FinFET – Current Conduction

ON: Surface conduction dominates

OFF: Volume conduction dominates (away from gate, difficult to turn off) → Thinner fins

FinFET – Stress Effects

S₇₂

T = Tensile (+ve); C = Compressive (-ve)

Stress (1 Gpa)	NMOS	PMOS
S _{xx} Longitudinal	T (65%)	C (63%)
S _{yy} Transverse	T (19%)	T (22%)
S _{zz} Vertical	C (60%)	T (26.5%)

Stress options:

Stress liners (e.g. planar) no longer effective

FinFET Stress Proximity Effect

Stress simulation in multiple fin versus single fin device

Stress relaxation in single fin device – reduction in In

FinFET Stress Proximity Effect

Need dummy gates

Intel

FinFET Scaling → Power vs. Performance

Logic Transistor Density

Intel

Transistor Pitch Scaling

Microprocessor Area Scaling

Intel

Scaling Challenges: Gate Stack (1)

Diminishing volume for gate stack → Thinner layers → Loss of bulk properties

PMOS SiGe channel (mobility boost) → Integration

Si / SiGe GAA → Lower volume, strong quantum effects, new transport physics

Scaling Challenges: Gate Stack (2)

Need FETs with multiple V_T for SoC applications

Composition and thickness

Insertion of dipole or trace elements

Steven H. (AMAT)

Scaling Challenges: Gate Stack (3)

Processes → Impact on performance & reliability

Variability

Variation in current across devices

Systematic (process) variability and stochastic effects

Random Dopant Fluctuation (RDF), Line Edge Roughness (LER), Metal Grain Granularity (MGG)

Consequences of Variability

V_T distribution is normal (mean, variance)

Puts limit on V_{DD} scaling

Dynamic power ~ V_{DD}^2

How to reduce static and dynamic power?

How to achieve voltage scaling?

Variability and Scaling: HKMG, FinFET

The data is for the L_{min} W_{min} transistor

Planar → RDF domination

FinFET → Dimension domination

Overall reduction due to better dimension control