Iris

För att genomföra våra analyser och visualiseringar, importerar vi några vanligt använda Python-paket samt vårt dataset (iris.csv).

```
In []: # Importera bibliotek och dataset
   import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   import scipy.stats as scs
   import seaborn as sns
   from scipy.stats import t
   from scipy.stats import norm
   from statsmodels.formula.api import ols
   # Läs in datasetet
   df = pd.read_csv("Data/iris.csv")
```

En översikt av vårt dataset - df.describe(). Det ger en sammanfattning av de statistiska måtten för varje numerisk variabel i datasetet.

```
In [ ]: df.describe()
```

Out[]:		sepal_length	sepal_width	petal_length	petal_width
	count	150.000000	150.000000	150.000000	150.000000
	mean	5.843333	3.054000	3.758667	1.198667
	std	0.828066	0.433594	1.764420	0.763161
	min	4.300000	2.000000	1.000000	0.100000
	25%	5.100000	2.800000	1.600000	0.300000
	50%	5.800000	3.000000	4.350000	1.300000
	75%	6.400000	3.300000	5.100000	1.800000
	max	7.900000	4.400000	6.900000	2.500000

För att undersöka fördelningen av olika klasser i vår dataset, använder vi df["class"].value_counts() . Denna metod räknar antalet observationer för varje unik klass i kolumnen "class".

Setosa, Versicolor, och Virginica. Varje DataFrame innehåller observationer

som tillhör respektive klass.

```
In [ ]: Setosa = df[df["class"] == "Iris-setosa"]
         Versicolor = df[df["class"] == "Iris-versicolor"].reset_index(drop=True)
         Virginica = df[df["class"] == "Iris-virginica"].reset_index(drop=True)
In [ ]: Setosa.head(2)
Out[]:
            sepal_length sepal_width petal_length petal_width
                                                                      class
         0
                                  3.5
                                                1.4
                                                             0.2 Iris-setosa
                     5.1
                     4.9
                                  3.0
         1
                                                1.4
                                                             0.2 Iris-setosa
In [ ]: Versicolor.head(2)
Out[]:
            sepal length sepal width petal length petal width
                                                                         class
         0
                     7.0
                                  3.2
                                                4.7
                                                             1.4 Iris-versicolor
                     6.4
                                  3.2
                                                4.5
                                                             1.5 Iris-versicolor
In [ ]: Virginica.head(2)
Out[ ]:
            sepal_length sepal_width petal_length petal_width
                                                                        class
         0
                     6.3
                                  3.3
                                                6.0
                                                             2.5 Iris-virginica
                     5.8
                                  2.7
                                                5.1
                                                             1.9 Iris-virginica
```

För att få en uppfattning om medelvärdena för numeriska variabler för varje Iris-klass:

```
In [ ]: mean_Setosa = Setosa.select_dtypes(include='number').mean()
        mean_Versicolor = Versicolor.select_dtypes(include='number').mean()
        mean_Virginica = Virginica.select_dtypes(include='number').mean()
        print("Setosa: \n", mean_Setosa, "\n\n Versicolor: \n", mean_Versicolor, "\n\n V
       Setosa:
        sepal length
                       5.006
       sepal_width
                       3.418
       petal length
                       1.464
                       0.244
       petal_width
       dtype: float64
        Versicolor:
        sepal_length
                       5.936
       sepal_width
                       2.770
       petal_length
                       4.260
       petal_width
                       1.326
       dtype: float64
        Virginica:
        sepal_length
                       6.588
       sepal_width
                       2.974
       petal_length
                       5.552
       petal width
                       2.026
       dtype: float64
```

För att visualisera sambandet mellan Sepal- och Petal-egenskaper för varje Iris-klass skapades scatter plots.

```
In [ ]: sns.scatterplot(x='sepal_width', y='sepal_length', data=Setosa, label='Setosa')
    sns.scatterplot(x='sepal_width', y='sepal_length', data=Versicolor, label='Versi
    sns.scatterplot(x='sepal_width', y='sepal_length', data=Virginica, label='Virgin
    plt.legend()
    plt.title('Scatter plot mellan sepal_length och sepal_width för varje klass')
    plt.show()
```

Scatter plot mellan sepal_length och sepal_width för varje klass


```
In [ ]: sns.scatterplot(x='petal_width', y='petal_length', data=Setosa, label='Setosa')
    sns.scatterplot(x='petal_width', y='petal_length', data=Versicolor, label='Versi
    sns.scatterplot(x='petal_width', y='petal_length', data=Virginica, label='Virgin
    plt.legend()
    plt.title('Scatter plot mellan petal_length och petal_width för varje klass')
    plt.show()
```

Scatter plot mellan petal_length och petal_width för varje klass

Regression

För att undersöka det linjära sambandet mellan petal_length och petal_width i Versicolor-stickprovet har vi anpassat en linjär regressionsmodell.

```
In [ ]: model = ols('petal_length ~ petal_width', data=Versicolor).fit()
print(model.summary())
```

OLS Regression Results

=========	========		=======	:=======	=======	
Dep. Variable:		petal_length		R-squared:		0.619
Model:		OLS		Adj. R-squared:		0.611
Method:	l	Least Squares Sun, 04 Feb 2024 19:49:36		F-statistic: Prob (F-statistic): Log-Likelihood:		77.93 1.27e-11 -8.5674 21.13
Date:	Sun					
Time:						
No. Observation	ns:	50	AIC:			
Df Residuals:		48	BIC:			24.96
Df Model:		1				
Covariance Typ	e:	nonrobust				
=========	========		=======	========	=======	
	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.7813	0.284	6.276	0.000	1.211	2.352
petal_width	1.8693	0.212	8.828	0.000	1.444	2.295
Omnibus: 2.041		======================================		2.149		
Prob(Omnibus):		0.360		Jarque-Bera (JB):		1.188
Skew:		-0.312	Prob(JB):			0.552
Kurtosis:		3.425	Cond. N	lo.		14.2
==========	========		=======		=======	=======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Resultaten i sammanfattningen ger viktig information om modellen:

- R-kvadrat: Detta mäter andelen varians i petal_length som förklaras av petal_width. En hög R-kvadrat indikerar en bättre passform.
- Koefficient för petal_width: Detta är lutningen på den linjära regressionslinjen och representerar förändringen i petal_length för varje enhetsförändring i petal_width.
- Intercept (Konstanttermen): Detta är där regressionslinjen korsar y-axeln.

Prediktion med Linjär Regression

För att använda den tidigare anpassade linjära regressionsmodellen för att göra prediktioner, har vi använt modellen för att förutsäga petal_length baserat på petal_width i Versicolor-stickprovet.

```
In [ ]: ypred = model.predict(Versicolor['petal_width'])
```

Visualisering av det linjära sambandet mellan 'petal_width' och 'petal_length' i Versicolor-stickprovet.

Prediktion utanför stickprovet

```
scatterplot = sns.scatterplot(data=Versicolor, x='petal_width', y='petal_length'
        # Definiera några prediktionspunkter för 'petal_width'
        predictions = pd.DataFrame([2,2.5,3.5,5], columns=['petal_width'])
        # Prediktioner med den tidigare anpassade linjära regressionsmodellen
        ypred = model.predict(predictions)
        print(ypred)
        # Lägg till prediktionerna
        predictions['pred'] = ypred
        # Nytt scatterplot för att visualisera prediktionerna
        sns.scatterplot(data = predictions, x = 'petal_width',y = 'pred', label='Predikt
       0
             5.519925
       1
             6.454587
             8.323912
       3
            11.127899
       dtype: float64
Out[ ]: <Axes: xlabel='petal_width', ylabel='petal_length'>
```


Först skapades scatterplot som visar sambandet mellan 'petal_width' och 'petal_length' för Versicolor-stickprovet. Sedan definieras några punkter ('petal_width') för vilka vi vill göra utom-stickprovsprediktioner. Dessa prediktioner görs med den tidigare anpassade linjära regressionsmodellen. Slutligen skapas ett nytt scatterplot för att visualisera dessa prediktioner.

Korrelation

För att analysera sambandet mellan olika egenskaper hos Versicolor, har vi beräknat korrelationsmatrisen.

För att tydligt visualisera korrelationsmatrisen för Versicolor-egenskaper, skapades en heatmap.

```
In [ ]: sns.heatmap(corr, vmin=-1, vmax=1, annot=True, cmap='coolwarm')
   plt.title('Korrelationsmatris för Versicolor', y=1.08, fontsize=16)
   plt.figure()
```

Out[]: <Figure size 640x480 with 0 Axes>

Korrelationsmatris för Versicolor

<Figure size 640x480 with 0 Axes>

KONFIDENSINTERVALL

För att beräkna konfidensintervallet för medelvärdet används följande formeln:

$$ar{x}\pm Z_{lpha/2}rac{\sigma}{\sqrt{n}}$$

```
In []: mean = Versicolor["petal_length"].mean() # Mdelvärde för stickprovet (x bar)
std = Versicolor["petal_length"].std() # Standardavvikelse för stickprovet (o)
n = len(Versicolor["petal_length"]) # Antal för stickprovet (n)
alpha = 0.05 # Signifikansnivå
t_crit = t.ppf(1-alpha/2, n-1) # Kritiskt t-värde
sem = std / np.sqrt(n) # Medelvärdesstandardfel
upper = mean + t_crit * sem # Övre gräns
lower = mean - t_crit * sem # Undre gräns
# Avrundning till 3 decimal
lower = np.round(lower, 3)
upper = np.round(mean, 3)
print(lower, " < ", mean, " < ", upper)
```

```
4.126 < 4.26 < 4.394
```

För att visualisera fördelningen av petal_length i Versicolor-stickprovet och markera konfidensintervallet, skapades följande graf:

```
In []: # Skapa en graf med Seaborn
plt.figure(figsize=(8, 6))
sns.histplot(Versicolor["petal_length"], kde=True, color='skyblue', bins=20)
plt.axvline(mean, color='red', linestyle='dashed', linewidth=2, label='Medelvärd
plt.axvline(upper, color='green', linestyle='dashed', linewidth=2, label='Konfid
plt.axvline(lower, color='green', linestyle='dashed', linewidth=2)
# Markera medelvärdet och konfidensintervallens gränser
plt.text(mean, plt.ylim()[1] * 0.9, f'Medelvärde: {mean:.2f}', color='red', ha='
plt.text(upper, plt.ylim()[1] * 0.8, f'{alpha*100}% CI', color='green', ha='cent
plt.text(lower, plt.ylim()[1] * 0.8, f'{alpha*100}% CI', color='green', ha='cent
plt.legend()
plt.show()
```


Detta konfidensintervall på 95% ger oss ett intervall där vi med rimlig säkerhet förväntar oss att det sanna medelvärdet för petal_length i populationen finns.

- Det 95% konfidensintervallet för medelvärdet sträcker sig från 4.126 till 4.394.
- Vi är 95% säkra på att det verkliga medelvärdet ligger inom detta intervall baserat på det observerade stickprovsmedelvärdet, standardavvikelsen och stickprovets storlek.