

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Fraternité

Distributed and bio-inspired control for collective motion in swarm of drones

Guy Theraulaz, CRCA/CBI Gautier Hattenberger, ENAC

Matthieu Verdoucq, DER-URI

Context

Reactive algorithm

- Interactions at local scale
- Emerging global behaviour
- Flexibility and resilience to external unjnown constraints

2

10/02/2022

The fish model

- Hemigrammus rhodostomus
 - Burst and coast motion
- Only interacts with a small number of neighbors
- High cohesion and polarization at large scale
- Can perform phase transitions whose inspiration can lead to environment adaptation

From fish to UAV

- Adaptations for our system
 - Adaptations of the paremeters
 - Higher short distance repulsion
 - Speed interaction
- Find the parameters responsible of the phase transitions
- Addition of a migration term for navigation purposes

References & publications

REFERENCES

M. Coppola et al., "A Survey on Swarming With Micro Air Vehicles:Fundamental Challenges and Constraints," Frontiers in Robotics and Al, vol. 7, 2020, publisher: Frontiers.

Gautrais et al., "Deciphering Interactions in Moving AnimalGroups,"PLoS Computational Biology,

G. Vasarhelyi et al., "Optimized flocking of autonomous drones inconfined environments," Science Robotics.

PUBLICATIONS AND CONFERENCES

International Conferences on UAS 2022: Bio-inspired control for collective motion in swarms of drones, M. Verdoucq, G. Theraulaz, R. Escobedo, C. Sire, G. Hattenberger

International Conference on Systems, Man, and Cybernetics (IEEE SMC) 2022

10/02/2022