Year 1 – Relativity Lecture 6

Mitesh Patel

Overview of lectures

- Lecture 1: Introduction, concepts and classical results
- Lecture 2: The postulates of Relativity
- Lecture 3: Length contraction and simultaneity
- Lecture 4: The Lorentz transformations
- Lecture 5: Space-time diagrams and world lines
- Lecture 6: Four-vectors and causality
- Lecture 7: Energy and momentum
- Lecture 8: Rest mass energy and particle decays
- Lecture 9: Particle reactions
- Lecture 10: The relativistic Doppler effect

Previously on Relativity

- Looked at space-time diagrams
 - How events and axes move under Lorentz transformations
- Saw the concept of world lines
 - "History" of an object in space-time
- Saw how world lines change under Lorentz transformations
 - World lines change in position and gradient

What we will do today

Introduce four-vectors

- Similar concept to "normal" vectors but with four components
- See that the (equivalent of) length-squared of all four-vectors is constant under Lorentz transformations

Discuss the separation of two events

- Separation = the length-squared of the four-vector which gives the difference of the two events
- The sign of the separation is a critical value
- Discuss how this relates to causality

Four-vector notations

- The space-time four-vector ("four-position")
 - I will write as $(ct,\underline{r}) = (ct,x,y,z)$
 - Similar to writing the three-vector $\underline{r} = (x,y,z)$
 - Some books use uppercase bold/underlined but this is ambiguous with some three-vectors; e.g. <u>E</u>
- The components can also be numbered
 - For any three-vector \underline{a} , can write $\underline{a} = (a_1, a_2, a_3)$
 - The "extra" component in four-vectors is numbered 0
 - Hence writing $(ct,\underline{r}) = (x^0,x^1,x^2,x^3)$ is very standard notation but a bit confusing when you first see it, so not used in this course

Full equation for LT

Lines of constant length-squared

Rotations

Lorentz transformations

Distance between space points

Redefine origin to be at \underline{r}_1

 $\Delta \underline{r}$ rotates like any other vector, so its length is invariant

Event separation

- Same holds for four-vectors and events
 - 'separation' between two events is defined to be the length-squared of the four-vector resulting from subtracting the four-vectors of the two events
 - Sometimes written,

$$(c\Delta t, \Delta \underline{r}) = (ct_2 - ct_1, \underline{r}_2 - \underline{r}_1)$$

- This difference is also a four-vector and obeys the LT
- Separation given,

$$\Delta S^2 = c^2 \Delta t^2 - |\Delta \underline{r}|^2$$

– As we will see, events with different signs of ΔS^2 have very different properties wrt each other

Length-squared of a four-vector

Length-squared notations

- Four-position length-squared $S^2 = c^2t^2 r^2$
 - We will treat the negative sign as simply something we have to remember
 - Some (usually older) books define it as $r^2 c^2t^2$
 - Some define four-vectors to include an imaginary time component (ict, \underline{r}); squaring and adding all four components gives $r^2 c^2t^2$ automatically
- General Relativity generalises this
 - Components multiplied by a "metric" (+1,-1,-1,-1)
 - These values change in gravitation fields so the ict idea is less used now

Go to <u>www.menti.com</u>

- Question 1: A proper time between two events can be defined for
 - A. Any two events
 - B. Only two events with $\Delta S^2 > 0$
 - C. Only two events with $\Delta S^2 = 0$
 - D. Only two events with $\Delta S^2 < 0$

Go to www.menti.com

- Question 1: A proper time between two events can be defined for
 - A. Any two events
 - B. Only two events with $\Delta S^2 > 0$

- C. Only two events with $\Delta S^2 = 0$
- D. Only two events with $\Delta S^2 < 0$

Can one event affect another?

Can one event affect another?

When can I throw the weight?

The light-cone

Events within light-cone

The light-cone

Events outside light-cone

Go to www.menti.com

- Question 2: Two events with exactly $\Delta S^2 = 0$ are causally connected
 - A. True
 - B. False

Go to <u>www.menti.com</u>

- Question 2: Two events with exactly $\Delta S^2 = 0$ are causally connected
 - A. True
 - B. False
- Answer: True, but only connected by something travelling at speed c

Go to <u>www.menti.com</u>

 Question 3: For any event, the space-time "volumes" inside and outside its light-cone are equal

- A. True
- B. False

Menti answer

 This is false; it looks like this in 1D but space is 3D so there is a lot more "volume" outside the light-cone than inside it

Summary of ΔS^2

- $\Delta S^2 > 0 = \text{`Time-like'}$
 - Time order always the same in all frames
 - Space order can change between frames
 - One frame has $\Delta x = 0$
 - $\Delta S^2 = c^2 \tau^2$ where τ is the proper time
 - Causally connected
- $\Delta S^2 < 0 = `Space-like'$
 - Space order always the same in all frames
 - Time order can change between frames
 - One frame has $\Delta t = 0$
 - Causally unconnected
- $\Delta S^2 = 0 = \text{`Light-like'}$
 - Time and space order always the same in all frames
 - No frame has $\Delta x = 0$ or $\Delta t = 0$
 - Causally connected (by light-speed signal only)

Tachyons

In a different frame

Event 2: I catch the tachyon weight

Event 1: I throw the tachyon weight with speed > c

What we did today

- Introduced four-vectors
 - Four components and a lot of similarities to threevectors
 - Saw that the length squared of all four-vectors is constant under Lorentz transformations
- Discussed the separation of two events
 - The length squared of the four-vector which is the difference of the two events
 - The sign of the separation tells us if events are causally connected or not
 - Works in all frames if nothing goes faster than c