

CSIT6000P Spatial and Multimedia Databases 2022 Spring

Course Introduction

Prof Xiaofang Zhou

+ The Teaching Team

- Course Coordinator & Lecturer
 - Prof Xiaofang Zhou
 - Email: zxf@ust.hk
 - Room: 3533
 - Phone: 2538 8340
 - Consultation: by appointment
- Teaching Assistant
 - Ms Yehong XU
 - Email: yxudi@connect.ust.hk

+ Assumed Background

- Database knowledge
 - Database management system concepts
 - Relational database design and SQL
 - Database indexing
 - Query processing
- Programming skills
 - Java, C/C++, Python

+ Relational DBMS

- What is RDBMS?
 - The relational model and database design
 - SQL
 - Database indexing
 - Query processing
 - ACID/Transaction Management/Recovery
 - Access control
- RDBMS products?
 - Oracle, Microsoft SQL Server, IBM DB2, MySQL, Postgres...

+ A Brief History of DBMS

+ Beyond RDBMS

- History of RDBMS
 - The 60s:
 - The 70s:
 - The 80s:
 - The 90s:
 - New millennium:
 - Now and future:
- Beyond RDBMS
 - Spatial and temporal attributes are ubiquitous
 - But they are poorly support by RDBMS...
 - One fundamental change:
 - Number of dimensions increases from 1, to 2, to many...

+ One Example

+ Another Example

© 2006 - 2009 DKE Group, School of ITEE, University of Queensland.
All rights reserved.

Done X

+ Modern Database Applications

- Very large datasets
 - Many with streaming nature too
- Complex data structures
 - Often represented as high dimensional data
 - Many with spatial and temporal attributes
 - Search is typically based on similarity, rathe than equality
 - One application often needs to integrate heterogeneous data from many sources
- Data analytics queries
 - Databases, data warehouses, data mining, machine learning...

+ The Three Vs of Big Data

- Volume, Velocity and Variety
 - YouTube:
 - Serves around 2 billion videos per day
 - GIS/Geospatial:
 - Sales of software and data grow dramatically
 - Location-based Services (LBS):
 - Global market about US\$30 billion
 - Sensor Data
 - (Radio Frequency ID) RFID, On-Board Diagnostics (OBD)...

Transaction

Interaction

Sensorization

+ In This Course...

■ What will we learn?

- The latest in large-scale data management and processing: complex data types and similarity-based queries
- How to represent and manage complex data to enable efficient processing of advanced queries
- Applicable to a wide range of applications, including spatial and multimedia data
- Challenges and solutions for high dimensional data

■ **How** will we learn?

- Attending lectures
- Studying selected research papers
- Doing individual assignments
- Writing reports and making presentations

+ Multidimensional Data

■ An object is **k-dimensional** means that the object is described by **k** attributes.

Examples:

- point(x, y) 2D: geographic data (GIS, LIS...)
- point(x, y, z) 3D: the universe, brain, molecule structure...
- point(x, y, t) 3D: spatiotemporal
- person(age, weight, height) 3D
- color(c1, c2, ... c128) 128D
- image(texture, shape, colour) high dimension!
- video a sequence of image frames

+ Why Spatial Databases?

- One of the most widely used multidimensional databases
 - Foundation of understanding other high-D data
- Many important application domains have spatial data and queries. Some Examples:
 - Insurance Risk Manager: Which homes are most likely to be affected in the next great flood on the Brisbane river?
 - **Molecular Biologist:** Is the topology of the amino acid biosynthesis gene in the genome found in any other sequence feature map in the database?
 - Medical Doctor: Based on this patient's MRI, have we treated somebody with a similar condition?

+ How About Relational DBMS?

- Highly successful
 - Data Independence
 - The relational model
 - Non-procedural query
 - Efficiency & Performance
 - Indexing and query optimization
 - Allows concurrent access to data
 - Reliability
 - Persistence across failures
 - ACID?

+ Spatial Queries

Queries

- Which courses are meeting in Jockey Club Tower this semester?
- Where is Jockey Club Tower?
- Find all ocean-front buildings in HKUST.
- Find all teaching theatres which are 150 meters from a restaurant.

+ What's Special about Spatial Queries?

- Retrieval & update of spatial data is based on the spatial location of a data object
 - (vs. alphanumeric in RDBMS)
- Fast execution of **geometric operations**
 - (vs. simple comparison in RDBMS)
- RDBMS obvious limitations
 - Limited data types no support for multidimensional data!
 - Limited query types

+ Spatial DBMS (SDBMS)

- A SDBMS is a software module that
 - can work with an underlying DBMS
 - supports spatial data models, spatial abstract data types (ADTs)
 - supports a spatial query language
 - supports spatial indexing, efficient algorithms for processing spatial operations, and domain specific query optimization

Examples:

- Oracle Spatial and Graph in 12c (formally Oracle Spatial Extension), now separately licensed
- Microsoft SQL Server supports spatial types since 2008
- PostgreSQL DBMS uses the spatial extension PostGIS

+ From Spatial to Multimedia

- Very different on the surface, but many similarities fundamentally
 - Data represented as multidimensional vectors
- Keywords-based vs content-based search
 - **Keywords-based:** using text annotations
 - Content-based: using automatically extracted features such as colors, textures and shapes
 - Both have advantages and disadvantages
- Applications of content-based multimedia search

+ Some Projects I Participated

- QUEST (1998): delivering map-based Govt services
- UQLIPS (2006): near duplicate video search
- SharkDB (2014): an in-memory spatiotemporal database
- Vehicle trajectory mining
- Route planning (including real-time information)
- Telecom token analysis
- Bluetooth data at road intersections
- Social media recommendation for next POI
- Processing and annotation for biomedical images
- Entity linking and location privacy protection...

+ What to be Covered

- Review of RDBMS
- Spatial databases introduction
- 3. Spatial indexing mechanisms
- Spatial algorithms and query processing
- 5. Spatiotemporal data management
- High-dimensional indexing, search and dimensionality reduction
- 7. Multimedia databases
- 8. Other high dimensional applications

+ Learning Modules

Week	Date	Lecture	Assessment
1	5/2	Course Introduction; Review of RDBMS	
2	12/2	Indexing & Query Optimization in RDBMS	Group project out
3	19/2	Introduction to Spatial Databases	
4	26/2	Spatial Data Indexing (1)	
5	5/3	Spatial Data Indexing (2)	
6	12/3	Spatial Query Processing (1)	
7	19/3	Spatial Query Processing (2)	
8	26/3	Spatiotemporal Data Management	Assignment 1 (30%)
9	2/4	High Dimensional Indexing and Search	
10	9/4	Dimensionality Reduction and Approximate Search	
11	23/4	Multimedia Databases	
12	30/4	Trends; Course Review	Assignment 2 (30%)
13	7/5	Student presentations	Group project (40%)

+ Lectures

- 3-Hour lecture session per week
 - Real-time online initially (via Zoom through Canvas)
 - Lecture room: Rm 2303, Lift 17-18 (if in mix-mode teaching)
 - Time: 10:00-12:50 pm on Saturdays
- Lecture slides will be available online as PDF files
 - Likely to be updated before and after each lecture
- Recommended readings
 - No textbook
 - Selected papers will be available online when possible

+ Assessment

- Two assessment components
 - Two assignments (individual): 30% + 30%
 - Marking criteria can be found in the assignment specs
 - Final report and presentation (group): 40%
 - Marking criteria can be found in the project spec
- No exams
- Your final score for this course is the sum of the above components

+ Why Study This Course?

- For an CS graduates from HKUST
 - What you have learnt about relational DB may be not applicable to some applications, but...
- For prospect researchers
 - Spatial and multimedia databases are still a major research area with many open problems, and the knowledge we will learn in this course are applicable to many other types of high dimensional data
- For job seekers
 - Complex data are typically dimensional
 - High-dimensional data management and analytics evolve rapidly from a specialised area to a "commodity" skill with great demand

+ Some Questions...

■ Let's try to identify some research questions and applications for spatial and multimedia databases...

+ Your Exercise...

- Take one application area that you are familiar with, or you are interested in
 - What types of spatial or spatiotemporal data in the application?
 - How such data have been and could be used, for what applications?
 - If RDBMS is the technology to use to manage such data, do you see any problems?
- Consider another high-D application area, and repeat the above
- Who are the main technology providers and users for spatial databases? Name a few products