CS224d: TensorFlow Tutorial

Bharath Ramsundar

Administrative Announcements

- PSet 1 Due today 4/19 (3 late days maximum)
- PSet 2 Released tomorrow 4/20 (due 5/5)
- Help us help you! Fill out class <u>survey</u> to give us feedback.
- Qiaojing will host Tensorflow on AWS setup session in office hours, Sundar 4/24, 4-6 pm, Gates B24
- Will host special TensorFlow help session in my office hours, Tuesday 4/26, 1-3 pm, Huang basement.

Deep-Learning Package Zoo

torch

- Torch
- Caffe
- Theano (Keras, Lasagne)
- CuDNN
- Tensorflow
- Mxnet
- Etc.

Deep-Learning Package Design Choices

- Model specification: Configuration file (e.g. Caffe,
 DistBelief, CNTK) versus programmatic generation (e.g.
 Torch, Theano, Tensorflow)
- For programmatic models, choice of high-level language:
 Lua (Torch) vs. Python (Theano, Tensorflow) vs others.
- We chose to work with python because of rich community and library infrastructure.

TensorFlow vs. Theano

- Theano is another deep-learning library with pythonwrapper (was inspiration for Tensorflow)
- Theano and TensorFlow are very similar systems.
 TensorFlow has better support for distributed systems though, and has development funded by Google, while Theano is an academic project.

What is TensorFlow?

- TensorFlow is a deep learning library recently open-sourced by Google.
- But what does it actually do?
 - TensorFlow provides primitives for defining functions on tensors and automatically computing their derivatives.

But what's a Tensor?

• Formally, tensors are multilinear maps from vector spaces to the real numbers (Vvector space, and V* dual space)

$$f: \underbrace{V^* \times \cdots V^*}_{p \text{ copies}} \times \underbrace{V \times \cdots V}_{q \text{ copies}} \to \mathbb{R}$$

- A scalar is a tensor $(f: \mathbb{R} \to \mathbb{R}, f(e_1) = c)$
- A vector is a tensor $(f: \mathbb{R}^n \to \mathbb{R}, f(e_i) = v_i)$
- A matrix is a tensor $(f: \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}, f(e_i, e_j) = A_{ij})$
- Common to have fixed basis, so a tensor can be represented as a multidimensional array of numbers.

TensorFlow vs. Numpy

- Few people make this comparison, but TensorFlow and Numpy are quite similar. (Both are N-d array libraries!)
- Numpy has Ndarray support, but doesn't offer methods to create tensor functions and automatically compute derivatives (+ no GPU support).

VS

Simple Numpy Recap

```
In [23]: import numpy as np
In [24]: a = np.zeros((2,2)); b = np.ones((2,2))
In [25]: np.sum(b, axis=1)
Out[25]: array([ 2., 2.])
In [26]: a.shape
Out[26]: (2, 2)
In [27]: np.reshape(a, (1,4))
Out[27]: array([[ 0., 0., 0., 0.]])
```

Repeat in TensorFlow

```
More on Session
soon
```

```
In [31]: import tensorflow as tf
In [32]: tf.InteractiveSession()
In [33]: a = tf.zeros((2,2)); b = tf.ones((2,2))
In [34]: tf.reduce sum(b, reduction indices=1).eval()
Out[34]: array([ 2., 2.], dtype=float32)
In [35]: a.get_shape()
Out[35]: TensorShape([Dimension(2), Dimension(2)])
In [36]: tf.reshape(a, (1, 4)).eval()
Out[36]: array([[ 0., 0., 0., 0.]], dtype=float32)
```

More on .eval() in a few slides

TensorShape behaves like a python tuple.

Numpy to TensorFlow Dictionary

Numpy	TensorFlow
a = np.zeros((2,2)); b = np.ones((2,2))	a = tf.zeros((2,2)), b = tf.ones((2,2))
np.sum(b, axis=1)	<pre>tf.reduce_sum(a,reduction_indices=[1])</pre>
a.shape	a.get_shape()
np.reshape(a, (1,4))	tf.reshape(a, (1,4))
b * 5 + 1	b * 5 + 1
np.dot(a,b)	tf.matmul(a, b)
a[0,0], a[:,0], a[0,:]	a[0,0], a[:,0], a[0,:]

TensorFlow requires explicit evaluation!

```
In [37]: a = np.zeros((2,2))
In [38]: ta = tf.zeros((2,2))
                                              TensorFlow computations define a
                                              computation graph that has no numerical
In [39]: print(a)
                                              value until evaluated!
[[ 0. 0.]
 [ 0. 0.]]
In [40]: print(ta)
Tensor("zeros 1:0", shape=(2, 2), dtype=float32)
In [41]: print(ta.eval())
[[ 0. 0.]
 [ 0. 0.]]
```

TensorFlow Session Object (1)

30.0

 "A Session object encapsulates the environment in which Tensor objects are evaluated" - <u>TensorFlow Docs</u>

```
In [20]: a = tf.constant(5.0)
In [21]: b = tf.constant(6.0)
                                                           c.eval() is just syntactic sugar for
                                                           sess.run(c) in the currently active
In [22]: c = a * b
                                                           session!
In [23]: with tf.Session() as sess:
              print(sess.run(c))
  . . . . .
              print(c.eval())
  . . . . .
   . . . . :
30.0
```

TensorFlow Session Object (2)

- tf.InteractiveSession() is just convenient syntactic sugar for keeping a default session open in ipython.
- sess.run(c) is an example of a TensorFlow Fetch. Will say more on this soon.

Tensorflow Computation Graph

- "TensorFlow programs are usually structured into a construction phase, that assembles a graph, and an execution phase that uses a session to execute ops in the graph." TensorFlow docs
- All computations add nodes to global default graph (docs)

TensorFlow Variables (1)

- "When you train a model you use variables to hold and update parameters. Variables are in-memory buffers containing tensors" - <u>TensorFlow Docs</u>.
- All tensors we've used previously have been constant tensors, not variables.

TensorFlow Variables (2)

```
In [32]: W1 = tf.ones((2,2))
In [33]: W2 = tf.Variable(tf.zeros((2,2)), name="weights")
In [34]: with tf.Session() as sess:
           print(sess.run(W1))
           sess.run(tf.initialize all variables())
           print(sess.run(W2))
   . . . . .
[[1. 1.]]
 [ 1. 1.]]
                                                     Note the initialization step tf.
[[ 0. 0.]
                                                     initialize all variables()
 [ 0. 0.]]
```

TensorFlow Variables (3)

 TensorFlow variables must be initialized before they have values! Contrast with constant tensors.

Updating Variable State

```
In [63]: state = tf.Variable(0, name="counter")
In [64]: new value = tf.add(state, tf.constant(1)) 
                                                               Roughly new_value = state + 1
                                                               Roughly state = new value
In [65]: update = tf.assign(state, new value) 
                                                               Roughly
In [66]: with tf.Session() as sess:
                                                               state = 0
             sess.run(tf.initialize all variables())
  . . . . :
             print(sess.run(state))
  . . . . .
                                                               print(state)
            for in range(3):
  . . . . .
                                                               for _ in range(3):
                 sess.run(update)
  . . . . .
                                                                 state = state + 1
                 print(sess.run(state))
  . . . . .
                                                                 print(state)
  . . . . .
```

Fetching Variable State (1)

Calling sess.run(var) on a tf.Session() object retrieves its value. Can retrieve multiple variables simultaneously with sess.run([var1, var2]) (See Fetches in TF docs)

Fetching Variable State (2)

Inputting Data

- All previous examples have manually defined tensors.
 How can we input external data into TensorFlow?
- Simple solution: Import from Numpy:

Placeholders and Feed Dictionaries (1)

- Inputting data with tf.convert_to_tensor() is convenient, but doesn't scale.
- Use tf.placeholder variables (dummy nodes that provide entry points for data to computational graph).
- A feed_dict is a python dictionary mapping from tf.
 placeholder vars (or their names) to data (numpy arrays,
 lists, etc.).

Placeholders and Feed Dictionaries (2)

```
In [96]: input1 = tf.placeholder(tf.float32)
                                                              Define tf.placeholder
                                                              objects for data entry.
In [97]: input2 = tf.placeholder(tf.float32)
In [98]: output = tf.mul(input1, input2)
In [99]: with tf.Session() as sess:
                print(sess.run([output], feed dict={input1:[7.], input2:[2.]}))
[array([ 14.], dtype=float32)]
                                 Fetch value of output
                                                               Feed data into
                                 from computation graph.
                                                               computation graph.
```

Placeholders and Feed Dictionaries (3)

Variable Scope (1)

- Complicated TensorFlow models can have hundreds of variables.
 - tf.variable_scope() provides simple name-spacing to avoid clashes.
 - tf.get_variable() creates/accesses variables from within a variable scope.

Variable Scope (2)

 Variable scope is a simple type of namespacing that adds prefixes to variable names within scope

```
with tf.variable_scope("foo"):
    with tf.variable_scope("bar"):
        v = tf.get_variable("v", [1])
assert v.name == "foo/bar/v:0"
```

Variable Scope (3)

Variable scopes control variable (re)use

```
with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])
    tf.get_variable_scope().reuse_variables()
    v1 = tf.get_variable("v", [1])
assert v1 == v
```

 You'll need to use reuse_variables() to implement RNNs in homework

Understanding get_variable (1)

- Behavior depends on whether variable reuse enabled
- Case 1: reuse set to false
 - Create and return new variable

```
with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])
assert v.name == "foo/v:0"
```

Understanding get_variable (2)

- Case 2: Variable reuse set to true
 - Search for existing variable with given name. Raise
 ValueError if none found.

```
with tf.variable_scope("foo"):
    v = tf.get_variable("v", [1])
with tf.variable_scope("foo", reuse=True):
    v1 = tf.get_variable("v", [1])
assert v1 == v
```

Ex: Linear Regression in TensorFlow (1)

```
import numpy as np
import seaborn

# Define input data
X_data = np.arange(100, step=.1)
y_data = X_data + 20 * np.sin(X_data/10)

# Plot input data
plt.scatter(X_data, y_data)
```


Ex: Linear Regression in TensorFlow (2)

```
# Define data size and batch size
n \text{ samples} = 1000
batch size = 100
# Tensorflow is finicky about shapes, so resize
X data = np.reshape(X data, (n samples,1))
y data = np.reshape(y data, (n samples,1))
# Define placeholders for input
X = tf.placeholder(tf.float32, shape=(batch size, 1))
y = tf.placeholder(tf.float32, shape=(batch size, 1))
```

Ex: Linear Regression in TensorFlow (3)

```
Note reuse=False so
# Define variables to be learned
                                                                     these tensors are
with tf.variable scope("linear-regression"):
                                                                     created anew
  W = tf.get variable("weights", (1, 1),
                        initializer=tf.random normal initializer())
  b = tf.get variable("bias", (1,),
                        initializer=tf.constant initializer(0.0))
  y_pred = tf.matmul(X, W) + b
  loss = tf.reduce sum((y - y pred)**2/n samples)
                                                           J(W,b) = \frac{1}{N} \sum_{i=1}^{N} (y_i - (Wx_i + b))^2
```

Ex: Linear Regression in TensorFlow (4)

```
# Sample code to run one step of gradient descent
                                                                Note TensorFlow scope is
In [136]: opt = tf.train.AdamOptimizer()
                                                                not python scope! Python
                                                                variable Loss is still visible.
In [137]: opt operation = opt.minimize(loss)
In [138]: with tf.Session() as sess:
               sess.run(tf.initialize all variables())
               sess.run([opt operation], feed dict={X: X data, y: y data})
   . . . . . :
                                               But how does this actually work under the
                                               hood? Will return to TensorFlow
```

computation graphs and explain.

Ex: Linear Regression in TensorFlow (4)

```
# Sample code to run full gradient descent:
# Define optimizer operation
opt operation = tf.train.AdamOptimizer().minimize(loss)
with tf.Session() as sess:
                                                              Let's do a deeper.
  # Initialize Variables in graph
                                                              graphical dive into
  sess.run(tf.initialize all variables())
                                                              this operation
  # Gradient descent loop for 500 steps
  for in range(500):
    # Select random minibatch
    indices = np.random.choice(n_samples, batch size)
    X batch, y batch = X data[indices], y data[indices]
    # Do gradient descent step
    _, loss_val = sess.run([opt_operation, loss], feed_dict={X: X_batch, y: y_batch})
```

Ex: Linear Regression in TensorFlow (5)

Ex: Linear Regression in TensorFlow (6)

Concept: Auto-Differentiation

- Linear regression example computed L2 loss for a linear regression system. How can we fit model to data?
 - tf.train.Optimizer creates an optimizer.
 - tf.train.Optimizer.minimize(loss, var_list)
 adds optimization operation to computation graph.
- Automatic differentiation computes gradients without user input!

TensorFlow Gradient Computation

- TensorFlow nodes in computation graph have attached gradient operations.
- Use backpropagation (using node-specific gradient ops) to compute required gradients for all variables in graph.

TensorFlow Gotchas/Debugging (1)

- Convert tensors to numpy array and print.
- TensorFlow is fastidious about types and shapes. Check that types/shapes of all tensors match.
- TensorFlow API is less mature than Numpy API. Many advanced Numpy operations (e.g. complicated array slicing) not supported yet!

TensorFlow Gotchas/Debugging (2)

- If you're stuck, try making a pure Numpy implementation of forward computation.
- Then look for analog of each Numpy function in TensorFlow API
- Use tf.InteractiveSession() to experiment in shell.
 Trial and error works!

TensorBoard

- TensorFlow has some neat built-in visualization tools (TensorBoard).
- We won't use TensorBoard for homework (tricky to set up when TensorFlow is running remotely), but we encourage you to check it out for your projects.

TensorFlow at Stanford

- CPU-only version of TensorFlow now available on a number of Stanford clusters (Corn, Myth)
- GPU versions of TensorFlow available only on limited clusters (Sherlock, Xstream). Feel free to use if you already have access.
- CPU-only version sufficient for homework (but will be slower than GPU version)

Hint for HW: Defining Embeddings in TensorFlow