

Pengantar

Hendrik Santoso Sugiarto

IBDA4221 – Selected Topic in Computer Technology *Quantum Computing*

Ekspektasi

• Apakah ekspektasi anda terhadap kelas ini?

Quantum Computing

Capaian Pembelajaran

- Silabus
- Qiskit
- Teknologi Kuantum
- Komputer Kuantum
 - Perkembangan Komputer Kuantum
 - Keunggulan Komputer Kuantum

Silabus

Logistik

- Jam kuliah : Selasa (14 17 WIB, 3x50 menit)
- Tempat : Lab Komputer
- Harap membawa laptop ketika menghadiri kelas
- Jika berhalangan menghadiri sesi tersinkronkan, hubungi dosen lewat e-mail dan SAS di 081-1322-2301
- Office hours: by appointment
- E-mail: <u>Hendrik.sugiarto@calvin.ac.id</u>
 Dibalas paling lambat 48 jam (hari kerja) / 72 jam (weekends, hari libur)
- Komunikasi: Canvas (silabus, materi kuliah, tugas) maupun e-mail

Pustaka

- Qiskit Textbook https://qiskit.org/textbook-beta (IBM Quantum)
- Isaac Chuang and Michael Nielsen, Quantum Computation and Quantum Information, Cambridge University Press, 2000
- J.J.Sakurai and Jim Napolitano, Modern Quantum Mechanics, Pearson, 2010

Rincian Nilai Perkuliahan

Tugas individu (30%): 5 points x 6 tugas wajib (+ tugas bonus)

- Tugas individu dikerjakan secara pribadi dan diberikan melaui Canvas untuk menguji pemahaman
- mahasiswa terhadap materi yang diberikan.
- Tugas dapat berbentuk teori singkat maupun pemrograman (coding) dengan Python dan soal-soal
- dengan jawaban pendek.
- Setelah melalui batas waktu, nilai maksimal tugas tersebut menjadi 50% sampai 24 jam setelah batas waktu.
- Jika melalui lebih dari 24 jam setelah batas waktu, tugas tersebut tidak mendapat nilai (atau mendapat nilai nol).
- Diperbolehkan mengumpulkan tugas lebih dari sekali (unlimited attempts) melalui Canvas, namun dosen hanya menganggap versi paling terakhir sebagai versi yang mahasiswa secara resmi kumpulkan, dan hanya versi tersebut yang dikoreksi.
- Harap menghubungi dosen jika berhalangan untuk mengumpulkan tugas sebelum deadline karena alasan darurat.

Rincian Nilai Perkuliahan

- Ujian Tengah Semester (UTS) (30%)
 Ujian Akhir Semester akan diadakan pada minggu terakhir dalam bentuk pilihan ganda (multiple choice questions) dan esai melalui Canvas.
- Proyek Ujian Akhir Semester (UAS) (40%)
 Ujian Akhir Semester akan diadakan pada minggu terakhir dalam bentuk proyek

Tips untuk berhasil dalam MK ini

- Konsisten mengerjakan tugas dan proyek sebaik mungkin. Dosen mengkoreksi dengan mendetil sehingga menjadi *feedback* bagi mahasiswa.
- Bertanya dan partisipasi secara aktif di dalam kelas, sehingga dosen juga mendapat feedback jika terlalu cepat atau ada yang kurang jelas.
- Tidak tertinggal pelajaran: jika tidak paham di awal, segera menghubungi dosen atau bertanya kepada mahasiswa lainnya.
- Gunakan office hours dosen yang sudah dijadwalkan, untuk lebih memahami materi dan tugas.
- Mata kuliah ini banyak memakai pemrograman dengan Python dengan Qiskit. Bacalah dokumentasi dari Qiskit untuk lebih terbiasa menggunakannya.

Setelah Anda menyelesaikan perkuliahan ini, Anda akan:

- Memahami dasar matematis/teoretis yang digunakan di dalam Quantum Computing
- Mampu membuat algoritma Quantum untuk menyelesaikan berbagai macam permasalahan

Qiskit

Anaconda

- Anaconda adalah sistem manajemen paket python
- Melalui Anaconda, maka versi dari paket python yang ada akan dikelola oleh package management system conda.
- Dapat di download untuk windows, linux, dan mac (silahkan mengikuti arahan di website anaconda)
- Untuk custom environment conda silahkan ikuti arahan berikut: https://docs.anaconda.com/ae-notebooks/user-guide/adv-tasks/work-with-environments/
 - Misal buat environment baru khusus kelas ini: conda create -n quantum
 - Untuk mengaktifkan environment ini: source activate quantum
 - Untuk mematikan environment ini: source deactivate

Install Qiskit

- https://learn.qiskit.org/course/ch-prerequisites/environment-setup-guide-to-work-with-qiskit-textbook
- pip install qiskit
- pip install qiskit[visualization] → tambahan visualisasi
- Di dalam qiskit terdapat Terra, Aer, Ignis, Aqua:
 - Terra: circuit, interface
 - Aer: simulator
 - Ignis: error correction
 - Aqua: domain applications
- import qiskit → menggunakan qiskit
- qiskit.__qiskit_version__ → cek versi

Akses IBM Quantum

- Masuk ke https://quantum-computing.ibm.com/
- Gunakan email calvin

- 2 cara menggunakan computer kuantum:
 - Melalui composer
 - Melalui Qiskit

Membuat Sirkuit Kuantum menggunakan Composer

• Setelah merangkai sirkuit klik setup and run

Memilih Quantum Cloud

Ganti provider menjadi "ibm-q-education"

Membuat Sirkuit Kuantum menggunakan Qiskit

- Load akun dan gunakan backend 'ibm-qeducation' provider
- Buat jobs, lalu run pada backend.
- Jika menggunakan IBM Quantum Lab, job akan terlihat pada panel kiri setelah beberapa detik.

Membuat Sirkuit Kuantum menggunakan Qiskit

 Hasil akan terlihat pada panel kiri jika job yang dirun sudah selesai

Qiskit Runtime

© Copyright 2020 Calvin Institute of Technology.

The information contained herein shall not be used, copied, published, quoted, and/or released without prior approval.

Teknologi Kuantum

Teknologi Kuantum

- Teknologi kuantum: semua jenis teknologi yang memanfaatkan mekanisme kuantum
- Apakah hanya komputer kuantum?
- Quantum 1.0 vs Quantum 2.0

Quantum 1.0

- Teknologi yang memerlukan mekanisme kuantum agar dapat berfungsi
- Contoh:
 - Transistors & semiconductor
 - LED
 - Photodetectors
 - Laser
 - Superconductor
 - GPS
 - MRI
 - Solar panel
 - Electron microscope

Quantum 2.0

- Teknologi yang membuat dan memanipulasi quantum states dari materi menggunakan superposisi dan entanglement
- Contoh:
 - Quantum information
 - Quantum computing
 - Quantum metrology
 - Quantum simulation

Perkembangan Komputer Kuantum

Back to Basic

- Apa itu komputer?
- Komputer mempunyai beragam bentuk: cloud, laptop, smartphone, sistem logistik, dll
- Semuanya memiliki kesamaan: proses pengolahan dari input informasi menjadi output informasi dengan menggunakan himpunan instruksi (algoritma).

Klasik vs Kuantum

Klasik

```
State (x, p) \rightarrow dynamics (F = \frac{dp}{dt}) \rightarrow measurement (\Delta x, \Delta p) \rightarrow observables (x, p) Input \rightarrow algorithm \rightarrow classical noise + output : classical computing
```

• Kuantum $\longleftrightarrow \leftarrow \leftarrow \leftarrow$ quantum bit | classical bit $\to \to \rightarrow$ State (ψ) \to dynamics $(i\hbar \frac{\partial \psi}{\partial t} = H\psi) \to$ measurement $(\psi_i) \to$ observables $(\langle x \rangle)$ Preparation \to transmission \to detection \to interpretation : quantum communication Initialization \to process \to measurement \to interpretation : quantum computing

Kompleksitas Algoritma

Kompleksitas:

• Konstan Linear

Contoh:

Klasifikasi ganjil/genap

Penjumlahan

Input	Computer follows algorithm	Output	Input	Computer follows algorithm	Output
13	let x be the rightmost digit if x is 0, 2, 4, 6 or 8: output Even else: output Odd	Odd	3247 +1195	for each column in the input: let 's' be the sum of the digits in that column if s > 9: add 1 to next input column to the left add s - 10 to output string else: add s to output string	4442

Algoritma untuk Menebak PIN

Misalkan kita mempunyai angka rahasia (PIN) dan menebaknya dengan menggunakan cara brute-force (mencoba semua kemungkinan). Berapa lama waktu yang diperlukan?

Input	Computer follows algorithm	Output
5672	choose random x between 0 & 9999 if x matches secret number output x else: go to start	5672

- 1-digit memiliki 10 pilihan (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
- 2-digit memiliki 100 pilihan ($T \propto 10^d$)
- Misalkan 1 detik untuk 10-digit (5 miliar kombinasi/detik)
- Maka kita membutuhkan:
 - ~150 tahun untuk 20-digit PIN
 - ~150 miliar tahun (120x umur alam semesta) untuk 30-digit PIN

Algoritma Keamanan RSA

- Integer Factorization
- $p \times q = x$
- Contoh: $13 \times 7 = 91$
- 2700 core year: 250-digit
- Beberapa detik: jutaan qubit

- Current IBM Quantum → 65 qubits
- Future IBM Quantum →>1000 qubits

Small Steps in Technology

- Transistor pertama (1947)
- 70 tahun kemudian:
 - 1 prosesor memiliki miliaran transistor

"A JOURNEY OF A THOUSAND MILES BEGINS WITH A SINGLE STEP."

LAO-TZU

Timeline

digunakan secara luas

proposed

(1981)

& CSS error correction

(1994-95)

& adiabatic QC

(1998-2000)

Advantage

53-qubit QCs (2019)

QCs.

(2017)

Kandidat Komputer Kuantum

1QB and 2QB Comparison

Perbandingan Paradigma

Paradigma	Kubit	Entanglement	Gate	Skalabilitas	Pemeliharaan	Pengembang
Superconducting	Fluks kubit	Mudah	- Kecepatan Tinggi- Fidelitas Tinggi- Waktu Koherensi	Cukup mudah	- Temperatur 10mK	IBM, Google, rigetti
Photonics	Polaritas foton	Sulit	CepatFidelitas baik yang menjanjikanWaktu Koherensi	Sulit	- Temperatur ruang	Xanadu
Trapped Ions	Level energi dari ion yang terperangkap.	Mudah	- Pelan - Fidelitas Tinggi	Agak sulit	- Medan Listrik yang berosilasi (perangkap ion).	IonQ, MIT, Oxford
Neutral Atoms	Energi level atom.	Mudah	- Waktu koherensi yang lama	Sulit	Vakum temperatur ruang.Laser sebagai "penjepit" optikal.	Pasqal
Quantum Dots	Putaran Elektron	Cukup mudah	- Fidelitas tinggi	Sulit namun berpotensi semakin mudah	 Kotak Kuantum Ruang gelap pada suhu 4° Celsius. 	Intel
Diamond Vacancies	Level energi elektron	Sulit	Waktu Koherensi yang baikGerbang 2 kubit memilikifidelitas rendah	Cukup sulit	Tempratur ruangvakum Tingkat tinggi.	Briliance
NMR	Putaran Nuklei	Mudah	EfisienWaktu Koherensi yang baik.fidelitas yang menjanjikan(jumlah kubit kecil)	Sulit	- Temperatur ruang	SpinQ
Topological	Arah anyon	Mudah	- Tahan terhadap gangguan	Cukup mudah	Medan magnet yang kuat.Topologi superkonduktor, superkonduktor-isolator topologi/semikonduktor	Microsoft
Bosonic	Superposition of energy levels	Mudah	- Tahan terhadap gangguan	Cukup mudah	Perlindungan QEC.Arsitektur QED.	Delft, Tsinghua

Superconducting Qubits

Quantum Oscillator

Transmon Qubit

Anharmonic Quantum Oscillator

https://qiskit.org/textbook/ch-quantum-hardware/transmon-physics.html

Anharmonicity allows us to approximately treat oscillator as a two-level 'spin'.

$$\begin{vmatrix} 1 \rangle = | \uparrow \rangle \\ | 0 \rangle = | \downarrow \rangle$$

Examples of coherent superpositions

$$\frac{1}{\sqrt{2}} \left(\left| \downarrow \right\rangle + \left| \uparrow \right\rangle \right) = \left| \rightarrow \right\rangle$$

$$\frac{1}{\sqrt{2}} \left(\left| \downarrow \right\rangle - \left| \uparrow \right\rangle \right) = \left| \leftarrow \right\rangle$$

Keunggulan Komputer Kuantum

Quantum Supremacy

Algorithm	Classical Time	Quantum Time	Speedup	Limitation
Factoring ¹ (+ related number theoretic)	2 ^N (for N digits)	N³	Exponential	Classical runtime limit unproven
Simulation ² (quantum chemistry)	2 ^N (for N atoms)	N°	Exp. in space, polynomial in time	Mapping problem to qubits
Linear systems ³ (Ax=b)	2 ^N (for N digits)	~N	Exponential	Strict conditions, e.g. sparse matrix
Optimization ⁴	2 ^N	?	?	Empirical
Search ⁵ (unsorted / unstructured data)	N	\sqrt{N}	Polynomial (\sqrt{N})	Data loading

Keunggulan Komputer Kuantum

- Superposisi
- Non-local (spooky action at distant)
- Kapasitas (peningkatan kompleksitas eksponensial):
 - 20 qubits = $2^{20} > 1$ juta kemungkinan
 - 100 qubits > semua bits pada hard-drive dari seluruh dunia
 - 300 qubits > seluruh partikel dalam alam semesta
- Performa (bahkan sanggup menembus enkripsi terkuat di dunia)
- Efisiensi (kalor yang dikeluarkan untuk tiap komputasi hampir nol)

Aplikasi Komputer Kuantum

- Memodelkan interaksi kuantum (drug discovery, protein folding, chemical bonding, solid state properties, neuroscience)
- Kriptografi (enkripsi, keamanan)
- Simulasi (finance, logistic, forecasting)
- Optimisasi (machine learning, matrix factorization, neural network)

Summary

Tuhan Memberkati

