№ 10 [Каргальцев] Теорема Гильберта о базисе

Нужно доказать, что если K — нетерово, то и K[x] тоже нетерово (это и есть теорема Гильберта о базисе).

▶ Пусть есть цепочка строго вложеных в K[x] идеалов $I_1 \subsetneq I_2 \subsetneq \ldots \subsetneq I_n \subsetneq \ldots$

Положим $I = \cup I_i$. Как неоднократно обсуждалось (5.6, 8.2) I — идеал.

Будем итеративно строить последовательность $f_1, ..., f_n, ... \in K[x]$

На *i*-м шаге будем выбирать $f_i \in I \setminus (f_1, f_2, \dots, f_{i-1}) : \deg f_i \to \min$.

(На первом шаге просто выберем $f_i \in I : \deg f_1 \to \min$. Под (f_1, \dots, f_{i-1}) подразумевается идеал, порожденный соответствующими многочленами).

Корректность выбора (т.е что такое f_i существует) следует из того, что $f_1, \dots f_{i-1} \in I_{i-1} \Rightarrow (f_1, \dots, f_{i-1}) \subset I_{i-1} \subsetneq I_i \subset I$.

Рассмотрим теперь старшие коэффициенты этих многочленов $a_1, a_2, \ldots, a_n, \ldots$ Сразу заметим, что при $i < j : I \setminus (f_1, \ldots, f_i) \supset I \setminus (f_1, \ldots, f_j) \Rightarrow \deg f_i \leqslant \deg f_j$.

Рассмотрим цепочку идеалов $(a_1) \subset (a_1, a_2) \subset \ldots \subset (a_1, \ldots, a_n) \subset \ldots$ Это последовательность вложенных идеалов из K. Поскольку K — нетерово, она стабилизируется, то есть существует такое N, что $a_{N+1} \in (a_1, \ldots, a_N) \Rightarrow \exists b_1, b_2, \ldots b_N : a_{N+1} = \sum_{i=1}^N b_i a_i$.

Рассмотрим $f = f_{N+1} - \sum_{i=1}^{N} b_i \cdot f_i \cdot x^{\deg f_{N+1} - \deg f_i}$. (Все степени x-ов неотрицательны по замечанию выше). Степень f строго меньше степени f_{N+1} . С другой стороны, если $f \in (f_1, \dots, f_N) \Rightarrow f_{N+1} \in (f_1, \dots, f_N)$, что не так. Получили противоречие с минимальностью степени f_{N+1} .

То есть в K[x] не существует последовательности строго вложенных идеалов.

Пусть в K[x] есть последовательность вложенных идеалов, которая не стабилизируется. Тогда из нее можно выделить подпоследовательность строго вложенных идеалов. (Не стабилизируется равносильно тому, что $\forall N \exists n > N : I_N \subsetneq I_n$).

Получили, что K[x] нетерово, что и требовалось.