QUANTIFIER ELIMINATION IN SHELAH-SPENCER GRAPHS

ANTON BOBKOV

ABSTRACT. We simplify [?] proof of quantifier elimination in Shelah-Spencer graphs.

1. Introduction

Laskowski's paper [?] provides a combinatorial proof of quantifier elimination in Shelah-Spencer graphs. Here we provide a simplification of the proof using only maximal chains and avoiding the use of proposition 3.1 and technical lemmas of section 4.

We will use notation of [?], in particular things like K_{α} , $\delta(\mathcal{A}/\mathcal{B})$, $X_m(\mathcal{A})$, S_{α} , maximal embedding, etc.

2. Omitting Lemma

Definition 2.1. Let $\mathcal{M} \models S_{\alpha}$, $\mathcal{B} \in \mathbf{K}_{\alpha}$, embedding $f : \mathcal{B} \to \mathcal{M}$, Φ finite subset of \mathbf{K}_{α}

- (1) Say that f omits Φ if there are no $\mathcal{C} \in \Phi$ and $g: \mathcal{C} \to \mathcal{M}$ extending f.
- (2) Say that f admits Φ if for every $\mathcal{C} \in \Phi$ there is $g: \mathcal{C} \to \mathcal{M}$ extending f.

Note 2.2. Take notation as above and a structure $C \in K_{\alpha}$ extending \mathcal{B} . Then f doesn't omit $\{C\}$ iff f admits $\{C\}$.

Definition 2.3. Fix $\mathcal{B}, \mathcal{C} \in K_{\alpha}$, and $m \in \omega$ such that $|C \setminus B| < m$. Define $Z(\mathcal{B}, \mathcal{C}, m)$ to be all $\mathcal{B}^* \in X_m(\mathcal{B})$ such that there are no \mathcal{H} with $|H \setminus B^*| < m$ satisfying

Lemma 2.4. Let $\mathcal{B}, \mathcal{C} \in K_{\alpha}$, and $m \in \omega$ such that $|C \setminus B| < m$. Also let $\mathcal{M} \models S_{\alpha}$ and $f : \mathcal{B} \to \mathcal{M}$ an embedding. The following are equivalent:

- (1) f omits $\{C\}$.
- (2) There exists $\mathcal{B}^* \in Z(\mathcal{B}, \mathcal{C}, m)$ maximally embeddable into \mathcal{M} over f.

1

Proof. For the proof we identify \mathcal{B} with $f(\mathcal{B})$, i.e. for ease of notation assume that $\mathcal{B} \subset \mathcal{M}$.

 $(1) \Rightarrow (2)$ By remark 5.3 of [?] there is some $B^* \in X_m(\mathcal{B})$ maximally embeddable in \mathcal{M} over f. Such embedding is unique by Lemma 3.8 of [?]. Again, we identify B^* with its maximal embedding into \mathcal{M} . To show (2) we need to verify that $\mathcal{B}^* \in Z(\mathcal{B}, \mathcal{C}, m)$. Suppose not. Then there is \mathcal{H} with $|H \setminus B^*| < m$ satisfying

As $\mathcal{B}^* \leq \mathcal{H}$ and $\mathcal{B} \subset \mathcal{M}$ we can embed \mathcal{H} into \mathcal{M} (as $\mathcal{M} \models S_{\alpha}$). But this would witness \mathcal{C} extending \mathcal{B} in \mathcal{M} which is impossible as we assumed that f omits $\{\Phi\}$.

 $(2) \Rightarrow (1)$ Suppose f doesn't omit $\{C\}$. Then by the note above f admits $\{C\}$, i.e. there is an embedding of \mathcal{C} into M over f. We identify \mathcal{C} with the image of that embedding. Similarly we identify \mathcal{B}^* with the image of its maximal embedding over f. That is we may assume $\mathcal{C}, \mathcal{B}^* \subset \mathcal{M}$. Let H be the substructure of M induced by vertices $C \cup B^*$. As |CB| < m we have $|HB^*| < m$. \mathcal{B}^* is m-strong by remark 5.3 of [?]. This forces $\mathcal{B}^* \leq H$. But this contradicts the fact that $\mathcal{B}^* \in \mathcal{Z}(\mathcal{B}, \mathcal{C}, m)$. \square

Lemma 2.5. Let $\mathcal{B} \in K_{\alpha}$, Φ, Γ finite subsets of K_{α} , and $m \in \omega$ such that for each $\mathcal{C} \in \Phi$ or $\mathcal{C} \in \Gamma$ we have $\mathcal{B} \subseteq \mathcal{C}$ and $|\mathcal{C} \setminus \mathcal{B}| < m$. The following are equivalent:

- (1) f omits Φ and admits Γ .
- (2) There exists $\mathcal{B}^* \in Z(\mathcal{B}, \Phi, \Gamma, m)$ maximally embeddable into \mathcal{M} over f.

Proof. (1) \Rightarrow (2) Identify \mathcal{B} with $f(\mathcal{B})$, i.e. for ease of notation assume that $\mathcal{B} \subset \mathcal{M}$. By remark 5.3 of [?] there is some $B^* \in X_m(\mathcal{B})$ maximally embeddable in \mathcal{M} over f. Such embedding is unique by Lemma 3.8 of [?]. Again, we identify B^* with its maximal embedding into \mathcal{M} . To show (2) we need to verify that $\mathcal{B}^* \in Z(\mathcal{B}, \Phi, \Gamma, m)$. Suppose not. Two things can go wrong. First, there can be \mathcal{H} with $|H \setminus B^*| < m$ and $\mathcal{C} \in \Phi$ satisfying

As $\mathcal{B}^* \leq \mathcal{H}$ and $\mathcal{B} \subset \mathcal{M}$ we can embed \mathcal{H} into \mathcal{M} (as $\mathcal{M} \models S_{\alpha}$). But this would witness \mathcal{C} extending \mathcal{B} in \mathcal{M} which is impossible as we assumed that f omits Φ . Another thing that could go wrong is that there could be $\mathcal{D} \in \Gamma$ and no \mathcal{G} with $|\mathcal{G} \setminus \mathcal{B}^*| < m$ satisfying

As f admits

References

- [1] Klaus-Peter Podewski and Martin Ziegler. Stable graphs. Fund. Math., 100:101-107, 1978.
- [2] Aharoni, Ron and Berger, Eli (2009). "Menger's Theorem for infinite graphs". Inventiones Mathematicae 176: 162
- [3] P. Simon, On dp-minimal ordered structures, J. Symbolic Logic 76 (2011), no. 2, 448460. E-mail address: bobkov@math.ucla.edu