ций существуют пределы в точке x_0 , принадлежащей в данном случае их множеству задания, что и означает их непрерывность в этой точке. Иначе говоря, утверждение следствия 2 утверждения 6^0 является просто частным случаем этого утверждения, когда точка, в которой рассматривается предел, приналежит области задания функций.

5.11. Бесконечно малые и бесконечно большие функции

Все рассматриваемые в этом пункте функции будем предполагать определенными на множестве $X \subset \mathbf{R}$ и рассматривать их конечные и бесконечные пределы при стремлении аргу-мента к конечной или к бесконечно удаленной точке x_0 .

Определение 12. Функция $\alpha: X \to R$ называется бесконечно малой при $x \to x_0$, если

$$\lim_{x \to x_0} \alpha(x) = 0. \tag{5.45}$$

Бесконечно малые функции играют особую роль среди всех функций, имеющих предел, связанную, в частности, с тем, что общее понятие конечного предела может быть сведено к понятию бесконечно малой. Сформулируем это утверждение в виде леммы.

Л Е М М А 6. Конечный предел $\lim_{x\to 0} f(x)$ существует и равен а тогда и только тогда, когда $f(x) = a + \alpha(x), x \in \mathbf{X}$, где $\alpha = \alpha(x)$ - бесконечно малая при $x \to x_0$. Доказательство. Если $\lim_{x\to 0} f(x) = a$, то, положив $\alpha(x) = a$

ДОКАЗАТЕЛЬСТВО. Если $\lim_{x\to x_0} f(x) = a$, то, положив $\alpha(x) = f(x) - a, x \in X$, получим, что

$$\lim_{x \to x_0} \alpha(x) = \lim_{x \to x_0} f(x) - a = a - a = 0.$$

Наоборот, если $f(x)=a+\alpha(x), x\in \boldsymbol{X}$ и $\lim_{x\to x_0}\alpha(x)=0$, то

$$\lim_{x \to x_0} f(x) = a + \lim_{x \to x_0} \alpha(x) = a. \square$$

TEOPEMA 3. Сумма и произведение конечного числа бесконечно малых при $x \to x_0$, а также и произведение бесконеч-