Conceptos matemáticos preliminares

Matemáticas Computacionales (TC2020)

M.C. Xavier Sánchez Díaz sax@itesm.mx

Tabla de contenidos

Conjuntos

Relaciones y Funciones

Definición de conjunto Conjuntos

Definición 1

Un conjunto es una colección de elementos. Usamos letras mayúsculas A,B,C,\ldots para representarlos, y letras minúsculas a,b,c,\ldots para representar sus elementos.

$$A = \{a, b, c, d\}$$

Podemos definirlos por enumeración o por descripción.

A es el conjunto de todos los números naturales menores que 6.

Enumerando sus elementos

$$A = \{1, 2, 3, 4, 5\} = \{2, 3, 1, 5, 4\}$$

$$A = \{ a \in \mathbb{N} : a < 6 \}$$

Podemos definirlos por enumeración o por descripción.

A es el conjunto de todos los números naturales menores que 6.

Enumerando sus elementos

$$A = \{1, 2, 3, 4, 5\} = \{2, 3, 1, 5, 4\}$$

$$A = \{ a \in \mathbb{N} : a < 6 \}$$

Podemos definirlos por enumeración o por descripción.

 ${\cal A}$ es el conjunto de todos los números naturales menores que 6.

Enumerando sus elementos

$$A=\{1,2,3,4,5\}=\{2,3,1,5,4\}$$

$$A = \{ a \in \mathbb{N} : a < 6 \}$$

Podemos definirlos por enumeración o por descripción.

A es el conjunto de todos los números naturales menores que 6.

Enumerando sus elementos

$$A=\{1,2,3,4,5\}=\{2,3,1,5,4\}$$

$$A=\{a\in\mathbb{N}:a<6\}$$

- Pertenencia: $a \in A$, cuando a es un elemento de A.
- Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- Conjunto vacío: Ø o {} para representar un conjunto sin elementos.

- Pertenencia: $a \in A$, cuando a es un elemento de A.
- ullet Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- Conjunto vacío: Ø o {} para representar un conjunto sin elementos.

- **Pertenencia**: $a \in A$, cuando a es un elemento de A.
- Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- Conjunto vacío: Ø o {} para representar un conjunto sin elementos.

- **Pertenencia**: $a \in A$, cuando a es un elemento de A.
- Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- Conjunto vacío: Ø o {} para representar un conjunto sin elementos.

- **Pertenencia**: $a \in A$, cuando a es un elemento de A.
- Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- Conjunto vacío: Ø o {} para representar un conjunto sin elementos.

- **Pertenencia**: $a \in A$, cuando a es un elemento de A.
- Cardinalidad: |A| representa el número de elementos en A.
- Inclusión: $A \subseteq B$ si todos los elementos de A son elementos de B.
- **Igualdad**: si $A \subseteq B$ y $B \subseteq A$, entonces A = B.
- Inclusión propia: $A \subset B$ si todos los elementos de A son elementos de B y $A \neq B$.
- \bullet Conjunto vacío: \varnothing o $\{\}$ para representar un conjunto sin elementos.

- **1** $\{a\} \subseteq \{\{a\}\}$
- **2** $\{a\} \subseteq \{b, c, \{a\}\}$
- $a \subseteq \{a, b, c\}$
- $a \in \{a, b, c\}$

- $b \in \{b\}$

1
$$\{a\} \subseteq \{\{a\}\}$$

$$a \subseteq \{a, b, c\}$$

$$a \in \{a, b, c\}$$

$$b \in \{b\}$$

3
$$\{b\} \subseteq \{\{b,c\}\}$$

2
$$\{a\} \subseteq \{b, c, \{a\}\}$$

$$a \subseteq \{a,b,c\}$$

5
$$a \in \{a, b, c\}$$

$$b \in \{b\}$$

3
$$\{b\} \subseteq \{\{b,c\}\}$$

Pertenencia e inclusión Conjuntos

1
$$\{a\} \subseteq \{\{a\}\}$$

2
$$\{a\} \subseteq \{b, c, \{a\}\}$$

$$a \subseteq \{a, b, c\}$$

$$a \in \{a, b, c\}$$

$$b \in \{b\}$$

3
$$\{b\} \subseteq \{\{b,c\}\}$$

2
$$\{a\} \subseteq \{b, c, \{a\}\}$$

$$a \subseteq \{a,b,c\}$$

5
$$a \in \{a, b, c\}$$

$$b \in \{b\}$$

3
$$\{b\} \subseteq \{\{b,c\}\}$$

1
$$\{a\} \subseteq \{\{a\}\}$$

2
$$\{a\} \subseteq \{b, c, \{a\}\}$$

$$a \subseteq \{a, b, c\}$$

$$a \in \{a, b, c\}$$

$$b \in \{b\}$$

3
$$\{b\} \subseteq \{\{b,c\}\}$$

2
$$\{a\} \subseteq \{b, c, \{a\}\}$$

$$a \subseteq \{a, b, c\}$$

$$a \in \{a, b, c\}$$

$$b \in \{b\}$$

1
$$\{a\} \subseteq \{\{a\}\}$$

2
$$\{a\} \subseteq \{b, c, \{a\}\}$$

$$a \subseteq \{a,b,c\}$$

5
$$a \in \{a, b, c\}$$

$$b \in \{b\}$$

2
$$\{a\} \subseteq \{b, c, \{a\}\}$$

$$a \subseteq \{a, b, c\}$$

5
$$a \in \{a, b, c\}$$

$$b \in \{b\}$$

3
$$\{b\} \subseteq \{\{b,c\}\}$$

2
$$\{a\} \subseteq \{b, c, \{a\}\}$$

$$a \subseteq \{a,b,c\}$$

$$a \in \{a, b, c\}$$

$$b \in \{b\}$$

$$a \subseteq \{a,b,c\}$$

$$\{a\} \in \{b, c, \{a\}\}$$

5
$$a \in \{a, b, c\}$$

$$b \in \{b\}$$

$$0 = \emptyset$$

$$\emptyset$$
 $\emptyset \subseteq \emptyset$

$$\bigcirc$$
 $\emptyset \subset \emptyset$

$$0 = \emptyset$$

$$\emptyset$$
 $\emptyset \subseteq \emptyset$

$$\bigcirc$$
 $\emptyset \subset \emptyset$

$$② $\emptyset \in \{\emptyset\}$$$

$$0 = \varnothing$$

$$\emptyset \varnothing \subseteq \varnothing$$

$$\bullet$$
 $\emptyset \subset \emptyset$

- $② <math>\emptyset \in \{\emptyset\}$
- $0 = \emptyset$
- \emptyset $\emptyset \subseteq \emptyset$
- \bigcirc $\emptyset \subset \emptyset$

- \emptyset $\emptyset \subseteq \emptyset$
- \bullet $\varnothing \subset \varnothing$

Conjunto vacío

 ${\sf Conjuntos}$

$$0 = \emptyset$$

$$\bullet$$
 $\varnothing \subset \varnothing$

- \bullet $B \cup C$

- $A (B \cup C)$
- \bullet A^{\complement}
- $(B-A)^{\complement}$

- \bullet $B \cup C$
- $C \cup (A \cap B)$

- \bullet A^{\complement}
- $(B-A)^{\complement}$

- \bullet $B \cup C$
- $C \cup (A \cap B)$
- **3** $C (A \cap B)$
- **4** $A (B \cup C)$
- \bullet A^{\complement}
- $(B-A)^{\complement}$

- \bullet $B \cup C$
- \bigcirc $C \cup (A \cap B)$
- $C (A \cap B)$
- $A (B \cup C)$
- \bullet A^{\complement}

- \bullet $B \cup C$
- $2 C \cup (A \cap B)$
- **4** $A (B \cup C)$
- \bullet A^{\complement}
- $(B-A)^{\complement}$

- \bullet $B \cup C$
- $2 C \cup (A \cap B)$

- \bullet A^{\complement}
- **6** $B (A \cup C)$
- $(B-A)^{\complement}$

Operaciones de conjuntos Conjuntos

- \bullet $B \cup C$
- $2 C \cup (A \cap B)$
- **4** $A (B \cup C)$
- \bullet A^{\complement}
- **6** $B (A \cup C)$
- \bullet $(B-A)^{\complement}$

Conjuntos

Definición 2

El producto Cartesiano entre A y B se define como:

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

Ejemplo

$$A = \{1, 2, 3\}$$
 $B = \{1, 2\}$
 $B = J(1, 1) (1, 2) (2, 1) (2, 2) (2, 2)$

 $A \times B = \{(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)$

Conjuntos

Definición 2

El producto Cartesiano entre A y B se define como:

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

Ejemplo

$$A = \{1, 2, 3\}$$
 $B = \{1, 2\}$
 $A \times B = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}$

$$|A \times B| = |A| \times |B|$$

Conjuntos

Definición 2

El producto Cartesiano entre A y B se define como:

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

Ejemplo

$$A = \{1, 2, 3\} \quad B = \{1, 2\}$$

$$A \times B = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}$$

$$|A \times B| = |A| \times |B|$$

Conjuntos

Definición 2

El producto Cartesiano entre ${\cal A}$ y ${\cal B}$ se define como:

$$A \times B = \{(x, y) : x \in A, y \in B\}$$

Ejemplo

$$A = \{1, 2, 3\} \quad B = \{1, 2\}$$
$$A \times B = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2)\}$$

$$|A \times B| = |A| \times |B|$$

Conjunto potencia

Conjuntos

Definición 3

Sea A cualquier conjunto. El conjunto potencia de A—denotado por $\mathscr{P}(A)$ o $\wp(A)$ —consiste en el conjunto de todos (y únicamente) los subconjuntos de A.

$$\mathscr{P}(\{a,b,c\}) = \{\varnothing, \{a\}, \{b\}, \{c\}, \{a,b\}, \{a,c\}, \{b,c\}, \{a,b,c\}\}\}$$

$$|\mathscr{P}(A)| = 2^{|A|}$$

Conjunto potencia

Conjuntos

Definición 3

Sea A cualquier conjunto. El conjunto potencia de A—denotado por $\mathscr{P}(A)$ o $\wp(A)$ —consiste en el conjunto de todos (y únicamente) los subconjuntos de A.

$$\mathscr{P}(\{a,b,c\}) = \{\varnothing,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$$

$$|\mathscr{P}(A)| = 2^{|A|}$$

Conjunto potencia

Conjuntos

Definición 3

Sea A cualquier conjunto. El conjunto potencia de A—denotado por $\mathscr{P}(A)$ o $\wp(A)$ —consiste en el conjunto de todos (y únicamente) los subconjuntos de A.

$$\mathscr{P}(\{a,b,c\}) = \{\varnothing,\{a\},\{b\},\{c\},\{a,b\},\{a,c\},\{b,c\},\{a,b,c\}\}$$

$$|\mathscr{P}(A)| = 2^{|A|}$$

Conjuntos

La unión y la intersección son conmutativas.

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Equivalencias Conjuntos

La unión y la intersección son conmutativas.

$$A \cup B = B \cup A$$

$$A \cap B = B \cap A$$

Equivalencias Conjuntos

La unión y la intersección son conmutativas.

$$A \cup B = B \cup A$$

$$A\cap B=B\cap A$$

Conjuntos

La unión y la intersección son asociativas.

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Conjuntos

La unión y la intersección son asociativas.

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Equivalencias Conjuntos

La unión y la intersección son asociativas.

$$(A \cup B) \cup C = A \cup (B \cup C)$$

$$(A \cap B) \cap C = A \cap (B \cap C)$$

Conjuntos

La unión y la intersección son distributivas entre ellas.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Conjuntos

La unión y la intersección son distributivas entre ellas.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Equivalencias Conjuntos

La unión y la intersección son distributivas entre ellas.

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Conjuntos

Leyes de De Morgan:

$$(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$$

$$(A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$$

Conjuntos

Leyes de De Morgan:

$$(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$$

$$(A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$$

Conjuntos

Leyes de De Morgan:

$$(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$$

$$(A\cap B)^{\complement}=A^{\complement}\cup B^{\complement}$$

Relaciones

Relaciones y Funciones

Definición 4

Sean A y B dos conjuntos cualesquiera. Una relación binaria R de A a B se define como cualquier subconjunto del producto Cartesiano $A \times B$. Es decir, cualquier conjunto de pares ordenados de la forma (a,b) tal que $a \in A$ y $b \in B$. También se dice que una relación R puede ser sobre $A \times B$.

Ejemplo

Menor o igual (\leq) es una **relación** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(1,1),(1,2),(1,3),\ldots,(2,2),(2,3),\ldots,(3,4),\ldots\}$$

Relaciones

Relaciones y Funciones

Definición 4

Sean A y B dos conjuntos cualesquiera. Una relación binaria R de A a B se define como cualquier subconjunto del producto Cartesiano $A \times B$. Es decir, cualquier conjunto de pares ordenados de la forma (a,b) tal que $a \in A$ y $b \in B$. También se dice que una relación R puede ser sobre $A \times B$.

Ejemplo

Menor o igual (\leq) es una **relación** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(1,1), (1,2), (1,3), \dots, (2,2), (2,3), \dots, (3,4), \dots\}$$

Relaciones y funciones

Definición 5

Sea R una relación binaria. Se dice que es reflexiva sobre un conjunto A sí y solo sí $(a,a) \in R$ para todo $a \in A$.

Ejemplo

Menor o igual (\leq) es una relación **reflexiva** sobre $\mathbb{N} \times \mathbb{N}$

$$\leq = \{(\mathbf{1}, \mathbf{1}), (1, 2), (1, 3), \dots, (\mathbf{2}, \mathbf{2}), (2, 3), \dots, (3, 4), \dots\}$$

Es la relación *menor que* (<) reflexiva sobre los naturales?

Relaciones y funciones

Definición 5

Sea R una relación binaria. Se dice que es reflexiva sobre un conjunto A sí y solo sí $(a,a) \in R$ para todo $a \in A$.

Ejemplo

Menor o igual (\leq) es una relación **reflexiva** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(\mathbf{1}, \mathbf{1}), (1, 2), (1, 3), \dots, (\mathbf{2}, \mathbf{2}), (2, 3), \dots, (3, 4), \dots\}$$

Es la relación *menor que* (<) reflexiva sobre los naturales?

Relaciones y funciones

Definición 5

Sea R una relación binaria. Se dice que es reflexiva sobre un conjunto A sí y solo sí $(a,a)\in R$ para todo $a\in A$.

Ejemplo

Menor o igual (\leq) es una relación **reflexiva** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(\mathbf{1}, \mathbf{1}), (1, 2), (1, 3), \dots, (\mathbf{2}, \mathbf{2}), (2, 3), \dots, (3, 4), \dots\}$$

¿Es la relación menor que (<) reflexiva sobre los naturales?

Transitividad

Relaciones y funciones

Definición 6

Decimos que R es transitiva si y sólo si cuando $(a,b) \in R$ y $(b,c) \in R$, entonces $(a,c) \in R$.

Ejemplo

Menor o igual (\leq) es una relación **transitiva** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(1,1), (\mathbf{1},\mathbf{2}), (\mathbf{1},\mathbf{3}), \dots, (2,2), (\mathbf{2},\mathbf{3}), \dots, (3,4), \dots\}$$

¿Es la relación *menor que* (<) transitiva sobre los naturales?

Transitividad

Relaciones y funciones

Definición 6

Decimos que R es transitiva si y sólo si cuando $(a,b) \in R$ y $(b,c) \in R$, entonces $(a,c) \in R$.

Ejemplo

Menor o igual (\leq) es una relación **transitiva** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(1,1), (\mathbf{1},\mathbf{2}), (\mathbf{1},\mathbf{3}), \dots, (2,2), (\mathbf{2},\mathbf{3}), \dots, (3,4), \dots\}$$

Es la relación *menor que* (<) transitiva sobre los naturales?

Transitividad

Relaciones y funciones

Definición 6

Decimos que R es transitiva si y sólo si cuando $(a,b) \in R$ y $(b,c) \in R$, entonces $(a,c) \in R$.

Ejemplo

Menor o igual (\leq) es una relación **transitiva** sobre $\mathbb{N} \times \mathbb{N}$:

$$\leq = \{(1,1), (\mathbf{1},\mathbf{2}), (\mathbf{1},\mathbf{3}), \dots, (2,2), (\mathbf{2},\mathbf{3}), \dots, (3,4), \dots\}$$

¿Es la relación menor que (<) transitiva sobre los naturales?

Transitividad Relaciones y funciones

Transitividad Relaciones y funciones

Transitividad Relaciones y funciones

Simetría

Relaciones y funciones

Definición 7

Una relación R es simétrica si y sólo si cuando $(a,b) \in R$, entonces $(b,a) \in R$.

Ejemplo 1

La relación de igualdad (=) es una relación **simétrica**: si a=b, entonces b=a.

Ejemplo 2

La relación de hermandad es simétrica: si Juan es hermano de Pedro entonces Pedro es hermano de Juan.

Simetría

Relaciones y funciones

Definición 7

Una relación R es simétrica si y sólo si cuando $(a,b) \in R$, entonces $(b,a) \in R$.

Ejemplo 1

La relación de igualdad (=) es una relación **simétrica**: si a=b, entonces b=a.

Ejemplo 2

La relación de hermandad es **simétrica**: si Juan es hermano de Pedro entonces Pedro es hermano de Juan.

Simetría

Relaciones y funciones

Definición 7

Una relación R es simétrica si y sólo si cuando $(a,b) \in R$, entonces $(b,a) \in R$.

Ejemplo 1

La relación de igualdad (=) es una relación **simétrica**: si a=b, entonces b=a.

Ejemplo 2

La relación de hermandad es simétrica: si Juan es hermano de Pedro, entonces Pedro es hermano de Juan.

Relaciones y Funciones

¿Cualquier relación es una función?

¿Cualquier función es una relación?

Relaciones y Funciones

¿Cualquier relación es una función?

¿Cualquier función es una relación?

Relaciones y Funciones

Definición 8

Una función unitaria de un conjunto A en un conjunto B es cualquier relación binaria R de A a B que satisfaga la condición de que para todo $a \in A$ existe exactamente un $b \in B$ tal que $(a,b) \in R$.

Podemos describir una función f de A en B como $f:A\to B$

Ejemplo

La relación sucesor es una **función** de los naturales en los naturales $f:\mathbb{N}\to\mathbb{N}$

$$suc(n) = \{(1,2), (2,3), (3,4), (4,5), \dots\}$$

Relaciones y Funciones

Definición 8

Una función unitaria de un conjunto A en un conjunto B es cualquier relación binaria R de A a B que satisfaga la condición de que para todo $a \in A$ existe exactamente un $b \in B$ tal que $(a,b) \in R$.

Podemos describir una función f de A en B como $f: A \rightarrow B$.

Ejemplo

La relación sucesor es una **función** de los naturales en los naturales $f:\mathbb{N}\to\mathbb{N}$

$$suc(n) = \{(1,2), (2,3), (3,4), (4,5), \dots\}$$

Relaciones y Funciones

Definición 8

Una función unitaria de un conjunto A en un conjunto B es cualquier relación binaria R de A a B que satisfaga la condición de que para todo $a \in A$ existe exactamente un $b \in B$ tal que $(a,b) \in R$.

Podemos describir una función f de A en B como $f:A\to B$.

Ejemplo

La relación sucesor es una **función** de los naturales en los naturales $f:\mathbb{N}\to\mathbb{N}$

$$\mathrm{suc}(n) = \{(1,2), (2,3), (3,4), (4,5), \dots\}$$

Dominio

Funciones y Relaciones

Definición 9

El dominio de una función f puede definirse como

$$\mathtt{dom}(f) = \{a \in A : \exists b \in B, f(a) = b\}$$

En una función de forma $f: A \to B$, el **dominio** es simplemente A

Dominio

Funciones y Relaciones

Definición 9

El dominio de una función f puede definirse como

$$\mathtt{dom}(f) = \{a \in A : \exists b \in B, f(a) = b\}$$

En una función de forma $f: A \to B$, el **dominio** es simplemente A.

Codominio o Rango

Funciones y Relaciones

Definición 10

El $\frac{1}{2}$ codominio (también conocido como $\frac{1}{2}$ rango) de una función f puede definirse como

$$\mathtt{codom}(f) = \{ b \in B : \exists a \in A, f(a) = b \}$$

En una función de forma $f: A \to B$, el **codominio** es simplemente B.

Codominio o Rango

Funciones y Relaciones

Definición 10

El $\frac{\text{codominio}}{\text{como}}$ (también conocido como $\frac{\text{rango}}{\text{rango}}$) de una función f puede definirse como

$$codom(f) = \{b \in B : \exists a \in A, f(a) = b\}$$

En una función de forma $f: A \rightarrow B$, el **codominio** es simplemente B.