Clustering Partitioning Methods

Major Clustering Approaches

Partitioning approach:

- Construct k partitions (k <= n) and then evaluate them by some criterion, e.g.,
 minimizing the sum of square errors
 - Each group has at least one object, each object belongs to one group
 - Iterative Relocation Technique
 - Avoid Enumeration by storing the centroids
- Typical methods: k-means, k-medoids, CLARANS

Hierarchical approach:

- Create a hierarchical decomposition of the set of data (or objects) using some criterion
 - Agglomerative Vs Divisive
 - Rigid Cannot undo
 - Perform Analysis of linkages
 - □ Integrate with iterative relocation
- Typical methods: Diana, Agnes, BIRCH

Major Clustering Approaches

Density Based Methods

- Distance based methods Spherical Clusters
- Density For each data point within a given cluster the neighbourhood should contain a minimum number of points
- DBSCAN, OPTICS

Grid Based Methods

- Object space finite number of cells forming grid structure
- Fast processing time
- Typical methods: STING, WaveCluster, CLIQUE

Major Clustering Approaches

Model-based:

- A model is hypothesized for each of the clusters and tries to find the best fit of that model to each other
- Typical methods: EM, COBWEB

Frequent pattern-based:

- Based on the analysis of frequent patterns
- Typical methods: pCluster

User-guided or constraint-based:

- Clustering by considering user-specified or application-specific constraints
- Typical methods: COD, constrained clustering

Partitioning Algorithms: Basic Concept

- Partitioning method: Construct a partition of a database D of n objects into a set of k clusters, s.t., min sum of squared distance $E = \sum_{i=1}^k \sum_{p \in C_i} (p m_i)^2$
- Given a k, find a partition of k clusters that optimizes the chosen partitioning criterion
 - Global optimal: exhaustively enumerate all partitions
 - Heuristic methods: k-means and k-medoids algorithms
 - k-means Each cluster is represented by the center of the cluster
 - k-medoids or PAM (Partition around medoids) Each cluster is represented by one of the objects in the cluster

- Given k, the k-means algorithm is implemented in 4 steps:
 - Partition objects into k non-empty subsets
 - Compute seed points as the centroids of the clusters of the current partition. The centroid is the center (mean point) of the cluster.
 - Assign each object to the cluster with the nearest seed point.
 - Go back to Step 2, stop when no more new assignment.

- k-means algorithm is implemented as below:
- Input: Number of clusters k, database of n objects
- Output: Set of k clusters that minimize the squared error
 - Choose k objects as the initial cluster centers
 - Repeat
 - (Re)assign each object to the cluster to which the object is most similar based on the mean value of the objects in the cluster
 - Update the cluster means

Until no change

Algorithm: *k***-means.** The *k*-means algorithm for partitioning, where each cluster's center is represented by the mean value of the objects in the cluster.

Input:

- k: the number of clusters,
- \blacksquare *D*: a data set containing *n* objects.

Output: A set of *k* clusters.

Method:

- (1) arbitrarily choose k objects from D as the initial cluster centers;
- (2) repeat
- (3) (re)assign each object to the cluster to which the object is the most similar, based on the mean value of the objects in the cluster;
- (4) update the cluster means, i.e., calculate the mean value of the objects for each cluster;
- (5) **until** no change;

K-Means Method

- Strength: Relatively efficient: O(tkn), where n is # objects, k is # clusters, and t is # iterations. Normally, k, t << n.</p>
- Comment: Often terminates at a local optimum. The global optimum may be found using techniques such as: deterministic annealing and genetic algorithms

Weakness

- Applicable only when mean is defined Categorical data
- Need to specify k, the number of clusters, in advance
- Unable to handle noisy data and outliers
- Not suitable to discover clusters with non-convex shapes

Variations of the K-Means Method

- A few variants of the k-means which differ in
 - Selection of the initial k means
 - Dissimilarity calculations
 - Strategies to calculate cluster means
- Handling categorical data: k-modes
 - Replacing means of clusters with modes
 - Using new dissimilarity measures to deal with categorical objects
 - A mixture of categorical and numerical data: k-prototype method
- Expectation Maximization
 - Assigns objects to clusters based on the probability of membership
- Scalability of k-means
 - Compressible, Discardable, To be maintained in main memory
 - Clustering Features

Problem of the K-Means Method

- The k-means algorithm is sensitive to outliers
 - Since an object with an extremely large value may substantially distort the distribution of the data.
- K-Medoids: Instead of taking the mean value of the object in a cluster as a reference point, medoids can be used, which is the most centrally located object in a cluster.

K-Medoids Clustering Method

- PAM (Partitioning Around Medoids)
 - starts from an initial set of medoids and iteratively replaces one of the medoids by one of the non-medoids if it improves the total distance of the resulting clustering
 - All pairs are analyzed for replacement
 - PAM works effectively for small data sets, but does not scale well for large data sets
- CLARA
- CLARANS

K-Medoids

- Input: k, and database of n objects
- Output: A set of k clusters
- Method:
 - Arbitrarily choose k objects as initial medoids
 - Repeat
 - Assign each remaining object to cluster with nearest medoid
 - Randomly select a non-medoid o_{random}
 - Compute cost S of swapping o_i with o_{random}
 - If S < 0 swap to form new set of k medoids</p>

Until no change

Working Principle: Minimize sum of the dissimilarities between each object and its corresponding reference point. That is, an absolute-error criterion is used

$$E = \sum_{j=1}^{k} \sum_{p \in C_j} |p - o_j|$$

K-medoids

- Case 1: p currently belongs to medoid o_j. If o_j is replaced by o_{random} as a medoid and p is closest to one of o_j where i < > j then p is reassigned to o_j.
- Case 2: p currently belongs to medoid o_j. If o_j is replaced by o_{random} as a medoid and p is closest to o_{random} then p is reassigned to o_{random}.

1. Reassigned to Oi

2. Reassigned to O_{random}

3. No change

4. Reassigned to O_{random}

- Case 3: p currently belongs to medoid o_i (i < >j) If o_j is replaced by o_{random} as a medoid and p is still closest to o_i assignment does not change
- **Case 4:** p currently belongs to medoid o_i (i < > j). If o_j is replaced by o_{random} as a medoid and p is closest to o_{random} then p is reassigned to o_{random} .

K-medoids

- After reassignment difference in squared error E is calculated. Total cost of swapping – Sum of costs incurred by all non-medoid objects
- If total cost is negative, o_j is replaced with o_{random} as E will be reduced

K-medoids Algorithm

Algorithm: k-medoids. PAM, a k-medoids algorithm for partitioning based on medoid or central objects.

Input:

- k: the number of clusters,
- D: a data set containing n objects.

Output: A set of k clusters.

Method:

- arbitrarily choose k objects in D as the initial representative objects or seeds;
- (2) repeat
- assign each remaining object to the cluster with the nearest representative object;
- randomly select a nonrepresentative object, o_{random};
- (5) compute the total cost, S, of swapping representative object, o_j, with o_{random};
- (6) if S < 0 then swap o_i with o_{random} to form the new set of k representative objects;
- (7) until no change;

Problem with PAM

- PAM is more robust than k-means in the presence of noise and outliers because a medoid is less influenced by outliers or other extreme values than a mean
- PAM works efficiently for small data sets but does not scale well for large data sets.

CLARA

- Clustering LARge Applications
- Choose a representative set of data
- Choose medoids from this
- Cluster
- Draw multiple such samples and apply PAM on each
- Returns best Clustering
- Effectiveness depends on Sample Size

CLARANS

- Clustering Large Applications based on RANdomized Search
- Uses Sampling and PAM
- Doesn't restrict itself to any particular sample
- Performs a graph search with each node acting as a potential solution-(k medoids)
- Clustering got after replacement Neighbor
- Number of neighbors to be tried is limited
- Moves to better neighbour
- Silhouette Coefficient
- Complexity O(n²)