Trådløse ad-hoc nettverk

Niels Aakvaag Senior Systemarkitekt

Agenda

- Hva er det egentlig?
- Standarder
- Fysiske begrensninger
- Anvendelser i industrien
- Forskning

Hva er det egentlig?

- Et stort antall autonome, billige, trådløse noder som samarbeider om å løse et problem:
 - Nettverket viktigere enn enkeltnode
 - Selvkonfigurerende
 - Kommunikasjon via gateway (ikke "peer-to-peer")

I tillegg:

- Selvrettende. Oppdager feil og ordner selv opp
- Lite eller ingen infrastruktur
- Multihop
- Ofte energibegrenset

Hva er det egentlig?

- Topologier
 - Stjerne
 - Tre
 - Mesh

- Forskjellige typer noder:
 - Endenode (kan ikke rute for andre)
 - Ruternode (kan rute for andre)
 - Gateway (hovednode)

Standarder

- ZigBee
- Blåtann
- Wireless HART
- ISA SP100

- Sjekk:
 - zigbee.org
 - bluetooth.com
 - hartcomm.org
 - isa.org

Standarder – ZigBee

- 2.4GHz ISM, 250kbps per kanal, 16 kanaler
- 16 bit adresseringsrom (64k enheter)
- Basert på IEEE 802.15.4 PHY og MAC
- Støtter alle topologier
- Laget for lav effekt (særlig endenode)
- Semi-statiske kanaler
- Anvendelser:
 - Lyskontroll
 - Lett prosess industri
 - Intelligente hjem
- Applikasjonsprofiler

kilde: zigbee.org

Standarder – ZigBee

- MAC 1.0 i 2003
- NTW 1.0 i desember 2004. Basert på AODV.
- Spesen kan lastes ned gratis (43000 har gjort det)
- Selvkonfigurerende og -rettende

Standarder – ZigBee

Home Automation [HA]

Industrial Plant Monitoring

- Automatic Meter Reading er "underveis"
- ZigBee definerer også stakkprofiler.
- Optimaliserer drift av nettverk og sikkerhet

kilde: zibee.org

Standarder – Blåtann

- 2.4GHz ISM, 3Mbps, FFH i 80 kanaler (1600hps)
- Profiler for kamera, mobiltelefon, printere, etc
- Støtter stjernenett og "scatter-net"
- Problemer i industri:
 - Kun syv aktive noder per master
 - Lang oppvåkning gir høyt energiforbruk
- Finner anvendelser i:
 - PDA aksess til noder
 - Veldig små nettverk med nok effekt

Standarder – Trådløs HART

- HART stammer fra 80' tallet (Emerson)
- Langsom seriell buss
- Over 90% av smarte instrumenter har HART

- Trådløs HART basert på Dust Networks
- Ikke ferdig spesifisert. Ventet i løpet av 2007
- Krever kraftig sentral kontroller

Standarder – Trådløs HART

- Krav som trådbundet HART
- Basert på TSMP (Time Synchronised Mesh Protocol) fra Dust
- Basert på 802.15.4 PHY (billig radio)
- Tett synkronisering: <1.0ms mellom noder
- Redundant trestrukt. All ruting langs treet
- Lang levetid på nettet
- Frekvenshopp unngår statiske fade

Standarder – Trådløs HART

• Tid - frekvens

Time

kilde: dustnetworks.com

Standarder – ISA SP100

- Ligger et stykke etter HART
- Mange selskaper mye politikk!
- Kunde, heller enn leverandør, orientert
- Krevende spekk. Kan gi bra produkter

Fysiske begrensninger

- Endelig båndbredde
- Batteri
- Interferens
- Statiske fade

Fysiske begrensninger - Endelig båndbredde

Vil alltid ha noen kollisjoner →
Kollisjon gir ødelagt rute →
Det gir ny RREQ
(mer trafikk) →
Flere kollisjoner...

Konklusjon: en øvre begrensning når man søker avveining mellom båndbredde, antall noder, antall hopp og oppdateringsrate

Fysiske begrensninger – Batteri

- Eksempel: CC2420 + AtMega128L
 - Radio: Tx 18mA, Rx 20mA
 - Prosessor: 8mA
 - → 5 dager på 3000mAh batteri
- Løsning: duty cycle prosessor
 - Prosessor dyp søvn: 12uA
 - På 0.1% av tiden
 - →9 år på 3000mAh batteri
- Moderne kretser bedre, radio og prosessor integrert
 - CC2430, EM250, Dust Networks Gold (6mA)

Fysiske begrensninger – Interferens

WLAN interferens: frekvens

kilde: turningtechnologies.com

Fysiske begrensninger – Interferens

WLAN interferens: tid

- Bruker også CSMA/CA. Gir noe beskyttelse
- WLAN har større spredning

Blåtann interferens: frekvens

Alle!

Blåtann interferens: tid

Ingen CSMA/CA, men lav effekt

Fysiske begrensninger - Statiske fade

Større problem enn interferens

Problem: disse er frekvens selektive

Anvendelser i industrien - oversikt

• Krav:

- Latens typisk <20ms for høy-ende. 1min for trege prosesser
- Pålitelighet typisk 99.9%
- Batterilevetid >5 år
- Beskjeden båndbreddekrav (<10kbsp)
- Antall noder > 10.000

Mindre konvensjonelle:

- Overvåking av miljø
- Militære applikasjoner
- Medisin

Konvensjonell industri

- Prosess
- Stykkproduserende industri

kilde: boliden.com

- ABB: Skellefteå i Sverige
 - Evalueringsarbeide av teknologi
 - Før tilgjengelige ZigBee stakk
 - Basert på Embernet, forløperen til ZigBee
- Simulerte data. Sample 1 gang per minutt
- Problem med Embernet: rutere ikke på batteri

Løsning:

- Synkronisert søvn
- Sende timer fra gateway
- Skalerbart

Problemer:

- Total båndbredde lider veldig
- Aksess kun på APP nivå
- Bruker effekt på synk

- Tidsforsinkelse i stakk
- Ukjent pdf
- Eksempel på tre noder:

 Summen av mange, likt fordelte, ukjente pdf er gir Gaussisk fordeling (C.L.T)

ABB: PDA aksess til instrumenter

- Oppdatering minst hvert sekund
- Trådløs enhet på instrumentsiden kan kun bruke 400uA!
- Full ZigBee stakk klarer ikke disse kravene

- Skru av alt som kan skrus av!
- Skru ned µC frekvens når mulig
- Starter på ladning i dekoblingskondensatorer
- Kjører alt på grensen av spec

Anvendelser i industrien – pågående arbeid

Forskning

- Standardisering
- Effektminimering (algoritme og krets)
- MAC lag (S-MAC, B-MAC, L-MAC, P-MAC, ...)
- Aggregering (data fusion)
- Cross-layer optimalisering
- Sjekk scholar.google.com

Forskning – S-MAC

- Fra Berkley
 - Periodisk sov og lytt
 - Unngå kollisjon og sov når andre sender
 - Message passing.
 Lokal synkronisering
 - RTS/CTS for å unngå "hidden terminal"
 - CSMA/CA

kilde: Ye, Heidemann, Estrin

Forskning – L-MAC

Fra Nederland

- TDMA basert (kollisjons fri, men vanligvis lavere gjennomstrømming)
- Hver node sender kontroll melding periodisk
- Hver node har egen tidsluke
- Lengre levetid
- Sammenligner "epler og pærer" pga NTW

kilde: Hoesel, Havinga

Forskning – Aggregering

Område:

- Eventer er korrelert geografisk
- Nok å sende én gang
- Artikkel gir teoretiske og simuleringsresultater med besparelse

kilde: Krishnamachari, Estrin, Wicker

Overhead:

- Fast overhead forbundet med hver pakke
- Hvis vi samler mange pakker kan de dele overhead

Forskning – Cross layer optimisation

- Anerkjennelse av at OSI modell er sub-optimal
- Ønske om å optimalisere på tvers av lagene
- Sammarbeidsprosjekt CROPS:
 - NTNU, TKK, KTH
 - Har lang horisont → mange år

Hvor går veien videre?

- Applikasjoner i industrien for åpen sløyfe systemer
- Mye industri er tradisjonell, og tør ikke lukke sløyfen
- Lukket sløyfe KREVER frekvenshopp.

Med andre ord:

- Blåtann passer kun for de aller enkleste uten effektbegrensning
- ZigBee OK for enkle, ikke kritiske applikasjoner
- Wireless HART og/eller ISA trengs for mer krevende applikasjoner

Oppgave #1, Håndholdt ZigBee konfigurering

Mål

 Målet med oppgaven er å utvikle et grafisk brukergrensesnitt for PDA for konfigurering av operasjonsparametere over ZigBee.

Arbeidets art og omfang

 Arbeidet vil involvere .NET programmering på PDA for parameter innhenting. Dernest vil studenten kommunisere med ZigBee node i CF innstikkskort i PDA for å sende disse over luften. På motstående side vil en annen ZigBee node ta imot oppsettet.

Praktisk

- Arbeidssted vil bli hos Enfo Broadcast på Skøyen
- Veileder: Niels Aakvaag og/eller Steve Pedersen

Oppgave #2, ZigBee sensorikk

Mål

 Oppgavens mål er å utvikle en demonstrator av en trådløs sensor basert på ZigBee teknologi

Arbeidets art og omfang

 Arbeidet vil i all hovedsak basere seg på eksisterende hardware og noe eksisterende software. Studenten forventes å ta i bruk Embers ZigBee noder sammen med Enfos infrastruktur for å få et operativt trådløst sensorsystem.

Praktisk

- Arbeidssted vil bli hos Enfo Broadcast på Skøyen
- Veileder: Niels Aakvaag og/eller Steve Pedersen