Téléphonie d'entreprise

- Le câblage
- Le central téléphonique privés: PABX
- Les fonctionnalités du PABX
- les applications de la téléphonie
- la mise en réseaux
- les centres d'appels

Le câblage

- Un câblage volant suffit chez soi mais ne peut pas être généralisé sur une grande échelle et dans les entreprise:
 - Usure et durée des câbles qui sont fréquemment déplacés
 - Les contraintes d'installations: éviter de faire croiser les câbles informatiques et électriques source de perturbations électromagnétiques.
 - Des travaux lourds et coûteux sont nécessaires pour les passages des câbles dans les maçonneries et les cloisons
 - De plus les besoins de déménagements ou demandes de nouvelles connexions sont fréquents dans les entreprises et donc difficile à gérer.
- Ainsi il est nécessaire d'anticiper les besoins et de définir une véritable stratégie du câblage à la construction du bâtiment
 - Le précablage

Le câblage: Le précablage

- Dans les bâtiments il est donc impératif de mettre en place:
 - un système de câblage permanent et évolutif:
 - fixe
 - stable
 - adapté aux besoins présents et futurs.
- Il ne faut pas définir l'implantation des prises en fonction où sera situé tel ou tel utilisateur
- mais installer les prises dans le but de pouvoir connecter n'importe qui à n'importe quel moment.

Le câblage: Le précablage

- Au début chaque constructeurs avait son système de câblage:
 - ex IBM ;ATT ;ALCATEL.
 - Au fil du temps des standards et des normes se sont imposées.
- Un standard a été développé conjointement par la TIA (Télécommunications Industries Association) et EIA (Electronic Industries Association) :
 - TIA/EIA 568A et 568B.

- AT&T 568A est le plus utilisé en Amérique du Nord
- 568B et KATT s'utilise plutôt en Europe
- Ce standard donne les directives électriques et physiques des câblages de bâtiments au standard industriel.
- Néanmoins il existe d'autres standards comme : KATT, Krone, USOC et COREL (France Télécom)

Le câblage: le précablage

- Voici une liste avec quelques distributeurs :
 - Alcatel Cables; AMP(Tyco); Brand Rex; Infra+; Panduit; Pouyet (3M);
 R&M; Sofim

Le câblage: les règles

- la densité dans les bureaux est généralement d'1 boîtier de prises (BPI) pour 7 à 10 m2.
 - Le BPI peut comporter 2 à 4 prises.
- Généralement pour chaque poste de travail on considère:
 - 1 prise téléphonique
 - 1 prise informatique
 - et une troisième prise pour les besoins particuliers (ligne téléphonique modem, imprimante en réseau ...).
- Il ne faut pas oublier les locaux collectifs, salles de réunion, local photocopieur, halls d'entrées, ascenseurs, les raccordements des bornes DECT, pointeuse.
- Attention ce câblage ne sera pas seulement utilisé pour la téléphonie et l'informatique. On notera les fonctions suivantes:
 - La détection incendie
 - Les réseaux anti intrusion
 - La surveillance video
 - Le réseau d'alarme technique

2008/2009

Le câblage: Les locaux techniques

 Après l'implantation des prises, il faut définir le cheminement des câbles et la position des locaux techniques.

Les locaux techniques sont nécessaires:

- Par la topologie en étoile des réseaux informatiques et téléphonique.
 - Les équipements actifs ont une fonction de fédérateur comme les Hubs, Switchs, URAD.
 - Le **regroupement du câblage** sur un support mieux adapté. Ex 14 paires, 28,56,112.
- La distance maxi des câbles informatiques pour conserver les caractéristiques notamment sur le débit: 90m pour la paire torsadée.
- Pour mieux gérer la densité des prises. Le standard est 250 à 350 prises par locaux techniques. Au delà l'exploitation est plus complexe: trop de câble et d'équipement actif.
- Un autre avantage du local technique: est de diviser la liaison en plusieurs tronçons entre l'utilisateur et la ressource télécoms.
 - Ainsi en cas de problème sur cette liaison il est plus facile de remplacer le tronçon défectueux
 - plus facilement que de remplacer le câble dans son intégralité.

Le câblage: les locaux techniques

- Les LTE (locaux Techniques d'étage)
- Les LN (locaux nodaux)
- LO Local Opérateur:
- LE local Energie:
- Et les SI (Salle Informatique):
 - Dans le cas des petits sites des fonctions peuvent être regroupées dans un même local.

Le câblage: les câbles

 La paire de fils torsadés est le support de transmission le plus simple.

- Il existe plusieurs types
 - UTP Unshielded Twisted Pair : le cable non blindé, le plus courant
 - Il existe une variante écranté FTP Foiled Twisted Pair
 - Le cable blindé STP Shielded Twisted Pair
- Les supports métalliques sont classifiés en prenant en compte le débit qu'ils peuvent accepter. Les classes sont 1,2,3,4,5,6,7

Le cablage: les cables

- La catégorie 3 représente le niveau de performance pour la transmission voix et données jusqu'à 10 Mbit/s (ou 16 Mhz).
- La catégorie 4 représente le niveau de performance pour la transmission jusqu'à 20 Mhz ou 16 Mbit/s.
- La catégorie 5 jusqu'à 100 Mhz et 100Mbit/s
- La catégorie 5 e est une amélioration de la 5 pour notamment le Full Duplex 100Mhz
- Mais aussi :
 - La catégorie 6 : amélioration de la bande passante jusqu'à 250Mhz
 - La catégorie 7 : amélioration de la bande passante jusqu'à 600Mhz.

Standards Catégorie 5, Catégorie 5e, Catégorie 6 et Catégorie 7				
Standards	CAT5	CAT5e	Catégorie 6 (ébauche)	Catégorie 7 (en projet)
Fréquence maximale	100 MHz	100 MHz	250 MHz	600 MHz
Atténuation (maximum à 100 MHz)	22 dB	22 dB	20,2 dB	20,8 dB
Impédance caractéristique	100 ohms ± 15%	100 ohms ± 15%	100 ohms ± 15%	100 ohms
NEXT (minimum à 100 MHz)	32,3 dB	35,3 dB	44,3 dB	62,1 dB
PS-NEXT (minimum à 100 MHz)	[non spécifié]	32,3 dB	42,3 dB	59,1 dB
ELFEXT (minimum à 100 MHz)	[non spécifié]	23,8 dB	27,8 dB	A préciser
PS-ELFEXT (minimum à 100 MHz)	[non spécifié]	20,8 dB	24.8 dB	A préciser
Réflexion structurelle (min. à 100 MHz)	16 dB	[non spécifié]	[non spécifié]	A préciser
Perte par réflexion (minimum at 100 MHz)	[non spécifié]	20,1 dB	20,1 dB	14,1 dB
Décalage de propagation (maximum sur 100 m)	45 ns	45 ns	45 ns	20 ns

Le central téléphonique privé

 Un PABX ou PBX est une interface privée entre le réseau téléphonique public et les utilisateurs de celui-ci.

Objectifs du PABX:

- **Faciliter** la *communication*
- Optimiser les coûts
- Qualité du service
- Sécurité

PABX=Private Automatic Branch Exchange

PABX: les services

Le PABX peut offrir une variété de service pour l'entreprise

PABX: schéma

Les fonctionnalités de la téléphonie

- Les techniques numériques ont permis d'offrir aux utilisateurs des services complémentaires facilitant la communication dans l'entreprise:
 - SELECTION DIRECTE A L'ARRIVEE: SDA
 - > NUMEROTATION abrégée collective ou personnelle
 - TRANSFERT D'APPEL
 - Les techniques de renvoi: renvoi immédiat, sur non réponse, sur occupation
 - > RAPPELS SUR OCCUPATION ou sur non réponse
 - > CONFERENCE
 - > Les groupements d' INTERCEPTION D'APPEL ...
 - La supervision et le filtrage des postes (relation patron/secretaire)
 - Le multitouche qui autorise la prise d'un second appel et le double appel
 - Le multi lignes: plusieurs lignes chacune dotée d'un numéro différent et le multi annuaire (une ligne avec plusieurs numéro)
 - L'annuaire collectif qui permet l'appel par le nom et non plus par le numéro de tél.
 - Évolution des annuaires sur le standard X500 → LDAP
 - L'interphonie

Les applications vocales

- L'application la plus utilisée est la messagerie vocale:
 - Permet de déposer un message pendant l'absence de l'appelé: service de communication différé ou asynchrone
 - En France apparu au début des années 90 mais elle est encore mal perçue par les usagers
 - > Techniques:
 - > Individuel, Le répondeur banché sur la ligne de l'abonné
 - Centralisé sur le central téléphonique
 - Possibilité de consulter ses messages en interne ou à l'extérieur de l'entreprise
 - Indication du dépôt de message sur voyant ou signal sonore
 - Possibilité de Messagerie Unifiée avec la messagerie écrite.

Les applications vocales

Le standard automatique

- > Se **substitue à l'opératrice** par un ensemble de guides vocaux pour orienter l'appel vers le destinataire
- Doit faire l'objet d'une étude sérieuse pour éviter une arborescence trop complexe qui dissuade l'appelant.
 - > Règle des 3, 3

Les applications vocales

> Les serveurs vocaux interactifs

- Objectif: l'automatisation du traitement des demandes répétitives d'informations personnalisées
- > Exemple: les banques, les sociétés de ventes par correspondance

La mise en réseaux des PABX

Objectifs:

- Réduire les coûts: le budget Téléphone représente plus de 60% du budget Télécom des entreprises
- Offrir aux utilisateurs des autres sites des services identiques

Deux approches:

- Utiliser des ressources du réseau téléphonique public de l'opérateur RPV (Réseaux Privés Virtuels)
- Interconnecter les PABX par des liaisons spécialisées
 RPIS (Réseaux Privés à Intégration de Services)

Les réseaux de PABX:RPV

- Le principe est d'utiliser les ressources du réseau commuté numérique pour relier les différents PABX de l'entreprise.
- Les services:
 - Un plan de numérotation privé homogène
 - Le O identifie les appels extérieurs du réseau privé
 - Les liaisons du client sont marquées
 - Renvoi sur un poste de l'entreprise
 - Constitution d'un groupe fermés d'utilisateurs GFU
 - Facturation
- Les communications privées établies bénéficient d'une réduction tarifaire dépendant de la distance et du volume.
- Un mobile peut appartenir au GFU
- Offre de France Télécoms: atout RPV

Les réseaux de PABX: RPIS

- Consiste à relier les PABX:
 - par des liens privés : LS ou FR
 - Interface MIC T2 ou T0

- Un préfixe (0) identifie les appels destinés a être acheminés par le réseau public (appels Off-Net)
- Les appels internes (On-net) sont établis en utilisant un plan de numérotation propre à l'entreprise.
- Généralement la numérotation locale utilise les quatre chiffres MCDU

Les réseaux de PABX: RPIS

- Chaque site est identifié par un préfixe
- Il est nécessaire de définir un plan de numérotation global et homogène.
- Sur chaque PABX on définit une table de routage comportant le numéro du site et les faisceaux: principal et les débordements
- Le réseau public peut être définit en débordement
- Possibilité de faire des aboutements Off-net/On-net.

Les réseaux de PABX: RPIS

- Les difficultés pour réaliser un RPIS
 - Déterminer le trafic à absorber: lois d'erlangs
 - L'hétérogénéité des PABX
 - Choix de la liaison: LIA , MIC, FR...
- Possibilité de mettre en place une signalisation pour apporter des services supplémentaires à l'appel de base:
 - Propriétaire (Alcatel, Nortel...)
 - DPNSS (digital Private Network Signalling System)
 - IPNS (ISDN PABX Networking Specification)
 - Protocole Q-SIG

La mesure du trafic

- Le dimensionnement des équipements doit tenir compte de ce phénomène.
- Cela conduit à la notion de qualité d'écoulement de trafic.
- L'unité de mesure est l'<u>ERLANG</u> avec les remarques suivantes:
 - Une ligne occupée en permanence pendant 1heure écoule un trafic de 1 Erlang

 Si un faisceau de n lignes écoule I Erlangs alors il y a en moyenne *l lignes occupées* (avec l<n)

remarques:

- On admet sur une ligne d'abonné ordinaire, le trafic varie de 0,03 à 0,1 Erlang (0,18 à 6 minutes par heure)
- Sur un circuit entre commutateurs de 0,3 à 0,8 Erlang (18 à 48 minutes par heure)

- A partir des hypothèses précédentes, *Erlang* a développé:
 - une équation qui calcule la probabilité P de perdre un appel
 - lorsque l'on dispose de M organes pour écouler Y
 Erlangs:
 Y^m/M!

- Dans la pratique, on utilise une série d'abaques --> Erlang B
- Le nombre de circuits croit moins vite que le trafic.
 - On a donc intérêt à constituer de gros faisceaux

• Exercice 1:

Vous allez déménager dans un nouveau bâtiment:

- 50 personnes (75 personnes dans 2 ans).
- Combien de lignes téléphoniques avez vous besoin si durant les heures de travail:
 - chaque personne reçoit ou émet 3 appels/heures d'une durée de 3,5mn
 - Le taux de disponibilité doit être de 99,9%

Courbe d'Erlang B

• Exercice 1

```
50 personnes

Trafic = 3 \times 3.5 / 60 = 0.175 Erlang

Trafic total = 0.175 \times 50 = 8.75 Erlang

Probabilité de blocage = 0.001

Nbre de lignes --> 20 lignes
```

75 personnes Trafic total = 0.175x75 = 13.13 Erlang Nbre de lignes --> 26 lignes

Défaut de la règle précédente:

Trafic On considère le trafic uniforme toute la journée.

• Exercice 1

```
Trafic = 3 \times 3.5 / 60 = 0.175 Erlang
Trafic total = 0.175 \times 50 = 8.75 Erlang
T = 8.75 \times 8 = 70 Erlang
E = 70 / 6,37 = 10,99 Erlang
Probabilité de blocage = 0.001
Nbre de lignes --> 23 lignes
```

Qualité de service

Mesure de la qualité de service TAP/TAM:

taux d'appel abandonné/temps d'attente moyen

TAP

10%

Les centres d'appels

Dans un central téléphonique deux types d'applications -->

- les fonctions individuelles
- les fonctions de groupe (Call Center)

- évolution des fonctions de groupe
 - 1ère génération

évolution des fonctions de groupe

évolution des fonctions de groupe

- les applications:
 - Screen Pop Up
 - transfert Coordonné
 - conférence Coordonné
 - TAO
 - Routage Intelligent
- La principale difficulté est de déterminer le nombre d'opérateurs pour absorber le trafic:
 - À l'aide d'abaque
 - Les lois d'Erlang C : avec mise en attente

Exercice

Combien il faut d'opérateurs:

- pour répondre à 230 clients par heures
 - une moyenne d'attente ne dépassant pas 10 secondes
 - la durée moyenne de la communication avec un client est de 100 secondes

Courbes d'Erlang C

• Exercice:

durée moyenne des communications:

$$100/3600 = 0.028 h$$

Trafic = $230 \times 0.028 = 6.4$ Erlangs

rapport attente maxi/durée d'une communication 10/100 = 0.1

Modèle --> courbes Erlang

11 Opérateurs

Intégration Informatique/PABX

- Origine: les travaux de DEC en 1987 CTI Computer Telephony Integrated
 - Standard CSTA (Computer Supported Telephony Applications de l'ECMA)
 - CSTA définit le dialogue entre le serveur CTI et un PABX:
 - Il décrit les services mais précise aucune API
 - S'appuie sur CCITT n%

CTI: les API

- Les API de téléphonie permettent de développer sur PC des applications qui accèdent aux fonctions du PABX telles que:
 - L'annuaire et la numérotation automatic
 - L'interception d'appel
 - La supervision de poste
 - La consultation de messagerie
 - Statistiques

- Avec les deux approches First Party, Third Party
- Exemples:
 - TAPI d'origine Microsoft (Telephony Application Programming Interface)

2008/2009

- Novell/ATT TSAPI (Telephony Services Application Programming Interface)
- CallPath d'IBM

CTI

First Party

- basé sur des PC connectés aux téléphones
- simplicité de mise en oeuvre
- pas d'équipement spécifique côté "host" mais souvent nécessaire côté matériel ou client
- limitation des fonctionnalités
- peu d'économie d'échelle (adapté pour les personnes isolées ou les petits groupes).

CTI

Third Party

- Architecture client/serveur
- Complexité liée à la haute intégration des différents systèmes.
- Nécessite de logiciels (et matériels) spécifiques côté "host" ou serveur pour le lien avec le PABX
- Fonctionnalités très larges
- économie d'échelle importante avec la taille du parc.

Call Center: autres fonctionnalités

- SVI: Serveur Vocale Intéractif
 - application identification utilisateur,
 - Par exemple l'envoi de fax automatique.
- messagerie unifiée.
- Web

eBusiness: évolution de la relation

