From User's View

Tensor a multi-dimension float-value array. For a Tensor with shape $\langle a, b, c \rangle$, where a, b, and c are all positive integers, there are in total of abc number of elements, called size, in it. The length of the shape is called rank. It is also the number of dimensions. Scalar is viewed as a Tensor with shape $\langle 1 \rangle$, i.e., rank 1.

This leads to the following definition:

```
typedef struct {
  mlvm_uint_t rank;    /* Must be positive (non-zero). */
  mlvm_uint_t* shape;    /* Length is 'rank' above. */
  mlvm_size_t size;    /* Total number of elements. */
  double*    value;    /* The value buffer. */
} tensor_t;
```

From Intermediate Representation's View

There are two new concepts.

value mode

The first one is ownership, called value-mode, which is an internal field. It represents whether the current Tensor owns its value buffer.

stride

The second one is stride, with type mlvm_size_t*. It is an array with same length as shape. For stride[i], it represents the offset difference between the dimension increment at dimension shape[i].

tranpose

For a Tensor with shape < a, b, c> and stride $\setminus \{bc, c, 1]$, tranpose(1, 2, 0) produces a new Tensor with shape < b, c, a>. With stride property, we could re-use the same value buffer, saving the copy cost, and represent the new Tensor as: shape < b, c, a> and stride $\setminus \{c, 1, bc\}$.

broadcast

For a Tensor with shape < a, 1 > and stride $\setminus \{1, 1 \setminus \}$, broadcasting to < a, b > is cost free as we just need a new Tensor with shape < a, b > and stride $\setminus \{1, 0 \setminus \}$. Similarly, broadcasting a Tensor with shape < 1, b > to new shape < a, b > can be represented as shape < a, b > and stride $\setminus \{0, 1 \setminus \}$.

constant

If all above make sense, a zeros tensor with shape $\langle a, b \rangle$ is simply broadcasting a scalar 0 to $\langle a, b \rangle$, i.e., stride $\{0, 0\}$. So is a ones tensor.

data access

This would be a big *disadvantage*. Locality is bad for arbitrary stride. Iterating the data value is also quite complicated.

reshape

This would be another disadvantage. Reshaping a Tensor with arbitrary stride is not always cost-free. For example, reshaping a Tensor with shape $\langle a, b \rangle$ and stride $\setminus \{1, 0 \setminus \}$ to $\langle ab \rangle$ needs a value buffer copy.