Time Series Project

Business Case, Decomposed Linear Regression

Bhupesh Chandrawanshi

Business Case

- Different models perform differently for different KPIs
- We need to figure out which model is best suited to which KPI
- Models in question :
 - Decomposed Linear Regression
 - ARIMA
 - o Auto-ARIMA
 - XGBoost regression

- Model Structure
- Model Steps
- Model Implementation

Any time series visualization may consist of the following components:

Trend + Seasonality + Error.

We may have different combinations of trends and seasonality. Depending on the nature of the trends and seasonality, a time series can be modeled as an additive or multiplicative time series.

Each observation in the series can be expressed as either a sum or a product of the components.

Additive time series:

• Value = Trend + Seasonality + Error

Multiplicative Time Series:

• Value = Trend x Seasonality x Error

Model: Trend * Seasonal * Irregular

Step 1: Get the probable trend component (By Smoothen Y Values)

Step 2: Get detrended data (Actual / (Seasonal x Irregular))

Step 3: Get seasonal component (Seasonal by averaging and removing Irregular)

Step 4: Get deseasonalized component (Actual / Seasonal)

Model: Tt * St * It

Step 5: Find regression values for deseasonalized values (X = T Code, Y = DS)

Step 6: Find the Tt component (Tt = Intercept + Coeff*T Code)

Step 7 : Calculate Yp with Tt and St (Yp = St * Tt)

Step 8: Use further T Code, Tt along with St for Future Prediction

Python Codebase:

- Inputs:
 - Month Level Data + Marketing Spend Data
- Model:
 - Decomposed Multiplicative (LR + MLR)
- Output:
 - Prediction at Month Level for Next 12 Months