

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ ВЯТСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Факультет автоматики и вычислительной техники Кафедра электронных вычислительных машин

Методические рекомендации по выполнению лабораторной работы №8

Тема: «Изучение работы классического эволюционного алгоритма»

Спец. 080801 «Прикладная информатика в экономике», 5 курс

Киров 2010

УДК 519. 322

Методические указания для лабораторных работ по курсу «Интеллектуальные информационные системы» / Вятский государственный университет. Киров, 2010, 9с./

Составитель к.т.н., доцент кафедры ЭВМ В.С. Ростовцев

[©] Вятский государственный университет, 2010г.

© Ростовцев В.С.

Лабораторная работа «Изучение классического эволюционного алгоритма»

Целью выполнения лабораторной работы является изучение классического эволюционного алгоритма (ЭА). Работа выполняется с помощью учебной программы GA.exe(версия от 14 октября 2010).

1.1 Порядок выполнения лабораторной работы

Вариант задания выдаётся студенту преподавателем (от 1 до 18).

$(x,y)=-x*e^{-x^2-y^2-0.3}$ $(x,y)=-x*e^{-x^2-y^2-0.3}$	изменения параметров x[-6;6] y[-6;6]	max
	x[-6;6]	max
		max
v v)—_v*o-x2-y2-0,3	y[-6;6]	
$(x,y) = x *_{\Theta} -x^2 - y^2 - 0.3$		
x,y	x[-6;6]	min
	y[-6;6]	
$(x,y)=-x^2*e^{1-x^2-20*(x-y)^2}$	x[-6;6]	max
	y[-6;6]	
$(x,y)=-x^2*e^{1-x^2-20*(x-y)^2}$	x[-6;6]	min
	y[-6;6]	
$(x,y)=-x^2+0.5*y+(1-1.5*x)^2+(1-1.5*x)^2$	x[-6;6]	max
$(y)^2$	y[-6;6]	
$(x,y)=-x^2+0.5*y+(1-1.5*x)^2+(1-1.5*x)^2$	x[-6;6]	min
$(y)^2$	y[-6;6]	
<u> </u>	$x,y)=-x^{2}*e^{1-x^{2}-20*(x-y)^{2}}$ $x,y)=-x^{2}*e^{1-x^{2}-20*(x-y)^{2}}$ $x,y)=-x^{2}+0,5*y+(1-1,5*x)^{2}+(1-1,5*x)^{2}$ $x,y)=-x^{2}+0,5*y+(1-1,5*x)^{2}+(1-1,5*x)^{2}+(1-1,5*x)^{2}$	$y[-6;6]$ $x,y)=-x^{2*}e^{1-x^{2}-20*(x-y)^{2}}$ $x[-6;6]$ $y[-6;6]$ $x,y)=-x^{2*}e^{1-x^{2}-20*(x-y)^{2}}$ $x[-6;6]$ $y[-6;6]$ $x,y)=-x^{2}+0.5*y+(1-1.5*x)^{2}+(1-x^{2}-6;6]$ $x,y)=-x^{2}+0.5*y+(1-1.5*x)^{2}+(1-x^{2}-6;6]$ $x,y)=-x^{2}+0.5*y+(1-1.5*x)^{2}+(1-x^{2}-6;6]$

$y[-6;6]$ $z[-6;6]$ $8 F(x,y)=(x-2)^2+(y-5)^2+(z+2)^2-16-x+y-z x[-6;6]$ $y[-6;6]$	min
8 $F(x,y)=(x-2)^2+(y-5)^2+(z+2)^2-16-x+y-z$ $x[-6;6]$	min
	min
y[-6;6]	
z[-6;6]	
9 $F(x,y)=-20-x^2-y^2+10*\cos(x)+10*\sin(y)$ $x[-6;6]$	max
y[-6;6]	
10 $F(x,y)=-20 -x^2 -y^2 + 10 \cos(x) + 10 \sin(y)$ $x[-6;6]$	Min
y[-6;6]	
11 $F(x,y)=x^2+y^2+40*\sin(x)*\sin(y)$ $x[-6;6]$	max
y[-6;6]	
12 $F(x,y)=x^2+y^2+40*\sin(x)*\sin(y)$ $x[-6;6]$	Min
y[-6;6]	
13 $F(x,y)= e^{(x+y)} / e^{(x^2+y^2)}$ $x[-6;6]$	max
y[-6;6]	
14 $F(x,y)= e^{(x+y)} / e^{(x^2+y^2)}$ $x[-6;6]$	Min
y[-6;6]	
15 $F(x,y) = (y+1)^2 - x^2 + y^2 (+(z-1)^2 + z^2 - (x+1)^2) \qquad x[-6;6]$	max
y[-6;6]	
z[-6;6]	
16 $F(x,y)=(y+1)^2-x^2+y^2(+(z-1)^2+z^2-(x+1)^2)$ $x[-6;6]$	Min
y[-6;6]	

		z[-6;6]	
17	$F(x,y) = (x-1)^2 + (y+2)^2 + (z-2)^2 + (t+1)^2 + z-$	x[-6;6]	max
	y+x-t	y[-6;6]	
		z[-6;6]	
		t[-6;6]	
18	$F(x,y)= (x-1)^2+(y+2)^2+(z-2)^2+(t+1)^2+z-$	x[-6;6]	Min
	y+x-t	y[-6;6]	
		z[-6;6]	
		t[-6;6]	

1.1 Порядок выполнения лабораторной работы

- 1.1.1 Получить у преподавателя вариант задания.
- 1.1.2 Запустить программу GA.exe и выбрать номер варианта. Для этого установить в главном меню (рис.1) формат переменных (4 знака после запятой) и вид экстремума (min или max) согласно заданию. Минимальное количество поколений подбирается экспериментально.
- 1.1.3 Ha этапе выбрать классическую последовательность выполнения операторов, определив порядок вычислений, и провести несколько экспериментов изменяя параметры ЭА. Для этого очистить поле ПОРЯДОК ВЫЧИСЛЕНИЙ и кнопкой ДОБАВИТЬ выбрать последовательно оператор селекции, оператор скрещивания оператор мутации. Предварительно определить целесообразность использования кода Грея и увеличение числа поколений, выполнив для этого несколько экспериментов. Результаты занести в таблицу 1 и сделать выводы по эффективности и точности проведённых экспериментов.

1.1.4 На 2 этапе самостоятельно изменить порядок вычислений не менее 10 раз и провести эксперименты добавляя или исключая параметры ЭА (операторы селекции, скрещивания и мутации). По результатам выполнения экспериментов оформляются выводы о том, как влияет изменение порядка применения операторов ЭА или их исключения.

Рисунок1 - Главное меню программы

- 1.1.5 Подготовить отчёт по результатам выполнения лабораторной работы, отразив в нем следующие исходные данные: номер задания, вид функции, поиск минимума или максимума, диапазон изменения переменных.
 - привести результаты поиска экстремума: значение функции и при каких значениях переменных оно найдено;
 - отдельный вывод об эффективности применения кода Грея;

- отдельный вывод о влиянии численности популяции на время и качество поиска экстремума;
- таблица 1 с заполненную экспериментальными данными;
- сравнительный анализ результатов экспериментов;
- выводы о влиянии на поиск экстремума вида и параметров использованных операторов селекции, скрещивания, мутации, численности популяции, кода грея, включая последовательность их применения.
- 1.1.6 Защитить лабораторную работу и ответить на вопросы по данной теме, приведённые ниже.

Таблица 1 – Результаты экспериментов

Номер	Оператор	Оператор	Оператор	Численность	Код	Х	У	Z	t	Значение
эксперимента	селекции	скрещивания	мутации	популяции	Грея					функции
1	СУ	0	И	20	да					
2	СУ	Д	И	20						
3	СУ		И	20	да					
		У	И		да					
4	СУ			20	да					
5	СУ	0	П	20	да					
6	СУ	Д	П	20	да					
7	СУ	Ц	П	20	да					
8	СУ	У	П	20	да					
9	СУ	0	Т	20	да					
10	СУ	Д	Т	20	да					
11	СУ	Ц	Т	20	да					
12	СУ	У	Т	20	да					
13	СУ	0	В	20	да					
14	СУ	Д	В	20	да					
15	СУ	Ц	В	20	да					
16	СУ	У	В	20	да					
17	TO	0	И	20	да					
18	TO	Д	И	20	да					
19	TO	Ц	И	20	да					
20	TO	У	И	20	да					
21	TO	0	П	20	да					
22	TO	Д	П	20	да					
23	TO	Ц	П	20	да					
24	TO	У	П	20	дa					
25	TO	0	T	20	дa					
26	TO	Д	T	20	дa					
27	TO	Ц	T	20	да					
28	TO	У	T	20	да					
29	TO	0	В	20	да					
	10	<u> </u>	ט		дα			1		

30	TO	Д	В	20	да		
31	TO	Ц	В	20	да		
32	TO	У	В	20	да		
33	Р	0	И	20	да		
34	Р	Д	И	20	да		
35	Р	Ц	И	20	да		
36	Р	У	И	20	да		
37	Р	0	П	20	да		
38	Р	Д	П	20	да		
39	Р	Ц	П	20	да		
40	Р	У	П	20	да		
41	Р	0	Т	20	да		
42	Р	Д	Т	20	да		
43	Р	Ц	Т	20	да		
44	Р	У	Т	20	да		
45	Р	0	В	20	да		
46	Р	Д	В	20	да		
47	Р	Ц	В	20	да		
48	Р	У	В	20	да		

Сокращения, принятые при оформлении таблицы 1:

Операторы селекции

СУ-оператор селекции стохастический универсальный;

ТО- оператор селекции турнирный отбор;

Р- рулетка;

Операторы скрещивания

О- одноточечный оператор скрещивания;

Д- двухточечный оператор скрещивания;

Ц- циклический оператор скрещивания;

У - универсальный оператор скрещивания;

Операторы мутации

И- оператор инверсии;

П- оператор перестановки;

Т- оператор транслокации;

В- оператор вставки.

Вопросы для проверки промежуточных знаний

- 1. Преимущества генетических алгоритмов.
- 2. Основные термины генетических алгоритмов.
- 3. Этапы выполнения генетического алгоритма.
- 4. Применение стратегии элитизма в генетических алгоритмах.
- 5. Принцип работы оператора селекции (отбора).
- 6. Принцип работы операторов скрещивания.
- 7. Принцип работы операторов мутации.
- 8. Преимущества различных операторов мутацию
- 9. Принцип работы оператора редукции.
- 10. Результат работы генетического алгоритма.
- 11. Что даёт применение кода Грея.

Библиографический список

1. Рутковская Д.. Пилиньский М., Рутковский Л. Нейронные сети, генетические алгоритмы и нечеткие системы. - М.: Горячая линия - Телеком, 2006.