Experimenter's Guide – Solving Navier-Stokes, Differently

Context. Clay Institute's €1 M Millennium Prize asks for a proof of existence / uniqueness. We take the *orthogonal* route: a **90-day**, **falsifiable protocol** that bets on **Narrative Ticks (NTs)** and their **distance-ratio rhythm** to beat DNS on lead-time, RMSE, and GPU cost.

We look for **the instant disorder begins to order itself**. That flip-point is the NT. Repeating ratios of NT distances reveal the *fractal rhythm* nature prefers.

1 · Motivation

Classical CFD hunts for **order** → **chaos** breakdown (shear layers, vortex shedding ...). Our lens inverts it:

Classical lens	NT lens
Track a smooth solution until it blows up	Detect the first DU flip (NT) — where disorder sprouts order
Refine mesh / timestep	Study successive NT-distance ratios to expose hidden rhythm

Why ratios?

- 1. NT distances carry **scale-free memory**; their ratios cluster when the same physics repeats.
- 2. Over-lapping DU cycles still share the same ratio peaks an invariant to test.

2 · Scope & Prerequisites

- Python \geq 3.9 NumPy h5py matplotlib Streamlit (see requirements.txt).
- HDF5 file with dataset G_t (drag, lift, KE ...) shape N_t , uniform Δt the same scalar used in the NT detection. N_t , uniform Δt .
- Binder sandbox → Launch notebook (no install).

3 · 10-Minute Smoke-Test

- 1. **Binder** → run `` red dots mark candidate NTs.
- 2. Run " histogram should *not* be flat; look for sharp peaks.

4 · Full 90-Day Benchmark

Phase	Days	Tool	Deliverable
Data preparation	0-10	agents/nt_detect.py	nt_times.txt
Initial ratio scan	11-15	01_ratio_quicklook.ipynb	Spiky histogram
Hyper-search σ	16-25	loop σ € 1.0 - 2.0	σ* with strongest peaks
LES / ML run	26-80	Your solver	NT-aware forecast CSVs
KPI calculation	81-88	dashboard + CLI	*_ratios.txt , RMSE, GPU h
PR submission	89-90	GitHub	results/ <lab_tag>/</lab_tag>

Target KPI lead-time \geq 30% • RMSE \leq 5% • GPU \leq ½ DNS

5 · Local Quick-Start

```
# clone & env
git clone https://github.com/gradient-pulse/phi-mesh.git
cd phi-mesh/RGP_NS_prototype
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt

# 1 Detect NTs
python agents/nt_detect.py data/example_G.h5 --sigma 1.5

# 2 Ratio histogram quick-look
jupyter lab notebooks/01_ratio_quicklook.ipynb # or use Binder
```

Batch Mode (CLI)

```
# Detect Narrative Ticks
python agents/nt_detect.py path/to/G_t.h5 --sigma 1.5

# Distance-ratio analysis (writes *_ratios.txt)
python agents/nt_ratio_cli.py nt_times.txt \
    --outdir results/ratios_run --sigma 1.5
```

❖ PoLA × NT Convergence — why the ratios matter

The **Principle of Least Action (PoLA)** is normally phrased as "nature minimises action along a path." In **RGP** that law appears as a **minimal-divergence rhythm**:

Narrative Ticks (NTs) mark the instant a flow chooses the *least disruptive* pivot to stay coherent. Over many flips, the **ratios between successive NT distances** expose the rhythm that minimises unnecessary gradient drift.

Classical PoLA	RGP / NT lens
Minimise ∫ Ldt along a path	Minimise recursive tension between NTs
"Path of least action"	"Rhythm of least divergence"

Implication for experimenters → If your NT-distance histogram stabilises around the same ratio peaks across runs, you're watching PoLA express itself inside turbulence.

6 · FAQ (Quick Reference)

Question	Answer		
σ choice?	Scan 1.0 – 2.0; pick the σ giving the clearest ratio peaks.		
Over-lapping DU cycles?	Ratio signature survives; treat each NT as a cycle start.		
Units?	Any scalar (G(t) in J, N); ratios are dimension-less.		
No PR access?	Zip *_nt.txt, *_ratios.txt, kpi.csv and email marcusvandererve@icloud.com; we'll merge for you.		

7 · Reference

van der Erve, M. (2025). *Solving Navier-Stokes, Differently: What It Takes* (V1.2). Zenodo. https://doi.org/10.5281/zenodo.15830659

Last updated 21 Jul 2025