1 GALOIS GROUPS I

1 Galois Groups I

Definition 1 (Galois group of polynomial). Let $L = K(\alpha_1, \ldots, \alpha_n)$ and let $P(\alpha_1, \ldots, \alpha_n)$ where $P \in K[\alpha_1, \ldots, \alpha_n]$ is an element of L. Then we define

$$\operatorname{Gal}_K(f) = \left\{ \sigma \in S_n \mid \forall P \in K[\alpha_1, \dots, \alpha_n], \text{ if } P(\alpha_1, \dots, \alpha_n) = 0 \text{ then } P(\alpha_{\sigma(1)}, \dots, \alpha_{\sigma(n)}) \right\}$$

Lemma 1.1. $Gal_K(f) \leq S_n$

Lemma 1.2. If $K_1: K$, then $Gal_{K_1}(f) \leq Gal_K(f)$.

Definition 2. Let L: K be a field extension. Then

$$\operatorname{Gal}_K(L) = \operatorname{Gal}(L:K) = \{ \varphi \in \operatorname{Aut}(L) : \varphi \text{ is a K-homomorphism} \}$$

Lemma 1.3. Suppose that M:K is a normal extension. Then:

- (a) for any $\sigma \in \operatorname{Gal}(M:K)$ and $\alpha \in M$, we have $\mu_{\sigma(\alpha)}^K = \mu_{\alpha}^K$;
- (b) for any $\alpha, \beta \in M$ with $\mu_{\alpha}^K = \mu_{\beta}^K$, there exists $\tau \in \operatorname{Gal}(M:K)$ having the property that $\tau(\alpha) = \beta$.