

Fundação Presidente Antônio Carlos de Conselheiro Lafaiete Engenharia de Computação

LINUX SERVER Uma análise sobre o sistema

Paulo Henrique de Oliveira Rodrigues

Conselheiro Lafaiete, 11 de setembro de 2020

Paulo Henrique de Oliveira Rodrigues

LINUX SERVER Uma análise sobre o sistema

Trabalho avaliativo da disciplina de Sistemas Operacionais atividade apresentada na Faculdade Fundação Presidente Antônio Carlos (FUPAC) de Conselheiro Lafaiete como um dos pré-requisitos para a obtenção de creditos na diciplina do curso de Bacharel em Engenharia de Computação.

Conselheiro Lafaiete 11 de setembro de 2020

Agradecimentos

Agradeço a Deus por me iluminar nos momentos difíceis, dando força na longa caminhada.

Em especial minha esposa, por me apoiar incondicionalmente e por sempre confiar em meu potencial me incentivando a fazer sempre o melhor e a meu filho pelas risadas calorosas que me renovam sempre o ânimo e me lembram dos meus objetivos.

Ao meu orientador Alex Vitorino por sua paciência e sempre propondo novos desafios que são de grande contribuição em relação ao meu aprendizado e com ensinamentos importantes para consolidação deste trabalho.

Enfim em todos que acreditaram no meu sonho.

Resumo

O objetivo deste presente trabalho é a consolidação dos conhecimentos adquiridos durante a realização da disciplina de Sistemas Operacionais, dando enfoque aos sistemas baseados em Linux utilizados em servidores, salientando suas utilizações e o seu mercado de atuação. O Linux é um sistema operacional que vive em um crescimento contínuo e é amplamente usado ele está tanto em sensores a supercomputadores, e podemos vê-lo sendo usados em espaçonaves, automóveis, *smartphones*, relógios e muitos outros dispositivos em nossa vida cotidiana [1].

Em especial o sistema Linux é um sistema de código aberto o que significa que é possível executá-lo para qualquer propósito, estudar seu funcionamento e modificá-lo se assim desejar, ou realizar cópias para terceiros dando total liberdade para sua comunidade [1],[2]. Ele também opera a maior parte da Internet, todos os 500 maiores supercomputadores do mundo e as bolsas de valores do mundo. Estes funcionam em uma variação do Linux preparada para um grande fluxo de tratamento de dados, podendo rodar vários serviços simultaneamente, esta versão é a Linux para servidores ou Linux Server [1],[2].

Palavras-chaves: Linux, Servidores, Sistema Operacional.

Lista de ilustrações

Figura 1 – Onde o sistema operacional se encaixa. [3]	1
---	---

Lista de tabelas

Lista de abreviaturas e siglas

FreeBSD Free OS descended from the Berkeley Software Distribution

GNU's Not Unix

GNU GPL GNU General Public License

GUI Graphical User Interface

MIT Massachusetts Institute of Technology

MULTICS MULTiplexed Information and Computing Service

OS Operating System

OS X Operating Systems number 10

PC Personal Computer

SO Sistema Operacional

Sumário

Introdução					•				•		•				•		•	1
Roforôncias																		4

Introdução

Um computador moderno consiste em um emaranhado de peças que contém um ou mais processadores, alguma memória principal, alguma memória secundaria, interfaces de rede diversos periféricos como impressoras, teclado, mouse, monitor e vários outros dispositivos de entrada e saída. Podemos dizer que este é um sistema complexo, para realizar a desafiadora maratona que é compreender como cada parte funciona e gerenciar com maestria esses componentes é um grande desafio [3].

Para isso os computadores modernos são equipados com um SO esse dispositivo de *software* tem a função de fornecer uma plataforma simples e limpa para o usuário de forma a ajuda-lo nas entradas e saídas de dados. Em uma visão simplista podemos ver na figura 1 onde o SO se encontra em relação entre *hardware* e o usuário [3].

Fig. 1. Onde o sistema operacional se encaixa. [3]

Inicialmente a ideia que temos de um SO é a visão que temos dos ditos sistemas operativos que temos conhecimento que podem ser *Windows*, Linux, *FreeBSD*, ou *OS* X mas normalmente a forma de interagir com diretamente com o sistema é através de terminais comumente conhecidos como shell (interpretadores de comando) isto quando baseado em texto ou *GUI* (*Graphical User Interface*) quando em modo gráfico [3].

Um sistema operacional é projetado para ocultar as particularidades de *hardware* (ditas "de baixo nível") e assim criar uma máquina abstrata que fornece às aplicações serviços compreensíveis ao usuário (ditas "de alto nível") [4].

Assim o sistema trabalha em dois estados o modo núcleo e o modo usuário. Sendo que no modo núcleo (também chamado modo supervisor ou *Kernel mode*). O sistema tem acesso completo aos recursos seja de ao *hardware* ou *software* e pode executar qualquer instrução que a máquina for capaz de executar [3], [5].

Quando o sistema está em modo *kernel* é considerado que as execuções são de uma fonte confiável e, portanto, pode executar quaisquer instruções e fazer referência a quaisquer endereços de memória (ou seja, locais na memória). O *kernel* tem total controle sobre o

Introdução 2

sistema e trata todos os outros *software*s como programas não confiáveis, assim todas as operações em modo usuário que necessitem alterar o sistema solicitam ao uso do *kernel* por meio de uma chamada de sistema para executar instruções privilegiadas, como criação de processos ou operações de entrada / saída [3], [5].

Neste trabalho iremos trabalhar com o sistemas baseados em linux para servidores mas é importante entender um pouco da evolução desse sistema.

Em meados da década de 60 uma iniciativa conjunta do MIT, da Bell Labs e da General Electric decidiram embarcar no desenvolvimento de um "computador utilitário", isto é, uma máquina que daria suporte a algumas centenas de usuários simultâneos em pouco tempo nasce o projeto MULTICS (Serviço de Computação e Informação Multiplexada) [3]. O MULTICS foi projetado para ser um sucesso com suporte para centenas de usuários em uma máquina apenas um pouco mais poderosa do que um PC baseado no 386 da Intel. Mas transformá lo em um produto final de fácil comercialização não foi amarga realidade [3].

A *Bell Labs* abandonou o projeto, e a *General Electric* abandonou completamente o negócio dos computadores. Entretanto, o *MIT* persistiu e finalmente colocou o MULTICS para funcionar. E foi instalado por mais ou menos 80 empresas e universidades importantes mundo afora [3].

Um dos cientistas da *Bell Labs* que havia trabalhado no projeto MULTICS, Ken Thompson, decidiu escrever uma versão despojada e para um usuário do MULTICS. Esse trabalho mais tarde desenvolveu-se no sistema operacional UNIX, que se tornou popular no mundo acadêmico, em agências do governo e em muitas empresas [3].

Em 1987, Andrew Tanenbaum lançou um pequeno clone do UNIX, chamado MINIX, para fins educacionais. Em termos funcionais, o MINIX é muito similar ao UNIX [3].

Em 1991 Linus Torvalds começou um projeto inicialmente um emulador de terminal que era utilizado para acessar os servidores em UNIX da universidade Helsinki. Ele escreveu o código para especificamente para o *hardware* que utilizava um computador com um processador 80386 ele realizou o desenvolvimento no minix usando o *GNU C compiler* [6], [7], [8].

O Linux também é distribuído sob uma licença de código aberto. O código aberto segue estes locatários principais:

- A liberdade de executar o programa, para qualquer propósito.
- A liberdade de estudar como o programa funciona e alterá-lo para que ele faça o que você deseja.
- A liberdade de redistribuir cópias para que você possa ajudar seu vizinho.
- A liberdade de distribuir cópias de suas versões modificadas para terceiros.

Introdução 3

Esses pontos são cruciais para entender a ideia por trás do Linux. O Linux se transformou em um sistema de fácil acesso. Com a grande liberdade de se poder modificar o sistema ele proporcionou a criação de diversas distribuições uma vez que qualquer usuário pode criar uma que atenda a suas necessidades [1].

Nos próximos sessões iremos discutir sobre o sistema e aprofundar no Linux para assim entender, suas funcionalidade, modo de funcionamento e quais suas principais atuações.

Referências

- [1] T. L. Foundation, "What is linux?," 2020.
- [2] C. E. Morimoto, Servidores Linux: Guia prático. 1ª Edição, 2011.
- [3] A. S. Tanenbaum and H. Bos, Sistemas operacionais modernos. 4ª edição, 2016.
- [4] D. Comer, Operating system design: the xinu approach, linksys version. Boca Raton: CRC Press-Taylor and Francis, 2012.
- [5] T. L. I. Project, "Kernel mode definition," 2007.
- [6] L. Torvalds, ""what would you like to see most in minix?"," 1991.
- [7] M. Magazine., "The choice of a gnu generation an interview with linus torvalds," 1993.
- [8] L. Torvalds and D. Diamond, Just for Fun: The Story of an Accidental Revolutionary. HarperCollins, 2002.