Lösungen zur schriftlichen Prüfung aus VO Energieversorgung am 25.06.2014

<u>Hinweis:</u> Bei den Berechnungen wurden alle Zwischenergebnisse in der technischen Notation¹ (Format ENG) dargestellt und auf drei Nachkommastellen gerundet. Für die weitere Rechnung wurde das gerundete Ergebnis verwendet.

Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

1. Thermische Auslegung eines Erdkabels (24 Punkte)

a. Wie groß ist der **spezifische thermische Gesamtwiderstand**? Zeichnen Sie den **Ersatz-schaltplan** für den Wärmestrom.

Thermischer Widerstand der inneren Isolierung:

$$R'_{W1} = 0.396 \frac{K \cdot m}{W}$$
 (1.1)

Thermischer Widerstand der äußeren Isolierung:

$$R'_{w2} = 0.121 \frac{K \cdot m}{W}$$
 (1.2)

Thermischer Widerstand des umgebenden Erdreichs:

$$R_{w3} = 0,774 \frac{K \cdot m}{W}$$
 (1.3)

Hieraus ergibt sich der Gesamtwiderstand

$$R_{\rm w}^{'} = 1{,}291 \frac{{\rm K} \cdot {\rm m}}{{\rm W}}$$
 (1.4)

Ersatzschaltbild für den Wärmestrom:

b. Welche **Dauerstrombelastung** des Innenleiters darf nicht überschritten werden bei einem maximal zulässigen Temperaturunterschied zur Umgebung des Innenleiters von 70°C?

$$I_{them} = 1521,578 \text{ A}$$
 (1.5)

c. Wie groß ist die bezogene **Betriebskapazität** des Kabels ($\varepsilon_{r, VPE} = 2,4$)?

$$C'_{B} = 1,878 \cdot 10^{-1} \frac{\mu F}{km}$$
 (1.6)

¹ http://de.wikipedia.org/wiki/Wissenschaftliche Notation

d. Berechnen Sie die thermisch übertragbare Scheinleistung dieses Dreiphasen-systems.

$$S_{therm} = 579,799 \text{ MVA}$$
 (1.7)

e. Wie groß sind der **bezogene Ladestrom** und die **bezogene Ladeleistung** dieses Dreiphasensystems?

$$I_{\rm C}' = 7,494 \, \frac{A}{\rm km}$$
 (1.8)

$$Q_{c}' = 2855,598 \frac{kvar}{km}$$
 (1.9)

f. Das Dreiphasensystem habe eine Länge von 50km. Wie groß ist die kapazitive **Blindleistung** des leerlaufenden Systems? Dieser Wert soll auf 40% reduziert werden. Wie groß ist die dafür notwendige **Induktivität?**

$$Q_{\rm c} = 142,78 \text{ Myar}$$
 (1.10)

$$L = 1,798 \text{ H}$$
 (1.11)

2. Leitungsunterbrechung

a. Ermitteln Sie Null-, Mit- und Gegenimpedanzen ($\underline{Z}_{(0)}$, $\underline{Z}_{(1)}$, $\underline{Z}_{(2)}$) von Leitung und Last.

$$\underline{Z}_{(0),\text{Leitung}} = (5 + j\mathbf{1}) \Omega$$

$$\underline{Z}_{(1),\text{Leitung}} = (2 + j\mathbf{1}) \Omega$$

$$\underline{Z}_{(2),\text{Leitung}} = (2 + j\mathbf{1}) \Omega$$
(2.1)

$$\underline{Z}_{(0),Last} = (20 + j5) \Omega$$
 $\underline{Z}_{(1),Last} = (20 + j5) \Omega$
 $\underline{Z}_{(2),Last} = (20 + j5) \Omega$ (2.2)

b. Geben Sie allgemein die **Phasenströme und die Phasenspannungsdifferenzen** an der Fehlerstelle an.

$$\underline{I}_{a} =
\underline{I}_{b} = 0
\underline{I}_{c} = 0$$
(2.3)

$$\Delta \underline{U}_{a} = 0$$

$$\Delta \underline{U}_{b} =$$

$$\Delta \underline{U}_{c} =$$
(2.4)

c. Leiten Sie die Fehlerbedingung für die Komponentenströme her.

$$\underline{I}_{(0)} = \underline{I}_{(1)} = \underline{I}_{(2)} \tag{2.5}$$

d. Vervollständigen Sie das **Schaltbild für die Komponentendarstellung**, zeichnen Sie **alle Komponenten** (Ersatzspannungsquellen und Impedanzen) ein und schreiben Sie die **Fehlerbedingung der Differenzen der Komponentenspannungen an**.

e. Wie groß sind die drei Komponentenströme $\underline{I}_{(0)}$, $\underline{I}_{(1)}$ und $\underline{I}_{(2)}$?

$$\underline{I}_{(0)} = (3,134 - j0,817) \text{ A}$$
 (2.7)

f. Wie groß sind die drei Phasenströme \underline{I}_a , \underline{I}_b und \underline{I}_c ? (komplexe Darstellung)

$$\begin{pmatrix} \underline{I}_{a} \\ \underline{I}_{b} \\ \underline{I}_{c} \end{pmatrix} = \begin{pmatrix} 9,36 - j2,442 \\ 0 \\ 0 \end{pmatrix} A$$
(2.8)

g. Wie groß sind die die **Differenzen der Komponentenspannungen** $\Delta \underline{U}_{(0)}$, $\Delta \underline{U}_{(1)}$ und $\Delta \underline{U}_{(2)}$? (**komplexe Darstellung**)

$$\begin{pmatrix}
\Delta \underline{U}_{(0)} \\
\Delta \underline{U}_{(1)} \\
\Delta \underline{U}_{(2)}
\end{pmatrix} = \begin{pmatrix}
-82,884 + j1,63 \\
157,416 - j0,812 \\
-73,524 - j0,812
\end{pmatrix} V$$
(2.9)

Da nicht mit dem exakten Wert von $I_{(0)} = I_{(1)} = I_{(2)}$ gerechnet wird ist die Summe der Spannungen nicht genau 0.

3. Wirtschaftlichkeitsvergleich – GuD oder Kohle zur Grundlastdeckung (24 Punkte)

a. Welche **Volllaststunden** müssten die beiden Kraftwerke mindestens pro Jahr aufweisen, um die angebende Grundlast wirtschaftlich erzeugen zu können? Welches **Kraftwerk** wäre dafür **günstiger**?

$$T_{m,GuD} = 5,406 \cdot 10^3 \frac{h}{a}$$
 (3.1)

$$T_{m,Kohle} = 5,860 \cdot 10^3 \frac{h}{a}$$
 (3.2)

Damit ist das Gaskraftwerk günstiger, da es bereits bei kleinerer Volllaststundenzahl wirtschaftlicher wird.

b. Der Grundlastpreis sinkt um 10% auf 63 €/MWh. Berechnen Sie für das GuD-Kraftwerk die sich (bei sonst gleichen Rahmenbedingungen) erforderlichen Volllaststunden für den wirtschaftlichen Betrieb. Interpretieren Sie das Ergebnis!

$$T_{m,GuD,neu} = 8,799 \cdot 10^3 \frac{h}{a}$$
 (3.3)

Das ist bereits höher als die Stundenzahl eines Jahres → unrealistisch, Betrieb zur Grundlastdeckung also nicht mehr wirtschaftlich möglich!

c. Um 700 €/ kW_{el} kann das GuD-Kraftwerk mit einer Wärmeauskopplung ausgerüstet werden, wodurch sich der Wirkungsgrad auf 65% erhöht (der Zugewinn wir vereinfachend dem elektrischen Wirkungsgrad angerechnet). Berechnen Sie über das kalorische Kostenäquivalent, ab welcher Einsatzdauer sich diese Investition rechnet.

$$T_{m,GuD,neu} = \alpha \cdot \frac{\Delta a}{\Delta b} = 2,064 \cdot 10^3 \frac{h}{a}$$
 (3.4)

d. Ist der erhöhte Aufwand aus Punkt c. unter Berücksichtigung der Volllaststunden aus Punkt a. eine sinnvolle Investition (kurze Begründung)?

Bei einer Volllaststundenzahl von ca. 5400 h/a ist die Investition sinnvoll (da eigentlich schon 2064 h/a ausreichend wären). Es kann sogar gezeigt werden, dass hierdurch das GuD-Kraftwerk wirtschaftlicher als das Kohle-Kraftwerk wird!

4. Fünf Sicherheitsregeln (4 Punkte)

Siehe Skriptum

5. Dreipoliger Kurzschluss (24 Punkte)

a. Berechnen Sie die für den Kurzschlussfall wirksame **Gesamtimpedanz** (Resistanz und Reaktanz) bezogen auf die Kurzschlussseite (Leitung).

Gesamtimpedanz (Mitsystem):

$$R_{ges}$$
 = 12,127 Ω
$$X_{ges}$$
 = 23,05 Ω (5.1)
$$Z_{ges}$$
 = 26,045 Ω

b. Zeichnen Sie die korrekte **Verschaltung** der **Komponentensysteme** am Kurzschlussort für den angegebenen Kurzschlussfall **in** das **untenstehende Diagramm** ein.

c. Berechnen Sie den Betrag des dreiphasigen **Anfangs-Kurzschlussstrom** $I_{k3p}^{''}$.

$$I_{k3p}^{"} = 0,732kA$$
 (5.2)

d. Berechnen Sie den Betrag des maximalen **dreiphasigen Stoßstrom** i_p .

$$i_p = 1,234 \text{ kA}$$
 (5.3)

e. Wie hoch ist der den Betrag des maximalen **dreiphasigen Stoßstrom** i_p , wenn der dreipolige **Fehler** jetzt auf der **110kV-Seite** des **Transformators** erfolgt?.

$$i_p = 48,435 \text{ kA}$$
 (5.4)