

CLAIMS

1. A process for producing oxygenated products from a Fischer-Tropsch derived olefinic feedstock, which process includes reacting the feedstock, in a hydroformylation reaction stage, with carbon monoxide and hydrogen at an elevated reaction temperature and at a superatmospheric reaction pressure in the presence of a hydroformylation catalyst system, which comprises a mixture, combination or complex of
 - 5 (i) a transition metal, T, where T is selected from the transition metals of Group VIII of the Periodic Table of Elements;
 - (ii) carbon monoxide, CO;
 - (iii) hydrogen, H₂;
 - (iv) as a primary ligand, a monodentate phosphorus ligand; and
 - 10 (v) as a secondary ligand, a bidentate phosphorus ligand which confers resistance on the catalyst system to poisoning arising from the presence of undesired components in the Fischer-Tropsch derived feedstock.
- 20 2. A process according to Claim 1, wherein T is Co, Ir, Pd or Rh.
3. A process according to Claim 2, wherein T is Rh, with compound (i) being selected from Rh(acac)(CO)₂ where 'acac' is acetylacetone; Rh(acac)(CO)(TPP) where 'acac' is acetylacetone and 'TPP' is triphenylphosphine; [Rh(OAc)₂]₂ where 'OAc' is acetate; Rh₂O₃; Rh₄(CO)₁₂; Rh₆(CO)₁₆; Rh(CO)₂(dipivaloyl methanoate); and Rh(NO₃)₂.
- 25 4. A process according to Claim 2, wherein the hydroformylation reaction stage comprises a hydroformylation reactor, with the process including initially preparing the catalyst system by dissolving component (i), together with the ligands, in a solvent, to produce a catalyst solution, and heating the catalyst

solution in the reactor in the presence of synthesis gas comprising CO and H₂ to form an active hydroformylation catalyst system in which the rhodium concentration in the catalyst solution in the hydroformylation reactor is from 10 to 1000 ppm.

5

5. A process according to Claim 3 or Claim 4, wherein the monodentate phosphorus ligand is used in a molar excess, relative to the rhodium, of from 50:1 to 1000:1.

10 6. A process according to any one of Claims 3 to 5 inclusive, wherein the bidentate phosphorus ligand is employed at a lower ligand to rhodium molar ratio than the monodentate phosphorus ligand, and wherein the bidentate phosphorus ligand to rhodium ratio is from 0.2:1 to 100:1.

15 7. A process according to any one of Claims 1 to 6 inclusive, wherein the monodentate phosphorus ligand is

where all R^a are the same or are dissimilar, and are each a branched or straight chain alkyl or aryl radical.

20

8. A process according to Claim 7 wherein, in the ligand of formula (L1a), each R^a is an aryl group and all R^a are the same.

25 9. A process according to Claim 8 wherein, in the ligand of formula (L1a), each R^a is phenyl so that ligand (L1a) is triphenylphosphine.

10 10. A process according to any one of Claims 1 to 6 inclusive, wherein the monodentate phosphorus ligand is

30 where all R^a are the same or are dissimilar, and are each a branched or straight chain alkyl or aryl radical.

11 A process according to Claim 10 wherein, in the ligand of formula (L1b), each R^a is an aryl group and all R^a are the same.

5 12. A process according to Claim 11 wherein, in the ligand of formula (L1b), each R^a is a substituted phenyl ring.

13. A process according to Claim 12, wherein the ligand (L1b) is tris(2,4-ditertiary butylphenyl) phosphite or tris(2-tertiary butylphenyl) phosphite.

10 14. A process according to any one of Claims 1 to 13 inclusive, wherein the bidentate phosphorus ligand is

wherein

25 (i) all R^b are the same or are dissimilar, and are each H, alkyl, alkoxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl, aryloxy, polyether, cyano, nitro, halogen, trifluoromethyl, -C(O)R^c, -(R^d)C(O)R^c, -CHO, (R^d)CHO, -COOR^c, -(R^d)COOR^c, -COO⁻M⁺, -(R^d)COO⁻M⁺, -SO₃R^c, -(R^d)SO₃R^c, -SO₃⁻M⁺, -(R^d)SO₃⁻M⁺, -SR^c, -(R^d)SR^c, -SOR^c, -R^d(SOR^c), -NR^c, -(R^d)NR^c, -N⁺(R^c)(R^c)(X⁻) or -(R^d)N⁺(R^c)(R^c)(X⁻),

30 wherein

(a) R^c and R^d are the same or different, and are each H, or a branched or straight chain alkyl, alkoxy, cycloalkyl, polyether, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl or aryloxy radical;

(b) M^+ is a cation; and

5 (c) X^- is an anion;

(ii) Y and Z are independent bridges, are the same or different, and are each selected from the radicals $-O-$, $-N(R^c)-$, $-N^+(R^c)(R^c)(X^-)-$, $-N(C(O)R^c)-$, $-C(R^c)(R^c)-$, $-C(C(R^c)(R^c))-$, $-C(O)-$, $-S-$, $-Si(R^c)(R^c)-$, $-Si(OR^c)(OR^c)-$, $-P(R^c)-$ or $-P(OR^c)-$, where R^c and X^- are as hereinbefore defined;

10 (iii) n (in $(Y)_n$ and $(Z)_n$) is, in each case, 0 or 1, with the proviso that n cannot be 0 for both Y and Z;

(iv) W^1 , W^2 , W^3 and W^4 are the same or different, and are each an alkyl (branched or straight chain), alkoxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl, aryloxy or trifluoromethyl radical;

15 (v) a, b, in P^a and P^b , are used merely to identify the P atoms;

(vi) each G is an independent linker radical, are the same or different, and is selected from $-O-$, $-N(R^f)-$, $-N^+(R^f)(R^f)(X^-)-$, $-C(R^f)(R^f)-$, $-S-$, $-Si(R^f)(R^f)-$, $-C(F_2)-$ or $-C(R^f)(F)-$, wherein

20 (c) R^f is H, or a branched or straight chain alkyl, alkoxy, cycloalkyl, polyether, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl or aryloxy radical, and with the proviso that when the radical contains more than one R^f , all R^f are the same or different;

(d) X^- is as defined above; and

25 (vii) n (in each $(G)_n$) is 0 or 1.

15. A process according to any one of Claims 1 to 13 inclusive, wherein the bidentate phosphorus ligand is

10 wherein

- (i) all R^b are the same or are dissimilar, and are each H, alkyl, alkoxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl, aryloxy, polyether, cyano, nitro, halogen, trifluoromethyl, -C(O)R^c, -(R^d)C(O)R^c, -CHO, (R^d)CHO, -COOR^c, -(R^d)COOR^c, -COO⁻M⁺, -(R^d)COO⁻M⁺, -SO₃R^c, -(R^d)SO₃R^c, -SO₃⁻M⁺, -(R^d)SO₃⁻M⁺, -SR^c, -(R^d)SR^c, -SOR^c, -R^d(SOR^c), -NR^c, -(R^d)NR^c, -N⁺(R^c)(R^c)(X⁻) or -(R^d)N⁺(R^c)(R^c)(X⁻), wherein
 - (a) R^c and R^d are the same or different, and are each H, or a branched or straight chain alkyl, alkoxy, cycloalkyl, polyether, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl or aryloxy radical;
 - (b) M⁺ is a cation; and
 - (c) X⁻ is an anion;
- (ii) Z is an independent bridge, and is selected from the radicals -O-, -N(R^c)-, -N⁺(R^c)(R^c)(X⁻)-, -N(C(O)R^c)-, -C(R^c)(R^c)-, -C(C(R^c)(R^c))- , -C(O)-, -S-, -Si(R^c)(R^c)-, -Si(OR^c)(OR^c)-, -P(R^c)- or -P(OR^c)-, where R^c and X⁻ are as defined above;
- (iii) n (in (Z)_n) is 1;
- (iv) W¹, W², W³ and W⁴ are the same or different, and are each an alkyl (branched or straight chain), alkoxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl, aryloxy or trifluoromethyl radical;
- (v) a, b, in P^a and P^b, are used merely to identify the P atoms;

(vi) each G is an independent linker radical, are the same or different, and is selected from $-O-$, $-N(R^f)-$, $-N^+(R^f)(R^f)(X^-)-$, $-C(R^f)(R^f)-$, $-S-$, $-Si(R^f)(R^f)-$, $-C(F_2)-$ or $-C(R^f)(F)-$, wherein

(e) R^f is H, or a branched or straight chain alkyl, alkoxy, cycloalkyl, polyether, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl or aryloxy radical, and with the proviso that when the radical contains more than one R^f , all R^f are the same or different;

(f) X^- is as defined above; and

(vii) n (in each $(G)_n$) is 0 or 1.

10

16. A process according to any one of Claims 1 to 13 inclusive, wherein the bidentate phosphorus ligand is

15

20

(L2c)

wherein

(i) all R^b are the same or are dissimilar, and are each H, alkyl, alkoxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl, aryloxy, polyether, cyano, nitro, halogen, trifluoromethyl, $-C(O)R^c$, $-(R^d)C(O)R^c$, $-CHO$, $(R^d)CHO$, $-COOR^c$, $-(R^d)COOR^c$, $-COO^-M^+$, $-(R^d)COO^-M^+$, $-SO_3R^c$, $-(R^d)SO_3R^c$, $-SO_3^-M^+$, $-(R^d)SO_3^-M^+$, $-SR^c$, $-(R^d)SR^c$, $-SOR^c$, $-R^d(SOR^c)$, $-NR^c$, $-(R^d)NR^c$, $-N^+(R^c)(R^c)(X^-)$ or $-(R^d)N^+(R^c)(R^c)(X^-)$,

30 wherein

(a) R^c and R^d are the same or different, and are each H, or a branched or straight chain alkyl, alkoxy, cycloalkyl, polyether, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl or aryloxy radical;

(b) M^+ is a cation; and

5 (c) X^- is an anion;

(ii) Y is an independent bridge, and is selected from the radicals $-O-$, $-N(R^c)-$, $-N^+(R^c)(R^c)(X^-)-$, $-N(C(O)R^c)-$, $-C(R^c)(R^c)-$, $-C(C(R^c))(R^c)-$, $-C(O)-$, $-S-$, $-Si(R^c)(R^c)-$, $-Si(OR^c)(OR^c)-$, $-P(R^c)-$ or $-P(OR^c)-$, where R^c and X^- are as hereinbefore defined;

10 (iii) n (in $(Y)_n$) is 1;

(iv) W^1 , W^2 , W^3 and W^4 are the same or different, and are each an alkyl (branched or straight chain), alkoxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl, aryloxy or trifluoromethyl radical;

(v) a, b, in P^a and P^b , are used merely to identify the P atoms;

15 (vi) each G is an independent linker radical, are the same or different, and is selected from $-O-$, $-N(R^f)-$, $-N^+(R^f)(R^f)(X^-)-$, $-C(R^f)(R^f)-$, $-S-$, $-Si(R^f)(R^f)-$, $-C(F_2)-$ or $-C(R^f)(F)-$, wherein

20 (g) R^f is H, or a branched or straight chain alkyl, alkoxy, cycloalkyl, polyether, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl or aryloxy radical, and with the proviso that when the radical contains more than one R^f , all R^f are the same or different;

(h) X^- is as defined above; and

25 (vii) n (in each $(G)_n$) is 0 or 1.

17. A process according to any one of Claims 14 to 16 inclusive wherein, in the ligand (L2a), (L2b) or (L2c), M^+ is an ion of an alkali or alkali earth metal, or is ammonium or a quaternary ammonium ion.

18. A process according to any one of Claims 14 to 17 inclusive,

30 wherein, in the ligand (L2a), (L2b) or (L2c), X^- is an organic acid, phosphate or sulphate group.

19. A process according to any one of Claims 14 to 18 inclusive wherein, in the ligand (L2a), (L2b) or (L2c), W¹, W², W³ and W⁴ are each an alkyl, aryl or aryloxy radical.

5

20. A process according to Claim 19 wherein, in the ligand (L2a), (L2b) or (L2c), W¹, W², W³ and W⁴ are each an aryl or aryloxy radical in accordance with formula (1), with the proviso that the structure of formula (1) does not represent a bridging unit connecting P^a to P^b – for P^a, W¹ and W² represent radicals connected through their respective G linkers, and for P^b, W³ and W⁴ represent radicals connected through their respective G linkers

15

20

(1)

wherein

(i) all R^e are the same or are different, and are each H, alkyl, alkoxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl, aryloxy, polyether, cyano, nitro, halogen, trifluoromethyl, –C(O)R^c, –(R^d)C(O)R^c, –CHO, (R^d)CHO, –COOR^c, –(R^d)COOR^c, –COO⁻M⁺, –(R^d)COO⁻M⁺, –SO₃R^c, –(R^d)SO₃R^c, –SO₃⁻M⁺, –(R^d)SO₃⁻M⁺, –SR^c, –(R^d)SR^c, –SOR^c, –R^d(SOR^c), –NR^c, –(R^d)NR^c, –N⁺(R^c)(R^c)(X⁻) or –(R^d)N⁺(R^c)(R^c)(X⁻),

30

wherein

(a) R^c and R^d are the same or different, and are each H, or a branched or straight chain alkyl, alkoxy, cycloalkyl, polyether, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl or aryloxy radical;

5 (b) M^+ is a cation; and

(c) X^- is an anion;

(ii) each G is an independent linker radical, are the same or different, and is selected from $-O-$, $-N(R^f)-$, $-N^+(R^f)(R^f)(X^-)-$, $-C(R^f)(R^f)-$, $-S-$, $-Si(R^f)(R^f)-$, $-C(F_2)-$ or $-C(R^f)(F)-$, wherein

10 (d) R^f is H, or a branched or straight chain alkyl, alkoxy, cycloalkyl, polyether, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl or aryloxy radical, and with the proviso that when the radical contains more than one R^f , all R^f are the same or different;

(e) X^- is as defined above; and

15 (iii) n (in each $(G)_n$) is 0 or 1;

(iv) D and E are each an independent bridge, are the same or different, and are each selected from the radical, $-O-$, $-N(R^c)-$, $-N^+(R^c)(R^c)(X^-)-$, $-N(C(O)R^c)-$, $-N(SiR_2^c)-$, $-C(R^c)(R^c)-$, $-C(C(R^c)(R^c))-$; $-C(O)-$, $-S-$, $-Si(R^c)(R^c)-$, $-Si(OR^c)(OR^c)-$, $-P(R^c)-$ or $-P(OR^c)-$, wherein R^c is H, or a branched or straight chain alkyl, alkoxy, cycloalkyl, polyether, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl or aryloxy radical, and X^- is as defined above;

20 (v) n (in each of $(D)n$ and $(E)n$) is 0 or 1.

21. A process according to Claim 20 wherein, in formula (1), $n=0$, in
25 $(E)_n$, so that the independent E bridge is absent; formula (1) will then have the structure of formula (2)

22. A process according to Claim 20 wherein, in formula (1), n=0, in
 (D)n, so that the independent D bridging is absent; formula (1) will then have the
 15 structure of formula (3)

23. A process according to Claim 20 wherein, in formula (1), n=0, in
 both (D)n and (E)n, so that both the independent bridges D and E are absent;
 30 formula (1) will then have the structure of formula (4)

24. A process according to any one of Claims 1 to 13 inclusive, wherein the bidentate phosphorus ligand is

15

(L2d)

20 wherein

- (i) each G is an independent linker radical, are the same or different, and is selected from $-O-$, $-N(R^f)-$, $-N^+(R^f)(R^f)(X^-)-$, $-C(R^f)(R^f)-$, $-S-$, $-Si(R^f)(R^f)-$, $-C(F_2)-$ or $-C(R^f)(F)-$, wherein
 - (a) R^f is H, or a branched or straight chain alkyl, alkoxy, cycloalkyl, polyether, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl or aryloxy radical, and with the proviso that when the radical contains more than one R^f , all R^f are the same or different;
 - (b) X^- is an anion; and
- (ii) n (in each $(G)_n$) is 0 or 1;
- 30 (iii) a, b, in P^a and P^b , are used merely to identify the P atoms;

(iv) W¹, W², W³ and W⁴ are the same or different, and are each an alkyl (branched or straight chain), alkoxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl, aryloxy or trifluoromethyl radical; and

(v) A is a bridging unit and is selected from one of the following diradicals: –

5 (CR^b)_n–, -(CR^b)_n–, -(CR^bCR^b)_n–, -[C(O)]_n–, -[C(O)C(R^b)₂]_n–, -(NR^b)_n–, –S–, -(SiR^b)_n–, -(SiOR^b)_n–, with

(c) any alkyl radical having n = 1 to 5 and being cyclic, straight or branched or straight;

(d) R^b being H, alkyl, alkoxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, 10 aryl, heteroaryl, aryloxy, polyether, cyano, nitro, halogen, trifluoromethyl, –C(O)R^c, -(R^d)C(O)R^c, –CHO, (R^d)CHO, –COOR^c, -(R^d)COOR^c, –COO⁻M⁺, -(R^d)COO⁻M⁺, –SO₃R^c, -(R^d)SO₃R^c, –SO₃⁻M⁺, -(R^d)SO₃⁻M⁺, –SR^c, –(R^d)SR^c, –SOR^c, –R^d(SOR^c), –NR^c, -(R^d)NR^c, –N⁺(R^c)(R^c)(X⁻) or –(R^d)N⁺(R^c)(R^c)(X⁻), wherein

15 (e) R^c and R^d are the same or different, and are each H, or a branched or straight chain alkyl, alkoxy, cycloalkyl, polyether, cycloalkoxy, heterocycloalkyl, aryl, heteroaryl or aryloxy radical;

(f) M⁺ is a cation; or

(vi) A is a bridging unit and is ‘-Ar-’, which is an aryl or heteroaryl group of 20 between 4 and 18 carbon atoms.

25. A process according to any one of Claims 1 to 24 inclusive, wherein the reaction temperature is from 50°C to 150°C; the synthesis gas pressure under which the hydroformylation reaction is performed is from 1 to 100 bar; and 25 the H₂:CO ratio is from 1:10 to 100:1.