

# Integration

P1/9/1: Integration as the reverse process of differentiation;

The constant of integration

P1/9/2: Problem involving the evaluation of a constant of

integration

P1/9/3: Definite integrals including simple cases of

improper integrals

P1/9/4: Find the area bounded by the curve and the axes

P1/9/5: Volumes of revolution

P1/9/6: Miscellaneous Exercises

Prepared by Tan Bee Hong

2012-10-22

P1/9:INTEGRATION

#### P1/9/1:

(a) Integration as the reverse process of differentiation;

(b) The constant of integration

#### P1/9/2:

Problem involving the evaluation of a constant of integration



2012-10-22 P1/9:INTEGRATION

TEGRATION 2

# **Learning Outcome**

Students should be able to:

- Relate integration as the reverse process of differentiation and integrate (ax + b)<sup>n</sup> (for any rational n except n = -1), together with constant multiples, sums and differences.
- Find the constant of integration and should be able to solve problems involving the evaluation of the constant of integration.





#### The reverse of differentiation

If y = f(x), we can find the gradient function  $\frac{dy}{dx}$ 

If we are given the gradient function  $\frac{dy}{dx}$ , can we obtain the equation of the curve?

This reverse process is called **integration** 

2012-10-22 P1/9:INTEGRATION

2012-10-22



We can now state the rule for integrating  $ax^n$ :

If 
$$y = \frac{ax^{n+1}}{n+1} + c$$
 then  $\frac{dy}{dx} = ax^n$  provided  $n \neq -1$ 

The process of finding all y's (antiderivatives) of a function is called **integration**.

$$y = \int ax^n dx = \frac{ax^{n+1}}{n+1} + c \text{ for } n \neq -1$$

2012-10-22

P1/9:INTEGRATION



$$\int ax^n dx = \frac{ax^{n+1}}{n+1} + c \text{ for } n \neq -1$$

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{(n+1)(a)} + C, \qquad n \neq -1$$

2012-10-22 P1/9:INTEGRATION





#### Example 1:

Find y in term of x of the following cases.

(i) 
$$\frac{dy}{dx} = 5\pi$$

(ii) 
$$\frac{dy}{dx} = \frac{5}{\sqrt[3]{x}}$$

(iii) 
$$\frac{dy}{dx} = \frac{1}{\sqrt{2x-1}}$$

2012-10-22

P1/9:INTEGRATION



#### Example 2:

A tree is growing so that, after t years, its height is increasing at a rate of  $\frac{30}{\sqrt[3]{t}}$  cm per year. Assume that, when t = 0, the height is 5 cm.

- (a) Find the height of the tree after 4 years.
- (b) After how many years will the height be 4.1 metres?

2012-10-22 P1/9:INTEGRATION



#### **Practice Exercise**

Pure Mathematics 1 Hugh Neil & Douglas Quadling

Exercise 16A (Page 238) Q15

Exercise 16D (Page 253) Q1

Exercise 16A (Page 239) Q14, Q17

2012-10-22 P1/9:INTEGRATION



# P1/9/3:

Definite integrals including simple cases of improper integrals



9

2012-10-22

P1/9:INTEGRATION

# **Learning Outcome**

Students should be able to:

• Evaluate definite integrals and solve problems involving the techniques of integration.



2012-10-22

## Properties of the Definite Integral

$$1. \int_a^a f(x) dx = 0$$

1. 
$$\int_{a}^{a} f(x)dx = 0$$
 2.  $\int_{a}^{b} f(x)dx = -\int_{b}^{a} f(x)dx$ 

3. 
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$
 (c is a constant)

4. 
$$\int_{a}^{b} (f(x) \pm g(x)) dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$$

5. 
$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

$$(a < c < b)$$

2012-10-22

P1/9:INTEGRATION



#### Example 3:

Evaluate the following definite integrals.

$$\int_{1}^{3} \frac{1}{(x+2)^{2}} dx$$

P1/9-INTEGRATION 2012-10-22 14

# Improper Integrals

Integrals with unbounded intervals of integration are called improper integrals.

Let f be continuous on  $[a, \infty)$ .

Then 
$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$
 if the limit exists.



Example 4:

Find the values of the improper integral.

- (i)  $\int_{1}^{\infty} \frac{1}{x^3} dx$
- $(ii) \int_{0}^{16} \frac{1}{\sqrt[4]{x}} dx$

2012-10-22 P1/9:INTEGRATION

2012-10-22









#### Area Between a curve and the y-axis

Suppose that we wish to find the area between some curve y = f(x) and the y-axis, from y = a to y = b.

$$A = \int_{a}^{b} x \, dy$$



2012-10-22

P1/9:INTEGRATION

# **Negative Values**

If f(x) is positive for some values of x on [a,b] and negative for others, then the definite integral symbol

$$\int_a^b \mathbf{f}(\mathbf{x}) d\mathbf{x}$$

Represents the cumulative sum of the signed areas between the graph of f(x) and the x axis where areas above are positive and areas below are counted negatively.



Remember area measure is never negative!

2012-10-22 P1/9:INTEGRATION

#### Example 5:

Find the area of the region enclosed by the curve  $y = 2\sqrt{x}$ , the x-axis and the lines x = 1 and x = 4.



2012-10-22

P1/9:INTEGRATION

#### Example 6:

Find the area enclosed between the curve

 $y^2 = 9 - x$  and the y-axis.

2012-10-22 P1/9:INTEGRATION

#### Example 7:

Find the area between the curve y = x(4-x) and the x-axis from x = 0 to x = 5.



2012-10-22 P1/9:INTEGRATION

#### Area Between Two Curves

Let f and g be continuous functions, the area bounded above by y = f(x) and below by y = g(x) on [a, b] is

$$\int_{a}^{b} [f(x) - g(x)] dx$$

provided that  $f(x) \ge g(x)$  on [a,b].





#### Example 8:

Find the area bounded by the curve

$$f(x) = x^2 - 1$$
 and  $g(x) = x - 3$ 

and the vertical lines x = -1 and x = 2.



2012-10-22

P1/9:INTEGRATION



## **Practice Exercise**

Pure Mathematics 1 Hugh Neil & Douglas Quadling

Exercise 16B (Page 245) Q13(e)(f), Q22

Exercise 16C (Page 250) Q2(b), Q10

Exercise 16D (Page 253)

Q5(b), Q7

P1/9:INTEGRATION



28









#### Example 9:

Find the volume of the solid of revolution formed by rotating the area enclosed by the x = 2 and x = 3through one revolution curve  $y = x + x^2$ , the x-axis and the ordinates.



2012-10-22 P1/9:INTEGRATION

#### Example 10:

Find the volume of the solid of revolution formed by rotating the area enclosed by the  $y = 9 - x^2$  and the x-axis about the y-axis through 360°.



2012-10-22 P1/9:INTEGRATION

# Example 11: The region R in the first quadrant is bounded by the y-axis, the x-axis, the line x = 3 and the curve $y^2 = 4 - x$ . (i) Calculate the area of the region R. [4] (ii) Calculate the volume of the solid formed when R is rotated about the y-axis through one revolution. (Leave your answer in terms of $\pi$ ) [5] 2012-10-22 P1/9:INTEGRATION 35



