ResNet-18 与 CIFAR-100

王逸群 19307110397

2022.4.17

GitHub repo 链接: https://github.com/quniLcs/cv-mid 网盘链接:

1 数据集

本项目使用 CIFAR-100 数据集,其中包含 60000 张 32×32 的彩色图片,其中训练集 50000 张,测试集 10000 张,被平均分为 100 类。

2 网络结构

本项目使用 ResNet-18 网络结构,其中激活函数为 ReLU,最大的特征为残差连接。后者包括两种单元结构如图 1和图 2所示。

对于输入的图像,先进行步长为 1 的 $3 \times 64 \times 3 \times 3$ 卷积操作,并进行批归一化和激活,维度变为 $64 \times 32 \times 32$;接着通过两次第一种单元结构,维度不变;再通过第二种单元结构,维度变为 $128 \times 16 \times 16$;再通过第一种单元结构,维度不变;再通过第二种单元结构,维度变为 $256 \times 8 \times 8$;再通过第一种单元结构,维度不变;再通过第二种单元结构,维度变为 $512 \times 4 \times 4$;再通过第一种单元结构,维度不变;最后通过全连接得到输出。

3 超参数设置

参数初始化: MSRA:

学习率: 由 0.1 开始每 10 个回合阶梯下降一个数量级;

优化器: 带有 0.9 动量的随机梯度下降算法;

正则化参数: 0.0005;

回合数: 40;

批量大小: 128;

每回合循环数: 391:

总循环数: $40 \times 391 = 15640$;

损失函数:交叉熵损失函数;

评价指标:精确度。

图 1: 残差连接第一种单元结构

图 2: 残差连接第二种单元结构

4 数据增强

4.1 Cutout

该数据增强方法对于输入的图像,随机选取一点作为中心点,将其周围的正方形区域置为 0。 具体效果如图??所示。

4.2 Mixup

该数据增强方法对一对输入的图像及标签进行凸组合,凸组合系数服从 Beta 分布。具体操作为,对样本 x_i 、 y_i 、 x_j 、 y_j ,凸组合系数 $\lambda \sim Beta(\alpha,\alpha)$,产生新的样本和标签:

$$x = \lambda x_i + (1 - \lambda)x_j$$
$$y = \lambda y_i + (1 - \lambda)y_j$$

具体效果如图??所示。

4.3 Cutmix

该数据增强方法结合了以上两种方法。具体操作为,对样本 x_i 、 y_i 、 x_j 、 y_j ,凸组合系数 $\lambda \sim Beta(\alpha,\alpha)$,先从 $H\times W$ 的样本 x_i 中随机选取一点作为中心点,将其周围 $H\sqrt{1-\lambda}\times W\sqrt{1-\lambda}$ 的正方形区域置为样本 x_j 的值,即正方形区域面积占比为 $1-\lambda$ 。由于实际正方形区域可能超出样本区域,最后将 λ 修正为保留原样本值的区域面积占比,并产生新的标签:

$$y = \lambda y_i + (1 - \lambda)y_j$$

具体效果如图 3所示。

5 实验结果

实验结果如图 4和表 1所示。

模型	训练集 top1 精确度	训练集 top5 精确度	测试集 top1 精确度	测试集 top5 精确度
baseline	0.99982	1.00000	0.61110	0.84930
Cutout	0.99982	1.00000	0.65360	0.87540
Mixup	0.99980	1.00000	0.60050	0.81830
CutMix	0.99980	1.00000	0.63310	0.85980

表 1: 实验结果

可以看到,模型训练的难点在于,训练集的精确度快速达到近乎 100%,测试集的精确度便不再有上升的空间。数据增强的意义在于,加大训练集收敛的难度,使得测试集有更大的提升机会。

图 3: 数据增强效果

例如,在第 15 个回合,baseline 模型的训练集精确率达到了 0.75324,但测试集精确率仅有 0.46340;相比之下,cutout 模型的训练集精确率仅有 0.69558,但测试集精确率有 0.51210。最后,mixup 对模型没有明显提升,cutmix 和 cutout 都优化了模型结果。

图 4: 实验结果