OpenPLC in the Simulation Environment

This project integrates OpenPLC for simulating programmable logic controllers (PLCs) within the virtual environment. It leverages the repository OpenPLC-Docker-AutoStart to automate the import and configuration of PLCs using pre-defined .ST files during the build process.

Purpose and Functionality

The OpenPLC setup allows for the inclusion of multiple PLCs to control various zones within the simulation environment. Each PLC can be configured with a specific .ST (Structured Text) file, representing the logic for that zone. This provides flexibility in designing complex scenarios involving different operational zones.

Adding a PLC

To add a new PLC to the environment, you can modify the docker-compose.yaml file. Use the following syntax as a template:

Ladder Logic for ScadaLTS Integration

This repository contains the ladder logic program designed to interact with ScadaLTS via holding registers. The program controls a pump's speed and interacts with EPANET for simulation purposes.

Download to the openplc editor to make the ladderlogic:

· Openplc-editor.

Overview

The ladder logic program uses holding registers to communicate with ScadaLTS. The PumpSpeed variable is mapped to %QW1000, which corresponds to the pump speed in EPANET.

Variables

Below are the primary variables used in the ladder logic:

- PumpSpeed: Located at %QW1000 in EPANET.
- StartButton: A functional button within ScadaLTS. Can be assigned between %QX0.0 %QX99.7.
- Reference: For additional details on Modbus addressing, visit OpenPLC-Adressing.

Components

• Contacts: Represent inputs such as StartButton.

- Coils: Control outputs like pump activation.
- Blocks: Handle logic operations and data manipulation.

•

Logic Explanation

The ladder logic program performs the following tasks:

- 1. Reads the start button from ScadaLTS.
- 2. Writes the pump speed to %QW1000 for EPANET simulation.
- 3. This turns the pump on and makes the water flow through.

Upload ST file to openplc program

- 1. Export the Ladder logic.
- Save it as an NameOfProgram.ST.

2. Then open the running Openplc and upload Program.

Below are screenshots of the ladder logic program and variable mappings:

• Ladder Logic Diagram:

• empty:

• With data:

• Variable Mappings:

6	StartButton	Local	BOOL	%QX0.10	
7	PumpSpeed	Local	WORD	%QW1000	

• EPANET Integration:

