Artificial Neural Network

Importing Libraries

```
import numpy as np
import pandas as pd
import tensorflow as tf
from sklearn.preprocessing import LabelEncoder, OneHotEncoder, StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.model_selection import train_test_split

tf.__version__

→ '2.17.0'
```

Data preprocessing, importing dataset

```
df = pd.read_csv('Churn_Modelling.csv')
df.head()
```

		RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	Esti
	0	1	15634602	Hargrave	619	France	Female	42	2	0.00	1	1	1	
	1	2	15647311	Hill	608	Spain	Female	41	1	83807.86	1	0	1	
	2	3	15619304	Onio	502	France	Female	42	8	159660.80	3	1	0	
	3	4	15701354	Boni	699	France	Female	39	1	0.00	2	0	0	
	4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.82	1	1	1	
	4 4													•

Encoding Categorical Data (Label encoding for the gender column and One hot encoding for geography column)

```
le = LabelEncoder()
x[:,2] = le.fit\_transform(x[:,2])
display(x)
he = ColumnTransformer(transformers=[('encoder', OneHotEncoder(), [1])], remainder='passthrough')
x = np.array(he.fit_transform(x))
display(x)
\rightarrow array([[619, 'France', 0, ..., 1, 1, 101348.88],
              [608, 'Spain', 0, ..., 0, 1, 112542.58],
              [502, 'France', 0, ..., 1, 0, 113931.57],
              [709, 'France', 0, ..., 0, 1, 42085.58],
             [772, 'Germany', 1, ..., 1, 0, 92888.52],
[792, 'France', 0, ..., 1, 0, 38190.78]], dtype=object)
     array([[1.0, 0.0, 0.0, ..., 1, 1, 101348.88],
             [0.0, 0.0, 1.0, ..., 0, 1, 112542.58],
[1.0, 0.0, 0.0, ..., 1, 0, 113931.57],
             [1.0, 0.0, 0.0, ..., 0, 1, 42085.58],
             [0.0, 1.0, 0.0, ..., 1, 0, 92888.52],
             [1.0. 0.0. 0.0. .... 1. 0. 38190.78]]. dtvne=ohiect)
```

Splitting dataset into training and test sets

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=0.2,random_state=0)
```

Feature Scaling

```
fs = StandardScaler()
x_train = fs.fit_transform(x_train)
x_test = fs.transform(x_test)
```

Building the ANN

```
ann = tf.keras.models.Sequential()
ann.add(tf.keras.layers.Dense(units=6, activation='relu'))
ann.add(tf.keras.layers.Dense(units=6, activation='relu'))
ann.add(tf.keras.layers.Dense(units=1, activation='sigmoid'))
```

Compiling and Training the ANN

```
ann.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
ann.fit(x_train, y_train, batch_size=32, epochs=100)
```

_									
$\overrightarrow{\Rightarrow}$	Epoch 1/100							_	
		2s	2ms/step	-	accuracy:	0.7384	-	loss:	0.5810
	Epoch 2/100	_	_ , .						
		1s	2ms/step	-	accuracy:	0.7936	-	loss:	0.4773
	Epoch 3/100	_	2 / 1			0 0076			0 4460
		15	2ms/step	-	accuracy:	0.80/6	-	loss:	0.4469
	Epoch 4/100 250/250 —————	1.	2mc/cton		accuracy:	0 9005		1000	0 4460
	Epoch 5/100	15	ziiis/scep	-	accuracy:	0.8005	-	1055:	0.4469
	•	1 c	2ms/sten		accuracy:	0 8017		1055.	0 4358
	Epoch 6/100		21113/ ЭССР		accar acy.	0.0017		1033.	0.4550
	250/250 —	95	2ms/sten	_	accuracy:	0.8012	_	loss:	0.4452
	Epoch 7/100		шо, о сор						
		0s	1ms/step	_	accuracy:	0.8135	_	loss:	0.4263
	Epoch 8/100								
	250/250 —	1 s	1ms/step	-	accuracy:	0.8142	-	loss:	0.4239
	Epoch 9/100								
	250/250 ————	0s	1ms/step	-	accuracy:	0.8092	-	loss:	0.4242
	Epoch 10/100								
		0s	1ms/step	-	accuracy:	0.8137	-	loss:	0.4291
	Epoch 11/100	_							
		0 S	1ms/step	-	accuracy:	0.8213	-	loss:	0.4195
	Epoch 12/100 250/250 —————	0.5	1mc/c+on		26611826111	0 0277		10001	0 4120
	Epoch 13/100	05	Illis/scep	-	accuracy:	0.82//	-	1055:	0.4136
	250/250 ————	۵c	1mc/cton	_	accuracy:	a 9150	_	1000	0 1217
	Epoch 14/100	03	тшэ/ эсер		accuracy.	0.0133		1033.	0.4247
	•	1s	1ms/step	_	accuracy:	0.8334	_	loss:	0.4087
	Epoch 15/100								
	•	0s	1ms/step	_	accuracy:	0.8270	_	loss:	0.4064
	Epoch 16/100				-				
	250/250 ————	0s	1ms/step	-	accuracy:	0.8354	-	loss:	0.3980
	Epoch 17/100								
	250/250 ————	1 s	1ms/step	-	accuracy:	0.8260	-	loss:	0.4030
	Epoch 18/100	_							
		0s	1ms/step	-	accuracy:	0.8424	-	loss:	0.3857
	Epoch 19/100	1.	1mc/c+on			0.0405		1000.	0 2701
	250/250 — Epoch 20/100	15	ıms/step	-	accuracy:	0.8495	-	1055:	0.3/81
	·	1 c	1mc/cton	_	accuracy:	0 8553	_	1000	0 3638
	Epoch 21/100	13	11113/3CEP		accuracy.	0.0555	_	1033.	0.3028
	250/250	95	1ms/sten	_	accuracy:	0.8547	_	loss	0.3647
	Epoch 22/100		шо, о сер			0.00.			
	250/250 —	0 s	1ms/step	_	accuracy:	0.8572	_	loss:	0.3555
	Epoch 23/100				-				
	250/250 ————	1 s	1ms/step	-	accuracy:	0.8640	-	loss:	0.3418
	Epoch 24/100								
	250/250	0s	1ms/step	-	accuracy:	0.8597	-	loss:	0.3480
	Epoch 25/100							_	
	250/250 ————	1 s	1ms/step	-	accuracy:	0.8560	-	loss:	0.3605
	Epoch 26/100		1			0.050:		1 -	0 3405
		12	ıms/step	-	accuracy:	0.8594	-	TOSS:	0.3483
	Epoch 27/100								

→ Model: "sequential"

Layer (type)	Output Shape	Param #		
dense (Dense)	(32, 6)	78		
dense_1 (Dense)	(32, 6)	42		
dense_2 (Dense)	(32, 1)	7		

```
Total params: 383 (1.50 KB)
Trainable params: 127 (508.00 B)
Non-trainable params: 0 (0.00 B)
Optimizer params: 256 (1.00 KB)
[array([[-2.6547974e-01, -2.2832724e-01, 3.3947460e-02, 6.1800456e-01,
         1.9757502e-01, 4.8247880e-01],
       [-4.4663560e-01,\ -3.7876537e-01,\ -2.7900496e-01,\ 3.9352223e-01,
         3.8317564e-01, 6.1381597e-02],
       [ 2.0145959e-01, 4.9254376e-02, 9.8778114e-02, -8.5014361e-01,
         2.2896883e-01, -2.6546156e-01],
       [ 9.4904058e-02, 1.6992192e-03, -7.0457318e-04, 4.1941427e-02,
         3.4490868e-02, 2.9861858e-01],
       [ 3.2151335e-01, 1.7319870e-01, 7.1775697e-02, 1.5637891e-01,
         1.7061082e-01, 4.9185193e-01],
       [ 6.4895773e-01, -1.1502161e+00, 7.3886698e-04, -6.7629224e-01,
         2.8218493e-02, 8.7361646e-01],
       [ 1.9267997e-01, 6.4820093e-03, 2.3088015e-03, -2.1001333e-02,
         9.7534182e-03, 2.2829768e-01],
       [-2.7165353e-01, 2.1154085e-02, 4.0832081e-01, -6.8859205e-02,
         -5.3331554e-01, -3.9900869e-01],
       [ 4.8854563e-01, 9.4737552e-02, 1.4930495e+00, 1.3401368e-01,
         -9.0957826e-01, 5.9874439e-01],
       [ 1.5612599e-01, -1.2398398e-01, -6.1506890e-02, -1.3142451e-02,
        -8.1656553e-02, -5.4847878e-01],
       [ 7.7193528e-01, -7.5546235e-01, -3.1804442e-01, -2.4921866e-01,
         -6.7009574e-01, -5.7402819e-01],
       [-3.9055225e-02, 3.7518330e-02, 2.4187669e-02, 2.9763293e-02,
         2.1161450e-02, -3.6574769e-01]], dtype=float32),
array([ 0.35869825, 1.203878 , -0.9252916 , 0.38862708,
        -0.2912554 ], dtype=float32),
array([[-0.46649447, -0.8127021, 0.5988339, 0.57124764, 0.588409,
         -0.341928 ],
       [-0.25820237, 0.46277976, 0.49570787, -0.5727381, 0.6971715,
         -0.7083853 ],
       [ 1.1594191 , -1.3149115 , -0.6280865 , 1.092445 , -0.5458976 ,
         0.1775133 ],
       [-0.33348483, 0.36421648, 0.13765702, -0.7178686, 0.1500053,
         1.1226299 ],
       [\ 0.756339\ ,\ -0.3417251\ ,\ -0.05422789,\ 0.59922105,\ -0.5065279\ ,
         -0.07459679],
       [ 0.15852295, -0.5584015 , 0.52424115, 0.5844732 , 0.32037237,
         -1.5552546 ]], dtype=float32),
array([ 0.28626803, -0.1716084 , -0.03814194, 0.02464342, 0.18304493,
        0.19081374], dtype=float32),
array([[ 0.7051995 ],
         0.9453702 ],
        [-0.97222364],
        [ 0.82407004],
       [-1.0721738 ]
        [-1.6359533 ]], dtype=float32),
arrav([0.10697455]. dtvne=float32)]
```

Predicting result of test set and evaluate the model using confusion matrix

Making the prediction and evaluating the model Predict whether a male customer with active credit card as well as considered an active member (age 40), who lives in France, has credit score of 600, having a 3 years tenure and have a salary of 50000, will leave the bank or not? Breaking down the parameters Geography = France, Credit score = 600, Gender = Male, Age = 40, Tenure = 3, balance = 60000, number of products = 2, have a credit card = yes, an active member = yes, salary = 50000 Dollars.

```
print(ann.predict(fs.transform([[1,0,0,600,1,40,3,60000,2,1,1,50000]])) > 0.5)
```

```
── 0s 17ms/step
 → 1/1
     [[False]]
y_pred = ann.predict(x_test)
y_pred = (y_pred > 0.5)
print(np.concatenate((y_pred.reshape(len(y_pred),1), y_test.reshape(len(y_test),1)),1))
 <del>___</del> 63/63 -
                              ─ 0s 1ms/step
     [[0 0]
      [0 1]
      [0 0]
      [0 0]
      [0 0]
      [0 0]]
# Confusion Matrix
from \ sklearn.metrics \ import \ confusion\_matrix, \ accuracy\_score
cm = confusion_matrix(y_test, y_pred)
print(cm)
accuracy_score(y_test, y_pred)
 → [[1522 73]
      [ 202 203]]
     0.8625
# Display Confusion Matrix
import seaborn as sns
import matplotlib.pyplot as plt
sns.heatmap(cm, annot=True)
plt.show()
```

