Terminology for Binary Relations

by Sven Nilsen, 2020

Antisymmetric relation

A **binary relation** `f: $T \times T \to \mathbb{B}$ ` where `(f(a, b) = f(b, a)) => (a = b)`. In matrix form, there can be `true` in upper or lower triangle, but not both. The diagonal might contain both `true` and `false`.

Associative

A function `f: $T \times T \rightarrow U$ ` is commutative when `f(f(a, b), c) = f(a, f(b, c))`.

Binary relation

A function `f : $T \times T \rightarrow \mathbb{B}$ `.

In matrix form, columns are the first argument, rows are second argument and return value is a cell.

Commutative

A function $f: T \times T \to U$ is commutative when f(a, b) = f(b, a).

Connex relation

A **binary relation** $f: T \times T \to \mathbb{B}$ where $f(a, b) \vee f(b, a)$. Implies **reflexivity**.

Equivalence relation

A binary relation `f: $T \times T \rightarrow \mathbb{B}$ ` that is **reflexive**, **symmetric** and **transitive**.

Homogeneous relation

A function `f : $T \times T \rightarrow \mathbb{B}$ `. Also just called a **binary relation**.

Idempotency

A function `f : $T \times T \to U$ ` is idempotent for `x` when `f(x, x) = x`. If `f` is thought of as a product, then `f(a, a) = $a^2 = a$ `. Idempotency must not be confused with **involution**.

Involution

A function `f: T \rightarrow U` is involution when ` \forall x { f(f(x)) = x }`. When `g(f, f) <=> h` where `h` is an identity element of `f`, then `f` is an involution. Involution must not be confused with **idempotency**.

Join

A join `z : T` of a **binary relation** `f : T × T $\rightarrow \mathbb{B}$ `, also called "lowest greater bound" or "supremum" of `x : T` and `y : T`, if `f(x, z) \land f(y, z) \land \forall w : T { (f(z, w) \land f(y, w)) => f(z, w) }`. If there exists a join `z` for `x` and `y`, then it is unique and written `x v y`. If all pairs of `T` has a join, then the join is a binary operation `g : T × T \rightarrow T` that is **commutative**, **associative** and **idempotent**. When not all pairs have a join, the join is a **partial binary operator**.

Join-semilattice order

A binary relation `f: $T \times T \to \mathbb{B}$ ` that is **reflexive**, **transitive**, **antisymmetric** and has joins. Implies **partial order**. Implied by **lattice order**.

Meet

A meet `z : T` of a **binary relation** `f : T × T \rightarrow B`, also called "greatest lower bound" or "infimum" of `x : T` and `y : T`, if `f(z, x) \land f(z, y) \land \forall w : T { (f(w, z) \land f(w, y)) => f(w, z) }`. If there exists a meet `z` for `x` and `y`, then it is unique and written `x \land y`. If all pairs of `T` has a meet, then the meet is a binary operation `g : T × T \rightarrow T` that is **commutative**, **associative** and **idempotent**. When not all pairs have a meet, the meet is a **partial binary operator**.

Meet-semilattice order

A binary relation `f: $T \times T \to \mathbb{B}$ ` that is **reflexive**, **transitive**, **antisymmetric** and has meets. Implies **partial order**. Implied by **lattice order**.

Lattice order

A binary relation `f: $T \times T \to \mathbb{B}$ ` that is **reflexive**, **transitive**, **antisymmetric** and has joins and meets. Implies **partial order**, **join-semilattice order** and **meet-semilattice order**.

Partial binary operator

A binary operator `f: T \star T \to B` where the trivial path ` \forall f < \neg => \true`.

Partial order

A binary relation `f: $T \times T \rightarrow \mathbb{B}$ ` that is **reflexive**, **antisymmetric** and **transitive**.

Preorder

A binary relation that is reflexive and transitive.

An **antisymmetric** preorder is a **partial order**, and a **symmetric** preorder is an **equivalence relation**.

Prewellordering

A binary relation `f: $T \times T \rightarrow \mathbb{B}$ ` that is **connexive**, **transitive** and **wellfounded**.

Quasiorder

The same as a **preorder**.

Reflexive relation

A **binary relation** `f : $T \times T \to \mathbb{B}$ ` where `f(x, x) : (= true)`. In matrix form, all cells across the diagonal are `true`. Implied by **connex** relations.

Semiconnex relation

A **binary relation** $f: T \times T \rightarrow \mathbb{B}$ where $(a \neg = b) \Rightarrow (f(a, b) \vee f(b, a))$.

Symmetric relation

A **binary relation** `f : $T \times T \rightarrow \mathbb{B}$ ` where `f(a, b) = f(b, a)`. In matrix form, the transposed matrix is equal to itself `M^T = M`.

Total preorder

A binary relation `f: $T \times T \rightarrow \mathbb{B}$ ` that is **reflexive**, **connexive** and **transitive**.

Total order

A binary relation `f: $T \star T \to \mathbb{B}$ ` that is antisymmetric, transitive and connexive. Implied by well-order.

Transitive relation

A **binary relation** `f : T × T \rightarrow B` where `f(a, b) \land f(b, c) => f(a, c)`.

Well-founded relation

A binary relation `f: T × T $\rightarrow \mathbb{B}$ ` where ` \forall S \subseteq T { (S \neg = \varnothing) => (\exists m: S { \forall s: S { \neg f(s, m) } })}`.

Well-quasi-order

A **binary relation** `f : $T \times T \to \mathbb{B}$ ` that is **reflexive**, **transitive** and such that any infinite sequence `x₀, x₁, x₂, ... ` from `T` contains `f(x_i, x_j)` where `i < j`. Implies **preorder**.

Well-order

A binary relation `f: $T \times T \to \mathbb{B}$ ` that is antisymmetric, transitive, connexive, and well-founded. Implies total order.