Metode de tip Runge Kutta

 ${\bf Gabriel\ Dimitriu}$

 $\mathrm{June}\ 22,\ 2005$

Contents

1	Con	nsiderente generale	5	
	1.1	Metoda Taylor	6	
		1.1.1 Prezentare implementarii si exemple	9	
	1.2	Consistenta si stabilitate	12	
2	Metoda Euler			
	2.1	Prezentarea metodei	17	
	2.2	Consistenta	18	
	2.3	Prezentare implementarii si exemple	18	
		2.3.1 Implementare	18	
		2.3.2 Rezultatele rularii	19	
3	Metoda Euler-Couchy 2			
	3.1	Prezentare generala	21	
	3.2	Consistenta	24	
	3.3	Prezentarea implementarii si exemple	24	
		3.3.1 Implementare	24	
		3.3.2 Rezultatele rularii	25	
4	Metoda Runge-Kutta 27			
	4.1	Prezentarea metodei	27	
	4.2	Consistenta	30	
	4.3	Prezentarea implementarii si exemple	31	
		4.3.1 Implementare	31	
		4.3.2 Rezultatele rularii	33	
5	Anexa 1 (parser de functii)			
	5.1	Definierea clasei	35	
	5.2	Implementarea clasei	36	

4 CONTENTS

Chapter 1

Considerente generale

In tot ceea ce urmeaza vom considera domeniile de existenta:

$$A \times B \subset R^2$$
 $[a,b] \subset A$

Pe aceste domenii de existenta vom considera urmatoare problema Couchy:

$$x'(t) = u(t, x(t))$$

$$x(a) = \alpha_0$$
(1.1)

cu urmatoare conditii in plus de existenta

$$t \in [a,b]$$

$$\alpha_0 \in R \ fixat$$

$$u: A \times B \to R \ continua$$

De la teoria pentru problema Couchy prezentata in [1] avem urmatoarea teorema:

Teorema 1

Daca $\exists ! L > 0$ astfel incit $|u(t,z) - u(t,w)| \le L|z-w| \ \forall t \in A \text{ si } \forall z,w \in B \text{ atunci } \exists ! x \text{ solutie pentru ecuatia } (1.1).$

Vom presupune ca (1.1) are solutie unica conform teoremei anterioare.

Vom presupune ca u este analitica. Atunci se stie ca si soluti
ax este analitica si poate fi scrisa astfel:

$$x(t) = \sum_{k=0}^{\infty} \frac{x^{(k)}(a)}{k!} (t-a)^k, t \in [a, a+r]$$

unde r este raza de convergenta seriei de puteri

$$\sum_{k>0} \frac{x^{(k)}(a)}{k!} (t-a)^k$$

Deci vom putea face aproximarea:

$$x(t) \simeq \sum_{k=0}^{n} \frac{x^{(k)}(a)}{k!} (t-a)^{k}$$

Observatie:

Vom nota

$$T_{n,x,s_0}(t) = \sum_{k=0}^{n} \frac{x^{(k)}(s_0)}{k!} (t - s_0)^k$$
(1.2)

Din cursul [3] avem urmatoarele propozitii:

Propositie 2 Fie $f, g: A \to R$ continue in $a \in A$ si $\lambda, \mu \in R$ atunci $\lambda f + \mu g$ este continua in a.

Propositie 3 Fie $g:A\to B$ continua in $a\in A$ si fie $g:B\to R$ continua in f(a) atunci $g\circ f:A\to R$ este continua in a.

1.1 Metoda Taylor

Vom considera urmatoarea problema Couchy:

$$x'(t) = u(t, x(t))$$

$$x(a) = \alpha_0$$

$$\forall t \in [a, b]$$

$$\alpha_0 \in R \text{ fixat}$$

$$(1.3)$$

unde

$$A \times B \subset R^2$$
$$u: A \times B \to R \text{ si } u \in C^n$$
$$[a,b] \in A$$

Se observa ca aceste conditii sunt o extindere a conditiile necesare prezentate in sectiune 1 ca problema (1.3) sa aiba solutie unica, deci putem considera adevarate toate notatille din sectiunea 1.

In continuare vom prezenta o aproximare a derivatelor de ordin superior pentru solutia x in punctul a.

Fie $u_0(t,y) = y \Leftrightarrow u_0(t,x(t)) = x(t) \Leftrightarrow u_0(a,x(a)) = x(a)$ following condition problemei Couchy

$$u_0(a,\alpha_0) = \alpha_0 \tag{1.4}$$

Fie $u_1(t,y) = u(t,y) \Leftrightarrow u_1(t,x(t)) = u(t,x(t))$ folosind ecuatia problemei Couchy avem

1.1. METODA TAYLOR

$$x'(a) = u_1(a, x(a)) (1.5)$$

si folosind conditia problemei Couchy avem

$$x'(a) = u_1(a, \alpha_0) (1.6)$$

Cu aceste notatii vom prelucra prima ecuatie a problemei Couchy pentru a determina derivatele de ordin superior ale solutiei.

Din ecuatia problemei Couchy cu notatia (1.5) avem

$$x'(t) = u_1(t, x(t)) (1.7)$$

Derivind aceasta relatie in functie de t si y; folosind notatiile anterioare avem:

$$x''(t) = \frac{\partial u_1}{\partial t}(t, x(t)) + \frac{\partial u_1}{\partial y}(t, y) \cdot u(t, x(t))$$
(1.8)

Fie

$$u_2(t,y) = \frac{\partial u_1}{\partial t}(t,y) + \frac{\partial u_1}{\partial y}(t,y) \cdot u(t,y)$$
(1.9)

Inlocuind pe u_2 in relatia (1.8) avem $x''(t) = u_2(t, x(t))$ iar $x''(a) = u_2(a, x(a))$ folosind ipoteza avem

$$x''(a) = u_2(a, \alpha_0) \tag{1.10}$$

In continuare vom folosi procedeul inductiei matematice pentru a deterimina derivate de orice ordin a solutiei in punctul a.

Presupunem adevarate relatiile u_k deci avem

$$x^{(k)}(t) = u_k(t, x(t)) (1.11)$$

si

$$x^{(k)}(a) = u_k(a, \alpha_0) \tag{1.12}$$

pentru k si vom arata ca ramin adevarate pentru k+1.

Derivam relatia (1.11) in funcite de t si y; folosind notatiile anterioare avem:

$$x^{(k+1)}(t) = \frac{\partial u_k}{\partial t}(t, x(t)) + \frac{\partial u_k}{\partial y}(t, y) \cdot u(t, x(t))$$
(1.13)

Fie

$$u_{k+1}(t,y) = \frac{\partial u_k}{\partial t}(t,y) + \frac{\partial u_k}{\partial y}(t,y) \cdot u(t,y)$$
(1.14)

Inlocuind relatia (1.14) in relatia (1.13) avem

$$x^{(k+1)}(t) = u_{k+1}(t, x(t))$$

Iar pentru t=a avem

$$x^{(k+1)}(a) = u_{k+1}(a, \alpha_0)$$
(1.15)

Ceea ce incheie procesul de inductie matematica.

Inlocuind relatiile (1.6), (1.10), (1.12) si (1.15) in relatia (1.2) avem

$$T_{n,x,a}(t) = \sum_{k=0}^{n} \frac{u_k(a,\alpha_0)}{k!} (t-a)^k$$
(1.16)

unde u_k sunt date de relatiile (1.4),(1.5),(1.9) si (1.14). Pe intervalul in care variaza t vom lua o diviziume astfel

$$a = t_0 < t_1 < \dots < t_m \le b$$

Fie $y:[a,b] \to R$ construita astfel pentru $\forall t \in [t_0,t_1]$ avem

$$y(t) = \sum_{k=0}^{n} \frac{u_k(t_0, \alpha_0)}{k!} (t - t_0)^k$$
(1.17)

Notam $x_0 = \alpha_0$ si atunci relatia (1.17) se scrie astfel

$$y(t) = \sum_{k=0}^{n} \frac{u_k(t_0, x_0)}{k!} (t - t_0)^k$$
(1.18)

Vom face iteratii ale x_i in punctele diviziunii pentru a afla termenul general al solutie. Fie $y:[t_0,t_1]\to R$ si

$$x_1 := y(t_1) = \sum_{k=0}^{n} \frac{u_k(t_0, x_0)}{k!} (t_1 - t_0)^k$$

Fie $y:[t_1,t_2]\to R$ si

$$x_2 := y(t_2) = \sum_{k=0}^{n} \frac{u_k(t_1, x_1)}{k!} (t_2 - t_1)^k$$

Fie $y:[t_0,t_k]\to R$ si $x_k:=y(t_k)$

Fie $y:[t_k,t_{k+1}]\to R$ si

$$y(t) = \sum_{i=0}^{n} \frac{u_j(t_k, x_k)}{j!} (t - t_k)^{j}$$

din definitia lui x_{k+1} avem:

$$x_{k+1} := y(t_{k+1}) = \sum_{j=0}^{n} \frac{u_j(t_k, x_k)}{j!} (t_{k+1} - t_k)^j$$

Fie $z: \delta = \{t_0, t_1, ..., t_m\} \to R$

$$z(t_k) = x_k = \sum_{j=0}^{n} \frac{u_j(t_{k-1}, x_{k-1})}{j!} (t_k - t_{k-1})^j$$

Definitie 4 $(x|_{\delta} \simeq z)$ se numeste metoda lui Taylor pentru problema Couchy asociata (1.3).

1.1. METODA TAYLOR

9

Metoda Taylor poate fi rescrisa astfel:

$$x_{0} = \alpha_{0}$$

$$\frac{x_{k+1} - x_{k}}{t_{k+1} - t_{k}} = \sum_{j=1}^{n} \frac{u_{j}(t_{k}, x_{k})}{j!} (t_{k+1} - t_{k})^{j-1} \quad k = \overline{0, m-1}$$

$$(1.19)$$

Acest ultim sistem se numeste sistem de ecuatii cu diferente divizate.

1.1.1 Prezentare implementarii si exemple

In continuare vom lua urmatorul exemplul:

$$x_0 = 0$$

 $x'(t) = t + x(t) \ t \in [0, 1]$

Sa se rezolve aproximativ ecuatia cu metoda lui Taylor in cazul in care avem urmatoarele diviziuni $\delta_1 = \{0, 1/2, 1\}$ si $\delta_2 = \{0, 1/4, 1/2, 3/4, 1\}$.

Implementare

Pentru a implementa aceasta metoda avem nevoie de derivata deci va trebui sa implementam o functie care sa faca derivatele partiale ale functiei $u_k(t, y)$.

Pentru implementare vom folosi urmatoarea formula de derivare partiala

$$\frac{\partial f(x,y)}{\partial x}(a,b) = \frac{f(a+h/2,b) - f(a-h/2,b)}{h}$$

Iar cea de ordin doi este

$$\frac{\partial^2 f(x,y)}{\partial x \partial y}(a,b) = \left(\frac{\partial f(x,y)}{\partial x}(a,b+h/2) - \frac{\partial f(x,y)}{\partial x}(a,b-h/2)\right)/h$$

Asadar derivata va fi implementata recursiv conform formulelor prezentate anterior.

```
#include"parser_func.cpp"
#include<math.h>
#include<stdlib.h>
#include<stdio.h>
parser_func *parser;
double *x;
long factorial(long val)
{
    if(val==0L) return 1L;
    else return val*factorial(val-1);
}
double derivata(double t,double y,double h,long ordin)
{
    double val1,val2;
    double valt,valy;
```

```
double temp;
    if(ordin==0) return x[0];
    else if(ordin==1)
    {
         parser->set\_var('t',t);
         parser->set\_var('y',y);
         parser->eval func(&val1);
         return val1;
    else if(ordin==2)
              parser->set\_var('t',t+0.5*h);
              parser->set\_var('y',y);
              parser > eval func(&val1);
              parser > set \ var('t', t-0.5*h);
              parser->set \ var('y',y);
              parser->eval func(&val2);
              valt = (val1 - val2)/h;
              parser->set\_var('y',y+0.5*h);
              parser->set\_var('t',t);
              parser > eval \ func(&val1);
              parser > set \ var('y', y - 0.5*h);
              parser->set \ var('t',t);
              parser->eval func(&val2);
              valy=(val1-val2)/h;
              parser->set\_var('t',t);
              parser->set \ var('y',y);
              parser->eval func(&temp);
              valy=valy*temp;
              return\ valt+valy;
    else
    {
              val1 = derivata(t+0.5*h, y, h, ordin-1);
              val2 = derivata(t-0.5*h, y, h, ordin-1);
              valt = (val1 - val2)/h;
              val1 = derivata(t, y+0.5*h, h, ordin-1);
              val2 = derivata(t, y-0.5*h, h, ordin-1);
              valy=(val1-val2)/h;
              parser->set\_var('t',t);
              parser > set var('y',y);
              parser->eval_func(&temp);
              valy=valy*temp;
              return\ valt+valy;
    return 0.0;
int main(int argc, char* argv[])
```

```
{
     double *delta;
     char *dfunc;
     long n, n1;
     double h;
     double sum;
     long i,j;
     parser=new parser_func;
     dfunc=(char *)calloc(100,sizeof(char));
     printf("Introduceti numarul de valori ale diviziunii\n");
     scanf("\%ld", \&n1);
     delta = (double *)calloc(n1, size of(double));
     x = (double *)calloc(n1, size of(double));
     printf("Introduceti diviziunea \ n");
    for(i=0;i< n1;i++)
         scanf("\%lf", \&delta[i]);
     printf("Introduceti conditia initiala \ n");
     scanf("\%lf", \&x[0]);
     printf("Introduceti\ parametrul\ n\n");
     scanf("\%ld", \&n);
     printf("Introduceti pasul derivatei \n");
     scanf("\%lf", \&h);
     printf("Introduceti functia cu t si y \ n");
    fflush(stdin);
     dfunc = gets(dfunc);
     parser->set \ function(dfunc);
    for(i=1;i< n1;i++)
     {
         sum=0.0;
         for(j=1;j<=n;j++)
              sum = sum + derivata(delta[i-1], x[i-1], h, j) *pow(delta[i] - delta[i-1], j) / factorial(j);
         x/i/=x/i-1/+sum;
    printf("Valorile in diviziune \n");
    for(i=0;i< n1;i++)
         printf("\%lf",x[i]);
    printf("\n");
     return 0:
```

Clasa parser_func va fi prezentata in Anexa 1 si contine parserul de functii.

Functia set_var(caracter, valoare) seteaza variabila caracter (care trebuie sa fie un caracter majuscul sau minuscul intre a-z deoarece nu tine cont de litere mari sau mici) cu valoarea data in valoare.

Functia eval func evalueaza functia setata prin set function cu variabilele setata anterior.

Rezultatele rularii

In cazul acesta vom rula cu pasul pentru h=0.00001

Pentru $\delta_1 = \{0, 1/2, 1\}$ si functia data t + y avem urmatoarele rezultate

$$\begin{array}{ccccc} t & 0 & 0.5 & 1.0 \\ x(Teoretic) & 0 & 0.1487 & 0.71828 \\ x(n=1) & 0 & 0 & 0.25 \\ x(n=2) & 0 & 0.125 & 0.64062 \\ x(n=3) & 0 & 0.1458 & 0.70876 \end{array}$$

Pentru $\delta_2 = \{0, 1/4, 1/2, 3/4, 1\}$ si functia data t+y avem urmatoarele rezultate

Se observa cu cit diviziunea are mai multe puncte cu atit mai bine este aproximata solutia in punctul final.

Se observa ca pentru n=1 este Euler dar pentru n=2 are o precizie mai buna decit Euler-Couchy iar pentru n=3 are o precizie comparabila cu Runge-Kutta. Bineinteles toate acestea cu dezavantajul de a fi mare consumatoare de resurse pentru derivate si factorial.

Pentru n>4 derivata in modul in care a fost implementata nu functioneaza deci trebuie sa ne limitam la n=4.

1.2 Consistenta si stabilitate

Pentru problema Couchy (1.1) avem:

Fie
$$h \in (0, b - a)$$
 si $n = n_h = [(b - a)/h]$.

Din aceasta creeam diviziunea $\delta_h=\{t_0,t_1,...,t_n\}$ si $u_h:\delta_h\times B\to R$ si ecuatiile

$$\begin{aligned}
x_0 &= \alpha_0 \\
\frac{x_{j+1} - x_j}{h} &= u_h(t_j, x_j)
\end{aligned} \tag{1.20}$$

Fie z solutia ecuatiei (1.20).

Definitie 5 $x|_{\delta_h} \simeq z$ se numeste metoda ecuatiilor cu diferente.

Remarka 6 Pentru $u_h = u \ \forall h \ atunci \ se \ va \ obitine \ metoda \ lui \ Euler.$

Remarka 7 Pentru $u_h = 1/2(u(t,y) + u(t+h,y+hu(t,y)))$ atunci se va obtine metoda Euler-Couchy.

Remarka 8 Pentru $u_h = \frac{1}{6}(v_1 + 2v_2 + 2v_3 + v_4)$ se va obtine metoda lui Runge-Kutta.

Vom nota
$$\delta_h^+ = \{t_0, t_1, ..., t_{n_h-1}\} \, si \, \delta_h^- = \{t_1, t_2, ..., t_{n_h}\}.$$

Definitie 9 Spunem ca metoda ecuatiilor cu diferente este consistenta daca

$$\lim_{h \to 0} \max_{t \in \delta_h^+} \left| \frac{x(t+h) - x(t)}{h} - u_h(t, x(t)) \right| = 0$$

Teorema 10 Daca

$$\lim_{h \to 0} \max_{t \in \delta_h^+} |u(t, x(t)) - u_h(t, x(t))| = 0$$
(1.21)

Atunci metoda ecuatiilor cu diferente este consistenta.

Demostratie Presupunem u continua atunci si x' continua.

Atunci relatia (1.21) se scrie:pentru $\forall \varepsilon > 0 \ \exists h_0 \text{ a.i. } h < h_0 \text{ avem}$

$$\max_{t \in \delta_h^+} |u(t, x(t)) - u_h(t, x(t))| < \varepsilon$$

Explicitind maximul avem ca pentru $\forall t \in \delta_h^+$

$$|u(t, x(t)) - u_h(t, x(t))| < \varepsilon \tag{1.22}$$

Dar

$$\left| \frac{x(t+h) - x(t)}{h} - u_h(t, x(t)) \right| \le \left| \underbrace{\frac{x(t+h) - x(t)}{h}}_{A} - u(t, x(t)) \right| + \left| u(t, x(t) - u_h(t, x(t))) \right|$$

Explicitind A cu definitia derivate atunci pentru $c \in (t, t + h)$ si utilizind presupunerile din metoda ecuatiilor cu diferente $(u_h(t, x(t)) = x'(t))$ avem

$$\left| \frac{x(t+h) - x(t)}{h} - u_h(t, x(t)) \right| \le |x'(c) - x'(t)| + |u(t, x(t)) - u_h(t, x(t))| \tag{1.23}$$

Deoarece x' este continua pe un interval compact atunci x' este uniform continua si putem scrie

$$\varepsilon > 0 \ \exists \eta_{\varepsilon} : |t - s| < \eta_{\varepsilon} \Rightarrow |x'(t) - x'(s)| < \varepsilon$$
 (1.24)

Daca $h < \eta_{\varepsilon} \Rightarrow |x'(t) - x'(c)| < \varepsilon$.

Daca $h < \min(h_0, \eta_{\varepsilon})$ atunci folosind (1.22) si (1.24) avem

$$\left| \frac{x(t+h) - x(t)}{h} - u_h(t, x(t)) \right| \le \varepsilon + \varepsilon \ \forall t \in \delta_h^+$$

Deci

$$\lim_{h \to 0} \max_{t \in \delta_+^+} \left| \frac{x(t+h) - x(t)}{h} - u_h(t, x(t)) \right| = 0$$

Remarka 11

$$\lim_{h \to 0} \max_{h \in \delta_h^-} \left| \frac{x(t) - x(t-h)}{h} - u_h(t-h, x(t-h)) \right| = 0$$

Notam

$$\lambda_h W(t) = \frac{W(t+h) - W(t)}{h} - u_h(t, W(t))$$

unde $W: \delta_h \setminus \{n_h\} \to R$ iar

$$\|\lambda_h W\| = \max_{t \in \delta_h^+} \left| \frac{W(t+h) - W(t)}{h} - u_h(t, W(t)) \right|$$

Cu aceste notatii relatia (1.21) devine

$$\lim_{h \to 0} \|\lambda_h x\| = 0$$

Definitie 12 Se spune ca metoda ecuatiilor cu diferente este stabila daca $\exists \rho > 0, \forall (x_h)_{0 < h < b-a}, x_h : \delta_h \to R$ cu proprietatile

$$\exists h_0, \forall h \leq h_0 \Rightarrow \|x_h - x\|_h \leq \rho$$

$$x_h(a) = \alpha_0$$

$$\lim_{h \to 0} \|\lambda_h x_h - \lambda_h x\| = 0$$

sa avem

$$\lim_{h \to 0} ||x_h - x|| = 0$$

Teorema 13 Daca $\exists L, \rho, h_0$ cu $0 < h_0 < b - a$ a.i. $\forall h \leq h_0, \forall t \in \delta_h, |y - x(t)| \leq \rho, |W - x(t)| \leq \rho$ atunci

$$|u(t,y) - u_h(t,W)| \le L|y - W|$$
 (1.25)

Atunci metoda ecuatiilor cu diferente este stabila.

Demostratie Fie L, ρ, h_0 ca in (1.25) iar ρ, h_0 satisfac conditiile detfinitiei.

Vom arata ca daca $h \leq h_0$ avem $t \in \delta_h$ si

$$|x_h(t) - x(t)| \le (t - a) \exp(L(t - a)) \|\lambda_h x_h - \lambda_h x\|$$
 (1.26)

Daca am demostrat (1.26) atunci avem

$$\max_{t \in \delta_h} |x_h(t) - x(t)| \le (b - a) \exp(L(b - a)) \|\lambda_h x_h - \lambda_h x\| \stackrel{definitie}{\to} 0$$

Relatia (1.26) o vom demostra prin inductie.

Pentru t = a avem $|x_h(a) - x(a)| = |\alpha_0 - \alpha_0| = 0$.

Presupunem relatia (1.26) adevarata pentru $t_j = t$ si o demostram pentru $t_{j+1} = t + h$.

Avem

$$x_h(t+h) = x_h(t) + h\lambda_h x_h(t) + hu_h(t, x_h(t))$$

$$x(t+h) = x(t) + h\lambda_h x(t) + hu(t, x(t))$$

Scazind in modul aceste doua relatii avem

$$|x_h(t+h) - x(t+h)| \le |x_h(t) - x(t)| + h |u_h(t, x_h(t)) - u(t, x(t))| + h ||\lambda_h x_h - \lambda_h x||$$

Aplicind conditiile din definitie avem

$$|x_h(t+h) - x(t+h)| \le |x_h(t) - x(t)| + hL|x_h(t) - x(t)| + h||\lambda_h x_h - \lambda_h x||$$

Aplicind relatia (1.26) avem

$$|x_h(t+h) - x(t+h)| \le (1+hL)(t-a) \exp(L(t-a)) \|\lambda_h x_h - \lambda_h x\| + h \|\lambda_h x_h - \lambda_h x\|$$

Desfacind parantezele si facind calcule elementare avem

$$|x_h(t+h) - x(t+h)| \le (t-a) \exp(L(t+h-a)) \|\lambda_h x_h - \lambda_h x\| + h \|\lambda_h x_h - \lambda_h x\|$$

Facind majorarea $\exp(L(t+h-a))>\exp(0)$ si dind factor comun avem

$$|x_h(t+h) - x(t+h)| \le (t+h-a)\exp(L(t+h-a)) \|\lambda_h x_h - \lambda_h x\|$$

Chapter 2

Metoda Euler

2.1 Prezentarea metodei

Metoda lui Euler este o particularizare a metodei lui Taylor prezentata in sectiunea anterioara. Vom considera urmatoarea problema Couchy:

$$x'(t) = u(t, x(t))$$

$$x(a) = \alpha_0$$

$$\forall t \in [a, b]$$

$$\alpha_0 \in R \text{ fixat}$$

$$(2.1)$$

unde

$$A\times B\subset R^2$$

$$u:A\times B\to R\ si\ u\in C^n$$

$$[a,b]\in A$$

Aceasta problema Couchy este rezolvata cu metoda lui Taylor pe diviziunea $\delta = \{t_1, ..., t_m\}$ in care n=1 si $x_0 = \alpha_0$ si atunci avem sistemul de ecuatii cu diferente divizate inlocuind aceste particularizari in (1.19):

$$x_{k+1} = x_k + u(t_k, x_k) \cdot (t_{k+1} - t_k)$$

 $x_0 = \alpha_0$

sau

$$\begin{aligned}
x_0 &= \alpha_0 \\
\frac{x_{k+1} - x_k}{t_{k+1} - t_k} &= u(t_k, x_k)
\end{aligned}$$

pentru $\forall k \in \{0, ..., m\}$. Daca notam $z(t_k) = x_k$ atunci **Definitie 14** $x|_{\delta} \simeq z$ se numeste metoda lui Euler.

2.2 Consistenta

Fie

$$u_h(t,y) = u(t,y)$$

Pentru a aplica Teorema (1.21) trebuie sa facem diferenta

$$u_h(t, x(t)) - u(t, x(t)) = 0$$

pentru $\forall t \in \delta_h \setminus \{t_{n_h}\}.$ Deci

$$|u_h(t, x(t)) - u(t, x(t))| = 0$$

Asadar metoda Euler este consistenta.

2.3 Prezentare implementarii si exemple

In continuare vom lua urmatorul exemplul:

$$x_0 = 0$$

 $x'(t) = t + x(t) \ t \in [0, 1]$

Sa se rezolve aproximativ ecuatia cu metoda lui Euler in cazul in care avem urmatoarele diviziuni $\delta_1 = \{0, 1/2, 1\}$ si $\delta_2 = \{0, 1/4, 1/2, 3/4, 1\}$.

2.3.1 Implementare

```
#include"parser_func.cpp"
  #include<math.h>
  #include<stdlib.h>
  #include<stdio.h>
  int main(int argc, char* argv[])
{
    parser_func *parser;
    double *delta;
    char *dfunc;
    long n,n1;
    double *x;
    double val1,val2,temp;
    long i;
    parser=new parser_func;
    dfunc=(char *)calloc(100,sizeof(char));
    printf("Introduceti numarul de valori ale diviziunii\n");
```

```
scanf("%ld",&n1);
delta=(double *)calloc(n1,sizeof(double));
x = (double *)calloc(n1, size of(double));
printf("Introduceti\ diviziunea \ n");
for(i=0;i< n1;i++)
    scanf("\%lf", \&delta[i]);
printf("Introduceti conditia initiala \ n");
scanf("\%lf", &x[0]);
printf("Introduceti functia cu t si y \ n");
fflush(stdin);
dfunc = gets(dfunc);
parser->set function(dfunc);
for(i=1;i< n1;i++)
    parser->set\_var('t',delta[i-1]);
    parser > set \ var('y', x/i-1/);
    parser->eval func(&temp);
    x[i]=x[i-1]+temp*(delta[i]-delta[i-1]);
printf("Valorile in diviziune \ ");
for(i=0;i< n1;i++)
    printf("\%lf",x[i]);
printf("\n");
return 0;
```

Clasa parser func va fi prezentata in Anexa 1 si contine parserul de functii.

Functia set_var(caracter, valoare) seteaza variabila caracter (care trebuie sa fie un caracter majuscul sau minuscul intre a-z deoarece nu tine cont de litere mari sau mici) cu valoarea data in valoare.

Functia eval func evalueaza functia setata prin set function cu variabilele setata anterior.

2.3.2 Rezultatele rularii

Pentru $\delta_1 = \{0, 1/2, 1\}$ si functia data t + y avem urmatoarele rezultate

```
\begin{array}{cccc} t & 0 & 0.5 & 1.0 \\ x(Euler) & 0 & 0 & 0.25 \\ x(Teoretic) & 0 & 0.1487 & 0.71828 \\ |x(Teoretic) - x(Euler)| & 0 & 0.1487 & 0.46828 \end{array}
```

Pentru $\delta_2 = \{0, 1/4, 1/2, 3/4, 1\}$ si functia data t+yavem urmatoarele rezultate

```
0.25
                           0
                                      0.5
                                               0.75
                                                        1.0
x(Euler)
                           0
                              0.0
                                      0.0625
                                               0.2031
                                                        0.441
x(Teoretic)
                           0
                              0.034
                                      0.1487
                                               0.367
                                                        0.71828
|x(Teoretic) - x(Euler)|
                              0.034
                                      0.0862
                                               0.1639
                          0
                                                        0.27728
```

Se observa cu cit diviziunea are mai multe puncte cu atit mai bine este aproximata solutia in punctul final.

Chapter 3

Metoda Euler-Couchy

3.1 Prezentare generala

Fie $h \in (0, b - a)$ o constanta aleasa atunci vom defini

$$n_h = \left\lceil \frac{b-a}{h} \right\rceil$$

cu aceasta valoare vom defini diviziune
a δ astfel

$$\begin{array}{rcl} t_0 & = & a \\ t_i & = & t_0 + i \cdot h & i = \overline{0, n_h} \end{array}$$

deci deviziunea $\delta = \{t_0, t_1, ..., t_{n_h}\}$

Cu aceste precizari sistemul de ecuatii cu diferente divizate (1.19) se rescrie astfel:

$$x_0 = \alpha_0$$

 $x_{k+1} = x_k + h \sum_{j=1}^n \frac{u_j(t_k, x_k)}{j!} h^{j-1}$

Vom nota

$$f_n(t,y) = \sum_{i=1}^n \frac{u_j(t,y)}{j!} h^{j-1}$$

si cu acesta notatie relatia (1.16) devine

$$T_{n,x,x_0}(s+h) = x(s) + h \cdot f_n(s,x(s))$$
 (3.1)

deci sistemul de ecuatii cu diferente divizate se rescrie astfel

$$x_0 = \alpha_0$$

$$x_{k+1} = x_k + h \cdot f_n(t_k, x_k)$$

$$(3.2)$$

Teorema 15 Cresterilor finite

Daca $\exists L > 0$ astfel incit $|u(t,y) - u(t,v)| \le L |y-v| \ \forall t \in [a,b] \ si \ \forall y,v \in B \ si \ |f_n(t,y) - f_n(t,v)| \le |y-v| \ \forall t \in [a,b] \ si \ \forall y,v \in B \ atunci urmatoarele formule au loc:$

$$|x(t_k) - x_k| \le \frac{h^n}{(n+1)!} \left\| x^{(n+1)} \right\|_{\infty} \frac{\exp(Lkh) - 1}{L} \quad k = \overline{0, n}$$
 (3.3)

unde
$$||x^{(n+1)}||_{\infty} = \sup_{t \in [a,b]} |x^{(n+1)}(t)|.$$

Demostratie Vom demostra prin inductie dupa k.

Pentru k = 0 avem $|x(t_0) - x_0| = |\alpha_0 - \alpha_0| = 0 \le 0$.

Presupunem adevarata relatia (3.3) pentru k si o demostram pentru k+1.

Conform formulei lu Taylor cu reste Lagrange avem

$$x(t_{k+1}) = T_{n,x,t_k}(t_{k+1}) + \underbrace{\frac{1}{(n+1)!}x^{(n+1)}(\xi) \cdot (t_{k+1} - t_k)^{n+1}}_{r}$$

sau

$$x(t_{k+1}) = T_{n,x,t_k}(t_k + h) + r$$

unde

$$|r| \le \frac{1}{(n+1)!} x^{(n+1)}(\xi) \cdot h^{n+1}$$

Atunci

$$x(t_{k+1}) \stackrel{(3.1)}{=} x(t_k) + h \cdot f_n(t_k, x(t_k)) + r$$

Vom face diferenta $x(t_{k+1}) - x_{k+1}$ in care vom aplica relatia anterioara si avem

$$x(t_{k+1}) - x_{k+1} = x(t_k) - x_{k+1} + h \cdot f_n(t_k, x(t_k)) + r$$

In aceasta relatie aplicind (3.2) avem

$$x(t_{k+1}) - x_{k+1} = x(t_k) - x_k + h(f_n(t_k, x(t_k)) - f_n(t_k, x_k)) + r$$

Aplicind modul avem ambilor termeni si efectuind operatii elementare cu module avem

$$|x(t_{k+1}) - x_{k+1}| \le |x(t_k) - x_k| + h|f_n(t_k, x(t_k)) - f_n(t_k, x_k)| + |r|$$

Aplicind ipoteza referitoare la functia f_n (lischitziana in al doilea argument) avem

$$|x(t_{k+1}) - x_{k+1}| \le |x(t_k) - x_k| (1 + hL) + |r|$$

Aplicind ipoteza de inductie matematica avem

$$|x(t_{k+1}) - x_{k+1}| \le (1 + hL) \frac{h^n}{(n+1)!} \|x^{(n+1)}\|_{\infty} \frac{\exp(LKh) - 1}{L} + \frac{h^{n+1}}{(n+1)!} \|x^{(n+1)}\|_{\infty}$$

Efectuind citeva prelucrari elementare avem

$$|x(t_{k+1}) - x_{k+1}| \le \frac{h^n}{L(n+1)!} \left\| x^{(n+1)} \right\|_{\infty} ((1+hL)(\exp(Lkh) - 1) + Lh)$$

Aplicind aproximatia $1 + hL < \exp(hL)$ relatia devine

$$|x(t_{k+1}) - x_{k+1}| \le \frac{1}{L} \frac{h^n}{(n+1)!} \|x^{(n+1)}\|_{\infty} ((\exp(hkL) - 1) \exp(hL) + Lh)$$

sau

$$|x(t_{k+1}) - x_{k+1}| \le \frac{1}{L} \frac{h^n}{(n+1)!} \left\| x^{(n+1)} \right\|_{\infty} \left(\exp(Lh(k+1)) - \exp(Lh) + Lh \right)$$

Aplicind inca o data aproximatia $1 > -\exp(hL) + Lh$ relatia devine

$$|x(t_{k+1}) - x_{k+1}| \le \frac{1}{L} \frac{h^n}{(n+1)!} ||x^{(n+1)}||_{\infty} (\exp(Lh(k+1)) - 1)$$

Fie $x:[a,b]\to R$ solutia problemei (2.1). Fie h< b-a si $n_h=\left[\frac{b-a}{h}\right]$ iar $t_i=t_0+ih$ $\forall i=\overline{0,n_h}$ iar $t\in[a,b)$ cu $t+h\in[a,b)$. Integrind x'(s) intre t si t+h avem

$$x(t+h) - x(t) = \int_{t}^{t+h} x'(s)ds$$

Aceata integrala o vom aproxima prin formula trapezului si avem

$$x(t+h) - x(t) \simeq \frac{h}{2}(x'(t+h) + x'(t))$$

Dar din furmulare aproblemei Couchy avem x'(t) = u(t, x(t)), cu aceasta inlocuind in relatia anterioara avem

$$x(t+h) - x(t) \simeq \frac{h}{2}(u(t+h, x(t+h)) + u(t, x(t)))$$

Aproximam u(t+h,x(t+h)) cu teorema cresterilor finite si avem

$$x(t+h) - x(t) \simeq \frac{h}{2}(u(t+h, x(t) + h \cdot u(t, x(t))) + u(t, x(t)))$$

de aici deducem ecuatiile

$$\begin{array}{rcl}
x_0 & = & \alpha_0 \\
\frac{x_{k+1} - x_k}{t_{k+1} - t_k} & = & \frac{1}{2} (u(t_k + h, x_k + h \cdot u(t_k, x_k)) + u(t_k, x_k))
\end{array}$$

Daca notam $z(t_k) = x_k \ k = \overline{0,n}$ avem urmatoarea definitie

Definitie 16 $x|_{\delta_h} \simeq z$ se numeste metoda Euler-Couchy.

3.2 Consistenta

Fie

$$u_h(t,y) = 1/2(u(t,y) + u(t+h,y+hu(t,y))$$

Pentru a aplica Teorema (1.21) trebuie sa facem diferenta

$$u_h(t, x(t)) - u(t, x(t)) = \frac{1}{2}(u(t+h, x(t) + hu(t, x(t))) - u(t, x(t))$$

Deoarece functia x'(t) = u(t, x(t)) := u(t, y) este de fapt functia din conditia couchy si aplicind (2) si (3) ea este continua pe $\{s, x(t) + hx'(t)|t, s \in [a, b]\} = K$.

Se observa ca K este marginita si inchisa deci este compacta pe [a, b].

Cum u este continua pe K atunci ea este uniform continua asadar avem din definitia uniform continuitatii: $\varepsilon > 0, \exists \eta_{\varepsilon} > 0$ $a.i. |t-s| < \eta_{\varepsilon}$ $si |t-w| < \eta_{\varepsilon}$ $cu (t,y), (s,w) \in K$ atunci $|u(t,y)-u(s,w)| < \varepsilon$.

atunci
$$h < \eta_{\varepsilon}$$
 si $h * \max_{t \in [a,b]} (x'(t)) < \eta_{\varepsilon}$
Deci

$$|u(t+h,x(t)+hx'(t)) - u(t,x(t))| < \varepsilon$$

Asadar metoda Euler-Couchy este consistenta.

3.3 Prezentarea implementarii si exemple

In continuare vom lua urmatorul exemplul:

$$x_0 = 0$$

 $x'(t) = t + x(t) \ t \in [0, 1]$

Sa se rezolve aproximativ ecuatia cu metoda lui Euler-Couchy in cazul in care avem urmatoarele diviziuni δ_1 pentru care h = 1/2 si δ_2 pentru care h = 1/4.

3.3.1 Implementare

```
\begin{tabular}{ll} \#include "parser\_func.cpp" \\ \#include < math.h> \\ \#include < stdlib.h> \\ \#include < stdio.h> \\ int main(int argc, char* argv[]) \\ \{ & parser\_func *parser; \\ double *delta,a,b,h; \\ char *dfunc; \\ long n; \\ double *x; \\ double sum1, sum2; \\ long i; \end{tabular}
```

```
parser=new parser func;
dfunc = (char *)calloc(100, size of(char));
printf("Introduceti\ pasul\ h=");
scanf("\%lf", \&h);
printf("Introduceti limita inferioara a intervalului\n");
scanf("\%lf", \&a);
printf("Introduceti limita superioara a intervalului \n");
scanf("\%lf", \&b);
n=(long)((b-a)/h)+1;
x = (double *)calloc(n, size of(double));
delta = (double *)calloc(n, size of(double));
delta/0/=a;
for(i=1;i< n;i++)
     delta/i/+=i*h;
printf("Introduceti conditia initiala \ ");
scanf("\%lf", \&x[0]);
printf("Introduceti functia cu t si y \ n");
fflush(stdin);
dfunc = gets(dfunc);
parser->set function(dfunc);
parser > set \ var('t', delta[0]);
parser->set \ var('y',x/0/);
parser->eval func(&sum1);
for(i=1;i< n;i++)
{
    parser > set \ var('t', delta[i-1] + h);
    parser->set\ var('y',x[i-1]+h*sum1);
    parser->eval func(&sum2);
    x[i]=x[i-1]+(delta[i]-delta[i-1])*(sum2+sum1)/2;
    sum1=sum2;
}
printf("Valorile in diviziune \ ");
for(i=0;i< n;i++)
    printf("\%lf",x[i]);
printf("\n");
return 0;
```

Clasa parser func va fi prezentata in Anexa 1 si contine parserul de functii.

Functia set var(caracter, valoare) seteaza variabila caracter (care trebuie sa fie un caracter majuscul sau minuscul intre a-z deoarece nu tine cont de litere mari sau mici) cu valoarea data in valoare.

Functia eval func evalueaza functia setata prin set function cu variabilele setata anterior.

Rezultatele rularii

Pentru $\delta_1 = \{0, 1/2, 1\}$ adica pentru pasul h = 0.5 si intervalul [0, 1.0] precum si functia data t + yavem urmatoarele rezultate

```
\begin{array}{cccc} t & 0 & 0.5 & 1.0 \\ x(Euler-Couchy) & 0 & 0.125 & 0.5937 \\ x(Teoretic) & 0 & 0.1487 & 0.71828 \\ |x(Teoretic)-x(Euler-Couchy)| & 0 & 0.0237 & 0.124 \end{array}
```

Pentru $\delta_2=\{0,1/4,1/2,3/4,1\}$ adica pentru pasul h=0.25 si intervalul [0,1.0] precum si functia data t+y avem urmatoarele rezultate

```
0
                                       0.25
                                                 0.5
                                                            0.75
                                                                     1.0
x(Euler - Couchy)
                                    0
                                       0.03125
                                                 0.136719
                                                            0.3403
                                                                     0.66961
x(Teoretic)
                                    0
                                       0.034
                                                 0.1487
                                                            0.367
                                                                     0.71828
|x(Teoretic) - x(Euler - Couchy)|
                                   0 - 0.00275
                                                 0.012
                                                            0.0267
                                                                    0.04867
```

Se observa cu cit diviziunea are mai multe puncte cu atit mai bine este aproximata solutia in punctul final.

Chapter 4

Metoda Runge-Kutta

4.1 Prezentarea metodei

Fie urmatoarea problema Couchy

$$x(a) = \alpha_0$$

$$x'(t) = u(t, x(t))$$

$$(4.1)$$

cu urmatoarele constringeri

$$t \in [a, b]$$

 $\alpha_0 \in B$
 $u : A \times B \to R \ continua$

Se observa ca aceste conditii sunt identice cu conditiile necesare prezentate in sectiune 1 ca problema (1.3) sa aiba solutie unica, deci putem considera adevarate toate notatille din sectiunea 1. Fie acesta solutie unica x.

Fie 0 < h < (b-a) fixat si $n_h = [(b-a)/h]$ precum si diviziunea $\delta_h = \{t_0, t_1, ..., t_{n_h}\}$ definita astfel $t_0 = a, t_j = t_0 + jh$ $\forall j = \overline{0, n_h}$ iar $t \in [a, b)$ cu $t + h \in [a, b)$.

Integrind x'(s) intre t si t+h avem

$$x(t+h) - x(t) = \int_{t}^{t+h} x'(s)ds$$

Acum vom aproxima integrala prin formula lui Simpson si impartind cu h avem

$$\frac{x(t+h) - x(t)}{h} \simeq \frac{1}{h} \left(\frac{h}{6} (x'(t) + 4x'(t+h/2) + x'(t+h)) \right)$$

sau

$$\frac{x(t+h) - x(t)}{h} \simeq \frac{1}{6} \left(x'(t) + 2 \cdot \underbrace{x'(t+h/2)}_{A} + 2 \cdot \underbrace{x'(t+h/2)}_{B} + x'(t+h) \right)$$
(4.2)

Fie
$$x'(t) = u(t, x(t))$$
 si fie

$$v_1(t,y) = u(t,y) \tag{4.3}$$

deci

$$x'(t) = v_1(t, x(t)) (4.4)$$

Luam separat termenii A si B.

Pentru A avem:

$$x'(t+h/2) = u(t+h/2, x(t+h/2))$$
(4.5)

Din definitia derivatei avem

$$\frac{x(t+h/2) - x(t)}{h/2} = x'(c) \ c \in [t, t+h/2]$$

Vom aproxima $x'(t) \simeq x'(t)$ si cu acesta relatia (4.5) devine:

$$x'(t + \frac{h}{2}) \simeq u(t + \frac{h}{2}, x(t) + \frac{h}{2}x'(t))$$

aplicind (4.4) avem

$$x'(t + \frac{h}{2}) \simeq u(t + \frac{h}{2}, x(t) + \frac{h}{2}v_1(t, x(t)))$$

Fie

$$v_2(t,y) = u(t + \frac{h}{2}, y + \frac{h}{2}v_1(t,y))$$
(4.6)

Cu aceasta notatie avem

$$x'(t + \frac{h}{2}) \simeq v_2(t, x(t))$$
 (4.7)

Pentru B avem:

$$x'(t+h/2) = u(t+h/2, x(t+h/2))$$
(4.8)

Din definitia derivatei avem

$$\frac{x(t+h/2) - x(t)}{h/2} = x'(c) \ c \in [t, t+h/2]$$

Vom aproxima $x'(t) \simeq x'(t+h/2)$ si cu aceasta relatia (4.8) devine:

$$x'(t+\frac{h}{2})\simeq u(t+\frac{h}{2},x(t)+\frac{h}{2}x'(x+\frac{h}{2}))$$

inlocuind relatia (4.7) in relatia anterioara avem

$$x'(t + \frac{h}{2}) \simeq u(t + \frac{h}{2}, x(t) + \frac{h}{2}v_2(t, x(t)))$$

Fie

$$v_3(t,y) = u(t + \frac{h}{2}, y + \frac{h}{2}v_2(t,y))$$
(4.9)

Cu aceasta notatie avem

$$x'(t + \frac{h}{2}) \simeq v_3(t, x(t))$$
 (4.10)

In continuare vom aproxima cel de-al treilea termen

$$x'(t+h) = u(t+h, x(t+h))$$

Din definitia derivatei avem

$$\frac{x(t+h/2) - x(t)}{h/2} = x'(c) \ c \in [t, t+h/2]$$

Vom aproxima $x'(c) \simeq x'(t+h/2)$ si vom avea

$$x'(t+h) \simeq u(t+h, x(t) + h \cdot x'(t+h/2))$$

in care daca introducem relatia (4.10) devine

$$x'(t+h) \simeq u(t+h, x(t) + h \cdot v_3(t, x(t)))$$

Fie

$$v_4(t,y) = u(t+h, y+h \cdot v_3(t,y)) \tag{4.11}$$

cu aceasta notatie avem

$$x'(t+h) \simeq v_4(t, x(t)) \tag{4.12}$$

Cu aceste notatii relatia (4.2) devine

$$\frac{x(t+h)-x(t)}{h} \simeq \frac{1}{6}(v_1(t,x(t))+2\cdot v_2(t,x(t))+2\cdot v_3(t,x(t))+v_4(t,x(t)))$$

Fie ecuatia cu diferente finite care aproximeaza solutia problemei Couchy (4.1)

$$\begin{array}{rcl} x_0 & = & \alpha_0 \\ \frac{x_{j+1} - x_j}{h} & = & \frac{1}{6} (v_1(t_j, x_j) + 2v_2(t_j, x_j) + 2v_3(t_j, x_j) + v_4(t_j, x_j)) \ j = \overline{0, n_h - 1} \end{array}$$

unde:

$$\begin{array}{rcl} v_1(t,y) & = & u(t,y) \\ v_2(t,y) & = & u(t+\frac{h}{2},y+\frac{h}{2}v_1(t,y)) \\ v_3(t,y) & = & u(t+\frac{h}{2},y+\frac{h}{2}v_2(t,y)) \\ v_4(t,y) & = & u(t+h,y+h\cdot v_3(t,y)) \end{array}$$

Fie $z: \delta_h \to R$ definita astfel $z(t_j) = x_j$ cu x_j solutii ale ecuatiei (4.1).

Definitie 17 Aproximarea $x|_{\delta_h} \simeq z$ se numeste metoda Runge-Kutta.

4.2 Consistenta

Fie

$$u_h(t,y) = \frac{1}{6}(v_1(t,y) + 2v_2(t,y) + 2v_3(t,y) + v_4(t,y))$$

unde:

$$\begin{array}{rcl} v_1(t,y) & = & u(t,y) \\ v_2(t,y) & = & u(t+\frac{h}{2},y+\frac{h}{2}v_1(t,y)) \\ v_3(t,y) & = & u(t+\frac{h}{2},y+\frac{h}{2}v_2(t,y)) \\ v_4(t,y) & = & u(t+h,y+h\cdot v_3(t,y)) \end{array}$$

Explicitind in parte avem

$$u_h(t, x(t)) = \frac{1}{6}(u(t, x(t)) + 2u(t + \frac{h}{2}, x(t) + \frac{h}{2}u(t, x(t))) + 2u(t + \frac{h}{2}, x(t) + \frac{h}{2}v_2(t, x(t))) + u(t + h, x(t) + hv_3(t, x(t)))$$

Efectuind diferenta

$$u_h(t,x(t)) - u(t,x(t)) = \frac{1}{6}(-5u(t,x(t)) + 2u(t + \frac{h}{2},x(t) + \frac{h}{2}u(t,x(t))) + 2u(t + \frac{h}{2},x(t) + \frac{h}{2}v_2(t,x(t))) + u(t + h,x(t) + hv_3(t,x(t)))$$

$$(4.13)$$

Deoarece functia x'(t) = u(t, x(t)) := u(t, y) este de fapt functia din conditia couchy si aplicind (2) si (3) ea este continua pe $\{(s, x(t) + \frac{h}{2}x'(t))|t, s \in [a, b], x(t) + \frac{h}{2}x'(t) \in B\} = K_1$.

Se observa ca K_1 este marginita si inchisa deci este compacta.

Cum u este continua pe K_1 atunci ea este uniform continua asadar avem din definitia uniform continuitatii: $\varepsilon_1 > 0, \exists \eta_{\varepsilon} > 0$ $a.i. |t - s| < \eta_{\varepsilon_1}$ $si |t - w| < \eta_{\varepsilon_1}$ $cu (t, y), (s, w) \in K_1$ atunci $|u(t, y) - u(s, w)| < \varepsilon_1$.

Deoarece functia x'(t) = u(t, x(t)) := u(t, y) este de fapt functia din conditia couchy si aplicind (2) si (3) ea este continua pe $\{(s, x(t) + \frac{h}{2}v_2(t, x(t)))|t, s \in [a, b], x(t) + \frac{h}{2}v_2(t, x(t)) \in B\} = K_2$.

Cum u este continua pe K_2 atunci ea este uniform continua asadar avem din definitia uniform continuitatii: $\varepsilon_2 > 0, \exists \eta_{\varepsilon_2} > 0$ $a.i. |t - s| < \eta_{\varepsilon_2} si |t - w| < \eta_{\varepsilon_2} cu (t, y), (s, w) \in K_2$ atunci $|u(t, y) - u(s, w)| < \varepsilon_2$.

Deoarece functia x'(t) = u(t, x(t)) := u(t, y) este de fapt functia din conditia couchy si aplicind (2) si (3) ea este continua pe $\{(s, x(t) + \frac{h}{2}v_3(t, x(t)))|t, s \in [a, b], x(t) + \frac{h}{2}v_3(t, x(t)) \in B\} = K_3$.

Cum u este continua pe K_2 atunci ea este uniform continua asadar avem din definitia uniform continuitatii: $\varepsilon_3 > 0, \exists \eta_{\varepsilon_3} > 0$ $a.i. |t-s| < \eta_{\varepsilon_3}$ $si |t-w| < \eta_{\varepsilon_3}$ $cu (t,y), (s,w) \in K_3$ atunci $|u(t,y)-u(s,w)| < \varepsilon_3$.

Deoarece $u_h(t, x(t))$ trebuie sa fie definita atunci ea este definita pe $K_1 \cap K_2 \cap K_3 \cap B = K$ deoarece este intersectie de multimi compacte multimea rezultata este tot o multime compacta asadar K este o multime compacta.

Deoarece K este o multime compacta iar functia u(t,y) este continua pe K atunci u(t,y) este uniform continua pe K.

Relatia (4.13) se poate scrie astfel:

$$u_h(t, x(t)) - u(t, x(t)) = \frac{1}{3} \left(u(t + \frac{h}{2}, x(t) + \frac{h}{2}u(t, x(t))) - u(t, x(t)) \right)$$

$$+ \frac{1}{3} \left(u(t + \frac{h}{2}, x(t) + \frac{h}{2}v_2(t, x(t))) - u(t, x(t)) \right)$$

$$+ \frac{1}{6} \left(u(t + h, x(t) + hv_3(t, x(t)) - u(t, x(t)) \right)$$

Aplicind uniform continuitatea pe multimile K_1, K_2, K_3 si daca $h < \min\{2 * \min\{\eta_1, \eta_2\}, \eta_3\}$ si

$$\begin{split} \frac{h}{2} \max_{t \in [a,b]} |x'(t)| &< \eta_1 \\ \frac{h}{2} \max_{t \in [a,b]} |v_2(t,x(t))| &< \eta_2 \\ h \max_{t \in [a,b]} |v_3(t,x(t))| &< \eta_3 \end{split}$$

avem

$$|u_h(t,x(t)) - u(t,x(t))| < \frac{1}{3}\varepsilon_1 + \frac{1}{3}\varepsilon_2 + \frac{1}{6}\varepsilon_3 = \varepsilon$$

Deci metoda Runge-Kutta este consistenta.

4.3 Prezentarea implementarii si exemple

In continuare vom lua urmatorul exemplul:

$$x_0 = 0$$

 $x'(t) = t + x(t) \ t \in [0, 1]$

Sa se rezolve aproximativ ecuatia cu metoda lui Runge-Kutta in cazul in care avem urmatoarele diviziuni δ_1 pentru care h = 1/2 si δ_2 pentru care h = 1/4.

4.3.1 Implementare

```
#include"parser_func.cpp"

#include<math.h>

#include<stdlib.h>

#include<stdio.h>

int main(int argc, char* argv[])

{

parser_func *parser;

double *delta,a,b,h;
```

char *dfunc;

```
long n;
     double *x;
     double v1, v2, v3, v4;
     long i;
     parser=new parser func;
     dfunc=(char *)calloc(100,sizeof(char));
     printf("Introduceti\ pasul\ h=");
     scanf("\%lf", \&h);
     printf("Introduceti limita inferioara a intervalului\n");
     scanf("\%lf", \&a);
     printf("Introduceti limita superioara a intervalului \n");
     scanf("\%lf", \&b);
     n = (lonq)((b-a)/h) + 1;
     x = (double *)calloc(n, size of(double));
     delta = (double *)calloc(n, size of(double));
     delta/0/=a;
    for(i=1;i< n;i++)
          delta/i/+=i*h;
    printf("Introduceti conditia initiala \ ");
     scanf("\%lf", \&x[0]);
    printf("Introduceti functia cu t si y \ n");
    fflush(stdin);
     dfunc = gets(dfunc);
     parser->set\_function(dfunc);
    for(i=0;i< n-1;i++)
     {
         parser->set\_var('t',delta[i]);
         parser > set \ var('y', x/i/);
         parser->eval func(\&v1);
         parser->set \ var('t', delta[i]+h/2);
         parser > set \ var('y', x/i) + h*v1/2);
         parser->eval\_func(\&v2);
         parser > set \ var('y',x/i] + h*v2/2);
         parser > eval\_func(\&v3);
         parser->\!set\_var('t',delta[i+1]);
         parser > set \ var('y',x[i]+h*v3);
         parser > eval func(&v4);
         x[i+1]=x[i]+h*(v1+2*v2+2*v3+v4)/6;
    printf("Valorile in diviziune \ ");
    for(i=0;i< n;i++)
         printf("\%lf",x[i]);
     printf("\n");
     return 0;
Clasa parser func va fi prezentata in Anexa 1 si contine parserul de functii.
```

Functia set_var(caracter, valoare) seteaza variabila caracter (care trebuie sa fie un caracter majuscul sau minuscul intre a-z deoarece nu tine cont de litere mari sau mici) cu valoarea data in valoare.

Functia eval func evalueaza functia setata prin set function cu variabilele setata anterior.

4.3.2 Rezultatele rularii

Pentru $\delta_1 = \{0, 1/2, 1\}$ adica pentru pasul h = 0.5 si intervalul [0, 1.0] precum si functia data t + y avem urmatoarele rezultate

```
\begin{array}{cccc} t & 0 & 0.5 & 1.0 \\ x(Runge-Kutta) & 0 & 0.1484 & 0.71734 \\ x(Teoretic) & 0 & 0.1487 & 0.71828 \\ |x(Teoretic)-x(Runge-Kutta)| & 0 & 0.0003 & 0.00094 \end{array}
```

Pentru $\delta_2 = \{0, 1/4, 1/2, 3/4, 1\}$ adica pentru pasul h = 0.25 si intervalul [0, 1.0] precum si functia data t + y avem urmatoarele rezultate

```
0.25
                                               0.5
                                                         0.75
                                                                  1.0
x(Runge - Kutta)
                                    0
                                        0.034
                                               0.14869
                                                         0.3669
                                                                  0.71821
x(Teoretic)
                                    0
                                        0.034
                                               0.1487
                                                         0.367
                                                                  0.71828
|x(Teoretic) - x(Runge - Kutta)|
                                               0.00001
                                                         0.0001
                                                                  0.00007
```

Se observa cu cit diviziunea are mai multe puncte cu atit mai bine este aproximata solutia in punctul final.

Chapter 5

Anexa 1 (parser de functii)

In aceasta anexa vom prezenta parserul de functii. Atesta este o versiune modifica a parserului prezentat in [2].

5.1 Definierea clasei

```
// parser func.h: interface for the parser func class.
  \#if \_MSC\_VER > 1000
   \#pragma\ once
   \#endif // \_MSC\_VER > 1000
   \#include < stdlib.h >
   \#include < string.h >
   #include<ctype.h>
   \#include < math.h >
   #define DELIMITATOR 1
   #define VARIABILA 2
   #define NUMAR 3
   #define FUNCTION 4
   class parser_func
   {
  public:
       double get var(char var);
       void unset_ var(char var);
       void\ set\_var(char\ var, double\ val);
       void empty_vars();
      parser_func();
       virtual ~parser_func();
       void set function(char *func);
       void\ eval\_func(double\ *rez);
  protected:
```

```
char * get argument(char *work);
    bool\ is\_function;
    double\ eval\_\ math(char\ *s);
    double find_var(char *s);
    long isdelim(char c);
    void serror(long error);
    void putback();
    void get_ token(void);
    void atom(double *rez);
    void eval func6(double *rez);
    void eval_func5(double *rez);
    void eval_func4(double *rez);
    void eval func3(double *rez);
    void eval func2(double *rez);
    void eval func1(double *rez);
    char \ simb/80;
    char tip simb;
    double *vars;
    char *prog;
    char *function;
    double\ (*math\_f[13])(double\ arg);
};
```

5.2 Implementarea clasei

```
// parser_func.cpp: implementation of the parser func class.
  #include "stdafx.h"
  \#include \ "parser\_func.h"
  \#include < iostream.h >
  \#include < stdio.h >
  // Construction/Destruction
 parser func::parser func()
    vars=(double *)calloc(26,sizeof(double));
    prog=NULL;
    function=NULL;
    math_f/0/=cos;
    math f/1/=acos;
    math_f[2]=sin;
    math_f/3/=asin;
    math\_f[4]=tan;
    math_f/5/=atan;
    math f/6/=cosh;
```

```
math_f[\gamma] = sinh;
    math_f[8]=tanh;
    math_f[9]=exp;
     math_f[10] = log;
     math_f[11] = log10;
    math\_f[12]=fabs;
    is function=false;
parser\_func:: ~\tilde{}~parser\_func()
     if(vars!=NULL) free(vars);
     if(prog!=NULL) free(prog);
void parser func::eval func(double *rez)
//input point
    prog = function;
    get token();
    if(!*simb)
         serror(2);
         return;
     eval_func1(rez);
     if(*simb) serror(0); //last simbol is null
void parser func::eval func1(double *rez)
//processing a atribution
     long fanta;
     char temp\_simb[80], sseg\_tip;
    if(tip\_simb == VARIABILA)
         //save the old simbol;
         strcpy(temp \ simb, simb);
         sseg\_tip{=}tip\_simb;
         //computin the index of the variable
         fanta=toupper(*simb)-'A';
         get\_token();
         if(*simb!='=')
              putback();//return the curent segment
              //restore\ the\ old\ simbol\ without\ atributs
              strcpy(simb, temp simb);
              tip simb=sseg tip;
         else
```

```
{
              get\_token(); //get\ the\ next\ part\ of\ the\ expression
              eval\_func2(rez);
              vars[fanta] = *rez;
              return;
    eval\_func2(rez);
void parser func::eval func2(double *rez)
//add or difference of two elements
    char op;
    double temp;
    eval func3(rez);
    op = \overline{*}simb;
    while(op = '+' || op = '-')
         get_token();
         eval func3(&temp);
         switch(op)
         {
         case '-':
              *rez = *rez - temp;
              break;
         case '+':
              *rez=*rez+temp;
              break;
         op = *simb;
void parser_func::eval_func3(double *rez)
//product or division of two elements
    char op;
    double temp;
    eval\_func4(rez);
    while((op=*simb)=='*'||op=='/'||op=='\%')
    {
         get\_token();
         eval_func4(&temp);
         switch(op)
         {
         case '*':
              *rez=(*rez)*temp;
```

```
break;
        case '/':
             *rez=(*rez)/temp;
            break;
        case '%':
             *rez=(long)*rez\%(long)temp;
            break;
    }
void parser func::eval func4(double *rez)
//process an exponent
    double\ temp, ex;
    eval\_func5(rez);
    if(*simb=='^')
        get_token();
        eval_func4(&temp);
        *rez=pow(*rez,temp);
//eval + or - unary
void parser_func::eval_func5(double *rez)
    char op;
    op=0;
    op = *simb;
        get_token();
    eval\_func6(rez);
    if(op=='-') *rez=-(*rez);
}
void\ parser\_func::eval\_func6(double\ *rez)
//process parantheses expresion
    if(*simb=='(')
{
        get\_token();
        eval\_func2(rez);
        if(*simb!=')')
            serror(1);
        get_token();
    else atom(rez);
```

```
double\ parser\_func::eval\_math(char\ *s)
//evaluate a mathematical predefinite function
    double rez;
    int findex;
    if(strcmp(s, "cos") == 0) //we have cos
         findex=0:
    else if(strcmp(s, "acos") == 0) //we have arccos
         findex=1;
    else\ if(strcmp(s,"sin")==0)\ //we\ have\ sin
         findex=2;
    else if(strcmp(s, "asin") == 0) //we have arcsin
         findex=3;
    else if(strcmp(s, "tan") == 0) //we have tangent
         findex=4;
    else if(strcmp(s, "atan")==0) //we have arctangent
         findex=5;
    else if(strcmp(s, "cosh")==0) //we have hiperbolic cosinus
         findex=6;
    else if(strcmp(s, "sinh")==0) //we have hyperbolic sinus
         findex=7;
    else if(strcmp(s, "tanh")==0) //we have hyperbolic tangent
         findex=8;
    else if(strcmp(s, "exp")==0) //we have exponential
         findex=9;
    else if(strcmp(s, "log") == 0) //we have natural logarithm
         findex=10;
    else if(strcmp(s, "log10") == 0) //we have 10 base logarithm
         findex=11;
    else if(strcmp(s, "fabs") == 0) //we have absolute value
         findex=12;
    else\ findex=-1;
    char *argument;
    char *work;
    char old tip simb;
    old tip simb=tip simb;
    work=(char *)calloc(80,sizeof(char));
    argument=get argument(work);
    eval_func(&rez);
    free(work);
    prog=argument;
    if(findex = = -1)
         return 0.0;
    else return math_f/findex/(rez);
void parser func::atom(double *rez)
//read the value of the number or a variable
```

```
{
    switch(tip\_simb)
    case VARIABILA:
         *rez=find\_var(simb);
        get token();
        return;
    case NUMAR:
         *rez=atof(simb);
        get_token();
        return;
    case FUNCTION:
         *rez{=}eval\_\,math(simb);
        get\_token();
        return;
    de fault:
        serror(0);
void parser_func::get_token()
//return the next simbol
    char *temp;
    tip simb=0;
    temp = simb;
    *temp = \land 0';
    if(!prog) return; //end of expresion
    while(isspace(*prog)) ++prog;
    if(strchr("+-*/%^=()",*prog))
        tip \ simb = DELIMITATOR;
         *temp++=*prog++;
    else if(isalpha(*prog) && !isalpha(*(prog+1)))
        while(!isdelim(*prog)) *temp++=*prog++;
        tip simb=VARIABILA;
    else if(isalpha(*prog) && isalpha(*(prog+1)))
        while(!isdelim(*prog)) *temp++=*prog++;
        tip\_simb = FUNCTION;
    else\ if(isdigit(*prog))
        while(!isdelim(*prog)) *temp++=*prog++;
        tip \ simb=NUMAR;
```

```
*temp = ' 0';
void parser_func::putback()
//return\ one\ simbol\ from\ the\ input\ flux
     char *s;
     s=simb;
     for(;*s;s++) prog-;
void parser func::serror(long error)
//print a sintax error {
     static char *e[]={
          "Sintax error",
          "Unbalance bracket",
          "Not\ an\ expression"
     cout << e/error /< < endl;
double parser_func::find_var(char *s)
//return the value of a variable
     i\!f(!isalpha(*s)) \\ \{
          serror(1);
     return vars/toupper(*simb)-'A'/;
long parser func::isdelim(char c)
//return 0 is c is a delimitator
     \textit{if}(\textit{strchr}(" +-/*\%\hat{}=()",c) \mid\mid c==9 \mid\mid c==\mathring{}r' \mid\mid c==0)
     return 0;
void parser func::empty vars()
//empty the variable memory \{
     if(vars!=NULL) \ free(vars);
     vars = (double *)calloc(26, size of(double));
void parser_func::set_var(char var, double val)
//set a variable to a value
    if(!isalpha(var)) \\ \{
```

```
return;
    vars[toupper(var)-'A']=val;
void parser_func::unset_var(char var)
//unset a variable
     if(!isalpha(var))
         serror(1);
         return;
    vars[toupper(var)-'A']=0.0;
double parser_func::get_var(char var)
//get a variable
    if(!isalpha(var))
         serror(1);
         return 0.0;
    return\ vars[toupper(var) \hbox{-} \hbox{'}A\hbox{'}];
void parser func::set function(char *func)
//set the function to the system
     if(function!=NULL) free(function);
    function=(char *)calloc(strlen(func)+1,sizeof(char));
    strcpy(function,func);
    prog = function;
char * parser_func::get_argument(char *work)
//get the argument of a predefined function
    char *temp;
    prog++;
    long i=0;
    long parantheses=1;
    while(parantheses!=0)
     {
         if(*prog=='(') parantheses++;
         if(*prog==')') parantheses-;
         if(parantheses==0) break;
         work/i/=*prog;
         i++;
         prog++;
    }
```

```
prog++; temp=prog; prog=work; return\ temp;
```

Bibliography

- [1] Rosca,I., "Lectii de Ecuatii fiderentiale si cu derivate partiale",Editura Fundatiei "Romania de Maine",2000,ISBN 973-582-190-7
- [2] Schildt, H., "C manual complet", Editura "Teora", 1998, ISBN 973-601-471-1
- [3] Grigore, G., Note de curs Analiza Matematica I, Universitatea Spiru Haret, Facultatea de Matematica-Informatica.
- [4] Grigore, G., Note de curs Analiza Numerica II, Universitatea Spiru Haret, Facultatea de Matematica-Informatica.