

04 병원의 종류와 특성 (원핵생물, 바이러스)

충남대학교 최재을 명예교수

목**치** (교재 5장)

- 2. 원핵생물(식물병원세균)
- 3. 식물바이러스

- 1) 식물병원세균의 형태와 구조
- 2) 식물병원세균의 분류와 동정
- 3) 주요 식물병원세균의 특징
- 4) 식물병원세균의 증식
- 5) 박테리오파지

1) 진핵생물과 원핵생물

○ 진핵생물

- 진핵생물의 세포에는 핵막으로 둘러싸인 핵을 가지며, 핵은 핵산, 히스톤, 단백질, 핵소체로 구성. 핵은 유사분열 할 때 일정한 수의 염색체를 만들어 냄.
- 진핵생물인 식물, 동물, 균류 등의 세포 내에는 미토콘드리아, 색소체(식물), 소포체등의 세포소기관이 있음.

○ 원핵생물

- 원핵생물의 세포에는 핵막이 없고 이중가닥으로 이뤄진 DNA한 분자가 세포질에 노출되어 있음.
- 원핵생물은 대부분 단세포 된 세균, 남조 류로 핵분열은 무사분열(2분 법)
- 세균, 몰리큐트(파이토플라스마), 남조식물 등으로 미토콘드리아, 소포체 등의 세포 소기관이 존재 하지 않음.

2) 원핵생물과 진핵생물의 차이

특 징	원핵생물	진핵생물
핵	완전한 형태의 핵과 핵막이 없음	완전한 형태의 핵과 핵막 있음
세포 소기관	- 막으로 싸여진 <mark>소기관 없음</mark> - 모든 대사가 세포질에서 진행	- 소기관 : 미 <mark>토콘드리아, 골지체, 소포체</mark> 등 - 대사와 조직의 분화
DNA 구조	- 세포질에 <mark>한 개의 염색체로 존재</mark> - DNA 결합단백질 없음	- 핵 안에 <mark>다수의 염색체로 존재</mark> - 히스톤 단백질과 결합하여 존재
리보좀	크기가 작으며 세포질에 산재	크기가 크고 막에 또는 홀로 존재
세포벽	대부분이 존재	- 있거나(균류, 식물) 없음(동물)
복제 및 생식	- <mark>이분법에 의해 분열</mark> - 유성생식 거의 무	- <mark>유사분열</mark> - 유성생식이 일반적
미생물	세균, 남조류 등	진균류, 원생동물, 식물, 동물 등

3) 원핵세포와 진해세포

원핵세포 진핵세포

- 유사분열 진핵세포에서, 염색체, 방추사 등의 사상 구조 형성되는 핵 세포의 분열 양식이다.
- 무사분열 원핵세포에서 염색체와 방추사를 형성 없이 핵이 아령 모양으로 나뉘어지는 분열 양식이다.

유사분열

무사분열

4) 식물병원세균의 형태

- 막대형(간균): 대부분의 식물세균은 단세포의 간균
 - 크기 → 폭 : 0.5~1.0μm, 길이 : 1 ~ 5μm 내외
 - 편모 → 1 ~ 수 개의 편모를 갖는 것이 많음
- 균사형 : 방선균 Streptomyces
 - 영양균사, 공중균사가 신장하여 연쇄상 포자 형성
- 부정형 : Phytoplasama 및 Sproplasma
 - 세포벽이 없어 일정한 모양을 갖고 있지 않음 : 구형, 난형, 불규칙한 관모양, 실모양
 - *Phytoplasama*: 175 ~ 250nm × 1.5μm,
 - Sproplasma: $0.1 \sim 0.2 \mu m \times 3-5 \mu m$

5) 미생물의 종류와 크기 비교

 μ m = 1/1,000mm, nm : 1/1,000 μ m

6) 세균의 형태

구균 (Coccus 구슬모양)

간균 (rod 막대모양)

나선균 (spirillium 나선모양)

7) 식물병원세균의 형태

간균 (rod 막대모양)

균사형태(방선균)

부정균(파이토플라스마)

* 식물병원세균의 형태는 대부분이 간균임.

8) 세균의 구조

- 세균의 기본구조(교재 그림 5-8참조)
- 세포벽, 세포막, 세포질, 염색체, 리보솜, 세균에 따라 편모, 선모, 점질층 또는 협막(피막), 일부 세균은 세포질에 플라스미드
- 점질층(slime layer) 과 협막(capsule)
 - 구성: 세포벽 외부로 배출한 다당체와 당단백질로 구성
 - 협막(Capsule, Envelope) : 조직 치밀하고 단단한 구조
 - 점질층(slime layer) : 조직이 엉성한 구조
 - 기능: 점질성 콜로니 형성, 기주부착 도움, 수침상 병반 형성, 식균, 건조에 저항성, 위조 유발 등
- 세포질막
- 기능 : 세포질 보호, 영양분 흡수 및 노폐물 선택배출, 호흡(ATP 합성), 편모회전
- 세포질(Cytoplasm)
 - 구성: 핵, 플라스미드, 리보솜, 효소, 중간대사물, 무기성분 존재,
 - 역할 : 물질합성 및 분해가 이루어지는 장소임.
- plasmid : 세균의 세포 내에 염색체와는 별개로 증식 할 수 있는 DNA로, 고리 모양을 띠고 있다.
 - 항생제, 중금속 내성, 병원성, 영양분 이용성 등

8) 세균의 구조

- 염색체(Chromosome)
 - 핵이 없고 DNA가 세포막의 간질체에 붙어 있음,1개의 염색체를 가짐.
- 편모(Flagellum) (교재 그림 5-9 참조)
 - 운동성을 갖는 섬유상 구조 세균의 종에 따라 편모의 수, 위치 다름
 - 기능: 기주 침입단계에서 중요한 역할, 세균의 동정 및 분류
- 선모, 섬모(Pili, Fimbriae)
 - 기능: 기숙주의 표면에 부착할 때 작용, bacteriocin 수용체, 접합 시 DNA 이동통로
- 포자(Spore)
 - (1) 내생포자(Endospore, 아포) : 세균의 세포 안에 존재
 - Bacillus 속 등이 세균이 불량환경에서 균체 안에 생성
 - 건조, 열, 소독에 저항력 강함, 100℃에서도 죽지 않음.
 - 균체가 죽으면 발아하여 균체 형성
 - (2) 외생포자
 - Streptomyces 가 생산하는 균사 끝에 포자 생성

9) 편모의 구분

교재 그림 5-9 식물병원세균의 편모 구분 명칭 수정

2) 식물 병원세균의 분류와 동정

1) 식물병원세균의 분류

- 고등생물은 형태, 교잡 후 형질, 임성, 생식력의 변화 등으로 분류
- 세균은 형태, 세균의 배양특성, 물질생산, 균체의 구성성분 등으로 분류
- 세균의 종류에 따라 아종(subspecies, subsp.), 병원형(pathovar, pv.) 까지 구분

(1) 식물병원세균의 분류

- 문, 강, 목, 과, 속, 종 등으로 분류
- Gracilicutes 문 : 외막, 세포막, 세포벽이 있음. 대부분의 식물병원세균이 포함. 그림음성균
- Alpha 아강 : Agrobacterium, Rhizomonas 속
- Beta 아강 : <u>Acidovora</u>x, Burkholderia, Ralstonia 속
- Gamma 아강: Erwinia, Pentobacterium, Pseudomonas, Xanthomonas 속
- Firmicutes 문: 외막이 없고 세포벽과 세포막이 있음. 그람양성균
 - Firmibacteria 강 : 그림양성으로 내생포자 형성, *Bacillus, Clostridium* 속
 - Thallobacteria 강 : 아포를 형성하지 않는 식물병원세균 및 <mark>방선균</mark> Arthrobacter, Clavibacter, Curtobacterium, Rhodococcus, Streptomyces 속
- Tenericutes 문 : 외막과 세포벽이 없어 모양과 크기에 변화가 많음.
- Mollitecutes 강 : *Phytoplasma*, *Spiroplasma* 속

2) 식물 병원세균의 분류와 동정

2) 식물병원세균의 동정법

- (2) 동정 [同定, identification] : 세균이 갖는 여러 형질을 조사하여 어느 분류군(分類群)에 소속하는가를 결정하는 것. 즉 표본에 속명과 종명을 붙이는 것.
- 세균의 특성을 Bergey's manuala(세균분류 체계)의 기록과 비교하여 동정
 - 세균의 형태, 염색성, 배영조건, 생리적 특성, 병원성 등을 검정하여 동정된 균주와 비교
 - 전통적 분류법으로 시간과 노력이 많이 듬
- O Biolog system을 이용한 동정
 - 95 종류의 탄수화물을 영양원으로 이용 유무에 따라 유사도가 가까운 세균으로 동정
 - 병원성, 형태, 호흡형태, 포자생성 등의 특성을 비교하여야 오류 적음
- O GC-fatty acid 분석에 의한 동정
 - 세포질막, 세포벽의 지방산 분석하여 동정된 세균과 비교하여 결정
- 분자생물학적인 방법을 이용한 동정
 - 식물병원세균이 가지고 있는 DNA를 분석하는 동정하는 방법
 - 기능 변화에 따른 유전자 변이의 가능성이 낮은 rDNA영역이 이용

3) 주요 식물 병원세균의 특징

3) 주요 식물병원세균의 특징

- ◎ 그람 음성세균
- Agrobacterium 속 : 호기성 간균, 주모, 백색에서 회백색의 콜로니를 형성
 - 뿌리혹병균(Agrobacterium tumefaciens), 포도나무 줄기혹병균(A. vitis)
- *Burkholderia* 속 : 호기성 간균, 1개 또는 수개의 편모, 형광색소 형성 않음.
 - 벼세균성알마름병균(*B. glumae*)
- Pectobacterium 속, Erwinia 속 : 통성혐기성 간균, 주모, 회백색 콜로니, 16sRNA로 구분
 - 채소무름병균(*P. carotovorum* subsp. *carotovorum*), 배나무불마름병균(*E. amylovora*)
- Pseudomonas속 : 호기성 간균, 단극모, 백색에서 담갈색 콜로니, 형광색소 생성균 많음.
 - 오이세균성점무늬병균(*P. sysingae* pv. *lachrymans*), 콩세균성점무늬병균(*P. savastanoi* pv. *glycines*)
- *Ralstonia* 속 : 호기성 간균, 1개의 단극모, 무모, 형광색소를 형성하지 않음.
 - 가짓과풋마름병균(R. solanacearum)
- Xanthomonas 속 : 편성호기성 간균, 단극모, 원형의 점질성의 노란 콜로니를 형성
 - 고추점무늬병균(*X. axonopodis* pv. *vesicatoria*), 벼흰잎마름병균(*X. oryzae* pv. *oryzae*)

3) 주요 식물 병원세균의 특징

◎ 그람 양성세균

- *Clavibacter* 속 : 편성 호기성, 편모 없고 직각 또는 V형의 <mark>다형성</mark> 임.
 - 감자둘레썩음병균(*C. michiganensis* subsp. *sepedonicus*),토마토괴양병균(*C. michiganensis* subsp. *michiganensis*
- *Streptomyces* 속(방선균): 다핵균사, 공중 균사 끝에 난형, 원형, 원통형의 소형의 포자 형성, 콜로니 형성이 늦고, 세균에 감수성인 항생물질에 감수성임.
 - 감자더뎅이병균(S. scabies)

◎ 파이토플라스마 및 스피로플라스마

- *Phytoplasma* : 세포벽이 없어 다양한 형태, 인공배양이 안됨. 매미충이 매개하고 전신감염. 테트라사이크린계에 감수성
 - 대추빗자루병균(*Phytoplasma ziziphi*)
- Spiroplasma: 나선상으로 세포벽이 없음. 인공배양이 가능하고 작은 콜로니를 형성
 - 옥수수스턴트병균(Spiroplasma kunkelii)

4) 식물 병원세균의 증식

- 식물병원세균의 증식은 기주식물의 조직에서 증식
- 대부분의 세균은 영양소가 포함된 배지에서 증식
- 세균은 이분법(binary fission)으로 유전적으로 동일한 세포들을 증식(무사분열)
- 이분법은 DNA복제하여 2개의 염색체 형성→가운데 새로운 세포막과 세포벽 생성 →2개의 세포

5) 식물 병원세균이 생산하는 생리활성물질

- * 생리활성 물질은 식물 병원세균의 병원성 발현에 중요한 역할을 함.
- 다당류 : 세포벽 외막을 구성하는 균체 외 다당(extracellular polysaccharide: EPS)
- 기주세포에 흡착과 영양분의 누출 촉진, 수침상 병반 형성, 도관의 폐쇄에 의한 위조 유발 등
- 효소 : 세포분해 효소인 펙티나아제, 셀룰라아제, 프로테아제 등은 병원성에 직,간접적으로 작용
- 식물독소 : 병징의 원인이 되는 여러 종류의 독소(phytotoxin)를 생산
 - 담배들불병균의 tabtoxin은 아미노산 대사나 당 대사에 관계하는 효소를 저해하여 식물의 황화(chlorosis)의 원인이 되며 병세 진전을 촉진.
- 식물호르몬
 - 뿌리혹병균 등은 세포의 분열 및 신장 등의 역할을 하는 인돌초산(indol acetic acid, IAA), 사이토키닌(cytokinin) 등의 식물호르몬을 생산한다.
- 항생물질, 박테리오신
- 일부 세균은 다른 세균이나 사상균에 대한 항균물질(antibiotic)을 생산
- 박테리오신(bacteriocin) : 자신과 근연한 세균에 대해서만 항균작용을 나타내는 물질임.

6) 박테리오파지

- 박테리오파지(bacteriophage, bacterial virus) : 세균에 기생하여 증식하는 바이러스
- 박테리오파지의 형태는 구형, 다각형, 有尾(tadpole)형, 실 모양 등이 있음.
- 박테리오파지는 세균의 동정, 식물 병원 세균의 생태 연구, 병원성 연구 및 세균병 방제 등에 이용 되고 있다.

박테리오파지의 증식

03

식물바이러스

- 1) 식물바이러스의 형태, 구조 및 조성
- 2) 식물바이러스의 분류
- 3) 식물바이러스의 감염과 증식

1) 바이러스와 세균의 비교

구 분	바이러스	세 균
사는 곳	살아있는 동물, 식물, 세균의 세포	땅속, 물 속, 공기 속, 식물, 동물, 사람의 몸 속 등 양분이 있는 곳
물질 대사	스스로 대사 못함. 다른 생물의 내부에 있을 때 물질대사 가능	스스로 물질대사 가능
크기	전자현미경을 통해서만 볼 수 있을 정도로 작음 대부분 나노미터(nm)	일반 현미경에서 관찰 할 수 있는 크기 대부분 마이크로미터

2) 바이러스와 세균의 크기 비교

3) 식물바이러스의 정의 및 피해

- 식물세포에 기생하여 병을 일으키는 바이러스
 - 보통의 바이러스는 캡시드 단백질과 핵산 (DNA 혹은 RNA)으로 구성
 - 입자의 크기는 직경 약 20~30nm로 가장 작은 감염성 인자로 전자현미경으로 관찰됨.
 - 식물바이러스는 대사에 관련된 효소가 없으므로 살아있는 식물 세포 안에서만 증식, 인공배양 불가
 - 바이러스는 소독이나 열에 강하며 항생물질에도 저항성을 보임.
- 식물바이러스는 약 1,000여종, 국내에서는 120여종이 보고됨.
 - 농산물의 국제교역 증가로 외국의 식물바이러스가 유입 증가 추세

4) 식물바이러스의 정의 및 피해

- 식물바이러스의 피해
 - 식물 바이러스에 의한 병은 모자이크, 위축병, 괴사, 반점, 변색 등을 유발
 - 식물바이러스 방제농약이 없어 저항성 품종의 재배, 무병종묘 이용, 전염곤충의 방제 등
- 바이로이드
- 바이로이드는 캡시드 단백질 없이 RNA로만 이루어져 있고 유전체는 대략 200-400 개의 뉴클레오타이드(nucleotide)로 이루어져 있고 단일가닥의 원형
- 바이로이드는 작약, 사과, 복숭아, 국화 등에 피해 감염된 식물은 생육이 잘 되지 않는 현상(왜화), 기형 등 여러 가지 병해가 일어남.
- 바이로이드는 종자, 접목, 전정도구 등에 의해 전염되고
- 방제 농약이 없으므로 무병종묘 이용, 전정도구의 소독, 감염주의 조기제거

1) 바이러스 입자의 형태

- 바이러스의 입자의 외부형태
 - 거의 절반은 간상형(막대모양), 사상형(실모양), 공모양
- 입자 크기
 - 막대형 : 길이 50~300nm, 폭 18~22nm, 실모양 바이러스 275~2,110nm, 구형의 지름 17~85nm, 원통형 막대모양 길이 30~560nm, 폭 18nm
- 다 입자성 바이러스
 - 크기나 핵산함량이 다른 2종 이상의 입자성분을 가지고 있는 바이러스로 모든 입자가 기주 세포 내에 존재하여야만 증식할 수 있음.
- 바이로이드의 구조
 - 외피 단백질이 없으며 원형 단일 가닥 RNA로 고리 모양의 사슬형태이다.

1) 바이러스 입자의 형태

그림 식물바이러스의 형태. 사진자료: (주) 바이아이

2) 다입자 바이러스의 형태

오이모자이크바이러스(CMV))

보리줄무늬 모자이크바이러스(BSMV)

오이모자이크바이러스는 다 입자성의 ss-RNA: 크기가 다른 바이러스 게놈이 각 <mark>입자에 RNA-1, RNA-2, RNA-3, RNA-4)가 각각 에 나누어져 함유되어 있는 다 입자성이다. 입자의 크기는 같다. 보리줄무늬모자이크바이러스는 입자의 크기가 다른 바이러스 게놈을 가짐</mark>

3) 바이러스 입자의 기본 구조

- 핵심(core): 바이러스의 핵산 (RNA, DNA)
- 캡시드(capsid) : 단백질 껍질(protein coat)
- 캡소머(capsomere)라는 소단위로 구성되며, 핵산을 싸고 있음.
- 핵단백질체(nucleocapsid) : 핵산과 캡시드가 결합된 형태
- 일부 바이러스는 껍질 바깥에 지질단백질로 된 외막(envelope)을 가짐.
- 바이러스의 종류
- 보유 핵산에 따라: RNA 바이러스(외가닥, 겹 가닥), DNA 바이러스(외가닥, 겹 가닥), 외가닥 RNA 바이러스 약 800여종, 외가닥 DNA,겹 가닥 RNA, 겹 가닥 DNA 바이러스 순임.
- 핵산의 단일게놈, 복수게놈(분절게놈)
- 뉴클레오캡시드를 싸고 있는 외피(envelope) 유무에 의해 : 외피 보유 바이러스,외피 비보 유 바이러스

4) 막대모양의 바이러스의 구조

막대모양인 바이러스인 담배모자이크바이러스(TMV)의 핵산은 입자의 중심축에 있으며 단백질은 나선 상으로 배열되어 있다. (교재그림5-11).

C

담배모자이크바이러스(TMV)

5) 공모양의 바이러스의 구조

순무황반모자이크바이러스(TYMV)는 정20면제의 공모양 구조이다. 핵산은 입자의 중심축에 있으며 입자의 바깥쪽은 캡소미어(capsomere)가 규칙적으로 배열된 형태를 나타내고 있다(교재 그림5-12).

2) 식물 바이러스의 분류

1) 식물바이러스의 명명

- 일반적으로 최초로 분리된 기주 명과 병징
 - 오이모자이크바이러스(cucumber mosaic virus, CMV)
 - 담배모자이크바이러스(tobacco mosaic virus, TMV)
 - 토마토모자이크바이러스(tomato mosaic virus, ToMV)
- 그러나 같은 바이러스의 병징이 기주, 재배조건, 품종, 바이러스의 계통에 따라 차이가 있음.

2) 식물 바이러스의 분류

2) 바이러스의 분류 기준

- 핵산의 종류
- DNA 바이러스 : 외가닥 및 겹 가닥 DNA바이러스
- RNA 바이러스 : 외가닥 및 겹 가닥 RNA바이러스
- 입자의 형태: 막대모양, 실모양, 공모양, 쌍둥이 공모양
- 분절 수 : 2분절, 3분절
- 외피단백질의 종류
- 전염양식 : 종자전염, 전염해충, 접촉전염 등
- 기주범위
- 염기배열
- 7차 국제바이러스분류위원회 : 17과 79속 951종(1999년)
- 2017년 새로운 과, 속, 종을 추가(교재 92-94P 참조)

3) 식물바이러스 분류(ICTV, 2012, 2017)

속: Maculavirus, Marafivirus, Tymovirus

문: Bunyavirales 과: Fimoviridae ssRNA(-) 속: Emaravirus 문: Mononegavirales 과: Rhabdoviridae ssRNA(-), 막대모양, 피막있음. 속: Cytorhabdovirus, Nucleorhabdovirus 문: Picornavirales 과: Secoviridae ssRNA(+), 작은 공모양 아과: *Comovirinae* 속: Comovirus, Fabavirus, Nepovirus 아과 미지정 속 속: Cheravirus, Sadwavirus, Sequivirus, Torradovirus, Waikavirus, 미지정 3종 문: Tymovirales 과: Alphaflexiviridae ssRNA(+), 실모양 속: Allexivirus, Lolavirus, Mandarivirus, Potexvirus 과: Betaflexiviridae ssRNA(+), 실모양 속: Capillovirus, Carlavirus, Citrivirus, Foveavirus, Tepovirus, Trichovirus, Vitivirus, 속 과: Tymoviridae ssRNA(+), 공모양, 외피무

문 미지정

과: Avsunviroid ssRNA

속: Elaviroid, Pelamoviroid

과: Bromoviridae ssRNA(+), 소형공모양, 3분절 게놈, 막대형

속: Alfamovirus, Anulavirus, Bromovirus, Cucumovirus, Ilarvirus, Oleavirus

과: Bunyaviridae ssRNA(-), 대형 공모양, 외막 유, 3분절 선상

속: Tospovirus

과: Caulimoviridae dsRNA(RT), 공모양 또는 막대모양

속: Badnavirus, Caulimovirus, Cavemovirus, Petuvirus, Solendovirus, Soymovirus, Tungrovirus

과: Closteroviridae ssRNA(+), 실모양

속: Ampelovirus, Closterovirus, Crinivirus, Velarivirus, 속 미지정 1종

과: *Endornaviridae d*sRNA, 형태모름

속: Endornavirus, Alphaendornavirus, Betaendornavirus

과: Geminiviridae ssDNA, 쌍구형, 공모양

속: Capulavirus, Begomovirus, Curtovirus, Grablovirus, Mastrevirus, Topocuvirus,

과: Luteoviridae ssRNA(+), 단일게놈 소구형

속: Enamovirus, Luteovirus, Polerovirus, 속 미지정 8종

과: Metaviridae ssRNA(RT), 입자형태 불명

속: *Metavirus*

과: Nanoviridae ssDNA(+), 원형

속: Babuvirus, Nanovirus, 속 미지정 1종

과: Ophioviridae ssRNA(-), 실모양 3분절

속: Ophiovirus

과: Partitiviridae dsRNA, 소구형, 대구형, 2분절

속: Alphacryptovirus, Betacryptovirus

과: Pospiviroidae 바이로이드

속: Apscaviroid, Cocadviroid, Coleviroid, Hostuviroid, Pospiviroid

과: Potyviridae ssRNA(+), 실모양

속: Brambyvirus, Bymovirus, Ipomovirus, Macluravirus, Potyvirus, Rymovirus,

Tritimovirus, 속 미지정 3종

과: Pseudoviridae ssRN(RT), 입자형태 불명

속: Pseudovirus, Sirevirus, 속 미지정 1종

과: Reoviridae dsRNA, 큰 공모양

아과: Sedoreovirinae 공모양

속: Phytoreovirus

아과: Spinareovirinae 공모양

속: Fijivirus, Oryzavirus

과: Tolecusatellitidae ssRNA

속: Betasatellite, Deltasatellite

과: Tombusviridae ssRNA(+), 소구형

속: Aureusvirus, Avenavirus, Carmovirus, Dianthovirus, Machlomovirus, Necrovirus, Panicovirus, Tombusvirus, Umbravirus, 속 미지정 2종

과: Virgaviridae, 막대모양(1-3분절)

속: Furovirus, Hordeivirus, Tobamovirus, Tobravirus ssRNA(+), Pecluvirus, Pomovirus,

과: Unassigned

속: Benyvirus, Blunervirus, Cilevirus, Idaeovirus, Ourmiavirus, Polemovirus, Sobemovirus, 속 미지정 2종

Tenuivirus(ssRNA(-), 실모양), Umbravirus: ssRNA(+), 입자없음.

Varicosavirus : dsRNA, 막대모양

4) 주요 식물바이러스

○ 막대모양

담배모자이크바이러스(TMV)	토양, 종자, 즙액, 접촉	담배, 고추
고추약한모틀바이러스(PMMoV)	토양, 종자, 즙액, 접촉	고추, 피망
토마토모자이크바이러스(ToMV)	토양, 종자, 즙액, 접촉	토마토,고추
오이녹반모자이크바이러스(CGMMV)	토양, 종자, 즙액, 접촉	수박, 오이, 참외
호박녹반모자이크바이러스(ZGMMV)	토양, 종자, 즙액, 접촉	호박, 수박

○ 실모양

벼줄무늬잎마름병바이러스(RSV)	애멸구	벼
고추모틀바이러스(PMV)	진딧물, 즙액	고추, 파프리카
감자바이러스Y(PVY)	진딧물, 즙액	감자, 고추
수박모자이크바이러스(WMV)	진딧물, 즙액, 접촉	수박, 호박
순무모자이크바이러스(TuMV)	진딧물, 즙액, 접촉	무, 배추, 시금치, 쑥갓

4) 주요 식물바이러스

○ 공모양

토마토반점위조바이러스(TSWV)	총채벌레, 즙액, 접촉	고추, 토마토, 상추
오이모자이크바이러스(CMV)	진딧물, 즙액, 접촉	고추,수박,호박,오이, 멜론,배추
순무황화모자이크바이러스(TYMV)	배추벼룩잎벌레, 즙액, 종자	배추, 갓, 냉이
잠두위조바이러스2(BBWV2)	진딧물, 즙액, 접촉	채소
사탕무황화바이러스(BWYV)	복숭 아진딧물, 즙액, 접 촉	고추, 피망, 토마토,시금치,배추,
토마토황화잎말림바이러스(TYLCV)	담배가루이	토마토
토마토덤불위축바이러스(TBSV)	종자, 토양, 즙액	토마토, 고추, 가지
멜론괴저반점바이러스(MNSV)	종자, 토양, 즙액, 접촉	수박, 메론

1) 바이러스의 감염 및 증식과정

(1) 식물바이러스의 기주세포 침입

- 기계적 또는 곤충 등이 만든 상처를 통하여 식물세포 침입(1차 감염)

(2) 바이러스 유전자의 복제

- 식물세포에 들어간 바이러스 입자는 껍질 단백질이 벗겨지고 바이러스 유전자가 노출이 단계는 바이러스가 소멸된 것 처럼 보이기 때문에 잠복기라 한다.
- 껍질 단백질을 벗은 바이러스는 감염된 식물세포의 효소와 성분을 이용하여 유전자의 복제가 일어남

(3) 외피단백질 합성

- 감염된 식물세포의 대사산물을 이용하여 외피 단백질을 합성한다.

(4) 바이러스 입자 조립

- 복제된 바이러스의 새로운 핵산, 캡시드 등이 결합하여 새로운 바이러스 입자를 형성
- 1차 감염된 세포에서 증식 → 건전세포나 조직으로 감염(2차 감염)
- 바이러스가 세포에 감염한 후, 자식 바이러스가 나타나기까지는 약 10시간이 걸린다.

3. 식물바이러스

2) 식물바이러스의 이동

- 근거리 이동
 - 감염세포에서 증식한 바이러스 입자는 원형질 연결통로를 통하여 인접 세포로 이동한다.
- 원거리 이동
 - 잎맥의 체관부에 들어간 바이러스는 줄기의 체 관 통로를 이동하여 원거리 이동한다.
- 전신이동
 - 식물세포에서 다량 증식한 바이러스는 단거리 와 원거리 이동으로 식물체 전신으로 확산된다.

3) 식물바이러스의 감염 단계

4) 식물바이러스의 외관상 병징

구 분	외관상 병징
변 색	퇴록반점, 모자이크, 겹 무늬, 황화, 엽맥투명화, 괴저
생육이상	위축, 증생, 기형, 융기, 비대, 종양, 잎 말림, 축엽, 굴곡엽

5) 식물바이러스의 전염

○ 즙액전염 : 이병된 식물체 즙액이 접촉이나 기계적 상처를 통하여 점염

○ 종자전염: 주요 식물바이러스가 종자를 통하여 전염

○ 접목전염: 수박, 오이, 참외 등이 접목 시 전염

○ 곤충전염: 진딧물, 멸구류, 매미충류, 총채벌레, 담배가루이 등

○ 토양전염: 병든 식물의 잔해 등의 바이러스가 뿌리와 접촉하여 전염. 선충이나 유사균류 포함.

○ 꽃가루, 새삼 등

6) 식물바이러스의 외관상 병징

3. 식물바이러스

자료 :김대현

7) 바이로이드에 의한 사과 병징

○ 병징

잎, 줄기 무병징, 과실얼룩착색,

과실기형,과실크기 감소 등

○ 전염

접목전염, 전정도구를 통한 즙액

전염도 가능

○ 방제법

무병묘 재식, 전정 시 전정도구

소독철저

8) 식물바이러스의 전염 경로

뿌리의 상처, 토양 속 이병잔재물과 뿌리의 접촉에 의한 전염 **토양전염**

토양미생물(선충, 진균) 등에 의한 전염

9) 식물바이러스병의 방제

- 즙액(접촉) 전염 바이러스병 : 오이모자이크, 담배모자이크, 수박모자이크바이러스
 - 이병된 식물체 등을 토양에서 제거한 후 소각
- 종자전염: 담배모자이크바이러스, 오이녹반모자이크바이러스, 토마토모자이크바이러스
 - 무병지 채종, 무병종자 사용
- 접목전염: 수박, 오이, 참외 등이 접목 시 전염
 - 접목도구의 소독
- 곤충전염: 벼줄무늬바이러스, 감자바이러스, 오이모자이크바이러스, 수박모자이크바이러스
 - 진딧물, 멸구류, 매미충류, 총채벌레, 담배가루이 등
 - 전염해충 방제
- <mark>토양전염</mark> : 담배모자이크바이러스, 오이녹반모자이크바이러스, 토마토모자이크바이러스
 - 병든 식물의 잔해 등의 바이러스가 뿌리와 접촉하여 전염. 선충이나 유사균류 포함.
 - 이병된 식물체 등을 토양에서 제거한 후 소각

수고하셨습니다.

4강

병원의 종류와 특성(원핵생물, 식물바이러스)

5감

식물 병의 집단 / 발병과 환경 (유승헌 교수)

