試験開始の指示があるまで、この問題冊子の中を見てはいけません。

 $(\widehat{\mathbf{Y}})$

数学

2 〔数学Ⅱ 数学Ⅱ・数

(100 点) 60 分)

簿記・会計及び情報関係基礎の問題冊子は、大学入学共通テストの出願時に、それ ぞれの科目の受験を希望した者に配付します。

I 注意事項

1 解答用紙に,正しく記入・マークされていない場合は,採点できないことがあります。特に,解答用紙の解答科目欄にマークされていない場合又は複数の科目にマークされている場合は、0点となることがあります。

2 出題科目、ページ及び選択方法は、下表のとおりです。

出	題科	目	ページ	選	択	方	法
数	学	П	4~16	左の2科目	のうちだ	から1科	目を選択し,
数当	ዸⅡ・数	学 B	17~35	解答しなさい	7°		

- 3 試験中に問題冊子の印刷不鮮明、ページの落丁・乱丁及び解答用紙の汚れ等に 気付いた場合は、手を高く挙げて監督者に知らせなさい。
- 4 選択問題については、いずれか2問を選択し、その問題番号の解答欄に解答しなさい。
- 5 問題冊子の会白等は適宜利用してよいが、どのページも切り離してはいけません。
- 6 不正行為について
- ① 不正行為に対しては厳正に対処します。
- ② 不正行為に見えるような行為が見受けられた場合は、監督者がカードを用いて注意します。
- ③ 不正行為を行った場合は、その時点で受験を取りやめさせ退室させます。
- 7 試験終了後、問題冊子は持ち帰りなさい。

Ⅱ 解答上の注意

解答上の注意は、裏表紙に記載してあります。この問題冊子を裏返して必ず読みなさい。

II 解答上の注意

- 1 解答は、解答用紙の問題番号に対応した解答欄にマークしなさい。

例 $\boxed{ P \land D }$ に -8a と答えたいとき

ア	© 0 0 2 3 4 5 6 7 8 9 8 6 6 6
1	000000000000000000000000000000000000000
ゥ	00023466089066

- 3 数と文字の積の形で解答する場合,数を文字の前にして答えなさい。 例えば、3aと答えるところを,a3と答えてはいけません。
- 4 分数形で解答する場合、分数の符号は分子につけ、分母につけてはいけません。

例えば、
$$\frac{x}{b}$$
に $-\frac{4}{5}$ と答えたいときは、 $\frac{-4}{5}$ として答えなさい。

また、それ以上約分できない形で答えなさい。

例えば、 $\frac{3}{4}$ 、 $\frac{2a+1}{3}$ と答えるところを、 $\frac{6}{8}$ 、 $\frac{4a+2}{6}$ のように答えてはいけません。

5 小数の形で解答する場合、指定された桁数の一つ下の桁を四捨五入して答えな さい。また、必要に応じて、指定された桁まで**(の**にマークしなさい。

例えば、 $\begin{bmatrix} + \\ \end{bmatrix}$. $\begin{bmatrix} 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 3.5$

6 根号を含む形で解答する場合、根号の中に現れる自然数が最小となる形で答えなさい。

例えば、 $4\sqrt{2}$ 、 $\frac{\sqrt{13}}{2}$ 、 $6\sqrt{2}a$ と答えるところを、 $2\sqrt{8}$ 、 $\frac{\sqrt{52}}{4}$ 、 $3\sqrt{8}a$ のように答えてはいけません。

- 7 問題の文中の二重四角で表記された コ などには、選択肢から一つを選ん で、答えなさい。
- 8 同一の問題文中に
 サシ ,
 ス などが2度以上現れる場合,原則として、2度目以降は、
 サシ ,
 ス のように細字で表記します。

裏面

 $\hat{\mathbf{Y}}$

補 足 説 明

数学②「数学Ⅱ·数学B」

33ページ 第5問(2)

33ページの末尾に次の文を加える。

数学Ⅱ・数学B

問題	選択方法					
第1問	必答					
第2問	必答					
第3問						
第4問	いずれか2問を選択し, 解答しなさい。					
第5問						

第 1 問 (必答問題) (配点 30)

(1)

(1) 次の問題Aについて考えよう。

| 問題A| 関数 $y = \sin \theta + \sqrt{3} \cos \theta \ \left(0 \le \theta \le \frac{\pi}{2} \right)$ の最大値を求めよ。

$$\sin\frac{\pi}{7} = \frac{\sqrt{3}}{2}, \cos\frac{\pi}{7} = \frac{1}{2}$$

であるから, 三角関数の合成により

$$y = \boxed{1} \sin \left(\theta + \frac{\pi}{\boxed{7}} \right)$$

(2) pを定数とし、次の問題Bについて考えよう。

(i)
$$p=0$$
 のとき、 y は $\theta=\frac{\pi}{7}$ で最大値 π をとる。

(数学Ⅱ・数学B第1問は次ページに続く。)

数学Ⅱ·数学B

(ii) p>0のときは、加法定理

$$\cos(\theta - \alpha) = \cos\theta\cos\alpha + \sin\theta\sin\alpha$$

を用いると

$$y = \sin \theta + p \cos \theta = \sqrt{\ddagger} \cos(\theta - \alpha)$$

と表すことができる。ただし、αは

$$\sin \alpha = \frac{\cancel{7}}{\sqrt{\boxed{\ddagger}}}, \cos \alpha = \frac{\cancel{7}}{\sqrt{\boxed{\ddagger}}}, \quad 0 < \alpha < \frac{\pi}{2}$$

を満たすものとする。このとき、yは $\theta = \square$ で最大値 √ サ をとる。

(iii) p < 0 のとき、y は $\theta =$ シ で最大値 ス をとる。

サー, ス の解答群(同じものを繰り返 し選んでもよい。)

- **①** 1

- $9 1 + p^2$
- (a) $(1-p)^2$ (b) $(1+p)^2$

シ の解答群(同じものを繰り返し選んでもよい。)

- **0** 0
- 0 α

(数学Ⅱ・数学B第1問は次ページに続く。)

数学Ⅱ·数学B

- 〔2〕 二つの関数 $f(x) = \frac{2^x + 2^{-x}}{2}$, $g(x) = \frac{2^x 2^{-x}}{2}$ について考える。

 - (2) 次の① \sim ④は、xにどのような値を代入してもつねに成り立つ。
 - $f(-x) = \boxed{ }$ $g(-x) = \boxed{ }$
- ②
- ${f(x)}^2 {g(x)}^2 = \Box$
- 3
- $g(2x) = \boxed{\mathbf{Z}} f(x)g(x)$
- ············ ④
- ト , アナ の解答群(同じものを繰り返し選んでもよい。)
- (1) -f(x)
- g(x)
- g g(x)

(数学Ⅱ・数学B第1問は次ページに続く。)

数学Ⅱ·数学B

(3) 花子さんと太郎さんは、f(x)とg(x)の性質について話している。

花子:①~④ は三角関数の性質に似ているね。

太郎:三角関数の加法定理に類似した式(A)~(D)を考えてみたけど,つねに成り立つ式はあるだろうか。

花子:成り立たない式を見つけるために、式 $(A)\sim(D)$ の β に何か具体

的な値を代入して調べてみたらどうかな。

太郎さんが考えた式 ―

$$f(\alpha - \beta) = f(\alpha)g(\beta) + g(\alpha)f(\beta) \qquad (A)$$

$$f(\alpha + \beta) = f(\alpha)f(\beta) + g(\alpha)g(\beta) \qquad (B)$$

$$g(\alpha - \beta) = f(\alpha)f(\beta) + g(\alpha)g(\beta) \qquad (C)$$

$$g(\alpha + \beta) = f(\alpha)g(\beta) - g(\alpha)f(\beta) \qquad (D)$$

(1), (2)で示されたことのいくつかを利用すると、式(A)~(D)のうち,

ネの解答群

(A)

(1) (B)

2 (C)

3 (D)

(1) 座標平面上で、次の二つの2次関数のグラフについて考える。

$$y = 3x^2 + 2x + 3$$

$$y = 2x^2 + 2x + 3$$

······· ②

①、②の2次関数のグラフには次の共通点がある。

共通点 -

- ・ y 軸との交点の y 座標は ア である。

次の $\mathbf{0}$ ~ $\mathbf{0}$ の 2 次関数のグラフのうち、y 軸との交点における接線の方程式が $y = \begin{bmatrix} 1 \\ x \end{bmatrix}$ である。

エの解答群

- $0 \quad y = 3x^2 2x 3$
- $0 y = -3x^2 + 2x 3$

a, b, cを0でない実数とする。

その方程式は $y = \begin{bmatrix} \mathbf{n} \\ \mathbf{x} \end{bmatrix} x + \begin{bmatrix} \mathbf{r} \\ \mathbf{r} \\ \mathbf{r} \end{bmatrix}$ である。

(数学Ⅱ・数学B第2問は次ページに続く。)

数学Ⅱ·数学B

a, b, c が正の実数であるとき、曲線 $y=ax^2+bx+c$ と接線 ℓ および直線

$$x = \frac{\boxed{D f}}{\boxed{\Box}}$$
 で囲まれた図形の面積を S とすると

$$S = \frac{ac}{\boxed{\triangleright} b} \boxed{\nearrow}$$
 3

である。

③ において、a=1とし、Sの値が一定となるように正の実数 b、cの値を変化させる。このとき、bとcの関係を表すグラフの概形は t である。

数学Ⅱ・数学B

(2) 座標平面上で、次の三つの3次関数のグラフについて考える。

 $y = 4x^3 + 2x^2 + 3x + 5$

 $y = -2x^3 + 7x^2 + 3x + 5$

······ ⑤

 $y = 5x^3 - x^2 + 3x + 5$

......6)

④, ⑤, ⑥ の3次関数のグラフには次の共通点がある。

- 共通点 -

- y軸との交点のy座標は ソ である。
- ・y軸との交点における接線の方程式は $y = \boxed{9}x + \boxed{\mathcal{F}}$ である。

a, b, c, dを0でない実数とする。

 $ty = \begin{bmatrix} F & x + \end{bmatrix} F \quad \text{r bas}.$

(数学Ⅱ・数学B第2問は次ページに続く。)

数学Ⅱ·数学B

次に、 $f(x) = ax^3 + bx^2 + cx + d$ 、g(x) = テ x + ト とし、f(x) - g(x)について考える。

h(x) = f(x) - g(x)とおく。a, b, c, d が正の実数であるとき,y = h(x) のグラフの概形は ナーである。

y = f(x)のグラフとy = g(x)のグラフの共有点のx座標は

数学Ⅱ・数学B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 3 問 (選択問題) (配点 20)

以下の問題を解答するにあたっては、必要に応じて29ページの正規分布表を 用いてもよい。

Q 高校の校長先生は、ある日、新聞で高校生の読書に関する記事を読んだ。そ こで、Q高校の生徒全員を対象に、直前の1週間の読書時間に関して、100人の 生徒を無作為に抽出して調査を行った。その結果、100人の生徒のうち、この1 週間に全く読書をしなかった生徒が S6 人であり、100 人の生徒のこの1週間の 読書時間(分)の平均値は204であった。Q高校の生徒全員のこの1週間の読書時 間の母平均を m, 母標準偏差を 150 とする。

(1) 全く読書をしなかった生徒の母比率を 0.5 とする。このとき、100 人の無作 為標本のうちで全く読書をしなかった生徒の数を表す確率変数をXとする と、*X* は ア に従う。また、*X* の平均(期待値)は イウ 、標準偏差は エ である。

① 正規分布 N(0,1)

① 二項分布 B(0,1)

② 正規分布 N(100, 0.5)

(3) 二項分布 B(100, 0.5)

(4) 正規分布 N(100, 36)

(5) 二項分布 B(100, 36)

(数学Ⅱ·数学B第3問は次ページに続く。)

数学Ⅱ·数学B

(2) 標本の大きさ 100 は十分に大きいので、100 人のうち全く読書をしなかった 生徒の数は近似的に正規分布に従う。

全く読書をしなかった生徒の母比率を0.5とするとき、全く読書をしなかっ た生徒が36人以下となる確率をかとおく。かの近似値を求めると、 $p_5 =$ **オ** である。

また、全く読書をしなかった生徒の母比率を0.4とするとき、全く読書をし なかった生徒が 36 人以下となる確率を p4 とおくと, カ である。

0.001

(1) 0.003

② 0.026

③ 0.050

(4) 0.133

(5) 0.497

カの解答群

 $0 p_4 < p_5$

(1) $p_4 = p_5$

(2) $p_4 > p_5$

(3) 1週間の読書時間の母平均mに対する信頼度95%の信頼区間を $C_1 \le m \le C_2$ とする。標本の大きさ 100 は十分大きいことと, 1 週間の読書 時間の標本平均が204、母標準偏差が150であることを用いると、

 $C_1 + C_2 = | + 0 f |, C_2 - C_1 = | 1 f |$

シ であることがわかる。

また、母平均mと C_1 、 C_2 については、 ス

スの解答群

0 $C_1 \leq m \leq C_2$ が必ず成り立つ

① $m \le C_2$ は必ず成り立つが、 $C_1 \le m$ が成り立つとは限らない

② $C_1 \leq m$ は必ず成り立つが、 $m \leq C_2$ が成り立つとは限らない

③ $C_1 \leq m$ も $m \leq C_2$ も成り立つとは限らない

(数学Ⅱ・数学B第3問は次ページに続く。)

数学Ⅱ・数学B

(4) Q高校の図書委員長も、校長先生と同じ新聞記事を読んだため、校長先生が 調査をしていることを知らずに、図書委員会として校長先生と同様の調査を独 自に行った。ただし、調査期間は校長先生による調査と同じ直前の1週間であ り、対象をQ高校の生徒全員として100人の生徒を無作為に抽出した。その 調査における、全く読書をしなかった生徒の数を n とする。

校長先生の調査結果によると全く読書をしなかった生徒は36人であり、

セ

セの解答群

① n は必ず 36 未満である

② n は必ず 36 より大きい

③ n と 36 との大小はわからない

(5) (4) の図書委員会が行った調査結果による母平均 m に対する信頼度 95 % の 信頼区間を $D_1 \le m \le D_2$ 、校長先生が行った調査結果による母平均mに対す る信頼度 95 % の信頼区間を (3) の $C_1 \le m \le C_2$ とする。ただし、母集団は同 一であり、1週間の読書時間の母標準偏差は150とする。

このとき,次の〇~⑤のうち,正しいものは「ソ」と「夕」である。

タ の解答群(解答の順序は問わない。)

- **⑥** $C_1 = D_1 \geq C_2 = D_2$ が必ず成り立つ。
- ① $C_1 < D_2$ または $D_1 < C_2$ のどちらか一方のみが必ず成り立つ。
- ② $D_2 < C_1$ または $C_2 < D_1$ となる場合もある。
- ③ $C_2 C_1 > D_2 D_1$ が必ず成り立つ。
- **④** $C_2 C_1 = D_2 D_1$ が必ず成り立つ。
- **⑤** $C_2 C_1 < D_2 D_1$ が必ず成り立つ。

(数学Ⅱ・数学B第3問は次ページに続く。)

正規分布表

次の表は、標準正規分布の分布曲線における右図の灰 色部分の面積の値をまとめたものである。

		,						•		
20	0.00	0. 01	0.02	0.03	0.04	0.05	0.06	0. 07	0.08	0.09
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0. 0359
0. 1	0. 0398	0. 0438	0. 0478	0. 0517	0. 0557	0. 0596	0. 0636	0. 0675	0. 0714	0. 0753
0. 2	0. 0793	0. 0832	0. 0871	0. 0910	0. 0948	0. 0987	0. 1026	0. 1064	0. 1103	0. 1141
0. 3	0. 1179	0. 1217	0. 1255	0. 1293	0. 1331	0. 1368	0. 1406	0. 1443	0. 1480	0. 1517
0. 4	0. 1554	0. 1591	0. 1628	0. 1664	0. 1700	0. 1736	0. 1772	0. 1808	0. 1844	0. 1879
0. 5	0. 1915	0. 1950	0. 1985	0. 2019	0. 2054	0. 2088	0. 2123	0. 2157	0. 2190	0. 2224
0.6	0. 2257	0. 2291	0. 2324	0. 2357	0. 2389	0. 2422	0. 2454	0. 2486	0. 2517	0. 2549
0.7	0. 2580	0. 2611	0. 2642	0. 2673	0. 2704	0. 2734	0. 2764	0. 2794	0. 2823	0. 2852
0.8	0. 2881	0. 2910	0. 2939	0. 2967	0. 2995	0. 3023	0. 3051	0. 3078	0. 3106	0. 3133
0.9	0. 3159	0. 3186	0. 3212	0. 3238	0. 3264	0. 3289	0. 3315	0. 3340	0. 3365	0. 3389
1.0	0. 3413	0. 3438	0. 3461	0. 3485	0. 3508	0. 3531	0. 3554	0. 3577	0. 3599	0. 3621
1.1 1.2 1.3 1.4	0. 3643 0. 3849 0. 4032 0. 4192 0. 4332	0. 3665 0. 3869 0. 4049 0. 4207 0. 4345	0. 3686 0. 3888 0. 4066 0. 4222 0. 4357	0. 3708 0. 3907 0. 4082 0. 4236 0. 4370	0. 3729 0. 3925 0. 4099 0. 4251 0. 4382	0. 3749 0. 3944 0. 4115 0. 4265 0. 4394	0. 3770 0. 3962 0. 4131 0. 4279 0. 4406	0. 3790 0. 3980 0. 4147 0. 4292 0. 4418	0. 3810 0. 3997 0. 4162 0. 4306 0. 4429	0. 3830 0. 4015 0. 4177 0. 4319 0. 4441
1.6	0. 4452	0. 4463	0. 4474	0. 4484	0. 4495	0. 4505	0. 4515	0. 4525	0. 4535	0. 4545
1.7	0. 4554	0. 4564	0. 4573	0. 4582	0. 4591	0. 4599	0. 4608	0. 4616	0. 4625	0. 4633
1.8	0. 4641	0. 4649	0. 4656	0. 4664	0. 4671	0. 4678	0. 4686	0. 4693	0. 4699	0. 4706
1.9	0. 4713	0. 4719	0. 4726	0. 4732	0. 4738	0. 4744	0. 4750	0. 4756	0. 4761	0. 4767
2.0	0. 4772	0. 4778	0. 4783	0. 4788	0. 4793	0. 4798	0. 4803	0. 4808	0. 4812	0. 4817
2. 1	0. 4821	0. 4826	0. 4830	0. 4834	0. 4838	0. 4842	0. 4846	0. 4850	0. 4854	0. 4857
2. 2	0. 4861	0. 4864	0. 4868	0. 4871	0. 4875	0. 4878	0. 4881	0. 4884	0. 4887	0. 4890
2. 3	0. 4893	0. 4896	0. 4898	0. 4901	0. 4904	0. 4906	0. 4909	0. 4911	0. 4913	0. 4916
2. 4	0. 4918	0. 4920	0. 4922	0. 4925	0. 4927	0. 4929	0. 4931	0. 4932	0. 4934	0. 4936
2. 5	0. 4938	0. 4940	0. 4941	0. 4943	0. 4945	0. 4946	0. 4948	0. 4949	0. 4951	0. 4952
2. 6	0. 4953	0. 4955	0. 4956	0. 4957	0. 4959	0. 4960	0. 4961	0. 4962	0. 4963	0. 4964
2. 7	0. 4965	0. 4966	0. 4967	0. 4968	0. 4969	0. 4970	0. 4971	0. 4972	0. 4973	0. 4974
2. 8	0. 4974	0. 4975	0. 4976	0. 4977	0. 4977	0. 4978	0. 4979	0. 4979	0. 4980	0. 4981
2. 9	0. 4981	0. 4982	0. 4982	0. 4983	0. 4984	0. 4984	0. 4985	0. 4985	0. 4986	0. 4986
3. 0	0. 4987	0. 4987	0. 4987	0. 4988	0. 4988	0. 4989	0. 4989	0. 4989	0. 4990	0. 4990

数学Ⅱ・数学B 第3問~第5問は、いずれか2問を選択し、解答しなさい。

第 4 問 (選択問題) (配点 20)

初項3,公差pの等差数列を $\{a_n\}$ とし、初項3,公比rの等比数列を $\{b_n\}$ とする。ただし、 $p \neq 0$ かつ $r \neq 0$ とする。さらに、これらの数列が次を満たすとする。

$$a_n b_{n+1} - 2 a_{n+1} b_n + 3 b_{n+1} = 0$$
 $(n = 1, 2, 3, \dots)$

(1) $p \ge r$ の値を求めよう。自然数 n について, a_n , a_{n+1} , b_n はそれぞれ

$$a_{n} = \boxed{7} + (n-1)p \qquad \dots \qquad \bigcirc$$

$$a_{n+1} = \boxed{7} + np \qquad \dots \qquad \bigcirc$$

$$b_{n} = \boxed{4} r^{n-1}$$

と表される。 $r \neq 0$ により、すべての自然数nについて、 $b_n \neq 0$ となる。

 $\frac{b_{n+1}}{b_n} = r$ であることから、① の両辺を b_n で割ることにより

が成り立つことがわかる。④に②と③を代入すると

$$(r-7)pn = r(p-7)+7$$

となる。⑤がすべてのnで成り立つことおよびp = 0により, $r = \boxed{$ オ

以上から、すべての自然数 n について、 $a_n \succeq b_n$ が正であることもわかる。 (数学 \mathbb{I} ・数学 \mathbb{B} 第 4 間は次ページに続く。)

数学Ⅱ·数学B

$$\sum_{k=1}^{n} a_k = \frac{7}{3} n \left(n + \frac{4}{3} \right)$$

$$\sum_{k=1}^{n} b_k = \frac{3}{3} \left(\frac{1}{3} \right)^n - \frac{3}{3}$$

(3) 数列 $\{a_n\}$ に対して、初項3の数列 $\{c_n\}$ が次を満たすとする。

さらに、 $p = \begin{bmatrix} 0 \end{bmatrix}$ であることから、数列 $\{c_n\}$ は $\boxed{9}$ ことがわかる。

タの解答群

- ◎ すべての項が同じ値をとる数列である
- ① 公差が0でない等差数列である
- ② 公比が1より大きい等比数列である
- ③ 公比が1より小さい等比数列である
- 4 等差数列でも等比数列でもない

(4) q, u は定数で、 $q \neq 0$ とする。数列 $\{b_n\}$ に対して、初項3 の数列 $\{d_n\}$ が次を満たすとする。

$$d_nb_{n+1}-qd_{n+1}b_n+ub_{n+1}=0$$
 $(n=1,2,3,\cdots)$ ……… ⑦ $r=$ 才 であることから、⑦を変形して、 $d_{n+1}=$ $\frac{\mathcal{F}}{q}$ (d_n+u) を得る。したがって、数列 $\{d_n\}$ が、公比が 0 より大きく 1 より小さい等比数列となるための必要十分条件は、 $q>$ ツ かつ $u=$ \mathbb{F} である。

第 5 問 (選択問題) (配点 20)

1辺の長さが1の正五角形の対角線の長さをaとする。

(1) 1辺の長さが1の正五角形 OA₁B₁C₁A₂ を考える。

 $\angle A_1C_1B_1 = \boxed{\textit{アイ}}$ °、 $\angle C_1A_1A_2 = \boxed{\textit{アイ}}$ ° となることから、 $\overline{A_1A_2}$ と $\overline{B_1C_1}$ は平行である。ゆえに

$$\overrightarrow{A_1}\overrightarrow{A_2} = \overrightarrow{D} \overrightarrow{B_1}\overrightarrow{C_1}$$

であるから

$$\overrightarrow{B_1C_1} = \frac{1}{\boxed{\overrightarrow{r}}} \overrightarrow{A_1A_2} = \frac{1}{\boxed{\overrightarrow{r}}} \left(\overrightarrow{OA_2} - \overrightarrow{OA_1} \right)$$

また, $\overrightarrow{OA_1} \succeq \overrightarrow{A_2B_1}$ は平行で,さらに, $\overrightarrow{OA_2} \succeq \overrightarrow{A_1C_1}$ も平行であることから $\overrightarrow{B_1C_1} = \overrightarrow{B_1A_2} + \overrightarrow{A_2O} + \overrightarrow{OA_1} + \overrightarrow{A_1C_1}$

$$\begin{aligned} \mathbf{B}_{1}\mathbf{C}_{1} &= \mathbf{B}_{1}\mathbf{A}_{2} + \mathbf{A}_{2}\mathbf{O} + \mathbf{O}\mathbf{A}_{1} + \mathbf{A}_{1}\mathbf{C}_{1} \\ &= -\left[\overrightarrow{\mathcal{D}}\right]\overrightarrow{\mathbf{O}}\overrightarrow{\mathbf{A}}_{1} - \overrightarrow{\mathbf{O}}\overrightarrow{\mathbf{A}}_{2} + \overrightarrow{\mathbf{O}}\overrightarrow{\mathbf{A}}_{1} + \left[\overrightarrow{\mathcal{D}}\right]\overrightarrow{\mathbf{O}}\overrightarrow{\mathbf{A}}_{2} \\ &= \left(\boxed{\mathbf{I}}\right] - \boxed{\mathbf{J}}\left(\overrightarrow{\mathbf{O}}\overrightarrow{\mathbf{A}}_{2} - \overrightarrow{\mathbf{O}}\overrightarrow{\mathbf{A}}_{1}\right) \end{aligned}$$

となる。したがって

が成り立つ。a>0 に注意してこれを解くと、 $a=\frac{1+\sqrt{5}}{2}$ を得る。

(数学Ⅱ・数学B第5問は次ページに続く。)

(2) 下の図のような、1辺の長さが1の正十二面体を考える。正十二面体とは、 どの面もすべて合同な正五角形であり、どの頂点にも三つの面が集まっている へこみのない多面体のことである。

面 $OA_1B_1C_1A_2$ に着目する。 $\overrightarrow{OA_1}$ と $\overrightarrow{A_2B_1}$ が平行であることから

$$\overrightarrow{OB_1} = \overrightarrow{OA_2} + \overrightarrow{A_2B_1} = \overrightarrow{OA_2} + \overrightarrow{D}$$

である。また

$$|\overrightarrow{OA}_2 - \overrightarrow{OA}_1|^2 = |\overrightarrow{A}_1 \overrightarrow{A}_2|^2 = \frac{\cancel{\cancel{n}} + \sqrt{\cancel{\cancel{+}}}}{\cancel{\cancel{\cancel{0}}}}$$

に注意すると

$$\overrightarrow{OA_1} \cdot \overrightarrow{OA_2} = \boxed{\begin{array}{c} \mathcal{T} & -\sqrt{\boxed{}} \\ \end{array}}$$

を得る。

(数学Ⅱ・数学B第5問は次ページに続く。)

数学Ⅱ·数学B

次に, 面 OA₂B₂C₂A₃ に着目すると

$$\overrightarrow{OB}_2 = \overrightarrow{OA}_3 + \overrightarrow{DOA}_2$$

である。さらに

が成り立つことがわかる。ゆえに

$$\overrightarrow{OA_1} \cdot \overrightarrow{OB_2} = \boxed{\triangleright}$$
, $\overrightarrow{OB_1} \cdot \overrightarrow{OB_2} = \boxed{\triangleright}$

である。

ス の解答群(同じものを繰り返し選んでもよい。)

 $\bigcirc 0 \quad 0 \quad 0 \quad 1 \quad \bigcirc 1 \quad \bigcirc 1$

(a) $\frac{1-\sqrt{5}}{2}$ (b) $\frac{-1+\sqrt{5}}{2}$ (c) $\frac{-1-\sqrt{5}}{2}$ (d) $-\frac{1}{2}$

(数学Ⅱ・数学B第5問は次ページに続く。)

最後に、面 A₂C₁DEB₂ に着目する。

$$\overrightarrow{B_2D} = \boxed{ \ \ \, } \overrightarrow{D} \overrightarrow{A_2C_1} = \overrightarrow{OB_1}$$

であることに注意すると、4点O、B₁、D、B₂は同一平面上にあり、四角形 OB₁DB₂は セ ことがわかる。

セの解答群

- ② 正方形である
- (1) 正方形ではないが、長方形である
- ② 正方形ではないが、ひし形である
- ③ 長方形でもひし形でもないが、平行四辺形である
- 4 平行四辺形ではないが、台形である
- 6 台形でない

ただし、少なくとも一組の対辺が平行な四角形を台形という。