Decision Tree

Ratchainant Thammasudjarit, Ph.D.

Learning Objectives

- Understand the theory, concepts and applications of tree classifier
- Understand the concepts of ensemble learning (bagging)
- Understand how to build a tree-based classifier using sklearn

- Decision Tree
 - Non-parametric model
 - A collection of rules organized in hierarchy

Terminologies

Terminologies

Terminologies

- Creating a decision tree requires impurity measure for feature selection
 - o Given a dataset, which feature will be selected for each node
 - Root node
 - Internal nodes

АссТуре	Location	Gender	Churn
Normal	Rural	Male	No
Premium	Downtown	Female	Yes
Premium	Downtown	Male	No
Premium	Rural	?	Yes

- Each feature will be evaluated how well it predicts the class label (Churn)
 - AccType

AccType	1			AccType
	Location	Gender	Churn	
Normal	Rural	Male	No	Premium Normal
Premium	Downtown	Female	Yes	
Premium	Downtown	Male	No	Churn Churn Yes No Yes
Premium	Rural	?	Yes	

Update the count

- Each feature will be evaluated how well it predicts the class label (Churn)
 - AccType

- Each feature will be evaluated how well it predicts the class label (Churn)
 - AccType

- Each feature will be evaluated how well it predicts the class label (Churn)
 - AccType

AccType	Location	Gender	Churn
Normal	Rural	Male	No
Premium	Downtown	Female	Yes
Premium	Downtown	Male	No
Premium	Rural	?	Yes

- Each feature will be evaluated how well it predicts the class label (Churn)
 - AccType

АссТуре	Location	Gender	Churn
Normal	Rural	Male	No
Premium	Downtown	Female	Yes
Premium	Downtown	Male	No
Premium	Rural	?	Yes

Suppose this is the final count from data

- Each feature will be evaluated how well it predicts the class label (Churn)
 - Location

				Loca	tion
АссТуре	Location	Gender	Churn		
Normal	Rural	Male	No	Downtown	Rural
Premium	Downtown	Female	Yes		
Premium	Downtown	Male	No	Churn Yes No	Churn Yes
Premium	Rural	?	Yes	<u> </u>	
				Update the count	

- Each feature will be evaluated how well it predicts the class label (Churn)
 - Location

				Location	n
АссТуре	Location	Gender	Churn		
Normal	Rural	Male	No	Downtown	Rural
Premium	Downtown	Female	Yes		
Premium	Downtown	Male	No	Churn Yes No	Churn Yes
Premium	Rural	?	Yes	165 115	
				1	
				Update the count	

- Each feature will be evaluated how well it predicts the class label (Churn)
 - Location

				Location
АссТуре	Location	Gender	Churn	
Normal	Rural	Male	No	Downtown Rural
Premium	Downtown	Female	Yes	
Premium	Downtown	Male	No	Churn Yes No Yes
Premium	Rural	?	Yes	
				1 1
				Update the count

- Each feature will be evaluated how well it predicts the class label (Churn)
 - Location

				Location	on
AccType	Location	Gender	Churn		
Normal	Rural	Male	No	Downtown	Rural
Premium	Downtown	Female	Yes		
Premium	Downtown	Male	No	Churn Yes No	Churn Yes
Premium	Rural	?	Yes		165
				1 1	1
				Update the count	

- Each feature will be evaluated how well it predicts the class label (Churn)
 - Location

АссТуре	Location	Gender	Churn
Normal	Rural	Male	No
Premium	Downtown	Female	Yes
Premium	Downtown	Male	No
Premium	Rural	?	Yes

Suppose this is the final count from data

- Each feature will be evaluated how well it predicts the class label (Churn)
 - Gender

				Ge	nder
AccType	Location	Gender	Churn		
Normal	Rural	Male	No	Female	Male
Premium	Downtown	Female	Yes		
Premium	Downtown	Male	No	Churn Yes No	Churn Yes
Premium	Rural	?	Yes		
				Update the count	

- Each feature will be evaluated how well it predicts the class label (Churn)
 - Gender

						G	ender		
AccType	Location	Gender	Churn						
Normal	Rural	Male	No		Fema	le		Male	
Premium	Downtown	Female	Yes						
Premium	Downtown	Male	No		Chur Yes	n No		Chu Yes	ırn N
Premium	Rural	?	Yes					163	10
					1				1
				Update the	e count				

- Each feature will be evaluated how well it predicts the class label (Churn)
 - Gender

					Gender	
АссТуре	Location	Gender	Churn			
Normal	Rural	Male	No	Female		Male
Premium	Downtown	Female	Yes			
Premium	Downtown	Male	No	Churn Yes N		Churn Yes
Premium	Rural	?	Yes	103 10	<u> </u>	
				1		
				Un	date the count	

- Each feature will be evaluated how well it predicts the class label (Churn)
 - Gender

АссТуре	Location	Gender	Churn
Normal	Rural	Male	No
Premium	Downtown	Female	Yes
Premium	Downtown	Male	No
Premium	Rural	?	Yes

Since we don't know whether this customer is male or female, we skip counting

- Each feature will be evaluated how well it predicts the class label (Churn)
 - Gender

АссТуре	Location	Gender	Churn
Normal	Rural	Male	No
Premium	Downtown	Female	Yes
Premium	Downtown	Male	No
Premium	Rural	?	Yes
	•••		

Suppose this is the final count from data

- Which feature is the best to be the root node
 - None of them can 100% separate yes from no
 - This is called **impure**

All features are imperfect to separate churn (yes, no)

- Let x be any value in a feature x
- y be any possible value in the target y
- Gini Impurity of x is G(x)

$$G(x) = 1 - \sum_{y} P(y|x)^2$$

- The total Gini Impurity of a feature x is the weighted average of G(x) for all x
- The lower total Gini Impurity the better feature to separate distinct values in y

Calculation Example

$$G(premium) = 1 - P(yes|premium)^2 - P(no|premium)^2$$

$$G(downtown) = 1 - P(yes|downtown)^2 - P(no|downtown)^2$$

$$G(female) = 1 - P(yes|female)^2 - P(no|female)^2$$

$$= 1 - \left(\frac{105}{105 + 39}\right)^2 - \left(\frac{39}{105 + 39}\right)^2$$
$$= 0.395$$

$$= 1 - \left(\frac{100}{100 + 33}\right)^2 - \left(\frac{33}{100 + 33}\right)^2$$
$$= 0.373$$

$$= 1 - \left(\frac{92}{92 + 31}\right)^2 - \left(\frac{31}{92 + 31}\right)^2$$
$$= 0.377$$

Calculation Example

= 0.383

$$G(premium) = 1 - P(yes|premium)^{2} - P(no|premium)^{2} \qquad G(downtown) = 1 - P(yes|downtown)^{2} - P(no|downtown)^{2} \qquad G(female) = 1 - P(yes|female)^{2} - P(no|female)^{2}$$

$$= 1 - \left(\frac{34}{34 + 125}\right)^{2} - \left(\frac{25}{34 + 125}\right)^{2} \qquad = 1 - \left(\frac{37}{37 + 127}\right)^{2} - \left(\frac{127}{37 + 127}\right)^{2} \qquad = 1 - \left(\frac{45}{45 + 129}\right)^{2} - \left(\frac{129}{45 + 129}\right)^{2} \qquad = 0.336$$

$$= 0.349$$

= 0.349

Calculation Example

Location has the lowest Gini Impurity. Therefore, select the location to split data

Tree Induction

- Step 1: Calculate Gini Impurity for all available features
- Step 2: Select the feature with lowest Gini Impurity to be the root node
- Step 3: Exclude the feature selected as the root node, for each branch, do
 - Step 3.1: Calculate Gini Impurity for all remain features
 - Step 3.2: Select the feature with lowest Gini Impurity to be the next internal node
 - Step 3.3: Exclude the selected feature from that remaining features of that branch
 - Step 3.4 Repeat 3.1 to 3.3 until satisfies stopping criteria

Tree Induction

• Example: Given the following data, create a decision tree

АссТуре	Location	Gender	Churn
Normal	Rural	Male	No
Premium	Downtown	Female	Yes
Premium	Downtown	Male	No
Premium	Rural	?	Yes

Tree Induction

- Step 1: Calculate Gini Impurity for all available features
 - Assume that each node return the following split

Location has the lowest Gini Impurity. Therefore, select the location as the root node

 Step 2: Select the feature with lowest Gini Impurity to be the root node

Our current tree

Our current tree

Impure leaf nodes

• Step 3: Exclude the feature selected as the root node, for each branch, do

АссТуре	Location	Gender	Churn
Normal	Rural	Male	No
Premium	Downtown	Female	Yes
Premium	Downtown	Male	No
Premium	Rural	?	Yes

Next step: How well acctype and gender separate these 164 samples

Step 3.1: Calculate Gini Impurity for all remain features

Suppose data split by acctype return this

Gini Impurity for acctype is 0.3

Suppose data split by gender return this

Gini Impurity for gender is 0.290

- Step 3.2: Select the feature with lowest Gini Impurity to be the next internal node
 - Our current tree

• Step 3.3: Exclude the selected feature from that remaining features of that branch

АссТуре	Location	Gender	Churn
Normal	Rural	Male	No
Premium	Downtown	Female	Yes
Premium	Downtown	Male	No
Premium	Rural	?	Yes

We have only acctype as an unused feature How well the acctype these 49 samples?

• Step 3.1 (Repeat): Calculate Gini Impurity for all remain features

- Step 3.2 (Repeat): Select the feature with lowest Gini Impurity to be the next internal node
 - Our current tree

• Step 3.3 (Repeat): Exclude the selected feature from that remaining features of that branch

АссТуре	Location	Gender	Churn
Normal	Rural	Male	No
Premium	Downtown	Female	Yes
Premium	Downtown	Male	No
Premium	Rural	?	Yes

• Step 3.1 (Repeat): Calculate Gini Impurity for all remain features

АссТуре	Location	Gender	Churn
Normal	Rural	Male	No
Premium	Downtown	Female	Yes
Premium	Downtown	Male	No
Premium	Rural	?	Yes

What if we use the acctype to separate these 115 samples?

• Step 3.2 (Repeat): Select the feature with lowest Gini Impurity to be the next internal node

G(before) < G(acctype) then stop splitting

Repeating step 3.1 to 3.3 for the left branch

Keep working on these branches and suppose the final tree looks like this

This side has been done by previous demonstration

• Let x be any numerical feature

Step 1: Sort x

ncmps	Churn	ncmps	Churn
8	Yes	3	No
5	Yes	5	Yes
10	Yes	7	No
7	No	8	Yes
3	No	10	Yes

- Let **x** be any numerical feature
 - Step 2: Calculate the middle points between rows

	ncmps	Churn
10 4	3	No
4.0 ←	5	Yes
6.0 ← 7.5 ←	7	No
	8	Yes
9.0 ←	10	Yes

- Let **x** be any numerical feature
 - Step 3: Calculate Gini Impurity for each middle points

	ncmps	Churn
Cini - 3 4	3	No
Gini = ? ←	5	Yes
Gini = ? ← Gini = ? ←	7	No
Gini = ? ←	8	Yes
Gini = ! •	10	Yes

- Let x be any numerical feature
 - Step 3: Calculate Gini Impurity for each middle points

$$G(ncmps) = \left(\frac{1}{1+4}\right) \left[1 - \left(\frac{0}{0+1}\right)^2 - \left(\frac{1}{0+1}\right)^2\right] + \left(\frac{4}{1+4}\right) \left[1 - \left(\frac{3}{3+1}\right)^2 - \left(\frac{1}{3+1}\right)^2\right]$$
$$= 0.300$$

	ncmps	Churn
40.4	3	No
4.0 ← 6.0 ←	5	Yes
7.5 ←	7	No
9.0 ←	8	Yes
9.0	10	Yes

- Let x be any numerical feature
 - Step 3: Calculate Gini Impurity for each middle points

$$G(ncmps) = \left(\frac{2}{2+3}\right) \left[1 - \left(\frac{1}{1+1}\right)^2 - \left(\frac{1}{1+1}\right)^2\right] + \left(\frac{3}{2+3}\right) \left[1 - \left(\frac{2}{2+1}\right)^2 - \left(\frac{1}{2+1}\right)^2\right]$$
$$= 0.467$$

	ncmps	Churn
10 1	3	No
4.0 ←	5	Yes
6.0 ←	7	No
7.5 ←	8	Yes
9.0 ◆	10	Yes

- Let **x** be any numerical feature
 - Step 3: Calculate Gini Impurity for each middle points

$$G(ncmps) = \left(\frac{3}{3+2}\right) \left[1 - \left(\frac{1}{1+2}\right)^2 - \left(\frac{2}{1+2}\right)^2\right] + \left(\frac{2}{3+2}\right) \left[1 - \left(\frac{2}{2+0}\right)^2 - \left(\frac{0}{2+0}\right)^2\right]$$
$$= 0.267$$

	ncmps	Churn
4.0 -	3	No
4.0 ←	5	Yes
6.0 ←	7	No
	8	Yes
9.0 ←	10	Yes

- Let x be any numerical feature
 - Step 3: Calculate Gini Impurity for each middle points

$$G(ncmps) = \left(\frac{1}{1+4}\right) \left[1 - \left(\frac{1}{1+0}\right)^2 - \left(\frac{0}{1+0}\right)^2\right] + \left(\frac{4}{1+4}\right) \left[1 - \left(\frac{2}{2+2}\right)^2 - \left(\frac{2}{2+2}\right)^2\right]$$
$$= 0.400$$

	ncmps	Churn
10 1	3	No
4.0 ←	5	Yes
6.0 ← 7.5 ←	7	No
9.0 ←	8	Yes
9.0	10	Yes

- Let **x** be any numerical feature
 - Step 4: Choose the cut point that returns the lowest Gini Impurity

Choose 7.5 as the cutoff value because it returns the lowest Gini Impurity

- If x is an ordinal feature
 - Process the same as a numerical feature excepts
 - Finding middle values is not required
 - Gini impurity measure for the largest value is not required if \geq is used
 - Gini impurity measure for the smallest value is not required if ≤ is used

- Let x be any ordinal feature
 - Step 1: Sort x

Stars	Churn
1	Yes
2	Yes
3	Yes
4	No
5	No

- Let x be any ordinal feature
 - Step 2: Calculate Gini Impurity for each x

Stars	Churn
1	Yes
2	Yes
3	Yes
4	No
5	No

$$G(stars) = \left(\frac{1}{1+4}\right) \left[1 - \left(\frac{1}{1+0}\right)^2 - \left(\frac{0}{1+0}\right)^2\right] + \left(\frac{4}{1+4}\right) \left[1 - \left(\frac{2}{2+2}\right)^2 - \left(\frac{2}{2+2}\right)^2\right]$$
$$= 0.400$$

- Let **x** be any ordinal feature
 - \circ Step 2: Calculate Gini Impurity for each x

	Stars	Churn
	1	Yes
\Rightarrow	2	Yes
	3	Yes
	4	No
	5	No

$$G(stars) = \left(\frac{2}{2+3}\right) \left[1 - \left(\frac{2}{2+0}\right)^2 - \left(\frac{0}{2+0}\right)^2\right] + \left(\frac{3}{2+3}\right) \left[1 - \left(\frac{1}{1+2}\right)^2 - \left(\frac{1}{1+2}\right)^2\right]$$
$$= 0.266$$

- Let x be any ordinal feature
 - Step 2: Calculate Gini Impurity for each x

	Stars	Churn
	1	Yes
	2	Yes
\Rightarrow	3	Yes
	4	No
	5	No

$$G(stars) = \left(\frac{3}{3+2}\right) \left[1 - \left(\frac{3}{3+0}\right)^2 - \left(\frac{0}{3+0}\right)^2\right] + \left(\frac{2}{3+2}\right) \left[1 - \left(\frac{0}{0+2}\right)^2 - \left(\frac{0}{0+2}\right)^2\right]$$
$$= 0.000$$

- Let **x** be any ordinal feature
 - Step 2: Calculate Gini Impurity for each x

	Stars	Churn
	1	Yes
	2	Yes
	3	Yes
\Rightarrow	4	No
	5	No

$$G(stars) = \left(\frac{4}{4+1}\right) \left[1 - \left(\frac{3}{3+1}\right)^2 - \left(\frac{1}{3+1}\right)^2\right] + \left(\frac{1}{4+1}\right) \left[1 - \left(\frac{0}{0+1}\right)^2 - \left(\frac{1}{0+1}\right)^2\right]$$
$$= 0.300$$

- Let x be any ordinal feature
 - Step 2: Calculate Gini Impurity for each x

	Stars	Churn
G(stars) = 0.400	1	Yes
G(stars) = 0.266	2	Yes
G(stars) = 0.000	3	Yes
G(stars) = 0.300	4	No
	5	No

Choose 3 as the cutoff value because it returns the lowest Gini Impurity

Dealing with Categorical Feature

- Let **x** be any categorical feature
 - Step 1: Create all possible combinations

Packages	Churn	
Gold	Yes	
Platinum	Yes	
Gold	Yes	
Silver	No	
Silver	No	

Dealing with Categorical Feature

- Let **x** be any categorical feature
 - Step 2: Choose the combination that returns the lowest Gini Impurity

Choose this combination because it returns the lowest Gini Impurity

Summary

- The key concepts to take away
 - Decision tree can take any data type
 - Decision tree skips counting missing value is detected
 - Splitting relies on impurity measure
 - The best split returns the most purity