

DIGITAL EMC CO., LTD.

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATION OF COMPLIANCE

Firmtech Co., Ltd

B-606, Ssangyong IT Twin Tower, Sangdaewon-dong, 442-5, Jungwon-gu, Seongnam-si, Gyeonggi-do, Korea

Dates of Tests: April 16 ~ 23, 2009 Test Report S/N: DR50110904Y

Test Site: DIGITAL EMC CO., LTD.

FCC ID

APPLICANT

U8D-FB100AS

Firmtech Co., Ltd

FCC Equipment Class : Part 15 Spread Spectrum Transmitter(DSS)

Device name : Bluetooth Serial Adapter

Manufacturer : Firmtech Co., Ltd FCC ID : U8D-FB100AS

Model name : FB100AS

Test Device Serial number : Identical prototype

FCC Rule Part(s) : FCC Part 15.247 Subpart C

ANSI C63.4-2003

Frequency Range : 2402 ~ 2480 MHz

Max. Output power : 11.31 dBm Conducted

Data of issue : April 29, 2009

TABLE OF CONTENTS

1. GENERAL INFORMATION	3
2. INFORMATION ABOUT TEST ITEM	4
3. TEST REPORT	5
3.1 SUMMARY OF TESTS	5
3.2 TRANSMITTER REQUIREMENTS	6
3.2.1 CARRIER FREQUENCY SEPARATION	6
3.2.2 NUMBER OF HOPPING FREQUENCIES	8
3.2.3 20 dB BANDWIDTH	12
	15
3.2.5 PEAK OUTPUT POWER	18
3.2.6 CONDUCTED SPURIOUS EMISSIONS	22
3.2.7 RADIATED EMISSION	29
3.2.8 AC LINE CONDUCTED EMISSIONS	40
APPENDIX TEST FOLIPMENT FOR TESTS	43

1. General information

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

http://www.digitalemc.com E-mail: Harveysung@digitalemc.com

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competent of calibration and testing laboratory".

Tested by: Engineer

April 29, 2009 D.C. Cha

Data Name Signature

Reviewed by: Technical Director

April 29, 2009 Harvey Sung

Data Name Signature

Applicant:

Company name : Firmtech Co., Ltd

Address B-606, Ssangyong IT Twin Tower, Sangdaewon-dong, 442-5,

Jungwon-gu,

City/town : Seongnam-si, Gyeonggi-do

Country : Korea

Date of order : February 13, 2009

2. Information about test item

U8D-FB100AS

2.1 Equipment information

Equipment model no.	FB100AS
Equipment serial no.	Identical prototype
Type of equipment	Bluetooth Serial Adapter
Frequency band	2402 ~ 2480 MHz
Type of Modulation	GFSK
Spread Spectrum	Frequency Hopping
Channel Spacing	1.0 MHz
Power	DC 5V from USB
Type of antenna	Dipole Antenna

⁻ This device does not have EDR function.

2.2 Tested frequency

Frequency	TX	RX
Low frequency	2402MHz	2402MHz
Middle frequency	2441MHz	2441MHz
High frequency	2480MHz	2480MHz

2.3 Tested environment

Temperature	:	15 ~ 35 (°C)
Relative humidity content	:	20 ~ 75 %
Air pressure	:	86 ~ 103 kPa
Details of power supply	:	DC 5V from USB

2.4 Ancillary Equipment

Equipment	Model No.	Serial No.	Manufacturer	Note
Mouse	GOM3000VE	NA	GP Electronics	-
Monitor	9227-AB1	NA	Lenovo	-
Computer	DM-V60	671K9NCP100324M	Samsung	-
Keyboard	SEM-DT35US	NA	Dongguan Samsung Electro-Mechanics	-
Printer	SRP-770	SRP77008060035	BIXOLON	-

2.5 EMI Suppression Device(s)/Modifications

EMI suppression device(s) added and/or modifications made during testing \rightarrow None

2.6 Antenna Requirement of Part 15.203

The antenna connector of this device is a SMA plug reverse type connector which is unique connector type.

3. Test Report

3.1 Summary of tests

Parameter Carrier Frequency Separation Number of Hopping Frequencies	(Using in 2400 ~ 2483.5MHz) >= 20dB BW or >= Two- Thirds of the 20dB BW	Condition	(note 1)	
	Thirds of the 20dB BW			
Number of Hopping Frequencies			С	
tunioer of fropping requencies	>= 15 hops		С	
20 dB Bandwidth	None		С	
Owell Time	=< 0.4 seconds	Conducted	С	
T	=< 1Watt , if CHs >= 75	Conducted	C	
ransmitter Output Power	Others =<0.125W		С	
Band-edge /Conducted The radiated emission to any 100 kHz of out-band shall be at least 20dB below the highest in-band spectral density.			С	
			С	
Padiated Emissions	ECC 15 200 Limits	Dadiotad	С	
Radiated Emissions	rec 13.209 Emilits	Radiated	C	
AC Conducted Emissions	EN 55022	AC Line	С	
AC Conducted Emissions	EN 33022	Conducted	C	
Note 1: C=Comply NC=Not Comply NT=Not Tested NA=Not Applicable				
2	0 dB Bandwidth Dwell Time Fransmitter Output Power Band-edge /Conducted Conducted Spurious Emissions Eadiated Emissions AC Conducted Emissions	O dB Bandwidth None =< 0.4 seconds =< 1Watt , if CHs >= 75 Others =<0.125W The radiated emission to any 100 kHz of out-band shall be at least 20dB below the highest in-band spectral density. Eadiated Emissions AC Conducted Emissions None =< 0.4 seconds =< 1Watt , if CHs >= 75 Others =<0.125W The radiated emission to any 100 kHz of out-band shall be at least 20dB below the highest in-band spectral density. EAC Conducted Emissions EN 55022	O dB Bandwidth None =< 0.4 seconds -< 1Watt if CHs >= 75 Others =< 0.125W Band-edge /Conducted Conducted Conducted	

The sample was tested according to the following specification:

FCC Parts 15.247; ANSI C-63.4-2003, DA00-705

3.2 Transmitter requirements

3.2.1 Carrier Frequency Separation

- Procedure:

The carrier frequency separation was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

After the trace being stable, the reading value between the peaks of the adjacent channels using the marker-delta function was recorded as the measurement results.

The spectrum analyzer is set to:

Span = Wide enough to capture the peaks of two adjacent channels

RBW = 30 kHz Sweep = auto

VBW = 30 kHz Detector function = peak

Trace = max hold

- Measurement Data:

	Frequency of marker	()	Test R	Results
Mode	#1 (MHz)		Carrier Frequency Separation (MHz)	Result
DH5 Mode	2400.995	2441.995	1.000	Comply
Inquiry Mode	2440.983	2443.000	2.017	Comply

⁻ See next pages for actual measured spectrum plots.

- Minimum Standard:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW

- Measurement Setup

Figure 1: Measurement setup for the carrier frequency separation

Carrier Frequency Separation (DH5 Mode)

Carrier Frequency Separation (Inquiry Mode)

3.2.2 Number of Hopping Frequencies

- Procedure:

The number of hopping frequencies was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

To get higher resolution, four frequency ranges within the 2400 ~ 2483.5 MHz FH band were examined.

The spectrum analyzer is set to:

RBW = 300 kHz (1% of the span or more) Sweep = auto

 $VBW = 300 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

Trace = \max hold

- Measurement Data: Comply

	Total number of Hopping Channels	
DH5 Mode	79	
Inquire Mode	32	

⁻ See next pages for actual measured spectrum plots.

- Minimum Standard:

At least 15 hopes

- Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

DH5 Mode - Number of Hopping Frequencies 2

DH5 Mode - Number of Hopping Frequencies 3

DH5 Mode - Number of Hopping Frequencies 4

Inquiry Mode - Number of Hopping Frequencies 1

3.2.3 20 dB Bandwidth

- Procedure:

The bandwidth at 20 dB below the highest in-band spectral density was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. Use the marker-delta function to measure 20dB down one side of the emission. Reset the marker-delta function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is the 20 dB bandwidth of the emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 5 MHz (approximately 2 or 3 times of the 20 dB bandwidth)

RBW = 10 kHz (1% of the 20dB bandwidth or more) Sweep = auto

 $VBW = 10 \text{ kHz} (VBW \ge RBW)$ Detector function = peak

Trace = max hold

- Measurement Data:

	Tested Frequency	Test Results	
Mode	(MHz)	Carrier Frequency Separation (MHz)	Result
	2402	0.950	Comply
DH5 Mode	2441	0.950	Comply
	2480	0.950	Comply
Inquiry Mode	2441	0.633	Comply

⁻ See next pages for actual measured spectrum plots.

- Minimum Standard:

None

- Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

20 dB Bandwidth (DH5 Mode)

20 dB Bandwidth (DH5 Mode)

20 dB Bandwidth (Inquiry Mode)

3.2.4 Time of Occupancy (Dwell Time)

- Procedure:

The dwell time was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function enabled.

The spectrum analyzer is set to:

Center frequency = 2441 MHz Span = zero

RBW = 1 MHz $VBW = 1 MHz (VBW \ge RBW)$

Trace = max hold Detector function = peak

- Measurement Data: See next pages for actual measured spectrum plots.

- Minimum Standard:

No greater than 0.4 seconds

- Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Time of Occupancy for Packet Type DH 5

1. Hop count in 5sec

2. Pulse On time

- Pulse Time = 2.9ms = 0.0029s
- Hop count per second = 16(Hop count in 5 sec) / 5 sec = 3.2
- Period Time = Cumber of channels * 0.4s = 79 * 0.4 = 31.6s
- Dwell Time = Hop count per second * Period Time * Pulse Time = 3.2 * 31.6 * 0.0029= 0.29325s

Time of Occupancy for Packet Type Inquiry Mode

1. Hop count in 0.5sec

2. Pulse On time

- Pulse Time = 276us = 0.000276s
- Hop count per second = 50(Hop count in 0.5 sec) * 2 = 100
- Period Time = Cumber of channels * 0.4s = 32 * 0.4 = 12.8s
- Dwell Time = Hop count per second * Period Time * Pulse Time = 100 * 12.8 * 0.000276= 0.35328s

3.2.5 Peak Output Power

- Procedure:

The peak output power was measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

Span = 5 MHz (approximately 5 times of the 20 dB bandwidth)

RBW = 1 MHz (greater than the 20dB bandwidth of the emission being measured)

 $VBW = 1 MHz (VBW \ge RBW)$ Detector function = peak

Trace = \max hold Sweep = auto

- Measurement Data:

Mode	Frequency		Test Results	
Mode	(MHz)	dBm	mW	Result
	2402	11.31	13.52	Comply
DH5	2441	10.78	11.97	Comply
	2480	10.94	12.42	Comply
	2402	8.82	7.62	Comply
Inquiry Mode	2441	8.38	6.89	Comply
	2479	8.47	7.03	Comply

⁻ See next pages for actual measured spectrum plots.

- Minimum Standard:

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: **1 Watt**. For all other frequency hopping systems in the 2400-2483.5 MHz band: **0.125 Watts**

- Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Peak Output Power (DH5 Mode)

Peak Output Power (DH5 Mode)

Peak Output Power (DH5 Mode)

Peak Output Power (Inquiry Mode)

Peak Output Power (Inquiry Mode)

Peak Output Power (Inquiry Mode)

3.2.6 Conducted Spurious Emissions

- Procedure:

The bandwidth at 20dB down from the highest inband spectral density is measured with a spectrum analyzer connected to the antenna terminal, while EUT had its hopping function disabled at the highest, middle and the lowest available channels.

After the trace being stable, Use the marker-to-peak function to measure 20 dB down both sides of the intentional emission.

The spectrum analyzer is set to:

Center frequency = the highest, middle and the lowest channels

RBW = 100 kHz VBW = 100 kHz

Detector function = peak

Trace = \max hold Sweep = auto

- Measurement Data: Comply

- See next pages for actual measured spectrum plots.

Minimum Standard:	> 20 dBc
-------------------	----------

- Measurement Setup

Same as the Chapter 3.2.1 (Figure 1)

Low band with hopping disabled

Low band with hopping enabled

Low channel spurious

Mid channel ref

Mid channel spurious

High band with hopping disabled

High band with hopping enabled

High channel spurious

3.2.7 Radiated Emissions

- Procedure:

The EUT was placed on a 0.8m high wooden table inside a shielded enclosure. An antenna was placed near the EUT and measurements of frequencies and amplitudes of field strengths were recorded for reference during final measurements. For final radiated testing, measurements were performed in OATS. Measurements were performed with the EUT oriented in 3 orthogonal axis and rotated 360 degrees to determine worst-case orientation for maximum emissions.

The spectrum analyzer is set to:

- Center frequency = Low, Middle, High channels Frequency Range = 30 MHz ~ 10th harmonic.
- RBW = 120 kHz (30MHz ~ 1 GHz), VBW \geq RBW (Peak)
 - = 1 MHz (1 GHz \sim 10th harmonic), VBW = 10Hz (Average)
- Trace = \max hold Sweep = auto

- Measurement Data: Comply (Refer to the next page.)

Note. 1: Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea. So it's not an emission from this device.

- Minimum Standard:

• FCC Part 15.209(a) and (b)

Frequency (MHz)	Limit (uV/m) @ 3m
30 ~ 88	100 **
88 ~ 216	150 **
216 ~ 960	200 **
Above 960	500

^{**} Except as provided in 15.209(g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88MHz, 174-216MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g. 15.231 and 15.241.

• FCC Part 15.205 (a): Only spurious emissions are permitted in any of the frequency bands listed below:

1 00 1 411 13:203	(a): Only sparious en	iissions are permitted	in any or the freque	ney bunds noted b	CIOW.
MHz	MHz	MHz	MHz	GHz	GHz
0.009 ~ 0.110	8.41425 ~ 8.41475	108 ~ 121.94	$1300 \sim 1427$	3.6 ~ 4.4	14.47 ~ 14.5
$0.495 \sim 0.505$	12.29 ~ 12.293	123 ~ 138	$1435 \sim 1626.5$	4.5 ~ 5.15	15.35 ~ 16.2
$2.1735 \sim 2.1905$	12.51975 ~ 12.52025	149.9 ~ 150.05	$1645.5 \sim 1646.5$	5.35 ~ 5.46	17.7 ~ 21.4
$4.125 \sim 4.128$	12.57675 ~ 12.57725	156.52475 ~ 156.52525	$1660 \sim 1710$	7.25 ~ 7.75	22.01 ~ 23.12
$4.17725 \sim 4.17775$	13.36 ~ 13.41	156.7 ~ 156.9	$1718.8 \sim 1722.2$	8.025 ~ 8.5	23.6 ~ 24.0
$4.20725 \sim 4.20775$	16.42 ~ 16.423	162.0125 ~ 167.17	$2200\sim2300$	9.0 ~ 9.2	31.2 ~ 31.8
6.215 ~ 6.218	16.69475 ~ 16.69525	167.72 ~ 173.2	$2310 \sim 2390$	9.3 ~ 9.5	36.43 ~ 36.5
6.26775 ~ 6.26825	16.80425 ~ 16.80475	$240\sim285$	$2483.5 \sim 2500$	10.6 ~ 12.7	Above 38.6
$6.31175 \sim 6.31225$	25.5 ~ 25.67	322 ~ 335.4	$2655 \sim 2900$	13.25 ~ 13.4	
8.291 ~ 8.294	37.5 ~ 38.25	399.90 ~ 410	$3260 \sim 3267$		
8.362 ~ 8.366	73 ~ 74.6	608 ~ 614	$3332 \sim 3339$		
8.37625 ~ 8.38675	$74.8 \sim 75.2$	960 ~ 1240	3345.8 ~ 3358		

• FCC Part 15.205(b): The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in §15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in §15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in §15.35 apply to these measurements.

Restricted Band Edge: Low Channel (Peak, Horizontal)

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Freq/Channel Agilent Mkr2 2.338 00 GHz Center Freq Ref 94 dBµV/m Atten 10 dB 47.08 dBpV/m 2.35000000 GHz #Peak Log 10 Start Freq dB/ 2.31000000 GHz ō Stop Freq 2.39000000 GHz 54.0 CF Step dB**µ**V∕ 2.40200000 GHz LgAv Auto Man Start 2.310 00 GHz Stop 2.390 00 GHz Freq Offset #Res BW 1 MHz **#VBW 10 Hz** Sweep 6.238 s (601 pts) 0.00000000 Hz Marker Trace Type X Axis Amplitude 47.35 dBµV/m 47.08 dBµV/m (1) (1) 2.345 60 GHz Freq Freq 2.338 00 GHz Signal Track 0n <u>Off</u> Copyright 2000-2005 Agilent Technologies

Restricted Band Edge: Low Channel (Average, Horizontal)

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge: Low Channel (Peak, Vertical)

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Freq/Channel Agilent 2.338 00 GHz Center Freq 46.11 dBpV/m Ref 94 dB**µ**V/m Atten 10 dB 2.35000000 GHz #Peak Log 10 Start Freq dB/ 2.31000000 GHz Stop Freq 2.39000000 GHz CF Step dB**µ**V∕ 2.40200000 GHz LgAv Auto Man Start 2.310 00 GHz Stop 2.390 00 GHz Freq Offset #Res BW 1 MHz #VBW 10 Hz Sweep 6.238 s (601 pts) 0.000000000 Hz X Axis 2.347 60 GHz 2.338 00 GHz Amplitude 50.85 dBµV/m 46.11 dBµV/m Marker Type (1) (1) Freq Signal Track 0n <u>Off</u> Copyright 2000-2005 Agilent Technologies

Restricted Band Edge: Low Channel (Average, Vertical)

Marker 1's emissions of the low band edge test plots are emissions from WIMAX downlink signal in Korea.

Restricted Band Edge: High Channel (Peak, Horizontal)

Restricted Band Edge: High Channel (Average, Horizontal)

Restricted Band Edge: High Channel (Peak, Vertical)

Restricted Band Edge: High Channel (Average, Vertical)

- Measurement Data:

RADIATED EMISSION

Date: 2009-04-22

Model Name Model No. Reference No. Power Supply Temp/Humi : FB100AS 120V 6 19'C 3 D.C. Cha 60Hz Serial No. Test Condition : Identical prototype : TX:2402MHz 33% Operator

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

	No.	FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
		[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[Cm]	[DEG]
		Horizoni	al								
CHIEFE TO		HOLIZOII	Jai								
	1	47.380	24.6	11.1	1.0	22.4	1 14.3	40.0	25.7	124	0
	2	100.220	35.6	10.5	1.4	22.5	5 25.0	43.5	18.5	324	86
	3	233.860	41.0	12.3	2.1	23.0	32.4	46.0	13.6	100	263
	4	288.045	43.1	13.8	2.3	23.4	1 35.8	46.0	10.2	121	249
	5	367.500	40.7	15.5	2.8	23.8	35.2	46.0	10.8	195	267
	6	480.000	39.9	17.0	3.2	24.2	35.9	46.0	10.1	158	234
	7	533.080	40.7	17.7	3.4	24.3	37.5	46.0	8.5	134	237
	8	672.003	34.1	18.6	3.9	24.0	32.6	46.0	13.4	100	207
	9	768.000	34.0	19.2	4.2	23.7	7 33.7	46.0	12.3	117	210
1	0	864.000	38.1	19.5	4.5	23.3	38.8	46.0	7.2	100	216
1	1	960.000	29.1	20.4	4.9	22.8	31.6	46.0	14.4	174	352
1	2	424.120	34.9	16.5	3.0	24.1	L 30.3	46.0	15.7	196	0
		Vertical	L	**************************************							
1	3	47.380	24.1	11.1	1.0	22.4	1 13.8	40.0	26.2	100	325
		100.220	28.7	10.5	1.4	22.5		43.5	25.4	103	290
		127.000	32.9	11.6	1.5			43.5	20.1	100	285
		240.000	43.0	12.6	2.1	23.0		46.0	11.3	100	157
		272.020	40.0	13.5	2.3	23.3		46.0	13.5	100	129
		424.080	33.3	16.5	3.0	24.1		46.0	17.3	100	0
		480.000	39.5	17.0	3.2	24.2		46.0	10.5	100	145
		533.080	35.2	17.7	3.4	24.3		46.0	14.0		172
		864.010	32.5	19.5	4.5			46.0	12.8		124
		288.020	37.5	13.8	2.3	23.4		46.0	15.8	104	1
		256.000	36.9	13.2	2.2	23.2		46.0	16.9	256	335

Harmonic Measurement Data: Fundamental Frequency = 2402MHz

Frequency ANT		Reading(dBuV)		T.F	Γ.F Result(dBuV/m)			Lim	it(dBu\	7/ m)	Margin(dB)			
(MHz)	Pol	QP	PK	AV	(dB)	QP	PK	AV	QP	PK	AV	QP	PK	AV
2210	Hor	-	50.24	42.03	-2.57	-	47.67	39.46	-	74.00	54.00	-	26.33	14.54
2210	Ver	-	51.91	43.71	-2.57	-	49.34	41.14	-	74.00	54.00	-	24.66	12.86
2242	Hor	-	51.35	42.59	-2.57	-	48.78	40.02	-	74.00	54.00	-	25.22	13.98
2242	Ver	-	52.80	45.16	-2.57	-	50.23	42.59	-	74.00	54.00	-	23.77	11.41
2274	Hor	-	52.35	44.34	-2.31	-	50.04	42.03	-	74.00	54.00	-	23.96	11.97
2274	Ver	-	54.37	46.51	-2.31	-	52.06	44.20	-	74.00	54.00	-	21.94	9.80
2498	Hor	1	57.97	49.58	-1.26	-	56.71	48.32	-	74.00	54.00	1	17.29	5.68
2498	Ver	-	58.95	50.36	-1.26	-	57.69	49.10	-	74.00	54.00	-	16.31	4.90
4804	Hor	1	51.08	43.89	6.25	-	57.33	50.14	-	74.00	54.00	1	16.67	3.86
4804	Ver	-	53.14	45.26	6.25	-	59.39	51.51	-	74.00	54.00	-	14.61	2.49

Note.

- 1. No other spurious and harmonic emissions were detected at a level greater than 20dB below limit.
- 2. If peak result meet AV limit, AV measurement is omitted.
- 3. Sample Calculation.

```
\begin{aligned} & \text{Margin} = \text{Limit} - \text{Result} & & \text{Result} = \text{Reading} + \text{T.F} & & \text{T.F} = \text{AF} + \text{CL} - \text{AG} \\ & \text{Where, T.F} = \text{Total Factor,} & & \text{AF} = \text{Antenna Factor,} & \text{CL} = \text{Cable Loss,} & & \text{AG} = \text{Amplifier Gain} \\ \end{aligned}
```

- Measurement Data:

RADIATED EMISSION

Date: 2009-04-22

: FB100AS Model Name Model No. Reference No. : 120V 6 : 19'C 3 : D.C. Cha Power Supply Temp/Humi 60Hz Identical prototype TX:2441MHz Serial No. 33% Test Condition Operator

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

No	• FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[cm]	[DEG]
	Horizont	al								
1	47.380	25.0	11.1	1.0	22.4		40.0	25.3	101	248
2	71.290	28.0	6.4	1.2	22.5		40.0	26.9	101	252
	100.230	32.0	10.5	1.4	22.5		43.5	22.1	221	358
	165.110	34.2	10.0	1.7	22.6		43.5	20.2	192	358
	240.000	43.1	12.6	2.1	23.0		46.0	11.2	201	249
	233.860	41.0	12.3	2.1	23.0		46.0	13.6		180
	254.470	38.0	13.2	2.2	23.1		46.0	15.7		244
	277.500	37.2	13.6	2.3	23.4		46.0	16.3	125	112
	287.960	39.5	13.8	2.3	23.4		46.0	13.8		358
	367.510	39.8	15.5	2.8	23.8		46.0	11.7	301	0
	424.113	35.3	16.5	3.0	24.1		46.0	15.3	101	216
	480.100	34.8	17.0	3.2	24.2		46.0	15.2	201	1
	533.080	42.3	17.7	3.4	24.3		46.0	6.9	182	358
	639.990	34.0	18.6	3.8	24.1		46.0	13.7	201	79
	864.000	39.0	19.5	4.5			46.0	6.3		250
	814.220	33.2	19.5	4.3			46.0	12.4		358
17	769.000	33.2	19.2	4.2	23.7	7 32.9	46.0	13.1	301	0
	Vertical									
18	47.380	24.2	11.1	1.0	22.4		40.0	26.1	100	358
	100.240	28.4	10.5	1.4	22.5		43.5	25.7		238
20	127.300	33.2	11.6	1.5	22.0	5 23.7	43.5	19.8	199	358
	240.100	39.2	12.6	2.1	23.0		46.0	15.1		1
22	272.400	36.8	13.5	2.3	23.3	3 29.3	46.0	16.7	199	212
23	289.500	38.0	13.8	2.4	23.4	30.8	46.0	15.2		273
24	533.110	37.8	17.7	3.4	24.3	3 34.6	46.0	11.4	100	1
25	480.000	35.9	17.0	3.2	24.2	2 31.9	46.0	14.1	100	1
26	864.000	34.5	19.5	4.5	23.3		46.0	10.8	100	1 1 1
27	814.390	33.5	19.5		23.4		46.0	12.1	100	
28	424.120	34.2	16.5	3.0	24.3		46.0	16.4	100	321
29	367.510	34.1	15.5	2.8	23.8	3 28.6	46.0	17.4	100	1
	640.913	33.4	18.6	3.8	24.		46.0	14.3		1

Harmonic Measurement Data: Fundamental Frequency = 2441MHz

Frequency	ANT	Reading(dBuV)		T.F	F Result(dBuV/m)			Limit(dBuV/m)			Margin(dB)			
(MHz)	Pol	QP	PK	AV	(dB)	QP	PK	AV	QP	PK	AV	QP	PK	AV
2249	Hor	-	51.39	43.26	-2.48	-	48.91	40.78	-	74.00	54.00	-	25.09	13.22
2249	Ver	-	48.99	40.17	-2.48	-	46.51	37.69	-	74.00	54.00	-	27.49	16.31
4882	Hor	-	50.43	41.79	6.55	-	56.98	48.34	-	74.00	54.00	-	17.02	5.66
4882	Ver	-	52.99	45.24	6.55	-	59.54	51.79	-	74.00	54.00	-	14.46	2.21
7323	Hor	-	45.67	34.41	12.17	-	57.84	46.58	-	74.00	54.00	-	16.16	7.42
7323	Ver	-	45.96	34.10	12.17	-	58.13	46.27	-	74.00	54.00	-	15.87	7.73

Note.

- 1. No other spurious and harmonic emissions were detected at a level greater than 20dB below limit.
- 2. If peak result meet AV limit, AV measurement is omitted.
- 3. Sample Calculation.

$$\begin{aligned} & \text{Margin} = \text{Limit} - \text{Result} & & / & \text{Result} = \text{Reading} + \text{T.F} & / & \text{T.F} = \text{AF} + \text{CL} - \text{AG} \\ & \text{Where, T.F} = \text{Total Factor,} & \text{AF} = \text{Antenna Factor,} & \text{CL} = \text{Cable Loss,} & \text{AG} = \text{Amplifier Gain} \end{aligned}$$

- Continue next to page

- Measurement Data:

RADIATED EMISSION

Date: 2009-04-23

Model Name Model No. Reference No. Power Supply Temp/Humi : FB100AS 120V (19'C) D.C. Cha 60Hz Serial No. Test Condition : Identical prototype : TX:2480MHz 33% Operator

Memo

LIMIT : FCC Part15 Subpart.B Class B (3m) MARGIN: 3 dB

No.	. FREQ	READING QP	ANT FACTOR	LOSS	GAIN	RESULT	LIMIT	MARGIN	ANTENNA	TABLE
	[MHz]	[dBuV]	[dB]	[dB]	[dB]	[dBuV/m]	[dBuV/m]	[dB]	[Cm]	[DEG]
Colonia	Horizont	cal								
2 3 4 5 6 7 8	100.250 233.920 239.970 300.700 367.560 339.350 424.190 480.000 533.110	29.5 43.0 39.8 35.2 39.4 36.0 36.3 33.2 40.5	10.5 12.3 12.6 14.0 15.5 14.9 16.5 17.0	1.4 2.1 2.1 2.4 2.8 2.6 3.0 3.2 3.4	22.5 23.0 23.4 23.8 23.5 24.1 24.2	34.4 31.5 4 28.2 3 33.9 7 29.8 L 31.7 2 29.2	43.5 46.0 46.0 46.0 46.0 46.0 46.0	24.6 11.6 14.5 17.8 12.1 16.2 14.3 16.8 8.7	101 101 201 301 101 101 201 201	1 222 359 244 1 1 0 0
10 11 12 13	864.030 719.950 768.190 671.870	38.6 34.3 32.8 32.1	19.5 18.8 19.2 18.6	4.5 4.0 4.2 3.9	23.3 23.9 23.7	39.3 33.2 7 32.5	46.0 46.0 46.0	6.7 12.8 13.5 15.4	101 201 201	220 0 0 113
15 16 17 18 19 20 21 22 23	144.040 240.000 236.300 300.670 367.470 424.160 480.000 533.100 575.980 763.490 864.000	31.2 36.2 34.0 34.1 36.4 34.2 33.0 37.2 31.0 31.2 33.0	10.7 12.6 12.4 14.0 15.5 16.5 17.0 17.7 18.3 19.1	1.6 2.1 2.1 2.4 2.8 3.0 3.2 3.4 3.6 4.2 4.5	22.6 23.0 23.4 23.6 24.1 24.2 24.3 24.3	27.9 25.5 4 27.1 3 30.9 1 29.6 2 29.0 3 34.0 3 28.6 7 30.8	43.5 46.0 46.0 46.0 46.0 46.0 46.0 46.0	22.6 18.1 20.5 18.9 15.1 16.4 17.0 12.0 17.4 15.2 12.3	100 199	239 358 0 358 0 310 1 141 262 141 320

Harmonic Measurement Data: Fundamental Frequency = 2480MHz

Frequency	ANT	Reading(dBuV)		T.F	Result(dBuV/m)			Limit(dBuV/m)			Margin(dB)			
(MHz)	Pol	QP	PK	AV	(dB)	QP	PK	AV	QP	PK	AV	QP	PK	AV
2256	Hor	-	49.54	39.71	-2.52	-	47.02	37.19	-	74.00	54.00	-	26.98	16.81
2256	Ver	-	50.82	40.85	-2.52	-	48.30	38.33	-	74.00	54.00	-	25.70	15.67
4960	Hor	-	50.09	41.76	6.92	-	57.01	48.68	-	74.00	54.00	-	16.99	5.32
4960	Ver	-	51.84	43.49	6.92	-	58.76	50.41	-	74.00	54.00	-	15.24	3.59
7440	Hor	1	45.44	32.46	12.32	-	57.76	44.78	-	74.00	54.00	1	16.24	9.22
7440	Ver	-	45.76	32.58	12.32	-	58.08	44.90	-	74.00	54.00	-	15.92	9.10

Note.

- 4. No other spurious and harmonic emissions were detected at a level greater than 20dB below limit.
- 5. If peak result meet AV limit, AV measurement is omitted.
- 6. Sample Calculation.

Margin = Limit – Result / Result = Reading + T.F /
$$T.F = AF + CL - AG$$

Where, T.F = Total Factor, $AF = Antenna$ Factor, $CL = Cable$ Loss, $AG = Amplifier$ Gain

3.2.8 AC Line Conducted Emissions

- Procedure:

The conducted emissions are measured in the shielded room with a spectrum analyzer in peak hold. While the measurement, EUT had its hopping function disabled at the middle channels in line with Section 15.31(m). Emissions closest to the limit are measured in the quasi-peak and average detector mode with the tuned receiver using a bandwidth of 9 kHz. The emissions are maximized further by cable manipulation and Exerciser operation. The highest emissions relative to the limit are listed.

- Measurement Data: Comply (Refer to the next page.)

- Minimum Standard: FCC Part 15.207(a)/EN 55022

Frequency Range	Conducted Limit (dBuV)							
(MHz)	Quasi-Peak	Average						
0.15 ~ 0.5	66 to 56 *	56 to 46 *						
0.5 ~ 5	56	46						
5~30	60	50						

^{*} Decreases with the logarithm of the frequency

Figure 2: Measurement setup for AC Conducted Emission

- Conducted Emission Graph -

- Conducted Emission List -

••••	******	******		******	******	*******	********** < <conduc< th=""><th>* ***** TED EMISSI</th><th>********* ON>></th><th>******</th><th>23 April, 2009 01:16</th></conduc<>	* ***** TED EMISSI	********* ON>>	******	23 April, 2009 01:16
Mode Oper AC P	facturer 1 ator ower , Humidity rk1 rk2	: FOC P : Firmt : FB100 : D.C.C : 120V : 24°C : TX(ho	ech AS								
Fina	1 Result	******	*********	*******	*******	*********	********	******	*******	********	***************************************
No.	N Phase Frequency	Reading QP	Reading AV	c.f	Result QP	Result AV	Limit QP	Limit AV	Margin QP	Margin AV	Remark
1	[MHz] 0.181	[dB(µV)] 49.1	[dB(µV)] 41.3	[dB] 0.1	[dB(µV)] 49.2	[dB(μV)] 41.4	[dB(μV)] 64.4	[dB(µV)] 54.4	[dB] 15.2	[dB] 13.0	
2	0.227	40.2	33.0	0.2	40.4	33.2	62.6	52.6	22.2	19.4	
3	2.146	22.7	10.2	0.3	23.0	10.5	56.0	46.0	33.0	35.5	
4	0.370	27.2	21.9	0.2	27.4	22.1	58.5	48.5	31.1	26.4	
5 6	10.732 18.000	28.3	14.4	0.6	28.9 29.9	15.0 12.6	60.0 60.0	50.0 50.0	31.1	35.0 37.4	
0	10.000	29.0	11.	0.9	29.9	12.0	60.0	50.0	30.1	37.4	
	L1 Phase	-									
No.	Frequency	Reading	Reading	c.f	Result	Result	Limit	Limit	Margin	Margin	Remark
		QP	AV		QP	AV	QP	AV	QP	AV	
	[MHz]	[dB(µV)]	[dB(µV)]	[dB]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB(µV)]	[dB]	[dB]	
1	0.179	47.9	41.5	0.4	48.3	41.9	64.5	54.5	16.2	12.6	
2	0.226	41.1	33.6	0.4	41.5	34.0	62.6	52.6	21.1	18.6	
3	2.164	23.2	17.4	0.5	23.7	17.9	56.0	46.0	32.3	28.1	
4	10.741	45.4	32.2	0.8	46.2	33.0	60.0	50.0	13.8	17.0	
5	16.510	28.5	22.9	0.9	29.4	23.8	60.0	50.0	30.6	26.2	

APPENDIX

TEST EQUIPMENT FOR TESTS

To facilitate inclusion on each page of the test equipment used for related tests, each item of test equipment.

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
\boxtimes	Spectrum Analyzer	Agilent	E4440A	06/11/08	06/11/09	MY45304199
	Spectrum Analyzer	Rohde Schwarz	FSQ26	02/02/09	02/02/10	200347
	Spectrum Analyzer(RE)	H.P	8563E	13/10/08	13/10/09	3551A04634
	Power Meter	H.P	EMP-442A	10/07/08	10/07/09	GB37170413
	Power Sensor	H.P	8481A	14/07/08	14/07/09	3318A96332
	Power Divider	Agilent	11636B	04/12/08	04/12/09	56471
	Power Splitter	Anritsu	K241B	14/10/08	14/10/09	020611
	Frequency Counter	H.P	5342A	16/09/08	16/09/09	2119A04450
	TEMP & HUMIDITY Chamber	JISCO	KR-100/J-RHC2	10/10/08	10/10/09	30604493/021031
\boxtimes	Digital Multimeter	H.P	34401A	13/03/09	13/03/10	3146A13475
	Multifuction Synthesizer	HP	8904A	06/10/08	06/10/09	3633A08404
\boxtimes	Signal Generator	Rohde Schwarz	SMR20	13/03/09	13/03/10	101251
\boxtimes	Signal Generator	H.P	ESG-3000A	09/07/08	09/07/09	US37230529
	Vector Signal Generator	Rohde Schwarz	SMJ100A	02/02/09	02/02/10	100148
	Audio Analyzer	H.P	8903B	09/07/08	09/07/09	3011A09448
	Modulation Analyzer	H.P	8901B	18/07/08	18/07/09	3028A03029
	8960 Series 10 Wireless Comms. Test Set	Agilent	E5515C	31/07/08	31/07/09	GB43461134
	Universal Radio communication Tester	Rohde Schwarz	CMU 200	13/03/09	13/03/10	107631
	Bluetooth Tester	TESCOM	TC-3000A	16/12/08	16/12/09	3000A4A0121
	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-3
\boxtimes	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-2
	Thermo hygrometer	BODYCOM	BJ5478	06/02/09	06/02/10	090205-4
	AC Power supply	DAEKWANG	5KVA	13/03/09	13/03/10	20060321-1
	DC Power Supply	HP	6622A	13/03/09	13/03/10	3448A03760
	DC Power Supply	HP	6633A	13/03/09	13/03/10	3524A06634
	BAND Reject Filter	Microwave Circuits	N0308372	06/10/08	06/10/09	3125-01DC0352
	BAND Reject Filter	Wainwright	WRCG1750	06/10/08	06/10/09	2
	High-Pass Filter	ANRITSU	MP526D	06/10/08	06/10/09	MP27756
	High-pass filter	Wainwright	WHKX2.1	N/A	N/A	1
\boxtimes	High-Pass Filter	Wainwright	WHKX3.0	N/A	N/A	9
	Tunable Notch Filter	Wainwright	WRCT800.0 /960.0-0.2/40-8SSK	N/A	N/A	10
	Tunable Notch Filter	Wainwright	WRCD1700.0 /2000.0-0.2/40-10SSK	N/A	N/A	27
	Tunable Notch Filter	Wainwright	WRCT1900.0/ 2200.0-5/40-10SSK	N/A	N/A	7
	HORN ANT	ETS	3115	13/06/08	13/06/09	6419
	HORN ANT	ETS	3115	10/09/08	10/09/09	21097
	HORN ANT	A.H.Systems	SAS-574	13/06/08	13/06/09	154
	HORN ANT	A.H.Systems	SAS-574	13/06/08	13/06/09	155
	Dipole Antenna	Schwarzbeck	VHA9103	25/11/08	25/11/09	2116
	Dipole Antenna	Schwarzbeck	VHA9103	25/11/08	25/11/09	2117
	Dipole Antenna	Schwarzbeck	UHA9105	25/11/08	25/11/09	2261
	Dipole Antenna	Schwarzbeck	UHA9105	25/11/08	25/11/09	2262

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	Next.Due.Date (dd/mm/yy)	S/N
	Coaxial Fixed Attenuators	Agilent	8491B	01/08/08	01/08/09	MY39260700
	Coaxial Fixed Attenuators	Agilent	8491B	15/07/08	15/07/09	MY39260699
	Attenuator (10dB)	WEINSCHEL	23-10-34	01/10/08	01/10/09	BP4386
	Attenuator (10dB)	WEINSCHEL	23-10-34	19/01/09	19/01/10	BP4387
	Attenuator (20dB)	WEINSCHEL	86-20-11	06/10/08	06/10/09	432
	Attenuator (10dB)	WEINSCHEL	86-10-11	06/10/08	06/10/09	446
	Attenuator (10dB)	WEINSCHEL	86-10-11	06/10/08	06/10/09	408
	Attenuator (40dB)	WEINSCHEL	57-40-33	01/10/08	01/10/09	NN837
	Attenuator (30dB)	JFW	50FH-030-300	13/03/09	13/03/10	060320-1
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0088CAN	11/07/08	11/07/09	788
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0185CAN	11/07/08	11/07/09	790
	Type N Coaxial CIRCULATOR	NOVA MICROWAVE	0215CAN	11/07/08	11/07/09	112
\boxtimes	Amplifier (30dB)	Agilent	8449B	13/10/08	13/10/09	3008A01590
	Amplifier	EMPOWER	BBS3Q7ELU	02/02/09	02/02/10	1020
	RF Power Amplifier	OPHIRRF	5069F	09/07/08	09/07/09	1006
\boxtimes	EMI TEST RECEIVER	R&S	ESU	02/02/09	02/02/10	100014
\boxtimes	BILOG ANTENNA	SCHAFFNER	CBL6112B	13/06/08	13/06/09	2737
\boxtimes	Amplifier (22dB)	H.P	8447E	05/02/09	05/02/10	2945A02865
	EMI TEST RECEIVER	R&S	ESCI	13/05/08	13/05/09	100364
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP9108A	13/06/08	13/06/09	590
	BICONICAL ANT.	Schwarzbeck	VHA 9103	13/06/08	13/06/09	2233
	LOG-PERIODIC ANT.	Schwarzbeck	UHALP 9108-A1	30/09/08	30/09/09	1098
	BICONICAL ANT.	Schwarzbeck	VHA 9103	30/09/08	30/09/09	91031946
	Low Noise Pre Amplifer	TSJ	MLA-100K01-B01-2	13/03/09	13/03/10	1252741
	Amplifier (25dB)	Agilent	8447D	21/05/08	21/05/09	2944A10144
	Amplifier (25dB)	Agilent	8447D	18/08/08	18/08/09	2648A04922
\boxtimes	Spectrum Analyzer(CE)	H.P	8591E	26/04/09	26/04/10	3649A05889
	LISN	Kyoritsu	KNW-407	04/08/08	04/08/09	8-317-8
\boxtimes	LISN	Kyoritsu	KNW-242	11/09/08	11/09/09	8-654-15
\boxtimes	CVCF	NF Electronic	4420	N/A	N/A	304935/337980
\boxtimes	DC BLOCK	Hyuplip	KEL-007	N/A	N/A	7-1581-5
\boxtimes	50 ohm Terminator	HME	CT-01	22/01/09	22/01/10	N/A
\boxtimes	RFI/FIELD Intensity Meter	Kyoritsu	KNM-2402	11/09/08	11/09/09	4N-170-3