

Code 001

Câu 1. Tìm chu kỳ T của hàm số lượng giác $y = \cos 3x$.

A.
$$T = \frac{\pi}{3}$$

B.
$$T = 2\pi$$

C.
$$T = \frac{2\pi}{3}$$

D.
$$T = \frac{3\pi}{2}$$

Câu 2. Cho hàm số y = f(x) có đạo hàm $f'(x) = -x^2 - 4$, $\forall x \in \mathbb{R}$. Mệnh đề nào dưới đây đúng?

A. Hàm số đồng biến trên khoảng $(-\infty; -2)$

B. Hàm số đồng biến trên khoảng (-2; 2)

C. Hàm số đồng biến trên khoảng $(-\infty; +\infty)$

D. Hàm số nghịch biến trên khoảng $(-\infty; +\infty)$

Câu 3. Giá trị nhỏ nhất của hàm số $y = \frac{1}{4}x^4 - \frac{27}{2}x^2 + 3$ trên đoạn [0; 80] bằng

Lưu ý: nếu đáp án dạng $-\frac{a}{b}$ thì nhập vào là -a/b

Câu 4. Cho đồ thị hàm số $y = ax^4 + bx^2 + c$ có điểm cực đại A(0, -3) và điểm cực tiểu B(-1, -5). Tính giá trị của P = a + 2b + 3c.

Câu 5. Bất phương trình $(x-1)(x-6) \ge 0$ có tập nghiệm S là

A.
$$S = (-\infty; 1] \cup [6; +\infty)$$

B.
$$S = (6; +\infty)$$

C.
$$S = [6; +\infty) \cup \{1\}$$

D.
$$S = [6; +\infty)$$

Câu 6. Cho khối chóp tứ giác đều có cạnh đáy bằng a và cạnh bên tạo với mặt phẳng đáy một góc 60° . Thể tích khối chóp là

A.
$$\frac{a^3\sqrt{6}}{3}$$

B.
$$\frac{a^3\sqrt{6}}{2}$$

C.
$$\frac{a^3\sqrt{3}}{2}$$

D.
$$\frac{a^3\sqrt{6}}{6}$$

Câu 7. Cho hàm số $y = \frac{mx - m^2 - 2}{-x + 1}$ (m là tham số thực) thỏa mãn $\max_{[-4;-2]} y = -\frac{1}{3}$. Mệnh đề nào dưới đây đúng?

A.
$$1 \le m < 3$$

B.
$$m > 4$$

C.
$$-\frac{1}{2} < m < 0$$

C.
$$-\frac{1}{2} < m < 0$$
 D. $-3 < m < -\frac{1}{2}$

Câu 8. Trong các mệnh đề sau, mệnh đề nào \textbf{sai}?

- **A.** Nếu n là một số nguyên lẻ thì n^2 là số lẻ
- **B.** Điều kiện cần và đủ để số tự nhiên *n* chia hết cho 3 là tổng các chữ số của nó chia hết cho 3
- C. Tứ giác ABCD là hình chữ nhật khi và chỉ khi nó thỏa mãn AC = BD
- **D.** Tam giác ABC là tam giác đều khi và chỉ khi nó thỏa mãn đồng thời hai điều kiện AB = AC và $\hat{A} = 60^{\circ}$

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC sao cho CD = 3DB. Biết rằng $AC^2 + 3AB^2 = mAD^2 + nBC^2$. Tính m + n. **Lưu ý**: nếu đáp án dạng $\frac{a}{b}$ thì nhập vào là a/b

$$\frac{1}{n+1} + \frac{3}{n+1} + \frac{n}{n+1} + \frac{n}{n+1}$$

Câu 10. Tính
$$I = \lim \frac{\frac{1}{2} + 1 + \frac{3}{2} + \dots + \frac{n}{2}}{n^2 + 1}$$
.

	,		1
Α.	1	=	1

B.
$$I = \frac{1}{2}$$

C.
$$I = \frac{1}{8}$$

D.
$$I = 1$$

Câu 11. Cho hàm số $y = x^4 - 2(m+1)x^2 + 2(m+1)^2$. Gọi S là tập hợp các giá trị của m để đồ thị của hàm số trên có ba điểm cực trị tạo thành tam giác vuông. Tính tổng các phần tử của S

Câu 12. Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có A(1;1); B(4;-5); C(-2;-3). Phương trình tổng quát của đường trung trực canh BC là

A.
$$x - 3y + 11 = 0$$

B.
$$3x - y - 7 = 0$$

C.
$$3x + y - 7 = 0$$

C.
$$3x + y - 7 = 0$$
 D. $x - 3y + 13 = 0$

Câu 13. Một lớp có 12 học sinh tiêu biểu gồm 7 học sinh nữ và 5 học sinh nam. Có bao nhiều cách lập ra một đoàn 6 em đi dư đai hội thi đua của trường sao cho số học sinh nữ không quá 3. Số cách chọn là

Câu 14. Tìm tập nghiệm S của bất phương trình $3^{2x-1} > 243$.

A.
$$S = (-\infty; 3)$$

B.
$$S = (3; +\infty)$$

C.
$$S = (2; +\infty)$$

D.
$$S = (-\infty; 2)$$

Câu 15. Cho cấp số cộng (u_n) có $u_1 = 2$ và $u_2 = 6$. Giá trị của u_3 bằng

Câu 16. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân ở B, cạnh AC = 2a. Cạnh SA vuông góc với mặt đáy (ABC), tam giác SAB cân. Tính thể tích khối chóp S.ABC theo a.

A.
$$\frac{2\sqrt{2}a^3}{3}$$

B.
$$\frac{a^3\sqrt{2}}{3}$$

C.
$$\sqrt{2}a^3$$

D.
$$2\sqrt{2}a^3$$

Câu 17. Cho tam giác ABC có $\widehat{B}=30^{\circ}$, $\widehat{C}=60^{\circ}$, đường cao $h_a=2\sqrt{3}$. Tính R bán kính đường tròn ngoại tiếp tam giác ABC.

Câu 18. Cho hàm số $y = x^3 - 3m^2x + m$. Tìm tham số m để trung điểm của hai điểm cực trị của đồ thị hàm số thuộc d: y = 1.

A.
$$m = \frac{1}{3}$$

B.
$$m = -\frac{1}{3}$$

C.
$$m = 1$$

D.
$$m = \frac{1}{2}$$

Câu 19. Cho một cấp số cộng có $u_1 = -3$, $u_6 = 27$. Tìm công sai d.

A.
$$d = 5$$

B.
$$d = 7$$

C.
$$d = 6$$

D.
$$d = 8$$

Câu 20. Trong mặt phẳng Oxy, ảnh của đường tròn (C): $(x+1)^2 + (y-5)^2 = 2$ qua phép vị tự tâm O, tỉ số k = -3 là đường tròn (C') có phương trình là

A.
$$(C')$$
: $(x-3)^2 + (y+15)^2 = 18$

B.
$$(C')$$
: $(x+3)^2 + (y-15)^2 = 6$

C.
$$(C')$$
: $(x+3)^2 + (y-15)^2 = 18$

D.
$$(C')$$
: $(x-3)^2 + (y+15)^2 = 6$

Câu 21. Trên giá sách có 4 quyển sách toán, 3 quyển sách lý, 2 quyển sách hóa (các quyển sách cùng môn đôi một khác nhau). Hỏi có bao nhiều cách lấy ra 3 quyển sách sao cho có ít nhất một quyển sách toán?

Câu 22. Một hộp đưng 9 thẻ được đánh số từ 1 đến 9. Rút ngẫu nhiên hai thẻ từ hộp nêu ở trên, tính xác suất để tích của hai số trên hai thẻ này là số chẵn.

A.
$$\frac{25}{81}$$

B.
$$\frac{13}{18}$$

C.
$$\frac{5}{18}$$

D.
$$\frac{1}{2}$$

Câu 23.

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, $SA \perp (ABCD)$ và $SA = a\sqrt{2}$. Khoảng cách từ điểm A đến mặt phẳng (SCD)bằng

A. $a\sqrt{3}$

B. $\frac{a\sqrt{6}}{3}$

C. 2*a*

D. $\frac{a\sqrt{7}}{3}$

Câu 24.

Cho tập hợp A = (-3, 5], B = [-4, 7]. Tập hợp $B \setminus A$ là

A. $[-4; -3] \cup (5; 7)$

B. [-4; -3] U (5; 7)

C. $[-4; -3] \cup (5; 7]$ D. $[-4; -3] \cup [5; 7]$

Câu 25. Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = AD = 2a, AA' = 8. Tính diện tích toàn phần S_{tp} của hình trụ có hai đáy lần lượt ngoại tiếp hai đáy của hình hộp chữ nhật đã cho.

A. $S_{tp} = 7\pi a^2$

B. $S_{tp} = 16\pi a^2$

C. $S_{tp} = 12\pi a^2$

D. $S_{tp} = 20\pi a^2$

Câu 26. Thể tích khối cầu giới hạn bởi mặt cầu ngoại tiếp hình lập phương có cạnh bằng 2 là

A. $16\pi\sqrt{3}$

B. $4\pi\sqrt{3}$

C. $\frac{16}{3}\pi\sqrt{3}$

D. $\frac{4}{3}\pi\sqrt{3}$

Câu 27. Cho tam giác ABC có AB = 9cm, AC = 12cm và BC = 15cm. Khi đó đường trung tuyến BM của tam giác ABC có độ dài

A. 117cm

B. 18,82cm

C. 10.82cm

D. 7,5cm

Câu 28. Cho $n \in \mathbb{N}^*$ thỏa mãn $\mathbb{C}_n^5 = 2002$. Tính \mathbb{A}_n^5 .

Câu 29. Tìm tất cả các giá trị của tham số m để hàm số $y = (m-3)x^3 - 2mx^2 + 3$ không có cực trị.

A. m = 3

B. m = 0, m = 3

C. m = 0

D. $m \equiv 3$

Câu 30. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, $SA \perp (ABC)$ và $SA = a\sqrt{3}$. Thể tích khối chóp S.ABC bằng

C.
$$\frac{3a^3}{8}$$

D.
$$\frac{a^3}{4}$$

Câu 31. Trong mặt phẳng Oxy, phương trình tham số của đường thẳng đi qua hai điểm A(5;-2) và B(-1,2) là

A.
$$\begin{cases} x = 2 + 3t \\ y = 5 - 2t. \end{cases}$$

B.
$$\begin{cases} x = 3 - t \\ y = -2 + 3t. \end{cases}$$

C.
$$\begin{cases} x = 5 - 3t \\ y = -2 + 2t. \end{cases}$$

D.
$$\begin{cases} x = -3 + t \\ y = -2 - 2t. \end{cases}$$

Câu 32. Giải phương trình $\sin(\frac{2x}{3} - \frac{\pi}{3}) = 0$.

A.
$$x = \frac{\pi}{2} + \frac{k3\pi}{2} \ (k \in \mathbb{Z})$$

B.
$$x = \frac{2\pi}{3} + \frac{k3\pi}{2} \ (k \in \mathbb{Z})$$

$$\mathbf{C.} \ \ x = k\pi \ (k \in \mathbf{Z})$$

$$\mathbf{p.} \ \ x = \frac{\pi}{3} + k\pi \ (k \in \mathbf{Z})$$

Câu 33. Cho hình nón (N) có đinh S, bán kính đáy bằng a và độ dài đường sinh bằng 4a. Gọi (T) là mặt cầu đi qua đinh S và đường tròn đáy của (N). Bán kính của (T) bằng

A.
$$\frac{2\sqrt{6}a}{3}$$

B.
$$\frac{16\sqrt{15}a}{15}$$

C.
$$\frac{8\sqrt{15}a}{15}$$

D.
$$\sqrt{15}a$$

Câu 34. Tập nghiệm của bất phương trình $2^{x-3} \ge 3^{x^2-5x+6}$ là

B.
$$(-\infty; 2]$$

C.
$$[2 + \log_3 2; 3]$$

D.
$$(0; +\infty)$$

Câu 35. Trong mặt phẳng Oxy, cho tam giác ABC. Biết A(3;-1), B(-1;2) và I(1;-1) là trọng tâm của tam giác ABC. Trực tâm H của tam giác ABC có tọa độ (a;b). Tính a+3b.

Lưu ý: nếu đáp án dạng $\frac{a}{b}$ thì nhập vào là a/b

Câu 36. Phần bù của nửa khoảng [-2; 1) trong R là

A.
$$(-\infty; -2] \cup (1; +\infty)$$

B.
$$(-\infty; -2)$$

C.
$$(-\infty; 1]$$

D.
$$(-\infty; -2) \cup [1; +\infty)$$

Câu 37. Trong các hàm số dưới đây, hàm số nào nghịch biến trên tập số thực R.

A.
$$y = \log_{\frac{1}{2}} x$$

B.
$$y = (\frac{2}{\pi})^{x}$$

C.
$$y = (\frac{\pi}{3})^x$$

D.
$$y = \log_{\frac{\pi}{4}} (2x^2 + 1)$$

Câu 38. Nghiệm của phương trình $log_3(2x-1) = 2 là$

A.
$$x = 2$$

B.
$$x = 5$$

C.
$$x = \frac{9}{2}$$

D.
$$x = \frac{7}{2}$$

Câu 39. Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, SA = 2a, AB = a và SA vuông góc với (ABCD). Gọi I là trung điểm SC và M là trung điểm của AB. Tính khoảng cách từ điểm I đến đường thẳng CM.

A.
$$\frac{a3\sqrt{5}}{10}$$

B.
$$\frac{a\sqrt{75}}{10}$$

C.
$$\frac{a\sqrt{105}}{10}$$

D.
$$\frac{a\sqrt{5}}{10}$$

Câu 40. Cho $\triangle ABC$ có BC = a, CA = b. Tam giác ABC có diện tích lớn nhất khi góc \widehat{ACB} bằng

Câu 41. Cho $A = \{a; b; c; d\}$. Số tập con của A có 2 phần tử là

Câu 42. Tìm hàm số y = ax + b, biết đồ thị của nó đi qua điểm A(1, -4) và song song với đường thẳng y = 2x - 3.

A.
$$y = 2x + 2$$

B.
$$y = 2x + 6$$

C.
$$y = 2x - 6$$

D.
$$y = 2x - 2$$

Câu 43. Tập hợp các giá trị thực của tham số m để hàm số $y = mx^4 - x^2 + 1$ có đúng một điểm cực trị là

A.
$$(-\infty; 0]$$

B.
$$[0; +\infty)$$

C.
$$(-\infty;0)$$

D.
$$(0:+\infty)$$

Câu 44. Mệnh đề phủ định của mệnh đề " $\forall x \in \mathbb{R}, x^2 + mx - 2 > 0$ ", là

A. "
$$\forall x \in \mathbb{R}, x^2 + mx - 2 < 0$$
"

B. "
$$\exists x \in \mathbb{R}, x^2 + mx - 2 \le 0$$
"

C. "
$$\forall x \in \mathbb{R}, x^2 + mx - 2 \le 0$$
"

D. "
$$\exists x \in \mathbb{R}, x^2 + mx - 2 < 0$$
"

Câu 45. Cho $P = 9 \log_{\frac{1}{3}}^{\frac{3}{3}} \sqrt[3]{a} + \log_{\frac{1}{3}}^{\frac{2}{3}} a - \log_{\frac{1}{3}} a^3 + 1$ với $a \in [\frac{1}{9}; 3]$ và M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P. Tính S = 5m + 2M.

Câu 46. Cho hình chóp tứ giác S.ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SBC) là

$$\mathbf{A}$$
. SB

Câu 47. Tìm tập giá trị T của hàm số $y = \sqrt{x-3} + \sqrt{5-x}$.

A.
$$T = (3; 5)$$

B.
$$T = [3; 5]$$

C.
$$T = [\sqrt{2}; 2]$$

D.
$$T = [0; \sqrt{2}]$$

Câu 48. Biết rằng đồ thị hàm số $y = ax^4 + bx^2 + c$ với $(a \equiv 0)$ có điểm cực đại A(0; -3) và có điểm cực tiểu B(-1; -5). Tổng a + b + c bằng

Câu 49. Cho tam giác ABC có độ dài ba cạnh là BC = a, AC = b, AB = c. Gọi R, r, p bán kính đường tròn ngoại tiếp, nội tiếp, nửa chu vi và diện tích của tam giác ABC. Trong các phát biểu sau, phát biểu nào \textbf{sai}?

$$\mathbf{A.} \ \ S = \frac{1}{2}ab\sin C$$

$$\mathbf{B.} \ S = pr$$

C.
$$S = \frac{abc}{4R}$$

D.
$$S = \frac{abc}{R}$$

Câu 50. Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh $a\sqrt{6}$, góc giữa cạnh bên và mặt đáy bằng 45° . Thể tích của khối chóp S.ABCD bằng

A.
$$2\sqrt{6}a^3$$

B.
$$6\sqrt{3}a^3$$

C.
$$\sqrt{6}a^{3}$$

D.
$$2\sqrt{3}a^3$$

gamit.org - Answer Sheet 20

