Förslag till lösningar på tentamen

Optimering för civilingenjörer, MA507G

Tid: Torsdag 14 mars 2024 klockan 08:15-13:15

Problem 1 (14 poäng)

- (a) Välj slackvariablerna s_1, s_2, s_3 som startlösning så blir utgående basvariabel s_2 och optimala lösningen är $x = [0, 0, 3/2]^T$. Ur tablån fås skuggpriserna (duala varaiblerna) $y = [0, 1, 0]^T$ vilket ger att första och tredje bivillkoret är inaktiva och respektive maskin har extra kapacitet. Lösningen är optimal eftersom det inte är några element i slutliga baslösningen lika med noll. Ett annat sätt att se att lösningen är unik är att det aktiva andra bivillkoret inte har en linje i planet givet av objektfunktionen.
- (b) Skuggpriserna är dualvariablerna som fås ovan i tablån. Skuggpriser anger pris för kapacitet för respektive maskin. Bara andra bivillkoret är aktivt och ger ändring via skuggpriset och det är då $1\cdot 2$ kkr.
- (c) Dualen är

Komplementaritetsvillkoren är

$$x_1(y_1 + 3y_2 + y_3 - 2) = 0$$
 $y_1(x_1 - 2x_3 - 4) = 0$
 $x_2(3y_2 - 2) = 0$ $y_2(3x_1 + 3y_2 - 4x_3 - 6) = 0$
 $x_3(2y_1 + 4y_2 + y_3 - 4) = 0$ $y_3(x_1 - 3x_3 - 4) = 0$

som genom insättning blir uppfyllda.

(d) Hela ton innebär att $x_i \in \{0, 1, 2...\}$ dvs icke-negativa heltal.

Problem 2 (12 poäng)

Problem 3 (8 poäng)

No.	Value	Budget	Staff	Not with	Require also
1	60	35	5	7	
2	40	34	3		
3	8	10	2	4	
4	12	18	2	3	
5	20	32	4		
6	22	11	1		5
7	38	22	5	1	
8	13	18	2		
9	8	16	2		2
10	27	29	4		2 and 3

Maximize $Z = 60x_1 + 40x_2 + 8x_3 + 12x_4 + 20x_5 + 22x_6 + 38x_7 + 13x_8 + 8x_9 + 27x_{10}$ subject to

$$5x_1 + 3x_2 + 2x_3 + 2x_4 + 4x_5 + x_6 + 5x_7 + 2x_8 + 2x_9 + 4x_{10} \le 17$$
 (Staff Constraint) $35x_1 + 34x_2 + 10x_3 + 18x_4 + 32x_5 + 11x_6 + 22x_7 + 18x_8 + 16x_9 + 29x_{10} \le 100$ (Budge $x_1 + x_7 \le 1$ (Project 1 and 7 Conflict) $x_3 + x_4 \le 1$ (Project 3 and 7 Conflict) $x_{10} \le x_2$ (Project 10 Requires Project 2) $x_{10} \le x_3$ (Project 10 Requires Project 3) $x_9 \le x_2$ (Project 9 Requires Project 2) $x_6 \le x_5$ (Project 6 Requires Project 5) $x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7 + x_8 + x_9 + x_{10} \le 6$ (Project Selection Limit) $x_i \in \{0,1\}, \ \forall i \in \{1,2,\ldots,10\}$ (Binary Decision Variables)

Problem 4 (10 poäng)

- (a) Eftersom $f(x) \ge 0$ och den enda punkten där f(x) = 0 är (2,0) är det unikt globalt minimum.
- (b) Gradienten i den givna punkten $x^{(0)} = [1, 1]^T$ är $g = [-2, 2]^T$ och därför blir $\phi(t) = f(x^{(0)} tg) = f(1 2t, 1 + 2t)$. Lösningen till $\phi'(t) = 0$ blir $t_0 = 1/2$ och $x^{(1)} = [2, 0]^T$.
- (c) Hessianen i lösningen $[2,0]^T$ är

$$\left[\begin{array}{cc} 0 & 0 \\ 0 & 4 \end{array}\right]$$

som inte har full rang dvs inte är inverterbar. Nära lösningen blir då det ekvationssystem som man löser i Newtons metod väldigt illa konditionerad och konvergensen blir inte kvadratisk utan linjär.

Problem 5 (6 poäng)

Här kommer en förenklad lösning. För full po
äng krävs att alla steg redovisas. Dijkstras algoritm eller helt enkelt uppräkning av alla vägar ger billigaste vägen $1 \to 3 \to 5 \to 7$ till kostnad 13 tidsenheter. Snabbaste vägen via nod 6 är 15 enheter dvs 2 tidsenheter mer.

Problem 6 (10 poäng)

Se boken och föreläsningsanteckningar (slides).