牛客网 ACM 多校训练营(第九场)题解

wwwwodddd

1 A. Circulant Matrix

1.1 题目大意

数组 a 和数组 x 的 FWT 结果是 b。 已知 a 和 b,求 x。

1.2 题目分析

对 a 和 b 做 FWT。 计算 b/a 的结果 x。 对 x 做 FWT。 参考代码

1.3 参考资料

PKU Campus 2014 D 2017 年 NOI 冬令营讲课课件

2 B. Enumeration not optimization

2.1 题目大意

NOIP2017 宝藏 改成了计数题。 新的题目时间复杂度是 $O(n^23^n)$ 。

2.2 题目分析

 $d \uparrow O(n^2 3^n)$ 的做法,思路大概是 f[S][i]。 大概是点集 S 构成一棵子树,根节点是 i。 同样需要记录方案数和深度之和。 最后每条边乘以深度之和即可。

2.3 参考资料

一份错误的代码

数据在评论的第二页。

3 C. Gambling

3.1 题目大意

一个比较有趣的面试题。 理解样例是关键。

3.2 题目分析

首先考虑如何计算当前的胜率。这个有两种算法,动态规划和组合数。

3.3 动态规划

假设当前甲赢了i场,乙赢了j场。 如果 i = n, 那么 $f_{i,j} = 1$ 。 如果 j = n, 那么 $f_{i,j} = 0$ 。 对于一般情况,有 $f_{i,j} = \frac{1}{2}(f_{i+1,j} + f_{i,j+1})$ 。 可以换一种方法表示,设当前胜率为p。 如果下一场比赛甲赢了,胜率会变成 p+q。 如果下一场比赛甲输了, 胜率会变成 p-q。 即胜率的增加量和减少量一样。 这场比赛应该下注 $2q \times 2^{2n-1}$ 。 这样如果胜率增加就赢钱, 胜率减少就输钱。 如果胜率从 1/2 增加到 1, 就会赢 2^{2n-1} 。 如果胜率从 1/2 减少到 1, 就会输 2^{2n-1} 。 换句话说, 当前剩余钱数, 是由胜率决定的。 胜率为 1/2, 钱数为 0。 胜率为 1, 钱数为 2^{2n-1} 。 胜率为 0,钱数为 -2^{2n-1} 。 对于一般情况胜率 1/2+q, 钱数为 $2q \times 2^{2n-1}$ 。 这样你便可以写出一个 $O(n^2)$ 的做法。

3.4 组合数

核心问题就是,当前甲赢了i场,乙赢了j场,甲的胜率是多少。 不妨假设没有提前结束的情况,剩下的t=2n-1-i-j场比赛一定 打完。

如果甲在其中赢了 n-i 场或更多,甲就获胜了,所以甲的胜率是一个组合数的求和

$$\frac{\sum_{n-i \le k \le t} \binom{t}{k}}{2^t}$$

这个不是很容易解决。

如果下一场甲赢了, 胜率变为

$$\frac{\sum_{n-i-1 \leq k \leq t-1} \binom{t-1}{k}}{2^{t-1}}$$

如果下一场甲输了, 胜率变为

$$\frac{\sum_{n-i \le k \le t-1} {t-1 \choose k}}{2^{t-1}}$$

两者求和中只差一项 $\binom{t-1}{n-i-1} = \binom{2n-2-i-j}{n-i-1}$ 。 带入动态规划的结论,答案是

$$\frac{\binom{2n-2-i-j}{n-i-1}}{2^{2n-2-i-j}}\times 2^{2n-1}=2^{1+i+j}\binom{2n-2-i-j}{n-i-1}$$

所以统计前缀中,甲赢得次数i,乙赢的次数j。

然后计算组合数和 2 的次幂即可。

组合数的计算可以预处理,或者是利用相邻两项只需要乘一项和除一 项来计算。

可以了解一下 O(n) 求 1 到 n 的逆元。

参考代码

3.5 参考资料

150 Most Frequently Asked Questions on Quant Interviews

Chapter 2.7 Brainteasers, Question 20.

(Answer: Chapter 3.7 Brainteasers, Question 20.)

4 D. The number of circuits

4.1 题目大意

求欧拉回路的个数。

4.2 题目分析

首先思考如何暴力?

需要用到BEST theorem。

学会暴力之后,注意到这一定是个线性递推,可以先生成前几百项(比如 600 项)

然后用高斯消元,或者 Berlekamp Massey 算法,解出线性递推。

直接求第 n 项的结果就可以了。

类似的思路可以用于很多题目,只要是线性递推,阶数不太高,都可以 这样做。

几乎可以解决所有状态压缩结合矩阵乘法的题目。

参考代码

大家可以参考一下杜教的 BM 模板

4.3 参考资料

Project Euler 258 经典的 $d^2 \log n$ 解决线性递推数列的题目。

Project Euler 458 先暴力求递推,然后找规律。

Codechef DMCS 矩阵乘法

BZOJ 1494 NOI 老题,也可以用这个方法通过。

BZOJ 1494 的题解

玲珑杯的一个题 感谢 yanQval 教育我不要出数列题,会被暴力 BM 过。

5 E. Music Game

5.1 题目大意

求得分的期望。

5.2 题目分析

首先要学会平方的版本和立方的版本。

然后发现并不需要实际的去维护 m 次方,任意的一个 m 次多项式都可以。

当然是选择最好维护的组合数。最后再用斯特灵数推回次方。

参考代码

5.3 参考资料

BZOJ 3450 平方的版本。

BZOJ 4318 立方的版本。

hdu 4625 JZPTREE,组合数维护起来比较简单,最后转回次方即可。可以参考这份题解

学习组合数和次方之间如何相互转化 (用第二类斯特灵数)

6 F. Typing practice

6.1 题目大意

TRIE 图上的最短路。

6.2 题目分析

看到过很多人写不是那么正确的 AC 自动机/TRIE 图。

主要问题就是,如果是字符串匹配的话,那么 AC 自动机跳 Fail 指针的次数,至多 O(L) 次。

因为向后跳的次数,一定小于向前进的次数。

但是对于这个题目有退格来说,这个就不一定成立了。

所以对于这个题应该正确建立 TRIE 图,并且在 TRIE 图上做最短路。

- 一个错误的示范
- 一个正确的示范

6.3 参考资料

算法合集之《多串匹配算法及其启示》 算法合集之《Trie 图的构建、活用与改进》

7 G. Longest Common Subsequence

7.1 题目大意

4 个字符串,求 LCS。 重复的数字不太多。

7.2 题目分析

如果四个都是排列的话,对于每个数字 x,考虑他在四个数列出现的位置 pa[x], pb[x], pc[x], pd[x]。

在四维空间中构造一个点 (pa[x], pb[x], pc[x], pd[x])。

对于构造出的 n 个点, 求最长上升子序列即可。

高维的最长上升子序列,可以通过 CDQ 分治,或者是 KD 树来解决。如果数字出现多次,可以类似的转换。

设数字 x 在 a 中出现的位置是 $pa[x][1], pa[x][2], \ldots, pa[x][ca[x]]$ 。

设数字 x 在 b 中出现的位置是 $pb[x][1], pb[x][2], \dots, pb[x][cb[x]]$ 。

设数字 x 在 c 中出现的位置是 $pc[x][1], pc[x][2], \ldots, pc[x][cc[x]]$ 。

设数字 x 在 d 中出现的位置是 $pd[x][1], pd[x][2], \dots, pd[x][cd[x]]$ 。

构造 $ca[x] \times cb[x] \times cc[x] \times cd[x]$ 个点即可。

求最长上升子序列,相邻两项的四个维度必须都严格上升。

所以每个上升子序列就是原题中的一个公共子序列。

可以注意到,只要保证 a,b,c 中出现的次数 ≤ 2 ,那么最后生成的点数 至多 8n。

然后再反复 CDQ 分治更新答案就可以了。

然后这个题的数据一如既往的非常麻烦,所以又有一些奇怪的做法水过去了。

继续感慨出题还是要出计数题。

7.3 参考资料

cogs 2479 四维偏序

cogs 2580 五维偏序

但是这2个题都是计数题。

BZOJ 2253 三维偏序

这是一个三维偏序, 求最优解。

8 H. Prefix Sum

8.1 题目大意

大概是问如何把 $O(m \log nk^2)$ 优化为 $O(m \log nk)$ 。

数据范围很难决定啊,一个非常简单的暴力做法是 nm 的,所以 k 也不能太大。

不过说起来 O(nm) 的暴力,有两种。

- 一种是修改 O(1), 询问 O(n)。
- 一种是修改 O(n), 询问 O(1)。

可以把两种暴力结合起来,变成 $O(m\sqrt{n})$

8.2 题目分析

首先你应该知道,询问 x 回答需要的是

$$\sum_{1 \le i \le x} \binom{x - i + k}{k} a[0][i]$$

其中 $\binom{x-i+k}{k}$ 是没法维护的。

注意到组合恒等式,然后我们把组合数的定义推广到负数。

$$\binom{x-i+k}{k} = \sum_{0 \le j \le k} \binom{x}{j} \binom{k-i}{k-j}$$

$$\sum_{1 \leq i \leq x} \binom{x-i+k}{k} a[0][i] = \sum_{1 \leq i \leq x} \sum_{0 \leq j \leq k} \binom{x}{j} \binom{k-i}{k-j} a[0][i] = \sum_{0 \leq j \leq k} \binom{x}{j} \left(\sum_{1 \leq i \leq x} \binom{k-i}{k-j} a[0][i]\right)$$

注意到最后是一个 $\binom{k-i}{k-i}a[0][i]$ 的前缀和,很容易想到用树状数组维护。

一个正常题目,比如 POJ 3468 一般维护 $i^ja[0][i]$,但是 i^j 不利于计算,可以改为同样是 i 次多项式的。

因为 j 有 k+1 个取值,所以我们需要 k+1 个树状数组来维护。 预处理逆元。

 $\binom{x}{i}$ $(0 \le j \le k)$ 可以用 O(k) 的时间推出来。

 $\binom{k-i}{k-j}(0 \le j \le k)$ 可以用 O(k) 的时间推出来。

每次修改需要修改 k+1 个树状数组,时间复杂度为 $(k+1)\log n$ 。

每次询问需要求 k+1 个树状数组的前缀和, 时间复杂度为 $(k+1)\log n$ 。

这个题就解决了。

8.3 参考资料

POJ 3468 k = 2 的情况就是区间修改,区间求和。 Luogu P4514 二维的情况。 其实还有 k = 3 和 k = 4 的情况,但是找不到了。

9 I. Juggernaut

9.1 题目大意

大概就是去年 NOI 冬令营讲的题目再推广一次。

9.2 题目分析

首先要学会没有 Burnside 的版本怎么做。

做法很简单,不填最后一行最后一列,前面任意有 $2^{(n-1)(m-1)}$ 种方案,最后一行一列计算出来。

然后回想没有异或为0的限制怎么做。

$$(\sum_{a|n} \sum_{b|m} \varphi(a)\varphi(b)2^{nm/\text{lcm}(a,b)})/(nm)$$

如果有异或限制为 0, nm/lcm(a,b) 需要作出一些改变,具体如下。设 l = lcm(a,b)。

如果 l/a 是奇数, l/b 是奇数, 指数部分应为 nm/l - n/a - m/b + 1。

如果 l/a 是奇数, l/b 是偶数, 指数部分应为 nm/l - n/a。

如果 l/a 是偶数, l/b 是奇数, 指数部分应为 nm/l - m/b。

如果 l/a 是偶数, l/b 是偶数, 如果出现了就是程序出错了。

最后考虑对合数取模怎么做。

全程对 nmp 取模。最后直接除以 nm 即可。

为了效率可以当 n, m 和 p 不互质时, 再把模数换成 nmp。

Python 也可以通过这个题目。

类似的技巧(最后一次除以 n,没有逆元,那么就全程对 np 取模)也可以用在 FWT 上。

9.3 参考资料

感谢曾耀辉 quailty 的帮助。

2017 年 NOI 冬令营讲课课件

10 J. Maze

10.1 题目大意

大概就是一个连通性相关的状态压缩 DP。

10.2 题目分析

首先把原题做一个转换,原题相当于是随机放红蓝两个钥匙,问两个钥 匙联通的方案。

那么就是一个很简单的逐格的连通性状态压缩 DP。

对于每个格子, 你需要记录连通性和是否包含红蓝两个钥匙。(最早能连到哪个格子)

对于全局来说,需要额外记录是否出现过红钥匙,是否出现过蓝钥匙, 红钥匙和蓝钥匙是否联通。

然后每次增加一格子,讨论新增加的格子和上方,和左方有没有墙,讨 论当前格是否放置钥匙。

10.3 参考资料

感谢唐飞虎 xiaodao 的帮助。

插头 DP 大字典

51nod 1633 赫拉迪克之杖