Chapter 8

Bended Differential Transmission Line Using Compensation Inductance and Capacitance

National Taiwan University of Science and Technology

Chun-Long Wang

Outline

- Motivation
- □ Literature Survey
- Bended Differential Transmission Line Using Right-Angled Bend
- □ Bended Differential Transmission Line Using Compensation Inductance and Capacitance
- Conclusions

Motivation

Straight Differential Line

■ No path difference → No common-mode noise induced

$$\begin{bmatrix} V_c \\ V_d \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} V_1 \\ V_2 \end{bmatrix}$$

$$V_c \qquad V_d$$

□ Right-Angled Differential Line

■ With path difference → Common-mode noise induced

Literature Survey

□ Common-Mode Noise Filter [1], [2]

- Advantage: PCB process compatibility
- Disadvantage: Limited bandwidth, interlayer interference, large size

[1] W.-T. Liu, C.-H. Tsai, T.-W. Han, and T.-L. Wu, "An embedded common-mode suppression filter for GHz differential signals using periodic defected ground plane," *IEEE Microw. Wireless Compon. Lett.*, vol. 18, no. 4, pp. 248–250, Apr. 2008.

[2] S. J. Wu, C. H, Tsai, T. L. Wu, and T. Itoh, "A novel wideband common-mode suppression filter for gigahertz differential signals using coupled patterned ground structure," *IEEE Trans. Microw. Theory Tech.*, vol. 57, no.4, pp. 848-855, Apr. 2009.

Literature Survey

Compensated Differential Line [3]-[5]

- Advantage: No interlayer interference, broadband, compact
- Disadvantage: Differential-mode reflection

- [3] G. H. Shiue, W. D. Guo, C. M. Lin, and R. B. Wu, "Noise reduction using compensation capacitance for bend discontinuities of differential transmission lines," *IEEE Trans. Adv. Packag.*, vol. 29, pp. 560–569, Aug. 2006.
- [4] C. H. Chang, R. Y. Fang, and C. L. Wang, "Bended differential transmission line using compensation inductance for common-mode noise suppression," *IEEE Trans. Compo. Packag. Manu. Tech.*, vol. 2, pp. 1518–1525, Sep. 2012.
- [5] C. Gazda, D. V. Ginste, H. Rogier, R. B. Wu, and D. D. Zutter, "A wideband common-mode suppression filter for bend discontinuities in differential signaling using tightly coupled microstrips," *IEEE Trans. Adv. Packag.*, vol. 33, pp. 969–978, Nov. 2010.

□ Structure and Dimensions

■ FR4 substrate with $\varepsilon r = 4.4$ and $\tan \delta = 0.02$

w (mm)	s (mm)	h (mm)	
1.75	0.75	1.6	
ℓ_i (mm)	ℓ_o (mm)	ℓ_m (mm)	
1.75	6.75	4.25	
ℓ (mm)	w_t (mm)	ℓ_t (mm)	
25	2.9	9.22	

Cross-sectional View

- □ Differential-to-Common Mode Conversion
 - Maximum value of -6.48 dB

Fabricated Circuit

Mode Conversion

□ Time-Domain Simulation Setup

■ Input source V_S : 0.5V step function

TDT Common-Mode and TDR Differential-Mode Noises

□ Equivalent Circuit of Right-Angled Bend [3],

Right-Angled Differential Line

Equivalent Circuit

L ₁₃ (nH)	L ₂₄ (nH)	L_M (nH)	$C_{11}(C_{33})$ (pF)	$C_{22}(C_{44})$ (pF)	$C_{12}(C_{34})(pF)$
0.6727	2.5949	0.4993	0.0676	0.2609	0.0397

ℓ' (mm)

 $w_o(\text{mm})$

 ℓ'_{o} (mm)

■ Inductance Compensation

Using asymmetric coupled line

Differential Line

■ Inductance Compensation

Equivalent circuit values of the asymmetric coupled line

Asymmetric Coupled Line

$$L'_{13} = L_{si} \times \ell'_{i}$$

$$L'_{24} = L_{so} \times \ell'_{o}$$

$$L'_{M} = L'_{m} \times \ell'_{m}$$

$$C'_{11} = C'_{33} = C_{si} \times \frac{\ell'_{i}}{2}$$

$$C'_{22} = C'_{44} = C_{so} \times \frac{\ell'_{o}}{2}$$

$$C'_{12} = C'_{34} = C'_{m} \times \frac{\ell'_{m}}{2}$$

L' ₁₃ (nH)	L' ₂₄ (nH)	$L_{M}^{\prime}(\mathrm{nH})$	$C_{11}(C_{33})$ (pF)	$C_{22}(C_{44})$ (pF)	$C_{12}(C_{34})$ (pF)
4.9035	4.9055	1.5096	0.2124	0.4932	0.0907

□ Capacitance Compensation

Differential Line

L' ₁₃ (nH)	L' ₂₄ (nH)	$L_{M}^{'}$ (nH)	$C_{11} + C_C (C_{33} + C_C) (pF)$	$C_{22}(C_{44})$ (pF)	$C_{12}(C_{34})$ (pF)
< 4.9035	4.9055 >	1.5096	0.4932	0.4932	0.09067

□ Capacitance Compensation

- □ Differential-to-Common Mode Conversion
 - With and without vias

Mode Conversion

Fabricated Circuit

□ Mixed-Mode *S*-Parameters

■ Diff.-to-comm. mode conversion and diff. mode transmission

□ Mixed-Mode S-Parameters

■ Diff.-to-comm. mode reflection and diff. mode reflection

- □ Differential-to-Common Mode Conversion
 - Various SMD capacitor placement

- □ Time-Domain Simulation Setup
 - Input source V_S : 0.5V step function

□ TDT Common-Mode and TDR Differential-

Conclusions

□ Mixed-Mode S-Parameters

- Differential-to-common mode conversion is greatly reduced from -6.48 to -13 dB.
- Differential-mode transmission is maintained.
- Differential- and common-modes reflections are kept small.
- TDT Common-Mode and TDR Differential-Mode Noises

	TDT Common-Mo	de Noise (Volt)	TDR Differential-Mode Noise (Volt)		
	Measurement	Simulation	Measurement	Simulation	
Right-Angled Bend	0.056	0.064	0.017	0.02	
Compensation L and C	0.019	0.021	0.030	0.04	