	Fundamental Theorem of Curves 50 John Waczak
3	Math 434
	Tapp. 1.78 (19none n=2)
	E
	For C70 consider the delation de: R" > R" pt Cp
	IF T is a regular curve and 8 = To de
	how are the curvatures and torsons related?
	Would the answers change if C 40?
	Clearly de is not a rigid motion so une must
	Clearly de is not a rigid motion so we must
	calculate the individual curvatures/forsions
	and compare them.
	(10) (x(1) - (x(1)) (x(1)) (x(1)) (x(1))
	let $\gamma(t) = (\chi(t), \chi(t), \chi(t))$ be a regular
	curue and &(t) = c(x(t), y(t), z(t))
	Taking derivatures yields
	$\gamma = (\chi(t), \chi(t), \chi(t))$ $\hat{\gamma} = c \gamma$
	30
	811= (x1(t), y1(t), 31(t)) qu= cy"
	Recall curvature is defined as
	$V = V(t) \times a(t)$
	1v(t)13
	Thus Ky = 1 31 x 8111
	1713
	then $K_{3} = \frac{ c_{3} \times c_{3} }{ c_{3} ^{2}} = \frac{ c ^{2} \gamma_{1}\chi_{1} }{ c ^{3} \gamma_{1} }$
	1071/3 /013/21
V	$=\frac{1}{ c }K_{2}$
	Thus the curvatures are related by
	Kg = 101 Kg and does not depend on the sign of C
3	on the sign of c
- 8	

Now for the torsion. Recall Math 434 Calculating these for Tand Therefore $N_{\hat{x}} = \frac{T'\hat{x}}{|T'\hat{x}|} = \frac{c}{|c|} T'\hat{x} = \frac{c}{|c|} N_{\hat{x}}$ Since | c| = 1 Now B= Trx Nr = CTrx iq Nr $= \left(\frac{c}{|c|}\right)^2 \operatorname{To} \times |c|$ = $T_{\gamma} \times N_{\gamma}$ $\left(\left(\frac{c}{|c|} \right)^2 = 1 \right)$ Thus the binormal = Br Vector doesn't change and so we have shown: Br = Br which makes sense as T, N are unit nectors so B shouldn't scale. Now we have B's = B's from the previous line and there fore $\frac{T_{\gamma} = -\left(\frac{B_{\gamma}}{\delta}, \frac{N_{\gamma}}{\delta}\right) = -\left(\frac{B_{\gamma}}{\delta}, \frac{c}{|c|} \frac{N_{\gamma}}{N_{\gamma}}\right)}{|c||N_{\gamma}|}$ $T_{8} = \frac{c}{|c|^{2}} T_{8}$ thus torsion also scales like it but here the sign will change if c < 0.