	_	2016级	《 数学	学分析 1	》期末	考试卷((A)		
使用专业、班级		学号			姓名				
题 数	_	=	三	四	五.	六	七	总 分	
得分									
本题 得分									
本题 得分 求极限 lim x→+	二、计算 $\int_{\infty} \left(\frac{\pi}{2} - \operatorname{arct}\right)$		分〗						

考试形式开卷()、闭卷(√),在选项上打(√) 开课教研室<u>信息与计算科学系</u> 命题教师<u>孔祥智</u> 命题时间<u>2016.12</u> 使用学期<u>16-17.1</u> 本题 得分

____ 三、计算题 〖8分〗

设 $\begin{cases} x = e^t \cos t \\ y = e^t \sin t \end{cases}$, 求 $\frac{d^2 y}{dx^2}$

本题 得分

_____ 四、计算题 〖8分〗

 $\Re \int \frac{1}{x} \sqrt{\frac{x+2}{x-2}} dx$

总张数_____ 教研室主任审核签字

本题	
周分 五、计算题 〖8分〗 设 $f(x) = \int_0^x e^{-y^2 + 2y} dy$,求 $\int_0^1 (x-1)^2 f(x) dx$.	

试卷专用纸

本题 得分

_____ 六、计算题 〖8分〗

写出 $f(x) = e^{\frac{-x^2}{3}}$ 的带拉格朗日型余项的麦克劳林公式并求 $f^{(98)}(0)$ 、 $f^{(99)}(0)$ 。

1.设 $x_0 > 0, x_{n+1} = \frac{1}{2} \left(x_n + \frac{1}{x_n} \right)$, 证明数列 $\{x_n\}$ 收敛并求极限。

2. 证明: 当 a,b,c > 0 时, $(abc)^{\frac{a+b+c}{3}} \le a^a b^b c^c$ 。

3.若 $f(x) \in C[a,b]$, 证明: $2\int_a^b f(x) \left[\int_x^b f(t) dt \right] dx = \left(\int_a^b f(x) dx \right)^2$ 。

