ΛΥΣΗ

α) Είναι $P(1)=1^3-2\cdot 1^2+3\cdot 1-2=0$, άρα το 1 είναι μία ρίζα του πολυωνύμου. Επιπλέον ισχύει ότι

$$1$$
 ρίζα του $P(x) \Leftrightarrow x - 1$ παράγοντας του $P(x)$

β) Είναι:
$$P(x) = (x - 1) \cdot (x^2 - x + 2)$$
.

Το τριώνυμο $x^2-x+2\neq 0$ διότι έχει διακρίνουσα αρνητική και επιπρόσθετα ισχύει ότι $x^2-x+2>0$ για κάθε $x\in\mathbb{R}$.

$$Αρα P(x) = 0 \Leftrightarrow (x - 1) \cdot (x^2 - x + 2) = 0 \Leftrightarrow x = 1.$$

Το πρόσημο των τιμών του P(x) φαίνεται στον παρακάτω πίνακα προσήμων:

x	$-\infty$		1		+∞
x-1		_	0	+	
$x^2 - x + 2$		+		+	
P(x)		_	0	+	

 Ω ς εκ τούτου, είναι: $P(x) > 0 \Leftrightarrow x > 1$.