Cindy Chao, Dehowe Feng Professor Nitta ECS 165A Winter 2016

Schema:

Explain the schema and how to update the db with future updates of NHTS and EIA data

The Schema comprised of 7 relations named after each of the 7 files given. For example, the DAYV2PUB file was turned into a relation DAY(HOUSEID , PERSONID , ...), with all of the attributes being the columns from the CSV files.

The NTHS values were casted as FLOATs, and the non numerical values were transformed into a placeholder value '66666'. The reasoning behind this is that none of the querying done required these non-numerical values. The EIA values were casted as VARCHARs due to the large number of attributes that were strings in the CSV files.

To update the tables, assuming that the new data is stored in exactly the same fashion as the previous CSV files, the loader py script can be modified to take the new files and insert the tuples into each respective table. For value insertions, we used for loops that iterated through the values of each table and strung together the tuples in bunches of 1000 into a 'sql' variable that executed after 1000 and then restarted again until all the insertions were done.

Results:

a) The percentage of individuals that travel less than 5-100 miles a day for 5 mile increments: In order to calculate the percentages, the total number of miles a person traveled in their selected travel date was added up by using SUM(TRPMILES) and GROUP BY(HOUSEID, PERSONID, TDAYDATE) to extract each individual. This query was executed in a loop that would increment by 5 each time. The

result from the query was then divided by the total number of individuals who travel less than 100 miles a day and multiplied by the number of days in the month.

b) The average fuel economy of all miles traveled for trips less than 5-100 miles for every 5 mile increments:

For this query, only the NTHS file was used. The Day trip table and Vehicle table were inner joined on HouseID to get a table of vehicles that traveled on trips. Vehicles with VEHID greater than or equal to 1 (Household Vehicles) were needed for this calculation. Then, all the ETAMPG's for each vehicle per day were averaged out using the AVG command and retrieved using python's fetchone () function.

c) The percent of transportation CO₂ emissions from household vehicles for each month of the survey (3/2008 - 4/2009):

For this query, both the NHTS files and EIA files had to be used. The tables DAY and VEHICLE were joined and for each household vehicle that traveled, the total number of trip miles (TRPMILES) were divided by the fuel economy (EPATMPG) and then converted to metric tons of CO_2 . Each quotient was then summed up to get the total amount of CO_2 emissions from household vehicles for each month and then divided by the total amount of CO_2 emissions from the entire transportation sector. This was found by selecting the VALUE where MSN = 'TEACEUS' for the correct travel date. The final percentage was also scaled up according to the number of houses surveyed for that month.

d) The change of CO₂ emissions for each month of the survey if every household vehicle were plug in hybrids with ranges of 20, 40, and 60 miles:

For each range, the total kWh consumed by the vehicle was calculated by dividing up the vehicles into two groups: ones that traveled under the range and ones that traveled over. For the vehicles that traveled under the range, it could be assumed those miles were driven all electric and so the total miles were divided by the energy efficiency: the fuel economy multiplied by 0.09063441 (the ratio of EER to 33.1 kWh per gallon). This number was then multiplied by conversion ratio found by dividing the TXEIEUS by the ELETPUS values for the specific month. For the vehicles that traveled over the range, the remaining miles over the range were calculated similarly to how CO₂ emissions were calculated in problem 3c and then added to the CO₂ emissions calculated for the electric portion of the trip. Both groups were then added together and then scaled up depending on the number of houses, found by COUNT(DISTINCT(HOUSEID)) in a separate query. The change was then calculated by subtracting the CO₂ emissions of hybrid vehicles from the CO₂ emissions of normal vehicles.

Data Tables:

Query 3A

Maximum Miles Travelled	% of people
5	15.21%
10	26.47%
15	39.43%
20	48.54%
25	58.24%
30	64.64%
35	71.39%
40	75.95%
45	80.69%
50	83.80%
55	87.17%
60	89.34%
65	91.80%
70	93.39%
75	95.07%
80	96.28%
85	97.53%
90	98.42%
95	99.36%
100	100.00%

Query 3B

Maximum Miles Travelled	EPA Combined Fuel Economy			
5	26.38624139			
10	26.34663983			
15	26.33112015			
20	26.32426447			
25	26.32410026			
30	26.3272874			
35	26.325997			
40	26.32598759			
45	26.32591479			
50	26.32541467			
55	26.32579555			
60	26.32672768			
65	26.32736446			
70	26.32675702			
75	26.32625388			
80	26.32556612			
85	26.32511556			
90	26.32473613			
95	26.32423579			
100	26.32423456			

Query 3C

Date	% emissions from vehicles
200803	37.21%
200804	40.64%
200805	37.82%
200806	38.92%
200807	39.75%
200808	39.94%
200809	41.87%
200810	38.54%
200811	41.19%
200812	40.14%
200901	39.77%
200902	45.24%
200903	41.01%
200904	44.08%

QUERY 4D

Date	Miles	CO2 Change	Date	Miles	CO2 Change	Date	Miles	CO2 Change
200803	20	7407595.394	200803	40	11239013.76	200803	60	13209309.56
200804	20	8138243.515	200804	40	12336690.24	200804	60	14541421.95
200805	20	8058145.948	200805	40	12211565.79	200805	60	14433992.5
200806	20	7824797.519	200806	40	11826502.11	200806	60	13965478.28
200807	20	7440305.847	200807	40	11312995.21	200807	60	13425309.46
200808	20	7398411.248	200808	40	11287508.66	200808	60	13390106.69
200809	20	7170186.062	200809	40	10839091.95	200809	60	12727052.31
200810	20	7530206.473	200810	40	11401015.39	200810	60	13387067.07
200811	20	7178232.226	200811	40	10894419.5	200811	60	12852850.87
200812	20	7514920.788	200812	40	11435243.57	200812	60	13512564.31
200901	20	7809708.308	200901	40	11740639.93	200901	60	13758310.72
200902	20	8452123.5	200902	40	12755023.69	200902	60	15025083.33
200903	20	9032382.363	200903	40	13675041.57	200903	60	16086938.89
200904	20	9370189.924	200904	40	14363295.16	200904	60	17090377.1