⑫実用新案公報(Y2)

平1-20631

@Int Cl 4 F 25 D 23/06 識別記号

庁内整理番号 W-7711-3L ❷€公告 平成1年(1989)6月21日

(全2頁)

公考室の名称

真空断熱材を備えた断熱箱体

顧 昭59-48119 到実

码公 第 昭60-159986

願 昭59(1984)4月2日 留出

@昭60(1985)10月24日

觉考 案 者 麥

類 型

大阪府東大阪市高井田本通3丁目22番地 松下冷機株式会

社内

松下冷機株式会社 勿出 願 人

大阪府東大阪市高井田本通3丁目22番地

冠復代理人

弁理士 栗野 重孝 外1名

和男 審 査 官

特開 昭58-108379(JP, A) 66参考文献。

特開 昭58-106374(JP, A)

1

砂実用新案登録請求の範囲

内箱と、外箱と、この内外箱間に設け、かつフ イルムにて外被した真空断熱材と、前記内外箱間 および真空断熱材の間に充填した発泡断熱材とを 備え、前記真空断熱材と外箱との間に両面接着剤 付き柔軟性部材を介し外箱と真空断熱材とを密接 固定した真空断熱材を備えた断熱箱体。

考案の詳細な説明

産業上の利用分野

本考案は、内箱と外箱とこの内外箱間に発泡断 10 熱材及び真空断熱材を備え、冷蔵庫等に利用され る断熱箱体に関するものである。

従来例の構成とその問題点

一般に、圧縮機、冷却器等の冷却システムを具 ムが同一ならば、断熱箱体の壁厚、即ちポリウレ タン等の発泡断熱材層の厚みは厚い程、庫外より 庫内への吸熱量は減少して冷却効率は向上し、従 つて冷凍装置の消費電力量は減少する。しかし、 壁厚増加に伴つて庫内有効内容積の減少、もしく は外箱の大きさの増大に伴う据置面積の拡大、本 体重量の増加等の欠点が生ずる。この欠点を除去 する為に前記発泡断材より断熱性の高い物質、即 ちポリウレタン等の発泡断熱材に替わるものとし てシリカ等を真空にしたプラスチックの容器に内 25 考案の目的 蔵した真空断熱材が利用される。一般的にポリウ レタン発泡断熱材の熱伝導率は0.016kcal/mh℃

2

で、これに対してシリカ等の真空断熱材の熱伝導 率は、ほぼ0.009kcal/mh℃でポリウレタン発泡 断熱材に比して熱伝導率は約1/2となる。従つて、 真空断熱材を前記ポリウレタン断熱材層に埋蔵す 5 るなどして、真空断熱材と発泡断熱材を併用する ことが提案されておりこれにより、断熱箱体の壁 厚は減少出来、有効内容積の増大、さらに外箱の 外容積の減少による据置面積の縮少、本体重量の 減少等が期待できる。

従来、上記のごとく真空断熱材を発泡断熱材と 併用する場合、袋形状を有する真空パツク内に封 入された真空断熱材をテープ、接着剤等で外箱の 裏面に貼付固定した後に前記内外箱間および真空 断熱材の間に発泡断熱材を充塡することが考えら 備する冷蔵庫等の断熱箱体において、冷却システ 15 れる。しかし、かかる場合において、真空断熱材 を外箱に密接固定する際、その真空断熱材の上を テープにより固定したり、又真空断熱材にホット メルト等の接着剤を塗布し外箱に固定しウレタン 発泡させていたが、真空断熱材の表面にシワがあ 20 つたり真空断熱材の表面に凹凸があつたり、又外 箱が膨らんだりした場合、密接固定出来ておらず 発泡前後その外箱と真空断熱材の間に発泡剤より 発生するフレオンガスが溜まり、外箱と真空断熱 材が剝離し、外箱が変形する問題があつた。

本考案は上記の点に鑑みてなされたもので、そ の目的は、発泡断熱材の発泡前後に真空断熱材と 外箱との剝離を防ぐことにある。 考案の構成

この目的を達成するため本考案は真空断熱材と 外箱との間に両面接着剤付きの柔軟性部材を介し 断熱材の剝離防止を図つたものである。

実施例の説明

以下本考案の一実施例の構成について、第1図 と第2図を参考に説明する。

まず第1図、第2図で冷蔵庫に使用される断熱 10 考案の効果 箱体を説明する。断熱箱体1は外箱2と内箱5と これらの両箱2,5間に充塡される発泡断熱材4 と外箱2と発泡断熱材4との間に埋設される真空 断熱材3と外箱2と真空断熱材3とを密着固定さ あるヒートシール部を支えるべく片面形状を形成 した柔軟性両面接着剤付き柔軟性部材 6 より構成 されている。

上記構成において、断熱箱体1の内箱5と外箱 箱2に真空断熱材3を密着固定させその後発泡充 塡させる。その際柔軟性両面接着剤付き柔軟性部 材6を介し外箱2と真空断熱材3を密着固定させ る。そうすることにより、真空断熱材3の表面の 凹凸(シワも含む)とか外箱2との平行度が出な 25

い場合に、柔軟性両面接着剤付き柔軟性部材βの 柔軟性により吸収し外箱2と真空断熱材3とが密 着間定し、発泡断熱材 4 の発泡時に発泡の流れを 阻害する真空断熱材3ヒートシール部7の固定と 密着固定し、発泡断熱材の発泡前後の外箱と真空 5 外箱2と真空断熱材3との間に流入してくる発泡 剤とか発泡剤に含まれるフレオンガスの侵入を防 止でき、外箱2の変形防止と、外箱2と断熱材と の剝離防止即ち、外箱2の変形防止の効果が得ら れる。

以上の説明から明らかなように本考案は、真空 断熱材と外箱との間に両面接剤付きの柔軟性部材 を介し、真空断熱材と外箱との密着固定を図つた もので発泡時の真空断熱材と外箱との間への発泡 せる真空断熱材3とその外被フイルムの接合部で 15 断熱材の侵入による外箱の変形及びその間へのフ レオンガス溜まり等の剝離による外箱の変形の防 止といつた効果が得られるものである。

図面の簡単な説明

第1図は本考案一実施例の真空断熱材を備えた 2の間に発泡断熱材 4 を充塡させる前に、まず外 20 断熱箱体の斜視図、第2図は第1図のA-A'線 における断面図を示す。

> 2 ……外箱、3 ……真空断熱材、4 …… 発泡断 熱材、5……内箱、6……両面接着剤付き柔軟性 フオーム、7……真空断熱材ヒートシール部。

