数学B問題

(100分)

【必答問題】 数学B受験者は B1, B2, B3 を全問解答せよ。

- **B1** 次の を正しくうめよ。解答欄には答えのみを記入せよ。
 - (1) 2(x+1)(x-1)+3x を因数分解すると (x) となる。
 - (2) 2次関数 $f(x) = 2x^2 ax + 1$ (a は定数) があり、f(2) = 1 である。このとき、 $a = \begin{bmatrix} (1) \end{bmatrix}$ であり、 $0 \le x \le 3$ における f(x) の最大値は $\begin{bmatrix} (2) \end{bmatrix}$ である。
 - (3) 図のような A, B, C, Dの4つの場所に赤, 青, 黄, 緑の4色の絵の具から何色か用いて色を塗る。ただし, 1つの場所には1色の絵の具で塗ることとし, 境界を接している場所には異なる色を塗るものとする。4色をすべて用いて塗り分ける方法は全部

В	
D	

で 田 通りある。また、3色で塗り分ける方法は全部で 田 通りある。

(4) 下の表は20人の数学の小テストの得点をまとめた結果である。ただし、得点はすべて整数の値である。

得点	0	1	2	3	4	5
人数	1	2	3	4	6	4

このとき、データの中央値は め 点であり、第3四分位数は (中) 点である。

(配点 20)

- **B2** 袋の中に 1, 2, ……, 11 が 1 つずつ書かれたカードが計 11 枚入っている。この袋の中から同時に 2 枚のカードを取り出す。取り出した 2 枚のカードに書かれた数の和について、偶数となる事象を A, 9 の倍数となる事象を B とする。
 - (1) 取り出した2枚のカードに書かれた数が1と11である確率を求めよ。
 - (2) Aが起こる確率を求めよ。

- $\mathbf{B3}$ △ABCがあり、AC=3、∠ABC=45°、 \cos ∠BAC= $\frac{1}{3}$ である。
 - (1) sin ∠BAC の値を求めよ。また、辺BC の長さを求めよ。
 - (2) △ABC の外接円の中心を O とする。 △OBC の面積を求めよ。
 - (3) (2)のとき, △OBC を底面とし, BP = CP = OP = BC である点 P を頂点とする四面体 POBC をつくる。四面体 POBC の体積を求めよ。 (配点 20)

【選択問題】 数学B受験者は,次のB4 \sim B8 のうちから2題を選んで解答せよ。

- $\mathbf{B4}$ x の 3 次式 $P(x) = x^3 + (p-1)x^2 + px q$ があり,P(1) = 0 である。ただし,p, q は 実数の定数である。
 - (1) qをpを用いて表せ。

V

- (2) P(x) を因数分解せよ。また,方程式 P(x) = 0 が虚数解をもつような p の値の範囲を求めよ。
- (3) (2)のとき,方程式 P(x)=0 の 2 つの虚数解を α , β とする。 $\alpha^2=2\beta$ が成り立つとき, p の値を求めよ。 (配点 20)
- $\mathbf{B5}$ 座標平面上に、円 $C: x^2+y^2-2x-4y-5=0$ と直線 $\ell: y=-2x+9$ がある。
 - (1) 円 Cの中心の座標と半径を求めよ。
 - (2) 円 C と直線 ℓ の 2 つの交点 A, B の座標を求めよ。ただし,点 A の x 座標は点 B の x 座標より小さいものとする。また,点 D を中心とする円 K は 2 点 A, B を通り,点 D と直線 ℓ との距離が円 C の半径の 2 倍である。円 K の半径を求めよ。
 - (3) (2)のとき, 点 D の座標を求めよ。ただし, 点 D は第1象限にあるものとする。

(配点 20)

- - (1) a, bの値を求めよ。
 - (2) $-\frac{\pi}{2} < \theta < \frac{\pi}{2}$ のとき, y=0 を満たす θ の値を求めよ。
 - (3) $-\frac{\pi}{3} \le \theta \le \frac{\pi}{3}$ における関数 y の最大値,最小値とそのときの θ の値をそれぞれ求めよ。 (配点 20)
- **B7** 公比が正の等比数列 $\{a_n\}$ が、 $a_3=4$ 、 $a_5=16$ を満たしている。また、等差数列 $\{b_n\}$ の 初項から第 n 項までの和を S_n とすると、 $S_6=21$ 、 $S_{12}=78$ を満たしている。
 - (1) 数列 $\{a_n\}$ の一般項 a_n を n を用いて表せ。また、数列 $\{a_n\}$ の初項から第 n 項までの和 T_n を n を用いて表せ。
 - (2) 数列 {b_n} の一般項 b_n を n を用いて表せ。
 - (3) 数列 $\{c_n\}$ を $c_n=3^{b_n}$ $(n=1, 2, 3, \dots)$ によって定める。この c_n と(1)の T_n を用いて表された次の和を n を用いて表せ。

$$c_n T_1 + c_{n-1} T_2 + c_{n-2} T_3 + \cdots + c_3 T_{n-2} + c_2 T_{n-1} + c_1 T_n$$

(配点 20)

- $oxed{B8}$ $\triangle OAB$ があり、辺 OB を 2:1 の比に内分する点を C、線分 AC の中点を D とする。また、 $\overrightarrow{OA} = \overrightarrow{a}$ 、 $\overrightarrow{OB} = \overrightarrow{b}$ とする。
 - (1) \overrightarrow{OC} を \overrightarrow{b} を用いて表せ。また, \overrightarrow{OD} を \overrightarrow{a} , \overrightarrow{b} を用いて表せ。
 - (2) $\overrightarrow{OE} = k \overrightarrow{OA}$ (k > 0) である点を E とする。 \overrightarrow{EC} を k, \overrightarrow{a} , \overrightarrow{b} を用いて表せ。また,OA = 2, 内積 $\overrightarrow{a} \cdot \overrightarrow{b} = 6$ のとき, $|\overrightarrow{EC}| = |\overrightarrow{OC}|$ であるような k の値を求めよ。
 - (3) (2)のとき、直線 ED と直線 AB の交点を P とする。 \overrightarrow{OP} を \overline{a} 、 \overline{b} を用いて表せ。

(配点 20)