Содержание

1	Цель работы.	2
2	Задачи, решаемые при выполнении работы.	2
3	Экспериментальная установка.	2
4	Метод экспериментального исследования.	3
5	Рабочие формулы и исходные данные.	3
6	Схема установки	4
7	Результаты прямых и косвенных измерений	4
8	Вывол	7

1 Цель работы.

Изучить свойства ферромагнетика.

2 Задачи, решаемые при выполнении работы.

- 1. Измерение зависимости магнитной индукции в ферромагнетике от напряженности магнитного поля B = B(H).
- 2. Определение по предельной петле гистерезиса индукции насыщения, остаточной индукции и коэрцитивной силы.
- 3. Получение зависимости магнитной проницаемости от напряженности магнитного поля $\mu = \mu(H)$ и оценка максимального значения величины магнитной проницаемости.
- 4. Расчет мощности потерь энергии в ферромагнетике в процессе его перемагничивания.

3 Экспериментальная установка.

- 1. Сердечник (магнитопровод) трансформатора, размещенного на лабораторном стенде. Объект измерений имеет прямоугольную форму с прямоугольным же поперечным сечением.
- 2. Генератор синусоидального напряжения.
- 3. Осциллограф

4 Метод экспериментального исследования.

Многократные измерения

5 Рабочие формулы и исходные данные.

$$N_1 = 1665$$
 вит

$$N_2=970$$
 вит

$$l = 7.8 \pm 0.1 \text{ cm}$$

$$R_1 = 68 \text{ Om} \pm 10\%$$

$$R_2 = 470 \ {
m кОм} \pm 10\%$$

$$C_1=0.47$$
мк $\Phi\pm10\%$

$$S = 0.64 \pm 0.05 \text{cm}^2$$

$$\mu_0 = 4\pi * 10^{-7} \ \Gamma_{\rm H/M}$$

$$U = 20 \text{ B}$$

$$f = 30 \ \Gamma$$
ц

$$K_x = 100 \; \mathrm{мB}$$

$$K_y = 50 \text{ мB}$$

Формулы

$$\alpha = \frac{N_1}{lR_1} \tag{1}$$

$$\beta = \frac{R_2 C_1}{N_2 S} \tag{2}$$

$$\chi = K_x K_y \frac{N_1 R_2 C_1}{N_2 R_1} f \tag{3}$$

$$H = \alpha * K_x * x \tag{4}$$

$$B = \beta * K_y * y \tag{5}$$

6 Схема установки

Рис. 1: Схема установки

7 Результаты прямых и косвенных измерений

Измерим координаты X_c и Y_r , которые равны 1.1 и 1.5 делений соответственно. Вычислим коэффициенты α и β по формуле (1) и (2)

1.
$$\alpha = \frac{N_1}{lR_1} = \frac{1665}{0.078*68} \approx 313.91 \frac{1}{\text{m*Om}}$$

$$2.\beta = \frac{R_2C_1}{N_2S} = \frac{470*10^3*0.47*10^{-6}}{970*0.64*10^{-4}} \approx 3.558$$

3. Определим коэрцитивную силу H_c по формуле (4)

$$H_c = a * K_x * X_c = 313.91 * 0.1 * 1.1 = 34.53 \text{ A/M}$$

4. Определим остаточную индукцию B_r по формуле (5)

$$B_r = \beta * K_y * Y_r = 3.56 * 0.05 * 1.5 = 0.267$$
 Тл

X_c , дел.	Y_r , дел.	H_c , A/M	B_r , Тл
1.1	1.5	34.53	0.267

Таблица 1:

- 5. Измерим координаты X_m и Y_m , которые равны 3.5 и 2.8 делений соответственно.
- 6. Определим коэрцитивную силу H_c по формуле (4)

$$H_m = a * K_x * X_m = 313.91 * 0.1 * 3.5 = 109.87 \text{ A/M}$$

7. Определим остаточную индукцию B_m по формуле (5)

$$B_m = \beta * K_y * Y_m = 3.56 * 0.05 * 2.8 = 0.498$$
 Тл

X_m , дел.	Y_r , дел.	H_m , A/M	B_r , Тл	$\mu \; \Gamma_{ m H/M}$
3.5	2.8	109.89	0.50	3611

Таблица 2:

Далее поочередно уменьшаем амплитуду напряжения генератора с шагом 1 В и заполняем таблицу 3

U, B	X, дел.	$K_x, \frac{\mathrm{B}}{\mathrm{дел}}$	H, A/M	<i>Y</i> , дел.	$K_y, \frac{\mathrm{B}}{\mathrm{дел}}$	В, Тл	μ_m Γ н/м
20	3.5	0.1	109.87	2.8	0.05	0.50	3611
19	3.2	0.1	100.45	2.6	0.05	0.46	3666
18	3.0	0.1	94.17	2.4	0.05	0.43	3611
17	2.7	0.1	84.76	2.3	0.05	0.41	3845
16	2.5	0.1	78.48	2.2	0.05	0.39	3972
15	2.3	0.1	72.20	2.0	0.05	0.36	3925
14	2.2	0.1	69.06	1.9	0.05	0.34	3899
13	1.9	0.1	59.64	1.8	0.05	0.32	4277
12	3.6	0.05	56.50	1.6	0.05	0.28	4013
11	3.3	0.05	51.80	1.5	0.05	0.27	4104
10	3.0	0.05	47.09	3.3	0.02	0.23	3972

Таблица 3:

Рис. 2: Кривая начального намагничивания $B_m = B_m(H_m)$

Рис. 3: График зависимости магнитной проницаемости $\mu=\mu(H_m)$

$$\mu_{max} = 4277 \frac{\Gamma_{\rm H}}{_{\rm M}}$$

Рис. 4: Петля гистерезиса

 $S \approx 6$ дел

Вычислим коэффициент χ по формуле (3)

$$\chi = 0.1*0.05*\frac{1665*470*10^3*0.47*10^{-6}}{970*68}*30\approx 0.000302$$

$$P = S * \chi = 0.001812 \; \mathrm{Bt}$$

8 Вывод

В ходе проделанной работы были расчитана коэрцитивная сила, отстаточная индукция и магнитная проницаемость, мощность потерь и максимальное значение проницаемости. Были построены графики $B_m = B_m(H_m)$ и $\mu = \mu(H_m)$.