1. KNN 算法简介

最近邻居法(KNN 算法,又译 K-近邻算法)是一种用于分类和回归的非参数统计方法。在这两种情况下,输入包含特征空间中的 k 个最接近的训练样本。在 KNN 分类中,输出是一个分类族群。一个对象的分类是由其邻居的"多数表决"确定的,k 个最近邻居(k 为正整数,通常较小)中最常见的分类决定了赋予该对象的类别。若 k = 1,则该对象的类别直接由最近的一个节点赋予。在 KNN 回归中,输出是该对象的属性值。该值是其 k 个最近邻居的值的平均值。

最近邻居法采用向量空间模型来分类,概念为相同类别的案例,彼此的相似度高,而可以借由计算与已知类别案例之相似度,来评估未知类别案例可能的分类或属性值。KNN 是一种基于实例的学习,或者是局部近似和将所有计算推迟到分类之后的 Lazy 学习方法。k-近邻算法的缺点是对数据的局部结构非常敏感。

2. 存在的问题

k-近邻算法的预测结果与 k 的大小相关。同样的数据,K 值不同可能导致不同的预测结果。k-近邻算法存在归纳偏置:一个实例的分类与在欧氏空间中它附近的实例的分类相似。当数据集的维度较高时,就会出现实例间距离会被大量的不相关属性所支配,可能导致相关属性的值很接近的实例相距很远。也有可能存在这样一种情况,由于 KNN 算法的距离度量一般使用欧式距离。在 N 维空间中,待测样本点到训练样本点可以看作一个 N 维向量,该向量的长度就是训练样本到待测样本的距离。当待测样本与训练样本的夹角最小时,距离不一定最小,此时,有可能夹角最小的值更合适。从这个角度切入的话,也许某些系统的数据集适合这种方式。

下面几个例子用到的数据来自 sleep. arff(http://www.cs.waikato.ac.nz/ml/weka/datasets.html)。 其中,属性从左到右依次为 body_weight、brain_weight、max_life_span、gestation_time、predation_index、sleep_exposure_index、danger_index、total_sleep、距离和夹角。需要求取的属性是 total_sleep。

实验所使用的软件平台为:

Windows 7 SP1 64bit

Java 1.8 update 45

Weka 3.6.12

IntelliJ IDEA 14.1.3

测试条件为 IB1 算法, 66%训练, 33%测试

待测样本	3.385	44.5	14	60	1	1	1	12.5		
训练样本	36.33	119.5	16.2	63	1	1	1	13	0.000726	0.092242
	4.235	50.4	9.8	52	1	1	1	9.8	0.002009	0.128392
	0.01	0.25	24	50	1	1	1	19.9	0.010786	0.305307
	100	157	22.4	100	1	1	1	10.8	0.011984	0.084494
	1.7	6.3	5	12	2	1	1	19.4	0.076781	1.477736
	3.5	10.8	6.5	120	2	1	1	17.4	0.077412	1.140567

待测样本	0.75	12.3	7	225	2	2	2	6.6		
训练样本	0.48	15.5	12	140	2	2	2	17	0.020651	0.250394
	1.4	12.5	12.7	90	2	2	2	11	0.048888	0.404808
	4.288	39.2	13.7	63	2	2	2	12.5	0.070222	0.499235
	3.6	21	6	225	3	2	3	5.4	0.125107	0.336791
	0.9	2.6	4.5	60	2	1	2	13.3	0.131103	0.707295
	0.104	2.5	2.3	46	3	2	2	15.8	0.144782	0.656431

待测样本	1.62	11.4	13	17	2	1	2	13.7		
训练样本	0.9	2.6	4.5	60	2	1	2	13.3	0.012186	0.301788
	4.288	39.2	13.7	63	2	2	2	12.5	0.067856	0.608436
	1.7	6.3	5	12	2	1	1	19.4	0.069268	0.790189
	0.12	1	3.9	16	3	1	2	14.4	0.071181	0.416673
	3.5	3.9	3	14	2	1	1	19.4	0.073001	0.817971
	1.4	12.5	12.7	90	2	2	2	11	0.075809	0.637453

上面使用的是 Weka 中的 IB1 算法,该算法使用最近的邻居的值来推断待测样本的值。对该算法简单修改,让其记录夹角。上面三个例子都能反应,夹角较小的样本不一定距离最近,在第一个和第三个例子中,使用夹角最小的两个样本值的平均值的话会更接近真实值。第二个例子也指出,仅仅使用夹角来判断也是不够的。所以应该结合两者来判断。

3. 分析

可能存在这样的系统,当系统的某一个属性值发生改变时,目标值会发生较大改变,而当系统的大部分属性值都发生改变时,目标值变化较小。也可能存在与之相反的系统,当某一个属性值改变时,目标值变化较小,而当系统大部分属性值发生改变时,目标值变化较大。前一种情况应该是不常见的。最一般的,用欧式距离度量,然后求平均值的做法适合后一种情况。即便是在后一

В

2

1

0

Α

C

种情况中,考虑夹角也许能降低误差。

关于距离的度量。把所有的属性值做归一化,使其范围在 0——1。距离量化使用欧式距离。如果数据集有三个属性(不包括要预测的目标属性)的话,那么所有的样本点在一个半径为 1 的球体内。如右图所示,假设 0 点是球体的中心,B、C 是训练样本,A 是待测样本。OA 就是 A 样本归一化后所有属性值的欧式距离。采用 KNN 方法,我们要度量的是距离 AB、AC。夹角的话有两种,第一种是角 1 和角 2。这两个角与 AB 和 AC 的长度有关系,所以在大部分情况下,按距离排序后,角 1 和角 2 的顺序也排好了。角 3 和角 4 与 AB 和 AC 的长度基本没有关系。两者的参考标准不同,前者都是相对于 0 点的,后者相对于待测样本点 A 度量的。

4. 方法

之前是只关注距离,现在加了角度,这两个量应该怎样影响目标属性的取值呢。可以参考用距离加权平均的方法,只不过这里权值由距离和夹角共同决定。当采用角 1 和角 2 时,我们假设夹角和距离同时比较小的训练样本更接近真实值。也就是说这样的样本的权值应该大一些。为此设法寻找一个函数,当 x 和 y 都比较小时,函数值较大,x 和 y 中至少有一个偏大,就会导致函数值变小。

$$\frac{1}{(|x-y|+1)(x+1)(y+1)}$$

从三维图上很容易看到,这个函数满足我们的要求。 当我们需要权值偏向于夹角或者距离时,可以简单修改下函数,例如

$$\frac{100}{(|x-y|+1)(x+100)(y+1)}$$

这样,权值的计算就解决了。

5. 上机实习

首先将 IB1. java 中的代码复制到自己新建的包中,然后删去用不到的代码,knn 类中只剩下buildClassifier、classifyInstance 和 main 这三个方法。

在 buildClassifier 方法中,新建两个属性 "distance" 和 "angle"用来存储距离和夹角,并把这两个属性放到最后面。

```
m_Train = new Instances(instances, 0, instances.numInstances());
m_Train.insertAttributeAt(new Attribute("distance"),
m_Train.numAttributes());
m_Train.insertAttributeAt(new Attribute("angle"), m_Train.numAttributes());
```

写一个 angle 函数来计算夹角,供 classifyInstance 方法调用。

```
private double angle(Instance first, Instance second) {
   double diff = 0, diff1 = 0, diff2 = 0, angle, innerProduct = 0,
moduleProduct, module1 = 0, module2 = 0;
   for(int i = 0; i < m_Train.attribute("distance").index(); i++) {</pre>
      if (i == m_Train.classIndex()) {
          continue;
      }
      if (!first.isMissing(i) && !second.isMissing(i)){
          diff = norm(first.value(i), i) * norm(second.value(i), i);
          diff1 = norm(first.value(i), i) * norm(first.value(i), i);
          diff2 = norm(second.value(i), i) * norm(second.value(i), i);
      }
      innerProduct += diff;
      module1 += diff1;
      module2 += diff2;
   }
   moduleProduct = Math.sqrt(module1) * Math.sqrt(module2);
   angle=Math.acos(innerProduct/moduleProduct);
   return angle;
}
```

由于增加了两个属性,所以在 distance 函数和 updateMinMax 函数中的 for 循环停止条件要做修改。

```
for (int j = 0; j < m_Train.attribute("distance").index(); j++)</pre>
```

在 classifyInstance 方法中我们一开始并没有修改 classValue 的值的算法,只是把距离和夹角保存起来,并输出出来,本文一开始的三个例子就是这样输出出来的。

```
while (enu.hasMoreElements()) {
   Instance trainInstance = (Instance) enu.nextElement();
   if (!trainInstance.classIsMissing()) {
      distance = distance(instance, trainInstance);
      angle = angle(instance, trainInstance);
      trainInstance.setValue(m_Train.attribute("distance"), distance);
      trainInstance.setValue(m_Train.attribute("angle"), angle);
      if (distance < minDistance) {</pre>
          minDistance = distance;
          classValue = trainInstance.classValue();
      }
   }
}
m_Train.sort(m_Train.attribute("distance").index());
System.out.println("fly");
System.out.println(instance);
for (int i=0; i<4; i++){</pre>
   System.out.println(m_Train.instance(i));
return classValue;
```

下面给出的是完整的 classifyInstance 方法

```
public double classifyInstance(Instance instance) throws Exception {
   if (m_Train.numInstances() == 0) {
      throw new Exception("No training instances!");
   }
   double distance, angle, classWeightSum=0, classValue = 0;
   Instances m_MinAngel, m_MinDistance;
   updateMinMax(instance);
   Enumeration enu = m_Train.enumerateInstances();
   while (enu.hasMoreElements()) {
      Instance trainInstance = (Instance) enu.nextElement();
      if (!trainInstance.classIsMissing()) {
          distance = distance(instance, trainInstance);
          angle = angle(instance, trainInstance);
          //保存计算结果
          trainInstance.setValue(m_Train.attribute("distance"), distance);
          trainInstance.setValue(m_Train.attribute("angle"), angle);
      }
   }
   //按夹角排序
   m_Train.sort(m_Train.attribute("angle").index());
   //将前 2 个复制到 m_MinAngle
   m_MinAngel = new Instances(m_Train, 0, 2);
   m_MinAngel.insertAttributeAt(new Attribute("classWeight"), m_MinAngel.n
umAttributes());
   m_Train.sort(m_Train.attribute("distance").index());
   m_MinDistance = new Instances(m_Train, 0, 2);
   m_MinDistance.insertAttributeAt(new Attribute("classWeight"), m_MinDist
ance.numAttributes());
   //将夹角和距离对象合并为一个新对象
   Instances m_Weight = new Instances(m_MinAngel);
   for (int i=0; i<m_MinDistance.numInstances()-1; i++){</pre>
      m_Weight.add(m_MinDistance.instance(i));
   //将夹角归一化
   m_Weight.sort(m_Weight.attribute("angle").index());
   for (int i=0; i<m_Weight.numInstances()-1; i++){</pre>
      angle = m_Weight.instance(i).value(m_Weight.attribute("angle").index
())/m_Weight.instance(m_Weight.numInstances()-1).value(m_Weight.attribute
("angle").index());
      m_Weight.instance(i).setValue(m_Weight.attribute("angle").index(), a
ngle);
   //将距离归一化
   m_Weight.sort(m_Weight.attribute("distance").index());
```

```
for (int i=0; i<m_Weight.numInstances()-1; i++){</pre>
      distance = m_Weight.instance(i).value(m_Weight.attribute("distance
").index())/m_Weight.instance(m_Weight.numInstances()-1).value(m_Weight.at
tribute("distance").index());
       m_Weight.instance(i).setValue(m_Weight.attribute("distance").index
(), distance);
   }
   //计算权值
   for (int i=0; i<m Weight.numInstances()-1; i++){</pre>
       angle = m_Weight.instance(i).value(m_Weight.attribute("angle").inde
x());
      distance = m_Weight.instance(i).value(m_Weight.attribute("distance
").index());
      m_Weight.instance(i).setValue(m_Weight.attribute("classWeight").ind
ex(),100/((Math.abs(angle-distance)+1)*(angle+1)*(distance+100)));
   //将权值归一化
   m_Weight.sort(m_Weight.attribute("classWeight").index());
   for (int i=0; i<m_Weight.numInstances()-1; i++){</pre>
       classWeightSum += m_Weight.instance(i).value(m_Weight.attribute("cl
assWeight").index());
   for (int i=0; i<m Weight.numInstances()-1; i++){</pre>
      double classWeight = m_Weight.instance(i).value(m_Weight.attribute("
classWeight").index());
      m_Weight.instance(i).setValue(m_Weight.attribute("classWeight").ind
ex(), classWeight/classWeightSum);
   //计算 classValue
   for (int i=0; i<m_Weight.numInstances()-1; i++){</pre>
      classValue += m_Weight.instance(i).value(m_Weight.attribute("classW
eight").index()) * m_Weight.instance(i).classValue();
   return classValue;
}
```

完成代码后,测试数据集一共使用了三个,分别为 sleep. arff、autoPrice. arff 和 pollution. arff。正如上面代码所示,使用的角 1 和角 2,权值分配时更倾向于距离。下面出现的 KNN 算法均指上面代码实现的算法,Weka 自带的算法会明确标出。

结果概括如下:

```
情景 1: KNN 算法
情景 2: IB1 算法,即 K=1
情景 3: IBK 算法, K=3, no distance weighting
情景 4: IBK 算法, K=3, weight by 1/distance
情景 5: IBK 算法, K=5, weight by 1/distance
```

对于数据集 sleep. arff,采用交叉验证,Folds=10

参数	<i>情景1</i>	情景 2	<i>情景3</i>	情景4	<i>情景</i> 5
Correlation coefficient	0.7835	0.775	0.7483	0.7875	0.7541
Mean absolute error	2.1982	2.3627	2.551	2.3008	2.4838
Root mean squared error	3.1141	3.4373	3.0911	2.9093	3.0782
Relative absolute error	57.80%	62.13%	67.08%	60.50%	65.31%
Root relative squared error	66.05%	72.90%	65.56%	61.70%	65.28%
Total Number of Instances	51	51	51	51	51

对于数据集 autoPrice. arff,采用交叉验证,Folds=10

参数	<i>情景1</i>	<i>情景 2</i>	情景3	<i>情景 4</i>	<i>情景</i> 5
Correlation coefficient	0.8729	0.8738	0.862	0.8801	0.878
Mean absolute error	1629.1417	1609.8648	1798.3449	1668.0592	1666.5529
Root mean squared error	2920.2273	2902.5515	3010.9122	2888.5787	2953.8493
Relative absolute error	35.47%	34.83%	38.91%	36.09%	36.06%
Root relative squared error	49.49%	49.09%	50.92%	48.86%	49.96%
Total Number of Instances	159	159	159	159	159
UnClassified Instances	1 / 0.6289 %				

对于数据集 pollution. arff,采用交叉验证,Folds=10

参数	<i>情景1</i>	<i>情景 2</i>	<i>情景3</i>	<i>情景</i> 4	<i>情景</i> 5
Correlation coefficient	0.551	0.5507	0.5996	0.615	0.6687
Mean absolute error	44.9928	45.0788	38.4731	37.7571	35.2371
Root mean squared error	57.4651	57.5308	49.7635	48.993	45.9815
Relative absolute error	89.33%	89.50%	76.39%	74.97%	69.96%
Root relative squared error	92.03%	92.13%	79.69%	78.46%	73.64%
Total Number of Instances	60	60	60	60	60

6. 分析

由此可见考虑夹角后可以改善结果。但是对于数据集 pollution. arff,可能因为属性之间有某种关系,导致结果变差。

如果采用角3和角4,三个数据集的结果会非常差。我认为出现这种情况可能是因为某些属性之间有内在的联系,预处理阶段采用属性选择或者属性规约也许能改善结果。