

FACULTY OF ENGINEERING

Synthetic Fundus Fluorescein Angiography using Deep Neural Networks

Florian Schiffers^{1,2}, Zekuan Yu¹, Steve Arguin¹, Andreas Maier², Qiushi Ren¹

¹ Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China

² Pattern Recognition Lab, Department of Computer Science, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

Angiographic Fundus Imaging

Figure 1: An intravenous, fluorescent dye bounds to leukocytes, which excites the molecules when exposed to blue light. This, in turn, produces a narrow yellow-green light. The enhanced image highlights different features of the fundus.

Introduction

- Physicians are increasingly reluctant to use angiographic imaging [1]
- Angiographic imaging may pose risks of harm to the patient
 - E.g. allergic reactions, nausea, thrombophlebitis, seizures
- Image synthetization to possibly
 - Reduce the need for angiographic imaging
 - Create large, synthetic databases for machine learning applications

Materials and Methods

- Generative adversarial networks (GAN) use an additional discriminator which discerns real and synthesized images
- CycleGAN (Fig. 2) translates between two image domains A and B, without the need for **tightly-coupled** pairs [2]
- Dataset provided by [3] and People's Hospital of Jiangmen City, China
 - Training data: 365 color and 265 angiographic images
 - 14 color and 14 angiographic images Test data:
- All images downsampled to resolution of 256 x 256
- Data augmentation:
 - Additionally rotated by 90, 180, and 270 degrees
 - Resized to 286 x 286 and cropped randomly

Results and Discussion

- Structures such as vessels are enhanced compared to the color image
- Fine vessel structures are unclear or not present within the synthesized angiography, but visible in the angiographic ground truth
- Some local structures are located at different positions or even made up by the generating network
- Contrast differences between ground truth and synthesized images

Conclusions and Outlook

- Image translation between color fundus and angiographic images
- Cycle consistency GAN allows training with unpaired image data
- Planned: Clinical study to investigate medical use case
- Technical outlook: quantitative analysis and increasing image resolution

Contact Marian.schiffers@fau.de http://en.coe.pku.edu.cn/Departments-Biomedical-Engineering/index.htm

Figure 2: The two figures visualize the composition of the loss term used for the training process of the cycleGAN architecture. I_C and I_F are the input images for

the color fundus image generator G_C and the angiographic image generator as G_F , respectively.

Cycle consistency is enforced so that the backwards translation resembles the input image for both ways, see $L_{Cycle_{Angio}}$ and $L_{Cycle_{Color}}$.

The adversarial loss, i.e. the capacity of the network to distinguish between real and fake images, is modeled by $L_{D_{\mathcal{C}}}$ and L_{D_F} with D_C and D_F denoting the respective discriminator networks.

Figure 3: Each row shows from left to right the real and generated angiographic image, the authentic color image and the reconstructed color image to show cycle consistency.

References

- [1] Musa, F., et al. "Adverse effects of fluorescein angiography in hypertensive and elderly patients." Acta Ophthalmologica 84.6 (2006): 740-742.
- [2] Zhu, J. Y., et al. 'Unpaired image-to-image translation using cycle-consistent adversarial networks" (2017) arXiv preprint arXiv:1703.10593.
- [3] Hajeb Mohammad Alipour, S et al. "Diabetic retinopathy grading by digital curvelet transform." Computational and mathematical methods in medicine 2012 (2012).