INTERNATIONAL TRADE AND CHILD LABOR: AN ECONOMETRIC ANALYSIS

- Chandrasekhar N (HS12H014) Hitesh Khandelwal (MM13B017) Nanta Kumar (MM13B026) Pruthvi (NA12B016) Varun Ananth Murthy (HS12H045) Sandeep Shaw (EE11B073)

WHAT IS CHILD LABOR?

- According to ILO, work that deprives children of their:
 - Dignity
 - Physical and mental development
 - Childhood
 - Potential and schooling

- Status of child labor(5-17):
 - 168 million worldwide
 - 85 million = hazardous work

CHILD LABOR SCENARIO

% of children aged 5-17 years old

Child labour distribution by level of national income, 5-17 years age group, 2012									
National income category	Total children	Child labour	Child labour						
	(000)	('000)	(%)						
Low income	330,257	74,394	22.5						
Lower middle income	902,174	81,306	9.0						
Upper middle income	197,977	12,256	6.2						

AIM OF STUDY

DOES TRADE AFFECT THE LIVES OF CHILD LABOURERS?

EFFECT OF CHANGES IN RELATIVE RETURN TO CHILD LABOR

- Assumption(Ranjan 2001):
 - Unskilled labor abundant country
 - Child Labor is imperfect substitute of Adult labor
 - Present discounted return to education>return to child labor
 - Child going to school is parents decision
- · Conclusions:

METHODOLOGY

- Data from World Bank for 88 countries from 2012
- Child labor = 10-14 age; Economically active
- Openness = (Exports + Imports)/GDP

OPENNESS VS CHILD LABOR

Significant variation in both openness and child labor

MODEL GENERATION

$$cl_i = \beta_0 + \beta_1 openness_i + \varepsilon_i \tag{1}$$

Cl_i = for country i, % of 10-14 population that is economically active

 β_1 = Average change in Cl_i with an increase in openness

CROSS COUNTRY TRADE AND CHILD LABOR

ANOVA TABLE FOR (1)

Stata takes null hypothesis that sample parameter is **zero** & we **reject** that!

reg child op	eness							
Source	SS	df		MS		Number of obs		
Model Residual	696.483823 10755.1412	1 86		483823 059781		F(1, 86) Prob > F R-squared	=	0.0205 0.0608
Total	11451.625	87	131.	627874		Adj R-squared Root MSE		0.0499 11.183
child	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
openess _cons	0851516 22.23158	.0360 3.238		-2.36 6.86	0.021 0.000	1568812 15.79317		.013422 8.66999

Trade ← Income (Frankel & Romer -1999)

. correlate openess gdppc (obs=88)

	openess	gdppc
openess gdppc	1.0000 0.1638	1.0000

Child Labor ← Income (Edmonds & Pavcnik 2006)

Trade Child Labor ??

$$cl_i = \beta_0 + \beta_1 openness_i + \varepsilon_i$$

$$cl_i = \beta_0 + \beta_1 openness_i + \gamma_1 ln(income_i) + \varepsilon_i$$
.

 $\beta_1(2)$ = Average change in Cl_i with an increase in openness after **controlling for** any effects of income on trade

$$\beta_1(2)-\beta_1(1)$$
 Trade \leftarrow Child Labor due to Trade \leftarrow Income

Later

$$cl_i = \beta_0 + \beta_1 openness_i + \gamma_1 ln(income_i) + \gamma_2 (ln(income_i))^2 + \varepsilon_i$$
.

MODEL WITHOUT LOG

. reg child or	peness gdppc							
Source	SS	df		MS		Number of obs		88
Model Residual	3065.56124 8386.06376	2 85		. 78062 595737		F(2, 85) Prob > F R-squared	=	15.54 0.0000 0.2677
· Total	11451.625	87	131.	627874		Adj R-squared Root MSE	=	0.2505 9.9328
child	Coef.	Std.	Err.	t	P> t	[95% Conf.	In	terval]
openess gdppc _cons	0590733 0009972 25.04652	.0324 .0002 2.93	035	-1.82 -4.90 8.54	0.073 0.000 0.000	1236667 0014018 19.21403		0055202 0005926 30.879

R-squared is lower than the next model

ANOVA OF MODEL 2

. reg child op	peness login						
Source	SS	df	MS		Number of obs	=	88
					F(2, 85)	=	35.86
Model	5240.64656	2 2	620.32328		Prob > F	=	0.0000
Residual	6210.97844	85 7	3.0703346		R-squared	=	0.4576
					Adj R-squared	=	0.4449
Total	11451.625	87 1	31.627874		Root MSE	=	8.5481
child	Coef.	Std. Er	r. t	P> t	[95% Conf.	In	terval]
openess	0405358	.028155	2 -1.44	0.154	0965158	_1	0154441
login	-6.21072	.787563	5 -7.89	0.000	-7.776607	-4	. 644833
_cons	67 . 67555	6.2718	9 10.79	0.000	55.20535	8	0.14575

R-Squared is higher than previous models (But not more than the final model)

VIF – TEST FOR MULTICOLLINEARITY

. vif

VIF is within limits (<10)
Hence sample doesn't
suffer from
Multicollinearity

Variable	VIF	1/VIF
login	1.04	0.959622 0.959622
Mean VIF	1.04	

RVF PLOT

TEST FOR HETEROSKEDASTICITY

. imtest, white

White's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chi2(5) = 12.46

Prob > chi2 = 0.0291

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	12.46 7.90 2.46	5 2 1	0.0291 0.0192 0.1169
Total	22.82	8	0.0036

Since calculated chi2> tabulated chi2, we reject the null hypothesis, and thus the model suffers from heteroscedasticity at 1% significance

ESTIMATION WITH ROBUST STANDARD ERRORS

. reg child openess login, robust

Linear regression

Number of obs = 88 F(2, 85) = 40.03 Prob > F = 0.0000 R-squared = 0.4576 Root MSE = 8.5481

child	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
openess	0405358	.0323148	-1.25	0.213	1047863	.0237146
login	-6.21072	.7095668	-8.75	0.000	-7.621529	-4.799911
_cons	67.67555	7.041235	9.61	0.000	53.67569	81.67541

- Pro-Liberalization: $(\beta_1 < 0)$

Do Not Reject

- Activists: $(\beta_1 > 0)$
 - International trade ↑ → Exports ↑ → Demand ↑ → Child Labor ↑ Reject

ANOVA TABLE FOR (3)

- . gen login = ln(gdppc)
- . gen squarelogin = login∗login
- . reg child openess login squarelogin

Source	SS	df		MS		Number of			88
						F(3,	84)	=	25.49
Model	5457.10338	3	1819	.03446		Prob > F		=	0.0000
Residual	5994.52162	84	71.3	633526		R-squared		=	0.4765
						Adj R-squa	red	=	0.4578
Total	11451.625	87	131.	627874		Root MSE		=	8.4477
child	Coef.	Std.	Err.	t	P> t	[95% Co	nf.	Int	erval]
openess	0369884	. 0278	988	-1.33	0.188	092468	2	. 6	184915
login	-25.47201	11.6	869	-2.30	0.024	-47.5195	3	-3.	424493
squarelogin	1.226543	.7042	627	1.74	0.085	173960	8	2.	627047
_cons	141.2818	42.71	569	3.31	0.001	56.3369	5	2.2	26.2266

CONCLUSIONS

- Negative association between child labor and openness
- After controlling for income difference across countries, no evidence for significant association between openness to trade and child labor.
- Income turned out to be a significant determinant of child labour rate!

HOW DO WE TACKLE CHILD LABOR?

- Corporate Social Responsibility
- Social dialogue
- Education
- Time bound programmes
- Government Policies

https://critperspective.wordpress.com/2011/05/27/realizing-corporate-social-responsibility-and-ending-child-labor/

REFERENCES

- Frankel, J.A. & Romer, D., 1999. Does trade cause growth? American Economic Review 89, 279–399.
- Irwin, D. & Tervio, M., 2002. Does trade raise income? Evidence from the twentieth century. Journal of International Economics 58, 1–18.
- Basu, K. & Van, P.H., 1998. The economics of child labor. American Economic Review 88, 412–427.
- Baland, J.M. & Robinson, J., 2000. Is child labor inefficient?. American Economic Review 108, 663–679.
- Ranjan, P., 2001. Credit constraints and the phenomenon of child labor.
 Journal of Development Economics 64, 81 102.
- Edmonds, E.V. & Pavcnik, N., 2006. International trade and child labor: Cross-country evidence. Journal of International Economics 68, 115-140.
- Data <u>www.worldbank.org</u> and <u>www.ilo.org</u>