Discreet Fall 2023 Notes

Samuel Lindskog

December 14, 2023

Relations

Definition 1.1 (Relation). Suppose *A* and *B* are sets. Then a set $R \subseteq A \times B$ is called a relation from *A* to *B*. A set $R \subseteq A \times A$ is called a relation on *A*.

Definition 1.2 (Relation Dom). Suppose R is a relation from A to B. Then the domain of R is the set:

$$Dom(R) = \{ a \in A \mid \exists b \in B((a,b) \in R) \}$$

Definition 1.3 (Relation Range). Suppose *R* is a relation from *A* to *B*. Then the domain of *R* is the set:

$$Ran(R) = \{ b \in B \mid \exists a \in A((a,b) \in R) \}$$

Definition 1.4 (Inverse Relation). The inverse of a relation R from A to B is the relation R^{-1} from B to A defined:

$$R^{-1} = \{(b, a) \in B \times A \mid (a, b) \in R\}$$

Definition 1.5 (Composition). Suppose R a relation from A to B, and S a relation from B to C. Then the composition of S and R is the relation $S \circ R$ from A to C defined as follows:

$$S \circ R = \{(a,c) \in A \times C \mid \exists b \in B((a,b) \in R \land (b,c) \in S)\}$$

Definition 1.6. Suppose *R* is a relation on *A*

- 1. *R* is reflexive if $\forall x \in A(xRx)$.
- 2. *R* is *symmetric* if $\forall x, y \in A(xRy \Rightarrow yRx)$.
- 3. *R* is transitive if $\forall x, y, z \in A((xRy \land yRz) \Rightarrow xRz)$.
- 4. *R* is antisymmetric if $\forall x \in A \forall y \in A((xRy \land yRx) \Rightarrow x = y)$.

Definition 1.7 (Partial and Total Orders). Suppose R is a relation on set A. Then R is called a *partial order* on A if it is reflexive, transitive, and antisymmetric. It is called a *total order* on A if it is a partial order, and $\forall x, y \in A(xRy \lor yRx)$.

Definition 1.8 (R-smallest and R-minimal). Suppose R is a partial order on a set A and $B \subseteq A$. Then $b \in B$ is called an R-smallest element of B if $\forall x \in B(bRx)$. It is called an R-minimal element of B if $\forall x \in B(xRb \Rightarrow x = b)$.

Definition 1.9 (R-greatest and R-maximal). Suppose *R* is a partial order on a set A and $B \subseteq A$. Then $b \in B$ is called an R-greatest element of B if $\forall x \in B(xRb)$. It is called an R-maximal element of B if $\forall x \in B(bRx \Rightarrow x = b).$

Definition 1.10 (Upper and Lower Bound). Suppose *R* is partial order on A, $B \subseteq A$. Then $a \in A$ is called an R-lower bound for B if $\forall x \in B(aRx)$. Similarly, $a \in A$ is an *R*-upper bound for B if $\forall x \in A$ B(xRa).

Definition 1.11 (l.u.b and g.l.b). Suppose *R* is a partial order on *A*, and $B \subseteq A$. Let *U* be the set of all upper bounds for *B*, and *L* the set of all lower bounds. If *U* has a smallest element, then this smallest element is called the *least upper bound* of B. If L has a largest element, then this largest element is called the *greatest lower bound* of B.

Definition 1.12 (Equivalence Relation). Suppose that *R* is a relation of a set A. Then R is called an equivalence relation on A if it is reflexive, symmetric, and transitive.

Definition 1.13 (Equivalence Class). Suppose *R* is an equivalence relation of set A, and $x \in A$. Then the equivalence class of x with respect to *R* is the set:

$$[x]_R = \{ y \in A \mid yRx \}$$

The set of all equivalence classes of elements of A is called A modulo R, and is denoted A/R. Thus:

$$A/R = \{ [x]_R \mid x \in A \}$$

Definition 1.14 (Pairwise Disjoint). Let \mathcal{F} be a family of sets. We will say that $\{$ is *pairwise disjoint* if every pair of distinct elements of \mathcal{F} are disjoint, or in other words:

$$\forall X, Y \in \mathcal{F}(X \neq Y \Rightarrow X \cap Y = \emptyset)$$

Definition 1.15 (Congruence). Suppose $m \in \mathbb{Z} \setminus \{0\}$. for any $x, y \in \mathbb{Z}$, we will say that x is congruent to y modulo m if $\exists k \in \mathbb{Z}(x - y = km)$, denoted as $x \equiv y \pmod{m}$.

Functions

Definition 1.16 (Function). Suppose *F* is a relation from *A* to *B*. Then *F* is called a function from *A* to *B* if for every $a \in A$ there is exactly one $b \in B$ such that $(a, b) \in F$, i.e:

$$\forall a \in A \exists ! b \in B((a,b) \in F)$$

Notation. Suppose $f: A \to B$. If $a \in A$, we write f(a) = b for $(a,b) \in f$, where b is called "the value of f at a", or "the image of a under f".

Definition 1.17 (Function Range). The definition of range for relations can be used, or:

$$Ran(f) = \{ b \in B \mid \exists a \in A(f(a) = b) \}$$

Definition 1.18 (One-To-One (Injective)).

$$\forall a_1, a_2 \in A(f(a_1) = f(a_2) \Rightarrow a_1 = a_2)$$

Definition 1.19 (Onto (Surjective)).

$$\forall b \in B \exists a \in A(f(a) = b)$$

Definition 1.20 (Image). Suppose $f: A \to B$ and $X \subseteq A$. Then the *image* of X under f is the set f(X) defined as follows:

$$f(X) = \{ f(x) \mid x \in X) \}$$

In particular, $f(\emptyset) = \emptyset$ and $f(A) = \operatorname{Ran}(f)$.

Definition 1.21 (Inverse Image). Suppose $f: A \to B$ and $Y \subseteq B$. Then the *inverse image* of Y under f is the set $f^{-1}(Y)$ defined as follows:¹

$$f^{-1}(Y) = \{ a \in A \mid f(a) \in Y \}$$

In particular, $f^{-1}(\emptyset) = \emptyset$, and:

$$f^{-1}(B) = \{ a \in A \mid f(a) \in B \} = A$$

Mathematical Induction

Proof by Mathematical Induction

To prove a goal of the form $\forall n \in \mathbb{N}(P(n))$, first prove P(0), and then prove $\forall n \in \mathbb{N}(P(n) \to P(n+1))$. The first of these proofs is called the *base case*, and the second the *induction step*. P(n) is called the inductive hypothesis.

Strong Induction

To prove a goal of the form $\forall n \in \mathbb{N}P(n)$, prove that $\forall n \in \mathbb{N}[(\forall k \in \mathbb{N}P(n), \mathbb{N}P(n))]$ $\mathbb{N}^{\leq n-1}P(k) \to P(n)$], where $\mathbb{N}^{\leq n-1}$ denotes all natural numbers no larger than n-1.

Theorem 1.1 (Division Algorithm). For all $n, m \in \mathbb{Z}$ with $m \neq 0$, there exists unique $q, r \in \mathbb{Z}$ with $0 \le r < |m|$ such that n = mq + r. The numbers q and r are called the quotient and remainder when n is divided by m.

 $^{\scriptscriptstyle 1}$ If f is not injective and surjective, then f^{-1} is not a function, so the notation " $f^{-1}(y)$ " is meaningless.

Definition 1.22. Let $m, n \in \mathbb{Z}$.

- 1. If $d \mid m$ and $d \mid n$ for some $d \in \mathbb{Z} \setminus \{0\}$, we say that d is a *common* divisor of m and n.
- 2. Assume $m \neq 0$ or $n \neq 0$. The largest common (positive) divisior of *m* and *n* is called the *greatest common divisor* of *m* and *n*, denoted by gcd(m, n), i.e.

Infinite Sets and Counting

Definition 1.23 (Equinumerous). Let *A* and *B* be sets. We'll say that A is equinumerous with B if there is a function $f: A \rightarrow B$ that is one-to-one and onto. We'll write $A \sim B$ to indicate that A is equinumerous with B.

Definition 1.24 (Finite). For each $n \in \mathbb{N}$, let $I_n = \{1, ..., n\}$. A set Ais called *finite* if there is an $n \in \mathbb{N}$ such that $I_n \sim A$. Otherwise, A is infinite.

Definition 1.25 (Cardinality). If A is a finite set and $A \sim I_n$ for some $n \in \mathbb{N}$, then the *cardinality* of A, denoted |A|, is defined to be n. In particular, $|\emptyset| = 0$.

Definition 1.26 (Denumerable). A set A is called denumerable is $\mathbb{Z}^+ \sim$ A. It is called *countable* if it is either finite of denumerable. Otherwise, it is uncountable.

Corollary 1.1 (Addition Rule). Let A and B be finite sets and $A \cap B =$ Ø. Then:

$$|A \cup B| = |A| + |B|$$

Theorem 1.2. Suppose *A* and *B* finite sets. Then:

$$A \cup B = |A| + |B| - |A \cap B|$$

Proof: Suppose $A \vee B$ is the empty set. Then $A \cap B = \emptyset$ and $|A \cap B| = 0$. In the case that one of A or B is not the empty set, suppose (without loss of generality) $A = \{a_1, \ldots, a_l\}$ and $B = \emptyset$ and $l \in \mathbb{N}$. Then $A \cup B = A$ and |B| = 0 and thus $|A \cup B| =$ $|A| + |B| - |A \cap B| = l$. In the case $A \wedge B = \emptyset$, trivially $|A \cup B| = l$ $|A| + |B| - |A \cap B|$.

Suppose $A \wedge B$ are not the empty set. Suppose then $A = \{a_1, \dots, a_l\}$ and $B = \{b_1, \ldots, b_r\}$, with $l, r \in \mathbb{Z}^+$ and $\forall l \forall r (a_l \neq b_r)$. Then $A \cup B = \{a_1, \dots, a_l, b_1, \dots, b_r\}$ and |A| = l and |B| = r and $A \cap B = \emptyset$ so $|A \cap B| = 0$. It follows $|A \cup B| = l + r = |A| + |B| + |A \cap B|$.

Suppose now $\exists l \exists r (a_l = b_r)$. For A with l elements and B with r elements as defined above, suppose $A = \{a_1, \ldots, a_s, x_1, \ldots, x_n\}$ and $B = \{b_1, \ldots, b_t, x_1, \ldots, x_n\}$ and $s, t, n \in \mathbb{Z}^+$ with s + n = l and t + n = r. Then, because $A \cap B = \{x_1, \ldots, x_n\}$, it follows $|A \cap B| = n$ and $|A \cup B| = s + t + n = |A| + |B| - |A \cap B| = l + r - n = s + n + t + n - n = s + t + n$.

Corollary 1.2. Let *A* and *B* be finite sets. Then:

$$|A \setminus B| = |A| - |A \cap B|$$

Definition 1.27 (Floor Function). Let $a \in \mathbb{R}$. Define the *floor* function of a by:

$$\lfloor a \rfloor = \max\{n \in \mathbb{Z} \mid n \le a\}$$

Definition 1.28 (Addition Rule).

Let A_1, \ldots, A_n be finite sets. Then:

$$|A_1 \cup \ldots \cup A_n| = |A_1| + \ldots + |A_n|$$

Definition 1.29 (Multiplication Rule). Let A_1, \ldots, A_n be finite sets. Then:

$$|A_1 \times \ldots \times A_n| = \prod_{i=1}^n |A_i|$$

Definition 1.30 (Permutation). We define a permutation to be a set of distinct symbols which are arranged in order. An r-permutation of n symbols is a permutation of r of the n symbols. The number of r-permutations is:

$$P(n,r) = \frac{n!}{(n-r)!}$$

Definition 1.31 (Combination). An r-combination of n distinct objects is any collection of r objects. The number of r-combinations of n objects is:

$$\left(n//r\right) = \frac{P(n,r)}{r!}$$

or in other words:

$$\frac{n!}{r!(n-r)!}$$

Definition 1.32 (Pigeonhole Principle). Let $n, m \in \mathbb{Z}^+$ and n > m. Suppose we have n objects that need to be placed in m boxes. Then at least one box has at least two objects in it.