Probabilistic context-free parsing Parsing ISCL-BA-06

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2020/21

Context-free grammars recap

- Context free (CF) grammars are most practically useful grammars in the Chomsky hierarchy
- Most of the parsing theory (and practice) is build on parsing CF languages
- The context-free rules have the form

$$A \rightarrow \alpha$$

where A is a single non-terminal symbol and α is a (possibly empty) sequence of terminal or non-terminal symbols

An example context-free grammar

 $S \rightarrow NP VP$

 $S \rightarrow Aux NP VP$

 $NP \rightarrow Det N$

 $NP \rightarrow Prn$

 $NP \rightarrow NP PP$

 $VP \ \to V \ NP$

 $VP \ \to V$

 $VP \rightarrow VP PP$

 $PP \rightarrow Prp NP$

 $N \rightarrow duck$

 $N \rightarrow park$

 $N \rightarrow parks$

 $V \rightarrow duck$

V → ducks

 $V \rightarrow saw$

 $\operatorname{Prn} \to \operatorname{she} \mid \operatorname{her}$

 $Prp \rightarrow in \mid with$

 $\overline{\text{Det}} \rightarrow a \mid \text{the}$

Derivation of sentence 'she saw a duck'

 $S \Rightarrow NP VP$

 $NP \Rightarrow Prn$

 $Prn \Rightarrow she$ $VP \Rightarrow V NP$

 $VP \Rightarrow V NP$

 $V \Rightarrow saw$ $NP \Rightarrow Det N$

 $\mathsf{Det} \, \Rightarrow \, \mathsf{a}$

 $N \Rightarrow duck$

Representations of a context-free parse tree

A history of derivations:

- $S \Rightarrow NP VP$
- NP \Rightarrow Prn
- Prn \Rightarrow I
- $VP \Rightarrow V NP$
- $V \Rightarrow saw$
- NP \Rightarrow Prn_p N
- $Prn_p \Rightarrow her$
- N \Rightarrow duck

Parsing with context-free grammars

- Parsing can be
 - top down: start from S, search for derivation that leads to the input
 - bottom up: start from input, try to reduce it to S
- Naive search for both recognition/parse is intractable
- Dynamic programming methods allow polynomial time *recognition* CKY bottom-up, requires Chomsky normal form
- Earely top-down (with bottom-up filtering), works with unrestricted grammars
 - $O(n^3)$ time complexity (for recognition)
- Chart parsers are (reasonably) efficient, and they can represent ambiguity in their output
- However, they do not help with resolving ambiguity

Natural languages are ambiguous

Some types of ambiguities

- Lexical ambiguity
 - She is looking for a match
 - We saw her duck
- Attachment ambiguity
 - I saw the man with a telescope
 - Panda eats bamboo shoots and leaves
- Local ambiguity (garden path sentences)
 - The horse raced past the barn fell
 - The old man the boats
 - Fat people eat accumulates

Ambiguity and the parsers

- Given a grammar, chart parsers (e.g., CKY, Early) can parse natural language sentences relatively efficiently
- These parsers also represent all possible parse trees in their chart/output efficiently
- However, they have nothing to say about which of these parses are the most likely one.
- The task of selecting the best parse among many is called disambiguation
- In almost all practical uses, parsers are combined with disambiguators

- Time flies like an arrow
- Outside of a dog, a book is a man's best friend
- One morning I shot an elephant in my pajamas
- Don't eat the pizza with a knife and fork

- Time flies like an arrow; fruit flies like a banana
- Outside of a dog, a book is a man's best friend
- One morning I shot an elephant in my pajamas
- Don't eat the pizza with a knife and fork

- Time flies like an arrow; fruit flies like a banana
- Outside of a dog, a book is a man's best friend; inside it's too hard to read
- One morning I shot an elephant in my pajamas
- Don't eat the pizza with a knife and fork

- Time flies like an arrow; fruit flies like a banana
- Outside of a dog, a book is a man's best friend; inside it's too hard to read
- One morning I shot an elephant in my pajamas. How he got in my pajamas, I don't know.
- Don't eat the pizza with a knife and fork

- Time flies like an arrow; fruit flies like a banana
- Outside of a dog, a book is a man's best friend; inside it's too hard to read
- One morning I shot an elephant in my pajamas. How he got in my pajamas, I don't know.
- Don't eat the pizza with a knife and fork; the one with mushrooms is better.

The task: choosing the most plausible parse

a

with

PP

NP

Ν

hat

The task: choosing the most plausible parse

Statistical parsing

- Find the most plausible parse of an input string given all possible parses
- We need a scoring function, for each parse, given the input
- We typically use probabilities for scoring, task becomes finding the parse (or tree), t, given the input string w

$$t_{best} = \operatorname*{arg\,max}_{t} P(t \,|\, \boldsymbol{w})$$

 Note that some ambiguities need a larger context than the sentence to be resolved correctly

Probability refresher (1)

- Probability is a measure of (un)certainty of an event
- We quantify the probability of an event with a number between 0 and 1
 - 0 the event is impossible
 - 0.5 the event is as likely to happen (or happened) as it is not
 - 1 the event is certain
- All possible outcomes of a trial (experiment or observation) is called the sample space (Ω)

Axioms of probability states that

- 1. $P(E) \in \mathbb{R}$, $P(E) \ge 0$
- 2. $P(\Omega) = 1$
- 3. For *disjoint* events E_1 and E_2 , $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Probability refresher (2)

Joint and conditional probabilities, chain rule

- Joint probability of two events is noted as P(x, y)
- The conditional probability is defined as

$$P(x|y) = \frac{P(x,y)}{P(y)}$$
 or $P(x,y) = P(x|y)P(y)$

• If the events x and y are independent,

$$P(x|y) = P(x), P(y|x) = p(y), P(x,y) = P(x)P(y)$$

• For more than two variables (chain rule):

$$P(x, y, z) = P(z|x, y)P(y|x)P(x) = P(x|y, z)P(y|z)P(z) = \dots$$

• If all are independent

$$P(x, y, z) = P(x)P(y)P(z)$$

Probabilistic context free grammars (PCFG)

• A probabilistic context free grammar augments a CFG by adding a probability value to each rule

$$A \rightarrow \alpha$$
 [p]

where A is a non-terminal, α is string of terminals and non-terminals, and p is the probability associated with the rule

- \bullet Like CFGs, a PCFG accepts a sentence if it can be derived from S with rules $R_1 \dots R_k$
- The probability of a parse tree t of input string w, $P(t \mid w)$, corresponding to the derivation $R_1 \dots R_k$ is

$$P(t \mid \boldsymbol{w}) = \prod_{i=1}^{k} p(R_i)$$

where $p(R_i)$ is the probability of the rule R_i

PCFG example (1)

S	$\to NP \ VP$	1.0
NP	\rightarrow D N	0.7
NP	\rightarrow NP PP	0.2
NP	\rightarrow We	0.1
VP	$\to V \ NP$	0.9
VP	$\to VP\; PP$	0.1
PP	$\to P \ NP$	1.0
N	\rightarrow hat	0.2
N	\rightarrow man	0.8
V	\rightarrow saw	1.0
P	\rightarrow with	1.0
D	\rightarrow a	0.6
D	\rightarrow the	0.4

PCFG example (1)

PCFG example (2)

S	$\to NP \ VP$	1.0
NP	$\rightarrow D N$	0.7
NP	\rightarrow NP PP	0.2
NP	\rightarrow We	0.1
VP	$\to V \ NP$	0.9
VP	$\to VP\ PP$	0.1
PP	$\to P \ NP$	1.0
N	\rightarrow hat	0.2
N	\rightarrow man	0.8
V	\rightarrow saw	1.0
P	\rightarrow with	1.0
D	\rightarrow a	0.6
D	\rightarrow the	0.4

PCFG example (2)

Where do the rule probabilities come from?

- Supervised: estimate from a treebank, e.g., using maximum likelihood estimation
- Unsupervised: expectation-maximization (EM)

PCFGs - an interim summary

- PCFGs assign probabilities to parses based on CFG rules used during the parse
- PCFGs assume that the rules are independent
- PCFGs are generative models, they assign probabilities to P(t, w), we can calcuate the probability of a sentence by

$$P(w) = \sum_{t} P(t, w) = \sum_{t} P(t)$$

PCFG chart parsing

- Both CKY and Earley algorithms can be adapted to PCFG parsing
- CKY matches PCFG parsing quite well
 - to get the best parse, store the constituent with the highest probability in every cell of the chart
 - to get n-best best parse (beam search), store the n-best constituents in every cell in the chart

. . .

Ç. Çöltekin, SfS / University of Tübingen

Ç. Çöltekin, SfS / University of Tübingen

19 / 30

What makes the difference in PCFG probabilities?

$S \Rightarrow NP VP$	1.0	$S \Rightarrow NP VP$	1.0
$NP \Rightarrow We$	0.1	$NP \Rightarrow We$	0.1
$VP \Rightarrow VP PP$	0.1	$VP \Rightarrow V NP$	0.7
$VP \Rightarrow V NP$	0.8	$V \Rightarrow saw$	1.0
$V \Rightarrow saw$	1.0	$NP \Rightarrow NP PP$	0.2
$NP \Rightarrow D N$	0.7	$NP \Rightarrow D N$	0.7
$D \Rightarrow the$	0.4	$D \Rightarrow the$	0.4
$N \Rightarrow man$	0.8	$N \Rightarrow man$	0.8
$PP \Rightarrow P NP$	1.0	$PP \Rightarrow P NP$	1.0
$P \Rightarrow with$	1.0	$P \Rightarrow with$	1.0
$NP \Rightarrow D N$	0.7	$NP \Rightarrow D N$	0.7
$D \Rightarrow a$	0.6	$D \Rightarrow a$	0.6
$N \Rightarrow hat$	0.2	$N \Rightarrow hat$	0.2

What makes the difference in PCFG probabilities?

$S \Rightarrow NP VP$	1.0	$S \Rightarrow NP VP$	1.0
$NP \Rightarrow We$	0.1	$NP \Rightarrow We$	0.1
$VP \Rightarrow VP PP$	0.1	$VP \Rightarrow V NP$	0.7
$VP \Rightarrow V NP$	0.8	$V \Rightarrow saw$	1.0
$V \Rightarrow saw$	1.0	$NP \Rightarrow NP PP$	0.2
$NP \Rightarrow D N$	0.7	$NP \Rightarrow D N$	0.7
$D \Rightarrow the$	0.4	$D \Rightarrow the$	0.4
$N \Rightarrow man$	0.8	$N \Rightarrow man$	0.8
$PP \Rightarrow P NP$	1.0	$PP \Rightarrow P NP$	1.0
$P \Rightarrow with$	1.0	$P \Rightarrow with$	1.0
$NP \Rightarrow D N$	0.7	$NP \Rightarrow D N$	0.7
$D \Rightarrow a$	0.6	$D \Rightarrow a$	0.6
$N \Rightarrow hat$	0.2	$N \Rightarrow hat$	0.2

The parser's choice would not be affected by lexical items!

What is wrong with PCFGs?

- In general: the assumption of independence
- ullet The parents affect the correct choice for children, for example, in English NP o Prn is more likely in the subject position
- The lexical units affect the correct decision, for example:
 - We eat the pizza with hands
 - We eat the pizza with mushrooms
- Additionally: PCFGs use local context, difficult to incorporate arbitrary/global features for disambiguation

Solutions to PCFG problems

- Independence assumptions can be relaxed by either
 - Parent annotation
 - Lexicalization
 - Reranking
- To condition on arbitrary/global information: discriminative models
- Most practical PCFG parsers are lexicalized, and often use a re-ranker conditioning on other (global) features

Lexicalizing PCFGs

- Replace non-terminal X with X(h), where h is a tuple with the lexical word and its POS tag
- Now the grammar can capture (head-driven) lexical dependencies
- But number of nonterminals grow by $|V| \times |T|$
- Estimation becomes difficult (many rules, data sparsity)
- Some treebanks (e.g., Penn Treebank) do not annotate heads, they are automatically annotated (based on heuristics)

Example lexicalized derivation

Example lexicalized derivation

Evaluating the parser output

- A parser can be evaluated
 extrinsically based on its effect on a task (e.g., machine translation) where it
 is used
 intrinsically based on the match with ideal parsing
- The typically evaluation (intrinsic) is based on a *gold standard* (GS)
- Exact match is often
 - very difficult to achieve (think about a 50-word newspaper sentence)
 - not strictly necessary (recovering parts of the parse can be useful for many purposes)

Parser evaluation metrics

- Common evaluation metrics are (PARSEVAL): precision the ratio of correctly predicted nodes recall the nodes (in GS) that are predicted correctly f-measure harmonic mean of precision and recall $\left(\frac{2 \times \text{precision} \times \text{recall}}{\text{precision} + \text{recall}}\right)$
- The measures can be unlabled the spans of the nodes are expected to match labeled the node label should also match
- Crossing brackets (or average non-crossing brackets)
 (We (saw (them (with binoculars))))
 (We ((saw them) (with binoculars)))
- Measures can be averaged per constituent (micro average), or over sentences (macro average)

PARSEVAL example

Gold standard:

Parser output:

precision =
$$\frac{6}{7}$$
 recall = $\frac{6}{7}$ f-measure = $\frac{6}{7}$

Ç. Çöltekin, SfS / University of Tübingen

Problems with PARSEVAL metrics

- PARSEVAL metrics favor certain type of structures
 - Results are surprisingly well for flat tree structures (e.g., Penn treebank)
 - Results of some mistakes are catastrophic (e.g., low attachment)
- Not all mistakes are equally important for semantic distinctions
- Some alternatives:
 - Extrinsic evaluation
 - Evaluation based on extracted dependencies

Summary

- PCFG is a simple attempt to augment CFG with probabilities
- PCFG parsing alone is suboptimal: independence assumptions are too strong
- Solutions include (a combination of) lexicalization, parent annotation and re-ranking
- Reading suggestion: Jurafsky and Martin (2009, Chapter 14)

Summary

- PCFG is a simple attempt to augment CFG with probabilities
- PCFG parsing alone is suboptimal: independence assumptions are too strong
- Solutions include (a combination of) lexicalization, parent annotation and re-ranking
- Reading suggestion: Jurafsky and Martin (2009, Chapter 14)

Next:

• Dependency grammars and dependency parsing

Acknowledgments, references, additional reading material

Grune, Dick and Ceriel J.H. Jacobs (2007). Parsing Techniques: A Practical Guide. second. Monographs in Computer Science. The first edition is available at http://dickgrune.com/Books/PTAPG 1st Edition/BookBody.pdf, Springer New York, ISBN: 9780387689548.

Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second. Pearson Prentice Hall. ISBN: 978-0-13-504196-3. URL: http://web.stanford.edu/~jurafsky/slp3/.

A.2