L^AT_EX command declarations here.

```
In [1]: from __future__ import division
        # plotting
        %matplotlib inline
        from matplotlib import pyplot as plt;
        import seaborn as sns
        import pylab as pl
        from matplotlib.pylab import cm
        import pandas as pd
        # scientific
        import numpy as np;
        # ipython
        from IPython.display import Image
```

EECS 545: Machine Learning

Lecture 13: Information Theory and Exponential Families ¶

• Instructor: Jacob Abernethy

• Date: March 7, 2016

Lecture Exposition Credit: Benjamin Bray & Saket Dewangan

Midterm performance: Not Bad!

Mean: 25.79, Median: 25.5, StdDev: 6.47

Optional Final Project

- Project is **very optional**. Students should only do project if they are serious and enthusiastic.
- Groups encouraged, up to 4 per group (effort should scale accordingly!)
- 1-page proposal due March 23rd, final project due April 21
- Projects can involve (a) new algorithms and experiments, (b) a new and exciting application, (c) literature survey, (d) a replication of published work.
- Do not submit projects from other courses! We can tell...

Optional Final Project Grading Policy

Students submitting a project are subject to alternative grading scheme.

	Basic Scheme	With Project
Midterm	25%	18%
Final Exam	25%	18%
Project	0%	18%

- Project can help your grade, but it can also hurt!
- Students must commit to Project grading, but can withdraw up to April 11th.

Review of Bias-Variance Tradeoff

Bias and Variance Formulae

- Recall $y=f+\epsilon$, where ϵ is some 0-mean noise with var. σ^2
- Alg receives dataset S and outputs \hat{f} , prediction of y . The error is:

$$\mathbb{E}[(y-\hat{f}\,)^2] = \underbrace{\sigma^2}_{ ext{irreducible error}} + \underbrace{ ext{Var}[\hat{f}\,]}_{ ext{Variance}} + \underbrace{\mathbb{E}[f-\mathbb{E}_S[\hat{f}\,]]}^2_{ ext{Bias}^2}$$

- Break error into two terms relating to $\mathbb{E}_S[\hat{m{f}}]$ the "average" estimate over random datasets S.
 - ullet Bias of an estim.: $\mathrm{Bias}(\hat{f}) = (\mathbb{E}_S[\hat{f}] f)$
 - ullet Variance of estim.: $\mathrm{Var}(\hat{f}) = \mathbb{E}[(\hat{f} \mathbb{E}_S[\hat{f}])^2]$

An example to explain Bias/Variance and illustrate the tradeoff

· Consider estimating a sinusoidal function.

(Example that follows is inspired by Yaser Abu-Mostafa's CS 156 Lecture titled "Bias-Variance Tradeoff"

```
In [2]: RANGEXS = np.linspace(0., 2., 300)
        TRUEYS = np.sin(np.pi * RANGEXS)
        def plot_fit(x, y, p, show,color='k'):
            xfit = RANGEXS
            yfit = np.polyval(p, xfit)
            if show:
                axes = pl.gca()
                axes.set xlim([min(RANGEXS), max(RANGEXS)])
                axes.set_ylim([-2.5,2.5])
                pl.scatter(x, y, facecolors='none', edgecolors=color)
                pl.plot(xfit, yfit,color=color)
                pl.hold('on')
                pl.xlabel('x')
                pl.ylabel('y')
```

```
In [3]: def calc_errors(p):
            x = RANGEXS
            errs = []
            for i in x:
                 errs.append(abs(np.polyval(p, i) - np.sin(np.pi * i)) **
        2)
             return errs
```

```
In [4]: def calculate bias variance(poly coeffs, input values x, true va
        lues y):
            # poly coeffs: a list of polynomial coefficient vectors
            # input values x: the range of xvals we will see
            # true values y: the true labels/targes for y
            # First we calculate the mean polynomial, and compute the pr
        edictions for this mean poly
            mean coeffs = np.mean(poly coeffs, axis=0)
            mean predicted poly = np.poly1d(mean coeffs)
            mean predictions y = np.polyval(mean predicted poly, input v
        alues x)
            # Then we calculate the error of this mean poly
            bias errors across x = (mean predictions y - true values y)
            # To consider the variance errors, we need to look at every
        output of the coefficients
            variance errors = []
            for coeff in poly coeffs:
                predicted_poly = np.poly1d(coeff)
                predictions y = np.polyval(predicted poly, input values
        x)
                # Variance error is the average squared error between th
        e predicted values of y
                # and the *average* predicted value of y
                variance error = (mean predictions y - predictions y)**2
                variance errors.append(variance error)
            variance errors across x = np.mean(np.array(variance error
        s),axis=0)
            return bias errors across x, variance errors across x
```

```
In [5]: def polyfit sin(degree=0, iterations=100, num points=5, show=Tru
        e):
            total = 0
            l = []
            coeffs = []
            errs = [0] * len(RANGEXS)
            colors=cm.rainbow(np.linspace(0,1,iterations))
            for i in range(iterations):
                np.random.seed()
                x = np.random.choice(RANGEXS,size=num_points) # Pick ran
        dom points from the sinusoid
                y = np.sin(np.pi * x)
                p = np.polyfit(x, y, degree)
                y poly = [np.polyval(p, x i)  for x i in x]
                plot_fit(x, y, p, show,color=colors[i])
                total += sum(abs(y_poly - y) ** 2) # calculate Squared E
        rror (Squared Error)
                coeffs.append(p)
                errs = np.add(calc errors(p), errs)
            return total / iterations, errs / iterations, np.mean(coeff
        s, axis = 0), coeffs
```

```
In [6]: def plot bias and variance(biases, variances, range xs, true ys, mea
        n predicted ys):
            pl.plot(range_xs, mean_predicted_ys, c='k')
            axes = pl.gca()
            axes.set xlim([min(range xs), max(range xs)])
            axes.set ylim([-3,3])
            pl.hold('on')
            pl.plot(range xs, true ys,c='b')
            pl.errorbar(range xs, mean predicted ys, yerr = biases, c
        ='y', ls="None", zorder=0,alpha=1)
            pl.errorbar(range xs, mean predicted ys, yerr = variances, c
        ='r', ls="None", zorder=0,alpha=0.1)
            pl.xlabel('x')
            pl.ylabel('y')
```

Let's return to fitting polynomials

- Here we generate some samples x, y, with $y = \sin(2\pi x)$
- We then fit a degree-0 polynomial (i.e. a constant function) to the samples

In [7]: # polyfit_sin() generates 5 samples of the form (x,y) where y=si n(2*pi*x)# then it tries to fit a degree=0 polynomial (i.e. a constant fu nc.) to the data # Ignore return values for now, we will return to these later _, _, _, _ = polyfit_sin(degree=0, iterations=1, num_points=5, s how=**True**)

We can do this over many datasets

- Let's sample a number of datasets
- · How does the fitted polynomial change for different datasets?

In [8]: # Estimate two points of sin(pi * x) with a constant 5 times
_, _, _, _ = polyfit_sin(0, 5)

What about over lots more datasets?

In [9]: # Estimate two points of sin(pi * x) with a constant 100 times
_, _, _, _ = polyfit_sin(0, 25)

In [10]: MSE, errs, mean_coeffs, coeffs_list = polyfit_sin(0, 100,num_poi
 nts = 3,show=False)
 biases, variances = calculate_bias_variance(coeffs_list,RANGEXS,
 TRUEYS)
 plot_bias_and_variance(biases,variances,RANGEXS,TRUEYS,np.polyva
 l(np.polyld(mean_coeffs), RANGEXS))

• Decomposition:
$$\mathbb{E}[(y-\hat{f})^2] = \underbrace{\sigma^2}_{\text{irreducible error}} + \underbrace{\operatorname{Var}[\hat{f}]}_{\text{Variance}} + \underbrace{\mathbb{E}[f-\mathbb{E}_S[\hat{f}]]^2}_{\text{Bias}^2}$$

- Blue curve: true $m{f}$
- Black curve: $\hat{m{f}}$, average predicted values of $m{y}$
- Yellow is error due to Bias, Red/Pink is error due to Variance

Bias vs. Variance

We can calculate how much error we suffered due to bias and due to variance

Out[11]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd59974b828>

Let's now fit degree=3 polynomials

Let's sample a dataset of 5 points and fit a cubic poly

In [12]: MSE, _, _, _ = polyfit_sin(degree=3, iterations=1)

Let's now fit degree=3 polynomials

• What does this look like over 5 different datasets?

Let's now fit degree=3 polynomials

• What does this look like over 50 different datasets?

In [14]: # Estimate two points of sin(pi * x) with a line 50 times
_, _, _, _ = polyfit_sin(degree=3, iterations=50)

In [15]: MSE, errs, mean_coeffs, coeffs_list = polyfit_sin(3,500,show=Fal
se)
 biases, variances = calculate_bias_variance(coeffs_list,RANGEXS,
 TRUEYS)
 plot_bias_and_variance(biases,variances,RANGEXS,TRUEYS,np.polyva
 l(np.polyld(mean_coeffs), RANGEXS))

$$\mathbb{E}[(y-\hat{f}\,)^2] = \underbrace{\sigma^2}_{ ext{irreducible error}} + \underbrace{ ext{Var}[\hat{f}\,]}_{ ext{Variance}} + \underbrace{\mathbb{E}[f-\mathbb{E}_S[\hat{f}\,]]^2}_{ ext{Bias}^2}$$

• Blue curve: true $m{f}$

ullet Black curve: $\mathbb{E}[\hat{f}]$, average prediction of y

• Yellow is error due to Bias, Red/Pink is error due to Variance

Bias and Variance for different degree sizes

Out[16]: <matplotlib.axes._subplots.AxesSubplot at 0x7fd5985ef358>

High degree polys have lower bias but much greater variance!

Info Theory + Exponential Familes -- References

Information Theory:

- [Shannon 1951] Shannon, Claude E.. <u>The Mathematical Theory of Communication</u> (http://worrydream.com/refs/Shannon%20-%20A%20Mathematical%20Theory%20of%20Communication.pdf). 1951.
- [Pierce 1980] Pierce, John R.. <u>An Introduction to Information Theory: Symbols, Signals, and Noise (http://www.amazon.com/An-Introduction-Information-Theory-Mathematics/dp/0486240614)</u>. 1980.
- [Stone 2015] Stone, James V.. <u>Information Theory: A Tutorial Introduction (http://jimstone.staff.shef.ac.uk/BookInfoTheory/InfoTheory/BookMain.html</u>). 2015.

Exponential Families:

- **[MLAPP]** Murphy, Kevin. <u>Machine Learning: A Probabilistic Perspective</u> (https://mitpress.mit.edu/books/machine-learning-0). 2012.
- [Hero 2008] Hero, Alfred O.. <u>Statistical Methods for Signal Processing</u> (http://web.eecs.umich.edu/~hero/Preprints/main 564 08 new.pdf). 2008.
- [Blei 2011] Blei, David. <u>Notes on Exponential Families</u> (https://www.cs.princeton.edu/courses/archive/fall11/cos597C/lectures/exponential-families.pdf). 2011.
- [Wainwright & Jordan 2008] Wainwright, Martin J. and Michael I. Jordan. <u>Graphical Models</u>, <u>Exponential Families</u>, <u>and Variational Inference</u> (https://www.eecs.berkeley.edu/~wainwrig/Papers/WaiJor08_FTML.pdf). 2008.

Outline

This lecture, we introduce some important background for **Probabilistic Graphical Models**.

- Information Theory
 - Information, Entropy, and Encoding
 - Relative Entropy, Mutual Information & Collocations
 - Maximum Entropy Distributions
- Exponential Family
 - Mean and Natural Parameterizations
 - Conjugate Priors & Maximum Likelihood

Information Theory

Uses material from [MLAPP] §2.8, [Pierce 1980], [Stone 2015], and [Shannon 1951].

Information Theory

Information theory is concerned with

- Compression: Representing data in a compact fashion
- Error Correction: Transmitting and storing data in a way that is robust to errors

In machine learning, information-theoretic quantities are useful for

- · manipulating probability distributions
- · interpreting statistical learning algorithms

What is Information?

Can we measure the amount of **information** we gain from an observation?

- Information is measured in *bits* (don't confuse with *binary digits*, 0110001...)
- Intuitively, observing a fair coin flip should give 1 bit of information
- Observing two fair coins should give 2 bits, and so on...

Information: Definition

The **information content** of an event E with probability p is

$$I(E)=I(p)=-\log_2 p=\log_2 rac{1}{p}\geq 0$$

- Information theory is about *probabilities* and *distributions*
- · The "meaning" of events doesn't matter.
- Using bases other than 2 yields different units (Hartleys, nats, ...)

Example: Fair Coin

One Coin: If P(Heads) = 0.5 and we observe heads, then

$$I(Heads) = -\log_2 P(Heads) = 1$$
 bit

Two Coins: If we observe two heads in a row,

$$egin{aligned} I(Heads, Heads) &= -\log_2 P(Heads, Heads) \ &= -\log_2 P(Heads) P(Heads) \ &= -\log_2 P(Heads) - \log_2 P(Heads) = 2 ext{ bits} \end{aligned}$$

Example: Unfair Coin

Suppose the coin has two heads, so P(H) = 1. Then,

$$I(Heads) = -\log_2 1 = 0$$

If we know the coin is unfair, we gain no information by observing heads!

- Information is a measure of how **surprised** we are by an outcome.
- Observing heads when P(H)=0 yields *infinite* information.

Entropy: Definition

The **entropy** of a discrete random variable $m{X}$ with distribution $m{p}$ is

$$H[X]=H[p]=E[I(p(X))]=-\sum_{x\in X}p(x)\log p(x)$$

Entropy is the expected information received when we sample from $oldsymbol{X}$.

• How surprised are we, on average?

Entropy: Coin Flip

If
$$X$$
 is binary, $H[X] = -[p\log p + (1-p)\log(1-p)]$

```
In [17]: p = np.linspace(0.01,0.99,100); plt.plot(p, -(p * np.log(p) + (1-p)*np.log(1-p)) / np.log(2));
```


Entropy & Surprisal

Entropy is highest when \boldsymbol{X} is close to uniform.

- Large entropy \iff high uncertainty, more information from each new observation
- Low entropy \iff more knowledge about possible outcomes

The farther from uniform X is, the lower the entropy.

Break Time!

Maximum Entropy Principle

Suppose we sample data from an unknown distribution p, and

- we collect statistics (mean, variance, etc.) from the data
- ullet we want an *objective* or unbiased estimate of $oldsymbol{p}$

The Maximum Entropy Principle states that:

We should choose $m{p}$ to have maximum entropy $m{H}[m{p}]$ among all distributions satisfying our constraints.

Maximum Entropy: Examples

Some examples of maximum entropy distributions:

Constraints	Maximum Entropy Distribution	
Min $oldsymbol{a}$, Max $oldsymbol{b}$	Uniform $U[a,b]$	
Mean μ , Support $(0,+\infty)$	Exponential $Exp(\mu)$	
Mean μ , Variance σ^2	Gaussian $\mathcal{N}(\mu, \sigma^2)$	

Later, **Exponential Family Distributions** will generalize this concept.

Communication Channels

For some intuition, consider a communication channel:

- 1. The **source** generates messages.
- 2. An **encoder** converts the message to a **signal** for transmission.
- 3. Signals are transmitted along a **channel**, possibly under the influence of **noise**.
- 4. A decoder attempts to reconstruct the original message from the transmitted signal.
- 5. The **destination** is the intended recipient.

Encoding

Suppose we draw messages from a distribution p.

- Certain messages may be more likely than others.
- For example, the letter e is most frequent in English

An **efficient** encoding minimizes the average message length,

- assign short codewords to common messages
- · and longer codewords to rare messages

Interesting side note on Morse Code

At the time, newspaper printers had tiny metal copies of each letter, used for printing. A researcher apparently reasoned that they would have only as many copies of each letter as necessary to print a page, so he counted the number of copies of each letter they had and used that to estimate English letter frequencies.

Wikipedia reference (https://en.wikipedia.org/wiki/Morse_code)

Encoding: Morse Code

This is precisely how Morse Code works!

Approximates **Huffman Coding**, which gives optimal binary codes.

In [19]: Image(filename="images/morse-code.jpg")

Out[19]:

Source Coding Theorem

Claude Shannon proved that for discrete noiseless channels:

It is impossible to encode messages drawn from a distribution p with fewer than H[p] bits, on average.

Here, bits refers to binary digits, i.e. encoding messages in binary.

H[p] measures the optimal code length, in bits, for messages drawn from p

Cross Entropy & Relative Entropy

Consider different distributions p and q

What if we use a code optimal for q to encode messages from p?

For example, suppose our encoding scheme is optimal for German text.

- What if we send English messages instead?
- Certainly, there will be some waste due to different letter frequencies, umlauts, ...

Cross Entropy

The **cross entropy** measures the average number of bits needed to encode messages drawn from p when we use a code optimal for q:

$$H(p,q) = -\sum_{x \in \mathcal{X}} p(x) \log q(x) = -E_p[\log q(x)]$$

Intuitively, $H(p,q) \geq H(p)$. The **relative entropy** is the difference H(p,q) - H(p).

Relative Entropy: Definition

The relative entropy or Kullback-Leibler divergence of q from p is

$$egin{aligned} D_{KL}(p||q) &= \sum_{x \in X} p(x) \log rac{p(x)}{q(x)} \ &= H(p,q) - H(p) \end{aligned}$$

Measures the number of *extra* bits needed to encode messages from p if we use a code optimal for q.

Mutual Information: Definition

The **mutual information** between discrete variables X and Y is

$$egin{aligned} I(X;Y) &= \sum_{y \in Y} \sum_{x \in X} p(x,y) \log rac{p(x,y)}{p(x)p(y)} \ &= D_{KL}(p(x,y)||p(x)p(y)) \end{aligned}$$

- If X and Y are independent, p(x,y)=p(x)p(y)
- So, I(X;Y) measures how dependent X and Y are!
- Related to correlation ho(X,Y)

A **collocation** is a sequence of words that co-occur more often than expected by chance.

- fixed expression familiar to native speakers (hard to translate)
- meaning of the whole is more than the sum of its parts

See trnka/CISC889-11S/lectures/philip-pmi.pdf) for more details

Example: Collocation & PMI

Substituting a synonym sounds unnatural:

- · "fast food" vs. "quick food"
- "Great Britain" vs. "Good Britain"
- "warm greetings" vs "hot greetings"

How can we find collocations in a corpus of text?

Example: Collocations & PMI

The **pointwise mutual information** between words $oldsymbol{x}$ and $oldsymbol{y}$ is

$$\operatorname{pmi}(x;y) = \log rac{p(x,y)}{p(x)p(y)}$$

- p(x)p(y) is how frequently we **expect** x and y to co-occur, if they do so independently.
- p(x,y) measures how frequently x and y actually occur together

Idea: Rank word pairs by $\mathbf{pmi}(x,y)$ to find collocations!

- $\mathbf{pmi}(x,y)$ is large if x and y co-occur more frequently together than expected

Code: Let's try it on the novel Crime and Punishment!

• Pre-computed unigram and bigram counts are found in the collocations/data folder

Example: Collocations & PMI

Here we read in the precomputed data. See the notebook in the collocations folder for a full implementation.

```
In [20]: import csv, math;
        # file paths
        unigram path = "collocations/data/crime-and-punishment.txt.unigr
        bigram path = "collocations/data/crime-and-punishment.txt.bigram
        s";
        # read unigrams into dict
        with open(unigram path) as f:
            reader = csv.reader(f);
            unigrams = { row[0] : int(row[1]) for row in csv.reader(f)};
        # read bigrams into dict
        with open(bigram path) as f:
            reader = csv.reader(f);
            bigrams = \{ (row[0], row[1]) : int(row[2])  for row in csv.rea
        der(f)};
        # pretty print table
        class PrettyTable(object):
                def __init__(self, data, head1, head2, floats=False):
                   table = ""
                    table += "<thead>s
        (head1, head2);
                   table += "\n"
                    for bigram,count in data:
                       if floats: count = "%0.2f" % count;
                       else: count = "%d" % count;
                       table += ""
                       table += "%s %s" % bigram;
                       table += "%s" % count;
                       table += "\n";
                   table += ""
                    self.table = table;
                def _repr_html_(self):
                    return self.table;
```

The following code sorts bigrams by pointwise mutual information:

```
In [30]: # compute pmi
pmi_bigrams = [];

for w1,w2 in bigrams:
    # compute pmi
    actual = bigrams[(w1,w2)];
    expected = unigrams[w1] * unigrams[w2];
    pmi = math.log( actual / expected );
    # filter out infrequent bigrams
    if actual < 15: continue;
    pmi_bigrams.append( ((w1, w2), pmi) );

# sort pmi
pmi_sorted = sorted(pmi_bigrams, key=lambda x: x[1], reverse=Tru
e);</pre>
```

Example: Collocations & PMI

Here are the most frequent bigrams--these aren't collocations!

In [31]: bigrams_sorted = sorted(bigrams.items(), key=lambda x: x[1], rev
erse=True);
PrettyTable(bigrams_sorted[:10], "Bigram", "Count")

Out[31]:

Bigram	Count
in the	778
of the	598
he was	505
he had	498
to the	488
on the	479
i am	460
at the	459
it was	413
that he	335

Example: Collocations & PMI

Sorting bigrams by PMI, we first get names...

In [33]: PrettyTable(pmi_sorted[1:10], "Collocation", "PMI", floats=True)

Out[33]:

Collocation	PMI
andrey semyonovitch	-3.18
nikodim fomitch	-3.18
hay market	-3.48
dmitri prokofitch	-3.87
honoured sir	-4.27
sofya semyonovna	-4.33
marfa petrovna	-4.37
police station	-4.48
rodion romanovitch	-4.57

In [34]: PrettyTable(pmi sorted[12:20], "Collocation", "PMI", floats=Tru

Out[34]:

Collocation	РМІ
thank god	-5.20
police office	-5.23
great deal	-5.28
ten minutes	-5.40
good heavens	-5.51
thousand roubles	-5.54
katerina ivanovnas	-5.57
old womans	-5.57

Example: Feature Selection

Mutual information can also be used for feature selection.

- In classification, features that depend most on the class label C are useful
- So, choose features X_k such that $I(X_k; C)$ is large
- This helps to avoid overfitting by ignoring irrelevant features!

See [MLAPP] §3.5.4 for more information

Exponential Families

Uses material from [MLAPP] §9.2 and [Hero 2008] §3.5, §4.4.2

Exponential Family: Introduction

We have seen many distributions.

- Bernoulli
- Gaussian
- Exponential
- Gamma

Many of these belong to a more general class called the exponential family.

Exponential Family: Introduction

Why do we care?

- · only family of distributions with finite-dimensional sufficient statistics
- only family of distributions for which conjugate priors exist
- makes the least set of assumptions subject to some user-chosen constraints (Maximum Entropy)
- core of generalized linear models and variational inference

Sufficient Statistics

Recall: A **statistic** $T(\mathcal{D})$ is a function of the observed data \mathcal{D} .

- Mean, $T(x_1,\ldots,x_n)=rac{1}{n}\sum_{k=1}^n x_k$
- · Variance, maximum, mode, etc.

Sufficient Statistics: Definition

Suppose we have a model P with parameters heta. Then,

A statistic $T(\mathcal{D})$ is **sufficient** for θ if no other statistic calculated from the same sample provides any additional information about the parameter.

That is, if $T(\mathcal{D}_1)=T(\mathcal{D}_2)$, our estimate of θ given \mathcal{D}_1 or \mathcal{D}_2 will be the same.

- Mathematically, $P(heta|T(\mathcal{D}),\mathcal{D})=P(heta|T(\mathcal{D}))$ independently of \mathcal{D}

Sufficient Statistics: Example

Suppose $X \sim \mathcal{N}(\mu, \sigma^2)$ and we observe $\mathcal{D} = (x_1, \dots, x_n)$. Let

- $\hat{m{\mu}}$ be the sample mean
- $\hat{\sigma}^2$ be the sample variance

Then $T(\mathcal{D})=(\hat{\mu},\hat{\sigma}^2)$ is sufficient for $heta=(\mu,\sigma^2)$.

ullet Two samples \mathcal{D}_1 and \mathcal{D}_2 with the same mean and variance give the same estimate of $oldsymbol{ heta}$

(we are sweeping some details under the rug)

Exponential Family: Definition

 $p(x|\theta)$ has exponential family form if:

$$egin{aligned} p(x| heta) &= rac{1}{Z(heta)} h(x) \expigl[\eta(heta)^T \phi(x)igr] \ &= h(x) \expigl[\eta(heta)^T \phi(x) - A(heta)igr] \end{aligned}$$

- Z(heta) is the **partition function** for normalization
- $A(\theta) = \log Z(\theta)$ is the log partition function
- $\phi(x) \in \mathbb{R}^d$ is a vector of sufficient statistics
- $\eta(\theta)$ maps θ to a set of **natural parameters**
- h(x) is a scaling constant, usually h(x)=1

Example: Bernoulli

The Bernoulli distribution can be written as

$$egin{aligned} \mathrm{Ber}(x|\mu) &= \mu^x (1-\mu)^{1-x} \ &= \exp[x \log \mu + (1-x) \log(1-\mu)] \ &= \expig[\eta(\mu)^T \phi(x)ig] \end{aligned}$$

where $\eta(\mu) = (\log \mu, \log(1-\mu))$ and $\phi(x) = (x, 1-x)$

- There is a linear dependence between features $\phi(x)$
- This representation is **overcomplete**
- η is not uniquely determined

Example: Bernoulli

Instead, we can find a **minimal** parameterization:

$$\mathrm{Ber}(x|\mu) = (1-\mu) \exp\left[x\lograc{\mu}{1-\mu}
ight]$$

This gives natural parameters $\eta = \log rac{\mu}{1-\mu}$.

• Now, η is unique

Other Examples

Exponential Family Distributions:

- Multivariate normal
- Exponential
- Dirichlet

Non-examples:

- Student t-distribution can't be written in exponential form
- Uniform distribution support depends on the parameters $oldsymbol{ heta}$

Log-Partition Function

Derivatives of the **log-partition function** $A(\theta)$ yield **cumulants** of the sufficient statistics (*Exercise!*)

- $abla_{ heta} \log p(x| heta) = E[\phi(x)]$
- $abla^2_{ heta} \log p(x| heta) = Cov[\phi(x)]$

This guarantees that A(heta) is convex!

- Its Hessian is the covariance matrix of \boldsymbol{X} , which is positive-definite.
- Later, this will guarantee a unique global maximum of the likelihood!

Proof of Convexity: First Derivative

$$egin{aligned} rac{dA}{d heta} &= rac{d}{d heta} \left[\log \int exp(heta\phi(x))h(x)dx
ight] \ &= rac{rac{d}{d heta} \int exp(heta\phi(x))h(x)dx}{\int exp(heta\phi(x))h(x)dx} \ &= rac{\int \phi(x)exp(heta\phi(x))h(x)dx}{exp(A(heta))} \ &= \int \phi(x)\exp[heta\phi(x)-A(heta)]h(x)dx \ &= \int \phi(x)p(x)dx \ &= E[\phi(x)] \end{aligned}$$

Proof of Convexity: Second Derivative

$$egin{aligned} rac{d^2A}{d heta^2} &= \int \phi(x) \exp[heta\phi(x) - A(heta)]h(x)(\phi(x) - A'(heta))dx \ &= \int \phi(x)p(x)(\phi(x) - A'(heta))dx \ &= \int \phi^2(x)p(X)dx - A'(heta)\int \phi(x)p(x)dx \ &= E[\phi^2(x)] - E[\phi(x)]^2 \quad (\because A'(heta) = E[\phi(x)]) \ &= Var[\phi(x)] \end{aligned}$$

Proof of Convexity: Second Derivative

For multi-variate case, we have

$$rac{\partial^2 A}{\partial heta_i \partial heta_j} = E[\phi_i(x) \phi_j(x)] - E[\phi_i(x)] E[\phi_j(x)]$$

and hence,

$$abla^2 A(\theta) = Cov[\phi(x)]$$

Since covariance is positive definite, we have $A(\theta)$ convex as required.

Exponential Family: Likelihood

For data $\mathcal{D}=(x_1,\ldots,x_N)$, the likelihood is

$$p(\mathcal{D}| heta) = \left[\prod_{k=1}^N h(x_k)
ight] Z(heta)^{-N} \exp\left[\eta(heta)^T \sum_{k=1}^N \phi(x_k)
ight]$$

The sufficient statistics are now N and $\phi(\mathcal{D}) = \sum_{k=1}^N \phi(x)$.

ullet Bernoulli: N and $\phi=\# Heads$

• Normal: N and $\phi = [\sum_k x_k, \sum_k x_k^2]$

Pitman-Koopman-Darmois Theorem

Among families of distributions $P(x|\theta)$ whose support does not vary with the parameter θ , only in exponential families is there a sufficient statistic $T(x_1,\ldots,x_N)$ whose dimension remains bounded as the sample size N increases.

Exponential Family: MLE

For natural parameters heta and data $\mathcal{D}=(x_1,\ldots,x_N)$,

$$\log p(\mathcal{D}| heta) = \eta^T \phi(\mathcal{D}) - NA(heta)$$

Since -A(heta) is concave and $heta^T\phi(\mathcal{D})$ linear,

- the log-likelihood is concave
- · there is a unique global maximum!

Exponential Family: MLE

To find the maximum, recall $abla_{ heta} \log p(x| heta) = E[\phi(x)]$, so

$$egin{aligned}
abla_{ heta} \log p(\mathcal{D}| heta) &= \phi(\mathcal{D}) - NE[\phi(X)] = 0 \ \implies E[\phi(X)] &= rac{\phi(\mathcal{D})}{N} = rac{1}{N} \sum_{k=1}^N \phi(x_k) \end{aligned}$$

At the MLE $\hat{ heta}_{MLE}$, the empirical average of sufficient statistics equals their expected value.

this is called moment matching

Exponential Family: MLE

As an example, consider the Bernoulli distribution

• Sufficient statistic $N, \phi(\mathcal{D}) = \#Heads$

$$\hat{\mu}_{MLE} = rac{\# Heads}{N}$$

Bayes for Exponential Family

Exact Bayesian analysis is considerably simplified if the prior is **conjugate** to the likelihood.

• Simply, this means that prior $p(\mathcal{D}| au)$ has the same form as likelihood $p(\mathcal{D}| heta)$.

This requires likelihood to have finite sufficient statistics

· Exponential family to the rescue!

Likelihood

Likelihood:

$$p(\mathcal{D}| heta) \propto g(heta)^N \exp[\eta(heta)^T s_N] \ s_N = \sum_{i=1}^N s(x_i)$$

In terms of canonical parameters:

$$p(\mathcal{D}|\eta) \propto \exp[N\eta^Tar{s} - NA(\eta)] \ ar{s} = rac{1}{N}s_N$$

Prior

$$p(heta|
u_0, au_0) \propto g(heta)^{
u_0} \exp[\eta(heta)^T au_0]$$

• Denote $au_0 = \nu_0 \bar{ au}_0$ to separate out the size of the **prior pseudo-data**, ν_0 , from the mean of the sufficient statistics on this pseudo-data, au_0 . Hence,

$$p(heta|
u_0,ar{ au}_0) \propto \exp[
u_0 \eta^T ar{ au}_0 -
u_0 A(\eta)]$$

Prior: Example

$$egin{aligned} p(heta|
u_0, au_0) &\propto (1- heta)^{
u_0} \exp[au_0 \log(rac{ heta}{1- heta})] \ &= heta^{ au_0} (1- heta)^{
u_0- au_0} \end{aligned}$$

Define $\alpha = \tau_0 + 1$ and $\beta = \nu_0 - \tau_0 + 1$ to see that this is a **beta distribution**.

Posterior

Posterior:

$$p(heta|\mathcal{D}) = p(heta|
u_N, au_N) = p(heta|
u_0+N, au_0+s_N)$$

Note that we obtain hyper-parameters by adding. Hence,

$$egin{aligned} p(\eta|\mathcal{D}) &\propto \exp[\eta^T(
u_0ar{ au}_0 + Nar{s}) - (
u_0 + N)A(\eta)] \ &= p(\eta|
u_0 + N, rac{
u_0ar{ au}_0 + Nar{s}}{
u_0 + N}) \end{aligned}$$

• posterior hyper-parameters are a convex combination of the prior mean hyper-parameters and the average of the sufficient statistics.