

EquiformerV2: Improved Equivariant Transformer for Scaling to Higher-Degree Representations

Yi-Lun Liao¹, Brandon Wood², Abhishek Das^{2*}, Tess Smidt^{1*}

¹Massachusetts Institute of Technology ²FAIR, Meta AI *Equal contribution

qithub.com/atomicarchitects/equiformer v2

Motivation and Contribution

- (1) Equivariant networks such as Equiformer have shown the importance of incorporating 3D-related inductive biases in learning representations of 3D atomistic systems.
 (2) Tensor products, the core operations in equivariant
- networks, have high complexity and become the bottleneck in scaling degrees, L_{max} , of equivariant representations.

 (3) eSCN reduces SO(3) convolutions built from tensor products
- to SO(2) linear operations, enabling higher L_{max} . (4) We revisit the design of equivariant Transformers and propose EquiformerV2, the improved equivariant Transformer for scaling to higher L_{max} .

Proposed Method

Equivariant features (e.g., Euclidean vectors) consist of vectors of different degrees L, with maximum degree L_{\max} , and those of different L rotate at different speeds when input graphs are rotated.

We start with Equiformer and have the following modifications: (1) We use eSCN convolutions, which reduce tensor products to SO(2) linear operations, to efficiently incorporate vectors of higher degrees and scale to higher $L_{\rm max}$.

(2) To better leverage the power of higher degees, we propose three architectural improvements – attention re-normalization, separable S² activation and separable layer normalization.

Noisy Nodes, and "pretraining" denotes pretraining on PCQM4Mv2 dataset (Nakata & Shimazaki, 2017). The

performance gain from Equiformer to Equiformer V2 becomes larger when trained with Noisy Nodes