

Mannigfaltigkeiten - SoSe 2020

Übungsblatt B

Abgabe bis 06.05.2020, 12 Uhr

Aufgabe B.1: Manniqfaltiqkeiten? (5+1*+5)

(a) Wir identifizieren die reelle Achse \mathbb{R} mit der Standardtopologie jeweils mit $\mathbb{R} \times \{1\}$ und $\mathbb{R} \times \{-1\}$. Das heißt, dass wir zwei Kopien von \mathbb{R} nehmen und sie formal unterscheiden. Danach führen wir auf $\mathbb{R} \times \{1\} \cup \mathbb{R} \times \{-1\}$ die Äquivalenzrelation

$$(x,1) \sim (y,1) : \Leftrightarrow x = y,$$

 $(x,-1) \sim (y,-1) : \Leftrightarrow x = y,$
 $(x,1) \sim (y,-1) : \Leftrightarrow x = y \neq 0$

ein. Nun betrachten wir $M:=(\mathbb{R}\times\{1\}\cup\mathbb{R}\times\{-1\})/\sim$ mit der Quotiententopologie und die Abbildungen

$$\phi_i: U_i \to \mathbb{R}; [(x,i)] \mapsto \begin{cases} x & \text{für } x \neq 0 \\ 0 & sonst \end{cases}$$

wobei $U_i = [\mathbb{R} \times \{i\}]$ und $i = \pm 1$ sind. Ist M eine glatte Mannigfaltigkeit?

- (b) Finden Sie für M eine Äquivalenzrelation auf $\mathbb{R}^2 \setminus \{(0,0)\}.$
- (c) Sei $M = \{(x,0) \in \mathbb{R}^2 \mid x \in \mathbb{R} \} \cup \{(x,\alpha x^3) \mid x \in \mathbb{R}_{>0} \}$ mit $\alpha \neq 0$, sowie die Mengen

$$U = \{ (x,0) \in \mathbb{R}^2 \mid x \in \mathbb{R} \},\$$

$$V = \{ (x,0) \in \mathbb{R}^2 \mid x \in \mathbb{R}_{<0} \} \cup \{ (x,\alpha x^3) \mid x \in \mathbb{R}_{>0} \}$$

mit den Abbildungen

$$\phi: U \to \mathbb{R}; \quad (x,0) \mapsto x$$

$$\psi: V \to \mathbb{R}; \quad (x,y) \mapsto \begin{cases} x & \text{für } y = 0 \\ x & \text{für } y = \alpha x^3 \end{cases}$$

gegeben. Ist M eine glatte Mannigfaltigkeit?

Aufgabe B.2: Topologische Grundlagen II (4+1+1+4)

- (a) Seien M,N topologische Räume und $f:M\to N$ eine stetige, surjektive Abbildung. Falls M zusammenhängend ist, dann ist auch N zusammenhängend.
- (b) Gilt die Umkehrung der obigen Aussage?

- (c) Welche Aussage aus Analysis I wird durch a) verallgemeinert?
- (d) Sei M wegzusammenhängend. Zeigen Sie, dass M auch zusammenhängend ist.

(Hinweis zu a) und d)): indirekter Beweis!

Aufgabe B.3: Karten der \mathbb{R} (5+5)

- (a) Für welche $k \in \mathbb{Z}$ ist $(\mathbb{R}, x \mapsto x^k, \mathbb{R})$ ist ein 1-dimensionaler \mathscr{C}^1 -Atlas für \mathbb{R} .
- (b) Seien nun $(\mathbb{R}, x \mapsto x^{2n+1}, \mathbb{R}), (\mathbb{R}, x \mapsto x^{2m+1}, \mathbb{R})$ für $m \neq n$ und $n, m \in \mathbb{N}_0$. Welche von ihnen sind \mathscr{C}^0 bzw. \mathscr{C}^1 -äquivalent?