A Book of Abstract Algebra (2nd Edition)

Chapter 23, Problem 9EF

Bookmark

Show all steps: (

ON

Problem

If l, m, n are relatively prime in pairs, prove that $(mn)^{\phi(l)} + (ln)^{\phi(m)} + (lm)^{\phi(n)} \equiv 1 \pmod{lmn}$.

Step-by-step solution

Step 1 of 5

Consider any three relatively prime numbers l, m and n, that is, $\gcd(l, m, n) = 1$. Objective is to prove that

$$(mn)^{\phi(l)} + (ln)^{\phi(m)} + (lm)^{\phi(n)} \equiv 1 \pmod{lmn}$$

Consider the following result:

If $a \equiv 1 \pmod{m}$ and $a \equiv 1 \pmod{n}$ where gcd(m, n) = 1, then $a \equiv 1 \pmod{mn}$.

Comment

Step 2 of 5

Since gcd(l, m, n) = 1, so one can apply Euler's theorem and get,

$$(mn)^{\phi(l)} \equiv 1 \pmod{l}$$

Since $ln \equiv 0 \pmod{l}$, so

$$(ln)^{\phi(t)} \equiv 0 \pmod{t}.$$

Similarly, $lm \equiv 0 \pmod{l}$, so

$$(lm)^{\phi(l)} \equiv 0 \pmod{l}.$$

Step 3 of 5

Now similarly, under modulo m and n:

$$(ln)^{\phi(m)} \equiv l(\operatorname{mod} m)$$

$$(mn)^{\phi(m)} \equiv 0 \pmod{m}$$

$$(lm)^{\phi(m)} \equiv 0 (\bmod m)$$

and

$$(lm)^{\phi(n)} \equiv l \pmod{n}$$

$$(mn)^{\phi(n)} \equiv 0 \pmod{n}$$

$$(ln)^{\phi(n)} \equiv 0 \pmod{n}.$$

Comment

Step 4 of 5

Now the following sum $(mn)^{\phi(l)} + (ln)^{\phi(m)} + (lm)^{\phi(n)}$ under $(mod \, l)$ will be:

$$(mn)^{\phi(l)} + (ln)^{\phi(m)} + (lm)^{\phi(n)} = 1 + 0 + 0 \equiv 1 \pmod{l}$$

Also

$$(mn)^{\phi(l)} + (ln)^{\phi(m)} + (lm)^{\phi(n)} \equiv 1 \pmod{m}.$$

$$(mn)^{\phi(l)} + (ln)^{\phi(m)} + (lm)^{\phi(n)} \equiv 1 \pmod{n}.$$

Thus, by using the above result it implies that $(mn)^{\phi(l)} + (ln)^{\phi(m)} + (lm)^{\phi(n)} \equiv 1 \pmod{lmn}$.

Comment

Step 5 of 5

Hence, if
$$\gcd(l, m, n) = 1$$
 then $(mn)^{\phi(l)} + (ln)^{\phi(m)} + (lm)^{\phi(n)} \equiv 1 \pmod{lmn}$.

Comment