Final Project

ET234203 Struktur Data dan Pemrograman Berorientasi Objek

Tahun Ajaran 2024/2025 Genap

Sistem Rekomendasi Rute Transportasi Berbasis Preferensi Pengguna

Sifat : Kelompok (5-6 orang) Link (baru)

Bahasa Pemrograman : C++

Struktur Data : Tree, Graph

Rancang dan implementasikan sistem rekomendasi rute transportasi yang kompleks menggunakan bahasa C++, dengan penerapan struktur data **Graph** dan **Tree**, serta prinsip **Object-Oriented Programming (OOP)**. Sistem harus memiliki data graf awal dengan bobot seperti **jarak**, **waktu tempuh**, dan **biaya**. Sistem juga harus mendukung fitur **CRUD** untuk data lokasi dan rute, sehingga struktur graf dapat diperbarui secara dinamis. Selain itu, sistem harus mampu menangani **preferensi pengguna** untuk memberikan **rekomendasi rute terbaik** sesuai kriteria yang dipilih. Terakhir, sistem harus dapat **menyimpan dan memuat ulang** data graf serta preferensi pengguna melalui file eksternal. Untuk detail penilaian, perhatikan tabel berikut:

No	Fitur	Deskripsi	Skor
1	Representasi Graf Rute	Implementasi graf berbobot menggunakan adjacency list / adjacency matrix / incidency matrix untuk memodelkan lokasi dan koneksi antar titik. Struktur ini menjadi fondasi sistem.	12
2	Algoritma Pencarian Rute Terbaik (Dijkstra / A*)	Implementasi algoritma shortest path yang mempertimbangkan bobot dari graf, misal: • Waktu Tempuh – Durasi perjalanan antar titik (menit) • Jarak – Panjang lintasan antar titik (km/m) • Biaya – Ongkos perjalanan (Rp) • Jumlah Transit – Banyaknya pergantian rute/mode	15
3	Desain Berorientasi Objek (OOP)	Implementasi konsep OOP secara konsisten, termasuk inheritance, polymorphism, encapsulation, dan abstraction pada kelas-kelas utama.	12
4	Estimasi Waktu Tempuh & Biaya	Sistem dapat menghitung estimasi waktu dan/atau biaya perjalanan dari rute hasil algoritma, menggunakan data bobot dari graf.	10
5	Preferensi Dinamis Pengguna	Sistem dapat memproses input preferensi pengguna dalam pemilihan rute. Mahasiswa dapat memilih: • Decision Tree (berbasis pertanyaan & cabang) • Skor Multi-kriteria (mengalikan bobot dengan atribut seperti waktu, biaya, jarak). • dll	15
6	CRUD Lokasi & Rute	Sistem dapat membuat, membaca, mengubah, dan menghapus node (lokasi) serta edge (rute) dalam graf, dengan antarmuka teks interaktif.	10
7	Simulasi Perjalanan (Output Teks)	Sistem dapat menampilkan langkah-langkah rute hasil rekomendasi, termasuk urutan lokasi dan total waktu/biaya.	6
8	Struktur Data Tambahan	Sistem menggunakan struktur data lanjutan seperti priority queue (untuk Dijkstra) dan map/unordered_map (untuk manajemen node dan data lainnya).	6
9	Visualisasi Teks untuk Graf & Tree	Sistem dapat menampilkan isi graf dan decision tree secara tekstual agar mudah dipahami.	7

No	Fitur	Deskripsi	Skor
10	Input/Output dari File	Sistem dapat menyimpan dan memuat data lokasi, rute, dan preferensi pengguna pada file eksternal (CSV, JSON, atau TXT).	7

Kriteria penilaian secara keseluruhan:

No	Indikator	Deskripsi	Bobot (%)
1	Implementasi Sistem & Dokumentasi	Menilai aspek teknis utama: struktur data, algoritma, OOP serta kelengkapan dokumentasi di Github. <i>Nilai Kelompok</i>	50%
2	Pemahaman (Tanya Jawab)	Menilai pemahaman mahasiswa terhadap konsep dan kode yang mereka buat sendiri. <i>Nilai Individu</i>	30%
3	Demo Video	Menilai hasil akhir sistem secara fungsional. Video diunggah ke YouTube (boleh private) dan dikemas menarik layaknya video promosi, yang menonjolkan fitur sistem secara jelas, singkat, dan menarik. Nilai Kelompok	20%

Durasi Pengerjaan: 1-2 Minggu

Kumpulkan **link Github** (berisi kode program C++ dan dokumentasi) dan **link Youtube** (berisi demo video) ke Classroom.

Jadwal demo (Kamis, 19 Juni 2025) dapat dilihat pada link berikut https://docs.google.com/spreadsheets/d/1N3IVJ5x8DsOI4V0d1g5BbJNelwqaF_YHR2Fz2cZju0Y/edit?usp=sharing

Selamat mengerjakan! ©