Infrastructure Gap

Paul Mukoki

8/6/2021

Contents

Preliminary: Read in the data	1
Dependent and Independent Variables	1
The Fixed Effects Model	12
The Random Effects Model	13
Cross-Sectional Dependence	14
Panel unit root tests in the Presence of Cross-Sectional Dependence	15
Preliminary: Read in the data Here I load the dataset	
mukoki_gap_data <- readxl::read_xlsx("dataset_40_countries.xlsx") %>% janitor::clean_names() %>%	
data.frame()	

Dependent and Independent Variables

I select the dependent and independent variables

```
modelling_data <- mukoki_gap_data %>%

select(countries, country, state, year,

income_group_2009, income_2009,

overall_index, infra_index,

transport_gap, electricity_gap,

ict_gap, water_gap, overall_index,

transport_invest, electricity_invest,

ict_invest, water_invest, water_invest,

stock_mkt_cap, human_di, exchange_rate,

rinterestrate, percent_change_in_gfcf_public,
```

Table 1: Independent Variables

skim_variable	numeric.mean	${\rm numeric.sd}$	numeric.p0	numeric.p25	${\rm numeric.p50}$	numeric.p75	numeric.p100
income_2009	1.62500	0.8279167	1.0000000	1.000000	1.00000	2.00000	4.00000
overall_index	17.86327	15.9435392	0.3687802	8.439691	13.49782	20.30228	94.32366
$transport_gap$	90.59428	10.2512712	46.6914350	87.967433	94.29789	97.38841	99.44557
electricity_gap	92.88688	15.0433290	17.6244140	94.715203	98.05586	99.17087	100.00000
ict_gap	95.26291	8.7731510	36.5554970	93.874929	99.55578	99.99659	99.99999
water_gap	47.30374	20.1042116	0.2118731	36.646024	48.16911	60.48719	99.10913

Dependent Variables

```
modelling_data %>%
select(income_2009,
    overall_index,
    transport_gap, electricity_gap,
    ict_gap, water_gap) %>%

na.omit() %>%
skim_without_charts() %>%
select(-n_missing, -complete_rate, -skim_type) %>%
kbl(., booktabs = TRUE, caption = "Independent Variables") %>%
kable_classic(full_width = TRUE)
```

```
modelling_data %>%

select(income_2009,

overall_index, infra_index,

transport_gap, electricity_gap,

ict_gap, water_gap) %>%

na.omit() %>%

ggpairs()
```


Independent Variables

We examine the independent variables. Please confirm that these are correct before I go ahead and run the regressions. I am especially keen on overall index and its meaning. What variable in the data stands for Public-Private Partnerships (PPP) investment in Aggregate/overall infrastructure? I don't think its the overall index.

```
modelling_data %>%

select(infra_index,

transport_invest, electricity_invest,

ict_invest, water_invest, water_invest,

stock_mkt_cap, human_di, exchange_rate,

rinterestrate, percent_change_in_gfcf_public,

fdi_gdp, govenance_index) %>%

skim_without_charts() %>%

select(-n_missing, -complete_rate, -skim_type) %>%

kbl(., booktabs = TRUE, caption = "Independent Variables") %>%

kable_classic(full_width = TRUE)
```

7

1	-	ø	•
ι		Κ	

Table 2: Independent Variables							
skim_variable	numeric.mean	numeric.sd	numeric.p0	numeric.p25	${\rm numeric.p50}$	numeric.p75	numeric.p100
infra index	0.0000000	0.9085647	-0.4701808	-0.4064351	-0.3251464	-0.1158849	4.485926
transport invest	0.9829726	2.4573516	0.0000908	0.0520468	0.1884312	0.5139178	14.905687
electricity invest	5.6575235	14.3728215	0.0013178	0.1495541	0.6089139	2.3695731	88.429515
ict invest	2.8558644	7.2741104	0.0001807	0.1146541	0.6695169	2.1571728	70.985354
water_invest	1.9211378	3.1850498	0.0146976	0.2785261	0.5765471	2.0650996	19.154820
stock mkt cap	10.2802022	36.0435167	0.7241040	1.0000000	1.0000000	1.0000000	328.361000
human di	0.4838609	0.1074758	0.2630000	0.4120000	0.4680000	0.5485000	0.797000
exchange rate	652.2826577	1260.5619533	0.8667643	17.6843045	370.4251100	555.4500000	9088.320000
rinterestrate	6.1573402	9.0830600	-34.2103090	1.0000000	3.8272198	9.2988998	52.436821
percent_change_ir	n_gfcf <u>0</u> . β1/702 61	5.5788054	-33.0171620	-1.3669003	0.0000000	1.5717645	48.789712
fdi gdp	4.9825751	9.3207813	-6.3698773	1.0000000	2.5635350	5.3448228	103.337390
govenance_index	0.0000000	0.9842590	-1.7782380	-0.7445558	-0.0166953	0.4886982	2.688182

```
modelling_data %>%

select(infra_index,

transport_invest, electricity_invest,

ict_invest, water_invest, water_invest,

stock_mkt_cap, human_di, exchange_rate,

rinterestrate, percent_change_in_gfcf_public,

fdi_gdp, govenance_index) %>%

drop_na(percent_change_in_gfcf_public) %>%

cor() %>%

cor() %>%

corrplot(method = "number", type = "lower",

diag = FALSE, number.digits = 2,

title = "Correlation Matrix for Dependent Variables")
```

COTTETATION WIALTIX TOT DEPENDENT VALIABLES


```
modelling_data %>%

select(overall_index,

transport_invest, electricity_invest,

ict_invest, water_invest, water_invest,

stock_mkt_cap, human_di, exchange_rate,

rinterestrate, percent_change_in_gfcf_public,

fdi_gdp, govenance_index) %>%

drop_na(percent_change_in_gfcf_public) %>%

ggpairs()
```


The Fixed Effects Model

Write a regression function to run fixed and random effects models

```
model fixed <- plm(overall index ~ transport invest + electricity invest +
      ict invest + water invest + water invest +
      stock mkt cap + human di + exchange rate +
      rinterestrate + percent change in gfcf public +
      fdi gdp + govenance index, data = modelling data,
  effect = "twoways", model = "within", index = c("country", "year"))
summary(model fixed)
\#\# Twoways effects Within Model
##
\#\# Call:
## plm(formula = overall_index ~ transport_invest + electricity_invest +
##
       ict invest + water invest + water invest + stock mkt cap +
       human di + exchange rate + rinterestrate + percent change in gfcf public +
##
##
       fdi gdp + govenance index, data = modelling data, effect = "twoways",
       model = "within", index = c("country", "year"))
##
##
## Unbalanced Panel: n = 40, T = 15-16, N = 638
##
\#\# Residuals:
##
        Min.
                1st Qu.
                           Median
                                     3rd Qu.
                                                  Max.
## -20.683049 -1.525893
                           0.073119 \quad 1.348739 \quad 15.303867
##
\#\# Coefficients:
##
                             Estimate Std. Error t-value
## transport invest
                               -0.35325707  0.38003978  -0.9295
## electricity invest
                               0.21568781 \quad 0.06320574 \quad 3.4125
\#\# ict invest
                             -0.36417626 \quad 0.04459065 \quad -8.1671
## water invest
                              -2.41149004 0.41918167 -5.7529
## stock mkt cap
                                 0.01172604 \quad 0.01122126 \quad 1.0450
\#\# human di
                              -1.77500572 13.29340967 -0.1335
\#\# exchange rate
                               -0.00168294 \quad 0.00033569 \quad -5.0134
\#\# rinterestrate
                             0.01380202 \ \ 0.02280432 \ \ 0.6052
## percent change in gfcf public 0.00173114 0.02468044 0.0701
## fdi gdp
                              0.00319925 \quad 0.01882435 \quad 0.1700
## govenance index
                                 0.29464569 \ 0.67132286 \ 0.4389
\#\#
                                   \Pr(>|t|)
## transport invest
                                      0.3530084
                                     0.0006893 ***
## electricity invest
                             0.000000000000000203 ***
\#\# ict invest
\#\# water invest
                              0.00000001430627886 ***
## stock mkt cap
                                        0.2964719
\#\# human di
                                      0.8938250
                               0.00000071442260501 ***
\#\# exchange rate
\#\# rinterestrate
                                    0.5452615
```

```
## percent change in gfcf public
                                         0.9441050
## fdi_gdp
                                  0.8651075
## govenance index
                                    0.6608975
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Total Sum of Squares:
## Residual Sum of Squares: 6439.9
\#\# R-Squared:
                  0.14564
\#\# Adj. R-Squared: 0.048552
## F-statistic: 8.86419 on 11 and 572 DF, p-value: 0.00000000000011985
The Random Effects Model
model random <- plm(overall index ~ transport invest + electricity invest +
      ict invest + water invest + water invest +
      stock mkt cap + human di + exchange rate +
      rinterestrate + percent change in gfcf public +
      fdi gdp + governance index, data = modelling data,
  effect = "twoways", model = "random", index = c("country", "year"))
summary(model random)
\#\# Twoways effects Random Effect Model
      (Swamy-Arora's transformation)
##
##
\#\# Call:
## plm(formula = overall_index ~ transport_invest + electricity_invest +
      ict invest + water invest + water invest + stock mkt cap +
      human di + exchange rate + rinterestrate + percent change in gfcf public +
##
##
      fdi gdp + govenance index, data = modelling data, effect = "twoways",
      model = "random", index = c("country", "year"))
##
##
## Unbalanced Panel: n = 40, T = 15-16, N = 638
##
\#\# Effects:
               var std.dev share
##
## idiosyncratic 11.259 3.355 0.217
## individual 40.689 6.379 0.783
\#\# time
               0.000 0.000 0.000
\#\# theta:
                                     Mean 3rd Qu.
##
          Min. 1st Qu. Median
\#\# \text{ id} = 0.865418 \ 0.8696177 \ 0.8696177 \ 0.8694203 \ 0.8696177 \ 0.8696177
\#\# \text{ total } 0.000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000 \ 0.0000000
##
\#\# Residuals:
     Min. 1st Qu. Median Mean 3rd Qu.
```

-24.366 -6.697 -1.373 -0.015 6.074 45.035

```
##
## Coefficients:
                             Estimate Std. Error z-value
##
## (Intercept)
                            -32.402214761 0.683121951 -47.4325
## transport invest
                              -0.391223792 0.098438367 -3.9743
## electricity invest
                              0.079203227 0.015440069 5.1297
## ict invest
                            -0.182765283 0.010503074 -17.4011
\#\# water invest
                              -0.561587855 0.082234318 -6.8291
## stock mkt cap
                                 0.025544717 \quad 0.003035691 \quad 8.4148
## human di
                             107.469091339 \quad 1.169534367 \quad 91.8905
\#\# exchange rate
                              -0.001025873 0.000090426 -11.3449
                             0.062362431 0.006468734 9.6406
## rinterestrate
## percent change in gfcf public -0.015441537 0.007255643 -2.1282
## fdi gdp
                             -0.034249089 0.005406611 -6.3347
## govenance index
                                0.091614655 \quad 0.161133645 \quad 0.5686
##
                                   \Pr(>|z|)
## (Intercept)
                            < 0.000000000000000022 ***
                                 0.000070585969750 ***
## transport invest
## electricity invest
                                0.000000290173714 ***
## ict invest
                            < 0.000000000000000022 ***
\#\# water invest
                                0.000000000008544 ***
\#\# stock mkt cap
                               < 0.000000000000000022 ***
\#\#human di
                              < 0.000000000000000022 ***
## exchange rate
                              < 0.000000000000000022 ***
                            < 0.000000000000000022 ***
## rinterestrate
## percent change in gfcf public
                                             0.03332 *
                               0.000000000237852 ***
## fdi gdp
## govenance index
                                         0.56965
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Total Sum of Squares:
                           162300
## Residual Sum of Squares: 67518
\#\# R-Squared:
                  0.58401
## Adj. R-Squared: 0.5767
## Chisq: 10321 on 11 DF, p-value: < 0.00000000000000000222
```

The Hausmann Test

Given that the test is significant, then we should use the fixed effects model .

phtest(model fixed, model random)

```
## ## Hausman Test ## Hausman Test ## data: overall_index ~ transport_invest + electricity_invest + ict_invest + ... ## chisq = 115.01, df = 11, p-value < 0.00000000000000022 ## alternative hypothesis: one model is inconsistent
```

Cross-Sectional Dependence

The model shows the presence of cross sectional dependence. Thus, the unit roots tests have to consider the presence of cross sectional dependence in the panels.

```
pcdtest(model_fixed, method = "cd")

##

## Pesaran CD test for cross-sectional dependence in panels

##

## data: overall_index ~ transport_invest + electricity_invest + ict_invest + water_invest + water_invest + stock_mkt

## z = 4.7227, p-value = 0.000002327

## alternative hypothesis: cross-sectional dependence
```

Panel unit root tests in the Presence of Cross-Sectional Dependence

The main unit root tests implemented in R's plm and punitroots, namely the tests proposed in Maddala and Wu (1999), Choi (2001), Levin, Lin, and Chu (2002), Im, Pesaran, and Shin (2003) (plm); Demetrescu, Hassler, and Tarcolea (2006), Hanck (2008), Costantini and Lupi (2011) (punitroots). The first four tests assume that the series under scrutiny are cross-sectionally independent: the last three allow for cross-dependence across the panel units.