Übungen zur Vorlesung

Rechnernetze

Winter 2021/2022

Blatt 4

Laden Sie eine PDF-Datei in ILIAS hoch, andere Abgaben werden ignoriert. Schreiben Sie alle Namen und Matrikelnummern der Gruppenteilnehmer auf die Abgabe.

Aufgabe 1: Distance Vector Routing

(10 Punkte)

Betrachten Sie folgendes Netzwerk mit den Knoten $\{A,B,C,D,E,F\}$ mit den beschriebenen Kosten, den bisherigen Routing-Tabellen und den durchzuführenden Advertisements darunter.

	$d_t(A)$	$\pi_t(A)$
A	0	A
В	∞	A
С	3	С
D	7	С
Е	5	С
F	4	С

	$d_t(B)$	$\pi_t(B)$
A	∞	В
В	0	В
С	∞	В
D	∞	В
Е	∞	В
F	∞	В

	$d_t(C)$	$\pi_t(C)$
A	3	A
В	∞	C
С	0	С
D	4	Е
Е	2	Е
F	1	F

	$d_t(D)$	$\pi_t(D)$
Α	7	E
В	∞	D
С	4	E
D	0	D
Е	2	Е
F	7	Е

	$d_t(E)$ 5	$\pi_t(E)$
Α	5	С
В	0	В
С	2	С
D	2	D
Е	0	Е
F	3	С

	$d_t(F)$	$\pi_t(F)$
A	∞	F
В	∞	F
C	∞	F
D	∞	F
Е	∞	F
F	0	F

1. Runde:

$$C \to F$$

$$F \to D$$

2. Runde:

$$C \to A$$

$$D \to F$$

3. Runde:

$$E \to F$$

$$F \to D$$

- $X \rightarrow Y$ bedeutet, dass X ein Advertisement an Y sendet.
 - a) Führen Sie das *Distance-Vector*-Protokoll mit dem *Distributed-Bellman-Ford*-Algorithmus mit den angegebenen Advertisements aus. Nehmen Sie, dass alle Advertisements einer Runde gleichzeitig ankommen. Geben Sie die Routing-Tabellen nach jeder Runde an. (6 Punkte)
 - b) Sind die Tabellen am Ende von Runde 3 optimal? Begründen Sie Ihre Antwort. (2 Punkte)
 - c) Welches Problem tritt in diesem Netzwerk mit dem *Distributed-Bellman-Ford* Algorithmus auf? Begründen Sie Ihre Antwort. (2 Punkte)