

# Gibbs Sampling

Héctor Corrada Bravo

University of Maryland, College Park, USA CMSC 644: 2019-03-27



Documents as *mixtures* of topics (Hoffman 1999)



We have a set of documents D

Each document modeled as a bag-of-words (bow) over dictionary w.

 $x_{w,d}$ : the number of times word  $w \in W$  appears in document  $d \in D$ .

Let's start with a simple model based on the frequency of word occurrences.

Each document is modeled as  $n_d$  draws from a *Multinomial* distribution with parameters  $\theta_d = \{\theta_{1,d}, \dots, \theta_{W,d}\}$ 

Note  $\theta_{w,d} \geq 0$  and  $\sum_{w} \theta_{w,d} = 1$ .

Probability of observed corpus D

$$Pr(D|\{ heta_d\}) \propto \prod_{d=1}^D \prod_{w=1}^W heta_{w,d}^{x_{w,d}}$$

Problem 1:

Prove MLE  $\hat{ heta}_{w,d} = rac{x_{w,d}}{n_d}$ 

We have a problem of type

$$egin{array}{ll} \min_x & f_0(x) \ \mathrm{s.t.} & f_i(x) \leq 0 \ i=1,\ldots,m \ & h_i(x) = 0 \ i=1,\ldots,p \end{array}$$

Note: This discussion follows Boyd and Vandenberghe, *Convex Optimization* 

To solve these type of problems we will look at the *Lagrangian* function:

$$L(x,\lambda,
u)=f_0(x)+\sum_{i=1}^m\lambda_if_i(x)+\sum_{i=1}^p
u_ig_i(x)$$

We'll see these in more detail later, but there is a beautiful result giving *optimality conditions* based on the Lagrangian:

Suppose  $\tilde{x}$ ,  $\tilde{\lambda}$  and  $\tilde{\nu}$  are *optimal*, then

$$egin{aligned} f_i( ilde{x}) &\leq 0 \ h_i( ilde{x}) &= 0 \ ilde{\lambda_i} &\geq 0 \ ilde{\lambda_i} f_i( ilde{x}) &= 0 \ 
abla L( ilde{x}, ilde{\lambda}, ilde{
u}) &= 0 \end{aligned}$$

We can use the gradient and feasibility conditions to prove the MLE result.

Let's change our document model to introduce topics.

The key idea is that the probability of observing a *word* in a *document* is given by two pieces:

- The probability of observing a *topic* in a document, and
- The probability of observing a word given a topic

$$Pr(w,d) = \sum_{t=1}^T Pr(w|t) Pr(t|d)$$

So, we rewrite corpus probability as

$$Pr(D|\{p_d\}\{ heta_t\}) \propto \prod_{d=1}^D \prod_{w=1}^W \left(\sum_{t=1}^T p_{t,d} heta_{w,t}
ight)^{x_{w,d}}$$

So, we rewrite corpus probability as

$$Pr(D|\{p_d\}\{ heta_t\}) \propto \prod_{d=1}^D \prod_{w=1}^W \left(\sum_{t=1}^T p_{t,d} heta_{w,t}
ight)^{x_{w,d}}$$

Mixture of topics!!

A fully observed model

Assume you know the *latent* number of occurrences of word w in document d generated from topic t:

 $\Delta_{w,d,t}$ , such that  $\sum_t \Delta_{w,d,t} = x_{w,d}$ .

In that case we can rewrite corpus probability:

$$Pr(D|\{p_d\},\{ heta_t\}) \propto \prod_{d=1}^{D} \prod_{w=1}^{W} \prod_{t=1}^{T} (p_{t,d} heta_{w,t})^{\Delta_{w,d,t}}$$

#### **Problem 2** Show MLEs given by

$${\hat p}_{t,d} = rac{\sum_{w=1}^{W} \Delta_{w,d,t}}{\sum_{t=1}^{T} \sum_{w=1}^{W} \Delta_{w,d,t}}$$

$$\hat{ heta}_{t,d} = rac{\sum_{d=1}^{D} \Delta_{w,d,t}}{\sum_{w=1}^{W} \sum_{d=1}^{D} \Delta_{w,d,t}}$$

Since we don't observe  $\Delta_{w,d,t}$  we use the EM algorithm

At each iteration (given current parameters  $\{p_d\}$  and  $\{\theta_d\}$  find *responsibility* 

$$\gamma_{w,d,t} = E[\Delta_{w,d,t} | \{p_d\}, \{ heta_t\}]$$

and maximize fully observed likelihood plugging in  $\gamma_{w,d,t}$  for  $\Delta_{w,d,t}$ 

Problem 4: Show

$$\gamma_{w,d,t} = x_{w,d} imes rac{p_{t,d} heta_{w,t}}{\sum_{t'=1}^T p_{t',d} heta_{w,t'}}$$

So, why does that work?

Why does plugging in  $\gamma_{w,d,t}$  for the latent variables  $\Delta_{w,d,t}$  work?

Why does that maximize log-likelihood  $\ell(\{p_d\}, \{\theta_t\}; D)$ ?

Think of it as follows:

z: observed data

 $Z^m$ : missing *latent* data  $T = (Z, Z^m)$ : complete data (observed and missing)

Think of it as follows:

z: observed data

 $\mathbb{Z}^m$ : missing *latent* data  $T = (\mathbb{Z}, \mathbb{Z}^m)$ : complete data (observed and missing)

 $\ell(\theta'; Z)$ : log-likehood w.r.t. *observed* data

 $\ell_0(\theta';T)$ : log-likelihood w.r.t. *complete* data

Next, notice that

$$Pr(Z| heta') = rac{Pr(T| heta')}{Pr(Z^m|Z, heta')}$$

Next, notice that

$$Pr(Z| heta') = rac{Pr(T| heta')}{Pr(Z^m|Z, heta')}$$

As likelihood:

$$\ell( heta';Z) = \ell_0( heta';T) - \ell_1( heta';Z^m|Z)$$

Iterative approach: given parameters  $\theta$  take expectation of log-likelihoods

$$egin{array}{lll} \ell( heta';Z) &=& E[\ell_0( heta';T)|Z, heta] - E[\ell_1( heta';Z^m|Z)|Z, heta] \ &\equiv & Q( heta', heta) - R( heta', heta) \end{array}$$

Iterative approach: given parameters  $\theta$  take expectation of log-likelihoods

$$\ell(\theta';Z) = E[\ell_0(\theta';T)|Z,\theta] - E[\ell_1(\theta';Z^m|Z)|Z,\theta]$$
  
 $\equiv Q(\theta',\theta) - R(\theta',\theta)$ 

In pLSA,  $Q(\theta',\theta)$  is the log likelihood of complete data with  $\Delta_{w,d,t}$  replaced by

 $\gamma_{w,d,t}$ 

#### The general EM algorithm

- 1. Initialize parameters  $\theta^{(0)}$
- 2. Construct *function*  $Q(\theta', \theta^{(j)})$
- 3. Find next set of parameters  $\theta^{(j+1)} = \arg \max_{\theta'} Q(\theta', \theta^{(j)})$
- 4. Iterate steps 2 and 3 until convergence

So, why does that work?

$$\ell( heta^{(j+1)};Z) - \ell( heta^{(j)};Z) = egin{array}{c} [Q( heta^{(j+1)}, heta^{(j)}) - Q( heta^{(j)}, heta^{(j)})] \ -[R( heta^{(j+1)}, heta^{(j)}) - R( heta^{(j)}, heta^{(j)})] \ \geq \ \end{array}$$

So, why does that work?

$$\ell( heta^{(j+1)};Z) - \ell( heta^{(j)};Z) = egin{array}{c} [Q( heta^{(j+1)}, heta^{(j)}) - Q( heta^{(j)}, heta^{(j)})] \ -[R( heta^{(j+1)}, heta^{(j)}) - R( heta^{(j)}, heta^{(j)})] \ \geq \ 0 \end{array}$$

I.E., every step makes log-likehood larger

Why else does it work?  $Q(\theta', \theta)$  minorizes  $\ell(\theta'; Z)$ 



General algorithmic concept:

Iterative approach:

- Initialize parameters
- Construct bound based on current parameters
- Optimize bound

General algorithmic concept:

Iterative approach:

- Initialize parameters
- Construct bound based on current parameters
- Optimize bound

We will see this again when we look at *variational* methods

Ultimately, what we are interested in is learning topics

Perhaps instead of finding parameters  $\theta$  that maximize likelihood

Sample from a distribution  $Pr(\theta|D)$  that gives us topic estimates

Ultimately, what we are interested in is learning topics

Perhaps instead of finding parameters  $\theta$  that maximize likelihood

Sample from a distribution  $Pr(\theta|D)$  that gives us topic estimates

But, we only have talked about  $Pr(D|\theta)$  how can we sample parameters?

Like EM, the trick here is to expand model with *latent* data  $Z^m$ 

And sample from distribution  $Pr(\theta, Z^m|Z)$ 

Like EM, the trick here is to expand model with *latent* data  $Z^m$ 

And sample from distribution  $Pr(\theta, Z^m|Z)$ 

This is challenging, but sampling from  $Pr(\theta|Z^m,Z)$  and  $Pr(Z^m|\theta,Z)$  is easier

The Gibbs Sampler does exactly that

*Property*: After some rounds, samples from the conditional distributions  $Pr(\theta|Z^m,Z)$ 

Correspond to samples from marginal  $Pr(\theta|Z) = \sum_{Z^m} Pr(\theta, Z^m|Z)$ 

Quick aside, how to simulate data for pLSA?

- Generate parameters  $\{p_d\}$  and  $\{\theta_t\}$
- Generate  $\Delta_{w,d,t}$

Let's go backwards, let's deal with  $\Delta_{w,d,t}$ 

Let's go backwards, let's deal with  $\Delta_{w,d,t}$ 

$$\Delta_{w,d,t} \sim \mathrm{Mult}_{\mathrm{x}_{\mathrm{w,d}}}(\gamma_{w,d,1},\ldots,\gamma_{w,d,T})$$

Where  $\gamma_{w,d,t}$  was as given by E-step

Let's go backwards, let's deal with  $\Delta_{w,d,t}$ 

$$\Delta_{w,d,t} \sim \mathrm{Mult}_{\mathrm{x}_{\mathrm{w,d}}}(\gamma_{w,d,1},\ldots,\gamma_{w,d,T})$$

Where  $\gamma_{w,d,t}$  was as given by E-step

```
for d in range(num_docs):
    delta[d,w,:] = np.random.multinomial(doc_mat[d,w],
        gamma[d,w,:])
```

Hmm, that's a problem since we need  $x_{w,d}$ ...

But, we know  $Pr(w,d) = \sum_t p_{t,d}\theta_{w,t}$  so, let's use that to generate each  $x_{w,d}$  as

$$x_{w,d} \sim \operatorname{Mult}_{n_d}(Pr(1,d),\ldots,Pr(W,d))$$

Hmm, that's a problem since we need  $x_{w,d}$ ...

But, we know  $Pr(w,d) = \sum_t p_{t,d}\theta_{w,t}$  so, let's use that to generate each  $x_{w,d}$  as

$$x_{w,d} \sim \operatorname{Mult}_{n_d}(Pr(1,d),\ldots,Pr(W,d))$$

```
for d in range(num_docs):
   doc_mat[d,:] = np.random.multinomial(nw[d], np.sum(p[:,d] * theta), axis=0)
```

Now, how about  $p_d$ ? How do we generate the parameters of a Multinomial distribution?

Now, how about  $p_d$ ? How do we generate the parameters of a Multinomial distribution?

This is where the Dirichlet distribution comes in...

If  $p_d \sim \mathrm{Dir}(\alpha)$ , then

$$Pr(p_d) \propto \prod_{t=1}^T p_{t,d}^{lpha_t-1}$$

Some interesting properties:

$$E[p_{t,d}] = rac{lpha_t}{\sum_{t'} lpha_{t'}}$$

So, if we set all  $\alpha_t = 1$  we will tend to have uniform probability over topics ( 1/t each on average)

If we increase  $\alpha_t = 100$  it will also have uniform probability but will have very little variance (it will almost always be 1/t)

So, we can say  $p_d \sim \mathrm{Dir}(\alpha)$  and  $\theta_t \sim \mathrm{Dir}(\beta)$ 

So, we can say  $p_d \sim \mathrm{Dir}(\alpha)$  and  $\theta_t \sim \mathrm{Dir}(\beta)$ 

And generate data as (with  $\alpha_t = 1$ )

```
for d in range(num_docs):
   p[:,d] = np.random.dirichlet(1. * np.ones(num_topics))
```

So what we have is a *prior* over parameters  $\{p_d\}$  and  $\{\theta_t\}$ :  $Pr(p_d|\alpha)$  and  $Pr(\theta_t|\beta)$ 

And we can formulate a distribution for missing data  $\Delta_{w,d,t}$ :

$$egin{aligned} & Pr(\Delta_{w,d,t}|p_d, heta_t,lpha,eta) = \ & Pr(\Delta_{w,d,t}|p_d, heta_t)Pr(p_d|lpha)Pr( heta_t|eta) \end{aligned}$$

However, what we care about is the *posterior* distribution  $Pr(p_d|\Delta_{w,d,t},\theta_t,\alpha,\beta)$ 

What do we do???

Another neat property of the Dirichlet distribution is that it is *conjugate* to the Multinomial

If  $\theta | \alpha \sim \text{Dir}(\alpha)$  and  $X | \theta \sim \text{Multinomial}(\theta)$ , then

$$heta|X,lpha\sim \mathrm{Dir}(X+lpha)$$

That means we can sample  $p_d$  from

$$p_{t,d} \sim \mathrm{Dir}(\sum_w \Delta_{w,d,t} + lpha)$$

and

$$heta_{w,t} \sim \mathrm{Dir}(\sum_d \Delta_{w,d,t} + eta)$$

Coincidentally, we have just specified the **Latent Dirichlet Allocation** method for topic modeling.

This is the most commonly used method for topic modeling



We can now specify a full Gibbs Sampler for an LDA mixture model.

#### Given:

- Word-document counts  $x_{w,d}$
- Number of topics K
- Prior parameters  $\alpha$  and  $\beta$

Do: Learn parameters  $\{p_d\}$  and  $\{\theta_t\}$  for K topics

Step 0: Initialize parameters  $\{p_d\}$  and  $\{\theta_t\}$ 

 $p_d \sim \mathrm{Dir}(lpha)$ 

and

 $heta_t \sim \mathrm{Dir}(eta)$ 

Step 1:

Sample  $\Delta_{w,d,t}$  based on current parameters  $\{p_d\}$  and  $\{\theta_t\}$ 

$$\Delta_{w,d,.} \sim \operatorname{Mult}_{x_{w,d}}(\gamma_{w,d,1},\ldots,\gamma_{w,d,T})$$

Step 2:

Sample parameters from

$$p_{t,d} \sim \mathrm{Dir}(\sum_w \Delta_{w,d,t} + lpha)$$

and

$$heta_{w,t} \sim ext{Dir}(\sum_d \Delta_{w,d,t} + eta)$$

Step 3:

Get samples for a few iterations (e.g., 200), we want to reach a stationary distribution...

Step 4:

Estimate  $\hat{\Delta}_{w,d,t}$  as the average of the estimates from the last m iterations (e.g., m=500)

Step 5:

Estimate parameters  $p_d$  and  $\theta_t$  based on estimated  $\hat{\Delta}_{w,d,t}$ 

$${\hat p}_{t,d} = rac{\sum_{w} \hat{\Delta}_{w,d,t} + lpha}{\sum_{t} \sum_{w} \hat{\Delta}_{w,d,t} + lpha}$$

$$\hat{ heta}_{w,t} = rac{\sum_{d} \hat{\Delta}_{w,d,t} + eta}{\sum_{w} \sum_{d} \hat{\Delta}_{w,d,t} + eta}$$

#### Mixture models

We have now seen two different mixture models: soft k-means and topic models

#### Mixture models

We have now seen two different mixture models: soft k-means and topic models

Two inference procedures:

- Exact Inference with Maximum Likelihood using the EM algorithm
- Approximate Inference using Gibbs Sampling

#### Mixture models

We have now seen two different mixture models: soft k-means and topic models

Two inference procedures:

- Exact Inference with Maximum Likelihood using the EM algorithm
- Approximate Inference using Gibbs Sampling

Next, we will go back to Maximum Likelihood but learn about Approximate Inference using Variational Methods