Decision making based on model predictions: model quality and benefit curves

Course roadmap

- 1. Project valuation: valuation metrics, planning and rules
- 2. Model quality and decision making. Benefit curve
 - Simple threshold decisions
 - Benefit curve
 - Model quality metrics and benefit curve
 - Functional threshold decisions
 - Increment based threshold decisions
- 3. Estimating model risk discounts
- 4. A/B testing and financial result verification
- 5. Unobservable model errors, metalearning

Simple threshold decisions

Consider a binary classification model $X \rightarrow Prob$, e.g. credit scoring.

$$X_1 \dots X_k \to Prob$$

		ı	
34		0.94	
20		0.25	
21		0.16	
50	• • •	0.86	
41		0.51	
25		0.33	
19		0.27	
82		0.12	

 $X_1 \dots, X_k$ – model factors

Prob – model prediction

Simple threshold decision is a level $a:if\ Prob > a$ then some action is undertaken, i.e. $\hat{Y} = 1$ and otherwise $\hat{Y} = 0$

$$X_1 \dots X_k \to Prob \ \hat{Y}$$

		ı	ı
34		0.94	1
20		0.25	0
21		0.16	0
50	• • •	0.86	1
41		0.51	1
25		0.33	0
19		0.27	0
82		0.12	0

Example: a = 0.5

if Prob > 0.5 then reject loan application

$$(\widehat{Y}=1)$$

Acceptance rate c is a percentage of observations that satisfy rule: if $Prob \le a$, i.e. $c = \sum_{i=1}^{N} I\{Prob_i \le a\} / N$

$$X_1 \dots X_k \to Prob \ \hat{Y} \quad Y$$

Example: a = 0.5 c = 5/8if Prob > 0.5 then 5/8 clients are accepted $(\hat{Y}=0)$

On historical data we can estimate errors of I and II type for each threshold level α (and also acceptance rate c)

Model prediction errors matrix

Financial effect and model prediction errors

Financial result of model performance depends on FP and FN error types:

Financial effect and model prediction errors

Thus, financial result is negative to FP and FN model errors

1. Financial result is negative to model prediction errors

- 1. Financial result is negative to model prediction errors
- 2. Two types of errors FP and FN, generally, have different impact on financial result

Benefit curve

Data for benefit curve

Sort historical data by *Prob* ascending

$$X_1 \dots X_k \to Prob \ \hat{Y} \quad Y$$

				ı
82		0,12	0	0
21		0,16	0	1
20		0,25	0	0
19	• • •	0,27	0	0
25		0,33	0	1
41		0,51	1	0
50		0,86	1	1
34		0,94	1	1

Acceptance rate c = 5/8

Threshold level a = 0.5

- 2. Calculate *FP* and *FN* for given *c*
- 3. Weigh *FP* and *FN* with error costs (e_{FP} and e_{FN}) and plot on y axis

- 2. Calculate *FP* and *FN* for given *c*
- 3. Weigh *FP* and *FN* with error costs (e_{FP} and e_{FN}) and plot on y axis

Reiterate 1-3 from c = 0 to c = 1

$$Benefit(1) = (N - FP(1)) \cdot e_{FP} - FN(1) \cdot e_{FN} =$$

$$Benefit(1) = (N - FP(1)) \cdot e_{FP} - FN(1) \cdot e_{FN} =$$

$$= (N - 0) \cdot e_{FP} - P \cdot e_{FN} =$$

$$= N \cdot e_{FP} - P \cdot e_{FN}$$

Benefit curve. Endpoint values

 $Benefit(1) = N \cdot e_{FP} - P \cdot e_{FN} vs 0?$

Class balance I and II errors ratio

Benefit curve. Sub-optimal model use

1. Decision making scheme has a huge impact on financial result

- Decision making scheme has a huge impact on financial result
- 2. It can easily ruin a model even with 100% quality metrics

- Decision making scheme has a huge impact on financial result
- 2. It can easily ruin a model even with 100% quality metrics
- 3. Sometimes, it's easier and more efficient to improve decision strategy than a model itself

Model quality metrics and prediction errors

Area under curve (AUC) aggregates all possible values of TP and FP rates

AUC – model quality metrics

$$AUC = \int_{0}^{1} TPR dFPR$$

Model quality metrics and prediction errors

AUC =
$$\int_{0}^{1} TPR \ dFPR \longrightarrow \left| \begin{array}{c} TPR = \frac{TP}{P} = \frac{P - FN}{P} = \\ = 1 - \frac{FN}{P} = 1 - FNR \end{array} \right|$$

Model quality metrics and prediction errors

AUC =
$$\int_{0}^{1} TPR dFPR \rightarrow TPR = \frac{TP}{P} = \frac{P - FN}{P} = 1 - FNR$$

$$= 1 - \frac{FN}{P} = 1 - FNR$$

$$AUC = \int_{0}^{1} (1 - FNR) dFPR =$$

$$=1-\int_{0}^{1} FNRdFPR$$

Thus, model quality metrics is negative to FP and FN model errors

Benefit(c)
$$\rightarrow$$
 max w.r.t. c
s.t. $TPR(c) \leq ROC(FPR(c))$

Benefit(c) =
$$Ne_{FP} \cdot (1 - FPR(c)) - Pe_{FN} \cdot (1 - TPR(c))$$

→ max w.r.t. c s.t. ROC curve

Optimal threshold level
$$c^*$$
: $\frac{dTPR(c)}{dFPR(c)} = \frac{N/P}{e_{FN}/e_{FP}}$

Typical case is that with higher AUC one obtains higher benefit

Same AUC but different benefits

However, not only AUC value matters, but also ROC curve itself

Same AUC but different benefits

ROC curves as well as benefit curves may not majorize each other

Benefit curve. Model decay

Model decay:

Benefit(A) - Benefit(C)

- Model, AUC = 80%

- Model, w decr. AUC = 65%

Benefit curve. Better feasible model

Benefit from better feasible model:

 $Benefit(\mathbf{D}) - Benefit(\mathbf{A})$

- Model, AUC = 80%
- Model, w better AUC = 90%
- Model, w decr. AUC = 65%

Benefit curve. Random and ideal model

- Model, AUC = 80%
- Ideal, AUC = 100%
- Random, AUC = 65%

1. Benefit curves are a powerful tool to assess expected financial result, they are dual to ROC curves

- Benefit curves are a powerful tool to assess expected financial result, they are dual to ROC curves
- 2. In general, the higher model quality metrics are, the higher is financial result

- 1. Benefit curves are a powerful tool to assess expected financial result, they are dual to ROC curves
- 2. In general, the higher model quality metrics are, the higher is financial result
- However, models with same AUCs can have different financial results, or even have opposite relation between financial result

• Instead of: "Prob > a" rule we make decision based on: if "f(Prob) > a" then some action is undertaken

- Instead of: "Prob > a" rule we make decision based on: if "f(Prob) > a" then some action is undertaken
- It can be useful when individual objects (clients) deliver different value for us

Resume to loan application problem:

$X_1 \dots X_k$	Prob	margin	lgd_i
34	0.94	100	380
20	0.25	140	500
21	0.16	90	280
50	0.86	85	360
41	0.51	250	1000
25	0.33	120	260
19	0.27	150	340
82	0.12	170	720
		'	

One can use following functional rule:

 $if (1 - Prob) \cdot margin_i - Prob \cdot lgd_i \ge a$ then accept a loan, reject otherwise

Naturally, α controls for benefit appetite - required return i.e. reject if:

$$Prob > \frac{margin_i - a}{margin_i + lgd_i}, \qquad a \in [-lgd_i, margin_i]$$

Thus, functional threshold is equivalent to an individual simple threshold for each object (client)

Resume to loan application problem:

$X_1 \dots X_k$	Prob	margin	i lga	l_i $f(Prob)$
34	0.94	100	380	-351.2
20	0.25	140	500	-20.0
21	0.16	90	280	30.8
50	0.86	85	360	-297.7
41	0.51	250	1000	-387.5
25	0.33	120	260	-5.4
19	0.27	150	340	17.7
82	0.12	170	720	63.2
		•		

Resume to loan application problem:

$X_1 \dots X_k$	Prob	margin	$_{i}$ lgd_{i}	f(Prob)
82	0.12	170	720	63.2
21	0.16	90	280	30.8
19	0.27	150	340	17.7
25	0.33	120	260	-5.4
20	0.25	140	500	-20
50	0.86	85	360	-297.7
34	0.94	100	380	-351.2
41	0.51	250	1000	-387.5
		1		

1. If the FP and FN error costs are different for every object (client), one should apply functional threshold decisions or, equally, individual thresholds for probability of event on client level

Again, consider a binary classification model $X \rightarrow Prob$. But now, our decision has influence on Prob.

Example: response, collection, churn models

$$X_1 ... X_k$$
 $Pr(Y = 1 | \mathbf{u_i} = 0) Pr(Y = 1 | \mathbf{u_i} = 1)$

34	0.94	0.96
20	0.25	0.87
21	0.16	0.8
50	0.86	0.65
41	0.51	0.43
25	0.33	0.35
19	0.27	0.32
82	0.12	0.13

Denote $u_i = 1$, if we apply an action to i-th object (client) and $u_i = 0$, otherwise

Simple threshold decision rule is not appropriate anymore.

If we sort by Prob, we likely undertake action for clients who would do the same thing on their own

$$X_1 ... X_k$$
 $Pr(Y = 1 | \mathbf{u_i} = 0) Pr(Y = 1 | \mathbf{u_i} = 1)$

34	0.94	0.96
50	0.86	0.87
41	0.51	0.8
20	0.25	0.65
21	0.16	0.43
25	0.33	0.35
19	0.27	0.32
82	0.12	0.13

Small increment

So, let us set the problem

$$\sum_{i=1}^{N} Pr\left(Y_{i} = 1 | u_{i}\right) \cdot margin - u_{i} \cdot cost \xrightarrow{u_{i} = \{0,1\}} max$$

i = 1, ... N - a set of objects (clients)

 Y_i – target event (e.g, cross-sell / retention / reimbursement)

margin – benefit from one target event

 u_i – whether we undertake action (communication with client)

cost - action costs (communication expenses)

Denote
$$Pr_1 = Pr(Y_i = 1 | u_i = 1)$$
 and $Pr_0 = Pr(Y_i = 1 | u_i = 0)$

Denote
$$Pr_1 = Pr(Y_i = 1 | u_i = 1)$$
 and $Pr_0 = Pr(Y_i = 1 | u_i = 0)$

On client level $u_i = 1$ should be chosen if it leads to higher financial result, i.e.:

$$Pr_1 \cdot margin - cost > Pr_0 \cdot margin$$

Denote
$$Pr_1 = Pr(Y_i = 1 | u_i = 1)$$
 and $Pr_0 = Pr(Y_i = 1 | u_i = 0)$

On client level $u_i = 1$ should be chosen if it leads to higher financial result, i.e.:

$$Pr_1 \cdot margin - cost > Pr_0 \cdot margin$$

So,

$$Pr_1 - Pr_0 > \frac{cost}{margin}$$

Prob increment due to our action

Now, we see, if one applies simple decision rule, then top clients tend to have small increment ΔPr .

Next step is to resort our clients based on ΔPr

$X_1 \dots X_k$	Pr_0	Pr_1	ΔPr	
34	0.94	0.96	0.02	
50	0.86	0.87	0.01	Small
41	0.51	0.8	0.29	incremer
20	0.25	0.65	0.4	
21	0.16	0.43	0.27	
25	0.33	0.35	0.02	
19	0.27	0.32	0.05	
82	0.12	▼ 0.13	0.01	

So, we apply communication only to top clients with large increase in probability of target event

$X_1 \dots X_n$	$_{k}$ Pr_{0}	Pr_1	ΔPr	
20	0.25	0.65	0.4	Large
41 21	0.51 0.16	0.8 0.43	0.29 0.27	increment
19	0.10	0.43	0.27	cost
34	0.94	0.96	0.02	$a_{min} = \frac{1}{margin}$
25	0.33	0.35	0.02	
50	0.86	0.87	0.01	
82	0.12	0.13	 0.01	

1. When our decision has influence on probability of target event one should use incremental threshold decision strategy instead of simple thresholds

- 1. When our decision has influence on probability of target event one should use incremental threshold decision strategy instead of simple thresholds
- 2. It allows one to maximize probability of desired target event and, therefore, bring more benefit at less action cost

