IMPLEMENT LOGISTICS REGRESSION AND FIND ACCURACY AND CONFUSION MATRIX

```
In [3]: import numpy as np
         import pandas as pd
         from matplotlib import pyplot as plt
         from sklearn.model selection import train test split
         import seaborn as sns
In [4]: #pp=pd.read csv('C:\\Users\\91733\\Downloads\\titanic data.csv')
In [5]: #pp
In [6]: df=pd.read csv('C:\satish (coding)\csv files\placement.csv')
In [7]: df
Out[7]:
              cgpa placement_exam_marks
              7.19
                                    26.0
                                              1
               7.46
                                    38.0
            1
                                             1
           2
              7.54
                                    40.0
                                             1
               6.42
                                     8.0
                                              1
               7.23
                                    17.0
                                             0
          995
               8.87
                                    44.0
                                             1
          996
               9.12
                                    65.0
                                             1
          997
               4.89
                                    34.0
          998
               8.62
                                    46.0
                                             1
          999
               4.90
                                    10.0
                                             1
         1000 rows × 3 columns
        x=(df[['cgpa','placement_exam_marks']])
In [8]:
         y=df.iloc[:,2]
In [9]: | xtrain,xtest,ytrain,ytest=train_test_split(x,y,test_size=0.3,random_state=0)
```

In [10]: xtrain

Out[10]:

	cgpa	placement_exam_marks
105	6.72	12.0
68	6.58	30.0
479	6.38	33.0
399	5.74	43.0
434	7.01	5.0
835	6.67	65.0
192	6.67	38.0
629	8.15	11.0
559	6.61	58.0
684	8.02	67.0

700 rows × 2 columns

In [11]: xtest

Out[11]:

	cgpa	placement_exam_marks
993	6.73	21.0
859	6.52	22.0
298	6.16	48.0
553	7.46	17.0
672	7.75	13.0
167	6.65	48.0
998	8.62	46.0
984	6.89	16.0
491	7.77	49.0
10	6.82	16.0

300 rows × 2 columns

```
In [12]: ytest
Out[12]: 993
                 1
         859
                 0
          298
                 0
          553
                 0
         672
                 0
         167
                 1
         998
                 1
         984
         491
                 1
         10
                 1
         Name: placed, Length: 300, dtype: int64
In [13]: ytrain
Out[13]: 105
                 1
          68
                 0
         479
                 0
          399
                 1
         434
                 0
         835
                 1
         192
                 0
         629
                 1
         559
                 1
         684
         Name: placed, Length: 700, dtype: int64
In [14]: from sklearn.linear_model import LogisticRegression
         dt=LogisticRegression()
In [15]: dt.fit(xtrain,ytrain)
Out[15]:
          ▼ LogisticRegression
          LogisticRegression()
```

```
In [16]: p=dt.predict(xtest)
0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0,
              0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
              0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0,
              0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
              0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
               0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
              0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0,
               0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
              0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0,
              1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
              0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0,
              0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
              0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], dtype=int64)
In [17]: import sklearn.metrics as mc
In [18]: mc.confusion matrix(ytest,p)
Out[18]: array([[120,
                    31],
                    27]], dtype=int64)
               [122,
In [19]: mc.accuracy_score(ytest,p)
Out[19]: 0.49
```