Part II. Motions under rotation

- homogeneous fluids, no stratification

Free motions – Inertial Oscillations

Not subject to real force:

$$\frac{du}{dt} - fv = 0$$

$$\frac{dv}{dt} + fu = 0$$

$$u = V \sin(ft + \phi), \quad v = V \cos(ft + \phi)$$

$$V = \sqrt{u^2 + v^2}$$

$$V = \sqrt{u^2 + v^2}$$

Table 9.1 Inertial Oscillations

Latitude (φ)	T_i (hr) for $V = 2$	` ,	x	=	$x_0 - \frac{V}{f} \cos(ft + \phi)$
90° 35°	11.97 20.87	$\frac{2.7}{4.8}$			J T.7
10°	68.93	15.8	y	=	$y_0 + \frac{V}{f}\sin(ft + \phi)$

$$(x - x_0)^2 + (y - y_0)^2 = \left(\frac{V}{f}\right)^2$$

f : inertial frequency

Figure 9.1 Trajectory of a water parcel calculated from current measured from August 17 to August 24, 1933 at 57°49'N and 17°49'E west of Gotland (From Sverdrup, Johnson, and Fleming, 1942).

2006 Feb 28 00:00 GMT

Geostrophic flow

Assumptions:

$$R_o \ll 1$$
 and $E_k \ll 1$

Inertial acceleration, nonlinear advection and viscosity terms are neglected

Governing equations

$$-fv = -\frac{1}{\rho_0} \frac{\partial p}{\partial x}$$

$$+fu = -\frac{1}{\rho_0} \frac{\partial p}{\partial y}$$

Geostrophic balance

balance between the pressure gradient term and the Coriolis term

$$\mathbf{u} \cdot \nabla p = 0$$

Geostrophic flow is perpendicular to the pressure gradient (force).

High pressure is to the right (left) of the geostrophic flow in the northern (southern) hemisphere

FIGURE 7.9 Geostrophic balance: horizontal forces and velocity. PGF = pressure gradient force. CF = Coriolis force. v = velocity (into and out of page). See also Figure S7.17.

Hydrostatic balance
$$\frac{\partial p}{\partial z} + \rho g = 0$$

If $\rho = \rho_0$ everywhere, vertically integrating the equation from z=-h to the surface z= η :

$$\int_{z=-h}^{z=\eta} \frac{\partial p}{\partial z} dz + \rho_0 g(h+\eta) = 0$$

$$p|_{z=-h} = p|_{z=\eta} + \rho_0 g(h+\eta)$$

$$z = 0$$

The the horizontal momentum equations become:

$$-fv = -\frac{1}{\rho_0} \frac{\partial}{\partial x} (P_o + \rho_0 gh + \rho_0 g\eta) = -g \frac{\partial \eta}{\partial x}$$

$$\frac{\partial h}{\partial x} = 0$$

$$fu = -\frac{1}{\rho_0} \frac{\partial}{\partial y} (P_o + \rho_0 gh + \rho_0 g\eta) = -g \frac{\partial \eta}{\partial y}$$

If for everywhere $\rho = \rho_0$

$$\frac{\partial u}{\partial z} = 0$$

$$\frac{\partial v}{\partial z} = 0$$

shortly after injection of dye

several revolutions later

The flow has no vertical shear and the fluid moves like a slab – **Taylor column**

$$-fv = -\frac{1}{\rho_0} \frac{\partial p}{\partial x}$$

$$+fu = -\frac{1}{\rho_0} \frac{\partial p}{\partial y}$$

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = -\frac{\partial}{\partial x} \left(\frac{1}{\rho_0 f} \frac{\partial p}{\partial y} \right) + \frac{\partial}{\partial y} \left(\frac{1}{\rho_0 f} \frac{\partial p}{\partial x} \right) = 0.$$

Geostrophic flows are horizontally non-divergent for a f-plane

From the continuity equation:

$$\frac{\partial w}{\partial z} = 0$$

For flat surface or bottom, w = 0 through the water column

Streamfunction ψ

$$u = -\frac{\partial \psi}{\partial y}, \quad v = \frac{\partial \psi}{\partial x}$$

Geostrophic flow over irregular bottom

Boundary conditions at the surface and bottom:

$$w|_{z=\eta} = \frac{\partial \eta}{\partial t} + u \frac{\partial \eta}{\partial x} + v \frac{\partial \eta}{\partial y}$$

$$|_{z=\eta} = 0$$

$$|_{z=\theta} = u \frac{\partial b}{\partial x} + v \frac{\partial b}{\partial y}$$

$$|_{z=\theta} = u \frac{\partial b}{\partial x} + v \frac{\partial b}{\partial y}$$

$$|_{z=\theta} = u \frac{\partial h - H}{\partial x} + v \frac{\partial h - H}{\partial y}$$

$$|_{z=\theta} = 0$$

$$\eta = h + b - H$$

For steady motion

$$\boldsymbol{u} \cdot \boldsymbol{\nabla} h = \boldsymbol{0}$$

Geostrophic flows must follow contant h