Polkadot Runtime Environment Spec Glossary (WIP)

January 16, 2020

Basics

Symbol	Description	Defined
\overline{b}	a sequence of bytes of length n	$b := (b_0, b_1,, b_{n-1})$ such that $0 \le b_i \le 255$
\mathbb{B}_n	the set of all byte arrays of length n	$\mathbb{B}:=igcup_i^\infty\mathbb{B}_i$
I	little-endian representation of a non-negative integer	$I = (\stackrel{i=0}{B_n} \dots B_0)_{256}$
B	byte array	$B = (b_0, b_1,, b_n)$ such that $b_1 := B_i$
Enc_{LE}		$Enc_{LE}: \begin{array}{ccc} \mathbb{Z}+ & \rightarrow & \mathbb{B} \\ (B_nB_0)_{256} & \rightarrow & (B_0, B_1,, B_n) \end{array}$
C	a blockchain is a directed path graph. Each node of the graph is called Block and indicated by B	
P(B)	the parent of block B	$B_{n+1} := P(B_n)$
\mathcal{N}	the set of the nodes of the Polkadot state trie	
N	an individual node in the trie	$N\in\mathcal{N}$
\mathcal{N}_b	a branch node which has one child or more (max 16)	
\mathcal{N}_l	a leaf node is a childless node	$\mathcal{N}_l := \{ N \in \mathcal{N} \mid N \text{ is a leaf node} \}$
SV_N	the subvalue of the given node	$SV_N :=$
		$\begin{cases} Enc_{SC}(StoredValue(k_N)) & \text{N is a leaf node} \\ ChildrenBitmap(N) Enc_{SC}(H(NC_1))Enc_{SC}(StoredValue(k_N)) & \text{N is a branch node} \\ StoredValue & \mathcal{K} \to \mathcal{V} \end{cases}$
StoredValue	function to retrieve the value stored under a specific key in the state storage	$k \to \begin{cases} v & if(k, v) \text{ exists in state storage} \\ \phi & otherwise \end{cases}$
		where $K \subset \mathbb{B}$ and $\mathcal{V}w \subset \mathbb{B}$ are respectively the set of all keys and values stored in the

state storage

Symbol	Description	Defined
$\overline{KeyEncode(k)}$	function to encode keys for labeling brnaches of the Trie	$k_{enc} := (k_{enc1},, k_{enc2n}) := KeyEncode(k)$
k_{enc}		such that:
		$KeyEncode(k): \begin{cases} \mathbb{B} & \to Nibbles^{4} \\ k := (b_{1},, b_{n}) := & \to (b_{1}^{1}, b_{1}^{2}, b_{2}^{1}, b_{2}^{2},, b_{n}^{1}, b_{n}^{2}) \\ & \to := (k_{enc_{1}},, k_{enc2n}) \end{cases}$
		where $Nibble^4$ is the set of all nibbles of 4-bit arrays and b_i^1 and b_i^2 are 4-bit nibbles, which are the big endian representation of b_i :
		$(b_i^1, b_i^2) := (b_i/16, b_i, mod16)$
		where mod is the remainder and $/$ is the integer division operators.
$egin{aligned} pk_N \ pk_N^{Agr} \ HeadN \end{aligned}$	TODO TODO the node header of node N	
v_N	the node value which is stored by the node $N \in \mathcal{N}$	$v_N := Head_N \parallel Enc_{HE}(pk_N) \parallel SV_N$
Children Bit map		ChildrenBitmap: $N_b \to \mathbb{B}_2$ $N \to (b_{15},, b_8, b_7,b_0)_2$
		where
H(N)	the Merkle value of N	$egin{aligned} b_i := \left\{ egin{array}{ll} &\exists N_c \in \mathcal{N} : k_{Nc} = k_{N_b} \parallel i \parallel pk_{Nc} \ 0 & otherwise \end{array} ight. \ &H : \mathbb{B} ightarrow \mathbb{B}_{32} \ &H(N) : \left\{ egin{array}{ll} v_N & \parallel v_N \parallel < 32 \ Blake2b(v_N) & \parallel v_N \parallel \geq 32 \end{array} ight. \end{aligned}$
		Where v_N is the node value of N and $0_{32-\ v_N\ }$ an all zero byte array of length $32-\ v_N\ $. The Merkle hash of the Trie is defined as: $Blake2b(H(R))$ where R is the root of the Trie.

Block Format

Symbol	Description	Defined
$\overline{H_p}$	the 32-byte Blake2b hash of the header of the parent of the block	
H_i	the interger representing the index of the current block in the chain. It is equal to the number of the ancestor blocks. The genesis block has number 0	
H_r	the root of the Merkle trie, whose leaves implement the storage for the system	

Symbol	Description	Defined
$\overline{H_e}$	the field which is reserved for the Runtime to validate the integrity of the extrinsics composing the block body. The extrinsics_root is set by the runtime and its value is opaque to Polkadot RE	
H_d	used to store any chain-specific auxiliary data	$H_d(B) := H_d^1,, H_d^n$ where H_d^i 's are digest items
$H_h(B)$	the hash of the header of block B by codec	$H_h(B) := Blake2b(Enc_{SC}(Head(B)))$
$H_h(B)$	Block hash	
$H_i(B)$	Block number	
Body(B)	the body of block B	$Body(B) := Enc_{SC}(E_1,, E_n)$ where each $E_i \in \mathbb{B}$ is a SCALE encoded extrinsic

SCALE Codec

Symbol	Description	Defined
A T S	Byte array Tuple where A_i 's are values of different types Sequence where A_i 's are values of the same type (and the decoder is unable to infer value of n from the context)	$A := b_1, b_2,b_n$ $T := (A_1,, A_n)$ $S := A_1,, A_n$
$ au_{Enc_{SC}}(A)$ $Enc_{SC}(T)$ $Enc_{SC}(S)$ Enc_{SC}^{Len}	Varying data type (TODO)	$T = \{T_1,, T_n\}$ $Enc_{SC}(A) := Enc_{SC}^{Len}(\ A\) \ A$ $Enc_{SC}(T) := Enc_{SC}(A_1) \ Enc_{SC}(A_2) \ \ Enc_{SC}(A_n)$ $Enc_{SC}(S) := Enc_{SC}^{Len}(\ S\) Enc_{SC}(A_1) Enc_{SC}(A_2) Enc_{SC}(A_n)$ $Enc_{SC}^{Len} : \mathbb{N} \to \mathbb{B}$ $\begin{cases} l_1 & 0 \leq n < 2^6 \\ i_1 i_2 & 2^6 \leq n < 2^{14} \\ j_1 j_2 j_3 & 2^{14} \leq n < 2^{30} \\ k_1 k_2 k_m & 2^{30} \leq n \end{cases}$ in where the least significant bits of the first byte of byte array b are defined as follows: $l_1^1 l_1^0 = 00$ $l_1^1 l_1^0 = 01$ $j_1^1 j_1^0 = 10$ $k_1^1 k_1^0 = 11$ and the rest of the bits of b store the value of n in little-endian format in base-2 as follows: $l_1^7 l_1^3 l_1^2 \qquad n < 2^6 \\ l_2^7 l_2^3 l_1^7 l_1^2 \qquad 2^6 \leq n < 2^{14} \\ l_2^7 l_2^3 l_1^7 l_1^2 \qquad 2^{14} \leq n < 2^{30} \\ k_2 + k_3 2^8 + k_4 2^{2 \times 8} + + k_m 2^{(m-2) \times 8} 2^{30} \leq n \end{cases}$ $\vdots = n$ such that:
		$k_1^7 k_1^3 k_1^2 := m - 4$

$\mathbf{GRANDPA}$

Symbol	Description	Defined
\overline{v}	GRANDPA Voter	
k_v^{pr}	ED25519 private key of v	
v_{id}	ED25519 public key of v	
\mathbb{V}	set of all GRANDPA voters	
\mathbb{V}_B	set of all GRANDPA voters for a given block	
\mathbb{V}_{id}	is an incremental counter tracking membership,	
	which changes in V	
GS	GRANDPA state	$GS := \{ \mathbb{V}, id_{\mathbb{V}}, r \}$
V(B)	GRANDPA vote	$V(B) := (H_h(B), H - I(B))$
$V_v^{r,pv}$	pre-vote	
$V_v^{r,pc}$	pre-commit	
r	Voting round number	
$V_i d$	Incremental counter tracking membership	
$V_v^{r,stage}(B)$	equivocatory vote	
$\mathcal{E}^{r,stage}$	set of all equivocators voters in sub-round "stage" of	
	round r	
$\mathcal{E}_{obs(v)}^{r,stage}$	set of all equivocators voters in sub-round "stage" of	
	round r observed by voter v	
$VD_{obs(v)(B)}^{r,stage}$	the set of observed direct votes for block B in round	
	r	
$V_{obs(v)}^{r,stage}$	the set of total votes observed by voter v in	
003(0)	sub-round "stage" of round r	
$V_{obs(v)}^{r,stage}(B)$	set of all observed votes by v in the sub-round stage	$V_{obs(v)}^{r,stage}(B) := \bigcup VD_{obs(v)}^{r,stage}(B')$
$oos(v) \lor /$	of round r for block B	$v_i \in \mathbb{V}, B > B'$
$B_v^{r,pv}$	The current pre-voted block	$H_n(B_v^{r,pv}) = Max(H_n(B) \forall B : \#V_{obs(v)}^{r,pv}(B) \ge 2 \setminus 3 \mathbb{V})$

Voting Messages Specification

Symbol	Description	Defined
$\overline{M_v^{r,stage}}$	A broadcasted message by the voter v casting his vote to the network	$M_v^{r,stage} := \\ Enc_{SC}(r,id_{\mathbb{V}},Enc_{SC}(stage,V_v^{r,stage},Sig_{ED25519}(Enc_{SC}(stage,V_v^{r,stage},r,V_{id}),v_{id})))$
$J^r(B)$	The justification for block B in round r	The justification is a vector of pairs of the type $(V(B'), (Sign_{vi}^{r,pc}(B'), v_{id}))$ in which either $B' \geq B$ or $V_{vi}^{r,pc}(B')$ is an equivocatory vote
$Sign_{vi}^{r,pc}(B')$	The signature of voter v , broadcasted during the pre-commit sub-round of round r	
$M_v^{r,Fin}(B)$	The finalizing message broadcasted by voter v to the network indicating that voter v has finalized bock B in round r	$M_v^{r,Fin}(B) := Enc_{SC}(r, V(B), J^r(B))$

Cryptographic keys

Symbol	Description	Defined
Account key (sk^a, pk^a)	A keypair of type of either SR25519, ED25519, $secp256k1$	

Hex encoding

Symbol	Description	Defined
$Enc_{HE}(PK)$	hex encoding	$Enc_{HE}(PK) := \begin{cases} Nibbles_4 \to \mathbb{B} \\ PK = (k_1,, k_n) \to \begin{cases} (16k_1 + k_2,, 16k_{2i-1} + k_{2i}) & n = 2i \\ (k_1, 16k_2 + k_3,, 16k_{2i} + k_{2i+1}) & n = 2i + 1 \end{cases}$