

Curs 2/2: Formula lui Bayes

Conf.dr. Maria Jivulescu

Departamentul de Matematică UPT

Cuprins

Universitatea Politehnica Timișoara

- Formula lui Bayes
- Formula probabilității totale
- Aplicaţii

Recapitulare probabilitate condiționată

Universitatea Politehnica Timișoara

Notații

- dat evenimentul E_1 , avem $P(E_1)$;
- date două evenimente E_1 , E_2 , avem $P(E_1 \cap E_2) = P(E_1, E_2)$ probabilitatea ca evenimentele să se realizeze simultan (joint probability)
- probabilitate condiționată: $P(E_2|E_1) := \frac{P(E_1 \cap E_2)}{P(E_1)}$
- lacksquare regula produsului: $P(E_1 \cap E_2) = P(E_1)P(E_2|E_1)$
- lacksquare simetria probabilitații ev. intersecție: $P(E_1 \cap E_2) = P(E_2 \cap E_1)$
- avem: $P(E_2|E_1) = \frac{P(E_1 \cap E_2)}{P(E_1)} = \frac{P(E_1|E_2)P(E_2)}{P(E_1)}$
- prob cond. nu este simetrica: $P(E_1|E_2) \neq P(E_2|E_1)$
- avem: $P(E_2|\bar{E_1}) = 1 P(\bar{E_2}|\bar{E_1})$
- lack ev. independente: $P(E_2|E_1)=P(E_2)\Leftrightarrow P(E_1\cap E_2)=P(E_1)P(E_2)$

Introducere in problematică

Universitatea Politehnica Timișoara

Avem următorul joc: se dau 3 monede, cu regulile că

- una dintre ele este falsă, adică aruncată cade pe "cap" cu probabilitate 2/3
- nu se precizează care din monede este falsă.

Se aruncă cele 3 monede si avem următorul rezultat:

la prima și a doua monedă se obține cap, iar la a treia se obține pajură.

Care este probabilitatea ca prima monedă aruncată să fie cea falsă?

Observații:

- Fie H_i : moneda i aruncată este cea falsă; Avem $P(H_i) = \frac{1}{3}$.
- A: pentru cele trei monede se obţine: cap, cap, pajură
- Avem $P(A|H1) = P(A|H_2) = \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{6}$ și $P(A|H_3) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{12}$
- Dorim să calculăm $P(H_1|A) = ?$

Din formula lui Bayes, vom obține $P(H_1|A) = \frac{2}{5}$, deci rezultatul aruncării celor trei monede crește probabilitatea ca prima monedă să fie cea falsă de la 1/3 la 2/5.

Ingredientele formulei lui Bayes

Universitatea Politehnica Timisoara

Notații

- lacksquare (Ω,\mathcal{K},P) un câmp de probabilitate
- Fie evenimentele $H_1, H_2, \dots H_n \in \mathcal{K}$, ce formează o partiție a evenimentului sigur Ω :
 - $\bigcup_{i=1}^n H_i = \Omega$
 - $\blacksquare H_i \cap H_j = \emptyset, i \neq j$
- Evenimentele H_i , $i \in \{1, n\}$ se numesc **ipoteze**. Ipotezele sunt acceptate cu o anumită probabilitate, $P(H_i)$.
- Avem:

$$1 = P(\Omega) = P(H_1) + P(H_2) + \cdots + P(H_n)$$

Conf.dr. Maria Jivulescu Curs 2/2: Formula lui Bayes

Ingredientele formulei lui Bayes

Universitatea Politehnica Timișoara

- Dacă apare o nouă informație A, atunci nivelul de veridicitate (verosimilitate) al acestei informații, se reprezintă prin probabilitătile condiționate $P(A|H_k)$, $k \in \{1, n\}$.
- $P(A|H_k)$ este nivelul de verosimilitate al informației A în condițiile acceptării ipotezei H_k .
- $P(H_k)$ probabilităților ipotezelor se mai numesc **probabilități** apriorice

Cum se calculează probabilitatea P(A), adică nivelul de veridicitate al informației A?

Figure: Evenimentele implicate în formula lui Prob Totale

Conf.dr. Maria Jivulescu Curs 2/2: Formula lui Baves 6

Universitatea Politehnica Timisoara

Formula probabilității totale

Dacă $A \in \mathcal{K}$ este un eveniment informație, atunci gradul/nivelul de veridicitate al acestei informații este:

$$P(A) = \sum_{i=1}^{n} P(H_i)P(A|H_i)$$

Demonstrație:

- H_1, H_2, \ldots, H_n fiind mutual exclusive două câte două, deci și $(A \cap H_i), (A \cap H_j), i \neq j$, mutual exclusive două câte două;
- scriem $A = (A \cap H_1) \cup (A \cap H_2) \cup \cdots \cup (A \cap H_n)$;
- $P(A) = \sum_{i=1}^n P(A \cap H_i);$
- Din formula probabilității condiționate avem: $P(A \cap H_i) = P(H_i)P(A|H_i)$,

Universitatea Politehnica Timisoara

Formula lui Bayes rectifică, actualizează probabilitățile ipotezelor, pe baza informației A, și anume:

$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^{n} P(H_i)P(A|H_i)} \quad k \in \{1, n\}$$

Demonstrație Exprimăm $P(H_k \cap A)$ în două moduri: $P(H_k \cap A) = P(H_k)P(A|H_k) = P(A)P(H_k|A)$. Din ultima egalitate avem:

$$P(H_k|A) = \frac{P(H_k)P(A|H_k)}{P(A)} = \frac{P(H_k)P(A|H_k)}{\sum_{i=1}^n P(H_i)P(A|H_i)}, \quad k \in \{1, n\}$$

 $P(H_k|A)$ —se numesc probabilități posterioare

◆ロト ◆部 → ◆草 → 草 め へ ○

Formula lui Bayes rectifică, actualizează probabilitățile ipotezelor, pe baza unei noi informații și are multiple aplicatii: 1

- Analiza testelor de diagnostic medical
- Modelarea ipotezelor in Machine Learning (model probabilist pentru descrierea relatiei dintre date si ipoteze:
- Clasificari=model predictiv de a eticheta eşantioane de date (Naive Bayes Classifier):
- Clasificatorul Bayes optimal (model probabilist care face o predictie pentru un nou exemplu.)
- algoritmi probabilisti²

Conf.dr. Maria Jivulescu Curs 2/2: Formula lui Bayes

¹A Gentle Introduction to Bayes Theorem for Machine Learning

Universitatea Politehnica Timisoara

O companie medicală testează un nou medicament.

Rata fals negativă este mică: dacă ai boala, probabilitatea ca testul să fie negativ este 0.001. Rata fals pozitivă este tot mică: dacă nu ai boala, probabilitatea ca testul să fie pozitiv este 0.005. Se presupune că 2% din populație are boala. Dacă o persoana este aleasă aleator uniform și este testată pozitiv, care este probabilitatea ca acestă persoana să aibă boala?

Rezolvare:

- Ev. ipoteza: H_1 persoana are boala, $P(H_1) = 0.02$
- Ev ipoteza: $H_2 = \bar{H_1}$: persoana nu are boala, $P(H_2) = 1 P(H_1)$
- Eveniment informatie: A_+ : test pozitiv, $A_- = \bar{A_+}$: test negativ $P(A_{-}|H_{1}) = 0.001, P(A_{+}/H_{1}) = 0.999, P(A_{+}|H_{2}) = 0.005$
- $P(A_-|H_2) = 0.995$
- Trebuie calculat $P(H_1|A_+) = ?$.
- $P(A_{+}) = P(H_{1})P(A_{+}|H_{1}) + P(H_{2})P(A_{+}|H_{2})$
- fr. lui Bayes $P(H_1|A_+) = \frac{P(H_1)P(A_+|H_1)}{P(A_+)} = \frac{0.02 \times 0.999}{0.02 \times 0.999 + 0.98 \times 0.005} \approx 0.8$

Universitatea Politehnica Timișoara

- Ipotezele H_i fac o partiție a lui Ω : $(\sum_i P(H_i) = 1)$
- Evenimentul A -eveniment informație
- lacktriangle Prin formula probabilității totale determinăm P(A)
- lacktriangle Formula lui Bayes recalculeaza $P(H_i|A)$

La cursul următor vom discuta Capitolul II: Variabile aleatoare discrete!