Quiz 5.1 - Mixtures

Name: Kent

The Gibbs-Duhem Equation

The reaction A — B is in a non-equilibrium state with 0.54 moles of A and 0.72 moles of B.

If
$$d\mu_B = 4.5 \frac{J}{mol}$$
, find $d\mu_A$ $d\mu_{\theta} = -\frac{n_A}{n_B} d\mu_A$ $4.5 \frac{J}{mcl} = -\frac{0.54}{0.72} d\mu_A$ $d\mu_A = -6.0 \frac{J}{mol}$

Which direction will the reaction shift in order to reach equilibrium?

Thermodynamics of Mixing

4.2 moles of helium are mixed under constant temperature and pressure with 2.7 moles of argon at a temperature of 298 K 64 total moles $\chi_{He} = 0.609$ $\chi_{Ac} = 0.391$

Find ΔG_{mix} for this process

Find ΔS_{mix} for this process

Liquid Phase Mixtures

Find the change in chemical potential for both solvent and solute when 0.35 mol of acetone dissolve into C)98 K 2.5 mol of chloroform 2.85 total moles X cuzo = O. 877

Almix, A = ART LA TA

	CH₂O	CHCl₃
$p^{\star}\left(kPa\right)$	46	35
$K_{H}\left(kPa\right)$	23	22

Rault's Law:
$$p=Xp^*$$

CH(ls: $p=0-877.35$ kPa
= 30.7 kPa

Rault's Law:
$$p = \chi p^{2}$$
 | Henry's Law: $p = \chi k_{H}$
CH(ls: $p = 0.877.35 \text{ kPa}$ | CH20: $p = 0.123.23 \text{ kPa}$
= 30.7 kPa | = 2.83 kPa