A Tiny Taste of Machine Learning

What Is Machine Learning

- Many useful programs learn something
- In the last two 6.00.2x lectures we used linear regression to learn models of data
- "Field of study that gives computers the ability to learn without being explicitly programmed." Arthur Samuel

What Is Machine Learning?

Modern statistics meets optimization

Traditional Programming

Machine Learning

How Are Things Learned?

- Memorization
 - Accumulation of individual facts
 - Limited by
 - Time to observe facts
 - Memory to store facts
- Generalization
 - Deduce new facts from old facts
 - Limited by accuracy of deduction process
 - Essentially a predictive activity
 - Assumes that the past predicts the future

4

Basic Paradigm

- Observe set of examples: training data
- Infer something about process that generated that data
- Use inference to make predictions about previously unseen data: test data

All ML Methods Require

- Representation of the features
- Distance metric for feature vectors
- Objective function and constraints
- Optimization method for learning the model
- Evaluation method

Supervised Learning

- Start with set of feature vector/value pairs
- Goal: find a model that predicts a value for a previously unseen feature vector
- Regression models predict a real
 - As with linear regression
- Classification models predict a label (chosen from a finite set of labels)

Unsupervised Learning

- Start with a set of feature vectors hu Lape
- Goal: uncover some latent structure in the set of feature vectors
- Clustering the most common technique
 - Define some metric that captures how similar one feature vector is to another
 - Group examples based on this metric

Some Unlabeled 2D Data

Weight

Some Unlabeled 2D Data

Some Unlabeled 2D Data

Weight

Suppose Data Is Labeled

Weight

Choosing Features

- Features never fully describe the situation
- Feature engineering
 - Represent examples by feature vectors that will facilitate generalization
 - Suppose I want to use 100 examples from past to predict, at the start of 6.00.2x, which students will pass the final exam
 - Some features surely helpful, e.g., their grade on the midterm, did they do the problem sets, etc.
 - Others might cause me to overfit, e.g., birth month
- Want to maximize ratio of useful input to irrelevant input
 - Signal-to-Noise Ratio (SNR)