Student: Trisha Espejo

Project Due Date: 2/14/2020

Computing The Histogram steps:

Step 0: Obtain header from the input file and place into output file

Step 1: allocate memory for an array to store pixel and create a counter

Ex: pixel[i][j];

Step 2: Create a double for loop which would iterate through each pixel

Step 3: in the most inner for loop obtain the value from input file and place it to the pixel array

Ex: Input >> pixel[i][j];

Step 4: use the value of the pixel array obtain from Step 3 for index of histogram array and add the histogram

Ex: histArray[pixel[i][j]]++;

Step 4 delete the allocated array for pixel from the heap

Step 5 print the histogram using the values obtain from hisArray

Step 6 delete the allocated array for hisArray from the heap

Performing Threshold Operation:

Threshold (input, output, thrVal)

Step 0: obtain header from input file.

Step 1: replace the min value with 0 and max with 1

Ex: minVal = 0 and maxVal = 1

Step 2: place the new header into the output file

Step 3: allocate memory for an array to store pixel and create a counter

Ex: pixel[i][j];

Step 4: Create a double for loop which would iterate through each pixel

Step 5: in the most inner for loop obtain the value from input file and place it to the pixel array

Ex: Input >> pixel[i][j];

Trisha Espejo

Step 6: if the threshold value less than or equal to pixel value place 1 into the

Output file else place 0 in output file

Ex: If (thrVal <= pixel[i][j]) output << "1";

else output << "0"

Step 7: delete the allocated array for pixel from the heap

SOURCE CODE:

```
Computer Vision
    Histogram
    Author: Trisha Espejo
    Due Date: 2/14/2020
    Project 1
#include <iostream>
#include <fstream>
#include <string>
#include <stdlib.h>
using namespace std;
class Image{
public:
    int numRows = -1, numCols= -1, minVal = -1, maxVal = -1;
    int *hisArray;
    int thresholdValue = -1;
public:
    Image(ifstream & input){
        read_header(input);
        this -> hisArray = new int[this->maxVal + 1];
        for (int i = 0; i < this -> maxVal + 1; ++i){
            hisArray[i] = 0;
        }
    }
    void read_header(ifstream & input)
        input >> this->numRows >> this->numCols >> this->minVal >>
this->maxVal;
    }
    void computeHist (ifstream & input){
        int **pixel;
        int pixelValue = 0;
        pixel = new int*[this -> numRows];
        for (int i = 0; i < this -> numRows; ++i){}
            pixel[i] = new int[ this -> numCols ];
```

```
for (int j = 0; j < this -> numCols; ++j)
                pixel[i][j] = 0;
        }
        for (int i = 0; i < this -> numRows; ++i){
            for (int j = 0; j < this -> numCols; ++j)
                input >> pixel[i][j];
                pixelValue = pixel[i][j];
                hisArray[pixelValue]++;
            }
        }
        for (int i = 0; i < this->numRows; ++i)
            delete[] pixel[i];
        delete[] pixel;
    }
    void printHist(ofstream & output)
        output <<" " << this->numRows <<" " << this->numCols << " " <<
this->minVal << " " << this->maxVal << endl;</pre>
        for (int i = 0; i < this -> maxVal + 1; ++i)
            output << i << " ";
            output << hisArray[i] << endl;</pre>
        }
    }
    void displayHist (ofstream & output2){
        int count = 0;
        int temp = 0;
        output2 <<" " << this->numRows <<" " << this->numCols << " " <<
this->minVal << " " << this->maxVal << endl;</pre>
        for (int i = 0; i < this -> maxVal + 1; ++i){
            temp = hisArray[i];
            if (count < 10)
                output2 << count << " " << "("<< temp << ")" << ": ";
            else
                output2 << count << " " << "("<< temp << ")" << ": ":
            if ( temp > 0 )
```

```
if (temp > 70)
                     temp = 70;
                 for (int j = 0; j < temp; j++)</pre>
                     output2 << "+" ;
            output2 << endl;</pre>
            count++;
        }
    }
    void free Heap (){
        delete[] this->hisArray;
    }
    void threshold (ifstream & input, ofstream & output3, ofstream &
output4, int thrVal)
    {
        thresholdValue = thrVal;
        int **pixel;
        int pixelValue = 0;
        minVal = 0;
        maxVal = 1;
        output3 <<" " << this->numRows <<" " << this->numCols << " " <<
this->minVal << " " << this->maxVal << endl;</pre>
        output4 <<" " << this->numRows <<" " << this->numCols << " " <<
this->minVal << " " << this->maxVal << endl;</pre>
        pixel = new int*[this -> numRows];
        for (int i = 0; i < this -> numRows; ++i){
            pixel[i] = new int[ this -> numCols ];
            for (int j = 0; j < this -> numCols; ++j)
                  pixel[i][i] = 0;
        }
        for (int i = 0; i < this -> numRows; ++i){
            for (int j = 0; j < this -> numCols; ++j)
            {
                 input >> pixel[i][j];
                 pixelValue = pixel[i][j];
                 if (thresholdValue <= pixelValue){</pre>
                     output3 << "1" << " ";
                     output4 << "1" << " ":
                 }
```

```
else{
                    output3 << "0" << " ";
                    output4 << "." << " ";
                }
            }
            output3 << endl;
            output4 << endl;
        }
        for (int i = 0; i < this->numRows; ++i)
            delete[] pixel[i];
        delete[] pixel;
    }
};
int main(int argc, const char * argv[]) {
    // input 1
    string inputName = argv[1];
    ifstream input;
    input.open(inputName);
    // output 1
    string outputName1 = argv[3];
    ofstream outputFile1;
    outputFile1.open(outputName1);
    //output 2
    string outputName2 = argv[4];
    ofstream outputFile2;
    outputFile2.open(outputName2);
    // ouput 3
    string outputName3 = argv[5];
    ofstream outputFile3;
    outputFile3.open(outputName3);
    //output 4
    string outputName4 = argv[6];
    ofstream outputFile4;
    outputFile4.open(outputName4);
    if (input.is_open()){
        if (outputFile1.is_open()){
            if (outputFile2.is_open()){
                Image* read_img = new Image(input);
                read_img -> computeHist(input);
                read_img -> printHist(outputFile1);
```

```
read_img -> displayHist(outputFile2);
                 input.close();
                 outputFile1.close();
                 outputFile2.close();
                 read_img -> free_Heap();
                 delete read_img;
             } else cout << "Error Output 2"<< endl;</pre>
        } else cout << "Error Output 1"<< endl;</pre>
    else cout << "Error Input"<< endl;</pre>
    input.open(inputName);
    int thrVal = atoi(argv[2]);
    if (input.is_open()){
        if (outputFile3.is_open()){
            if (outputFile4.is open()){
                 Image* read_img = new Image(input);
                 outputFile3 << "The threshold value is " << thrVal <<
endl;
                 outputFile4 << "The threshold value is " << thrVal <<
endl;
                 read_img -> threshold(input, outputFile3, outputFile4,
thrVal);
                 input.close();
                 outputFile3.close();
                 outputFile4.close();
             } else cout << "Error Output 4"<< endl;</pre>
        } else cout << "Error Output 3"<< endl;</pre>
    else cout << "Error Input"<< endl;</pre>
    return 0;
}
```

DATA 1:

Output File:

c)Display the Histogram for visual OutputFile 3 (argv[5]): The threshold value is 5

31 40 0 1

00010000010000000000100000000001100100000100000111111001111111111001111110000100000100000011110011111111110011111000001000 0001000000000000011100000000010000000

d)Display the Histogram OutputFile 4 (argv[6]):
The threshold value is 5
31 40 0 1
111
1
111111111111111111
1111111111111111111111
11111111111111111111111
111111111111111111111111111
11111111111111111111111111
1111111111111111111111
1111111111111111111
1111111111111111111111111111111
111111111111111111111111111
111111111111
111111111
11111111
11111
111

Better image of the argv[6]

better image of the argv[o]	
The threshold value is 5 31 40 0 1	
1 1	
1	
	-
	_
1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
1	
1 1	
	_
1 1	
1	
1 1	
1	

DATA 2:

Output:
a) Display the Histogram OutputFile 1 (argv[3]):
46 46 1 63
0 0
1 277
2 278
3 270
4 319
5 278
6 7
7 6

8 359 4

10 5

11 7

12 8 13 6

149

15 3

16 3

17 0

18 12

19 1

20 3

214

227

23 3

26 0

27 3

28 15

29 3

30 7

33 2

34 10

35 10

36 0

370

38 25

39 1

40 7

41 19

42 18

43 18

44 13

45 8

46 2

47 2

48 313

49 0

500

518

52 2

53 1

54 2

55 11

560

570

58 25

59 0

60 9

61 1

62 2

63 10

b)D	isplay the Histogram for vis OutputFile 2(argv[4]):
46 4	6 1 63
0 (0)):
1 (2	277): +++++++++++++++++++++++++++++++++++
2 (2	278): ++++++++++++++++++++++++++++++++++++
3 (2	270): ++++++++++++++++++++++++++++++++++++
4 (3	19): ++++++++++++++++++++++++++++++++++++
5 (2	278): ++++++++++++++++++++++++++++++++++++
6 (7	'): +++++
7 (6	5): +++++
8 (3	35): ++++++++++++++++++++++++++++++++++++
9 (4	ł): ++++
10 (5): ++++
11 (7): +++++
12 (8): ++++++
13 (6): +++++
14 (9): ++++++
15 (3): +++
16 (3): +++
17 (0):
18 (12): +++++++
19 (1): +
20 (3): +++
21 (4): ++++
22 (7): +++++

```
23 (3): +++
24 (7): ++++++
25 (3): +++
26 (0):
27 (3): +++
28 (15): ++++++++++++
29 (3): +++
30 (7): ++++++
31 (7): ++++++
32 (7): ++++++
33 (2): ++
34 (10): ++++++++
35 (10): ++++++++
36 (0):
37 (0):
39 (1): +
40 (7): ++++++
41 (19): ++++++++++++++
42 (18): +++++++++++++++
43 (18): ++++++++++++++
44 (13): ++++++++++
45 (8): ++++++
46 (2): ++
47 (2): ++
```

- 49 (0):
- 50 (0):
- 51 (8): ++++++
- 52 (2): ++
- 53 (1):+
- 54 (2): ++
- 55 (11): ++++++++
- 56 (0):
- 57 (0):
- 59 (0):
- 60 (9): +++++++
- 61 (1): +
- 62 (2): ++
- 63 (10): +++++++

c)Display the Histogram for visual OutputFile 3(argv[5]):

The threshold value is 38

46 46 0 1

 $0\,0\,0\,0\,0\,1\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,1\,1\,1\,1\,0\,0\,1\,1\,1\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0\,0$

d)Display the Histogram OutputFile 4 (argv[6]):

The threshold value is 38

46 46 0 1
1
1111
1
11
111
1
1111
1
111111111
11
111111111111111111111111111111
111111.1111111111111111111111
111111.11111111111111111111111.1111
111111111111111111111111111111111
11.11111.111111111111.111.111
11.1
1
1
111
111
11

Better image of the argv[6]

The	thr	esl	hol	d '	va⊺	lue	i	s :	38																											
46	46	0 :	1																																	
			1																			. 1				٠.										
							1	1										1				. 1														
							1	1										1				. 1														
					. :	ι.	٠.										٠.	1				. 1														
						. 1												1					1													
						. 1												1					1													
																								1												
																	1		1				1													
	. 1															. 1			1	1		1														
																i :		:	1	ī	1		1													
			i	i					÷	:						i i			1	1	1						:		:			•		٠.		•
				i			1	•			•		•	'	•		•	•	-		•	•									1		•	' '	_	•
	•		•	•					:			i i	i	1	1	1 1	1	i					:	•										' '	•	•
	•												1	1	1	1 .	1	1	i		i		i											٠.		•
					•								1	1		$\stackrel{1}{1}$ $\stackrel{.}{1}$			1	i	1 3		1	i		٠.				٠.		1				•
	٠.				• •								1	1	_	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1	1	1	1 3		1	1	i	٠.		i				1				•
• •	•				•						i :		1	1	1	1 1	1	1	1	1	1 :		1	1	_	i :				٠.						•
	•				•					1	$\frac{1}{1}$		1	1	1	1 1 1 1	1	1	1	1	1 :					1. 11										•
	٠.				• •				:	1			1	1	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1	1							:			٠.						
	: .				•			:	1	1			1	1	:			. 1	1	:	1 :			:		1 1				٠.						•
	1.				•	٠.	:	1	1	1	1 :		1	1	1	. 1			1	1	1 :					1 1	1	1								
					• •		1	1	1	1	1 :		1	1	1	1 1			1	1	1 :	١.			1	1 1	1	1	1	1.						•
					• ;	: :	:	:	:	:	• :		1	1	1	1 1			:	:	: :				:	: :	:	:	:	: :						•
	. :	:		:	: :		1	1	1	1	: :		1	1	1	1 1			1	1	1 :					1 1	1	1		1 1		:		: :		
	. 1	. 1	1	1 :	1 :		1	1	1		1 :		1	1	_	1 1			1	1	1 .		1	:		1 1	:	1		1 1		1		1 1		
					• :		1	1	1		1 :		1	1		1 1			:	1	1 :			1		1 1	1	:		1 1	ι.					
						. 1	1	:	1		1 :		:	1	1	1 1			1	1	1 :					1 1	:			1.						
							1	1	1		1 :		1			. 1			1	1	1 :					1 1	1	1	1							
								1	1		1 :		1			1 1			1	1		L 1				. 1	1	1								
					•				1	1	1 :		1	1	_	1 1			1	1	1 :	۱ 1	1	1		. 1	1									
					•						: :		1	1		1 1								•												•
										1	1 :		1			1 1			1	1	1 :		1	1		. 1										
											1 :		1			1 1			1	1	1 :			1												
											. :	l 1	1	1	1	1 1	1	. 1	1	1	1 :	l 1		1	1	٠.						1				
		1	1		1.																															
													1	1	1					1																
														1	1	. 1				1	1 .					٠.										
			1													1 1				1	1 :	ι.				٠.										
																1 1			1	1	1 .															
	٠.															. 1			1	1																
		1															1	. 1	1									1				1				
		1					1	1										1																		
			1	1														1									1									
																		1								. 1	1			. 1	ι.					
						. 1												1																		
						N		1000						100							will be				No.											