2 Continuité

La continuité est une notion intuitivement simple : une fonction est **continue** si l'on peut tracer son graphe sans lever le crayon. La formalisation rigoureuse de cette intuition ne se fait toutefois pas sans efforts...

On dit qu'une fonction f est **continue au point** a si pour tout $\varepsilon > 0$ il existe $\delta > 0$ tel que pour tout $x \in D_f$ avec $|x-a| < \delta$ on ait $|f(x)-f(a)| < \varepsilon$.

Cette définition veut dire que, lorsqu'une fonction est continue en un point a, la différence f(x) - f(a) peut être aussi petite que l'on veut, pour autant que la différence x - a soit suffisamment petite. En d'autres termes, f(x) est infiniment proche de f(a), pour autant que x soit suffisamment proche de a.

On dit qu'une fonction f est **discontinue au point** a s'il existe $\varepsilon > 0$ tel que pour tout $\delta > 0$ il existe $x \in D_f$ avec $|x - a| < \delta$ et $|f(x) - f(a)| \ge \varepsilon$.

Lorsqu'une fonction est discontinue au point a, il y a alors un « saut ». Il existe ainsi un seuil $\varepsilon > 0$ qui séparera toujours f(a) et un certain f(x), quand bien même x est aussi proche de a que l'on veut.

On dit d'une fonction f qu'elle est **continue** si elle est continue en tout point de son ensemble de définition.

On dit d'une fonction f qu'elle est **discontinue** s'il existe un point de son ensemble de définition où elle est discontinue.

- **2.1** Montrer que la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par f(x) = 1 est continue.
- **2.2** Montrer que la fonction $f: \mathbb{R} \longrightarrow \mathbb{R}$ définie par f(x) = x est continue.
- 2.3 Le but de cet exercice est de prouver la continuité de la fonction $f: \mathbb{R}_+ \longrightarrow \mathbb{R}$ définie par $f(x) = \sqrt{x}$.
 - 1) Montrer que la fonction f est continue en a = 0.
 - 2) Soit a > 0.
 - (a) Vérifier l'égalité $\sqrt{x} \sqrt{a} = \frac{x a}{\sqrt{x} + \sqrt{a}}$ pour tout $x \in \mathbb{R}_+$.
 - (b) Montrer que la fonction f est continue en a. Indication: $\sqrt{x} + \sqrt{a} \ge \sqrt{a}$
- **2.4** La fonction **partie entière** est la fonction $E : \mathbb{R} \longrightarrow \mathbb{R}$ définie de la manière suivante : E(x) est le plus grand entier inférieur ou égal à x; c'est donc l'unique entier tel que $E(x) \leq x < E(x) + 1$.
 - 1) Représenter graphiquement la fonction partie entière.
 - 2) Au vu du graphique, quels sont les points où la fonction partie entière est discontinue?
 - 3) Prouver que la fonction partie entière est discontinue au point a=2.

Proposition Soient f et g deux fonctions continues. Alors la fonction f + g est aussi une fonction continue.

Preuve Soit $a \in D_{f+q}$. Soit $\varepsilon > 0$.

Puisque f est continue au point a, il existe $\delta_1 > 0$ tel que pour tout $x \in D_f$ avec $|x - a| < \delta_1$ on ait $|f(x) - f(a)| < \frac{\varepsilon}{2}$.

Comme g est continue au point a, il existe $\delta_2 > 0$ tel que pour tout $x \in D_g$ avec $|x - a| < \delta_2$ on ait $|g(x) - g(a)| < \frac{\varepsilon}{2}$.

Posons $\delta = \min(\delta_1, \delta_2)$. Pour tout $x \in D_{f+g}$ avec $|x - a| < \delta$, on a :

$$\begin{split} & \left| \left(f + g \right)(x) - \left(f + g \right)(a) \right| = \left| f(x) + g(x) - f(a) - g(a) \right| = \left| f(x) - f(a) + g(x) - g(a) \right| \\ & \leqslant \left| f(x) - f(a) \right| + \left| g(x) - g(a) \right| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \,. \end{split}$$

Proposition Soient f une fonction continue et λ un nombre réel. Alors la fonction λf est aussi une fonction continue.

Preuve Soit $a \in D_f$. Soit $\varepsilon > 0$.

- 1) Supposons $\lambda = 0$. Pour tout $x \in D_f$ on a $|\lambda f(x) - \lambda f(a)| = |0 \cdot f(x) - 0 \cdot f(a)| = 0 < \varepsilon$.
- 2) Supposons $\lambda \neq 0$.

Puisque f est continue au point a, il existe $\delta > 0$ tel que pour tout $x \in D_f$ avec $|x - a| < \delta$ on ait $|f(x) - f(a)| < \frac{\varepsilon}{|\lambda|}$.

Pour tout
$$x \in D_f$$
 avec $|x - a| < \delta$ on a $|\lambda f(x) - \lambda f(a)| = |\lambda (f(x) - f(a))| = |\lambda| |f(x) - f(a)| < |\lambda| \cdot \frac{\varepsilon}{|\lambda|} = \varepsilon$.

Proposition Soient f et g deux fonctions continues. Alors la fonction $f \cdot g$ est aussi une fonction continue.

Preuve Soit $a \in D_{f+g}$. Soit $\varepsilon > 0$.

Comme f est continue au point a, il existe $\delta_1 > 0$ tel que pour tout $x \in D_f$ avec $|x - a| < \delta_1$ on ait |f(x) - f(a)| < 1.

En d'autres termes, pour tout $x \in D_f$ avec $|x-a| < \delta_1$, on a f(a)-1 < f(x) < f(a)+1. En posant $M = \max(|f(a)-1|,|f(a)+1|)$, on obtient |f(x)| < M.

Puisque f est continue au point a, il existe $\delta_2 > 0$ tel que pour tout $x \in D_f$ avec $|x - a| < \delta_2$ on ait $|f(x) - f(a)| < \frac{\varepsilon}{2|g(a)|}$.

Puisque g est continue au point a, il existe $\delta_3 > 0$ tel que pour tout $x \in D_g$ avec $|x - a| < \delta_3$ on ait $|g(x) - g(a)| < \frac{\varepsilon}{2M}$.

Posons $\delta = \min(\delta_1, \delta_2, \delta_3)$. Pour tout $x \in D_{fg}$ avec $|x - a| < \delta$, on a $|fg(x) - fg(a)| = |f(x)g(x) - f(a)g(a)| = |f(x)g(x) - f(x)g(a) + f(x)g(a) - f(a)g(a)| \le |f(x)g(x) - f(x)g(a)| + |f(x)g(a) - f(a)g(a)| = |f(x)||g(x) - g(a)| + |g(a)||f(x) - f(a)|| < M \cdot \frac{\varepsilon}{2M} + |g(a)| \cdot \frac{\varepsilon}{2|g(a)|} = \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$

- **2.5** 1) Montrer que la fonction $f(x) = x^n$ est continue pour tout $n \in \mathbb{N}$.
 - 2) Montrer que la fonction $f(x) = \lambda x^n$ est continue pour tout $n \in \mathbb{N}$ et pour tout $\lambda \in \mathbb{R}$.
 - 3) Montrer que toute fonction polynomiale est continue.

Proposition Soient f et g deux fonctions continues. Alors la fonction $\frac{f}{g}$ est aussi une fonction continue.

Preuve Vu la proposition précédente, il suffit de prouver la continuité de la fonction $\frac{1}{a}$.

Soit $a \in D_g$ avec $g(a) \neq 0$. Soit $\varepsilon > 0$.

Comme g est continue au point a, il existe $\delta_1 > 0$ tel que pour tout $x \in D_g$ avec $|x - a| < \delta_1$ on ait $|g(x) - g(a)| < \frac{1}{2} |g(a)|$.

Ainsi si $x \in D_g$ avec $|x - a| < \delta_1$, on obtient

$$|g(a)| = |g(a) - g(x) + g(x)| \le |g(a) - g(x)| + |g(x)| < \frac{1}{2}|g(a)| + |g(x)|$$

d'où suit, en soustrayant par $\frac{1}{2}|g(a)|$, que $\frac{1}{2}|g(a)| < |g(x)|$.

Puisque g est continue au point a, il existe $\delta_2>0$ tel que pour tout $x\in \mathrm{D}_g$ avec $|x-a|<\delta_2$ on ait $|g(x)-g(a)|<\frac{|g(a)|^2\,\varepsilon}{2}$.

Posons $\delta = \min(\delta_1, \delta_2)$. Alors pour tout $x \in D_{\frac{1}{q}}$ avec $|x - a| < \delta$ on a

$$\left|\frac{1}{g(x)} - \frac{1}{g(a)}\right| = \left|\frac{g(a) - g(x)}{g(x)g(a)}\right| = |g(x) - g(a)| \cdot \frac{1}{|g(x)|} \cdot \frac{1}{|g(a)|} < \frac{1}{|g(a)|} < \frac{1}{|g(a)|} \cdot \frac{1}{|g(a)|} < \frac{1}{|g(a)|}$$

$$\frac{|g(a)|^2\,\varepsilon}{2}\cdot\frac{2}{|g(a)|}\cdot\frac{1}{|g(a)|}=\varepsilon\,.$$

2.6 On appelle fonction rationnelle toute fonction qui s'écrit comme un rapport de fonctions polynomiales.

Montrer que toute fonction rationnelle est continue.

Proposition Soient f et g deux fonctions continues. Alors la fonction $g \circ f$ est aussi une fonction continue.

Preuve Soit $a \in D_{q \circ f}$. Soit $\varepsilon > 0$.

Comme g est continue en f(a), il existe $\delta_1 > 0$ tel que pour tout $y \in D_g$ avec $|y - f(a)| < \delta_1$ on ait $|g(y) - g(f(a))| < \varepsilon$.

Comme f est continue en a, il existe $\delta > 0$ tel que pour tout $x \in D_f$ avec $|x - a| < \delta$ on ait $|f(x) - f(a)| < \delta_1$.

Alors pour tout $x \in D_{g \circ f}$ avec $|x - a| < \delta$, on a $|g(f(x)) - g(f(a))| < \varepsilon$.

2.7 Montrer que la fonction $f(x) = \frac{\sqrt{x^4 + x^2 + 1}}{x^2 + 1}$ est continue.

Théorème Soient f une fonction continue et $(u_n)_{n\in\mathbb{N}}$ une suite réelle convergeant vers a avec $u_n\in D_f$ pour tout $n\in\mathbb{N}$ et $a\in D_f$. Alors

$$\lim_{n \to +\infty} f(u_n) = f(\lim_{n \to +\infty} u_n) = f(a).$$

Preuve Soit $\varepsilon > 0$.

Comme f est continue en a, il existe $\delta > 0$ tel que pour tout $x \in D_f$ avec $|x - a| < \delta$ on ait $|f(x) - f(a)| < \varepsilon$.

Puisque la suite $(u_n)_{n\in\mathbb{N}}$ converge vers a, il existe $n_0\in\mathbb{N}$ tel que pour tout $n\geqslant n_0$ on ait $|u_n-a|<\delta$.

On conclut que pour tout $n \ge n_0$, on a $|f(u_n) - f(a)| < \varepsilon$.

Théorème de la valeur intermédiaire Soient f une fonction continue sur un intervalle [a;b] et λ un réel compris entre f(a) et f(b). Alors il existe $c \in [a;b]$ tel que $f(c) = \lambda$.

Preuve Sans perte de généralité, on suppose que $f(a) \leq f(b)$.

On définit par récurrence deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ comme suit :

- 1) on pose $a_1 = a$ et $b_1 = b$.
- 2) soit $m_n = \frac{a_n + b_n}{2}$ le milieu de a_n et b_n ; si $f(m_n) \geqslant \lambda$, on pose $a_{n+1} = a_n$ et $b_{n+1} = m_n$;
 - si $f(m_n) < \lambda$, on pose $a_{n+1} = m_n$ et $b_{n+1} = b_n$.

Par construction, la suite $(a_n)_{n\in\mathbb{N}}$ est croissante, tandis que la suite $(b_n)_{n\in\mathbb{N}}$ est décroissante.

De plus, on constate que $a \leqslant a_n \leqslant b_n \leqslant b$ pour tout $n \in \mathbb{N}$.

Puisque la suite $(a_n)_{n\in\mathbb{N}}$ est croissante et majorée par b, elle converge vers une limite c. De même, la suite $(b_n)_{n\in\mathbb{N}}$ étant décroissante et minorée par a, elle converge vers une limite d.

Par conséquent, la suite $(b_n - a_n)_{n \in \mathbb{N}}$ converge vers d - c. Mais le terme général de cette suite est $b_n - a_n = \frac{b-a}{2^{n-1}}$ qui converge manifestement vers 0. Il en résulte que d-c=0, c'est-à-dire d=c.

Par construction, on a $f(a_n) \leq \lambda \leq f(b_n)$ pour tout $n \in \mathbb{N}$.

Par passage à la limite, on obtient $\lim_{n\to+\infty} f(a_n) \leq \lambda \leq \lim_{n\to+\infty} f(b_n)$.

Comme f est continue, on obtient $f(\lim_{n\to+\infty} a_n) \leqslant \lambda \leqslant f(\lim_{n\to+\infty} b_n)$ au vu du précédent théorème, c'est-à-dire $f(c) \leq \lambda \leq f(c)$.

On a ainsi montré l'existence de $c \in [a; b]$ tel que $f(c) = \lambda$.

Remarque: la méthode utilisée dans cette preuve s'appelle la dichoto- \mathbf{mie}^{1} .

^{1.} Ce terme provient du mot grec διχοτομία qui signifie « division en deux parties égales ».

- 2.8 Montrer que l'équation $x^3 5x^2 + 7x 9 = 100$ a une solution. Déterminer cette solution au centième près.
- 2.9 1) Montrer que l'équation $x^5 3x^4 2x^3 x + 1 = 0$ a une solution comprise entre 0 et 1. Déterminer cette solution au centième près.
 - 2) Y a-t-il d'autres solutions?
- **2.10** 1) Quelle hypothèse faut-il faire pour résoudre l'équation $x = \cos(x)$ par dichotomie?
 - 2) En admettant que cette hypothèse soit vérifiée, déterminer la solution de cette équation au centième près.
- **2.11** Soit E(x) la fonction partie entière définie à l'exercice 2.2.
 - 1) On constate que E(0)=0 et E(1)=1. Existe-t-il un nombre x dans l'intervalle $[0\,;1]$ tel que $E(x)=\frac{1}{2}\,?$
 - 2) Qu'est-ce que cela montre?

Réponses

2.4

2) La fonction partie entière est discontinue sur \mathbb{Z} .

- **2.8** $x \approx 6.50$
- **2.9** 1) $x \approx 0.52$

- 2) x = -1 et $x \approx 3.58$
- **2.10** 1) La fonction $f(x) = \cos(x)$ est continue.
- 2) $x \approx 0.74$

2.11 1) non

2) La fonction E(x) n'est pas continue sur l'intervalle [0;1].