Neutron stars as axion laboratories

Benjamin Safdi June 11, 2020

Leinweber Center for Theoretical Physics University of Michigan

X-rays: 1903.05088 (PRL 2019), 1910.02956, 1910.04164

Radio: 1804.03145 (PRL 2018), 1811.01020 (PRD 2019), 2004.00011

M. Buschmann, R. Co, C. Dessert, J. Foster, A. Long, Z. Sun

Complementarity between indirect and direct detection

Neutron stars as B-field laboratories for axions

Neutron stars as B-field laboratories for axions

Neutron stars as B-field laboratories for axions

Axion-photon interactions

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} a)^2 + \frac{g_{aff}}{2m_e} \bar{\psi}_f \gamma^{\mu} \gamma_5 \psi_f \partial_{\mu} a - \frac{g_{a\gamma\gamma}}{4} a F \tilde{F} - \frac{1}{2} m_a^2 a^2 + \cdots$$

String theory ALP constructions (1909.05257, Halverson et al.):

$$g_{a\gamma\gamma} \sim 10^{-12} - 10^{-10} \text{ GeV}^{-1}$$
 for strongest-coupled ALP

Axion-photon interactions

Existing axion-photon constraints

Axion-photon mixing

$$\bullet \ \ \mathcal{L} = g_{a\gamma\gamma} \underbrace{a}_{\text{dynam. dynam.}} \cdot \underbrace{\mathbf{B}}_{\text{ext.}}$$

- $P_{a \to \gamma} \sim B_{\rm ext}^2 g_{a \gamma \gamma}^2 L^2$
- L determined by $B_{\rm ext}$ geometry and axion wavelength m_a^{-1}

• $P_{a o \gamma} \sim B_{\mathsf{ext}}^2 g_{a \gamma \gamma}^2 L^2$: what is L?

- $P_{a \to \gamma} \sim B_{\rm ext}^2 g_{a\gamma\gamma}^2 L^2$: what is L?
- Axion and photon have same energy $\omega,$ but momentum mismatch $\delta k \sim m_a^2/\omega$

X-rays

High B field converts axions -> photons

- $P_{a o \gamma} \sim B_{\mathsf{ext}}^2 g_{a \gamma \gamma}^2 L^2$: what is L?
- Axion and photon have same energy ω , but momentum mismatch $\delta k \sim m_a^2/\omega$
- $\delta k \ll L_{\mathsf{CAST}}^{-1}$: $L \sim L_{\mathsf{CAST}}$ \odot

axions

X-ravs

High B field converts axions -> photons

- $P_{a \to \gamma} \sim B_{\text{ext}}^2 g_{a\gamma\gamma}^2 L^2$: what is L?
- Axion and photon have same energy ω , but momentum mismatch $\delta k \sim m_a^2/\omega$
- $\begin{array}{l} \bullet \;\; \delta k \ll L_{\rm CAST}^{-1} \colon L \sim L_{\rm CAST} \; {}^{\textcircled{\scriptsize 0}} \\ \bullet \;\; {\rm But \; if } \; \delta k \gg L_{\rm CAST}^{-1}, \; L \sim \delta k^{-1} \ll L_{\rm CAST} \; {}^{\textcircled{\scriptsize 0}} \end{array}$
 - $P_{a\to\gamma} \sim B_{\rm ext}^2 g_{a\gamma\gamma}^2 \frac{\omega^2}{m^4}$

Existing axion constraints

Part 1: Radio Searches for axion DM

NS with strong B-field and surrounding plasma

DM axions resonantly convert to radio waves when $m_a=m_\gamma$

Narrow radio line detectable at Earth with $f=m_a/(2\pi)$.

First data results appeared in 2020

Green Bank and Effelsberg Radio Telescope Searches for Axion Dark Matter Conversion in Neutron Star Magnetospheres

Joshua W. Foster, ^{1, *} Yonatan Kahn, ² Oscar Macias, ^{3, 4} Zhiquan Sun, ¹ Ralph P. Eatough, ^{5, 6} Vladislav I. Kondratiev, ^{7, 8} Wendy M. Peters, ⁹ Christoph Weniger, ^{4, †} and Benjamin R. Safdi^{1, ‡}

First data results appeared in 2020

- Signal is ~10 kHz wide (bump hunt in sliding window)
- Have ON and OFF data (~1 hr each) for vetoing radio-frequency interference
- NO evidence for axion signals (data consistent with null)

First data results appeared in 2020

- NS Pop mode systematic: how do B-fields of old NSs decay?
- DM systematic: DM density in inner \sim 1 pc \sim 1 kpc
- Magnetosphere systematic: pair multiplicity in lobes of NS magnetopsheres?
- Current theory limitation: Full 3D simulation of axion + NS conversion not available (see 1912.08815 for best attempt)

Radio search future

- Square Kilometer Array (SKA): bigger telescope + spatial information
 - Have data already on Murchison Widefield Array (MWA)
- GBT/Effelsberg: Acquiring more data at higher frequencies $(m_a \sim 25~\mu {\rm eV})$

Theory ingredients for axion-induced X-rays

$$\mathcal{L} = \frac{1}{2} (\partial_{\mu} a)^2 + \frac{g_{aqq}}{2m_q} \bar{\psi}_q \gamma^{\mu} \gamma_5 \psi_q \partial_{\mu} a - \frac{g_{a\gamma\gamma}}{4} a F \tilde{F} - \frac{1}{2} m_a^2 a^2 + \cdots$$

- NS core temperature T_b^∞ : $dF/dE \sim E^{3-4/5}/(e^{E/T_b^\infty}-1)$
- NS equation of state
- NS superfluidity model (e.g., transition temperature)
- Magnetic field (typically well measured)

- 7 neutron stars between \sim 100 500 pc away
- Discovered with ROSAT full-sky *X*-ray survey (90's)

- 7 neutron stars between \sim 100 500 pc away
- Discovered with ROSAT full-sky X-ray survey (90's)
- surface: $B \sim 10^{13}$ G (spindown)

- $\bullet~7$ neutron stars between ${\sim}100$ 500 pc away
- Discovered with ROSAT full-sky X-ray survey (90's)
- surface: $B \sim 10^{13}$ G (spindown)
- $T_{\rm surf} \sim 100 \ {\rm eV}$
- Non non-thermal emission detected (no radio, no $E>1\,\mathrm{keV})$

- $\bullet~7$ neutron stars between ${\sim}100$ 500 pc away
- Discovered with ROSAT full-sky X-ray survey (90's)
- surface: $B \sim 10^{13}$ G (spindown)
- $T_{\rm surf} \sim 100 \ {\rm eV}$
- Non non-thermal emission detected (no radio, no $E>1\,\mathrm{keV})$

Magnificent seven datasets: XMM-Newton and Chandra

• Use data from 2-8 keV

Magnificent seven datasets: XMM-Newton and Chandra

- Use data from 2 − 8 keV
- XMM-Newton (PN and MOS)
 - 90% containment radius: ~50"
- Chandra (ACIS)
 - 90% containment radius: ∼1" (signal limited)

Hard X-ray excesses from RX J1856.6-3754

RX J1856.6-3754: Chandra

- Chandra only: $>3\sigma$ evidence for 2-8 keV flux
- *PN* only: \sim 4 σ evidence for 2-8 keV flux
- *MOS* only: \sim 1 σ evidence for 2-8 keV flux
- Excesses in 4 of 7 NSs, 3 consistent with null

- Does axion model fit data?
- Is there another explanation?

M7 spectra versus axion prediction

• Does axion spectrum $dF/dE \sim E^{3-4/5}/(e^{E/T_b^{\infty}}-1)$ fit?

M7 intensities consistent w/ axion?: yes (short answer)

Axion interpretation

- More than 5σ statistical significance: axion model versus null hypothesis
 - Instrumental systematics and other astrophysical emission mechanisms more important than statistics

- Does axion model fit data?
- Is there another explanation?

Other astrophysical explanations for M7 excess (1910.02956)

- More complicated atmosphere model?
 - Doesn't seem to work: hard to get X-rays above 2 keV from surface ($T_{\rm surf} \sim 100 \ {\rm eV}$)

Other astrophysical explanations for M7 excess (1910.02956)

- More complicated atmosphere model?
 - Doesn't seem to work: hard to get X-rays above 2 keV from surface ($T_{\rm surf} \sim 100$ eV)
- Non-thermal emission from pulsar jet?
 - Luminosities appear much too large

Other astrophysical explanations for M7 excess (1910.02956)

- More complicated atmosphere model?
 - Doesn't seem to work: hard to get X-rays above 2 keV from surface ($T_{\rm surf} \sim 100~{\rm eV}$)
- Non-thermal emission from pulsar jet?
 - Luminosities appear much too large
- Accretion of interstellar medium?
 - Luminosities and energies appear too high

 Found excess of hard X-rays in M7 neutron stars, could arise from axion-like particles

- Found excess of hard X-rays in M7 neutron stars, could arise from axion-like particles
- No convincing astrophysical explanation of excess (but this most likely, in my opinion)
- Our near term work to test axion hypothesis:
 - More data and more targets!

- Found excess of hard X-rays in M7 neutron stars, could arise from axion-like particles
- No convincing astrophysical explanation of excess (but this most likely, in my opinion)
- Our near term work to test axion hypothesis:
 - More data and more targets!
- Future experiments will probe this: IAXO, ALPS-II, . . .

- Found excess of hard X-rays in M7 neutron stars, could arise from axion-like particles
- No convincing astrophysical explanation of excess (but this most likely, in my opinion)
- Our near term work to test axion hypothesis:
 - More data and more targets!
- Future experiments will probe this: IAXO, ALPS-II, . . .
- My theory wishlist
 - Other models for M7 excess? (dark photons, etc.)
 - We have not modeled inner core! (axions from exotic matter: quark gluon plasma, strange matter, muons?)

Questions?

Step 1: axion production (neutron star or white dwarf)

•
$$\mathcal{L}_{aee} = \frac{g_{aee}}{2m_e} (\partial_{\mu} a) \bar{e} \gamma^{\mu} \gamma_5 \epsilon$$

•
$$\mathcal{L}_{aee} = \frac{g_{aee}}{2m_e} (\partial_{\mu} a) \bar{e} \gamma^{\mu} \gamma_5 e$$

• $L_{\text{WD},a} \approx 2 \times 10^{-4} L_{\odot} \left(\frac{g_{aee}}{10^{-13}}\right)^2 \left(\frac{T_c}{10^7 \text{ K}}\right)^4$

• Axions \sim thermal at $T_c \sim \mathrm{keV}$

•
$$\mathcal{L}_{aee} = \frac{g_{aee}}{2m_e} (\partial_{\mu} a) \bar{e} \gamma^{\mu} \gamma_5 e$$

•
$$L_{\text{WD},a} \approx 2 \times 10^{-4} L_{\odot} \left(\frac{g_{aee}}{10^{-13}}\right)^2 \left(\frac{T_c}{10^7 \text{ K}}\right)^4$$

- Axions \sim thermal at $T_c \sim \mathrm{keV}$
- $L_{\mathrm{WD},a}$ factors of T_c :
 - $\sigma \propto T_c$

•
$$\mathcal{L}_{aee} = \frac{g_{aee}}{2m_e} (\partial_{\mu} a) \bar{e} \gamma^{\mu} \gamma_5 e$$

•
$$L_{\text{WD},a} \approx 2 \times 10^{-4} L_{\odot} \left(\frac{g_{aee}}{10^{-13}}\right)^2 \left(\frac{T_c}{10^7 \text{ K}}\right)^4$$

- Axions \sim thermal at $T_c \sim \mathrm{keV}$
- $L_{\mathrm{WD},a}$ factors of T_c :
 - $\sigma \propto T_c$
 - $E_a \sim T_c$

•
$$\mathcal{L}_{aee} = \frac{g_{aee}}{2m_e} (\partial_{\mu} a) \bar{e} \gamma^{\mu} \gamma_5 e$$

•
$$L_{\text{WD},a} \approx 2 \times 10^{-4} L_{\odot} \left(\frac{g_{aee}}{10^{-13}}\right)^2 \left(\frac{T_c}{10^7 \text{ K}}\right)^4$$

- Axions \sim thermal at $T_c \sim \mathrm{keV}$
- $L_{\mathrm{WD},a}$ factors of T_c :
 - $\sigma \propto T_c$
 - $E_a \sim T_c$
 - Electron degeneracy: $(T_c/p_f)^2~(p_f\sim 0.5~{\rm MeV})$

•
$$\mathcal{L}_{aee} = \frac{g_{aee}}{2m_a} (\partial_{\mu} a) \bar{e} \gamma^{\mu} \gamma_5 e$$

•
$$L_{\text{WD},a} \approx 2 \times 10^{-4} L_{\odot} \left(\frac{g_{aee}}{10^{-13}}\right)^2 \left(\frac{T_c}{10^7 \text{ K}}\right)^4$$

- Axions \sim thermal at $T_c \sim \mathrm{keV}$
- $g_{aee} < 3 \times 10^{-13}$ (WD cooling, e.g. 1406.7712)
- WD, RG, HB Cooling hints (see e.g. 1708.02111) :
 - $g_{aee} = 1.5 \times 10^{-13}$
 - $g_{a\gamma\gamma} = 1.4 \times 10^{-11} \text{ GeV}^{-1}$

•
$$\mathcal{L}_{aee} = \frac{g_{aee}}{2m_a} (\partial_{\mu} a) \bar{e} \gamma^{\mu} \gamma_5 e$$

•
$$L_{\text{WD},a} \approx 2 \times 10^{-4} L_{\odot} \left(\frac{g_{aee}}{10^{-13}}\right)^2 \left(\frac{T_c}{10^7 \text{ K}}\right)^4$$

- Axions \sim thermal at $T_c \sim \mathrm{keV}$
- $g_{aee} < 3 \times 10^{-13}$ (WD cooling, e.g. 1406.7712)
- WD, RG, HB Cooling hints (see e.g. 1708.02111):
 - $g_{aee} = 1.5 \times 10^{-13}$
 - $g_{a\gamma\gamma} = 1.4 \times 10^{-11} \text{ GeV}^{-1}$
- NS production: degenerate neutron/proton scattering
 - $T_c \sim 10 \text{ keV}$
 - $g_{ann} < 7.7 \times 10^{-10}$: Cas A NS cooling (1806.07151)

Magnificent seven data

Magnificent seven data

- RX J1856.6-3754 has by far most exposure
- Also closest of the M7 ($d \approx 100 \text{ pc}$)
- $T_{\rm surf} \approx 70$ eV / thermal luminosity relatively low (pileup not concern for *Chandra*)

RX J0420.0-5022

- $\sim 2\sigma$ evidence *Chandra*, $\sim 1\sigma$ PN, $\sim 1\sigma$ MOS
- No chance of pileup for Chandra (lowest count rates of M7)
- $\sim 1\sigma$ excesses from 2 other M7, 3 consistent with null

M7 Name	$\log(B_0/\mathrm{G})$	$\log(T_b^{\infty}/\text{keV})$	d [pc]
RX J0806.4-4123			240 ± 25
RX J1856.6-3754	13.18 ± 0.05	0.9 ± 0.2	123 ± 13
RX J0420.0-5022		0.9 ± 0.4	345 ± 200
RX J1308.6+2127	13.68 ± 0.04	1.2 ± 0.3	663 ± 137
RX J0720.4-3125			361 ± 130
RX J1605.3+3249		1.2 ± 0.3	393 ± 219
RX J2143.0+0654	13.30 ± 0.10	1.3 ± 0.3	430 ± 200

• B_0 estimated from spin-down (P, and \dot{P})

M7 Name	$\log(B_0/\mathrm{G})$	$\log(T_b^{\infty}/\text{keV})$	d [pc]
RX J0806.4-4123	13.40 ± 0.13	1.2 ± 0.3	240 ± 25
RX J1856.6-3754	13.18 ± 0.05	0.9 ± 0.2	123 ± 13
RX J0420.0-5022		0.9 ± 0.4	345 ± 200
RX J1308.6+2127	13.68 ± 0.04	1.2 ± 0.3	663 ± 137
RX J0720.4-3125		1.2 ± 0.3	361 ± 130
RX J1605.3+3249	13.00 ± 0.20	1.2 ± 0.3	393 ± 219
RX J2143.0+0654	13.30 ± 0.10	1.3 ± 0.3	430 ± 200

- B_0 estimated from spin-down (P, and \dot{P})
- Distance: some parallax (small uncertainty), others
 luminosity model + hydrogen absorption (large uncertainty)

M7 Name	$\log(B_0/\mathrm{G})$	$\log(T_b^{\infty}/\text{keV})$	d [pc]
RX J0806.4-4123	13.40 ± 0.13	1.2 ± 0.3	240 ± 25
RX J1856.6-3754	13.18 ± 0.05	0.9 ± 0.2	123 ± 13
RX J0420.0-5022		0.9 ± 0.4	345 ± 200
RX J1308.6+2127	13.68 ± 0.04	1.2 ± 0.3	663 ± 137
RX J0720.4-3125		1.2 ± 0.3	361 ± 130
RX J1605.3+3249			393 ± 219
RX J2143.0+0654	13.30 ± 0.10	1.3 ± 0.3	430 ± 200

- B_0 estimated from spin-down (P, and \dot{P})
- Distance: some parallax (small uncertainty), others
 luminosity model + hydrogen absorption (large uncertainty)
- Redshifted core temperature T_b^{∞} : estimated from observed surface temperature

M7 Name	$\log(B_0/\mathrm{G})$	$\log(T_b^{\infty}/\text{keV})$	d [pc]
RX J0806.4-4123	13.40 ± 0.13	1.2 ± 0.3	240 ± 25
RX J1856.6-3754	13.18 ± 0.05	0.9 ± 0.2	123 ± 13
RX J0420.0-5022		0.9 ± 0.4	345 ± 200
RX J1308.6+2127	13.68 ± 0.04	1.2 ± 0.3	663 ± 137
RX J0720.4-3125		1.2 ± 0.3	361 ± 130
RX J1605.3+3249			393 ± 219
RX J2143.0+0654	13.30 ± 0.10	1.3 ± 0.3	430 ± 200

- B_0 estimated from spin-down (P, and \dot{P})
- Distance: some parallax (small uncertainty), others
 luminosity model + hydrogen absorption (large uncertainty)
- Redshifted core temperature T_b^{∞} : estimated from observed surface temperature

M7 intensities versus axion prediction

- green/yellow: $1(2)\sigma$ measurement from X-ray data
- black/gray: 1(2) σ estimate from axion + NS model (at best-fit $g_{a\gamma\gamma}g_{ann}$)
- Dom. mod. uncertainty: T_b^{∞} ($I \sim T_b^{\ 6}$ + superfluid suppr.)

Future hard X-ray NuSTAR observations would be useful

- Axions might gain energy from breaking Cooper pairs
 - Signal sensitive to neutron superfluid gap model
- Dedicated NuSTAR observation towards RX J1856 should detect high-E flux in any scenario (NuSTAR proposal in)

Upcoming Chandra observations of magnetic white dwarf

- WD surface temperatures ~eV: no (good) archival data
- Upcoming Chandra observation: March 2020

Radio constraints on pulsar-like emission

Systematic tests for RX J1856

Chandra pileup example

Spectrum of all M7

Best-fit at low m_a

Best-fits and significances

