SQL BUSINESS CASE:

A globally renowned brand and a prominent retailer in the United States. The company makes itself a preferred shopping destination by offering outstanding value, inspiration, innovation and an exceptional guest experience that no other retailer can deliver.

This particular business case focuses on the operations of retailer in Brazil and provides insightful information about 100,000 orders placed between 2016 and 2018. The dataset offers a comprehensive view of various dimensions including the order status, price, payment and freight performance, customer location, product attributes, and customer reviews.

By analyzing this extensive dataset, it becomes possible to gain valuable insights into retailer's operations in Brazil. The information can shed light on various aspects of the business, such as order processing, pricing strategies, payment and shipping efficiency, customer demographics, product characteristics, and customer satisfaction levels.

Business problem:

Analyse the given dataset to extract valuable insights and provide actionable recommendations.

- 1. Import the dataset and do usual exploratory analysis steps like checking the structure & characteristics of the dataset
 - 1.1: Data type of columns in a table:

1.2: **Time period for which the data is given**: I ran below query to obtain time period as 2016-09-04 to 2018-10-17

Query:

1.3 Cities and States of customers ordered during the given period: Performed join on customers table and orders table through customer_id to find customers who have ordered during the entire period and then grouped by city and states and displayed counts of customers who ordered in that city and state for a cleaner look, as customer_id is long and in string format

```
select count(ord.customer_id) as count_of_customers,cust.customer_city,cust.customer_state
from `t1-sql-casestudy-387120.t1.customers` as cust
inner join `t1-sql-casestudy-387120.t1.orders` as ord
on cust.customer_id=ord.customer_id
group by 2,3
order by 3,2 asc
```

JOB IN	IFORMATION	RESULTS JSON	EXECUTION DETAILS	EXECUTION
Row /	count_of_custon	customer_city	customer_state	//
1	1	brasileia	AC	
2	3	cruzeiro do sul	AC	
3	1	epitaciolandia	AC	
4	1	manoel urbano	AC	
5	1	porto acre	AC	
6	70	rio branco	AC	
7	2	senador guiomard	AC	
8	2	xapuri	AC	
9	1	agua branca	AL	
10	2	anadia	AL	
11	29	arapiraca	AL	
12	1	atalaia	AL	
13	2	barra de santo antonio	AL	

<u>Insights:</u> Cities like Sao Paulo, Rio de janeiro have highest customer base which suggests to increase the number of stores in these cities to further improve customer base. There are many states where the customers are <500 and in these states the company should focus on advertising, addressing any delivery issues.

low /	count_of_customers	customer_city ▼	customer_state ▼
1	15540	sao paulo	SP
2	6882	rio de janeiro	RJ
3	2773	belo horizonte	MG
4	2131	brasilia	DF
5	1521	curitiba	PR

JOB IN	FORMATION	RESULTS	JSON	EXE	CUTION DETAILS	EXECUTION
Row /	count_of_customers	customer_city	y ~	1	customer_state 🕶	1
4201	128	sete lagoas			MG	
4202	130	paulinia			SP	
4203	131	pouso alegre			MG	
4204	133	sao jose dos	pinhais		PR	
4205	134	sao joao de n	neriti		RJ	
4206	135	jaboatao dos	guararapes		PE	
4207	136	itu			SP	
4208	137	divinopolis			MG	
4209	137	rio das ostras			RJ	
4210	139	marica			RJ	

2. In-depth Exploration:

2.1 Is there a growing trend on e-commerce in Brazil? How can we describe a complete scenario? Can we see some seasonality with peaks at specific months?

<u>Exploration</u>: there was a growing trend in e-commerce from January, 2017 to November, 2017. Later there were minor fluctuations during H1 of 2018, however, there was a drastic drop in orders after August, 2018 which further reduced by October, 2018.

Peak sale was observed during November 2017 and January and March 2018 with next lower sales in December 2017 and February-August 2018

<u>Complete scenario</u>: Overall 2017 and H1 2018 were successful years in terms of orders

```
select count(order_id) as count_of_orders,
extract(month from order_purchase_timestamp) as month,
extract(year from order_purchase_timestamp) as year
from `t1-sql-casestudy-387120.t1.orders`
group by 3,2
order by 3,2 asc
```

Row /	count_of_orders	month /	year //
1	4	9	2016
2	324	10	2016
3	1	12	2016
4	800	1	2017
5	1780	2	2017
6	2682	3	2017
7	2404	4	2017
8	3700	5	2017
9	3245	6	2017
10	4026	7	2017
11	4331	8	2017
12	4285	9	2017
13	4631	10	2017

2.2 What time do Brazilian customers tend to buy (Dawn, Morning, Afternoon or Night)?

<u>Insight:</u> Brazilian customers tend to buy their products mostly during Afternoon followed by Night. Few customers prefer to order during Dawn

<u>Recommendation</u>: Offers and discount periods can be applied during Afternoons more to improve sales.

Query:

count_of_orders	timings	
394	Dawn	
22240	Morning	
32677	Night	
44130	Afternoon	
	394 22240 32677	394 Dawn 22240 Morning 32677 Night

3. Evolution of E-commerce orders in the Brazil region:

3.1: Get month on month orders by states

```
select
extract(month from ord.order_purchase_timestamp) as month,
extract(year from ord.order_purchase_timestamp) as year,
count(ord.order_id) as count_of_orders,
cust.customer_state
from `t1-sql-casestudy-387120.t1.orders` as ord
join `t1-sql-casestudy-387120.t1.customers` as cust
on cust.customer_id=ord.customer_id
group by 4,2,1
```

JOB INFORMATION		DB INFORMATION RESULTS JSON		EXECUTION DETAILS EX	
Row /	month //	year //	count_of_orders	customer_state	//
1	9	2016	1	RR	
2	9	2016	1	RS	
3	9	2016	2	SP	
4	10	2016	113	SP	
5	10	2016	24	RS	
6	10	2016	56	RJ	
7	10	2016	3	MT	
8	10	2016	9	GO	
9	10	2016	40	MG	
10	10	2016	8	CE	
11	10	2016	11	SC	

3.2 Distribution of customers across the states in Brazil

<u>Insights</u>: Highest customers are in state SP followed by RJ and MG. Less than 500 customers are present in states like PI,RN,AL,SE etc., where the company can focus on advertising and campaigning about its stores products in order to increase customers and proportionally sales

```
select count(ord.customer_id) as count_of_customers,cust.customer_state
from `t1-sql-casestudy-387120.t1.customers` as cust
inner join `t1-sql-casestudy-387120.t1.orders` as ord
on cust.customer_id=ord.customer_id
group by 2
order by 1 desc
```

Row	count_of_customers	customer_state	// Row	count_of_customers	customer_state
1	41746	SP	17	530	го
2	12852	RJ	18	495	PI
3	11635	MG	19	485	RN
4	5466	RS	20	413	AL
5	5045	PR	21	350	SE
6	3637	sc	22	280	TO
7	3380	BA	23	253	RO
8	2140	DF	24	148	AM
9	2033	ES	25	81	AC
10	2020	GO	26	68	AP
11	1652	PF .	27	46	RR

- 4. Impact on Economy: Analyze the money movement by e-commerce by looking at order prices, freight and others.
- 4.1 Get % increase in cost of orders from 2017 to 2018 (include months between Jan to Aug only) You can use "payment_value" column in payments table

<u>Insights</u>: 137% increase in cost of orders was observed from 2017 to 2018 during January to August months.

4.2 Mean & Sum of price and freight value by customer state

```
select cust.customer_state as state,

avg(ordit.price) as mean_price,
sum(ordit.price) as sum_price,
avg(ordit.freight_value) as mean_frieght,
sum(ordit.freight_value) as sum_frieght
from `t1-sql-casestudy-387120.t1.orders` as ord
join t1-sql-casestudy-387120.t1.order_items as ordit
on ord.order_id=ordit.order_id
join t1-sql-casestudy-387120.t1.customers as cust
on cust.customer_id=ord.customer_id
group by 1
order by 1
```

Row /	state ▼ //	mean_price ▼	sum_price ▼ //	mean_frieght ▼	sum_frieght ▼
1	AC	173.7277173913	15982.94999999	40.07336956521	3686.749999999
2	AL	180.8892117117	80314.81	35.84367117117	15914.58999999
3	AM	135.4959999999	22356.84000000	33.20539393939	5478.889999999
4	AP	164.3207317073	13474.29999999	34.00609756097	2788.500000000
5	BA	134.6012082126	511349.9900000	26.36395893656	100156.6799999
6	CE	153.7582611637	227254.7099999	32.71420162381	48351.58999999
7	DF	125.7705486284	302603.9399999	21.04135494596	50625.499999999
8	ES	121.9137012411	275037.3099999	22.05877659574	49764.59999999
9	G0	126.2717316759	294591.9499999	22.76681525932	53114.97999999
10	MA	145.2041504854	119648.2199999	38.25700242718	31523.77000000

- 5. Analysis on sales, freight and delivery time
- 5.1 Calculate days between purchasing, delivering and estimated delivery

```
select order_purchase_timestamp,
  order_delivered_customer_date,
  order_estimated_delivery_date,
  date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as delivery_days,
  date_diff(order_estimated_delivery_date,order_purchase_timestamp,day) as
estimated_delivery_days,
  date_diff(order_delivered_customer_date,order_estimated_delivery_date,day) as
diff_estimated_delivery
from `t1-sq1-casestudy-387120.t1.orders`
where order_delivered_customer_date is not null
order by 4,5,6
```

First 10 rows result

Middle rows result for clear picture

<u>Insights</u>: The average delivery dates reduced gradually during 2017 and further during H1 of 2018 which sometimes affects the customer purchase. The less the delivery time, more will be orders placed in few instances.

Row /	month ▼	year ▼ //	f0_ ▼	days ▼ //
1	9	2016	1	54.0
2	10	2016	270	19.11111111111
3	12	2016	1	4.0
4	1	2017	750	12.09200000000
5	2	2017	1653	12.60617059891
6	3	2017	2546	12.39552238805
7	4	2017	2303	14.35258358662
8	5	2017	3545	10.76050775740
9	6	2017	3135	11.50622009569
10	7	2017	3872	11.13119834710
11	8	2017	4193	10.70069162890
12	9	2017	4150	11.40072289156

5.2 Find time_to_delivery & diff_estimated_delivery.

<u>Insights</u>: A negative diff_estimated_delivery indicates the order was delivered before estimated delivery date. A positive diff_estimated_delivery indicates the order was delivered for #days after the estimated delivery date has passed. This kind of data will allow the company to check for any loopholes and delays during delivery, issues with carrier delivery, number of delivery executives present in that city, availability/unavailability of product at nearest ware-house to the customer city

Most of the orders were delivered within estimated delivery date during 2017 and 2018

Query:

```
select order_purchase_timestamp,
  order_delivered_customer_date,
  order_estimated_delivery_date,
  date_diff(order_delivered_customer_date,order_purchase_timestamp,day) as
time_to_delivery,
  date_diff(order_delivered_customer_date,order_estimated_delivery_date,day) as
diff_estimated_delivery
from `t1-sq1-casestudy-387120.t1.orders`
where order_delivered_customer_date is not null
order by 3,4
```

First 10 rows result

low /	order_purchase_timestamp ▼ //	order_delivered_customer_date 🔻	order_estimated_delivery_date 🔻	time_to_delivery 🕶	diff_estimated_delive
1	2016-09-15 12:16:38 UTC	2016-11-09 07:47:38 UTC	2016-10-04 00:00:00 UTC	54	36
2	2016-10-03 09:44:50 UTC	2016-10-26 14:02:13 UTC	2016-10-27 00:00:00 UTC	23	0
3	2016-10-03 16:56:50 UTC	2016-10-27 18:19:38 UTC	2016-11-07 00:00:00 UTC	24	-10
4	2016-10-05 12:32:55 UTC	2016-10-13 16:03:46 UTC	2016-11-23 00:00:00 UTC	8	-40
5	2016-10-03 22:31:31 UTC	2016-10-14 16:08:00 UTC	2016-11-23 00:00:00 UTC	10	-39
6	2016-10-03 22:06:03 UTC	2016-10-31 11:07:42 UTC	2016-11-23 00:00:00 UTC	27	-22
7	2016-10-04 16:40:07 UTC	2016-10-13 15:56:11 UTC	2016-11-24 00:00:00 UTC	8	-41
8	2016-10-04 22:15:11 UTC	2016-10-13 16:00:43 UTC	2016-11-24 00:00:00 UTC	8	-41
9	2016-10-04 15:10:15 UTC	2016-10-13 15:56:28 UTC	2016-11-24 00:00:00 UTC	9	-41
10	2017 10 04 22-20-01 UTO	2017 10 20 10:14:52 UTO	2017 11 24 20-20-00 UTO	1.5	24

5.3: Group data by state, take mean of freight_value, time_to_delivery, diff_estimated_delivery

I joined orders, order-items and customers table and calculated average freight value, time to delivery, diff estimated delivery

<u>Insights</u>: Lower the freight value, less is the time taken for delivery, higher the freight value longer is the time taken for delivery. This provides the company to investigate into freight price section, delivery carriers and find loopholes and re-organise such process to improve efficiency

Query:

```
select count(ord.order_id) as count_orders,
    cust.customer_state as state,
    avg(ordit.freight_value) as avg_frieght,
    avg(date_diff(ord.order_delivered_customer_date,ord.order_purchase_timestamp,DAY)) as
time_to_delivery ,
    avg(date_diff(ord.order_estimated_delivery_date,ord.order_delivered_customer_date,DAY))
as diff_estimated_delivery
    from `t1-sql-casestudy-387120.t1.orders` as ord
    join t1-sql-casestudy-387120.t1.order_items as ordit
    on ord.order_id=ordit.order_id
    join t1-sql-casestudy-387120.t1.customers as cust
    on cust.customer_id=ord.customer_id
    where ord.order_delivered_customer_date is not null
    group by 2
    order by 2
```

Row /	count_orders ▼ //	state ▼	avg_frieght ▼	time_to_delivery 🤟	diff_estimated_delivery ▼
1	91	AC	40.047912087912081	20.32967032967	20.010989010989018
2	427	AL	35.870655737704922	23.99297423887	7.9765807962529349
3	163	AM	33.310613496932525	25.96319018404	18.975460122699381
4	81	AP	34.1604938271605	27.75308641975	17.4444444444443
5	3683	BA	26.487556339940287	18.77464023893	10.119467825142538
6	1426	CE	32.734495091164128	20.53716690042	10.256661991584851
7	2355	DF	21.072161358811066	12.50148619957	11.274734607218704
8	2225	ES	22.02897977528092	15.19280898876	9.7685393258427116
9	2277	GO	22.562867808519979	14.94817742643	11.372859025032927
10	800	MA	38.492712500000032	21.20375000000	9.109999999999923
11	12917	MG	20.6258372687155	11.51552218007	12.397151041263502

Row 17	count_orders ▼ 523	state ▼ PI	avg_frieght ▼ 39.115086042064924	time_to_delivery • 18.93116634799	diff_estimated_delivery ▼ 10.682600382409184
18	5649	PR	20.471816250663817	11.48079306071	12.533899805275263
19	14146	RJ	20.909784391347358	14.68938215750	11.14449314293797
20	521	RN	35.71808061420348	18.87332053742	13.055662188099804
21	273	RO	41.330549450549434	19.28205128205	19.080586080586084
22	46	RR	43.088043478260865	27.82608695652	17.434782608695652
23	6133	RS.	21.61427034077937	14.70829936409	13.203000163052323
24	4098	SC	21.506627623230841	14.52098584675	10.6688628599317
25	375	SE	36.573173333333358	20.97866666666	9.1653333333333276
26	46443	SP	15.114994078763218	8.259608552419	10.26559438451439
27	310	TO	37.435032258064496	17.00322580645	11.461290322580641

5.4 Sort the data to get the following:

5.5 Top 5 states with highest/lowest average freight value - sort in desc/asc limit 5

Performed CTE to obtain highest and lowest

Query: for TOP 5 states with highest average freight value

```
with combined data as (
   select count(ord.order_id) as count_orders,
 cust.customer_state as state,
 avg(ordit.freight_value) as avg_frieght,
 avg(date_diff(ord.order_delivered_customer_date,ord.order_purchase_timestamp,DAY)) as
time to delivery,
 avg(date_diff(ord.order_estimated_delivery_date,ord.order_delivered_customer_date,DAY))
as diff estimated delivery
 from `t1-sql-casestudy-387120.t1.orders` as ord
 join t1-sql-casestudy-387120.t1.order_items as ordit
 on ord.order_id=ordit.order_id
 join t1-sql-casestudy-387120.t1.customers as cust
 on cust.customer_id=ord.customer_id
 where ord.order_delivered_customer_date is not null
 group by 2
 order by 2
 select state,avg_frieght
 from combined data
 order by 2 desc
 limit 5
```

Row	state ▼	avg_frieght ▼
1	PB	43.09168941979
2	RR	43.08804347826
3	RO	41.33054945054
4	AC	40.04791208791
5	PI	39.11508604206

Query: for TOP 5 states with lowest average freight value

```
with combined_data as (
    select count(ord.order_id) as count_orders,
    cust.customer_state as state,
    avg(ordit.freight_value) as avg_frieght,
    avg(date_diff(ord.order_delivered_customer_date,ord.order_purchase_timestamp,DAY)) as
time_to_delivery ,
    avg(date_diff(ord.order_estimated_delivery_date,ord.order_delivered_customer_date,DAY))
as diff_estimated_delivery
    from `t1-sql-casestudy-387120.t1.orders` as ord
    join t1-sql-casestudy-387120.t1.order_items as ordit
    on ord.order_id=ordit.order_id
    join t1-sql-casestudy-387120.t1.customers as cust
    on cust.customer_id=ord.customer_id
    where ord.order_delivered_customer_date is not null
    group by 2
```

```
order by 2
)
select state,avg_frieght
from combined_data
order by 2 asc
limit 5
```

Row /	state ▼	avg_frieght ▼
1	PB	43.09168941979
2	RR	43.08804347826
3	RO	41.33054945054
4	AC	40.04791208791
5	PI	39.11508604206

5.6 Top 5 states with highest/lowest average time to delivery

Query: Top 5 states with highest avg time to delivery

```
with combined_data as (
    select count(ord.order id) as count orders,
  cust.customer_state as state,
  avg(ordit.freight_value) as avg_frieght,
  avg(date_diff(ord.order_delivered_customer_date,ord.order_purchase_timestamp,DAY)) as
time_to_delivery ,
  avg(date_diff(ord.order_estimated_delivery_date,ord.order_delivered_customer_date,DAY))
as diff_estimated_delivery
 from `t1-sql-casestudy-387120.t1.orders` as ord
  join t1-sql-casestudy-387120.t1.order_items as ordit
  on ord.order_id=ordit.order_id
  join t1-sql-casestudy-387120.t1.customers as cust
  on cust.customer_id=ord.customer_id
  where ord.order_delivered_customer_date is not null
  group by 2
  order by 2
  select state,time_to_delivery
  from combined_data
  order by 2 desc
  limit 5
```

Row	state ▼	time_to_delivery 🕶
1	RR	27.82608695652
2	AP	27.75308641975
3	AM	25.96319018404
4	AL	23.99297423887
5	PA	23.30170777988

Query: Top 5 states with lowest avg time to delivery

```
with combined_data as (
   select count(ord.order_id) as count_orders,
 cust.customer_state as state,
 avg(ordit.freight_value) as avg_frieght,
 avg(date_diff(ord.order_delivered_customer_date,ord.order_purchase_timestamp,DAY)) as
time_to_delivery ,
 avg(date_diff(ord.order_estimated_delivery_date,ord.order_delivered_customer_date,DAY))
as diff estimated delivery
 from `t1-sql-casestudy-387120.t1.orders` as ord
 join t1-sql-casestudy-387120.t1.order_items as ordit
 on ord.order_id=ordit.order_id
 join t1-sql-casestudy-387120.t1.customers as cust
 on cust.customer_id=ord.customer_id
 where ord.order_delivered_customer_date is not null
 group by 2
 order by 2
 select state,time_to_delivery
 from combined data
 order by 2 asc
 limit 5
```

Row /	state ▼	time_to_delivery 🕶
1	SP	8.259608552419
2	PR	11.48079306071
3	MG	11.51552218007
4	DF	12.50148619957
5	SC	14.52098584675

5.7 Top 5 states where delivery is really fast/ not so fast compared to estimated date

Query: Top 5 states where delivery is really fast

```
with combined_data as (
   select count(ord.order_id) as count_orders,
 cust.customer_state as state,
 avg(ordit.freight_value) as avg_frieght,
 avg(date_diff(ord.order_delivered_customer_date,ord.order_purchase_timestamp,DAY)) as
time_to_delivery ,
 avg(date_diff(ord.order_estimated_delivery_date,ord.order_delivered_customer_date,DAY))
as diff estimated delivery
 from `t1-sql-casestudy-387120.t1.orders` as ord
 join t1-sql-casestudy-387120.t1.order items as ordit
 on ord.order_id=ordit.order_id
 join t1-sql-casestudy-387120.t1.customers as cust
 on cust.customer id=ord.customer id
 where ord.order_delivered_customer_date is not null
 group by 2
 order by 2
 select state, diff estimated delivery
```

```
from combined_data
order by 2 asc
limit 5
```

Row /	state ▼	diff_estimated_delivery ▼
1	AL	7.9765807962529349
2	MA	9.109999999999923
3	SE	9.1653333333333276
4	ES	9.7685393258427116
5	BA	10.119467825142538

Query: Top 5 states where delivery is not so fast

```
with combined_data as (
   select count(ord.order_id) as count_orders,
 cust.customer state as state,
 avg(ordit.freight_value) as avg_frieght,
 avg(date_diff(ord.order_delivered_customer_date,ord.order_purchase_timestamp,DAY)) as
time_to_delivery ,
 avg(date_diff(ord.order_estimated_delivery_date,ord.order_delivered_customer_date,DAY))
as diff_estimated_delivery
 from `t1-sql-casestudy-387120.t1.orders` as ord
 join t1-sql-casestudy-387120.t1.order_items as ordit
 on ord.order_id=ordit.order_id
 join t1-sql-casestudy-387120.t1.customers as cust
 on cust.customer_id=ord.customer_id
 where ord.order_delivered_customer_date is not null
 group by 2
 order by 2
 select state,diff_estimated_delivery
 from combined_data
 order by 2 desc
 limit 5
```

Row	state ▼	diff_estimated_delivery ▼
1	AC	20.010989010989018
2	RO	19.080586080586084
3	AM	18.975460122699381
4	AP	17.4444444444443
5	RR	17.434782608695652

6. Payment type analysis:

6.1 Month over Month count of orders for different payment types

Query:

Insights: Most of the payments made were through credit card

JOB IN	IFORMATION	RESULTS	JSON	EXEC	CUTION DETAILS	EXECUTION GRAP	H PR
Row /	payment_type 🔻	//	month 🔻	//	year ▼	count_of_orders 🕶	
1	credit_card			9	2016	3	
2	UPI			10	2016	63	
3	credit_card			10	2016	254	
4	debit_card			10	2016	2	
5	voucher			10	2016	23	
6	credit_card			12	2016	1	
7	UPI			1	2017	197	
8	credit_card			1	2017	583	
9	debit_card			1	2017	9	
10	voucher			1	2017	61	
11	UPI			2	2017	398	

6.2: Count of orders based on the no. of payment instalments

```
select payment_installments, count(order_id) as count_of_orders
from `t1-sql-casestudy-387120.t1.payments`
group by payment_installments
```

JOB IN	FORMATION	RESULTS	J	SON	SON EXECUTION DETAILS
Row	payment_installr	count_of_orders			
1	0	2			
2	1	49060			
3	2	12389			
4	3	10443			
5	4	7088			
6	5	5234			
7	6	3916			
8	7	1623			

Reculte ner nane: 50 1 − 24 o