1. Considere el siguiente problema de minimización

minimize
$$e^{x_1} + x_1^2 x_2$$
,
subject to $x_1 + x_2^2 \ge 4$,
 $x_1, x_2 \ge 0$

- (a) Determine las condiciones KKT para el problema.
- (b) Se satisfacen las condiciones KKT en $[0,2]^{\top}$ y $[1,1]^{\top}$?
- 2. Determinar las condiciones KKT para los siguientes problemas

(a)

minimize
$$-2x_1 - 3x_2 + x_3$$
,
subject to $x_1 + 2x_2 + 2x_3 \le 6$,
 $-6x_1 + 2x_2 - 2x_3 \ge 9$,
 $2x_1 + 3x_2 + 5x_3 \le 8$,
 $x_1, x_2, x_3 \ge 0$.

(b) Graficar la region de factibilidad y encontrar el mínimo global a partir de las KKT:

minimize
$$2x_1^2 + (x_2 - 1)^2 + 5$$
,
subject to $x_1^2 + 2x_2^2 \le 4$,
 $3x_1 - x_2 - 2 \ge 1$,
 $x_1, x_2 \ge 0$.

3. Considere el problema

minimize
$$-x_1^3 + x_2^2 - 2x_1x_3^2$$
, subject to $2x_1 + x_2^2 + x_3 = 5$, $5x_1^2 - x_2^2 - x_3 \ge 2$, $x_1, x_2, x_3 \ge 0$.

- (a) Determine las condiciones KKT para el problema.
- (b) Se satisfacen las condiciones KKT en $[1,0,3]^{\top}$?
- 4. Un tanque de almacenamiento cilíndrico debe ser construido considerando las siguientes Metal para los lados \$30.00/sq. ft.

costos: Base concreta y metal de fondo \$37.50/sq. ft. El tanque se construye con unas Tapa \$7.50/sq. ft.

dimensiones tales que el costo es mínimo para la cualquier capacidad seleccionada. Una posible solución para seleccionar la capacidad es construir el tanque tal que un pie cubico adicional cueste \$8 (corresponde al valor del multiplicador de Lagrange). Encuentre la altura y diámetro óptimos para el tanque. Recordar: Área lados: πdh , Área circular: $\frac{\pi}{4}d^2$.