The Hypercube

- \triangleright A *d*-dimensional hypercube consists of 2^d nodes
 - ► Each of the 2^d nodes is labeled with a unique d-bit binary string $a_1 \dots a_d$ called the ID of the node
 - ► Each node is directly connected to the *d* nodes whose IDs differ in exactly one bit position
 - For each pair of adjacent nodes u and v, we will assume that there are two directed edges (u, v) and (v, u)
 - ► Thus the total number of directed edges is d2^d
 - A "dimension-i" edge connects two nodes whose IDs differ in bit position i, $1 \le i \le d$

Routing a Single Packet on the Hypercube

- Suppose we have a parallel computer with the topology of a d-dimensional hypercube
 - ► Each of the 2^d nodes corresponds to a processor with an unbounded local memory
 - ► Each of the *d*2^{*d*} edges corresponds to a directed communication channel
 - ► The processors communicate with one another by sending "packets" over the communication channels
 - ▶ Each packet holds *O*(1) machine words of information
 - ▶ In each "time step" we allow each directed edge to transmit one packet
- ▶ How can we route a packet from source $a_1 ... a_d$ to destination $b_1 ... b_d$?

The Bit-Fixing Routing Algorithm

- ▶ The "bit-fixing" routing algorithm "corrects bits" in increasing order of index to route a packet from source $a_1 \ldots a_d$ to destination $b_1 \ldots b_d$
 - ▶ Let I denote $\{i \in \{1, \ldots, d\} \mid a_i \neq b_i\}$
 - ▶ Index the elements of I as $i_1 < ... < i_k$ where $k \le d$
 - ▶ The packet first takes the dimension- i_1 edge out of the source to "correct" bit i_1 and arrive at some node α
 - Then the packet follows the dimension-i₂ edge out of node α to correct bit i₂, et cetera
 - ▶ After *k* "hops", the packet arrives at its destination

Permutation Routing on the Hypercube

- In a permutation routing problem, each node is the source of exactly one packet, and each node is the destination of exactly one packet
- ► The bit-fixing approach for routing a single packet suggests a natural permutation routing algorithm
 - Each packet moves along the bit-fixing path from its source to its destination
 - Packets waiting to traverse a given outgoing edge are stored in an associated (unbounded) queue
 - A queueing discipline (e.g., FIFO) is used to determine which
 of the packets in a given edge queue gets to advance in each
 time step

The Performance of Bit-Fixing Permutation Routing

- ▶ Is there a queueing discipline with respect to which the bit-fixing algorithm routes an arbitrary permutation in O(d) time steps?
- Unfortunately, the answer is no
 - ▶ Suppose d=2k, and consider the "transpose" permutation that routes the packet at any given source $a_1 cdots a_{2k}$ to destination $a_{k+1} cdots a_{2k} a_1 cdots a_k$
 - Let X denote the set of 2^{k-1} nodes $a_1 \dots a_{2k}$ where $a_k = 1$ and $a_i = 0$ for $k < i \le 2k$
 - ► Each packet with a source in X traverses the dimension-k edge into the all-zeros node
 - ► Thus, $|X| = 2^{k-1} = \Omega(2^{d/2})$ is a lower bound on the number of time steps required to route the transpose permutation

Valiant's Two-Phase Permutation Routing Algorithm

- In the first phase, each source independently picks a uniformly random node as an intermediate destination for its packet, and the bit-fixing scheme is used to route each packet to its intermediate destination
 - We will focus on proving that the first phase terminates within O(d) steps with high probability
- ▶ In the second phase, the bit-fixing scheme is used to route all of the packets from their intermediate destinations to their final destinations
 - Since the second phase corresponds to "running the first phase in reverse", our analysis of the first phase implies the same time bound for the second phase

Some Remarks

- Our analysis holds for any "greedy" queueing discipline:
 Whenever an edge queue is nonempty, some packet is allowed to advance
- It is easy to enforce a synchronization barrier between the two phases at the cost of O(d) additional time steps, but it is not necessary to do so
 - It is more natural to allow any packet that reaches its intermediate destination to immediately begin moving towards its final destination
 - ▶ It is not difficult to extend our analysis to handle this variant

Analysis of the First Phase: Preliminaries

- ▶ For any node α , we refer to the packet with source α as packet α , and we refer to the bit-fixing path traversed by packet α in the first phase as path α
- Fix an arbitrary node β
 - We number the time steps from 1, and we let T denote the number of time steps required for packet β to reach its intermediate destination
 - We will prove that T = O(d) with high probability
- ▶ Let P denote path β , and let the sequence of directed edges on P be e_1, \ldots, e_k
 - If k = 0 then T = 0
 - ▶ In what follows, we assume that k > 0

White, Gray, and Black Packets

- At the start of each time step, we assign a color to each packet α as follows
 - If the suffix of path α that remains to be traversed by packet α does not include any edges on P, then packet α is black
 - If packet α is in the queue associated with some edge of P, then packet α is gray
 - ▶ Otherwise, packet α is white

Characterizing the Possible Color Transitions

- ▶ The following three claims are straightforward to prove
 - Remark: We will not need to use Lemma 1
- ▶ Lemma 1: If a packet is white at the start of time step t, then it is white or gray at the start of time step t + 1
- ▶ Lemma 2: If a packet is gray at the start of time step t, then it is gray or black at the start of time step t + 1
- ▶ Lemma 3: If a packet is black at the start of time step t, then it is black at the start of time step t+1

The "Lag" of a Gray Packet

- At the start of any time step t, we define the lag of any gray packet α as follows
 - Let j be the unique integer such that packet α is in the queue associated with directed edge e_j
 - ▶ Then we define the lag of packet α as t-j
- lacksquare Packet eta is gray at the start of each time step t in $\{1,\ldots,T\}$
- ▶ The lag of packet β at the start of a time step t in $\{1, \ldots, T\}$ is equal to the number of time steps t' < t such that packet β does not advance at time step t'

Some Useful Events

- Let S denote the set of all nodes α such that $\alpha \neq \beta$ and path α shares at least one directed edge with path P
- For any positive integer i and time step t, let $A_{i,t}$ denote the event that packet β has lag i (resp., i-1) at the start of time step t (resp., t-1)
- For any nonnegative integer i and time step t, let $B_{i,t}$ denote the event that there exists a node α in S such that packet α has lag i at the start of time step t
- For any nonnegative integer i, let C_i denote the event that there exists a node α in S and a time step t such that packet α has lag i at the start of time step t, and is black at the start of time step t+1

If $A_{i+1,t+1}$ Occurs, Then $B_{i,t}$ Occurs

- ▶ Lemma 4: For any nonnegative integer i and any time step t, $A_{i+1,t+1}$ implies $B_{i,t}$
 - ▶ Assume event $A_{i+1,t+1}$ occurs
 - Thus packet β has lag i at the start of time step t, and packet β has lag i + 1 at the start of time step t + 1
 - ▶ During time step t, some packet $\alpha \neq \beta$ advances from the edge queue containing packet β
 - ▶ Thus node α belongs to S and packet α has lag i at the start of time step t
 - ▶ Thus event $B_{i,t}$ occurs

If $A_{i+1,t+1}$ Occurs, Then C_i Occurs

- ▶ Lemma 5: For any nonnegative integer i, $A_{i+1,t+1}$ implies C_i
 - ▶ Assume event $A_{i+1,t+1}$ occurs
 - ▶ Thus Lemma 4 implies that event $B_{i,t}$ occurs
 - Let $t' \geq t$ denote the maximum time step such that event $B_{i,t'}$ occurs
 - ▶ There is a node α in S such that at the start of time step t', packet α has lag i and is in the edge queue of some directed edge e_i of P
 - Some packet α' (which could be α) advances from this queue during time step t'
 - ▶ The lags of packets α and α' are each equal to i at the start of time step t'

If $A_{i+1,t+1}$ Occurs, Then C_i Occurs (cont'd)

- We claim that α' is not equal to β
 - Assume for the sake of contradiction that $\alpha' = \beta$
 - ▶ Since event $A_{i+1,t+1}$ occurs, $t' \geq t$, the lag of packet α' is i at the start of time step t, and the lag of packet β cannot decrease, we deduce that t' = t
 - Thus packet α' advances during time step t
 - Since event $A_{i+1,t+1}$ occurs, packet β does not advance during time step t
 - ▶ Thus $\alpha' \neq \beta$, a contradiction

If $A_{i+1,t+1}$ Occurs, Then C_i Occurs (cont'd)

- ▶ Since $\alpha' \neq \beta$, we deduce that α' belongs to *S*
- ▶ If packet α' is black at the start of time step t' + 1, then event C_i occurs, as required
- ▶ Otherwise, Lemma 2 implies that packet α' is gray at the start of time step t'+1
 - We deduce that packet α' belongs to the queue of edge e_{j+1} and has lag i at the start of time step t'+1
 - ▶ Hence event $B_{i,t'+1}$ occurs, contradicting the definition of t'

An Upper Bound on T

- ▶ Lemma 6: $T \le k + |S|$
 - Since packet β is gray and has lag T-k at the start of time step T, there exist time steps $t_1 < \cdots < t_{T-k}$ such that event $\bigcap_{1 \leq i \leq T-k} A_{i,t_i}$ occurs
 - ▶ Lemma 5 implies that event $\bigcap_{0 \le i < T-k} C_i$ occurs
 - ▶ Lemma 3 implies that $|S| \ge T k$
- ▶ Since $k \le d$, it remains to prove that |S| is O(d) with high probability

A Plan for Upper Bounding |S|

- ightharpoonup Each path lpha depends on the uniformly random choice of the intermediate destination
- ▶ Imagine that we reveal path β (i.e., P) first
- ▶ For each node α not equal to β , let the indicator random variable X_{α} be equal to 1 if path α belongs to S, and 0 otherwise
 - ▶ Note that these random variables are independent
 - Let the random variable X denote their sum, which is |S|
- Plan: Derive an upper bound on E(X), and then apply a Chernoff-type inequality to obtain a high probability upper bound on X

Upper Bounding E(X)

- Let us partition the 2^d-1 nodes α that are not equal to β into d groups as follows
 - Let α be a node that is not equal to β
 - Let ℓ be the length of the longest common suffix of α and β
 - ▶ Then α belongs to group ℓ , $0 \le \ell < d$
 - Group ℓ contains $2^{d-\ell-1}$ nodes
- ▶ For each of the 2^{d-1} nodes α in group 0, we have $\mathsf{E}(X_{\alpha}) = \mathsf{0}$

Upper Bounding E(X) (cont'd)

- ▶ For each of the $2^{d-\ell-1}$ nodes α in group ℓ , $1 \le \ell < d$, we have $\mathsf{E}(X_{\alpha}) \le 2^{\ell-d-1}$
 - ▶ Let α be a node in group ℓ , $1 \le \ell < d$
 - ▶ If every edge of P has dimension at most $d \ell$, we are assured that $X_{\alpha} = 0$
 - ▶ Otherwise, let i denote the minimum dimension of any edge of P that exceeds $d-\ell$
 - In order for the event $X_{\alpha}=1$ to occur, the intermediate destinations of α and β need to match in the first $i \geq d-\ell+1$ bit positions
- ► Thus

$$\mathsf{E}(X) \le \sum_{1 \le \ell \le d} 2^{d-\ell-1} 2^{\ell-d-1} = \frac{d-1}{4} \le \frac{d}{4}$$

A Tail Bound for X = |S|

- ▶ We can view X as the sum of $n = 2^d$ independent trials with average success probability $p \le \frac{d}{4n}$
- Using the large deviation Chernoff bound from the previous lecture, we find that

$$\Pr(X \geq (1+\delta)d/4) \leq \left(rac{e^{\delta}}{(1+\delta)^{1+\delta}}
ight)^{d/4}$$

for any $\delta > 0$

▶ For any positive constant c, we can drive the RHS below n^{-c} by choosing δ to be a sufficiently large positive constant

An Upper Bound for Phase One

- ▶ Let *c* be an arbitrary positive constant
- ▶ Combining the previous tail bound with X = |S| and Lemma 6, we find that there is a positive constant c' such that packet β reaches its intermediate destination within c'd steps with probability at least $1 n^{-c}$
- ▶ For any node α , let E_{α} denote the event that packet α takes more than c'd steps to reach its intermediate destination
- ▶ Since β was chosen arbitrarily, we have $\Pr(E_{\alpha}) \leq n^{-c}$ for all nodes α
- ▶ By a union bound, we conclude that phase one terminates within c'd steps with probability at least $1 n^{1-c}$