Large-Scale Distributed Sentiment Analysis With RNNs

Group 8: Jianzhun Du, Rong Liu, Matteo Zhang, Yan Zhao

Introduction

- Project Goal: to perform sentiment analysis with Recurrent Neural
 Networks in order to uncover whether a piece of text has positive or negative sentiment
- The Need for Big Data: We handle 92.45 GB of 142.8 million reviews
- The Need for HPC: it takes 18 hours for the RNN model to run 10 epochs and achieve 80% test accuracy on a single instance of AWS p2.xlarge (Tesla K80).

Solution Overview

Our Solution

- Data Preprocessing: MapReduce
- Data Storage: HDF5
- RNN Acceleration: Distributed Workload with Large Minibatch

Comparison with Existing Work

 Goyal et al. uses similar technique to train ResNet and minimize training time. We parallelize RNN and focus on parallelization tradeoffs instead

I. Data Processing - Data Description

- We borrow raw Amazon product review data, which consists of product reviews along with the ratings, and other information, spanning from May 1996 to July 2014
- We take the ratings as indicators to the underlying sentiments

I. Data Processing - Serial Version

- Extract relevant information
- Remove duplicates of text and keep the mode of the ratings
- Map ratings to binary sentiment indicators
- Map words to numbers
- Truncate or pad text sequences to achieve fixed length

I. Data Processing - Parallelization

Extract relevant information

Mapper

- Remove duplicates of text and keep the mode of the ratings
- Map ratings to binary sentiment indicators
- Map words to numbers
- Truncate or pad text sequences to achieve fixed length

Reducer

AWS EMR Cluster of 8 m4.xlarge nodes

I. Data Processing - Data Storage

Structure:

- HDF5 File
- 8 chunked datasets, each containing 2650000 rows of data

Benefit:

- During the training process, after the data loader specifies the dataset key and index number, only that chunk of data is loaded into the memory
- Balances memory usage and communication overhead

I. Data Processing - Performance

- Strong Scaling: Nearly linear speedup
- Weak Scaling: unable to investigate

% of Dataset	Runtime (2 Nodes)	Runtime (4 Nodes)	Runtime (8 Nodes)
25%	99 min	28 min	14 min
50%	Failed	51 min	30 min
100%	Failed	Failed	55 min

II. RNN+SGD - Serial Version

- Compared torch (number input) to torchtext (with text input). Chose torch for lower preprocessing overheads
- Experimented with multiple loss functions to combat class imbalance: weighted cross entropy,
 MSE, NLL loss, BCEwithLogit Loss, etc.
- Tried differ sentence length to maintain decent performance while keeping training time reasonable. Our current length at 100 words covers about 88% of samples in a subset data.

II. RNN+SGD - Serial Version Profiling

SnakeViz

II. RNN+SGD - Parallelization

- Parallelize through PyTorch distributed parallel module with CUDA, using MPI-like interface with NCCL backend for inter-GPU communication.
- Single Program Multiple Data
- AWS EC2 flexible GPUs setup
- Experiment on a different combination of:
 - o p2.xlarge (1 NVIDIA Tesla K80 + 4 vCPUs)
 - g3.4xlarge (1 NVIDIA Tesla M60 + 16 vCPUs)
 - o g3.16xlarge(4 NVIDIA Tesla M60 + 64 vCPUs)

II. RNN+SGD - Different number of GPUs

Linear throughput scaling

Log-linear speedup scaling

Not strongly scalable

II. RNN+SGD - Distributed RNN Convergence

- The less nodes we use, the higher convergence rate is achieved in terms of the number epochs due to gradient aggregation.
- The model with more GPUs converges faster, which suggests the convergence is accelerated by data parallelism.

II. RNN+SGD - Different Distributions of GPUs

- Fixed total number of GPUs: 4
- Single node with multiple GPUs is fastest

# of Node	# of GPUs per Node	Time (min/epoch)	Speed-up
1	4	21.9	2.73
2	2	26.4	2.27
4	1	23.3	2.57

II. RNN+SGD - Advanced Feature

- Distributed RNN on PyTorch
- Bootstrap actions to install additional softwares on AWS EMR
- Dynamic load balancer that work seamlessly with PyTorch's Distributed Sampler

II. RNN+SGD - Mixed GPUs Experiment

The performance of using mixed GPUs (g3.4xlarge and p2xlarge)

Money - Speed Tradeoff

Two g3.16xlarge with 2 GPU only

Three g3.4xlarge + one p2.xlarge

Three g3.4xlarge + one p2.xlarge + dynamic

Four g3.4xlarge

Two g3.16xlarge

				_		
S	Single g3.4xlarge	0	1	0	35920 9.98	11.38
	Single p2.xlarge	1	0	0	63923 17.76	15.98
Sir	ngle g3.16xlarge	0	0	1	13156 3.65	16.64
						ŀ

Experiment # p2.xlarge # g3.4xlarge # g3.16xlarge Seconds Hours

0

4

0

3

3

Total Price

20.02

17.69

24.17

29.12

27.6

15820

13973

9531

24256

23007

0

2

0

0

4.39

3.88

2.65

6.74

6.39

Single p2.xlarge	1	0	0	63923 17.76	15.98
Single g3.16xlarge	0	0	1	13156 3.65	16.64
Two g3.4xlarge	0	2	0	24316 6.75	15.39

0

0

0

Discussion

- Reduced from 18 hours (using p2.xlarge) down to 2.5 hours (2 g3.16xlarge)
- Custom bootstrap actions to install packages on EMR worker nodes
- AWS GPU recommendations:
 - G3.4xlarge is the cheapest option
 - G3.16xlarge is the cheapest option amongst the fastest options (< 5 hours / speedup > 2)
 - Single node with multi-GPUs best value for money
 - Use same GPU model for multi node setup
 - Mitigate load imbalance overhead with dynamic load balancer

Future Work

- Testing different batch sizes
- NFS vs local copies

For citation, please see this page discussion section: https://sophieyanzhao.github.io/discussion