FE540 금융공학 인공지능 및 기계학습

Regression

Kee-Eung Kim
Department of Computer Science
KAIST

Regression

- ☐ Would like to write numeric output as a function of input
 - Output: dependent variable
 - Input: independent variable
- \square Assume: $y = \mathbf{w}^{\top} \mathbf{x} + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2)$
 - likelihood: $p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(y|\mathbf{w}^{\top}\mathbf{x}, \sigma^2)$
 - can handle non-linear relationships via basis function expansion:

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(y|\mathbf{w}^{\top}\boldsymbol{\phi}(\mathbf{x}), \sigma^2)$$
 e.g. $\boldsymbol{\phi}(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2]$

Maximum Likelihood Estimation

- ☐ MLE is equivalent to least squares
 - $\hat{\boldsymbol{\theta}}_{\mathrm{MLE}} \equiv \mathrm{argmax}_{\boldsymbol{\theta}} \log p(\mathcal{D}|\boldsymbol{\theta}) = \mathrm{argmax}_{\boldsymbol{\theta}} \, \ell(\boldsymbol{\theta})$ where log-likelihood $\ell(\boldsymbol{\theta}) \equiv \log p(\mathcal{D}|\boldsymbol{\theta}) = \sum_{i=1}^N \log p(y_i|\mathbf{x}_i,\boldsymbol{\theta})$
 - maximizing log-likelihood = minimizing negative log-likelihood

$$NLL(\boldsymbol{\theta}) \equiv -\sum_{i=1}^{N} \log p(y_i | \mathbf{x}_i, \boldsymbol{\theta})$$

$$= -\sum_{i=1}^{N} \log \left[\left(\frac{1}{2\pi\sigma^2} \right)^{1/2} \exp \left(-\frac{1}{2\sigma^2} (y_i - \mathbf{w}^\top \mathbf{x}_i)^2 \right) \right]$$

$$= \frac{1}{2\sigma^2} RSS(\mathbf{w}) + \frac{N}{2} \log(2\pi\sigma^2)$$

• Residual sum of errors (sum of squared errors) $RSS(\mathbf{w}) \equiv \sum_{i} (y_i - \mathbf{w}^{\top} \mathbf{x}_i)^2$

Derivation of MLE

- □ Obtaining the least squares solution
 - RSS(\mathbf{w}) = $(\mathbf{y} \mathbf{X}\mathbf{w})^{\top}(\mathbf{y} \mathbf{X}\mathbf{w})$ = $\mathbf{w}^{\top}(\mathbf{X}^{\top}\mathbf{X})\mathbf{w} - 2\mathbf{w}^{\top}(\mathbf{X}^{\top}\mathbf{y}) + \mathbf{y}^{\top}\mathbf{y}$

• where
$$\mathbf{X} = \left(\begin{array}{c} \mathbf{x}_1 \\ \vdots \\ \mathbf{x}_N \end{array} \right)$$
 $\mathbf{X}^ op \mathbf{y} = \sum_{i=1}^N \mathbf{x}_i y_i$

$$\mathbf{X}^{ op}\mathbf{X} = \sum_{i=1}^{N} \mathbf{x}_i^{ op}\mathbf{x}_i = \sum_{i=1}^{N} \left(egin{array}{ccc} x_{i,1}^2 & \cdots & x_{i,1}x_{i,D} \\ & \ddots & & \\ x_{i,D}x_{i,1} & \cdots & x_{i,D}^2 \end{array}
ight)$$

- gradient: $\mathbf{g}(\mathbf{w}) = \mathbf{X}^{\top} \mathbf{X} \mathbf{w} \mathbf{X}^{\top} \mathbf{y}$
- ullet extreme point: $\mathbf{X}^{ op}\mathbf{X}\mathbf{w} = \mathbf{X}^{ op}\mathbf{y}$

$$\hat{\mathbf{w}}_{\mathrm{OLS}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Geometric Interpretation

- □ Orthogonal projection
 - column vectors from the data $\mathbf{X}=\left(\begin{array}{c}\mathbf{x}_1\\\mathbf{x}_N\end{array}\right)=\left(\tilde{\mathbf{x}}_1\cdots\tilde{\mathbf{x}}_D\right)$
 - target value vector $\mathbf{y} \in \mathbb{R}^N$
 - Linear regression = find vector $\hat{\mathbf{y}} = \operatorname{argmin}_{\hat{\mathbf{y}}} \|\mathbf{y} \hat{\mathbf{y}}\|_2$ such that $\hat{\mathbf{y}} = \mathbf{X}\mathbf{w} = w_1\tilde{\mathbf{x}}_1 + \dots + w_D\tilde{\mathbf{x}}_D$

$$\Leftrightarrow \hat{\mathbf{y}} \in \mathrm{span}(\mathbf{X})$$

$$\Leftrightarrow \hat{\mathbf{y}} \in \operatorname{span}(\{\tilde{\mathbf{x}}_1, \dots, \tilde{\mathbf{x}}_D\})$$

 residual vector should be orthogonal so that the norm is minimized:

$$\tilde{\mathbf{x}}_{j}^{\top}(\mathbf{y} - \hat{\mathbf{y}}) = 0 \Rightarrow \mathbf{X}^{\top}(\mathbf{y} - \mathbf{X}\mathbf{w}) = \mathbf{0}$$
$$\Rightarrow \mathbf{w} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

• Also,
$$\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{w}} = \mathbf{X}(\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Convexity

- □ negative log-likelihood of Gaussian:
 - NLL($\boldsymbol{\theta}$) = $-\sum_{i=1}^{N} \log \left[\left(\frac{1}{2\pi\sigma^2} \right)^{1/2} \exp\left(-\frac{1}{2\sigma^2} (y_i \mathbf{w}^\top \mathbf{x}_i)^2 \right) \right]$ = $\frac{1}{2\sigma^2} \text{RSS}(\mathbf{w}) + \frac{N}{2} \log(2\pi\sigma^2)$
 - $RSS(\mathbf{w}) \equiv \sum_{i} (y_i \mathbf{w}^{\top} \mathbf{x}_i)^2$
- \square Convex set $S: \forall \boldsymbol{\theta}, \boldsymbol{\theta}' \in S, \forall \lambda \in [0,1], \ \lambda \boldsymbol{\theta} + (1-\lambda)\boldsymbol{\theta}' \in S$
- \square Convex function $f(\theta)$
 - $\theta \in \mathcal{S}$ (defined on a convex set)
 - $f(\lambda \boldsymbol{\theta} + (1 \lambda)\boldsymbol{\theta}') \le \lambda f(\boldsymbol{\theta}) + (1 \lambda)f(\boldsymbol{\theta}')$
- □ convex functions are ideal for optimization

Ridge Regression

- □ Overfitting is a common problem in higher-order regression
 - Smoother curve = Smaller parameters $p(\mathbf{w}) = \prod_{j} \mathcal{N}(w_{j}|0, \tau^{2})$
 - MAP estimation $\underset{\mathbf{w}}{\operatorname{argmax}} \sum_{i=1}^{N} \log \mathcal{N}(y_i | \mathbf{w}^{\top} \mathbf{x}_i, \sigma^2) + \sum_{j=1}^{D} \log \mathcal{N}(w_j | 0, \tau^2)$ $= \underset{\mathbf{w}}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} (y_i \mathbf{w}^{\top} \mathbf{x}_i)^2 + \lambda ||\mathbf{w}||_2^2$
 - Gaussian prior is equivalent to ℓ_2 regularization (i.e. weight decay)
- \square Ridge regression: $\hat{\mathbf{w}}_{\mathrm{ridge}} = (\lambda \mathbf{I}_D + \mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{y}$

Bayesian Linear Regression

- \square want: full posterior over \mathbf{w} and σ^2
 - ullet assume σ^2 is known and focus on posterior over ${f w}$ only
 - likelihood: $p(\mathbf{y}|\mathbf{X}, \mathbf{w}, \sigma^2) = \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma^2\mathbf{I}_N)$ $\propto \exp(-\frac{1}{2\sigma^2}(\mathbf{y} \mathbf{X}\mathbf{w})^{\top}(\mathbf{y} \mathbf{X}\mathbf{w}))$
 - use conjugate prior: $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{w}_0, \mathbf{V}_0)$
 - compute posterior:

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) \propto \mathcal{N}(\mathbf{w}|\mathbf{w}_0, \mathbf{V}_0) \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma^2 \mathbf{I}) = \mathcal{N}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N)$$

$$\mathbf{w}_N = \mathbf{V}_N \mathbf{V}_0^{-1} \mathbf{w}_0 + \frac{1}{\sigma^2} \mathbf{V}_N \mathbf{X}^{\top} \mathbf{y}$$

$$\mathbf{V}_N^{-1} = \mathbf{V}_0^{-1} + \frac{1}{\sigma^2} \mathbf{X}^{\top} \mathbf{X}$$

Bayesian Linear Regression

□ posterior:

$$p(\mathbf{w}|\mathbf{X}, \mathbf{y}, \sigma^2) \propto \mathcal{N}(\mathbf{w}|\mathbf{w}_0, \mathbf{V}_0) \mathcal{N}(\mathbf{y}|\mathbf{X}\mathbf{w}, \sigma^2 \mathbf{I}) = \mathcal{N}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N)$$

$$\mathbf{w}_N = \mathbf{V}_N \mathbf{V}_0^{-1} \mathbf{w}_0 + \frac{1}{\sigma^2} \mathbf{V}_N \mathbf{X}^{\top} \mathbf{y}$$

$$\mathbf{V}_N^{-1} = \mathbf{V}_0^{-1} + \frac{1}{\sigma^2} \mathbf{X}^{\top} \mathbf{X}$$

• Ridge regression is a special case: $\mathbf{w}_0 = \mathbf{0} \ \ \mathrm{and} \ \ \mathbf{V}_0 = \tau^2 \mathbf{I}$

Bayesian Linear Regression

□ Posterior predictive distribution:

$$p(y|\mathbf{x}, \mathcal{D}, \sigma^2) = \int \mathcal{N}(y|\mathbf{x}^{\top}\mathbf{w}, \sigma^2) \mathcal{N}(\mathbf{w}|\mathbf{w}_N, \mathbf{V}_N) d\mathbf{w}$$
$$= \mathcal{N}(y|\mathbf{w}_N^{\top}\mathbf{x}, \sigma_N^2(\mathbf{x}))$$
$$\sigma_N^2(\mathbf{x}) = \sigma^2 + \mathbf{x}^{\top}\mathbf{V}_N\mathbf{x}$$

□ Plug-in approximation (constant variance)

$$p(y|\mathbf{x}, \mathcal{D}, \sigma^2)$$

$$\approx \int \mathcal{N}(y|\mathbf{x}^{\top}\mathbf{w}, \sigma^2) \delta_{\hat{\mathbf{w}}}(\mathbf{w}) d\mathbf{w}$$

$$= \mathcal{N}(y|\mathbf{x}^{\top}\hat{\mathbf{w}}, \sigma^2)$$

□ Full PPD essential for active learning

Model Selection

- ☐ Linear regression extends to non-linear regression by basis expansion:
 - $p(y|\mathbf{x}, \boldsymbol{\theta}) = \mathcal{N}(y|\mathbf{w}^{\top}\boldsymbol{\phi}(\mathbf{x}), \sigma^2)$ e.g. $\boldsymbol{\phi}(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2]$

Model Selection Techniques

- □ Cross-validation
 - Measure generalization accuracy by testing on data unused during training
- □ Regularization
 - Penalize complex models
 - E' = error on data + λ model complexity
 - Akaike's information criterion (AIC), Bayesian information criterion (BIC), Mimimum description length (MDL)
- ☐ Structural risk minimization (SRM)
 - Foundation of support vector machines
- □ Bayesian model selection
 - Suppose we have prior on models, p(model)
 - P(model | data) = p(data | model) p(model) / p(data)
 - If prior favors simpler models, it is a regularization

Model Selection Procedures

☐ Cross-validation

Logistic Regression (Classification)

- \square Generative vs. Discriminative approach to $p(y|\mathbf{x})$
 - Generative: estimate likelihood $p(\mathbf{x}|y)$ and use Bayes rule
 - Discriminative: fit $p(y|\mathbf{x})$ directly from data
- □ Logistic regression for binary classification
 - $p(y|\mathbf{x}, \mathbf{w}) = \text{Ber}(y|\text{sigm}(\mathbf{w}^{\top}\mathbf{x}))$ and estimate \mathbf{w} from data

Maximum Likelihood Estimation

☐ Minimize negative log-likelihood (NLL)

• NLL(
$$\mathbf{w}$$
) = $-\sum_{i=1}^{N} \log[\mu_i^{\mathbb{I}(y_i=1)} \times (1-\mu_i)^{\mathbb{I}(y_i=0)}]$
= $-\sum_{i} [y_i \log \mu_i + (1-y_i) \log(1-\mu_i)]$
where $\mu_i = \operatorname{sigm}(\mathbf{w}^{\top} \mathbf{x}_i)$

- ☐ Use an optimization algorithm to minimize NLL
 - $\mathbf{g} = \frac{d}{d\mathbf{w}} \text{NLL}(\mathbf{w}) = \sum_{i} (\mu_i y_i) \mathbf{x}_i = \mathbf{X}^{\top} (\boldsymbol{\mu} \mathbf{y})$
 - $\mathbf{H} = \frac{d}{d\mathbf{w}} \mathbf{g}(\mathbf{w})^{\top} = \sum_{i} (\nabla_{\mathbf{w}} \mu_{i}) \mathbf{x}_{i}^{\top} = \sum_{i} \mu_{i} (1 \mu_{i}) \mathbf{x}_{i} \mathbf{x}_{i}^{\top} = \mathbf{X}^{\top} \mathbf{S} \mathbf{X}$ where $\mathbf{S} \equiv \operatorname{diag}(\mu_{i} (1 \mu_{i}))$

Steepest Descent

 \square Also known as gradient descent: $\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \eta_k \mathbf{g}_k$

- ☐ Line search
 - from Taylor expansion: $f(\boldsymbol{\theta} + \eta \mathbf{d}) \approx f(\boldsymbol{\theta}) + \eta \mathbf{g}^{\top} \mathbf{d}$
 - minimize $\phi(\eta) = f(\boldsymbol{\theta}_k + \eta \mathbf{d}_k)$ for obtaining the step size

□ Momentum to reduce zig-zag

$$\boldsymbol{\theta}_{k+1} = \boldsymbol{\theta}_k - \eta_k \mathbf{g}_k + \mu_k (\boldsymbol{\theta}_k - \boldsymbol{\theta}_{k-1})$$

(a.k.a. heavy ball method)

Newton's Method

- ☐ Second order optimization method (use hessian)
 - $oldsymbol{ heta}_{k+1} = oldsymbol{ heta}_k \eta_k \mathbf{H}_k^{-1} \mathbf{g}_k$
 - Consider second-order Taylor expansion:

$$f(\boldsymbol{\theta}) \approx f_k + \mathbf{g}_k^{\top} (\boldsymbol{\theta} - \boldsymbol{\theta}_k) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_k)^{\top} \mathbf{H}_k (\boldsymbol{\theta} - \boldsymbol{\theta}_k)$$
$$= \boldsymbol{\theta}^{\top} \mathbf{A} \boldsymbol{\theta} + \mathbf{b}^{\top} \boldsymbol{\theta} + c$$

where
$$\mathbf{A} = \frac{1}{2}\mathbf{H}_k$$
, $\mathbf{b} = \mathbf{g}_k - \mathbf{H}_k \boldsymbol{\theta}_k$, $c = f_k - \mathbf{g}_k^{\top} \boldsymbol{\theta}_k + \frac{1}{2} \boldsymbol{\theta}_k^{\top} \mathbf{H}_k \boldsymbol{\theta}_k$

• Minimum: $\boldsymbol{\theta} = -\frac{1}{2}\mathbf{A}^{-1}\mathbf{b} = \boldsymbol{\theta}_k - \mathbf{H}_k^{-1}\mathbf{g}_k$

Regularization

- \square For linearly separable training data, MLE yields $\|\mathbf{w}\| \to \infty$
 - Linear threshold unit $\mathbb{I}(\mathbf{w}^{\top}\mathbf{x} \geq w_0)$ assigning maximal probability mass to the training data
 - Brittle and does not generalize well
- □ Regularized objective function
 - $f'(\mathbf{w}) = \text{NLL}(\mathbf{w}) + \lambda \mathbf{w}^{\top} \mathbf{w}$ $\mathbf{g}'(\mathbf{w}) = \mathbf{g}(\mathbf{w}) + \lambda \mathbf{w}$ $\mathbf{H}'(\mathbf{w}) = \mathbf{H}(\mathbf{w}) + \lambda \mathbf{I}$

Multi-Class Logistic Regression

□ i.e. multinomial logistic regression, maximum entropy classifier:

$$p(y = c | \mathbf{x}, \mathbf{W}) = \frac{\exp(\mathbf{w}_c^{\top} \mathbf{x})}{\sum_{c'=1}^{C} \exp(\mathbf{w}_{c'}^{\top} \mathbf{x})}$$

- □ Optimization:
 - $\mu_{ic} \equiv p(y_i = c | \mathbf{x}_i, \mathbf{W})$
 - $y_{ic} \equiv \mathbb{I}(y_i = c)$
 - NLL(**W**) = $-\log \prod_{i=1}^{N} \prod_{c=1}^{C} \mu_{ic}^{y_{ic}} = -\sum_{i} \sum_{c} y_{ic} \log \mu_{ic}$ = $-\sum_{i} \left[\sum_{c} y_{ic} \mathbf{w}_{c}^{\top} \mathbf{x}_{i} - \log \sum_{c'} \exp(\mathbf{w}_{c'}^{\top} \mathbf{x}_{i}) \right]$
 - Compute gradient and hessian:

$$\mathbf{g}_c(\mathbf{W}) = \nabla_{\mathbf{w}_c} \text{NLL}(\mathbf{W}) = \sum_i (\mu_{ic} - y_{ic}) \mathbf{x}_i$$
$$\mathbf{H}_{c,c'}(\mathbf{W}) = \sum_i \mu_{ic} (\delta_{c,c'} - \mu_{i,c'}) \mathbf{x}_i \mathbf{x}_i^{\top}$$

Extending to Bayesian...

- \square Want $p(\mathbf{w}|\mathcal{D})$ but no conjugate prior $p(\mathbf{w})$
 - MCMC, variational inference, ...
- □ Laplace approximation
 - Generally, posterior can be re-written $p(\theta|\mathcal{D}) = \frac{1}{Z} \exp(-E(\theta))$ using energy function $E(\theta) \equiv -\log p(\theta, \mathcal{D})$
 - Taylor expansion of the energy function around mode:

$$E(\boldsymbol{\theta}) \approx E(\boldsymbol{\theta}^*) + (\boldsymbol{\theta} - \boldsymbol{\theta}^*)^{\top} \mathbf{g} + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}^*)^{\top} \mathbf{H} (\boldsymbol{\theta} - \boldsymbol{\theta}^*)$$
$$= E(\boldsymbol{\theta}^*) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}^*)^{\top} \mathbf{H} (\boldsymbol{\theta} - \boldsymbol{\theta}^*)$$

• This leads to *Gaussian approximation* to the posterior:

$$\hat{p}(\boldsymbol{\theta}|\mathcal{D}) \approx \frac{1}{Z} e^{-E(\boldsymbol{\theta}^*)} \exp\left[-\frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}^*)^{\top} \mathbf{H} (\boldsymbol{\theta} - \boldsymbol{\theta}^*)\right] = \mathcal{N}(\boldsymbol{\theta}|\boldsymbol{\theta}^*, \mathbf{H}^{-1})$$
$$Z \approx p(\mathcal{D}) = e^{-E(\boldsymbol{\theta}^*)} (2\pi)^{D/2} |H|^{-\frac{1}{2}}$$

Bayesian Logistic Regression

- \square Laplace approximation with prior $p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \mathbf{V}_0)$ $p(\mathbf{w}|\mathcal{D}) \approx \mathcal{N}(\mathbf{w}|\hat{\mathbf{w}}, \mathbf{H}^{-1})$
 - $\hat{\mathbf{w}} = \operatorname{argmin}_{\mathbf{w}} E(\mathbf{w}), \ E(\mathbf{w}) = -(\log p(\mathcal{D}|\mathbf{w}) + \log p(\mathbf{w}))$
 - $\mathbf{H} = \nabla^2 E(\mathbf{w})|_{\hat{\mathbf{w}}}$

Posterior Predictive Distribution

 \square Want: $p(y|\mathbf{x}, \mathcal{D}) = \int p(y|\mathbf{x}, \mathbf{w}) p(\mathbf{w}|\mathcal{D}) d\mathbf{w}$

- \square MAP approximation: $p(y|\mathbf{x}, \mathcal{D}) \approx p(y|\mathbf{x}, \mathbf{w}_{\text{MAP}})$
- \square Monte-Carlo approximation: using samples $\mathbf{w}^s \sim p(\mathbf{w}|\mathcal{D})$
 - $p(y = 1|\mathbf{x}, \mathcal{D}) \approx \frac{1}{S} \sum_{s=1}^{S} p(y = 1|\mathbf{x}, \mathbf{w}^s) = \frac{1}{S} \sum_{s=1}^{S} \operatorname{sigm}((\mathbf{w}^s)^{\top} \mathbf{x})$

Extras

* Derivation of BIC

$$\square$$
 From $Z pprox p(\mathcal{D}) = e^{-E(\boldsymbol{\theta}^*)} (2\pi)^{D/2} |H|^{-\frac{1}{2}}$

we can rewrite:

$$\log p(\mathcal{D}) \approx \log p(\mathcal{D}, \boldsymbol{\theta}^*) - \frac{1}{2} \log |\mathbf{H}|$$
$$= \log p(\mathcal{D}|\boldsymbol{\theta}^*) + \log p(\boldsymbol{\theta}^*) - \frac{1}{2} \log |\mathbf{H}|$$

- Occam's factor: $\log p(\boldsymbol{\theta}^*) \frac{1}{2} \log |\mathbf{H}|$
 - If we use uniform prior, then the first term can be ignored and $m{ heta}^* = \hat{m{ heta}}_{ ext{MLE}}$
- $\mathbf{H} = \sum_{i=1}^{N} \mathbf{H}_i = \sum_{i=1}^{N} \nabla \nabla \log p(\mathcal{D}_i | \boldsymbol{\theta})$
 - If $\mathbf{H}_i \approx \hat{\mathbf{H}}$, then $\log |\mathbf{H}| \approx \log |N\hat{\mathbf{H}}| = \log N^d |\hat{\mathbf{H}}| = D \log N + \log |\hat{\mathbf{H}}|$ where $D = \dim(\boldsymbol{\theta})$

$$\square$$
 Hence $p(\mathcal{D}) pprox \log p(\mathcal{D}|\hat{\boldsymbol{\theta}}_{\mathrm{MLE}}) - \frac{D}{2} \log N$

Bias and Variance of Estimators

- □ How do we measure the goodness of our estimators?
 - View estimators as learning algorithms
 - Evaluate output of the algorithm on all possible training data
 - More formally, training data is sampled according to $p(\mathcal{D})$
 - The "desired" response for an input: $y^*(x) = E_{p(y|x)}[y]$
- ☐ Questions to be asked are:
 - Bias: How accurate (on average) are the model predictions?
 - We want the bias to be as small as possible
 - <u>Variance</u>: How spread out are the model predictions?
 - We also want the variance to be as small as possible (less subject to noise in the data and initial setting parameter)

Bias-Variance Decomposition

- \square Mean square error at input x: $E_{p(\mathcal{D})}[(g(x|\theta) r^*(x))^2]$
 - Denote $r_{\mathcal{D}}(x) = g(x|\theta)$

Estimating Bias and Variance

- ☐ From bias-variance decomposition:
 - $E_{p(x)}[E_{p(\mathcal{D})}[(r_{\mathcal{D}}(x) r^*(x))^2]]$ = $E_{p(x)}[E_{p(\mathcal{D})}[(r_{\mathcal{D}}(x) - E_{p(\mathcal{D})}[r_{\mathcal{D}}(x)])^2]]$ + $E_{p(x)}[(E_{p(\mathcal{D})}[r_{\mathcal{D}}(x)] - r^*(x))^2]$
 - Generate M additional training sets, each with size N
 - $\mathcal{D}_i = \{x_i^t, r_i^t\}, i = 1, \dots, M$
 - Use \mathcal{D}_i to fit $g_i(x|\theta)$
 - Now we have:
 - Bias²(g) = $\frac{1}{N} \sum_{t} [\bar{g}(x^{t}) f(x^{t})]^{2}$
 - Variance $(g) = \frac{1}{NM} \sum_{t} \sum_{i} [g_i(x^t) \bar{g}(x^t)]^2$
 - where $\bar{g}(x) = \frac{1}{M} \sum_{i} g_i(x)$
 - In reality, you can't compute because you don't know f!

Bias-Variance Dilemma

☐ From bias-variance decomposition:

$$E_{p(x)} [E_{p(\mathcal{D})} [(r_{\mathcal{D}}(x) - r^*(x))^2]]$$

$$= E_{p(x)} [E_{p(\mathcal{D})} [(r_{\mathcal{D}}(x) - E_{p(\mathcal{D})} [r_{\mathcal{D}}(x)])^2]]$$

$$+ E_{p(x)} [(E_{P(\mathcal{D})} [r_{\mathcal{D}}(x)] - r^*(x))^2]$$

- ☐ Example:
 - Constant function with no parameter to learn: g(x) = 2
 - High bias and no variance
 - Constant function with one parameter to learn: $g(x) = \sum_t r^t/N$
 - Lower bias with some variance
- □ As we increase complexity of the model (e.g. const -> linear -> poly)
 - Bias decreases (a better fit to the data)
 - Variance increases (fit varies more with data)
- ☐ This is called Bias-Variance dilemma (Geman et al., 1962) This is calle

Model Complexity and Bias-Variance

Korea Advanced Institute of Science and Technology 한국과학기술원