Applied Machine Learning Days Lausanne, Jan 28, 2019

Interactive and Adaptive Translation for Professionals

Joern Wuebker joern@lilt.com

Live Demo

Interactive Machine Translation

Post-editing vs. Interactive MT

Post-editing

full sentence suggestion
edit full sentence

Interactive MT

Notation:

user action

machine action

Interactive Machine Translation (MT)

. : :=:

- Generally feels more natural to translators than post-editing
- Interactive machine translation leads to more edits and higher end translation
 quality [Green et al., 2014] [Client Evaluation, 2017]
 - Error frequency, detected by review, was 1.1% for post-editing & 0.3% for interactive MT.
 - Throughput with interactive MT was 700+ words/hour, double a typical unassisted speed.

Adaptive Machine Translation

Adaptive Machine Translation

- Personalized adaptation means that translation suggestions improve as the translators work:
 - Model immediately learns from every translated sentence.
 - Fewer errors for translators to correct.
 - Adaptation on a per-user basis.
 - Teams become more consistent when the system learns from all of them.

Personalized Neural Adaptation

Real-Time
Feedback Loop

*Interactive*Translator Interface

Adaptive Neural MT System

- Gradient descent on single training instance
- Relearning all parameters in a high-quality neural translation model (Transformer architecture) is too slow to keep up with a proficient translator.
 - ⇒ Translations need to be generated at typing speed
- *Lilt's solution*: learn a **dynamic subset** of parameters to be adapted **for each user**.

Adaptive MT: Inference Process

- 1. **Load** User X's model from cache or persistent storage
- 2. **Apply** model parameters to computation graph
- 3. Perform inference

 $(1.) + (2.) \Rightarrow \text{max.} \sim 10M \text{ parameters for personalized model (latency constraints)}$

Full model: ~36M parameters

Group Lasso

- Simultaneous regularization and tensor selection
- ullet Store personalized models as offsets from baseline model $W=W_b + W_u$
- ullet Regularize offsets W_u , define each tensor as one group $oldsymbol{g}$ for L1/L2 regularization

$$R_{\ell_{1,2}}(W_u) = \sum_{g \in W_u} \sqrt{|g|} \|g\|_2$$

- Total loss: $\mathcal{L} = \mathcal{L}_{seq}(W_b + W_u) + \lambda R_{\ell_{1,2}}(W_u)$
- Cut off all tensors ${\it g}$ with $\frac{1}{|g|} \sum_{w \in g} |w| < \theta$

Adaptation results

Incremental Adaptation Results

moving average BLEU difference adapted vs. baseline (ar-en)

Summary

- Interactive machine translation yields higher quality than from-scratch translation or post-editing
- Model is adapted immediately after every translated sentence
- Group lasso
 - Select a different subset of parameters for each user
 - Translation quality similar to full model adaptation
 - Reduces number of adapted parameters by ~85%

Applied Machine Learning Days Lausanne, Jan 28, 2019

Thank you!

Joern Wuebker joern@lilt.com

Interactive Machine Translation

Adaptive Machine Translation: Example

Eine Glühstiftkerze (1) dient zur Anordnung in einer Kammer (3) **Personalized** Initial MT suggestion The glow plug (1) serves for the arrangement in a chamber (3) c **System** Eine Glühstiftkerze (1) dient zur Anordnung in einer Kammer (3) User correction A sheathed-element glow plug (1) is to be placed inside a cl 3. learn from correction Die Glühstiftkerze (1) umfasst einen Heizkörper (2), der ein mit eir Improved suggestion The sheathed-element glow plug (1) comprises a heater (2) which

Adaptive Machine Translation

- Personalized machine translation: Models are adapted towards each user
 - o **Online adaptation**: Model immediately learns from every translated sentence
- Strict latency constraints
 - Translations need to be generated at typing speed
- Large number of adapted models
 - One model per user
 - New user model after every translated sentence