Open Source Software for Commercial Off-the-Shelf GPS Receivers

Andrew Greenberg

Portland State Aerospace Society

Takuji Ebinuma

Mitsubishi Electric Corporation, Kamakura Works

Overview

- Introduction to Open Source
- Motivations behind GPL-GPS
- Choosing a Chipset and Receiver
- Choosing a RTOS
- GPL-GPS: Take OSGP, add eCos, stir well.
- Status and Initial Results
- Future work

Introduction to Open Source and Open Source GNSS Projects

Open Source Software

- Not just software that comes with source code.
- Two versions of open source:
 - It's yours, do whatever you want with it. (Berkeley License, or **BSD**)
 - 3. It's yours, do whatever you want with it privately. But distributions of the software, and modified versions of the software, must also be open source. (Free Software Foundation's General Public License, or GPL)

Why Open Source?

- Allows authors to contribute their expertise, while giving them access to the sum of all other author's expertise.
- Creates dynamic, surprisingly full featured software because users:
 - Want the ability to modify the software, and
 - Deeply care about their expertise and the code they generate.
- Extremely successful software development model
 - **Linux** operating system
 - Firefox web browser
 - Eclipse software development tool

GPS: A different sort of constellation

OpenSource GPS

- Dr. Clifford Kelley's OpenSource GPS
 - ION GPS 2002 Conference Paper: OpenSource GPS:
 Open Source Software for Learning about GPS by
 Clifford Kelley, Joel Barnes, Jingrong Cheng
- Free and open source software which controls a Zarlink GP2021 correlator mounted on an ISA or PCI card in a x86 PC.

Open Source GNSS Projects

GPL-GPS Basic Concept

- Take a inexpensive commercial, off-the-shelf (COTS) GPS receiver.
- Erase its original proprietary software.
- Using only free and open source software development tools, program the receiver with our own open source code.

The GPL-GPS Project

Motivations behind GPL-GPS

Why Bother?

- COTS receivers generate pseudoranges and satellite navigation data
- COTS receivers have development kits
- What's special about a a COTS receiver running open source software?

Motivation

- GPS chipset development kits are restrictive:
 - Prohibitively expensive (> US \$20,000)
 - Non-disclosure agreements prevent sharing code
- Want access to correlators, not just pseudoranges
 - for high dynamics, aiding, research, etc.

Reduce barriers to entry:

- Extremely Low-cost: uses inexpensive COTS receivers and small carrier boards
- High participation: Linux, Windows and Mac OS development environments

Original Motivation: Sounding Rockets

Further Motivations

- Lower barrier to entry for:
 - Nanosatellites
 - UAVs
 - Pseudolite receiver (dynamic PRN codes)
 - Precision timing
 - Novell applications...
- Creates an open reference system, and a platform for comparing receiver and navigation algorithms in the "real world".

The GPL-GPS Project

Choosing a Chipset and Receiver

Choosing a Chipset

- Only one GPS chipset manufacturers has open documentation.
- Why? Especially on older chipsets?
- Zarlink (AKA Mitel AKA GEC Plessey) Semi.
 - GP2021 (GPS correlator)
 - GP4020 (ARM7TDMI and GPS correlator)
 - Both 12 channel single frequency L1 C/A chipsets

Zarlink GP4020-based Receiver

From: Zarlink GP4020 Baseband Processor Design Manual

Choosing a GP4020-based Receiver

- Only two COTS GP4020-based receivers:
 - SigNav MG5001 and MG5003
 - DLR "Phoenix" receiver
 - SSTL "SGR-05" receiver
 - NovAtel SuperStar II

GPL-GPS Development Board

- < \$50 including parts
- Open hardware: Schematics, board files, parts lists online.

Choosing a RTOS

Real-time operating system (RTOS)

- Why even bother with an RTOS?
- Once ported, has great advantages:
 - Multi-threaded abstraction greatly simplifies software
 - Provides common routines and interfaces:
 - Timers, peripheral drivers, threads, IPC, etc.
 - Insulates the developer from the specific hardware
 - Takes care of "housekeeping" tasks
 - Makes embedded code development and debugging sane and manageable

The GPL-GPS Project

RTOS Comparison (Top 7)

Name	HRT	Small	Free	oss	x86,PPC,ARM	POSIX	Effort
eCos	Υ	Υ	Υ	Υ	Y	Y	4x
μ ITRON	Υ	Υ	Υ	Υ	Υ	N	4x
Custom	Υ	Υ	Υ	Υ	N	N	10x
μC/OS-II	Υ	Υ	Ν	Υ	Υ	N	2x
Nucleus	Υ	Υ	Ν	Ν	Υ	Υ	2x
RTX	Υ	Υ	Ν	N	Υ	N	2x
ucLinux	N	N	Υ	Υ	Υ	Υ	1x

HRT = Hard Real Time, Small = Less than 256KB, Free = No fee or licensing conflicts,

OSS = Open Source Software, x86,PPC,ARM = works on all three targets,

POSIX = POSIX compatibility layer, Effort = effort to port, based on ucLinux port = 1x effort

eCos: embedded Configurable OS

- Uses the open source GNU toolchain
 - gcc, gdb, ld, make, objcopy, etc.
- Works under:
 - Linux (native)
 - Windows (via Cygwin project)
 - Mac OS (requires tool chain compilation)
- Supports almost every 32bit processor, and many 16 bit
- Very light weight (~80 KB), very low interrupt latencies and task switch times.

eCos Infrastructure

GPL-GPS Development System

- Minimal Hardware
 - SigNav MG5001
 - GPL-GPS Carrier Board
 - Host PC (Linux, Windows or Mac OS X)
- Free and Open Source Software
 - eCos RTOS
 - GNU tool chain
 - GPL-GPS Software

GPL-GPS Software

Generic GPS Receiver Tasks

GPL-GPS Tasks

Status and Initial Results

First Fix May 2nd, 2005

```
Tera Term - COM1 VT
File Edit Setup Control Window Help
Time = 2004/10/12 0:54:42.478 (state:3)
ECEF = (X:-2.415597e+06 Y:-3.773553e+06 Z:4.524192e+06) b:1.670e+01
LLH = (Lat: 45.47046 Lon: -122.62488 Hgt: 34.43)
State: positioning = 1, last position valid = 1, busy = 1
Ch: PN C PrV EpV Pseudorange Elev. Azim.
 0: 26 A 0 0
 1: 1 L 1 1 2.103216e+07 57.0 54.9
 2: 25 L 1 1 2.094034e+07 63.8 78.6
 3: 24 L 1 1 2.307192e+07 29.6 308.4
 4: 32 A 0 0
 5: 27 A 0 0
 6: 23 A 0 0
 7: 28 A 0 0
 8: 20 L 1 1 2.101697e+07 55.7 305.4
9: 11 L 1 1 2.231043e+07 36.3 225.3
10: 22 A 0 0
11: 29 A 0 0
```

GPL-GPS Current Status

- It works!
- But:
 - Lacks atmospheric correction
 - Lacks carrier phase
 - Poor tracking loops (2nd order PLL)
 - Poor acquisition and search on loss-of-signal
 - Almanac not stored in non-volatile memory
 - eCos infrastructure needs more tuning

Processor Performance

Static Performance (2000 pts., 36.4m)

Static Performance: 3D

Static Performance: Time Series

Simulated High Dynamics Performance

High Dynamics Test Platform

HD Test Flight... slightly delayed

Future Work

- Infrastructure work
 - Fix bugs. Probably lots of them
 - Move interrupts & tracking to internal fast SRAM
 - Implement GP4020 PPS hardware
 - Network API for external PC interface
- Reimplement current OSGPS features
 - Atmospheric correction
 - Carrier phase
 - Almanac load/save and processing (via Flash)
 - Faster/better cold acquisition

Conclusion

Conclusion

- Created an open source software development system for commercial off-the-shelf GPS receivers
- GPL-GPS promises to dramatically lower the high barrier to entry for GPS development

The GPL-GPS Project http://gps.psas.pdx.edu/