Chapter-2

- Chapter-2
 - 1 Descriptions: Positions, Orientations, and Frames
 - Position
 - Orientations
 - Frames
 - 2 Mappings
 - Translation
 - Rotation
 - General Frames

1 - Descriptions: Positions, Orientations, and Frames

Position

Any point could be located in the universe with a 3×1 **position vector** once a coordinate system is established. And the notation for the position of A is AP , which is defined by

$$^{A}P=egin{bmatrix} p_{x}\ p_{y}\ p_{z} \end{bmatrix}$$

Orientations

In order to describe the orientation of body, we will *attach a coordinate system to the body* and then give a description of this coordinate system **relative to** the reference system.

One way to describe the body-attached coordinate system $\{B\}$, is to write the unit vectors of its three principal axes in terms of the coordinate system $\{A\}$

The principal directions of $\{B\}$ is defined as \hat{X}_B , \hat{Y}_B and \hat{Z}_B . If the terms of coordinate system $\{A\}$, they are called ${}^A\hat{X}_B$, ${}^A\hat{Y}_B$ and ${}^A\hat{Z}_B$, whose combination will be called as a **rotation matrix**, where $\{B\}$ is relative to $\{A\}$

$${}^{A}_{B}R = \begin{bmatrix} {}^{A}\hat{X}_{B} & {}^{A}\hat{Y}_{B} & {}^{A}\hat{Z} \end{bmatrix} = \begin{bmatrix} \hat{X}_{B}\cdot\hat{X}_{A} & \hat{Y}_{B}\cdot\hat{X}_{A} & \hat{Z}_{B}\cdot\hat{X}_{A} \\ \hat{X}_{B}\cdot\hat{Y}_{A} & \hat{Y}_{B}\cdot\hat{Y}_{A} & \hat{Z}_{B}\cdot\hat{Y}_{A} \\ \hat{X}_{B}\cdot\hat{Z}_{A} & \hat{Y}_{B}\cdot\hat{X}_{A} & \hat{Z}_{B}\cdot\hat{Z}_{A} \end{bmatrix}$$

since ${}^A_BR={}^B_AR^T$ and ${}^A_BR\cdot {}^B_AR^T=I$, we can know that the rotation matrix is **a orthogonal** matrix

Frames

A frame is defined as the set of four vectors giving position position and orientation information

2 - Mappings

Translation

according to the spacial relationship, translation could be simply calculated by addition

$$^{A}P = ^{B}P + ^{A}P_{BORG}$$

Rotation

according to the definition of the rotation matrix, rotation could be simply calculated by multiply

$$^{A}P = {}^{A}_{B}R {}^{B}P$$

General Frames

according to the translation and rotation, the general transform could be written into

$$\begin{bmatrix} {}^AP \\ 1 \end{bmatrix} = \begin{bmatrix} & {}^A_BR & | {}^AP_{BORG} \\ \hline 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} {}^BP \\ 1 \end{bmatrix}$$