A Carbonyl-Trapping Mechanism-based Automatic Mining (CTM-AM)

Strategy for Accelerating Discovery of Natural Products with AntiAdvanced Glycation End Products Activity

User Manual of CTM-AM

Wenjun Qi, Mi Zhang, Takashi Kikuchi*, Kouharu Otsuki, Wei Li*

Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan

E-mail: liwei@phar.toho-u.ac.jp

Software Introduction

CTM-AM was employed to accelerate the discovery of anti-AGE natural products. This method facilitates the construction of a methylglyoxal (MGO) adduct library, guided by carbonyl trap reaction properties, for the rapid identification of MGO-trapped components in medicinal plants. Moreover, the tool offers a flexible framework that can be readily adapted to other reactive dicarbonyl species.

Software Setup

Download and install R with R studio (R 3.6.0 or higher to be installed).

1. Required Packages:

"Shiny, DT, dplyr, fs, purrr, readr, readxl, writexl, stringr, shinyWidgets, bslib"

2. Launching the Application:

Fig 1. Enter the main interface of CTM-AM.

- (1) Open RStudio.
- (2) Open the application's main R script "CTM-AM.R".
- (3) Click the "Run App" button in the top-right corner of the script window.
- (4) The application will open in default web browser or inside RStudio's Viewer panel.

Graphical User Interface

1. Construction of MGO Adducts Library

The "Tab-Library" allows users to generate a corresponding molecular weight library by adjusting the number of attachable carbonyl compounds.

Fig 2. The Library function of the CTM-AM interface.

- (1) Select the type of carbonyl compound and reaction product and determine the number of reactants that can be reacted.
- (2) Set molecular weight range (ppm).
- (3) Click the "Generate Library" button to view the table and save it in csv file format.

2. Align data preprocessing and classification

The "Tab-Preprocessing" module allows users to group and classify files processed by MZmine for subsequent feature matching and filtering.

Fig 3. The Preprocessing function of the CTM-AM interface.

- (1) Import an alignment file in .csv format and match the data before and after the same extraction reaction.
- (2) Set the matching error of peaks based on m/z (ppm) and retention time (min).
- (3) Click the "Run Grouping and Classification " button.

3. Product library MS1 matching and MS2 spectrum mining

The "Tab-Mining" automatically identifies compounds and their corresponding products at both MS1 and MS2 levels, guided by the characteristics of carbonyl trap reactions.

Fig 4. The Mining function of the CTM-AM interface.

- (1) Select the .csv file of the generated carbonyl product library and explore the retention time range of active compounds.
- (2) Click the "Run Mining-MS1 Level" button to perform matching mining.
- (3) Select the .mgf file of MZmine processed extract data. Set the noise threshold and error for MS2.
- (4) Choose the calculation method for spectral similarity.
- (5) Click the "Run Mining-MS2 Level" button to perform matching mining.

4. High confidence compounds based on Sirius annotation

The "Tab-Annotation" automatically annotates high-confidence mined compounds and

further validates the matching results based on the predicted molecular formulae of the products.

Fig 5. The Annotation function of the CTM-AM interface.

- (1) Upload the .mgf file and select the substrate or product list that requires Sirius annotation.
- (2) Click the "Match MGF" button to generate the corresponding file.
- (3) Upload .csv files of substrates and products separately for matching and validation by obtaining Sirius' annotation list
- (4) Click the "Submit Annotation Processing" button to view the annotation results.

The Mining and Annotation workflow of the CTM-AM

Fig 6. The CTM-AM mining workflow based on MS1 level.

The Mining and Annotation workflow of the CTM-AM

Fig 7. The CTM-AM mining workflow based on MS2 level and Sirius annotation.

Result output list

1. LC-MS data of candidate active compounds and matching products

S_value	S_retention_time	S_Peak.area1	S_Peak.area2	P_value	P_retention_time	P_Peak.area2	n	value_type	match_label
595.1650579	5.901824	10300000	0	667.1861251	5.191679	130796.65	1	S+1*MGO-0*H2-0*H2O	High confidence
595.1650579	5.901824	10300000	0	667.1866177	5.3211374	116961.41	1	S+1*MGO-0*H2-0*H2O	High confidence
611.1594097	6.022133	166022.88	0	683.1812551	6.143692	217598.48	1	S+1*MGO-0*H2-0*H2O	Mid confidence
611.1599373	5.435599	55600000	13200000	755.2017545	4.4442368	1340893.1	2	S+2*MGO-0*H2-0*H2O	Mid confidence
611.1599373	5.435599	55600000	13200000	755.2018358	4.6019	825835	2	S+2*MGO-0*H2-0*H2O	Mid confidence
611.1599373	5.435599	55600000	13200000	755.2021021	4.271996	638012.94	2	S+2*MGO-0*H2-0*H2O	Mid confidence
625.1755556	5.973773	12700000	1614444.4	697.1966832	5.416439	293388	1	S+1*MGO-0*H2-0*H2O	High confidence
625.1755556	5.973773	12700000	1614444.4	769.2181255	5.0921497	61245.45	2	S+2*MGO-0*H2-0*H2O	Mid confidence
645.1653011	4.33785	116950.8	0	753.1852486	5.1618557	97370.31	2	S+2*MGO-0*H2-2*H2O	Mid confidence
645.1653011	4.33785	116950.8	0	753.186065	5.022943	957535.25	2	S+2*MGO-0*H2-2*H2O	Mid confidence
645.1653011	4.33785	116950.8	0	753.186251	4.8009887	554811.1	2	S+2*MGO-0*H2-2*H2O	Mid confidence

- (1) *s value*: The molecular weight of the precursor ion of the reaction substrate.
- (2) *s retention time*: The retention time of precursor ions in the reaction substrate.
- (3) *s peak.area1*: The peak area of the reaction substrates after 24 hours without adding MGO.
- (4) *s peak.area2*: The peak area of the reaction substrates after 24 hours of reaction with MGO.
- (5) *p value*: The molecular weight of the precursor ion of the products.
- (6) *s retention time*: The retention time of precursor ions in the products.
- (7) *s peak.area2*: The peak area of the product after 24 hours of reaction with MGO.
- (8) n: The number of MGO adducted to the substrate after the reaction.
- (9) value type: The types of MGO attached to substrates after reaction.

2. LC-MS data of candidate active compounds and matching products

Matched_mz_S	Matched_mz_P	Matched_mz_Intensity_S	Matched_mz_Intensity_P	Jaccard_Similarity	Weighted_Cosine_Similarity
57.0343, 61.0291, 69.034;	57.0343, 61.0291, 69.	(1300000.00, 450000.00, 1000	26000.00, 8900.00, 15000.00	0.025641026	0.997365638
57.0343, 61.0291, 69.034;	57.0343, 61.0291, 69.	(1300000.00, 450000.00, 1000	21000.00, 6100.00, 13000.00	0.026315789	0.996681572
53.0394, 55.0186, 57.034	53.0393, 55.0186, 57.	(48000.00, 60000.00, 290000.0	5600.00, 6200.00, 48000.00,	0.014925373	0.757247628
57.0343, 69.0342, 71.049	57.0343, 69.0341, 71.	(1600000.00, 910000.00, 1200	56000.00, 16000.00, 340000	0.007751938	0.941683019
71.0499, 85.0290, 129.05-7	71.0499, 85.0290, 129	12000000.00, 18000000.00, 1	57000.00, 69000.00, 7900.00	0.022988506	0.949424656
55.0550, 57.0343, 61.029	55.0550, 57.0343, 61.	(160000.00, 1600000.00, 5900	6500.00, 46000.00, 9900.00,	0.014925373	0.950055182
53.0394, 55.0186, 57.034	53.0394, 55.0186, 57.	(190000.00, 200000.00, 17000	6700.00, 7000.00, 55000.00,	0.014705882	0.994252097
71.0499, 85.0290, 92.007(71.0499, 85.0290, 92.	(13000000.00, 19000000.00, 7	43000.00, 61000.00, 8900.00	0.018018018	0.837692111
71.0499, 85.0290, 92.008	71.0498, 85.0291, 92.	(39000.00, 53000.00, 5100.00	9700.00, 15000.00, 5400.00	0.083333333	0.976067475
57.0342, 71.0499, 85.029(5	57.0342, 71.0499, 85.	05600.00, 39000.00, 53000.00	120000.00, 710000.00, 9200	0.011627907	0.999732708
57.0342, 71.0499, 85.029(5	57.0343, 71.0499, 85.	05600.00, 39000.00, 53000.00,	55000.00, 380000.00, 57000	0.011111111	0.993942453

- (1) *matched mz s*: The m/z of the feature fragments matched in the MS2 spectrum of the substrate.
- (2) matched mz p: The m/z of the feature fragments matched in the MS2 spectrum of

- the product.
- (3) *matched mz intensity s*: The peak intensity values of characteristic fragments matched in the MS2 spectrum of substrate.
- (4) *matched mz intensity p*: The peak intensity values of characteristic fragments matched in the MS2 spectrum of product.
- (5) *jaccard similarity*: The calculation value of Jaccard similarity between substrate and corresponding product.
- (6) *weighted cosine similarity*: The calculation value of weighted cosine similarity between substrate and corresponding product.

3. LC-MS data of candidate active compounds and matching products

name	ConfidenceScoreExact	ConfidenceScoreApproximate	molecularFormula	adduct	NDO#class	P molecularFormula	P sirius molecularFormula	P label
3-[[4,5-dihydroxy-6-(hydroxymethyl)-3-[(0.354	0.48	C27H30O15	[M + H]+	Flavonols	C30H34O17	C30H34O17	high confidence
3-[[4,5-dihydroxy-6-(hydroxymethyl)-3-[[0.354	0.48	C27H30O15	[M + H]+	Flavonols	C30H34O17	C30H34O17	high confidence
Rutin	0.649	0.718	C27H30O16	[M + H]+	Flavonols	C30H34O18	C30H34O18	high confidence
Rutin	0.776	0.848	C27H30O16	[M + H]+	Flavonols	C33H38O20	C33H38O20	high confidence
Rutin	0.776	0.848	C27H30O16	[M + H]+	Flavonols	C33H38O20	C33H38O20	high confidence
Rutin	0.776	0.848	C27H30O16	[M + H]+	Flavonols	C33H38O20	C33H38O20	high confidence
Keioside	0.63	0.745	C28H32O16	[M + H]+	Flavonols	C31H36O18	C31H36O18	high confidence
Keioside	0.63	0.745	C28H32O16	[M + H]+	Flavonols	C34H40O20	C34H40O20	high confidence
6-Hydroxy-Rutin	0.311	0.582	C27H30O17	[M + H2O + H]+	Flavonols	C33H34O19	C33H36O20	mid confidence
6-Hydroxy-Rutin	0.311	0.582	C27H30O17	[M + H2O + H]+	Flavonols	C33H34O19	C33H36O20	mid confidence
6-Hydroxy-Rutin	0.311	0.582	C27H30O17	[M + H2O + H]+	Flavonols	C33H34O19	C33H36O20	mid confidence

- (1) *name*: The Sirus predicts candidate names based on database molecular fingerprints.
- (2) confidence score exact: The structure prediction score of Sirus in Exact mode.
- (3) *confidence score approximate*: The structure prediction score of Sirus in Approximate mode.
- (4) molecular formula: The molecular formula of the compound predicted by Sirus.
- (5) adduct: The adduct of the compound predicted by Sirus.
- (6) class: The structural categories of compounds predicted by CANOPUS.
- (7) *p molecular formula*: The molecular formula of the product obtained by matching the carbonyl product library.
- (8) *p sirius molecular formula*: The molecular formula of the product predicted by Sirus.
- (9) *p label*: Distinguish confidence levels by comparing predicted and matched molecular formulas.