# PREDICTING ELEVATED CANCER RATES NEAR WASHINGTON STATE INDUSTRIAL FACILITIES

NICK CARROLL, ARPITA DEBNATH, GEETHA SREE KARIYAVULA NARASIMHA, MADHUSREE MAJUMDER

SEATTLE UNIVERSITY BUAN 5510: CAPSTONE BUSINESS ANALYTICS FALL 2022

## **Table of Contents**

| Abstract                                                                                                                              | 4         |
|---------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Introduction                                                                                                                          | 4         |
| Problem Statement                                                                                                                     | 4         |
| Contributions                                                                                                                         | 4         |
| Background Information                                                                                                                | 5         |
| The Datasets                                                                                                                          | 5         |
| Toxics Release Inventory                                                                                                              | 6         |
| Dataset Description                                                                                                                   | 6         |
| Data Exploration                                                                                                                      | 6         |
| Numerical Data                                                                                                                        | 6         |
| Nominal Data                                                                                                                          | 7         |
| Carcinogens                                                                                                                           | 7         |
| County                                                                                                                                | 7         |
| Industry                                                                                                                              | 8         |
| Chemicals                                                                                                                             | 8         |
| Washington State Cancer Registry                                                                                                      | 9         |
| Dataset Description                                                                                                                   | 9         |
| Data Exploration                                                                                                                      | 9         |
| Multivariate Analysis                                                                                                                 | 10        |
| Literature Review                                                                                                                     | 11        |
| 1. Toxic Exposure in America: Estimating Fetal and Infant Health Outcomes from 14 Yea of TRI Reporting                                | ars<br>11 |
| 2. Environmental Exposomics and Lung Cancer Risk Assessment in the Philadelphia Metropolitan Area Using ZIP Code–level Hazard Indices | 11        |
| 3. Toxicity Burden Score: A Novel Approach to Summarize Multiple Toxic Effects                                                        | 12        |
| 4. Toxic test scores: The impact of Chemical Releases on Standardized Test Performance Within U.S. Schools                            | 12        |
| 5. Total and Cardiovascular Mortality Rates in Relation to Discharges from Toxic Release<br>Inventory Sites in the United States      | e<br>12   |
| Data Pre-Processing                                                                                                                   | 13        |
| Merging Datasets                                                                                                                      | 13        |
| Creating the Target Variable                                                                                                          | 13        |
| Processing Null Values                                                                                                                | 14        |
| Nominal Data Processing                                                                                                               | 14        |
| One Hot Encoding For Nominal Variables                                                                                                | 15        |
| Numeric Data Processing                                                                                                               | 16        |

| Variable Transformations                                                           | 16 |
|------------------------------------------------------------------------------------|----|
| Synthetic Minority Oversampling Technique (SMOTE)                                  | 16 |
| Feature Selection                                                                  | 16 |
| Primary Component Analysis (PCA)                                                   | 17 |
| Hyper Parameter Tuning                                                             | 17 |
| Data Mining Models and Evaluations                                                 | 18 |
| Tree Based Models                                                                  | 18 |
| Decision Tree                                                                      | 18 |
| Random Forest                                                                      | 18 |
| Gradient Boosting                                                                  | 19 |
| Naive Bayesian Classification                                                      | 19 |
| Artificial Neural Network                                                          | 19 |
| Results                                                                            | 20 |
| Discussion                                                                         | 21 |
| Domain Knowledge                                                                   | 21 |
| Methodological Contributions                                                       | 22 |
| Conclusions                                                                        | 23 |
| Summary                                                                            | 23 |
| Limitations                                                                        | 23 |
| Future Projects                                                                    | 25 |
| References                                                                         | 25 |
| Data Sources                                                                       | 27 |
| Appendix                                                                           | 27 |
| FIGURE A: Univariate Analysis on Numeric Variables                                 | 27 |
| FIGURE B: Correlation Heatmap                                                      | 30 |
| FIGURE C: Chemical Frequency in Toxic Release Inventory Reports                    | 31 |
| FIGURE D: Correlation Coefficients of Numeric Data                                 | 36 |
| FIGURE E: Comparison of Performance Metrics of All Machine Learning Algorithms     |    |
| Tested                                                                             | 56 |
| FIGURE F: Comparison of Processing Times of All Machine Learning Algorithms Tested | 57 |
| Data dictionary                                                                    | 58 |
| Code                                                                               | 58 |
| Merging Dataset                                                                    | 58 |

#### **Abstract**

Health is of utmost importance to every living being. Toxic releases from factories cause serious illness which could have mild impact or could even be fatal. For the current and upcoming generations to lead a healthy life, it is necessary to have the impact of toxic releases on us to be as minimal as possible.

United States Environmental Protection Agency has provided data of Washington state for 2021 year with details regarding Facility Name, Industry Sector, Chemicals released etc which can be used for detailed analysis of understanding how the toxic releases are impacting health by the presence of carcinogens at a facility site. A carcinogen is a substance, organism or agent capable of causing cancer.

Machine learning algorithms have played a significant role in the Data Science field in providing both predictive and descriptive analysis for many problems. Similarly, we have used the current data using machine learning algorithms to predict the impact of toxic releases on health as indicated by the presence of carcinogens at a facility site. We started with the TRI report 2021 and performed all data pre processing. Later we added a new dataset from the Cancer Registry from Washington State Department of Health, which tracks incidents of cancer across counties as well as that county's estimated annual population.

With this new dataset post merging first we have proceeded with hyperparameter tuning and then built five machine learning models- Decision Tree, Random Forest, Gradient Boosting, Naive Bayesian Classification and Neural Network model. Random forest classifier performed the best among all, especially for SMOTE applied dataset with 97% accuracy and 98% Recall.

#### **Introduction**

#### **Problem Statement**

Predicting if a county has an elevated cancer rate as indicated by data provided by Toxic Release Inventory on Washington State Industrial Facilities.

#### **Contributions**

Since 1990, global cancer prevalence has risen from 54% to 64% (Our World in Data). Exposure to certain chemicals in the environment, at home, and at work may contribute to an individual's risk of developing cancer. Initially we started with the dataset obtained from TRI to predict the presence of carcinogen in the facility's releases. But then, we extended our research to evaluate if a county has an elevated cancer rate as indicated by data provided by Toxic Release Inventory on Washington State Industrial Facilities. For this, we merged the dataset obtained from TRI with

cancer registry from the Washington State Department of Health for the next phase. TRI dataset is mostly about details regarding releases from the facilities which includes chemicals that are present, whether the chemical is carcinogenic or not, whether the release contains metal components or not, location of the facility, etc. While the dataset obtained from the cancer registry has details on annual population, annual observations, etc. These two datasets have been joined by year.

There has been substantial Research conducted linking industrial factories to increased rates of many different forms of cancers. Thus, we are evaluating if a county has an elevated cancer rate as indicated by data provided by Toxic Release Inventory on Washington State Industrial Facilities.

#### **Background Information**

The Toxic Release Inventory (TRI) Program are annual reports administered by the United States Environmental Protection Agency that track facilities that release toxic-chemicals which may pose a threat to the environment and human health. Over 700 chemicals are individually tracked.

We have also added a new dataset from the Cancer Registry from Washington State Department of Health, which tracks incidents of cancer across counties as well as that county's estimated annual population, from 1994 to 2018.

#### **The Datasets**

Our datasets contained nominal and numerical attributes. In this section, we'll provide a description and exploration of our two datasets, which are Toxic Release Inventory Reports and Washington State Cancer Registry data. For each of the two datasets, we'll discuss and provide a broader overview of the datasets and discuss a selection of attributes that provide a broader overview of the datasets. Additional analysis on attributes not covered is included in the Appendix.

#### **Toxics Release Inventory**

The Toxics Release Inventory (TRI) is a dataset compiled by the U.S. Environmental Protection Agency (EPA). TRI reporting is an annual report done by businesses that manufacture, process, or otherwise use hazardous chemicals as part of their operations. It contains information on the release and waste management for over 800 toxic chemicals and toxic chemical categories as reported annually by facilities in certain industries as well as federal facilities.

#### **Dataset Description**

In this project, we used The Toxic Release Inventory (TRI) Reporting Form R and Form A Certification Statement Data for Washington State Facilities from 1995 to 2018 was acquired

from the United States Environmental Protection Agency (EPA). This dataset consisted of annual tables in this period containing 26.5 MB of data across 124 attributes and 25,799 rows.

#### **Data Exploration**

#### **Numerical Data**

We have created summary Statistics for all the numerical variables and for a few variables we observed very high standard deviation and skewness. So these data were transformed further by removing outliers. We have created the boxplot for these variables in order to see the skewness and outliers. Inorder to explore each numerical variable, we created the histograms to observe the distribution of the dataset.

There are 75 numerical variables out of which 40 variables have been discarded. Few of these variables have absolutely no data, few of the variables have greater than 50% of missing data while the others are not relevant to be part of the dataset (like Year, ID, latitude, longitude etc.)

# Figure 1: Cases / Population Ratio Boxplot



Note: Numbers in this range are Upper Range Extreme Outliers. These numbers form the basis of the 'Cancer Rate Flag' (see Target Variable Section).

Figure 2: Counts of TRI Reports where Carcinogens Reported



#### **Nominal Data**

#### Carcinogens

The initial data set obtained from the TRI has details on the chemicals present in releases from factories such as Ammonia, Manganese, Chromium, Naphthalene, n-Butyl alcohol etc. These releases from the facilities produce Carcinogens. The visualization in Figure 2 shows the counts of TRI Reports where Carcinogens were reported from facilities.

Figure 2.1: Count of TRI Reports Where Carcinogens Reported (and Cancer Rate Flag)



18,276 TRI reports did not mention Carcinogens, whereas 7,074 reports mentioned Carcinogens. When we began our research, this was the initial target variable. In Figure 2.1, we can see Carcinogens broken down further with the addition of the Cancer Rate Flag, which we will

discuss later. Both the Cancer Rate Flag and Carcinogens both have an asymmetrical distribution.

#### County

TRI reports were analyzed from 34 out of the 39 Washington State counties. King & Pierce County had the first and second most TRI reports, in addition to being the two most populous counties in Washington State. However, Whatcom, which has the third largest number of TRI reports, is the 9th most populous county. Another county with a great difference between the number of TRI reports and the county's population is Cowlitz, which while it has the 5th highest number of TRI reports, has the 12th highest population. These numbers were based on 2018 population figures.



Figure 3: TRI Report Counts by County

#### **Industry**

There are 26 unique industries in this dataset. The industry sector which produced the highest number of TRI reports was paper, closely followed by Petroleum.



Figure 4: TRI Report Counts by Industry Sector

#### **Chemicals**

There were 182 different chemicals in the dataset. Lead Compounds were found the most, followed by Lead, and Nitrate Compounds. As there is such an extensive number of chemicals in our dataset, we will only highlight the top 10 most frequently occurring chemicals (see Figure 5). In the appendix, there is an extended list of all chemicals found.

#### **Washington State Cancer Registry**

Our second dataset comes from the Washington State Cancer Registry (WSCR) from the Washington State Department of Health for the years from 1995 to 2018. WSCR regularly receives information on people newly diagnosed with cancer and new information about previously diagnosed cancer cases. WSCR provides data on cancer of all types combined and the 24 most frequently diagnosed cancers. Information is also provided on "Hodgkin lymphoma" and "Larynx" because previous years of the WSCR Annual Report included them among the 24 most frequently diagnosed cancers.

#### **Dataset Description**

This dataset consisted of annual tables of Washington State counties from 1995 to 2018 containing 109 KB of data 12 attributes and 897 rows.

#### **Data Exploration**

There are 23 Cancer Reports for each of the 39 counties in Washington state representing the 23 years between 1995 to 2018. Not surprisingly, close relationship exists between annual population and annual cases for each county. The green dots represent King County, which by far has the highest number of annual cases and annual population regardless of The remainder of year. Washington State counties are clustered in the bottom left.

Also not surprisingly, as the population of Washington state

Figure 6: Cancer Cases Across Washington State Counties & Years

Note: Dots = Individual Year | Color = County

King County

1500000

500000

2000 4000 4000 4000 4000 10000 12000

Annual Observations

grows, so do its cancer rates. In the following graphic, the dark blue line represents the mean across all counties, while the blue area shaded outside represents the range of values of population and cases among counties.

To create better cross-country comparisons, further feature engineering will be implemented and will be discussed later. The remainder of the attributes we won't discuss as they aren't relevant for this project or only contain either single or no values for the respective column.



Figure 7: Growth of Cancer & Population in King County

#### **Multivariate Analysis**

The primary method utilized for conducting multivariate analysis in our dataset was through creating correlation matrices both assessing relationships among features, as well as through assessing correlations between solely the target variable and features. In Figure 8 we can see the correlation coefficients above 0.7. Due to the sheer size of our feature space, a full correlation matrix can be found in the appendix.

Figure 8: Correlation Coefficients of Numeric Data with Correlation Coefficient Above 0.7

| Feature 1                      | Feature 2                     | Correlation Coefficient |
|--------------------------------|-------------------------------|-------------------------|
| 103. 6.2 - TOTAL TRANSFER      | 91. OFF-SITE RECYCLED TOTAL   | 0.999333846             |
| 91. OFF-SITE RECYCLED TOTAL    | 87. 6.2 - M24                 | 0.999078445             |
| 64. 6.1 - POTW - TRNS TRT      | 65. POTW - TOTAL TRANSFERS    | 0.998993271             |
| 103. 6.2 - TOTAL TRANSFER      | 87. 6.2 - M24                 | 0.998404315             |
| 115. 8.7 - TREATMENT OFF SITE  | 101. OFF-SITE TREATED TOTAL   | 0.986947184             |
| 104. TOTAL RELEASES            | 62. ON-SITE RELEASE TOTAL     | 0.972109373             |
| 60. 5.5.3B - OTHER SURFACE I   | 107. 8.1B - ON-SITE OTHER     | 0.964855990             |
| 94. OFF-SITE ENERGY RECOVERY T | 92. 6.2 - M56                 | 0.961081506             |
| 101. OFF-SITE TREATED TOTAL    | 64. 6.1 - POTW - TRNS TRT     | 0.941530632             |
| 65. POTW - TOTAL TRANSFERS     | 101. OFF-SITE TREATED TOTAL   | 0.940587329             |
| 64. 6.1 - POTW - TRNS TRT      | 115. 8.7 - TREATMENT OFF SITE | 0.932733094             |
| 115. 8.7 - TREATMENT OFF SITE  | 65. POTW - TOTAL TRANSFERS    | 0.932048677             |
| 107. 8.1B - ON-SITE OTHER      | 62. ON-SITE RELEASE TOTAL     | 0.891730742             |
| 107. 8.1B - ON-SITE OTHER      | 104. TOTAL RELEASES           | 0.865366172             |
| 62. ON-SITE RELEASE TOTAL      | 60. 5.5.3B - OTHER SURFACE I  | 0.861843919             |
| 60. 5.5.3B - OTHER SURFACE I   | 104. TOTAL RELEASES           | 0.836583213             |

Note: 1.) Pearson correlation coefficient used. 2.) Absolute Values Taken of All Correlation Coefficients. 3.) Duplicates showing the Inverses of Two Features Have Been Removed. For Example, if A is in Column 1 and B is in Column B, then B in Column 1, A in Column 2 has been removed.

We identified many variables that were correlated with each other, but we expect that it will only be during the model tuning phase that we decide which of a set of two correlated features to include / not include.

#### **Literature Review**

# 1. Toxic Exposure in America: Estimating Fetal and Infant Health Outcomes from 14 Years of TRI Reporting

(Nikhil Agarwal, Chanont Banternghansa, Linda T.M. Bui, 2010)

This paper focuses on fetal and infant health outcomes due to toxic pollutants in the US from the year 1989 to 2002. Similar to our report, Toxic Release Inventory data was also included as an estimator. This study investigates health effects on two special groups: fetuses surviving at least 20 weeks in-utero and infants under one year of age. The author's found significant health effects

in infants, but not fetuses, due to toxic releases. Additionally, there is a statistically significant effect on infant mortality rates due to increase in toxic concentrations country wise. As such, the authors suggest the policy makers identify the toxic hazards and regulate their releases to the environment strictly to protect infants from adverse effects due to toxic release.

# 2. Environmental Exposomics and Lung Cancer Risk Assessment in the Philadelphia Metropolitan Area Using ZIP Code–level Hazard Indices

(Thomas P. McKeon & Wei-Ting Hwang & Zhuoran Ding & Vicky Tam & Paul Wileyto & Karen Glanz & Trevor M. Penning, 2021)

This paper focuses on lung cancer risk caused by environmental exposure and air pollutants in the Philadelphia metropolitan area, which has higher cancer rates than the national average. Although smoking is the main reason for lung cancer, other environmental exposure increases the risk of lung cancer among non-smokers and smokers as well. This paper used the modified multi-step multi-criteria decision analysis to investigate the causal effect. To derive results from the study, authors examined the emissions from Toxic Release Inventory, mapped cumulative exposures by feature, combined mean exposure by TRI features and NASA data and derived Hazard index from MMCDA. Two patterns were observed in this phase: some ZIP codes reported many chemicals with 100% fraction of occurrence, whereas several ZIP codes reported only one chemical but with 100% occurrence. The results showed that there were varying exposures across the 421 ZIP codes under study. ZIP codes with the highest hazard index tended to be in proximity to major highways which are important contributors to traffic-related air pollution in metropolitan areas.

#### 3. Toxicity Burden Score: A Novel Approach to Summarize Multiple Toxic Effects

(S.M.Lee1D.L.Hershman, P.Martin J.P.Leonard &Y.K.Cheung, March 2011)

This paper is about Dose Limiting Toxicity (DLT) that means the side effects of a drug or other treatment that are serious enough to prevent an increase in dose or level of that treatment for Cancer drug trials. This paper has been written using the dataset from The National Cancer Institute—Common Terminology Criteria (NCI–CTC) for Adverse Events. This paper shows that TBS can be a feasible approach to summarize toxicity. To analyze that, regression approach has been used to obtain the severity weights and to summarize patient toxic effects into a TBS. The DLT has been redefined as TBS >=1 instead of setting a threshold for maximal toxicity It summarizes the information from the different grades and types of multiple toxic effects and can be helpful to apply in all phases of drug development.

# 4. Toxic test scores: The impact of Chemical Releases on Standardized Test Performance Within U.S. Schools

(Irene Jacqz, September 2022)

In this paper the authors have described the effect of airborne chemicals toxic release on later-life cognitive performance from birth of a child. The effects of environmental pollution on student proficiency relies on local, temporal variation in airborne chemical releases during the years in which successive cohorts of students were born. This study shows how the composition of air pollution matters for long-term cognitive outcomes. It is also identified that early exposure to airborne particulates has adverse long-run effects on outcomes like test scores and earnings. In this case study- standardized test score data from the U.S. Department of Education's EDFacts(From 2009–2010 to 2014–2015) with the U.S. Environmental Protection Agency's Risk-Screening Environmental Indicators (RSEI) to form a six-year panel(from 2001 to 2006) dataset has been used.

# 5. Total and Cardiovascular Mortality Rates in Relation to Discharges from Toxic Release Inventory Sites in the United States

(Hendryx, Luo, J., & Chen, B.-C, 2014)

This study looks at the association between different variables covered in the Toxic Release Inventory and the mortality rates among both men and women. To conduct this study, the authors reviewed the TRI reports and averaged the county-level reported releases of toxic chemicals from these facilities and then 2-3 decades later looked at age-adjusted mortality rates in counties where these facilities are located. Four different categories of chemicals were studied: carcinogens, metals, hazardous air pollutants, and chemicals that are included in the Comprehensive Environmental Response, Compensation and Liability Act. Multiple linear regression models were implemented to assess the impact of these chemicals on mortality rates.

#### **Data Pre-Processing**

#### **Merging Datasets**

For each of the broader datasets from the Environmental Protection Agency and the Washington State Department of Health, each table contained one year of data. These years of data were appended on top of each other. From here, an inner join was performed on the two datasets on year and county.

#### **Creating the Target Variable**

Creating our target variable was a two part process. First we created a variable for Cancer Cases to Population Ratio. Second, a final target variable, "the Cancer Rate Flag", was created.

From the Washington State Department of Health Dataset, for each year in each county, the number of cases was divided by the total population in the county. This number was called the Case/Population Ratio. In this distribution, values above 0.00740078 are upper range extreme outliers. This number is calculated by multiplying the Interquartile range of a distribution by 1.5

and then adding the third quartile value. In percentage terms, the upper range extreme outlier value translates to .74%, which translates to a .74% chance of receiving a cancer diagnosis. Counties and Years which were found to be above this threshold are found in the following table. Rows that represented Upper Range Extreme Outliers were classified as 1, whereas rows below this threshold were classified as 0. To avoid multicollinearity, year and county were then removed from the dataset. Additional numeric variables which originated from the Cancer Registry dataset such as Annual Population, Annual Observations, Age-Adj. Rate per 100,000 and 95% CI were removed as well.

| Figure 9: Y | ears & Counties Classified as Upper Range Extreme Outliers |
|-------------|------------------------------------------------------------|
| Year        | Counties                                                   |
| 1996        | Jefferson, Mason                                           |
| 1997        | Clallam                                                    |
| 2000        | Grays Harbor, Pend Oreille                                 |
| 2001        | Lincoln, Pacific                                           |
| 2004        | Ferry                                                      |
| 2005        | Island                                                     |
| 2010        | Okanogan                                                   |
| 2011        | Skagit                                                     |
| 2013        | Klickitat                                                  |
| 2018        | Kitsap, Chelan                                             |

#### **Processing Null Values**

There were multiple features that contained no values related to Standard Industrial Classification (SIC) Codes entered by facility, which had names such as SIC 2, 3, 4, 5, as well as NAICS, 3,4,5,6, which refers to the North American Industry Classification System. Two Features that had approximately 94% missing values were TRIBE and BIA, which relates to Tribal Identification. Typically a feature with this high of a percentage is removed, but upon inspecting some of the rows that didn't contain this value, it became clear that the absence of a value signaled that a facility wasn't on tribal land. As such, this was turned into a dummy variable for 'On Tribal Land' as 1 or "Not on Tribal Land' as zero. The Only Numeric Attribute with more than 50% missing values was One-Time Release, and there are other features related to this category specifically such as , TOTAL RELEASES., 8.1 - RELEASES, to name a few. After this in Figure 10, we can see 17. STANDARD PARENT CO NAME, 16. PARENT CO NAME and 'PARENT CO NAME' which are additional identifiers for facilities. The last

numeric attribute with missing values is '118. 8.9 - PRODUCTION RATIO', with around 4% missing values.



Figure 10: Features with the Highest Percentage of Missing Values

#### **Nominal Data Processing**

Our dataset contained a wealth of data with regards to facility identifiers, chemical identifiers in TRI reports, and classifications for the types of waste and techniques utilized at facilities. Data which just provided additional irrelevant information identifying facilities such as city, state, and zip code were removed. This same logic was applied with additional chemical identifiers. Other nominal data was removed for different reasons as identified in the following table. The following table contains a detailed breakdown of the action taken for nominal attributes

| Figure 11: Nominal Data Processing                                                                                                                                                                                  |         |                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------|
| Variables                                                                                                                                                                                                           | Action  | Additional Comments                                                                                       |
| YEAR,TRIFD, FRS ID, FACILITY NAME, STREET ADDRESS, CITY, COUNTY, ST, ZIP, BIA, HORIZONTAL DATUM, PARENT CO DB NUM, STANDARD PARENT CO NAME, FEDERAL FACILITY, INDUSTRY SECTOR CODE, INDUSTRY SECTOR, PARENT CO NAME |         | Additional facility identifiers and as such irrelevant attributes.                                        |
| PRIMARY SIC, SIC 2, SIC 3, SIC 4, SIC 5, SIC 6, PRIMARY NAICS, NAICS 2, NAICS 3, NAICS 4, NAICS 5, NAICS 6, PFAS, DATA TYPE, CANCER SITE, STAGE AT DIAGNOSIS, AGE GROUP, GENDER, RACE,                              | Discard | Contained either zero or a single value.                                                                  |
| TRI CHEMICAL/COMPOUND ID, SRS ID, METAL CATEGORY                                                                                                                                                                    | Discard | Additional unnecessary unique ID for the chemical.                                                        |
| FORM TYPE                                                                                                                                                                                                           | Discard | There are different forms used, which affects other columns. 56 Rows are dropped for other Form Type too. |
| UNIT OF MEASURE                                                                                                                                                                                                     | Discard | 22 Rows are in grams. The rest are in pounds. These 22 rows                                               |

|                                                                                                                          |                     | have been dropped too. |
|--------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|
| TRIBE, CLEAN AIR ACT CHEMICAL, CLASSIFICATION, METAL, CARCINOGEN, ELEMENTAL METAL INCLUDED, PROD_RATIO_OR_ACTIVITY, CAS# | One-Hot<br>Encoding |                        |
| CHEMICAL                                                                                                                 | One-Hot<br>Encoding |                        |

As our dataset contains nominal but not ordinal data, one hot encoding was implemented for nominal attributes. There are two ways to convert categorical (nominal / ordinal) data to numerical data: Integer encoding and One-Hot Encoding.

Integer encoding works well for ordinal data where there is a set order in the data. Hence integer encoding does not work well for nominal data. One hot encoding works well for nominal data where the data is converted to a representation filled with 0s and 1s.

#### **One Hot Encoding For Nominal Variables**

One hot encoding is the process of converting nominal data variables to be provided to machine learning algorithms, which in turn improve predictions as well as classification accuracy of a model. In our dataset, we have several nominal variables. Using One Hot encoding, we have created dummy variables for these attributes. In general, one hot encoding provides better resolution of the data for the model and most models end up performing better.

#### **Numeric Data Processing**

In our dataset, we deleted numeric features containing more than 50% null values. After deleting those columns, we only have one attribute with Null: '118. 8.9 - PRODUCTION RATIO'. For this attribute, we replaced the Null Values with median.

#### Variable Transformations

After conducting exploratory data analysis, we found that many variables in our dataset had high standard deviations, skewed distributions, or both. To account for these characteristics, multiple techniques were used such as Log Transformations and SMOTE were implemented.:

#### **Synthetic Minority Oversampling Technique (SMOTE)**

Since the target variable (the Cancer Rate Flag) for our dataset skewed more to cases of '0', rather than '1' (the Cancer Rate in the county based on the TRI report represents an extreme upper outlier), SMOTE was applied. SMOTE is a method used when dealing with imbalanced data in classification problems, where synthetic data points that are slightly different from the

original data points are created, which creates an equal number of 'NO' and 'YES' values for our target variable.

USING SMOTE will both positively and negatively affect different metrics for assessing our model. Although SMOTE will cause an increase in recall, it will come at the cost of lower precision. In other words, SMOTE affects the model by reducing false negatives, at the expense of increasing false positives. As our target variable is concerned with detecting the presence of Carcinogens, which are cancer-causing compounds and as such is a matter of public health, having a model that prioritizes recall over precision is important.

#### **Feature Selection**

As there are many features in the dataset, the feature selection method using feature importances was implemented to choose the important features as some features are irrelevant or redundant for our analysis. Also, some of them are highly correlated to each other. Some of them are not providing any meaningful information. We want to drop those features. This reduction of features will decrease the computational complexity as well. After feature selection, the total number of attributes reduced to 122.

#### **Primary Component Analysis (PCA)**

We used primary component analysis (PCA) for dimensionality reduction. PCA transformed the original data with n number of features into k number of linear combinations of those original features where  $k \le n$ . If the k number of features provide as much information as the original data when k is less than n, we can just use those k number of linear combinations for our analysis. Here also, the computational complexity of our analysis will be reduced.

PCA provided an array of variances of each component in descending order. We have inspected those numbers by a scree plot. Also, we have considered the variances as the amount of information. We will drop those components providing less information (low variances).

The original dataset has 414 features. By looking at the Scree plot and the explained variance ratio of variance, we can find an elbow or an inflection point on the plot. We find that point around 130. After this point components are not giving us much information.

Comparing the classification reports of the original model and the model using PCA we see, by reducing the components from 414 to 130 (almost 1/3<sup>rd</sup> data) we are getting the scores near to the original model. By reducing the number of components, complexity of the model reduces. Without disturbing the performance of the original model much, PCA value 130 works good for analyzing this dataset.

## **Hyper Parameter Tuning**

Hyperparameter plays an essential role in the fitting of supervised machine learning algorithms. However, it is computationally expensive to tune all the tunable hyperparameters simultaneously especially for large data sets.

Using Hyper Parameter tuning we are trying to control the learning process and determine the values of model parameters that a learning algorithm ends up learning. The prefix 'hyper\_' suggests that they are 'top-level' parameters that control the learning process and the model parameters that result from it. While creating a model we start with the training process with random parameter values and adjust them throughout. Whereas, hyperparameters are the components set by before the training of the model.

Here we have used RandomizedSearchCV instead of GridSearchCV so that we can fix the number of parameter settings . First we have scaled our X variables[attributes].

We have tested the tuning for two models: neural Network and Random Forest, because we felt it is essential for the overall performance of the machine learning model before we finalized any model to start with.

Apart from the Neural Network, the Tree model is one of the key machine learning models of our experiment because of its robustness to noise, tolerance against missing information, handling of irrelevant, redundant predictive attribute values, low computational cost, interpretability, fast run time and robust predictors. To tune the decision tree, we tried hyperparameter tuning to check the range of values I should try for the maximum depth, which should be the minimum number of samples required at a leaf node.

#### **Data Mining Models and Evaluations**

In order to determine if a county has an elevated cancer rate, we first divided the dataset into four parts. First is the original dataset where none of the data preprocessing has been applied. Other three datasets have been obtained by applying data pre-processing methodologies like SMOTE (balancing the dataset), Feature Selection (which provides those features which are highly importance to decide whether a county has increased cancer rate) and PCA (which reduces the dimensionality by transforming the original data with n number of features into k number of linear combinations of those original features where  $k \le n$ ).

Now, these four datasets have been used to build the following machine learning models:

#### **Tree Based Models**

Tree based algorithms are considered to be one of the best and mostly used supervised learning methods. Tree based algorithms empower predictive models with high accuracy, stability and ease of interpretation. Unlike linear models, they map nonlinear relationships quite well. So we have created multiple tree algorithms to obtain good results.

#### **Decision Tree**

Decision Trees are a type of Supervised Machine Learning (that is you explain what the input is and what the corresponding output is in the training data) where the data is continuously split

according to a certain parameter. The tree can be explained by two entities, namely decision nodes and leaves.

#### **Random Forest**

The random forest is a classification algorithm consisting of many decision trees. It uses bagging and features randomness when building each individual tree to try to create an uncorrelated forest of trees whose prediction by committee is more accurate than that of any individual tree.

#### **Gradient Boosting**

Gradient boosting is a type of machine learning boosting. It relies on the intuition that the best possible next model, when combined with previous models, minimizes the overall prediction error. The key idea is to set the target outcomes for this next model in order to minimize the error.

Between all the tree models we obtained very good scores in terms of a metric for Gradient Boosting and Random Forest. The basic difference between these 2 models is - in Random forests, the results of decision trees are aggregated at the end of the process but in Gradient boosting doesn't do this and instead aggregates the results of each decision tree along the way to calculate the final result. The biggest advantage of decision trees is that they make it very easy to interpret and visualize nonlinear data patterns. Compared to other algorithms, decision trees require less effort for data preparation during pre-processing. A decision tree does not require normalization of data. A decision tree does not require scaling of data as well.

#### **Naive Bayesian Classification**

We have also created a model using Naive Bayesian algorithm by feeding all the dataset. Decision tree is a discriminative model, whereas Naive Bayes is a generative model. Decision trees are more flexible and easy. Naive Bayesian performs well in multi-class prediction when assumptions of independence are held.

#### **Artificial Neural Network**

In order to predict elevated cancer rates near Washington state facilities, the next model that we used was Artificial Neural Network. Artificial neural networks (ANN) are inspired by neural networks present in animal brains. Artificial neural networks consist of 3 stages of layers - input layer, hidden layers and output layer. Each layer in an ANN model consists of nodes which are interconnected using links or paths. Each connection between the nodes is associated with weights. If the weight on a path is positive the path is excitatory, otherwise it is inhibitory. Each

neuron has a fixed threshold. If the net input into the neuron is greater than the input into the neuron is greater than the threshold, the neuron fires. This is the basic theory behind how the neuron works.

In this project, we have used a multilayer perceptron (MLP). It is a feedforward artificial neural network that generates a set of outputs from a set of inputs. 1 hidden layer of 3 neurons have been configured in the models. These hyperparameters are set before fitting the model using training data. The parameters defined during hyperparameter tuning are - number of hidden layers and in turn number of nodes in each hidden layer (hidden\_layer\_sizes), activation type (activation) and maximum iterations (max\_iter).

Four different datasets have been fed for both GridsearchCV and RandomizedsearchCV. Once the data is loaded, all the predictor variables are normalized using Z-score normalization. Next, an MLPClassifier object is created. The beauty of GridsearchCV and RandomizedsearchCV is that they use K-fold cross validation by default.

#### **Results**

In the previous section, we discussed the different models that we have tried in our experiment to predict the cancer rate for counties. While considering the models we ran for each datasets, the outcomes are pretty consistent except Naive Bayesian Model. Because Naive Bayes assumes that all predictors (or features) are independent which our dataset hardly ensured. Although Neural network models are expensive in terms of computation time, we will suggest Neural Network with grid search as all of the other models are Tree based whereas Neural Network helped computers make intelligent decisions and gave good results. After checking the scores for all the models, we have come up with the below 3 models which are performing great for our experiment. We will be suggesting Gradient boosting by seeing the recall value as we are classifying cancer rate as our target variable and this metric is really important. And to check the robustness of the models, the other models can be used.

Figure 14: Comparison of Performance Metrics of Top Three Machine Learning Algorithms Tested

|                             |                                   |                     | I                        | Dataset                              |                  |
|-----------------------------|-----------------------------------|---------------------|--------------------------|--------------------------------------|------------------|
| Algorithm                   | Performance Metric                | Original<br>Dataset | with<br>SMOTE<br>Applied | with<br>Feature Selection<br>Applied | with PCA Applied |
|                             | Accuracy:                         | 0.95                | 0.95                     | 0.95                                 | 0.89             |
| Gradient                    | Precision:                        | 0.89                | 0.6                      | 0.9                                  | 0.43             |
| Boosting                    | Recall:                           | 0.55                | 0.83                     | 0.57                                 | 0.16             |
|                             | Mean Score after applying k-fold: | 0.88                | 0.92                     | 0.88                                 | 0.88             |
|                             | Accuracy:                         | 0.87                | 0.87                     | 0.89                                 | 0.88             |
| Neural<br>Network with      | Precision:                        | 0.35                | 0.84                     | 0.42                                 | 0.36             |
| Network with<br>Grid Search | Recall:                           | 0.24                | 0.91                     | 0.23                                 | 0.18             |
| Oria Starta                 | Mean Score after applying k-fold: | 0.88                | 0.92                     | 0.88                                 | 0.89             |
|                             | Accuracy:                         | 0.92                | 0.97                     | 0.93                                 | 0.89             |
| Random                      | Precision:                        | 0.76                | 0.96                     | 0.8                                  | 0.47             |
| Forest                      | Recall:                           | 0.41                | 0.98                     | 0.42                                 | 0.21             |
| Classifici                  | Mean Score after applying k-fold: | 0.9                 | 0.97                     | 0.9                                  | 0.88             |

#### **Discussion**

#### **Domain Knowledge**

We started with the problem statement "Predicting the presence of carcinogens (cancer-causing compounds) in toxic releases from Washington state industrial & federal facilities". We started with the TRI report for 2021 and performed all data pre processing. At this stage, we felt that we should merge the TRI dataset with another dataset to take our project to a new direction. We added a new dataset from the Cancer Registry of Washington State Department of Health, which tracks incidents of cancer across counties as well as that county's estimated annual population, from 1994 to 2018. We merged these two datasets by performing an inner join on year & county. Also, rather than focusing on TRI reports from a single year, we've added many more years into our dataset. This new dataset became size wise 25x larger than our old dataset.

Although our second dataset from the Washington State Cancer Registry contained numeric values for Cancer and Population in individual years and counties, we made the decision to transform this dataset so it could be implemented as a classification problem rather than a regression problem. Our reasons for doing so are two-fold.

The first is that there are many different factors which can impact the rates of cancer in a given county and it's difficult to assess how much these factors can be controlled for in a model. For example, if a county has a higher rate of smokers, then it's likely that there will be a higher incidence of cancer in that county as well. While a factor such as this might be more easily controlled, there are others such as say an environmental incident that has contaminated the local water supply which are more difficult to control for. There are many unknown factors within this example that could have an effect on cancer rates such as: How prolonged was the water

contaminated? From the source of the contamination, how far did the contamination spread? The Oncology (the study of Cancer) industry is valued at a quarter of a trillion dollars (Precedence Research) and there is still much work to be done for understanding the many different factors which led to Cancer.

The second is that we wanted to create a metric which not just provided clearer comprehension for stakeholders, while taking into account the gap of knowledge humans have in understanding and measuring the impact of Cancer. Setting our threshold for the cancer rate flag

Figure 14: Seconds to Compute For ML Algorithms

| Machine<br>Learning<br>Algorithm<br>Used | Dataset Used       | SYSTEM 1<br>Memory: 8 GB<br>OS: Windows<br>11<br>Processor:<br>AMD Ryzen 5<br>3500U | SYSTEM 2 Memory: 8 GB OS: MacOS Ventura 13 Processor: Apple M1 | SYSTEM 3 Memory: 8 GB OS: Windows 11 Home Processor: Intel Core i3-1115G4 |
|------------------------------------------|--------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|
|                                          | Original:          | 1.82                                                                                | 0.28                                                           | 0.7                                                                       |
| Random Forest                            | SMOTE:             | 3.58                                                                                | 0.43                                                           | 1.06                                                                      |
| Kandom Forest                            | Feature Selection: | 1.27                                                                                | 0.25                                                           | 0.53                                                                      |
|                                          | PCA:               | 5.12                                                                                | 1.17                                                           | 2.09                                                                      |
|                                          | Original:          | 5.26                                                                                | 0.96                                                           | 1.72                                                                      |
| Gradient                                 | SMOTE:             | 12.69                                                                               | 1.93                                                           | 3.42                                                                      |
| Boosting                                 | Feature Selection: | 3.19                                                                                | 0.64                                                           | 1.08                                                                      |
|                                          | PCA:               | 20.51                                                                               | 5.12                                                           | 9.24                                                                      |
| Neural                                   | Original:          | 771.39                                                                              | 130.84                                                         | 329.69                                                                    |
| Network                                  | SMOTE:             | 2280.56                                                                             | 743.79                                                         | 1084.68                                                                   |
| (Grid Search                             | Feature Selection: | 596.44                                                                              | 1429.57                                                        | 291.16                                                                    |
| CV)                                      | PCA:               | 622.51                                                                              | 85.15                                                          | 210.33                                                                    |

at the level of an upper range extreme outlier hopefully accounts for the high level of variance inherent in our limited, though growing, understanding of this grave disease. By setting this threshold so high, it gives relevant stakeholders a clear metric that a factory is worthy of investigating to make sure there aren't dangerous levels of output occuring that harm the communities they exist in.

As it stands, this model provides a framework for predicting power plants that are a cause of concern for the counties in which they operate and provides an easily comprehensible tool for stakeholders to identify such a concern.

#### **Methodological Contributions**

With the combined dataset, we proceeded with hyperparameter tuning and then built five machine learning models- Decision Tree, Random Forest, Gradient Boosting, Naive Bayesian Classification and Neural Network model. At first, we were getting abnormally very high accuracy (99%-100%) for all the tree models (Decision Tree, Random Forest and Gradient Boosting), which was weird. This could be due to overfitting issues or due to high correlation between variables. We built the correlation matrix again after Primary Component Analysis and inspected Multicollinearity. At this point we got rid of all the highly correlated variable pairs. Also, we inspected the GINI importance of each feature. We found a feature where the GINI

importance was a lot higher than anything else. Once we drop that, performance metrics seem more believable.

Our research shows that if a county has its toxic release data and cancer data across counties as well as that counties' estimated annual population data, our machine learning model can predict if that county has an elevated cancer rate. Knowing this prior will help policy makers and the health department plan accordingly. For example, policymakers can have stricter industrial regulations in a county with elevated cancer risks. Also, counties with a higher rate of cancer possibility can reduce exposure to harmful environment factors by maintaining strict guidelines issued by the health department.

This model can be used by policy makers or EPA as it can determine if a county has an elevated cancer rate or not. Nowadays, society is becoming more aware of the negative environmental impact of factories, impact of global warming, etc. Fines can be used as a way to effect change for the upcoming days. We can take our analysis to a next level which could be more beneficial to stakeholders by equipping IOT devices at factories which take the numerical inputs and measure the levels of outputs. This can allow the stakeholders or city planners to keep things under control. The model can be used by factories as well. As the measurement metrics become more accurate, staying in compliance to avoid penalties whether they be fines, shutdowns or lawsuits is of utmost importance. The models could be used to help them avoid these.

#### **Conclusions**

#### Summary

Our research focuses on prediction if a county has an elevated cancer rate as indicated by data provided by Toxic Release Inventory on Washington State Industrial Facilities. Our research uses various machine learning models which could be implemented by the government environmental or health departments. Throughout the process we have also explained which models performed better than others and the reason behind that. Out of all models Random Forest, Gradient Boosting, Neural Network w/ Grid Search acted best. There were some limitations which we are discussing below.

#### Limitations

A primary limitation of our study is with regards to the nature of cancer itself. In our study, there is a false premise created for the sake of creating a model that cancer is only caused by a factory's output from that year, with no regards to cancer's nature as a disease which can reveal itself over a much longer timespan, be it months, years, or decades. For example, if someone smokes when they are younger, even if they quit, they will nonetheless have a higher possibility of being diagnosed with lung cancer over the course of their lifetime than someone who had never smoked (John Hopkins). In other words, when cancer reveals itself in a living organism varies wildly and the length of and intensity of exposure to carcinogens have a dramatic effect. In

the context of our study, someone who lives in the same county as a factory for which the Cancer Rate Flag was triggered might not be diagnosed for cancer in the year in the year they live next to the factory, but living in the same county as such a factory could cause them to have a higher risk of cancer which would only reveal itself decades later.

There are also many other causes of cancer which aren't taken into account in the model. For example, our model does not include the percentage of smokers in a county or a county's average age. How much someone smokes and how old someone has been shown to be strongly correlated with cancer (Center for Disease Control). Other demographic factors such as race are not accounted for, which has been shown to have an impact on rates of screening, treatment and overall outcomes (Kaiser Family Foundation).

Additionally, our model doesn't take into account multiple TRI reports being listed for a given county. Although King County might have more TRI reports than any other county, not only is the number of reports in a given county not taken into account, but also the grade of specific measurements within the report. For example, a smaller facility may have lower output than a larger industrial facility, so with that in mind the level of an output in a certain facility should be measured as well, which our current model does not consider. Aggregating multiple reports, as well as being able to weigh individual facility's level of output, might yield better results with regards to predicting Cancer Rates.

Currently the distance metric utilized is imprecise. In terms of overall area, some counties are much larger than others. Additionally, we aren't able to see individual level data on those who are diagnosed with cancer, so we can't assess individual's proximity to industrial facilities. Healthcare data is anonymized so it makes it difficult to do a more tightly controlled study on a factory's impacts on cancer rates.

Additionally, our model being based on an upper range extreme outlier, does not account for potential state-wide or greater changes in cancer rates. For example, the radioactive fallout from the Chernobyl accident went beyond immediate manmade-delineated borders (<u>National Library of Medicine</u>). Regardless of the root cause for an increase in cancer rates, the model wouldn't be able to account and yet the threshold would be raised.

Lastly, having Oncologists as well as environmental scientists directly involved with the implementation and modifications of the model would provide a more solid scientific foundation for this study. Domain experts would undoubtedly provide better context and may help prevent unintended consequences regarding the implementation of this model.

## **Future Projects**

Although this project provides a foundational framework of a tool that can be used to better understand the impact of factories on the communities they operate in, there is a great opportunity for improvement that would address some of the limitations previously addressed.

Implementing missing features that show a clear casual relationship with cancer such as the average age and the smoking rates in counties for that year would improve the model. Other demographic factors such as the number of factory workers in a county may improve the model.

In addition, adding features which account for other TRI reports in a given county for that year might yield an improved model. As discussed in limitations, someone may be exposed to carcinogens earlier in their life which may increase their risk of cancer later in life. Adding time series elements regarding factory output from previous years may address some of these shortcomings.

County is an artificially defined border whereas cancer is a phenomena that doesn't pay attention to borders. Existing zoning regulations affect where factories may or may not operate. This model may see improvement through using longitude and latitude of a factory's location to the most densely populated point in a given county would be improvement towards addressing factory location relative to residential areas in a county.

In the results, we obtained high accuracy scores in most of the Tree models, specially with SMOTE dataset, which could indicate an overfitting problem. In future, we can solve the problem of overfitting by: Increasing the training data by data augmentation. If we find a way to reduce the complexity, then the overfitting issue can be overcome. We have set the cancer prediction 'YES' if the value is greater than equal to the extreme outliers as we didnt have any valid data to fix the threshold to segregate. So we can work further to fix this threshold in future for better prediction.

Lastly, we can extend the research to determine the impact of releases by facilities which contain carcinogen in air and in ground. This way we can gauge the impact on respiratory diseases which are caused by air borne releases and impact on food / agriculture which in turn are caused by water or ground releases.

#### **References**

- Nikhil Agarwal, Chanont Banternghansa, Linda T.M. Bui. (2010). Toxic exposure in America: Estimating fetal and infant health outcomes from 14 years of TRI reporting. [Online]. URL <u>Toxic exposure in America: Estimating fetal and infant health outcomes</u> from 14 years of TRI reporting
- 2. Thomas P. McKeon & Wei-Ting Hwang & Zhuoran Ding & Vicky Tam & Paul Wileyto & Karen Glanz & Trevor M. Penning. (2021). Environmental exposomics and lung cancer risk assessment in the Philadelphia metropolitan area using ZIP code–level hazard indices. [Online]. URL Environmental exposomics and lung cancer risk assessment in the Philadelphia metropolitan area using ZIP code–level hazard indices
- 3. S.M.Lee1D.L.Hershman, P.Martin J.P.Leonard &Y.K.Cheung (March,2011). Toxicity burden score: a novel approach to summarize multiple toxic effects. [Online]. URL Toxicity burden score: a novel approach to summarize multiple toxic effects

- 4. Irene Jacqz (September 2022). Toxic test scores: The impact of chemical releases on standardized test performance within U.S. schools.[Online]. <u>URL Toxic test scores: The impact of chemical releases on standardized test performance within U.S. schools</u>
- 5. Wilson, S. M., Fraser-Rahim, H., Williams, E., Zhang, H., Rice, L., Svendsen, E., & Abara, W. (2012). Assessment of the distribution of toxic release inventory facilities in metropolitan Charleston: an environmental justice case study. *American journal of public health*, *102*(10), 1974–1980. https://doi.org/10.2105/AJPH.2012.300700
- 6. Laufer, B. (2018, January). *Data Analytics and Machine Learning for Environmental Protection: Targeting Air Inspections*. Retrieved October 9, 2022, from https://bendlaufer.github.io/Laufer\_Benjamin\_EPA\_Project.pdf
- 7. Princeton University, Department of Operations Research and Financial Engineering Volunteer Intern, EPA Region 2 DECA–CAPSB, Data Management Team
- 8. Hendryx, Luo, J., & Chen, B.-C. (2014). Total and cardiovascular mortality rates in relation to discharges from toxics release inventory sites in the United States. Environmental Research, 133, 36–41. <a href="https://doi.org/10.1016/j.envres.2014.05.010">https://doi.org/10.1016/j.envres.2014.05.010</a>
- 9. Léa Fortunato, Juan José Abellan, Linda Beale, Sam LeFevre, Sylvia Richardson. (2011). Spatio-temporal patterns of bladder cancer incidence in Utah (1973-2004) and their association with the presence of toxic release inventory sites. [Online]. URL <a href="https://ij-healthgeographics.biomedcentral.com/articles/10.1186/1476-072X-10-16">https://ij-healthgeographics.biomedcentral.com/articles/10.1186/1476-072X-10-16</a>
- Pennacchiotti, M., & Popescu, A.-M. (2011). A Machine Learning Approach to Twitter User Classification. Proceedings of the International AAAI Conference on Web and Social Media, 5(1), 281–288. <a href="https://ojs.aaai.org/index.php/ICWSM/article/view/14139/13988">https://ojs.aaai.org/index.php/ICWSM/article/view/14139/13988</a>
- 11. Chauhan, H., & Chauhan, A. (2013). Implementation of decision tree algorithm c4.5. International Journal of Scientific and Research Publications, 3(10). <a href="https://citeseerx.ist.psu.edu/viewdoc/download">https://citeseerx.ist.psu.edu/viewdoc/download</a>? doi=10.1.1.395.9610&rep=rep1&type=pdf
- 12. Roser M, Ritchie H. Cancer. (2017, April). Our World in Data. <a href="https://ourworldindata.org/cancer#:~:text=Global%20cancer%20prevalence%20has%20risen,(largely%20due%20to%20smoking)">https://ourworldindata.org/cancer#:~:text=Global%20cancer%20prevalence%20has%20risen,(largely%20due%20to%20smoking)</a>.
- 13. Racial Disparities in Cancer Outcomes, Screening, and Treatment. (2022b, February 3). KFF.
  - $https://www.kff.org/racial-equity-and-health-policy/issue-brief/racial-disparities-in-cance\ r-outcomes-screening-and-treatment/$
- 14. Former Smokers: What's Your Risk for Lung Cancer? (2021, August 8). Johns Hopkins Medicine.
  - https://www.hopkinsmedicine.org/health/conditions-and-diseases/lung-cancer/former-sm oker-whats-your-risk-for-lung-cancer

15. Cardis E, Krewski D, Boniol M, et al. Estimates of the cancer burden in Europe from radioactive fallout from the Chernobyl accident. Int J Cancer. 2006;119(6):1224-1235. doi:10.1002/ijc.22037

## **Data Sources**

2021 TRI Preliminary Dataset: Basic Data Files. (2022, September 28). US EPA. Retrieved October 1, 2022, from 2021 TRI Preliminary Dataset: Basic Data Files | US EPA.

1995 - 2018 Washington State Cancer Registry. (2022, June). Retrieved November 6, 2022, from Washington State Department of Health.

# **Appendix**

## FIGURE A: Univariate Analysis on Numeric Variables

| Feature                  | Standard Dev | Mean       | max        | 25%   | 50%   | 75%    |
|--------------------------|--------------|------------|------------|-------|-------|--------|
| 5.1 - FUGITIVE AIR       | 1,599,292.69 | 178,603.87 | 43,482,000 | 33.60 | 2,296 | 32,942 |
| 5.2 - STACK AIR          | 1,368,595.06 | 56,972.12  | 43,482,000 | 0.00  | 0     | 0      |
| 5.3 - WATER              | 643,313.24   | 48,661.27  | 19,267,609 | 0.00  | 12    | 2,046  |
| 5.5.1B - OTHER LANDFILLS | 536,190.35   | 30,201.42  | 15,828,830 | 0.00  | 0     | 0      |
| 5.5.2 - LAND TREATMENT   | 536,190.35   | 30,201.42  | 15,828,830 | 0.00  | 0     | 0      |
| 5.5.3B - OTHER SURFACE I | 473,357.47   | 55,721.30  | 8,160,000  | 0.00  | 0     | 0      |
| 5.5.4 - OTHER DISPOSAL   | 473,083.88   | 15,461.67  | 15,225,837 | 0.00  | 0     | 0      |
| ON-SITE RELEASE TOTAL    | 209,055.31   | 10,558.23  | 6,601,328  | 0.00  | 0     | 0      |
| 6.1 - POTW - TRNS RLSE   | 170,592.64   | 21,022.42  | 3,745,995  | 3.00  | 201   | 3,450  |
| 6.1 - POTW - TRNS TRT    | 125,341.11   | 12,185.82  | 3,745,995  | 0.03  | 30    | 985    |
| POTW - TOTAL TRANSFERS   | 124,819.55   | 11,589.75  | 3,745,995  | 0.03  | 29    | 928    |
| 6.2 - M10                | 115,919.77   | 8,836.60   | 3,438,779  | 0.00  | 0     | 26     |
| 6.2 - M41                | 111,135.13   | 6,554.81   | 3,433,471  | 0.00  | 0     | 0      |
| 6.2 - M62                | 106,672.34   | 3,352.69   | 3,433,470  | 0.00  | 0     | 0      |

| 6.2 - M64                  | 100,235.16 | 4,629.30 | 3,151,982 | 0.00 | 0 | 0   |
|----------------------------|------------|----------|-----------|------|---|-----|
| 6.2 - M65                  | 86,828.58  | 5,587.94 | 2,641,443 | 0.00 | 0 | 0   |
| 6.2 - M65                  | 61,245.95  | 6,393.16 | 1,374,306 | 0.00 | 0 | 0   |
| 6.2 - M73                  | 61,245.93  | 6,393.36 | 1,374,306 | 0.00 | 0 | 0   |
| 6.2 - M79                  | 55,982.54  | 3,945.76 | 1,374,306 | 0.00 | 0 | 0   |
| 6.2 - M90                  | 53,441.84  | 3,440.40 | 1,374,306 | 0.00 | 0 | 0   |
| 6.2 - M94                  | 41,962.56  | 1,883.27 | 1,107,155 | 0.00 | 0 | 0   |
| 6.2 - M99                  | 40,264.50  | 6,853.76 | 313,056   | 0.00 | 0 | 0   |
| OFF-SITE RELEASE TOTAL     | 36,886.07  | 3,213.51 | 806,379   | 0.00 | 0 | 0   |
| 6.2 - M20                  | 36,885.87  | 3,229.89 | 806,379   | 0.00 | 0 | 0   |
| 6.2 - M24                  | 36,885.87  | 3,229.89 | 806,379   | 0.00 | 0 | 0   |
| 6.2 - M26                  | 32,788.26  | 2,275.94 | 965,721   | 0.00 | 0 | 0   |
| OFF-SITE RECYCLED TOTAL    | 28,274.61  | 4,456.55 | 505,922   | 0.00 | 3 | 244 |
| 6.2 - M56                  | 24,702.55  | 2,298.26 | 602,993   | 0.00 | 0 | 0   |
| OFF-SITE ENERGY RECOVERY T | 22,388.74  | 1,495.69 | 502,616   | 0.00 | 0 | 0   |
| 6.2 - M40 NON-METAL        | 18,819.14  | 797.77   | 594,013   | 0.00 | 0 | 0   |
| 6.2 - M50                  | 13,208.27  | 1,257.14 | 234,177   | 0.00 | 0 | 0   |
| 6.2 - M54                  | 12,710.28  | 1,484.93 | 363,103   | 0.00 | 0 | 51  |
| 6.2 - M61 NON-METAL        | 11,867.09  | 892.79   | 243,646   | 0.00 | 0 | 0   |
| 6.2 - M69                  | 11,752.96  | 708.42   | 257,002   | 0.00 | 0 | 0   |
| 6.2 - M95                  | 11,729.49  | 590.71   | 313,056   | 0.00 | 0 | 0   |
| OFF-SITE TREATED TOTAL     | 7,048.05   | 505.36   | 184,550   | 0.00 | 0 | 0   |
| 6.2 - TOTAL TRANSFER       | 3,652.70   | 210.94   | 92,681    | 0.00 | 0 | 0   |
| TOTAL RELEASES             | 3,156.67   | 135.70   | 85,901    | 0.00 | 0 | 0   |
| 8.1A - ON-SITE CONTAINED   | 2,906.35   | 111.62   | 90,081    | 0.00 | 0 | 0   |
| 8.1B - ON-SITE OTHER       | 2,300.40   | 98.12    | 65,164    | 0.00 | 0 | 0   |
| 8.1C - OFF-SITE CONTAIN    | 2,222.57   | 219.98   | 38,841    | 0.00 | 0 | 0   |
| 8.1D - OFF-SITE OTHER R    | 2,222.57   | 219.98   | 38,841    | 0.00 | 0 | 0   |

| 8.2 - ENERGY RECOVER ON   | 1,808.59 | 70.41 | 56,734 | 0.00 | 0 | 0 |
|---------------------------|----------|-------|--------|------|---|---|
| 8.3 - ENERGY RECOVER OF   | 1,495.08 | 93.19 | 32,677 | 0.00 | 0 | 0 |
| 8.4 - RECYCLING ON SITE   | 1,262.50 | 77.55 | 32,969 | 0.00 | 0 | 0 |
| 8.5 - RECYCLING OFF SITE  | 488.40   | 27.72 | 12,867 | 0.00 | 0 | 0 |
| 8.6 - TREATMENT ON SITE   | 301.47   | 16.38 | 8,350  | 0.00 | 0 | 0 |
| 8.7 - TREATMENT OFF SITE  | 171.90   | 15.80 | 3,291  | 0.00 | 0 | 0 |
| PRODUCTION WSTE (8.1-8.7) | 148.93   | 10.97 | 3,918  | 0.00 | 0 | 0 |
| 8.8 - ONE-TIME RELEASE    | 12.25    | 1.61  | 374    | 0.95 | 1 | 1 |
| 8.9 - PRODUCTION RATIO    | 0.31     | 0.01  | 10     | 0.00 | 0 | 0 |

Note: The minimum value for all columns is 0. The count for all columns is 1036, with the exception of '6.2 - M99' which is 106, and '8.8 - ONE-TIME RELEASE' which is 987.

<sup>\*\*</sup> See 'Numerical Data Description (Pre-Processing)' in Appendix

## **FIGURE B: Correlation Heatmap**



FIGURE C: Chemical Frequency in Toxic Release Inventory Reports

| Chemical                                                                                                           | % Count |
|--------------------------------------------------------------------------------------------------------------------|---------|
| Lead compounds                                                                                                     | 5.36%   |
| Lead                                                                                                               | 5.16%   |
| Nitrate Compounds                                                                                                  | 4.02%   |
| Ammonia                                                                                                            | 3.41%   |
| Xylene (mixed isomers)                                                                                             | 2.99%   |
| Toluene                                                                                                            | 2.91%   |
| Methanol                                                                                                           | 2.89%   |
| Nitric acid                                                                                                        | 2.77%   |
| Styrene                                                                                                            | 2.70%   |
| Copper                                                                                                             | 2.66%   |
| Polycyclic aromatic compounds                                                                                      | 2.62%   |
| Manganese                                                                                                          | 2.33%   |
| Chromium                                                                                                           | 2.24%   |
| Manganese compounds                                                                                                | 1.98%   |
| Zinc compounds                                                                                                     | 1.96%   |
| Naphthalene                                                                                                        | 1.86%   |
| Nickel                                                                                                             | 1.81%   |
| Dioxin and dioxin-like compounds                                                                                   | 1.71%   |
| Chromium compounds (except for chromite ore mined in the Transvaal Region)                                         | 1.70%   |
| Ethylbenzene                                                                                                       | 1.70%   |
| Copper compounds                                                                                                   | 1.67%   |
| Benzo[g,h,i]perylene                                                                                               | 1.65%   |
| Chlorine                                                                                                           | 1.59%   |
| 1,2,4-Trimethylbenzene                                                                                             | 1.59%   |
| Certain glycol ethers                                                                                              | 1.53%   |
| Phenol                                                                                                             | 1.52%   |
| Hydrochloric acid (acid aerosols including mists, vapors, gas, fog, and other airborne forms of any particle size) | 1.52%   |
| Hydrogen fluoride                                                                                                  | 1.49%   |
| Benzene                                                                                                            | 1.41%   |
| Diisocyanates                                                                                                      | 1.40%   |

| n-Hexane                                                                                                       | 1.39% |
|----------------------------------------------------------------------------------------------------------------|-------|
| Mercury compounds                                                                                              | 1.34% |
| Formaldehyde                                                                                                   | 1.13% |
| Ethylene glycol                                                                                                | 1.05% |
| Sulfuric acid (acid aerosols including mists, vapors, gas, fog, and other airborne forms of any particle size) | 1.00% |
| Methyl ethyl ketone                                                                                            | 0.99% |
| n-Butyl alcohol                                                                                                | 0.94% |
| Nickel compounds                                                                                               | 0.83% |
| Methyl isobutyl ketone                                                                                         | 0.81% |
| Acetaldehyde                                                                                                   | 0.78% |
| Barium compounds (except for barium sulfate (CAS No. 7727-43-7))                                               | 0.74% |
| Cyclohexane                                                                                                    | 0.73% |
| Phosphoric acid                                                                                                | 0.69% |
| Formic acid                                                                                                    | 0.61% |
| Catechol                                                                                                       | 0.58% |
| Propylene                                                                                                      | 0.58% |
| Diethanolamine                                                                                                 | 0.57% |
| Chlorine dioxide                                                                                               | 0.56% |
| Cresol (mixed isomers)                                                                                         | 0.55% |
| Carbonyl sulfide                                                                                               | 0.53% |
| Tetrachloroethylene                                                                                            | 0.50% |
| Arsenic compounds                                                                                              | 0.50% |
| Ethylene                                                                                                       | 0.48% |
| Dichloromethane                                                                                                | 0.44% |
| Trichloroethylene                                                                                              | 0.43% |
| Cumene                                                                                                         | 0.41% |
| 1,3-Butadiene                                                                                                  | 0.40% |
| Pentachlorophenol                                                                                              | 0.40% |
| Carbon disulfide                                                                                               | 0.37% |
| Molybdenum trioxide                                                                                            | 0.37% |
| Hydrogen sulfide                                                                                               | 0.37% |
| N-Methyl-2-pyrrolidone                                                                                         | 0.32% |
| Mercury                                                                                                        | 0.29% |
| Phenanthrene                                                                                                   | 0.29% |

| Aluminum (fume or dust)              | 0.28% |
|--------------------------------------|-------|
| Di(2-ethylhexyl) phthalate           | 0.25% |
| Cobalt compounds                     | 0.25% |
| Chloroform                           | 0.25% |
| Methyl methacrylate                  | 0.23% |
| Tetrabromobisphenol A                | 0.22% |
| Biphenyl                             | 0.22% |
| Antimony compounds                   | 0.22% |
| Metham sodium                        | 0.21% |
| Anthracene                           | 0.20% |
| Hydrogen cyanide                     | 0.19% |
| Polychlorinated biphenyls            | 0.19% |
| Toluene diisocyanate (mixed isomers) | 0.18% |
| Lithium carbonate                    | 0.17% |
| Zinc (fume or dust)                  | 0.17% |
| Chlorodifluoromethane (HCFC-22)      | 0.17% |
| Cyanide compounds                    | 0.15% |
| Dimethylamine                        | 0.15% |
| Dimethyl phthalate                   | 0.14% |
| Silver                               | 0.14% |
| Methyl tert-butyl ether              | 0.14% |
| Sodium dimethyldithiocarbamate       | 0.14% |
| Sodium nitrite                       | 0.14% |
| Hexachlorobenzene                    | 0.12% |
| Acrylic acid                         | 0.12% |
| Antimony                             | 0.12% |
| Vanadium compounds                   | 0.11% |
| Acetonitrile                         | 0.11% |
| Lead And Lead Compounds              | 0.11% |
| Cadmium compounds                    | 0.10% |
| Creosote                             | 0.10% |
| N,N-Dimethylformamide                | 0.09% |
| Potassium dimethyldithiocarbamate    | 0.09% |
| Freon 113 (CFC-113)                  | 0.09% |

| Diphenylamine                                                                          | 0.09% |
|----------------------------------------------------------------------------------------|-------|
| 1,1,1-Trichloroethane                                                                  | 0.08% |
| Peracetic acid                                                                         | 0.08% |
| Acrylamide                                                                             | 0.08% |
| sec-Butyl alcohol                                                                      | 0.08% |
| Benzoyl peroxide                                                                       | 0.08% |
| 1,3-Dichloropropylene                                                                  | 0.08% |
| 4,4'-Isopropylidenediphenol                                                            | 0.08% |
| 1,2-Dichloroethane                                                                     | 0.07% |
| 1,1-Dichloro-1-fluoroethane (HCFC-141b)                                                | 0.07% |
| Chloropicrin                                                                           | 0.07% |
| trans-1,3-Dichloropropene                                                              | 0.07% |
| Nitroglycerin                                                                          | 0.07% |
| Pyridine                                                                               | 0.07% |
| Potassium N-methyldithiocarbamate                                                      | 0.06% |
| Mixture                                                                                | 0.06% |
| Asbestos (friable)                                                                     | 0.06% |
| Dibutyl phthalate                                                                      | 0.06% |
| Dichlorodifluoromethane (CFC-12)                                                       | 0.05% |
| Chloromethane                                                                          | 0.05% |
| Decabromodiphenyl oxide                                                                | 0.05% |
| Chromium and Chromium Compounds(except for chromite ore mined in the Transvaal Region) | 0.04% |
| Triethylamine                                                                          | 0.04% |
| Phosphorus (yellow or white)                                                           | 0.04% |
| Copper And Copper Compounds                                                            | 0.04% |
| Propionaldehyde                                                                        | 0.04% |
| 1-Bromopropane                                                                         | 0.03% |
| Cobalt                                                                                 | 0.03% |
| Diuron                                                                                 | 0.03% |
| Selenium compounds                                                                     | 0.03% |
| Vinyl acetate                                                                          | 0.03% |
| Aluminum oxide (fibrous forms)                                                         | 0.03% |
| Dinitrotoluene (mixed isomers)                                                         | 0.03% |
| Isoprene                                                                               | 0.03% |

| Propylene oxide 0  Propiconazole 0  Mercury And Mercury Compounds 0                                               | 0.02%<br>0.02%<br>0.02%<br>0.02%<br>0.02%<br>0.02% |
|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| Propiconazole 0  Mercury And Mercury Compounds 0                                                                  | 0.02%<br>0.02%<br>0.02%<br>0.02%                   |
| Mercury And Mercury Compounds 0                                                                                   | 0.02%<br>0.02%<br>0.02%                            |
|                                                                                                                   | 0.02%                                              |
| Arsenic 0                                                                                                         | 0.02%                                              |
|                                                                                                                   |                                                    |
| tert-Butyl alcohol 0                                                                                              | 02%                                                |
| Barium 0                                                                                                          | J.UZ/0                                             |
| 2-Methoxyethanol 0                                                                                                | 0.02%                                              |
| Barium And Barium Compounds 0                                                                                     | 0.02%                                              |
| Sodium azide 0                                                                                                    | 0.02%                                              |
| Polychlorinated alkanes (C10-C13) 0                                                                               | 0.02%                                              |
| Hydroquinone 0                                                                                                    | 0.01%                                              |
| Isopropyl alcohol (only persons who manufacture by the strong acid process are subject, no supplier notification) | 0.01%                                              |
| Toluene-2,6-diisocyanate 0                                                                                        | 0.01%                                              |
| Quinoline 0                                                                                                       | 0.01%                                              |
| Cadmium 0                                                                                                         | 0.01%                                              |
| Nabam 0                                                                                                           | 0.01%                                              |
| Toluene-2,4-diisocyanate 0                                                                                        | 0.01%                                              |
| Trichlorofluoromethane (CFC-11) 0                                                                                 | 0.01%                                              |
| Dicyclopentadiene 0                                                                                               | 0.01%                                              |
| 2,4-Dimethylphenol 0                                                                                              | 0.01%                                              |
| m-Xylene 0                                                                                                        | 0.01%                                              |
| Fluorine 0                                                                                                        | 0.01%                                              |
| Acetophenone 0                                                                                                    | 0.01%                                              |
| Cobalt And Cobalt Compounds 0                                                                                     | 0.01%                                              |
| 1,2,4-Trichlorobenzene 0                                                                                          | 0.01%                                              |
| Ozone 0                                                                                                           | 0.01%                                              |
| Phosphine 0                                                                                                       | 0.01%                                              |
| 1,4-Dioxane 0                                                                                                     | 0.01%                                              |
| Butyl acrylate 0                                                                                                  | 0.01%                                              |
| Disodium cyanodithioimidocarbonate 0                                                                              | 0.01%                                              |
| Bromoxynil 0                                                                                                      | 0.00%                                              |
| Trifluralin 0                                                                                                     | 0.00%                                              |

|          | Triallate                              | 0.00% |
|----------|----------------------------------------|-------|
|          | 1,2-Dibromoethane                      | 0.00% |
|          | Trade Secret                           | 0.00% |
|          | Cyclohexanol                           | 0.00% |
| 2,2-Dich | lloro-1,1,1-trifluoroethane (HCFC-123) | 0.00% |
|          | Dibenzofuran                           | 0.00% |
|          | Carbon tetrachloride                   | 0.00% |
|          | Folpet                                 | 0.00% |
|          | 2-Phenylphenol                         | 0.00% |
|          | Dichlorotetrafluoroethane (CFC-114)    | 0.00% |
|          | m-Cresol                               | 0.00% |
|          | Nitrilotriacetic acid                  | 0.00% |
|          | Dimethyl sulfate                       | 0.00% |
|          | p-Xylene                               | 0.00% |
| Vanadio  | um (except when contained in an alloy) | 0.00% |
|          | o-Xylene                               | 0.00% |

## FIGURE D: Correlation Coefficients of Numeric Data

| Feature 1                      | Feature 2                     | <b>Correlation Coefficient</b> |
|--------------------------------|-------------------------------|--------------------------------|
| 103. 6.2 - TOTAL TRANSFER      | 91. OFF-SITE RECYCLED TOTAL   | 0.999333846                    |
| 91. OFF-SITE RECYCLED TOTAL    | 87. 6.2 - M24                 | 0.999078445                    |
| 64. 6.1 - POTW - TRNS TRT      | 65. POTW - TOTAL TRANSFERS    | 0.998993271                    |
| 103. 6.2 - TOTAL TRANSFER      | 87. 6.2 - M24                 | 0.998404315                    |
| 115. 8.7 - TREATMENT OFF SITE  | 101. OFF-SITE TREATED TOTAL   | 0.986947184                    |
| 104. TOTAL RELEASES            | 62. ON-SITE RELEASE TOTAL     | 0.972109373                    |
| 60. 5.5.3B - OTHER SURFACE I   | 107. 8.1B - ON-SITE OTHER     | 0.964855990                    |
| 94. OFF-SITE ENERGY RECOVERY T | 92. 6.2 - M56                 | 0.961081506                    |
| 101. OFF-SITE TREATED TOTAL    | 64. 6.1 - POTW - TRNS TRT     | 0.941530632                    |
| 65. POTW - TOTAL TRANSFERS     | 101. OFF-SITE TREATED TOTAL   | 0.940587329                    |
| 64. 6.1 - POTW - TRNS TRT      | 115. 8.7 - TREATMENT OFF SITE | 0.932733094                    |

|                                | <del>_</del>                   |             |
|--------------------------------|--------------------------------|-------------|
| 115. 8.7 - TREATMENT OFF SITE  | 65. POTW - TOTAL TRANSFERS     | 0.932048677 |
| 107. 8.1B - ON-SITE OTHER      | 62. ON-SITE RELEASE TOTAL      | 0.891730742 |
| 107. 8.1B - ON-SITE OTHER      | 104. TOTAL RELEASES            | 0.865366172 |
| 62. ON-SITE RELEASE TOTAL      | 60. 5.5.3B - OTHER SURFACE I   | 0.861843919 |
| 60. 5.5.3B - OTHER SURFACE I   | 104. TOTAL RELEASES            | 0.836583213 |
| 114. 8.6 - TREATMENT ON SITE   | 116. PRODUCTION WSTE (8.1-8.7) | 0.635270697 |
| 49. 5.2 - STACK AIR            | 114. 8.6 - TREATMENT ON SITE   | 0.474910116 |
| 109. 8.1D - OFF-SITE OTHER R   | 85. OFF-SITE RELEASE TOTAL     | 0.434170476 |
| 108. 8.1C - OFF-SITE CONTAIN   | 85. OFF-SITE RELEASE TOTAL     | 0.405820403 |
| 62. ON-SITE RELEASE TOTAL      | 49. 5.2 - STACK AIR            | 0.350022077 |
| 49. 5.2 - STACK AIR            | 104. TOTAL RELEASES            | 0.338526048 |
| 49. 5.2 - STACK AIR            | 116. PRODUCTION WSTE (8.1-8.7) | 0.313051817 |
| 56. 5.5.1B - OTHER LANDFILLS   | 62. ON-SITE RELEASE TOTAL      | 0.290793604 |
| 63. 6.1 - POTW - TRNS RLSE     | 65. POTW - TOTAL TRANSFERS     | 0.288020266 |
| 104. TOTAL RELEASES            | 56. 5.5.1B - OTHER LANDFILLS   | 0.283026601 |
| 62. ON-SITE RELEASE TOTAL      | 116. PRODUCTION WSTE (8.1-8.7) | 0.277899442 |
| 116. PRODUCTION WSTE (8.1-8.7) | 104. TOTAL RELEASES            | 0.273620913 |
| 48. 5.1 - FUGITIVE AIR         | 114. 8.6 - TREATMENT ON SITE   | 0.273481844 |
| 64. 6.1 - POTW - TRNS TRT      | 63. 6.1 - POTW - TRNS RLSE     | 0.244771018 |
| 112. 8.4 - RECYCLING ON SITE   | 116. PRODUCTION WSTE (8.1-8.7) | 0.240562599 |
| 85. OFF-SITE RELEASE TOTAL     | 104. TOTAL RELEASES            | 0.240154617 |
| 107. 8.1B - ON-SITE OTHER      | 116. PRODUCTION WSTE (8.1-8.7) | 0.237830156 |
| 115. 8.7 - TREATMENT OFF SITE  | 63. 6.1 - POTW - TRNS RLSE     | 0.233808627 |
| 101. OFF-SITE TREATED TOTAL    | 63. 6.1 - POTW - TRNS RLSE     | 0.230558015 |
| 57. 5.5.2 - LAND TREATMENT     | 50. 5.3 - WATER                | 0.227669557 |
| 62. ON-SITE RELEASE TOTAL      | 61. 5.5.4 - OTHER DISPOSAL     | 0.206572779 |
| 104. TOTAL RELEASES            | 61. 5.5.4 - OTHER DISPOSAL     | 0.204033630 |
| 114. 8.6 - TREATMENT ON SITE   | 62. ON-SITE RELEASE TOTAL      | 0.192428252 |
| 48. 5.1 - FUGITIVE AIR         | 49. 5.2 - STACK AIR            | 0.187697134 |

| 104. TOTAL RELEASES            | 114. 8.6 - TREATMENT ON SITE   | 0.184778977 |
|--------------------------------|--------------------------------|-------------|
| 48. 5.1 - FUGITIVE AIR         | 116. PRODUCTION WSTE (8.1-8.7) | 0.183986117 |
| 50. 5.3 - WATER                | 114. 8.6 - TREATMENT ON SITE   | 0.172733238 |
| 116. PRODUCTION WSTE (8.1-8.7) | 113. 8.5 - RECYCLING OFF SIT   | 0.170566389 |
| 60. 5.5.3B - OTHER SURFACE I   | 116. PRODUCTION WSTE (8.1-8.7) | 0.169075704 |
| 62. ON-SITE RELEASE TOTAL      | 50. 5.3 - WATER                | 0.163131193 |
| 61. 5.5.4 - OTHER DISPOSAL     | 107. 8.1B - ON-SITE OTHER      | 0.161452930 |
| 104. TOTAL RELEASES            | 50. 5.3 - WATER                | 0.159765811 |
| 62. ON-SITE RELEASE TOTAL      | 48. 5.1 - FUGITIVE AIR         | 0.144192571 |
| 48. 5.1 - FUGITIVE AIR         | 104. TOTAL RELEASES            | 0.139121076 |
| 50. 5.3 - WATER                | 116. PRODUCTION WSTE (8.1-8.7) | 0.131237188 |
| 57. 5.5.2 - LAND TREATMENT     | 108. 8.1C - OFF-SITE CONTAIN   | 0.129452101 |
| 60. 5.5.3B - OTHER SURFACE I   | 61. 5.5.4 - OTHER DISPOSAL     | 0.123893667 |
| 49. 5.2 - STACK AIR            | 50. 5.3 - WATER                | 0.120468480 |
| 57. 5.5.2 - LAND TREATMENT     | 85. OFF-SITE RELEASE TOTAL     | 0.115529397 |
| 107. 8.1B - ON-SITE OTHER      | 49. 5.2 - STACK AIR            | 0.114321835 |
| 50. 5.3 - WATER                | 107. 8.1B - ON-SITE OTHER      | 0.106896118 |
| 104. TOTAL RELEASES            | 109. 8.1D - OFF-SITE OTHER R   | 0.103890743 |
| 61. 5.5.4 - OTHER DISPOSAL     | 42. METAL CATEGORY             | 0.099276127 |
| 114. 8.6 - TREATMENT ON SITE   | 107. 8.1B - ON-SITE OTHER      | 0.098683497 |
| 114. 8.6 - TREATMENT ON SITE   | 54. 5.5.1 - LANDFILLS          | 0.097927046 |
| 109. 8.1D - OFF-SITE OTHER R   | 63. 6.1 - POTW - TRNS RLSE     | 0.096769545 |
| 49. 5.2 - STACK AIR            | 42. METAL CATEGORY             | 0.096470387 |
| 104. TOTAL RELEASES            | 108. 8.1C - OFF-SITE CONTAIN   | 0.093746587 |
| 85. OFF-SITE RELEASE TOTAL     | 69. 6.2 - M40 METAL            | 0.091863108 |
| 113. 8.5 - RECYCLING OFF SIT   | 103. 6.2 - TOTAL TRANSFER      | 0.088070036 |
| 113. 8.5 - RECYCLING OFF SIT   | 91. OFF-SITE RECYCLED TOTAL    | 0.087484811 |
| 54. 5.5.1 - LANDFILLS          | 50. 5.3 - WATER                | 0.084343174 |
| 42. METAL CATEGORY             | 48. 5.1 - FUGITIVE AIR         | 0.082739085 |

| 112. 8.4 - RECYCLING ON SITE   | 94. OFF-SITE ENERGY RECOVERY T | 0.073973439 |
|--------------------------------|--------------------------------|-------------|
| 42. METAL CATEGORY             | 114. 8.6 - TREATMENT ON SITE   | 0.072144664 |
| 42. METAL CATEGORY             | 108. 8.1C - OFF-SITE CONTAIN   | 0.071930236 |
| 48. 5.1 - FUGITIVE AIR         | 107. 8.1B - ON-SITE OTHER      | 0.070044813 |
| 57. 5.5.2 - LAND TREATMENT     | 104. TOTAL RELEASES            | 0.067466420 |
| 87. 6.2 - M24                  | 113. 8.5 - RECYCLING OFF SIT   | 0.066930276 |
| 92. 6.2 - M56                  | 112. 8.4 - RECYCLING ON SITE   | 0.061970701 |
| 113. 8.5 - RECYCLING OFF SIT   | 88. 6.2 - M26                  | 0.061593830 |
| 54. 5.5.1 - LANDFILLS          | 116. PRODUCTION WSTE (8.1-8.7) | 0.060849440 |
| 113. 8.5 - RECYCLING OFF SIT   | 42. METAL CATEGORY             | 0.060789728 |
| 50. 5.3 - WATER                | 48. 5.1 - FUGITIVE AIR         | 0.060253545 |
| 85. OFF-SITE RELEASE TOTAL     | 42. METAL CATEGORY             | 0.059240086 |
| 111. 8.3 - ENERGY RECOVER OF   | 42. METAL CATEGORY             | 0.055233620 |
| 116. PRODUCTION WSTE (8.1-8.7) | 42. METAL CATEGORY             | 0.055033046 |
| 96. 6.2 - M50                  | 42. METAL CATEGORY             | 0.054603203 |
| 109. 8.1D - OFF-SITE OTHER R   | 65. POTW - TOTAL TRANSFERS     | 0.053205673 |
| 42. METAL CATEGORY             | 101. OFF-SITE TREATED TOTAL    | 0.052980158 |
| 42. METAL CATEGORY             | 92. 6.2 - M56                  | 0.052589042 |
| 54. 5.5.1 - LANDFILLS          | 49. 5.2 - STACK AIR            | 0.051379880 |
| 64. 6.1 - POTW - TRNS TRT      | 109. 8.1D - OFF-SITE OTHER R   | 0.049336776 |
| Cancer_Rate_Flag               | 50. 5.3 - WATER                | 0.048902138 |
| 109. 8.1D - OFF-SITE OTHER R   | 101. OFF-SITE TREATED TOTAL    | 0.047811126 |
| 42. METAL CATEGORY             | 115. 8.7 - TREATMENT OFF SITE  | 0.046083533 |
| 50. 5.3 - WATER                | 42. METAL CATEGORY             | 0.042797228 |
| 63. 6.1 - POTW - TRNS RLSE     | 85. OFF-SITE RELEASE TOTAL     | 0.042197423 |
| 65. POTW - TOTAL TRANSFERS     | 42. METAL CATEGORY             | 0.041660773 |
| 57. 5.5.2 - LAND TREATMENT     | 62. ON-SITE RELEASE TOTAL      | 0.041587486 |
| 60. 5.5.3B - OTHER SURFACE I   | 42. METAL CATEGORY             | 0.041557790 |
| 112. 8.4 - RECYCLING ON SITE   | 42. METAL CATEGORY             | 0.041495935 |

| 64. 6.1 - POTW - TRNS TRT      | 42. METAL CATEGORY             | 0.041417132 |
|--------------------------------|--------------------------------|-------------|
| Cancer_Rate_Flag               | 42. METAL CATEGORY             | 0.040296882 |
| 57. 5.5.2 - LAND TREATMENT     | 107. 8.1B - ON-SITE OTHER      | 0.039908894 |
| Cancer_Rate_Flag               | 116. PRODUCTION WSTE (8.1-8.7) | 0.039485779 |
| 115. 8.7 - TREATMENT OFF SITE  | 116. PRODUCTION WSTE (8.1-8.7) | 0.038866118 |
| 116. PRODUCTION WSTE (8.1-8.7) | 101. OFF-SITE TREATED TOTAL    | 0.038337775 |
| 64. 6.1 - POTW - TRNS TRT      | 116. PRODUCTION WSTE (8.1-8.7) | 0.036599421 |
| 65. POTW - TOTAL TRANSFERS     | 116. PRODUCTION WSTE (8.1-8.7) | 0.036588385 |
| 116. PRODUCTION WSTE (8.1-8.7) | 111. 8.3 - ENERGY RECOVER OF   | 0.033814202 |
| 108. 8.1C - OFF-SITE CONTAIN   | 113. 8.5 - RECYCLING OFF SIT   | 0.031910161 |
| 48. 5.1 - FUGITIVE AIR         | 96. 6.2 - M50                  | 0.030832615 |
| 116. PRODUCTION WSTE (8.1-8.7) | 92. 6.2 - M56                  | 0.029679721 |
| 113. 8.5 - RECYCLING OFF SIT   | 85. OFF-SITE RELEASE TOTAL     | 0.029395647 |
| 109. 8.1D - OFF-SITE OTHER R   | 115. 8.7 - TREATMENT OFF SITE  | 0.029137241 |
| 62. ON-SITE RELEASE TOTAL      | 54. 5.5.1 - LANDFILLS          | 0.027153261 |
| 85. OFF-SITE RELEASE TOTAL     | 103. 6.2 - TOTAL TRANSFER      | 0.026877324 |
| 104. TOTAL RELEASES            | 42. METAL CATEGORY             | 0.026232331 |
| 104. TOTAL RELEASES            | 54. 5.5.1 - LANDFILLS          | 0.026147949 |
| 48. 5.1 - FUGITIVE AIR         | 112. 8.4 - RECYCLING ON SITE   | 0.025753470 |
| 42. METAL CATEGORY             | 57. 5.5.2 - LAND TREATMENT     | 0.023747425 |
| 116. PRODUCTION WSTE (8.1-8.7) | 61. 5.5.4 - OTHER DISPOSAL     | 0.023595706 |
| 101. OFF-SITE TREATED TOTAL    | 103. 6.2 - TOTAL TRANSFER      | 0.023556763 |
| 103. 6.2 - TOTAL TRANSFER      | 115. 8.7 - TREATMENT OFF SITE  | 0.023379266 |
| 42. METAL CATEGORY             | 56. 5.5.1B - OTHER LANDFILLS   | 0.022564962 |
| 65. POTW - TOTAL TRANSFERS     | 103. 6.2 - TOTAL TRANSFER      | 0.022323476 |
| 64. 6.1 - POTW - TRNS TRT      | 103. 6.2 - TOTAL TRANSFER      | 0.022306269 |
| 109. 8.1D - OFF-SITE OTHER R   | 116. PRODUCTION WSTE (8.1-8.7) | 0.021547540 |
| 42. METAL CATEGORY             | 107. 8.1B - ON-SITE OTHER      | 0.021071438 |
| 69. 6.2 - M40 METAL            | 104. TOTAL RELEASES            | 0.019610284 |

| 96. 6.2 - M50                  | 101. OFF-SITE TREATED TOTAL    | 0.019259770 |
|--------------------------------|--------------------------------|-------------|
| 116. PRODUCTION WSTE (8.1-8.7) | 108. 8.1C - OFF-SITE CONTAIN   | 0.018882223 |
| 42. METAL CATEGORY             | 69. 6.2 - M40 METAL            | 0.018624022 |
| 94. OFF-SITE ENERGY RECOVERY T | Cancer_Rate_Flag               | 0.018442530 |
| 107. 8.1B - ON-SITE OTHER      | Cancer_Rate_Flag               | 0.018045120 |
| 101. OFF-SITE TREATED TOTAL    | Cancer_Rate_Flag               | 0.017748941 |
| Cancer_Rate_Flag               | 92. 6.2 - M56                  | 0.017639189 |
| 42. METAL CATEGORY             | 109. 8.1D - OFF-SITE OTHER R   | 0.017626346 |
| Cancer_Rate_Flag               | 115. 8.7 - TREATMENT OFF SITE  | 0.016917033 |
| 85. OFF-SITE RELEASE TOTAL     | 116. PRODUCTION WSTE (8.1-8.7) | 0.016414697 |
| 42. METAL CATEGORY             | 63. 6.1 - POTW - TRNS RLSE     | 0.016304805 |
| 50. 5.3 - WATER                | 108. 8.1C - OFF-SITE CONTAIN   | 0.015988946 |
| 116. PRODUCTION WSTE (8.1-8.7) | 103. 6.2 - TOTAL TRANSFER      | 0.015778242 |
| 96. 6.2 - M50                  | 115. 8.7 - TREATMENT OFF SITE  | 0.014993690 |
| 85. OFF-SITE RELEASE TOTAL     | 61. 5.5.4 - OTHER DISPOSAL     | 0.014935761 |
| 65. POTW - TOTAL TRANSFERS     | Cancer_Rate_Flag               | 0.014270655 |
| 64. 6.1 - POTW - TRNS TRT      | Cancer_Rate_Flag               | 0.014254827 |
| 91. OFF-SITE RECYCLED TOTAL    | 116. PRODUCTION WSTE (8.1-8.7) | 0.014077119 |
| 113. 8.5 - RECYCLING OFF SIT   | Cancer_Rate_Flag               | 0.013569690 |
| Cancer_Rate_Flag               | 88. 6.2 - M26                  | 0.013565354 |
| 112. 8.4 - RECYCLING ON SITE   | 114. 8.6 - TREATMENT ON SITE   | 0.013476783 |
| 96. 6.2 - M50                  | 54. 5.5.1 - LANDFILLS          | 0.013235968 |
| 42. METAL CATEGORY             | 62. ON-SITE RELEASE TOTAL      | 0.012710408 |
| 48. 5.1 - FUGITIVE AIR         | Cancer_Rate_Flag               | 0.012656323 |
| 103. 6.2 - TOTAL TRANSFER      | 108. 8.1C - OFF-SITE CONTAIN   | 0.012343304 |
| 91. OFF-SITE RECYCLED TOTAL    | 42. METAL CATEGORY             | 0.011983192 |
| 109. 8.1D - OFF-SITE OTHER R   | 108. 8.1C - OFF-SITE CONTAIN   | 0.011973487 |
| 109. 8.1D - OFF-SITE OTHER R   | 103. 6.2 - TOTAL TRANSFER      | 0.011820259 |
| 103. 6.2 - TOTAL TRANSFER      | 42. METAL CATEGORY             | 0.011513610 |

| 49. 5.2 - STACK AIR            | 101. OFF-SITE TREATED TOTAL    | 0.011197464 |
|--------------------------------|--------------------------------|-------------|
| 96. 6.2 - M50                  | 49. 5.2 - STACK AIR            | 0.011063358 |
| 42. METAL CATEGORY             | 87. 6.2 - M24                  | 0.011028432 |
| 62. ON-SITE RELEASE TOTAL      | Cancer_Rate_Flag               | 0.010894067 |
| 94. OFF-SITE ENERGY RECOVERY T | 103. 6.2 - TOTAL TRANSFER      | 0.010731219 |
| 49. 5.2 - STACK AIR            | 115. 8.7 - TREATMENT OFF SITE  | 0.010706195 |
| 109. 8.1D - OFF-SITE OTHER R   | 112. 8.4 - RECYCLING ON SITE   | 0.010641982 |
| 48. 5.1 - FUGITIVE AIR         | 94. OFF-SITE ENERGY RECOVERY T | 0.010575857 |
| 114. 8.6 - TREATMENT ON SITE   | Cancer_Rate_Flag               | 0.010492221 |
| 85. OFF-SITE RELEASE TOTAL     | 115. 8.7 - TREATMENT OFF SITE  | 0.010450045 |
| 116. PRODUCTION WSTE (8.1-8.7) | 87. 6.2 - M24                  | 0.010359438 |
| 112. 8.4 - RECYCLING ON SITE   | 96. 6.2 - M50                  | 0.010304861 |
| 49. 5.2 - STACK AIR            | 112. 8.4 - RECYCLING ON SITE   | 0.010251094 |
| 56. 5.5.1B - OTHER LANDFILLS   | 61. 5.5.4 - OTHER DISPOSAL     | 0.010237517 |
| 92. 6.2 - M56                  | 103. 6.2 - TOTAL TRANSFER      | 0.009998957 |
| 108. 8.1C - OFF-SITE CONTAIN   | Cancer_Rate_Flag               | 0.009856014 |
| 65. POTW - TOTAL TRANSFERS     | 49. 5.2 - STACK AIR            | 0.009664939 |
| 64. 6.1 - POTW - TRNS TRT      | 49. 5.2 - STACK AIR            | 0.009580245 |
| 56. 5.5.1B - OTHER LANDFILLS   | 109. 8.1D - OFF-SITE OTHER R   | 0.009560074 |
| 116. PRODUCTION WSTE (8.1-8.7) | 63. 6.1 - POTW - TRNS RLSE     | 0.009516313 |
| 96. 6.2 - M50                  | Cancer_Rate_Flag               | 0.009434525 |
| 114. 8.6 - TREATMENT ON SITE   | 96. 6.2 - M50                  | 0.009279623 |
| 111. 8.3 - ENERGY RECOVER OF   | 114. 8.6 - TREATMENT ON SITE   | 0.008883184 |
| 49. 5.2 - STACK AIR            | 88. 6.2 - M26                  | 0.008881562 |
| 85. OFF-SITE RELEASE TOTAL     | 114. 8.6 - TREATMENT ON SITE   | 0.008616859 |
| Cancer_Rate_Flag               | 104. TOTAL RELEASES            | 0.008616771 |
| 62. ON-SITE RELEASE TOTAL      | 101. OFF-SITE TREATED TOTAL    | 0.008607347 |
| 57. 5.5.2 - LAND TREATMENT     | Cancer_Rate_Flag               | 0.008414488 |
| 114. 8.6 - TREATMENT ON SITE   | 92. 6.2 - M56                  | 0.008380275 |

| Cancer_Rate_Flag              | 85. OFF-SITE RELEASE TOTAL     | 0.008351335 |
|-------------------------------|--------------------------------|-------------|
| 65. POTW - TOTAL TRANSFERS    | 48. 5.1 - FUGITIVE AIR         | 0.008332949 |
| 108. 8.1C - OFF-SITE CONTAIN  | 48. 5.1 - FUGITIVE AIR         | 0.008316208 |
| 111. 8.3 - ENERGY RECOVER OF  | 50. 5.3 - WATER                | 0.008295886 |
| 64. 6.1 - POTW - TRNS TRT     | 48. 5.1 - FUGITIVE AIR         | 0.008267792 |
| 114. 8.6 - TREATMENT ON SITE  | 88. 6.2 - M26                  | 0.008176208 |
| Cancer_Rate_Flag              | 60. 5.5.3B - OTHER SURFACE I   | 0.008155970 |
| 62. ON-SITE RELEASE TOTAL     | 115. 8.7 - TREATMENT OFF SITE  | 0.008150142 |
| 108. 8.1C - OFF-SITE CONTAIN  | 49. 5.2 - STACK AIR            | 0.008137957 |
| 109. 8.1D - OFF-SITE OTHER R  | 49. 5.2 - STACK AIR            | 0.008133978 |
| 48. 5.1 - FUGITIVE AIR        | 88. 6.2 - M26                  | 0.008133851 |
| 101. OFF-SITE TREATED TOTAL   | 85. OFF-SITE RELEASE TOTAL     | 0.008089588 |
| 113. 8.5 - RECYCLING OFF SIT  | 114. 8.6 - TREATMENT ON SITE   | 0.008017966 |
| 48. 5.1 - FUGITIVE AIR        | 101. OFF-SITE TREATED TOTAL    | 0.007951045 |
| 92. 6.2 - M56                 | 50. 5.3 - WATER                | 0.007908826 |
| 96. 6.2 - M50                 | 116. PRODUCTION WSTE (8.1-8.7) | 0.007870601 |
| 85. OFF-SITE RELEASE TOTAL    | 65. POTW - TOTAL TRANSFERS     | 0.007827384 |
| 112. 8.4 - RECYCLING ON SITE  | 50. 5.3 - WATER                | 0.007541552 |
| 101. OFF-SITE TREATED TOTAL   | 50. 5.3 - WATER                | 0.007463739 |
| 114. 8.6 - TREATMENT ON SITE  | 101. OFF-SITE TREATED TOTAL    | 0.007391908 |
| 114. 8.6 - TREATMENT ON SITE  | 115. 8.7 - TREATMENT OFF SITE  | 0.007319753 |
| 65. POTW - TOTAL TRANSFERS    | 62. ON-SITE RELEASE TOTAL      | 0.007227801 |
| 64. 6.1 - POTW - TRNS TRT     | 62. ON-SITE RELEASE TOTAL      | 0.007167411 |
| 115. 8.7 - TREATMENT OFF SITE | 48. 5.1 - FUGITIVE AIR         | 0.007124662 |
| 115. 8.7 - TREATMENT OFF SITE | 50. 5.3 - WATER                | 0.007112640 |
| 114. 8.6 - TREATMENT ON SITE  | 65. POTW - TOTAL TRANSFERS     | 0.007078426 |
| 64. 6.1 - POTW - TRNS TRT     | 114. 8.6 - TREATMENT ON SITE   | 0.007022166 |
| 113. 8.5 - RECYCLING OFF SIT  | 49. 5.2 - STACK AIR            | 0.006954146 |
| 48. 5.1 - FUGITIVE AIR        | 113. 8.5 - RECYCLING OFF SIT   | 0.006931494 |

| 114. 8.6 - TREATMENT ON SITE   | 108. 8.1C - OFF-SITE CONTAIN  | 0.006881176 |
|--------------------------------|-------------------------------|-------------|
| 88. 6.2 - M26                  | 104. TOTAL RELEASES           | 0.006790273 |
| 104. TOTAL RELEASES            | 63. 6.1 - POTW - TRNS RLSE    | 0.006775138 |
| 62. ON-SITE RELEASE TOTAL      | 88. 6.2 - M26                 | 0.006762916 |
| 101. OFF-SITE TREATED TOTAL    | 111. 8.3 - ENERGY RECOVER OF  | 0.006656488 |
| 42. METAL CATEGORY             | 119. 8.9 - PRODUCTION RATIO   | 0.006625184 |
| 88. 6.2 - M26                  | 42. METAL CATEGORY            | 0.006594113 |
| 61. 5.5.4 - OTHER DISPOSAL     | Cancer_Rate_Flag              | 0.006564231 |
| 109. 8.1D - OFF-SITE OTHER R   | 114. 8.6 - TREATMENT ON SITE  | 0.006516802 |
| 104. TOTAL RELEASES            | 101. OFF-SITE TREATED TOTAL   | 0.006458323 |
| 94. OFF-SITE ENERGY RECOVERY T | 115. 8.7 - TREATMENT OFF SITE | 0.006324993 |
| 63. 6.1 - POTW - TRNS RLSE     | 103. 6.2 - TOTAL TRANSFER     | 0.006317192 |
| 92. 6.2 - M56                  | 101. OFF-SITE TREATED TOTAL   | 0.006278825 |
| 113. 8.5 - RECYCLING OFF SIT   | 50. 5.3 - WATER               | 0.006221889 |
| 50. 5.3 - WATER                | 65. POTW - TOTAL TRANSFERS    | 0.006085674 |
| 92. 6.2 - M56                  | 104. TOTAL RELEASES           | 0.006052332 |
| 50. 5.3 - WATER                | 64. 6.1 - POTW - TRNS TRT     | 0.006037616 |
| 54. 5.5.1 - LANDFILLS          | 48. 5.1 - FUGITIVE AIR        | 0.006009291 |
| 85. OFF-SITE RELEASE TOTAL     | 50. 5.3 - WATER               | 0.005995149 |
| 96. 6.2 - M50                  | 88. 6.2 - M26                 | 0.005979725 |
| 85. OFF-SITE RELEASE TOTAL     | 64. 6.1 - POTW - TRNS TRT     | 0.005948360 |
| 92. 6.2 - M56                  | 115. 8.7 - TREATMENT OFF SITE | 0.005901755 |
| 49. 5.2 - STACK AIR            | 61. 5.5.4 - OTHER DISPOSAL    | 0.005880039 |
| 85. OFF-SITE RELEASE TOTAL     | 62. ON-SITE RELEASE TOTAL     | 0.005792130 |
| 48. 5.1 - FUGITIVE AIR         | 92. 6.2 - M56                 | 0.005718467 |
| 94. OFF-SITE ENERGY RECOVERY T | 108. 8.1C - OFF-SITE CONTAIN  | 0.005676003 |
| 104. TOTAL RELEASES            | 111. 8.3 - ENERGY RECOVER OF  | 0.005673043 |
| 94. OFF-SITE ENERGY RECOVERY T | 65. POTW - TOTAL TRANSFERS    | 0.005592362 |
| 88. 6.2 - M26                  | 111. 8.3 - ENERGY RECOVER OF  | 0.005589426 |

| 57. 5.5.2 - LAND TREATMENT     | 49. 5.2 - STACK AIR          | 0.005568406 |
|--------------------------------|------------------------------|-------------|
| 104. TOTAL RELEASES            | 64. 6.1 - POTW - TRNS TRT    | 0.005562691 |
| 94. OFF-SITE ENERGY RECOVERY T | 64. 6.1 - POTW - TRNS TRT    | 0.005543258 |
| 48. 5.1 - FUGITIVE AIR         | 61. 5.5.4 - OTHER DISPOSAL   | 0.005525155 |
| 107. 8.1B - ON-SITE OTHER      | 101. OFF-SITE TREATED TOTAL  | 0.005524261 |
| 115. 8.7 - TREATMENT OFF SITE  | 104. TOTAL RELEASES          | 0.005460889 |
| 92. 6.2 - M56                  | 108. 8.1C - OFF-SITE CONTAIN | 0.005407836 |
| 85. OFF-SITE RELEASE TOTAL     | 49. 5.2 - STACK AIR          | 0.005364771 |
| 101. OFF-SITE TREATED TOTAL    | 113. 8.5 - RECYCLING OFF SIT | 0.005358353 |
| 65. POTW - TOTAL TRANSFERS     | 92. 6.2 - M56                | 0.005326974 |
| 92. 6.2 - M56                  | 88. 6.2 - M26                | 0.005297719 |
| 62. ON-SITE RELEASE TOTAL      | 92. 6.2 - M56                | 0.005281212 |
| 92. 6.2 - M56                  | 64. 6.1 - POTW - TRNS TRT    | 0.005280141 |
| 115. 8.7 - TREATMENT OFF SITE  | 107. 8.1B - ON-SITE OTHER    | 0.005267987 |
| 104. TOTAL RELEASES            | 65. POTW - TOTAL TRANSFERS   | 0.005180623 |
| 61. 5.5.4 - OTHER DISPOSAL     | 109. 8.1D - OFF-SITE OTHER R | 0.005163031 |
| 115. 8.7 - TREATMENT OFF SITE  | 113. 8.5 - RECYCLING OFF SIT | 0.005089226 |
| 103. 6.2 - TOTAL TRANSFER      | 104. TOTAL RELEASES          | 0.005069452 |
| 113. 8.5 - RECYCLING OFF SIT   | 62. ON-SITE RELEASE TOTAL    | 0.005030826 |
| 92. 6.2 - M56                  | 107. 8.1B - ON-SITE OTHER    | 0.005006927 |
| 91. OFF-SITE RECYCLED TOTAL    | 88. 6.2 - M26                | 0.004992047 |
| 112. 8.4 - RECYCLING ON SITE   | 65. POTW - TOTAL TRANSFERS   | 0.004982791 |
| 61. 5.5.4 - OTHER DISPOSAL     | 114. 8.6 - TREATMENT ON SITE | 0.004967309 |
| 112. 8.4 - RECYCLING ON SITE   | 64. 6.1 - POTW - TRNS TRT    | 0.004966654 |
| 111. 8.3 - ENERGY RECOVER OF   | 62. ON-SITE RELEASE TOTAL    | 0.004944626 |
| 116. PRODUCTION WSTE (8.1-8.7) | 57. 5.5.2 - LAND TREATMENT   | 0.004934765 |
| 96. 6.2 - M50                  | 109. 8.1D - OFF-SITE OTHER R | 0.004905686 |
| 111. 8.3 - ENERGY RECOVER OF   | 107. 8.1B - ON-SITE OTHER    | 0.004846696 |
| 88. 6.2 - M26                  | 103. 6.2 - TOTAL TRANSFER    | 0.004846514 |

| 109. 8.1D - OFF-SITE OTHER R  | 50. 5.3 - WATER              | 0.004756353 |
|-------------------------------|------------------------------|-------------|
| 96. 6.2 - M50                 | 65. POTW - TOTAL TRANSFERS   | 0.004748785 |
| 115. 8.7 - TREATMENT OFF SITE | 88. 6.2 - M26                | 0.004742615 |
| 113. 8.5 - RECYCLING OFF SIT  | 111. 8.3 - ENERGY RECOVER OF | 0.004741343 |
| 114. 8.6 - TREATMENT ON SITE  | 57. 5.5.2 - LAND TREATMENT   | 0.004701430 |
| 96. 6.2 - M50                 | 64. 6.1 - POTW - TRNS TRT    | 0.004699697 |
| 112. 8.4 - RECYCLING ON SITE  | 107. 8.1B - ON-SITE OTHER    | 0.004663017 |
| 113. 8.5 - RECYCLING OFF SIT  | 112. 8.4 - RECYCLING ON SITE | 0.004557170 |
| 50. 5.3 - WATER               | 88. 6.2 - M26                | 0.004537242 |
| 65. POTW - TOTAL TRANSFERS    | 107. 8.1B - ON-SITE OTHER    | 0.004526404 |
| 101. OFF-SITE TREATED TOTAL   | 112. 8.4 - RECYCLING ON SITE | 0.004517979 |
| 107. 8.1B - ON-SITE OTHER     | 88. 6.2 - M26                | 0.004511310 |
| 107. 8.1B - ON-SITE OTHER     | 64. 6.1 - POTW - TRNS TRT    | 0.004490833 |
| 49. 5.2 - STACK AIR           | 63. 6.1 - POTW - TRNS RLSE   | 0.004383935 |
| 108. 8.1C - OFF-SITE CONTAIN  | 65. POTW - TOTAL TRANSFERS   | 0.004348597 |
| 108. 8.1C - OFF-SITE CONTAIN  | 64. 6.1 - POTW - TRNS TRT    | 0.004315211 |
| 119. 8.9 - PRODUCTION RATIO   | 109. 8.1D - OFF-SITE OTHER R | 0.004313610 |
| 108. 8.1C - OFF-SITE CONTAIN  | 96. 6.2 - M50                | 0.004292459 |
| 92. 6.2 - M56                 | 49. 5.2 - STACK AIR          | 0.004278218 |
| 113. 8.5 - RECYCLING OFF SIT  | 65. POTW - TOTAL TRANSFERS   | 0.004242120 |
| 113. 8.5 - RECYCLING OFF SIT  | 64. 6.1 - POTW - TRNS TRT    | 0.004219872 |
| 115. 8.7 - TREATMENT OFF SITE | 112. 8.4 - RECYCLING ON SITE | 0.004190343 |
| Cancer_Rate_Flag              | 112. 8.4 - RECYCLING ON SITE | 0.004188708 |
| 49. 5.2 - STACK AIR           | 60. 5.5.3B - OTHER SURFACE I | 0.004160465 |
| 113. 8.5 - RECYCLING OFF SIT  | 107. 8.1B - ON-SITE OTHER    | 0.004148029 |
| Cancer_Rate_Flag              | 63. 6.1 - POTW - TRNS RLSE   | 0.004141446 |
| 113. 8.5 - RECYCLING OFF SIT  | 109. 8.1D - OFF-SITE OTHER R | 0.004003866 |
| 85. OFF-SITE RELEASE TOTAL    | 92. 6.2 - M56                | 0.003946545 |
| 69. 6.2 - M40 METAL           | Cancer_Rate_Flag             | 0.003935659 |

| 49. 5.2 - STACK AIR            | 94. OFF-SITE ENERGY RECOVERY T | 0.003775463 |
|--------------------------------|--------------------------------|-------------|
| 49. 5.2 - STACK AIR            | 56. 5.5.1B - OTHER LANDFILLS   | 0.003726862 |
| 85. OFF-SITE RELEASE TOTAL     | 111. 8.3 - ENERGY RECOVER OF   | 0.003722490 |
| 61. 5.5.4 - OTHER DISPOSAL     | 94. OFF-SITE ENERGY RECOVERY T | 0.003660437 |
| 96. 6.2 - M50                  | 61. 5.5.4 - OTHER DISPOSAL     | 0.003642600 |
| 85. OFF-SITE RELEASE TOTAL     | 48. 5.1 - FUGITIVE AIR         | 0.003641282 |
| 48. 5.1 - FUGITIVE AIR         | 63. 6.1 - POTW - TRNS RLSE     | 0.003611862 |
| 60. 5.5.3B - OTHER SURFACE I   | 114. 8.6 - TREATMENT ON SITE   | 0.003599772 |
| 96. 6.2 - M50                  | 57. 5.5.2 - LAND TREATMENT     | 0.003487286 |
| 92. 6.2 - M56                  | 61. 5.5.4 - OTHER DISPOSAL     | 0.003487220 |
| 101. OFF-SITE TREATED TOTAL    | 61. 5.5.4 - OTHER DISPOSAL     | 0.003484290 |
| 111. 8.3 - ENERGY RECOVER OF   | 57. 5.5.2 - LAND TREATMENT     | 0.003481740 |
| 103. 6.2 - TOTAL TRANSFER      | Cancer_Rate_Flag               | 0.003434131 |
| 101. OFF-SITE TREATED TOTAL    | 57. 5.5.2 - LAND TREATMENT     | 0.003359119 |
| 61. 5.5.4 - OTHER DISPOSAL     | 115. 8.7 - TREATMENT OFF SITE  | 0.003330883 |
| 92. 6.2 - M56                  | 57. 5.5.2 - LAND TREATMENT     | 0.003319805 |
| 61. 5.5.4 - OTHER DISPOSAL     | 112. 8.4 - RECYCLING ON SITE   | 0.003245496 |
| 63. 6.1 - POTW - TRNS RLSE     | 62. ON-SITE RELEASE TOTAL      | 0.003215555 |
| 69. 6.2 - M40 METAL            | 115. 8.7 - TREATMENT OFF SITE  | 0.003178803 |
| 85. OFF-SITE RELEASE TOTAL     | 56. 5.5.1B - OTHER LANDFILLS   | 0.003148560 |
| 114. 8.6 - TREATMENT ON SITE   | 63. 6.1 - POTW - TRNS RLSE     | 0.003087567 |
| 61. 5.5.4 - OTHER DISPOSAL     | 50. 5.3 - WATER                | 0.003086907 |
| 107. 8.1B - ON-SITE OTHER      | 96. 6.2 - M50                  | 0.003079650 |
| 94. OFF-SITE ENERGY RECOVERY T | 109. 8.1D - OFF-SITE OTHER R   | 0.002996414 |
| 109. 8.1D - OFF-SITE OTHER R   | 60. 5.5.3B - OTHER SURFACE I   | 0.002987198 |
| 85. OFF-SITE RELEASE TOTAL     | 112. 8.4 - RECYCLING ON SITE   | 0.002984388 |
| 42. METAL CATEGORY             | 54. 5.5.1 - LANDFILLS          | 0.002920233 |
| 61. 5.5.4 - OTHER DISPOSAL     | 88. 6.2 - M26                  | 0.002864330 |
| 112. 8.4 - RECYCLING ON SITE   | 57. 5.5.2 - LAND TREATMENT     | 0.002860573 |

| 48. 5.1 - FUGITIVE AIR        | 60. 5.5.3B - OTHER SURFACE I   | 0.002812362 |
|-------------------------------|--------------------------------|-------------|
| 104. TOTAL RELEASES           | 96. 6.2 - M50                  | 0.002765698 |
| 61. 5.5.4 - OTHER DISPOSAL    | 65. POTW - TOTAL TRANSFERS     | 0.002757858 |
| 61. 5.5.4 - OTHER DISPOSAL    | 64. 6.1 - POTW - TRNS TRT      | 0.002735776 |
| 69. 6.2 - M40 METAL           | 49. 5.2 - STACK AIR            | 0.002722873 |
| 92. 6.2 - M56                 | 109. 8.1D - OFF-SITE OTHER R   | 0.002715991 |
| 57. 5.5.2 - LAND TREATMENT    | 48. 5.1 - FUGITIVE AIR         | 0.002688440 |
| 96. 6.2 - M50                 | 60. 5.5.3B - OTHER SURFACE I   | 0.002683838 |
| 60. 5.5.3B - OTHER SURFACE I  | 94. OFF-SITE ENERGY RECOVERY T | 0.002649988 |
| 63. 6.1 - POTW - TRNS RLSE    | 50. 5.3 - WATER                | 0.002647911 |
| 57. 5.5.2 - LAND TREATMENT    | 65. POTW - TOTAL TRANSFERS     | 0.002631129 |
| 54. 5.5.1 - LANDFILLS         | Cancer_Rate_Flag               | 0.002627724 |
| 61. 5.5.4 - OTHER DISPOSAL    | 57. 5.5.2 - LAND TREATMENT     | 0.002623752 |
| 112. 8.4 - RECYCLING ON SITE  | 88. 6.2 - M26                  | 0.002617623 |
| 57. 5.5.2 - LAND TREATMENT    | 64. 6.1 - POTW - TRNS TRT      | 0.002609701 |
| 56. 5.5.1B - OTHER LANDFILLS  | Cancer_Rate_Flag               | 0.002589857 |
| Cancer_Rate_Flag              | 91. OFF-SITE RECYCLED TOTAL    | 0.002585025 |
| Cancer_Rate_Flag              | 109. 8.1D - OFF-SITE OTHER R   | 0.002566898 |
| 60. 5.5.3B - OTHER SURFACE I  | 101. OFF-SITE TREATED TOTAL    | 0.002557278 |
| 113. 8.5 - RECYCLING OFF SIT  | 61. 5.5.4 - OTHER DISPOSAL     | 0.002545797 |
| 63. 6.1 - POTW - TRNS RLSE    | 111. 8.3 - ENERGY RECOVER OF   | 0.002538744 |
| 113. 8.5 - RECYCLING OFF SIT  | 57. 5.5.2 - LAND TREATMENT     | 0.002538628 |
| 92. 6.2 - M56                 | 60. 5.5.3B - OTHER SURFACE I   | 0.002527026 |
| 56. 5.5.1B - OTHER LANDFILLS  | 94. OFF-SITE ENERGY RECOVERY T | 0.002460431 |
| 56. 5.5.1B - OTHER LANDFILLS  | 114. 8.6 - TREATMENT ON SITE   | 0.002454848 |
| 115. 8.7 - TREATMENT OFF SITE | 60. 5.5.3B - OTHER SURFACE I   | 0.002449633 |
| 96. 6.2 - M50                 | 56. 5.5.1B - OTHER LANDFILLS   | 0.002435787 |
| 48. 5.1 - FUGITIVE AIR        | 69. 6.2 - M40 METAL            | 0.002426744 |
| 91. OFF-SITE RECYCLED TOTAL   | 108. 8.1C - OFF-SITE CONTAIN   | 0.002423744 |

| 63. 6.1 - POTW - TRNS RLSE     | 92. 6.2 - M56                  | 0.002419536 |
|--------------------------------|--------------------------------|-------------|
| 116. PRODUCTION WSTE (8.1-8.7) | 88. 6.2 - M26                  | 0.002389353 |
| 69. 6.2 - M40 METAL            | 116. PRODUCTION WSTE (8.1-8.7) | 0.002386822 |
| 56. 5.5.1B - OTHER LANDFILLS   | 101. OFF-SITE TREATED TOTAL    | 0.002372884 |
| 112. 8.4 - RECYCLING ON SITE   | 60. 5.5.3B - OTHER SURFACE I   | 0.002352022 |
| 92. 6.2 - M56                  | 56. 5.5.1B - OTHER LANDFILLS   | 0.002346219 |
| 62. ON-SITE RELEASE TOTAL      | 96. 6.2 - M50                  | 0.002314124 |
| 63. 6.1 - POTW - TRNS RLSE     | 96. 6.2 - M50                  | 0.002313561 |
| 56. 5.5.1B - OTHER LANDFILLS   | 115. 8.7 - TREATMENT OFF SITE  | 0.002272696 |
| 92. 6.2 - M56                  | 96. 6.2 - M50                  | 0.002251215 |
| 103. 6.2 - TOTAL TRANSFER      | 57. 5.5.2 - LAND TREATMENT     | 0.002248810 |
| 112. 8.4 - RECYCLING ON SITE   | 56. 5.5.1B - OTHER LANDFILLS   | 0.002247034 |
| 56. 5.5.1B - OTHER LANDFILLS   | 113. 8.5 - RECYCLING OFF SIT   | 0.002240019 |
| Cancer_Rate_Flag               | 49. 5.2 - STACK AIR            | 0.002235158 |
| 87. 6.2 - M24                  | Cancer_Rate_Flag               | 0.002231484 |
| 88. 6.2 - M26                  | 101. OFF-SITE TREATED TOTAL    | 0.002219925 |
| 96. 6.2 - M50                  | 85. OFF-SITE RELEASE TOTAL     | 0.002214025 |
| 60. 5.5.3B - OTHER SURFACE I   | 50. 5.3 - WATER                | 0.002213877 |
| 61. 5.5.4 - OTHER DISPOSAL     | 108. 8.1C - OFF-SITE CONTAIN   | 0.002176598 |
| Cancer_Rate_Flag               | 119. 8.9 - PRODUCTION RATIO    | 0.002127026 |
| 109. 8.1D - OFF-SITE OTHER R   | 62. ON-SITE RELEASE TOTAL      | 0.002126102 |
| 91. OFF-SITE RECYCLED TOTAL    | 85. OFF-SITE RELEASE TOTAL     | 0.002115809 |
| 69. 6.2 - M40 METAL            | 114. 8.6 - TREATMENT ON SITE   | 0.002100549 |
| 60. 5.5.3B - OTHER SURFACE I   | 88. 6.2 - M26                  | 0.002082531 |
| 96. 6.2 - M50                  | 113. 8.5 - RECYCLING OFF SIT   | 0.002059074 |
| 103. 6.2 - TOTAL TRANSFER      | 49. 5.2 - STACK AIR            | 0.002020719 |
| 113. 8.5 - RECYCLING OFF SIT   | 104. TOTAL RELEASES            | 0.002010538 |
| 65. POTW - TOTAL TRANSFERS     | 60. 5.5.3B - OTHER SURFACE I   | 0.002000903 |
| 113. 8.5 - RECYCLING OFF SIT   | 60. 5.5.3B - OTHER SURFACE I   | 0.001998644 |

| 62. ON-SITE RELEASE TOTAL    | 69. 6.2 - M40 METAL            | 0.001992834 |
|------------------------------|--------------------------------|-------------|
| 69. 6.2 - M40 METAL          | 103. 6.2 - TOTAL TRANSFER      | 0.001990641 |
| 87. 6.2 - M24                | 85. OFF-SITE RELEASE TOTAL     | 0.001988111 |
| 64. 6.1 - POTW - TRNS TRT    | 60. 5.5.3B - OTHER SURFACE I   | 0.001984610 |
| 108. 8.1C - OFF-SITE CONTAIN | 60. 5.5.3B - OTHER SURFACE I   | 0.001983217 |
| 112. 8.4 - RECYCLING ON SITE | 104. TOTAL RELEASES            | 0.001966653 |
| 63. 6.1 - POTW - TRNS RLSE   | 107. 8.1B - ON-SITE OTHER      | 0.001965764 |
| 114. 8.6 - TREATMENT ON SITE | 103. 6.2 - TOTAL TRANSFER      | 0.001942751 |
| 87. 6.2 - M24                | 108. 8.1C - OFF-SITE CONTAIN   | 0.001942141 |
| 57. 5.5.2 - LAND TREATMENT   | 88. 6.2 - M26                  | 0.001940728 |
| 112. 8.4 - RECYCLING ON SITE | 108. 8.1C - OFF-SITE CONTAIN   | 0.001879271 |
| 63. 6.1 - POTW - TRNS RLSE   | 108. 8.1C - OFF-SITE CONTAIN   | 0.001871706 |
| 56. 5.5.1B - OTHER LANDFILLS | 65. POTW - TOTAL TRANSFERS     | 0.001857823 |
| 56. 5.5.1B - OTHER LANDFILLS | 64. 6.1 - POTW - TRNS TRT      | 0.001842730 |
| 63. 6.1 - POTW - TRNS RLSE   | 88. 6.2 - M26                  | 0.001833847 |
| 109. 8.1D - OFF-SITE OTHER R | 107. 8.1B - ON-SITE OTHER      | 0.001824771 |
| 63. 6.1 - POTW - TRNS RLSE   | 112. 8.4 - RECYCLING ON SITE   | 0.001672538 |
| 69. 6.2 - M40 METAL          | 50. 5.3 - WATER                | 0.001670279 |
| 103. 6.2 - TOTAL TRANSFER    | 48. 5.1 - FUGITIVE AIR         | 0.001635751 |
| 63. 6.1 - POTW - TRNS RLSE   | 113. 8.5 - RECYCLING OFF SIT   | 0.001605569 |
| 119. 8.9 - PRODUCTION RATIO  | 85. OFF-SITE RELEASE TOTAL     | 0.001586097 |
| 49. 5.2 - STACK AIR          | 91. OFF-SITE RECYCLED TOTAL    | 0.001572772 |
| 96. 6.2 - M50                | 69. 6.2 - M40 METAL            | 0.001566658 |
| 56. 5.5.1B - OTHER LANDFILLS | 88. 6.2 - M26                  | 0.001566617 |
| 69. 6.2 - M40 METAL          | 94. OFF-SITE ENERGY RECOVERY T | 0.001546809 |
| 48. 5.1 - FUGITIVE AIR       | 109. 8.1D - OFF-SITE OTHER R   | 0.001511238 |
| 69. 6.2 - M40 METAL          | 101. OFF-SITE TREATED TOTAL    | 0.001492696 |
| 92. 6.2 - M56                | 69. 6.2 - M40 METAL            | 0.001475022 |
| 62. ON-SITE RELEASE TOTAL    | 108. 8.1C - OFF-SITE CONTAIN   | 0.001474367 |

| 48. 5.1 - FUGITIVE AIR         | 91. OFF-SITE RECYCLED TOTAL  | 0.001457580 |
|--------------------------------|------------------------------|-------------|
| 91. OFF-SITE RECYCLED TOTAL    | 114. 8.6 - TREATMENT ON SITE | 0.001448867 |
| 69. 6.2 - M40 METAL            | 112. 8.4 - RECYCLING ON SITE | 0.001409196 |
| 87. 6.2 - M24                  | 48. 5.1 - FUGITIVE AIR       | 0.001401520 |
| 49. 5.2 - STACK AIR            | 87. 6.2 - M24                | 0.001366965 |
| 112. 8.4 - RECYCLING ON SITE   | 62. ON-SITE RELEASE TOTAL    | 0.001304885 |
| 119. 8.9 - PRODUCTION RATIO    | 50. 5.3 - WATER              | 0.001289879 |
| 62. ON-SITE RELEASE TOTAL      | 103. 6.2 - TOTAL TRANSFER    | 0.001271323 |
| 50. 5.3 - WATER                | 103. 6.2 - TOTAL TRANSFER    | 0.001267990 |
| 69. 6.2 - M40 METAL            | 107. 8.1B - ON-SITE OTHER    | 0.001245649 |
| 87. 6.2 - M24                  | 114. 8.6 - TREATMENT ON SITE | 0.001225449 |
| 50. 5.3 - WATER                | 96. 6.2 - M50                | 0.001220304 |
| 69. 6.2 - M40 METAL            | 88. 6.2 - M26                | 0.001218382 |
| 61. 5.5.4 - OTHER DISPOSAL     | 63. 6.1 - POTW - TRNS RLSE   | 0.001206431 |
| 85. OFF-SITE RELEASE TOTAL     | 107. 8.1B - ON-SITE OTHER    | 0.001203581 |
| 69. 6.2 - M40 METAL            | 113. 8.5 - RECYCLING OFF SIT | 0.001190939 |
| 57. 5.5.2 - LAND TREATMENT     | 60. 5.5.3B - OTHER SURFACE I | 0.001189925 |
| 49. 5.2 - STACK AIR            | 119. 8.9 - PRODUCTION RATIO  | 0.001174314 |
| 65. POTW - TOTAL TRANSFERS     | 69. 6.2 - M40 METAL          | 0.001167929 |
| 108. 8.1C - OFF-SITE CONTAIN   | 69. 6.2 - M40 METAL          | 0.001159016 |
| 57. 5.5.2 - LAND TREATMENT     | 63. 6.1 - POTW - TRNS RLSE   | 0.001158684 |
| 64. 6.1 - POTW - TRNS TRT      | 69. 6.2 - M40 METAL          | 0.001158425 |
| 65. POTW - TOTAL TRANSFERS     | 88. 6.2 - M26                | 0.001151925 |
| 56. 5.5.1B - OTHER LANDFILLS   | 108. 8.1C - OFF-SITE CONTAIN | 0.001150124 |
| 91. OFF-SITE RECYCLED TOTAL    | 62. ON-SITE RELEASE TOTAL    | 0.001146211 |
| 50. 5.3 - WATER                | 91. OFF-SITE RECYCLED TOTAL  | 0.001138770 |
| 64. 6.1 - POTW - TRNS TRT      | 88. 6.2 - M26                | 0.001080400 |
| 48. 5.1 - FUGITIVE AIR         | 119. 8.9 - PRODUCTION RATIO  | 0.001061695 |
| 116. PRODUCTION WSTE (8.1-8.7) | 119. 8.9 - PRODUCTION RATIO  | 0.001047473 |

| 57. 5.5.2 - LAND TREATMENT     | 56. 5.5.1B - OTHER LANDFILLS | 0.001045330 |
|--------------------------------|------------------------------|-------------|
| 94. OFF-SITE ENERGY RECOVERY T | 54. 5.5.1 - LANDFILLS        | 0.001032759 |
| 103. 6.2 - TOTAL TRANSFER      | 107. 8.1B - ON-SITE OTHER    | 0.001025227 |
| 91. OFF-SITE RECYCLED TOTAL    | 101. OFF-SITE TREATED TOTAL  | 0.000999246 |
| 109. 8.1D - OFF-SITE OTHER R   | 69. 6.2 - M40 METAL          | 0.000988693 |
| 92. 6.2 - M56                  | 54. 5.5.1 - LANDFILLS        | 0.000984838 |
| 87. 6.2 - M24                  | 62. ON-SITE RELEASE TOTAL    | 0.000980185 |
| 50. 5.3 - WATER                | 87. 6.2 - M24                | 0.000970837 |
| 85. OFF-SITE RELEASE TOTAL     | 88. 6.2 - M26                | 0.000960067 |
| 115. 8.7 - TREATMENT OFF SITE  | 91. OFF-SITE RECYCLED TOTAL  | 0.000922726 |
| 87. 6.2 - M24                  | 111. 8.3 - ENERGY RECOVER OF | 0.000902827 |
| 54. 5.5.1 - LANDFILLS          | 85. OFF-SITE RELEASE TOTAL   | 0.000900110 |
| 87. 6.2 - M24                  | 96. 6.2 - M50                | 0.000882953 |
| 63. 6.1 - POTW - TRNS RLSE     | 60. 5.5.3B - OTHER SURFACE I | 0.000881105 |
| 87. 6.2 - M24                  | 101. OFF-SITE TREATED TOTAL  | 0.000869372 |
| 119. 8.9 - PRODUCTION RATIO    | 114. 8.6 - TREATMENT ON SITE | 0.000867864 |
| 113. 8.5 - RECYCLING OFF SIT   | 92. 6.2 - M56                | 0.000864474 |
| 87. 6.2 - M24                  | 92. 6.2 - M56                | 0.000860790 |
| 119. 8.9 - PRODUCTION RATIO    | 101. OFF-SITE TREATED TOTAL  | 0.000849337 |
| 111. 8.3 - ENERGY RECOVER OF   | 119. 8.9 - PRODUCTION RATIO  | 0.000840314 |
| 54. 5.5.1 - LANDFILLS          | 107. 8.1B - ON-SITE OTHER    | 0.000831683 |
| 119. 8.9 - PRODUCTION RATIO    | 96. 6.2 - M50                | 0.000822533 |
| 56. 5.5.1B - OTHER LANDFILLS   | 60. 5.5.3B - OTHER SURFACE I | 0.000821432 |
| 63. 6.1 - POTW - TRNS RLSE     | 56. 5.5.1B - OTHER LANDFILLS | 0.000817365 |
| 88. 6.2 - M26                  | 109. 8.1D - OFF-SITE OTHER R | 0.000815173 |
| 88. 6.2 - M26                  | 54. 5.5.1 - LANDFILLS        | 0.000813478 |
| 112. 8.4 - RECYCLING ON SITE   | 119. 8.9 - PRODUCTION RATIO  | 0.000812605 |
| 115. 8.7 - TREATMENT OFF SITE  | 119. 8.9 - PRODUCTION RATIO  | 0.000809750 |
| 107. 8.1B - ON-SITE OTHER      | 91. OFF-SITE RECYCLED TOTAL  | 0.000805115 |

| 119. 8.9 - PRODUCTION RATIO    | 92. 6.2 - M56                 | 0.000796752 |
|--------------------------------|-------------------------------|-------------|
| 112. 8.4 - RECYCLING ON SITE   | 87. 6.2 - M24                 | 0.000790911 |
| 115. 8.7 - TREATMENT OFF SITE  | 87. 6.2 - M24                 | 0.000787130 |
| 91. OFF-SITE RECYCLED TOTAL    | 65. POTW - TOTAL TRANSFERS    | 0.000786310 |
| 54. 5.5.1 - LANDFILLS          | 113. 8.5 - RECYCLING OFF SIT  | 0.000782234 |
| 64. 6.1 - POTW - TRNS TRT      | 91. OFF-SITE RECYCLED TOTAL   | 0.000780906 |
| 108. 8.1C - OFF-SITE CONTAIN   | 54. 5.5.1 - LANDFILLS         | 0.000773841 |
| 54. 5.5.1 - LANDFILLS          | 64. 6.1 - POTW - TRNS TRT     | 0.000773446 |
| 115. 8.7 - TREATMENT OFF SITE  | 57. 5.5.2 - LAND TREATMENT    | 0.000772913 |
| 54. 5.5.1 - LANDFILLS          | 65. POTW - TOTAL TRANSFERS    | 0.000772427 |
| 69. 6.2 - M40 METAL            | 61. 5.5.4 - OTHER DISPOSAL    | 0.000736378 |
| 91. OFF-SITE RECYCLED TOTAL    | 96. 6.2 - M50                 | 0.000732072 |
| 54. 5.5.1 - LANDFILLS          | 112. 8.4 - RECYCLING ON SITE  | 0.000710236 |
| 107. 8.1B - ON-SITE OTHER      | 87. 6.2 - M24                 | 0.000704283 |
| 57. 5.5.2 - LAND TREATMENT     | 69. 6.2 - M40 METAL           | 0.000700740 |
| 112. 8.4 - RECYCLING ON SITE   | 103. 6.2 - TOTAL TRANSFER     | 0.000687056 |
| 87. 6.2 - M24                  | 65. POTW - TOTAL TRANSFERS    | 0.000680362 |
| 64. 6.1 - POTW - TRNS TRT      | 87. 6.2 - M24                 | 0.000676045 |
| 119. 8.9 - PRODUCTION RATIO    | 65. POTW - TOTAL TRANSFERS    | 0.000663405 |
| 109. 8.1D - OFF-SITE OTHER R   | 54. 5.5.1 - LANDFILLS         | 0.000660121 |
| 119. 8.9 - PRODUCTION RATIO    | 64. 6.1 - POTW - TRNS TRT     | 0.000657728 |
| 101. OFF-SITE TREATED TOTAL    | 54. 5.5.1 - LANDFILLS         | 0.000642178 |
| 104. TOTAL RELEASES            | 91. OFF-SITE RECYCLED TOTAL   | 0.000616461 |
| 92. 6.2 - M56                  | 91. OFF-SITE RECYCLED TOTAL   | 0.000608084 |
| 116. PRODUCTION WSTE (8.1-8.7) | 56. 5.5.1B - OTHER LANDFILLS  | 0.000600651 |
| 54. 5.5.1 - LANDFILLS          | 115. 8.7 - TREATMENT OFF SITE | 0.000595467 |
| 108. 8.1C - OFF-SITE CONTAIN   | 119. 8.9 - PRODUCTION RATIO   | 0.000581052 |
| 94. OFF-SITE ENERGY RECOVERY T | 96. 6.2 - M50                 | 0.000580433 |
| 107. 8.1B - ON-SITE OTHER      | 108. 8.1C - OFF-SITE CONTAIN  | 0.000576648 |

| 69. 6.2 - M40 METAL           | 60. 5.5.3B - OTHER SURFACE I | 0.000532868 |
|-------------------------------|------------------------------|-------------|
| 56. 5.5.1B - OTHER LANDFILLS  | 50. 5.3 - WATER              | 0.000527291 |
| 69. 6.2 - M40 METAL           | 63. 6.1 - POTW - TRNS RLSE   | 0.000514180 |
| 88. 6.2 - M26                 | 87. 6.2 - M24                | 0.000503124 |
| 119. 8.9 - PRODUCTION RATIO   | 88. 6.2 - M26                | 0.000502327 |
| 56. 5.5.1B - OTHER LANDFILLS  | 69. 6.2 - M40 METAL          | 0.000494773 |
| 61. 5.5.4 - OTHER DISPOSAL    | 54. 5.5.1 - LANDFILLS        | 0.000491658 |
| 104. TOTAL RELEASES           | 87. 6.2 - M24                | 0.000485240 |
| 61. 5.5.4 - OTHER DISPOSAL    | 91. OFF-SITE RECYCLED TOTAL  | 0.000484385 |
| 119. 8.9 - PRODUCTION RATIO   | 113. 8.5 - RECYCLING OFF SIT | 0.000475238 |
| 91. OFF-SITE RECYCLED TOTAL   | 57. 5.5.2 - LAND TREATMENT   | 0.000471132 |
| 54. 5.5.1 - LANDFILLS         | 57. 5.5.2 - LAND TREATMENT   | 0.000467864 |
| 115. 8.7 - TREATMENT OFF SITE | 108. 8.1C - OFF-SITE CONTAIN | 0.000462904 |
| 103. 6.2 - TOTAL TRANSFER     | 60. 5.5.3B - OTHER SURFACE I | 0.000462440 |
| 107. 8.1B - ON-SITE OTHER     | 56. 5.5.1B - OTHER LANDFILLS | 0.000460890 |
| 61. 5.5.4 - OTHER DISPOSAL    | 119. 8.9 - PRODUCTION RATIO  | 0.000430165 |
| 87. 6.2 - M24                 | 61. 5.5.4 - OTHER DISPOSAL   | 0.000414811 |
| 87. 6.2 - M24                 | 57. 5.5.2 - LAND TREATMENT   | 0.000403678 |
| 57. 5.5.2 - LAND TREATMENT    | 119. 8.9 - PRODUCTION RATIO  | 0.000374612 |
| 109. 8.1D - OFF-SITE OTHER R  | 57. 5.5.2 - LAND TREATMENT   | 0.000374175 |
| 91. OFF-SITE RECYCLED TOTAL   | 60. 5.5.3B - OTHER SURFACE I | 0.000364313 |
| 54. 5.5.1 - LANDFILLS         | 60. 5.5.3B - OTHER SURFACE I | 0.000355780 |
| 54. 5.5.1 - LANDFILLS         | 56. 5.5.1B - OTHER LANDFILLS | 0.000330346 |
| 91. OFF-SITE RECYCLED TOTAL   | 63. 6.1 - POTW - TRNS RLSE   | 0.000324925 |
| 108. 8.1C - OFF-SITE CONTAIN  | 88. 6.2 - M26                | 0.000314880 |
| 60. 5.5.3B - OTHER SURFACE I  | 87. 6.2 - M24                | 0.000308431 |
| 119. 8.9 - PRODUCTION RATIO   | 63. 6.1 - POTW - TRNS RLSE   | 0.000298008 |
| 119. 8.9 - PRODUCTION RATIO   | 62. ON-SITE RELEASE TOTAL    | 0.000275356 |
| 87. 6.2 - M24                 | 63. 6.1 - POTW - TRNS RLSE   | 0.000273482 |

| 119. 8.9 - PRODUCTION RATIO    | 56. 5.5.1B - OTHER LANDFILLS | 0.000262111 |
|--------------------------------|------------------------------|-------------|
| 61. 5.5.4 - OTHER DISPOSAL     | 103. 6.2 - TOTAL TRANSFER    | 0.000243747 |
| 48. 5.1 - FUGITIVE AIR         | 56. 5.5.1B - OTHER LANDFILLS | 0.000224637 |
| 85. OFF-SITE RELEASE TOTAL     | 60. 5.5.3B - OTHER SURFACE I | 0.000224175 |
| 60. 5.5.3B - OTHER SURFACE I   | 119. 8.9 - PRODUCTION RATIO  | 0.000217418 |
| 69. 6.2 - M40 METAL            | 91. OFF-SITE RECYCLED TOTAL  | 0.000214804 |
| 54. 5.5.1 - LANDFILLS          | 69. 6.2 - M40 METAL          | 0.000207670 |
| 54. 5.5.1 - LANDFILLS          | 103. 6.2 - TOTAL TRANSFER    | 0.000191848 |
| 96. 6.2 - M50                  | 103. 6.2 - TOTAL TRANSFER    | 0.000187459 |
| 63. 6.1 - POTW - TRNS RLSE     | 54. 5.5.1 - LANDFILLS        | 0.000184115 |
| 69. 6.2 - M40 METAL            | 87. 6.2 - M24                | 0.000181386 |
| 69. 6.2 - M40 METAL            | 119. 8.9 - PRODUCTION RATIO  | 0.000174260 |
| 101. OFF-SITE TREATED TOTAL    | 108. 8.1C - OFF-SITE CONTAIN | 0.000152412 |
| 91. OFF-SITE RECYCLED TOTAL    | 54. 5.5.1 - LANDFILLS        | 0.000142275 |
| 119. 8.9 - PRODUCTION RATIO    | 107. 8.1B - ON-SITE OTHER    | 0.000141690 |
| 54. 5.5.1 - LANDFILLS          | 119. 8.9 - PRODUCTION RATIO  | 0.000124778 |
| 87. 6.2 - M24                  | 54. 5.5.1 - LANDFILLS        | 0.000119962 |
| 94. OFF-SITE ENERGY RECOVERY T | 91. OFF-SITE RECYCLED TOTAL  | 0.000107352 |
| 91. OFF-SITE RECYCLED TOTAL    | 119. 8.9 - PRODUCTION RATIO  | 0.000107338 |
| 119. 8.9 - PRODUCTION RATIO    | 87. 6.2 - M24                | 0.000105923 |
| 104. TOTAL RELEASES            | 119. 8.9 - PRODUCTION RATIO  | 0.000104688 |
| 103. 6.2 - TOTAL TRANSFER      | 119. 8.9 - PRODUCTION RATIO  | 0.000098700 |
| 91. OFF-SITE RECYCLED TOTAL    | 112. 8.4 - RECYCLING ON SITE | 0.000090500 |
| 56. 5.5.1B - OTHER LANDFILLS   | 87. 6.2 - M24                | 0.000075700 |
| 87. 6.2 - M24                  | 109. 8.1D - OFF-SITE OTHER R | 0.000073200 |
| 56. 5.5.1B - OTHER LANDFILLS   | 91. OFF-SITE RECYCLED TOTAL  | 0.000025000 |
| 103. 6.2 - TOTAL TRANSFER      | 56. 5.5.1B - OTHER LANDFILLS | 0.000016300 |
| 91. OFF-SITE RECYCLED TOTAL    | 109. 8.1D - OFF-SITE OTHER R | 0.000008030 |

**Note:** 1.) Pearson correlation coefficient used. 2.) Absolute Values Taken of All Correlation Coefficients. 3.) Duplicates showing the Inverses of Two Features Have Been Removed. For Example, if A is in Column 1 and B is in Column B, then B in Column 1, A in Column 2 has been removed.

# FIGURE E: Comparison of Performance Metrics of All Machine Learning Algorithms Tested

|                              |                                   |                     | I                        | Dataset                              |                  |
|------------------------------|-----------------------------------|---------------------|--------------------------|--------------------------------------|------------------|
| Algorithm                    | Performance Metric                | Original<br>Dataset | with<br>SMOTE<br>Applied | with<br>Feature Selection<br>Applied | with PCA Applied |
|                              | Accuracy:                         | 0.95                | 0.95                     | 0.95                                 | 0.89             |
| Gradient                     | Precision:                        | 0.89                | 0.6                      | 0.9                                  | 0.43             |
| Boosting                     | Recall:                           | 0.55                | 0.83                     | 0.57                                 | 0.16             |
|                              | Mean Score after applying k-fold: | 0.88                | 0.92                     | 0.88                                 | 0.88             |
|                              | Accuracy:                         | 0.87                | 0.87                     | 0.89                                 | 0.88             |
| Neural<br>Network with       | Precision:                        | 0.35                | 0.84                     | 0.42                                 | 0.36             |
| Grid Search                  | Recall:                           | 0.24                | 0.91                     | 0.23                                 | 0.18             |
| Grid Scaren                  | Mean Score after applying k-fold: | 0.88                | 0.92                     | 0.88                                 | 0.89             |
| Neural                       | Accuracy:                         | 0.87                | 0.88                     | 0.88                                 | 0.89             |
| Network with                 | Precision:                        | 0.21                | 0.93                     | 0.29                                 | 0                |
| Randomised                   | Recall:                           | 0.08                | 0.83                     | 0.12                                 | 0                |
| SearchCV                     | Mean Score after applying k-fold: | 0.88                | 0.92                     | 0.88                                 | 0.89             |
|                              | Accuracy:                         | 0.93                | 0.81                     | 0.93                                 | 0.89             |
| Decision Tree                | Precision:                        | 0.83                | 0.84                     | 0.83                                 | 0.45             |
| Decision Tree                | Recall:                           | 0.45                | 0.76                     | 0.45                                 | 0.17             |
|                              | Mean Score after applying k-fold: | 0.9                 | 0.8                      | 0.9                                  | 0.88             |
|                              | Accuracy:                         | 0.92                | 0.97                     | 0.93                                 | 0.89             |
| Random                       | Precision:                        | 0.76                | 0.96                     | 0.8                                  | 0.47             |
| Forest -<br>Classifier       | Recall:                           | 0.41                | 0.98                     | 0.42                                 | 0.21             |
| Classifici                   | Mean Score after applying k-fold: | 0.9                 | 0.97                     | 0.9                                  | 0.88             |
|                              | Accuracy:                         | 0.24                | 0.25                     | 0.25                                 | 0.25             |
| Naive                        | Precision:                        | 0.12                | 0.12                     | 0.12                                 | 0.12             |
| Bayesian –<br>Classification | Recall:                           | 0.96                | 0.97                     | 0.96                                 | 0.97             |
| Classification _             | Mean Score after applying k-fold: | 0.26                | 0.58                     | 0.26                                 | 0.24             |

FIGURE F: Comparison of Processing Times of All Machine Learning Algorithms Tested

| Machine<br>Learning<br>Algorithm<br>Used | Dataset Used       | SYSTEM 1 Memory: 8 GB OS: Windows 11 Processor: AMD Ryzen 5 3500U | SYSTEM 2 Memory: 8 GB OS: MacOS Ventura 13 Processor: Apple M1 | SYSTEM 3 Memory: 8 GB OS: Windows 11 Home Processor: Intel Core i3-1115G4 |
|------------------------------------------|--------------------|-------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------------------------------------------------|
|                                          | Original:          | 0.18                                                              | 0.04                                                           | 0.04                                                                      |
| Decision Tree                            | SMOTE:             | 0.21                                                              | 0.05                                                           | 0.1                                                                       |
| Decision free                            | Feature Selection: | 0.06                                                              | 0.01                                                           | 0.02                                                                      |
|                                          | PCA:               | 0.39                                                              | 0.08                                                           | 0.13                                                                      |
|                                          | Original:          | 1.82                                                              | 0.28                                                           | 0.7                                                                       |
| Random Forest                            | SMOTE:             | 3.58                                                              | 0.43                                                           | 1.06                                                                      |
| Kandom Forest                            | Feature Selection: | 1.27                                                              | 0.25                                                           | 0.53                                                                      |
|                                          | PCA:               | 5.12                                                              | 1.17                                                           | 2.09                                                                      |
|                                          | Original:          | 5.26                                                              | 0.96                                                           | 1.72                                                                      |
| Gradient                                 | SMOTE:             | 12.69                                                             | 1.93                                                           | 3.42                                                                      |
| Boosting                                 | Feature Selection: | 3.19                                                              | 0.64                                                           | 1.08                                                                      |
|                                          | PCA:               | 20.51                                                             | 5.12                                                           | 9.24                                                                      |
|                                          | Original:          | 0.21                                                              | 0.03                                                           | 0.05                                                                      |
| Naive Bayesian                           | SMOTE:             | 0.25                                                              | 0.03                                                           | 0.08                                                                      |
| Classification                           | Feature Selection: | 0.04                                                              | 0.01                                                           | 0.02                                                                      |
|                                          | PCA:               | 0.03                                                              | 0.01                                                           | 0.02                                                                      |
| Neural                                   | Original:          | 771.39                                                            | 130.84                                                         | 329.69                                                                    |
| Network                                  | SMOTE:             | 2280.56                                                           | 743.79                                                         | 1084.68                                                                   |
| (Grid Search                             | Feature Selection: | 596.44                                                            | 1429.57                                                        | 291.16                                                                    |
| CV)                                      | PCA:               | 622.51                                                            | 85.15                                                          | 210.33                                                                    |
| Neural                                   | Original:          | 1006.05                                                           | 68.85                                                          | 151.89                                                                    |
| Network                                  | SMOTE:             | 426.85                                                            | 205.93                                                         | 493.1                                                                     |
| (Randomized                              | Feature Selection: | 287.67                                                            | 1488.26                                                        | 128.68                                                                    |
| Search CV)                               | PCA:               | 253.94                                                            | 40.84                                                          | 113.51                                                                    |

# **Data dictionary**

See attached 'Data Dictionary - Final.CSV'.

# Code

import os

# **Merging Datasets**

#import the modules

import pandas as pd

```
Washington State Cancer Registry
# All Cancer Data Files (must be in the same folder as notebook and) start
with 'Result'
filepaths = [f for f in os.listdir(".") if f.startswith('Result')]
# Creating Dataframe that we'll store all the Cancer Data Files from
df_append = pd.DataFrame()
#append all of the Cancer Data files together
for file in filepaths:
            df temp = pd.read csv(file, skiprows=4) # Data Doesn't begin for
a few rows, therefore 'skip rows'
            df append = df append.append(df temp, ignore index=True)
df append
# Dropping the 25 rows that were for 'Washington State Cancer Incidence Data:
Washington State Department of Health, Washington State Cancer Registry,
released in April 2022'
df append = df append[df append['Data Type'] == 'Incidence']
# Dropping Columns that had only contained single unique value and 95% CI
df_append.drop(['Age Group','Gender','Race', '95% CI','Data Type','Cancer
```

# **TRI Preliminary Dataset**

```
# All Cancer Data Files ENDS (not starts) with '_wa'
filepaths = [f for f in os.listdir(".") if f.endswith('_wa.csv')]
df_append_TRI = pd.DataFrame()
```

Site','Stage At Diagnosis'], axis=1, inplace=True)

# Drop Annual Population? Probably but talk to everyone...

```
#append all files together
for file in filepaths:
            df temp = pd.read csv(file)
            df append TRI = df append TRI.append(df temp, ignore index=True)
# Geography = The Name of the County. Needs to be uppercase in order for
merge to work
df_append['Geography'] = df_append['Geography'].str.upper()
Merging Data
# Merging Data
merged_data = pd.merge(df_append_TRI, df_append, left_on= ['1. YEAR','7.
COUNTY'],
                    right on= ['Year', 'Geography'], how='left')
Value Imputation + Feature Engineering
# For 'Annual' Observations', 'NR' = No Record.
# df append[df append["Annual Observations"] == 'NR']
# As there are only four cells with this value, these values were
individually inputed with the 'Annual Observations' for the approx value
# between the year before and after.
df_append.at[51, 'Annual Observations'] = 18
df_append.at[891, 'Annual Observations'] = 17
df_append.at[811, 'Annual Observations'] = 13
df append.at[691, 'Annual Observations'] = 13
# Now that NR Values are removed, we can convert to Numeric..
df_append["Annual Observations"] = pd.to_numeric(df_append["Annual
Observations"])
# ... and Calculate the Observation/Population Ratio.
df_append['Observation_Population_Ratio'] = df_append['Annual Observations']
/ df append['Annual Population']
# Uncomment to Export
#merged data.to csv('Merged Data.csv')
```

# **Main Project File**

Potential To Do's...

- Might be interesting to see the relationship between carcinogen yes and the cancer flag ratio.
- Build correlation matrix BEFORE PCA and AFTER PCA.... include this as another part of the discussion...
- add more here...

## **Merging/Union of Original Datasets**

```
Jupyter Notebook is linked here.
```

```
# For Google Colab Only
from google.colab import files
# # Uncomment only when you want to upload a new file.
files.upload()
```

# **Importing Packages**

```
import sys
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature selection import SelectFromModel
from sklearn import metrics
from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE
from sklearn import tree
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import cross_val_score
from sklearn.metrics import classification report
from sklearn.decomposition import PCA
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.model selection import RandomizedSearchCV
import time
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model selection import GridSearchCV
from sklearn.cluster import KMeans
# Many Rows & Columns, This Enables Us to See All in Output
pd.set option('display.max row', None)
pd.set option('display.max column', None)
```

```
# Importing Data
merged data = pd.read csv("Merged Data.csv")
# Changing Name so it matches original name for dataframe
df = merged data
/usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py:3326:
DtypeWarning: Columns (21,22,28,29,118) have mixed types. Specify dtype option
on import or set low_memory=False.
  exec(code_obj, self.user_global_ns, self.user_ns)
# Creating a Table of Highest % of Missing Values and Creating a Table for
In-Class Presentation
percent_missing = merged_data.isnull().sum() * 100 / len(merged_data)
missing value df = pd.DataFrame({'column name': merged data.columns,
                                 'percent missing': percent missing})
missing_value_df = missing_value_df.sort_values('percent_missing',
ascending=False).head(20) # Remove Head to Show More
missing_value_df
Data Cleaning
Creating 'Cancer Rate Flag' (Target Variable)
# # UNCOMMENT TO RUN: Used This Function to Learn Our Threshold for 'Cancer
Rate' Flag
# # Function Source:
https://medium.com/@prashant.nair2050/hands-on-outlier-detection-and-treatmen
t-in-python-using-1-5-igr-rule-f9ff1961a414
def outlier treatment(datacolumn):
    sorted(datacolumn)
    Q1,Q3 = np.percentile(datacolumn , [25,75])
    IQR = Q3 - Q1
    lower_range = Q1 - (1.5 * IQR)
    upper range = Q3 + (1.5 * IQR)
    return lower_range,upper_range
# #Getting Lower & Upperbound
lowerbound,upperbound = outlier_treatment(df['Cases_Population_Ratio'])
# # Upperbound = 0.007400788258705717. Thjis point represents the upper range
extreme outlier.
# # If below upper range extreme outlier, then the Cancer Rate of a County is
below the mean across counties. Note that this figure was calculated after
the merge. Currently our model doesn't take into account the number of
factories in a given county, so by doing this does it indirectly account for
that?
# def county case rate (value):
   if value < .007400788258705717:
```

```
return 0
   return 1
# df['Cancer Rate Flag'] = df['Cases Population Ratio'].map(county case rate)
# df['Cancer Rate Flag'].value counts()
# TESTING THE 'COUNTY CASE RATE' FLAG WITH DIFFERENT VALUES...
# 0.005557 = The Mean
# 0.007400788258705717 = The Upper Range Extreme Outlier
# If below 0.007400788258705717 (upper range extreme outlier), then Cancer
Rate is below the mean across counties. Note that this figure was calculated
after the merge. CUrrently our model doesn't take into account the number of
factories in a given county, so by doing this does it indirectly account for
that?
def county_case_rate (value):
   if value < 0.007400788258705717:</pre>
      return 0
   return 1
df['Cancer Rate Flag'] = df['Cases Population Ratio'].map(county case rate)
df['Cancer Rate Flag'].value counts()
     24526
1
      1274
Name: Cancer Rate Flag, dtype: int64
Removing & Replacing Values
```

### **Removing Irrelevant Variables**

```
df.drop(['8. ST',
        '2. TRIFD',
        '5. STREET ADDRESS',
        '19. INDUSTRY SECTOR CODE',
        '22. SIC 2',
        '28. NAICS 2',
        '24. SIC 4',
        '25. SIC 5',
        '26. SIC 6',
        '27. PRIMARY NAICS',
        '21. PRIMARY SIC',
        '23. SIC 3',
        '29. NAICS 3',
        '30. NAICS 4',
        '31. NAICS 5',
        '32. NAICS 6',
```

```
'3. FRS ID',
        '9. ZIP',
        '12. LATITUDE',
        '16. PARENT CO DB NUM',
        '13. LONGITUDE',
        '14. HORIZONTAL DATUM',
        '66. 6.2 - M10',
        '67. 6.2 - M41',
        '68. 6.2 - M62',
        '70. 6.2 - M61 METAL',
        '71. 6.2 - M71',
        '72. 6.2 - M81',
        '73. 6.2 - M82',
        '74. 6.2 - M72',
        '75. 6.2 - M63'
        '76. 6.2 - M66',
        '77. 6.2 - M67',
        '78. 6.2 - M64',
        '79. 6.2 - M65',
        '80. 6.2 - M73',
        '81. 6.2 - M79',
        '82. 6.2 - M90',
        '83. 6.2 - M94',
        '84. 6.2 - M99'
        '86. 6.2 - M20',
        '89. 6.2 - M28',
        '90. 6.2 - M93',
        '93. 6.2 - M92',
        '95. 6.2 - M40 NON-METAL',
        '97. 6.2 - M54',
        '98. 6.2 - M61 NON-METAL',
        '99. 6.2 - M69',
        '100. 6.2 - M95',
        '102. 6.2 - UNCLASSIFIED',
        '105. 8.1 - RELEASES',
        '106. 8.1A - ON-SITE CONTAINED',
        '110. 8.2 - ENERGY RECOVER ON',
        '10. BIA',
        '11. TRIBE',
        '117. 8.8 - ONE-TIME RELEASE',
        '52. 5.4.1 - UNDERGROUND CL I',
        '53. 5.4.2 - UNDERGROUND C II-V',
        '55. 5.5.1A - RCRA C LANDFILL',
        '51. 5.4 - UNDERGROUND',
        '58. 5.5.3 - SURFACE IMPNDMNT',
        '59. 5.5.3A - RCRA SURFACE IM'], axis=1, inplace=True)
# From the New Dataframe dropping the following variables due to either being
irrelevant or to avoid multicollinearity
df.drop(['Year',
```

```
'Annual Population',
'Annual Observations',
'Age-Adj. Rate per 100,000'], axis=1, inplace=True)
# From the New Dataframe dropping the following variables due to either being
irrelevant or to avoid multicollinearity
df.drop(['Geography'], axis=1, inplace=True)
# In addition, Dropping these variables
df.drop(['4. FACILITY NAME',
'6. CITY',
'15. PARENT CO NAME',
'17. STANDARD PARENT CO NAME'], axis=1, inplace=True)
# In addition, Dropping these variables
df.drop(['1. YEAR'], axis=1, inplace=True)
# Only One Value (which is 'R')
df.drop(['46. FORM TYPE'], axis=1, inplace=True)
# Droping Rows that have Grams as unit of measurement
df = df[df['47. UNIT OF MEASURE'] != 'Grams']
# Only One Value Now (which is 'Pounds')
df.drop(['47. UNIT OF MEASURE'], axis=1, inplace=True)
# Dropping '38. SRS ID' as it's the same thing just in a different format as
'37. CAS#'
df.drop(['38. SRS ID'], axis=1, inplace=True)
    # PROOF: Check Unique Value Counts for both...
    #Len(pd.unique(df['38. SRS ID']))
    #Len(pd.unique(df['37. CAS#']))
# Dropping as "DOC CTRL NUM is a unique identification number assigned to
each submission"
df.drop(['33. DOC_CTRL_NUM'], axis=1, inplace=True)
# Only One Value Now (which is 'Pounds')
df.drop(['Cases_Population_Ratio'], axis=1, inplace=True)
df.drop(['7. COUNTY'], axis=1, inplace=True)
df.drop(['Unnamed: 0'], axis=1, inplace=True)
/usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

```
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returni
ng-a-view-versus-a-copy
  errors=errors,
Replacing Null Values with Mean
df['119. 8.9 - PRODUCTION RATIO'] = df['119. 8.9 - PRODUCTION
RATIO'].fillna(df['119. 8.9 - PRODUCTION RATIO'].mean())
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:1:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user guide/indexing.html#returni
ng-a-view-versus-a-copy
  """Entry point for launching an IPython kernel.
Removing Rows with Null Values
#df.dropna(subset=['17. STANDARD PARENT CO NAME', '15. PARENT CO NAME', '118.
PROD RATIO OR ACTIVITY'], axis=0, how='any', inplace=True)
df.dropna(subset=['118. PROD_RATIO_OR_ ACTIVITY'],axis=0, how='any',
inplace=True)
/usr/local/lib/python3.7/dist-packages/pandas/util/ decorators.py:311:
SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
See the caveats in the documentation:
https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returni
ng-a-view-versus-a-copy
  return func(*args, **kwargs)
# FOR VERIFICATION ONLY FOR RECHECKING NULL COUNT: Creating a Table of
Highest % of Missing Values and Creating a Table for In-Class Presentation
percent_missing = df.isnull().sum() * 100 / len(df)
missing value df = pd.DataFrame({'column_name': df.columns,
                                 'percent missing': percent missing})
missing value df = missing value df.sort values('percent missing',
ascending=False).head(6) # Remove Head to Show More
missing_value_df
                                             column_name percent_missing
18. FEDERAL FACILITY
                                    18. FEDERAL FACILITY
                                                                      0.0
20. INDUSTRY SECTOR
                                     20. INDUSTRY SECTOR
                                                                      0.0
85. OFF-SITE RELEASE TOTAL 85. OFF-SITE RELEASE TOTAL
                                                                      0.0
87. 6.2 - M24
                                           87. 6.2 - M24
                                                                      0.0
```

```
88. 6.2 - M26
                                           88. 6.2 - M26
                                                                      0.0
91. OFF-SITE RECYCLED TOTAL 91. OFF-SITE RECYCLED TOTAL
                                                                      0.0
# # BELIEVE WE CAN DELETE THIS NOW...
# sns.boxplot(x=df['Cases_Population_Ratio'])
https://towardsdatascience.com/binning-records-on-a-continuous-variable-with-
pandas-cut-and-qcut-5d7c8e11d7b0
# 0.00764 was the number that's split point given by binning
# df['Cases Population Ratio Group'] = pd.cut(df['Cases Population Ratio'],
2)
https://stackoverflow.com/questions/31511997/pandas-dataframe-replace-all-val
ues-in-a-column-based-on-condition
# df['Cases Population Ratio Group'] = (df['Cases Population Ratio'] >
0.00764).astype(int)
# # Drop To Avoid Multicollinearity
# df.drop(['Cases Population Ratio Group'], axis=1, inplace=True)
```

### **Correlation Matrix**

# **Correlation Matrix | Numeric Data Only**

• Based on this, there quite a few highly correlated variables that are included before any processing such as PCA.

```
https://medium.com/@szabo.bibor/how-to-create-a-seaborn-correlation-heatmap-i
n-python-834c0686b88e
plt.figure(figsize=(25, 15))
# define the mask to set the values in the upper triangle to True
mask = np.triu(np.ones like(df.corr(), dtype=np.bool))
heatmap = sns.heatmap(df.corr(),
                      mask=mask,
                      vmin=-1, vmax=1,
                      fmt=".1f", # Round to One Decimal
                      annot=True, # Annotate Values
                      #cmap='BrBG', # Change Color Palette,
                      linewidth=.5
heatmap.set_title('Triangle Correlation Heatmap (With Only Numeric Data /
Before Dummy Variables Created)', fontdict={'fontsize':18}, pad=16)
/usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:5:
DeprecationWarning: `np.bool` is a deprecated alias for the builtin `bool`.
To silence this warning, use `bool` by itself. Doing this will not modify any
behavior and is safe. If you specifically wanted the numpy scalar type, use
```

```
`np.bool_` here.
Deprecated in NumPy 1.20; for more details and guidance:
https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations
```

Text(0.5, 1.0, 'Triangle Correlation Heatmap (With Only Numeric Data / Before Dummy Variables Created)')



### Correlation Matrix (To Target Variable) | Numeric Data Only

# Features Correlating w/ Cancer Rate Flag



### **Creating Dummy Variables**

• One Hot Encoding for Nominal Variables dfcat\_cols = df.select\_dtypes('object').columns.tolist() df = pd.get\_dummies(df, columns=dfcat\_cols, drop\_first=True)

### **Correlation Matrix (to Target Variable ) Numeric AND Dummy Features**

• TO DO: Take this Dataframe Correlation Matrix and do it for individual Dummy Feature Groups (INDUSTRY\_SECTOR, CHEMICAL, Etc.)

```
df.corr()[['Cancer_Rate_Flag']].sort_values(by='Cancer_Rate_Flag',
    ascending=False)
```

|                                                 | Cancer_Rate_Flag |
|-------------------------------------------------|------------------|
| Cancer_Rate_Flag                                | 1.000000         |
| 20. INDUSTRY SECTOR Petroleum                   | 0.296383         |
| 20. INDUSTRY SECTOR Wood Products               | 0.106099         |
| 34. CHEMICAL Hydroquinone                       | 0.084388         |
| 37. CAS#_123-31-9                               | 0.084388         |
| 36. TRI CHEMICAL/COMPOUND ID_0000123319         | 0.084388         |
| 20. INDUSTRY SECTOR Paper                       | 0.078155         |
| 34. CHEMICAL Hydrogen sulfide                   | 0.068917         |
| 36. TRI CHEMICAL/COMPOUND ID_0007783064         | 0.068917         |
| 37. CAS# 7783-06-4                              | 0.068917         |
| 18. FEDERAL FACILITY_YES                        | 0.066618         |
| 37. CAS#_7664-93-9                              | 0.065128         |
| 34. CHEMICAL_Sulfuric acid (acid aerosols inclu |                  |
| 36. TRI CHEMICAL/COMPOUND ID 0007664939         | 0.065128         |
| 36. TRI CHEMICAL/COMPOUND ID 0000078795         | 0.064941         |
| 37. CAS#_78-79-5                                | 0.064941         |
| 34. CHEMICAL Isoprene                           | 0.064941         |
| 116. PRODUCTION WSTE (8.1-8.7)                  | 0.063592         |
| 37. CAS#_120-12-7                               | 0.062518         |
| 36. TRI CHEMICAL/COMPOUND ID_0000120127         | 0.062518         |
| 34. CHEMICAL Anthracene                         | 0.062518         |
| 36. TRI CHEMICAL/COMPOUND ID_0060207901         | 0.059659         |
| 34. CHEMICAL Propiconazole                      | 0.059659         |
| 37. CAS#_60207-90-1                             | 0.059659         |
| 37. CAS#_74-90-8                                | 0.057541         |
| 34. CHEMICAL_Hydrogen cyanide                   | 0.057541         |
| 36. TRI CHEMICAL/COMPOUND ID_0000074908         | 0.057541         |
| 36. TRI CHEMICAL/COMPOUND ID_0000075070         | 0.056542         |
| 34. CHEMICAL_Acetaldehyde                       | 0.056542         |
| 37. CAS#_75-07-0                                | 0.056542         |
| 20. INDUSTRY SECTOR_Other                       | 0.055052         |
| 37. CAS#_131-11-3                               | 0.052808         |
| 36. TRI CHEMICAL/COMPOUND ID_0000131113         | 0.052808         |
| 34. CHEMICAL_Dimethyl phthalate                 | 0.052808         |
| 34. CHEMICAL_Phenanthrene                       | 0.049124         |
| 37. CAS#_85-01-8                                | 0.049124         |
| 36. TRI CHEMICAL/COMPOUND ID_0000085018         | 0.049124         |
| 37. CAS#_106-99-0                               | 0.042186         |
| 36. TRI CHEMICAL/COMPOUND ID_0000106990         | 0.042186         |
| 34. CHEMICAL_1,3-Butadiene                      | 0.042186         |
| 34. CHEMICAL_Carbon disulfide                   | 0.042186         |
| 36. TRI CHEMICAL/COMPOUND ID_0000075150         | 0.042186         |
| 37. CAS#_75-15-0                                | 0.042186         |
| 34. CHEMICAL_Methanol                           | 0.039253         |
| 37. CAS#_67-56-1                                | 0.039253         |
| 36. TRI CHEMICAL/COMPOUND ID_0000067561         | 0.039253         |
| 36. TRI CHEMICAL/COMPOUND ID_0000074851         | 0.039129         |
| 37. CAS#_74-85-1                                | 0.039129         |
| 34. CHEMICAL_Ethylene                           | 0.039129         |

|     | CAS#_463-58-1                                      | 0.039129             |
|-----|----------------------------------------------------|----------------------|
|     | TRI CHEMICAL/COMPOUND ID_0000463581                | 0.039129             |
|     | CHEMICAL_Carbonyl sulfide                          | 0.039129             |
|     | CAS#_7439-97-6                                     | 0.037509             |
|     | CHEMICAL_Mercury                                   | 0.037509             |
|     | TRI CHEMICAL/COMPOUND ID_0007439976                | 0.037509             |
|     | CAS#_79-21-0                                       | 0.037509             |
|     | CHEMICAL_Peracetic acid                            | 0.037509             |
|     | TRI CHEMICAL/COMPOUND ID_0000079210                | 0.037509             |
|     | TRI CHEMICAL/COMPOUND ID_0001336363                | 0.037325             |
|     | CAS#_1336-36-3                                     | 0.037325             |
|     | CHEMICAL_Polychlorinated biphenyls                 | 0.037325             |
|     | CHEMICAL_Propionaldehyde                           | 0.037325             |
|     | CAS#_123-38-6                                      | 0.037325             |
|     | TRI CHEMICAL/COMPOUND ID_0000123386                | 0.037325             |
|     | CAS#_50-00-0                                       | 0.036528             |
|     | CHEMICAL_Formaldehyde                              | 0.036528             |
|     | CHEMICAL_Cresol (mixed isomers)                    | 0.036293             |
|     | CAS#_1319-77-3                                     | 0.036293             |
|     | TRI CHEMICAL/COMPOUND ID_0001319773                | 0.036293             |
|     | CAS#_872-50-4                                      | 0.033858             |
|     | CHEMICAL_N-Methyl-2-pyrrolidone                    | 0.033858             |
|     | TRI CHEMICAL/COMPOUND ID_0000872504                | 0.033858             |
|     | CHEMICAL_Propylene                                 | 0.033650             |
|     | TRI CHEMICAL/COMPOUND ID_0000115071                | 0.033650             |
|     | CAS#_115-07-1                                      | 0.033650             |
|     | CHEMICAL_Phenol                                    | 0.033383             |
|     | TRI CHEMICAL/COMPOUND ID_0000108952                | 0.033383             |
|     | CAS#_108-95-2                                      | 0.033383             |
|     | CHEMICAL_Vanadium compounds                        | 0.032129             |
|     | CAS#_N770                                          | 0.032129             |
|     | TRI CHEMICAL/COMPOUND ID_N770                      | 0.032129             |
|     | TRI CHEMICAL/COMPOUND ID_0000100425                | 0.028844             |
|     | CAS#_100-42-5                                      | 0.028844             |
|     | CHEMICAL_Styrene                                   | 0.028844             |
|     | CHEMICAL_Barium And Barium Compounds               | 0.026506             |
|     | CAS#_120-80-9                                      | 0.024955             |
|     | TRI CHEMICAL/COMPOUND ID_0000120809                | 0.024955             |
|     | CHEMICAL_Catechol                                  | 0.024955             |
|     | TRI CHEMICAL/COMPOUND ID_0000098828                | 0.024566             |
|     | CHEMICAL_Cumene                                    | 0.024566             |
|     | CAS#_98-82-8                                       | 0.024566             |
|     | 5.1 - FUGITIVE AIR                                 | 0.024089             |
|     | CHEMICAL_Biphenyl                                  | 0.023750             |
|     | CAS#_92-52-4                                       | 0.023750             |
|     | TRI CHEMICAL/COMPOUND ID_0000092524                | 0.023750             |
|     | CHEMICAL_Molybdenum trioxide                       | 0.023750             |
|     | CAS#_1313-27-5 TRI CHEMICAL/COMPOUND ID_0001313275 | 0.023750<br>0.023750 |
|     | _                                                  | 0.023730             |
| 45. | CARCINOGEN_YES                                     | 0.021041             |

| 34. CHEMICAL_Cyclohexane                        | 0.020707             |
|-------------------------------------------------|----------------------|
| 37. CAS#_110-82-7                               | 0.020707             |
| 36. TRI CHEMICAL/COMPOUND ID_0000110827         | 0.020707             |
| 34. CHEMICAL_Ammonia                            | 0.020604             |
| 37. CAS#_7664-41-7                              | 0.020604             |
| 36. TRI CHEMICAL/COMPOUND ID_0007664417         | 0.020604             |
| 34. CHEMICAL_Nickel compounds                   | 0.020101<br>0.019516 |
|                                                 |                      |
| 114. 8.6 - TREATMENT ON SITE                    | 0.017919             |
| 34. CHEMICAL_Tetrachloroethylene                | 0.017332             |
| 37. CAS#_127-18-4                               | 0.017332             |
| 36. TRI CHEMICAL/COMPOUND ID_0000127184         | 0.017332             |
| 36. TRI CHEMICAL/COMPOUND ID_N590               | 0.014785             |
| 34. CHEMICAL_Polycyclic aromatic compounds      | 0.014785             |
| 37. CAS#_N590                                   | 0.014785             |
| 34. CHEMICAL_Cobalt compounds                   | 0.014378             |
| 37. CAS#_N495                                   | 0.012067             |
| 36. TRI CHEMICAL/COMPOUND ID_N495               | 0.012067             |
| 37. CAS#_N096                                   | 0.010315             |
| 36. TRI CHEMICAL/COMPOUND ID_N096               | 0.010315             |
| 36. TRI CHEMICAL/COMPOUND ID_0000111422         | 0.009838             |
| 37. CAS#_111-42-2                               | 0.009838             |
| 34. CHEMICAL_Diethanolamine                     | 0.009838             |
| 34. CHEMICAL_Lead                               | 0.006307             |
| 37. CAS#_7439-92-1                              | 0.006307             |
| 36. TRI CHEMICAL/COMPOUND ID_0007439921         | 0.006307             |
| 34. CHEMICAL_Diisocyanates                      | 0.005754             |
| 36. TRI CHEMICAL/COMPOUND ID_N120               | 0.005754             |
|                                                 | 0.005754             |
| 34. CHEMICAL_Hydrochloric acid (acid aerosols i | 0.005534             |
| 37. CAS#_7647-01-0                              | 0.005534             |
| 36. TRI CHEMICAL/COMPOUND ID_0007647010         | 0.005534             |
| 40. CLASSIFICATION_TRI                          | 0.005124             |
| 50. 5.3 - WATER                                 | 0.004914             |
| 39. CLEAN AIR ACT CHEMICAL_YES                  | 0.003799             |
| 88. 6.2 - M26                                   | 0.003042             |
| 109. 8.1D - OFF-SITE OTHER R                    | 0.002275             |
| 112. 8.4 - RECYCLING ON SITE                    | -0.000898            |
| 36. TRI CHEMICAL/COMPOUND ID_0001330207         | -0.000907            |
| 37. CAS#_1330-20-7                              | -0.000907            |
| <pre>34. CHEMICAL_Xylene (mixed isomers)</pre>  | -0.000907            |
| 34. CHEMICAL_Copper compounds                   | -0.001264            |
| 20. INDUSTRY SECTOR_Machinery                   | -0.002529            |
| 34. CHEMICAL_Lead And Lead Compounds            | -0.003931            |
| 44. PBT_YES                                     | -0.005124            |
| 85. OFF-SITE RELEASE TOTAL                      | -0.006102            |
| 36. TRI CHEMICAL/COMPOUND ID_N450               | -0.006559            |
| 37. CAS#_N450                                   | -0.006559            |
| 36. TRI CHEMICAL/COMPOUND ID_0007440666         | -0.006884            |
| 34. CHEMICAL_Zinc (fume or dust)                | -0.006884            |

|     | CAS#_7440-66-6                       | -0.006884 |
|-----|--------------------------------------|-----------|
| 34. | CHEMICAL_Cobalt And Cobalt Compounds | -0.006884 |
| 37. | CAS#_N020                            | -0.006884 |
| 36. | TRI CHEMICAL/COMPOUND ID_N020        | -0.006884 |
| 34. | CHEMICAL_Arsenic compounds           | -0.006884 |
|     | CAS#_79-01-6                         | -0.006884 |
|     | CAS#_121-44-8                        | -0.006884 |
|     | TRI CHEMICAL/COMPOUND ID_0000108383  | -0.006884 |
|     | TRI CHEMICAL/COMPOUND ID 0000079016  | -0.006884 |
|     | CHEMICAL_Trichloroethylene           | -0.006884 |
|     | CHEMICAL_Triethylamine               | -0.006884 |
|     | CAS# 108-38-3                        | -0.006884 |
|     | TRI CHEMICAL/COMPOUND ID_0000121448  | -0.006884 |
|     | CAS#_71-55-6                         | -0.006884 |
|     | CHEMICAL_m-Xylene                    | -0.006884 |
|     | TRI CHEMICAL/COMPOUND ID 0000071556  | -0.006884 |
|     | TRI CHEMICAL/COMPOUND ID_0000106423  | -0.006884 |
|     | CAS# 106-42-3                        | -0.006884 |
|     | CHEMICAL_p-Xylene                    | -0.006884 |
|     | CAS#_79-06-1                         | -0.006884 |
|     | TRI CHEMICAL/COMPOUND ID_0000079061  | -0.006884 |
|     |                                      | -0.006884 |
|     | CHEMICAL_Acrylamide                  | -0.006884 |
|     | CHEMICAL_o-Xylene                    |           |
|     | CAS#_95-47-6                         | -0.006884 |
|     | TRI CHEMICAL/COMPOUND ID_0000095476  | -0.006884 |
|     | CHEMICAL Cadmium compounds           | -0.006884 |
|     | TRI CHEMICAL/COMPOUND ID_0000076062  | -0.006884 |
|     | TRI CHEMICAL/COMPOUND ID_0010061026  | -0.006884 |
|     | CHEMICAL_Chloropicrin                | -0.006884 |
|     | CAS#_N078                            | -0.006884 |
|     | CHEMICAL_trans-1,3-Dichloropropene   | -0.006884 |
|     | CAS#_76-06-2                         | -0.006884 |
|     | TRI CHEMICAL/COMPOUND ID_N078        | -0.006884 |
|     | CAS#_10061-02-6                      | -0.006884 |
|     | 5.2 - STACK AIR                      | -0.007437 |
|     | CAS#_110-54-3                        | -0.007513 |
|     | TRI CHEMICAL/COMPOUND ID_0000110543  | -0.007513 |
|     | CHEMICAL_n-Hexane                    | -0.007513 |
|     | CAS#_N040                            | -0.007994 |
|     | TRI CHEMICAL/COMPOUND ID_N040        | -0.007994 |
|     | CHEMICAL_Ethylbenzene                | -0.008448 |
| 36. | TRI CHEMICAL/COMPOUND ID_0000100414  | -0.008448 |
| 36. | TRI CHEMICAL/COMPOUND ID_N100        | -0.009121 |
| 37. | CAS#_N100                            | -0.009121 |
| 36. | TRI CHEMICAL/COMPOUND ID_0000191242  | -0.009364 |
| 34. | CHEMICAL_Benzo[g,h,i]perylene        | -0.009364 |
| 37. | CAS#_191-24-2                        | -0.009364 |
| 34. | CHEMICAL_Benzoyl peroxide            | -0.009737 |
| 36. | TRI CHEMICAL/COMPOUND ID_0000094360  | -0.009737 |
| 37. | CAS#_94-36-0                         | -0.009737 |
|     |                                      |           |

|     | CAS#_123-91-1                                                           | -0.009737              |
|-----|-------------------------------------------------------------------------|------------------------|
|     | TRI CHEMICAL/COMPOUND ID_0000123911                                     | -0.009737              |
|     | CHEMICAL_1,4-Dioxane                                                    | -0.009737              |
|     | CHEMICAL_Dicyclopentadiene                                              | -0.009737              |
|     | CAS#_77-73-6                                                            | -0.009737              |
| 34. | CHEMICAL_tert-Butyl alcohol                                             | -0.009737              |
| 37. | CAS#_75-65-0                                                            | -0.009737              |
| 36. | TRI CHEMICAL/COMPOUND ID_0000075650                                     | -0.009737              |
| 36. | TRI CHEMICAL/COMPOUND ID_0000077736                                     | -0.009737              |
| 37. | CAS#_74-87-3                                                            | -0.009737              |
| 37. | CAS#_78-92-2                                                            | -0.009737              |
| 34. | CHEMICAL_sec-Butyl alcohol                                              | -0.009737              |
| 36. | TRI CHEMICAL/COMPOUND ID_N106                                           | -0.009737              |
| 37. | CAS#_N106                                                               | -0.009737              |
| 34. | CHEMICAL_Cyanide compounds                                              | -0.009737              |
|     | TRI CHEMICAL/COMPOUND ID_0000074873                                     | -0.009737              |
|     | TRI CHEMICAL/COMPOUND ID 0000078922                                     | -0.009737              |
|     | CHEMICAL Chloromethane                                                  | -0.009737              |
|     | CAS# 554-13-2                                                           | -0.009737              |
|     | TRI CHEMICAL/COMPOUND ID 0000554132                                     | -0.009737              |
|     | CHEMICAL Lithium carbonate                                              | -0.009737              |
|     | INDUSTRY SECTOR_Textiles                                                | -0.011928              |
|     | TRI CHEMICAL/COMPOUND ID_0000122394                                     | -0.011928              |
|     | CHEMICAL_Diphenylamine                                                  | -0.011928              |
|     | CAS#_122-39-4                                                           | -0.011928              |
|     | CHEMICAL_1,3-Dichloropropylene                                          | -0.011928              |
|     | CAS# 542-75-6                                                           | -0.011928              |
|     | TRI CHEMICAL/COMPOUND ID_0000542756                                     | -0.011928              |
|     | CAS# 75-09-2                                                            | -0.011928              |
|     | CHEMICAL_Chloroform                                                     | -0.011928              |
|     | TRI CHEMICAL/COMPOUND ID_0000075092                                     | -0.011928              |
|     | CHEMICAL Dichloromethane                                                | -0.011928              |
|     | TRI CHEMICAL/COMPOUND ID 0000067663                                     | -0.011928              |
|     | CAS# 67-66-3                                                            | -0.011928              |
|     | CAS#_68-12-2                                                            | -0.011928              |
|     | CHEMICAL Acetonitrile                                                   | -0.011928              |
|     | CAS# 7440-36-0                                                          | -0.011928              |
|     | <b>=</b>                                                                | -0.011928              |
|     | TRI CHEMICAL/COMPOUND ID_0000075058 TRI CHEMICAL/COMPOUND ID_0000068122 |                        |
|     |                                                                         | -0.011928<br>-0.011928 |
|     | CHEMICAL_N,N-Dimethylformamide                                          |                        |
|     | CAS#_75-05-8                                                            | -0.011928              |
|     | TRI CHEMICAL/COMPOUND ID_0007440360                                     | -0.011928              |
|     | CHEMICAL_Antimony                                                       | -0.011928              |
|     | CHEMICAL_1,2-Dichloroethane                                             | -0.011928              |
|     | TRI CHEMICAL/COMPOUND ID_0000107062                                     | -0.011928              |
|     | CAS#_107-06-2                                                           | -0.011928              |
|     | CAS#_25321-14-6                                                         | -0.011928              |
|     | TRI CHEMICAL/COMPOUND ID_0007440484                                     | -0.011928              |
|     | TRI CHEMICAL/COMPOUND ID_0025321146                                     | -0.011928              |
| 3/. | CAS#_7440-22-4                                                          | -0.011928              |

|     | CHEMICAL_Silver                                                                                                                                                                                                                                           | -0.011928 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|     | TRI CHEMICAL/COMPOUND ID_0007440224                                                                                                                                                                                                                       | -0.011928 |
|     | CAS#_7440-48-4                                                                                                                                                                                                                                            | -0.011928 |
| 34. | CHEMICAL_Dinitrotoluene (mixed isomers)                                                                                                                                                                                                                   | -0.011928 |
| 34. | CAS#_/440-48-4 CHEMICAL_Dinitrotoluene (mixed isomers) CHEMICAL_Cobalt                                                                                                                                                                                    | -0.011928 |
| 34. | CHEMICAL_Pyridine                                                                                                                                                                                                                                         | -0.011928 |
| 36. | TRI CHEMICAL/COMPOUND ID 0000110861                                                                                                                                                                                                                       | -0.011928 |
| 37. | CAS# 110-86-1                                                                                                                                                                                                                                             | -0.011928 |
| 37. | CHEMICAL_CODAIC CHEMICAL_Pyridine TRI CHEMICAL/COMPOUND ID_0000110861 CAS#_110-86-1 CAS#_137-41-7 TRI CHEMICAL/COMPOUND ID_0000137417 CHEMICAL_Potassium N-methyldithiocarbamate                                                                          | -0.011928 |
| 36. | TRI CHEMICAL/COMPOUND ID 0000137417                                                                                                                                                                                                                       | -0.011928 |
| 34. | CHEMICAL Potassium N-methyldithiocarbamate                                                                                                                                                                                                                | -0.011928 |
| 37. | CAS# 1634-04-4                                                                                                                                                                                                                                            | -0.011928 |
|     | CHEMICAL_Methyl tert-butyl ether                                                                                                                                                                                                                          | -0.011928 |
|     | TRI CHEMICAL/COMPOUND ID_0001634044                                                                                                                                                                                                                       | -0.011928 |
|     | ELEMENTAL METAL INCLUDED YES                                                                                                                                                                                                                              | -0.012012 |
|     | CHEMICAL_Manganese compounds                                                                                                                                                                                                                              | -0.013008 |
|     | 5.5.1B - OTHER LANDFILLS                                                                                                                                                                                                                                  | -0.013256 |
|     | CHEMICAL Benzene                                                                                                                                                                                                                                          | -0.013700 |
|     | TRI CHEMICAL /COMPOLIND TD 0000071432                                                                                                                                                                                                                     | _0 013700 |
|     | CAS#_71-43-2                                                                                                                                                                                                                                              | -0.013700 |
|     | CAS#_71-43-2 TRI CHEMICAL/COMPOUND ID_0000087865 CAS#_87-86-5 CHEMICAL_Pentachlorophenol TRI CHEMICAL/COMPOUND ID_0000124403 CAS#_124-40-3 CHEMICAL_Dimethylamine TRI CHEMICAL/COMPOUND ID_0000055630 CHEMICAL_Mercury And Mercury Compounds CAS#_55-63-0 | -0.013776 |
|     | CAS# 87-86-5                                                                                                                                                                                                                                              | -0.013776 |
|     | CHEMICAL_Pentachlorophenol                                                                                                                                                                                                                                | -0.013776 |
|     | TRI CHEMICAL (COMPOUND TO GOOGLOAMS)                                                                                                                                                                                                                      | 0.013776  |
|     | TRI CHEMICAL/COMPOUND ID_0000124403                                                                                                                                                                                                                       | -0.013776 |
|     | CAS#_124-40-3                                                                                                                                                                                                                                             | -0.013776 |
|     | CHEMICAL_Dimethylamine                                                                                                                                                                                                                                    | -0.013776 |
|     | TRI CHEMICAL/COMPOUND ID_0000055630                                                                                                                                                                                                                       | -0.013776 |
|     | CHEMICAL_Mercury And Mercury Compounds                                                                                                                                                                                                                    | -0.013776 |
|     | CAS#_55-63-0                                                                                                                                                                                                                                              | -0.013776 |
|     | CHEMICAL_Nitroglycerin                                                                                                                                                                                                                                    | -0.013776 |
|     | CHEMICAL_Nickel And Nickel Compounds                                                                                                                                                                                                                      | -0.013776 |
|     | CHEMICAL_Lead compounds                                                                                                                                                                                                                                   | -0.014001 |
|     | CHEMICAL_Nitroglycerin CHEMICAL_Nickel And Nickel Compounds CHEMICAL_Lead compounds CHEMICAL_Mercury compounds TRI CHEMICAL/COMPOUND ID_0000095636                                                                                                        | -0.014523 |
|     | TRI CHEMICAL/COMPOUND ID_0000095636                                                                                                                                                                                                                       | -0.014523 |
|     | CAS#_95-63-6                                                                                                                                                                                                                                              | -0.014523 |
|     | CHEMICAL_1,2,4-Trimethylbenzene                                                                                                                                                                                                                           | -0.014523 |
| 36. | TRI CHEMICAL/COMPOUND ID_N420                                                                                                                                                                                                                             | -0.014631 |
| 37. | CAS#_N420                                                                                                                                                                                                                                                 | -0.014631 |
| 36. | TRI CHEMICAL/COMPOUND ID_0000071363                                                                                                                                                                                                                       | -0.014794 |
| 34. | CHEMICAL_n-Butyl alcohol                                                                                                                                                                                                                                  | -0.014794 |
| 37. | CAS#_71-36-3                                                                                                                                                                                                                                              | -0.014794 |
| 37. | CAS#_80-62-6                                                                                                                                                                                                                                              | -0.015405 |
| 34. | CHEMICAL_Methyl methacrylate                                                                                                                                                                                                                              | -0.015405 |
| 36. | TRI CHEMICAL/COMPOUND ID_0000080626                                                                                                                                                                                                                       | -0.015405 |
| 107 | . 8.1B - ON-SITE OTHER                                                                                                                                                                                                                                    | -0.015841 |
| 60. | 5.5.3B - OTHER SURFACE I                                                                                                                                                                                                                                  | -0.015909 |
| 34. | CHEMICAL_Toluene diisocyanate (mixed isomers)                                                                                                                                                                                                             | -0.016879 |
|     | CAS#_26471-62-5                                                                                                                                                                                                                                           | -0.016879 |
|     | TRI CHEMICAL/COMPOUND ID_0026471625                                                                                                                                                                                                                       | -0.016879 |
|     | TRI CHEMICAL/COMPOUND ID_0000117817                                                                                                                                                                                                                       | -0.016879 |
|     |                                                                                                                                                                                                                                                           |           |

| 27 CACH 447 04 7                                | 0 016070  |
|-------------------------------------------------|-----------|
| 37. CAS#_117-81-7                               | -0.016879 |
| 34. CHEMICAL_Chromium and Chromium Compounds(e  | -0.016879 |
| 34. CHEMICAL_Di(2-ethylhexyl) phthalate         | -0.016879 |
| 36. TRI CHEMICAL/COMPOUND ID_0000137428         | -0.016879 |
| 37. CAS#_137-42-8                               | -0.016879 |
| 34. CHEMICAL_Metham sodium                      | -0.016879 |
| 57. 5.5.2 - LAND TREATMENT                      | -0.017118 |
| 37. CAS#_N458                                   | -0.017683 |
| 36. TRI CHEMICAL/COMPOUND ID_N458               | -0.017683 |
| 20. INDUSTRY SECTOR_Chemicals                   | -0.017786 |
| 34. CHEMICAL_Copper And Copper Compounds        | -0.018235 |
| 87. 6.2 - M24                                   | -0.018354 |
| 62. ON-SITE RELEASE TOTAL                       | -0.019068 |
| 108. 8.1C - OFF-SITE CONTAIN                    | -0.019191 |
| 34. CHEMICAL_Toluene                            | -0.019193 |
| 36. TRI CHEMICAL/COMPOUND ID_0000108883         | -0.019193 |
| 37. CAS#_108-88-3                               | -0.019193 |
| 36. TRI CHEMICAL/COMPOUND ID_0000106945         | -0.019498 |
| 34. CHEMICAL_1-Bromopropane                     | -0.019498 |
| 37. CAS#_106-94-5                               | -0.019498 |
| 37. CAS#_79-94-7                                | -0.019498 |
| 36. TRI CHEMICAL/COMPOUND ID_0000079947         | -0.019498 |
| 34. CHEMICAL_Tetrabromobisphenol A              | -0.019498 |
| 64. 6.1 - POTW - TRNS TRT                       | -0.019647 |
| 104. TOTAL RELEASES                             | -0.019873 |
| 37. CAS#_10049-04-4                             | -0.020685 |
| 36. TRI CHEMICAL/COMPOUND ID_0010049044         | -0.020685 |
| 34. CHEMICAL Chlorine dioxide                   | -0.020685 |
| 65. POTW - TOTAL TRANSFERS                      | -0.020846 |
| 113. 8.5 - RECYCLING OFF SIT                    | -0.021548 |
| 91. OFF-SITE RECYCLED TOTAL                     | -0.021551 |
| 119. 8.9 - PRODUCTION RATIO                     | -0.021989 |
| 61. 5.5.4 - OTHER DISPOSAL                      | -0.022140 |
| 34. CHEMICAL_Barium compounds (except for bariu | -0.022878 |
| 20. INDUSTRY SECTOR_Electrical Equipment        | -0.022878 |
| 63. 6.1 - POTW - TRNS RLSE                      | -0.023353 |
| 36. TRI CHEMICAL/COMPOUND ID_0007782505         | -0.023900 |
| 34. CHEMICAL Chlorine                           | -0.023900 |
| 37. CAS# 7782-50-5                              | -0.023900 |
| 34. CHEMICAL Chromium compounds (except for chr | -0.025708 |
| 96. 6.2 - M50                                   | -0.026480 |
| 37. CAS#_91-20-3                                | -0.026803 |
| 34. CHEMICAL Naphthalene                        | -0.026803 |
| 36. TRI CHEMICAL/COMPOUND ID 0000091203         | -0.026803 |
| 37. CAS# 64-18-6                                | -0.027620 |
| 36. TRI CHEMICAL/COMPOUND ID_0000064186         | -0.027620 |
| 34. CHEMICAL_Formic acid                        | -0.027620 |
| 115. 8.7 - TREATMENT OFF SITE                   | -0.027696 |
| 101. OFF-SITE TREATED TOTAL                     | -0.027697 |
| 34. CHEMICAL_Methyl isobutyl ketone             | -0.029308 |
| 2 1. 2.1.2.1.2.1.2.1.3.2. 23000cy2 1.cconc      | 0.025500  |

| 36.  | TRI CHEMICAL/COMPOUND ID_0000108101                    | -0.029308 |
|------|--------------------------------------------------------|-----------|
|      | CAS#_108-10-1                                          | -0.029308 |
|      | <pre>INDUSTRY SECTOR_Computers and Electronic Pr</pre> | -0.029308 |
|      | TRI CHEMICAL/COMPOUND ID_N090                          | -0.030431 |
|      | CAS#_N090                                              | -0.030431 |
|      | TRI CHEMICAL/COMPOUND ID_0000107211                    | -0.030906 |
|      | CHEMICAL_Ethylene glycol                               | -0.030906 |
|      | CAS#_107-21-1                                          | -0.030906 |
|      | CAS#_N511                                              | -0.031648 |
| 36.  | TRI CHEMICAL/COMPOUND ID_N511                          | -0.031648 |
|      | _ ' '                                                  | -0.031648 |
|      | 6.2 - TOTAL TRANSFER                                   | -0.033052 |
|      | CHEMICAL_Certain glycol ethers                         | -0.034590 |
|      | CAS#_N230                                              | -0.034590 |
|      | TRI CHEMICAL/COMPOUND ID_N230                          | -0.034590 |
|      | CHEMICAL_Hydrogen fluoride                             | -0.035961 |
|      | CAS#_7664-39-3                                         | -0.035961 |
|      | TRI CHEMICAL/COMPOUND ID_0007664393                    | -0.035961 |
| 94.  | OFF-SITE ENERGY RECOVERY T                             | -0.037819 |
| 111. | 8.3 - ENERGY RECOVER OF                                | -0.037819 |
| 37.  | CAS#_7439-96-5                                         | -0.037845 |
| 36.  | TRI CHEMICAL/COMPOUND ID_0007439965                    | -0.037845 |
| 34.  | CHEMICAL_Manganese                                     | -0.037845 |
| 92.  | 6.2 - M56                                              | -0.037922 |
| 37.  | CAS#_7440-50-8                                         | -0.039666 |
| 36.  | TRI CHEMICAL/COMPOUND ID_0007440508                    | -0.039666 |
| 34.  | CHEMICAL_Copper                                        | -0.039666 |
| 20.  | INDUSTRY SECTOR_Metal Mining                           | -0.039807 |
| 37.  | CAS#_N982                                              | -0.039807 |
| 36.  | TRI CHEMICAL/COMPOUND ID_N982                          | -0.039807 |
| 34.  | CHEMICAL_Zinc compounds                                | -0.039807 |
| 36.  | TRI CHEMICAL/COMPOUND ID_0007440020                    | -0.040257 |
| 37.  | CAS#_7440-02-0                                         | -0.040257 |
| 34.  | CHEMICAL_Nickel                                        | -0.040257 |
| 36.  | TRI CHEMICAL/COMPOUND ID_0007440473                    | -0.044748 |
| 37.  | CAS#_7440-47-3                                         | -0.044748 |
| 34.  | CHEMICAL_Chromium                                      | -0.044748 |
| 20.  | INDUSTRY SECTOR_Electric Utilities                     | -0.044992 |
| 20.  | INDUSTRY SECTOR_Plastics and Rubber                    | -0.047125 |
| 20.  | INDUSTRY SECTOR_Food                                   | -0.053154 |
| 36.  | TRI CHEMICAL/COMPOUND ID_0007697372                    | -0.057125 |
| 37.  | CAS#_7697-37-2                                         | -0.057125 |
| 34.  | CHEMICAL_Nitric acid                                   | -0.057125 |
| 20.  | INDUSTRY SECTOR_Nonmetallic Mineral Product            | -0.066850 |
| 42.  | METAL CATEGORY                                         | -0.066917 |
| 20.  | INDUSTRY SECTOR_Hazardous Waste                        | -0.067296 |
|      | METAL_YES                                              | -0.074891 |
|      | INDUSTRY SECTOR_Fabricated Metals                      | -0.082278 |
|      | INDUSTRY SECTOR_Primary Metals                         | -0.095661 |
|      | INDUSTRY SECTOR_Transportation Equipment               | -0.096744 |
|      |                                                        |           |

```
20. INDUSTRY SECTOR_Petroleum Bulk Terminals
                                                            -0.097106
118. PROD_RATIO_OR_ ACTIVITY_PRODUCTION
                                                            -0.201696
54. 5.5.1 - LANDFILLS
                                                                  NaN
69. 6.2 - M40 METAL
                                                                  NaN
plt.figure(figsize=(8, 120))
heatmap =
sns.heatmap(df.corr()[['Cancer_Rate_Flag']].sort_values(by='Cancer_Rate_Flag'
ascending=False),
                                                                   vmin=-1,
vmax=1,
                                                                   annot=True,
linewidth=.1
#cmap='BrBG'
heatmap.set_title('All Numeric + Dummy Features Correlating w/ Cancer Rate
Flag', fontdict={'fontsize':18}, pad=16)
Text(0.5, 1.0, 'All Numeric + Dummy Features Correlating w/ Cancer Rate
Flag')
```

| Describit Mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 21. Mary 10 sector 1 retailant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13<br>FT       |
| 45 19mm a inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.564<br>6.164 |
| 27 Clo4 (L5-654)<br>20.71 C1040C484F099 E 00042013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 619            |
| 20 1004/STR* STOTICE Provide<br>SA CHEMICAL Polyngui salbit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 03             |
| COURT CODE OUT OF THE CONTRACTOR OF THE CONTRACT       | 6009<br>8300   |
| H BIRM OF CAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 197            |
| 17 DAVIZARE IN BO<br>35 GENOCOURCE AND LA GROOM INCOMESSAS VISION OF THE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E 9%.          |
| <ul> <li>If I context government polywhere</li> <li>I context government polywhere</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 106            |
| 51 (364,76736 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 175            |
| 14 C 1040A, represe<br>116 0000, cf 64 Met. C 1171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 08<br>07       |
| ar Chejubita?<br>com cideoucherone di consocor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 130<br>130     |
| 54 C CRICIL Anthropie<br>in 14 Lines A presentation Countries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E MTS          |
| et C+0021 January et e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 679            |
| 4" (Magazina) -<br>E 1007 (1416)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 600<br>8340    |
| ALCHMIST JANG BELLEVILLE ST. T. CHIMIST ST. CHIMIST C. CONTROL CO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | THE<br>THE     |
| 38.Th CHEMOLE SHOWE E HOUSE DRY CO. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.927<br>8.917 |
| 50,004,0004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.807          |
| 30 HDASTE 25CTCT, CINC.<br>37 Ctc* 100 H D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ens<br>em      |
| TETRICIDADA (CINADA (CINADA DE CONTENTA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E 244<br>E 244 |
| Fig. 2000. Provides                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EFR            |
| At Carte de California de Carte de California de Carte de California de        | E 279<br>E 271 |
| 47 FÖR JINGSCH<br>SEIT CHROCKERFORDE BÖDERSEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EN2<br>ENE     |
| 34.0 BMCA, 13-0 socient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 190            |
| or CHESTA (Action Entires)<br>as III CHESTA ASSESSMENT COMMON TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ()-6           |
| 27, CASE TALLIC<br>34 C TASKS THERMAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EHQ<br>EIM     |
| SUTT CIDAD-CONFORD C COURSES.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | £100<br>£109   |
| SETS CITACA ADMINISTRAÇÃO DE COMPLES :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EIM<br>EIM     |
| E 1.767 (4.15.1<br>41.0049.0.) (4.55.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 199            |
| AT CONTRACTOR AND THE CONTRACTOR       | 110            |
| er demonst a standarden<br>Di Chief (Nobeline                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E 106          |
| 54 CHOND UNDERSTOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.100          |
| SUTS CIDAD-LISARONE EL COSTOLISA<br>EL CASTOLISA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1100<br>1100   |
| 94 CREMON, Provide And<br>00, TR CHEMON, Review B. (00)0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100<br>100     |
| 0.141.000.00000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8917<br>8917   |
| of Committee in the Committee of the Com       | 5.MY           |
| A Little and Department of the Control of the Contr       | E HV           |
| <ul> <li>11 Person programme (1971) - 45 - 45 - 45 - 45 - 45 - 45 - 45 - 4</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.87<br>6.07   |
| 31 G DNOA Templands<br>of 1999 3 _Charles of templa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11T            |
| 37 Ode 1010-000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.100          |
| 20.7% CID4DUCS#FORE E K0000170 :<br>17 CM 472 VIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8 200<br>8 20  |
| A COLONIA JURENA PARA MARA<br>◆ 11 Deserta Jurentina III District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2 SV           |
| A 01790 Project in its context appearance popular.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | EHF            |
| 47 1 394, 319-1-2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 194            |
| SECTION CONTRACTOR OF CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | E 100<br>E 100 |
| 97 CHERGAL Variation compared.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ENS            |
| 25.000 (37)<br>000 / 0002000 AND DESTRUCTION OF CONTROL OF    | 602<br>607     |
| A TRIUMA (LIMITALIA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 109            |
| 37 Glow 50040-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6129<br>6129   |
| <ul> <li>At 100 and 100 an</li></ul> | FIX.           |
| S. III CHEMOLARMONE CONTINUES - S. ORRIGO, G. DART                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 105            |
| <ul> <li>ттоенся дзеннями долянных</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1105<br>1106   |
| ALCOMPTIAL DATE OF COLUMN STATE OF COLUMN STAT       | 1165           |
| AP 41 - HE HAD BE<br>14 CEPTED - Developed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100            |
| 17 CASA 00-80-4<br>00.714 CHD4DUC94-904-00 (000000001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.164<br>6.154 |
| E BUIRLA ENGOPOLITORICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E 134<br>E 134 |
| e. iii teenaa geemaanii jira ka aasa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 134            |
| 48 CAN TOTAL ME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | EM/            |
| SETT CIBROLICATIONS E CONTROLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | t ML<br>citi   |
| 3. GEALA. Avron a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6101           |
| 27 CAS 7 TWI 11 T<br>28.71 CHEMOLICIPIONE IS 00094-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 M1<br>6 M2 1 |
| 26 C EMCAL Payment And Tanganery Companying                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6/3<br>P//     |
| TO TO TOP NAME A COLOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ***<br>***/    |
| 37 (329 127 17 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.7           |
| ALTER CHARGE (CONTROL OF THE CONTROL       | HC HC          |
| SA CHEMOLIJA NOTIC SATI DE CRESTADA<br>24,000 PER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18             |
| 24 CHRANA Gebit compounds                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 134            |
| 31 TEL CELEVICION D NEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 610            |
| to constitue                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ēF             |

Currently Have this setup as absolute value. Should we remove?

• In our appendix, we could have the correlation matrix as seen here which includes all variables, BUT we could also have ones where we only include features that were part of the same column before dummies. For example, we create a table (or chart) for just INDUSTRY SECTOR. Could do this easily in Excel.

```
# Correlation of Values To Target Variable Sorted Highest to Lowest
ab col matrix = abs(df.corr())
ab_col_matrix['Cancer_Rate_Flag'].sort_values(ascending=False)
Cancer Rate Flag
1.000000
20. INDUSTRY SECTOR_Petroleum
0.296383
118. PROD_RATIO_OR_ ACTIVITY_PRODUCTION
0.201696
20. INDUSTRY SECTOR_Wood Products
0.106099
20. INDUSTRY SECTOR_Petroleum Bulk Terminals
0.097106
20. INDUSTRY SECTOR_Transportation Equipment
0.096744
20. INDUSTRY SECTOR_Primary Metals
0.095661
37. CAS# 123-31-9
0.084388
36. TRI CHEMICAL/COMPOUND ID 0000123319
0.084388
34. CHEMICAL_Hydroquinone
0.084388
20. INDUSTRY SECTOR_Fabricated Metals
0.082278
20. INDUSTRY SECTOR Paper
0.078155
41. METAL YES
0.074891
36. TRI CHEMICAL/COMPOUND ID_0007783064
0.068917
37. CAS# 7783-06-4
0.068917
34. CHEMICAL Hydrogen sulfide
0.068917
20. INDUSTRY SECTOR_Hazardous Waste
0.067296
42. METAL CATEGORY
0.066917
20. INDUSTRY SECTOR Nonmetallic Mineral Product
0.066850
18. FEDERAL FACILITY_YES
0.066618
```

```
36. TRI CHEMICAL/COMPOUND ID 0007664939
0.065128
37. CAS#_7664-93-9
0.065128
34. CHEMICAL_Sulfuric acid (acid aerosols including mists, vapors, gas, fog,
and other airborne forms of any particle size)
                                                0.065128
36. TRI CHEMICAL/COMPOUND ID 0000078795
0.064941
34. CHEMICAL_Isoprene
0.064941
37. CAS#_78-79-5
0.064941
116. PRODUCTION WSTE (8.1-8.7)
0.063592
36. TRI CHEMICAL/COMPOUND ID_0000120127
0.062518
34. CHEMICAL_Anthracene
0.062518
37. CAS# 120-12-7
0.062518
37. CAS# 60207-90-1
0.059659
34. CHEMICAL_Propiconazole
0.059659
36. TRI CHEMICAL/COMPOUND ID_0060207901
0.059659
36. TRI CHEMICAL/COMPOUND ID 0000074908
0.057541
34. CHEMICAL_Hydrogen cyanide
0.057541
37. CAS#_74-90-8
0.057541
37. CAS#_7697-37-2
0.057125
36. TRI CHEMICAL/COMPOUND ID_0007697372
0.057125
34. CHEMICAL_Nitric acid
0.057125
34. CHEMICAL_Acetaldehyde
0.056542
36. TRI CHEMICAL/COMPOUND ID_0000075070
0.056542
37. CAS#_75-07-0
0.056542
20. INDUSTRY SECTOR_Other
0.055052
20. INDUSTRY SECTOR_Food
0.053154
34. CHEMICAL_Dimethyl phthalate
```

```
36. TRI CHEMICAL/COMPOUND ID_0000131113
```

37. CAS#\_131-11-3

0.052808

37. CAS#\_85-01-8

0.049124

36. TRI CHEMICAL/COMPOUND ID\_0000085018

0.049124

34. CHEMICAL\_Phenanthrene

0.049124

20. INDUSTRY SECTOR\_Plastics and Rubber

0.047125

20. INDUSTRY SECTOR\_Electric Utilities

0.044992

34. CHEMICAL\_Chromium

0.044748

37. CAS#\_7440-47-3

0.044748

36. TRI CHEMICAL/COMPOUND ID\_0007440473

0.044748

37. CAS#\_106-99-0

0.042186

34. CHEMICAL\_1,3-Butadiene

0.042186

36. TRI CHEMICAL/COMPOUND ID\_0000106990

0.042186

36. TRI CHEMICAL/COMPOUND ID\_0000075150

0.042186

34. CHEMICAL\_Carbon disulfide

0.042186

37. CAS#\_75-15-0

0.042186

34. CHEMICAL\_Nickel

0.040257

36. TRI CHEMICAL/COMPOUND ID\_0007440020

0.040257

37. CAS#\_7440-02-0

0.040257

34. CHEMICAL\_Zinc compounds

0.039807

36. TRI CHEMICAL/COMPOUND ID\_N982

0.039807

37. CAS# N982

0.039807

20. INDUSTRY SECTOR\_Metal Mining

0.039807

34. CHEMICAL\_Copper

0.039666

36. TRI CHEMICAL/COMPOUND ID\_0007440508

37. CAS#\_7440-50-8

0.039666

37. CAS#\_67-56-1

0.039253

34. CHEMICAL\_Methanol

0.039253

36. TRI CHEMICAL/COMPOUND ID\_0000067561

0.039253

36. TRI CHEMICAL/COMPOUND ID\_0000074851

0.039129

37. CAS#\_74-85-1

0.039129

34. CHEMICAL\_Ethylene

0.039129

34. CHEMICAL\_Carbonyl sulfide

0.039129

36. TRI CHEMICAL/COMPOUND ID\_0000463581

0.039129

37. CAS# 463-58-1

0.039129

92. 6.2 - M56

0.037922

34. CHEMICAL\_Manganese

0.037845

37. CAS# 7439-96-5

0.037845

36. TRI CHEMICAL/COMPOUND ID\_0007439965

0.037845

94. OFF-SITE ENERGY RECOVERY T

0.037819

111. 8.3 - ENERGY RECOVER OF

0.037819

37. CAS#\_7439-97-6

0.037509

34. CHEMICAL\_Mercury

0.037509

36. TRI CHEMICAL/COMPOUND ID\_0007439976

0.037509

36. TRI CHEMICAL/COMPOUND ID\_0000079210

0.037509

37. CAS# 79-21-0

0.037509

34. CHEMICAL\_Peracetic acid

0.037509

36. TRI CHEMICAL/COMPOUND ID\_0001336363

0.037325

37. CAS#\_1336-36-3

0.037325

34. CHEMICAL\_Polychlorinated biphenyls

```
36. TRI CHEMICAL/COMPOUND ID_0000123386
0.037325
34. CHEMICAL_Propionaldehyde
0.037325
37. CAS#_123-38-6
0.037325
34. CHEMICAL_Formaldehyde
0.036528
37. CAS#_50-00-0
0.036528
37. CAS#_1319-77-3
0.036293
36. TRI CHEMICAL/COMPOUND ID_0001319773
0.036293
34. CHEMICAL_Cresol (mixed isomers)
0.036293
34. CHEMICAL_Hydrogen fluoride
0.035961
37. CAS# 7664-39-3
0.035961
36. TRI CHEMICAL/COMPOUND ID_0007664393
0.035961
37. CAS#_N230
0.034590
34. CHEMICAL_Certain glycol ethers
0.034590
36. TRI CHEMICAL/COMPOUND ID_N230
0.034590
34. CHEMICAL_N-Methyl-2-pyrrolidone
0.033858
36. TRI CHEMICAL/COMPOUND ID_0000872504
0.033858
37. CAS#_872-50-4
0.033858
34. CHEMICAL_Propylene
0.033650
36. TRI CHEMICAL/COMPOUND ID_0000115071
0.033650
37. CAS#_115-07-1
0.033650
37. CAS#_108-95-2
0.033383
34. CHEMICAL_Phenol
0.033383
36. TRI CHEMICAL/COMPOUND ID_0000108952
0.033383
```

103. 6.2 - TOTAL TRANSFER

0.033052 37. CAS#\_N770 0.032129

```
36. TRI CHEMICAL/COMPOUND ID N770
0.032129
34. CHEMICAL_Vanadium compounds
0.032129
37. CAS#_N511
0.031648
36. TRI CHEMICAL/COMPOUND ID_N511
0.031648
34. CHEMICAL_Nitrate compounds (water dissociable; reportable only when in
aqueous solution)
                                                         0.031648
37. CAS#_107-21-1
0.030906
36. TRI CHEMICAL/COMPOUND ID 0000107211
0.030906
34. CHEMICAL_Ethylene glycol
0.030906
36. TRI CHEMICAL/COMPOUND ID_N090
0.030431
37. CAS#_N090
0.030431
20. INDUSTRY SECTOR_Computers and Electronic Products
0.029308
34. CHEMICAL_Methyl isobutyl ketone
0.029308
37. CAS# 108-10-1
0.029308
36. TRI CHEMICAL/COMPOUND ID 0000108101
0.029308
37. CAS#_100-42-5
0.028844
34. CHEMICAL_Styrene
0.028844
36. TRI CHEMICAL/COMPOUND ID_0000100425
0.028844
101. OFF-SITE TREATED TOTAL
0.027697
115. 8.7 - TREATMENT OFF SITE
0.027696
36. TRI CHEMICAL/COMPOUND ID_0000064186
0.027620
37. CAS# 64-18-6
0.027620
34. CHEMICAL_Formic acid
0.027620
34. CHEMICAL_Naphthalene
0.026803
37. CAS#_91-20-3
0.026803
36. TRI CHEMICAL/COMPOUND ID_0000091203
```

```
34. CHEMICAL_Barium And Barium Compounds
0.026506
96. 6.2 - M50
0.026480
34. CHEMICAL_Chromium compounds (except for chromite ore mined in the
Transvaal Region)
                                                              0.025708
37. CAS# 120-80-9
0.024955
34. CHEMICAL_Catechol
0.024955
36. TRI CHEMICAL/COMPOUND ID_0000120809
0.024955
36. TRI CHEMICAL/COMPOUND ID 0000098828
0.024566
34. CHEMICAL_Cumene
0.024566
37. CAS#_98-82-8
0.024566
48. 5.1 - FUGITIVE AIR
0.024089
36. TRI CHEMICAL/COMPOUND ID_0007782505
0.023900
34. CHEMICAL_Chlorine
0.023900
37. CAS# 7782-50-5
0.023900
34. CHEMICAL_Biphenyl
0.023750
36. TRI CHEMICAL/COMPOUND ID_0000092524
0.023750
37. CAS# 92-52-4
0.023750
37. CAS#_1313-27-5
0.023750
36. TRI CHEMICAL/COMPOUND ID_0001313275
0.023750
34. CHEMICAL_Molybdenum trioxide
0.023750
63. 6.1 - POTW - TRNS RLSE
0.023353
20. INDUSTRY SECTOR_Electrical Equipment
34. CHEMICAL_Barium compounds (except for barium sulfate (CAS No. 7727-43-7))
0.022878
61. 5.5.4 - OTHER DISPOSAL
0.022140
119. 8.9 - PRODUCTION RATIO
0.021989
43. CARCINOGEN_YES
0.021841
```

```
91. OFF-SITE RECYCLED TOTAL
0.021551
113. 8.5 - RECYCLING OFF SIT
0.021548
65. POTW - TOTAL TRANSFERS
0.020846
37. CAS# 110-82-7
0.020707
36. TRI CHEMICAL/COMPOUND ID_0000110827
0.020707
34. CHEMICAL_Cyclohexane
0.020707
34. CHEMICAL_Chlorine dioxide
0.020685
36. TRI CHEMICAL/COMPOUND ID_0010049044
0.020685
37. CAS#_10049-04-4
0.020685
36. TRI CHEMICAL/COMPOUND ID_0007664417
0.020604
37. CAS#_7664-41-7
0.020604
34. CHEMICAL_Ammonia
0.020604
34. CHEMICAL_Nickel compounds
0.020101
104. TOTAL RELEASES
0.019873
64. 6.1 - POTW - TRNS TRT
0.019647
34. CHEMICAL_Manganese And Manganese Compounds
0.019516
36. TRI CHEMICAL/COMPOUND ID_0000079947
0.019498
37. CAS#_79-94-7
0.019498
34. CHEMICAL_Tetrabromobisphenol A
0.019498
37. CAS#_106-94-5
0.019498
34. CHEMICAL_1-Bromopropane
0.019498
36. TRI CHEMICAL/COMPOUND ID_0000106945
0.019498
37. CAS#_108-88-3
```

36. TRI CHEMICAL/COMPOUND ID\_0000108883

0.019193

0.019193

0.019193

34. CHEMICAL\_Toluene

```
108. 8.1C - OFF-SITE CONTAIN
0.019191
62. ON-SITE RELEASE TOTAL
0.019068
87. 6.2 - M24
0.018354
34. CHEMICAL_Copper And Copper Compounds
0.018235
114. 8.6 - TREATMENT ON SITE
0.017919
20. INDUSTRY SECTOR_Chemicals
0.017786
37. CAS# N458
0.017683
36. TRI CHEMICAL/COMPOUND ID_N458
0.017683
37. CAS#_127-18-4
0.017332
34. CHEMICAL_Tetrachloroethylene
0.017332
36. TRI CHEMICAL/COMPOUND ID_0000127184
0.017332
57. 5.5.2 - LAND TREATMENT
0.017118
36. TRI CHEMICAL/COMPOUND ID_0000137428
0.016879
34. CHEMICAL Metham sodium
0.016879
37. CAS#_137-42-8
0.016879
34. CHEMICAL_Di(2-ethylhexyl) phthalate
34. CHEMICAL_Chromium and Chromium Compounds(except for chromite ore mined
in the Transvaal Region)
                                                        0.016879
36. TRI CHEMICAL/COMPOUND ID_0000117817
0.016879
37. CAS# 117-81-7
0.016879
37. CAS#_26471-62-5
0.016879
34. CHEMICAL_Toluene diisocyanate (mixed isomers)
0.016879
36. TRI CHEMICAL/COMPOUND ID 0026471625
0.016879
60. 5.5.3B - OTHER SURFACE I
0.015909
107. 8.1B - ON-SITE OTHER
0.015841
37. CAS#_80-62-6
```

```
34. CHEMICAL Methyl methacrylate
```

36. TRI CHEMICAL/COMPOUND ID\_0000080626

0.015405

37. CAS#\_71-36-3

0.014794

36. TRI CHEMICAL/COMPOUND ID\_0000071363

0.014794

34. CHEMICAL\_n-Butyl alcohol

0.014794

34. CHEMICAL\_Polycyclic aromatic compounds

0.014785

37. CAS# N590

0.014785

36. TRI CHEMICAL/COMPOUND ID\_N590

0.014785

36. TRI CHEMICAL/COMPOUND ID\_N420

0.014631

37. CAS# N420

0.014631

37. CAS# 95-63-6

0.014523

34. CHEMICAL\_1,2,4-Trimethylbenzene

0.014523

36. TRI CHEMICAL/COMPOUND ID\_0000095636

0.014523

34. CHEMICAL\_Mercury compounds

0.014523

34. CHEMICAL\_Cobalt compounds

0.014378

34. CHEMICAL\_Lead compounds

0.014001

34. CHEMICAL\_Nickel And Nickel Compounds

0.013776

34. CHEMICAL\_Mercury And Mercury Compounds

0.013776

37. CAS#\_55-63-0

0.013776

34. CHEMICAL\_Nitroglycerin

0.013776

36. TRI CHEMICAL/COMPOUND ID\_0000055630

0.013776

34. CHEMICAL\_Dimethylamine

0.013776

36. TRI CHEMICAL/COMPOUND ID\_0000124403

0.013776

37. CAS#\_124-40-3

0.013776

36. TRI CHEMICAL/COMPOUND ID\_0000087865

```
37. CAS#_87-86-5
```

34. CHEMICAL\_Pentachlorophenol

0.013776

34. CHEMICAL\_Benzene

0.013700

36. TRI CHEMICAL/COMPOUND ID\_0000071432

0.013700

37. CAS#\_71-43-2

0.013700

56. 5.5.1B - OTHER LANDFILLS

0.013256

34. CHEMICAL\_Manganese compounds

0.013008

36. TRI CHEMICAL/COMPOUND ID\_N495

0.012067

37. CAS#\_N495

0.012067

35. ELEMENTAL METAL INCLUDED\_YES

0.012012

36. TRI CHEMICAL/COMPOUND ID\_0001634044

0.011928

37. CAS#\_1634-04-4

0.011928

34. CHEMICAL\_Methyl tert-butyl ether

0.011928

37. CAS#\_137-41-7

0.011928

 ${\tt 34. CHEMICAL\_Potassium\ N-methyldithiocarbamate}$ 

0.011928

36. TRI CHEMICAL/COMPOUND ID\_0000137417

0.011928

34. CHEMICAL\_Pyridine

0.011928

37. CAS#\_110-86-1

0.011928

36. TRI CHEMICAL/COMPOUND ID\_0000110861

0.011928

37. CAS#\_25321-14-6

0.011928

36. TRI CHEMICAL/COMPOUND ID\_0025321146

0.011928

34. CHEMICAL\_Dinitrotoluene (mixed isomers)

0.011928

34. CHEMICAL\_Cobalt

0.011928

34. CHEMICAL\_Silver

0.011928

37. CAS#\_7440-22-4

```
36. TRI CHEMICAL/COMPOUND ID_0007440484
```

36. TRI CHEMICAL/COMPOUND ID\_0007440224

0.011928

37. CAS#\_7440-48-4

0.011928

36. TRI CHEMICAL/COMPOUND ID\_0000107062

0.011928

37. CAS#\_107-06-2

0.011928

34. CHEMICAL\_1,2-Dichloroethane

0.011928

34. CHEMICAL\_N,N-Dimethylformamide

0.011928

34. CHEMICAL\_Acetonitrile

0.011928

34. CHEMICAL\_Antimony

0.011928

37. CAS# 68-12-2

0.011928

36. TRI CHEMICAL/COMPOUND ID\_0007440360

0.011928

37. CAS#\_75-05-8

0.011928

36. TRI CHEMICAL/COMPOUND ID\_0000075058

0.011928

36. TRI CHEMICAL/COMPOUND ID\_0000068122

0.011928

37. CAS#\_7440-36-0

0.011928

37. CAS#\_75-09-2

0.011928

36. TRI CHEMICAL/COMPOUND ID\_0000075092

0.011928

37. CAS#\_67-66-3

0.011928

36. TRI CHEMICAL/COMPOUND ID\_0000067663

0.011928

34. CHEMICAL\_Chloroform

0.011928

34. CHEMICAL\_Dichloromethane

0.011928

37. CAS# 542-75-6

0.011928

34. CHEMICAL\_1,3-Dichloropropylene

0.011928

36. TRI CHEMICAL/COMPOUND ID\_0000542756

0.011928

37. CAS#\_122-39-4

```
36. TRI CHEMICAL/COMPOUND ID_0000122394
```

34. CHEMICAL\_Diphenylamine

0.011928

20. INDUSTRY SECTOR\_Textiles

0.011928

37. CAS#\_N096

0.010315

36. TRI CHEMICAL/COMPOUND ID\_N096

0.010315

34. CHEMICAL\_Diethanolamine

0.009838

37. CAS# 111-42-2

0.009838

36. TRI CHEMICAL/COMPOUND ID\_0000111422

0.009838

34. CHEMICAL\_Lithium carbonate

0.009737

37. CAS# 554-13-2

0.009737

36. TRI CHEMICAL/COMPOUND ID\_0000554132

0.009737

34. CHEMICAL\_Cyanide compounds

0.009737

34. CHEMICAL\_Chloromethane

0.009737

36. TRI CHEMICAL/COMPOUND ID\_N106

0.009737

36. TRI CHEMICAL/COMPOUND ID\_0000078922

0.009737

36. TRI CHEMICAL/COMPOUND ID\_0000074873

0.009737

37. CAS#\_N106

0.009737

34. CHEMICAL\_sec-Butyl alcohol

0.009737

37. CAS#\_78-92-2

0.009737

37. CAS#\_74-87-3

0.009737

36. TRI CHEMICAL/COMPOUND ID\_0000077736

0.009737

37. CAS#\_75-65-0

0.009737

36. TRI CHEMICAL/COMPOUND ID\_0000075650

0.009737

37. CAS#\_77-73-6

0.009737

34. CHEMICAL\_Dicyclopentadiene

```
34. CHEMICAL_tert-Butyl alcohol
```

36. TRI CHEMICAL/COMPOUND ID\_0000123911

0.009737

37. CAS#\_123-91-1

0.009737

34. CHEMICAL\_1,4-Dioxane

0.009737

34. CHEMICAL\_Benzoyl peroxide

0.009737

37. CAS#\_94-36-0

0.009737

36. TRI CHEMICAL/COMPOUND ID\_0000094360

0.009737

36. TRI CHEMICAL/COMPOUND ID\_0000191242

0.009364

34. CHEMICAL\_Benzo[g,h,i]perylene

0.009364

37. CAS# 191-24-2

0.009364

37. CAS# N100

0.009121

36. TRI CHEMICAL/COMPOUND ID\_N100

0.009121

36. TRI CHEMICAL/COMPOUND ID\_0000100414

0.008448

34. CHEMICAL\_Ethylbenzene

0.008448

36. TRI CHEMICAL/COMPOUND ID\_N040

0.007994

37. CAS# N040

0.007994

34. CHEMICAL\_n-Hexane

0.007513

37. CAS#\_110-54-3

0.007513

36. TRI CHEMICAL/COMPOUND ID\_0000110543

0.007513

49. 5.2 - STACK AIR

0.007437

37. CAS#\_76-06-2

0.006884

36. TRI CHEMICAL/COMPOUND ID\_N078

0.006884

37. CAS#\_N078

0.006884

36. TRI CHEMICAL/COMPOUND ID\_0000076062

0.006884

37. CAS#\_10061-02-6

```
34. CHEMICAL_trans-1,3-Dichloropropene
```

34. CHEMICAL\_Chloropicrin

0.006884

36. TRI CHEMICAL/COMPOUND ID\_0010061026

0.006884

34. CHEMICAL\_Cadmium compounds

0.006884

34. CHEMICAL\_o-Xylene

0.006884

36. TRI CHEMICAL/COMPOUND ID\_0000095476

0.006884

37. CAS# 95-47-6

0.006884

37. CAS#\_79-06-1

0.006884

36. TRI CHEMICAL/COMPOUND ID\_0000079061

0.006884

34. CHEMICAL Acrylamide

0.006884

37. CAS#\_106-42-3

0.006884

34. CHEMICAL\_p-Xylene

0.006884

36. TRI CHEMICAL/COMPOUND ID\_0000106423

0.006884

36. TRI CHEMICAL/COMPOUND ID\_0000108383

0.006884

37. CAS#\_79-01-6

0.006884

36. TRI CHEMICAL/COMPOUND ID\_0000071556

0.006884

34. CHEMICAL\_Trichloroethylene

0.006884

37. CAS# 121-44-8

0.006884

34. CHEMICAL\_Triethylamine

0.006884

34. CHEMICAL\_m-Xylene

0.006884

37. CAS# 71-55-6

0.006884

37. CAS# 108-38-3

0.006884

36. TRI CHEMICAL/COMPOUND ID\_0000079016

0.006884

36. TRI CHEMICAL/COMPOUND ID\_0000121448

0.006884

37. CAS#\_N020

```
34. CHEMICAL_Cobalt And Cobalt Compounds
0.006884
34. CHEMICAL_Arsenic compounds
0.006884
36. TRI CHEMICAL/COMPOUND ID_N020
0.006884
36. TRI CHEMICAL/COMPOUND ID 0007440666
0.006884
37. CAS# 7440-66-6
0.006884
34. CHEMICAL_Zinc (fume or dust)
0.006884
37. CAS#_N450
0.006559
36. TRI CHEMICAL/COMPOUND ID_N450
0.006559
34. CHEMICAL_Lead
0.006307
36. TRI CHEMICAL/COMPOUND ID 0007439921
0.006307
37. CAS# 7439-92-1
0.006307
85. OFF-SITE RELEASE TOTAL
0.006102
37. CAS# N120
0.005754
34. CHEMICAL_Diisocyanates
0.005754
36. TRI CHEMICAL/COMPOUND ID_N120
0.005754
36. TRI CHEMICAL/COMPOUND ID 0007647010
34. CHEMICAL_Hydrochloric acid (acid aerosols including mists, vapors, gas,
fog, and other airborne forms of any particle size) 0.005534
37. CAS# 7647-01-0
0.005534
40. CLASSIFICATION_TRI
0.005124
44. PBT YES
0.005124
50. 5.3 - WATER
0.004914
34. CHEMICAL_Lead And Lead Compounds
0.003931
39. CLEAN AIR ACT CHEMICAL_YES
0.003799
88. 6.2 - M26
0.003042
20. INDUSTRY SECTOR_Machinery
```

```
109. 8.1D - OFF-SITE OTHER R
0.002275
34. CHEMICAL_Copper compounds
0.001264
34. CHEMICAL_Xylene (mixed isomers)
0.000907
36. TRI CHEMICAL/COMPOUND ID 0001330207
0.000907
37. CAS# 1330-20-7
0.000907
112. 8.4 - RECYCLING ON SITE
0.000898
54. 5.5.1 - LANDFILLS
NaN
69. 6.2 - M40 METAL
Name: Cancer_Rate_Flag, dtype: float64
Defining Our Target/Predictor Variables
x = df.loc[ : , df.columns != 'Cancer_Rate_Flag']
y = df["Cancer Rate Flag"]
Data Processing Techniques
SMOTE
#smote usage
sm = SMOTE(random state=0)
x_sm, y_sm = sm.fit_resample(x, y)
print(f'Over-sampled data: {np.unique(y_sm, return_counts=1)}')
Over-sampled data: (array([0, 1]), array([2704, 2704]))
Feature Selection
#featureNames = x sm.columns
featureNames = x.columns
print(f'Originally, we have {len(featureNames)} features.')
rfc = RandomForestClassifier().fit(x, y)
Originally, we have 414 features.
https://stackoverflow.com/questions/17737300/suppressing-scientific-notation-
in-pandas
pd.options.display.float format = '{:20,.4f}'.format
def get_feature_importances(cols, importances):
    feats = {}
    for feature, importance in zip(cols, importances):
        feats[feature] = importance
```

```
importances = pd.DataFrame.from_dict(feats,
orient='index').rename(columns={0: 'Gini-importance'})
    importances.sort values(by='Gini-importance', ascending=False,
inplace=True)
    return importances
importances = get feature importances(x sm.columns, rfc.feature importances )
print()
print(importances)
# After Doingo this there is a feature 'Unnamed: 0' which has the highest
Gini-importance of 0.1551.
# It seems to be some sort of ID marker we missed.
importances = rfc.feature importances
rfc importances = pd.DataFrame(data = importances, index=featureNames,
columns=['ImportanceValues'])
# rfc importances.sort values(by='ImportanceValues', ascending=False,
inplace=True)
# Sorted Feature Importances | Bar Chart. Way too Small
# plt.barh(rfc importances.index, rfc importances.ImportanceValues)
# NOR SORTED. DISCARD?
print("rfc importances - \n", rfc importances)
rfc_importances.sort_values(by='ImportanceValues', ascending=False)
selector =
SelectFromModel(estimator=RandomForestClassifier(),threshold=0.001)
X reduced = selector.fit transform(x,y)
selector.threshold
selected TF = selector.get support()
print(f'\n** {selected TF.sum()} features are selected.')
** 122 features are selected.
# Show those selected features.
selected features = []
for i,j in zip(selected_TF, featureNames):
    if i: selected features.append(j)
print(f'Selected Features: {selected features}')
len(selected features)
Selected Features: ['42. METAL CATEGORY', '48. 5.1 - FUGITIVE AIR', '49. 5.2
- STACK AIR', '50. 5.3 - WATER', '56. 5.5.1B - OTHER LANDFILLS', '57. 5.5.2 -
```

LAND TREATMENT', '60. 5.5.3B - OTHER SURFACE I', '61. 5.5.4 - OTHER DISPOSAL', '62. ON-SITE RELEASE TOTAL', '63. 6.1 - POTW - TRNS RLSE', '64. 6.1 - POTW - TRNS TRT', '65. POTW - TOTAL TRANSFERS', '85. OFF-SITE RELEASE TOTAL', '87. 6.2 - M24', '88. 6.2 - M26', '91. OFF-SITE RECYCLED TOTAL', '92. 6.2 - M56', '94. OFF-SITE ENERGY RECOVERY T', '96. 6.2 - M50', '101. OFF-SITE TREATED TOTAL', '103. 6.2 - TOTAL TRANSFER', '104. TOTAL RELEASES', '107. 8.1B - ON-SITE OTHER', '108. 8.1C - OFF-SITE CONTAIN', '109. 8.1D - OFF-SITE OTHER R', '111. 8.3 - ENERGY RECOVER OF', '112. 8.4 - RECYCLING ON SITE', '113. 8.5 - RECYCLING OFF SIT', '114. 8.6 - TREATMENT ON SITE', '115. 8.7 -TREATMENT OFF SITE', '116. PRODUCTION WSTE (8.1-8.7)', '119. 8.9 - PRODUCTION RATIO', '18. FEDERAL FACILITY\_YES', '20. INDUSTRY SECTOR\_Chemicals', '20. INDUSTRY SECTOR Computers and Electronic Products', '20. INDUSTRY SECTOR Fabricated Metals', '20. INDUSTRY SECTOR Machinery', '20. INDUSTRY SECTOR\_Nonmetallic Mineral Product', '20. INDUSTRY SECTOR\_Other', '20. INDUSTRY SECTOR\_Paper', '20. INDUSTRY SECTOR\_Petroleum', '20. INDUSTRY SECTOR\_Petroleum Bulk Terminals', '20. INDUSTRY SECTOR\_Primary Metals', '20. INDUSTRY SECTOR\_Transportation Equipment', '20. INDUSTRY SECTOR\_Wood Products', '34. CHEMICAL Acetaldehyde', '34. CHEMICAL Ammonia', '34. CHEMICAL\_Anthracene', '34. CHEMICAL\_Carbon disulfide', '34. CHEMICAL\_Chlorine', '34. CHEMICAL\_Diisocyanates', '34. CHEMICAL\_Dimethyl phthalate', '34. CHEMICAL Formaldehyde', '34. CHEMICAL Hydrogen cyanide', '34. CHEMICAL\_Hydrogen sulfide', '34. CHEMICAL\_Hydroquinone', '34. CHEMICAL\_Lead', '34. CHEMICAL\_Lead compounds', '34. CHEMICAL\_Methanol', '34. CHEMICAL N-Methyl-2-pyrrolidone', '34. CHEMICAL Nitrate compounds (water dissociable; reportable only when in aqueous solution)', '34. CHEMICAL\_Phenanthrene', '34. CHEMICAL\_Phenol', '34. CHEMICAL\_Polycyclic aromatic compounds', '34. CHEMICAL Silver', '34. CHEMICAL Styrene', '34. CHEMICAL Sulfuric acid (acid aerosols including mists, vapors, gas, fog, and other airborne forms of any particle size)', '34. CHEMICAL\_Vanadium compounds', '34. CHEMICAL\_Xylene (mixed isomers)', '36. TRI CHEMICAL/COMPOUND ID\_100425', '36. TRI CHEMICAL/COMPOUND ID\_106990', '36. TRI CHEMICAL/COMPOUND ID\_108952', '36. TRI CHEMICAL/COMPOUND ID\_115071', '36. TRI CHEMICAL/COMPOUND ID\_120127', '36. TRI CHEMICAL/COMPOUND ID\_123319', '36. TRI CHEMICAL/COMPOUND ID\_131113', '36. TRI CHEMICAL/COMPOUND ID\_1330207', '36. TRI CHEMICAL/COMPOUND ID\_50000', '36. TRI CHEMICAL/COMPOUND ID\_67561', '36. TRI CHEMICAL/COMPOUND ID\_7439921', '36. TRI CHEMICAL/COMPOUND ID\_7440224', '36. TRI CHEMICAL/COMPOUND ID\_74851', '36. TRI CHEMICAL/COMPOUND ID\_74908', '36. TRI CHEMICAL/COMPOUND ID\_75070', '36. TRI CHEMICAL/COMPOUND ID\_75456', '36. TRI CHEMICAL/COMPOUND ID\_75456', '36. TRI CHEMICAL/COMPOUND ID\_7783064', '36. TRI CHEMICAL/COMPOUND ID\_872504', '36. TRI CHEMICAL/COMPOUND ID\_N120', '36. TRI CHEMICAL/COMPOUND ID\_N420', '36. TRI CHEMICAL/COMPOUND ID\_N590', '37. CAS#\_100-42-5', '37. CAS#\_10049-04-4', '37. CAS#\_108-95-2', '37. CAS#\_120-12-7', '37. CAS#\_123-31-9', '37. CAS#\_131-11-3', '37. CAS#\_1330-20-7', '37. CAS#\_463-58-1', '37. CAS#\_50-00-0', '37. CAS#\_6/4/7783', '37. CAS#\_67-56-1', '37. CAS#\_74-90-8', '37. CAS#\_7439-92-1', '37. CAS#\_7440-22-4', '37. CAS#\_75-07-0', '37. CAS#\_75-15-0', '37. CAS#\_7664-41-7', '37. CAS#\_7664-93-9', '37. CAS#\_79-21-0', '37. CAS#\_872-50-4', '37. CAS#\_N120', '37. CAS#\_N420', '37. CAS#\_N511', '37. CAS#\_N590', '39. CLEAN AIR ACT

```
CHEMICAL_YES', '40. CLASSIFICATION_TRI', '41. METAL_YES', '43.
CARCINOGEN_YES', '44. PBT_YES', '118. PROD_RATIO_OR_ ACTIVITY_PRODUCTION']
122
PCA
print(f'\nThe original dataset has {x.shape[1]} features.')
# z score normalize the data
scaler = StandardScaler()
Xn = scaler.fit transform(x)
The original dataset has 414 features.
# Create an instance PCA and build the model using Xn.
# We start from the same number of components as the number of original
# features.
pca_prep = PCA().fit(Xn)
pca_prep.n_components_
414
# Currently, we have 1036 compnents. We want to find out how many components
# we want to use without losing much information.
pca_prep.explained_variance_
pca_prep.explained_variance_ratio_
#SCREE PLOT
#Find an "elbow" or an inflection point on the Scree plot.
plt.plot(pca_prep.explained_variance ratio )
plt.xlabel('k number of components')
plt.ylabel('Explained variance')
plt.grid(True)
plt.show()
```



# # Alternative plot using cumulative ratios

```
plt.plot(np.cumsum(pca_prep.explained_variance_ratio_))
plt.xlabel('k number of components')
plt.ylabel('cumulative explained variance')
plt.grid(True)
plt.show()
```



```
# Seeing the scree plot, we choose 130 (DIFF NUMBER)
n pc = 130
pca = PCA(n_components= n_pc).fit(Xn)
# X pca has now 410 columns of primary components.
Xp = pca.transform(Xn)
print(f'After PCA, we use {pca.n components } components.\n')
After PCA, we use 130 components.
cor mat1 = np.corrcoef(Xp.T)
# eig_vals, eig_vecs = np.linalg.eig(cor_mat1)
# print('Eigenvectors \n%s' %eig vecs)
# print('\nEigenvalues \n%s' %eig_vals)
post_pca_df = pd.DataFrame(cor_mat1)
https://medium.com/@szabo.bibor/how-to-create-a-seaborn-correlation-heatmap-i
n-python-834c0686b88e
plt.figure(figsize=(30, 20))
# define the mask to set the values in the upper triangle to True
heatmap = sns.heatmap(post_pca_df.corr(),
                     vmin=-1, vmax=1
                    # fmt=".1f", # Round to One Decimal
                    # annot=True, # Annotate Values
                     #cmap='BrBG', # Change Color Palette,
                    # Linewidth=.5
heatmap.set_title('After PCA Triangle Correlation Heatmap (With Only Numeric
Data / Before Dummy Variables Created', fontdict={'fontsize':18}, pad=16)
Text(0.5, 1.0, 'After PCA Triangle Correlation Heatmap (With Only Numeric
Data / Before Dummy Variables Created')
```



```
# plt.figure(figsize=(8, 120))
# heatmap = sns.heatmap(Xp.corr(),
                                   vmin=-1, vmax=1,
                                   annot=True,
#
                                   linewidth=.1
                                   #cmap='BrBG'
# heatmap.set_title('After PCA | All Numeric + Dummy Features Correlating w/
Cancer Rate Flag', fontdict={'fontsize':18}, pad=16)
plt.figure(figsize=(8, 120))
heatmap =
sns.heatmap(df.corr()[['Cancer_Rate_Flag']].sort_values(by='Cancer_Rate_Flag'
ascending=False),
                                                                   vmin=-1,
vmax=1,
                                                                    annot=True,
linewidth=.1
#cmap='BrBG'
```

```
heatmap.set title('After PCA | All Numeric + Dummy Features Correlating w/
Cancer Rate Flag', fontdict={'fontsize':18}, pad=16)
# Split the data into training and testing subsets.
X_train, X_test, y_train, y_test = train_test_split(x,y,test_size =.2,
                                             random_state=1234,stratify=y)
Xp_train, Xp_test, yp_train, yp_test = train_test_split(Xp,y,test_size =.2,
                                        random state=1234,stratify=y)
# Creating two random forest models: one using the original and the other
usina
# the transformed data.
rfcm = RandomForestClassifier().fit(X_train, y_train)
rfcm_p = RandomForestClassifier().fit(Xp_train, yp_train)
y_pred = rfcm.predict(X_test)
y pred p = rfcm p.predict(Xp test)
# Comparing the performance of each model.
report original = classification report(y test, y pred)
report pca = classification report(yp test, y pred p)
print(f'Classification Report - original\n{report original}')
print(f'Classification Report - pca\n{report_pca}')
Classification Report - original
              precision
                           recall f1-score
                                              support
                             0.99
           0
                   0.93
                                       0.96
                                                   541
           1
                   0.77
                             0.33
                                       0.46
                                                   61
    accuracy
                                       0.92
                                                  602
                                                  602
                   0.85
                             0.66
                                       0.71
   macro avg
weighted avg
                   0.91
                             0.92
                                       0.91
                                                  602
Classification Report - pca
              precision
                           recall f1-score
                                              support
           0
                   0.92
                             0.95
                                       0.93
                                                   541
           1
                   0.37
                             0.25
                                       0.29
                                                   61
                                       0.88
    accuracy
                                                  602
                                       0.61
   macro avg
                   0.64
                             0.60
                                                  602
weighted avg
                   0.86
                             0.88
                                       0.87
                                                  602
```

### Using RandomizedSearchCV

```
# Selection of parameter Values
nnm r = MLPClassifier()
params = {'hidden_layer_sizes':[(20), (30)], 'activation':
          ['logistic', 'tanh','relu'], 'max_iter': [4000,5000]}
start r = time.time()
rand_src = RandomizedSearchCV(estimator= nnm_r, param_distributions = params,
n iter=6)
rand src.fit(Xn,v)
end r = time.time()
Generate a Report
# Generate a Report
print('\n\n **Report**')
print(f'The best estimator: {rand_src.best_estimator_}')
print(f'The best parameters:\n {rand src.best params }')
print(f'The best score: {rand src.best score :.4f}')
print(f'Total run time for RandomizedSearchCV: {(end r - start r):.2f}
seconds')
   **Report**
The best estimator: MLPClassifier(activation='logistic',
hidden layer sizes=30, max iter=5000)
The best parameters:
 {'max iter': 5000, 'hidden layer sizes': 30, 'activation': 'logistic'}
The best score: 0.8856
Total run time for RandomizedSearchCV: 232.78 seconds
Grid Search
# Grid Search
from sklearn.neural network import MLPClassifier
from sklearn.model selection import GridSearchCV
import time
nnm = MLPClassifier()
params = {'hidden_layer_sizes':[(20), (30)],
          'activation':['logistic','relu', 'tanh'], 'max_iter': [4000,5000]}
# As for cv (cross validation), cv =5 is a default value.
# We measure the time taken to complete a grid search.
start = time.time()
src = GridSearchCV(estimator= nnm, param grid= params)
src.fit(Xn, y)
end = time.time()
rf = RandomForestRegressor()
```

```
n estimators = [5,20,50,100] # number of trees in the random forest
max_features = ['auto', 'sqrt'] # number of features in consideration at
every split
max depth = [int(x) for x in np.linspace(10, 120, num = 12)] # maximum number
of levels allowed in each decision tree
min_samples_split = [2, 6, 10] # minimum sample number to split a node
min samples leaf = [1, 3, 4] # minimum sample number that can be stored in a
Leaf node
bootstrap = [True, False] # method used to sample data points
random grid = {'n estimators': n estimators,
'max features': max features,
'max depth': max depth,
'min samples split': min samples split,
'min_samples_leaf': min_samples_leaf,
'bootstrap': bootstrap}
from sklearn.model selection import RandomizedSearchCV
rf random = RandomizedSearchCV(estimator = rf,param_distributions =
random grid,
               n_iter = 100, cv = 5, verbose=2, random_state=35, n_jobs = -1)
rf = RandomForestRegressor()
# "Is there a reason this is twice?" - Nick
rf random = RandomizedSearchCV(estimator = rf,param distributions =
random_grid,
               n_iter = 100, cv = 5, verbose=2, random_state=35, n_jobs = -1)
rf random.fit(Xn,y)
Fitting 5 folds for each of 100 candidates, totalling 500 fits
RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(), n_iter=100,
                   n jobs=-1,
                   param_distributions={'bootstrap': [True, False],
                                        'max_depth': [10, 20, 30, 40, 50, 60,
                                                      70, 80, 90, 100, 110,
                                                      120],
                                        'max_features': ['auto', 'sqrt'],
                                        'min_samples_leaf': [1, 3, 4],
                                        'min samples split': [2, 6, 10],
                                        'n_estimators': [5, 20, 50, 100]},
                   random_state=35, verbose=2)
```

```
print ('Random grid: ', random_grid, '\n')
# print the best parameters
print ('Best Parameters: ', rf_random.best_params_, ' \n')

Random grid: {'n_estimators': [5, 20, 50, 100], 'max_features': ['auto', 'sqrt'], 'max_depth': [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120], 'min_samples_split': [2, 6, 10], 'min_samples_leaf': [1, 3, 4], 'bootstrap': [True, False]}

Best Parameters: {'n_estimators': 20, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'sqrt', 'max_depth': 70, 'bootstrap': False}
```

# **Machine Learing Algorithms**

```
K Fold Technique
```

```
dtmc = DecisionTreeClassifier()
rfmc = RandomForestClassifier()
gbmc =
GradientBoostingClassifier(max depth=40,n estimators=50,learning rate=.1)
dtmc mean score = np.mean(cross val score(dtmc,x sm,y sm,cv=5))
rfmc mean score = np.mean(cross val score(rfmc,x sm,y sm,cv=5))
gbmc_mean_score = np.mean(cross_val_score(gbmc,x_sm,y_sm,cv=5))
print('**\n Mean Scores (Accuracies) **')
print(f'Mean Score for Decision Tree: {dtmc mean score:.4f}')
print(f'Mean Score for Random Forest: {rfmc_mean_score:.4f}')
print(f'Mean Score for Gradient Boosting: {gbmc mean score:.4f}')
**
Mean Scores (Accuracies) **
Mean Score for Decision Tree: 0.9290
Mean Score for Random Forest: 0.9664
Mean Score for Gradient Boosting: 0.9323
```

Skipped LOG Transform of highly skewed variables

### **Gradient Boosting**

#### **Original Dataset**

```
import time
# With Original Dataset
from sklearn.ensemble import GradientBoostingClassifier
#Time
start = time.time()
```

```
# Split the data for training and testing.
X train, X test, y train, y test = train test split(x, y,
   test_size =.3,random_state=1234, stratify=y)
gbc = GradientBoostingClassifier()
gbc.fit(X_train, y_train)
# Prediction
y pred = gbc.predict(X test)
# Calculate the accuracy
gbc.score(X_test,y_test)
print(f'Accuracy: {metrics.accuracy_score(y_test, y_pred):.2f}')
# Build a confusion matrix and calculate evaluation ratios
print('Gradient Boosting')
print(metrics.classification report(y test,y pred))
#Time
end = time.time()
print(f'Total run time for GradientBoosting with Original Dataset: {(end -
start):.2f} seconds')
#k-fold
mean score = np.mean(cross val score(gbc,x,y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Gradient Boosting: {mean_score:.4f}')
Accuracy: 0.95
Gradient Boosting
              precision recall f1-score
                                              support
           0
                   0.95
                             0.99
                                       0.97
                                                  655
           1
                   0.89
                             0.55
                                       0.68
                                                   76
                                       0.95
                                                  731
    accuracy
                   0.92
                             0.77
                                       0.83
                                                  731
   macro avg
weighted avg
                   0.94
                             0.95
                                       0.94
                                                  731
Total run time for GradientBoosting with Original Dataset: 1.18 seconds
**Mean Score (Accuracy) after applying k-fold**
Mean Score for Gradient Boosting: 0.8843
SMOTE Applied Dataset
# SMOTE applied dataset
```

#Time

```
start = time.time()
# Split the data for training and testing.
X_sm_train, X_sm_test, y_sm_train, y_sm_test = \
   train_test_split(x_sm,y_sm,random_state=1234,stratify=y_sm)
gbc = GradientBoostingClassifier()
gbc.fit(X sm train, y sm train)
# Prediction
y_pred_sm = gbc.predict(X_test)
# Calculate the accuracy
gbc.score(X_test,y_test)
print(f'Accuracy: {metrics.accuracy_score(y_test, y_pred):.2f}')
# Build a confusion matrix and calculate evaluation ratios
print('''*** \nConfusion Matrix and Classification Report
      using the Classifier built from the Oversampled Data ***''')
cm sm = metrics.confusion matrix(y test,y pred sm)
print('\n',cm_sm,'\n')
print(metrics.classification_report(y_test,y_pred_sm))
#Time
end = time.time()
print(f'Total run time for GradientBoosting with Smote Dataset: {(end -
start):.2f} seconds')
#k-fold
mean score = np.mean(cross val score(gbc,x sm, y sm,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Gradient Boosting: {mean_score:.4f}')
Accuracy: 0.95
***
Confusion Matrix and Classification Report
      using the Classifier built from the Oversampled Data ***
 [[613 42]
 [ 13 63]]
              precision recall f1-score
                                              support
                   0.98
                             0.94
                                       0.96
           0
                                                  655
                   0.60
                             0.83
                                       0.70
           1
                                                   76
                                       0.92
                                                  731
    accuracy
                                                  731
   macro avg
                   0.79
                             0.88
                                       0.83
```

weighted avg 0.94 0.92 0.93 731

Total run time for GradientBoosting with Smote Dataset: 2.30 seconds \*\*Mean Score (Accuracy) after applying k-fold\*\*
Mean Score for Gradient Boosting: 0.9197

# **Feature Selection Dataset**

```
# Feature Selection Dataset
#Time
start = time.time()
# Split the data for training and testing.
X_train, X_test, y_train, y_test = train_test_split(X_reduced, y,
   test size =.3,random state=1234, stratify=y)
gbc = GradientBoostingClassifier()
gbc.fit(X train, y train)
# Prediction
y_pred = gbc.predict(X_test)
# Build a confusion matrix and calculate evaluation ratios
print('Gradient Boosting')
print(metrics.classification report(y test,y pred))
#Time
end = time.time()
print(f'Total run time for GradientBoosting with Feature Selection Dataset:
{(end - start):.2f} seconds')
#k-fold
mean_score = np.mean(cross_val_score(gbc,X_reduced, y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Gradient Boosting: {mean score:.4f}')
Gradient Boosting
                          recall f1-score
              precision
                                              support
                             0.99
                                       0.97
           0
                   0.95
                                                  655
                   0.90
                             0.57
                                       0.69
                                                   76
                                       0.95
                                                  731
    accuracy
                   0.92
                             0.78
                                       0.83
                                                  731
   macro avg
                   0.95
                             0.95
                                       0.94
                                                  731
weighted avg
```

Total run time for GradientBoosting with Feature Selection Dataset: 0.67

```
seconds
**Mean Score (Accuracy) after applying k-fold**
Mean Score for Gradient Boosting: 0.8835
PCA Applied Dataset
#PCA Applied Dataset
#Time
start = time.time()
# Split the data for training and testing.
X_train, X_test, y_train, y_test = train_test_split(Xp, y,
   test size =.3,random state=1234, stratify=y)
gbc = GradientBoostingClassifier()
gbc.fit(X_train, y_train)
# Prediction
y_pred = gbc.predict(X_test)
# Calculate the accuracy
gbc.score(X_test,y_test)
print(f'Accuracy: {metrics.accuracy_score(y_test, y_pred):.2f}')
# Build a confusion matrix and calculate evaluation ratios
print('Gradient Boosting')
print(metrics.classification_report(y_test,y_pred))
#Time
end = time.time()
print(f'Total run time for GradientBoosting with PCA Dataset: {(end -
start):.2f} seconds')
#k-fold
mean score = np.mean(cross val score(gbc,Xp, y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Gradient Boosting: {mean_score:.4f}')
Accuracy: 0.89
Gradient Boosting
              precision
                          recall f1-score
                                              support
                             0.98
                   0.91
                                       0.94
                                                  655
           1
                   0.43
                             0.16
                                       0.23
                                                   76
    accuracy
                                       0.89
                                                  731
                                       0.59
   macro avg
                   0.67
                             0.57
                                                  731
```

weighted avg 0.86 0.89 0.87 731

Total run time for GradientBoosting with PCA Dataset: 6.06 seconds \*\*Mean Score (Accuracy) after applying k-fold\*\*
Mean Score for Gradient Boosting: 0.8789

### Neural Network w/ GridSearchCV

```
# With Original Dataset
# normalize the data
scaler = StandardScaler()
Xn = scaler.fit_transform(x)
X train, X_test, y_train, y_test = train_test_split(Xn, y, test_size
=.3, random_state=1234, stratify=y)
# selection of parameter values
nmm = MLPClassifier(hidden_layer_sizes=(3), max_iter=1000)
nmm.fit(X train, y train)
## predict test set
y_pred = nmm.predict(X_test)
## confusion matrix
print(metrics.confusion_matrix(y_test, y_pred))
print("Accuracy: ", metrics.accuracy_score(y_test, y_pred))
print("Precision: ", metrics.precision_score(y_test, y_pred))
print("Recall: ", metrics.recall_score(y_test, y_pred))
print("F1 score: ", metrics.f1_score(y_test, y_pred))
params = {'hidden_layer_sizes': [(20),(30)],
          'activation':['logistic','relu','tanh'],
          'max iter':[4000, 5000]}
start = time.time()
src = GridSearchCV(estimator=nnm, param grid=params)
src.fit(Xn, y)
end = time.time()
# generating report
print('Neural network report:')
print(f'The best estimator is : {src.best_estimator_}')
print(f'The best parameters are : {src.best_params_}')
print(f'The best score is : {src.best score :.4f}')
```

```
print(f'Total run time for GridSearchCV is : {(end - start):.2f}seconds')
results = pd.DataFrame(src.cv results )
[[769 43]
[ 68 23]]
Accuracy: 0.8770764119601329
Precision: 0.34848484848485
Recall: 0.25274725274725274
F1 score: 0.2929936305732484
Neural network report:
The best estimator is : MLPClassifier(activation='logistic',
hidden_layer_sizes=20, max_iter=4000)
The best parameters are : {'activation': 'logistic', 'hidden layer sizes':
20, 'max iter': 4000}
The best score is : 0.8853
Total run time for GridSearchCV is : 347.67seconds
SMOTE Applied Dataset
# SMOTE applied dataset
# normalize the data
scaler = StandardScaler()
Xn = scaler.fit transform(x sm)
X_train, X_test, y_train, y_test = train_test_split(Xn, y_sm, test_size
=.3,random_state=1234, stratify=y_sm)
# selection of parameter values
nmm = MLPClassifier(hidden_layer_sizes=(3), max_iter=1000)
nmm.fit(X train, y train)
## predict test set
y_pred = nmm.predict(X_test)
## confusion matrix
print(metrics.confusion_matrix(y_test, y_pred))
print("Accuracy: ", metrics.accuracy_score(y_test, y_pred))
print("Precision: ", metrics.precision_score(y_test, y_pred))
print("Recall: ", metrics.recall_score(y_test, y_pred))
print("F1 score: ", metrics.f1_score(y_test, y_pred))
params = {'hidden_layer_sizes': [(20),(30)],
          'activation':['logistic','relu','tanh'],
          'max_iter':[4000, 5000]}
start = time.time()
src = GridSearchCV(estimator=nnm, param_grid=params)
```

```
src.fit(Xn, y sm)
end = time.time()
# generating report
print('Neural network report:')
print(f'The best estimator is : {src.best_estimator_}')
print(f'The best parameters are : {src.best params }')
print(f'The best score is : {src.best score :.4f}')
print(f'Total run time for GridSearchCV is : {(end - start):.2f}seconds')
results = pd.DataFrame(src.cv results )
Feature Selection Dataset
# Feature Selection Dataset
# normalize the data
scaler = StandardScaler()
Xn = scaler.fit transform(X reduced)
X train, X test, y train, y test = train test split(Xn, y, test size
=.3,random_state=1234, stratify=y)
# selection of parameter values
nmm = MLPClassifier(hidden layer sizes=(3), max iter=1000)
nmm.fit(X_train, y_train)
## predict test set
y_pred = nmm.predict(X_test)
## confusion matrix
print(metrics.confusion_matrix(y_test, y_pred))
print("Accuracy: ", metrics.accuracy score(y test, y pred))
print("Precision: ", metrics.precision_score(y_test, y_pred))
print("Recall: ", metrics.recall_score(y_test, y_pred))
print("F1 score: ", metrics.f1_score(y_test, y_pred))
params = {'hidden_layer_sizes': [(20),(30)],
          'activation':['logistic','relu','tanh'],
          'max_iter':[4000, 5000]}
start = time.time()
src = GridSearchCV(estimator=nnm, param_grid=params)
src.fit(Xn, y)
end = time.time()
```

```
# generating report
print('Neural network report:')
print(f'The best estimator is : {src.best_estimator_}')
print(f'The best parameters are : {src.best params }')
print(f'The best score is : {src.best_score_:.4f}')
print(f'Total run time for GridSearchCV is : {(end - start):.2f}seconds')
results = pd.DataFrame(src.cv_results_)
[[798 14]
[ 78 13]]
Accuracy: 0.8981173864894795
Precision: 0.48148148148145
Recall: 0.14285714285714285
F1 score: 0.22033898305084745
Neural network report:
The best estimator is: MLPClassifier(hidden_layer_sizes=30, max_iter=5000)
The best parameters are : {'activation': 'relu', 'hidden_layer_sizes': 30,
'max iter': 5000}
The best score is: 0.8906
Total run time for GridSearchCV is : 283.97seconds
PCA Applied Dataset
#PCA Applied Dataset
# normalize the data
scaler = StandardScaler()
Xn = scaler.fit transform(Xp)
X_train, X_test, y_train, y_test = train_test_split(Xn, y, test_size
=.3, random_state=1234, stratify=y)
# selection of parameter values
nmm = MLPClassifier(hidden_layer_sizes=(3), max_iter=1000)
nmm.fit(X train, y train)
## predict test set
y pred = nmm.predict(X test)
## confusion matrix
print(metrics.confusion matrix(y test, y pred))
print("Accuracy: ", metrics.accuracy_score(y_test, y_pred))
print("Precision: ", metrics.precision_score(y_test, y_pred))
print("Recall: ", metrics.recall_score(y_test, y_pred))
print("F1 score: ", metrics.f1_score(y_test, y_pred))
params = {'hidden_layer_sizes': [(20),(30)],
          'activation':['logistic','relu','tanh'],
```

```
'max_iter':[4000, 5000]}
start = time.time()
src = GridSearchCV(estimator=nnm, param grid=params)
src.fit(Xn, y)
end = time.time()
# generating report
print('Neural network report:')
print(f'The best estimator is : {src.best_estimator_}')
print(f'The best parameters are : {src.best_params_}')
print(f'The best score is : {src.best_score_:.4f}')
print(f'Total run time for GridSearchCV is : {(end - start):.2f}seconds')
results = pd.DataFrame(src.cv_results_)
[[779 33]
[ 73 18]]
Accuracy: 0.8826135105204873
Precision: 0.35294117647058826
Recall: 0.1978021978021978
F1 score: 0.2535211267605634
```

## Neural Network w/ RandomizedSearchCV

```
# With Original Dataset
# normalize the data
scaler = StandardScaler()
Xn = scaler.fit transform(x)
X_train, X_test, y_train, y_test = train_test_split(Xn, y, test_size
=.3,random_state=1234, stratify=y)
# selection of parameter values
nnm_r = MLPClassifier(hidden_layer_sizes=(3), max_iter=1000)
nnm_r.fit(X_train, y_train)
## predict test set
y_pred = nnm_r.predict(X_test)
## confusion matrix
print(metrics.confusion_matrix(y_test, y_pred))
print("Accuracy: ", metrics.accuracy_score(y_test, y_pred))
print("Precision: ", metrics.precision_score(y_test, y_pred))
print("Recall: ", metrics.recall_score(y_test, y_pred))
```

```
print("F1 score: ", metrics.f1 score(y test, y pred))
# selection of parameter values
params = {'hidden_layer_sizes':[(20), (30)],
          'activation':['logistic', 'tanh','relu'],
          'max iter': [4000,5000]}
start_r = time.time()
rand src = RandomizedSearchCV(estimator= nnm r, param distributions = params,
n iter=6)
rand_src.fit(Xn,y)
end_r = time.time()
# generate a Report
print('Neural network report:')
print(f'The best estimator is : {rand_src.best_estimator_}')
print(f'The best parameters are :\n {rand src.best params }')
print(f'The best score is : {rand src.best score :.4f}')
print(f'Total run time for RandomizedSearchCV is : {(end_r - start_r):.2f}
seconds')
results rgs = pd.DataFrame(rand src.cv results )
SMOTE Applied Dataset
# SMOTE applied dataset
# normalize the data
scaler = StandardScaler()
Xn = scaler.fit transform(x sm)
X_train, X_test, y_train, y_test = train_test_split(Xn, y_sm, test_size
=.3,random_state=1234, stratify=y_sm)
# selection of parameter values
nnm_r = MLPClassifier(hidden_layer_sizes=(3), max_iter=1000)
nnm_r.fit(X_train, y_train)
## predict test set
y_pred = nnm_r.predict(X_test)
## confusion matrix
print(metrics.confusion_matrix(y_test, y_pred))
print("Accuracy: ", metrics.accuracy_score(y_test, y_pred))
print("Precision: ", metrics.precision_score(y_test, y_pred))
print("Recall: ", metrics.recall_score(y_test, y_pred))
print("F1 score: ", metrics.f1_score(y_test, y_pred))
params = {'hidden_layer_sizes':[(20), (30)],
```

```
'activation':['logistic', 'tanh','relu'],
          'max iter': [4000,5000]}
start r = time.time()
rand_src = RandomizedSearchCV(estimator= nnm_r, param_distributions = params,
n iter=6)
rand src.fit(Xn,y sm)
end r = time.time()
# generate a Report
print('Neural network report:')
print(f'The best estimator is : {rand_src.best_estimator_}')
print(f'The best parameters are :\n {rand src.best params }')
print(f'The best score is : {rand_src.best_score_:.4f}')
print(f'Total run time for RandomizedSearchCV is : {(end r - start r):.2f}
seconds')
results rgs = pd.DataFrame(rand src.cv results )
Feature Selection Dataset
# Feature Selection Dataset
# normalize the data
scaler = StandardScaler()
Xn = scaler.fit_transform(X_reduced)
X_train, X_test, y_train, y_test = train_test_split(Xn, y, test_size
=.3, random_state=1234, stratify=y)
# selection of parameter values
nnm_r = MLPClassifier(hidden_layer_sizes=(3), max_iter=1000)
nnm_r.fit(X_train, y_train)
## predict test set
y_pred = nnm_r.predict(X_test)
## confusion matrix
print(metrics.confusion matrix(y test, y pred))
print("Accuracy: ", metrics.accuracy_score(y_test, y_pred))
print("Precision: ", metrics.precision_score(y_test, y_pred))
print("Recall: ", metrics.recall_score(y_test, y_pred))
print("F1 score: ", metrics.f1_score(y_test, y_pred))
params = {'hidden_layer_sizes':[(20), (30)],
          'activation':['logistic', 'tanh','relu'],
          'max iter': [4000,5000]}
start_r = time.time()
```

```
rand src = RandomizedSearchCV(estimator= nnm r, param distributions = params,
n iter=6)
rand_src.fit(Xn,y)
end_r = time.time()
# generate a Report
print('Neural network report:')
print(f'The best estimator is : {rand_src.best_estimator_}')
print(f'The best parameters are :\n {rand src.best params }')
print(f'The best score is : {rand_src.best_score_:.4f}')
print(f'Total run time for RandomizedSearchCV is : {(end r - start r):.2f}
seconds')
results rgs = pd.DataFrame(rand src.cv results )
PCA Applied Dataset
#PCA Applied Dataset
# normalize the data
scaler = StandardScaler()
Xn = scaler.fit transform(Xp)
X_train, X_test, y_train, y_test = train_test_split(Xn, y, test_size
=.3, random state=1234, stratify=y)
# selection of parameter values
nnm r = MLPClassifier(hidden layer sizes=(3), max iter=1000)
nnm_r.fit(X_train, y_train)
## predict test set
y pred = nnm r.predict(X test)
## confusion matrix
print(metrics.confusion_matrix(y_test, y_pred))
print("Accuracy: ", metrics.accuracy_score(y_test, y_pred))
print("Precision: ", metrics.precision score(y test, y pred))
print("Recall: ", metrics.recall_score(y_test, y_pred))
print("F1 score: ", metrics.f1_score(y_test, y_pred))
params = {'hidden_layer_sizes':[(20), (30)],
          'activation':['logistic', 'tanh','relu'],
          'max iter': [4000,5000]}
start r = time.time()
rand src = RandomizedSearchCV(estimator= nnm r, param distributions = params,
n iter=6)
rand src.fit(Xn,y)
end r = time.time()
```

```
# generate a Report
print('Neural network report:')
print(f'The best estimator is : {rand src.best estimator }')
print(f'The best parameters are :\n {rand src.best params }')
print(f'The best score is : {rand src.best score :.4f}')
print(f'Total run time for RandomizedSearchCV is : {(end_r - start_r):.2f}
seconds')
results_rgs = pd.DataFrame(rand_src.cv_results_)
Decision Tree
Original Dataset
# Original Dataset
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import train_test_split
from sklearn import metrics, datasets, tree
import matplotlib.pyplot as plt
# %matplotlib inline
#Time
start = time.time()
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size
=.3, random_state=1234, stratify=y)
# Create a model (object) instantiated from the DecisionTreeClassifier class
dtm = DecisionTreeClassifier(max depth=4,
    min_samples_split=50,
    min samples leaf=20)
# Build a decision tree
dtm.fit(X_train, y_train)
end = time.time()
print(f'Total run time for Decision Tree algorithm with Original Dataset:
{(end - start):.2f} seconds')
# Make predictions using X_test
y_pred = dtm.predict(X_test);
#display(y pred)
# Calculate the accuracy
dtm.score(X test,y test)
print(f'Accuracy: {metrics.accuracy_score(y_test, y_pred):.2f}')
# Build a confusion matrix and calculate evaluation ratios
```

```
cm = metrics.confusion_matrix(y_test,y_pred);cm
print(metrics.classification_report(y_test,y_pred))
# # Create a decision tree plot.
#fig, axes = plt.subplots(nrows = 1,ncols = 1,figsize = (8,8), dpi=300)
#tree.plot_tree(dtm,feature_names = featureNames)

plt.figure(figsize=(24,12))
tree.plot_tree(dtm, feature_names=featureNames, fontsize=10)
plt.show()

#k-fold
dtmc_mean_score = np.mean(cross_val_score(dtm,x,y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Decision Tree: {dtmc_mean_score:.4f}')
```

Total run time for Decision Tree algorithm with Original Dataset: 0.03 seconds

Accuracy: 0.93

| -            | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.94      | 0.99   | 0.96     | 655     |
| 1            | 0.83      | 0.45   | 0.58     | 76      |
| accuracy     |           |        | 0.93     | 731     |
| macro avg    | 0.88      | 0.72   | 0.77     | 731     |
| weighted avg | 0.93      | 0.93   | 0.92     | 731     |



\*\*Mean Score (Accuracy) after applying k-fold\*\*
Mean Score for Decision Tree: 0.8982

```
# SMOTE applied Dataset
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import train test split
from sklearn import metrics, datasets, tree
import matplotlib.pyplot as plt
# %matplotlib inline
#Time
start = time.time()
X_train, X_test, y_train, y_test = train_test_split(x_sm, y_sm, test_size
=.3, random state=1234, stratify=y sm)
# Create a model (object) instantiated from the DecisionTreeClassifier class
dtm = DecisionTreeClassifier(max depth=4,
    min_samples_split=50,
    min samples leaf=20)
# Build a decision tree
dtm.fit(X_train, y_train)
end = time.time()
print(f'Total run time for Decision Tree algorithm with SMOTE Dataset: {(end
- start):.2f} seconds')
# Make predictions using X test
y_pred = dtm.predict(X_test);
#display(y pred)
# Calculate the accuracy
dtm.score(X test,y test)
print(f'Accuracy: {metrics.accuracy score(y test, y pred):.2f}')
# Build a confusion matrix and calculate evaluation ratios
cm = metrics.confusion_matrix(y_test,y_pred);cm
print(metrics.classification_report(y_test,y_pred))
# # Create a decision tree plot.
#fig, axes = plt.subplots(nrows = 1,ncols = 1,figsize = (8,8), dpi=300)
#tree.plot tree(dtm, feature names = featureNames)
plt.figure(figsize=(24,12))
tree.plot_tree(dtm, feature_names=featureNames, fontsize=10)
plt.show()
#k-fold
dtmc mean score = np.mean(cross val score(dtm,x sm, y sm,cv=5))
```

```
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Decision Tree: {dtmc mean score:.4f}')
```

Total run time for Decision Tree algorithm with SMOTE Dataset: 0.05 seconds Accuracy: 0.81

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.78      | 0.86   | 0.82     | 655     |
| 1            | 0.84      | 0.76   | 0.80     | 656     |
| accuracy     |           |        | 0.81     | 1311    |
| macro avg    | 0.81      | 0.81   | 0.81     | 1311    |
| weighted avg | 0.81      | 0.81   | 0.81     | 1311    |



\*\*Mean Score (Accuracy) after applying k-fold\*\*
Mean Score for Decision Tree: 0.7942

## **Feature Selection Applied Dataset**

#### # Feature Selection applied Dataset

from sklearn.tree import DecisionTreeClassifier
from sklearn.model\_selection import train\_test\_split
from sklearn import metrics, datasets,tree
import matplotlib.pyplot as plt

### # %matplotlib inline

#### #Time

start = time.time()

X\_train, X\_test, y\_train, y\_test = train\_test\_split(X\_reduced, y, test\_size
=.3,random\_state=1234, stratify=y)

```
# Create a model (object) instantiated from the DecisionTreeClassifier class
dtm = DecisionTreeClassifier(max depth=4,
    min samples split=50,
    min samples leaf=20)
# Build a decision tree
dtm.fit(X_train, y_train)
end = time.time()
print(f'Total run time for Decision Tree algorithm with Feature Selection
applied Dataset: {(end - start):.2f} seconds')
# Make predictions using X test
y_pred = dtm.predict(X_test);
#display(v pred)
# Calculate the accuracy
dtm.score(X_test,y_test)
print(f'Accuracy: {metrics.accuracy_score(y_test, y_pred):.2f}')
# Build a confusion matrix and calculate evaluation ratios
cm = metrics.confusion_matrix(y_test,y_pred);cm
print(metrics.classification_report(y_test,y_pred))
# # Create a decision tree plot.
#fig, axes = plt.subplots(nrows = 1,ncols = 1,figsize = (8,8), dpi=300)
#tree.plot tree(dtm, feature names = featureNames)
plt.figure(figsize=(24,12))
tree.plot tree(dtm, feature names=featureNames, fontsize=10)
plt.show()
#k-fold
dtmc mean score = np.mean(cross val score(dtm,X reduced, y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Decision Tree: {dtmc_mean_score:.4f}')
Total run time for Decision Tree algorithm with Feature Selection applied
Dataset: 0.02 seconds
Accuracy: 0.93
              precision recall f1-score
                                              support
                   0.94
                             0.99
                                       0.96
                                                  655
           1
                             0.45
                                       0.58
                   0.83
                                                   76
                                       0.93
                                                  731
    accuracy
                   0.88
                             0.72
                                       0.77
                                                  731
   macro avg
weighted avg
                   0.93
                             0.93
                                       0.92
                                                  731
```



\*\*Mean Score (Accuracy) after applying k-fold\*\*
Mean Score for Decision Tree: 0.8982

## **PCA Applied Dataset**

```
# PCA applied Dataset
from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import train_test_split
from sklearn import metrics, datasets, tree
import matplotlib.pyplot as plt
# %matplotlib inline
#Time
start = time.time()
X_train, X_test, y_train, y_test = train_test_split(Xp, y, test_size
=.3, random_state=1234, stratify=y)
# Create a model (object) instantiated from the DecisionTreeClassifier class
dtm = DecisionTreeClassifier(max depth=4,
    min samples split=50,
    min samples leaf=20)
# Build a decision tree
dtm.fit(X_train, y_train)
end = time.time()
print(f'Total run time for DEcision Tree algorithm with PCA applied Dataset:
{(end - start):.2f} seconds')
# Make predictions using X_test
```

```
y pred = dtm.predict(X test);
#display(y pred)
# Calculate the accuracy
dtm.score(X test,y test)
print(f'Accuracy: {metrics.accuracy_score(y_test, y_pred):.2f}')
# Build a confusion matrix and calculate evaluation ratios
cm = metrics.confusion_matrix(y_test,y_pred);cm
print(metrics.classification report(y test,y pred))
# # Create a decision tree plot.
#fig, axes = plt.subplots(nrows=1, ncols=1, figsize=(24, 18), dpi=200)
#tree.plot_tree(dtm, ax=axes, fontsize=25)
#tree.plot_tree(dtm, feature_names=featureNames)
plt.figure(figsize=(24,12))
tree.plot_tree(dtm, feature_names=featureNames, fontsize=10)
plt.show()
#k-fold
dtmc_mean_score = np.mean(cross_val_score(dtm,Xp, y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Decision Tree: {dtmc mean score:.4f}')
Total run time for DEcision Tree algorithm with PCA applied Dataset: 0.09
seconds
Accuracy: 0.89
              precision
                           recall f1-score
                                              support
                             0.98
           0
                   0.91
                                       0.94
                                                  655
           1
                   0.45
                             0.17
                                       0.25
                                                   76
                                       0.89
                                                  731
    accuracy
                             0.57
                                       0.59
   macro avg
                   0.68
                                                  731
weighted avg
                   0.86
                             0.89
                                       0.87
                                                  731
```



\*\*Mean Score (Accuracy) after applying k-fold\*\*
Mean Score for Decision Tree: 0.8806

### **Random Forest Classifier**

```
#Original Dataset
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics, datasets
# import matplotlib.pyplot as plt
#Time
start = time.time()
X_train, X_test, y_train, y_test = train_test_split(x,y,test_size
=.3,random_state=1234, stratify=y)
# Create a model (object) for classification
rfcm = RandomForestClassifier()
# Build a random forest classification model
rfcm.fit(X_train, y_train)
end = time.time()
print(f'Total run time for Random Forest algorithm with Original Dataset:
{(end - start):.2f} seconds')
# Make predictions using the test data
y_pred = rfcm.predict(X_test)
# Print the performance scores.
print('\n ** Performance Scores **')
# Calculate accuracy
```

```
accuracy = rfcm.score(X_test, y_test)
print(f'Accuray: {accuracy:.2f}')
# print('Accuracy: {0:.2f}'.format(accuracy))
# Build a confusion matrix and show the Classification Report
cm = metrics.confusion_matrix(y_test,y_pred)
print('\nConfusion Matrix\n',cm)
print('\nClassification Report\n')
print(metrics.classification report(y test,y pred))
#k-fold
rfmc_mean_score = np.mean(cross_val_score(rfcm,x,y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Random Forest: {rfmc mean score:.4f}')
Total run time for Random Forest algorithm with Original Dataset: 0.41
seconds
 ** Performance Scores **
Accuray: 0.92
Confusion Matrix
 [[645 10]
[ 45 31]]
Classification Report
```

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
|              |           |        |          |         |
| 0            | 0.93      | 0.98   | 0.96     | 655     |
| 1            | 0.76      | 0.41   | 0.53     | 76      |
|              |           |        |          |         |
| accuracy     |           |        | 0.92     | 731     |
| macro avg    | 0.85      | 0.70   | 0.74     | 731     |
| weighted avg | 0.92      | 0.92   | 0.91     | 731     |

\*\*Mean Score (Accuracy) after applying k-fold\*\*
Mean Score for Random Forest: 0.8966

```
#SMOTE applied Dataset
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics, datasets
# import matplotlib.pyplot as plt
#Time
start = time.time()
```

```
X_train, X_test, y_train, y_test = train_test_split(x_sm,y_sm,test_size
=.3,random state=1234, stratify=y sm)
# Create a model (object) for classification
rfcm = RandomForestClassifier()
# Build a random forest classification model
rfcm.fit(X_train, y_train)
end = time.time()
print(f'Total run time for Random Forest algorithm with SMOTE applied
Dataset: {(end - start):.2f} seconds')
# Make predictions using the test data
y pred = rfcm.predict(X test)
# Print the performance scores.
print('\n ** Performance Scores **')
# Calculate accuracy
accuracy = rfcm.score(X_test, y_test)
print(f'Accuray: {accuracy:.2f}')
# print('Accuracy: {0:.2f}'.format(accuracy))
# Build a confusion matrix and show the Classification Report
cm = metrics.confusion_matrix(y_test,y_pred)
print('\nConfusion Matrix\n',cm)
print('\nClassification Report\n')
print(metrics.classification_report(y_test,y_pred))
#k-fold
rfmc mean score = np.mean(cross val score(rfcm,x sm,y sm,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Random Forest: {rfmc_mean_score:.4f}')
Total run time for Random Forest algorithm with SMOTE applied Dataset: 0.63
seconds
 ** Performance Scores **
Accuray: 0.97
Confusion Matrix
 [[627 28]
 [ 16 640]]
Classification Report
              precision recall f1-score
                                              support
                   0.98
                             0.96
                                       0.97
           0
                                                  655
                   0.96
                             0.98
                                       0.97
                                                  656
                                       0.97
                                                 1311
    accuracy
```

```
0.97
                                       0.97
                                                 1311
   macro avg
                             0.97
weighted avg
                   0.97
                             0.97
                                                 1311
                                       0.97
**Mean Score (Accuracy) after applying k-fold**
Mean Score for Random Forest: 0.9650
Feature Selection Applied Dataset
#Feature Selection applied Dataset
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics, datasets
# import matplotlib.pyplot as plt
#Time
start = time.time()
X_train, X_test, y_train, y_test = train_test_split(X_reduced,y,test_size
=.3, random state=1234, stratify=y)
# Create a model (object) for classification
rfcm = RandomForestClassifier()
# Build a random forest classification model
rfcm.fit(X train, y train)
end = time.time()
print(f'Total run time for Decision Tree algorithm with Feature Selection
applied Dataset: {(end - start):.2f} seconds')
# Make predictions using the test data
y_pred = rfcm.predict(X_test)
# Print the performance scores.
print('\n ** Performance Scores **')
# Calculate accuracy
accuracy = rfcm.score(X test, y test)
print(f'Accuray: {accuracy:.2f}')
# print('Accuracy: {0:.2f}'.format(accuracy))
# Build a confusion matrix and show the Classification Report
cm = metrics.confusion_matrix(y_test,y_pred)
print('\nConfusion Matrix\n',cm)
print('\nClassification Report\n')
print(metrics.classification report(y test,y pred))
#k-fold
rfmc_mean_score = np.mean(cross_val_score(rfcm,X_reduced,y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Random Forest: {rfmc_mean_score:.4f}')
```

Total run time for Decision Tree algorithm with Feature Selection applied

Dataset: 0.28 seconds

```
** Performance Scores **
Accuray: 0.93

Confusion Matrix
[[647 8]
[ 44 32]]
```

Classification Report

|                                       | precision    | recall       | f1-score             | support           |
|---------------------------------------|--------------|--------------|----------------------|-------------------|
| 0<br>1                                | 0.94<br>0.80 | 0.99<br>0.42 | 0.96<br>0.55         | 655<br>76         |
| accuracy<br>macro avg<br>weighted avg | 0.87<br>0.92 | 0.70<br>0.93 | 0.93<br>0.76<br>0.92 | 731<br>731<br>731 |

\*\*Mean Score (Accuracy) after applying k-fold\*\*
Mean Score for Random Forest: 0.9031

# **PCA Applied Dataset**

```
#PCA applied Dataset
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestClassifier
from sklearn import metrics, datasets
# import matplotlib.pyplot as plt
#Time
start = time.time()
X_train, X_test, y_train, y_test = train_test_split(Xp,y,test_size
=.3,random_state=1234, stratify=y)
# Create a model (object) for classification
rfcm = RandomForestClassifier()
# Build a random forest classification model
rfcm.fit(X_train, y_train)
end = time.time()
print(f'Total run time for Decision Tree algorithm with PCA applied Dataset:
{(end - start):.2f} seconds')
# Make predictions using the test data
y pred = rfcm.predict(X test)
# Print the performance scores.
```

```
print('\n ** Performance Scores **')
# Calculate accuracy
accuracy = rfcm.score(X_test, y_test)
print(f'Accuray: {accuracy:.2f}')
# print('Accuracy: {0:.2f}'.format(accuracy))
# Build a confusion matrix and show the Classification Report
cm = metrics.confusion_matrix(y_test,y_pred)
print('\nConfusion Matrix\n',cm)
print('\nClassification Report\n')
print(metrics.classification report(y test,y pred))
#k-fold
rfmc_mean_score = np.mean(cross_val_score(rfcm,Xp,y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Random Forest: {rfmc mean score:.4f}')
Total run time for Decision Tree algorithm with PCA applied Dataset: 1.08
seconds
 ** Performance Scores **
Accuray: 0.89
Confusion Matrix
 [[637 18]
 [ 60 16]]
```

Classification Report

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 0.91      | 0.97   | 0.94     | 655     |
|              | 0.47      | 0.21   | 0.29     | 76      |
| accuracy     | 0.60      | 0.50   | 0.89     | 731     |
| macro avg    | 0.69      | 0.59   | 0.62     | 731     |
| weighted avg | 0.87      | 0.89   | 0.87     | 731     |

<sup>\*\*</sup>Mean Score (Accuracy) after applying k-fold\*\*
Mean Score for Random Forest: 0.8740

## **Naive Bayesian Classification**

```
#NB with Original Dataset
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics, datasets
#Time
```

```
start = time.time()
#Split Dataset
X_train, X_test, y_train, y_test = train_test_split(x,y,test_size =.3,
random state=1234, stratify=y)
# Create a Bayesian Classifier instance for classification
gnb = GaussianNB()
# Build a Bayesian Classification Model and predict the type using the test
gnb.fit(X_train, y_train)
# Calculate the posteriori probabilities
p = gnb.predict proba(X test)
# Predict the target value using the test data.
y_pred = gnb.predict(X_test)
#Time
end = time.time()
# Calculate the accuracy
accuracy = gnb.score(X test, y test)
# This is the old formatting method.
# print('Accuracy: {:.4f}'.format(accuracy))
print(f'Accuracy: {accuracy: .4f}')
# Build a confusion matrix and calculate evaluation ratios
cm = metrics.confusion matrix(y test,y pred);cm
print(metrics.classification report(y test,y pred))
print(f'Total run time for GradientBoosting with Original Dataset: {(end -
start):.2f} seconds')
#k-fold
mean_score = np.mean(cross_val_score(gnb,x,y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Naive Bayesian: {mean score:.4f}')
Accuracy: 0.2449
                           recall f1-score
              precision
                                              support
           0
                   0.97
                             0.16
                                       0.28
                                                  655
                   0.12
                             0.96
                                       0.21
                                                   76
                                                  731
                                       0.24
    accuracy
   macro avg
                   0.54
                             0.56
                                       0.24
                                                  731
weighted avg
                   0.88
                             0.24
                                       0.27
                                                  731
Total run time for GradientBoosting with Original Dataset: 0.05 seconds
**Mean Score (Accuracy) after applying k-fold**
Mean Score for Naive Bayesian: 0.2603
```

```
#NB with Smote Dataset
from sklearn.model selection import train test split
from sklearn.naive bayes import GaussianNB
from sklearn import metrics, datasets
#Time
start = time.time()
#Split Dataset
X_sm_train, X_sm_test, y_sm_train, y_sm_test = \
   train_test_split(x_sm,y_sm,random_state=1234,stratify=y_sm)
# Create a Bayesian Classifier instance for classification
gnb = GaussianNB()
# Build a Bayesian Classification Model and predict the type using the test
data.
gnb.fit(X sm train, y sm train)
# Calculate the posteriori probabilities
p = gnb.predict_proba(X_test)
# Predict the target value using the test data.
y pred sm = gnb.predict(X test)
#Time
end = time.time()
# Calculate the accuracy
accuracy = gnb.score(X_test, y_test)
# This is the old formatting method.
# print('Accuracy: {:.4f}'.format(accuracy))
print(f'Accuracy: {accuracy: .4f}')
# Build a confusion matrix and calculate evaluation ratios
cm = metrics.confusion_matrix(y_test,y_pred_sm)
print(metrics.classification_report(y_test,y_pred_sm))
print(f'Total run time for GradientBoosting with Smote Dataset: {(end -
start):.2f} seconds')
#k-fold
mean score = np.mean(cross val score(gnb,x sm, y sm,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Naive Bayesian: {mean score:.4f}')
Accuracy: 0.2517
              precision recall f1-score
                                              support
           0
                   0.98
                             0.17
                                       0.29
                                                  655
           1
                   0.12
                             0.97
                                       0.21
                                                   76
    accuracy
                                       0.25
                                                  731
                0.55
                             0.57
                                       0.25
                                                  731
   macro avg
```

weighted avg 0.89 0.25 0.28 731

Total run time for GradientBoosting with Smote Dataset: 0.07 seconds \*\*Mean Score (Accuracy) after applying k-fold\*\*
Mean Score for Naive Bayesian: 0.5781

### **Feature Selection Dataset**

```
#NB with Feature Selection Dataset
from sklearn.model_selection import train_test_split
from sklearn.naive bayes import GaussianNB
from sklearn import metrics, datasets
#Time
start = time.time()
#Split Dataset
X_train, X_test, y_train, y_test = train_test_split(X_reduced,y,test_size
random_state=1234, stratify=y)
# Create a Bayesian Classifier instance for classification
gnb = GaussianNB()
# Build a Bayesian Classification Model and predict the type using the test
data.
gnb.fit(X train, y train)
# Calculate the posteriori probabilities
p = gnb.predict_proba(X_test)
# Predict the target value using the test data.
y pred = gnb.predict(X test)
#Time
end = time.time()
# Calculate the accuracy
accuracy = gnb.score(X_test, y_test)
# This is the old formatting method.
# print('Accuracy: {:.4f}'.format(accuracy))
print(f'Accuracy: {accuracy: .4f}')
# Build a confusion matrix and calculate evaluation ratios
cm = metrics.confusion matrix(y test,y pred);cm
print(metrics.classification report(y test,y pred))
print(f'Total run time for GradientBoosting with Feature selection Dataset:
{(end - start):.2f} seconds')
#k-fold
mean_score = np.mean(cross_val_score(gnb,X_reduced, y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Naive Bayesian: {mean score:.4f}')
```

```
Accuracy: 0.2476
                          recall f1-score
              precision
                                              support
                   0.97
                             0.16
                                       0.28
                                                   655
           0
           1
                   0.12
                             0.96
                                       0.21
                                                    76
    accuracy
                                       0.25
                                                   731
                   0.55
                                       0.25
                                                   731
   macro avg
                             0.56
                   0.88
                             0.25
                                       0.27
                                                   731
weighted avg
Total run time for GradientBoosting with Feature selection Dataset: 0.01
seconds
**Mean Score (Accuracy) after applying k-fold**
Mean Score for Naive Bayesian: 0.2623
With Original Dataset?
Don't we have this twice?
#NB with Original Dataset
from sklearn.model selection import train test split
from sklearn.naive bayes import GaussianNB
from sklearn import metrics, datasets
#Time
start = time.time()
#Split Dataset
X_train, X_test, y_train, y_test = train_test_split(Xp,y,test_size =.3,
random state=1234, stratify=y)
# Create a Bayesian Classifier instance for classification
gnb = GaussianNB()
# Build a Bayesian Classification Model and predict the type using the test
data.
gnb.fit(X_train, y_train)
# Calculate the posteriori probabilities
p = gnb.predict proba(X test)
# Predict the target value using the test data.
y_pred = gnb.predict(X_test)
#Time
end = time.time()
# Calculate the accuracy
accuracy = gnb.score(X_test, y_test)
# This is the old formatting method.
# print('Accuracy: {:.4f}'.format(accuracy))
print(f'Accuracy: {accuracy: .4f}')
# Build a confusion matrix and calculate evaluation ratios
```

cm = metrics.confusion\_matrix(y\_test,y\_pred);cm

```
print(metrics.classification report(y test,y pred))
print(f'Total run time for GradientBoosting with PCA Dataset: {(end -
start):.2f} seconds')
#k-fold
mean score = np.mean(cross val score(gnb,Xp, y,cv=5))
print('**Mean Score (Accuracy) after applying k-fold**')
print(f'Mean Score for Naive Bayesian: {mean_score:.4f}')
Accuracy: 0.2531
              precision
                         recall f1-score
                                              support
          0
                  0.98
                             0.17
                                       0.29
                                                  655
                             0.97
                                       0.21
           1
                  0.12
                                                   76
                                       0.25
                                                  731
   accuracy
   macro avg
                  0.55
                             0.57
                                       0.25
                                                  731
                  0.89
                                       0.28
weighted avg
                             0.25
                                                  731
```

Total run time for GradientBoosting with PCA Dataset: 0.02 seconds \*\*Mean Score (Accuracy) after applying k-fold\*\*
Mean Score for Naive Bayesian: 0.2434

### K-Means Clustering - Finding K

```
# Using original data
# Z score normalization
scaler = StandardScaler()
Xn = scaler.fit_transform(x)
#Computing value of K using elbow method
# If K value is large, inertia will decrease. Lower the inertia better model
the is.
inertia list = []
for i in range(2,50):
    km = KMeans(n_clusters=i, random_state=1234)
    km.fit(Xn)
    inertia_list.append(km.inertia_)
# for i in range(len(inertia_list)):
     print('{0}: {1:.2f}'.format(i+2, inertia list[i]))
# Scree plot
plt.plot(range(2,50), inertia_list)
plt.grid(True)
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
```



```
# Using SMOTE applied dataset
# Z score normalization
scaler = StandardScaler()
Xn = scaler.fit_transform(x_sm)
#Computing value of K using elbow method
# If K value is large, inertia will decrease. Lower the inertia better model
the is.
inertia_list = []
for i in range(2,50):
    km = KMeans(n clusters=i, random state=1234)
    km.fit(Xn)
    inertia list.append(km.inertia )
# for i in range(len(inertia_list)):
# print('{0}: {1:.2f}'.format(i+2, inertia_list[i]))
# Scree plot
plt.plot(range(2,50), inertia_list)
plt.grid(True)
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
```



## **Feature Selection Dataset**

```
# Using Feature Selection Dataset
# Z score normalization
scaler = StandardScaler()
Xn = scaler.fit_transform(X_reduced)
#Computing value of K using elbow method
# If K value is large, inertia will decrease. Lower the inertia better model
the is.
inertia_list = []
for i in range(2,50):
    km = KMeans(n_clusters=i, random_state=1234)
    km.fit(Xn)
    inertia_list.append(km.inertia_)
# for i in range(len(inertia_list)):
     print('{0}: {1:.2f}'.format(i+2, inertia_list[i]))
# Scree plot
plt.plot(range(2,50), inertia_list)
plt.grid(True)
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
```



## **PCA Applied Dataset**

```
# Using PCA Applied Dataset
# Z score normalization
scaler = StandardScaler()
Xn = scaler.fit_transform(Xp)
#Computing value of K using elbow method
# If K value is large, inertia will decrease. Lower the inertia better model
the is.
inertia_list = []
for i in range(2,50):
    km = KMeans(n clusters=i, random state=1234)
    km.fit(Xn)
    inertia_list.append(km.inertia_)
# for i in range(len(inertia_list)):
    print('{0}: {1:.2f}'.format(i+2, inertia_list[i]))
# Scree plot
plt.plot(range(2,50), inertia_list)
plt.grid(True)
plt.xlabel('Number of Clusters')
plt.ylabel('Inertia')
plt.show()
```

