

Vysoké učení technické v Brně

Fakulta informačních technologií Elektronika pro informační technologie $2020\ /\ 2021$

Semestrálny projekt IEL

Pavel Kratochvíl xkrato61 December 2020

Obsah

1	Príklad č. 1	2
	1.1 Zadanie	2
	1.2 Zjednodušovanie obvodu	
	1.3 Riešenie	
2	Príklad č. 2	6
	2.1 Zadanie	6
	2.2 Riešenie	6
3	Príklad č. 3	9
	3.1 Zadanie	9
	3.2 Riešenie	
4	Príklad č. 4	11
	4.1 Zadanie	11
	4.2 Riešenie	11
	4.3 Výpočet v Pythone (pomocou numpy)	13
5	Príklad č. 4	14
	5.1 Zadanie	14
	5.2 Riešenie	14
	5.3 Overenie	15
6	Výsledky	17

1.1 Zadanie

Stanovte napätie U_{R_6} a prúd I_{R_6} s použitím metódy zjednodušovania.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	120	350	650	410	130	360	750	310	190

1.2 Zjednodušovanie obvodu

Obr. 1: Pôvodný obvod

Obr. 2: Spojenie R_3 a R_4

Obr. 3: Spojenie R_2 a R_{34}

$$R_{234} = R_{34} + R_2$$

Obr. 4: Trojuholník -> hviezda

Vytvorenie rovníc na prevod trojuholník -> hviezda:

$$R_A = \frac{R_1 R_{234}}{R_1 + R_{234} + R_5}$$

$$R_B = \frac{R_1 R_5}{R_1 + R_{234} + R_5}$$

$$R_C = \frac{R_5 R_{234}}{R_1 + R_{234} + R_5}$$

$$R_{B7} = R_B + R_7$$

$$R_{C6} = R_C + R_6$$

$$R_{B7C6} = \frac{R_{B7} R_{C6}}{R_{B7} + R_{C6}}$$

Obr. 5: Sériové spojenie R_B a $R_7,\,R_C$ a $R_6;$ paralelné spojenie R_{B7} a $R_{C6}.$

Obr. 6: Výsledný zjednodušený obvod.

$$U = U_1 + U_2$$

1.3 Riešenie

Získavame celkový odpor. Z neho dostávame celkový prúd prechádzajúci obvodom I_{celk} . Z neho už vieme získať prúd $I_{R_{C6}}$ prechádzajúci vetvou, na ktorej sa nachádza aj odpor U_{R_6} .

$$R_{EKV} = R_A + R_{B7C6} + R_8$$

$$I_{celk} = \frac{U}{R_{EKV}} = \frac{U_1 + U_2}{R_{EKV}}$$

$$U_{R_{B7C6}} = I_{celk} R_{B7C6}$$

$$U_{R_{B7C6}} = \frac{U}{R_{EKV}} \times \frac{R_{B7}R_{C6}}{R_{B7} + R_{C6}}$$

$$U_{R_{B7C6}} = \frac{U}{R_A + \frac{R_{B7}R_{C6}}{R_{B7} + R_{C6}} + R_8} \times \frac{R_{B7}R_{C6}}{R_{B7} + R_{C6}}$$

$$I_{R_{C6}} = \frac{U_{RB7C6}}{R_{C6}} = I_{R_6} \approx 0.0919 \,\text{A}$$

$$U_{R_6} = R_6 \times I_{R_6} \approx 68.929 \,\text{V}$$

2.1 Zadanie

Stanovte napätie U_{R_3} a prúd I_{R_3} . Použite metódu Théveninovej vety.

sk.	U_1 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$
В	100	50	310	610	220	570	200

2.2 Riešenie

Obr. 7: Pôvodný obvod

Obr. 8: Obvod bez \mathbb{R}_3

$$R_{45} = R_4 + R_5$$

Napätie U_i je rovné rozdielu napätí pred rezistormi R_6 a R_{45} (proti zemi). Pre výpočet je možné použiť postup pre napäťový delič.

$$U_B = \frac{R_6}{R_2 + R_6} U_1$$

$$U_A = \frac{R_{45}}{R_1 + R_{45}} U_1$$

$$U_i = |U_{R_A} - U_{R_B}|$$

Obr. 9: Nahradenie zdroja skratom

 \check{D} alej je potrebné zistiť odpor R_i medzi bodmi A a B. Obr. 10 sa dá ešte zjednodušiť.

Obr. 10: Zistenie R_i

$$R_{145} = \frac{R_1 R_{45}}{R_1 + R_{45}}$$

$$R_{26} = \frac{R_2 R_6}{R_2 + R_6}$$

Obr. 11: Zistenie R_i

$$R_i = R_{12456} = R_{145} + R_{26}$$

Obr. 12: Výpočet $U_{{\scriptscriptstyle R}_3}$

$$I_{{\scriptscriptstyle R}3} = \frac{U_i}{R_i + R_3}$$

$$I_{R3} = \frac{\left| \frac{R_6}{R_2 + R_6} U_1 - \frac{R_4 + R_5}{R_1 + R_4 + R_5} U_1 \right|}{\frac{R_1(R_4 + R_5)}{R_1 + R_4 + R_5} + \frac{R_2 R_6}{R_2 + R_6} + R_3} \approx 70.424 mA$$

$$U_{{\scriptscriptstyle R}3} = I_3 R_3 \approx 42.9586 V$$

3.1 Zadanie

Stanovte napätie U_{R_2} a prúd I_{R_2} . Použite metódu uzlových napätí (U_A,U_B,U_C) .

L						$R_2 [\Omega]$			$R_5 [\Omega]$
	G	160	0.65	0.45	46	41	53	33	29

3.2 Riešenie

Obr. 13: Pôvodný obvod

$$I_{R_1} = I_{R_2} + I_{R_3}$$
 $I_1 + I_{R_3} = I_{R_5}$
 $I_2 + I_{R_5} = I_{R_4} + I_1$

Zostavíme rovnice podľa jednotlivých uzlov.

$$\frac{U - U_A}{R_1} = \frac{U_A}{R_2} + \frac{U_A - U_B}{R_3}$$

$$I_1 + \frac{U_A - U_B}{R_3} = \frac{U_B - U_C}{R_5}$$

$$I_2 + \frac{U_B - U_C}{R_5} = \frac{U_C}{R_4} + I_1$$

Z rovníc zostavíme maticu:

$$\begin{pmatrix} R_1 R_3 + R_1 R_2 + R_2 R_3 & -R_1 R_2 & 0 \\ R_5 & -R_5 - R_3 & R_3 \\ 0 & R_4 & -R_4 - R_5 \end{pmatrix} \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} R_2 R_3 U \\ -R_3 R_5 I_1 \\ R_4 R_5 I_1 - R_4 R_5 I_2 \end{pmatrix}$$

Po dosadení číselných hodnôt:

$$\begin{pmatrix} 6497 & -1886 & 0 \\ 29 & -82 & 53 \\ 0 & 33 & -61 \end{pmatrix} \begin{pmatrix} U_A \\ U_B \\ U_C \end{pmatrix} = \begin{pmatrix} 347680 \\ -999.05 \\ 191.4 \end{pmatrix}$$
$$\det(\mathbf{A}) = 18276467$$

Výpočet determinantov:

$$\begin{aligned} \det_{U_A} &= \begin{vmatrix} 347680 & -1886 & 0 \\ -999.05 & -82 & 53 \\ 191.4 & 33 & -61 \end{vmatrix} = 1257201753.4 \\ \det_{U_B} &= \begin{vmatrix} 6497 & 347680 & 0 \\ 29 & -999.05 & 53 \\ 0 & 191.4 & -61 \end{vmatrix} = 961653099.3 \\ \det_{U_C} &= \begin{vmatrix} 6497 & -1886 & 347680 \\ 29 & -82 & -999.05 \\ 0 & 33 & 191.4 \end{vmatrix} = 455426395.05 \\ U_A &= \frac{\det_{U_A}}{\det(A)} = \frac{1257201753.4}{18276467} = 68.788 \, \text{V} \\ U_B &= \frac{\det_{U_B}}{\det(A)} = \frac{961653099.3}{18276467} = 52.617 \, \text{V} \\ U_C &= \frac{\det_{U_C}}{\det(A)} = \frac{455426395.05}{18276467} = 24.9187 \, \text{V} \end{aligned}$$

Z rovníc dostávame U_A , U_B a U_C . Z U_A dopočítame U_{R_2} a I_{R_2} .

$$U_{R_2} = U_A \approx 68.788 \,\mathrm{V}$$

 $I_{R_2} = \frac{U_A}{R_2} \approx 1.6778 \,\mathrm{A}$

4.1 Zadanie

Pre napájacie napätie platí $u_1 = U_1 \sin{(2\pi f t)}, u_2 = U_2 \sin{(2\pi f t)}$. Vo vzťahu pre napätie $u_{L_2} = U_2 \sin{(2\pi f t + \varphi_{L_2})}$ určte $|U_{L_2}|$ a φ_{L_2} . Použite metódu slučkových prúdov. Pomocné smery šípiek napájacích zdrojov platia pre špeciálny čas $(t = \frac{\pi}{2\omega})$.

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$L_1 [mH]$	$L_2 [mH]$	$C_1 [\mu F]$	$C_2 [\mu F]$	f [Hz]
Α	35	55	12	14	120	100	200	105	70

4.2 Riešenie

Obr. 14: Pôvodný obvod

Zostavíme rovnice podľa jednotlivých slučiek:

$$i_A: U_1 + Z_{L_2}(I_A - I_C) + Z_{C_1}(I_A - I_B) + R_1I_A = 0$$

$$i_B: R_2(I_B - I_C) + Z_{L_1}I_B + Z_{C_1}(I_B - I_A) = 0$$

$$i_B: U_2 + Z_{C_2}I_C + R_2(I_C - I_B) + Z_{L_2}(I_C - I_A) = 0$$

Zostavíme maticu podľa rovníc:

$$\begin{pmatrix} Z_{L_2} + Z_{C_1} + R_1 & -Z_{C_1} & -Z_{L_2} \\ -Z_{C_1} & R_2 + Z_{L_1} + Z_{C_1} & -R_2 \\ -Z_{L_2} & -R_2 & Z_{C_2} + R_2 + Z_{L_2} \end{pmatrix} \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -U_1 \\ 0 \\ -U_2 \end{pmatrix}$$

Po dosadeni číselných hodnôt:

$$\begin{pmatrix} 2\pi fj \times 0.1 - \frac{j}{2\pi f \times 0.0002} + 12 & \frac{j}{2\pi f \times 0.0002} & -2\pi fj \times 0.1 \\ \frac{j}{2\pi f} \times 0.0002 & 14 + 2\pi fj \times 0.12 - \frac{j}{2\pi f \times 0.0002} & -14 \\ -2\pi fj \times 0.1 & -14 & -\frac{j}{2\pi f \times 0.000105} + 14 + 2\pi fj \times 0.001 \end{pmatrix} \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -35 \\ 0 \\ -55 \end{pmatrix}$$

Ďalej upravujeme:

$$\begin{pmatrix} 12 + 32.6141j & 11.3682j & -43.9823j \\ 11.3682j & 14 + 41.4105j & -14 \\ -43.9823j & -14 & 14 + 22.3286j \end{pmatrix} \begin{pmatrix} I_A \\ I_B \\ I_C \end{pmatrix} = \begin{pmatrix} -35 \\ 0 \\ -55 \end{pmatrix}$$

Pomocou Cramerovho pravidla zistíme jednotlivé prúdy:

$$I_A = -1.4823 - 1.4954j$$

$$I_B = -0.3114 + 0.842j$$

$$I_C = -1.5876 - 1.2826j$$

$$u_{L_2} = Z_{L_2}(I_A - I_C) = 9.3593 + 4.6336j$$

$$|u_{L_2}| = \sqrt{9.3593^2 + 4.6336^2} = 10.4435 \text{ V}$$

Zostáva nám dopočítať φ_{C_2} z imaginárnej a reálnej zložky u_{L_2} :

$$\tan \varphi = \frac{4.6336}{9.3593}$$
$$\tan \varphi \approx 0.4597 rad \approx 26.339^{\circ}$$

Výsledný uhol zodpovedá zhruba 26.339°, takže vieme s istotou povedať, že sa nachádza v 1. kvadrante a teda sa jedná o konečný výsledok.

4.3 Výpočet v Pythone (pomocou numpy)

```
1 # imports
2 import numpy as np
3 from math import *
_{4} j = np.complex(0, 1)
6 # known values
7 \text{ U1}, \text{ U2} = 35, 55
8 R1, R2 = 12, 14
9 L1, L2 = 120*10**(-3), 100*10**(-3)
10 C1, C2 = 200*10**(-6), 105*10**(-6)
_{11} f = 70
12 ZL1, ZL2 = j*2*pi*f*L1, j*2*pi*f*L2
ZC1, ZC2 = -(j/(2*pi*f*C1)), -(j/(2*pi*f*C2))
15 # creation of numpy array for complex number matrix solver
16 A, B = np.array([[ZL2+ZC1+R1, -ZC1, -ZL2], [-ZC1, R2+ZL1+ZC1, -R2], [-ZL2, -
     R2, ZC2+R2+ZL2]]), np.array([-U1, 0, -U2])
18 # solver, definition of each resulting current
19 IA, IB, IC = np.linalg.solve(A, B)
21 # calculation of voltage on L2
UL2 = ZL2 * (IA-IC)
24 # amplitude of UL2
amp = sqrt(UL2.real**2 + UL2.imag**2)
27 # calculation of angle
angle = atan(imag/real)
```

 $U_{L_2} \approx 10.443454432618116 \,\mathrm{V}$ $\varphi_{C_2} \approx 0.45970379979063625 \,\mathrm{rad}$

Pre overenie môžeme skontrolovať amplitúdu napätia na cievke Z_{L_2} v obvode namodelovanom vo Falstad-e. Zistíme, že sedí s našimi výpočtami.

5.1 Zadanie

V obvode na obrázku nižšie v čase t=0 s zopne spinač S. Zostavte diferenciálnu rovnicu popisujúcu správanie obvodu na obrázku, ďalej ju upravte dosadením hodnôt parametrov. Vypočítajte analytické riešienie $i_L=f(t)$. Spravte kontrolu výpočtu dosadením do zostavenej diferenciálnej rovnice.

sk.	U[V]	L[H]	$R [\Omega]$	$i_L(0) [A]$
В	30	10	20	15

Obr. 15: Pôvodný obvod

5.2 Riešenie

Po zopnutí spínača bude podľa II.KZ. platiť:

$$-U + u_R + u_L = 0$$

Vieme že:

$$u_L = L \frac{di}{dt}$$

 $Vyjadrenie\ u_R\ a\ u_L\ z\ Ohmovho\ z\'akona:$

$$-U + Ri + L\frac{di}{dt} = 0$$
$$Ri + L\frac{di}{dt} = U$$

Vytvoríme charakteristickú rovnicu:

$$L\lambda + R = 0$$

$$\lambda = -\frac{R}{L} = -\frac{1}{\tau}$$

Očakávame riešenie v tvare:

$$i(t) = Ke^{\lambda t} + i_L$$

Výpočet:

$$i_{L} = \frac{U}{R} \quad i_{L}(0) = 15 \,\text{A} \quad t = 0$$

$$i_{L}(t) = Ke^{\lambda * 0} + i_{L}$$

$$i_{L}(0) = K + i_{L}$$

$$15 = K + i_{L}$$

$$K = 15 - i_{L} = 15 - \frac{U}{R}$$

$$i_{L}(t) = (15 - \frac{U}{R})e^{-\frac{R}{L}t} + \frac{U}{R}$$

$$i_{L}(t) = \frac{U}{R}(1 - e^{-\frac{R}{L}t}) + 15e^{-\frac{R}{L}t}$$

V našom prípade teda dostávame rovnicu:

$$i_L(t) = \frac{30}{20} (1 - e^{-\frac{20}{10}t}) + 15e^{-\frac{20}{10}t}$$

Tú vieme ešte zjednodušiť:

$$i_L(t) = e^{-2t} \times \frac{27}{2} + \frac{3}{2}$$

5.3 Overenie

Skontrolovanie výslednej rovnice dosadením hodnôt:

$$i_L(0) = \frac{30}{20} (1 - e^{-\frac{20}{10}*0}) + 15e^{-\frac{20}{10}*0}$$

$$15 = 15$$

Analytická rovnica bola správna. Pre ďalšie overenie som namodeloval obvod v Partsime a vybral arbitrárny čas $t=1.5 \,\mathrm{s}$:

Obr. 16: Zapojenie obvodu v Partsim

Výpočet rovnicou ($t = 1.5 \,\mathrm{s}$):

$$i_L(1.5) = \frac{30}{20} (1 - e^{-\frac{20}{10} * 1.5}) + 15e^{-\frac{20}{10} * 1.5}$$
$$i_L(1.5) \approx 2.172 \, 125 \, 423 \, \text{A}$$

Výsledok v Partsim:

Obr. 17: $i_L(1.5 s)$

6 Výsledky

Úloha	Skupina	Výsledok
1	A	$U_{R_6} \approx 68.929 \mathrm{V}$
1		$I_{R_6} \approx 0.0919 \mathrm{A}$
2	В	$U_{R_3} \approx 42.9586 \mathrm{V}$
		$I_{R_3} \approx 70.424 \mathrm{mA}$
3	G	$U_{R_2} \approx 68.788 \mathrm{V}$
J 3		$I_{R_2} \approx 1.6778 \mathrm{A}$
4	A	$ U_{L_2} \approx 10.443 \mathrm{V}$ $\varphi_{L_2} \approx 0.459 \mathrm{rad}$
4		$\varphi_{L_2} \approx 0.459 \mathrm{rad}$
5	В	$i_L(t) = e^{-2t} \times \frac{27}{2} + \frac{3}{2}$