

Dual Adaptive Transformations for Weakly Supervised Point Cloud Segmentation

Zhonghua Wu ^{1,2}, Yicheng Wu ³, Guosheng Lin ^{1,2}, Jianfei Cai ^{2,3}, and Chen Qian ⁴

¹S-lab, NTU ²School of Computer Science and Engineering, NTU

³Dept of Data Science and AI, Monash University ⁴SenseTime Research

Contributions:

- Advocate the consistency constraint under various perturbations to effectively regularize unlabeled 3D points.
- ➤ Propose a novel DAT (Dual Adaptive Transformations) model, via an adversarial strategy at both point-level and region-level, enforcing the local and structural smoothness constraints.

- Overall pipeline of our proposed Dual Adaptive
 Transformation (DAT) model.
 - > Segmentation (SEG) module: adopts KPConv backbone.
 - ➤ Local Adaptive Perturbation (LAP) module: generate class-aware perturbed examples on each point.
 - ➤ Regional Adaptive Deformation (RAD) module: generates structural deformed data on each region.
 - > During testing, we only employ SEG module.

Local Adaptive Perturbation Module:

- Encourage our model to generate consistent outputs between each input point x and its perturbed version $x + r_{ada}$:
 - $LDS(x; \theta) = D[p(\hat{y}|x; \theta), p(\hat{y}|x + r^{ada}; \theta)]$
 - $g = \nabla_R D[p(\hat{y}|x,\theta), p(\hat{y}|x+r,\theta)]|_{r=\xi d}$
 - $r^{ada} = \epsilon g / \|g\|_2$

Class-aware Perturbation Generator.

- \triangleright d_f : sampling from the up-to-date class-aware multivariate Gaussian distribution.
- $\geq d_c$: sampling from the iid Gaussian distribution.
- The LDS loss becomes:
 - $LDS(x; \theta) = D[p(\hat{y}|c, f; \theta), p(\hat{y}|c + \xi_c d_c, f + \xi_f d_f; \theta)]$
 - $g_c = \nabla_{\xi_c d_c} LDS(x, \theta), g_f = \nabla_{\xi_f d_f} LDS(x, \theta)$
 - $r_c^{ada} = \epsilon_c g_c / ||g_c||_2, r_f^{ada} = \epsilon_f g_f / ||g_f||_2$

Regional Adaptive Deformation Module:

- For each superpoint S_i , generate the initial affine transformation matrices $A_{i,i}$.
- > Deform each superpoint as:
 - $S_i^{int} = S_i \cdot \prod_{i=1}^{K_a} \xi_a A_{i,i}$
- \succ The LDS loss becomes:
 - $LDS(X; \theta) = D[p(\hat{y}|x; \theta), p(\hat{y}|x^{int}; \theta)]$
 - $g_{A_{i,j}} = \nabla_{\xi_A A_{i,j}} LDS(x; \theta)$
 - $\bullet \quad A_{i,j}^{ada} = \epsilon_A g_{A_{i,j}} / \left\| g_{A_{i,j}} \right\|_2$
- The deformed superpoints are computed as:
 - $S_i^{ada} = S_i * \prod_{j=1}^{K_a} A_{i,j}^{ada}$

Superpoint

Local Perturbed Example Regional Deformed Example

Experimental Results:

Table 1. Comparison of our DAT with several existing methods on the S3DIS Area-5 set. Note that, we report the performance as final results based on the KPConv [38] backbone.

Method	Supervision (%) mIoU (%			
PointNet [32]	100%	41.1		
PointCNN [21]	100%	57.3		
Xu et al. [53]	0.2%	44.5		
Xu et al. [53]	10%	48.0		
GPFN [39]	16.7% 2D	50.8		
GPFN [39]	100% 2D	52.5		
1T1C [24]	0.02% (OTOC)	50.1		
$1T1C \begin{bmatrix} 24 \end{bmatrix}$	0.06% (OTTC)	55.3		
Our DAT	0.02% (OTOC)	56.5		
Our DAT	0.06% (OTTC)	58.5		
Our Upper Bound	100%	65.4		

Table 2. Comparison of our DAT with its variant methods with the KPConv framework. Note that, all experiments are conducted under the OTOC setting on the S3DIS dataset

Method	m Noises Coordinates	LAP	RAD	mIoU (
Our Baseline Ours w/ Noise Ours w/ Noise Ours w/ Noise	√ ✓			50.1 49.1 52.9 52.6
Ours w/ PAP Ours w/ RAD Our DAT		\(√ ✓	53.9 54.8 56.5

Table 6. Comparison of our DAT model with several existing methods on the ScanNet-v2 test set. "Our DAT†" denotes that our DAT is built upon the 1T1C [24] model.

Method	Supervision	mIoU (%
Pointnet++ $[33]$	100%	33.9
PointCNN [21]	100%	45.8
MinkowskiNet [5]	100%	73.6
Virtual MVFusion [15]	100% + 2D	74.6
MPRM [44]	scene-level	24.4
MPRM [44]	subcloud-level	41.1
MPRM+CRF [44]	subcloud-level	43.2
CSC_LA_SEM [11]	20 points	53.1
Viewpoint_BN_LA_AIR [25]	20 points	54.8
PointContrast_LA_SEM [52]	20 points	55.0
1T1C [24]	20 points	59.4
Our Baseline	20 points	51.6
Our DAT	20 points	55.2
Our DAT†	20 points	62.3
Our Upper Bound	100%	68.4

Qualitative Results:

Fig. 5. Two results of our DAT on the S3DIS (first two rows, under the "OTOC" setting) and ScanNet-v2 datasets (last two rows, under the "20 points" setting).