Computer Science 4442

Assignment 2

Ian Borwick

250950449

iborwick@uwo.ca

Table of Contents

1		2
	a)	2
	b)	2
	c)	2
	d)	2
2		
	a)	3
	b)	4
	c)	
3		6
	a)	6
	b)	6
	c)	7
	d)	
	e)	8
	f)	9
	g)	. 11

1.

a)
$$p(Water = cool|Play = yes) = 1/3$$

$$p(Water = cool|Play = no) = 0$$

c)
$$p(Play = yes | Humid = high) = \mathbf{2/3}$$

$$p(Play = yes | Humid = normal) = \mathbf{1}$$

2.

a)

b)

b)	
	Date
76)	
$K(x,z) = f_1(x) f_1(z)$	t f2(x) f2(z) Where e real values functions
f1, f2 ! Rn -> R all	e real valued functions
	,
f 1(x) f 1(z) = K	-1(X,Z)
	- (-)
$f_2(x) f_2(z) = \langle x \rangle$	2 () 2)
: K(x,z) = K,(x,z	1+ 162642)
1 1 (() 2) = . ((() 2)) 1 ~2(x,z)
101!	
$\Phi'(x) = (\Phi'(x))$	$\phi_{2}(x), \dots, \phi_{n}(x)$
$ \begin{array}{c} $	$\Phi_{2}^{2}(X), \dots, \Phi_{n}^{2}(X)$
(*)	
be the feature m	ap of ki, kz
Define Okl by co	negtinating feature maps
A () () ()	$h^{1}(1)$ $h^{1}(1)$ $h^{2}(1)$
$\Psi(x) = (0, 0)$	(), $(, , , , , , , , , , , , , , , , , ,$
1 6 1:00:00 MA	$(1 \cdot \Phi(z) = \Phi'(x) \cdot \Phi'(z) + \Phi^2(x) \cdot \Phi^2(z)$
, 1 397,5410) 40	()· ((2) = 0 (1) + (2) + (4) + (2)
Valid	
· Valio	

3.

a)

b)

c)

d)
This means that the null space is nontrivial in other terms the image is slightly compressed as it is of a lower dimension as well this means the matrix is not invertible.

e)

In order to keep 95% variance, we are required to keep a dimensionality of $^{\sim}140$ meaning we only need to keep $^{\sim}100$ components.

Required Dimensionality: 123

f)

CS 4442 - ASN 2

Ian Borwick – 250950449 CS 4442 – ASN 2

lan Borwick – 250950449 CS 4442 – ASN 2

lan Borwick – 250950449 CS 4442 – ASN 2

