9.3절

9.3절

9.3 확률화 블럭계획법의 분산분석

- 확률화 블럭계획법: 실험단위들이 동질적인 것 끼리 블럭화 되어 있으며, 각 블록 내에서 실험 단위들은 각각의 처리에 랜덤하게 배치되는 실험
- □ 블럭효과
- □ 처리효과
- □ 오차효과 : 블럭효과와 처리효과로 설명되지 않는 효과

확률화 블럭계획법의 자료

□ 블럭의 수가 b이고 처리의 수가 t 이며 각 블럭과 처리의 조합에는 모두 하나의 관측값이 배치되어 있다고 할 때, 전체관측값의 수는 bt 개 이다. 이와 같은 자료는 다음과 같이 표현될 수 있다.

± 11−8		확률호	블럭계획법 의	의 자료		
처리	1	2		t	합	평균
1	X11	X_{12}	***	X_{1t}	<i>X</i> ₁ .	\overline{X}_1 .
2	X_{21}	X_{22}		X_{2t}	X_2 .	\overline{X}_2 .
:	i i	:	**	:	:	i i
b	X_{b1}	X_{b2}	***	X_{bt}	X_b .	\overline{X}_b .
합	X. ₁	X.2		X. _t	<i>X</i>	
평균	$\overline{X}_{\cdot 1}$	$\overline{X}_{\cdot 2}$	***	$\overline{X}_{\cdot t}$		\overline{X}

① 제곱합 계산 (i = 1, 2, ..., b, j = 1, 2, ..., t)

 X_{ij} : i번째 블럭의 j번째 처리에 의한 반응

 X_i . : i번째 블럭의 합 = $\sum_{j=1}^t X_{ij}$

 $X_{i}: j$ 번째 처리의 합 = $\sum_{i=1}^{b} X_{ij}$

 $X_{...}$: 전체 관측값의 합 = $\sum_{i=1}^{b} \sum_{j=1}^{t} X_{ij}$

 \overline{X}_i . : i번째 블럭의 평균 $=\frac{1}{t}\sum_{j=1}^t X_{ij}$

 $\overline{X}_{.j}: j$ 번째 처리의 평균 $=\frac{1}{b}\sum_{i=1}^b X_{ij}$

 \overline{X} .. : 전체 관측값의 평균 $= \frac{1}{bt} \sum_{i=1}^b \sum_{j=1}^t X_{ij}$

□ 확률화 블럭계획법에서의 총제곱합은 다음과 같이 분할된다.

$$\sum_{i=1}^{b} \sum_{j=1}^{t} (X_{ij} - \overline{X}_{..})^{2} = t \sum_{i=1}^{b} (\overline{X}_{i.} - \overline{X}_{..})^{2} + b \sum_{j=1}^{t} (\overline{X}_{.j} - \overline{X}_{..})^{2} + \sum_{i=1}^{b} \sum_{j=1}^{t} (X_{ij} - \overline{X}_{i.} - \overline{X}_{.j} + \overline{X}_{..})^{2}$$

총제곱합(TSS)=블럭제곱합 (SS_B) +처리제곱합 (SS_T) +오차제곱합 (SS_E)

* 각 제곱합의 자유도는 다음과 같다.

TSS 의 자유도 : bt - 1

 SS_B 의 자유도 : b-1

 SS_{τ} 의 자유도 : t-1

 SS_E 의 자유도 : (b-1)(t-1)

* 평균제곱합은 각각의 제곱합에 자유도로 나눈 것으로 다음과 같다.

$$MS_B = SSB_{/(}b - 1)$$
 $MS_T = SST_{/(}t - 1)$
 $MS_E = SSE_{/(}b - 1)(t - 1)$

② 분산분석표의 작성 확률화 블럭계획법에서의 분산분석표는 다음과 같다.

⊞ 11−9	확률화 블럭계획법의 분산분석표					
변인	d.f.	SS	MS	F		
블럭	b-1	SS_B	$SS_B/b-1$	MS_B/MS_E		
처리	t - 1	SS_T	$SS_T/t - 1$	MS_T/MS_E		
오차	(b-1)(t-1)	SS_E	$SS_E/(b-1)(t-1)$			
전체	bt - 1	TSS				

$$CM = \frac{1}{bt} \left(\sum_{i=1}^{b} \sum_{j=1}^{t} X_{ij} \right)^{2}$$

$$TSS = \sum_{i=1}^{b} \sum_{j=1}^{t} X_{ij}^{2} - CM$$

$$SS_{B} = \frac{1}{t} \sum_{i=1}^{b} X_{i}^{2} - CM$$

$$SS_{T} = \frac{1}{b} \sum_{j=1}^{t} X_{.j}^{2} - CM$$

블럭효과에 대한 검정

- β_i (i = 1, 2, ..., b) : i번째 블럭집단의 모평균
- $H_1 : H_0$ 가 사실이 아니다.

$$F = \frac{MS_B}{MS_F} \sim F(b-1, (b-1)(t-1))$$

 \square 유의수준 α 를 이용할 때 $F > F(\alpha : b-1, (b-1)(t-1))$ 이면 귀무가설을 기각.

처리효과에 대한 검정

- τ_{j} (j = 1, 2, ..., t) : j번째 처리집단의 모평균
- $H_1 : H_0$ 가 사실이 아니다.

$$F = \frac{MS_B}{MS_E} \sim F(t-1, (b-1)(t-1))$$

 \square 유의수준 α 를 이용할 때 $F > F(\alpha : t-1, (b-1)(t-1))$ 이면 귀무가설 기각.

예9-4.

다음 자료는 4명의 사람에게 각각 3가지의 서로 다른 자극(A, B, C)을 랜덤하게 순서를 정하여 준 후에 반응하는 데까지 걸린 시간(단위: 초)를 측정한 값이다. 3가지 자극에 있어서의 평균반응시간에 차이가 있는가와 각 사람에 따라서 평균반응시간에 차이가 있는가를 검정하라.

사람 1	사람 2	사람 3	사람 4
A 1.7	C 2.1	A 0.1	B 2.2
С	А	В	Α
2.3	1.5	2.3	0.6
B 3.4	B 2.6	C 0.8	C 1.6

(sol) 분석을 하기 위하여 주어진 표를 블럭(사람)과 처리(자극)에 대한 이원분류표를 만들면 다음과 같다.

£ 11-10		자극실험의	이원분류표		
처리	Α	В	С	합	평균
1	1.7	3.4	2.3	7.4	2,467
2	1.5	2.6	2.1	6.2	2.067
3	0.1	2.3	0.8	3.2	1.067
4	0.6	2.2	1.6	4.4	1,467
합	3.9	10.5	6.8	21.2	
평균	0.975	2.625	1.7		1.767

□ 또한 위의 자료와 9.3.1절에 주어진 공식을 이용하여 각각의 제곱합을 구하면 다음과 같다.

$$CM = \frac{(3 - 3)^2}{b \cdot t} = \frac{(21.2)^2}{12} = 37.453$$

$$TSS = \sum_{i=1}^4 \sum_{j=1}^3 X_{ij}^2 - CM$$

$$= (1.7)^2 + (2.3)^2 + \dots + (1.6)^2 - CM$$

$$= 9.4067$$

$$SS_B = \frac{1}{3} \sum_{i=1}^{4} X_i^2 - CM$$

$$= \frac{1}{3} \left\{ (7.4)^2 + (6.2)^2 + (3.2)^2 + (4.4)^2 \right\} - CM$$

$$= 3.4767$$

$$SS_T = \frac{1}{4} \sum_{j=1}^{3} X_j^2 - CM$$

$$= \frac{1}{4} \left\{ (3.9)^2 + (10.5)^2 + (6.8)^2 \right\} - CM$$

$$= 5.4717$$

$$SS_E = TSS - SS_B - SS_T$$

= $9.4069 - 3.48 - 5.4717$
= 0.4552

□ 계산한 결과값을 바탕으로 분산분석표를 작성하면 다음과 같다.

1-11		자극실험의 분산분석	莊	
변인	df.	SS	MS	F
블럭	3	3.4767	1.16	15.26
처리	2	5.4767	2.74	36.05
오차	6	0.4533	0.076	
전체	n	9.4067		

□ 각각의 처리집단에 있어서 반응시간의 모평균이 동일한가에 대한 가설 검정은 다음과 같다. 검정통계량의 값은 분산분석표에서 F값이다.

$$H_0: \tau_A = \tau_B = \tau_C$$

$$F = \frac{MS_T}{MS_E} = \frac{2.74}{0.076} = 36.05$$

□ 이 검정통계량 F는 자유도가 (2,6)인 F-분포를 따르며 유의수준을 5%로 할 때 부록 V의 [표 6]에 의하여 $F_{0.05,2,6} = 5.14$ 이다. 따라서 $F = 36.05 > F_{0.05,2,6}$ 이므로 귀무가설은 기각된다. 즉, 위의 자료에 의할 때 각 자극에 대한 평균반응시간이 모두 같다고 주장할 수 없다.

□ 각각의 사람에 따른 반응시간의 모평균이 동일한가에 대한 검정은 각 사람에 대한 반응시 간의 모평균을 $\beta_1,\beta_2,\beta_3,\beta_4$ 라고 할 때 가설과 검정통계량은 다음과 같다.

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4$$

$$F = \frac{MS_B}{MS_E} = \frac{1.16}{0.076} = 15.26$$

이 검정통계량 F는 자유도가 (3,6)인 F-분포를 따르며 유의수준을 5%로 할 때 부록 V의 [표 6]에 의하여 $F_{0,05,3,6}=4.76$ 이다. 따라서 $F=15.26>F_{0,05,3,6}$ 이므로 귀무가설은 기각된다. 즉 위의 자료에 근거할 때 각 사람에 따라서 나타나는 반응의 평균시간이 모두 같다고볼 수 없다.

확률화 블럭계획법에서 모수의 추정

- τ_i : j번째 처리집단의 모평균 (j=1,2,...,t)
- β_i : i번째 블럭집단의 모평균 (i=1,2,...,b)
- □ 100(1 *α*)% 신뢰구간
- ① 처리의 단일 모평균 $au_j: \overline{X}_{.j} \pm t_{lpha/2} rac{s}{\sqrt{b}}$
- ② 처리의 두 모평균의 차 $au_j au_k : \left(\overline{X}_{.j} \overline{X}_{.k}\right) \pm t_{lpha/2} \frac{S}{\sqrt{2/b}}$
- ③ 블록의 단일 모평균 $\beta_i: \overline{X}_{i\cdot} \pm t_{\alpha/2} \frac{s}{\sqrt{t}}$
- ④ 블록의 두 모평균의 차 $\beta_i \beta_l$: $\left(\overline{X}_{i\cdot} \overline{X}_{l\cdot}\right) \pm t_{\alpha/2} \frac{S}{\sqrt{2/t}}$

(여기서, $S = \sqrt{MS_E}$, $t_{\alpha/2}$ 는 자유도 MS_E 의 자유도인 (b-1)(t-1)을 갖는 t-분포로부터 구한 값으로 $P_r(t>t_{\alpha/2})=\frac{\alpha}{2}$)

예9-5.

- □ [예 9.4]에 주어진 자료를 이용하여 자극 A과 자극 B의 모평균의 차 $(\tau_1 \tau_2)$ 에 대한 95% 신뢰구간을 구하고, 첫 번째 사람의 반응의 평균시간 (β_1) 에 대한 95% 신뢰구간을 구하라.
- **(sol)** $\overline{X}_{.1}=0.975$, $\overline{X}_{.2}=2.625$, $S=\sqrt{MS_E}=\sqrt{0.076}=0.276$ 이고, S의 자유도가 6이므로 자유도가 6인 t-분포에서 $t_{0.0256}=2.447$ 임을 알 수 있다.
- \Box 따라서 $\tau_1 \tau_2$ 에 대한 95% 신뢰구간은 다음과 같다.

$$(\overline{X}_{.1} - \overline{X}_{.2}) \pm t_{\alpha/2} \cdot SI/\sqrt{\frac{2}{b}} = (0.975 - 2.625) \pm (2.447)(0.276)I/\sqrt{\frac{2}{4}} = (-1.65 \pm 0.48) = (-2.13, -1.17)$$

 \square 또한 β_1 에 대한 95% 신뢰구간은 다음과 같이 구할 수 있다.

$$(\overline{X}_1. \pm t_{\alpha/2} \cdot SI/\sqrt{t}) = (2.467 \pm (2.447)(0.276)/\sqrt{3}) = (2.467 \pm 0.39) = (2.077, 2.857)$$

