NONLINEAR DIELECTRIC CONSTANT MEASURING INSTRUMENT

Publication number:

JP8075806

Publication date:

1996-03-22

Inventor:

CHO YASUO

Applicant:

MURATA MANUFACTURING CO; CHO YASUO

Classification:

- international:

G01R27/26; G01R27/26; (IPC1-7): G01R27/26

- european:

Application number:

JP19940209593 19940902

Priority number(s):

JP19940209593 19940902

Report a data error here

Abstract of JP8075806

PURPOSE: To enable observation of the micro-distribution of a nonlinear dielectric constant, the crystal status of a dielectric, and the micro-distribution of polarization by applying an alternate current signal with its specific frequency to the minute region of the dielectric. CONSTITUTION: An alternate current power supply 9 generates as alternate current electric field Ep in a minute region 2a of a dielectric sample 2 by applying an alternate current voltage Vp with a frequency fp to electrodes 50 and 4 to be measured and outputs voltage Vp as a reference voltage. The minute region 2a and a capacitor unit 1 comprise a resonance circuit 10. An oscillator 20 generates an oscillation signal in which the oscillation frequency varies in response to the frequency fp and a ternary induction rate &epsi 3 of the minute region 2a. An FM demodulation circuit 26 frequencydemodulates this oscillation signal and outputs a demodulation signal with its amplitude matching the frequency fp and dielectric constant &epsi 3 . A lock-in amplifier 27 synchronously detects the demodulation signal based on a reference signal and outputs a direct current signal with its amplitude matching the frequency fp and the dielectric constant &epsi 3.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

特開平8-75806

(43)公開日 平成8年(1996)3月22日

(51) Int.Cl.6

識別記号 庁内整理番号 FΙ

技術表示箇所

G 0 1 R 27/26

Н

審査請求 未請求 請求項の数6 OL (全 25 頁)

(21)出願番号

特願平6-209593

(22)出願日

平成6年(1994)9月2日

(71)出願人 000006231

株式会社村田製作所

京都府長岡京市天神二丁目26番10号

(71)出願人 594153720

長 康雄

山口県宇部市大字沖宇部2557番地

(72)発明者 長 康雄

山口県宇部市大字沖宇部2557番地

(74)代理人 弁理士 青山 葆 (外2名)

(54) 【発明の名称】 非線形誘電率測定装置

(57)【要約】

【目的】 誘電体の一部分である微小領域における非線 形誘電率を測定する非線形誘電率測定装置を提供する。

【構成】 誘電体に形成された第1の電極と、上記誘電 体の微小領域に接触するように設けられた先端部を有す る第2の電極と、上記誘電体の微小領域に所定の周波数 を有する交流信号を印加する電圧印加手段と、上記第1 の電極と上記第2の電極との間に挟設された誘電体の微 小領域のキャパシタを含んで構成された共振回路を備え て、上記誘電体の微小領域に上記交流信号が印加された ときに、上記交流信号の周波数と上記微小領域の非線形 誘電率に対応して発振周波数が変化する発振信号を発生 する発振手段と、上記発振信号を周波数復調して、上記 交流信号の周波数と上記微小領域の非線形誘電率に対応 した振幅を有する信号を電気信号として出力する復調手 段とを備え、上記電気信号に基づいて上記誘電体の微小 領域の非線形誘電率を測定する。

【特許請求の範囲】

【請求項1】 互いに対向する第1の面と第2の面とを 有する誘電体の一部分である微小領域における非線形誘 電率を測定する非線形誘電率測定装置であって、

上記誘電体の第1の面に形成された第1の電極と、

上記誘電体の第2の面に接触するように設けられた先端 部を有する第2の電極と、

上記第1の電極と上記第2の電極に接続され、上記誘電 体の微小領域に所定の周波数を有する交流信号を印加す る電圧印加手段と、

上記第1の電極と上記第2の電極との間に挟設された誘 電体の微小領域のキャパシタと、インダクタとを含んで 構成されたLC共振回路を備えて、上記誘電体の微小領 域に上記交流信号が印加されたときに、上記交流信号の 周波数と上記微小領域の非線形誘電率に対応して発振周 波数が変化する発振信号を発生する発振手段と、

上記発振信号を周波数復調して、上記交流信号の周波数 と上記微小領域の非線形誘電率に対応した振幅を有する 信号を電気信号として出力する復調手段とを備え、

上記電気信号に基づいて上記誘電体の微小領域の非線形 20 誘電率を測定することを特徴とする非線形誘電率測定装 置。

【請求項2】 互いに対向する第1の面と第2の面とを 有する誘電体の一部分である微小領域における非線形誘 電率を測定する非線形誘電率測定装置であって、

上記誘電体の第1の面に形成された第1の電極と、

上記誘電体の第2の面に形成された透明材料にてなる第 2の電極と、

上記第1の電極と上記第2の電極に接続され、上記誘電 る電圧印加手段と、

上記第2の電極を介して上記誘電体の微小領域に光ビー ムを照射する光照射手段と、

上記光ビームが照射されたときに、上記誘電体の微小領 域から反射される反射光を光電変換して電気信号を出力 する光電変換手段とを備え、

上記電気信号に基づいて上記誘電体の微小領域の非線形 誘電率を測定することを特徴とする非線形誘電率測定装 置。

【請求項3】 上記非線形誘電率測定装置はさらに、 上記交流信号に基づいて上記電気信号を同期検波して上 記電気信号の振幅に対応した直流信号を出力する検波手 段とを備え、

上記直流信号に基づいて上記誘電体の微小領域の非線形 誘電率を測定することを特徴とする請求項1又は2記載 の非線形誘電率測定装置。

【請求項4】 上記共振回路は、

互いに対向する2個の底面を備えた円筒形状を有し、上 記円筒形状の一方の底面が短絡されて終端されかつ他方 の底面に開口部を有する導体ケースと、

上記導体ケースの一方の底面の中心に連結され、かつ上 記連結部分から上記導体ケースの軸中心に沿って上記先 端部が上記開口部まで延在するように上記導体ケース内 に設けられた円柱形状の上記第2の電極とを備え、

上記導体ケースの他方の底面が上記誘電体の上面に接触 してなるリエントラント空胴共振器であることを特徴と する請求項1記載の非線形誘電率測定装置。

【請求項5】 上記非線形誘電率測定装置はさらに、

上記第2の電極が上記誘電体の第2の面上を走査するよ うに、上記誘電体を1次元方向又は2次元方向で移動す 10 る移動手段を備えたことを特徴とする請求項1、3又は 4記載の非線形誘電率測定装置。

【請求項6】 上記非線形誘電率測定装置はさらに、 上記光照射手段によって照射された光ピームに対して垂 直に、上記誘電体を1次元方向又は2次元方向で移動す る移動手段を備えたことを特徴とする請求項2又は3記 載の非線形誘電率測定装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、誘電体材料の非線形誘 電率を測定する非線形誘電率測定装置に関する。

[0002]

【従来の技術】近年、移動体通信用弾性表面波デバイス をはじめとする種々の弾性波応用素子において、髙周波 化・大電力化が進み、それらの素子に用いられている圧 電材料の誘電率等の非線形特性が無視できない状況にな りつつある。またコンコルパのように材料の非線形特性 を利用したデバイスも開発されつつある。またさらに最 近ではその薄膜化の研究も大きな進歩を遂げ、次世代の 体の微小領域に所定の周波数を有する交流信号を印加す 30 超高密度メモリーへの応用を目的とした研究も活発に行 なわれている。以上のように圧電材料の応用研究が活発 に行なわれるようになるにつれて、誘電率の非線形特性 の評価や誘電率の非線形特性に関係の深い誘電体材料の 結晶性や強誘電体の分極の状態の観測は、ますます重要 になりつつある。従来は、誘電体材料の結晶性や強誘電 体の分極の状態の観測には、X線回折法による分析や、 ソーヤタワー回路によるD-E曲線の観測など一般的に 用いられていた。

[0003]

40 【発明が解決しようとする課題】しかしながら、従来の X線回折法やソーヤタワー回路による方法では、強誘電 体の分極のミクロの分布や、誘電率の非線形定数のミク ロの分布の測定はできなかった。

【0004】本発明の目的は、上記問題点を解決して、 非線形誘電率のミクロの分布や、これによって、誘電体 の結晶状態や分極のミクロの分布を観測することができ る非線形誘電率測定装置を提供することにある。

[0005]

【課題を解決するための手段】本発明に係る請求項1記 50 載の非線形誘電率測定装置は、互いに対向する第1の面 と第2の面とを有する誘電体の一部分である微小領域に おける非線形誘電率を測定する非線形誘電率測定装置で あって、上記誘電体の第1の面に形成された第1の電極 と、上記誘電体の第2の面に接触するように設けられた 先端部を有する第2の電極と、上記第1の電極と上記第 2の電極に接続され、上記誘電体の微小領域に所定の周 波数を有する交流信号を印加する電圧印加手段と、上記 第1の電極と上記第2の電極との間に挟設された誘電体 の微小領域のキャパシタと、インダクタとを含んで構成 されたLC共振回路を備えて、上記誘電体の微小領域に 10 上記交流信号が印加されたときに、上記交流信号の周波 数と上記微小領域の非線形誘電率に対応して発振周波数 が変化する発振信号を発生する発振手段と、上記発振信 号を周波数復調して、上記交流信号の周波数と上記微小 領域の非線形誘電率に対応した振幅を有する信号を電気 信号として出力する復調手段とを備え、上記電気信号に 基づいて上記誘電体の微小領域の非線形誘電率を測定す ることを特徴とする。

【0006】請求項2記載の非線形誘電率測定装置は、互いに対向する第1の面と第2の面とを有する誘電体の 20一部分である微小領域における非線形誘電率を測定する非線形誘電率測定装置であって、上記誘電体の第1の面に形成された第1の電極と、上記誘電体の第2の面に形成された透明材料にてなる第2の電極と、上記第1の電極と上記第2の電極に接続され、上記誘電体の微小領域に所定の周波数を有する交流信号を印加する電圧印加手段と、上記第2の電極を介して上記誘電体の微小領域に光ビームを照射する光照射手段と、上記光ビームが照射されたときに、上記誘電体の微小領域から反射される反射光を光電変換して電気信号を出力する光電変換手段と 30を備え、上記電気信号に基づいて上記誘電体の微小領域の非線形誘電率を測定することを特徴とする。

【0007】請求項3記載の非線形誘電率測定装置は、 請求項1又は2記載の非線形誘電率測定装置において、 さらに、上記交流信号に基づいて上記電気信号を同期検 波して上記電気信号の振幅に対応した直流信号を出力す る検波手段とを備え、上記直流信号に基づいて上記誘電 体の微小領域の非線形誘電率を測定することを特徴とす る。

【00008】請求項4記載の非線形誘電率測定装置においいては、請求項1記載の非線形誘電率測定装置において、上記共振回路は、互いに対向する2個の底面を備えた円筒形状を有し、上記円筒形状の一方の底面が短絡されて終端されかつ他方の底面に開口部を有する導体ケースと、上記導体ケースの一方の底面の中心に連結され、かつ上記連結部分から上記導体ケースの軸中心に沿って上記先端部が上記開口部まで延在するように上記導体ケース内に設けられた円柱形状の上記第2の電極とを備え、上記導体ケースの他方の底面が上記誘電体の上面に接触してなるリエントラント空間共振界であることを終るの

徴とする。

【0009】請求項5記載の非線形誘電率測定装置は、 請求項1、3又は4記載の非線形誘電率測定装置におい て、さらに、上記第2の電極が上記誘電体の第2の面上 を走査するように、上記誘電体を1次元方向又は2次元 方向で移動する移動手段を備えたことを特徴とする。

4

【0010】請求項6記載の非線形誘電率測定装置は、 請求項2又は3記載の非線形誘電率測定装置において、 さらに、上記光照射手段によって照射された光ビームに 対して垂直に、上記誘電体を1次元方向又は2次元方向 で移動する移動手段を備えたことを特徴とする。

[0011]

【作用】請求項1記載の非線形誘電率測定装置においては、上記電圧印加手段は、上記第1の電極と上記第2の電極に所定の周波数を有する上記交流信号を印加することによって、上記誘電体の微小領域に上記交流信号を印加する。上記発振手段は、上記誘電体の微小領域に上記交流信号が印加されたときに、上記交流信号の周波数と上記微小領域の非線形誘電率に対応して発振周波数が変化する発振信号を発生する。次いで、上記復調手段は、上記発振信号を周波数復調して、上記交流信号の周波数と上記誘電体の微小領域の非線形誘電率に対応した振幅を有する信号を電気信号として出力する。そして、上記電気信号に基づいて上記誘電体の微小領域の電気的領域における非線形誘電率を測定する。

【0012】また、請求項2記載の非線形誘電率測定装置においては、上記電圧印加手段は、上記第1の電極と上記第2の電極に上記交流信号を印加することによって、上記誘電体の微小領域に上記交流信号を印加する。これによって、上記誘電体の微小領域の光反射率は、上記交流信号と上記誘電体の微小領域の非線形誘電率に対応して変化する。また、上記光照射手段が、上記透明材料にてなる第2の電極を介して、上記誘電体の微小領域に光ビームを照射すると、上記誘電体の微小領域は、上記光反射率の変化に対応した強度を有する光ビームを反射光として反射する。次いで、上記光電変換手段は、上記誘電体の微小領域から反射される反射光を光電変換して電気信号を出力する。そして、上記電気信号に基づいて上記誘電体の微小領域の光学的領域における非線形誘電率を測定する。

【0013】さらに、請求項3記載の非線形誘電率測定 装置においては、上記検波手段は、上記交流信号に基づ いて、上記電気信号を同期検波して上記電気信号の振幅 に対応した直流信号を出力する。そして、上記直流信号 に基づいて上記誘電体の微小領域の非線形誘電率を測定 する。

上記先端部が上記開口部まで延在するように上記導体ケース内に設けられた円柱形状の上記第2の電極とを備え、上記導体ケースの他方の底面が上記誘電体の上面に 2個の底面を備えた円筒形状を有し、上記円筒形状の一接触してなるリエントラント空胴共振器であることを特 50 方の底面が短絡されて終端されかつ他方の底面に開口部

を有する導体ケースと、上記導体ケースの一方の底面の中心に連結され、かつ上記連結部分から上記導体ケースの軸中心に沿って上記先端部が上記開口部まで延在するように上記導体ケース内に設けられた円柱形状の上記第2の電極とを備え、上記導体ケースの他方の底面が上記誘電体の上面に接触してなるリエントラント空胴共振器である。

【0015】請求項5記載の非線形誘電率測定装置においては、請求項1、3又は4記載の非線形誘電率測定装置の上記移動手段は、上記第2の電極が上記誘電体の第 102の面上を走査するように、上記誘電体を1次元方向又は2次元方向で移動する。これによって、上記誘電体の表面上の直線上又は平面上の電気的領域における非線形誘電率の分布を測定することができる。

【0016】請求項6記載の非線形誘電率測定装置においては、請求項2又は3記載の非線形誘電率測定装置の上記移動手段は、上記光照射手段によって照射された光ピームに対して垂直に、上記誘電体を1次元方向又は2次元方向で移動する。これによって、上記誘電体の表面上の直線上又は平面上の光学的領域における非線形誘電20率の分布を測定することができる。

[0017]

【実施例】以下、図面を用いて本発明に係る実施例について説明する。

<基本回路>図1は本発明に係る非線形誘電率測定装置の基本回路を示すプロック図である。

【0018】図1の非線形誘電率測定装置は、(a) 周 波数 f pを有する交流電圧Vpを発生して、測定電極 5 0と電極4に上記交流電圧Vpを印加することによって 誘電体試料2の微小領域2aに交流電界Epを発生させ 30 るともに、交流電圧V pを基準信号として出力する交流 電源9と、(b)上記電極4と上記測定電極50に挟設 された微小領域2aと、電極4と、測定電極50とによ って構成されるキャパシタ部1を含む共振回路部10を 備え上記交流電圧Vpが上記電極4と上記測定電極50 に印加されたときに発振周波数が上記周波数 f p と微小 領域2aの3次の誘電率ε3に対応して発振周波数が変 化する発振信号を発生する発振器20と、(c)上記発 振信号を周波数復調して上記周波数 f p と上記微小領域 2 a の 3 次の誘電率 ε 3 に対応した振幅を有する信号を 40 復調信号として出力するFM復調回路26と、(d)上 記基準信号に基づいて上記復調信号を同期検波して上記 周波数 f p と上記微小領域 2 a の 3 次の誘電率 ε 3 に対 応した振幅を有する直流信号を出力するロックインアン プ27とを備え、上記微小領域2aの電気的領域の3次 の誘電率 ε 3 を測定するように構成したことを特徴とす る。

【0019】以下図面を用いて図1の基本回路の構成を 詳細に説明する。

【0020】図1に示すように、上記共振回路部10

6

は、誘電体試料2と、電極4と、測定電極50と、機構 部7と、コイル6とによって構成される。上記誘電体試 料2は、略平行な上面と下面を有し、上記誘電体試料2 の下面に上記電極4が形成される。測定電極50は、尖 った先端部50 aを有する導体によって構成され、上記 先端部50aが上記誘電体試料2の上面に接するように 固定される。上記誘電体試料2と電極4と測定電極50 はキャパシタ部1を構成する。また、機構部7は上面に 形成された絶縁部8を備え、上記誘電体試料2をその表 面上に載置して保持し、かつ機構制御部25からの制御 信号に応答して、誘電体試料2を上記測定電極50の先 端部50 aが上記誘電体試料2の上面と接した状態を保 ったまま誘電体試料2を一次元方向または二次元方向に 移動させる。さらに、コイル6はインダクタンスしを有 し、その一端は測定電極50及び負性抵抗回路5の入力 端に接続される一方、その他端は電極4に接続される。 またさらに、交流電源9は、交流電圧Vpを測定電極5 0と電極4とに印加することにより、上記測定電極50 と電極4の間に位置する誘電体試料2の微小領域2aに 交流電界Epを発生させる一方、上記交流電圧Vpを基 準信号としてロックインアンプ27に出力する。以上の ように構成された共振回路部10において、測定電極5 0の先端部50aと、電極4と、測定電極50の先端部 50aと電極4とによって挟設された誘電体試料2の微 小領域2aはキャパシタンスCsを形成して、さらに、 上述のようにコイル 6 は上記キャパシタンス C s に並列 になるように接続されているので、上記キャパシタンス Csと上記コイル6はLC共振回路を構成する。このL C共振回路は負性抵抗回路5に接続されて、発振器20 を構成する。発振器20は詳細後述するようにキャパシ タンス C s の変化に対応して周波数変調された発振信号 を発振して発生しFM復調回路26に出力する。FM復 調回路2.6は、周波数変調された発振信号を復調して復 調信号をロックインアンプ27に出力する。

【0021】ロックインアンプ27は、図2に示すよう に、入力端子T1, T2と、増幅器271と、波形整形 器272と、同相分配器273,274と、90度移相 器275と、乗算器である混合器277a、277b と、低域通過フィルタ278a, 278bと、出力端子 T3, T4とによって構成される。増幅器271は、入 カ端子T1を介して入力される復調信号を増幅して同相 分配器273に出力する。同相分配器273は、増幅さ れた復調信号を同相分配して混合器277aと混合器2 77bに出力する。一方、波形整形器272は、入力端 子T2を介して入力された基準信号を方形波に整形して 同相分配器274に出力する。同相分配器274は、波 形整形器272から出力される基準信号を同相で分配し て混合器277bと90度移相器275に出力する。9 0度移相器275は、基準信号を基準信号の周波数にお 50 いて90度だけ移相して混合器277aに出力する。混

合器277aは、復調信号と90度だけ移相された基準 信号を乗算して混合し、上記復調信号の周波数と上記基 準信号の周波数の和と差の周波数を有する信号に変換し て低域通過フィルタ278aに出力する。低域通過フィ ルタ278aは、入力される混合後の信号のうちの直流 信号のみを通過させて出力端子T3を介して出力電圧V a:を表示制御部28に出力する。混合器277bは、 基準信号と復調信号とを乗算して混合し、上記復調信号 の周波数と上記基準信号の周波数の和と差の周波数を有 する信号に変換して、低域通過フィルタ278bに出力 10 する。低域通過フィルタ278bは、入力される混合後 の信号のうちの直流信号のみを通過させて出力端子T4 を介して出力電圧 Vaュを表示制御部28に出力する。 ここで、低域通過フィルタ278aから出力される電圧 Vaiは、基準信号が90度だけ移相されて復調信号と 混合されるので、上記復調信号と上記基準信号が同相で 掛算されかつ低域ろ波された後の電圧の絶対値を | Va |とし、かつ上記復調信号と上記基準信号との間の位相 差をゅとすると数1で表される。また同様に、低域通過 表される。

[0022]

[数1] Va₁ = | Va | · s i n φ

【数2】 Va₂ = | Va | · cos φ

【0023】表示制御部28は、ロックインアンプ27 から入力される出力電圧Va1 と出力電圧Va2 とから 出力電圧 | Va | と位相差 Φ をそれぞれ次の数 3 と数 4 を用いて演算して、ロックインアンプ27の出力電圧 | Val, Val, Valと機構制御部25から入力され る位置信号のうちから指定された測定値をディスプレイ 30 29の表示画面上に表示するように制御する。これに応 答してディスプレイ29は、表示制御部28の指示信号 に従って各パラメータの各値を表示する。

[0024]

[数3] | $Va | = \sqrt{(Va_1^2 + Va_2^2)}$

【数4】 $\phi = t a n^{-1} (V a_1 / V a_2)$

【0025】以上のように構成された基本回路を備えた 非線形誘電率測定装置において、上記誘電体試料2の微 小領域2aに、交流電源9によって測定電極50と電極 4に周波数 f pを有する正弦波である交流電圧 V pを印 40 加すると、上記微小領域2aに上記交流電圧Vpの振幅 に比例した振幅と上記交流電圧Vpの周波数fpと同じ 周波数を有する正弦波である交流電界Epを発生する。 交流電圧Vpと交流電界Epは、数5で表される角周波 数ωρを用いて数6と数7で表すことができる。ここで V po は交流電圧 V p の振幅であり、E po は交流電界 E pの振幅である。

[0026]

【数5】ωp=2πfp

【数6】 V p=V p₀ cosωp

8

【数7】Ep=Ep₀cosωp

【0027】また、交流電圧Vpを印加したときの上記 微小領域2aの誘電率εtは、公知のように、交流電界 $Ep \ge 2$ 次の誘電率 $\epsilon_2 \ge 3$ 次の誘電率 $\epsilon_3 \ge 4$ 次の誘 電率 ε 4 を用いると次の数 8 で表される。

[0028]

【数8】 $\varepsilon t = \varepsilon_2 + \varepsilon_3 Ep + (1/2) \varepsilon_4 Ep^2$ 【0029】ここで、数8は以下のように導くことがで きる。誘電体試料2に電界を印加したときの誘電体試料 2の電東密度と電界をそれぞれD, Eとして、誘電体試 料2の単位体積当たりに蓄えられる内部エネルギーと、 電気的エンタルピーをそれぞれU、Hとして、上記電束 密度Dと電界Eと内部エネルギーUと電気的エンタルピ ーHの微分をそれぞれdD, dE, dU, dHとする と、次の数9と数10の関係が成り立つ。

[0030]

【数9】dU=EdD

【数10】H=U-ED

【0031】以上の数9と数10から微分dHは、次の フィルタ278bから出力される電圧 Va_2 は、数2で 20 数11で表される。従って、電東密度Dは数12で表さ れる。

[0032]

【数11】dH=-DdE

【数12】D=-∂H/∂E

【0033】次に、電気エンタルピーHを電界Eの関数 として原点で4次の項までテーラー展開すると、電気的 エンタルピーHは次の数13で与えられる。

[0034]

【数13】 $H=(1/2)(\partial^2 H/\partial E^2)_0 E^2+(1/6)(\partial^3 H$ $\partial E^{3})_{0} E^{3} + (1/24) (\partial^{4} H/\partial E^{4})_{0} E^{4}$

【0035】ここで、0次の項は、電界E=0で場に蓄 えられるエネルギーを0とすることにより0とした。ま た、1次の項は、電界E=0で電東密度D=0になるこ とと数12とから0になる。また、数12と数13から 電東密度Dは、次の数14で表される。

[0036]

【数14】D=-($\partial^2 H/\partial E^2$)₀E-(1/2)($\partial^3 H/\partial$ $E^{3})_{0} E^{2} - (1/6) (\partial^{4} H/\partial E^{4})_{0} E^{3}$

 $= \varepsilon_2 E + (1/2) \varepsilon_3 E^2 + (1/6) \varepsilon_4 E^3$

[0037] \mathbb{C} $H/\partial E^3)_0 = \varepsilon_3$, $-(\partial^4 H/\partial E^4)_0 = \varepsilon_4 \ge U \cap S_0$. 以上のことから、電気的エンタルピーHをテーラー展開 したときの、2次の展開係数に対応したε2を2次の誘 電率と呼び、3次の展開係数に対応したεεを3次の誘 電率と呼び、4次の展開係数に対応したειを4次の誘 電率と呼んでいる。さらに、数14において、交流電界 Eρに発振信号に対応した微小電界ΔEが重畳している 場合を考える。このとき上記交流電界Epに対応した電 東密度をDpとして、上記微小電界AEに対応した微小

50 **電東密度をΔDとすると、数14は次の数15のよう**に

表わすことができる。

[0038]

[数15] Dp+ΔD=ε₂(Ep+ΔE)+(1/2)ε $_{3}(Ep+\Delta E)^{2}+(1/6) \varepsilon_{4}(Ep+\Delta E)^{3}$

【0039】ここで、電束密度Dpは、次の数16で表 され、また交流電界Epに比較して微小電界AEは十分 小さいので、 $(\Delta E)^2 \geq (\Delta E)^3$ を含む項は $0 \geq \omega$ 似する ことができ、数15の第2項の△Dは数17のように表 わすことができる。

[0040]

【数16】

 $Dp = \epsilon_2 Ep + (1/2) \epsilon_3 Ep^2 + (1/6) \epsilon_4 Ep^3$ 【数17】

 $\Delta D = \epsilon_2 \Delta E + \epsilon_3 E p \Delta E + (1/2) \epsilon_4 E p^2 \Delta E$ = $\{ \varepsilon_2 + \varepsilon_3 E p + (1/2) \varepsilon_4 E p^2 \} \Delta E$ $= \varepsilon t \Delta E$

【0041】数17から明らかなように、微小電界△E と、微小電界△Eによって発生する微小電束密度△Dの 間の比例係数ε t として数8を導くことができる。ま た、本明細書では、3次の誘電率 ϵ_3 、4次の誘電率 ϵ_4 20 等の3次以上の誘電率のことを非線形誘電率と呼ぶ。本 基本回路では、電気信号である発振信号に対する応答性 を観測しているので、ここで言う非線形誘電率は、電気 的領域の非線形誘電率のことである。また、3次の誘電 率ε₃は、特に交流電界Epの向きと分極Pの向きが同 じ向き場合と、交流電界Epの向きと分極Pの向きが逆 の向き場合とで、正負が反転する。また数8において4 次の誘電率 ε 4 よりも高次の誘電率は無視しているが、 上記高次の誘電率は2次、3次、及び4次の誘電率に比 較して十分小さいので、以下の説明において高次の誘電 30 率を無視したことの影響は無い。また、以下の説明にお いて、数式は、誘電体試料2の厚み方向の1次元に限定 して表示している。また、上記測定電極50と電極4と によって挟設された上記微小領域2 a が構成するキャパ シタンスCsは、誘電率 ϵ tに比例するので、誘電体試 料2の厚さdと測定電極50の先端部の面積と誘電体試 料2によって決まる正の定数Ceと数8を用いて次の数 18のように表すことができる。

[0042]

【数18】

 $Cs = Ce(1/d)\{\varepsilon_2 + \varepsilon_3 Ep + (1/2)\varepsilon_4 Ep^2\}$

【0043】また、数18で表されるキャパシタンスC sは、次の数19で表されるキャパシタンスCoと次の 数20で表されるキャパシタンス変化量△Cを用いると 数21のように表すことができる。ここで、キャパシタ ンスCoは、交流電圧Vpが印加されていないときの測 定電極50と電極4と測定電極50と電極4とによって 挟設された上記微小領域2aが構成するキャパシタンス であり、キャパシタンス変化量△Cは、交流電圧Vpを 印加したときのキャパシタンス C_0 からのキャパシタン 50 【数30】 $\Delta C/C_0 = -2\Delta f_{10}/f_{10}$

ス変化量である。

[0044]

【数19】 $C_0 = Ce(1/d)\epsilon_2$

【数20】

 $\Delta C = Ce(1/d) \{ \epsilon_3 Ep + (1/2) \epsilon_4 Ep^2 \}$

【数21】Cs=C₀+△C

【0045】数7で表される交流電界Epを数20の右 辺に代入して、さらに数22で表される三角関数の公式 を用いて変形すると、△Cは数23のように表すことが 10 できる。

10

[0046]

【数 2 2】 $\cos^2(\omega p \cdot t) = \{1 + \cos(2\omega p \cdot t)\}/2$

【数23】 $\triangle C = Ce(1/d) \{ \epsilon_4 E p_0^2 / 4 + \epsilon_3 E p_0 \cos e_1 \}$ $(\omega p \cdot t) + (\epsilon_4 E p_0^2/4) \cos(2\omega p \cdot t)$

【0047】さらに、数23は、次の数24と数25と 数 2 6 で表されるキャパシタンス変化量 $\triangle C_2$, $\triangle C_3$, △C4を用いて数27のように書き換えることができ る。ここで、キャパシタンス変化量△C2は、4次の誘 電率 ε₄ と交流電界 E p の振幅 E p₀ の 2 乗に比例して時 間的には変化しない変化量であって、キャパシタンス変 化量ΔC3は、3次の誘電率ε3と交流電界Epの振幅E p₀に比例する振幅を有しかつ角周波数ωpを有して交 番的に変化するキャパシタンス変化量である。また、キ ャパシタンス変化量△C4は、4次の誘電率 ε4と交流電 界Epの振幅Epoの2乗に比例する振幅を有しかつ角 周波数2ωpを有して交番的に変化するキャパシタンス 変化量である。

[0048]

[数24] $\triangle C_2 = Ce(1/d)(\epsilon_4 Ep_0^2/4)$

【数25】 $\triangle C_3 = Ce(1/d) \epsilon_3 Ep_0 cos(\omega p \cdot t)$

【数26】 $\triangle C_4 = Ce(1/d)(\epsilon_4 Ep_0^2/4)\cos(2\omega p_0^2)$ t)

【数27】 $\triangle C = \triangle C_2 + \triangle C_3 + \triangle C_4$

【0049】一方、キャパシタ部1とコイル6は上述の ようにLC共振回路を構成し、上記LC共振回路の共振 周波数 ficは、公知のように次の数28で表される。

[0050]

[数28] $f_{LC} = 1/\{2\pi\sqrt{(L \cdot C_S)}\}$

 $=1/[2\pi\sqrt{\{L\cdot(C_0+\Delta C)\}}]$

40 【0051】また、数25におけるε₃Eρ₀と数26に おける ϵ_4 E p_0^2 / 4 は、2次の誘電率 ϵ_2 に比べて十分 小さいので、数19と数20よりC₀≫△Cが成り立 つ。従って、数28を数29で表される近似式を用いて 書き換えると、上記キャパシタンス変化量△Cと共振周 波数変化量△ fιcの関係は、数30のように表わすこと ができる。

[0052]

【数29】 $\sqrt{(1+\Delta C/C_0)} = (1+\Delta C/C_0)^{-1/2} = 1 (1/2)(\Delta C/C_0)$

【0053】以上のように、上記LC共振回路の共振周 波数 ficは、上記キャパシタンス Csのキャパシタンス 変化量△Cに比例して共振周波数変化量△ fιc だけ変化 する。また、上記共振回路部10と負性抵抗回路5は、 発振器20を構成しているので、上記発振器20は、上 記共振周波数 ficと同じ周波数である発振周波数 fosc を有する発振信号を発振して発生してFM復調回路26 に出力する。ここで、上述のように上記して共振回路の 共振周波数 ficは、上記キャパシタンスCsのキャパシ タンス変化量△Cに比例して共振周波数変化量△ficだ 10 け変化するので、上記発振周波数 foscも同様に、上記 キャパシタンスCsのキャパシタンス変化量△Cに比例 して変化する。また、上述のようにキャパシタンス変化 量△Cは、3次の誘電率ε3と交流電界Epの振幅Epo に比例する振幅を有しかつ角周波数ωpを有して交番的 に変化するキャパシタンス変化量△C₃と、4次の誘電 率 ε₄ と交流電界E p の振幅E p₀ の2乗に比例する振幅 を有しかつ角周波数 2 ω p を有して交番的に変化するキ ャパシタンス変化量△C₄を含むので、上記発振信号 は、3次の誘電率 ε₃と交流電界Epの振幅Ep₀に比例 20 する振幅を有しかつ角周波数ωpすなわち周波数fpを 有する信号S₃と、4次の誘電率 ε₄と交流電界E pの振 幅Ep。の2乗に比例する振幅を有しかつ角周波数2ω pすなわち周波数2fpを有する信号S4によって周波 数変調された発振信号である。このとき、上記周波数変 調された発振信号の周波数偏移は、信号Saの振幅と、 信号S₄の振幅に比例する。

【0054】上記FM復調回路26は、上記発振信号をFM復調処理して、3次の誘電率 ϵ_3 と交流電界Epの振幅Epoに比例する振幅を有しかつ周波数 fpを有す 30る信号 S_3 と、4次の誘電率 ϵ_4 と交流電界Epの振幅Epoの2乗に比例する振幅を有しかつ周波数 2 fpを有する信号 S_4 を含む復調信号をロックインアンプ27の端子T1に出力する。

【0055】ロックインアンプ27において、混合器2 77aは、増幅された後に同相分配された一方の復調信 号と、波形整形されかつ90度移相された基準信号とを 乗算して混合し、上記復調信号の周波数と上記基準信号 の周波数の和と差の周波数を有する信号に変換して低域 通過フィルタ278aに出力し、低域通過フィルタ27 8 a は、混合後の信号のうち直流成分である出力電圧 | Valsin oのみを端子T3を介して表示制御部28 に出力する。一方、混合器277bは、同相分配された 他方の復調信号と波形整形された基準信号とを乗算して 混合し、上記復調信号の周波数と上記基準信号の周波数 の和と差の周波数を有する信号に変換して、低域通過フ ィルタ278bに出力し、低域通過フィルタ278b は、混合後の信号のうちの直流成分である出力電圧 | V a | c ο s φ のみを端子T 4を介して表示制御部28に 出力する。

12

【0056】ここで、信号S3は上記基準信号の周波数 f pを有する信号であるので、上記混合器277aと上 記混合器277bはそれぞれ、上記基準信号と周波数f pを有する信号S₃とを乗算して混合したときに発生す る直流信号である出力電圧 | Va | sin oと出力電圧 | Va | c o s φ を出力する。すなわち出力電圧 Va: と出力電圧 V α 2 は位相差 φ と 3 次の誘電率 ε 3 に対応し た電圧になる。ここで特に、3次の誘電率 ε 3 が実数で あってかつ正の値のときには、数25から明らかなよう に、キャパシタンス変化量 ΔC₃と交流電界Epは同相 で変化する。また、数30から明らかなように、上記キ ャパシタンス変化量 A C3 は、共振周波数変化量 A fic と逆相で変化する。以上のことから、3次の誘電率ε3 が実数であってかつ正の値のときには、共振周波数変化 量Δ fιc は交流電界Epと逆相で変化する。さらに、交 流電界Epと交流電圧Vpは同相で変化するので、3次 の誘電率 ε 3 が実数であってかつ正の値のときには、上 記基準信号と上記信号S3の位相差φはπになる。また 同様に3次の誘電率 ε₃が実数であってかつ負の値のと きには、上記基準信号と上記信号S3の位相差φは0に なる。以上のように、3次の誘電率 ε 3 が実数のときに は、上記基準信号と上記信号S₃の位相差φは0かπの 値をとり、出力電圧Vaiは、0となり、出力電圧Va2 のみが出力される。また、3次の誘電率 ε 3 が正のとき には、位相差φはπになって出力電圧 Va2はマイナス の値で出力されて、3次の誘電率 ε 3 が負のときには、 位相差のは0になって出力電圧Va2はプラスの値で出 力される。

【0057】次に、表示制御部28は、入力される電圧 Va_1 , Va_2 から位相差のと電圧 |Va| を演算して、機構制御部25から入力される位置信号と、電圧 Va_1 , Va_2 , |Va| と、上記位相差ののうちから指定されるパラメータをディスプレイ29の表示画面上に表示するようにディスプレイ29を制御する。これに応答して、上記ディスプレイ29は表示制御部28の指示信号に従って各パラメータの各値を表示する。

【0058】以上詳述したように、上記測定電極50と上記電極4に交流電界Vpを印加して上記誘電体試料2の微小領域2aに交流電界Epを発生させると、上記発級と、上記信号Ssを含む信号によって周波数変調された発振信号を発振して発生する。次にFM復調回路26は、上記発振信号をFM復調して上記信号Ssを含む復調信号を発生する。さらに、ロックインアンプ27は、上記復調信号を周波数fpを有する基準信号に基づいて上記復調信号を同波数fpを有する基準信号に基づいて上記復調信号を同波数fpを有する基準信号に基づいて上記復調信号を同期検波して、上記信号Ssの誘電率をssと上記交流電圧Vpの振幅に比例した直流信号を出力する。従って、上記機構部7と機構制御部25によって、上記機小領域2aの電気的領号を測定することによって、各微小領域2aの電気的領

域における 3 次の誘電率 ε 3 の違いを上記直流信号の値 によって観測することができる。また、上記基本回路を 備えた非線形誘電率測定装置は、上記ロックインアンプ 27を備え、上述したように、位相差 Φ の値も出力でき るので、3次の誘電率 ε 3 をその絶対値と位相の形で観 測することもできる。一方、材料の分極は、それを構成 するミクロな双極子の体積平均値で与えられるが、この 分極が完全に一方向を向いたとき、材料の一軸異方性も 最も大きくなり、その結果、3次の誘電率 ε 3 も最大に なる。これとは逆に、ミクロな双極子がランダムな方向 10 を向くと、その結果、分極も0となり、測定方向に方向 性がなくなるので、3次の誘電率ε 3 も 0 となる。ま た、分極が逆方向を向いた場合は、3次の誘電率 ε ε ι は その符号を変える。材料の分極と3次の誘電率の間に は、以上のような関係があるので、測定された3次の誘 電率 ε 3 に基づいて、上記誘電体試料 2 の微小領域 2 a における分極の状態を観測する事ができる。

【0059】以上の基本回路においては、基準信号に周 波数 f pを有する交流電圧Vpを用いて構成して3次の 誘電率 ε 3 を測定しているが、本発明はこれに限らず、 周波数2fpを有する信号を基準信号として用いて、4 次の誘電率 ε 4 を求めるように構成してもよい。以上の ようにして、電気的領域における非線形誘電率を測定す ることができる。

【0060】また、ロックインアンプ27を用いて復調 信号を同期検波しているので、基準信号に同期しない所 望されない他の雑音を除去して、ロックインアンプ27 で得られる直流信号の信号電力対雑音電力比S/Nを大 幅に改善することができ、3次の誘電率 ε 3 の測定の精 度をさらに髙めることができる。

【0061】以上の基本回路においては、ロックインア ンプ27の出力を観測しているが、本発明はこれに限ら ず、FM復調回路26から出力される復調信号を観測し て誘電体試料2の微小領域2aにおける3次の誘電率ε 3を測定するようにしてもよい。この場合においては、 発振器20における変調指数を1より十分に小さい値に 設定して、搬送波と側波帯のエネルギーが概ね、搬送波 と第1上側波帯と第1下側波帯に含まれるようにする。 このときの第1上側波帯及び第1下側波帯のうちの少な することにより、ロックインアンプ27を使用したとき の出力電圧 Va (直流信号の絶対値) に比例した信号電 圧を得ることができ、上述と同様に3次の誘電率 ε 3 を 測定することができる。また、第2上側波帯及び第2下 側波帯のうちの少なくとも1つの振幅をスペクトラムア ナライザなどで測定することにより、4次の誘電率 ει を測定することができる。

【0062】〈第一の実施例〉図3は本発明に係る第一 の実施例の非線形誘電率測定装置の構造を示すプロック 図である。図3の第一の実施例の非線形誘電率測定装置 50 して、誘電体試料2を上記中心導体32の先端部35と

14

は、図1のLC共振回路に代えてリエントラント型空胴 共振器30を備えて共振回路部10aを構成したことを 特徴とする。第一の実施例の非線形誘電率測定装置は、 共振回路部10 a以外の構成は、上述の基本回路と同様 に構成される。以上のような構成により、第一の実施例 の非線形誘電率測定装置は、電気的領域の非線形誘電率 を測定することができる。以下、図面を用いて第一の実 施例の非線形誘電率測定装置の構成を説明する。

【0063】図4は、誘電体試料2と接したときのリエ ントラント型空胴共振器30の断面図であり、図5はリ エントラント型空胴共振器30を誘電体試料2と接する 方向から見た平面図である。上記誘電体試料2は、図4 に示すように、図1の誘電体試料2と同様、略平行な上 面と下面を有し、誘電体試料2の下面には電極4が形成 される。上記リエントラント型空胴共振器30は、導体 ケース31と、中心導体32と、コネクタ40とによっ て構成される。上記導体ケース31は、誘電体試料2の 表面と接する円環状の接触表面部33を備えた下底面 と、厚さ方向に貫通して形成されコネクタ40を取り付 けるための円形状の孔34を備えた上底面を有する円筒 状の導体からなる。また、上記中心導体32は、円柱状 の導体からなり、中心導体32の軸と上記導体ケース3 1の軸が一致するように、その一端は上記導体ケース3 1の上底面の中央部に連結される一方、その他端は円す い状に細くなるように形成されて、その先端に誘電体試 料2の微小領域2aに所定の接触面積を有して接触する 先端部35を備える。コネクタ40は、外導体41と絶 縁体42と中心導体43を備えて構成され、上記中心導 体43は導体ケース31と絶縁された状態で上記孔34 を貫通する。そして中心導体43は、接続導体44を介 して上記中心導体32と接続される。また、上記外導体 41は、上記導体ケースと電気的に接続されて、コネク タ40が上記導体ケース31に固定される。以上のよう な構成によって、上記接触表面部33と電極4との間に 挟設された誘電体試料2の一部分である円環形状の領域 2 bによってキャパシタンス C gが形成され、先端部 3 5と電極4との間に挟設された誘電体試料2の微小領域 2 a によってキャパシタンス C s が形成される。ここ で、先端部35の接触面積は接触表面部33が誘電体試 くとも1つの振幅をスペクトラムアナライザなどで測定 40 料2に接触する接触面積に比較すると十分小さくなるよ うに構成される。

> 【0064】図3に示すように、交流電源9は、交流電 EVpを上記リエントラント型空胴共振器30の導体ケ ース31と電極4に印加することにより、微小領域2a と領域2 b に交流電界E p を発生させる一方、上記交流 電圧Vpを基準信号として、ロックインアンプ27に出 力する。またさらに、機構部7はその上面に形成された 絶縁部8を備え、上記誘電体試料2をその表面上に載置 して保持し、かつ機構制御部25からの制御信号に応答

30

上記導体ケース31の接触表面部33が上記誘電体試料 2の上面と接した状態を保ったまま誘電体試料2を一次 元方向または二次元方向に移動させる。以上のようにし て、第一の実施例の非線形誘電率測定装置の共振回路部 10 a は構成される。また、共振回路部10 a 以外の部 分は上述の図1の基本回路と同様に構成される。

【0065】図6は上述のように構成されたキャパシタ 部1と交流電源9を含むリエントラント型空胴共振器3 0の等価回路を表す回路図である。図6の等価回路は、 中心導体32と接地導体である上記導体ケース31の円 10 筒状の側面とによって構成される伝送線路の一端が導体 ケース31の上底面である短絡面36によって短絡さ れ、上記伝送線路の他端である上記中心導体32の先端 部35である端子T35と上記導体ケース31の接触表 面部33である端子T33はそれぞれキャパシタンスC sとキャパシタンスCgを介して電極4に接続されてい る。また接地導体である上記導体ケース31と電極4の 間には交流電源9が接続される。

【0066】以上のように構成された第一の実施例の非 線形誘電率測定装置において、上記交流電源9が、上記 20 リエントラント型空胴共振器30の導体ケース31と上 記電極4に交流電圧Vpを印加すると、上記誘電体試料 2の微小領域2aと上記接触表面部33と電極4との間 に位置する領域2bに交流電界Epが発生する。上記微 小領域2aと上記領域2bはどちらも上記交流電界Ep によって誘電率が変化してキャパシタンスCs、Cgが 変化する。このとき、上記接触表面部33の接触面積 は、上記先端部35の接触面積に比較すると十分大きい ので、キャパシタンスCg≫キャパシタンスCsが成り ャパシタンスCsは直列接続になるので、上記誘電体試 料2と電極4を含むリエントラント型空胴共振器30の 共振周波数は、キャパシタンスCsの変化に伴って変化 するが、キャパシタンスCgの変化による共振周波数へ の影響は無視できる。

【0067】また、上記リエントラント型空胴共振器3 0の共振条件はよく知られたように次の数31で与えら れる。数31中、Lcは当該リエントラント空胴共振器 30の共振器長であり、vcは真空中の光の速度であ り、Yは、リエントラント型空胴共振器30の上記導体 ケース31と上記中心導体32とを同軸線路と見たとき の同軸線路の特性アドミタンスであって、数32で表さ れる当該同軸線路の特性インピーダンス2の逆数で表さ れる。ここで、数32におけるaは中心導体32の径で あり、bは導体ケース31の内径である。また、μ0は 真空中の透磁率であり、ειは真空中の誘電率である。 さらに数31は、数33に変形することができ、またさ らに数33は数34のように変形することができる。従 って、数34より、上記共振器長しては数35で与えら れる。

16

[0068]

【数31】 $\omega r \cdot Cs - Ycot(\omega r \cdot Lc/vc) = 0$

【数32】 $Z = \{1/(2\pi)\} \int (\mu_0/\epsilon_0) \ln(b/a)$

[数33] $tan(\omega r \cdot Lc/vc) = Y/(\omega r \cdot Cs)$

[数34] $\omega r \cdot Lc/vc = tan^{-1} \{Y/(\omega r \cdot Cs)\}$

[数35] $Lc=(vc/\omega r)tan^{-1}\{Y/(\omega r\cdot Cs)\}$

【0069】次に、上記リエントラント空胴共振器30 の角共振周波数ωrを数36のように表して、数36で 表される角共振周波数ω r と数21で表されるキャパシ タンスCsとを数31に代入すると、数31は数37の ように表される。ここで、数36中、ωιは、誘電体試 料2に交流電圧Vpを印加していないときの、上記リエ ントラント空胴共振器30の角共振周波数である。ま た、Δωは、誘電体試料2に交流電圧Vpを印加したと きの、上記リエントラント空胴共振器30の角共振周波 数ωιからの角共振周波数変化量である。

[0070]

【数36】 $\omega_{\Gamma} = \omega_0 + \Delta \omega$

【数37】 $(\omega_0 + \Delta \omega)(C_0 + \Delta C) - Y \cot\{(\omega_0/vc+$ $\Delta \omega / v c \cdot Lc = 0$

[0071] CCC, $\omega_0 \gg \Delta \omega$, $C_0 \gg \Delta C$ C T B S $\Delta \omega$ ら、数37において、数38で表される近似式を用いる ことができ、また $\Delta \omega \times \Delta C = 0$ と近似することができ る。以上のことから、数37は数39のように表わすこ とができる。

[0072]

【数38】 $cot\{(\omega_0/vc+\Delta\omega/vc)\cdot Lc\}$ \(\inf cot\{(\omega_0/vc+\Delta\omega/vc)\) $vc)\cdot Lc$ - [cosec² { $(\omega_0/vc)\cdot Lc$ }] · $(\Delta\omega/vc)\cdot Lc$ [数39] $\omega_0 C_0 + \Delta \omega C_0 + \omega_0 \Delta C - Y \cot \{(\omega_0/v)\}$

立つ。また図 6 に示すように、キャパシタンス C g とキ 30 c)・Lc+ [Y・cosec² $\{(\omega_0/vc)\cdot Lc\}$]・ $(\Delta\omega/vc)\cdot Lc$

【0073】数39は数40のように変形でき、さらに 数40は、数41のように変形することができる。

[0074]

【数40】Δω[Co+(Lc/vc)Ycosec2{(ωo/vc)·L c}]= $-\omega_0 \cdot \Delta C$

【数41】 $\Delta f/f_0 = \Delta \omega/\omega_0$

 $= -\Delta C / [C_0 + (L_c/v_c)Y_{cosec^2} \{(\omega_0/v_c) \cdot L_c\}]$ 【0075】以上詳述したように、リエントラント空胴 共振器30の導体ケース31と電極4に交流電圧Vpを 印加したときの共振周波数変化量 Afは、キャパシタン ス変化量 Δ C の負の傾きを有する 1 次関数で表される。 従って、上記リエントラント空胴共振器30の共振周波 数foは、上記キャパシタンスCsのキャパシタンス変 化量△Cに比例して共振周波数変化量△fだけ変化す る。また、上記共振回路部10aと負性抵抗回路5は、 発振器20aを構成しているので、上記発振器20a は、上記共振周波数 foと同じ周波数である発振周波数 foscを有する発振信号を発振して発生してFM復調回 50 路26に出力する。ここで、上述のように上記リエント

ラント空胴共振器30の共振周波数foは、上記キャパ シタンスCsのキャパシタンス変化量△Cに比例して共 振周波数変化量△fだけ変化するので、上記発振周波数 foscも同様に、上記キャパシタンスCsのキャパシタ ンス変化量△Cに比例して変化する。また、キャパシタ ンス変化量△Cは、数27で与えられるので、3次の誘 電率ε3と交流電界Epの振幅Epoに比例する振幅を有 しかつ角周波数ωpを有して交番的に変化するキャパシ タンス変化量△C₃と、4次の誘電率 ε₄と交流電界E p の振幅 Epoの2乗に比例する振幅を有しかつ角周波数 10 2ωρを有して交番的に変化するキャパシタンス変化量 △C4を含む。従って、上記発振信号は、3次の誘電率 ε₃と交流電界Epの振幅Ep₀に比例する振幅を有しか つ角周波数ωpすなわち周波数fpを有する信号S 3と、4次の誘電率 ε4と交流電界Epの振幅Epoの2 乗に比例する振幅を有しかつ角周波数 2 ω p すなわち周 波数 f pを有する信号S4によって周波数変調された発 振信号である。従って図1の基本回路の説明において上 述したように、同様に、上記発振信号を復調後、同期検 波することによって、電気的領域の3次の誘電率 ε 3 を 20 測定することができ、さらに当該3次の誘電率 ε 3 の測 定結果をもとにして、分極分布を求めることができる。

【0076】第一の実施例の非線形誘電率測定装置にお いては、上記リエントラント型空胴共振器30を用いて いるので、発振器20aの発振周波数を基本回路の非線 形誘電率測定装置に比べると高く設定することができ る。これによって、最大周波数偏移を大きくすることが でき、従来例に比較してより高感度でかつより高い精度 で3次の誘電率εςの測定をすることができる。

を用いた測定例を説明する。 図7は、以下の測定に用い たZカットLiNbO3の平面図であり、図8は、図7 の2カットLiNbO3を誘電体試料2として用いて測 定した測定結果を示したグラフである。乙カットとは、 光軸に垂直な面で切り出した結晶である。

【0078】図8は、図7のZカットLiNbO3を用 いて測定したときのX軸上のXOからの距離Xにおける ロックインアンプ27の出力電圧 | Va | と、発振搬送 波の発振周波数 fo を示したグラフである。ここで、発 振搬送波とは、誘電体試料2に電圧Vpを印加したとき 40 の、周波数変調がされていない発振信号のことである。 従って、この発振搬送波は、交番的な変化を伴わないキ ャパシタンスの変化によって変化することがある。図8 から明らかなように、ロックインアンプ27の出力電圧 | Va | は、X軸上の位置によってそれぞれ異なった値 が出力されている。これは、それぞれの位置によって、 3次の誘電率 ε 3 が異なることを示している。また、発 振搬送波の発振周波数は、X軸上のX0からの距離Xが 約3mmの位置で最大値をとり、そこから離れるに従っ て、小さくなっている。これは、誘電体試料2として用 50 として出力する交流電源9と、(b)上記誘電体膜10

18

いた Z カット L 1 N b O₃ の中央部で 2 次の誘電率 ε 2 で ある線形誘電率が小さくなっているか、または当該中央 部で試料の厚さが厚くなっているためと考えられる。以 上のように、第一の実施例の非線形誘電率測定装置を用 いると、線形誘電率と分離して3次の誘電率 ε 3 を観測 することができ、かつ3次の誘電率 ε 3 がそれぞれの微 小領域によって異なっていることが観測できる。これに よって、それぞれの微小領域の分極の状態が異なること を観測することができる。

【0079】図9は、分極の状態が異なる誘電体試料2 を第一の実施例の非線形誘電率測定装置を用いて測定し たときの、それぞれの位置におけるロックインアンプ2 7の出力電圧Va2を図式的に示したグラフである。図 9から明らかなように、分極P1が誘電体試料2の電極 4に接する面から他方の面に向かって誘電体試料2の厚 さ方向に平行に分布している領域であって、3次の誘電 率 ε ι が正である領域では、ロックインアンプ27の出 力電圧Va2は負の電圧であるV2を出力する。分極P 2 が誘電体試料 2 の上記他方の面から電極 4 に接する面 に向かって誘電体試料2の厚さ方向に平行に分布してい る領域であって、3次の誘電率 ε 3 が負である領域で は、ロックインアンプ27の出力電圧Va2は正の電圧 であるV1を出力する。分極P3が誘電体試料2の電極 4に接する面から他方の面に向かって誘電体試料2の厚 さ方向に平行に分布している領域であって、3次の誘電 率 ε ε δ が正である領域では、ロックインアンプ27の出 力電圧 Va2 は負の電圧である V2 を出力する。以上の ように、第一の実施例の非線形誘電率測定装置を用いる と、3次の誘電率 ε 3 が正と負の領域を有する誘電体試 【0077】次に第一の実施例の非線形誘電率測定装置 30 料2では、3次の誘電率ε3が正の領域と、3次の誘電 率 ε ₃ が負の領域では、ロックインアンプ27の出力電 圧Va₂の正負が反転して出力されるので、容易に当該 領域の3次の誘電率 ε 3 の正負を判別することができ る。すなわち、当該領域における分極の方向を判別する ことができる。

> 【0080】 <誘電体記録読取装置>図10は、上述し た電気的領域の3次の誘電率ε3が正のときには、復調 信号のうちの信号Sεと基準信号の位相差φがπにな り、電気的領域の3次の誘電率 ε 3 が負のときには、信 号S₃と基準信号の位相差φが0になることを利用した 誘電体記録読取装置のプロック図である。当該誘電体記 録読取装置は、詳細後述するように、誘電体膜102の 分極を厚さ方向でかつデジタル信号の1と0の信号に対 応する向きを有するように記録した誘電体テープ100 の誘電体記録読取装置である。

【0081】図10の誘電体記録読取装置は、(a) 周 波数fpを有する交流電圧Vpを金属膜104と測定電 極50に印加することによって誘電体膜102に交流電 界Epを発生させて、かつ上記交流電圧Vpを基準信号 2 を含む共振回路部10 bを備え上記交流電圧Vpが上記誘電体膜102に印加されたときに発振周波数が上記周波数fpと誘電体膜102の分極の向きに対応して発振周波数が変化する発振信号を発生する発振器20 bと、(c)上記発振信号を周波数復調して上記周波数fpと分極の向きに対応した位相差のを有する信号を復調信号として出力するFM復調回路26と、(d)上記基準信号に基づいて上記復調信号と基準信号との位相差を検出して、上記誘電体膜102の分極の向きに対応した位相差を検出して、上記誘電体膜102の分極の向きに対応した位相差を検出して、上記誘電体膜102の分極の向きに対応した位相差のを出力するはうに構成したことを特徴とする。

【0082】以下図面を用いて誘電体記録読取装置の構成を詳細に説明する。

【0083】図10に示すように、上記共振回路部10 bは、誘電体テープ100と、測定電極50と、テープ 保持部55a, 55b, 55cと、コイル6とによって 構成される。誘電体テープ100は、金属膜104と強 誘電体からなる誘電体膜102とによって構成され、テ ープ状に形成されたテープベースとなる金属膜104上 20 に強誘電体からなる誘電体膜102を例えばスパッタリ ングなどの公知の方法によって密着形成して構成され る。また上記誘電体テープ100は、以下のように、1 と0の2種類の信号からなるデジタル信号が記録されて いる。上記デジタル信号が1のときには、誘電体膜2が 有する分極は、上記金属膜104と密着した誘電体膜1 02の一方の表面102bから誘電体膜102の他方の 表面102aに向かう方向に分極処理がされ、上記デジ タル信号が0のときには、誘電体膜2が有する分極は、 上記表面102bから上記表面102aに向かう方向に 30 向くように分極処理がされる。測定電極50は、円錐状 の先端部50aを有する導体によって構成され、上記先 端部50aが上記誘電体膜102の上記表面102aに 接するように固定される。また、テープ保持部55a, 55b, 55cは、誘電体テープ100の幅より長い所 定の軸方向の長さを有する円柱状の導体からなる。テー プ保持部55aとテープ保持部55bは、それぞれの軸 が誘電体テープ100の幅方向と平行になるように、か つ誘電体テープ100をそれぞれの円周面で挟むように 互いに対向して回転可能に設けられる。また、テープ保 40 持部55cは、その軸が誘電体テープの幅方向と平行に なるように、かつ測定電極50の先端部50aと対向し て誘電体テープ100を所定の圧力で押さえるように回 転可能に設けられる。そして、テープ保持部55aとテ ープ保持部55bは、誘電体テープ100を挟設して所 定の圧力で押さえながら、互いに反対方向に所定の回転 数で回転して、誘電体テープ100をその長手方向に所 定のスピードで走行させる。ここで、テープ保持部55 aは、誘電体テープ100の金属膜104に接する一 方、テープ保持部55bは、誘電体膜102に接する。

20

【0084】さらに、コイル6はインダクタンスしを有し、その一端が上記測定電極50と負性抵抗部5に接続され、その他端が上記テープ保持部55cに接続されている。以上のように共振回路部10bは構成される。またさらに、交流電源9は、上記テープ保持部55aとアース間に接続されて、上記測定電極50と、上記テープ保持部55aを介して金属膜104に交流電圧Vpを印加することによって、上記測定電極50と上記テープ保持部55cの間に位置する誘電体膜102の微小領域102aに交流電界Epを発生させる一方、上記交流電圧Vpを基準信号として位相検出器56に出力する。

【0085】以上のように構成された共振回路部10b において、測定電極50の先端部50aと、金属膜10 4と、上記測定電極50の先端部50aと上記金属膜1 04とによって挟まれた誘電体膜102はキャパシタン スС s を形成して、さらに、上述のようにコイル6は上 記キャパシタンスCsに並列に接続されているので、上 記キャパシタンスCsと上記コイル6はLC共振回路を 構成する。このLC共振回路は負性抵抗回路5に接続さ れて、発振器20bを構成する。発振器20bは、詳細 後述するように、キャパシタンスCsの変化に対応して 周波数変調された発振信号を発振して発生しFM復調回 路26に出力する。FM復調回路26は、周波数変調さ れた発振信号を復調して復調信号を位相検出器56に出 力する。また、位相検出器56は、例えばロックインア ンプ27を備えて構成され、上記ロックインアンプ27 の出力電圧 Va1, Va2 から数 4 を用いて位相差 ゆを演 算して出力する。

【0086】以上のように構成された誘電体記録読取装 置において、交流電源9が、上記測定電板50と、上記 テープ保持部55aを介して金属膜104に交流電圧V pを印加することによって、上記測定電極50と上記テ ープ保持部55cの間に位置する誘電体膜102の微小 領域102aに交流電界Epを発生させると、図1の基 本回路の説明において上述したように、上記発振器20 bは、上記微小領域102aの3次の誘電率ε3と上記 交流電圧Vpに比例した振幅を有しかつ上記周波数fp を有する信号を含む信号Saによって周波数変調された 発振信号を発振して発生する。ここで、上記3次の誘電 率 ε ε が正の実数のとき、すなわちデジタル信号が1の ときには、上記周波数 f p を有する信号の基準信号との 位相差φはπであり、上記3次の誘電率 ε 3 が負の実数 のとき、すなわちデジタル信号が0のときには、上記周 波数 f pを有する信号の基準信号との位相差φは0であ る。次にFM復調回路26は、上記発振信号を復調して 上記微小領域 1 0 2 a の 3 次の誘電率 ε s と上記交流電 圧Vpに比例した振幅を有しかつ上記交流電圧Vpと同 じ周波数 f p を有しさらに上述のデジタル信号に対応し た位相差φを有する信号を含む復調信号を発生する。さ 50 らに位相検出器 5 6 は、上記復調信号を周波数 f p を有

する基準信号に基づいて上記復調信号を同期検波して、 上記微小領域102aの3次の誘電率 ε₃の正負に対応 して、0か又はπの位相差のを出力する。従って、上記 テープ保持部55a, 55bが所定のスピードで回転す ることによって、上記誘電体テープ100を走行させ、 上記微小領域102aの位置を順次変えて上記位相差φ を検出することによって、各微小領域102aの3次の 誘電率 ε 3 の正負を上記位相差φの値によって観測する ことができる。また、上述したように3次の誘電率 ε3 の正の値は、測定電極50から金属膜104に向かう方 10 向を有する分極に対応し、3次の誘電率 ε ιの負の値 は、金属膜104から測定電極50に向かう方向を有す る分極に対応する。すなわち、上記各微小領域102a の分極の向きを検出することができ、上記デジタル信号 を読み取ることができる。ここで、上記誘電体膜102 への上記デジタル信号の記録には、例えば、上記微小領 域102aに直流電界が発生するように上記測定電極5 0と上記金属膜104に直流電圧を印加するなどの分極 処理が用いられる。

【0087】〈第二の実施例〉図11は、第二の実施例 20 の誘電体記録読取装置の構成を示すプロック図である。 図11の第二の実施例の誘電体記録読取装置は、図10 の応用回路のLC共振回路に代えてリエントラント型空 胴共振器30を備えて共振回路部10cを構成したこと を特徴とする。図11のリエントラント型空胴共振器3 0は、図4と図5に示した第一の実施例のリエントラン ト型空胴共振器30と同様に構成される。また、テープ 保持部55a,55cは、誘電体テープ100の幅より 長い所定の軸方向の長さを有する円柱状の導体からな り、それぞれの軸が誘電体テープ100の幅方向に平行 30 になるように、かつ、リエントラント型空胴共振器30 の表面接触部33に対向して、上記表面接触部33との 間に誘電体テープ100を保持するように回転可能に設 けられる。そして、テープ保持部55a,55cは、所 定の回転数で回転することによって上記誘電体テープ1 00をその長手方向に所定のスピードで走行させる。

【0088】また、交流電源9は、上記テープ保持部55aとリエントラント空胴共振器30に交流電圧Vpを印加することによって、先端部35と金属膜104に挟設された誘電体膜102の微小領域102aと接触表面 40部33と金属膜104に挟設された誘電体膜102の領域102bに交流電界Epを発生させる。またさらに、第二の実施例の誘電体記録読取装置において、図10の誘電体記録読取装置の位相検出器56に代えて、ロックインアンプ27aは出力電圧Va2のみが出力されるように構成される。共振回路部10cとロックインアンプ27a以外の構成は、上述の図10の誘電体記録読取装置と同様に構成される。

【0089】以上のように構成された第二の実施例の誘 50 ある第三の実施例の非線形誘電率測定装置の構成を示す

22

電体記録説取装置において、上記交流電源9が、上記リエントラント型空胴共振器30とテープ保持部55aに交流電圧Vpを印加すると、上記誘電体膜102の微小領域102aと、領域2bに交流電界Epが発生する。上記微小領域102aと上記領域102bはどちらも上記交流電界Epによって誘電率が変化してキャパシタンスCs, Cgが変化する。

【0090】上記リエントラント型空胴共振器30の共振周波数は、上述のように微小領域102aの誘電率の変化に伴うキャパシタンスCsの変化に対応して変化する。これによって、発振器20cはキャパシタンスCsの変化に対応して周波数変調された発振信号を発振して発生する。従って、上記テープ保持部55a,55cが回転することによって、誘電体テープ100をその長手方向に走行させて、上記微小領域102aの位置を順次変えて上記出力電圧 Va_2 の評算を表示の正負を上記出力電圧 Va_2 の正負によって判別することができる。すなわち、上述のように、デジタル信号に対応した上記各微小領域102aの分極の向きを検出することができ、上記デジタル信号を読み取ることができる。

【0091】第二の実施例の誘電体記録読取装置においては、上記リエントラント型空胴共振器30を用いているので、発振器20cの発振周波数を図10の応用回路の誘電体記録読取装置に比べると高く設定することができる。これによって、最大周波数偏移を大きくすることができるので、図1の誘電体記録読取装置に比較してより高感度で、かつより高精度の誘電体記録読取装置を構成することができる。

【0092】図12は、第二の実施例の誘電体記録読取 装置を用いた測定例を示す図であって、誘電体テープ1 00のスタート点からの距離とロックインアンプ27a の出力電圧Va₂との関係を示すグラフである。ここ で、上記リエントラント型空胴共振器30の先端部35 は、直径Dが1.6mmの円形になるよう構成されてい るので、上記誘電体テープ100のスタート点からの距 離は、上記直径である1.6mmを単位として表示し た。図12から明らかなように、上記誘電体膜102の 有する分極の向きが、誘電体膜102の表面102dか ら誘電体膜102の表面102cに向かう方向に分極処 理されている領域では、ロックインアンプ27aの出力 電圧Va2は負であって、分極の向きが、上記表面10 2 cから上記表面 1 0 2 dに向かう方向に分極処理がさ れている領域では、出力電圧 Va2 は正である。以上の ように、第二の実施例の誘電体記録読取装置を使用する と、分極の向きによって記録された情報がロックインア ンプ27 aの出力電圧Va2の正負として出力されるの で、当該情報を容易に読み取ることができる。

【0093】 <第三の実施例>図13は、他の応用例である第三の実施例の非線形銹電率測定装置の構成を示す

ブロック図である。第三の実施例の非線形誘電率測定装 置は、詳細後述するように、強誘電体からなる誘電体試 料2に交流電界Epを印加すると、上記誘電体試料2の 反射率が上記交流電界Epにしたがって変化することを 利用して、上記誘電体試料2の光学的領域における非線 形誘電率の1つであるポッケルス定数を測定する非線形 誘電率測定装置である。

【0094】以下、図面を用いて第三の実施例の非線形 誘電率測定装置の構成を説明する。図13に示すよう イオード21と、交流電源9と、ハーフミラー57と、 フォーカスレンズ58と、機構部7と、機構制御部25 と、光電変換器51とによって構成される。キャパシタ 部1は、誘電体試料2が互いに対向する透明電極3と電 極4によって挟設されて構成される。レーザダイオード 21は、所定波長の光ビームを発生して、当該光ビーム をハーフミラー57とフォーカスレンズ58と透明電極 3を介して誘電体試料2の一部分である微小領域2aの 表面に照射する。交流電源9は、上記透明電極3と上記 電極4に接続されて、上記誘電体試料2に100MHz 20 から1000MHzの間の所定の周波数を有する交流電 圧Vpを印加する一方、当該交流電圧Vpを基準信号と して混合器53bに出力する。ハーフミラー57は、レ ーザダイオード21が発生する光ビームがフォーカスレ ンズ58を介して上記誘電体試料2の微小領域2aの表 面に集光到達するように透過する一方、上記微小領域2 aの表面によって反射された後フォーカスレンズ58を 介して入射する光ピームを反射して、光ピーム信号であ る当該反射光を光電変換器51に照射する。ここで、上 記反射光は、後述するように上記交流電圧Vpと同じ周 30 波数を有し、かつ上記交流電圧Vpの振幅に比例した振 幅を有する信号を含む信号によって強度変調された光ビ ーム信号である。光電変換器51は、入力される反射光 である光ビーム信号を光電変換して、上記交流電圧Vp と同じ周波数を有し、かつ上記交流電圧Vpの振幅に比 例した振幅を有する信号を含む電気信号を発生して、増 幅器52を介して電気信号処理部70の混合器53aに 出力する。

【0095】上記機構部7は、キャパシタ部1をその表 面上に載置して保持し、かつ機構制御部25からの制御 40 信号に応答してキャパシタ部1をレーザダイオード21 からの光ビームの照射方向に対して垂直な方向で1次元 方向又は2次元方向に移動させる。キャパシタ部1が機 構部?によって、このように移動されることにより、上 記光ビームが照射される誘電体試料2の微小領域2aが 1次元方向又は2次元方向に移動される。機構制御部2 5は、上記制御信号を発生するとともに、当該制御信号 に対応し上記誘電体試料2の微小領域2aの移動位置を 示す位置信号を発生して表示制御部28に出力する。

[0096] また、電気信号処理部70は、増幅器52 50 【0100】

24

と、局部発振器54と、混合器53a,53bと、ロッ クインアンプ27と、表示制御部28と、ディスプレイ 29とによって構成される。局部発振器54は、上記交 流電圧Vpの有する周波数fpより低い所定の局部発振 周波数を有する局部発振信号を発振して発生し、混合器 53aと混合器53bに出力する。混合器53aは、増 幅器52からの電気信号と、上記局部発振信号を混合し て、上記電気信号の周波数と上記局部発振周波数の和と 差の周波数を有する信号に周波数変換して帯域通過フィ に、反射光測定部60は、キャパシタ部1と、レーザダ 10 ルタ59aに出力する。上記帯域通過フィルタ59a は、上記電気信号の周波数と上記局部発振周波数の和と 差の周波数を有する信号のうち、周波数 f p と上記局部 発振周波数の差の周波数を有する信号のみを通過させ て、ロックインアンプ27の端子T1に出力する。一方 混合器53bは、入力される基準信号と上記局部発振信 号を混合して、上記基準信号の周波数 f p と上記局部発 振周波数の和と差の周波数を有する信号に周波数変換し て、上記帯域通過フィルタ59bに出力する。上記帯域 通過フィルタ59bは、上記基準信号の周波数fpと上 記局部発振周波数の差の周波数を有する信号のみを通過 させて、ロックインアンプ27の端子T2に出力する。 また、ロックインアンプ27と、表示制御部28と、デ ィスプレイ29は、第一の実施例の非線形誘電率測定装 置と同様に構成される。

> 【0097】以上のように構成された第三の実施例の非 線形誘電率測定装置において、上記誘電体試料2に、光 ピームを照射すると、上記光ピームは上記誘電体試料2 の微小領域2 a の表面で反射される。このとき上記誘電 体試料2の光の反射率Rは、上記誘電体試料2の屈折率 nを用いて数42のように表わすことができる。また、 上記屈折率 n は、上記誘電体試料 2 の誘電率 ε s と真空 中の誘電率 ε ο を用いて数 4 3 のように表わすことがで

[0098]

 $[\underbrace{\text{342}}] R = \{ (1-n) / (1+n) \}^{2}$ 【数43】 $n=\sqrt{(\epsilon s/\epsilon_0)}$

【0099】また、交流電源9によって、透明電極3と 電極4に周波数fpを有する正弦波である交流電圧Vp を印加すると、上記誘電体試料2の厚さ方向と平行に、 上記交流電圧Vpの振幅に比例した振幅と上記交流電圧 Vpの周波数 fpと同じ周波数を有する正弦波である交 流電界Epを発生する。これによって、上記屈折率nと 反射率Rは、後述するように交流電界Epに応じてそれ ぞれ屈折率変化量Δnと反射率変化量ΔRだけ変化す る。ここで、交流電圧Vpが印加されていないときの屈 折率をnoとすると屈折率nは、次の数44で表わすこ とができ、誘電体試料2に交流電圧Vpが印加されてい ないときの反射率をRoとすると、反射率Rは次の数4 5で表わすことができる。

【数44】n=n₀+Δn

【数45】 $R = R_0 + \Delta R$

【0101】次に、数44で表される屈折率nと数45 で表される反射率Rを数42に代入して変形すると、反 射率Rは数46のように表わすことができる。

[0102]

【数46】 $R_0 + \Delta R = \{(1 - n_0)/(1 + n_0)\}^2 [\{1 - n_0\}]^2$ $\Delta n/(1-n_0)$ \[\{ \lambda + \Delta n/(1+n_0)\}\]^2

【0103】ここで、上記屈折率変化量△n≪n₀かつ ることができる。また、反射率Roは、数42から明ら かなように、屈折率noを用いて数47のように表わす ことができる。以上のことから数46は次の数48のよ うに書き換えることができる。さらに、数48から反射 率変化量△Rは数49,数50のように表わすことがで きる。

[0104]

【数47】 $R_0 = \{(1-n_0)/(1+n_0)\}^2$

 $[& 48] R_0 + \Delta R = R_0 \{ 1 - 2 \Delta n / (1 - n_0) - 2 \}$ $\Delta n/(1+n_0)$

【数49】

 $\Delta R = R_0 \{ -2 \Delta n/(1-n_0) - 2 \Delta n/(1+n_0) \}$

【数50】 $\Delta R = -4 R_0 \Delta n/(1 - n_0^2)$

【0105】一方、透明電極3と電極4に交流電圧Vp を印加することによって、上記誘電体試料2の微小領域 2 a に交流電界 E p を発生させると、上記交流電界 E p に応じて誘電率 ϵ s は、誘電率変化量 Δ ϵ だけ変化す る。交流電圧Vpが印加されていないときの、誘電率を ε S ο とすると、誘電率 ε S は次の数 5 1 で表わすこと ると、交流電圧Vpが印加されたときの屈折率は、数5 2のように表わすことができる。

[0106]

【数51】 ε s = ε s₀ + Δ ε

【数52】 $n_0 + \Delta n = \{(\epsilon s_0 + \Delta \epsilon)/\epsilon_0\}^{1/2}$

【0107】また、数52において、 $\Delta \epsilon \ll \epsilon s$ oであ るので、数52は近似を用いて数53のように書き表す ことができる。数53において数54で表される屈折率 noを用いると屈折率変化量Δnは、数55のように表 わすことができる。

[0108]

【数53】

 $n_0 + \Delta n = (\epsilon s_0/\epsilon_0)^{1/2} \{1 + (1/2)(\Delta \epsilon/\epsilon s_0)\}$

[数55] $\Delta n = (1/2) n_0 (\Delta \epsilon / \epsilon s_0)$

【数54】 $n_0 = (\epsilon s_0/\epsilon_0)^{1/2}$

【0109】次に、数55で表される屈折率変化量Δn を数50で表される反射率変化量 ARに代入すると、反 射率変化量Δ R は、次の数 5 6 で表わす事ができる。

[0110]

【数56】 Δ R=-4R $_{ ext{o}}$ $\{(1/2)$ n $\{\Delta$ ϵ $/\epsilon$ s $_{ ext{o}}\}$ Δ 50 して混合器53aに出力する。上記混合器53aは、局

26

 $n/(1-n_0^2)$

【0111】また、公知のように、上記誘電率変化量Δ ε は、1次の電気光学定数であるポッケルス定数 r と 2 次の電気光学定数であるカー定数gを用いると数57の ように表わすことができる。ここで、上記ポッケルス定 数 r は 3 次の誘電率 ε s の一種であり、上記カー定数 g は4次の誘電率 ε_4 の一種である。従って、ポッケルス 定数rとカー定数gは非線形誘電率の一種である。ここ でいう非線形誘電率は、光に対する応答性について観測 屈折率変化量 Δ n ≪ 1 であるので、(Δ n) 2 = 0 とす 10 しているので、光学的領域における非線形誘電率のこと である。さらに、次の数57で表される誘電率変化量Δ εを用いると数56で表される反射率変化量ΔRは、数 58のように書き表すことができる。またさらに、数5 8の反射率変化量△Rは、数59で表される交流電界E pに比例する反射率変化量ΔR:と数60で表される交 流電界Epの2乗に比例する反射率変化量 ΔR2を用い ると、数61のように表わすことができる。

[0112]

【数57】 $\Delta \varepsilon = -(\varepsilon s_0^2/\varepsilon_0)(r E p + g E p^2)$

【数58】

 $\Delta R = 2 \{ n_0^3 / (1 - n_0^2) \} R_0 (r E p + g E p^2)$

【数59】 $\Delta R_1 = 2\{n_0^3/(1-n_0^2)\}R_0$ r E p

【数60】 $\Delta R_2 = 2\{n_0^3/(1-n_0^2)\}R_0 g E p^2$

【数61】 $\Delta R = \Delta R_1 + \Delta R_2$

【0113】数61に示すように、反射率変化量△Rは 交流電界Epに比例する項AR: と交流電界Epの2乗 に比例する項AR2の和の形に表される。従って、誘電 体試料2の微小領域2aの反射率変化量△Rは、ポッケ ルス定数と交流電界Epの振幅Epoに比例する振幅を ができる。さらに、数51で表される誘電率 ϵ s を用い 30 有しかつ角周波数 ω p を有して交番的に変化する反射率 変化量△R1と、カー定数と交流電界Epの振幅Epoの 2乗に比例する振幅を有しかつ角周波数 2ωρを有して 交番的に変化する反射率変化量△R2を含むので、上記 反射光である光ビーム信号は、上記反射率変化量ARI と上記反射率変化量 AR2 に対応して強度が変化する。 従って、上記反射光である光ビーム信号は、ポッケルス 定数と交流電界Epの振幅Ep。に比例する振幅を有し かつ角周波数ωpすなわち周波数fpを有する信号S₃ と、カー定数と交流電界Epの振幅Epoの2乗に比例 40 する振幅を有しかつ角周波数 2ωp すなわち周波数 fp を有する信号S4によって強度変調された光ピーム信号 になる。

> 【0114】上記光電変換器51は、上記強度変調され た光ピーム信号を光電変換して、ポッケルス定数と交流 電界Epの振幅Ep。に比例する振幅を有しかつ角周波 数ωpすなわち周波数fpを有する信号S3と、カー定 数と交流電界Epの振幅Ep。の2乗に比例する振幅を 有しかつ角周波数2ωpすなわち周波数fpを有する信 号S₄を含む電気信号に変換して、上記増幅器52を介

部発振器54から入力される局部発振信号と上記増幅器52を介して入力される電気信号とを混合して、上記電気信号の周波数と上記局部発振信号の周波数との和と差の周波数を有する信号に周波数変換して、上記帯域通過フィルタ59aに出力する。上記帯域通過フィルタ59aに出力する。上記帯域通過フィルタ59aに出力する。上記帯域通過フィルタ59aに出力する。上記帯域通過フィルタ59aに出力する。局波数を有する信号のうちから、周波数 f pと上記局部発振信号の周波数の差の周波数を有する信号のみを通過させて、ロックインアンプ27の端子T1に出力する。ここで、上記電気信号中、周波数 f pを有する信号S。は、上述したように、ボッケルス定数と交流電界Epの振幅Ep。に比例する振幅を有しているので、周波数 f pと上記局部発振信号の周波数の差の周波数を有する信号も、ボッケルス定数と交流電界Epの振幅Ep。に比例する振幅を有した信号である。

【0115】一方混合器53bは、入力される基準信号と上記局部発振信号を混合して、上記基準信号の周波数と上記局部発振周波数の和と差の周波数を有する信号に周波数変換して、上記帯域通過フィルタ59bに出力する。上記帯域通過フィルタ59aは、上記基準信号の周20波数fpと上記局部発振周波数の和と差の周波数を有する信号のうちから、上記基準信号の周波数fpと上記局部発振周波数の差の周波数を有する信号のみを通過させて、ロックインアンプ27の端子T2に出力する。

【0116】ロックインアンプ27は、端子T1から入力される周波数fpと上記局部発振信号の周波数の差の周波数を有する信号を、上記基準信号の周波数fpと上記局部発振信号の周波数の差の周波数を有する信号に基づいて同期検波して、出力電圧 | Va | sinφを端子T3を介して表示制御部28に出力し、出力電圧 | Va | cosφを端子T4を介して表示制御部28に出力する。周波数fpと上記局部発振信号の周波数の差の周波数を有する信号は、ポッケルス定数と交流電界Epの振幅Epoに比例する振幅を有した信号であるので、出力電圧Va1と出力電圧Va2はポッケルス定数と交流電界Epの振幅Epoに比例した電圧になる。

【0117】次に、表示制御部28は、入力される電圧 Vai, Vai から位相差 のと電圧 | Va | を演算して、機構制御部25から入力される位置信号と、電圧 Vai, Vai, | Va | と、上記位相差 のうちから指 40 定されるパラメータをディスプレイ29上に表示するようにディスプレイ29を制御する。上記ディスプレイ29は表示制御部28の指示に従って、誘電体試料2の位置に対応させて、電圧 Vai と Vaiと上記位相差 のうちから指定されるパラメータを2次元平面上に表示する。

【0118】以上詳述したように、光ビームを照射しながら、透明電極3と電極4に交流電圧Vpを印加して、 誘電体試料2の微小領域2aに交流電界Epを発生させると、微小領域2aは、入力される光ビームを上記微小50 28

領域2aのポッケルス定数と上記交流電圧Vpの振幅に 比例した振幅を有しかつ上記交流電圧Vpと同じ周波数 f pを有する信号にしたがって強度変調された光ビーム 信号として反射する。次に光電変換器51は、上記強度 変調された光ピーム信号を光電変換して上記微小領域2 aのポッケルス定数と上記交流電圧Vpの振幅に比例し た振幅を有しかつ上記交流電圧Vpと同じ周波数fpを 有する信号を含む電気信号に変換する。さらにロッイン アンプ27は、基準信号に基づいて上記電気信号を同期 検波して、上記微小領域2aのポッケルス定数と上記交 流電圧Vpの振幅に比例した直流信号を出力する。従っ て、上記機構部7と機構制御部25によって、上記光ビ ームの照射位置を走査して、上記直流信号を測定するこ とによって、微小領域2 a のポッケルス定数の違いを上 記直流信号の値によって観測することができる。また、 上記ポッケルス定数は、3次の誘電率 ε ι と同じく3階 のテンソルであり対称中心を有する材料には存在しな い。また、例えば分極が十分かかっている材料とそうで ない材料では、ポッケルス定数の値は大きく異なる。ま た、分極が零になるとポッケルス定数も零になり、分極 方向が反転した場合には、ポッケルス定数の符号も変わ る。またさらに、結晶状態に乱れが生じると、乱れた部 分では結晶の異方性が小さくなり、やはり3階のテンソ ル量であるポッケルス定数は小さくなると考えられる。 従って、上記ポッケルス定数の微小領域2aにおける違 いを観測することによって、上記結晶状態の不均一や永 久分極のミクロな分布の大小が判断できる。

【0119】以上の第三の実施例においては、周波数 f pを有する基準信号を用いて同期検波することによって、ポッケルス定数が観測できるように構成したが、本発明はこれに限らず、周波数が2×fpである基準信号に基づいて同期検波するように構成して、カー定数が観測できるように構成してもよい。以上のようにして、光学的領域における非線形誘電率を測定することができる。

【0120】〈第四の実施例〉図14は、第四の実施例の非線形誘電率測定装置の構成を示すプロック図である。第四の実施例の非線形誘電率測定装置が、第三の実施例の非線形誘電率測定装置と異なる所は、電極4に代えて透明体からなる機構部7aを備えて、さらに、機構部7に代えて透明体からなる機構部7aを備えて構成されている点である。以上のような構成によって、透明電極3と誘電体試料2と透明電極4aと機構部7aを透過する透過光である光ビーム信号を電気信号に変換して、当該電気信号に基づいて、光学的領域における非線形誘電率を測定することを特徴とする。

【0121】以下、図面を用いて第四の実施例の非線形 誘電率測定装置の構成を説明する。第四の実施例の非線 形誘電率測定装置は、図14に示すように、第三の実施 例の反射光測定部60にかえて、キャパシタ部1と、レ

ーザダイオード21と、交流電源9と、機構部7aと、 機構制御部25と、光電変換器51とからなる透過光測 定部を備えて構成される。キャパシタ部1は、誘電体試 料2が互いに対向する透明電極3と透明電極4aによっ て挟設されて構成される。レーザダイオード21は、所 定波長の光ピームを発生して、当該光ピームを透明電極 3を介して誘電体試料2の一部分である微小領域2aに 照射する。交流電源9は、上記透明電極3と透明電極4 aに周波数 f pを有する交流電圧Vpを印加することに よって、上記誘電体試料2の微小領域2aに周波数fp 10 である。 を有する交流電界Epを発生させる一方、上記交流電圧 Vpを基準信号として混合器53bに出力する。ここ で、上記周波数 f p は、100MHz から1000MH zの間の所定の周波数に設定される。ここで、上記透過 光は、後述するように上記交流電圧Vpと同じ周波数を 有し、かつ上記交流電圧Vpの振幅に比例した振幅を有 する信号を含む信号によって強度変調された光ピーム信 号である。光電変換器51は、入力される透過光である 光ピーム信号を光電変換して、上記交流電圧Vpと同じ 周波数を有し、かつ上記交流電圧Vpの振幅に比例した 20 振幅を有する信号を含む電気信号を発生して、増幅器5 2を介して上記混合器53aに出力する。上記機構部7 aは、透明体からなり、キャパシタ部1をその表面上に 載置して保持し、かつ機構制御部25からの制御信号に 応答してキャパシタ部1をレーザダイオード21からの 光ピームの照射方向に対して垂直な方向で1次元方向又 は2次元方向に移動させる。キャパシタ部1が機構部7 によって、このように移動されることにより、上記光ビ ームが照射される誘電体試料2の微小領域2aが1次元 方向又は2次元方向に移動される。機構制御部25は、 上記制御信号を発生するとともに、当該制御信号に対応 し上記誘電体試料2の微小領域2aの移動位置を示す位 置信号を発生して表示制御部28に出力する。

【0122】以上のように構成された、第四の実施例の非線形誘電率測定装置において、上記誘電体試料2に、交流電源9によって、透明電極3,4に交流電圧Vpを印加すると、上記誘電体試料2の厚さ方向と平行に、上記交流電圧Vpの振幅に比例した振幅と上記交流電圧Vpの周波数fpと同じ周波数を有する交流電界Epを発生する。これによって、上述のように、反射率変化量△40Rが変化する。ここで、公知のように、誘電体試料2の反射率Rと誘電体試料2の光の透過率Tとの間には、数62に示す関係がある。従って反射率変化量△Rと透過率変化量△Tの間には、数63に示す関係がある。

[0123]

【数62】T=1-R

【数63】 ΔT=-ΔR

【0124】数63と数61から明らかなように、上記 スレンズ58と、交流電源9と、テープ保持部55a, 透過率変化量 Δ Tは、ポッケルス定数と交流電界Epo 55b, 55c, 55dと、光電変換器51と、位相検 振幅Epoに比例する振幅を有しかつ角周波数 ω pを有 50 出器56とによって構成される。誘電体テープ100

30

して交番的に変化する透過率変化量と、カー定数と交流 電界Epの振幅Ep。の2乗に比例する振幅を有しかつ 角周波数2ωpを有して交番的に変化する透過率変化量 Δ Tを含むので、上記透過光である光ビーム信号は、ポッケルス定数と交流電界Epの振幅Ep。に比例する振幅を有しかつ角周波数 ω pすなわち周波数fpを有する 信号と、カー定数と交流電界Epの振幅Ep。の2乗に 比例する振幅を有しかつ角周波数2 ω pすなわち周波数 fpを有する信号によって強度変調された光ビーム信号

【0125】従って、上記光ビーム信号を光電変換した電気信号を第五の実施例と同様な処理をすることによって、各微小領域2aのポッケルス定数の違いを上記直流信号の値によって観測することができる。以上のように、誘電体試料2の光の透過率Tが印加される電界Epによって変化することを利用して、各微小領域2aのポッケルス定数の違いを観測することができる。

【0126】以上の第四の実施例においては、周波数 f pを有する基準信号を用いて同期検波することによって、ポッケルス定数が観測できるように構成したが、本発明はこれに限らず、周波数が2×fpである基準信号に基づいて同期検波するように構成して、カー定数が観測できるように構成してもよい。

【0127】以上の第三と第四の実施例においては、ロ ックインアンプ27の出力を観測しているが、本発明は これに限らず、光電変換器51から出力される電気信号 を観測して誘電体試料2の微小領域2aにおけるポッケ ルス定数を測定するようにしてもよい。この場合におい て、非線形誘電率測定装置は、光電変換器51から出力 される電気信号のうちから周波数 f pの信号のみを選択 的にろ波する帯域通過フィルタと、100MH2から1 000MHzの周波数を有する信号の波形を測定するオ シロスコープなどを備えて構成される。以上のような構 成によって、ポッケルス定数と交流電界Epの振幅Ep 。に比例する電力値を得ることができ、ポッケルス定数 を測定することができる。また、周波数2fpを有する 信号のみを選択的にろ波して出力する帯域通過フィルタ を用いることによって、カー定数を測定することができ る。以上のようにして、上述の第三の実施例の非線形誘 電率測定装置と同様に、光学的領域における非線形誘電 率を測定することができる。

【0128】 〈第五の実施例〉図15は、上述の3次の誘電率 ε』と同様に誘電体膜102の分極の向きによってポッケルス定数 r の正負が反転することを利用した第五の実施例の誘電体記録読取装置の実施例である。図15の誘電体記録読取装置は、誘電体テープ100と、レーザダイオード21と、ハーフミラー57と、フォーカスレンズ58と、交流電源9と、テープ保持部55a、55b、55c、55dと、光電変換器51と、位相検出界56とによって機成される。新聞体テープ100

は、テープ状に形成された金属膜104上に強誘電体か らなる誘電体膜102を例えばスパッタリングなどの公 知の方法によって形成し、さらに上記誘電体膜102の 上にITOなどの透明電極103を例えばスパッタリン グなどの公知の方法によって形成して構成される。レー ザダイオード21は、所定波長の光ピームを発生して、 上記ハーフミラー57とフォーカスレンズ58を介し て、当該光ビームを誘電体膜102の一部分である微小 領域102aの表面に照射する。ここで、フォーカスレ ンズ58は、上記光ビームを誘電体試料2の微小部分1 10 02 a に照射するように集光する。また、交流電源9 は、テープ保持部55cとテープ保持部55dに交流電 圧Vpを印加することによって、上記誘電体膜102の 厚さ方向に交流電界Epを発生させる一方、上記交流電 圧Vpを基準信号として位相検出器56に出力する。ハ ーフミラー57は、レーザダイオード21が発生する光 ビームが上記誘電体膜102の微小領域102aの表面 に照射させるように透過する一方、上記微小領域102 aの表面によって反射された後フォーカスレンズ58を 介して入射する光ビーム信号を反射して、当該反射光で 20 ある光ピーム信号を光電変換器51に照射する。ここ で、上記反射光は、上記交流電圧Vpと同じ周波数を有 し、かつ上記交流電圧Vpの振幅に比例した振幅を有す る信号を含む信号によって強度変調された光ビーム信号 である。光電変換器51は、入力される反射光である光 ビーム信号を光電変換して、上記交流電圧Vpと同じ周 波数を有し、かつ上記交流電圧Vpの振幅に比例した振 幅を有する信号を含む電気信号を発生して、位相検出器 56に出力する。

【0129】また、テープ保持部55a, 55b, 55 30 c. 55dは、それぞれ誘電体テープ100の幅より長 い所定の軸方向の長さを有する円柱状の導体からなる。 テープ保持部55aとテープ保持部55bは、それぞれ の軸が誘電体テープ100の幅方向と平行になるよう に、かつ誘電体テープ100をそれぞれの円周面で挟む ように互いに対向して回転可能に設けられる。またさら に、テープ保持部55cとテープ保持部55dは、それ ぞれの軸が誘電体テープ100の幅方向と平行になるよ うに、かつ誘電体テープ100をそれぞれの円周面で挟 むように互いに対向して回転可能に設けられる。上記誘 40 電体テープ100は、その厚さ方向が常に光ビームの照 射方向と一致するように、かつフォーカスレンズ58か らの距離が所定の値になるように、そして、誘電体テー プ100の長手方向で走行可能に、互いにその長手方向 で所定の間隔だけ離れて並置するテープ保持部55a, 55bとテープ保持部55c, 55dによって保持され る。ここで、テープ保持部55cは、透明電極103に 電気的に接触し、テープ保持部55dは、金属膜104 に電気的に接触する。そして、テープ保持部55aとテ ープ保持部55bは、誘電体テープ100を挟設して所 50 材料。 32

定の圧力で押えながら、互いに反対方向に所定の回転数で回転して、誘電体テープ100をその長手方向に所定のスピードで走行させる。さらに、位相検出器56は、例えばロックインアンプ27を備えて構成され、上記ロックインアンプ27の出力電圧Va1, Va2から数4を用いて位相差のを演算して出力する。

【0130】以上のように構成された、第五の実施例の 誘電体記録説取装置において、上記誘電体テープ100 に、光ビームを照射すると、上記光ビームは、上記誘電 体膜102の表面で反射され、上記反射光である光ビー ム信号は、上述のように、強度変調された光ビーム信号 になる。

【0131】上記光電変換器51は、上記強度変調され た光ビーム信号を光電変換して、ポッケルス定数と交流 電界Epの振幅Ep。に比例する振幅を有しかつ角周波 数ωpすなわち周波数fpを有する信号と、カー定数と 交流電界Epの振幅Ep。の2乗に比例する振幅を有し かつ角周波数2ωpすなわち周波数fpを有する信号を 含む電気信号に変換して、上記位相検出器56に出力す る。上記位相検出器56は、基準信号に基づいて当該電 気信号のうち、ポッケルス定数rと交流電界Epの振幅 Εροに比例する振幅を有しかつ角周波数ωρすなわち 周波数 f p を有する信号の位相を検出して出力する。こ こで、数59においてnoは1より大きいので上記ポッ ケルス定数 r が正のときには、反射率変化量△R1は交 流電界Epすなわち交流電圧Vpと逆相で変化する。従 って、上記ポッケルス定数 r が正のとき、上記周波数 f pを有する信号と基準信号の位相差φはπになる。同様 に、上記ポッケルス定数 r が負のとき、上記周波数 f p を有する信号と基準信号の位相差のは0である。すなわ ち、上記ポッケルス定数の正負に対応して位相差φはπ 又は0の何れかが出力される。さらに、上記テープ保持 部55a, 55b, 55cによって、上記微小領域10 2 a の位置を順次変えて上記位相差φを測定することに よって、各微小領域102aのポッケルス定数rの正負 を上記位相差φの値によって観測することができる。す なわち、上記ポッケルス定数の正負は、上記微小領域の 分極の向きに対応しているので、上記各微小領域102 aの分極の向きを検出することができ、上記誘電体テー ブ100に記録されたデジタル信号を読み取ることがで

【0132】以上の第五の実施例では、反射光である光 ピーム信号を用いて誘電体読取装置を構成したが、本発 明はこれに限らず、第四の実施例と同様に、透過光であ る光ピーム信号を用いて構成してもよい。

【0133】また、上述の第二と第五の実施例の誘電体 記録読取装置に使用される強誘電体材料は、例えば以下 に示す材料が使用される。

(a) PbTiOs-PbZrOsの固溶体であるPZT 材料。

- (b) PbTiO₃で表されるチタン酸鉛。
- (c) PbZrOsで表されるジルコン酸鉛。
- (d) BaTiOsで表されるチタン酸バリウム。
- (e) LiNbOsで表されるニオブ酸リチウム。
- (f)鉛(Pb), ランタン(La), ジルコニウム (Zr), チタン(Ti)系の固溶体であるPLZT材 は
- (g) ピスマス (Bi), ナトリウム (Na), 鉛 (Pb), バリウム (Ba) 系の固溶体である BNP B材料 などの強誘電体材料。

上記材料は、セラミックス、単結晶又は薄膜形成されたもののいずれの材料も使用可能である。また、ポリフッ化ビニリデン(PVDF)、フッ化ビニリデンと三フッ化エチレンの共重合体、フッ化ビニリデンと呼びアッ化エチレンの共重合体、シアノビニリデンと酢酸ビニルの共重合体などの圧電高分子材料なども使用することができる。またさらに、上記材料を複数個組み合わせた材料も使用できる。

【0134】また、上述の第二と第五の実施例の誘電体記録読取装置においては、誘電体テープ100を用いた 20が、本発明はこれに限らず円盤状の誘電体ディスクを用いてもよい。

[0135]

【発明の効果】以上詳述したように本発明に係る非線形誘電率測定装置によれば、上記第1の電極と第2の電極間に位置する上記誘電体の微小領域に、所定の周波数を有する交流信号を印加し、上記2つの電極と上記誘電体とを含んで構成された共振回路を備えて、上記誘電体の微小領域に上記交流信号が印加されたときに、上記交流信号の周波数と上記微小領域の非線形誘電率に対応して30発振周波数が変化する発振信号を発生した後、上記発振信号を周波数復調して、上記交流信号の周波数と上記誘電体の微小領域の非線形誘電率に対応した振幅を有する電気信号を出力し、上記電気信号に基づいて上記誘電体の微小領域の非線形誘電率を測定する。これによって、従来は測定できなかった上記誘電体の微小領域の電気的領域における非線形誘電率を測定することができる。

【0136】また、上記第1の電極と透明材料からなる第2の電極間に位置する上記誘電体の微小領域に、所定の周波数を有する交流信号を印加し、さらに、第2の電極を介して上記誘電体の微小領域に光ビームを照射して、上記微小領域の表面によって反射される上記誘電体の微小領域の非線形誘電率と上記交流信号の周波数に対応した強度を有する反射光を電気信号に光電変換して、上記電気信号に基づいて、上記誘電体の微小領域の非線形誘電率を測定する。これによって、従来は測定できなかった上記誘電体の微小領域の光学的領域における非線形誘電率を測定することができる。

【0137】また、上記交流信号に基づいて上記電気信 おける で 号を同期検波して上記電気信号に対応した直流信号を出 50 である。 34

力する検波手段を備え、上記直流信号に基づいて上記誘電体の微小領域の非線形誘電率を測定する。従って、電気信号を同期検波しているので、上記交流信号に同期しない所望されない他の雑音を除去して、同期検波後に得られる直流信号の信号電力対雑音電力比S/Nを大幅に改善することができるので、非線形誘電率の測定精度を高めることができる。

【0138】さらに、上記第2の電極が上記誘電体の第2の面上を走査するように、または、上記光照射手段によって照射された光ビームに対して垂直に、上記誘電体を1次元方向又は2次元方向で移動する移動手段を備えたので、上記誘電体の微小領域の位置を変えて上記測定をすることによって、上記各微小領域毎の非線形誘電率の相対的な変化を測定することができるので、上記誘電体の非線形誘電率の相対的なまクロの分布を知ることができる。

【図面の簡単な説明】

- 【図1】 本発明に係る非線形誘電率測定装置の基本回路の構成を示すプロック図である。
- ② 【図2】 図1のロックインアンプ27の詳細な構成を 示すロックインアンプ27のプロック図である。
 - 【図3】 本発明に係る第一の実施例の非線形誘電率測 定装置の構成を示すプロック図である。
 - 【図4】 本発明に係る第一の実施例の非線形誘電率測定装置のリエントラント型空胴共振器30の断面図である。
 - 【図5】 図4のリエントラント型空胴共振器30を誘電体試料2の方向から見た平面図である。
- 【図6】 図4のリエントラント型空胴共振器30が誘
 の 電体試料2に接したときのキャパシタ部1と交流電源9
 を含む等価回路の回路図である。
 - 【図7】 図8の測定結果を得るために用いた2カット LiNbO₃からなる誘電体試料2の平面図である。
 - 【図8】 図7のZカットLiNbOsからなる誘電体 試料 2 におけるX軸LのX 0 からの距離X におけるL 0 からの距離X におけるL 0 からの距離X におけるL 0 を派したグラフである。
- 【0136】また、上記第1の電極と透明材料からなる 【図9】 分極の状態が異なる領域を有する誘電体試料第2の電極間に位置する上記誘電体の微小領域に、所定 2を図式的に示した断面図と、当該断面図に対応して測の周波数を有する交流信号を印加し、さらに、第2の電 40 定位置であるそれぞれの領域におけるロックインアンプ 極を介して上記誘電体の微小領域に光ビームを照射し 27の出力電圧Va2の測定結果を示すグラフである。
 - 【図10】 図10は、本発明に係る非線形誘電率測定 装置の原理を応用した誘電体記録読取装置の応用回路の プロック図である。
 - 【図11】 第二の実施例の誘電体記録読取装置の構成 を示すプロック図である。
 - 【図12】 第二の実施例の誘電体記録読取装置の測定例である誘電体テープ100のスタート点からの距離におけるロックインアンプ27aの出力電圧を示すグラフである

【図13】 第三の実施例の非線形誘電率測定装置の構成を示すプロック図である。

【図14】 第四の実施例の非線形誘電率測定装置の構成を示すプロック図である。

【図15】 第五の実施例の誘電体記録読取装置の構成を示すプロック図である。

【符号の説明】

1…キャパシタ部、

2…誘電体試料、

2 a, 102 a…微小領域、

2b, 102b…領域、

3, 4 a…透明電極、

4…電極、

5 …負性抵抗回路、

6…コイル、

7. 7 a…機構部、

9…交流電源、

10, 10a, 10b, 10c…共振回路部、

20、20a、20b、20c…発振器、

21…レーザダイオード、

25…機構制御部、

26…FM復調回路、

27, 27a…ロックインアンプ、

28…表示制御部、

29…ディスプレイ、

30…リエントラント型空胴共振器、

31…導体ケース、

32…中心導体、

33…開口部、

35, 50 a…先端部、

50…測定電極、

5 1 …光電変換器、

53a, 53b, 277a, 277b…混合器、

36

10 55a, 55b, 55c, 55d…テープ保持部、

57…ハーフミラー、

58…レンズ、

56…位相検出器、

60…反射光測定部、

100…誘電体テープ、

102…誘電体膜、

103…透明電極膜、

104…金属膜、

271…增幅器、

20 272…波形整形器、

273, 274…同相分配器、

275…90度移相器、

278a, 278b…低域通過フィルタ。

[図1]

【図3】

【図9】

[図10]

【図15】

[図11]

[図12]

[図13]

[図14]

