

MAE11

USN 1 M S 2 2 M L O A 4-7

(Autonomous Institute, Affiliated to VTU) (Approved by AICTE, New Delhi & Govt. of Karnataka) Accredited by NBA & NAAC with 'A+' Grade

SEMESTER END EXAMINATIONS - MAY 2023

Program : B.E :- Common to ECE / EEE / EIE / ETE / MLE

Semester : I

Course Name

Advanced Calculus and Linear

Max. Marks: 100

Course Code

Algebra MAE11

Duration : 3 Hrs

Instructions to the Candidates:

RAMAIAH

Answer one full question from each unit.

UNIT - I

- a) Write the formula for the radius of curvature of the curve in parametric CO1 (02) form and explain the terms involved in it.
 - b) Find the pedal equation of the curve $r = a + b \cos \theta$.

CO1 (04)

c) Show that the curves $r^2 = a^2 \cos 2\theta \& r = a(1 + \cos \theta)$ intersect at angle CO1 (07)

$$3\sin^{-1}\left(\frac{3}{4}\right)^{1/4}$$
.

- d) Show that the radius of curvature of the curve $x^2y = a(x^2 + y^2)$ at CO1 (07) (-2a,2a) is 2a.
- 2. a) Write the formula for the derivative of arc length in parametric form. CO1 (02)
 - Find the slope of the tangent to the curve $r \sec^2 \left(\frac{\theta}{2} \right) = 4$ at $\theta = \frac{\pi}{2}$. CO1 (04)
 - Show that the radius of curvature of the curve $r'' = a'' \cos n\theta$ varies CO1 (07) inversely as r''^{-1} .
 - Show that the pedal equation of the curve $r'' = a'' \sin n\theta + b'' \cos n\theta$ is CO1 (07) $p^2(a^{2n} + b^{2n}) = r^{2n+2}.$

UNIT - II

- 3. a) Define row echelon form of a matrix A.
- CO2 (02)
- b) Use Rayleigh's power method to find the largest eigenvalue and the CO2 (04)

corresponding eigenvector of the matrix
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
 by taking $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ as

the initial approximation to the eigenvector. Carry out two iterations.

- c) Apply Gauss ellimination method to solve the following system of CO2 (07) equations x + y + z = 9, x 2y + 3z = 8, 2x + y z = 3.
- d) Diagonalize the matrix $A = \begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix}$ and hence find A^5 .

MAE11

- 4. a) Explain the geometrical interpretation of no solution for the system of CO2 (02) linear equations x+3y=4 and 2x+6y=6.
 - b) Find the value of λ for which the system of equations CO2 (04) $x+2y+3z=14, x+4y+7z=30, x+y+z=\lambda$. are consistent.
 - c) Use Gauss Seidel method to solve 5x y = 9; x 5y + z = 4, y 5z = 6, by taking (0,0,0) as an initial approximation. Carry out three iterations.
 - d) Solve the following system of linear differential equations using matrix CO2 (07) method $x_1' = 3x_1$, $x_2' = x_1 + x_2$ given $x_1(0) = 1$, $x_2(1) = -1$.

UNIT - III

- 5. Define: (i) solenoid vector (ii) irrotational vector. CO3 (02)

 The altitude of a right circular cone is 15cm and it is increasing at 0.2cm/sec. The radius of the base is 10cm and it is decreasing at 0.3cm/sec. How fast is the volume changing?
 - c) If $u = \cos ec^{-1} \left[\frac{x^{\frac{1}{2}} + y^{\frac{1}{2}}}{x^{\frac{1}{3}} + y^{\frac{1}{3}}} \right]$ then find i) $xu_x + yu_y$, ii) $x^2 u_{xx} + 2xyu_{xy} + y^2 u_{yy}$ CO3 (07)
 - d) Find $\frac{\partial(u,v,w)}{\partial(x,y,z)}$, where $u=x^2+y^2+z^2$, v=xy+yz+zx, w=x+y+z and CO3 (07) also find the functional relation between u,v and w.
- 6. a) For $u = \sin(x ct)$ then find u_n .
 - b) Find the directional derivative of $u(x, y, z) = xy^2 + yz^3$ at the point CO3 (04) (2, -1, 1) in the direction of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$.
 - c) Show that $\vec{F} = (\sin z + y)\hat{i} + x\hat{j} + x\cos z\hat{k}$ is irrotational. Also find a scalar CO3 (07) function ϕ such that $\vec{F} = \nabla \phi$.
 - d) If F is a function of x, y, z and x = u + v + w, y = uv + wu + vw, z = uvw then CO3 (07) show that $uF_u + vF_v + wf_w = xF_x + 2yF_v + 3zF_z$.

UNIT- IV

- 7. a) With a help of neat diagram mark the region of integration in the CO4 (02) integral $\int_{0}^{1} \int_{1-x}^{1-x^2} dx dy$.
 - by Evaluate $\iint_{0}^{1/2} \int_{0}^{2} x^2 yz \, dx dy dz.$ CO4 (04)
 - Evaluate the following integral by changing to polar coordinates CO4 (07) $\int_{0}^{a} \int_{\sqrt{ax-x^{2}}}^{\sqrt{a^{2}-x^{2}}} \frac{xy}{x^{2}+y^{2}} e^{-(x^{2}+y^{4})} dy dx.$
 - d) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ by changing to spherical CO4 (07) polar coordinates.

MAE11

- 8. a) With the help of a neat diagram mark the region of integration in CO4 (02) $\int\limits_0^{\pi/2} \int\limits_0^{\infty} f(r,\theta) \ dr d\theta \ .$
 - b) Evaluate $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ by changing the order of integration. CO4 (04)
 - c) Evaluate $\iiint_R (x+y+z) \, dx dy dz$ where R is the region bounded by CO4 (07) $z=0, \ y=0, \ x=0$ and x+y+z=1.
 - d) Find the area lying inside the cardioid $r = a(1 + \cos \theta)$ and outside the CO4 (07) circle r = a.

UNIT - V

- 9. a) State Stokes theorem.
 - b) If $\vec{F} = (3x^2 + 6y)\hat{i} 14yz\hat{j} + 20xz^2\hat{k}$ then evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ along the CO5 (04) straight line c from (0, 0, 0) to (2, 1, 3).
 - c) State and prove Greens theorem in a plane. CO5 (07)
 - d) Evaluate $\int_{r}^{r} \bar{F} \cdot \hat{n} \, ds$, where $\bar{F} = 4x\hat{i} 2y^2 \, \hat{j} + z^3 \, \hat{k}$ and S is the surface CO5 (07) bounded by $x^2 + y^2 = 25$ and the planes z = 0 and z = 6 using Gauss divergence theorem.
- 10. Define line integral of a vector function and give its physical CO5 (02) interpretation.
 - If \vec{F} is irrotational then show that $\int \vec{F} \cdot d\vec{r} = 0$ for any closed curve c.
 - Verify Green's theorem for $\int_{c} (x^2 y^2) dx + 2xy dy$, where c is the rectangle CO5 (07)
 - bounded by y=0, x=0, y=b and x=a. Evaluate $\int_{c} \vec{F}.d\vec{r}$, where $\vec{F}=(2x-y)\hat{i}-yz^2$ $\hat{j}-y^2z$ \hat{k} and c is the CO5 (07 boundary of the upper half of the sphere $x^2+y^2+z^2=1$ using Stoke's theorem.
