Numbers, Signed Numbers and Numbers as bits

Instructor: Dr. Vinicius Prado da Fonseca (vpradodafons@online.mun.ca)

- Positional notation
 - Digit multiplied by the base raised to the power of the digit position
- The value of a number in a base (radix), r with n positions is given by:
- Position zero is the rightmost digit (least significant)
- Position n-1 is the left most (most significant) position
- c, is the digit at position i
- 0,1,2,3,...,r-1 digits
 - 0, 1} base 2
 - o {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} base 10
- The position determines its significance

$$\sum_0^{n-1} c_i \cdot r^i$$

421₁₀

421₅

Digital circuits store only two values

$$\sum_0^{n-1} c_i \cdot r^i$$

481₁₀

$$4 \times 10^2 + 8 \times 10^1 + 1 \times 10^0 = 481_{10}$$

421₅

$$4 \times 5^{2} + 2 \times 5^{1} + 1 \times 5^{0} = 111_{10}$$

Digital circuits store only two values

11010₂

$$1 \times 2^4 + 1 \times 2^3 + 0 \times 2^2 + 1 \times 2^1 + 0 \times 2^0 = 26_{10}$$

$$\sum_0^{n-1} c_i \cdot r^i$$

- Radix is chosen by convenience
- Computer systems uses radix 2, 8, 16
 - Easily converted
 - Compact representation
- How to describe the number of red dots in bases 2, 5 and 10?
 - o Base 10 factors: 1, 10, 100, 1000,...
 - o Base 2 factors: 1, 2, 4, 8, 16, ...
 - o Base 5 factors: 1, 5, 25, 125, ...

- Radix is chosen by convenience
- Computer systems uses radix 2, 8, 16
 - Easily converted
 - Compact representation
- How to describe the number of red dots in bases 2, 5 and 10?
 - Base 10 factors: 1, 10, 100, 1000,...
 - o Base 2 factors: 1, 2, 4, 8, 16, ...
 - o Base 5 factors: 1, 5, 25, 125, ...
- 11₁₀, 1011₂, 21₅
- Online notes exercises

Converting To Decimal

• Computing the result in decimal arithmetic:

Converting To Decimal

• Computing the result in decimal arithmetic:

$$321_4 = 3 \times 4^2 + 2 \times 4^1 + 1 \times 4^0 = 3 \times 16 + 2 \times 4 + 1 = 48 + 8 + 1 = 57$$

• int constructor in Python:

>>> int("0101", 2) =
$$1*2^2 + 1*2^0 = 4 + 1 = 5_{10}$$

>>> int("0101", 6) =
$$1*6^2 + 1*6^0 = 36 + 1 = 37_{10}$$

>>> int("0101", 9) =
$$1*9^2 + 1*9^0 = 81 + 1 = 82_{10}$$

Python, be default, will display a number using decimal. Thus int() converts the string into a integer, and Python displays the integer using decimal (i.e., there are two conversions).

www.mun.ca

• Binary, base 2, has the digits:

0,1

• Octal, base 8 (00), has the digits:

• The digits for hexadecimal (0x), base 16, are:

$$A = 10_{10} B = 11_{10} C = 12_{10} D = 13_{10} E = 14_{10} F = 15_{10}$$

Octal	Binary		
0 ₈	0002		
1 ₈	0012		
2 ₈	0102		
3 ₈	0112		
4 ₈	1002		
5 ₈	101 ₂		
6 ₈	1102		
Vinicius Prado da Fonseca, PhD (vpradodafons@mun.ca) 10	111 ₂		

- One position in an octal number three positions in a binary number
- any grouping of three binary digits can be converted into octal

- One position in an octal number three positions in a binary number
- any grouping of three binary digits can be converted into octal

Hexadecimal	Binary	Hexadecimal	Binary	
0 ₁₆	00002	8 ₁₆	10002	
1 ₁₆	00012	9 ₁₆	10012	
2 ₁₆	00102	A ₁₆	1010 ₂ 1011 ₂ 1100 ₂	
3 ₁₆	00112	B ₁₆		
4 ₁₆	01002	C ₁₆		
5 ₁₆	01012	D ₁₆		
6 ₁₆	01102	E ₁₆	11102	
7	7,6 O111 ₂ Fonseca PhD (ynradodafons@mun.ca)		1111,	

www.mun.ca

- One position in an hex number four positions in a binary number
- any grouping of four binary digits can be converted into hexadecimal

$$AF_{16} =$$

- One position in an hex number four positions in a binary number
- any grouping of four binary digits can be converted into hexadecimal

$$AF_{16} = \frac{1010 \ 1111_{2}}{1111_{2}}$$

$$123_{16} = \frac{0001\ 0010\ 0011_2}{1}$$

Decimal To Binary, Octal, and Hex Algorithm

- Place value technique
 - From previous slides: $321_4 = 3 \times 4^2 + 2 \times 4^1 + 1 \times 4^0 = 3 \times 16 + 2 \times 4 + 1 = 48 + 8 + 1 = 57_{10}$
- Successive Division Technique
 - Example
 - 67₁₀ to binary
 - \blacksquare 12 $\overset{\circ}{6}_{10}$ to hexadecimal

Decimal To Binary, Octal, and Hex Algorithm

Mod operation can be used in programming languages

• Change "2" for other bases octal or hex (needs character conversions)

Numbers as Bits

8-bit stored in a computer

| Bit 7 | Bit 6 | Bit 5 | Bit 4 | Bit 3 | Bit 2 | Bit 1 | Bit 0 |

$$\sum_0^{8-1} b_i.2^i$$

0	1	1	0	0	1	1	1
---	---	---	---	---	---	---	---

$$1 \times 2^{6} + 1 \times 2^{5} + 0 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} = 103_{10}$$

Numbers as Bits

Smallest unsigned 8-bit stored in a computer: 0

Largest unsigned 8-bit stored in a computer: 255

Range of a 8-bit unsigned integer is 0 to $2^8-1 = 255$

Range of 16-bit unsigned integer is 0 to $2^{16}-1 = 655352$

n-bit unsigned integer has a range of 0 to 2ⁿ-1

- Positive, negative or zero.
 - Sign Magnitude, Two's Complement, and One's Complement
- The number of bits are important, it defines the sign bit.
- Sign Magnitude (8-bit):

$$v = \begin{cases} \sum_{0}^{6} b_{i} \cdot 2^{i} & \text{if } s_{7} = 0 \\ -\sum_{0}^{6} b_{i} \cdot 2^{i} & \text{if } s_{7} = 1 \end{cases}$$

-127 to 127, two zeros, n-bit sign magnitude range of $-(2^{n-1}-1)$ to $(2^{n-1}-1)$

$$4 \text{ bits} = -7 \text{ to } 7$$

Sign Magnitude

0111

1001

111001

Sign Magnitude

$$0111 = 7$$

$$-1 + 1 = 1001 + 0001 = ?$$

Sign Magnitude

-1 + 1 = 1001 + 0001 = 1010 (-2) (subtraction needs extra components)

• One's Complement (invert all bits if the sign bit is 1, convert to decimal, include the sign)

$$s_{n-1} \cdot -(2^{n-1}-1) + \sum_{i=0}^{n-2} b_i \cdot 2^i$$

0010 = ?

1000 = ?

1010 = ?

One's Complement

$$1000 = -7(0111)$$

$$-1 + 1 = 1110 + 0001 = ?$$

• One's Complement range: $-(2^{n-1}-1)$ to $(2^{n-1}-1)$. 4bits = -7 to 7

```
-1 + 1 = 1110 + 0001 = 1111 + 1 = 0000 (-0? Two representations for zero, add +1)

0101 (5)
+ 1110 (-1)
=

1101 (-2)
+ 1110 (-1)
```


One's Complement

```
-1 + 1 = 1110 + 0001 = 1111 + 1 = 0000 (-0? Two representations for zero, add +1)

0101 (5)
+ 1110 (-1)
= 1 0011 (3) + 1 = 0100 (4) (Extra operation)

1101 (-2)
+ 1110 (-1)
= 1 1011 (-4) + 1 = 1100 (-3) (Extra operation)
```


• Two's Complement decimal value:

$$s_{n-1} \cdot -2^{n-1} + \sum_{i=0}^{n-2} b_i \cdot 2^i$$

4-bit two's complement represented by 1011:

n-bit two's complement range of $-(2^{n-1})$ to $(2^{n-1}-1)$. 4 bits = -8 to 7

• Two's Complement decimal value:

$$s_{n-1} \cdot -2^{n-1} + \sum_{i=0}^{n-2} b_i \cdot 2^i$$

4-bit two's complement represented by 1011:

$$1x(-2)^3 + 0x2^2 + 1x2^1 + 1x2^0 = -5$$

1011 (inv) -> 0100 (+1) -> 0101 (5) (inv) -> 1010 (+1)

n-bit two's complement range of $-(2^{n-1})$ to $(2^{n-1}-1)$

Two's Complement decimal value:

```
5 = 0101
-1 = 0001 \Rightarrow 1110 + 1 \Rightarrow 1111 (include the extra operation in the representation)
```

1 0100 (4) (No extra op, no extra component)

Negating A Number

Inverting the signal

- Sign magnitude: flip que sign bit
- One's complement: invert all bits
- Two's complement: one's complement + 1

Example operations

Addition
$$5 + (-1) = 4$$

Sign magnitude

One's complement (add 1)

Two's complement

Questions?

Next: 03 - Gates for Digital Circuits

