Escuela Rafael Díaz Serdán 3° de Secundaria (2024-2025) Ciencias y Tecnología: Química Examen de recuperación de la Unidad 2

Prof.: Julio César Melchor Pinto

Nombre del alumno:		Fecha:								
Evaluador:										
← Instrucciones: —	— Reglas: ——									
Lee con atención cada pregunta y rea-		waman agantas l	9 G G	ioni	ontos	1100	«logi			
liza lo que se te pide. Desarrolla tus	Al comenzar este	· -		_		те	zias.			
respuestas en el espacio determinado	ado × No se permite intercambiar o prestar ningún tipo de materia							material		
para cada solución. De ser necesario,										
utiliza una hoja en blanco por separa-	 No se permite el uso de apuntes, libros, notas o formularios. No se permite mirar el examen de otros alumnos. 									
do, anotando en ella tu nombre com-										
pleto, el número del problema y la so-	× No se permi	e la comunicaci	ón (oral	o esci	rita	con	ı otr	os a	alumnos
lución propuesta.	Si no consideraste	alguna de estas r	egla	as, c	omun	ıíca	lo a	\mathbf{tu}	pro	fesor.
_ Aprendizajes a evaluar:		Califica	ci	ón	:					
Deduce información acerca de la estructura a	atómica a partir de da-	Pregunt a	1	2	3	4	5	6	7	8
tos experimentales sobre propiedades atómic		Puntos	5	5	5	5	5	5	5	5
Representa y diferencia mediante esquemas,	modelos y simbología	Obtenidos								
química, elementos y compuestos, así como á		Pregunt a	9	10	11	12	13	14		Total
Explica y predice propiedades físicas de los :	materiales con hase en	Puntos	6	10	10	15	15	4		100
modelos submicroscópicos sobre la estructura		Obtenidos								
1 [_de5pts] Señala en cada uno de los en (1a) Los electrones de valencia se encu						sir	nila	ır a	la (del prot
en el último nivel de energía.	_	☐ Verdadero	Г	ĪЕ	also					
☐ Verdadero ☐ Falso									3.7.	. a .
(1b) La fórmula H ₂ O expresa que la mo	olécula de agua	,								
está constituida por dos átomos de	=	mero 4 maica que nav 4 atomos de carbono.								
de hidrógeno.	coxigeno y uno	☐ Verdadero		J F.	also					
☐ Verdadero ☐ Falso	(1h) El número de	ma	sa r	epres	sen	ta l	a su	ımғ	a de pro
1c Los subíndices expresan el número	o de átomos de	nes y neutrone	es.							
los elementos presentes en una mo		☐ Verdadero		J F	also					
fórmula.	(1i							. <u>6</u> +	omo lo	
☐ Verdadero ☐ Falso		termina el gru							at	OHIO IO
(1d) El neutrón es una partícula subató	mica que se en-	☐ Verdadero] F	also					
cuentra girando alrededor del núcl	leo atómico.			_		,		c ·		, ,,
☐ Verdadero ☐ Falso	(1j	En una fórmu		-	,					
(1e) Los metales son maleables, dúctile	s v buenos con-	el número de como también								
ductores del calor y la electricidad		sustancia.	OI I	uuii.	1010 (aC I	.11011	o p	100	onica u
□ Verdadero □ Falso		□ Verdadero	_	7 E	also					
U veruauero U faiso		u verdadero	_	_ r	aisu					

- 2 [_de 5 pts] Identifica en las siguientes reacciones si es de síntesis o combinación, descomposición, desplazamiento simple o desplazamiento doble.
 - $2 \text{Na} + \text{ZnI}_2 \longrightarrow 2 \text{NaI} + \text{Zn}$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - ${f D}$. Doble desplazamiento
 - (2b) C₈HO₁₈ + calor $\uparrow \longrightarrow$ C₆H₁₄ + C₂H₄
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (2c) Zn(s) + 2 HCl(ac) \longrightarrow ZnCl₂(ac) + H₂(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - (2d) 2C(s) + O₂(g) \longrightarrow 2CO(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
 - $2 \text{ Na} + \text{H}_2\text{O} \longrightarrow 2 \text{ NaOH} + \text{H}_2$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento

- $\left(\frac{2f}{2}\right) 2 Al(s) + 3 S(s) \longrightarrow Al_2 S_3(s)$
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (2g) Mg(s) + H₂O(l) \longrightarrow Mg(OH)₂(s)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (2h) Al + H₂SO₄ \longrightarrow Al₂(SO₄)₃ + H₂
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- 2i 2 NaCl(s) $\longrightarrow 2$ Na(s) + Cl₂(g)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- (2j) SO₂(g) + H₂O(l) \longrightarrow H₂SO₃(ac)
 - A. Descomposición
 - B. Combinación
 - C. Desplazamiento
 - D. Doble desplazamiento
- 3 [_ de 5 pts] Balancea la siguiente ecuación química:
 - $N_2H_4 + O_2 \longrightarrow NO_2 + H_2O$

4 | de 5 pts | Balancea la siguiente ecuación química

$$Fe + H_2O \longrightarrow Fe_3O_4 + H_2$$

- 5 | de 5 pts | Balancea la siguiente ecuación química:
- 6 [_

[_de 5 pts] Balancea la siguiente ecuación química:

$$C_2H_6O + O_2 \longrightarrow CO_2 + H_2O$$

$$NH_4NO_3 \longrightarrow N_2 + H_2O + O_2$$

- 7 [_ de 5 pts] Balancea la siguiente ecuación química:
- 8 [_de 5 pts] Balancea la siguiente ecuación química:

$$HgO \longrightarrow Hg + O_2$$

$$H_2SO_4 + Pb(OH)_4 \longrightarrow Pb(SO_4)_2 + H_2O$$

- 9 [_ de 6 pts] Contesta a las siguientes preguntas, argumentando ampliamente tu respuesta.
 - (9a) Explica bajo qué condiciones el número atómico permite deducir el número de electrones presentes en un átomo.

(9	b	

En términos generales, el radio de un átomo es aproximadamente 10,000 veces mayor que su núcleo. Si un átomo pudiera amplificarse de manera que el radio de su núcleo midiera 2 mm (lo que mide un grano de sal), ¿cuál sería el radio del átomo en metros?

(10	_ [_ de 1	0 pts] Relaciona cao	emento con las características que le corresponden.
	10a _	_ Titanio	Elemento metaloide del grupo III, subgrupo A de la tabla periódica.
	10b _	_ Oro	Elemento metálico con $Z=31$.
	10c _	_ Helio	Elemento metaloide, ubicado en el tercer período de la tabla periódica.
	10d) _	_ Boro	Elemento conocido como gas noble y se encuentra en el período 1 de la tabla periódica.
	10e _	_ Radón	Elemento con 22 protones y 22 electrones.
	10f _	_ Yodo	Elemento de la familia de los Halógenos con 74 neutrones.
	(10g) _	_ Bismuto	Elemento de la familia de metales alcalino-terreos con 138 neutrones.
	(10h) _	_ Radio	Elemento con $Z = 83$.
	(10i) _	_ Galio	Gas inerte (gas noble) que se encuentra en el período 6 de la tabla periódica.
	(10j) _	_ Silicio	Metal brillante utilizado en joyería.

[11] [_ de 10 pts] Relaciona la especie química con la cantidad de **protones** y **electrones de valencia**.

${\bf A}$. Ión oxígeno $({\bf O}^-)$	10 protones y 8 electrones de valencia.
B. Nitrógeno (N)	11b 7 protones y 5 electrones de valencia.
C. Silicio (Si)	r protones y o electrones de valencia.
D. Calcio (Ca)	(11c) 9 protones y 8 electrones de valencia.
E. Ión Fluor (F ⁻)	11d 8 protones y 7 electrones de valencia.
F. Oxígeno (O)	11e 3 protones y 2 electrones de valencia.
G. Neón (Ne)	(11f) 20 protones y 2 electrones de valencia.
H. Ión Litio (Li ⁺)	
I. Fósforo (P)	11g 34 protones y 6 electrones de valencia.
J. Selenio (Se)	11h 14 protones y 4 electrones de valencia.
	11i) 15 protones y 5 electrones de valencia.
	(11j) 8 protones y 6 electrones de valencia.

12 [_de 15 pts] Completa la siguiente tabla determinand [3] [_de 15 pts] Escribe el grupo (familia), el período y el tipara cada especie, la cantidad de protones (h), neutrones (n) y electrones (-).

Especie	Símbolo	\oplus	n	<u>-</u>
Xenón				
Ión negativo de Antimonio				
Fósforo				
Ión negativo de Azúfre				
Ión positivo de Silicio				

${\bf Elemento}$	${\rm Grupo/Familia}$	Período	Tipo
Paladio			
Oro			
Argón			
Samario			
Talio			

14 [_de 4 pts] Relaciona cada **concepto** con su definición.

- (14a) ____ Diagrama de esferas y barras.
- (14b) ____ Diagrama de esferas.
- (14c) ____ Fórmula condensada.
- (14d) ____ Fórmula estructural.

- A. Las sustancias se representan sólo con símbolos atómicos.
- B. Esquema tridimensional en el que es posible identificar a los enlaces químicos.
- C. Las sustancias se representan con símbolos atómicos y líneas que simbolizan a los enlaces químicos.
- **D**. Esquema tridimensional en el que no es posible identificar a los enlaces químicos.

Tabla 1: Tabla Periódica de los Elementos.

18 VIIIA	$\overset{2}{H_{\text{elio}}}_{\text{Helio}}$	$\overset{\text{10}}{\overset{\text{20.180}}{\overset{\text{20.180}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}{\overset{\text{Neón}}}{\overset{\text{Neón}}{\overset{Neon}}{\overset{N}}{\overset{N}}{\overset{N}}}}}}}{\overset{N}}}{\overset{N}}}}}}}}$	$\overset{18}{A}\overset{39.948}{r}$	$\overset{36}{K}\overset{83.8}{\Gamma}$	$\sum_{\text{Xen\'on}}^{54}$	$\mathop{Rad\acute{\circ}n}\limits^{86}$	${\overset{118}{\overset{294}{\circ}}}$	$\overset{71}{\mathbf{L}}$	103 262 L L L L A Lawrencio	
	17 VIIA	9 18.998 Fluor	17 35.453 Cloro	$\Pr_{Bromo}^{\mathbf{35-79.904}}$	53 126.9 Todo	$\mathop{\rm At}_{\mathop{\rm \acute{A}tato}}^{85}$	\prod_{Teneso}^{292}	$\sum_{\text{Yterbio}}^{70}$	102 259 Nobelio	
	16 VIA	8 15.999 Oxígeno	$\overset{16}{\mathbf{S}}\overset{32.065}{\mathbf{S}}$	$\overset{34}{\mathrm{Se}}$	$\prod_{\text{Tellurio}}^{52}$	$\overset{84}{P0}$	$\frac{116}{L} \frac{293}{V}$ Libermonio	$\prod_{\text{Tulio}}^{69}$	$\overset{\text{101}}{\text{Mond elevio}}$	
	15 VA	$\sum_{\text{Nitrógeno}}^{7}$	$\displaystyle \sum_{\text{Fósforo}}^{15 30.974}$	${\overset{33}{A}}_{\text{Arsénico}}$	$\overset{51}{S}\overset{121.76}{b}$ Antimonio	$\overset{83}{\underset{Bismuto}{208.98}}$	${\displaystyle \prod_{\text{Moscovio}}^{288}}$	$\frac{68}{\text{Erbio}}$	100 257 Fmn Fermio	
	14 IVA	6 12.011 Carbono	$\overset{\text{14}}{S}\overset{\text{28.086}}{\text{Silicio}}$	$\overset{32}{\text{Germanio}}$	$\overset{50}{S}\overset{118.71}{n}$	$\overset{82}{Pbm}^{207.2}$	114 289 Flerovio	$\overset{67}{H}\overset{164.93}{\text{O}}$	99 252 Einsteinio	
	13 IIIA	\mathop{Boro}_{Boro}	$\bigwedge_{\text{Aluminio}}^{13} \underbrace{26.982}_{\text{Aluminio}}$	$\overset{31}{\mathbf{Galio}}$	$\overset{49}{\text{In}}_{\text{lndo}}^{114.82}$	81 204.38 Talio	$\overset{113}{N}\overset{284}{h}$	$\bigcup_{\text{Disprosio}}^{66} 162.50$	$\overset{98}{C}\overset{251}{f}$	
			12 IIB	$\overset{30}{\mathrm{Zn}}\overset{65.39}{\mathrm{c}}$	$\overset{48}{C}\overset{112.41}{d}$	$\underset{Mercurio}{\overset{80}{100.59}}$	$\bigcup_{\text{Copernicio}}^{112} \bigcup_{\text{Spernicio}}^{285}$	65 158.93 Terbio	$\frac{97}{BK}$	
			11 IB	$\overset{29}{\overset{63.546}{\text{c}}}$	$^{47}_{ ext{Ag}}$	$\overset{79}{\mathbf{Au}}_{Oro}^{196.97}$	$\underset{\text{Roentgenio}}{\text{Ras}}$	$\overset{64}{\text{Gadolinio}}$	$\overset{96}{Cm}_{\text{Curio}}$	
			10 VIIIB	$\sum_{\text{Niquel}}^{28} \overset{58.693}{\text{1}}$	$\Pr^{46 106.42}_{\text{Paladio}}$	$\overset{78}{P}\overset{195.08}{\text{P}}$	Darmstadtio	$\frac{63}{Europio}$	$\underset{\text{Americio}}{\underbrace{Am}}$	
			9 VIIIB	$\bigcup_{\text{Cobalto}}^{27} \bigcup_{\text{Cobalto}}^{58.933}$	$\mathop{Rh}\limits^{45 102.91}_{\text{Rodio}}$	$\prod_{\text{Iridio}}^{77}$	$\underset{\text{Meitnerio}}{109}$	$\overset{62}{S}\overset{150.36}{m}$	$\overset{94}{Pu}\overset{244}{u}$	
		10	8 VIIIB	$\overset{26}{F}\overset{55.845}{\bullet}$ Hierro	$\mathop{Ru}_{\text{Cuthenio}}^{44}$	$\overset{76}{\text{Osmio}}$	$\mathop{Hassio}_{Hassio}^{108}$	$\Pr_{\text{Prometio}}^{61}$	93 237 Neptunio	
	gía:	Negro: Naturales Gris: Sintéticos	7 VIIB	$\sum_{\mathrm{Manganeso}}^{25} 54.938$	$\prod_{ m Tecnecio}^{43}$	$\mathop{Renio}_{\text{Renio}}$	$\overset{107}{Bh}_{\text{Bohrio}}$	60 144.24 Neodimio	$\bigcup_{\text{Uranio}}^{92 238.03}$	
	Simbología	Negro: Î Gris: Sir	6 VIB	$\overset{24}{\overset{51.996}{\text{Cromo}}}$	${\overset{42}{\mathrm{Molybdeno}}}^{95.94}$	74 183.84 W	$\overset{106}{S}\overset{266}{8}$	$\sum_{ ext{Praseodymio}}^{ ext{59}}$	$\overset{\text{91}}{P}\overset{\text{231.04}}{a}$	
	Sim	\mathbf{S} Símbolo	5 VB	$\sum_{\text{Vanadio}}^{23} 50.942$	$\sum_{\text{Niobio}}^{41}$	$\overset{73}{ ext{Tantalo}}$	$\bigcup_{\text{Dubnio}}^{105} \bigcup_{\text{Dubnio}}^{262}$	$\overset{58}{\text{Cerio}}$	$\prod_{Torio}^{90-232.04}$	
			4 IVB	$\prod_{\text{Titanio}}^{22} 47.867$	$\sum_{\mathbf{r}=\mathbf{r}}^{\mathbf{d}0}$ Circonio	$\mathop{\rm Hafthic}^{72}$	$\overset{104}{R}\overset{261}{\text{R}}$	$\overset{57}{L}\overset{138.91}{a}$	$\overset{89}{ ext{AC}}_{ ext{C}}$	
			3 IIIB	$\overset{21}{S}^{44.956}_{C}$ Escandio	$\sum_{\text{ltrio}}^{39} 88.906$	57-71 * Lantánido	.: 89-103 .: * .: .: **	s terreos		nidos
	2 IIA	$\mathop{Berilis}^{4}$	$\overline{\mathrm{Magnesio}}^{24.305}$	$\overset{20}{ ext{Calcio}}$	$\overset{38}{S}\overset{87.62}{\Gamma}$ Stroncio	$\mathop{Bario}\limits^{\mathbf{56-137.33}}$	\mathop{Radio}^{88}	Metales Alcalinos Metales Alcalino-terreos Metal	le .1	Gases Nobles Lantánidos/Actínidos
1 IA	$\prod_{\text{Hidrógeno}}^{1}$	$\sum_{\text{Litio}}^{6.941}$	$\overset{11}{\text{N}}\overset{22.990}{\text{Sodio}}$	$\overset{19}{K} \overset{39.098}{\text{Potasio}}$	$\mathop{Rb}\limits^{37}_{\text{Rubidio}}$	$\overset{55}{\mathbf{C}}\overset{132.91}{\mathbf{S}}$	$\overset{87}{F}\overset{223}{\Gamma}$ Francio	Metales Metales Metal	Metaloide No metal Halógeno	Gases Nobles Lantánidos/A
	\vdash	2	r	4	Ŋ	9	7			