4,5

Exercise 1

Let f, g and h satisfy $f(x) \le g(x) \le h(x)$ for all x in some domain A. If $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} h(x) = L$ at some point $c \in A$, use the $\varepsilon - \delta$ definition of functional limits to show that $\lim_{x \to c} g(x) = L$.

Solution:

Let $\varepsilon > 0$. Since $\lim_{x \to c} f(x) = L$ and $\lim_{x \to c} h(x) = L$, there exists a $\delta > 0$ such that whenever $|x - c| < \delta$ implies that $|f(x) - L| < \varepsilon$ and $|h(x) - L| < \varepsilon$.

Now consider the following

$$f(x) \le g(x) \le h(x)$$

$$f(x) - L \le g(x) - L \le h(x) - L$$

$$|f(x) - L| \le |g(x) - L| \le |h(x) - L|$$

It is also true

$$|f(x) - L| \le |g(x) - L| \le |h(x) - L| < \varepsilon$$

 $|g(x) - L| < \varepsilon$

Therefore $\lim_{x\to c} g(x) = L$.

Exercise 2

Let f be uniformly continuous on \mathbb{R} , and define a sequence of functions by $f_n(x) = f(1+1/n)$. Show that $f_n \to f$ uniformly on \mathbb{R} .

Solution:

Let f be uniform and $f_n(x) = f(x+1/n)$. Since f is uniform there exists an $x,y \in \mathbb{R}$ such that $|y-x| < \delta$ implies that $|f(y)-f(x)| < \varepsilon$

Let $|y-x| < \delta$ for every $\varepsilon > 0$. Further let y = x + 1/n. Since f is continuous we can say that

$$|y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon$$

$$|x + \frac{1}{n} - x| < \delta \Rightarrow |f(1 + \frac{1}{n}) - f(x)| < \varepsilon$$

$$|x + \frac{1}{n} - x| < \delta \Rightarrow |f_n(x) - f(x)| < \varepsilon$$

Thus $(f_n) \to f$ uniformly.

Exercise 3

In section 5.4 the function

$$g(x) = \sum_{n=0}^{\infty} \frac{1}{2^n} h(2^n x)$$

was shown to be nowhere differentiable (pg 163). Use the Weierstrass M-Test to show that g(x) is continuous on \mathbb{R}

Solution:

Using page 163 as a reference, define h(x) = |x|, and let h(x) = h(x+2). This implies that h(x) is periodic, repeating every 2 units.

This also means that there is a max of h(x), which is at x = 1, and h(1) = 1.

Now, let $M_n = \frac{1}{2^n}$. Note that $\sum_{n=0}^{\infty} \frac{1}{2^n}$ is a converging geometric series because r = 1/2 < 1. It is also true that $\frac{1}{2^n}h(2^nx) < M_n$ for all $n \in \mathbb{N}$.

The assumptions for the M-Test are now met and this implies that $\frac{1}{2^n}h(2^nx)$ converges to g(x) uniformly. Theorem 6.4.2 states that because the sequence of functions is continuous and converges to g uniformly, then g(x) is continuous on \mathbb{R} .

Exercise 4

Suppose f is defined and differentiable for every x > 0, and $f'(x) \to 0$ as $x \to \infty$. Let g(x) = f(x+1) - f(x). Prove that $g(x) \to 0$ as $x \to \infty$.

Solution:

Since f is differentiable and continuous for every x > 0, the mean value theorem states that for a closed interval on the domain [a,b], there exists a point $c \in [a,b]$ such that $f'(c) = \frac{f(b) - f(a)}{b-a}$.

Let a = x and b = x + 1. It follows that

$$f'(c) = \frac{f(x+1) - f(x)}{(x+1) - x}.$$
$$f'(c) = f(x+1) - f(x)$$

However, g(x) = f(x+1) - f(x), so we know that g(x) = f'(c).

Since $\lim_{x\to\infty} f'(x) = 0$, then $\lim_{x\to\infty} f'(c) = 0$, thus $g(x)\to 0$.

Exercise 5

Let f be defined for all $x \in \mathbb{R}$, and suppose that $|f(x) - f(y)| \le (x - y)^2$ for all $x, y \in \mathbb{R}$. Prove that f is constant.

Solution:

Let $y = c \in \mathbb{R}$, therefore we obtain the following,

$$|f(x) - f(c)| \le (x - c)^2$$

$$\left| \frac{f(x) - f(c)}{x - c} \right| \le |(x - c)|$$

Since f is defined for all $x \in \mathbb{R}$ the definition of differentiability (5.2.1) states that

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

It follows that

$$|f'(c)| = \lim_{x \to c} \left| \frac{f(x) - f(c)}{x - c} \right| \le \lim_{x \to c} |x - c|$$

$$|f'(c)| = 0$$

The derivative of f at any point $c \in \mathbb{R}$ is zero. The derivative of a constant function is also equal to zero. Therefore, f must be constant.