Université de M'hamedBouguerraBoumerdès Faculté des sciences Département d'Informatique

Module : Théorie des Langages. Année : 2019-2020 Filière : LI- S4 Document : Série 3

Chapitre 3: AEF

Objectif: Modéliser par automate à états finis, minimiser, derminiser.

TP

Ecrire un programme en C permettant de saisir un automate quelconque (A) (sous forme de matrice) et de :

- 1. Extraire tous les états inaccessibles dans cet automate.
- 2. Vérifier si une chaine (w), saisie au clavier, est acceptée par cet automate ou pas. (en d'autres termes, le programme doit répondre à la question $w \in L(A)$?)

Exercice 01

Proposez des automates déterministes permettant de reconnaître sur un alphabet $\Sigma = \{0,1,2,3...9\}$:

- 1. les multiples de 3,
- 2. les multiples de 100,

Donnez l'automate qui reconnaît les multiples de 5 dont les nombres sont écrits en binaire (dans ce cas l'alphabet est $\Sigma = \{0,1\}$).

Exercice 02

Proposez un automate déterministe permettant de reconnaître un horaire donné sous la forme 00:00.

Exercice 03

Les automates finis sont utilisés en compilation (programme 3^{eme} Année) pour constituer des analyseurs lexicaux, qui permettent notamment de repérer les mots-clés d'un langage de programmation. Donner l'automate qui permet de reconnaitre l'ensemble de mots-clés suivant : do, double, final, finally, this, throw, throws.

Exercice 04

Construire des AFD qui acceptent les langages suivants sur l'alphabet {0, 1} :

- 1. L'ensemble des mots qui se terminent par 000.
- 2. L'ensemble des mots qui contiennent exactement trois zéros.
- 3. L'ensemble des mots qui contiennent au plus trois zéros consécutifs.
- 4. L'ensemble des mots comportant un nombre pair de 1 et un nombre pair de 0.
- 5. L'ensemble des mots comportant au moins 3 zéros consécutifs.
- 6. L'ensemble des mots qui ne contiennent pas le sous mot 101.

Exercice 05

Trouver les AF minimums équivalents aux automates suivants :

- 1. $(\{q0,q1,q2,q3,q4,q5\},\{0,1\},\Delta1,q0,\{q5\})$
- 2. $(\{q0,q1,q2,q3,q4,q5,q6,q8,q7\},\{0,1\},\Delta 2,q0,\{q3\})$
- 3. $(\{q0,q1,q2,q3,q4,q5,q6\},\{0,1\},\Delta3,q0,\{q3,q1,q5,q6\})$

$\Delta 1$	0	1
Q0	Q1	Q0
Q1	Q2	Q1
Q2	Q3	Q2
Q3	Q4	Q3
Q4	Q5	Q4
q5	Q1	Q5

$\Delta 2$	0	1
Q0	Q1	Q0
Q1	Q0	Q2
Q2	Q3	
Q3	Q3	Q0
Q4	Q3	Q5
Q5	Q6	Q4
Q6	Q7	Q5
Q7	Q6	Q7
Q8	Q7	Q0

$\Delta 3$	0	1
Q0	Q1	Q2
Q1	Q3	Q5
Q2	Q5	Q4
Q3	Q6	Q6
Q4	Q6	Q4
Q5	Q6	Q6
Q6	Q6	Q6

Exercice 06

Construire les AFD équivalents au AFN suivants :

a.
$$(\{q, p, r, s\}, \{a,b\}, \delta 1 \ p, \{s\})$$

b.
$$(\{q, p, r, s\}, \{0,1\}, \delta 2 p, \{q, s\})$$
 avec:

δ1	A	b
P	p,q	p
Q	R	r
R	S	
S	S	S

δ2	0	1
P	q,s	q
Q	R	r,q
R	S	p
S		p

Exercice 07

1. Soit l'automate non déterministe M suivant :

Construire un automate M' déterministe minimum équivalent à M.

Devoir

- 1. Donnez un automate déterministe reconnaissant les nombres réels en langage Pascal.
- 2. Donnez l'automate minimal de Exercice 06 partie b
- 3. Le TP est à réaliser en binôme ou monôme.
- 4. Envoyez vos réponses du devoir à votre enseignant chargé de TD.
- 5. Le dernier délai pour recevoir ce devoir est fixé pour le 12 juin 2020 et il sera noté.