TEAM ID: PNT2022TMID18332

PROJECT NAME: AI-Powered Nutrition Analyzer For Fitness Enthusiasts

Project Report Format

1. INTRODUCTION

1.1 Project Overview

Food is essential for human life and has been the concern of many healthcare conventions.

Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help

people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet.

Nutritional analysis is the process of determining the nutritional content of food. It is a vital part of

analytical chemistry that provides information about the chemical composition, processing, quality

control and contamination of food.

1.2 Purpose

The main aim of the project is to building a model which is used for classifying the fruit depends on

the different characteristics like colour, shape, texture etc. Here the user can capture the images of

different fruits and then the image will be sent the trained model. The model analyses the image

and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

2. LITERATURE SURVEY

2.1 Existing problem

Neutrino delivers nutrition-based data services and analytics to its users and wants to turn into a

leading source of the nutrition-related platform. The platform employs NLP and mathematical

models from the optimization theory as well as predictive analysis to enable individualized data

compilation.

The application relies on Artificial Intelligence to produce custom data related to smart calorie

counter powered by AI. Their artificial intelligence learns an individual's tastes, preferences, and

body type. All of this is packaged in a comprehensive nutrition and activity tracker.

2.2 References

https://www.nutrinohealth.com/

2.3 Problem Statement Definition

The main aim of the project is to building a model which is used for classifying the fruit depends on the different characteristics like colour, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

3. IDEATION & PROPOSED SOLUTION

3.1 Empathy Map Canvas

3.2 Ideation & Brainstorming

HARSHAVARDHINEE P

ARUNKUMAR S

AAKASH K

ABISHEK A C

NUTRITIONAL

WORKOUT

PROGRAMS

3.3 Proposed Solution

S.NO	PARAMETERS	SOLUTIONS
1.	Problem Statement	 Main objective is to detect the nutrition in a fruit from camera captured image. The identification of nutrition and calories from a image is quite an interesting field. Since nutrition monitoring plays an important role in leading healthy lifestyle, this product has the potential to become an essential in our day to day life.
2.	Idea / Solution description	 The solution is to develop AI-powered nutrition analyzer application. By giving the image of the fruit as the input to the application, it will display the nutrition content in it. By training the model with various inputs, image processing can be improved as well as the accuracy of the result.
3.	Novelty / Uniqueness	 Personalized nutrition for individuals. Providing science based guidance for healthy living. Balanced food diet and measured intake. 24/7 support. Serving size.

4.	Social Impact / Customer Satisfaction	 Economically stable product. Change one's view towards health and fitness. Quality of service. High fiber food. Accurate amount of nutrition.
5.	Business Model (Revenue Model)	 User friendly interface which improves the constant use of the product. Hence, Economical growth improves. Product will be delivered in pocket size which results in consuming low memory. Nutrition and fitness related ads to earn profit
6.	Scalability of the Solution	Offers ingredients substance detail in food Suggest best health solution and meal plans for different criteria proposed by different individuals. Virtualization of your long term plan to provide motivation to the customer.

3.4 Problem Solution fit

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem. It helps entrepreneurs, marketers and corporate innovators identify behavioral patterns

Purpose:

- Solve complex problems in a way that fits the state of your customers.
- Succeed faster and increase your solution adoption by tapping into existing mediums and channels of behavior.
- Sharpen your communication and marketing strategy with the right triggers and messaging.
- Increase touch-points with your company by finding the right problem-behavior fit and building trust by solving frequent annoyances, or urgent or costly problems.

4. REQUIREMENT ANALYSIS

4.1 Functional requirement

- It will generate the diet plan as well as monitor the user's health to classify the category of the disease and to create the diet plan. It will also reduce the cost of consulting the person nutritionist.
- The task of food detection/classification is not easy as it seems. All possible options related to the given Image.
- Image classification, object detection, segmentation, face recognition.
- Classification of crystal structure using a convolutional neural network
- Nutrition is vital to the growth of the human body. Nutritional analysis guarantees that the meal meets the appropriate vitamin and mineral requirements, and the examination of nutrition in food aids in understanding the fat proportion, carbohydrate dilution, proteins, fiber, sugar, and so on. Another thing to keep in mind is not to exceed our daily calorie requirements
- Computer-Assisted Nutritional Recognize Food Images In order to solve this issue, a brandnew Convolutional Neural Network (CNN)- based food picture identification system was

- created, as described in this study. We utilized our suggested strategy on two sets of actual food picture data.
- Here the user can capture the images of different fruits and then the image will be sent to the trained model. The model analyzes the image and detects the nutrition based on the fruits like (Sugar, Fiber, Protein, Calories, etc.)
- The Ultimate Workout at Home Solution This fitness AI software is designed with
 personalized training regimens for each individual. It began as "gym only software," but has
 now improved its system to satisfy "at home fitness" expectations.
- You take a picture, dial in data such as whether you are eating breakfast or lunch and add a
 quick text label, and the app estimates the calorie content.
- This software collaborated with IBM's natural language capability to provide 24-hour assistance and dietary recommendations.

For Example:

- The comparison of the proposed model with the conventional models shows that the results of this model are exceptionally good and promising to use in real-world applications.
- This sort of higher accuracy and precision will work to boost the machine's general efficiency in fruit recognition more appropriately.
- A generic model for the dietary protein requirement (as with any nutrient) defines the requirement in terms of the needs of the organism,
- i.e. metabolic demands, and the dietary amount which will satisfy those needs, i.e. efficiency of utilization, thus: dietary requirement = metabolic demand/efficiency of utilization.

FR No.	Functional Requirement (Epic)	Sub Requirement (Story / Sub-
		Task)
FR-1	User Registration	Users can create an account to
		use the application. This can be
		done by creating a persona on
		the application with a
		username and password or by
		making use of an
		existing email ID.
FR-2	User Confirmation	Once a user registers onto the
		application, they receive a
		confirmation to their email id
		which they provide for
		registration. OTP
		authentication is integrated to
		ensure identity theft does not
		occur.
FR-3	Calorie Calendar Creation	On creation of a user profile, a
		calendar is generated in
		association with the account.
		This calendar is private to the
		user and keeps track of the
		calories consumed in a
		day and related statistics.
FR-4	Image Capturing and	The application allows users to
	Processing	capture images of the
		ingredients they consume.
		These are given to the model
		for predicting their labels, i.e.
		identify the fruits. Further, the
		quantity of the fruits should be

		discerned. The application
		should be able to work with
		images of low quality and low
		resolution as well.
FR-5	Calorie Value Computation	Once the labels of the
		ingredients and their quantity
		have been found, the net
		calorie value of the meal is
		calculated by summing up the
		calories of each ingredient in
		their respective amounts. The
		calorie values are fetched from
		the internet while that of
		frequently used items are
		fetched from a database.
FR-6	Storage of Data	Data about the user and their
		log in details are stored in
		a backend database. Apart
		from these, calorific
		information of frequently
		consumed ingredients are also
		stored to minimize overhead
		and complexity.
FR-7	Calorie Over-Consumption	When a user exceeds their
	Notification	permissible calorie
		consumption amount for the
		day, the application issues a
		notification for the same. The
		application then suggests low-
		calorie diets to ensure
		minimum over-consumption.

FR-8	Diet Plan Specification	Users can select the kind of
		diet plan they want to
		follow with a target in mind
		such as weight loss, muscle
		building, etc. The application
		sources diet plans and food
		items that supplement their

goals from the internet to help

them achieve their goal.

4.2 Non-Functional requirements

FR No.	Non-Functional Requirement	Description
NFR-1	Usability	The users should be able to use
		the application without any
		difficulties. The interface
		should be easy to use and
		understand. The image capture
		process should be smooth and
		not tedious.
NFR-2	Security	Details of the users and their
		personal calories calendar
		should not be disclosed or
		shared to other
		users. Privacy of data should be
		ensured.
NFR-3	Reliability	The application should
		correctly identify the fruits
		from the captured image and
		fetch its nutritional value. The
		count and calculation of the

calories

should be done accurately.

Performance The application should be built

on a highly efficient prediction model such that the results are

accurate. It should keep in

mind time and space

complexity.

NFR-5 **Availability** The application should be

NFR-4

available to its users at all

times and should work

efficiently. It should not

suffer from issues such as

application crashes.

NFR-6 Scalability The application should be able

to support updates in terms of

features and functionality. The

system should be built such

that it can upgrade using the

existing underlying

architecture.

5. PROJECT DESIGN

5.1 Data Flow Diagrams

5.2 Solution & Technical Architecture

S.No	Component	Description	Technology
1.	Арр	User interacts with application	Python, Java, HTML,
		for the prediction of Nutrition	SQLite, Android studio
2.	Database	Data Type, Configurations and	MySQL, JS
		data will be stored	
3.	Cloud Database	Database Service on Cloud	IBM DB2, IBM
			Cloudant etc.
4.	File Storage	File storage requirements	Cloud > drive
5.	Machine Learning	Purpose of Machine Learning	ANN, CNN, RNN
	Model	Model	
6.	Notification	Notification will be sent from	SendGrid
		the server	

Application Characteristics:

S.No	Characteristics	Description	Technology
1.	Open-Source	Open-source frameworks used	SendGrid, Python,
	Frameworks		JQuery
2.	Security	Request authentication using	Encryptions, SSL certs
	Implementations	encryption	
3.	Scalable	The scalability of architecture	Web Server – HTML,
	Architecture	consists of 3 tiers	CSS ,Javascript
			Application Server –
			Python Flask
			Database Server – IBM
			Cloud
4.	Availability	Availability is increased by loads	IBM Cloud hosting
		balancers in cloud VPS	
5.	Performance	The application is expected to	IBM Load Balance
		handle up to 4000 predications	
		per second	

5.3 User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirmingmy password.	I can access my account /dashboard	High	Sprint-1
		USN-2	As a user, I will receive confirmation emailonce I have registered for the application	I can receive confirmationemail & click confirm	High	Sprint-1
		USN-3	As a user, I can register for the applicationthrough Facebook	I can register & access thedashboard with Facebook Login	Low	Sprint-2
		USN-4	As a user, I can register for the applicationthrough Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application byentering email & password		High	Sprint-1
	Dashboard	USN-5	As a user, I can Access my Dashboard		Medium	Sprint - 1
Customer (Webuser)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirmingmy password.	I can access my account /dashboard	High	Sprint -1
Customer Care Executive	Solution	USN-5	Responding to each email you receive canmake a lasting impression on customers.	Offer a solution for owyour company can improve the customer experience	High	Sprint-1
Administrator	Manage	USN-5	Do-it yourself service for delivery Everything	Set of predefined requirements that must bemet to mark a user story complete	High	Sprint-1

6. PROJECT PLANNING & SCHEDULING

6.1 Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-1	Data Collection	USN-1	Download Food Nutrition Dataset	2	Medium	HARSHAVARDHINEE P
Sprint-1	Data Preprocessing	USN-2	Importing The Dataset into Workspace	1	Low	ARUNKUMAR S
Sprint-1		USN-3	Handling Missing Data	3	Medium	AAKASH K
Sprint-1		USN-4	Feature Scaling	3	Low	ABISHEK A C
Sprint-1		USN-5	Data Visualization	3	Medium	ARUNKUMAR S
Sprint-1		USN-6	Splitting Data into Train and Test	4	High	HARSHAVARDHINEE P
Sprint-1		USN-7	Creating A Dataset with Sliding Windows	4	High	AAKASH K
Sprint-2	Model Building	USN-8	Importing The Model Building Libraries	1	Medium	ARUNKUMAR S
Sprint-2		USN-9	Initializing The Model	1	Medium	HARSHAVARDHINEE P

Sprint-2		USN-10	Adding LSTM Layers	2	High	AAKASH K
Sprint-2		USN-11	Adding Output Layers	3	Medium	ARUNKUMAR S
Sprint-2		USN-12	Configure The Learning Process	4	High	ABISHEK A C
Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-2		USN-13	Train The Model	2	Medium	AAKASH K
Sprint-2		USN-14	Model Evaluation	1	Medium	ARUNKUMAR S
Sprint-2		USN-15	Save The Model	2	Medium	ABISHEK A C
Sprint-2		USN-16	Test The Model	3	High	HARSHAVARDHINEE P
Sprint-3	Application Building	USN-17	Create An HTML File	4	Medium	ARUNKUMAR S
Sprint-3		USN-18	Build Python Code	4	High	ABISHEK A C
Sprint-3		USN-19	Run The App in Local Browser	4	Medium	ABISHEK A C
Sprint-3		USN-20	Showcasing Prediction On UI	4	High	ARUNKUMAR S
Sprint-4	Train The Model On IBM	USN-21	Register For IBM Cloud	4	Medium	HARSHAVARDHINEE P
Sprint-4		USN-22	Train The ML Model On IBM	8	High	ARUNKUMAR S
Sprint-4		USN-23	Integrate Flask with Scoring End Point	8	High	AAKASH K

6.2 Sprint Delivery Schedule

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date (Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date (Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	03 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	10 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	17 Nov 2022

6.3 Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

7.1 Feature 1

Data Collection	
Download the dataset <u>here</u>	
[] from google.colab import drive drive.mount('/content/drive')	
Mounted at /content/drive	
[] cd/content/drive/MyDrive/Colab Notebooks	
/content/drive/MyDrive/Colab Notebooks	
[] # Unzipping the dataset !unzip 'Dataset.zip'	

Ima	age Preprocessing
[]	from keras.preprocessing.image import ImageDataGenerator
· Ima	age Data Augmentation
[]	train_datagen = ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizontal_flip=True) test_datagen=ImageDataGenerator(rescale=1./255)
App	olying Image DataGenerator Functionality To Trainset And Testset
0	<pre>x_train = train_datagen.flow_from_directory(r'/content/drive/MyDrive/Colab Notebooks/Dataset/TRAIN_SET', target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse') x_test = test_datagen.flow_from_directory(r'/content/drive/MyDrive/Colab Notebooks/Dataset/TEST_SET', target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')</pre>

Model Building

1. Importing The Model Building Libraries

```
[ ] import numpy as np
   import tensorflow as tf
   from tensorflow.keras.models import Sequential
   from tensorflow.keras import layers
   from tensorflow.keras.layers import Dense,Flatten
   from tensorflow.keras.layers import Conv2D,MaxPooling2D,Dropout

2. Initializing The Model

[ ] classifier = Sequential()
```

```
3. Adding CNN Layers
   classifier = Sequential()
   classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))
   classifier.add(MaxPooling2D(pool_size=(2, 2)))
   classifier.add(Conv2D(32, (3, 3), activation='relu'))
   classifier.add(MaxPooling2D(pool_size=(2, 2)))
   classifier.add(Flatten())
4. Adding Dense Layers
   classifier.add(Dense(units=128, activation='relu'))
    classifier.add(Dense(units=5, activation='softmax'))
    classifier.summary()
 Model: "sequential 1"
  Layer (type)
                              Output Shape
                                                         Param #
  conv2d (Conv2D)
                              (None, 62, 62, 32)
                                                         896
```

5. Configure The Learning Process
[] classifier.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
6. Train The Model
[] classifier.fit_generator(generator=x_train,steps_per_epoch = len(x_train),epochs=20, validation_data=x_test,validation_steps = len(x_test))
/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:2: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Pl
Epoch 1/20 494/824 [========>:] - ETA: 6:52 - loss: 0.7194 - accuracy: 0.7174
7. Saving The Model
[] classifier.save('nutrition.h5')

	3. Testing The Model		
[]	from tensorflow.keras.models import load_model from keras.preprocessing import image model = load_model("nutrition.h5")		
0	from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image model = load_model("nutrition.h5") img = image.load_img(r'/content/drive/MyDrive/Colab Notebooks/Sample_Images/Test_Image1.jpg',grayscale=False,target_size= (64 x = img_to_array(img) x = np.expand_dims(x,axis = 0) predict_x=model.predict(x) classes_x=np.argmax(predict_x,axis=-1) classes_x	↓	
	1/1 [============] - 0s 62ms/step array([0])		
[]	<pre>index=['APPLES', 'BANANA', 'ORANGE','PINEAPPLE','WATERMELON'] result=str(index[classes_x[0]]) result</pre>		

SOURCE CODE https://drive.google.com/file/d/1KX_q8wKS0FteMhSTGKWdoXQg2DvHA7Pd/view?usp=share_link

7.2 Feature 2

```
File Edit View Navigate Code Refactor Run Tools Git Window Help Flask - home.ht

      Image: Collection of the control o
        Test_Image4.jpg
                  Test_Image5.jpg
                                                                                                                       <title>HOME</title>
              ✓ 🖿 css

as main.css

as style.css
                                                                                                                       <link href="{{ url_for('static', filename='css/main.css') }}" rel="stylesheet">
            uploads
app.py
                                                                                                                 max-width: 300px;
                  > In h5py
> In instrumente
> In markupsafe
                  > Immpy
                  ⇒ Python Packages III TODO → Python Console • Problems III Terminal • Services
                                                                                                                                                                                                                                                                                   Cloudy
                                                                                           🚆 (Q, Search) 🔟 📵 📜 🍥 😨 🐼 🚨 📓
File Edit View Navigate Code Refactor Run Tools Git Window Help Flask - image.html

    Test_Image1.jpg
    Test_Image2.jpg
    Test_Image3.jpg

                                                                                                             {% extends "imageprediction.html" %} {% block content %}
                    Test_Image4.jpg

Test_Image5.jpg
                                                                                                             <div style="...">
                                                                                                             <h5><font color="black" size="3" font-family="sans-serif"><b>UPLOAD IMAGE</b></font></h5><br>
                  css
main.css
                  # 0.html
                    🏭 image.html
                                                                                                                    <center> <div class="image-section" style="...">
              nutrition.h5
                                                                                                                                     <div id="imagePreview">
             > 1 grpc
> 1 h5py

$ Python Packages := TODO → Python Console → Problems ► Terminal → Services
                                                                                            👯 Q Search 🔟 📵 📴 🧿 🖫 🔯 💢 🛕
```



```
File Edit View Navigate Code Refactor Run Tools Git Window Help Flask - main.css
                                                                                                                       # S = $\display \quad \tau \cdot \quad \text{ | $\tilde{\text{opp}} \cdot \text{ | $\tilde{\text{opp}} \text{ | $\tilde{\text{op
static / css /
                         Test_Image3.jpg
Test_Image4.jpg
                                                                                                                                                                                                                                                        margin-bottom: 1em;
                                                     main.css
                                                                                                                                                                                                                                          .img-preview>div {
                                             image.html
                                   app.py
                        requirements.txt
                                          > D grpc
> D h5py
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          17:2 LF UTF-8 4 spaces Python 3.6 P master %
                                                                                                                                                                                                  Q Search 
Q Search Q Search O CO200 PM O N SEASON O CO200 PM O CO200 PM O N SEASON O CO200 PM O CO2
         26°C
Cloudy
      File Edit View Navigate Code Refactor Run Tools Git Window Help Flask - style.css
                                                                                                                        # Sequirements.txt × # 0.html × # main.css × # style.css × # home.html × # image.html × # image.prediction.html × # :
                        ➤ Hask NVNutrition Imag

➤ Sample_Images

☐ Test_Image1.jpg

☐ Test_Image2.jpg

☐ Test_Image3.jpg

☐ Test_Image4.jpg
                                              Test_Image5.jpg
                                                                                                                                                                                                                                                            font-family:Arial, Helvetica, sans-serif;
                                       ✓ 🖿 js 🏭 main.j:
                                  app.py
                                   # requirements.txt
                                         P Git 

Python Packages 

TODO 

Python Console 

Problems 

Terminal 

Services
         Cloudy
```

```
File Edit View Navigate Code Refactor Run Tools Git Window Help Flask-main.js
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Project ▼
                                                                                                                                                                                 ② 〒 → □ requirements.txt × = 0.html × = main.css × = style.css × = main.js × = home.html × = image.html × = im
                                     ✓ ■ Sample_Images

■ Test_Image1.jpg

■ Test_Image2.jpg
                                                                    Test_Image3.jpg
Test_Image4.jpg
                                                                           amain.css
style.css
                                                  main.js
templates
                                                                  image.html
                                                   app.py
                                                                                                                                                                                                                                                                                                                                                                                                    #Image.proad ).change('meca'
$('.image-section').show();
$('#btn-predict').show();
$('#result').text('');
$('#result').hide();
                                   @ requirements.txt
                                                              > b grpc
> b h5py
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            53:1 LF UTF-8 4 spaces Python 3.6 P master %
                                                                                                                                                                                                                                                                                              Q Search 
Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q Search Q 
              ab 26°C Cloudy
                                                                                                                                                                               コーローン メリター は Specific は マ タ の ち り の また は Specific の また は Specific の は は タ タ の ち り の また は Specific の Specific
                                   ➤ Hask NVNutrition Imag

➤ Sample_Images

☐ Test_Image1.jpg

☐ Test_Image2.jpg

☐ Test_Image3.jpg

☐ Test_Image4.jpg
                                                                                                                                                                                                                                                                                                                                            import numpy as np
from tensorflow.keras.models import load_model
                                                                  Test_Image5.jpg
                                                     ✓ 🖿 css

as main.css

as style.css
                                                                  image.html
                                                  app.py
                                                   # requirements.txt
                                                                                                                                                                                                                                                                                                                                                     def image1():
                                                                                                                                                                                                                                                                                                                                                                     return render template("image.html")
                                                            Flilli Binary Skelet

> □ google

> □ grpc

> □ h5py
              Cloudy
```

8. TESTING

8.1 Test Cases

8.2 User Acceptance Testing

9. RESULTS

9.1 Performance Metrics

9.2 Output

OBJECTIVE OF THE PROJECT

- Food is essential for human life and has been the concern of many healthcare conventions.
- Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help
 people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet.
- Nutritional analysis is the process of determining the nutritional content of food.
- It is a vital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food.

AIM OF THE PROJECT

- The main aim of the project is to building a model which is used for classifying the fruit depends on the different characteristics like colour, shape, texture etc.
- Here the user can capture the images of different fruits and then the image will be sent the trained model.
- The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fibre, Protein, Calories, etc.).

10. ADVANTAGES & DISADVANTAGES

ADVANTAGES

- The new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits
- It help in exploring the nutrition patterns in their daily routines and this is very useful for people to maintain a healthy diet balances.
- The nutritional analysis is used to determine the nutritional content of food.
- This application eliminates the travelling cost in visiting a dietician.
- The usage of this application greatly reduces the time required to get the best diet plan

DISADVANTAGES

- The android mobile user will not be able to insert or view details if the server goes down.
- Thus there is disadvantage of single point failure.

11. CONCLUSION

By the end of this project we will

- know fundamental concepts and techniques of Convolutional Neural Network.
- gain a broad understanding of image data
- know how to build a web application using the Flask framework.
- know how to pre-process data and
- know how to clean the data using different data preprocessing techniques.

12. FUTURE SCOPE

- Al is revolutionizing the health industry.
- It is majorly used in improving marketing and sales decisions, AI is now also being used to reshape individual habits.
- In future we don't want to go to gym and do any diets. By using this nutrition fitness analyzer we can maintain our diet plans without any help from others and we can lead a happy and healthy life with good wealth.
- All can easily track health behaviors and repetitive exercise patterns and use the data to guide you towards your fitness journey and diet plans.

13. APPENDIX

Source Code - https://drive.google.com/drive/folders/14M4CDwiHOGcvBZY9FZPLgTmB-5jtFL1D?usp=sharing

GitHub - https://github.com/IBM-EPBL/IBM-Project-26405-1660026218

Demo link - https://drive.google.com/file/d/1E5N5BzV1dCLiaPJYWBRTkOrz66dWIAmH/view?usp=sharing