

Derek Chiu

2020-01-07

Contents

Pı	reface	4
1	Introduction	5
2	Methods2.1 Data Processing2.2 Classification	6 6 7
3	Validation	9
4	Results	15

List of Tables

3.1	All CodeSet Histotype Groups	11
3.2	All CodeSet Histotypes	13
3.3	CS1 Histotypes	13
3.4	CS2 Histotypes	14
3.5	CS3 Histotypes	14

List of Figures

3.1	Gene Expression CS2 No Normalization vs. CS3	Ć
3.2	Gene Expression CS2 Pools Normalization vs. CS3	10
3.3	Gene Expression CS2 Reference Normalization vs. CS3	11
3.4	Concordance Histograms	12

Preface

This report of statistical findings describes the classification of ovarian cancer histotypes using data from NanoString CodeSets.

Marina Pavanello conducted the initial exploratory data analysis, Cathy Tang implemented class imbalance techniques, Derek Chiu conducted the normalization and statistical analysis, and Aline Talhouk lead the project.

1. Introduction

Ovarian cancer has five major histotypes: high-grade serous carcinoma (HGSC), low-grade serous carcinoma (LGSC), endometrioid carcinoma (ENOC), mucinous carcinoma (MUC), and clear cell carcinoma (CCOC). A common problem with classifying these histotypes is that there is a class imbalance issue. HGSC dominates the distribution, commonly accounting for 70% of cases in many patient cohorts, while the other four histotypes are spread over the rest.

In the NanoString CodeSets, we also run into a problem with trying to find suitable control pools to normalize the gene expression. For prospective NanoString runs, the pools can be specifically chosen, but for retrospective runs, we have to utilize a combination of common samples and common genes as references for normalization.

The supervised learning is performed under a consensus framework: we consider various classification algorithms and use evaluation metrics to help making decisions of which methods to carry forward.

2. Methods

2.1 Data Processing

Normalizing CS2 to CS3 can easily follow the PrOTYPE method for HGSC subtypes because both CodeSets have pool samples. A different technique is implemented when normalizing CS1 to CS3 where we use common samples and genes as reference sets.

2.1.1 Raw Data

There are 3 NanoString CodeSets:

- CS1: OvCa2103 C953
 - Samples = 412
 - Genes = 275
- CS2: PrOTYPE2 v2 C1645
 - Samples = 1223
 - Genes = 384
- CS3: OTTA2014_C2822
 - Samples = 5424
 - Genes = 532

These datasets contain raw counts extracted straight from NanoString RCC files.

2.1.2 Housekeeping Genes

The first normalization step is to normalize all endogenous genes to housekeeping genes (POLR1B, SDHA, PGK1, ACTB, RPL19; reference genes expressed in all cells). We normalize by subtracting the average log2 housekeeping gene expression from the log2 endogenous gene expression. The updated CodeSet dimensions are now:

- CS1: OvCa2103 C953
 - Samples = 412
 - Genes = 256
- CS2: PrOTYPE2 v2 C1645
 - Samples = 1223
 - Genes = 365
- CS3: OTTA2014_C2822
 - Samples = 5424
 - Genes = 513

The number of genes are reduced by 19: 5 housekeeping, 8 negative, 6 positive (the latter 2 types are not used).

2.1.3 Common Samples and Genes

Since the reference pool samples only exist in CS2 and CS3, we need to find an alternative method to normalize all three CodeSets. One method is to select common samples and common genes that exist in all three. We found 72 common genes. Using the summaryID identifier, we found 78 common summary IDs, which translated to 320 samples. The number of samples that were found in each CodeSet differed:

```
CS1: OvCa2103_C953

Samples = 93
Genes = 72

CS2: PrOTYPE2_v2_C1645

Samples = 87
Genes = 72

CS3: OTTA2014_C2822

Samples = 140
Genes = 72
```

2.1.4 CS1 Training Set Generation

We use the reference method to normalize CS1 to CS3.

```
CS1 reference set: duplicate samples from CS1

Samples = 25
Genes = 72

CS3 reference set: corresponding samples in CS3 also found in CS1 reference set

Samples = 20
Genes = 72

CS1 validation set: remaining CS1 samples with reference set removed

Samples = 387
Genes = 72
```

The final CS1 training set has 304 samples on 72 genes after normalization and keeping only the major histotypes of interest.

2.1.5 CS2 Training Set Generation

We use the pool method to normalize CS2 to CS3 so we can be consistent with the PrOTYPE normalization when there are available pools.

```
    CS3 pools:

            Samples = 22
            Genes = 513

    CS2 pools:

            Samples = 10
            Genes = 365
```

The final CS2 training set has 945 samples on 136 (common) genes after normalization and keeping ony the major histotypes of interest.

2.2 Classification

We use 5 classification algorithms and 4 subsampling methods across 500 repetitions in the supervised learning framework for CS1.

- Classifiers:
 - Random Forest
 - Adaboost

- LDA
 SVM
 K-Nearest Neighbours
 Subsampling:
- - None
 - Down-samplingUp-samplingSMOTE

3. Validation

First we'd like to validate the CS2 normalization process.

Figure 3.1: Gene Expression CS2 No Normalization vs. CS3

Figure 3.2: Gene Expression CS2 Pools Normalization vs. CS3

Figure 3.3: Gene Expression CS2 Reference Normalization vs. CS3 $\,$

Table 3.1: All CodeSet Histotype Groups

hist_gr	CS1	CS2	CS3
HGSC	169	757	2453
non-HGSC	196	377	677

CS2 Datasets vs. CS3 Concordance Measure Distributions

Figure 3.4: Concordance Histograms

Table 3.2: All CodeSet Histotypes

revHist	CS1	CS2	CS3
CARCINOMA-NOS	0	61	23
Carcinoma, NOS	0	0	2
CCC	57	0	182
CCOC	0	68	0
CCOC-MCT	0	1	0
Cell-Line	17	48	13
CTRL	0	12	0
ENOC	0	30	0
ENOC-CCOC	0	7	0
ENOCa	61	0	272
ERROR	0	3	0
HGSC	169	757	2453
HGSC-MCT	0	1	0
LGSC	22	29	50
MBOT	0	20	3
MET-NOP	0	21	0
MIXED (ENOC/CCOC)	0	0	1
MIXED (ENOC/LGSC)	0	0	1
MIXED (HGSC/CCOC)	0	0	1
mixed cell	0	0	7
MMMT	0	0	30
MUC	20	61	77
Other (use when 6, 7, or 9 is not distinguished) or unknown if epithelial	0	0	1
Other/Exclude	0	0	8
SBOT	19	10	3
Serous	0	0	2
serous LMP	0	0	1
SQAMOUS	0	1	0
UNK	0	4	0

Table 3.3: CS1 Histotypes

CodeSet	revHist	n
CS1	CCC	57
CS1	Cell-Line	17
CS1	ENOCa	61
CS1	HGSC	169
CS1	LGSC	22
CS1	MUC	20
CS1	SBOT	19

Table 3.4: CS2 Histotypes

CodeSet	revHist	n
CS2	CARCINOMA-NOS	61
CS2	CCOC	68
CS2	CCOC-MCT	1
CS2	Cell-Line	48
CS2	CTRL	12
CS2	ENOC	30
CS2	ENOC-CCOC	7
CS2	ERROR	3
CS2	HGSC	757
CS2	HGSC-MCT	1
CS2	LGSC	29
CS2	MBOT	20
CS2	MET-NOP	21
CS2	MUC	61
CS2	SBOT	10
CS2	SQAMOUS	1
CS2	UNK	4

Table 3.5: CS3 Histotypes

CodeSet	revHist	n
CS3	CARCINOMA-NOS	23
CS3	Carcinoma, NOS	2
CS3	CCC	182
CS3	Cell-Line	13
CS3	ENOCa	272
CS3	HGSC	2453
CS3	LGSC	50
CS3	MBOT	3
CS3	MIXED (ENOC/CCOC)	1
CS3	MIXED (ENOC/LGSC)	1
CS3	MIXED (HGSC/CCOC)	1
CS3	mixed cell	7
CS3	MMMT	30
CS3	MUC	77
CS3	Other (use when 6, 7, or 9 is not distinguished) or unknown if epithelial	1
CS3	Other/Exclude	8
CS3	SBOT	3
CS3	Serous	2
CS3	serous LMP	1

4. Results