Часть 1. Тест.

Вопрос 1 🦺

В множественной регрессии с двумя регрессорами выборочные корреляции между зависимой переменной и регрессорами составили: $\widehat{\mathrm{Corr}}(Y,X_1)=0.7,\,\widehat{\mathrm{Corr}}(Y,X_2)=0.2.$ Тогда R^2 будет равен

A 0.49

D 0.81

F 0.25

- B 0.9
- C 0.04
- E Не хватает данных для ответа
- G Нет верного ответа.

Вопрос 2 ૈ

Исследовательница Алевтина вновь изучает зависимость размера порции в мишленовском ресторане от его звёздности, star (от 1 до 3), и уровня цен, price. Она оценила модель вида $size_i = \beta_1 + \beta_2 star 2_i + \beta_3 star 3_i + \beta_4 price_i + u_i$, где star 1, star 2, star 3 - дамми-переменные, равные 1 для ресторанов с соответствующим числом звезд, и 0 иначе. У Алевтины есть n наблюдений. С помощью какой статистики она будет проверять гипотезу об отсутствии влияния звёздности на размер порции?

 $\boxed{\mathsf{A}} \ t_{n-3}$

 $| D | F_{3,n-3}$

 $\lceil \mathsf{F} \rceil F_{2,n-3}$

- $\boxed{\mathbf{B}} \ F_{3,n-4}$
- $C t_{n-4}$

 $\begin{bmatrix} \mathsf{E} \end{bmatrix} F_{2\,n-4}$

G Нет верного ответа.

Вопрос 3 🌲

Исследователь Валериан оценил модель зависимости дохода человека, income, от его возраста, age, и получил следующую зависимость $\widehat{income}_i = 150 + 900age_i - 10age_i^2$. Все коэффициенты значимы на 5% уровне значимости. В каком возрасте доход достигает максимума?

А 90 лет

Е 45 лет

В Недостаточно данных

С 30 лет

- [F] Доход возрастает с ростом возраста, у функции нет максимума
- D Доход убывает с ростом возраста, у функции нет максимума
- G Нет верного ответа.

Вопрос 4 🐥

Регрессия с тремя регрессорами оценена по 100 наблюдениям. Какая из этих гипотез НЕ может быть проверена при помощи статистики, имеющей $F_{2,96}$ распределение?

- $\boxed{\mathsf{A}} \ H_0: \beta_2 = 2\beta_3$
- $\boxed{\mathbf{D}} \ H_0: \beta_1 + \beta_2 = 10; \beta_3 = 1$
- G Нет верного ответа.

- $\boxed{\mathbf{B}} \ H_0: \beta_2 = \beta_3 = 0$
- $\boxed{\mathsf{E}} \ H_0: \beta_1 = \beta_2 = \beta_3$
- $C H_0: \beta_1 = 1; \beta_3 = 5$
- $|F| H_0: \beta_2 = 3\beta_3 = 5$

Вопрос 5 🖺

Исследовательница Алевтина изучает зависимость размера порции в мишленовском ресторане от его звёздности, star (от 1 до 3), и уровня цен, price. Она оценила модель вида $size_i=\beta_1+\beta_2 star 2_i+\beta_3 star 3_i+\beta_4 price_i+u_i$, где star 1, star 2, star 3 - дамми-переменные, равные 1 для ресторанов с соответствующим числом звезд, и 0 иначе. Алевтина считает, что размер порции уменьшается вдвое с каждой дополнительной звездой. Какую гипотезу ей нужно проверить?

$$\boxed{\mathbf{A}} \ H_0: \beta_3 = 4, \beta_2 = 2, \beta_1 = 1$$

$$\boxed{\mathbf{B}} \ H_0: \beta_1 = 2\beta_2 = 4\beta_3$$

$$\boxed{\mathbf{C}} \ H_0: 3\beta_1 = 2\beta_2 = \beta_3$$

$$\boxed{\mathbf{D}} \ H_0: 4\beta_1 = 2\beta_2 = \beta_3$$

$$\boxed{\mathsf{E}} \ H_0: \beta_1 < \beta_2 < \beta_3$$

$$\boxed{\mathbf{F}} \ H_0: \beta_1 = 2\beta_2 = 3\beta_3$$

Вопрос 6 🐥

В регрессии с четырьмя регрессорами, оцененной по 21 наблюдению, оказалось, что TSS=250, $R_{adi}^2=0.75$. Тогда R^2 равен

Вопрос 7 🐥

Истинной является модель $Y_i=\beta_1+\beta_2X_i+u_i$. Глафира оценивает две регрессии: $\hat{Y}_i=\hat{\beta}_1+\hat{\beta}_2X_i$ и $\hat{Y}_i=\hat{\gamma}_1+\hat{\gamma}_2X_i+\hat{\gamma}_3Z_i$ с помощью МНК. Известна выборочная корреляция $\widehat{\mathrm{Corr}}(X_i,Z_i)=-0.2$. Тогда оценка $\hat{\gamma}_2$ является

- $\boxed{\mathbf{A}}$ смещённой на $-0.2\hat{\gamma}_3$ относительно β_2 , но эффективной оценкой
- В состоятельной, но смещенной на -0.2 относительно β_2 оценкой
- $\boxed{\mathbb{C}}$ состоятельной, но неэффективной оценкой для eta_2
- $\boxed{\mathrm{D}}$ состоятельной, но смещенной на $-0.2\hat{\gamma}_3$

относительно β_2 оценкой

- $\boxed{{\sf E}}$ несостоятельной, но эффективной оценкой для β_2
- $\boxed{\mathbf{F}}$ несостоятельной и неэффективной оценкой для eta_2
- G Нет верного ответа.

Вопрос 8 🐥

Исследователь выполнил второй шаг в РЕ-тесте МакКиннона. В регрессии $\ln Y_i$ на исходные регрессоры и $Z_i = \hat{Y}_i - \exp(\ln Y_i)$ коэффициент при Z_i оказался значимым. А в регрессии Y_i на исходные регрессоры и $W_i = \ln \hat{Y}_i - \widehat{\ln Y}_i$ коэффициент при W_i оказался незначимым. Из результатов следует сделать вывод, что

- |А| в исходной модели пропущен регрессор Z_i
- D следует предпочесть логарифмическую модель
- В тесты противоречат друг другу, ни одна из моделей не предпочитается
- следует предпочесть полулогарифмическую модель
- С в исходной модели пропущен регрессор W_i
- [F] следует предпочесть линейную модель
- |G| Нет верного ответа.

Вопрос 9 🕹

Если для регрессора используется преобразование Бокса-Кокса с параметром $\theta = -1$, а для зависимой переменной — с параметром $\lambda=0$, то регрессионное уравнение представимо в виде

$$\boxed{\mathbf{A}} \ln Y_i = \beta_1 + \beta_2 \frac{1}{X_i} + u_i$$

$$\boxed{\mathbf{E}} \ Y_i = \beta_1 + \beta_2 \frac{1}{X_i} + u_i$$

$$\boxed{\mathbf{B}} Y_i = \beta_1 + \beta_2 X_i + u_i$$

$$\boxed{\mathbf{F}} \ln Y_i = \beta_1 + \beta_2 X_i + u_i$$

$$\boxed{\mathbf{C}} \ln Y_i = \beta_1 + \beta_2 (X_i - 1) + u_i$$

$$\boxed{\mathbf{D}} \ln Y_i = \beta_1 + \beta_2 X_i^2 + u_i$$

Вопрос 10 🖺

Исследователь Феофан оценил регрессию Y на Z и получил, что $\hat{Y}_i = 10 + 2Z_i$. После этого, он оценил регрессию Y на Z и новую переменную X. Известна выборочная ковариация, Cov(Y, X) = 0. Выберете верное утверждение:

- lack A R_{adi}^2 вырос и стал равен 1
- $|B| R^2$ не снизился по сравнению с исходной
- моделью
- |C| Коэффициент при Z остался значимым $|\mathrm{D}|$ Коэффициент при переменной X равен

нулю

- $|\mathsf{E}|$ Коэффициент при Z стал незначимым
- $|\mathsf{F}|$ Коэффициент при переменной Z не изменился
- |G| Нет верного ответа.

Часть 2. Задачи.

- 1. Пусть $y_i = \beta_1 + \beta_2 x_i + \varepsilon_i$ и $i = 1, \dots, 5$ классическая регрессионная модель. Также имеются следующие данные: $\sum_{i=1}^5 y_i^2 = 55, \sum_{i=1}^5 x_i^2 = 3, \sum_{i=1}^5 x_i y_i = 12, \sum_{i=1}^5 y_i = 15, \sum_{i=1}^5 x_i = 3$.
 - а) Найдите $\hat{\beta}_1$, $\hat{\beta}_2$
 - б) Найдите TSS, ESS, RSS, R^2 , $\hat{\sigma}^2$
- 2. Исследовательница Глафира изучает зависимость спроса на молоко от цены молока и дохода семьи. В её распоряжении есть следующие переменные:
 - price цена молока в рублях за литр
 - income ежемесячный доход семьи в тысячах рублей
 - milk расходы семьи на молоко за последние семь дней в рублях

В данных указано, проживает ли семья в сельской или городской местности. Поэтому Глафира оценила три регрессии: (All) — по всем данным, (Urban) — по городским семьям, (Rural) — по сельским семьям.

	(All)	(Urban)	(Rural)
(Intercept)	2.198	13.570*	-5.089
	(4.648)	(5.849)	(6.726)
income	0.203***	0.085	0.229**
	(0.057)	(0.082)	(0.075)
price	-0.252	-0.316	-0.061
	(0.181)	(0.219)	(0.268)
R-squared	0.1	0.1	0.2
adj. R-squared	0.1	0.0	0.1
sigma	5.6	4.7	5.8
F	6.4	1.2	4.8
P-value	0.0	0.3	0.0
RSS	3032.1	1007.6	1625.1
n observations	100	48	52

- а) Проверьте значимость в целом регрессии (All) на 5%-ом уровне значимости.
- б) На 5%-ом уровне значимости проверьте гипотезу, что зависимость спроса на молоко является единой для городской и сельской местности.

- 3. У Эконометрессы Глафиры было четыре наблюдения и она решила оценить модель парной регрессии $y_i = \beta_1 + \beta_2 x_i + u_i$. Её подруга эконометресса Анжелла решила, что четыре наблюдения мало, и поэтому учла каждое наблюдение 10 раз, так что в результате у неё вышло 40 наблюдений.
 - а) Во сколько раз будут отличаться оценки $\hat{\beta}_1$ у Глафиры и Анжелы? Оценки $\hat{\beta}_2$?
 - б) Во сколько раз у будут отличаться RSS? TSS? ESS? R^2 ?
- 4. У эконометрессы Агнессы есть дамми-переменная $male_i$, равная 1 для мужчин, и дамми-переменная $female_i$, равная 1 для женщин. Зависимая переменная y_i доход индивида.

$$A: \hat{y}_i = \hat{\beta}male_i$$

$$B: \hat{y}_i = \hat{\gamma}female_i$$

$$C: \hat{y}_i = \hat{\alpha}_1male_i + \hat{\alpha}_2female_i$$

$$D: \hat{y}_i = \hat{\delta}_1 + \hat{\delta}_2male_i$$

- а) Проинтерпретируйте оценки коэффициентов во всех регрессиях.
- б) Как связаны между собой оценки коэффициентов в регрессиях С и D?

5. По 2040 наблюдениям оценена модель зависимости стоимости квартиры в Москве (в 1000\$) от общего метража и метража жилой площади.

	Estimate	Std. Error	t value	Pr(> t)
Константа	-88.81	4.37	-20.34	0.00
Общая площадь	1.70	0.10	17.78	0.00
Жилая площадь	1.99	0.18	10.89	0.00

Сумма квадратов остатков равна $RSS=2.2216891\times 10^6$. Оценка ковариационной матрицы $\widehat{Var}(\hat{\beta})$ имеет вид

	(Intercept)	totsp	livesp
(Intercept)	19.0726	0.0315	-0.4498
totsp	0.0315	0.0091	-0.0151
livesp	-0.4498	-0.0151	0.0335

- а) Постройте 95%-ый доверительный интервал для ожидаемой стоимости квартиры с жилой площадью $30~{\rm m}^2$ и общей площадью $60~{\rm m}^2$.
- б) Постройте 95%-ый прогнозный интервал для фактической стоимости квартиры с жилой площадью $30~{\rm m}^2$ и общей площадью $60~{\rm m}^2$.