TIME LIMIT: 2 hours; no books, no notes, no calculators, etc

Part I: $(2\frac{1}{2} \text{ points each})$ True or False (circle your answer):

- 1. **True** False: There are only three different primes that are divisors of 900.
- 2. True False: $\sum_{k=1}^{100} 2k = 2\sum_{k=1}^{100} k$.
- 3. True False: If $a_0 = 2$, and for $n \ge 1$, $a_n = 1 a_{n-1}$, then $a_{100} = -1$.
- 4. **True** False: The set described recursively by (a) $1 \in S$, and (b) if $k \in S$, then $k + 2 \in S$ is the set of all odd positive integers.
- 5. True False: For all integers r, s, t, if r < s, then rt < st.
- 6. True False: If there are integers r, s, t, u such that rs + tu = 7, then $gcd(r, t) \le 7$.
- 7. True False: For integers r, s, if r divides s and s divides r, then r = s.
- 8. True False: The Diophantine equation 14x + 21y = 323 has at least one solution.
- 9. True False: $\forall n \in \mathbb{Z}, -n|n$.
- 10. True False: 1551 is a prime.
- 11. **True False**: The smallest positive integer that can be written as a linear combination of 23 and 19 is 3.
- 12. True False: If a, b, c are positive integers, and a divides b, then gcd(a, c) = gcd(b, c).

Part II: (5 points each) <u>Multiple Choice</u> (circle your answer):

1) The sum of the first 100 terms of the arithmetic sequence with initial term 3 and common difference 2 is (a) 10200 (b) 10202 (c) 15602 (d) 20400 (e) 20402
2) According to the laws of exponents, $(2a)^b$ equals
(a) $2(a^b)$
(b) $(2^a)^b$
(c) $2^{b}a^{b}$
(d) a^b
(e) None of the above.
 3) A geometric sequence begins a₀ = 3, a₁ = 6. The value of a₄ is (a) 48 (b) 58 (c) 68 (d) 78 (e) There is not enough information to determine a₄.
4) A set S of strings over the alphabet $\Sigma = \{a, b, c\}$ is described recursively by (1) $abc \in S$, and (2) if $x \in S$, then $bcx \in S$. Circle all the true statements in the list below.
(a) Every string in S has exactly one a .
(b) Every string in S has b and c next to each other.
(c) Every string in S has the same number of b 's and c 's.

(d) Every string in S has odd length.

(e) The largest number of consecutive b's in the strings in S is two.

 5) The number of positive integers that divide 1000 is (a) 2 (b) 4 (c) 8 (d) 16 (e) 32
 6) The fact that for all integers a, b, it is true that a + b = b + a is called the (a) Distributive Law (b) Associative Law (c) Commutative Law (d) Inductive Law (e) Identity Law
 7) Which of the following are true about the divides relation: (all letters represent integers) (a) 4 12 = 3 (b) 0 0 (c) For all integers a, a a². (d) If a b and a c then a (b+c). (e) For all integers a, a - a.
8) If a,b,s,t are integers, and $as+bt=6$, then (circle all that are true in the list below): (a) $gcd(a,b)$ could be 1 (b) $gcd(a,b)$ could be 2 (c) $gcd(a,b)$ could be 3 (d) $gcd(a,b)$ could be 4 (e) $gcd(a,b)$ could be 5

Part III. (10 points each) Problems

Do any three of the following four problems. If you do all four, I'll count your best three.

1) <u>Use induction</u> to prove that $1+3+5+\cdots+(2n-1)=n^2$ for every integer $n \ge 1$.

2) A sequence of integers is defined recursively by the rules $h_1=2,\,h_2=4,$ and for $n\geq 3,\,h_n=h_{n-1}+h_{n-2}.$ Compute $h_1,h_2,h_3,h_4,h_5.$

) Compute $\gcd(1446,531)$, and write the \gcd as a linear combination of 1446 and	531.
) Determine all solutions to the Diophantine equation $7x + 16y = 4$.	