

STTH302S

HIGH EFFICIENCY ULTRAFAST DIODE

MAIN PRODUCT CHARACTERISTICS

I _{F(AV)}	3A
V _{RRM}	200 V
Tj (max)	175 °C
V _F (max)	0.75 V
trr (max)	35 ns

FEATURES AND BENEFITS

- Very low conduction losses
- Negligible switching losses
- Low forward and reverse recovery times
- High junction temperature

The STTH302S, which is using ST's new 200V planar technology, is specially suited for switching mode base drive & transistor circuits.

The device is also intended for use as a free wheeling diode in power supplies and other power switching applications.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter	Value	Unit
V _{RRM}	Repetitive peak reverse voltage	200	V
I _{F(AV)}	Average forward current	3	Α
I _{FSM}	Surge non repetitive forward current	100	А
T _{stg}	Storage temperature range	- 65 + 175	°C
Tj	Maximum operating junction temperature	175	°C

THERMAL PARAMETERS

Symbol	Parameter	Maximum	Unit	
R _{th (j-l)}	Junction to lead	20	°C/W	

April 2002 - Ed: 1A 1/5

STTH302S

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Tests co	Min.	Тур.	Max.	Unit	
I _R *	Reverse leakage	Tj = 25°C	$V_R = V_{RRM}$			3	μΑ
	current	Tj = 125°C			4	75	
V _F **	Forward voltage drop	Tj = 25°C	I _F = 3 A			0.95	V
		Tj = 125°C	I _F = 3 A		0.66	0.75	

Pulse test: * tp = 5ms, δ < 2%

To evaluate the maximum conduction losses use the following equation : P = 0.60 x $I_{F(AV)}$ + 0.05 $I_{F}{}^2(\mbox{RMS})$

DYNAMIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Tests conditions		Min.	Тур.	Max.	Unit
trr	Reverse recovery time Tj = 25°C		I _F =1 A Irr = -50 A/μs V _R = 30V			35	ns
tfr	Forward recovery time	Tj = 25°C	$I_F = 3 \text{ A} dI_F/dt = 50 \text{ A}/\mu \text{s}$ $V_{FR} = 1.1 \text{ x V}_F \text{max}$		70		ns
V _{FP}	Forward recovery voltage	Tj = 25°C	$I_F = 3 \text{ A} \text{ d}I_F/\text{d}t = 50 \text{ A}/\mu\text{s}$		1.6		V

^{**} tp = 380 μ s, δ < 2%

Fig. 1: Average forward power dissipation versus average forward current.

Fig. 3: Relative variation of thermal impedance junction ambient versus pulse duration (Printed circuit board epoxy FR4).

Fig. 5: Junction capacitance versus reverse voltage applied (typical values).

Fig. 2: Average forward current versus ambient temperature (δ = 0.5)

Fig. 4: Forward voltage drop versus forward current.

Fig. 6: Reverse recovery time versus dI_F/dt (90% confidence).

47

Fig. 7: Peak reverse recovery current versus dI_F/dt (90% confidence).

Fig. 9: Relative variations of dynamic parameters versus junction temperature.

Fig. 8: Reverse recovery charges versus dI_F/dt (90% confidence).

Fig. 10: Thermal resistance junction to ambient versus copper surface under each lead (epoxy FR4, $e=35\mu m$).

4/5

PACKAGE MECHANICAL DATA

SMC

	DIMENSIONS				
REF.	Millimeters		Inches		
	Min.	Max.	Min.	Max.	
A1	1.90	1.90 2.45		0.096	
A2	0.05 0.20 2.90 3.2		0.002	0.008	
b			0.114	0.126	
С	0.15	0.41	0.006	0.016	
E	7.75	7.75 8.15		0.321	
E1	6.60	6.60 7.15 4.40 4.70		0.281	
E2	4.40			0.185	
D	5.55	6.25	0.218	0.246	
L	0.75	0.75 1.60		0.063	

FOOTPRINT

Ordering code	Marking	Package	Weight	Base qty	Delivery mode
STTH302S	U32	SMC	0.245 g	2500	Tape & reel

■ Epoxy meets UL 94,V0

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.

STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written ap-

proval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore

Spain - Sweden - Switzerland - United Kingdom - United States.

http://www.st.com