```
GLM PoR_HF_Placement_Center_Scenario_mobil@oR_HF_Placement_Center_Scenario_stationary
```

PoR_HF_Placement_Interactive_Scenario_mobil@oR_HF_Placement_Interactive_Scenario_stationary

PoR_HF_Placement_Periphery_Scenario_mobil@oR_HF_Placement_Periphery_Scenario_stationary

PoR_BF_Placement_Center_Scenario_mobil@oR_BF_Placement_Center_Scenario_stationary

PoR_BF_Placement_Interactive_Scenario_mobil@oR_BF_Placement_Interactive_Scenario_stationary

 ${\tt PoR_BF_Placement_Periphery_Scenario_mobil \underline{ \tt PoR_BF_Placement_Periphery_Scenario_stationary} \\$

 ${\tt PoR_WF_Placement_Center_Scenario_mobil \verb|PoR_WF_Placement_Center_Scenario_mobil \verb|PoR_WF_Placement_Center_Scenario$

PoR_WF_Placement_Interactive_Scenario_mobil@oR_WF_Placement_Interactive_Scenario_stationary

PoR_WF_Placement_Periphery_Scenario_mobil@oR_WF_Placement_Periphery_Scenario_stationary

/WSFACTOR=POR 3 Polynomial Placement 3 Polynomial Scenario 2 Polynomial /MEASURE=SRCP_POR_Placement_center_Scenario_mobile

/METHOD=SSTYPE(3)

/PRINT=DESCRIPTIVE

/CRITERIA=ALPHA(.05)

/WSDESIGN POR Placement Scenario PoR*Placement PoR*Scenario Placement*Scenario

PoR*Placement*Scenario.

Allgemeines Lineares Modell

Anmerkungen

Ausgabe erstellt		21-JAN-2020 13:38:56
Kommentare		
Eingabe	Aktiver Datensatz	DataSet9
	Filter	<keine></keine>
	Gewichtung	<keine></keine>
	Aufgeteilte Datei	<keine></keine>
	Anzahl der Zeilen in der Arbeitsdatei	18
Behandlung fehlender Werte	Definition für "fehlend"	Benutzerdefinierte fehlende Werte werden als fehlend behandelt.
	Verwendete Fälle	Die Statistik basiert auf allen Fällen mit gültigen Daten für alle Variablen im Modell.

Syntax

GLM
PoR_HF_Placement_Cent
er_Scenario_mobile
PoR_HF_Placement_Cent
er_Scenario_stationary

PoR_HF_Placement_Inter active_Scenario_mobile PoR_HF_Placement_Inter active_Scenario_stationar y

PoR_HF_Placement_Peri phery_Scenario_mobile PoR_HF_Placement_Peri phery_Scenario_stationar v

PoR_BF_Placement_Cent er_Scenario_mobile PoR_BF_Placement_Cent er_Scenario_stationary

PoR_BF_Placement_Inter active_Scenario_mobile PoR_BF_Placement_Inter active_Scenario_stationar v

PoR_BF_Placement_Perip hery_Scenario_mobile PoR_BF_Placement_Perip hery_Scenario_stationary

PoR_WF_Placement_Cent er_Scenario_mobile PoR_WF_Placement_Cent er_Scenario_stationary

PoR_WF_Placement_Inter active_Scenario_mobile PoR_WF_Placement_Inter active_Scenario_stationar v

PoR_WF_Placement_Peri phery_Scenario_mobile PoR_WF_Placement_Peri phery_Scenario_stationar v

/WSFACTOR=POR 3 Polynomial Placement 3 Polynomial Scenario 2 Polynomial

/MEASURE=SRCP_POR_PI acement_center_Scenari o_mobile /METHOD=SSTYPE(3) /PRINT=DESCRIPTIVE /CRITERIA=ALPHA(.05) /WSDESIGN=POR Placement Scenario POR*Placement POR*Scenario Placement*Scenario

PoR*Placement*Scenario

Anmerkungen

Ressourcen	Prozessorzeit	00:00:00,02
	Verstrichene Zeit	00:00:00,00

[DataSet9]

Innersubjektfaktoren

Maß: SRCP_PoR_Placement_center_Scenario_mobile

PoR	Placement	Scenario	Abhängige Variable
1	1	1	PoR_HF_Plac ement_Cente r_Scenario_m obile
		2	PoR_HF_Plac ement_Cente r_Scenario_st ationary
	2	1	PoR_HF_Plac ement_Intera ctive_Scenari o_mobile
		2	PoR_HF_Plac ement_Intera ctive_Scenari o_stationary
	3	1	PoR_HF_Plac ement_Perip hery_Scenari o_mobile
		2	PoR_HF_Plac ement_Perip hery_Scenari o_stationary
2	1	1	PoR_BF_Place ment_Center _Scenario_m obile
		2	PoR_BF_Place ment_Center _Scenario_sta tionary
	2	1	PoR_BF_Place ment_Interac tive_Scenario _mobile
		2	PoR_BF_Place ment_Interac tive_Scenario _stationary

Innersubjektfaktoren

Maß: SRCP_PoR_Placement_center_Scenario_mobile

PoR	Placement	Scenario	Abhängige Variable		
	3	1	PoR_BF_Place ment_Periph ery_Scenario _mobile		
		2	PoR_BF_Place ment_Periph ery_Scenario _stationary		
3	1	1	PoR_WF_Plac ement_Cente r_Scenario_m obile		
	2	2	2	PoR_WF_Plac ement_Cente r_Scenario_st ationary	
			_	1	PoR_WF_Plac ement_Intera ctive_Scenari o_mobile
				2	PoR_WF_Plac ement_Intera ctive_Scenari o_stationary
3	3	1	PoR_WF_Plac ement_Perip hery_Scenari o_mobile		
		2	PoR_WF_Plac ement_Perip hery_Scenari o_stationary		

Deskriptive Statistiken

	Mittelwert	Std Abweichung	N
PoR_HF_Placement_Cente r_Scenario_mobile	17,83	3,634	18
PoR_HF_Placement_Cente r_Scenario_stationary	16,44	3,838	18
PoR_HF_Placement_Intera ctive_Scenario_mobile	19,06	3,058	18
PoR_HF_Placement_Intera ctive_Scenario_stationary	18,33	3,361	18
PoR_HF_Placement_Perip hery_Scenario_mobile	17,78	3,457	18
PoR_HF_Placement_Perip hery_Scenario_stationary	17,89	3,848	18
PoR_BF_Placement_Center _Scenario_mobile	17,44	3,854	18
PoR_BF_Placement_Center _Scenario_stationary	18,33	3,087	18
PoR_BF_Placement_Intera ctive_Scenario_mobile	17,61	2,973	18
PoR_BF_Placement_Intera ctive_Scenario_stationary	18,33	3,378	18
PoR_BF_Placement_Periph ery_Scenario_mobile	16,72	3,627	18
PoR_BF_Placement_Periph ery_Scenario_stationary	17,94	3,572	18
PoR_WF_Placement_Cente r_Scenario_mobile	17,67	4,511	18
PoR_WF_Placement_Cente r_Scenario_stationary	17,33	3,515	18
PoR_WF_Placement_Intera ctive_Scenario_mobile	18,89	3,909	18
PoR_WF_Placement_Intera ctive_Scenario_stationary	18,11	3,445	18
PoR_WF_Placement_Perip hery_Scenario_mobile	18,39	4,002	18
PoR_WF_Placement_Perip hery_Scenario_stationary	18,39	3,109	18

Multivariate Tests^a

Effekt		Wert	F	Hypothese df
PoR	Pillai-Spur	0,078	0,674 ^b	2,000
	Wilks-Lambda	0,922	0,674 ^b	2,000
	Hotelling-Spur	0,084	0,674 ^b	2,000
	Größte charakteristische Wurzel nach Roy	0,084	0,674 ^b	2,000
Placement	Pillai-Spur	0,316	3,695 ^b	2,000
	Wilks-Lambda	0,684	3,695 ^b	2,000
	Hotelling-Spur	0,462	3,695 ^b	2,000
	Größte charakteristische Wurzel nach Roy	0,462	3,695 ^b	2,000
Scenario	Pillai-Spur	0,000	0,007 ^b	1,000
	Wilks-Lambda	1,000	0,007 ^b	1,000
	Hotelling-Spur	0,000	0,007 ^b	1,000
	Größte charakteristische Wurzel nach Roy	0,000	0,007 ^b	1,000
PoR * Placement	Pillai-Spur	0,337	1,777 ^b	4,000
	Wilks-Lambda	0,663	1,777 ^b	4,000
	Hotelling-Spur	0,508	1,777 ^b	4,000
	Größte charakteristische Wurzel nach Roy	0,508	1,777 ^b	4,000
PoR * Scenario	Pillai-Spur	0,150	1,414 ^b	2,000
	Wilks-Lambda	0,850	1,414 ^b	2,000
	Hotelling-Spur	0,177	1,414 ^b	2,000
	Größte charakteristische Wurzel nach Roy	0,177	1,414 ^b	2,000
Placement * Scenario	Pillai-Spur	0,220	2,254 ^b	2,000
	Wilks-Lambda	0,780	2,254 ^b	2,000
	Hotelling-Spur	0,282	2,254 ^b	2,000
	Größte charakteristische Wurzel nach Roy	0,282	2,254 ^b	2,000
PoR * Placement *	Pillai-Spur	0,048	0,176 ^b	4,000
Scenario	Wilks-Lambda	0,952	0,176 ^b	4,000
	Hotelling-Spur	0,050	0,176 ^b	4,000
	Größte charakteristische Wurzel nach Roy	0,050	0,176 ^b	4,000

Multivariate Tests^a

Effekt		Fehler df	Sig.
PoR	Pillai-Spur	16,000	0,524
	Wilks-Lambda	16,000	0,524
	Hotelling-Spur	16,000	0,524
	Größte charakteristische Wurzel nach Roy	16,000	0,524
Placement	Pillai-Spur	16,000	0,048
	Wilks-Lambda	16,000	0,048
	Hotelling-Spur	16,000	0,048
	Größte charakteristische Wurzel nach Roy	16,000	0,048
Scenario	Pillai-Spur	17,000	0,936
	Wilks-Lambda	17,000	0,936
	Hotelling-Spur	17,000	0,936
	Größte charakteristische Wurzel nach Roy	17,000	0,936
PoR * Placement	Pillai-Spur	14,000	0,189
	Wilks-Lambda	14,000	0,189
	Hotelling-Spur	14,000	0,189
	Größte charakteristische Wurzel nach Roy	14,000	0,189
PoR * Scenario	Pillai-Spur	16,000	0,272
	Wilks-Lambda	16,000	0,272
	Hotelling-Spur	16,000	0,272
	Größte charakteristische Wurzel nach Roy	16,000	0,272
Placement * Scenario	Pillai-Spur	16,000	0,137
	Wilks-Lambda	16,000	0,137
	Hotelling-Spur	16,000	0,137
	Größte charakteristische Wurzel nach Roy	16,000	0,137
PoR * Placement *	Pillai-Spur	14,000	0,947
Scenario	Wilks-Lambda	14,000	0,947
	Hotelling-Spur	14,000	0,947
	Größte charakteristische Wurzel nach Roy	14,000	0,947

a. Design: Konstanter Term Innersubjektdesign: PoR + Placement + Scenario + PoR * Placement + PoR * Scenario + Placement * Scenario + PoR * Placement * Scenario

b. Exakte Statistik

Mauchly-Test auf Sphärizität^a

Maß: SRCP_PoR_Placement_center_Scenario_mobile

					Epsilon ^b
Innersubjekteffekt	Mauchly-W	Approx. Chi- Quadrat	df	Sig.	Greenhouse- Geisser
PoR	0,805	3,466	2	0,177	0,837
Placement	0,726	5,116	2	0,077	0,785
Scenario	1,000	0,000	0		1,000
PoR * Placement	0,623	7,284	9	0,610	0,846
PoR * Scenario	0,435	13,312	2	0,001	0,639
Placement * Scenario	0,556	9,387	2	0,009	0,693
PoR * Placement * Scenario	0,333	16,965	9	0,050	0,615

Mauchly-Test auf Sphärizität a

Maß: SRCP_PoR_Placement_center_Scenario_mobile

Epsilon^b

Innersubjekteffekt	Huynh-Feldt	Untergrenze
PoR	0,918	0,500
Placement	0,851	0,500
Scenario	1,000	1,000
PoR * Placement	1,000	0,250
PoR * Scenario	0,668	0,500
Placement * Scenario	0,734	0,500
PoR * Placement * Scenario	0,728	0,250

Prüft die Nullhypothese, daß sich die Fehlerkovarianz-Matrix der orthonormalisierten transformierten abhängigen Variablen proportional zur Einheitsmatrix verhält.

- a. Design: Konstanter Term Innersubjektdesign: PoR + Placement + Scenario + PoR * Placement + PoR * Scenario + Placement * Scenario + PoR * Placement * Scenario
- b. Kann zum Korrigieren der Freiheitsgrade für die gemittelten Signifikanztests verwendet werden. In der Tabelle mit den Tests der Effekte innerhalb der Subjekte werden korrigierte Tests angezeigt.

Maß: SRCP_PoR_Placement_center_Scenario_mobile

Quelle		Quadratsumm e vom Typ III	df	Mittel der Quadrate
PoR	Sphärizität angenommen	8,685	2	4,343
	Greenhouse-Geisser	8,685	1,674	5,188
	Huynh-Feldt	8,685	1,836	4,732
	Untergrenze	8,685	1,000	8,685
Fehler(PoR)	Sphärizität angenommen	242,759	34	7,140
	Greenhouse-Geisser	242,759	28,457	8,531
	Huynh-Feldt	242,759	31,204	7,780
	Untergrenze	242,759	17,000	14,280
Placement	Sphärizität angenommen	42,463	2	21,231
	Greenhouse-Geisser	42,463	1,570	27,042
	Huynh-Feldt	42,463	1,702	24,946
	Untergrenze	42,463	1,000	42,463
Fehler(Placement)	Sphärizität angenommen	238,315	34	7,009
	Greenhouse-Geisser	238,315	26,694	8,928
	Huynh-Feldt	238,315	28,937	8,236
	Untergrenze	238,315	17,000	14,019
Scenario	Sphärizität angenommen	0,077	1	0,077
	Greenhouse-Geisser	0,077	1,000	0,077
	Huynh-Feldt	0,077	1,000	0,077
	Untergrenze	0,077	1,000	0,077
Fehler(Scenario)	Sphärizität angenommen	199,645	17	11,744
	Greenhouse-Geisser	199,645	17,000	11,744
	Huynh-Feldt	199,645	17,000	11,744
	Untergrenze	199,645	17,000	11,744
PoR * Placement	Sphärizität angenommen	31,574	4	7,894
	Greenhouse-Geisser	31,574	3,384	9,331
	Huynh-Feldt	31,574	4,000	7,894
	Untergrenze	31,574	1,000	31,574
Fehler(PoR*Placement)	Sphärizität angenommen	221,981	68	3,264
	Greenhouse-Geisser	221,981	57,522	3,859
	Huynh-Feldt	221,981	68,000	3,264
	Untergrenze	221,981	17,000	13,058

 ${\tt Ma\&: SRCP_PoR_Placement_center_Scenario_mobile}$

Quelle		F	Sig.
PoR	Cab ärizität anganamman	-	
POR	Sphärizität angenommen	0,608	0,550
	Greenhouse-Geisser	0,608	0,523
	Huynh-Feldt	0,608	0,537
	Untergrenze	0,608	0,446
Fehler(PoR)	Sphärizität angenommen		
	Greenhouse-Geisser		
	Huynh-Feldt		
	Untergrenze		
Placement	Sphärizität angenommen	3,029	0,062
	Greenhouse-Geisser	3,029	0,076
	Huynh-Feldt	3,029	0,071
	Untergrenze	3,029	0,100
Fehler(Placement)	Sphärizität angenommen		
	Greenhouse-Geisser		
	Huynh-Feldt		
	Untergrenze		
Scenario	Sphärizität angenommen	0,007	0,936
	Greenhouse-Geisser	0,007	0,936
	Huynh-Feldt	0,007	0,936
	Untergrenze	0,007	0,936
Fehler(Scenario)	Sphärizität angenommen		
	Greenhouse-Geisser		
	Huynh-Feldt		
	Untergrenze		
PoR * Placement	Sphärizität angenommen	2,418	0,057
	Greenhouse-Geisser	2,418	0,068
	Huynh-Feldt	2,418	0,057
	Untergrenze	2,418	0,138
Fehler(PoR*Placement)	Sphärizität angenommen		
	Greenhouse-Geisser		
	Huynh-Feldt		
	Untergrenze		

Maß: SRCP_PoR_Placement_center_Scenario_mobile

Quelle		Quadratsumm e vom Typ III	df	Mittel der Quadrate
PoR * Scenario	Sphärizität angenommen	39,710	2	19,855
	Greenhouse-Geisser	39,710	1,278	31,070
	Huynh-Feldt	39,710	1,336	29,721
	Untergrenze	39,710	1,000	39,710
Fehler(PoR*Scenario)	Sphärizität angenommen	635,068	34	18,678
	Greenhouse-Geisser	635,068	21,728	29,229
	Huynh-Feldt	635,068	22,713	27,960
	Untergrenze	635,068	17,000	37,357
Placement * Scenario	Sphärizität angenommen	9,154	2	4,577
•	Greenhouse-Geisser	9,154	1,385	6,609
•	Huynh-Feldt	9,154	1,469	6,233
•	Untergrenze	9,154	1,000	9,154
Fehler (Placement*Scenario)	Sphärizität angenommen	144,957	34	4,263
	Greenhouse-Geisser	144,957	23,548	6,156
	Huynh-Feldt	144,957	24,968	5,806
	Untergrenze	144,957	17,000	8,527
PoR * Placement * Scenario	Sphärizität angenommen	4,920	4	1,230
	Greenhouse-Geisser	4,920	2,462	1,999
	Huynh-Feldt	4,920	2,910	1,691
	Untergrenze	4,920	1,000	4,920
Fehler (PoR*Placement*Scenario)	Sphärizität angenommen	391,969	68	5,764
	Greenhouse-Geisser	391,969	41,846	9,367
	Huynh-Feldt	391,969	49,471	7,923
	Untergrenze	391,969	17,000	23,057

Maß: SRCP_PoR_Placement_center_Scenario_mobile

0		F	Cia
Quelle			Sig.
PoR * Scenario	Sphärizität angenommen	1,063	0,357
	Greenhouse-Geisser	1,063	0,333
	Huynh-Feldt	1,063	0,335
	Untergrenze	1,063	0,317
Fehler(PoR*Scenario)	Sphärizität angenommen		
	Greenhouse-Geisser		
	Huynh-Feldt		
	Untergrenze		
Placement * Scenario	Sphärizität angenommen	1,074	0,353
	Greenhouse-Geisser	1,074	0,335
	Huynh-Feldt	1,074	0,338
	Untergrenze	1,074	0,315
Fehler (Placement*Scenario)	Sphärizität angenommen		
	Greenhouse-Geisser		
	Huynh-Feldt		
	Untergrenze		
PoR * Placement * Scenario	Sphärizität angenommen	0,213	0,930
	Greenhouse-Geisser	0,213	0,851
	Huynh-Feldt	0,213	0,881
	Untergrenze	0,213	0,650
Fehler (PoR*Placement*Scenario)	Sphärizität angenommen		
	Greenhouse-Geisser		
	Huynh-Feldt		
	Untergrenze		

Tests der Innersubjektkontraste

 ${\tt Ma\&: SRCP_PoR_Placement_center_Scenario_mobile}$

Quelle	PoR	Placement	Scenario	Quadratsumm e vom Typ III	df
PoR	Linear			3,130	1
	Quadratisch			5,556	1
Fehler(PoR)	Linear			68,537	17
	Quadratisch			174,222	17
Placement		Linear		6,338	1
		Quadratisch		36,125	1
Fehler(Placement)		Linear		158,412	17
		Quadratisch		79,903	17
Scenario			Linear	0,077	1
Fehler(Scenario)			Linear	199,645	17
PoR * Placement	Linear	Linear		0,340	1
		Quadratisch		5,113	1
	Quadratisch	Linear		21,780	1
		Quadratisch		4,340	1
Fehler(PoR*Placement)	Linear	Linear		59,035	17
		Quadratisch		73,845	17
	Quadratisch	Linear		45,345	17
		Quadratisch		43,757	17
PoR * Scenario	Linear		Linear	1,185	1
	Quadratisch		Linear	38,525	1
Fehler(PoR*Scenario)	Linear		Linear	132,815	17
	Quadratisch		Linear	502,253	17
Placement * Scenario		Linear	Linear	7,042	1
		Quadratisch	Linear	2,113	1
Fehler		Linear	Linear	101,042	17
(Placement*Scenario)		Quadratisch	Linear	43,915	17
PoR * Placement *	Linear	Linear	Linear	3,063	1
Scenario		Quadratisch	Linear	0,836	1
	Quadratisch	Linear	Linear	1,021	1
		Quadratisch	Linear	0,001	1
Fehler	Linear	Linear	Linear	88,312	17
(PoR*Placement*Scenario)		Quadratisch	Linear	152,789	17
	Quadratisch	Linear	Linear	65,771	17
		Quadratisch	Linear	85,096	17

Tests der Innersubjektkontraste

 ${\tt Ma\&: SRCP_PoR_Placement_center_Scenario_mobile}$

Quelle	PoR	Placement	Scenario	Mittel der Quadrate	F
PoR	Linear			3,130	0,776
	Quadratisch			5,556	0,542
Fehler(PoR)	Linear			4,032	
	Quadratisch			10,248	
Placement		Linear		6,338	0,680
		Quadratisch		36,125	7,686
Fehler(Placement)		Linear		9,318	
		Quadratisch		4,700	
Scenario			Linear	0,077	0,007
Fehler(Scenario)			Linear	11,744	
PoR * Placement	Linear	Linear		0,340	0,098
		Quadratisch		5,113	1,177
	Quadratisch	Linear		21,780	8,165
		Quadratisch		4,340	1,686
Fehler(PoR*Placement)	Linear	Linear		3,473	
		Quadratisch		4,344	
	Quadratisch	Linear		2,667	
		Quadratisch		2,574	
PoR * Scenario	Linear		Linear	1,185	0,152
	Quadratisch		Linear	38,525	1,304
Fehler(PoR*Scenario)	Linear		Linear	7,813	
	Quadratisch		Linear	29,544	
Placement * Scenario		Linear	Linear	7,042	1,185
		Quadratisch	Linear	2,113	0,818
Fehler		Linear	Linear	5,944	
(Placement*Scenario)		Quadratisch	Linear	2,583	
PoR * Placement *	Linear	Linear	Linear	3,063	0,590
Scenario		Quadratisch	Linear	0,836	0,093
	Quadratisch	Linear	Linear	1,021	0,264
		Quadratisch	Linear	0,001	0,000
Fehler	Linear	Linear	Linear	5,195	
(PoR*Placement*Scenario)		Quadratisch	Linear	8,988	
	Quadratisch	Linear	Linear	3,869	
		Quadratisch	Linear	5,006	

Tests der Innersubjektkontraste

 ${\tt Ma\&: SRCP_PoR_Placement_center_Scenario_mobile}$

Quelle	PoR	Placement	Scenario	Sig.
PoR	Linear			0,391
	Quadratisch			0,472
Fehler(PoR)	Linear			
	Quadratisch			
Placement		Linear		0,421
		Quadratisch		0,013
Fehler(Placement)		Linear		
		Quadratisch		
Scenario			Linear	0,936
Fehler(Scenario)			Linear	
PoR * Placement	Linear	Linear		0,758
		Quadratisch		0,293
	Quadratisch	Linear		0,011
		Quadratisch		0,211
Fehler(PoR*Placement)	Linear	Linear		
		Quadratisch		
	Quadratisch	Linear		
		Quadratisch		
PoR * Scenario	Linear		Linear	0,702
	Quadratisch		Linear	0,269
Fehler(PoR*Scenario)	Linear		Linear	
	Quadratisch		Linear	
Placement * Scenario		Linear	Linear	0,292
		Quadratisch	Linear	0,378
Fehler (Blacement*Seenerie)		Linear	Linear	
(Placement*Scenario)		Quadratisch	Linear	
PoR * Placement *	Linear	Linear	Linear	0,453
Scenario		Quadratisch	Linear	0,764
	Quadratisch	Linear	Linear	0,614
		Quadratisch	Linear	0,990
Fehler (PoR*Placement*Scenario)	Linear	Linear	Linear	
		Quadratisch	Linear	
	Quadratisch	Linear	Linear	
		Quadratisch	Linear	

Tests der Zwischensubjekteffekte

Maß: SRCP_PoR_Placement_center_Scenario_mobile

Transformierte Variable: Mittel

Quelle	Quadratsumm e vom Typ III	df	Mittel der Quadrate	F	Sig.
Konstanter Term	104006,250	1	104006,250	950,865	0,000
Fehler	1859,472	17	109,381		