Lower bound for sorting algorithms

- · Best worst-case running time we've seen so far: $\Theta(n \lg n)$
- . Is that the best we can get?
- · Clearly we need $\Omega(n)$ because we must look at all of the input.
- · It turns out that we can show that we need SZ (n $\lg n$) for any comparison based sorting algorithm.
- · A comparison sorting algorithm uses only Comparisons between elements to determine their relative order.
- · Insertion Sort, Merge Sort, Quicksort, are comparison based sorting algorithms.

Decision-tree model

- · Comparison sorting algorithms can be viewed in terms of decision trees.
- · A decision tree is a full binary tree (every node is either a leaf or has two child nodes)
- · The decision tree represents the comparisons that are performed by a particular sorting algorithm on inputs of a given size.
- · Example with n=3:

- · Each internal node is labeled i: is and denotes a comparison between a and as
 - if a; ≤ a; the left subtree dictates further companisons. Otherwise, the right subtree dictates further companisions.
- · Each leaf is labeled with a permutation of the input sequence.

 $\langle 2,3,1\rangle$ means $\alpha_2 \leq \alpha_3 \leq \alpha_1$

- · The execution of the algorithm on a given input corresponds to the path taken from the root to a leaf
 - The comparisons made along the way are the ones that determined the ordering of the elements

Example

Sort
$$\langle a_1, a_2, a_3 \rangle = \langle 8, 3, 7 \rangle$$

- · Start at the noot and compare as with az (8 with 3). 8>3 => more along right subtree
- · Compare a, with a3 (8 with 7).
 8>7 => move along right subtree.
- · Compare az with a3 (3 with 7).

 3 < 7 => move along left subtree
- · At this point we reach a leaf [<2,3,1>] which specifies the correct ordering of the input:

$$\alpha_2 \leq \alpha_3 \leq \alpha_1$$

- · worst case running time of algorithm
 - = length of longest path from root to leaf for any given input
 - = height of the tree
- . We will now show that the height of the tree is Σ (n lg n)
 - The tree must have at least n! leaves because there are n! permutations of the input sequence.
 - Also, a binary tree of height h has at most 2h leaves.

$$2^{h} > n!$$

$$h > lg(n!)$$

$$> lg((\frac{n}{2})^{n})$$
 // Stirling's formula
$$= n lg n - n lg e$$

$$= 52 (n lg n)$$

$$N! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n e^{\lambda n}$$

where
$$\frac{1}{12n+1}$$
 < d_n < $\frac{1}{12n}$

$$\Rightarrow$$
 $n! > \left(\frac{n}{e}\right)^n$

Sorting in linear time

- . It's possible to sort in linear time if we use other things other than comparisons in order to determine the relative ordering of the input elements
- · Resulting algorithms are not general => rely on assumptions about the input.

Counting Sort

· Assumption: input elements are integers in the range 1... K

Input: A[1..n] with each A[i] $\in \{1,2,...,k\}$

Output: B[1..n]

Temporary storage: C[1..k]

· Basic idea: use away C to count the number of times each element occurs in the input sequence.

3.
$$C[i] = \emptyset$$

for
$$j=1$$
 to n

$$C[A[J]] = C[A[J]] + 1 // C[J] = (\# elomo)$$
5.

A: 3/14

3 1 4 1 4 3

C: 1234

B :

Just before the beginning of the for loop in line 6:

Just before the beginning of the for loop in line 8:

C: 234 246 56 elems ≤ 4 54 elems ≤ 3 52 elems ≤ 2 52 dems ≤ 1

Loop in line 8 puts the elements in their proper location in the output array B.

Updated C: [2] 3 6

(next 3 will go into position 3)

and so on ...

Analysis of Counting Sort

1st for loop
$$\longrightarrow \Theta(k)$$

2nd for loop $\longrightarrow \Theta(n)$

3rd for loop $\longrightarrow \Theta(k)$

4th for loop $\longrightarrow \Theta(n)$

Total: $\Theta(n+k)$

if k is O(n) then Counting Sort is O(n)

- · Lower bound of IZ (n lgn) for comparison sorting algorithms still valid.
- · Notice that Counting Sort doesn't do a single Comparision!
- · Counting Sort is a stable sorting algorithm: it
 preserves the input order of elements with equal value.
 - -> this is an important property and allows it to be used as part of another sorting algorithm called Radix Sort.

Radix Sort

· Sort digit by digit using a stable sorting algorithm starting with the least significant digit

· Example:

· Can use induction on digit position to show that the algorithm is correct.

Analysis

Input: n d-digit numbers each digit can take k possible values.

- · $\Theta(n+k)$ for each digit nort using Counting Sort
- od digits $\rightarrow b \Theta(d(n+k))$
- . When d is a constant and k = O(n), Radix Sort is $\Theta(n)$

Bucket Sort

- · Assumes input is drawn from a uniform distribution over [0,1)
- · Algorithm has 4 steps
 - 1) Divide [0,1) into n equal rizzed buckets.
 - 2) Distribute the n input elements into the buckets.
 - 3) Sort each bucket (e.g. with Insertion Sort)
 - 4) Output sorted buckets in order.
 - · Has similarities with hashing.

Bucket-Sort (A, n)

let B[ø., n-1] be a new away

for i=1 to n-1 make B[i] an empty list

for i=1 to n
insert A[i] into list B[[n.A[i]]]

for $i=\emptyset$ to n-1sort liot B[i] with Insertion Sort Concatenate $B[\emptyset]$, B[1], ... B[n-1] in order teturn the concatenated list

Intuitive Analysis

- · Avg number of elements per bucket is 1. Why?
- If each bucket has a constant number of elements then the time to sort each bucket is $\Theta(1)$ => time to sort n buckets is $\Theta(n)$
- · Can make detailed analysis to show that the expected running time of Bucket Sort is GCn).
 See details in textbook.