

Escolha de um controlador de motor

Desenvolvido por Ludor Engineering

Um conjunto de ferramentas de formadores para promover as competências do STEM, ao utilizar Aplicações para microcontroladores

ojeto n.º 2019-1-RO01-KA202-063965

Este projeto foi financiado com o apoio da Comissão Europeia. O conteúdo reflete apenas a opinião dos autores e a Comissão não pode ser responsabilizada por qualquer utilização que possa ser feita a partir da informação nele contida.

Escolha de um controlador de motor

Introdução

Motores

Seleção de acionadores de motores

Microcontroladores

Síntese

promover as competências do STEM, ao utilizar

Aplicações para microcontroladores

- Os motores elétricos são utilizados em muitas aplicações de microcontroladores onde vários parâmetros do motor (arranque e paragem, sentido de rotação, velocidade, etc.) precisam de ser controlados.
- É de grande importância selecionar o método adequado de controlo do motor para fazer face aos requisitos de aplicação e para evitar a danificação dos componentes.

- O principal princípio para controlar um motor com um microcontrolador é o acionador do motor - um componente eletrónico que recebe os sinais de controlo do microcontrolador e fornece a corrente de acionamento necessária para o motor a partir da fonte de alimentação.
- Os motores CC precisam de uma corrente muito superior em relação ao que um microcontrolador pode habitalmente fornecer, pelo que estes dois nunca devem ser ligados diretamente.

Controlador do motor vs. condutor do motor

- Os termos controlador do motor e acionador do motor são utilizados de forma bastante indiferenciada, apesar disto ser totalmente incorreto.
- Um acionador de motor é um componente eletrónico que pode converter um sinal de entrada num movimento do motor sem que este possa emitir instruções (ou controlar) o motor. Um acionador do motor pode controlar e acionar ativamente o próprio motor. Este controla o motor através da unidade do condutor.
- Por vezes o controlador e o condutor são unidades separadas, outras vezes são integradas.

DRV8880 Acionador do motor de passo. Fonte: www.robofun.ro/

ZD10LCD 10A acionador do motor de passo.

Fonte: www.zikodrive.com/

Motores

- Normalmente são utilizados três tipos de motores elétricos em aplicações de microcontroladores:
 - Motores CC
 - RC Servomotores
 - Motores de passo.
- Estes são selecionados em função dos requisitos específicos da aplicação:
 - precisão posicional
 - Disponibilidade da energia de transmissão
 - torção
 - aceleração
 - custo

Motores CC

Os motores CC convertem energia elétrica de corrente contínua em energia mecânica

Controlo de motores de corrente contínua

- o sentido de rotação pode ser invertido através da simples inversão da polaridade da tensão
- a velocidade pode ser regulada através do controlo da tensão de entrada no motor

Controlo direto de Motoroes CC

- Dependendo da aplicação, algumas ações e parâmetros do motor podem ser controlados sem um acionador, por exemplo:
 - Ao ligar a diretamente a fonte de alimentação através de um interrutor ligar/desligar o motor
 - Ao utilizar um potenciómetro controlo de velocidade
 - Ao utilizar um ponte-H, um circuito eletrónico simples que permite mudar o sentido do fluxo de corrente através do motor, alterando assim o sentido de rotação de um motor de corrente contínua.

Ponte H

Esquemas da ponte H

Motores de Passo

- São motores de corrente contínua sem escovas que convertem impulsos digitais numa rotação mecânica do eixo.
- Cada rotação completa é dividida em vários passos e o motor deve enviar um impulso separado para cada passo. O motor de passo apenas pode dar um passo de cada vez e cada passo tem o mesmo tamanho.

Controlo de Motores de Passo

- A velocidade de rotação pode ser regulada através do controlo da frequência dos impulsos de entrada.
- O sentido de rotação pode ser invertido, ao alterar-se a polaridade de uma bobina ou ao trocá-las.
- A posição do motor pode ser controlada sem qualquer mecanismo de feedback visto que cada impulso faz com que o motor gire num determinado ângulo preciso. No entanto, estes não possuem a capacidade de comunicar a sua posição, apenas podem mover o número de passos ordenados a partir da sua posição atual.

Um conjunto de ferramentas de formadores para promover as competências do STEM, ao utilizar Aplicações para microcontroladores

Métodos para o controlo de motores de passo

- Acionadores de Motores de Passo
 - O A4988 e o DRV8825 são exemplos comuns de acionadores económicos, no entanto existem muitos outros disponíveis, apresentando cada um vários custos e desempenhos.
- Acionador do circuito da ponte H
 - Não é recomendado visto que não possui um método para limitar o valor atual. Note-se que são mais difíceis de ligar a um Arduino (requerem mais pinos) e de serem controlados (são necessáriosmais cálculos para o Arduino).

Servomotores

- São dispositivos elétricos que permitem um controlo preciso da posição angular.
- São compostos por um motor elétrico acoplado a um sensor um para feedback de posição.
- Possuem 3 fios: potência (geralmente vermelha), cabo de terra (geralmente castanho ou preto), e o cabo de sinal (geralmente branco ou laranja).

Controlar os Servomotores

- Os servomotores são controlados ao utilizar-se impulsos elétricos de largura ajustável, ou a partir da modulação de largura de impulso (PWM) através do cabo de sinal.
- Normalmente, o envio de um pulso de 1ms 5V vira o servomotor para 0° e o envio de um pulso de 2ms 5V vira-o para 180° com os comprimentos de pulso na escala média de forma linear.

Fonte: https://howtomechatronics.com/

Controlo de servomotores ao utilizar-se microcontroladores

- Os microcontroladores podem controlar facilmente os servomotores através da modulação de largura de impulso (PWM), girando-os exatamente para a posição desejada.
- O cabo de sinal do servomotor tem de ser ligado à saída digital do microcontrolador que gera o impulso.
- Os servosmotore pequenos podem ser diratamente alimentados por um microcontrolador, contudo se a corrente requerida pelo servomotor for superior ao que este pode fornecer, deve ser utilizada uma fonte de alimentação separada para este motor.

Seleção de condutores

Importante na seleção de um acionador do motor

- Motores Compatíveis
 - Cada tipo de motor necessita do seu próprio tipo de controlador de motor. Deste modo é necessário escolher o controlador de acordo com o seu motor.
- Interface
 - O condutor do motor e a sua interface devem ser seleccionados de acordo com a aplicação em causa.
- Tensão e Corrente
 - O condutor do motor deve ter uma gama de tensão adequada à aplicação e uma capacidade de tratamento de corrente suficiente.
 - É preferível escolher um acionador que tenha mais potência do que a potência nominal do motor, a fim de evitar danificá-lo e de garantir uma gama completa de desempenho mecânico do motor.

Escolha de um acionador de motor de passo

 Escolha um acionador com um motor de passo que possa fornecer confortavelmente a corrente requerida pelo motor.

Os acionadores de passo mais económicos como o A4988 e o DRV8825 apenas podem fornecer cerca de 2 amperes. Se o motor exigir uma corrente mais elevada deve ser utilizado um acionador de passo comercial

mais caro.

Escolha de um acionador de corrente contínua ou de um servomotor

Parâmetro do motor	Requisitos para o controlador
Tensão nominal (V)	A gama de tensão deve corresponder à tensão nominal do motor.
Corrente (A)	Deve fornecer uma corrente igual ou superior ao consumo de corrente contínua do motor sob carga. Deve também ser assegurado que a potência da corrente máxima do controlador é cerca do dobro da corrente contínua de funcionamento do motor.
Método de controlo	O método de controlo deve ser adequado para o motor.

Escolha de um acionador de motor de passo

Parâmetro do motor	Requisitos para o controlador
Unipolar ou bipolar?	Devem ser conformes ou ter capacidade para controlar ambos os tipos.
Tensão nominal (V)	A gama de tensão deve corresponder à tensão nominal do motor.
Corrente por bobina (A)	Deve fornecer corrente (por bobina) em conformidade.
Método de controlo	O método de controlo deve ser adequado para o motor.

Microcontroladores

Controlo de motores com Arduino - bibliotecas

- O Arduino IDE possui bibliotecas integradas que facilitam bastante o controlo tanto dos motores de passo tal como do como dos servomotores
 - "Stepper.h". permite controlar motores de passo unipolares ou bipolares
 - "Servo.h permite o controlo de servomotores RC (hobby)
- Note-se que existem muitas bibliotecas disponíveis para adicionar ao Arduino IDE com vista a facilitar a utilização de vários acionadores e da ponte H.

microcontroladores

File Edit Sketch Tools Help

Controlo de motores com Arduino – modelo de proteção

- Os modelos de proteção são placas que podem ser ligadas ao Arduino para aumentar as suas capacidades.
- O Modelo de Proteção Arduino permite ao Arduino acionar motores de corrente contínua e motores de passo. Mais sobre estes modelos em: https://store.arduino.cc/arduinomotor-shield-rev3

oomlout, Modelo de Proteção Adafruit no Arduino - ARSH-02-MS (3725118122), CC BY-SA 2.0

Aplicações para microcontroladores

Um conjunto de ferramentas de formadores para

promover as competências do STEM, ao utilizar

Controlo de motores com Raspberry Pi - bibliotecas

- Biblioteca do Motor [Raspberry Pi Motor Library]: Uma biblioteca Python 3 para motores e servomotores se ligarem a um Raspberry Pi.
- Existem também muitas bibliotecas disponíveis para instalação no computador de placa única Raspberry Pi para facilitar a utilização de vários motores.

Controlo de motores com Raspberry Pi - HATs

- Um HAT (Hardware Attached on Top Hardware fixado na parte superior) é uma placa adicional para o Raspberry Pi
- AAdafruit 16-Channel PWM/Servo HAT permite à placa Raspberry Pi controlar vários servomotores de forma simultânea
- Tanto a Adafruit DC, bem como o Stepper Motor HAT [O Motor de Passo Hat] permitem o acionamento de até 4 motores CC ou de 2 motores de passo com um controlo total de velocidade PWM (modelalção da largura do impulso).

Fonte: https://learn.adafruit.com/

Hiperligações úteis

- Motores CC: Noções Gerais https://itp.nyu.edu/physcomp/lessons/dc-motors/dc-motors-the-basics/
- https://www.robotshop.com/community/tutorials/show/how-to-make-a-robot-lesson-5-choosing-a-motor-controller
- CONHEÇA O CONTROLADOR DE MOTOR CERTO PARA O SEU MOTOR ... https://www.zikodrive.com/ufaqs/find-right-motor-controller-motor/
- DC Motor Control with an Arduino https://core-electronics.com.au/tutorials/dc-motors-with-arduino.html
- Como controlar um motor com o Raspberry Pi https://core-electronics.com.au/tutorials/how-to-control-a-motor-with-the-raspberry-pi.html
- Introdução ao Acionador do Motor: Topologia da Ponte H e controlo de direção https://components101.com/articles/what-is-motor-driver-h-bridge-topology-and-direction-control
- Controlar Motores de Passo https://itp.nyu.edu/physcomp/lessons/dc-motors/stepper-motors/
- Como controlar um motor de passo com acionador A4988 e num Arduino https://howtomechatronics.com/tutorials/arduino/how-to-control-stepper-motor-with-a4988-driver-and-arduino/
- Como Funciona o Servomotor e Como Controlar os Servomotores ao utilizar o Arduino https://howtomechatronics.com/how-it-works/how-servo-motors-work-how-to-control-servos-using-arduino/
- Acionadores de Motores de Passo https://www.pololu.com/category/120/stepper-motor-drivers

Escolha de um controlador de motor

Síntese do tema

Eis o que aprendemos:

- Competências de seleção motora: Determinar o tipo de motor necessário para uma aplicação de microcontrolador
- Conhecimentos sobre motores eléctricos: O que são e como funcionam os motores de corrente contínua, servomotores e motores de passo
- Conhecimento sobre o controlo de motores: Quais são os métodos, o hardware e o software envolvidos no controlo de motores para aplicações de microcontroladores

