Find the equivalent resistance between points A and B

COLLEGE OF ENGINEERING

Voltage and Current Division

- Learning Objectives:
 - Apply voltage division.
 - Apply current division.

© 2023 I. Fernandez

Voltage Division

 Recall: Same current flows through all of the resistances in series.

What about the voltage???

Voltage Division

 Recall: Same current flows through all of the resistances in series.

$$A \quad R_1 \quad R_2 \quad R_3 \quad R_4 \quad B$$
 $O-WW-WW-WW-O$
 $+ v_1 - + v_2 - + v_3 - + v_4 -$

What about the voltage???

Principle of voltage division:

- The ratio of the voltages across any two or more series resistances equals the ratio of those resistances.
- Applies to any two or more resistances in series.

$$v_1 = \frac{R_1}{R_1 + R_2 + R_3 + R_4} v_{AB}$$

• Find v_1 and v_2

• Find v_1 , v_2 , and v_3

Current Division

Recall: Same voltage across resistors in parallel.

What about the current???

Current Division

Recall: Same voltage across resistors in parallel.

What about the current???

Principle of current division:

 The ratio of the currents through any two or more resistances in parallel equals the inverse ratio of those resistances.

$$i_1 = \frac{\frac{1}{R_1}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}}i_0$$

• Find i_1 and i_2

• Find i_1 and i_2

