Inducción

- 1. Demuestra por inducción sobre $n \ge 0$, que $\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$.
- 2. Demuestra por inducción sobre $n \ge 0$, que $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$.
- 3. Demuestra por inducción sobre $n \ge 5$, que $2^n > n^2$.
- 4. Demuestra por inducción sobre $n \geq 0$, que $\sum_{i=0}^{n} 2^{i} = 2^{n+1} 1$.
- 5. Se define $S \subseteq \mathbb{N}$ X \mathbb{N} como sigue: $(0,0) \in S$. Si $(m,n) \in S$, entonces $(m+2,n+3) \in S$. Demuestra por inducción sobre $n \geq 0$ que para todo $(m,n) \in S$, m+n es múltiplo de 5.
- 6. Demuestra por inducción que para toda $n \in \mathbb{N}$ y $m \in \mathbb{N}$, un tablero de ajedrez de tamaño $n \times m$ tiene exactamente el mismo número de cuadros blancos, que negros.
- 7. El coeficiente binomial $\binom{n}{r}$, para $n, r \in \mathbb{N}, r \leq n$ se define como el número de formas de escoger r cosas de n sin reemplazo, esto es:

$$\binom{n}{r} = \frac{n!}{r!(n-r)!}$$

demuestra por inducción que $\binom{n}{r} \in \mathbb{N}$. Hint: Usa la fórmula de Pascal

- 8. Demuestra por inducción sobre n que $\sum_{m=0}^{n} \binom{n}{m} = 2^{n}$.
- 9. ¿Qué está mal en la siguiente "demostración"? Afirmamos que 6n = 0 para todo $n \in \mathbb{N}$. Se demuestra por inducción sobre $n \geq 0$. Claramente, si n = 0, entonces 6n = 0. Suponemos n > 0. Sea n = a + b y por hipótesis de inducción 6a = 0 y 6b = 0. Por lo tanto,

$$6n = 6(a+b) = 6a + 6b = 0 + 0 = 0$$

- 10. Demuestra por inducción que un polígono convexo de n lados tiene $\frac{n(n-3)}{2}$ cuerdas.
- 11. Demuestra por inducción para $n \ge 0$ que:

$$\lfloor \frac{n}{2} \rfloor = \begin{cases} \frac{n}{2} & \text{si } n \text{ es par} \\ \frac{n-1}{2} & \text{si } n \text{ es impar} \end{cases}$$

12. **Principio del palomar.** Supón que existen n nidos y n+1 palomas. Demuestra por inducción que hay por lo menos un nido que contiene al menos dos palomas.

1

- 13. Sea $x \in \mathbb{R}$. Demuestra que si x > 1, entonces $x^n > x$, $\forall n \ge 2$.
- 14. Sea $x \in \mathbb{R}$. Demuestra que si 0 < x < 1, entonces $x^n < x$, $\forall n \ge 2$.

- 15. Sean $a, b \in \mathbb{R}$. Demuestra que si 0 < a < b, entonces $0 < a^n < b^n$, $\forall n \geq 2$.
- 16. Sea $x \in \mathbb{R}$. Demuestra que si x > -1, entonces $(1+x)^n > 1 + nx$, $\forall n \in \mathbb{N}$.
- 17. Después de transcurrir n meses en un experimento de invernadero, el número p_n de plantas ahí cultivadas satisface las ecuaciones:

$$p_0 = 3, p_1 = 7 \text{ y } p_n = 3p_{n-1} - 2p_{n-2}, \forall n \ge 2$$

Demuestra por inducción fuerte que $p_n = 2^{n+2} - 1$.