

Algorithm 2 Breadth First Search: FindPathToGoal(u) 1: $F(\text{Frontier}) \leftarrow \text{Queue}(u)$ 2: $E(\text{Explored}) \leftarrow \{u\}$ 3: while F is not empty do 4: $u \leftarrow F.\text{pop}()$ 5: for all children v of u do 6: if GoalTest(v) then return path(v) 7: else 8: if v not in E then 9: E.add(v)10: F.push(v)11: return Failure

Properties of BFS

Property		
Complete?	Yes	
Time	$\mathcal{O}(b) + \mathcal{O}(b^2) + \dots + \mathcal{O}(b^d) = \mathcal{O}(b^d)$	
Space	$O(b^d)$	
Optimal		

Cheat sheets Page

Depth-First Search

```
Algorithm 5 Depth First Search(DFS): FindPathToGoal(u)
 1: F(\text{Frontier}) \leftarrow \text{Stack}(u)

2: E(\text{Explored}) \leftarrow \{\}

3: while F is not empty do

4: u \leftarrow F.\text{peek}()

5: if GoalTest(u) then
                  if Goales(u) then
return path(u)
if HasUnvisitedChildren(u) then
for all children v of u do
if v not in E then
F:push(v)
E:add(v)
11:
                   \begin{array}{c} \textbf{else} \\ F.\text{pop}() \\ E.\text{add}(u) \end{array}
15: return Failure
```

Depth-First Search

Property		
Complete?	No on infinite depth graphs	
Optimal	No	
Time	$\mathcal{O}(b^m)$	
Space	O(bm)	

When checking a node v, we push at most b descendants to stack.

We do so at most m times $\Rightarrow \mathcal{O}(bm)$ space.

Uniform Cost Search

Algorithm 4 Uniform Cost Search (UCS): Find Path To Goal (u) \Rightarrow g(u) = path cost to 1: $F(\text{Frontier}) \leftarrow \frac{\text{PriorityQueue}(u)}{2: E(\text{Explored}) \leftarrow \{u\}}$ get to u from $E(\text{Explored}) \leftarrow \{u\}$ $\hat{g}[u] \leftarrow 0$ while F is not empty do $u \leftarrow F.\text{pop}()$ if GoalTest(u) then return path(u) E.add(u) for all children v of u do if v not in E then if v in F then $\hat{g}[v] = min(\hat{g}[v], \hat{g}[u] + c(u, v))$ else 11: 13: $F.\operatorname{push}(v)$ $\hat{g}[v] = \hat{g}[u] + c(u,v)$ 16: return Failure

ucs vs Dijstrak's 1 source, multiple destinations, 1 source, 1 destination, shortest path to all 1 shortest path

source

1)

Proof of Optimality

Theorem: When we pop u from F, we have found optimal path to u from the start node (say, S_0)

Notations:

- g(u): Minimum distance from S_0 to u
- $\hat{g}_{pop}(u)$: The value of \hat{g} when u is popped

Formally, we want to prove $\hat{g}_{pop}(u) = g(u)$

Uniform Cost Search

Property		
Complete?	Yes (if all step costs are $\geq \varepsilon$)	
Optimal	Yes (shortest path nodes expanded first)	
Time	$\mathcal{O}\!\left(b^{1+\left \frac{C^*}{\varepsilon}\right }\right)$ where C^* is the optimal cost.	
Space	$O\left(b^{1+\left \frac{C^*}{\varepsilon}\right }\right)$	

Summary

Property	BFS	UCS	DFS
Complete	Yes1	Yes ²	No
Optimal	No ³	Yes	No
Time	$\mathcal{O}\big(b^d\big)$	$O\left(b^{1+\left\lfloor \frac{C^*}{\varepsilon}\right\rfloor}\right)$	$O(b^m)$
Space	$\mathcal{O}(b^d)$	$O\left(h^{1+\left \frac{C^*}{\varepsilon}\right }\right)$	O(bm)

- 1. if b is finite.
- 2. f b is finite and step cost $\geq \varepsilon$

A* Search

```
Algorithm 6 A* Algorithm: FindPathToGoal(u)

1: F(\text{Frontier}) \leftarrow \text{PriorityQueue}(u)

2: E(\text{Explored}) \leftarrow \{u\}

3: \hat{g}[u] \leftarrow 0

4: while F is not empty do

5: u \leftarrow F, \text{pop}()

6: if GoalTest(u) then

7: return path(u) \longrightarrow soptimed

8: E. \text{add}(u)

9: for all children v of u do

10: if v in F then

11: if v in F then

12: \hat{g}[v] = \min(\hat{g}[v], \hat{g}[u] + c(u, v))

13: \hat{f}[n] = h[n] + \hat{g}[n]
```

```
> $ NOT the same as Dijstra
       Goijstra is too All nodes from root
       Guniform cost is only start to goal
 Proof by induction:
1) Assume optimal path to u:
  s_0, s_1 ... s_\kappa, \alpha
2 Base case:
  gpop (so) = g(so) = 0
3 Assume for So to SK
   gpop(sk) = g(sk)

\oplus g(s_1) \leq g(s_2) \leq \ldots \leq g(u)

(5) gpop(u)≥g(u)
  Gannot be less
   After popping Sk,
   g(u) = min (ĝ(u), gpop(sk) + c(si, u))
       = g(sk) + c(si, u) no other poth will produce a
```

better g(u)
u eventually
popped

```
g(u) \rightarrow \min path cost \hat{g}(u) \rightarrow p and cost so far h(u) \rightarrow p estimated cost from u to goal (heuristic function) \hat{f}(u) \rightarrow p evaluation function = \hat{g}(u) + h(u) g(u) \rightarrow p optimal cost = g(u) + h(u) start g(u) + h(u)
```

```
E.add(u) for all children v of u do if v not in E then if v in F then  \underbrace{\hat{g}[v] = \min(\hat{g}[v], \hat{g}[u] + c(u, v))}_{f[v] = h[v] + \hat{g}[v]} \underbrace{\hat{g}[\omega]}_{g[\omega] + c(u, v)} \underbrace{\hat{g}[\omega]}_{g[\omega]} \underbrace{\hat{g}[\omega]}_{g[\omega] + c(u, v)} \underbrace{\hat{g}[\omega]}_{g[\omega]} \underbrace{\hat{g}[\omega]}
10:
11:
12:
13:
14:
15:
16:
17:
18: return Failure
```

A* Search

What property of h would ensure that A* is optimal?

Thm A* with graph-search and consistent h is obtainal.

Heuristic Functions

The Power of Admissibility

Observation:

if h(goal) ≥ 0, then consistency => admissibility

Theorem:

A* search with Tree-Search is optimal for admissible

Refer to UCS -> nodes along optimal path
get popped in the right order $\downarrow g_{pop}(s_0) \leq g_{pop}(s_1) \leq ... \leq g_{pop}(u)$ L g pop (si) = g(si) $g(s_0) \leq g(s_1) \leq ... \leq g(u)$ $(0.1): \hat{f}_{pop}(s_0) \leq \hat{f}_{pop}(s_1) \leq \dots \hat{f}_{pop}(u)$ A* uses $\hat{j}(u) \rightarrow \text{prove } \hat{j} \text{ pop } (s_i) = j(s_i)$ @2 L be of priority queue $f(s_i) \leq f(s_{i+1}) \longrightarrow ig$ true, proves by Induction (3) \Leftrightarrow $g(s_i) + h(s_i) \leq g(s_{i+1}) + h(s_{i+1})$ $\Leftrightarrow h(s_i) \leq g(s_{i+1}) - g(s_i) + h(s_{i+1}) \otimes 4$ _ L→ & consistency c(si, si+1) h(goal)≥0 $h(s_0) \le c(s_0, s_1) + h(s_1)$ $\leq c(s_0, s_1) + c(s_1, s_2) + ... + c(s_k, u) + h(w)^{*0}$ ≤ path cost so to u L→ & Admissibility \bigstar Consistency & h(goal) $\geq 0 \Rightarrow Admissibility <math>\nearrow A \not\Rightarrow C$ A* OPTIMAL UNDER THESE SPECIFIC CONDITIONS Tree search varient no record of explored

Still optimal with ADMISSIBILITY (Tutorial 4)

\$\$ What property of h(u), and hence, $\hat{J}(u)$ would make the algorithm optimal?

Greedy Best First Search

- What if we have priority queue based on h instead of \hat{f}
- Would this be optimal? No. → not consistent

Hill Climbing

Algorithm 1 HillClimbStep(s)

```
1: minVal \leftarrow val(s)
                                  ★ keep moving to a state
where Val(next) < Val(current)</p>
2: \ minState \leftarrow \{s\}
3: for each u in N(s) do
       if val(u) < minVal then
           minVal = val(u)
          minState = u
7: return minState
```


Simulated Annealing

- · Condensed matter physics
 - · Study of materials at low temperatures.
 - · Spin Glass models
 - Atoms: have spin ± 1
 - μ_i : spin of atom i
 - E(c): Energy of configuration c
 - E(c) = $e^{-\sum_{\{i,j\}} J \mu_i \mu_j}$
 - $\bullet \ \ k_B: Boltzman\ constant$
 - T: temperature
 - Probability of going from state $c_1 \, to \, c_2$
- $\Pr[c_1 \to c_2] \propto e^{\frac{B(c_1) B(c_2)}{k_B T}} \longrightarrow \text{T} \to \infty$, $e^{\frac{E(c_1) E(c_2)}{k_B T}} \to e^{\circ} = 1$

 $P_r(c_1 \rightarrow c_2) \approx \frac{1}{n}$

- · How do we reach the lowest energy state?
 - · Material scientists : have a "cooling schedule"
 - Cooling schedule : "first have the high temperature and then slowly decrease the temperature"
- # How to ensure reaching to lowest energy state?
- T=1, probability depends on $E(c_1) \rightarrow E(c_2)$
- \$\text{when E(c,) > E(c_2)}, \text{ generally goes to a probability \$\frac{1}{2}\$.
 - When $E(c_1) < E(c_2)$, but small chance of probability ϕ but rever 0 making mistakes

Simulated **Annealing**

How do we implement this algorithmically? Kirkpatrick, Gelatt and Veechi (1983) Replace $E(c) \rightarrow val(c)$

```
SimulatedAnnealing(initialState)
  1: C \leftarrow initialState
       C \leftarrow initialState what are the neighborn? C' \leftarrow PICKRANDOMNEIGHBOUR(C) by valid actions
          T \leftarrow \text{SCHEDULE}(t)
if val(C') = 0 then
return C' \neq 0 lowest value = \text{solution}
if val(C') < val(C) then
C \leftarrow C'
            \begin{array}{c} C \leftarrow C \\ \hline \text{clse} \\ C \leftarrow C' \text{ with Probability } \propto \exp\left\{-\frac{val(C') - val(C')}{\delta_B I}\right\} \\ \end{array}
```

- We terminate when val(c) = 0, but for some cases,
 - Optimization problems seek to minimize val(c)
 - · Schedule can be modified according to application

Constraint Satisfaction Problem (CSP)

• A CSP comprises of three components:

```
1. Set of Variables X = {x<sub>1</sub>, x<sub>2</sub>, ..., x<sub>n</sub>} in that col 1

2. Set of domains corresponding to each variable:

(1 to 4)

D: {Dx<sub>1</sub>, Dx<sub>2</sub>, ..., Dx<sub>n</sub>} where Dx<sub>i</sub> = domain(x<sub>i</sub>) 3

3. Set of constraints
```

 Find the value for each of the variable in its domain that satisfies all the constraints.

Backtracking Algorithm (Attempt II)

Before assigning value, checks if it is consistent with the previous assignments.

```
BACKTRACKINGSEARCH(prob, assign)

1: if ALLVARASSIGNED(prob, assign) then return assign

2: var \leftarrow PICKUNASSIGNEDVAR(prob, assign)

3: for value in ORDERDOMAINVALUE(var, prob, assign) do

4: if VALISCONSISTENTWITHASSIGNMENT(value, assign) then

5: assign \leftarrow assign \cup (var = value)

6: result \leftarrow BACKTRACKINGSEARCH(prob, assign)

7: if result!=failure then return result

8: assign \leftarrow assign \setminus (var = value)

9: return failure
```

Cheat sheets Page

Backtracking Algorithm with Inference

Assign value to x_i and *infer* the restrictions on rest of the variables

Backtracking Algorithm with Inference

```
BacktrackingSearch.with.Inference(prob, assign)

1: if AllVariablesAssigned(prob, assign) then return assign

2: var \leftarrow \text{PickUnassignedVar}(prob, assign) \times_3

3: for value in OrderDomainValue(var, prob, assign) do {1,2,3,4}

4: if ValisConsistentWithAssignment(value, assign) then {2,4}

5: assign \leftarrow assign \cup (var = value)

6: inference \leftarrow \text{Infer}(prob, var, assign)

7: assign \leftarrow assign \cup inference

8: if inference \vdash failure then

9: result \leftarrow \text{BacktrackingSearch.}(prob, assign)

10: if result \vdash failure then return result

11: assign \leftarrow assign \setminus \{(var = value) \cup inference\}

12: return failure
```

How to Implement INFER

INFER

The order of constraints in line 5 only impacts runtimeefficiency but not the final answer

| DSTERE/prob, two.nosign| | 1 inference + 0 only infer 1 vov | 2 inference + 0 only infer 1 vov | 3 inference + 0 only infer 1 vov | 4 inference + 0 only inference | | 5 inference + 0 only inference | | 6 inference + 0 only inference | | 7 inference + 0 only inference | | 8 inference + inference | (x \overline{x} (x)) | | 9 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 11 inference + inference | (x \overline{x} (x)) | | 12 inference + inference | (x \overline{x} (x)) | | 13 inference + inference | (x \overline{x} (x)) | | 14 inference + inference | (x \overline{x} (x)) | | 15 inference + inference | (x \overline{x} (x)) | | 16 inference + inference | (x \overline{x} (x)) | | 17 inference + inference | (x \overline{x} (x)) | | 18 inference + inference | (x \overline{x} (x)) | | 19 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 11 inference + inference | (x \overline{x} (x)) | | 12 inference + inference | (x \overline{x} (x)) | | 13 inference + inference | (x \overline{x} (x)) | | 14 inference + inference | (x \overline{x} (x)) | | 15 inference + inference | (x \overline{x} (x)) | | 16 inference + inference | (x \overline{x} (x)) | | 17 inference + inference | (x \overline{x} (x)) | | 18 inference + inference | (x \overline{x} (x)) | | 19 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inference + inference | (x \overline{x} (x)) | | 10 inf

INFER: Different Heuristics

```
| Interest | Interest
```

Backtracking Algorithm with Inference

```
BacktrackingSearch.with.Inference(prob, assign)

1: if AllVariablesAssigned(prob, assign) then return assign

2: var \leftarrow PickUnassignedVar(prob, assign) \longrightarrow what order to pick

3: for value in OrderDomanValue(var, prob, assign) do \longrightarrow what order to if VallsConsistentWithAssignMent(value, assign) then

5: assign \leftarrow assign \cup (var = value)

6: inference \leftarrow Inference

8: if inference!=failure then

9: result \leftarrow BacktrackingSearch.(prob, assign)

10: if result!=failure then return result

11: assign \leftarrow assign \setminus \{(var = value) \cup inference\}

12: return\ failure
```

Backtracking Algorithm with Inference: Different Heuristics

- PickUnassignedVar
 - Minimum Remaining Value Heuristic: Choose the next unassigned variable with the smallest domain size
 - Can allow us to backtrack quickly
 Sexhaust the possible values more easily
- OrderDomainValue
 - Least Constraining Value Heuristic: Pick a value for a variable that rules out the least domain values for other variables.
 - Can allow us to find a solution faster

Comore choices

-21