实验二 双端口存储器原理与数据通路组成实验

实验目的

- 了解IDT7132的工作特性及其使用方法
- 了解存储器读写工作原理
- 了解双端口存储器怎样并行读写
- 熟悉TEC-8模型计算机的数据通路
- 掌握数据通路中各个控制信号的作用 以及数据流动路径

□ 存储器模块

□ 完整数据通路 **DBUS** Z C INS7—INS0 M ABUS 50 D7R-D0R 7L-DOL **S1 MBUS** LDC ALU S2 双端口RAM MEMW **S3** LDZ CIN **T3** A端口 B端口 A7L-A0L A7R-A0R A7-A0 B7-B0 AR7-AR0 PC7-PC0 RSO_ RD0 4选1 4选1 RD1 RS1 CLR# CLR# 选择器B 选择器A PCADD LAR LRO LPC AR RD1 PC ARINC LR1 PCINC RD0 T3 LR2 LR3 **DBUS** LR3 LR2 LR1 DRW DRW DRW R2 DRW **R3** R1

DBUS

SWD

数据开关 SD7一SD0 SBUS

◆ 与存储器相关的指示灯

信号名称	信号灯符号
程序计数器指示灯	PC7~PC0
地址寄存器指示灯	AR7~AR0
指令寄存器指示灯	IR7∼IR0
双端口存储器右端口指示灯	INS7~INS0
数据总线指示灯	D7~D0

实验任务

- (一) 存储器读写
- 1. 从存储器中的10H单元开始,通过左端口依次连续写入4个数:85H、60H、38H、0AAH,在写入同时通过右端口进行验证。
- 2. 从存储器中的10H单元开始,连续通过左右两个端口同时读出连续4个存储单元的内容。

存储器写:

1. 将地址值10H送入AR和PC

信号名称	SBUS	LAR	LPC	ARINC	PCINC	MBUS	MEMW
SD→AR, PC							

2. 将数据85H写入指定单元[10H],同时通过右端口观察验证;然后为写(读)下一个数据做好准备

信号名称	SBUS	LAR	LPC	ARINC	PCINC	MBUS	MEMW
$SD\rightarrow (AR)$, $AR+1$,							
PC+1(滯后一步)							

3. 重复第2步工作,直到完成4个数据的写入。

存储器读:

1. 将起始地址送入AR和PC

信号名称	SBUS	LAR	LPC	ARINC	PCINC	MBUS	MEMW
SD→AR, PC							

2. 分别从左右端口读出指定单元的数据,并为读下 一个数据做好准备

电平开关							
信号名称	SBUS	LAR	LPC	ARINC	PCINC	MBUS	MEMW
$(AR) \rightarrow DBUS,$							
AR+1, PC+1							

3. 重复第2步工作,直到完成4个数据的读出。

注意:

- 任意时刻,最多只有1个数据源能向数据总 线上发送数据。即,任意时刻三态门最多只 能有1个打开。
- ●向AR送入地址时,双端口存储器的写功能 控制信号不可有效。否则,数据作为地址写 入AR的同时,也可能会作为普通数据送往 左端口写入。

(二)建立数据通路

- 1. 数28H写到寄存器R0,数89H写到寄存器R1
- 2. 将寄存器R0~R1中的数(利用B口通过ALU)分 别写入到存储器20H~21H单元中。
- 3. 再将存储器20H~21H单元中的数据分别写入到 寄存器R3~R2中。
- 4. 显示4个寄存器的值,检查数据传送是否正确。

寄存器写:

信号名称	SBUS	DRW	RD1	RDO	RS1	RS0	ABUS	CIN	M	S3	S2	S1	S0	MBUS	LAR	ARINC	MEMW
SD→ R0																	
SD→R1																	

存储器写:

1. 将地址值20H送入AR和PC

信号名 称	SBUS DRW RD1 RD0 RS1 RS0 ABUS CIN M S3—S0 MBUS LAR ARINC MIPC PCINC	EMW
$SD \rightarrow AR$		

2. 将选中的寄存器(初始选择R0)的数据通过B口经ALU写入指定单元(初始为[20H]),并为写(读)下一个数据做好准备;同时可以从存储器右端口观察上一轮写入的数据

信号名称	SBUS DRW RD1 RD0 RS1 RS0 ABUS CIN M S3—S0 MBUS LAR ARINC MEMW PC PCINC

3. 重复第2步工作,更改寄存器的选择,直到完成2个数据的写入。

存储器读并写入寄存器:

- 1. 将首地址20H送入AR
- 2. 读出存储器指定单元(初始为20H)的数据,写 入相应的寄存器(初始为R3),同时为写(读) 下一个数据做好准备

信号名称	SBUS DRW	RD1 RI	00 RS1	RS0	ABUS	CIN	M S3-	-S0	MBUS	LAR	ARINC	MEMW
Ri→ALU												
\rightarrow M												

3. 重复第2步工作,直到完成4个数据的操作。

寄存器读出验证:

信号名称	SBUS	DRW	RD1	RD0	RS1	RS0	ABUS	CIN	M	S3	S2	S1	S0	MBUS	LAR	ARINC	MEMW
Ri→DB US																	

注意:

- ●往AR送地址时,存储器写数据时,避免改写寄存器中的数值;
- ●往寄存器写数据时,避免对AR和存储单元的内容进行改写。
- ●利用ALU的B口进行数据传送的信号值: M=1, S3-S0=1010, CIN=1

注意: DRW, MEMW, LAR等信号间的关系