Nonlinear data assimilation:

Particle filters from a Bayesian perspective

Femke C. Vossepoel

Based on the book available from https://github.com/geirev/Data-Assimilation-Fundamentals.git

Case I: Subsidence in Groningen

- Studying induced subsidence over the Groningen gas field
- Methodology: particle filter with importance resampling. note: strictly speaking not a filter, because the model is (quasi-)static!
- Estimating the strength using a nucleus of strain (Mogi source) with uncertain strength at the locations of producing wells
- Assimilating InSAR data

Mogi-source strength estimation

- The approach was tested on synthetic experiments
- In each experiment, the number of Mogi sources was increased (1,2,4,16,...)
- If no resampling is applied, degeneracy starts to occur with ... numbers of Mogi sources, and with ... ensemble sizes
- You will find out in the practical!

Mogi source

A Mogi source is a point source of deformation, used to model subsidence or uplift as a result of compaction or expansion in the subsurface, originally for volcanics. Deformation u_z is modelled as a function of the radial coordinate r and the distance to the Mogi source *R*: $u_z = C \frac{r}{R^3}$.

Mogi source

The resulting deformation is bell-shaped.

Exercise Importance Sampling (1)

With the practical partner from yesterday:

- Open DataAssimilation-ImportanceSampling.ipynb
- Run the notebook step by step for "Part I: Numerical model and observations (data)"
- Make an estimate of the Mogi source strengths and discuss this with your practical partner

Exercise Importance Sampling (2)

With the practical partner from yesterday:

- · Open DataAssimilation-ImportanceSampling.ipynb
- Run "Part II: Importance Sampling algorithm" and "Part III: Plots and analysis of the results"
- What is an appropriate value for the number of particles, given the number of Mogi sources that you are simulating? Discuss with your partner

Exercise Importance Sampling (3)

Again, with your practical partner:

- In the second part of DataAssimilation-ImportanceSampling.ipynb
- After playing with the number of particles and Mogi sources, vary the number of observations
- Discuss how this affects degeneracy

Subsidence case: estimating compaction in Groningen data of 2009-2010 subsidence case.

Studying induced subsidence over the Groningen gas field

- Methodology: particle filter with importance resampling. note: strictly speaking not a filter, because the model is (quasi-)static!
- Estimating the strength of compaction using a nucleus of strain (Mogi source) with uncertain strength at the locations of producing wells
- Assimilating InSAR data

Assimilation actual InSAR data (unfitted)

Assimilation actual InSAR data (fitted)

Particle weights

Even with 5000 ensemble members, we observe degeneracy

Particle weights with localisation

Degeneracy solved with localisation

Assimilation actual InSAR data (fitted, localised)

Subsidence in Groningen

- Importance Sampling can be used to estimate Mogi-source strengths as a representation of reservoir compaction
- For synthetic experiments, increasing the number of particles helps to avoid degeneracy
- For realistic experiments, an ensemble size of 5000 particles still leads to degeneracy
- Localisation can help to overcome this