Part I: Linear Models

Chapter I.2

Multivariate Normal Distribution

Topics

- To be discussed...
 - definition of general multivariate normal distributions
 - marginal & conditional distributions
 - independence & correlation
 - some illustrations (bivariate normal)
 - linear transformations and applications

I.2.1 Univariate normal distribution $N(\mu, \sigma^2)$

 $X \sim N(\mu, \sigma^2)$ with parameters $\mu \in \mathbb{R}$ and $\sigma > 0$ has the DF

$$\phi_{\mu,\sigma^2}(x) = \frac{1}{\sqrt{2\pi}\,\sigma}\, \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}, \quad x\in\mathbb{R}.$$

For $Z \sim N(0,1)$, we have $X \stackrel{d}{=} \mu + \sigma Z$; $\varphi = \varphi_{0,1}$.

№ 1.2.2 Definition

Let $Z_1,\ldots,Z_k\stackrel{\text{iid}}{\sim} N(0,1)$, $\mathbf{Z}=(Z_1,\ldots,Z_k)'$, and $\mathbf{\mu}\in\mathbb{R}^p,A\in\mathbb{R}^{p\times k}.$ Then:

- lacktriangle Z has a k-dimensional standard normal distribution (for short $Z \sim N_k(0, I_k)$).
- $X = \mu + AZ$ has a p dimensional normal distribution with parameters μ and $\Sigma = AA'$ (for short $X \sim N_p(\mu, \Sigma)$).

■ 1.2.3 Remark

- In the situation of Definition I.2.2, we have
 - \triangleright EX = μ , Cov (X) = Σ
 - Since $rank(\Sigma) = rank(A)$ may be less than p, Σ may be a singular matrix.
- Now can a multivariate normal distribution be generated with a given $\mu \in \mathbb{R}^p$ and $\Sigma \in \mathbb{R}^{p \times p}_{\geqslant 0}$? How to choose A?

I.2.4 Corollary

Let $Z_1,\ldots,Z_p\stackrel{iid}{\sim} N(0,1)$, $Z=(Z_1,\ldots,Z_p)'$, and $\mu\in\mathbb{R}^p,\Sigma\in\mathbb{R}_{\geqslant 0}^{p\times p}$. Then:

$$X = \mu + \Sigma^{1/2} Z \sim N_p(\mu, \Sigma).$$

■ I.2.5 Theorem

Let $X \sim N_p(\mu, \Sigma)$ with $\mu \in \mathbb{R}^p, \Sigma \in \mathbb{R}^{p \times p}_{>0}$ and determinant $det(\Sigma)$. Then, X has the DF

$$f^X(x) = \frac{1}{\sqrt{(2\pi)^p \, \text{det}(\Sigma)}} \, \exp\left(-\frac{1}{2}(x-\mu)' \Sigma^{-1}(x-\mu)\right), \quad x = (x_1, \dots, x_p)' \in \mathbb{R}^p.$$

I.2.6 Remark

A multivariate normal distribution $N_p(\mu, \Sigma)$ with $\mu \in \mathbb{R}^p$ and singular covariance-matrix $\Sigma \in \mathbb{R}^{p \times p}_{\geqslant 0}$ does not have a density function on \mathbb{R}^p !

Marginals & Conditionals

 $\mathbf{0}$ EX = \mathbf{u}

For a vector $\mathbf{x} \in \mathbb{R}^p$ and $\emptyset \neq K \subset \{1, \dots, p\}$, let $\mathbf{x}_K = (x_i)_{i \in K}$.

■ 1.2.7 Theorem (parameters and marginals of a multivariate normal distribution)

- Let $X \sim N_{\mathfrak{p}}(\mu, \Sigma)$ with $\mu \in \mathbb{R}^p, \Sigma \in \mathbb{R}_{>0}^{p \times p}$ and $\emptyset \neq K \subseteq \{1, \dots, p\}$ and $\Sigma_{K,K} = \mathsf{Cov}(X_K)$. Then:
 - \bigcirc Cov $(X) = \Sigma$
 - 3 $X_K \sim N(\mu_K, \Sigma_{K,K})$ ('marginals of normals are normal')

■ 1.2.8 Theorem (conditionals of a multivariate normal distribution)

- Let $X \sim N_p(\mu, \Sigma)$ with $\mu \in \mathbb{R}^p, \Sigma \in \mathbb{R}_{>0}^{p \times p}$ and $\emptyset \neq K, L \subseteq \{1, \dots, p\}$, $K \cap L = \emptyset$, k = |K|. Further, let
- $\Sigma_{K,L} = \text{Cov}(X_K, X_L) \text{ and } \Sigma_{KK|L} = \Sigma_{K,K} \Sigma_{K,L} \Sigma_{L,L}^{-1} \Sigma_{K,L}'$. Then: **1** $X_K \mid X_L = x_L \sim N_k (\mu_K + \Sigma_{K,L} \Sigma_{L,L}^{-1} (x_L - \mu_L), \Sigma_{KK|L})$
 - **2** $E(X_K | X_L = x_L) = \mu_K + \sum_{K,L} \sum_{l=1}^{-1} (x_L \mu_L)$

('conditionals of normals are normal')

3 Cov $(X_K \mid X_I = x_I) = \Sigma_{KK \mid I}$.

The matrix $\Sigma_{K,L}\Sigma_{I-I}^{-1}$ is called **regression matrix**.

Independence & Correlation

■ 1.2.9 Theorem (independence under multivariate normal distribution)

Let $X \sim N_p(\mu, \Sigma)$ with $\mu \in \mathbb{R}^p, \Sigma \in \mathbb{R}_{\geqslant 0}^{p \times p}$ and $\emptyset \neq K, L \subseteq \{1, \dots, p\}$, $K \cap L = \emptyset$, k = |K|. Further, let $\Sigma_{K,L} = \text{Cov}\ (X_K, X_L)$. Then:

- ${\color{blue} \textbf{0}} \ X_K$ and X_L are independent if and only if $\Sigma_{K,L}=0$
- $2 X = (X_1, \dots, X_p)' \sim N_p(0, I_p) \iff X_1, \dots, X_p \stackrel{\text{iid}}{\sim} N(0, 1)$
- $\textbf{3} \ X = (X_1, \dots, X_p)' \sim N_p(\mu, \Sigma) \ \text{with a diagonal matrix} \ \Sigma = \text{diag}(\sigma_1^2, \dots, \sigma_p^2)$
 - $\iff X_1,\dots,X_p \text{ are independent random variables with } X_j \sim N(\mu_j,\sigma_j^2), \ 1\leqslant j \leqslant p$

Bivariate normal distribution

■ I.2.10 Example (Bivariate normal distribution)

A bivariate normal distributed random vector $\mathbf{X} = (X_1, X_2)'$ has the DF (for $x_1, x_2 \in \mathbb{R}$)

$$f^{X_1,X_2}(x_1,x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x_1-\mu_1)^2}{\sigma_1^2} - 2\rho\frac{(x_1-\mu_1)(x_2-\mu_2)}{\sigma_1\sigma_2} + \frac{(x_2-\mu_2)^2}{\sigma_2^2}\right]\right) \quad (C.1)$$

with parameters $\mu_1, \mu_2 \in \mathbb{R}$, $\sigma_1^2, \sigma_2^2 > 0$ and $\rho \in (-1, 1)$;

- for short: $(X_1, X_2)' \sim N_2(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)$

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix} \in \mathbb{R}^{2 \times 2}$$

with determinant det $\Sigma=\sigma_1^2\sigma_2^2(1-\rho^2)$ and $\mu=(\mu_1,\mu_2)'\in\mathbb{R}^2$

40

Figure: DF of bivariate standard normal distribution $N_2(0,0,1,1,0)$

Figure: DF of bivariate normal distribution $N_2(0,0,1,4,0)$

Figure: DF of bivariate normal distribution $N_2(0,0,1,4,\frac{1}{2})$

Figure: DF of bivariate normal distribution $N_2(0,0,1,4,\frac{4}{5})$

Figure: DF of bivariate normal distribution $N_2(0,0,1,4,\frac{9}{10})$

Simulated bivariate normal data

Simulated bivariate normal data with ellipses

▶ 1.2.11 Theorem

Let $X \sim N_\mathfrak{p}(\mu, \Sigma)$ with $\mu \in \mathbb{R}^\mathfrak{p}, \Sigma \in \mathbb{R}^{\mathfrak{p} \times \mathfrak{p}}_{>0}$ and $\alpha \in \mathbb{R}^k, B \in \mathbb{R}^{k \times \mathfrak{p}}$, $1 \leqslant k \leqslant \mathfrak{p}$. Then:

$$Y = \alpha + BX \sim N_k(\alpha + B\mu, B\Sigma B').$$

In particular, we get for $\Sigma \in \mathbb{R}^{p \times p}_{>0}$ and $\Sigma^{-1/2} = (\Sigma^{1/2})^{-1}$ $Y = \Sigma^{-1/2}(X - \mu) \sim N_p(0, I_p).$

■ 1.2.12 Remark

The transformation

- Considering the Euclidean norm ||Y|| of Y, we get
- $\|\mathbf{Y}\|^2 = \mathbf{Y}'\mathbf{Y} = (\Sigma^{-1/2}(\mathbf{X} \mathbf{u}))'\Sigma^{-1/2}(\mathbf{X} \mathbf{u}) = (\mathbf{X} \mathbf{u})'\Sigma^{-1}(\mathbf{X} \mathbf{u}) = \|\mathbf{X} \mathbf{u}\|_{\Sigma}^2$, say,

 $\|X\|_{\Sigma}^2$ is called Mahalanobis norm of X. For random vectors X and Y of the same dimension v, $||X - Y||_{\Sigma}^2$ is called **Mahalanobis distance** of X and Y.

 $Y = \Sigma^{-1/2}(X - \mu)$

I.2.13 Corollary

 $\textbf{1} \text{ Let } \mathbf{X} = (X_1, \dots, X_p)' \sim \mathsf{N}_p(\mu, \Sigma) \text{ with } \Sigma = (\sigma_{ij})_{i,j} \text{ and } \overline{X} = \tfrac{1}{p} \sum_{i=1}^p X_j. \text{ Then: }$

$$\overline{X} = \frac{1}{p} \mathbb{1}'_p X \sim N\Big(\frac{1}{p} \sum_{i=1}^p \mu_j, \frac{1}{p^2} \mathbb{1}'_p \Sigma \mathbb{1}_p\Big) = N\Big(\frac{1}{p} \sum_{i=1}^p \mu_j, \frac{1}{p^2} \sum_{i,j} \sigma_{ij}\Big).$$

- 2 If $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$, $\sigma^2 > 0$, then

 - $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$ $\sqrt{n} \, \overline{\overline{X} \mu} \sim N(0, 1)$

■ I.2.14 Theorem

Let $X \sim N_p(\mu, \Sigma)$ with $\mu \in \mathbb{R}^p, \Sigma \in \mathbb{R}_{>0}^{p \times p}$. Then, for $A \in \mathbb{R}^{k \times p}, B \in \mathbb{R}^{r \times p}$ with $k, r \in \mathbb{N}$, we get:

• AX and BX are independent if and only if $A\Sigma B' = 0$.

№ 1.2.15 Theorem

Let $p\geqslant 2$, $\mathbf{Z}=(Z_1,\ldots,Z_p)'\sim N_p(0,\sigma^2I_p)$, $\overline{Z}=\frac{1}{p}\sum_{j=1}^pZ_j$, and $E_p=I_p-\frac{1}{p}\mathbb{1}_{p\times p}$. Then: \overline{Z} and $Z-\overline{Z}\mathbb{1}_p=E_pZ$ are independent.

- $oldsymbol{\overline{Z}}$ and $S_Z = \frac{1}{n-1} \sum_{j=1}^p (Z_j \overline{Z})^2$ are independent.

▶ 1.2.16 Lemma

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(0, 1)$. Then:

Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$ with $\mu \in \mathbb{R}$, $\sigma > 0$ and

 $\mathbf{1} \frac{n}{\sigma^2} \widehat{\sigma}_{\mu}^2 \sim \chi^2(n).$

3 $\frac{n-1}{\sigma^2} \widehat{\sigma}^2 \sim \chi^2(n-1)$ (if $n \ge 2$)

■ I.2.17 Corollary

Then:

1 $X_1^2 \sim \chi^2(1)$

2 $\sum_{i=1}^{n} X_i^2 \sim \chi^2(n)$

 $\widehat{\sigma}_{\mu}^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{j} - \mu)^{2}, \quad \widehat{\sigma}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{j} - \overline{X})^{2}.$

$$\frac{\chi}{\chi} = \frac{1}{\mu + \sqrt{2}}; \quad \frac{\pi^2}{\sqrt{2}} = \frac{1}{4\pi} \frac{\pi}{\sqrt{2}} \left(\frac{1}{2} - \frac{\pi}{2} \right)^2 = \frac{\pi^2}{\sqrt{2}} \frac{\pi}{\sqrt{2}} \left(\frac{\pi}{2} - \frac{\pi}{2} \right)^2 = \frac{\pi^2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{\pi^2}{\sqrt{2}} \frac{\pi}{\sqrt{2}} \left(\frac{\pi}{2} - \frac{\pi}{2} \right)^2 = \frac{\pi^2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{\pi^2}{\sqrt{2}} \frac{\pi}{\sqrt{2}} \left(\frac{\pi}{2} - \frac{\pi}{2} \right)^2 = \frac{\pi^2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{\pi^2}{\sqrt{2}} \frac{\pi}{\sqrt{2}} \left(\frac{\pi}{2} - \frac{\pi}{2} \right)^2 = \frac{\pi^2}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$$

$$= \frac{\pi^2}{\sqrt{2}} \frac{\pi}{\sqrt{2}} \frac{$$

2 ~ N(0,1)