Heart Attack Prediction [Report]

SKY TEAM

- 1. Ashraf Abdulkhaliq Bassunoi Abdulaziz [1]
- 2. Ahmed Elsayed Mohamed Abo-elkher [1]
- 3. Ahmed Mostafa Ragab Mostafa [1]
- 4. Saif El-den Emad Abdulhamid [2]
- 5. Abdulsalam Othman Abdulsalam El-khedr [2]

Overview:

Heart attacks, also known as myocardial infarctions, are a leading cause of death and disability worldwide. Early prediction and prevention of heart attacks can save lives and improve patient outcomes. In this report, we present the results of our evaluation of a heart attack prediction model.

The purpose of this model is to predict the likelihood of a heart attack occurring within the next year in each patient, based on their medical history and other factors. We describe the methodology used to develop and evaluate the model and present the results in the form of various graphs and statistics.

Our goal is to assess the performance and utility of the model in a clinical setting, and to identify any areas for improvement.

Dataset Description:

age	The number of years a person has lived.
sex	Male or Female.
СР	Cerebral palsy (CP) is a group of disorders that affect a person's ability to move and maintain balance and posture.
trestbps	The person's resting blood pressure (mm Hg on admission to the hospital).
chol	The person's cholesterol measurement in mg/dl.
FBS	Fasting blood sugar (FBS) measures blood glucose after you have not eaten for at least 8 hours.
restecg	resting electrocardiographic results (0 = normal; 1 = having ST-T; 2 = hypertrophy)
thalach	The person's maximum heart rate achieved.
exang	Exercise induced angina $(1 = yes; 0 = no)$
oldpeak	ST depression induced by exercise relative to rest ('ST' relates to positions on the ECG plot. See more here)
slope	slope of the peak exercise
	ST segment — 0: downsloping; 1: flat; 2: upsloping
ca	The number of major vessels (0–3)
thal	An inherited blood disorder that causes your body to have less hemoglobin than normal

Logistic Regression Model:

Dataset		Accuracy Lose		Precision	Recall	F1 Score
Training	Testing	Accuracy	LUSC	Fiecision	Recail	ri scole
60%	40%	68.59%	31.40%	70.17%	65.57%	67.79%
65%	35%	66.98%	33.01%	68.75%	62.26%	65.34%
70%	30%	73.98%	26.37%	73.91%	73.91%	73.91%
75%	25%	72.36%	27.63%	78.94%	69.76%	74.07%
80%	20%	75.40%	24.59%	77.14%	79.41%	78.26%
85%	15%	76.08%	23.91%	77.27%	73.91%	75.55%
90%	10%	77.41%	22.58%	73.33%	78.57%	75.86%

Naïve Bayes Model:

Dataset		A agumagu	curacy Lose	Precision	Recall	F1 Score
Training	Testing	Accuracy	Lose	Precision	Recair	ri scole
60%	40%	66.94%	33.05%	67.79%	65.57%	66.66%
65%	35%	67.92%	32.07%	69.38%	64.15%	66.66%
70%	30%	67.03%	32.96%	68.18%	65.21%	66.66%
75%	25%	69.73%	30.26%	76.31%	67.44%	71.60%
80%	20%	70.49%	29.50%	73.52%	73.52%	73.52%
85%	15%	69.56%	30.43%	71.42%	65.21%	68.18%
90%	10%	70.96%	29.03%	66.66%	71.42%	68.96%

Linear SVM Model:

Dataset		A 0.01140.011	Lose	Precision	Recall	F1 Score
Training	Testing	Accuracy	Lose	Precision	Recall	ri Score
60%	40%	74.38%	25.61%	75.00%	73.77%	74.38%
65%	35%	67.92%	32.07%	70.21%	62.26%	66.00%
70%	30%	78.02%	21.97%	77.08%	80.43%	78.72%
75%	25%	75.00%	25.00%	81.57%	72.09%	76.54%
80%	20%	80.32%	19.67%	84.37%	79.41%	81.81%
85%	15%	80.43%	19.56%	85.00%	73.91%	79.06%
90%	10%	87.09%	12.90%	85.71%	85.71%	85.71%

Kernel SVM Model:

Dataset		A 0.011m0.011	Lose	Precision	Recall	F1 Score
Training	Testing	Accuracy	Lose	Precision	Recail	ri score
60%	40%	77.68%	22.31%	77.41%	78.68%	78.04%
65%	35%	78.30%	21.69%	78.84%	77.35%	78.09%
70%	30%	78.02%	21.97%	75.00%	84.78%	79.59%
75%	25%	81.57%	18.42%	83.72%	83.72%	83.72%
80%	20%	83.60%	16.39%	85.29%	85.29%	85.29%
85%	15%	84.78%	15.21%	86.36%	82.60%	84.44%
90%	10%	87.09%	12.90%	85.71%	85.71%	85.71%

Linear SVM vs Kernel SVM:

KNN Model:

Dataset		Aggurgati	Lose	Precision	Recall	F1 Score
Training	Testing	Accuracy	Lose	Piecision	Recair	ri scole
60%	40%	76.03%	23.96%	79.62%	70.49%	74.78%
65%	35%	75.47%	24.52%	76.47%	73.58%	74.99%
70%	30%	75.82%	24.17%	76.08%	76.08%	76.08%
75%	25%	76.31%	23.68%	82.05%	74.41%	78.04%
80%	20%	78.68%	21.31%	83.87%	76.47%	80.00%
85%	15%	80.43%	19.56%	85.00%	73.91%	79.06%
90%	10%	83.87%	16.12%	84.61%	78.57%	81.48%

Decision Tree Model:

Dataset		Accuracy Lose		Precision	Recall	F1 Score
Training	Testing	Accuracy	Lose	Precision	Recail	ri score
60%	40%	64.46%	35.53%	63.63%	68.85%	66.14%
65%	35%	74.52%	25.47%	77.08%	69.81%	73.26%
70%	30%	70.32%	29.67%	69.38%	73.91%	71.57%
75%	25%	69.73%	30.26%	70.83%	79.06%	74.72%
80%	20%	77.04%	22.95%	79.41%	79.41%	79.41%
85%	15%	69.56%	30.43%	73.68%	60.86%	66.66%
90%	10%	61.29	38.70%	56.25%	64.28%	60.00%

Random Forest Model:

Dataset		A course ou	Lose	Precision	Recall	F1 Score
Training	Testing	Accuracy	LUSC	Fiecision	Recail	r i score
60%	40%	67.76%	32.23%	72.91%	57.37%	64.22%
65%	35%	72.64%	27.35%	75.00%	67.92%	71.28%
70%	30%	74.72%	25.27%	76.74%	71.73%	74.15%
75%	25%	73.68%	26.31%	79.48%	72.09%	75.60%
80%	20%	81.96%	18.03%	87.09%	79.41%	83.07%
85%	15%	78.26%	21.73%	80.95%	73.91%	77.27%
90%	10%	87.09%	12.90%	100.00%	71.42%	83.33%

Models Evaluation:

Conclusion:

After training and testing the dataset on all these algorithms to choose which of them are better to our problem with low lose and high accuracy.

SVM with Gaussian kernel has did well with our problem, which has good evaluations with confusion matrices.