Topics in Analysis (F24)

September 30, 2024

Chapter 1: Banach Algebras

1.1: Definitions and Basic Properties

Definition: Banach Space

A Banach space X (over \mathbb{C}) is a normed vector space with algebraic operations

$$(x,y)\mapsto x+y$$
 addition
$$(\lambda,y)\mapsto \lambda y$$
 scalar multiplication

and a norm

$$x \mapsto ||x||$$

which is complete (i.e. every Cauchy sequence converges).

Definition: (Complex) Banach Algebra

A (complex) Banach algebra *B* is a Banach space in which there is multiplication

$$B \times B \ni (x, y) \mapsto xy \in B$$

such that

1.
$$x(yz) = (xy)z$$

2.
$$(x+y)z = xz + yz$$
 and $x(y+z) = xy + xz$

3.
$$\lambda(xy) = (\lambda x)y = x(\lambda y)$$

4.
$$||xy|| \le ||x|| \cdot ||y||$$

Definition: Unital Banach Algebra

B is called a unital Banach algebra if $\exists e \in B$ such that

$$xe = ex = x$$
 and $||e|| = 1$.

If *e* exists, it is unique.

1.2: Examples

Example 1

If X is a Banach space, then $B = \mathcal{L}(X)$ (the set of all bounded inear operators $A: X \to X$) equipped with algebraic operations

$$(A+B)x = Ax + Bx$$
$$(\lambda A)x = \lambda (Ax)$$
$$(AB)x = A(Bx)$$

and the operator norm

$$||A||_{\mathcal{L}(X)} = \sup_{x \neq 0} \frac{||Ax||_X}{||x||_X}.$$

 $B = \mathcal{L}(X)$ is complete because X is complete. The unit element is given by $I_X x = x$.

Example 2

If $X = \mathbb{C}^n$, then $B = \mathcal{L}(\mathbb{C}^n) \cong \mathbb{C}^{n \times n}$.

$$A = (a_{ij})_{i,j=1}^{n}$$

$$Ax = y$$

$$\sum_{j=1}^{n} a_{ij}x_{j} = y_{i}.$$

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix}$$

The norm in \mathbb{C}^n leadsto a norm in $\mathbb{C}^{n\times n}$

$$||(x_i)|| = \left(\sum |x_i|^2\right)^{1/2}$$
 $||A|| =$
 $||(x_i)|| = \sum |x_i|$ $||A|| = \max_{j} \sum_{i} |a_{ij}|$
 $||(x_i)|| = \max |x_i|$ $||A|| = \max_{i} \sum_{j} |a_{ij}|$

All norms are quivalent.

Example 3

Take B = C(K) with K a compact Hausdorff space, $f : K \to \mathbb{C}$ continuous and $||f|| = \max_{t \in K} |f(t)|$.

Example 4

Take B = A(K), $K \subseteq \mathbb{C}$ compact with $\operatorname{int}(K) \neq 0$, $f : K \to \mathbb{C}$ continuous where f is holomorphic on $\operatorname{int}(K)$ and

$$||f|| = \max_{t \in K} |f(t)| = \max_{t \in K \setminus \text{int}(K)} |f(t)|$$

e.g. $K = \overline{\mathbb{D}} = \{ t \in \mathbb{C} : |t| \le 1 \}$. Then $A(K) \subseteq C(K)$.

Example 5

Take $B = \ell^{\infty}(\mathbb{N})$ or $B = L^{\infty}(S, \sigma, \mu)$ with (S, σ, μ) a measure space, $f : S \to \mathbb{C}$ essentially bounded functions and

$$||f|| = \operatorname{ess\,sup}_{t \in S} |f(t)| = \inf_{\substack{N \subseteq S \\ \mu(N)}} \left(\sup_{t \in S \setminus N} |f(t)| \right)$$

Example 6

Take $B = \ell^1(\mathbb{Z})$ or $B = L^1(\mathbb{R}^d)$ with $||\{x_n\}|| = \sum |x_n|$ and $||f|| = \int_{\mathbb{R}^d} |f(t)| dt$ respectively. Multiplication is given by the convolution. e.g.

$$fg = (f * g)(x) = \int_{\mathbb{D}^d} f(x - t)g(t) dt$$

 $\ell^1(\mathbb{Z})$ is unital, but $L^1(\mathbb{R}^d)$ is non-unital (since the unit of convolution is the Dirac delta; see Example 7).

Example 7

Take $B = M(\mathbb{R}^d)$ the complex measures on \mathbb{R}^d with bounded variation. Then multiplications is given as

$$(\mu * \nu)(A) = \int_{\mathbb{D}^d} \mu(A - x) d\nu(x)$$

and norm

$$||\mu|| = \sup_{\mathbb{R}^d = \bigcup A_i \atop \text{disjoint}} \sum_{i=1}^n |\mu(A_i)| < +\infty.$$

Then, $f dm = d\mu$ gives $L^1(\mathbb{R}^d) \to M(\mathbb{R}^d)$.

Example 8

Take $B = C^{n \times n}[K]$ with K compcat and Hausdorff, continuous functions $f: K \to \mathbb{C}^{n \times n}$ and norm

$$||f||_B = \max_{t \in k} ||f(t)||_{C^{n \times n}}.$$

Then $B \cong (C(K))^{n \times n}$ the $n \times n$ matrices with entries from C(K).

1.3: Remarks

• If B does not have a unit element, consider $B_1 = B \times \mathbb{C}$ with operations

$$(b_1, \lambda_1) + (b_2, \lambda_2) = (b_1 + b_2, \lambda_1 + \lambda_2)$$
$$\alpha(b, \lambda) = (\alpha b, \alpha \lambda)$$
$$(b_1, \lambda_1)(b_2, \lambda_2) = b_1 b_2 + \lambda_1 b_2 + \lambda_2 b_1, \lambda_1 \lambda_2)$$

and norm

$$||(b,\lambda)|| = ||b|| + |\lambda|.$$

Then B_1 is a unital Banach algebra with e = (0,1). One writes $(b,\lambda) = (b,0) + \lambda(0,1) = b + \lambda \cdot e$. In some sense, $B \subseteq B_1$ where $b \in B \mapsto (b,0) \in B_1$.

1.4: Definitions

Definition: Commutative Banach Algebra

B is called commutative if xy = yx.

Definition: Banach Subalgebra

A subset B_0 of a B-algebra is called a subalgebra if it is closed with respect to the algebraic operations

$$x, y \in B_0, \lambda \in \mathbb{C} \Rightarrow x + y, xy, \lambda x \in B$$

Definition: Closed Subalgebra

 B_0 is a closed subalgebra or Banach subalgebra if it is norm-closed.

• Proposition: B_0 is a Banach algebra.

Definition: Generated Subalgebra

Let $M \neq \emptyset$ be a subset of a Banach algebra B.

The Banach subalgebra generated by M is the smallest closed subalgebra containing M.

$$alg M = (clos alg_B M)$$

Remark

$$\begin{split} &\operatorname{alg} M \text{ is the intersection of all closed subalgebras containing } M. \\ &\operatorname{alg} M = \operatorname{clos} \left\{ \sum_{i=1}^N \lambda_i a_1^{(i)} a_2^{(i)} \cdots a_{n_i}^{(i)} \right\} \text{ is the norm-closure of finite linear combinations of finite products of } a_j^{(i)} \in M. \end{split}$$

1.5: Examples

Exammple 1

Take B unital, $b \in B$. Then

$$\operatorname{alg}\{e,b\} = \operatorname{clos}_{B}\left\{\sum_{i=0}^{N} \lambda_{i} b^{i} : \lambda_{i} \in \mathbb{C}, \ N \in \mathbb{N}\right\}$$

where $b^0 = e$.

1.6 Definitions

Definition: Banach Algebra Homomorphism

A Banach algebra homomorphism is a map $\phi: B_1 \to B_2$ between Banach algebras B_1 and B_2 such that

- ϕ is linear
- ϕ is bounded (continuous)
- ϕ is multiplicative

$$\phi(b_1b_2) = \phi(b_1) \cdot \phi(b_2)$$

• ϕ is unital if both B_1, B_2 have units and $\phi(e_{B_1}) = e_{B_2}$.

Definition: Banach Algebra Isomorphism

A Banach algebra homomorphism which is bijective is called a Banach algebra isomorphism. Then $\phi^{-1}: B_2 \to B_1$ is an isomorphism as well.

Definition: Banach Algebra Isometry

 ϕ is an isometry if $||\phi(x)|| = ||x||$.

October 2, 2024

Recall

Given $M \subseteq \mathcal{L}(X)$ with X a Banach space (and $\mathcal{L}(X)$ itself a Banach algebra), we may construct $B = \operatorname{alg}_{\mathcal{L}(X)} M$.

1.7 Proposition

Let B be a unital Banach algebra. Then the map

$$\phi: B \ni x \to L_x \in \mathcal{L}(B)$$

is an isometric isomorphism onto a closed subalgebra of $\mathcal{L}(B)$ where

$$L_x: B \ni z \mapsto xz \in B$$

5

is the left-representation of x.

Proof

 L_x is in $\mathcal{L}(B)$ since $L_x z = xz$

- is linear in z and
- $||L_x z|| = ||xz|| \le ||x|| \cdot ||z||$ implies $||L_x|| \le ||x||$ (i.e. L_x is a bounded).

The map $\phi: x \mapsto L_x$ is linear

$$L_{x_1+x_2}z = (x_1 + x_2)z = x_1z + x_2z = L_{x_1}z + L_{x_2}z = (L_{x_1} + L_{x_2})z$$

 ϕ is multiplicative

$$L_{x_1x_2}z = (x_1x_2)z = x_1(x_2z) = L_{x_1}(L_{x_2}z)$$

From the above, we conclude that ϕ is a homomorphism.

To show that ϕ is an isometry,

$$||L_x|| = \sup_{z \neq 0} \frac{||L_x z||}{||z||} \ge \frac{||L_x e||}{||e||} = \frac{||x||}{1} = ||x||.$$

Then also ϕ is injective and $\operatorname{im} \phi$ is closed. Since $\operatorname{im} \phi$ is a Banach algebra, it is therefore a closed subalgebra.

1.7 Remark: Right-Regular Representation

Every unital Banach algebra is isometrically isomorphic to a Banach algebra of operators. Right-regular representation:

$$R_x = z \mapsto zx$$

Chapter 2: Group of Invertible Elements in a Banach Algebra

2.1 Definition: Invertible Element

Let *B* be a unital Banach algebra. An element $x \in B$ (in *B*) if there exists $y \in B$ such that xy = yx = e. Note that $y = x^{-1}$ is uniquely determined.

Write GB for the set of all invertible elements of B.

Remark

GB is a (multiplicative group).

- $x, y \in GB \implies xy \in GB \text{ and } (xy)^{-1} = y^{-1}x^{-1}$,
- $x \in GB \implies x^{-1} \in GB$ and $(x^{-1})^{-1} = x$, and
- $e \in GB$.

2.2 Lemma

If $x \in B$ and ||x|| < 1, then $e - x \in GB$.

Proof

Take the Neumann series

$$e + x + x^2 + x^3 + \cdots$$

which converges to some $s \in B$

$$s_n = e + x + \dots + x^n$$

where s_n are Cauchy:

$$||s_{n+k} - s_n|| = ||x^{n+1} + \dots + x^{n+k}|| \le ||x||^{n+1} + ||x||^{n+2} + \dots = \frac{||x||^{n+1}}{1 - ||x||}.$$

So $s_n \to S$,

$$(e-x)s_n = s_n(e-x)e - x^{n+1}$$
.

Taking $n \to \infty$

$$(e-x)s = s(e-x) = e.$$

2.3 Proposition

The group GB is open in B and the map $\Lambda: GB \ni x \mapsto x^{-1} \in GB$ is continuous (in the norm).

Proof

Take $x \in GB$ and consider $y \in B$ with $||y|| < \frac{1}{||x^{-1}||} = \varepsilon$. Then $x + y \in B_{\varepsilon}(x)$ is invertible,

$$x + y = x(e + x^{-1}y),$$

and

$$||x^{-1}y|| \le ||x^{-1}|| \cdot ||x|| < 1.$$

Therefore GB is open, since $B_{\varepsilon}(X) \subseteq GB$. The inverse

$$(x+y)^{-1} = (e+x^{-1}y)^{-1}x^{-1} = \sum_{n=0}^{\infty} (-x^{-1}y)^n x^{-1} = x^{-1} + \sum_{n=1}^{\infty} (-x^{-1}y)^n x^{-1}$$

SO

$$||(x+y)^{-1}-x^{-1}|| \le \sum_{n=1}^{\infty} ||x^{-1}||^{n+1} ||y||^n = \frac{||x^{-1}||^2 ||y||}{1-||x^{-1}|| \cdot ||y||}.$$

This converges to zero as $||y|| \to 0$.

2.4 Examples

Example 1

B = C(K), K compact Hausdroff, $f : K \to \mathbb{C}$ continuous. $GB = \{ f \in C(K) : f(t) \neq 0, \ \forall \ t \in K \}.$

Example 2

$$B = C^{n \times n}.$$

$$GB = \{ A \in \mathbb{C}^{n \times n} : \det A \neq 0 \}.$$

2.5 Definition:

Let G_0B stand for the connected componet of GB containing e.

Remarks

• the ε -neighborhoods $B_{\varepsilon}(x) \subseteq B$ are (path-)connected.

$$B_{\varepsilon}(x) = \{ y \in B : ||x - y|| < \varepsilon \}$$

For $y_1, y_2 \in B_{\varepsilon}(x)$, there is a continuous path

$$\sigma: [0,1] \ni \lambda \mapsto \gamma_1 \lambda + \gamma_2 (1-\lambda) \in B_{\varepsilon}(x)$$

- Because GB is open and $B_{\varepsilon}(x)$ is path-connected, GB is locally (path-)connected (i.e. every $x \in GB$ has a (path-)connected open neighborhood in GB).
- In this context, connectedness and path-connectedness are equivalent. Therefore the components of *GB* are the path-components of *GB*.
- *GB* is the union of disjoint (path-)components where each component is both open and closed in *GB*.
- $x, y \in GB$ belong to the same path-component if there exists a continuous path $\gamma : [0,1] \to GB$ such that $\gamma(0) = x$ and $\gamma(1) = y$. Here, $x \sim y$ is an equivalence relation.
- $G_0B = \{x \in GB : \exists \text{ a path in } GB \text{ connecting } e \text{ and } x\}.$

2.6 Examples

Example 1

Take $B=C(\mathbb{T})$ with $\mathbb{T}=\{z\in\mathbb{C}:|z|=1\}$ and continuous functions $f:\mathbb{T}\to\mathbb{C}$. GB is the non-vanishing continuous functions $f:\mathbb{T}\to\mathbb{C}$ $(f(t)\neq 0,\ \forall\ t\in\mathbb{T})$. For $f\in GB$ one can define a winding number.

We have $\frac{1}{2\pi} \arg f(e^{ix})$ a continuous function with

wind(t) =
$$\left[\frac{1}{2\pi} \arg f(e^{ix})\right]_{x=0}^{2\pi} = \phi(2\pi) - \phi(0)$$

and wind(t) $\in \mathbb{Z}$.

The map $GB \ni f \mapsto \text{wind}(t) \in \mathbb{Z}$ is continuous, hence locally constant (i.e. constant on each connected component).

Therefore $G_0C(\mathbb{T})\subseteq\{f\in GC(\mathbb{T}): \operatorname{wind}(f)=0\}$. In fact, we will see that we have equality.

That is, f can be contracted (in GB) to the constant function e(t) = 1.

2.7 Proposition

 G_0B is a normal subgroup of GB.

Proof

• G_0B is a group.

For any $x, y \in G_0B$, there exist paths $\gamma_1 : [0,1] \to GB$ and $\gamma_2 : [0,1] \to GB$ with $\gamma_1(0) = \gamma_2(0) = e$, $\gamma_1(1) = x$ and $\gamma_2(1) = y$

Define $\gamma(t) = \gamma_1(t)\gamma_2(t)$ a path in GB such that $\gamma(0) = e$ and $\gamma(1) = xy$. Then $xy \in G_0B$.

Following from Lemma 2.2, $\hat{\gamma} = (\gamma_1(t))^{-1}$ is a continuous path with $\hat{\gamma_1}(0) = e$, $\hat{\gamma_1}(1) = x^{-1}$ and $x^{-1} \in GB$.

• G_0B is a normal subgroup of GB.

For every $y \in GB$, $yG_0By^{-1} \subseteq G_0B$ if and only if $yG_0B = G_0By$.

Take $x \in G_0B$ with path γ , then

$$\delta(t) = y\gamma(t)y^{-1}$$
, $\delta(0) = yey^{-1} = e$, and $\delta(1)yxy^{-1} \in G_0B$.

2.8 Definition: Abstract Index Group

The quotient group GB/G_0B is called the abstract index group of B.

Remark

 GB/G_0B is in 1-to-1 correspondence with the set of connected components of GB. Indeed, the (path-)connected components of GB are given by $yG_0B = G_0By$ (for $y \in GB$).

$$y_1G_0B = y_2G_0B \iff y_2^{-1}y_1G_0B = G_0B \iff y_2^{-1}y_1 \in G_0B \iff [y_2] = [y_1] \text{ in } GB/G_0B.$$

2.9 Definition: Exponential Map

For $x \in B$, we define the exponential map $B \ni x \mapsto \exp(x) := \sum_{n=0}^{\infty} \frac{x^n}{n!}$.

2.10 Lemma

The exponential map $B \ni x \mapsto \exp(x) \in GB$ is well-defined and continuous.

For xy = yx, we have $\exp(x + y) = \exp(x) \exp(y)$.

In particular, $(\exp(x))^{-1} = \exp(-x)$.

Proof

 $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ is absolutely convergent.

$$\sum_{n=0}^{\infty} \frac{||x||^n}{n!} < +\infty.$$

It follows that $s_n = \sum_{n=0}^k \frac{x^k}{k!}$ is a Cauchy sequence and therefore converges. Continuity left as an exercise. Need to show:

$$\left|\left|\sum \frac{x^n}{n!} - \sum \frac{y^n}{n!}\right|\right| \le |\left|x - y\right|\right| \cdot M_{x,y}$$

The fact that $\exp(x + y) = \exp(x) \exp(y)$ follows from multiplying terms and the binomial formula.

October 7, 2024

Recall

GB e + x.

 G_0B connected component of GB containing e.

 GB/G_0B is the abstract index group.

 $B = C(\mathbb{T}) \rightsquigarrow f \in GC(\mathbb{T}) \rightsquigarrow \operatorname{ind}(f).$

Definition: Exponential Map

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \in GB$$

Lemma:

For $y \in B$, ||y|| < 1, there exists $x \in B$ such that $\exp(x) = e + y$.

Proof

Define

$$\log(e+y) = y - \frac{y^2}{2} + \frac{y^3}{3} - \dots \in B.$$

This converges absolutely (||y|| < 1), therefore it converges in *B* by completeness.

Identities

$$\exp(\log(e+y)) = \sum_{n=0}^{\infty} \frac{\left(\sum_{k} \frac{y^{k}}{k} (-1)^{k-1}\right)^{n}}{n!} = e+y$$

Proof

 G_0B is equal to the set of all finite products of exponentials of elements in B.

$$G_0B = \bigcup_{n=0}^{\infty} \Gamma_n = \bigcup_{n=0}^{\infty} \{ \exp(a_1) \exp(a_2) \cdots \exp_{a_n} \in B \}$$

Proof

Call $\Gamma = \bigcup_{n=0}^{\infty} \Gamma^n$.

Then observe that each Γ_n is path-connected and contains e.

For $b = \exp(a_1) \cdots \exp(a_n) \in \Gamma_n$, define a path

- $\sigma: [0,1] \to \Gamma_n$
- $\sigma(t) = \exp(ta_1) \cdots \exp(ta_n)$ is continuous with $\sigma(0) = e$ and $\sigma(1) = b$.

Therefore, Γ is path-connected and contains e. It follows that $\Gamma \subseteq G_0B$.

To prove that $G_0B \subseteq \Gamma$, take $b \in G_0B$ and show that there exists a path in $GB \gamma : [0,1] \to GB$ continuous with $\gamma(0) = e$ and $\gamma(1) = b$.

We have that $(\gamma(t))^{-1}$ is continuous and bounded in the norm. Then $\gamma(t)$ is uniformly continuous.

$$||\gamma^{-1}(t)|| \le M.$$

$$(\exists N): |t-s| \le \frac{1}{N} \Longrightarrow ||\gamma(t) - \gamma(b)|| \le \frac{1}{M} \cdot \frac{1}{2}$$
. Write

$$b = \gamma(1) \cdot \gamma^{-1}(0) = \gamma(1)\gamma^{-1}\left(\frac{N-1}{N}\right)\gamma\left(\frac{N-1}{N}\right)\gamma^{-1}\left(\frac{N-2}{2}\right)\cdots\gamma\left(\frac{1}{N}\right)\gamma^{-1}\left(\frac{1}{N}\right)\gamma(0) = \prod_{k=1}^{N}\gamma^{-1}\left(\frac{k}{N}\right)\gamma\left(\frac{k-1}{N}\right).$$

Therefore, with $s_k = \gamma^{-1} \left(\frac{k}{N} \right) \gamma \left(\frac{k-1}{N} \right)$, $b = \prod_{k=1}^{N} \exp(\log(s_k))$.

$$|\left| \left| s_k - e \right| \right| \leq |\left| \gamma^{-1} \left(\frac{k}{N} \right) \right| \left| \cdot \right| \left| \gamma \left(\frac{k-1}{N} \right) - \gamma \left(\frac{k}{N} \right) \right| \right| \leq M \cdot \frac{1}{2M} \leq \frac{1}{2}.$$

Corollary

If B is commutative, $G_0B = \{\exp(a) : a \in B\}.$

Remark

Special case: B = C(K) (K compact Hausdorff space).

 $G_0B = \{ \exp(a) : a \in C(K) \}.$

 GB/G_0B is an equivalence class of functions $f: K \to \mathbb{C} \setminus \{0\}$ with respect to path-connectedness.

That is, $f_1 \sim f_2$ if and only if there exists continuous F(t,x): $[0,1] \times K \to \mathbb{C} \setminus \{0\}$ with $F(0,x) = f_1(x)$ and $F(1,x) = f_2(x)$.

These are the homotopy classes of continuous functions $f: K \to \mathbb{C} \setminus \{0\}$.

This corresponds to homotopy classes of continuous functions $f: K \to \mathbb{T}$ (with $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$) called the 1st co-homotopy group of $K \pi^1(K)$.

 $f: K \to \mathbb{C} \setminus \{0\}$ and $\frac{f}{|f|}: K \to \mathbb{C} \setminus \{0\}$ are path-connected by $\sigma(s) = \frac{f}{|f|^s}$, $s \in [0,1]$. $f_1 \sim f_2 \text{ in } K \to \mathbb{C} \setminus \{0\} \text{ implies that } \frac{f_1}{||f_1||} \sim \frac{f_2}{||f_2||} \text{ in } K \to \mathbb{T} \text{ by } F(s,x) \text{ and } \frac{F(s,x)}{|F(s,x)|}.$ We conclude that $\pi^1(K) \cong GC(K)/G_0C(K)$.

Example

Let $B = C(\mathbb{T})$.

$$G_0B = \{ \exp(a) : a \in C(\mathbb{T}) = \{ f \in GC(\mathbb{T}) : \text{wind}(f) = 0 \}$$

For $f \in GC(\mathbb{T})$, wind(f) = 0 implies that $f = \exp(a)$ has a logarithm.

This implies that $f \in G_0B$ which itself implies that wind(f) = 0, since wind(f) is continuous on $GC(\mathbb{T})$ and therefore constant on the component.

Therefore, $GB/G_0B \cong \mathbb{Z}$ via the winding number.

For connected components of GB, define $\chi_n(t) = t^n$, |t| = 1, where wind $(\chi_n) = n$.

Remark: Closed Subalgebras and Invertibility

Let A be a closed subalgebra of B (both being unital, $e \in A$, $e \in B$).

Obviously, if $a \in A$ is invertible in A (i.e. $a^{-1} \in A$) then a is invertible in B. Then $GA \subseteq GB \cap A \subseteq GB$.

Example

Take $B=C(\mathbb{T})$ and $A=\{f\in C(\mathbb{T}): f_n=0, \ \forall n<0\}=C_+(\mathbb{T})$ where $f_n=\frac{1}{2\pi}\int_0^{2\pi}f(e^{ix})e^{-inx}\ dx$ is the nth Fourier

Formally: $f(t) \cong \sum_{n=-\infty}^{\infty} f_n t^n$ in $B = C(\mathbb{T})$, |t| = 1. $f \in A$: $f(t) = \sum_{n=0}^{\infty} f_n t^n$, |t| = 1 has an analytic extension into the unit disk |t| < 1.

More precisely, $\phi: A(\overline{\mathbb{D}}) \to C_+(\mathbb{T}) \subseteq C(\mathbb{T})$ by $f \mapsto f|_{\mathbb{T}}$.

Where $A(\overline{\mathbb{D}}) = \{ f \in \overline{D} \to \mathbb{C} \text{ continuous, holomorphic on } \mathbb{D} \} \text{ and } \mathbb{D} = \{ t \in \mathbb{C} : |t| \le 1 \}.$

Then, for $f \in A(\overline{\mathbb{D}})$ with $n \in \{-1, -2, -3, \ldots\}$,

$$f_n = \frac{1}{2\pi} \int_0^{2\pi} f(e^{ix}) e^{-inx} dx = \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f(z)}{z^{n+1}} dz = \lim_{r \to 1^-} \frac{1}{2\pi i} \int_{\mathbb{T}} \frac{f(rz)}{z^{n+1}} dz = 0$$

In fact, φ is an isometry.

$$||f||_{A(\overline{\mathbb{D}})} = \sup_{|z| \le 1} |f(z)| = \max_{|z|=1} |f(z)| = ||f|_{\mathbb{T}}||_{C(\mathbb{T})}$$

By maximum modulus principle of holomorphic functions, since ϕ is not constant.

• ϕ is linear and multiplicative.

• $C_+(\mathbb{T})$ is a closed subset of $C(\mathbb{T})$.

$$\Lambda_n: C(\mathbb{T})\ni f\mapsto f_n\in\mathbb{C}$$

is a continuous linear functional.

$$C_+(\mathbb{T}) = \bigcap_{n=0} \ker \Lambda_n$$

• Less trivaially, ϕ is surjective and $C_+(\mathbb{T})$ is an algebra.

Example

 $\chi_1(t)=t$ is invertible in $C(\mathbb{T})=B$. $x_1^{-1}(t)=\frac{1}{t}=x_{-1}(t)\notin C_+(\mathbb{T})$ while $\chi_1(t)\in C_+(\mathbb{T})$. Therefore $GA\subseteq GB\cap A$ may not be equal.

Definition: Boundary

The boundary of a subset *U* of a topological space *X* is $\partial U = \overline{U} \setminus \operatorname{int}(U)$.

Remark

For $U \subseteq X$, $X = \operatorname{int}(U) \cup \partial U \cup \operatorname{int}(X \setminus U)$ a union of disjoint sets.

Lemma:

- 1. if $a \in \partial GA$, then $a \notin GA$ and there exists a sequence $a_n \in GA$ such that $a_n \to a$.
- 2. if $a \in \partial a$ and $a_n \in GA$ such that $a_n \to a$, then $||a_n^{-1}|| \to +\infty$.

Proof of 1

 $a \in GA$ would imply $a \in \operatorname{int}(GA)$ and not a boundary point.

Proof of 2

Otherwise, there would exist a bounded subsequence $||a_{n_i}^{-1}|| \le M$.

$$||a_{n_i}^{-1} - a_{n_i}^{-1}|| \le ||a_{n_i}^{-1}|| \cdot ||a_{n_i} - a_{n_i}|| \cdot ||a_{n_i}^{-1}|| \le M^2 ||a_{n_i} - a_{n_i}||$$

Since a_n converges, $\{a_n\}$ is Cauchy which implies $a_{n_i}^{-1}$ is Cauchy. Then $a_{n_i}^{-1} \to b \in A$. $e = a_{n_i} a_{n_i}^{-1} \to ab$ implies $a^{-1} = b$ and $a \in GA$. However $a \notin GA$.

Proposition

Let A be a closed subalgebra of B ($e \in A$, $e \in B$). Then $\partial GA \subseteq \partial (A \cap GB)$ (both boundaries are considered in A).

Remark

Both GA and $A \cap GB$ are open subsets of A.

Proof

Take $a \in \partial GA$ and suppose $a \notin \partial (A \cap GB)$. Take $a \in \partial GA$: $a_n \in GA$, $a \notin GA$, $a_n \to a$, $||a_n^{-1}|| \to +\infty$.

October 9, 2024

Recall

 $A \subseteq B$, $GA \subseteq A \cap GB$. If $A = C_+(\mathbb{T}) \cong A(\overline{\mathbb{D}})$ and $B = C(\mathbb{T})$.

Recall: Theorem

For GA, $A \cap GB$ open sets in A, $U \subseteq X$, $\partial U = \overline{U} \setminus \operatorname{int} U$, we have that $\partial GA \subseteq \partial (A \cap GB)$.

Proof

Take $a \in \partial GA$, $a_n \to a$, $a \notin GA$, $a \in A$. Since $a_n \in GA$, $||a_n^{-1}|| \to +\infty$.

However, $a \notin GB$ otherwise $a \in GB$, $a_n \to a$ implies $a_n^{-1} \to a^{-1}$ (in GB) and, consequently, $\sup ||a_n^{-1}|| < +\infty$, a contradiction.

Therefore $a \notin A \cap GB$ and, consequently, $a \in \partial(A \cap GB) = \overline{(A \cap GB)} \setminus (A \cap GB)$.

Theorem

Let A be a closed subalgebra of B.

GA is equal to the union of some components of $A \cap GB$.

Proof

Let *U* be a component of $A \cap GB$.

We want to show that either $U \cap GA \neq \emptyset$ or $U \subseteq GA$.

The above cannot occur since, by path-connectedness, for $x, y \in U$, $x \in GA$, $y \neq \in GA$, there would need to be some $z \in \partial GA$ with $z \notin A \cap GB$ a contradiction.

Alternatively, take $A \cap GB$ open in A.

Then $A \cap GB \cap \partial(A \cap GB) = \emptyset$ and $(A \cap GB) \cap \partial GA = \emptyset$ by the previous theorem.

Write $A = GA \cup \partial GA \cup int(A \setminus GA)$. Then

$$A \cap GB = GA \cup \emptyset \cup int(A \setminus GA) \cap (A \cap GB)$$

and $U = (GA \cap U) \cup \operatorname{int}(A \setminus GB) \cap U$ where $(GA \cap U) \cap \operatorname{int}(A \setminus GA) = \emptyset$ and open in U. Therefore either $GA \cap U = \emptyset$ or $GA \cap U = U$ which implies that $U \subseteq GA$.

Example

Take
$$B(\mathbb{T})$$
 and $A = C_+(\mathbb{T}) \cong A(\overline{D})$.

Then $GB = \{ f : \mathbb{T} \to \mathbb{C} : f(t) \neq 0. \}$

Then take

 $A \cap GB = \{f : \mathbb{T} \to \mathbb{C} \text{ continuous, } f(t) \neq 0, |t| = 1 \text{ with analytic continuation into } |t| < 1\}$

such that $f \in A \cap GB$ which implies wind $(f) \in \{0,1,2,3,\cdots\}$ gives the number of zeroes of f inside \mathbb{D} .

wind(f) =
$$\frac{1}{2\pi i} \left[\log f(e^{ix}) \right]_{x=0}^{2\pi}$$

= $\frac{1}{2\pi i} \lim_{r \to 1^{-}} \left[\log f(re^{ix}) \right]_{x=0}^{2\pi}$
= $\frac{1}{2\pi i} \lim_{r \to 1} \int_{0}^{\pi} \frac{f'(re^{ix})}{f(re^{ix})} ire^{ix} dx$
= $\frac{1}{2\pi i} \lim_{r \to 0} \int_{|z|=r} \frac{f'(z)}{f(z)} dz$

Which gives the number of zeros of f(z) inside |z| < 1

Chapter 3: Holomorphic Vector-Valued Functions

Goal

Define the notion of holomorphic/analytic functions $f:\Omega\to X$ where $\Omega\subset\mathbb{C}$ open and X a (complex) Banach space.

Sumary

- · Basically all classical results remain true.
- There is a strong and a weak version of holomorphy, but they are equivalent.

Theorem

For a function $f: \Omega \to X$, $\Omega \subseteq \mathbb{C}$ open and X Banach, the following are equivalent

1. f is differentiable at every $z_0 \in \Omega$, i.e. there exists $f'(z_0) \in X$ such that

$$\lim_{z \to z_0} \left| \left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| \right|_X = 0$$

2. f is analytic at each point $z_0 \in \Omega$, i.e. f has a convergent power series at z_0 with radius of convergence $R_{z_0} > 0$.

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, |z - z_0| < R_{z_0}, a_n \in X$$

which converges in the norm of X.

3. $f:\Omega\to X$ is continuous (in the norm) and for every piecewise smooth closed contour Γ contained in a disk D $(\Gamma \subseteq D \subseteq \Omega).$

$$\int_{\Gamma} f(z) dz = 0$$

Definition: (Strongly) Holomorphic Function

If (1)-(3) hold, then f is (strongly)-holomorphic.

Remarks: Integration of Vector-Valued Functions

A piecewise smooth contour Γ can be parameterized by $\sigma: [0,1] \to \Omega$.

$$\int_{\Gamma} f(z) dz = \int_{0}^{1} \underbrace{f(\sigma(t))\sigma'(t)}_{h(t) \text{ continuous}} dt$$

This is independent of the choice of parameterization. Now $I = \int_0^1 h(t) \ dt$ can be defined via Riemann sums. Given a partition $P, \ h: [0,1] \to X$ continuous.

$$\lim_{\mathrm{mesh}(P)\to 0}\big|\big|S\big(h,P,\xi\big)-I\big|\big|_X=0$$

where $S(h,P,\xi) = \sum_{i=1}^n f(\xi_i)(x_i-x_{i-1}), P = \{x_0,x_1,\ldots,x_n\}, \xi_i \in [x_{i-1},x_i].$ Note that h is uniformly continuous and $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $\operatorname{mesh}(P_1) < \delta$, $\operatorname{mesh}(P_2) < \delta$ implies

$$\left|\left|S(f, P_1, \xi^{(1)}) - S(f, P_2, \xi^{(2)})\right|\right| < \varepsilon$$

All usual properties of integrals hold.

- · linear in integrand
- $\left|\left|\int_{\Gamma} f(z) dz\right|\right| \le \int_{\Gamma} \left|\left|f(z)\right|\right| |dz| \le \left(\operatorname{length}(\Gamma)\right) \sup_{z \in \Gamma} \left|\left|f(z)\right|\right|.$

Sketch of Proof (1) to (3)

To show: $\int_{\Delta} f(z) dz = x_0 = 0$ by contradiction that $x_0 \neq 0$.

We have $\left|\left|\int_{\Delta_1} f \ dz\right|\right| \ge \frac{||x_0||}{4}, \left|\left|\int_{\Delta_n} f \ dz\right|\right| \ge \frac{||x_0||}{4^n}.$

Sketch of Proof (3) to (2)

 $\int_{\Gamma} f \ dz = 0$ implies the Cauchy integral formula. Take

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\omega)}{\omega - z} \, d\omega$$

$$\frac{1}{\omega - z} = \frac{1}{(\omega - z_0) - (z - z_0)} = \frac{1}{w - z_0} \sum_{n=0}^{\infty} \left(\frac{z - z_0}{w - t}\right)^n$$

Therefore

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} f(\omega) \sum_{n=0}^{\infty} \frac{(z-z_0)^n}{(\omega-z)^{n\pi}} d\omega = \sum_{n=0}^{\infty} (z-z_0)^n \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\omega)}{(\omega-z)^{n\pi}} d\omega = \sum_{n=0}^{\infty} (z-z_0)^n a_n$$

with the sequence converging (in X) on $|z - z_0| < |\omega - z_0|$.

· Radius of Convergence

$$R^{-1} = \limsup_{n \to \infty} ||a_n||^{1/n}$$

(Root Test: $|z - z_0| < R$ convergence; $|z - z_0| > R$ divergence)

Sketch of Proof (2) to (1)

One can show that a function defined by convergent power series is differentiable, $f(z) = \sum a_n(z-z_0)^n$, then $f'(z) = \sum a_n(z-z_0)^n$ $\sum a_n \cdot n(z-z_0)^{n-1}$. The radius of convergence is the same. This also implies that f is infinitely differentiable.

Take $z - z_0 = (z - z_1) + (z_1 - z_0)$ and, by the binomial theorem,

$$f(z) = \sum_{k=0}^{\infty} (z - z_1)^k \left(\sum_{n=k}^{\infty} a_n \binom{n}{k} (z_1 - z_0) \right)$$

which converges for at least $|z - z_1| < R - |z_1 - z_0|$.

October 14, 2024

Theorem

Let $f: D_{\varepsilon}(z_0) \to X$ $(D_{\varepsilon}(z_0) = \{z \in \mathbb{C} : |z - z_0| < \varepsilon\})$ be holomorphic. Then R = S where

- 1. R is the radius of convergence of $f(z) = \sum_{n=0}^{\infty} a_n (z z_0)^n (R^{-1} = \limsup_{n \to \infty} ||a_n||^{\frac{1}{n}})$.
- 2. S is the radius of the largest open disk $D_S(z_0)$ such that there exists an analytic extension of f from $D_{\varepsilon}(z_0)$ to $D_S(z_0)$.

Proof

By definition, $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges for $|z-z_0| < R$. Then $|z-z_0| < R$ if and only if $\limsup_{n \to \infty} ||a_n (z-z_0)^n||^{\frac{1}{n}} < 1$ if and only if $\sum_{n=0}^{\infty} a_n (z-z_0)^n$ converges. Therefore, it converges to a holomorphic function on $R \le S$. If f(z) has an analytic extension to $D_S(z_0)$, see step (3) \Longrightarrow (2) of previous theorem.

IMAGE 2

Then $f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\omega)}{\omega \cdot z} d\omega = \sum_{n=0}^{\infty} a_n (z - z_0)^n$ converges for $|z - z_0| < r < S$ with $a_n = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\omega)}{(z - \omega)^{n+1}} d\omega$. From this, we conclude $R \ge S$.

Definition: (Weakly) Holomorphic Function

A function $f: \Omega \to X$ ($\Omega \subseteq \mathbb{C}$ open, X Banach) is called weakly holomorphic if $\phi \circ f: \Omega \to \mathbb{C}$ is holomorphic, $\forall \phi \in X^* = \mathcal{L}(X;\mathbb{C})$ bounded linear functionals.

A function $f: \Omega \to \mathcal{L}(X,Y)$ (X,Y) Banach) is weakly-operator holomorphic if $h_{\phi,X}: \Omega \to \mathbb{C}$ is holomorphic for all $\phi \in Y^*$, $x \in X$ where $h_{\phi,X}(z) = \phi(f(z)x)$.

Remarks

Obviously: f strongly holomorphic $\implies f$ weakly holomorphic.

$$\left| \left| \frac{\phi(f(z+h)) - \phi(f(z))}{h} - \phi(f'(z)) \right| \right| \le \left| \left| \phi \right| \right| \cdot \left| \left| \frac{f(z+h) - f(z)}{h} - f'(z) \right| \right|$$

For $f:\Omega\to \mathcal{L}(X,Y)$: f strongly holomorphic $\Longrightarrow f$ weakly holomorphic $\Longrightarrow f$ weakly operator holomorphic. For $x\in X,\,\phi\in Y^*,\,\Lambda_{x,\phi}:\mathcal{L}(X,y)\ni A\mapsto \phi(Ax)\in\mathbb{C}$ and $\Lambda_{x,\phi}\in (\mathcal{L}(X,y))^*$. All the converses are also true.

Theorem (Dunford)

Take X Banach, $\Omega \subseteq \mathbb{C}$ open.

If $f: \Omega \to X$ is weakly holomorphic, then it is strongly holomorphic.

Proof

We want to show that for any $z_0 \in \Omega$, $\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$ exists in X. Choose $\varepsilon > 0$ such that the disk $D_{\varepsilon}(z_0)$ and circle $C_{2\varepsilon}(z_0) = \Gamma$ are in Ω .

IMAGE 3

For $\phi \in X^*$, $\phi(f(z))$ is holomorphic in Ω .

$$\phi(f(z)) = \frac{1}{2\pi i} \int_{\Gamma} \frac{\phi(f(\omega))}{z - \omega} d\omega, \ z \in D$$

Apply this to $z = z_0$, $z = z_0 + h_1$ and $z = z_0 + h_2$ with $0 < |h_1| < \varepsilon$, $0 < |h_2| < \varepsilon$, $h_1 \ne h_2$.

IMAGE 4

$$A_{h_{1},h_{2}} = \frac{1}{h_{1} - h_{2}} \left\{ \frac{f(z_{0} + h_{1}) - f(z_{0})}{h_{1}} - \frac{f(z_{0} + h_{2}) - f(\omega)}{h_{2}} \right\}$$

$$\phi(A_{h_{1},h_{2}}) = \frac{1}{h_{1} - h_{2}} \left\{ \frac{\phi(f(z_{0} + h_{1}) - \phi(f(z_{0})))}{h_{1}} - \frac{\phi(f(z_{0} + h_{2}) - \phi(f(\omega)))}{h_{2}} \right\}$$

$$= \frac{1}{2\pi i} \int_{\Gamma} \phi(f(\omega)) \frac{1}{h_{1} - h_{2}} \left\{ \frac{1}{h_{1}} \left(\frac{1}{z_{0} + h_{1} - \omega} - \frac{1}{z_{0} - \omega} \right) - \frac{1}{h_{2}} \left(\frac{1}{z_{0} + h_{2} - \omega} - \frac{1}{z_{0} - \omega} \right) \right\} d\omega$$

$$= \frac{1}{2\pi i} \int_{\Gamma} \phi(f(\omega)) \frac{1}{h_{1} - h_{2}} \left\{ \frac{1}{(z + h_{1} - \omega)(z_{0} - \omega)} - \frac{1}{(z + h_{2} - \omega)(z_{0} - \omega)} \right\} d\omega$$

$$= \frac{1}{2\pi i} \int_{\Gamma} \phi(f(\omega)) \frac{1}{(z_{0} + h_{1} - \omega)(z_{0} + h_{2} - \omega)(z_{0} - \omega)} d\omega$$

Observe that the denominator is at least ε^3 , therefore $|\phi(A_{h_1,h_2})| \leq \frac{\varepsilon^3}{2\pi} \sup_{\omega \in \Gamma} ||f(\omega)|| \cdot ||\phi||$ (so long as f continuous, which will be proven).

Therefore $\forall \phi \in X^*$,

$$\sup_{\substack{0<|h_1|<\varepsilon\\0<|h_2|<\varepsilon\\h_{1\neq h_2}}}|\phi(A_{h_1,h_2})|<+\infty.$$

By the uniform boundedness principle, identify $A_{h_1,h_2} \in X$ with $X^{**} = \mathcal{L}(X^*,\mathbb{C})$. Then $\sup_{h_1,h_2} ||A_{h_1,h_2} < +\infty$ and

$$\left| \left| \frac{f(z_0 + h_1) - f(z_0)}{h_1} - \frac{f(z_0 - f(z))}{h_2} \right| \right| \le C \cdot |h_1 - h_2|.$$

Now, for any sequnce $\{h_n\}_{n=3}^{\infty}$, $0 < |h_n| < \varepsilon$, $h_n \to 0$,

$$\frac{f(z_0+h_n)-f(z_0)}{h_n}$$

is a cauchy sequence. Therefore $\lim_{n\to\infty}\frac{f(z_{0+h_n}-f(z_0))}{h_n}$ exists in X independent of choice of $\{h_n\}$. That is

$$\lim_{h\to 0} \frac{f(z_0+h)-f(z_0)}{h}$$

exists in X.

Chapter 4: Spectrum and Resolvent

Consider a unital Banach algebra B.

Definition: Spectrum

For $b \in B$, the spectrum of b in B $\sigma_B(b) = \{\lambda \in \mathbb{C} : \lambda e - b \text{ is not invertible in } B\}$.

Definition: Resolvent

The resolvent is a function $R(b; \lambda) = (\lambda e - b)^{-1}$. $R(b, \cdot) : \mathbb{C} \setminus \sigma_B(b) \to B$. $\mathbb{C} \setminus \sigma_B(b)$ is the resolvent set.

Theorem

- 1. The spectrum $\sigma_B(b)$ is a non-empty, compact subset of \mathbb{C} .
- 2. The resolvent $R(b,\lambda)$ is an analytic, Banach valued function on $\mathbb{C}\setminus\sigma_R(b)$.

Proof of (a)

 $\sigma_B(b)$ is bounded, because $\lambda e - b$ is invertible for $|\lambda| > ||b||$.

$$\lambda e - b = \lambda \left(e - \frac{1}{\lambda} b \right)$$

has $\left|\left|\frac{1}{\lambda}b\right|\right| < 1$ for sufficiently large λ . Therefore, $\sigma_B(b) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \le ||b||\}$. To show that $\sigma_B(b)$ is closed, if $\lambda \notin \sigma_B(b)$ then $\forall \mu$ such that $||\lambda - \mu|| < \varepsilon$ we have that $\mu \notin \sigma_B(b)$.

$$\mu e - b = \lambda e - b + (\mu - \lambda)e = (\lambda e - b) \left\{ e + \underbrace{(\mu - \lambda)(\lambda e - b)^{-1}}_{||\cdot||<1} \right\}$$

 $\begin{array}{l} \text{ when } |\mu-\lambda|<\frac{1}{||(\lambda e-b)^{-1}||}. \\ \text{ Therefore } \mathbb{C}\setminus\sigma_B(b) \text{ is open.} \end{array}$

Proof of (b)

Take $\lambda \notin \sigma_B(b)$

IMAGE 5

$$\frac{R(b,\mu) - R(b,\lambda)}{\mu - \lambda} = \frac{1}{\mu - \lambda} \left((\mu e - b)^{-1} - (\lambda e - b)^{-1} \right)$$
$$= \frac{1}{-\mu - \lambda} (\mu e - b)^{-1} \left\{ (\lambda e - b) - (\mu e - b) \right\} (\lambda e - b)^{-1}$$
$$= -(\mu e - b)^{-1}) (\lambda e - b)^{-1}$$

Using continuity with $GB \ni a \mapsto a^{-1} \in GB$ in the norm, $-(\mu e - b)^{-1})(\lambda e - b)^{-1} \to -((\lambda e - b)^{-1})^2$ as $\mu \to \lambda$. Therefore $R^1(b,\lambda) = -(R(b,\lambda))^2$ and $R(b,\lambda)$ is analytic.

Proof of non-empty in (a)

Take $\sigma_B(b) \neq 0$, otherwise $R(b,\lambda)$ is analytic on \mathbb{C} and bounded

$$(\lambda e - b)^{-1} = \frac{1}{\lambda} \left(e - \frac{1}{\lambda} b \right)^{-1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{\lambda^{n+1}} b^n$$

We can estimate

$$||\cdot|| \le \frac{1}{|\lambda| \left(1 - \frac{||b||}{|\lambda|}\right)} = \frac{1}{|\lambda| - ||b||}$$

so $\lim_{\lambda \to \infty} ||(\lambda e - b)^{-1}|| = 0.$

By Liouville's theorem, bounded and entire functions are constant. But we may also proceed by weak analyticity. If $\phi(R(b,\lambda))$ is analytic and bounded on \mathbb{C} , $\forall \phi \in B^*$, it follows that $\phi(R(b,\lambda)) \equiv 0$, $\forall \lambda$, $\forall \phi \in B^*$ and that $R(b,\lambda) \equiv 0$ for any λ a contradiction.

Definition: Spectral Radius

For $b \in B$, the spectral radius $r(b) = \max\{|\lambda| : \lambda \in \sigma_B(b)\}$.

IMAGE 6

Remark

Write $\frac{1}{r(b)} = \min\{|\lambda|^{-1} : \lambda e - b \text{ is not invertible}\} = \min\{|\mu| : e - \mu b \text{ is not invertible}\}$ with $\mu = \frac{1}{\lambda}$.

$$\underbrace{\left(e - \mu b\right)^{-1}}_{\text{analytic in } |\mu| < \frac{1}{||b||}} = \sum_{n=0}^{\infty} \mu^n b^n$$

converges for $|\mu| < \frac{1}{||h||}$.

Then the radius of convergence $R^{-1} = \limsup_{n \to \infty} ||b^n||^{\frac{1}{n}}$ gives us that R is equal to the largest disk where $(e - \mu b)^{-1}$ has an analytic extension. Therefore $S = \frac{1}{r(b)}$.

IMAGE 7

Suppose we have an analytic extension $f(\mu)$ beyond S.

$$f(\mu)(e - \mu b) = (e - \mu b)f(\mu) = e$$

implies that and, if $(e - \mu_0 b)$ not invertible, $f(\mu_0)(e - \mu_0 b) = \cdots = e$ a contradiction.

Theorem

$$r(b) = \lim_{n \to \infty} ||b^n||^{\frac{1}{n}} = \inf_{n \in \mathbb{N}} ||b^n||^{\frac{1}{n}}$$

Proof

To demonstrate existence, fix $n_0 \in \mathbb{N}$, $n = q \cdot n_0 + r$, $0 \le r < n_0$.

$$||b^{n}|| \le ||b^{n_0}||^{q} \cdot ||b||^{r}$$

$$||b^{n}||^{\frac{1}{n}} \le ||b^{n_0}||^{\frac{q}{n}} \cdot ||b||^{\frac{r}{n}}$$

$$\limsup_{n \to \infty} ||b^{n}||^{\frac{1}{n}} \le ||b^{n_0}||^{\frac{1}{n_0}} \cdot 1$$

Since $1 = \frac{q}{n} \cdot n_0 + \frac{r}{n}$. Take $n \to \infty$. Write

$$\limsup_{n \to \infty} ||b^{n}||^{\frac{1}{n}} \le \inf_{n_0 \in \mathbb{N}} ||b^{n_0}||^{\frac{1}{n_0}} \le \liminf_{n \to \infty} ||b^{n}||^{\frac{1}{n}}$$