
**GROSSMAN
& FLIGHT LLC**

20 N. Wacker Drive | Suite 4220
Chicago, IL 60606
(main) 312.580.1020
(fax) 312.580.9696
grossmanflight.com

August 10, 2004

FACSIMILE TRANSMISSION SHEET

TO: **Examiner Sloan**
U.S. Patent and Trademark Office

CLIENT NO.: 20004
MATTER NO.: 36
COUNTRY CODE:
EXTENSION:

FAX NO.: 703/746-9409

FROM: Mark Zimmerman

PAGES: 3
(INCLUDING THIS PAGE)

PLEASE CONFIRM RECEIPT: no

MESSAGE: Please see the following.

Please contact Sarah Southcott at (312) 580-1020 if you do not receive all of the pages in good condition.

The material of this transmission contains confidential information intended only for the addressee. If you are not the addressee, any disclosure or use of this information by you is strictly prohibited. If you have received this facsimile in error, please notify us by telephone immediately.

beyondINNOVATION

**GROSSMAN
& FLIGHT^{LLC}**

August 10, 2004

Via Facsimile Only

20 N. Wacker Drive Suite 4220

Chicago, IL 60606

(p) 312.580.1020 (f) 312.580.9696

grossmanflight.com

Examiner Nathan A. Sloan
United States Patent and Trademark Office
Commissioner for Patents
P.O. Box 1450
Alexandria, VA 22313-1450

Re: U.S. Patent Application No. 09/543,480
Title: "Multi-Band Spectral Audio Encoding"
Inventor: V. Srinivasan
Our Reference No.: 20004/36-US

Dear Examiner Sloan:

Per our earlier conversation, attached is a listing of specification pages where, it is respectfully submitted, support may be found for new claims in the case.

If you have any questions or concerns, please do not hesitate to contact me.

Best regards,

Mark C. Zimmerman

MCZ
Enclosure

Claims 40, 41, 56, 57, 58, and 61

- > Page 21, lines 12-17 – the encode processes short blocks to minimize delay
- > Page 24, line 16 – page 25, line 7, and Fig. 2, block 44 – the short block is represented by a time domain function $v(n)$ and is multiplied by a window function $w(n)$. The product of this multiplication, which is a short block, is transformed into the frequency domain using a discrete Fourier transformation.
- > Page 28, lines 9-14 – Masking analysis is performed on the short block FFT.
- > Page 33, line 3-4 – It is the spectrum of the long block that is analyzed during decoding.
- > Page 35, lines 1-5 – The decoder analyzes long blocks
- > Page 26, lines 9-11 – Defines high resolution spectra as corresponding to long blocks and low resolution spectra as corresponding to short blocks.

Claims 42, 49

- > Page 30, lines 10-16