

Question - 1 2-3 Tree and Red-Black Tree

SCORE: 5 points

Which of the following about 2-3 Tree and Red-Black Tree is correct?

- Only Red-Black Tree is "perfectly balanced"
- Both 2-3 Tree and Red-Black Tree are "perfectly balanced"

2-3 Tree is "perfectly balanced" and Red-Black Tree is "perfectly BLACK balanced"

2-3 Tree is "perfectly balanced" and Red-Black Tree is "perfectly RED balanced"

Question - 2 2-3 Tree

SCORE: 5 points

While splitting a (temporary) 4-node in a 2-3 Tree (Node 2 in the diagram), which nodes will be modified?

- Node 1
- Node 1 and Node 2
- Node 1, Node 2, Node 3 and Node 4
- All of the above 8 Nodes (Node 1 to 8)

Question - 3 **2-3 Tree**

SCORE: 5 points

☐ Best case: log₂N	
Worst case: log₃N	
■ Between log ₂ N and log ₃ N	
None of the above	
Question - 4 Red Black Tree	SCORE: 5 points
When choosing a symbol table implementation for keys that are comparable, why are red-black trees generally preferred over hash tables?	
no they are not preferred	
because red-black trees offer a better performance guarantee than do hash tables	
because they can be implemented using trees	
because they are balanced	
Question - 5 Red-Black Tree Implementation	SCORE: 30 points
Disease implementation of the part of the first form	

Please implement put() and rotateLeft() for Red-Black Tree. (15 pts for each)

put(): Line 72 rotateLeft(): Line 94

- * You don't need to change other code.
- * There is no main() method. Please use "Run Unit Tests" to test your code.
- $\ensuremath{^{*}}$ Unit tests for this question takes some time. Please be patient while compiling...