Exercises Advanced Machine Learning Fall 2019

Machine Learning Laboratory

Dept. of Computer Science, ETH Zürich

Prof. Joachim M. Buhmann

Web https://ml2.inf.ethz.ch/courses/aml/

Series 4. November 1, 2019

(Newton's Method, Perceptrons and LDA) Teaching assistant:

xlyu@inf.ethz.ch

Xinrui Lyu

Problem 1 (Newton's Method):

Newton's method was originally created to find a root $f(x^*) = 0$ of a given function f(x) via the iteration

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},\tag{1}$$

where f'(x) denotes the derivative of f with respect to x. In optimization we are usually interested in finding the minimum of a function. This can be achieved using Newton's method to find a root of the first derivative $f'(x^*) = 0$, the optimization step reads then.

$$x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)}. (2)$$

However, to keep the notation simple we will use equation (1) and focus on one dimensional functions $f : \mathbb{R} \to \mathbb{R}$. In this exercise we will examine the convergence of Newton's method and some common pitfalls.

- 1. **Complete Failure:** Show that Newton's method will never converge for $f(x) = \sqrt[3]{x}$ and $x_0 \neq 0$ (we define the third root of negative numbers x < 0 as $\sqrt[3]{x} = -\sqrt[3]{|x|}$). Why does it fail?
- 2. Convergence for simple roots: A sequence x_n converges with order m towards x^* , if there exists a constant C, such that $|x_{n+1}-x^*| \leq C|x_n-x^*|^m$ (as $n\to\infty$). Show that, if Newton's method converges, it will converge quadratic (m=2) for a smooth function f with one root $f(x^*)=0$ and $f'(x^*)\neq 0$ in a region around x^* .

Hint: Use the Taylor expansion of f to second order around the point x_n .

- 3. Convergence for higher order roots: A root $f(x^*) = 0$ has order k if all derivatives $f^{(i)}(x^*) = 0$ vanish for i < k and $f^{(k)}(x^*) \neq 0$.
 - (a) Show that Newton's method converges linear (m=1) for a smooth function f with one root $f(x^*)=0$ of order k>1 in a region around the point x^* .

Hint: Write f as $f(x) = (x - x^*)^k g(x)$ with $g(x^*) \neq 0$ and use the Taylor approximation.

- (b) How should we adapt equation (1) to achieve quadratic convergence?
- (c) What implications does this have for an optimization problem where we want to minimize a function f by finding a root of the derivative f'?

Problem 2 (Perceptrons):

- a) Perceptron algorithm Consider four data points $\mathbf{x}_1=(1,1)$, $\mathbf{x}_2=(-1,1)$, $\mathbf{x}_3=(-1,-1)$ and $\mathbf{x}_4=(1,-1)$ in the \mathbb{R}^2 space. \mathbf{x}_1 and \mathbf{x}_2 belong to class 1, while \mathbf{x}_3 and \mathbf{x}_4 belong to class 2. We want to seperate these two classes with a perceptron. Given initialization for the weight vector $\mathbf{a}_0=(0,1,0)$, threshold $\theta=10^{-6}$ and the learning rate update function $\eta(k)=1/(k+1)$ where k is the number of iteration. Find the optimal weight vector \mathbf{a}_k using the perceptron algorithm. (Write down in details the steps of how you achieve the solution.)
- b) Feature transformation Provide weights of a single-layer perceptron that correctly distinguishes the blue and red region (ignore the boundary) in the following three cases respectively. (*Hint*: If necessary, apply a non-linear transformation $\phi(x_1,x_2)$, such that the resulting features are linear separable in the transformed space.)

Problem 3 (Fisher's Linear Discriminant Analysis):

Given N samples $\mathbf{x}_1,\dots,\mathbf{x}_N$, where each sample belongs to class either 1 or 2. The solution of Fisher's discriminant function for binary classification (k=1,2) was $\mathbf{w}_F \propto \mathbf{\Sigma}_W^{-1}(\bar{\mathbf{x}}_1 - \bar{\mathbf{x}}_2)$ with

$$\begin{split} \bar{\mathbf{x}}_k &= \frac{1}{|\mathcal{C}_k|} \sum_{n \in \mathcal{C}_k} \mathbf{x}_n \\ \mathbf{\Sigma}_W &= \sum_{k=1}^2 \sum_{n \in C_k} (\mathbf{x}_n - \bar{\mathbf{x}}_k) (\mathbf{x}_n - \bar{\mathbf{x}}_k)^T, \end{split}$$

where \mathcal{C}_k (k=1,2) denotes the set of samples belonging to class k. A class-dependent value y is assigned to each sample. And $y=\frac{N}{|\mathcal{C}_1|}$ for samples in class 1, and $y=-\frac{N}{|\mathcal{C}_2|}$ for the rest. Show that the solution of the least squares objective

$$E_{LS}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} (\mathbf{w}^T \mathbf{x}_n + w_0 - y_n)^2$$

is just Fisher's solution, that is, $\mathbf{w}_F = \min_{\mathbf{w}} E_{LS}(\mathbf{w})$