ESERCIZI DI GEOMETRIA B

1. Dati in $\mathcal{E}^3(\mathbb{R})$ i punti $A \equiv (1,0,1), \ B \equiv (2,0,0), \ C \equiv (3,0,1)$ ed il piano $\pi: 2x+y-z=3$, verificare che $A, \ B, \ C$ sono affinemente indipendenti e trovare un'equazione cartesiana del piano π' passante per $A, \ B, \ C$.

Scrivere poi una rappresentazione cartesiana della retta r per $P \equiv (1,1,1)$, parallela sia a π che a π' .

2. Studiare la reciproca posizione del piano α : x+y+z+2=0 e della retta r : $\begin{cases} x=1+2t\\ y=2-t\\ z=-1-t \end{cases}$. Scrivere, se possibile, l'equazione di un

3. Studiare, al variare del parametro $k \in \mathbb{R}$, la reciproca posizione delle

$$r_k$$
:
$$\begin{cases} x + ky - z = 1 \\ x + y + kz = 0 \end{cases} s_k$$
:
$$\begin{cases} x + y = 0 \\ kx - y = 0 \end{cases}$$

rette

Per i valori di k per i quali le due rette sono complanari, determinare l'equazione del piano che le contiene.

4. Determinare la reciproca posizione dei piani $\alpha: x+2y-z=1$ e $\beta: \begin{cases} x=1+t\\ y=s\\ z=1+t \end{cases}$

- 5. Dati in $\mathcal{E}^2(\mathbb{R})$ i punti $A\equiv(0,0),\ B\equiv(1,0),\ C\equiv(1,2),$ determinare D in modo tale che $\{A,B,C,D\}$ sia l'insieme dei vertici di un parallelogramma.
- 6. Determinare una rappresentazione cartesiana della retta parallela alla retta r: x+y-1=0 e passante per il punto comune a $s_1: \begin{cases} x=1+t \\ y=2+t \end{cases}$

e
$$s_2: \begin{cases} x = 3 + 2t \\ y = 1 + t \end{cases}$$
.

7. Dati la retta r: $\begin{cases} x + 2y - 3z = 1 \\ x + y + z = 3 \end{cases}$ ed il piano π : $\alpha x + \beta x +$

 $3y-2z=2\alpha$, discutere, al variare di $\alpha\in\mathbb{R}$, la reciproca posizione di $r\in\pi$, determinandone, ove possibile, l'intersezione.

8. Dati il punto $P \equiv (1,2,0)$ e le rette $r: \begin{cases} x=1+t \\ y=-1-t \end{cases}$ e s: z=2t

$$\begin{cases} x=2+2t\\ y=-2-t\\ z=2+t \end{cases}, \text{ verificare che } r \text{ ed } s \text{ sono incidenti.}$$

Scrivere un'equazione del piano π passante per l'origine, per P e per il punto di intersezione tra r e s. Scrivere inoltre una rappresentazione cartesiana della retta t passante per P' = (1, 0, 1), parallela a π e incidente r.

9. Date le rette di $\mathcal{E}^3(\mathbb{R})$

$$r: \frac{2x-1}{3} = y-2 = \frac{z}{2}$$
 $s: \begin{cases} x-2y+3z-1=0\\ x+y-z=0 \end{cases}$

verificare che sono sghembe.

Determinare le equazioni della retta t passante per $P \equiv (2, 2, 3)$ ed incidente sia r che s.

Determinare un'equazione del piano π parallelo sia a r che a s e passante per P.

- **10.** Dati in \mathcal{E}^2 i punti $A \equiv (1,2), B \equiv (3,-2)$ e $C \equiv (4,1)$, determinare, se esistono, i punti D tali che ABCD è un trapezio rettangolo.
- 11. Determinare, in \mathcal{E}^3 , le equazioni della retta ortogonale al piano $\pi : \begin{cases} x = t 2s \\ y = t \end{cases} \quad \text{per il punto } P \equiv (2, 0, -1).$ z = -2 2t + 2s

- 12. Determinare le equazioni della retta r di \mathcal{E}^3 , passante per il punto $P \equiv (3,2,1)$, ortogonale alla retta s: $\begin{cases} 2x+3y-4=0\\ x-3z+1=0 \end{cases}$ e complanare alla retta t: $\begin{cases} x-3y-z=0\\ x+7y+z-6=0 \end{cases}$.
- 13. Determinare le equazioni della retta s di \mathcal{E}^3 parallela al piano $\pi: 2x+y-3z+3=0$, passante per $C\equiv (-5,0,1)$ e incidente $r:\begin{cases} x-y-1=0\\ z+3=0 \end{cases}$.

Calcolare la distanza tra la retta s e la retta t : $\begin{cases} 4x - y - 2 = 0 \\ y - 2z = 0 \end{cases}$.

- 14. Dati in \mathcal{E}^3 il piano π : x-2y+z+3=0 e la retta $r:\begin{cases} 2y-z+5=0\\ x-6y+3z-13=0 \end{cases}$,
 - (a) determinare la mutua posizione di r e π e calcolarne la distanza;
 - (b) determinare le equazioni della retta t parallela a π , ortogonale a r e passante per il punto $A \equiv (0, 1, 0)$;
 - (c) dato il punto $B \equiv (3,1,-1)$, determinare, se esistono, i punti $P \in t$ tali che l'area del triangolo PAB sia 8.
 - 15. Date le rette di \mathcal{E}^3 ,

$$r: \begin{cases} x - y + z - 3 = 0 \\ 2x + y - z - 3 = 0 \end{cases} \qquad s: \frac{x - 1}{4} = \frac{y - 1}{5} = z$$

verificare che sono sghembe, calcolarne la distanza e determinare le equazioni della perpendicolare comune.

16. Date in \mathcal{E}^3 le rette r: x=y=z e $s: \begin{cases} x+y=4\\ z=2 \end{cases}$,

- (a) determinare un'equazione del piano α che le contiene;
- (b) scrivere le equazioni delle rette contenute in α , che passano per l'origine e formano un angolo di $\frac{\pi}{3}$ con la retta s;
- (c) dette A e B le intersezioni di tali rette con s e dato il punto $C \equiv (0, 0, 1)$, calcolare il volume del tetraedro OABC.
- 17. Nel piano euclideo si consideri la retta r di equazione 6x+8y-3=0 ed il punto $P\equiv (2,2)$. Si determinino:
 - (a) le coordinate della proiezione ortogonale P' di P su r;
 - (b) le coordinate del simmetrico P'' di P rispetto a r;
 - (c) l'equazione della retta r' simmetrica di r rispetto alla retta s di equazione 4x 3y 12 = 0;
 - (d) le equazioni delle bisettrici degli angoli formati dalle rette $r \in s$.
 - 18. Nel piano euclideo sono date le trasformazioni

$$\begin{cases} x' = y + 1 \\ y' = -x + 2 \end{cases} \qquad \begin{cases} x' = -x + 2 \\ y' = y + 1 \end{cases}.$$

Verificare che sono isometrie, stabilire se sono dirette e determinarne i punti fissi.

- 19. Nel piano euclideo scrivere le equazioni della simmetria ortogonale rispetto alla retta di equazione x 2y + 5 = 0.
- **20.** Studiare le seguenti coniche di \mathcal{E}^2 , determinandone, se possibile, centro, asintoti, assi, vertici, fuochi ed una equazione canonica. Nel caso dell'iperbole equilatera determinare anche l'equazione riferita agli asintoti.

(a)
$$3x^2 + y^2 - 12x + 2\sqrt{3}y + 12 = 0$$
;

(b)
$$3x^2 - y^2 - 6x - 2\sqrt{3}y + 3 = 0$$
;

(c)
$$x^2 + 4y^2 - 4xy - 6x - 12y + 9 = 0$$
;

(d)
$$2xy - 2x + 6y = 0$$
;

(e)
$$x^2 - 3y^2 + 2xy + 6x + 14y = 0$$
;

(f)
$$3x^2 + 4xy - 2x - 1 = 0$$
;

(g)
$$x^2 + y^2 + 2xy - 2x - 10y + 1 = 0$$
.

21. Scrivere l'equazione della polare del punto $P \equiv (1,0)$, rispetto ad ognuna delle coniche dell'esercizio 4; nei casi (b),(c),(d) stabilire quindi la posizione del punto P rispetto alla conica.

SOLUZIONI

Es. 1
$$\pi'$$
: $y = 0$, r :
$$\begin{cases} 2x + y - z - 2 = 0 \\ y - 1 = 0 \end{cases}$$

Es. 2
$$r//\alpha$$
, $x + y + z - 2 = 0$

Es. 3 sono sghembe per $k \in \mathbb{R} - \{-1, 0\}$, incidenti per k = 0; per k = -1 s_k non é una retta.

Per k=0 il piano ha equazione x+y=0

Es. 4 α e β sono incidenti.

Es. 5
$$D_1 \equiv (0,2), D_2 \equiv (0,-2), D_3 = (2,2).$$

Es. 6
$$x + y + 5 = 0$$
.

Es. 8
$$\pi$$
 : $2x - y - 3z = 0$, t : $\frac{x-1}{4} = \frac{y}{-7} = \frac{z-1}{5}$.

Es. 7 Per
$$\alpha \neq 2$$
 sono incidenti in $P \equiv (2, \frac{2}{5}, \frac{3}{5})$; per $\alpha = 2, r \subset \pi$.
Es. 8 π : $2x - y - 3z = 0$, t : $\frac{x-1}{4} = \frac{y}{-7} = \frac{z-1}{5}$.
Es. 9 t :
$$\begin{cases} 2x - y - z + 1 = 0 \\ 5x + 8y - 9z + 1 = 0 \end{cases}$$
; π : $5x + 11y - 13z + 7 = 0$.

Es. 10 $D \equiv (3,3)$.

Es. 11
$$x-2=y=z+1$$
.

Es. 12
$$\frac{x-3}{3} = \frac{y-2}{5} = z - 1$$
.

Es. 11
$$x - 2 = y = z + 1$$
.
Es. 12 $\frac{x-3}{3} = \frac{y-2}{5} = z - 1$.
Es. 13 $s: x + 5 = \frac{y}{4} = \frac{z-1}{2}$; $d(s,t) = \frac{2}{3}\sqrt{69}$ (rette parallele).

Es. 14 (a) sono paralleli,
$$d(r, \pi) = \sqrt{6}$$
; (b) $t : \begin{cases} x - 2y + z + 2 = 0 \\ y + 2z - 1 = 0 \end{cases}$

(c)
$$P_1 \equiv \left(-\frac{40}{\sqrt{11}}, 1 - \frac{16}{\sqrt{11}}, \frac{8}{\sqrt{11}}\right), P_2 \equiv \left(\frac{40}{\sqrt{11}}, 1 + \frac{16}{\sqrt{11}}, -\frac{8}{\sqrt{11}}\right)$$

Es. 15
$$d(r,s) = \sqrt{3}$$
; perpendicolare comune $x-1=1-y=z$.

Es. 16 (a)
$$\alpha$$
 : $x+y-2z=0$; (b) $\frac{x}{1+\frac{\sqrt{2}}{2}}=\frac{y}{1-\frac{\sqrt{2}}{2}}=z$; $\frac{x}{1-\frac{\sqrt{2}}{2}}=\frac{y}{1+\frac{\sqrt{2}}{2}}=z$;

(c)
$$V = \frac{4}{3}\sqrt{2}$$
.

Es. 17 (a)
$$P' \equiv (\frac{1}{2}, 0)$$
; (b) $P'' \equiv (-1, -2)$; (c) $r' = r$; (d) $14x + 2y - 27 = 0$; $2x - 14y - 21 = 0$.

Es. 18 La prima è una isometria diretta con un punto fisso $P \equiv (\frac{3}{2}, \frac{1}{2})$; la seconda è una isometria inversa senza punti fissi.

Es. 19
$$\begin{cases} x' = \frac{3}{5}x + \frac{4}{5}y - 2\\ y' = \frac{4}{5}x - \frac{3}{5}y + 4 \end{cases}$$

- **20.** (a) ellisse di centro $C \equiv (2, -\sqrt{3})$, assi $y + \sqrt{3} = 0$ e x 2 = 0, vertici $V_1 \equiv (2, 0), V_2 \equiv (2, -2\sqrt{3}), V_1 \equiv (1, -\sqrt{3}), V_1 \equiv (3, -\sqrt{3})$, equazione canonica $\frac{X^2}{3} + Y^2 = 1$ e fuochi $F_1 \equiv (2, \sqrt{2} \sqrt{3}), F_2 \equiv (2, -\sqrt{3} \sqrt{2})$;
- (b) iperbole di centro $C \equiv (1, -\sqrt{3})$, asintoti $\sqrt{3}x + y = 0$, $\sqrt{3}x y 2\sqrt{3} = 0$, assi $y + \sqrt{3} = 0$ e x 1 = 0 (trasverso), vertici $V_1 \equiv (1, -2\sqrt{3}), V_2 \equiv (1, 0)$, equazione canonica $\frac{X^2}{3} Y^2 = 1$ e fuochi $F_1 \equiv (1, -2 \sqrt{3}), F_2 \equiv (1, 2 \sqrt{3})$;
- (c) parabola di asse 5x 10y + 9 = 0, vertice $V \equiv (\frac{3}{25}, \frac{24}{25})$, equazione canonica $Y = \frac{5\sqrt{5}}{24}X^2$ e fuoco $F \equiv (\frac{3}{5}, \frac{6}{5})$;
- (d) iperbole equilatera di centro $\tilde{C} \equiv (-3,1)$, asintoti y-1=0, x+3=0, assi x-y+4=0 e x+y+2=0 (trasverso), vertici $V_1 \equiv (-3-\sqrt{3},1+\sqrt{3}), V_2 \equiv (-3+\sqrt{3},1-\sqrt{3})$, equazione canonica $\frac{X^2}{6} \frac{Y^2}{6} = 1$, equazione riferita agli asintoti $\tilde{X}\tilde{Y} = 3$ e fuochi $F_1 \equiv (-3-\sqrt{6},1+\sqrt{6}), F_2 \equiv (-3+\sqrt{6},1-\sqrt{6})$;
- (e) iperbole di centro $C \equiv (-4,1)$, asintoti x-y+5=0, x-5y+9=0, assi $(3-\sqrt{5})x-(1+\sqrt{5})y+13-3\sqrt{5}=0$ e $(\sqrt{5}-1)x+(7-3\sqrt{5})y+7\sqrt{5}-11=0$, equazione canonica $\frac{X^2}{\frac{5}{\sqrt{5}-1}}-\frac{Y^2}{\frac{5}{\sqrt{5}+1}}=1$.
- (f) iperbole di centro $C \equiv (0, \frac{1}{2})$, asintoti x = 0, 3x + 4y 2 = 0, assi 4x + 2y 1 = 0 e x 2y + 1 = 0 (trasverso), vertici $V_1 \equiv (-\frac{1}{\sqrt{5}}, \frac{1}{2} \frac{1}{2\sqrt{5}}), V_2 \equiv (\frac{1}{\sqrt{5}}, \frac{1}{2} + \frac{1}{2\sqrt{5}})$, equazione canonica $\frac{X^2}{\frac{1}{4}} Y^2 = 1$ e fuochi $F_1 \equiv (-1, 0), F_2 \equiv (1, 1)$;
 - (g) parabola di asse x + y 3 = 0, vertice $V \equiv (\frac{5}{2}, \frac{1}{2})$, equazione canonica

 $Y = \frac{X^2}{2\sqrt{2}}$ e fuoco $F \equiv (2,1)$; 21. (b) P appartiene al supporto della conica e la retta è tangente; (c) punto esterno; (d) punto interno.