Interior point methods — an introduction

David Pisinger

14 November, 2006

- Linear Programming, duality
- Simplex and its complexity
- Interior point methods history
- Newton's method
- Obtaining $x \ge 0$ through barrier function
- Putting the pieces together
- Discussion

matrix notation, omit transposition x^T

Linear programming

minimize
$$2x_1 + 3x_2$$

subject to $1x_1 + 2x_2 \ge 4$
 $1x_1 + 1x_2 \ge 3$
 $x_1, x_2 \ge 0$

In matrix form

minimize
$$cx$$

subject to $Ax = b$
 $x \ge 0$

2

Linear programming

• Primal

minimize
$$cx$$

subject to $Ax = b$
 $x \ge 0$

1

• Dual

maximize
$$by$$

subject to $yA + s = c$
 $s \ge 0, y \in \mathbb{R}$

• *Weak duality*: Assume that *x* primal feasible and *y*, *s* dual feasible

$$by \le cx$$

Duality gap: $cx - by \ge 0$

• *Strong duality*: If the problem has a feasible solution, then there exists a primal-dual feasible pair (x^*, y^*, s^*) , so that

$$cx^* = by^*$$

• *Complementary slackness* (alternative formulation of strong duality). If $x \ge 0, y \in \mathbb{R}$ satisfy

$$Ax = b$$

$$yA + s = c$$

$$sx = 0$$

then (x, y, s) optimal.

$$cx - by = (yA + s)x - y(Ax) = sx$$

3

Solving Linear Programs

Optimization problem with slack variables added

maximize
$$2x_1 + 3x_2$$

subject to $1x_1 + 2x_2 - x_3 = 4$
 $1x_1 + 1x_2 - x_4 = 3$
 $x_1, x_2, x_3, x_4 \ge 0$

The set of constraints form a polyhedral. Optimal solution is found at extreme points

Extreme points (basic solutions)

$$(2,1,0,0)$$
 $(0,3,2,0)$ $(4,0,0,1)$

Basic set can be chosen in $\binom{n}{m}$ ways (i.e. exponential).

Complexity of Simplex

Klee and Minty (1975) proved that the Simplex algorithm may use exponential time

maximize

The problem has

- n variables
- n constraints
- 2^n extreme points
- Simplex, starting at x = (0, ..., 0), visits all extreme points
- optimal solution $(0,0,\ldots,0,5^n)$

5

Complexity of Simplex

For n = 3 simplex visits $2^3 = 8$ extreme points Assume (s_1, s_2, s_3) slack variables:

	nc	nba	sis	
basis	x_1	x_2	x_3	RHS
S1	1*			5
s_2	4	1		25
<i>s</i> ₃	8	4	1	125
-z	4	2	1	0

	nc	nba		
basis	s_1	x_2	x_3	RHS
x_1	1			5
s_2	-4	1*		5
s 3	-8	4	1	85
-z	-4	2	1	-20

	nonbasis			
basis	s_1	s_2	x_3	RHS
x_1	1*			5
x_2	-4	1		5
S3	8	-4	1	65
-z	4	-2	1	-30

	no	nba		
basis	x_1	s_2	<i>x</i> ₃	RHS
<i>S</i> ₁	1			5
x_2	4	1		25
<i>s</i> ₃	-8	-4	1*	25
-z	-4	-2	1	-50

	no	nbas		
basis	x_1	s_2	S 3	RHS
<i>S</i> 1	1*			5
x_2	4	1		25
x_3	-8	-4	1	25
-z	4	2	-1	-75

	no	nbas		
basis	s_1	s_2	S 3	RHS
x_1	1			5
x_2	-4	1*		5
x_3	8	-4	1	65
-z	-4	2	-1	-95

	nonbasis			
basis	s_1	x_2	<i>s</i> ₃	RHS
x_1	1*			5
<i>s</i> ₂	-4	1		5
x_3	-8	4	1	85
-z	4	-2	-1	-105

	no	nba		
basis	x_1	x_2	S 3	RHS
s_1	1*			5
<i>s</i> ₂	4	1		25
x_3	8	4	1	125
-z	-4	-2	-1	-125

6

Interior-point methods — history

- 40ies: Simplex algorithm, Dantzig.
- Klee and Minty (1975) proved that a variant of Simplex may use exponential time. Stimulated research in alternatives.
- Khachiyan (1979) polynomial algorithm, ellipsoid method Bad performance in practice.
- Karmarkar (1984) polynomial algorithm path-following
- Path following method now described by Newton's method, barrier function

Newton's method

 $f(x): \mathbb{R}^n \to \mathbb{R}^n$ smooth nonlinear function, solve:

Taylor's theorem (linearization)

$$f(x^0 + d_x) \approx f(x^0) + \nabla f(x^0) d_x$$

If x^0 initial guess, compute d_x such that $f(x^0 + d_x) = 0$.

$$f(x^0) + \nabla f(x^0)d_x = 0$$
 $d_x = -(\nabla f(x^0))^{-1}f(x^0)$

$$d = -(\nabla f(r^0))^{-1} f(r^0)$$

 d_x defines search direction, new point x^+

$$x^+ = x^0 + \alpha d_x$$

where $0 < \alpha < 1$ is step size.

Nonlinear programming

Assume $c: \mathbb{R}^n \to \mathbb{R}$ and $g: \mathbb{R}^n \to \mathbb{R}^m$ smooth functions.

minimize
$$c(x)$$

subject to $g(x) = 0$

To use Newton's method formulate as

$$f(x) = 0$$

Lagrangian function, y Lagrangian multipliers:

$$L(x, y) = c(x) - yg(x)$$

First order optimality criterion

$$\begin{array}{rcl} \nabla_x L(x,y) &=& \nabla c(x) - \nabla g(x)y &=& 0 \\ \nabla_y L(x,y) &=& -g(x) &=& 0 \end{array}$$

Necessary but not sufficient condition

If c(x) is convex, and g(x) is affine, then sufficient

Newton's method for optimality criterion

Looking for solution to "f(x, y) = 0" i.e.

$$\begin{array}{lll} \nabla_x L(x,y) &=& \nabla c(x) - \nabla g(x)y &=& 0 \\ \nabla_y L(x,y) &=& -g(x) &=& 0 \end{array}$$

Taylor expansion in $(x, y) = (x^0, y^0)$:

$$f(x^0, y^0) + \nabla f(x^0, y^0)(d_x, d_y) = 0$$

$$\left(\begin{smallmatrix} \nabla c(\mathbf{x}^0) - \nabla g(\mathbf{x}^0)^T \mathbf{y}^0 \\ -g(\mathbf{x}^0) \end{smallmatrix} \right) + \left(\begin{smallmatrix} \nabla^2 c(\mathbf{x}^0) - \sum_{i=1}^m y_i \nabla^2 g_i(\mathbf{x}^0) & -\nabla g(\mathbf{x}^0)^T \\ -\nabla g(\mathbf{x}^0) & 0 \end{smallmatrix} \right) \left(\begin{smallmatrix} d_\mathbf{x} \\ d_\mathbf{y} \end{smallmatrix} \right) = \mathbf{0}$$

next point

$$\left(\begin{smallmatrix} x^+ \\ y^+ \end{smallmatrix}\right) = \left(\begin{smallmatrix} x^0 \\ y^0 \end{smallmatrix}\right) + \alpha \left(\begin{smallmatrix} d_x \\ d_y \end{smallmatrix}\right)$$

10

Primal problem, barrier function

Linear programming model

minimize
$$cx$$

subject to $Ax = b$
 $x \ge 0$

Newton's method cannot handle inequalities.

New objective:

minimize
$$cx - \mu \sum_{j=1}^{n} \ln(x_j)$$

subject to $Ax = b$
 $x > 0$

where $\mu > 0$ is a small constant.

$$\lim_{x_j\to 0} -\mu \ln(x_j) = \infty$$

If x > 0 initially, then barrier function maintains x > 0. Solution to barrier problem is approx. of original problem

11

Primal problem, optimality condition

Define optimality conditions for barrier problem

$$L(x,y) = cx - \mu \sum_{j=1}^{n} \ln(x_j) - y(Ax - b)$$

Differentiation gives

$$\frac{\partial L}{\partial x_j} = c_j - \mu x_j^{-1} - A_{:j}^T y$$
 and $\frac{\partial L}{\partial y_i} = b_i - A_{i:x}$

In vector notation

$$\nabla_x L(x, y) = c - \mu X^{-1} e - A^T y = 0$$

$$\nabla_y L(x, y) = b - Ax = 0$$

where

$$X = \begin{pmatrix} x_1 & 0 & \cdots & 0 \\ 0 & x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & x_n \end{pmatrix}$$

since x > 0 the inverse X^{-1} exists

If we introduce $s = \mu X^{-1}e$ then

$$c-s-A^{T}y = 0$$

$$b-Ax = 0$$

$$s = \mu X^{-1}e$$

or equivalent (Kuhn-Tucker optimality condition)

$$\begin{cases}
A^T y + s = c \\
Ax = b \\
Xs = \mu e
\end{cases}$$

Convexity of barrier function

If objective function is convex, then optimality condition is sufficient

$$cx - \mu \sum_{j=1}^{n} \ln(x_j)$$

- The function ln(x) is concave, i.e. -ln(x) is convex
- Barrier function is sum of convex functions
- · Barrier function is convex

Path following methods

primal *central path* is $\{x(\mu) : \mu > 0\}$ dual *central path* is $\{y(\mu), s(\mu) : \mu > 0\}$

Example

13

14

How large is the error?

$$A^T y + s = c$$

 $Ax = b$
 $Xs = ue$

A feasible solution (x, y, s) to the system is

- Primal feasible: Ax = b and x > 0.
- Dual feasible: $A^T y + s = c$ and $s = \mu X^{-1} e > 0$
- Duality gap:

$$cx - yb = (yA + s)x - y(Ax)$$

$$= xs$$

$$= x(\mu X^{-1}e)$$

$$= \mu ee = \mu n$$

Since an optimal solution x^* must satisfy $by \le cx^* \le cx$

$$cx - cx^* \le n\mu$$

Overall principle

Problem: find primal-dual pair (x, y, s) with $x, s \ge 0$ such that

$$F(x,y,s) = \begin{pmatrix} Ax - b \\ yA + s - c \\ sx \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Algorithm:

• Select a tolerance:

$$||Ax - b|| \le \varepsilon_P$$

$$||yA + s - c|| \le \varepsilon_D$$

$$sx \le \varepsilon_G$$

- Choose an initial solution x > 0, y > 0, s > 0
- \bullet Based on the tolerance choose a sufficiently small μ
- Use Newton's method on the barrier function
- Terminate when the above tolerance is satisfied

Note

$$\nabla F(x, y, s) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & I \\ S & 0 & X \end{pmatrix}$$

Step size, and convergence

$$\alpha^{\max} = \arg\max_{0 \le \alpha} \left\{ \left(\begin{array}{c} x^k \\ s^k \end{array} \right) + \alpha \left(\begin{array}{c} d_x \\ d_s \end{array} \right) \ge 0 \right\}$$

and for some $\theta \in]0,1[$

$$\alpha := \min(\theta \alpha^{\max}, 1)$$

ensures convergence. In practice $\theta = 0.9$ is good (but no polynomial guarantee!)

Number of steps

"interior point methods solve an LP in less than 100 iterations even if the problem contains millions of variables"

Complexity of each step

Derive d_x, d_y, d_s from

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A & I \\ S & 0 & X \end{pmatrix} \begin{pmatrix} d_x \\ d_y \\ d_s \end{pmatrix} = \begin{pmatrix} Ax - b \\ yA + s - c \\ sx \end{pmatrix}$$

next point

$$\begin{pmatrix} x^+ \\ y^+ \\ s^+ \end{pmatrix} = \begin{pmatrix} x^0 \\ y^0 \\ s^0 \end{pmatrix} + \alpha \begin{pmatrix} d_x \\ d_y \\ d_s \end{pmatrix}$$

17

Dual problem, barrier function

Linear programming model

maximize by subject to
$$yA + s = c$$
 $s \ge 0, y \in \mathbb{R}$

Introduce barrier function

maximize
$$by + \mu \sum_{j=1}^{n} \ln(s_j)$$

subject to $yA + s = c$
 $s > 0$

Lagrangian function

$$L(x, y, s) = by + \mu \sum_{i=1}^{n} \ln(s_i) - x(yA + s - c)$$

Optimality conditions

$$\nabla_x L(x, y, s) = c - s - yA = 0$$

$$\nabla_y L(x, y, s) = b - Ax = 0$$

$$\nabla_s L(x, y, s) = \mu S^{-1} e - x = 0$$

which can be reduced to

$$\begin{cases} yA + s = c, & s > 0 \\ Ax = b \\ Xs = \mu e \end{cases}$$

Essentially the same as for primal problem

18

Primal-dual approach

Two sets of optimality conditions

$$\begin{cases} Ax = b, & x > 0 \\ yA + s = c, & s > 0 \\ Xs = \mu e \end{cases}$$

perturbed KKT conditions. Let

$$F_{\gamma}(x, y, s) = \begin{pmatrix} Ax - b \\ yA + s - c \\ Xs - yue \end{pmatrix}$$

where $\mu = xs/n$ and $\gamma \ge 0$. Assume $(\overline{x}, \overline{y}, \overline{s})$ given. One iteration of Newton method to $F_{\gamma}(\overline{x}, \overline{y}, \overline{s}) = 0$ i.e.

$$\nabla F_{\gamma}(\overline{x}, \overline{y}, \overline{s}) \begin{pmatrix} d_{x} \\ d_{y} \\ d \end{pmatrix} = -F_{\gamma}(\overline{x}, \overline{y}, \overline{s})$$

Since

$$\nabla F_{\gamma}(\overline{x}, \overline{y}, \overline{s}) = \begin{pmatrix} A & 0 & 0 \\ 0 & A & I \\ \overline{S} & 0 & \overline{X} \end{pmatrix}$$

we obtain

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A & I \\ \overline{S} & 0 & \overline{X} \end{pmatrix} \begin{pmatrix} d_x \\ d_y \\ d_s \end{pmatrix} = \begin{pmatrix} \overline{r}_P \\ \overline{r}_D \\ -\overline{X}\overline{s} + \gamma \overline{\mu} e \end{pmatrix}$$

primal residual $\overline{r}_P = b - A\overline{x}$ dual residual $\overline{r}_D = c - \overline{y}A - \overline{s}$

The algorithm

- 1 choose (x^0, y^0, s^0) with $x^0, s^0 > 0$, and $\varepsilon_P, \varepsilon_D, \varepsilon_C > 0$
- 2 for k := 0 to ∞
- 3 calculate residuals

$$\overline{r}_{P}^{k} = b - A\overline{x}^{k}$$

$$\overline{r}_{D}^{k} = c - \overline{y}^{k}A - \overline{s}^{k}$$

$$\mu^{k} = x^{k}s^{k}/n$$

- 4 if $\|\overline{r}_P^k\| \le \varepsilon_P$, $\|\overline{r}_D^k\| \le \varepsilon_D$, $\|\mu^k\| \le \varepsilon_G$ then stop
- 5 choose γ < 1 and solve

$$\begin{pmatrix} A & 0 & 0 \\ 0 & A & I \\ \overline{S} & 0 & \overline{X} \end{pmatrix} \begin{pmatrix} d_x \\ d_y \\ d_s \end{pmatrix} = \begin{pmatrix} \overline{r}_P \\ \overline{r}_D \\ -\overline{X}\overline{s} + \gamma \overline{\mu} e \end{pmatrix}$$

5 compute

$$\alpha^{\max} = \arg\max_{0 \le \alpha} \left\{ \left(\begin{array}{c} x^k \\ s^k \end{array} \right) + \alpha \left(\begin{array}{c} d_x \\ d_s \end{array} \right) \ge 0 \right\}$$

6 for some $\theta \in]0,1[$

$$\alpha := \min(\theta \alpha^{\max}, 1)$$

7 update

$$x^{k+1} := x^k + \alpha d_x,$$

$$y^{k+1} := y^k + \alpha d_y,$$

$$s^{k+1} := s^k + \alpha d_s$$

Numerical Example

Problem:

minimize
$$-1x_1 - 2x_2$$

subject to $x_1 + x_2 \le 1$
 $x_1, x_2 \ge 0$

Iterations

k	x_1^k	x_2^k	$x^k s^k$
0	1.00e0	1.00e0	3.0e0
1	6.40e-1	1.18e0	1.1e0
2	0.91e-2	1.13e0	2.5e-1
3	0.91e-3	9.93e-1	4.1e-2
4	1.91e-3	9.98e-1	6.1e-3
5	2.42e-4	1.00e0	7.2e-4
6	2.45e-5	1.00e0	7.3e-5
7	2.45e-6	1.00e0	7.4e-6
8	2.56e-7	1.00e0	7.3e-7

21

Worst-case time complexity

- Simplex: exponential, but heuristics often get round this problem
- *Interior*: approximate solution, polynomial time in n and ε

Characterization of the iterative sequence

- Simplex: generate a sequence of feasible basic solutions
- *Interior*: generate a sequence of feasible primal and dual solutions
- Simplex: primal solution decreases monotonically
- Interior: Duality gap decreases monotonically
- Simplex: many iterations
- Interior: few iterations (20-30)
- Simplex: one simplex iteration $O(n^2)$
- *Interior*: one iteration $O(n^3)$

22

Generated solutions

- Simplex: Returns an optimal basic solution
- *Interior*: Returns an ε -optimal solution $cx by \le \varepsilon$
- Interior: Solution is at the analytic center of the optimal face
- Interior: Basis solution can be constructed in strongly polynomial time

Initialization

- Simplex: Needs a feasible solution to start
- Simplex: First phase of algorithm finds feasible solution
- *Interior*: Self-dual version can be initialized by any positive vector

Degeneracy

Basis solution x_B is degenerate if $\exists i \in I_B : x_i = 0$

- *Simplex*: objective function remains same in simplex iteration, cycling
- *Interior*: theoretical and practical complexity is not affected by degeneracy

Practical performance

- *Simplex*: often good performance despite worst-case exponential time
- *Interior*: best suited for huge problems, highly degenerate problems

Warm-start

- Simplex: easy to warm-start from previous basis solution
- Interior: not as efficient as simplex for warm-start

Integer-linear problems

- Simplex: clear winner, generate cuts from basic solutions, warm-start in branch-and-bound
- *Interior*: basic solution *can* be constructed, no warmstart

Generalizations

- *Simplex*: generalized to nonlinear, and semi-infinite optimization problems
- *Interior*: same generalizations as simplex, moreover *conic* optimization

Perspectivation

- Interior point methods is one of the best examples of theoretical goals leading to practical algorithms
- Interior point methods has started competition leading to innovation
- Interior point methods can be extended to a number of cones (*self-dual homogeneous cones*)
 - $-\mathbb{R}^n$ (linear programming)
 - vectorized symmetric matrices over real numbers (semidefinite programming)
 - vectorized Hermitian matrices over complex numbers
 - vectorized Hermitian matrices over quaternions
 - vectorized Hermitian 3 × 3 matrices over octonions
- With conic optimization we can solve "more" problems than we asked for
- Challenge to model builders to use new relaxations

25 26