SSD1681

Product Preview

200 Source x 200 Gate Red/Black/White Active Matrix EPD Display Driver with Controller

This document contains information on a product under development. Solomon Systech reserves the right to change or discontinue this product without notice.

Appendix: IC Revision history of SSD1681 Specification

Version	Change Items	Effective Date
0.10	Initial Release	09-May-19
0.11	Revised component table and remarks	24-May-19
0.12	Revised component table, added 0402 and criteria for resistor R1	28-May-19
0.13	Revised component table	05-Jun-19

 SSD1681
 Rev 0.13
 P 2/41
 Jun 2019
 Solomon Systech

CONTENTS

1 GI	ENERAL DESCRIPTION	5
2 FE	EATURES	5
3 OI	RDERING INFORMATION	6
	LOCK DIAGRAM	
	N DESCRIPTION	
	JNCTIONAL BLOCK DESCRIPTION	
6.1 6.1.1	MCU INTERFACE	-
6.1.1		
6.1.3		
6.2	OSCILLATOR	
6.3	BOOSTER & REGULATOR	12
6.4	VCOM SENSING	
6.5	RAM	
6.6	PROGRAMMABLE WAVEFORM FOR GATE, SOURCE AND VCOM	
6.7 6.8	WAVEFORM SETTING TEMPERATURE SEARCHING	
6.8.1		
6.8.2		
6.8.3	FORMAT OF TEMPERATURE VALUE	16
6.9	WAVEFORM SETTING SEARCHING MECHANISM	
6.10	ONE TIME PROGRAMMABLE (OTP) MEMORY	18
6.11	THE FORMAT FOR TEMPERATURE RANGE (TR)	
6.12	VCI DETECTION	
6.13		
7 C	OMMAND TABLE	20
8 OI	PERATION FLOW AND CODE SEQUENCE	34
8.1	GENERAL OPERATION FLOW TO DRIVE DISPLAY PANEL	34
9 AE	BSOLUTE MAXIMUM RATING	35
10	ELECTRICAL CHARACTERISTICS	35
11	AC CHARACTERISTICS	37
11.1	SERIAL PERIPHERAL INTERFACE	37
12	APPLICATION CIRCUIT	38
13	PACKAGE INFORMATION	39
13.1	DIE TRAY DIMENSIONS FOR SSD1681Z	39
13.2	DIF TRAY DIMENSIONS FOR SSD168178	40

TABLES

Table 3-1: Ordering Information	6
TABLE 5-1: POWER SUPPLY PINS	7
Table 5-2: Interface Logic Pins	8
TABLE 5-3: ANALOG PINS	9
Table 5-4: Driver Output Pins	9
Table 5-5: Miscellaneous Pins	9
Table 6-1: Interface pins assignment under different MCU interface	10
Table 6-2: Control pins status of 4-wire SPI	10
Table 6-3: Control pins status of 3-wire SPI	11
TABLE 6-4: RAM BIT AND LUT MAPPING FOR 3-COLOR DISPLAY	
TABLE 6-5: RAM BIT AND LUT MAPPING FOR BLACK/WHITE DISPLAY	
TABLE 6-6: VS[NX-LUTM] SETTINGS FOR SOURCE VOLTAGE AND VCOM VOLTAGE	14
TABLE 6-7: EXAMPLE OF 12-BIT BINARY TEMPERATURE SETTINGS FOR TEMPERATURE RANGES	.16
TABLE 6-8: EXAMPLE OF WAVEFORM SETTINGS SELECTION BASED ON TEMPERATURE RANGES	.17
TABLE 7-1: COMMAND TABLE	
Table 10-1: Maximum Ratings	.35
Table 11-1: DC Characteristics	
Table 11-2: Regulators Characteristics	
TABLE 12-1: SERIAL PERIPHERAL INTERFACE TIMING CHARACTERISTICS	
TABLE 13-1: COMPONENT LIST FOR SSD1681 APPLICATION CIRCUIT	.38
FIGURES	
FIGURE 4-1 : SSD1681 BLOCK DIAGRAM	6
FIGURE 6-1: WRITE PROCEDURE IN 4-WIRE SPI MODE	
FIGURE 6-2 : READ PROCEDURE IN 4-WIRE SPI MODE	
FIGURE 6-3: WRITE PROCEDURE IN 3-WIRE SPI	
FIGURE 6-4: READ PROCEDURE IN 3-WIRE SPI MODE	
FIGURE 6-5: GATE WAVEFORM AND PROGRAMMABLE SOURCE AND VCOM WAVEFORM ILLUSTRATION	
FIGURE 6-6: WAVEFORM SETTING MAPPING	
FIGURE 6-7: THE WAVEFORM SETTING MAPPING IN OTP FOR WAVEFORM SETTING AND TEMPERATURE RANGE	_
FIGURE 6-8: FORMAT OF TEMPERATURE RANGE (TR) IN OTP	_
FIGURE 9-1: OPERATION FLOW TO DRIVE DISPLAY PANEL	
FIGURE 12-1: SPI TIMING DIAGRAM	
FIGURE 13-1: SCHEMATIC OF SSD1681 APPLICATION CIRCUIT	
FIGURE 14-1 : SSD1681Z DIE TRAY INFORMATION (UNIT: MM)	
FIGURE 14-2 : SSD1681Z8 DIE TRAY INFORMATION (UNIT: MM)	

 SSD1681
 Rev 0.13
 P 4/41
 Jun 2019
 Solomon Systech

1 GENERAL DESCRIPTION

SSD1681 is an Active Matrix EPD display driver with controller for Red/Black/White EPD displays.

It consists of 200 source outputs, 200 gate outputs, 1 VCOM and 1VBD (for border), which can support displays with resolution up to 200x200.

In the SSD1681, data and commands are sent from MCU through hardware selectable serial peripheral interface. It has embedded booster, regulator and oscillator which is suitable for EPD display applications.

2 FEATURES

- Design for dot matrix type active matrix EPD display, support Red/Black/White color
- Resolution: 200 source outputs, 200 gate outputs, 1 VCOM and 1VBD (for border)
- Power supply:
 - VCI: 2.2 to 3.7V
 - VDDIO: Connect to VCI
 - VDD: 1.8V, regulate from VCI supply
- On chip display RAM
 - Mono B/W: 200x200 bits
 - Mono Red: 200x200 bits
- On-chip booster and regulator for generating VCOM, Gate and Source driving voltage
- Gate driving output voltage: 2-level outputs (VGH, VGL), Max 40Vp-p
 - VGH: 10V to 20V (Voltage adjustment step: 500mV)
 - VGL: -VGH (Voltage adjustment step: 500mV)
- Source / VBD driving output voltage: 4-levels outputs (VSH1, VSH2, VSS and VSL)
 - VSH1/VSH2: 2.4V to 17V (Voltage adjustment step: 100mV for 2.4V to 8.8V, 200mV for 8.8V to 17V)
 - VSL: -5V to -17V (Voltage adjustment step: 500mV)
- VCOM output voltage
 - DCVCOM: -3V to -0.2V in 100mV resolution
 - ACVCOM: 3-level outputs (VSH1+DCVCOM, DCVCOM, VSL+DCVCOM)
- On-chip oscillator, adjustable frame rate from 25Hz to 200Hz
- Programmable output Waveform Settings:
 - Individual setting of 5 LUT [LUT0~4]
 - VS: 2-bit per 4 phases
 - Common setting of 5 LUT
 - 48 phases (4 phases/group, 12 groups with repeat and state repeat function)
 - TP: Max. 255 frame/phase
 - RP: 1 to 256 times for repeat count
 - SR: 1 to 256 times for state repeat count; state repeat count for phase A,B and 1 state repeat count for phase C,D
 - FR: Selective Frame Rate for each group
- Embedded OTP to store the waveform settings and parameters:
 - 36 sets of Waveform Settings (WS) including
 - waveform look up table (LUT),
 - Gate/Source voltage, VCOM value
 - Option for LUT end
 - 36 sets of Temperature Range (TR)
 - Display mode selection
 - 4-byte waveform version
 - 10-byte User ID
- Embedded OTP to store the init code setting
- VCI low voltage detection
- Internal Temperature Sensor of +/-2degC accuracy from -25degC to 50degC
- I2C single master interface to communicate with external temperature sensor
- MCU interface: 4-wire or 3-wire Serial peripheral interface (maximum SPI write speed 20MHz)

Available in COG package

SSD1681 Rev 0.13 P 5/41 Jun 2019 **Solomon Systech**

3 ORDERING INFORMATION

Table 3-1: Ordering Information

Ordering Part Number	Package Form	Remark
SSD1681Z	Gold Bump Die	Bump Face Up On Waffle pack Die thickness: 300um Bump height: 12um
SSD1681Z8	Gold Bump Die	Bump Face Down On Waffle pack Die thickness: 300um Bump height: 12um

4 BLOCK DIAGRAM

Figure 4-1 : SSD1681 Block Diagram

SSD1681 | Rev 0.13 | P 6/41 | Jun 2019 | **Solomon Systech**

5 PIN DESCRIPTION

Key:

I = Input

O =Output

IO = Bi-directional (input/output)

P = Power pin

C = Capacitor Pin

NC = Not Connected

Table 5-1: Power Supply Pins

Name	Туре	Connect to	Function	Description	When not in use
VCI	Р	Power Supply	Power Supply	Power input pin for the chip.	-
VCIA	P	Power Supply	Power Supply	Power input pin for the chip. - Connect to VCI in the application circuit.	-
VDDIO	Р	Power Supply	Power for interface logic pins	Power input pin for the Interface Connect to VCI in the application circuit.	-
VDD	Р	Capacitor	Regulator output	Core logic power pin VDD can be regulated internally from VCI.	-
VSS	Р	VSS	GND	Ground (Digital).	-
VSSA	Р	VSS	GND	Ground (Analog) - Connect to VSS in the application circuit.	-
VSSBG	Р	VSS	GND	Ground (Reference) pin Connect to VSS in the application circuit.	-
VSSGS	Р	VSS	GND	Ground (Output) pin. - Connect to VSS in the application circuit.	-
VPP	Р	Power Supply	OTP power	Power Supply for OTP Programming.	Open

 SSD1681
 Rev 0.13
 P 7/41
 Jun 2019
 Solomon Systech

Table 5-2: Interface Logic Pins

Name	Туре	Connect to	Function	Description	When not in use
SCL	ı	MPU	Data Bus	This pin is serial clock pin for interface. Refer to MCU interface in Section 6.1.	-
SDA	I/O	MPU	Data Bus	This pin is serial data pin for interface. Refer to MCU interface in Section 6.1.	-
CS#	I	MPU	Logic Control	This pin is the chip select input connecting to the MCU. Refer to MCU interface in Section 6.1.	VDDIO or VSS
D/C#	I	MPU	Logic Control	This pin is Data/Command control pin connecting to the MCU. Refer to MCU interface in Section 6.1.	VDDIO or VSS
RES#	I	MPU	System Reset	This pin is reset signal input. Active Low.	ı
BUSY	0	MPU	Device Busy Signal	This pin is Busy state output pin. When Busy is High, the operation of the chip should not be interrupted, and command should not be sent. For example., The chip would output Busy pin as High when - Outputting display waveform; or - Programming with OTP - Communicating with digital temperature sensor	Open
M/S#	I	VDDIO/VSS	Mode Selection	This pin is Master and Slave selection pin The M/S# pin should be connected to VDDIO.	1
CL	I/O	NC	Clock signal	This pin is the clock signal pin and should be left open.	Open
BS1	I	VDDIO/VSS	MCU Interface Mode Selection	This pin is for selecting 3-wire or 4-wire SPI bus. BS1 MCU Interface L 4-wire SPI H 3-wire SPI (9-bit SPI)	-
TSDA	I/O	Temperature sensor SDA	Interface to Digital Temp. Sensor	This pin is I ² C Interface to digital temperature sensor Data pin. External pull up resistor is required when connecting to I ² C slave.	Open
TSCL	0	Temperature sensor SCL	Interface to Digital Temp.	This pin is I ² C Interface to digital temperature sensor Clock pin. External pull up resistor is required when connecting to I ² C slave.	Open

 SSD1681
 Rev 0.13
 P 8/41
 Jun 2019
 Solomon Systech

Table 5-3: Analog Pins

Name	Туре	Connect to	Function	Description	When not in use
GDR	0	POWER MOSFET Driver Control	VGH, VGL Generation	This pin is N-Channel MOSFET gate drive control pin.	1
RESE	I	Booster Control Input		This pin is Current sense input pin for the control Loop.	
VGH	С	Stabilizing capacitor		This pin is Positive Gate driving voltage. Connect a stabilizing capacitor between VGH and VSS in the application circuit.	-
VGL	С	Stabilizing capacitor		This pin is Negative Gate driving voltage. Connect a stabilizing capacitor between VGL and VSS in the application circuit.	
VSH1	С	Stabilizing capacitor	VSH1, VSH2, VSL Generation	This pin is Positive Source driving voltage, VSH1 Connect a stabilizing capacitor between VSH1 and VSS in the application circuit.	-
VSH2	С	Stabilizing capacitor		This pin is Positive Source driving voltage, VSH2 Connect a stabilizing capacitor between VSH2 and VSS in the application circuit.	
VSL	С	Stabilizing capacitor		This pin is Negative Source driving voltage. Connect a stabilizing capacitor between VSL and VSS in the application circuit.	ı
VCOM	С	Panel/ Stabilizing capacitor	VCOM Generation	This pins is VCOM driving voltage Connect a stabilizing capacitor between VCOM and VSS in the application circuit.	-

Table 5-4: Driver Output Pins

Name	Туре	Connect to	Function	Description	When not in use
S [199:0]	0	Panel	Source driving signal	Source output pin.	Open
G [199:0]	0	Panel	Gate driving signal	Gate output pin.	Open
VBD	0	Panel	Border driving signal	Border output pin.	Open

Table 5-5: Miscellaneous Pins

Name	Туре	Connect to	Function	Description	When not in use
NC	NC	NC	Not Connected	This is dummy pin. It should not be connected with other NC pins.	Open
RSV	NC	NC	Reserved	This is a reserved pin and should be kept open.	Open
TPA, TPB, TPC, TPD, TPF, FB	NC	NC	Reserved for Testing	Reserved pins. - Keep open. - Do not connect to other NC pins and test pins including TPA, TPB, TPC, TPD, TPE, TPF, TIN and FB.	Open
TIN	I	NC	Reserved for Testing	This is a reserved pin and should be kept open.	Open
TPE	0	NC	Reserved for Testing	This is a reserved pin and should be kept open.	Open

SSD1681 Rev 0.13 P 9/41 Jun 2019 **Solomon Systech**

6 Functional Block Description

6.1 MCU Interface

6.1.1 MCU Interface selection

The SSD1681 can support 3-wire/4-wire serial peripheral. MCU interface is pin selectable by BS1 shown in Table 6-1.

Table 6-1: Interface pins assignment under different MCU interface

	Pin Name					
MCU Interface	BS1	RES#	CS#	D/C#	SCL	SDA
4-wire serial peripheral interface (SPI)	L	RES#	CS#	DC#	SCL	SDA
3-wire serial peripheral interface (SPI) – 9 bits SPI	Н	RES#	CS#	L	SCL	SDA

Note

6.1.2 MCU Serial Interface (4-wire SPI)

The 4-wire SPI consists of serial clock SCL, serial data SDA, D/C# and CS#. The control pins status in 4-wire SPI in writing command/data is shown in Table 6-2 and the write procedure 4-wire SPI is shown in Table 6-2

Table 6-2: Control pins status of 4-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	L	L
Write data	↑	Data bit	Н	L

Note:

- (1) L is connected to VSS and H is connected to VDDIO
- (2) ↑ stands for rising edge of signal
- (3) SDA (Write Mode) is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... D0. The level of D/C# should be kept over the whole byte. The data byte in the shift register is written to the Graphic Display Data RAM (RAM)/Data Byte register or command Byte register according to D/C# pin.

Figure 6-1: Write procedure in 4-wire SPI mode

SSD1681 Rev 0.13 P 10/41 Jun 2019 **Solomon Systech**

 $^{^{(1)}}$ L is connected to V_{SS} and H is connected to V_{DDIO}

In the read operation (Command 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). After CS# is pulled low, the first byte sent is command byte, D/C# is pulled low. After command byte sent, the following byte(s) read are data byte(s), so D/C# bit is then pulled high. An 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-2 shows the read procedure in 4-wire SPI.

Figure 6-2: Read procedure in 4-wire SPI mode

6.1.3 MCU Serial Peripheral Interface (3-wire SPI)

The 3-wire SPI consists of serial clock SCL, serial data SDA and CS#. The operation is similar to 4-wire SPI while D/C# pin is not used and it must be tied to LOW. The control pins status in 3-wire SPI is shown in Table 6-3.

In the write operation, a 9-bit data will be shifted into the shift register on every clock rising edge. The bit shifting sequence is D/C# bit, D7 bit, D6 bit to D0 bit. The first bit is D/C# bit which determines the following byte is command or data. When D/C# bit is 0, the following byte is command. When D/C# bit is 1, the following byte is data. Table 6-3 shows the write procedure in 3-wire SPI

Function	SCL pin	SDA pin	D/C# pin	CS# pin
Write command	1	Command bit	Tie LOW	L
Write data	↑	Data bit	Tie LOW	L

Table 6-3: Control pins status of 3-wire SPI

Note:

- (1) L is connected to V_{SS} and H is connected to V_{DDIO}
- (2) ↑ stands for rising edge of signal

Figure 6-3: Write procedure in 3-wire SPI

SSD1681 | Rev 0.13 | P 11/41 | Jun 2019 | **Solomon Systech**

In the read operation (Register 0x1B, 0x27, 0x2D, 0x2E, 0x2F, 0x35). SDA data are transferred in the unit of 9 bits. After CS# pull low, the first byte is command byte, the D/C# bit is as 0 and following with the register byte. After command byte send, the following byte(s) are data byte(s), with D/C# bit is 1. After D/C# bit sending from MCU, an 8-bit data will be shifted out on every clock falling edge. The serial data SDA bit shifting sequence is D7, D6, to D0 bit. Figure 6-4 shows the read procedure in 3-wire SPI.

Figure 6-4: Read procedure in 3-wire SPI mode

6.2 OSCILLATOR

The oscillator module generates the clock reference for waveform timing and analog operations.

6.3 BOOSTER & REGULATOR

A voltage generation system is included in the driver. It provides all necessary driving voltages required for an AMEPD panel including VGH, VGL, VSH1, VSH2, VSL and VCOM. External application circuit is needed to make the on-chip booster & regulator circuit work properly.

6.4 VCOM SENSING

This functional block provides the scheme to select the optimal VCOM DC level. The sensed value can be programmed into OTP.

The flow of VCOM sensing:

- Active Gate is scanning during the VCOM sense Period.
- Source are VSS.
- VCOM pin used for sensing.
- During Sensing period, BUSY is high.
- After Sensing, Active Gate return to non-select stage.

SSD1681 | Rev 0.13 | P 12/41 | Jun 2019 | **Solomon Systech**

6.5 RAM

The On chip display RAM is holding the image data.

- 1 set of RAM is built for Mono B/W. The RAM size is 200x200 bits.
- 1 set of RAM is built for Mono Red. The RAM size is 200x200 bits.

Table 6-4: RAM bit and LUT mapping for 3-color display

Data bit in R RAM	Data bit in B/W RAM	Image Color	LUT
0	0	Black	LUT 0 for driving Black
0	1	White	LUT 1 for driving White
1	0	Red	LUT 2 for driving Red
1	1	Red	LUT 3 = LUT2

Table 6-5: RAM bit and LUT mapping for black/white display

Data bit in R RAM	Data bit in B/W RAM	Image Color	LUT
0	0	Black	LUT 0 for driving Black
0	1	White	LUT 1 for driving White
1	0	Black	LUT 2 = LUT0
1	1	White	LUT 3 = LUT1

Programmable Waveform for Gate, Source and VCOM

TP: time of phase length from 0 to 255* frames

Oindicates phase skipped

XON: All Gate On selection for each nAB or nCD. FR: Frame frequency selection for each group.

EOPT: Option for LUT end

Figure 6-5 : Gate waveform and Programmable Source and VCOM waveform illustration

SSD1681 Rev 0.13 P 13/41 Jun 2019 Solomon Systech In the programmable waveform for Source and VCOM, there are 12 groups (Group0 to Group11) and each group has 4 phases (Phase A to Phase D) and 2 state repeats (Phase A and B, Phase C and D). Totally, there are 48 phases. In addition, in each phase, the phase length (TP[nX]) can be set by number of frame from 0 to 255 frames. Also, each group can be repeated with repeat counting number (RP[n]) from 1 to 256 times; each AB / CD phases can be repeated with state repeat counting number (SR[nAB]/SR[nCD]) from 1 to 256 times. For the voltage, there is four levels for Source voltage (VSS, VSH1, VSH2, VSL) and three levels for VCOM voltage (DCVCOM, VSH1+DCVCOM, VSL+DCVOM).

The description of each parameter is as follows.

- 1) TP[nX] represents the phase length set by the number of frame.
- The range of TP[nX] is from 0 to 255.
- n represents the Group number from 0 to 11; X represents the phase number from A to D.
- When TP[nX] = 0, the phase is skipped. When TP[nX] = 1, the phase is 1 frame, and so on. The maximum phase length is 255 frame.
- 2) RP[n] represents the repeat counting number for the Group.
- The range of RP[n] is from 0 to 255.
- n represents the Group number from 0 to 11.
- RP[n] = 0 indicates that the repeat times =1, RP[n] = 1 indicates that the repeat times = 2, and so on. The maximum repeat times is 256.
- 3) SR[nAB] and SR[nCD] represent the state repeat counting number for Phase A & B and Phase C & D respectively.
- The range of SR[nXY] is from 0 to 255.
- n represents the Group number from 0 to 11.
- SR[nXY] = 0 indicates that the repeat times = 1, SR[nXY] = 1 indicates that the repeat times = 2, and so on. The maximum repeat times is 256.
- 4) VS[nX-LUTm] represents Source and VCOM voltage level which is used in each phase. Table 6-6 shows the voltage settings for source voltage and VCOM voltage.
- n represents the Group number from 0 to 11.
- m represents the LUT number from 0-4.

Table 6-6: VS[nX-LUTm] settings for Source voltage and VCOM voltage

VS[nX-LUTm]	Source voltage	VCOM voltage		
00	VSS	DCVCOM		
01	VSH1	VSH1 + DCVCOM		
10	VSL	VSL + DCVCOM		
11	VSH2	N/A		

- 5) FR[n] indicates the frame rate of group n
- The range of FR [n] is from 0 to 7.
- n represents the Group number from 0 to 11.

SSD1681 | Rev 0.13 | P 14/41 | Jun 2019 | **Solomon Systech**

6.7 WAVEFORM SETTING

As described in Section 6.6, parameters VS[nX-LUTm], TP[nX], RP[n], SR[nXY] and FR[n] are used to define the driving waveform. In the SSD1681, there are 159 bytes in the waveform setting to store LUT0, LUT1, LUT2, LUT3 and LUT4, gate voltage, source voltage and frame rate. The waveform LUT of a particular temperature range can be loaded from OTP or written by MCU.

- WS byte 0~152, the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY] and FR[n] are defined by Register 0x32
- WS byte 153, the content of Option for LUT end, is the parameter belonging to Register 0x3F.
- WS byte 154, the content of gate level, is the parameter defined by Register 0x03.
- WS byte 155~157, the content of source level, is the parameter defined by Register 0x04.
- WS byte 158, the content of VCOM level, is the parameter defined by Register 0x2C.

The SSD1681 waveform setting is shown in Figure 6-6: Waveform Setting mapping

		D# D1	I 20 I 20	D		
addr.	D7 D6	D5 D4	D3 D2	D1 D0	addr.	D7 D6 D5 D4 D3 D2 D1 D0
0	VS[0A-L0]	VS[0B-L0]	VS[0C-L0]	VS[0D-L0]	81	TP[3A]
1	VS[1A-L0]	VS[1B-L0]	VS[1C-L0]	VS[1D-L0]	82	TP[3B]
2	VS[2A-L0]	VS[2B-L0]	VS[2C-L0]	VS[2D-L0]	83	SR[3AB]
3	VS[3A-L0] VS[4A-L0]	VS[3B-L0]	VS[3C-L0]	VS[3D-L0]	84	TP[3C]
4		VS[4B-L0]	VS[4C-L0]	VS[4D-L0]	85	TP[3D]
5	VS[5A-L0]	VS[5B-L0]	VS[5C-L0]	VS[5D-L0]	86	SR[3CD]
6	VS[6A-L0]	VS[6B-L0]	VS[6C-L0]	VS[6D-L0]	87	RP[3]
7	VS[7A-L0]	VS[7B-L0]	VS[7C-L0]	VS[7D-L0]	88	TP[4A]
8	VS[8A-L0]	VS[8B-L0]	VS[8C-L0]	VS[8D-L0]	89	TP[4B]
9	VS[9A-L0]	VS[9B-L0]	VS[9C-L0]	VS[9D-L0]	90	SR[4AB]
10	VS[10A-L0]	VS[10B-L0]	VS[10C-L0]	VS[10D-L0]	91	TP[4C]
11	VS[11A-L0]	VS[11B-L0]	VS[11C-L0]	VS[11D-L0]	92	TP[4D]
12	VS[0A-L1]	VS[0B-L1]	VS[0C-L1]	VS[0D-L1]	93	SR[4CD]
13	VS[1A-L1]	VS[1B-L1]	VS[1C-L1]	VS[1D-L1]	94	RP[4]
14	VS[2A-L1]	VS[2B-L1]	VS[2C-L1]	VS[2D-L1]	95	TP[5A]
15	VS[3A-L1]	VS[3B-L1]	VS[3C-L1]	VS[3D-L1]	96	TP[5B]
16	VS[4A-L1]	VS[4B-L1]	VS[4C-L1]	VS[4D-L1]	97	SR[5AB]
17	VS[5A-L1]	VS[5B-L1]	VS[5C-L1]	VS[5D-L1]	98	TP[5C]
18	VS[6A-L1]	VS[6B-L1]	VS[6C-L1]	VS[6D-L1]	99	TP[5D]
19	VS[7A-L1]	VS[7B-L1]	VS[7C-L1]	VS[7D-L1]	100	
					100	SR[5CD]
20	VS[8A-L1]	VS[8B-L1]	VS[8C-L1]	VS[8D-L1]		RP[5]
21	VS[9A-L1]	VS[9B-L1]	VS[9C-L1]	VS[9D-L1]	102	TP[6A]
22	VS[10A-L1]	VS[10B-L1]	VS[10C-L1]	VS[10D-L1]	103	TP[6B]
23	VS[11A-L1]	VS[11B-L1]	VS[11C-L1]	VS[11D-L1]	104	SR[6AB]
24	VS[0A-L2]	VS[0B-L2]	VS[0C-L2]	VS[0D-L2]	105	TP[6C]
25	VS[1A-L2]	VS[1B-L2]	VS[1C-L2]	VS[1D-L2]	106	TP[6D]
26	VS[2A-L2]	VS[2B-L2]	VS[2C-L2]	VS[2D-L2]	107	SR[6CD]
27	VS[3A-L2]	VS[3R-L2]	VS[3C-L2]	VS[3D-L2]	108	RP[6]
28	VS[44-L2]	VS[4B-L2]	VS[4C-L2]	VS[4D-L2]	109	
29	VS[6A L2]	VS[60 L2]	VS[60 L2]	VS[6D L2]	110	TP[7A] TP[7B]
	VO[0A-L2]	VO[DB-L2]	V 3[30-L2]	VO[3D-L2]		
30	VS[6A-L2]	VS[6B-L2]	VS[6C-L2]	VS[6D-L2]	111	SR[7AB]
31	VS[7A-L2]	VS[7B-L2]	VS[7C-L2]	VS[7D-L2]	112	TP[7C]
32	VS[8A-L2]		VS[8C-L2]	VS[8D-L2]	113	TP[7D]
33	VS[9A-L2]	VS[9B-L2]	VS[9C-L2]	VS[9D-L2]	114	SR[7CD]
34	VS[10A-L2]	VS[10B-L2]	VS[10C-L2]	VS[10D-L2]	115	RP[7]
35	VS[11A-L2]	VS[11B-L2]	VS[11C-L2]	VS[11D-L2]	116	TP[8A]
36	VS[0A-L3]	VS[0B-L3]	VS[0C-L3]	VS[0D-L3]	117	TP[8B]
37	VS[1A-L3]	VS[1B-L3]	VS[1C-L3]	VS[1D-L3]	118	SR[8AB]
38	VS[2A-L3]	VS[2B-L3]	VS[2C-L3]	VS[2D-L3]	119	TP[8C]
39	VS[3A-L3]	VS[3B-L3]	VS[3C-L3]	VS[3D-L3]		
					120	TP[8D]
40	VS[4A-L3]	VS[4B-L3]	VS[4C-L3]	VS[4D-L3]	121	SR[8CD]
41	VS[5A-L3]	VS[5B-L3]	VS[5C-L3]	VS[5D-L3]	122	RP[8]
42	VS[6A-L3]	VS[6B-L3]	VS[6C-L3]	VS[6D-L3]	123	TP[9A]
43	VS[7A-L3]	VS[7B-L3]	VS[7C-L3]	VS[7D-L3]	124	TP[9B]
44	VS[8A-L3]	VS[8B-L3]	VS[8C-L3]	VS[8D-L3]	125	SR[9AB]
45	VS[9A-L3]	VS[9B-L3]	VS[9C-L3]	VS[9D-L3]	126	TP[9C]
46	VS[10A-L3]	VS[10B-L3]	VS[10C-L3]	VS[10D-L3]	127	TP[9D]
47	VS[11A-L3]	VS[11B-L3]	VS[11C-L3]	VS[11D-L3]	128	SR[9CD]
48	VS[0A-L4]	VS[0B-L4]	VSI0C-L41	VS[0D-L4]	129	RP[9]
49	VS[1A-L4]	VS[1B-L4]	VS[1C-L4]	VS[1D-L4]	130	TP[10A]
50	VS[2A-L4]	VS[2B-L4]	VS[2C-L4]	VS[2D-L4]	131	TP[10B]
51	VS[3A-L4]	VS[3B-L4]	VS[3C-L4]	VS[3D-L4]	132	SR[10AB]
52	VS[4A-L4]	VS[4B-L4]	VS[4C-L4]	VS[4D-L4]	133	TP[10C]
53	VS[5A-L4]	VS[5B-L4]	VS[5C-L4]	VS[5D-L4]	134	TP[10D]
54	VS[6A-L4]	VS[6B-L4]	VS[6C-L4]	VS[6D-L4]	135	SR[10CD]
55	VS[7A-L4]	VS[7B-L4]	VS[7C-L4]	VS[7D-L4]	136	RP[10]
56	VS[8A-L4]	VS[8B-L4]	VS[8C-L4]	VS[8D-L4]	137	TP[11A]
57	VS[9A-L4]	VS[9B-L4]	VS[9C-L4]	VS[9D-L4]	138	TP[11B]
58	VS[10A-L4]	VS[10B-L4]	VS[10C-L4]	VS[10D-L4]	139	SR[11AB]
59	VS[11A-L4]	VS[11B-L4]	VS[11C-L4]	VS[11D-L4]	140	TP[11C]
60			[0A]		141	TP[11D]
61			[0B]		142	SR[11CD]
		IP ODE	OAB]		143	RP[11]
62						
63			[0C]		144	FR[0] FR[1]
64		TP	[0D]		145	FR[2] FR[3]
65			0CD]		146	FR[4] FR[5]
66		RI	P[0]		147	FR[6] FR[7]
67			[1A]		148	FR[8] FR[9]
68			[1B]		149	FR[10] FR[11]
69					150	
		SKI	1AB]			XON[0AB] XON[0CD] XON[1AB] XON[1CD] XON[2AB] XON[2CD] XON[3AB] XON[3CD] XON[3AB] XON
70		TP	[1C]		151	XON[4AB] XON[4CD] XON[5AB] XON[5CD] XON[6AB] XON[6CD] XON[7AB] XON[7AB] XON[7AB] XON[8AB] XON[8CD] XON[9AB] XON[9CD] XON[10AB] XON[10CD] XON[11AB] XON[1
71		TP.	[1D]		152	
72			1CD]		153	EOPT
73			P[1]		154	VGH
74			[2A]		155	VSH1
75			[2B]		156	VSH2
			2AB]		157	VSL
76					158	VCOM
		TP	[2C]			
76 77 78		TP TP	[2C] [2D]		100	VCOM
77		TP	[2D]		150	VCOW!
77 78 79		TP SR[[2D] 2CD]		150	VCOM
77 78		TP SR[[2D]		130	vcom

Figure 6-6: Waveform Setting mapping

SSD1681 | Rev 0.13 | P 15/41 | Jun 2019 | **Solomon Systech**

6.8 Temperature Searching

The SSD1681 has internal temperature sensor to detect the environment temperature or can communicate with the external temperature sensor by I2C single master interface or can communicate with the external MCU to get the temperature value through SPI. In the SSD1681, there is a dedicated format for the temperature value so that the driver IC can understand it. The format of temperature value is described in Section 6.8.3.

6.8.1 Internal Temperature Sensor

The internal temperature sensor can be selected by command register. The accuracy of it is ±2degC from - 25degC to 50degC.

6.8.2 External Temperature Sensor I2C Single Master Interface

The driver IC can communicate with the external temperature sensor through I2C single master interface (TSDA and TSCL). TSDA will be SDA and TSCL will be SCL. TSDA and TSCL are required to connect with external pull-up resistor. Temperature register value of external temperature sensor can be read by command register.

6.8.3 Format of temperature value

The temperature value is defined by 12-bit binary. The rules are shown as below.

- If the Temperature value MSByte bit D11 = 0, then the temperature is positive and value (DegC) = + (Temperature value) / 16
- If the Temperature value MSByte bit D11 = 1, then the temperature is negative and value (DegC) = (2's complement of Temperature value) / 16

Table 6-7 shows some examples of 12-bit binary temperature value:

Table 6-7: Example of 12-bit binary temperature settings for temperature ranges

12-bit binary (2's complement)	Hexadecimal Value	TR Value [DegC]
0111 1111 1111	7 F F	128
0111 1111 1111	7FF	127.9
0110 0100 0000	640	100
0101 0000 0000	500	80
0100 1011 0000	4B0	75
0011 0010 0000	320	50
0001 1001 0000	190	25
0000 0000 0100	004	0.25
0000 0000 0000	000	0
1111 1111 1100	FFC	-0.25
1110 0111 0000	E70	-25
1100 1001 0000	C90	-55

SSD1681 | Rev 0.13 | P 16/41 | Jun 2019 | **Solomon Systech**

6.9 Waveform Setting searching mechanism

As mentioned in Section 6.7, the SSD1681 OTP can store waveform setting and temperature range. If waveform setting and temperature range are programmed in OTP memory, corresponding waveform LUT can be selected according to the sensed temperature to drive the display. The Waveform Setting searching mechanism by driver IC is as follows.

- A. Read temperature value by command register in the format of 12-bit binary.
- B. According to read temperature and display mode selection, search LUT in OTP from TR0 to TR35 in sequence. The last match will be selected, then, the corresponding WS will be loaded in the LUT register to drive the display.

Remark: Waveform LUT selection criteria is "Lower temperature bound < Sensed temperature ≤ Upper temperature bound".

Table 6-8 shows an example for the waveform LUT searching from OTP:

- If the read temperature is 25degC, then, WS4 will be selected.
- If the read temperature is 34degC, then, WS7 will be selected. Although 34degC is also in the temperature range TR6, according to searching mechanism, the last match should be selected. Therefore, WS7 is selected.

Waveform LUT in OTP	Temperature Range in OTP	TR Lower Limit [Hex]	TR Upper Limit [Hex]	Temperature range in OTP
WS0	TR0	800	050	-128 DegC < Temperature ≤ 5 DegC
WS1	TR1	050	0A0	5 DegC < Temperature ≤ 10DegC
WS2	TR2	0A0	0F0	10 DegC < Temperature ≤ 15DegC
WS3	TR3	0F0	140	15 DegC < Temperature ≤ 20DegC
WS4	TR4	140	190	20 DegC < Temperature ≤ 25DegC
WS5	TR5	190	1E0	25 DegC < Temperature ≤ 30DegC
WS6	TR6	1E0	230	30 DegC < Temperature ≤ 35DegC
WS7	TR7	210	7FF	33 DegC < Temperature ≤ 127.9DegC
Others	Others	000	000	-

Table 6-8: Example of waveform settings selection based on temperature ranges.

Precaution:

Please ensure the temperature range covers whole range of application temperatures, display will not be updated if no suitable temperature range matches the sensed temperature.

SSD1681 | Rev 0.13 | P 17/41 | Jun 2019 | **Solomon Systech**

6.10 One Time Programmable (OTP) Memory

In the SSD1681, there is an embedded OTP memory which is designed to store the waveform settings of different temperature range and some variables/parameters. The OTP memory can store 36 sets of waveform LUT settings (WS), 36 sets of temperature range (TR), VCOM value, display mode selection, waveform version and user ID. Figure 6 7 shows the address mapping of the 36 waveform setting (WS0 to WS35) and temperature range (TR0 to TR35).

addr.	D7	D6	D5	D4	D3	D2	D1	D0				
0												
		WS0										
158												
159		WS1										
317												
318												
				W	S2							
476												
477												
				W	S3							
635												
636												
				W	S4							
794												
5400												
5406				14/	204							
				W	634							
5564												
5565				14/	205							
5723				VVS	35							
5724 5725				т	R0							
5726				11	10							
5727												
5728				TF	21							
5729				"	XI							
5730												
5731				Т	R2							
5732					-							
5733												
5734				TF	R3							
5735				•								
5736												
5737				TF	R4							
5738												
5826												
5827				TR	34							
5828												
5829												
5830				TR	35							
5831												

Figure 6-7: The Waveform setting mapping in OTP for waveform setting and temperature range

6.11 The Format for Temperature Range (TR)

The format of TR Lower limit and Upper limit as shown in Figure 6-8 which temp_L[11:0] is the lower limit and temp_H[11:0] is the upper limit of the temperature range. There has 36sets of TR for waveform LUT searching.

D7	D6	D6 D5		D3	D2	D1	D0			
temp_L[7:0]										
	temp_H[3:0] temp_L[11:8]									
	temp_H[11:4]									

Figure 6-8: Format of Temperature Range (TR) in OTP

SSD1681 Rev 0.13 P 18/41 Jun 2019 **Solomon Systech**

6.12 VCI Detection

The VCI detection function is used to detect the VCI level when it is lower than Vlow, threshold voltage set by register.

In SSD1681, there is a command to execute the VCI detection function. When the VCI detection command is issued, the VCI detection will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of VCI, which 0 is normal, 1 is VCI<VIow.

6.13 HV Ready Detection

The HV Ready detection function is used to detect whether the analog block is ready.

In SSD1681, there is a command to execute the HV Ready detection function. When the HV Ready detection command is issued, the HV Ready will be executed. During the detection period, BUSY output is at high level. BUSY output is at low level when the detection is completed. Then, user can issue the Status Bit Read command to check the status bit for the result of HV Ready, which 0 is normal, 1 indicate HV is not ready.

SSD1681 | Rev 0.13 | P 19/41 | Jun 2019 | **Solomon Systech**

7 COMMAND TABLE

Table 7-1: Command Table

Com	Command Table														
R/W#			D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
0	0	01	0	0	0	0	0	0	0	1	Driver Output control	Gate setti			
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀				200 MUX	(
0	1		0	0	0	0	0	0	0	A ₈		MUX Gat	e lines se	tting as (A	[8:0] + 1).
0	1		0	0	0	0	0	B ₂	B ₁	B ₀		B[2]: GD Selects th GD=0 [PC G0 is the output ser GD=1, G1 is the	nning sequence is	out Gate output cha G0,G1, G	nnel, gate 62, G3, nnel, gate G3, G2,
												Change s SM=0 [PC G0, G1, C interlaced SM=1, G0, G2, C B[0]: TB TB = 0 [P	OR], G2, G31 I) G4G19 OR], scar	`	nd right gate s,G199 to G199
0	0	03	0	0	0	0	0	0	1	<u> 1</u>	Gate Driving voltage	Set Gate			
0	1		0	0	0	A ₄	A ₃	A ₂		A ₀	Control	A[4:0] = 0			
														0V to 20V	
												A[4:0] 00h	VGH 20	A[4:0] 0Dh	VGH 15
													10		
												03h 04h	10.5	0Eh 0Fh	15.5 16
												05h	10.5	10h	16.5
												06h	11.5	11h	17
												07h	12	12h	17.5
												08h	12.5	13h	18
												07h	12.0	14h	18.5
												08h	12.5	15h	19
												09h	13	16h	19.5
												0Ah	13.5	17h	20
												0Bh	14	Other	NA
												0Ch	14.5	5 101	
													1		
											•				

 SSD1681
 Rev 0.13
 P 20/41
 Jun 2019
 Solomon Systech

Com	Command Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	04	0	0	0	0	0	1	0	0		Set Source driving voltage
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		A[7:0] = 41h [POR], VSH1 at 15V
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		B[7:0] = A8h [POR], VSH2 at 5V. C[7:0] = 32h [POR], VSL at -15V
0	1		C ₇	C ₆	C 5	C ₄	Сз	C ₂	C ₁	C ₀		Remark: VSH1>=VSH2

A[7]/B[7] = 1, VSH1/VSH2 voltage setting from 2.4V to 8.8V

10 0.0 v			
A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2
8Eh	2.4	AFh	5.7
8Fh	2.5	B0h	5.8
90h	2.6	B1h	5.9
91h	2.7	B2h	6
92h	2.8	B3h	6.1
93h	2.9	B4h	6.2
94h	3	B5h	6.3
95h	3.1	B6h	6.4
96h	3.2	B7h	6.5
97h	3.3	B8h	6.6
98h	3.4	B9h	6.7
99h	3.5	BAh	6.8
9Ah	3.6	BBh	6.9
9Bh	3.7	BCh	7
9Ch	3.8	BDh	7.1
9Dh	3.9	BEh	7.2
9Eh	4	BFh	7.3
9Fh	4.1	C0h	7.4
A0h	4.2	C1h	7.5
A1h	4.3	C2h	7.6
A2h	4.4	C3h	7.7
A3h	4.5	C4h	7.8
A4h	4.6	C5h	7.9
A5h	4.7	C6h	8
A6h	4.8	C7h	8.1
A7h	4.9	C8h	8.2
A8h	5	C9h	8.3
A9h	5.1	CAh	8.4
AAh	5.2	CBh	8.5
ABh	5.3	CCh	8.6
ACh	5.4	CDh	8.7
ADh	5.5	CEh	8.8
AEh	5.6	Other	NA

A[7]/B[7] = 0, VSH1/VSH2 voltage setting from 9V to 17V

A/B[7:0]	VSH1/VSH2	A/B[7:0]	VSH1/VSH2	
23h	9	3Ch	14	
24h	9.2	3Dh	14.2	
25h	9.4	3Eh	14.4	
26h	9.6	3Fh	14.6	
27h	9.8	40h	14.8	
28h	10	41h	15	
29h	10.2	42h	15.2	
2Ah	10.4	43h	15.4	
2Bh	10.6	44h	15.6	
2Ch	10.8	45h	15.8	
2Dh	11	46h	16	
2Eh	11.2	47h	16.2	
2Fh	11.4	48h	16.4	
30h	11.6	49h	16.6	
31h	11.8	4Ah	16.8	
32h	12	4Bh	17	
33h	12.2	Other	NA	
34h	12.4			
35h	12.6			
36h	12.8			
37h	13			
38h	13.2			
39h	13.4			
3Ah	13.6			
3Bh	13.8			

C[7] = 0, VSL setting from -5V to -17V

0Ah 0Ch 0Eh 10h	VSL -5 -5.5 -6 -6.5
0Ch 0Eh	-5.5 -6 -6.5
0Eh	-6 -6.5
	-6.5
10h	
12h -	-7
14h	-7.5
16h	-8
18h	-8.5
1Ah	-9
1Ch	-9.5
1Eh	-10
20h	-10.5
22h	-11
24h	-11.5
26h	-12
28h	-12.5
2Ah	-13
2Ch	-13.5
2Eh	-14
30h	-14.5
32h	-15
34h	-15.5
36h	-16
38h	-16.5
3Ah	-17
Other	NA

0	80	0	0	0	0	1	0	0	0	Initial Code Setting OTP Program	Program Initial Code Setting
										-	The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	00	0	0	0	0	4	_	_	_	West Burst of the State	hwite Beriefe (e. Live) O. J. O. W.
U	09	U	U	U	U	1	0	U	1		Write Register for Initial Code Setting
1		A ₇	A_6	A_5	A_4	A ₃	A_2	A ₁	A_0	Code Setting	Selection
1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		A[7:0] ~ D[7:0]: Reserved Details refer to Application Notes of Initial
1		C ₇	C ₆	C ₅	C ₄	Сз	C ₂	C ₁	C ₀		Code Setting
1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D_0		
0	0A	0	0	0	0	1	0	1	0	Read Register for Initial Code Setting	Read Register for Initial Code Setting
	0 1 1 1 1 1	0 09 1 1 1 1 1 1 1 1	0 09 0 1 A ₇ 1 B ₇ 1 C ₇ 1 D ₇	0 09 0 0 1 A ₇ A ₆ 1 B ₇ B ₆ 1 C ₇ C ₆ 1 D ₇ D ₆	0 09 0 0 0 1 A ₇ A ₆ A ₅ 1 B ₇ B ₆ B ₅ 1 C ₇ C ₆ C ₅ 1 D ₇ D ₆ D ₅	0 09 0 0 0 0 0 1 A ₇ A ₆ A ₅ A ₄ 1 B ₇ B ₆ B ₅ B ₄ 1 C ₇ C ₆ C ₅ C ₄ 1 D ₇ D ₆ D ₅ D ₄	0 09 0 0 0 0 1 1 A ₇ A ₆ A ₅ A ₄ A ₃ 1 B ₇ B ₆ B ₅ B ₄ B ₃ 1 C ₇ C ₆ C ₅ C ₄ C ₃ 1 D ₇ D ₆ D ₅ D ₄ D ₃	0 09 0 0 0 0 1 0 1 A ₇ A ₆ A ₅ A ₄ A ₃ A ₂ 1 B ₇ B ₆ B ₅ B ₄ B ₃ B ₂ 1 C ₇ C ₆ C ₅ C ₄ C ₃ C ₂ 1 D ₇ D ₆ D ₅ D ₄ D ₃ D ₂	0 09 0 0 0 0 1 0 0 1 A7 A6 A5 A4 A3 A2 A1 1 B7 B6 B5 B4 B3 B2 B1 1 C7 C6 C5 C4 C3 C2 C1 1 D7 D6 D5 D4 D3 D2 D1	0 09 0 0 0 0 1 0 0 1 1 A7 A6 A5 A4 A3 A2 A1 A0 1 B7 B6 B5 B4 B3 B2 B1 B0 1 C7 C6 C5 C4 C3 C2 C1 C0 1 D7 D6 D5 D4 D3 D2 D1 D0	0 09 0 0 0 1 0 0 1 Write Register for Initial Code Setting 1 A7 A6 A5 A4 A3 A2 A1 A0 Code Setting 1 B7 B6 B5 B4 B3 B2 B1 B0 1 C7 C6 C5 C4 C3 C2 C1 C0 1 D7 D6 D5 D4 D3 D2 D1 D0 0 0A 0 0 0 1 0 1 0

SSD1681 Rev 0.13 P 21/41 Jun 2019 Solomon Systech

Com	man	d Tal	ole										
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description	
0	0	0C	0	0	0	0	1	1	0	0	Booster Soft start		with Phase 1, Phase 2 and Phase 3
0	1		1	A ₆	A_5	A_4	A_3	A ₂	A ₁	A_0	Control	for soft start cur	rent and duration setting.
0	1		1	B ₆	B ₅	B ₄	Вз	B ₂	B ₁	B ₀			art setting for Phase1
0	1		1	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		= 88n B[7:0] -> Soft sta	[POR] art setting for Phase2
0	1		0	0	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		= 9Ch	[POR]
					_ 0		_ 0		- •			= 96h	art setting for Phase3 [POR]
												D[7:0] -> Duration = 0Fh	on setting [POR]
													otion of each byte: 6:0] / C[6:0]:
												Bit[6:4]	Driving Strength Selection
												000	1(Weakest)
												001	2
												010	3
												011	4
												100	5
												101	6
												110	7
												111	8(Strongest)
												Bit[3:0]	Min Off Time Setting of GDR [Time unit]
												0000	NA
												0011	197
												0100	2.6
												0101	3.2
												0110	3.9
												0111	4.6
												1000	5.4
												1001	6.3
												1010	7.3
												1011	8.4
												1100	9.8 11.5
												1101	13.8
												1111	16.5
													10.3
												D[5:4]: du	ation setting of phase uration setting of phase 3
												D[3.2]: dt D[1:0]: dt	uration setting of phase 2 uration setting of phase 1
												Bit[1:0]	Duration of Phase [Approximation]
												00	10ms
												01	20ms
												10	30ms
												11	40ms
					<u> </u>	<u> </u>		<u> </u>		<u> </u>	1	1 -	<u> </u>

 SSD1681
 Rev 0.13
 P 22/41
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
						1	•	1	1			
0	0	10	0	0	0	1	0	0	0	0	Deep Sleep mode	Deep Sleep mode Control:
0	1		0	0	0	0	0	0	A ₁	A_0		A[1:0]: Description
												00 Normal Mode [POR]
												01 Enter Deep Sleep Mode 1
												11 Enter Deep Sleep Mode 2
												After this command initiated, the chip will enter Deep Sleep Mode, BUSY pad will keep output high. Remark: To Exit Deep Sleep mode, User required to send HWRESET to the driver
0	0	11	0	0	0	1	0	0	0	1	Data Entry mode setting	Define data entry sequence
0	1	• •	0	0	0	0	0	A ₂	A ₁	A ₀	Data Littly mode county	A[2:0] = 011 [POR]
0	•		Ü	0	O	U	O	R2	A	Α.		A [1:0] = ID[1:0] Address automatic increment / decrement setting The setting of incrementing or decrementing of the address counter can be made independently in each upper and lower bit of the address. 00 –Y decrement, X decrement, 01 –Y decrement, X increment, 10 –Y increment, X decrement, 11 –Y increment, X increment [POR] A[2] = AM Set the direction in which the address counter is updated automatically after data are written to the RAM. AM= 0, the address counter is updated in the X direction. [POR] AM = 1, the address counter is updated in the Y direction.
0	0	12	0	0	0	1	0	0	1	0	SW RESET	It resets the commands and parameters to their S/W Reset default values except R10h-Deep Sleep Mode During operation, BUSY pad will output high.
												Note: RAM are unaffected by this command.

SSD1681 Rev 0.13 P 23/41 Jun 2019 **Solomon Systech**

Com	ommand Table W# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	14	0	0	0	1	0	1	0	0	HV Ready Detection	HV ready detection A[7:0] = 00h [POR] The command required CLKEN=1 and ANALOGEN=1. Refer to Register 0x22 for detail. After this command initiated, HV Ready detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).		
0	1		0	A ₆	A ₅	A ₄	0	A ₂	A ₁	Ao		A[6:4]=n for cool down duration: 10ms x (n+1) A[2:0]=m for number of Cool Down Loop to detect. The max HV ready duration is 10ms x (n+1) x (m) HV ready detection will be trigger after each cool down time. The detection will be completed when HV is ready. For 1 shot HV ready detection, A[7:0] can be set as 00h.		
0	0	15	0	0	0	1	0	1	0	1	VCI Detection	VCI Detection		
0	1	2	0	0	0	0	0	A2	A ₁	Ao	VOI Delection	A[2:0] = 100 [POR] , Detect level at 2.3V A[2:0] : VCI level Detect A[2:0] VCI level 011 2.2V 100 2.3V 101 2.4V 110 2.5V 111 2.6V Other NA The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail. After this command initiated, VCI detection starts. BUSY pad will output high during detection. The detection result can be read from the Status Bit Read (Command 0x2F).		
0	0	18	0	0	0	1	1	0	0	0	Temperature Sensor	Temperature Sensor Selection		
0	1	10	A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control	A[7:0] = 48h [POR], external temperatrure sensor A[7:0] = 80h Internal temperature sensor		
0	0	1A	0	0	0	1	1	0	1	0	Temperature Sensor	Write to temperature register.		
0	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Write to	A[11:0] = 7FFh [POR]		
0	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)			
0	0	1B	0	0	0	1	1	0	1	1	Temperature Sensor	Read from temperature register.		
1	1		A ₁₁	A ₁₀	A ₉	A ₈	A ₇	A ₆	A ₅	A ₄	Control (Read from			
1	1		A ₃	A ₂	A ₁	A ₀	0	0	0	0	temperature register)			

 SSD1681
 Rev 0.13
 P 24/41
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	1C	0	0	0	1	1	1	0	0	Temperature Sensor	Write Command to External temperature
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	Control (Write Command	sensor.
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	to External temperature	A[7:0] = 00h [POR],
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁		sensor)	B[7:0] = 00h [POR],
U	1		C7	C 6	C 5	C 4	C 3	C 2	C 1	C ₀		C[7:0] = 00h [POR],
												A[7:6]
												A[7:6] Select no of byte to be sent
												00 Address + pointer
												01 Address + pointer + 1st parameter Address + pointer + 1st parameter +
												10 2nd pointer
												11 Address
												A[5:0] – Pointer Setting B[7:0] – 1 st parameter
												C[7:0] – 1 st parameter
												The command required CLKEN=1.
												Refer to Register 0x22 for detail.
												_
												After this command initiated, Write
												Command to external temperature sensor
												starts. BUSY pad will output high during operation.
												operation.
0	0	20	0	0	1	0	0	0	0	0	Master Activation	Activate Display Update Sequence
	·		ŭ	Ū	·	Ů	Ü					rearrant Display Operation Coquerior
												The Display Update Sequence Option is
												located at R22h.
												DLICV and will output high during
												BUSY pad will output high during operation. User should not interrupt this
												operation to avoid corruption of panel
												images.
				_	_							
			-	-							T	
0	0	21	0	0	1	0	0	0	0	1	Display Update Control	RAM content option for Display Update
0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A ₁	A ₀	1	A[7:0] = 00h [POR]
												B[7:0] = 00h [POR]
												A[7:4] Red RAM option
												0000 Normal
												0100 Bypass RAM content as 0
												1000 Inverse RAM content
												Are at Divi Data.
												A[3:0] BW RAM option
												0000 Normal 0100 Bypass RAM content as 0
												1000 Inverse RAM content
											1	1000 IIIVOI30 IVAIVI COIILEIIL

SSD1681 Rev 0.13 P 25/41 Jun 2019 **Solomon Systech**

Com	ommand Table W# D/C# Hex D7 D6 D5 D4 D3 D2 D1 D0 Command Description													
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description		
0	0	22	0	0	1	0	0	0	1	0	Display Update	Display Update Sequence Option		
0	1		A ₇	A_6	A_5	A_4	A_3	A_2	A ₁	A ₀	Control 2	Enable the stage for Master Act	tivation	
												A[7:0]= FFh (POR)	Parameter	
												Operating sequence	(in Hex)	
												Enable clock signal	80	
												Disable clock signal	01	
												Enable clock signal	C0	
												→ Enable Analog		
												Disable Analog → Disable clock signal	03	
												Enable clock signal → Load LUT with DISPLAY Mode 1	91	
												→ Disable clock signal	31	
												Enable clock signal	00	
												→ Load LUT with DISPLAY Mode 2→ Disable clock signal	99	
												Enable clock signal → Load temperature value		
												→ Load LUT with DISPLAY Mode 1	B1	
												→ Disable clock signal		
												Enable clock signal → Load temperature value	DO	
												→ Load LUT with DISPLAY Mode 2	В9	
												→ Disable clock signal		
												Enable clock signal		
												→ Enable Analog→ Display with DISPLAY Mode 1	C7	
												→ Disable Analog	C7	
												→ Disable OSC		
												Enable clock signal → Enable Analog		
												→ Display with DISPLAY Mode 2	CF	
												→ Disable Analog→ Disable OSC		
												Enable clock signal → Enable Analog		
												→ Load temperature value	E7	
												→ DISPLAY with DISPLAY Mode 1	F7	
												→ Disable Analog→ Disable OSC		
												Enable clock signal		
												→ Enable Analog→ Load temperature value		
												→ DISPLAY with DISPLAY Mode 2	FF	
												→ Disable Analog→ Disable OSC		
									1	1	<u> </u>	1		
0	0	24	0	0	1	0	0	1	0	0	Write RAM (Black White)	After this command, data entrie		
											/ RAM 0x24	written into the BW RAM until a		
												command is written. Address po	ointers will	
												advance accordingly		
												For Write pixel:		
												Content of Write RAM(BW) =	1	
												For Black pixel:		
												Content of Write RAM(BW) = 0	0	

 SSD1681
 Rev 0.13
 P 26/41
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble									
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	26	0	0	1	0	0	1	1	0	Write RAM (RED) / RAM 0x26	After this command, data entries will be written into the RED RAM until another command is written. Address pointers will advance accordingly. For Red pixel: Content of Write RAM(RED) = 1 For non-Red pixel [Black or White]:
												Content of Write RAM(RED) = 0
0	0	27	0	0	1	0	0	1	1	1	Read RAM	After this command, data read on the MCU bus will fetch data from RAM. According to parameter of Register 41h to select reading RAM0x24/ RAM0x26, until another command is written. Address pointers will advance accordingly. The 1st byte of data read is dummy data.
												The T byte of data read is duffilly data.
0	0	28	0	0	1	0	1	0	0	0	VCOM Sense	Enter VCOM sensing conditions and hold for duration defined in 29h before reading VCOM value. The sensed VCOM voltage is stored in register The command required CLKEN=1 and ANALOGEN=1 Refer to Register 0x22 for detail.
												BUSY pad will output high during operation.
0	0	29	0	0	1	0	1	0	0	1	VCOM Sense Duration	Stabling time between entering VCOM
0	1	23	0	1	0	0	A ₃	A ₂	A ₁	A ₀	VOOM Sense Duration	sensing mode and reading acquired. A[3:0] = 9h, duration = 10s. VCOM sense duration = (A[3:0]+1) sec
0	0	2A	0	0	1	0	1	0	1	0	Program VCOM OTP	Program VCOM register into OTP
U	U	ZA	U	J	'	U	'	U	1	O	Flogram vcow off	The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0	0	2B	0	0	1	0	1	0	1	1	Write Register for VCOM	This command is used to reduce glitch
0	1	∠D	0 0	0 1	0	0 0	0	1 0	0	0	Control	when ACVCOM toggle. Two data bytes D04h and D63h should be set for this command.

 SSD1681
 Rev 0.13
 P 27/41
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble												
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descrip	tion		
0	0	2C	0	0	1	0	1	1	0	0	Write VCOM register	Write VC	COM registe	er from M	1CU interface
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	_	A[7:0] =	00h [POR]		
												A[7:0]	VCOM	A[7:0]	VCOM
												08h	-0.2	44h	-1.7
												0Ch	-0.3	48h	-1.8
												10h	-0.4	4Ch	-1.9
												14h	-0.5	50h	-2
												18h	-0.6	54h	-2.1
												1Ch	-0.7	58h	-2.2
												20h	-0.8	5Ch	-2.3
												24h	-0.9	60h	-2.4
												28h	-1	64h	-2.5
												2Ch	-1.1	68h	-2.6
												30h	-1.2	6Ch	-2.7
												34h	-1.3	70h	-2.8
												38h	-1.4	74h	-2.9
												3Ch 40h	-1.5 -1.6	78h Other	-3 NA
												4011	-1.0	Other	INA
0	0	2D	0	0	1	0	1	1	0	1	OTP Register Read for	Read R	Register for	Display (Option:
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A_2	A ₁	A ₀	Display Option	A [7, O].	VOOMOT	D O - I 4:	
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀			VCOM OT nand 0x37,		on
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		(Conni	iailu uxor,	byte A)	
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀			VCOM Reg	gister	
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		(Comm	nand 0x2C)		
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		C[7:0]~	·G[7:0]: Dis	nlav Mod	de
1	1		G ₇	G_6	G_5	G ₄	G ₃	G ₂	G₁	G_0	,		nand 0x37,		
1	1		H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀		[5 byte:		,	,
1	1		I ₇	I ₆	I ₅	I ₄	l ₃	l ₂	I ₁	I ₀		H[7:0]~	-K[7:0]: Wa	veform V	ersion
1	1		J_7	J_6	J 5	J_4	J ₃	J_2	J_1	J_0			nand 0x37,		
1	1		K ₇	K ₆	K ₅	K ₄	K ₃	K ₂		K ₀	1	[4 byte:		<i>y</i>	<i>J</i> = 2 <i>j</i>
			<u> </u>		<u> </u>	<u> </u>	4		<u> </u>	<u>_</u>	ı	1			
0	0	2E	0	0	1	. 0	1	1	1	0	User ID Read) Byte User		
1	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀				rID (R38,	Byte A and
1	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B₁	B ₀	1	Byte J)	[10 bytes]		
1	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀	1				
1	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀					
1	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀	1				
1	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀	1				
1	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀					
1	1	7	H ₇	H ₆	H ₅	H ₄	H ₃	H ₂	H ₁	H ₀					
1	1		l ₇	I ₆	I ₅	I ₄	l ₃	l ₂	I ₁	I ₀	1				
1	1		J ₇	J ₆	J ₅	J ₄	J_3	J_2	J ₁	J ₀	1				
	-			- 3	1 -0		- 5		'	0	l	1			

 SSD1681
 Rev 0.13
 P 28/41
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble									
	D/C#		D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	2F	0	0	1	0	1	1	1	1	Status Bit Read	Read IC status Bit [POR 0x01]
1	1		0	0	A ₅	A ₄	0	0	A ₁	A ₀		A[5]: HV Ready Detection flag [POR=0] 0: Ready 1: Not Ready A[4]: VCI Detection flag [POR=0] 0: Normal 1: VCI lower than the Detect level A[3]: [POR=0] A[2]: Busy flag [POR=0] 0: Normal
												1: BUSY A[1:0]: Chip ID [POR=01] Remark: A[5] and A[4] status are not valid after RESET, they need to be initiated by command 0x14 and command 0x15 respectively.
0	0	30	0	0	1	1	0	0	0	0	Program WS OTP	Program OTP of Waveform Setting The contents should be written into RAM before sending this command. The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
		0.4					_				l	1
0	0	31	0	0	1	1	0	0	0	1	Load WS OTP	Load OTP of Waveform Setting The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
0 0 0 0	0 1 1 1	32	0 A ₇ B ₇ :	0 A ₆ B ₆	1 A ₅ B ₅	1 A ₄ B ₄ :	0 A ₃ B ₃ :	0 A ₂ B ₂ :	1 A ₁ B ₁	0 A ₀ B ₀	Write LUT register	Write LUT register from MCU interface [153 bytes], which contains the content of VS[nX-LUTm], TP[nX], RP[n], SR[nXY], and FR[n] Refer to Session 6.7 WAVEFORM SETTING
0	0	34	0	0	1	1	0	1	0	0	CRC calculation	CRC calculation command For details, please refer to SSD1681 application note. BUSY pad will output high during operation.
0	0	35	0	0	1	1	0	1	0	1	CRC Status Read	CRC Status Read
1	1	აა	O A ₁₅			-				-	ONO Status Redu	A[15:0] is the CRC read out value
1	1		A ₁₅	A ₁₄	A ₁₃	A ₁₂	A ₁₁	A ₁₀	A ₉	A ₈		[110] 10 1110 1110 1110 1110
	I		H 7	A ₆	A ₅	A ₄	A ₃	H 2	A 1	A ₀		

 SSD1681
 Rev 0.13
 P 29/41
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	36	0	0	1	1	0	1	1	0	Program OTP selection	Program OTP Selection according to the OTP Selection Control [R37h and R38h]
												The command required CLKEN=1. Refer to Register 0x22 for detail. BUSY pad will output high during operation.
		07	0	_	4	4	_	4	4		Wite Desister for Display	White Desistantes Display Ontice
0	0	37	0	0	0	1	0	1	1	0	Write Register for Display Option	Write Register for Display Option A[7] Spare VCOM OTP selection
0	1		A ₇	0 B ₆	B ₅	0 B ₄	0 B ₃	0 B ₂	0 B ₁	B ₀	-	0: Default [POR]
0	1		C ₇	C ₆	C ₅	C ₄	C ₃	C ₂	C ₁	C ₀		1: Spare
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D_0		B[7:0] Display Mode for WS[7:0]
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		C[7:0] Display Mode for WS[15:8]
0	1		0	F ₆	0	0	F ₃	F ₂	F ₁	F ₀		D[7:0] Display Mode for WS[23:16]
0	1		G ₇	G ₆	G ₅	G ₄	G ₃	G ₂	G ₁	G ₀		E[7:0] Display Mode for WS[31:24] F[3:0 Display Mode for WS[35:32]
0	1		H ₇	H ₆	H ₅	H ₄	H ₃	0: Display Mode 1				
0	1		I ₇	I ₆	I ₅	I ₄	I ₃	H ₂	H ₁	H ₀		1: Display Mode 2
0	1		J ₇	J ₆	J ₅	J ₄	J ₃	J_2	J ₁	J ₀		F[6]: PingPong for Display Mode 2 0: RAM Ping-Pong disable [POR] 1: RAM Ping-Pong enable
												G[7:0]~J[7:0] module ID /waveform version.
												Remarks: 1) A[7:0]~J[7:0] can be stored in OTP 2) RAM Ping-Pong function is not support for Display Mode 1
			_							l _	I	I =
0	0	38	0	0	1	1	1	0	0	0	Write Register for User ID 	Write Register for User ID A[7:0]]~J[7:0]: UserID [10 bytes]
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀		
0	1		C ₇	C ₆	C ₅	C ₄	C ₃		C ₁			Remarks: A[7:0]~J[7:0] can be stored in OTP
0	1		D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀		
0	1		E ₇	E ₆	E ₅	E ₄	E ₃	E ₂	E ₁	E ₀		
0	1		F ₇	F ₆	F ₅	F ₄	F ₃	F ₂	F ₁	F ₀		
0	1		G ₇	G_6	G_5	G ₄	G ₃	G ₂	G ₁	G ₀		
0	1		H ₇	H ₆	H ₅	H ₄	Нз	H ₂	H₁	H₀		
0	1		I ₇	l 6	I ₅	I ₄	l ₃	l ₂	I ₁	I ₀		
0	1		J_7	J_6	J 5	J_4	J_3	J_2	J ₁	J_0		
0	0	39	0	0	1	1	1	0	0	1	OTP program mode	OTP program mode
0	1	55	0	0	0	0	0	0	A ₁	A ₀	on program mode	A[1:0] = 00: Normal Mode [POR] A[1:0] = 11: Internal generated OTP programming voltage
												Remark: User is required to EXACTLY follow the reference code sequences

 SSD1681
 Rev 0.13
 P 30/41
 Jun 2019
 Solomon Systech

Com	man	d Ta	ble									
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	3C	0	0	1	1	1	1	0	0	Border Waveform Control	Select border waveform for VBD
0	1		A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀		A[7:0] = C0h [POR], set VBD as HIZ.
~			, ,,	7.0	7.5	7 14		7.2	' '	7.0		A [7:6] :Select VBD option
												A[7:6] Select VBD as
												00 GS Transition,
												Defined in A[2] and
												A[1:0]
												01 Fix Level,
												Defined in A[5:4] 10 VCOM
												11[POR] HiZ
												TI[FOR]
												A [5:4] Fix Level Setting for VBD
												A[5:4] VBD level
												00 VSS
												01 VSH1
												10 VSL
												11 VSH2
												A[2] GS Transition control
												A[2] GS Transition control
												0 Follow LUT
												(Output VCOM @ RED)
												1 Follow LUT
												A [1:0] GS Transition setting for VBD
												A[1:0] VBD Transition
												00 LUT0
												01 LUT1
												10 LUT2
												11 LUT3
							ı				,	
0	0	3F	0	0	1	1	1	1	1	1	End Option (EOPT)	Option for LUT end
0	1		A ₇	A ₆	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	1	A[7:0]= 02h [POR]
			,	0					,	0		22h Normal.
												07h Source output level keep
												previous output before power off
		ı	1		ı	1	1		1	1	1	
0	0	41	0	1	0	0	0	0	0	1	Read RAM Option	Read RAM Option
0	1		0	0	0	0	0	0	0	A_0		A[0]= 0 [POR]
												0 : Read RAM corresponding to RAM0x24 1 : Read RAM corresponding to RAM0x26
												1. Nead NAIN COITESPONDING TO NAINUX20
					<u> </u>	<u> </u>	<u> </u>		l	<u> </u>	<u> </u>	
0	0	44	0	1	0	0	0	1	0	0	Set RAM X - address	Specify the start/end positions of the
		77									Start / End position	window address in the X direction by an
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	- Liait, Liia pooliloii	address unit for RAM
0	1		0	0	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀		
												A[5:0]: XSA[5:0], XStart, POR = 00h
												B[5:0]: XEA[5:0], XEnd, POR = 15h
0	0	45	0	1	0	0	0	1	0	1	Set Ram Y- address	Specify the start/end positions of the
0	1		A ₇	A ₆	A 5	A ₄	A ₃	A ₂	A ₁	A ₀	Start / End position	window address in the Y direction by an
0	1		0	0	0	0	0	0	0	A ₈	1	address unit for RAM
0	1		B ₇	B ₆	B ₅	B ₄	B ₃	B ₂	B ₁	B ₀	†	MIRION VSMIRION VStort DOD = 000h
0	1		0	0	0	0	0	0	0	B ₈	-	A[8:0]: YSA[8:0], YStart, POR = 000h B[8:0]: YEA[8:0], YEnd, POR = 127h
U	ı		U	U	U	U	U	U	U	D 8		<u> </u>
L												

 SSD1681
 Rev 0.13
 P 31/41
 Jun 2019
 Solomon Systech

R/W#	D/C#														
0	D/ U//	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Descripti	on		
	0	46	0	1	0	0	0	1	1	0	Auto Write RED RAM for	_		M for Rea	ular Pattern
0	1	.0	A ₇	A ₆	A ₅	A ₄	0	A ₂	A ₁	A ₀	Regular Pattern	A[7:0] = 0			diai i alloiii
												A[7]: The A[6:4]: Ste Step of all to Gate	ep Height,	POR= 00	
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												A[2:0]: Ste Step of all to Source	ter RAM ir) on according
												A[2:0]	Width	A[2:0]	Width
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												BUSY pac operation.		ut high du	ring
	_	47	_	4	0	0	0	4			A. Ha Mirita DAM DAM for	Ato \A/=:ta	- DAM DAI	M for Door	Jos Dottoro
0	0	47	0 A ₇	1 A ₆	0 A ₅	0 A ₄	0	1 A ₂	1 A ₁	1 A ₀	Auto Write B/W RAM for Regular Pattern	A[7:0] = 0		vi for Regi	ular Pattern
	'		Α,	710	713	7.14	0	<i>F</i> \2	Al	7.0		A[7]: The A[6:4]: Ste Step of all to Gate	1st step variet step Height, ter RAM ir	POR= 00 Y-direction	0 on according
												A[6:4]	Height	A[6:4]	Height
												000	8	100	128
												001	16	101	200
												010	32	110	200
												011	64	111	200
												A[2:0]: Ste Step of all to Source A[2:0] 000 001 010 011 During op high.	Width 8 16 32 64	A[2:0] 100 101 110 111	Width 128 200 200 200

 SSD1681
 Rev 0.13
 P 32/41
 Jun 2019
 Solomon Systech

Com	Command Table											
R/W#	D/C#	Hex	D7	D6	D5	D4	D3	D2	D1	D0	Command	Description
0	0	4E	0	1	0	0	1	1	1	0	Set RAM X address	Make initial settings for the RAM X
0	1		0	0	A ₅	A ₄	A ₃	A ₂	A ₁	A ₀	counter	address in the address counter (AC) A[5:0]: 00h [POR].
0	0	4F	0	1	0	0	1	1	1	1	Set RAM Y address	Make initial settings for the RAM Y
0	1		A ₇	A_6	A ₅	A ₄	A ₃	A_2	A ₁	A ₀	counter	address in the address counter (AC)
0	1		0	0	0	0	0	0	0	A ₈		A[8:0]: 000h [POR].
0	0	7F	0	1	1	1	1	1	1	1	NOP	This command is an empty command; it does not have any effect on the display module. However it can be used to terminate Frame Memory Write or Read Commands.

SSD1681 Rev 0.13 P 33/41 Jun 2019 **Solomon Systech**

8 Operation Flow and Code Sequence

8.1 General operation flow to drive display panel

Figure 8-1: Operation flow to drive display panel

SSD1681 | Rev 0.13 | P 34/41 | Jun 2019 | **Solomon Systech**

9 Absolute Maximum Rating

Table 9-1: Maximum Ratings

Symbol	Parameter	Rating	Unit
Vcı	Logic supply voltage	-0.5 to +6.0	V
VIN	Logic Input voltage	-0.5 to V _{DDIO} +0.5	V
Vouт	Logic Output voltage	-0.5 to V _{DDIO} +0.5	V
Topr	Operation temperature range	-40 to +85	°C
T _{STG}	Storage temperature range	-65 to +150	°C

Maximum ratings are those values beyond which damages to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Description section

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that V_{CI} be constrained to the range $V_{SS} < V_{CI}$. Reliability of operation is enhanced if unused input is connected to an appropriate logic voltage level (e.g., either V_{SS} or V_{DDIO}). Unused outputs must be left open. This device may be light sensitive. Caution should be taken to avoid exposure of this device to any light source during normal operation. This device is not radiation protected.

10 Electrical Characteristics

The following specifications apply for: VSS=0V, VCI=3.0V, VDD=1.8V, T_{OPR}=25°C.

Table 10-1: DC Characteristics

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Vcı	VCI operation voltage	VCI		2.2	3.0	3.7	V
V_{DD}	VDD operation voltage	VDD		1.7	1.8	1.9	V
V _{COM_DC}	VCOM_DC output voltage	VCOM		-3.0		-0.2	V
dV _{COM_DC}	VCOM_DC output voltage deviation	VCOM		-200		200	mV
V _{СОМ_АС}	VCOM_AC output voltage	VCOM		V _{SL} + V _{COM_DC}	V _{СОМ_DС}	V _{SH1} + V _{COM_DC}	V
V _{GATE}	Gate output voltage	G0~G199		-20		+20	V
V _{GATE(p-p)}	Gate output peak to peak voltage	G0~G199				40	V
V _{SH1}	Positive Source output voltage	VSH1		+2.4	+15	+17	V
dV _{SH1}	VSH1 output voltage	VSH1	From 2.4V to 8.8V	-100		100	mV
	deviation		From 9.0V to 17V	-200		200	mV
V _{SH2}	Positive Source output voltage	VSH2		+2.4	+5	+17	V
dV _{SH2}	VSH2 output voltage	VSH2	From 2.4V to 8.8V	-100		100	mV
	deviation		From 9.0V to 17V	-200		200	mV
V_{SL}	Negative Source output voltage	VSL		-17	-15	-9	V
dV _{SL}	VSL output voltage deviation	VSL		-200		200	mV
V _{IH}	High level input voltage	SDA, SCL, CS#, D/C#, RES#, BS1,		0.8V _{DDIO}			V
V _{IL}	Low level input voltage	M/S#, CL				0.2V _{DDIO}	V
Vон	High level output voltage	SDA, BUSY, CL	IOH = -100uA	0.9V _{DDIO}			V
V_{OL}	Low level output voltage		IOL = 100uA			$0.1V_{\text{DDIO}}$	V
V_{PP}	OTP Program voltage	VPP		7.25	7.5	7.75	V

SSD1681 | Rev 0.13 | P 35/41 | Jun 2019 | **Solomon Systech**

Symbol	Parameter	Applicable pin	Test Condition	Min.	Тур.	Max.	Unit
Islp_VCI	Sleep mode current	VCI	- DC/DC off - No clock - No output load		20	TBD	uA
			- MCU interface access				
Idslp_VCI1	Current of deep sleep mode 1	VCI	 RAM data access DC/DC off No clock No output load No MCU interface access Retain RAM data but cannot access 		1	TBD	uA
			the RAM				
ldslp_VCI2	Current of deep sleep mode 2	VCI	 DC/DC off No clock No output load No MCU interface access Cannot retain RAM data 		0.7	TBD	uA
lopr_VCI	Operating Mode current	VCI	VCI=3.0V		1000		uA
V _{GH}	Operating Mode Output Voltage	VGH	Enable Clock and Analog by Master Activation Command	19.5	20	20.5	V
V _{SH1}		VSH1	VGH=20V VGL=-VGH	14.8	15	15.2	V
V _{SH2}		VSH2	VSH1=15V VSH2=5V	4.9	5	5.1	V
V _{SL}		VSL	VSL=-15V VCOM = -2V	-15.2	-15	-14.8	V
V _{СОМ}		VCOM	No waveform transitions. No loading. No RAM read/write No OTP read /write	-2.2	-2	-1.8	V

Table 10-2: Regulators Characteristics

Symbol	Parameter	Test Condition	Applicable pin	Min.	Тур.	Max.	Unit
IVSH	VSH1 current	VSH1 = +15V	VSH1			800	uA
IVSH1	VSH2 current	VSH2 = +5V	VSH2			800	uA
IVSL	VSL current	VSL = -15V	VSL			800	uA
IVCOM	VCOM current	VCOM = -2V	VCOM			100	uA

SSD1681 Rev 0.13 P 36/41 Jun 2019 **Solomon Systech**

11 AC Characteristics

11.1 Serial Peripheral Interface

The following specifications apply for: VDDIO - VSS = 2.2V to 3.7V, T_{OPR} = 25°C, CL=20pF

Table 11-1: Serial Peripheral Interface Timing Characteristics

Write mode

Symbol	Parameter	Min	Тур	Max	Unit
fscL	SCL frequency (Write Mode)			20	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	TBD			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	TBD			ns
tcsнigh	Time CS# has to remain high between two transfers	TBD			ns
t _{SCLHIGH}	Part of the clock period where SCL has to remain high	TBD			ns
t _{SCLLOW}	Part of the clock period where SCL has to remain low	TBD			ns
tsisu	Time SI (SDA Write Mode) has to be stable before the next rising edge of SCL	TBD			ns
t _{SIHLD}	Time SI (SDA Write Mode) has to remain stable after the rising edge of SCL	TBD			ns

Read mode

Symbol	Parameter	Min	Тур	Max	Unit
f _{SCL}	SCL frequency (Read Mode)		-	2.5	MHz
tcssu	Time CS# has to be low before the first rising edge of SCLK	TBD			ns
tcshld	Time CS# has to remain low after the last falling edge of SCLK	TBD			ns
tcsнigh	Time CS# has to remain high between two transfers	TBD			ns
tsclhigh	Part of the clock period where SCL has to remain high	TBD			ns
tscllow	Part of the clock period where SCL has to remain low	TBD			ns
tsosu	Time SO(SDA Read Mode) will be stable before the next rising edge of SCL		50		ns
t _{SOHLD}	Time SO (SDA Read Mode) will remain stable after the falling edge of SCL		0		ns

Note: All timings are based on 20% to 80% of VDDIO-VSS

SCL tcshigh

tcshidh

Figure 11-1: SPI timing diagram

SSD1681 Rev 0.13 P 37/41 Jun 2019 **Solomon Systech**

12 Application Circuit

GDR GDR VSH2 VSH2 C6 TSCI TSDA BS1 BUSY CONNECTION TSCL EXTERNAL TEMP SENSOR RES# D/C# CS# SCL BS1 BUSY SDA CONNECTION RES# 15 VDDIO D/C# VCI VSS MCU 16 CS# SCL VDD 18 SDA VPP VDDIO VSH1 20 21 VCI VGH 22 23 C0 VGL C1 VPP VSH1 VGH C5 VGL VCOM C7 C8

Figure 12-1: Schematic of SSD1681 application circuit

Table 12-1: Component list for SSD1681 application circuit

Part Name	Value	Requirements/Reference Part
C0-C1	1uF	X5R/X7R; Voltage Rating : 6V or 25V
C2-C7	1uF	0402/0603/0805; X5R/X7R; Voltage Rating : 25V
C8	1uF	0402/0603/0805; X7R; Voltage Rating : 25V
R1	2.2 ohm	0402/0603/0805; 1% variation, ≥ 0.05W
		MBR0530
D1-D3	Diode	1) Reverse DC voltage ≥ 30V
כט-וט	Diode	2) lo ≥ 500mA
		3) Forward voltage ≤ 430mV
		Si1304BDL/NX3008NBK
Q1	NMOS	 Drain-Source breakdown voltage ≥ 30V
QI	NWOS	2) $Vgs(th) = 0.9V (Typ), 1.3V (Max)$
		3) Rds on ≤ 2.1Ω @ Vgs = 2.5V
L1	47uH	CDRH2D18 / LDNP-470NC
L!	47 01 1	Io= 500mA (Max)
U1	0.5mm ZIF socket	24pins, 0.5mm pitch

Remarks:

- 1) The recommended component value and reference part in Table 12-1 is subject to change depending on panel loading.
- 2) Customer is required to review if the selected component value and part is suitable for their application.

SSD1681 | Rev 0.13 | P 38/41 | Jun 2019 | **Solomon Systech**

13 Package Information

13.1 Die Tray Dimensions for SSD1681Z

Figure 13-1 : SSD1681Z die tray information (unit: mm)

Symbol	Spec(mm)
W1	101.60±0.10
W2	91.55±0.10
W3	91.85±0.10
Н	4.55±0.10
Dx	11.25±0.10
TPx	79.10±0.10
Dy	7.60±0.10
TPy	86.40±0.10
Px	11.30±0.05
Ру	2.70±0.05
Х	9.661±0.05
Υ	1.125±0.05
Z	0.40±0.05
N	264(pocket number)

SSD1681 | Rev 0.13 | P 39/41 | Jun 2019 | **Solomon Systech**

Figure 13-2 : SSD1681Z8 die tray information (unit: mm)

# HE -11-HE		Y1	1.125±0.05
		Z1	0.35±0.05
Px	-	N	8x33=264 (pocket number)

SSD1681 | Rev 0.13 | P 40/41 | Jun 2019 | **Solomon Systech**

Solomon Systech reserves the right to make changes without notice to any products herein. Solomon Systech makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Solomon Systech assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any, and all, liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typical" must be validated for each customer application by the customer's technical experts. Solomon Systech does not convey any license under its patent rights nor the rights of others. Solomon Systech products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Solomon Systech product could create a situation where personal injury or death may occur. Should Buyer purchase or use Solomon Systech products for any such unintended or unauthorized application, Buyer shall indemnify and hold Solomon Systech and its offices, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Solomon Systech was negligent regarding the design or manufacture of the part. The product(s) listed in this datasheet comply with Directive 2011/65/EU of the European Parliament and of the council of 8 June 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment and People's Republic of China Electronic Industry

Standard GB/T 26572-2011 "Requirements for concentration limits for certain hazardous substances in electronic information products (电子电器产 品中限用物質的限用要求)". Hazardous Substances test report is available upon request.

http://www.solomon-systech.com

SSD1681 Rev 0.13 P 41/41 Jun 2019 Solomon Systech