```
import pandas as pd
from scipy import stats
from sklearn.preprocessing import MinMaxScaler
import numpy as np
df=pd.read_csv("/bmi.csv")
print(df)
```

		Gender	Height	Weight	Index
	0	Male	174	96	4
	1	Male	189	87	2
	2	Female	185	110	4
	3	Female	195	104	3
	4	Male	149	61	3
	495	Female	150	153	5
	496	Female	184	121	4
	497	Female	141	136	5
	498	Male	150	95	5
	499	Male	173	131	5

[500 rows x 4 columns]

df.dropna()

-		-
	⇒	\neg

	Gender	Height	Weight	Index				
0	Male	0.809353	0.587322	4				
1	Male	0.926867	0.375390	2				
2	Female	0.813400	0.581704	4				
3	Female	0.884810	0.465951	3				
4	Male	0.836314	0.548250	3				
495	Female	0.178116	0.984010	5				
496	Female	0.756127	0.654425	4				
497	Female	0.021674	0.999765	5				
498	Male	0.382762	0.923847	5				
499	Male	0.604868	0.796326	5				
500 rows × 4 columns								

Start coding or generate with AI.

4

```
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
df[['Height','Weight']]=scaler.fit_transform(df[['Height','Weight']])
df.head(10)
```

۰	6	-
-	→	\neg

	Gender	Height	Weight	Index
0	Male	0.247939	-0.309117	4
1	Male	1.164872	-0.587322	2
2	Female	0.920357	0.123647	4
3	Female	1.531645	-0.061823	3
4	Male	-1.280283	-1.391027	3
5	Male	1.164872	-0.061823	3
6	Male	-1.402541	-0.432764	5
7	Male	-0.974639	0.154559	5
8	Male	0.247939	-0.494587	3
9	Female	-0.057706	-0.092735	4

scaler=MinMaxScaler()

df[['Height','Weight']]=scaler.fit_transform(df[['Height','Weight']])
df.head(10)

1					
,		Gender	Height	Weight	Index
	0	Male	0.576271	0.418182	4
	1	Male	0.830508	0.336364	2
	2	Female	0.762712	0.545455	4
	3	Female	0.932203	0.490909	3
	4	Male	0.152542	0.100000	3
	5	Male	0.830508	0.490909	3
	6	Male	0.118644	0.381818	5
	7	Male	0.237288	0.554545	5
	8	Male	0.576271	0.363636	3
	9	Female	0.491525	0.481818	4
	4				

from sklearn.preprocessing import Normalizer
scaler=Normalizer()

df[['Height','Weight']]=scaler.fit_transform(df[['Height','Weight']])
df

\rightarrow

	Gender	Height	Weight	Index
0	Male	0.809353	0.587322	4
1	Male	0.926867	0.375390	2
2	Female	0.813400	0.581704	4
3	Female	0.884810	0.465951	3
4	Male	0.836314	0.548250	3
495	Female	0.178116	0.984010	5
496	Female	0.756127	0.654425	4
497	Female	0.021674	0.999765	5
498	Male	0.382762	0.923847	5
499	Male	0.604868	0.796326	5

500 rows × 4 columns

```
from sklearn.preprocessing import Normalizer
scaler=Normalizer()
df[['Height','Weight']]=scaler.fit_transform(df[['Height','Weight']])
df
```


	Gender	Height	Weight	Index			
0	Male	0.625687	-0.780074	4			
1	Male	0.892924	-0.450208	2			
2	Female	0.991096	0.133150	4			
3	Female	0.999186	-0.040331	3			
4	Male	-0.677211	-0.735789	3			
495	Female	-0.642809	0.766027	5			
496	Female	0.880037	0.474905	4			
497	Female	-0.885715	0.464230	5			
498	Male	-0.963237	-0.268652	5			
499	Male	0.234966	0.972004	5			
500 rows × 4 columns							

df3=pd.read_csv("/bmi.csv")
from sklearn.preprocessing import MaxAbsScaler
scaler=MaxAbsScaler()
df3[['Height','Weight']]=scaler.fit_transform(df3[['Height','Weight']])

	Gender	Height	Weight	Index				
0	Male	0.874372	0.60000	4				
1	Male	0.949749	0.54375	2				
2	Female	0.929648	0.68750	4				
3	Female	0.979899	0.65000	3				
4	Male	0.748744	0.38125	3				
495	Female	0.753769	0.95625	5				
496	Female	0.924623	0.75625	4				
497	Female	0.708543	0.85000	5				
498	Male	0.753769	0.59375	5				
499	Male	0.869347	0.81875	5				
500 r	500 rows × 4 columns							

Start coding or $\underline{\text{generate}}$ with AI.

4

```
df4=pd.read_csv("/bmi.csv")
from sklearn.preprocessing import RobustScaler
scaler=RobustScaler()
df4[['Height','Weight']]=scaler.fit_transform(df3[['Height','Weight']])
df4
```

```
∓
```

```
Gender
              Height
                        Weight Index
            0.125000 -0.178571
 0
      Male
                                    4
            0.660714 -0.339286
 1
      Male
                                    2
    Female
            0.517857 0.071429
 2
                                    4
 3
    Female 0.875000 -0.035714
      Male -0.767857 -0.803571
 4
                                    3
    Female -0.732143
                       0.839286
                                    5
495
    Female 0.482143
496
                       0.267857
    Female -1.053571 0.535714
                                    5
497
498
      Male -0.732143 -0.196429
499
      Male 0.089286 0.446429
```

```
500 rows × 4 columns
```

import pandas as pd

```
import numpy as np
import matplotlib
import seaborn as sns
import statsmodels.api as sm
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from sklearn.feature_selection import RFE
from sklearn.linear_model import RidgeCV, LassoCV, Ridge, Lasso
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import mutual_info_regression
from sklearn.feature_selection import mutual_info_classif
from sklearn.feature_selection import chi2
df=pd.read_csv("titanic_dataset.csv")
df.columns
dtype='object')
df.shape
→ (891, 12)
X=df.drop("Survived", axis=1)
y=df['Survived']
Χ
У
```

```
0
                  0
       1
                  1
       2
                  0
       4
                  0
      886
      887
                  0
      888
      889
                  0
      890
     891 rows × 1 columns
     dtvne int64
df1=df.drop(["Name","Sex", "Ticket","Cabin","Embarked"],axis=1)
df1.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Age', 'SibSp', 'Parch', 'Fare'], dtype='object')
df1['Age'].isnull().sum()
<del>→</del> 177
df1['Age'].fillna(method='ffill')
🚁 <ipython-input-13-ad737854164f>:1: FutureWarning: Series.fillna with 'method' is deprecated and will raise in a future version. Use obj.f
       df1['Age'].fillna(method='ffill')
           Age
           22.0
       0
           38.0
       1
           26.0
       2
       3
           35.0
           35.0
       4
       ...
      886 27.0
      887
          19.0
      888 19.0
      889 26.0
      890 32.0
     891 rows × 1 columns
     dtype: float64
import pandas as pd
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from sklearn.feature_selection import mutual_info_classif
from sklearn.feature_selection import mutual_info_regression
```

 $\overline{\Rightarrow}$

Survived

data=pd.read_csv('/titanic_dataset.csv')

data=data.dropna()

x=data.drop(['Survived','Name','Ticket'],axis=1) y=data['Survived']

\Rightarrow		PassengerId	Pclass	Sex	Age	SibSp	Parch	Fare	Cabin	Embarked		
	1	2	1	female	38.0	1	0	71.2833	C85	С	11.	
	3	4	1	female	35.0	1	0	53.1000	C123	S	+/	
	6	7	1	male	54.0	0	0	51.8625	E46	S		
	10	11	3	female	4.0	1	1	16.7000	G6	S		
	11	12	1	female	58.0	0	0	26.5500	C103	S		
	871	872	1	female	47.0	1	1	52.5542	D35	S		
	872	873	1	male	33.0	0	0	5.0000	B51 B53 B55	S		
	879	880	1	female	56.0	0	1	83.1583	C50	С		
	887	888	1	female	19.0	0	0	30.0000	B42	S		
	889	890	1	male	26.0	0	0	30.0000	C148	С		
	183 rd	ows × 9 columns	183 rows × 9 columns									

Next steps:

Generate code with x

View recommended plots

New interactive sheet

Double-click (or enter) to edit

Suggested code may be subject to a license | BoudhayanBanerjee/political-ad-classifier data["Sex"]=data["Sex"].astype('category')

data["Sex"]=data["Sex"].cat.codes

data["Cabin"]=data["Cabin"].astype('category')

data["Cabin"]=data["Cabin"].cat.codes

data["Embarked"]=data["Embarked"].astype('category')

data["Embarked"]=data["Embarked"].cat.codes

data

\Rightarrow		PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	0	38.0	1	0	PC 17599	71.2833	72	0
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	35.0	1	0	113803	53.1000	48	2