平成22年度 日本留学試験(第1回)

試験問題

平成22年度(2010年度)日本留学試験

理科

(80分)

【物理・化学・生物】

- ※ 3科目の中から、2科目を選んで解答してください。
- ※ 1科目を解答用紙の表面に解答し、もう1科目を裏面に解答してください。
 - I 試験全体に関する注意
 - 1. 係員の許可なしに、部屋の外に出ることはできません。
 - 2. この問題冊子を持ち帰ることはできません。
- Ⅱ 問題冊子に関する注意
 - 1. 試験開始の合図があるまで、この問題冊子の中を見ないでください。
 - 2. 試験開始の合図があったら、下の欄に、受験番号と名前を、受験票と同じように記入してください。
 - 3. 各科目の問題は、以下のページにあります。

科目	ページ			
物理	1	~	21	
化学	23	~	35	
生物	37	~	53	

- 4. 足りないページがあったら手をあげて知らせてください。
- 5. 問題冊子には、メモや計算などを書いてもいいです。
- Ⅲ 解答用紙に関する注意
 - 1. 解答は、解答用紙に鉛筆(HB)で記入してください。
 - 2. 各問題には、その解答を記入する行の番号 **1**, **2**, **3**…がついています。解答は、解答用紙(マークシート)の対応する解答欄にマークしてください。
 - 3. 解答用紙に書いてある注意事項も必ず読んでください。
- ※ 試験開始の合図があったら、必ず受験番号と名前を記入してください。

受験番号	*		*			
名 前						

物理

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙の表面に解答し、もう1科目を解答用紙の裏面に解答してください。

「物理」を解答する場合は、右のように、解答用紙の左上にある「解答科目」の「物理」を○で囲み、その下のマーク欄をマークしてください。

科目が正しくマークされていないと、採点されません。

I $2\sim8$ ページの問い A (問 1), B (問 2), C (問 3), D (問 4), E (問 5), F (問 6), G (問 7) に答えなさい。ただし,重力加速度(acceleration due to gravity)の大きさを g とし、空気の抵抗は無視できるものとする。

- **A** 国際単位系 (SI) では,長さ[m],質量[kg],時間[s],電流[A]が基本単位の一部 として使われている。

	圧力	電気抵抗
1	$[\mathrm{m}^{-1}\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}]$	$[\mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}\cdot\mathrm{A}^{-2}]$
2	$[\mathrm{m}^{-2}\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}]$	$[\mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}\cdot\mathrm{A}^{-2}]$
3	$[\mathrm{m}^{-1}\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}]$	$[\mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-3}\cdot\mathrm{A}^{-2}]$
4	$[\mathrm{m}^{-2}\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}]$	$[\mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-3}\cdot\mathrm{A}^{-2}]$
⑤	$[\mathrm{m}^{-1}\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}]$	$[\mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-4}\cdot\mathrm{A}^{-2}]$
6	$[\mathrm{m}^{-2}\cdot\mathrm{kg}\cdot\mathrm{s}^{-2}]$	$[\mathrm{m}^2\cdot\mathrm{kg}\cdot\mathrm{s}^{-4}\cdot\mathrm{A}^{-2}]$

B 次の図1のように、軽いばねの一方の端を持ち、もう一方の端におもりをつけてつ るしたところ、ばねは自然長より20cm仲びた状態でつりあった。次に図2のように、 おもり全体を水中に入れてつるしたところ、ばねは自然長より 15 cm 伸びた状態でつ りあった。

このおもりの密度 (density) は水の密度の何倍か。最も適当なものを、次の①~⑥ 問 2 2 倍 の中から一つ選びなさい。

(Î) 1.5

② 2.0 ③ 2.5 ④ 3.0 ⑤ 3.5

6 4.0

 ${f C}$ 次の図のように、粗い斜面上の小物体に、斜面に沿って上向きの初速度を与えたところ、小物体は斜面を上り、最高点に達した後、下ってきた。小物体の速度をvとし、斜面を上る向きをvの正の向きとする。また、運動を開始してからの経過時間をtとする。

問3 $v \ge t$ の関係を表すグラフとして、最も適当なものを、次の① \sim ⑥の中から一つ選びなさい。

3

D 質量 4m の台車 (wagon) が質量 m の小球をのせて、なめらかで水平な床の上を右 向きに動いている。この小球が左向き上方に向かって発射された。発射直後、床の上 に静止している人が観測したところ、次の図のように、台車は水平右向きに速さvで、 小球は水平方向から角度 60° の向きに速さ 2v で動いていた。

問4 発射前の台車の速さはいくらか。正しいものを、次の①~⑤の中から一つ選びなさ 61

- ① $\frac{2}{5}v$ ② $\frac{4-\sqrt{3}}{5}v$ ③ $\frac{3}{5}v$ ④ $\frac{4}{5}v$ ⑤ $\frac{6}{5}v$

 ${f E}$ 次の図のように、水平な床の上に固定された水平な台の上で、質量 M の小物体 ${f A}$ が、静止していた質量 m の小物体 ${f B}$ に衝突した。その後、 ${f A}$ と ${f B}$ は台の端から、水平に飛び出し、床に落下した。台の端から ${f A}$ の落下した地点までの水平距離 ${f D}$ は、 ${f B}$ の落下した地点までの水平距離 ${f d}$ であった。 ${f A}$ 、 ${f B}$ と台との間に摩擦はないものとする。

問 5 A と B の間のはねかえり係数 (coefficient of restitution) はいくらか。正しいもの を、次の①~⑥の中から一つ選びなさい。 5

 $3 \frac{2M}{m+2M}$

 \mathbf{F} 質量mの2つの小物体A、Bがある。次の図1のように、Aは軽くて伸びない糸で鉛直に(vertically)つるされ、BはAに接するように粗い水平な床の上に置かれている。図2のように、糸を張ったまま、最初の位置からの高さがhの位置までAを持ち上げ、静かに手を離した。AはBと弾性衝突(elastic collision)し、Bは床の上を距離dだけ滑って止まった。

問 6 Bと床との間の動摩擦係数 (coefficient of kinetic friction) はいくらか。正しいもの を, 次の①~⑥の中から一つ選びなさい。 **6**

① $\frac{h}{2d}$ ② $\frac{h}{d}$ ③ $\frac{2h}{d}$ ④ $\frac{d}{2h}$ ⑤ $\frac{d}{h}$ ⑥ $\frac{2d}{h}$

 ${f G}$ 質量mの小さいリング ${f A}$ を半径 ${f R}$ の大きいリング ${f B}$ に通し、 ${f A}$ が ${f B}$ に沿って自由に動けるようにした。次の図のように、 ${f B}$ を鉛直に(vertically)立て、中心 ${f O}$ を通る鉛直軸(vertical axis)の周りに角速度(angular velocity) ω で回転させた。このとき、 ${f A}$ は ${f B}$ 上のある点で悩まっていた。 ${f O}$ と鉛直軸とのなす角は ${f \theta}$ であった。 ${f A}$ と ${f B}$ の 間の摩擦はないものとする。

問7 角速度 ω の値はいくらか。正しいものを、次の① \sim ⑥の中から一つ選びなさい。 **7**

① $\cos \theta \sqrt{\frac{g}{R}}$

 $\sqrt{\frac{g\cos\theta}{R}}$

 $\sqrt[3]{\frac{g}{R\cos\theta}}$

- II 次の問いA(問1), B(問2), C(問3)に答えなさい。
 - A 銅の容器に氷を入れ断熱材で囲み、ヒーターで 1.0×10^3 J/s の割合で加熱した。グ ラフはこのときの経過時間tと温度 θ の関係を示している。ヒーターからの熱はすべ て容器、氷、水に伝わり、それ以外に外部との熱のやり取りはないものとする。ま た,水の比熱 (specific heat) を4.2 J/g·K, 銅の比熱を0.39 J/g·K, 氷の融解熱 (heat of fusion) $63.3 \times 10^2 \text{ J/g }$

問 1 銅の容器の質量はいくらか。最も適当な値を、次の①~④の中から一つ選びなさい。 **8** | g

- ① 3.0×10^2 ② 1.2×10^3
- (3) 1.9×10^3
- (4) 2.6×10^3

B 次の図1のように、鉛直に(vertically)置かれたシリンダーと、断面積S、質量Mのなめらかに動くピストンで、理想気体(ideal gas)を閉じ込めた。このときの気体部分の高さは L_0 、気体を含む装置の絶対温度は T_0 であった。次に、図2のように、ピストンの上に質量mのおもりをのせ、気体部分の高さが L_0 になるまで装置全体を温めると、全体の絶対温度はTになった。ただし、大気圧を p_0 、重力加速度(acceleration due to gravity)の大きさをgとする。

問2 T はいくらか。正しいものを、次の① \sim ⑥の中から一つ選びなさい。

① $\left(1 + \frac{M}{m}\right)T_0$ ② $\left(1 + \frac{Mg}{p_0S}\right)T_0$ ③ $\left(1 + \frac{Mg}{p_0S + mg}\right)T_0$

9

 ${f C}$ n [mol] の単原子分子理想気体(monatomic ideal gas)の状態を次の p-V 図のように ${f A} o {f B} o {f C}$ と変化させた。初めの状態 ${f A}$ の絶対温度を ${f T}$ とし,気体定数(gas constant)を ${f R}$ とする。

問3 過程 $A \rightarrow B \rightarrow C$ で,気体に加えた熱量(quantity of heat)はいくらか。正しいものを,次の①~⑥の中から一つ選びなさい。

- ① $\frac{9}{2}nRT$
- ② $\frac{11}{2}nRT$
- $3 \frac{13}{2} nRT$

- $\textcircled{4} \quad \frac{15}{2}nRT$
- \bigcirc $\frac{17}{2}nRT$

- III 次の問い A (問 1), B (問 2), C (問 3) に答えなさい。
 - A 次の図は、水面上の平面波が鉛直な壁に対して斜めに入射しているところを、真上から見た図である。図中の実線は、ある時刻の入射波の山を表している。壁では自由端での反射が起こり、反射波が生じる。

- 問1 入射波と反射波が干渉(interference)して強め合ってできる山は、時間とともに図中の矢印 a~h のどの向きに移動するか。最も適当なものを、次の①~⑧の中から一つ選びなさい。
 - (1) a
- ② b
- 3 c
- 4 d

- (5) e
- (6) f
- ⑦ g
- (8) h

 ${f B}$ 次の図のように、振動数 f、波長 λ の音を発している音源(sound source)S のそば を、観測者 O が一定の速さで通過する。

問2 OがSに近づくときEOがSから遠ざかるときのそれぞれについて、Oが観測する音の振動数f'、波長X'は、f、 λ と比べてどのようになるか。最も適当なものを、次の \mathbb{O} \mathbb{O} 0の中から一つ選びなさい。

	OがSに近づくとき	OがSから遠ざかるとき
①	$f' < f$. $\lambda' < \lambda$	$f' > f$. $\lambda' < \lambda$
2	$f' < f, \ \lambda' = \lambda$	$f' > f$. $\lambda' = \lambda$
3	$f' < f. \ \lambda' > \lambda$	$f' > f$. $\lambda' > \lambda$
4	$f' > f$. $\lambda' < \lambda$	$f' < f$. $\lambda' < \lambda$
5	$f' > f$. $\lambda' = \lambda$	$f' < f$. $\lambda' = \lambda$
6	$f' > f$, $\lambda' > \lambda$	$f' < f, \ \lambda' > \lambda$

 ${f C}$ 虹は、空気中の水滴に入った太陽光の屈折と反射と分散(dispersion)により発生する。虹のある色の半径を見込む角は、図1のように、入射した太陽光と水滴で屈折・反射した光のなす角 θ に等しい。図2に示すように、小さな半径の虹と大きな半径の虹が同時に見える場合がある。一方の虹Aは、図3のように水滴中で1回だけ反射して生じ、その色は内側から紫から赤へと変化する。もう一方の虹Bは、図4のように2回反射して生じる。

間3 虹Bは、半径の大きい虹か小さい虹か。また、その色は内側からどのように変化するか。正しい組み合わせを、次の①~④の中から一つ選びなさい。 13

	虹Bの半径	内側からの変化
1	小	赤から紫へ
2	小	紫から赤へ
3	大	赤から紫へ
4	大	紫から赤へ

次の問いA(問1),B(問2),C(問3),D(問4),E(問5),F(問6)に答えな さい。

次の図のように、x 軸上の原点に 9.0×10^{-8} C の点電荷(point charge)を固定し、 x = 4.0 m の位置に -1.0×10^{-8} C の点電荷を固定した。

- x軸上に正の点電荷を置いたとき、この点電荷に働く力の合力が0となる位置はど こか。最も適当なものを、次の①~④の中から一つ選びなさい。 14 m

- ① x = 3.0 ② x = 3.5 ③ x = 4.5

B 帯電していない中空の金属球がある。この金属球の中心 O に正の点電荷(point charge)を置いた。次の図は、この金属球の断面を示したものである。中心 O を原点として、x 軸をとった。

問2 このときのx軸上の電位 (electric potential) V を表すグラフはどうなるか。最も適当なものを、次の① \sim ⑤の中から一つ選びなさい。

C 電極間の全体に誘電体(dielectric)を入れることができる平行平板コンデンサー (capacitor) がある。はじめ誘電体を入れない状態で、コンデンサーを電池に接続し、 充電した。その後,電池を外してから,比誘電率(relative permittivity) ε_{r} の誘電体を 電極間全体に入れた。

このときコンデンサーに蓄えられているエネルギーは、誘電体を入れる前の何倍か。 問3 正しいものを、次の①~⑤の中から一つ選びなさい。 16 倍

- ① 1
- $② \frac{1}{\varepsilon_{\rm r}} \qquad \qquad ③ \frac{1}{\varepsilon_{\rm r}^2} \qquad \qquad ④ \varepsilon_{\rm r}$
- \circ $\varepsilon_{\rm r}^2$

D 次の図のように、抵抗値が $10~\Omega,~30~\Omega,~40~\Omega$ の電気抵抗 5 個を接続した。

端子 AB 間の合成抵抗は何 Ω か。最も適当なものを,次の $\mathbb{1}$ ~ $\mathbb{6}$ の中から一つ選び 問 4 なさい。 17 Ω

- (I) 10
- **②** 15
 - **③** 20
- **(4)** 30
- **⑤** 45
- **(6)** 60

 \mathbf{E} 次の図のように、紙面に垂直で表から裏向きに磁束密度(magnetic flux density)の 大きさBの一様磁場 (uniform magnetic field) が存在している領域(領域I)と、紙 面に垂直で表から裏向きに大きさ $rac{1}{2}B$ の一様磁場が存在している領域(領域 II)が、 紙面に垂直な境界面で接している。正の電荷q,質量mの粒子を境界面上の点Pから、 境界面に垂直で、領域Iに向かって速さvで打ち出したところ、粒子は点線のような 軌道 (orbit) を描いて、再び点 P に戻った。ただし、重力 (gravitational force) の影 響はないものとする。

問5 点Pを出発して再び点Pに戻るまでの時間はいくらか。正しいものを、次の①~⑤ 18 の中から一つ選びなさい。

- ① $\frac{2\pi m}{qB}$ ② $\frac{3\pi m}{qB}$ ③ $\frac{4\pi m}{qB}$ ④ $\frac{5\pi m}{qB}$

 ${f F}$ 次の図のように、1 次側の巻き数 N_1 、2 次側の巻き数 N_2 のコイルを鉄心に巻いた変圧器を考える。1 次側には電圧 V_1 の交流電源がつながれ、電流 I_1 が流れている。2 次側の抵抗 R には V_2 の電圧がかかり、電流 I_2 が流れている。ただし、 V_1 、 I_1 、 V_2 、 I_2 は交流の実効値(effective value)である。

問 6 横軸に巻き数の比 $\frac{N_2}{N_1}$ をとり、縦軸に 2 次側との電圧比 $\frac{V_2}{V_1}$ 、または電流比 $\frac{I_2}{I_1}$ をとったグラフを描く。 $\frac{V_2}{V_1}$ と $\frac{I_2}{I_1}$ のグラフは、次の a,b,c のどれか。最も適当な組み合わせを、次のページの①~9の中から一つ選びなさい。ただし、変圧器内の電力損失は無視できるものとする。

	縦軸が $rac{V_2}{V_1}$ のグラフ	縦軸が $rac{I_2}{I_1}$ のグラフ
1	a	a
2	a	b
3	a	c
4	b	a
⑤	b	b
6	b	С
Ø	С	a
8	С	b
9	С	С

物理の問題はこれで終わりです。解答欄の **20** ~ **75** はマークしないでください。 解答用紙左上の科目欄に「物理」が正しくマークしてあるか、もう一度確かめてください。

この問題冊子を持ち帰ることはできません。