

LENGUAJES ELECTRÓNICOS

TP 01

SISTEMAS DE NUMERACIÓN

AUTOR:

THIAGO GALVÁN ABBONDANZA

PROFESOR:

ISRAEL PAVELEK

OBJETIVOS:

- -Aprender a hacer conversiones más rápidas entre distintos sistemas de numeración.
- -Comprender mejor las sumas y restas en otros sistemas de numeración.
- -Entender las distintas convenciones para representar números negativos y cómo funcionan.

ACTIVIDAD 1

1) Completar la siguiente tabla con las equivalencias numéricas correspondientes:

Binario	Decimal	Hexadecimal
1010000	80	50
1111000	120	78
00111101	61	3D
1101	13	D
10010110	150	96
10100100101	1.317	525
10111111 00110000 0101 1010	12.529.754	BF305A

ACTIVIDAD 2

2) Realizar las siguientes sumas

1010 ₂	1001 ₂	1110 ₂
01012	01102	10102
10110 ₂	11011 ₂	10010 ₂
+	+	+
10101 ₂	00110 ₂	10110 ₂
7354 ₁₆	F1E5 ₁₆	3231 ₁₆
+	+	+
1123 ₁₆	ABC1 ₁₆	2123 ₁₆

ACTIVIDAD 3

3) Realizar las siguientes restas

101102	101012	110102
11012	10011,	10111,
F91F ₁₆	033416	106016
0101,6	_0137 ₁₆ _	1776 ₁₆

ACTIVIDAD 4

- 4) Utilizando una "palabra" de 3 bits de ancho, listar todos los números binarios signados y sus equivalencias decimales posibles representables en:
 - a) signo y magnitud

BINARIO	BINARIO PURO	SIGNO Y MAGNITUD
<mark>0</mark> 00	0	+ 0
<mark>0</mark> 01	1	<mark>+</mark> 1
<mark>0</mark> 10	2	+ 2
<mark>0</mark> 11	3	+ 3
<mark>1</mark> 00	4	<mark>-</mark> 0
<mark>1</mark> 01	5	<mark>-</mark> 1
<mark>1</mark> 10	6	<mark>-</mark> 2
<mark>1</mark> 11	7	- 3

El bit más significativo(msb) es el de signo, con este podemos determinar si nuestro número es positivo o negativo. Si nuestro MSB=0, significa que nuestro número va a ser positivo, si este es un 1, va a ser negativo. El problema de esta convención es que tenemos dos ceros, uno positivo y uno negativo, y debido que al cero no le afecta el signo, terminamos perdiendo un número.

Fórmulas:

Número mínimo =
$$(-1)(2^{(N-1)}-1)$$

$$N$$
úmero máximo = $(2^{(N-1)} - 1)$

Cantidad de combinaciones =
$$2^N - 1$$

Siendo N=cantidad de bit

b) Complemento a 1

BINARIO	BINARIO PURO	COMPLEMENTO A 1
<u>0</u> 00	0	<u>+</u> 0
<mark>0</mark> 01	1	<u>+</u> 1
<mark>0</mark> 10	2	<mark>+</mark> 2
<mark>0</mark> 11	3	+ 3
<mark>1</mark> 00	4	<mark>-</mark> 3
<mark>1</mark> 01	5	<mark>-</mark> 2
<mark>1</mark> 10	6	<mark>-</mark> 1
<mark>1</mark> 11	7	<u>-</u> 0

Nuevamente el msb es el que va a definir el signo de nuestro número. Cuando sea 0 vamos a leer nuestro número normalmente. Cuando sea 1 vamos a negar los bits que representan al número.

Por ejemplo, 101_2 . Sabemos que va a ser negativo, porque nuestro msb es un 1. Luego tenemos que negar los bits que quedan, entonces seria 10_2 , como ya sabemos que 10_2 representa al 2_{10} y previamente vimos que era negativo, el 101_2 =- 2_{10}

Lo que logramos con esta convención, es espejar la tabla.

Cantidad de combinaciones = $2^N - 1$

c) Complemento a 2

BINARIO	BINARIO PURO	COMPLEMENTO A 2
<mark>0</mark> 00	0	<u>+</u> 0
<mark>0</mark> 01	1	<mark>+</mark> 1
<mark>0</mark> 10	2	+ 2
<mark>0</mark> 11	3	+ 3
<mark>1</mark> 00	4	<mark>-</mark> 4
<mark>1</mark> 01	5	- 3
<mark>1</mark> 10	6	<mark>-</mark> 2
<mark>1</mark> 11	7	<mark>-</mark> 1

Pasa lo mismo que con las dos convenciones anteriores, el msb define el signo, siendo 0=(+) y 1=(-)

Cuando tengamos msb=0 leemos el número normalmente y cuando msb=1 sabemos que nuestro número va a ser negativo asi que tenemos que negar los bits restantes y además sumarle 1_2 . Haciendo este simple cambio, logramos sacar ese doble cero de las dos convenciones anteriores.

Ejemplo: 101₂

- msb=1₂, recordamos que, si el msb es 1, representa que nuestro número es negativo.
- Después negamos los bits restantes, en este caso 012, quedándonos 102.
- Sumamos 1_2 , a los bits ya negados, $10_2+1_2=11_2$
- 11₂=4₁₀ y como previamente vimos que el numero iba a ser negativo por el msb, podemos saber que el 101₂=-4₁₀ en complemento a 2

Fórmula:

Cantidad de combinaciones = 2^N

5) Utilizando una "palabra" de 4 bits de ancho, listar todos los números binarios signados y sus equivalencias decimales posibles representables en:

a) signo y magnitud

BINARIO	BINARIO PURO	SIGNO Y MAGNITUD
<mark>0</mark> 000	0	+ 0
<mark>0</mark> 001	1	+ 1
0 010	2	+ 2
<mark>0</mark> 011	3	+ 3
<mark>0</mark> 100	4	<mark>+</mark> 4
<mark>0</mark> 101	5	<u>+</u> 5
<mark>0</mark> 110	6	<mark>+</mark> 6
<mark>0</mark> 111	7	+ 7
<mark>1</mark> 000	8	<mark>-</mark> 0
<mark>1</mark> 001	9	<mark>-</mark> 1
<mark>1</mark> 010	10	<mark>-</mark> 2
<mark>1</mark> 011	11	<mark>-</mark> 3
<mark>1</mark> 100	12	<mark>-</mark> 4
<mark>1</mark> 101	13	<mark>-</mark> 5
<mark>1</mark> 110	14	<mark>-</mark> 6
<mark>1</mark> 111	15	<mark>-</mark> 7

b) Complemento a 1

BINARIO	BINARIO PURO	COMPLEMENTO A 1
<mark>0</mark> 000	0	+ 0
<mark>0</mark> 001	1	+ 1
<mark>0</mark> 010	2	+ 2
<mark>0</mark> 011	3	+ 3
<mark>0</mark> 100	4	+ 4
<mark>0</mark> 101	5	+ 5
<mark>0</mark> 110	6	+ 6
<mark>0</mark> 111	7	+ 7
1 000	8	<mark>-</mark> 7
<mark>1</mark> 001	9	<mark>-</mark> 6
1 010	10	<mark>-</mark> 5
<mark>1</mark> 011	11	<mark>-</mark> 4
1 100	12	<mark>-</mark> 3
<mark>1</mark> 101	13	<mark>-</mark> 2
<mark>1</mark> 110	14	<mark>-</mark> 1
1 111	15	<u>-</u> 0

c) Complemento a 2

BINARIO	BINARIO PURO	COMPLEMENTO A 2
<mark>0</mark> 000	0	+ 0
<mark>0</mark> 001	1	<u>+</u> 1
<mark>0</mark> 010	2	+ 2
0 011	3	+ 3
<mark>0</mark> 100	4	<u>+</u> 4
<mark>0</mark> 101	5	+ 5
<mark>0</mark> 110	6	1 6
<mark>0</mark> 111	7	+ 7
<mark>1</mark> 000	8	<mark>-</mark> 8
<mark>1</mark> 001	9	<mark>-</mark> 7
<mark>1</mark> 010	10	<mark>-</mark> 6
<mark>1</mark> 011	11	<mark>-</mark> 5
<mark>1</mark> 100	12	<mark>-</mark> 4
<mark>1</mark> 101	13	<mark>-</mark> 3
<mark>1</mark> 110	14	<mark>-</mark> 2
<mark>1</mark> 111	15	<mark>-</mark> 1

El porque son así estas tablas esta explicado en la actividad anterior.

CONCLUSIONES:

Gracias a este trabajo encontré formas más prácticas y rápidas de hacer conversiones entre distintos sistemas de numeración. Terminé de comprender las sumas en distintos sistemas. Y entendí cómo funcionan las convenciones para escribir números en negativo, *Signo y Magnitud*, *Complemento a 1* y *Complemento a 2*.

MARZO-2024 ETRR-CAMPANA