

Laboratorium 2 Symulacja Monte Carlo

dr inż. Jarosław Rulka jaroslaw.rulka@wat.edu.pl

Wprowadzenie

- Stanisław Ulam, Nicolas Metropolis: The Monte Carlo Methods, 1949
- Metoda Monte Carlo (MC) technika rozwiązywania problemu wykorzystująca losowe ciągi liczb
- Opiera się na generatorach liczb losowych

Wprowadzenie

- MC polega na przedstawieniu rozwiązania postawionego problemu w postaci parametru pewnej hipotetycznej populacji i używaniu losowej sekwencji liczb do tworzenia próbki tej populacji, na podstawie której można dokonać statystycznego oszacowania wartości badanego parametru;
- F dokładne rozwiązanie problemu:
 - liczba, zbiór liczb, wartość logiczna decyzja;
- Oszacowanie wyniku F:

$$\hat{F} = f(\{r_1, r_2,, r_n\})$$

•{r₁,r₂,....,r_n} - zastosowane liczby (pseudo)losowe;

Wprowadzenie

- Problemy deterministyczne
 - Całkowanie;
 - Znajdowanie pól i objętości;
 - Obliczanie liczby Pi;
- Problemy probabilistyczne/stochastyczne:
 - Symulacje procesów zależnych od zmiennych losowych:
 - Systemy masowej obsługi;
 - Metody biologicznie inspirowane, np. stadne;
 - Szukanie ekstremum;

Zadanie 1

- Wyznaczyć całkę oznaczoną w przedziale [a, b] zadanym przez użytkownika. Inaczej jest to pole powierzchni pod funkcją podcałkową.
- Funkcje do całkowania

Α.

$$\int_{1}^{e} \frac{3}{x} dx$$

$$\int \frac{dx}{x} = \ln|x| + C$$

$$\int \frac{3}{x} dx = 3 \int \frac{1}{x} dx = 3 \ln|x| + C$$

$$\int_{1}^{e} \frac{3}{x} dx = [3 \ln|x|]_{1}^{e} = 3 \ln|e| - 3 \ln|1| = 3 \ln e - 3 \ln 1 = 3 \cdot 1 - 3 \cdot 0 = 3$$

B. Funkcja zaproponowana przez studenta

Zadanie 1 cd.

- Oszacuj wartość całki funkcji podcałkowej metodą Monte Carlo poprzez:
 - losowy (z rozkładem równomiernym) wybór n punktów (x_i, y_i) , przy czym $x_i \in \langle a, b \rangle$, $y_i \in \langle 0, f_{max} \rangle$ (losowanie w prostokącie);
 - sprawdzenie, czy punkt $y_i \le f(x_i)$ i zliczania takich punktów (licznik k);
 - pole powierzchni pod funkcją f (całka oznaczona)

$$P \approx \frac{k}{n}(b-a)f_{max}$$

Zbadaj dokładność/błąd oszacowania zależnie od liczby punktów n;

Zadanie1 – koncepcja rozwiązania

- Zdefiniuj interfejs funkcyjny IFunc z metodami:
 - double func(double x),
 double max(double a, double b).
- Zdefiniuj 2 klasy konkretnych funkcji do całkowania, które implementują interfejs IFunc:
 - Funkcja1,
 - Funkcja2.
- Zdefiniuj klasę Calka z główną funkcją wyznaczającą całkę, która przyjmuje cztery parametry: granice przedziału [a, b], obiekt funkcyjny implementujący interfejs IFunc, liczbę powtórzeń, i zwracającą wartość całki:
 - double calculate(double a, double b, IFunc f, int rep),
- Zdefiniuj klasę testową (uruchomieniową) Main w celu zademonstrowania działania programu.

Zadanie 2

- Problem stochastyczny:
 - System pocztowy składa się z N okienek (stanowisk obsługi), z których każde może obsługiwać interesantów;
 - Interesanci pojawiają się pojedynczo w losowych odstępach (ustalony rozkład);
 - każdy interesant trafia najpierw do okienka nr 1;
 - jeśli w chwili pojawienia się k-tego interesanta (oznaczmy chwilę przez t_k) okienko jest wolne, to interesant jest obsługiwane w ciągu czasu To_i minut (czas obsługi na i-tym stanowisku jest zmienną losową o zadanym rozkładzie dla każdej linii);
 - jeśli natomiast w momencie t_k okienko jest zajęte, wówczas interesant przekazywany jest do kolejnego itd.;
 - jeśli wszystkie okienka w chwili t_k są zajęte, system odmawia obsługi interesanta (odrzuca jego obsługę);

Zadanie 2 – koncepcja rozwiązania

- Zdefiniować główną klasę definiującą system Poczta z metodą symulującą jego działanie:
 - void symuluj(double czasZakon, int liczZglosz).
 - Struktura N-elementowa obiektów klasy Okienko/Stanowisko zawierającą informacje o:
 - średnim czasie obsługi *To*; (przyjąć rozkład wykładniczy)
 - bieżącym czasie zajętości (do kiedy?): $t_k + To_i$ gdy zajęte przez zgłoszenie k-te do chwili $t_k + To_i$;
 - W metodzie symuluj() wykonuj w pętli:
 - · losowanie czasów kolejnych pojawień się interesantów,
 - aktualizuj czas systemowy (symulacyjny double) simTime,
 - zajmij pierwsze wolne okienko lub odrzuć obsługę interesanta
 - –sprawdź zajętość okienka (porównując bieżący czas symulacyjny z bieżącym czasem zajętości okienka/stanowiska);
- Symulację zakończ po zadanym czasie lub po wygenerowaniu zadanej liczby zgłoszeń (zależnie, co wystąpi wcześniej);
- Oszacuj prawdopodobieństwo obsługi interesanta przez system pocztowy oraz prawdopodobieństwo odmowy obsługi;

Zadanie cd.

- Zaimplementuj odpowiednie klasy Java dla obu zadań w osobnych pakietach o nazwach zadanie1, zadanie2;
- Zastosuj klasę generatora liczb losowych RNGenerator z biblioteki dissimlab2021, w szczególności użyj metod:
 - •uniform(double a, double b) parametry wywołania to granice przedziału [a,b];
 - exponential(double a) parametrem jest wartość oczekiwana zmiennej losowej;

```
generateSeed()
       uniform()
       Pexponential()
       hyperExponential()
       ♦laplace()
       Perlang()
       ogamma()
       normal()
       chisquare()
        beta()
       *student()
       ⁰lognormal()
       fdistribution()
       weibull()
       *poisson()
        geometric()
        hypergeometric()
       binomial()
       negativebinomial()
       triangular()
       probability()
and in the second second
```