Pore Water Microbiome Characterization using Ribosome Profiling

Yochen Zhong

Outline

- Introduction
- Taxonomic classification
- Functional analysis
- Conclusions

Background

- Ribosome profiling: using short, ribosome-protected mRNA fragments to create a snapshot of protein production.
 - More direct measure of cell activity than RNA-seq
- This technique has rarely been applied to environmental microbiome samples.

Objectives

- 1) Assign and validate taxonomic identity of individual Ribo-ITP reads from pore water sample
- 2) Identify functional capabilities of the microbiome

Part 1: Taxonomic Classification

rRNA separation

- SortMeRNA (Kopylova et al., 2012)
- 7219457 raw reads:
 - 1333887 (18.48%)
 classified as rRNA
 - 5885570 (81.52%) retained for downstream classification

Classifiers and databases used for initial read assignments

- Nucleotide matching
 - Kraken2 (Wood et al., 2014)
 - NCBI RefSeq Bacteria/Human complete genomes (O'Leary et al., 2016)
 - Centrifuger (Song & Langmead, 2024)
 - NCBI RefSeq Bacteria/Human/Virus/Archea, GenBank SARS-CoV2
 - GTDB r226 + RefSeq Human/Virus/Fungi/Contaminants
 - NCBI nt
- Protein matching
 - DIAMOND (Buchfink et al. 2021)
 - NCBI nr
 - UniRef100

Initial classifier results, species

Initial classifier results, genera

1256863 total reads classified

Classifiers show similar classifications

- Out of 480555 shared reads, 321598 (67%) agreed on species
- 354239 (74%) agreed on genus

cf_rs

cf nt

cf_gtdb

k2_rs

dmd ur dmd nr

Aggregated classifier results

- Aggregated classifier information by combining single hits and unanimous hits
- 1095115/5885570 (18.6%)
 of raw reads classified

Second classification round

Final taxonomic results

2430207/5885570 (41.3%)
 of raw reads classified

Classification validation

Specificity: Alignment Rate

 Classified reads generally have more alignments to their respective pangenomes

Specificity: Alignment Quality

 Classified reads generally align better to their respective pangenomes

Specificity scores

- Classified reads generally align better to their respective pangenomes
- After pangenome size correction, species with more ambiguous assignments drop in score

Part 2: Functional Analysis

Gene Alignment Quality

Reads follow expected distribution

Functional Term Quality

- Term counts follow expected distribution
- X. szentirmaii reads returned zero functional terms; dropped from analysis

Functional Relatedness: KO Terms

 Species show diverse functional roles

Functional Relatedness: KEGG Pathways

- Related species show similar functional roles
- X. szentirmaii reads returned zero functional terms; dropped from analysis

Functional PCoA of species, cosine distance of KEGG Pathway raw proportions Relatedness: KEGG Acidovorax facilis **Pathways** 0.3 0.2 -Pseudomonas sp_8Z Acidovorax temperans Pseudomonas sp. OF001 Brevundimonas fluminis Brevundimonas diminuta 0.1 -Pseudomonas aeruginosa Sphingopyxis macrogoltabida Phenylobacterium zucineum Escherichia coli PC0A2 0.0 Ectopseudomonas oleovorans Stutzerimonas stutzeri Stutzerimonas chloritidismutans Sphingomonas koreensis -0.1-Variovorax paradoxus Sphingopyxis sp. FD7 -0.2-0.3🕒 Pseudomonas putida Pseudomonas marincola

0.0

0.2

PCoA1

0.4

0.6

0.8

-0.2

Top 30 Aggregate Enriched Pathways, KO terms

Essential functions populate top KO terms

Aggregate community **functions**

populate top

terms

KEGG Pathway

Top 30 Aggregate Enriched Pathways, KEGG Pathway

Pseudomonas putida

Sphingopyxis sp. FD7

 KO Terms enrichment is usually not shared

T20 Enriched KO Terms by GSEA Combined Rank Score

T20 Enriched KEGG Pathways by GSEA Combined Rank Score

KEGG
 Pathway
 enrichment
 shows more
 similarity

Summary

- A multi-classifier approach is effective in characterizing environmental microbiome ribosome profiling data
- The microbial community translational activity is dominated by a few bacteria, particularly S. stutzeri, P. aeruginosa, and S. chloriditismutans
- Key community functions can be identified from ribosome profiling data

Limitations/Next Steps

- Ribo-seq is not suited for taxonomic abundance estimation
 - Integration with metagenomics data
- Ribo-seq only describes a portion of bacterial activity
 - Integration with metatranscriptomics data
- Many unmapped reads; only proceeded with taxa >4000 raw aggregate reads
- Pangenomes only partially describe a species
- Comparison is needed for significant conclusions
 - Differential analysis
 - Correlation with geochemical/environmental data

Questions

- Environmental sample results or expectations?
- Any specific bacterial processes of interest?

References

- Buchfink, B., Reuter, K. & Drost, H.-G. Sensitive protein alignments at tree-of-life scale using DIAMOND. *Nat. Methods* **18**, 366–368 (2021).
- Fullam, A. et al. proGenomes3: approaching one million accurately and consistently annotated prokaryotic genomes. *Nucleic Acids Res.* **51**, D760–D766 (2023).
- Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data.
 Bioinformatics 28, 3211–3217 (2012).
- Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).
- O'Leary, N. A. *et al.* Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. *Nucleic Acids Res.* **44**, D733–D745 (2016).
- Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).
- Sayers, E. W. et al. Database resources of the National Center for Biotechnology Information. *Nucleic Acids Res.* **52**, D10–D19 (2024).
- Song, L. & Langmead, B. Centrifuger: lossless compression of microbial genomes for efficient and accurate metagenomic sequence classification. Genome Biol. 25, 106 (2024).
- Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. *Genome Biol.* **20**, 257 (2019).