Bitcoin and Cryptocurrency Technologies Lecture 2: Cryptography Basics 1/2

Yuri Zhykin

Feb 15, 2021

Introduction to Cryptography

- Cryptography (Ancient Greek, "hidden, secret" and "to write"), is the practice and study of techniques for secure communication in the presence of third parties called adversaries.
- Modern cryptography is heavily based on mathematical theory and computer science practice.
- Modern cryptographic algorithms are designed around computational hardness assumptions.

Introduction to Cryptography 2/2

- Modern cryptography is divided into two categories:
 - symmetric cryptography both parties share the same secret key, used for both encryption and decryption,
 - asymmetric (public-key) cryptography key consists of public and private components; public is used for encryption, private - for decryption.
- Cryptography serves two main functions:
 - concealing communication (encryption/decryption),
 - ensuring integrity of communication (signing/signature verification)

Symmetric Cryptography

- The only type of cryptography until 1976.
- Both parties have a shared secret key that is used for both encryption and decryption.
- Symmetric encryption alrgorithms are very fast (e.g. AES, Salsa20, ChaCha).
- Most popular symmetric encryption algorithms are implemented in hardware (e.g. AES and AES-NI instruction set for x86 CPUs).

Symmetic Cryptography Problems

- Secret key must be shared beforehand over a secure communication channel - "chicken-and-egg" problem.
- Symmetry of failure if any of the parties leaks the key, both parties are compromised.
- If multiple parties share the same key, the symmetry of failure affects all parties.
- If each party keeps a different key for each other party (ideally), key storage is yet another problem.

Public-key Cryptography

- Groundbreaking discovery by Whitfield Diffie and Martin Hellman in 1976.
- Messages are encrypted with public key, but can only be decrypted with the private key.
- Each party is responsible only for its own private key public keys can be derived from it, if lost, and can be exchanged over insecure communication channels

Probability, Randomness and Large Numbers 1/3

- In most modern cryptographic systems, the security of the keys is based on probability of guessing very large numbers.
- In order to make this as hard as possible, the numbers must be truly random, i.e. the probability of each bit in the number to be either 1 or 0 must be 0.5.
- Probability of guessing a truly random number N is exactly 1/N.
- The estimated number of atoms in the Universe is $10^{78} \simeq 2^{259}$, so guessing a 256-bit key is almost equivalent to guessing a particular atom in the Universe.

Probability, Randomness and Large Numbers 2/3

 At the same time, large numbers used as keys can be compactly represented with hexadecimal (base-16) or base-64 encodings:

Probability, Randomness and Large Numbers 3/3

- Computers are deterministic, so generating truly random numbers is hard.
- In most cases, the most secure way to get a random number on Unix systems is to read from /dev/random or /dev/urandom devices.
- Special hardware exists for generating truly random numbers based on environment entropy; they should be preferred if possible.

Hash Functions

- Hash function is a function that maps data of arbitrary size to fixed-size values.
- Hash functions are used for storage adressing (hash tables), probabilistic filtering (bloom filters), etc.

Cryptographic Hash Functions

 Cryptographic hash function is a hash function that maps data to bit arrays of fixed size and is a one-way function, that is, a function that is practically infeasible to invert:

$$h=H(m)$$
 - efficient, $m=H^{-1}(h)$ - very inefficient

- The only way to find a message m that produces a given hash h is a **brute-force search** generating random messages m_i and trying if $H(m_i) = h$.
- Basic tool of modern cryptography.

Properties of Cryptographic Hash Functions

- Main properties of good cryptographic hash functions:
 - determinism same input always produces same output,
 - efficiency hash of a given message can be computed quickly,
 - diffusion, "avalanche effect" a single-bit change in m causes change of every bit in h with probability 0.5,
 - **pre-image resistance** given hash h, it should be hard to find any message m such that h = H(m),
 - second pre-image resistance given input m_1 , it should be hard to find any m_2 such that $H(m_1) = H(m_2)$,
 - **collision resistance** it should be hard to find any messages m_1 and m_2 such that $H(m_1) = H(m_2)$.
- Additionally:
 - **length extension resistance** given h = H(m) and len(m), it should be hard to find h' = H(m||m'),
 - strong collision resistance birthday attack resistance.

Use of Cryptographic Hash Functions 1/2

- Message authentication codes (MACs) hash of some message combined with some key allows to verify the integrity of the message.
- Digital signatures signing the hash of a message is much more efficient than the signing the whole message.
- Password verification storing cleartext passwords of results in massive security breaches, when the databases get leaked; storing password hashes solves this.
- Strong data integrity checks (checksums) used instead of regular (non-cryptographic) hash-functions when stronger guarantees are needed.
- Notable examples: SHA-2 (SHA-256, SHA-512), RIPEMD-160, SHA-3.

Use of Cryptographic Hash Functions 2/2

- Proof-of-Work basis of modern cryptocurrency technology.
- Hashcash originally proposed by Adam Back in 1997 as means to mitigate email spam and denial of service attacks.
- Basic idea behind PoW:
 - For some message m, execute **brute force search** on r value until h = H(m, r) meets certain criteria, for example h must be less then certain value h_{target} .
 - Search criteria can be selected in a way that ensures that with the current state of chip manufacturing, this computations on average takes a certain amount of time.
- This construction essentially means that computing a PoW solution requires a provable amount of energy, which can be made sufficiently large to make counterfeiting infeasible.

Useful Resources

- Dan Boneh's Cryptography I course from Stanford University https://www.coursera.org/learn/crypto.
- Serious Cryptography: A Practical Introduction to Modern Encryption - Jean-Philippe Aumasson.
- 8 sets of cryptography problems that introduce various real-life cryptography systems and show practical attacks on them https://cryptopals.com.

The End

Thank you!