Analise Real Teste 2

1) Sejan f: (a,b) → IR limitada c CE (a,b). Se noo exister lim f(x), mostre que podemos encontrar dues sequentrar cias xn→c, yn→c (com xn≠c e yn≠c para todo n∈ N) de modo que (f(xn)) e (g(yn)) sejam convergentes com limites distintos.

Mostre que a afirmativa é falsa se j não é limitada.

- Segam $f:(a,b) \rightarrow \mathbb{R}$, $g:(a,b) \rightarrow \mathbb{R}$ e $c \in (a,b)$ tain que f(a) = g(a) = 0 e f,g derivavers em $f(a) = g(a) \neq 0$.

 Mostre que $f(a) = \frac{f(a)}{g(a)} = \frac{f'(a)}{g'(a)}$
- (3) Sejon $f:(a,b) \rightarrow (\alpha,\beta)$ a $g:(\alpha,\beta) \rightarrow (a,b)$ funções tais que g(f(x)) = x para todo $x \in (a,b)$. Se ambas os funções sos deas veres diferenciavers, mostre que $g''(f(x)) = \frac{-g'(f(x))f''(x)}{f'(x)^2}$
- Deja j: [a,b] → R contema, derivavel em (a,b).

 Se j'(x) ≥0 para todo xe(a,b), e j'(x)=0 somente
 em um numero finito de pontas, mostre que f
 é estritamente crescente.
- Depa v: R>0→R função continua t.q. v(x,y)=v(x)+v(y)

 para quairque x,y∈R>0, Mostre que v(x)=clogx para

 alguna constante c∈R.