Top-Down approach

- **Q** Patterned after the strategy employed by Napoleon
- **Q** Divide an instance of a problem recursively into two or more smaller instances until the solutions to the small instances are obtainable.
- **A** Top-down approach used by recursive routines

Divide-and-Conquer

The most-well known algorithm design strategy:

- 1. Divide instance of problem into two or more smaller instances
- 2. Solve smaller instances recursively
- **3.** Obtain solution to original (larger) instance by combining these solutions

Divide-and-Conquer Technique (cont.)

Control Abstraction for Divide & Conquer


```
∂ Algorithm DAndC(P)
      if Small(P) then return S(P);
       else
      divide P into smaller instances P_1, P_2, ..., P_k, K \ge 1;
       Apply DAndC to each of these sub problems;
       return Combine(DAndC(p1), DAndC(p2),...
       DAndC(pk));
```

Analysis

- **∂** Input size =n;
- Q(n) = time taken to compute the answer directly for small inputs.
- \mathfrak{Q} f(n) = time for dividing and combing the solution to subproblems.

General Divide-and-Conquer Recurrence

$$T(n) = aT(n/b) + f(n)$$
 where $f(n) \in \Theta(n^d)$, $d \ge 0$

Master Theorem: If
$$a < b^d$$
, $T(n) \in \Theta(n^d)$
If $a = b^d$, $T(n) \in \Theta(n^d \log n)$
If $a > b^d$, $T(n) \in \Theta(n^{\log b})$

Note: The same results hold with O instead of Θ .

Examples:
$$T(n) = 4T(n/2) + n \Rightarrow T(n) \in ?$$

 $T(n) = 4T(n/2) + n^2 \Rightarrow T(n) \in ?$
 $T(n) = 4T(n/2) + n^3 \Rightarrow T(n) \in ?$

Recurrence


```
Q T(n) = T(1) n=1;

Q a T(n/b) + f(n) n>1;
```


- Q Consider a=2, b=2. T(1)=2 and f(n)=n.
- **Q** N is a power of 2, T(n) = T(1) n=1;T(n/2)+c; n>1;
- 3. a=2, b=2 and f(n) = cn
- 4. $t(n) = 7 t(n/2) + 18 n^2$, $n \ge 2$ and a power of 2.
- 5. t(n) = 9t(n/3)+4 n^6 , n>=3, and a power of 3.

Binary Search

If x equals the middle item, quit. Otherwise:

- 1 Divide the array into two subarrays about half as large. If *x* is smaller than the middle item, choose the left subarray. If *x* is larger than the middle item, choose the right subarray.
- 2 Conquer (solve) the subarray by determining whether *x* is in that subarray. Unless the subarray is sufficiently small, use recursion to do this.
- 3 Obtain the solution to the array from the solution to the subarray.

Q Suppose x = 18 and we have the following array:

10 12 13 14 18 20 25 27 30 35 40 45 47

middle item

Developing a recursive algorithm

- **Q** Develop a way to obtain the solution to an instance from the solution to one or more smaller instances
- **Q** Determine the terminal condition(s) that the smaller instance(s) is(are) approaching.
- **Q** Determine the solution in the case of the terminal condition(s).

Recursive algo


```
∂ // Input a[i:l] of elt in non-decreasing order 1<i<L, determine whether x
   is present, and if so, return j such that x = a[j]; else return 0;
Binsrch(a,i,l,x)
   if(l==i) then // Small(P)
         if (x == a[i]) then return i;
         else return 0;
   else
   { // Reduce P into smaller sub problem
         mid = (i+1)/2;
         if (x == a[mid]) then return mid;
         else if (x < a[mid]) then
                  return Binsrch(a,I,mid-1,x);
             else
                  return Binsrch(a,mid+1,l,x);
```

Recursive algorithm

- **∂** Algorithm 2.1: Binary Search (Recursive)
 - Problem: Determine whether x is in the sorted array S of size n.
 - Inputs: positive integer n, sorted (nondecreasing order) array of keys S indexed from 1 to n, a key x.
 - Outputs: *location*, the location of x in S (0 if x is not in S).

```
index location (index low, index high)
{
  index mid;
  if (low > high)
      return 0;
else {
      mid = [(low + high)/2];
      if (x == S[mid])
            return mid
      else if (x < S[mid])
            return location(low, mid - 1);
      else return location(mid + 1, high);
      }
}</pre>
```

Iterative binary search


```
Q BinSearch(a,n,x)
      low =1; high =n;
       while( low ≤ high) do
        mid = floor((low+high)/2);
        if (x < a[mid]) then high = mid-1;
        else if (x > a[mid]) then low = mid +1;
                else return mid;
    return 0;
```

Binary Search

Very efficient algorithm for searching in sorted array:

K

VS

A[0] ... A[m] ... A[n-1]

If K = A[m], stop (successful search); otherwise, continue searching by the same method in A[0..m-1] if K < A[m] and in A[m+1..n-1] if K > A[m]

```
l \leftarrow 0; r \leftarrow n-1
while l \leq r do
m \leftarrow \lfloor (l+r)/2 \rfloor
if K = A[m] return m
else if K < A[m] r \leftarrow m-1
else l \leftarrow m+1
return -1
```


 \emptyset -15, -6, 0, 7, 9, 23, 54, 82, 101, 112, 125, 131, 142, 151. Search x = 151; Search x = -14; Search x = 9;

solution


```
Search x = 151;
ઈ
    low high mid
   1 14 7
   8 14 11
    12 14 13
    14 14 14 found
Q Search x = -14;
    low high mid
    1 14 7
    1 2 1
    2 2 2
    2 1 not found
```

Analysis of Binary Search

- **Q** Time efficiency
 - worst-case recurrence: $C_w(n) = 1 + C_w(\lfloor n/2 \rfloor)$, $C_w(1) = 1$ solution: $C_w(n) = \lceil \log_2(n+1) \rceil$

This is VERY fast: e.g., $C_w(10^6) = 20$

- **Q** Optimal for searching a sorted array
- **Q** Limitations: must be a sorted array (not linked list)
- **Q** Bad (degenerate) example of divide-and-conquer
- A Has a continuous counterpart called *bisection method* for solving equations in one unknown f(x) = 0 (see Sec. 12.4)

Knapsack problem

Knapsack Problem

ightharpoonup Knapsack Problem: Given n objects, each object i has weight w_i and value v_i , and a knapsack of capacity W (in terms of weight), find most valuable items that fit into the knapsack

Items are not splittable

Example:	Knapsack	capacity	y W	= 16
----------	----------	----------	-------	------

Item	Weight	Value
1	2	\$20
2	5	\$30
3	10	\$50
4	5	\$10

Subset	Total weight	Total value
{1}	2	\$20
{2}	5	\$30
{3}	10	\$50
{4}	5	\$10
$\{1,2\}$	7	\$50
$\{1, 3\}$	12	\$70
$\{1, 4\}$	7	\$30
$\{2, 3\}$	15	\$80
$\{2, 4\}$	10	\$40
$\{3, 4\}$	15	\$60
$\{1, 2, 3\}$	17	not feasible
$\{1, 2, 4\}$	12	\$60
$\{1, 3, 4\}$	17	not feasible
$\{2, 3, 4\}$	20	not feasible
$\{1,2,3,4\}$	22	not feasible

Analysis

Knapsack Problem

Analysis

- Input size: n (items).
- Running time:

The number of subsets of an n-element set is 2^n , including \emptyset .

$$T(n) = \Omega(2^n).$$

Divide-and-Conquer Examples

- **∂** Sorting: mergesort and quicksort
- **Q** Binary tree traversals
- **Q** Binary search (?)
- **A** Multiplication of large integers
- **Q** Matrix multiplication: Strassen's algorithm
- **Q** Closest-pair and convex-hull algorithms