2022-2023 MP2I

14. Limites, continuité

Exercice 1. (m) Soit f une fonction périodique tendant vers l en $+\infty$. Montrer que f est constante.

Exercice 2. (m) Soit f définie sur \mathbb{R} par f(x) = x si $x \in \mathbb{Q}$ et $f(x) = x^3$ si $x \notin \mathbb{Q}$.

- 1) Montrer que si $x_0 \notin \{-1, 0, 1\}$, alors f est discontinue en x_0 .
- 2) Montrer que si $x_0 \in \{-1,0,1\}$, alors f est continue en x_0 . On pourra utiliser un encadrement pour déterminer $\lim_{x \to x_0} f(x)$.

Exercice 3. (i) Déterminer une fonction f de \mathbb{R} dans \mathbb{R} discontinue en tout point telle que |f| soit continue en tout point.

Exercice 4. (m) Soit f une fonction de \mathbb{R} dans \mathbb{R} continue en 0 telle que $\forall x \in \mathbb{R}$, f(2x) = f(x). Montrer que f est constante.

Exercice 5. (i) Déterminer les $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ telles que $\forall x \in \mathbb{R}, f(x) = f(x^2)$.

Exercice 6. (m) Vérifier que les fonctions $f: x \mapsto x + \sqrt{x - \lfloor x \rfloor}$ et $g: x \mapsto \lfloor x \rfloor + \sqrt{x - \lfloor x \rfloor}$ sont bien définies sur \mathbb{R} et étudier leur continuité.

Exercice 7. (m) Soit f définie sur \mathbb{R}_+^* par $f(x) = x^2 \left| \frac{1}{x} \right|$.

- 1) Quels sont les points où f est continue? On précisera les limites à droite et à gauche en un point de discontinuité de f.
- 2) Montrer que si l'on prolonge f par f(0) = 0, alors la fonction ainsi définie est continue en 0.

Exercice 8. (m) Soit $f: \mathbb{R}_+^* \to \mathbb{R}$ croissante telle que $g: x \mapsto \frac{f(x)}{x}$ soit décroissante sur \mathbb{R}_+^* . Montrer que f est continue sur \mathbb{R}_+^* .

Exercice 9. (m) Soit I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ continue telle que $\forall x\in I,\ (f(x))^2=1$. Montrer que f=1 ou f=-1.

Exercice 10. (m) Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$. On suppose que |f(x)| tend vers $+\infty$ en $+\infty$. Montrer que f(x) tend vers $+\infty$ ou bien que f(x) tend vers $-\infty$ quand x tend vers $+\infty$.

Exercice 11. (i)

- 1) Soit $f: \mathbb{R} \to \mathbb{Z}$ continue. Que peut-on dire de f? Le prouver.
- 2) Soit $f: \mathbb{R} \to \mathbb{Q}$ continue. Que peut-on dire de f? Le prouver.

Exercice 12. (i) Soit $f \in \mathcal{C}^0(\mathbb{R}, \mathbb{R})$ telle que $\sin(f)$ tend vers 0 en $+\infty$. Que dire de f en $+\infty$?

Exercice 13. (i) Soit $f: \mathbb{R} \to \mathbb{R}$ monotone surjective. Montrer que f est continue.

Exercice 14. © Soit $f: \mathbb{R} \to \mathbb{R}$ continue et 1-périodique. Montrer que f est bornée et qu'elle admet un maximum et un minimum.

Exercice 15. (m) Soit $f: \mathbb{R} \to \mathbb{R}_+$ continue telle que f(0) = 1, $\lim_{x \to -\infty} f(x) = 0$ et $\lim_{x \to +\infty} f(x) = 0$.

- 1) Montrer qu'il existe a > 0 tel que si |x| > a, alors $f(x) \le \frac{1}{2}$.
- 2) Montrer que f est bornée et possède un maximum.

Exercice 16. (m) Soit f continue sur \mathbb{R} telle que $\lim_{x\to -\infty} f(x) = \lim_{x\to +\infty} f(x) = +\infty$. Montrer que f admet un minimum.

Exercice 17. (m) Soit $f:[0,1] \to \mathbb{R}$ continue. On dit que c est un point fixe de f si f(c) = c.

- 1) Montrer que si $f([0,1]) \subset [0,1]$, f admet au moins un point fixe.
- 2) Montrer que si $[0,1] \subset f([0,1])$, f admet au moins un point fixe.

Exercice 18. (m) Soient $f, g \in C^0([0, 1], [0, 1])$ telles que $g \circ f = f \circ g$. Soit $x_0 \in [0, 1]$ un point fixe de f (x_0 existe d'après l'exercice précédent).

- 1) On pose pour $n \in \mathbb{N}$, $x_{n+1} = g(x_n)$. Montrer que $\forall n \in \mathbb{N}$, $f(x_n) = x_n$.
- 2) On suppose que $\forall x \in [0,1], f(x) > g(x)$. Étudier la monotonie de $(x_n)_{n \in \mathbb{N}}$ et arriver à une contradiction.
- 3) En déduire qu'il existe $a \in [0,1]$ tel que f(a) = g(a).

Exercice 19. (m) Soit $f: \mathbb{R} \to \mathbb{R}$ continue et décroissante. Montrer que f admet un unique point fixe.

Exercice 20. (i) Soit f une application continue de [0,1] dans \mathbb{R} telle que f(0)=f(1). Montrer que $\forall n \in \mathbb{N}^*, \ \exists x \in [0,1[\ /\ f(x)=f\left(x+\frac{1}{n}\right)]$.

On pourra commencer par les cas n=2 et n=3 pour se donner des idées...

Exercice 21. (m) On pose pour $x \neq 0$, $f(x) = \sin\left(\frac{1}{x}\right)$ et f(0) = 0.

- 1) Montrer que f est continue sur \mathbb{R}^* mais qu'elle n'est pas continue en 0.
- 2) Montrer que pour tout I intervalle de \mathbb{R} , f(I) est un intervalle.

Exercice 22. (m) Soit $f(x) = \frac{x}{1+|x|}$ pour $x \in \mathbb{R}$.

- 1) Démontrer que f est bijective de \mathbb{R} dans I où I est un intervalle à préciser.
- 2) Déterminer f^{-1} .

Exercice 23. * Soit $n \in \mathbb{N}^*$. Existe-t-il une fonction continue $f : \mathbb{R} \to \mathbb{R}$ telle que tout réel admet exactement n antécédents par f?

On commencera par les cas n = 1, 2, 3 et on fera des dessins!

Exercice 24. * Soit f une fonction continue de \mathbb{R}_+ dans \mathbb{R} . On pose $M(x) = \sup_{t \in [0,x]} f(t)$.

- 1) Montrer que pour tout $x \geq 0$, M(x) est bien définie et que M est une fonction croissante.
- 2) Montrer que M est continue sur \mathbb{R}_+ .