

Identifying Broken & Nonfunctioning Water-points in Tanzania

MARK PATTERSON, DECEMBER 2020

43% of people in Tanzania...lack access to a reliable, safe water source

- Drinking
- Cooking
- Washing
- Growing plants / gardens

Meet Annah:

Lack of a clean water source means:

- Limited food options
- Poor sanitation Disease risk
- Exhaustion long walk each day
- Risk of violence and rape
- Limited time at school

Wells, pumps, and storage often in disrepair

GOAL:

A supervised machine learning model to classify water-points to identify and predict which ones need rehabilitation or repair

Data Source:

Tanzanian Ministry of Water

TAARIFA (tech non-profit)

- Waterpoints: 1960 2013
- **59,400** records
- **41** variables

Data Analysis & Shaping

Top Issues:

- Redundant variables dropped
- Large number of 0 values (left, transformed, dropped)
- Large number or "other" or "unknown"

59,400 records 41 variables

35,303 records 17 variables

35,303 records 75 variables

Classification Models Applied

- KNN
- Decision Trees
- Random Forest
- XGBoost

The Iterative Modeling Process

A total of 24 models were run via this iterative refinement process.

Combining target classes into 2 loses some granularity but creates fairly balanced classes and makes conceptual sense.

```
Classification Report - TEST - XGBoost-C-Optimized2
            precision recall f1-score support
                 0.82
                          0.87
                                   0.84
                                            4839
                 0.82
                                   0.79
                                            3987
                                   0.82
                                            8826
   accuracy
  macro avg 0.82 0.82
                                            8826
weighted avg 0.82 0.82
                                   0.82
                                            8826
Confusion Matrix - TEST - XGBoost-C-Optimized2
                  1 All
Predicted 0
True
        4186 653 4839
                                  True Positives for class 1
         926 (3061 ) 3987
          5112 3714 8826
All
```

Best Model: XGBoost (2-class, reduced data)

- 82% of the time this model should be able to accurately predict if a waterpoint is functional or not.
- With recall of 0.77 for class 1, there is still a 23% chance of a false negative (it's not working but predict it is)

What factors contribute most?

Important to models:

- Age of water-point
- Quantity of water
- Location

	features	importance
0	quantity_dry	0.154350
1	longitude	0.137392
2	waterpoint_type_group_other	0.130257
3	latitude	0.107340
4	construction_year	0.102898
5	gps_height	0.072590
6	population	0.039401
7	amount_tsh	0.039079
8	quantity_enough	0.025860

In Conclusion

- Model could help predict water-points in need of service
- Help prioritize resources, funding, training
- Provide Annah and others sustainable access to safe, clean water

Next Steps

- Use location data to visualize water-points in relation to geography, climate, population
- Explore various approaches to data preparation and shaping
- Refine modeling approach to use pipelines and functions

Thanks to...

Flatiron School

- Our instructor Yish
- Staff –
- Fellow students

Tanzanian government, it's citizens, NGOs, volunteers and donors who continue to address this serious issue...

May we soon have safe water for all!

