CS450 Computer Networks

The slides used in class are derived from the slides available on our text book companion website:

© 2012 Maharishi University of Management

All additional course materials are copyright protected by international copyright laws and remain the property of the Maharishi University of Management. The materials are accessible only for the personal use of students enrolled in this course and only for the duration of the course. Any copying and distributing are not allowed and subject to legal action.

CS450 - Lecture 4 Application Layer - WEB and HTTP

Our goal:

Understand key Web application concepts:

- ■Basic HTTP protocol
- Cookies
- Web Caching

Web and HTTP

- web page consists of objects
- object can be HTML file, JPEG image, Java applet, audio file,...
- web page consists of base HTML-file which includes several referenced objects
- each object is addressable by a URL
- example URL:

www.someschool.edu/someDept/pic.gif

host name

path name

HTTP overview

HTTP: hypertext transfer protocol

- Web's application layer protocol
- client/server model
 - client: browser that requests, receives, "displays" Web objects
 - server: Web server sends objects in response to requests

HTTP overview (continued)

Uses TCP:

- client initiates TCP connection (creates socket) to server, port
- server accepts TCP connection from client
- HTTP messages (applicationlayer protocol messages)
 exchanged between browser (HTTP client) and Web server (HTTP server)
- TCP connection closed

HTTP is "stateless"

server maintains no information about past client requests

aside

protocols that maintain "state" are complex!

- past history (state) must be maintained
- if server/client crashes, their views of "state" may be inconsistent, must be reconciled

HTTP connections

non-persistent HTTP

- at most one object sent over TCP connection
 - connection then closed
- downloading multiple objects required multiple connections

persistent HTTP

multiple objects can be sent over single TCP connection between client, server.

Nonpersistent HTTP

suppose user enters URL:

(contains text, x references to 10 jpeg images)

www.someSchool.edu/someDepartment/home.index refer

- la. HTTP client initiates TCP connection to HTTP server (process) at www.someSchool.edu on port 80
- HTTP server at host
 www.someSchool.edu waiting for TCP connection at port 80.
 "accepts" connection, notifying client
- 2. HTTP client sends HTTP request message (containing URL) into TCP connection socket. Message indicates that client wants object someDepartment/home.index
- 3. HTTP server receives request message, forms response message containing requested object, and sends message into its socket

Nonpersistent HTTP (cont.)

4. HTTP server closes TCP connection.

5. HTTP client receives response message containing html file, displays html. Parsing html file, finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of 10 jpeg objects

Non-Persistent HTTP: Response time

definition of RTT: time for a small packet to travel from client to server and back.

response time:

- one RTT to initiate TCP connection
- one RTT for HTTP request and first few bytes of HTTP response to return
- file transmission time

total = 2RTT+transmit time

Persistent HTTP

non-persistent HTTP issues:

- requires 2 RTTs per object
- OS overhead for each TCP connection
- browsers often open parallel TCP connections to fetch referenced objects

persistent HTTP

- server leaves connection open after sending response
- subsequent HTTP messages between same client/server sent over open connection
- client sends requests as soon as it encounters a referenced object
- as little as one RTT for all the referenced objects

HTTP request message

- two types of HTTP messages: request, response
- HTTP request message:

```
ASCII (human-readable format)
                                                   carriage return character
                                                     line-feed character
request line
(GET, POST,
                     GET /index.html HTTP/1.1\r\n
                     Host: www-net.cs.umass.edu\r\n
HEAD commands)
                     User-Agent: Firefox/3.6.10\r\n
                     Accept: text/html,application/xhtml+xml\r\n
             header
                     Accept-Language: en-us,en;q=0.5\r\n
               lines
                     Accept-Encoding: gzip,deflate\r\n
                     Accept-Charset: ISO-8859-1, utf-8; q=0.7\r\n
                     Keep-Alive: 115\r\n
carriage return,
                      Connection: keep-alive\r\n
line feed at start
                      r\n
of line indicates
end of header lines
```

HTTP request message: general format

Uploading form input

POST method:

- web page often includes form input
- input is uploaded to server in entity body

URL method:

- uses GET method
- input is uploaded in URL field of request line:

www.somesite.com/animalsearch?monkeys&banana

Method types

HTTP/I.0

- GET
- POST
- HEAD
 - asks server to leave requested object out of response

HTTP/I.I

- GET, POST, HEAD
- PUT
 - uploads file in entity body to path specified in URL field
- ❖ DELETE
 - deletes file specified in the URL field

HTTP response message

```
status line
(protocol
                HTTP/1.1 200 OK\r\n
status code
                Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
status phrase)
                Server: Apache/2.0.52 (CentOS) \r\n
                Last-Modified: Tue, 30 Oct 2007 17:00:02
                  GMT\r\n
                ETag: "17dc6-a5c-bf716880"\r\n
     header
                Accept-Ranges: bytes\r\n
       lines
                Content-Length: 2652\r\n
                Keep-Alive: timeout=10, max=100\r\n
                Connection: Keep-Alive\r\n
                Content-Type: text/html; charset=ISO-8859-
                  1\r\n
                r\n
               data data data data ...
 data, e.g.,
 requested
 HTML file
```

HTTP response status codes

- status code appears in 1st line in server->client response message.
- some sample codes:

200 OK

request succeeded, requested object later in this msg

301 Moved Permanently

 requested object moved, new location specified later in this msg (Location:)

400 Bad Request

request msg not understood by server

404 Not Found

requested document not found on this server

505 HTTP Version Not Supported

Trying out HTTP (client side) for yourself

I. Telnet to your favorite Web server:

telnet mscs.mum.edu 80

opens TCP connection to port 80 (default HTTP server port) at cis.poly.edu. anything typed in sent to port 80 at cis.poly.edu

2. type in a GET HTTP request:

```
GET program-overview/ HTTP/1.1 Host: mscs.mum.edu
```

by typing this in (hit carriage return twice), you send this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark!)

Trying out HTTP Wireshark

http://wps.pearsoned.com/wps/media/objects/13865/14198700/wireshark_http://wps.pearsoned.com/wps/media/objects/13865/14198700/

The Basic HTTP GET/response interaction. Do questions 1-7

User-server state: cookies

Cookies:

four components:

- I) cookie header line of HTTP response message
- 2) cookie header line in HTTP request message
- 3) cookie file kept on user's host, managed by user's browser
- 4) back-end database at Web site

example:

- Susan always access Internet from PC
- visits specific e-commerce site for first time
- when initial HTTP requests arrives at site, site creates:
 - unique ID
 - entry in backend database for ID

Cookies: keeping "state" (cont.)

Cookies (continued)

what cookies can bring:

- authorization
- shopping carts
- recommendations
- user session state (Web e-mail)

<u>cookies and privacy:</u>

- cookies permit sites to learn a lot about you
- you may supply name and e-mail to sites

how to keep "state":

- protocol endpoints: maintain state at sender/receiver over multiple transactions
- cookies: http messages carry state

Web caches (proxy server)

Goal: satisfy client request without involving origin server

- user sets browser: Web accesses via cache
- browser sends all HTTP requests to cache
 - object in cache: cache returns object
 - else cache requests object from origin server, then returns object to client

More about Web caching

- cache acts as both client and server
 - server for original requesting client
 - client to origin server
- typically cache is installed by ISP (university, company, residential ISP)

why Web caching?

- reduce response time for client request
- reduce traffic on an institution's access link
- Internet dense with caches: enables "poor" content providers to effectively deliver content (so too does P2P file sharing), pplication Layer

Caching example:

assumptions:

- avg object size: I00K bits
- avg request rate from browsers to origin servers: I 5/sec
- avg data rate to browsers: 1.50 Mbps
- RTT from institutional router to any origin server: 2 sec
- access link rate: 1.54 Mbps

consequences:

LAN utilization: 15%

access link utilization # 99%

 total delay = Internet delay + access delay + LAN delay

= 2 sec + minutes + usecs

Caching example: fatter access link

assumptions:

- avg object size: 100K bits
- avg request rate from browsers to origin servers: I 5/sec
- avg data rate to browsers: 1.50 Mbps
- RTT from institutional router to any origin server: 2 sec
- access link rate: I.54 Mbps154 Mbps

consequences:

- LAN utilization: 15%
- * access link utilization = 99% \longrightarrow 9.9%
- total delay = Internet delay + access delay + LAN delay
 - = 2 sec + minutes + usecs

Cost: increased access link speed (not cheap!)

Caching example: install local cache

assumptions:

- avg object size: I00K bits
- avg request rate from browsers to origin servers: I 5/sec
- avg data rate to browsers: 1.50 Mbps
- RTT from institutional router to any origin server: 2 sec
- access link rate: 1.54 Mbps

consequences:

- LAN utilization: 15%
- access link utilization = ?
- total delay = ?

How to compute link utilization, delay?

Cost: web cache (cheap!)

Caching example: install local cache

Calculating access link utilization, delay with cache:

- suppose cache hit rate is 0.4
 - 40% requests satisfied at cache, 60% requests satisfied at origin
- * access link utilization:
 - 60% of requests use access link
- data rate to browsers over access link
 = 0.6*1.50 Mbps = .9 Mbps
 - utilization = 0.9/1.54 = .58
- total delay
 - = 0.6 * (delay from origin servers) +0.4 * (delay when satisfied at cache)
 - $= 0.6 (2.01) + 0.4 (\sim msecs)$
 - = ~ 1.2 secs
 - less than with 154 Mbps link (and cheaper too!)

Conditional GET

- Goal: don't send object if cache has up-to-date cached version
 - no object transmission delay
 - lower link utilization
- cache: specify date of cached copy in HTTP request

If-modified-since:
 <date>

server: response contains no object if cached copy is up-to-date:

HTTP/1.0 304 Not Modified

Trying out HTTP Wireshark - part 2

http://wps.pearsoned.com/wps/media/objects/13865/14198700/wireshark_Labs/Wireshark_HTTP_v6.1.pdf

The HTTP CONDITIONAL GET/response interaction. Do questions 8-11

Lesson 4: Summary

HTTP has evolved to efficiently support the Web

- web client-server architecture
- Simple client state tracking cookies
- Web Caching