COXETER MAGIC SQUARE

Start with 1 in the middle of the top row; then go up and left, assigning numbers in increasing order to empty squares; if you fall off the square imagine the same square as tiling the plane and continue; if a square is occupied, move down instead and continue.

Works for only odd number

6	1	8
7	5	თ
2	9	4

15	8	1	24	17
16	14	7	5	23
22	20	13	6	4
3	21	19	12	10
9	2	25	18	11

Implement class magicsquare and test for various odd values of n

1. Make sure the sum is same in all directions

e-mail magicsquare.h
magicsquare.cpp
magicsquaretest.cpp
must use only ../util/util.h

Figure 4.5: Odd Magic square

Problem 4.4.2.

Initilize the chess board as shown in the figure.
Write a display routine that prints the board configuration
SHOW SOLUTION AS BOTH STATIC AND DYNAMIC ALLOCATION

- **k** white king
- **Q** white queen
- R white rook
- **B** white bishop
- N white knight
- P white pawn
- empty square

- k black king
- g black queen
- r black rook
- **b** black bishop
- n black knight
- p black pawn

r	n	b	q	k	b	n	r
p	р	p	р	p	p	p	p
-	ı	ı	ı	ı	ı	ı	ı
-	ı	ı	ı	1	1	1	1
-	ı	-	1	1	1	-	-
-	1	-	-	-	-	-	-
P	P	P	P	P	P	P	P
R	N	В	Q	K	В	N	R

Figure 4.6: A chess board

Problem 4.4.3.

Problem 4.4.4.

The eight queens puzzle is the problem of placing eight chess queens on an 8×8 chessboard so that no two queens attack each other.

Thus, a solution requires that no two queens share the same row, column, or diagonal

For a 1×1 board, there is one trivi		1-
N=1	Output solution	
For 2 x 2 and 3 x 3 boards, there a	are no solutions.	1
The eight queens puzzle has s If solutions that differ only be (rotations and reflections)	92 distinct solutions. by symmetry operations	

Figure 4.7: N Queens Puzzle

the puzzle has 12 unique (or fundamental) solutions.

of the board are counted as one,