

DEEP LEARNING

CROSS-ENTROPY

LOGISTIC REGRESSION

x1 (hours)	x2 (attendance)	y (grade)
10	5	А
9	5	А
3	2	В
2	4	В
11	1	С

$$\begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} w_1 x_1 + w_2 x_2 + w_3 x_3 \end{bmatrix} \qquad X \rightarrow \begin{bmatrix} Z \\ W \end{pmatrix} \xrightarrow{Z} \qquad Y \rightarrow \hat{Y}$$

$$\begin{bmatrix} w_{A1} & w_{A2} & w_{A3} \\ w_{B1} & w_{B2} & w_{B3} \\ w_{C1} & w_{C2} & w_{C3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \qquad X \rightarrow \begin{bmatrix} Z \\ W \\ X \rightarrow \begin{bmatrix} Z \\ W \\ X \rightarrow \begin{bmatrix} Z \\ W \\ Y \end{bmatrix} \rightarrow \hat{Y}$$

$$\begin{bmatrix} w_{A1} & w_{A2} & w_{A3} \\ w_{B1} & w_{B2} & w_{B3} \\ w_{C1} & w_{C2} & w_{C3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} w_{A1}x_1 + w_{A2}x_2 + w_{A3}x_3 \\ w_{B1}x_1 + w_{B2}x_2 + w_{B3}x_3 \\ w_{C1}x_1 + w_{C2}x_2 + w_{C3}x_3 \end{bmatrix} = \begin{bmatrix} \hat{Y}_A \\ \hat{Y}_B \\ \hat{Y}_C \end{bmatrix}$$

$$X \to \boxed{\qquad} \xrightarrow{Z} \boxed{\int} \to \widehat{Y}$$

$$X \to \boxed{\qquad} \xrightarrow{Z} \boxed{\qquad} \to \widehat{Y}$$

$$X \to \boxed{\overset{Z}{\longrightarrow}} \boxed{ \int} \to \widehat{Y} \qquad \qquad X \to \boxed{\overset{Z}{\longrightarrow}} \boxed{ \int} \to \widehat{Y} \qquad \qquad X \to \boxed{\overset{Z}{\longrightarrow}} \boxed{ \int} \to \widehat{Y}$$

WHERE IS SIGMOID?

$$\begin{bmatrix} w_{A1} & w_{A2} & w_{A3} \\ w_{B1} & w_{B2} & w_{B3} \\ w_{C1} & w_{C2} & w_{C3} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} w_{A1}x_1 + w_{A2}x_2 + w_{A3}x_3 \\ w_{B1}x_1 + w_{B2}x_2 + w_{B3}x_3 \\ w_{C1}x_1 + w_{C2}x_2 + w_{C3}x_3 \end{bmatrix} = \begin{bmatrix} \hat{Y}_A \\ \hat{Y}_B \\ \hat{Y}_C \end{bmatrix} \begin{bmatrix} \mathbf{2.0} \\ \mathbf{1.0} \\ \mathbf{0.1} \end{bmatrix}$$

SIGMOID?

SOFTMAX

Y
$$\begin{bmatrix} 2.0 - \\ 1.0 - \\ 0.1 - \end{bmatrix}$$
 $S(y_i) = \frac{e^{y_i}}{\sum\limits_{j} e^{y_i}}$ $\longrightarrow 0.2$

SCORES PROBABILITIES

SOFTMAX

hypothesis = tf.nn.softmax(tf.matmul(X,W)+b)

$$XW = Y \begin{bmatrix} 2.0 & - \\ 1.0 & - \\ 0.1 & - \end{bmatrix} S(y_i) = \frac{e^{y_i}}{\sum\limits_{j} e^{y_i}} \longrightarrow 0.2$$

SCORES ----- PROBABILITIES

SOFTMAX_CROSS_ENTROPY_WITH_LOGI

```
logits = tf.matmul(X, W) + b
hypothesis = tf.nn.softmax(logits)
```

```
# Cross entropy cost/loss
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1))
```

ONE-HOT ENCODING

COST FUNCTION

COST FUNCTION

CROSS-ENTROPY COST FUNCTION

$$-\sum_{i} L_{i} \log(S_{i}) \rightarrow -\sum_{i} L_{i} \log(\widehat{y}_{i}) \rightarrow \sum_{i} L_{i} * -\log(\widehat{y}_{i})$$

$$L = {}_{\mathsf{B}}^{\mathsf{A}} \left[{}_{1}^{\mathsf{O}} \right] = \mathsf{B}$$

$$\widehat{Y} = {}_{B}^{A} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = B(0), \qquad \begin{bmatrix} 0 \\ 1 \end{bmatrix} * -\log \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} * \begin{bmatrix} \infty \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0$$

$$\widehat{Y} = {}_{\mathsf{B}}^{\mathsf{A}} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \mathsf{A}(\mathsf{X}), \quad \begin{bmatrix} 0 \\ 1 \end{bmatrix} * -\log \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} * \begin{bmatrix} 0 \\ \infty \end{bmatrix} = \begin{bmatrix} 0 \\ \infty \end{bmatrix} = \infty$$

LOGISTIC COST VS. CROSS ENTROPY

$$C(H(x), y) = -y\log(H(x)) - (1-y)\log(1-H(x))$$

$$D(S, L) = -\sum_{i} L_{i} \log(S_{i})$$

COST FUNCTION: CROSS ENTROPY


```
# Cross entropy cost/Loss
cost = tf.reduce_mean(-tf.reduce_sum(Y * tf.log(hypothesis), axis=1))
optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost)
```

ANIMAL CLASSIFICATION

with softmax_cross_entropy_with_logits

