Оглавление

		Стр.
Введе	ние	5
Глава	1. Внедрение БШС на нефтегазовых месторождениях	10
1.1	Этапы проектирования БШС	12
1.2	Анализ современных беспроводных широкополосных технологий	
	передачи данных	14
	1.2.1 Wi-Fi	14
	1.2.2 LTE	18
	1.2.3 5G NR	20
1.3	Выбор протокола беспроводной широкополосной сети для	
	решения задачи синтеза топологий	23
1.4	Определение параметров БШС, необходимых для решения	
	задач размещения базовых станций	24
	1.4.1 Энергетический потенциал канала связи	25
	1.4.2 Модель потерь в свободном пространстве	27
	1.4.3 Модель распространения SUI	29
	1.4.4 Модель двух лучевого распространения	30
	1.4.5 Модель Окамура-Хата	31
	1.4.6 Расчет параметров БС, необходимых для задачи	
	оптимизации	32
1.5	Оценка характеристик производительности сети с помощью	
	стохастических моделей массового обслуживания	34
	1.5.1 Время передачи пакета в канале	34
	1.5.2 Расчет межконцевой задержки	41
1.6	Выводы	45
Глава	2. Размещение базовых станций БШС для покрытия	
	линейной территории	46
2.1	Актуальность внедрения БШС для телекоммуникационного	
	покрытия линейного участка	46

		Стр.
2.2	Математические модели синтеза топологии сети для охвата	
	линейного участка в виде задачи целочисленного линейного	
	программирования	51
	2.2.1 Постановка задачи	52
	2.2.2 Модель целочисленного линейного программирования	53
2.3	Математические модели синтеза топологии сети для охвата	
	линейного участка в виде экстремальной задачи в	
	комбинаторной форме	59
	2.3.1 Постановка задачи	60
	$2.3.2$ Дерево ветвлений для перебора элементов в множестве Γ .	62
	2.3.3 Метод ветвей и границ для задачи размещения БС	65
	2.3.4 Построения последовательности топологий для	
	итерационной процедуры моделирования БШС	70
2.4	Сравнительная оценка полученных моделей	71
2.5	Выводы	76
•		
Глава	3. Размещение базовых станций БШС для	=0
2.1	обслуживания множества рассредоточенных объектов.	79
3.1	Актуальность внедрения БШС для обслуживания	
	рассредоточенных объектов	79
3.2	Математическая модель задачи проверки допустимого решения	
	при заданных местах размещения станций	80
	3.2.1 Постановка задачи	81
	3.2.2 Модель линейного программирования	82
3.3	Математическая модель оптимальной задачи выбора набора	
	размещаемых станций и определения мест их размещения	88
	3.3.1 Постановка задачи	88
	3.3.2 Модель частично целочисленного линейного	
	программирования	90
3.4	Выводы	96
Глава	4. Программный комплекс и численные примеры	
	решения задач представленных математических	
	моделей	98

		Этр.
4.1	Программный комплекс расчета задачи размещения БС	98
4.2	Сравнения оценок «недопокрытия» для задачи 2, 3 и 4	98
4.3	Численный пример оптимального размещения базовых станций сети с линейной топологией в виде задачи целочисленного	
	линейного программирования	99
4.4	Метод ветвей и границ на примере задачи размещени двух	
	базовых станций	102
4.5	Численный пример оптимального размещения базовых станций	
	сети с линейной топологией в виде экстремальной задачи в	
	комбинаторной форме	107
Заклю	рчение	111
Списо	к сокращений и условных обозначений	113
Словај	рь терминов	114
Списо	к рисунков	132
Списо	к таблин	133

Глава 4. Программный комплекс и численные примеры решения задач представленных математических моделей

4.1 Программный комплекс расчета задачи размещения БС

Рисунок 4.1 — Задача синтеза топологии при проектировании БШС в рамках цифровой трансформации "Индустрия 4.0".

4.2 Сравнения оценок «недопокрытия» для задачи 2, 3 и 4

В таблице 16 приведены результаты вычислительного эксперимента, показывающего время решения $\underline{sadau\ 2,\ 3,\ 4}$ и относительную точность $\underline{sadauu\ 3,\ 4}$ по отношению к $\underline{sadaue\ 2}$.

Для непокрытого участка справа длины $|\beta|=50$, варьируя количеством неразмещенных станций, а также количеством свободных мест размещения рассчитаем оценку недопокрытия при бюджетном ограничении C=600.

11/11	ца 10 — Ср	авнения оц	enok «	кнедог	юкры	тия» ,	цля за	дачи	щли	и ЛП
	Количество	Количество	ЦЈ	ПΠ		Задача о ранце			ЛП	
	точек	свободных	ш	H	ш	π.	П	н	17:	Т
1	размещения,	станций,	врем	Іедо	Время	Іедо	Шьо	рем	Іедо	Шьо
	m	$ S_{oldsymbol{eta}} $	Время расчета,	Недопокрытие,	я расчета,	Недопокрытие,	Точность, %	Время расчета,	Недопокрытие,	Точность, %
			ı, сек	2, 22	ı, сек	,; N		ı, сек	, i	
	5	6	0,3250	436,00	0,3214	426,00	97,71	0,0047	436,00	100,00
	5	8	0,3218	431,00	0,3582	398,00	92,34	0,0045	431,00	100,00
	8	10	0,3765	395,00	0,3621	375,00	94,94	0,0094	395,00	100,00
	8	12	0,3746	390,00	0,2977	347,00	88,97	0,0094	390,00	100,00
	12	15	0,3363	339,00	0,2960	309,00	91,15	0,0114	339,00	100,00
	12	17	0,4072	336,00	0,3456	283,00	84,23	0,0136	336,00	100,00
	18	20	0,3558	265,00	0,3407	265,00	100,00	0,0121	265,00	100,00
	18	25	0,3794	260,00	0,3096	259,00	99,62	0,0169	257,60	99,08
	25	30	0,3177	246,00	0,3576	246,00	100,00	0,0222	244,33	99,32
	25	45	0,3539	229,00	0,3556	229,00	100,00	0,0494	226,40	98,86
	30	50	0,2994	225,00	0.3146	225,00	100,00	0,0570	224,13	99,61
	30	100	0,5179	223,00	0,5177	223,00	100,00	0,1513	218,75	98,09

Таблица 16— Сравнения оценок «недопокрытия» для задачи ЦЛП и ЛП

Как видно из результатов расчетов в таблице 16, представляется целесообразным использовать **задачу** 3 в качестве оценки $w_2(G_{\nu})$ для решения задач большой размерности, так как время ее расчета в виде задачи линейного программирования существенно ниже с учетом высокой точности.

Численный пример оптимального размещения базовых станций сети с линейной топологией в виде задачи целочисленного линейного программирования

В этой секции представлен численный пример решения данной задачи.

Задан линейный участок L с длиной 300 с количеством n=7 точек размещения. Координаты точек размещения представлены в таблице 17. Задан бюджет размещения C=130. Центральная частота $f=2437~{\rm M}\Gamma$ ц.

a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7
Координата	29	40	95	139	181	230	273

Таблица 17 — Точки размещения участка с длиной L=300.

Задано множества базовых станций m=8 с параметрами представленными в таблице 18. Также в таблице представлены параметры шлюзов и контролируемых объектов. Параметры объектов необходимы для расчета радиусов покрытия станций.

Расчет радиса связи между станциями Базовые станции оснащены направленной антенной с высоким коэффициентом усиления для связи с соседними станциями. Для расчета потерь между станциями j и q воспользуемся формулой (1.4):

$$L_{fs}^{jq} = P_{tr}^{R}(j) - L_{tr} + G_{tr}^{R}(j) + G_{tr}^{R}(q) - L_{recv} - SOM - P_{recv}^{R}(q).$$

Потери на кабелях приемникп L_{recv} и передатчике L_{tr} примем равным 1 дБ и запас на замирания сигнала SOM=10 дБ.

Let us carry out an example of the calculation communication link between stations s_1 and s_2 : Для примера расчетаем радиус связи между станциями s_1 и s_2 :

$$L_{fs}^{12} = P_{tr}^{R}(1) - L_{tr} + G_{tr}^{R}(1) + G_{tr}^{R}(2) - L_{recv} - SOM - P_{recv}^{R}(2) =$$

$$= 20 - 1 + 5 + 5 - 1 - 10 - (-69) = 87(dB).$$
(4.1)

Для расчета канала связи необходимо использовать формулу $\ref{eq:condition}$. Несущая частота f=2437 М Γ ц и коэффициент для расчета потерь K=-27,55:

BS	P_{tr}^{R}	G^R_{tr}	P_{recv}^R	P_{recv}^r	G^r_{recv}	c
	дБм	дБ	Дбм	дБм	дБ	y.e.
1	20	5	-69	-67	5	40
2	19	5	-67	-67	5	28
3	18	5	-69	-67	5	45
4	19	5	-69	-67	6	22
5	19	5	-67	-67	5	21
6	20	5	-69	-67	5	40
7	19	5	-67	-67	5	28
8	18	5	-69	-67	5	45
	G_{recv}^R	P_{recv}^R			P_{tr}^r	G^r_{tr}
Шлюз	дБ	дБм		Объект	дБм	дБ
	5	-69			15	2

Таблица 18 — Параметры базовых станций, шлюзов и объектов.

$$R_{iq} = 10^{\left(\frac{L_{fs}^{jq} - 20\lg F - K}{20}\right)} = 10^{\left(\frac{87 - 20\lg 2437 - (-27.55)}{20}\right)} = 174(m). \tag{4.2}$$

В таблице 19 приведены расчеты максимальных радиусов связи между всеми станциями $s_j,\ j=1,...,m$ и шлюзом $s_{m+1}.$

R_{jq}	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8	s_{m+1}
s_1	_	174	219	219	174	219	174	219	219
s_2	195	_	195	195	155	195	155	195	195
s_3	174	138	_	174	138	174	138	174	174
s_4	195	155	195	_	155	195	155	195	195
s_5	195	155	195	195	_	195	155	195	195
s_6	219	174	219	219	174	_	174	219	219
87	195	155	195	195	155	195	_	195	195
s_8	174	138	174	174	138	174	138	_	174

Таблица 19 — Рассчитанные радиусы связи между станциями

Расчет радиуса покрытия

Расчет проводится аналогично расчета радиусу связи между станциями. Потери в свободном простанстве для канала между j-ой станции и контролируемым объектом

$$L_{fs}^{j} = P_{tr}^{r}(j) - L_{tr} - SOM - P_{RX}.$$

Пример расчечта радиуса покрытия для 1-ой станции:

$$L_{fs}^{1} = P_{tr}^{r} + G_{tr}^{r} + G_{recv}^{r}(1) - L_{recv}(1) - SOM - P_{recv}^{r}(1) =$$

$$= 15 + 2 + 5 - 1 - (-67) - 10 = 78 \text{ (дБ)}.$$

$$(4.3)$$

$$r_1 = 10^{\left(\frac{78 - 20 \lg 2437 - (-27.55)}{20}\right)} = 77 \text{ (M)}.$$

Рассчитанные радиусы покрытия для всех станций $s_j, j = \overline{1,m}$ представлены в таблице 20).

Задача ЦЛП решена с помощью Optimization Toolbox MatLab. Таблица 21 содержит все полученные целочисленные решения.

STA	s_1	s_2	s_3	s_4	s_5	s_6	s_7	s_8
r_j	77	77	77	87	77	77	77	77

Таблица 20 — Рассчитанные радиусы покрытия станций

a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	Покрытие	Цена
Координаты	29	40	95	139	181	230	273	М	y.e.
Целлочисленное решение 1	s_1	s_2	s_6	-	_	_	s_4	286	130
Целлочисленное решение 2	s_4	_	s_5	s_7	_	_	s_2	289	99
Оптимальное решение	s_4	s_2	_	_	s_1	_	s_5	300	111

Таблица 21 — Решение задачи ЦЛП.

4.4 Метод ветвей и границ на примере задачи размещени двух базовых станций

Рассмотрим пример решения задачи в комбинаторной задачи. Пусть задан отрезок α длиной L=50 с концами в точках a_0 и a_4 с координатами $l_0=0$ $l_4=50$. Внутри данного отрезка имеется множество точек размещения $A=\{a_i\}, i=1,2,3$ с координатами $l_1=20, l_2=30, l_3=40$.

Задано множество БС $S=\{s_j\}, j=1,2$. Каждой станции приписаны параметры $s_j=\{r_j,\{R_{jq}\}\}$. Для s_1 задано $r_1=25,\,R_{10}=62,R_{12}=35,R_{14}=31$. Для s_2 задано $r_2=9,\,R_{20}=31,R_{12}=28,R_{24}=39$. На концах отрезка размещены шлюзы s_0 и s_4 . Радиус связи шлюзов для соединения с БС $R_{01}=R_{41}=62$ и $R_{02}=R_{42}=39$.

Необходимо разместить БС s_1 и s_2 , т.е. найти такую расстановку P^* , которая минимизирует функционал недопокрытия f(P) (2.1).

Решение полным перебором.

Общее количество размещения двух станций по трем точкам равна $\gamma = C_3^2 \cdot 2! = 6.$

Таблица 22 — Решение полным перебором

Расстановка Р	Henomovpurme $f(P)$	Номер узла дерева, v	Размещение			
тасстановка, т	педопокрытие, ј (г.)	помер узла дерева, у	a_1	a_2	a_3	
P_1	11	3	S_1	S_2		
P_2	1	5	S_1	_	S_2	
P_3	11	9	S_2	S_1	_	

P_4	11	11	S_2	_	S_1
P_5	6	15	_	S_1	S_2
P_6	21	19	_	S_2	S_1
I		х узлов		24	

В таблице 22 представлены полученные в ходе решения расстановки. Все расстановки пронумерованы в соответствии с порядком их нахождения. Оптимальным решением P^* с минимальным значением функции (2.17) является допустимая расстановка P_2 .

Решение с помощью МВиГ.

Теперь решим пример данной задачи в соответствии с разработанным МВиГ. Так как мы не учитываем ограничения на стоимость и величину задержку, допустимая расстановка должна удовлетворять только требованию 1, а также условию размещения всех имеющихся БС.

Исследование множества G_0 .

За начальный рекорд примем длину всего отрезка $\widehat{P}=L=50.$

Построение оценки $W(G_0)$:

$$W(G_0) = \max\{L - 2(r_1 + r_2), 0\} = \max\{50 - 2(25 + 9), 0\}.$$

Разбиваем множества G_0 на два подмножества $G_1=G_0^1$ ($\pi_{11}=1$) и $G_2=G_0^2$ ($\pi_{11}=0$). Исследуем левое дочернее подмножество G_1 . Правое подмножество G_2 оставим для обратного шага.

Исследование множества G_1 .

Случай 1.

Проверка требования 1.

Шаг 1.

Проверяем, что каждый из радиусов R_{10} и R_{01} не меньше расстояния до левого шлюза s_0 .

$$l_1 - l_0 \leqslant R_{10} \to 20 - 0 \leqslant 62;$$

$$l_1 - l_0 \leqslant R_{01} \to 20 - 0 \leqslant 62;$$

Шаг 2. Осталось неразмещенная БС s_2 . Проверяем, что радиусы связи R_{12} и R_{21} не меньше расстояния до правой точки от a_1 точка a_2 .

$$l_2 - l_1 \leqslant R_{12} \rightarrow 30 - 20 \leqslant 35;$$

$$l_2 - l_1 \leqslant R_{21} \to 30 - 20 \leqslant 28.$$

Шаг 3.

Так как осталась только одна нераспределенная станция s_2 , проверяем, что расстояние среди еще незанятых точек справа от точки a_1 есть такая точка, что расстояния от этой точки до точки a_1 и одновременно от этой точки до точки a_{n+1} не больше, чем радиус связи у нераспределенной станции.

Проверка точки a_2 .

$$l_2 - l_1 \leqslant R_{21} \to 30 - 20 \leqslant 28;$$

$$l_4 - l_2 \leqslant R_{21} \rightarrow 50 - 20 \leqslant 31;$$

Проверка точки a_2 .

$$l_3 - l_1 \leqslant R_{21} \rightarrow 40 - 20 \leqslant 28;$$

$$l_4 - l_3 \leqslant R_{21} \rightarrow 50 - 40 \leqslant 31$$
;

Проверка обеспечения связи между размещаемыми БС произведена, можно приступать к оценке недопокрытия.

Случай 2.

Построение оценки $W(G_1)$:

$$W(G_1) = w_1(G_1) + w_2(G_1).$$

Недопокрытие слева от размещаемой БС s_1 :

$$w_1(G_1) = \max\{(l_1 - l_0) - r_1, 0\} \to \max\{(20 - 0) - 25, 0\} = 0.$$

И оценка недопокрытия справа от размещаемой БС s_1 :

$$w_2(G_1) = \max\{(l_4 - l_1) - (r_1 + 2r_2), 0\} \to \max\{(50 - 20) - (25 + 2 \cdot 9, 0)\} = 0.$$

Итоговая оценка

$$W(G_1) = 0 + 0 = 0.$$

Разбиваем множества G_1 на два подмножества $G_3=G_1^1$ ($\pi_{22}=1$) и $G_4=G_1^2$ ($\pi_{22}=0$). Исследуем левое дочернее подмножество G_3 . Правое подмножество G_4 оставим для обратного шага.

Исследование множества G_3 .

Случай 1.

Проверка требования 1 проводится аналогичным образом. Перейдем к расчету оценки.

Случай 2.

Построение оценки $W(G_3)$:

$$W(G_3) = w_1(G_3) + w_2(G_3).$$

Недопокрытие слева от размещаемой БС s_2 :

$$w_1(G_3) = w_1(G_1) + (l_2 - l_1) - (r_1 + r_2) \rightarrow 0 + \max\{(30 - 20) - (25 + 9), 0\} = 0 + 0 = 0$$

Оценка недопокрытия справа от размещаемой БС s_2 :

$$w_2(G_3) = \max\{(l_4 - l_2) - r_2, 0\} \to \max\{(50 - 30) - 9, 0\} = 11.$$

$$W(G_3) = 0 + 11 = 11.$$

Все m станции размещены, $f(P_1) = W(G_3)$. Так как $f(P_1) \leqslant f(\widehat{P}) \to f(P_1) \leqslant 50$, полученное недопокрытие $f(P_1)$ принимается за новый рекорд.

Следующим этапом будет обратный шаг по дереву поиска, так как все станции размещены, то есть нет свободных переменных π_{ij} в множестве Π^f . Незакрытая вершина с наибольшим порядковым номером – вершина G_4 с условием $\pi_{22} = 0$.

Исследование множества G_4 .

Случай 2.

Оценка правого дочернего узла $W(G_4)$ равна оценке материнского узла $W(G_1), w_1(G_4) = w_1(G_1), w_2(G_4) = w_2(G_1),$ и $W(G_4) = W(G_1) = 0.$

Разбиваем множества G_4 на два подмножества $G_5=G_4^1$ ($\pi_{32}=1$) и $G_6=G_4^2$ ($\pi_{32}=0$).

Исследование множества G_5 .

Случай 1. Успешная проверка требования 1.

Случай 2.

Построение оценки $W(G_5)$:

$$W(G_5) = w_1(G_5) + w_2(G_5).$$

Недопокрытие слева от размещаемой БС s_2 :

$$w_1(G_5) = w_1(G_5) + (l_3 - l_1) - (r_1 + r_2) \to 0 + \max\{(40 - 20) - (25 + 9), 0\} = 0 + 0 = 0$$

Оценка недопокрытия справа от размещаемой БС s_2 :

$$w_2(G_5) = \max\{(l_4 - l_3) - r_2, 0\} \to \max\{(50 - 40) - 9, 0\} = 1.$$

$$W(G_5) = 0 + 1 = 1.$$

Все m станции размещены, $f(P_2) = W(G_5)$. Так как $f(P_2) \leqslant f(\widehat{P})$, полученное недопокрытие $f(P_2)$ принимается за новый рекорд.

Таблица 23 — Решение методом ветвей и границ

	Номер	Оценка	Недопокрытие,	Par	змеш	ение
$N_{\overline{0}}$	узла	недопокрытия,	f(P)			
	дерева, у	$W(G_{\mathbf{v}})$		a_1	a_2	a_3
1	0	0	50	_	_	_
2	1	0		s_1	_	_
3	3	11	Рекорд	s_1	s_2	_
4	4	0		s_1	_	_
5	5	1	Рекорд	s_1	_	s_2
6	6	0	Ø	s_1	_	_
7	2	0		_	_	_
8	7	11		s_2	_	_
9	8	0		_	_	_
10	9	5		_	s_1	_
11	10	0		_	_	_
12	11	21		_	s_2	_
13	12	0		_	_	_
14	13	15		_	_	s_1

15	14	0		-	_	_
16	15	0	Ø	_	_	_
17	16	0		_	_	_

В ходе движения по дереву поиска исследования вершин происходило аналогичным образом как показано ранее. Оптимальным решением задачи стала расстановка P_2 с нелопокрытием $f(P_2) = 1$. В таблице 23 представлены полученные оценки в ходе движения по дереву ветвлений. Все вершины закрыты, количество пройденных узлов бинарного дерева поиска МВиГ составляет 16.

4.5 Численный пример оптимального размещения базовых станций сети с линейной топологией в виде экстремальной задачи в комбинаторной форме

Дано:

- линейный участок L = 300 метров;
- множество точек размещения |A| = 8;
- множество БС |S| = 8;
- протокол IEEE 802.11n;
- ограничение на суммарную стоимость T = 0.001с;
- интенсивность входящих пакетов $\lambda = 1000 \text{ 1/c};$
- средний размер входящих пакетов w=1500 байт;
- отклонение от оптимального решения, $\varepsilon=0.5$

Рассмотрим пример задачи оптимального размещения базовых станций вдоль линейного участка для организации БШС. В данном приложении будет представлен пример решения на базе семейства протоколов IEEE 802.11. Задан линейный участок L=230 метров. На данном участке задано множество точек размещения |A|=6 с координатами, представленными в таблице 24. Задано множество станций |S|=5, таблице 25.

Задан линейный участок L=300 метров. На данном участке в ходе обследования местности были выбраны восемь возможных точек размещения базовых станций, |A|=8. Координаты l_i точек размещения представлены в таблице 24.

Точки размещения, a_i	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
Координаты, l_i	43	72	98	150	178	201	269	280

Таблица 24 — Координаты точек размещения

На рынке представлен широкий спектр технических устройств от компаний Cisco, Mikrotik и т.д. позволяющий организовывать сеть в открытой местности и учитывающий климатические сложности на нефтегазовых месторождениях, такие как предельные температуры, сила ветра и т.д. Под БС в нашей задаче будем понимать точку доступа с антеннами для покрытия заданной области и антеннами для обеспечения связи с соседними станциями БШС.

В ходе этапа выбора комплекса технических средств были выбраны восемь БС. Множество станций |S|=8. Каждой БС преписаны паспортные характеристики антенн, пропускная способность точки доступа и итоговая стоимость станции. Стоимость взята условная, чтобы не указывать реальные цены производителя на время написания диссертации и курс валют. Будем рассматривать БШС для задачи мониторинга, то есть с каналом передачи на верхний уровень, UpLink. Рабочая частота 2,4 ГГц. Для каждой БС будем использовать пропускную способность для модуляции и схемы кодирования МСS7. В таблице 25 представлены параметры БС. Здесь P_{tr}^R — мощность направленной антенны, G_{tr}^R — усиление направленной антенны, P_{tr}^R — чувствительность направленной антенны, P_{tr}^R — чувствительность всенаправленной антенны, P_{tr}^R — усиление всенаправленной антенны P_{tr}^R — усиление всенаправленной антенна P_{tr}^R — усиление

S	P_{tr}^{R}	G^R_{tr}	P_{recv}^R	L	P_{recv}^r	G^r_{recv}	p	c
$N_{\overline{0}}$	дБм	дБ	дБм	дБ	дБм	дБ	Мбит/с	y.e.
1	20	4	-77	1	-77	3	72,2	24
2	19	4	-77	1	-73	4	72,2	20
3	19	4	-77	1	-77	5	72,2	24
4	18	4	-77	1	-77	3	72,2	24
5	19	4	-77	1	-77	4	72,2	28
6	19	4	-77	1	-74	4	72,2	24
7	20	4	-77	1	-73	4	72,2	20
8	19	4	-77	1	-77	4	72,2	20

Таблица 25 — Параметры базовых станций

На концах участка размещены шлюзы s_0 и s_{m+1} с параметрами (таблица 26):

Шлюз	P_{tr}^{R}	G^R_{tr}	P_{recv}^R	L
$N^{\underline{o}}$	дБ	дБ	дБ	дБ
s_0	20	5	-77	1
s_{m+1}	20	5	-77	1

Таблица 26 — Параметры шлюзов

Для расчета области покрытия необходимо задаться характеристиками устройств, с которых будет собираться информация (таблица 27).

Устройство	$P_{tr}^{u}d$	$G^u_{tr}d$	L
	дБ	дБ	дБ
	9	1	0

Таблица 27 — Параметры устройств

Итоговое размещение БС должно удовлетворять заданным ограничениям:

- на стоимость C = 76;
- на межконцевую задержку сети $T=0.001~{\rm c}.$

Для расчета времени межкоцневой задержки, будем считать, что на каждую БС поступает трафик с интенсивностью $\lambda=1000~1/\mathrm{c}$. Средний размер поступающих пакетов $w=1500~\mathrm{faйr}$.

Для поиска последовательности топологий задано отклонение $\varepsilon=0.5\%$ от найденного оптимального значения.

Расчет радиуса связи и радиуса покрытия станций

По формуле (5) рассчитаем радиус покрытия для каждой станции (таблица 28) и радиусы связи между станциями и со шлюзами (таблица 29 и таблица 30).

В таблице 31 представлены результаты решения размещения станций. Для заданной $\varepsilon=1\%$, т.е. d=2 был получены последовательности расстановок для $\it sadau\ 2,\ 3\ u\ 4$ расчета оценок с помощью задачи ЦЛП, задачи «О ранце» и

Станция	S_1	S_2	S_3	S_4	S_5	S_{m+1}
r_j , м	48	43	38	43	43	0

Таблица 28 — Рассчитанные радиусы покрытия

R_{jq} , м	S_1	S_2	S_3	S_4	S_5	S_0	S_{m+1}
S_1	_	76	96	96	76	76	76
S_2	85	_	85	85	68	68	68 60
S_3	76	60	_	76	60	60	60
S_4	85	68	85	_	68	68	68
S_5	85	68	85	85	_	68	68

Таблица 29 — Рассчитанные радиусы связи базовых станций

R_{jq} , м	S_1	S_2	S_3	S_4	S_5
S_0	96	85	76	85	85
S_{m+1}	96	85	76	85	85

Таблица 30 — Рассчитанные радиусы связи шлюзов

ЛП. В таблице представлены рекорды «недопокрытия», стоимости и задержки сети, а также размещения станций, число пройденных узлов дерева а и время счета. Задача ЦЛП и задача о ранце решались с помощью Optimization Toolbox Matlab, а задача ЛП решалась с помощью библиотеки с исходным кодом Scipy Python. Как видно из результатов оценка, полученная с помощью задачи ЛП менее точная, приходится обходить большее количество узлов для нахождения рекордов по сравнению с методом оценки «недопокрытия» с помощью задач 2 и 3. В итоге возрастает итоговое количество пройденых узлов. В свою очередь метод ЛП имеет свое преимущество, так как время счета меньше.

Таблица 31 — Сравнения оценок «недопокрытия» для задачи ЦЛП и ЛП

No॒	Рекорд, м	Стоимость, у.е.	Задержка, сек			F	Размещени	е		
J1=	т екорд, м	CTOMMOCTS, y.e.	Задержка, сек	a_1	a_2	a_3	a_4	a_5	a_6	a_7
1	1	65	0,03244	S_1	-	S_4	-	-	S_5	-
2	1	65	0,03244	S_1	-	S_5	-	-	S_4	-
3	1	65	0,03244	S_4	-	S_1	-	-	S_5	-
4	0	65	0,03244	S_4	-	S_5	-	-	S_1	-
5	1	65	0,03244	S_5	-	S_1	_	-	S_4	-
6	0	65	0,03244	S_5	-	S_4	-	-	S_1	-
7	1	65	0,03244	-	S_1	S_4	-	-	S_5	-
8	1	65	0,03244	-	S_1	S_5	_	-	S_4	-
9	1	65	0,03244	-	S_1	-	S_4	-	S_5	-
10	0	65	0,03244	-	S_1	-	S_4	-	-	S_5
11	1	65	0,03244	-	S_4	S_1	-	-	S_5	-
12	0	65	0,03244	-	S_4	S_5	-	-	S_1	-

13 14 15 16	1 0 1 0	65 65 65 65	0,03244 0,03244 0,03244 0,03244	- - -	$S_4 \\ S_4 \\ S_5 \\ S_5$	S_1 S_4	S_1 S_1	- - -	S_5 S_4 S_1	$\begin{bmatrix} - \\ S_5 \\ - \\ - \end{bmatrix}$	
	тод оценки опокрытия» справа	ЦЛП				Задача «О ранце»			лп		
пр	Число оойденных узлов		934			93	4		1590		
	Время счета, сек		5,412			5,1	36		3,613	3	