Übung zur Vorlesung Technische Grundlagen der Informatik

Prof. Dr. Andreas Koch Thorsten Wink

Wintersemester 09/10

Übungsblatt 1 - Lösungsvorschlag

Die Präsenzübungen werden in Kleingruppen während der wöchentlichen Übungsstunde bearbeitet. Bei Fragen hilft Ihnen Ihr Tutor gerne weiter.

Aufgabe 1.1 Zahlendarstellung I

Wandeln Sie die folgenden Zahlen in Binärdarstellung um:

- a) 55₁₀
- b) 42₁₀
- c) 127₁₀
- d) 73951₁₀

Aufgabe 1.1 Lösung

- a) 110111₂
- b) 101010₂
- c) 1111111₂
- d) 10010000011011111₂

Aufgabe 1.2 Zahlendarstellung HEX

Wandeln Sie die folgenden Zahlen in Hexadezimaldarstellung um:

- a) 224₁₀
- b) 69₁₀
- c) 171₁₀
- d) 57005₁₀

Aufgabe 1.2 Lösung

- a) $E0_{16}$
- b) 45₁₆
- c) AB₁₆
- d) DEAD₁₆

Aufgabe 1.3 Zahlenbereiche

Aufgabe 1.3.1

Welches ist die größte Zahl, die sich mit 5 Bit (vorzeichenlose Darstellung) darstellen lässt?

Aufgabe 1.3.1 Lösung

Die größte Zahl berechnet sich aus $2^{AnzahlBits} - 1$, in unserem Fall $2^5 - 1 = 31$.

Aufgabe 1.3.2

Wie viele verschiedene Zahlen lassen sich mit 32 Bit darstellen?

Aufgabe 1.3.2 Lösung

 $2^{AnzahlBits}$, in unserem Fall $2^{32} = 4294967296$.

Aufgabe 1.3.3

Welches ist die größte Zahl, die sich mit 5 Bit (2-Komplement-Darstellung) darstellen lässt?

Aufgabe 1.3.3 Lösung

Die größte darstellbare Zahl berechnet sich aus $2^{AnzahlBits-1} - 1$, in unserem Fall $2^{5-1} - 1 = 15$.

Aufgabe 1.3.4

Welches ist die kleinste Zahl, die sich mit 5 Bit (2-Komplement-Darstellung) darstellen lässt?

Aufgabe 1.3.4 Lösung

Die kleinste darstellbare Zahl berechnet sich aus $-(2^{AnzahlBits-1})$, in unserem Fall $-(2^{5-1}) = -16$.

Aufgabe 1.3.5

In UNIX Systemen wird - aus historischen Gründen - die Zeit in Sekunden seit dem 1. Januar 1970, 0 Uhr gezählt. In welchem Jahr gibt es Probleme mit 32-Bit-Maschinen, wenn die Zahl vorzeichenlos gespeichert ist?

Aufgabe 1.3.5 Lösung

Mit 32 Bit können $2^{32} = 4294967296$ Sekunden gezählt werden. Dies entspricht 4294967296/(60*60*24*365) = 136 Jahren, somit gibt es im Jahr 2106 Probleme.

Aufgabe 1.4 2-Komplement-Zahlen

Wandeln Sie die folgenden Dezimalzahlen in 2-Komplement-Darstellung um. Jede Zahl soll ein Byte großsein.

- a) 9₁₀
- b) -42₁₀
- c) 127₁₀
- d) -128₁₀

Aufgabe 1.4 Lösung

- a) 00001001
- b) 11010110
- c) 01111111

d) 10000000

Aufgabe 1.5 BCD

Um eine Zahl als BCD (Binary Coded Decimal)-Zahl darzustellen, wird jede dezimale Ziffer (0 bis 9) durch jeweils 4 Bit binär dargestellt.

Wandeln Sie die folgenden Dezimalzahlen in BCD um:

- a) 9₁₀
- b) 42₁₀
- c) 524₁₀

Aufgabe 1.5 Lösung

- a) 1001
- b) 0100 0010
- c) 0101 0010 0100

Die folgenden Aufgaben sollen als Hausaufgaben zur Vertiefung des Stoffes dienen. Sie sollten sie bis zur nächsten Übungsstunde soweit vorbereiten, dass Sie einen Lösungs**vorschlag** an der Tafel vortragen können. Erinnerung: Um die Klausurzulassung zu erhalten, müssen Sie innerhalb der Übungsstunden 2 bis 6 (bis spätestens 28.11.09) mindestends eine Aufgabe vorgetragen haben.

Hausaufgabe 1.1 Zahlendarstellung II

Vervollständigen Sie die Tabelle.

Dezimal	Binär	Hexadezimal
12 ₁₀	11002	C ₁₆
85 ₁₀	1010101 ₂	55 ₁₆
3529 ₁₀	110111001001 ₂	DC9 ₁₆

Hausaufgabe 1.2 Addition von Binärzahlen

Addieren Sie die folgenden Binärzahlen, die vorzeichenlose Zahlen darstellen. Geben Sie auch die dezimalen Werte an. Tritt ein Overflow auf?

Hausaufgabe 1.3 Addition von 2-Komplement-Zahlen

Addieren Sie die folgenden 2-Komplement-Zahlen. Geben Sie auch die dezimalen Werte an. Tritt ein Overflow auf?

Hausaufgabe 1.4 Subtraktion von 2-Komplement-Zahlen

Wandeln Sie die folgenden Dezimalzahlen in 2-Komplement-Zahlen der Größe 1 Byte um und subtrahieren sie voneinander. Ist das Ergebnis korrekt?

- a) $10_{10} 63_{10}$
- b) $-50_{10} 80_{10}$

Hausaufgabe 1.4 Lösung

```
a) 1. Schritt: Umrechnung in 2-K-Zahlen: 10 \stackrel{Bin\ddot{a}r}{\Rightarrow} 00001010
63 \stackrel{Bin\ddot{a}r}{\Rightarrow} 00111111 \stackrel{Komplementbildung}{\Rightarrow} 11000001
2. Schritt: Addition 00001010 \\ +11000001 \\ 11001011
3. Schritt: Kontrolle: Zahl ist negativ: 11001011 \stackrel{Komplementbildung}{\Rightarrow} 00110101 \stackrel{Dezimal}{\Rightarrow} 53 : \text{Ergebnis korrekt}
b) 1. Schritt: Umrechnung in 2-K-Zahlen: 50 \stackrel{Bin\ddot{a}r}{\Rightarrow} 00110010 \stackrel{Komplementbildung}{\Rightarrow} 11001110 \\ \stackrel{Bin\ddot{a}r}{\Rightarrow} 01010000 \stackrel{Komplementbildung}{\Rightarrow} 10110000
2. Schritt: Addition 11001110 \\ +10110000 \\ 101111110
```

3. Schritt: Kontrolle: Es tritt ein Overflow auf: Ergebnis nicht korrekt (Das korrekte Ergebnis -130 ist nicht mit 8 Bit darstellbar).

Hausaufgabe 1.5 Größer oder Kleiner?

Welche der folgenden Zahlen ist größer? Rechnen Sie die Zahlen zuerst ins Dezimalsystem um. (Alle Zahlen sind vorzeichenlos).

- a) 1111_2 oder F_{16}
- b) 10101₂ oder *AC*₁₆
- c) 10010101_2 oder $8C_{16}$

Hausaufgabe 1.5 Lösung

- a) $1111_2 \Rightarrow 15_{10}$, $F_{16} \Rightarrow 15_{10}$, beide Zahlen sind gleich
- b) $10101_2 \Rightarrow 21_{10}$ oder $AC_{16} \Rightarrow 172_{10}$, die erste Zahl ist kleiner
- c) $10010101_2 \Rightarrow 149$ oder $8C_{16} \Rightarrow 140$, die erste Zahl ist größer

Plagiarismus

Der Fachbereich Informatik misst der Einhaltung der Grundregeln der wissenschaftlichen Ethik großen Wert bei. Zu diesen gehört auch die strikte Verfolgung von Plagiarismus. Weitere Infos unter www.informatik.tu-darmstadt.de/plagiarism