Exemplos de Aplicações

Medicina: Classificação BI-RADS em nódulos mamários ([1])

- Tipo de estrutura que se ajusta à lógica fuzzy;
- BI-RADS: oferece uma estrutura de linguagem natural. Ex: "Se o nódulo tem formato arredondado, margens bem definidas e densidade mediana", então sua classificação será "achado com alto grau de benignidade"
- Entradas: coef. de formato (baixo, médio, alto), coef. de contorno (muito baixo, baixo, médio, alto); coef. De densidade (baixo, médio, alto)
- Saídas (categorias): 0 a 5, com o maior grau de benignidade a de número 0.

Classificação BI-RADS em nódulos mamários ([1])

Classificação BI-RADS em nódulos mamários ([1]). Ex. Resultados

R = radiologista

	Parâmetros de Entrada			Avaliação	
110-	Formato	Contorno	Densidade	В	I-RADS
				R1	4
E1	Irregular	Muito espiculado	Alta	R2	4
				R3	5
				Sistema	4 (pert 67%)
					5 (pert 20%)
	Lobular	Parcialmente obscuro	Alta	R1	3
E2				R2	4
				R3	3
				Sistema	3 (pert 61%)
					4 (pert 12%)
E3				R1	5
				R2	5
				R3	5
	Irregular	Totalmente espiculado	Alta	Sistema	5 (pert 100%)

- O zoom tracking é o ajuste contínuo do comprimento focal da câmera durante a operação de zoom de maneira a manter em foco uma imagem (durante a operação)
- Método tradicional (zoom ótico): look up tables

Usando lógica fuzzy para controlar o auto zoom (outros exemplos: Auto Foco e Auto Exposição).

Entrada: distância (5 funções de pertinência)

Distanc e (cm)	Too Near	Near	Mediu m	Far	Too Far
0	Y*	N	N	N	N
4	Y	N	N	N	N
5	N	Y	N	N	N
10	N	Y*	N	N	N
12	N	N	Y*	N	N
15	N	N	Y	N	N
20	N	N	Y	N	N
25	N	N	N	Y	N
30	N	N	N	Y*	N
35	N	N	N	Y	N
40	N	N	N	Y	N
45	N	N	N	N	Y
50	N	N	N	N	Y*

saída: zoom (5 funções de pertinência)

Zoom (nX)	Max Zoom Out	Min Zoom Out	Default	Min Zoom In	Max Zoom In
-10	Y	N	N	N	N
-8	Y*	N	N	N	N
-6	N	Y	N	N	N
-4	N	Y	N	N	N
-2	N	Y*	N	N	N
0	N	N	Y*	N	N
2	N	N	Y	Y*	N
4	N	N	N	N	N
6	N	N	N	N	N
8	N	N	N	N	Y*
10	N	N	N	N	Y

Exemplo de regras

Rule		Input		Output
R1	If	Distance is Too Near	then	Zoom is Maximize Zoom Out
R2	If	Distance is Near	then	Zoom is Minimize Zoom Out
R3	If	Distance is Medium	then	Zoom is Default
R4	If	If Distance is Far	then	Zoom is Minimize Zoom In
R5	If	If Distance is Too Far	then	Zoom is Maximize Zoom In

Referências

[1] Aplicação de Conceitos de Lógica Nebulosa à Classificação BI-RADS em Nódulos de Mama. Miranda, G.H.B.; Marques, P.M.A.; Felipe J.C. J.Health Inform. 2009, 1(1):7-16.

[2] The Application of Mandani Fuzzy Model for Auto Zoom Function of a Digital Camera. Elamvazuthi, I.; Vasant, P.; Webb, J. IJCSIS, vol. 6, n.3, p. 244-249, 2009.

