

TECHNICAL REPORT ARBRL-TR-02053

CALCULATION OF COMBAT VEHICLE PROTECTION
AGAINST A RESIDUAL RADIATION THREAT

AD No.

Albert E. Rainis R. Michael Schwenk Ralph E. Rexroad John W. Kinch

April 1978

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND

BALLISTIC RESEARCH LABORATORY

ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report by originating or sponsoring activity is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

UNCLASSIFIED

	SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
	REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	1. REPORT NUMBER TECHNICAL REPORT ARBRL-TR-02053	3. RECIPIENT'S CATALOG NUMBER
6	CALCULATION OF COMBAT VEHICLE PROTECTION AGAINST A RESIDUAL RADIATION THREAT,	5. TYPE OF REPORT & PERIOD COVERED Final rept. 6. PERFORMING ORG. REPORT NUMBER
_	The second secon	6. PERDAMING ONG. TELESTITION TO MODER
	Albert E./Rainis, Ralph E./Rexroad R. Michael/Schwenk, John W./Kinch	8. CONTRACT OR GRANT NUMBER(*)
	9. PERFORMING ORGANIZATION NAME AND ADDRESS US Army Ballistic Research Laboratory (ATTN: DRDAR-BLV) Aberdeen Proving Ground, MD 21005	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
	11. CONTROLLING OFFICE NAME AND ADDRESS US Army Armament Research & Development Command	ASPORT DATE
	US Army Ballistic Research Laboratory (ATTN: DRDAR-BL) Aberdeen Proving Ground, MD 21005	APR 1978 13. NUMBER OF PAGES 46
	14. MONITORING AGENCY NAME & ADDRESS(It different from Controlling Office)	15. SECURITY CLASS. (of this report)
	(12)410.	UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
	Approved for public release; distribution unlimit (8) SBIE (19) AD-E43 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in	0 019
	18. SUPPLEMENTARY NOTES	
	19. KEY WORDS (Continue on reverse side if necessary and identify by block number	
	Radiation shielding Residual Radiation transport Monte Car	radiation lo computer code
	Combinatorial geometry	
	20. ABSTRACT (Continue on reverse side if necessary and identity by block number)	
	Gamma protection factors (GPF) for two medium using the Monte Carlo program, MORSE. Comparisons show good agreement. It is concluded that this caviable alternative to experiment for determining to	tanks have been calculated with appropriate experiments clculational approach is a

DD 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

393 471

TABLE OF CONTENTS

																											Page
	LIS	T OF	ILLU	STR	AT]	ON	IS																				5
	LIS	T OF	TABL	ES																							7
I.	PUR	POSE																									9
II.	INT	RODUC	TION						•																		9
	Α.	BACK	GROU	ND																							9
	В.	CALC	ULAT	ION	AL	AP	PR	OA	CH																		10
III.	RES	ULTS																							•		13
	A.	GROU	ND S	CAT	TER	ED	S	PE	CTI	RUN	1.					•											13
	В.	FREE	FIE	LD	CAL	CU	LA	TI	ONS	s .																	13
	c.		EHICI CLE A			CU	LA'	T I (ONS	S F	OF	F	OI	RE.	IG	N •	ME •	DI	UM.	T .	'AN	ικ: •					18
	D.		EHICI						ONS	5 F	OF	F	OF	RE:	IG	N	ME	DΙ	UM	Т	AN	K:					
		VEHI	CLE I	3.	•	•	•	•	• •		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	22
IV.	CON	CLUSI	ONS .		•	•					•	•			•	•	•	•	•			•		•	•		24
	APPI	ENDIX	A -	PRO	OBL	EM	DI	EPI	ENI	EN	T	MO	RS	SE	SI	UB	RO	UT	IN	ES							25
	APPI	ENDIX	В -	RUN	N S	TRI	EAN	4 1	FOF	R A	Т	ΥP	IC	CAI	L (CA	LC	UL	AT	10	N						31
	DIST	ribu.	TION	LIS	ST																						45

ACCESSION NTIS	Walte Gestion	
DDC	S. Section	
HUDRANIN		
MSTIFICAT	1019	-
	THE PARTY OF THE P	
METRIOLI Dist. A	THAT AND THE PROPERTY OF THE	ES

LIST OF ILLUSTRATIONS

Figure	e	Page
1.	VEHICLE IN A FALLOUT FIELD	11
2.	GAMMA SPECTRUM EMITTED FROM ⁶⁰ Co ON A SMOOTH SEMI-INFINITE CUBE OF SOIL	16
3.	DOSE RATE ABOVE 60 CO SIMULATED FALLOUT FIELD	17
4.	FREE FIELD AND IN-VEHICLE GAMMA ENERGY SPECTRA FOR VEHICLE A	20

LIST OF TABLES

Table		Page
ı.	ATOMIC COMPOSITION OF AIR AND SOIL	. 14
II.	GAMMA RAY ENERGY GROUP STRUCTURE	. 15
III.	EXPERIMENTAL/CALCULATED VALUES OF THE GPF FOR VEHICLE A	. 21
IV.	EXPERIMENTAL/CALCULATED GPFs FOR VEHICLE B	. 23

I. PURPOSE

The purpose of this report is to describe a calculational method which can be employed to provide a quantitative measure of the increased survivability of personnel in combat vehicles against the external radiation exposure threat posed by residual radiation. Comparisons with certain applicable experiments are made in order to assess the accuracy of the technique.

II. INTRODUCTION

A. Background

Residual radiation can pose a military threat. Under certain meteorological and/or weapon employment conditions, radioactive fallout from a weapon burst could be of such a localized character so as to cause areas of intense radiation. The extent and intensities of these radiation fields can be mapped by troops utilizing the appropriate equipment. Alternately, with some information on the conditions pertaining to the weapon burst and the prevailing winds, the fallout patterns can be predicted by the battle field commander. Troops passing through or emplaced in these areas would be subjected to a radiation hazard. Their vulnerability can be reduced by a number of techniques which include physically removing the radioactive debris by scraping the surrounding ground or by utilizing the shielding afforded by armored vehicles. The concern here is the reduction of the fallout threat by armored vehicles.

The protection afforded by a combat vehicle against the gamma radiation from fallout can be quantified in terms of a gamma protection factor (GPF). The GPF for fallout radiation is defined as the ratio of the dose at an altitude of 3 feet in the absence of the vehicle (free field dose) to the dose at a position inside the vehicle. Clearly, the larger the overall GPF for a particular vehicle, the more protection it affords.

Heretofore, GPF values for these geometrically complicated military vehicles have been measured experimentally. One technique used to simulate the fallout threat against a variety of vehicles was a circulating point source of radiation.² These experiments modelled an envisioned scenario of an infinite-in-extent flat air/ground interface with the fallout source distributed uniformly on the ground. Two convenient

¹ J.C. Maloney and W.J. Klemm, "Department of Defense Land Fallout Prediction System", May 1975, BRL Report No. 1783, Ballistic Research Laboratory, APG-EA, MD. (AD #B004148L)

² M.A. Schmoke and W.J. Post, "Residual Radiation Shielding Characteristics of the M60A1E2 Tank", October 1973, BRL Report No. 1678, Ballistic Research Laboratory, APG-AA, MD. (AD #914673L)

isotopes, 60 Co and 137 Cs, were available to approximate the various stages in the radioactive decay of the fallout material. 3 60 Co, however, was used preferentially since it represents the average energy gamma radiation present in fallout at early times.

Oak Ridge National Laboratory (ORNL) developed a three dimensional Monte Carlo radiation transport code, MORSE⁴, which has the capability of handling complicated geometries via a combinatorial geometry (CG) package.⁵ MORSE is an "off-the-shelf" computer code which has been successfully employed in the cost-effective solution of a number of diverse radiation transport problems such as reactor design and the shielding of military vehicles against initial radiation.⁶ The successful application of MORSE to the problem of determining the amount of shielding afforded by combat vehicles against fallout radiation could be a viable economic alternative. It can be estimated that, relative to experimental measurements, monetary savings of about 70% could be realized in the absence of other considerations. However, since the mathematical models of the vehicles used for these calculations will have already been constructed for initial radiation calculations, the effective savings realized are even greater.

B. Calculational Approach

The scenario to be modelled in the calculations is the combat vehicle positioned at the interface of an infinite-in-extent air-overground environment. The source material (fallout) is assumed to be spread uniformly on the smooth interface. Figure 1 depicts the vicinity of the combat vehicle. In concert with previous experimental work, it is assumed that the gamma ray spectrum emitted by the fallout can be approximated by ^{60}Co .

A gamma ray emitted by the source distributed on the ground can interact with a crew member by following one of four paths: (a) direct,

R.E. Rexroad and M.A. Schmoke, "A Point Source Circulating System for Simulating Fallout Gamma Radiation", December 1964, NDL-TM-15, Nuclear Defense Laboratory, APG-EA, MD.

M.B. Emmett, "The MORSE Monte Carlo Radiation Transport Code System", ORNL-4972, Oak Ridge National Laboratory, Oak Ridge, TN, 1975.

⁵ C.E. Bugart, "The Truth About Combinatorial Geometry Input", (1972), Unpublished SAI memo.

W.A. Rhoades, "Development of a Code System for Determining Radiation Protection of Armored Vehicles", 1974, ORNL-TM-4664, Oak Ridge National Laboratory, Oak Ridge, TN.

GAMMA RADIATION

Figure 1. Vehicle in a Fallout Field.

(b) scattered by tank material, (c) scattering in the air or (d) scattering in the ground. Combinations of scatterings such as a ground scattering (d) followed by scattering with the vehicle material (b) before interacting with a crew member are also possible, but usually are less likely for a given gamma ray. Clearly, because of the possibility of the contribution of air or ground scattered gamma radiation to delivered dose, the infinite extent of these two media should be taken into account. Scattering from the vehicle suggests that its total mass as well as mass distribution will play an important role in the dose received by crew members inside the vehicle.

Because of the symmetry of the ground with respect to a gamma ray emitted by a source particle on its surface, the infinite thickness of the earth can be accounted for exactly by replacing the earth with an equivalent planar source. This is done by noting that gamma rays emitted isotropically into the ground subsequently leave the ground isotropically. Therefore, the effect of ground thickness can be taken into account by using a "modified source" that is isotropic and has the same energy spectrum that would be observed for ⁶⁰Co placed on earth of infinite thickness.

The infinite air as well as the geometric detail of the combat vehicle are modelled directly using combinatorial geometry. The mean free path of a gamma ray in air is, typically, about 300m. The air surrounding the vehicle is at least 3000m in extent.

The detector (crew member's position) is a point while the source is a very large plane surface. If the problem were to be treated via Monte Carlo techniques in the straight forward manner, a gamma-ray would be started from the air/ground interface and tracked while its effect on the dose was estimated. While a gamma ray emitted anywhere on this large plane might have an effect at the detector, those emitted near the detector would be expected to contribute more dose to that detector than those emitted farther away. This latter fact can be used to improve the efficiency of the calculation by essentially performing the calculation backward in time. Time-reversed, or adjoint, particles are started at the detector point and tracked until they cross the air/ground interface. If an adjoint particle crossing the interface would have been emitted from the surface of the ground (due to fallout radiation) then the adjoint particle is recorded as having had an effect at the detector.

Approaching the problem with MORSE in the adjoint mode automatically takes advantage of the fact that the nearer fallout contributes most to the delivered dose. In addition, less time is wasted tracking gamma rays that would have little or no effect on the crew member. Several problem dependent MORSE subroutines used for these calculations are listed in Appendix A.

The gamma ray data, material cross-sections, and Auxier-Snyder fluence-to-dose conversion factors were taken from the DNA 37-21 library.⁷ The atomic composition of the air and soil are listed in Table I.

III. RESULTS

A. Ground Scattered Spectrum

Gamma rays with an isotropic distribution were started from a point source of 60 Co on the surface of a cube of soil one kilometre on a side. All the gamma rays exiting from the surface of the cube were scored as to energy and importance (statistical weight). These exiting gamma rays included those which scattered from within the cube of soil.

Table II contains the energy bin structure of the gamma rays from the DNA 37-21 group set. Notice that the two gamma rays of 60 Co, 1.17 and 1.33 MeV, are both within energy group 11. Figure 2 presents the results of the above calculation. In Figure 2 it is seen that 50% of the leakage gamma radiation has an energy equal to the primary energy group. This would be expected since half of the gamma rays are emitted away from the soil cube. Furthermore, the secondary peak at approximately 200 keV is due to backscattered radiation (large angle scattering) which has an increased probability of escaping the cube of soil.

B. Free Field Calculations

The spectrum presented in Figure 2 appears reasonable; however, another check to determine whether it will adequately represent the leakage spectrum for the case of interest can be performed. Simulated fallout fields have been studied by a number of workers. ^{8,9} Reference 9 contains semi-empirical data for the free field dose rate at various heights above a fallout field simulated with a point source of ⁶⁰Co.

Figure 3 presents a plot of these data versus height. The line through these points is intended solely as a guide. Plotted also are

⁷ D.E. Bartine, J.R. Knight, J.V. Pace and R.W.Roussin, "Production and Testing of the DNA Few Groups Cross Section Library", October 1975, ORNL - TM-4840, Oak Ridge National Laboratory, Oak Ridge, TN.

⁸ Schumchyk, et al., "Measurements of Gamma Radiation and Gamma Spectra versus Height Above a Fallout Field Simulated with ⁶⁰Co", November 1965, NDL-TR-70, Nuclear Defense Laboratory, APG-EA, MD.

⁹ Schumchyk, et al., "Scattered Radiation (Skyline) Contribution to an Open Basement Located in a Simulated Fallout Field", December 1966, NDL-TR-68, Nuclear Defense Laboratory, APG-EA, MD.

Table I. Atomic Composition of Air and Soil

	Element	Atomic Density (atoms/barn-cm)
Air		
	Oxygen	1.1229-5*
	Nitrogen	4.19948-5
	Argon	2.51482-7
Ground		
	Oxygen	3.47950-2
	Silicon	1.15967-2
	Aluminum	4.88019-3
	Hydrogen	9.75181-3

^{*} Read as 1.1229 x 10⁻⁵

Table II. Gamma Ray Energy Group Structure

	Upper Edge
Group Number	(eV)
1	1.4 + 7*
2	1.0 + 7
3	8.0 + 6
4	7.0 + 6
5	6.0 + 6
6	5.0 + 6
7	4.0 + 6
8	3.0 + 6
9	2.5 + 6
10	2.0 + 6
-11	1.5 + 6
12	1.0 + 6
13	7.0 + 5
14	4.5 + 5
15	3.0 + 5
16	1.5 + 5
17	1.0 + 5
18	7.0 + 4
19	4.5 + 4
20	3.0 + 4
21	2.0 + 4
	1.0 + 4

*Read as 1.4 X 107

Figure 2. Gamma Spectrum from 60 Co on a Smooth Semi-Infinite Cube of Soil

Figure 3. Dose Rate Above a 60 Co Simulated Fallout Field

the results of 15 adjoint MORSE calculations for the dose rate as a function of height over an infinite, smooth plane. Note that the agreement is excellent. The greatest difference (the point at five feet) is only 5% which is within the uncertainties of the MORSE results (estimated at 10% for this case). The quoted uncertainty on the experimental data is 6%.

The agreement evidenced above indicates that (1) the adjoint form of MORSE with the DNA data set and (2) the replacement of the 60 Co plus soil with an equivalent source are indeed valid for the free field case.

C. In-Vehicle Calculations for Foreign Medium Tank: Vehicle A

The GPF's have been measured for a number of foreign and US vehicles. These data were obtained under field conditions using actual vehicles in a ⁶⁰Co-simulated fallout field. The data for a given vehicle were obtained as a function of crew location. Masonite manikins, constructed to simulate the weight of the average man, were placed at the crew positions. Dosimeters were placed at the chest, abdomen, groin, and back of each of the manikins.

The GPF's for the four crew positions of a foreign medium tank (10), referred to here as Vehicle A, have been measured using this procedure. A combinatorial geometry description of this vehicle had been constructed previously for initial radiation calculations (11). The description of the environment of the vehicle was modified to represent the vehicle as situated on an infinite fallout field.

It should be noted that the vehicle description was constructed with careful attention to the important aspects of the initial radiation scenario in which the upper hull provides the most significant shielding. Thus, the lower portions of the vehicle were mathematically described with some what less detail than the upper portion so as to reduce the time and cost of those calculations. The wheels and tracks of Vehicle A, for example, are represented by two rectangular boxes located on either side of the vehicle. The material composition and mass of these rectangular boxes had been adjusted appropriately to represent the average density of the wheel/track portion of the vehicle. It was felt that this degree of detail was sufficient for the residual (fallout) radiation shielding calculations and would not significantly affect the final results. Therefore, no modifications were made to the description of the vehicle itself.

The CG description of the crew contained a torso, legs and thighs and a head. Except for the head, which was filled with air, the rest

11 For exact reference contact A.E. Rainis, BRL, APG, MD.

¹⁰ For exact reference contact A.E. Rainis, Ballistic Research Laboratory, APG, MD.

of the body used the composite "man" material described in Reference 11. The GPF was calculated at four locations in and near crew members of Vehicle A: just outside the center of the chest (front), the center of the back, inside the air filled head, and mid torso. This was done to assess the effect of the GPF on the location of the detector position.

Figure 4 presents a comparison of the gamma energy spectra invehicle (loader's position) and free field. Note that the primary shape differences are in the low energy region below 200 keV. This type of behavior is what might be expected since the photoelectric absorption cross section for iron increases rapidly with decreasing energy below 200 keV. 12

The calculated values of the GPF for the above locations and the average measured values are shown in Table III. The uncertainty limits on the experimentally determined average GPFs reflect both the experimental error and the spread of the values of the GPFs measured at the different locations on the manikin. The values of the fractional standard deviation (fsd) given for the calculated values provide a calculational "figure-of-merit". That is, they are a measure only for the stochastic nature of the calculation and not necessarily an estimate of the discrepancy with the "true" value.

The mid-torso detector location is observed to compare favorably with the experimental average values. The largest observed difference for these comparisons is less than 20%, with the calculated GPFs always within the experimental uncertainty limits. Table III also shows that air-detector calculations (front, back and head) generally lie close to one another but, with one exception, are lower than the mid-torso calculations and the experimental average. However, with the exception of the driver's position, the experimental uncertainties and the calculated GPFs with their associated fsd show agreement. Note that the calculated GPFs for the mid-torso location of the gunner's and loader's positions have fsd values which are twice that of the calculations for the detectors in air. This occurs because of the location of the detector inside the mid-torso. From this viewpoint, a detector position in air is desirable. Of the three in-air locations utilized for these calculations, the center of the air head is the most easily identifiable in the combinatorial geometry description. Therefore, both for calculational convenience and ease of reproducibility, the air head location will be employed as the standard position for future calculations.

¹² J.H. Hubbell and M.J. Berger, "Photon Attenuation Absorption Coefficients: Tabulation and Discussion", September 1966, NBS 8681, National Bureau of Standards.

Figure 4. Free Field and In-vehicle Gamma Energy Spectra for Vehicle A.

Table III. Experimental/Calculated Values of the GPF for Vehicle A*

Crew Position

Loader	23	22	28	25**	31±28%
Commander	24	27	26	34	33±15%
Gunner	26	27	29	25**	29±21%
Driver	16	17	16	18	22±18%
Detector Location	Front (Calculated)	Back (Calculated)	Head (Calculated)	Mid Torso (Calculated)	*** Mid Torso (Experimental,

* fsd is less than 10% for the in-vehicle dose rate calculations except as noted.

** fsd is 20% for the in-vehicle dose rate calculations.

***For exact reference contact A.E. Rainis, Ballistic Research Laboratory, APG, MD 21005.

D. In-Vehicle Calculations For Foreign Medium Tank: Vehicle B

Calculations for another vehicle were performed to further test the correlation of an air head detector location for the calculations. The values of the GPF for the crew of this vehicle (referred to as Vehicle B) have also been measured previously. 13 Additionally, a CG description of the vehicle, previously used for initial radiation calculations, was also available. 14 This description was modified only to the extent described in the previous section for Vehicle A. The results of the experiments and these calculations are presented in Table IV.

Note that the average GPF for all positions in the experiment and the calculation agree with each other despite the fact that the experimental numbers are based on detectors placed about the torso while the the detector location for the calculations is in the head. The correspondence of these values demonstrates that the GPF for an air-head detector is similiar to the average GPF of detectors placed about the body. This reinforces the use of the air-head location for future calculations.

Examining the GPF values for the individual crew positions, one finds that the calculated values for the driver position appear to be low when compared to the experimental results. This may be due to limited detail of the lower portion of the vehicle. Because the location of the driver is closer to the source of radiation and the "smeared" wheels and track than the other locations, the GPF for that position would be expected to be the most sensitive to differences between the actual vehicle and the description employed for the calculations.

¹³ For exact reference, contact A.E. Rainis, Ballistic Research Laboratory, Aberdeen Proving Ground, MD.

¹⁴ For exact reference, contact A.E. Rainis, Ballistic Research Laboratory, Aberdeen Proving Ground, MD.

Table IV. Experimental/Calculated GPF's for Vehicle B

	Experiment	#I	Calculation	uo
Crew Position	Body	Range	Air Head	fsd(%)
Commander	29	25-32	34	10
Loader	30	23-34	30	16
Gunner	30	20-39	33	18
Driver	24	20-26	15	11
Overall Average	28		28	

IV. CONCLUSIONS

The described calculational technique can be employed to calculate values of the GPF for the crew of military vehicles. Using the comparisons between calculations and experiments on the same vehicles, a conservative confidence limit of 20% can be assigned to the calculated values of the GPF. For convenience, the air-head is adopted as the detector location for future calculations.

APPENDIX A

Problem Dependent MORSE Subroutines

The computer code, MORSE, used for these calculations was, in the main, the standard version distributed by RSIC. Several subroutines necessary for dose estimation are problem dependent and have to be user supplied. The subroutines peculiar to this problem are included in Tables Al-A3.

Table Al. MORSE Subroutine BANKR

20	38	40	20	9	20	8	8	90	110	120	130	140	150		160	170	180	190		200	210		220	
		10.11.MEDIA.IADJM.ISBIAS.ISOUR.ITERS.ITIME.ITSTR.LOCWTS.LOCFWL.BANKR	BANKR	BANKR	BANKR	BANKR	COMMON /NUTION NAME, NAMEX, IG, IGO, NMED, MEDOLD, NREG, U, V, W, UOLD, VOLDBANKR	I ,WOLD,X,Y,Z,XOLD,YOLD,ZOLD,WATE,OLDWT,WTBC,BLZNT,BLZON,AGE,OLDAGEBANK 100	BANK 110	BANK	BANK	BANK	BANK		BANK	BANK	BANK	BANK		BANK 200	BANK 210		BANK 220	
		1.B	8	8	8	8)LDB	1GEB	8	8	8	8	8		8	8	8	8		B	æ		8	
IND		-0CF		S) A	OLD/																
NO.		TS:L	ALB .	-NIT	AST		3	AGE .																
	5	NOC.	EG•N	PQTN	G·NP		3.	ZON .																
SUBROUTINE BANKR(NBNKID) NOT CALL EUCLID FROM BANKR(7)	2	STR	LOCEPR, LOCNSC, LOCFSN, MAXGP, MAXTIM, MEDALB, MGPREG, MXREG, NALB	G·NG	5 NKCALCINKILLINLASTINMENINMGPINMOSTINMTGINOLEAKINORMGINPASTI	6	EGIU	1,BL														ATCH		
2		H	REG	POT	AK	ĭ S	N. C	3LZN														ST 8/		
ETA	WINP STSTRT XSTRT YSTRT ZSTRT TCUT XTRA(10)	TIME	· MGF	3.NC	NOLE	6 NPSCL(13) .NQUIT .NSIDL .NSOUR .NSPLT .NSTRT .NXTRA(10)	100 100	30.1														LAS		=
ETA	TRA	RS	DALB	GPQT	MTG	TRT	D.R	7 H														王		ADJ
(5)	25	· ITE	出土	12.N	STIN	T'NS	N.	OLD P														D IN		TG 4I
TUUV	1.10	SOUR	AXTI	NGPQ	SW.	NSPL	160	ATE,														ARTE		NGP0
(7)	ZSTR	4S. I	SP · M	E	NMGP	OUR.	7,1G	M'O'				BNK							띶			S ST		NIC
SANKI	RT	1881	MAX	NGPI	ÆN-I	· NS	AME	10Z'(<u> </u>		$\widehat{\Xi}$					SS 01			CLE		'NMP
BNK	SY.	J.W.	FSN	EOM	N·L	ISIDI	ME,	YOL		140		100		=		S			Ë			ART		MGP
KR C	STRI	·IAD	100	M·NG	NLAS	II.	N/	00		90	2	102		R		ITER		AT)	N S		AVE)	OF P		Š
BAN	RIC	EDIA	CNSC	NEWN	11	NO.	S	X'Z'	KID	100	+	103		4HST		S	EM	H(NB	AŤCH		(NS	NO.		NBNK
L'E	STST	II · M	R, LO	(2)	CINK	(13)	3	X.X	NBN	(¥	N S	(104	TRUN	ELP(N	MN =	IBTC	HE B		ATCH	TE		ICD(
SUBROUTINE BANKR(NBNKID) NOT CALL EUCLID FROM BAN	N N	01	CEP!	EAD	CAL	SCL	MON	40LD	NBNK = NBNKID	IF (NBNK) 100,100,140	NBNK = NBNK + 5	GO TO (104.103.102.101) .NBNK	CALL STRUN	CALL HELP(4HSTRU,1,1,1,1)	RETURN	NBAT = NITS - ITERS	NSAVE = NMEM	CALL STBTCH(NBAT)	IS TI	JRN	NB/	15	JRN	WR
NON C	3 3	2	3 10	4 NC	5 N	N 9	00	_	NBN	IF		9	3	3	REI		IIS	SA	MAT	RETURN	S	AVE	RETURN	CALL WRTCD(NBNK 1) INMGP INMPOTN INGPOTG (IADJM)
C DO NOT CALL EUCLID FROM BANKR(7)											90		[0]			102			C NBAT IS THE BATCH NO. LESS ONE		103	C NSAVE IS THE NO. OF PARTICLES STARTED IN THE LAST BATCH		
0																			0			0		٥

Table Al. MORSE Subroutine BANKR (Continued)

CALL NRUN(NITS NQUIT) CALL NRUN(NITS NQUIT) MITS IS THE NO. OF BATC HES COMPLETED IN THE RUN JUST COMPLETED MITS IS THE NO. OF BATC HES COMPLETED MIQUIT .GT. 1 IF MORE RUNS REMAIN MICH .EQ. 1 IF THE LAST SCHEDULED RUN HAS BEEN COMPLETED MICH REATIVE OF THE NO. OF COMPLETE RINS WHEN AN			YPE BANKR CALL	NO (TESTW)		YES (N	E YES (NXTCOL)	TIME KILL NO (MORSE)
HE RUN JU BEEN CON TF RINS		BNK		SPLIT	GAMGEN	ALBEDO	ESCAPE	TIME
INUE NRUN(NITS NQUIT) S THE NO. OF BATC HES COMPLETED IN THE RUN JUST COMPL GT. 1 IF MORE RUNS REMAIN EQ. 1 IF THE LAST SCHEDULED RUN HAS BEEN COMPLETED IS THE NEGATIVE OF THE NO. OF COMPLETE RINS. WHEN AN	OCCURS	140 GO TO (1:2:3:4:5:6.7:8:9:10:11:12:13) NBNK	NBNKID	2	4	9	8	10
NQUIT) DF BATC HES COMPI MORE RUNS REMAIN THE LAST SCHEDUL	EXECUTION TIME KILL	8.9.10.1	KR CALL	(MSOUR)	(FPROB)	(MORSE)	(NXTCOL	(MORSE)
NQUIT) JF BATC NORE RU THE LAS	T NOIT	12.6.7.	BAN	YES	YES	L YES	YES	9
INUE NRUN(NITS S THE NO. (GT. 1 IF N. EQ. 1 IF 1	EXECU	0 (1,2,3,4	COLL TYPE	SOURCE	FISSION	REAL COLI	BDRYX	E-CUT
104 CONT CALL NITS I NQUIT	RETURN	140 GO T	NBNKID	-	3	2	1	6
200			J	ں	ں	ပ	ပ	J

BANK 250 BANK 260

BANK 230 BANK 240

Table Al MORSE Subroutine BANKR (Continued)

			290	300				340				
			BANK 290	ANK				BANK 340				
R R SURV NO (TESTW)			В	В				В				
2												
SURV												
8												۳.
12												C * * * USE HOME MADE SURFACE CROSSING ESTIMATOR.
NO (TESTW)	(GSTORE)											CROSSI
0N	S S											SURFA
R R KILL	OST											MADE
R	GAML	ATA				AM		TCOT				HOME
		L SD	URN	URN	URN	L SG	URN	L RE	URN	URN		USE
=	13	1 CALL SDATA	RET	RET	RET	CAL	RET	S	RET	6 RETURN		*
S	ں	2	-	2	3	C 4 CALL SGAM	4	0	2	9	ပ	*

		BANK 370					
7 CALL SXE	8 RETURN	9 RETURN	10 RETURN	11 RETURN	12 RETURN	13 RETURN	END

Table A2. MORSE Subroutine

20	30	40	50	09				00	10
DIREC 10 DIREC 20	SE DIPEC 30	DIREC 40	DIREC	DIREC				DI RE 1	DIRE 110
FUNCTION DIREC(X) COMMON /USER/ DUM(9),IO,II,IDUM(12) COMMON /NUTRON/ NAME:NAMEX:IG:IGO:NMED:MEDOLD:NREG:U:V:W:UOLD:VOLD	1 WOLD:XT:Y.Z:XOLD:YOLD:ZOLD:WATE:OLDWT:WTBC:BLZNT:BLZON:AGE:OLDAGE				HE ',	(,•(
EG,U,V,W	IT BLZON				BIASES T	DIR. COS			
(EDOLD, NR	ITBC : BLZN				FORMAT(YOU ARE USE THE VERSION OF DIREC WHICH BIASES THE ',	1G TO W (
(12) 30 • NMED • N	E OLDWT 1				N OF DIRE	ACCORDI			
, II, IDUM MEX, IG, I	ZOLD·WATI				E VERSION	I RECTION			
X) UM(9), IO NAME:NA	LD·YOLD	0.5			E USE TH	0 Z- 3H			
UNCTION DIREC(X) COMMON /USER/ DUM(COMMON /NUTRON/ NA	WOLD XT Y Z XO	IF (ICALL) 10,10,5	0	WRITE (10,1000)	YOU AR	LES TO T	DIREC = -1, W		
FUNCT 10 COMMON	1 WOLD X	IF (ICA	5 ICALL = 0	WRITE (FORMAT (\$ PARTIC		RETURN	END
			5		1000		10		

Table A3. MORSE Subroutine SXE

SUBROUTINE SXE

```
LOCSD.LOCQE.LOCQT.LOCQTE.LOCQAE.LMAX.EFIRST.EGTOP
COMMON /NUTRON/ NAME.NAMEX.IG.ICO.NMED.MEDOLD.NREG.U.Y.W.UOLD.VOLD
WOLD.X.Y.Z.XOLD.YOLD.ZOLD.WATE.OLDWT.WTBC.BLZNT.BLZON.AGE.OLDAGE
                                                                                                                                                                                                ASSUMES A SQUARE SCORING SURFACE OF DIMENSION 'RAD' (=3.0+8 CM)
                                                                                  (=0.0) AND
                                                                                                                                                                                                                                          NANE:NTNDNR:NTNEND:NANEND:LOCRSP.LOCXD.LOCIB.LOCCO,LOCT.LOCUD,
                       SURFACE CROSSING EXTIMATOR FOR MORSE, INFINITE AIR/PLANE CASE
                                                                                                                                     WHICH IS PARALLEL TO THE X-Y PLANE AT A HEIGHT 'ZC'
                                                                                                                                                                                                                                                                                                                                                                                                           C * * * CHECK TO SEE IF CROSSING IS FOR DETECTOR SURFACE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              COS IS ABS(N*OMEGA) UNLESS IT IS A GRAZING ANGLE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        STORE ESTIMATE AND ACCUMULATE THE NUMBER OF SAME.
                                                                                                                                                                 IS MADE UP OF MEDIUM 1000. THE AREA IS RAD**2
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               NF(FOCXD+6*ND+1)=NF(FOCXD+6*ND+1)+1
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                CALL FLUXST(1.1G.CON.O .0.0.0.1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   C * * * CALCULATE FLUENCE ESTIMATE.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                  IF((Z-ZC),GT,0,0)G0 T0
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              CON = WATE/AREA/COS
                                                                                                                                                                                                                                                                                                                                                      COMMON/DETCUT/NDC
                                                                                                                                                                                                                                                                                                                                                                                    COMMON NL(1)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           COS=ABS(H)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      * * * )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                * * )
CC
                                                                                                             S
```

APPENDIX B

Run Stream for a Typical Calculation

A listing of the input and controls cards for a typical problem is presented for the MORSE Code as implemented on the UNIVAC 1108 Computer.

Appendix B. Run Stream for a Typical Calculation

94SG A GWA-XSET 94USE 3. GWA-XSET. 9XQT SABRE **IFF.RUN ADJOINT GAWWA. VEHICLE-B. COMMANDER HEAD. 200:500:300:10:21:21:21:01:220.* 8:0 0.21:10:1.:1.0-5:1.0-4:0.:2.2+5 -60.96:49.53:145.89:00:00:0 0.00.00.00.00.6.41-10:4.82-10 0.00.00.00.00.6.41-10:4.82-10 0.00.00.00.00.6.41-10:4.82-10 0.00.00.00.00.6.41-10:4.82-10 0.00.00.00.00.6.41-10:1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	,
.17-10 25+7 .70+5, .45+5,	,
### ##################################	,
04.5.5.4. GMA-XSET. 0.05.6. GMA-XSET. 0.05.0. 3. GMA-XSET. 0.07. SABRE * TFF.RUN ADJOINT GAMMA. VEHICLE-B. COMMANDER HEAD. 200.500.300.1.0.21.21.21.01.220. 8.0 0.21.1.0.1.1.0-5.1.0+4.02.2+5 -60.96.49.53.145.89.0.0.0.0 0.0.0.0.0.0.0.6.41-10.4.82-10 0.0.0.0.0.0.6.41-10.4.82-10 3.60-10.2.48-10.1.64-10.1.01-10.7.44-11.7.73 2.23-10.6.26-10 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	,
0ASG A GMA-XSET 0USE 3. GMA-XSET 0XQT SABRE * TFF.RUN ADJOINT GAMMA. VEHICLE-B. COMP 200.500.300.1.0.21.21.21.0.1.220 0.21.1.0.1.1.0-5.1.0+4.02.2+5 -60.96.49.53.145.89.0.0.0 0.0.0.0.0.0.0.6.41-10.4.82-10 3.60-10.2.48-10.1.64-10.1.01-10.7 2.23-10.6.26-10 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1 5.11.11.1.1.1.	,
0ASG A GMA-XSET 0USE 3. GMA-XSET 0XQT SABRE * TFF.RUN ADJOINT GAMMA. VEI 200.500.300.1.0.21.1 0.21.1.0.1.1.0.5.1 0.0.0.0.0.0.0 0.0.0.0.0.0.6.41 3.60-10.2.48-10.1.6 2.23-10.6.26-10 1.1.1.1.1.1.1.1.1 5.1.1.1.1.1.1.1.1 1.4+8.10+8.80+7 2.20+7.15+7.10+7 021711770667 1.1.0.0.0.1.21 1.1.1.3.51.0.5 -1.0.0.0.0.0 0.0.0.0.0	-
0ASG A G 0USE 3.1 0XQT SABR ADJOINT 200.500.3 0.021.100.6 0.00.00.0 3.60-10.2 2.23-10.6 1.11.11.1 5.11.11.1 5.11.11.1 11.10.00.0 11.121.00.0 11.121.00.0 11.11.1.3 -10.00.00.0	2

1.+6	71.120	000.	67.183	000.	168.910	146.050	97.790	97.790	1485.000	146.050	97.790	97.790	97.790	4518.000
-1.+6	000	000	000	000	-85.090	35.560	-85.090	35.560	2376.000	-40.640	41.910	-40.640	41.910	4518.000
1.+6	000	000	000	000	-20.320	109.220	-20.320	109.220	1265.000	109,220	129.540	109.220	129.540	3267.000
-1.+6	97.790	000.	97.790	000	146.050	168.910	97.790	97.790	3487,000	146.050	97.790	97.790	97,790	3456.000
1.+6	-2.540	82.550	-2.540	73.660	-40.640	80.010	-40.640	80.010	5678.000	35.560	-46.990	35.560	-46.990	1265.000
-1.+6	-20.320	123.190	-20.320	111.760	109.220	-20.320	109.220	-20.320	1234.000	109.220	129.540	109.220	129.540	1234.000
-	7		က		4					2				
RPP	TRC		TRC		ARB					ARB				

Appendix B. Run Stream for a Typical Calculation (Continued)

146.050 97.790								_	-	-		-	_	-				4518.000							97.790			
35.560 120.650	35.560	120.650	4128.000	-40.640	-125.730	-40.640	-125.730	4128.000	-33.020	71.120	-33.020	71.120	2376.000	-33.020	38.100	-33.020	38.100	4518.000	•	•	•	•	•	•	•	•	•	•
109.220	109.220	-20.320	2678.000	109.220	-20.320	109.220	-20.320	5678.000	93.980	-20.320	93.980	-20.320	1265.000	93.980	111.760	93.980	111.760	3267.000	93.980	-20.320	93.980	-20.320	5678,000	93.980	-20.320	93.980	-20.320	5678.000
168.910																		3456.000										
80.010	80.010	41.910	4158.000	-85.090	-46.990	-85.090	-46.990	4158.000	-76.200	27.940	-76.790	27.940	2678.000	27.940	-43.180	27.940	-43.180	1265.000	71.120	38.100	71.120	38.100	4158.000	-76.200	-43.180	-76.200	-43.180	4158.000
-20.320																		1234.000							111.760			
9				1					8					6					10					=				
ARB				ARB					ARB					ARB					ARB					ARB				

Appendix B. Run Stream for a Typical Calculation (Continued)

12 31,750 -2.540 125,222 450,596 .000 13 13,750 -2.540 125,222 450,596 .000 13 13,750 -2.540 1000 .000 .000 14 .000 .000 .000 .000 .000 14 .000 .000 .000 .000 .000 15 .000 .000 .000 .000 .000 15 .000 .000 .000 .000 .000 16 .243.840 .93.88 .000 .000 .000 294.005 .90.332 .34.036 .294.005 .90.932 .94.005 .90.932 .93.980 .93.980 .90.932 .94.005 .90.932 .94.005 .90.932 .94.005 .90.932 .94.005 .90.932 .94.005 .90.932 .90.932 .94.005 .94.905 .90.932 .94.005 .94.905 .90.932 .94.906 .97.906 .90.932 .94.906 .90.932						
6.350 .000 <t< td=""><td>31.750</td><td>-2.540</td><td>125.222</td><td>450.596</td><td>000.</td><td>000.</td></t<>	31.750	-2.540	125.222	450.596	000.	000.
-2.540 125.222 450.596 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .243.840 .98.900 .93.380 .000 .000 .243.840 .88.900 .88.900 .88.900 .12.192 .243.840 .88.900 .88.900 .88.900 .1375.000 .243.840 .88.900 .88.900 .88.900 .1375.000 .243.840 .100.584 .100.584 .100.584 .102.057 .177.800 .100.584 .100.584 .100.584 .102.057 .177.800 .243.840 .92.710 .92.710 <td>15.240</td> <td>6.350</td> <td>000.</td> <td>000.</td> <td>000.</td> <td>000.</td>	15.240	6.350	000.	000.	000.	000.
.000 94.615 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .243.840 .93.980 .93.980 .000 .12.192 .243.840 .88.900 .88.900 .88.900 .12.192 .243.840 .88.900 .88.900 .88.900 .12.192 .243.840 .88.900 .88.900 .88.900 .12.192 .243.840 .100.584 .102.057 .177.800 .100.584 .102.057 .177.800 .100.584 .102.057 .177.800 .100.584 .100.584 .100.584 .100.584 .100.584	31.750	-2.540	125,222	450.596	000.	000.
.000 94.615 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .243.840 .93.38 .000 .000 .243.840 .88.900 .88.900 .12.192 .243.840 .88.900 .88.900 .12.192 .243.840 .88.900 .88.900 .12.192 .243.840 .88.900 .88.900 .33.401 .275.717 .88.900 .88.900 .33.401 .275.717 .88.900 .88.900 .33.401 .275.717 .88.900 .88.900 .33.401 .275.717 .88.900 .88.900 .33.401 .275.717 .88.900 .88.900 .348.000 .243.840 .100.584	5.004	000.	000.	000.	000.	000.
.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .93.980 .000 .93.980 .93.980 .90.932 .34.036 .294.005 .90.93.2980 .90.932 .34.036 .294.005 .90.93.2980 .90.932 .34.036 .294.005 .90.93.2980 .88.900 .12.192 .243.840 .88.900 .88.900 .33.401 .275.717 .88.900 .88.900 .33.401 .275.717 .88.900 .88.900 .33.401 .275.717 .88.900 .88.900 .33.401 .275.717 .88.900 .88.900 .33.401 .275.717 .88.900 .88.900 .33.401 .275.717 .88.900 .900.584 .100.584 .	000	000	94.615	000.	000.	3.175
100.584 .000	91.440	000.	000	000	000.	000.
100.584 .000	000	000.	97.790	000	000.	-17.780
93.980 .000 243.840 93.980 90.932 34.036 294.005 -93.980 -90.932 .000 243.980 -93.980 -90.932 34.036 294.005 -90.932 7658.000 1375.000 2376.000 1265.000 88.900 33.401 275.717 88.900 -88.900 12.192 243.840 -88.900 -88.900 1375.000 2376.000 1265.000 -88.900 1375.000 2376.000 1265.000 100.584 102.057 177.800 100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -92.710 92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -90.881 <	125.730	100.584	000	000	000.	000.
90.932 34.036 294.005 90.932 -93.980 .000 243.980 -93.980 -90.932 34.036 294.005 -90.932 7658.000 1375.000 2376.000 1265.000 88.900 12.192 243.840 88.900 -88.900 13.401 275.717 88.900 -88.900 1375.000 2376.000 1265.000 -88.900 1375.000 2376.000 1265.000 -88.900 1375.000 2376.000 1265.000 100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 2376.000 92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 <	243.840	93.980	000	243.840	93.980	63.398
-93.980 .000 243.980 -93.980 -90.932 34.036 294.005 -90.932 7658.000 1375.000 2376.000 1265.000 88.900 12.192 243.840 88.900 88.900 12.192 243.840 -88.900 -88.900 12.192 243.840 -88.900 -88.900 1375.000 2376.000 1265.000 100.584 102.057 177.800 1265.000 100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.548 102.057 177.800 207.710 92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 -92.710	294,005	90.932	34.036	294.005	90,932	34.036
-90.932 34.036 294.005 -90.932 7658.000 1375.000 2376.000 1265.000 88.900 12.192 243.840 88.900 -88.900 12.192 243.840 -88.900 -88.900 13.401 275.717 88.900 -88.900 1375.000 243.840 -88.900 100.584 102.057 177.800 1265.000 100.584 102.057 177.800 100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 5678.000 3487.000 1265.000 2376.000 -92.710 2.032 243.840 -92.710 -92.710 200.881 177.800 -92.710 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710	243.840	-93.980	000.	243.980	-93.980	63,398
7658.000 1375.000 2376.000 1265.000 88.900 12.192 243.840 88.900 -88.900 33.401 275.717 88.900 -88.900 12.192 243.840 -88.900 -88.900 33.401 275.717 88.900 -88.900 1375.000 2376.000 1265.000 100.584 102.057 177.800 100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -202.710 2.032 243.840 -100.584 -92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 -92.710	294.005	-90.932	34.036	294.005	-90.932	34.036
88.900 12.192 243.840 88.900 88.900 33.401 275.717 88.900 -88.900 12.192 243.840 -88.900 -88.900 33.401 275.717 -88.900 -88.900 1375.000 2376.000 1265.000 100.584 102.057 177.800 100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.584 102.057 177.800 -100.584 -100.548 102.057 177.800 2376.000 92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 20.881 177.800 2376.000 -100.584 .000 -410.972 .000 -102.710 2.032 -410.972 .000 -92.710 2	3124.000	7658.000	1375.000	2376.000	1265.000	1265.000
88,900 33,401 275,717 88,900 -88,900 12,192 243,840 -88,900 -88,900 33,401 275,717 -88,900 -88,900 1375,000 2376,000 1265,000 100,584 .000 243,840 100,584 -100,584 .000 243,840 -100,584 -100,584 .000 243,840 -100,584 -100,584 .000 243,840 -100,584 -100,584 .02,057 177,800 -100,584 -100,584 .02,057 177,800 -100,584 -100,548 102,057 177,800 -100,584 -2,03 243,840 -92,710 92,710 2,032 243,840 -92,710 -92,710 20,881 177,800 -92,710 -92,710 90,881 177,800 -92,710 -92,710 20,881 177,800 -92,710 -92,710 20,881 177,800 -92,710 -92,710 20,000 -410,972 .000 -100,584 .000 -410,972 </td <td>243.840</td> <td>88.900</td> <td>12.192</td> <td>243.840</td> <td>88.900</td> <td>52.222</td>	243.840	88.900	12.192	243.840	88.900	52.222
-88.900 12.192 243.840 -88.900 -88.900 33.401 275.717 -88.900 7658.000 1375.000 2376.000 1265.000 100.584 .000 243.840 100.584 -100.584 .000 243.840 -100.584 -100.584 .000 243.840 -100.584 -100.584 .000 243.840 -100.584 -100.548 .102.057 .177.800 -100.584 5678.000 3487.000 1265.000 2376.000 92.710 2.032 243.840 -92.710 90.881 177.800 -92.710 -92.710 90.881 177.800 -92.710 -92.710 90.881 177.800 -92.710 -92.710 2.032 243.840 -92.710 -92.710 20.881 177.800 2376.000 -100.584 .000 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 <td>275.717</td> <td>88,900</td> <td>33.401</td> <td>275.717</td> <td>88.900</td> <td>33.401</td>	275.717	88,900	33.401	275.717	88.900	33.401
-88.900 33.401 275.717 -88.900 7658.000 1375.000 2376.000 1265.000 100.584 .000 243.840 100.584 -100.584 .000 243.840 -100.584 -100.584 .000 243.840 -100.584 -100.584 .000 243.840 -100.584 -100.584 .02.057 177.800 -100.584 5678.000 3487.000 1265.000 2376.000 92.710 2.032 243.840 -92.710 90.881 177.800 -92.710 -92.710 90.881 177.800 -92.710 -92.710 3487.000 1265.000 2376.000 -92.710 .000 -410.972 .000 -100.584 .000 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 .000 .000 .	243.840	-88.900	12.192	243.840	-88.900	52.222
7658.000 1375.000 2376.000 1265.000 100.584 .000 243.840 100.584 -100.584 .000 243.840 -100.584 -100.584 .000 243.840 -100.584 -100.584 .000 243.840 -100.584 -100.584 .000 243.840 -100.584 5678.000 3487.000 1265.000 2376.000 92.710 2.032 243.840 -92.710 -92.710 2.032 243.840 -92.710 -92.710 90.881 177.800 -92.710 -92.710 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -41	275.717	-88.900	33.401	275.717	-88.900	33.401
100.584 .000 243.840 100.584 100.584 .000 243.840 -100.584 -100.584 .000 243.840 -100.584 -100.548 102.057 177.800 -100.584 -100.548 102.057 177.800 -100.584 5678.000 3487.000 1265.000 2376.000 92.710 2.032 243.840 92.710 -92.710 2.032 243.840 -92.710 -92.710 90.881 177.800 -92.710 -92.710 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000	3124.000	7658.000	1375.000	2376.000	1265.000	1265.000
100.584 102.057 177.800 100.584 -100.584 .000 243.840 -100.584 -100.548 102.057 177.800 -100.584 5678.000 3487.000 1265.000 2376.000 92.710 2.032 243.840 92.710 92.710 2.032 243.840 92.710 -92.710 2.032 243.840 -92.710 -92.710 90.881 177.800 -92.710 5678.000 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000	243.840	100.584	000	243.840	100.584	63.398
-100.584 .000 243.840 -100.584 -100.548 102.057 177.800 -100.584 5678.000 3487.000 1265.000 2376.000 92.710 2.032 243.840 92.710 92.710 2.032 243.840 92.710 -92.710 2.032 243.840 -92.710 -92.710 90.881 177.800 -92.710 5678.000 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 201.168 .000 -410.972 .000 -92.710 2.032 -410.972 .000 185.420 .000 .000 .000	177.800	100.584	102.057	177.800	100.584	000.
-100.548 102.057 177.800 -100.584 5678.000 3487.000 1265.000 2376.000 92.710 2.032 243.840 92.710 92.710 90.881 177.800 92.710 -92.710 2.032 243.840 -92.710 -92.710 90.881 177.800 -92.710 5678.000 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000 -92.710 2.032 -410.972 .000	243.840	-100.584	000.	243.840	-100.584	63,398
5678.000 3487.000 1265.000 2376.000 92.710 2.032 243.840 92.710 92.710 90.881 177.800 92.710 -92.710 2.032 243.840 -92.710 -92.710 90.881 177.800 -92.710 5678.000 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 201.168 .000 .000 .000 -92.710 2.032 -410.972 .000 185.420 .000 .000 .000	177.800	-100.548	102.057	177.800	-100.584	000
92.716 2.032 243.840 92.710 92.710 90.881 177.800 92.710 -92.710 2.032 243.840 -92.710 -92.710 90.881 177.800 -92.710 5678.000 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 201.168 .000 .000 .000 -92.710 2.032 -410.972 .000 185.420 .000 .000 .000	1234.000	5678.000	3487.000	1265.000	2376,000	1485.000
92.710 90.881 177.800 92.710 -92.710 2.032 243.840 -92.710 -92.710 90.881 177.800 -92.710 5678.000 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 201.168 .000 .000 -92.710 2.032 -410.972 .000 185.420 .000 .000	243.840	92.710	2.032	243.840	92,710	52.22
-92.710 2.032 243.840 -92.710 -92.710 90.881 177.800 -92.710 5678.000 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 201.168 .000 .000 .000 -92.710 2.032 -410.972 .000 185.420 .000 .000 .000	177.800	92.710	90.881	177.800	92,710	2.032
-92.710 90.881 177.800 -92.710 5678.000 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 201.168 .000 .000 .000 -92.710 2.032 -410.972 .000 185.420 .000 .000 .000	243.840	-92.710	2.032	243.840	-92,710	52.222
5678.000 3487.000 1265.000 2376.000 -100.584 .000 -410.972 .000 201.168 .000 .000 .000 -92.710 2.032 -410.972 .000 185.420 .000 .000 .000	177.800	-92.710	90.881	177.800	-92,710	2.032
-100.584 .000 -410.972 .000 201.168 .000 .000 .000 -92.710 2.032 -410.972 .000 185.420 .000 .000	1234.000	5678.000	3487.000	1265.000	2376,000	1485,000
201.168 .000 .000 -92.710 2.032 -410.972 185.420 .000 .000	177.800	-100.584	000	-410.972	000	000
-92.710 2.032 -410.972 185.420 .000	000.	201.168	000	000	000.	97.790
185.420 .000 .000	177.800	-92.710	2.032	-410.972	000	000
	000	185.420	000	000	000	92.583

Appendix B. Run Stream for a Typical Calculation (Continued)

ARB	22	-233.172	100,584	97.790	-311,912	100.584	97.790
		-286.004	100.584	17.526	-233.172	100.584	000
		-233.172	-100.584	97.790	-311.912	-100.584	97.790
		-286.004	-100.584	17.526	-233.172	-100.584	000
		1234.000	2678.000	3487.000	1265.000	2376.000	1485.000
ARB	23	-233.172	92.710	94.615	-306.832	92.710	94.615
		-281.610	92.710	18,034	-233.172	92.710	2.032
		-233.172	-92,710	94.615	-306.832	-92.710	94.615
		-281.610	-92.710	18.034	-233.172	-92.710	2.032
		1234.000	2678.000	3487.000	1265.000	2376.000	1485.000
BOX	24	-124.460	-92.710	94.615	.762	000	000
		000	185.420	000.	000	000	-92.583
RCC	25	184.05	-152.527	-1.762	0.	305.054	0.
		40.386					
RCC	56	74.77	-152.527	-1.762	0.	305.054	0.
		40.386					
RCC	27	-20.574	-152.527	-1.762	0.	305.054	0.
		40.386					
RCC	28	-105.918	-152.527	-1.762	0.	305.054	0.
		40.386					
RCC	50	-193.04	-152.527	-1.762	0.	305.054	0.
		40.386					
RPP	30	-240.	230.	-111.887	111.887	-45.	40.
BOX	31	-5.842	12.700	150,622	37.592	000	000
		000	-30.480	000	000	000.	-40,132
BOX	32	-20.320	127.000	97.790	127.000	000	000
		000	-254.000	000	000	000	72,000
BOX	33	208.280	-21.590	906.6	-119.380	000.	000
		000	30.480	000.	000	000	59.436
BOX	34	~52.070	-72.390	11.430	-53,340	000	000
		000	-17.018	000.	000.	000.	71.120

70.866 9.906 70.866 9.906 000. 31.750 33.020 57.150 000. 33.020 000. 000 000 1485.000 -19.81257.150 31.750 4158,000 94.615 94.615 1485.000 -19.050-19.050 000. -19.050 000 -91,440 -91,440 3487,000 76.200 -50.800 76.200 -50.800 68.580 27.940 3487.000 .000 .000 .000 .000 .000 .000 9000 000 82.804 000. -152.400 82.804 (Continued) Run Stream for a Typical Calculation 209.550 239.522 209.550 239.522 1265.000 -165.100 -125.730 2376.000 31.496 90.170 000 000 000 .258.318 -179.070 -306.832 -258.318 185.928 70.104 -57.150 -306.832 2376.000 50.292 32.258 9.906 32.258 9.906 2376.000 57.150 57.150 31.750 31.750 31,750 000 000 33.020 93,980 93.980 93.980 94.615 33.020 94.615 000. 265,000 65.278 -21.590 -69.850 76.200 -127.000 76.200 -50.800 -50.800 -50.800 76.200 76.200 -102.870 -91.440 68.580 27.940 5678.000 82.804 5678.000 -125.222 102.870 -55.880 -29.210 -29,210 Appendix B. 274.320 209.550 274.320 209.550 1234.000 209.550 .000 -139.700 -168.148 000 -125.730 -179.070 1234.000 -223/520 27.940 -258.318 -258.750 -258.750 234.000 -264.160 000 5.080 880.69 -258.318 100.330 6.452 35 36 38 39 40 37 ARB ARB BOX BOX RCC ARB BOX BOX BOX RCC RCC

Run Stream for a Typical Calculation (Continued 70.104 .000 70.104 .000 70.104 .000 70.104 .000 70.104 .000 70.104 70.104 56.642 .000 40.386 24.130 .29.210 .000 -44.450 .000 .000 .000 .000 .000 -76.200 .000 -76.200 -44.450 -44.450 .000 -44.450 .000 -61.468 -61.468 Appendix B. 69.088 6.452 69.088 6.452 69.088 6.452 69.088 6.452 69.088 6.452 69.088 6.452 69.088 6.452 69.088 6.452 69.088 6.452 69.088 6.452 69.088 6.452 69.088 6.452 69.088 6.452 69.088 62 59 09 20 26 19 RCC SCC RCC RCC SCC SCC 3

Appendix B. Run Stream for a Typical Calculation (Continued)

000	000	000	000	000.	000.	000	000	000	000	000	000.	000	000	000.	000'	000.	000.	000	000	000	000	000	000	000.	000	000.	000	000
000	000	000	000	000.	000.	000.	000.	000.	-70.104	000.	-70.104	000.	70.104	000.	70.104	000.	-70.104	000.	-70.104	000.	70.104	000.	70.104	000.	-70.104	000.	-70.104	000
70.104	-70.104	000	70.104	000	70.104	000	-70.104	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000.	000	000.	000.	000.
48.514	32,766	000.	16.510	000	59.182	000.	48.006	000.	79.502	000.	66.040	000.	66.040	000.	20.800	000.	20.800	000.	36.068	000.	36.068	000.	22.860	000.	22.860	000.	906.6	000.
-82.804	-82.804	000	-82.804	000	85.090	000.	85.090	000	30.480	000.	30.480	000	-60.960	000.	460.960	000	30.480	000.	30.480	000.	-60.960	000.	-60,960	000	30.480	000.	30,480	000
-38.100	53.340	6.452	-38.100	6.452	-81.280	6.452	79.502	6.452	-91.948	6.452	-84.328	6.452	-100.076	6.452	-84.328	6.452	-100.076	6.452	-84.328	6.452	-100.076	6.452	-91,948	6.452	-107.950	6.452	-100.076	6.452
63	64		9		99		19		89		69		70		71		72		73		74		75		9/		11	
RCC	RCC		RCC		RCC		RCC		RCC		RCC		RCC		RCC		RCC											

	000	000.	000.	000	000.	000	000.	000	000.	000.	000.	000.	000.	000	000.	000.	000.	000.	000.	000.	-63.500	-61.595	000.	-61.595	000.	000.	000.	000.	000	-35.560	000.
(Continued)	70.104	000.	70.104	000.	-16.408	000.	-16.408	000.	70.104	000.	-70.104	000.	70.104	000.	-70.104	000.	-70.104	000.	000.	000	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.	000.
Calculation	000.	000	000.	000.	68.148	000	68,148	000.	000	000.	000.	000.	000	000.	000	000	000	000.	10,000	20,320	000	35.560	000	35.560	000.	33.020	000.	33.020	000.	000.	000
Run Stream for a Typical Calculation	906.6	000	25.400	000.	109.220	000	127.000	000.	152,908	000.	144.780	000.	132.588	000	118.872	000.	104.394	000.	145.890	135.890	000	135.890	000.	135.890	000.	78.740	000.	78.740	000	78.740	000
Run Stream	-60.960	000	-60.960	000.	-81.280	000.	-66.040	000.	-37.592	000	32.512	000.	-37.592	000	32.512	000.	32.512	000.	49.530	31.750	35.560	28.575	000.	70.485	000.	38.100	000.	096.09	000.	38.100	000.
Appendix B.	-115.570	6.452	-69.850	6.452	-89.408	6.452	-86.360	6.452	-85.090	6.452	-96.520	6.452	-103.632	6.452	-109.220	6.452	-113,030	6.452	-60.960	-71.120	000.	-60.960	3.175	-60.960	3.175	-50.800	6.350	-50.800	6.350	-21.590	3.810
	78		4		80		81		82		83		84		85		86		87	88		89		06		91		92		93	
	RCC		RCC		RCC		RCC		RCC		RCC		RCC		RCC		RCC		SPII	BOX		RCC		RCC		RCC		RCC		RCC	

Appendix B. Run Stream for a Typical Calculation (Continued)

2	003 10	070 07	70 740	000	000	25 560
7	7 910	000	000	000.	000	-33.300
,	3.810	000.	000.	000.	000	000.
95	-35.560	23.020	72.390	-30.480	000.	000.
	000.	33.020	000.	000.	000.	-2.794
96	-71.374	30.480	110.998	-3.048	000.	000.
	000.	38,100	000.	000.	000.	5.080
97	-4.318	49,530	138.270	10.000	000.	000.
98	-14.478	31.750	128.270	20.320	000	000.
	000.	35.560	000.	000.	000.	-63.000
66	-4.318	28.575	128.270	61.595	000	-35.560
	3.175	000.	000.	000.	000.	000.
100	-4.318	70.485	128.270	61.595	000	-35.560
	3.175	000	000.	000.	000.	000
101	5.842	38.100	71.120	33.020	000.	000.
	6.350	000.	000.	000.	000.	000.
102	5.843	096.09	71.120	33.020	000	000
	6.350	000.	000.	000.	000.	000.
103	35.052	38.100	71.120	000.	000.	-35.560
	3.810	000.	000.	000.	000.	000.
104	35.052	096.09	71.120	000.	000.	-35.560
	3.810	000.	000.	000	000	000.
105	-10.160	31.750	64.516	30.480	000	000.
	000.	36.068	000.	000	000.	-3.810
90	-48.260	-42.418	143.350	10.000	000.	000
107	-58.420	-60.198	133,350	20.320	000.	000
	000.	35.560	000.	000	000.	-63.500
108	-48.260	-63.373	133,350	61.595	000.	-35.560
	3.175	000.	000	000.	000.	000.
109	-48.260	-21.463	133,350	61,595	000.	-35.560
	3.175	000	000.	000.	000.	000.
110	-38.100	-53.848	76.200	33.020	000.	000.
	6.350	000.	000.	000	000.	000
111	-38.100	-30.988	76.200	33.020	000.	000.
	0.350	000.	000.	000	000	000.

Appendix B. Run Stream for a Typical Calculation (Continued)

-35.560	000	-35.560	000.	-2.540	000.	000.	38.100	000.	000	-62.230	-35.560	000.	-35.560	000	000.	000	000	000.	000.	000.	000	000	000.	2.540	000.	40.640	30.000	000	246.990	
000	000	000.	000.	000.	000.	000	000.	000.	000.	000.	000.	000.	000.	000	000	000	000.	000.	000	000	000	000	000	000.	000	000	000.	000	000.	
000.	000.	000	000	000.	000.	-1.778	000	10.000	20.320	000	61.595	000.	61.595	000	33.020	000.	33.020	000	33.020	000.	33.020	000.	38.100	000.	4.064	000.	000	000.	000.	
76.200	000	76.200	000.	68.326	000	69.850	000	78.580	68.580	000	68.580	000	68.580	000	12.700	000	12.700	000	12.700	000.	12.700	000.	3.556	000.	12.700	000.	-76.990	000.	-76.990	
-53.848	000.	-30.988	000.	-42.418	000.	-52.578	20.320	58.928	41.148	35.560	37,973	000	79.883	000	47.498	000	70.358	000	47.498	000.	70.358	000	40.640	36.830	40.640	36.830	000	000.	000.	
-8.890	3.810	-8.890	3.810	-42.672	13.970	-58.674	000	143.510	133,350	000	143.510	3,175	143.510	3.175	153,670	6.350	153,670	6.350	186,690	3.810	186.690	3.810	128,524	000.	128,524	000	83.000	5.+5	83,000	5.+5
112		113		114		115		116	117		118		119		120		121		122		123		124		125		126		127	
RCC		RCC		RCC		BOX		SPII	BOX		RCC		RCC		RCC		RCC		RCC		RCC		BOX		BOX		RCC		RCC	

Appendix B. Run Stream for a Typical Calculation (Continued)

								-85	-108	-100	-100								-11	-119	-38	-51	09-	69-	-78	-95		-107	-118	-40			
								-84	-107	- 99	66-					-107			-107	-118	-34	-20	-59	89-	-77	-94		-105	-117	-39			
								-83	-106	-98	-98					-100			-100	-36	-33	-49	-58	-67	-76	-93		-104	-116	23			
			-12					-82	96-	-97	-97					-88			-99	-35	-24	-48	-57	99-	*75	-92		-103	-115	-370R			
			-11	-12				-81	-90	-31	10					-14			-98	-33	21	-47	-56	-65	+74	-91		-102	-114	-125			
,			-10	-11				-80	-89	-12	-120R					-21			- 90	19	-1230R	-46	-55	-64	-73	-90		-101	-113	-124			
		-32	6-	-10			31	-32	-88	80	6					20			-89	-360R	-122	-45	-54	-63	-72	-89		-100	-112	-121			
		-3	8-	6-	-10	-11	-130R	-31	-87	-1150R	-1090R	-108	13	-18	-19	-200R	-23	2;	-88	-35	-121	-44	-53	-62	-71	-88		-99	-1111	-120	-30	-30	-30
		2	4	S	9	7	OR 12	OR 3	-86	-109	-108	OR 11	-	16	18	OR 15	22	24	OR 14	OR 17	-120	-39	-52	-61	-70	-79	-98		-110	-119	25	56	2.1
	END		2													=															15		

Appendix B. Run Stream for a Typical Calculation (Continued)

27		-16	52	76		
30		-15	510R 600R	750R 30R		
-200R -20		-12	500R 590R	740R 83	94	123
26 29 -12		-7 -27	490R 580R 67	730R 30R	930R 1030R	1220R
30 30 -7	9	-26	480R 570R 660R	720R 82 30;	920R 1020R	1210R
-200R -200R -6	190	-5 -25 -126	470R 560R 650R	710R 30R 86	910R 1010R	1200R 116
-18 28 -5	ę	-4 -22 -43	460R 550R 640R	700R 79 81 30R	900R	1190R 1060R
30 -30 -30 30 -4 -4 33 34 35	170R 23 42 43	-2 -20 -42	450R 540R 630R	690R 780R 30R 85	890R 96 990R	115 1180R 125 970R
28 29 30 -2008 32 1	55 37 38 39 40 410R	127 -18 -41	440R 530R 620R	680R 770R 80 30R	880R 950R 980R 105	1140R 1170R 1240R 870R 126
a o	ž č		8 8 8	OR OR	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
18 19 20 21 23 23	24 25 27 28 29 30	31	32	34	36 37 38 39	41 42 44 45 46 END

Appendix B. Run Stream for a Typical Calculation (Continued)

4.8.7 0.0.0 RESP (dd.
0.0.21, 21, 58.61, 4.8.7, 8.4, 2.0 0.0.0.0 0, 0.03, 0.0.0 1.0.21, 0.0.1.1.1 0.0.0 PARTICLE FLUX PARTICLES 0.0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.00001, 0000001
4.8.7 .8.4. 0.0.0 RESPONSE.
0.21. 21. 58.61 0.0.0. 0 .0.03 0.01NT DETECTOR 10.21. 0.0.1.1.1 0.0.0 ARTICLE FLUX ARTICLES 1. 00000

PARTICLES/ENERGY BIN/EMITTED PARTICLE 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17,18,19,20,21