1 Lista 1: Resolução de Equações Algébricas

- 1. Justifique que a equação: $f(x) = 4x e^x$ possui uma raiz no intervalo (0,1) e outra no intervalo (2,3).
- 2. Considere a equação $f(x) = 2x^2 5x + 2 = 0$, cujas raízes são: $x_1 = 0.5$ e $x_2 = 2.0$. Considere ainda os processos iterativos:

a)
$$x_{k+1} = \frac{2x_k^2 + 2}{5}$$
,

b)
$$x_{k+1} = \sqrt{\frac{5x_k}{2} - 1}$$
.

Qual dos dois processos você utilizaria para obter a raiz x_1 ? Por quê?

3. Considere as seguintes funções:

a)
$$\psi_1(x) = 2x - 1$$

b)
$$\psi_2(x) = x^2 - 2x + 2$$

c)
$$\psi_3(x) = x^2 - 3x + 3$$
.

Verifique que 1 é ponto fixo de todas estas funções. Qual delas você escolheria para obter o ponto fixo 1, utilizando o processo iterativo $x_{k+1} = \psi(x_k)$? Com a sua escolha, exiba a sequência gerada a partir da condição inicial $x_0 = 1.2$.

4. Deseja-se obter a raiz positiva da equação: $bx^2 + x - a = 0$, a > 0, b > 0, através do processo iterativo definido por:

$$x_{k+1} = a - bx_k^2. (1)$$

Qual condição que devemos impor para a e b para que haja convergência? Por quê?

5. A equação $x^2 - a = 0$ possui uma raiz $\bar{x} = \sqrt{a}$. Explicar algebricamente e geometricamente por quê a sequência $\{x_k\}$, obtida através do processo iterativo definido por $x_{k+1} = \frac{a}{x_k}$, não converge para \sqrt{a} qualquer que seja o valor de x_0 .