MLP Előrejelzések

Kovászna MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
4.53	4.60	
4.54	4.30	
4.07	4.20	
4.09	4.10	
4.05	4.00	
4.00	3.80	
3.76	3.80	
3.83	3.80	
3.85	3.80	
3.85	3.80	
3.85	4.20	
4.47	4.90	

Hargita MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
3.88	3.90	
3.98	4.00	
4.09	4.20	
4.24	4.40	
4.39	4.40	
4.36	4.50	
4.38	4.30	
4.23	4.20	
4.10	4.00	
3.99	3.80	
3.76	3.80	
3.79	3.70	
s s Hargita MLP 2022 augusztus - 2023 július között		

Maros MLP (12, 12, 12,)		
Előrejelzés	Valódi adat	
2.74	2.80	
2.83	2.90	
2.92	3.10	
3.09	3.20	
3.15	3.20	
3.09	3.10	
2.97	3.10	
2.99	3.00	
2.90	2.70	
2.60	2.70	
2.67	2.70	
2.72	2.70	

Model	MSE	RRMSE	MAPE
Kovászna MLP ((12, 12, 12,), 5 réteg)	3.66 %	4.70 %	3.33 %
Hargita MLP ((12, 12, 12,), 5 réteg)	1.01 %	2.45 %	2.01 %
Maros MLP ((12, 12, 12,), 5 réteg)	1.05 %	3.54 %	2.85 %

Kovászna	MLP	modell	összefoglaló
----------	-----	--------	--------------

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	100
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard
Optimalizálási Algoritmus:	lbfgs
Optimalizálási ciklus lépésszáma:	631
Rejtett rétegek Aktivációs függvénye:	relu

```
Tanító párok: (amiből megtanulta a súlyokat)

1. [12.2 12.5 12.3] --> 11.9

2. [12.5 12.3 11.9] --> 11.1

3. [12.3 11.9 11.1] --> 10.9

4. [11.9 11.1 10.9] --> 11.4

5. [11.1 10.9 11.4] --> 11.2

A Teszt párok (amiket meg kell jósoljon):

1. [4.7 4.4 4.5] --> 4.6

2. [4.4 4.5 4.6] --> 4.3

3. [4.5 4.6 4.3] --> 4.2

4. [4.6 4.3 4.2] --> 4.1

5. [4.3 4.2 4.1] --> 4.0
```

```
ELtolási értékek vektora:
[array([ 1.14042251, -0.84392025,
                                      0.65085407,
                                                    0.43382867,
                                                                 0.93945058,
-0.40072352, 0.28967975, -0.63566843, 0.04282138,
                                                    0.73034472,
                                                                 0.46227063,
-0.31534836]), array([ 0.17929492,
                                      0.56595485,
                                                    0.41814289,
                                                                 0.51018453,
0.41617807, 1.02311041, -0.69383867, -0.18659695, -0.1001278 ,
                                                                 0.38362654,
-0.07515276, 0.44929743]), array([-0.30313082,
                                                   0.44572409,
                                                                 0.38968325,
```

```
Rétegek súlyai:

[array([[-0.22554913, -0.18250503, 0.03172102, 0.29824412, -0.16568105, -0.56041523, 0.10737558, 0.33804749, -1.1066077 , 0.07243451, 0.77612028, -0.36705021], [-1.09751636, -0.40608997, 0.11030611, 1.00493093, -1.04761203, -0.29565678, 0.66400664, -0.3547311 , -0.63891563, 1.19415806, 0.28642179, -0.20686239], [ 0.46766371, -0.38879856, -1.12752469, 0.19498822, 0.86119766,
```

identity

Hargita MLP modell összefoglaló

Kimeneti réteg Aktivációs függvénye:

Bemeneti neuronok száma:	3
Kimeneti neuronok száma:	1
Legjobb random kezdőérték a súlyozásra:	62
Rejtett rétegek és azok neuronjainak száma:	(12, 12, 12,)
Normalizálási eljárás:	standard
Optimalizálási Algoritmus:	lbfgs
Optimalizálási ciklus lépésszáma:	1487
Rejtett rétegek Aktivációs függvénye:	relu
Kimeneti réteg Aktivációs függvénye:	identity

```
Tanító párok: (amiből megtanulta a súlyokat)

1. [10.9 11.4 11.2] --> 10.7

2. [11.4 11.2 10.7] --> 9.6

3. [11.2 10.7 9.6] --> 9.3

4. [10.7 9.6 9.3] --> 8.6

5. [9.6 9.3 8.6] --> 8.7

Teszt párok (amiket meg kell jósoljon):

1. [3.7 3.8 3.8] --> 3.9

2. [3.8 3.8 3.9] --> 4.0

3. [3.8 3.9 4.] --> 4.2

4. [3.9 4. 4.2] --> 4.4

5. [4. 4.2 4.4] --> 4.4
```

```
ELtolási értékek vektora:
[array([-0.74608602, 1.46007373,
                                   0.91483623,
                                                  -0.2897699
                                                                   0.65710738,
-0.39340995, -0.18196199, -0.01336137, -0.06601039, -0.08051977, -0.82474441,
0.99322826]), array([ 0.31158273, 0.04852722,
                                                    -0.80035559,
                                                                   0.50019979,
-0.25509784, 0.50396826, 0.48365065, 0.91424554,
                                                                  0.34964034,
                                                  -1.2027174 ,
-1.50316981,
                                                                  -0.08899619,
              -0.12907794]), array([-0.01300707,
                                                    0.01857492,
```

```
Rétegek súlyai:

[array([[-0.69142372, -0.92828827, 0.76774946, -0.11169267, -0.56137385, -0.26355118, 0.112374 , -0.24619148, 0.90663022, 0.36223145, 0.88799201, -1.75737461], [ 0.30331389, 0.61168509, 0.63377348, -0.11283419, -0.36907412, 0.58255788, -0.60332668, -1.48485022, 1.07969371, 1.32114476, 0.65558892, -0.07282013], [ 1.08197184, 0.23964146, 0.41094753, 0.11024432, 0.80838663,
```

Maros MLP modell összefoglaló

```
Bemeneti neuronok száma:
                                                                                                                                                       3
                                                                                                                                                       1
Kimeneti neuronok száma:
                                                                                                                                                       80
Legjobb random kezdőérték a súlyozásra:
Rejtett rétegek és azok neuronjainak száma:
                                                                                                                                                       (12, 12, 12,)
Normalizálási eljárás:
                                                                                                                                                       standard
Optimalizálási Algoritmus:
                                                                                                                                                       adam
Optimalizálási ciklus lépésszáma:
                                                                                                                                                       314
Rejtett rétegek Aktivációs függvénye:
                                                                                                                                                       relu
Kimeneti réteg Aktivációs függvénye:
                                                                                                                                                       identity
```

```
Tanító párok: (amiből megtanulta a súlyokat)

1. [8.3 8.4 8.5] --> 8.2

2. [8.4 8.5 8.2] --> 7.9
```

```
Teszt párok (amiket meg kell jósoljon):
```

1. [2.6 2.7 2.7] --> 2.8

2. [2.7 2.7 2.8] --> 2.9

3. [8.5 8.2 7.9] --> 7.8

4. [8.2 7.9 7.8] --> 7.9

5. [7.9 7.8 7.9] --> 8.3

3. [2.7 2.8 2.9] --> 3.1

4. [2.8 2.9 3.1] --> 3.2

5. [2.9 3.1 3.2] --> 3.2

ELtolási értékek vektora:

[array([-0.33854096, 0.152649 , -0.46029266, -0.48761522, 0.70447463, 0.73875805, -0.53532659, 0.50359409, -0.5167707 , 0.47275841, 0.03201579, -0.43002129]), array([3.86843226e-01, 4.46223349e-01, 4.28362481e-01, 3.86682014e-01, 4.91026264e-01, -3.24500614e-01, -7.47886557e-05, 2.48018066e-01, 2.73850787e-01, 5.45404927e-01, -2.11265004e-01, 1.60150832e-02]), array([0.19449282,

Rétegek súlyai:

[array([[0.03784063, 0.31925197, -0.29021895, 0.17408085, 0.56929643, 0.33043473, -0.14381248, -0.1564595 , -0.09193176, -0.41421107, 0.4458605 , -0.49547158], [-0.26267951, 0.11803951, 0.44571408, -0.42696592, 0.45394074, -0.04621073, 0.16510926, -0.51809357, 0.04188976, -0.19254275, -0.39999559, -0.06960003], [-0.00830415, 0.64387249, 0.30836577, 0.55289831, 0.16798489,