

WSDM 2023 Tutorial

Knowledge-Augmented Methods for Natural Language Processing

Chenguang Zhu¹, Yichong Xu¹, Xiang Ren², Bill Yuchen Lin², Meng Jiang³, Wenhao Yu³

¹ Microsoft Cognitive Services Research ² University of Southern California ³ University of Notre Dame

Presenters

Chenguang Zhu

Principal Research Manager

Microsoft Cognitive Services Research

Yichong Xu

Senior Researcher

Microsoft Cognitive Services Research

Xiang Ren

Assistant Professor

Dept. of Computer Science

University of Southern California

Bill Yuchen Lin

Ph.D. candidate

Dept. of Computer Science

University of Southern California

Meng Jiang

Assistant Professor

Dept. of Computer Science and Engineering

University of Notre Dame

Wenhao Yu

Ph.D. candidate

Dept. of Computer Science and Engineering

University of Notre Dame

Disclaimer: This tutorial is our own opinions

- Not Microsoft's, USC's or Univ. of Notre Dame's
- To access mentioned models + datasets, please refer to corresponding licensing information
- We're not promoting the use of any particular model and/or datasets
- There are slides / figures borrowed from respective papers
- This tutorial is by no means exhaustive: we've tried our best to include relevant materials

How to access tutorial materials

 Detailed information about our tutorial can be found at: https://www.wsdm-conference.org/2023/program/tutorials

Talk slides are at:

https://github.com/zcgzcgzcg1/WSDM2023 Knowledge NLP Tutorial/

What is this tutorial about?

- How to fuse knowledge and common sense into natural language processing
- Knowledge in natural language understanding (NLU)
 - Natural language inference, sentence classification, sequence labeling, etc.
- Knowledge in natural language generation (NLG)
 - Text summarization, dialogue response generation, story generation, etc.
- Commonsense reasoning
 - Commonsense Q&A, commonsense generation

Schedule

Local time (GMT+8)	Content	Presenter
09:30-09:45	Motivation and Introduction of Knowledge in NLP	Chenguang Zhu
09:45-10:35	Knowledge in Natural Language Understanding	Yichong Xu
10:35-11:00	Knowledge in Natural Language Generation	Wenhao Yu / Meng Jiang
11:00-11:30	Coffee Break	
11:30-11:55	Knowledge in Natural Language Generation	Wenhao Yu / Meng Jiang
11:55-12:45	Commonsense Knowledge and Reasoning for NLP	Yuchen Lin / Xiang Ren
12:45-13:00	Summary and Future Direction	Meng Jiang / Xiang Ren

Where is NLP heading?

- Large, Huge, Gigantic Language models
- Training cost affordable only by few large companies
- Even fine-tuning is impossible for a majority of researchers and practitioners
- Does model size solve everything?
 - Unfortunately, no
- Then why are we doing it?

Integration of External Knowledge

Knowledge in NLP

A language model (LM) learns how to express

I go school to to want.

I want to go to school.

Knowledge indicates what to express

Q: Where is the painting **Mona Lisa**?

A: It is in **Louvre**, **Paris**.

Knowledge sources

Structured

- Knowledge graph: A meta-representation of knowledge, common sense, entities, relations
- Dictionary: explanation of words and phrases

<u>Unstructured</u>

- **Text data**: Knowledge from data without a predefined format, e.g., documents, emails
- Large language models, e.g., GPT-3

Knowledge is any external information absent from the input but helpful for generating the output

• Step 1: **Ground** language into related knowledge

• Step 2: **Represent** knowledge

Step 3: Fuse knowledge representation into language model

- Ground language into related knowledge
 - String matching, NER, Entity linking, information retrieval
 - Identify concepts and relations in the knowledge source

The **pen** is on the **desk**.

- Represent knowledge
 - Concept names

Description of concepts

Graph embeddings

Desk

Desk: A table, frame, or case, now usually with a flat top, for writers and readers. It often has a drawer or repository underneath.

- Fuse knowledge representation into language model
 - Concatenate concept names/descriptions into input

The pen is on the desk. [SEP] desk: a table, ...

Append/add concept embeddings into input embeddings

The pen is on the desk. Graph embedding of desk

Attention

Graph embedding of pen

LM Transformer