RICOH

R3111x SERIES

LOW VOLTAGE DETECTOR

NO.EA-056-120423

OUTLINE

The R3111x series are CMOS-based voltage detector ICs with high detector threshold accuracy and ultra-low supply current, which can be operated at an extremely low voltage and is used for system reset as an example.

Each of these ICs consists of a voltage reference unit, a comparator, resistors for detector threshold setting, an output driver and a hysteresis circuit. The detector threshold is fixed with high accuracy internally and does not require any adjustment.

Three output types, Nch open drain "L" type, Nch open drain "H" type and CMOS type are available.

The R3111x Series are operable at a lower voltage than that for the Rx5VL series, and can be driven by a single battery.

Seven types of packages, TO-92 (Discontinued), SOT-89, SOT-23-3, SOT-23-5, SC-82AB, SC-88A and SON1612-6 are available.

FEATURES

Supply Current	Τyp. 0.8μA (-Vdet=1.5V, Vdd=-Vdet-0.1V)
Operating Voltage Range	0.7V to 10.0V (Topt=25°C)
Detector Threshold Range	0.9V to 6.0V (0.1V steps)
	(For other voltages, please refer to MARK INFORMATIONS.)
Detector Threshold Accuracy	±2.0%
Temperature-Drift Coefficient of Detector Threshol	ldTyp. ±100ppm/°C
Output Types	Nch Open Drain "L", Nch Open Drain "H", and
	CMOS
Packages	SON1612-6, SC-82AB, SC-88A, SOT-23-3,
	SOT-23-5, SOT-89, TO-92 (Discontinued)

APPLICATIONS

- CPU and Logic Circuit Reset
- · Battery Checker
- Window Comparator
- · Wave Shaping Circuit
- Battery Back-up Circuit
- Power Failure Detector

BLOCK DIAGRAMS

R3111xxxxA R3111xxxxB VDD OUT VDD Vref Vref GND

R3111xxxxC

SELECTION GUIDE

The package type, the detector threshold, the output type and the taping type for the ICs can be selected at the users' request. The selection can be made with designating the part number as shown below;

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R3111Dxx1*-TR-FE	SON1612-6	4,000 pcs	Yes	Yes
R3111Qxx1*-TR-FE	SC-82AB	3,000 pcs	Yes	Yes
R3111Qxx2*-TR-FE	SC-88A	3,000 pcs	Yes	Yes
R3111Nxx2\$-TR-FE	SOT-23-3	3,000 pcs	Yes	Yes
R3111Nxx1\$-TR-FE	SOT-23-5	3,000 pcs	Yes	Yes
R3111Hxx1\$-T1-FE	SOT-89	1,000 pcs	Yes	Yes
R3111Exx1\$-TZ-F	TO-92 (Discontinued)	2,500 pcs	Yes	No

xx: The detector threshold can be designated in the range from 0.9V(09) to 6.0V(60) in 0.1V steps. (For other voltages, please refer to MARK INFORMATIONS.)

- * : Designation of Output Type
 - (A) Nch Open Drain (Output "L" at Detection)
 - (B) Nch Open Drain (Output "H" at Detection)
 - (C) CMOS (Output "L" at Detection)
- \$: Designation of Output Type
 - (A) Nch Open Drain (Output "L" at Detection)
 - (C) CMOS (Output "L" at Detection)

PIN CONFIGURATIONS

PIN DESCRIPTIONS

● TO-92 (Discontinued)

Pin No.	Symbol
1	V _{DD}
2	GND
3	OUT

● SOT-89

Pin No.	Symbol
1	OUT
2	V _{DD}
3	GND

● SOT-23-3

Pin No.	Symbol
1	OUT
2	GND
3	V _{DD}

● SOT-23-5

Pin No.	Symbol
1	OUT
2	V_{DD}
3	GND
4	NC
5	NC

• SC-82AB

Pin No.	Symbol
1	OUT
2	V _{DD}
3	NC
4	GND

• SC-88A

Pin No.	Symbol
1	OUT
2	NC
3	V_{DD}
4	NC
5	GND

• SON1612-6

Pin No.	Symbol		
1	OUT		
2	V_{DD}		
3	GND		
4	NC		
5	V _{DD}		
6	NC		

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Rating	Unit
V _{DD}	Supply Voltage	12	V
Vout	Output Voltage (CMOS)	Vss-0.3 to V _{DD} +0.3	V
V 001	Output Voltage (Nch)	Vss-0.3 to 12	
Іоит	Output Current	70	mA
	Power Dissipation (TO-92)* (Discontinued)	300	
	Power Dissipation (SOT-89)*	900	
	Power Dissipation (SOT-23-3)* 420		
P _D	Power Dissipation (SOT-23-5)*	420	mW
	Power Dissipation (SC-82AB)* 380		
	Power Dissipation (SC-88A)*	380	
	Power Dissipation (SON1612-6)*	500	
Topt	Operating Temperature Range	-40 to 85	°C
Tstg	Storage Temperature Range	-55 to 125	°C

^{*)} For Power Dissipation, please refer to PACKAGE INFORMATION.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the permanent damages and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if when they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

ELECTRICAL CHARACTERISTICS

• **R3111xxxxA** Topt=25°C

Symbol	Item		Condi	tions		Min.	Тур.	Max.	Unit	
-V _{DET}	Detector Threshold				-V _{DET} × 0.98		-V _{DET} × 1.02	V		
V _{HYS}	Detector Threshold Hysteresis					-V _{DET} × 0.03	-V _{DET} × 0.05	-V _{DET} × 0.07	V	
	0.9V ≤ -V _{DET} < 2.0V V _{DD} =-V _{DET} −0.10V	VDET -0.10V		0.8	2.4					
		0.5 V	V _{DD} =-V _{DET} +2.0V			1.0	3.0			
		2 01/	≤ -V _{DET} < 3.0V	V _{DD} =-	VDET -0.10V		0.9	2.7		
		2.00	= - V DET < 3.0 V	V _{DD} =-	V _{DET} +2.0V		1.1	3.3		
Iss	Supply Current	3 0\/	≤-V _{DET} <4.0V	V _{DD} =-	VDET -0.13V		1.0	3.0	μА	
133	Cupply Culterit	J.0 V	= - V DET < 4.0 V	V _{DD} =-	V _{DET} +2.0V		1.2	3.6	μΑ	
		4 0\/	≤-VDET<5.0V	V _{DD} =-	VDET -0.16V		1.1	3.3		
		4.0V \$ -VDET < 5.0V		V _{DD} =-	V _{DET} +2.0V		1.3	3.9		
		5.0V ≤ -V _{DET} ≤ 6.0V		V _{DD} =-	VDET -0.20V		1.2	3.6		
		J.0 V	= - V DET = 0.0 V	V _{DD} =-	VDET +2.0V		1.4	4.2		
V _{DDH}	Maximum Operating Voltage							10	V	
V _{DDL}	Minimum Operating	Topt=	=25°C				0.55	0.70	V	
V DDL	Voltage*1	-40°C	C ≤ Topt ≤ 85°C	;			0.65	0.80	v	
			V _{DS} =0.05V, V _I	op=0.70	V	0.01	0.05		mA	
	Output Current		0.9V ≤ -V _{DET} <	1.1V	V _{DS} =0.50V V _{DD} =0.85V	0.05	0.5			
Іоит	IOUT (Driver Output Pin) Nch	1.1V ≤ -V _{DET <}	1.6V	V _{DS} =0.50V V _{DD} =1.00V	0.2	1.0		mA		
			$1.6V \le -V_{DET} \le 6.0V$ $V_{DD}=0.50V$ $V_{DD}=1.50V$		1.0	2.0				
t PLH	Output Delay Time*2						100	μS		
Δ-V _{DET} / ΔTopt	Detector Threshold Temperature Coefficient	-40°C	–40°C ≤ Topt ≤ 85°C				±100		ppm/°	

^{*1:} Minimum operating voltage means the value of input voltage when output voltage maintains 0.1V or less. (In the case of the output pin is pulled up with a resistance of $470k\Omega$ to 5.0V.)

^{*2:} The output pin is pulled up with a resistance of $470k\Omega$ to 5.0V, the time interval between the rising edge of V_{DD} input pulse from 0.7V to $(+V_{DET})$ +2.0V and output voltage level becoming to 2.5V.

• **R3111xxxxB** Topt=25°C

Symbol	Item		Condi	tions	Min.	Тур.	Max.	Unit
-V _{DET}	Detector Threshold				-V _{DET} × 0.98		-V _{DET} × 1.02	V
V _{HYS}	Detector Threshold Hysteresis				-V _{DET} × 0.03	-V _{DET} × 0.05	-V _{DET} × 0.07	V
		0.01/ <	≤ -VDET < 2.0V	V _{DD} =-V _{DET} -0.10V		0.8	2.4	
		0.90	S-VDET< 2.0 V	V _{DD} =-V _{DET} +2.0V		1.0	3.0	
		2 0\/ <	≤ -V _{DET} < 3.0V	V _{DD} =-V _{DET} -0.10V		0.9	2.7	
		2.00	= -VDET < 3.0 V	V _{DD} =-V _{DET} +2.0V		1.1	3.3	
Iss	Supply Current	3 0\/ <	≤ -V _{DET} < 4.0V	V _{DD} =-V _{DET} -0.13V		1.0	3.0	Δ
155	Supply Current	J.0 V =	= -VDET < 4.0 V	V _{DD} =-V _{DET} +2.0V		1.2	3.6	μΑ
		4.0V ≤ -V _{DET} < 5.0V	V _{DD} =-V _{DET} -0.16V		1.1	3.3		
		7.0V -	= -V DET < 3.0 V	V _{DD} =-V _{DET} +2.0V		1.3	3.9	
		5.0\/ <	5.0V ≤ -V _{DET} ≤ 6.0V V _{DE}	VDD=-VDET -0.20V		1.2	3.6	
		3.00	S-VDET 30.0V	V _{DD} =-V _{DET} +2.0V		1.4	4.2	
V _{DDH}	Maximum Operating Voltage						10	V
V _{DDL}	Minimum Operating	Topt=	25°C			0.55	0.70	V
V DDL	Voltage*1	-40°C	: ≤ Topt ≤ 85°C	,		0.65	0.80	V
Іоит	Output Current (Driver Output Pin)	Nch	Nch V _{DS} =0.10V, V _{DD} =6.5V		2.5			mA
t PLH	Output Delay Time*2						100	μS
Δ-V _{DET} / ΔTopt	Detector Threshold Temperature Coefficient	-40°C	–40°C ≤ Topt ≤ 85°C			±100		ppm/°

^{*1:} Minimum operating voltage means the value of input voltage when output voltage maintains 0.1V or less. (In the case of the output pin is pulled up with a resistance of $470k\Omega$ to 5.0V.)

^{*2:} The output pin is pulled up with a resistance of $470k\Omega$ to 5.0V, the time interval between the rising edge of V_{DD} input pulse from 0.7V to $(+V_{DET})$ +2.0V and output voltage level becoming to 2.5V.

R3111x

• **R3111xxxxC** Topt=25°C

Symbol	Item		Condi	Min.	Тур.	Max.	Unit			
-V _{DET}	Detector Threshold			-V _{DET} × 0.98		-V _{DET} × 1.02	V			
V _{HYS}	Detector Threshold Hysteresis			-V _{DET} × 0.03	-V _{DET} × 0.05	-V _{DET} × 0.07	V			
	Supply Current	0.9V ≤ -V _{DET} < 2.0V		V _{DD} =-	-VDET -0.10V		0.8	2.4		
				V _{DD} =-V _{DET} +2.0V			1.0	3.0		
		2.0V ≤ -V _{DET} < 3.0V		V _{DD} =-	-VDET -0.10V		0.9	2.7		
				V _{DD} =-	-V _{DET} +2.0V		1.1	3.3		
Iss		3.0V ≤ -V _{DET} < 4.0V		V _{DD} =-	VDD=-VDET -0.13V		1.0	3.0	Δ	
155				V _{DD} =-V _{DET} +2.0V			1.2	3.6	μΑ	
		4.0V ≤ -V _{DET} < 5.0V		V _{DD} =-	-VDET -0.16V		1.1	3.3		
				V _{DD} =-	-V _{DET} +2.0V		1.3	3.9	_	
		5.0V ≤ -V _{DET} ≤ 6.0V		V _{DD} =-	-VDET -0.20V		1.2	3.6		
				V _{DD} =-	-V _{DET} +2.0V		1.4	4.2		
V _{DDH}	Maximum Operating Voltage							10	V	
V _{DDL}	Minimum Operating	Topt=	:25°C		0.55	0.70	V			
V DDL	Voltage*1	-40°C	C ≤ Topt ≤ 85°C			0.65	0.80	V		
			V _{DS} =0.05V, V _{DD} =0.70V		0.01	0.05		mA		
			0.9V ≤ -V _{DET} < 1.1V		V _{DS} =0.50V V _{DD} =0.85V	0.05	0.5			
	Output Current (Driver Output Pin)	Nch	1.1V ≤ -V _{DET} < 1.6V		V _{DS} =0.50V V _{DD} =1.00V	0.2	1.0			
Іоит			1.6V ≤ -V _{DET} ≤ 6.0V		V _{DS} =0.50V V _{DD} =1.50V	1.0	2.0		mA	
		Pch	0.9V ≤ -V _{DET} < 4.0V		V _{DS} =-2.1V V _{DD} =4.5V	1.0	2.0			
			4.0V ≤ -V _{DET} ≤ 6.0V		V _{DS} =-2.1V V _{DD} =8.0V	1.5	3.0			
t PLH	Output Delay Time*2						100	μS		
Δ-V _{DET} / ΔTopt	Detector Threshold Temperature Coefficient	-40°C	C ≤ Topt ≤ 85°C		±100		ppm/° C			

^{*1:} Minimum operating voltage means the value of input voltage when output voltage maintains 0.1V or less.

^{*2:} The time interval between the rising edge of V_{DD} input pulse from 0.7V to $(+V_{DET}) + 2.0V$ and output voltage level becoming to $((+V_{DET}) + 2.0V)/2$.

TIMING CHART

DEFINITION OF OUTPUT DELAY TIME

Output Delay Time (tplh) is defined as follows:

- In the case of Nch Open Drain Output:(R3111xxxxA/B)
 Under the condition of the output pin (OUT) is pulled up through a resistor of 470kΩ to 5V, the time interval between the rising edge of V_{DD} pulse from 0.7V to (+V_{DET})+2.0V and becoming of the output voltage to 2.5V.
- 2. In the case of CMOS Output:(R3111xxxxC)

 The time interval between the rising edge of V_{DD} pulse from 0.7V to (+V_{DET})+2.0V and becoming of the output voltage to ((+V_{DET})+2.0V)/2.

ELECTRICAL CHARACTERISTICS BY DETECTOR THRESHOLD

• R3111x09x to R3111x60x

Part	Detec	tor Thre	shold	Detector Threshold Hysteresis			Supply Current 1			Supply Current 2		
Number	-VDET[V]			VHYS[V]			Iss1[μA]			Iss2[μA]		
	Min.	Тур.	Max.	Min.	Тур.	Max.	Condition	Тур.	Max.	Condition	Тур.	Max.
R3111x09xx	0.882	0.900	0.918	0.027	0.045	0.063		71			0.9	2.7
R3111x10xx	0.980	1.000	1.020	0.030	0.050	0.070						
R3111x11xx	1.078	1.100	1.122	0.033	0.055	0.077						
R3111x12xx	1.176	1.200	1.224	0.036	0.060	0.084					4.0	
R3111x13xx	1.274	1.300	1.326	0.039	0.065	0.091			2.4			
R3111x14xx	1.372	1.400	1.428	0.042	0.070	0.098		0.8				0.0
R3111x15xx	1.470	1.500	1.530	0.045	0.075	0.105					1.0	3.0
R3111x16xx	1.568	1.600	1.632	0.048	0.080	0.112						
R3111x17xx	1.666	1.700	1.734	0.051	0.085	0.119						
R3111x18xx	1.764	1.800	1.836	0.054	0.090	0.126	V _{DD} =					
R3111x19xx	1.862	1.900	1.938	0.057	0.095	0.133	(-VDET)					
R3111x20xx	1.960	2.000	2.040	0.060	0.100	0.140	-0.10V					
R3111x21xx	2.058	2.100	2.142	0.063	0.105	0.147						
R3111x22xx	2.156	2.200	2.244	0.066	0.110	0.154					1.1	
R3111x23xx	2.254	2.300	2.346	0.069	0.115	0.161						
R3111x24xx	2.352	2.400	2.448	0.072	0.120	0.168		0.9	2.7			3.3
R3111x25xx	2.450	2.500	2.550	0.075	0.125	0.175		0.9				
R3111x26xx	2.548	2.600	2.652	0.078	0.130	0.182						
R3111x27xx	2.646	2.700	2.754	0.081	0.135	0.189						
R3111x28xx	2.744	2.800	2.856	0.084	0.140	0.196						
R3111x29xx	2.842	2.900	2.958	0.087	0.145	0.203						
R3111x30xx	2.940	3.000	3.060	0.090	0.150	0.210						
R3111x31xx	3.038	3.100	3.162	0.093	0.155	0.217						
R3111x32xx	3.136	3.200	3.264	0.096	0.160	0.224						
R3111x33xx	3.234	3.300	3.366	0.099	0.165	0.231	VDD=			V _{DD} =		
R3111x34xx	3.332	3.400	3.468	0.102	0.170	0.238	(-VDET)	1.0	3.0	(-VDET)	1.2	3.6
R3111x35xx	3.430	3.500	3.570	0.105	0.175	0.245	-0.13V			+2.0V		
R3111x36xx	3.528	3.600	3.672	0.108	0.180	0.252	-0.13V			⊤2.0 V		
R3111x37xx	3.626	3.700	3.774	0.111	0.185	0.259						
R3111x38xx	3.724	3.800	3.876	0.114	0.190	0.266						
R3111x39xx	3.822	3.900	3.978	0.117	0.195	0.273			<u> </u>			
R3111x40xx	3.920	4.000	4.080	0.120	0.200	0.280						
R3111x41xx	4.018	4.100	4.182	0.123	0.205	0.287						
R3111x42xx	4.116	4.200	4.284	0.126	0.210	0.294						
R3111x43xx	4.214	4.300	4.386	0.129	0.215	0.301	V _{DD} =					
R3111x44xx	4.312	4.400	4.488	0.132	0.220	0.308	(-VDET)	1.1	3.3		1.3	3.9
R3111x45xx	4.410	4.500	4.590	0.135	0.225	0.315	-0.16V					
R3111x46xx	4.508 4.606	4.600 4.700	4.692 4.794	0.138	0.230	0.322	5.101					
R3111x47xx				0.141	0.235	0.329						
R3111x48xx R3111x49xx	4.704 4.802	4.800 4.900	4.896 4.998	0.144 0.147	0.240 0.245	0.336						
R3111x49xx	4.802	5.000	5.100	0.147	0.245	0.343						
	4.900		5.100		0.255							
R3111x51xx		5.100	5.202	0.153		0.357						
R3111x52xx R3111x53xx	5.096 5.194	5.200 5.300	5.406	0.156 0.159	0.260 0.265	0.364						
R3111x54xx	5.194	5.400	5.508	0.162	0.203	0.371	V _{DD} =					
R3111x55xx	5.292	5.500	5.610	0.162	0.275	0.376	(-VDET)	1.2	3.6		1.4	4.2
	5.488						, ,	1.2	3.0		1.4	7.2
R3111x56xx R3111x57xx	5.488	5.600 5.700	5.712 5.814	0.168 0.171	0.280 0.285	0.392	-0.20V					
R3111x57xx			5.916		0.200							
	5.684	5.800		0.174		0.406						
R3111x59xx R3111x60xx	5.782 5.880	5.900 6.000	6.018 6.120	0.177 0.180	0.295	0.413 0.420						
							\/pc=\\2.0\/_time					<u> </u>

^{*1)} In the case of CMOS output type; when the voltage is forced to VDD from 0.7V to (+VDET)+2.0V, time interval between the rising edge of VDD and the reaching point at ((+VDET)+2.0V)/2. In the case of Nch open drain output type: The output pin up to 5V through 470kΩ, and when the voltage is forced to VDD from 0.7V to (+VDET)+2.0V)/2.

Condition 1: Topt=25°C Condition 2: -40°C \leq Topt \leq 85°C

^{*2)} Vod value when Output Voltage is equal or less than 0.1V. In the case of Nch open drain output type, the output pin is pulled up to 5V through 470kΩ resistor.

Output Current 1				Output Cu		3	Output Delay Time	Detector Three Temperature Cod	ture Coefficient		
Iout1[mA]			IOUT2[mA]				tpLH[μs]		g Voltage ∟[V]	Δ-VDET/ΔTopt[ppm/°C]	
Condition	Min.	Тур.	Cond	dition	Min.	Тур.	Max.	Тур.	Max.	Condition	Тур.
				VDD= 0.85V VDD= 1.0V	0.05	1.0					
 Nch Vbs=0.05V Vbb=0.7V	0.01	0.05	Nch Vps=	VDD=	1.0	2.0	100 * ¹	*2 Condition 1 0.55	*2 Condition 1 0.70	–40°C ≦ Topt	±100
<b version=""> Nch Vds=0.10V Vdd=6.5V	2.5	-	0.5V	1.5V		2.0		Condition 2 0.65	Condition 2 0.80	≦ 85°C	

^{*3)} Only A/C versions.

OPERATION

Operation of R3111xxxxA

OUT pin should be pulled-up to VDD or an external voltage level.

Block Diagram (R3111xxxxA)

Explanation of operation

- Step 1. The output voltage is equal to the pull-up voltage.
- Step 2. At Point "A", Vref ≥ VDD×(Rb+Rc)/(Ra+Rb+Rc) is true, as a result, the output of comparator is reversed from "H" to "L", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-VDET).
- Step 3. When the supply voltage is lower than the minimum operating voltage, the operation of the output transistor becomes indefinite. The output voltage is equal to the pull-up voltage.
- Step 4. The output Voltage is equal to the GND level.
- Step 5. At Point "B", Vref ≤ V_{DD}×Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "L" to "H", then the output voltage is equal to the pull-up voltage. The voltage level of Point B means a released voltage (+V_{DET}).
- *) The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.

Operation of R3111xxxxB

OUT pin should be pulled-up to V_{DD} or an external voltage level.

Block Diagram (R3111xxxxB)

Ste	0	1	2	3
Comparator Pin Input Vo		_	II	I
Comparator	Output	L	Н	L
Tr.1		OFF	ON	OFF
Output Tr.	Nch	ON	OFF	ON

$$\begin{array}{ccc} I & \frac{Rb+Rc}{Ra+Rb+Rc} \times V_{DD} \\ \\ II & \frac{Rb}{Ra+Rb} & \times V_{DD} \\ \end{array}$$

Explanation of operation

- Step 1. The output voltage is equal to the GND level.
- Step 2. At Point "A", Vref ≥ V_{DD×}(Rb+Rc)/(Ra+Rb+Rc) is true, as a result, the output of comparator is reversed from "L" to "H", therefore the output voltage becomes the pull-up voltage. The voltage level of Point A means a detector threshold voltage (-V_{DET}).
- Step 3. At Point "B", Vref ≤ V_{DD}×Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "H" to "L", then the output voltage is equal to the GND level. The voltage level of Point B means a released voltage (+V_{DET}).
- *) The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.

Operation of R3111xxxxC

Block Diagram (R3111xxxxC)

Explanation of operation

- Step 1. The output voltage is equal to the supply voltage (VDD).
- Step 2. At Point "A", Vref ≥ V_{DD×}(Rb+Rc)/(Ra+Rb+Rc) is true, as a result, the output of comparator is reversed from "H" to "L", therefore the output voltage becomes the GND level. The voltage level of Point A means a detector threshold voltage (-V_{DET}).
- Step 3. When the supply voltage is lower than the minimum operating voltage, the operation of the output transistor becomes indefinite.
- Step 4. The output Voltage is equal to the GND level.
- Step 5. At Point "B", Vref ≤ V_{DD}×Rb/(Ra+Rb) is true, as a result, the output of comparator is reversed from "L" to "H", then the output voltage is equal to the supply voltage (V_{DD}). The voltage level of Point B means a released voltage (+V_{DET}).
- *) The difference between a released voltage and a detector threshold voltage is a detector threshold hysteresis.

TEST CIRCUITS

Supply Current Test Circuit

Detector Threshold Test Circuit (Pull-up circuit is not necessary for CMOS Output type.)

Nch Driver Output Current Test Circuit

Pch Driver Output Current Test Circuit

*Apply to CMOS Output type only

Output Delay Time Test Circuit (1) (Pull-up circuit is not necessary for CMOS Output type.)

Output Delay Time Test Circuit (2)

TYPICAL CHARACTERISTICS

1) Supply Current vs. Input Voltage

2) Detector Threshold Hysteresis vs. Temperature

3) Output Voltage vs. Input Voltage R3111x09xC

Output Voltage Voun(V)

R3111x

4) Nch Driver Output Current vs. V_{DS}

5) Nch Driver Output Current vs. Input Voltage

6) Pch Driver Output Current vs. Input Voltage

7) Output Delay Time vs. Load Capacitance (Topt=25°C)

8) Output Delay Time vs. Input Pin Capacitance R3111x09xA

TYPICAL APPLICATION

• R3111xxxxA CPU Reset Circuit (Nch Open Drain Output)

Case 1. Input Voltage to R3111xxxxA is equal to Input Voltage to CPU

Case 2. Input Voltage to R3111xxxxA is unequal to Input Voltage to CPU

• R3111xxxxC CPU Reset Circuit (CMOS Output)

 R3111xxxxA Output Delay Time Circuit 1 (Nch Open Drain Output)

 R3111xxxxA Output Delay Time Circuit 2 (Nch Open Drain Output)

Memory Back-up Circuit

 Voltage level Indicator Circuit (lighted when the power runs out) (Nch Open Drain Output)

 Detector Threshold Adjustable Circuit (Nch Open Drain Output)

Adjusted Detector Threshold $=(-V_{DET})\times(Ra+Rb)/Rb$

Hysteresis Voltage =(V_{HYS})×(Ra+Rb)/Rb

*) If the value of Ra is set excessively large, voltage drop may occur caused by the supply current of IC itself, and detector threshold may vary.

 Window Comparator Circuit (Nch Open Drain Output)

• Over-charge Preventing Circuit

TECHNICAL NOTES

When R3111xxxxA/B (Nch Open Drain Output Type) is used in Figure A or Figure B, if impedance of Voltage Supply pin, V_{DD} and V_{DD} of this IC is large, detector threshold level would shift by voltage dropdown caused by the consumption current of the IC itself. Released voltage may also shift and delay time for start-up might be generated by this usage.

When R3111xxxxC (CMOS Output Type) is used in Figure A or Figure B, Output level could be unstable by cross conduction current which is generated at detector threshold level or at released voltage level, therefore, do not use this IC with the connection in Figure A or Figure B.

The connection in Figure C may cause the oscillation in both R3111xxxxC (CMOS Output) and R3111xxxxA/B (Nch Open Drain Output), therefore do not use R3111x Series with the connection in Figure C.

- 1. The products and the product specifications described in this document are subject to change or discontinuation of production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer to Ricoh sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of Ricoh.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under Ricoh's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, firecontainment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. Please contact Ricoh sales representatives should you have any questions or comments concerning the products or the technical information.

RICOH COMPANY, LTD. Electronic Devices Company

■Ricoh presented with the Japan Management Quality Award for 1999.

Ricoh continually strives to promote customer satisfaction, and shares the achievements of its management quality improvement program with people and society.

■Ricoh awarded ISO 14001 certification.

The Ricoh Group was awarded ISO 14001 certification, which is an international standard for environmental management systems, at both its domestic and overseas production facilities. Our current aim is to obtain ISO 14001 certification for all of our business offices.

http://www.ricoh.com/LSI/

RICOH COMPANY, LTD.

Higashi-Shinagawa Office (International Sales) 3-32-3, Higashi-Shinagawa, Shinagawa-ku, Tokyo 140-8655, Japan Phone: +81-3-5479-2857 Fax: +81-3-5479-0502

RICOH EUROPE (NETHERLANDS) B.V.

Semiconductor Support Centre

Prof. W.H.Keesomlaan 1, 1183 DL Amstelveen, The Netherlands P.O.Box 114, 1180 AC Amstelveen Phone: +31-20-5474-309 Fax: +31-20-5474-791

RICOH ELECTRONIC DEVICES KOREA Co., Ltd.

11 floor, Haesung 1 building, 942, Daechidong, Gangnamgu, Seoul, Korea Phone: +82-2-2135-5700 Fax: +82-2-2135-5705

RICOH ELECTRONIC DEVICES SHANGHAI Co., Ltd.
Room403, No.2 Building, 690#Bi Bo Road, Pu Dong New district, Shanghai 201203,

People's Republic of China Phone: +86-21-5027-3200 Fax: +86-21-5027-3299

RICOH COMPANY, LTD.
Electronic Devices Company

Taipei office

Room109, 10F-1, No.51, Hengyang Rd., Taipei City, Taiwan (R.O.C.) Phone: +886-2-2313-1621/1622 Fax: +886-2-2313-1623

Ricoh completed the organization of the Lead-free production for all of our products.

After Apr. 1, 2006, we will ship out the lead free products only. Thus, all products that will be shipped from now on comply with RoHS Directive.