ECE108 Assignment 1

Yi Fan Yu (yf3yu@edu.uwaterloo.ca)

Feb 22, 2017

1 Set Operation

a) $R \subseteq S \iff R \subseteq ((S-T) \cup (R \cap T))$

This statement is false because the implication is only unidirectional.

Proving $R \subseteq S \to R \subseteq ((S-T) \cup (R \cap T))$ $R \subseteq ((S-T) \cup (R \cap T))$ can be simplified to using distributivity

 $R \subseteq (((S-T) \cup R) \cap ((S-T) \cup T))$ where $(S-T) \cup R$ gives you a set X such that $R \subseteq X$ $(S-T) \cup T$ gives you S ...

So... we get $R\subseteq (X\cap S)$ since $R\subseteq X$ and from our assumption $R\subseteq S$. The intersection gives at least R as an answer. Therefore $R\subseteq R$ is true

The opposite way cannot be proved because R does'nt have to be \subseteq S $R\subseteq T$ will suffice the counter-example

Counter-example $S = \{4\}$ $R = \{1, 3, 5\}$ $T = R = \{1, 3, 5\}$ $S - T = \{4\}$ $R \cap T = \{1, 3, 5\}$ $R = (S - T) \cup (R \cap T) = \{1, 3, 4, 5\}$ in this case R is definitely not a subset of S

(b) $(A \cap C) \subseteq (B \cap C) \to A \subseteq B$ proof: let $x \in A \cap B$ we can conclude that...

by the definition of intersection, $\forall x \in A, x \in C$ we deduce that x must be in both A and C

by the definition of subset, $\forall x \in (A \cap C), x \in (B \cap C)$ we can say $\forall x \in A, x \in (B \cap C)$

which means by the definition of intersection that $\forall x \in A, x \in B \land x \in C \\ \text{So...} \ \forall x \in A, x \text{ must be } \in B \\ \text{which is the definition of } A \subseteq B$

(c) $A \in B \land B \in C \rightarrow A \in C$ this statement is obviously false since let $A = \{3\}$ let $B = \{\{3\}, 4\}$ let $C = \{\{\{3\}, 4\}, 5\}$

we can see that $A \in B \land B \in C$ but $A \notin C$

(d) $A \in B \land B \in C \rightarrow A \subseteq C$ this statement is obviously false since let $A = \{3\}$ let $B = \{\{3\}, 4\}$ let $C = \{\{\{3\}, 4\}, 5\}$

we can see that $A \in B \land B \in C$ but $A \not\subseteq C$

(e) $A \in B \land B \subseteq C \rightarrow A \in C$ proof: if $B \subseteq C$

that means $\forall x \in B, x \in C$

now $A \in B$ means that A is an element of B represented by $\forall x$ replacing $\forall x$ by A we can then conclude $A \in B$ means $A \in C$

(f) $A \in B \land B \subseteq C \rightarrow A \subseteq C$ this is obviously false since we proved that $A \in C$ is true let $A = \{3\}$ let $B = \{\{3\}, 4\}$ let $C = \{\{3\}, 4, 5\}$

we can see that $A \in B \land B \subseteq C$ but $A \not\subseteq C$

2 Set operations

Given sets A and B under what condition does A-B=B-A need to prove that $A=B \iff A-B=B-A$

Proof:

starting with
$$A = B \rightarrow A - B = B - A$$
 if $A = B$, then $A - B = B - A = \emptyset$

continuing with $A = B \leftarrow A - B = B - A$ Proof:

the definitions for differences are:

$$A - B = \{x \mid x \in A \land x \not\in B\}$$

$$B-A=\{x\mid x\in B\land x\not\in A\}$$

if
$$A - B = B - A$$

then it means that $\exists x \in A \mid x \notin B$

because of the equality,

but the same x must exists in B not in A

we can see that no element

We can then conclude that

$$A - B = \emptyset \wedge B - A = \emptyset$$

using the definition of difference we can see that in order for $A-B=\emptyset$, that means that $A\subseteq B$ in order for $B-A=\emptyset$, that means that $B\subseteq A$

therefore $A \subseteq B \land B \subseteq A$

this is the definition of equality A = B.

3 Functions

- (a)
- (i) if f is injective, we don't know anything about the relationship between co-domain and image we only know about that image \subseteq co-domain
- (ii) image = co-domain when it is surjective
- (iii) image = co-domain when it is bijective
- (b)
- (i) if f is injective, it means that the function is invertible and we can map the image (\neq co-domain) back to it's domain

so f^{-1} has image the full codomain of f

image $(f^{-1}) = \text{dom } (f)$

- (ii) turns out that if f is not injective, it cannot be inverted since f^{-1} does not exist,
- (iii) image $(f^{-1}) = \text{dom } (f)$ when it is bijective

4 Functions

I assume that both X and Y are not empty sets....

(a) there exists an injection $f: X \to Y$

Proof:

if $X \subseteq Y$, this means

 $\forall a (a \in X \to a \in Y)$

a "same" function can be applied that maps all the values in X to its same value, but in Y

$$\begin{array}{c} f: X \to Y \\ x \mapsto x \end{array}$$

Since all values in X is present in Y, and every single value in X maps to one value inside of Y and sets don't have duplicates we've got an injective "equivalence" function

(b) there exists a surjection $g: Y \to X$

well we know that $X \subseteq Y$

so cardinality $(X) \leq \text{cardinality}(Y)$

I can conclude that my domain will be either equal or bigger than my codomain

Therefore I can guarantee that my function will not be injective if I need my function to be surjective

so a function that

$$x \mapsto \begin{cases} x, & \text{if } x \in (X \cap Y) \\ \text{any Value in Y}, & \text{if } x \in (Y - X) \end{cases}$$
 (1)

the mapping to any value will make sure that our function definition maps all the domain to satisfy the definition of a function

5 Functions.. Even more

(a)
$$f: \mathbb{N} \to \mathbb{N}$$
 where $f: x \mapsto x$

Since the dom = codom, and the function maps the value to itself we can conclude that:

function is injective because all values of the domain is mapped to a unique value in the codomain

function is surjective because all values of the codomain is being mapped to (range = codomain)

therefore, the function is bijective

(b) $g: \mathbb{N} \to \mathbb{N}$ where $g: x \mapsto x^2$

in this case, the function maps all the values in the domain to the square of

since all values in the domain has a unique square value in the codomain, the function is injective

since range \neq codomain because $3 \in \mathbb{N}$ but 3 is not mapped by any value in the domain, the function is **NOT** surjective therefore not bijective

(c) $h: \mathbb{Q}^+ \to \mathbb{Q}^+$ where $h: x \mapsto 1/x$

I assume that the function maps x to the inverse of its most simplified version else, it is not even a function because $4 \mapsto \frac{1}{4}$ but also $\mapsto \frac{2}{8}$ right off the bat, we can see that the same number could be represented by 2 different values of the domain i.e $\frac{1}{2}$ $\frac{2}{4}$ since the inverse operation of these 2 fractions all map to 2, the function does

not satisfy the injective definition.

similarly, the surjective definition is not satisfied since $\frac{2}{8}$ will never be mapped to. refer to the assumption

obviously not bijective, so None of the Above

(d) possible to compose fog foh goh

6 Closure

- i. Define $T \subseteq A2$ st $XTy \iff (xRyANDxSY)$ show T is refl sym and transitive to prove it
 - 4. Given poset (x, smallerEq) prove or disprove (a) x = y iff $y = 1 \times 1$

$$R-1 = (b,a) - (a,b) \in R$$
 $(y,x) \in j=so it mean $(x,y) \in j=-1$$

(b) $x := y \iff y := x (2,2)$ will prove it false;