AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

1 (currently amended). A compound of formula I,

$$R^1$$
 R_X
 N
 Y
 O
 N
 $CH_2)_n$
 B

wherein

 R^1 represents H, C_{1-4} alkyl (optionally substituted by one or more substituents selected from cyano, halo, OH, C(O)OR^{1a} or C(O)N(R^{1b})R^{1c}) or OR^{1d};

 R^{1d} represents H, C(O) R^{11} , Si $R^{12}R^{13}R^{14}$ or C_{1-6} alkyl, which latter group is optionally substituted or terminated by one or more substituent selected from OR^{15} or $(CH_2)_{\alpha}R^{16}$;

 R^{12} , R^{13} and R^{14} independently represent H, phenyl or C_{1-6} alkyl;

R¹⁶ represents C₁₋₄ alkyl, phenyl, OH, C(O)OR¹⁷ or C(O)N(H)R¹⁸;

 R^{18} represents H, C_{1-4} alkyl or $CH_2C(O)OR^{19}$;

R¹⁵ and R¹⁷ independently represent H, C₁₋₆ alkyl or C₁₋₃ alkylphenyl;

 R^{1a} , R^{1b} , R^{1c} , R^{11} and R^{19} independently represent H or C_{1-4} alkyl; and q represents 0, 1 or 2;

Rx represents a structural fragment of formula IIa, IIb-or-IIc,

 INGHARDT et al Appl. No. 09/509,032
 December 23, 2003

$$\mathbb{R}^2$$

$$\mathbb{R}^3$$

$$\mathbb{R}^2$$

$$\mathbb{R}^3$$

$$\mathbb{R}^3$$

$$\mathbb{R}^3$$

$$\mathbb{R}^3$$

$$\mathbb{R}^3$$

$$\mathbb{R}^4$$

$$\mathbb{R}^4$$

wherein

the dotted lines independently represent optional bonds;

A and E independently represent O or S, CH or CH_2 (as appropriate), or N or $N(R^{24})$ (as appropriate);

D represents -CH₂-, O, S, N(R²²), -(CH₂)₂-, -CH=CH-, -CH₂N(R²²)-, -N(R²²)CH₂-, -CH₂N-, -N=CH-, -CH₂O-, -OCH₂-, -CH₂S- or -SCH₂-;

X₁ represents C₂₋₄ alkylene; C₂₋₃ alkylene interrupted by Z; -C(O)-Z-A¹-;

 $-Z-C(O)-A^1-;-CH_2-C(O)-A^1-;-Z-C(O)-Z-A^2-;-CH_2-Z-C(O)-A^2-;$

-Z-CH₂-C(O)-A²-; -Z-CH₂-S(O)_m-A²-; -C(O)-A³; -Z-A³-; or -A³-Z-O-A³;

X2 represents C23 alkylene, -C(O)-A4-or-A4-C(O)-;

X₃ represents CH or N;

X₄-represents a single bond, O, S, C(O), N(R²³), -CH(R²³)-,

-CH(R²³)-CH(R²⁴)-or-C(R)²³)-C(R²⁴)-;

A¹-represents a single bond or C₁₋₂ alkylene;

A²-represents a single bond or -CH₂-;

 A^3 represents C_{1-3} alkylene;

A⁴represents C(O) or C₁₋₂ alkylene;

Z represents, at each occurrence, O, S(O)_m or N(R²⁵);

R² and R⁴ independently represent represents one or more optional substituents selected from C₁₋₄ alkyl, C₁₋₄ alkoxy (which latter two groups are optionally substituted by one or more halo substituent), methylenedioxy, halo, hydroxy, cyano, nitro, S(O)₂NH₂, C(O)OR²⁶, SR²⁶, S(O)R^{26a}, S(O)₂R^{26a} or N(R²⁷)R²⁸;

 R^3 represents one or more optional substituents selected from OH, C_{1-4} alkoxy, C_{1-6} alkyl (optionally substituted by one or more halo group), or $N(R^{29a})R^{29b}$;

 R^{25} , R^{29a} and R^{29b} independently represent H, C_{1-4} alkyl or $C(O)R^{30}$;

R²⁶ represents H or C₁₋₄ alkyl;

R^{26a} represents C₁₋₄ alkyl;

 R^{27} and R^{28} independently represent H, C_{1-4} alkyl or $C(O)R^{30}$, or together represent C_{3-6} alkylene, thus forming a 4- to 7-membered ring, which ring is optionally substituted, on a carbon atom that is α to the nitrogen atom, with an =O group;

 R^{21} , R^{22} , R^{23} , R^{24} and R^{30} independently represent represents, at each occurrence, H or C_{1-4} alkyl;

Y <u>independently</u> represents CH_2 , $(CH_2)_2$, <u>or</u> CH=CH (which latter group is optionally substituted by C_{1-4} alkyl), $(CH_2)_3$, $CH_2CH=CH$ or $CH=CHCH_2$ (which latter three groups are optionally substituted by C_{1-4} alkyl, methylene, =O or hydroxy);

R^y represents H or C₁₋₄ alkyl;

n represents 0, 1, 2, 3 or 4; and

B represents a structural fragment of formula IIIa, IIIb or IIIc

wherein

X⁵, X⁶, X⁷ and X⁸ independently represent CH, N or N-O;

X9-and X10-independently represent a single bond or CH2;

R³¹ represents an optional substituent selected from halo, C₁₋₄ alkyl (which group is optionally substituted by one or more halo group), N(R³²)R³³, OR³⁴ or SR³⁵;

R³² and R³³ independently represent H, C₁₋₄ alkyl or C(O)R³⁶;

R³⁴, R³⁵ and R³⁶ independently represent H or C₁₋₄ alkyl; and

one of D¹ and D² represents H, and the other represents H, OR^a, NHR^a,

C(=X¹¹)X¹²R^b, or D¹ and D² together represent a structural fragment of formula IVa:-

INGHARDT et al Appl. No. 09/509,032 December 23, 2003

 R^a represents H or $-A^5[X^{14}]_n[C(O)]_rR^e$;

 R^{b} represents $-A^{5}[X^{14}]_{n}[C(O)]_{r}R^{e}$;

 A^5 represents, at each occurrence, a single bond or C_{1-12} alkylene (which alkylene group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group, and is optionally substituted by one or more of halo, OH, $N(H)C(O)R^g$, $C(O)N(R^g)R^h$, C_{3-7} -cycloalkyl (which cycloalkyl group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group and/or is optionally substituted by one or more substituents selected from C_{1-6} alkyl, C_{1-6} alkoxy, halo, =O or =S), Het and C_{6-10} aryl (which aryl and Het groups are themselves optionally substituted by one or more substituents selected from C_{1-6} alkyl (optionally substituted by one or more halo substituent), C_{1-6} alkoxy, halo, cyano, $C(O)OR^g$, $C(O)N(R^g)R^h$ and $N(R^f)R^g$));

 R^c and R^d both represent H; or one of R^c and R^d represents H or C_{1-7} alkoxy and the other represents C_{1-7} alkyl (which alkyl group is optionally interrupted by one or more O atoms); or R^c and R^d together represent C_{3-8} cycloalkyl, which cycloalkyl group is interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group;

 R^e represents, at each occurrence, H, C_{1-12} alkyl (which alkyl group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group, and/or is optionally substituted by one or more substituents selected from halo, OH, $N(H)C(O)R^g$ and $C(O)N(R^g)R^h$), A^7 - C_{3-7} -cycloalkyl (which cycloalkyl group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group and/or is substituted by one or more substituents selected from C_{1-6} alkyl, C_{1-6} alkoxy, halo, =O and =S), A^7 - C_{6-10} aryl or A^7 -Het (which aryl and Het groups are optionally substituted by one or more substituents selected from C_{1-6} alkyl (optionally substituted by one or more halo substituent), C_{1-6} alkoxy, halo, cyano,

$C(O)OR^g$, $C(O)N(R^g)R^h$ and $N(R^f)R^g$);

 A^7 represents a single bond or C_{1-7} alkylene (which alkylene group is optionally interrupted by one or more O, $S(O)_m$ and/or $N(R^f)$ group, and/or are optionally substituted by one or more of halo, OH, $N(H)COR^g$ and $CON(R^g)R^h$);

Het represents, at each occurrence, a five- to ten-membered heteroaryl group, which may be aromatic in character, containing one or more nitrogen, oxygen or sulphur atoms in the ring system;

n and r independently represent 0 or 1;

X¹¹, X¹² and X¹⁴ independently represent O or S;

X¹³ represents O or N(R^f);

Rf represents, at each occurrence, H, C₁₋₄ alkyl or C(O)R⁹;

 R^{g} and R^{h} independently represent, at each occurrence, H or $C_{1\text{-}4}$ alkyl; and

m represents, at each occurrence, 0, 1 or 2;

or a pharmaceutically acceptable salt thereof;

provided that:

- (a) A and E do not both represent O or S;
- (b) E and D do not both represent O or S;
- (c) when R1 represents OR1d and X1 represents -C(O)-Z-A1,

 $-Z-CH_2-S(O)_m-A^2-or-Z-C(O)-Z-A^2$, then $A^1-orA^2-(as-appropriate)$ do not represent a single bond;

- (f) when X₄ represents -CH(R²³)-, R⁴ does not represent OH;
- (g)—when A⁵ represents a single bond, then n and r both represent 0;
- (t)—when A^5 represents C_{12} alkylene, then n represents 1;

(C(O)OCH₂CH₃);

(g)—when A^5 represents -CH₂-, n is 1 and r is 0, then R^e does not represent H; and (h)—the compound is not:-(S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Pro-Pab; (R)- or (S)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Pro-Pab; (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab x HOAc; (R)- or (S)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab; 1-hydroxy-5-methoxytetralin-1-yl-C(O)-Aze-Pab x HOAc; 1-hydroxy-5,7-dimethyltetralin-1-yl-C(O)-Aze-Pab x HOAc; 1-hydroxy-7-aminotetralin-1-yl-C(O)-Aze-Pab x HOAc; 1-hydroxytetralin-1-yl-C(O)-Aze-Pab x HOAc; 7-methoxytetralin-1-yl-C(O)-Aze-Pab x HOAc; (R)- or (S)-7-methoxy-1-methyltetralin-1-yl-C(O)-Aze-Pab; 4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab x OAc; (S)- or (R)-1-hydroxy-4-methoxyindan-1-yl-C(O)-Aze-Pab; 1-hydroxy-5-methoxytetralin-1-yl-C(O)-Aze-Pab(OH); (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(OH); 4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab(OH); 4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab(OMe); (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab-(C(O)OCH₂CC1₃);(S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab-

- 7-methoxy-1-allyltetralin-1-yl-C(O)-Aze-Pab x HOAc;
- (S)- or (R)-1-hydroxy-7-chlorotetralin-1-yl-C(O)-Pro-Pab;
- 1-*n*-propyl-7-methoxytetralin-1-yl-C(O)-Aze-Pab x HOAc;
- 6-chloro-4-hydroxychroman-4-yl-C(O)-Aze-Pab x HOAc;
- 4-hydroxychroman-4-yl-C(O)-Aze-Pab x HOAc;
- 6 ,8-dichloro-4-hydroxychroman-4-yl-C(O)-Aze-Pab x HOAc;
- 6-fluoro-4-hydroxychroman-4-yl-C(O)-Aze-Pab x HOAc;
- 4-hydroxy-6-methylchroman-4-yl-C(O)-Aze-Pab x HOAc;
- 8-chloro-4-hydroxy-6-methoxychroman-4-yl-C(O)-Aze-Pab x HOAc;
- 6-chloro-4-hydroxy-8-methylcbroman-4-yl-C(O)-Aze-Pab x HOAc;
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-C(O)-i-Pr);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-C(O)-Et);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-C(O)-Ch);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-allyl);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-BzI);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab-
- (CO-O-methallyl);
- 1-hydroxy-7-aminotetralin-1-yl-C(O)-Aze-Pab(OH);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-Pab(O-Val);
- (S)- or (R)-1-hydroxy-7-methoxytetralin-1-yl-C(O)-Aze-(Me)Pab; or
- 9-hydroxyfluoren-9-yl-C(O)-Aze-Pab x HOAc.
- 2 (previously presented). A compound as claimed in Claim 1 wherein R1

represents OH or C₁₋₄ alkyl (which latter group is optionally substituted by cyano or OH).

3 (cancelled).

4 (currently amended). A compound as claimed in claim 1 wherein, when R_x represents a structural fragment of formula IIa, then the dotted lines represent bonds, A and E both represent CH and D represents -CH=CH-;

5 (currently amended). A compound as claimed in claim 1 wherein, when R_x represents a structural fragment of formula IIa, X₁ optionally unsaturated C₂- or C₃-alkylene, or -Z-A³ (in which Z represents O, S(O)_m or N(R²⁵) (in which R²⁵ is as defined in Claim 1 or represents C₁₋₄ alkyl or C(O)R³⁰ and m and R³⁰ are as defined in Claim 1) and A³ represents C₁- or C₂-alkylene (which latter group is optionally unsaturated)).

6 (currently amended). A compound as claimed in claim 1 wherein Y represents CH_{27} , or $(CH_{2})_{2}$ or $(CH_{2})_{3}$.

7 (previously presented). A compound as claimed in claim 1 wherein B represents a structural fragment of formula IIIa in which X^5 , X^6 , X^7 and X^8 all represent CH.

8 (previously presented). A compound as claimed in claim 1 wherein, when D1

and D^2 together represent a structural fragment of formula IVa, in which X^{13} is O, then one of R^c and R^d represents H or C_{17} alkoxy and the other represents C_{1-7} alkyl.

9 (previously presented). A compound as claimed in claim 1, wherein, when D^1 or D^2 represents OR^a and R^a represents $-A^5[X^{14}]_n[C(O)]_r$ R^e , and

- (i) A⁵ is a single bond, then R^e is:-
- (1) A^7 -aryl, optionally substituted by one or more halo, C_{1-6} alkoxy, C_{1-6} alkyl or halo- C_{1-6} -alkyl substituents; or
- (2) H or linear, branched, optionally unsaturated, and/or cyclic, C_{1-2} alkyl, which cyclic alkyl group is optionally interrupted by an O atom and, optionally, a further O atom or $S(O)_m$ group; or when
- (ii) A^5 is linear or branched C_{1-12} alkylene, X^{14} is O and r is 0, then R^e is C_{1-3} alkyl or A^7 -aryl, in which A^7 is a single bond.

10 (previously presented). A compound as claimed in claim 1, wherein, when D¹ or D² represents OR^a, then R^a is H or C₁₋₄ alkyl.

11 (previously presented). A compound as claimed in claim 1, wherein, when D^1 or D^2 represents $-C(=X^{11})X^{12}R^b$, in which X^{11} represents O and X^{12} represents O or S, and, in which R^b group, A^5 represents a single bond then R^e represents optionally unsaturated C_{1-6} alkyl, A^7 - C_{6-10} -aryl (in which A^7 represents a single bond or C_{1-2} alkylene, and which A^7 - C_{6-10} -aryl group is optionally substituted by one or more halo, C_{1-4} alkyl and/or C_{1-4} alkoxy groups), or A^7 - C_{3-7} -cycloalkyl, in which A^7 represents a

Appl. No. 09/509,032 December 23, 2003

single bond or linear or branched C_{1-7} alkylene, and which cycloalkyl group is optionally substituted by C_{1-3} alkyl.

12 (previously presented). A compound of formula I, as defined in claim 1, wherein the fragment

is in the S-configuration.

13 (previously presented). A pharmaceutical formulation including a compound as defined in claim 1, or a pharmaceutically acceptable salt thereof, in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier.

14-20 (cancelled).

21 (previously presented). A method of treatment of a condition where inhibition of thrombin is required which method comprises administration of a therapeutically effective amount of a compound as defined in claim 1, or a pharmaceutically acceptable salt thereof, to a person suffering from, or susceptible to, such a condition.

22 (previously presented). A method as claimed in Claim 21, wherein the condition is thrombosis.

23 (previously presented). A method as claimed in Claim 21, wherein the condition is hypercoagulability in blood and tissues.

24 (currently amended). A process for the preparation of compounds of formula I which comprises:

(i) the coupling of a compound of formula IV,

wherein R1 and Rx are as defined in Claim 1 with a compound of formula V,

$$V$$

$$V = V$$

INGHARDT et al Appl. No. 09/509,032 December 23, 2003

wherein Ry, Y, n and B are as defined in Claim 1;

(ii) the coupling of a compound of formula VI,

$$R^1$$
 R_X
 N
 VI
 O
 OH

wherein R^1 , R_x and Y are as defined in Claim 1 with a compound of formula VII, $H(R^y)N\text{-}(CH_2)_n\text{-}B \hspace{1cm} VII$

wherein Ry, n and B are as defined in Claim 1;

(iii) for compounds of formula I in which D¹ or D² represents ORa or NHRa, reaction of a compound of formula VIII,

$$R^1$$
 R_X
 N
 Y
 O
 N
 $CH_2)_n$
 B^1

wherein B¹ represents a structural fragment of formula IIId, IIIe-or IIIf

and R^1 , R_x , Y, R^y , n, R^{31} , X^5 , X^6 , X^7 , and X^8 , X^9 and X^{40} are as defined in Claim 1 with a compound of formula IX,

$$H_2NX^aR^a$$
 IX

wherein X^a represents O or NH and R^a is as defined in Claim 1;

- (iv) for compounds of formula I in which D¹ or D² represents OR^a or NHR^a, reaction of a compound of formula I in which D¹ or D² (as appropriate) represents C(O)OR^{b1}, in which R^{b1} represents a protecting group with a compound of formula IX as defined above;
- (v) for compounds of formula I in which D^1 or D^2 represents OR^a or NHR^a , R^a represents $-A^5[X^{14}]_n[C(O)]_rR^e$, in which A^5 does not represent a single bond, and n represent 1, reaction of a compound of formula I in which D^1 or D^2 (as appropriate) represents OH or NH_2 , with a compound of formula X,

$$L^{1}A^{5a}[X^{14}][C(O)]_{r}R^{e}$$
 X

wherein L¹ represents a suitable leaving group, A^{5a} represents A⁵, as defined in Claim 1 except that it does not represent a single bond, and X¹⁴, r and R^e are as defined

in Claim 1;

(vi) for compounds of formula I in which D^1 or D^2 represents OR^a or NHR^a , R^a represents $-A^5[X^{14}]_n[C(O)]_rR^e$, in which A^5 represents $C_{2\cdot 12}$ alkylene, which alkylene group is branched at the carbon atom that is α to the O or N atom of OR^a or NHR^a (as appropriate), and which group is optionally branched at the carbon atom that is β to that atom, n represents 1, r represents 0 and R^e is as defined in Claim 1, reaction of a compound of formula I in which D^1 or D^2 (as appropriate) represents OH or NH_2 , with a compound of formula XI,

or a geometrical isomer thereof, or a mixture of such geometrical isomers, in which R^{b1} and R^{b3} each represent H or an alkyl group, provided that the total number of carbon atoms provided by R^{b1} and R^{b3} does not exceed 10, and wherein X¹⁴ and R^e are as defined in Claim 1;

(vii) for compounds of formula I in which D^1 or D^2 represents OR^a or NHR^a , R^a represents $-A^5[X^{14}]_n[C(O)]_rR^e$, in which A^5 represents a single bond, and R^e represents A^7-C_{3-6} -cycloalkyI, in which A^7 represents a single bond, and the cycloalkyI group is interrupted by at least one O or S atom, which atom is between the carbon atom at the point of attachment to the O or NH group of OR^a or NHR^a , and a carbon atom that is α

INGHARDT et al Appl. No. 09/509,032 December 23, 2003

to that point of attachment, and which cycloalkyl group is optionally interrupted by one or more O or $S(O)_m$ group and/or optionally substituted by one or more =O group, reaction of a compound of formula I, in which D^1 or D^2 (as appropriate) represents OH or NH_2 , with a compound of formula XII,

wherein X^{15} represents O or S and X^{16} represents C_{1-4} alkylene (which alkylene group is optionally interrupted by one or more O or $S(O)_m$ group and/or optionally substituted by one or more =O group);

(viii) for compounds of formula I in which D^1 or D^2 represents $C(X^{11})X^{12}R^b$, reaction of a compound of formula I in which D^1 and D^2 both represent H with a compound of formula XIII,

$$L^2$$
- $C(X^{11})X^{12}R^b$ XIII

wherein L^2 represents a suitable leaving group, and X^{11} , X^{12} and R^b are as defined in Claim 1;

(ix) for compounds of formula I in which D¹ and D² together represent a structural fragment of formula IVa, reaction of a corresponding compound of formula I in which D¹ or D² represents OH or NHR^f (in which R^f is as defined in Claim 1), with a compound of formula XV,

$$(R^c)(R^d)C(R^{c1})(R^{c2})$$
 XV

wherein R^{c1} and R^{c2} both represent -OR^{c3}, in which R^{c3} represents C_{1-3} alkyl, or together represent =O, and R^{c} and R^{d} are as defined in Claim 1;

- (x) for compounds of formula I in which one or more of X^5 , X^6 , X^7 and X^8 represent N-O, oxidation of a corresponding compound of formula I in which X^5 , X^6 , X^7 and/or X^8 (as appropriate) represent(s) N; or
- (xi) for compounds of formula I in which any one of Z, X₁, R², R⁴, A⁵, A⁷, R^C, R^d and/or R^e comprises or includes a S(O) or a S(O)₂ group, oxidation of a corresponding compound of formula I (or a compound corresponding to a compound of formula I) wherein Z, X₁, R², R⁴, A⁵, A⁷, R^c, R^d and/or R^e (as appropriate) comprise(s) or include(s) a S group;
- (xii) for compounds of formula I in which D^1 and D^2 both represent H, removal of a OR^a , NHR^a or $C(=X^{11})X^{12}R^b$ group (in which R^a , R^b , X^{11} and X^{12} are as defined in Claim 1), or removal of a structural fragment of formula IVa as defined in Claim 1, from a corresponding compound of formula I; or
- (xiii) introduction and/or interconversion of a substituent on an aromatic and/or non-aromatic, carbocyclic and/or heterocyclic ring in a corresponding compound of formula I.