Funzioni reali di variabili reali

Davide Borra - 5LA

A.S. 2021-2022

Indice

T	Det	inizione e caratteristiche	1
	1.1	Classificazione	1
	1.2	Dominio	1
	1.3	Zeri di funzione	2
	1.4	Studio del segno	2
2	Pro	pprietà	3
_	2.1	Funzioni iniettive, suriettive e biiettive	3
	2.2	Monotonia	3
	2.3	Funzioni periodiche	4
	2.4	Funzioni pari e dispari	4
3	D	nzioni elementari	-
0	3.1	La funzione lineare	5 5
	3.2		5
	3.3	La parabola	5
	3.4	La funzione irrazionale	5
	_	Le funzioni goniometriche	
	3.5	· ·	6
			6
		3.5.2 La funzione coseno	6
		e e e e e e e e e e e e e e e e e e e	6
		3.5.4 La funzione cotangtente	6
		3.5.5 La funzione arcoseno	6
		3.5.6 La funzione arcocoseno	7 7
	9 C	3.5.7 La funzione arcotangente	
	3.6	La funzione esponenziale	7
	3.7	La funzione logaritmo	7
4	Gra	afica dedotta	7
	4.1	Trasformazioni geometriche	7
		4.1.1 Simmetria rispetto agli assi	7
		4.1.2 Traslazione	7
		4.1.3 Dilatazione	8
	4.2	Funzione inversa	8
	4.3	Funzioni con valori assoluti	8
		4.3.1 Valore assoluto di una funzione	8
		4.3.2 Funzione di un valore assoluto	8
		4.3.3 Funzioni con più valori assouti nidificati	8
		4.3.4 Funzioni con più valori assoluti in sequenza	9
	4.4	Reciproco di una funzione	9
	4.5	Quadrato di una funzione	11
	4.6	Radice di una funzione	11
	4.7	Esponenziale di una funzione	12
	4.8	Logaritmo di una funzione	13

INDICE INDICE

	dio di funzione completo	
5.1	Classificazione	14
5.2	Dominio	14
5.3	Simmetrie	14
5.4	Intersezioni con gli assi cartesiani	14
5.5	Studio del segno	14
5.6	Limiti, asintoti e discontinuità	14
5.7	Derivata prima	15
5.8	Derivata seconda	15

1 Definizione e caratteristiche

DEF. Presi due insiemi D (dominio) e C (codominio) tali che $D \subset \mathbb{R}$ e $C \subset \mathbb{R}$, si dice **funzione** f da D a C una relazione che ad ogni elemento di D associa uno e un solo elemento di D. In simboli

$$\begin{array}{cccc} f: & D & \longrightarrow & C \\ & x & \longmapsto & f(x) \end{array}$$

Se ad ogni elemento $x \in D$ la funzione f associa un elemento $y \in C$, y (variabile dipendente) è detta immagine di x tramite f, mentre x (variabile indipendente) è detta controimmagine di y tramite f. La scrittura y = f(x) è detta espressione analitica della funzione in forma esplicita. Le funzioni possono anche essere scritte in forma implicita come g(x,y) = 0. Si definisce inoltre un insieme $\text{Im } f \subseteq C$ detto immagine di f.

$$\operatorname{Im} f = \{ f(x) \mid x \in D \}$$

1.1 Classificazione

Le funzioni si dividono in due grandi categorie: le funzioni algebriche e le funzioni trascendenti. Una funzione si dice **algebrica** se la sua espressione analitica contiene solo operazioni di somma algebrica, moltiplicazione, divisione, elevamento a potenza ed estrazione di radice, altrimenti si dice **trascendente**. Le funzioni algebriche sono a loro volta divise in

- funzioni polinomiali: possono essere scritte sotto forma di polinomi. Esse sono dette *lineari* se il polinomio che le identifica è di primo grado rispetto alla variabile indipendente, *quadratiche* se è di secondo grado e *cubiche* se di terzo.
- funzioni fratte: possono essere scritte come quoziente di due polinomi, o comunque la loro scrittura analitica presenta una variabile x al denominatore.
- funzioni irrazionali: nella scrittura analitica compare un radicale al cui radicando è presente la variabile x.

1.2 Dominio

DEF. Si dice dominio naturale o campo di esistenza di una funzione y = f(x) l'insieme più ampio dei valori reali che è ossibile assegnare alla variabile x per far sì che esista anche il corrispondente valore i y

Funzione	Dominio
Funzioni polinomiali	
$y = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0$	${\mathbb R}$
Funzioni fratte	
$y = \frac{P(x)}{Q(x)}$ $P \in Q$ polinomi	$\mathbb{R} \setminus \{x \in \mathbb{R} Q(x) = 0\}$
Funzioni irrazionali	
$y = \sqrt[n]{f(x)}$	$\langle \begin{cases} \{x \in \mathbb{R} f(x) \ge 0 \} \text{ se } n \text{ pari} \\ \text{dominio di } f(x) \text{ se } n \text{ dispari} \end{cases}$
Funzioni logaritmiche	

Funzione	Dominio
$y = \log_a f(x) \text{con } a > 0 \land a \neq 1$	$\{x \in \mathbb{R} f(x) > 0\}$
Funzioni esponenziali	
$y = a^{f(x)}$ con $a > 0 \land a \neq 1$ $y = [f(x)]^{g(x)}$ α irrazionale $f(x)^{\alpha}$ se $\alpha > 0$ se $\alpha < 0$	dominio di $f(x)$ $\{x \in \mathbb{R} f(x) > 0\} \cap \text{dominio di } g(x)$ $f(x) \ge 0$ $f(x) > 0$
Funzioni goniometriche	
$y = \operatorname{sen} x, y = \cos x$ $y = \operatorname{tg} x$ $y = \cot x$ $y = \operatorname{arcsen} x, y = \operatorname{arccos} x$ $y = \operatorname{arctg} x, y = \operatorname{arccotg} x$	\mathbb{R} $\mathbb{R} \setminus \frac{\pi}{2} + k\pi, \text{ con } k \in \mathbb{Z}$ $\mathbb{R} \setminus k\pi, \text{ con } k \in \mathbb{Z}$ $[-1, 1]$ \mathbb{R}

1.3 Zeri di funzione

DEF. Preso un numero reale λ , si dice zero (radice) della funzione y = f(x) se $f(\lambda) = 0$

Teorema (Teorema fondamentale dell'algebra). Sia P(x) un polinomio di grado n a coefficienti reali. Nell'insieme dei numeri reali, esso ha al più n radici.

1.4 Studio del segno

Data una funzione y = f(x), essa può assumere sia valori positivi che valori negativi. Studiare il segno di una funzione significa determinare per quali intervalli di valori della variabile x, la variabile y assume valori positivi, e per quali valori negativi. Generalmente per determinare il segno di una funzione è sufficiente risolvere la disequazione

Esempio 1.1. Si determinino dominio, radici e segno della funzione $y = x^2 + x - 2$

- Dominio: Si tratta di una funzione polinomiale, di conseguenza il suo dominio è l'insieme ℝ
- Zeri: Per determinare gli zeri bisogna risolvere l'equazione f(x) = 0, ovvero

$$x^2 + x - 2 = 0$$

$$(x-1)(x+2) = 0$$

$$x_1 = 1 \quad x_2 = -2$$

- Segno: Risolviamo la disequazione

$$x^2 + x - 2 > 0$$

$$(x-1)(x+2) > 0$$

prodotto di fattori > 0: soluzioni esterne $x < -2 \lor x > 1$

2 Proprietà

2.1 Funzioni iniettive, suriettive e biiettive

DEF. Data una funzione $f: D \to C$, essa si dice:

- iniettiva se ogni elemento di C è immagine di al più un elemento di D
- suriettiva se ogni elemento di C è immagine di almeno un elemento di D
- biiettiva se è sia iniettiva che suriettiva.

Per dimostrare che una funzione è iniettiva, è possibile dimostrare che $\forall x_1, x_2 \in D, x_1 \neq x_2 \rightarrow f(x_1) \neq f(x_2)$.

Ogni funzione è suriettiva nel proprio codominio, per questo generalmente la suriettività viene analizzata in \mathbb{R} .

Un metodo semplice per capire dal grafico se una funzione è iniettiva e/o suriettiva (attenzione, non equivale ad una dimostrazione) è il criterio della retta orizzontale. Una funzione è iniettiva se ogni retta parallela all'asse x che è possibile tracciare interseca la funzione in $al\ più$ un punto, suriettiva se la interseca in almeno un punto e biiettiva se in esattamente un punto.

2.2 Monotonia

DEF (Funzione crescente in senso stretto). Data una funzione y = f(x) di dominio $D \subseteq \mathbb{R}$, essa si dice crescente in senso stretto in un intervallo $I \subseteq D$ se $\forall x_1, x_2 \in I, x_1 < x_2 \to f(x_1) < f(x_2)$.

DEF (Funzione crescente in senso lato). Data una funzione y = f(x) di dominio $D \subseteq \mathbb{R}$, essa si dice crescente in senso lato (o non decrescente) in un intervallo $I \subseteq D$ se $\forall x_1, x_2 \in I, x_1 < x_2 \to f(x_1) \leq f(x_2)$.

DEF (Funzione decrescente in senso stretto). Data una funzione y = f(x) di dominio $D \subseteq \mathbb{R}$, essa si dice decrescente in senso stretto in un intervallo $I \subseteq D$ se $\forall x_1, x_2 \in I, x_1 < x_2 \to f(x_1) > f(x_2)$.

DEF (Funzione decrescente in senso lato). Data una funzione y = f(x) di dominio $D \subseteq \mathbb{R}$, essa si dice decrescente in senso lato (o non crescente) in un intervallo $I \subseteq D$ se $\forall x_1, x_2 \in I, x_1 < x_2 \to f(x_1) \geq f(x_2)$.

Esempio 2.1. Studiare la monotonia di y = |x+1| + |x-2|

Nella funzione in figura sono chiaramente visibili tre intervalli:

- nell'intervallo] $-\infty$; -1[la funzione è decrescente in senso stretto;
- nell'intervallo] -1; 2[la funzione è costante, è quindi sia crescente che decrescente in senso lato;
- nell'intervallo]2; $+\infty$ [la funzione è crescente in senso stretto.

Inoltre:

- nell'intervallo] $-\infty$; 2[la funzione è decrescente in senso stretto;
- nell'intervallo] 1; $+\infty$ [la funzione è crescente in senso stretto.

Una funzione è crescente in un intervallo I se e solo se la sua derivata è positiva, decrescente se la derivata è negativa, costante se la derivata è nulla.

DEF (Funzione monotòna). Una funzione $f: D \to C$, con $D \subseteq \mathbb{R}$, si dice **monotona in senso stretto** in un intervallo $I \subseteq D$ se in quel'intervallo è sempre crescente o sempre decrescente in senso stretto. Analoga definizione può essere data per una funzione monotona in senso lato.

Nell'esempio precedente la funzione è monotona in senso stretto negli intervalli $]-\infty;-1[e]2;+\infty[$

2.3 Funzioni periodiche

DEF. Una funzione y = f(x) si dice **periodica** di periodo T (con T > 0) se, per qualsiasi numero $k \in \mathbb{Z}$,

$$f(x) = f(x + kt)$$

Se una funzione è periodica, allora non è iniettiva.

Esempio 2.2. La funzione $y = \operatorname{sen} x$ è una funzione periodica di periodo $T = 2\pi$

2.4 Funzioni pari e dispari

Si indica con D un sottoinsieme dell'insieme dei numeri reali \mathbb{R} tale che se $x \in D$, allora $-x \in D$.

DEF (Funzione pari). Data una funzione y = f(x), essa si dice pari in D se $\forall x \in D, f(-x) = f(x)$, ovvero la funzione è simmetrica rispetto all'asse delle ordinate.

DEF (Funzione dispari). Data una funzione y = f(x), essa si dice dispari in D se $\forall x \in D, f(-x) = -f(x)$, ovvero la funzione è simmetrica rispetto all'origine degli assi.

NB.: Perché una funzione presenti simmetrie deve essere rispettata la condizione necessaria per cui il dominio deve essere simmetrico rispetto a 0:

$$\forall x \in D, -x \in D$$

Esempio 2.3. La funzione $f(x) = x^2$ è pari, mentre la funzione $g(x) = x^3$ è dispari. Infatti

$$f(-x) = (-x)^2 = x^2 = f(x)$$

$$g(-x) = (-x)^3 = -x^3 = -g(x)$$

3 Funzioni elementari

3.1 La funzione lineare

La funzione lineare è un'equazione polinomiale di primo grado. Il grafico ad essa associato corrisponde ad una retta. Nel caso dela funzione y=x si tratta della bisettrice I-III quadrante ed è l'identità associata a \mathbb{R} . Nell'equaione generica

$$y = mx + q$$

il parametro m, detto coefficiente angolare, identifica la pendenza della retta, mentre il parametro q, detto ordinata d'origine, rappresenta il punto di intersezione con l'asse y, di coordinate (0,q).

3.2 La parabola

La funzione quadratica $y=x^2$ è un'equazione polinomiale di secondo grado. Il grafico ad essa associato corrisponde ad una parabola. Nel caso della funzione elementare $y=x^2$ si tratta di una parabola con il vertice nell'origine degli assi e concavità verso l'alto. Nel caso du una parabola generica

$$y = ax^2 + bx + c$$

- l'asse di simmetria ha equazione $x = -\frac{b}{2a}$
- il vertice ha coordinate $V\left(-\frac{b}{2a}; -\frac{\Delta}{4a}\right)$
- il fuoco ha coordinate $F\left(-\frac{b}{2a}; \frac{1-\Delta}{4a}\right)$
- la direttrice ha equazione $y = -\frac{1+\Delta}{4a}$
- \bullet la parabola ha concavità verso l'alto se a>0o verso il basso se a<0

3.3 L'iperbole equilatera e la funzione omografica

La funzione omografica è caratterizzata dalla relazione di proprzionalità inversa tra le due variabili. L'equazione $y=\frac{k}{x}$ rappresenta un'iperbole equilatera riferita ai propri asintoti con semiasse trasverso $a=\sqrt{2|k|}$, semidistanza focale $c=2\sqrt{|k|}$ e fuochi in $F(\pm\sqrt{2k};\pm\sqrt{2-k})$. Applicando una traslazione di vettore $\vec{v}(-\frac{d}{c},\frac{a}{c})$, si ottiene una funzione omografica generica di equazione

$$y = \frac{ax+b}{cx+d}$$
 se $c \neq 0$ e $ad \neq bc$

Essa a un asintoto verticale di equazione $x=-\frac{d}{c}$, un asintoto orizzontale di equazione $y=\frac{a}{c}$ e di conseguenza ha centro $C(-\frac{d}{c},\frac{a}{c})$. Per ricavare gli altri elementi caratteristici è sufficiente determinare $k=\frac{bc-ad}{c^2}$ e poi applicare un'eventuale traslazione di vettore \vec{v}

-2 -1 1 2 3 4

3.4 La funzione irrazionale

La funzione irrazionale $y=\sqrt{x}$ è l'inversa della funzione quadratica e si ottiene restringendone il dominio e applicando una simmetria rispetto alla biseetrice I-III quadrante. La funzione che si ricava ha dominio $D:[0;+\infty[$ e codominio $C:[0;+\infty[$.

3.5 Le funzioni goniometriche

3.5.1 La funzione seno

La funzione seno è una funzione goniometrica trascendente, periodica in $T=2\pi$. Essa ha dominio $D:\mathbb{R}$ e codominio C:[-1;1]. Presenta zeri di funzione per $x=k\pi$ $(k\in\mathbb{Z})$, assume valori positivi in $]2k\pi;\pi+2k\pi[$ e negativi altrove. Essa può essere scritta nella forma generica

$$y = A \operatorname{sen}(\omega x + \varphi) + B$$

dove i parametri rappresentano:

- A: ampiezza, rappresenta la dilatazione verticale della funzione, la semidifferenza tra i valori y dei massimi e dei minimi.
- \bullet ω : pulsazione, è collegata al periodo dalla relazione $\omega=\frac{2\pi}{T}$
- φ : fase, legato alla traslazione orizzontale
- B: la traslazione verticale

3.5.2 La funzione coseno

La funzione coseno è una funzione goniometrica trascendente, periodica in $T=2\pi$. Essa ha dominio $D:\mathbb{R}$ e codominio C:[-1;1]. Presenta zeri di funzione per $x=\frac{\pi}{2}+k\pi$ $(k\in\mathbb{Z})$, assume valori positivi in $]-\frac{\pi}{2}+k\pi;\frac{\pi}{2}+k\pi[$ e negativi altrove.

3.5.3 La funzione tangente

La funzione tangente è una funzione goniometrica trascendente, periodica in $T=\pi$. Essa ha dominio $D: x \neq \frac{\pi}{2} + k\pi \quad (k \in \mathbb{Z})$ e codominio $C: \mathbb{R}$. Presenta zeri di funzione per $x=k\pi$, assume valori positivi in $]k\pi; \frac{\pi}{2} + 2k\pi[$ e negativi altrove.

3.5.4 La funzione cotangtente

La funzione cotangente è una funzione goniometrica trascendente, periodica in $T=\pi$. Essa ha dominio $D:x\neq k\pi$ $(k\in\mathbb{Z})$ e codominio $C:\mathbb{R}$. Presenta zeri di funzione per $x=\frac{\pi}{2}+k\pi$, assume valori positivi in $]k\pi;\frac{\pi}{2}+2k\pi[$ e negativi altrove.

3.5.5 La funzione arcoseno

La funzione arcoseno (in figura) è l'inversa della funzione seno. Per poter invertire questa funzione è necessario restringerne il dominio a $[-\frac{\pi}{2}; \frac{\pi}{2}]$ e il codominio a [-1; 1]. di conseguenza la funzione arcoseno ha dominio D: [-1; 1] e codominio $C: [-\frac{\pi}{2}; \frac{\pi}{2}]$. Essa presenta inoltre un solo zero di funzione per x=0.

3.5.6 La funzione arcocoseno

Analogamente alla funzione arcoseno, la funzione arcocoseno è l'inversa del coseno. Anche in questo caso il dominio e il codominio devono essere ristretti a $D':[0;\pi]$ e C':[-1;1]. di conseguenza la funzione arcoseno ha dominio D:[-1;1] e codominio $C:[0;\pi]$. Essa presenta inoltre un solo zero di funzione per x=-1. Il grafico consiste in una traslazione verso l'alto di π unità del grafico della funzione arcoseno.

3.5.7 La funzione arcotangente

La funzione arcotangente è la funzione inversa della tangente. In questo caso è necessario ridurre solamente il dominio della funzione di partenza, per cui l'arcotangente ha dominio $D:\mathbb{R}$ e codominio $C:]-\frac{\pi}{2};\frac{\pi}{2}[$. Essa presenta due asintoti orizzontali agli estremi del codominio e uno zero di funzione per x=0.

Esiste anche la funzione arcocotangente, inversa della cotangente, che consiste in una traslazione verso l'alto d π unità della funzione $y=-\arctan x.$

3.6 La funzione esponenziale

La funzione esponenziale $y=a^x$ è una funzione trascendente. Essa ha dominio \mathbb{R} e codominio $]0;+\infty[$, e presenta un asintoto orizzontale a 0. Di conseguenza non ha zeri di funzione. Se a>1 La funzione è strettamente crescente, mentre se 0< a<1 la funzione è strettamente decrescente.

3.7 La funzione logaritmo

La funzione logaritmo $y = \log_a x$ è la funzione inversa della funzione esponenziale, di conseguenza ha dominio $]0; +\infty[$ e codominio \mathbb{R} . Presenta uno zero di funzione per x=1 e un asintoto verticale a 0. Per a>1 è strettamente crescente, mentre per 0 < a < 1 è strettamente decrescente.

4 Grafica dedotta

4.1 Trasformazioni geometriche

4.1.1 Simmetria rispetto agli assi

Si consideri una funzione y = f(x), è possibile tracciare i grafici delle simmetrie rispetto ai due asi cartesiani: in particolare y = -f(x) è la simmetrica rispetto all'asse x, mentre y = -f(x) è la simmetrica rispetto all'asse y.

4.1.2 Traslazione

Data una funzione y = f(x) e una traslazione di vettore $\vec{v}(a, b)$ ed equazione

$$t: \left\{ \begin{array}{l} x' = x + a \\ y' = y + b \end{array} \right.$$

per ottenere l'equazione della funzione traslata è necesario ricavare la traslazione inversa e sostituire i valori di x e y.

$$t: \left\{ \begin{array}{l} x = x' - a \\ y = y' - b \end{array} \right.$$

$$y' - b = f(x' - a)$$
$$y = f(x - a) + b$$

4.1.3 Dilatazione

Data una funzione y = f(x) e una dilatazione di a unità lungo l'asse x e b unità lungo l'asse y

$$d: \left\{ \begin{array}{l} x' = ax \\ y' = by \end{array} \right.$$

per ottenere l'equazione della funzione dilatata è necesario ricavare la dilatazione inversa e sostituire i valori di x e y.

$$d: \begin{cases} x = \frac{x'}{a}, \\ y = \frac{y'}{b} \end{cases}$$

$$\frac{y}{b} = f\left(\frac{x}{a}\right)$$
$$y = b \cdot f\left(\frac{x}{a}\right)$$

4.2 Funzione inversa

Per poter tracciare il grafico di una funzione è necessario che una funzione sia biiettiva. Siccome ogni funzione è suriettiva nel proprio codominio, è necessario ridurne il dominio affinché sia anche iniettiva. Ad esemopio per poter rappresentare il grafico della funzione inversa di una funzione $y=x^2$ è necessario ridurne il dominio a $x\geq 0$. A questo punto è possibile riscrivere la funzione nella forma $x=f^{-1}(y)$ ed effettuare un cambio di variabili arrivando quindi alla scrittura $y=f^{-1}(x)$. Per rappresentare il grafico della funzione inversa è sufficiente rappresentare la simmetrica della funzione di partenza rispetto alla bisettrice I-III quadrante, prestando attenzione al nuovo dominio ridotto.

4.3 Funzioni con valori assoluti

4.3.1 Valore assoluto di una funzione

Per studiare il caso y = |f(x)| recuperiamo la definizione di valore assoluto:

$$|x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$$

Di conseguenza, sostituendo f(x) ad x nella definizione, si ottiene la definizione di |f(x)|

$$|f(x)| = \begin{cases} f(x) & \text{se } f(x) \ge 0\\ -f(x) & \text{se } f(x) < 0 \end{cases}$$

Questo significa che |f(x)| coincide con f(x) quando essa è maggiore di 0, e con la sua simmetrica rispetto all'asse x quando f(x) < 0.

$$f(x) = x^2 - 2x$$

4.3.2 Funzione di un valore assoluto

Procedendo in modo analogo al punto precedente, per y = f(|x|) si ricava che

$$f(|x|) = \begin{cases} f(x) & \text{se } x \ge 0\\ f(-x) & \text{se } x < 0 \end{cases}$$

Di conseguenza la funzione è simmetrica rispetto all'asse delle y in quanto coincide con f(x) se $x \ge 0$ e con f(-x) (simmetrica di f(x) rispetto all'asse y) quando x < 0

4.3.3 Funzioni con più valori assouti nidificati

In questo caso è sufficiente procedere per gradi: consideriamo ad esempio la funzione y=||x|-1|. Il metodo migliore è quindi rappresentare prima la funzione y=|x|, successivamente traslarla verso il basso di 1 unità (y=|x|-1) e poi rappresentare anche il modulo più esterno effettuando al simmetria rispetto all'asse x della regione negativa.

4.3.4 Funzioni con più valori assoluti in sequenza

Qui la situazione si complica, perché è necessario studiare tutti gli intervalli di positività che i diversi argomenti dei valori assoluti possono assumere. Consideriamo ad esempio la funzione y = |x - 1| + |2x + 4|. Prima di tutto bisogna trovare per quali valori di x l'argomento di ogni valore assoluto assume valori non negativi.

$$x - 1 \ge 0 \qquad x \ge 1$$
$$2x + 4 \ge 0 \qquad x \ge -2$$

A questo punto rappresentiamo gli intervalli trovati.

A questo punto possiamo usare lo schema appena trovato per ricostruire la funzione come definita a tratti:

$$y = \begin{cases} (-x+1) + (-2x-4) & \text{se } x < -2\\ (-x+1) + (2x+4) & \text{se } -2 \le x < 1\\ (x-1) + (2x+4) & \text{se } x \ge 1 \end{cases}$$
$$y = \begin{cases} -3x - 3 & \text{se } x < -2\\ x + 5 & \text{se } -2 \le x < 1\\ 3x + 3 & \text{se } x \ge 1 \end{cases}$$

4.4 Reciproco di una funzione

Esempio. Tracciare il grafico di $y = \frac{1}{r^2 - 1}$

Cominciamo con il tracciare il grafico di $y = x^2 - 1$. Si tratta di una parabola di vertice V(0, -1).

A questo punto procediamo con l'analisi del dominio: sappiamo che il dominio di una fratta si ricava ponendo il denominatore diverso da 0, quindi il domino di $\frac{1}{f(x)}$ si ottiene trovando dove $f(x) \neq 0$

$$D: x^{2} - 1 \neq 0$$

$$(x - 1)(x + 1) \neq 0$$

$$x \neq \pm 1$$

$$D:]-\infty; -1[\cup] - 1; 1[\cup]1; +\infty[$$

In particolare dove $f(x)=0, \frac{1}{f(x)}$ presenta degli asintoti verticali. Il prossimo passo è studiare i punti di intersezione delle due funzioni. Siccome $f(x)=\frac{1}{f(x)}$ se $f(x)=\pm 1$, le due funzioni si intersecano solo dove intersecano la retta y=1 o la retta y=-1. Rappresentiamo quanto ottenuto. A questo punto rimane solo un

passaggio prima di poter rappresentare la funzione: studiare i limiti negli intorni degli estremi del dominio.

$$x \to -\infty \qquad f(x) \to +\infty \qquad \frac{1}{f(x)} \to 0^{+}$$

$$x \to -1^{-} \qquad f(x) \to 0^{+} \qquad \frac{1}{f(x)} \to +\infty$$

$$x \to -1^{+} \qquad f(x) \to 0^{-} \qquad \frac{1}{f(x)} \to -\infty$$

$$x \to 1^{-} \qquad f(x) \to 0^{-} \qquad \frac{1}{f(x)} \to -\infty$$

$$x \to 1^{+} \qquad f(x) \to 0^{+} \qquad \frac{1}{f(x)} \to +\infty$$

$$x \to +\infty \qquad f(x) \to +\infty \qquad \frac{1}{f(x)} \to 0^{+}$$

4.5 Quadrato di una funzione

Esempio. Tracciare il grafico di $y = \sin^2 x$

Cominciamo con il tracciare il grafico della funzione elementare $y = \operatorname{sen} x$

Per qanto riguarda il dominio, esso rimane invariato. Siccome il dominio della funzione di partenza f(x) è \mathbb{R} , il dominio di $f^2(x)$ rimane \mathbb{R} . Siccome il quadrato di un numero reale è sempre non negatico, procediamo con il rappresentare |f(x)|. Essa inoltre interseca $f^2(x)$ lungo le rette y=0 e y=1.

L'ultima cosa da tenere in considerazione è che se 0 < |f(x)| < 1, $f^2(x) < |f(x)|$; mentre se |f(x)| > 1, $f^2(x) > |f(x)|$. A questo punto abbiamo tutte le informazioni necessarie per tracciare il grafico di $f^2(x)$.

4.6 Radice di una funzione

Esempio. Tracciare il grafico di $y = \sqrt{\operatorname{tg} x}$

Cominciamo con il tracciare il grafico della funzione elementare $y=\operatorname{tg} x$. Siccome il domino della funzione irrazionale si ottiene ponendo il radicando ≥ 0 , il dominio della funzione $y=\sqrt{\operatorname{tg} x}$ è $D:[k\pi;\frac{\pi}{2}+k\pi]$ con $k\in\mathbb{Z}$. A questo punto, analogamente a quanto fatto precedentemente, sappiamo che le funzioni y=f(x) e $y=\sqrt{f(x)}$ si intersecano per f(x)=0 e f(x)=1. Sappiamo inoltre che se se $0< f(x)<1, \sqrt{f(x)}>f(x);$ mentre se $f(x)>1, \sqrt{f(x)}< f(x)$. A questo punto abbiamo tutte le informazioni necessarie per tracciare il grafico di $\sqrt{f(x)}$.

4.7 Esponenziale di una funzione

Esempio. Tracciare il grafico di $y = e^{\frac{x-2}{x-1}}$

Per prima cosa tracciamo il grafico di $y = \frac{x-2}{x-1}$. Questa funzione ha un asintoto orizzontale per y = 1 e un asintoto verticale per x = 1.

Siccome il dominio di $e^{f(x)}$ coincide con il dominio di f(x), l'asintoto verticale si conserva. L'asintoto orizzontale invece si sposta passando da y=1 a $y=e^1$. Inoltre, dove la funzione va a 0, sappiamo che $e^0=1$, quindi la nuova funzione passerà per 1. L'ultimo passo prima di poter rappresentare la funzione consiste nello studiarne i limiti agli estremi del dominio.

$$\begin{array}{llll} x \rightarrow -\infty & & f(x) \rightarrow 1^{+} & & e^{f(x)} \rightarrow e^{+} \\ & & & \\ x \rightarrow 1^{-} & & f(x) \rightarrow +\infty & & e^{f(x)} \rightarrow +\infty \\ & & & \\ x \rightarrow 1^{+} & & f(x) \rightarrow -\infty & & e^{f(x)} \rightarrow 0^{+} \\ & & & \\ x \rightarrow +\infty & & f(x) \rightarrow 1^{-} & & e^{f(x)} \rightarrow e^{-} \end{array}$$

4.8 Logaritmo di una funzione

Esempio. Tracciare il grafico di $y = \ln \frac{x-2}{x-1}$

Per prima cosa tracciamo il grafico di $y=\frac{x-2}{x-1}$. Questa funzione ha un asintoto orizzontale per y=1 e un asintoto verticale per x=1. Sicome la funzione $y=\ln f(x)$ ha dominio f(x)>0. Di conseguenza, risolvendo la disequazione $\frac{x-2}{x-1}>0$ otteniamo l'intervallo $D:]-\infty;1[\cup]2;+\infty[$. L'asintoto orizzontale si sposta passando da y=1 a $y=\ln 1=0$. L'ultimo passo prima di poter rappresentare la funzione consiste nello studiarne i limiti agli estremi del dominio.

$$x \to -\infty$$
 $f(x) \to 1^+$ $\ln f(x) \to 0^+$ $x \to 1^ f(x) \to +\infty$ $\ln f(x) \to +\infty$ $x \to 2^+$ $f(x) \to 0^+$ $\ln f(x) \to -\infty$ $x \to +\infty$ $f(x) \to 1^ \ln f(x) \to 0^-$

5 Studio di funzione completo

5.1 Classificazione

Funzione	algebrica	razionale	intera
runzione	trascendente	irrazionale	fratta

5.2 Dominio

• Polinomiale : \mathbb{R}

• Fratte: denominatore $\neq 0$

 \bullet Irrazionali pari: radicando ≥ 0

 \bullet Irrazionali dispari: $\mathbb R$

 \bullet Logaritmi: argomento> 0

ullet Esponenziali: $\mathbb R$

• Seno, coseno, arcotangente, arcocotangente: \mathbb{R}

• Tangente: $\mathbb{R} - \frac{\pi}{2} + k\pi$, con $k \in \mathbb{Z}$

• Cotangente: $\mathbb{R} - k\pi$, con $k \in \mathbb{Z}$

• Arcoseno, arcocoseno: [-1;1]

5.3 Simmetrie

CN: $\forall x \in D, -x \in D$

• pari se f(-x) = f(x)

• dispari se f(-x) = -f(x)

5.4 Intersezioni con gli assi cartesiani

$$f(x) \cap \text{asse } x : \left\{ \begin{array}{l} y = f(x) \\ y = 0 \end{array} \right.$$
 $f(x) \cap \text{asse } y : \left\{ \begin{array}{l} y = f(x) \\ x = 0 \end{array} \right.$

5.5 Studio del segno

Risolvere la disequazione f(x) > 0

5.6 Limiti, asintoti e discontinuità

Asintoto verticale	$\lim_{x \to x_0} f(x) = \infty$
Asintoto orizzontale	$\lim_{x \to \infty} f(x) = l$
Asintoto obliquo	CN: $\lim_{x \to \infty} f(x) = \infty$ $m = \lim_{x \to \infty} \frac{f(x)}{x}$ $q = \lim_{x \to \infty} f(x) - mx$

NB.: Una funzione può avere anche infiniti asintoti verticali, ma al massimo due tra asintoti orizzontali e

asintoti obliqui (uno destro e uno sinistro).

Prima specie	$\lim_{x \to x_0^-} f(x) = l_1 \qquad \lim_{x \to x_0^+} f(x) = l_2$ $l_1 \neq l_2 salto = l_1 - l_2 $
Seconda specie	$\lim_{x \to x_0^{\pm}} f(x) = \infty \lor \lim_{x \to x_0^{\pm}} f(x) = \nexists$
Terza specie	$\lim_{x \to x_0^-} f(x) = \lim_{x \to x_0^+} f(x) = l$ $f(x_0) \neq l \forall f(x_0) = \nexists$

5.7 Derivata prima

Le soluzioni dell'equazione

$$f'(x) = 0$$

identificano la presenza di

- massimi relativi
- minimi relativi
- flessi a tangente orizzontale

Per distinguerli è necessario studiare il segno della derivata: Lo studio della derivata prima fornisce anche

(c) Flesso a tangente orizzontale ascendente

(d) Flesso a tangente orizzontale discendente

informazioni circa la monotonia della funzione.

5.8 Derivata seconda

Le soluzioni dell'equazione

$$f''(x) = 0$$

permettono di identificare i punti di flesso. A differenza della derivata prima permette di ottenere informazioni circa la presenza di flessi a tangente obliqua, per cui è necessario escludere tutte le soluzioni già analizzate in precedenza. La derivata seconda fornisce inoltre informazioni circa la concavità della funzione: verso l'alto quando la derivata seconda è positiva e verso il basso quando la derivata seconda è negativa. La funzione inverte la propria concavità in corrispondenza dei punti di flesso.