Monads

CS242

Lecture 15

Evaluation Rules: Dynamic Scope

[Var] [Abs] $E \vdash x \rightarrow E(x)$ $E \vdash \lambda x.e \rightarrow \lambda x.e$ $E \vdash e_1 \rightarrow \lambda x.e_0$ $E \vdash e_2 \rightarrow v$ $E'[x: v] \vdash e_0 \rightarrow v'$ [Int] [App] $E \vdash i \rightarrow i$ $E \vdash e_1 e_2 \rightarrow v'$ Note: E[x: v] is the same environment as E, x:v. E is extended (or updated if x is already present) at point x to return Welex Aiken CS 242 Lecture 15

Evaluation Rules: Static Scope

$$E \vdash x \rightarrow E(x)$$

$$E \vdash e_1 \rightarrow \langle \lambda x. e_0, E' \rangle$$

$$E \vdash e_2 \rightarrow v$$

$$E'[x: v] \vdash e_0 \rightarrow v'$$

$$E \vdash e_1 e_2 \rightarrow v'$$

$$E \vdash e_1$$

Review: State

Evaluation rules have the form

$$E, S \vdash e \rightarrow v, S'$$

Expressions evaluate to a value and update the state.

Evaluation Rules with State

$E, S \vdash x \rightarrow E(x), S$	[Var]	[Ab	
		$E, S \vdash \lambda x.e \rightarrow \langle \lambda x.e, E \rangle, S$	
$E, S \vdash i \rightarrow i, S$	[Int]	$E, S_0 \vdash e_1 \rightarrow \langle \lambda x. e_0, E' \rangle, S_1$	
		$E, S_1 \vdash e_2 \rightarrow v, S_2$	
$l \notin dom(S)$	[New]	$E'[x: v], S_2 \vdash e_0 \rightarrow v', S_3$	[App]
E, $S \vdash \text{new} \rightarrow I$, $S[I = 0]$		$E, S_0 \vdash e_1 e_2 \rightarrow v', S_3$	

Another Feature: Exceptions

Evaluation rules have one of two forms

 $E \vdash e \rightarrow v$ evaluation produces a normal value $E \vdash e \rightarrow Exc(v)$ evaluation produces an exception

In the second case further evaluation must be *strict* in the exception: Once produced the exception propagates through all other computation until caught or it is the result of the computation.

Evaluation Rules with Exceptions

Beyond Pure Lambda Calculus

 What do lambda calculus+state and lambda calculus+exceptions have in common?

- Three things
 - They are both lambda calculus + "side information"
 - There are new primitives for manipulating the side information
 - If the extra primitives are not used, the behavior is pure lambda calculus

But Why Not Pure Lambda Calculus?

- Why not make the state an explicit argument to functions?
 - A function $a \rightarrow b$ that works on state could have a type $(a,s) \rightarrow (b,s)$

• But this exposes the state; the programmer must explicitly manage it.

• An alternative signature: $a \rightarrow (s \rightarrow (b,s))$

- Factor out M $b = s \rightarrow (b,s)$ as an abstract data type
 - M b is a state transformer

Language Features

• There are many non-functional language features that have similar properties:

- Continuations
- (Certain styles of) concurrency
- Nondeterminism
- Random numbers
- ...

Monads

- We can abstract the common part of these language features
 - Sequencing to thread the extra information through the computation

- Enables us to *program* these features in pure lambda calculus
 - In a concise way
- More general than the state transformer abstraction
 - Monads are an abstraction for defining such abstractions

Types

- A monad M a is an abstract type
 - The implementation of M is hidden
- The ``normal'' type is a
- The extra information is hidden in the abstraction

Operations

return: $a \rightarrow M a$

A function for creating an element of a monad.

bind: M a \rightarrow (a \rightarrow M b) \rightarrow M b

Sequencing: Take an element of a monad, unwrap the value inside, and apply a function returning an element of the monad with a possibly different type.

Bind is usually written $\lor \gt\gt= f$, for monad value \lor and function f.

Discussion

- One take: Not much here!
 - Pretty basic
- A second take: Just the right abstraction, and simple!
 - It turns out that return/bind are enough to show how to implement many features in the lambda calculus
- Keep in mind that return and bind are different for each monad
 - We have to find appropriate definitions

Partial Functions

Start with a very simple monad

An option type Maybe(a) is either a value of type a or nothing

- Useful for expressing the result of partial functions w/o exceptions
- Examples
 - head: List(a) -> Maybe(a) returns nothing if the list is empty
 - div: int -> int -> Maybe(int) returns nothing if the divisor is zero

Partial Functions

```
data Maybe a =
   Just a
   | Nothing
```

Example use to compose partial functions f and g:

```
λx.let y = f x in
    case y of
    Nothing: Nothing
    Just v: g(v)
```

Partial Functions with Monads

```
data Maybe a =
     Just a
    | Nothing
-- monad M = Maybe
return = Just
v >>= f = case v of
              Nothing -> Nothing
              Just x \rightarrow f x
```

Composing Partial Functions

Consider the composition of two partial functions f and g:

$$\lambda x. x >>= f >>= g$$

The Maybe monad handles the Nothing case transparently

- The case analysis is hidden inside of >>=
- Automatically short-circuits the computation if f returns Nothing

The State Monad

```
return: a \to M a

return = \lambda v.\lambda s.(v,s) -- note M a = s \to (a,s) where s is the state type

>>=: M a \to (a \to M b) \to M b

p >>= f = \lambda s. let (v,s') = p s in f v s'
```

Example Use

- -- increment a global counter each time function foo is called
- -- the state is just a single integer

```
foo = \lambda x.return e >>= \lambda v. inc >>= \lambda z.return v
bar = reset >>= foo >>= foo
```

-- inc and reset are new operations that manipulate the state

inc =
$$\lambda$$
i.(i, i+1)
reset = λ i.(0,0)

Nicer Syntax ...

- -- increment a global counter each time function foo is called
- -- the state is just a single integer

```
foo x = do {
    v = return e
    z = inc
    return v }
```

First Principles ...

- We want a stateful function of type a → b
 - Which is a pure function of type $a \rightarrow s \rightarrow (b,s)$ if we make the state explicit
- The second piece $s \rightarrow (b,s)$ is a state transformer
- How do we compose a state transformer $s \rightarrow (a,s)$ and a stateful function $a \rightarrow s \rightarrow (b,s)$?
 - This is what bind does.

Discussion

Return & bind do just a few things:

- The e in return e is a pure computation
 - Doesn't know about the state, can be written normally
- Bind handles the "plumbing" of the monad
 - Hides the manipulation of the state except through state primitives
 - And correctly sequences it through the computation

Exceptions

```
data Exceptional e a =

Success a

Exception e
```

-- monad M = Exceptional e

return: $a \rightarrow M a$

return = Success

 $>=: M a \rightarrow (a \rightarrow M b) \rightarrow M b$

v >>= f = case v of

Exception I -> Exception I

Success r -> fr

throw = Exception

catch e h = case e of

Exception I h -> h I

Success r h -> Success r

Using Exceptions

Consider composition of two functions f and g that can raise exceptions:

$$\lambda x. x >>= f >>= g$$

Easy to add a handler for f:

$$\lambda x.$$
 (catch (x >>= f) h) >>= g

Or for both f and g:

$$\lambda x$$
. catch (x >>= f >>= g) h

The threading of the exceptions is tedious without bind.

The Continuation Monad

newtype Cont r a = $(a \rightarrow r) \rightarrow r$ -- r is the result type of the computation

A continuation monad M = Cont r

return: $a \rightarrow M a$

return = $\lambda a. \lambda k. k a$

>>=: M a
$$\rightarrow$$
 (a \rightarrow M b) \rightarrow M b c >>= f = λ k. c (λ a. f a k)

callcc: $((a \rightarrow Mb) \rightarrow Ma) \rightarrow Ma$

The Continuation Monad

- Allows building continuations by composing new prefixes onto existing continuations
 - Continuations are built backwards
- Note there is no automatic translation
 - This is not a CPS transformation!
- The programmer must build up the desired continuations by hand

Discussion

Monads are a way of programming language features

- And it's just programming!
 - No need for a compiler
 - Can add or remove features as desired
- Examples of good uses:
 - A small part of the program needs state
 - Use the State monad just in that portion
 - Part of the program needs State and Exceptions
 - Again, just use these monads in the parts where they are needed

Comments

• Three features are important to making monads work

- Higher-order functions
 - Bind is a higher order function
 - Many of the monads wrap higher order functions (continuations)
- Type checking
 - The type checker will complain if monads are used incorrectly
 - Necessary for most programmers to avoid getting tangled up

Upsides

- Since it is ``just programming'', users can write their own monads
 - And they do
 - Many programming patterns are usefully abstracted as monads
- Monads are ubiquitous in Haskell
 - Where they were pioneered
- And have appeared in many other settings
 - Again, easy to adopt new ways of structuring software
 - Even in languages without monads built-in

Downsides

- Monads are not a panacea
 - "It's just programming"
- There are three main limitations
 - Multiple monads don't compose particularly well
 - State(Exceptions(LC)) has different semantics than Exceptions(State(LC))
 - Monads don't commute
 - To use monads, your program must be structured using return/bind
 - Contagious: Whole program tends to end up being written monadically
 - Major hit when converting non-monadic code to monadic code
 - Performance is not what it could be if the features were built in
 - No free lunch there is a reason compilers are large and complicated
- And the programs end up looking like C++!

A New View of Languages

 We now view languages as having a pure core and a number of monads added on

- Most languages have the monads built in
 - State, Exceptions, Concurrency, ...
- But now we realize many of these features can be implemented within a language with higher-order features

History

- Monads were first used in language semantics
 - An idea borrowed from category theory in mathematics
 - Instead of messy environments with state, exceptions, continuations, use monads to structure the execution rules
- Haskell is a pure functional language
 - The designers insisted on purity
 - But how to handle I/O with the outside world?
 - Monads provided an elegant solution
 - Built-in I/O was the first use of monads in Haskell