15.	X1	0	0	1	1	0	0	1	1	1	0
	F 2	0	1	0	1	1	1	1	1	1	1
	y	O	0	0	0	0	1	1	1	1	1

$$\frac{Pr(V=0 \mid X_1=1, X_2=1)}{Pr(0) \cdot Pr(X_1=1 \mid 0) \cdot Pr(X_2=1 \mid 0)} = \frac{Pr(0) \cdot Pr(X_1=1 \mid 0) \cdot Pr(X_2=1 \mid 0)}{Pr(X_1=1, X_2=1)} = \frac{0.5 \cdot 0.4 \cdot 0.6}{0.12 + 0.3} = \frac{0.12}{0.42} = 0.2857$$

$$Pr(Y=1|X_1=1,X_2=1) = \frac{Pr(1) \cdot Pr(X_1=1|1) \cdot Pr(X_2=1|1)}{Pr(X_1=1,X_2=1)} = \frac{0.5 \cdot 0.6 \cdot 1}{0.12 + 0.3} = \frac{0.3}{0.42} = 0.7143$$

40.	TN	FN
	FP	TP

TPR, TNR, PPV, NPV

1 P rou-bo rpegerabureuei unaccob

$$TPR = \frac{TP}{FN + TP}$$

$$TNP = \frac{TN}{TN + FP}$$

$$PPV = \frac{TP}{FP + TP}$$

1)
$$TP = TPR(FN+TP) = TPR \cdot P$$
 $EQCH TN = TNP(TN+FP) = TNP \cdot N$
 $FP = N-TN = N-TNP \cdot N$
 $FN = P-TP = P-TPR \cdot P$

$$= PPV = \frac{TPR \cdot P}{N - TNP \cdot N + TPR \cdot P}$$

$$NPV = \frac{TNP \cdot N}{TNP \cdot N + P - TRR \cdot P}$$

		2	3	4	5	161	7	8	1 5
j(±")	0.32	0,15	0,11	0 0,23	0, ca	0,10	0,66	0,82	0.50
0	4	r	c	o	C	C	1	1	1

$$TN=4 FN=1$$
 $FP=1 TP=3$
 $N=5 P=4$

$$FPR = \frac{FN}{N} = \frac{1}{5}$$

$$FNR = \frac{FN}{P} = \frac{1}{4}$$

$$TNP = \frac{TN}{N} = \frac{4}{5}$$

$$TPR = \frac{TP}{P} = \frac{3}{4}$$

$$PPV = \frac{TP}{FP + TP} = \frac{3}{4}$$

Auc =
$$\frac{1}{20} + \frac{9}{20} + \frac{1}{5} =$$
= 0,7

accuracy =
$$\frac{TP + TN}{P + N} = \frac{7}{9}$$

ernor = 1 - accuracy =
$$\frac{2}{9}$$

$$F1 = \frac{2 \cdot PPV \cdot TPR}{PPV + TPR} = \frac{2 \cdot \frac{3}{4} \cdot \frac{3}{4}}{\frac{3}{4} \cdot \frac{3}{4}} = \frac{3}{4}$$