1 In Read_data.py

We begin by reading travel_times_2011.csv using csv.DictReader. Using read_data_csv, we then save the trips and travel times data in sparse co-ordinate matrix form, i.e. (hour (in EDT), link, trips, traveltimes), as data_coo_form.txt. Next, using write_data_array, we write these values to data_trips.csv and data_travel_times.csv. For an unknown reason, write_data_array introduced a line break in the first hour of the first day of data. After correcting this break, we reverse the order of the data from the previous step since the data is given in descending order, but we need to write it in ascending order. Also, to aid in finding submatrices generated by a set of link ids, we transpose data_trips.csv using write_data_array_transpose to create data_trips_transpose.csv. This is fairly memory intensive due to the scale of the data so we utilized the campus cluster for efficiency.

Next, we want to pull out the data corresponding to links with at most 30 days worth of data missing; this is done with find_full_links. We also ran this on the campus cluster. The list of full link ids is saved under full_link_ids.txt. Similarly, we found all of the links with at most 30 days worth of data; this is done with find_empty_links and produces empty_link_ids.csv. We then pull the corresponding data for the full links using write_full_link_data and save into full_link_trips.json and full_link_traveltimes.json. Henceforth, read_full_link_json should be used to return the full link ids and their data.

Then, we want to find the periodicity of the full link data. By running autocorrelation, we see that the period is 7 days. We check the refinement of this by running autocorrelation_hourly, and verify the 7-day period. We also checked the periodicity of the travel times and it matches the 7-day period (graph omitted but is saved in Figures\).

2 In Phase1.py

We group the functions for running Sparse Non-negative Matrix Factorization under *find_signatures*. Then, we save the matrix factorization as W_trips.txt

Using the old way for calculating error (we include positions corresponding to nan data positions) and running SNMF(traveltimes, rank=50, $\beta=0.1$, $\eta=0.1$, threshold=0.01) gave relative error 39.890%, and for SNMF(trips, rank=50, $\beta=0.1$, $\eta=0.1$, threshold=0.01) the error was 28.666%.

In the new way, we don't count the guess positions against us and obtain 39.194% for SNMF(traveltimes, rank=50, $\beta=0.1$, $\eta=0.1$, threshold=0.01) and 27.378% for SNMF(trips, rank=50, $\beta=0.1$, $\eta=0.1$, threshold=0.01).

Using the campus cluster, we need to run SNMF with β , η , and rank values to determine optimal combination. For now, we continue with rank=50

After running find_signatures to produce