One-shot to Weakly-Supervised Relation Classification using Language Models

Thy Tran, Phong Le, Sophia Ananiadou

Contact: thytran@ukp.informatik.tu-darmstadt.de

Code: https://github.com/ttthy/noelaw

Takeaways

- LMs can be used to generate noisy data for relation classification
- Noise reduction mechanisms can improve relation classification on substantially noisy data

Weak Supervision from Language Models

- 1. Assign to each relation type a very simple exemplar
- 2. Given a raw sentence, compute the match scores between it with the exemplars. The *best match* is the *noisy label* of the raw sentence.
- 3. Train a relation classifier on the resulting data

Noisy Channel Auto-encoder (NoelA)

Results

	TACRED		reWiki80	
	Acc. (%)	Abs.+	Acc. (%)	Abs.+
		Matching	g	
Random	2.44	-	1.25	_
Frequency	15.04	-	1.25	-
	Pretrained Language Models			
GPT2-small	0.27	-	1.73	_
SpanBERT-base	8.36	-	6.45	i —
BERT-base	15.46	-	27.48	7 -
		Noisy Dat	a	
Bootstrap-hard	19.28 ± 0.42	3.82	29.76 ± 0.16	2.28
NoelA	24.79 ± 0.68	9.33	33.17 ± 0.39	5.69
$-\mathrm{ETR}$	21.54 ± 0.69	6.08	32.48 ± 0.67	5.00
-DR	21.28 ± 0.54	5.82	32.65 ± 0.11	5.17
-NC (BERTwET)	19.03 ± 0.34	3.57	30.06 ± 0.14	2.58
	Gold Data			
BERTwet (sup.)	82.73 ± 0.99	67.27	73.92 ± 3.46	46.44

Substantial improvements from using BERT for one-short (similar to "matching the blanks" by Soares et al. 2019)