II Mid Term Examination Odd-Semester, 2017-18

Programme: B.Tech I Year Branch: All Year: First

Subject with Code: Engineering Physics (AHP 1101)

Time: 1 Hour Max. Marks: 15

Section A

Note: Attempt all questions.

2X3= 6 Marks

- 1. What are the two independent and essential properties of a super conductor? At what temperature is Hc(T)=0.1 Hc(0) for lead (Pb) having Tc=5.0 K?
- Write the differential form of Maxwell's equation of electromagnetic field based on modified Ampere's law. The magnitude of electric field (E) for plane wave in free space is 376.72V/m, find the magnitude of magnetic field (H).
- 3. Determine the displacement current density in a material having relative permittivity ε_r =2.0. The electric field in the material is $E=5\times10^{-6}\sin(10^{10}t)$ volt/m (ε_0 =8.85×10⁻¹²c/n-m²).

Section B

Note: Attempt all questions.

3X3= 9 Marks

- Calculate the current produced in a small germanium plate of area 1.0 cm² and of thickness 0.5 mm, when a potential difference of 2 volt is applied across the faces. The concentration of free electrons is 2×10¹⁹ m⁻³ and nobilities of electrons and holes are 0.40 m² /v-s and 0.20 m² /v-s respectively.
- Explain Hall Effect. Find the expression for Hall coefficient and give the significance of this measurement.
- What does Poynting vector signify?
 Show that the electromagnetic waves travel in free space with the speed of light (c). Use the Maxwell's equations.