2022-2023 MP2I

33. Familles sommables

Exercice 1. © Soit $p \ge 3$. Montrer que $\sum_{k=1}^{+\infty} \sum_{n=k}^{+\infty} \frac{1}{n^{p+1}} = \sum_{n=1}^{+\infty} \frac{1}{n^p}$.

Exercice 2. (m) Déterminer $\sum_{n=1}^{+\infty} \frac{n(n-1)}{2^n}$. On écrira $\frac{n(n-1)}{2} = \sum_{k=1}^{n-1} k$.

Exercice 3. (i) Montrer que la famille $\left(\frac{1}{(n+m)^3}\right)_{n,m\geq 1}$ est sommable et déterminer $\sum_{n,m>1}\frac{1}{(n+m)^3}$

Exercice 4. (m) Pour quelles valeurs de $\alpha \in \mathbb{R}$ la famille $\left(\frac{1}{n^{\alpha p}}\right)_{n,p\geq 2}$ est-elle sommable?

Exercice 5. (i) Montrer que les familles suivantes ne sont pas sommables en les minorant par des familles dont la somme vaut $+\infty$:

1)
$$\left(\frac{1}{n^2 - m^2}\right)_{n > m \ge 1}$$
 2) $\left(\frac{1}{r^2}\right)_{r \in \mathbb{Q} \cap]1, +\infty[}$.

Exercice 6. (i) En sommant par paquets, déterminer $l_1 = \sum_{n=1}^{+\infty} \frac{\lfloor \sqrt{n} \rfloor}{n(n+1)}$ et $l_2 = \sum_{n=1}^{+\infty} \frac{1}{3^{\lfloor \log_2(n) \rfloor}}$.

Exercice 7. (m) Soit $r \in [0,1[$ et $\theta \in \mathbb{R}$. Déterminer $\sum_{n \in \mathbb{Z}} r^{|n|} e^{in\theta}$.

Exercice 8. (m) Soit $z \in \mathbb{C}$ tel que |z| < 1. Montrer que $\sum_{n=1}^{+\infty} \frac{z^{2n-1}}{1-z^{2n-1}} = \sum_{k=1}^{+\infty} \frac{z^k}{1-z^{2k}}.$

Exercice 9. (*) Si n est un entier, on note b(n) le nombre de bits égaux à 1 dans son écriture en binaire. On veut calculer $S = \sum_{n=1}^{+\infty} \frac{b(n)}{n(n+1)}$.

- 1) Pour $i \in \mathbb{N}$, on pose $\beta_i(n) \in \{0,1\}$ le *i*-ème bit de $n \in \mathbb{N}$. Exprimer n et b(n) en fonction d'une somme sur i dépendant de $\beta_i(n)$.
- 2) Justifier que $\{n \in \mathbb{N} / \beta_i(n) = 1\} = \bigcup_{k \in \mathbb{N}} \{2^{i+1}k + x, \ x \in [2^i, 2^{i+1} 1]]\}.$
- 3) Déduire des deux premières questions que $\sum_{n=1}^{+\infty} \frac{b(n)}{n(n+1)} = \sum_{i=0}^{+\infty} \frac{1}{2^i} \sum_{k=0}^{+\infty} \left(\frac{1}{2k+1} \frac{1}{2k+2} \right).$
- 4) Justifier que pour $N \in \mathbb{N}^*$, $\sum_{k=0}^N \left(\frac{1}{2k+1} \frac{1}{2k+2}\right) = H_{2N} H_N$ où $H_N = \sum_{k=1}^N \frac{1}{k}$ et en utilisant le développement asymptotique de H_N à deux termes, en déduire que $\sum_{k=0}^{+\infty} \left(\frac{1}{2k+1} \frac{1}{2k+2}\right) = \ln(2)$ puis la valeur de S.