Carbon Dynamics in Coarse Woody Debris Pools at the Tapajos National Forest in Brazil

Coarse Woody Debris Study

- CO₂ emissions to the atmosphere from two sites: km 67 and km 83
- Km 67 (Undisturbed forest)
- * Decay classes (substrate quality)
- * Size (diameter)
- Km 83 (5 selectively logged areas from 1999 to 2003)
- * Effect of tree species
- * Size (diameter)
- * Decay classes (substrate quality)
- Determine the effects of physical variables on controlling the rates of decomposition
- * Temperature
- * Moisture

CO2 Flux from Coarse Woody Debris at the FLONA Tapajos, Brazil

- 1 Coarse Woody Debris (CWD)
- Large Pieces of wood > 10cm (diameter)
- Intermediate size > 5 to 10 cm (diameter)
- Small size > 2 to 5cm (diameter)

- 3 Why study CWD?
- CWD in forests accounts for 16-64% of organic matter (OM)
- 3-16% of N returned to forest floor is stored in CWD
- Little is known about its dynamics, why? Decomposition is a relatively slow process

- 4 Why in Tropical Forests?
- 12% of Earth's land surface is covered by Tropical Forests
- CWD information in Tropical forests are especially limited (Chambers *et al.* 2001, Lang and Knight 1979, Harmon *et al.* 1995, and Clark *et al.* (2002)

5 - Study site

- The study was carried out at the Tapajos National Forest (TNF)- south of Santarem, Para - Brazil. Research sites of the Brazilian led Large-scale Biosphere Atmosphere experiment in Amazonia - LBA Project
- The mean annual temperature is 25°C and precipitation is 2000 mm (Parrotta *et al.* 1995)
- The areas are dominated by clay textured Oxisol interspersed with smaller areas sandy Ultisol (Silver et al. 2000)

The km 67 site: an undisturbed old growth forest

The site at Km 83: within the same forest but the area was selectively logged

5 - Study site

- The study was carried out at the Tapajos National Forest (TNF)south of Santarem, Para - Brazil. Research sites of the Brazilian led Large-scale Biosphere Atmosphere experiment in Amazonia -LBA Project
- The mean annual temperature is 25°C and precipitation is 2000 mm (Parrotta *et al.* 1995)
- The areas are dominated by clay textured Oxisol interspersed with smaller areas sandy Ultisol (Silver et al. 2000)

The km 67 site: an undisturbed old growth forest

The site at Km 83: within the same forest but the area is selectively logged

6 - Comparisons between undisturbed and logged areas

- Undisturbed forest
- *Different patterns of CWD input natural mortality
- *Low quality substrate
- *More stable climatic conditions than disturbed areas
- Logged areas
- *Increased input of material into CWD pool due logging
- *Larger amount of higher quality substrate to decompose (large trees)
- *Extreme variations in environmental conditions

- 6 Site characteristics undisturbed and logged areas
- Undisturbed forest
- *Different patterns of CWD input natural mortality
- *Low quality substrate
- *More stable climatic conditions than disturbed areas

- Logged areas
- *Increased input of material into CWD pool due logging
- *Larger amount of higher quality substrate to decompose (large trees)
- *Extreme variations in environmental conditions

- 7 Methodologies to estimate the net fluxes of CO₂ from CWD decomposition
- 1- Incubation chambers
- Small pieces of CWD (branches <10cm in diameter)
- 2- Surface chambers
- Measure the release of CO₂ directly from the surface of logs. This is a non destructive method that will allow us to revisit the same locale and measure the fluxes in different seasons

7 - Methodologies to estimate the net fluxes of CO₂ from CWD decomposition

1- Incubation chambers

- Small pieces of CWD (branches <10cm)

2- Surface chambers

Measure the release of CO₂ directly from the surface of logs.
 This is a non destructive method that will allow us to revisit the same locale and measure the fluxes in different seasons

Coarse Woody Debris System

8 - Methods km 67 and km 83

Km 67 (undisturbed forest)

- CWD was sampled using line intersect methods Any piece of wood ≤ 2 cm in diameter

*CWD > 10 cm (diameter)
Air and wood temperature
- Wood water content (GANN moisture meter)

*CWD < 10 cm (diameter)
- CWD was oven dried to estimate wood water content.

Air temperature

Km 83 (logged area)

CWD > 10 cm (diameter)

- random points were selected in the gap to be measured permanently
 - Wood water content (Gann moisture meter)
 - Air temperature
 - wood temperature

CWD < 10 cm (diameter)

- CWD was oven dried to estimate wood water content.
 - CWD volume and surface area
 - air temperature.

Table 2. Summarizes the results from km 83 (selectively logged area). CO_2 fluxes are expressed as μ mol m⁻² $_{wood\ surface}$ s⁻¹ (avg \pm stdv)

- Tree species table order is andiroba (*Carapa guianensis*), Maçaranduba (*Manilkara huberi*), and Tauari (*Couratari stellata*).
- Fluxes at km 83 were separated into decay class categories. Seasonality summarizes the values for wet season (WS), dry season (DS) and intermediate period (IP).
- Significance tests: * for < 0.05, ** for < 0.01 and *** for < 0.001.

Average CO ₂ flux***	Seasonality***	Tree species***	AHA ***	Decay classes
3.22 ± 3.1 n = 1316	2.9 ± 2.7 (WS) 3.8 ± 3 (IP) 3.2 ± 3.3 (DS) n = 1209	3.7 ± 3.6 (A) 2 ± 1.6 (M) 3.9 ± 3.2 (T) n = 1206	$3.1 \pm 3.5 (1)$ $3.2 \pm 2.1 (2)$ $3 \pm 2.8 (3)$ $3.5 \pm 3.4 (4)$ $3.1 \pm 3.2 (5)$ n = 1316	2.1 ± 1.3 (1) 3.4 ± 3.3 (2) 2.9 ± 2.9 (3) 3.1 ± 2.2 (4) 2.9 ± 2.8 (5) n = 1206

Table 1. Summarizes the results for km 67 (undisturbed forest). CO_2 fluxes are expressed as μ mol m⁻² $_{wood\ surface}$ s⁻¹(avg \pm stdeva).

- Fluxes were distributed into decay class categories.
 - Significance tests: *** for < 0.001.

Average CO ₂ flux***	Seasonality***	CO ₂ flux by decay classes
1.54 ± 1.32 n = 324	1.5 ± 1.2 (wet season) 2 ± 1.3 (Interm. Per.) 1.5 ± 1 (dry season) n = 324	1.6 ± 0.8 (1) 1.5 ± 1 (2) 1.5 ± 1.5 (3) 1.5 ± 1 (4) 1.2 ± 1 (5) n = 236

Average emissions of CO₂ from undisturbed and logged areas (2003-2004)

Average fluxes at km 83 by tree species

Tree species (km 83 - Logged area)

Andiroba (Carapa guianensis)

Macaranduba (Manilkara huberi)

Tauari (Couratari stellata)

Average CO₂ fluxes by decay classes at km 67

Decay classes proportions at the Tapajos sites

Average CO₂ fluxes by size classes - km 83

Seasonal average fluxes_2004 - km 83

Conclusions

- Increase in CWD post-logging greatly increased CO₂ emissions
 - Km 67 has large amount of CWD in very decayed classes, which may reduce the fluxes due to more recalcitrant substrate (lignin) to be decomposed
- CO₂ emissions were controlled by wood water content
- Large diameter logs emitted higher amounts of CO₂ by showing more stable microclimatic conditions allowing to preserve water even during dry season favoring microbial activity

cont.

- Reduced emissions of CO₂ during wet season in 2004 were due to increase in wood water content limiting oxygen availability
- High fluxes during the intermediate period are result from optimal environmental conditions when water is not a reduced limiting factor nor limits aerobic conditions
- At km 67, the turnover of CWD, based on the measurements of CWD pool from Keller *et al.* (2004) and the emission rates we captured was about 0.032 yr⁻¹
- CO₂ fluxes at km 67 contributed with an amount of 1.6 Mg C ha⁻¹ yr⁻¹
- CO₂ fluxes at km 83: 3.22 µmol CO₂ m⁻² wood surface s⁻¹

Acknowledgements

NASA

University of New Hampshire

USDA Forest Service

FFT

IBAMA

LBA office in Santarem