

No part of this product may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval systems, without written permission from the IB.

Additionally, the license tied with this product prohibits commercial use of any selected files or extracts from this product. Use by third parties, including but not limited to publishers, private teachers, tutoring or study services, preparatory schools, vendors operating curriculum mapping services or teacher resource digital platforms and app developers, is not permitted and is subject to the IB's prior written consent via a license. More information on how to request a license can be obtained from https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Aucune partie de ce produit ne peut être reproduite sous quelque forme ni par quelque moyen que ce soit, électronique ou mécanique, y compris des systèmes de stockage et de récupération d'informations, sans l'autorisation écrite de l'IB.

De plus, la licence associée à ce produit interdit toute utilisation commerciale de tout fichier ou extrait sélectionné dans ce produit. L'utilisation par des tiers, y compris, sans toutefois s'y limiter, des éditeurs, des professeurs particuliers, des services de tutorat ou d'aide aux études, des établissements de préparation à l'enseignement supérieur, des fournisseurs de services de planification des programmes d'études, des gestionnaires de plateformes pédagogiques en ligne, et des développeurs d'applications, n'est pas autorisée et est soumise au consentement écrit préalable de l'IB par l'intermédiaire d'une licence. Pour plus d'informations sur la procédure à suivre pour demander une licence, rendez-vous à l'adresse suivante : https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

No se podrá reproducir ninguna parte de este producto de ninguna forma ni por ningún medio electrónico o mecánico, incluidos los sistemas de almacenamiento y recuperación de información, sin que medie la autorización escrita del IB.

Además, la licencia vinculada a este producto prohíbe el uso con fines comerciales de todo archivo o fragmento seleccionado de este producto. El uso por parte de terceros —lo que incluye, a título enunciativo, editoriales, profesores particulares, servicios de apoyo académico o ayuda para el estudio, colegios preparatorios, desarrolladores de aplicaciones y entidades que presten servicios de planificación curricular u ofrezcan recursos para docentes mediante plataformas digitales— no está permitido y estará sujeto al otorgamiento previo de una licencia escrita por parte del IB. En este enlace encontrará más información sobre cómo solicitar una licencia: https://ibo.org/become-an-ib-school/ib-publishing/licensing/applying-for-a-license/.

Chemistry Standard level Paper 1

Thursday 5 November 2020 (afternoon)

45 minutes

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [30 marks].

	18	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.90	54 Xe 131.29	86 Rn (222)	118 Uuo (294)			
	17		9 F 19.00	17 CI 35.45	35 Br 79.90	53 I 126.90	85 At (210)	117 Uus (294)	71 Lu 174.97	103 Lr (262)	
	16		8 o 16.00	16 S 32.07	34 Se 78.96	52 Te 127.60	84 Po (209)	116 Uuh (293)	70 Yb 173.05	102 No (259)	
	15		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.76	83 Bi 208.98	115 Uup (288)	69 Tm 168.93	101 Md (258)	
	4		6 C 12.01	14 Si 28.09	32 Ge 72.63	50 Sn 118.71	82 Pb 207.2	114 Uug (289)	68 Er 167.26	100 Fm (257)	
	5		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 Ti 204.38	113 Unt (286)	67 Ho 164.93	99 Es (252)	
	12				30 Zn 65.38	48 Cd 112.41	80 Hg 200.59	112 Cn (285)	66 Dy 162.50	98 Cf (251)	
able	7				29 Cu 63.55	47 Ag 107.87	79 Au 196.97	111 Rg (281)	65 Tb 158.93	97 Bk (247)	
dic Ta	10				28 Ni 58.69	46 Pd 106.42	78 Pt 195.08	110 Ds (281)	64 Gd 157.25	96 Cm (247)	
The Periodic Table	6				27 Co 58.93	45 Rh 102.91	77 Ir 192.22	109 Mt (278)	63 Eu 151.96	95 Am (243)	
The	œ				26 Fe 55.85	44 Ru 101.07	76 Os 190.23	108 Hs (269)	62 Sm 150.36	94 Pu (244)	
	7					25 Mn 54.94	43 Tc (98)	75 Re 186.21	107 Bh (270)	61 Pm (145)	93 Np (237)
	9	Je	mass		24 Cr 52.00	42 Mo 95.96	74 W 183.84	106 Sg (269)	60 Nd 144.24	92 U 238.03	
	2	Atòmic number	Relative atomic mass		23 V 50.94	41 Nb 92.91	73 Ta 180.95	105 Db (268)	59 Pr 140.91	91 Pa 231.04	
	4	Atò	Relativ		22 Ti 47.87	40 Zr 91.22	72 Hf 178.49	104 Rf (267)	58 Ce 140.12	90 Th 232.04	
	ო				21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)	+	++	
	7		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.33	88 Ra (226)			
	~	1 H 1.01	3 Li 6.94	11 Na 22.99	19 X 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)			
		_	7	ო	4	ro	ဖ				

- 1. What is the molar mass, in $g \, \text{mol}^{-1}$, of a compound if 0.200 mol of the compound has a mass of 13.2 g?
 - A. 66.0
 - B. 66
 - C. 26.4
 - D. 26
- 2. What is the number of carbon atoms in 12g of ethanoic acid CH₃COOH, $M_r = 60$?
 - A. 0.20
 - B. 2.0
 - C. 1.2×10^{23}
 - D. 2.4×10^{23}
- 3. Which of these molecular formulae are also empirical formulae?
 - I. C_2H_6O
 - II. $C_2H_4O_2$
 - III. C_5H_{12}
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- **4.** Which volume of ethane gas, in cm³, will produce 40 cm³ of carbon dioxide gas when mixed with 140 cm³ of oxygen gas, assuming the reaction goes to completion?

$$2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(g)$$

- A. 10
- B. 20
- C. 40
- D. 80

5. What is the relative atomic mass, A_r , of an element with this mass spectrum?

- A. 24.0
- B. 24.3
- C. 24.9
- D. 25.0
- 6. What is the maximum number of electrons that can occupy the 4th main energy level in an atom?
 - A. 8
 - B. 14
 - C. 18
 - D. 32
- 7. Which of the following shows a general increase across period 3 from Na to Cl?
 - A. Ionic radius
 - B. Atomic radius
 - C. Ionization energy
 - D. Melting point

- 8. Which oxide will dissolve in water to give the solution with the lowest pH?
 - A. P₄O₁₀
 - B. SiO₂
 - C. Al₂O₃
 - D. MgO
- **9.** Which formula is correct?
 - A. NH₄PO₄
 - B. $(NH_4)_2PO_4$
 - C. (NH₄)₃PO₄
 - D. $(NH_4)_3(PO_4)_2$
- 10. Which molecule is most polar?
 - A. CHF₃
 - B. CF₄
 - C. CClF₃
 - D. CCl₄
- **11.** Which combination correctly describes the geometry of the carbonate ion, CO_3^{2-} ?

	Electron domain geometry around C	Molecular geometry around C
A.	Trigonal planar	Trigonal pyramidal
B.	Tetrahedral	Trigonal planar
C.	Trigonal planar	Trigonal planar
D.	Tetrahedral	Trigonal pyramidal

- 12. Which series shows the correct order of metallic bond strength from strongest to weakest?
 - A. Na > K > Rb > Mg
 - B. Mg > Rb > K > Na
 - C. Rb > K > Na > Mg
 - D. Mg > Na > K > Rb
- 13. Which equation shows the enthalpy of formation, $\Delta H_{\rm f}$, of ethanol?

A.
$$2C(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(g)$$

B.
$$4C(s) + 6H_2(g) + O_2(g) \rightarrow 2C_2H_5OH(g)$$

C.
$$2C(s) + 3H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_2H_5OH(l)$$

$${\rm D.} \quad \ \, 4{\rm C\,(s)} + 6{\rm H_2(g)} + {\rm O_2(g)} \rightarrow 2{\rm C_2H_5OH\,(l)}$$

14. Which combination will give you the enthalpy change for the hydrogenation of ethene to ethane, ΔH_3 ?

$$2C(s) + 3H2(g) \xrightarrow{\Delta H_2} C_2H_4(g) + H_2(g) \xrightarrow{\Delta H_3} C_2H_6(g)$$

$$+ 2O_2(g) \xrightarrow{\Delta H_1} 2CO_2(g) + 3H_2(g)$$

- A. $-\Delta H_2 + \Delta H_1 \Delta H_4$
- B. $\Delta H_2 \Delta H_1 + \Delta H_4$
- C. $\Delta H_2 + \Delta H_1 \Delta H_4$
- D. $-\Delta H_2 \Delta H_1 + \Delta H_4$

15. What is the H–H bond enthalpy, in kJ mol⁻¹, in the H₂ molecule?

$$2H_{_{2}}(g)+O_{_{2}}(g)\rightarrow2H_{_{2}}O\left(g\right)$$

$$\Delta H_{\rm f}({\rm H_2O}) = x \, \rm kJ \, mol^{-1}$$

Bond	Bond enthalpy / kJ mol ⁻¹
0=0	y
O–H	Z

A.
$$x-y+4z$$

$$\mathsf{B.} \qquad \frac{\mathsf{1}}{\mathsf{2}}(x-y+\mathsf{4}\mathsf{z})$$

C.
$$x-y+2z$$

$$\mathsf{D.} \qquad \frac{\mathsf{1}}{\mathsf{2}}(x-y+2\mathsf{z})$$

16. Which apparatus can be used to monitor the rate of this reaction?

$$\mathsf{CH_3COCH_3(aq)} + \mathrm{I_2(aq)} \to \mathsf{CH_3COCH_2I(aq)} + \mathsf{H^+(aq)} + \mathrm{I^-(aq)}$$

- I. A pH meter
- II. A gas syringe
- III. A colorimeter
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

17. Which arrow shows the activation energy of the uncatalysed forward reaction for this equilibrium?

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -196 \text{ kJ mol}^{-1}$

18. What is correct when temperature increases in this reaction at equilibrium?

$$2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$$
 $\Delta H^{\ominus} = +75.5 \text{ kJ}$

	Position of equilibrium	Equilibrium constant, <i>K</i> _c
A.	Shifts left	Unchanged
B.	Shifts left	Decreases
C.	Shifts right	Unchanged
D.	Shifts right	Increases

- 19. Which substance will **not** produce copper(II) chloride when added to dilute hydrochloric acid?
 - A. Cu(s)
 - B. $Cu(OH)_2(s)$
 - C. $CuCO_3(s)$
 - D. CuO(s)

- 20. Which of these acids has the weakest conjugate base?
 - A. HCl
 - B. CH₃COOH
 - C. NH₄Cl
 - D. C₆H₅COOH
- **21.** Iron is a stronger reducing agent than silver.

What is correct when this voltaic cell is in operation?

	Anode (negative electrode)	Cathode (positive electrode)	Direction of electron flow in wire
A.	Ag	Fe	right to left
B.	Ag	Fe	left to right
C.	Fe	Ag	left to right
D.	Fe	Ag	right to left

22. What is correct in an electrolytic cell?

	Electrode	Process at this electrode	Electrons lost or gained at this electrode
A.	Anode (positive)	Oxidation	Gained
B.	Anode (positive)	Reduction	Lost
C.	Cathode (negative)	Oxidation	Lost
D.	Cathode (negative)	Reduction	Gained

23. What are the oxidation states of oxygen?

	\mathbf{O}_2	OF ₂	H_2O_2
A.	-2	-2	-2
B.	0	-2	-1
C.	0	+2	-1
D.	-2	+2	-2

24. Which functional groups are present in this molecule?

- A. carbonyl, ether, nitrile
- B. carbonyl, ester, nitrile
- C. carboxyl, ether, amine
- D. carboxyl, ester, amine

25. Which molecule will decolorize bromine water in the dark?

- A. cyclohexane
- B. hexane
- C. hex-1-ene
- D. hexan-1-ol

26. What is the IUPAC name of this molecule?

- A. 1,1,2,4-tetramethylpent-1-ene
- B. 2,4,5-trimethylhex-4-ene
- C. 2,4,5,5-tetramethylpent-4-ene
- D. 2,3,5-trimethylhex-2-ene
- 27. Which mechanism does benzene most readily undergo?
 - A. Nucleophilic substitution
 - B. Electrophilic substitution
 - C. Electrophilic addition
 - D. Free radical substitution
- **28.** A student obtained the following data to calculate q, using $q = mc\Delta T$.

$$m = 20.0 g \pm 0.2 g$$

$$\Delta T = 10^{\circ} \text{C} \pm 1^{\circ} \text{C}$$

$$c = 4.18 \,\mathrm{J}\,\mathrm{g}^{-1}\,\mathrm{K}^{-1}$$

What is the percentage uncertainty in the calculated value of q?

- A. 0.2
- B. 1.2
- C. 11
- D. 14

29. What is the index of hydrogen deficiency (IHD) in cyclohexanol?

- A. 0
- B. 1
- C. 2
- D. 3
- **30.** Which region of the electromagnetic spectrum is used to identify hydrogen environments in a molecule?

- A. X-ray
- B. UV
- C. IR
- D. radio waves