Съвместни, маргинални и условни (дискретни) разпределения.

 \bullet Съвместно разпределение на X и Y:

$$f_{XY}(x,y) = P(X = x, Y = y), f_{XY}(x,y) \ge 0, \sum_{x} \sum_{y} f_{XY}(x,y) = 1$$

- Маргинални разпределения на двумерно (X,Y) разпределение със съвместна плътност $f_{XY}(x,y)$: $f_X(x) = \sum_y f_{XY}(x,y), f_Y(y) = \sum_x f_{XY}(x,y)$
- Независимост: ако $f_{XY}(x,y) = f_X(x)f_Y(y)$ за всяко x и y.
- Математическо очакване: $E(H(X,Y)) = \sum_{x} \sum_{y} H(x,y) f_{XY}(x,y)$, ако съществува $\sum_{x} \sum_{y} |H(x,y)| f_{XY}(x,y)$.
- Ковариация: $Cov(X,Y) = E((X \mu_x)(Y \mu_y)) = E(XY) E(X)E(Y)$. Ако X и Y са независими ковариацията им е 0, обратното НЕ E вярно.
- Корелационен коефициент: $\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{VarX}\sqrt{VarY}}$
- Условна плътност: $f_{X|y}(x) = f_{X|Y=y}(x) = \frac{f_{XY}(x,y)}{f_Y(y)}$
- ullet Пример: При хвърляне на два зара: X броят не шестиците, Y броят на заровете с нечетен брой на точките.

ЗАДАЧИ:

1. В автомобилен завод се изпълняват от роботи две задачи: заваряване на два шева и затягане на три болта. Нека с X означим броя на дефектните заварки, а с Y - броя дефектно затегнатите болтове на един автомобил. Съвместната дискретна плътност е определена в следната таблица:

x/y	0	1	2	3
0	0.840	0.030	0.020	0.010
1	0.060 0.010	0.010	0.008	0.002
2	0.010	0.005	0.004	0.001

Определете маргиналните разпределения. Независими ли са X и Y? Намерете EX, EY, E(X+Y), EXY, Cov(X,Y), ρ_{XY} , $f_{X|y}$.

2. Съвместното дискретно разпределение на X и Y е следното:

$$\begin{array}{c|cccc} x/y & 0 & 100 & 200 \\ \hline 100 & 0.2 & 0.1 & 0.2 \\ 250 & 0.05 & 0.15 & 0.30 \\ \end{array}$$

Определете маргиналните разпределения. Независими ли са X и Y? Намерете EX, EY, E(X+Y), EXY, Cov(X,Y), ρ_{XY} , $f_{Y|x}$.

ЗАДАЧА ЗА САМОСТОЯТЕЛНА РАБОТА: Определете съвместното и маргиналните разпределения на двете случайни величини X и Y, където X е броят шестици при хвърляне на два зара, а Y е броят на заровете с нечетен брой на точките. Независими ли са X и Y? Намерете EX, EY, E(X+Y), EXY, Cov(X,Y), ρ_{XY} , $f_{Y|x}$.