Joseph Nelson, Data Science Immersive

AGENDA

- What is Classification?
- ▶ Introduction to K-Nearest Neighbors
- KNN Examples/Applications
- Coding Implementation

Class guesses?

- Regression is used to predict continuous values. Classification is used to predict which class a data point is part of (discrete value).
- Example 1: I have a home with X bedrooms, Y sq ft, Z lot size. What is the price of this home?
- Example 2: I have an unknown fruit that is 5.5 inches long, 2 inches in diameter, and yellow. What is this fruit?
- (Yes, that last slide was a pun)

Let's plot EIGHT different classification models. To the repo...

INTRODUCTION TO K-NEAREST NEIGHBORS

- KNN is an non-parametric lazy learning algorithm that predicts outcomes based on the similarity (near-ness) of inputted features to the training set
- Non-parametric: Makes assumptions about the underlying distribution of our data
- ▶ Lazy: Training phase is minimal KNN uses all (or nearly all) of the training data
- Based on feature similarity: How closely out-of-sample features resemble our training set determines how we classify a given data point
- ▶ Because of this above, kNN can be thought to be a spatial algo

INTRODUCTION TO K-NEAREST NEIGHBORS

- procedure KNN(x)
- begin
- ▶ looping through all known data points in training data, find the closest k points to x
- assign f(x) = majority classification among the k closest points
- end

EXAMPLES AND APPLICATIONS

Consider determining if an individual is going to default on their loan. Age and Loan are the two numerical variables (predictors) and Default is the target

EXAMPLES AND APPLICATIONS

We can now use the training set to classify an unknown case (Age=48 and Loan=\$142,000) using Euclidean distance. If K=1 then the nearest neighbor is the last case in the training set with Default=Y.

Age	Loan	Default	Distance	
25	\$40,000	N	102000	
35	\$60,000	N	82000	
45	\$80,000	N	62000	
20	\$20,000	N	122000	
35	\$120,000	N	22000	2
52	\$18,000	N	124000	
23	\$95,000	Υ	47000	
40	\$62,000	Υ	80000	
60	\$100,000	Υ	42000	3
48	\$220,000	Υ	78000	
33	\$150,000	Υ —	8000	1
		Ţ		
48	\$142,000	?		
Euclidean Distance $D = \sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2}$				

▶ With K=3, there are two Default=Y and one Default=N out of three closest neighbors. The prediction for the unknown case is again Default=Y.

SELECTING A VALUE OF K

How does our k affect our bias-variance tradeoff?

http://scott.fortmann-roe.com/docs/BiasVariance.html

ADVANTAGES AND DRAWBACKS

Benefits

- Simple to understand and explain
- Model training is fast
- Can be used for classification and regression
- Non-linear, which may be common (imagine age vs income)

Drawbacks

Must store all of the training data

Prediction phase can be slow when n is large

Sensitive to irrelevant features

Sensitive to the scale of the data

Accuracy is (generally) not competitive with the best supervised learning methods