

Projeto Completo de Redes Ópticas em Hierarquia

Marcelo de Oliveira Lima Fábio de Oliveira Lima Marcelo Eduardo Vieira Segatto Renato Tannure Rotta de Almeida Elias Oliveira

UFES - Universidade Federal do Espírito Santo PPGEE – Programa de Pós-Graduação em Engenharia Elétrica

Sumário

- Definições
- Problema Estudado
- Metodologia
- Experimentos
- Conclusões

Definições

- Matriz de Demandas de Tráfego
 - Grooming e Bifurcação
- Matriz de Distâncias
- Topologia Física
- Topologia Lógica
 - Semitransparente
- Grau Lógico
- Comprimento de Onda
 - Continuidade
 - WDM
- Congestionamento
- Tráfego Retransmitido

Sub-Problemas

Quatro sub-problemas se fundem em VTD e RWA.

Topologia Estudada

Modelo TWA

Função Objetivo

• Custo de Instalação e Operação

Minimize:
$$\sum_{mn} C_{mn} \cdot D_{mn} + \sum_{sijw} T \cdot q_{sw}^{ij} \cdot A_s$$
, , com $i \neq s$ e $m > n$

Restrições

• Continuidade de Comprimentos de Onda e Capacidade:

$$\sum_{s} q_{sw}^{iv} \cdot A_{s} \leqslant Cap \cdot \left(\sum_{m} B_{iw}^{mv} - \sum_{n} B_{iw}^{vn} \right), \quad \forall (i, v, w), \text{ com } i \neq v$$

• Topologia Física:

$$\sum_{i} B_{iw}^{mn} \leqslant D_{mn} \text{ se } m > n, \text{ ou } D_{nm} \text{ se } m < n, \quad \forall (m, n, w)$$

Conservação de Fluxo:

$$\sum_{jw} q_{vw}^{vj} = 1, \quad \forall v$$

$$\sum_{iw} q_{sw}^{iv} - \sum_{jw} q_{sw}^{vj} = Q_{sv}, \quad \forall (s, v), \text{ com } s \neq v$$

Metodologia Proposta

Estrutura Hierárquica

Ilustração do processo de decisão do genético.

Qualidade da Hierarquia

Distância média entre os nós da hierarquia

Soma

$$M = \frac{TDist_{bk} \cdot PesoDist_{bk} + TDist_{cl} \cdot PesoDist_{cl}}{NumDist_{bk} + NumDist_{cl}}$$

Quantidade

Total de tráfego de acesso ao backbone

$$T = TrafAcesso \cdot PesoTrafAcesso$$

Função de avaliação

$$Fitness = M \cdot C_a + T$$

Fator de calibragem

Estatísticas

Média

$$n = \left(\frac{t_{(n'-1,\alpha/2)} \cdot s}{e_0}\right)^2$$

 $t_{(n-1,p)}$ é a distribuição t de *Student* com n-1 graus de liberdade e probabilidade p $e=2\cdot e_0$ é a margem de erro, a amplitude de intervalo de confiança $1-\alpha$ é o nível de confiança exigido

Desvio padrão

$$e' = \sqrt{\frac{(n'-1)\cdot s^2}{\chi^2_{(n'-1,1-\alpha/2)}}} - \sqrt{\frac{(n'-1)\cdot s^2}{\chi^2_{(n'-1,\alpha/2)}}}$$

 $\chi^2_{(n-1,p)}$ é a distribuição *Qui-Quadrado* com n-1 graus de liberdade e probabilidade p

Taxa de Instalação Física

N = Número de nós da rede.

 $C_{mn} = Custo de uma ligação física bidirecional [m, n].$

 D_{mn} é o número de ligações físicas entre o par de nós [m, n].

Média por nó do custo das ligações físicas existentes

$$FE = (1/N) \cdot \sum_{mn} C_{mn} \cdot D_{mn}$$

Média do custo de todas as ligações físicas possíveis

$$FP = \sum_{mn} C_{mn} / (N^2 - N)$$

$$TIF = \frac{FE}{FP} = \frac{N \cdot (N-1)}{N} \cdot \frac{\sum_{mn} C_{mn} \cdot D_{mn}}{\sum_{mn} C_{mn}} = (N-1) \cdot \frac{\sum_{mn} C_{mn} \cdot D_{mn}}{\sum_{mn} C_{mn}}$$

Metodologia Proposta

Experimentos

- Rede de 30 nós
- Matriz de tráfego uniforme
- Matriz de distância obedece a desigualdade triangular

$$d(x,y) \le d(x,z) + d(z,y)$$

Num triângulo o comprimento de qualquer lado é menor ou igual a soma dos outros dois.

Composição das Sub-Redes

$$M_i = 4$$
 $M_a = 10$

Tamanhos

 $Q_i = 3$
 $Q_a = 7$

Quantidades

Tamanhos:	5	6	7	8	4			
Clusters:								
1 -	7	9	16	26	27			
2 -	28	11	24	25	4	20		
3 -	10	19	3	22	30	17	18	
4 -	15	1	14	23	12	21	29	6
5 -	13	5	8	2				

Tabela 6.1: Estrutura hierárquica para a rede de 30 nós. Em negrito, os nós do backbone.

Composição das Sub-Redes

Fator de calibragem

$$C_a = \frac{E_t}{E_d} = 2 \cdot (n^2 - n) = 1740$$

- 17 milhões de soluções visitadas
- *Fitness* variou mais de 50%
- Média das distâncias (M) variou mais de 145%
- Tráfego de acesso (T) variou menos de 30%
- Tempo de execução do genético: 30 min

Tráfego de Acesso

Estatísticas

<u>Método</u>

- Gera-se topologias virtuais aleatoriamente
- Calcula-se o congestionamento e o tráfego retransmitido ótimos
 - Modelos lineares em AMPL
 - Distribuição do tráfego utilizando o GLPK
- Variação do grau lógico de 1 a $t_k/2$

Objetivo

- Cálculo da média e desvio padrão amostrais
- Nível de confiança: 99%
- Margem de erro: 1%

Tempo de execução: 50 min

Figura 6.4: Convergência da média e desvio padrão em função do tamanho da amostra.

Notação

Sub-rede	Tamanho	Identificação (ID)
Backbone	5	bk.t5
Cluster 1	5	cl1.t5
Cluster 2	6	cl2.t6
Cluster 3	7	cl3.t7
Cluster 4	8	cl4.t8
Cluster 5	4	c15.t4

Tabela 6.2: Identificação das sub-redes.

Congestionamento

Gl	ID	LB	HLDA	Min	Max	MED	DP	MEDn	DPn	t(s)
1	c5.t4	4196	3%	3%	4%	3%	0.3%	1000	1000	1
1	bk.t5	8897	98%	97%	110%	100%	3.1%	1000	1000	3
1	c1.t5	5563	7%	5%	8%	7%	0.8%	1000	1000	3
1	c2.t6	5928	17%	10%	18%	13%	2.6%	1000	1000	8
1	c3.t7	7264	10%	7%	14%	10%	1.4%	1000	1000	19
1	c4.t8	8150	13%	10%	17%	13%	1.4%	1000	1000	42
2	c5.t4	2098	0%	0%	110%	35%	46.0%	13912	6927	33
2	bk.t5	4448	59%	21%	230%	71%	52.0%	17924	8888	89
2	c1.t5	2782	4%	0%	110%	16%	35.0%	8262	4123	38
2	c2.t6	2964	0%	0%	120%	13%	31.0%	6457	3450	67
2	c3.t7	3632	100%	0%	120%	9%	25.0%	3994	2170	86
2	c4.t8	4075	0%	0%	120%	8%	24.0%	3655	1895	186
3	c2.t6	1976	16%	0%	220%	24%	46.0%	13759	6606	148
3	c3.t7	2421	200%	0%	210%	14%	35.0%	7830	3857	174
3	c4.t8	2717	0%	0%	210%	13%	34.0%	7905	3773	416
4	c4.t8	2037	0%	0%	320%	18%	34.0%	7587	3712	404

Tabela 6.4: Resultado das estatísticas para o congestionamento.

Tráfego Retransmitido

Gl	ID	LB	HLDA	Min	Max	MED	DP	MEDn	DPn	t(s)
1	c5.t4	4500	92%	92%	94%	93%	1.1%	1000	1000	1
1	bk.t5	44000	16%	15%	22%	18%	2.3%	1000	1000	3
1	c1.t5	8500	100%	95%	110%	100%	4.2%	1000	1000	3
1	c2.t6	13000	110%	88%	110%	99%	5.6%	1000	1000	8
1	c3.t7	19000	95%	82%	100%	94%	5.7%	1000	1000	19
1	c4.t8	27000	100%	90%	110%	100%	4.1%	1000	1000	42
2	c5.t4	1400	100%	89%	290%	140%	66.0%	28994	14406	69
2	bk.t5	14000	58%	17%	100%	37%	21.0%	2964	1495	15
2	c1.t5	2700	170%	93%	330%	140%	57.0%	21766	11025	100
2	c2.t6	3900	120%	81%	320%	150%	45.0%	13389	6648	140
2	c3.t7	5300	270%	82%	350%	160%	40.0%	10736	5335	230
2	c4.t8	7700	150%	91%	370%	150%	35.0%	7946	3855	400
3	c2.t6	2400	150%	86%	460%	150%	56.0%	20890	10186	230
3	c3.t7	3700	360%	84%	410%	130%	40.0%	10798	5450	240
3	c4.t8	5000	98%	91%	400%	140%	36.0%	8729	4238	460
4	c4.t8	3500	110%	97%	530%	140%	38.0%	9595	4647	510

Tabela 6.5: Resultado das estatísticas para o tráfego retransmitido.

Limites Superiores

Congestionamento e Tráfego Retransmitido

• Custo Físco
$$UBCFis = \frac{TIF_{NFSNET} \cdot (1 - TIFgap) \cdot \sum_{mn} C_{mn}}{N-1}$$
 Referência

Uso do TWA

Dados de Entrada da sub-rede:

```
Matrizes de tráfego e distância; UBCong; UBTRetr; TIF<sub>NFSNET</sub>
        FOR Gl = 1 TO Gl = |t_k/2| DO
              W = 1; TIFgap = 40\%;
3
              DO UNTIL W = 5 OR Solução Viável
                   SOLVER_{[TWA]};
                   W = W + 1:
              END DO
              IF NOT Solução Viável AND 10% ≤ TIFgap ≤ 40%
8
                   TIFgap = TIFgap - 10\%;
                   W=1:
10
                   GO TO step (3)
             END IF
11
12
             IF Solução Viável AND TIFgap ≥ 40%
                   TIFgap = TIFgap + 10\%;
<u>13</u>
                   W = 1;
<u>14</u>
15
                   GO TO step (3)
             END IF
<u> 16</u>
17
        END FOR
```


Resultado Final

ID	Gl	W	TIFgap	TTranc	CFis	TIF	TRetr	Cong	Ti(s)	Tt(s)
bk.t5	1	1	70%	5	51	0.54	51084	17526	0.1	5
bk.t5	2	2	70%	10	51	0.54	17667	6434	0.4	15
c1.t5	1	1	20%	5	79	1.42	16635	5882	1	81842
c1.t5	2	2	20%	9	79	1.42	5755	3003	11	95
c2.t6	1	2	40%	6	68	1.07	24484	6523	98	831
c2.t6	2	3	40%	12	68	1.07	5556	2730	9	225
c2.t6	3	4	40%	16	68	1.07	4267	2002	74	509
c3.t7	1	1	30%	7	85	1.24	35709	7821	37	221110
c3.t7	2	3	30%	13	87	1.26	7755	2961	215	24271
c3.t7	3	3	30%	18	84	1.23	6824	2768	2859	17586
c4.t8	1	1	40%	8	80	1.09	50807	8982	698	41074
c4.t8	2	2	40%	16	79	1.06	7976	3582	17	21350
c4.t8	3	2	40%	16	79	1.07	7069	3050	58	3999
c4.t8	4	3	40%	22	77	1.04	6590	2056	587	23027
c5.t4	1	1	20%	4	65	1.36	8546	4304	0.4	9
c5.t4	2	2	20%	7	65	1.36	233	1515	0.1	6

Tabela 6.8: Resumo dos resultados com TWA.

Figura 6.7: Resultados para tráfego retransmitido e de acesso ao backbone.

Conclusões

Destaques

- Projeto completo (inclusive físico)
- Sub-redes resolvidas separadamente (Tráf. acesso e tratamento do mesmo como opaco)
- Uso da TIF
- Aplicação de indução estatística
- Modelo matemático usado para obter solução viável

Trabalhos Futuros

Custo da rede física mais realista

Obrigado!