Recitation Problems

Problem 1. Let G, H be groups and let $\phi : G \to H$ be a homomorphism. Show that $\phi(G)$ is a subgroup of H (without using the subgroup criterion). If ϕ is one-to-one, show that $G \cong \phi(G)$.

Problem 2. Let Z(G) be the center of the group G. Prove if G/Z(G) is cyclic, the G is abelian. In other words, $G/Z(G) = \{e\}$.

Problem 3. Prove or disprove the following: Let H_1, H_2 be groups and define $G = H_1 \times H_2$. Then every subgroup of G is of the form $K_1 \times K_2$ where $K_1 \leq H_1$, $K_2 \leq H_2$

Problem 4. Consider the additive group \mathbb{Q}/\mathbb{Z} . Prove:

- 1. For each $n \in mathbb{N}$ there is an element of \mathbb{Q}/\mathbb{Z} of order n.
- 2. There is a unique subgroup of \mathbb{Q}/\mathbb{Z} of order n for each $n \in \mathbb{N}$.

Problem 5. Let G be a group and let M be a maximal subgroup of G. That is, M is a proper subgroup of G and for any subgroup H of G, if $M \subseteq H$, then H = G. Prove that if $|G:M| < \infty$ and M is normal in G, then |G:M| is prime.

Problem 6. Let G be a finite simple group and let $k \in \mathbb{N}$ be the smallest positive integer such that $|G| \mid k!$. Prove that if $H \leq G$, then $|G:H| \geq k$.

Problem 7. Let G be an infinite simple group. If $H \leq G$, then |G:H| is infinite as well.

Problem 8. Let G be a finite simple group with $|G| \ge 60$. Prove that G has no subgroups of index less than 5.

Problem 9. Let G be a finite simple group with a subgroup H of prime index p. Show that p must be the largest prime dividing the order of G.

Problem 10. Let p be a prime and let $Z = \{z \in \mathbb{C} | z^{p^n} = 1 \text{ for some } n \in \mathbb{Z}^+\}$ (so Z is the multiplicative group of all p-power roots of unity in \mathbb{C}). For each $k \in \mathbb{Z}^+$ let $H_k = \{z \in Z | z^{p^k} = 1\}$ (the group of p^k th roots of unity). Prove the following:

- (a) $H_k \leq H_m$ if and only if $k \leq m$.
- (b) H_k is cyclic for all k (assume that for any $n \in \mathbb{Z}^+$, $\{e^{2\pi it/n}|t=1,2,\ldots,n-1\}$ is the set of all n^{th} roots of 1 in \mathbb{C})

- (c) every proper subgroup of Z equals H_k for some $k \in \mathbb{Z}^+$ (in particular, every proper subgroup of Z is finite and cyclic)
- (d) Z is not finitely generated
- **Problem 11.** Let G be a finite group and let $\pi: G \to S_G$ be the left regular representation. Prove that if x is an element of G of order n and |G| = mn, then $\pi(x)$ is a product of m n-cycles. Deduce that $\pi(x)$ is an odd permutation if and only if |x| is even and $\frac{|G|}{|x|}$ is odd.
- **Problem 12.** Let G be a group of order 160. Show that G is not simple. Furthermore, show that G must have a normal 2-subgroup.

Problem 13. Suppose G is a simple group of order $168 = 2^3 \cdot 3 \cdot 7$.

- (a) Prove G is not abelian.
- (b) Determine the number of elements of order 7 in G.
- (c) Prove that G has no proper subgroups of index less than 7 (hint: use the homomorphism to S_m given by a subgroup of index m).
- (d) If H_2 is a Sylow 2-subgroup of G and H_7 is a Sylow 7-subgroup of G, then G is generated by $H_2 \cup H_7$.
- (e) Prove that the number of Sylow 3-subgroups in G is a multiple of 7.
- **Problem 14.** Let p be an odd prime. Show that $D_p \cong P \rtimes Q$ where $P \in Syl_p(D_p)$ and $Q \in Syl_2(D_p)$. Let r correspond to the "rotation" of the p-gon and let s correspond the the "reflection." Show that the operation on $P \rtimes Q$ corresponds to the operation of D_p . That is, $sr = r^{-1}s$ in D_p so we must have $(r, e) \bullet (e, s) = (e, s) \bullet (e, r^{-1})$ in $P \rtimes Q$.
- **Problem 15.** Show that there is a nontrivial semi-direct product of C_4 and S_3 . That is, show that there is a way to define an operation of $C_4 \rtimes S_3$ such that $C_4 \rtimes S_3 \neq C_4 \times S_3$. Another way to state the problem would be: show that we can define an operation on the set of ordered pairs (c,s) with $c \in C_4$ and $s \in S_3$ so that $C_4 \preceq C_4 \rtimes S_3$, but $S_3 \not\preceq C_4 \rtimes S_3$.
- **Problem 16.** For any group G define the dual group of G (denoted \widehat{G}) to be the set of all homomorphisms from G into the multiplicative group of roots of unity in \mathbb{C} . Define a group operation in \widehat{G} by pointwise multiplication of functions: if χ, ψ are homomorphisms from G into the group of roots of unity then $\chi\psi$ is the homomorphism given by $(\chi\psi)(g) = \chi(g)\psi(g)$ for all $g \in G$, where the latter multiplication takes place in \mathbb{C} .
- (a) Show that this operation on \widehat{G} makes \widehat{G} into an abelian group. [Show that the identity is the map $g \mapsto 1$ for all $g \in G$ and the inverse of $\chi \in \widehat{G}$ is the map $g \mapsto \chi(g)^{-1}$.]
- (b) If G is a finite abelian group, prove that $\widehat{G} \cong G$. [Write G as $\langle x_1 \rangle \times \cdots \times \langle x_r \rangle$ and if $n_j = |x_j|$ define χ_j to be the homomorphism which sends x_i to $e^{2\pi i/n_j}$ and sends x_k to 1, for all $k \neq j$. Prove χ_j has order n_j in \widehat{G} and $\widehat{G} = \langle \chi_1 \rangle \times \cdots \times \langle \chi_r \rangle$.]

(This result is often phrased: a finite abelian group is self-dual. It implies that the lattice diagram of a finite abelian group is the same when it is turned upside down. Note however that there is no natural isomorphism between G and its dual (the isomorphism depends on a choice of a set of generators for G). This is frequently stated in the form: a finite abelian group is noncanonically isomorphic to its dual.)

Problem 17. Let R be a ring with identity. Prove the following:

- (a) Without assuming addition is commutative, show that it must follow from the other axioms.
- (b) 0a = a0 = 0 for all $a \in R$.
- (c) (-a)b = a(-b) = -(ab) for all $a, b \in R$.
- (d) (-a)(-b) = ab for all $a, b \in R$.
- (e) the identity is unique in R and -a = (-1)a = a(-1) for all $a \in R$.

Problem 18. Let p be prime and let R be a ring with identity of order p^2 . Prove R is commutative.

Problem 19. Show that a non-zero ring R in which $x^2 = x$ for all $x \in R$ is of characteristic 2 and commutative.

Problem 20. Let R be a ring such that $x^3 = x$ for all $x \in R$. Show that R must be commutative.