Theorem 1 (CTL in the iid case). X_1, X_2, \ldots iid random variables, $\mathbb{E}X_1 = a$, $Var(X_1) = \sigma^2 \in (0, \infty)$, then $\frac{X_1 + \ldots + X_n - na}{\sqrt{n}\sigma} \implies \mathcal{N}(0, 1)$.

Corollary 2 (de Moivre-Laplace). $X_n \sim \text{Bin}(n,p)$, then $\frac{X_n - np}{\sqrt{np(1-p)}} \implies \mathcal{N}(0,1)$.

Definition 3 (triangular array). $(X_{n,k})_{n=1,2,...;1 \le k \le k_n}$ is a triangular array of random variables if $\forall_n X_{n,1}, \ldots, X_{n,k_n}$ are independent.

Theorem 4 (CLT – Lindeberg's version). $(X_{n,k})$ a triangular array, $S_n = X_{n,1} + \ldots + X_{n,k_n}$,

- 1. $\mathbb{E}S_n \to m$
- 2. $Var(S_n) \to \sigma^2$
- 3. Lindeberg's condition: $\forall_{\varepsilon>0} \sum_{k=1}^{k_n} \mathbb{E}\left(|X_{n,k} \mathbb{E}X_{n,k}|^2 \mathbb{1}_{\{|X_{n,k} \mathbb{E}X_{n,k}| > \varepsilon\}}\right) \to 0$

Then $S_n \implies \mathcal{N}(m, \sigma^2)$.

Lemma 5. Lindeberg's condition implies

- $\forall_{t>0} \lim_{n\to\infty} \mathbb{P}(\max_{1\leq k\leq k_n} |X_{n,k}| \geqslant t) = 0,$
- $\lim_{n\to\infty} \max_{1\leqslant k\leqslant k_n} \operatorname{Var}(X_{n,k}) \to 0.$

Theorem 6 (Feller). Suppose that $(X_{n,k})$ is a triangular array, $\sum_{k=1}^{k_n} \mathbb{E} X_{n,k} \to m$,

 $\sum_{k=1}^{k_n} \operatorname{Var}(X_{n,k}) \to \sigma^2, \text{ and } S_n = \sum_{k=1}^{k_n} X_{n,k} \implies \mathcal{N}(m,\sigma^2), \text{ then if } \max_{1 \leqslant k \leqslant k_n} \operatorname{Var}(X_{n,k}) \to 0, \text{ then } Lideberg's \ condition is satisfied.}$