Analiza

Michał Dobranowski

 $\begin{array}{c} \mathrm{semestr} \ \mathrm{zimowy} \ 2022 \\ \mathrm{v} 0.0 \end{array}$

Poniższy skrypt zawiera materiał obejmujący wykłady z Analizy matematycznej I oraz II prowadzone na pierwszym roku Informatyki na AGH, lecz jest mocno rozbudowany przez przykłady i twierdzenia pochodzące z przeróżnych źródeł, które (zwykle dla rozwinięcia intuicji lub ułatwienia rozwiązań pewnych zadań) postanowiłem opisać.

PS: Analiza I nie jest skończona. Całkiem możeliwe, że nigdy nie będzie.

Spis treści

	Analiza II	2
1	Szeregi liczbowe	2
2	Ciągi funkcyjne 2.1 Metryka Czebyszewa	5
3	Szeregi funkcyjne	8
	3.1 Szeregi potęgowe	10
	3.2 Szeregi Taylora	14

Analiza II

§1 Szeregi liczbowe

Definicja 1.1. Szereg liczbowy to para $((a_n)_{n\in\mathbb{N}}, (S_n)_{n\in\mathbb{N}})$, gdzie $S_n = \sum_{i=1}^n a_i$.

Mówimy, że szereg liczbowy jest **zbieżny**, jeśli istnieje skończona granica $\lim_{n\to\infty} S_n = S$. Liczbe S nazywamy wtedy **sumą** tego szeregu.

Twierdzenie 1.2 (warunek konieczny zbieżności szeregu)

Jeśli szereg

$$\sum_{n=1}^{\infty} a_n$$

jest zbieżny, to

$$\lim_{n \to \infty} a_n = 0.$$

Przykład 1.3

Znajdź sumę szeregu

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)}.$$

Rozwiązanie. Wykorzystamy tak zwane sumy teleskopowe.

$$\sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+2} \right)$$

$$= \frac{1}{2} \lim_{n \to \infty} \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{n} - \frac{1}{n+2} \right)$$

$$= \frac{1}{2} \lim_{n \to \infty} \left(1 + \frac{1}{2} - \frac{1}{n+1} - \frac{1}{n+2} \right) = \frac{3}{4}$$

Można łatwo pokazać, że szereg harmoniczny $\sum_{n=1}^{\infty} \frac{1}{n}$ nie jest zbieżny (czyli jest **roz-**bieżny), mimo że spełnia warunek konieczny:

$$\underbrace{\left(\frac{1}{1}\right)}_{1} + \underbrace{\left(\frac{1}{2} + \frac{1}{3}\right)}_{>1} + \underbrace{\left(\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}\right)}_{>1} + \dots$$

Okazuje się, że zachodzi również dużo mocniejsze twierdzenie:

Twierdzenie 1.4 (o zbieżności szeregów harmonicznych)

Szereg harmoniczny rzędu $\alpha \in \mathbb{R}$

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

jest zbieżny wtedy i tylko wtedy, gdy $\alpha > 1$.

Jeśli szereg $\sum_{n=1}^{\infty} |a_n|$ jest zbieżny, to mówimy, że szereg $\sum_{n=1}^{\infty} a_n$ jest **bezwzględnie** zbieżny, w przeciwnym przypadku jest warunkowo zbieżny. Bezwzględna zbieżność szeregu pociąga za sobą jego zbieżność.

Aby sprawdzić zbieżność szeregów stosuje się kilka kryteriów zbieżności.

Twierdzenie 1.5 (kryterium porównawcze)

Jeśli dla każdego n wiekszego od pewnego n_0 zachodzi

$$a_n \leq b_n$$

oraz $a_n,b_n>0$, to ze zbieżności szeregu $\sum_{n=1}^\infty b_n$ wynika zbieżność $\sum_{n=1}^\infty a_n$, a z rozbieżności szeregu $\sum_{n=1}^\infty a_n$ wynika rozbieżność $\sum_{n=1}^\infty b_n$.

Uwaga. Wraz z powyższym twierdzeniem warto stosować nierówności, które zachodzą w przedziale [0,1]:

- $\frac{x}{2} \le \sin x \le x$ $\frac{x}{2} \le \ln x + 1 \le x$ $x \le \tan x \le 2x$ $1 x \le \cos x$

Przykład 1.6

Zbadaj zbieżność szeregu

$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2 + 1}{n^2} \right).$$

Rozwiązanie.

$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2 + 1}{n^2} \right) = \sum_{n=1}^{\infty} \ln \left(1 + \frac{1}{n^2} \right)$$

Wyrazy szeregu są dodatnie oraz dla każdego $n \in \mathbb{N}$

$$\ln\left(1+\frac{1}{n^2}\right) < \frac{1}{n^2},$$

więc, na podstawie twierdzenia 1.4, dany szereg jest zbieżny.

Twierdzenie 1.7 (kryterium ilorazowe)

Jeśli dla każdego n wiekszego od pewnego n_0 wyrazy szeregów $\sum_{n=1}^{\infty} a_n$ i $\sum_{n=1}^{\infty} b_n$ są dodatnie oraz

$$\lim_{n\to\infty}\frac{a_n}{b_n}=g\in(0,\infty),$$

to dane szeregi są jednocześnie zbieżne lub jednocześnie rozbieżne.

Twierdzenie 1.8 (kryterium d'Alemberta)

Niech będzie dany szereg $\sum_{n=1}^{\infty} a_n$ o niezerowych wyrazach oraz niech

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = g.$$

Jeśli g > 1, to dany szereg jest rozbieżny, a jeśli g < 1, to szereg jest zbieżny.

Twierdzenie 1.9 (kryterium Cauchy'ego)

Niech będzie dany szereg $\sum_{n=1}^{\infty} a_n$ oraz niech

$$\lim_{n \to \infty} \sqrt[n]{|a_n|} = g.$$

Jeśli g > 1, to dany szereg jest rozbieżny, a jeśli g < 1, to szereg jest zbieżny.

Uwaga. Jeśli w kryteriach d'Alemberta lub Cauchy'ego wyjdzie g=1, to nie możemy powiedzieć nic o zbieżności ciągu.

Przykład 1.10

Zbadaj zbieżność szeregu

$$\sum_{n=1}^{\infty} \frac{3^n \cdot n}{4^n}.$$

Rozwiązanie. Korzystając z kryterium Cauchy'ego mamy

$$\lim_{n\to\infty}\sqrt[n]{\frac{3^n\cdot n}{4^n}}=\lim_{n\to\infty}\frac{3}{4}\cdot\sqrt[n]{n}=\frac{3}{4}<1,$$

więc dany szereg jest zbieżny.

Twierdzenie 1.11 (kryterium całkowe)

Jeśli dla każdego n wiekszego od pewnego n_0 wyrazy szeregu $\sum_{n=1}^{\infty} a_n$ są dodatnie oraz istnieje taka malejąca (na przedziale $[n_0,\infty)$) funkcja f, że $a_n=f(n)$ dla każdego n, to szereg

$$\sum_{n=1}^{\infty} a_n$$

jest zbieżny wtedy i tylko wtedy, gdy całka niewłaściwa

$$\int_{1}^{\infty} f(x) \, \mathrm{d}x$$

jest zbieżna.

Twierdzenie 1.12 (kryterium Leibniza)

Dany jest szereg $\sum_{n=1}^{\infty} (-1)^n a_n$. Jeśli ciąg (a_n) jest dodatni, zbieżny do zera oraz malejący, to jest dany szereg jest zbieżny.

Szereg opisywany przez kryterium Leibniza nazywamy szeregiem naprzemiennym.

Przykład 1.13

Zbadać zbieżność warunkową i bezwzględną szeregu

$$\sum_{n=1}^{\infty} (-1)^n \frac{1}{n \ln n}.$$

Rozwiązanie. Korzystając z kryterium Leibniza bardzo łatwo pokazać, że dany szereg jest zbieżny. Ciąg $a_n=\frac{1}{n\ln n}$ ma oczywiście wyrazy dodatnie i jest zbieżny do zera. Ponadto jest malejący, bo zarówno n, jak i $\ln n$ rosną.

Aby określić, czy dany szereg jest bezwzględnie zbieżny skorzystamy z kryterium całkowego.

$$\int \frac{1}{x \ln x} dx = \begin{vmatrix} u = \ln x \\ du = \frac{1}{x} dx \end{vmatrix} = \int \frac{1}{u} du = \ln u + C = \ln(\ln(x)) + C.$$
$$\int_{1}^{\infty} \frac{1}{x \ln x} dx = \ln(\ln(x)) \Big|_{1}^{\infty} - \text{rozbieżna.}$$

Z tego wynika, że dany szereg jest tylko warunkowo zbieżny.

§2 Ciągi funkcyjne

Ciąg funkcyjny to ciąg, którego przeciwdziedziną jest zbiór funkcji określonych na tej samej dziedzinie. W kolejnych sekcjach będziemy rozważać ciągi funkcji $X \to \mathbb{R}$, gdzie $X \subset \mathbb{R}$, chyba że stwierdzono inaczej. Jest to ważne założenie niektórych twierdzeń.

Definicja 2.1 (zbieżność punktowa). Ciąg funkcyjny $(f_n(x))$ jest zbieżny punktowo na X, jeśli istnieje taka funkcja $f: X \to Y$, że $\lim_{n \to \infty} f_n(x) = f(x)$, czyli gdy

$$\bigvee_{x \in X} \bigvee_{\varepsilon > 0} \prod_{n_0 \in \mathbb{N}} \bigvee_{n > n_0} |f_n(x) - f(x)| < \varepsilon.$$

Definicja 2.2 (zbieżność jednostajna). Ciąg funkcyjny $(f_n(x))$ jest zbieżny jednostajnie na X, jeśli

$$\bigvee_{\varepsilon>0} \; \underset{n_0\in\mathbb{N}}{\exists} \; \bigvee_{n>n_0} \; \bigvee_{x\in X} \; |f_n(x)-f(x)| < \varepsilon.$$

Twierdzenie 2.3

Jeśli ciąg funkcyjny $(f_n(x))$ jest jednostajnie zbieżny do f na X, to jest również zbieżny punktowo do f na X, co zapisujemy jako

$$f_n \stackrel{X}{\rightrightarrows} f \Longrightarrow f_n \stackrel{X}{\to} f.$$

Dowód. Wynika z definicji i podstawowych praw rachunku kwantyfikatorów.

Twierdzenie 2.4

Jeśli ciąg $(f_n(x))$ jest ciągiem funkcji ciągłych i jest jednostajnie zbieżny $f_n \rightrightarrows f$, to funkcja f jest ciągła.

Przykład 2.5

Zbadaj zbieżność punktową i jednostajną ciągu funkcyjnego

$$f_n(x) = \frac{1}{1 + nx^2}$$

na zbiorze \mathbb{R} .

Rozwiązanie.

$$\lim_{n\to\infty}\frac{1}{1+nx^2}=\begin{cases} 1, & \mathrm{dla}\ x=0\\ 0, & \mathrm{dla}\ x\neq0. \end{cases}$$

Dany ciąg jest więc zbieżny punktowo, ale, skoro funkcje f_n są ciągłe, a funkcja f nie, to nie jest zbieżny jednostajnie.

§2.1 Metryka Czebyszewa

Weźmy pewną dwuargumentową funkcję zdefiniowaną jako

$$d_c(f,g) = \sup_{x \in X} |f(x) - g(x)|.$$

Można udowodnić, że funkcja d_c jest metryką (zwaną metryką Czebyszewa). Jako argumenty przyjmuje dwie funkcja zdefiniowane na tej samej dziedzinie X.

Twierdzenie 2.6

Jeśli każda funkcja ciągu funkcyjnego $(f_n(x))$ jest ograniczona, to

$$f_n \rightrightarrows f \iff \lim_{n \to \infty} d_c(f_n, f) = 0.$$

Przykład 2.7

Zbadaj zbieżność punktową i jednostajną ciągu funkcyjnego

$$f_n(x) = \frac{x^n}{1 + x^n}$$

na przedziale $[2, \infty)$.

Rozwiązanie. Mamy

$$\lim_{n \to \infty} \frac{x^n}{1 + x^n} = 1 \equiv f,$$

więc ciąg jest zbieżny punktowo do funkcji ciągłej, możemy zatem sprawdzić, czy zbiega do niej jednostajnie.

$$\lim_{n \to \infty} \sup_{x \in X} \left| \frac{x^n}{1 + x^n} - 1 \right| = \lim_{n \to \infty} \sup_{x \in X} \left(1 - \frac{x^n}{1 + x^n} \right)$$

Obliczmy supremum danej funkcji.

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(1 - \frac{x^n}{1+x^n}\right) = \frac{nx^{n-1}(1+x^n) - x^n(nx^{n-1})}{(1+x^n)^2} = \frac{nx^{n-1}}{(1+x^n)^2}$$

Pochodna zawsze jest dodatnia, więc supremum będzie przy $x \to \infty$. Mamy

$$\lim_{n\to\infty}\sup_{x\in X}\left(1-\frac{x^n}{1+x^n}\right)=\lim_{n\to\infty}\lim_{x\to\infty}\left(1-\frac{x^n}{1+x^n}\right)=\lim_{n\to\infty}\left(1-1\right)=0,$$

więc dany ciąg jest zbieżny jednostajnie.

Przykład 2.8

Zbadaj zbieżność punktową i jednostajną ciągu funkcyjnego

$$f_n(x) = \frac{nx}{n^2 + x^2}$$

na zbiorze \mathbb{R} .

Rozwiązanie. Mamy

$$\lim_{n\to\infty}\frac{nx}{n^2+x^2}=\lim_{n\to\infty}\frac{x}{n}=0\equiv 0,$$

więc ciąg jest zbieżny punktowo do funkcji ciągłej, możemy zatem sprawdzić, czy zbiega do niej jednostajnie.

$$\lim_{n \to \infty} \sup_{x \in X} \left| \frac{nx}{n^2 + x^2} \right| = \lim_{n \to \infty} \sup_{x \in X} \left(\frac{nx}{n^2 + x^2} \right)$$

Obliczmy supremum danej funkcji.

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{nx}{n^2 + x^2} \right) = \frac{n(n^2 + x^2) - nx(2x)}{(n^2 + x^2)^2} = \frac{n^3 - nx^2}{(n^2 + x^2)^2}$$

Pochodna zeruje się, gdy

$$n^3 = nx^2 \Rightarrow x = \pm n$$
,

więc supremum będzie przy x = n. Mamy

$$\lim_{n \to \infty} \frac{n^2}{n^2 + n^2} = \frac{1}{2},$$

więc dany ciąg nie jest zbieżny jednostajnie.

Twierdzenie 2.9 (o różniczkowalności granicy ciągu funkcyjnego)

Jeśli każda funkcja ciągu funkcyjnego $(f_n(x))$ jest różniczkowalna, ciąg (f_n) jest zbieżny, a ciąg (f'_n) zbieżny jednostajnie, to dla każdego $x \in X$ zachodzi

$$\left(\lim_{n\to\infty} f_n(x)\right)' = \lim_{n\to\infty} \left(f'_n(x)\right).$$

Twierdzenie 2.10 (o całkowalności granicy ciągu funkcyjnego)

Jeśli każda funkcja ciągu funkcyjnego $(f_n(x))$ jest całkowalna, a ciąg (f_n) jest zbieżny jednostajnie, to dla każdych $x_1, x_2 \in X$ zachodzi

$$\int_{x_1}^{x_2} \left(\lim_{n \to \infty} f_n(x) \right) dx = \lim_{n \to \infty} \left(\int_{x_1}^{x_2} f_n(x) dx \right).$$

§3 Szeregi funkcyjne

Podobnie do szeregów liczbowych, szeregi funkcyjne to para $((f_n(x))_{n\in\mathbb{N}}, (S_n(x))_{n\in\mathbb{N}})$: ciąg funkcyjny oraz ciąg sum częściowych ciągu funkcyjnego. Taki szereg jest zbieżny (punktowo / jednostajnie) do sumy szeregu S, jeśli ciąg $(S_n(x))$ jest zbieżny (częściowo / jednostajnie) do S.

Analogicznie do twierdzenia 2.3, warukiem koniecznym zbieżności jednostajnej szeregu jest jego zbieżność punktowa.

Z kolei w analogii do twierdzenia 1.2, warunkiem koniecznym zbieżności (punktowej / jednostajnej) szeregu $\sum_{n=1}^{\infty} f_n(x)$ jest zbieżność (punktowa / jednostajna) ciągu funkcyjnego $(f_n(x))$ do zera, to znaczy

$$\sum_{n=1}^{\infty} f_n(x) \to S \Longrightarrow f_n(x) \to 0 \equiv f$$

oraz

$$\sum_{n=1}^{\infty} f_n(x) \rightrightarrows S \Longrightarrow f_n(x) \rightrightarrows 0 \equiv f.$$

Twierdzenie 3.1 (kryterium Weierstrassa)

Jeśli istnieje taki ciąg (a_n) , że dla każdego $n \in \mathbb{N}$ i dla każdego $x \in X \subset \mathbb{R}$ mamy nierówność

$$|f_n(x)| \le a_n$$

oraz szereg $\sum_{n=1}^{\infty} a_n$ jest zbieżny, to szereg funkcyjny

$$\sum_{n=1}^{\infty} f_n(x)$$

jest jednostajnie zbieżny na X.

Zachodzi twierdzenie o ciągłości, analogiczne do twierdzenia 2.4.

Twierdzenie 3.2

Jeśli szereg $\sum_{n=1}^{\infty} f_n(x)$ jest szeregiem funkcji ciągłych i jest jednostajnie zbieżny $\sum_{n=1}^{\infty} f_n(x) \rightrightarrows S(x)$, to funkcja S jest ciągła.

Przykład 3.3

Zbadaj zbieżność punktową i jednostajną szeregu

$$\sum_{n=1}^{\infty} x^n (1-x)$$

na przedziale [0,1].

Rozwiązanie. Dla $x \in [0,1)$ mamy:

$$\sum_{n=1}^{\infty} x^n (1-x) = x(1-x) \frac{1}{1-x} = x,$$

natomiast dla x = 1 mamy

$$\sum_{n=1}^{\infty} x^n (1-x) = \sum_{n=1}^{\infty} 1^n \cdot 0 = 0,$$

więc szereg jest zbieżny punktowo. Funkcja

$$S(x) = \begin{cases} x, & \text{dla } x \in [0, 1) \\ 0, & \text{dla } x = 1 \end{cases},$$

do której dany szereg zbiega nie jest ciągła, a funkcje $f_n(x) = x^n(1-x)$ są ciągłe, więc, na mocy twierdzenia 3.2, szereg nie zbiega jednostajnie.

Przykład 3.4

Zbadaj zbieżność punktową i jednostajną szeregu

$$\sum_{n=1}^{\infty} \frac{nx}{1 + n^4 x^2}$$

na przedziale $[1, \infty)$.

Rozwiązanie. Dla każdego $x \in [1, \infty]$ oraz $n \in \mathbb{N}$ mamy

$$\left| \frac{nx}{1 + n^4 x^2} \right| = \frac{nx}{1 + n^4 x^2} \le \frac{nx}{n^4 x^2} = \frac{1}{n^3 x} \le \frac{1}{n^3},$$

więc, na mocy kryterium Weierstrassa, dany szereg jest jednostajnie zbieżny, bo szereg harmoniczy rzędu 3 jest zbieżny.

Zachodzą również twierdzenia o różniczkowalności i całkowalności, analogiczne do twierdzeń 2.9 i 2.10.

Twierdzenie 3.5

Niech $(f_n(x))$ będzie ciągiem funkcji różniczkowalnych. Jeśli szereg $\sum_{n=1}^{\infty} f_n(x)$ jest zbieżny na X, a szereg $\sum_{n=1}^{\infty} f'_n(x)$ jest jednostajnie zbieżny na X, to dla każdego $x \in X$ zachodzi

$$\left(\sum_{n=1}^{\infty} f_n(x)\right)' = \sum_{n=1}^{\infty} f'_n(x).$$

Twierdzenie 3.6

Niech $(f_n(x))$ będzie ciągiem funkcji całkowalnych. Jeśli szereg $\sum_{n=1}^{\infty} f_n(x)$ jest jednostajnie zbieżny na X, to dla każdych $x_1, x_2 \in X$ zachodzi

$$\int_{x_1}^{x_2} \left(\sum_{n=1}^{\infty} f_n(x) \right) \mathrm{d}x = \sum_{n=1}^{\infty} \left(\int_{x_1}^{x_2} f_n(x) \, \mathrm{d}x \right).$$

§3.1 Szeregi potęgowe

Definicja 3.7. Szereg potęgowy o środku w punkcie c to szereg funkcyjny

$$\sum_{n=1}^{\infty} a_n (x-c)^n,$$

gdzie $a_n, x, c \in \mathbb{C}$.

Twierdzenie 3.8

Jeśli szereg potęgowy

$$\sum_{n=1}^{\infty} a_n (x-c)^n$$

jest zbieżny dla pewnego x_1 , to jest zbieżny dla wszystkich x_2 takich, że

$$|x_2-c|<|x_1-c|,$$

a jeśli nie jest zbieżny dla pewnego x_1 , to nie jest zbieżny dla wszystkich x_2 takich, że

$$|x_2 - c| > |x_1 - c|$$
.

Powyższe twierdzenie każe nam podzielić płaszczyznę zespoloną (względem danego szeregu potęgowego) na trzy rozłączne zbiory. Formalnie, jeśli weźmiemy

$$r = \sup \left\{ |x - c| : \text{ szereg } \sum_{n=1}^{\infty} a_n (x - c)^n \text{ jest zbieżny} \right\},$$

to zbiór

$$\{x \in \mathbb{C} : |x - x_0| < r\}$$

nazwiemy kołem zbieżności. Dla wszystkich elementów z tego zbioru dany szereg jest zbieżny. Dla elementów na brzegu tego koła zbieżność jest nieokreślona, a dla elementów poza nim dany szereg nie jest zbieżny. Liczba r to **promień zbieżności**. Dla x=c dany szereg jest zbieżny.

Uwaga. Jeśli przyjmiemy w definicji szeregu potęgowego (3.7), że $a_n, x, c \in \mathbb{R}$, to koło zbieżności staje się **przedziałem zbieżności**, a nieokreśloną zbieżność mamy tylko dla dwóch elementów: c - r oraz c + r.

Obszarem zbieżności nazywamy zbiór będący sumą koła zbieżności oraz zbioru elementów z jego brzegu, dla których dany szereg potęgowy jest zbieżny.

Twierdzenie 3.9 (Cauchy'ego-Hadamarda)

Promień zbieżności jest dany jako

$$r = \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}},$$

gdzie $r = \frac{1}{0}$ interpretujemy jako $r = \infty$, a $r = \frac{1}{\infty}$ jako r = 0.

Można podać dwa słabsze twierdzenia, które jednak często łatwiej jest stosować:

$$r = \frac{1}{\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|} \implies r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}} \implies (3.9).$$

Mówimy, że ciąg (szereg) funkcyjny jest **niemal jednostajnie zbieżny** na przedziale (a,b) jeśli jest jednostajnie zbieżny na każdym przedziale $[c,d] \in (a,b)$.

Fakt 3.10. Jeśli szereg potęgowy jest zbieżny w (c-r, c+r), to jest bezwzględnie zbieżny w (c-r, c+r) oraz niemal jednostajnie zbieżny w (c-r, c+r).

Fakt 3.11. Jeśli szereg potęgowy jest zbieżny w (c-r, c+r) do S(x), to funkcja S(x) jest ciągła, różniczkowalna i całkowalna w (c-r, c+r). Prawdziwe dla szeregów potęgowych są również tezy twierdzeń 3.5 i 3.6.

Twierdzenie 3.12 (Abela)

Niech $\sum_{n=1}^{\infty} a_n(x-c)^n$ będzie szeregiem potęgowym zbieżnym do S(x) o promieniu zbieżności równym r. Jeśli ten szereg jest zbieżny dla $x_1 = c - r$ oraz istnieje granica $\lim_{x \to x^{\pm}} S(x)$, to

$$\lim_{x \to x_1^+} S(x) = S(x_1),$$

czyli funkcja S(x) jest prawostronnie ciągła w x = c - r. Analogicznie, jeśli szereg jest zbieżny dla $x_2 = c + r$ oraz istnieje granica $\lim_{x \to x^-} S(x)$, to

$$\lim_{x \to x_2^-} S(x) = S(x_2),$$

czyli funkcja S(x) jest lewostronnie ciągła w x = c + r.

Przykład 3.13

Znajdź sumę szeregu

$$\sum_{n=1}^{\infty} \frac{(n+1)(x+2)^n}{2^n}$$

w każdym punkcie obszaru zbieżności.

Rozwiązanie. Stosując twierdzenie Cauchy'ego-Hadamarda (3.9) możemy obliczyć promień zbieżności danego szeregu

$$r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{n+1}{2^n}}} = \frac{1}{\frac{1}{2}} = 2,$$

tak więc przedział zbieżności to (-4,0). Dla x=-4 mamy

$$\sum_{n=1}^{\infty} \frac{(n+1)(-2)^n}{2^n} = \sum_{n=1}^{\infty} (-1)^n (n+1) - \text{rozbieżny, nie spełnia warunku koniecznego,}$$

a dla x = 0

$$\sum_{n=1}^{\infty}\frac{(n+1)2^n}{2^n}=\sum_{n=1}(n+1)$$
 – rozbieżny, nie spełnia warunku koniecznego.

Obszarem zbieżności jest więc przedział (-4,0). Policzmy teraz sumę. Dla każdego $x \in (-4,0)$ mamy

$$S(x) = \sum_{n=1}^{\infty} \frac{(n+1)(x+2)^n}{2^n} = \sum_{n=1}^{\infty} \left(\frac{(x+2)^{n+1}}{2^n}\right)' \stackrel{(3.5)}{=} \left(\sum_{n=1}^{\infty} \frac{(x+2)^{n+1}}{2^n}\right)'$$
$$= \left(\frac{(x+2)^2}{2} \frac{1}{1 - \frac{x+2}{2}}\right)' = \left(\frac{(x+2)^2}{-x}\right)' = \frac{2x(x+2) + (x+2)^2}{x^2} = \frac{4 - x^2}{x^2}.$$

Przykład 3.14

Znajdź sumę szeregu

$$\sum_{n=0}^{\infty} \frac{2^n (x - \frac{1}{2})^n}{n+1}$$

w każdym punkcie obszaru zbieżności.

Rozwiązanie. Stosując twierdzenie Cauchy'ego-Hadamarda (3.9) możemy obliczyć promień zbieżności danego szeregu

$$r = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{2^n}{n+1}}} = \frac{1}{2},$$

tak więc przedział zbieżności to (0,1). Dla x=0 mamy

$$\sum_{n=0}^{\infty} \frac{2^n \left(-\frac{1}{2}\right)^n}{n+1} = \sum_{n=0}^{\infty} \frac{(-1)^n}{n+1} - \text{zbieżny z kryterium Leibniza},$$

a dla x = 1

$$\sum_{n=0}^{\infty} \frac{2^n \left(\frac{1}{2}\right)^n}{n+1} = \sum_{n=0}^{\infty} \frac{1}{n+1} - \text{rozbieżny z kryterium ilorazowego}.$$

Obszarem zbieżności jest więc przedział [0,1). Policzmy teraz sumę. Dla $x=\frac{1}{2}$ mamy

$$S(\frac{1}{2}) = \sum_{n=0}^{\infty} \frac{2^n 0^n}{n+1} = 1 + 0 + 0 + \dots = 1.$$

Dla pozostałych x zapiszemy

$$S(x) = \sum_{n=0}^{\infty} \frac{2^n (x - \frac{1}{2})^n}{n+1} = \frac{1}{x - \frac{1}{2}} \sum_{n=0}^{\infty} \frac{2^n (x - \frac{1}{2})^{n+1}}{n+1} = \frac{1}{x - \frac{1}{2}} \sum_{n=0}^{\infty} \int_{1/2}^x 2^n \left(t - \frac{1}{2}\right)^n dt.$$

Szeregi potęgowe są niemal jednostajnie zbieżne w swoim przedziale zbieżności, więc dla $x \in (0,1)$ możemy zamienić znaki sumy i całki (twierdzenie 3.6)

$$\begin{split} S(x) &= \frac{1}{x - \frac{1}{2}} \int_{1/2}^{x} \sum_{n=0}^{\infty} 2^{n} \left(t - \frac{1}{2} \right)^{n} \mathrm{d}t = \frac{1}{x - \frac{1}{2}} \int_{\frac{1}{2}}^{x} \frac{1}{1 - 2(t - \frac{1}{2})} \, \mathrm{d}t \\ &= \frac{1}{x - \frac{1}{2}} \int_{\frac{1}{2}}^{x} \frac{1}{2 - 2t} \, \mathrm{d}t = \frac{1}{x - \frac{1}{2}} \left[-\frac{1}{2} \ln(1 - t) \right]_{\frac{1}{2}}^{x} = \frac{1}{1 - 2x} \left(\ln(1 - x) - \ln\frac{1}{2} \right) \\ &= \frac{\ln(2 - 2x)}{1 - 2x}. \end{split}$$

Z twierdzenia Abela (3.12) wynika, że

$$S(0) = \lim_{x \to 0^+} \frac{\ln(2 - 2x)}{1 - 2x} = \ln(2),$$

więc ostatecznie mamy

$$S(x) = \begin{cases} 1, & \text{dla } x = \frac{1}{2} \\ \frac{\ln(2 - 2x)}{1 - 2x}, & \text{dla } x \in [0, 1) \setminus \left\{\frac{1}{2}\right\} \end{cases}.$$

§3.2 Szeregi Taylora

Definicja 3.15 (szereg Taylora). Jeśli funkcja f ma pochodne wszystkich rzędów w pewnym otoczeniu U punktu x_0 , to szereg

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

nazywamy szeregiem Taylora. Jeśli $x_0=0,$ to nazywamy go szeregiem Maclaurina.