Exercises for the MATLAB catch-up course: Linear algebra, signals, and systems

Ivan Markovsky

Contents

1	Matrix/vector manipulation	1
2	Solving equations	2
3	Computational cost	2
4	Identification of a linear function	3
5	Empirical validation of estimator's consistency property	3

1 Matrix/vector manipulation

Linear progression

Construct the vector [100 99 ··· 1].

Geometric progression

Construct the vector $\begin{bmatrix} 2^0 & 2^1 & 2^2 & \cdots & 2^9 \end{bmatrix}$.

Inserting columns in a matrix

Given matrices a and b of the same dimension, create a matrix c that consists of the interlaced columns of a and b, i.e., c(:, 1) is a(:, 1), c(:, 2) is b(:, 1), c(:, 3) is a(:, 2), c(:, 4) is b(:, 2), etc.

Flipping a matrix

Flip a given matrix left-right and upside-down.

Thresholding a matrix

Replace all elements in a matrix that are smaller than a specified threshold by zeros.

Adding a vector to all columns of a matrix

Add a given vector v to all columns of a given matrix a.

Hankel matrix

Given a vector v of size m + n - 1 and an integer m, construct an m-by-n matrix which (i, j)-th element is v (i + j - 1).

Toeplitz matrix

Given a vector v of size m + n - 1 and an integer m, construct a matrix which (i, j)-th element is v(i - j + n).

Vandermonde matrix

Given a vector \mathbf{v} of size \mathbf{n} and an integer \mathbf{m} , construct a matrix which (\mathbf{i}, \mathbf{j}) -th element is $\mathbf{v}(\mathbf{j})$ $(\mathbf{i} - 1)$.

2 Solving equations

General solution of systems of linear equations

Solve the systems of linear equations

$$1. \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} x = 0$$

$$2. \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} x = \begin{bmatrix} 1 \\ 2 \end{bmatrix}.$$

Solving a polynomial equation (rooting a polynomial)

Solve the polynomial equation

$$x + 2x^2 + 3x^3 + 4x^4 = 5$$
.

Particular solution of an ordinary differential equation (initial value problem)

Solve the ordinary differential equation

$$\frac{d}{dt}y - (1 - y^2)y + y = 0,$$

over the interval $[0 \ 10]$, starting from the initial condition y(0) = 1 and dy(0) = 1.

3 Computational cost

- How many scalar multiplications requires the computation of A^{100} by direct multiplication $A \cdots A$ for a 2×2 matrix A? Suggest a faster method. Apply the method on $A = \begin{bmatrix} -1/4 & 1/4 \\ -3/2 & 1 \end{bmatrix}$.
- The function dftmtx constructs a matrix representation F of the discrete Fourier transform.
 - What is the number of multiplications needed to compute the DFT $\hat{x} = Fx$ by matrix-vector multiplication? Compare this number with the $n \log_2(n)$ multiplications needed for the same computation by the fast Fourier transform.
 - Using Matlab's tic and toc functions, measure the computation times of the matrix-vector multiplication and the fast Fourier transform methods for the computation of the discrete Fourier transform of x. (Use a random x.) Repeat the experiment for different size n of x and plot the results. Do the empirical observations match the theoretical predictions?
- Computation time for the convolution operation
 - 1. Find a matrix representation M_h of the convolution $h \star x$ of $h \in \mathbb{R}^n$ and $x \in \mathbb{R}^n$.
 - 2. What is the number of multiplications needed to compute $y = M_h x$ by matrix-vector multiplication?
 - 3. Propose a fast method for convolution based on the fast Fourier transform. What is the computational cost of this method?

4. Measure the computation times of the matrix-vector multiplication and the fast Fourier transform methods for the computation of the convolution

$$y = \exp_{\lambda} \star x$$
, where $h(t) = \exp_{\lambda}(t) = e^{\lambda}t$.

(Use a random x.) Repeat the experiment for different size n and plot the results. Do the empirical observations match the theoretical predictions?

5. For the special case of exponential h, can you propose another fast method?

4 Identification of a linear function

Let \mathbb{R}^n be the *n*-dimensional real vector space. A linear function f from \mathbb{R}^m to \mathbb{R}^n has a matrix representation f(x) = Ax, where A is an $m \times n$ real matrix. The problem is to find A from observed data

$$\mathscr{D} := \{ (x^1, y^1), \dots (x^N, y^N) \}, \quad \text{where } y^i = f(x^i).$$
 (1)

- 1. Give conditions under which it is possible to find A from \mathcal{D} . Describe a computational method that does the job. Implement the method in a language of your choice and test it on an example.
- 2. If you can choose the points x^1, \dots, x^N how many and what points would you choose?
- 3. If the y^i 's are corrupted by additive zero mean, uncorrelated, Gaussian noise e^i , i.e., in (1)

$$y^{i} = f(x^{i}) + e^{i},$$
 for $i = 1,...,N$,

how would you estimate A from \mathcal{D} ?

5 Empirical validation of estimator's consistency property

Consider the standard *linear model* Ax = b, where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ is the given data and x is the to-be-found parameter. Assume that A is "exact" and b is "noisy", i.e., there is a "true" values \bar{b} of b such that $b = \bar{b} + e$ and $A\bar{x} = \bar{b}$. Here e is the measurement noise and \bar{x} is the true value of the parameter x. The goal is to estimate \bar{x} from the data (A,b). A procedure that maps (A,b) to the estimate \hat{x} is called an estimator. Assuming that m > n and A is full rank, the least squares estimator is given by $\hat{x} = (A^T A)^{-1} A^T b$.

Consistency is the property of an estimator \hat{x} , that it converges to the true value \bar{x} as the *sample size m* goes to infinity. An important result in least-squares estimation is that the least squares estimator is consistent in the linear model assuming that the error e is zero mean Gaussian with a covariance matrix that is a multiple of the identity. The task of this exercise is to demonstrate the consistency of the least-squares estimation *empirically*, i.e., on simulation examples. For this purpose:

- 1. generate true data according to the model (choose a random model),
- 2. estimate the parameter of interest for different noise realizations, and
- 3. plot the average estimation error $\|\bar{x} \hat{x}\|$ as a function of the sample size m.

In order to make sure that the result is representative, vary the simulation parameters (e.g., the n and the A) and recompute the error vs number of samples curve.

The theoretical convergence rate of the least-squares estimator is $1/\sqrt{m}$. Verify that it is consistent with the empirical results, *i.e.*, fit the function c/\sqrt{m} to the empirical estimation error.