

Part 1

Operational Amplifiers (Op-amps)

Assoc. Prof. Liter Siek

email: elsiek@ntu.edu.sg

EE2002 Analog Electronics

At the end of this lesson, you should be able to:

- Discuss the historical timeline of op-amps
- Identify the terminals of an op-amp
- Describe the ideal op-amp
- Explain the following concepts:
 - negative feedback, with some understanding of positive feedback
 - negative feedback op-amp for inverting and noninverting configurations
 - equivalent circuit of an op-amp

- Describe how the op-amp can be used as summer, subtractor, integrator, and differentiator
- Calculate input resistance and voltage at the output due to the various input voltage
- Apply the ideal characteristics to solve problems relating to ideal op-amps
- Identify the current coming in and out of an ideal op-amps based on the feedback configuration and voltage at its terminals

Lesson Objectives

- Discuss the effects of having the non-idealities in op-amp especially for I_+ , I_- , and V_{IO}
- Analyse op-amp circuits in negative feedback in the presence of its non-ideal characteristics within the linear region of operations
- Calculate the AC and DC components at the op-amp output due to input sources that comprised of both nonideal sources and its inputs
- Explain the limitation of slew rate for the op-amp

- Explain the concept of gain-bandwidth product for op-amp
- Analyse and calculate bandwidth in relation to the gain
- Analyse how slew-rate could cause output to be distorted if slew-rate limitation is not observed

Outline

- Introduction
- Ideal Op-amps
- Special Functions of Op-amps
- Non-ideal Op-amps
- Slew Rate
- Bandwidth

Introduction

1940s

- The original concept of the operational amplifier (op-amp) came from the field of analog computers.
- It is derived from the concept of an extremely high gain, differential-input amplifier, the operating characteristics of which were determined by the feedback elements used with it.
- Different analog operations could be implemented by changing the types and arrangement of feedback elements.
- Early operational amplifiers used basic hardware of that era - the vacuum tube.

Introduction

1960s

- Significantly widespread use of op-amps did not really begin until the 1960s.
- Solid-state techniques were applied to op-amp circuit design.
- In the mid-1960s the first integrated circuit (IC) op-amp was produced which is well known as µA709.
- In 1968, µA741 was produced (Lojek, 2007).

Some Op-amp Models

Figure 1. GAP/R's K2-W: a vacuum-tube op-amp (1951).

Figure 4. ADI's HOS-050: a high speed hybrid IC op-amp (1979).

1950s

1960s

1970

Recent trends

Figure 2. GAP/R's model P45: a solid-state, discrete op-amp (1961).

Figure 3. GAP/R's model PP65: a solid-state op-amp in a potted module (1962).

Figure 5. An op-amp in a modern mini Dual-in-line Package (DIP).

Figure 5. An op-amp in a modern mini Dual-in-line Package (DIP).

Figure 6. A typical 8 pin DIP op-amp integrated circuit.

Figure 7. A microphotograph of the 741 op-amp.

The 741 Op-amp

Figure 8. Internal schematic of a model 741 amplifier.

The Op-amp Terminals

- From a signal point of view, op-amp has three terminals: two input terminals for differential signal input and one single-ended output terminal.
- Figure 9 shows the symbol used to represent the op-amp; terminals 1 and 2 are input terminals, and terminal 3 is the output terminal.

$$v_{o} = A_{vol}v_{id}$$

$$= A_{vol}(v_{2} - v_{1})$$
where
$$v_{id} = (v_{2} - v_{1})$$

Figure 9. Circuit symbol for the op-amp.

The Op-amp Terminals

- Most IC op-amps require two power supplies V^+ and V^- sometimes given as $[+V_{\rm CC};\,V_{\rm CC};\,V_{\rm DD}]$ and $[-V_{\rm CC};\,V_{\rm EE};\,V_{\rm SS}]$ as shown in Figure 10.
- No pin is provided for the reference grounding point; the reference grounding point in op-amp circuits is just the common terminal of the two power supplies.

Figure 10. The op-amp shown connected to DC power supplies.

- It is common that the power supply terminals are not shown explicitly in the schematic diagram.
- Note that all op-amp circuits require power for their operation.
- In addition to the three signal terminals and two power supply terminals, an op-amp may include terminals for frequency compensation and terminals for offset nulling.

The Ideal Op-amp

- An op-amp is suppose to sense the difference between the voltage signals applied at its two differential inputs, i.e., v₂ - v₁.
- Multiply $v_2 v_1$ by a number A_{voL} (open-loop voltage gain) to cause $A_{\text{voL}}(v_2 v_1)$ to appear at the output terminal.

$$v_{o} = A_{vol} (v_{2} - v_{1})$$
$$= A_{vol} v_{id}$$

• The real op-amp has a very large gain, A_{voL} , but not infinite.

Properties of Ideal Op-amp

i. The voltage gain is infinite i.e. $A_{vol} = \infty$.

This implies that with finite output voltage, the required differential input is zero.

$$v_{id} = (v_2 - v_1) = \frac{v_o}{A_{vol}} \rightarrow 0$$

as $A_{\text{vol}} \rightarrow \infty$ and $v_0 \neq \infty$ since the output is finite.

ii. The input differential resistance is infinite, $R_{\rm id} = R_{\rm in} = \infty$. Ideal op-amp does not draw any input current; the signal current into terminal 1 and terminal 2 are both zero.

Properties of Ideal Op-amp

iii. The output resistance is zero, $R_o = 0$.

The output voltage at terminal 3 with respect to the voltage at the input terminals is always

 $A_{\mathrm{voL}}(v_2-v_1)=A_{\mathrm{voL}}v_{\mathrm{id}};$ independent of the current that may be drawn from output terminal into a load if the load current is finite, $\left|I_{\mathrm{R_L}}\right|<\infty$.

iv. The bandwidth is infinite, $BW = \infty$.

This implies that there will be no phase shift between the input and output signals.

v. There is zero input offset voltage, $v_{IO} = 0$. This implies that $v_0 = 0$ if $v_{id} = 0$.

vi. Slew rate, $SR = \infty$.

However, slew rate is defined as the maximum rate of change of the output voltage, and therefore,

$$SR > \frac{\mathrm{d} v_o}{\mathrm{d} t} \bigg|_{\mathrm{max}} = \infty$$

The equivalent circuit for an op-amp

The equivalent circuit for an ideal op-amp

For Ideal Op-amp

The differential transfer characteristic v_0 versus $v_{id} = v_+ - v_-$ of the basic op-amp (Figure 11) is shown in Figure 12.

Figure 11. Simplified representation of basic operational amplifier.

Figure 12. Differential mode voltage transfer characteristic v_0 versus $(v_+ - v_-)$.

Equivalent Circuit

- The use of $\pm V_{cc}$ allows the v_o of the op-amp to swing in both positive and negative voltage directions.
- In the linear region, $v_0 = A_{\text{vol}}(v_+ v_-)$.
 - Op-amps used as amplifiers operate within this region.
 - This is usually ensured by employing negative feedback in the circuits.
- In the positive saturation region, $v_{\rm o} = V_{\rm cc}$ for $A_{\rm voL}v_{\rm id} > V_{\rm cc}$.
- For negative saturation region, $v_{\rm o} = -V_{\rm cc}$ for $A_{\rm voL}v_{\rm id} < -V_{\rm cc}$.

Equivalent Circuit

Practically the saturation limits of v_o are 1 V to 2 V below the absolute values of the supplies.

$$v_{\rm o} = +V_{\rm cc}$$
 $v_{\rm o} > +V_{\rm cc}$

$$v_{\rm o} = -V_{\rm cc}$$
 $v_{\rm o} < -V_{\rm cc}$

If $R_0 = 0$, then

$$v_{\text{out}} = A_{\text{vOL}}(v_+ - v_-) \text{ for } -V_{\text{cc}} < v_{\text{out}} < +V_{\text{cc}}$$

$$v_{\rm out} = +V_{\rm cc}$$
 for $v_{\rm out} > +V_{\rm cc}$

$$v_{\rm out} = -V_{\rm cc}$$
 for $v_{\rm out} < -V_{\rm cc}$

If portion of amplifier or circuit output is brought back to the input through a specific network and mixed with input the process is known as feedback.

Classification of Feedback:

Positive Feedback

Feedback signal is returned to op-amp's non-inverting input.

Negative Feedback

Feedback signal is connected to the inverting input of the op-amp.

Examples of Negative Feedback:

Negative Feedback Non-inverting Gain Amplifier

$$v_{s} = v_{+} = v_{-} = v_{R_{1}}$$

$$\frac{v_{R_{1}}}{R_{1}} = i_{R_{1}}$$

$$v_{R_{2}} = i_{R_{2}} \times R_{2}$$

$$\operatorname{But} i_{R_{1}} = i_{R_{2}} \therefore I_{-} = I_{+} = 0$$

$$\therefore v_{R_2} = \frac{v_{R_1}}{R_1} \times R_2 = \frac{v_s}{R_1} \times R_2$$

$$v_o = v_{R_1} + v_{R_2} = v_s + \frac{v_s}{R_1} \times R_2$$

$$\frac{v_o}{v_s} = 1 + \frac{R_2}{R_1} = A_{\text{vCL}}$$

Examples of Negative Feedback:

Negative Feedback Inverting Gain Amplifier

$$v_{-} = v_{+} = 0$$

$$\frac{v_{s}}{R_{1}} = i_{R_{1}}$$

$$v_{R_{2}} = i_{R_{2}} \times R_{2}$$

$$\operatorname{But} i_{R_{1}} = i_{R_{2}} \stackrel{\cdot}{\cdot} I_{-} = I_{+} = 0$$

$$v_{o} = -v_{R_{2}} = -i_{R_{2}} \times R_{2}$$

$$= -i_{R_{1}} \times R_{2} = -\frac{v_{s}}{R_{1}} \times R_{2}$$

$$\frac{v_{o}}{v_{s}} = -\frac{R_{2}}{R_{1}} = A_{vCL}$$

Examples of Negative Feedback:

Negative Feedback Non-inverting Unity Gain Amplifier

$$v_{s} = v_{+} = v_{-} = v_{o}$$
 $v_{o} = v_{-} + (i_{-} \times R_{2})$
 $= v_{+} + (i_{-} \times R_{2})$
 $= v_{s} + (i_{-} \times R_{2})$
 $= v_{s} \div i_{-} = 0$

Alternatively,

$$\frac{v_{o}}{v_{s}} = 1 + \frac{R_{2}}{R_{1}} = 1 + \frac{R_{2}}{\infty}$$

$$= 1 + 0$$

$$= 1 = A_{vCL}$$

 \bullet As $i_{-} = 0$, $v_{R_{2}} = 0$

Hence, R_2 has no effect, and can be shorted for convenience.

Examples of Positive Feedback:

Note: Output is in Non-linear Region and Input Differential is not Zero

$$v_{s} \neq v_{+} = v_{o}$$

$$v_{s} = v_{-}$$
 $v_{o} = -V_{cc} \text{ for } v_{-} > v_{+}$
 $v_{o} = +V_{cc} \text{ for } v_{-} < v_{+}$

Examples of Positive Feedback:

Note: Output is in Non-linear Region and Input Differential is not Zero

$$v_{\rm s} = v_{-}$$

$$v_{\rm o} = -V_{\rm cc} \text{ for } v_{-} > v_{+}$$

$$\therefore v_{+} = -V_{\text{CC}} \times \frac{R_{1}}{R_{1} + R_{2}}$$

 $\therefore v_{+} = -V_{CC} \times \frac{R_{1}}{R_{1} + R_{2}}$ a potential divided voltage of the output voltage, $-V_{CC}$

$$v_0 = +V_{CC} \text{ for } v_- < v_+$$

$$\therefore v_{+} = +V_{CC} \times \frac{R_{1}}{R_{1} + R_{2}}$$

 $\therefore v_{+} = +V_{CC} \times \frac{R_{1}}{R_{1} + R_{2}} \quad \text{a potential divided voltage of the output voltage, } +V_{CC}$

Examples of Positive Feedback:

Note: Output is in Non-linear Region and Input Differential is not Zero

$$v_{s} > 0 \Rightarrow v_{+} > v_{-}$$
 (ground)
 $v_{o} = +V_{cc}$

$$\therefore v_{+} = \left[(+V_{CC} - v_{S}) \times \frac{R_{1}}{R_{1} + R_{2}} \right] + v_{S}$$
 a potential divided voltage between the output and v_{S} , wrt to ground

$$-v_{\rm s} < 0 \implies v_{\scriptscriptstyle +} < v_{\scriptscriptstyle -}$$
 (ground)

$$v_{\Omega} = -V_{CC}$$

$$\therefore v_{+} = \left[\left(-V_{CC} + v_{S} \right) \times \frac{R_{1}}{R + R} \right] - v_{S}$$

 $\therefore v_{+} = \left[(-V_{cc} + v_{s}) \times \frac{R_{1}}{R_{1} + R_{2}} \right] - v_{s}$ a potential divided voltage between the output and $-v_{s}$, wrt to ground

Comparative Table

Examples of Negative Feedback

Examples of Positive Feedback

For an ideal op-amp used in a negative feedback circuit:

$$v_{id} = (v_{+} - v_{-})$$

$$= \frac{v_{o}}{A_{voL}}$$

As
$$A_{\text{vol}} \rightarrow \infty \Rightarrow v_{id} \rightarrow 0$$

i.e.,
$$v_{-} = v_{+}$$

This leads to:

For any output voltage in the linear operating region of an op-amp with negative feedback, the two inputs are virtually at the same potential.

Using in an op-amp circuit operating in the linear region, $v_{-} = v_{+}$

Op-amps used in circuits that employed negative feedback are working in linear region as amplifying devices.

*Under this condition, we have $v_{id} = 0 \Rightarrow v_{-} = v_{+}$

Under open-loop or positive feedback condition the op- amp is working in its non-linear region and its output is saturated and amplitude limited.

Generally, the output value is 1 to 2 volts below the supply voltage.

For $V_{\rm cc}=\pm\,15~{\rm V}$ then $v_{\rm o}=\pm\,(13~{\rm to}~14)~{\rm V}$ The relationship $v_{\rm id}=0$ is no more valid and its value depends on the input voltage $v_{\rm i}$.

From the above it is very important for one to decide the type of feedback, negative or positive, before performing the circuit analysis.

Op-amp in Closed-loop Operation

Op-amp Open-loop Operation

Linear region

Amplifier

Non-linear region

(Comparator)

parameters

Figure 13. Analysis of op-amp circuits.

Inverting Negative Feedback Amplifier Circuits

- An inverting amplifier circuit using an op-amp is shown in Figure 14 and inverts the phase of the input signal while amplifying it.
- The feedback employed in the circuit, from v_0 through feedback resistor R_2 back to the inverting input, is negative.
- Therefore, the op-amp is operating as an active linear device and $v_- = v_+$.

$$v_{-} = v_{+} = 0 \text{ V}$$

Figure 14. An Inverting feedback amplifier circuit using an op-amp.

Application of Linear Superposition Principle

i. Kill v_1

 R_1 & R_2 form a voltage divider circuit in series with v_o .

Therefore,

$$v_{n_1} = \left(\frac{R_1}{R_1 + R_2}\right) v_{o}$$

Application of Linear Superposition Principle

Kill $v_{\rm o}$

$$v_{n_2} = v_{R_2}$$

Therefore,

$$R_1$$
 $v_1 \longrightarrow v_{n2}$
 $R_2 \longrightarrow R_2$

$$v_{n_2} = \left(\frac{R_2}{R_1 + R_2}\right) v_1$$

Application of Linear Superposition Principle

$$||| v_n = v_{n_1} + v_{n_2}|$$

$$\therefore v_n = \left(\frac{R_1}{R_1 + R_2}\right) v_0 + \left(\frac{R_2}{R_1 + R_2}\right) v_1$$

Setting $v_n = 0$ yields:

$$\left(\frac{R_1}{R_1 + R_2}\right) v_0 = -\left(\frac{R_2}{R_1 + R_2}\right) v_1$$

$$A_{\text{vol}} = \frac{v_{\text{o}}}{v_{\text{l}}}$$
 Inverting gain
$$= -\frac{R_{2}}{R_{1}} \left[\frac{V}{V} \right] = \left| \frac{R_{2}}{R_{1}} \right|$$
 \tag{-180}\circ

This leads to:

Any voltage applied to the end of a resistor, connected to the inverting input of an op-amp in a circuit, will be multiplied by the inverting gain as it appears on the amplifier output.

Concept of $R_{\rm in}$ of a Circuit

If
$$R_{\rm in} \to \infty \Rightarrow i_{\rm s} \to 0$$

That is, the applied source v_s is not required to deliver signal power $(v_I i_s)$ to the amplifier.

Concept of $R_{\rm in}$ of a Circuit

Where does the signal output power $\frac{v_o}{R_{\perp}}$ come from ?

- It is from the DC power supplies of the amplifier.
- The supplies are not shown in the figure.
- For applied voltage signal v_s,
 it requires R_{in} to be ∞ or ≥ 10R_s and v_I ≈ v_s.

Input Resistance, $R_{\rm in}$

The input resistance of the inverting feedback circuit seen by $v_{\rm I}$, by Ohm's Law, is:

$$v_{R_1} = v_{I}$$

$$v_{R_1} = i_{I}R_{I}$$

$$R_{in} = \frac{v_{I}}{i_{I}} = R_{I}$$

Equivalent circuit of a practical op-amp

Op-amp used as an inverting amplifier

For an ideal op-amp:

The output resistance, $R_{\rm out}$, looking into the output terminal of the op-amp circuit is

$$R_{\text{out}} = \frac{v_{\text{o}}}{i_{\text{o}}} = R_{\text{o}}$$

$$= 0$$

 $(R_o = 0 \text{ for ideal op-amp})$

A non-inverting feedback amplifier using an op-amp is illustrated in Figure 15.

This circuit has the same phase on the output as on the input; only the magnitude of the output voltage is different.

Figure 15. The non-inverting configuration.

- It uses negative feedback (v_0 through R_2 to negative input)
- \bullet $v_{-} = v_{+}$
- \bullet $v_{+} = v_{1}$

$$\bullet \quad v_{-} = \left(\frac{R_{1}}{R_{1} + R_{2}}\right) v_{0}$$

$$\Rightarrow \frac{v_1}{v_0} = \frac{R_1}{R_1 + R_2}$$

i.e.,
$$A_{\text{vcL}} = \frac{R_1 + R_2}{R_1} = 1 + \frac{R_2}{R_1}$$

Non-inverting gain

The potential on the inverting input is identical to that of the non-inverting input.

Reasons:

- i. It uses negative feedback.
- ii. The op-amp used is assumed to be ideal in the sense that $A_{\text{vol.}} \to \infty$.
- iii. Op-amp is in linear region, $-V_{cc} < v_o < V_{cc}$.

The voltage gain between the non-inverting input and the output is the non-inverting gain.

The voltage gain between the inverting input and output is also, the non-inverting gain.

This leads to:

Any voltage appearing directly on either input of the opamp will be multiplied by the following non-inverting gain.

$$A_{\text{vcL}} = \frac{R_1 + R_2}{R_1} = 1 + \frac{R_2}{R_1}$$

Examples:

Output negative,

Output negative, inverting

Output positive, inverting

$$R_{\rm I} \ge R_{\rm F}$$

$$v_{o} = (+)E \frac{R_{F} + R_{I}}{R_{I}}$$
 $v_{o} = (-)E \frac{R_{F} + R_{I}}{R_{I}}$ $v_{o} = (-)E \frac{R_{F} + R_{I}}{R_{I}}$ $v_{o} = (+)E \frac{R_{F} + R_{I}}{R_{I}}$

$$v_{o} = (-)E \frac{R_{F} + R_{I}}{R_{I}}$$

$$v_{o} = (-)E \frac{R_{F} + R_{I}}{R_{I}}$$

$$v_{o} = (+)E \frac{R_{F} + R_{I}}{R_{I}}$$

The input resistance of the non-inverting feedback amplifier is

$$R_{\rm in} = \frac{v_{\rm I}}{i_{+}} = \frac{v_{\rm I}}{0} = \infty$$

The output resistance is $R_{\rm out} = 0 \ \Omega$

With Voltage-Divider Input

This circuit is given in Figure 16, where a voltage divider consisting of R_2 and R_3 is used to reduce the signal amplitude to the input of a non-inverting feedback amplifier.

Figure 16. Non-inverting amplifier with voltage-divider input.

With Voltage-Divider Input

This circuit is used to reduce v_i to v_B

Voltage divider gain

 $= \frac{R_{\rm F} + R_{\rm I}}{R}$

Non-inverting closed- loop voltage gain

The closed-loop gain of the circuit is

$$A_{\text{vcL}} = \frac{v_{\text{o}}}{v_{i}}$$

$$= \frac{v_{\text{B}}}{v_{\text{i}}} \times \frac{v_{\text{o}}}{v_{\text{B}}}$$

$$= \left(\frac{R_{3}}{R_{3} + R_{2}}\right) \left(\frac{R_{\text{F}} + R_{\text{I}}}{R_{\text{I}}}\right)$$

Scaling Subtractor

 $R_{\rm F}$

Scaling Subtractor

ii.

Non-inverting amplifier

$$v_{o2} = \left(\frac{R_3}{R_2 + R_3}\right) \left(\frac{R_F + R_I}{R_I}\right) v_2$$

$$v_{+} = \left(\frac{R_{3}}{R_{2} + R_{3}}\right) v_{2}$$

Scaling Subtractor

By using Linear Superposition Principle:

$$v_{o} = v_{o1} + v_{o2}$$

$$= \left(-\frac{R_{F}}{R_{I}}\right)v_{1} + v_{2}\left(\frac{R_{3}}{R_{2} + R_{3}}\right)\left(\frac{R_{F} + R_{I}}{R_{I}}\right)$$

If
$$\frac{R_{\rm F}}{R_{\rm I}} = \frac{R_{\rm 3}}{R_{\rm 2}}$$
, then $v_{\rm o} = -\frac{R_{\rm F}}{R_{\rm I}} v_{\rm 1} + \frac{R_{\rm F}}{R_{\rm I}} v_{\rm 2}$
$$= \frac{R_{\rm F}}{R_{\rm I}} (v_{\rm 2} - v_{\rm 1})$$

Special Case

When $R_F = R_3$ and $R_I = R_2$ it is simply called,

Difference Amplifier with a gain of $\frac{R_{\rm F}}{R_{\rm I}}$.

This scaling subtractor gives an output that is proportional to the difference between the two inputs.

For
$$R_{\rm F} = R_{\rm I} = R_3 = R_2$$
, then $v_{\rm o} = v_2 - v_1$.

The circuit is called **subtractor**.

Voltage Follower (Buffer)

Figure 17 shows a voltage follower circuit.

Figure 17. Voltage follower.

$$v_{+} = v_{\text{in}}$$
 \Rightarrow From $v_{-} = v_{+}$ $v_{-} = v_{\text{o}}$ \Rightarrow yields $v_{\text{o}} = v_{\text{in}}$

$$R_{1} = \infty, R_{2} = 0$$

$$A_{\text{vcL}} = \frac{R_{1} + R_{2}}{R_{1}} = 1$$

$$v_{\rm in} - I_{+} \times R_{S} = v_{+}$$
 $v_{+} = v_{-}$
 $v_{-} + I_{-} \times R_{C} = v_{o}$

$$v_{\text{in}} - I_{+} \times R_{S} = v_{\text{o}} - I_{-} \times R_{C}$$

$$\therefore v_{\text{in}} = v_{\text{o}}$$

This circuit is extremely useful as an impedance transformer. (Figure 18a).

The input impedance is nearly infinite, the output impedance is nearly zero, and the voltage gain is +1.

Note:

Figure 18a. Impedance transformer.

Figure 18b. Potential divider.

$$v_{o} = \frac{R_{L}}{R_{L} + R_{s}} v_{s}$$

By varying $R_{\rm L}$ the voltage across it, $v_{\rm o}$, will not be affected and will always be maintained at a constant and is equal to $v_{\rm s}$.

 $v_{\rm o}$ does not depend on $R_{\rm s}$.

With
$$R_{\rm L}=\infty$$
, $I_{\rm p}=I_{\rm n}$

DC current is given in the op-amp's data sheet.

$$I_{FB} = \frac{3.0 \text{ V}}{10 \text{ k}}$$
$$= 0.3 \text{ m A}$$

$$I_{L} = \frac{v_{o}}{R_{L}}$$

$$= \frac{6.6 \text{ V}}{10 \text{ k}\Omega}$$

$$= 0.66 \text{ m A}$$

Current Flow in Op-amp

$$I_{L} = \frac{9.2 \text{ V}}{1 \text{ k}}$$
$$= 9.2 \text{ m A}$$

$$I_{\text{FB}} = \frac{9.2 \text{ V}}{9.2 \text{ k}}$$

= 1.0 m A

Inverting Integrator

An inverting integrator using an ideal op-amp is shown in Figure 19.

Figure 19. The miller or inverting integrator.

$$v_{c}(t) = v_{o}(t) \qquad i_{1}(t) = -C \frac{\mathrm{d}v_{o}}{\mathrm{d}t} - C$$

$$v_{1}(t) = i_{1}(t)R$$

$$\dot{v}_{o}(t) = -\frac{1}{C} \int_{-\infty}^{t} i_{1}(t) dt$$
$$= -\frac{1}{RC} \int_{-\infty}^{t} v_{1}(t) dt$$

The current i_1 is given by

$$i_{1} = \frac{v_{1}(t)}{R} \quad (v_{-} = v_{+} = v_{0})$$

If at time t=0 the voltage across the capacitor, measured in the direction indicated, is V_C , then

$$v_0(t) = V_C - \frac{1}{C} \int_0^t i_1(t) dt$$
$$= V_C - \frac{1}{RC} \int_0^t v_I(t) dt$$

The time constant RC is called the integration time constant.

The integrator circuit is inverting because of the minus sign associated with its closed-loop gain; it is known as Miller integrator.

Inverting Differentiator

The circuit topology of inverting differentiator is shown in Figure 20.

Figure 20. An inverting differentiator.

$$v_{-} = v_{+} = 0$$

$$i_{c}(t) = C \frac{dv_{I}}{dt}$$

$$v_{o}(t) = -i_{c}(t)R$$

$$= -RC \frac{dv_{i}}{dt}$$

The output signal is proportional to the derivative of the input signal.

Thus it functions as a differentiator.

Plot the output, $v_{\rm out}$, of the inverting integrator using an ideal op-amp if $v_{\rm in}$ is a ramp that levels off at the value $v_{\rm in}=4~{\rm V}$ after $20~{\rm mS}$. For the inverting integrator, R_1 =5 k Ω and $C=1~{\rm \mu F}$. Assume the initial output is zero and the power supply voltages for the op-amp are $\pm 10{\rm V}$.

For
$$0 < t < 20 \text{ mS}$$
, $v_{\text{out}} = -\frac{1}{R_1 C} \int_0^t v_{\text{in}}(t) dt$

Since v_{in} varies linearly during this period, hence,

$$v_{\text{out}} = -\frac{1}{R_1 C} \int_0^{20 \text{ m/s}} \left[\frac{4}{20 \text{ m/s}} \right] (t) dt$$
$$= -\frac{1}{R_1 C} \left[\frac{4}{20 \text{ m/s}} \right] \frac{t^2}{2} \Big|_0^{20 \text{ m/s}}$$

$$= \frac{\frac{4}{20 \times 10^{-3}} (20 \times 10^{-3})^{2}}{2 (5 \times 10^{3}) (1 \times 10^{-6})}$$

= -8 V

For t > 20 mS, the input remains at 4 V, hence the integrator will continue to integrate this constant value.

$$v_{\text{out}} = -\frac{1}{R_{1}C} \int_{20 \text{ mS}}^{t} v_{\text{in}}(t) dt - 8V$$

$$= -\frac{1}{R_{1}C} \int_{20 \text{ mS}}^{t} 4 dt - 8V$$

$$= -\frac{1}{R_{1}C} (4)t \Big|_{20 \text{ mS}}^{t} - 8V$$

$$= -\frac{4}{(5 \times 10^{3})(1 \times 10^{-6})} (t - 20 \times 10^{-3}) - 8V$$

$$= -0.8 [V/m S](t - 20 \text{ mS}) - 8$$

The integration cannot continue indefinitely, as the output will saturate with the negative supply, -10 V.

This will happen at

$$-0.8 [V/mS](t-20 mS) - 8 = -10$$

$$t = 22.5 \text{ m S}$$

Feedback with Multiple **Resistors: Example**

$$\frac{v_{o}}{v_{I}} = \frac{v_{x}}{v_{x}} \times \frac{v_{o}}{v_{x}}$$

$$= -\frac{R_{3}}{R_{1}} \times \frac{v_{o}}{v_{x}}$$

$$= -\frac{R_{3}}{R_{1}} \times \left[\frac{R_{5} + (R_{3}//R_{4})}{R_{3}//R_{4}}\right] - \frac{R_{3}}{R_{3}}$$

Check:
$$\frac{v_0}{v_i}\Big|_{R_4=\infty} = -\frac{(R_3 + R_5)}{R_1}$$

$$\frac{v_0}{v_i}\Big|_{R_5=0} = -\frac{R_3}{R_1}$$

$$\frac{v_0}{R_5}\Big|_{R_5=0} = -\frac{R_5}{R_5}$$

Input and Output Offset Voltages

Input Offset Voltage, $V_{\rm IO}$

- $V_{\rm IO}$ is defined as negative of the DC voltage that must be applied between the inputs of an op-amp to force $v_{\rm o}$ to zero under open-loop conditions (Figure 21).
- The $V_{\rm IO}$ can be either positive or negative and typically has a value between $10~{\rm mV}$ and $1~{\rm \mu V}$, depending on the type of op-amp.
- It may also vary with temperature.

Figure 21. Definition of input offset voltage.

Input and Output Offset Voltages

Input Offset Voltage, $V_{\rm IO}$

An ideal op-amp has a $V_{\rm IO}$ of zero.

A)

To compensate v_0 = 0, we use:

Adjust $V_{\rm S}$ until $v_{\rm o}$ = 0.

That value of $V_{\rm S}$ is the negative of the input offset voltage $V_{\rm IO}$.

In this case $V_{\rm IO}$ < 0.

Input and Output Offset Voltages

Input Offset Voltage, $V_{\rm IO}$

To force $v_0 = 0$, we use:

B)

Adjust $V_{\rm S}$ until $v_{\rm o}$ = 0 and this $V_{\rm S}$ is the negative of the $V_{\rm IO}$ for the op-amp.

In this case $V_{10} > 0$.

Input Offset Voltage, $V_{\rm IO}$

The effect of $V_{\rm IO}$ on an op-amp circuit can be modelled by adding a DC voltage source $V_{\rm IO}$ in series with the non-inverting input terminal, as shown in Figure 22.

Figure 22. Offset-free op-amp with offset tagged at the non-inverting input.

Output Offset Voltage

- The output offset voltage of an op-amp is due to the imbalance of its internal circuitry.
- The output offset voltage is equal to the input offset voltage $V_{\rm IO}$ multiplied by the $A_{\rm vOL}$.
- The polarity of the output offset voltage can be either positive or negative.

Input Offset Voltage Example

Example 1:

An inverting feedback amplifier has a closed-loop gain of $A_{\rm vcL}$ = $-5{\rm V/V}$. The input signal $V_{\rm IN}$ is $-1.0~{\rm VDC}$. The output voltage is $5.120~{\rm VDC}$. What's the $V_{\rm IO}$ for the op-amp ?

Input Offset Voltage Example

Solution:

i) The expected output voltage is $v_o = \left(-\frac{R_F}{R_I}\right)V_{IN}$ = -5(-1) = 5.0 VDC

- ii) The actual $v_o = 5.120 \text{ VDC}$
- iii) The difference between (i) and (ii) is

$$5.120 - 5.0 = 0.120 \text{ VDC}$$

Input Offset Voltage Example

Solution (Cont.):

iv) The input offset voltage $V_{\rm IO}$ will contribute to an output given by

$$v_{o} = \left(1 + \frac{R_{F}}{R_{I}}\right) V_{IO}$$
$$= (1 + 5) V_{IO}$$
$$= 6 V_{IO}$$

(v) The output obtained in (iv) must be 0.120 VDC.

Thus,
$$6V_{IO} = 120 mV$$

$$V_{IO} = 20 mV$$

Input Offset Voltage Example

Example 2.

An op-amp used in a non-inverting feedback amplifier with $A_{\rm vcL} = 8 {\rm V/V}$ has an $V_{\rm IO}$ of $\pm 15~{\rm mV}$ max. The output voltage is $-5.85~{\rm V}$ when the input is $-0.75~{\rm VDC}$. Find the input offset voltage $V_{\rm IO}$.

 V_{IO} in series with signal input

Input Offset Voltage Example

Solution:

i) The expected output voltage is

$$v_{o} = (-0.75)(8)$$

= -6.0 VDC

- ii) The actual output is -5.85 VDC.
- iii) The difference between the two outputs is 0.15 VDC.

Input Offset Voltage Example

Solution (Cont.):

iv) The output contributed by V_{IO} is

$$v_{o} = \left(1 + \frac{R_{F}}{R_{I}}\right) V_{IO}$$
$$= (1 + 7) V_{IO}$$
$$= 8 V_{IO}$$

(v) The v_0 must be equal to 0.15 V.

Thus,
$$8V_{IO} = 150 \text{ mV}$$

 $V_{IO} = 18.75 \text{ mV}$

⇒ Specification limit

Input Bias and Input Offset Current

- A real op-amp must draw a small amount of DC bias currents (I₊, I₋) into its v₊ and v₋ terminals for proper operation of its internal circuit.
- These input bias currents are designated I₊ and I₋ and they are modelled by placing DC current sources inside an otherwise ideal op-amp.
- This is shown in Figure 23a.

Figure 23a. Modeling of input bias currents I_{+} and I_{-} .

Input Bias and Input Offset Current

As shown in Figure 23b, I_+ and I_- augment whatever signal current $I_{\rm s}$ flows through $R_{\rm id}$.

The input bias current is formally defined as the average of I_{+} and I_{-} :

$$I_{\text{BIAS}} = \frac{1}{2} (I_{+} + I_{-})$$

Figure 23b. I_+ and I_- augment the signal current is that flows through $r_{\rm in}$.

Typical input bias currents range in value from 0.1~pA to $10~\mu A$ and can be positive or negative, depending on the type of op-amp.

Input Bias and Input Offset Current

In some op-amps, the DC input bias currents I_+ and I_- are not equal.

Their difference is called the input offset current, defined by the relation $I_{10} = I_{+} - I_{-}$

The imbalance is typically of 5 to 10% of the average input bias current.

$$I_{\text{BIAS}} = \frac{1}{2} (I_{+} + I_{-})$$

Input bias current (0.1 pA to 10 μA)

$$I_{_{\mathrm{IO}}} = I_{_{+}} - I_{_{-}}$$

Input offset current (5 to 10% of I_{BIAS})

Input Bias and Input Offset Current

For real op, the $I_{\rm BIAS}$ or $I_+ \& I_-$ must be provided for proper op-amp operation.

Ensure $v_{\rm I}$ is able to provide $i_{\rm s}$, signal current.

If without R_3 ?

 \Rightarrow No contribution from I_+ biasing at output of the op-amp

The Effects of Input Bias Current

Consider the linear amplifier in Figure 24.

Figure 24. Inverting amplifier with input bias currents.

Assume that the op-amp is ideal except $I_{+} \neq 0$ and $I_{-} \neq 0$.

With
$$v_{IN} = 0$$
, $I_{+} = 0$, and $v_{-} = 0 \Rightarrow i_{1} = 0$

By KLC,
$$i_2 = I_{-}$$

The Effects of Input **Bias Current**

Thus, the V_{OUT} with $V_{\text{IN}} = 0$ is $V_{\text{OUT}} = I_{-}R_{2}$

With
$$I_- = I_+ = 0$$
, the output due to $V_{\rm IN}$ is $-\left(\frac{R_2}{R_1}\right)V_{\rm IN}$

The total output voltage is
$$V_{\text{OUT}} = -\left(\frac{R_2}{R_1}\right)V_{\text{IN}} + I_{-}R_2$$

What if there is a resistor R_{\star} connected between V_{\perp} and ground?

Then,
$$V_{\text{OUT}} = -\left(\frac{R_2}{R_1}\right)V_{\text{IN}} + I_{-}R_2 - I_{+}R_{x}\left(1 + \frac{R_2}{R_1}\right)$$

The Effects of Input Bias Current

In order to compensate the effect of the bias currents, a resistor $R_{\rm x}$ is added to the circuit in Figure 24, as shown in figure at the right with external $V_{\rm IN}$ removed.

Resistor, $R_{\rm x}=R_1/\!/R_2$, cancels the effect of input bias current.

The input voltage is set to zero.

The Effects of Input Bias Current

Using Linear Superposition, the DC output voltage for circuit in the figure can be derived as follows:

- i) With $I_{+}=0$, evaluate with I_{-} only: $V_{{\rm OUT}1}=I_{-}R_{2}$
- ii) Set $I_{-}=0$, evaluate with I_{+} only: $V_{\text{OUT2}}=-I_{+}R_{\times}\left[1+\frac{R_{2}}{R_{1}}\right]$
- iii) Then by Linear Superposition Principle,

$$V_{\text{OUT1}} + V_{\text{OUT2}} = I_{-}R_{2} - I_{+}R_{x} \left[1 + \frac{R_{2}}{R_{1}}\right]$$

If
$$R_{\rm x}=R_1/\!/R_2$$
 , then $V_{\rm OUT}=R_2(I_--I_+)$
$$=-R_2I_{\rm IO} \quad \mbox{(If }I_-=I_+\mbox{, then }I_{\rm IO}=0\mbox{)}$$

$$=0$$

The output of an ideal op-amp is able to change instantaneously.

In real op-amp the rate of change of the output is **finite**, in $V/\mu s$, can never exceed a specified value called the **slew rate**, S_R .

For $\mu A741$, $SR = 0.5 \text{ V/}\mu s$

$$S_{\rm R} = \text{Max} \left| \frac{\mathrm{d}v_o}{\mathrm{d}t} \right|$$
 of an op-amp

When op-amp is driven to its slew rate limit, the **output exhibits non-linear behavior**.

Under such conditions, the output of an otherwise linear circuit will not be a faithful reproduction of the input signal and will exhibit **non-linear distortion**. Here, $V_{+} \neq V_{-}$.

Example

An op-amp with $S_{\rm R}=1~{\rm V/\mu s}$ = $10^6~{\rm V/s}$ is used to build an inverting amplifier with a gain of $-10~{\rm V/V}$. With a $1.0V_{\rm p}$ sinusoid the output has a peak of $10~{\rm V}$.

- a) At what frequency will the output be affected by $S_{\rm R}$?
- b) If the sinusoidal input is increased to 1.5 V at this frequency, sketch the resulting waveform.

Solution: $v_{in} = a_{m} \cos \omega t$

a) The slope of $v_o = a_m \times A_{\text{VCL}} \cos \omega t$ is $\frac{dv_o}{dt} = \omega a_m \times A_{\text{VCL}} \sin \omega t$ and

$$\operatorname{max}\left\{\frac{\operatorname{d}v_{o}}{\operatorname{d}t}\right\} = \omega a_{m} A_{\text{VCL}}$$
$$= 2\pi f a_{m} A_{\text{VCL}}$$

The $\max_{|a|} \frac{|dv_o|}{|dt|}$ should be less than S_R to avoid non-linear distortion, i.e., $\omega a_m A_{\text{VCL}} \leq S_R$.

→ For a $10V_{\rm p}$ sinusoid, the frequency at which $S_{\rm R}$ limitation begins is

$$S_{R} = 2\pi f_{m} a_{m} A_{VCL}$$

$$f_{m} = \frac{S_{R}}{2\pi a_{m} A_{VCL}}$$

$$= \frac{10^{6} \text{ V/s}}{2\pi (10)}$$

$$\approx 16 \text{ kHz}$$

Solution (Cont.):

b) If the input is changed to a $16 \, \mathrm{kHz}$ sinusoid of $1.5 \, \mathrm{V}$, the output will attempt to increase to $15 \, \mathrm{V}$. Over a certain portion of its cycle, the slope of this intended output will exceed the S_{R} and the output will not be a faithful replica of the input.

The slope of $v_o = a_m A_{VCL} \cos \omega t$

(where
$$a_{\rm m}A_{\rm VCL}=15~{\rm V}$$
) is

$$\frac{\mathrm{d}v_{o}}{\mathrm{d}t} = \omega a_{m} A_{\mathrm{VCL}} \sin \omega t \Rightarrow \omega a_{m} A_{\mathrm{VCL}} \sin \omega t \leq S_{R}$$

Solution (Cont.):

The slope will reach the $S_{\rm R}$ limit of the $1{\rm V}/\mu{\rm s}$ at the time, $t_{\rm 1}$, given by

$$t_{1} = \left(\frac{1}{\omega}\right) \sin^{-1}\left(\frac{S_{R}}{\omega a_{m} A_{VCL}}\right)$$

$$= \left[\frac{1}{2\pi (16 \text{ kHz})}\right] \sin^{-1}\left[\frac{10^{6}}{2\pi (16 \text{ kHz})(15 \text{ V})}\right]$$

$$\approx 7.3 \text{ } \mu \text{ s}$$

After time t_1 , the actual output will fall behind the intended output and will continue at the max S_R until it 'catches up' at time t_2 .

This plot of v_0 is shown in Figure 25.

Figure 25. Effect of slew rate limitation on amplifier output.

Note that between t_1 and $t_{\rm zero-crossing}$, $v_- > v_+$; and between $t_{\rm zero-crossing}$ and t_2 , $v_- < v_+$.

Hence, the relation $v_{-} = v_{+}$ is not valid anymore.

"The op-amp is in non-linear mode/open-loop" for $t \in [t_1, t_2]$.

|rate of change| at these points $> S_R$ of the op- amp i.e., $1 \text{ V/}\mu\text{s}$.

$$v_{-} \neq v_{+} (|v_{id}| = |v_{-} - v_{+}| > 0)$$

Bandwidth

$$BW = f_2 - f_1$$

$$f_1$$
 = lower cutoff frequency

$$f_2$$
 = upper cutoff frequency

The infinite bandwidth of an ideal op-amp implies that the frequency response is flat for all signals to be amplified with equal gain regardless of frequency.

Figure 26. Frequency response of an ideal op-amp.

The frequency response of a real op-amp is actually very limited and can be modeled by the typical Bode plot in Figure 27.

Figure 27. Frequency response of a typical op-amp

The dominant pole frequency f_p is often in the low frequency hertz range (normally below 1 kHz).

Above f_p , the gain falls at a rate of -20 dB/decade.

Gain [in dB] = $20 \log Gain$

$$A(jf) = \frac{A_o}{1 + j\frac{f}{f_p}}$$

$$\therefore |A(jf)| = \frac{A_{o}}{\sqrt{1 + \left(\frac{f}{f_{p}}\right)^{2}}}$$

At unity-gain frequency, f_o , $\left|A\left(jf_o\right)\right|=1$

$$A_{o} = \left[1 + \left(\frac{f_{o}}{f_{p}}\right)^{2}\right]^{\frac{1}{2}}$$

$$\left(\frac{f_{o}}{f_{p}}\right)^{2} = A_{o}^{2} - 1$$

$$f_{\rm o} = f_{\rm p} (A_{\rm o}^2 - 1)^{\frac{1}{2}}$$

$$\therefore f_o = A_o f_p \quad (A_o >> 1) \underline{\hspace{1cm}}$$

where

$$f_{o}$$
 = unity-gain frequency (freq.) of the op-amp $A(jf)$

$$A_0 = DC$$
 value of $A(jf)$

$$f_p = -3dB$$
 cutoff freq. of $A(jf)$

$$A_{\rm o}f_{\rm p}$$
 = gain-bandwidth product

When this op-amp is used in non-inverting or inverting feedback amplifier:

Non-inverting Gain

R_1 R_2 R_1 R_2 R_2

$$\frac{v_{o}}{v_{s}} = \frac{R_{1} + R_{2}}{R_{1}} = \frac{1}{\beta} \Rightarrow \beta = \frac{R_{1}}{R_{1} + R_{2}}$$

Inverting Gain

$$A_{\text{VCL}} = \frac{v_{\text{o}}}{v_{\text{s}}} = -\frac{R_{2}}{R_{1}} = 1 - \frac{1}{\beta} \implies \beta = \frac{R_{1}}{R_{1} + R_{2}}$$

β is known as the **feedback factor**.

The product of the reciprocal of the feedback factor, $_{\beta}^-$, and the closed-loop bandwidth ($BW_{\rm CL}$) for the circuits (both inverting & non-inverting) is

$$\frac{1}{\beta} B W_{\text{CL}} = f_{\text{o}} = A_{\text{o}} f_{\text{p}}$$

where, $f_{\rm o}$ = unity-gain frequency of the op-amp $A_{\rm o}$ = DC value of A(jf) $f_{\rm p}$ = -3 dB cut off frequency of A(jf)

For both inverting and non-inverting:

$$\frac{1}{\beta}BW_{CL} = A_o f_p = f_o$$

$$BW_{CL} = \beta A_o f_p = \beta f_o$$

 (β) is feedback factor)

When output voltage changes by ΔV , the minimum time that is required is

$$\Delta t = \frac{\Delta V}{SR}$$
 (in seconds)

In terms of input quantities, the minimum time allowed for an input change of $\Delta V_{\rm in}$ volts is

$$\Delta t = \frac{(A_{\text{VCL}})\Delta V_{\text{in}}}{SR}$$
 (in seconds)

An amp's bandwidth also affects, Δt for its output to change in response to a pulse input.

$$t_{\rm r} = \frac{0.35}{BW_{\rm GL}}$$
 — (a)

For output to follow a pulse through its entire variation in t, the BW required should be larger than required by equation (a).

The amplifier must satisfy $\frac{\Delta V}{SR} \le \Delta t$ and $\frac{0.35}{BW_{\rm CL}} << \Delta t$ in order to track the input correctly .

Rise Time and Bandwidth

Consider the following simple *RC* circuit:

Assuming that the initial voltage across C is 0 V, then

$$v_{c}(t) = V_{cc} \left[1 - e^{-\frac{t}{RC}} \right]$$

The rise time for the circuit can be formed as follows:

$$0.1V_{cc} = V_{cc} \left[1 - e^{-\frac{t_1}{RC}} \right]$$
 (1)

$$0.9V_{cc} = V_{cc} \left| 1 - e^{-\frac{t_2}{RC}} \right|$$
 (2)

Rise Time and Bandwidth

$$t_{\rm r} = t_2 - t_1$$
 and is given, $t_{\rm r} = 2.2 \, R \, C$ (3)

The
$$-3 \text{ dB } BW$$
 for the circuit is $BW = \frac{1}{2 \pi R C}$ (4)

$$(3) \times (4),$$

$$t_{r} \times BW = \frac{2.2}{2\pi}$$
$$= 0.35$$

$$\therefore t_{r} = \frac{0.35}{BW} \quad --- \quad (5)$$

References for Images

Image	Slide No.	Reference
	9	By Bdieseldorff (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
	9	By Analog Devices (Op Amp Applications Handbook) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
	9	By Analog Devices (Op Amp Applications Handbook) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
	9	By Analog Devices (Op Amp Applications Handbook) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons
Source Street	9; 10	By Olli Niemitalo (Own work) [CC0], via Wikimedia Commons