3 Открытые и замкнутые множества на числовой прямой

Под интервалом будем понимать промежуток (a, b), где a и b могут быть как конечными, так и бесконечными.

Теорема 3.1. Всякое открытое множество G на числовой прямой может быть представлено в виде объединения не более чем счетной совокупности попарно непересекающихся интервалов, и это представление единственно.

Доказательство. Пусть $x \in G$. Тогда существует интервал Δ_x , содержащий точку x и содержащийся в G. Введем множество

$$I_x = \bigcup_{x \in \Delta_x \subset G} \Delta_x.$$

Очевидно, что $I_x \neq \emptyset$. Докажем, что I_x – интервал. Положим $a=\inf I_x$, $b=\sup I_x$.

Заметим, что I_x открыто и поэтому $a \notin I_x$, $b \notin I_x$. Следовательно $I_x \subset (a,b)$.

Покажем теперь, что $(a,b) \subset I_x$. Возьмем произвольное $y \in (a,b)$ и рассмотрим случай a < y < x.

Так как $a=\inf I_x$, то существует $y'\in\Delta_x'\subset I_x$ такой, что a< y'< y< x. Но тогда $y\in\Delta_x'\subset I_x$.

Аналогично, если x < y < b, то $y \in I_x$. Таким образом, $I_x = (a, b)$.

Покажем теперь, что для $x,y\in G$ интервалы I_x и I_y либо не пересекаются либо совпадают. Пусть $I_x\cap I_y\neq\emptyset$.

Тогда интервал $I_x \cup I_y$ содержит точку x и поэтому $I_x \cup I_y \subset I_x$. Как следствие, $I_y \subset I_x$. Аналогично $I_y \subset I_x$. Таким образом, $I_x = I_y$.

Итак, множество G распадается в сумму некоторого семейства попарно непересекающихся интервалов. Выберем в каждом из интервалов одну рациональную точку и установим взаимпо однозначное соответствие между множеством построенных интервалов и подмножеством множества рациональных чисел. Наличие этого соответствия говорит о том, что семейство интервалов не более чем счетно.

Первая часть теоремы доказана. Докажем теперь единственность представления. Пусть $G=\bigcup_n I_n$ — построенное представление и пусть есть еще одно представление $G=\bigcup_k \delta_k$, где $\delta_i\cap\delta_j=\emptyset$ при $i\neq j$.

Ясно, что для каждого интервала $\delta_k = (\alpha, \beta)$ существует интервал $I_n = (a, b)$ такой, что $\delta_k \subset I_n$. Достаточно взять $x \in \delta_k$ и построить соответствующий интервал $I_x = \bigcup_{x \in \Delta_x \subset G} \Delta_x \supset \delta_k$.

Покажем, что $\delta_k = I_n$. Предположим, например, что $\alpha \in (a,b)$.

Тогда существует интервал $\delta_j \not\in j \neq k$ такой, что $\alpha \in \delta_j$, но $\delta_k \cap \delta_j = \emptyset$. Поэтому $\alpha = a$. Аналогично $\beta = b$.

Таким образом, в представлениях

$$G = \bigcup_k \delta_k$$
 и $G = \bigcup_n I_n$

каждый из интервалов δ_k совпадает с одним из интервалов I_n . Следовательно эти представления совпадают.

Теорема доказана.

Следствие 3.1. Всякое замкнутое множеество на числовой прямой может быть получено удалением из числовой прямой не более чем счетной совокупности попарно непересекающихся интервалов.

Следствие 3.2. В борелевской σ - алгебре $\mathfrak B$ содержатся все открытые и все замкнутые множества.

Канторово совершенное множество

Пусть $F_0 = [0,1]$. Выбросим из F_0 интервал $\left(\frac{1}{3},\frac{2}{3}\right)$. Полученное множество обозначим через F_1 . Оставшиеся отрезки разобъем на три равные части и выбросим из каждого отрезка центральный интервал. В результате получим множество F_2 , являющееся объединением 4 отрезков. Продолжая этот процесс дальше, получим убывающую последовательность замкнутых множеств F_n .

Предел этой последовательности $F = \lim_{n \to \infty} F_n = \bigcap_{n=1}^{\infty} F_n$ называется канторовым совершенным множеством. Это множество получается выбрасыванием из отрезка [0,1] счетного числа интервалов. Поэтому F является замкнутым множеством.

Это мпожество не пусто. Во всяком случае, ему принадлежит последовательность концов выбрасывемых интервалов.

Вычислим сумму длин всех выброшенных интервалов

$$\frac{1}{3} + 2\frac{1}{3^2} + 4\frac{1}{3^3} + \dots = \frac{1}{3} \sum_{k=1}^{\infty} \frac{2^k}{3^k} = \frac{1}{3} \frac{1}{1 - \frac{2}{3}} = 1.$$

Таким образом F получено удалением и отрезка [0,1] длины 1 интервалов, суммарная длина которых тоже равна 1.

Тем не менее, F имеет мощность континуума, то есть $F \sim [0,1]$. Для того, чтобы доказать это, запишем каждое из чисел $x \in [0,1]$ в троичной системе исчисления

$$x = \sum_{k=1}^{\infty} \alpha_k \frac{1}{3^k} = (0, \alpha_1 \alpha_2 \dots \alpha_n \dots)_3,$$

где $\alpha_k = 0, 1, 2$. Построение F состоит в том, что последовательно отбрасываются числа, содержащие цифру $\alpha_k = 1$ хотя бы в одной из позиций. Число $x \in F$ тогда и только тогда, когда $\alpha_k = 0, 2$ для всех k. Исключением являются правые концы отброшенных интервалов.

Очевидно, что это множество эквивалентно множеству всех чисел из отрезка [0,1] (нужно использовать двоичное представление чисел).

Заметим, что множество F является совершенным, то есть замкнутым множеством, не имеющим изолированных точек. Действительно, пусть $x \in F$. Тогда $x \in F_k$ для каждого k. Значит, для каждого k точка x принадлежит одному из отрезков $[a_k, b_k] \subset F_k$. Следовательно $|x - a_k| \leq |b_k - a_k| \to 0$. Поэтому x является пределом последовательности $\{a_k\}_{k=1}^{\infty} \subset F$.