Formulario di Fisica Generale I

Cinematica

Velocità: $\vec{v} = \frac{d\vec{r}}{dt}$

Accelerazione: $\vec{a} = \frac{d\vec{v}}{dt} = \frac{d^2\vec{r}}{dt^2}$

Moto uniformemente accelerato

 $v - v_0 = a \cdot t$

$$x - x_0 = v_0 \cdot t + \frac{1}{2}at^2$$

$$x - x_0 = \frac{1}{2}(v_0 + v_x)t$$

$$x - x_0 = \frac{1}{2}(v_0 + v_x)t$$

$$v_x^2 - v_0^2 = 2a(x - x_0)$$

Corpo in caduta da fermo:

 $v = \sqrt{2gh}$

 $t = \sqrt{2h/g}$

Moto del Proiettile

 $y = x \cdot \tan \theta - \frac{g}{2v_0^2 \cos^2 \theta} x^2$

 $h_{max} = \frac{v_0^2 \sin^2 \theta}{2g}$ $x_{max} = \frac{v_0^2 \sin(2\theta)}{2g}$

Moto Circolare

Velocità angolare: $\omega = \frac{d\theta}{dt}$

Accel. angolare: $\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2}$ Moto Circolare Uniforme

 $\omega = 2\pi/T$

 $v_{\mathrm{tangenziale}} = \omega r$

 $a_{\text{centripeta}} = v^2/r = \omega^2 r$

Moto Circolare Unif. Accel.

 $\omega - \omega_0 = \alpha \cdot t$

 $\theta - \theta_0 = \omega_0 \cdot t + \frac{1}{2}\alpha t^2$

Moto curvilined

 $\vec{a} = a_T \hat{\theta} + a_R \hat{r} = \frac{d |\vec{v}|}{dt} \hat{\theta} - \frac{v^2}{r} \hat{r}$

Sistemi a più corpi

Massa totale: $m_T = \sum m_i = \int dm$

Centro di massa:

 $\vec{r}_{CM} = (\sum m_i \vec{r}_i)/m_T = (\int \vec{r}_i dm)/m_T$ $\vec{v}_{CM} = d\vec{r}_{CM}/dt = \sum m_i \vec{v}_i/m_T$

 $\vec{a}_{CM} = d\vec{v}_{CM}/dt = \overline{d^2}\vec{r}_{CM}/dt^2$

Momento di inerzia:

 $I_{\rm asse} = \sum m_i r_i^2 = \int r^2 dm$

Teorema assi paralleli:

 $I_{\text{asse}} = I_{\text{CM}} + mD^2$

Forze, Lavoro ed Energia

Legge di Newton: $\vec{F} = m\vec{a}$

Momento della forza: $\vec{\tau} = \vec{r} \times \vec{F}$

Forze Fondamentali

Forza peso: $F_g = mg$

Forza elastica: $F_{el} = -k(x - l_0)$

Gravità: $\vec{F}_g = -G \frac{Mm}{r^2} \hat{r}$

Elettrostatica: $\vec{F}_E = \frac{1}{4\pi\varepsilon_0} \frac{q_1q_2}{r^2} \hat{r}$

Forze di Attrito

Statico: $|\vec{F}_S| \le \mu_S |\vec{N}|$

Dinamico: $\vec{F}_D = -\mu_D |\vec{N}|\hat{v}$

Viscoso: $\vec{F}_V = -\beta \vec{v}$

Lavoro

 $L = \int_{x_i}^{x_f} \vec{F} \cdot d\vec{l} = \int_{\theta_i}^{\theta_f} \tau d\omega$

Forza costante: $L = \vec{F} \cdot \vec{l}$

Forza elastica:

Forza peso: $L = -\frac{1}{2}k(x_f - l_0)^2 + \frac{1}{2}k(x_i - l_0)^2$ Forza peso: L = -mgh

Gravità: $L = Gm_1m_2 \cdot \left(\frac{1}{r_f} - \frac{1}{r_i}\right)$

Elettrostatica: $L = \frac{q_1 q_2}{4\pi \varepsilon_0} \cdot \left(\frac{1}{r_i} - \frac{1}{r_f}\right)$

Potenza: $P = \frac{dL}{dt} = \vec{F} \cdot \vec{v} = \tau \omega$

Energia

Cinetica: $K = \frac{1}{2}mv^2$

Rotazione: $K = \begin{cases} \frac{1}{2} m_T v_{\text{CM}}^2 + \frac{1}{2} I_{\text{CM}} \omega^2 \\ \frac{1}{2} I_{\text{AsseFisso}} \omega^2 \end{cases}$ Forze vive: $K_f - K_i = L_{\text{TOT}}$

Potenziale: $U = -L = -\int_{x_i}^{x_f} \vec{F} \cdot d\vec{l}$

Meccanica: $E = K + U = \frac{1}{2}mv^2 + U$ Conservazione: $E_f - E_i = L_{\text{NON CONS}}$

En. potenziale forze fondamentali:

Forza peso: U(h) = mgh

Forza elastica: $U(x) = \frac{1}{2}k(x - l_0)^2$

Gravità: $U(r) = -G \frac{m_1^2 m_2}{r}$

Elettrostatica: $U(r) = \frac{r}{4\pi\varepsilon_0} \cdot \frac{q_1q_2}{r}$

Impulso e Momento Angolare

Quantità di moto: $\vec{p} = m\vec{v}$

Impulso: $\vec{I} = \vec{p_f} - \vec{p_i} = \int_{t_1}^{t_2} \vec{F} dt$

Momento angolare: $\vec{L} = \vec{r} \times \vec{p}$

Intorno ad un asse fisso: $|\vec{L}| = I_{\text{asse}} \cdot \omega$

Equazioni cardinali

 $\vec{p}_T = \sum \vec{p}_i = m_T \cdot \vec{v}_{CM}$ $\vec{L}_T = \sum \vec{L}_i = I_{\text{asse}} \cdot \vec{\omega}$

I card: $\sum \vec{F}_{\text{ext}} = d\vec{p}_T/dt = m_T \cdot a_{\text{CM}}$

II card: $\sum \vec{\tau}_{\text{ext}} = d\vec{L}_T/dt$

Asse fisso: $|\sum \vec{\tau}_{\text{ext}}| = I_{\text{asse}} \cdot \alpha_{\text{asse}}$

Leggi di conservazione

 $\vec{p}_T = \text{costante} \Leftrightarrow \sum \vec{F}_{\text{ext}} = 0$

 $\vec{L}_T = \text{costante} \Leftrightarrow \sum \vec{\tau}_{\text{ext}} = 0$

 $E = \text{costante} \Leftrightarrow L_{\text{NONCONS}} = 0$

Urti

Per due masse isolate $\vec{p}_T = \text{costante}$:

Anelastico: $v_f = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$

Elastico (conservazione energia):

 $\int m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f}$ $\begin{cases} m_1(v_{1i}^2 - v_{1f}^2) &= m_2(v_{2f}^2 - v_{2i}^2) \\ m_1(v_{1f}^2 - w_{1f}^2) &= m_2(v_{2f}^2 - v_{2i}^2) \end{cases}$ $\begin{cases} v_{1f} &= \frac{m_1 - m_2}{m_1 + m_2} v_{1i} + \frac{2m_2}{m_1 + m_2} v_{2i} \\ v_{2f} &= \frac{m_2 - m_1}{m_1 + m_2} v_{2i} + \frac{2m_1}{m_1 + m_2} v_{1i} \end{cases}$

Moto Armonico

 $x(t) = A\cos(\omega t + \phi_0)$

 $v(t) = -\omega A \sin(\omega t + \phi_0)$

 $a(t) = -\omega^2 A \cos(\omega t + \phi_0) = -\omega^2 x(t)$

 $A = \sqrt{x_0^2 + \left(\frac{v_0}{-}\right)^2}$

 $\phi_0 = \arctan\left(-\frac{v_0}{\omega x_0}\right)$ $f = \omega/2\pi, T = 2\pi/\omega$ Molla: $\omega = \sqrt{k/m}$

Pendolo: $\omega = \sqrt{g/L}$

Momenti di inerzia notevoli

Anello intorno asse: $I = mr^2$

Cilindro pieno intorno asse: $I = \frac{1}{2}mr^2$ Sbarretta sottile, asse CM: $I = \frac{1}{12}mL^2$ Sfera piena, asse CM: $I = \frac{2}{5}mr^2$

Lastra quadrata, asse \perp : $I = \frac{1}{6}mL^2$

Gravitazione 3^a legge di Keplero: $T^2 = \left(\frac{4\pi^2}{GM_S}\right)R^3$

Vel. di fuga: $v = \sqrt{\frac{2GM_T}{R_T}}$

Elasticità

Modulo di Young: $F/A = Y \cdot \Delta L/L$

Compressibilità: $\Delta p = -B \cdot \Delta V/V$ Modulo a taglio: $F/A = M_t \cdot \Delta x/h$

FluidiSpinta di Archimede $B_A = \rho_L V g$

Continuità: $A \cdot v = \text{costante}$

Bernoulli: $p + \frac{1}{2}\rho v^2 + \rho gy = \text{costante}$

Onde

Velocità v, pulsazione ω , lunghezza d'onda λ , periodo T, frequenza f, numero d'onda k.

 $v = \omega/k = \lambda/T = \lambda f$ $\omega = 2\pi/T, \quad k = 2\pi/\lambda$

Onde su una corda

Velocità: $v = \sqrt{T/\mu}$

Spostamento: $y = y_{\text{max}} \sin(kx - \omega t)$

Potenza: $P = \frac{1}{2}\mu v(\omega y_{\text{max}})^2$

Onde sonore

Velocità: $v = \sqrt{B/\rho} = \sqrt{\gamma p/\rho}$

 $v(T) = v(T_0)\sqrt{T/T_0}$

Spostamento: $s = s_{\text{max}} \cos(kx - \omega t)$

Pressione: $\Delta P = \Delta P_{\text{max}} \sin(kx - \omega t)$

 $\Delta P_{\rm max} = \rho v \omega s_{\rm max}$

Intensità: $I = \frac{1}{2} \rho v (\omega s_{\text{max}})^2 = \frac{\Delta P_{\text{max}}^2}{2 o v}$

Intensità(dB): $\beta = 10 \log_{10} \frac{I}{I_0}$

Soglia udibile $I_0 = 1.0 \times 10^{-12} \,\text{W/m}^2$

Effetto Doppler
$$f' = \left(\frac{v + v_O \cos \theta_O}{v - v_S \cos \theta_S}\right) f$$

Termodinamica

Primo principio

Calore e cap. termica: $Q = C \cdot \Delta T$ Calore latente di trasf.: $L_t = Q/m$ Lavoro <u>sul</u> sistema: dW = -pdVEn. interna: $\Delta U = \begin{cases} Q + W_{\text{sulsistema}} \\ Q - W_{\text{delsistema}} \end{cases}$ Entropia: $\Delta S_{AB} = \int_{.}^{B} \frac{dQ_{REV}}{T}$

Calore specifico

Per mole: $c_m = C/n$ Per i solidi: $c_m \approx 3R$ Gas perfetto: $c_p - c_V = R$ $\begin{array}{c|cccc} & c_V & c_p & \gamma = c_p/c_V \\ \text{monoatom.} & \frac{3}{2}R & \frac{5}{2}R & \frac{5}{3} \\ \text{biatomico} & \frac{5}{2}R & \frac{7}{5}R & \frac{7}{5} \end{array}$

Per unità di massa: c=C/m

Gas perfetti

Eq. stato: $pV = nRT = Nk_bT$ Energia interna: $\Delta U = nc_V \Delta T$ Entropia: $\Delta S = nc_V \ln \frac{T_f}{T_i} + nR \ln \frac{V_f}{V_i}$ <u>Isocora</u> ($\Delta V = 0$): $W = 0 \; ; \; Q = nc_v \Delta T$ <u>Isobara</u> ($\Delta p = 0$): $W = -p\Delta V$; $Q = nc_p\Delta T$ <u>Isoterma</u> ($\Delta T = 0$): $W = -Q = -nRT \ln \frac{V_f}{V_i}$ Adiabatica (Q = 0): $pV^{\gamma} = \text{cost.}$ $TV^{\gamma-1} = \text{cost.}$; $p^{1-\gamma}T^{\gamma} = \text{cost.}$ $W = \Delta U = \frac{1}{\gamma-1}(P_fV_f - P_iV_i)$

Macchine termiche Efficienza: $\eta = \frac{W}{Q_H} = 1 - \frac{Q_C}{Q_H}$ C.O.P. frigorifero = $\frac{Q_C}{W}$ C.O.P. pompa di calore= $\frac{Q_H}{W}$ Eff. di Carnot: $\eta_{REV} = 1 - \frac{T_C}{T_{IJ}}$ Teorema di Carnot: $\eta \leq \eta_{REV}$

Espansione termica dei solidi

Esp. lineare: $\Delta L/L_i = \alpha \Delta T$ Esp. volumica: $\Delta V/V_i = \beta \Delta T$ Coefficienti: $\beta = 3\alpha$ β gas perfetto, p costante: $\beta = 1/T$

Conduzione e irraggiamento

Corrente termica: $\mathcal{P} = \frac{\Delta Q}{\Delta t} = \frac{\Delta T}{R} = \frac{kA}{\Delta x} \Delta T$

Resistenza termica: $R = \frac{\Delta x}{kA}$ Resistenza serie: $R_{eq} = R_1^{KA} + R_2$ Resistenza parallelo: $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$ Legge Stefan-Boltzmann: $\mathcal{P} = e\sigma A T^4$ L. onda emissione: $\lambda_{max} = \frac{2.898 \text{ mmK}}{T}$

Gas reali

Eq. Van Der Waals: $(p + a(\frac{n}{V})^2)(V - nb) = nRT$

Calcolo vettoriale

Prodotto scalare: $\vec{A} \cdot \vec{B} = |\vec{A}| |\vec{B}| \cos \theta$ $\vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z$ $|\vec{A}| = \sqrt{\vec{A} \cdot \vec{A}} = \sqrt{\vec{A}_x^2 + A_y^2 + A_z^2}$ versore: $\hat{A} = \vec{A}/|\vec{A}|$ Prodotto vettoriale: $\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$

Costanti fisiche

Costanti fondamentali

Grav.: $G = 6.67 \times 10^{-11} \,\mathrm{m}^3/(\mathrm{s}^2 \cdot \mathrm{kg})$ Vel. luce nel vuoto: $c = 3.00 \times 10^8 \,\mathrm{m/s}$ Carica elementare: $e = 1.60 \times 10^{-19} \,\mathrm{C}$ Massa elettrone: $m_e = 9.11 \times 10^{-31} \,\mathrm{kg}$ Massa protone: $m_p = 1.67 \times 10^{-27} \,\mathrm{kg}$ Cost. dielettrica: $\varepsilon_0 = 8.85 \times 10^{-12} \,\mathrm{F/m}$ Perm. magnetica: $\mu_0 = 4\pi \times 10^{-7} \,\mathrm{H/m}$ Cost. Boltzmann: $k_b = 1.38 \times 10^{-23} \,\mathrm{J/K}$ N. Avogadro: $N_A = 6.022 \times 10^{23} \,\mathrm{mol^{-1}}$ C. dei gas: $R = \begin{cases} 8.314 \,\mathrm{J/(mol \cdot K)} \\ 0.082 \,\mathrm{L \cdot atm/(mol \cdot K)} \end{cases}$ C. Stefan-Boltzmann: $\sigma = 5.6 \times 10^{-8} \,\mathrm{W/(m^2 \cdot K^4)}$

Altre costanti

Accel gravità sulla terra: $g = 9.81 \,\mathrm{m/s^2}$ Raggio terra: $R_T = 6.37 \times 10^6 \,\mathrm{m}$ Massa terra: $M_T = 5.98 \times 10^{24} \, \text{kg}$ Massa sole: $M_S = 1.99 \times 10^{30} \,\text{kg}$ Massa luna: $M_L = 7.36 \times 10^{22} \,\mathrm{kg}$ Vol. 1 mole di gas STP: $V_{STP} = 22.4 \,\mathrm{L}$ Temp 0 assoluto $\theta_0 = -273.15$ °C

Trigonometria

 $\sin^2(\alpha) + \cos^2(\alpha) = 1, \tan(\alpha) = \frac{\sin(\alpha)}{\cos(\alpha)}$ $\sin(-\alpha) = -\sin(\alpha), \cos(-\alpha) = \cos(\alpha)$ $\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$ $\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$ $\sin(\alpha) = \pm \cos(\pi/2 \mp \alpha) = \pm \sin(\pi \mp \alpha)$ $\begin{array}{l} \cos(\alpha) = \sin(\pi/2 \pm \alpha) = -\cos(\pi \pm \alpha) \\ \sin^2(\alpha) = \frac{1 - \cos(2\alpha)}{2}, \ \cos^2(\alpha) = \frac{1 + \cos(2\alpha)}{2} \end{array}$ $\sin(\alpha) + \sin(\beta) = 2\cos\frac{\alpha - \beta}{2}\sin\frac{\alpha + \beta^2}{2}$ $\cos(\alpha) + \cos(\beta) = 2\cos\frac{\alpha - \beta}{2}\cos\frac{\alpha + \beta}{2}$

Derivate

 $\frac{d}{dx}f(x) = f'(x)$ $\frac{\frac{d}{dx}}{dx}(a \cdot x) = af'(a \cdot x)$ $\frac{d}{dx}(a \cdot x) = df(a \cdot x)$ $\frac{d}{dx}f(g(x)) = f'(g(x)) \cdot g'(x)$ $\frac{d}{dx}x^n = nx^{n-1}$ $\frac{d}{dx}\frac{1}{x^n} = -n\frac{1}{x^{n+1}}$ $\frac{d}{dx}e^x = e^x$ $\frac{d}{dx}\ln x = \frac{1}{x}$ $\frac{d}{dx}\cos(x) = \cos(x)$ $\frac{d}{dx}\cos(x) = -\sin(x)$

Integrali

 $\int f(x)dx = I(x)$ $\int f(x-a)dx = I(x-a)$ $\int f(a \cdot x) dx = \frac{I(a \cdot x)}{a}$ $\int x^n dx = \frac{x^{n+1}}{n+1}, \ n \neq -1$ $\int \frac{1}{x^n} = -\frac{1}{(n-1)} \cdot \frac{1}{x^{n-1}}, \ n \neq 1$ $\int \frac{1}{x} dx = \ln x$ $\int e^x dx = e^x$ $\int \sin(x)dx = \cos(x)$ $\int \cos(x)dx = -\sin(x)$ $\int_{x_0}^{x_1} f(x)dx = I(x_1) - I(x_0)$

Approssimazioni $(x_0 = 0)$

 $\sin x = x + O(x^2)$ $(1+x)^{\alpha} = 1 + \alpha x + O(x^2)$ $\ln(1+x) = x + O(x^2)$