Методы восстановление регрессии

МФТИ 2020

Москва

Различные типы линейных моделей

Математическое описание

В случае когда значения прецедентов принадлежат прямой $Y=\mathbb{R}$. Задан тренеровочный набор обучающих объектов $X^I=\{x_i,y_i\},\ i=1,I,\ x\in\mathbb{R}^n,\ y\in\mathbb{R},\ \text{так что }y_i=y^*(x_i).$

Парметризация модели $a(x) = f(x; \alpha)$. Для ее решения, необходимо найти вектор параметров α .

Метод наименьших квадратов

Метод наименьших квадратов

$$Q(\alpha, X^{I}) = \sum_{i=1}^{I} (f_i(x, \alpha) - y_i)^2$$

В случае линейной модели, имеем задачу квадратичного программирования:

$$\alpha^* = \arg\min_{\alpha \in \mathbb{R}^p} Q(\alpha, X^I).$$

В общем случае квадраты признаков суммируются с весами:

$$Q(\alpha, X^I) = \sum_{i=1}^I w_i (f_i(x, \alpha) - y_i)^2,$$

так что можно отбрасывать лишние прецеденты, подчеркивать из значимость, а также нормировать.

Почему норма квадратичная?

Метод максимума правдоподобия

Пусть дана задача с некоррелированным Гаусовым шумом

$$y_i = f(x_i, \alpha) + \varepsilon_i, \ i = 1..I, \ \varepsilon_i \sim N(0, \sigma_i^2),$$
 $L(\varepsilon_1, ..., \varepsilon_I | \alpha) = \prod_{i=1}^I \frac{1}{\sigma_i \sqrt(2\pi)} \exp\left(-\frac{1}{2\sigma_i^2} \varepsilon_i\right) \rightarrow \max \alpha.$ $-\ln L(\varepsilon_1, ..., \varepsilon_I | \alpha) = \sum_{i=1}^I (f_i(x, \alpha) - y_i)^2 \rightarrow \min_{\alpha}.$

Вывод: постановки метода наименьших квадратов и метод максимума правдоподобия совпадают.

Теорема Гаусса-Маркова

Пусть измерения имеют ошибки с нормальным распределением

$$y_i = f(x_i, \alpha) + \varepsilon_i, i = 1..I.$$

Теорема

- 1. несмещенное среднее $E[\varepsilon_i] = 0$, $\forall i$,
- 2. с ограниченной вариацией $Var[\varepsilon_i] < \infty$,
- 3. независимые переменные $Cov(\varepsilon_i, \varepsilon_j) = 0, \forall i \neq j$, тогда указанная система имеет решение $\alpha = (F^T F)^{-1} F^T Y$.

Ядерное сглаживание

Рассмотрим простейшку модель $g(x,\alpha)=\alpha$, или для каждой точки пространства решим построим регрессионую модель $a(x)=g(x,\alpha)$, вычислим α для произвольного x:

$$Q(\alpha, X^I) = \sum_i w(x)(\alpha - y_i)^2 \to \min,$$

Определим веса как функции расстояния от точек в пространстве признаков $w_i(x) = K\left(\frac{\rho(x,x_i)}{h}\right)$.

$$a_h(x;X^I) = \frac{\sum y_i w_i(x)}{\sum w_i(x)} = \frac{\sum y_i K\left(\frac{\rho(x,x_i)}{h}\right)}{\sum K\left(\frac{\rho(x,x_i)}{h}\right)}.$$

Выбор параметров алгоритма

- Выбор ядра не влияет на точность, но связан со степенью гладкости функции $a_h(x)$,
- ширина окна компромисс сглаживания и точности, необходимо найти оптимальное h^* ,
- локальное сгущение возникает, когда объекты выборки распределены неравномерно, в этом случе рекомендуется брать $w_i(x) = K\left(\frac{\rho(x,x_i)}{h(x)}\right)$ ядра с переменной шириной.

Линейная модель регрессии

Пусть кажому объекту соответствует его признаковое описание:

$$f_1(x), f_2(x), ..., f_n(x).$$

Так что модель линейна по отношению к коэффициентам

$$f(\alpha, x) = \sum_{j=1}^{n} \alpha_j f_j(x),$$

$$Q(\alpha, X') = \sum_{i=1}^{l} \sum_{j=1}^{n} (\alpha_j f_j(x_i) - y_i)^2 = ||F\bar{\alpha} - y||^2.$$

Гиперплоскость в двумерном пространстве

Частное решение. Проекция решения.

Продифференцируем квадратичный функционал (пусть матрица F полного ранга)

$$\frac{\partial Q}{\partial \alpha} = 2F^{T}(F\alpha - y) = 0,$$

получаем уравнение Эйлера

$$F^T F \alpha = F^T y$$
.

Таким образом получаем решение системы через псевдообратную матрицу F^+ :

$$\alpha^* = (F^T F)^{-1} F y = F^+ y.$$

Как быть в случае линейно зависимости??

Иллюстрация проектирования

Метод наименьших квадратов позволяет получить проекцию на линейную оболочку столбцов матрицы F.

Решение в различных нормах

- 1. $MSE(a, X) = \frac{1}{l} \sum_{i} (a(x_i) y_i)^2$ среднеквадратичное отклонение,
- 2. $R^2(a,X)=1-\frac{\sum_i(a(x_i)-y_i)^2}{\sum_i(y_i-\bar{y})^2},\ \bar{y}=\frac{1}{l}\sum_iy_i$ коэффициент детерминации измеряет долю дисперсии объясненную моделью, в общей дисперсии целевой переменной.
- 3. $MAE(a, X) = \frac{1}{l} \sum_{i} (a(x_i) y_i)^2$, среднее абсолютное отклонение.

Для задачи $\sum_i (a-y_i)^2 o \min_a$ минимум достигается на $a^*_{MSE} = \sum_i y_i$.

Для нормы MAE аналогичная задача $\sum_i |a-y_i| \to \min_a$, решение будет медиана $a_{MAE}^* = median\{y_i\}_{i=1}^l$.

Иллюстрация различных норм

Регрессия L2, чувствительность к выбросам

Регрессия L1, чувствительность к выбросам

Число обусловленности

Количественная оценка СЛАУ с невырожденной матрицей можно связать с числом обусловленности матрицы

$$cond(F) = ||F||||F^{-1}||.$$

Пусть по отношению к точной системе Fx=y задана возумущенная $F_hx=y_\delta, \ ||F-F_h||\leq h, \ ||y-y_\delta||\leq \delta.$ Возумущенная система невырождена при условии $h||F^{-1}||<1$, для решения возмущенной системы можно записать оценку:

$$\delta_2(x) = \frac{||x - x_{\eta}||}{||x||} \le \frac{\operatorname{cond}(F)(\delta_E(F) + \delta_2(y))}{1 - \delta_E(F)\operatorname{cond}_E(F)}.$$

Здесь

$$cond_E(F) = ||F^{-1}||_E ||F||_E$$

- евклидово число обусловленности.

Метод сингулярного разложения

Теорема

Любую матрицу F размера $m \times n$ можно представить в виде $F = VDU^T$, где – ортогональные матрицы размера $m \times m$ и $n \times n$, соответственно, а $D = diag(\rho_1, ..., \rho_M)$ - прямоугольная диагональная матрица размера $m \times n$, содержащая на диагонали неотрицательные числа $\rho_1, ..., \rho_M, M = \min(m, n),$ которые упорядочены по невозрастанию: $\rho_1 \geq ... \geq \rho_M \geq 0$. Числа ho_k называются сингулярными числами матрицы F, при этом числа ρ_{ν}^2 , являются собственными значениями матриц FF^T , столбцы U, V - собственные вектора матриц FF^T и F^TF . Для матриц полного ранга можно определить спектральное число обусловленности $cond_{5}(F) = \rho_{1}\rho_{M}^{-1}$.

Сингулярные числа

Сингулярные числа для операторов действующих в гильбертовых пространствах. Пусть оператор F - вполне непрерывен и не является конечномерным, то он обаладает системой сингулярных чисел $\rho_1 \geq ... \geq \rho_n \geq ... \geq 0$ -собственный значения операторов $F^T F$, FF^T , причем $\lim_{n \to \infty} = 0$. Обратная задача с вполне непрерывным оператором F,

- 1. умеренно некорректная, если $\rho_n \asymp n^{-\nu}$ при $n \to \infty$,
- 2. **сильно некорректной**, если $\rho_n \asymp e^{-n\nu}$ при $n \to \infty$.

Решение через сингулярное разложение оператора

Псевдообратная матрица F^+ , вектор МНК решения lpha

$$F^{+} = (UDV^{T}UDV^{T})^{-1}UDV^{T} = UD^{-1}V^{T} = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} v_{j}^{T},$$

$$\alpha^{*} = F^{+}y = UD^{-1}V^{T}y = \sum_{j=1}^{n} \frac{1}{\sqrt{\lambda_{j}}} u_{j} (v_{j}^{T}y_{j}),$$

$$F\alpha^{*} = P_{F}y = (VDU^{T})UD^{-1}V^{T}y = VV^{T}y = \sum_{j=1}^{n} v_{j} (v_{j}^{T})y,$$

$$||\alpha^{*}||^{2} = ||D^{-1}V^{T}y||^{2} = \sum_{j=1}^{n} \frac{1}{\lambda_{j}} (v_{j}^{T}y)^{2}$$

Мультиколлинеарность и переобучение

В случае когда матрица $S = F^T F$ плохо обучловленна, то

- решение неустойчиво и плохо интерпретируемо,
- ||α*|| велико,
- переобучение на обучающией выборке $Q(\alpha^*,X')=||F\alpha^*-y||^2$, на контрольной выборке $Q(\alpha^*,X^k)=||F'\alpha^*-y'||^2$.

Переобучение

Регуляризация L2 (гребневая регрессия)

Модифицируем функционал

$$Q_{\tau}(\alpha) = ||F\alpha - y||^2 + \frac{1}{\sigma}||\alpha||^2,$$

где $au=rac{1}{\sigma}$ - неотрицательный параметр регуляризации. Через уравнение Эйлера возможно получить следующее оптимальное решение функционала

$$\alpha_{\tau}^* = (F^T F + \tau I_n)^{-1} F^T y.$$

Удобно подбирать параметр через сингулярное разложение.

Решение через сингулярное разложение оператора

Псевдообратная матрица F^+ , вектор МНК решения lpha

$$\alpha^* = U(D^2 + \tau I_n)^{-1}DV^T y = \sum_{j=1}^n \frac{\sqrt{\lambda_j}}{\lambda_j + \tau} u_j(v_j^T y_j),$$

$$F\alpha_\tau^* = V \operatorname{diag}\left(\frac{\lambda_j}{\lambda_j + \tau}\right) V^T y = \sum_{j=1}^n \frac{\lambda_j}{\lambda_j + \tau} v_j(v_j^T) y,$$

$$||\alpha^*||^2 = ||(D^2 + \tau I_n)^{-1}DV^T y||^2 = \sum_{j=1}^n \frac{\lambda_j}{(\lambda_j + \tau)^2} (v_j^T y)^2.$$

Данная процедура обеспечивает устойчивость решения.

Эффективная размерность

Сокращение весов

$$||\alpha^*||^2 = \sum_{j=1}^n \frac{\lambda_j}{(\lambda_j + \tau)^2} (v_j^T y)^2.$$

Регуляризация сокращает эффективную размерность

$$\operatorname{tr} F^{T} (F^{T} F)^{-1} F = \operatorname{tr} (F^{T} F)^{-1} F^{T} F = \operatorname{tr} I_{n} = n,$$

При регуляризации

$$\operatorname{tr} F(F^T F + \tau I_n)^{-1} F^T = \operatorname{tr} \operatorname{diag} \left(\frac{\lambda_j}{\lambda_j + \tau} \right) = \sum_{i=1}^n \frac{\lambda_j}{\lambda_j + \tau} < n.$$

Регуляризация LASSO (L1)

Функционал с L1 сглаживанием

$$||F\alpha - y||^2 + \mu \sum_{j=1}^n |\alpha_j| \to \min_{\alpha},$$

данная постановка эквивалентна

$$\begin{cases} ||F\alpha - y||^2 \to \min_{\alpha}, \\ \sum_{j=1}^{n} |\alpha_j| \le C; \end{cases}$$

Произведем замену переменных $\alpha_j = \alpha_j^+ - \alpha_j^-$, так что $|\alpha_j| = \alpha_i^+ + \alpha_i^-$, $\alpha_i^+ \ge 0$, $\alpha_i^- \ge 0$.

$$\sum_{j=1}^{n} (\alpha_j^+ + \alpha_j^-) \le C,$$

При уменьшении константы регуляризации, становится больше признаков таких что $\alpha_i^+ = \alpha_i^- = 0$.

Разряженные модели (L1 регуляризация)

- проводит отбор признаков не относящихся к задаче,
- для ускорения модель зависет от небольшого количества наиболее важных признаков,
- объектов существенно меньше, чем признаков N << p, можно задать ограничение, что целевая переменная зависит от небольшого количества признаков.

Сравнение применения L1 и L2 регуляризации

Метод главных компонент

Пусть заданы матрица старых признаков $F \in \mathbb{R}^{I \times n}$ и новых $G \in \mathbb{R}^{I \times m}$ с меньших числом столбцов. При этом матрица линейных преобразовний признаков $U \in \mathbb{R}^{n \times m}$, так что

$$\hat{F} = GU^T$$
.

Необходимо найти новые признаки G и матрицу преобразования U

$$\sum_{i=1}^{l} \sum_{j=1}^{n} (\hat{f}_{i}(x_{j}) - f_{j}(x_{i}))^{2} = ||GU^{T} - F|| \to \min_{G, U}$$

Метод главных компонент, теорема

Теорема

Если $m \leq rkF$, то минимум $||GU^T - F||^2$ достигается, когда столбцы U - это с.в. матрицы $F^T F$, соответствующие m максимальным с.з. $\lambda_1,...,\lambda_m$, а матрица G=FU. При этом

- 1. матрица U ортонормирована $U^T U = I_m$;
- 2. матрица G ортогональна $G^TG = \Lambda = diag(\lambda_1,..,\lambda_m);$
- 3. $U\Lambda = F^T F U$; $G\Lambda = F F^T G$;
- 4. $||GU^T F||^2 = ||F||^2 tr\Lambda = \sum_{j=m+1}^n \lambda_j$.

Эффективная размерность выборки

Эффективная размерность выборки - это наименьшее число m при котором

$$E_m = \frac{||GU^T - F||^2}{||F||^2} = \frac{\lambda_{m+1} + \ldots + \lambda_n}{\lambda_1 + \ldots + \lambda_n} \le \varepsilon.$$

Заключение

- метод наименьших квадратов
- многомерная линейная регрессия
- боремся с мультиколлинеарностью и переобучением
- различные нормы сглаживания
- негладкая регуляризация