Simulación molecular

Índice

Algoritmos de simulación

Deterministas vs estocásticos

Oscilador armónico

Comprobación de los algoritmos

Potencial doble pozo

Polímero

Dinámica Browniana

Ecuación diferencial estocástica

$$m\frac{d^2\vec{r}}{dt^2} = -\eta \frac{d\vec{r}}{dt} - \vec{\nabla}V(\vec{r}) + \xi(t)$$

Necesidad de desarrollar algoritmos estocásticos

Al igual que deterministas, velocidad vs precisión

$$v_{i+1} = v_i + hf(x_i, v_i, t_i) + (c_0 h)^{1/2} \xi$$
Determinista

Estocástica

 $h = \Delta t$ $c_0 = 2\eta K_B T$

$$x_{i+1} = x_i + v_i bh + \frac{bh}{2m} \left[f(x_i, v_i, t_i)h + (c_0 h)^{1/2} \xi \right]$$

$$v_{i+1} = av_i + \frac{h}{2m} \left(af(x_i, v_i, t_i) + f(x_{i+1}, v_i, t_i) \right) + \frac{b}{m} (c_0 h)^{1/2} \xi$$

$$a = \frac{1 - \frac{\eta h}{2m}}{1 + \frac{\eta h}{2m}} ; \quad b = \frac{1}{1 + \frac{\eta h}{2m}}$$

Determinista

Estocástica

$$g_{1x} = v_i + (c_0 h)^{1/2} \xi_2$$

$$g_{1v} = f(x_i, v_i + (c_0 h)^{1/2} \xi_2)$$

$$g_{2x} = v_i + g_{1v} h$$

$$g_{2v} = f(x_i + g_{1x} h + (c_0 h)^{1/2} \xi_1, v_i + g_{1v} h + (c_0 h)^{1/2} \xi_2)$$

$$x_{i+1} = x_i + h[A_1 g_{1x} + A_2 g_{2x}]$$

$$v_{i+1} = v_i + h[A_1 g_{1v} + A_2 g_{2v}] + (c_0 h)^{1/2} \xi_2$$

Pautas de programación

Programación modular

Cada algoritmo debe ser capaz de funcionar por su cuenta

Calcular constantes usadas más de una vez una única vez

Lanzar un algoritmo debe ser una llamada a una función encargada de todo

Multi-Threading

- Varias simulaciones a la vez (una por núcleo) ✓
- "Dividir" el polímero en sub-partes y simular cada una por separado X

$$\frac{d^2x}{dt^2} = -\frac{k}{m}x$$

Comprobar el funcionamiento de los distintos algoritmos

Diferencias en los resultados

- Según el algoritmo
- Según valor del paso del tiempo
- Según valor del damping

dt 0.1 coef 0.1 Euler position histogram

dt 0.001 coef 0.1 Euler position histogram

dt 0.01 coef 0.1 Euler position histogram

dt 0.0001 coef 0.1 Euler position histogram

dt 0.001 coef 0.1 RK position histogram

dt 0.01 coef 0.1 RK position histogram

dt 0.0001 coef 0.1 RK position histogram

dt 0.1 coef 0.1 RK velocity histogram

dt 0.0001 coef 0.1 RK velocity histogram

dt 0.01 coef 0.1 RK velocity histogram

dt 0.001 coef 0.1 RK velocity histogram

Comparación de algoritmos

Comparación de algoritmos

dt 0.0001 coef 1 Runge Kutta velocity histogram fit

Comparación de algoritmos

Comparación de paso temporal

Comparación de paso temporal

Comparación de paso temporal

Comparación de término de damping

Comparación de término de damping

Euler	$h=10^{-4}$	$h = 10^{-3}$	$h = 10^{-2}$	$h = 10^{-1}$
$\gamma = 0, 1$	$E_c = 0.55 \pm 0.37$	$E_c = 0.46 \pm 0.31$	$E_c = 0.51 \pm 0.68$	$E_c = 0.43 \pm 0.37$
	$E_p = 0.56 \pm 0.39$	$E_p = 0.47 \pm 0.41$	$E_p = 0.52 \pm 0.70$	$E_p = 0.55 \pm 0.61$
$\gamma = 1$	$E_c = 0.50 \pm 0.42$	$E_c = 0.52 \pm 0.57$	$E_c = 0.51 \pm 0.67$	$E_c = 0.54 \pm 0.75$
	$E_p = 0.49 \pm 0.43$	$E_p = 0.54 \pm 0.62$	$E_p = 0.51 \pm 0.57$	$E_p = 0.41 \pm 0.19$
$\gamma = 10$	$E_c = 0.49 \pm 0.49$	$E_c = 0.52 \pm 0.52$	$E_c = 0.56 \pm 0.68$	$E_c = 0.97 \pm 2.89$
	$E_p = 0.54 \pm 0.71$	$E_p = 0.64 \pm 0.68$	$E_p = 0.57 \pm 0.32$	$E_p = 0.63 \pm 1.12$
Verlet	$h=10^{-4}$	$h=10^{-3}$	$h=10^{-2}$	$h = 10^{-1}$
$\gamma = 0, 1$	$E_c = 0.46 \pm 0.42$	$E_c = 0.44 \pm 0.29$	$E_c = 0.49 \pm 0.42$	$E_c = 0.56 \pm 0.52$
	$E_p = 0.46 \pm 0.34$	$E_p = 0.44 \pm 0.33$	$E_p = 0.49 \pm 0.36$	$E_p = 0.42 \pm 0.49$
<i>γ</i> = 1	$E_c = 0.47 \pm 0.42$	$E_c = 0.52 \pm 0.53$	$E_c = 0.52 \pm 0.54$	$E_c = 0.40 \pm 0.31$
	$E_p = 0.47 \pm 0.39$	$E_p = 0.54 \pm 0.55$	$E_p = 0.49 \pm 0.46$	$E_p = 0.43 \pm 0.50$
$\gamma = 10$	$E_c = 0.49 \pm 0.50$	$E_c = 0.50 \pm 0.51$	$E_c = 0.51 \pm 0.52$	$E_c = 0.43 \pm 0.21$
	$E_p = 0.43 \pm 0.41$	$E_p = 0.61 \pm 0.58$	$E_p = 0.55 \pm 0.43$	$E_p = 0.44 \pm 0.32$
RK	$h=10^{-4}$	$h = 10^{-3}$	$h = 10^{-2}$	$h = 10^{-1}$
$\gamma = 0, 1$	$E_c = 0.42 \pm 0.32$	$E_c = 0.47 \pm 0.38$	$E_c = 0.41 \pm 0.32$	$E_c = 0.43 \pm 0.37$
	$E_p = 0.51 \pm 0.34$	$E_p = 0.47 \pm 0.42$	$E_p = 0.41 \pm 0.31$	$E_p = 0.45 \pm 0.36$
$\gamma = 1$	$E_c = 0.51 \pm 0.52$	$E_c = 0.52 \pm 0.49$	$E_c = 0.46 \pm 0.42$	$E_c = 0.54 \pm 0.41$
	$E_p = 0.50 \pm 0.49$	$E_p = 0.52 \pm 0.46$	$E_p = 0.44 \pm 0.34$	$E_p = 0.50 \pm 0.38$
$\gamma = 10$		•	$E_c = 0.42 \pm 0.31$ $E_p = 0.36 \pm 0.21$	Ť

Doble Pozo

Potencial usado:

$$V(x) = \frac{1}{2} B (x^2 - 1)^2$$

Comprobación de la equiparticion de la energía cinética

Т	В	Eta	E_{cin}	E_{pot}
0.200	2.000	1.000	0.100	1.874
2.000	1.000	1.000	0.992	1.039
2.000	1.000	10.000	1.003	1.045
2.000	5.000	1.000	0.990	4.138

Tiempo de integración:

2E5

Paso temporal: 1E-2

¿Qué ocurre si a altura de barrera fija variamos el "damping"?

DIAGRAMAS DE FASE

T=0.2 B=1 Eta=1

T=0.2 B=1 Eta=5

DIAGRAMAS DE FASE

EVOLUCIÓN CON LA BARRERA

Ajuste

$$A \cdot e^{-V(x)/T}$$

VARIACIÓN AL APLICAR FUERZA CTE

ECUACIÓN DEL MODELO

$$P(x) = \frac{1}{1 + e^{-\frac{F \cdot x}{T}}}$$

TEMPERATURA EFECTIVA

T=1.2

VARIACIÓN DEL RITMO DE CAMBIO CON LA VISCOSIDAD

VARIACIÓN AL APLICAR FUERZA CTE

Modelo de polímero

$$V(\vec{r}_i, \vec{r}_{i+1}) = \frac{1}{2} k_e (|\vec{r}_i - \vec{r}_{i+1}| - b)^2$$

$$V(\vec{r}_i, \vec{r}_{i+1}) = \frac{1}{2} k_e (|\vec{r}_i - \vec{r}_{i+1}| - b)^2 \qquad F(\vec{r}_i, \vec{r}_{i+1}) = k_e \left(1 - \frac{b}{|\vec{r}_i - \vec{r}_{i+1}|}\right) (x_{i+1} - x_i)$$

Equipartición (T=1)

Partículas	E. Cinética/muelle	E. Potencial/muelle
4	1.49	0.50
8	1.49	0.50
16	1.49	0.50
32	1.49	0.49
64	1.49	0.47

RADIO DE GIRO $k_e = 100$

RADIO DE GIRO k_e =100

RADIO DE GIRO $k_e = 1000$

Distancia de extremo a extremo (N=65, k=100)

Distancia de extremo a extremo (N=65 k_e=100)

Distancia de extremo a extremo (N=65 k_e=1000)

