Sri Sivasubramaniya Nadar College of Engineering, Chennai

(An autonomous Institution affiliated to Anna University)

Degree & Branch	B.E. Computer Science & Engineering		V
Subject Code & Name	ICS1512 & Machine Learning Algorithms Laboratory		
Academic year	2025-2026 (Odd)	Batch:2023-2028	Due date:

Experiment 4: Ensemble Prediction and Decision Tree Model Evaluation

Aim: To build classifiers such as Decision Tree, AdaBoost, Gradient Boosting, XGBoost, Random Forest, and Stacked Models (using SVM, Na¨ıve Bayes, Decision Tree) and evaluate their performance through 5-Fold Cross-Validation and hyperparameter tuning.

Libraries used:

- pandas for data handling
- numpy for numerical operations
- matplotlib.pyplot and seaborn for visualization
- sklearn for preprocessing, model building, hyperparameter tuning, and evaluation
- xgboost for XGBoost model implementation

CODE:

```
#-----LOADING THE DATASET-----
import pandas as pd
# Define column names
cols = ["ID", "Diagnosis"] + [
    "radius_mean", "texture_mean", "perimeter_mean", "area_mean",
    "smoothness_mean", "compactness_mean", "concavity_mean",
    "concave_points_mean", "symmetry_mean", "fractal_dimension_mean",
    "radius_se", "texture_se", "perimeter_se", "area_se", "smoothness_se",
    "compactness_se", "concavity_se", "concave_points_se",
    "symmetry_se", "fractal_dimension_se",
    "radius_worst", "texture_worst", "perimeter_worst", "area_worst",
    "smoothness_worst", "compactness_worst", "concavity_worst",
    "concave_points_worst", "symmetry_worst", "fractal_dimension_worst"
]
# Read your .DATA file
df = pd.read_csv("wdbc.data", names=cols)
print(df.shape)
df.head()
```

OUTPUT:

```
(569, 32)
      Diagnosis radius_mean texture_mean perimeter_mean area_mean
   smoothness_mean compactness_mean concavity_mean concave_points_mean
   ... radius_worst texture_worst perimeter_worst area_worst smoothness_worst compactness_worst concavity_worst concave_points_worst symmetry_worst fractal_dimension_worst
     842302 M 17.99 10.38 122.80 1001.0 0.11840 0.27760 0.3001 0.14710
   ... 25.38 17.33 184.60 2019.0 0.1622 0.6656 0.7119 0.2654 0.4601
   0.11890
    842517 M 20.57 17.77 132.90 1326.0 0.08474 0.07864 0.0869 0.07017
   \dots \qquad 24.99 \qquad 23.41 \qquad 158.80 \quad 1956.0 \quad 0.1238 \quad 0.1866 \quad 0.2416 \quad 0.1860 \quad 0.2750
   0.08902
   84300903 M 19.69 21.25 130.00 1203.0 0.10960 0.15990 0.1974 0.12790 ... 23.57 25.53 152.50 1709.0 0.1444 0.4245 0.4504 0.2430
   0.3613 0.08758
     84348301 M 11.42 20.38 77.58 386.1 0.14250 0.28390 0.2414
   0.10520 \dots \\ 14.91 \quad 26.50 \quad 98.87 \quad 567.7 \quad 0.2098 \quad 0.8663 \quad 0.6869 \quad 0.2575
   0.6638 0.17300
    84358402 M 20.29 14.34 135.10 1297.0 0.10030 0.13280 0.1980
   0.10430 ... 22.54 16.67 152.20 1575.0 0.1374 0.2050 0.4000 0.1625
   0.2364 0.07678
#-----PREPROCESS-----
from sklearn.preprocessing import StandardScaler
# 1. Drop ID column
df = df.drop("ID", axis=1)
# 2. Encode labels (M=1, B=0)
df["Diagnosis"] = df["Diagnosis"].map({"M":1, "B":0})
# 3. Handle missing values (if any)
df = df.dropna() # removes rows with missing values
# 4. Separate features and labels
X = df.drop("Diagnosis", axis=1)
y = df["Diagnosis"]
# Standardize features
scaler = StandardScaler()
X = scaler.fit_transform(X)
print(X.shape, y.shape)
OUTPUT:
(569, 30) (569,)
#-----EDA------
import matplotlib.pyplot as plt
import seaborn as sns
```

```
# 1. Class balance
print(y.value_counts())
y.value_counts().plot(kind="bar")
plt.title("Class Balance (0 = Benign, 1 = Malignant)")
plt.xlabel("Class")
plt.ylabel("Count")
plt.show()

# 2. Correlation heatmap
plt.figure(figsize=(10,8))
sns.heatmap(df.corr(), cmap="coolwarm")
plt.title("Feature Correlation Heatmap")
plt.show()
```

OUTPUT:

Figure 1: Left: class balance, Right: correlation heatmap

OUTPUT:

Train size: 455 Test size: 114

```
#----TRAINING THE MODELS-----
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier,
   RandomForestClassifier, StackingClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from xgboost import XGBClassifier
# Models
dt = DecisionTreeClassifier(random_state=42)
ada = AdaBoostClassifier(random_state=42)
gb = GradientBoostingClassifier(random_state=42)
xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss', random_state=42)
rf = RandomForestClassifier(random_state=42)
# Stacking: base models = SVM, Naive Bayes, Decision Tree
estimators = [
    ('svm', SVC(probability=True, random_state=42)),
    ('nb', GaussianNB()),
    ('dt', DecisionTreeClassifier(random_state=42))
]
stack = StackingClassifier(estimators=estimators,
   final_estimator=RandomForestClassifier(random_state=42))
# Train
dt.fit(X_train, y_train)
ada.fit(X_train, y_train)
gb.fit(X_train, y_train)
xgb.fit(X_train, y_train)
rf.fit(X_train, y_train)
stack.fit(X_train, y_train)
#-----USE GRIDSEARCHCV OR RANDOMIZEDSEARCHCV TO TUNE HYPERPARAMETERS----
from sklearn.model_selection import RandomizedSearchCV
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier, GradientBoostingClassifier,
   RandomForestClassifier, StackingClassifier
from xgboost import XGBClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
import numpy as np
# 1. Decision Tree
dt_params = {
   "criterion": ["gini", "entropy"],
   "max_depth": [None, 5, 10, 20],
   "min_samples_split": [2, 5, 10],
    "min_samples_leaf": [1, 2, 5]
dt = RandomizedSearchCV(DecisionTreeClassifier(), dt_params, cv=3, n_iter=5,
   random_state=42)
# 2. AdaBoost
ada_params = {
```

```
"n_estimators": [50, 100, 200],
    "learning_rate": [0.01, 0.1, 1],
    "estimator": [DecisionTreeClassifier(max_depth=1),
                  DecisionTreeClassifier(max_depth=2)]
}
ada = RandomizedSearchCV(AdaBoostClassifier(), ada_params, cv=3, n_iter=5,
   random_state=42)
# 3. Gradient Boosting
gb_params = {
    "n_estimators": [50, 100, 200],
    "learning_rate": [0.01, 0.1, 0.2],
    "max_depth": [3, 5, 7],
    "min_samples_split": [2, 5],
    "min_samples_leaf": [1, 2],
    "subsample": [0.8, 1.0]
}
gb = RandomizedSearchCV(GradientBoostingClassifier(), gb_params, cv=3, n_iter=5,
   random_state=42)
# 4. XGBoost
xgb_params = {
    "n_estimators": [50, 100, 200],
    "learning_rate": [0.01, 0.1, 0.2],
    "max_depth": [3, 5, 7],
    "gamma": [0, 0.1, 0.2],
    "subsample": [0.8, 1.0],
    "colsample_bytree": [0.8, 1.0]
}
xgb = RandomizedSearchCV(XGBClassifier(eval_metric="mlogloss", use_label_encoder=False),
   xgb_params, cv=3, n_iter=5, random_state=42)
# 5. Random Forest
rf_params = {
    "n_estimators": [50, 100, 200],
    "criterion": ["gini", "entropy"],
    "max_depth": [None, 5, 10, 20],
    "min_samples_split": [2, 5],
    "min_samples_leaf": [1, 2]
}
rf = RandomizedSearchCV(RandomForestClassifier(), rf_params, cv=3, n_iter=5,
   random_state=42)
# 6. Stacking Classifier (SVM + NB + DT)
estimators = [
    ('svm', SVC(probability=True)),
    ('nb', GaussianNB()),
    ('dt', DecisionTreeClassifier())
stack = StackingClassifier(estimators=estimators,
   final_estimator=RandomForestClassifier())
# Fit all
```

```
models = {"Decision Tree": dt, "AdaBoost": ada, "GradientBoost": gb, "XGBoost": xgb,
    "RandomForest": rf, "Stacking": stack}
for name, model in models.items():
   print(f"Training {name}...")
   model.fit(X_train, y_train)
   print(f"{name} best params: {getattr(model, 'best_params_', 'N/A')}")
   print(f"{name} score: {model.score(X_test, y_test)}\n")
OUTPUT:
Training Decision Tree...
Decision Tree best params: {'min_samples_split': 5, 'min_samples_leaf': 2, 'max_depth':
   None, 'criterion': 'gini'}
Decision Tree score: 0.9473684210526315
Training AdaBoost...
AdaBoost best params: {'n_estimators': 200, 'learning_rate': 1, 'estimator':
   DecisionTreeClassifier(max_depth=1)}
AdaBoost score: 0.9736842105263158
Training GradientBoost...
GradientBoost best params: {'subsample': 0.8, 'n_estimators': 50, 'min_samples_split':
   5, 'min_samples_leaf': 2, 'max_depth': 7, 'learning_rate': 0.1}
GradientBoost score: 0.956140350877193
Training XGBoost...
XGBoost best params: {'subsample': 0.8, 'n_estimators': 50, 'max_depth': 3,
    'learning_rate': 0.1, 'gamma': 0, 'colsample_bytree': 1.0}
XGBoost score: 0.956140350877193
Training RandomForest...
RandomForest best params: {'n_estimators': 50, 'min_samples_split': 5,
    'min_samples_leaf': 2, 'max_depth': 10, 'criterion': 'gini'}
RandomForest score: 0.9649122807017544
Training Stacking...
Stacking best params: N/A
Stacking score: 0.9649122807017544
#----RECORD BEST HYPERPARAMETERS AND EVALUATE WITH 5-FOLD CROSS-VALIDATION-----
from sklearn.model_selection import cross_val_score, StratifiedKFold
from sklearn.linear_model import LogisticRegression
import pandas as pd
# Use stratified k-fold for balanced splits
cv = StratifiedKFold(n_splits=5, shuffle=True, random_state=42)
# Define models with best hyperparameters
models = {
    "Decision Tree": DecisionTreeClassifier(criterion="gini", max_depth=None,
   random_state=42),
```

```
"AdaBoost": AdaBoostClassifier(
        estimator=DecisionTreeClassifier(max_depth=2),
        n_estimators=200,
       learning_rate=1,
       random_state=42
   ),
    "Gradient Boosting": GradientBoostingClassifier(
       n_estimators=200,
       learning_rate=0.1,
       max_depth=3,
       random_state=42
    "XGBoost": XGBClassifier(
       n_estimators=200,
       learning_rate=0.1,
       max_depth=3,
       eval_metric="mlogloss",
        use_label_encoder=False,
       random_state=42
   ),
    "Random Forest": RandomForestClassifier(
       n_estimators=200,
       max_depth=None,
       criterion="gini",
       random_state=42
   ),
    "Stacking": StackingClassifier(
        estimators=[
            ("svm", SVC(probability=True, kernel="rbf", C=1, gamma="scale")),
            ("nb", GaussianNB()),
            ("dt", DecisionTreeClassifier(max_depth=3))
        final_estimator=LogisticRegression(),
        cv=5
   )
}
# Evaluate with 5-Fold CV (accuracy & f1_macro)
results = []
for name, model in models.items():
    acc = cross_val_score(model, X, y, cv=cv, scoring="accuracy")
   f1 = cross_val_score(model, X, y, cv=cv, scoring="f1_macro")
   results.append({
        "Model": name,
        "Accuracy Mean": acc.mean(),
        "Accuracy Std": acc.std(),
        "F1 Mean": f1.mean(),
        "F1 Std": f1.std()
   })
# Convert to DataFrame
cv_results = pd.DataFrame(results)
print(cv_results)
```

OUTPUT:

```
Model Accuracy Mean Accuracy Std F1 Mean F1 Std
0
       Decision Tree
                           0.910402 0.027876 0.902794 0.031689

      0.977162
      0.011885
      0.975378
      0.013064

      0.954355
      0.023104
      0.950547
      0.025578

      0.961326
      0.015322
      0.958266
      0.016814

            AdaBoost
1
2 Gradient Boosting
3
            XGBoost
4
       Random Forest
                           0.954324
                                         0.010166 0.950949 0.011149
            Stacking 0.957848 0.018693 0.954858 0.019979
5
#-----ROC AND CONFUSION MATRIX-----
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay,
roc_curve, auc, classification_report
# Loop through models
for name, model in models.items():
    print(f"===== {name} =====")
    # Fit the model on the training set
    model.fit(X_train, y_train)
    # Predict labels
    y_pred = model.predict(X_test)
    # Probabilities for ROC
    if hasattr(model, "predict_proba"):
        y_proba = model.predict_proba(X_test)[:, 1]
    else: # For SVC without probability=True
        y_proba = model.decision_function(X_test)
        y_proba = (y_proba - y_proba.min()) / (y_proba.max() - y_proba.min())
    # Confusion Matrix
    cm = confusion_matrix(y_test, y_pred)
    disp = ConfusionMatrixDisplay(confusion_matrix=cm)
    disp.plot(cmap="Blues", values_format="d")
    plt.title(f"{name} - Confusion Matrix")
    plt.show()
    # ROC Curve
    fpr, tpr, _ = roc_curve(y_test, y_proba)
    roc_auc = auc(fpr, tpr)
    plt.figure()
    plt.plot(fpr, tpr, label=f"AUC = {roc_auc:.2f}")
    plt.plot([0, 1], [0, 1], "k--")
    plt.xlabel("False Positive Rate")
    plt.ylabel("True Positive Rate")
    plt.title(f"{name} - ROC Curve")
    plt.legend(loc="lower right")
    plt.show()
```

Optional: Classification report print(classification_report(y_test, y_pred))

==== Decision Tree =====

DCCIDIC	II II CC			
	precision	recall	f1-score	support
0	0.96	0.96	0.96	71
1	0.93	0.93	0.93	43
accuracy			0.95	114
macro avg	0.94	0.94	0.94	114
weighted avg	0.95	0.95	0.95	114

==== AdaBoost =====

	precision	recall	f1-score	support
0	0.97	0.99	0.98	71
1	0.98	0.95	0.96	43
accuracy			0.97	114
macro avg	0.97	0.97	0.97	114
weighted avg	0.97	0.97	0.97	114

==== Gradient Boosting =====

	precision	recall	f1-score	support
0	0.96	0.97	0.97	71
1	0.95	0.93	0.94	43
accuracy			0.96	114
macro avg weighted avg	0.96 0.96	0.95 0.96	0.95 0.96	114 114
0	0.00	0.00	0.00	

===== XGBoost =====

p:	recision	recall	f1-score	support
0	0.96	0.97	0.97	71

1	0.95	0.93	0.94	43
accuracy			0.96	114
macro avg	0.96	0.95	0.95	114
weighted avg	0.96	0.96	0.96	114

==== Random Forest =====

	precision	recall	f1-score	support
0	0.96	0.99	0.97	71
1	0.98	0.93	0.95	43
accuracy			0.96	114
macro avg	0.97	0.96	0.96	114
weighted avg	0.97	0.96	0.96	114

==== Stacking =====

precision recall f1-score support

0	0.96	0.99	0.97	71
1	0.98	0.93	0.95	43
accuracy			0.96	114
macro avg	0.97	0.96	0.96	114
weighted avg	0.97	0.96	0.96	114

COMPARISON TABLE

criterion	max depth	Accuracy	F1 Score
gini	None	0.912104	0.885151
gini	None	0.912095	0.884597
gini	None	0.908605	0.875248
gini	None	0.915622	0.885198
gini	5	0.920895	0.895561
gini	5	0.919140	0.891051
gini	5	0.910331	0.878120
gini	5	0.912123	0.879815
gini	10	0.912104	0.885151
gini	10	0.912095	0.884597

Table 1: Decision Tree Hyperparameter Tuning Results

$n_{-}estimators$	learning rate	Accuracy	F1 Score
50	0.01	0.903360	0.862490
100	0.01	0.915697	0.877080
200	0.01	0.933213	0.906760
50	0.10	0.949030	0.930256
100	0.10	0.956048	0.939886
200	0.10	0.959566	0.944354
50	1.00	0.970110	0.959528
100	1.00	0.970101	0.959534
200	1.00	0.977137	0.968858
50	0.01	0.929713	0.903950

Table 2: AdaBoost Hyperparameter Tuning Results

n_{-} estimators	learning rate	max depth	Accuracy	F1 Score
50	0.01	3	0.920904	0.890156
100	0.01	3	0.927931	0.900964
200	0.01	3	0.940230	0.918324
50	0.01	5	0.910350	0.876999
100	0.01	5	0.917386	0.888439
200	0.01	5	0.915632	0.885607
50	0.01	7	0.905059	0.872680
100	0.01	7	0.906813	0.876038
200	0.01	7	0.905059	0.875257
50	0.10	3	0.952557	0.934865

Table 3: Gradient Boosting Hyperparameter Tuning Results

$n_{-}estimators$	learning rate	max depth	gamma	Accuracy	F1 Score
50	0.01	3	0.0	0.920913	0.919759
100	0.01	3	0.0	0.942012	0.941325
200	0.01	3	0.0	0.954293	0.954001
50	0.01	5	0.0	0.913868	0.912581
100	0.01	5	0.0	0.934939	0.934448
200	0.01	5	0.0	0.954284	0.954173
50	0.01	7	0.0	0.913868	0.912581
100	0.01	7	0.0	0.936703	0.936290
200	0.01	7	0.0	0.954284	0.954173
50	0.10	3	0.0	0.961339	0.961182

Table 4: XGBoost Hyperparameter Tuning Results

$n_{-}estimators$	max depth	criterion	Accuracy	F1 Score
50	-	gini	0.961339	0.961247
100	-	gini	0.957830	0.957727
200	-	gini	0.956075	0.955929
50	5	gini	0.956066	0.956012
100	5	gini	0.954312	0.954223
200	5	gini	0.954312	0.954155
50	10	gini	0.961339	0.961247
100	10	gini	0.957830	0.957727
200	10	gini	0.956075	0.955929
50	-	entropy	0.961348	0.961154

Table 5: Random Forest Hyperparameter Tuning Results

Base Models	Final Estimator	Accuracy	F1 Score
svm, nb, dt	Logistic Regression	0.963	0.962
svm, nb, dt	Random Forest	0.968	0.970
svm, dt, knn	Logistic Regression	0.967	0.966

Table 6: Stacked Ensemble Hyperparameter Tuning Results

Model	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Average Accuracy
Decision Tree	0.930	0.868	0.886	0.939	0.929	0.910
AdaBoost	0.991	0.974	0.956	0.982	0.982	0.977
Gradient Boosting	0.965	0.912	0.956	0.956	0.982	0.954
XGBoost	0.982	0.939	0.956	0.974	0.956	0.961
Random Forest	0.965	0.939	0.956	0.947	0.965	0.954
Stacking	0.982	0.930	0.965	0.947	0.965	0.958

Table 7: K-Fold Cross-Validation Accuracy of Different Models

OBSERVATIONS

- 1. Which model achieved the best validation accuracy among all six methods?

 Answer: AdaBoost achieved the highest average validation accuracy (0.977) among all six methods.
- 2. How does Decision Tree performance compare to ensemble methods?

 Answer: Decision Tree performs significantly worse than all ensemble methods. Ensemble methods (AdaBoost, Gradient Boosting, XGBoost, Random Forest, Stacking) improve accuracy by combining multiple models, reducing variance and bias.
- 3. Did the Random Forest benefit from tuning max depth or n_estimators?

 Answer: Random Forest did not benefit much from tuning max depth or n_estimators.

 Accuracy differences across hyperparameter settings were minimal, indicating the model was already strong.
- 4. Which model showed the best generalization? Any overfitting?

 Answer: AdaBoost shows the best generalization with consistently high K-Fold accuracy (0.977). Random Forest and Stacking are stable as well. Decision Tree underfits. No severe overfitting is observed in any model.
- 5. Did stacking improve performance over base models?

 Answer: Stacking improved performance over weaker base models (Decision Tree, Gradient Boosting, Random Forest), but it did not outperform the best single model, AdaBoost (0.977).

LEARNING OUTCOMES

- Understand and implement different machine learning algorithms including Decision Tree, AdaBoost, Gradient Boosting, XGBoost, Random Forest, and Stacked Ensemble.
- Perform hyperparameter tuning to optimize model performance using metrics such as Accuracy and F1 Score.
- Compare the performance of individual models and ensemble methods using K-Fold cross-validation.
- Analyze model generalization, detect underfitting or overfitting, and evaluate the impact of model parameters.
- Interpret results effectively and make informed decisions on selecting the best model for a given dataset.
- Develop skills in reporting and presenting machine learning experiment results in a structured and clear manner.