

Chapter Presentation

<u>Outline</u>

- 1. Introduction
- 2. The Bayes Filter
- 3. Gaussian filters
- 4. The Kalman filter

Labs:

SLAM Toolbox with Matlab

Assessment:

Labs + Exam (100%)

- ➤ Localization through **Dead-Reckoning**:
 - Velocity measured Landmarks not measured

- ➤ Localization through **Dead-Reckoning**:
 - > Velocity measured Landmarks measured

The Mapping Problem

- A conventional method for map building is incremental mapping.
 - Position Reference given by Dead Reckoning → Map distorsion
- Bad maps → Poor localization

> Localization through **Dead-Reckoning**:

The Mapping Problem

- A conventional method for map building is incremental mapping.
 - Position Reference given by Dead Reckoning → Map distorsion

The Mapping Problem

- A conventional method for map building is incremental mapping.
 - Position Reference given by Dead Reckoning → Map distorsion
- Bad maps \ Poor localization

[Ribas 08]

This is an old problem...

Ancient Europe. The Catalan Atlas of 1376.

This is an old problem...

SLAM: Simultaneous Localization And Mapping

> Localization Through **SLAM**:

> Localization Through SLAM: The Victoria Park (Sydney) Dataset

➤ Localization Through SLAM: The Victoria Park (Sydney) Dataset

Example I: Mobile Robot Localization in a Hallway

- One dimensional hallway
- Indistinguishable doors
- Position of doors is known (Map)
- Initial position unknown
- Initial heading is known
- Goal: Find out where the robot is

Markov Localization

Same probability of being in any x

The Robot senses a door

The belief over the position is updated

The Robot Moves

The belief over the position is updated

The Robot senses a door

The belief over the position is updated

The Robot Moves

The belief over the position is updated

Robot belief of being at state x_{t-1}

bel
$$(x_{t-1}) = p(x_{t-1} | z_{1:t-1}, u_{1:t-1})$$

State Transition probability

$$p(x_t \mid u_t, x_{t-1})$$

Robot belief of being at state x_{t-1}

bel
$$(x_{t-1}) = p(x_{t-1} | z_{1:t-1}, u_{1:t-1})$$

State Transition probability

$$p(x_t \mid u_t, x_{t-1})$$

$$u_t=2 m, x_{t-1}=5 m$$

Prior Belief. Prediction of state x_t.

$$\overline{bel}(x_t) = p(x_t \mid z_{1:t-1}, u_{1:t})$$

Measurement probability

$$p(z_t \mid x_t)$$

Robot belief of being at state x_t

$$bel(x_t) = p(x_t \mid z_{1:t}, u_{1:t}).$$

