- Máquinas de Turing
 - Podem simular computadores reais
- Problemas
 - aqueles que tem um algoritmo
 - Máquina de Turing pára, quer aceite ou não sua entrada
 - aqueles que não tem um algoritmo
 - Máquinas de Turing que podem funcionar indefinidamente, sobre entradas que não aceitam

- Linguagens RE:
 - Recursivamente Enumerável
 - Se L = L(M) para alguma TM M

 Conjunto de linguagens que podemos aceitar usando uma máquina de Turing

- Linguagens Recursivas
 - Dizemos que L é recursiva se L = L(M) para uma máquina de Turing M:
 - Se w está em L, então M a aceita
 - E portanto para
 - Se w não está em L, então M pára eventualmente
 - Embora nunca entre em um estado de aceitação
 - Noção informal de um "algoritmo" que sempre termina e produz uma resposta

• Linguagens:

Complemento

- Seja L = L(M) para alguma TM M
 - Definimos L' como o conjunto de palavras não pertencente a L, do mesmo alfabeto
 - Assim, construímos M', tal que L' = L(M')

Complemento

- 4 possibilidades:
 - L e L' são ambas recursivas
 - Nem L, nem L' são RE
 - L é RE mas não-recursiva e L' não é RE
 - L' é RE mas não-recursiva e L não é RE

- Tese de Church
 - estabelece uma correspondência entre as noções de Algoritmo e Máquina de Turing
 - Ou seja, podemos pensar num algoritmo como uma máquina de Turing que sempre pára, para qualquer entrada, aceitando ou rejeitando.

Decidível → Recursivo

Exemplos

- Linguagem Ld (diagonalização)
 - Conjunto de strings de 0's e 1's
 - Quando interpretados como uma TM, não estão na linguagem dessa TM
- Teorema:
 - Ld não é uma Linguagem Recursivamente Enumerável

Codificação para TM

- Seja M = (Q , Σ , δ , q₀, ß, F), precisamos atribuir números naturais aos estados, aos símbolos e aos sentidos (E e D)
- podemos codificar o função de transição

$$\delta(q_i, X_j) = (q_k, X_l, D_m)$$
, para naturais i, j, k, l e m.

Codificaremos essa regra pelo string

0i10j10k10l10m

Obs.: Como todos os valores i, j, k, l e m são, pelo menos, iguais a 1, não temos dois, ou mais, l's consecutivos.

Codificação para TM

• Um código para a MT M inteira consiste em todos os códigos para as transições, em alguma ordem, separados por pares de 1's:

$$C_1 11C_2 11...C_{n-1} 11C_n$$

Linguagem Ld

- Agora podemos ordenar todas as MT's de acordo com o comprimento e as de mesmo comprimento por ordem lexicográfica.
- A linguagem da diagonalização, é o conjunto de strings w_i tais que w_i não está em L(M_i).
- Teorema:
 - Ld não é uma Linguagem Recursivamente
 Enumerável

Linguagem Ld

- PROVA: Suponha que Ld seja T(M) para alguma máquina de Turing M.
- Como Ld é uma linguagem sobre o alfabeto {0, 1}, M estaria na lista das máquinas de Turing, já que esta lista inclui todas as máquinas de Turing com alfabeto de entrada {0, 1}.
- Portanto, há pelo menos um código para M, por exemplo, M = Mi. Agora será que wi está em Ld?

Linguagem Ld

- Se wi está em Ld, então Mi aceita wi . Mas então, pela definição de Ld, wi não está em Ld, porque Ld contém apenas aqueles wj tal que Mj não aceita wj.
- Similarmente, se wi não está em Ld, então Mi não aceita wi. Portanto, por definição de Ld, wi está em Ld.
- Como wi não pode estar e não estar em Ld ao mesmo tempo, há uma contradição na suposição de que M existe. Ou seja, Ld não é uma linguagem recursivamente enumerável.

Exemplos

- Linguagem Lu (universal)
 - Consiste em strings que são interpretados:
 - Como uma TM
 - Seguido por uma entrada
 - O string está em Lu se a TM aceita essa entrada
- Teorema:
 - Linguagem Lu é RE mas não recursiva.

Exemplos

Prova:

- Linguagem Lu é RE, pois existe uma TM M tal que Lu = L(M)
- Será recursiva somente se existir uma TM M' para aceitar Lu'
 - Representa o mesmo que criar uma TM para aceitar uma linguagem Ld
 - Ld é não RE
- Portanto Lu não é recursiva