

ARL-STRUC-TECH-MEMO-272

AR-001-114

AD A 0 56354

DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION
AERONAUTICAL RESEARCH LABORATORIES

MELBOURNE, VICTORIA

STRUCTURES TECHNICAL MEMORANDUM 272

AN ANALYSIS OF THE VIBRATION LEVELS ON THE BRIDGE OF H.M.A.S. LABUAN IN ROUGH SEAS

ID NO.

G./Long . P. A./Farrell

De Carata Para Para

APPROVED FOR PUBLIC RELEASE

C COMMONWEALTH OF AUSTRALIA 1977

COPY No

18

\$18.650

February 1978

UNCLASSIFIED

THE UNITED STATES NATIONAL RECHNICAL INFORMATION SERVICE AUTHORISED TO SPRODUCE AND SELL THIS REPORT

APPROVED

FOR PUBLIC RELEASE

STRUCTURES TECHNICAL MEMORANDUM 272

AN ANALYSIS OF THE VIBRATION LEVELS ON THE BRIDGE OF H.M.A.S. LABUAN IN ROUGH SEAS

by

G. Long and P. A. Farrell

Summary

The fore-and-aft vibration levels occurring on the bridge of H.M.A.S. Labuan in rough seas have been recorded and analysed. The results for the frequency range 0 - 10 Hz are presented.

DOCUMENT CONTROL DATA SHEET

Security classification of this page	ge UNCLASSIFIED			
1. DOCUMENT NUMBERS a. AR number: AR-000-1114	2. SECURITY CLASSIFICATION a. Complete document: UNCLASSIFIED			
b. Document Series: Structures Technical Memorandum 272	b. Title in isolation: UNCLASSIFIED			
c. Report Number: ARL-STRUC-TECH-MEMO-272	c. Summary in isolation: UNCLASSIFIED			
3. TITLE: An analysis of the wibrati	ion levels on the bridge of			
H.M.A.S. Labuan in rough s				
4. PERSONAL AUTHOR(S): G. Long	5. DOCUMENT DATE: February, 1978			
P. A. Farrell	6. TYPE OF REPORT AND PERIOD			
	COVERED:			
7. CORPORATE AUTHOR(S):	8. REFERENCE NUMBERS:			
Aeronautical Research Laboratories	a. Task: NAV 76/18			
9. COST CODE:	b. Sponsoring Agency:			
23 2610				
10. IMPRINT (Publishing establishment) 11. COMPUTER PROGRAM(S) AERONAUTICAL RESEARCH LABORATORIES Title(s) and language(s):				
MELBOURNE				
12. RELEASE LIMITATIONS (of the doc Approved for public release	cument):			
12-0 OVERSEAS: NO P.R. 1 A B C D E				
13. ANNOUNCEMENT LIMITATIONS (of the information on this page):				
No limitation				
14. DESCRIPTORS: Vibration Ship structure	15. COSATI CODES:			
Vibration damping components	1310			
Vibration meters				
16. ABSTRACT: The fore-and-aft vibration levels occurring on the				
bridge of H.M.A.S. Labuan in rough seas, have been				

The fore-and-aft vibration levels occurring on the bridge of H.M.A.S. Labuan in rough seas, have been recorded and analysed. The results for the frequency range 0 - 10 Hz are presented.

CONTENTS

		Page	No.
1.	INTRODUCTION	1	
2.	DETAILS OF MEASUREMENTS AND RECORDING	1	
3.	METHOD OF ANALYSIS	1	
4.	DISCUSSION OF RESULTS	2	
5.	CONCLUSIONS	3	
	REFERENCES		
	FIGURES		
	DISTRIBUTION		

1. ILTRODUCTION

To provide design data for the vibration absorber described in reference 1 a series of vibration measurements were made on H.M.A.S. Labuan in rough seas. These measurements were aimed at measuring the ship's response in the two-node vertical bending mode at approximately 3.2 Hz. The data have been analysed and the power spectral density and probability density functions have been obtained in the frequency range. 0 - 10 Hz. In addition the Random Decrement method (reference 2) has been used to obtain the time history of the ship's impulse response to wave motion.

These data should be of use in specifying the vibration environment on the ship for instrumentation and equipment design.

2. DETAILS OF MEASUREMENTS AND RECORDING

The vibration was measured by two servo-accelerometers mounted on the bridge floor with their sensitive axis in the fore-and-aft direction (see Fig. 1). The accelerometer signals were filtered by low-pass filters set to 10 Hz. cut-off frequency and digitised at a rate of 20 samples per second. These digital signals were then recorded on two small magnetic tape recorders.

By locating the accelerometers on the bridge in the fore-and-aft direction, the response to vertical vibration in the three-node mode was minimised. As shown in Fig. 2B the bridge is close to an anti-node of the three-node mode and is therefore subjected only to vertical vibration from deformation in this mode. Fig. 2A however shows that the bridge is almost vertically above a node of the two-node mode and hence will be subjected to a fore-and-aft motion as a result of its distance from the point of rotation in this region.

Several records of vibration were made in various sea conditions. The record analysed was made in conditions which were so severe that the captain decided to turn back and run before the waves. (Estimated sea state 4, wind force 7, speed 10 knots.)

3. METHOD OF ANALYSIS

The vibration data are essentially random and consequently the normal way to describe them is by means of the power spectral density and probability density functions. Both these functions were derived by direct analysis of the data on a digital computer and are presented in figures 3 and 4. The R.M.S. acceleration level in the frequency range 0 - 10 Hz is 0.067 g (N.B. 'g' refers to the gravitational acceleration).

To obtain the Random Decrement signatures the data were digitally filtered to separate the responses in the rigid body pitch mode and the two-node mode. Two sets of data were thus obtained, each of which contained the random response of the ship in discrete frequency ranges. These sets were integrated twice to convert from acceleration to displacement response and then averaged to obtain the Random Decrement signatures. The resultant signatures are shown in Figs. 6A and 6B. These provide an estimate of the displacement impulse response of the ship in the rigid body pitch mode and the two-node vertical bending mode respectively. From these signatures the natural frequencies and dampings of the responses may be estimated directly.

4. DISCUSSION OF RESULTS

In figure 3 the power spectral density of the vibration is plotted as a function of frequency. Three peaks in the response occur at 0.2 Hz, 3.25 Hz and 6.5 Hz corresponding to the rigid body pitch, two-node vertical bending and three-node vertical bending modes respectively. As mentioned previously the last response is small because of the method of mounting the transducer.

The response in the two-node mode at any point on the ship may be estimated from the measured response by using figure 2. In this mode of vibration the fore-and-aft amplitude of the bridge floor is equal to the vertical amplitude of the ship at frame 70. This fact is sufficient to allow other amplitudes to be obtained by simple scaling from this figure. Based on this mode shape, the maximum vertical acceleration on the ship in the two-node mode would occur at the bow and the level would be approximately 1.7 times that measured on the bridge floor.

From figure 3 the R.M.S. acceleration experienced in the frequency range 3 - 3.5 Hz is approximately 0.024 g. Since the vibration is approximately Gaussian, the vibration level would be expected to be within \pm 0.072 g. (i.e. \pm 3 standard deviations from the mean) for 99.73% of the time. In reference 3 this vibration amplitude is classified as extremely uncomfortable and of sufficient level to cause

structural damage in regions of high stress concentrations.

The probability density function of thes Sata is shown in Fig. 4. The form of the curve is reasonably close to Gaussian as would be expected. These results are based on a vibration record of approximately 60 minutes duration.

In Fig. 5 a time-history of the acceleration is reproduced. This includes the maximum vibration level recorded during the test and shows the rigid body oscillation and the long decay of the two-node mode of vibration. The maximum acceleration in the two-node mode is approximately \pm 0.6 g on the bridge floor or \pm 1 g at the bow. This corresponds to an amplitude of \pm 23.5 mm (\pm .92 ins).

Figs. 6A and 6B show the transient response of the ship in the rigid body pitch and two-node modes determined by the Random Decrement method. In both figures it is apparent that the decay rates depend on amplitude. For the higher frequency mode the damping rate appears to increase with increase in amplitude. The reverse is true for the rigid body mode. It is a simple matter to estimate frequencies and dampings from these figures.

5. CONCLUSIONS

The vibration levels occurring in rough seas in the rigid body pitch and two-node vertical bending modes of H.M.A.S. Labuan have been analysed. The data obtained should be of use in specifying the vibration environment on the ship in the frequency range 0 - 10 Hz.

REFERENCES

- 1. G. Long and P. A. Farrell The design and installation of a damped vibration absorber
 A.R.L. Structures Note 440
- 2. Cole, H. A. On-line failure detection and damping measurement of aerospace structures by Random Decrement signatures NASA CR-2205 1973.
- 3. Todd, F. H. Ship hull vibration Edward Arnold (Publishers) Ltd., 1961.

FIG. 1 ACCELEROMETER POSITION ON SHIP

FIG. 3 POWER SPECTRAL DENSITY OF RESPONSE

FIG. 4 PROBABILITY DENSITY FUNCTION OF RESPONSE

FIG. 5 TIME HISTORY OF ACCELERATION

FIG. 6A RANDOM DECREMENT SIGNATURE OF RIGID BODY MODE

FIG. 6B RANDOM DECREMENT SIGNATURE OF TWO-NODE MODE

DISTRIBUTION

AUSTRALIA	Co	ру	No
DEPARTMENT OF DEFENCE			
DEPARTMENT OF DEFENCE			
Central Office			
Chief Defence Scientist Executive Controller, ADSS Superintendent, Defence Science Administration Defence Library JIO	to	1 2 3 4 5 21	
Assistant Secretary, DISB	to	21	
Aeronautical Research Laboratories			
Chief Superintendent Superintendent, Structures Division Divisional File, Structures Division Authors: G. Long P. A. Farrell Library		22 23 24 25 26 27	
Materials Research Laboratories			
Library		28	
Weapons Research Establishment			
Library Mech. Design Group, J. Ellershaw		29 30	
Engineering Development Establishment			
Library		31	
RAN Research Laboratory			
Library		32	
Army Office			
Army Scientific Adviser		33	
Royal Military College		34	
Navy Office			
Naval Scientific Adviser M. Powell SNA(F) DNSD		3 5	
DEPARTMENT OF PRODUCTIVITY			
Australian Government Engine Works (Mr. J. L. Kerin) Government Aircraft Factories, Library		37 38	
DEPARTMENT OF TRANSPORT			
Director/General Library Shipbuilding Division (Nr. R. Campbell)		39 40	

	Copy No.
SINTUNOTY INTERPTES, CHARLIND INDUSTRY	
C.S.I.R.O. Central Library C.S.I.R.O. Techanical Engineering Division	41 42
B.H.P. Central Research Laboratories B.P. Australia Ltd. (Librarian) Victoria	4 3 44
SPARES	45 - 54