

WO 2005/042745

PCT/EP2004/052760

1

SEQUENCE LISTING

<110> Biogemma

<120> MEG1 endosperm-specific promoters and genes

<130> BGM 27 - WO

<150> EP 03292739.4

<151> 2003-11-03

<160> 64

<170> PatentIn version 3.2

<210> 1

<211> 370

<212> DNA

<213> Zea mays

<220>

<221> misc_feature

<223> promoter Meg1-1

<400> 1	60
agccagaatt gtaaccttgg gttttccac acctcaaata gatatggata tagttatata	60
gatacatata gcaaattcac caaataatat agaggtatag atatacatat aacaagggt	120
atatacatat atatacatat atagaagata tagatggata gatacatatg atagaataga	180
atagataact tacaatttg tctaaaagag actaaatcac tgctaagttt ggtctttgg	240
gaataacttgc cagtgaattt gtttcgcta tagtatataataaacttgc actcttctag	300
gattatagta tatataagta tacactttc taggatcggt cgtgaggagt tccttaacat	360
ttcttgcac	370

<210> 2

<211> 415

<212> DNA

<213> Zea mays

<220>

<221> misc_feature

<223> promoter Meg1-2

<400> 2	60
atgagcttc gacacaggta ggttagtagta gagccagaat tgtaaccttgg gttttccca	60
cacctcaaat agatatacat ataggatata agatatacat agcaaattca ccaaataata	120
tagggatata gatatacatata taagaagggg tatatacatata gatatacatata tatatacat	180
atagatata agatatacatata gatatacatata ataacttaca attttgtcta aaagaaacta	240
aatcactgct aagtttggag tagcatatct ttggtaata cttgttagtg aattggttc	300

cgctatagtatata agtatacact cttctaggat tatagtatat atatatatat	360
aagtatacac tcttcttagga tcaatcgtga ggagttcatt aaattgtctt ggcac	415

<210> 3
<211> 376
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<223> promoter Meg1-3

<400> 3		60
tcggaggcga cggtatcgat aagcctcaaa tagatataga tatagggata tagatagata		120
tagcaaattc accaaataat ataggggtat agatatagat ataagaaggg gtatagat		180
agatatagat atatagaaga tatagataga tagatagata tgatagaata gataacttac		240
aattttgtct aaaagaaaact aaatcactgc taagtttggg gtagcatatc tttggtaat		300
acttgctgt gaattggttt ccgctatagt atatatatat aagtatacac tcttcttagga		360
ttatagtata tatatatata taagtataca ctcttcttagg atcaatcgtg aggagttcat		376
aaaatttgtct tgccac		

<210> 4
<211> 121
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<223> nucleotides 1 to 121 of promoter Meg1-1

<400> 4		60
agccagaatt gtaaccttgg gttttccac acctcaaata gatatggata tagttatata		120
gatagatata gcaaattcac caaataatag agaggtatag atatagat aacaagggt		121
a		

<210> 5
<211> 414
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<223> MEG1-1 cDNA

<400> 5

cgtgaggagt tccttaacat ttcttgcgac atggagtaca aaaagagggt gcatgcgcta	60
gtgttttct cttaacttct ctaggatac ttgctgctc atgcgcattgg ggctgaagaa	120
gaaatttgc gagaaaaaaag agcacaatgc gctcaagggt ttcttccatg caaagataac	180
aagtgtact gttgcattgg gggccgaact catgattgct actatacgat ggctcagtgt	240
agtcatgcat gtttctaattt aaaaattaag atcactgttt ttatatacaa tgtaatggta	300
ggcaatgcta ttaataatac ataaggaaat tttagtttg gtattagaat ttttctgatt	360
gacgaaattt agtcagaccg atactagagg ctaaaaaaaaaaaaaaa aaaa	414

<210> 6
<211> 75
<212> PRT
<213> Zea mays

<220>
<221> MISC_FEATURE
<223> MEG1-1

<400> 6

Met Glu Tyr Lys Lys Arg Val Asp Ala Leu Val Phe Phe Ser Leu Leu			
1	5	10	15

Leu Leu Gly Tyr Phe Ala Ala His Ala His Gly Ala Glu Glu Gly Ile		
20	25	30

Leu Arg Glu Lys Arg Ala Gln Cys Ala Gln Gly Phe Leu Pro Cys Lys		
35	40	45

Asp Asn Lys Cys Tyr Cys Cys Ile Gly Gly Arg Thr His Asp Cys Tyr		
50	55	60

Tyr Thr Met Ala Gln Cys Ser His Ala Cys Phe		
65	70	75

<210> 7
<211> 383
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<223> Megl-2 cDNA

<400> 7		60
tcggcacgag gctacatgga gtacagaaag agggtggatg cgctagtgtt ttctcgta		120
cttctcctcg gatactttgc tgctcatgca catggaaagg gtcatgtcac agatgatgtc		

ggtgtttcta ctccagctaa agaaggaatt atgcaaggaa acggagcacg atgcgttcta 180
gggtttcctc catgcaaaga taacaagtgc tactgctgca ttggggggcg aactcatgct 240
cgctactcta cgatggctga gtgttagacat gcctgcttct aaacacaata taagatcgct 300
gttattatat acattgtaat ggttaggtaat gctattaata atatatggta atttagttt 360
tgctaaaaaaaaaaaaaaa aaa 383

<210> 8
<211> 88
<212> PRT
<213> Zea mays

<220>
<221> MISC_FEATURE
<223> MEG1-2

<400> 8

Met Glu Tyr Arg Lys Arg Val Asp Ala Leu Val Phe Phe Ser Leu Leu
 1 5 10 15

Leu Leu Gly Tyr Phe Ala Ala His Ala His Gly Lys Gly His Val Thr
20 25 30

Asp Asp Val Gly Val Ser Thr Pro Ala Lys Glu Gly Ile Met Gln Gly
 35 40 45

Asn Gly Ala Arg Cys Val Val Gly Phe Pro Pro Cys Lys Asp Asn Lys
 50 55 60

Cys Tyr Cys Cys Ile Gly Gly Arg Thr His Ala Arg Tyr Ser Thr Met
 65 70 75 80

Ala Glu Cys Arg His Ala Cys Phe
85

<210> 9
<211> 786
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<223> MEG1-3 cDNA

<400> 9 ggcacgagga ggagttcctt aaattttctt gcgacatgga gtacagaaaag agggtgtggatg 60

cgctagtgtt tttctcgta ctcctcctca gatactttgc tgctcatgca catgggaagg	120
gtaagtgccta ctgctgcatt gggggcgatg tagggtttcc tccatgcaaa gataacaagt	180
gctactgctg cattgggggg cgaactcatg ctcgctactc tacgctggct gagtgttagtc	240
atgcctgctt ctaaacaaaa attaagatca ctgttattat atacattgtt atggtaggtt	300
atgctattaa taatatatgg gaattttagt tttggtatta tactttttc caattcacga	360
aataccctct aaaacctggc gtgacagggtg gcatacgagg agtggagggc agcgacggct	420
gcacagcgct gcatgcagt gcttgcattt gtagctcctc gttggcgatg cgtgtgcgac	480
caagagctct cggcacagac aggtcatgtc acagatgtat tcggagtttc tactccagct	540
aaagaaggaa ttatgcaagg aaacggagca cgatgcgtat tagggtttcc tccatgcaaa	600
gataacaagt gctactgctg cattgggggg cgaactcatg ctcgctactc tacgctggct	660
gagtgtagtc atgcctgctt ctaaacaaaa attaagatca ctgttattat atacattgtt	720
atggtaggt aatgcttattt ataatatatgtt ggaatttaag ttttggattt aaaaaaaaaaa	780

aaaaaaa

<210> 10
<211> 72
<212> PRT
<213> Zea mays

<220>
<221> MISC_FEATURE
<223> MEG1-3, first ORF

<400> 10

Leu Leu Arg Tyr Phe Ala Ala His Ala His Gly Lys Gly Lys Cys Tyr
 20 25 30

Cys Cys Ile Gly Gly Asp Val Gly Phe Pro Pro Cys Lys Asp Asn Lys
 35 40 45

Cys Tyr Cys Cys Ile Gly Gly Arg Thr His Ala Arg Tyr Ser Thr Leu
 50 55 60

Ala Glu Cys Ser His Ala Cys Phe
65 70

<210> 11
<211> 667

<212> DNA
 <213> Zea mays

<220>
 <221> misc_feature
 <223> MEG1-4 cDNA

<400> 11		60
aagaccacca cccttgcga atccggcacc catgccatgc ccacttccac cgccaaggcc		120
atcgccgccc ccaagaccac cacccttgcga gaatccggca cccatgccat gtccacttcc		180
accaccaagg cccccggcgc caccagcacc gtagccacta ccgcccggaa gaccaccacc		240
gcctttgcgc aatccaccac ccatgccatg cccaatttcca ccaccttgc catggctcc		300
accatgcga tggccaatgt cgcctccgag tccgcccacct ttgccatatac caccaccaag		360
gccaccgcct ttcttaaat tgtcttgcga catggagtac agaaagaggg tggatgcgt		420
agtgttttc tcgttacttc tcctcgata ctttgctgct catgcacatg gaaaggctaa		480
agaaggaatt atgcaaggaa acggagcacg atgcgttgcg gggtttcctc catgcaaaga		540
taacaagtgc tactgttgca ttggggggcg aactcatgct cgctactcta cgatggctga		600
gtgtagtcat gcctgcttct aaacaaaaat taagatcgat gttattatat aaattgtaat		660
ggttagtaat gctattaata atatatggga atttttagtt tgtaattaa aaaaaaaaaaa		667
aaaaaaaa		

<210> 12
 <211> 76
 <212> PRT
 <213> Zea mays

<220>
 <221> MISC_FEATURE
 <223> MEG1-4

<400> 12

Met Glu Tyr Arg Lys Arg Val Asp Ala Leu Val Phe Phe Ser Leu Leu		
5	10	15
1		

Leu Leu Gly Tyr Phe Ala Ala His Ala His Gly Lys Ala Lys Glu Gly		
20	25	30

Ile Met Gln Gly Asn Gly Ala Arg Cys Val Val Gly Phe Pro Pro Cys		
35	40	45

Lys Asp Asn Lys Cys Tyr Cys Cys Ile Gly Gly Arg Thr His Ala Arg		
50	55	60

Tyr Ser Thr Met Ala Glu Cys Ser His Ala Cys Phe
65 70 75

<210> 13
<211> 621
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<223> MEG1-5 cDNA

<400> 13
tgcaggatg gctggctatg gtgttgatgg tcagcgtatg atgggtgttg ttggtatgga 60
cagcagaggg atggatatg gtggcagacc tgagccacct cttccgcctg atgcatacg 120
cactctatat attgagggct tacctgcaaa ctgcacacga cgggagggtt cacatataatt 180
tcgcccattt gttggtttc gtgaagttcg tcttgtcaac aaggagtcca gacatcctgg 240
tggagatcca catgtgttgt gtttcgtcga ttttgcacaac cctgctcagg ctacaattgc 300
tctggaagca ttacaaggta atgtcacgga tgatgtcaat gtttctgc tc cagctgaaga 360
aggaattttg cgagaaaaaaaaa gagcacaatg cgctcaaggg tttcttccat gcaaagataa 420
caagtgtac tggcatttgc ggggcccgaac tcatgattgc tactatacga tggctcagtg 480
tagtcatgca tgcttctaattaaaaa gatcactgtt tttatatacata atgtaatgg 540
aggcaatgct attaataata cataaggaa ttttattttg gtattagaat ttttctgatt 600
gacgaaaaaaaaa aaaaaaaaaaaa a 621

<210> 14
<211> 142
<212> PRT
<213> Zea mays

<220>
<221> MISC_FEATURE
<223> MEG1-5

<400> 14

Ser Thr Leu Tyr Ile Glu Gly Leu Pro Ala Asn Cys Thr Arg Arg Glu
 20 25 30

Val Ser His Ile Phe Arg Pro Phe Val Gly Phe Arg Glu Val Arg Leu
 35 40 45

Val Asn Lys Glu Ser Arg His Pro Gly Gly Asp Pro His Val Leu Cys
 50 55 60

Phe Val Asp Phe Asp Asn Pro Ala Gln Ala Thr Ile Ala Leu Glu Ala
 65 70 75 80

Leu Gln Gly His Val Thr Asp Asp Val Asn Val Ser Ala Pro Ala Glu
 85 90 95

Glu Gly Ile Leu Arg Glu Lys Arg Ala Gln Cys Ala Gln Gly Phe Leu
 100 105 110

Pro Cys Lys Asp Asn Lys Cys Tyr Cys Cys Ile Gly Gly Arg Thr His
 115 120 125

Asp Cys Tyr Tyr Thr Met Ala Gln Cys Ser His Ala Cys Phe
 130 135 140

<210> 15
<211> 974
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<223> MEG1-6 cDNA

<400> 15		60
tgcggaccca tgcgttgcg caacgcgtgc gggatccgta ccggagaag agacgggagc		120
catgggcctc gagtccagca gcaaggccgc caccgcggc ggcagcgagc accagcagca		180
gcagcggaaag aagaaggcca cccgcgcgcg cggccgcattc ctccaagcgg gagagggaga		240
gggagcggga gcgggagcgg aacaaggagg cggacgaggt caccgtggag ctccgcgcgg		300
tggggttcgg caaggaggtg gtgctgaagc agcggcggcg gatgcggcgg aggccgcgcc		360
tgggcgagga ggagcgcgcg gccatcctgc tcatggcgct ctccctccggc gtcgtgtacg		420
cctgacttgg ctagcaaccg cgccggcccc cgagacgcgcg cgcccaaagg cggcgaaagg		480
agaggagggc ccgattcgct ggacgtgcgg catgatctga gccccagaca gatccgtccg		540
tctggatcta tgctaagttt tcccggtaa gtagtagctc gtcggttcga acaaggcag		600
ttaataatcc gtgtccgcgc taggctagca gctctgttcc tctctcccccc tcccggttgc		660
tgctgtgttc ttgccaccgc ctcccttagt tgtaatcctg ccgcttagtag tgtgttagta		720
gtagctgtcc tgctgttaacc ttctcttgcg atgttaaggag agattatatg gttaaaaaca		

cagatgatgt cagtgttct actccagcta aagaaggaat tatgcaagga aacggagcat	780
ggtgcgttgt agggtttcct ccatgcaaag ataacaagtg ctactgctgc attggggggc	840
gaacctcatgc tcgctactct acgatggctg agtgttagaca tgcctgttcc taaacaaaaa	900
ttaagatcgc tgttattata tacattgtaa tggtaggtaa tgcttattaat aatatatggg	960
aatttttagtt ttgg	974

<210> 16
<211> 61
<212> PRT
<213> Zea mays

<220>
<221> MISC_FEATURE
<223> MEG1-6

<400> 16

Met Val Lys Asn Thr Asp Asp Val Ser Val Ser Thr Pro Ala Lys Glu	
1	5
	10
	15

Gly Ile Met Gln Gly Asn Gly Ala Trp Cys Val Val Gly Phe Pro Pro	
20	25
	30

Cys Lys Asp Asn Lys Cys Tyr Cys Cys Ile Gly Gly Arg Thr His Ala	
35	40
	45

Arg Tyr Ser Thr Met Ala Glu Cys Arg His Ala Cys Phe	
50	55
	60

<210> 17
<211> 23
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 17	23
tgctgctcat gcgcatgggg ctg	

<210> 18
<211> 25
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 18	25
ttgttatataa aaacagtgtat gttaaa	

10

<210> 19
<211> 16
<212> PRT
<213> Artificial

<220>
<223> Synthetic peptide

<400> 19

Asn Ala Pro Ala Glu Glu Gly Ile Leu Arg Glu Lys Arg Ala Gln Cys
1 5 10 15

<210> 20
<211> 27
<212> PRT
<213> Artificial

<220>
<223> Cystein-rich peptide

<220>
<221> MISC_FEATURE
<222> (1)...(27)
<223> Xaa = amino acid

<400> 20

Cys Xaa Xaa Xaa Xaa Cys Tyr Cys Cys Xaa Xaa Xaa Xaa Xaa Xaa Xaa
1 5 10 15

Xaa Tyr Xaa Xaa Xaa Xaa Cys Xaa Xaa Xaa Cys
20 25

<210> 21
<211> 28
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 21
ggatccatga atcccaactt caacagtg

28

<210> 22
<211> 31
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 22

gaattcttat cggttatata tctggctctc c

<210> 23
<211> 23
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 23
tgctgctcat ggcgtatgggg ctg

23

<210> 24
<211> 28
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 24
ttagaaggcak gcatgwctac actsgagcc

28

<210> 25
<211> 23
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 25
atgcacatgg gaagggtcat gtc

23

<210> 26
<211> 28
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 26
ttagaaggcak gcatgwctac actsgagcc

28

<210> 27
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 27
gcatagcagg agtggagggc

20

<210> 28
<211> 21
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 28
gaagcaggca tgactacact c

21

<210> 29
<211> 20
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 29
tggccaatgt cgcctccgag

20

<210> 30
<211> 28
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 30
ttagaagcak gcatgwctac actsagcc

28

<210> 31
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 31
atggctggct atggtgttga tg

22

<210> 32
<211> 21
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 32
gtgcagtttg caggttaagcc c

21

<210> 33
<211> 25
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 33
tgtacgcctg acttggctag caacc

25

<210> 34
<211> 28
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 34
ttagaaggcak gcatgwctac actsagcc

28

<210> 35
<211> 22
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 35
gcaacgtacc gtaccttcc ga

22

<210> 36
<211> 24
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 36
acgctgcatt caattaccgg gaag

24

<210> 37
<211> 24
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 37
acacctaaaa tagatatggta tata

24

<210> 38
<211> 29
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 38
gttatctatt ctattctatc atatctatc

29

<210> 39
<211> 30
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 39
gatatacgata tatagaagag atatacgatgg

30

<210> 40
<211> 29
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 40
gttatctatt ctattctatc atatctatc

29

<210> 41
<211> 29
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 41
agatagatcatat gatagaatag atagataac

29

<210> 42
<211> 29
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 42
gttatctatt ctattctatc atatctatc

29

<210> 43

WO 2005/042745

15

<211> 28
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 43
attttgtcta aagagactaa atcactgc

28

<210> 44
<211> 29
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 44
gttatctatt ctattctatc atatctatc

29

<210> 45
<211> 24
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 45
acacctcaaa tagatatgga tata

24

<210> 46
<211> 38
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 46
ccaaattcact gggttatcta ttctattctt tcataatct

38

<210> 47
<211> 24
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 47
acacctcaaa tagatatgga tata

24

<210> 48
<211> 38

<212> DNA
 <213> Artificial

<220>
 <223> oligonucleotide

<400> 48
 ccaattcact ggccatctat atcttctata tatctata

38

<210> 49
 <211> 24
 <212> DNA
 <213> Artificial

<220>
 <223> oligonucleotide

<400> 49
 acacacctaaa tagatatggaa tata

24

<210> 50
 <211> 38
 <212> DNA
 <213> Artificial

<220>
 <223> oligonucleotide

<400> 50
 ccaattcact ggccccttgt tataatctata tctataacc

38

<210> 51
 <211> 1041
 <212> DNA
 <213> Zea mays

<220>
 <221> misc_feature
 <223> MRPL

<400> 51 ctgttaacaac ttgtgttagta cttaaccctt cgcacccat gaatccaaac ttcaacagtg	60
tgtggagcgc tcccgagatc aatatgatga actcactcat cactagtac atcgccaaca	120
acacctacac aaacaacaac cagcatgttg tggcaagtgc tagtgccatt gtgaaccaca	180
ataactttgg gatgccaacg gaggtcggttc cacccgtgga caacatggac atgatgcaag	240
gctatctaattt ggctgatacg gatgccatga ggcttggtaa gggacaacaa catatgccaa	300
atgttggttcc taatcaaagg aggcattgcag tgaagttttg gactacagat gagcacagga	360
atttcccttcg tggtagaa gtgtttggcc gtggtaatg gaagaacatc tccaagtact	420
tcgtccccac aaggacacca gtgcagatct ctagccatgc acagaagtat ttccgcaggc	480

aggagtgcac cacagagaaa caacgctta gcatcaacga tggcgttc tacgacacac	540
agccatgggt gcggcagaac aactcctcta gcagctggga ggcgctcacc ttcaactgctg	600
gccgtgcgtt caataataca aactactgtg ctttaacag cttccgtat gccagcagcc	660
aggcaagtaa caaccaggtt gctacatgga ttacagacca gcaggcaact gcaagttctt	720
ctatacgctcc tccagcgacg gaggagagcc agatataatccgataatataatataatgg	780
catcagcagc tgggagagggc ttcttcata tataatcaat agtagatag atatggacaa	840
cgtccattga ctatTTTtat ttctatctat atgttttgta tccaatgtat catgtaaaac	900
ctatTTGGTT gttaaagggtc attagatcca tactatataat gggctagaaa cagtttcatt	960
gaaatTTGCC cctgagcaat acaatgaaat ttaccaatg tgTTTATTAT atattaatgt	1020
gtctaaaaaa aaaaaaaaaa a	1041

<210> 52
<211> 242
<212> PRT
<213> Zea mays

<220>
<221> MISC_FEATURE
<223> MRP1

<400> 52

Met Asn Pro Asn Phe Asn Ser Val Trp Ser Ala Pro Glu Ile Asn Met			
1	5	10	15

Met Asn Ser Leu Ile Thr Ser His Ile Ala Asn Asn Thr Tyr Thr Asn			
20	25	30	

Asn Asn Gln His Val Val Ala Ser Arg Ser Ala Ile Val Asn His Asn			
35	40	45	

Asn Phe Gly Met Pro Thr Glu Val Val Pro Pro Val Asn Met Asp			
50	55	60	

Met Met Gln Gly Tyr Leu Met Ala Asp Thr Asp Ala Met Arg Leu Val			
65	70	75	80

Gln Gly Gln Gln His Met Pro Asn Val Val Pro Asn Gln Arg Arg His			
85	90	95	

Ala Val Lys Phe Trp Thr Thr Asp Glu His Arg Asn Phe Leu Arg Gly			
100	105	110	

Leu Glu Val Phe Gly Arg Gly Lys Trp Lys Asn Ile Ser Lys Tyr Phe
 115 120 125

Val Pro Thr Arg Thr Pro Val Gln Ile Ser Ser His Ala Gln Lys Tyr
 130 135 140

Phe Arg Arg Gln Glu Cys Thr Thr Glu Lys Gln Arg Phe Ser Ile Asn
 145 150 155 160

Asp Val Gly Leu Tyr Asp Thr Gln Pro Trp Val Arg Gln Asn Asn Ser
 165 170 175

Ser Ser Ser Trp Glu Ala Leu Thr Phe Thr Ala Gly Arg Ala Tyr Asn
 180 185 190

Asn Thr Asn Tyr Cys Ala Phe Asn Ser Leu Pro Tyr Ala Ser Ser Gln
 195 200 205

Ala Ser Asn Asn Gln Val Ala Thr Trp Ile Thr Asp Gln Gln Ala Thr
 210 215 220

Ala Ser Ser Ser Ile Ala Pro Pro Ala Thr Glu Glu Ser Gln Ile Tyr
 225 230 235 240

Asn Arg

<210> 53
 <211> 83
 <212> PRT
 <213> Zea mays

<220>
 <221> MISC_FEATURE
 <223> MEG1-3, second ORF

<400> 53

Met Gln Trp Leu Ala Phe Val Ala Pro Arg Trp Arg Cys Val Cys Asp
 1 5 10 15

Gln Glu Leu Ser Ala Gln Thr Gly His Val Thr Asp Asp Val Gly Val
 20 25 30

Ser Thr Pro Ala Lys Glu Gly Ile Met Gln Gly Asn Gly Ala Arg Cys
 35 40 45

Asp Val Gly Phe Pro Pro Cys Lys Asp Asn Lys Cys Tyr Cys Cys Ile

WO 2005/042745

19

50

55

60

Gly Gly Arg Thr His Ala Arg Tyr Ser Thr Leu Ala Glu Cys Ser His
65 70 75 80

Ala Cys Phe

<210> 54
<211> 16
<212> PRT
<213> Artificial

<220>
<223> peptide

<400> 54

Pro Cys Lys Asp Asn Lys Cys Tyr Cys Cys Ile Gly Gly Arg Thr His
 1 5 10 15

<210> 55
<211> 23
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 55
gggccaacag ttcctgatta acc

<210> 56

<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 56
ccccatttac tgcctcttcg

23

<210> 57
<211> 37
<212> DNA
<213> Artificial

<220>
<223> MEG promoters conserved sequence

<400> 57
atatacatatag atatacgaaa ttcacccaaat aatatacg

37

<210> 58
<211> 1350
<212> DNA
<213> Zea mays

<220>
<221> misc_feature
<223> MEG1-1 genomic sequence

<400> 58

ctagttcagt aatagggtgtc gaggtgttct cagagttcca gtacttcgac gagtttaggat	60
aggcttaggac atcccctagt cagctgcctg tgggtgggta atttacgttg gcttcgttcc	120
aattctgtgt actttgattt atattatgtt aattactcta gtctttata ttatttctta	180
ctcttttattt ttattcgaag cattgtgtta tggatgagtca tttatgttaat tgctatgtac	240
gtgagtttttgc atccttagcac gtacatgggtt cgcatcggtt ttaccttcta aaacctgggg	300
tgacaggtgg catagcagga gtggagggca gcgcacggctg cacagctctg cgtgcagtgg	360
cttgcattgtt ttgctcctcg ttggcgatgc gtgtgcgacc atgagctctc gacacaggtta	420
ggtagtagta gagccagaat tgtaaccttg ggttttccca cacctcaaata agatataagat	480
ataggatata agatagatata agcaaattca ccaaataata taggggtata gatataagata	540
taagaagggg tatagatata gatatagata tatagaagat atagatagat agatagatata	600
gatagaatag ataacttaca attttgtcta aaagaaaacta aatcactgct aagtttggag	660
tagcatatct ttggtaataa cttgcttagtg aattgggttc cgctatagta tatataatata	720
agtatacact cttcttaggat tatagtatata atatataatata aagtatacac tcttcttagga	780
tcaatcgtga ggagttcatt aaattgtctt gcgcacatgga gtacagaaag agggtggtatg	840
cgcttagtgg tttctcgatc cttctcctcg gatactttgc tgctcatgca catggaaagg	900
gtaaatgaaa actatacaga catgtgtgtc catgcttaga tagatctaga caattttagaa	960
gatgttatta tatgataccg tggatcat ggcgaattgc taatgtatcg caatccccctg	1020
tgttaaattt ctcaaataat ttcaatgtt attattctcg aggcatgtt tggtaataga	1080
actcttatcc tataccttct actaggatcat gtcacagatg atgtcgtt ttctactcca	1140
gctaaagaag gaattatgca aggaaacgga gcacgatgctt ttgttagggtt tcctccatgc	1200
aaagataaca agtgctactg ctgcattggg gggcgaactc atgctcgcta ctctcgatgg	1260
ctgatgtaga catgcctgct tctaacaataa taagacgttg tatataatcat gtatggagga	1320
atttataata ttatggaaatt agttgtatata	1350

<210> 59
<211> 127
<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<220>

<221> misc_feature

<223> nucleotides 1-127 of promoter MEG1-1

<400> 59

agccagaatt gtaaccttgg gttttccac acctcaaata gatatggata tagttatata 60

gatagatata gcaaattcac caaataatat agaggtatag atatacatat aacaagggt 120

atataata 127

<210> 60

<211> 25

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 60

acacctcaaaa tagatatggaa tata 25

<210> 61

<211> 25

<212> DNA

<213> Artificial

<220>

<223> oligonucleotide

<400> 61

gtcgcaagaa atgttaagga actcc 25

<210> 62

<211> 500

<212> DNA

<213> Zea mays

<400> 62

caggagtggaa gggcagcgac ggctgcacag ctctgcgtgc agtggcttgc attgtttgct 60

cctcggttgc gatgcgtgtg cgaccatgag ctctcgacac aggttaggtag tagtagagcc 120

agaattgtaa cttgggttt tccccacact caaatagata tagatataagg gatatagata 180

gatatacgaa attcaccaaa taatataggg gtatagatat agatataaga aggggtata 240

atatacatat agatataatag aagatataaga tagatataata gatatgatag aatataaac 300

ttacaatttt gtctaaaaga aactaaatca ctgctaagtt tggagtagca tatcttttgt 360

gaataacttgc tagtgaattt gtttccgcta tagtatataat atataagtat acactttct 420

aggattatag tatatatata tatataagta tacactttc taggatcaat cgtgaggagt 480
tcattaaatt gtcttgcgac 500

<210> 63
<211> 32
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 63
atcgatgaat tcgctcaagg gtttcttcca tg 32

<210> 64
<211> 30
<212> DNA
<213> Artificial

<220>
<223> oligonucleotide

<400> 64
ggatccctcga gcctctagta tcggcttgac 30