

Linear combinations
Span
Linear Independence

Linear combination

Linear combination: A <u>linear combination</u> of the set of vectors $\{v^{(1)}, ..., v^{(n)}\}$ is given by multiplying each vector by a corresponding scalar coefficient and adding the results

$$\sum_{i} \alpha_i \boldsymbol{v}^{(i)}$$

Example :
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}$

$$\mathbf{v}_3 = \mathbf{v}_1 + 2\mathbf{v}_2 = \begin{bmatrix} 5 \\ 2 \\ 9 \end{bmatrix}$$

Note:
$$v_3 = [v_1 \ v_2] \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ 3 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

Matrix multiplications can be interpreted in terms of linear combinations of columns

21

Span

Span: The span of a set of vectors is the set of all vectors obtainable by a linear combination of the original vectors.

Example : The span of the coordinate vectors $v_1 = (1,0), \ v_2 = (0,1)$ is? Ans :

The span of all the columns of a matrix is called the column space Note: The equation Ax = b has a solution only if b lies in the column space of A

Linear independence

Linear independence: A set of vectors is linearly independent if none of these vectors can be written as a linear combination of the other vectors.

Example: $\{v_1 = (1,0), v_2 = (0,1)\}$ linearly independent $\{v_1 = (1,0), v_2 = (0,1), v_3 = (3,4)\}$ linearly dependent

Mathematically, $S = \{v_1, v_2, ..., v_n\}$ is linearly independent if and only if the linear combination $\alpha_1 v_1 + \alpha_2 v_2 + \cdots + \alpha_k v_k = 0$ means that all the $\alpha_i = 0$