Rectangle Cipher

<Ciphermakers>

Department of <CS553-Cryptography> Indian Institute of Technology Bhilai

December 6, 2021

Outline

- Introduction
- 2 Cipher Specifications
- 3 Brownie Point Nominations
- 4 Observations
- Conclusion

Introduction

History and Evolution

- PRESENT was introducd at CHES'2007 with a low-cost hardware performance.
- Further, LED was introduced at CHES'2011 adding a reasonable software performance.
- Then the Serpent Block Cipher was introduced with the bit-slice technique.
- Finally, Rectangle Cipher was introduced with all better improvements from the previous ciphers.

Introduction

Rectangle Cipher is

- Lightweight Block Cipher
- Based on SP-Network
- 16 4x4 S-boxes in parallel in S-Layer
- 3 rotations composed in the P-layer
- Both Hardware and Software Friendly

Outline

- 1 Introduction
- 2 Cipher Specifications
- 3 Brownie Point Nominations
- 4 Observations
- Conclusion

Cipher Specifications

- Lightweight Block Cipher
- Bit-Slice Style
- Competetive Software Performance
- Hardware Friendly
- Very Strong Security

The Round Transformation

- AddRoundkey (ARK)
- SubColumn (SC)
- ShiftRow (SR)
- Key Schedule (KS)

Pseudo-Code-

GenerateRoundKeys(state):

- for i = 0 to 24 do:
- . ARK(state, Ki)
- . SC(state)
- . SR(state)
- . ARK(state, K25)

AddRoundkey (AR)

SubColumn (SC)

S-Box

The S-Box S : $F_2^4 \rightarrow F_2^4$.

x	0	1	2	3	4	5	6	7	8	9	A	В	C	D	Е	F
S(x)	6	5	C	A	1	Е	7	9	В	0	3	D	8	F	4	2

Rectangle S-Box

SubColumn

It is the parallel application of S-boxes oo the 4 bits in the same column. Input- $Col(j) = v3,j \mid\mid v2,j \mid\mid v1,j \mid\mid v0,j$ for $0 \le j \le 15$ Output- $S(Col(j)) = x3,j \mid\mid x2,j \mid\mid x1,j \mid\mid x0,j$.

																														_		
v15	v14	v13	v12	v11	v10	v9	v8	ν7	v6	ν5	v4	ν3	v2	٧1	ν0		x15	x14	x13	x12	x11	x10	х9	х8	х7	х6	х5	х4	хЗ	х2	х1	х0
v31	v30	v29	v28	v27	v26	v25	v24	v23	v22	v21	v20	v19	v18	v17	v16	SC.	x31	x30	x29	x28	x27	x26	x25	x24	x23	x22	x21	x20	x19	x18	x17	x16
v47	v46	v45	v44	v43	v42	v41	v40	v39	v38	v37	v36	v35	v34	v33	v32		x47	x46	x45	x44	x43	x42	x41	x40	x39	x38	х37	x36	x35	x34	x33	х32
v63	v62	v61	v60	v59	v58	v57	v56	v55	v54	v53	v52	v51	v50	v49	v48		x63	x62	x61	x60	x59	x58	x57	x56	x55	x54	x53	x52	x51	x50	x49	x48

Differential Distribution Table (DDT)

```
16
                                                                  0]
                                                                  2]
 0
                                                                  2]
                  0
                               0
                                                                  0]
 0
          0
                  0
                                        0
                                                             0
                                                                  4]
                               0
                                                                  0]
          0
                                                                  2]
                               0
 0
                               0
                                                         0
                                                                  2]
                               2
                                                                  2]
 0
          0
                  0
                                                                  0]
 0
                                                                  2]
                                        0
 0
          0
                  0
                               0
                                                                  0]
                               0
                                        0
                                                                  0]
          0
                                                                  0]
 0
          0
                               0
```

DDT for Rectangle cipher S-Box

Linear Approximation Table (LAT)

```
-2]
-2]
 2]
-2]
 2]
 2]
 0]
 2]
 0]
```

LAT for Rectangle cipher S-Box

ShiftRow (SR)

It is just a left rotation to each row.

SR-Operation

80-bit key

- SC to the bits at the 4 uppermost rows and the 4 rightmost columns.
- Using a 1-round generalized Feistel transformation-Row'0 := (Row0 << 8) \oplus Row1, Row'1 := Row2, Row'2 := Row3, Row'3 := (Row3 << 12) \oplus Row4, Row'4 := Row0
- A 5-bit round constant RC[i] is XORed with the 5-bit key state for $i \in (1,2,..,24)$.

128-bit key

- SC to the bits at the 8 rightmost columns.
- Using a 1-round generalized Feistel transformation-Row'0 := $(Row0 << 8) \oplus Row1$, Row'1 := Row2, $Row'2 := (Row2 << 16) \oplus Row3$, Row'3 := Row0
- A 5-bit round constant is XORed with the 5-bit key state.

Block Diagram

80-bit key block diagram (80.png)

Block Diagram

128-bit key block diagram (128.png)

Integral Cryptanalysis

- We implemented the Square attack which used a 4-round integral distinguisher
- Encryption: After 4-rounds, the XOR sum in any 4 bit positions equals to 0, i.e. (Balanced property)

$$\oplus S_4[0] = \oplus S_4[17] = \oplus S_4[43] = \oplus S_4[60] = 0$$

P0	P1	P2	P3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P13	P14	P15
P16	P17	P18	P19	P20	P21	P22	P23	P24	P25	P26	P27	P28	P29	P30	P31
P32	P33	P34	P35	P36	P37	P38	P39	P40	P41	P42	P43	P44	P45	P46	P47
P48	P49	P50	P51	P52	P53	P54	P55	P56	P57	P58	P59	P60	P61	P62	P63

- Decryption: We choose 2⁴⁸ plaintexts s.t. cols 0, 13, 14, 15 maintain CONSTANT property and other 12 cols maintain the ALL property
- 2^{48} Intermediate values $\Rightarrow 2^{47}$ subsets $\Rightarrow 2$ values.
- $4 \rightarrow 7 \rightarrow 25$ rounds with same integral distinguisher.

Security Analysis

Differential Cryptanalysis

- Differential Cryptanalys is strongest techniques for the cryptanalysis of block ciphers.
- Using the algorithm based on the branch and bound method, the best differential trails from round-1 to round-15 were found-

# R	Cor. Pot.	#R	Cor. Pot.	# R	Cor. Pot.
1	2-2	6	2-20	11	2^{-50}
2	2-4	7	2^{-26}	12	2^{-56}
3	2^{-8}	8	2^{-32}	13	2^{-62}
4	2^{-12}	9	2^{-38}	14	2^{-68}
5	2^{-16}	10	2^{-44}	15	2^{-74}

- Using the 14-round differential propagation, we can mount an attack on 18-round Rectangle cipher
- 25-round Rectangle is enough to behold out against this differential cryptanalysis attack.

Outline

- 1 Introduction
- 2 Cipher Specifications
- Brownie Point Nominations
- 4 Observations
- Conclusion

Brownie Point Nominations

- Rectangle is based on SP-Network.
- It is slightly similar to AES.
- Out of 25, the maximum of 18-rounds can be attacked.
- The remaining 7-rounds are for security purposes.
- It attains a very fast software as well as hardware performance.

Outline

- 1 Introduction
- 2 Cipher Specifications
- 3 Brownie Point Nominations
- 4 Observations
- Conclusion

Observations

Rectangle Cipher Implementation

- Rectangle is an iterated block cipher with block length 64-bits and key length as 80 or 128bits.
- The S-box of rectangle can be implemented using a sequence of 12 basic logical instructions.
- The P-Layer of rectangle is composed of 3 rotations.

Code Snippet

Code Snippet

```
On Visual Studio
@ lavishg@LAPTOP-KID8KSM9: /mnt/d/pogram/crypto/termPaper/ourCode
                                                                                                               lavishg@LAPTOP-KID8KSM9:/mnt/d/pogram/crypto/termPaper/ourCode$ g++ rectangle.cpp
lavishg@LAPTOP-KID8KSM9:/mnt/d/pogram/crypto/termPaper/ourCode$ ./a.out
Enter message in binary :
 . . . . . . . . . . . . . . . . . . .
Enter the key in binary :
 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Cipher State :
 000100001110100
 avishg@LAPTOP-KID8KSM9:/mnt/d/pogram/crypto/termPaper/ourCode$
Test Case-2
```

Software Implementation

User-Login Application

- User i.e client can choose between Sign-up or Sign-in option to the server.
- For Sign -up, user gives the username and password.
- For Sign-in, user have to give the same username and password created during sign-up.
- If the encrypted password matches the password stored in the server, then authentication passes.
- Otherwise, authentication fails.

Demo

On Visual Studio

- Client.cpp
- Server.cpp
- Rectangle Cipher used

Code Snippet

Code Snippet

Outline

- 1 Introduction
- 2 Cipher Specifications
- 3 Brownie Point Nominations
- 4 Observations
- Conclusion

Conclusion

Rectangle Cipher

- It is a bit-slice styled lightweight block cipher.
- It provides applications enough flexibility.
- It has the ability to trigger various new cryptographic problems.
- Its security is encouraged.

Thanks

Team Members

- Ruchit Prakash Saxena (11941040)
- Anubh Sanoj Gupta (11940150)
- Lavish (11940640)

Implementation Info

 Github Repository: https://github.com/ruchitsaxena/Rectangle-cipher