Structuri de date și algoritmi - examen scris -

<u>Notă</u>

- 1. Subjectele se notează astfel: of 1p; A 2p; B 1.5p; C1 1p; C2 1p; D 3.5p.
- 2. Pentru cerința A, justificarea unei complexități presupune deducția acesteia.
- 3. Pentru cerințele B și C (C1, C2) se cer justificări, care vor fi punctate.
- 4. Problema de la D se va rezolva în Pseudocod. Se cer și se vor puncta: (1) descrierea ideii de rezolvare și comentarii despre soluția propusă; (2) scrierea reprezentării indicate în enunț; (3) (specificare și) implementare subalgoritm(i); (4) complexitate.

Nu se acceptă cod C++. Nu se acceptă pseudocod fără comentarii despre soluția propusă.

A. Deduceți timpii mediu si defavorabil pentru subalgoritmul f. Justificați rezultatul.

```
\label{eq:functiang} \begin{split} & Functia \ \textbf{g}(n) \ este \ \{:Intreg\} \\ & | \quad \{ \ \underline{\textbf{pre:}} \ n:Intreg\} \\ & | \quad c \leftarrow 0; \ i \leftarrow 1 \\ & | \quad cattimp \ i*i \leq n \ executa \ c \leftarrow c + 1; \ i \leftarrow i + 1 \\ & | \quad sfcattimp \\ & | \quad \textbf{g} \leftarrow c \\ & Sfg \\ & subalgoritm \ \textbf{f}(n) \ este \\ & | \quad \{ \ \underline{\textbf{pre:}} \ n:Intreg\} \\ & | \quad S \leftarrow 0 \\ & | \quad pentru \ i = 1, \ n \ executa \ S \leftarrow S + f(i) \\ & | \quad sfpentru \\ & | \quad scrie \ S \\ & sff \end{split}
```

B. Fie o tabelă de dispersie inițial vidă, cu 10 locații și functia de dispersie $d(c) = c \mod 10$, în care coliziunile sunt rezolvate prin adresare deschisă cu verificare liniară. Arătați ce se întâmplă la inserarea cheilor 35, 2, 18, 6, 3, 10, 8, 5. Justificati

C. Inserarea într-un ABC este "comutativă". Adică, inserându-l pe x și apoi pe y în arbore este echivalent cu inserarea lui y și apoi a

b)fals

a) adevărat

lui x. Justificati

C. Care este cea mai	mică valoare	a lui n astfe	el încât un algori	ım cu timpul de executio	e $10 \cdot n^2$ este ma	ni rapid decât un algoritm cu
timpul de execuți	e 5 · 2^{n-1} ? Just	tificați.				
a) 2	b) 4	c) 9	d) 8			

D. Să se scrie în Pseudocod subalgoritmul care găsește numărul asociat unei valori e dintr-un arbore binar, numerotarea nodurilor făcându-se în inordine. Elementele din nodurile arborelui sunt distincte, arborele se reprezintă înlanțuit cu alocare dinamică a nodurilor (nodul va memora informția utilă și pointri către descndentul stâng și cel drept). Se va folosi o operație nerecursivă. Se va preciza complexitatea operației. Folosiți comentarii pentru a ușura înțelegerea soluției. Ex: Pentru arborele de mai jos, daca e=20, atunci numarul asociat lui e este 4.

