Stroke Prediction using Machine Learning

Nisarg Doshi 202111033

Utkarsh Pandya 202111026

May 1, 2022

Introduction

- A stroke^[1] is a medical condition in which poor blood flow to the brain causes cell death. It cause parts of the brain to stop functioning properly.
- Stroke was the second most frequent cause of death worldwide in 2011, accounting for 6.2 million deaths (11% of the total).
- It is believed that high blood pressure, high cholesterol, smoking, obesity, and diabetes are leading causes of stroke.
- Stroke can be prevented if people change their lifestyle and habits.

[1] Martin G (2009). Palliative Care Nursing: Quality Care to the End of Life, Third Edition. Springer Publishing Company. p. 290. ISBN 978-0-8261-5792-8. Archived from the original on 2017-08-03.

Problem Statement

- Our objective is to detect whether an individual is likely to get a stroke based on parameters like gender, age, bmi, work type etc.
- To pursue this objective we have used 4 classifiers:
 - 1. k-Nearest Neighbours (kNN)
 - 2. Decision Tree
 - 3. Logistic Regression
 - 4. Support Vector Machine (SVM)

Dataset

- For this objective, we have used "Stroke Prediction dataset" which consists following attributes of individuals from age 0 to 82 years: (5120 entries, 12 columns)
 - 1) id
 - 2) gender
 - 3) age
 - 4) hypertension
 - 5) heart_disease
 - 6) ever married
 - 7) work type
 - 8) Residence_type
 - 9) avg_glucose_level
 - 10) bmi
 - 11) smoking_status
 - 12) stroke

[2] Kaggle.com. 2022. Stroke Prediction Dataset. [online] Available at: jhttps://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset

Data Preprocessing

- Missing values in bmi column
- Label Encoding & One Hot Encoding for gender, heart_disease, work_type and other categorical features
- Size: 4909 entries, 20 columns
- Train Test Split: 80% training, 20% testing

Logistic Regression

• Logistic Regression uses the sigmoid function and Confusion matrix for predictions on test dataset

Comusion matrix (result)

[3] Hosmer Jr, David W., Stanley Lemeshow, and Rodney X. Sturdivant. Applied logistic regression. Vol. 398. John Wiley Sons, 2013

Decision Tree

Decision tree concept and Confusion matrix for predictions on test dataset

[4] https://www.javatpoint.com/machine-learning-decision-tree-classification-algorithm

Support Vector Machine (SVM)

SVM concept and Confusion matrix for predictions on test dataset

[5] https://www.javatpoint.com/machine-learning-support-vector-machine-algorithm

k-Nearest Neighbours

kNN concept and Confusion matrix for predictions on test dataset

[6] https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn

Metrics

- The following metrics are widely used in ML applications to check the performance of the models:
- As, this is a medical application and false negatives should be minimum so we are more interested in Recall as a metric.

Performance Metrics^[7]

[7] Ping Shung, K., 2022. Accuracy, Precision, Recall or F1?. [online] Medium. Available at :https://towardsdatascience.com/accuracyprecision-recall-or-f1-331fb37c5cb9

Results

 Logistic regression and SVM are performing better in terms of recall as well as accuracy than other models.

	Precision	Recall	F1-score	Accuracy
Decision Tree	0.914256	0.954175	0.933789	0.954175
KNeighborsClassifier	0.914298	0.955193	0.934299	0.955193
LogisticRegression	0.914341	0.956212	0.934808	0.956212
svc	0.914341	0.956212	0.934808	0.956212

Scope of Improvement

- Due to limitation of dataset we cannot conclude with surety the effect of certain attributes in prediction.
- Like people who had hypertension is significantly lower than the number of people who didn't.
- Further, we can also apply Principal Component Analysis (PCA) to reduce dimensionality.

Thank You