Лекция 5

Алгоритмы на графах (I).

Граф и его представление в машине. Поиск в глубину. Минимальное остовное дерево.

5.1 Представление графа в машине

Определение 5.1. Ориентированный граф G — это пара конечных множеств (V, E), где V называется множеством вершин, а $E \subseteq V \times V$ — множеством ребер (ребро (v_1, v_2) можно представить себе как стрелку из v_1 в v_2). Будем считать, что в графе нет петель, т.е. $\forall v \ (v, v) \notin E$.

Неориентированный граф отличается от ориентированного тем, что на ребрах не указано направление, т.е. ребра — множества, а не упорядоченные пары; тогда множество ребер $E \subseteq \{\{u,v\} \mid u,v \in V, u \neq v\}$.

Часто рассматривают графы с весами — когда каждому ребру приписано некоторое число, называемое весом этого ребра.

Поскольку множество V конечно, можно считать его элементы последовательными натуральными числами.

Вот некоторые способы представить граф в машине (выбор конкретного способа определяется задачей — в каком виде граф нам задан, и алгоритмом — какие операции нам нужны):

- матрица смежности:
 - двумерный массив: $A[i,j] = 1 \Leftrightarrow (i,j) \in E$,
 - матрица с пропусками,
 - неявное задание (при помощи функции f): $f(i,j) = 1 \Leftrightarrow (i,j) \in E$;
- массив (из |V| элементов), в котором A[i] массив/список/дерево ребер, исходящих из вершины i.

2

Замечание 5.1. Время работы алгоритмов будем выражать не через длину входа, а через |E|, |V| и другие параметры графа — это точнее и охватывает большее число случаев — например, когда граф заведомо разреженный (через длину входа всегда сможем выразить).

5.2 Поиск в глубину

Рекурсивно обрабатываем вершины (ориентированного или неориентированного) графа так, чтобы каждую вершину и каждое ребро обработать ровно один раз.

Именно, отмечаем вершину v, которую начали обрабатывать (проставляем момент времени b[v] начала ее обработки). Затем последовательно рассматриваем всех ее соседей v_i : если v_i еще не начали обрабатывать, рекурсивно обрабатываем v_i (заметим, что в процессе рекурсивной обработки вершины v_i мы можем обработать v_{i+1} !). Закончив эти рекурсивные вызовы, проставим момент e[v] конца обработки вершины v.

Если после вызова этой рекурсивной процедуры из «главной программы» в графе остались необработанные вершины, берем любую из них и обрабатываем той же процедурой — и так, пока необработанные вершины не кончатся.

Побочным эффектом поиска в глубину является возможность построения леса поиска в глубину — совокупности ребер, по которым мы шли, совершая рекурсивные вызовы (лес — это граф, являющийся объединением нескольких не связанных между собой деревьев).

Лемма 5.1. Каждая вершина будет обработана ровно один раз. Каждое ориентированное ребро будет проверено (в цикле поиска соседей) ровно один раз.

Доказательство. Мы никогда не начинаем обработку вершины, которую уже обрабатывали. \Box

Лемма 5.2. Поиск в глубину занимает O(|E| + |V|) операций с вершинами и ребрами, т.е. время $O((|E| + |V|) \log |V|)$.

Доказательство. Следует из леммы 5.1. Обращений к каждой вершине и данным, с ней связанным, — не более, чем количество ее соседей (значит, всего таких обращений — O(|E|)).

Замечание 5.2. Тут важно представление графа: матрица смежности не подойдет! (Сразу получится время $O(|V|^2)$.)

П

5.2.1 Топологическая сортировка

Задача о топологической сортировке вершин ориентированного графа: расположить вершины ориентированного графа в таком порядке, чтобы все ребра шли от меньшей (в этом порядке) вершины к большей.

Решение: применить поиск в глубину и отсортировать вершины по убыванию времени окончания обработки.

Лемма 5.3. В графе без (ориентированных) циклов сортировка по убыванию времени окончания обработки является топологической сортировкой.

Доказательство. Пусть в графе имеется ребро (v,w), хотя e[v] < e[w]. Есть два варианта «скобочной структуры»:

- $\{\}(): b[v] < e[v] < b[w] < e[w],$ но это противоречит тому, что поиск в глубину делает рекурсивный вызов для всех соседей v, обработка которых еще не началась (в частности, для w);
- $\{()\}:\ b[w] < b[v] < e[v] < e[w],$ но это означает, что есть ориентированный путь из w в v, т.е. имеется ориентированный цикл.

Замечание 5.3. Если же в графе имеются ориентированные циклы, то топологическую сортировку произвести невозможно.

5.2.2 Компоненты сильной связности

Задача: разбить ориентированный граф на компоненты сильной связности, т.е. на подмножества вершин, в каждом из которых имеется (ориентированный) путь из любой вершины в любую (в обоих направлениях), а для любых двух вершин u и v из разных компонент либо нет пути из u в v, либо нет пути из v в u.

Решение:

- произвести поиск в глубину, найдя время окончания обработки e[v] для каждой вершины;
- произвести поиск в глубину в графе G^t , отличающемся от графа G тем, что ребра в нем идут в противоположном направлении; причем следующую вершину v для вызова процедуры рекурсивного поиска из «главной программы» выбирать в порядке убывания e[v];
- ullet полученные деревья поиска в графе G^t и будут сильно связными компонентами.

Лекция 5. Алгоритмы на графах (I).

Граф и его представление в машине. Поиск в глубину. Минимальное остовное дерево.

Лемма 5.4. При поиске в глубину, если есть путь из v в w, u вершина v начала обрабатываться до вершины w, то вершина w попадет v то же самое дерево поиска, что v.

Доказательство (индукция по длине пути). Пусть y — первая вершина на пути из v в w, не попавшая в то же дерево поиска, что и v, а x — последняя попавшая туда вершина (т.е. x идет непосредственно перед y в этом пути).

Если бы обработка вершины y еще не была начата, когда началась обработка вершины x, то y безусловно попала бы в то же дерево поиска, что и x (а значит, то же, что и v). Если бы обработка y была начата, но не закончена до начала обработки x, ситуация была бы такой же, поскольку одновременно могут обрабатываться только вершины, попадающие в одно дерево поиска. Более того, то же самое было бы, если бы обработка y не была закончена до начала обработки v.

Следовательно, вершина y уже была обработана к тому моменту, когда была начата обработка вершины v. По предположению индукции, y и w попали в одно и то же дерево поиска, но это противоречит тому, что обработка w еще не была начата, когда начала обрабатываться вершина v!

Теорема 5.1. Описанная выше процедура корректна.

Доказательство (в котором мы пользуемся леммой 5.4). 1) Пусть две вершины v и w связаны в обе стороны, но не попали в одно дерево поиска графа G^t . Пусть дерево, содержащее вершину v, возникло раньше. Но тогда w обязана была попасть в это дерево.

2) Пусть пути из v в w нет, но они попали в одно дерево. Достаточно показать, что имеется путь из корня r этого дерева в обе вершины v и w (пока мы только знаем, что есть обратные пути).

Пусть p — последняя вершина на пути из v в r в дереве поиска для графа G^t , которая не лежит в той же компоненте, что и r; а q — следующая за p на этом пути. Нам достаточно показать наличие пути из q в p.

Поскольку $e[r] > e[p], \ e[q]$ в дереве поиска для исходного графа G, имеется два варианта.

(a) Вершина q лежит в поддереве с корнем r. Если p лежит на пути из r в q в этом поддереве, то получаем требуемое утверждение. Если p была обработана раньше q, то также существует путь из q в p в этом дереве. Остается случай, когда p начала обрабатываться позже q (и позже r!). Но, поскольку ее обработка закончилась все же раньше r, то она попала в поддерево с корнем r.

4

(б) Вершина q была полностью обработана до начала обработки r. Если бы p была обработана раньше q, но по ребру (p,q) мы не пошли, то существовал бы путь из q в p. Значит, p — родитель q. Однако почему вершина r не попала в поддерево поиска с корнем q? Значит, на пути из q в r есть вершина x, которая уже начала обрабатываться до того, как q была обработана, — т.е. есть путь из q в p через x.

5.2.3 Упражнения

Упражнение 5.1 (Полусвязность). Ориентированный граф называется полусвязным, если для любых двух его вершин v и w в нем имеется (ориентированный) путь либо из v в w, либо из w в v. Выяснить, является ли данный граф полусвязным.

Упражнение 5.2 (Мосты и точки раздела). Дан неориентированный связный граф. Точкой раздела называется вершина, при удалении которой граф теряет связность. Мостом называется ребро, при удалении которого граф теряет связность. Найти в данном графе все мосты и точки раздела. □

5.3 Построение минимального остовного дерева

Остовное дерево (неориентированного графа) — это дерево, содержащее все вершины графа и некоторые из его ребер.

Для данного графа с весами построим остовное дерево с минимальным суммарным весом ребер. Будем «растить» дерево постепенно. В процессе построения будет получаться некоторый лес, являющийся подграфом будущего остовного дерева. На каждом шаге будем добавлять к этому лесу ребро минимального возможного веса, соединяющее некоторую компоненту связности C с вершиной $\partial pyeoù$ компоненты (минимум берется по всем ребрам, исходящим из компоненты C; выбор компоненты C— произволен).

Лемма 5.5. Такой алгоритм корректен независимо от способа выбора очередной компоненты (и ребра среди ребер одинакового веса).

Доказательство (индукция по построению дерева). Пусть, имея лес F, мы добавили к нему ребро (u, v), минимальное по весу из ребер, соединнющих некоторую компоненту U с другими компонентами леса F. Считая

6

(по предположению индукции), что существует минимальное остовное дерево T исходного графа, содержащее лес F, покажем, что существует и минимальное остовное дерево, содержащее $F \cup \{(u, v)\}$.

Итак, пусть T не содержит (u,v). Тем не менее, в T есть путь γ из u в v (не содержащий ребра (u,v)). Рассмотрим первое ребро e на пути γ , выводящее за пределы компоненты U. Наш алгоритм устроен так, что вес ребра e — не меньше веса ребра (u,v). Следовательно, $T\setminus\{e\}\cup\{(u,v)\}$ — искомое минимальное остовное дерево.

Имеется несколько возможных реализаций этого алгоритма.

- **Алгоритм Борувки.** На очередном шаге выбираем для каждой вершины (одновременно) ребро минимального веса, исходящее из нее. Затем стягиваем каждую из получающихся из этих ребер компонент связности в одну точку.
- **Алгоритм Крускала.** Рассматриваем все ребра в порядке, соответствующем весу; очередное ребро добавляем к лесу, если оно соединяет разные компоненты связности.
- **Алгоритм Прима.** Конструируемый нами лес состоит из дерева и независимых вершин. Выбираем ребро минимального веса среди ребер, соединяющих вершины нашего дерева с остальными вершинами.

Легко видеть, что любой из этих методов можно реализовать за $O(|E|\log|V|)$ операций с вершинами u весами. Например, в первом из этих методов на каждом шаге количество вершин уменьшается, как минимум, вдвое; каждый шаг можно реализовать за O(|E|) операций с вершинами и ребрами: поиск минимального элемента занимает линейное время, слияние списков, содержащих |E| элементов, — время O(|E|); при стягивании ребра, ведущие в вершины той же компоненты, можно не удалять, а считать большими по весу.