Week 2 - Monday

So four: We had seen how to mathematically show and Work with statements like " 2+4>3, which have either true or false truth value, but not both. We know how to combine them with negation, disjunction, Conjunction, Conditional, Siconditional, etc Ve also know when two propositions are logically equivalent. Week 2: + We learn how to work with statements like "X+2>3", for which their truth value depends on the Value of & [propositional functions, Sec 1.4] + We will learn how to make propositions like "for all 2, x >0. " quantitiers, Sec 1.4] + We will learn how to make propositions like "for all days of the week, there exists a TA such that the TA is available for office hour " Nested quantifiers, Sec 15] Rules of Interence. How to make an argument in logic? (from the truth of Some statements, we derive the truth of another statement, called Conclusion.) I rules of inference, sec 1.63 We need to understan valid arguments to be able to prove things

I) ProPositional Functions (also known as predicate)	
Is an statement containing one or more Varia	oles
from a domain which becomes a proposition	when
all of the variables are instantiated.	
LThe domain Must be specified, often implicitly]	
> EX. 2 is greater than 3" domain: Integers variable predicate, or Propositional Function + Can be denoted by P(X)	
	ط ط ا
+ Once a value has been assigned to function P, the POX) becomes a Proposition and has a truth val	
EX Propositional function with a single variable is greater than 3" domain: i	Meyer
P(R) P(10) w/ Fruth value T	
[3(10) W/ Truth value	
EX. Pro postional function with mutiple variable	
"x>y" domain = real, real	
$\mathcal{Z}(x,g)$	
Q(10, 100) W/ truth value F	

Quantifiers

When the variables in a Propositional function are assigned values (i.e., intantiated), the resulting statement becomes a proposition with a certain truth value. However, facre is another important way to create Proposition out of a propositional function, Called quantification Two types of quantification: 1) universal quartification 2) Existential quartification Defn: Univeral quantifier The Universal quantification of the Propositional function P is the Statement "for every of in the domain, p(n) , and is denoted by Yz P(m) , and read as for all of p(m) EX. Yze (z is a prime) domain: N Defn. A variable appearing in a quantitier is called bound the (259) donain: integer

A statement in which all variables are bound, is
a proposition (else not)
Defn: Existential quantifier
The existential quantification of a Propositional function
P is the statement
"There exists se in the Lomain, S.t. pm"
, and is denoted by $\exists z \in P(m)$
, and rod as " there exists se s.t. p(m)
EX: () = x (x is over) domain; integer T
2 Fx (x2=2) domain = Integers F
3) In (x2=2) domain = real T
Remark: Generally, an implicit assumption is made that
all domains for quantifiers are non-empty. Note that if
the domain is empty, then In Pm) is true
for any propositional function P because there
is no element of in the domain for which
Pm is false.
Similarly, if domain is empty, In p(m) is talse.

How would these grantifiers interact with ligible operators? Negation of quantifiers. EX. "Every integer is a Prime" (x is prime) regution: "It's not the conse that every integer is a prime" "There exists some integer such that the integer is ... General Pattern: \[\frac{1}{\chi} \mathbb{P}(\mathbb{N}) = \frac{1}{2\chi} \mathbb{P}(\mathbb{N}) \] = \[\frac{1}{2\chi} \mathbb{P}(\mathbb{N}) \] + \[\frac{1}{2\chi} \mathbb{P}(\mathbb{N}) = \frac{1}{2\chi} \mathbb{P}(\mathbb{N}) = \frac{1}{2\chi} \mathbb{P}(\mathbb{N}) \] Defn: Two Statements involving grantifiers are logically equivalent if and only if they have the Same truth value no matter which Predicate is Substituted into these statements and which domain is used for the variables in these propositional functions. We use the notation S=T to indicate that two statements 5 and T involving predicates and quantifiers are logically equivalent.

Nesting of quantifiers

	We can have multiple variables and multiple
	quantifiers.
	EX. Ha Hy (2+y=y+2) dom: intoger
	"for every se in the domain, for all
	y in the domain, 22+y=y+20"
	Vy V2 (21+y = y +2L)
7	Yn dy Q(n,y) = Yy Yn Q(n, y)
	In general
	3x 3y 2+y=5 dom: integers
	" there exists of in the domain, S.t.
	there exists y in the Lomain, S. +.
	22-47?=52.
	Iy Ix 2+y=52

EX YR = y(y=x2) domain: integers "for all x in the Comain, there exists y in the domain, S.f. y=x2/ Truth value: T ∃y \n (y=x²) "There exist my in the domain, 5.7. for all x in the domain y=x2 Remark: note that by Zy Q(n,y) is not logically equiv. to Ex. Yn by to a(x,y,z) = by to to a(2,y,z) EX. = 22 (4) 42 Q(n,y,z) = 32 42 4y @(n,y,z) Inty IzQ(unj,z) & Izty In Q(unj,z) Negation of nested quantifiers:

EX. ¬(Ix by Q(n,y)) = \fix(Ty) Q(ny)

=\fix Iy(¬Q(ny))

EX. $\neg (\forall x \exists y (x \neq 0) \rightarrow \chi y = 1) \equiv$ $\exists x \forall y \neg (\chi \neq 6 \rightarrow \chi y = 1) \equiv$ $\exists x \forall y \neg (\chi \neq 6 \rightarrow \chi y = 1) \equiv$ $\exists x \forall y \neg (\chi \neq 6 \rightarrow \chi y = 1) \equiv$ $\exists x \forall y \neg (\chi \neq 6 \rightarrow \chi y = 1) \equiv$ $\exists x \forall y \neg (\chi \neq 6 \rightarrow \chi y = 1) \equiv$ $\exists x \forall y \neg (\chi \neq 6 \rightarrow \chi y = 1) \equiv$ $\exists x \forall y (\chi \neq 6 \rightarrow \chi y \neq 1) \land \chi y \neq 1 \equiv$ $\exists x \forall y (\chi \neq 6 \rightarrow \chi y \neq 1) \Rightarrow$

Quantifiers with restricted

An abbreviated notation is often used to
restrict the domain of a quantifier.
EX. Vxxo (x70), domain: real numbers.
What does this statement express?
"for all with 22/0, x2>0"
Can We state it without restricted domain?
$\forall x (a20 \rightarrow 2 > 0)$
Yn (Res) A (Res)
EX. $\exists z > 0$ ($z^2 = 2$) domain: integers.
$\exists z(z>0) \land (z^2=2)$
7 Z (17) 50 Z=2

In class activity

Agent A67: Investigate! - Holmes Gwas two suits: one black and one tweed - He always wears either a tweed suit er sandals - Whenever he wears his tweed suit and purple shirt, he chooses not to wear . He never wears the tweed suit unless he is also wearing either a purple shirt or Sandels. whenever he wears sandal, he also wears a purple shirt - Yesterday, holmes wore or bow til what else did he wear?

Rules of Inference

Consider the following sequence of
_
statements.
"If I'm studying hard, then I'll get A+"
I'm studying hard
Therefore, I'll get A+
This is an argument which has two
premises (hypothesis) and after putting
them together, it makes a conclusion.
When would you say that this argument is
Valid ?
V~77 0C
This argument would be a valid argument if whenever all hypothesis are true,
il who was all hupathacis are true
4- whenever all hypothesis are 1100,
the Conclusion is true.
We can rewrite this argument in logical
argument form
P->9 P->9 (P->4) 9
TTTT
9 FFFFF
T

Desn: Argument An argument is a sequence of propositions, the last of which is called Concusion and the rest are called hypotheses (premises) An argument is valid if truth of all ils premises implies that the Conclusion is true. An argument form in propositional logic is a sequence of compound propositions involving propositional variables. An argument form is valid if no matter Which particular propositions are substituted for the propositional variables in its premises, the conclusion is true it all premises are the. is Valid if (PINPaN... NR) -> 9 10 a tay tology

	We can always use truth tables to show	
	that an argument form is valid, i.e.,	
	(P, 1 1 Pm) - g is a twology	
	flowever, it is tedious	
	Instend we can use some simple valid argum	ent
	Forms (tautalogy) as building blocks to Construct	
	More Complicated valid argument forms.	
	these Simple valid arguments are called	
	rules of interence.	
_		
_		

TABLE 1 Rule	TABLE 1 Rules of Inference.	
Rule of	Touteless	N
Inference	Tautology	Name
p	$(p \wedge (p \rightarrow q)) \rightarrow q$	Modus ponens
$p \rightarrow q$		
∴ q		
$\neg q$	$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus tollens
$p \rightarrow q$		
∴ ¬p		
$p \rightarrow q$	$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$	Hypothetical
$q \rightarrow r$		syllogism
$\therefore p \rightarrow r$		
$p \lor q$	$((p \lor q) \land \neg p) \rightarrow q$	Disjunctive
$\neg p$		syllogism
∴ q		
p	$p \rightarrow (p \lor q)$	Addition
$\therefore p \lor q$		
$p \wedge q$	$(p \wedge q) \rightarrow p$	Simplification
∴ p		
p	$((p) \land (q)) \rightarrow (p \land q)$	Conjunction
q		
$p \wedge q$		
$p \lor q$	$((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$	Resolution
$\neg p \lor r$		
$\therefore q \vee r$		

Table from the textbook, Sec 1.6.

EX. Let's de Modus Ponens w/ truth table.

P 9 P->4 PN(P->4) 9

_	EX. Show that the following argument	
_	form is valid.	
	Show that Prg-sprg is a	
	PA9 (Show that PA9-prog is a) towtology	
	Step Keason 1. pay hypothesis	
	2. P by simplification	
_	(1)	
_	3.PV9 Ly addition using	9 (2)
_		
_		

EX.		
Show that the premises "It is no	ot sunny this afternoon and it is o	colder than yesterday,"
"We will go swimming only if it	is sunny," "If we do not go swim	nming, then we will
	ke a canoe trip, then we will be h	nome by sunset" lead
to the conclusion "We will be he		
P: "It's SUNNY	this afterno	ion "
q: " It's Cold	er than yester	Jey /
•	•	
r: " We will s	go Swinning	J "
S: "We'll take	a concre 1	wib //
J: WE'11 109 C	~ UVIUC 17	1 /
t: "we'll be	home by	Sunset
_	Class	Resign
-1D / 9	— У	7000
PNT	1. 7010	hypo
	<u></u>	F' 1
	2. 7 P	using (1)
71-55	3. K-> D	hypo
5->t		71
• 4	4.78	uging (2), (3)
· · · C	F-K-S	hypo
	9777	
	6.5	by (4), (5)
	ユ (、	by hypo
	7. Sest	77 . 77
	8. t	by (6), (7)