Recap- Selection Rules for Cycloaddition

Cycloadditions involve **facial** interactions and not **side by side** interactions

System (total no. of	Mode of addition	Allowedness of the reaction	
electrons)		Thermal	Photochemical
4 <i>n</i>	s/s	forbidden	allowed
4 <i>n</i>	s/a	allowed	forbidden
4 <i>n</i> +2	s/s	allowed	forbidden
4 <i>n</i> +2	s/a	forbidden	allowed

(n = natural number)
Since s/a mode is difficult to achieve mainly the s/s
mode is observed

$2\pi + 2\pi$ Cycloaddition

$$\frac{hv}{direct} + \frac{hv}{direct} + the above products$$

Products formed due to suprafacial-suprafacial interactions

$2\pi + 2\pi$ Intramolecular Cycloaddition

Interesting Synthetic Applications

bishomohexaprismane

Provides access to strained caged compounds

$4\pi + 2\pi$ Cycloaddition

Diels-Alder Reaction

Thermal cycloaddition between a conjugated diene and a dienophile Discovered by Otto Diels and Kurt Alder (Nobel prize 1950)

Diels

Alder

Reactivity - Diels-Alder Reaction

Requirement

Diene should be in a cisoid (s-cis) conformation

Transoid dienes are unreactive

Unreactive as transoid structure is locked

$[4\pi + 2\pi]$

Commonly observed – Dienes – electron rich

Dienophile – electron deficient

'Normal' electron demand Diels Alder Reactions

Effect of Substituent on Reactivity

Electron releasing groups - Raise HOMO and LUMO energy

Electron withdrawing groups - Lower HOMO and LUMO energies

Small Activity

Compare the order of reactivity for these dienes

Cis-Rule in Diels-Alder Reactions

Suprafacial-Suprafacial Interaction

Cis dienophile

Adduct with *cis* subs.

Trans dienophile

Adduct with *trans* subs.

major product - syn

major product - anti

Rule holds true for dienes as well!

Cis Rule

The Transition State

Another View

Diels Alder reaction – Highly Stereospecific

Alder Endo Rule

Dienophile approaches the diene preferentially in the endo mode so as to allow maximum spatial overlap of the unsaturated centers of the diene and dienophile

Endo approach - Favoured

Exo approach

Why Endo Approach?

Endo Approach

Secondary Orbital Interactions Transition State Stabilized!

Exo Approach

Secondary Orbital Interactions difficult (Orbitals far away from each other!)

[4+2] Cycloaddition Reactions: The Alder Endo Rule

Excellent endo selectivity for maleic anhydride

Let us try to write the products

Regioselectivity

Regioselectivity - Examples

X	Υ	ortho	meta
Me	COOMe	89	11
OMe	COOMe	100	0
OMe	CN	100	0
OMe	CHO	100	0

X	Υ	para	meta
Me	COOMe	80	20
OMe	COMe	100	0
OMe	CHO	100	0
Ph	COOMe	80	20
Ph	COOMe	80	20

Recap - $[4\pi + 2\pi]$ Cycloaddition

Reactivity

S-Cis Conformation required

ERG – Diene (HOMO)
 EWG – Dienophile (LUMO)

Selectivity

 Cis-rule – Relative stereochem diene or dienophile

- Endo-rule Relative stereochem diene-dienophile
- Regioselectivity

Problems for Practice

MeOOC
$$\Delta$$

Intra-molecular

RO + OMe
$$\Delta$$
ONE Δ

PhS + Me
$$\Delta$$

Don't get confused: Remember the basics ©

More Problems

What is the product?

What is the mechanism?

Synthetic Utility

Synthesis of Basketene

Synthesis of Endiandric acid

Recap - $[4\pi + 2\pi]$ Cycloaddition

Reactivity

S-Cis Conformation required

ERG – Diene (HOMO)
 EWG – Dienophile (LUMO)

Selectivity

 Cis-rule – Relative stereochem diene or dienophile

- Endo-rule Relative stereochem diene-dienophile
- Regioselectivity

Final Exam

Mark your calendars for Final Organic Exam

November 26, 2022

9:30 - 11:30 am

Topics covered here quite logical!!!

All the Best!!!!!

Philosophy on teaching-learning and role of a teacher beautifully captured here – Enjoy!

https://youtu.be/X7tHZaWP6DY