Práctica 01 Planeación de rutas^{*}

Robots Móviles (TSM I, TSM II, TSCR), FI, UNAM, 2025-2

Nombre:		
NOMDie:		

1. Actividades

1. Abra el archivo catkin_ws/src/navigation/path_planner/scripts/a_start.py y pegue el siguiente código en la línea 41 para implementar el algoritmo A* para planeación de rutas:

```
41 heapq.heappush(open_list, (0, [start_r, start_c]))
42 in_open_list[start_r, start_c] = True
   g_values [start_r, start_c] = 0
[row, col]= [start_r, start_c]
43
44
45
   while len(open_list) > 0 and [row, col] != [goal_r, goal_c]:
         [row, col] = heapq.heappop(open_list)[1]
47
         in_closed_list [row, col] = True
48
         for [r,c, cost] in adjacents:
49
              r, c = r + row, c + col
50
              \begin{array}{lll} \textbf{if} & \texttt{grid\_map} \, [\, r \, , c \,] \, > \, 40 & \textbf{or} & \texttt{grid\_map} \, [\, r \, , c \,] \, < \, 0 & \textbf{or} & \texttt{in\_closed\_list} \, [\, r \, , c \,] \, : \end{array}
51
                   continue
52
              g = g_values[row, col] + cost + cost_map[r][c]
              h = math. sqrt ((goal_r - r) **2 + (goal_c - c) **2)
54
              f = g + h
56
              if g < g_values[r,c]:
                   g_values[r,c]
57
                                           = g
                   f_values[r,c]
                   parent_nodes[r,c] = [row, col]
59
60
              if not in_open_list[r,c]:
61
                   in\_open\_list[r,c] = True
                   heapq.heappush(open_list, (f, [r,c]))
62
63
```

Agregue su nombre completo en la línea 21 del mismo archivo.

2. Abra el archivo catkin_ws/src/navigation/path_planner/scripts/cost_map.py y pegue el siguiente código en la línea 42 para implementar la obtención del mapa de costo:

Agregue su nombre completo en la línea 18 del mismo archivo.

3. Abra una terminal y corra la simulación con el comando:

^{*}Material elaborado con apoyo del proyecto PAPIME PE112525

```
roslaunch fiat_lux movement_planning.launch
```

4. En otra terminal, corra el inflado de mapas (tarea 03) con el comando:

```
rosrun map_augmenter map_inflater.py _inflation_radius:=0.2
```

5. En otra terminal, corra el mapa de costo con el comando:

```
rosrun path_planner cost_map.py _cost_radius:=0.05
```

6. En otra terminal, corra el algoritmo A^* con el comando:

```
rosrun path_planner a_star.py
```

7. Calcule una ruta al punto con coordenadas P = (5,5). Para ello, en la GUI escriba la coordenada del punto meta y presione el botón $Calc\ Path$ como se muestra en la figura:

Se debería desplegar, en el visualizador RViz, la ruta planeada como se muestra en la figura:

8. Detenga el nodo de mapas de costo y vuélvalo a correr con un radio de costo más grande, por ejemplo:

```
rosrun path_planner cost_map.py _cost_radius:=0.5
```

- 9. Calcule la ruta nuevamente con la GUI y observe el cambio.
- 10. Detenga el algoritmo A^* y córralo de nuevo, ahora con el parámetro:

```
rosrun path_planner a_star.py _diagonals:=False
```

- 11. Calcule nuevamente una ruta usando la GUI y observe el cambio.
- 12. Pruebe el algoritmo para diferentes puntos meta, se sugieren: (2.0, 10.0), (10.5, 9, 75) y (2.0, 7.0). Pruebe también con diferentes radios de costo, con diagonales y sin diagonales.
- 13. Realice una o varias tablas donde se registren los resultados de los experimentos (puntos meta, número de éxitos, parámetros usados y tiempos de ejecución).
- 14. Compare el desempeño del algoritmo A^* con el algoritmo RRT implementado en la Tarea 4. Tome en cuenta tiempos de ejecución y número de exitos para diferentes variables: puntos meta y parámetros de cada algoritmo.

2. Entregables

- Código modificado en la rama correspondiente
- Reporte escrito con los siguientes elementos:
 - Introducción. Se contextualiza el problema a resolver (planeación de rutas en robots móviles autónomos) y se plantean los objetivos (comparar el desempeño de dos algoritmos de planeación de rutas).
 - Marco teórico. Descripción de los conceptos teóricos a abordar: planeación de rutas, métodos basados en grafos, métodos basados en muestreo, algoritmo A*, algoritmo RRT. En esta parte se deben citar las fuentes consultadas para cada concepto. Deben ser fuentes arbitradas (libros o artículos publicados en revistas o conferencias científicas).
 - **Desarrollo.** Descripción de los pasos a realizar para comparar los algoritmos: descripción de la plataforma de pruebas, variables y parámetros a utilizar, datos que se van a registrar.
 - Resultados. Tablas o gráficas con los datos registrados.
 - Conclusiones. Discusión de los resultados obtenidos sobre qué algoritmo es mejor y en qué condiciones. Estas discusiones deben estar basadas en los resultados.
 - Referencias. Colocar todas las fuentes consultadas. Las fuentes listadas en esta sección deben referenciarse en el texto

Agregue la rúbrica de evaluación como la primera hoja del reporte.

3. Evaluación

Ver rúbrica correspondiente.