Response to OA Mailed 17 January 2007

II. CLAIM AMENDMENTS

1. (Cancelled)

2. (Currently Amended) The laser being tunable in wavelength according to claim

1claim 8,

wherein said functional dependence of said dispersive characteristic is designed

to admit exactly one single mode of electromagnetic radiation to develop within

said cavity.

3. (Currently Amended) The laser being tunable in wavelength according to claim

1claim 8,

wherein said functional dependence of said dispersive characteristic is designed

such that said optical path length within said cavity is the same for any two

different wavelengths of said electromagnetic radiation at least within a limited

wavelength range.

4. (Currently Amended) A laser being tunable in wavelength, comprising:

a first reflecting unit and a second reflecting unit, both reflecting units being

arranged to at least partially reflect an incident beam of electromagnetic radiation

towards each other,

an optical path of said beam of electromagnetic radiation within a cavity defined

in length by said first and second reflecting units,

a dispersive device arranged such that a portion of said optical path of said beam

of electromagnetic radiation traverses through said dispersive device,

wherein said dispersive device comprises a dispersive characteristic representing

a functional dependence of an optical path length of said portion with respect to

2

Response to OA Mailed 17 January 2007

wavelength of said electromagnetic radiation, wherein said optical path length increases with an increasing wavelength of said electromagnetic radiation, and

The laser being tunable in wavelength according to claim 1,

further comprising a gain medium for generating said electromagnetic radiation, said gain medium comprising a back facet, which is identical to said first reflecting unit, and a front surface, said gain medium emitting said beam through said front surface towards said second reflecting unit.

5. (Currently Amended) The laser being tunable in wavelength according to claim 4claim 8,

wherein said dispersive device represents includes at least a part of said second reflecting unit.

6. (Currently Amended) The laser being tunable in wavelength according to claim 4-claim 8,

further comprising a lens for collimating said beam emitted from said gain medium along said optical path towards said second reflecting unit.

- 7. (Currently Amended) The laser being tunable in wavelength according to claim 6, wherein said dispersive device represents includes at least a part of said lens.
- 8. (Currently Amended) A laser being tunable in wavelength, comprising:

a first reflecting unit and a second reflecting unit, both reflecting units being arranged to at least partially reflect an incident beam of electromagnetic radiation towards each other,

an optical path of said beam of electromagnetic radiation within a cavity defined in length by said first and second reflecting units,

Response to OA Mailed 17 January 2007

a dispersive device arranged such that a portion of said optical path of said beam of electromagnetic radiation traverses through said dispersive device.

wherein said dispersive device comprises a dispersive characteristic representing a functional dependence of an optical path length of said portion with respect to wavelength of said electromagnetic radiation, wherein said optical path length increases with an increasing wavelength of said electromagnetic radiation, and

The laser being tunable in wavelength according to claim 1,

further comprising a wavelength tunable filter for selecting a wavelength range of a spectral distribution of said electromagnetic radiation comprising one resonance mode out of the set of resonance modes of said cavity.

9. (Currently Amended) The laser being tunable in wavelength according to claim 4,

wherein either one of said gain medium or said second reflecting unit is movable in the direction of the optical path of said beam for adjusting said optical path length of said cavity to said selected wavelength range provided by said wavelength tunable filter.

10. (Currently Amended) The laser being tunable in wavelength according to claim 8,

wherein said wavelength tunable filter comprises a grating for diffracting and redirecting said beam of electromagnetic radiation, the cavity being either one of a Littrow cavity or a Littmann cavity.

- 11. (Cancelled)
- 12. (Currently Amended) The laser being tunable in wavelength according to claim 4claim 8,

wherein said dispersive device comprises one or more materials of the group comprising:

Response to OA Mailed 17 January 2007

- semiconductor material epitactically grown on a substrate material, said

semiconductor material and said substrate material being either combination of:

AlGaAs and GaAs, AlGaInP and GaAs, InGaAsP and InP, or AlGaN and GaN,

respectively.

- a semiconductor material deposited on a substrate material in a vapor

deposition step, said semiconductor material being one of a group comprising:

Si, Ge.

- a semiconductor material structured as bulk material being one of Si, GaAs, and

InP.

- a dielectric material being of SiO₂, TiO, Ta₂O₅, SiN.

- a polymer material of a group comprising PMMA.

13. (Previously Presented) The laser being tunable in wavelength according to claim 4,

comprising at least one of the features:

said gain medium is a linear source optical amplifier;

said dispersive device is integrated within said gain medium.

14. (Cancelled)

5