

Data Science Fundamentals - Course Outline

Prerequisites

- School level probability and statistics
- Basic math and linear algebra
- Basic algorithms
- Python programming (candidates should take a MOOC if needed before training – audit at least this course: https://www.edx.org/course/introduction-python-data-science-microsoft-dat208x-2)
- 1. Overview of Data science [5 Hours]
 - a. What is Data science and its history
 - b. Data, its potential value, and data usage in different fields for various purposes
 - c. Business cases and economic potential and examples
 - d. The impact of data size
 - e. Introduction to Big data analytics
 - f. The role of a data scientist and their impact on this field
 - g. Data Science Life Cycle
 - i. Planning and logistics (goals and management)
 - ii. Data acquisition, preparation and exploration
 - iii. Analysis/modeling and Production (presentation/automation)
- 2. Data Storage and Retrieval [3 Hours]
 - a. Storage and retrieval of data
 - b. Datasets and features/predictors
 - c. Data types and formats
 - d. Data sources and data structures (E.g., data frames, databases relational and NoSQL) *NoSQL is wide. A brief introduction might suffice.*
- 3. Getting started with programming languages, packages, and frameworks for data science [6 Hours]
 - a. limit details to Python 3.x : Examples, such as in EDA, will be given using Python
 - b. A quick review of Jupyter: setup and packages ex. Anaconda
 - c. A quick review of a well-known data science tools (see also: https://speakerdeck.com/jakevdp/pythons-data-science-stack-jsm-2016)
- 4. Exploratory Data Analysis [8 Hours]
 - a. Types of Data (nominal/categorical, numeric, ...)
 - b. Summary Statistics Quantitative
 - Review of statistical and mathematical foundations for data scientists (mean, median, variance, mode, correlations...)

- Review of probability/statistical distributions
- Review of mathematical foundations: multivariable calculus, linear algebra and algorithms (mention briefly)
- c. Data visualization and summarization I (2-d charts, maps, infographics, static and dynamic, part II in second course)
 - Scatter plots
 - Histograms
 - Pie charts
 - Box-and-whisker plots
 - Multi-dimensional graphs
- d. Similarity and Dissimilarity
- 5. Data Engineering [10 Hours]
 - a. Data Acquisition
 - b. What are different types of data organization (Transactional, relational, structured, unstructured, Graphs, Web data, textual, document based, multimedia, spatial and spatiotemporal, stream and time series data etc....)
 - c. Data integration: Integration of multiple databases, data cubes, or files
 - d. Data cleaning: Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies
 - e. Data Transformation and Data Discretization: Normalization and Concept of hierarchy generation
 - f. Data reduction: Dimensionality reduction, Numerosity reduction, and Data compression
- 6. Algorithms for applied machine learning and predictive analytics [Predictive analytics examples to be given while illustrating theories] [6 Hours]
 - a. Types of Learning
 - b. Introduction to Supervised learning
 - i. Linear Regression
 - ii. Decision Trees (simple visualization and explanation)
 - c. Introduction to Unsupervised learning
 - i. K-Means
 - d. Introduction to neural networks (very basic, promo to part II)
 - e. Introduction to Model evaluation
 - f. The problem of overfitting
- 7. Data science ethics I (issues with privacy, safety, security, data ownership, algorithm validity & fairness, legal considerations, more in part II). [2 Hours]
 - a. Data privacy
 - b. Ownership of data
 - c. Security
 - d. Legal considerations

- 8. Simple case studies (more elaborate in part II, indicate business value) [5 Hours]
 - a. Recommender systems (such as Netflix)
 - b. Marketing (Target)
 - c. Social network analysis
 - d. Medical data analysis
 - e. Financial stock price and inflation
 - f. Communication (e.g. Paltel).
- 9. Projects and presentations [3hours]
 - a. Form groups of 3-5 people after 2nd meeting
 - b. Help them pick cases and find datasets or provide datasets and ask them to analyze)
 - c. Include tasks throughout the course for evaluation
 - d. Trainees should apply data engineering fundamentals and apply EDA concepts then create a model and evaluate it then present as a group