ΜΔΤ1100110

of course in base 2

Arash Gholami

Tutorial 3

Email: arash.gholami@mail.utoronto.ca LinkedIn

Example 1

1.41. (-) Let A, B, C be sets. Explain the relationships below. Use the definitions of set operations and containment, with Venn diagrams to guide the argument.

- a) $A \subseteq A \cup B$, and $A \cap B \subseteq A$. d) $A \subseteq B$ and $B \subseteq C$ imply $A \subseteq C$.
- b) $A B \subseteq A$.

- e) $A \cap (B \cap C) = (A \cap B) \cap C$.
- c) $A \cap B = B \cap A$, and $A \cup B = B \cup A$. f) $A \cup (B \cup C) = (A \cup B) \cup C$.
- a) let's consider $A \subseteq A \cup B$

 $A \cup B$ means the elements that are either in A or in B

- **1.41.** (-) Let A, B, C be sets. Explain the relationships below. Use the definitions of set operations and containment, with Venn diagrams to guide the argument.

 - a) $A \subseteq A \cup B$, and $A \cap B \subseteq A$. d) $A \subseteq B$ and $B \subseteq C$ imply $A \subseteq C$.
 - b) $A B \subseteq A$.

- e) $A \cap (B \cap C) = (A \cap B) \cap C$.
- c) $A \cap B = B \cap A$, and $A \cup B = B \cup A$. f) $A \cup (B \cup C) = (A \cup B) \cup C$.
- a) let's consider $A \subseteq A \cup B$
- $A \cup B$ means the elements that are either in A or in B
- $A \subseteq A \cup B$ means:
- A is included in the $A \cup B$,

1.41. (-) Let A, B, C be sets. Explain the relationships below. Use the definitions of set operations and containment, with Venn diagrams to guide the argument.

- a) $A \subseteq A \cup B$, and $A \cap B \subseteq A$. d) $A \subseteq B$ and $B \subseteq C$ imply $A \subseteq C$.
- b) $A B \subseteq A$.

- e) $A \cap (B \cap C) = (A \cap B) \cap C$.
- c) $A \cap B = B \cap A$, and $A \cup B = B \cup A$. f) $A \cup (B \cup C) = (A \cup B) \cup C$.
- a) let's now consider $A \cap B \subseteq A$
- $A \cap B$ means the elements that are both in A and B

1.41. (-) Let A, B, C be sets. Explain the relationships below. Use the definitions of set operations and containment, with Venn diagrams to guide the argument.

- a) $A \subseteq A \cup B$, and $A \cap B \subseteq A$. d) $A \subseteq B$ and $B \subseteq C$ imply $A \subseteq C$.
- b) $A B \subseteq A$.

- e) $A \cap (B \cap C) = (A \cap B) \cap C$.
- c) $A \cap B = B \cap A$, and $A \cup B = B \cup A$. f) $A \cup (B \cup C) = (A \cup B) \cup C$.
- a) let's now consider $A \cap B \subseteq A$
- $A \cap B$ means the elements that are both in A and B
- As you can see $A \cap B$ is included in A
- therefore: $A \cap B \subseteq A$ is True

Example 2

- **1.49.** (!) Let f and g be functions from \mathbb{R} to \mathbb{R} . For the sum and product of f and g (see Definition 1.25), determine which statements below are true. If true, provide a proof; if false, provide a counterexample.
 - a) If f and g are bounded, then f + g is bounded.
 - b) If f and g are bounded, then fg is bounded.
 - c) If f + g is bounded, then f and g are bounded.
 - d) If fg is bounded, then f and g are bounded.
 - e) If both f + g and fg are bounded, then f and g are bounded.
- a) TRUE.
- If f and g are bounded, then there exist M_1 and M_2 such that $|f(x)| \le M_1$ and $|g(x)| \le M_2$ for all $x \in \mathbb{R}$.
- Using the triangle inequality $(|x + y| \le |x| + |y|)$ we conclude that
- $|(f+g)(x)| = |f(x) + g(x)| \le |f(x)| + |g(x)| \le M_1 + M_2 = M$
- for all $x \in \mathbb{R}$, and hence f + g is a bounded function.

- **1.49.** (!) Let f and g be functions from \mathbb{R} to \mathbb{R} . For the sum and product of f and g (see Definition 1.25), determine which statements below are true. If true, provide a proof; if false, provide a counterexample.
 - a) If f and g are bounded, then f + g is bounded.
 - b) If f and g are bounded, then fg is bounded.
 - c) If f + g is bounded, then f and g are bounded.
 - d) If fg is bounded, then f and g are bounded.
 - e) If both f + g and fg are bounded, then f and g are bounded.
- **b**)TRUE.
- If f and g are bounded, then there exist M_1 and M_2 such that $|f(x)| \le M_1$ and $|g(x)| \le M_2$ for all $x \in \mathbb{R}$.
- we know that (|x,y| = |x|, |y|) we conclude that
- $|(fg)(x)| = |f(x).g(x)| = |f(x)|.|g(x)| \le M_1.M_2 = M$
- for all $x \in \mathbb{R}$, and hence f.g is a bounded function.

1.49. (!) Let f and g be functions from \mathbb{R} to \mathbb{R} . For the sum and product of f and g (see Definition 1.25), determine which statements below are true. If true, provide a proof; if false, provide a counterexample.

- a) If f and g are bounded, then f + g is bounded.
- b) If f and g are bounded, then fg is bounded.
- c) If f + g is bounded, then f and g are bounded.
- d) If fg is bounded, then f and g are bounded.
- e) If both f + g and fg are bounded, then f and g are bounded.
- c)False. come up with a counter example.
- $let f(x) = x^2 \ and \ g(x) = -x^2$

•
$$\Rightarrow$$
 $(f+g)(x) = f(x) + g(x) = x^2 + (-x^2) = 0$

- As you can see f(x) and g(x) are both unbounded.
- however, (f + g)(x) = 0 which is bounded by any real number ≥ 0 , eg. 0. $|(f + g)(x)| \leq 0$

- **1.49.** (!) Let f and g be functions from \mathbb{R} to \mathbb{R} . For the sum and product of f and g (see Definition 1.25), determine which statements below are true. If true, provide a proof; if false, provide a counterexample.
 - a) If f and g are bounded, then f + g is bounded.
 - b) If f and g are bounded, then fg is bounded.
 - c) If f + g is bounded, then f and g are bounded.
 - d) If fg is bounded, then f and g are bounded.
 - e) If both f + g and fg are bounded, then f and g are bour
- d)False. come up with a counter example.
- $let f(x) = x^3 \ and \ g(x) = \frac{1}{x^3}$
- \Rightarrow $(f.g)(x) = f(x).g(x) = x^3.\frac{1}{x^3} = 1$
- As you can see f(x) and g(x) are both unbounded.
- however, (f,g)(x) = 1 which is bounded by any real number ≥ 1 , eg. 2., $|(f,g)(x)| \leq 2$

- **1.49.** (!) Let f and g be functions from \mathbb{R} to \mathbb{R} . For the sum and product of f and g (see Definition 1.25), determine which statements below are true. If true, provide a proof; if false, provide a counterexample.
 - a) If f and g are bounded, then f + g is bounded.
 - b) If f and g are bounded, then fg is bounded.
 - c) If f + g is bounded, then f and g are bounded.
 - d) If fg is bounded, then f and g are bounded.
 - e) If both f + g and fg are bounded, then f and g are bounded.
- *e*)*True*.
- We want to show that $|f(x)| \le M_1$ and $|g(x)| \le M_2$ for all $x \in \mathbb{R}$.
- Note: showing that $\sqrt{f^2(x) + g^2(x)} \le M$, is enough to conclude $|f(x)| \le M_1$ and $|g(x)| \le M_2$, since
- $|f(x)| = \sqrt{f^2(x)} \le \sqrt{f^2(x) + g^2(x)} \le M$,
- and the same holds for g(x)

- e) we are given that f + g and fg are bounded.
- we want to show that $\sqrt{f^2(x) + g^2(x)} \le M$
- we know $|(f+g)(x)| \le M_1$ and $|fg(x)| \le M_2$
- $|(f+g)(x)| = |f(x)+g(x)| \le M_1$ Square both sides
- $|f(x) + g(x)|^2 = (f(x) + g(x))^2 \le M_1^2$ expand
- $(f(x) + g(x))^2 = f^2(x) + 2f(x) \cdot g(x) + g^2(x) \le M_1^2 2f(x) \cdot g(x)$
- $f^2(x) + g^2(x) \le M_1^2 2f(x) \cdot g(x)$ $a \le |a|$
- $f^2(x) + g^2(x) \le M_1^2 2f(x)$. $g(x) \le M_1^2 + |2f(x), g(x)| |fg(x)| \le M_2$
- $f^2(x) + g^2(x) \le M_1^2 + |2f(x), g(x)| \le M_1^2 + M_2$
- So $f^2(x) + g^2(x) \le M_1^2 + M_2$
- but we wanted $\sqrt{f^2(x) + g^2(x)} \le M$

- e) we are given that f + g and fg are bounded.
- we want to show that $\sqrt{f^2(x) + g^2(x)} \le M$
- So $f^{2}(x) + g^{2}(x) \le M_{1}^{2} + M_{2}$ square root
- $\Rightarrow \sqrt{f^2(x) + g^2(x)} \le \sqrt{M_1^2 + M_2}$
- Now lets bound f(x) and g(x)
- $|f(x)| = \sqrt{f^2(x)} \le \sqrt{f^2(x) + g^2(x)} \le \sqrt{M_1^2 + M_2} = M$
- $|g(x)| = \sqrt{g^2(x)} \le \sqrt{f^2(x) + g^2(x)} \le \sqrt{M_1^2 + M_2} = M$
- Therefore if f + g and fg are bounded, then f(x) and g(x) are also bounded.

Example 3

Show that for any three sets A, B, C we have: $A - (B - C) = (A - B) \cup (A \cap C)$. Write a formal solution, and draw the appropriate Venn diagram.

- Note: to prove that two sets are equal, A = B, we need to show, $A \subseteq B$ and $B \subseteq A$.
- So lets first show: $A \subseteq B$ I.e. starting from left side and finish at right.
- start from A (B C) conclude $(A B) \cup (A \cap C)$.

•
$$A - (B - C)$$
 $A - B = A \cap B^c$

$$\bullet = A - (B \cap C^c) \mid A - B = A \cap B^c$$

• =
$$A \cap (B \cap C^c)^c$$
 by demorgan's law

demorgan's laws:

$$(A \cap B)^c = A^c \cup B^c$$

$$(A \cup B)^c = A^c \cap B^c$$

• =
$$A \cap (B^c \cup C^{c^c}) = A \cap (B^c \cup C)$$
 by Distributive property

$$\bullet = (A \cap B^c) \cup (A \cap C)$$

distributive property:

$$A \cup (B \cap C) \Leftrightarrow (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) \Leftrightarrow (A \cap B) \cup (A \cap C)$$

Show that for any three sets A, B, C we have: $A - (B - C) = (A - B) \cup (A \cap C)$. Write a formal solution, and draw the appropriate Venn diagram.

- Note: to prove that two sets are equal, A = B, we need to show, $A \subseteq B$ and $B \subseteq A$.
- So lets first show: $A \subseteq B$ I.e. starting from left side and finish at right.
- start from A (B C) conclude $(A B) \cup (A \cap C)$.
- A-(B-C)
- = $(A \cap B^c) \cup (A \cap C) A B = A \cap B^c$
- $\bullet = (A B) \cup (A \cap C)$
- Therefore we just showed that $A (B C) \subseteq (A B) \cup (A \cap C)$
- But in order to say $A (B C) = (A B) \cup (A \cap C)$, we still need to show $A (B C) \supseteq (A B) \cup (A \cap C)$.

Show that for any three sets A, B, C we have: $A - (B - C) = (A - B) \cup (A \cap C)$. Write a formal solution, and draw the appropriate Venn diagram.

- Note: to prove that two sets are equal, A = B, we need to show, $A \subseteq B$ and $B \subseteq A$.
- Now lets show: $B \subseteq A$ I.e. starting from right side and finish at left.
- start from $(A B) \cup (A \cap C)$ conclude A (B C).
- $(A B) \cup (A \cap C) A B = A \cap B^c$
- = $(A \cap B^c) \cup (A \cap C)$ by Distributive law
- = $A \cap (B^c \cup C)$ by demorgan's law
- $\bullet = A \cap (B \cap C^c)^c \mid A B = A \cap B^c$
- $\bullet = A (B \cap C^c) \quad A B = A \cap B^c$

 $\bullet = A - (B - C) \Rightarrow A - (B - C) \supseteq (A - B) \cup (A \cap C).$

distributive property:

$$A \cup (B \cap C) \Leftrightarrow (A \cup B) \cap (A \cup C)$$

 $A \cap (B \cup C) \Leftrightarrow (A \cap B) \cup (A \cap C)$

demorgan's laws:

$$(A \cap B)^c = A^c \cup B^c$$

$$(A \cup B)^c = A^c \cap B^c$$

Show that for any three sets A, B, C we have: $A - (B - C) = (A - B) \cup (A \cap C)$. Write a formal solution, and draw the appropriate Venn diagram.

- Note: to prove that two sets are equal, A = B, we need to show, $A \subseteq B$ and $B \subseteq A$.
- So we showed that:
- 1) $A (B C) \supseteq (A B) \cup (A \cap C)$.
- 2) $A (B C) \subseteq (A B) \cup (A \cap C)$.
- Now we can conclude that :
- $\bullet A (B C) = (A B) \cup (A \cap C).$

Example 4

Express the set $\{x \in \mathbb{R} \mid (x+3)(7-x)(x-2)^2 > 0\}$ as a union of intervals. Explain your answer briefly.

- we need to simplify the condition of the set to see which real numbers are included.
- $(x+3)(7-x)(x-2)^2 > 0$ Use a table to see how the equation behaves on different intervals
- First find the roots of the equation
- Then see how each factor behaves before and after its root

•
$$x + 3 = 0 \Rightarrow x = -3$$

•
$$7 - x = 0 \Rightarrow x = 7$$

$$\bullet (x-2)^2 = 0 \Rightarrow x = 2$$

Express the set $\{x \in \mathbb{R} \mid (x+3)(7-x)(x-2)^2 > 0\}$ as a union of intervals. Explain your answer briefly.

- we need to simplify the condition of the set to see which real numbers are included.
- $E=(x+3)(7-x)(x-2)^2 > 0$ Use a table to see how the equation behaves on different intervals
- Then see how each factor behaves before and after its root

•
$$x + 3 = 0 \Rightarrow x = -3$$

•
$$7 - x = 0 \Rightarrow x = 7$$

$$\bullet (x-2)^2 = 0 \Rightarrow x = 2$$

	(∞, −3)	(-3, 2)	(2,7)	(7,∞)
x + 3				
7-x				
$(x-2)^2$				
Е				

Express the set $\{x \in \mathbb{R} \mid (x+3)(7-x)(x-2)^2 > 0\}$ as a union of intervals. Explain your answer briefly.

- we need to simplify the condition of the set to see which real numbers are included.
- E= $(x + 3)(7 x)(x 2)^2 > 0$

- Then see how each factor behaves before and after its root
- x + 3 < 0 when x < -3
- x + 3 > 0 when x > -3
- 7 x < 0 when x > 7
- 7 x > 0 when x < 7
- $(x-2)^2 > 0$ when x < 2
- $(x-2)^2 > 0$ when x > 2

	(∞, −3)	(-3, 2)	(2,7)	(7,∞)
x + 3		+	+	+
7-x	+	+	+	_
$(x-2)^2$	+	+	+	+
E				

Express the set $\{x \in \mathbb{R} \mid (x+3)(7-x)(x-2)^2 > 0\}$ as a union of intervals. Explain your answer briefly.

• we need to simplify the condition of the set to see which real numbers are included.

•
$$E=(x+3)(7-x)(x-2)^2 > 0$$

- Then see how each factor behaves before and after its root
- *Note now that:*

deliaves before and after its root				
	$(\infty, -3)$	(-3,2)	(2,7)	(7,∞)
x + 3	_	+	+	+
7-x	+	+	+	
$(x-2)^2$	+	+	+	+
Е				

Express the set $\{x \in \mathbb{R} \mid (x+3)(7-x)(x-2)^2 > 0\}$ as a union of intervals. Explain your answer briefly.

- we need to simplify the condition of the set to see which real numbers are included.
- $E=(x+3)(7-x)(x-2)^2 > 0$

- Then see how each factor behaves before and after its root
- *Note now that*:
- 1*st column*: -. +.+= -
- 2ndcolumn: + + + + = +
- $3rd\ column: +.+.+=+$
- 4th column: +.-.+=-

	(∞, −3)	(-3,2)	(2,7)	(7,∞)
x + 3	_	+	+	+
7-x	+	+	+	
$(x-2)^2$	+	+	+	+
Е		+	+	

Express the set $\{x \in \mathbb{R} \mid (x+3)(7-x)(x-2)^2 > 0\}$ as a union of intervals. Explain your answer briefly.

- we need to simplify the condition of the set to see which real numbers are included.
- E= $(x + 3)(7 x)(x 2)^2 > 0$

- Then see how each factor behaves before and after its root
- *Note now that:*
- since we want E > 0:
- $x \in (-3, 2) \cup (2, 7)$
- Note since at 2, E=0, we exclude 2.

	(∞, −3)	(-3,2)	(2,7)	(7,∞)
x + 3	_	+	+	+
7-x	+	+	+	_
$(x-2)^2$	+	+	+	+
Е		+	+	_

- For showing that the image of a function is an interval, we basically want to show that the set of outputs of that function is equal to that interval.
- Hence we have 2 sets A and B and we want to show that A = B.
- Therefore we need to show:
- 1st $A \subseteq B$
- $2^{\text{nd}} B \subseteq A$

- We want to show $f((0, \infty)) = (0, 4)$.
- We need to show:
- 1st $f((0,\infty)) \subseteq (0,4)$.
- $2^{\operatorname{nd}} f((0,\infty)) \supseteq (0,4).$

- Lets 1st show $f((0, \infty)) \subseteq (0, 4)$.
- We want to show that every element of the output is included in the interval (0, 4).
- i.e. we want to pick an arbitrary y from the set of output and show that it is within the image.
- Take $y \in f((0, \infty))$ which satisfies y = f(x) for some $x \in (0, 1)$.
- This means that $y = \frac{4x}{x+1}$.
- We want to prove that 0 < y < 4.

- Lets 1st show $f((0, \infty)) \subseteq (0, 4)$.
- Take $y \in f((0, \infty))$ which satisfies y = f(x) for some $x \in (0, 1)$.
- $\bullet \ y = \frac{4x}{x+1}.$
- We want to prove that 0 < y < 4.
- We do some rough work:
- $0 < y < 4 \rightarrow 0 < \frac{4x}{x+1} < 4$. Since x + 1 > 0, multiply by it
- $0 < 4x < 4(x+1) \rightarrow 0 < x < x+1$
- Witch(lol!) is always true.

- Lets 1st show $f((0, \infty)) \subseteq (0, 4)$.
- Take $y \in f((0, \infty))$ which satisfies y = f(x) for some $x \in (0, 1)$.
- $\bullet \ y = \frac{4x}{x+1}.$
- We want to prove that 0 < y < 4.
- Proof:
- Since $x \in (0, \infty)$; 0 < x < x + 1 Since x + 1 > 0, devide by it
- $\rightarrow 0 < \frac{x}{x+1} < 1$ mul by 4
- $\bullet \to 0 < \frac{4x}{x+1} < 4$
- \rightarrow 0 < y < 4.
- $\rightarrow f((0,\infty)) \subseteq (0,4)$

- Lets 2^{nd} show $(0,4) \subseteq f((0,\infty))$.
- We want to show that every element from the interval (0, 4) is included in the set of outputs of the function.
- i.e. we want to show that every element of (0, 4) can be a valid output for our function.
- Therefore we assume an arbitrary element of (0, 4) is a valid output, then try to find if the x corresponding to it is within our domain of our function.
- In other words if there exists such an X, we surely can reach that arbitrary element that we assumed was a valid output.

Consider the function $f:(0,\infty)\to\mathbb{R}$ given by $f(x)=\frac{4x}{x+1}$. Prove that the image of f is the interval (0,4).

- Lets 2^{nd} show $(0,4) \subseteq f((0,\infty))$.
- Pick a $y \in (0,4)$ and assume it is a valid output of our function, then we want to find the x, for which f(x) = y, and see if that x is within our domain. i.e. $x \in (0,1)$.
- If such x exists, then it satisfies:

•
$$f(x) = \frac{4x}{x+1} = y$$

basically solve for x and see if it is valid for the function

•
$$\Rightarrow$$
 $y(x+1) = 4x$

•
$$\Rightarrow$$
 $yx + y = 4x$

$$\bullet \Rightarrow y = 4x - yx$$

•
$$\Rightarrow$$
 y = $x(4 - y)$

$$\bullet \Rightarrow x = \frac{y}{4-y}$$

- Lets 2^{nd} show $(0,4) \subseteq f((0,\infty))$.
- $\bullet \Rightarrow \chi = \frac{y}{4 y}$
- Since 0 < y < 4, y > 0 and $4 y > 0 \rightarrow x > 0$
- Therefore $y \in f((0, \infty))$.
- \rightarrow $(0,4) \subseteq f((0,\infty))$
- Since $(0,4) \subseteq f((0,\infty))$ and $(0,4) \supseteq f((0,\infty))$
- \Rightarrow $(0,4) = f((0,\infty))$ i.e. the image is (0,4)

Example 6

Consider the function $f: A \rightarrow B$.

- 1. Prove that for any two sets $C, D \subseteq A$; we have $f(C) f(D) \subseteq f(C D)$.
- 2. Give an example of a function f, and sets C, D, for which $f(C) f(D) \neq f(C D)$.
- 1) lets first understand it:
- We know that our function maps from A to B, so A is our domain.
- We want to prove that for any 2 subsets of our domain, e.g. $C, D \subseteq A$, the set of outputs for set C, without the set of outputs for set D, is included in the set of outputs of C D.
- One might think they are equal but here is an example that they're not.
- f(C) f(D) and f(C D) are not guaranteed to be equal.

Consider the function $f: A \rightarrow B$.

- 1. Prove that for any two sets $C, D \subseteq A$; we have $f(C) f(D) \subseteq f(C D)$.
- 2. Give an example of a function f, and sets C, D, for which $f(C) f(D) \neq f(C D)$.
- 1)
- One might think they are equal but here an example that they're not.
- f(C) f(D) and f(C D) are not guaranteed to be equal.
- Let $f = x^2$, $A = \mathbb{Z}$, $C = \{-3, -2, -1, 0\}$, $D = \{0, 1, 2\}$
- $C D = \{-3, -2, -1\}$
- $f(C) = \{0, 1, 4, 9\}$
- $f(D) = \{0, 1, 4\}$
- $f(C D) = \{1, 4, 9\}$

Consider the function $f: A \rightarrow B$.

- 1. Prove that for any two sets $C, D \subseteq A$; we have $f(C) f(D) \subseteq f(C D)$.
- 2. Give an example of a function f, and sets C, D,

for which $f(C) - f(D) \neq f(C - D)$.

- 1) Let $f = x^2$, $A = \mathbb{Z}$, $C = \{-3, -2, -1\}$, $D = \{1, 2\}$
- $C D = \{-3, -2, -1\}$
- $f(C) = \{1, 4, 9\}$
- $f(D) = \{1, 4\}$
- $f(C D) = \{1, 4, 9\}$
- $f(C) f(D) = \{9\} \subseteq f(C D) = \{1, 4, 9\}$
- The reason why they became not equal is: there are some elements in C and D that when put in the function X^2 have the same outputs ,i.e. 1, 2 and -1, -2. since they are different elements they exist in C-D and their output is kept in the image of C-D, however when we do f(C)-f(D) since those elements have the same output, those outputs are lost, therefore $f(C)-f(D) \subseteq f(C-D)$

Consider the function $f: A \rightarrow B$.

- 1. Prove that for any two sets $C, D \subseteq A$; we have $f(C) f(D) \subseteq f(C D)$.
- 2. Give an example of a function f, and sets C, D, for which $f(C) f(D) \neq f(C D)$.
- 1) now let us prove: $f(C) f(D) \subseteq f(C D)$.
- To prove set $A \subseteq B$ we need to:
- Show that every y in A is included in B.
- Let $y \in f(C) f(D)$. Then $y \in f(C)$ which means that y = f(x) for some $x \in C$.
- We also know that $y \notin f(D)$ and hence $x \notin D$.
- Therefore, we conclude that y = f(x) and $x \in C D$.
- In other words, $y \in f(C D)$.
- This proves that $f(C) f(D) \subseteq f(C D)$.

Citations:

Book

Mathematical Thinking: Problem-solving and Proofs

D'Angelo, J.P.

West, D.B.

9780130144126

https://books.google.ca/books?id=fL6nQgAACAAJ

2000

Prentice Hall