

SH367103 应用指南

1 概述

SH367103 系列芯片內置高精度电压检测电路和延时电路 (过充电/过放电保护以及放电过流保护),保护电池安全。同时,SH367103 系列芯片具备充电高低温温度保护功能、放电高温温度保护功能延长电池寿命。此外,SH367103 系列芯片还拥有 0V 充电功能,提升系统安全性能。SH367103 芯片适用于保护 3 节~4 节串联的锂离子电池组 (包括磷酸铁锂电池组)。

本应用指导将介绍 SH367103 的工作原理、使用说明、使用中常见问题以及在标准方案的基础上 拓展出的 PMOS 方案、分口应用电路原理图。

1.1 产品选型表

本文档适用于以下系列产品:

型号	过充电 检测电 压(V)	过充电 解除电压 (V)	过放电 检测电 压(V)	过放电 解除电压 (V)	过流1 检测电压 (V)	过流2 检测电压 (V)	短路检 测电压 (V)	充电低温 保护温度 (℃)		放电高温 保护温度 (℃)	负 载 锁定	放电过流退 出时间/放电 过流1进入时 间
SH367103X/ 016XY-AAB00	4.20	4.10	2.5	3.00	0.10	0.20	0.45	0	50	70	有	1/1
SH367103X/ 016XY-AAE00	4.25	4.15	2.7	3.00	0.10	0.20	0.45	0	50	70	有	1/10
SH367103X/ 016XY-AAF00	4.20	4.10	2.5	3.00	0.10	0.20	0.45	0	50	70	有	1/10
SH367103X/ 016XY-BAA00	3.9	3.9	2	2.3	0.1	0.2	0.45	0	50	70	无	1/10
SH367103X/ 016XY-BAB00	3.9	3.6	2.2	2.7	0.1	0.2	0.45	0	50	70	有	1/10

注释1: 要了解更多SH367103型号,请咨询我司业务部。

1.2 封装

SH367103 提供 16-PIN TSSOP 封装。

1.3 管脚图

2 功能设定

2.1 CTL 管脚设定

SH367103 系列芯片中,CTL 管脚优先控制 CHG/DSG 管脚的输出。且 CTL 控制 CHG/DSG 管脚的优先级高于芯片内部保护电路。具体操作方法如下所示:

CTL 管脚	CHG 管脚	DSG 管脚
VDD 电平	取决于内部保护电路	取决于内部保护电路
悬空	高阻态	GND
GND 电平	高阻态	GND

2.2 SEL 管脚设定

SH367103 系列芯片中, SEL 管脚用于配置 3/4 节电池保护, 其具体操作方法如下:

SEL	芯片功能
GND 电平	3 节电芯保护
VDD 电平	4 节电芯保护

SH367103 用于 3 串 Pack 保护时, VC4 与 GND 短接即可。

2.3 延时时间设定

SH367103中,可设置部分保护延时及保护解除延时。延时时间设定的细节如下所示:

内容	标号	关联设置	计算方法
过压保护延时	t _{ov}	芯片内部固定	18
过压保护解除延时	t_{OVR}	芯片内部固定	1mS
欠压保护延时	t _{UV}	DSD 管脚外接电容 C _{DSD}	1S×C _{DSD} /0.1uF
欠压保护解除延时	t _{UVR}	DSD 管脚外接电容 C _{DSD}	100mS×C _{DSD} /0.1uF
过流 1 保护延时	t _{DOC1}	CDC 管脚外接电容 C _{CDC}	1S×C _{CDC} /0.1uF
过流 2 保护延时	t _{DOC2}	CDC 管脚外接电容 C _{CDC}	0.1S×C _{CDC} /0.1uF
过流保护解除延时	t _{DOCR}	CDC 管脚外接电容 C _{CDC}	1S×C _{CDC} /0.1uF
短路保护延时	t _{sc}	芯片内部固定	250uS
短路保护解除延时	t _{scr}	CDC 管脚外接电容 C _{CDC}	1S×C _{CDC} /0.1uF
温度保护延时	t _⊤	芯片内部固定	3S
温度保护退出延时	t _{TR}	芯片内部固定	3S
休眠模式延时	t _{UVP}	芯片内部固定	30S
充放电状态切换延时	t _{STATUS}	芯片内部固定	500mS

延时时间计算示例:

在过放电保护检测状态下,当任意电芯电压在 V_{DV} 以下时,SH367103 系列芯片通过 DSD 管脚内部电阻 R_{DSD} 向 DSD 管脚外接电容 C_{DSD} 进行充电。经过一段时间,当 DSD 管脚电压达到 DSD 管脚检测电压后,则 DSG 管脚输出低电平来关闭充电 MOS 管。上述电容充电时间即为过放电检测延时 t_{UV} 。

tuv计算公式如下:

 $t_{UV}[s] = -In (1 - 0.7 (典型值)) × C_{DSD} [μF] × 8.31 [ΜΩ] (典型值)$ = 10.0 [ΜΩ] (典型值) × C_{DSD} [μF]

同样,放电过流1保护检测延时tpoc1和放电过电流2检测延时tpoc2,亦可通过下列公式:

 t_{DOC1} [s] = -In (1 - 0.7 (典型值)) × C_{CDC} [μ F] × R_{CDC} [$M\Omega$]

 $\pm C_{DSD} = C_{CDC} = 0.1 [\mu F]$ 时,各延时时间 t_{CD} 、 t_{DD} 、 t_{ID1} 算出结果如下:

 $t_{UV}[s] = 10.0 [MΩ]$ (典型值) × 0.1 [μF] = 1.0 [s] (典型值)

 $t_{DOC1}[s] = 10 [MΩ] (典型值) × 0.1 [μF] = 1.0[s] (典型值)$

 t_{DOC2} [ms] = 1000 [kΩ] (典型值) × 0.1 [μF] = 100 [ms] (典型值)

2.4 充放电状态判定

SH367103 由 VI 电平判断系统充放电状态。当 VI 管脚电平高于放电状态检测电压 V_{DCH},则判定系统处于放电状态,除放电状态外,系统处于充电状态。

3 3~4 锂电芯典型应用

模块功能介绍:

1. 电压检测模块

电芯通过滤波电路与芯片检测管脚 VC1~VC4 直接相连,其中 VDD 为芯片供电端。模块中, $R_{VDD}+C_{VDD}$ 组成 RC 滤波网络过滤电源供电端的高频干扰, $(R_{VC1}\sim R_{VC4})+(C_{VC1}\sim C_{VC4})$ 同样是 RC 滤波 网络。

2. 电流检测模块

R_{VI} 为功率采样电阻, SH367103 VI 管脚通过 R_{VI} 电阻侦测 R_{SENSE} 两端的压差来检测电流。

3. 温度检测模块

R_{TEMP} 是 B=3435 的 NTC 电阻,C_{TEMP} 为稳压电容,建议采用 10nF。TS 管脚通过检测管脚处电压换算出外部等效温度。若无需温度保护,可以直接用 10K 电阻替代 R_{TEMP}。

4. MOS 控制模块

DSG 管脚是 CMOS 输出(高电平为 VDD), 直接通过 R_{DSG} 开关放电 MOSFET; CHG 管脚是 OD 输出(高电平为 11V, 低电平为开漏输出), 通过 R_{CHG1}和 R_{CHG2} 开关充电 MOSFET。

5. 负载检测模块

VM 管脚通过 R_{VM} 检测负载是否连接。

6. 充电器检测模块

当芯片进入低功耗或是欠压锁定时,由 CHSE 引脚来检测充电器。

7. 延时控制模块

通过调节 DSD、CDC 的外接电容来调节欠压、放电过流 1/2 的延时时间。

8. 抗干扰模块

D1 是为了保证芯片工作在正常工作电压下; D2 是为了吸收来自负载的毛刺; D3 是为了吸收负载波动带来的毛刺。

注释2: 上述典型应用图在量产前,需依据应用情况加适当的冲击防护措施;

注释3: 以上电路可能在未经通知的情况下进行改动;另外,上述电路并不作为保证电路工作的依据;

3.2 三串同口锂电池保护应用

3.3 三串 P 充 N 放锂电池保护应用

3.4 四串 P 充 N 放锂电池保护应用

3.5 四串锂电池保护半分口电路

4 扩展应用

4.1 三串短路延迟时间调节电路

使用说明:

上图所示为添加短路保护延时调整电路的 SH367103 3 串保护电路, SH367103 短路保护延时内部固定为 250uS(Max300uS; Min200uS)。图中 R9 与 C8 组成 RC 滤波电路可依据实际应用将 SH367103 短路保护延时适当增大。

4.2 四串取样电压采 MOS 电路

使用说明:

上图所示为采样 MOS 内阻作为取样电阻的保护电路,调节充放电 MOS 的内阻和 R13、R14 的阻值匹配来调节放电电流保护阈值。

4.3 3 串温度调节电路

使用说明:

上图所示为 SH367103 3 串保护温度调节电路,通过在 103AT 上串并联电阻来实现温度保护阈值的调节。

充电低温(℃)	充电高温(℃)	放电高温(℃)	R12 (KΩ)	R9 (KΩ)
0	52	74	2700	0.27
0	55	81	1100	0.62
-5	50	72	130	0.12
-5	52	75	130	0.36
-5	55	84	120	0.75
-10	50	72	75	0.22
-10	52	77	75	0.47
-10	55	85	68	0.82
-15	50	73	56	0.3
-15	52	78	56	0.51
-15	55	85	51	0.82
-20	50	75	43	0.36
-20	52	78	43	0.56
-20	55	87	43	0.91
-25	60	100	36	1.3

4.4 3 串放电过流快速恢复电路

使用说明:

SH367103 系列部分型号芯片默认放电过流退出时间与放电过流 1 进入时间一致,增加了放电过流退出电路,可以使电动工具从放电过流状态下快速释放。

5 3~4 串电池包保护板用户指南

5.1 硬件及功能框图

1. 下图 SH367103 3-4 串电池包保护板为充、放电同口。硬件布局及接线如下:

2. SH367103 4 串电池包保护板包含了 SH367103 全部功能,框图如下:

5.2 接线端口

本评估板连接非常方便,对外连线最少只需8根(5节电芯)。表1:

B+	接电池包正极
B-	接电池包负极
CON	电芯连接器(6芯)
C-	充电时接充电电源负极
P-	放电时接负载负极
P+/C+	放电时接负载正极; 充电时接充电电源正极

芯电芯连接器,第一节电芯位于电池包电压最低端,以此类推。表二:

1	第一节电芯负极,也是电池包负极,建议不接
2	第一节电芯正极,第二节电芯负极(如果配成3节电芯,不需连接)
3	第二节电芯正极,第三节电芯负极
4	第三节电芯正极,第四节电芯负极
5	第四节电芯正极,也是电池包正极

跳线配置。表三:

	J6	J8
3 Cell	Short	GND
4 Cell	Open	VDD

注意: B-、B+ 连线的粗细取决于实际应用中最大电流和持续时间。

5.3 功能测试

根据实际情况,对照表三配置好电路;再按表一和表二准备好连线,然后按下列顺序依次连接到保护板就可以开始各功能测试:

- ▶ 首先将 B- 与电池包负极用粗线相连:
- ▶ 将6 芯排线与6 芯接头相连;
- ▶ 将 B+ 与电池包正极用粗线相连。

第一次上电,系统有可能处于低功耗状态,此时需要进行充电激活。具体方法为: 在 P+, P- 直接连接充电器(充电器电压一定要高于电芯自身总电压)。当充、放电 MOSFET 均处于开启状态,此时系统处于正常工作模式。

5.4 正常工作模式和低功耗模式电流测试

将万用表设置为测电流模式,并串接在 B- 和电池包负极之间。让保护板分别处在正常工作模式、低功耗模式;测得相应的电流。正常情况:

- 1. 正常状态: I < 35μA (V1=V2=V3=V4=V5=3.6V)
- 2. 低功耗状态: I < 5.5μA(V1=V2=V3=V4=V5=1.5V)

5.5 过充电保护测试

在 P+ 和 P- 间接入直流电源给电池包充电,用示波器观察充电 MOSFET,当充电 MOSFET 关闭时,此时电压最高的电芯电压值,即为过充电保护电压;移去充电器,当充电 MOSFET 再次开启时,此时电压最高的电芯电压值,即为过充电恢复电压。

5.6 过放电保护测试

在 P+ 和 P- 之间连接负载放电,用示波器观察放电 MOSFET,直到其关闭,此时电压最低的电芯电压,即为过放电保护电压(此时 DSD 管脚外接电容电压为 5V);然后移去负载,等待放电 MOSFET 重新开启,此时电压最低的电芯电压即为过放电恢复电压。注意:如果过放电时间过长,系统将进入低功耗状态,则需要接充电器才能激活。

5.7 放电过流 1 保护测试

在放电过程中使放电电流大于、等于放电过流 1 阈值(放电过流 1 保护阈值电压/取样电阻),此时充、放电 MOSFET 都关闭(此时 CDC 管脚外接电容电压为 5V)。拔掉负载,充、放电 MOSFET 重新打开。

5.8 放电过流 2 保护测试

在放电中使充电电流大于、等于放电过流 2 保护阈值(放电过流 2 保护阈值电压/取样电阻),此时充、放电 MOSFET 都关闭(此时 CDC 管脚外接电容电压为 5V)。拔掉负载,充、放电 MOSFET 重新打开。

5.9 短路保护测试

将 P+ 与 P- 进行短接, 系统响应短路保护,充、 放电 MOSFET 关闭。断开 P+与 P-, 充、放电 MOSFET 重新打开。电芯无异常情况。

5.10 充电高温保护测试

将测试板放入温度箱内,逐渐增加温度箱的温度,直到充电 MOSFET 关闭,记录此时的温度值,即为充电高温保护阈值。然后逐渐降低温度箱的温度,直到充电 MOSFET 重新打开,记录此时的温度值,即为充电高温保护恢复阈值。

5.11 充电低温保护测试

将测试板放入温度箱内,逐渐降低温度箱的温度,直到充电 MOSFET 关闭,记录此时的温度值,即为充电低温保护阈值。然后逐渐升高温度箱的温度,直到充电 MOSFET 重新打开,记录此时的温度值,即为充电低温保护恢复阈值。

5.12 放电高温保护测试

将测试板放入温度箱内,使保护板处于放电状态(VI 引脚电平大于 4mV),逐渐增加温度箱的温度,直到充、放电 MOSFET 关闭,记录此时的温度值,即为放电高温保护阈值。然后逐渐降低温度箱的温度,直到放电 MOSFET 重新打开,记录此时的温度值,即为放电高温保护恢复阈值。

6 PCB LAYOUT 注意事项

1. 采样电阻尽量靠近 B-端,减小走线阻值对电流保护值的影响;

YES

NO

2. 芯片 VDD, VC1 连接线直接从 B+端子引出,不要从功率电流的地方连接,防止在大电流放电时,功率走线的震荡引起芯片的采样不准确;

YES

NO

3. 芯片采用一点接地,芯片所有的地线通过一点连接至 B-端,防止 B-端抖动对芯片造成干扰;

YES

NO

- 4. 芯片管脚和对外的接口 B+, B-, P+, P-之间可以通过片外电阻或电容隔离一下, 防 ESD 对 芯片的冲击;
- 5. 建议电压采样端 RC 滤波的接地,每一路单独连接至地;
- 6. 大电流回路的线宽和散热要有足够的余量;

7. VDD 处的 RC 滤波电路尽量选择 0805 封装的电阻,因为在有尖峰电压的情况下,0603 封装的电阻容易损坏,从而造成整个芯片工作不稳定。

7 规格书更改记录

	SH367103 Application Notice 更新记录				
版本	内容	日期			
V2.2	1、更新应用原理图(提供部分元器件选型参考:二极管、稳压管、电阻电容封装)	2015.12.31			
V2.1	1、更新应用原理图	2015.12.28			
V2.0	1、更新应用原理图 2、新增放电过流快速恢复电路 (P11); 3、新增 6 串扩展应用 (P12);	2015.08.07			
V1.0	初始版本	2015.05.19			

目录

1	概述					
	1. 1	产品选型表2				
	1.2	封装3				
	1.3	管脚图3				
2	功能设定					
	2. 1	CTL 管脚设定				
	2. 2	SEL 管脚设定				
	2.3	延时时间设定4				
	2. 4	充放电状态判定				
3	3~4 锂电					
	3. 1	四串锂电池保护应用				
	3. 2	三串锂电池保护应用				
	3. 3	三串 P 充 N 放锂电池保护应用				
	3. 4	四串 P 充 N 放锂电池保护应用				
	3. 5	四串锂电池保护半分口电路				
4	扩展应用	月g				
	4. 1	三串短路延迟时间调节电路				
	4. 2	四串取样电压采 MOS 电路 9				
	4. 3	3 串温度调节电路				
	4. 4	3 串放电过流快速恢复电路				
5	3~4 串电	1.池包保护板用户指南12				
	5. 1	硬件及功能框图				
	5. 2	接线端口				
	5. 3	功能测试				
	5. 4	正常工作模式和低功耗模式电流测试13				
	5. 5	过充电保护测试14				
	5. 6	过放电保护测试				
	5. 7	放电过流 1 保护测试				
	5.8	放电过流 2 保护测试				
	5. 9	短路保护测试14				
	5. 10	充电高温保护测试 14				
	5. 11	充电低温保护测试				
	5. 12	放电高温保护测试				
6	PCB LAY	OUT 注意事项 15				
7	规格书具	更改记录				