Searching PAJ 1/2 ページ

# PATENT ABSTRACTS OF JAPAN

(11)Publication number

2001-166751

(43)Date of publication of application: 22.06.2001

(51)Int CI

G09G 3/36 1/133

GO2F G09G 3/20 HO4N 5/66

(21)Application number: 11-351459 (22)Date of filing:

10.12.1999

(71)Applicant: SHARP CORP

(72)Inventor: NAKAO TOMOAKI

# (54) REFERENCE VOLTAGE GENERATION CIRCUIT FOR DISPLAYING GRAY SCALE AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME

# (57)Abstract:

PROBLEM TO BE SOLVED: To alter a a-correction characteristic according to characteristics of a liquid crystal material and a liquid crystal panel.

SOLUTION: Resister elements R0-R7 have resistance ratios for a-correction and generates a-corrected intermediate voltages based on the voltage across both input terminals V0, V64, a-correction adjusting circuits 42 adjust the \( \tilde{a} - \) corrected intermediate voltages upward or downward based on the data for adjustment latched by a data latch circuit 43. In such a manner, the ãcorrection characteristic can be altered according to the characteristics of the liquid crystal material and liquid crystal panel without modifying a design of a source driver, by providing the data latch circuit 43 with adjustment data in accordance with the characteristics of the liquid crystal material and liquid crystal panel.



#### LEGAL STATUS

[Date of request for examination]

18.01.2002

[Date of sending the examiner's decision of

10.06.2003

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration? [Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision 2003-13137

of rejection]

[Date of requesting appeal against examiner's 10.07.2003 Searching PAJ 2/2 ページ

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

## (19) 日本国特許庁 (JP)

# (12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-166751 (P2001-166751A)

(43)公開日 平成13年6月22日(2001.6.22)

| (51) Int.Cl.7 |       | 識別記号  |      | FΙ      |        |    | 7        | -71-ド(参考) |
|---------------|-------|-------|------|---------|--------|----|----------|-----------|
| G09G          | 3/36  |       |      | G 0 9 G | 3/36   |    |          | 2H093     |
| G02F          | 1/133 | 5 2 O |      | G 0 2 F | 1/133  |    | 5 2 0    | 5 C O O 6 |
|               |       | 5 5 0 |      |         |        |    | 5 5 0    | 5 C O 5 8 |
|               |       | 575   |      |         |        |    | 575      | 5 C O 8 O |
| G09G          | 3/20  | 623   |      | G 0 9 G | 3/20   |    | 623F     |           |
|               |       |       | 審查請求 | 未請求 請求  | マ項の数 9 | OL | (全 12 頁) | 最終頁に続く    |
|               |       |       |      |         |        |    |          |           |

| (21)出願番号 特願 | <b>41</b> | 1 – 351 | 1459 |
|-------------|-----------|---------|------|
|-------------|-----------|---------|------|

(22)出順日 平成11年12月10日(1999.12.10)

(71)出願人 000005049

シャープ株式会社

大阪府大阪市阿倍野区長池町22番22号

(72)発明者 中尾 友昭

大阪府大阪市阿倍野区長池町22番22号 シ

ャープ株式会社内

(74)代理人 100062144

弁理士 青山 葆 (外1名)

最終買に続く

# (54) 【発明の名称】 階調表示基準電圧発生回路およびそれを用いた液晶駆動装置

#### (57)【要約】

【課題】 液晶材料や液晶パネルの特性に応じてγ補正 特性を変更する。

【解決手段】 抵抗素子R 0~R 7 は、 7 補正用の抵抗 比を有して両入力増子V 0, V 6 4 間の電圧と基づいて 7 補正された中間電圧を生成する。 7 補正調整回路 4 2 は、データラッチ回路 4 3 にラッチされた調整用データ に基づいて、7 補正された中間電圧を上方あるいは下方 に調整する。こうして、データラッチ回路 4 3 に減品材 料や液温パネルの特性に応じた調整用データを与えるこ とによって、ソースドライバの設計を変更することなく 液温材料や液晶パネルの特性に合わせて 7 補正特性を変 更できる。



【特許請求の範囲】

【請求項1】 表示データをディジタル - アナログ変換 する際に用いる階調表示用の基準電圧を生成する階調表 示基準電圧発生同路において、

1

複数レベルの基準電圧を生成する基準電圧生成回路と、 外部からの調整用データに基づいて、上記基準電圧を調 整する調整同路を備えたことを特徴とする階調表示基準 電圧発生回路。

【請求項2】 請求項1に記載の階調表示基準電圧発生 回路において、

#### 上記調整回路は、

上記基準電圧の入力端子と、上記翻整用データの入力端 子と、調整後の電圧の出力端子と、上記調整用データに 応じて上記基準電圧よりも高い電圧あるいは上記基準電 圧よりも低い電圧を生成して上記器整後の電圧として出 力する調整後電圧生成回路を備えていることを特徴とす る階調表示基準電圧発生回路。

【請求項3】 請求項2に記載の階調表示基準電圧発生 回路において、

上記調整後電圧生成回路は、

上記調整用データに応じた電位差を発生する電位差発生 回路と、

上記基準電圧と電位差との和電圧を出力する和電圧出力 回路を備えて、

上記和電圧出力回路からの和電圧を上記調整後の電圧と して出力することを特徴とする階調表示基準電圧発生回

【請求項4】 請求項2に記載の階調表示基準電圧発生 何路において、

上記調整後電圧生成回路は、

上記入力端子と出力端子との間に介設されて、流れる電 流値に応じた電位差を両端に発生させる抵抗素子と、 1以上の定電流源と、

上記題整用データに基づいてオンオフすると共に、上記 定電流源と抵抗素子との間に介設された1以上のスイッ チ素子を備えて、

上記調整用データに基づいて各スイッチ素子のオンオフ を制御することによって、上記抵抗素子に流れる電流値 を変化させて上記電位差を変化させるようになっている ことを特徴とする階調表示基準電圧発生回路。

【請求項5】 請求項4に記載の階調表示基準電圧発生 回路において、

上記抵抗素子と出力端子との間に介設されたパッファア ンプを備えたことを特徴とする階調表示基準電圧発生回

【請求項6】 請求項4あるいは請求項5に記載の階調 表示基準電圧発生回路において、

上記定電流源は、nを正の整数として、2<sup>(n-1)</sup>の重み 付けされた電流を発生し、

2 ットデジタルデータであることを特徴とする階調表示基 進電圧発生回路。

【請求項7】 請求項4あるいは請求項5に記載の階調 表示基準電圧発生回路において、

上記定電流源は、上記抵抗素子に電流を流し込む1以上 の第1定電流源と、上記抵抗素子から電流を流し出す1 以上の第2定電流源で構成されており、

上記スイッチ素子は、上記抵抗素子に電流を流し込む第 1 定電流源、及び、上記抵抗素子から電流を流し出す第 10 2定電流源を設定するようになっていることを特徴とす る階調表示基準電圧発生回路。

【請求項8】 請求項1乃至請求項7の何れか一つに記 載の階調表示基準電圧発生回路において、

上記基準電圧生成回路はγ補正された基準電圧を生成す るようになっており、

上記調整回路は、上記γ補正された基準電圧を調整する γ補正調整回路であることを特徴とする階調表示基準電 圧発生回路。

【請求項9】 請求項1乃至請求項8の何れか一つに記 20 載の階調表示基準電圧発生回路を備えたことを特徴とす る液品駆動装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、液晶駆動装置等 に用いられる階調表示基準電圧発生回路、及び、それを 用いた液晶駆動装置に関する。

[0002]

【従来の技術】上記階調表示基準電圧発生回路は2つの 電圧の中間電圧を作る回路である。例えば、アクティブ 30 マトリックス方式の液晶表示装置における液晶駆動部等 では、抵抗分割を用いて中間電圧が作られる。そして、 抵抗分割用の抵抗には、γ補正と呼ばれる抵抗比を持た せており、この抵抗比の比率に応じて液晶材料の光学特 性を補正し、より自然な階調表示を実現するようにして いる。

【0003】以下に、上記階調表示基準電圧発生回路を 備えた液晶表示装置の構成、その液晶表示装置における TFT(薄膜トランジスタ)方式の液晶パネルの構成、そ の液晶駆動波形、および、そのソースドライバの構成に 40 ついて説明する。

【0004】図6は、アクティブマトリックス方式の代 表例であるTFT方式の液晶表示装置のプロック構成を 示す。この液晶表示装置は、液晶表示部とそれを駆動す る液晶駆動回路(液晶駆動部)とに分かれる。上記液晶表 示部は、TFT方式の液晶パネル1を有している。そし て、液晶パネル1内には、液晶表示素子(図示せず)と後 に詳述する対向電極(共通電極)2とが設けられている。 【0005】一方、上記液晶駆動回路には、IC(集積 回路)で成るソースドライバ3およびゲートドライバ4 上記調整用データは、2の補数表現による2進数の多ピ 50 と、コントローラ5と、液晶駆動電源6が搭載されてい

る。そして、コントローラ5は、ソースドライバ3に表 示データDおよび制御信号S1を入力する一方、ゲート ドライバ4には垂直同期信号S2を入力する。さらに、 ソースドライバ3およびゲートドライバ4に水平同期信 号を入力する。

【0006】上記構成において、外部から入力された表 示データは、上記コントローラ5を介してデジタル信号 である表示データDとしてソースドライバ3に入力され る。そうすると、ソースドライバ3は、入力された表示 データDを時分割して第1ソースドライバ~第nソース 10 ドライバにラッチし、その後、コントローラ5から入力 される上記水平同期信号に同期してD/A変換する。そ して、時分割された表示データDをD/A変換して成る 階調表示用のアナログ電圧(以下、階調表示電圧と言う) を、ソース信号ライン(図示せず)を介して、液晶パネル 1内における対応する上記液晶表示素子に出力するので ある。

【0007】図7は、上記液晶パネル1の構成を示す。 液晶パネル1には、画素電極11、画素容量12、画素 電板 1 1 への電圧印加をオン・オフ制御する TFT1

3、ソース信号ライン14、ゲート信号ライン15、対 向集極16(図6における対向電極2に相当)が設けられ ている。ここで、画素電板11,画素容量12およびT FT13によって1画素分の上記液晶表示素子Aが構成 される。

【0008】上記ソース信号ライン14には、図6にお けるソースドライバ3から、表示対象画素の明るさに応 じた上記階調表示電圧が与えられる。一方、ゲート信号 ライン15には、ゲートドライバ4から、列方向に並ん だTFT13を順次オンするような走査信号が与えられ 30 る。そして、オン状態のTFT13を介して、当該TF T13のドレインに接続された画素電極11にソース信 号ライン14の階調表示電圧が印加され、上記対向電極 16との間の画素容量12に蓄積される。こうして、液 品の光透過率が上記階調表示電圧に応じて変化されて、 画素表示が行われるのである。

【0009】図8および図9に、液晶駆動波形の一例を 示す。 図8および図9において、21,25はソースド ライバ3の駆動波形であり、22,26はゲートドライ パ4の駆動波形である。また、23,27は対向電極1 6の電位であり、24,28は画素電極11の電圧波形 である。ここで、液晶材料に印加される電圧は、画素電 極11と対向電極16との電位差であり、図中において は斜線で示している。

【0010】例えば、図8の場合は、上記ゲートドライ バ4の駆動波形22のレベルが「H」の期間だけTFT1 3がオンし、ソースドライバ3の駆動波形21と対向電 極16の電位23との差の電圧が画素電極11に印加さ れる。その後、ゲートドライバ4の駆動波形22のレベ 合に、画素には画素容量12が存在するために、上述の 雷圧が維持されるのである。

【0011】図9の場合も同様である。但し、図8と図 9とは液晶材料に印加される電圧が異なる場合を示して おり、図8の場合は、図9の場合と比べて印加電圧が高 くなっている。このように、液晶材料に印加する電圧を アナログ電圧として変化させることによって、液晶の光 透過率をアナログ的に変え、多階調表示を実現するので ある。尚、表示可能な階調数は、液晶材料に印加される アナログ電圧の選択肢の数によって決定される。

【0012】図10は、図6におけるソースドライバ3 を構成する第nソースドライバのブロック図の一例を示 す。入力されたデジタル信号の表示データDは、R

(赤), G (緑), B(青)の表示データ(DR, DG, DB)を 有している。そして、この表示データDは、一旦入力ラ ッチ回路31にラッチされた後、コントローラ5からス タートパルスSPおよびクロックCKによってシフトす るシフトレジスタ32の動作に合わせて、時分割によっ てサンプリングメモリ33に記憶される。その後、コン 20 トローラ5からの水平同期信号(図示せず)に基づいてホ ールドメモリ34に一括転送される。尚、Sはカスケー ド出力である。

【0013】階調表示基準電圧発生回路39は、外部基 準電圧発生回路(図6における液晶駆動電源6に相当)か ら供給される電圧VRに基づいて、各レベルの基準電圧 を発生する。ホールドメモリ34のデータは、レベルシ フタ回路35を介してD/A変換回路(デジタル·アナロ グ変換回路)36に送出され、階調表示基準電圧発生回 路39からの各レベルの基準電圧に基づいてアナログ電 圧に変換される。そして、出力回路37によって、液晶 駆動電圧出力端子38から、上記階調表示電圧として、 各液晶表示素子Aのソース信号ライン14に出力される のである。すなわち、上記基準電圧のレベル数が上記表 示可能な階調数となるのである。

【0014】図11に、上述のような複数の基準電圧を 発生して中間電圧を生成する階調表示基準電圧発生回路 39の構成を示す。尚、図11における階調表示基準電 圧発生回路39は、64通りの基準電圧を発生するよう にしている。

【0015】この階調表示基準電圧発生回路39は、V 0, V 8, V 1 6, V 2 4, V 3 2, V 4 0, V 4 8, V 5 6 およびV64で表わされる9個の中間調電圧入力端子 と、γ補下のための抵抗比を持たせた抵抗素子R0~R 7と、各抵抗素子R0~R7の両端間に直列に8個ずつ 接続された合計64個の抵抗(図示せず)で構成されてい る。このように、y補正と呼ばれる抵抗比をソースドラ ィバ3に内蔵し、上記階調表示電圧に変換するための液 **品駆動出力電圧に折れ線特性を持たせるようにしてい** る。したがって、上記抵抗比の比率によって液晶材料の ルは「 $L_J$ となり、TFT13はオフ状態となる。その場 50 光学特性を補正することによって、液晶材料の光学特性 5

に合わせた自然な階調表示を行うことができるのであ る。尚、従来の階調表示基準電圧発生回路39における 満島駆動出力電圧の特件例を図12に示す。

#### [0016]

【発明が解決しようとする課題】しかしながら、上記従 来の階調表示基準電圧発生回路においては、以下のよう な問題がある。すなわち、最適なγ補正特性(図12に 示す液晶駆動出力電圧の折れ線特性)は、液晶材料の種 類や液晶パネルの画素数によって異なり、液晶モジュー 階調表示基準電圧発生回路39の抵抗分割比は、ソース ドライバ3の設計段階において決定されている。したが って、適用する液晶モジュールの液晶材料の種類や液晶 パネルの画素数に応じてγ補正特性を変更する場合に は、その都度ソースドライバ3を作り換えなければなら ないと言う問題がある。

【0017】尚、上記外部基準電圧発生回路から中間調 電圧入力端子V0~V64に供給される複数の中間調電 圧を調整する基準電圧調整手段を設けて、この基準電圧 調整手段によって各中間調電圧入力端子V0~V64に 供給される中間調電圧を調整する方法も考えられる。し かしながら、上記基準電圧調整手段を設けることによっ て端子数が増加したり回路規模が大きくなって、製造コ ストが増加するという問題がある。

【0018】そこで、この発明の目的は、製造コストを 増加させることなく液晶材料や液晶パネルの特性に応じ てヶ浦下特性を変更できる階調表示基準電圧発生同路、 および、それを用いた液晶駆動装置を提供することにあ る。

## [0019]

【課題を解決するための手段】上記目的を達成するた め、第1の発明は、表示データをディジタル-アナログ 変換する際に用いる階調表示用の基準電圧を生成する階 調表示基準電圧発生回路において、複数レベルの基準電 圧を生成する基準電圧生成回路と、外部からの調整用デ ータに基づいて上記基準電圧を調整する調整同路を備え たことを特徴としている。

【0020】上記構成によれば、基準電圧生成回路によ って生成された複数レベルの基準電圧の夫々が、外部か らの調整用データに基づいて調整回路によって調整され 40 る。したがって、当該階調表示基準電圧発生回路が一旦 液晶駆動装置に搭載された後でも、外部から上記調整用 データを与えることによって、当該液晶駆動装置を作り 変えることなく、液晶材料や液晶パネルの特性に合わせ て上記基準電圧を簡単に調整することが可能になる。

【0021】また、上記第1の発明の階調表示基準電圧 発生回路は、上記調整回路に、上記基準電圧の入力端子 と、上記調整用データの入力端子と、調整後の電圧の出 カ端子と、上記題整用データに応じて上記基準電圧より も高い電圧あるいは上記基準電圧よりも低い電圧を生成 50 ット番号をnとすることによって上記調整用データと上

6 して上記調整後の電圧として出力する調整後電圧生成回 路を備えることが望ましい。

【0022】上記構成によれば、入力端子から入力され た上記基準電圧に基づいて、調整後電圧生成回路によっ て、上記調整用データに応じて上記基準電圧よりも高い あるいは低い電圧が生成され、出力端子から調整後の電 圧として出力される。

【0023】また、上記第1の発明の階調表示基準電圧 発生回路は、上記調整後電圧生成回路を、上記調整用デ ル毎に異なる。そして、ソースドライバ3に内蔵される 10 一夕に応じた電位差を発生する電位差発生回路と、上記 基準電圧と電位差との和電圧を出力する和電圧出力回路 を備えて、上記和電圧出力回路からの和電圧を上記調整 後の電圧として出力するように成すことが望ましい。

> 【0024】上記構成によれば、電位差発生回路によっ て上記調整用データに応じた電位差が発生される。そし て、この電位差と上記基準電圧との和電圧が和電圧出力 回路によって生成されて、上記調整後の電圧として出力 される。

【0025】また、上記第1の発明の階調表示基準電圧 20 発生同路は、上記調整後電圧生成同路を、上記入力端子 と出力端子との間に介設されて、流れる電流値に応じた 電位差を両端に発生させる抵抗素子と、1以上の定電流 源と、上記調整用データに基づいてオンオフすると共 に、上記定電流源と抵抗素子との間に介設された1以上 のスイッチ素子を備えて、上記調整用データに基づいて 各スイッチ素子のオンオフを制御することによって上記 抵抗素子に流れる電流値を変化させて上記電位差を変化 させるように成すことが望ましい。

【0026】上記構成によれば、上記調整用データに基 30 づいて定電流源と上記抵抗素子との間に介設された各ス イッチ素子のオンオフが制御されると、上記入力端子と 出力端子との間に介設された上記抵抗素子を流れる電流 値が変化される。その結果、上記抵抗素子の両端に発生 する電位差が変化されて上記調整用データに応じた調整 量で上記基準電圧の調整が行われ、上記調整後の電圧と して出力される。

【0027】また、上記第1の発明の階調表示基準電圧 発生回路は、上記抵抗素子と出力端子との間に介設され たバッファアンプを備えることが望ましい。

【0028】上記構成によれば、上記抵抗素子と出力端 子との間に介設されたパッファアンプによって出力イン ヒーダンスが低められ、上記出力端子から安定して出力 電流が取り出される。

【0029】また、上記第1の発明の階調表示基準電圧 発生回路は、上記定電流源を(nを正の整数として)2 (n-1) の重み付けされた電流を発生するように成し、上 記調整用データを2の補数表現による2進数の多ピット デジタルデータと成すことが望ましい。

【0030】上記構成によれば、上記調整用データのビ

記定電流源の重みとを対応付けることができ、上記調整 用データに応じた倍数の電位差が上記抵抗素子の両端に 発生される。

【0031】また、上記第1の発明の階調表示基準電圧 発生回路は、上記定電流源を,上記抵抗索子に電流を流 し込む1以上の第1定電流源と、上記抵抗素子から電流 を流し出す1以上の第2定電流源で構成し、上記スイッ チ素子を,上記抵抗素子に電流を流し込む第1定電流源, 及び、上記抵抗素子から電流を流し出す第2定電流源を 設定するように成すことが望ましい。

【0032】上記構成によれば、上記調整用データに基 づいて上記各スイッチ素子のオン/オフが制御される と、上記抵抗素子に電流を流し込む第1定電流源と上記 抵抗素子から電流を流し出す第2定電流源とが設定され る。こうして、上記調整用データに応じて、上記基準電 圧の調整量と増減とが設定される。

【0033】また、上記第1の発明の階調表示基準電圧 発生回路は、上記基準電圧生成回路を,γ補正された基 準電圧を生成するように成し、上記調整回路を,上記γ 補正された基準電圧を調整するγ補正調整回路とするこ とが望ましい。

【0034】上記構成によれば、一旦γ補正された基準 電圧が、さらに液晶材料や液晶パネルの特性に合わせて 調整される。したがって、より正確に液晶材料や液晶バ ネルの特性に合わせた基準電圧を生成することが可能に

【0035】また、第2の発明の液晶駆動装置は、上記 第1の発明の階調表示基準電圧発生回路を備えたことを 特徴としている。

発生同路は、基準電圧生成回路によって生成された複数 レベルの基準電圧の夫々を、調整用データに基づいて調 整同路によって調整可能になっている。 したがって、外 部から上記調整用データを与えることによって、当該液 晶駆動装置を作り変えることなく、液晶材料や液晶パネ ルの特性に合わせて上記基準電圧が簡単に調整される。 [0037]

【発明の実施の形態】以下、この発明を図示の実施の形 態により詳細に説明する。図1は、本実施の形態の階調 表示基準電圧発生回路における構成を示すブロック図で 40 ある。この階調表示基準電圧発生回路は、特にアクティ ブマトリックス方式の液晶表示装置における液晶駆動回 路等に使用することができる。尚、本実施の形態におけ る階調表示基準電圧発生回路が搭載される液晶表示装置 の構成、その液晶表示装置における液晶パネルの構成、 その液晶駆動波形、および、そのソースドライバの機成 は、図6乃至図10に従って説明した液晶表示装置の構 成、液晶パネルの構成、液晶駆動波形、ソースドライバ の構成と同一であるため、ここでは説明を省略する。

生回路41は、図11に示す従来の階調表示基準電圧発 生同路39の場合と同様に、64通りの基準電圧を作成 し中間電圧を生成するものである。

【0039】本実施の形態における階調表示基準電圧発 生回路 4 1 は、最上位電圧入力端子V0と最下位電圧入 カ端子V64との2本の電圧入力端子と、基準となるγ 補正を行うための抵抗比を有する8個の抵抗素子R0~ R7と、この抵抗素子R0~R7によって得られたγ補 正後の各基準電圧を一定の範囲で上下に微調整するγ補 10 正調整回路42と、このγ補正調整回路42が上記微調 整する際に用いる調整用データをラッチするデータラッ チ回路43を有している。さらに、最上位電圧入力端子 V 0 と γ 補正調整回路 4 2 の出力端子との間、各 γ 補正 調整问路42の出力端子間、γ補正調整回路42の出力 端子と最下位電圧入力端子V64との間に直列に8個ず つ接続された合計64個の抵抗(図示せず)を有してい

【0040】上記構成を有するために、図11に示す従 来の階調表示基準電圧発生回路39のように、9本の中 間調電圧入力端子V0~V64を設ける必要は無く、上 記中間電圧を当該階調表示基準電圧発生回路41内で生 成し調整することができるのである。

【0041】図2は、上記ヶ補正調整同路42の構成を 示す概略プロック図である。 γ 補正調整回路 4 2 は、電 圧降下を発生させるための1つの抵抗素子Rと、2個の 定電流源44,45と、パッファアンプ46で構成され る。そして、抵抗素子Rに電流を流すことによる電圧降 下を利用して、入力された電圧を一定の電圧だけ上下に シフトすることによって出力電圧を調整する。このよう 【0036】上記構成によれば、上記階調表示基準電圧 30 な構成を有するγ補正調整回路42は、次のように動作

> 【0042】すなわち、上記γ補正調整回路42の入力 端子47に、例えば基準となる電圧Vrefが供給され る。そして、基準電圧Vrefよりも高い出力電圧あるい は低い出力電圧を得る場合には、定電流源44,45に よって抵抗素子Rに流れる電流を変化させ、抵抗素子R による電圧降下を利用して、入力された電圧を抵抗素子 Rでの電圧降下の分だけ上または下にシフトした電圧V outを出力端子48から出力するのである。

【0043】つまり、上記基準電圧Vrefよりも高い出 力電圧Voutを得る場合には、

Vout=Vref+ i · R になるように、また、基準電圧Vrefよりも低い出力電 圧 Voutを得る場合には、

 $Vout = Vref - i \cdot R$ 

になるように、γ補下調整同路42によって電圧を調整

【0044】図3は、上記基準電圧Vrefよりも高い出 力電圧Voutを得る場合(図3(a))、および、基準電圧V 【0038】本実施の形態における階調表示基準電圧発 50 refよりも低い出力電圧Voutを得る場合(図3(b))に、

9

 $Vout = Vref + i \cdot R$ 

となる。

【0045】一方、図3(b)に示すように、上記定電流 源44を電源に接続し、定電流源45を接地することに よって、抵抗索子界には定電流源44から定電流源45 に向う負の同きの電流iが流れる。その結果、入力端子 47から基準電圧Vrefが入力された場合の出力端子4 8からの出力電圧Voutは、基準電圧Vrefよりも抵抗索 子Rでの電圧降下の分だけ低い

 $Vout = Vref - i \cdot R$ 

となるのである。

【0046】そして、個々の上記ァ補正調整回路42に おける各定電流源44,45に関して、電流値を複数値 切り換え可能にし、さらた接触と電源への接続とを切 り換え可能にし、上記夫々の切り換えをデータラッチ回 路43にラッチされた調整用データに基づいて制御する ことによって、抵抗素子R0~R7で得られた今補正電 圧を微調整するのである。こうして微調整された各基準 電圧間の電圧が、さらに上記64個の抵抗のうちの8個 によって8等分されて、D/A変換回路(図10参照)に 送出されるのである。

【0047】図4は、上記各定電流源44,45に関する電流値の切り換えを実現するγ補正調整回路42の定電流源部の回路構成を示す。この定電流源部は、電源上接続されると共に、nを正の整数として、 $2^{\{n-1\}}$ で重み付けされた電流2 $^{\{n-1\}}$ はを有する。そして、夫々の定電流源2 $^{\{n-1\}}$ は、 $+2^{\{n-1\}}$ の制御信号によってオンするスイッチ+ $2^{\{n-1\}}$ を介して、抵抗素子Rの一端および出力端子4 8に接続されている。さらに、 $-2^{\{n-1\}}$ の制御信号によってオンするスイッチトクで、抵抗素子Rの一端および出力端子4 Rに接続されている。さらに、 $-2^{\{n-1\}}$ の制御信号によってオンするスイッチー $2^{\{n-1\}}$ を介して、抵抗素子Rの他端および入力端子4 rに接続されている。

【0048】 同様に、接地されると共に、上記2 (n-1) で重み付けされた電流2 (n-1) 1を発生する5個の定電流源1,21,41,81,161を有する。そして、夫々の定電流源2 (n-1) 1は、+2 (n-1) の制御信号によってメンするスイッチ+2 (n-1) を介して、抵抗素子Rの上記他端および入力端子47に接続されている。さらに、-2 (n-1) の制御信号によってオンするスイッチ-2

(n-1)を介して、抵抗素子Rの上記一端および出力端子48に接続されている。

【0049】つまり、上記スイッチ+2 (10-11)またはスイッチー2 (10-11) は 配子4 7に接続された定電流源2 (10-11) は 図 3における定電流源4 4として機能し、スイッチ+2 (10-11) あるいはスイッチー2 (10-11) を介して出力端子4 8 比較続された定電流源2 (10-11) は 図 3 における定電流源4 5 として機能するのである。そして、上記データラッチ回路4 3 にラッチされている2 10 の補数表現による符号付2 進数の多ピットディジタルデータである調整用データに基づいて、各スイッチ+2 (10-11) およびスイッチ+2 (10-11) およびスイッチ+2 (10-11) およびスイッチ+2 (10-11) なよび表示を制御することによって、定電流源44,45に関する電流値の切り換えおよび電源/接地の接続切り換えを実現するのである。

【0050】こうすることによって、上記抵抗索子Rを 流れる電流の値と方向とを変化させることがきで、入力 電圧Vinに対して抵抗索子Rに流れる電圧降下の分だけ 上にまたは下に複数段にシフトした電圧Voutを出力す ることができるのである。以下、具体例を挙げて説明す る。

【0051】以下の説明は、上記調整用データが6ビットデータであるとして行う。このような6ビットで表わされる調整用データに基づく調整は、γ補正値に対する調整を-32~+31の64段階で行うことを可能にするのである。

【0052】図4において、上記定電流源i,2i,4i,8i,16iの大々は、2(n-1)で重み付けされた電流値i,2i,4i,8i,16iを発生する。また、上記 各スイッチ+2(n-1) は、デークラッチ回路43から入力される6ビットの調整用デーケに基づいてオンあるいはオフされる。以下、6ビットの調整用データに基づいてオンあるいはオフされる。以下、6ビットの調整用データに基づいてオンあるいはオフされる。以下、6ビットの調整用データに基づいてオンあるいはオフされる。以下、6ビットの調整用データに基づく $\gamma$ 補正調整回路42の動作を説明する。

【0053】第1の場合として、上記調整用データが  $\Gamma+1:(000001)$ 」の場合について述べる。この場合には2つのスイッチ+2 $^0$ のみがオンし、他の総ての スイッチはオフする。この状態は、図3(a)と同じである。つまり、抵抗素子Rに流れる電流  $I_{total}$  は定電流 源  $i_{total}$  と同じであり、電流の向きは上記正である。したがって、出力電圧Voutは入力された基準電圧 V in  $i_{total}$  化抗素子Rでの電圧降下分だけ上昇し、

 $Vout = Vin + i \times R$ 

の出力電圧が得られる。これは、入力基準電圧Vinよりも $(i \times R)$ だけ高い電圧である。

【0054】また、他の場合として、上記顕整データが 「-9:(101001)の場合に付いて説明する。この 場合には、2つのスイッチ-2<sup>3</sup>および2つのスイッチ -2<sup>0</sup>の合計4つのスイッチがオンし、他の総てのスイ 50 ッチはオフする。この状態は、図3(b)と同じである。 つまり、抵抗素子Rに流れる電流Itotalは定電流源i と定電流源8iとの電流の和である9iとなり、電流の 向きは上記負である。したがって、出力電圧Voutは入 力された基準電圧Vinよりも抵抗素子Rでの電圧降下分 だけ下降し、

 $Vout = Vin - 9i \times R$ 

の出力電圧が得られる。これは、入力基準電圧Vinよりも $(i \times R)$ の9倍だけ低い電圧である。

 $\{0055\}$  他の課整用データの場合においても、上述の動作に準じて、夫々のスイッチ+2[n-1], -2[n-1]をオンまたはオフォることによって、入力基準電圧VIIを中心として、1段階当り $(i \times R)$ の電圧で $-32 \sim +31$ の範囲内で64段階に電圧開整を行うことができ

【0056】 すなわち、上記調整用データとして2の補数表現による符号付2進数の多ピットディジタルデータを用いることによって、そのピット番号のと抵抗素子Rに流す電流値の重み(倍率)2  $^{(n-1)}$  とちスイッチ+2  $^{(n-1)}$  。 $^{(n-1)}$  を介して対応付けることができるのである。したがって、データラッチ回路42からの調整用  $^{20}$  データに応じた倍率の調整重を得ることができることになる。つまり、上記調整用データによって上記基準値の調整量を簡単に指定することができるのである。

【0057】このように、上記データラッチ回路43からの顕繁用データに応じてスイッチ+2 [n-1]。2 [n-1]をオン/オフすることによって、入力電圧に対して観整用データに基づく顕整を行った電圧を出力することができ、この調整を抵抗素子R0~R7に基づく沖補正値に適用することによって、図5に示すように、液晶駆動出力電圧の特性を、抵抗素子R0~R7に基づく補正値や中心として上記調整用データに基づいて上下に変更することができるのである。

【0058】尚、上記濶整用データのデータラッチ回路 43への書き込みは、通常の表示データDの入力端子を 使用して、表示データ取り込みクロック信号に同期し て、例えば入力ラッチ回路、サンブリングメモリ,ホール ドメモリおよびレベルシフタ回路(図10参照)を介して 行うことができる。

【0059】上述のように、上記実施の形態においては、ソースドライバのD/A変換回路に基準電圧を供約 する階調表示電圧発生回路41に、ア補正用の抵抗比を 有する各抵抗素子R0~R7からの基準電圧Vrefをデ ータラッチ回路43に格納された測整用データに基づい て上方あるいは下方に調整するア補正調整回路42を設 けている。

【0060】そして、このヶ補正調整回路42を次のように構成している。すなわち、nを正の整数として、電源に接続されて2<sup>[n-1]</sup>で重み付けされた電流2<sup>[n-1]</sup>の刺 を発生する5個の定電流額2<sup>[n-1]</sup>はを、+2<sup>[n-1]</sup>の刺 御信号でオンするスイッチ+2<sup>[n-1]</sup>を介して抵抗案7 12 Rおよび出力端子48に接続する一方、-2 (n-1) の制 御信号でオンするスイッチー2 (n-1) を介して抵抗素子 Rおよび入力端子47に接続している。同様に、接地さ たて2 (n-1) で重み付けされた電流2 (n-1) 1を発生する ち個の定電流源2 (n-1) を、+2 (n-1) の制御信号でオ ンするスイッチ+2 (n-1)を介して抵抗素子Rおよび入 力端子47に接続する一方、-2 (n-1) の制御信号でオ ンするスイッチー2 (n-1)を介して抵抗素子Rおよび出 力端子48に接続している。

【0061】したがって、上記データラッチ回路 43か 5の6ビットの開整用データに基づいて、各スイッチ+  $2^{(n-1)}$ ,  $-2^{(n-1)}$ のオン/オフを制御することによって、抵抗索子Rを流れる電流値と方向との組み合わせを 6 4通りに切り換え設定することができる。つまり、各抵抗索子R 0  $\sim$  R  $\sim$  R

【0062】すなわち、この実施の形態によれば、例えば表示データに上記測整用データを書き加え、表示データDの入力端子を利用して上記測整用データをデータラッチ回路43へ書き込むことによって、簡単にγ補正特性を変更できるのである。したがって、液晶材料や液晶パネルの特性に合わせてソースドライバの設計を変更する必要が無くなり、その部度LSI(大規模集積回路)を作り変えることなく対応可能なソースドライバを提供できるのである。

【0063】その際に、本階調表示電圧発生回路41においては、内部で各抵抗索子R0~R7とア補正調整回路42とによって所望の中間電圧を発生するので、例えば9レベルの中間調基準電圧を外部から供給してもらう必要はない。したがって、外部からの中間調基準電圧を受ける電圧入力端子を最上位電圧入力端子V0と最下位電圧入力端子V64との2本のみにして、外付け回路規模の縮小や端子数の削減を図ることができ、製造コストを抑えることができるのである。

【0064】また、上述したように、上記調整用のデータは、随時ソースドライバ内にあるデータラッチ回路4 3に書き込むことができる。そのために、液晶モジュール1台毎に生する階調表示の量産ばらつきを補正することができる。さらには、上記調整用のデータは、液晶パネルの1水平ライン毎に書き込むことも可能である。したがって、液晶パネルにおける表示斑の一つである横シャドーイングを補正して、より高品位な表示を実現することも可能となる。

【0065】上記実施の形態においては、上記電源に接続された第1の定電流源 $2^{\{n-1\}}$ iを5個、この第1の定電流源を抵抗票子Rおよび出力端子48に接続するスイッチ+ $2^{\{n-1\}}$ を5個、上記第1の定電流源を抵抗素子R及び入力端子47に接続するスイッチー $2^{\{n-1\}}$ を5056個、接地された第20定電流源 $2^{\{n-1\}}$ iを56個、こ

の第2の定電流源を抵抗索子R及び入力端子 47に接続するスイッチ+2  $^{[n-1]}$ を 5個、上記第2の定電流源を抵抗案子R及び出力端子 48に接続するスイッチ-2  $^{[n-1]}$ を 5個設付、6ビットの調整用データに基づいて各スイッチ+2  $^{[n-1]}$ ,  $^{[n-1]}$ のオン/オフを制御して 7 補正された各基準電圧  $^{[n-1]}$ のオン/オフを制御して 7 補正された各基準電圧  $^{[n-1]}$ のオン/オフを制御して 2 電源やスイッチの個数や調整用データのビット数は上記信、限定されるものではない。

【0066】さらに、上記定電流源が発生する電流値に 対する重み付けも「2 <sup>[n-1]</sup>」に限定されるものではな く、液晶材料や液晶パネルの特性や階調表示の量産ばら つき等を考慮して適度設定しても構わない。

# [0067]

【発明の効果】以上より明らかなように、第1の発明の 階濶表示基準電圧発生回路は、基準電圧生成回路で生成 された複数レベルの基準電圧の天々を、調整回路によって、外部からの調整用データに基づいて調整できるの で、当該階調表示基準電圧発生回路が一旦液晶駆動装置 に搭載された後においても、外部から上記調整用データ を与えることによって、当該液晶駆動装置を作り変える ことなく、液晶材料や液晶パネルの特性に合わせて上記 基準電圧を簡単に調整することが可能になる。

【0068】また、上記調整用データを随時与えることによって、当該階調表示基準電圧発生回路が搭載された 液晶モジュール1台毎に生ずる階調表示の量産ばらつき を補正することが可能になる。さらに、上記基準電圧生 成回路と調整回路とによって内部で所望の中間電圧を発 生するので、3以上のレベルの中間関準電圧を外部か ら供給してもらう必要はない。したがって、外付け回路 規模の縮小や端子数の削減を図ることができ、製造コスト を抑えることができる。

【0069】また、上記第1の発明の階調表示基準電圧 発生回路は、上記調整回路に、上記基準電圧の人力端子 と、上記調整用データの入力端子と、調整後の電圧の出 力端子と、上記調整用データに応じて上記基準電圧より も高いあるいは低い電圧を生成して上記調整後の電圧と して出力する調整後電圧生成回路を備えれば、上記基準 電圧に基づいて、上記調整用データに応じた調整後の電 圧を容易に生成して上記出力端子から出力できる。

[0070]また、上記第10発明の階調表示基準電圧 発生回路は、上記調整後電圧生成回路を、上記調整用デ ータに応じた電位差を発生する電位差発生回路と、上記 基準電圧と電位差との和電圧を出力する和電圧出力回路 で構成すれば、上記調整後電圧生成回路を簡単に形成で きる。

【0071】また、上記第1の発明の階震表示基準電圧 発生回路は、上記剛整後電圧生成回路を、上記入力端子 と出力端子との間に介設された抵抗素子と、定電流源 と、上記定電流源と抵抗素子との間に介設されて上記調 50 電圧を簡単に刺撃することができる。

整用データに基づいてオン/オフするスイッチ素子で構成すれば、上記調整用データに基づいて各スイッチ素子のオン/オフを制御することによって、上記抵抗素子を流れる電流値を変化させて両端電位差を制御できる。したがって、上記調整用データに応じた調整量で上記基準電圧の顕整を行うことができる。

【0072】また、上記第1の発明の階調表示基準電圧 発生回路は、上記抵抗業子と出力端子との間に介設され たパッファアンを備えれば、出力インピーダンスを低 10 くして上記出力端子から安定して出力電流を取り出すこ とができる。

[0073]また、上記第10券明の階調表示基準電圧 発生回路は、上記定電流源を(nを正の整数として)2 (n-11)の重み付けされた電流を発生するように成し、上 記調整用データを20補数表現による2進数の多ピット デジタルデータと成せば、上記調整用データのピット 春をれとして上記調整用データと上記定電流源の重みと を対応付けることができる。したがって、上記調整用データに応した倍数の電位差を上記抵抗薬子の両端に発生 させることができる。

【0074】すなわち、この発明によれば、上記副整用 データによって、上記基準電圧の顕整量を簡単に指定す ることができる。さらに、上記副整門データを表示で タに書き加えることによって、液晶パネルの1水平ライン毎に階調表示用の上記基準電圧を調整し、液晶パネル における表示班の一つである横シャドーイングを補正し てより高品位な表示を得ることが可能になる。

【0075】また、上記第1の発卵の階調表示基準電圧 発生回路は、上記定電流源を上記抵抗業子に電流を流 し込む第1定電流源と上記抵抗業子から電流を流し出す 第2定電流源で構成し、上記スイッチ素子によって、上 記抵抗素子に電流を流し込む第1定電流源および上記抵 抗素子から電流を流し出す第2定電流源を設定するよう に成せば、上記調整用データに応じて上記基準電圧の調 審量と増越とを設定することができる。

【0076】また、上記第1の発明の階調表示基準電圧 発生回路は、上記基準電圧生成回路を、γ補正された基 準電圧を生成するように成し、上記調整回路を、上記7 補正された基準電圧を調整するγ補正調整回路とすれ ば、一旦/補正された基準電圧を、さらに液晶材料や液

) ば、一旦ヶ補正された基準電圧を、さらに液晶材料や液晶パネルの特性に合わせて調整することができる。したがって、より正確に液晶材料や液晶パネルの特性に合わせた基準電圧を生成することが可能になる。

【0077】また、第2の発明の液晶駆動装置は、生成 した複数レベルの基準電圧の夫々を調整用データに基づ いて調整できる上記第1の発明の防調表示基準電圧発生 回路を備えているので、外部から上記調整用データを与 えることによって、当該液晶駆動装置を作り変えること なく、液晶材料や油晶パネルの特性に合わせて上記基準 衛圧を簡単に調整することができる。 【図面の簡単な説明】

【図1】 この発明の階調表示基準電圧発生回路における構成を示すプロック図である。

【図2】 図1におけるγ補正調整回路の概略ブロック図である。

【図3】 基準電圧よりも高い出力電圧を得る場合と低い出力電圧を得る場合とにおける定電流源の動作説明図である。

【図4】 γ補正調整回路における定電流源部の回路構成を示す図である。

【図5】 図1に示す階調表示基準電圧発生回路による 液晶駆動出力電圧の特性を示す図である。

【図6】 TFT方式による液晶表示装置のプロック構成を示す図である。

【図7】 図6における液晶パネルの構成を示す図である。

【図8】 液晶駆動波形の一例を示す図である。

【図9】 図8よりも印加電圧が低い場合の液晶駆動波 形を示す図である。

【図10】 図6におけるソースドライバのブロック図である。

である。 【図11】 図10における階調表示基準電圧発生回路

の構成を示す図である。 【図12】 図11に示す階調表示基準電圧発生回路に よる液晶駆動出力電圧の特件例を示す図である。

10 【符号の説明】 41…階調表示基準電圧発生回路、42…γ補正調整回

41…階調表示基準電圧発生回路、42…γ補正調整回路、43…データラッチ回路、44.4

5, i, 2 i, 4 i, 8 i, 1 6 i…定電流源、4 6…バッファアンプ、 V0…最上位電圧入力端

子、V 6 4 …最下位電圧入力端子、 R 0 ~ F 7. R …抵抗素子、+ 2 <sup>(n-1)</sup> . - 2 <sup>(n-1)</sup> …スイッチ。

[図1]



[図2]



[図5]







# フロントページの続き

| (51)Int.Cl.7 |      | 識別記号  | FI      |      | テーマフード(参 | 考) |
|--------------|------|-------|---------|------|----------|----|
| G 0 9 G      | 3/20 | 6 4 1 | G 0 9 G | 3/20 | 6 4 1 Q  |    |
| H 0 4 N      | 5/66 |       | H 0 4 N | 5/66 | A        |    |