

AD

Report DELNV-TR-0030

A HANDHELD CALCULATOR (HHC) PROGRAM FOR
THERMAL IMAGING TARGET ACQUISITION ANALYSIS

– A USER'S GUIDE

by
Joseph R. Moulton
and
Gertrude H. Kornfeld

January 1982

Approved for public release; distribution unlimited.

Adon sile 1

U.S. ARMY ELECTRONICS R&D COMMAND
NIGHT VISION & ELECTRO-OPTICS LABORATORIES
FT. BELVOIR, VIRGINIA 22060

Destroy this report when it is no longer needed. Do not return it to the originator.

The citation in this report of trade names of commercially available products does not constitute official endorsement or approval of the use of such products.

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

BEFORE COMPLETING FORM
3. RECIPIENT'S CATALOG NUMBER
1:3
5. TYPE OF REPORT & PERIOD COVERED
T. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Technical Report
6. PERFORMING ORG. REPORT NUMBER
B. CONTRACT OR GRANT NUMBER(e)
<u> </u>
10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
12. REPORT DATE
January 1982
13. NUMBER OF PAGES
15. SECURITY CLASS. (of this report)
15. SECURITY CLASS. (of this report)
Unclassified
154. DECLASSIFICATION/DOWNGRADING
Jonestee
om Report)
· · · · · · · · · · · · · · · · · · ·
)
)
)
)
major weapon platforms has
major weapon platforms has ity throughout the Army. To
major weapon platforms has
major weapon platforms has ity throughout the Army. To within the Visionics Division or the target acquisition codes This report describes one of
major weapon platforms has ity throughout the Army. To within the Visionics Division or the target acquisition codes

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

(Block 20. (Continued))

Army elements so that each may undertake independently routine FLIR performance calculations as required. Although these analytical models are incorporated entirely within a handheld calculator (HHC) and designed for simplicity in their use, they provide a comprehensive performance analysis capability. This capability stems from unique analytical fits to higher level models and from the remarkable capacity of the new HP 41CV programmable handheld calculator. This report provides a complete user's guide in the application of HHC programs to FLIR analysis problems for requirements frequently encountered by FLIR and weapon platform designers, applications analysis, tacticians, and battlefield commanders. A companion report that provides a technical description of this work is in progress. Operation of the HHC requires minimal instruction and all actions of the operator are prompted by displayed alphanumeric inquiries. Target acquisition analysis under adverse weather are routinely computed using this HHC model, providing ranges for detection, classification, recognition and identification for a variety of US and Warsaw Pack Armor vehicles, The model enables the user to quickly determine search times for a given search sector as well as target acquisition probabilities for weather and signature conditions specified. Atmospheric transmission in the 8-12 µm and visual spectral region can be routinely determined for any specified range based on an abbreviated form of LOW-TRAN V, EO SEAL and G/AP atmospheric models.

4

SUMMARY

The proliferation of thermal imaging sensors to most major weapon platforms has broadened the need for FLIR performance analysis capability throughout the Army. To date, the Army analysis capability has been concentrated within the Visionics Division of the Night Vision and Electro-Optics Laboratory except for the target acquisition codes that have been incorporated within the Army Wargames. This report describes one of several activities of NV&EOL to disseminate analysis capability to a broad spectrum of Army elements so that each may undertake independently routine FLIR performance calculations as required. Although these analytical models are incorporated entirely within a handheld calculator (HHC) and designed for simplicity in their use, they provide a comprehensive performance analysis capability. This capability stems from unique analytical fits to higher level models and from the remarkable capacity of the new HP 41CV programmable handheld calculator.

This report provides a complete user's guide in the application of HHC programs to FLIR analysis problems for requirements frequently encountered by FLIR and weapon platform designers, applications analysis, tacticians, and battlefield commanders. Operation of the HHC requires minimal instruction and all actions of the operator are prompted by displayed alphanumeric inquiries. Target acquisition analysis under adverse weather are routinely computed using this HHC model, providing ranges for detection, classification, recognition and identification for a variety of US and Warsaw Pact Armor vehicles. The model enables the user to quickly determine search times for a given search sector as well as target acquisition probabilities for weather and signature conditions specified. Atmospheric transmission in the 8-12 μ m and visual spectral region can be routinely determined for any specified range based on an abbreviated form of LOWTRAN V, EO SAEL and G/AP atmospheric models.

A companion report¹ now in progress provides a technical description of the HHC algorithms used as well as the technical genesis of the analytical forms. In general, the performance model is based on the Johnson Criteria,² as applied to analytical equations similar to those described by Ratches et al.³ for static range performance, and by Lawson.

¹ G. Kornfeld and J. R. Moulton, Technical Description of HHC Target Acquisition Program (TGT 4CQ) (In Progress).

² J. Johnson, Analysis of Image Forming Systems, Proceedings of the Image Intensifier Symposium (1958).

³ J. A. Ratches, W. R. Lawson, L. P. Obert, R. J. Bergmann, T. W. Cassidy, and J. M. Swenson, Night Vision Laboratory Static Performance Model for Thermal Viewing Systems, USA Electronics Command Report ECOM-7043 (April 1975).

Cassidy and Ratches⁴ for search time performance. The basis for the atmospheric analysis stems from analytical fits to LOWTRAN V.⁵ by Kornfeld⁶ and the NVL G/AP Aerosol Data Base⁷ by Shields.⁸ All atmospheric algorithms used in the HHC program are believed to be similar to those in the current version of EO SAEL.⁹ The thermal imagers listed in this user's guide as sensors 1 through 4 are identified in the Visionics Performance Handbook¹⁰ by Obert et al.

W. R. Lawson, T. W. Cassidy and J. A. Ratches, A Search Model, IRIS Specialty Group on Imaging, Naval Academy, Annapolis, MD, June 78 (Confidential).

⁵ F. X. Kneizys. 4tmospheric Transmittance/Radiance: Computer Code LOWTRAN 5, AFGL-TR-80-0067, February 1980.

⁶ G. Kornfeld, A LOWTRAN Equivalent Computer Program, NV&EOL internal report, February 1981.

J. R. Moulton, R. J. Bergemann, and M. C. Sola, (8) European Winter Atmospheric Environment (U), 1RIS Proceedings (August 1976).

⁸ F. J. Shields, Internal NV&EOL DF, subject: NV&EOL G/AP Aerosol Atmospheric Models (7 September 1978).

⁹ Louis D. Duncan, editor, EOSAEL 80, Vol. 1: Technical Documentation, Atmospheric Sciences Laboratory Report ASL-TR-0072, January 1981.

¹⁰ L. P. Obert, J. T. Wood, C. J. Nash, (C) Visionics E-O Sensor Performance Handbook VOL 1 (Natural European Environments) (U), June 1981.

CONTENTS

Section	Title	Page
	SUMMARY	iü
	ILLUSTRATIONS	vi
	TABLES	vii
	METRIC CONVERSION FACTORS	viii
I	INTRODUCTION	1
11	OVERVIEW OF HHC TARGET ACQUISITION MODEL	5
ш	ILLUSTRATIVE APPLICATIONS OF HHC ANALYSIS	10
	APPENDIX - TGT ACO PROGRAM LISTING	17

ILLUSTRATIONS

Figure	Title	Page
1	HP 41CV HHC Hardware Used for Thermal Imager Performance Analysis	2
2	Closeup of HHC Hardware Keyboard	3
3	Mode Keys with Display (insufficient registers)	4

TABLES

Table	Title	Page
1	TGT_ACQ Program Responses	8
2	TGT_ACQ Analysis Number Responses	10
3	Predicted Range Performance	12
4	Predicted Search Time and Recognition Probability	12
5	Predicted Recognition Performance Versus MRTs and Transmission	13
6	Display Listing for Range Performance Example	14
7	Display Listing for Different MRT Example	15
8	Display Listing for Atmospheric Data Example	16

METRIC CONVERSION FACTORS

	Approximate Co	onversions to	Metric Measures	
Symbol	When You Know	Multiply by	To Find	Symbo
		LENGTH		
in	inches	2.5	centimeters	cm
ft	fe e t	30	centimeters	cm
yd	yards	0.9	meters	m
mi	miles	1.6	kilometers	<u>km</u>
		AREA		
in ²	square inches	6.5	square centimeter	s cm
ft^2	square feet	0.09	square meters	m²
yd^2	square yards	8.0	square meters	m^2
mi²	square miles	2.6	square kilometers	km
	acres	0.4	hectares	ha
	М	ASS (weig	ht)	
oz	ounces	28	grams	g
lb	pounds	0.45	kilograms	kg
	short tons	0.9	metric ton	t
	(2000 lb)			
		VOLUME		
tsp	teaspoons	5	milliliters	mI.
Tbsp	tablespoons	15	milliliters	ml.
in ³	cubic inches	16	milliliters	mL
fl oz	fluid ounces	30	milliliters	in L
c	cups	0.24	liters	L
pt	pints	0.47	liters	L
qt	quarts	0.95	liters	L
gal	gallons	3.8	liters	L
ft ³	cubic feet	0.03	cubic meters	m^3
yd^3	cubic vards	0.76	cubic meters	m ⁱ
		ERATURE		
°F	degrees	5 9 (after		°C
•	Fahrenheit	subtracting		_
	• • · · · · · •	32)		
		 .		• -
-	32	98.6		°F

Approximate Conversions from Metric Measures

Symbol	When You Know !		To Find	Symbol
		LENGTH		
mm	millimeters	0.04	inches	in
cm	centimeters	0.4	inches	in
m	meters	3.3	feet	ft
m	meters	1.1	yards	y d
km	kilometers	0.6	miles	mi
		AREA		
cm²	square centimete	rs 0.16	square inches	in ²
m²	square meters	1.2	square yards	yd²
km²	square kilometer	s 0.4	square miles	mi^2
ha	hectares	2.5	acres	
	$(10\ 000\ m^2)$			
	MA	SS (weigh	(t)	
g	grams	0.035	ounces	oz
kg	kilograms	2.2	pounds	lh
t	metric ton	1.1	short tons	
	(1000 kg)			
		VOLUME		
mL	milliliters	0.03	fluid ounces	fl oz
mL	milliliters	0.06	cubic inches	in³
L	liters	2.1	pints	pt
L	liters	1.06	quarts	qt
L	liters	0.26	gallons	gal
m³	cubic meters	35	cubic feet	ft ³
m ²	cubic meters	1.3	cubic yards	yd ⁵
	TEMPE	RATURE	(exact)	
•c	degrees	9/5 (the	n degrees	न्
	Celsius	add 32)	Fahrenheit	

A HANDHELD CALCULATOR (HHC) PROGRAM FOR THERMAL IMAGING ${\tt TARGET\ ACQUISITION\ ANALYSIS-A\ USER'S\ GUIDE}$

I. INTRODUCTION

Thermal Imaging Sensors, often referred to as FLIRs are incorporated into most major Army weapon platforms to provide target acquisition capability under day/night, semiadverse weather and obscured battlefield conditions. The acquisition capability provided by thermal imagers is dependent upon many factors; i.e., sensor parameters, target range. target type, target history, weather type, intensity and duration, operator training, terrain structure, tactical employment, etc. The calculations of this target acquisition capability has been, heretofore, performed by analysts highly trained in thermal imaging, environmental and computer technologies. The objective of this effort is to provide the typical user of thermal imager analysis, whether he be a weapons developer, TRADOC tactician or FLIR developer, the capability of carrying out performance analysis independently at his desk after a few minutes tutorial. The analysis equipment (HHC) is a Hewlett Packard 41CV Handheld Calculator with or without a HP 82143A printer that has been programmed with unique performance algorithms developed at the Night Vision and Electro-Optics Laboratory. These performance algorithms are for the most part condensed versions of large scale computer programs currently used with a computer main frame. Although the HHC program is currently limited to thermal imaging sensors. future versions will address target acquisition analysis of day optics and television sensors as well.

Although the HHC equipment and algorithms are unclassified, programs are of such design that when used in conjunction with classified sensor parameters, classified target acquisition anlaysis can be performed as well. Discretion is required, however, on the part of the user to insure that analysis results are properly protected whenever classified sensors are considered.

In addition to this Introduction section, this report contains sections that describe the design and application of this analysis tool for a variety of target acquisition problems. Taken in their entirety, these sections serve as a user's guide for conducting thermal imaging anlaysis using the HHC target acquisition model. Specifically, Section II gives a description of the HP 41CV hardware and an overview description of the program. As described, the programs are executed interactively with the HHC operator using the full alphanumeric capability of the HP 41CV. Responses to the HHCs inquiries not readily known by the operator are listed in this section. A more detailed description of the HHC

hardware is provided by the manufacturer.¹¹ In addition, a full technical description of the algorithms is provided.¹¹ Section III gives illustrative examples of using the HHC to obtain the target acquisition capability for a typical thermal imager as well as performance variations one could expect for a variety of weather conditions. The examples used enable one to calculate the range dependent target acquisition capability of detection, classification, recognition and identification for the thermal sights under the weather conditions considered. Further, the examples illustate the probability of accomplishing this range dependent target acquisition and the search time requied for a given search field of view. In addition, examples are given that enables one to calculate atmospheric propagation in the 8- to 12- μ m spectral band for different weather conditions and ranges. The atmospheric propagation calculations allow the user to better understand the atmospheric influence on target acquisition performance.

The HHC hardware is shown in Figure 1, illustrating the HP 41CV Handheld Calculator with the magnetic card reader HP 82104A and alphanumeric printer HP 82143A. A plug-in module (not shown) called a STAT PAC can be used for input data preparations.

Figure 1. HP 41CV HHC hardware used for thermal imager performance analysis.

¹¹ Hewlett Packard, The HP-11C/11C1 Alphanimero Full Performance Programmable Calculator, Owner's Handbook and Programming Guide, September 1980.

The HP 41CV is a commercially available handheld calculator that provides considerable computational capability to the user even without the Target Acquisition Model. This capability is fully described in the HP 41CV Owner's Handbook and Programming Guide that is provided with the calculator, hence will not be repeated in this report. As shown in Figure 1, the printer is connected to the calculator via a single cable, whereas the magnetic card reader is attached to the calculator as a plugsin attachment. The Target Acquisition Model is written on magnetic cards that are read into the HHC using the card reader. The HP 41CV has continuous memory that preserves the program even after the HHC has been turned off; hence, once read, most users will rarely require additional card reading. Card reading will only be required when the Target Acquisition Model has been cleared from the HHC.

The printer and the HHC each contain rechargeable battery packs; hence, operation in remote field sites without d.c. power is no problem. A battery charging element is provided for the calculator and the printer that enables operation from US standard d.c. current as well.

A closeup of the HP 41CV HHC keyboard is shown in Figure 2. Once the program is loaded in the HHC, the operator uses only the On, User, A, number key 0 to 9, and the Run Key identified as R/S. As will be described in the following paragraphs, the response requirements by the user are generally limited to numerical keys 0 to 9, decimal dot, and R/S keys once the On, User, and letter keys have been executed.

Figure 2. Closeup of HHC hardware keyboard.

The user of the HHC for target acquisition analysis should first acquaint himself with the basic keyboard functions and display modes. The keyboard has 3 color schemes as follows:

White Key Lettering - Normal functions activated by key slelection.

Gold Key Lettering – 2nd level function activated by first striking gold key (shift), then hitting desired key.

Blue Key Lettering — Alphanumeric functions activated by first striking ALPHA key, then hitting desired key. For numbers and small letters, strike gold shift key when in ALPHA mode.

White Mode Key (Top) — On turns calculator on. (Figure 3) On again turns calculator off.

> User selects user mode. User again removes user mode.

PRGM selects program mode.

Do not select PRGM mode except for eard writing; otherwise, modification of TGT_ACQ Program may result. PRGM again removes PRGM. (Note: __ represents a space.)

ALPHA selects alphanumeric mode. ALPHA again removes ALPHA.

Figure 3. Mode keys with display (insufficient registers).

The STAT PAC is a small application module that inserts into the top of the 41CV calculator that allows curve fitting of FLIR MRT data required as an input to the TGT_ACQ Program.

The Peripheral Printer keyboard is self-explanatory. Normal mode of usages is On. Dark, and Normal switch positions. Paper is advanced by striking Paper Advance Key. The Print Key prints whatever is displayed on the HHC display. Caution is required when in the PRGM mode since these keys insert print or advance instruction in the TGT_ACQ Program.

II. OVERVIEW OF HHC TARGET ACQUISITION MODEL

The target acquisition algorithms described in this section have been developed for use in conjunction with the Hewlett Packard 41CV Handheld Calculator for the purpose of enabling the user to carry out thermal imager performance analysis independently at his desk or remote field site with as little as minutes of instruction. Target acquisition analysis capability provided include range, probability, and search time for the mission tasks of detection, classification, recognition, and identification. The algorithms are programmed into the 41CV in a manner to simplify user-response by taking full advantage of the alphanumeric capability of the HP 41CV. For the most part, the user need only answer the displayed inquiry of the HHC which he does by pressing numerical keys, then the R/S key. Because of these continuing displayed interrogatives, the user concentrates his attention on the analysis task instead of the mechanics of operating the HHC. In other words, the HHC keeps track of the mechanics of analysis so that the user can concentrate on understanding the analysis.

There are three elements associated with the HHC Performance Models, which are:

- HP 41CV Calculator and Peripherals (hardware).
- Target Acquisition and Atmospheric Program (software on magnetic cards).
- User's Guide (this report).

The User's Guide is this report, hence needs no further explanation. The other two elements will be described as follows:

HP 41CV CALCULATOR AND PERIPHERALS

The HP 41CV hardware consists of the following:

- HP 41CV Handheld Calculator.
- HP 82143A Peripheral Printer.
- HP 82104A Card Reader.
- HP 00041 14001 (15002) STAT PAC.
- HP 00097 13143-120 Blank Cards.

The HHC Target Acquisition Program is coded on 7 magnetic cards under the title of TGT_ACQ.

PROGRAM TGT_ACQ LOADING

As mentioned previously, the Target Acquisition Program entitled TGT_ACQ is written on 7 magnetic cards. These cards are read into the HHC as follows:

- Allocate 30 data registers XEQ ALPHA SIZE ALPHA 030.
- Check for availability of at least 207 program registers PRGM GTO... Displayed number is available registers.

If insufficient program registers are available, clear existing programs as follows:

Catalog 1 displays existing program names XEQ ALPHA CLP ALPHA, ALPHA (Key in program name) ALPHA.

- Without being in the PRGM Mode, insert each card twice into the card reader, once in each direction. The display indicates RDY nn of 13 each time with nn being the lowest numbered card yet to be read. Repeat card side if error message is displayed. Upon completion of last card, working is displayed.
 - Test execution of TGT_ACQ by:

User Mode, Σ — (i.e., strike "Shift" Key then "A" Key; Printer? is displayed if program is properly loaded.).

EXECUTING TGT_ACQ PROGRAM

The following description assumes the seven magnetic cards containing the Target Acquisition Analysis Program TGT_ACQ has been read into the HHC and turned on. Further the HHC has been put in the "User" mode, and "PRGM" or "ALPHA" mode was not selected. Upon striking the "Shift" and "A" Key, the HHC takes command and prompts the user as to each subsequent action through interactive inquiries. The user responds to the inquiries by key striking an appropriate numerical value then executes by striking the Run/Stop Key identified as "R/S." For example, after striking "Shift" and "A." the inquiry "Printer?" is displayed. The user responds by striking the 1 Key and the R/S Key if the printer is hooked to the HP 41CV. If not, the user strikes \emptyset , R/S, Hence 1 = yes and $\emptyset = \text{no}$ and R/S implements.

The specific inquiries presented to the HHC user are described in Table 1.

The matrix codes allow the user to obtain the target acquisition performance for each of the five discrimination tasks (Easy Detection, Cluttered Detection, Classification Recognition, and Identification) by entering either "20," "30," or "40," then "R/S," If only one target acquisition performance is desired, say Recognition Probability, the user selects the appropriate matrix code, i.e., 34 for Recognition Probability. After the target acquisition performances are displayed, the HHC returns to the "change?" inquiry. The matrix code used in conjunction with the change inquiry allows the user to rapidly parameterize target acquisition performance as a function of the battlefield environment.

There is one additional response to the Analysis No.? inquiry, being 97.

Upon keying in 97 or TR in Blue Keys, meaning transmission, the HHC asks the range for which the transmission is to be calculated. User responds with range in km, then R/S.

Table 1. TGT_ACQ Program Responses

No. HHC Display	User Response Options
Printer?	1 = Yes, 0 = No
1 Sensor?	$I = NFOV^{12}$
	$2 = WFOV^{12}$
	$3 = NFOV^{12}$
	$4 = WFOV^{12}$
	5 = New FLIR (See MRT Data preparations using
	STAT PAC instructions later in this section)
HORZ FOV?	Key in value for New FLIR in degrees
a value?	Key in a value of MRT curve fit
b value?	Key in b value of MRT curve fit
2 DELTA T?	Key in value of target \triangle T in $^{\circ}$ C
3 Target No.?	1 = M113
	2 = M60A1, $3 = M60A1$ Hulldown
	4 = M109, $5 = M109$ Hulldown
	6 = M551, 7 = M551 Hulldown
	8 = DIVAD, 9 = DIVAD Hulldown
	10 = T-62. $11 = T-62$ Hulldown
	12 = T-72, $13 = T-72$ Hulldown
	14 = T-64, $15 = T-64$ Hulldown
	16 = ZSU, 17 = ZSU Hulldown
4 ACQ PROB?	Value of probability of acquisition desired (0.0 to 1.0)
5 Weather?	1 = Clear. Hazy or Foggy
	2 ≈ Rain with Haze or Fog
6 Visual RG?	Value of visual range desired in km (0.0 to 50.0 km)
7 Ref Humid?	Value of Relative Humidity desired (0.0 to 1.0)
8 Air Temp?	Value of air temperature desired in degrees Celsius (°C)
Rain Rate?	Rain rate desired in mm/h (1.0 to 50 mm/w)

¹² L. P. Obert, J.T. Wood, C. J. Nash, (C) Visionics F-O Sensor Performance Handbook VOL I (Natural European Environments), Pages 5-2/4 and 5-6 (U), June 1981.

Table 1. TGT_ACQ Program Responses (Cont'd)

No. HHC Display	User Response Options
Changes?	One number 1 to 8 if any of the above responses need changed. If no changes are necessary, press R/S.
Analysis No.?	There are a variety of target acquisition analysis possible that can be selected by number. The specific analysis is requested using the matrix code in Table 2.
Search FOV? Range? What PROB?	Upon selection of the Matrix Code 40-45, the inquiries are generated for the user to answer in sequence. For the search FOV, the user enters the horizontal search field in degrees, then depresses "R/S." The range inquiry is answered by keying in the target range in km. The target acquisition probability for unlimited time (MAX PROB) is then displayed followed by what PROB? The user then selects a detection probability less than the value of MAX PROB shown in decimal fraction. Upon depressing the "R/S" Key, the HHC then gives the time to accomplish the target acquisition function for the search FOV and level of certainty (probability) requested.
Range?	User selection of Matrix Codes 30 to 35 generates this inquiry. The user enters the range in km (nearest tenth) to the target for which the probability is to be determined, and depresses "R/S."

Table 2. TGT_ACQ Analysis Number Responses

Matrix Codes	21	22	23	24	25
20	Easy Detection Range	Cluttered Detection Range	Classification Range	Recognition Range	Identification Range
	31	32	33	34	35
30	Easy Detection Probability	Cluttered Detection Probability	Classification Probability	Recognition Probability	Identification Probability
	41	42	43	44	45
40	Time to Easy Detection	Time to Clutter Detection	Time to Classify	Time to Recognize	Time to Identify

ANALYSIS OF NEW FLIRS

If the user selected 5 as his response to the 1 Sensor? inquiry, he needs to determine the a and b values that are requested by the HHC. These a and b values are found from the new FLIR MRT data using the HHC with the STAT PAC inserted by keying the HHC as follows:

XEQ ALPHA CL Σ E X P ALPHA

A chime sounds when the HHC is ready for the MRT data. The MRT is entered in pairs of value. The first value is the spatial frequency which is keyed in and followed by striking the Enter Key. The second value keyed in is the Δ T for that spatial frequency followed by striking the "A" Key. Continue this process with the next MRT data point of spatial frequency and MRT value, and the next, etc., until all MRT data is entered. When completed, press "E" and the HHC prints out the a and b values. In addition to the a and b value, the correlation coefficient of Fit, R², is provided the user. Also, the HHC provides the MRT value for any spatial frequency when the user keys in the spatial frequency an F follows with striking the R/S Key. The MRT value displayed is for the curve fitted MRT data.

The above a and b values are used to respond to the inquiries when the user has selected a new FLIR: i.e., answered the question Sensor? (Step. 1) with 5.

III. ILLUSTRATIVE APPLICATIONS OF HHC ANALYSIS

The HHC Program named TGT_ACQ is listed in the Appendix in its entirety. Several examples of the application of TGT_ACQ to target acquisition analysis are provided in this section. The examples are:

Case I — FLIR Range Performance (Table 3).

Case II — Search Time and Recognition Probability (Table 4).

Case III - Performance vs MRTs and Transmission (Table 5).

Case I. FLIR Range Performance.

The range performance for Sensor 1 as a function of visual range was calculated and the results summarized in Table 3. A copy of the display was printed and is provided in Table 6. The summary table shows the degrading part of FLIR target acquisition performance as the visibility diminishes. Note this example used the Matrix Code 20 to obtain the value of each of the five target acquisition tasks.

Case II. Search Time and Recognition Probability.

This example continues with the same sensor and weather conditions used in Case I, but illustrates the use of Matrix Codes 34 and 41. Had one used the Matrix Code 30 and 40, the search time and recognition probability would have been obtained for all 5 target acquisition tasks as in Case I. The ability to select the specific target acquisition task of interest saves considerable time when one is weather parameterizing various target acquisition task performances. The summary of the results of Case II is given in Table 4 and the display printout is listed in Table 6. The search time remains at a constant value for the visibilities of 7, 3, and 1 km since the detection probability is 1 for those conditions. The probability drops from 1 for the low visibility of 0.5 km, thus increasing the search time at that point.

Case III. Recognition Performance Versus MRTs and Transmission.

As shown in Tables 7 and 8, this case illustrates the HHC Programs ability to analyze different MRTs using data available to the user. The MRT data is keyed into, as described in Section II using the STAT PAC for new FLIR analysis. In addition, this case selected Analysis No. 97; i.e., the mode that produces the 8- to 12-μm transmission for any range requested. Table 5 provides a summary of the data obtained for the weather conditions given.

The above three cases serve to illustrate the breath of analysis possible using the iHIC TGT_ACQ Program. Many other and more detailed target acquisition analyses are possible. If in the process of such analysis any program errors are discovered, the user is requested to contact the Systems Analysis Team, Visionics Division of the Night Vision and Electro-Optics Laboratory at (703) 664-5843 or Autovon 354-5843.

Table 3. Predicted Range Performance

Visual Range (km)	Easy Det	Clut Det	Class	Rec	ID
7.0	20.96	8.96	5.10	2.74	1.43
3.0	18.45	8.47	4.94	2.69	1.41
1.0	6.89	4.80	3.41	2.17	1.25
0.5	2.06	1.82	1.58	1.25	0.88
Conditions					
Sensor = 1.0 Delta T = 5.0 Target # = 12.0			Weather = Rel Humic	i = 0.90	
ACQ PROB = 0.5			Air Temp Visual Rai	= 10.0 ige = as indica	ted

Table 4. Predicted Search Time and Recognition Probability

Visual Range (km)	2 km REC PROB.	2 km Search Time (s)
7.0	0.78	30.74
3.0	0.77	30.74
1.0	0.59	30.74
0.5	0.002	40.94
Conditions		
Sensor = 1.0 Delta T = 5.0 Target # = 12.0 ACQ PROB = 0.5		Weather = 1.0 Rel Humid = 0.90 Air Temp = 10.0 Visual Range = as indicated
		Search FOV = 30 deg Range = 2.0 km

Table 5. Predicted Recognition Performance Versus MRTs and Transmission

MRT #1 REC			0.5 km Trai	nsmission
(W/O Rain)	(W/O Rain)	(W/Rain)	8-12 km	Visual
3.74	2.74	1.88	.59	.50
3.65	2.69	1.80	.56	.34
2.74	2.17	1.14	.25	.09
1.42	1.25	0.60	.03	.01
5)).5		Rel Humid = Air Temp =	= 0.90 10.0	i
	REC (W/O Rain) 3.74 3.65 2.74 1.42	REC (W/O Rain) (W/O Rain) 3.74 2.74 3.65 2.69 2.74 2.17 1.42 1.25	REC (W/O Rain) (W/Rain) 3.74 2.74 1.88 3.65 2.69 1.80 2.74 2.17 1.14 1.42 1.25 0.60 Weather = 1 Rel Humid = Air Temp = Visual Range	REC (W/O Rain) REC (W/Rain) 0.5 km Transet 3.74 2.74 1.88 .59 3.65 2.69 1.80 .56 2.74 2.17 1.14 .25 1.42 1.25 0.60 .03 Weather = 1.0 Rel Humid = 0.90 Air Temp = 10.0 Visual Range = as indicated Visual Range = as indicated

Table 6. Display Listing for Range Performance Example

RHALYSIS NOP 41,69 FUN SERPEH FONT		2.94 FUR 25TECTED MAX PPSS 1.98	ынят Р8082 О, 16 Рин 1785 Эн. 74		MINE PARTY COMPANY		REPLYSTS 1607 34, FM FIN	. ±	Rivers 27 FF 66 [11] 7. 2 cm - 1 11 cm - 1	### ##################################	Staken Feet September 1998 - Philippe P	THE REPORT OF THE PROPERTY OF
CHANGES ROK	34,38 EUN 34,38 EUN	2.50 FUN RECOGNIZEE CONCRETE 0		CHRLYSIS NOV 41.60 P/m Specifics	30.00	2,80 - 805 Deteried MokePas 1,80	MHAT PROG?	1,77, 78, 74 1,77, 78, 78, 78	55 5.00 4.00 7.00 7.00 7.00 7.00 7.00	1,00 Flas 11 Till 12 T	#64,7515-167 33,601 F.n. 644,82	
CHRINGES? RUH	HARLISIS NO. 20. ñg Pun BETEFTET.	RANGE 24.6 CLUT DETECT	March 8735 CH355FFEB Profes 5.19	PEUSFALCER PENSE 2.74 18677 FEBD PONSE 1.43		FUS RMALYSIS 1197 34, 69 FUS		PRISELLIY 6.78		41.89 P.W. SEAP(# FB3) 30.89 F.W. Sueses	2,89 File Mail 1952 1,88 Mail 1952 1,88	1186 36.74 S. S. F. F. B. 1186 36.74 S. S. S. F. F. B. 1186 36.74 S.
	ZE, BB RUH	RHKGE 6.39 CLUT DETECT RRKGE 4.80	(1.8551F1ED PRHGE 3.41 RECOGNIZED	PANGE 2.17 IDENTIFIED RANGE 1.25	CHANGES? 6.88 FIRE	90° 6 3,68	стата Сиямистя Ризн	28,09 RUH 28,09 RUH	DE 150 TEU PARICE 15,45 (1)(T USTECT PARICE 5,47	CLGSSIFTED Bridge 4,94 Retigantzed	PROSE 2.65 196411F185 PunGS 1.41	5,89 FUN 6 VISUAL FG? 7,89 FUN
AEQ -161 ALQ? PRINTES? 1.88 F.24	2 DELTG T? 1.86 PUR	5, 80 F.		1,000 Page 50 V See 1997 S	10	9 GIP TEMP? 10.00 Plus cooses	CHGNGEST Ploy	TETECTED 28.00 RUN	2011 255 de	930 850 850 860 830 850 850 850 850 850 850 850 850 850 85	1064119160 PAVCE 8.28 2111 1	903 - 8811 25 - 5008 - 8819 908 - 8819

Table 7. Display Listing for Different MRT Example

	The second secon	10 H 0 H 5 H 5 H 5 H 5 H 5 H 5 H 5 H 5 H	E		Wind of Standard	P	(H4015E3)																													
OSCINETE HERENE	NUA 39.1	1,366,361	1,65 FOR		(##Shabb / 1	0.80 POTE (0.80)			8.00 T 25	11 11 11 11 11 11 11 11 11 11 11 11 11		P.04 68.40		96.1		Wild Comments	684 S182 BBB	24,08 55.4	432166634	Estate State Stat	0 G G G G G G G G G G G G G G G G G G G	र पुरास करा है। संस्थित		3.50 AV		ल 	Qip. 1154 pret	不通 不可可。	· · · · · · · · · · · · · · · · · · ·	Fig. 1. S. C. C.	**************************************	(S112) 4 (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	and with			
CHANGES?	RUS	HIGH STOLEN NO.	34.67	FPR 5 3.74			ં કેલ કિલોમ		5.82 FUR	# 10 mm of the contract of the	CHECKLO /	5 051 01 05 07 07 07 07 07 07 07 07 07 07 07 07 07	24.66 FUS		PANEE 3.65			AND SOFT	TOTAL BUT TO THE OFFICE OF				The second secon	:	\$2.52 is 1655				Section 1985		(530mi)	7 G.	14. Pet 1. Pet 1	(2 m) (1 m) (2 m		
XPOK -2599**		TO SECURE	# - @ - & - & - & - &	E 0.00 1	- (CL)	3.38 E87E8	0,49 /62.2	4,91 ENTER:	F 057 39*1	463153 ft 5	は 600 mg 2 mg		7. 7. P. C. 1. C. C. 1. C.		1,50		XE9 11GT AUG	्वद्राक्षा वर्ष	494 88.1			16.4 BE 12		2004 CM. CM.	- 100 FF 4	ל 1 ביוש ל	Bidd ed. C		47 4 59 21 12 50 12 1		Service of the servic			7 PFL HUMID2	and the second of the second o	and the first features.

Table 8. Display Listing for Atmospheric Data Example

45 45 46 46 46 46 46 46 46 46 46 46 46 46 46	XE9 171 HILL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Cheb			
Fig.		CHPIGES?	
Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10 Fig. 10		1988 *- 12	
Fig.		6 V[158] Nu	
Fig.		SALE DIES	:
Fig.		De 10	
Part		-1 10 2 10 31	
Fight Figh		(HRIGES)	WICTERNO MARK
Fight Figh			· · · · · · · · · · · · · · · · · · ·
FURE PROPERTY PROPERTY PROPERTY		ANALYSIS NUZ	
RUTH PARTICULAR PARTICULAR PARTICULAR FURS CHRRIGES 6. VESURE FURS CHRRICES FORT CHRRIGES CHRRIGES CHRRIGES FORT CHRRIGES CHRRICES CHRRICES FORT CHRRICES CHRRICES CHRRICES		09.452	
FARR FARR FARR STATE ST			
FORTH PATE 0.00 FORTH PATE 0.00			
Fig.			, T
FORM 6 MINING FOL CHRIST CHR		90°9	
PORT		Cultural Public	(SES) (SES)
FIRE FORM FURS HONE FURS STAND STAN		HS.0	
First	4,5	CHIN PAIR	
FOR CHARLESS ROLES FURE BROKESS ROLES FOR EACH F		¥9°0	97. gH
FORE CHRINGS FORE CHRINGS FORE CHRINGS FORE CHRINGS FORE CHRINGS	Sacret 1		
Fig. PURE PURE <th< td=""><td></td><td>CHREE)</td><td></td></th<>		CHREE)	
Fig. (1997) Fig.			8-12 18-86 - 0.55
Fig. 10 Fig.	69.	THE STOCKERS	FOR THERE IS
FARCONTICE FARCONTICE FARCONTICE 1997		Grant Control of the	
Fund Market	PUNCE L.SS	METAL INC.	
Fig.	00.1	F44(5) 4.08	
Filth Fall Fall Formation Filth Fall Fall Formation Filth Fall Formation Filth Fall Formation Filth Fall Formation Filth Fall Fall Formation Filth Fall Formation Filth Fall Formation Filth Fall Fall Fall Fall Fall Fall Fall Formation Filth Fall Fall Fall Fall Fall Fall Fall Fal			
ROSA FRANCE 97.90 FUN STREET			
POINT O .56 FUT C .56		88.54 88.54	E.
1.69 PUN		6 10 NO 6	;
A-12 TGGS 0.03 A-12 TGGS 0.03 A-12 TGGS 0.03 A-12 TGGS 0.03 A-12 TGGS 0.01 A-12	69 3	60.00	CS 3136487
VIS TRANS 0.81 MARCESTS NO FUR CHARGES 6.69 FUR EARTY 7.80 24.06 FUR 6.69 FUR 8-12 TRANS 0.7 TABLES 1.6 0 FUR 8-12 TRANS 0.7 TABLES 1.6 FUR 8-12 TRANS 0.7 TABLES 0 FORM FORM VIS TRANS 0.2 ATABLES VIS TRANS 0.2 ATABLES 1.6 FUR 1.6 <t< td=""><td>3.93</td><td></td><td></td></t<>	3.93		
PUG ====== STAR STAR <t< td=""><td>THOUSES?</td><td>VIS TRANC 6.81</td><td></td></t<>	THOUSES?	VIS TRANC 6.81	
CHANGES FOR 6.09 FUR 8-12 TEAS C. 7.9 6.415UAL RG 7 1.69 RUN VIS TEAR VISA FOR SILE TEA			ž
24.06 FOR 8-12 TANN 8-12 TANN 1-30 TON 8-12 TANN 1-30 TON		CHANGES?	
5 VESCHE F.J. 59 RUN FORM FATE?	24.68	6.04 (6.07) 5.07	
FOLK RAIL	RECOGNIZED		CIS IEEE F.CE
	KANGE 1.80		

3

5.48

APPENDIX -- TGT_ACQ PROGRAM LISTING

244464 18 SE RO B TELL R FRIEND SE + 170 AP FRIEND SE + 170 AP FRIEND SE XEB 14D BE 51 01 BE	2944.EL 37 -EPSOK - G4:EN E3:FP 20.9L 19 PSUPPL 19 PSUPPL 19 XEU 180 96 4,10 19	2.14.(1.39) 50.073 (1.01) 310.53 (1.01) 310.54 (1.01) 310.54 (1.01) 310.55 (1.01)	NEW 22 WERE 23 NEW 23 N	7314/181 20 XED 82 XED 28 FIN 2354/1 77 XED 83 AEQ 29 FIN	77-4-12, 24 76-68, 25 76-610, 25 77-77-77-77-77-77-77-77-77-77-77-77-77-	767-188, 389 XFQ 79, XEQ 81, AEC 29 XEQ 59, XEQ 81, OEQ 20 XEQ 59, XEQ 81, OEQ 20 XEQ 79, XEQ 82, XEQ 30 XEQ 79, XEQ 62, XEQ 30 XEQ 79, XEQ 63, XEQ 30 XEQ 83, REW
1754 BL - 41* 3.912 STO BL 9 STO BS 510 11 GTO IND 15 140* E 32 ************************************	\$10 Nc. 16175 * 1 * \$10 Nc. 16175 * 1 * \$1475 * 510 Nc. 1475 * \$1475 * 510 Nc. 1425 \$10 Nc. 510 Nc. 1425 \$15 Nc. 510 Nc. 1425 \$15 Nc. 510 Nc. 1425 \$15 Nc. 510 Nc. 1425	1,45 510 02 6,31 510 03 1520[EU 05 FC 16 EUL 02 314 801 03 0 1 0 P.L. 16	• FGL 61 7 1-X PLL 65 + STC 85	1944/EL 19 273.14 STO RL POL 17 + STO 83 STO 3 / D.X FMS EYN 8757/E4 * FMI 7 * STO 81 , ARGRASG * FLL 83 * CTO 84 1 - FMS 489	* STO 60 FELL 0.5 275. * STO 60 FELL 0.6 275. * STO 60 FELL 0.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6	FILE 8 - 510 90 FILE 8 - 8 - 68 510 8 - 510 29 FILE 96 FILE 95 + 510 23 FILE
7541EL 82 3,27 \$10 13 F1h 7941EL 83 1,31 \$10 13 F1H 8341EL 84	3.66 \$10 13 Kin 874181 85 1.15 \$10 13 Kin 914181 86 2.27 \$10 13 Fin	95*18E #7 .75 STO 13 RTH 99*EE #5 3.8 STO 13 FTH	1434.RL 83 2 STO 13 RTH	167-019, 16 2.4 510-13 FIN 171-018, 13 8 510-13 FIN	1144 B 12 1164 B 14 2.27 510 13 R 14 1784 B 15 72 18 18	.87 519 15 818 1754.18
#1+LEL -1GT A: #** CF F1 CF &2 P -FRINTEP?* PROBFF X=Y2 SF E1 XEQ 39CF 30 XEQ 31 XEQ 92CP 30 GTG 18	15-LEL 29 11 SEMSON - FRONET STO 83 STO IMB 83 28-LEL 91 22 STO 25 STO STO STO 25 STO 25 STO	290te. 02 6.8 510 54 3.54 510 25 2.883 510 26 FTN	364LEL 83 5 sta 24 3.51 st0 25 .76 st0 26 ftn	440[EL 64 15 STO 24 3,51 STO 25 2,29 STO 26 PTK 520[EL 95 +HOEZ FOV?*	54% EL 10 FROMFT 510 24 5 WUEST FROMET 1N CMS 510 25 NO 20 PTM FROMET 510 26 PTM	644,81.91 -3 topget HG,*** PEGMPT STG 12 GTG TMB 12 714,81 HJ 2,83 STG 13 RTM

TGT_ACQ PROGRAM LISTING (CONT'D)

: :: ::				i vi		STORY ARTHUR STATE	891EW FS 81 STOFF FTD		7 1 2000	F18 - 614 - 51					Section of the cape		7 8 8 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					CHC 010 44 4/0 13	ME 94 113 STILL BOLLS		· * -560 · *	2		7 5 7 1 CT 0 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1 O 1		75 (12) 976 4	Tame of the left of the care	.6 .15 19 .51 31 915		.b (4) (6)	The same of the sa	STO 17 FS 8. 6 - 6				i.	WE 970	•	St. Company of the C					
463-181 49 XI 9 39 XEQ 68	このでは、「人名の本本」の正式を	STU-SC KUL BG AR-TY	610 38 / 1 = (45 LR	(HS 3,4 * NOL 23 *	24 / MIL 84 / 154	STO 84 "TIME " APC: 64	RATE HOLD FS 10.0	FIN		43 Made P. 25	なの されい 一種の事のない まのしもののなる	ARAGE FRUIT STOLES	Z. X		4994(5) 39	のの一門の種類のなりには、一般	## CELO # 400 EU	DO 30 CODA 50 30 B	Mail an other Park as a second	THE PART OF THE PA	Pri A7 FCL 25 +	FUL P4 - P(1.26)	. NS 13 + EL 109	STO 89 REG 37 PIN		30 10 1005	00 01% 00 000 00 000 000 000 000 000 000	ALP CT ALB LT ALB LT		PPTL 86 AVIEW RIN		52.58 of 12 29	7 1365 36 103 62 103	PC 28 + 510 84	* G1 13d 91 13d	201 12 7 201 26 4	57 13 7 7 CL 23 7 511 B4 4 511 B4	: :	FOLM: FOLCO *	ž	•	5414tgt 37	ાં કા 11 ક લ્યા છ	* E.J. * E. Se Ols	STO 64 FOL 63 FOL 64	Y1X ST0 88 1 +	PCL 68 7 1/X 510 68	NTO.	
		3884LBL 45	XEQ 47 XEQ 35 XEQ 48	PTH		2924(5) 97	3739E0L 77 VPS 20 E01 30 E01 33	AEM 17 RUL 20 FOL 20	# 510 01 RUL CO 1981	FUL 29 # KCL #1 *	CHS ETS SIU 81	-8-12 TRANS - APCL 91	DATEM 3, 912 REL 16 7	# 30 Lin + 10 Lon	22 22 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	the state of the s	YIS TRANS HALL BY	AVIEW RIN		4250 F. 61	25 MELEN - MELEN - 25	or o	MIN 61 010		4 (1 4 6 5 %)	-CLUT BETECT - MAJEW 1	STO 18 KTH		ES 181+26+	•rinssieren Hwien 2	•	סות זים אונים			A MAICH DINCONSTRUCT	S10 18 KIN	:		-IDENTIFIED" AVIEW 8	STO 16 RIM		4550 81 47	184089 - 6808 HOSBS-	198030 *C33800* fc ora	510 50 FMH52 15551	אות בש אונו			
	3254181 31	85 63X 18 63X 65 65X			271416, 29	50 50 50 50 50	AEG 79 AEG 82 AEG 59	XEU 39 KIN			XEQ 79 XEQ 83 XED 39	XF9 59 RTh		2120, 61 21		AEU CY AEU SA AEU SS	XEQ 59 FIN		34341.81.35	95 03X 28 03X 97 03X	2	AEM 53 FIN		. ·	6	XEQ 82 3EQ 43 3EQ 87	56 g 54	% 69 %		750at Et at	1	XER 47 XEW 81 XEW 48	<u> </u>			XEQ 47 XEQ 82 XEQ 48	RTH		378+LBL 42	XEQ 47 XEQ 83 XEQ 48			101al C1 44		r S	<u> </u>			

DISTRIBUTION FOR NV&EOL REPORT DELNY-TR-0030

No. Copies	Addressee	No. Copies	Addressee
20	Commander	1	Project Manager
	FRADCOM		M60 Tank System
	ATTN: DRDEL-AP-OA		Warren, MI 48090
	M. Geisler		
	Adelphi, MD 20783	1	Project Manager
			MICV
1	Director		Warren, MI 48090
	Atmospheric Sciences Lab		
	ATTN: DELAS-D	1	Project Manager
	White Sands Missile Range, NM		TOW/DRAGON
	88002		Redstone Arsenal, AL 35809
1	Director	1	Project Manager
	CS&TA Laboratory		GLLD/LTD
	ATTN: DFLCS-D		Redstone Arsenal, AL 35809
	Fort Monmouth, NJ 07703		
		1	Project Manager
1	Director		VIPER AHAMS
	Electronic Warfare Lab		Redstone Arsenal, AL 35809
	ATTN: DELEW-D		
	Fort Monmouth, NJ 07703	1	Project Manager
			AAH
1	Director		AVARAIXOM
	Electronics Technology and		St. Louis, MO 63166
	Devices Lab	1	Desire A Marrows
	ATTN: DELET-D	1	Project Manager
	Fort Monmouth, NJ 07703		TADS/PNVS AVARADCOM
1	Commenter		St. Louis, MO 63166
1	Commander Harry Diamond Labs		St. Louis, MO 05100
	ATTN: DELHD-AC	1	Commander
	Adelphi, MD 20783	•	ARRCOM
	Aucipin, MD 20765		ATTN: DRSAR-CPI:
1	Director		Rock Island, IL 61299
•	Signal Warfare Lab		Total Control Control
	ATTN: DELSW-D	1	Project Manager
	Vint Hill Station, VA 22186		RPV
			AVARADCOM
1	Project Manager		St. Louis, MO 63166
	XM-1 Tank System		
	Warren, MI 48090	1	Commander
			ARRADCOM
			ATTN: DRDAR-SEC
			Dover, NJ 07801

No. Copies	Addressee	No. Copies	Addressee
l	Commander	1	Commander
	CORADCOM		NARADCOM
	ATTN: DRDCO-PPA-CA		ATTN: DRDNA-O
	Fort Monmouth, NJ 07703		Natick, MA 01760
1	Commander	1	Commander
	CERCOM		AMMRC
	ATTN: DRSEL-CP-CR		Watertown, MA 02172
	Fort Monmouth, NJ 07703		
		i	Commandant
	Commander		US Army Infantry School
	MERADCOM		Ft. Benning, GA 31905
1	ATTN: DRDMF-CA		
3	ATTN: DRDME-WP	1	Director
	Fort Belvon, VA 22060		Defense Advanced Research
			Projects Agency
ı	Commander		Rosslyn, VA 22209
-	MIRADCOM		
	ATTN: DRDMI-DC	ī	Commander
	Redstone Arsenal, Al. 35809		US Naval Research Lab
	71,301,27,71		Washington, DC 20375
1	Commander		
	MIRCOM	1	Commander
	ATTN DRSMI-FO	•	HQ DARCOM
	Redstone Arsenal, AL 35809		ATTN: DRCCP-E
	Treasure / Fraction, / Fr. O. 100		Alexandria, VA 22333
1	Commander		, , , , , , , , , , , , , , , , , , , ,
•	AVARADCOM	1	Commandant
	ATTN DRCAV-BC	•	Defense Systems Management
	St. Louis, MO 63166		School
	or Experience of the		Fort Belvoir, VA 22060
ì	Commander		
•	TSARCOM	1	Commandant
	ATTN: DRSTS-CO	·	US Army Engineer School
	St. Louis. MO 63166		Fort Belvoir, VA 22060
	St. Estas, Mey Ostoo		1 11 12 22 10 10
1	Commander	1	Commander
	TARADCOM		US Operational Test and
	ATTN: DRCTA-VC		Evaluation Agency
	Warren, MI 48090		Fort Belvoir, VA 22060
1	Commander	1	Commander
	TARCOM		USACSC
	ATTN: DRSTA-NC		Fort Belvoir, VA 22060
	Warren, MI 48090		

No. Copies	Addressee	No. Copies	Addressee
1	HQDA	t	Project Manger
	ATTN DACA-CA		REMBASS
	Washington, DC 20310		ATTN DRCPM-RBS
			Fort Monmouth, NJ 07703
12	Defense Technical Into Cti		
	ATTN DDC-TCA	l	Project Manager
	Cameron Station (Bldg 5)		FIREFINDER
	Alexanuria, VA 22314		ATTN DRCPM-F-F
			Fort Monmouth, NJ 07703
1	Commander		
	US Army Training & Doctrine Cmd	ı	Department of Defense
	ATTN ATCD AN		Production Engineering Spt Otc
	Fort Monroe, VA 23651		(PESO)
			ATTN D. Anderson
2	Commander		Cameron Station
	US Army Logistics Ctt		Alexandria, VA 22314
	Fort Lee, VA 23801		
		t	Project Manager
1	Commander		CAC
	US Army Systems Analysis		ATTN DRCPM-CAC
	Agency		Vint Hill Station, VA 22186
	Aberdeen Proving Ground, MD		
	21005	t	Project Manager
			SOTAS
1	NASA Scientific & Tech Info		ATTN DRCPM-STA
	Facility		Fort Monmouth NJ 07703
	ATTN: Acquisitions Branch	1	Common to the
	(S-AK/DL)	l	Commandant US Army Armor School
	P.O. Box 33		Fort Knox, KY 40121
	College Park, MD 20740		POR KIIOX, K.1. 4011
	0. 1.0	ı	Commandant
1	Study Center	•	US Army Field Artiflery School
	National Maritime Research Ctr		Fort Sill, OK 73503
	King's Point, NY 11024		TOTE SHIP CONT.
1	Commander	i	Commandan [†]
1	USAAVNC	·	US Army Air Detense School
	Fort Rucker, Al. 36362		Fort Bliss, TX 79916
	TOTO NUCKO, AL 100.002		• • • • • • • • • • • • • • • • • • • •
1	Director	1	Director
•	NV&EOL		US Army Air Mobility R&D Ctr
	ATTN: DELNU-TMS:SEMCO		Ames Research Ctr
	Fort Belvoir, VA 22060		Mottett Field, CA 94038
	white memory restrictions		

No. Copies	Addressee	No. Copies	Addressee
.3	Commander	l	Director
	AESC/ACC		TRASANA
	Andrews AFB, MD 20334		White Sands Missile Range, NM 88002
2	Commander		
	ESD/ACC	l	Commander
	Hanscomb AFB, MA 01730		USA MICOM
			Redstone Arsenal, AL 35809
1	Commander		
	US Naval Ordnance Lab/White Oak	1	Commander
	ATTN: Technical Library		CORADCOM
	Silver Spring, MD 20910		ATTN: DRDCO-PPA-CA
			Fort Monmouth, NJ 07703
1	Commander		
	Naval Electronics Lab Ctr	1	Commander
	ATTN: Library		CERCOM
	San Diego, CA 92152		ATTN: DRSEL-CP-CR
			Fort Monmouth, NJ 07703
1	Armament Development and Test Ctr		
	ATTN: DLOSL, Tech Library	1	Commander
	Eglin Air Force Base, FL 32542		AVARADCOM
			ATTN: DRCAV-BC
40	Director		St. Louis, MO 63166
,,,	NV&EOL		St. Pouls, mo Os 100
	ATTN: DELNV-VI	1	Commander
	Fort Belvoir, VA 22060	-	TSARCOM
	•, =		ATTN: DRSTS-CO
1	Commander		St. Louis, MO 63166
•	Sacremento Army Depot		or, Edula, Mo do 100
	Sacremento, CA 95813	1	Commander
	Sacremento, CA 75015	•	TARADCOM
1	Commander		ATTN: DRCTA-VC
•	New Cumberland Army Depot		Warren, M1 48090
	New Cumberland, PA 17070		Waltell, MT 46090
	New Cumberland, 12, 17070	1	Commander
ì	Commonder	'	TARCOM
,	Commander		
	Anniston Army Depot		ATTN: DRSTA-NC
	Anniston, AL 36201		Warren, MI 48090
1	Dept of Defense	1	Commander
•	Production Engineering Spt Ofc	·	NARADCOM
	(PESO)		ATTN: DRDNA-O
	ATTN H.K. MacKechnie		Natick, MA 01760
	Cameron Station		Matick, W/A U1/OU
	Alexandria, VA 22314		

No. Copies	Addressee	No. Copies	Addressee
i	Commander	1	Commander
	AMMRC		US Army Training & Doctrine Com
	Watertown, MA 02172		ATTN: ATCD-AN
			Fort Monroe, VA 23651
1	Commander		
	US Army Infantry School	2	Commander
	Fort Benning, GA 31905		US Army Logistics Ctr
			Fort Lee, VA 23801
1	Director		
	Defense Advanced Research	8	Commander
	Projects Agency		US Army Systems Analysis Agency
	Rosslyn, VA 22209		Aberdeen Proving Ground, MD 21005
1	Commander		
	US Naval Research Lab	1	Commander
	Washington, DC 20375		USAAVNC
			Fort Rucker, AL 36362
1	Commander		
	HQ DARCOM	1	Director
	ATTN: DRCCP-E		NV&EOL
	Alexandria, VA 22333		ATTN: DELNV-TMS/SEMCO
			Fort Belvoir, VA 22060
1	Commandant		
	Defense Systems Management	1	Project Manager
	School		REMBASS
	Fort Belvoir, VA 22060		ATTN: DRCPM-RBS
			Fort Monmouth, NJ 07703
1	Commandant		
	US Army Engineer School	1	Project Manager
	Fort Belvoir, VA 22060		FIREFINDER
			ATTN: DRCPM-FF
1	Commander		Fort Monmouth, NJ 07703
	US Operational Test and		
	Evaluation Agency	1	Project Manager
	Fort Belvoir, VA 22060		CAC
			ATTN: DRCPM-CAC
i	Commander		Vint Hill Station, VA 22186
	USACSC		
	Fort Belvoir, VA 22060	1	Project Manager
			SOTAS
1	HQDA		ATTN: DRCPM-STA
	ATTN: DACA-CA		Fort Monmouth, NJ 07703
	Washington, DC 20310		

No. Copies	Addressee	No. Copies	Addressee
ι	Commandant US Army Armor Center and School ATTN: ATZK-CD-SD	i	Director Office of the Project Manager SMOKE ATTN: DRCPM-SMK (COL Eurie)
	Fort Knox, KY 40121		Aberdeen Proving Ground, MD 21005
1	Commandant		•
	US Army Field Artillery School Fort Sill, OK 73503	1	Director US Army Waterways Experiment Station
ı	Commandant		ATTN: WESEA (Lewis Link)
	US Army Air Defense School Fort Bliss, TX 79916		P.O. Box 631 Vicksburg, MS
ı	Director US Army Air Mobility R&D Ctr Ames Research Ctr Moffett Field, CA 94035	1	US Army Operational Test Evaluation Agency ATTN: CSTE-STS (Fred McCoy) 5600 Columbia Pike Falls Church, VA 22041
l	Commander AFSC/ACC	ł	Commander
	Andrews AFB, MD 20334	,	US Army Electronic Research and Development Command
J	Commander ESD/ACC Hanscomb AFB, MA 01730		ATTN: CM/CCM (F. Manion) 2800 Powder Mill Road Adelphi, MD 20783
1	Commander US Naval Ordnance Lab/White Oak ATTN: Technical Library Silver Spring, MD 20910	1	Commander US Tank Automotive Research and Development Command ATTN: DRDTA-ZS (Otto Renius) Warren, MI 48090
l	Commander Naval Electronics Lab Ctr ATTN Library San Diego, CA 92152	1	USA Headquarters ATTN: ATCD-IE-R (Mr. Ingram) Fort Monroe, VA 23651
1	Armament Development & Test Ctr ATTN: DLOSL, Tech Library Eglin Air Force Base, FL 32542	3	Commander USA Atmospheric Sciences Lab ATTN: DELAS-EO (Dr. F. Niles) White Sands Missile Range, NM
ł	Harry Diamond Lab ATTN: DELHD-R-C (Dr. D. Giglio) 2800 Powder Mill Road		88002

Adelphi, MD 20783

No. Copies	Addressee	No. Copies	Addressee
3	Headquarters DA ATTN: DAMI-ISPC (Mr. J. Beck) PENTAGON Washington, DC 20310	l	Commander USA Atmospheric Sciences Lab ATTN: DELAS-EO (Dr. L. Duncan) White Sands Missile Range, NM
1	HQ ARRADCOM ATTN: DRADAR-SEA (Dr. R.J. Moore) Dover, NJ 07801	1	88002 Commander USA MICOM
I	Commander, USAARRADCOM CSL ATTN: DRDAR-CLB-PS (Steubing)		ATTN: DRSMI-IEO (R&D) (Mr. G. Wiedenhofer) Redstone Arsenal, AL 35809
,	Aberdeen Proving Ground, MD 21010	1	Commander USA OTEA 5600 Columbia Pike Falls Church, VA
1	PM Smoke/Obscurants ATTN: DRCPM-SMK-T (J. G. Nelson) Aberdeen Proving Ground, MD 21005	1	Commander NRL Code 8320
į	Director AMSAA	1	ATTN: L. H. Ruhnke Washington, DC 20375
	ATTN: DRXSY-GPL (Mr. F. Campbell) Aberdeen Proving Ground, MD 21005	'	USA OTEA ATTN: Mr. Fred McCoy 5600 Columbia Pike Falls Church, VA
1	Commander USA Test & Evaluation Command ATTN: DRSTE-AD-M (W. Baity) Aberdeen Proving Ground, MD 21005	1	Commander USA Ballistics Research Lab ATTN: DRDAR-BLB (A. LaGrange)
1	Commander USA Combined Arms Center ATTN: CACDA-CCA (Mr. K. Pickett)	1	Aberdeen Proving Ground, MD 21005 Commander USA Concepts Analysis Agency
1	Fort Leavenworth, KS 66027 Mr. Lucien Biberman		ATTN: MOCA-SMC (Mr. Hal Hock) 8120 Woodmont Ave
•	Institute of Defense Analysis Science & Technology Div 400 Army-Navy Drive Arlington, VA 22202		Bethesda, MD 21004

No. Copies	Addressee	No. Copies	Addressee
1	TRADOC Systems Analysis Agency	1	Director
	ATTN: ATAA-TDB		AMSAA
	(Mr. L. Dominguez)		ATTN: DRASY-S (M. Reches)
	White Sands Missile Range, NM 88002		Aberdeen Proving Ground, MD 21005
1	TRADOC Systems Analysis Agency	1	HQDA
	ATTN: ATAA-D (Mr. W. Payne)		ATTN: DAMA-ARZ-D
	White Sands Missile Range, NM		(Dr. F. Verderame)
	88002		Pentagon
			Washington, DC 20310
1	Commander		
	USA TRADOC	1	Commander
	ATTN: ATCD-TFC		Naval Weapons Center
	(Dr. M.P. Pastel)		ATTN: Dr. Alex Shlanta
	Fort Monroe, VA 23651		Code 3918
			China Lake, CA 93555
1	Commander		
	ASD/ENASC	1	Commander
	ATTN: (Larry J. Beasley)		HDL
	Wright-Patterson AFB, OH 45433		ATTN: DELHD-SD (Dr. W. Pepper)
1	Commanding Officer		2800 Powder Mill Rd
	Naval Intelligence Support Ctr		Adelphi, MD 20783
	ATTN: NISC (Code 43)		-
	(H. F. St. Aubin)	1	Commander
	4301 Suitland Rd		USAMERADCOM
	Suitland, MD 20390		ATTN: DRDME-RT
			(O. Fred Kezer)
1	Commander		Fort Belvoir, VA 22060
	USA MICOM		
	ATTN: DRSMI-OGA	1	Commander
	(Dr. B. Fowler)		Naval Surface Weapons Center
	Redstone Arsenal, AL 35809		ATTN: Diana L. Shamblein
			Code DG-302
1	The Rand Corporation		Dahlgren, VA 22448
	ATTN: Mr. R. Huschke		
	1700 Main St.	1	Commander
	Santa Monica, CA 90406		USA Combined Arms Center
			Developments Activity
1	Commander		ATTN: ATZL-CA-TM-K
	USAMICOM		(Maj. C. R. Otto)
	ATTN: DRCPM-HF-GLD		Fort Leavenworth, KS 66026
	(M. E. Davis)		
	Dad to Arrenal Al 2000		

Redstone Arsenal, AL 35809

No. Copies	Addressee	No. Copies	Addressee
1	Commander Marine Corps Development Ctr ATTN: (FPR) MEDEC (Capt L. Martin) Quantico, VA 22134	l	Commander USA Combined Arms Combat Development Activity ATTN: ATZLCA-SAN (R. E. DeKinder, Jr.) Fort Leavenworth, KS 66027
	Commander Dugway Proving Ground ATTN: STEDP-MT (Dr. L. Solomon) Dugway, UT 84022	1	Commander Atmospheric Sciences Lab ATTN: DELAS-EO-MO White Sands Missile Range, NM 88002
1	Commander Tactical Air Command ATTN: DRP (Maj McCann) Langley AFB, VA 23665	1	PM AAH ATTN: DRCPM-AAH-TM-S (Mr. Reago) St. Louis, MO 63166
1	Director Oklahoma State Field Office ATTN: Dr. C H. Arpke P.O. Box 1925 Eglin AFB, FL 32542 Commandant	1	Deputy Under Secretary of the Army (Operations Research) ATTN: Mr. Woodall HQDA PENTAGON Washington, DC 20310
1	USA Field Artillery School ATTN: ATSF-GDRA (Jack J. Price) Ft. Sill, OK 73503	1	Deputy Under Secretary of the Army (Operations Research) ATTN: Dr. Fallm HQDA PENTAGON
l ,	Commander USATRADOC ATTN: ATCD-Z (H. Upton) Fort Monroe, VA 23651 USA Chem School	t	Washington, DC 20310 HQ DA ODCSOPS ATTN: DAMO-RQD (C. Collat) Washington, DC 20310
I	ATTN: ATZN-CM-CDM (J. Scully) Fort McClellan, AL 36205	1	HQDA ATTN: DAMA-CSS-C (LTC R. Bills) Washington, DC 20310
1	Commander Naval Air Systems Command ATTN: Code Air 310C (Dr. H. Rosenwasser) Washington, DC 20361		-

No. Copies	Addressee	No. Copies	Addressee
1	Director Defense Intelligence Agency ATTN: DT-1A (Mr. Berler) PENTAGON Washington, DC 20310	1	Commander USAMICOM ATTN: DRDME-REW (Mr. H. Anderson) Redstone Arsenal, AL 35809
3	Commandant US Army Infantry Center and School ATTN: ATSH-CD-CS (OR/SA) (Dr. Dyer) Fort Benning, GA 31905	1	Commander Harry Diamond Labs ATTN: DELHD-RAC (R. Humphrey) 2800 Powder Mill Rd Adelphi, MD 20783
l	ATTN: ATSH-CD-MS-F (Cpt R. Copeland)	1	Air Force Geophysics Labs OPA (ATTN: Dr.R. Fenn) HanscomAFB, MA 01731
ì	ATTN: ATSH-CD-MS-E (Mr. McKenna)	1	Air Force Geophysics Labs OPA (ATTN: Dr. R. McClatchey) Hanscom AFB, MA 01731
1	Commander USA Engineer Waterways Experimental Station ATTN: Mr. G. Lundien Vicksburg, MS 39180	1	Director Advanced Research Projects Agency ATTN: Dr. J. Tegnelia 1400 Wilson Blvd Arlington, VA 22209
1	USAF Airstaff Directorate of Concepts PENTAGON AITN: Maj E. Duff Washington, DC 20310	ı	Aerodyne Research, Inc. Bedford Research Park ATTN: Dr. J. Ebersole Crosby Dr. Bedford, MA 01730
1	USAF Airstaff Directorate of Concepts and Analysis PENTAGON ATTN: Special Assistant for Weather (Maj F, Kolzynski) Rm 1D380B Washington, DC 20310	1	Commander USAARRADCOM Chemical Systems Lab ATTN: DRDAR-CLY-A (R. O. Pennsyle) Aberdeen Proving Ground, MD 21010
I	Commander USATRADOC Systems Analysis Activity ATTN: ATAA-TFM (Mt. H. McCoy) White Sands Missile Range, NM 88002	1	Commander President USA Armor & Engineer Board ATTN: ATZK-AE-AR Fort Knox, KY 40121

No. Copies	Addressee	No. Copies	Addressee
l	Director Defense Intelligence Agency ATTN: DT-1A (Mr. Berler) PENTAGON Washington, DC 20310	!	Commander USAMICOM ATTN: DRDMF-REW (Mt. H. Anderson) Redstone Arsenal AL 35809
3	Commandant US Army Infantry Center and School ATTN: ATSH-CD-CS (OR/SA) (Dr. Dyer) Fort Benning, GA 31905	ì	Commander Hairy Diamond Labs ATTN: DELHD-RAC (R. Humphrey) 2800 Powder Mill Rd Adelphi, MD 20783
ł	ATTN: ATSH-CD-MS-F (Cpt R. Copeland)	1	An Force Geophysics Labs OPA (ATTN: Dr.R. Fenn) HanscomAFB, MA 01731
1	ATTN: ATSH-CD-MS-E (Mr. McKenna)	l	Air Force Geophysics Labs OPA (ATTN: Dr. R. McClatchey) Hanscom AFB, MA 01731
I	Commander USA Engineer Waterways Experimental Station ATTN: Mr. G. Lundien Vicksburg, MS 39180	1	Director Advanced Research Projects Agency ATTN: Dr. J. Tegnelia 1400 Wilson Blvd Arlington, VA 22209
1	USAF Airstaff Directorate of Concepts PENTAGON AITN: Maj E. Duff Washington, DC 20310	1	Aerodyne Research, Inc. Bedford Research Park ATTN: Dr. J. Ebersole Crosby Dr. Bedford, MA, 01730
l	USAF Airstaff Directorate of Concepts and Analysis PENTAGON ATTN: Special Assistant for Weather (Maj E. Kolzynski) Rm 1D380B Washington, DC 20310	I	Commander USAARRADCOM Chemical Systems Lab ATTN: DRDAR-CLY-A (R. O. Pennsyle) Aberdeen Proving Ground, MD 21010
1	Commander USATRADOC Systems Analysis Activity ATTN: ATAA-TEM (Mr. H. McCoy) White Sands Missile Range, NM 88002	1	Commander President USA Armor & Engineer Board ATTN: ATZK-AE-AR Fort Knox, KY 40121

No. Copies	Addressee	No. Copies	Addressee
ι	Naval Research Lab	1	Andrulis Research Corp.
	Code 1409		ATTN: Mr. Carr
	ATTN: Dr. J. MacCallurn		7315 Wisconsin Ave
	Washington, DC 20375		Suite 650N
	•		Bethesda, MD 20014
1	Commander		
	USA Missile Command	1	USA ESTC
	ATTN: DRCPM-TOE (Mr. C.		ATTN: DRXST-ESI (Mennerick)
	Jackson)		220 7th St NE
	Redstone Arsenal, AL 35809		Charlottesville, VA 22901
1	Commander	1	Director
	DARCOM		USAHEL
	ATTN: DRCLDC (Dr. J. Bender)		ATTN: DRXHE-CC (Sy Steinberg)
	5001 Eisenhower Ave		Aberdeen Proving Ground, MD
	Alexandria, VA 22333		21005
ł	Commander	1	Honeywell, Inc.
	USATRADOC		ATTN: Mr. Paul W. Kruse
	ATTN: ATCD-JR (S. Goldberg)		10701 Lyndale Avenue South
	Fort Monroe, VA 22651		Bloomington, MN 55420
1	Joint AMC/NMC/AFLC/AFSC	1	McDonald Douglass Corp.
	Commanders		ATTN: Mr. Michael Johnson
	Joint Technical Coordinating		Dept 313
	Group for Munitions Effectiveness		PO 516
	ATTN: DRXSY-FJ (Mr. James O'Bryo	n)	St. Louis, MO
	Aberdeen Proving Ground, MD		
		1	Director
1	Commander		BRI.
	US Army CACDA		ATTN: DR-DAR-BLV (J.E. Camerer)
	ATTN: ATZLCA-WE (LTC Taylor)		Aberdeen, MD 21005
	Fort Leavenworth, KS 66027		
		ı	AFGL/OPI
1	Naval Weapons Support Cti		Mail Stop 30 (Robert McClatchey)
	Code 502 (Mt. Carl Lohkemp)		Hanscom AFB
	Crane, IN 47522		Bedford, MA 01731
1	HOneywell, Inc.	1	Director
	Systems & Research Center		AMSAA
	Aerospace & Defense Group		ATTN: DRXSY-GB (John Kramer)
	(Mr. Raymond Schaefer)		Aberdeen Proving Ground, MD
	2600 Ridgway Parkway		21005
	Minneapolis, MN 55413		

No. Copies	Addressee	No. Copies	Addressee
1	Commander US Army Infantry School ATTN: ATSH-CD-CS (CPT D. George) Fort Benning, GA 31905	l	Commander US Army Intelligence Ctr and School ATTN: ATSI-CD-CS (Mr. Cundy) Fort Huachuca, AZ 85613
1	Commander USAFTAWC/THL ATTN: Maj J. D. Kittrell Eglin Air Force Base, FL 32542	1	FS&TC ATTN: MT3 (F. A. Poleski) 229 Seventh Street NE Charlottesville, VA 22901
į	Commander USAFAWS/DNDP ATTN: CPT J. Kahler Scott Air Force Base, IL 62225	1	Naval EOD Facility ATTN: Technical Director, L. Dickinson Indian Head, MD 20640
1	NASEASYSCOM Code SEA-62Y21 (LCDR William E. Major)	2	USA CRREL ATTN: G. Aitken & Sid Gerard Hanover, NH 03755
1	Washington, DC 20350 Naval Research Laboratory Code 6532 ATTN: Dr. G. Trusty Washington, DC 20375	1	USA Medical Bioengineering Res and Dev Lab ATTN: LTC D. Gensler Fort Detrick, MD 21701
1	Naval Research Laboratory Code 6530 ATTN: J. Curcio Washington, DC 20375	1	Dept of Air Force Headquarters Air Weather Service (MAC) ATTN: DOOF (Maj Wright, 2015) Scott AFB, IL 62225
I	Commander ERADCOM ATTN: DRDEL-CT (Mr. John Johnson) Adelphi, MD 20783	ī	Commander Dept of Army Headquarters TRADOC Combined Arms Test Activity ATTN: ATCAT-SCI (Dr. Darrell Collier)
1	Director AMSAA ATTN: DRXSY-GB (Mr. John W. Kramer) Aberdeen Proving Ground, MD 21005	1	Fort Hood, TX 76544 Commander Defense Mapping School ATTN: Capt Cornwell Fort Belvoir, VA 22060

No. Copies	Addressee	No. Copies	Addressee
1	Commander USA Combat Development Experimentation Command	1	Varo Inc., Texas Division 2201 Walnut St. Garland, TX 75040
	ATTN: ATFC-PL-M (Gary Love) Fort Ord, CA 93941	1	Systems & Applied Sciences Corp. ATTN: James R. Norton
1	Director Engineer Topographic Lab ATTN: Paul Krause		6811 Kenilworth Ave Riverdale, MD 20840
	Fort Belvoir, VA 22060	1	Hughes Aircraft Company ATTN: Stuart H. Klapper
1	Offices Deputy Undersecretary of Defense for Research and Advanced Technology (F&TS) ATTN: John McCallum		Electro-Optical and Data Systems Group Culver City, CA 90230
	Rm3D10 ⁷⁹ PENTAGON Washington, DC 20301	1	Headquarters Air Weather Services ATTN: Army Liaison Scott AFB, IL 62225
2	Commander US Army Missile Command ATTN: DRCPM-CF (Col. H. E. Stubbs Redstone Arsenal, AL 35898	1	Lawrence Livermore National Lab Mail Stop L-9 (Frank Skidmore) P.O. Box 808 Livermore, CA 94550
l	Commander USAMICOM ATTN: DRCPM-MPE (Dick Dudney) Redstone Assenal, AL 35898	50	Director Night Vision & Electro- Optics Laboratory ATTN: DELNV-V
1	Director Night Vision & Electro- Optics Laboratory ATTN: DELNV-V (Frank Shields) Fort Belvoir, VA 22060	2	DCS Corp. 1117 North 19th Street Suite 1101 Arlington, VA 22209
i	Commander DCD, USA AVNC ATTN: Study Group I-ATZQ-D-CD Fort Rucker, AL 36362	2	E-OIR Measurements Associate P.O. Box 3348 College Station Fredericksburg, VA 22401
1	OSD (PA&E)(LSD) ATTN: Maj. Mayer Rm. 2B256 Pentagon Washington, DC 20301	1	Hughes Aircraft Company ATTN: Richard Janik Electro-Optical and Data Systems Group Culver City, CA 90230

