Scilab Textbook Companion for Solid State Electronics by J. P. Agrawal¹

Created by
Vijay Kant Kala
B.Tech
Electronics Engineering
Krishna Institute of Engineering and Technology
College Teacher
None
Cross-Checked by
Chaya Ravindra

June 2, 2016

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Solid State Electronics

Author: J. P. Agrawal

Publisher: Pragati Prakashan, Merrut

Edition: 1

Year: 2013

ISBN: 93-5006-947-4

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes		
1	Introduction to solid state electronics	5	
2	Special Purpose Diodes	19	
3	Bi Polar Junction Transistor	2 1	
4	Small signal amplifiers	30	
5	Power Amplifiers	43	
6	Field Effect Transistors	48	
9	Silicon Controlled Rectifier	53	
10	The Unijunction Transistor	56	

List of Scilab Codes

Exa 1.1	ne
Exa 1.2	resistivity
Exa 1.3	density
Exa 1.4	density
Exa 1.5	resistivity
Exa 1.6	conductivity
Exa 1.7	fremi level
Exa 1.8	density
Exa 1.9	current
Exa 1.10	hole concentration and conductivity
Exa 1.11	donor concentration
Exa 1.12	resistivity
Exa 1.13	current
Exa 1.14	diode current and voltage
Exa 1.15	voltage
Exa 1.16	voltage
Exa 1.17	resistance
Exa 1.18	resistance
Exa 1.19	resistance
Exa 1.20	capacitance
Exa 1.21	resistance
Exa 2.1	maximum current
Exa 2.2	resistance
Exa 2.3	current
Exa 3.1	varitation in alpha and value of beta
Exa 3.2	current amplification factor
Exa 3.3	base current
Exa 3.4	short circuit current gain

Exa 3.5	collector and base current
Exa 3.6	Ic Ib and Iceo
Exa 3.7	change in collector current
Exa 3.8	emitter current
Exa 3.9	beta
Exa 3.10	error
Exa 3.11	change in base current
Exa 3.12	collector current base current and alfa
Exa 3.13	ac current gain
Exa 3.14	Beta Iceo and collector current
Exa 3.15	collector current alfa and beta
Exa 3.16	collector current
Exa 4.1	voltage
Exa 4.2	vce
Exa 4.3	base resistance
Exa 4.4	operating point
Exa 4.5	resistor
Exa 4.6	operating point
Exa 4.7	operating point
Exa 4.8	operating point
Exa 4.9	maximum collector current
Exa 4.10	maximum collector current
Exa 4.11	gain
Exa 4.12	output voltage
Exa 4.13	gain and resistance
Exa 4.14	gain and voltage
Exa 4.15	voltage gain
Exa 4.16	small change in gain
Exa 4.17	input voltage
Exa 4.18	percentage of feedback
Exa 4.19	band width
Exa 4.20	percentage reduction
Exa 4.21	Av and beta
Exa 5.1	efficiency
Exa 5.2	collector current
Exa 5.3	collector efficiency and power rating 4
Exa 5.4	power
Exa 5.5	power 4!

Exa 5.6	harmonic distortions and change in power
Exa 5.7	power dissipated
Exa 6.1	drain resistance transconductance and amplification fac-
	tor
Exa 6.2	mutual conductance
Exa 6.3	pinch off voltage
Exa 6.4	ID gm and gmo
Exa 6.5	Vgs
Exa 6.6	voltage amplification
Exa 6.7	output voltage
Exa 9.1	average voltage
Exa 9.2	dc load current rms load current amd power dissipiated
Exa 9.3	firing angle conducting angle and average current
Exa 10.1	stand off and peak point voltage
Exa 10.2	time period
Exa 10.3	resistance

Chapter 1

Introduction to solid state electronics

Scilab code Exa 1.1 ne

```
1 //Example 1.1:
2 clc;
3 clear;
4 close;
5 //given data :
6 ni=1.5*10^16; // in m^-3
7 nh=4.5*10^22; // in m^-3
8 ne=ni^2/nh;
9 format('e',8)
10 disp(ne," ne in the doped silicon is ,(m^-3) = ")
```

Scilab code Exa 1.2 resistivity

```
1 //Example 1.2:
2 clc;
3 clear;
```

```
4 close;
5 //given data:
6 ne=8*10^19; // in m^-3
7 nh=5*10^18; // in m^-3
8 mu_e=2.3; // in m^2/V-s
9 mu_h=.01; // in m^2/V-s
10 e=1.6*10^-19; // in V
11 p=1/(e*((ne*mu_e)+(nh*mu_h)));
12 format('e',8)
13 disp(p,"(b) the resistivity,p(ohm-m)=")
```

Scilab code Exa 1.3 density

```
1 //Example 1.3:
2 clc;
3 clear;
4 close;
5 //given data :
6 sigma=500; // in ohm^-1 m^-1
7 mu_e=.39; // m^2/V-s
8 e=1.6*10^-19; // in V
9 ne=sigma/(e*mu_e);
10 format('e',9)
11 disp(ne,"number density of donor, ne(m^-3) = ")
```

Scilab code Exa 1.4 density

```
1 //Example 1.4:
2 clc;
3 clear;
4 close;
5 //given data :
6 e=1.6*10^-19; // in V
```

```
7  Pp=10^-2; // p-type silicon in ohm-m
8  Pn=10^-2; // n-type silicon in ohm-m
9  mu_p=0.048; // holes mobilities in m^2/V-s
10  mu_n=0.135; // electrons mobilities in m^2/V-s
11  Na=1/(e*mu_p*Pp);
12  Nd=1/(e*mu_n*Pn);
13  format('e',8)
14  disp(Na,"(i). the density of impurity, Na (m^-3) = ")
15  format('e',9)
16  disp(Nd,"(ii). the density of impurity, Nd (m^-3) = ")
```

Scilab code Exa 1.5 resistivity

```
1 //Example 1.5:
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5)
7 e=1.6*10^-19; // in V
8 n=2.5*10^19; //m^3
9 p=n; //
10 ni=n; //
11 mu_p=0.17; // holes mobilities in m^2/V-s
12 mu_n=0.36; // electrons mobilities in m<sup>2</sup>/V-s
13 sgint=e*(ni*(mu_p+mu_n));//electrical conductivity
      in mho/metre
14 pint=1/sgint; // resistivity in ohm-meter
15 disp(sgint, "electrical conductivity is ,(mho/metre)=
16 disp(pint, "resistivity is ,(ohm-metre)=")
```

Scilab code Exa 1.6 conductivity

```
1 //Example 1.6:
2 clc;
3 clear;
4 close;
5 //given data :
6 format('e',9)
7 e=1.6*10^-19; // in V
8 ni=1.5*10^16; //in m^3
9 mu_p=0.13; // holes mobilities in m^2/V-s
10 mu_n=0.05; // electrons mobilities in m^2/V-s
11 sgint=e*(ni*(mu_p+mu_n));//electrical conductivity
      in mho/m
12 siat=10^8; //number of silicon atoms
13 ta=5*10^28; // silicon atoms in atoms/m<sup>3</sup>
14 Nd=ta/siat; // in atoms/m<sup>3</sup>
15 p= ni^2/Nd; //holes concentration in holes/m^3
16 \text{ n=Nd}; //
17 mu_n=0.13; // electrons mobilities in m^2/V-s
18 sntype=e*n*mu_n; // in mho/m
19 disp(sgint,"(i) electrical conductivity is ,(mhos/m)
      ="
20 format ('e',8)
21 disp(p,"(ii) holes concentration is, (holes/m<sup>3</sup>)=")
22 format('v',5)
23 disp(sntype,"(ii) conductivity is (mho/m)=")
24 siat=10^8; //number of silicon atoms
25 ta=5*10^28; //silicon atoms in atoms/m<sup>3</sup>
26 Na=ta/siat; // in atoms/m<sup>3</sup>
27 n= ni^2/Na; //holes concentration in holes/m^3
28 p=Na;//
29 mu_p=0.05; //holes mobilities in m^2/V-s
30 sptype=e*p*mu_p; // in mho/m
31 format('e',8)
32 disp(n,"(iii) electron concentration is, (holes/m<sup>3</sup>)
      =")
33 format('v',3)
```

```
34 disp(sptype,"(iii) conductivity is (mho/m)=")
```

Scilab code Exa 1.7 fremi level

```
//Example 1.7:
clc;
clc;
clear;
close;
//given data :
format('v',6)
//Nd1=Nc*exp^-(Ec-Ef1)/kT ...Formula Used
Nc=1;//assume
kT=0.03;//eV
EcEf1=0.5;//position of Fermi level in V
Nd=1;//assume
Nd1=3*Nd;//After tripling the donor concentration
EcEf2=(EcEf1-(kT*(log(Nd1/Nd))));//in eV
disp(EcEf2,"new position of Fermi-level is ,(eV)=")
```

Scilab code Exa 1.8 density

```
1 //Example 1.8:
2 clc;
3 clear;
4 close;
5 //given data :
6 e=1.6*10^-19; // in V
7 Pp=10^-1; // p-type silicon in ohm-m
8 Pn=10^-1; // n-type silicon in ohm-m
9 mu_h=0.05; // holes mobilities in m^2/V-s
10 mu_e=0.13; // electrons mobilities in m^2/V-s
11 Na=1/(e*mu_h*Pp);
12 Nd=1/(e*mu_e*Pn);
```

Scilab code Exa 1.9 current

```
1 //Example 1.9:
2 clc;
3 clear;
4 close;
5 //given data :
6 e=1.6*10^-19; // in V
7 Pp=10^-1; // p-type silicon in ohm-m
8 Pn=10^-1; // n-type silicon in ohm-m
9 mu_hsi=0.048; // holes mobilities in m^2/V-s
10 mu_esi=0.135; // electrons mobilities in m^2/V-s
11 nisi=1.5*10^16; // in m^-3
12 nesi=nisi;//
13 nhsi=nisi;//
14 mu_hge=0.19; // holes mobilities in m^2/V-s
15 mu_ege=0.39; // electrons mobilities in m^2/V-s
16 A=1*10^-4; // area in m^2
17 nige=2.4*10^19; // in m^-3
18 V = 2; //in V
19 1=0.1; //in m
20 Isi= e*A*(V/1)*((nesi*mu_esi)+(nhsi*mu_hsi)); //in A
21 format('e',8)
22 disp(Isi," Total current for silicon is (A)=")
23 // Current for silicon is calculated wrong in the
      textbook
24 nege=nige;//
25 nhge=nige;//
26 Ige= e*A*(V/1)*((nege*mu_ege)+(nhge*mu_hge)); //in A
```

```
27 format('e',9)
28 disp(Ige, "Total current for germanium is,(A)=")
```

Scilab code Exa 1.10 hole concentration and conductivity

```
//Example 1.10:
clc;
clear;
close;
//given data:
nh=2*10^21;// acceptor atoms in atoms/m^3
Na=nh;
format('e',8)
disp(Na,"(i). hole concentration, Na(atoms/m^3) = ")
mu_h=0.17;// mobility of holes in m^2/V-s
e=1.6*10^-19;// in C
sigma=nh*mu_h*e;
format('v',6)
disp(sigma,"conductivity,(ohm^-1-m^-1) = ")
//conductivity is calculated wrong in the book
```

Scilab code Exa 1.11 donor concentration

```
1 //Example 1.11:
2 clc;
3 clear;
4 close;
5 //given data :
6 p=0.15; // in ohm-m
7 mu_e=0.39; // mobility of electron in m^2/V-s
8 e=1.6*10^-19; // in C
9 Na=1/(e*mu_e*p);
10 format('e',9)
```

```
11 disp(Na, "The value of donor concentration, Na(m^-3) = ")
```

Scilab code Exa 1.12 resistivity

```
1 //Example 1.12:
2 clc;
3 clear;
4 close;
5 //given data :
6 mu_n=0.13; // in m^2/V-s
7 mu_p=0.05; // in m^2/V-s
8 ni=1.5*10^16; // in m^-3
9 e=1.6*10^-19; // in C
10 p=1/((e*ni)*(mu_n+mu_p));
11 format('v',7)
12 disp(p,"The resistivity,p(ohm-m) = ")
```

Scilab code Exa 1.13 current

```
13 V=0.7;//in V
14 Id=I*exp((V-Ve)/(eta*Vt));//in mA
15 format('v',5)
16 disp(round(Id),"(i) Current is ,(mA)=")
17 Ir=(I/((exp(Ve/(eta*Vt)))-1))*10^6;//
18 format('v',4)
19 disp(round(Ir),"(ii) reverse saturation current is ,(nA)=")
20 //reverse saturation current is calculated wrong in the textbook
```

Scilab code Exa 1.14 diode current and voltage

```
1 //Example 1.14:
2 clc;
3 clear;
4 close;
5 //given data :
6 e=1.6*10^-19; // electron charge in coulombs
7 k=1.38*10^-23; //Boltzmann constant in m^2-kg/s^2-K
      ^{-}1
8 T=300; //in Kelvin
9 Vt=(k*T)/e;//in V
10 Ir1=10^-10; //in A
11 Ir2=10^-12; //in A
12 V21 = ((Vt) * log10(Ir1/Ir2)) * 2.3026; //in V
13 V211=0.5; //in V
14 V2 = (1/2) * (V21 + V211); //in V
15 V1 = (1/2) * (V211 - V21); // in V
16 I1=Ir2*\exp(V2/Vt)*10^6; //in micro-A
17 I2=I1; //
18 format('v',8)
19 \operatorname{disp}(V2, "diode voltage V2 is , (V)=")
20 disp(V1, "diode voltage V1 is (V)=")
21 format('v',7)
```

```
22 disp(I1, "diode current is, (micro-A)=")
23 //diode current is calculated wrong in the textbook
```

Scilab code Exa 1.15 voltage

```
1 //Example 1.15:
2 clc;
3 clear;
4 close;
5 //given data :
6 e=1.6*10^-19; // electron charge in coulombs
7 k=1.38*10^-23; //Boltzmann constant in m^2-kg/s^2-K
     ^{^{\hat{}}}-1
8 T=300; //in Kelvin
9 Vt = (k*T)/e; //in V
10 Ir1=10^-12; //in A
11 Ir2=10^-10; //in A
12 I21=Ir2/Ir1;//
13 It=2; //mA
14 I1=It/(1+I21)*10^3;//in micro-A
15 I2=It*10^3-I1;//in micro-A
16 I1=I2/I21; //in micro-A
17 x=((I1*10^-6)/Ir1);//
18 V=Vt*log10(x)*2.3026; //in V
19 format('v',6)
20 disp(V, "diode voltage is (V)=")
```

Scilab code Exa 1.16 voltage

```
1 //Example 1.16:
2 clc;
3 clear;
4 close;
```

Scilab code Exa 1.17 resistance

```
1 //Example 1.17:
2 clc;
3 clear;
4 close;
5 format('v',5)
6 V=3;//in V
7 I=55;//in mA
8 Rdc=V/(I*10^-3);//in ohm
9 V2=26;//in mV
10 Rac=V2/I;//in ohm
11 disp(Rdc, "static resistance is ,(ohm)=")
12 disp(Rac, "dynamic resistance is ,(ohm)=")
```

Scilab code Exa 1.18 resistance

```
1 //Example 1.18:
2 clc;
3 clear;
```

```
4 close;
5 //given data :
6 format('v',5)
7 k=1.38*10^-23; // constant
8 T=27+273; // in K
9 eta=2;
10 e=1.6*10^-19; // in C
11 Vt = (k*T/e); // in V
12 V = 0.5; // in V
13 Ir=10^-6; // in A
14 I = (Ir * 10^3 * (exp(V/(eta * Vt)) - 1)); // in A
15 R_dc=V*10^3/I;
16 disp(R_dc, "static resistance, R_dc(ohm) = ")
17 R_ac = (eta*k*T)/(e*I*10^-3);
18 format('v',5)
19 \operatorname{disp}(R_ac,"\operatorname{Dynamic}\ \operatorname{resistance}, R_ac(\operatorname{ohm}) = ")
20 // answer is wrong in textbook
```

Scilab code Exa 1.19 resistance

```
1 //Example 1.19:
2 clc;
3 clear;
4 close;
5 //given data :
6 V=1.2; // in V
7 Vk=0.7; // in V
8 I_F=100; // in mA
9 R_B=(V-Vk)/(I_F*10^-3);
10 V_R=10; // in V
11 I_R=1; // in micro-A
12 R_R=V_R/I_R;
13 format('v',3)
14 disp(R_B,"the bulk resistance, R_B(ohm) = ")
15 disp(R_R,"the reverse resistance, R_R(M-ohm) = ")
```

```
16 eta=2;
17 I=5; // in mA
18 R_ac=eta*26/I;
19 format('v',5)
20 disp(R_ac,"ac resistance, R_ac(ohm) = ")
```

Scilab code Exa 1.20 capacitance

```
1 //Example 1.20:
2 clc;
3 clear;
4 close;
5 //given data :
6 epsilon_0=8.85*10^-12; // in farada/m
7 K=12; // constant for silicon
8 epsilon=epsilon_0*K
9 A=1*10^-8; // in m^2
10 W=5*10^-7; // in m
11 Ct=epsilon*A*10^14/W;
12 format('v',6)
13 disp(Ct,"the transition capacitance, Ct(PF) = ")
```

Scilab code Exa 1.21 resistance

```
1 //Example 1.21:
2 clc;
3 clear;
4 close;
5 //given data :
6 V=0.2; // in V
7 I=1; // in micro-A
8 R_dc=V*10^3/I;
9 R_ac=26/(I*10^3);
```

```
10 format('v',5)

11 disp(R_dc,"The static resistance, R_ac(k-ohm) = ")

12 format('v',6)

13 disp(R_ac,"the dynamic resistance, R_ac(ohm) = ")
```

Chapter 2

Special Purpose Diodes

Scilab code Exa 2.1 maximum current

```
1 //Example 2.1:
2 clc;
3 clear;
4 close;
5 //given data :
6 Pmax=364; // dissipation in milliwatt
7 Vz=9.1; //in V
8 Izmax=Pmax/Vz; //in mA
9 format('v',4)
10 disp(Izmax, "maximum current the diode can handle is ,(mA)=")
```

Scilab code Exa 2.2 resistance

```
1 //Example 2.2:
2 clc;
3 clear;
4 close;
```

Scilab code Exa 2.3 current

```
//Example 2.3:
clc;
clc;
clear;
close;
//given data :
V=120; //in V
Vz=50; //in V
vd5=V-Vz; // voltage drop across 5 ohm resistor
R=5; // in ohm
I==vd5/R; // current through 5 ohm resistor
Rl=10; // in k-ohm
I==Vz/(Rl*10^3); // current through load resistor
I=I=I=I; //in A
format('v',7)
disp(Iz," current through zener diode is ,(A)=")
```

Chapter 3

Bi Polar Junction Transistor

Scilab code Exa 3.1 varitation in alpha and value of beta

```
1 //Example 3.1:
2 clc;
3 clear;
4 close;
5 //given data :
6 Beta=50; //amlification factor
7 dbb=1;//percentage variation in degree celsius
8 daa=dbb/50;//variation in degree celsius
9 format('v',5)
10 disp(daa,"(i) variation in alpha for a silicon BJT
      is ,(\%/\text{degree}-\text{Celsius})=")
11 temp=325; //in K
12 t=25; // degree celsius
13 Beta1=dbb*t; //in %
14 nBeta=Beta+(Beta1/100)*t;//
15 format('v',6)
16 disp(nBeta, "new value of Beta is ,=")
```

Scilab code Exa 3.2 current amplification factor

```
1 //Example 3.2:
2 clc;
3 clear;
4 close;
5 format('v',4)
6 //given data:
7 del_Ic=1*10^-3;// in A
8 del_Ib=50*10^-6;// in A
9 Beta=del_Ic/del_Ib;
10 disp(Beta, "The current amplification factor, Beta = ")
```

Scilab code Exa 3.3 base current

```
1 //Example 3.3:
2 clc;
3 clear;
4 close;
5 format('v',5)
6 //given data :
7 alfa=0.88;
8 Ie=1;// in mA
9 Ic=alfa*Ie;// in mA
10 I_B=Ie-Ic;
11 disp(I_B, "Base current, (mA) = ")
```

Scilab code Exa 3.4 short circuit current gain

```
1 //Example 3.4:
2 clc;
3 clear;
4 close;
5 format('v',5)
```

```
6 //given data :
7 del_Ic=0.95*10^-3; // in A
8 del_Ie=1*10^-3; // in A
9 alfa=del_Ic/del_Ie;
10 disp(alfa,"the short circuit current gain, = ")
```

Scilab code Exa 3.5 collector and base current

```
1 //Example 3.5:
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5)
7 Ie=5*10^-3; // in A
8 alfa=0.95;
9 I_co=10*10^-6; // in A
10 Ic=((alfa*Ie)+I_co)*10^3;
11 Ib=(Ie-(Ic*10^-3))*10^6;
12 disp(Ic, "Collector current, (mA) = ")
13 disp(Ib, "Base current, (micro-A) = ")
```

Scilab code Exa 3.6 Ic Ib and Iceo

```
1 //Example 3.6:
2 clc;
3 clear;
4 close;
5 //given data:
6 Ie=5;// in mA
7 alfa=0.99;
8 I_co=0.005;// in mA
9 Ic=((alfa*Ie)+I_co);
```

Scilab code Exa 3.7 change in collector current

```
1 //Example 3.7:
2 clc;
3 clear;
4 close;
5 //given data :
6 alfa=0.9;// constant
7 Beta=alfa/(1-alfa);
8 Del_Ib=4;// in mA
9 Del_Ic=Beta*Del_Ib;
10 format('v',4)
11 disp(Del_Ic,"the change in the collector current,(mA)) = ")
```

Scilab code Exa 3.8 emitter current

```
1 //Example 3.8:
2 clc;
3 clear;
4 close;
5 //given data :
```

```
6 Beta=40;
7 Ib=25; // base current in micro-A
8 Ic=Beta*Ib;
9 Ie=(Ib+Ic)*10^-3;
10 format('v',6)
11 disp(Ie,"Ie,(mA) = ")
```

Scilab code Exa 3.9 beta

```
1 //Example 3.9:
2 clc;
3 clear;
4 close;
5 //given data :
6 alfa=0.98;// constant
7 Beta=alfa/(1-alfa);
8 format('v',4)
9 disp(Beta, "Beta = ")
```

Scilab code Exa 3.10 error

```
1 //Example 3.10:
2 clc;
3 clear;
4 close;
5 //given data :
6 Beta=100; // constant
7 Ib=20*10^-6; // in A
8 I_co=500*10^-9; // in A
9 Ic1=((Beta*Ib)+(1+Beta)*I_co)*10^3;
10 Ic2=(Beta*Ib)*10^3;
11 Error=(Ic1-Ic2)*100/Ic1;
12 format('v',5)
```

```
13 disp(Error, "The error, (%) = ")
14 //answer is wrong in the txtbook
```

Scilab code Exa 3.11 change in base current

```
1 //Example 3.11:
2 clc;
3 clear;
4 close;
5 //given data :
6 alfa=0.98; //
7 del_Ie=5; // in mA
8 del_Ic=alfa*del_Ie; // in mA
9 del_Ib=del_Ie-del_Ic;
10 format('v',4)
11 disp(del_Ib,"change in base current,(mA) = ")
```

Scilab code Exa 3.12 collector current base current and alfa

```
1 //Example 3.12:
2 clc;
3 clear;
4 close;
5 //given data :
6 Ie=8.4; // in mA
7 cr=0.8/100; // carriers recombine in base in %
8 Ib=cr*Ie;
9 format('v',6)
10 disp(Ib,"(a). The base current, Ib(mA) = ")
11 Ic=Ie-Ib;
12 format('v',5)
13 disp(Ic,"(b). The collector current, Ic(mA) = ")
14 alfa=Ic/Ie;
```

```
15 format('v',6)
16 disp(alfa,"(c). the value of alfa = ")
```

Scilab code Exa 3.13 ac current gain

```
1 //Example 3.13:
2 clc;
3 clear;
4 close;
5 //given data :
6 Ie1=20; // in mA
7 Ie2=15; // in mA
8 Ib1=0.48; // in mA
9 Ib2=0.32; // in mA
10 del_Ie=(Ie1-Ie2)*10^-3; // in A
11 del_Ib = (Ib1 - Ib2) *10^-3; // in A
12 del_Ic=del_Ie-del_Ib; // in A
13 alfa=del_Ic/del_Ie;//
14 Beta=del_Ic/del_Ib;
15 format('v',5)
16 disp(alfa, "ac current gain in common base
      arrangement, = ")
17 format('v',4)
18 disp(Beta, "ac current gain in common emitter
     arrangement, = ")
```

Scilab code Exa 3.14 Beta Iceo and collector current

```
1 //Example 3.14:
2 clc;
3 clear;
4 close;
5 //given data :
```

```
6 alfa=0.992; // constant
7 Beta=alfa/(1-alfa);
8 format('v',5)
9 disp(Beta,"(a) Beta= ")
10 I_CB0=48*10^-9; // in A
11 I_CE0=(1+Beta)*I_CB0*10^6;
12 format('v',3)
13 disp(I_CE0,"(a) I_CEO (micro-A) = ")
14 Ib=30*10^-6; // in A
15 Ic=((Beta*Ib)+(1+Beta)*I_CB0)*10^3;
16 format('v',5)
17 disp(Ic,"(b) Collector current, Ic(mA) = ")
```

Scilab code Exa 3.15 collector current alfa and beta

```
1 //Example 3.15:
2 clc;
3 clear;
4 close;
5 //given data:
 6 format('v',5)
 7 Ie=9.6; //emitter current in mA
8 Ib=0.08; //base current in mA
9 Ic=Ie-Ib; //
10 format('v',5)
11 \operatorname{disp}(\operatorname{Ic},"(a). \operatorname{collector} \operatorname{current},\operatorname{Ic}(\operatorname{mA})=")
12 alfa=Ic/Ie;
13 format('v',5)
14 \operatorname{disp}(\operatorname{alfa}, "(b)). \operatorname{alfa} = ")
15 alfa=0.99;//
16 Beta=alfa/(1-alfa)
17 format('v',4)
18 disp(Beta,"(c). Beta = ")
```

Scilab code Exa 3.16 collector current

```
1 //Example 3.16:
2 clc;
3 clear;
4 close;
5 //given data :
6 Ib=68*10^-6; // in A
7 Ie=30*10^-3; // in A
8 Beta=440; // constant
9 alfa=Beta/(1+Beta);
10 Ic=alfa*Ie*10^3;
11 format('v',6)
12 disp(Ic," Collector current, Ic(mA) = ")
```

Chapter 4

Small signal amplifiers

Scilab code Exa 4.1 voltage

```
1 //Example 4.1:
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',6)
7 Rc=4.7; // in ohm
8 Vcc=24; // in V
9 Ic=1.5; // in mA
10 //this is given as 15 mA in textbook which is wrong
11 Vce=Vcc-(Ic*Rc*10^-3*10^3);//in V
12 disp(Vce,"(i) Collector to emitter voltage, Vce(V) =
       ")
13 Ic1=0; // in A
14 Vce1=Vcc-Ic1*Rc; //in V
15 format('v',4)
16 disp(Vce1,"(ii) Collector to emitter voltage, Vce(V)
```

Scilab code Exa 4.2 vce

```
1 //Example 4.2:
2 clc;
3 clear;
4 close;
5 //given data :
6 Beta=100;
7 Rb=200*10^3; // in ohm
8 Rc=1*10^3; // in ohm
9 Vcc=10; // in V
10 Ib=Vcc/Rb; // in A
11 Ic=Beta*Ib; // in A
12 Vce=Vcc-(Ic*Rc);
13 format('v',4)
14 disp(Vce, "Collector to emitter voltage, Vce(V) = ")
```

Scilab code Exa 4.3 base resistance

```
1 //Example 4.3:
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',6)
7 Vcc=20;// in V
8 Vbe=0.7;// in V
9 Rc=2;//in kilo-ohm
10 Icsat= Vcc/Rc;//in mA
11 Beta=200;//
12 Ib=(Icsat/Beta)*10^3;//in micro-A
13 Rb=((Vcc-Vbe)/(Ib))*10^3;//in kilo-ohm
14 disp("Rb < "+string(Rb)+" kilo-ohm")</pre>
```

Scilab code Exa 4.4 operating point

```
1 //Example 4.4:
2 clc;
3 clear;
4 close;
5 //given data :
6 Vcc=15; // in V
7 Rb=200; // in k-ohm
8 Rc=2; // in k-ohm
9 Beta=50;
10 Ib=(Vcc/(Rb*10^3+(Beta*Rc*10^3)))*10^6; //in micro-A
11 Ic=Beta*Ib*10^-3; //in mA
12 Vce=Vcc-(Ic*10^-3*(Rc*10^3));
13 format('v',4)
14 disp(Ic," collector current, Ic(mA) = ")
15 disp(Vce," Collector to emitter voltage, Vce(V) = ")
```

Scilab code Exa 4.5 resistor

```
1 //Example 4.5:
2 clc;
3 clear;
4 close;
5 //given data:
6 Vcc=15; // in V
7 Vce=6; // in V
8 Rc=3*10^3; // in ohm
9 Beta=50;
10 Ic=(Vcc-Vce)/Rc;
11 Ib=Ic/Beta;
12 Rb=((Vcc/Ib)-(Beta*Rc))*10^-3;
```

```
13 format('v',5)
14 disp(Rb,"The value of resistoe, Rb(k-ohm) = ")
```

Scilab code Exa 4.6 operating point

```
1 //Example 4.6:
2 clc;
3 clear;
4 close;
5 //given data :
6 Vcc=12;// in V
7 Rb1=70; // in k-ohm
8 Rb2=70; // in k-ohm
9 Beta=50;
10 Rc=2; // in k-ohm
11 Ib=Vcc/((Rb1+Rb2+(Beta*Rc))*10^3);
12 Ic=Beta*Ib*10^3;
13 Vce=Vcc-(Ic*Rc);
14 format('v',4)
15 disp(Ic, "collector current, Ic(mA) = ")
16 disp(Vce, "Collector to emitter voltage, Vce(V) = ")
```

Scilab code Exa 4.7 operating point

```
1 //Example 4.7:
2 clc;
3 clear;
4 close;
5 //given data:
6 Vcc=9;// in V
7 Rb=50;// in k-ohm
8 Rc=250;// in ohm
9 Re=500;// in ohm
```

```
10 Beta=80;
11 Ib=Vcc/(Rb*10^3+(Beta*Re));
12 Ic=Beta*Ib*10^3;
13 Vce=Vcc-(Ic*10^-3*(Rc+Re));
14 format('v',3)
15 disp(Ic," collector current, Ic(mA) = ")
16 disp(Vce," Collector to emitter voltage, Vce(V) = ")
```

Scilab code Exa 4.8 operating point

```
1 //Example 4.8:
2 clc;
3 clear;
4 close;
5 //given data :
6 R2=4; // in k-ohm
7 R1=40; // in k-ohm
8 \text{ Vcc=22;}// \text{ in V}
9 Rc=10; // in k-ohm
10 Re=1.5; // in k-ohm
11 Vbe=0.5; // in V
12 Voc=R2*10^3*Vcc/((R1+R2)*10^3);
13 Ic=(Voc-Vbe)/(Re*10^3);
14 Vce=Vcc-(Rc+Re)*Ic*10^3;
15 format('v',5)
16 disp(Vce, "Collector to emitter voltage, Vce(V) = ")
```

Scilab code Exa 4.9 maximum collector current

```
1 //Example 4.9:
2 clc;
3 clear;
4 close;
```

```
5 //given data :
6 Bv=12; // battery voltage in V
7 Cl=6; // collector load in k-ohm
8 CC=Bv/Cl;
9 format('v',4)
10 disp(CC, "Collector current, (mA) = ")
```

Scilab code Exa 4.10 maximum collector current

```
//Example 4.10:
clc;
clear;
close;
format('v',6)
Bv=12;//battery voltage in V
P=2;// power in Watt
Close;
format('v',6)
disp(Ic,"The maximum collector current, Ic(mA) = ")
```

Scilab code Exa 4.11 gain

```
1 //Example 4.11:
2 clc;
3 clear;
4 close;
5 //given data :
6 del_ic=1;// in mA
7 del_ib=10;// in micro-A
8 del_Vbe=0.02;// in V
9 del_ib=10*10^-6;// in A
10 Rc=2;// in k-ohm
11 Rl=10;// in k-ohm
```

```
12 Beta=del_ic/(del_ib*10^3);//
13 format('v',5)
14 disp(Beta,"Current gain, Beta = ")
15 Ri=(del_Vbe/del_ib)*10^-3;
16 format('v',4)
17 disp(Ri,"Input impedence, Ri(k-ohm) = ")
18 Rac=Rc*Rl/(Rc+Rl);
19 format('v',5)
20 disp(Rac,"Effective load, Rac(k-ohm) = ")
21 Av=round(Beta*Rac/Ri);
22 format('v',4)
23 disp(Av,"Voltage gain, Av = ")
24 Ap=Beta*Av;
25 format('v',6)
26 disp(Ap,"power gain, Ap = ")
```

Scilab code Exa 4.12 output voltage

```
1 //Example 4.12:
2 clc;
3 clear;
4 close;
5 //given data :
6 Rc=10; // in k-ohm
7 Rl=10; // in k-ohm
8 Beta=100;
9 Ri=2.5;
10 Iv=2; // input voltage in mV
11 Rac=Rc*Rl/(Rc+Rl);
12 Av=round(Beta*Rac/Ri);
13 Ov=Av*Iv*10^-3;
14 format('v',4)
15 disp(Ov,"Output voltage,(V) = ")
```

Scilab code Exa 4.13 gain and resistance

```
1 //Example 4.13:
2 clc;
3 clear;
4 close;
5 //given data:
6 format('v',5)
7 I = 1;
8 \text{ hfe=46};
9 hoe=80*10^-6; // in mho
10 hre=5.4*10^-4;
11 hie=800;// in ohm
12 RL=5*10^3; // in ohm
13 Aie=hfe/(I+(hoe*RL));
14 Zie=hie-(hre*RL*Aie);
15 Ave=(Aie*RL)/Zie;
16 Rg=500; // in ohm
17 Zoe=((hie+Rg)/(hoe*(hie+Rg)-(hfe*hre)))/10^3;
18 Ape=Aie*Ave;
19 disp(Aie, "Current gain, Aie = ")
20 format('v',6)
21 disp(Zie, "Input resistance, Zie(ohm) = ")
22 disp(Ave, "Voltage gain, Ave = ")
23 format('v',5)
24 disp(Zoe, "Output resistance, Zoe(k-ohm) = ")
25 format('v',7)
26 disp(Ape, "Power gain, Ape = ")
27 //voltage gain and power gain are calculated wrong
      in the textbook
```

Scilab code Exa 4.14 gain and voltage

```
1 //Example 4.14:
2 clc;
3 clear;
4 close;
5 //given data :
6 A=100; //gain without feedback
7 Beta=1/25; //feed back ratio
8 Af=(A/(1+(Beta*A))); //gain with feedback
9 disp(Af,"(i) gain with feedback is ,=")
10 ff=Beta*A; //feedback factor
11 disp(ff, "feedback factor is,=")
12 vi = 50; //mV
13 Vo = Af * vi * 10^-3; // in V
14 disp(Vo, "output voltage is ,(V)=")
15 fv=Beta*Vo; //in V
16 format('v',5)
17 disp(fv, "feedback voltage is ,(V)=")
18 vin=vi*(1+Beta*A);/mV
19 disp(vin, "new increased input voltage is ,(mV)=")
```

Scilab code Exa 4.15 voltage gain

```
//Example 4.15:
clc;
clear;
close;
//given data:
A=1000;//gain without feedback
fctr=0.40;//gain reduction factor
Af=A-fctr*A;//gain with feedback
Beta=((A/Af)-1)/A;//feed back ratio
A2=800;//redued gain
Af2=((A2)/(1+(Beta*A2)));//
format('v',6)
disp(Af2,"(i) voltage gain is ,=")
```

Scilab code Exa 4.16 small change in gain

```
//Example 4.16:
clc;
clc;
clear;
close;
//given data :
A=200;//gain without feedback
Beta=0.25;//feed back ratio
gc=10;//percent gain change
dA=gc/100;//
dAf= ((1/(1+Beta*A)))*dA;//
format('v',7)
disp(dAf,"small change in gain is,=")
```

Scilab code Exa 4.17 input voltage

```
1 //Example 4.17:
2 clc;
3 clear;
4 close;
5 //given data :
```

```
6 format('v',5)
7 A=200; //gain without feedback
8 Beta=0.05; //feed back ratio
9 Af = (A/(1+(Beta*A))); //gain with feedback
10 disp(Af, gain with negative feedback is ,=")
11 Dn=10; //percentage distortion
12 format('v',6)
13 Dn1=(Dn/(1+A*Beta));//percentage Distortion with
      negative feedback
14 ff=Beta*A; //feedback factor
15 vo=0.5; //initial output voltage
16 vi=A*vo; //in V
17 vin=vi/Af;//in V
18 disp(Dn1, "percentage Distortion with negative
      feedback is (\%)=")
19 \operatorname{disp}(\operatorname{vin}, \operatorname{new input voltage is }, (V)=")
20 //gain and input voltage are calculated wrong in the
       textbook
```

Scilab code Exa 4.18 percentage of feedback

```
//Example 4.18:
clc;
clear;
close;
format('v',5)
A=50;//gain without feedback
Af=10;//gain with feedback
Beta=(((A/Af)-1)/A)*100;//feed back ratio
disp(Beta," percentage of feedback is ,(%)=")
```

Scilab code Exa 4.19 band width

```
//Example 4.19:
clc;
clear;
close;
//given data :
format('v',5)
Bw=200;//bandwidth in kHz
vg=40;//dB
fb=5;//percentage negetive feedback
A=40;//gain without feedback
Beta=fb/100;//feed back ratio
Af=(A/(1+(Beta*A)));//gain with feedback
Bwf= (A*Bw)/Af;//Bandwidth with feedback
disp(Bwf," new band-width is ,(kHz)=")
```

Scilab code Exa 4.20 percentage reduction

```
//Example 4.20:
clc;
clear;
close;
//given data:
format('v',5)
A=50;//gain without feedback
Af=25;//gain with feedback
Beta=(((A/Af)-1)/A);//feed back ratio
Ad=40;//new gain after ageing
Af1=(Ad/(1+(Beta*Ad)));//new gain with feedback
df=Af-Af1;// reduction in gain
pdf= (df/Af)*100;//percentage reduction in gain
disp(pdf," percentage reduction in gain is ,(%)=")
```

Scilab code Exa 4.21 Av and beta

```
1 //Example 4.21:
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',5)
7 Af=100;//gain with feeback
8 vi=50;//in mV
9 vi1=60;//in mV
10 AAf=vi1/vi;//
11 A=AAf*Af;//
12 Beta=(((A/Af)-1)/A);//feed back ratio
13 disp(A,"Av is ,=")
14 format('v',8)
15 disp(Beta," feedback factor is ,=")
```

Power Amplifiers

Scilab code Exa 5.1 efficiency

```
1 //Example 5.1:
2 clc;
3 clear;
4 close;
5 //given data :
6 Pac=0.1; //in W
7 Vcc=20; //in V
8 Ic=20; //in mA
9 Pdc=Vcc*Ic*10^-3; //in W
10 eta=(Pac/Pdc)*100; // efficiency
11 format('v',4)
12 disp(eta," efficiency is ,(%)=")
```

Scilab code Exa 5.2 collector current

```
1 //Example 5.2:
2 clc;
3 clear;
```

```
4 close;
5 //given data:
6 Pac=2; //in W
7 Vcc=12; //in V
8 Ic=(Pac*sqrt(2)*sqrt(2))/Vcc; //in A
9 format('v',5)
10 disp(Ic,"maximum collector current is ,(A)=")
```

Scilab code Exa 5.3 collector efficiency and power rating

```
//Example 5.3:
clc;
clc;
clear;
close;
//given data :
Pac=3;//in W
Pdc=10;//in W
eta=(Pac/Pdc)*100;//percentage efficieny
format('v',4)
disp(eta," collector efficiency is ,(%)=")
disp(Pdc," power rating of transistor is ,(W)=")
```

Scilab code Exa 5.4 power

```
1 //Example 5.4:
2 clc;
3 clear;
4 close;
5 //given data :
6 dIc=100;//in mA
7 Rl=6;//in ohm
8 mv=dIc*Rl*10^-3;//in V
9 pd=mv*dIc;//in mW
```

Scilab code Exa 5.5 power

```
1 //Example 5.5:
2 clc;
3 clear;
4 close;
5 //given data :
6 n=10;//turn ratio
7 Rl=10;//ohm
8 Rld=n^2*Rl;//in ohm
9 Ic=100;//in mA
10 Irms=Ic/(sqrt(2));//in mA
11 P=Irms^2*Rld;//in W
12 format('v',3)
13 disp(P*10^-6,"maximum power output is ,(W)=")
```

Scilab code Exa 5.6 harmonic distortions and change in power

```
1 //Example 5.6:
2 clc;
3 clear;
4 close;
5 //given data :
6 //ie = 15*sin 400*t + 1.5*sin 800*t + 1.2*sin 1200*t +
      0.5*\sin 1600*t given equation
7 I2=1.5; // in A
8 I1=15; //in A
9 I3=1.2; //in A
10 I4=0.5; // in A
11 D2=(I2/I1)*100; //Second percentage harmonic
      distortion
12 D3=(I3/I1)*100; //Third percentage harmonic
      distortion
13 //in book I2 is mentioned wrongly in place of I1
14 D4=(I4/I1)*100; //Fourth percentage harmonic
      distortion
15 disp("part (i)")
16 disp(D2, "Second percentage harmonic distortion (D2)
      is ,(\%)=")
17 disp(D3, "Third percentage harmonic distortion (D3)
      is ,(\%)=")
18 format('v',5)
19 disp(D4, "Fourth percentage harmonic distortion (D4)
      is ,(\%)=")
20 disp("part (ii)")
21 D=sqrt(D2^2+D3^2+D4^2)/100;//Distortion Factor
22 P1=1; //assume
23 P=(1+D^2)*P1; //in W
24 peri=((P-P1)/P1)*100;//percentage increase in power
      due to distortion
25 disp(peri, "percentage increase in power due to
      distortion is (\%)=")
```

Scilab code Exa 5.7 power dissipated

```
1 //Example 5.7:
2 clc;
3 clear;
4 close;
5 //given data :
6 Vcc=15; //in V
7 Vpeak=24/2; //in V
8 Rl=100; //in ohm
9 Ipeak= Vpeak/Rl; //in A
10 Pdc=Vcc*(2/(%pi))*Ipeak; //in W
11 pad=(1/2)*(Vpeak^2)/Rl; //in W
12 pd=Pdc-pad; //in W
13 pde=pd/2; //in W
14 disp(pde*10^3, "power dissipated by each transistor is ,(mW)=")
```

Field Effect Transistors

Scilab code Exa 6.1 drain resistance transconductance and amplification factor

```
1 //Example 6.1:
2 clc;
3 clear;
4 close;
5 //given data :
6 Vgs=[0;0;0.3];//in V
7 Vds = [5; 10; 10]; //in V
8 Id = [8; 8.2; 7.6]; //in mA
9 dVds=Vds(2)-Vds(1);//in V
10 dId=Id(2)-Id(1);//in mA
11 rd=(dVds/dId);//in kilo-ohm
12 format('v',4)
13 disp(rd,"(i) A.C. Drain resistance is ,(kilo-ohm)=")
14 dVgs=Vgs(3)-Vgs(2);//in V
15 dId1=Id(2)-Id(3); //in mA
16 gm=dId1/dVgs;//in mA/volt
17 format('v',3)
18 disp(gm,"(ii) Transconductance is ,(mS)=")
19 mu=gm*rd; //A/V
20 format('v',4)
```

```
21 disp(mu,"(iii) Amplification factor is ,=")
22 //Transconductance and Amplification factor are
calculated wrong in the textbook
```

Scilab code Exa 6.2 mutual conductance

```
1 //Example 6.2:
2 clc;
3 clear;
4 close;
5 //given data :
6 I1=1; // in mA
7 I2=1.2; // in mA
8 del_ID=(I2-I1);
9 V1=-3; // in V
10 V2=-2.9; // in V
11 del_VGS=V2-V1; // in V
12 gm=del_ID/del_VGS;
13 format('v',4)
14 disp(gm," mutual conductance,gm(mS) = ")
```

Scilab code Exa 6.3 pinch off voltage

```
1 //Example 6.3:
2 clc;
3 clear;
4 close;
5 //given data :
6 format('v',4)
7 a=5.6*10^-6/2;// channel width in m
8 epsilon0=8.86*10^-12;// in F/m
9 epsilon=12*epsilon0;// in F/m
10 Nd=10^21;// in m^-3
```

```
11 e=1.6*10^-19; // in V
12 Vp=e*Nd*a^2/(2*epsilon);
13 disp(Vp, "Pinch off voltage, Vp(V) = ")
```

Scilab code Exa 6.4 ID gm and gmo

```
1 //Example 6.4:
 2 clc;
 3 clear;
 4 close;
 5 //given data :
 6 \quad I_DES=8.7; // in mA
7 V1 = -3; // in V
8 \text{ V_GS} = -1; // \text{ in V}
 9 ID=I_DES*(1-(V_GS/V1))^2;
10 format('v',6)
11 disp(ID,"(i). ID(mA) = ")
12 gmo = -(2*I_DES/V1);
13 format('v',4)
14 \operatorname{disp}(\operatorname{gmo},"(ii).\operatorname{gmo}(\operatorname{mS})=")
15 gm=gmo*(1-(V_GS/V1));
16 format('v',6)
17 \operatorname{disp}(\operatorname{gm},"(\operatorname{iii}).\operatorname{gm}(\operatorname{mA})=")
```

Scilab code Exa 6.5 Vgs

```
1 //Example 6.5:
2 clc;
3 clear;
4 close;
5 //given data:
6 format('v',4)
7 ID=3;// in mA
```

```
8  I_DSS=9; // in mA
9  Vp=-4.5; // in V
10  Vgs=-Vp*(sqrt(ID/I_DSS)-1);
11  disp(Vgs," Vgs(V) = ")
```

Scilab code Exa 6.6 voltage amplification

```
1 //Example 6.6:
2 clc;
3 clear;
4 close;
5 //given data :
6 gm=3;//Transconductance in mS
7 rl=10;//load resistance in kilo-ohm
8 av=gm*rl;//
9 format('v',4)
10 disp(av,"the voltage aplification is ,=")
```

Scilab code Exa 6.7 output voltage

```
1 //Example 6.7:
2 clc;
3 clear;
4 close;
5 //given data :
6 R1=20; //in kilo-ohm
7 Rs=1; //in kilo-ohm
8 Rg=1; //in M-ohm
9 Cs=25; //in micro-F
10 mu=20; //amplification factor
11 rd=100; //in kilo-ohm
12 vi=2; //in V
13 f=1; //in kilo-Hz
```

```
14  Xc=((1/(2*%pi*f*10^3*Cs*10^-6))); // in ohm
15  A=((mu*Rl*10^3)/((rd+Rl)*10^3)); // Voltage gain
16  Vo=A*vi; // in V
17  format('v',5)
18  disp(Vo,"amplifier output signal voltage is ,(V)=")
```

Silicon Controlled Rectifier

Scilab code Exa 9.1 average voltage

```
1 //Example 9.1:
2 clc;
3 clear;
4 close;
5 //given data :
6 Vm=200; // in V
7 theta=30; //firing angle in degree
8 vdc=((Vm/%pi)*(1+cosd(theta))); // in V
9 format('v',5)
10 disp(round(vdc), "average value of voltage is ,(V)=")
```

Scilab code Exa $9.2\,$ dc load current rms load current amd power dissipiated

```
1 //Example 9.2:
2 clc;
3 clear;
4 close;
```

```
5 //given data :
6 Va=300; // in V
7 Vm = 300 * sqrt(2); // in V
8 R1=50; //in ohm
9 theta1=90; // firing angle in degree
10 idc=((Vm/(2*\%pi*R1))*(1+cosd(theta1)));//in A
11 format('v',6)
12 disp((idc),"(i) the dc load current is ,(A)=")
13 irms=Va/(2*R1); //in A
14 format('v',4)
15 disp(round(irms),"(ii) the rms load current is ,(A)=
     ")
16 P=irms^2*R1;//in W
17 format('v',5)
18 disp(round(P),"(iii) the power dissipated by the
     load is (W)=")
```

Scilab code Exa 9.3 firing angle conducting angle and average current

```
1 //Example 9.3:
2 clc;
3 clear;
4 close;
5 //given data :
6 Ih=0; //in A
7 Vi = 100; // in V
8 Vm = 200; //in V
9 R1=100; //in ohm
10 theta1=asind(Vi/Vm);//firing angle in degree
11 ca=180-theta1;//conducting angle in dehree
12 format('v',4)
13 disp(theta1,"(i) firing angle is ,(degree)=")
14 format('v',5)
15 disp(ca,"(ii) conducting angle is ,(degree)=")
16 av=((Vm/(2*\%pi))*(1+cosd(theta1)));//in V
```

```
17 ac=av/R1; //in A
18 format('v',7)
19 disp(ac,"(iii) average current is ,(A)=")
20 //average current is wrong in the textbook
```

The Unijunction Transistor

Scilab code Exa 10.1 stand off and peak point voltage

```
//Example 10.1:
clc;
clc;
clear;
close;
//given data :
Vbb=20;// in V
eta=0.6;// instrinsic stand off ratio
Vb=0.7;// in V
sov=eta*Vbb;// Stand off voltage
format('v',4)
disp(sov,"(i). Stand off voltage,(V) = ")
Vp=(eta*Vbb)+Vb;
format('v',6)
disp(Vp,"(ii). Peak point voltage,Vp(V) = ")
```

Scilab code Exa 10.2 time period

```
1 //Example 10.2:
```

```
2 clc;
3 clear;
4 close;
5 format('v',6)
6 //given data :
7 Vbb=20;// in V
8 C=100;//in micro-farad
9 R=100;//in kilo-ohms
10 Vp=10;// in V
11 eta=Vp/Vbb;// instrinsic stand off ratio
12 T= ((C*10^-12*R*10^3 *log(1/(1-eta))))*10^7;//in micro-seconds
13 format('v',6)
14 disp(T,"time period of the saw tooth waveform generated is ,(micro-seconds)=")
```

Scilab code Exa 10.3 resistance

```
//Example 10.3:
clc;
clc;
clear;
close;
//given data:
eta=0.6;// instrinsic stand off ratio
Rbb=10;// interbase resistance in k-ohm
Rb1=eta*Rbb;
Rb2=Rbb-Rb1;
format('v',4)
disp(Rb1," Resistance, Rb1(k-ohm) = ")
disp(Rb2," Resistance, Rb1(k-ohm) = ")
```