Exercice 4

DCEL

I have 3 class:

- Vertice, represent a point of vertice and the incident edge of triangle.
- **Edge**, represents a middle edge, have the other middle edge of segment, next edge, the face, and the vertex.
- Face, represents a face, and have the edge.

Triangulation

The process of the algorithm are the nexts:

- 1. Create the big triangle to evolve all points.
- 2. For each point, search the face to insert.
- 3. Insert the points in the face.
- 4. Paint the result.

First to **create the big triangle to evolve all points**, I get the minimum and maximum and create the triangle with the high are 2xmaximumWeight, and de weight are 2xmaximumWeight.

For each point search the face using the algorithm visibility walking triangulation, I start in the last insert face and check for each segment of triangle, if the line of segment is between the point and the face, if I found I jump to the next face with reverse edge.

To **insert the point in the face**, if the point is in edge, I need modify the edges of the face and the face of the other reverse edge, if is inside only modify the edges of triangle.

For finally paint all triangles.

Solution

Triangulation loaded

Mode: 2D, Projection: orthogonal, Input State: Idle