

Description

The FS3000 is a surface-mount type air velocity module utilizing a MEMS thermopile-based sensor.

The FS3000 features a digital output with 12-bit resolution. The sensor comprises a "solid" thermal isolation technology and siliconcarbide coating to protect it from abrasive wear and water condensation.

The FS3000 features a compact design fit for low profile enclosures.

Typical Applications

- Data Center and Servers
- HVAC and air control systems
- Laminar flow control systems
- Air filtration and collection systems

Features

- Robust "solid" isolation technology
- Resistant to surface contamination
- Resistant to vibration and pressure shock
- Low power application
- Digital output: I2C
- Supply voltage: 3.3V
- Module operating temperature range: -20°C to +85°C
- Module size: $8 \times 9 \times 3.7$ mm

FS3000 Air Velocity Module

Application Circuit

Note:

C1, C2, C3 are 0.1µF capacitors C4 is a 1µF capacitor

Contents

1.	Pin Assignments	4
	1.1 Pin Descriptions	4
2.	Absolute Maximum Ratings	5
3.	Recommended Operating Conditions	6
4.	Electrical Characteristics	7
5.	Output Curve	8
6.	I2C Sensor Interface	10
	6.1 Sensor Slave Address	10
	6.2 I2C Communication	10
7.	Digital Output Measurements	11
8.	Calculating Checksum	12
9.	Mechanical Drawings	13
10.	Ordering Information	13
11.	Revision History	13
Lis	st of Figures re 1. Pin Assignments for 8 × 9 × 3.7mm Module – Top View	1
Figui		
Figui	·	
•	re 4. I2C master-slave configuration	
•	re 5. START and STOP Condition Waveform	
Figui		
•	re 7. Flow Data from FS3000	
0.		
Lis	st of Tables	
Table	e 1. Pin Descriptions	4
Table	·	5
Table	•	
Table	e 4. Electrical Characteristics	7

1. Pin Assignments

Figure 1. Pin Assignments for $8 \times 9 \times 3.7$ mm Module – Top View

1.1 Pin Descriptions

Table 1. Pin Descriptions

Pin Number	Name	Туре	Description
1	V_{REG}	Input	ADC reference input
2	V _{IN}	Input	Supply voltage
3	GND	Ground	Ground
4	-	-	Do not connect
5	-	-	Do not connect
6	SDA	Input/Output	Serial data
7	SCL	Input	Serial clock
8	TP1	Input/Output	Connect with capacitor
9	TP2	Input/Output	Connect with capacitor
10	V _{СМ}	Output	Common bias

2. Absolute Maximum Ratings

The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device. Functional operation of the FS3000 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

Table 2. Absolute Maximum Ratings

Symbol	Parameter	Conditions	Minimum	Maximum	Units
Vin	Supply Voltage			5.5	V
T _{STOR}	Storage Temperature		-40	105	°C

3. Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Symbol	Parameter	Minimum	Typical	Maximum	Units
V _{IN}	Supply Voltage [a]		3.3		V
T _{AMB}	Ambient Operating Temperature	-20	-	85	°C

[[]a] Must be regulated, changes in supply voltage will affect accuracy

4. Electrical Characteristics

Table 4. Electrical Characteristics

Note: See important notes at the end of the table.

Symbol	Parameter	Conditions	Minimum	Typical	Maximum	Units
I_{VIN}	Current Consumption			10		mA
F _{AIR}	Air Flow Range	FS3000-1005	0		7.23	m/sec
FAIR	All Flow Ralige	FS3000-1015	0		15	III/Sec
V _{OUT}	Digital Output	Min to Max of Flow Range	409	_	3686	Count
RES	Resolution				12	bit
EAIR	Flow Accuracy	At 25°C		5		% of F.S.
tresp	Response Time			125		ms
fscL	SCL Clock Frequency				400	kHz
VIL	I2C Input Logic Low Threshold				0.3V _{DD} or 1.5	V
V _{IH}	I2C Input Logic High Threshold		0.7V _{DD} or 3			V
Vol	I2C Output Logic Low Threshold				0.4	V

[[]a] m/sec: meter per second

[[]b] F.S: Full scale flow range

5. Output Curve

Figure 2. FS3000-1005 Output

Air Velocity	Output
(m/sec)	(Count)
0	409
1.07	915
2.01	1522
3.00	2066
3.97	2523
4.96	2908
5.98	3256
6.99	3572
7.23	3686

Figure 3. FS3000-1015 Output

Air Velocity	Output
(m/sec)	(Count)
0	409
2.00	1203
3.00	1597
4.00	1908
5.00	2187
6.00	2400
7.00	2629
8.00	2801
9.00	3006
10.00	3178
11.00	3309
13.00	3563
15.00	3686

6. I2C Sensor Interface

The FS3000 includes an I2C digital, two-wire interface with a bidirectional data line (SDA) and a clock line (SCL). The two lines are open drain and connected to the supply voltage via two pull-up resistors (Rp). The FS3000 operates as a slave device on the I2C bus with support of 100kHz and 400kHz bit rates.

Figure 4. I2C master-slave configuration

The recommended pull-up resistor (Rp) values depend on the system implementation, but a value between $2.2k\Omega$ and $10k\Omega$ can be used.

The capacitive load on both SDA and SCL should be the same, hence the signal lengths should be similar to avoid asymmetry.

6.1 Sensor Slave Address

The FS3000 default I2C address is **28**_{HEX}. The device will respond only to this **7-bit address**.

6.2 I2C Communication

The START condition is used to initiate I2C communication by the master. The sensor transmission is initiated when the master sends a 0 START bit (S). A HIGH to LOW transition on the SDA line while the SCL is HIGH indicates the beginning of a transmission.

The STOP condition is used to stop I2C communication by the master. The transmission is terminated when the master sends a 1 STOP bit (P). A LOW to HIGH transition on the SDA line while the SCL is HIGH indicates the end of a transmission.

All transfers consist of 8 bits and a response bit: 0 for Acknowledge (ACK) or 1 for Not Acknowledge (NACK). After the ACK is received, another data byte can be transferred or the communication can be stopped with a STOP bit.

The master expects an ACK back from the slave after each byte is transmitted. The slave pulls the SDA low to indicate that it has received a byte and then it frees the I2C bus again. If the slave does not initiate an ACK, then it will consider it a NACK.

Data on the SDA line is always sampled on the rising edge of the SCL line and must remain stable while SCL is HIGH to prevent false START or STOP conditions.

Figure 5. START and STOP Condition Waveform

7. Digital Output Measurements

The FS3000 continuously measures in operation.

The data is sent in byte packages. Each byte is followed by an ACK from the slave. The most significant bit (MSB) is transmitted first.

To read the data, the following command is sent to the FS3000.

After the START bit, the master device sends the 7-bit slave address followed by an eighth bit = 1 (READ). The READ bit indicates a transmission from the FS3000 (slave) to master. See Figure 6.

The checksum used for data integrity is returned from the FS3000 followed by the two bytes of flow data.

The flow data is a 12-bit integer. Only the least significant four bits in the high byte are valid. See Figure 7.

Figure 6. Flow Data Read Command

				Byte					
	6	5	4	3	2	1	0		
S	0	1	0	1	0	0	0	R (1)	Α
	De	Device Slave Address (0x28), [6:0]							

Figure 7. Flow Data from FS3000

- S START Condition
- R READ Mode
- P STOP Condition
- A Acknowledge (ACK)

8. Calculating Checksum

The checksum used for data integrity is the 2's complement (negative) of the 256-modulo (8-bit) sum of the data bytes (does not include I2C address).

Figure 7 shows the 5 bytes read:

Example:

Byte 1, 0xCC (Checksum)

Byte 2, 0x01

Byte 3, 0x99

Byte 4, 0x01 or 0x00

Byte 5, 0x99 or 0x00

The 256-modulo (8-bit) sum is calculated as:

$$sum = 0x01 + 0x99 + 0x01 + 0x99 = 0x134$$

Validating the data payload is done by calculating the sum and adding it to the checksum. If the result is 0x00, then the data is valid.

$$checksum + sum = 0xCC + 0x134 = 0x00$$

9. Mechanical Drawings

The package outline drawings are appended at the end of this document. The package information is the most current data available.

10. Ordering Information

Orderable Part Number	Description and Package	MSL Rating	Carrier Type	Temperature
FS3000-1005	0 to 7 m/sec air velocity module	TBD	Reel	-20°C to +85°C
FS3000-1015	0 to 15 m/sec air velocity module	TBD	Reel	-20°C to +85°C

11. Revision History

Revision Date	Description of Change
September 09, 2020	Advance Datasheet

FS3000 Module Drawing

Dimensions in mm.

PCB Footprint

Dimensions in mm.