EE128 Feedback Control

Lecture 23, 11/28/2006

- State-Space Design (Ch 7)
 - Estimator Design (7.7)
 - •Reduced-Order Estimators (7.7.2)
 - -Compensator Design: Combined Control Law and Estimator (7.8)
 - -Examples

Reduced-Order Estimators

- Reduce complexity of the estimator by using the state variables that are measured directly
 - If measurements are very noise it's better to use full-order estimation
- Reduces the order of the estimator by the number of sensed outputs

Known input

$$\dot{\mathbf{x}}_{a} = \mathbf{F}_{bb}\mathbf{x}_{b} + \mathbf{F}_{ba}\mathbf{x}_{a} + \mathbf{G}_{b}\mathbf{u}$$

$$\dot{\mathbf{x}}_{a} = \dot{\mathbf{y}} = F_{aa}\mathbf{y} + \mathbf{F}_{ab}\mathbf{x}_{b} + G_{a}\mathbf{u}$$

$$\dot{\mathbf{y}} - F_{aa}\mathbf{y} - G_{a}\mathbf{u} = \mathbf{F}_{ab}\mathbf{x}_{b}$$

Known measurement

$$\mathbf{x} \leftarrow \mathbf{x}_{b}$$

$$\mathbf{F} \leftarrow \mathbf{F}_{bb}$$

$$Gu \leftarrow \mathbf{F}_{ba}y + \mathbf{G}_{b}u$$

$$y \leftarrow \dot{y} - F_{aa}y - G_{a}u$$

$$\mathbf{H} \leftarrow \mathbf{F}_{ab}$$

Substitutions in the original estimator eqs

Substitute reduced-order eqs into full-order estimator

$$\dot{\hat{\mathbf{x}}}_{b} = \mathbf{F}_{bb}\hat{\mathbf{x}}_{b} + \mathbf{F}_{ba}y + \mathbf{G}_{b}u + \mathbf{L}(\dot{y} - F_{aa}y - G_{a}u - \mathbf{F}_{ab}\mathbf{x}_{b})$$

$$\dot{\mathbf{x}}_{b} = \mathbf{x}_{b} - \hat{\mathbf{x}}_{b}$$
input
measurement
$$\dot{\hat{\mathbf{x}}}_{b} = (\mathbf{F}_{bb} - \mathbf{L}\mathbf{F}_{ab})\tilde{\mathbf{x}}_{b}$$
Derivative of the measurement!
$$\det[s\mathbf{I} - (\mathbf{F}_{bb} - \mathbf{L}\mathbf{F}_{ab})] = 0$$
Select \mathbf{L}

$$\dot{\hat{\mathbf{x}}}_{b} = (\mathbf{F}_{bb} - \mathbf{L}\mathbf{F}_{ab})\hat{\mathbf{x}}_{b} + (\mathbf{F}_{ba} - \mathbf{L}F_{aa})y + (\mathbf{G}_{b} - \mathbf{L}G_{a})u + \mathbf{L}\dot{y}$$

$$\mathbf{x}_{c} = \hat{\mathbf{x}}_{b} - \mathbf{L}y$$
Removes noisy term
$$\dot{\mathbf{x}}_{c} = (\mathbf{F}_{bb} - \mathbf{L}\mathbf{F}_{ab})\hat{\mathbf{x}}_{b} + (\mathbf{F}_{ba} - \mathbf{L}F_{aa})y + (\mathbf{G}_{b} - \mathbf{L}G_{a})u$$

Reduced-Order Estimators

Example 7.26 Design a reduced-order estimator for the pendulum that has the error pole at $-10\omega_0$

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega_0^2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
 (1) System equations

$$\begin{bmatrix} F_{aa} & \mathbf{F}_{ab} \\ \mathbf{F}_{ba} & \mathbf{F}_{bb} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -\omega_0^2 & 0 \end{bmatrix}$$

$$\begin{bmatrix} G_a \\ \mathbf{G}_b \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 (2) Partitioned matrices
$$\mathbf{x}_c = \hat{\mathbf{x}}_b - \mathbf{L}y \to \hat{x}_2 = \hat{\mathbf{x}}_b$$

(3) Characteristic equation

$$s - (0 - L) = 0$$

(4) Desired equation

$$\alpha_e(s) = s + 10\omega_0 = 0$$
$$L = 10\omega_0$$

$$\dot{\mathbf{x}}_c = (\mathbf{F}_{bb} - \mathbf{L}\mathbf{F}_{ab})\hat{\mathbf{x}}_b + (\mathbf{F}_{ba} - \mathbf{L}F_{aa})y + (\mathbf{G}_b - \mathbf{L}G_a)u$$

$$\dot{x}_c = -10\omega_0 \hat{x}_2 - \omega_0^2 y + u$$
 (5) Estimator equation

$$\hat{\mathbf{x}}_c = \hat{\mathbf{x}}_b - \mathbf{L}y \to \hat{x}_2 = \hat{\mathbf{x}}_b$$

$$\hat{x}_2 = x_c + 10\omega_0 y$$

The condition for the existence of a full or reduced-order estimator is the observability of (F,H)

Compensator Design Combined Control Law and Estimator

- **Regulator:** Combination of control law + estimator
 - can reject disturbances but has no reference input to be tracked

$$\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} - \mathbf{G}\mathbf{K}\hat{\mathbf{x}}$$

$$\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} - \mathbf{G}\mathbf{K}(\mathbf{x} - \widetilde{\mathbf{x}})$$
 Plant equation with feedback

$$\begin{bmatrix} \dot{\mathbf{x}} \\ \dot{\tilde{\mathbf{x}}} \end{bmatrix} = \begin{bmatrix} \mathbf{F} - \mathbf{G} \mathbf{K} & \mathbf{G} \mathbf{K} \\ 0 & \mathbf{F} - \mathbf{L} \mathbf{H} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \tilde{\mathbf{x}} \end{bmatrix}$$
System dynamics
$$\det \begin{bmatrix} s\mathbf{I} - \mathbf{F} + \mathbf{G} \mathbf{K} & -\mathbf{G} \mathbf{K} \\ 0 & s\mathbf{I} - \mathbf{F} + \mathbf{L} \mathbf{H} \end{bmatrix} = 0$$

$$\det(s\mathbf{I} - \mathbf{F} + \mathbf{G}\mathbf{K}) \cdot \det(s\mathbf{I} - \mathbf{F} + \mathbf{L}\mathbf{H}) = \underbrace{\alpha_c(s)\alpha_e(s)}_{|} = 0$$

The designs of control law and the estimator can be carried out independently!

Neural control Current views on the neural control of movement Motor behaviour Spinal cord Musculoskeletal mechanics Noise Movement Optimal **Afferent** Motor feedback Task selection -> commands **Efferent** control law Efferent Noise сору System state (positions, velocities, forces) Optimal Sensory state estimator feedback Scott, Nat Rev Neurosc, 2004

Neural control Current views on the neural control of movement Plant Sensor u(t) $\mathbf{X}(t)$ $\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{G}u$ H 0 y(t) Motor behaviour u(t)Control law Estimator $\hat{\mathbf{x}}(t)$ -K $L(y - H\hat{x})$ Spinal cord Compensator Musculoskeletal mechanics Noise Movement Optimal **Afferent** Motor Task selection -> feedback commands **Efferent** control law Efferent Noise сору System state (positions, velocities, forces) Sensory Optimal state estimator feedback Scott, Nat Rev Neurosc, 2004

Compensator Design Combined Control Law and Estimator

$$\dot{\hat{\mathbf{x}}} = (\mathbf{F} - \mathbf{G}\mathbf{K} - \mathbf{L}\mathbf{H})\hat{\mathbf{x}} + \mathbf{L}y$$

$$u = -\mathbf{K}\hat{\mathbf{x}}$$

$$\dot{\mathbf{x}} = \mathbf{F}\mathbf{x} + \mathbf{G}\mathbf{u}$$

$$\det(s\mathbf{I} - \mathbf{F}) = 0$$
Comparing with the general form...
$$\det(s\mathbf{I} - \mathbf{F} + \mathbf{G}\mathbf{K} + \mathbf{L}\mathbf{H}) = 0$$

$$G(s) = \frac{Y(s)}{U(s)} = \mathbf{H}(s\mathbf{I} - \mathbf{F})^{-1}\mathbf{G} + J$$

$$D_{c}(s) = \frac{U(s)}{Y(s)} = -\mathbf{K}(s\mathbf{I} - \mathbf{F} + \mathbf{G}\mathbf{K} + \mathbf{L}\mathbf{H})^{-1}\mathbf{L}$$
Compensator transfer function

$$u = -\begin{bmatrix} K_a & \mathbf{K}_b \end{bmatrix} \begin{bmatrix} x_a \\ \hat{\mathbf{x}}_b \end{bmatrix} = -K_a y - \mathbf{K}_b \hat{\mathbf{x}}_b$$
$$\dot{\mathbf{x}}_c = \mathbf{A}_r \mathbf{x}_c + \mathbf{B}_r y$$
$$u = \mathbf{C}_r \mathbf{x} + \mathbf{D}_r y$$

$$\mathbf{A}_{r} = \mathbf{F}_{bb} - \mathbf{L}\mathbf{F}_{ab} - (\mathbf{G}_{b} - \mathbf{L}G_{a})\mathbf{K}_{b}$$

$$\mathbf{B}_{r} = \mathbf{A}_{r}\mathbf{L} + \mathbf{F}_{ba} - \mathbf{L}F_{aa} - (\mathbf{G}_{b} - \mathbf{L}G_{a})K_{a}$$

$$\mathbf{C}_{r} = -\mathbf{K}_{b}$$

$$D_{r} = -K_{a} - \mathbf{K}_{b}\mathbf{L}$$

$$D_{cr}(s) = \frac{U(s)}{Y(s)} = \mathbf{C}_r(s\mathbf{I} - \mathbf{A}_r)^{-1}\mathbf{B}_r + D_r$$

Reduced-order compensator transfer function

• Full-Order Compensator Design for Satellite Attitude Control

Design a compensator using pole placement for the satellite plant $1/s^2$. Place the control poles at $s=-0.707\pm0.707j$ ($\omega_n=1$ rad/sec, $\zeta=0.707$) and place the estimator poles at $\omega_n=5$ rad/sec, $\zeta=0.5$.

$$\dot{\mathbf{x}} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$y = \begin{bmatrix} 1 & 0 \end{bmatrix} \mathbf{x}$$

$$s = -0.707 \pm 0.707 j \quad (\omega_n = 1 \text{ rad/sec}, \ \zeta = 0.7)$$

$$\alpha_c(s) = s^2 + s\sqrt{2} + 1$$

$$\mathbf{K} = \begin{bmatrix} 1 & \sqrt{2} \end{bmatrix}$$

$$\alpha_e(s) = s^2 + 5s + 25 = s + 2.5 \pm 4.3 j$$

$$\mathbf{L} = \begin{bmatrix} 5 \\ 25 \end{bmatrix}$$

$$D_c(s) = -40.4 \frac{s + 0.619}{s + 3.21 \pm 4.77 j}$$

$$1 + K \frac{s + 0.619}{(s + 3.21 \pm 4.77 j)s^2} = 0$$

• Reduced-Order Compensator Design for Satellite Attitude Control

Repeat the design for the 1/s² plant, but use a reduced order estimator. Place the

one estimator pole at -5rad/sec

$$L = 5$$

$$\dot{x}_c = -6.41x_c - 33.1y$$

$$u = -1.41x_c - 8.07y$$

$$x_c = \dot{x}_2 - 5y$$

$$D_{cr}(s) = -\frac{8.07(s + 0.619)}{s + 0.641}$$

• Full-Order Compensator Design for DC Servo

Use the state-space pole placement method to design a compensator for the DC servo system with the given transfer function. Using a state-space description in observer canonical form, place the control poles at $pc=[-1.42; -1.04\pm2.14j]$ locations and the full order estimator poles at $pe=[-4.25; -3.13\pm6.41j]$.

$$G(s) = \frac{10}{s(s+2)(s+8)}$$

$$\mathbf{F} = \begin{bmatrix} -10 & 1 & 0 \\ -16 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \mathbf{G} = \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix}$$
$$\mathbf{H} = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}, \quad J = 0$$

$$pc = \begin{bmatrix} -1.42; & -1.04 + 2.14j; & -1.04 - 2.14j \end{bmatrix}$$

$$\mathbf{K} = \begin{bmatrix} -46.4 & 5.76 & -0.65 \end{bmatrix}$$

$$pe = \begin{bmatrix} -4.25; & -3.13 + 6.41j; & -3.13 - 6.41j; \end{bmatrix}$$

$$\mathbf{L} = \begin{bmatrix} 0.5 \\ 61.4 \\ 216 \end{bmatrix}$$

$$D_c(s) = -190 \frac{(s+0.432)(s+2.10)}{(s-1.88)(s+2.94\pm8.32j)}$$

• Reduced-Order Compensator Design for Satellite Attitude Control

Design a compensator for the DC servo system by using the same control poles but with a reduced order estimator. Place the estimator poles at -4.24±4.24j positions with ω_n =6 and ζ =0.707.

$$pc = \begin{bmatrix} -4.24 + 4.24j; & -4.24 - 4.24j \end{bmatrix}$$

$$\begin{bmatrix} F_{aa} & \mathbf{F}_{ab} \\ \mathbf{F}_{ba} & \mathbf{F}_{bb} \end{bmatrix} = \begin{bmatrix} -10 & 1 & 0 \\ -16 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}, \quad \begin{bmatrix} G_a \\ \mathbf{G}_b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 10 \end{bmatrix}$$

$$det(s\mathbf{I} - \mathbf{F}_{bb} + \mathbf{L}\mathbf{F}_{ab}) = \alpha_e(s)$$

$$\mathbf{L} = \begin{bmatrix} 8.5 \\ 36 \end{bmatrix}$$

$$D_{cr}(s) = 20.93 \frac{(s - 0.735)(s + 1.871)}{s + 0.990 \pm 6.120j}$$

• **Problem 7.51**

51. A simplified model for the control of a flexible robotic arm is shown in Fig. 7.97, where

$$k/M = 900 \text{ rad/sec}^2$$
,
 $y = \text{output}$, the mass position,
 $u = \text{input}$, the position of the end of the spring.

Figure 7.97: [Text Fig. 7.97] Simple robotic arm for Problem 7.51.

- a) Write the equations of motion in state-space form.
- b) Design an estimator with roots as $s = -100 \pm 100j$.
- c) Could both state variables of the system be estimated if only a measurement of \dot{y} was available?
- d) Design a full-state feedback controller with roots at $s = -20 \pm 20j$.
- e) Would it be reasonable to design a control law for the system with roots at $s = -200 \pm 200j$? State your reasons.
- f) Write equations for the compensator, including a command input for y. Draw a Bode plot for the closed-loop system, and give the gain and phase margins for the design.