

Armed Forces College of Medicine AFCM

Respiratory System Gas Exchange

Ass. Prof. Doaa Abou-bakr

INTENDED LEARNING OBJECTIVES (ILO)

By the end of this lecture the student will

be able to:

- 1. Define gas diffusion.
- 2. Describe what is the **partial pressure of a gas** (PO_2 & PCO_2 in the body).
- 3. List the **factors affecting gas diffusion** between alveolar air and capillary blood.
- 4. Describe the diffusing capacity of a gas.
- 5. Compare between **perfusion and diffusion limitations**

to gas exchange.

Gas Exchange

• Site:

*At the lungs

(between pulmonary capillary blood & alveolar air)

*At the tissues

(between systemic capillary blood & tissues)

Mechanism:

Simple Passive Diffusion

down partial pressure gradient (from high to low partial pressure).

Gas Diffusion

•Definition:

Is a net movement of gas molecules from area of high concentration (high partial pressure) to area of low concentration (low partial pressure).

Factors affecting:

- 1- Concentration (partial pressure) gradient of the gas
- 2- Molecular weight of the gas
- 3- Solubility of the gas
- 4- Temperature
- 5- Surface area of the membrane
- 6- Thickness of the membrane

Dalton's Law:

pressure = Total pressure × Fractional gas concentration HIGHER

PRESSURE

Partial pressure of a gas:

- -It is the pressure exerted by this gas when present in a gas mixture.
- -It is a measure of gas concentration.

The higher the concentration of dissolved gas, the higher the pressure. Partial pressure of a gas in blood depends on its physically dissolved form???

Gas exchange at lung level:

- * Venous blood enters pulmonary capillaries: High PCO, & Low PO,
- * Air enters alveoli:

High PO, & Low PCo,

- √ O₂ diffuses from alveoli to blood down its partial pressure gradient.
- **√CO**₂ diffuses from blood to alveoli down its partial pressure gradient.

O₂ diffusion

CO₂ diffusion

Alveolar-Capillary membrane (Respiratory membrane)

- * In the lung, gas diffusion occurs through the alveolo-capillary membrane:
 - \blacksquare Thickness: 0.5 to 1 μ m.
 - ☐ Total surface area: 70 m²
 - Formed of the following layers:
 - 1) Fluid lining alveolus containing surfactant.
 - 2) Alveolar epithelium.
 - 3) Epithelial basement membrane.
 - 4) Interstitial space.
 - 5) Capillary basement membrane.
 - 6) Capillary endothelium.

Factors affecting gas diffusion:

P

MW

Solubilit y

Alveolar-capillary membrane

Surface area

Thickne ss

Rate of gas diffusion α

Partial Pressure gradient X Surface area of the membrane X Diffusion coefficient

Thickness of the membrane

***The volume of gas transfer across the alveolar-capillary membrane per unit time is:

Directly proportional to:

- The difference in the partial pressure of gas between
- The surface area of the membrane.
- The solubility of the gas.

Inversely proportional to:

- Thickness of the membrane.
- Molecular weight of the gas.

$$\begin{split} \dot{V}_{gas} &\propto \frac{A}{T} \cdot D \cdot (P_1 - P_2) \\ &D \propto \sqrt{\frac{Sol}{MW}} \end{split}$$

Diffusion coefficient

*Diffusion coefficient \(\alpha \)

Diffusion coefficient is directly proportional to solubility of the gas, and inversely proportional to the square root of gas's molecular weight (MW).

• Diffusion coefficient for CO₂ is 20 times that of O₂;

 CO_2 is 24 times more soluble than O_2 is, but the MW of CO_2 is 1.4 times greater than that of O_2 .

In lung diseases that impairs diffusion, O_2 diffusion is more seriously impaired than CO_2 diffusion because of the greater CO_2 diffusion coefficient.

The diffusion capacity of the respiratory membrane

• **Definition:** The volume of gas that diffuses across the alveolar-capillary membrane / min for a pressure difference of 1 mmHg.

Types of Gas Exchange:

Diffusion-Limited Gas Exchange applies to CO

Perfusion-Limited Gas Exchange applies to N₂O

Types of Gas Exchange:

N.B:

- The physically dissolved form of the gas is the form that determine its partial pressure.
- Net diffusion into pulmonary capillary depends on magnitude of partial pressure gradient.
- Whether a gas reaching equilibrium or not depends on its reaction with substances in the blood.
 - 0.75 sec is the time the blood takes to traverse the pulmonary capillaries at rest.

Diffusion-Limited Gas Exchange

Copyright © 2015 Wolters Kluwer, Inc. Unauthorized reproduction of the content is prohibited.lippincott's illustrated review in physiology

Diffusion-Limited Gas Exchange

Perfusion-Limited Gas Exchange

Copyright © 2015 Wolters Kluwer, Inc. Unauthorized reproduction of the content is prohibited.lippincott's illustrated review in

Perfusion-Limited Gas Exchange

N₂O equilibrates early along length of capillary reaches https://y12hb.wordpress.com/2013/04/07/the-lungs/equilibrium in about 0.1 s

Gas Exchange (O₂)

O₂ is intermediate between N₂O and CO; it is taken up by hemoglobin, but much less avidly than CO, and it reaches equilibrium with capillary blood in about 0.3 sec.

Thus, its uptake is **perfusion-limited**.

Gas Exchange (CO, N₂O, O₂)

 $-N_2O$ is not bound in blood, so its partial pressure in blood rises rapidly to its partial pressure in the alveoli. -Conversely, CO is avidly taken up by red blood cells, so its partial pressure reaches only a fraction of its partial pressure in the alveoli.

 $-O_2$ is intermediate between the two.

Gas Exchange At Tissue Level

Cardio-pulmonary Module

Lecture Quiz

- 1. Define partial pressure of gas.
- 2. What determines the partial pressures of a gas?
- 3. Make a sketch showing the PO_2 and PCO_2 gradients and the direction of O_2 and CO_2 movement between the alveoli and pulmonary capillaries and between the tissue cells and systemic capillaries.

SUGGESTED TEXTBOOKS

1. Ganong's review of medical physiology 25th

edition

2. Lippincott's illustrated reviews: Physiology

3. BRS Physiology 6th ed.

