A Forward Backward Approach to Stochastic Quantisation

Sarah-Jean Meyer | University of Oxford

Motivation: Constructive QFT

• Osterwalder-Schrader reconstruction theorem ('75):

Quantum Field Theory
$$\stackrel{\text{Wick}}{\longleftrightarrow}_{\text{rotation}}$$
 Euclidean Quantum Field Theory

• EQFT: Certain **Probability measures** on the space of **distributions** $\mathcal{S}'(\mathbb{R}^d)$.

$$\mathbb{E}_{\nu}[\mathcal{O}(\Phi)] = \int_{\mathcal{S}'(\mathbb{R}^d)} \mathcal{O}(\varphi) \nu(\mathrm{d}\varphi) = \frac{1}{\mathrm{norm.}} \int_{\mathcal{S}'(\mathbb{R}^d)} \mathcal{O}(\varphi) \mathrm{e}^{-S(\varphi)} \mathrm{d}\varphi$$

for

$$S(\varphi) = Q(\varphi, \varphi) + V(\varphi),$$

$$Q(\varphi,\varphi) = \int_{\mathbb{R}^d} (m^2 |\varphi(x)|^2 + |\nabla \varphi(x)|^2) dx$$

$$V(\varphi) = \lambda \int_{\mathbb{R}^d} U(\varphi(x)) dx$$

$$U: \mathbb{R}^d \to \mathbb{R} \text{ bounded from below}$$

Simplest case: Gaussian Free Field

For $V(\varphi) = 0$,

$$``\mu(\mathrm{d}\varphi) = \mathrm{e}^{-S_{\mathrm{free}}(\varphi)}\mathrm{d}\varphi'', \quad S_{\mathrm{free}}(\varphi) = Q(\varphi,\varphi) = \int_{\mathbb{R}^d} (m^2|\varphi(x)|^2 + |\nabla\varphi(x)|^2)\mathrm{d}x,$$

formally corresponds to a Gaussian measure on $\mathcal{S}'(\mathbb{R}^d)$ with

$$Cov(\mu) = (m^2 - \Delta)^{-1},$$

and supp $(\mu) \subset H^{\alpha-}(\mathbb{R}^d)$ for $\alpha = (2-d)/2$

 \rightarrow only for d = 1 supported on functions.

→ Starting point for more interesting EQFTs

Gibbsian pertubations of the GFF

$$v(d\varphi) = \frac{1}{\text{norm.}} e^{-V(\varphi)} \mu(d\varphi) \text{ where } V(\varphi) = \int_{\mathbb{R}^d} U(\varphi(x)) dx$$

- Some possible starting points to obtain non-Gaussian models:
 - \circ in d=2:

$$U(x) = \lambda x^{2p} + \sum_{\ell}^{2p-1} a_{\ell} x^{\ell} \quad \text{for any } p > 0,$$

$$U(x) = \lambda \exp(\beta x),$$

$$U(x) = \lambda \cos(\beta x),$$

• in d = 2, 3:

$$U(x) = \lambda x^4 - b x^2.$$

Euclidean Quantum Field Theories

Goal: Make sense of

"
$$v(\mathcal{O}) = \frac{1}{\text{norm.}} \int_{\mathcal{S}'(\mathbb{R}^d)} \mathcal{O}(\varphi) e^{-S(\varphi)} d\varphi$$

$$= \frac{1}{\text{norm.}} \int_{\mathcal{S}'(\mathbb{R}^d)} \mathcal{O}(\varphi) e^{-\int_{\mathbb{R}^d} U(\varphi(x)) dx} \mu(d\varphi)",$$

with μ the Gaussian free field and,

$$S(\varphi) = \int_{\mathbb{R}^d} \frac{1}{2} (|\nabla \varphi(x)|^2 + m^2 |\varphi(x)|^2) + U(\varphi(x)) dx.$$

Problems:

Large Scales: No decay in space: $S(\varphi) = \infty$ at best (non-sense at worst)

Small Scales: *v* not supported on **function** spaces but only on **distributions**

$$\rightarrow U(\varphi(x))$$
 ill-defined

Approximate Measures

With $V(\varphi) = \int_{\mathbb{R}^d} U(\varphi(x)) dx$, define approximations

$$e^{-V(\varphi)}\mu(d\varphi) \approx e^{-V_T^{\xi}(\varphi)}\mu^T(d\varphi),$$

Large scale Problem $\int_{\mathbb{R}^d} U(\varphi(x)) dx = \infty?$

cut-off in space $\xi \in C_c^{\infty}(\mathbb{R}^d)$:

$$V^{\xi}(\varphi) = \int_{\mathbb{R}^d} \xi(\mathbf{x}) U(\varphi(\mathbf{x})) d\mathbf{x}$$

Small Scale Problem

 $\operatorname{supp}(\mu) \subset H^{(2-d)/2-}(\mathbb{R}^d)$

Regularise the measure:

$$\mu^T \longrightarrow \mu$$
,

 μ^{T} supported on **functions**

Additionally:

Choose V_T depending on T

The Game of EQFT

Question: Can we recover a EQFT?

$$v^{T,\xi}(\mathcal{O}) = \frac{1}{\text{norm.}} \int_{\mathcal{S}'(\mathbb{R}^d)} \mathcal{O}(\varphi) e^{-V_{\mathbf{T}}^{\xi}(\varphi)} \mu^{\mathbf{T}}(d\varphi)$$

$$\xrightarrow{???}$$

$$(\nabla) = \frac{1}{\text{norm.}} \int_{\mathcal{S}'(\mathbb{R}^d)} \mathcal{O}(\varphi) e^{-V(\varphi)} \mu(d\varphi)$$
".

Problem: In general, ν not absolutely continuous w.r.t. the Gaussian free field μ

 \rightarrow Move to different characterisations for $v^{T,\xi}$ that do not rely on absolute continuity

Stochastic Quantisation: Basic Idea

Starting point:

Given a regularisation $\mu \mapsto \mu^T$ and a cut-off ξ we can construct $\nu^{T,\xi}$ (as the Gibbsian perturbation of the Free Field)

Think of a map

$$\Phi^{\xi}: \mu^T \mapsto \nu^{T,\xi}$$

Idea: Study the maps Φ^{ξ} to learn about the measures $v^{T,\xi}$ and (ideally) remove both regularisations T, ξ .

By now many, different approaches building on this perspective (e.g. via parabolic, elliptic SPDEs as introduced by Parisi/Wu-'81)

[G. Parisi, Y. Wu · Perturbation theory without gauge fixing · Sci. Sin. · 1981]

Stochatistic Quantisation via FBSDEs

In this talk:

For a suitable potential V, and cut-offs $T < \infty, \xi \in C_c^{\infty}(\mathbb{R}^d)$:

If *X* solves the SDE

$$X_{t,T}^{\xi} = W_t - \int_0^t \dot{G}_s \mathbb{E}_s [\nabla V_T^{\xi}(X_{T,T})] ds, \quad 0 \leq t \leq T.$$

and W_s is a Brownian motion with covariance G_s and $\text{Law}(W_\infty) = \mu$.

Then, we can show,

$$\Phi^{\xi}(\mu^T) := \operatorname{Law}(X_{T,T}^{\xi}) = \nu^{\xi,T}.$$

Towards a limit

So far: Found the description $v^{\xi,T} = \text{Law}(X_{T,T}^{\xi})$, where

$$X_{t,T}^{\xi} = W_t - \int_0^t \dot{G}_s \mathbb{E}_s \left[\nabla V_T^{\xi} (X_{T,T}^{\xi}) \right] \mathrm{d}s.$$

Goal: Remove the regularisations ξ and T to recover $v = \text{Law}(X_{\infty,\infty}^1)$

- $\xi \rightarrow 1$: Here: now mainly a technical problem¹
- $T \rightarrow \infty$: More delicate and more interesting (for this talk):

In dim. $d \ge 2$, covariance $G_T(0) := \int_0^T Q_s^2(0) ds$ diverges as $T \to \infty$, and so

$$\|\nabla V_T\|_{\infty} \to \infty$$
, as $T \to \infty$.

^{1.} so we drop it from now on.

Towards uniform bounds

$$X_{t,T} = W_t - \int_0^t \dot{G}_s \mathbb{E}_s [\nabla V_T(X_{T,T})] ds \quad \text{where} \quad \lim_{T \to \infty} ||\nabla V_T||_{\infty} \to \infty.$$

Starting point: If X is a Markov process (as we would expect), for some \wp ,

$$\mathbb{E}_s[\nabla V_T(X_{T,T})] = \wp_s^T(X_{s,T}).$$

Ansatz: Find a function *F*

$$\mathbb{E}_{s}[\nabla V_{T}(X_{T,T})] = F_{s,T}(X_{s,T}) + R_{s,T}, \quad R_{T,T} = 0,$$

to bring down the scales.

Then, the remainder *R* satisfies a BSDE

$$R_{t,T} = \mathbb{E}_t[F_{T,T}(X_{T,T}) - F_{t,T}(X_{t,T})].$$

Change of Variables

Derived the system

$$\begin{cases} X_{t,T} = W_t - \int_0^t \dot{G}_s(F_s(X_{s,T}) + R_{s,T}) ds, \\ R_{t,T} = \mathbb{E}_t[F_T(X_{T,T}) - F_t(X_{t,T})], \end{cases}$$

and from Itô's formula obtain an equation for *R*,

$$R_{t,T} = \mathbb{E}_t \int_t^T [H_s^F(X_{s,T}) - DF_s(X_{s,T}) \dot{G}_s R_{s,T}] ds,$$

where

$$H_s^F(\varphi) = \left(\partial_s F_{s,T} + \frac{1}{2} \operatorname{Tr}(\dot{G}_s D^2 F_{s,T}) - DF_{s,T} \dot{G}_s F_{s,T}\right) (\varphi).$$

A new problem: Approximate solutions to the flow equation

Goal: Find a "good enough" approximation *F* to the flow equation

$$H_s^F := \partial_s F_{s,T} + \frac{1}{2} \operatorname{Tr}(\dot{G}_s D^2 F_{s,T}) - DF_{s,T} \dot{G}_s F_{s,T} \approx 0,$$

and solve

$$\begin{cases} X_{t,T} = W_t - \int_0^t \dot{G}_s^2(F_s(X_{T,T}) + R_{s,T}) ds, \\ R_{t,T} = \mathbb{E}_t [F_T(X_{T,T}) - F_t(X_{t,T})] \\ = \mathbb{E}_t \int_t^T ds H_s^F(X_{s,T}) - \mathbb{E}_t \int_t^T ds DF_s \dot{G}_s R_s. \end{cases}$$

with uniform bounds in *T*.

A concrete example: First order approximation for $V_t(x) = \lambda_t \int_{\mathbb{R}^2} dx \cos(\beta \varphi(x))$

$$\begin{cases} X_{t,T} = W_t - \int_0^t \dot{G}_s(F_{s,T}(X_{s,T}) + R_{s,T}) ds \\ R_{t,T} = \mathbb{E}_t \int_t^T [H_s^F(X_{s,T}) - DF_s(X_{s,T}) \dot{G}_s R_{s,T}] ds \end{cases} \text{ where } H_s^F = \partial_s F_{s,T} + \frac{1}{2} \text{Tr}(\dot{G}_s D^2 F_{s,T}) - DF_{s,T} \dot{G}_s F_{s,T}$$

Start by solving only the linear equation,

$$\partial_s F_s + \frac{1}{2} \operatorname{Tr}(\dot{G}_s D^2 F_s) = 0, \quad F_T = \nabla V_T.$$

so that $H_s^F = DF_s \dot{G}_s F_s$, and $F_t = \nabla V_t = -\lambda_t \beta \sin(\beta \varphi)$,

$$(\star) \begin{cases} X_{t,T} = W_t - \int_0^t \dot{G}_s(F_s(X_{s,T}) + R_{s,T}) ds, \\ R_{t,T} = \mathbb{E}_t \int_t^T [DF_{s,T} \dot{G}_s F_s - DF_s(X_{s,T}) \dot{G}_s R_{s,T}] ds. \end{cases}$$

Recovering the EQFT

Theorem

For any $T \in [0, \infty]$ and $\beta^2 < 4\pi$, there is a solution $(X_{\cdot,T}, R_{\cdot,T})$ to the FBSDE (\star) (unique for weak interactions) with $\sup_{t,T} ||R_{t,T}||_{L^{\infty}} \lesssim 1$, Moreover, writing

$$X_{t,\infty} = \mathcal{Z}_t + W_t$$
 where $\mathcal{Z}_t = \int_0^t \dot{G}_s(F_{s,\infty}(X_{s,\infty}) + R_{s,\infty}) ds$.

we have convergence $\mathcal{Z}_t \to \mathcal{Z}_{\infty}$ in $L^{\infty}(dP; W^{1,\infty}(\mathbb{R}^d))$ so that we obtain the sine-Gordon EQFT as a random shift of the GFF

$$v_{SG} = \text{Law}(X_{\infty,\infty}) = \text{Law}(\mathcal{Z}_{\infty} + W_{\infty}).$$

Why this approach?

- Pathwise, scale-by-scale coupling of the GFF and the EQFT
- Ameable to stochastic analysis: e.g. coupling methods \rightarrow decay of correlations
- Approximate solutions to the infinite dimensional, non-linear PDE ("renormalisation flow equation")

$$\partial_s F_s + \frac{1}{2} \operatorname{Tr}(\dot{G}_s D^2 F_s) - \mathbf{D} F_s \dot{G}_s F_s = 0, \quad F_T = \nabla V_T,$$

are sufficient (if you can control the resulting FBSDE).

- closely linked to an optimisation problem → large deviations
- Can verify OS axioms from studying the FBSDE (so we constructed a EQFT)
- Limit is non-Gaussia (i.e. the EQFT is non-trivial)

For this specific model: Cover a wider parameter range for β^2 ?:

- For $\beta^2 \in (0,8\pi)$: model is known to be renormalisable but with **infinitely many threshholds** requiring additional renormalisations (full control on the full space not yet achieved). [G. Benfatto, G. Gallavotti, F. Nicoló, et al. On the massive sine-Gordon equation in {the first few/ higher/ all} regions of collapse · Comm. math. phys. {1982/ 1983/ 1986}]
- Beyond 4π : The linear approximation for the renormalisation flow is not enough \rightarrow requires better understanding of **approximations**

$$\partial_s F_s + \frac{1}{2} \operatorname{Tr} \dot{G}_s D^2 F_s - D F_s \dot{G}_s F_s \approx 0; \quad F_T = \lambda_T \sin(\beta \varphi).$$

• As critically is approached, this requires more and more 'non-linear' approximations *F* making the analysis of the forward equation more difficult.

What's next?

Better approximations of the renormalisation flow. Start from

$$F_s^{[0]}(\varphi)=0,$$

and schematically expect better approximations by iterating for $\ell > 0$,

$$\partial_{s}F_{s}^{[\ell]} + \operatorname{Tr}\dot{G}_{s}D^{2}F_{s}^{[\ell]} = -\sum_{\ell_{1}+\ell_{2}=\ell} DF_{s}^{[\ell_{1}]}\dot{G}_{s}F_{s}^{[\ell_{2}]}, \quad F_{T}^{[\ell]} = \begin{cases} \nabla V_{T}, \ \ell = 1\\ 0, \text{ else} \end{cases}$$

(so even bounded initial conditions appear polynomial as ℓ increases!)

Then with $F_s = \sum_{q \le \ell} F_s^{\lfloor q \rfloor}$, we need more and more terms as we approach criticality

→ FBSDEs appear nonlinear and the analysis becomes more involved.

Multiscale Decomposition

Decompose the Gaussian free field as

$$Cov(\mu) = (m^2 - \Delta)^{-1} = \int_0^\infty Q_s^2 ds$$

for "nice" operators Q_s , and a cylindrical Brownian motion B,

$$W_t$$
:= $\int_0^t Q_s dB_s$ is a Brownian motion with $Cov(W_t) = \int_0^t Q_s^2 ds =: G_t$,

e.g.
$$Q_t^2 = \frac{1}{t^2} e^{-(m^2 - \Delta)/t^2}$$
.

Then, W_t is a **function** for any $t \in (0, \infty)$ with $W_{\infty} \sim \mu$ and we define

$$\mu^T := \text{Law}(W_T)$$

^{2.} self-adjoint, positive and Hilbert-Schmidt

Multiscale Decomposition

With

$$\mu^T = \text{Law}(W_T) = \int_0^T Q_s dB_s$$

we can write

$$\nu_{\mathrm{SG}}^{\xi,T}(\mathcal{O}) = \frac{1}{\mathrm{norm.}} \int_{\mathcal{S}'(\mathbb{R}^2)} \mathcal{O}(\varphi) \mathrm{e}^{-V_T^{\xi}(\varphi)} \mu^T(\mathrm{d}\varphi) = \frac{\mathbb{E}\left[\mathcal{O}(W_T) \mathrm{e}^{-V_T^{\xi}(W_T)}\right]}{\mathbb{E}\left[\mathrm{e}^{-V_T^{\xi}(W_T)}\right]},$$

e.g. for the family of observables

$$\mathcal{O}(\varphi) = e^{-g(\varphi)}.$$

→ study exponential functionals of Brownian motion

Variational Approach

Theorem. (Boué-Dupuis ('98)) For a bounded functional F and a Q-Brownian motion W, the variational description

$$-\log \mathbb{E}\left[e^{-F(W_{\bullet})}\right] = \inf_{u \in \mathbb{H}^0} \mathbb{E}\left[F(X_{\bullet}(u)) + \frac{1}{2} \int_0^{\infty} ||u_s||_{L^2(\mathbb{R}^d)}^2 ds\right],$$

holds. Here, \mathbb{H}^0 is the space of adapted processes and

$$X_t(u) := W_t + \int_0^t Q_s u_s ds.$$

[M. Boué, P. Dupuis · A variational representation for certain functionals of Brownian motion · Ann. Prob. 1998]

[N. Barashkov, M. Gubinelli · A variational method for φ_3^4 · Duke math. J. 2020]

[N. Barashkov, M. Gubinelli \cdot On the variational method for EQFT in 2D \cdot arXiv preprint \cdot 2021]

Variational Description

Apply the BD-formula to the BM W and the functional,

$$V_T^{\xi}(\varphi) := \lambda_T \int_{\mathbb{R}^2} \xi(x) \cos(\varphi(x)) dx,$$

$$-\log \int e^{-V_T^{\xi}(\varphi)} \mu^T(\mathrm{d}\varphi) = -\log \mathbb{E}\left[e^{-V_T^{\xi}(W_T)}\right] = \inf_{u \in \mathbb{H}^0} \mathbb{E}\left[V_T^{\xi}(X_T(u)) + \int_0^\infty ||u_s||_{L^2}^2 \mathrm{d}s\right],$$

where

$$X_T(u) = W_T + \int_0^T Q_s u_s ds.$$

Now: Look for optimal control *u*, derive Euler-Lagrange equation.

Stochastic Control Problem

Theorem

The infimum is a minimum and the optimal control satisfies

$$u_s^{\xi,T} = -Q_s \mathbb{E}_s [\nabla V_T^{\xi} (X_T(u^{T,\xi}))],$$

and the optimal dynamics are

$$(*) \quad X_{t,T}^{\xi} = W_t - \int_0^t Q_s^2 \mathbb{E}_s \left[\nabla V_T^{\xi} \left(X_{T,T}^{\xi} \right) \right] \mathrm{d}s.$$

Moreover, the solution to (*) *satisfies*

$$\Phi^{\xi,T}(\mu) := \operatorname{Law}(X_{T,T}^{\xi}) = \nu_{\operatorname{SG}}^{\xi,T}.$$

Wick ordered cosine

For a centered Gaussian random variable W with covariance G define the Wick ordered exponentials

$$[\![\exp(i\beta W)]\!] := e^{\frac{\beta^2}{2}G} e^{i\beta W}.$$

Use this to define the Wick ordered cosine in the usual way (from $\cos(x) = \text{Re}(e^{ix})$).

Theorem

For any $\delta > 0$, $p \ge 1$ and $\beta^2 < 4\pi$, the Wick ordered cosine satisfies

$$\sup_{t\geq 0} \mathbb{E} \left[\| \left[\cos(\beta W_t) \right] \|_{B_{p,p}^{-\beta^2/4\pi-\delta}(\langle x \rangle^{-\ell})}^{p} \right] < \infty,$$

and converges in $L^p(dP; B_{p,p}^{-\beta^2/4\pi-\delta}(\langle x \rangle^{-\ell}))$ and almost surely to a limit (denoted by $[\cos(\beta W_\infty)]$

Osterwalder Schrader Axioms

- (i) Euclidean invariance (ii) Reflection positivity (iii) Exponential moment bounds
- Looking for Gaussian measures satisfying (i) and (ii) leaves us with only combinations of the GFF
- Given a RP measure μ (like the GFF) the perturbation

$$e^{-\int_{\Lambda} U(\varphi(x)) dx} \mu(d\varphi)$$

is again reflection postive for any $\Lambda \subset \mathbb{R}^d$

- Euclidean invariance means that we need $\Lambda = \mathbb{R}^d$
- i.e. the cut-off ξ destroys (i), and the mollification T destroys (ii)

But: both properties can be recovered in the limit

Optimality for the BD variational problem

On the finite volume: We can show that the solution X_{∞}^{ξ} to the FBSDE (\star) is optimal for

$$\mathcal{V}^{\xi} = \inf_{u} \mathbb{E} \left[\lambda_{0} \int_{\mathbb{R}^{2}} \xi(x) [\cos(\beta X_{t}(u))](x) dx + \frac{1}{2} \int_{0}^{\infty} ||u_{s}||_{L^{2}}^{2} ds \right], \quad X_{t} = W_{t} + \int_{0}^{t} Q_{s} u_{s} ds.$$

$$=: \mathcal{J}^{0,\xi}(u)$$

Makes no sense for $\xi = 1$.

However: The solution is Lipschitz in small perturbations of the interaction term V, so we can hope that the variational problem for the Laplace transform

$$\mathcal{W}^{\xi,T}(g) := v^{\xi,T}(e^{-g}) = \inf_{u} \left(\mathcal{J}_{T}^{g,\xi}(u) - \mathcal{J}_{T}^{0,\xi}(u) \right)$$

converges as the cut-off ξ is removed.

Variational Problem on \mathbb{R}^2

Theorem

For n sufficiently large, $\lambda > 0$ small enough, the limit of the Laplace transforms exists and satisfies the variational problem

$$\mathcal{W}(g) = \lim_{\substack{\xi \to 1 \\ T \to \infty}} \mathcal{W}^{\xi,T}(g) = \inf_{\nu \in \mathcal{A}(g)} \mathbb{E} \bigg[g(X_{\infty}(\bar{u}+\nu)) + \int_{\mathbb{R}^2} (U_{\infty}(X_{\infty}(\bar{u}+\nu)) - U_{\infty}(X_{\infty}(\bar{u}))) + \mathcal{E}(\bar{u},\nu) \bigg].$$

Here $X_{\infty}(u) = I_{\infty}(u) + W_{\infty}$ is the shifted GFF and

- \bar{u} is an adapted process which does not depend on g and v
- I_{∞} is a linear functional increasing regularity by 1
- \mathcal{E} is a quadratic form
- $\mathcal{A}(g)$ is the set of adapted controls v s.t. $\mathbb{E}\int_0^\infty ||v_s||^2_{L^2(\langle x\rangle^n)} \mathrm{d}s \leq C_{\nabla g,n}$.

Non-Gaussianity of the limit

For a Gaussian measure supported on $H^{-1}(\langle x \rangle^{-\ell})$ with Cameron-Martin space $H_{\text{CM}}(v) \subset H^{-1}(\langle x \rangle^{-\ell})$,

$$\log \int \exp(-\langle \varphi, \psi \rangle) \nu(\mathrm{d}\varphi) = \frac{1}{2} \|\psi\|_{H_{\mathrm{CM}}(\nu)}^2 + \langle m, \psi \rangle_{H^{-1}(\langle x \rangle^{-\ell})}$$

So it is sufficient to show that the lhs is not quadratic for v_{SG} .

Applying the BD formula with $V^{\psi} = V + \langle \cdot, \psi \rangle$ we can write the lhs as the limit of the approximate measures $v_{\text{SG}}^{\xi,T}$ and (after a Cameron Martin shift) obtain

$$= \lim_{\substack{T \to \infty \\ \xi \to 1}} \langle G_T \psi, G_T \psi \rangle_{(m^2 - \Delta)^{-1}} + \mathcal{V}_T^{\xi}((m^2 - \Delta)^{-1} \psi) - \mathcal{V}_T^{\xi}(0)$$

but
$$\nabla \mathcal{V}_T^{\xi} = \nabla V_0^{\xi} (X_{0,T}^{\xi}) + R_{t,T}^{\xi} \sim T^{c(\beta)} \sin(\beta \cdot) + O(1)$$
 is not linear.