Mass Discharge - Outlet Alteck. 2016

PAZ

27 octobre 2016

Purpose

This file computes the discharged mass observed at the outlet. To do that it imports the weekly discharge summary and lab results for isotopes (^{13}C) and s-metolachlor concentrations.

Imports:

- $\bullet \ \ \mathbf{WeeklyHydro} \underline{-} \mathbf{R.csv} \ (\mathbf{R} \ \mathbf{generated})$
- $fluxAlteck2016_R.csv$ (R generated)
- $\bullet \ \ Outlet Conc_W0 to W17.csv$
- MESAlteckWater.csv (Concentration in filters)
- $\bullet \ \ Outlet_Isotopes_W0toW17.csv$
- MESAlteck_FilterIsotopes.csv (Isotopes in filters)
- Outlet_ESAOXA_W0toW17.csv
- AO-Hydrochem.csv

Generates:

• WeeklyHydroContam_R.csv

Required R-packages:

```
library("stringr")
library("plyr")
library("dplyr")
```

Working directory

```
# setwd("D:/Documents/these_pablo/Alteckendorf2016/R")
# setwd("/Users/DayTightChunks/Documents/PhD/Routput/Alteck/R")
# setwd("D:/Documents/these_pablo/Alteckendorf2016/00_TransparencyFolder")
getwd()
```

[1] "D:/Documents/these_pablo/Alteckendorf2016/HydrologicalMonitoring"

Outlet Data - Alteckendorf 2016

1. Hydrological data on a subweekly basis

```
weeklyhydro = read.csv2("Data/WeeklyHydro_R.csv", header = TRUE)
colnames(weeklyhydro)[colnames(weeklyhydro) == "ID"] <- "WeekSubWeek"
head(weeklyhydro)</pre>
```

```
WeekSubWeek AveDischarge.m3.h Volume.m3 Sampled.Hrs
                                                              Sampled
## 1
           x0-0W
                          1.204775 14.41714
                                                 11.96667 Not Sampled
                                                              Sampled
## 2
            WO-1
                          1.213511 100.15508
                                                82.53333
## 3
           W0-2x
                          1.284719 48.34827
                                                37.63333 Not Sampled
## 4
            W1 - 1
                         14.316647 390.36726
                                                27.26667
                                                              Sampled
## 5
            W1-2
                         15.529299 359.24445
                                                23.13333
                                                              Sampled
                          9.107720 877.37700
           W1-3x
                                                96.33333 Not Sampled
weeklyflux = read.csv2("Data/fluxAlteck2016 R.csv", header = TRUE)
head(weeklyflux)
##
    WeekSubWeek
                                  t i
                                                       t.f
                                                              iflux
                                                                        fflux
## 1
           WO-0x 2016-03-25 00:04:00 2016-03-25 12:02:00
                                                          1.248600
           W0-1 2016-03-25 12:04:00 2016-03-28 22:36:00
## 2
                                                          1.124382
                                                                     1.313125
## 3
           WO-2x 2016-03-28 22:38:00 2016-03-30 12:16:00
                                                          1.308100
## 4
            W1-1 2016-03-30 12:18:00 2016-03-31 15:34:00 1.456080 16.445436
## 5
            W1-2 2016-03-31 15:36:00 2016-04-01 14:44:00 16.334349 15.184536
## 6
           W1-3x 2016-04-01 14:46:00 2016-04-05 15:06:00 15.203629 5.856380
                     peak
##
     changeflux
                             vallev
                                       tdiff chExtreme
## 1 -0.1193728 1.248600 1.118296 11.96667 -0.1303036
## 2 0.1887431 1.380388 1.082199 82.53333 0.2560062
## 3 0.1482496 1.637782 0.929055 37.63333 0.3296817
## 4 14.9893566 38.399790 1.448977 27.26667 36.9437102
## 5 -1.1498131 18.668972 13.201113 23.13333 -3.1332355
## 6 -9.3472489 15.895640 5.471042 96.33333 -9.7325862
  2. Concentration data (dissolved and suspended solids) on a subweekly basis
outletConc = read.csv2("Data/OutletConc WOtoW17.csv", header = T)
outletConc$ID4 <- as.character(outletConc$ID4)</pre>
outletConc <- outletConc[outletConc$ID4 != "J+7". ]
outletConc <- outletConc[,c("WeekSubWeek", "Conc.mug.L", "Conc.SD")]</pre>
head(outletConc)
##
     WeekSubWeek Conc.mug.L Conc.SD
## 1
           WO-1 0.2456594 0.01931
## 2
            W1-1 6.7882463 0.28942
## 3
            W1-2 6.5609982 0.19064
## 4
            W2-1 9.4443019 0.33354
## 5
            W2-2 1.0421883 0.03904
## 6
            W3-1 8.8357358 0.47086
filters = read.csv2("Data/MESAlteckWater.csv")
filters$MO.mg.L = ifelse(filters$MO.mg.L < 0, 0.0001, filters$MO.mg.L)
head(filters)
##
     WeekSubWeek MES.mg.L MES.sd MO.mg.L Conc.Solids.mug.gMES
## 1
                               NA 0.0000
                                                     0.64472899
            WO-1 53.44444
## 2
            W1-1 62.50000
                               NA 0.0010
                                                     0.12588974
## 3
            W1-2 22.50000
                               NA 0.0001
                                                     0.43578716
## 4
            W2-1 22.50000
                               NA 0.0001
                                                     0.07935267
## 5
            W2-2
                  5.00000
                               NA 0.0001
                                                     0.05075270
## 6
            W3-1 197.50000
                               NA
                                   0.0058
                                                     0.08177487
# MESA/MOXA data cleaning
outletESAOXA = read.csv2("Data/Outlet_ESAOXA_WOtoW17.csv", header = T)
outletESAOXA$ID <- as.character(outletESAOXA$ID)</pre>
```

```
split <- strsplit(outletESAOXA$ID, "-", fixed = TRUE)</pre>
outletESAOXA$ESAOXA_SD <- sapply(split, "[", 4)</pre>
split_vor <- strsplit(outletESAOXA$ID, "-SD", fixed = TRUE)</pre>
outletESAOXA$ESAOXA_Mean <- sapply(split_vor, "[", 1)</pre>
means temp <- subset(outletESAOXA, is.na(outletESAOXA$ESAOXA SD))</pre>
sd_temp <- subset(outletESAOXA, !is.na(outletESAOXA$ESAOXA_SD))</pre>
means temp$ID <- NULL
sd_temp$ID <- NULL
head(sd_temp)
##
        MOXA.ugL MESA.ugL ESAOXA_SD ESAOXA_Mean
## 2
       1.1414453 3.4972206
                                   SD
                                          AO-WO-1
                                          AO-W1-1
## 4 10.1852510 3.0369845
                                   SD
       0.2430544 0.8533820
                                   SD
                                          A0-W1-2
## 8
       1.1526489 2.8261924
                                   SD
                                          A0-W2-1
                                   SD
## 10 0.6100011 0.1910419
                                          A0-W2-2
## 12 2.6589421 0.3268637
                                   SD
                                          A0-W3-1
head(means_temp)
##
        MOXA.ugL MESA.ugL ESAOXA_SD ESAOXA_Mean
## 1
        4.824094 18.05531
                                <NA>
                                         AO-WO-1
## 3
                                <NA>
                                         AO-W1-1
       30.531235 45.98364
       32.492465 41.28052
                                <NA>
                                         A0-W1-2
## 7
     104.541255 98.56782
                                <NA>
                                         A0-W2-1
       26.885849 51.95245
                                <NA>
                                         A0-W2-2
## 9
## 11 45.080673 24.04717
                                <NA>
                                         A0-W3-1
outletESAOXA <- merge(means_temp, sd_temp, by = "ESAOXA_Mean", all = T)
outletESAOXA$ESAOXA SD.x <- NULL
outletESAOXA$ESAOXA SD.y <- NULL
split ID <- strsplit(outletESAOXA$ESAOXA Mean, "AO-", fixed = T)</pre>
outletESAOXA$ID <- sapply(split_ID, "[", 2)</pre>
outletESAOXA$ESAOXA_Mean <- NULL
outletESAOXA <- outletESAOXA[ , c("ID", "MOXA.ugL.x", "MOXA.ugL.y", "MESA.ugL.x", "MESA.ugL.y")]
colnames(outletESAOXA) <- c("WeekSubWeek", "OXA_mean", "OXA_SD", "ESA_mean", "ESA_SD")
outletESAOXA$WeekSubWeek <- as.factor(outletESAOXA$WeekSubWeek)
head(outletESAOXA)
                                 OXA_SD ESA_mean
##
     WeekSubWeek OXA_mean
                                                     ESA SD
## 1
            WO-1 4.824094 1.14144531 18.05531 3.4972206
## 2
            W1-1 30.531235 10.18525095 45.98364 3.0369845
## 3
            W1-2 32.492465 0.24305444 41.28052 0.8533820
## 4
           W10-1 21.311423 0.05168437 82.87549 1.8167218
## 5
           W10-2 13.095046 0.17703516 12.02387 0.3057521
## 6
           W10-3 45.605808 1.92663562 11.31492 0.1763479
```

3. Isotope data

Isotopes selected where cleaned according to the following rules:

- a) The isotope shift was not largely beyond (2x) Streitwieser theoretical limits (i.e. > 10)
- b) Isotope shift was non-negative
- c) Nanograms of carbon > 2.0.

```
# Outlet isotope data:
outletIso = read.csv2("Data/Outlet_Isotopes_W0toW17.csv", header = T)
head(outletIso)
     FileHeader..Filename ID Week Wnum SubWeek WeekSubWeek Repl d.13C.12C
## 1
            AO WO 1-1.dxf AO
                                WO
                                      0
                                              1
                                                        WO-1
                                                                1
                                WO
## 2
            AO_WO_1-2.dxf AO
                                      0
                                              1
                                                        WO-1
                                                                2
                                                                    -27.740
## 3
     AO WO 1-3 -0001.dxf AO
                                WO
                                      0
                                               1
                                                        WO-1
                                                                3
                                                                    -26.219
## 4
                                W2
                                      2
                                              2
           A0_W2_2-1_.dxf A0
                                                        W2-2
                                                                1
                                                                    -28.609
## 5
           A0_W2_2-2_.dxf A0
                                W2
                                      2
                                               2
                                                        W2-2
                                                                2
                                                                    -28.894
           AO W2 2-3 .dxf AO
                                W2
## 6
                                      2
                                              2
                                                        W2-2
                                                                3
                                                                    -28.503
##
     DD13...31.21. Ave...STDEV
                                    Rt Ampl..44 Std.Ampl.
                                                              ng..C.
## 1
             5.175
                     0.9357993 2651.2
                                            239
                                                       858 8.356643
                                                       858 10.349650
## 2
             3.470
                             NA 2649.3
                                            296
                                                       858 10.559441
## 3
             4.991
                             NA 2649.7
                                            302
## 4
             2.601
                     0.2022136 2656.2
                                            127
                                                       658 5.790274
## 5
                                            163
             2.316
                             NA 2656.2
                                                       658 7.431611
## 6
             2,707
                             NA 2655.3
                                            176
                                                       658 8.024316
colnames(outletIso)[colnames(outletIso) == "DD13...31.21."] <- "DD13"
colnames(outletIso) [colnames(outletIso) == "ng..C."] <- "ngC"</pre>
outletIso <- subset(outletIso, DD13 > 0 & DD13 < 10 & ngC >= 2)
# Filter isotope data:
filtersIso = read.csv2("Data/MESAlteck FilterIsotopes.csv", header = T)
filtersIso$WeekSubWeek = paste(filtersIso$Week, filtersIso$Num, sep = "-")
filtersIso <- filtersIso[filtersIso$Levl != "J+7", ]</pre>
head(filtersIso)
      ID Week Wnum Num Levl Repl d.13C.12C WeekSubWeek
## 1 AFP
           W2
                 1
                     1
                                1
                                    -25.154
                                2
## 2 AFP
           W2
                 1
                     1
                                   -28.187
                                                    W2-1
## 3 AFP
           W2
                 1
                     1
                                3
                                   -28.283
                                                    W2-1
## 4 AFP
           W2
                 2
                     2
                                1
                                    -30.618
                                                    W2-2
## 5 AFP
           W2.
                 2
                     2
                                2
                                   -26.304
                                                    W2 - 2
## 6 AFP
           W2
                 2
                     2
                                3
                                    -26.024
                                                    W2-2
  4. Hydrochemistry Data
hydroChem = read.csv2("Data/AO-Hydrochem.csv", header = T)
hydroChem = hydroChem[, c("WeekSubWeek",
                           "NH4.mM",
                           "TIC.ppm.filt",
                           "Cl.mM",
                           "NO3...mM",
                           "PO4..mM",
                           "NPOC.ppm"
                           "TIC.ppm.unfilt",
                           "TOC.ppm.unfilt" )]
head(hydroChem)
##
     WeekSubWeek NH4.mM TIC.ppm.filt
                                        Cl.mM NO3...mM PO4..mM NPOC.ppm
## 1
                   0.05
            W1-1
                                 51.8
                                         1.48
                                                616.00
                                                             NA
                                                                     4.0
## 2
            W1-2
                     NA
                                 44.8 1574.00
                                                778.00
                                                             NA
                                                                     4.4
## 3
           W10-1
                     NA
                                 60.1
                                         1.17
                                                964.00
                                                             NA
                                                                     2.0
## 4
           W10-2
                                 57.1 1013.00 1174.00
                   9.00
                                                             13
                                                                     5.2
```

```
## 5
          W10-3
                    NA
                               58.2 858.00
                                                          NA
                                                                  5.0
## 6
          W10-4 15.00
                               26.4 355.00 1409.00
                                                          NΑ
                                                                  6.4
  TIC.ppm.unfilt TOC.ppm.unfilt
## 1
              44.8
## 2
              26.4
## 3
              63.2
                              2.0
## 4
              55.9
                              4.0
                              4.3
## 5
              60.4
## 6
              24.5
                              6.4
```

Summarizing IRMS data

```
isoOutSummary = ddply(outletIso, c("WeekSubWeek"), summarise,
                         N = length(d.13C.12C),
                         diss.d13C = mean(d.13C.12C),
                         SD.d13C = sd(d.13C.12C),
                         se.d13C = SD.d13C / sqrt(N))
head(isoOutSummary)
     WeekSubWeek N diss.d13C
                              SD.d13C
## 1
          W0-1 3 -26.66467 0.9357993 0.54028398
## 2
           W1-1 3 -30.46867 0.1060016 0.06120004
## 3
           W1-2 3 -30.61967 0.1513550 0.08738484
           W10-1 2 -29.47350 1.9905056 1.40750000
## 4
          W10-2 3 -29.27067 0.6003202 0.34659502
## 5
           W10-3 3 -29.76967 0.3411749 0.19697744
isoFiltSummary = ddply(filtersIso, c("WeekSubWeek"), summarise,
                            = length(d.13C.12C),
                         filt.d13C = mean(d.13C.12C),
                        filt.SD.d13C = sd(d.13C.12C),
                         filt.se.d13C = filt.SD.d13C / sqrt(N))
head(isoFiltSummary)
##
     WeekSubWeek N filt.d13C filt.SD.d13C filt.se.d13C
## 1
        W2-1 3 -27.20800
                             1.779464 1.0273738
## 2
           W2-2 3 -27.64867
                                2.575326
                                            1.4868653
## 3
           W6-3 3 -28.00667
                                1.593462
                                            0.9199856
                                1.745847
## 4
           W9-1 2 -26.79150
                                          1.2345000
## 5
           W9-2 3 -27.69633
                                2.013989
                                            1.1627772
## 6
           W9-3 3 -26.94633
                                1.685361
                                            0.9730434
```

Merging and data wrangling stepts

1. Merge all data sets by the WeekSubWeek column ID, icluding:

```
# Dissolved
out.CoIs = merge(outletConc, outletESAOXA, by = "WeekSubWeek", all = T)
out.CoIs = merge(out.CoIs, isoOutSummary, by = "WeekSubWeek", all = T)
# Filters (MES, Conc.MES)
out.CoIs = merge(out.CoIs, filters, by = "WeekSubWeek", all = T)
```

```
out.CoIs = merge(out.CoIs, isoFiltSummary, by= "WeekSubWeek", all = T)
# Pure and cuve isotope average
d13Co = -31.21
# Lab enrichment:
\# epsilon = -1.61
# Lab enrichment:
# Alteck
epsilon_max = -1.5 \# +/- 0.3 (@ 20C, 20\% vwc)
epsilon_min = -2.0 \# +/- 0.2 (@ 20C, 40\% vwc)
epsilon_mean = -1.75
# Remaining fraction
out.CoIs$DD13C.diss <- (out.CoIs$diss.d13C - (d13Co))</pre>
out.CoIs$DD13C.filt <- (out.CoIs$filt.d13C - (d13Co))</pre>
out.CoIsf.diss <- (((10**(-3)*out.CoIs<math>diss.d13C + 1)/(10**(-3)*d13Co + 1))**(1000/(epsilon_mean)))
out.CoIsf.filt <-(((10**(-3)*out.CoIsfilt.d13C + 1)/(10**(-3)*d13Co + 1))**(1000/(epsilon_mean)))
out.CoIs$B.diss <- (1 - out.CoIs$f.diss)*100</pre>
out.CoIs$B.filt <- (1 - out.CoIs$f.filt)*100
#out.CoIs$invf <- 1/out.CoIs$f</pre>
# Discharge times
out.CoIs = merge(weeklyhydro, out.CoIs, by = "WeekSubWeek", all = T)
# Discharge summary
out.CoIs = merge(weeklyflux, out.CoIs, by = "WeekSubWeek", all = T)
# Hydrochemistrty
out.CoIs = merge(out.CoIs, hydroChem, by= "WeekSubWeek", all = T)
out.CoIs$tf <- as.POSIXct(out.CoIs$tf, "%Y-%m-%d %H:%M", tz = "EST")
out.CoIs$ti <- as.POSIXct(out.CoIs$ti, "%Y-%m-%d %H:%M", tz = "EST")
class(out.CoIs$tf)
## [1] "POSIXct" "POSIXt"
sum(is.na(out.CoIs$tf))
## [1] 7
# Temprarily remove Weeks 16 & 17 (need to get discharge data)
# No discharge data yet avaiable to multiply against...
out.CoIs <- out.CoIs[!is.na(out.CoIs$tf), ]</pre>
  2. Weekly Exported Solids (Kg)
# V[m3] * MES [mq/L] * 1000 [L/m3] * [1 Kg/10^6 mg]
out.CoIs$ExpMES.Kg = out.CoIs$Volume.m3*out.CoIs$MES.mg.L/1000
```

3. Weekly exported S-metolachlor mass (mg)

```
# Dissolved - [mg] S-metolachlor exported per sub-week
# Conc. [mu.g s-meto/L H20] * Vol[m3] * [10^3 L/m^3] * [1 mg/10^3 mu.g]
out.CoIs$DissSmeto.mg = out.CoIs$Conc.mug.L*out.CoIs$Volume.m3

# Solids - [mg] S-metolachlor in solids exported per sub-week
# Conc. [mu.g s-meto / g MES] * Kg MES * [10^3 g/Kg] * [1 mg/10^3 mu.g]
out.CoIs$FiltSmeto.mg = out.CoIs$Conc.Solids.mug.gMES*out.CoIs$ExpMES.Kg

# Total
out.CoIs$TotMassOut.mg = out.CoIs$DissSmeto.mg + out.CoIs$FiltSmeto.mg

# Proportion in dissolved and suspended solids
out.CoIs$FracDiss = out.CoIs$DissSmeto.mg/out.CoIs$TotMassOut.mg
out.CoIs$FracFilt = out.CoIs$FiltSmeto.mg/out.CoIs$TotMassOut.mg
```

4. Add the application dates and merge the total mass to the nearest discharge event

The five application dates were:

- 2016-03-20
- 2016-04-05
- 2016-04-13 and 2016-04-14
- 2016-05-26

So the total applied mass mass is merged at the nearest sampling time marker available:

Section to UPDATE!!!

5. This section converts the observed S-metolachlor concentrations to [g] in dissolved water and suspended solids, assuming 0 for the values where no sample was taken. An approximative model will be tested at a later stage.

```
# First simulate a mass out to deal with missing values
# Option 1, just assume 0.0
out.CoIs$SimOutDiss.g = out.CoIs$DissSmeto.mg/10^3
out.CoIs$SimOutFilt.g = out.CoIs$FiltSmeto.mg/10^3
out.CoIs$SimOutDiss.g = ifelse(is.na(out.CoIs$SimOutDiss.g), 0.0, out.CoIs$SimOutDiss.g)
out.CoIs$SimOutFilt.g = ifelse(is.na(out.CoIs$SimOutFilt.g), 0.0, out.CoIs$SimOutFilt.g)
```

```
out.CoIs$SimOutSmeto.g = out.CoIs$SimOutDiss.g + out.CoIs$SimOutFilt.g
# Cumulative OUT
out.CoIs$CumOutDiss.g = cumsum(out.CoIs$SimOutDiss.g)
out.CoIs$CumOutFilt.g = cumsum(out.CoIs$SimOutFilt.g)
out.CoIs$CumOutSmeto.g = out.CoIs$CumOutDiss.g + out.CoIs$CumOutFilt.g
out.CoIs$BalMassDisch.g = out.CoIs$CumAppMass.g - out.CoIs$CumOutSmeto.g
# Mass fraction
massOUT = tail(out.CoIs$CumOutSmeto.g, n=1)
out.CoIs$FracMassOut = (out.CoIs$SimOutSmeto.g / massOUT)
out.CoIs$FracDeltaOut = (out.CoIs$SimOutSmeto.g / massOUT)*out.CoIs$diss.d13C
out.CoIs$FracDeltaOut = ifelse(is.na(out.CoIs$FracDeltaOut), 0.0, out.CoIs$FracDeltaOut)
BulkDeltaOut = sum(out.CoIs$FracDeltaOut)
The total mass discharged (up to Week 15) and bulk isotope signature (up to week 11) was:
# Cummulative S-metolachlor [q] discharged
massOUT
## [1] 91.10687
# Bulk isotope signature
BulkDeltaOut
## [1] -28.12241
  6. Testing a regression tree (ommitted for now)
```

Save files

```
head(out.CoIs)
```

```
ti WeekSubWeek
                                                     t.f
                                                            iflux
                                                                      fflux
                              WO-0x 2016-03-25 12:02:00 1.248600
## 1 2016-03-25 00:04:00
                                                                   1.129227
## 2 2016-03-25 12:04:00
                              W0-1 2016-03-28 22:36:00 1.124382 1.313125
## 3 2016-03-28 22:38:00
                              W0-2x 2016-03-30 12:16:00 1.308100 1.456349
## 4 2016-03-30 12:18:00
                              W1-1 2016-03-31 15:34:00 1.456080 16.445436
## 5 2016-03-31 15:36:00
                               W1-2 2016-04-01 14:44:00 16.334349 15.184536
## 6 2016-04-01 14:46:00
                              W1-3x 2016-04-05 15:06:00 15.203629 5.856380
    changeflux
                                      tdiff chExtreme AveDischarge.m3.h
                    peak
                            valley
## 1 -0.1193728 1.248600 1.118296 11.96667 -0.1303036
                                                                1.204775
## 2 0.1887431 1.380388 1.082199 82.53333 0.2560062
                                                                1.213511
## 3 0.1482496 1.637782 0.929055 37.63333 0.3296817
                                                                1.284719
## 4 14.9893566 38.399790 1.448977 27.26667 36.9437102
                                                               14.316647
## 5 -1.1498131 18.668972 13.201113 23.13333 -3.1332355
                                                               15.529299
## 6 -9.3472489 15.895640 5.471042 96.33333 -9.7325862
                                                                9.107720
    Volume.m3 Sampled.Hrs
                              Sampled Conc.mug.L Conc.SD OXA_mean
## 1 14.41714
                 11.96667 Not Sampled
                                              NA
                                                      NA
                                                                NA
## 2 100.15508
                 82.53333
                              Sampled 0.2456594 0.01931 4.824094
## 3 48.34827
                 37.63333 Not Sampled
                                                      NA
                                              NΑ
                              Sampled 6.7882463 0.28942 30.531235
## 4 390.36726
                 27.26667
```

```
## 5 359.24445 23.13333 Sampled 6.5609982 0.19064 32.492465
## 6 877.37700 96.33333 Not Sampled NA NA NA
## OXA SD ESA mean ESA SD N.x diss.d13C SD.d13C
                                                se.d13C MES.mg.L
      NA NA NA NA NA NA NA
## 2 1.1414453 18.05531 3.497221 3 -26.66467 0.9357993 0.54028398 53.44444
      NA NA NA NA NA NA
## 4 10.1852510 45.98364 3.036985 3 -30.46867 0.1060016 0.06120004 62.50000
## 5 0.2430544 41.28052 0.853382 3 -30.61967 0.1513550 0.08738484 22.50000
                        NA NA NA NA
    NA NA
  MES.sd MO.mg.L Conc.Solids.mug.gMES N.y filt.d13C filt.SD.d13C

        NA
        NA
        NA
        NA

        NA
        0e+00
        0.6447290
        NA
        NA

## 2
          NA
                             NA NA
## 3
      NΑ
                                         NΑ
                                                   NΑ
      NA
         1e-03
## 4
                       0.1258897 NA
                                         NA
      NA 1e-04
                       0.4357872 NA
                                         NA
                       NA NA
         NA
## 6
     NA
                                         NA
                                                   NA
## filt.se.d13C DD13C.diss DD13C.filt f.diss f.filt B.diss B.filt
      NA NA NA
                                  NA NA NA
## 2
          NA 4.5453333
                            NA 0.06892489
                                          NA 93.10751
                                          NA NA
## 3
           NA NA
                            NA NA
                                                        NA
                                         NA 35.40925
## 4
           NA 0.7413333
                            NA 0.64590754
           NA 0.5903333
                            NA 0.70603206
                                          NA 29.39679
        NA NA NA NA NA
## 6
## NH4.mM TIC.ppm.filt Cl.mM NO3...mM PO4..mM NPOC.ppm TIC.ppm.unfilt
     NA NA NA NA NA
## 1
     NA
               NA
                      NA
                             NA
                                 NA
NA
NA
                                    NA
                                           NA
                             NA
## 3
      NA
                NA
                      NA
                                           NA
                                                       NA
              51.8 1.48
## 4 0.05
                             616
                                           4.0
                            778
## 5
    NA
              44.8 1574.00
                                    NA
                                           4.4
                                                      26.4
            NA NA NA
                                         NA
     NA
                                   NA
## TOC.ppm.unfilt ExpMES.Kg DissSmeto.mg FiltSmeto.mg TotMassOut.mg
## 1
      NA NA NA NA
## 2
            NA 5.352733 24.60403 3.451062
                                                28.0551
                          NA
## 3
            NA NA
                                                     NA
                                     NA
                                  3.071452
            4.7 24.397953 2649.90908
                                             2652.9805
## 4
                                  3.522468
           5.4 8.083000 2357.00221
                                               2360.5247
## 6
            NA NA NA NA
## FracDiss FracFilt Appl.Mass.g CumAppMass.g SimOutDiss.g SimOutFilt.g
             NA 6369.396 6369.396 0.00000000 0.000000000
    NA
## 2 0.8769898 0.123010164
                      0.000 6369.396 0.02460403 0.003451062
                         0.000 6369.396 0.00000000 0.000000000
    NA NA
                        0.000 6369.396 2.64990908 0.003071452
## 4 0.9988423 0.001157736

      0.000
      6369.396
      2.35700221
      0.003522468

      0.000
      6369.396
      0.00000000
      0.00000000

## 5 0.9985078 0.001492239
## 6 NA NA
## SimOutSmeto.g CumOutDiss.g CumOutFilt.g CumOutSmeto.g BalMassDisch.g
      ## 1
                                                   6369.396
       0.0280551 0.02460403 0.003451062
                                    0.0280551
                                                   6369.368
## 2
## 3
      0.0000000 0.02460403 0.003451062 0.0280551
                                                   6369.368
       2.6529805 2.67451312 0.006522514 2.6810356
                                                   6366.715
       2.3605247 5.03151533 0.010044982
                                    5.0415603
## 5
                                                   6364.354
       0.0000000 5.03151533 0.010044982 5.0415603
                                                   6364.354
    FracMassOut FracDeltaOut
## 1 0.000000000 0.000000000
## 2 0.0003079361 -0.008211013
```