Perceptron

What is a Perceptron?

A perceptron is the simplest type of artificial neural network—a single-layer model that makes binary decisions (Yes/No). It's the grandfather of modern deep learning!

- It's an algorithm used in supervised ML.
- · Building block of DL
- · It's a mathematical model/Function

6 How Does It Work?

1. Inputs $(x_1, x_2, ...) \rightarrow$ Features (e.g., pixel values, temperature).

- 2. Weights $(w_1, w_2, ...) \rightarrow \text{Importance of each input.}$
- 3. Bias (b/ w_0) \rightarrow Adjusts the decision threshold.
- 4. **Activation Function** → Decides output (e.g., **Step Function**).

$$z = (w_1x_1 + w_2x_2 + w_3x_3 + \dots) + b$$

$$ext{Output} = egin{cases} 1, & ext{if } z \geq 0 \ 0, & ext{if } z < 0 \end{cases}$$

- If sum ≥ threshold → Output = 1 (Yes)
- Else → Output = **0 (No)**
- If weights are more, they play an important role in predicting the output.

- Green is +ve region
- Red is -ve region

Perceptron divides region in 2 parts.

Key Features

- ✓ Single-layer (input + output, no hidden layers).
- ✓ Learns via weight updates (like a simple brain cell ♠).
- \bigcirc Only works for **linearly separable problems** (can't solve XOR \nearrow).

Perceptron vs. Modern Neural Networks

Feature	Perceptron	Deep Neural Network (DNN)	
Layers	1 (input → output)	Multiple hidden layers	
Learning	Basic weight adjustment	Backpropagation + optimization	
Use Case	Simple binary classification	Complex tasks (images, NLP)	

Feature	Perceptron	Deep Neural Network (DNN)
Limitation	Fails on non-linear data	Handles non-linear patterns

Training a Perceptron

- 1. Initialize weights randomly.
- 2. For each input, compute output.
- 3. Compare output with true label.
- 4. **Update weights** if wrong:

$$w_i = w_i + lpha \cdot (y - \hat{y}) \cdot x_i$$

- α (learning rate): Controls adjustment speed.
- y: True label.
- ŷ: Predicted label.
- 5. Repeat until weights converge or for a set number of iterations.
- 6. Generally, the loop \(\frac{1}{2} \) runs 1000 times

Evolution: From Perceptron to Deep Learning

- 1958: Frank Rosenblatt invents perceptron.
- 1969: Minsky & Papert prove its limits (can't solve XOR).
- 1980s+: Multi-layer perceptrons (MLPs) + backpropagation fix this!

Limitations of Perceptron

- **X** Cannot solve non-linearly separable problems (e.g., XOR problem).
- X Cannot work on non-linear data
- X Only works for binary classification (not multi-class).
- **X** Uses a step function, which does not allow smooth learning.

📌 Summary

- Perceptron = Simplest neural net (input → output).
- Only for linear problems (e.g., spam vs. not spam).
- Paved the way for deep learning \(\forall^2\).

Next step? Multi-Layer Perceptrons (MLPs) with hidden layers! 🚀

Python code

import numpy as np from sklearn.linear_model import Perceptron from sklearn.model_selection import train_test_split from sklearn.datasets import make_classification from sklearn.metrics import accuracy_score

Create a simple dataset (you can replace it with your own dataset)

```
X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_r
edundant=0, n_classes=2, random_state=42)
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_stat
e = 42
# Initialize the Perceptron model
perceptron = Perceptron(max_iter=1000, random_state=42)
# Train the model on the training data
perceptron.fit(X_train, y_train)
# Make predictions on the test set
y_pred = perceptron.predict(X_test)
# Calculate and print the accuracy
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy * 100:.2f}%")
# Print the weights and threshold (bias)
print(f"Weights: {perceptron.coef_}")
print(f"Threshold (Bias): {perceptron.intercept_}")
```

```
Accuracy: 100.00%
Weights: [[ 4.82428394 -1.86776033]]
Threshold (Bias): [1.]
```

max_iter=1000 : This is default value

from mlxtend.plotting import plot_decision_regions plot_decision_regions(X, y, clf=perceptron)

- Perceptron is a simple linear model, while other models like SVM, Logistic Regression, and Decision Trees offer more flexibility, can handle complex data, and perform better on non-linear tasks.
- **Perceptron** is easy to implement and interpret but works best only for simple, linearly separable problems.

Key Parameters in sklearn.linear_model.Perceptron

Parameter	Description	Default
eta0	Learning rate (same as alpha in SGD)	1.0
max_iter	Maximum training iterations (epochs)	1000
random_state	Seed for reproducibility	None
tol	Stopping criterion (stops if no improvement)	1e-3

Perceptron Trick

- The **Perceptron Trick** is a simple way to **update weights** when the perceptron makes a mistake.
- It's the core learning mechanism behind the perceptron algorithm!

6 What is the Perceptron Trick?

If the perceptron **misclassifies** a point:

- 1. If prediction = 0 but truth = $1 \rightarrow Add$ the input vector to weights.
- 2. If prediction = 1 but truth = 0 → Subtract the input vector from weights.

Update Rule:

$$w_{new} = w_{old} + lpha (y - \hat{y}) x$$

- w = weights
- x = input features
- y = true label (0 or 1)
- \hat{y} = predicted label
- α = learning rate (small step size)
- - \circ Therefore, $w_{new} = w_{old}$
 - i.e. the value of coefficients won't change

Step-by-Step Explanation

- 1. Initial Weights (Random)
 - Starts with a bad decision boundary (misclassifies points).
- 2. For Each Training Example:
 - Computes prediction (y_pred).
 - If wrong: Adjusts weights using:
 - o weights += learning_rate * (y_true y_pred) * x
- 3. Decision Boundary Moves!
 - After updates, the boundary shifts to correctly classify data.

Loss Function for Perceptron

$$\mathrm{Loss}(w) = -y \cdot (w \cdot x + b)$$

Where:

- w: Weight vector
- x: Input feature vector
- **b**: Bias term
- y: True label (+1 or -1)
- $w \cdot x$: Dot product between the weights and the input features

How It Works:

- 1. If the prediction is correct, meaning $y \cdot (w \cdot x + b) > 0$, no loss is incurred, and weights are not updated.
- 2. If the prediction is incorrect, meaning $y \cdot (w \cdot x + b) \le 0$, the loss is positive, and the perceptron updates its weights to reduce this loss.

Update Rule:

When the prediction is wrong, we update the weights:

$$w = w + y \cdot x$$