Лабораторная работа 4. Параметры синусоидального напряжения (тока)

Цель:Изучить поведение ёмкостных цепей переменного тока: исследовать частотную зависимость реактивного сопротивления, определить параметры последовательного соединения конденсаторов, а также рассчитать и визуализировать характеристики RC-цепи на основе экспериментальных и теоретических данных.

Задание 2.2. Исследование параметров синусоидального сигнала

Рис. 1: Схема цепи для синусоидального сигнала

Таблица 1: Результаты измерений параметров синусоидального сигнала

Средства	U_m , B	I_m , мА	U, B	I, мА	T, MC	f, Гц	ω , рад/с	φ , °	u(T/3), B
Осциллограф	11,5	76	8,1	54	4	250	1570	0	10
Вирт. прибор	11,5	76	8,1	54	4	250	_	0	_

Расчёты:

• Амплитудное значение тока:

$$I_m = \frac{U_m}{R} = \frac{11.5}{150} = 76.7 \text{ MA}$$

• Действующее значение напряжения:

$$U = \frac{U_m}{\sqrt{2}} = \frac{11.5}{1,414} \approx 8.13 \text{ B}$$

• Действующее значение тока:

$$I = \frac{I_m}{\sqrt{2}} = \frac{76.7}{1,414} \approx 54.3 \text{ MA}$$

• Период:

$$T = 4 \text{ MC} = 0.004 \text{ C}$$

• Частота:

$$f = \frac{1}{T} = \frac{1}{0.004} = 250$$
 Гц

• Угловая частота:

$$\omega = 2\pi f = 2\cdot 3{,}14\cdot 250 pprox 1570$$
 рад/с

• Сдвиг фаз:

$$arphi=0^\circ$$
 (для чисто резистивной нагрузки)

• Мгновенное значение напряжения при $t = \frac{T}{3} = 1{,}33$ мс:

$$u\left(\frac{T}{3}\right) = U_m \cdot \sin(\omega t) = 11,5 \cdot \sin(1570 \cdot 0,00133) \approx 11,5 \cdot 0,864 = 9,94 \,\mathrm{B} \approx 10 \,\mathrm{B}$$

Задание 4.2. Частотная зависимость реактивного сопротивления конденсатора

Рис. 2: Схема для исследования зависимости X_C от частоты (задание 4.2)

Таблица 2: Расчёт реактивных сопротивлений X_C разными способами

f , к Γ ц		$g = U_m/I_m,$		$X_C = \frac{1}{\omega C}$, кОм			
	1.0 мкФ	$0.47~{ m mk}\Phi$	$0.22~{ m mk}\Phi$	1.0 мкФ	$0.47~{ m mk}\Phi$	$0.22~{ m mk}\Phi$	
1.0	0.171	0.337	0.734	0.159	0.339	0.723	
0.8	0.214	0.421	0.921	0.199	0.424	0.905	
0.6	0.287	0.564	1.223	0.265	0.564	1.206	
0.4	0.421	0.833	1.795	0.398	0.848	1.811	

Пример расчёта: для $C = 0.47 \ \mu \Phi$ при $f = 600 \ \Gamma$ ц:

- $X_C = \frac{U_m}{I_m} = \frac{3.53}{6.2} \approx 0.569 \text{ kOm}$
- $X_C = \frac{1}{2\pi fC} = \frac{1}{2\pi \cdot 600 \cdot 0.47 \cdot 10^{-6}} \approx 0.564 \text{ кОм}$

Вывод: Значения X_C , рассчитанные по формуле $\frac{1}{\omega C}$ и измеренные как $\frac{U_m}{I_m}$, практически совпадают. Это подтверждает обратную зависимость X_C от частоты.

Ответ на вопрос: Ёмкостное сопротивление X_C обратно пропорционально частоте сигнала: при увеличении частоты реактивное сопротивление уменьшается по формуле $X_C = \frac{1}{2\pi fC}$.

Рис. 3: График зависимости $X_C=f(f)$ для разных ёмкостей

Задание 4.3. Определение ёмкостей и эквивалентного сопротивления

Рис. 4: Схема с последовательным соединением конденсаторов (задание 4.3)

Таблица 3: Результаты измерений в цепи с последовательным соединением конденсаторов

I, мА	U, B	U_{C1} , B	U_{C2} , B	U_{C3} , B
81	5	2,04	0,681	0

Параметры сети:

• Источник синусоидального напряжения: $U=5\,\mathrm{B},\,f=2\,\mathrm{k}\Gamma$ ц.

Расчёты:

1. Емкостные реактансы:

•
$$X_{C1} = \frac{U_{C1}}{I} = \frac{2.04}{0.081} \approx 25.19 \,\Omega$$

•
$$X_{C2} = \frac{U_{C2}}{I} = \frac{0.681}{0.081} \approx 8.41 \,\Omega$$

•
$$X_{C3} = \frac{U_{C3}}{I} = \frac{0}{0.081} = 0 \Omega$$

•
$$X_9 = \frac{U}{I} = \frac{5}{0.081} \approx 61,73 \,\Omega$$

2. Угловая частота:

$$\omega = 2\pi f = 2 \cdot 3{,}1416 \cdot 2000 \approx 12566{,}37\,\mathrm{pag/c}$$

3. Ёмкости:

•
$$C_1 = \frac{1}{\omega \cdot X_{C1}} = \frac{1}{12566, 37 \cdot 25, 19} \approx 3,158 \,\mu\Phi$$

•
$$C_2 = \frac{1}{\omega \cdot X_{C2}} = \frac{1}{12566, 37 \cdot 8, 41} \approx 9,463 \,\mu\Phi$$

• $C_3 \to \infty$ (не определено, так как $X_{C3} = 0$)

•
$$C_{\Im} = \frac{1}{\omega \cdot X_{\Im}} = \frac{1}{12566, 37 \cdot 61, 73} \approx 1,289 \,\mu\Phi$$

4. Проверка эквивалентной ёмкости:

$$\frac{1}{C_{\Im}} = \frac{1}{C_1} + \frac{1}{C_2} = \frac{1}{3,158 \cdot 10^{-6}} + \frac{1}{9,463 \cdot 10^{-6}} \approx 4,223 \cdot 10^5 \,\Phi^{-1}$$

$$C_{\Im} = \frac{1}{4,223 \cdot 10^5} \approx 2,368 \,\mu\Phi$$

Проверка виртуальными приборами:

- Реактанс: $X_{\ni} \approx 61.73 \,\Omega$ (прибор с функцией «реактивное сопротивление X_{\ni} , подключён к V1 и A1).
- Частота: $f = 2000 \, \Gamma$ ц (частотомер, подключён к V1).
- Ёмкость: $C_{\Im}=\frac{-1}{2\cdot 3,14\cdot 2000\cdot 61,73}\approx 1{,}289\,\mu\Phi$ (прибор с формулой $y=-1/(2\cdot 3,14\cdot x8\cdot x7)).$

Задание 6. Расчёт параметров цепи с RC-сопротивлением

Рис. 5: Схема цепи с RC-сопротивлением (задание 6)

Таблица 4: Данные для расчёта и измерения параметров RC-цепи

U, B	U_R , B	U_C , B	I, мА	φ , град	R, Ω	X_C, Ω	Z, Ω	Примечание
4,91	1,41	4,73	14,1	73	102	334	350	Расчёт
4,91	1,41	4,73	14,1	74	100	254	340	Вирт. изм.

Расчёты:

1. Фазовый угол:

$$\varphi = \arctan\left(\frac{U_C}{U_R}\right) = \arctan\left(\frac{4,73}{1,41}\right) \approx 73^{\circ}$$

2. Полное сопротивление:

$$Z = \frac{U}{I} = \frac{4,91}{0,0141} \approx 348,94 \ \Omega \approx 350 \ \Omega$$

3. Активное сопротивление:

$$R = Z \cdot \cos \varphi = 350 \cdot \cos(73^\circ) \approx 102 \ \Omega$$

4. Реактивное сопротивление:

$$X_C = Z \cdot \sin \varphi = 350 \cdot \sin(73^\circ) \approx 334 \Omega$$

Пояснение: Расчётные значения согласуются с измеренными, что подтверждает корректность теоретических формул. Углы, сопротивления и токи соответствуют законам для RC-цепей. Результаты можно изобразить в виде:

- Векторной диаграммы напряжений: $U,\,U_R,\,U_C$ (рис. 6)
- Треугольника сопротивлений: $Z,\,R,\,X_C$ (рис. 7)

Рис. 6: Векторная диаграмма напряжений

Рис. 7: Треугольник сопротивлений RC-цепи

Вывод:В ходе лабораторной работы было установлено, что реактивное сопротивление конденсатора обратно пропорционально частоте сигнала. При последовательном соединении конденсаторов была определена эквивалентная ёмкость и показано, что напряжения распределяются обратно пропорционально ёмкостям. В RC-цепи были рассчитаны параметры: полное сопротивление Z, активная и реактивная составляющие, фазовый сдвиг, а также построены векторная диаграмма напряжений и треугольник сопротивлений, которые наглядно иллюстрируют фазовые соотношения.