Producto Escalar

Ejercicio 1

Dados los vectores:

$$\vec{x} = (1, 2), \ \vec{y} = (3, -1)$$

hallar la combinación lineal:

$$\vec{z} = 2\vec{x} + 3\vec{y}$$

Solución:

Lo primero que haremos es sustituir los valores de \vec{x} , \vec{y} en la combinación lineal, por lo que tenemos:

$$\vec{z} = 2\vec{x} + 3\vec{y} \Rightarrow \vec{z} = 2 \cdot (1, 2) + 3 \cdot (3, -1)$$

Ahora haremos la multiplicación por el escalar:

$$\vec{z} = (2,4) + (9,-3)$$

Por lo que finalmente necesitamos hacer la suma de los vectores para resolver el problema:

$$\vec{z} = 2 \cdot (1,2) + 3 \cdot (3,-1) = (2,4) + (9,-3) = (11,1)$$

Ejercicio 2

¿Se puede expresar el vector $\vec{z}=(2,1)$ como combinación lineal de los vectores $\vec{x}=(3,-2)$, $\vec{z}=(1,4)$?

Solución:

Para averiguar si es posible expresar el vector \vec{z} como combinación lineal de los vectores \vec{x} , \vec{y} debemos encontrar escalares a, b tales que:

$$\vec{z} = a \cdot \vec{x} + b \cdot \vec{y}$$

Si sustituimos los valores de $\vec{z}, \ \vec{x}, \vec{y}$ tenemos:

$$(2,1) = a \cdot (3,-2) + b(1,4)$$

Podemos notar que esto es equivalente a resolver el sistema de ecuaciones;

$$2 = a \cdot 3 + b \cdot 1$$

$$1 = a \cdot (-2) + b \cdot 4$$

Para resolver esto tomamos la primera ecuación y despejamos para b, por lo que obtenemos:

$$2 - a \cdot 3 = b$$

Ahora sustituimos el valor de b en la segunda ecuación para obtener:

$$1 = a \cdot (-2) + (2 - a \cdot 3) \cdot 4 \Rightarrow 1 = -2a + 8 - 12a \Rightarrow 7 = 14a$$

 $\Rightarrow a = \frac{1}{2}$

Por lo que se sigue que: $b = \frac{1}{2}$.

ya que encontramos pudimos encontrar escalares a, b tales que:

$$\vec{z} = a \cdot \vec{x} + b \cdot \vec{y}$$

Entonces concluimos que el vector \vec{z} se puede expresar como combinación lineal de los vectores \vec{x} , \vec{y} .