

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15100076803

FCC REPORT (BLE)

Applicant: MOVILTELCO TRADE, S.L

Address of Applicant: Street: ABTAO, 25-1Floor A-office MADRID-SPAIN, MADRID,

Spain

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: A53

Trade mark: mtt

FCC ID: 2ACQKTELCO008

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 08 Oct., 2015

Date of Test: 08 Oct., to 26 Oct., 2015

Date of report issued: 27 Oct., 2015

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	27 Oct., 2015	Original

Project Engineer

Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		TENTS	
4		T SUMMARY	
5	GEN	ERAL INFORMATION	5
	5.1	CLIENT INFORMATION	5
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	7
	5.6	LABORATORY LOCATION	7
	5.7	TEST INSTRUMENTS LIST	8
6	TES	T RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	
	6.5	POWER SPECTRAL DENSITY	18
	6.6	BAND EDGE	
	6.6.1	00.000000 =00.00	
	6.6.2		
	6.7	SPURIOUS EMISSION	
	6.7.1		
	6.7.2	Radiated Emission Method	30
7	TES	T SETUP PHOTO	35
8		CONSTRUCTIONAL DETAILS	26

4 Test Summary

Test Item	Section in CFR 47	Uncertainty	Result
Antenna requirement	15.203/15.247 (c)	/	Pass
AC Power Line Conducted Emission	15.207	±3.28dB	Pass
Conducted Peak Output Power	15.247 (b)(3)	±1.50dB	Pass
6dB Emission Bandwidth	15.247 (a)(2)	±1.50dB	Pass
Power Spectral Density	15.247 (e)	±1.50dB	Pass
Band Edge	15.247(d)	±1.50dB	Pass
Spurious Emission	15.205/15.209	±4.88dB	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	MOVILTELCO TRADE, S.L
Address of Applicant:	Street : ABTAO, 25-1Floor A-office MADRID-SPAIN, MADRID, Spain
Manufacturer:	Shenzhen Gotron Electronic Co., LTD
Address of Manufacturer:	518, 5F, R&D building, Tsinghua Hi-Tech Park, Hiech park (North) Nanshan district, Shenzhen
Factory:	Shenzhen Gotron Electronic CO., Ltd Longhua Branch
Address of Factory:	3F, A building, PengLongPan Industrial Park, ShuNv Road, DaFu Industrial Park, GuanLan Street, LongHua New District, ShenZhen

5.2 General Description of E.U.T.

Product Name:	Smartphone
Model No.:	A53
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.0 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2000mAh
AC adapter:	Model:APS-M009050100W-G
	Input:100-240V AC,50/60Hz 0.35A
	Output:5V DC MAX 1.0A

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

5.3 Test environment and mode

Operating Environment:	
Temperature:	24.0 °C
Humidity:	54 % RH
Atmospheric Pressure:	1010 mbar
Test mode:	
Operation mode	Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Report No: CCIS15100076803

5.7 Test Instruments list

Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
5	Amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
6	Amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
7	Pre-amplifier (18-26GHz)	· Rohde & Schwarz I		GTS218	04-01-2015	03-31-2016			
8	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
9	Printer	HP	HP LaserJet P1007	N/A	N/A	N/A			
10	Positioning Controller	UC	UC3000	CCIS0015	N/A	N/A			
11	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP	CCIS0023	03-28-2015	03-28-2016			
12	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016			
13	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			
14	Universal radio communication tester	Rhode & Schwarz	CMU200	CCIS0069	03-28-2015	03-28-2016			
15	Signal Analyzer	Rohde & Schwarz	FSIQ3	CCIS0088	04-08-2015	04-08-2016			

Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	11-10-2012	11-09-2015			
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016			
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016			
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016			
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FC

FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.0 dBi.

6.2 Conducted Emission

Test Descripements	FCC Dark 45 C Caption 45 203	7					
Test Requirement:	FCC Part 15 C Section 15.207						
Test Method:	ANSI C63.4: 2009						
Test Frequency Range:	150 kHz to 30 MHz						
Class / Severity:	Class B						
Receiver setup:	RBW=9kHz, VBW=30kHz						
Limit:	Frequency range (MHz)	Limit (c Quasi-peak	dBuV) Average				
	0.15-0.5 66 to 56* 56 to 46*						
	0.5-5	56	46				
	5-30	60	50				
	* Decreases with the logarithm	of the frequency.					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 						
Test setup:	Refere	nce Plane					
	AUX Equipment E.U Test table/Insulation pla Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Test table height=0.8m		er — AC power				
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Measurement Data

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 10 of 36

Neutral:

Site

: CCIS Shielding Room : FCC PART15 B QP LISN NEUTRAL

Condition EUT : Smartphone Model : A53 Test Mode : BLE mode

Power Rating: AC120/60Hz
Environment: Temp: 23 °C Huni:56% Atmos:101KPa
Test Engineer: YT
Remark:

					-20020000000000000000000000000000000000	W20010000000000000000000000000000000000	
1000							
Freq	Level	Factor	Loss	Level	Line	Limit	Remark
MHz	dBu∀	<u>dB</u>	dB	dBu₹	dBu∜	<u>dB</u>	
0.162	17.90	0.25	10.77	28.92	65.34	-36.42	QP
0.299	7.21	0.26	10.74	18.21	50.28	-32.07	Average
0.570	11.29	0.25	10.77	22.31	46.00	-23.69	Average
0.579	23.22	0.24	10.77	34.23	56.00	-21.77	QP
0.686	11.62	0.19	10.77	22.58	46.00	-23.42	Average
0.724	22.63	0.18	10.78	33.59	56.00	-22.41	QP
0.923	22.18	0.21	10.85	33.24	56.00	-22.76	QP
0.923	10.43	0.21	10.85	21.49	46.00	-24.51	Average
2.567	8.37	0.29	10.94	19.60	46.00	-26.40	Average
2.581	21.24	0.29	10.93	32.46	56.00	-23.54	QP
3.881	8.14	0.29	10.89	19.32	46.00	-26.68	Average
3.985	20.90	0.29	10.89	32.08	56.00	-23.92	QP
	MHz 0.162 0.299 0.570 0.579 0.686 0.724 0.923 0.923 2.567 2.581 3.881	MHz dBuV 0.162 17.90 0.299 7.21 0.570 11.29 0.579 23.22 0.686 11.62 0.724 22.63 0.923 22.18 0.923 10.43 2.567 8.37 2.581 21.24 3.881 8.14	Freq Level Factor MHz dBuV dB 0.162 17.90 0.25 0.299 7.21 0.26 0.570 11.29 0.25 0.579 23.22 0.24 0.686 11.62 0.19 0.724 22.63 0.18 0.923 22.18 0.21 0.923 10.43 0.21 2.567 8.37 0.29 2.581 21.24 0.29 3.881 8.14 0.29	Freq Level Factor Loss MHz dBuV dB dB 0.162 17.90 0.25 10.77 0.299 7.21 0.26 10.74 0.570 11.29 0.25 10.77 0.579 23.22 0.24 10.77 0.686 11.62 0.19 10.77 0.724 22.63 0.18 10.78 0.923 22.18 0.21 10.85 0.923 10.43 0.21 10.85 2.567 8.37 0.29 10.94 2.581 21.24 0.29 10.93 3.881 8.14 0.29 10.89	MHz dBuV dB dB dBuV 0.162 17.90 0.25 10.77 28.92 0.299 7.21 0.26 10.74 18.21 0.570 11.29 0.25 10.77 22.31 0.579 23.22 0.24 10.77 34.23 0.686 11.62 0.19 10.77 22.58 0.724 22.63 0.18 10.78 33.59 0.923 22.18 0.21 10.85 33.24 0.923 10.43 0.21 10.85 21.49 2.567 8.37 0.29 10.94 19.60 2.581 21.24 0.29 10.93 32.46 3.881 8.14 0.29 10.89 19.32	MHz dBuV dB dB dBuV dBuV 0.162 17.90 0.25 10.77 28.92 65.34 0.299 7.21 0.26 10.74 18.21 50.28 0.570 11.29 0.25 10.77 22.31 46.00 0.579 23.22 0.24 10.77 34.23 56.00 0.686 11.62 0.19 10.77 22.58 46.00 0.724 22.63 0.18 10.78 33.59 56.00 0.923 22.18 0.21 10.85 33.24 56.00 0.923 10.43 0.21 10.85 21.49 46.00 2.567 8.37 0.29 10.94 19.60 46.00 2.581 21.24 0.29 10.93 32.46 56.00 3.881 8.14 0.29 10.89 19.32 46.00	Freq Level Factor Loss Level Line Limit MHz dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB dB dBuV dBuV dB dB dB dBuV dB dB

Report No: CCIS15100076803

Line:

Trace: 21

: CCIS Shielding Room : FCC PART15 B QP LISN LINE Site Condition

: Smartphone EUT : A53 Model

Test Mode : BLE mode

Power Rating: AC120/60Hz Environment: Temp: 23 °C Huni:56% Atmos:101KPa Test Engineer: YT

Remark

Nemark								
		Read	LISN	Cable		Limit	Over	D 1
	Freq	rever	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∜	₫B	₫B	dBu∜	dBu∜	₫B	
1	0.166	15.89	0.27	10.77	26.93	65.16	-38.23	QP
2	0.318	8.66	0.26	10.74	19.66	49.75	-30.09	Average
3	0.570	23.89	0.26	10.77	34.92	56.00	-21.08	QP
4	0.573	9.66	0.26	10.77	20.69	46.00	-25.31	Average
1 2 3 4 5 6 7 8	0.724	21.32	0.22	10.78	32.32	56.00	-23.68	QP
6	0.727	10.39	0.22	10.78	21.39	46.00	-24.61	Average
7	1.100	6.94	0.25	10.88	18.07	46.00	-27.93	Average
8	1.166	20.72	0.25	10.89	31.86	56.00	-24.14	QP
9	2.707	20.81	0.27	10.93	32.01	56.00	-23.99	QP
10	2.779	5.99	0.27	10.93	17.19	46.00	-28.81	Average
11	3.860	5.92	0.28	10.89	17.09	46.00	-28.91	Average
12	4.070	20.62	0.28	10.89	31.79	56.00	-24.21	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss

Page 12 of 36

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-9.31		
Middle	-7.87	30.00	Pass
Highest	-7.63		

Test plot as follows:

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)			
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1			
Limit:	>500kHz			
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane			
Test Instruments:	Refer to section 5.7 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.744		
Middle	0.732	>500	Pass
Highest	0.720		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.032		
Middle	1.032	N/A	N/A
Highest	1.032		

Test plot as follows:

6dB EBW

Date: 19.0CT.2015 17:44:27

Lowest channel

Date: 19.0CT.2015 17:47:23

Middle channel

Date: 19.0CT.2015 17:48:50

Highest channel

99% OBW

Date: 19.0CT.2015 17:54:42

Lowest channel

Date: 19.0CT.2015 17:56:09

Middle channel

Date: 19.0CT.2015 17:58:35

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-9.88		
Middle	-8.90	8.00	Pass
Highest	-8.97		

Test plots as follow:

Date: 19.0CT.2015 18:01:33

Lowest channel

Date: 19.0CT.2015 18:00:42

Middle channel

Date: 19.0CT.2015 18:00:08

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
	Spectrum Analyzer				
	E.U.T				
	Non-Conducted Table				
	Ground Reference Plane				
	Ground Reference Flane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Test plots as follow:

Date: 19.0CT.2015 17:52:09

Lowest channel

Date: 19.0CT.2015 17:53:37

Highest channel

6.6.2 Radiated Emission Method

Test I	Requirement:	FCC Part 15 C Section 15.209 and 15.205						
Test I	Method:	ANSI C63.10: 2	013 and KDI	B 558074v03r	03 section	12.1		
Test I	Frequency Range:	2.3GHz to 2.5GHz						
Test	site:	Measurement D	istance: 3m					
Recei	iver setup:	Frequency	Detector	RBW	VBW	Remark		
		Above 1GHz	Peak RMS	1MHz 1MHz	3MHz 3MHz	Peak Value Average Value		
Limit:		Freque		Limit (dBuV		Remark		
2		Above 1	_	54.0		Average Value		
				74.0		Peak Value		
	Procedure:	the ground to determin 2. The EUT wantenna, watower. 3. The antenrathe ground Both horizon make the make the make the make the folionid the state of find the state of the limit spof the EUT have 10 december 1.	at a 3 meter ne the position was set 3 meter which was more than a height is various to determine ontal and verture as urement uspected eminen the anter determinent the anter deliver system and width with sion level of the cified, then a would be reparament on the amaximum reas and width with sion level of the cified, then a would be reparament on the amaximum reas and width with sion level of the cified, then a would be reparament.	camber. The of the highesters away from unted on the trained from one of the maximum ical polarization. It is sion, the EU in a was turned ading. In was set to Phi Maximum Higher EUT in peatesting could be orted. Otherword be re-tested.	table was rost radiation. I the interferop of a variation are meter to for a value of the part of the	rence-receiving able-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 thees to 360 degrees		
Tests	setup:	AE SOCIM (TO	EUT Greenward Francisco	Horn Anti	Antenna Tor	wer		
Test I	Instruments:	Refer to section	5.7 for detai	ails				
Test r	mode:	Refer to section	5.3 for detail	ls				
Test	results:	Passed	-	-				

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone

: A53
Test mode : BLE-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK

JIAM.	r :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	
	MHz	dBu₹	-dB/m	<u>dB</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>dB</u>	
1	2390.000	22.25	27.58	6.63	0.00	56.46	74.00	-17.54	Peak
2	2390,000	11, 26	27.58	6, 63	0.00	45.47	54.00	-8.53	Average

Test channel: Lowest

Vertical:

: 3m chamber

Condition : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL

EUT : Smartphone : A53 Model

Test mode : BLE-L Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
RYMARK

REMARK

Freq		Antenna Factor						
MHz	dBu₹	<u>dB</u> /m	<u>dB</u>	dB	dBuV/m	dBuV/m	<u>d</u> B	
2390.000 2390.000								

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

EUT : Smartphone : A53 Model

: BLE-H Mode Test mode

Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: YT

REMARK

	Freq		Antenna Factor						
1	MHz	dBu₹	$\overline{dB/m}$	dB	<u>d</u> B	$\overline{dBuV/m}$	$\overline{dBuV/m}$	<u>dB</u>	
1 2	2483.500 2483.500								

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: A53
Test mode : BLE-H Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: YT
REMARK : EUT : Smartphone

	Freq		Antenna Factor						
	MHz	dBu₹	$-\overline{dB}/\overline{m}$	<u>d</u> B	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
1 2	2483.500 2483.500								

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)						
Test Method:	ANSI C63.10:2009 and KDB558074 section 11						
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:							
	Spectrum Analyzer						
	E.U.T						
	Non-Conducted Table						
	Correct Defenses Diagram						
	Ground Reference Plane						
Test Instruments:	Refer to section 5.7 for details						
Test mode:	Refer to section 5.3 for details						
Test results:	Passed						

Test plot as follows:

Lowest channel

Date: 23.0CT.2015 18:33:48

30MHz~25GHz

Middle channel

Date: 23.0CT.2015 18:34:11

30MHz~25GHz

Highest channel

Date: 23.0CT.2015 18:34:45

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205								
Test Method:	FCC Part 15 C Section 15.209 and 15.205 ANSI C63.10:2009										
Test Frequency Range:	9KHz to 25GHz	9KHz to 25GHz									
Test site:	Measurement D	istance: 3m									
Receiver setup:	Frequency Detector RBW VBW Remark										
·	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value										
	Above 1GHz	Peak	1MHz	3MHz	Peak Value						
	Above IGHZ	RMS	1MHz	3MHz	Average Value						
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark						
	30MHz-88MHz		40.0		Quasi-peak Value						
	88MHz-216MHz		43.5		Quasi-peak Value						
	216MHz-960MH	z	46.0		Quasi-peak Value						
	960MHz-1GHz		54.0		Quasi-peak Value						
	Above 1GHz		54.0		Average Value						
			74.0		Peak Value						
Test Procedure:	the ground to determin 2. The EUT of antenna, we tower. 3. The antenry the ground Both horizon make the make the make the make the make the make to find the make the limit specified B. 6. If the emission the limit specified B. If the emission the limit specified B. If the limit specified B.	at a 3 meter the the position was set 3 meter was set 3 meter was more to determine the the anter the authority of the color of the color of the the the the the authority of the color of the color of the the the the the the the the color of the color of the	camber. The nof the highest neters away funted on the twaried from or e the maximutical polarization. The example was turned in the example of the maximum Hamiltonian was set to the EUT in percesting could be ported. Other lid be re-tested.	table was a st radiation. The meter to the m	le 0.8 meters above rotated 360 degrees aterference-receiving table-height antenna of four meters above of the field strength, antenna are set to arranged to its worst is from 1 meter to 4 rees to 360 degrees are tect. Function and the peak values missions that did not e using peak, quasimire ported in a data						

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

EUT : Smartphone Model : A53
Test mode : BLE Mode
Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: YT REMARK :

emara.									
	Freq		Antenna Factor				Limit Line	Over Limit	Remark
-	MHz	dBu₹	$\overline{dB/m}$	d <u>B</u>	<u>dB</u>	dBuV/m	dBu√/m	dB	
1	48.332	44.91	13.35	0.59	29.83	29.02	40.00	-10.98	QP
2	98.142	35.09	13.03	0.95	29.54	19.53	43.50	-23.97	QP
2	187.096	38.06	10.32	1.37	28.92	20.83	43.50	-22.67	QP
4	291.036	36.50	12.89	1.74	28.47	22.66	46.00	-23.34	QP
4 5	392.095	36.14	14.87	2.09	28.75	24.35	46.00	-21.65	QP
6	463.970	42.45	15.71	2.30	28.89	31.57	46.00	-14.43	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

EUT : Smartphone : A53 Model Test mode : BLE Mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5 C Huni:55%

Test Engineer: YT REMARK :

MMMN									
	Freq		Antenna Factor					Over Limit	Remark
_	MHz	dBu₹	$\overline{dB/m}$	<u>d</u> B	<u>dB</u>	dBuV/m	dBuV/m	<u>dB</u>	
1	48.332	39.13	13.35	0.59	29.83	23. 24	40.00	-16.76	QP
2	95.762	36.72	12.90	0.93	29.55	21.00	43.50	-22.50	QP
3	134.559	48.17	8.56	1.22	29.30	28.65	43.50	-14.85	QP
4	311.087	37.70	13.22	1.81	28.48	24.25	46.00	-21.75	QP
5	326.740	37.39	13.59	1.86	28.51	24.33	46.00	-21.67	QP
6	463.970	41.85	15.71	2.30	28.89	30.97	46.00	-15.03	QP

Above 1GHz

Т	est channel	:	Lowest		Le	vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	46.21	31.53	10.57	40.24	48.07	74.00	-25.93	Vertical
4804.00	45.96	31.53	10.57	40.24	47.82	74.00	-26.18	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	36.96	31.53	10.57	40.24	38.82	54.00	-15.18	Vertical
4804.00	35.25	31.53	10.57	40.24	37.11	54.00	-16.89	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	45.18	31.58	10.66	40.15	46.92	74.00	-27.08	Vertical
4884.00	44.83	31.58	10.66	40.15	2.09	74.00	-71.91	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	35.26	31.58	10.66	40.15	37.35	54.00	-16.65	Vertical
4884.00	34.28	31.58	10.66	40.15	36.37	54.00	-17.63	Horizontal

Т	Test channel:			Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	45.35	31.69	10.73	40.03	47.74	74.00	-26.26	Vertical
4960.00	45.36	31.69	10.73	40.03	47.75	74.00	-26.25	Horizontal

Т	est channel	:	Highest		Le	vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.48	31.69	10.73	40.03	37.87	54.00	-16.13	Vertical
4960.00	35.66	31.69	10.73	40.03	38.05	54.00	-15.95	Horizontal

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366