\boldsymbol{x}_l] = p_l$.

Yuan & Lin (2007, Model selection and estimation in the Gaussian graphical model) defined, for some K_l matrices $n_l \times n_l$ definite positives

$$\widehat{oldsymbol{eta}}_{\lambda}^{ extsf{g-lasso}} \in \operatorname*{argmin}_{oldsymbol{eta} \in \mathbb{R}^p} \left\{ \|oldsymbol{y} - oldsymbol{X} oldsymbol{eta}\|_{\ell_2}^2 + \lambda \sum_{l=1}^L \sqrt{oldsymbol{eta}_l^ op K_l oldsymbol{eta}_l}
ight\}$$

or, if $K_l = p_l \mathbb{I}$

$$\widehat{\boldsymbol{\beta}}_{\lambda}^{\text{g-lasso}} \in \operatorname*{argmin}_{\boldsymbol{\beta} \in \mathbb{R}^p} \left\{ \|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_{\ell_2}^2 + \lambda \sum_{l=1}^L p_l \|\boldsymbol{\beta}_l\|_{\ell_2} \right\}$$

See library gglasso

From LASSO to Sparse-Group Lasso

Assume that variables $\boldsymbol{x} \in \mathbb{R}^p$ can be grouped in L subgroups, $\boldsymbol{x} = (\boldsymbol{x}_1 \cdots, \boldsymbol{x}_L)$, where $\dim[\boldsymbol{x}_l] = p_l$.

Simon et al. (2013, A Sparse-Group LASSO) defined, for some K_l matrices $n_l \times n_l$ definite positives

$$\widehat{oldsymbol{eta}}_{\lambda,\mu}^{ ext{sg-lasso}} \in \operatorname*{argmin}_{oldsymbol{eta} \in \mathbb{R}^p} \left\{ \|oldsymbol{y} - oldsymbol{X}oldsymbol{eta}\|_{\ell_2}^2 + \lambda \sum_{l=1}^L \sqrt{oldsymbol{eta}_l^ op K_loldsymbol{eta}_l} + \mu \|oldsymbol{eta}\|_{\ell_1}
ight\}$$

See library sgl