(1) Let $U = \text{span}((1,1,1,0),(1,1,0,2)) \subseteq \mathbb{R}^4$. Find the vector $\mathbf{u} \in U$ that minimizes $||\mathbf{u} - (1,2,3,4)||$.

Solution. We consider \mathbb{R}^4 with the usual inner product and find an orthnormal basis of U: use Gram–Schmidt on ((1,1,1,0),(1,1,0,2)) to obtain the orthonormal basis $(\mathbf{e}_1,\mathbf{e}_2)$ where

$$\mathbf{e}_1 := \frac{1}{\sqrt{3}}(1, 1, 1, 0)$$

and

$$\boldsymbol{e}_2 := \frac{(1,1,0,2) - \langle (1,1,0,2), \boldsymbol{e}_1 \rangle \, \boldsymbol{e}_1}{||(1,1,0,2) - \langle (1,1,0,2), \boldsymbol{e}_1 \rangle \, \boldsymbol{e}_1||} = \sqrt{\frac{3}{14}} \left(\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}, 2 \right).$$

We proved in class that the projection of $\mathbf{v} \in \mathbf{R}^4$ onto U is then given by

$$\mathbf{u} := \langle \mathbf{v}, \mathbf{e}_1 \rangle \, \mathbf{e}_1 + \langle \mathbf{v}, \mathbf{e}_2 \rangle \, \mathbf{e}_2$$

and this **u** minimizes the distance to **v** amond all vectors in U. For $\mathbf{v} = (1, 2, 3, 4)$, this is

$$\mathbf{u} = \left\langle (1, 2, 3, 4), \frac{1}{\sqrt{3}} (1, 1, 1, 0) \right\rangle \frac{1}{\sqrt{3}} (1, 1, 1, 0) + \left\langle (1, 2, 3, 4), \sqrt{\frac{3}{14}} \left(\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}, 2 \right) \right\rangle \sqrt{\frac{3}{14}} \left(\frac{1}{3}, \frac{1}{3}, -\frac{2}{3}, 2 \right)$$

$$= \left(\frac{5}{2}, \frac{5}{2}, 1, 3 \right)$$

(2) Find the polynomial $p(x) \in \mathcal{P}_3(\mathbf{R})$ with zero constant and linear coefficient that minimizes

$$\int_{-1}^{1} |2 + 3x - p(x)|^2 dx.$$

Solution. We use our inner product from last week:

$$\langle f, g \rangle := \int_{-1}^{1} f(x) g(x) dx.$$

Let $U := \{ax^3 + bx^2 : a, b \in \mathbf{R}\}$ and q(x) := 2 + 3x; then the problem asks for the closest point $p \in U$ to q, i.e., the orthogonal projection of q onto U.

We first compute an orthonormal basis of U. A basis of U is (x^2, x^3) ; applying Gram-Schmidt this basis gives

$$e_1(x) = \frac{x^2}{||x^2||} = \sqrt{\frac{5}{2}}x^2$$

and

$$e_2(x) = \frac{x^3 - \langle x^3, e_1(x) \rangle e_1(x)}{||x^3 - \langle x^3, e_1(x) \rangle e_1(x)||} = \frac{x^3}{||x^3||} = \sqrt{\frac{7}{2}}x^3.$$

We know that the projection of q onto U is

$$p = \langle q, e_1 \rangle e_1 + \langle q, e_2 \rangle e_2 = \frac{5}{2} x^2 \int_{-1}^{1} (2 + 3x) x^2 dx + \frac{7}{2} x^3 \int_{-1}^{1} (2 + 3x) x^3 dx = \frac{10}{3} x^2 + \frac{21}{5} x^3.$$

(3) Suppose $T \in L(V)$. Prove that if $T^2 = T$ and every vector in null(T) is orthogonal to every vector in range(T), then T is an orthogonal projection onto range(T).

Proof. Suppose that $T^2 = T$ and every vector in null(T) is orthogonal to every vector in range(T). Then we can write any $\mathbf{v} \in V$ as

$$\mathbf{v} = T(\mathbf{v}) + (\mathbf{v} - T(\mathbf{v})).$$

The first summand on the right-hand side is in range(T), and so we're done if we can prove that the second summand, $\mathbf{v} - T(\mathbf{v})$, is in range(T) $^{\perp}$. But this follows from

$$T(\mathbf{v} - T(\mathbf{v})) = T(\mathbf{v}) - T^2(\mathbf{v}) = 0,$$

which means that $\mathbf{v} - T(\mathbf{v})$ is in null(T) and thus orthogonal to every vector in range(T).

- (4) Suppose $T \in L(V)$.
 - (a) Prove that λ is an eigenvalue of T if and only if $\overline{\lambda}$ is an eigenvalue of T^* .
 - (b) Show that U is invariant under T if and only if U^{\perp} is invariant under T^* .

Proof. (a) We will prove the contrapositive (in both directions). λ is not an eigenvalue of T if and only if $T - \lambda I$ is invertible, which means there exists $S \in L(V)$ such that

$$S(T - \lambda I) = (T - \lambda I)S = I.$$

This, in turn, is equivalent to

$$(T - \lambda \mathbf{I})^* S^* = S^* (T - \lambda \mathbf{I})^* = \mathbf{I},$$

which means that $(T - \lambda I)^* = T^* - \overline{\lambda}I$ is invertible, which holds if and only if $\overline{\lambda}$ is not an eigenvalue of T^* .

(b) We only have to prove one implication, since $(U^{\perp})^{\perp} = U$ and $(T^*)^* = T$. Suppose U is invariant under T. Given $\mathbf{v} \in U^{\perp}$, we need to show that $T^*(\mathbf{v}) \in U^{\perp}$, i.e., that $\langle \mathbf{u}, T^*(\mathbf{v}) \rangle = 0$ for all $\mathbf{u} \in U$. But for any such $\mathbf{u} \in U$,

$$\langle \mathbf{u}, T^*(\mathbf{v}) \rangle = \langle T(\mathbf{u}), \mathbf{v} \rangle = 0$$

because $T(\mathbf{u}) \in U$ and $\mathbf{v} \in U^{\perp}$.

- (5) Suppose $A \in L(\mathbf{R}^n, \mathbf{R}^m)$ is given by a matrix (written in terms of the standard bases) whose columns are linearly independent, and let $\mathbf{b} \in \mathbf{R}^m$. If A is not surjective, the linear system $A\mathbf{x} = \mathbf{b}$ might not have a solution $\mathbf{x} \in \mathbf{R}^n$. The following exercise computes the best approximation (in the sense of part (c)) to a solution.
 - (a) Show that A is injective.
 - (b) Show that A^*A is invertible.
 - (c) Prove that $\mathbf{y} := (A^*A)^{-1}A^*\mathbf{b}$ satisfies $||A\mathbf{y} \mathbf{b}|| \le ||A\mathbf{x} \mathbf{b}||$ for all $\mathbf{x} \in \mathbf{R}^n$.

Proof. (a) Suppose the columns of A are $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n \in \mathbf{R}^m$. A vector $(v_1, v_2, \dots, v_n) \in \text{null}(A)$ satisfies

$$v_1 \mathbf{c}_1 + v_2 \mathbf{c}_2 + \dots v_n \mathbf{c}_n = \mathbf{0}$$

and so $v_1 = v_2 = \cdots = v_n = 0$ because $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n$ are linearly independent. Thus $\text{null}(A) = \{\mathbf{0}\}.$

(b) Since $A^*A \in L(\mathbf{R}^n)$, so it suffices to prove that $\operatorname{null}(A^*A) = \{\mathbf{0}\}$. Suppose $A^*A\mathbf{v} = \mathbf{0}$. Then

$$0 = \langle \mathbf{v}, A^* A \mathbf{v} \rangle = \langle A \mathbf{v}, A \mathbf{v} \rangle$$

and so $A(\mathbf{v}) = \mathbf{0}$. Part (a) implies that $\mathbf{v} = \mathbf{0}$. Thus $\text{null}(A^*A) = \{\mathbf{0}\}$.

(c) We claim that $P := A(A^*A)^{-1}A^*$ is the orthogonal projection onto range(A).

Note that A^* is surjective (because A is injective), as is $(A^*A)^{-1}$ (because it is invertible), and so range(P) = range(A). Thus, by Exercise (3), it suffices to prove that $P^2 = P$ and that every vector in null(P) is orthogonal to every vector in range(A).

The former assertion follows with $P^2 = A((A^*A)^{-1}A^*A)(A^*A)^{-1}A^* = A(A^*A)^{-1}A^* = P$.

To prove that every vector in null(P) is orthogonal to every vector in range(A), suppose $\mathbf{v} \in \text{null}(P)$. Then $A(A^*A)^{-1}A^*\mathbf{v} = \mathbf{0}$, i.e., $(A^*A)^{-1}A^*\mathbf{v} \in \text{null}(A)$, which implies by (a) that $(A^*A)^{-1}A^*\mathbf{v} = \mathbf{0}$, which implies by (b) that $A^*\mathbf{v} = \mathbf{0}$, i.e., $\mathbf{v} \in \text{null}(A^*)$. We proved in class that $\text{null}(A^*) = \text{range}(A)^{\perp}$, and so \mathbf{v} is orthogonal to every vector in range(A).

Thus we have proved that P is the orthogonal projection onto range(A). But this means, given $\mathbf{b} \in \mathbf{R}^m$, $P\mathbf{b}$ is closest (measured using the norm) to \mathbf{b} among all the vectors in range(A), in other words,

$$||A\mathbf{y} - \mathbf{b}|| = ||P\mathbf{b} - \mathbf{b}|| \le ||A\mathbf{x} - \mathbf{b}||$$

for all $\mathbf{x} \in \mathbf{R}^n$.

¹*Hint*: Start by proving that $A(A^*A)^{-1}A^*$ is the orthogonal projection onto range(A).