Convolutional Neural Networks: the spatial dimensions

Our treatment, thus far, of Neural Networks has been rather limited. An example has consisted of

- Multiple features
- At a single spatial location
- ullet Represented as a vector of shape $(1 imes n_{(l)})$
 - But we often ignored the singleton dimension

But the natural world's spatial dimensions are much higher than 1!

- N>1 dimensions
- ullet Our examples become (N+1) dimensional
- ullet Represented as a vector of shape $(d_{(l),1} imes d_{(l),2} imes \ldots d_{(l),N})$

$$imes n_{(l)})$$

When
$$N=1$$
 and $d_1=1$

ullet we have our case of $n_{(l)}$ features at a single location

We have shown that permuting the order of features has no effect on a Dense layer

• There is no ordering relationship among features

But when $d_1>1$, there is a spatial ordering. For example

- a 2D image
- time ordered data

We need some terminology to distinguish the final dimension from the non-final dimensions

Suppose $\mathbf{y}_{(l)}$ is $(N_{(l)}+1)$ dimensional of shape $||\mathbf{y}_{(l)}||=(d_{(l),1} imes d_{(l),2} imes \ldots d_{(l),N_{(l)}} imes n_{(l)})$

(Thus far: $N_{(l)}=1$ and $n_{(l)}=1$ but that will soon change)

The first $N_{(l)}$ dimensions $(d_{(l),1} imes d_{(l),2} imes \ldots d_{(l),N})$

ullet Are called the *spatial* dimensions of layer l

The last dimension (of size $n_{\left(l\right)}$)

- Indexes the features i.e., varies over the number of features
- Called the feature or channel dimension

Notation

- ullet $N_{(l)}$ denotes the *number* of spatial dimensions of layer l
- ullet $n_{(l)}$ denotes the number of features in layer l
- We elide the spatial dimensions as necessary, writing

$$\mathbf{y}_{(l),\ldots,j}$$

to denote feature map j of layer l

- lacktriangledown where the dots (. . .) indicate the $N_{(l)}$ spatial dimensions
- e.g., the feature map detecting a "smile" in the image of a face

For example

- A grey-scale image
 - $lacksquare N = 2, n_{(l)} = 1$
 - Each pixel in the image has one feature
 - the grey-scale intensity
 - There is an ordering relationship between 2 pixels
 - "left/right", "above/below"
- A color image
 - $lacksquare N = 2, n_{(l)} = 3$
 - Each pixel in the image has 3 features/attributes
 - the intensity of each of the colors

One can imagine even higher dimensional data (N>2)

- Equity data with "spatial location" identified by (Month, Day, Time)
 - With attributes: { Open, High, Low, Close }
 - Month/Day/Time are ordered

Note the distinction between the cases

- ullet When layer l has dimension $(d_{(l)} imes 1)$
 - a single feature
 - lacksquare at $d_{(l)}=d_{(l-1)}$ spatial locations
- ullet When layer l has dimension $(1 imes d_{(l)})$
 - (which is how we have implicitly been considering vectors when discussing the Dense layer type)
 - $lacksquare d_{(l)} = d_{(l-1)}$ features
 - at a single spatial location

 $n_{(l)}$ will always refer to the number of features of a layer l

Here is a <u>picture (CNN_pictorial.ipynb#Conv-1D:-single-feature)</u> of a Convolutional layer l transforming

- ullet a 1-dimensional input layer (l-1) consisting of a single feature
 - $N_{(l-1)} = 1, n_{(l-1)} = 1$
- into a 1-dimensional output layer l consisting of a single feature
 - $lacksquare N_{(l)} = 1, n_{(l)} = 1$

We will generalize Convolution to deal with

- ullet $N_{(l)}>1$ spatial dimensions
- $n_{(l)} > 1$ features

As a preview of concepts to be introduced, consider

- ullet the input layer (l-1) is a two-dimensional ($N_{(l-1)}=2$) grid of pixels
- $n_{(l-1)} = 1$
- ullet layer l is a Convolutional Layer identifying $n_{(l)}=3$ features

Convolution: 1 input feature to 3 output features

Layer (l-1) is three-dimensional tensor: 8 imes 8 imes 1

- Spatial dimension 8×8
- 1 feature map (channel dimension = 1)

- ullet Kernel $k_{(l),j}$ is applied to each spatial location of layer (l-1)
- Detecting the presence of the pattern (defined by the kernel) at that location
 - kernel $k_{(l),1}$ detects an eye
- ullet Which results in feature map $\mathbf{y}_{(l)},\ldots,j$ being created at layer l
 - $\mathbf{y}_{(l),\ldots,1}$ are indicators of the presence of an "eye" feature

Convolutional Layer description

With this terminology we can say that Convolutional Layer l:

- ullet Transforms the $n_{(l-1)}$ feature maps of layer (l-1)
- Into $n_{(l)}$ feature maps of layer l
- ullet Preserving the spatial dimensions: $d_{(l),p}=d_{(l-1),p} \ 1 \leq p \leq N_{(l-1)}$
- ullet Uses a different kernel $\mathbf{k}_{(l),j}$ for each output feature/channel $1 \leq j \leq n_{(l)}$
- Applies this kernel to each element in the spatial dimensions
- Recognizing a single feature at each location within the spatial dimension

Channel Last/First

We have adopted the convention of using the final dimension as the feature dimension.

• This is called *channel last* notation.

Alternatively: one could adopt a convention of the first channel being the feature dimension.

• This is called *channel first* notation.

When using a programming API: make sure you know which notation is the default

• Channel last is the default for TensorFlow, but other toolkits may use channel first.

Conv1d transforming single feature to multiple features

Here is a <u>picture (CNN_pictorial.ipynb#Conv-1D:-single-feature-to-multiple-features)</u> of a Convolutional layer l transforming

- ullet a 1-dimensional input layer (l-1) consisting of a single feature
 - $lacksquare N_{(l-1)} = 1, n_{(l-1)} = 1$
- ullet into a 1-dimensional output layer l consisting of a multiple features
 - $lacksquare N_{(l)} = 1, n_{(l)} > 1$

Conv1d transforming multiple features to multiple features

What happens when the input layer has multiple features?

ullet e.g., applying Convolutional layer (l+1) to the $n_{(l)}$ features created by Convolutional layer l

The answer is

- The kernels of layer *l* also have a *feature* dimension
 - lacktriangle Kernel dimensions are $(f_{(l)} imes f_{(l)} imes n_{(l-1)})$
- This kernel is applied
 - at each spatial location
 - to all features of layer (l-1)
 - Computing a generalized "dot product": sum of element-wise products

Conv 1D: 2 input features: kernel 1

- $\mathbf{W}_{(l),j',\ldots,j}$
 - layer *l*
 - lacksquare output feature j
 - lacktriangle spatial location: $\ldots \in \{1,2,3\}$

• input feature j'

Notice that (apart from combining spatial locations)

- $\bullet\,$ multiple feature maps from layer (l-1) are combined into one feature map at layer l.
- This is how the "left" half-smile and "right" half-smile features combine into the single "smile" feature

Here is a <u>picture (CNN_pictorial.ipynb#Conv-1D:-Multiple-features-to-multiple-features)</u> of a Convolutional layer l transforming

- ullet a 1-dimensional input layer (l-1) consisting of a 2 features
 - $lacksquare N_{(l-1)} = 1, n_{(l-1)} = 2$
- into a 1-dimensional output layer l consisting of a multiple features
 - $lacksquare N_{(l)} = 1, n_{(l)} = 3$

With an input layer having N spatial dimensions, a Convolutional Layer l producing $n_{(l)}$ features

- Preserves the "spatial" dimensions of the input
- Replaces the channel/feature dimensions

That is\

$$egin{array}{lll} ||\mathbf{y}_{(l-1)}|| &=& (n_{(l-1),1} imes n_{(l-1),2} imes \dots n_{(l-1),N}, & \mathbf{n_{(l-1)}}) \ ||\mathbf{y}_{(l)}|| &=& (n_{(l-1),1} imes n_{(l-1),2} imes \dots n_{(l-1),N}, & \mathbf{n_{(l)}}) \end{array}$$

Conv2d: Two dimensional convolution (N=2)

Thus far, the spatial dimension has been of length N=1.

Generalizing to N=2 is straightforward.

ullet The number of spatial dimensions (elements denoted by . . .) expands from 1 to 2

Conv 2D: single input feature: kernel 1

 $\mathbf{k}_{(l),1,1}$

$\mathbf{W}_{(l),1,1,1,1}$	$\mathbf{W}_{(l),1,1,2,1}$	$\mathbf{W}_{(l),1,1,3,1}$
$\mathbf{W}_{(l),1,2,1,1}$	$\mathbf{W}_{(l),1,2,2,1}$	$\mathbf{W}_{(l),1,2,3,1}$
$\mathbf{W}_{(l),1,3,1,1}$	$\mathbf{W}_{(l),1,3,2,1}$	$\mathbf{W}_{(l),1,3,3,1}$

- $\mathbf{W}_{(l),j',\ldots,j}$
 - layer *l*
 - lacksquare output feature j
 - lacksquare spatial location: $\ldots \in \{(lpha, lpha')\}$

$$\in (d_{(l-1),1}$$

$$imes d_{(l-1),2} \}$$

• input feature j'

Here is a <u>picture (CNN_pictorial.ipynb#Conv-2D:-single-feature-to-single-feature)</u> of a Convolutional layer l transforming

- ullet a 2-dimensional input layer (l-1) consisting of a 1 feature
 - $lacksquare N_{(l-1)}=2, n_{(l-1)}=1$
- into a 2-dimensional output layer *l* consisting of 1 feature
 - $lacksquare N_{(l)} = 1, n_{(l)} = 1$

We can further generalize to producing multiple output features

Here is a <u>picture (CNN_pictorial.ipynb#Conv-2D:-single-feature-to-multiple-features)</u> of a Convolutional layer l transforming

- ullet a 2-dimensional input layer (l-1) consisting of a 1 feature
 - $lacksquare N_{(l-1)} = 2, n_{(l-1)} = 1$
- ullet into a 2-dimensional output layer l consisting of 2 feature
 - $lacksquare N_{(l)} = 1, n_{(l)} = 2$

Dealing with multiple input features works similarly as for N=1:

- The dot product
- ullet Is over a spatial region that now has a "depth" $n_{(l-1)}$ equal to the number of input features
- ullet Which means the kernel has a depth $n_{(l-1)}$

Conv 2D: multiple input features: kernel 1

 $\mathbf{k}_{(l),1,1}$

$\mathbf{W}_{(l),1,1,1,1}$	$\mathbf{W}_{(l),1,1,2,1}$	$\mathbf{W}_{(l),1,1,3,1}$
$\mathbf{W}_{(l),1,2,1,1}$	$\mathbf{W}_{(l),1,2,2,1}$	$\mathbf{W}_{(l),1,2,3,1}$
$\mathbf{W}_{(l),1,3,1,1}$	$\mathbf{W}_{(l),1,3,2,1}$	$\mathbf{W}_{(l),1,3,3,1}$

 $\mathbf{k}_{(l),2,1}$

$\mathbf{W}_{(l),2,1,1,1}$	$\mathbf{W}_{(l),2,1,2,1}$	$\mathbf{W}_{(l),2,1,3,1}$
$\mathbf{W}_{(l),2,2,1,1}$	$\mathbf{W}_{(l),2,2,2,1}$	$\mathbf{W}_{(l),2,2,3,1}$
$\mathbf{W}_{(l),2,3,1,1}$	$\mathbf{W}_{(l),2,3,2,1}$	$\mathbf{W}_{(l),2,3,3,1}$

Here is a <u>picture (CNN_pictorial.ipynb#Conv-2D:-multiple-features-to-single-feature)</u> of a Convolutional layer l transforming

- ullet a 2-dimensional input layer (l-1) consisting of multiple features
 - $lacksquare N_{(l-1)}=2, n_{(l-1)}=2$
- into a 2-dimensional output layer *l* consisting of 1 feature
 - $lacksquare N_{(l)} = 1, n_{(l)} = 1$

And finally: the general case for a 2 spatial dimensions

Here is a <u>picture (CNN_pictorial.ipynb#Conv-2D:-multiple-features-to-multiple-features)</u> of a Convolutional layer l transforming

- ullet a 2-dimensional input layer (l-1) consisting of multiple features
 - $lacksquare N_{(l-1)}=2, n_{(l-1)}=3$
- ullet into a 2-dimensional output layer l consisting of multiple features
 - $lacksquare N_{(l)} = 1, n_{(l)} = 2$

Training a CNN

Hopefully you understand how kernels are "feature recognizers".

But you may be wondering: how do we determine the weights in each kernel?

Answer: a Convolutional Layer is "just another" layer in a multi-layer network

- The kernels are just weights (like the weights in Fully Connected layers)
- ullet We solve for all the weights f W in the multi-layer network in the same way

The answer is: exactly as we did in Classical Machine Learning

• Define a loss function that is parameterized by \mathbf{W} :

$$\mathcal{L} = L(\hat{\mathbf{y}}, \mathbf{y}; \mathbf{W})$$

- ullet The kernel weights are just part of ${f W}$
- ullet Our goal is to find $f W^*$ the "best" set of weights

$$\mathbf{W}^* = \operatorname*{argmin}_W L(\hat{\mathbf{y}}, \mathbf{y}; \mathbf{W})$$

Using Gradient Descent!


```
In [5]: print("Done")
```

Done