1 Lineare Abhängigkeit

1.1

Für welche $t \in \mathbb{R}$ sind die folgenden Vektoren aus \mathbb{R}^3 linear abhängig?

$$(1,3,4),(3,t,11),(-1,-4,0).$$

1.2

Stellen Sie den Vektor w jeweils als Linearkombination der Vektoren v_1, v_2, v_3 dar:

a)
$$w = (6, 2, 1), v_1 = (1, 0, 1), v_2 = (7, 3, 1), v_3 = (2, 5, 8).$$

b)
$$w = (2, 1, 1), v_1 = (1, 5, 1), v_2 = (0, 9, 1), v_3 = (3, -3, 1).$$

1.3

Gegeben sind die folgenden Vektoren aus dem \mathbb{R}^3 ,

$$u = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}, v = \begin{pmatrix} -2 \\ 1 \\ 3 \end{pmatrix}, w = \begin{pmatrix} 4 \\ 3 \\ -1 \end{pmatrix}.$$

- a) Stellen Sie den Vektor $x = (-3, 4, 7)^T$ als Linearkombination von u,v und w dar.
- b) Sind u, v und w linear unabhängig?
- c) Sei ferner $y = (1, 0, 1)^T$. Bildet die Menge $\{u, v, y\}$ eine Basis des \mathbb{R}^3 ?

1.4

Sind die folgenden Vektoren linear unabhängig?

- a) $1, \sqrt{2}, \sqrt{3}$ im \mathbb{Q} -Vektorraum \mathbb{R} .
- b) (1,2,3),(4,5,6),(7,8,9) im \mathbb{R}^3 .

2 Basis und Dimension

2.1

Gegeben seien im \mathbb{R}^5 die Vektoren $v_1 = (4, 1, 1, 0, -2), v_2 = (0, 1, 4, -1, 2), v_3 = (4, 3, 9, -2, 2), v_4 = (1, 1, 1, 1, 1), v_5 = (0, -2, -8, 2, -4).$

- a) Bestimmen Sie eine Basis von $V = span(v_1, ..., v_5)$.
- b) Wählen Sie alle möglichen Basen von V aus den Vektoren $v_1, ..., v_5$ aus, und kombinieren Sie jeweils $v_1, ..., v_5$ daraus linear.

Übungen zum Ferienkurs Lineare Algebra 2015/2016

2.2

Sei V ein reeller Vektorraum und $a, b, c, d, e \in V$. Zeigen Sie, dass die folgenden Vektoren linear abhängig sind:

$$v_1 = a + b + c$$
, $v_2 = 2a + 2b + 2c - d$, $v_3 = a - b - e$, $v_4 = 5a + 6b - c + d + e$, $v_5 = a - c + 3e$, $v_6 = a + b + d + e$.

2.3

Es bezeichne ${\cal P}_n$ den Vektorraum der reellen Polynome bis zum Grad n.

- a) Zeigen Sie: $e_k := (1+x)^k, k = 0, 1, 2, 3$ bilden eine Basis von P_3 . Welche Dimension hat dieser Raum?
- b) Stellen Sie das Polynom $y = x^3 + 2x^2 + 1$ als Linearkombination der Basisvektoren $e_k, k = 0, 1, 2, 3$ dar.

3 Vektorräume

3.1

Es sei $V = \mathbb{R}^3$. Zeigen Sie, dass V mit den folgenden Operationen kein reeller Vektorraum ist:

$$(a, b) + (c, d) = (a + c, b + d)$$
 und $\lambda(a, b) = (\lambda a, 0)$

Übungen zum Ferienkurs Lineare Algebra 2015/2016

4 Rechnen mit Matrizen

Gegeben seien folgende Matrizen:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 5 & 6 & 0 \end{pmatrix}, B = \begin{pmatrix} 2 & 1 & 0 \\ 2 & 4 & 1 \\ 2 & 1 & 0 \end{pmatrix}, C = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, D = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$

4.1

Berechnen Sie die beiden Matrixprodukte $A \cdot B$ und $C \cdot D$

4.2

Bestimmen Sie die Determinanten zu A,B,C und D

4.3

Bestimmen Sie A^T , B^T , C^T und D^T

4.4

Bestimmen Sie die inversen Matrizen A^{-1} , B^{-1} , C^{-1} und D^{-1}