Introduction to Machine Learning Problems: LASSO and Model Selection

Prof. Sundeep Rangan

1. Exhaustive search. In this problem, we will look at how to exhaustively search over all possible subsets of features. You are given three python functions:

```
model = LinearRegression() # Create a linear regression model object
model.fit(X,y) # Fits the model
yhat = model.predict(X) # Predicts targets given features
```

Given training data Xtr, ytr and test data Xts, yts, write a few lines of python code to:

- (a) Find the best model using only one feature of the data (i.e. one column of Xtr and Xts).
- (b) Find the best model using only two features of the data (i.e. two columns of Xtr and Xts).
- (c) Suppose we wish to find the best k of p features via exhaustive searching over all possible subsets of features. How many times would you need to call the fit function? What if k = 10 and p = 1000?
- 2. Selecting a regularizer. Suppose we fit a regularized least squares objective,

$$J(\mathbf{w}) = \sum_{i=1}^{N} (y_i - \hat{y}_i)^2 + \lambda \phi(\mathbf{w}),$$

where \hat{y}_i is some prediction of y_i given the model parameters **w**. For each case below, suggest a possible regularization function $\phi(\mathbf{w})$. There is no single correct answer.

- (a) All parameters vectors **w** should be considered.
- (b) Negative values of w_i are unlikely (but still possible).
- (c) For each j, w_j should not change that significantly from w_{j-1} .
- (d) For most j, $w_j = w_{j-1}$. However, it can happen that w_j can be different from w_{j-1} for a few indices j.

Variable	Units	Mean	Std dev
Median income, x_1	\$	50000	15000
Median age, x_2	years	45	10
House sale price, y	\$1000	300	100

Table 1: Features for Problem 3

3. Normalization. A data analyst for a real estate firm wants to predict house prices based on two features in each zip code. The features are shown in Table 1. The agent decides to use a linear model,

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2,\tag{1}$$

(a) What is the problem in using a LASSO regularizer of the form,

$$\phi(\boldsymbol{\beta}) = \sum_{j=1}^{2} |\beta_j|.$$

(b) To uniformly regularize the features, she fits a model on the normalized features,

$$\hat{u} = \alpha_1 z_1 + \alpha_2 z_2, \quad z_j = \frac{x_j - \bar{x}_j}{s_j}, \quad u = \frac{\hat{y} - \bar{y}}{s_y},$$

where s_j and s_y are the standard deviations of the x_j and y. She obtains parameters $\alpha = [0.6, -0.3]$? What are the parameters β in the original model (1)?

4. Normalization in python. You are given python functions,

```
model = SomeModel()  # Creates a model
model.fit(Z,u)  # Fits the model, expecting normalized features
yhat = model.predict(Z)  # Predicts targets given features
```

Given training data Xtr, ytr and test data Xts, yts, write python code to:

- Normalize the training data to remove the mean and standard deviation from both Xtr and ytr.
- Fit the model on the normalized data.
- Predict the values yhat on the test data.
- Measure the RSS on the test data.
- 5. Discretization. Suppose we wish to fit a model,

$$y \approx \hat{y} = \sum_{j=1}^{K} \beta_j e^{-\alpha_j x}, \tag{2}$$

for parameters α_j and β_j . Since the parameters α_j are not known, this model is nonlinear and cannot be fit with least squares. A common approach in such circumstances is to use an alternate linear model,

$$y \approx \hat{y} = \sum_{j=1}^{p} \tilde{\beta}_{j} e^{-\tilde{\alpha}_{j} x}, \tag{3}$$

where the values $\tilde{\alpha}_1, \ldots, \tilde{\alpha}_p$ are a fixed, large set of possible values for α_j , and $\tilde{\beta}_j$ are the coefficients in the model. Since the values $\tilde{\alpha}_j$ are fixed, only the parameters $\tilde{\beta}_j$ need to be learned. Hence, the model (3) is linear. The model (3) is equivalent to (2) if only a small number K of the coefficients $\tilde{\beta}_j$ are non-zero. You are given three python functions:

Note this syntax is slightly different from the sklearn syntax. You are also given training data xtr,ytr and test data xts,yts. Write python code to:

- Create p = 100 values of $\tilde{\alpha}_j$ uniformly in some interval $\tilde{\alpha}_j \in [a, b]$ where a and b are given.
- Fit the linear model (3) on the training data for some given lam.
- Measure the test error.
- Find coefficients α_j and β_j corresponding to the largest k=3 values in $\tilde{\beta}_j$. You can use the function np.argsort.
- 6. Minimizing an ℓ_1 objective. In this problem, we will show how to minimize a simple scalar function with an ℓ_1 -term. Given y and $\lambda > 0$, suppose we wish to find the minimum,

$$\widehat{w} = \underset{w}{\arg \min} J(w) = \frac{1}{2} (y - w)^2 + \lambda |w|.$$

Write \widehat{w} in terms of y and λ . Since |w| is not differentiable everywhere, you cannot simple set J'(w) = 0 and solve for w. Instead, you have to look at three cases:

- (i) First, suppose there is a minima at w > 0. In this region, |w| = w. Since the set w > 0 is open, at any minima J'(w) = 0. Solve for w and test if the solution indeed satisfies w > 0.
- (ii) Similarly, suppose w < 0. Solve for J'(w) = 0 and test if the solution satisfies the assumption that w < 0.
- (iii) If neither of the above cases have a minima, then the minima must be at w=0.