Ортогональные сигналы: Для ортогональных сигналов существуют другие требования к полосе. Пусть $M=2^K$ ортогональных сигналов синтезированы посредством ортогональных несущих с минимальным разносом частот $\frac{1}{2T}$ для ортогональности, то полоса частот, требуемая для передачи $K = \log_2 M$ информационных бит равна $W = \frac{M}{2T} = \frac{M}{2(K/R)} = \frac{M}{2\log_2 M} \cdot R$. В этом случае при увеличении M растет W при R = const. Частотная эффективность ортогональных сигналов определяется следующим выражением:

$$\frac{R}{W} = \frac{2\log_2 M}{M} \tag{3.14}$$

Компактное и осмысленное сравнение методов цифровой модуляции основывается на зависимости $\frac{R}{W}$ от $\frac{E_{\delta}}{N_0}$ = q_{δ} , где q_{δ} – отношение сигнал/шум на бит, требуемое для достижения заданной вероятности ошибки.

$$E_{\delta} = P_{cp}T_{\delta}$$
 — энергия на бит,

$$P_{cp} = \frac{\int_{0}^{T} S^{2}(t)dt}{T} = \frac{\int_{0}^{T} S^{2}(t)dt}{KT_{\delta}} = E_{\delta} = \frac{\int_{0}^{T} S^{2}(t)dt}{K} = \frac{E}{K}.$$

В случае АМ, КАМ, ФМ увеличение М ведет к росту частотной эффективности $\frac{R}{W}$. Но плата за это увеличивается по мере роста q_{δ} . Следовательно, эти методы модуляции предпочтительны для частотно ограниченных каналов связи, когда желательно иметь $\frac{R}{W} > 1$, и где обеспечивается достаточно большое q_{δ} , чтобы поддержать рост M, например, телефонные каналы, цифровые микроволновые радиоканалы.

Напротив, М-позиционные ортогональные сигналы дают $\frac{R}{W} \le 1$. При увеличении M падает частотная эффективность $\frac{R}{W}$, т.к. увеличивается полоса W (при R = const). Но q_{δ} требуемое для достижения заданной вероятности ошибки уменьшается c ростом M. Следовательно, М-позиционные ортогональные сигналы предпочтительны для каналов c ограничением мощности, которые имеют достаточно широкую полосу для размещения большого количества сигналов.