Ref #	Hits	Search Query	DBs	Default Operator	Plurals	Time Stamp
L1	10	((program\$6 adj2 item\$2) and parameter\$1) and ("programmable logic" adj2 devic\$2) and @ad<"20010727"	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 12:26
L2	8	(("PLD" or "PLDs") and (FPGA or "FPGAs") and @ad<"20010727") and ("programmable item" or "programmable items" or "programmable data")	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ΟŅ	2005/12/09 12:27
L3	5	generat\$4 same (program\$6 adj2 (item\$2 or data)) same parameter\$1 and ("programmable logic" adj2 devic\$2) and @ad<"20010727"	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 12:27
L4	10	(generat\$3 same (("net list" or "net lists" or netlist\$1 or (program\$6 adj2 item\$2)) and parameter\$1) and @ad<"20010727") and ("frequency parameter" or "frequency parameters" or "time parameters")	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 12:28
L5	121	714/53.ccls.	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:45
L6	44	error\$1 and (programmable adj2 field\$1) and ("programmable logic" adj2 devic\$2) and @ad<"20010727"	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:45
L7	10	(error\$1 and (first adj2 field\$1) and (second adj2 field\$1) and ("programmable logic" adj2 devic\$2) and @ad<"20010727") and (third adj2 field\$1)	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 12:29
L8	1	6 and 7	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:48
L9	0	5 and 6	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:48
L10	0	5 and 7	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:48

L11	46	5 and error near detection	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 12:30
L12	0	7 and 11	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:50
L13	50696	"714"/\$.ccls.	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:51
L14	1	7 and 13	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:51
L15	14	stor\$4 and "non-programmable" near10 field\$ and ("programmable logic" adj2 devic\$2) and @ad<"20010727"	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 12:33
L16	73	("frequency parameter" or "frequency parameters" or "time parameters") and ("programmable logic" adj2 devic\$2) and @ad<"20010727"	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:53
L17	143	extract\$3 same error\$1 adj2 detect\$5 and extract\$3 same compress\$5	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:53
L18	0	7 and 17	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:54
L19	59	("non-programmable" or "not programmable") and ((first or second or third or fourth) near2 field) and @ad<"20010727"	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 12:31
L20	1	7 and 19	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:54
L21	22	generat\$3 and (huffman adj2 encod\$3 or huffman adj2 tree or huffman adj2 hierarchy) and error and @ad<"20000809" and (("programmable logic" adj2 devic\$2) or ("PLD" or "PLDs"))	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 11:55

L22	73	("frequency parameter" or "frequency parameters" or "time parameters") and ("programmable logic" adj2 devic\$2) and @ad<"20010727"	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 12:17
L23	68	"707"/\$.ccls. and parameter\$1 and ("programmable logic" adj2 devic\$2) and @ad<"20010727"	US-PGPUB; USPAT; EPO; JPO; DERWENT	OR	ON	2005/12/09 12:33

Sign in

Images Groups News Froogle Local New! more » programmable logic device OR PLD OR FPG/ Advanced Search Search <u>Preferences</u>

The "AND" operator is unnecessary — we include all search terms by default. [details]

Web Results 1 - 10 of about 361,000 for programmable logic device OR PLD OR FPGA and error detection

Tip: Save time by hitting the return key instead of clicking on "search"

Book results for programmable logic device OR PLD OR FPGA and error detection

On-Line Error Detection and Fast Recover ... - by Matthias Pflanz - 138 pages
Field-Programmable Logic and Applications - by Reiner Hartenstein, Andres Keevallik - 544 pages

ANSDIT - The letter "E"

erasable programmable logic device (EPLD):: A programmable logic array designed to ... error detection:: A method of determining whether data have been ... www.incits.org/tc home/k5htm/e2.htm - 38k - Cached - Similar pages

Error Detection & Correction

Error Detection & Correction. Programmable logic devices (PLDs) are ideal for implementing ... Vendor, PDF, Download, IP Used, End Market, Device Support ... www.altera.com/products/ip/dsp/ error_detection_correction/ipm-index.jsp - 34k - Dec 7, 2005 -Cached - Similar pages

[PDF] Efficient Error Detection, Localization, and Correction for FPGA ...

File Format: PDF/Adobe Acrobat

Error correction, requires the changing of the FPGA physical layout. This insertion ... Adding logic (either for error detection and localization ... dx.doi.org/10.1145/337292.337391 - Similar pages

CSD - December '98 - Feature: Reed-Solomon Codec Design in ... Finally, we'll analyze several typical RS codes implemented in a programmable logic device (PLD). The conclusion will include a discussion of the advantages ... www.commsdesign.com/main/9812/9812feat3.htm - 66k - Cached - Similar pages

Parameterized forward error correction IP cores in programmable logic

Most digital communication systems have some form of error detection built into ... Parameterized forward error correction IP cores in programmable logic ... www.dsp-fpga.com/articles/id/?11 - 28k - Cached - Similar pages

[PDF] Programmable Logic in Fault-Tolerant Design

File Format: PDF/Adobe Acrobat - View as HTML The checker is capable to generate an error detection signal ... a self-checking circuit by a three-level Programmable Logic Device. PLD consisting of PLA ... klabs.org/richcontent/MAPLDCon01/ Abstracts/Bengtsson T.pdf - Similar pages

Xilinx Ships Industry's First Complete Programmable Logic Reed ... This is the first time an RS decoder core has been available for programmable logic and is targeted at systems with data error detection/correction ... www.xilinx.com/prs_rls/reed_fft.htm - 11k - Cached - Similar pages

Modbus-IDA Device Directory

The Premium family of Programmable Logic Controllers are optimized for complex ... For error detection, EZCom uses a Cyclic Redundancy Check (CRC) with ...

www.modbus.org/devices.php - 44k - Dec 7, 2005 - Cached - Similar pages

Efficient error detection, localization, and correction for FPGA ... Efficient error detection, localization, and correction for FPGA-based debugging ... 13 Xilinx, The Programmable Logic Data Book, San Jose, CA, 1996. ... portal.acm.org/citation.cfm?id=337292.337391 - Similar_pages

[PDF] Effects of Neutrons on Programmable Logic

File Format: PDF/Adobe Acrobat - View as HTML During the time between occurrence and detection of the firm error, the system may be ... "Programmable Elements and Their Impact on FPGA Architecture, ... www.actel.com/documents/SERWP.pdf - Similar pages

programmable logic device OR PLD Search

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve

Google Home - Advertising Programs - Business Solutions - About Google ©2005 Google

<u>Sign in</u>

Web Images Groups News Froogle Local New! more » Advanced Search programmable logic device OR PLD OR FPG Search <u>Preferences</u>

The "AND" operator is unnecessary – we include all search terms by default. [details]

Web Results 1 - 10 of about 52,600 for programmable logic device OR PLD OR FPGA and error detection a

Tip: Save time by hitting the return key instead of clicking on "search"

Scholarly articles for programmable logic device OR PLD OR FPGA and error detection and compressed items

Multibit Correcting Data Interface for Fault-Tolerant ... - by INTRODUCTION - 0 citations Phosphene vision: Development of a portable visual ... - by Suaning - 6 citations MediaStation 5000: Integrating Video and Audio - by Lee - 27 citations

ANSDIT - The letter "E"

erasable programmable logic device (EPLD):: A programmable logic array designed to ... error detection:: A method of determining whether data have been ... www.incits.org/tc_home/k5htm/e2.htm - 38k - Cached - Similar pages

ClassNet Acronyms

... ED Ending Delimiter EDAC Error Detection And Correction EDGAR Electronic Data ... and Insurance PL PayLoad PLA Programmable Logic Array PLL Phase-Locked ... classnet.com/acronyms/ - 45k - Cached - Similar pages

[PDF] SDI Receiver Preliminary Product Specification DELTATEC Features ...

File Format: PDF/Adobe Acrobat - View as HTML Versatility (same device support multiple ... 4:2:2 digital video as well as compressed digital ... For information on Xilinx programmable Logic or ... www.deltatec.be/Technologies/Documents/SDI_Receiver.pdf - Similar pages

Philips and Software Patents

ep0766156, PHILIPS ELECTRONICS NV, 1997-04-02, Programmable logic controller ... 1991-12-11, teletext decoder, and also an error detection and correction. ... swpat.ffii.org/gasnu/philips/index.en.html - 101k - Dec 7, 2005 - Cached - Similar pages

[PDF] News & Views, May 1999

File Format: PDF/Adobe Acrobat

The APEX device family is the first. programmable logic device (PLD) family to ... Error Detection. Hierarchical instantiation can facilitate error ... www.altera.com/literature/nv/99nvq2.pdf - Similar pages

ST | Glossary | C

Complex Programmable Logic Device; CP/M Control Program for Microcomputers (operating ... Chromium; CRC 1) Cyclic Redundancy Check (error detection scheme) ... www.st.com/stonline/press/news/glossary/c.htm - 72k - Cached - Similar pages

[PDF] Xilinx XAPP169: MP3 NG: A Next Generation Consumer Platform ...

File Format: PDF/Adobe Acrobat - View as HTML

In order to ensure system integrity some form of error detection and ... The FPGA device resources used to implement this block include an estimated 32 CLBs ... www.xilinx.com/bvdocs/appnotes/xapp169.pdf - Similar pages

Search Result List

Error Error Analysis Error Detection Error Guessing Error Seeding ... Programmable Logic Device (PLD) Programmable Read Only Memory (PROM) ... www.ispe.org/glossary/ DefinitionByLanguageSubPrint.cfm?Language=English - 103k - Cached - Similar pages

[PDF] IAF-01-U3.09 RECONFIGURABLE SINGLE-CHIP ON-BOARD COMPUTER FOR A ... File Format: PDF/Adobe Acrobat - View as HTML programmable logic array. The main objective of ... Memory error-detection-and-. correction unit. EDAC FPGA. ESA Hurricane (CAN) ... microsat.sm.bmstu.ru/e-library/ ccdh/Hard/IAF-01-U3.09.pdf - Similar pages

Computer, Telephony and Electronics Glossary and Dictionary An amazingly simple error detection scheme in which each transmitted message packet is ... An acronym for Complex Programmable Logic Device, or Complex PLD. ... www.csgnetwork.com/glossaryc.html - 139k - Cached - Similar pages

programmable logic device OR PLD Search

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve

Google Home - Advertising Programs - Business Solutions - About Google ©2005 Google

Sign in

 Web
 Images
 Groups
 News
 Froogle
 Local New!
 more »

 programmable logic device OR PLD OR FPG/
 Search
 Advanced Search Preferences

The "AND" operator is unnecessary - we include all search terms by default. [details]

Web Results 1 - 10 of about 619,000 for programmable logic device OR PLD OR FPGA and non programm

Tip: Save time by hitting the return key instead of clicking on "search"

Scholarly articles for programmable logic device OR PLD OR FPGA and non programming fields

<u>FPGA-based stochastic neural networks-implementation</u> - by Bade - 16 citations <u>Evolving Computer Programs Using Rapidly Reconfigurable ...</u> - by Koza - 15 citations <u>Non-Intrusive Debugging Using the JTAG Interface of ...</u> - by de la Torre - 1 citations

Field-programmable gate array - Wikipedia, the free encyclopedia

A field-programmable gate array or FPGA is a semiconductor device containing ...

ability to re-program in the field to fix bugs, and lower non-recurring ...

en.wikipedia.org/wiki/FPGA - 38k - Dec 8, 2005 - Cached - Similar pages

Programmable logic device - Wikipedia, the free encyclopedia

A programmable logic device or PLD is an electronic component used to build digital ... technology and is called the field-programmable gate array (FPGA). ... en.wikipedia.org/wiki/Programmable_logic_device - 25k - Cached - Similar pages

Tutorial - Programmable Logic Device Definitions

Field Programmable Logic Sequencer (FPLS) - Full Mealy state machine. Programmable AND and OR planes. Field Programmable Gate Array (FPGA) - This device is ... klabs.org/richcontent/Tutorial/PLD_Definitions.htm - 10k - Cached - Similar pages

What is **Programmable Logic?**

The two major types of **programmable logic** devices are **field programmable** gate arrays ... To do this, they simply upload a new **programming** file to the **PLD**, ... www.xilinx.com/company/about/**programmable**.html - 35k - <u>Cached</u> - <u>Similar pages</u>

Programmable Logic Overview - PLD, CPLD, FPGA

Programmable logic devices are like **non**-volatile memories in that there are ... required to perform **device** (re)**programming** is provided within the **FPGA** or ... www.netrino.com/Articles/ProgrammableLogic/ - 31k - <u>Cached</u> - <u>Similar pages</u>

FPGA

FPGA (Field Programmable Gate Array) solutions from Lattice deliver unique ... a non-volatile, low cost, low-density, instant-on high-performance logic ... www.latticesemi.com/products/fpga/index.cfm - 29k - Cached - Similar pages

Find FPGA | Design | DSP | ASIC | FPGA Tutorials on GlobalSpec
Common search terms for field programmable gate arrays include FPGA, FPGA for DSP
... field programmable grid array · FPGA module · FPGA device · FPGA logic ...
fpga.globalspec.com/ - 47k - Dec 7, 2005 - Cached - Similar pages

Field update FPGAs while system operates | DSP-FPGA.com White Paper New solutions from programmable logic vendors that allow logic to be updated while the ... In order to do field programming, it is necessary that the system ...

www.dsp-fpga.com/articles/white_papers/hands/ - 39k - Dec 8, 2005 - Cached - Similar pages

[PDF] MAX 7000A Programmable Logic Device Data Sheet

File Format: PDF/Adobe Acrobat
Data Sheet or the MAX 7000B Programmable

Data Sheet or the MAX 7000B **Programmable Logic Device** Family Data Sheet. ... defined (**non**-adaptive) **programming** sequence that does not take ... www.altera.com/literature/ds/m7000a.pdf - <u>Similar pages</u>

field-programmable gate array: Definition and Much More From ...

A field-programmable gate array or FPGA is a semiconductor device used to ...
its programming fixed during the manufacturing — a programmable logic device. ...
www.answers.com/topic/field-programmable-gate-array - 55k - Cached - Similar pages

programmable logic device OR PLD Search

Search within results | Language Tools | Search Tips | Dissatisfied? Help us improve

Google Home - Advertising Programs - Business Solutions - About Google

©2005 Google

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library • The Guide

programmable logic device or PLD or FPGA and error detection

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Terms used programmable logic device or PLD or FPGA and error detection

Found 42,290 of 167,655

Sort results by Display

results

relevance expanded form

Save results to a Binder Search Tips Open results in a new

Try an Advanced Search Try this search in The ACM Guide

window

Result page: **1** $\underline{2}$ $\underline{3}$ $\underline{4}$ $\underline{5}$ $\underline{6}$ $\underline{7}$ $\underline{8}$ $\underline{9}$ $\underline{10}$

next

Best 200 shown

Results 1 - 20 of 200

Security on FPGAs: State-of-the-art implementations and attacks

Thomas Wollinger, Jorge Guajardo, Christof Paar

August 2004 ACM Transactions on Embedded Computing Systems (TECS), Volume 3 Issue

Publisher: ACM Press

Full text available: pdf(296.79 KB) Additional Information: full citation, abstract, references, index terms

In the last decade, it has become apparent that embedded systems are integral parts of our every day lives. The wireless nature of many embedded applications as well as their omnipresence has made the need for security and privacy preserving mechanisms particularly important. Thus, as field programmable gate arrays (FPGAs) become integral parts of embedded systems, it is imperative to consider their security as a whole. This contribution provides a state-of-the-art description of security issues ...

Keywords: Cryptography, FPGA, attacks, cryptographic applications, reconfigurable hardware, reverse engineering, security

Developing critical systems with PLD components

Adrian Hilton, Jon G. Hall

September 2005 Proceedings of the 10th international workshop on Formal methods for industrial critical systems FMICS '05

Publisher: ACM Press

Full text available: pdf(113.16 KB) Additional Information: full citation, abstract, references, index terms

Understanding the roles that rigour and formality can have in the design of critical systems is critical to anyone wishing to contribute to their development. Whereas knowledge of these issues is good in software development, in the use of hardware -specifically programmable logic devices (PLDs) and the combination of PLDs and software -- the issues are less well known. Indeed, even in industry there are many differences between current and recommended practice and engineering opinion differs ...

Keywords: CSP, FPGA, PLD, parallel, process algebra, programmable hardware, programmable logic, programming languages, survey

Logic synthesis and mapping: Verifying the correctness of FPGA logic synthesis algorithms

Boris Ratchev, Mike Hutton, Gregg Baeckler, Babette van Antwerpen February 2003 Proceedings of the 2003 ACM/SIGDA eleventh international symposium on Field programmable gate arrays

Publisher: ACM Press

Full text available: pdf(146.65 KB) Additional Information: full citation, abstract, references, index terms

Though verification is significantly easier for FPGA-based digital systems than for ASIC or full-custom hardware, there are nonetheless many places for errors to occur. In this paper we discuss the verification problem for FPGAs and describe several methods for verifying end-to-end correctness of synthesis algorithms, a particularly complex portion of the CAD flow. Though the primary contribution of this paper is the analysis of the overall problem, we also give an algorithm for the automatic gen ...

Keywords: FPGA, programmable logic, synthesis, test, verification

4 New directions for programmable devices: Soft error rate estimation and mitigation

for SRAM-based FPGAs

Ghazanfar Asadi, Mehdi B. Tahoori

February 2005 Proceedings of the 2005 ACM/SIGDA 13th international symposium on Field-programmable gate arrays

Publisher: ACM Press

Full text available: pdf(241.45 KB) Additional Information: full citation, abstract, references, index terms

FPGA-based designs are more susceptible to single-event upsets (SEUs) compared to ASIC designs. Soft error rate (SER) estimation is a crucial step in the design of soft error tolerant schemes to balance reliability, performance, and cost of the system. Previous techniques on FPGA SER estimation are based on time-consuming fault injection and simulation methods. In this paper, we present an analytical approach to estimate the failure rate of designs mapped into FPGAs. Experimental results show tha ...

Keywords: SRAM-based FPGA, error recovery, soft error rate estimation

Interconnect prediction for programmable logic devices

Michael Hutton

March 2001 Proceedings of the 2001 international workshop on System-level interconnect prediction

Publisher: ACM Press

Full text available: pdf(288.08 KB)

Additional Information: full citation, abstract, references, citings, index terms

Classical interconnect prediction would seem to be a perfect fit for the design of programmable logic architectures (PLDs). Yet theoretical models such as those based on Rent's Rule are usually only used for rough estimates in the early stages of an architecture development. In practice, empirical methods (evaluation via many test designs) dominate the evaluation of fitting and performance for PLD architectures. The primary reasons for this gap between theory and practice are th ...

Keywords: architecture, interconnect prodiction, programmable logic device, wireability

Error detection for adaptive computing architectures in spacecraft applications David Brodrick, Anwar Dawood, Neil Bergmann, Melanie Wark

January 2001 Australian Computer Science Communications, Proceedings of the 6th Australasian conference on Computer systems architecture ACSAC '01, Volume 23 Issue 4

Publisher: IEEE Computer Society, IEEE Computer Society Press

Full text available: pdf(803.02 KB) Additional Information: full citation, abstract, references

The Australian FedSat satellite will incorporate a payload to validate the use of adaptive computing architectures in spacecraft applications. The technology has many exciting benefits for deployment in spacecraft, but the space environment also represents unique challenges which must be addressed. An important consideration is that modern SRAM Field Programmable Gate Arrays (FPGAs), such as the Xilinx 4000 device used on FedSat, are vulnerable to a range of radiation induced errors. A system is ...

7 A memory coherence technique for online transient error recovery of FPGA

configurations

Wei-Je Huang, Edward J. McCluskey

February 2001 Proceedings of the 2001 ACM/SIGDA ninth international symposium on Field programmable gate arrays

Publisher: ACM Press

Full text available: pdf(271.54 KB) Additional Information: full citation, abstract, references, index terms

The partial reconfiguration feature of some of the current-generation Field Programmable Gate Arrays (FPGAs) can improve dependability by detecting and correcting errors in onchip configuration data. Such an error recovery process can be executed online with minimal interference of user applications. However, because Look-up Tables (LUTs) in Configurable Logic Blocks (CLBs) of FPGAs can also implement memory modules for user applications, a memory coherence issue arises such that memory ...

Keywords: FPGA, error recovery, fault tolerance, memory coherence

8 Special session on reconfigurable computing: Designing and testing fault-tolerant

techniques for SRAM-based FPGAs

Fernanda Lima Kastensmidt, Gustavo Neuberger, Luigi Carro, Ricardo Reis April 2004 Proceedings of the 1st conference on Computing frontiers

Publisher: ACM Press

Full text available: pdf(390.51 KB) Additional Information: full citation, abstract, references, index terms

This paper discusses fault-tolerant techniques for SRAM-based FPGAs. These techniques can be based on circuit level modifications, with obvious modifications in the programmable architecture, or they can be implemented at the high-level description, without modification in the FPGA architecture. The high-level method presented in this work is based on Triple Modular Redundancy (TMR) and a combination of Duplication Modular Redundancy (DMR) with Concurrent Error Detection (CED) techniques, which ...

Keywords: FPGA, fault-tolerance

9 Techniques for reconfigurable logic applications: Designing fault tolerant systems into

SRAM-based FPGAs

Fernanda Lima, Luigi Carro, Ricardo Reis

June 2003 Proceedings of the 40th conference on Design automation

Publisher: ACM Press

Full text available: pdf(238.49 KB) Additional Information: full citation, abstract, references, index terms

This paper discusses high level techniques for designing fault tolerant systems in SRAMbased FPGAs, without modification in the FPGA architecture. Triple Modular Redundancy (TMR) has been successfully applied in FPGAs to mitigate transient faults, which are likely to occur in space applications. However, TMR comes with high area and power dissipation

penalties. The new technique proposed in this paper was specifically developed for FPGAs to cope with transient faults in the user combinational a ...

Keywords: FPGA, fault-tolerance

10 Efficient error detection, localization, and correction for FPGA-based debugging

June 2000 Proceedings of the 37th conference on Design automation

Publisher: ACM Press

Full text available: pdf(86.05 KB) Additional Information: full citation, abstract, references, index terms

Simulations for modern designs are often performed on Field Programmable Gate Array technology in a functional test and debugging process known as emulation, allowing for more complex simulations than possible in software. One drawback to emulation is the lengthy time spent in the back-end CAD tools for each debugging iteration, including debugging changes and the introduction of control and observation logic. We have developed a technique that confines the re-place-and-route area to only t ...

11 Prototyping, verification, and test: Reducing pin and area overhead in fault-tolerant

FPGA-based designs

Fernanda Lima, Luigi Carro, Ricardo Reis

February 2003 Proceedings of the 2003 ACM/SIGDA eleventh international symposium on Field programmable gate arrays

Publisher: ACM Press

Full text available: pdf(328.13 KB) Additional Information: full citation, abstract, references, index terms

This paper proposes a new high-level technique for designing fault tolerant systems in SRAM-based FPGAs, without modifications in the FPGA architecture. Traditionally, TMR has been successfully applied in FPGAs to mitigate transient faults, which are likely to occur in space applications. However, TMR comes with high area and power dissipation penalties. The proposed technique was specifically developed for FPGAs to cope with transient faults in the user combinational and sequential logic, while ...

Keywords: FPGA, fault-tolerance

12 ASIC design in nanometer era - dead or alive?: Exploring regular fabrics to optimize

the performance-cost trade-off

L. Pileggi, H. Schmit, A. J. Strojwas, P. Gopalakrishnan, V. Kheterpal, A. Koorapaty, C. Patel, V. Rovner, K. Y. Tong

June 2003 Proceedings of the 40th conference on Design automation

Publisher: ACM Press

Additional Information: full citation, abstract, references, citings, index Full text available: pdf(319.99 KB) terms

While advances in semiconductor technologies have pushed achievable scale and performance to phenomenal limits for ICs, nanoscale physical realities dictate IC production based on what we can afford. We believe that IC design and manufacturing can be made more affordable, and reliable, by removing some design and implementation flexibility and enforcing new forms of design regularity. This paper discusses some of the trade-offs to consider for determination of how much regularity a particular IC ...

Keywords: cost, integrated circuits, performance, regularity

13 <u>Timing-driven placement for hierarchical programmable logic devices</u>

Michael Hutton, Khosrow Adibsamii, Andrew Leaver

February 2001 **Proceedings of the 2001 ACM/SIGDA ninth international symposium** on Field programmable gate arrays

Publisher: ACM Press

Full text available: pdf(213.63 KB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> terms

In this paper we discuss new techniques for timing-driven placement and adaptive delay computation for hierarchical PLD architectures. Our algorithm follows the natural recursive k-way partitioning-based approach to placement on such devices. Our contributions include a specification of the overall TDC (timing-driven compilation) algorithm, an analysis of heuristics such as a variant of multi-start partitioning, a new method for adaptive delay computation, and a discussion of the ...

Keywords: CPLD, FPGA, algorithm, heuristic algorithm, partitioning, placement, programmable logic, timing-driven placement

14 Efficiently supporting fault-tolerance in FPGAs

John Lach, William H. Mangione-Smith, Miodrag Potkonjak

March 1998 Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays

Publisher: ACM Press

Full text available: pdf(1.35 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> <u>terms</u>

While system reliability is conventionally achieved through component replication, we have developed a fault-tolerance approach for FPGA-based systems that comes at a reduced cost in terms of design time, volume, and weight. We partition the physical design into a set of tiles. In response to a component failure, we capitalize on the unique reconfiguration capabilities of FPGAs and replace the affected tile with a functionally equivalent tile that does not rely on the faulty component. Unli ...

Keywords: FPGA, fault-tolerance

15 Evaluation of FPGA resources for built-in self-test of programmable logic blocks

February 1996 Proceedings of the 1996 ACM fourth international symposium on Fieldprogrammable gate arrays

Publisher: ACM Press

Full text available: pdf(49.07 KB) Additional Information: full citation, references, citings, index terms

16 Design methodology for PicoRadio networks

J. da Silva, J. Shamberger, M. Ammer, C. Guo, S. Li, R. Shah, T. Tuan, M. Sheets, J. Rabaey, B. Nikolic, A. Sangiovanni-Vincentelli, P. Wright

March 2001 Proceedings of the conference on Design, automation and test in Europe

Publisher: IEEE Press

Full text available: pdf(328.60 KB) Additional Information: full citation, references, index terms

17 <u>A design flow for partially reconfigurable hardware</u> Ian Robertson, James Irvine

May 2004 ACM Transactions on Embedded Computing Systems (TECS), Volume 3 Issue 2 **Publisher: ACM Press**

Full text available: pdf(698.30 KB) Additional Information: full citation, abstract, references, index terms

This paper presents a top-down designer-driven design flow for creating hardware that exploits partial run-time reconfiguration. Computer-aided design (CAD) tools are presented, which complement conventional FPGA design environments to enable the specification, simulation (both functional and timing), synthesis, automatic placement and routing, partial configuration generation and control of partially reconfigurable designs. Collectively these tools constitute the dynamic circuit switching CAD f ...

Keywords: FPGA, Viterbi decoder, configuration control, dynamically reconfigurable logic (DRL), power estimation, run-time reconfiguration (RTR)

18 Balancing performance and flexibility with hardware support for network architectures Ilija Hadžić, Jonathan M. Smith

November 2003 ACM Transactions on Computer Systems (TOCS), Volume 21 Issue 4

Publisher: ACM Press

Full text available: pdf(719.03 KB) Additional Information: full citation, abstract, references, index terms

The goals of performance and flexibility are often at odds in the design of network systems. The tension is common enough to justify an architectural solution, rather than a set of context-specific solutions. The Programmable Protocol Processing Pipeline (P4) design uses programmable hardware to selectively accelerate protocol processing functions. A set of field-programmable gate arrays (FPGAs) and an associated library of network processing modules implemented in hardware are augmented with so ...

Keywords: FPGA, P4, computer networking, flexibility, hardware, performance, programmable logic devices, programmable networks, protocol processing

19 Content inspection: High-throughput linked-pattern matching for intrusion detection

<u>systems</u>

Zachary K. Baker, Viktor K. Prasanna

October 2005 Proceedings of the 2005 symposium on Architecture for networking and communications systems ANCS '05

Publisher: ACM Press

Full text available: pdf(300.66 KB) Additional Information: full citation, abstract, references, index terms

This paper presents a hardware architecture for highly efficient intrusion detection systems. In addition, a software tool for automatically generating the hardware is presented.Intrusion detection for network security is a compute-intensive application demanding high system performance. By moving both the string matching and the linking of multi-part rules to hardware, our architecture leaves the host system free for higherlevel analysis. The tool automates the creation of efficient Field Prog ...

Keywords: network intrusion detection, string matching

20 Poster session: An FPGA architecture with built-in error correction capability

🚕 P. K. Lala, B. Kiran Kumar

February 2003 Proceedings of the 2003 ACM/SIGDA eleventh international symposium on Field programmable gate arrays

Publisher: ACM Press

Full text available: pdf(187.05 KB) Additional Information: full citation, abstract

The use of very deep submicron technology makes VLSI-based digital systems more susceptible to transient or soft errors, and thus compromises their reliability. This paper proposes an FPGA architecture inspired by the human immune system that allows tolerance of transient errors. The architecture is composed of a two-dimensional array of identical functional cells with different genetic codes. These codes are chosen based on the required functions to be performed by the functional cells. An erro ...

Results 1 - 20 of 200

Result page: 1 2 3 4 5 6 7 8 9 10 next

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2005 ACM, Inc.

Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Mindows Media Player Real Player

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library • The Guide

programmable logic device OR PLD OR FPGA and error detection

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Found 50,493 of Terms used programmable logic device OR PLD OR FPGA and error detection and compressed items 167,655

Sort results by

results

 $\mathbf{\nabla}$ relevance Display expanded form

Save results to a Binder 3 Search Tips

Try an Advanced Search Try this search in **The ACM Guide**

☐ Open results in a new

window

Results 1 - 20 of 200

Result page: **1** <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u>

next

Relevance scale 🗆 📟 📟

Best 200 shown

1 Fast detection of communication patterns in distributed executions

Thomas Kunz, Michiel F. H. Seuren

November 1997 Proceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative research

Publisher: IBM Press

Full text available: pdf(4.21 MB)

Additional Information: full citation, abstract, references, index terms

Understanding distributed applications is a tedious and difficult task. Visualizations based on process-time diagrams are often used to obtain a better understanding of the execution of the application. The visualization tool we use is Poet, an event tracer developed at the University of Waterloo. However, these diagrams are often very complex and do not provide the user with the desired overview of the application. In our experience, such tools display repeated occurrences of non-trivial commun ...

Query evaluation techniques for large databases

Goetz Graefe

June 1993 ACM Computing Surveys (CSUR), Volume 25 Issue 2

Publisher: ACM Press

Full text available: pdf(9.37 MB)

Additional Information: full citation, abstract, references, citings, index terms, review

Database management systems will continue to manage large data volumes. Thus, efficient algorithms for accessing and manipulating large sets and sequences will be required to provide acceptable performance. The advent of object-oriented and extensible database systems will not solve this problem. On the contrary, modern data models exacerbate the problem: In order to manipulate large sets of complex objects as efficiently as today's database systems manipulate simple records, query-processi ...

Keywords: complex query evaluation plans, dynamic query evaluation plans, extensible database systems, iterators, object-oriented database systems, operator model of parallelization, parallel algorithms, relational database systems, set-matching algorithms, sort-hash duality

Computing curricula 2001

Publisher: ACM Press

Full text available: pdf(613.63 KB) Additional Information: full citation, references, citings, index terms html(2.78 KB)

4 <u>Pitfalls and safeguards in real-time digital systems with emphasis on programming</u> W. A. Hosier

March 1987 Proceedings of the 9th international conference on Software Engineering

Publisher: IEEE Computer Society Press

Full text available: pdf(1.98 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index</u> <u>terms</u>

Real-time digital systems are largely a technical innovation of the past decade, but they appear destined to become more wide spread in the future. They monitor or control a real physical environment, such as an air-traffic situation, as distinguished from simulating that environment on an arbitrary time scale. The complexity and rapid variation of such an environment necessitates use of a fast and versatile central-control device, a role well suited to digital computers. The usual system w ...

5 Curriculum 68: Recommendations for academic programs in computer science: a

report of the ACM curriculum committee on computer science

William F. Atchison, Samuel D. Conte, John W. Hamblen, Thomas E. Hull, Thomas A. Keenan, William B. Kehl, Edward J. McCluskey, Silvio O. Navarro, Werner C. Rheinboldt, Earl J. Schweppe, William Viavant, David M. Young

March 1968 Communications of the ACM, Volume 11 Issue 3

Publisher: ACM Press

Full text available: pdf(6.63 MB) Add

Additional Information: full citation, references, citings

Keywords: computer science academic programs, computer science bibliographies, computer science courses, computer science curriculum, computer science education, computer science graduate programs, computer science undergraduate programs

6 Graphics Programming Using the Core System

R. Daniel Bergeron, Peter R. Bono, James D. Foley

December 1978 ACM Computing Surveys (CSUR), Volume 10 Issue 4

Publisher: ACM Press

Full text available: pdf(2.92 MB)

Additional Information: full citation, references, citings, index terms

7 Proceedings of the SIGNUM conference on the programming environment for

development of numerical software

March 1979 ACM SIGNUM Newsletter, Volume 14 Issue 1

Publisher: ACM Press

Full text available: pdf(5.02 MB)

Additional Information: full citation

8 Data base directions: the next steps

John L. Berg

November 1976 ACM SIGMOD Record, ACM SIGMIS Database, Volume 8, 8 Issue 4, 2

Publisher: ACM Press

Full text available:

Additional Information:

pdf(9.95 MB)

full citation, abstract

What information about data base technology does a manager need to make prudent decisions about using this new technology? To provide this information the National Bureau of Standards and the Association for Computing Machinery established a workshop of approximately 80 experts in five major subject areas. The five subject areas were auditing, evolving technology, government regulations, standards, and user experience. Each area prepared a report contained in these proceedings. The proceedings p ...

Keywords: DBMS, auditing, cost/benefit analysis, data base, data base management, government regulation, management objectives, privacy, security, standards, technology assessment, user experience

Work-in-progress session on innovative topics: First results with eBlocks: embedded systems building blocks

Susan Cotterell, Frank Vahid, Walid Najjar, Harry Hsieh

October 2003 Proceedings of the 1st IEEE/ACM/IFIP international conference on Hardware/software codesign and system synthesis

Publisher: ACM Press

Full text available: pdf(433.19 KB) Additional Information: full citation, abstract, references, index terms

We describe our first efforts to develop a set of off-the-shelf hardware components that ordinary people could connect to build a simple but useful class of embedded systems. The class of systems, which we call monitor/control systems, is composed primarily of sensors - light, motion, sound, contact, and other types - and output devices - lightemitting diodes, beeping speakers, or even electric relays that control electric appliances like lamps. For example, one monitor/control system would det ...

Keywords: embedded systems, intelligent homes, networks

10 IS '97: model curriculum and guidelines for undergraduate degree programs in

information systems

Gordon B. Davis, John T. Gorgone, J. Daniel Couger, David L. Feinstein, Herbert E.

Longenecker

December 1996 ACM SIGMIS Database, Guidelines for undergraduate degree programs on Model curriculum and guidelines for undergraduate degree programs in information systems IS '97, Volume 28 Issue 1

Publisher: ACM Press

Additional Information: <u>full citation</u>, <u>citings</u> Full text available: pdf(7.24 MB)

11 The FINITE STRING Newsletter: Abstracts of current literature

Computational Linguistics Staff

January 1987 Computational Linguistics, Volume 13 Issue 1-2

Publisher: MIT Press

Full text available: pdf(6.15 MB) Additional Information: full citation

Publisher Site

12 Conference abstracts

Publisher: ACM Press

Full text available: pdf(3.14 MB) Additional Information: full citation, abstract, index terms

One problem in computer program testing arises when errors are found and corrected after a portion of the tests have run properly. How can it be shown that a fix to one area of the code does not adversely affect the execution of another area? What is needed is a quantitative method for assuring that new program modifications do not introduce new errors into the code. This model considers the retest philosophy that every program instruction that could possibly be reached and tested from the ...

13 Evolution of Data-Base Management Systems

🚕 James P. Fry, Edgar H. Sibley

January 1976 ACM Computing Surveys (CSUR), Volume 8 Issue 1

Publisher: ACM Press

Full text available: pdf(2.63 MB) Additional Information: full citation, references, citings, index terms

14 Revised Report of the Algorithmic Language Algol 68

A. van Wijngaarden

August 1981 ALGOL Bulletin, Issue Sup 47

Publisher: Computer History Museum

Full text available: pdf(9.20 MB) Additional Information: full citation, index terms

15 Client-server computing in mobile environments

Jin Jing, Abdelsalam Sumi Helal, Ahmed Elmagarmid
June 1999 ACM Computing Surveys (CSUR), Volume 31 Issue 2

Publisher: ACM Press

Full text available: pdf(233.31 KB)

Additional Information: full citation, abstract, references, citings, index terms, review

Recent advances in wireless data networking and portable information appliances have engendered a new paradigm of computing, called mobile computing, in which users carrying portable devices have access to data and information services regardless of their physical location or movement behavior. In the meantime, research addressing information access in mobile environments has proliferated. In this survey, we provide a concrete framework and categorization of the various way ...

Keywords: application adaptation, cache invalidation, caching, client/server, data dissemination, disconnected operation, mobile applications, mobile client/server, mobile compuing, mobile data, mobility awareness, survey, system application

16 System support for pervasive applications

Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven Swanson, Thomas Anderson, Brian Bershad, Gaetano Borriello, Steven Gribble, David Wetherall

November 2004 ACM Transactions on Computer Systems (TOCS), Volume 22 Issue 4

Publisher: ACM Press

Full text available: pdf(1.82 MB) Additional Information: full citation, abstract, references, index terms

Pervasive computing provides an attractive vision for the future of computing. Computational power will be available everywhere. Mobile and stationary devices will dynamically connect and coordinate to seamlessly help people in accomplishing their tasks. For this vision to become a reality, developers must build applications that constantly adapt to a highly dynamic computing environment. To make the developers' task feasible, we present a system architecture for pervasive computing, called & ...

Keywords: Asynchronous events, checkpointing, discovery, logic/operation pattern, migration, one.world, pervasive computing, structured I/O, tuples, ubiquitous computing

17 <u>Document Formatting Systems: Survey, Concepts, and Issues</u>

Richard Furuta, Jeffrey Scofield, Alan Shaw

September 1982 ACM Computing Surveys (CSUR), Volume 14 Issue 3

Publisher: ACM Press

Full text available: pdf(5.36 MB) Additional Information: full citation, references, citings, index terms

18 Technical reports

SIGACT News Staff

January 1980 ACM SIGACT News, Volume 12 Issue 1

Publisher: ACM Press

Full text available: pdf(5.28 MB) Additional Information: full citation

19 Frontmatter (TOC, Letters, Philosophy of computer science, Interviewers needed,

Taking software requirements creation from folklore to analysis, SW components and product lines: from business to systems and technology, Software engineering survey)

September 2005 ACM SIGSOFT Software Engineering Notes, Volume 30 Issue 5

Publisher: ACM Press

Full text available: pdf(1.98 MB) Additional Information: full citation

20 Frontmatter (TOC, Letters, Election results, Software Reliability Resources!,

Computing Curricula 2004 and the Software Engineering Volume SE2004, Software Reuse Research, ICSE 2005 Forward)

July 2005 ACM SIGSOFT Software Engineering Notes, Volume 30 Issue 4

Publisher: ACM Press

Full text available: pdf(6.19 MB) Additional Information: full citation

Results 1 - 20 of 200 Result page: **1** <u>2</u> <u>3</u> <u>4</u> <u>5</u> <u>6</u> <u>7</u> <u>8</u> <u>9</u> <u>10</u> <u>next</u>

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2005 ACM, Inc.

<u>Terms of Usage Privacy Policy Code of Ethics Contact Us</u>

Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Player

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library • The Guide

programmable logic device OR PLD OR FPGA and error detection

THE ACM DIGITAL LIBRARY

Feedback Report a problem Satisfaction survey

Try an Advanced Search

Try this search in The ACM Guide

Terms used programmable logic device OR PLD OR FPGA and error detection and non programming fields

Found **67,725** of 167,655

Sort results

by

Display expanded form results

Best 200 shown

relevance

Save results to a Binder Search Tips

☐ Open results in a new window

next Relevance scale

Results 1 - 20 of 200

Result page: **1** $\underline{2}$ $\underline{3}$ $\underline{4}$ $\underline{5}$ $\underline{6}$ $\underline{7}$ $\underline{8}$ $\underline{9}$ $\underline{10}$

Fast detection of communication patterns in distributed executions

Thomas Kunz, Michiel F. H. Seuren

November 1997 Proceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative research

Publisher: IBM Press

Full text available: pdf(4.21 MB)

Additional Information: full citation, abstract, references, index terms

Understanding distributed applications is a tedious and difficult task. Visualizations based on process-time diagrams are often used to obtain a better understanding of the execution of the application. The visualization tool we use is Poet, an event tracer developed at the University of Waterloo. However, these diagrams are often very complex and do not provide the user with the desired overview of the application. In our experience, such tools display repeated occurrences of non-trivial commun ...

2 Proceedings of the SIGNUM conference on the programming environment for

development of numerical software

March 1979 ACM SIGNUM Newsletter, Volume 14 Issue 1

Publisher: ACM Press

Full text available: pdf(5.02 MB)

Additional Information: <u>full citation</u>

Status report of the graphic standards planning committee

Computer Graphics staff

August 1979 ACM SIGGRAPH Computer Graphics, Volume 13 Issue 3

Publisher: ACM Press

Full text available: pdf(15.01 MB)

Additional Information: full citation, references, citings

Special issue: Al in engineering

D. Sriram, R. Joobbani

April 1985 ACM SIGART Bulletin, Issue 92

Publisher: ACM Press

Full text available: pdf(8.79 MB)

Additional Information: full citation, abstract

The papers in this special issue were compiled from responses to the announcement in the July 1984 issue of the SIGART newsletter and notices posted over the ARPAnet. The interest being shown in this area is reflected in the sixty papers received from over six countries. About half the papers were received over the computer network.

5 Special issue on knowledge representation

Ronald J. Brachman, Brian C. Smith

February 1980 ACM SIGART Bulletin, Issue 70

Publisher: ACM Press

Full text available: pdf(13.13 MB) Additional Information: full citation, abstract

In the fall of 1978 we decided to produce a special issue of the SIGART Newsletter devoted to a survey of current knowledge representation research. We felt that there were twe useful functions such an issue could serve. First, we hoped to elicit a clear picture of how people working in this subdiscipline understand knowledge representation research, to illuminate the issues on which current research is focused, and to catalogue what approaches and techniques are currently being developed. Secon ...

6 Status report of the graphic standards planning committee of ACM/SIGGRAPH:

State-of-the-art of graphic software packages

Compuater Graphics staff

September 1977 ACM SIGGRAPH Computer Graphics, Volume 11 Issue 3

Publisher: ACM Press

Full text available: pdf(9.03 MB) Additional Information: full citation, references

The family of concurrent logic programming languages

Ehud Shapiro

September 1989 ACM Computing Surveys (CSUR), Volume 21 Issue 3

Publisher: ACM Press

Additional Information: full citation, abstract, references, citings, index Full text available: pdf(9.62 MB) terms

Concurrent logic languages are high-level programming languages for parallel and distributed systems that offer a wide range of both known and novel concurrent programming techniques. Being logic programming languages, they preserve many advantages of the abstract logic programming model, including the logical reading of programs and computations, the convenience of representing data structures with logical terms and manipulating them using unification, and the amenability to metaprogrammin ...

Error detection for adaptive computing architectures in spacecraft applications David Brodrick, Anwar Dawood, Neil Bergmann, Melanie Wark

January 2001 Australian Computer Science Communications, Proceedings of the 6th Australasian conference on Computer systems architecture ACSAC '01, Volume 23 Issue 4

Publisher: IEEE Computer Society, IEEE Computer Society Press

Full text available: pdf(803.02 KB) Additional Information: full citation, abstract, references

The Australian FedSat satellite will incorporate a payload to validate the use of adaptive computing architectures in spacecraft applications. The technology has many exciting benefits for deployment in spacecraft, but the space environment also represents unique challenges which must be addressed. An important consideration is that modern SRAM Field Programmable Gate Arrays (FPGAs), such as the Xilinx 4000 device used on FedSat,

are vulnerable to a range of radiation induced errors. A system is ...

9 Computing curricula 2001

September 2001 Journal on Educational Resources in Computing (JERIC)

Publisher: ACM Press

Full text available: pdf(613.63 KB)

html(2.78 KB)

Additional Information: full citation, references, citings, index terms

10 IS '97: model curriculum and guidelines for undergraduate degree programs in

information systems

Gordon B. Davis, John T. Gorgone, J. Daniel Couger, David L. Feinstein, Herbert E. Longenecker

December 1996 ACM SIGMIS Database, Guidelines for undergraduate degree programs on Model curriculum and guidelines for undergraduate degree programs in information systems IS '97, Volume 28 Issue 1

Publisher: ACM Press

Full text available: pdf(7.24 MB) Additional Information: full citation, citings

11 Data base directions: the next steps

John L. Berg

November 1976 ACM SIGMOD Record, ACM SIGMIS Database, Volume 8, 8 Issue 4, 2

Publisher: ACM Press

Full text available: pdf(9.95 MB) Additional Information: full citation, abstract

What information about data base technology does a manager need to make prudent decisions about using this new technology? To provide this information the National Bureau of Standards and the Association for Computing Machinery established a workshop of approximately 80 experts in five major subject areas. The five subject areas were auditing, evolving technology, government regulations, standards, and user experience. Each area prepared a report contained in these proceedings. The proceedings p ...

Keywords: DBMS, auditing, cost/benefit analysis, data base, data base management, government regulation, management objectives, privacy, security, standards, technology assessment, user experience

12 Complexity and expressive power of logic programming

Evgeny Dantsin, Thomas Eiter, Georg Gottlob, Andrei Voronkov September 2001 ACM Computing Surveys (CSUR), Volume 33 Issue 3

Publisher: ACM Press

Full text available: pdf(552.99 KB)

Additional Information: full citation, abstract, references, citings, index terms

This article surveys various complexity and expressiveness results on different forms of logic programming. The main focus is on decidable forms of logic programming, in particular, propositional logic programming and datalog, but we also mention general logic programming with function symbols. Next to classical results on plain logic programming (pure Horn clause programs), more recent results on various important extensions of logic programming are surveyed. These include logic programming wit ...

Keywords: Complexity, datalog, expressive power, logic programming, nonmonotonic logic, query languages

13 Middleware for mobility: Dynamically programmable and reconfigurable middleware services

Manuel Roman, Nayeem Islam

October 2004 Proceedings of the 5th ACM/IFIP/USENIX international conference on Middleware

Publisher: Springer-Verlag New York, Inc.

Full text available: pdf(651.39 KB) Additional Information: full citation, abstract, references

The increasing software complexity and proliferation of distributed applications for cell phones demand the introduction of middleware services to assist in the development of advanced applications. However, from the user perspective, it is essential that these new phones provide a smooth error-free experience. Despite of the complexity underlying a cell phone, placing a phone call remains a simple task that can be performed by most users regardless of their technical background. Furthermore, ce ...

14 Special issue on on inductive logic programming: Learning semantic lexicons from a part-of-speech and semantically tagged corpus using inductive logic programming Vincent Claveau, Pascale Sébillot, Cécile Fabre, Pierrette Bouillon December 2003 The Journal of Machine Learning Research, Volume 4

Publisher: MIT Press

Full text available: pdf(215.86 KB) Additional Information: full citation, abstract, references, index terms

This paper describes an inductive logic programming learning method designed to acquire from a corpus specific Noun-Verb (N-V) pairs---relevant in information retrieval applications to perform index expansion---in order to build up semantic lexicons based on Pustejovsky's generative lexicon (GL) principles (Pustejovsky, 1995). In one of the components of this lexical model, called the qualia structure, words are described in terms of semantic roles. For example, the <em&g ...

15 Curriculum 68: Recommendations for academic programs in computer science: a

report of the ACM curriculum committee on computer science

William F. Atchison, Samuel D. Conte, John W. Hamblen, Thomas E. Hull, Thomas A. Keenan, William B. Kehl, Edward J. McCluskey, Silvio O. Navarro, Werner C. Rheinboldt, Earl J. Schweppe, William Viavant, David M. Young

March 1968 Communications of the ACM, Volume 11 Issue 3

Publisher: ACM Press

Full text available: pdf(6.63 MB) Additional Information: <u>full citation</u>, <u>references</u>, <u>citings</u>

Keywords: computer science academic programs, computer science bibliographies, computer science courses, computer science curriculum, computer science education, computer science graduate programs, computer science undergraduate programs

16 Draft Proposed: American National Standard—Graphical Kernel System

Technical Committee X3H3 - Computer Graphics

February 1984 ACM SIGGRAPH Computer Graphics, Volume 18 Issue SI

Publisher: ACM Press

Full text available: pdf(16.07 MB) Additional Information: full citation

17 Special session on reconfigurable computing: Designing and testing fault-tolerant

techniques for SRAM-based FPGAs

Fernanda Lima Kastensmidt, Gustavo Neuberger, Luigi Carro, Ricardo Reis April 2004 Proceedings of the 1st conference on Computing frontiers

Publisher: ACM Press

Full text available: pdf(390.51 KB) Additional Information: full citation, abstract, references, index terms

This paper discusses fault-tolerant techniques for SRAM-based FPGAs. These techniques can be based on circuit level modifications, with obvious modifications in the programmable architecture, or they can be implemented at the high-level description, without modification in the FPGA architecture. The high-level method presented in this work is based on Triple Modular Redundancy (TMR) and a combination of Duplication Modular Redundancy (DMR) with Concurrent Error Detection (CED) techniques, which ...

Keywords: FPGA, fault-tolerance

18 Guidance for the use of the Ada programming language in high integrity systems

B. A. Wichmann

July 1998 ACM SIGAda Ada Letters, Volume XVIII Issue 4

Publisher: ACM Press

Full text available: pdf(2.93 MB) Additional Information: full citation, abstract, citings, index terms

This paper is the current result of a study by the ISO HRG Rapporteur group which is being circulated for comment. Many people have contributed to this, but those who have either attended two recent meetings of group or have made substantial e-mail comments are: Praful V Bhansali (Boeing, USA), Alan Burns (University of York, UK), Bernard Carre' (Praxis Critical Systems, UK), Dan Craigen (ORA, Canada), Nick Johnson MoD, UK), Stephen Michell (Canada), Gilles Motet (DGEI/INSA, France), George Roma ...

19 Technical reports

SIGACT News Staff

January 1980 ACM SIGACT News, Volume 12 Issue 1

Publisher: ACM Press

Full text available: pdf(5.28 MB) Additional Information: full citation

20 Conference abstracts

January 1977 Proceedings of the 5th annual ACM computer science conference

Publisher: ACM Press

Full text available: pdf(3.14 MB)

Additional Information: full citation, abstract, index terms

One problem in computer program testing arises when errors are found and corrected after a portion of the tests have run properly. How can it be shown that a fix to one area of the code does not adversely affect the execution of another area? What is needed is a quantitative method for assuring that new program modifications do not introduce new errors into the code. This model considers the retest philosophy that every program instruction that could possibly be reached and tested from the ...

Results 1 - 20 of 200

Result page: 1 2 3 4 5 6 7 8 9 10 next

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2005 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player

Search Results

Home | Login | Logout | Access Information | Alerts |

Welcome United States Patent and Trademark Office

BROWSE

SEARCH

IEEE XPLORE GUIDE

Results for "((programmable logic device or pld or fpga and error detection)<in>metadata)" Your search matched 1235 of 1278046 documents.

Me-mail

A maximum of 100 results are displayed, 25 to a page, sorted by Relevance in Descending order.

» Search O _l	ptions	Madi	fir Search			
View Session History		Modify Search ((programmable logic device or pld or fpga and error detection) <in>metadata)</in>				
New Searcl	<u>h</u>					
		Шc	heck to search only within this results set			
» Other Res (Available F	sources for Purchase)	Displ	ay Format: Citation & Abstract			
Top Book	Results	Select	Article Information View: 1-25 26-			
	ough Verilog HDL abhan, T. R.; Sundari, Edition: 1		1. Rapid production of buffered substrates and long length coated conduction using IBAD, PLD methods and "Self-Epitaxial" ceria buffer Yamada, Y.; Watanabe, T.; Muroga, T.; Miyata, S.; Iwai, H.; Ibi, A.; Shiohara			
Vlew All 1	Result(s)		Hirayama, T.;			
» Key			Applied Superconductivity, IEEE Transactions on Volume 15, Issue 2, Part 3, June 2005 Page(s):2600 - 2603 Digital Object Identifier 10.1109/TASC.2005.847666			
IEEE JNL	IEEE Journal or		AbstractPlus References Full Text: PDF(992 KB) IEEE JNL			
IEEE JINL	Magazine					
IEE JNL	IEE Journal or Magazine		2. Configurable fault-tolerant processor (CFTP) for spacecraft onboard pr Hulme, C.A.; Loomis, H.H.; Ross, A.A.; Rong Yuan;			
IEEE CNF	IEEE Conference Proceeding		Aerospace Conference, 2004. Proceedings. 2004 IEEE Volume 4, 6-13 Mar 2004 Page(s):2269 - 2276 Vol.4			
IEE CNF	IEE Conference Proceeding		Digital Object Identifier 10.1109/AERO.2004.1368020			
IEEE STD	IEEE Standard		AbstractPlus Full Text: PDF(608 KB) IEEE CNF			
			 Designing self-checking FPGAs through error detection codes Bolchini, C.; Salice, F.; Sciuto, D.; Defect and Fault Tolerance in VLSI Systems, 2002. DFT 2002. Proceedings. International Symposium on 6-8 Nov. 2002 Page(s):60 - 68 Digital Object Identifier 10.1109/DFTVS.2002.1173502 AbstractPlus Full Text: PDF(1084 KB) IEEE CNF 			
			Abstractrius Pull Text. PDF(1004 Rb)			
			4. Synthesis challenges for next-generation high-performance and high-discount of Gong, J.; Songjie Xu; Design Automation Conference, 2000. Proceedings of the ASP-DAC 2000. A Pacific 25-28 Jan. 2000 Page(s):157 - 162 Digital Object Identifier 10.1109/ASPDAC.2000.835088 AbstractPlus I Full Text: PDE(684 KB) IEEE CNE			
			AbstractPlus Full Text: PDF(684 KB) IEEE CNF			
			5. Run-time reconfiguration: towards reducing the density requirements of Brunham, K.; Kinsner, W.; Electrical and Computer Engineering, 2001. Canadian Conference on Volume 2, 13-16 May 2001 Page(s):1259 - 1264 vol.2 Digital Object Identifier 10.1109/CCECE.2001.933623 AbstractPlus Full Text: PDF(420 KB) IEEE CNF			

 An overview of technology, architecture and CAD tools for programmable Brown, S.D.; Custom Integrated Circuits Conference, 1994., Proceedings of the IEEE 1994 1-4 May 1994 Page(s):69 - 76 Digital Object Identifier 10.1109/CICC.1994.379764
AbstractPlus Full Text: PDF(788 KB) IEEE CNF
7. Enhanced reliability of finite-state machines in FPGA through efficient far correction Tiwari, A.; Tomko, K.A.; Reliability, IEEE Transactions on Volume 54, Issue 3, Sept. 2005 Page(s):459 - 467 Digital Object Identifier 10.1109/TR.2005.853438 AbstractPlus Full Text: PDF(408 KB) IEEE JNL
 Fast run-time fault location in dependable FPGA-based applications Wei-Je Huang; Mitra, S.; McCluskey, E.J.; Defect and Fault Tolerance in VLSI Systems, 2001. Proceedings. 2001 IEEE II Symposium on 24-26 Oct. 2001 Page(s):206 - 214 Digital Object Identifier 10.1109/DFTVS.2001.966772 AbstractPlus Full Text: PDF(156 KB) IEEE CNF
 A low cost route to EPLDs Seals, R.C.; Programmable Logic Devices for Digital Systems Implementation, IEE Colloqu 25 May 1990 Page(s):3/1 - 3/3 AbstractPlus Full Text: PDF(72 KB) IEE CNF
10. High rate deposition by PLD of YBCO films for coated conductors Watanabe, T.; Kuriki, R.; Iwai, H.; Muroga, T.; Miyata, S.; Ibi, A.; Yamada, Y.; Applied Superconductivity, IEEE Transactions on Volume 15, Issue 2, Part 3, June 2005 Page(s):2566 - 2569 Digital Object Identifier 10.1109/TASC.2005.847653 AbstractPlus References Full Text: PDF(984 KB) IEEE JNL
11. Continuous deposition and rapid fabrication of self-epitaxial CeO/sub 2/ (PLD method on iBAD buffers Muroga, T.; Miyata, S.; Watanabe, T.; Ibi, A.; Yamada, Y.; Shiohara, Y.; Applied Superconductivity, IEEE Transactions on Volume 15, Issue 2, Part 3, June 2005 Page(s):2695 - 2698 Digital Object Identifier 10.1109/TASC.2005.847785 AbstractPlus References Full Text: PDF(184 KB) IEEE JNL
12. FPGA based design of the railway's interlocking equipments Dobias, R.; Kubatova, H.; Digital System Design, 2004. DSD 2004. Euromicro Symposium on 31 Aug3 Sept. 2004 Page(s):467 - 473 Digital Object Identifier 10.1109/DSD.2004.1333312 AbstractPlus Full Text: PDF(320 KB) IEEE CNF
13. Design of self checking circuits based on FPGA Kubalik, P.; Kubatova, H.; Microelectronics, 2003. ICM 2003. Proceedings of the 15th International Confe 9-11 Dec. 2003 Page(s):378 - 381 Digital Object Identifier 10.1109/ICM.2003.1287841 AbstractPlus Full Text: PDF(1499 KB) IEEE CNF

14. The operation property of the set and its application in the PLD design Qi Huai Yin; Lu Jin; ASIC, 1996. 2nd International Conference on 21-24 Oct. 1996 Page(s):243 - 247 Digital Object Identifier 10.1109/ICASIC.1996.562798
AbstractPlus Full Text: PDF(244 KB) IEEE CNF
15. A 50,000-gate MCM-based PLD for gate array prototyping Terrill, R.; Custom Integrated Circuits Conference, 1995., Proceedings of the IEEE 1995 1-4 May 1995 Page(s):5 - 8 Digital Object Identifier 10.1109/CICC.1995.518126 AbstractPlus Full Text: PDF(304 KB) IEEE CNF
16. High-quality Y-Ba-Cu-O thin films by PLD-ready for market applications Lorenz, M.; Hochmuth, H.; Matusch, D.; Kusunoki, M.; Svetchnikov, V.L.; Ried Kastner, G.; Hesse, D.; Applied Superconductivity, IEEE Transactions on Volume 11, Issue 1, Part 3, March 2001 Page(s):3209 - 3212 Digital Object Identifier 10.1109/77.919747 AbstractPlus References Full Text: PDF(548 KB) IEEE JNL
17. Real time and low cost Image processing architecture based on program devices (PLD) Nozal, L.; Lorenzo, S.; Boucho, R.; Shaban, M.; Intelligent Robots and Systems '91. 'Intelligence for Mechanical Systems, Proc '91. IEEE/RSJ International Workshop on 3-5 Nov. 1991 Page(s):279 - 284 vol.1 Digital Object Identifier 10.1109/IROS.1991.174463 AbstractPlus Full Text: PDF(372 KB) IEEE CNF
18. Prep benchmarks reveal performance and capacity tradeoffs of programs devices Kliman, S.; ASIC Conference and Exhibit, 1994. Proceedings., Seventh Annual IEEE Inter 19-23 Sept. 1994 Page(s):376 - 382 Digital Object Identifier 10.1109/ASIC.1994.404537 AbstractPlus Full Text: PDF(368 KB) IEEE CNF
19. An undergraduate system-on-chip (SoC) course for computer engineerin Bindal, A.; Mann, S.; Ahmed, B.N.; Raimundo, L.A.; Education, IEEE Transactions on Volume 48, Issue 2, May 2005 Page(s):279 - 289 Digital Object Identifier 10.1109/TE.2004.842911 AbstractPlus References Full Text: PDF(1016 KB) IEEE JNL
20. Development of HoBCO thin film for SN transition type fault current limits. Ohmatsu, K.; Hahakura, S.; Takei, H.; Ozawa, Y.; Transmission and Distribution Conference and Exhibition 2002: Asia Pacific. If Volume 3, 6-10 Oct. 2002 Page(s):2318 - 2321 vol.3 Digital Object Identifier 10.1109/TDC.2002.1177826 AbstractPlus Full Text: PDF(424 KB) IEEE CNF
21. Routing algorithms for programmable logic device design and manufactu development Heath, J.R.; Vocke, N.J.; Stroud, C.E.; Emmert, J.; AUTOTESTCON Proceedings, 2001. IEEE Systems Readiness Technology C

20-23 Aug. 2001 Page(s):214 - 228

Digital Object Identifier 10.1109/AUTEST.2001.948966

AbstractPlus | Full Text: PDF(1048 KB) | IEEE CNF

22. PLD based protection system [for nuclear power plants]

Sung Kim; Young Ryul Lee; Jun Mo Koo; Jai Bok Han;

Industrial Electronics, Control, and Instrumentation, 1996., Proceedings of the

IECON 22nd International Conference on

Volume 3, 5-10 Aug. 1996 Page(s):1424 - 1428 vol.3

Digital Object Identifier 10.1109/IECON.1996.570592

AbstractPlus | Full Text: PDF(308 KB) | IEEE CNF

23. Using the WWW in advanced digital design courses

Wheeler, P.A.;

Frontiers in Education Conference, 1996. FIE '96. 26th Annual Conference., P

Volume 3, 6-9 Nov. 1996 Page(s):1039 - 1041 vol.3 Digital Object Identifier 10.1109/FIE.1996.567693

AbstractPlus | Full Text: PDF(304 KB) IEEE CNF

24. Logic synthesis for programmable logic devices

Hwang, T.-T.; Owens, R.M.; Irwin, M.J.;

Computer Design: VLSI in Computers and Processors, 1990. ICCD '90. Proce-

IEEE International Conference on

17-19 Sept. 1990 Page(s):364 - 367 Digital Object Identifier 10.1109/ICCD.1990.130255

AbstractPlus | Full Text: PDF(268 KB) | IEEE CNF

25. ASIC vs. programmable logic devices (PLDs) for low complexity designs

Young, M.S.;

ASIC Conference and Exhibit, 1991. Proceedings., Fourth Annual IEEE International IEEE In

23-27 Sept. 1991 Page(s):P16 - 1/1-4

Digital Object Identifier 10.1109/ASIC.1991.242884

AbstractPlus | Full Text: PDF(244 KB) | IEEE CNF

View Selected Rema

View: 1-25 | <u>26-5</u>

Help Contact Us Privacy &:

© Copyright 2005 IEEE -

Home | Login | Logout | Access Information | Alerts |

Welcome United States Patent and Trademark Office

BROWSE Search Results

SEARCH

IFFF XPLORE GUIDE

Search Nes	Sulta		BROWGE GEARCH ILLE AF LONE GOIDE					
fields <in>r Your search</in>	n" h matched 3433 of 1278040	6 documen	l or fpga and error detection and non programming ts. page, sorted by Relevance in Descending order.					
» Search O	ptions	Madi	fr. Coonah					
View Sessi	on History		Modify Search					
New Searc	<u>h</u>		(programmable logic device or pld or fpga and error detection and non programming Check to search only within this results set					
» Other Res (Available F	sources For Purchase)	Displ	ay Format: Citation & Abstract					
Top Book	Results	Select	Article Information View: 1-25 26-5					
			1. 2005 Index Applied Superconductivity, IEEE Transactions on Volume 15, Issue 4, Dec. 2005 Page(s):3933 - 4067 Digital Object Identifier 10.1109/TASC.2005.862190					
			Full Text: PDF(1664 KB) IEEE JNL					
» Key			2. A reliable profiled lightly doped drain (PLD) cell for high-density submicr					
IEEE JNL	IEEE Journal or Magazine		and flash EEPROM's Yoshikawa, K.; Sato, M.; Ohshima, Y.;					
IEE JNL	IEE Journal or Magazine		Electron Devices, IEEE Transactions on Volume 37, Issue 4, April 1990 Page(s):999 - 1006					
IEEE CNF	IEEE Conference Proceeding		Digital Object Identifier 10.1109/16.52435					
IEE CNF	IEE Conference Proceeding		AbstractPlus Full Text: PDF(580 KB) IEEE JNL					
IEEE STD	IEEE Standard		3. Subject Index Applied Superconductivity, IEEE Transactions on Volume 11, Issue 4, Dec. 2001 Page(s):4200 - 4303 Digital Object Identifier 10.1109/TASC.2001.979866 AbstractPlus Full Text: PDF(965 KB) IEEE JNL					
			ADSITACIPIUS Puil Text. PDF (905 RD)					
	·		4. Rapid production of buffered substrates and long length coated conductivity IBAD, PLD methods and "Self-Epitaxial" ceria buffer Yamada, Y.; Watanabe, T.; Muroga, T.; Miyata, S.; Iwai, H.; Ibi, A.; Shiohara, Y. Hirayama, T.; Applied Superconductivity, IEEE Transactions on Volume 15, Issue 2, Part 3, June 2005 Page(s):2600 - 2603 Digital Object Identifier 10.1109/TASC.2005.847666					
			AbstractPlus References Full Text: PDF(992 KB) IEEE JNL					
		0	5. Continuous deposition and rapid fabrication of self-epitaxial CeO/sub 2/ PLD method on IBAD buffers Muroga, T.; Miyata, S.; Watanabe, T.; Ibi, A.; Yamada, Y.; Shiohara, Y.; Applied Superconductivity, IEEE Transactions on Volume 15, Issue 2, Part 3, June 2005 Page(s):2695 - 2698 Digital Object Identifier 10.1109/TASC.2005.847785					

AbstractPlus | References | Full Text: PDF(184 KB) | IEEE JNL

6. A family of user-programmable peripherals with a functional unit architec Shubat, A.S.; Trinh, C.Q.; Zaliznyak, A.; Ziklik, A.; Roy, A.; Kazerounian, R.; Composition Solid-State Circuits, IEEE Journal of Volume 27, Issue 4, April 1992 Page(s):515 - 529 Digital Object Identifier 10.1109/4.126539 AbstractPlus Full Text: PDF(1340 KB) IEEE JNL
7. High-quality Y-Ba-Cu-O thin films by PLD-ready for market applications Lorenz, M.; Hochmuth, H.; Matusch, D.; Kusunoki, M.; Svetchnikov, V.L.; Riede Kastner, G.; Hesse, D.; Applied Superconductivity, IEEE Transactions on Volume 11, Issue 1, Part 3, March 2001 Page(s):3209 - 3212 Digital Object Identifier 10.1109/77.919747 AbstractPlus References Full Text: PDF(548 KB) IEEE JNL
8. High rate deposition by PLD of YBCO films for coated conductors Watanabe, T.; Kuriki, R.; Iwai, H.; Muroga, T.; Miyata, S.; Ibi, A.; Yamada, Y.; Applied Superconductivity, IEEE Transactions on Volume 15, Issue 2, Part 3, June 2005 Page(s):2566 - 2569 Digital Object Identifier 10.1109/TASC.2005.847653 AbstractPlus References Full Text: PDF(984 KB) IEEE JNL
9. Subject Index Magnetics, IEEE Transactions on Volume 38, Issue 6, Nov. 2002 Page(s):3731 - 3824 Digital Object Identifier 10.1109/TMAG.2002.1159021 AbstractPlus Full Text: PDF(935 KB) IEEE JNL
10. Combining microcontroller units and PLDs for best system design Clapp, A.E.; Harman, T.L.; Micro, IEEE Volume 14, Issue 2, April 1994 Page(s):70 - 78 Digital Object Identifier 10.1109/40.272840 AbstractPlus Full Text: PDF(808 KB) IEEE JNL
11. Electric field effect of SrTiO ₃ /YBa ₂ Cu ₃ O _{7-x} bi-layer grown by MBE and Pi Nakamura, T.; Inada, H.; Iiyama, M.; Applied Superconductivity, IEEE Transactions on Volume 7, Issue 2, Part 3, June 1997 Page(s):3540 - 3543 Digital Object Identifier 10.1109/77.622160 AbstractPlus References Full Text: PDF(440 KB) IEEE JNL
12. A first level tracking trigger for the upgraded DØ detector Borcherding, F.; Grunendahl, S.; Johnson, M.; Martin, M.; Olsen, J.; Yip, K.; Nuclear Science, IEEE Transactions on Volume 46, Issue 3, Part 1, June 1999 Page(s):359 - 364 Digital Object Identifier 10.1109/23.775544 AbstractPlus References Full Text: PDF(584 KB) IEEE JNL
13. A first level tracking trigger for the upgraded DØ detector Borcherding, F.; Griinendahl, S.; Johnson, M.; Martin, M.; Olsen, J.; Yip, K.; Nuclear Science Symposium, 1998. Conference Record. 1998 IEEE Volume 1, 8-14 Nov. 1998 Page(s):306 - 311 vol.1 Digital Object Identifier 10.1109/NSSMIC.1998.775150 AbstractPlus Full Text: PDF(372 KB) IEEE CNF
14. Generating verifiable microprocessors state machine code with HDL des

Wall, R.W.; Wall, L.R.; Industrial Electronics Society, 2003. IECON '03. The 29th Annual Conference Volume 3, 2-6 Nov. 2003 Page(s):2441 - 2446 Vol.3 Digital Object Identifier 10.1109/IECON.2003.1280628 AbstractPlus | Full Text: PDF(469 KB) | IEEE CNF 15. Stateless QoS routing in IP networks Baoxian Zhang; Krunz, M.; Mouftah, H.T.; Changjia Chen; Global Telecommunications Conference, 2001. GLOBECOM '01. IEEE Volume 3, 25-29 Nov. 2001 Page(s):1600 - 1604 vol.3 Digital Object Identifier 10.1109/GLOCOM.2001.965850 AbstractPlus | Full Text: PDF(97 KB) | IEEE CNF 16. Large-area HTS-coated stainless steel tapes with high critical currents Usoskin, A.; Knoke, J.; Garcia-Moreno, F.; Issaev, A.; Dzick, J.; Sievers, S.; Fr Applied Superconductivity, IEEE Transactions on Volume 11, Issue 1, Part 3, March 2001 Page(s):3385 - 3388 Digital Object Identifier 10.1109/77.919789 AbstractPlus | References | Full Text: PDF(412 KB) | IEEE JNL 17. Evaluating programmable logic devices Koelling, T.K.; Circuits and Devices Magazine, IEEE Volume 6, Issue 3, May 1990 Page(s):45 - 48 Digital Object Identifier 10.1109/101.55335 AbstractPlus | Full Text: PDF(312 KB) IEEE JNL 18. Oriented barium hexaferrite thick films grown on c-plane and m-plane sa Dorsey, P.C.; Chrisey, D.B.; Horwitz, J.S.; Lubitz, P.; Auyeung, R.C.Y.; Magnetics, IEEE Transactions on Volume 30, Issue 6, Part 1-2, Nov 1994 Page(s):4512 - 4517 Digital Object Identifier 10.1109/20.334133 AbstractPlus | Full Text: PDF(548 KB) IEEE JNL 19. Subject Index Applied Superconductivity, IEEE Transactions on Volume 13, Issue 4, Dec. 2003 Page(s):3931 - 4012 Digital Object Identifier 10.1109/TASC.2003.1255505 AbstractPlus | Full Text: PDF(935 KB) IEEE JNL 20. Experiences adopting software product ilne development without a produ architecture Staples, M.; Hill, D.; Software Engineering Conference, 2004. 11th Asia-Pacific 30 Nov.-3 Dec. 2004 Page(s):176 - 183 Digital Object Identifier 10.1109/APSEC.2004.50 AbstractPlus | Full Text: PDF(160 KB) IEEE CNF 21. Ag-doped double-sided PLD-YBCO thin films for passive microwave devi communication systems Lorenz, M.; Hochmuth, H.; Natusch, D.; Lippold, G.; Svetchnikov, V.L.; Kaiser, Schwab, R.; Heidinger, R.; Applied Superconductivity, IEEE Transactions on Volume 9, Issue 2, Part 2, June 1999 Page(s):1936 - 1939 Digital Object Identifier 10.1109/77.784839 AbstractPlus | References | Full Text: PDF(408 KB) IEEE JNL

22. Fringe visibility and phase noise in superluminescent diodes Yurek, A.; Goldberg, L.; Weller, J.; Taylor, H.; Quantum Electronics, IEEE Journal of Volume 23, Issue 8, Aug 1987 Page(s):1256 - 1260 AbstractPlus | Full Text: PDF(1512 KB) IEEE JNL 23. Thick yttrium-Iron-garnet (YIG) films produced by pulsed laser deposition integration applications Buhay, H.; Adam, J.D.; Daniel, M.R.; Doyle, N.J.; Driver, M.C.; Eldridge, G.W.; Messham, R.L.; Sopira, M.M.; Magnetics, IEEE Transactions on Volume 31, Issue 6, Part 2, Nov. 1995 Page(s):3832 - 3834 Digital Object Identifier 10.1109/20.489787 AbstractPlus | Full Text: PDF(868 KB) | IEEE JNL 24. Investigation of multi-deposition for high I/sub c/ YBCO coated conducto PLD on self-epitaxial CeO/sub 2/ buffers Watanabe, T.; Iwai, H.; Ibi, A.; Muroga, T.; Miyata, S.; Yamada, Y.; Shiohara, ` Hirayama, T.; Applied Superconductivity, IEEE Transactions on Volume 15, Issue 2, Part 3, June 2005 Page(s):2620 - 2623 Digital Object Identifier 10.1109/TASC.2005.847683 AbstractPlus | References | Full Text: PDF(512 KB) IEEE JNL 25. Secretion of mmp-9 by soluble glucocorticoid-induced tumor necrosis fa (sgitr) is mediated by phosprollpase d (pld) in murine macrophage Hee-Sook Lee; Hyun-Hee Shin; Hye-Seon Choi; Science and Technology, 2003. Proceedings KORUS 2003. The 7th Korea-Ru Symposium on Volume 4, 2003 Page(s):22 - 26 AbstractPlus | Full Text: PDF(506 KB) IEEE CNF View Selected Hems View: 1-25 | <u>26-5</u>

Help Contact Us Privacy &:

© Copyright 2005 IEEE -

Hadesed by # inspec

Home | Login | Logout | Access Information | Alerts |

Welcome United States Patent and Trademark Office

Search Results

BROWSE

SEARCH

IEEE XPLORE GUIDE Results for "(programmable logic device or pld or fpga and error detection and non programming fields and Me-mail Your search matched 3433 of 1278046 documents. A maximum of 100 results are displayed, 25 to a page, sorted by Relevance in Descending order. » Search Options **Modify Search** View Session History (programmable logic device or pld or fpga and error detection and non programming New Search ☐ Check to search only within this results set Citation C Citation & Abstract Display Format: » Other Resources (Available For Purchase) Top Book Results **Article Information** Vlew: 1-25 | 26-5 Design Through Verilog HDL by Padmanabhan, T. R.; Sundari, 1. 2005 Index B. B. T.; Applied Superconductivity, IEEE Transactions on Hardcover, Edition: 1 Volume 15, Issue 4, Dec. 2005 Page(s):3933 - 4067 Digital Object Identifier 10.1109/TASC.2005.862190 View All 1 Result(s) Full Text: PDF(1664 KB) IEEE JNL » Key 2. A reliable profiled lightly doped drain (PLD) cell for high-density submicre and flash EEPROM's IEEE Journal or IEEE JNL Magazine Yoshikawa, K.; Sato, M.; Ohshima, Y.; Electron Devices, IEEE Transactions on **IEE JNL** IEE Journal or Magazine Volume 37, Issue 4, April 1990 Page(s):999 - 1006 IEEE CNF IEEE Conference Digital Object Identifier 10.1109/16.52435 Proceeding AbstractPlus | Full Text: PDF(580 KB) IEEE JNL IEE Conference **IEE CNF** Proceeding 3. Subject index IEEE STD IEEE Standard Applied Superconductivity, IEEE Transactions on Volume 11, Issue 4, Dec. 2001 Page(s):4200 - 4303 Digital Object Identifier 10.1109/TASC.2001.979866 AbstractPlus | Full Text: PDF(965 KB) IEEE JNL 4. Rapid production of buffered substrates and long length coated conducte using IBAD, PLD methods and "Self-Epitaxial" ceria buffer Yamada, Y.; Watanabe, T.; Muroga, T.; Miyata, S.; Iwai, H.; Ibi, A.; Shiohara, Y Hirayama, T.; Applied Superconductivity, IEEE Transactions on Volume 15, Issue 2, Part 3, June 2005 Page(s):2600 - 2603 Digital Object Identifier 10.1109/TASC.2005.847666 AbstractPlus | References | Full Text: PDF (992 KB) IEEE JNL 5. Continuous deposition and rapid fabrication of self-epitaxial CeO/sub 2/ c PLD method on IBAD buffers Muroga, T.; Miyata, S.; Watanabe, T.; Ibi, A.; Yamada, Y.; Shiohara, Y.; Applied Superconductivity, IEEE Transactions on

Volume 15, Issue 2, Part 3, June 2005 Page(s):2695 - 2698

AbstractPlus | References | Full Text: PDF(184 KB) | IEEE JNL

Digital Object Identifier 10.1109/TASC.2005.847785

	6. A family of user-programmable peripherals with a functional unit architec Shubat, A.S.; Trinh, C.Q.; Zaliznyak, A.; Ziklik, A.; Roy, A.; Kazerounian, R.; Co Solid-State Circuits, IEEE Journal of Volume 27, Issue 4, April 1992 Page(s):515 - 529 Digital Object Identifier 10.1109/4.126539 AbstractPlus Full Text: PDF(1340 KB) IEEE JNL
	7. High-quality Y-Ba-Cu-O thin films by PLD-ready for market applications Lorenz, M.; Hochmuth, H.; Matusch, D.; Kusunoki, M.; Svetchnikov, V.L.; Riedi Kastner, G.; Hesse, D.; Applied Superconductivity, IEEE Transactions on Volume 11, Issue 1, Part 3, March 2001 Page(s):3209 - 3212 Digital Object Identifier 10.1109/77.919747 AbstractPlus References Full Text: PDF(548 KB) IEEE JNL
	8. High rate deposition by PLD of YBCO films for coated conductors Watanabe, T.; Kuriki, R.; Iwai, H.; Muroga, T.; Miyata, S.; Ibi, A.; Yamada, Y.; Applied Superconductivity, IEEE Transactions on Volume 15, Issue 2, Part 3, June 2005 Page(s):2566 - 2569 Digital Object Identifier 10.1109/TASC.2005.847653 AbstractPlus References Full Text: PDF(984 KB) IEEE JNL
0	9. Subject Index Magnetics, IEEE Transactions on Volume 38, Issue 6, Nov. 2002 Page(s):3731 - 3824 Digital Object Identifier 10.1109/TMAG.2002.1159021 AbstractPlus Full Text: PDF(935 KB) IEEE JNL
	10. Combining microcontroller units and PLDs for best system design Clapp, A.E.; Harman, T.L.; Micro, IEEE Volume 14, Issue 2, April 1994 Page(s):70 - 78 Digital Object Identifier 10.1109/40.272840 AbstractPlus Full Text: PDF(808 KB) IEEE JNL
	11. Electric field effect of SrTIO ₃ /YBa ₂ Cu ₃ O _{7-x} bi-layer grown by MBE and PI Nakamura, T.; Inada, H.; Iiyama, M.; Applied Superconductivity, IEEE Transactions on Volume 7, Issue 2, Part 3, June 1997 Page(s):3540 - 3543 Digital Object Identifier 10.1109/77.622160 AbstractPlus References Full Text: PDF(440 KB) IEEE JNL
	12. A first level tracking trigger for the upgraded DØ detector Borcherding, F.; Grunendahl, S.; Johnson, M.; Martin, M.; Olsen, J.; Yip, K.; Nuclear Science, IEEE Transactions on Volume 46, Issue 3, Part 1, June 1999 Page(s):359 - 364 Digital Object Identifier 10.1109/23.775544 AbstractPlus References Full Text: PDF(584 KB) IEEE JNL
	13. A first level tracking trigger for the upgraded DØ detector Borcherding, F.; Griinendahl, S.; Johnson, M.; Martin, M.; Olsen, J.; Yip, K.; Nuclear Science Symposium, 1998. Conference Record. 1998 IEEE Volume 1, 8-14 Nov. 1998 Page(s):306 - 311 vol.1 Digital Object Identifier 10.1109/NSSMIC.1998.775150 AbstractPlus Full Text: PDF(372 KB) IEEE CNF
	14. Generating verifiable microprocessors state machine code with HDL des

Wall, R.W.; Wall, L.R.; Industrial Electronics Society, 2003. IECON '03. The 29th Annual Conference Volume 3, 2-6 Nov. 2003 Page(s):2441 - 2446 Vol.3 Digital Object Identifier 10.1109/IECON.2003.1280628 AbstractPlus | Full Text: PDF(469 KB) IEEE CNF 15. Stateless QoS routing in IP networks Baoxian Zhang; Krunz, M.; Mouftah, H.T.; Changjia Chen; Global Telecommunications Conference, 2001. GLOBECOM '01. IEEE Volume 3, 25-29 Nov. 2001 Page(s):1600 - 1604 vol.3 Digital Object Identifier 10.1109/GLOCOM.2001.965850 AbstractPlus | Full Text: PDF(97 KB) | IEEE CNF 16. Large-area HTS-coated stainless steel tapes with high critical currents Usoskin, A.; Knoke, J.; Garcia-Moreno, F.; Issaev, A.; Dzick, J.; Sievers, S.; Fr Applied Superconductivity, IEEE Transactions on Volume 11, Issue 1, Part 3, March 2001 Page(s):3385 - 3388 Digital Object Identifier 10.1109/77.919789 AbstractPlus | References | Full Text: PDF(412 KB) | IEEE JNL 17. Evaluating programmable logic devices Koelling, T.K.; Circuits and Devices Magazine, IEEE Volume 6, Issue 3, May 1990 Page(s):45 - 48 Digital Object Identifier 10.1109/101.55335 AbstractPlus | Full Text: PDF(312 KB) IEEE JNL 18. Orlented barium hexaferrite thick films grown on c-plane and m-plane sa Dorsey, P.C.; Chrisey, D.B.; Horwitz, J.S.; Lubitz, P.; Auyeung, R.C.Y.; Magnetics, IEEE Transactions on Volume 30, Issue 6, Part 1-2, Nov 1994 Page(s):4512 - 4517 Digital Object Identifier 10.1109/20.334133 AbstractPlus | Full Text: PDF(548 KB) IEEE JNL 19. Subject index Applied Superconductivity, IEEE Transactions on Volume 13, Issue 4, Dec. 2003 Page(s):3931 - 4012 Digital Object Identifier 10.1109/TASC.2003.1255505 AbstractPlus | Full Text: PDF(935 KB) IEEE JNL 20. Experiences adopting software product line development without a produ architecture Staples, M.; Hill, D.; Software Engineering Conference, 2004. 11th Asia-Pacific 30 Nov.-3 Dec. 2004 Page(s):176 - 183 Digital Object Identifier 10.1109/APSEC.2004.50 AbstractPlus | Full Text: PDF(160 KB) IEEE CNF 21. Ag-doped double-sided PLD-YBCO thin films for passive microwave devi communication systems Lorenz, M.; Hochmuth, H.; Natusch, D.; Lippold, G.; Svetchnikov, V.L.; Kaiser, Schwab, R.; Heidinger, R.; Applied Superconductivity, IEEE Transactions on Volume 9, Issue 2, Part 2, June 1999 Page(s):1936 - 1939 Digital Object Identifier 10.1109/77.784839 AbstractPlus | References | Full Text: PDF(408 KB) | IEEE JNL

22. Fringe visibility and phase noise in superluminescent diodes Yurek, A.; Goldberg, L.; Weller, J.; Taylor, H.; Quantum Electronics, IEEE Journal of Volume 23, Issue 8, Aug 1987 Page(s):1256 - 1260 AbstractPlus | Full Text: PDF(1512 KB) | IEEE JNL 23. Thick yttrium-iron-gamet (YIG) films produced by pulsed laser deposition integration applications Buhay, H.; Adam, J.D.; Daniel, M.R.; Doyle, N.J.; Driver, M.C.; Eldridge, G.W.; Messham, R.L.; Sopira, M.M.; Magnetics, IEEE Transactions on Volume 31, Issue 6, Part 2, Nov. 1995 Page(s):3832 - 3834 **Digital Object Identifier 10.1109/20.489787** AbstractPlus | Full Text: PDF(868 KB) | IEEE JNL 24. Investigation of multi-deposition for high I/sub c/ YBCO coated conducto PLD on self-epitaxiai CeO/sub 2/ buffers Watanabe, T.; Iwai, H.; Ibi, A.; Muroga, T.; Miyata, S.; Yamada, Y.; Shiohara, \ Hirayama, T.; Applied Superconductivity, IEEE Transactions on Volume 15, Issue 2, Part 3, June 2005 Page(s):2620 - 2623 Digital Object Identifier 10.1109/TASC.2005.847683 25. Secretion of mmp-9 by soluble glucocorticoid-induced tumor necrosis fa (sgitr) is mediated by phosprolipase d (pld) in murine macrophage Hee-Sook Lee; Hyun-Hee Shin; Hye-Seon Choi; Science and Technology, 2003. Proceedings KORUS 2003. The 7th Korea-Ru Symposium on Volume 4, 2003 Page(s):22 - 26 AbstractPlus | Full Text: PDF(506 KB) IEEE CNF View Selected items View: 1-25 | 26-5

Help Contact Us Privacy &:

© Copyright 2005 IEEE -

#Inspec