Purpose To verify Hooke's law and calculate the spring constant.

Theory The force due to a spring stretched (or compressed) a distance Δx from the equilibrium position is given by the following

$$\vec{F_s} = -k\Delta \vec{x}$$

where s = (force exerted by) spring k = the spring constant (in N/m)

Procedure
Procedure Equipment
The necessary equipment for this lab is as follow:
Meter Stick
Spring
Weights
Clamp
Rods
Suspension Clamp
Position Measurements
The equipment is to be set up as shown below:
[h!]

Hang a weight from the end of the spring. For the lng spring use weights ranging from 0.5 kg to 2 kg and for the short spring Measure the distance (Δx) the spring is stretched from its equilibrium position (x=0). Repeat the above measurement for at least 7 more weights.

Oata	Data Collected		
Configur of Mass	ationMass in kg	x_i in me	ters x_f in meters
#1	1.036	0.782	0.784
#2	2.033	0.782	0.803
#3	4.033	0.782	0.876
#4	6.032	0.782	0.951
#5	1.528	0.782	0.786
#6	3.527	0.782	0.860
#7	5.526	0.782	0.933
#8	2.530	0.782	0.822

For each weight, calculate the force $(F = mg, g = 9.8 \frac{m}{s^2})$ exerted on the spring by the Earth's gravitational force. Force Calculated for each Configuration of Mass & Δx Configuration Experimenta Δx in meters

of Mass	F' in Nm	
#1	10.153	0.002
#2	19.923	0.021
#3	39.523	0.094
#4	59.114	0.169
#5	14.974	0.004
#6	34.565	0.078
#7	54.155	0.151
#8	24.794	0.040

Plot the force F versus the distance the spring is stretched (Δx) . Based on Hooke's law your graph should follow a straight Draw a best-fit line between the points and calculate the slope of the line. The slope of the line will correspond to the sprin

Using this graph, the spring constant k = 276.5Compare your experimental value(s) of k with the actual value(s) of k for your spring. (Long Spring k = 23 N/m & Short S Do your results agree with Hooke's law (i.e. is F directly proportional to x)?

Error Analysis and Procedural Errors

Conclusion

Suggestions for Improvement