Střední průmyslová škola a Vyšší odborná škola Brno, Sokolská, příspěvková organizace

ROČNÍKOVÁ PRÁCE z Fyziky

Kalibrace HPGe detektoru

Studijní obor: Technické lyceum 78 – 42 - M/01

Třída: L3A

Školní rok: 2021/2022

Jméno: David

Příjmení: Škrob

Prohlašuji, že jsem tuto práci vypracoval samostatně a použil jse	m literárních nramenů
a informací, které cituji a uvádím v seznamu použité literatury a z	
, v	•
V Brně dne :	
	David Škrob

Obsah

1	Prin	cip měření	7
	1.1	Nefotoelektrická detekce gama záření	7
2	Vliv	energie	8
	2.1	Teoretická ztráta	8
	2.2	Kalibrace detektoru	8
	2.3	Skutečná ztráta	8
3	Vliv	vzdálenosti	9
	3.1	Teoretická ztráta	9
	3.2	Skutečná ztráta	9
4	Jiné	vlivy	9
	4.1	Mrtvá doba detektoru	9
	4.2	Radiační pozadí	11

Zadání

Popište jak funguje polovodičová detekce gama záření. Pomocí sady kalibračních zářičů stanovte účinnost detekce gama záření HPGe (High Purity Germanium) detektorem pro vybranou měřící pozici. Pomocí statistických metod a teoretických znalostí určete, s čím ztráty souvisí.

Úvod

Co je vlastně gama záření? Gama záření je vysokoenergetické elektromagnetické záření, které vzniká v jádru atomu při radioaktivní přeměně.

Má ročníková práce se bude zabývat vlivem ztráty signálu gama záření v závislosti na vzdálenosti. Bude se též zabývat rozlišovací schopností detektoru při různých energiích fotonu. Snaha této práce je najít takové funkce, aby bylo možné tyto vlivy odfiltrovat při měření neznámého vzorku.

Vezmu kalibrační vzorek, dám jej na detektor, počkám, dokud v peaku nebude 10 000 záznamů. Poté kalibrační vzorek schovám zpět do trezoru. Následně budu analyzoval daná data a z nich jsem vytvořil příslušné grafy.

Hlavním důvodem, proč se používají HPGe detektory: Jsou lepe schopné určit, o jakou energii se jedná, čehož můžeme využít při rozlišování jednotlivých radioaktivních izotopů. Tak můžeme zjistit, zda se v přepravě radioaktivních materiálů nesnaží někdo přepravit speciální jaderný materiál, který by mohl být použit na výrobu jaderných zbraní. [16]

Seznam použitých značek a symbolů

 A_0 – aktivita kalibračního zářiče k referenčnímu datu

c – rychlost světla ve vakuu – 299 792 458 m s $^{-1}$

 e^- - elektron, $m_e = 9.109384 \times 10^{-31} \,\mathrm{kg}$

 e^+ – pozitron, antičástice k e^-

 ε – efektivita

eV – elektron volt – je to energie, kterou má jeden elektron urychlený napětím 1 V

FWHM – Full width at half maximum – šířka na poloviční výšce peaku

 γ – gama záření – elektromagnetické záření, původem z jaderných reakcí

h – Planckova konstanta – $6.626\,070\times10^{-34}\,\mathrm{J\,s}$

 \hbar – redukovaná Plankova konstanta – $\hbar = \frac{h}{2\pi}$

HPGe – High-purity germanium – detektor z velmi čistého germania

 I_{γ} – intenzita gama přechodu

 λ – rozpadová konstanta – $\frac{\ln(2)}{T_{1/2}}$

n – registrovaná četnost

N – skutečná četnost

 ν – frekvence fotonu

 S_{peaku} – plocha peaku, bez pozadí

t₀ – doba mezi referenčním datem a datem měření

 $T_{1/2}$ – poločas přeměny – doba, za kterou se přemění $\frac{1}{2}$ celkového počtu jader

 t_{live} – čistý čas měření

 t_{real} – celková doba měření

au – mrtvá doba detektoru

Seznam použitých odborných výrazů

- Fotoelektrický jev jev, při kterém foton vytrhne elektron z elektronového obalu. Objevil jej Albert Einstein v roce 1905. Nezáleží na intenzitě světla, pouze na jeho frekvenci.
- Comptonův jev $-\gamma$ (popř. rentgenový) foton narazí na e^- , předá část své hybnosti e^- . Foton (protože ztratí část energie) má v důsledku nižší frekvenci (= větší vlnovou délku), a je vychýlen od původního směru. Objevil jej Arthur Holly Compton v roce 1923.
- Vytváření páru pozitron elektron Foton s energií alespoň $1020 \,\mathrm{keV}$ se v blízkosti atomového jádra přemění na pár e^+ , e^- . Objevili jej Blackett a Occhialini v roce 1933
- Elektromagnetické záření postupné vlnění magnetického a elektrického pole. Objevil je Michael Faraday v roce 1845.
- Spektroskopie obor fyziky, který se snaží zachytit vliv elektromagnetického záření na danou látku.

1 Princip měření

Když se do citlivé vrstvy detektoru (u germania díky speciální technice výroby velmi čistého germania v řádu cm, u křemíku v řádu mm) [9] dostane γ foton, tak díky fotoelektrickému jevu gama foton uvolní e^-z elektronového obalu. Asi $3\,\mathrm{eV}$ jsou potřeba na uvolnění e^-z valenční vrstvy. (V případě Germania asi $3.6\,\mathrm{eV}$, v případě křemíku asi $2.9\,\mathrm{eV}$.) [4, 13] Tato energie je nutná na odtržení e^- od atomu. Zbylá energie gama fotonu se stane kinetickou energií e^- . "V polovodiči fotoelektron ztratí svou kinetickou energii při interakci elektromagnetickými silami s elektrony v polovodičové mřížce, čímž vzniká mnoho párů elektron-díra. Počet vytvořených párů elektron-děr je přímo úměrný energii dopadajícího fotonu." [1] Na diodu detektoru přivedeme v závěrném směru napětí, řadově tisíce V. [12] Jakmile se vytvoří pár e^- díra, tak se e^- přesouvá ke kladně nabité elektrodě, díra k záporně nabité, vzniká proud, a ten potom zaznamenáváme. [8, 9] Použijeme referenční zdroj gama záření, u kterého známe jeho energii, abychom mohli detektor zkalibrovat. [2] HPGe detektory mají vyšší tepelný šum, který by při pokojové teplotě přehlušil měřený signál. Proto jej chladíme kapalným dusíkem na teplotu $-196\,^{\circ}\mathrm{C}$. [3, 6]

1.1 Nefotoelektrická detekce gama záření

Energii z dopadajících fotonů můžeme detekovat pomocí 2 dalších jevů.

Prvním z nich je Comptonův jev, kde gama foton část své energie předá e^- , který je vychýlen ze své původní dráhy. Foton změní směr pohybu a zvýší se jeho vlnová délka. [10] Tento foton může dále reagovat v detektoru, až dokud se nedostane mimo citlivou vrstvu detektoru, nebo dokud není zcela pohlcen.

Druhým z nich je tvorba páru elektron-pozitron, kdy pokud se γ foton přiblíží k jádru atomu, tak se z jeho energie vytvoří pár e^- , e^+ . Musí se vytvořit oba, aby platil zákon zachování náboje. Jejich vytvoření neporušuje zákon zachování hmoty, protože platí teorie relativity, ze které vyplývá:

$$E^2 = (mc^2)^2 + (pc)^2 (1)$$

Z čehož vyplývá, že pokud měl foton větší energii než $1022 \,\mathrm{keV}$ ($m_e = 9.109\,384 \times 10^{-31}\,\mathrm{kg}$, $E = mc^2 \implies E = 9.109\,384 \times 10^{-31}\,\mathrm{kg} \cdot [299\,792\,458\,\mathrm{m\,s^{-1}}]^2 = 8.187\,106 \times 10^{-14}\,\mathrm{J} = 510\,999\,\mathrm{eV}$, je energie e^- a protože vytváříme pár e^- a e^+ , potřebujeme 2 násobnou energii tj. $1\,021\,998\,\mathrm{eV}$). Pokud má γ záření větší energii, tak tato energie je převedena na hybnost e^- a e^+ . [1, 5]

2 Vliv energie

2.1 Teoretická ztráta

U vlivu energie řešíme, jaké rozlišení má detektor při dané energii. Používáme při tom FWHM, kde můžeme snadno určit, jak je peak široký, a kdy by nám již 2 peaky splynuly v jeden. [15, 8] "Systémy s malým germaniovým detektorem mají FWHM přibližně 150-250 eV při 5,9 keV, kdy se FWHM zvyšuje na 400-600 eV při 122 keV. Větší koaxiální detektory mají hodnoty FWHM 800-1200 eV při 122 keV, kdy se zvýší na 1,7-2,3 keV při 1333 keV." [9]

2.2 Kalibrace detektoru

Při kalibraci jsem použil software GAMWIN, který je vyvinut českou firmou, určený na ovládání a kalibraci gama detektorů. K změřeným kalibračním vzorkům (²⁴¹Am, ⁵⁷Co, ⁶⁰Co, ¹³⁷Cs, ⁸⁸Y, ⁶⁵Zn) jsem našel na http://nucleardata.nuclear.lu.se/toi/nucSearch. asp jejich energie gama rozpadu. Tyto energie jsem přiřadil k datům, která jsem naměřil, a program GAMWIN tyto data proložil vhodnou funkcí. [8, 11]

2.3 Skutečná ztráta

Graf 1: Závislost účinnosti na energii, pro pozici 5 mm nad detektorem. Zdroj dat: autor

Na výpočet efektivity detektoru, jsem použil rovnici (2). První člen je zde pro počítaní efektivity. Druhý člen je na kompenzaci pro přeměnu mezi referenčním datem a datem měření. Třetí člen je zde pro kompenzaci přeměny během měření.

$$\varepsilon = \frac{S_{peaku} \cdot \lambda \cdot \frac{t_{real}}{t_{live}}}{A_0 \cdot I_{\gamma}} \cdot \frac{1}{e^{-\lambda * t_0}} \cdot \frac{1}{1 - e^{-\lambda \cdot t_{real}}}$$
(2)

3 Vliv vzdálenosti

3.1 Teoretická ztráta

Jak dobře známe, tak platí zákon převrácených čtverců, který nám říká, že intenzita klesá se čtvercem vzdálenosti.

$$\frac{I_1}{I_2} = \frac{h_1^2}{h_2^2} \implies I_1 = I_2 * \frac{h_1^2}{h_2^2} \tag{3}$$

I přes to, že neměříme ve vakuu a vzorek pokládáme na plastovou destičku, tak tyto ztráty zanedbáme, protože budou mnohonásobně menší než ztráty způsobené zákonem převrácených čtverců. Abychom ztratili polovinu fotonů o energii $100\,\mathrm{keV}$, tak bychom potřebovali $35\,\mathrm{m}$ vysoký sloup vzduchu [7]

3.2 Skutečná ztráta

Graf 2: Porovnání závislosti účinnosti na energii při různých vzdálenostech. Zdroj dat: autor

Na grafu 2 vidíme, že účinnost se vzdáleností rychle klesá. Dále si můžeme povšimnout, že citlivost na energii zůstává stejná, takže pokles účinnosti je zde zcela závislý na vzdálenosti.

4 Jiné vlivy

4.1 Mrtvá doba detektoru

Mrtvá doba detektoru, je doba, kdy detektor není citlivý na detekci dalšího fotonu. Při měření ji vyjadřujeme jako procentní podíl z celkového času měření.

Dělíme ji na nekumulativní a kumulativní.

Nekumulativní - foton, který není registrován, nemá vliv na samotný detektor. Většinou je způsobena tím, že detekční člen dokáže registrovat fotony rychleji než elektronika stíhá zpracovává signál. [8]

$$n = \frac{N}{1 + N * \tau} \tag{4}$$

Kumulativní - foton, který není registrován, prodlouží mrtvou dobu detektoru. Je způsobena tím, že je přehlcen detekční člen. Při zvyšování četnosti je zpočátku odezva téměř lineární, při dalším navýšení četnosti počet registrovaných impulzů začne klesat. [8]

$$n = N \cdot e^{-N*\tau} \tag{5}$$

Obrázek 1: Kumulativní (nahoře) a nekumulativní (dole) mrtva doba. Zdroj: [9]

Mrtvou dobu můžeme měřit několika způsoby, mezi nejrozšířenější patří "metoda postupného oddalování (nebo přibližování) zdroje, až dokud není dosažena maximální četnost, kterou je detektor schopen měřit. Další zvyšovaní četnosti již nevede k zvyšování počtu zaznamenaných impulzů." [8]

4.2 Radiační pozadí

V Zemské kůře jsou radioaktivní prvky, které vyzařují gama záření. Z vesmíru se při různých dějích vytváří γ záření. Tato záření jsou sice málo intenzivní, přesto vytváří šum na detektoru.

Obrázek 2: Spektrum měření přirozeného pozadí. Zdroj: autor

Na obrázku 2 vidíme, že nejvyšší naměřená hodnota je zhruba 540 záznamů. Toto pozadí jsem měřil 2 dny, takže to znamená, že detektor je dobře odstíněný.

Závěr

Díky mé ročníkové práci jsem si mohl prohlédnout moderní laboratoře na Fakultě elektrotechniky a komunikačních technologií VUT. Povedlo se mi detektor nakalibrovat v programu GAMWIN a spočítat jeho efektivitu. Vždy jsem počkal, než jsem neměl v nejvyšším bodě alespoň 10 000 záznamů. Následně jsem data z těchto měření energeticky analyzoval, abych byl schopný určit jaká energie přísluší kterému kanálu. Poté jsem analyzoval účinnost detektoru, pro 5 různých pozic, a tyto účinnosti jsem následně vynesl do grafu.

Seznam literatury, pramenů a internetových zdrojů

- [1] BEER, Albert, Robert Willardson, Eicke Weber, Semiconductors for Room Temperature Nuclear Detector Applications, Volume 43, San Diego, California, Academic Press, 1995, 595 s. ISBN: 0-12-752143-7
- [2] BURIAN, Jiří, Charakterizace neutronového AMBE zdroje pomocí prahových aktivačních detektorů, bakalářská práce, Ústav elektroenergeriky, 2019. Ve Fakultě elektrotechniky a ko-

- munikačních technologií VUT v Brně [online],[cit. 2022-04-25] Dostupné z: https://wwww.vut.cz/www_base/zav_prace_soubor_verejne.php?file_id=195526
- [3] CONNOR, Nick, What is Advantage and Disadvantage of Germanium Detectors, [online], (14.12.2019), [cit. 2022-04-25] Dostupné z: https://www.radiation-dosimetry.org/what-is-advantage-and-disadvantage-of-germanium-detectors-definition/
- [4] Detekce a spektrometrická analýza fotonového a korpuskulárního záření pro výzkum, technologické aplikace a medicínu [online], Vojtěch Ullmann, [cit. 2022-04-25]. Dostupné z: https://astronuklfyzika.cz/DetekceSpektrometrie.htm
- [5] D'ALESSANDRIS, Paul, Pair Production [online], [cit. 2022-04-25] Dostupné z: https://phys.libretexts.org/@go/page/10492
- [6] HRUŠKA, František, SENZORY, Fyzikální principy, úpravy signálů, praktické použití, Zlín: Univerzita Tomáše Bati ve Zlíně, 2010, 202 s, ISBN: 978-80-7454-096-7
- [7] Interaction of Gamma Radiation with Matter [online], Nuclear Power, [cit. 2022-04-25]

 Dostupné z: https://www.nuclear-power.com/nuclear-power/reactor
 -physics/interaction-radiation-matter/interaction-gamma-rad
 iation-matter/
- [8] Jaderně energetická zařízení Laboratorní cvičení, Brno, FAKULTA ELEKTROTECH-NIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ, 2021, 34 s.
- [9] KNOLL, Glenn Frederick, Radiation Detection and Measurement, 4th Edition, University of Michigan, John Wiley & Sons, Inc., 2010, 819 s. ISBN: 978-0-470-13148-0
- [10] MACKŮ, Robert, Meze klasické fyziky, fotoelektrický jev, Comptonův posuv, dualismus vlna-částice, vlnová funkce. [přednáška], FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ: 10. listopadu 2021
- [11] NUSOFT GAMWIN, Softwarový balíček pro analýzu gama a alfa spektrometrie [online], nuviatech instruments, [cit. 2022-04-25] Dostupné z: https://www.nuviatech-instruments.com/cz/Produkt/nusoft-gamwin/

- [12] Pehl, Richard & Cordi, Richard & Goulding, Fred. (1972). High-Purity Germanium: Detector Fabrication and Performance, IEEE Transactions on Nuclear Science, Květen 1972, (1):265 269, DOI: http://dx.doi.org/10.1109/TNS.1972.4326520
- [13] Principle of Operation of HPGe Detectors [online], Nuclear Power [cit. 2022-04-26] Dostupné z: https://www.nuclear-power.com/nuclear-engineering/radiation-detection/semiconductor-detectors/high-purity-germanium-detectors-hpge/principle-of-operation-of-hpge-detectors
- [14] Wikipedia contributors, Gamma spectroscopy, Wikipedia, The Free Encyclopedia, [cit. 2022-04-25] Dostupné z: https://en.wikipedia.org/w/index.php?title=G amma_spectroscopy&oldid=1068003477
- [15] What is Full Width at Half Maximum (FWHM)? [online], StellarNet, Inc., [cit. 2022-04-25] Dostupné z: https://www.stellarnet.us/what-is-full-width-at-half-maximum-fwhm/
- [16] Why High-Purity Germanium (HPGe) Radiation Detection Technology is Superior to Other Detector Technologies for Isotope Identification, ORTEC AMETEK, [online], AMETEK Inc., [cit. 2022-05-26], Dostupné z: https://www.ortec-online.com/-/media/ametekortec/technical%20papers/homeland%20security%20applications%20and%20chemical%20weapons%20assay%20pins/whyhighpuritygermaniumhpgeradiationdetectiontechnologysuperiorotherdetectortechnologiesisotopeidentification.pdf?la=e

Seznam tabulek a příloh

Tabulka 1: Seznam zářičů, s referenčním datem a referenční aktivitou

Seznam zářičů	referenční datum	referenční aktivivta [Bq]
Am 241	1.2.2015	467 000
Co 57	30.12.2018	8 287 000
Co 60	30.12.2018	231 500
Zn65	30.12.2018	816 800
Cs 137	30.12.2018	307 000
Y 88	30.12.2018	70 040

Tabulka 2: Naměřené hodnoty pro výšku $5\,\mathrm{mm}$

izotop	real time	live time	plocha peaku	intenzita	energie [keV]	datum měření	$T_{1/2}$	t_0	λ	Efektivita
Am241	43.3 s	41.6 s	94 274	0.359	59.5412	19.1.2022	$13638914655\mathrm{s}$	$219888000\mathrm{s}$	5.082129×10^{-11}	0.013669
Co57	75 s	33.7 s	1 344 620	0.856	122.0614	21.10.2021	$23482656\mathrm{s}$	88 732 800 s	2.951741×10^{-8}	0.077195
C037	105	33.75	167 786	0.1068	136.4743	21.10.2021	25 462 050 S	00 132 000 8	2.901 (41 × 10 °	0.008241
Co60	230.1 s	167.3 s	220 462	0.999736	1173.237	21.10.2021	166 349 316 s	88 732 800 s	4.166817×10^{-9}	0.010566
C000			197287	0.999856	1332.501					0.018320
Zn65	$602.5\mathrm{s}$	$586.2\mathrm{s}$	138 838	0.506	1115.546	21.10.2021	21 104 064 s	$88732800\mathrm{s}$	3.284425×10^{-8}	0.013 213
Cs137	109.1 s	79.7 s	355 503	0.851	661.657	19.1.2022	$948917546\mathrm{s}$	$96508800\mathrm{s}$	7.304609×10^{-10}	0.077205
Y88	56 381.1 s	56 364.9 s	61 572	0.937	898.042	21.10.2021	9 214 560 s	88 732 800 s	7.522304×10^{-8}	0.007374
188			31432	0.992	1836.063					0.006371

Tabulka 3: Naměřené hodnoty pro výšku $30\,\mathrm{mm}$

izotop	real time	live time	plocha peaku	intenzita	energie [keV]	datum měření	$T_{1/2}$	t_0	λ	Efektivita
Am241	128.4 s	$126.7\mathrm{s}$	10 738	0.359	59.5412	19.1.2022	$13638914655\mathrm{s}$	$219888000\mathrm{s}$	5.082129×10^{-11}	0.000511
Co57	138.6 s	106.7 s	1 406 624	0.856	122.0614	21.10.2021	23 482 656 s	88 732 800 s	2.951741×10^{-8}	0.025505
C037		100.78	167 798	0.1068	136.4743			00 192 000 8	2.991 (41 × 10	0.024386
Co60	394.9 s	$353.4\mathrm{s}$	171 947	0.999736	1173.237	21.10.2021	166 349 316 s	88 732 800 s	4.166817×10^{-9}	0.003043
C000			151 913	0.999856	1332.501					0.002688
Cs137	111.6 s	$100.8\mathrm{s}$	140 981	0.851	661.657	19.1.2022	948 917 546 s	$96508800\mathrm{s}$	7.304609×10^{-10}	0.002159
Y88	273 450.8 s	273 409.5 s	100 769	0.937	898.042	21.10.2021	9 214 560 s	88 732 800 s	7.522304×10^{-8}	0.000001
100			50 629	0.992	1836.063					0.000001

Tabulka 4: Naměřené hodnoty pro výšku $80\,\mathrm{mm}$

izotop	real time	live time	plocha peaku	intenzita	energie [keV]	datum měření	$T_{1/2}$	t_0	λ	Efektivita
Am241	411.8 s	410.4 s	82 324	0.359	59.5412	19.1.2022	$13638914655\mathrm{s}$	$219888000\mathrm{s}$	5.082129×10^{-11}	0.001 210
Co57	$305.4\mathrm{s}$	284.4 s	897 749	0.856	122.0614	21.10.2021	23 482 656 s	88 732 800 s	2.951741×10^{-8}	0.006107
			114 190	0.1068	136.4743					0.006226
Co60	1089.6 s	1054.5 s	145 734	0.999736	1173.237	21.10.2021	166 349 316 s	88 732 800 s	4.166817×10^{-9}	0.000864
C000	1089.0 S		129943	0.999856	1332.501					0.002688
Cs137	$338.4\mathrm{s}$	$328.6\mathrm{s}$	122 983	0.851	661.657	19.1.2022	$948917546\mathrm{s}$	$96508800\mathrm{s}$	7.304609×10^{-10}	0.000578

Tabulka 5: Naměřené hodnoty pro výšku $120\,\mathrm{mm}$

izotop	real time	live time	plocha peaku	intenzita	energie [keV]	datum měření	$T_{1/2}$	t_0	λ	Efektivita
Am241	599.4 s	$598.3\mathrm{s}$	57 393	0.359	59.5412	19.1.2022	$13638914655\mathrm{s}$	$219888000\mathrm{s}$	5.082129×10^{-11}	0.000579
Co57	462 s	444.5 s	720 853	0.856	122.0614	21.10.2021	0.2021 23 482 656 s	88 732 800 s	2.951741×10^{-8}	0.003 138
C037			92322	0.1068	136.4743					0.003221
Co60	1932.5 s	1897 s	142 709	0.999736	1173.237	21.10.2021	166 349 316 s	88 732 800 s	4.166817×10^{-9}	0.000470
C000	1952.58		126605	0.999856	1332.501					0.000417
Cs137	570.8 s	$561.5\mathrm{s}$	112 993	0.851	661.657	19.1.2022	$948917546\mathrm{s}$	$96508800\mathrm{s}$	7.304609×10^{-10}	0.000311

Tabulka 6: Naměřené hodnoty pro výšku $205\,\mathrm{mm}$

izotop	real time	live time	plocha peaku	intenzita	energie [keV]	datum měření	$T_{1/2}$	t_0	λ	Efektivita
Am241	1149.2 s	1148.4 s	41 095	0.359	59.5412	19.1.2022	$13638914655\mathrm{s}$	$219888000\mathrm{s}$	5.082129×10^{-11}	0.000216
Co57	625.5 s	615.8 s	379 140	0.856	122.0614	21.10.2021	1 23 482 656 s	88 732 800 s	2.951741×10^{-8}	0.001 191
C037			48 776	0.1068	136.4743					0.001228
Co60	2418.7 s	2398.7 s	71 489	0.999736	1173.237	21.10.2021	166 349 316 s	88 732 800 s	4.166817×10^{-9}	0.000186
Co60	2410.7 S		63585	0.999856	1332.501					0.000166
Cs137	$2637.7{\rm s}$	$2618.6\mathrm{s}$	207 473	0.851	661.657	19.1.2022	$948917546\mathrm{s}$	$96508800\mathrm{s}$	7.304609×10^{-10}	0.000122