1 Sample space of two-stage sampling & its probability function

Let $U^{(1)}$ be a finite set of size $N^{(1)}$. Let $U^{(2)}_1, U^{(2)}_2, \dots, U^{(2)}_{N^{(1)}}$ be finite sets of sizes $N^{(2)}_1, N^{(2)}_2, \dots, N^{(2)}_{N^{(1)}}$, respectively. For each $i=1,2,\dots,N^{(1)}$, we enumerate the elements of $U^{(2)}_i$ as follows:

$$U_i^{(2)} = \left\{ u_{i1}, u_{i2}, \dots, u_{iN_i^{(2)}} \right\} = \left\{ u_{ik} \mid k = 1, 2, \dots, N_i^{(2)} \right\}$$

Let

$$U := \bigsqcup_{i \in U^{(1)}} U_i^{(2)} = \left\{ u_{ik} \mid i = 1, 2, \dots, N^{(1)}, k = 1, 2, \dots, N_i^{(2)} \right\}$$

Let $p^{(1)}: \mathcal{S}^{(1)} \longrightarrow (0,1]$ be our chosen first-stage sampling design, where $\mathcal{S}^{(1)} \subseteq \mathcal{P}(U^{(1)})$ is the set of all possible first-stage samples in the design, and $\mathcal{P}(U^{(1)})$ is the power set of $U^{(1)}$.

For each $i \in U^{(1)}$, let $p_i^{(2)} : \mathcal{S}_i^{(2)} \longrightarrow (0,1]$ be our chosen second-stage sampling design, where $\mathcal{S}_i^{(2)} \subseteq \mathcal{P}\left(U_i^{(2)}\right)$ is the set of all possible second-stage samples in the design, and $\mathcal{P}\left(U_i^{(2)}\right)$ is the power set of $U_i^{(2)}$.

The sample space $\mathcal S$ of the two-stage sampling design is:

$$\mathcal{S} \; := \; \left\{ \; \left(s^{(1)}, \left\{ \, s_i^{(2)} \, \right\}_{i \in U^{(1)}} \right) \in \mathcal{S}^{(1)} \times \prod_{i \in U^{(1)}} \mathcal{S}_i^{(2)} \; \middle| \; \begin{array}{c} s_i^{(2)} \in \mathcal{S}_i^{(2)}, & \text{if } i \in s^{(1)} \\ s_i^{(2)} = \varnothing, & \text{if } i \notin s^{(1)} \end{array} \right\}$$

We will use the following abbreviation for an element in S:

$$s = \left(s^{(1)}, \left\{ s_i^{(2)} \right\}_{i \in s^{(i)}} \right)$$

We now define the probability function $p: \mathcal{S} \longrightarrow (0,1]$ as follows: For each $s \in \mathcal{S}$,

$$p(s) \; := \; p\left(\left(\; s^{(1)} \; , \left\{\; s^{(2)}_i \; \right\}_{i \in s^{(1)}} \; \right) \right) \; = \; p^{(1)} \left(s^{(1)}\right) \cdot \prod_{i \in s^{(1)}} p^{(2)}_i \left(s^{(2)}_i\right)$$

We will prove in Proposition 1.2 below that $p: \mathcal{S} \longrightarrow (0,1]$ defined above is indeed a probability function on \mathcal{S} .

Lemma 1.1 For each first-stage sample $s^{(1)} \in \mathcal{S}^{(1)}$, let $\Omega(s^{(1)}) := \{ s_i^{(2)} \in \mathcal{S}_i^{(2)} \mid i \in s^{(1)} \}$, i.e. $\Omega(s^{(1)})$ is the collection of all second-stage samples compatible with the first-stage sample $s^{(1)} \in \mathcal{S}^{(1)}$. Then, we have:

$$\sum_{\xi \in \Omega(s^{(1)})} p\left((\ s^{(1)}, \xi\) \right) \ = \ p^{(1)} \Big(s^{(1)} \Big) \, .$$

PROOF Let n be the number of elements in $s^{(1)}$, we write $s^{(1)} = \{i_1, i_2, \dots, i_n\}$. Then,

$$p\left(\left(\ s^{(1)}\ ,\left\{\ s_{i_1}^{(2)}\ ,s_{i_2}^{(2)}\ ,\ldots\ ,s_{i_n}^{(2)}\ \right\}\ \right)\right)\ =\ p^{(1)}\left(s^{(1)}\right)\cdot p_{i_1}^{(2)}\left(s_{i_1}^{(2)}\right)\cdot p_{i_2}^{(2)}\left(s_{i_2}^{(2)}\right)\ \cdots\ p_{i_n}^{(2)}\left(s_{i_n}^{(2)}\right)$$

Hence,

$$\sum_{\xi \in \Omega(s^{(1)})} p\left((s^{(1)}, \xi)\right) = \sum_{\zeta_1 \in \mathcal{S}_{i_1}^{(2)}} \sum_{\zeta_2 \in \mathcal{S}_{i_2}^{(2)}} \cdots \sum_{\zeta_n \in \mathcal{S}_{i_n}^{(2)}} p\left(\left(s^{(1)}, \{\zeta_1, \zeta_2, \dots, \zeta_n\}\right)\right)$$

$$= \sum_{\zeta_1 \in \mathcal{S}_{i_1}^{(2)}} \sum_{\zeta_2 \in \mathcal{S}_{i_2}^{(2)}} \cdots \sum_{\zeta_n \in \mathcal{S}_{i_n}^{(2)}} p^{(1)}\left(s^{(1)}\right) \cdot p^{(2)}_{i_1}(\zeta_1) \cdot p^{(2)}_{i_2}(\zeta_2) \cdots p^{(2)}_{i_n}(\zeta_n)$$

$$= p^{(1)}\left(s^{(1)}\right) \cdot \left(\sum_{\zeta_1 \in \mathcal{S}_{i_1}^{(2)}} p^{(2)}_{i_1}(\zeta_1)\right) \cdot \left(\sum_{\zeta_2 \in \mathcal{S}_{i_2}^{(2)}} p^{(2)}_{i_2}(\zeta_2)\right) \cdots \left(\sum_{\zeta_n \in \mathcal{S}_{i_n}^{(2)}} p^{(2)}_{i_n}(\zeta_n)\right)$$

$$= p^{(1)}\left(s^{(1)}\right) \cdot (1) \cdot (1) \cdots (1)$$

$$= p^{(1)}\left(s^{(1)}\right)$$

Proposition 1.2

$$\sum_{s \in \mathcal{S}} p(s) = 1$$

PROOF

$$\sum_{s \in \mathcal{S}} p(s) = \sum_{(s^{(1)}, \xi) \in \mathcal{S}} p(s^{(1)}, \xi) = \sum_{s^{(1)} \in \mathcal{S}^{(1)}} \sum_{\xi \in \Omega(s^{(1)})} p(s^{(1)}, \xi) = \sum_{s^{(1)} \in \mathcal{S}^{(1)}} p^{(1)}(s^{(1)}) = 1,$$

where the second-last equality follows from the preceding Lemma.

2 Estimation in two-stage sampling

Let $\mathbf{y}: U \longrightarrow \mathbb{R}^m$ be an \mathbb{R}^m -valued function defined on U (such a \mathbf{y} commonly called a "population parameter"). We will use the common notation \mathbf{y}_{kl} for $\mathbf{y}(u_{kl})$, for $k = 1, 2, ..., N^{(1)}$ and $l = 1, 2, ..., N^{(2)}_k$. We wish to estimate

$$\mathbf{T}_{\mathbf{y}} := \sum_{u \in U} \mathbf{y}(u) = \sum_{k \in U^{(1)}} \sum_{l \in U_{k}^{(2)}} \mathbf{y}_{kl} = \sum_{k=1}^{N^{(1)}} \sum_{l=1}^{N_{k}^{(2)}} \mathbf{y}_{kl} \in \mathbb{R}^{m}$$

via two-stage sampling. We consider estimators for $\widehat{T}_{\mathbf{y}}$ of the following form:

$$\widehat{\mathbf{T}}_{\mathbf{y}}: \quad \mathcal{S} \longrightarrow \mathbb{R}^{m} \\
\left(s^{(1)}, \{s_{k}^{(2)}\}_{k \in s^{(1)}}\right) &\longmapsto \sum_{k \in s^{(1)}} w_{k}^{(1)}(s^{(1)}) \, \widehat{\mathbf{T}}_{\mathbf{y}|k}(s_{k}^{(2)}) = \sum_{k \in U^{(1)}} I_{k}(s^{(1)}) \, w_{k}^{(1)}(s^{(1)}) \, \widehat{\mathbf{T}}_{\mathbf{y}|k}(s_{k}^{(2)}),$$

where, for each $k \in U^{(1)}$, $w_k^{(1)} : \mathcal{S}^{(1)} \longrightarrow \mathbb{R}$ and $\widehat{\mathbf{T}}_{\mathbf{y}|k} : \mathcal{S}_k^{(2)} \longrightarrow \mathbb{R}^m$ are random variables.

Proposition 2.1 Suppose.

• The first-stage weights $w_k^{(1)}: \mathcal{S}^{(1)} \longrightarrow (0,1]$ satisfy the following:

$$E^{(1)}\left[\begin{array}{c} \widehat{T}_z \end{array}\right] = T_z := \sum_{k \in U^{(1)}} z_k, \quad \text{for any function } z: U^{(1)} \longrightarrow \mathbb{R},$$

where $\widehat{T}_z: \mathcal{S}^{(1)} \longrightarrow \mathbb{R}$ is a random variable defined by $\widehat{T}_z(s^{(1)}) := \sum_{k \in s^{(1)}} w_k^{(1)}(s^{(1)}) z_k$.

• For each $k \in U^{(1)}$, the random variable $\widehat{\mathbf{T}}_{\mathbf{y}|k}: \mathcal{S}_k^{(2)}: \longrightarrow \mathbb{R}$ is a design-unbiased estimator for $T_{\mathbf{y}|k}$, i.e.

$$E_k^{(2)} \left[\widehat{\mathbf{T}}_{\mathbf{y} \mid k} \right] = \mathbf{T}_{\mathbf{y} \mid k} := \sum_{l \in U_k^{(2)}} \mathbf{y}_{kl}$$

Then, the random variable $\hat{\mathbf{T}}_{\mathbf{y}}$ is an unbiased estimator for $\mathbf{T}_{\mathbf{y}}$.

Definition 2.2

A random variable $\widehat{\mathbf{T}}_{\mathbf{y}}: \mathcal{S} \longrightarrow \mathbb{R}^m$ is said to be linear in the population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}$ if it has the following form:

$$\begin{array}{cccc} \widehat{\mathbf{T}}_{\mathbf{y}} : & \mathcal{S} & \longrightarrow & \mathbb{R}^m \\ & s & \longmapsto & \sum\limits_{k \in s} w_k(s) \, \mathbf{y}_k \, = \, \sum\limits_{k \in U} I_k(s) \, w_k(s) \, \mathbf{y}_k, \end{array}$$

where, for each $k \in U$, $w_k : \mathcal{S} \longrightarrow \mathbb{R}$ is itself an \mathbb{R} -valued random variable, and $I_k : \mathcal{S} \longrightarrow \{0,1\}$ is the indicator random variable defined by:

$$I_k(s) = \begin{cases} 1, & \text{if } k \in s, \\ 0, & \text{otherwise} \end{cases}$$

We call the w_k 's the weights of $\widehat{\mathbf{T}}_{\mathbf{y}}$, and we use the notation $\widehat{\mathbf{T}}_{\mathbf{y};w}$ to indicate that the random variable depends on the weights w_k .

Nomenclature In the context of finite-population probability sampling, under a design $p: \mathcal{S} \longrightarrow (0,1]$, an "estimator" is precisely just a random variable defined on the space \mathcal{S} of all admissible samples in the design.

Proposition 2.3

Let $\widehat{\mathbf{T}}_{\mathbf{y};w}: \mathcal{S} \longrightarrow \mathbb{R}^m$, with $\widehat{\mathbf{T}}_{\mathbf{y};w}(s) = \sum_{k \in U} I_k(s) w_k(s) \mathbf{y}_k = \sum_{k \in s} w_k(s) \mathbf{y}_k$, be a random variable linear in the population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}$. Then,

$$E\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right] = \mathbf{T}_{\mathbf{y}}, \text{ for arbitrary } \mathbf{y} \iff E\left[I_k w_k\right] = 1, \text{ for each } k \in U.$$

PROOF Note:

$$E\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right] = E\left[\sum_{k \in s} w_k \, \mathbf{y}_k\right] = E\left[\sum_{k \in U} I_k \, w_k \, \mathbf{y}_k\right] = \sum_{k \in U} E\left[I_k \, w_k\right] \, \mathbf{y}_k$$

Hence, since $\mathbf{y}: U \longrightarrow \mathbb{R}$ is arbitrary,

$$E\left[\ \widehat{\mathbf{T}}_{\mathbf{y};w} \ \right] \ = \ \mathbf{T}_{\mathbf{y}} \ := \ \sum_{k \in U} \mathbf{y}_k \quad \Longleftrightarrow \quad \sum_{k \in U} \left(E[I_k \, w_k \,] - 1 \right) \cdot \mathbf{y}_k \ = \ \mathbf{0} \quad \Longleftrightarrow \quad E[\ I_k \, w_k \,] \ = \ 1, \ \text{for each} \ k \in U.$$

The proof of the Proposition is now complete.

Corollary 2.4

Let $U = \{1, 2, ..., N\}$ be a finite population. For any fixed but arbitrary population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}^m$ and for any sampling design $p: \mathcal{S} \longrightarrow (0, 1]$ such that each of its first-order inclusion probabilities is strictly positive, the Horvitz-Thompson estimator $\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}$ is well-defined and it is the unique unbiased estimator for $\mathbf{T}_{\mathbf{y}}$, which is linear in \mathbf{y} and whose weights are constant in \mathbf{s} .

PROOF Recall that the Horvitz-Thompson estimator is defined as:

$$\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}(s) := \sum_{k \in s} \frac{1}{\pi_k} \mathbf{y}_k := \sum_{k \in U} I_k(s) \frac{1}{\pi_k} \mathbf{y}_k,$$

where $\pi_k := E[I_k] = \sum_{k \in U} p(s) I_k(s) = \sum_{s \ni k} p(s)$ is the inclusion probability of $k \in U$ under the sampling design $p : \mathcal{S} \longrightarrow (0,1]$. Clearly, $\widehat{\mathbf{T}}_{\mathbf{v}}^{\mathrm{HT}}$ is linear in \mathbf{y} with weights constant in s. Next, note that:

$$E\left[\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}\right] = E\left[\sum_{k \in s} \frac{1}{\pi_{k}} \mathbf{y}_{k}\right] = E\left[\sum_{k \in U} I_{k} \frac{\mathbf{y}_{k}}{\pi_{k}}\right] = \sum_{k \in U} E\left[I_{k}\right] \frac{\mathbf{y}_{k}}{\pi_{k}} = \sum_{k \in U} \pi_{k} \frac{\mathbf{y}_{k}}{\pi_{k}} = \sum_{k \in U} \mathbf{y}_{k} = \mathbf{T}_{y}$$

Hence, $\widehat{\mathbf{T}}_{\mathbf{v}}^{\mathrm{HT}}$ is an unbiased estimator for $\mathbf{T}_{\mathbf{y}}$. Conversely, let

$$\widehat{\mathbf{T}}_{y;w}(s) = \sum_{k \in s} w_k \, \mathbf{y}_k$$

be any unbiased estimator for $\mathbf{T}_{\mathbf{v}}$ which linear in \mathbf{y} with weights w_k constant in s. Thus,

$$\sum_{k \in U} \mathbf{y}_k = \mathbf{T}_{\mathbf{y}} = E \left[\widehat{\mathbf{T}}_{\mathbf{y};w} \right] = E \left[\sum_{k \in s} w_k \mathbf{y}_k \right] = E \left[\sum_{k \in U} I_k w_k \mathbf{y}_k \right] = \sum_{k \in U} E[I_k] w_k \mathbf{y}_k = \sum_{k \in U} \pi_k w_k \mathbf{y}_k.$$

Since y is arbitrary, the above equation immediately implies that

$$\pi_k w_k - 1 = 0,$$

or equivalently, $w_k = \frac{1}{\pi_k}$; in other words, $\widehat{\mathbf{T}}_{\mathbf{y};w}$ is in fact equal to the Horvitz-Thompson estimator. The proof of the Corollary is now complete.

Lemma 2.5

Let (Ω, \mathcal{A}, p) be a probability space, $X, Y : \Omega \longrightarrow \mathbb{R}$ be two \mathbb{R} -valued random variables defined on Ω , and $\mathbf{u}, \mathbf{v} \in \mathbb{R}^m$ be two fixed vectors in \mathbb{R}^m . Then,

$$\operatorname{Cov}(X \cdot \mathbf{u}, Y \cdot \mathbf{v}) = \operatorname{Cov}(X, Y) \cdot \mathbf{u} \cdot \mathbf{v}^T \in \mathbb{R}^{m \times m}$$

Proof Note:

$$\operatorname{Cov}(X \cdot \mathbf{u}, Y \cdot \mathbf{v}) := E[(X \mathbf{u} - \mu_X \mathbf{u}) \cdot (Y \mathbf{v} - \mu_Y \mathbf{v})^T] = E[(X - \mu_X) \mathbf{u} \cdot (Y - \mu_Y) \mathbf{v}^T]$$

$$= E[(X - \mu_X) (Y - \mu_Y) \cdot \mathbf{u} \cdot \mathbf{v}^T] = E[(X - \mu_X) (Y - \mu_Y)] \cdot \mathbf{u} \cdot \mathbf{v}^T$$

$$= \operatorname{Cov}(X, Y) \cdot \mathbf{u} \cdot \mathbf{v}^T,$$

as required.

Proposition 2.6

Let $\widehat{\mathbf{T}}_{\mathbf{y};w}: \mathcal{S} \longrightarrow \mathbb{R}$, with $\widehat{\mathbf{T}}_{\mathbf{y};w}(s) = \sum_{k \in s} w_k(s) \mathbf{y}_k = \sum_{k \in U} I_k(s) w_k(s) \mathbf{y}_k$, be a random variable linear in the population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}$. Then, the covariance matrix of $\widehat{\mathbf{T}}_{\mathbf{y};w}$ is given by:

$$\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right] = \sum_{i \in U} \sum_{k \in U} \operatorname{Cov}\left[I_{i} w_{i}, I_{k} w_{k}\right] \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T} \in \mathbb{R}^{m \times m}$$

Furthermore, if the first-order and second-order inclusion probabilities of the sampling design $p: \mathcal{S} \longrightarrow (0,1]$ are all strictly positive, i.e. $\pi_k = \pi_{kk} := \sum_{s \ni k} p(s) > 0$, for each $k \in U$, and $\pi_{ik} := \sum_{s \ni i,k} p(s) > 0$, for any distinct $i,k \in U$, then

an unbiased estimator for $\operatorname{Var}\left[\widehat{\mathbf{T}}_{y;w}\right]$ is given by:

$$\widehat{\operatorname{Var}}\Big[\widehat{\mathbf{T}}_{y;w}\Big](s) \ := \ \sum_{i,k \in s} \frac{\operatorname{Cov}(I_i w_i, I_k w_k)}{\pi_{ik}} \, \mathbf{y}_i \cdot \mathbf{y}_k^T \ = \ \sum_{k \in s} \frac{\operatorname{Var}(I_k w_k)}{\pi_k} \, \mathbf{y}_k \cdot \mathbf{y}_k^T + \sum_{\substack{i,k \in s \\ i \neq k}} \frac{\operatorname{Cov}(I_i w_i, I_k w_k)}{\pi_{ik}} \, \mathbf{y}_i \cdot \mathbf{y}_k^T, \ \text{ for each } s \in \mathcal{S}.$$

PROOF First, note that Lemma 2.5 implies:

$$\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right] = \operatorname{Cov}\left[\sum_{i \in U} I_i \, w_i \, \mathbf{y}_i \,,\, \sum_{k \in U} I_k \, w_k \, \mathbf{y}_k\right] = \sum_{i \in U} \sum_{k \in U} \operatorname{Cov}\left[I_i \, w_i \,,\, I_k \, w_k\right] \cdot \mathbf{y}_i \cdot \mathbf{y}_k^T \in \mathbb{R}^{m \times m}$$

Next,

$$E\left(\widehat{\operatorname{Var}}\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right]\right) = \sum_{s \in \mathcal{S}} p(s) \cdot \widehat{\operatorname{Var}}\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right](s) = \sum_{s \in \mathcal{S}} p(s) \cdot \left(\sum_{i,k \in s} \frac{\operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k})}{\pi_{ik}} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}\right)$$

$$= \sum_{s \in \mathcal{S}} p(s) \cdot \left(\sum_{i,k \in U} I_{i}(s)I_{k}(s) \cdot \frac{\operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k})}{\pi_{ik}} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}\right)$$

$$= \sum_{i,k \in U} \left(\sum_{s \in \mathcal{S}} p(s)I_{i}(s)I_{k}(s)\right) \cdot \frac{\operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k})}{\pi_{ik}} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}$$

$$= \sum_{i,k \in U} \left(\sum_{s \ni i,k} p(s)\right) \cdot \frac{\operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k})}{\pi_{ik}} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}$$

$$= \sum_{i,k \in U} \pi_{ik} \cdot \frac{\operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k})}{\pi_{ik}} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T} = \sum_{i,k \in U} \operatorname{Cov}(I_{i}w_{i}, I_{k}w_{k}) \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}$$

$$= \operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y};w}\right]$$

Lastly, recall that $\pi_{kk} = \pi_k$ and $Cov(I_k w_k, I_k w_k) = Var[I_k w_k]$, and the validity of the following identity is thus trivial:

$$\sum_{i,k \in s} \frac{\operatorname{Cov}(I_i w_i, I_k w_k)}{\pi_{ik}} \cdot \mathbf{y}_i \cdot \mathbf{y}_k^T = \sum_{k \in s} \frac{\operatorname{Var}(I_k w_k)}{\pi_k} \cdot \mathbf{y}_k \cdot \mathbf{y}_k^T + \sum_{\substack{i,k \in s \\ i \neq k}} \frac{\operatorname{Cov}(I_i w_i, I_k w_k)}{\pi_{ik}} \cdot \mathbf{y}_i \cdot \mathbf{y}_k^T$$

The proof of the Proposition is complete.

3 Calibrated linear estimators for (multivariate) population totals

Definition 3.1

Let $\widehat{\mathbf{T}}_{\mathbf{y};w}: \mathcal{S} \longrightarrow \mathbb{R}^m$ be an \mathbb{R}^m -valued random variable which is linear in the \mathbb{R}^m -valued population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}^m$. i.e.

$$\widehat{\mathbf{T}}_{\mathbf{y};w}: \quad \mathcal{S} \quad \longrightarrow \quad \mathbb{R}^m \\
s \quad \longmapsto \quad \sum_{k \in s} w_k(s) \cdot \mathbf{y}_k \quad = \quad \sum_{k \in U} I_k(s) \, w_k(s) \cdot \mathbf{y}_k,$$

where, for each $k \in U$, $w_k : \mathcal{S} \longrightarrow \mathbb{R}$ is itself an \mathbb{R} -valued random variable, and $I_k : \mathcal{S} \longrightarrow \{0,1\}$ is the indicator random variable defined by:

$$I_k(s) = \begin{cases} 1, & \text{if } k \in s, \\ 0, & \text{otherwise} \end{cases}$$

Let $x: U \longrightarrow \mathbb{R}$ be an \mathbb{R} -valued population parameter and $T_x := \sum_{k \in U} x_k$.

Then, $\widehat{\mathbf{T}}_{\mathbf{y};w}$ is said to be calibrated with respect to x if

$$\sum_{k \in s} w_k(s) x_k = T_x, \text{ for each } s \in \mathcal{S}.$$

Example 3.2

If the sampling design has fixed sample size and each of its first-order inclusion probabilities is strictly positive, then Horvitz-Thompson estimator is calibrated with respect to the first-order inclusion probabilities.

To see this, let $U = \{1, 2, ..., N\}$ be a finite population, $\mathbf{y} : U \longrightarrow \mathbb{R}^m$ a population parameter, and $p : \mathcal{S} \subset \mathcal{P}(U) \longrightarrow \{0, 1\}$ a sampling design such that $\pi_k := \sum_{s \ni k} p(s) > 0$, for each $k \in U$. The Horvitz-Thompson estimator $\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}} : \mathcal{S} \longrightarrow \mathbb{R}$ is then well-defined and is given by:

$$\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}\!(s) := \sum_{k \in s} \frac{\mathbf{y}_k}{\pi_k}$$

Let $x: U \longrightarrow \mathbb{R}$ be defined by

$$x_k = \pi_k$$
, for each $k \in U$,

i.e. x_k is simply the inclusion probability of $k \in U$ under the sampling design $p: \mathcal{S} \longrightarrow (0,1]$.

Now, suppose that the sampling design has a fixed sample size n, and we shall show that $\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}$ is consequently calibrated with respect to $x: U \longrightarrow \mathbb{R}$. Indeed, recall that the weights of the Horvitz-Thompson estimator are simply $w_k(s) = 1/\pi_k$, for each $k \in U$ and each $s \in \mathcal{S}$. Hence,

$$\sum_{k \in s} w_k(s) x_k = \sum_{k \in s} \frac{1}{\pi_k} \pi_k = \sum_{k \in s} 1 = \begin{pmatrix} \text{sample} \\ \text{size of } s \end{pmatrix} = n,$$

since the sampling design has fixed size n. On the other hand,

$$T_x = \sum_{k \in U} x_k = \sum_{k \in U} \pi_k = \sum_{k \in U} E[I_k] = E\left[\sum_{k \in U} I_k\right] = E\left[\begin{array}{c} \text{sample} \\ \text{size} \end{array}\right] = n,$$

again since the sample size is fixed and equals n. Therefore, we have, for any $s \in \mathcal{S}$,

$$\sum_{k \in s} w_k(s) x_k = n = T_x$$

Therefore, the Horvitz-Thompson estimator, under the assumption of fixed sample size, is indeed calibrated with respect to the inclusion probabilities $x: U \longrightarrow \mathbb{R}$, $x_k = \pi_k := \sum_{s \ni k} p(s)$, for each $k \in U$.

Proposition 3.3

Let $\widehat{\mathbf{T}}_{\mathbf{y};w,x}: \mathcal{S} \longrightarrow \mathbb{R}^m$ be an \mathbb{R}^m -valued random variable which is linear in the \mathbb{R}^m -valued population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}^m$ and calibrated with respect to the population parameter $x: U \longrightarrow \mathbb{R}$, with $x_k \neq 0$ for each $k \in U$. Then, the mean squared error matrix of $\widehat{\mathbf{T}}_{\mathbf{y};w,x}$ as an estimator of $\mathbf{T}_{\mathbf{y}}$ is given by:

$$MSE\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right] = -\frac{1}{2} \sum_{\substack{i,k \in U\\i \neq k}} a_{ik} \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right) \cdot \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right)^T x_i x_k \in \mathbb{R}^{m \times m}, \text{ where } a_{ik} := E\left[\left(I_i w_i - 1\right)\left(I_k w_k - 1\right)\right].$$

Proof

$$\operatorname{MSE}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right] = E\left[\left(\widehat{\mathbf{T}}_{\mathbf{y};w,x} - \mathbf{T}_{\mathbf{y}}\right) \cdot \left(\widehat{\mathbf{T}}_{\mathbf{y};w,x} - \mathbf{T}_{\mathbf{y}}\right)^{T}\right] = E\left[\left(\sum_{i \in U} (I_{i}w_{i} - 1) \mathbf{y}_{i}\right) \cdot \left(\sum_{k \in U} (I_{k}w_{k} - 1) \mathbf{y}_{k}\right)^{T}\right] \\
= \sum_{i \in U} \sum_{k \in U} E\left[\left(I_{i}w_{i} - 1\right) \left(I_{k}w_{k} - 1\right)\right] \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T} = \sum_{k \in U} a_{kk} \cdot \mathbf{y}_{k} \cdot \mathbf{y}_{k}^{T} + \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \cdot \mathbf{y}_{i} \cdot \mathbf{y}_{k}^{T}\right] \\
= \sum_{k \in U} a_{kk} \left(\frac{\mathbf{y}_{k} \cdot \mathbf{y}_{k}^{T}}{x_{k}^{2}}\right) x_{k}^{2} + \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left(\frac{\mathbf{y}_{i}}{x_{i}}\right) \cdot \left(\frac{\mathbf{y}_{k}}{x_{k}}\right)^{T} x_{i} x_{k}$$

On the other hand,

$$-\frac{1}{2} \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k} \right) \cdot \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k} \right)^T x_i x_k$$

$$= -\frac{1}{2} \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left[\left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_i}{x_i} \right)^T - \left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_k}{x_k} \right)^T - \left(\frac{\mathbf{y}_k}{x_k} \right) \left(\frac{\mathbf{y}_i}{x_i} \right)^T + \left(\frac{\mathbf{y}_k}{x_k} \right) \left(\frac{\mathbf{y}_k}{x_k} \right)^T \right] x_i x_k$$

$$= -\frac{1}{2} \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left[\left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_i}{x_i} \right)^T + \left(\frac{\mathbf{y}_k}{x_k} \right) \left(\frac{\mathbf{y}_k}{x_k} \right)^T \right] x_i x_k + \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_k}{x_k} \right)^T x_i x_k$$

Thus, the proof of the present Proposition will be complete once we show:

$$\underbrace{\sum_{k \in U} a_{kk} \left(\frac{\mathbf{y}_{k}}{x_{k}}\right) \left(\frac{\mathbf{y}_{k}}{x_{k}}\right)^{T} x_{k}^{2}}_{1 \le i \le k} = -\frac{1}{2} \sum_{\substack{i,k \in U \\ i \ne k}} a_{ik} \left[\left(\frac{\mathbf{y}_{i}}{x_{i}}\right) \left(\frac{\mathbf{y}_{i}}{x_{i}}\right)^{T} + \left(\frac{\mathbf{y}_{k}}{x_{k}}\right) \left(\frac{\mathbf{y}_{k}}{x_{k}}\right)^{T} \right] x_{i} x_{k},$$

which is equivalent to:

$$\sum_{i \in U} \sum_{k \in U} a_{ik} \left[\left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_i}{x_i} \right)^T + \left(\frac{\mathbf{y}_k}{x_k} \right) \left(\frac{\mathbf{y}_k}{x_k} \right)^T \right] x_i x_k = 0.$$
 (3.1)

Observe that

LHS(3.1) =
$$\sum_{i \in U} \sum_{k \in U} a_{ik} \left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_i}{x_i} \right)^T x_i x_k + \sum_{i \in U} \sum_{k \in U} a_{ik} \left(\frac{\mathbf{y}_k}{x_k} \right) \left(\frac{\mathbf{y}_k}{x_k} \right)^T x_i x_k$$

$$= 2 \sum_{i \in U} \sum_{k \in U} a_{ik} \left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_i}{x_i} \right)^T x_i x_k = 2 \sum_{i \in U} x_i \left(\frac{\mathbf{y}_i}{x_i} \right) \left(\frac{\mathbf{y}_i}{x_i} \right)^T \left(\sum_{k \in U} a_{ik} x_k \right).$$

Hence, (3.1) follows once we show

$$\sum_{k \in U} a_{ik} x_k = 0, \quad \text{for each } i \in U.$$
(3.2)

Lastly, we now claim that (3.2) follows from the hypothesis that $\widehat{T}_{y;w;x}$ is calibrated with respect to x. Indeed,

$$\sum_{k \in U} a_{ik} x_{k} = \sum_{k \in U} E[(I_{i}w_{i} - 1)(I_{k}w_{k} - 1)] x_{k} = \sum_{k \in U} \left[\sum_{s \in S} p(s)(I_{i}(s)w_{i}(s) - 1)(I_{k}(s)w_{k}(s) - 1) \right] x_{k}$$

$$= \sum_{s \in S} p(s) \cdot (I_{i}(s)w_{i}(s) - 1) \cdot \left[\sum_{k \in U} (I_{k}(s)w_{k}(s) - 1) \cdot x_{k} \right]$$

$$= \sum_{s \in S} p(s) \cdot (I_{i}(s)w_{i}(s) - 1) \cdot \left[\underbrace{\left(\sum_{k \in S} w_{k}(s) x_{k} \right) - T_{x}}_{0} \right]$$

$$= 0$$

The proof of the present Proposition is now complete.

Proposition 3.4 (The Yates-Grundy-Sen Variance Estimator for calibrated linear population total estimators)

Let $p: \mathcal{S} \longrightarrow (0,1]$ be a sampling design each of whose first-order and second-order inclusion probabilities is strictly positively. Let $\widehat{\mathbf{T}}_{\mathbf{y};w,x}: \mathcal{S} \longrightarrow \mathbb{R}^m$ be a random variable which is linear in the population parameter $\mathbf{y}: U \longrightarrow \mathbb{R}^m$ and calibrated with respect to the population parameter $x: U \longrightarrow \mathbb{R}$, with $x_k \neq 0$ for each $k \in U$. Suppose that $\widehat{\mathbf{T}}_{\mathbf{y};w,x}$ is an unbiased estimator for $\mathbf{T}_{\mathbf{y}}:=\sum_{k\in U}\mathbf{y}_k$, for arbitrary \mathbf{y} . Then, the following is an unbiased estimator of the variance

 $\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right]$ of $\widehat{\mathbf{T}}_{\mathbf{y};w,x}$: For each $s \in \mathcal{S}$ admissible in the sampling design $p: \mathcal{S} \longrightarrow (0,1]$,

$$\widehat{\operatorname{Var}}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right](s) := -\frac{1}{2} \sum_{\substack{i,k \in s \\ i \neq k}} \left(w_i(s)w_k(s) - \frac{1}{\pi_{ik}}\right) \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right) \cdot \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right)^T x_i x_k$$

Terminology: $\widehat{\text{Var}}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right]$ is called the Yates-Grundy-Sen Variance Estimator.

PROOF Since $\widehat{\mathbf{T}}_{\mathbf{y};w,x}$ is an unbiased estimator for $\mathbf{T}_{\mathbf{y}}$ by hypothesis, we have $\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right] = \operatorname{MSE}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right]$. By Proposition 3.3, we thus have:

$$\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right] = -\frac{1}{2} \sum_{\substack{i,k \in U \\ i \neq k}} a_{ik} \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right)^2 x_i x_k, \text{ where } a_{ik} := E\left[\left(I_i w_i - 1\right)\left(I_k w_k - 1\right)\right].$$

On the other hand,

$$E\left(\widehat{\operatorname{Var}}\left[\widehat{\mathbf{T}}_{\mathbf{y};w,x}\right]\right) = -\frac{1}{2} \sum_{\substack{i,k \in U\\i \neq k}} E\left[I_i I_k \left(w_i w_k - \frac{1}{\pi_{ik}}\right)\right] \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right) \cdot \left(\frac{\mathbf{y}_i}{x_i} - \frac{\mathbf{y}_k}{x_k}\right)^T x_i x_k$$

Thus, it remains only to show:

$$a_{ik} = E\left[I_iI_k\left(w_iw_k - \frac{1}{\pi_{ik}}\right)\right].$$

Now.

$$E\left[\; I_{i}I_{k} \left(w_{i}w_{k} - \frac{1}{\pi_{ik}} \right) \; \right] \;\; = \;\; E[\; I_{i}I_{k}w_{i}w_{k} \;] - \frac{1}{\pi_{ik}} E[\; I_{i}I_{k} \;] \;\; = \;\; E[\; I_{i}I_{k}w_{i}w_{k} \;] - \frac{1}{\pi_{ik}} \pi_{ik} \;\; = \;\; E[\; I_{i}I_{k}w_{i}w_{k} \;] - 1,$$

and

$$\begin{array}{rcl} a_{ik} & = & E[\;(I_i\,w_i-1)\;(I_k\,w_k-1)\;] & = & E[\;I_i\,I_k\,w_i\,w_k\;] - E[\;I_i\,w_i\;] - E[\;I_k\,w_k\;] + 1 \\ & = & E[\;I_i\,I_k\,w_i\,w_k\;] - 1 - 1 + 1 \; = \; E[\;I_i\,I_k\,w_i\,w_k\;] - 1 \\ & = & E\left[\;I_iI_k\left(w_iw_k - \frac{1}{\pi_{ik}}\right)\;\right], \end{array}$$

where third last equality follows from Proposition 2.3 and the unbiasedness hypothesis on $\widehat{\mathbf{T}}_{\mathbf{y};w,x}$ as an estimator for $\mathbf{T}_{\mathbf{y}}$. The proof of the present Proposition is now complete.

4 Unbiased variance estimators for the Horvitz-Thompson Estimator

Let $U = \{1, 2, ..., N\}$ be a finite population. Let $\mathbf{y} = (y_1, y_2, ..., y_m) : U \longrightarrow \mathbb{R}^m$ be an \mathbb{R}^m -valued function defined on U (commonly called a "population parameter"). We will use the common notation \mathbf{y}_k for $\mathbf{y}(k)$. We wish to estimate $\mathbf{T}_{\mathbf{y}} := \sum_{k \in U} \mathbf{y}_k \in \mathbb{R}^m$ via survey sampling. Let $p : \mathcal{S} \longrightarrow (0,1]$ be our chosen sampling design, where $\mathcal{S} \subseteq \mathcal{P}(U)$ is the set of all possible samples in the design, and $\mathcal{P}(U)$ is the power set of U.

Proposition 4.1

Suppose the first-order and second-order inclusion probabilities of $p: \mathcal{S} \longrightarrow (0,1]$ are all strictly positive, i.e.

$$\pi_k := \sum_{s \ni k} p(s) = \sum_{k \in U} I_k(s) p(s) > 0 \quad \text{and} \quad \pi_{ik} := \sum_{s \ni i, k} p(s) = \sum_{i, k \in U} I_i(s) I_k(s) p(s) > 0,$$

for any $i, k \in U$. Then, the Horvitz-Thompson estimator for $\mathbf{T}_{\mathbf{v}}$ is:

$$\widehat{\mathbf{T}}_{\mathbf{y}}^{\mathrm{HT}}(s) := \sum_{k \in s} \frac{1}{\pi_k} \mathbf{y}_k,$$

and the covariance matrix of the Horvitz-Thompson estimator can be given by:

$$\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y}}^{\operatorname{HT}}\right] = \sum_{i,k \in U} \left(\pi_{ik} - \pi_{i}\pi_{k}\right) \cdot \left(\frac{\mathbf{y}_{i}}{\pi_{i}}\right) \cdot \left(\frac{\mathbf{y}_{k}}{\pi_{k}}\right)^{T}$$

An unbiased estimator for the covariance matrix of the Horvitz-Thompson estimator is given by:

$$\widehat{\operatorname{Var}}\left[\widehat{\mathbf{T}}_{\mathbf{y}}^{\operatorname{HT}}\right](s) = \sum_{i,k \in s} \left(\frac{\pi_{ik} - \pi_{i}\pi_{k}}{\pi_{ik}}\right) \cdot \left(\frac{\mathbf{y}_{i}}{\pi_{i}}\right) \cdot \left(\frac{\mathbf{y}_{k}}{\pi_{k}}\right)^{T}, \text{ for each } s \in \mathcal{S}.$$

Furthermore, if the sampling design has fixed sample size, then an alternative expression of the covariance matrix of the Horvitz-Thompson estimator is:

$$\operatorname{Var}\left[\widehat{\mathbf{T}}_{\mathbf{y}}^{\operatorname{HT}}\right] = -\frac{1}{2} \sum_{i,k \in U} (\pi_{ik} - \pi_{i}\pi_{k}) \cdot \left(\frac{\mathbf{y}_{i}}{\pi_{i}} - \frac{\mathbf{y}_{k}}{\pi_{k}}\right) \cdot \left(\frac{\mathbf{y}_{i}}{\pi_{i}} - \frac{\mathbf{y}_{k}}{\pi_{k}}\right)^{T}$$

and the corresponding Yates-Grundy-Sen variance estimator is:

$$\widehat{\operatorname{Var}}^{\operatorname{YGS}} \left[\widehat{\mathbf{T}}_{\mathbf{y}}^{\operatorname{HT}} \right] (s) := -\frac{1}{2} \sum_{i,k \in s} \left(\frac{\pi_{ik} - \pi_i \pi_k}{\pi_{ik}} \right) \cdot \left(\frac{\mathbf{y}_i}{\pi_i} - \frac{\mathbf{y}_k}{\pi_k} \right) \cdot \left(\frac{\mathbf{y}_i}{\pi_i} - \frac{\mathbf{y}_k}{\pi_k} \right)^T$$

PROOF By Proposition 2.6, for any random variable (a.k.a. estimator) $\widehat{\mathbf{T}}_{\mathbf{y};w}$ linear in the population parameter $\mathbf{y}: \mathcal{S} \longrightarrow \mathbb{R}^m$ with weights $w_k: \mathcal{S} \longrightarrow \mathbb{R}$, $k \in U$, the following

$$\widehat{\operatorname{Var}}\left[\widehat{\mathbf{T}}_{y;w}\right](s) := \sum_{i,k \in s} \frac{\operatorname{Cov}(I_i w_i, I_k w_k)}{\pi_{ik}} \, \mathbf{y}_i \cdot \mathbf{y}_k^T \tag{4.3}$$

always gives an unbiased estimator for the covariance matrix of $\widehat{\mathbf{T}}_{y;w}$. For the Horvitz-Thompson estimator, the weights are $w_k = 1/\pi_k$, for each $k \in U$, and the weights are independent of the sample $s \in \mathcal{S}$. Thus, for the Horvitz-Thompson estimator, the right-hand side of equation (4.3) becomes:

$$\sum_{i,k \in s} \frac{\operatorname{Cov}(I_i w_i, I_k w_k)}{\pi_{ik}} \, \mathbf{y}_i \cdot \mathbf{y}_k^T = \sum_{i,k \in s} \frac{\operatorname{Cov}(I_i, I_k)}{\pi_{ik}} \left(\frac{\mathbf{y}_i}{\pi_i}\right) \cdot \left(\frac{\mathbf{y}_k}{\pi_k}\right)^T$$

$$= \sum_{i,k \in s} \frac{E(I_i I_k) - E(I_i) E(I_k)}{\pi_{ik}} \left(\frac{\mathbf{y}_i}{\pi_i}\right) \cdot \left(\frac{\mathbf{y}_k}{\pi_k}\right)^T$$

$$= \sum_{i,k \in s} \frac{\pi_{ik} - \pi_i \pi_k}{\pi_{ik}} \left(\frac{\mathbf{y}_i}{\pi_i}\right) \cdot \left(\frac{\mathbf{y}_k}{\pi_k}\right)^T,$$

which coincides with the right-hand side of the equation of the conclusion of the present Proposition. Thus this present Proposition is but a special case of Proposition 2.6, specialized to the Horvitz-Thompson estimator, and the proof is now complete. \Box

5 Estimation of Domain Totals

6 Conditional inference in finite-population sampling

In this section, we give a justification for making inference conditional on the observed sample size for sampling designs with random sample size.

Observation ("mixture" of experiments) [see [?], p.15.]

Consider a population \mathcal{U} of 1000 units. We wish to estimate the total T_y of a certain population characteristic $\mathbf{y} = (y_1, y_2, \dots, y_{1000})$. Suppose we use the following two-step sampling scheme:

- Step 1: We first flip a fair coin. Define the random variable X by letting X = 1 if the coin lands heads, and X = 0 if it lands tails.
- Step 2: If X=1, we select an SRS from \mathcal{U} of size 100. If X=0, we take a census on all of \mathcal{U} .

Let $S \subset \mathcal{P}(\mathcal{U})$ denote the probability space of all possible samples induced by the (two-step) sampling design above. Note that $S = S_0 \sqcup S_1$, where $S_0 = \{ \mathcal{U} \}$ and S_1 is the set of all subsets of \mathcal{U} of size 100. The sampling design is determined by the following probability distribution on S:

$$P(\mathcal{U}) = \frac{1}{2}$$
 and $P(s) = \frac{1}{2 \begin{pmatrix} 1000 \\ 100 \end{pmatrix}}$, for each $s \in \mathcal{S}_1$.

Let $\widehat{T}_y : \mathcal{S} \longrightarrow \mathbb{R}$ denote our chosen estimator for T_y . Then the (unconditional) probability distribution of \widehat{T}_y can be "decomposed" as follows:

$$P\left(\widehat{T}_{y}=t \mid \mathbf{y}\right) = P\left(\widehat{T}_{y}=t, X=0 \mid \mathbf{y}\right) + P\left(\widehat{T}_{y}=t, X=1 \mid \mathbf{y}\right)$$

$$= P\left(\widehat{T}_{y}=t \mid X=0, \mathbf{y}\right) \cdot P\left(X=0 \mid \mathbf{y}\right) + P\left(\widehat{T}_{y}=t \mid X=1, \mathbf{y}\right) \cdot P\left(X=1 \mid \mathbf{y}\right)$$

$$= P\left(\widehat{T}_{y}=t \mid X=0, \mathbf{y}\right) \cdot P\left(X=0\right) + P\left(\widehat{T}_{y}=t \mid X=1, \mathbf{y}\right) \cdot P\left(X=1\right),$$

where the last equality follows because the distribution of X is independent of \mathbf{y} . Suppose the observation we make consists of (\hat{T}_y, X) . The unconditional probability distribution of \hat{T}_y , given by $P(\hat{T}_y = t \mid \mathbf{y})$ above, describes of course the randomness of the estimator \hat{T}_y as induced by both the randomness of the sample $s \in \mathcal{S} = \mathcal{S}_0 \sqcup \mathcal{S}_1$ as well as that of X (the outcome of the coin flip in Step 1). Now, suppose we have indeed carried out the sampling procedure and have obtained an observation of (\hat{T}_y, X) . Suppose it happened that X = 1. Hence, we know that the estimate $\hat{T}_y(s)$ we actually obtained was generated from an SRS of size 100 (rather than a census). Note also that the probability distribution of X is independent of \mathbf{y} and the observation of X gives no information about \mathbf{y} . One school of thought therefore argues that downstream inferences about \mathbf{y} should be carried out using the conditional probability $P(\hat{T}_y = t \mid X = 1, \mathbf{y})$, rather than the unconditional probability $P(\hat{T}_y = t \mid \mathbf{y})$. In other words, in the randomness in Step 1 (i.e. the randomness of X, the outcome of the coin flip) is irrelevant to any inference about \mathbf{y} . Consequently randomness of X "should" be removed in any inference procedure for \mathbf{y} , and this is achieved by conditioning on the observed value of X.

Conditioning on obtained sample size for sample designs with random sample size

Suppose \mathcal{U} is a finite population. We wish to estimate the total $T_y = \sum_{i \in \mathcal{U}} y_i$ of a population characteristic $\mathbf{y} : \mathcal{U} \longrightarrow \mathbb{R}$, using a sample design $p : \mathcal{S} \longrightarrow [0,1]$ and a estimator $\widehat{T} : \mathcal{S} \longrightarrow \mathbb{R}$. We make the assumption that the sampling design p is independent of \mathbf{y} . Let $N : \mathcal{S} \longrightarrow \mathbb{N} \cup \{0\}$ be the random variable of sample size, i.e. N(s) = number of elements

in s, for each possible sample $s \in \mathcal{S}$. Then,

$$\begin{split} P\left(\left.\widehat{T} = t \,\middle|\, \mathbf{y}\right) &= \sum_{n} P\left(\left.\widehat{T} = t, \, N = n \,\middle|\, \mathbf{y}\right) \\ &= \sum_{n} P\left(\left.\widehat{T} = t \,\middle|\, N = n, \,\mathbf{y}\right) \cdot P\left(\left.N = n \,\middle|\, \mathbf{y}\right) \right. \\ &= \sum_{n} P\left(\left.\widehat{T} = t \,\middle|\, N = n, \,\mathbf{y}\right) \cdot P\left(\left.N = n\,\right)\right., \end{split}$$

where the last equality follows from the assumed independence of the probability distribution $p: \mathcal{S} \longrightarrow [0,1]$ (hence that of N) from \mathbf{y} . The key observation to make now is that: Although the actual sampling procedure operationally may or may not have been a two-step procedure, the independence of p from \mathbf{y} makes it probabilistically equivalent to a two-step procedure, as shown by the above decomposition of $P(\widehat{T} = t \mid \mathbf{y})$ —Step (1): randomly select a sample size N = n according to the distribution P(N = n), and then Step (2): randomly select a sample s of size s chosen in Step (1) according to the distribution $P(s \mid N = n)$. By the statistical reasoning explained in the preceding observation, it follows that post-sampling inference about \mathbf{y} should be made based on the conditional distribution $P(\widehat{T} = t \mid \mathbf{y})$, rather than the unconditional distribution $P(\widehat{T} = t \mid \mathbf{y})$. This is because the sampling scheme is probabilistically equivalent to a two-step procedure, with the probability distribution of the first step (choosing a sample size) independent of the parameters of interest (T_y) , and thus only the probability distribution of the second step (choosing a sample of the size chosen in first step) should be used to make inference about T_y .

Caution

In more formal parlance, the random variable $N: \mathcal{S} \longrightarrow \mathbb{N} \cup \{0\}$ is <u>ancillary</u> to the parameter \mathbf{y} . Thus, conditioning on sample size, for finite-population sampling schemes with random sample size, partially conforms to the **Conditionality Principle**, which states that statistical inference about a parameter should be made conditioned on observed values of statistics ancillary to that parameter. The conformance is only partial due to the (obvious) fact that it is the sample s itself which is ancillary to the parameter of interest \mathbf{y} , not just its sample size N(s). Thus, full conformance to the Conditionality Principle would require inference about \mathbf{y} be made conditioned on the observed sample s itself (rather than its size N(s)). However, if we did condition on the obtained sample s itself, the domain of the estimator \widehat{T} would be restricted to the singleton $\{s\}$, and \widehat{T} could then attain only one value under conditioning on s, and no randomization-based (i.e. design-based) inference — apart from the observed value of $\widehat{T}(s)$ — could be made any longer.