

World Of Tech 2017

2017年4月14日-15日 北京富力万丽酒店

RHIECOX

出品人及主持人:

本 滴滴出行平台技术部 高级技术总监

高可用架构

网易NDC高可用实践

主讲人: 马进

马进

网易

资深工程师

分享主题:

网易数据传输服务NDC高可用实践

NDC是什么?

• NDC,直译为网易数据运河,为网易各大产品提供结构化数据实时迁移,同步和订阅服务。功能包括异构数据库在线迁移,OLTP到OLAP的实时数据整合,数据库增量数据实时订阅等。是网易分布式数据库DDB和大数据解决方案Mammut的依赖组件

大纲

- 应用场景 why?
- 产品形态 what?
- 系统架构 how?
- 高可用实践

- OLAP数据同步
 - OLTP实时同步到OLAP系统(代表: Kudu, HBase, Greenplum)
 - OLTP同步到队列,定期merge到OLAP系统(代表: Hive, HDFS)

- DDB在线数据迁移
 - 场景: 在线扩容, 机器迁移, 更改均衡字段......

- 数据库第三方索引支持
 - 全文索引,地图索引等

- 多机房缓存淘汰
 - 原则: 同步先于淘汰

小结

• 应用方视角

- 数据迁移: 异构数据库在线迁移, 在线扩缩容

- 数据同步: 跨机房, 跨域, 跨国的实时数据同步

- 数据订阅:数据驱动业务,业务间异步解耦

• 大数据视角

- 数据整合: OLTP到OLAP的数据整合

- 数据集成: "making all the data an organization has available in all its services and systems"

• 核心需求

- 获取数据库实时变更的能力
- 数据发布的能力

NDC产品形态

- 平台化
 - 平台化的WEB管理工具
 - 平台化的资源管理和调度
 - 平台化报警监控

• 插件化

- 不同数据源extractor插件化
- 不同数据源applier插件化
- 账号系统插件化

NDC产品形态

Q请输	λJobID	启劫	暂停 停止	释放					
	任务名	任务名称		创建时间	最近上报时	间	执行地址	全量迁移	增量延迟
	yixin_archive	vixin_archive_db53		2016/12/27 17:2	23:14 2016/12/27 17	7:23:14		• 0%	0 ms
	yixin_archive_db51		Initfailed	2016/12/27 17:2	23:14 2016/12/27 17	7:23:14		0%	0 ms
	yixin_archive	yixin_archive_db49		2016/12/27 17:2	23:14 2016/12/27 17	7:23:14		• 0%	0 ms
	yidun_migrate_rds-1		Suspend	2016/12/17 11:0	06:12 2017/01/02 22	2:45:28	10.171.160.52:7100	100%	588 ms
0	yidun_migrate_rds-3		Suspend	2016/12/17 11:0	06:12 2017/01/02 22	2:45:28	10.171.160.52:7100	100%	897 ms
	yidun_migrate_rds-2		Suspend	2016/12/17 11:0	06:12 2017/01/02 22	2:45:28	10.171.160.52:7100	100%	606 ms
V	nim_rds_4_c	online	Alive	2016/12/09 11:0	04:38 2017/01/02 22	2:45:28	10.171.160.52:7100	100%	194 ms
	nim_rds_3_c	nim_rds_3_online		2016/12/09 11:0	00:10 2017/01/02 22	2:45:28	10.171.160.51:7100	100%	165 ms
0	nim_rds_2_c	nim_rds_2_online		2016/12/09 10:2	20:07 2017/01/02 22	2:45:28	10.171.160.52:7100	100%	0 ms
	nim_rds_1_c	online	Alive	2016/12/09 09:5	53:08 2017/01/02 22	2:45:28	10.171.160.51:7100	100%	0 ms
全量迁	移 增量迁移	预检查							
源	端最新位置	mysql-bin.001737:388808496			待迁移日志大小(字	等) 3,521			
最	新推进位置	mysql-bin.001737:388804975				迁移速度(字节/秒)	迁移速度(字节/秒) 351,446		
最	后迁移位置	mysql-bi	mysql-bin.001737:388804500			任务ID	16		
延:	迟时间(ms)	194 ms	194 ms			任务状态	Alive		
预-	预计时间(ms) 10 ms						2016/12/16 16:44:21		
란	已缓存日志大小(字节) 389,681,441					进度(%)	100		

NDC猛犸定位

系统架构

系统架构

NDC原理

- 服务特色
 - 无锁迁移
 - 并发迁移
 - 并发回放
 - 断点续传

高可用实践

Center高可用
Engine高可用
任务高可用

Center高可用

- 解决方案
 - Zookeeper + Cruator
 - LeaderSelector
 - PathCache
- 类似方案
 - Keepalived
- 存在问题
 - Brain split

Center高可用

- 解决方案
 - Zookeeper + Cruator
 - LeaderSelector
 - PathCache
- 类似方案
 - Keepalived
- 存在问题
 - Brain split

脑裂解决方案

- 基本前提
 - Center状态存在系统库
 - 系统库是高可用的
- 基本方案
 - Lock leader为每个操作上锁
 - Switch leader时先lock leader

Lock leader: select id from leader for update

Center operation

```
lock leader;
if (leader id matched)
   Operate;
else
   return error;
commit/rollback;
```

Switch leader

```
lock leader;
update leader id;
Commit;
load meta data;
Initialize server
.....
```


Center无脑裂

Engine高可用

• 要点

- 租约与ZK双重验证
- kick out先于fail over

任务高可用

- 要点
 - 执行进程定期探活源端
 - 探活失败后先本地重试N次再上报

任务高可用

- 要点
 - Center再次探活源端,成功
 - Job fail over到Engine2

源端漂移

- 要点
 - Center再次探活源端,成功
 - Job fail over到Engine2

小结

- 设计原则
 - 监控先于高可用
 - 高可用分层,不过度设计
 - 高可用插件化,保持系统精简
 - 多重验证,避免误切

- 源端漂移问题
 - 如何保证数据不丢?
 - GTID, 基于触发器

