Data Dictionary

Project Name: Children's Lung X-ray Classification

Data Used: The dataset consists of X-ray images of children's lungs, sourced from various pediatric hospitals and publicly available medical imaging databases. Each image is labeled with the corresponding diagnosis (e.g., normal, pneumonia, other lung conditions).

System/Vendors Used:

- **Imaging Equipment**: Various X-ray machines from vendors such as GE Healthcare, Philips, and Siemens.
- **Data Storage**: AWS S3 for storing X-ray images and associated metadata.
- **Database**: PostgreSQL for storing structured data.
- **Machine Learning Framework**: TensorFlow and Keras for model training and classification.

Tables

1. **Patients**

- **patient_id** (integer, Primary Key): Unique identifier for each patient.
- **name** (varchar, 100): Name of the patient.
- **age** (integer): Age of the patient.
- **gender** (varchar, 10): Gender of the patient.
- **diagnosis** (varchar, 100): Diagnosis result (e.g., normal, pneumonia, other lung conditions).

2. **XrayImages**

- **image_id** (integer, Primary Key): Unique identifier for each X-ray image.
- **patient_id** (integer, Foreign Key): Identifier linking to the patient.
- **image_path** (varchar, 255): Path to the X-ray image file.
- **image_date** (date): Date when the X-ray image was taken.
- **classification_result** (varchar, 100): Result of the classification (e.g., normal, abnormal).

3. **ClassificationMetrics**

- **metric id** (integer, Primary Key): Unique identifier for each metric record.
- **image_id** (integer, Foreign Key): Identifier linking to the X-ray image.
- **accuracy** (float): Accuracy of the classification for this image.
- **precision** (float): Precision of the classification for this image.
- **recall** (float): Recall of the classification for this image.
- **f1_score** (float): F1 score of the classification for this image.

Relationships

- **Patients** to **XrayImages**: One-to-Many (One patient can have multiple X-ray images).
- **XrayImages** to **ClassificationMetrics**: One-to-One (Each X-ray image has one set of classification metrics).

README

Children's Lung X-ray Classification

Project Description

This project aims to classify X-ray images of children's lungs to detect various conditions such as pneumonia and other lung diseases. The classification is performed using a deep learning model trained on a dataset of labeled X-ray images.

Installation Instructions

1. Clone the repository:

```
""bash
git clone https://github.com/username/children-lung-xray-classification.git
cd children-lung-xray-classification
```

2. Create a virtual environment and activate it:

```
"`bash
python -m venv venv
source venv/bin/activate # On Windows use `venv\Scripts\activate`
...
```

3. Install the required packages:

```
```bash
pip install -r requirements.txt
```

## ## Usage Instructions

- 1. Prepare your dataset of X-ray images and ensure it follows the structure specified in the data dictionary.
- 2. Train the model using the provided training script:

```
```bash
python train_model.py --data_dir /path/to/dataset
...
```

3. To classify new X-ray images, use the classification script:

```
```bash
python classify_images.py --image_dir /path/to/new/images
...
```

## ## Examples

Here's an example of how to classify a new set of X-ray images:

```
""bash

python classify_images.py --image_dir /path/to/new/images
"""
```

#### ## Contributors

- \*\*John Doe\*\* Project Lead
- \*\*Jane Smith\*\* Data Scientist
- \*\*Alice Johnson\*\* Software Engineer

#### ## License

This project is licensed under the MIT License - see the LICENSE file for details.