- 1) If $y = x^{\sin x}$, then $\frac{dy}{dx} =$ a) $\left(\cos x \ln x + \frac{\sin x}{x}\right)$ b) $\left(\cos x \ln x + \frac{\sin x}{x}\right) x^{\sin x}$ Q 1) If $y = x^{\sin x}$, then $\frac{dy}{dx} =$
- c) (sin x)x 44 1-1

- d) $\left(\frac{\cos x}{x} + \sin \ln x\right) x^{\sin x}$ e) None.
- Q 2) $\lim_{x\to 0^+} \csc x \frac{1}{x} =$

- b) 1 c) +∞ d) 2 e) None
- Q3) The discontinuity points for the function $f(x) = \frac{|x|-2}{|x-2|-1}$ are
 - a) x=1,-1
- b) x=0,1
- e) x=2,-2 d) x=1,3
- e) None

- Q4) The slope of tangent line to $y = (\cos^{-1} x)^2$ at $x = \frac{-1}{\sqrt{2}}$

- a) $\frac{-3\pi}{\sqrt{2}}$ b) $\frac{3\pi}{\sqrt{2}}$ c) $\frac{-3\pi}{4}$ d) $\frac{3\pi}{4}$ 5) $f(x) = \tan^{-1} x^2$, f'(x) =Q5) $f(x) = \tan^{-1} x^2$, f'(x) =

- a) $2x \tan^{-1} x^2$ b) $\frac{2x}{1+x^4}$ c) $2x (\sec^{-1} x^2)^2$ d) $\frac{1}{1+x^4}$ e) None

- 1 (x2)2 221 1+x0

Q6) If $f(x) = \sqrt{u(x)}$ given f(1) = 2, u'(1) = 3, then f'(1) = 3

a) $\frac{3}{4}$ b) $\frac{1}{12}$ © $\frac{1}{2}$

Q7) $-x^2y = 3xy^3 - x$, $\frac{dy}{dx} =$

a) $\frac{3y^3 - 2xy - 1}{x^2 - 9xy^2}$ b) $\frac{3y^3 - 2xy}{x^2 - 9xy^2}$ c) $\frac{x^3 - 9xy^3}{3y^3 - 2xy}$ d) $\frac{3y^3 + 2xy + 1}{x^2 - 9xy^3}$ e) None

Q 8) Equation of tangent line to the curve $y = \sec^2 2x$ at $x = \frac{\pi}{8}$ is

a) $y = x + 2 - \frac{\pi}{8}$

b) $y = 4x + 2 - 2\pi$ e) $y = 8x + 2 - \pi$ d) $y = \frac{1}{2}x + 1 - \frac{\pi}{4}$ e) None

Q9) $y = \cosh(\ln(\cos x))$, $\frac{dy}{dx} =$

 $a) - \sinh(\ln(\cos x)) \tan x$

b) $\frac{-\sin x}{\ln(\cos x)}$ sigh($\ln(\cos x)$)

c) sinh(ln(cos x)) tan x

d) $\sinh(\ln(\cos x))\ln(\sin x)$ e) None

Q10) $y = \left(\frac{4^x}{2^{x+1}}\right)^2$, $y^{(45)} =$

a) $\frac{4^{s}(\ln 2)^{15}}{2^{s-15}}$ b) $2^{2s+15}(\ln 2)^{15}$ c) $2^{2s+13}(\ln 2)^{15}$ d) $2^{15}2^{2s}(\ln 2)^{15}$

e) None

Best Wishes.

Al-Balqa' Applied University Faculty of Engineering Technology, Applied Science Department First Exam, Math. 101

Name: Cinus the law h Are ...

Lecture Time:.....

Instructor:...

Date: 29/10/2014.

a)
$$\frac{-\sqrt{3}}{2}$$

$$d)\frac{1}{2}$$

Q2)
$$\lim_{x\to 1} (x^2-9)\cot(x^2-x-6) =$$

b)
$$\frac{9}{4}$$
 c) $\frac{6}{5}$

$$c) \frac{6}{5}$$

$$d)\frac{3}{2}$$

Q3) If
$$f(x) = \frac{2x^2 + 1}{(2x - 1)^2 - 1}$$
, then horizontal and vertical asymptotes are

a)
$$y = \frac{1}{2}, x = 0, x = 1$$
 b) $y = 1, x = 0, x = 1$ c) $y = \frac{1}{2}$, No vertical Asy. d) $y = 1, x = 0, x = 4$

Q4)
$$\lim_{x\to 2^{-}} (x-2)\sin(\frac{1}{x^2-4})$$

Q5)
$$f(x) = \frac{g(x^2)}{h(3x)}$$
, $f(2) = 1$, $h(6) = 2$, $h'(6) = 4$, $g'(4) = 6$, then $f'(2) = 6$

Q6) The discontinuity points for
$$f(x) = \frac{\cot x}{\sqrt{x^2 - 4} - 1}$$
 are

a)
$$\pm \sqrt{3}, \pm n\pi, (-2,2)$$
 b) $\pm \sqrt{3}, \pm (\frac{2n+1}{2})\pi, [-2,2]$ c) $\pm \sqrt{5}, \pm n\pi, (-2,2)$ d) $\pm (\frac{2n+1}{2})\pi, (-2,2)$

Q7)
$$f(x) = \sec^2 x^2$$
, then $f'(x) =$

a)
$$2x\sec^2 x^2 \tan x^2$$
 b) $4x\sec^2 x^2 \tan x^2$ c) $4x\sec^2 x \tan x^2$ d) $4x\sec^2 x \tan x$

b)
$$4x \sec^2 x^2 \tan x^2$$

Q8)
$$f(x) = \begin{cases} \frac{ax^2 - b}{x - 2}, & x < 2 \\ \frac{1}{4}x^2 - c, & x \ge 2 \end{cases}$$

f is differentiable at x=2, then the values of a, b

a) a=1,b=4,c=-3 b) a=4,b=8,c=1 c) a=2,b=8,c=-3 d) a=1,b=4,c=1

a)
$$a=1,b=4,c=-3$$

b)
$$a=4,b=8,c=1$$

c)
$$a=2,b=8,c=-3$$

d)
$$a=1,b=4,c=1$$

Q9)
$$\lim_{x \to \infty} \sqrt{x^2 + 4x} - \sqrt{x^2 - x}$$

$$a = \frac{-3}{2}$$

a)
$$\frac{-3}{2}$$
 b) $\frac{-5}{2}$

c)
$$\frac{3}{2}$$

$$d) + \infty$$

Q10)
$$\lim_{x \to 0} \frac{\sin(x^2 - 1) + \cos(x^2 - 1) - 1}{x - 1}$$

Write the answer

		Q9	δα	Ω,	Q6	Q5	Q#	Q3	Q2	QΙ
9 9 9 6 P P P	15	6	9	y	Ь	C	6	0/	a	ý

Fill in the table below with the correct answer of the following (10) questions

QI	Q2	Q3	Q4	· Q5	Q6	Q7	Q8	Q9	Q10
C	d	d	d	Ь	4	Ь	d	C	Ç
	/	X	X	~		~	X		3

Q1) If
$$\lim_{x\to 1} \frac{x^3 + 2x^2 - x + a}{x^2 - 1}$$
 exist then $a = \underbrace{x^3 + 2x^2 - x + a}_{x^2 = 1}$

a)
$$\frac{3}{2}$$

d) 1

Q2)
$$\lim_{x\to 0} \frac{\sqrt{x+9}-3}{x}$$
 are

a)
$$\frac{1}{4}$$

d) 1/6

Q3)
$$f(x) = \begin{cases} |2x-6| & x \le 2\\ \frac{x^3 + 3x^2 - 12x + 4}{x^3 - 4x} & x > 2 \end{cases}$$
, then $\lim_{x \to 2^+} f(x) = \text{ and } \lim_{x \to 2^-} f(x) =$

$$x \le 2$$

, then
$$\lim_{x\to 2^+} f(x) =$$
 and $\lim_{x\to 2^+} f(x) =$

b)
$$\frac{3}{2}$$
, DNE $\bigcirc \frac{3}{2}$, 2

$$\bigcirc_{\frac{3}{2}}^{\frac{3}{2}}$$
, 2

d)2, DNE

Q4) The horizontal asymptotes for
$$f(x) = \frac{2x^2 + 1}{x + 2x^2} + \frac{x - 2}{3 - |x|}$$
 are

b)
$$y=3$$
, $y=0$

$$(x)^{2}y=2, y=3$$

b)
$$y=3$$
, $y=0$ c) $y=2$, $y=3$ d) $y=1$, $y=3$

Q5) The vertical asymptotes for
$$f(x) = \frac{2x^2 - 5x + 2}{x^2 - 4}$$

d) No vertical asymptotes

Q6)
$$\lim_{x\to 3} \frac{\sin(x-3)}{x^2-2x-3} = \frac{0}{6}$$

$$or \frac{1}{4}$$

d)
$$\frac{1}{5}$$

$$\mathbf{Q7)} \lim_{x \to -\infty} \cos \left(\frac{nx}{2 - 3x} \right)$$

a)
$$\frac{\sqrt{3}}{2}$$

$$a) \frac{\sqrt{3}}{2} \qquad b = \frac{\pi}{3}$$

c)
$$-\frac{\sqrt{3}}{2}$$

Q 8)
$$f(x) = \begin{cases} \frac{\tan kx}{x}, & x < 0 \\ 2x + 3k^2, & x \ge 0 \end{cases}$$

, all values of k that let $\lim_{x\to a} f(x)$ exist are

a)
$$k=0,\frac{1}{3}$$
 b) $k=0,2$

c)
$$k=0$$

$$dy' k=0, \frac{1}{2}$$

Q9)
$$\lim_{x\to 0^+} 3x \sin\frac{2}{x} = 39 \text{ with the room}$$

$$\frac{2}{3}$$

Q10)
$$\lim_{x \to 3^{-}} \frac{x^2 - 3x}{x^2 - 6x + 9} = \frac{9}{G}$$

a)
$$\frac{1}{2}$$

d)
$$\frac{1}{2}$$

Best Wishes.

- *Remak : Write only the final answer
- Q1) (6 marks) Quick answer

a)
$$\int \cos(2x-1)dx = \frac{\sin(2x-1)}{2}dx + C$$

b)
$$f(x) = x + 4x^{-1}$$
 has critical point(s) at $x = ...2$.

c)
$$\int \frac{dx}{\sqrt{1-2x}} = -\sqrt{1-2x} + C$$

d)
$$\int_{-1}^{1} \sqrt{x^2 - 6x + 9} dx = 06$$

e) If
$$f(x) = \int_0^x (t^5 + 1)^3 dt$$
, then f is concave up on $(-\infty)^6$

$$\int \lim_{x\to \infty} x(2^{\frac{1}{x}}-1) = \lim_{x\to \infty} x(2^{\frac{1}{x}}-1)$$

Q2) If
$$f(x) = x^2 - \frac{8}{x-1}$$
, then the interval of increasing is

Q3)
$$\lim_{x\to 0} (e^x + 2x)^{\frac{1}{x}} = \frac{3}{e}$$

Q4) The function
$$f(x) = px^2 + qx + 2$$
 has $(1,4)$ as an extreme point, then $p = ... \times ...$ and $q = ... \times ...$

Q5) If
$$y = \frac{(\tan^{-1}x)^{x}}{\sqrt[4]{\sec hx}}$$
, then
$$y' = \frac{\tan^{-1}x}{\sqrt[4]{\sec hx}} + \left(\frac{x}{x^{-1}}\right)^{\frac{1}{2}(1-x^{-1})} + \frac{\tan^{-1}x}{x} + \frac{\tan^{-1}x}{x} + \frac{\tan^{-1}x}{x}\right)$$

Q6) The function
$$f(x) = x^4 + kx^3 + \frac{1}{2}x^2$$
 has exactly two horizontal tangent lines, then $k = \frac{5}{3}$

$$O7/(3^2)^2 \sec^2 3^{2s} \tan^3 9^2 dx = 1000$$

$$Q8) \int_{0}^{\pi} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{6 - x}} dx = \dots$$