Last updated: 16 Feb 2023

PyCaret Binary Classification Tutorial

PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that exponentially speeds up the experiment cycle and makes you more productive.

Compared with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with a few lines only. This makes experiments exponentially fast and efficient. PyCaret is essentially a Python wrapper around several machine learning libraries and frameworks, such as scikit-learn, XGBoost, LightGBM, CatBoost, spaCy, Optuna, Hyperopt, Ray, and a few more.

The design and simplicity of PyCaret are inspired by the emerging role of citizen data scientists, a term first used by Gartner. Citizen Data Scientists are power users who can perform both simple and moderately sophisticated analytical tasks that would previously have required more technical expertise.

Installation

PyCaret is tested and supported on the following 64-bit systems:

- Python 3.7 3.10
- Python 3.9 for Ubuntu only
- Ubuntu 16.04 or later
- · Windows 7 or later

You can install PyCaret with Python's pip package manager:

```
pip install pycaret
```

PyCaret's default installation will not install all the extra dependencies automatically. For that you will have to install the full version:

```
pip install pycaret[full]
```

or depending on your use-case you may install one of the following variant:

- pip install pycaret[analysis]
- pip install pycaret[models]
- pip install pycaret[tuner]
- pip install pycaret[mlops]
- pip install pycaret[parallel]
- pip install pycaret[test]

In [1]: # check installed version import pycaret pycaret.__version__

Out[1]: '3.0.0'

PyCaret's Classification Module is a supervised machine learning module that is used for classifying elements into groups. The goal is to predict the categorical class labels which are discrete and unordered.

Some common use cases include predicting customer default (Yes or No), predicting customer churn (customer will leave or stay), the disease found (positive or negative).

This module can be used for binary or multiclass problems. It provides several preprocessing features that prepare the data for modeling through the setup function. It has over 18 ready-to-use algorithms and several plots to analyze the performance of trained models.

A typical workflow in PyCaret consist of following 5 steps in this order:

Setup → Compare Models → Analyze Model → **Prediction** → **Save Model**

```
In [2]: # loading sample dataset from pycaret dataset module
from pycaret.datasets import get_data
data = get_data('diabetes')
```

	Number of times pregnant	Plasma glucose concentration a 2 hours in an oral glucose tolerance test	Diastolic blood pressure (mm Hg)	Triceps skin fold thickness (mm)	2- Hour serum insulin (mu U/ml)	Body mass index (weight in kg/(height in m)^2)	Diabetes pedigree function	Age (years)
0	6	148	72	35	0	33.6	0.627	50
1	1	85	66	29	0	26.6	0.351	31
2	8	183	64	0	0	23.3	0.672	32
3	1	89	66	23	94	28.1	0.167	21
4	0	137	40	35	168	43.1	2.288	33

Setup

This function initializes the training environment and creates the transformation pipeline. Setup function must be called before executing any other function in PyCaret. It only has two required parameters i.e. data and target. All the other parameters are optional.

```
In [3]: # import pycaret classification and init setup
    from pycaret.classification import *
    s = setup(data, target = 'Class variable', session_id = 123)
```

	Description	Value
0	Session id	123
1	Target	Class variable
2	Target type	Binary
3	Original data shape	(768, 9)
4	Transformed data shape	(768, 9)
5	Transformed train set shape	(537, 9)
6	Transformed test set shape	(231, 9)
7	Numeric features	8
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	StratifiedKFold
13	Fold Number	10
14	CPU Jobs	-1
15	Use GPU	False
16	Log Experiment	False
17	Experiment Name	clf-default-name
18	USI	52db

Once the setup has been successfully executed it shows the information grid containing experiment level information.

- **Session id:** A pseudo-random number distributed as a seed in all functions for later reproducibility. If no session_id is passed, a random number is automatically generated that is distributed to all functions.
- **Target type:** Binary, Multiclass, or Regression. The Target type is automatically detected.
- **Label Encoding:** When the Target variable is of type string (i.e. 'Yes' or 'No') instead of 1 or 0, it automatically encodes the label into 1 and 0 and displays the mapping (0 : No, 1 : Yes) for reference. In this tutorial, no label encoding is required since the target variable is of numeric type.
- **Original data shape:** Shape of the original data prior to any transformations.
- Transformed train set shape : Shape of transformed train set
- Transformed test set shape : Shape of transformed test set
- Numeric features: The number of features considered as numerical.
- Categorical features: The number of features considered as categorical.

Object Oriented API.

With Object Oriented API instead of executing functions directly you will import a class and execute methods of class.

```
In [4]: # import ClassificationExperiment and init the class
    from pycaret.classification import ClassificationExperiment
    exp = ClassificationExperiment()
In [5]: # check the type of exp
type(exp)
```

 ${\tt Out[5]:} \quad {\tt pycaret.classification.oop.ClassificationExperiment}$

```
In [6]: # init setup on exp
exp.setup(data, target = 'Class variable', session_id = 123)
```

	Description	Value
0	Session id	123
1	Target	Class variable
2	Target type	Binary
3	Original data shape	(768, 9)
4	Transformed data shape	(768, 9)
5	Transformed train set shape	(537, 9)
6	Transformed test set shape	(231, 9)
7	Numeric features	8
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	StratifiedKFold
13	Fold Number	10
14	CPU Jobs	-1
15	Use GPU	False
16	Log Experiment	False
17	Experiment Name	clf-default-name
18	USI	0071

Out[6]: <pycaret.classification.oop.ClassificationExperiment at 0x2e24286edc0>

You can use any of the two method i.e. Functional or OOP and even switch back and forth between two set of API's. The choice of method will not impact the results and has been tested for consistency.

Compare Models

This function trains and evaluates the performance of all the estimators available in the model library using cross-validation. The output of this function is a scoring grid with average cross-validated scores. Metrics evaluated during CV can be accessed using the

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js

get_metrics function. Custom metrics can be added or removed using add_metric and remove_metric function.

In [7]: # compare baseline models
best = compare_models()

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс	TT (Sec)
lr	Logistic Regression	0.7689	0.8047	0.5602	0.7208	0.6279	0.4641	0.4736	1.3810
ridge	Ridge Classifier	0.7670	0.0000	0.5497	0.7235	0.6221	0.4581	0.4690	0.0370
lda	Linear Discriminant Analysis	0.7670	0.8055	0.5550	0.7202	0.6243	0.4594	0.4695	0.0500
rf	Random Forest Classifier	0.7485	0.7911	0.5284	0.6811	0.5924	0.4150	0.4238	0.1940
nb	Naive Bayes	0.7427	0.7955	0.5702	0.6543	0.6043	0.4156	0.4215	0.0400
catboost	CatBoost Classifier	0.7410	0.7993	0.5278	0.6630	0.5851	0.4005	0.4078	0.0890
gbc	Gradient Boosting Classifier	0.7373	0.7918	0.5550	0.6445	0.5931	0.4013	0.4059	0.0770
ada	Ada Boost Classifier	0.7372	0.7799	0.5275	0.6585	0.5796	0.3926	0.4017	0.0870
et	Extra Trees Classifier	0.7299	0.7788	0.4965	0.6516	0.5596	0.3706	0.3802	0.1280
qda	Quadratic Discriminant Analysis	0.7282	0.7894	0.5281	0.6558	0.5736	0.3785	0.3910	0.0510
lightgbm	Light Gradient Boosting Machine	0.7133	0.7645	0.5398	0.6036	0.5650	0.3534	0.3580	0.2440
knn	K Neighbors Classifier	0.7001	0.7164	0.5020	0.5982	0.5413	0.3209	0.3271	0.0570
dt	Decision Tree Classifier	0.6928	0.6512	0.5137	0.5636	0.5328	0.3070	0.3098	0.0460
xgboost	Extreme Gradient Boosting	0.6853	0.7516	0.4912	0.5620	0.5216	0.2887	0.2922	0.0520
dummy	Dummy Classifier	0.6518	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0380
svm	SVM - Linear Kernel	0.5954	0.0000	0.3395	0.4090	0.2671	0.0720	0.0912	0.0410

Processing: 0%| | 0/69 [00:00<?, ?it/s]

In [8]: # compare models using OOP
 exp.compare_models()

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС	TT (Sec)
lr	Logistic Regression	0.7689	0.8047	0.5602	0.7208	0.6279	0.4641	0.4736	0.0450
ridge	Ridge Classifier	0.7670	0.0000	0.5497	0.7235	0.6221	0.4581	0.4690	0.0330
lda	Linear Discriminant Analysis	0.7670	0.8055	0.5550	0.7202	0.6243	0.4594	0.4695	0.0370
rf	Random Forest Classifier	0.7485	0.7911	0.5284	0.6811	0.5924	0.4150	0.4238	0.1320
nb	Naive Bayes	0.7427	0.7955	0.5702	0.6543	0.6043	0.4156	0.4215	0.0360
catboost	CatBoost Classifier	0.7410	0.7993	0.5278	0.6630	0.5851	0.4005	0.4078	0.0340
gbc	Gradient Boosting Classifier	0.7373	0.7918	0.5550	0.6445	0.5931	0.4013	0.4059	0.0730
ada	Ada Boost Classifier	0.7372	0.7799	0.5275	0.6585	0.5796	0.3926	0.4017	0.0750
et	Extra Trees Classifier	0.7299	0.7788	0.4965	0.6516	0.5596	0.3706	0.3802	0.1320
qda	Quadratic Discriminant Analysis	0.7282	0.7894	0.5281	0.6558	0.5736	0.3785	0.3910	0.0380
lightgbm	Light Gradient Boosting Machine	0.7133	0.7645	0.5398	0.6036	0.5650	0.3534	0.3580	0.0390
knn	K Neighbors Classifier	0.7001	0.7164	0.5020	0.5982	0.5413	0.3209	0.3271	0.0490
dt	Decision Tree Classifier	0.6928	0.6512	0.5137	0.5636	0.5328	0.3070	0.3098	0.0390
xgboost	Extreme Gradient Boosting	0.6853	0.7516	0.4912	0.5620	0.5216	0.2887	0.2922	0.0440
dummy	Dummy Classifier	0.6518	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0330
svm	SVM - Linear Kernel	0.5954	0.0000	0.3395	0.4090	0.2671	0.0720	0.0912	0.0310

Processing: 0%| | 0/69 [00:00<?, ?it/s]

Out[8]: ▼

Logistic Regression

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000, multi_class='auto', n_jobs=None, penalty='l2', random_state=123, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)

Notice that the output between functional and OOP API is consistent. Rest of the functions in this notebook will only be shown using functional API only.

You can use the plot_model function to analyzes the performance of a trained model on the test set. It may require re-training the model in certain cases.

```
In [9]: # plot confusion matrix
plot_model(best, plot = 'confusion_matrix')
```



```
In [10]: # plot AUC
plot_model(best, plot = 'auc')
```


An alternate to plot_model function is evaluate_model . It can only be used in Notebook since it uses ipywidget.

```
In [13]: evaluate_model(best)
```

interactive(children=(ToggleButtons(description='Plot Type:', icons=('',), options=
(('Pipeline Plot', 'pipelin...

Prediction

The predict_model function returns prediction_label and prediction_score (probability of the predicted class) as new columns in dataframe. When data is None (default), it uses the test set (created during the setup function) for scoring.

```
In [14]: # predict on test set
holdout_pred = predict_model(best)
```

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
0	Logistic Regression	0.7576	0.8568	0.5309	0.7049	0.6056	0.4356	0.4447

```
In [15]: # show predictions df
holdout_pred.head()
```

Out[15]:		Number of times pregnant	Plasma glucose concentration a 2 hours in an oral glucose tolerance test	Diastolic blood pressure (mm Hg)	Triceps skin fold thickness (mm)	2- Hour serum insulin (mu U/ml)	Body mass index (weight in kg/(height in m)^2)	Diabetes pedigree function	A((year
	537	6	114	88	0	0	27.799999	0.247	
	538	1	97	70	15	0	18.200001	0.147	
	539	2	90	70	17	0	27.299999	0.085	
	540	2	105	58	40	94	34.900002	0.225	
	541	11	138	76	0	0	33.200001	0.420	

The same function works for predicting the labels on unseen dataset. Let's create a copy of original data and drop the Class variable. We can then use the new data frame without labels for scoring.

```
In [16]: # copy data and drop Class variable

new_data = data.copy()
new_data.drop('Class variable', axis=1, inplace=True)
new_data.head()
```

Out[16]:		Number of times pregnant	Plasma glucose concentration a 2 hours in an oral glucose tolerance test	Diastolic blood pressure (mm Hg)	Triceps skin fold thickness (mm)	2- Hour serum insulin (mu U/ml)	Body mass index (weight in kg/(height in m)^2)	Diabetes pedigree function	Age (years)
	0	6	148	72	35	0	33.6	0.627	50
	1	1	85	66	29	0	26.6	0.351	31
	2	8	183	64	0	0	23.3	0.672	32
	3	1	89	66	23	94	28.1	0.167	21
	4	0	137	40	35	168	43.1	2.288	33

predictions.head() **Plasma** Out[17]: alucose **Body** concentration **Diastolic Triceps** Hour mass Number **Diabetes** blood skin fold a 2 hours in serum index Age of times pedigree thickness an oral pressure insulin (weight in (years) function pregnant glucose (mm Hg) (mm) (mu kg/(height in m)^2) tolerance U/ml) test 50 0 6 148 72 35 0 33.599998 0.627 1 1 85 29 26.600000 0.351 66 0 31 2 8 183 64 0 0 23.299999 0.672 32 3 1 89 66 23 94 28.100000 0.167 21 4 0 137 40 35 168 43.099998 2.288 33 Save Model Finally, you can save the entire pipeline on disk for later use, using pycaret's save model function. In [18]: # save pipeline save_model(best, 'my_first_pipeline') Transformation Pipeline and Model Successfully Saved Out[18]: (Pipeline(memory=FastMemory(location=C:\Users\owner\AppData\Local\Temp\joblib), steps=[('clean column names', TransformerWrapper(exclude=None, include=None, transformer=CleanColumnNames(match='[\\]\\ [\\,\\{\\}\\"\\:]+'))), ('numerical imputer', TransformerWrapper(exclude=None,

```
include=['Number of times pregnant',
                                                         'Plasma glucose concentration a 2 '
                                                         'hours in an oral glu...
                                                                           fill_value=None,
                                                                           missing values=nan,
                                                                           strategy='most freque
          nt',
                                                                           verbose='deprecate
          d'))),
                           ('trained model',
                            LogisticRegression(C=1.0, class weight=None, dual=False,
                                                fit intercept=True, intercept scaling=1,
                                                l1_ratio=None, max_iter=1000,
                                                multi_class='auto', n_jobs=None,
                                                penalty='l2', random_state=123,
                                                solver='lbfgs', tol=0.0001, verbose=0,
                                                warm start=False))],
                    verbose=False),
           'my first pipeline.pkl')
In [19]:
         # load pipeline
         loaded best pipeline = load model('my first pipeline')
         loaded best pipeline
```

Transformation Pipeline and Model Successfully Loaded

```
Pipeline
Out[19]:
           ▶ clean_column_names: TransformerWrapper
               ▶ transformer: CleanColumnNames
                      CleanColumnNames
           numerical_imputer: TransformerWrapper
                 transformer: SimpleImputer
                        ▶ SimpleImputer
          roategorical_imputer: TransformerWrapper
                 transformer: SimpleImputer
                        ▶ SimpleImputer
                     ▶ LogisticRegression
```


Detailed function-by-function overview

This function initializes the experiment in PyCaret and creates the transformation pipeline based on all the parameters passed in the function. Setup function must be called before executing any other function. It takes two required parameters: data and target . All the other parameters are optional and are used for configuring data preprocessing pipeline.

```
In [20]:
         # init setup function
         s = setup(data, target = 'Class variable', session_id = 123)
```

	Description	Value
0	Session id	123
1	Target	Class variable
2	Target type	Binary
3	Original data shape	(768, 9)
4	Transformed data shape	(768, 9)
5	Transformed train set shape	(537, 9)
6	Transformed test set shape	(231, 9)
7	Numeric features	8
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	StratifiedKFold
13	Fold Number	10
14	CPU Jobs	-1
15	Use GPU	False
16	Log Experiment	False
17	Experiment Name	clf-default-name
18	USI	038a

To access all the variables created by the setup function such as transformed dataset, random_state, etc. you can use <code>get_config</code> method.

```
In [21]: # check all available config
get_config()
```

```
Out[21]: {'USI',
           'X',
           'X test',
            'X test transformed',
            'X_train',
            'X train transformed',
            'X transformed',
            '_available_plots',
'_ml_usecase',
            'data',
            'dataset',
            'dataset transformed',
            'exp_id',
            'exp name log',
            'fix_imbalance',
            'fold_generator',
            'fold groups param',
            'fold shuffle param',
            'gpu_n_jobs_param',
            'gpu_param',
            'html_param',
           'idx',
            'is_multiclass',
            'log_plots_param',
            'logging_param',
            'memory',
            'n_jobs_param',
            'pipeline',
            'seed',
            'target_param',
            'test',
            'test_transformed',
            'train',
            'train_transformed',
            'variable_and_property_keys',
            'variables',
            'у',
            'y_test',
            'y_test_transformed',
            'y_train',
            'y_train_transformed',
            'y_transformed'}
          # lets access X_train_transformed
In [22]:
          get_config('X_train_transformed')
```

_		_		_	
\cap	14.	П	つつ	-1	

		Number of times pregnant	Plasma glucose concentration a 2 hours in an oral glucose tolerance test	Diastolic blood pressure (mm Hg)	Triceps skin fold thickness (mm)	2- Hour serum insulin (mu U/ml)	Body mass index (weight in kg/(height in m)^2)	Diabetes pedigree function	Aṛ (year
	0	13.0	152.0	90.0	33.0	29.0	26.799999	0.731	43
	1	0.0	104.0	64.0	37.0	64.0	33.599998	0.510	22
	2	5.0	137.0	108.0	0.0	0.0	48.799999	0.227	37
	3	0.0	111.0	65.0	0.0	0.0	24.600000	0.660	31
	4	6.0	105.0	70.0	32.0	68.0	30.799999	0.122	37
5	32	10.0	179.0	70.0	0.0	0.0	35.099998	0.200	37
5	33	0.0	100.0	88.0	60.0	110.0	46.799999	0.962	31
5	34	1.0	89.0	76.0	34.0	37.0	31.200001	0.192	23
5	35	1.0	121.0	78.0	39.0	74.0	39.000000	0.261	28
5	36	0.0	140.0	65.0	26.0	130.0	42.599998	0.431	24

 $537 \text{ rows} \times 8 \text{ columns}$

```
In [23]: # another example: let's access seed
print("The current seed is: {}".format(get_config('seed')))

# now lets change it using set_config
set_config('seed', 786)
print("The new seed is: {}".format(get_config('seed')))
```

The current seed is: 123 The new seed is: 786

All the preprocessing configurations and experiment settings/parameters are passed into the setup function. To see all available parameters, check the docstring:

	Description	Value
0	Session id	123
1	Target	Class variable
2	Target type	Binary
3	Original data shape	(768, 9)
4	Transformed data shape	(768, 9)
5	Transformed train set shape	(537, 9)
6	Transformed test set shape	(231, 9)
7	Numeric features	8
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Normalize	True
13	Normalize method	minmax
14	Fold Generator	StratifiedKFold
15	Fold Number	10
16	CPU Jobs	-1
17	Use GPU	False
18	Log Experiment	False
19	Experiment Name	clf-default-name
20	USI	f18d

In [26]: # lets check the X_train_transformed to see effect of params passed
get_config('X_train_transformed')['Number of times pregnant'].hist()

Out[26]: <AxesSubplot:>

Notice that all the values are between 0 and 1 - that is because we passed normalize=True in the setup function. If you don't remember how it compares to actual data, no problem - we can also access non-transformed values using <code>get_config</code> and then compare. See below and notice the range of values on x-axis and compare it with histogram above.

```
In [27]: get_config('X_train')['Number of times pregnant'].hist()
```

Out[27]: <AxesSubplot:>

Compare Models

This function trains and evaluates the performance of all estimators available in the model library using cross-validation. The output of this function is a scoring grid with average cross-validated scores. Metrics evaluated during CV can be accessed using the get_metrics function. Custom metrics can be added or removed using add_metric and remove_metric function.

In [28]: best = compare_models()

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	МСС	TT (Sec)
ridge	Ridge Classifier	0.7708	0.0000	0.5392	0.7353	0.6203	0.4618	0.4744	0.0340
Ir	Logistic Regression	0.7689	0.8068	0.4959	0.7614	0.5968	0.4453	0.4673	0.0360
lda	Linear Discriminant Analysis	0.7670	0.8055	0.5550	0.7202	0.6243	0.4594	0.4695	0.0340
svm	SVM - Linear Kernel	0.7521	0.0000	0.5070	0.7363	0.5796	0.4154	0.4398	0.0340
rf	Random Forest Classifier	0.7485	0.7917	0.5336	0.6784	0.5946	0.4164	0.4245	0.1340
nb	Naive Bayes	0.7427	0.7957	0.5702	0.6543	0.6043	0.4156	0.4215	0.0390
catboost	CatBoost Classifier	0.7410	0.7994	0.5278	0.6630	0.5851	0.4005	0.4078	0.0430
gbc	Gradient Boosting Classifier	0.7373	0.7920	0.5550	0.6445	0.5931	0.4013	0.4059	0.0730
ada	Ada Boost Classifier	0.7372	0.7799	0.5275	0.6585	0.5796	0.3926	0.4017	0.0690
et	Extra Trees Classifier	0.7299	0.7788	0.4965	0.6516	0.5596	0.3706	0.3802	0.1330
qda	Quadratic Discriminant Analysis	0.7282	0.7894	0.5281	0.6558	0.5736	0.3785	0.3910	0.0360
lightgbm	Light Gradient Boosting Machine	0.7113	0.7653	0.5181	0.6036	0.5533	0.3427	0.3479	0.0480
knn	K Neighbors Classifier	0.7002	0.7433	0.4860	0.5965	0.5311	0.3142	0.3210	0.0570
dt	Decision Tree Classifier	0.6947	0.6526	0.5137	0.5665	0.5343	0.3103	0.3130	0.0380
xgboost	Extreme Gradient Boosting	0.6853	0.7522	0.4912	0.5620	0.5216	0.2887	0.2922	0.0390
dummy	Dummy Classifier	0.6518	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0380

Processing: 0%| | 0/69 [00:00<?, ?it/s]

compare_models by default uses all the estimators in model library (all except models
with Turbo=False). To see all available models you can use the function models()

In [29]: # check available models
models()

ID			
Ir	Logistic Regression	sklearn.linear_modellogistic.LogisticRegression	True
knn	K Neighbors Classifier	$sklearn.neighbors._classification. KNeighbors Cl$	True
nb	Naive Bayes	sklearn.naive_bayes.GaussianNB	True
dt	Decision Tree Classifier	$sklearn.tree._classes.Decision Tree Classifier$	True
svm	SVM - Linear Kernel	$sklearn. linear_model._stochastic_gradient. SGDC$	True
rbfsvm	SVM - Radial Kernel	sklearn.svmclasses.SVC	False
gpc	Gaussian Process Classifier	sklearn.gaussian_processgpc.GaussianProcessC	False
mlp	MLP Classifier	sklearn.neural_networkmultilayer_perceptron	False
ridge	Ridge Classifier	$sklearn. linear_model._ridge. Ridge Classifier$	True
rf	Random Forest Classifier	sklearn.ensembleforest.RandomForestClassifier	True
qda	Quadratic Discriminant Analysis	sklearn.discriminant_analysis.QuadraticDiscrim	True
ada	Ada Boost Classifier	$sklearn.ensemble._weight_boosting.AdaBoostClas$	True
gbc	Gradient Boosting Classifier	sklearn.ensemblegb.GradientBoostingClassifier	True
lda	Linear Discriminant Analysis	sklearn.discriminant_analysis.LinearDiscrimina	True
et	Extra Trees Classifier	$sklearn.ensemble._forest. Extra Trees Classifier$	True
xgboost	Extreme Gradient Boosting	xgboost.sklearn.XGBClassifier	True
lightgbm	Light Gradient Boosting Machine	lightgbm.sklearn.LGBMClassifier	True
catboost	CatBoost Classifier	catboost.core.CatBoostClassifier	True
dummy	Dummy Classifier	sklearn.dummy.DummyClassifier	True

You can use the include and exclude parameter in the compare_models to train only select model or exclude specific models from training by passing the model id's in exclude parameter.

```
In [30]: compare_tree_models = compare_models(include = ['dt', 'rf', 'et', 'gbc', 'xgboost', '
```

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	МСС	TT (Sec)
rf	Random Forest Classifier	0.7485	0.7917	0.5336	0.6784	0.5946	0.4164	0.4245	0.1200
catboost	CatBoost Classifier	0.7410	0.7994	0.5278	0.6630	0.5851	0.4005	0.4078	0.0410
gbc	Gradient Boosting Classifier	0.7373	0.7920	0.5550	0.6445	0.5931	0.4013	0.4059	0.0780
et	Extra Trees Classifier	0.7299	0.7788	0.4965	0.6516	0.5596	0.3706	0.3802	0.1300
lightgbm	Light Gradient Boosting Machine	0.7113	0.7653	0.5181	0.6036	0.5533	0.3427	0.3479	0.0460
dt	Decision Tree Classifier	0.6947	0.6526	0.5137	0.5665	0.5343	0.3103	0.3130	0.0360
xgboost	Extreme Gradient Boosting	0.6853	0.7522	0.4912	0.5620	0.5216	0.2887	0.2922	0.0420
Processin	ıg: 0%	0/	/33 [00:	00 , ?i</th <th>t/s]</th> <th></th> <th></th> <th></th> <th></th>	t/s]				
compare_tree_models									
			DandomE	oros+Cl	assifie	ar.			

In [31]

Out[31]: •

RandomForestClassifier

RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None, criterion='gini', max_depth=None, max_features='sqr t', max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=-1, oob_score=False, random_state=123, verbose=0, warm_start=False)

The function above has return trained model object as an output. The scoring grid is only displayed and not returned. If you need access to the scoring grid you can use pull function to access the dataframe.

In [32]: compare_tree_models_results = pull() compare_tree_models_results

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	МСС	TT (Sec)
rf	Random Forest Classifier	0.7485	0.7917	0.5336	0.6784	0.5946	0.4164	0.4245	0.120
catboost	CatBoost Classifier	0.7410	0.7994	0.5278	0.6630	0.5851	0.4005	0.4078	0.041
gbc	Gradient Boosting Classifier	0.7373	0.7920	0.5550	0.6445	0.5931	0.4013	0.4059	0.078
et	Extra Trees Classifier	0.7299	0.7788	0.4965	0.6516	0.5596	0.3706	0.3802	0.130
lightgbm	Light Gradient Boosting Machine	0.7113	0.7653	0.5181	0.6036	0.5533	0.3427	0.3479	0.046
dt	Decision Tree Classifier	0.6947	0.6526	0.5137	0.5665	0.5343	0.3103	0.3130	0.036
xgboost	Extreme Gradient Boosting	0.6853	0.7522	0.4912	0.5620	0.5216	0.2887	0.2922	0.042

By default <code>compare_models</code> return the single best performing model based on the metric defined in the <code>sort</code> parameter. Let's change our code to return 3 top models based on <code>Recall</code>.

```
In [33]: best_recall_models_top3 = compare_models(sort = 'Recall', n_select = 3)
```

	Model	Accuracy	AUC	Recall	Prec.	F1	Карра	мсс	TT (Sec)
nb	Naive Bayes	0.7427	0.7957	0.5702	0.6543	0.6043	0.4156	0.4215	0.0430
gbc	Gradient Boosting Classifier	0.7373	0.7920	0.5550	0.6445	0.5931	0.4013	0.4059	0.0710
lda	Linear Discriminant Analysis	0.7670	0.8055	0.5550	0.7202	0.6243	0.4594	0.4695	0.0330
ridge	Ridge Classifier	0.7708	0.0000	0.5392	0.7353	0.6203	0.4618	0.4744	0.0340
rf	Random Forest Classifier	0.7485	0.7917	0.5336	0.6784	0.5946	0.4164	0.4245	0.1190
qda	Quadratic Discriminant Analysis	0.7282	0.7894	0.5281	0.6558	0.5736	0.3785	0.3910	0.0370
catboost	CatBoost Classifier	0.7410	0.7994	0.5278	0.6630	0.5851	0.4005	0.4078	0.0400
ada	Ada Boost Classifier	0.7372	0.7799	0.5275	0.6585	0.5796	0.3926	0.4017	0.0670
lightgbm	Light Gradient Boosting Machine	0.7113	0.7653	0.5181	0.6036	0.5533	0.3427	0.3479	0.0450
dt	Decision Tree Classifier	0.6947	0.6526	0.5137	0.5665	0.5343	0.3103	0.3130	0.0340
svm	SVM - Linear Kernel	0.7521	0.0000	0.5070	0.7363	0.5796	0.4154	0.4398	0.0340
et	Extra Trees Classifier	0.7299	0.7788	0.4965	0.6516	0.5596	0.3706	0.3802	0.1290
Ir	Logistic Regression	0.7689	0.8068	0.4959	0.7614	0.5968	0.4453	0.4673	0.0410
xgboost	Extreme Gradient Boosting	0.6853	0.7522	0.4912	0.5620	0.5216	0.2887	0.2922	0.0390
knn	K Neighbors Classifier	0.7002	0.7433	0.4860	0.5965	0.5311	0.3142	0.3210	0.0570
dummy	Dummy Classifier	0.6518	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0550

Processing: 0%| | 0/71 [00:00<?, ?it/s]

In [34]: # list of top 3 models by Recall

best_recall_models_top3

```
Out[34]: [GaussianNB(priors=None, var_smoothing=le-09),
          GradientBoostingClassifier(ccp_alpha=0.0, criterion='friedman_mse', init=None,
                                      learning rate=0.1, loss='log loss', max depth=3,
                                      max features=None, max leaf nodes=None,
                                      min_impurity_decrease=0.0, min_samples_leaf=1,
                                      min samples split=2, min weight fraction leaf=0.0,
                                      n estimators=100, n iter no change=None,
                                      random state=123, subsample=1.0, tol=0.0001,
                                      validation_fraction=0.1, verbose=0,
                                      warm start=False),
          LinearDiscriminantAnalysis(covariance estimator=None, n components=None,
                                      priors=None, shrinkage=None, solver='svd',
                                      store covariance=False, tol=0.0001)]
```

Some other parameters that you might find very useful in compare models are:

- fold
- · cross_validation
- · budget time
- errors
- · probability threshold
- parallel

You can check the docstring of the function for more info.

In [35]: # help(compare_models)

In [36]: # check available metrics used in CV get_metrics()

Out[36]:

	Score Function	Display Name	Name	
				ID
	<pre><function 0x000002e242711280="" accuracy_score="" at=""></function></pre>	Accuracy	Accuracy	acc
make_scord needs	<function 0x000002e24270b0d0="" at="" roc_auc_score=""></function>	AUC	AUC	auc
make_sc av	<pre><pycaret.internal.metrics.binarymulticlassscor< pre=""></pycaret.internal.metrics.binarymulticlassscor<></pre>	Recall	Recall	recall
make_scorei av	<pre><pycaret.internal.metrics.binarymulticlassscor< pre=""></pycaret.internal.metrics.binarymulticlassscor<></pre>	Prec.	Precision	precision
make av	<pre><pycaret.internal.metrics.binarymulticlassscor< pre=""></pycaret.internal.metrics.binarymulticlassscor<></pre>	F1	F1	f1
make_scorer(cor	<pre><function 0x000002e242711<="" at="" cohen_kappa_score="" pre=""></function></pre>	Карра	Kappa	kappa
make_scorer(ma	<pre><function 0x000002e242711<="" at="" matthews_corrcoef="" pre=""></function></pre>	MCC	МСС	mcc

In [37]: # create a custom function import numpy as np

 $Loading\ [Math Jax]/jax/output/Common HTML/fonts/TeX/font data.js$

```
tp = np.where((y_pred==1) & (y==1), (100), 0)
             fp = np.where((y_pred==1) & (y==0), -5, 0)
             return np.sum([tp,fp])
         # add metric to PyCaret
         add_metric('custom_metric', 'Custom Metric', custom_metric)
Out[37]: Name
                                                                Custom Metric
                                                                Custom Metric
         Display Name
         Score Function  <function custom_metric at 0x000002E24B0EA430>
         Scorer
                                                  make_scorer(custom_metric)
         Target
                                                                         pred
         Args
                                                                           {}
         Greater is Better
                                                                        True
                                                                         True
         Multiclass
                                                                         True
         Custom
         Name: custom_metric, dtype: object
In [38]: # now let's run compare_models again
         compare_models()
```

		Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	МСС	Custom Metric
ridge	}	Ridge Classifier	0.7708	0.0000	0.5392	0.7353	0.6203	0.4618	0.4744	991.5000
lr		Logistic Regression	0.7689	0.8068	0.4959	0.7614	0.5968	0.4453	0.4673	915.0000
lda		Linear Discriminant Analysis	0.7670	0.8055	0.5550	0.7202	0.6243	0.4594	0.4695	1019.0000
svm		SVM - Linear Kernel	0.7521	0.0000	0.5070	0.7363	0.5796	0.4154	0.4398	929.5000
rf		Random Forest Classifier	0.7485	0.7917	0.5336	0.6784	0.5946	0.4164	0.4245	976.0000
nb		Naive Bayes	0.7427	0.7957	0.5702	0.6543	0.6043	0.4156	0.4215	1041.0000
catbo	ost	CatBoost Classifier	0.7410	0.7994	0.5278	0.6630	0.5851	0.4005	0.4078	964.5000
gbc		Gradient Boosting Classifier	0.7373	0.7920	0.5550	0.6445	0.5931	0.4013	0.4059	1011.0000
ada		Ada Boost Classifier	0.7372	0.7799	0.5275	0.6585	0.5796	0.3926	0.4017	963.5000
et		Extra Trees Classifier	0.7299	0.7788	0.4965	0.6516	0.5596	0.3706	0.3802	904.5000
qda		Quadratic Discriminant Analysis	0.7282	0.7894	0.5281	0.6558	0.5736	0.3785	0.3910	961.0000
lighto	gbm	Light Gradient Boosting Machine	0.7113	0.7653	0.5181	0.6036	0.5533	0.3427	0.3479	937.5000
knn		K Neighbors Classifier	0.7002	0.7433	0.4860	0.5965	0.5311	0.3142	0.3210	877.5000
dt		Decision Tree Classifier	0.6947	0.6526	0.5137	0.5665	0.5343	0.3103	0.3130	923.5000
xgbo	ost	Extreme Gradient Boosting	0.6853	0.7522	0.4912	0.5620	0.5216	0.2887	0.2922	883.0000
dumr	ny	Dummy Classifier	0.6518	0.5000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Proce	essin	g: 0%	0/6	69 [00:0	0 , ?it</th <th>t/s]</th> <th></th> <th></th> <th></th> <th></th>	t/s]				
]: 🔻				Ridg	eClassi	fier				

Out[38]

RidgeClassifier(alpha=1.0, class_weight=None, copy_X=True, fit_intercept=Tru
e,

max_iter=None, normalize='deprecated', positive=False, random_state=123, solver='auto', tol=0.001)

In [39]: # remove custom metric
 remove_metric('custom_metric')

PyCaret integrates with many different type of experiment loggers (default = 'mlflow'). To turn on experiment tracking in PyCaret you can set log_experiment and experiment_name parameter. It will automatically track all the metrics, hyperparameters, and artifacts based on the defined logger.

```
In [40]: # from pycaret.classification import *
    # s = setup(data, target = 'Class variable', log_experiment='mlflow', experiment_name

In [41]: # compare models
    # best = compare_models()

In [42]: # start mlflow server on localhost:5000
    # !mlflow ui
```

By default PyCaret uses MLFlow logger that can be changed using log_experiment parameter. Following loggers are available:

- mlflow
- wandb
- comet ml
- dagshub

Other logging related parameters that you may find useful are:

- experiment_custom_tags
- log_plots
- · log_data
- log_profile

For more information check out the docstring of the setup function.

In [43]: # help(setup)

This function trains and evaluates the performance of a given estimator using cross-validation. The output of this function is a scoring grid with CV scores by fold. Metrics evaluated during CV can be accessed using the <code>get_metrics</code> function. Custom metrics can be added or removed using <code>add_metric</code> and <code>remove_metric</code> function. All the available models can be accessed using the models function.

```
In [44]: # check all the available models
models()
```

Out[44]:	Name	Reference	Turbo

ID			
Ir	Logistic Regression	$sklearn. linear_model._logistic. Logistic Regression$	True
knn	K Neighbors Classifier	$sklearn.neighbors._classification. KNeighbors Cl$	True
nb	Naive Bayes	sklearn.naive_bayes.GaussianNB	True
dt	Decision Tree Classifier	$sklearn.tree._classes.Decision Tree Classifier$	True
svm	SVM - Linear Kernel	$sklearn. linear_model._stochastic_gradient. SGDC$	True
rbfsvm	SVM - Radial Kernel	sklearn.svmclasses.SVC	False
gpc	Gaussian Process Classifier	sklearn.gaussian_processgpc.GaussianProcessC	False
mlp	MLP Classifier	sklearn.neural_networkmultilayer_perceptron	False
ridge	Ridge Classifier	sklearn.linear_modelridge.RidgeClassifier	True
rf	Random Forest Classifier	sklearn.ensembleforest.RandomForestClassifier	True
qda	Quadratic Discriminant Analysis	sklearn.discriminant_analysis.QuadraticDiscrim	True
ada	Ada Boost Classifier	$sklearn.ensemble._weight_boosting.AdaBoostClas$	True
gbc	Gradient Boosting Classifier	sklearn.ensemblegb.GradientBoostingClassifier	True
lda	Linear Discriminant Analysis	sklearn.discriminant_analysis.LinearDiscrimina	True
et	Extra Trees Classifier	$sklearn.ensemble._forest. Extra Trees Classifier$	True
xgboost	Extreme Gradient Boosting	xgboost.sklearn.XGBClassifier	True
lightgbm	Light Gradient Boosting Machine	lightgbm.sklearn.LGBMClassifier	True
catboost	CatBoost Classifier	catboost.core.CatBoostClassifier	True
dummy	Dummy Classifier	sklearn.dummy.DummyClassifier	True

In [45]: # train logistic regression with default fold=10
lr = create_model('lr')

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.8148	0.9023	0.5789	0.8462	0.6875	0.5624	0.5828
1	0.8333	0.7970	0.6316	0.8571	0.7273	0.6112	0.6260
2	0.8519	0.9383	0.6316	0.9231	0.7500	0.6499	0.6736
3	0.7222	0.7759	0.4211	0.6667	0.5161	0.3350	0.3524
4	0.8333	0.9083	0.5789	0.9167	0.7097	0.6010	0.6322
5	0.6852	0.6737	0.4211	0.5714	0.4848	0.2656	0.2720
6	0.7222	0.7820	0.4737	0.6429	0.5455	0.3520	0.3605
7	0.7547	0.8460	0.3333	0.8571	0.4800	0.3579	0.4263
8	0.7358	0.6952	0.4444	0.6667	0.5333	0.3592	0.3736
9	0.7358	0.7492	0.4444	0.6667	0.5333	0.3592	0.3736
Mean	0.7689	0.8068	0.4959	0.7614	0.5968	0.4453	0.4673
Std	0.0557	0.0857	0.0970	0.1236	0.1024	0.1353	0.1379

Processing: 0%| | 0/4 [00:00<?, ?it/s]

The function above has return trained model object as an output. The scoring grid is only displayed and not returned. If you need access to the scoring grid you can use pull function to access the dataframe.

```
In [46]: lr_results = pull()
         print(type(lr_results))
         lr_results
```

<class 'pandas.core.frame.DataFrame'>

Out[46]:	Accuracy	AUC
----------	----------	-----

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.8148	0.9023	0.5789	0.8462	0.6875	0.5624	0.5828
1	0.8333	0.7970	0.6316	0.8571	0.7273	0.6112	0.6260
2	0.8519	0.9383	0.6316	0.9231	0.7500	0.6499	0.6736
3	0.7222	0.7759	0.4211	0.6667	0.5161	0.3350	0.3524
4	0.8333	0.9083	0.5789	0.9167	0.7097	0.6010	0.6322
5	0.6852	0.6737	0.4211	0.5714	0.4848	0.2656	0.2720
6	0.7222	0.7820	0.4737	0.6429	0.5455	0.3520	0.3605
7	0.7547	0.8460	0.3333	0.8571	0.4800	0.3579	0.4263
8	0.7358	0.6952	0.4444	0.6667	0.5333	0.3592	0.3736
9	0.7358	0.7492	0.4444	0.6667	0.5333	0.3592	0.3736
Mean	0.7689	0.8068	0.4959	0.7614	0.5968	0.4453	0.4673
Std	0.0557	0.0857	0.0970	0.1236	0.1024	0.1353	0.1379

```
In [47]: # train logistic regression with fold=3
         lr = create_model('lr', fold=3)
```

```
Accuracy
                   AUC Recall Prec.
                                           F1 Kappa
                                                         MCC
 Fold
         0.8101 0.8526 0.5714 0.8372 0.6792 0.5510 0.5713
    0
    1
         0.7486 \ 0.7921 \ 0.5000 \ 0.6889 \ 0.5794 \ 0.4065 \ 0.4172
    2
         0.7486 \ 0.7804 \ 0.4194 \ 0.7429 \ 0.5361 \ 0.3815 \ 0.4108
         0.7691 0.8084 0.4969 0.7563 0.5983 0.4464 0.4664
Mean
         0.0290 0.0317 0.0621 0.0613 0.0599 0.0747 0.0742
 Std
Processing:
                           | 0/4 [00:00<?, ?it/s]
              0%|
```

In [48]: # train logistic regression with specific model parameters

create_model('lr', C = 0.5, ll_ratio = 0.15)

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.7963	0.8872	0.4737	0.9000	0.6207	0.4992	0.5472
1	0.8148	0.8030	0.5789	0.8462	0.6875	0.5624	0.5828
2	0.8519	0.9353	0.5789	1.0000	0.7333	0.6406	0.6865
3	0.7037	0.7684	0.3684	0.6364	0.4667	0.2812	0.3013
4	0.8519	0.9038	0.5789	1.0000	0.7333	0.6406	0.6865
5	0.6852	0.6737	0.4211	0.5714	0.4848	0.2656	0.2720
6	0.7222	0.7624	0.4737	0.6429	0.5455	0.3520	0.3605
7	0.7547	0.8302	0.3333	0.8571	0.4800	0.3579	0.4263
8	0.7358	0.6952	0.3333	0.7500	0.4615	0.3193	0.3654
9	0.7547	0.7587	0.4444	0.7273	0.5517	0.3961	0.4189
Mean	0.7671	0.8018	0.4585	0.7931	0.5765	0.4315	0.4647
Std	0.0561	0.0828	0.0922	0.1437	0.1039	0.1360	0.1440

Processing: 0%| | 0/4 [00:00<?, ?it/s]

Out[48]: •

LogisticRegression

		Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC			
Split	Fold										
	0	0.7660	0.8146	0.5000	0.7434	0.5979	0.4417	0.4589			
	1	0.7764	0.8259	0.5000	0.7778	0.6087	0.4623	0.4845			
	2	0.7702	0.8138	0.5000	0.7568	0.6022	0.4499	0.4690			
	3	0.7909	0.8296	0.5417	0.7913	0.6431	0.5025	0.5205			
CV-Train	4	0.7764	0.8142	0.5060	0.7727	0.6115	0.4640	0.4845			
CV-II alli	5	0.7888	0.8403	0.5417	0.7845	0.6408	0.4983	0.5154			
	6	0.7826	0.8242	0.5238	0.7788	0.6263	0.4812	0.5000			
	7	0.7748	0.8185	0.5148	0.7632	0.6148	0.4641	0.4820			
	8	0.7810	0.8387	0.5266	0.7739	0.6268	0.4796	0.4974			
	9	0.7851	0.8340	0.5266	0.7876	0.6312	0.4879	0.5076			
	0	0.8148	0.9023	0.5789	0.8462	0.6875	0.5624	0.5828			
	1	0.8333	0.7970	0.6316	0.8571	0.7273	0.6112	0.6260			
	2	0.8519	0.9383	0.6316	0.9231	0.7500	0.6499	0.6736			
	3	0.7222	0.7759	0.4211	0.6667	0.5161	0.3350	0.3524			
CV-Val	4	0.8333	0.9083	0.5789	0.9167	0.7097	0.6010	0.6322			
CV-Vai	5	0.6852	0.6737	0.4211	0.5714	0.4848	0.2656	0.2720			
	6	0.7222	0.7820	0.4737	0.6429	0.5455	0.3520	0.3605			
	7	0.7547	0.8460	0.3333	0.8571	0.4800	0.3579	0.4263			
	8	0.7358	0.6952	0.4444	0.6667	0.5333	0.3592	0.3736			
	9	0.7358	0.7492	0.4444	0.6667	0.5333	0.3592	0.3736			
CV-Train	Mean	0.7792	0.8254	0.5181	0.7730	0.6203	0.4731	0.4920			
CV-II alli	Std	0.0075	0.0096	0.0156	0.0141	0.0149	0.0191	0.0188			
CV-Val	Mean	0.7689	0.8068	0.4959	0.7614	0.5968	0.4453	0.4673			
CV-Vai	Std	0.0557	0.0857	0.0970	0.1236	0.1024	0.1353	0.1379			
Train	nan	0.7765	0.8248	0.5187	0.7638	0.6178	0.4680	0.4855			
Processin	ng: 0º	%	0/4	[00:00<	?, ?it/s]					
: ▼	▼ LogisticRegression										
Logisti	LogisticRegression(C=1.0, class_weight=None, dual=False, fit_interce										

Out[49]:

LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True, intercept_scaling=1, l1_ratio=None, max_iter=1000, multi_class='auto', n_jobs=None, penalty='l2', random_state=123, solver='lbfgs', tol=0.0001, verbose=0, warm_start=False)

In [50]: # change the probability threshold of classifier from 0.5 to 0.66
 create_model('lr', probability_threshold = 0.66)

Fold 0 1 2 3	0.7222 0.7407 0.7037 0.7037	0.9023 0.7970 0.9383	0.2105 0.2632	1.0000	0.3478 0.4167	0.2569	0.3839
1 2	0.7407 0.7037	0.7970					
2	0.7037		0.2632	1.0000	0.4167		
_		0.9383			0.4107	0.3165	0.4336
3	0 7037		0.1579	1.0000	0.2727	0.1955	0.3292
	0.7037	0.7759	0.2105	0.8000	0.3333	0.2188	0.2998
4	0.7037	0.9083	0.1579	1.0000	0.2727	0.1955	0.3292
5	0.6852	0.6737	0.2105	0.6667	0.3200	0.1818	0.2331
6	0.7222	0.7820	0.3158	0.7500	0.4444	0.2981	0.3477
7	0.6981	0.8460	0.1111	1.0000	0.2000	0.1417	0.2761
8	0.7170	0.6952	0.2222	0.8000	0.3478	0.2348	0.3138
9	0.6981	0.7492	0.1667	0.7500	0.2727	0.1703	0.2476
Mean	0.7095	0.8068	0.2026	0.8767	0.3228	0.2210	0.3194
Std	0.0152	0.0857	0.0554	0.1281	0.0690	0.0531	0.0575
Process Out[50]: ► Cus	sing: 0%	·			, ?it,</th <th>/s]</th> <th></th>	/s]	
•	classifie ► Log		sticReg				

Some other parameters that you might find very useful in create_model are:

- · cross_validation
- engine
- fit_kwargs
- groups

You can check the docstring of the function for more info.

In [51]: # help(create_model)

🔽 Tune Model

This function tunes the hyperparameters of the model. The output of this function is a scoring grid with cross-validated scores by fold. The best model is selected based on the metric defined in optimize parameter. Metrics evaluated during cross-validation can be accessed using the get_metrics function. Custom metrics can be added or removed using add_metric and remove_metric function.

```
In [52]: # train a dt model with default params
dt = create_model('dt')
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.7222	0.6774	0.5263	0.6250	0.5714	0.3682	0.3711
1	0.7222	0.7015	0.6316	0.6000	0.6154	0.3982	0.3985
2	0.7407	0.7038	0.5789	0.6471	0.6111	0.4176	0.4190
3	0.5926	0.5053	0.2105	0.3636	0.2667	0.0116	0.0125
4	0.7778	0.7684	0.7368	0.6667	0.7000	0.5242	0.5259
5	0.6296	0.5940	0.4737	0.4737	0.4737	0.1880	0.1880
6	0.6296	0.5699	0.3684	0.4667	0.4118	0.1469	0.1491
7	0.8302	0.7770	0.6111	0.8462	0.7097	0.5940	0.6098
8	0.6604	0.6079	0.4444	0.5000	0.4706	0.2219	0.2227
9	0.6415	0.6206	0.5556	0.4762	0.5128	0.2319	0.2336
Mean	0.6947	0.6526	0.5137	0.5665	0.5343	0.3103	0.3130
Std	0.0720	0.0834	0.1410	0.1310	0.1292	0.1714	0.1739

Processing: 0%| | 0/4 [00:00<?, ?it/s]

In [53]: # tune hyperparameters of dt tuned_dt = tune_model(dt)

	Accuracy	AUC	Recall	Prec.	F1	Kappa	МСС
Fold							
0	0.8519	0.8135	0.6842	0.8667	0.7647	0.6588	0.6686
1	0.7593	0.6940	0.4737	0.7500	0.5806	0.4236	0.4456
2	0.7593	0.7782	0.8421	0.6154	0.7111	0.5132	0.5318
3	0.7037	0.6511	0.4737	0.6000	0.5294	0.3175	0.3223
4	0.8333	0.7632	0.5263	1.0000	0.6897	0.5902	0.6470
5	0.6296	0.5820	0.4211	0.4706	0.4444	0.1680	0.1685
6	0.7222	0.6654	0.4737	0.6429	0.5455	0.3520	0.3605
7	0.7358	0.6246	0.2778	0.8333	0.4167	0.2973	0.3725
8	0.6604	0.5675	0.2778	0.5000	0.3571	0.1512	0.1633
9	0.7170	0.6643	0.5000	0.6000	0.5455	0.3424	0.3454
Mean	0.7372	0.6804	0.4950	0.6879	0.5585	0.3814	0.4026
Std	0.0653	0.0782	0.1608	0.1611	0.1258	0.1587	0.1654

| 0/7 [00:00<?, ?it/s] Processing: 0%| Fitting 10 folds for each of 10 candidates, totalling 100 fits

Metric to optimize can be defined in optimize parameter (default = 'Accuracy'). Also, a custom tuned grid can be passed with <code>custom_grid</code> parameter.

In [54]: dt

```
e,
                                  min_impurity_decrease=0.0, min_samples_leaf=1,
                                  min_samples_split=2, min_weight_fraction_leaf=0.0,
                                  random_state=123, splitter='best')
In [55]:
         # define tuning grid
         dt_grid = {'max_depth' : [None, 2, 4, 6, 8, 10, 12]}
         # tune model with custom grid and metric = F1
         tuned dt = tune model(dt, custom grid = dt grid, optimize = 'F1')
                           AUC Recall
               Accuracy
                                          Prec.
                                                    F1 Kappa
                                                                  MCC
         Fold
            0
                  0.7593  0.8008  0.7368  0.6364  0.6829  0.4906  0.4940
            1
                  0.6667  0.7444  0.5263  0.5263  0.5263  0.2692  0.2692
            2
                  0.7593  0.8241  0.5263  0.7143  0.6061  0.4384  0.4490
            3
                  0.6667  0.6293  0.4211  0.5333  0.4706
                                                        0.2322 0.2357
            4
                  0.8333  0.8962  0.6842  0.8125  0.7429
                                                        0.6209 0.6259
            5
                  0.6667  0.6534  0.5789  0.5238  0.5500  0.2863  0.2872
            6
                  0.6296  0.6759  0.3158  0.4615  0.3750  0.1248  0.1293
                  0.7736  0.7698  0.6111  0.6875  0.6471  0.4812  0.4830
                  0.6415  0.6817  0.4444  0.4706  0.4571
            8
                                                        0.1899 0.1900
                  0.7547  0.7437  0.6111  0.6471  0.6286  0.4457  0.4461
            9
        Mean
                  0.7151 0.7419 0.5456 0.6013 0.5687
                                                        0.3579 0.3610
          Std
                  0.0653  0.0796  0.1203  0.1100  0.1078  0.1508  0.1517
        Processing:
                      0%|
                                    | 0/7 [00:00<?, ?it/s]
        Fitting 10 folds for each of 7 candidates, totalling 70 fits
```

In [56]: # to access the tuner object you can set return_tuner = True
tuned_dt, tuner = tune_model(dt, return_tuner=True)

DecisionTreeClassifier

max depth=None, max features=None, max leaf nodes=Non

DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None, criterion='gini',

Out[54]: ▼

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.8519	0.8135	0.6842	0.8667	0.7647	0.6588	0.6686
1	0.7593	0.6940	0.4737	0.7500	0.5806	0.4236	0.4456
2	0.7593	0.7782	0.8421	0.6154	0.7111	0.5132	0.5318
3	0.7037	0.6511	0.4737	0.6000	0.5294	0.3175	0.3223
4	0.8333	0.7632	0.5263	1.0000	0.6897	0.5902	0.6470
5	0.6296	0.5820	0.4211	0.4706	0.4444	0.1680	0.1685
6	0.7222	0.6654	0.4737	0.6429	0.5455	0.3520	0.3605
7	0.7358	0.6246	0.2778	0.8333	0.4167	0.2973	0.3725
8	0.6604	0.5675	0.2778	0.5000	0.3571	0.1512	0.1633
9	0.7170	0.6643	0.5000	0.6000	0.5455	0.3424	0.3454
Mean	0.7372	0.6804	0.4950	0.6879	0.5585	0.3814	0.4026
Std	0.0653	0.0782	0.1608	0.1611	0.1258	0.1587	0.1654

Processing: 0% | 0/7 [00:00<?, ?it/s] Fitting 10 folds for each of 10 candidates, totalling 100 fits

In [57]: # model object
tuned_dt

Out[57]: •

DecisionTreeClassifier

In [58]: # tuner object
tuner

```
RandomizedSearchCV
Out[58]:
                      estimator: Pipeline
           > clean_column_names: TransformerWrapper
                ▶ transformer: CleanColumnNames
                      ► CleanColumnNames
            numerical_imputer: TransformerWrapper
                 transformer: SimpleImputer
                        ▶ SimpleImputer
           ► categorical_imputer: TransformerWrapper
                 transformer: SimpleImputer
                        ▶ SimpleImputer
                ► normalize: TransformerWrapper
                  transformer: MinMaxScaler
                         ▶ MinMaxScaler
                   DecisionTreeClassifier
```

The default search algorithm is RandomizedSearchCV from sklearn. This can be changed by using search_library and search_algorithm parameter.

```
In [59]: # tune dt using optuna
tuned_dt = tune_model(dt, search_library = 'optuna')
```

tuned_dt = tune_modet(dt, Search_tibrary = optuna)										
		Accuracy	AUC	Recall	Prec.	F1	Kappa	МСС		
Fo	old									
	0	0.7593	0.7820	0.5263	0.7143	0.6061	0.4384	0.4490		
	1	0.7778	0.7895	0.6316	0.7059	0.6667	0.5008	0.5025		
	2	0.7222	0.7880	0.3684	0.7000	0.4828	0.3170	0.3476		
	3	0.6852	0.5662	0.4211	0.5714	0.4848	0.2656	0.2720		
	4	0.7963	0.8233	0.6842	0.7222	0.7027	0.5479	0.5484		
	5	0.6667	0.6805	0.5263	0.5263	0.5263	0.2692	0.2692		
	6	0.6852	0.6940	0.4211	0.5714	0.4848	0.2656	0.2720		
	7	0.8302	0.8508	0.6667	0.8000	0.7273	0.6055	0.6108		
	8	0.6604	0.6389	0.6111	0.5000	0.5500	0.2816	0.2853		
	9	0.6415	0.6849	0.4444	0.4706	0.4571	0.1899	0.1900		
Me	an	0.7225	0.7298	0.5301	0.6282	0.5689	0.3681	0.3747		
S	td	0.0615	0.0859	0.1080	0.1073	0.0949	0.1356	0.1352		
Pro	ces	sing: 0%	; 	0/	7 [00:00) , ?it</td <td>/s]</td> <td></td>	/s]			
[I 2023-02-16 14:23:58,902] Searching the best hyperparameters using 537 samples. [I 2023-02-16 14:24:07,369] Finished hyperparemeter search!										

the docstring. Some other parameters that you might find very useful in tune_model are:

- · choose better
- n iter
- early_stopping
- groups

You can check the docstring of the function for more info.

In [60]: # help(tune_model)

This function ensembles a given estimator. The output of this function is a scoring grid with CV scores by fold. Metrics evaluated during CV can be accessed using the get_metrics function. Custom metrics can be added or removed using add_metric and remove_metric function.

```
In [61]: # ensemble with bagging
  ensemble_model(dt, method = 'Bagging')
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.7407	0.8383	0.5263	0.6667	0.5882	0.4028	0.4088
1	0.7963	0.7797	0.7368	0.7000	0.7179	0.5587	0.5591
2	0.7593	0.7669	0.4737	0.7500	0.5806	0.4236	0.4456
3	0.7222	0.7842	0.5263	0.6250	0.5714	0.3682	0.3711
4	0.8148	0.8421	0.7368	0.7368	0.7368	0.5940	0.5940
5	0.6852	0.6759	0.4211	0.5714	0.4848	0.2656	0.2720
6	0.7037	0.7677	0.5263	0.5882	0.5556	0.3344	0.3355
7	0.7925	0.8405	0.4444	0.8889	0.5926	0.4734	0.5245
8	0.6792	0.6659	0.5000	0.5294	0.5143	0.2751	0.2754
9	0.6792	0.6508	0.3333	0.5455	0.4138	0.2103	0.2224
Mean	0.7373	0.7612	0.5225	0.6602	0.5756	0.3906	0.4009
Std	0.0488	0.0695	0.1212	0.1060	0.0924	0.1195	0.1221

Processing: 0% | 0/6 [00:00<?, ?it/s]

Out[61]:
BaggingClassifier

base_estimator: DecisionTreeClassifier

DecisionTreeClassifier

```
In [62]: # ensemble with boosting
  ensemble_model(dt, method = 'Boosting')
```

Fold	0.3839
0 0.7222 0.6895 0.5789 0.6111 0.5946 0.3836	0.3711
1 0.7222 0.6774 0.5263 0.6250 0.5714 0.3682	0.0711
2 0.7593 0.7421 0.6842 0.6500 0.6667 0.4785	0.4788
3 0.6111 0.5436 0.3158 0.4286 0.3636 0.0928	0.0950
4 0.8148 0.8211 0.8421 0.6957 0.7619 0.6126	0.6201
5 0.5926 0.5654 0.4737 0.4286 0.4500 0.1278	0.1282
6 0.6667 0.6226 0.4737 0.5294 0.5000 0.2512	0.2520
7 0.7925 0.7484 0.6111 0.7333 0.6667 0.5178	0.5223
8 0.6604 0.6214 0.5000 0.5000 0.5000 0.2429	0.2429
9 0.6792 0.6357 0.5000 0.5294 0.5143 0.2751	0.2754
Mean 0.7021 0.6667 0.5506 0.5731 0.5589 0.3350	0.3370
Std 0.0698 0.0820 0.1342 0.1008 0.1117 0.1598	0.1613
Processing: 0% 0/6 [00:00 , ?it/s]</th <th></th>	
Out[62]:	
<pre>base_estimator: DecisionTreeClassifier</pre>	
▶ DecisionTreeClassifier	

Some other parameters that you might find very useful in ensemble_model are:

- · choose_better
- n_estimators
- groups
- fit_kwargs
- probability_threshold
- return_train_score

You can check the docstring of the function for more info.

In [63]: # help(ensemble_model)

This function trains a Soft Voting / Majority Rule classifier for select models passed in the estimator_list parameter. The output of this function is a scoring grid with CV scores by fold. Metrics evaluated during CV can be accessed using the get_metrics function. Custom metrics can be added or removed using add_metric and remove_metric function.

In [64]: # top 3 models based on recall best recall models top3

```
Out[64]: [GaussianNB(priors=None, var_smoothing=le-09),
          GradientBoostingClassifier(ccp alpha=0.0, criterion='friedman mse', init=None,
                                     learning rate=0.1, loss='log loss', max depth=3,
                                     max features=None, max leaf nodes=None,
                                     min_impurity_decrease=0.0, min_samples_leaf=1,
                                     min samples split=2, min weight fraction leaf=0.0,
                                     n estimators=100, n iter no change=None,
                                     random state=123, subsample=1.0, tol=0.0001,
                                     validation_fraction=0.1, verbose=0,
                                     warm start=False),
          LinearDiscriminantAnalysis(covariance estimator=None, n components=None,
                                     priors=None, shrinkage=None, solver='svd',
                                     store covariance=False, tol=0.0001)]
In [65]:
         # blend top 3 models
         blend models(best recall models top3)
                          AUC Recall
               Accuracy
                                         Prec.
                                                   F1 Kappa
                                                                MCC
         Fold
            0
                 0.7963  0.8932  0.6842  0.7222  0.7027
                                                       0.5479 0.5484
                 0.7778  0.8120  0.6316  0.7059  0.6667
                                                       0.5008 0.5025
            2
                 0.8704 0.9338 0.6842 0.9286 0.7879
                                                       0.6976 0.7145
                 0.7037  0.7865  0.4737  0.6000  0.5294
                                                       0.3175 0.3223
                 0.8704 0.8962 0.6842 0.9286 0.7879 0.6976 0.7145
                 0.7037  0.6692  0.4737  0.6000  0.5294
                                                       0.3175 0.3223
                 0.7407  0.7805  0.6842  0.6190  0.6500
            6
                                                       0.4449 0.4463
                 0.7736  0.8667  0.4444  0.8000  0.5714  0.4342  0.4688
                 0.6604 0.6889 0.4444 0.5000 0.4706 0.2219 0.2227
                 0.6981 0.7286 0.4444 0.5714 0.5000
                                                       0.2886 0.2933
                 0.7595  0.8056  0.5649  0.6976  0.6196
                                                       0.4469 0.4555
        Mean
```

Processing: 0% | 0/6 [00:00<?, ?it/s]

Out[65]: VotingClassifier

Naive Bayes Gradient Boosting Classifier Linear Discriminant Analysis

LinearDiscriminantAnalysis

0.0683 0.0868 0.1103 0.1407 0.1104 0.1575 0.1616

GradientBoostingClassifier

Some other parameters that you might find very useful in blend_models are:

· choose better

▶ GaussianNB

method

Std

- weights
- fit_kwargs
- probability_threshold
- return_train_score

You can check the docstring of the function for more info.

In [66]: # help(blend models)

This function trains a meta-model over select estimators passed in the estimator_list parameter. The output of this function is a scoring grid with CV scores by fold. Metrics evaluated during CV can be accessed using the get_metrics function. Custom metrics can be added or removed using add metric and remove metric function.

```
In [67]: # stack models
stack_models(best_recall_models_top3)
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	
Fold								
0	0.8148	0.9023	0.6316	0.8000	0.7059	0.5735	0.5820	
1	0.7963	0.7970	0.6316	0.7500	0.6857	0.5367	0.5410	
2	0.8704	0.9233	0.6842	0.9286	0.7879	0.6976	0.7145	
3	0.7037	0.7835	0.4737	0.6000	0.5294	0.3175	0.3223	
4	0.8519	0.8992	0.6316	0.9231	0.7500	0.6499	0.6736	
5	0.6852	0.6722	0.4211	0.5714	0.4848	0.2656	0.2720	
6	0.7222	0.7910	0.5263	0.6250	0.5714	0.3682	0.3711	
7	0.7547	0.8667	0.3889	0.7778	0.5185	0.3776	0.4184	
8	0.6981	0.6810	0.4444	0.5714	0.5000	0.2886	0.2933	
9	0.7358	0.7190	0.5000	0.6429	0.5625	0.3775	0.3836	
Mean	0.7633	0.8035	0.5333	0.7190	0.6096	0.4453	0.4572	
Std	0.0628	0.0879	0.0989	0.1300	0.1061	0.1479	0.1514	
Proces	ssing: 0%	<u> </u>	0/	6 [00:00) , ?it</th <th>/s]</th> <th></th>	/s]		
:	► StackingClassifier							

Out[67]:

StackingClassifier

Naive Bayes Gradient Boosting Classifier Linear Discriminant Analysis

GaussianNB GradientBoostingClassifier LinearDiscriminantAnalysis

final_estimator

LogisticRegression

Some other parameters that you might find very useful in stack_models are:

- choose_better
- meta_model
- method
- restack
- probability_threshold
- return_train_score

You can check the docstring of the function for more info.

In [68]: # help(stack_models)

This function analyzes the performance of a trained model on the hold-out set. It may require re-training the model in certain cases.


```
In [70]: # to control the scale of plot
plot_model(best, plot = 'class_report', scale = 2)
```



```
In [71]: # to save the plot
plot_model(best, plot = 'class_report', save=True)
```

Out[71]: 'Class Report.png'

Some other parameters that you might find very useful in plot_model are:

- fit_kwargs
- plot_kwargs
- groups
- · display_format

You can check the docstring of the function for more info.

In [72]: # help(plot_model)

Interpret Model

This function analyzes the predictions generated from a trained model. Most plots in this function are implemented based on the SHAP (Shapley Additive exPlanations). For more info on this, please see https://shap.readthedocs.io/en/latest/

```
In [73]: # train lightgbm model
lightgbm = create_model('lightgbm')
```

		Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	
	Fold								
-	0	0.7222	0.8376	0.4737	0.6429	0.5455	0.3520	0.3605	
	1	0.7593	0.7865	0.7368	0.6364	0.6829	0.4906	0.4940	
	2	0.6667	0.8301	0.4211	0.5333	0.4706	0.2322	0.2357	
	3	0.6852	0.7639	0.5263	0.5556	0.5405	0.3014	0.3016	
	4	0.7778	0.8406	0.6842	0.6842	0.6842	0.5128	0.5128	
	5	0.6481	0.6887	0.3684	0.5000	0.4242	0.1792	0.1835	
	6	0.7407	0.7338	0.5263	0.6667	0.5882	0.4028	0.4088	
	7	0.8491	0.8603	0.6111	0.9167	0.7333	0.6339	0.6592	
	8	0.6604	0.6952	0.5000	0.5000	0.5000	0.2429	0.2429	
	9	0.6038	0.6159	0.3333	0.4000	0.3636	0.0794	0.0801	
	Mean	0.7113	0.7653	0.5181	0.6036	0.5533	0.3427	0.3479	
	Std	0.0689	0.0766	0.1235	0.1346	0.1141	0.1610	0.1655	
	Proces	sing: 0%	1	0/	4 [00:00	9 , ?it</th <th>/s]</th> <th></th> <th></th>	/s]		
In [74]	# int	erpret sun	nmary mo	del					
	inter	pret_model	(lightg	om, plot	= 'sumi	mary')			
Plasma glucose concentration a 2 hours in an oral glucose tolerance test Body mass index (weight in kg/(height in m)^2) Age (years) Diabetes pedigree function Number of times pregnant 2-Hour serum insulin (mu U/ml) Diastolic blood pressure (mm Hg) Triceps skin fold thickness (mm) SHAP value (impact on model output)									
In [75]		son plot 1 pret_model					servatio	n = 1)	
	111661	prec_modet	. (cryffcy	om, prot	_ 1 Ed.	/ie\	JCT VULL	/ii → 1/	
Out[75]		756 771	-6 - 5 - 7	F6 2.7		value	420 2	_	i lower f(x) 1.52 ← 6.244
		.756 -7.75	56 -5.7	56 -3.7	oc -1.	756 0.2	438 2.	244 4.4	4.53 6.244

0.2712 Plasma glucose concentration a 2 hours in an oral glucose tolerance test = 0.4874

- plot
- feature
- use_train_data
- X_new_sample
- y_new_sample
- save

You can check the docstring of the function for more info.

In [76]: # help(interpret_model)

Calibrate Model

This function calibrates the probability of a given model using isotonic or logistic regression. The output of this function is a scoring grid with CV scores by fold. Metrics evaluated during CV can be accessed using the get_metrics function. Custom metrics can be added or removed using add_metric and remove_metric function.

```
In [77]: # check calbiration of default dt
    plot_model(dt, plot = 'calibration')
```



```
In [78]: # calibrate default dt
    calibrated_dt = calibrate_model(dt)
```

	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC
Fold							
0	0.7037	0.7338	0.1579	1.0000	0.2727	0.1955	0.3292
1	0.6296	0.6767	0.1053	0.4000	0.1667	0.0235	0.0322
2	0.6667	0.7677	0.0526	1.0000	0.1000	0.0672	0.1864
3	0.6667	0.6940	0.2105	0.5714	0.3077	0.1459	0.1774
4	0.6481	0.7962	0.0000	0.0000	0.0000	0.0000	0.0000
5	0.5926	0.6045	0.1053	0.2857	0.1538	-0.0439	-0.0534
6	0.7222	0.6752	0.2105	1.0000	0.3478	0.2569	0.3839
7	0.7358	0.7476	0.2222	1.0000	0.3636	0.2740	0.3984
8	0.6226	0.6151	0.1111	0.3333	0.1667	-0.0038	-0.0047
9	0.6792	0.5683	0.1667	0.6000	0.2609	0.1328	0.1774
Mean	0.6667	0.6879	0.1342	0.6190	0.2140	0.1048	0.1627
Std	0.0431	0.0712	0.0692	0.3474	0.1103	0.1074	0.1586

Processing: 0%| | 0/6 [00:00<?, ?it/s]

In [79]: # check calbiration of calibrated dt
plot_model(calibrated_dt, plot = 'calibration')

Some other parameters that you might find very useful in <code>calibrate_model</code> are:

- calibrate_fold
- fit_kwargs
- method
- return_train_score
- groups

You can check the docstring of the function for more info.

This function returns the leaderboard of all models trained in the current setup.

In [81]:		l <i>eaderboard</i> et_leaderbo						
I	Processi	ing: 0%	0/76 [00:00 , ?it/s]</th <th></th> <th></th> <th></th> <th></th> <th></th>					
Out[81]:		Model Name	Model	Accuracy	AUC	Recall	Prec.	
	Index							
	0	Logistic Regression	(TransformerWrapper(exclude=None, include=None	0.7689	0.8068	0.4959	0.7614	0.
	1	K Neighbors Classifier	(TransformerWrapper(exclude=None, include=None	0.7002	0.7433	0.4860	0.5965	0.
	2	Naive Bayes	(TransformerWrapper(exclude=None, include=None	0.7427	0.7957	0.5702	0.6543	0.
	3	Decision Tree Classifier	(TransformerWrapper(exclude=None, include=None	0.6947	0.6526	0.5137	0.5665	0.
	SVM - 4 Linear Kernel		(TransformerWrapper(exclude=None, include=None	0.7521	0.0000	0.5070	0.7363	0.
	70	Decision Tree Classifier	(TransformerWrapper(exclude=None, include=None	0.7021	0.6667	0.5506	0.5731	0.
	71 Voting Classifier		(TransformerWrapper(exclude=None, include=None	0.7595	0.8056	0.5649	0.6976	0.
	72	Stacking Classifier	(TransformerWrapper(exclude=None, include=None	0.7633	0.8035	0.5333	0.7190	0.
	73	Light Gradient Boosting Machine	(TransformerWrapper(exclude=None, include=None	0.7113	0.7653	0.5181	0.6036	0.
	74	Decision Tree Classifier	(TransformerWrapper(exclude=None, include=None	0.6667	0.6879	0.1342	0.6190	0.

75 rows × 10 columns

```
In [82]: # select the best model based on F1
lb.sort_values(by='F1', ascending=False)['Model'].iloc[0]
```


Some other parameters that you might find very useful in get_leaderboard are:

- · finalize_models
- fit_kwargs
- model_only
- groups

You can check the docstring of the function for more info.

```
In [83]: # help(get_leaderboard)
```


This function returns the best model out of all trained models in the current setup based on the optimize parameter. Metrics evaluated can be accessed using the get_metrics
function.

There are many approaches to conceptualizing fairness. The check_fairness function follows the approach known as group fairness, which asks: which groups of individuals are at risk for experiencing harm. check_fairness provides fairness-related metrics between different groups (also called sub-population).

In [85]: # check fairness
 check_fairness(best, sensitive_features = ['Number of times pregnant'])

	Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	
0	Ridge Classifier	0.7489	0.6902	0.4938	0.7018	0.5797	0.4083	0.4211	

	0 Ridge Classifier		0.7489 0.69	902 0.4938	3 0.7018 (0.5797 0.4	083 0.421	1	
Out[85]:		Samples	Accuracy	Recall	Precision	F1	Карра	мсс	Select R
	Number of times pregnant								
	0	27	0.814815	0.666667	0.571429	0.615385	0.494382	0.496929	0.259
	1	49	0.734694	0.181818	0.333333	0.235294	0.091298	0.097443	0.122
	2	27	0.888889	0.5	1.0	0.666667	0.608696	0.661438	0.111
	3	21	0.761905	0.5	0.8	0.615385	0.455959	0.482382	0.238
	4	23	0.652174	0.333333	0.333333	0.333333	0.098039	0.098039	0.26
	5	21	0.714286	0.375	0.75	0.5	0.329787	0.36863	0.190
	6	18	0.722222	0.571429	0.666667	0.615385	0.4	0.402911	0.333
	7	13	0.692308	0.5	1.0	0.666667	0.434783	0.527046	0.307
	8	12	0.666667	0.333333	1.0	0.5	0.333333	0.447214	0.166
	9	5	8.0	0.75	1.0	0.857143	0.545455	0.612372	
	10	7	0.714286	0.8	8.0	0.8	0.3	0.3	0.714
	11	2	0.5	1.0	0.5	0.666667	0.0	0.0	
	12	2	1.0	1.0	1.0	1.0	NaN	0.0	
	13	2	1.0	1.0	1.0	1.0	1.0	1.0	
	14	2	0.5	0.5	1.0	0.666667	0.0	0.0	

🔽 Dashboard

The dashboard function generates the interactive dashboard for a trained model. The dashboard is implemented using <code>ExplainerDashboard</code>. For more information check out <code>ExplainerDashboard</code>.

In [86]: # dashboard function
 dashboard(dt, display_format ='inline')

```
Note: model_output=='probability', so assuming that raw shap output of DecisionTreeCla ssifier is in probability space...

Generating self.shap explainer = shap.TreeExplainer(model)
```

Building ExplainerDashboard..

The explainer object has no decision_trees property. so setting decision_trees=Fals

Warning: calculating shap interaction values can be slow! Pass shap_interaction=False to remove interactions tab.

Generating layout...

Calculating shap values...

Calculating prediction probabilities...

Calculating metrics...

Calculating confusion matrices...

Calculating classification_dfs...

Calculating roc auc curves...

Calculating pr auc curves...

Calculating liftcurve dfs...

Calculating shap interaction values... (this may take a while)

Reminder: TreeShap computational complexity is $O(TLD^2)$, where T is the number of tree s, L is the maximum number of leaves in any tree and D the maximal depth of any tree. So reducing these will speed up the calculation.

Calculating dependencies...

Calculating permutation importances (if slow, try setting n_jobs parameter)...

Calculating predictions...

Calculating pred percentiles...

Reminder: you can store the explainer (including calculated dependencies) with explain er.dump('explainer.joblib') and reload with e.g. ClassifierExplainer.from_file('explainer.joblib')

Registering callbacks...

Starting ExplainerDashboard inline (terminate it with ExplainerDashboard.terminate(805 0))

This function creates a basic gradio app for inference.

Running on local URL: http://127.0.0.1:7860

To create a public link, set `share=True` in `launch()`.

This function takes an input model and creates a POST API for inference.

Create Docker

This function creates a Dockerfile and requirements.txt for productionalizing API end-point.

```
In [94]: # check out the DockerFile file created with this magic command
    # %load DockerFile

In [95]: # check out the requirements file created with this magic command
    # %load requirements.txt
```

Finalize Model

This function trains a given model on the entire dataset including the hold-out set.

```
In [96]: final best = finalize model(best)
In [97]:
        final best
Out[97]:
                           Pipeline
           ▶ clean_column_names: TransformerWrapper
                ▶ transformer: CleanColumnNames
                      CleanColumnNames
            numerical_imputer: TransformerWrapper
                 transformer: SimpleImputer
                        ▶ SimpleImputer
           rategorical_imputer: TransformerWrapper
                 transformer: SimpleImputer
                        SimpleImputer
                ▶ normalize: TransformerWrapper
                  ▶ transformer: MinMaxScaler
                        ▶ MinMaxScaler
                       RidgeClassifier
```

Convert Model

This function transpiles the trained machine learning model's decision function in different programming languages such as Python, C, Java, Go, C#, etc. It is very useful if you want to deploy models into environments where you can't install your normal Python stack to support model inference.

```
In [98]: # transpiles learned function to java
print(convert_model(best, language = 'java'))
```

```
public class Model {
    public static double score(double[] input) {
        return -2.4222329408494767 + input[0] * 0.5943492729771869 + input[1] * 2.3273
354603187455 + input[2] * -0.41637843900032867 + input[3] * 0.10259178891131746 + input
t[4] * -0.3134524281639536 + input[5] * 1.4903417391961826 + input[6] * 0.501968541379
2472 + input[7] * 0.12389520576261319;
    }
}
```

Deploy Model

This function deploys the entire ML pipeline on the cloud.

AWS: When deploying model on AWS S3, environment variables must be configured using the command-line interface. To configure AWS environment variables, type aws configure in terminal. The following information is required which can be generated using the Identity and Access Management (IAM) portal of your amazon console account:

- AWS Access Key ID
- AWS Secret Key Access
- Default Region Name (can be seen under Global settings on your AWS console)
- Default output format (must be left blank)

GCP: To deploy a model on Google Cloud Platform ('gcp'), the project must be created using the command-line or GCP console. Once the project is created, you must create a service account and download the service account key as a JSON file to set environment variables in your local environment. Learn more about it:

https://cloud.google.com/docs/authentication/production

Azure: To deploy a model on Microsoft Azure ('azure'), environment variables for the connection string must be set in your local environment. Go to settings of storage account on Azure portal to access the connection string required.

AZURE_STORAGE_CONNECTION_STRING (required as environment variable) Learn more about it: https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-python?toc=%2Fpython%2Fazure%2FTOC.json

```
In [99]: # deploy model on aws s3
# deploy_model(best, model_name = 'my_first_platform_on_aws',
# platform = 'aws', authentication = {'bucket' : 'pycaret-test'})

In [100... # load model from aws s3
# loaded_from_aws = load_model(model_name = 'my_first_platform_on_aws', platform = 'a
# authentication = {'bucket' : 'pycaret-test'})
# loaded_from_aws
```

Save / Load Model

This function saves the transformation pipeline and a trained model object into the current working directory as a pickle file for later use.

```
In [101... # save model
    save_model(best, 'my_first_model')
```

Transformation Pipeline and Model Successfully Saved

```
Out[101... (Pipeline(memory=FastMemory(location=C:\Users\owner\AppData\Local\Temp\joblib),
                   steps=[('clean column names',
                           TransformerWrapper(exclude=None, include=None,
                                              transformer=CleanColumnNames(match='[\\]\\
         [\\,\\{\\}\\"\\:]+'))),
                           ('numerical imputer',
                           TransformerWrapper(exclude=None,
                                              include=['Number of times pregnant',
                                                        'Plasma glucose concentration a 2 '
                                                       'hours in an oral glu...
                                                                        verbose='deprecate
         d'))),
                           ('normalize',
                           TransformerWrapper(exclude=None, include=None,
                                              transformer=MinMaxScaler(clip=False,
                                                                       copy=True,
                                                                       feature range=(0,
                                                                                      1)))),
                           ('trained model',
                           RidgeClassifier(alpha=1.0, class_weight=None, copy_X=True,
                                           fit intercept=True, max iter=None,
                                           normalize='deprecated', positive=False,
                                           random state=123, solver='auto', tol=0.001))],
                   verbose=False),
           'my first model.pkl')
In [102... # load model
         loaded_from_disk = load_model('my_first_model')
         loaded from disk
        Transformation Pipeline and Model Successfully Loaded
Out[102...
                             Pipeline
            ▶ clean_column_names: TransformerWrapper
                ▶ transformer: CleanColumnNames
                       CleanColumnNames
            numerical_imputer: TransformerWrapper
                  transformer: SimpleImputer
                         SimpleImputer
           real_imputer: TransformerWrapper
                  transformer: SimpleImputer
                         SimpleImputer
                ▶ normalize: TransformerWrapper
                  ▶ transformer: MinMaxScaler
                         ▶ MinMaxScaler
                        RidgeClassifier
```

This function saves all the experiment variables on disk, allowing to later resume without rerunning the setup function.

	Description	Value
0	Session id	123
1	Target	Class variable
2	Target type	Binary
3	Original data shape	(768, 9)
4	Transformed data shape	(768, 9)
5	Transformed train set shape	(537, 9)
6	Transformed test set shape	(231, 9)
7	Numeric features	8
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Normalize	True
13	Normalize method	minmax
14	Fold Generator	StratifiedKFold
15	Fold Number	10
16	CPU Jobs	-1
17	Use GPU	False
18	Log Experiment	False
19	Experiment Name	clf-default-name
20	USI	3e8a

In []: