Лабораторная работа №2 Реализация численного метода решения задачи Дирихле для уравнения Пуассона

Выполнил(а):	
Группа: Вариант №	_
Метод Постановка тестовой задач	(см. стр. 5)
$\Delta u(x, y) = \underline{\hspace{1cm}}$	
при <i>x</i> ∈ (,), y ∈(,);
$u(___, y) = ___$	$u(___, y) = ____,$
$u(x, \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}$	$u(x, \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}.$
$u\left(x,y\right) =\underline{\qquad}$. <u></u>
Постановка основной задач $\Delta u(x, y) = $	
при $x \in (_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	
<i>u</i> (, <i>y</i>) =	
$u(x, \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}$	$u(x, \underline{\hspace{1cm}}) = \underline{\hspace{1cm}}.$
-	на сетке небольшого размера
$n = _{___}$, $m = _{__}$ запишит	е в приложении 1.
5. В приложении 2 приведите	е тест, показывающий наличие вто-

рого порядка сходимости в задаче.

6. В приложении 3 приведите код вашей программы.

Приложение 1.

Основные результаты тестирования должны быть показаны в таблицах 1-4.

В таблице №1 запишите точное решение тестовой задачи.

В таблице №2 запишите результат первой итерации метода, посчитанной вручную.

В таблице №3 приведите результат первой итерации метода, посчитанной вашей программой.

В таблице №4 запишите результат работы метода после многих итераций (напр., при $\varepsilon_I = 10^{-12}$).

Таблица №1

	x_0	x_{I}	x_2	x_3	x_4
<i>y</i> ₄					
у3					
<i>y</i> ₂					
y_I					
У0					

Таблица №2

	x_0	x_1	x_2	x_3	χ_4
<i>y</i> ₄					
<i>y</i> ₃					
<i>y</i> ₂					
y_I					
Уо					

Таблица №3

	x_0	x_{I}	x_2	x_3	χ_4
<i>y</i> ₄					
у3					
<i>y</i> ₂					
y_I					
y_0					

Таблица №4

	x_0	x_1	x_2	x_3	χ_4
<i>y</i> ₄					
у 3					
<i>y</i> ₂					
<i>y</i> ₁					
Уо					

Приложение 2. Анализ порядка сходимости для тестовой задачи Укажите параметры итерационного метода

n×m	max U-V
Порядок сходимости	

Анализ порядка сходимости для основной задачи Укажите параметры итерационного метода

n×m	<i>max</i> <i>V</i> − <i>V</i> 2
Порядок	
Порядок сходимости	

Список методов для реализации (03)

<u>№</u> по спи- ску	ФИО	Задача из варианта	Метод
1.	АХМЕДЖАНОВ	1	Простой итерации τ=τ _{opt}
2.	БАЙКОВА	2	Минимальных невязок
3.	БЕСПАЛОВ	3	Простой итерации с чебышев- ским набором параметров
4.	волокитин	4	Сопряженных градиентов
5.	ГЕРАСИМОВ	5	Простой итерации τ=τ _{opt}
6.	КАРЧКОВ	6	Минимальных невязок
7.	КРИВОНОСОВ	7	Простой итерации с чебышев- ским набором параметров
8.	ЛАПТЕВА	8	Сопряженных градиентов
9.	МАЛЮТИНА	9	Простой итерации τ=τ _{opt}
10.	медведик	10	Минимальных невязок
11.	МЕТЕЛЕВ	1	Простой итерации с чебышев- ским набором параметров
12.	мошкина	2	Сопряженных градиентов
13.	НАУМОВ	3	Простой итерации τ=τ _{opt}
14.	НОВАК	4	Минимальных невязок
15.	ОВСЮХНО	5	Простой итерации с чебышев- ским набором параметров
16.	ПИЧУГИН	6	Сопряженных градиентов
17.	ПОЛКАНОВ	7	Простой итерации $\tau = \tau_{opt}$
18.	CAXAPOB	8	Минимальных невязок
19.	СЕМЕРЕНКО	9	Простой итерации с чебышев- ским набором параметров
20.	СЕМИЧЕВ	10	Сопряженных градиентов
21.	СТАРКОВ	1	Простой итерации $\tau = \tau_{opt}$
22.	МОРОЗОВА	2	Минимальных невязок