Introduction to Financial Econometrics Chapter 6: Introduction to GARCH Models

Christophe Hurlin

Univ Orléans

May, 2019

Definition (volatility)

The volatility is defined as the degree of variation of a trading price series over time.

Notes

- Volatility is an important factor in options trading (for instance, see the Black-Scholes option pricing formula).
- Volatility is a key factor of risk management (risk measures, risk-adjusted performance measures, etc.).

2 / 149

Overview

- A special feature of stock volatility is that it is unobservable.
- The daily volatility is not directly observable from the returns R_t because there is only one observation in a trading day t, denoted r_t .
- So, we need to estimate it.

Several approaches have been proposed to measure and to forecast the volatility:

- The implied volatility which is defined as the volatility of an underlying instrument which, when input in an option pricing model (such as Black-Scholes) will return a theoretical value equal to the current market price of the option. Example: the CBOE Volatility Index (ticker: VIX).
- The estimators based on high frequency data. For instance, the realized volatility is computed as the sum of squared intraday returns for a particular day (Andersen and Bollerslev, 1998).
- The conditional variance issued from dynamic models such as the ARCH and GARCH type models.

The outline of this chapter is the following:

Section 2: ARCH models

Sub-Section 2.1: Properties of ARCH models

Sub-Section 2.2: Building an ARCH model

Section 3: GARCH models

Section 4: Extensions of GARCH models

References

Brooks, C., Introductory Econometrics for Finance, Cambridge University Press, 3rd edition, 2014.

Campbell, J.,Y., A.W. Lo and A.C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, 1997.

Francq, C. and J.M. Zakoian, GARCH Models: Structure, Statistical Inference and Financial Applications, Wiley, 2010. (main reference)

Tsay, R., 2002, Analysis of Financial Time Series, Wiley Series.

Section 2

ARCH Models

The ARCH model has been introduced by Engle (1982)

 ${\color{red}\textbf{ARCH}} = {\color{red}\textbf{AutoRegressive Conditional Heteroskedasticity}}$

Robert F. Engle Nobel Prize 2003

Engle, R.F. (1982), AutoRegressive Conditional Heteroskedasticity with Estimates of the Variance of U.K. Inflation, Econometrica, 50, 987-1008.

ARCH = AutoRegressive Conditional Heteroskedasticity

- The term **heteroscedasticity** refers to a time-varying variance (cf. Chapter 2).
- In an ARCH model, it is the conditional variance (and not the variance itself)
 which changes with time, in a specific way, depending on the available data.
- The ARCH model assumes that the conditional variance is a linear function of the past squared return.
- Thus, the squared return follows an autoregressive model.

9 / 149

Definition (ARCH(1))

The process $\{X_t, t \in \mathbb{Z}\}$ is said to be an $\mathsf{ARCH}(1)$ process, if

$$X_t = Z_t \sigma_t$$

where Z_t is a sequence of independent and identically distributed (i.i.d.) random variables with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$, and σ_t is a non-negative process such that

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$

with $\alpha_0 > 0$ and $0 \le \alpha_1 < 1$.

Definition (conditional variance)

The process σ_t^2 corresponds to the **conditional variance** of X_t .

$$\mathbb{V}\left(X_{t}|\mathcal{F}_{t-1}\right) \equiv \mathbb{V}\left(X_{t}|\underline{X}_{t-1}\right) = \sigma_{t}^{2}$$

where $\mathcal{F}_{t-1} \equiv \underline{X}_{t-1} = \{X_{t-1}, X_{t-2}, \ldots\}$ is the information set available at time t-1.

Interpretation: Some authors denote the conditional variance by h_t , with

$$X_t = Z_t \sqrt{h_t}$$

$$h_t = \alpha_0 + \alpha_1 X_{t-1}^2$$

Interpretation

Consider an ARCH(1) process

$$X_t = Z_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$

Then, we have

$$\mathbb{V}\left(X_{t}|\underline{X}_{t-1}\right) = \mathbb{V}\left(Z_{t}\sigma_{t}|\underline{X}_{t-1}\right) = \sigma_{t}^{2}\mathbb{V}\left(Z_{t}|\underline{X}_{t-1}\right) = \sigma_{t}^{2}\mathbb{V}\left(Z_{t}\right) = \sigma_{t}^{2}$$

- Given the past information \underline{X}_{t-1} , the conditional variance $\sigma_t^2 = \alpha_0 + \alpha_1 x_{t-1}^2$ is deterministic, since x_{t-1} is a constant.
- ② The process $\{Z_t, t \in \mathbb{Z}\}$ is an IID noise (cf. Chapter 5), so $\mathbb{V}(Z_t | \underline{X}_{t-1}) = \mathbb{V}(Z_t)$, i.e. there is no "memory" in Z_t .
- **3** The normalization $V(Z_t)=1$ is not a restriction: the scaling implied by any other variance would be absorbed by the parameters α_0 and α_1 .

Example (ARCH(1) process)

Consider the following ARCH(1) process with a Gaussian innovation

$$X_{t} = Z_{t}\sigma_{t}$$

$$\sigma_{t}^{2} = 1 + 0.5X_{t-1}^{2}$$

$$Z_{t} \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$$

with an initial condition $X_0=0$. **Question:** simulate 500 values of the conditional variance $\sigma_t^2=\mathbb{V}\left(X_t|\underline{X}_{t-1}\right)$ for $t=1,\ldots,500$.

Solution

Consider the following realizations for the innovation process Z_t .

$$X_t = Z_t \sigma_t \qquad \sigma_t^2 = 1 + 0.5 X_{t-1}^2$$

Realizations	Zt	x_{t-1}	$\sigma_t^2 = 1 + 0.5 x_{t-1}^2$	Xt
t = 0	_	_	-	0
t=1	-1.6718	0	$1 + 0.5 \times (0)^2 = 1.0000$	-1.6718
t = 2	0.8267	-1.6718	$1 + 0.5 \times (-1.6718)^2 = 2.3975$	1.2801
t = 3	-1.6764	1.2801	$1 + 0.5 \times (1.2801)^2 = 1.8193$	-2.2612
t = 4	-0.1554	-2.2612	$1 + 0.5 \times (-2.2612)^2 = 3.5564$	-0.2931

Figure: Simulated conditional variance for an $\mathsf{ARCH}(1)$ process with Gaussian innovations

Sub-Section 2.1

Properties of ARCH Models

Objectives

- To understand the main properties of an ARCH(1) model
- To make the distinction between the conditional and unconditional variances
- $\ \, \ \,$ To establish a link between an ARCH model on X_t and an AR representation on X_t^2
- To understand the source of the ARCH effect
- To show that a ARCH process is a martingale difference
- To make the distinction between the conditional and unconditional distributions

Definition

Property 1: If $\{X_t, t \in \mathbb{Z}\}$ has a ARCH(1) representation, with

$$X_t = Z_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$

then $\left\{X_t^2, t \in \mathbb{Z}\right\}$ has an $\mathsf{AR}(1)$ representation, with

$$X_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + v_t$$

where v_t is an innovation process

$$\mathbb{E}\left(v_t|\underline{X}_{t-1}\right)=0$$

Proof: Consider an ARCH(1) model such that

$$X_t = z_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$

Add X_t^2 on both sides of the equation of σ_t^2 , then we get

$$X_t^2 + \sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + X_t^2$$

and rewrite X_t^2 as

$$X_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + v_t$$

with

$$v_t = X_t^2 - \sigma_t^2$$

Proof (cont'd): Show that $v_t = X_t^2 - \sigma_t^2$ is an innovation, i.e. $\mathbb{E}\left(v_t | \underline{X}_{t-1}\right) = 0$.

$$\mathbb{E}(v_t|\underline{X}_{t-1}) = \mathbb{E}(X_t^2|\underline{X}_{t-1}) - \mathbb{E}(\sigma_t^2|\underline{X}_{t-1})$$

$$= \mathbb{E}(z_t^2\sigma_t^2|\underline{X}_{t-1}) - \sigma_t^2$$

$$= \sigma_t^2\mathbb{E}(z_t^2|\underline{X}_{t-1}) - \sigma_t^2$$

$$= \sigma_t^2\mathbb{V}(z_t|\underline{X}_{t-1}) - \sigma_t^2$$

$$= \sigma_t^2\mathbb{V}(z_t) - \sigma_t^2$$

$$= \sigma_t^2 - \sigma_t^2$$

$$= 0$$

So, X_t^2 has an AR(1) representation. \Box

Consequences

1 If $\{X_t, t \in \mathbb{Z}\}$ has a **ARCH(1)** representation

$$X_t = z_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$

② Then $\{X_t^2, t \in \mathbb{Z}\}$ has an AR(1) representation

$$X_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + v_t$$

• Thus X_t^2 and X_{t-k}^2 are correlated: => **ARCH** effect

$$\rho_k = \mathbb{C}orr\left(X_t^2, X_{t-k}^2\right) \neq 0$$

especially for small values of k.

Definition (Yule-Walker equations)

Consider an $\mathsf{AR}(p)$ process $\{Y_t,\,t\in\mathbb{Z}\}$ such that

$$\Phi\left(L\right)Y_{t} = c + \varepsilon_{t} \iff Y_{t} = c + \phi_{1}Y_{t-1}... + \phi_{p}Y_{t-p} + \varepsilon_{t}$$

where $\varepsilon_t \sim \!\! \text{WN} \left(0, \sigma^2\right)$ is a white noise process, then the **autocorrelation function** $\rho_k = Corr\left(Y_t, Y_{t-k}\right)$ satisfies a recurrence relation of the form

$$\Phi\left(L\right)\rho_{k}=0\Longleftrightarrow\rho_{k}=\phi_{1}\rho_{k-1}+\phi_{2}\rho_{k-2}+\ldots+\phi_{p}\rho_{k-p}\quad\forall k\in\mathbb{Z}^{2}$$

with $\rho_0=1$. These equations are called the **Yule-Walker equations**.

Yule Walker equation and ARCH effect

If the process $\left\{X_t^2, t \in \mathbb{Z} \right\}$ has an $\mathsf{AR}(1)$ representation with

$$X_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + v_t$$

 $\mathbb{E}(v_t | X_{t-1}) = 0$

then its autocorrelation function $\rho_k = Corr\left(X_t^2, X_{t-k}^2\right)$ satisfies the following recurrence relation

$$\rho_k = \alpha_1 \rho_{k-1}$$
$$\rho_0 = 1$$

Reminder Chapter 1. Stylized Fact 7: (ARCH effect)

Fact (ARCH effect)

The daily squared returns often exhibit significant correlations. These autocorrelations are often referred as an ARCH effect.

Figure: ACF of a simulated AR(1) process

Date: 11/02/18 Time: 08:06 Sample: 3 500 Included observations: 498

Figure: ACF of a simulated AR(3) process

Date: 11/02/18 Time: 08:07 Sample: 3 500 Included observations: 498

Autocorrelation Partial Correlation AC PAC Q-Stat Prob

1 0.709 0.709 251.90 0.000
2 0.563 0.121 410.88 0.000
3 0.513 0.157 543.49 0.000
4 0.432 0.005 637.64 0.000
5 0.307 0.111 685.21 0.000
6 0.258 0.032 718.98 0.000
7 0.246 0.061 749.77 0.000

10 0.171 0.045 801.94 0.000 11 0.177 0.034 817.89 0.000 12 0.150 -0.012 829.36 0.000 13 0.112 -0.041 835.78 0.000 14 0.113 0.019 842.31 0.000 15 0.097 -0.010 847.17 0.000

Figure: ACF for the S&P500 squared returns (August 19, 2013 to August 17, 2018)

Sample: 8/19/2013	e: 09/09/18 Time: 11:25 nple: 8/19/2013 8/17/2018 uded observations: 1259								
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob			
		1 2 3 4 5 6 7 8 9 10 11	0.251 0.288 0.251 0.115 0.135 0.095 0.108 0.102 0.123 0.084	0.176 0.196 0.116 -0.052 0.018 -0.020 0.044 0.043 0.060 0.003	114.94 194.81 299.82 379.50 396.30 419.45 430.83 445.63 458.93 478.14 487.21 490.35	0.000 0.000 0.000 0.000 0.000 0.000			
		13 14 15	0.048 0.040	-0.020 -0.012	493.24 495.29 496.51	0.000			

Definition

Property 2: if $\{X_t, t \in \mathbb{Z}\}$ is an ARCH(1) process, then it is a martingale difference

$$\mathbb{E}\left(X_{t}|\mathcal{F}_{t-1}\right) \equiv \mathbb{E}\left(X_{t}|\underline{X}_{t-1}\right) = 0$$

Consequences

- The very best (linear or nonlinear) predictor of X_t based on the available information at time t-1 is simply the trivial predictor, namely the series mean, 0.
- In terms of point forecasting of the series itself, then, the ARCH models offer no advantages over the linear ARMA models.
- This property implies that $\mathbb{C}ov\left(X_{t},X_{t-k}\right)=0$ for $k\neq0$, i.e. that the process X_{t} has no "memory".

Reminder Chapter 1. Stylized Fact 2 (Absence of autocorrelations)

Fact (absence of autocorrelations)

The autocorrelations of asset returns R_t are often insignificant, except for very small intraday time scales (\approx 20 minutes) for which microstructure effects come into play.

but $\mathbb{C}orr\left(X_{t}^{2}, X_{t}^{2}\right) \neq 0$

Proof: Consider an ARCH(1) model such that

$$X_t = Z_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$

It is possible to show that X_t is a martingale difference, since

$$\mathbb{E}(X_t | \underline{X}_{t-1}) = \mathbb{E}(Z_t \sigma_t | \underline{X}_{t-1})
= \sigma_t \mathbb{E}(Z_t | \underline{X}_{t-1})
= \sigma_t \mathbb{E}(Z_t)
= 0
\square$$

since Z_t is an i.i.d. process $\mathbb{E}\left(Z_t\right)=1$.

Definition

Property 3: if $\{X_t, t \in \mathbb{Z}\}$ is an ARCH(1) process with

$$X_t = Z_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$

then, its two first unconditional moments are equal to

$$\mathbb{E}\left(X_{t}\right)=0 \quad \mathbb{V}\left(X_{t}\right)=\frac{\alpha_{0}}{1-\alpha_{1}}$$

with $\alpha_0 > 0$ and $0 \le \alpha_1 < 1$.

Proof: Consider an ARCH(1) model such that

$$X_t = Z_t \sigma_t$$
$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$

The (unconditional) mean of X_t is defined as

$$\mathbb{E}(X_{t}) = \mathbb{E}(Z_{t}\sigma_{t})
= \mathbb{E}(\mathbb{E}(Z_{t}\sigma_{t}|\underline{X}_{t-1}))
= \mathbb{E}(\sigma_{t}\mathbb{E}(Z_{t}|\underline{X}_{t-1}))
= \mathbb{E}(\sigma_{t}\times 0)
= 0 \quad \square$$

Proof (cont'd): Consider an ARCH(1) model such that

$$X_t = Z_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$

Compute the unconditional variance of X_{t} . Since $\mathbb{E}\left(X_{t}\right)=0$, we have

$$\mathbb{V}\left(X_{t}\right) = \mathbb{E}\left(X_{t}^{2}\right)$$

We know that X_t^2 has an AR(1) representation with

$$X_{t}^{2} = \alpha_{0} + \alpha_{1}X_{t-1}^{2} + v_{t} \Longleftrightarrow \Phi(L)X_{t}^{2} = \alpha_{0} + v_{t}$$

with $\Phi(L) = 1 - \alpha_1$. Then, we have

$$\mathbb{V}\left(X_{t}\right) = \mathbb{E}\left(X_{t}^{2}\right) = \alpha_{0}\Phi\left(1\right)^{-1} = \frac{\alpha_{0}}{1 - \alpha_{1}} \quad \Box$$

Consequences

• An ARCH(1) process is unconditionally **homoscedastic**

Unconditional variance
$$\mathbb{V}\left(X_{t}
ight)=rac{lpha_{0}}{1-lpha_{1}}=\mathsf{constant}\ orall t$$

An ARCH(1) process is conditionally heteroscedastic

Conditional variance
$$\mathbb{V}(X_t|\mathcal{F}_{t-1}) = \sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$
 varies with \mathcal{F}_{t-1}

Consequences (cont'd)

1 If $\alpha_1 < 1$, the two first moments of an ARCH(1) process are finite and constant

$$\mathbb{E}\left(X_{t}\right)=0 \qquad \gamma\left(0\right)=\mathbb{V}\left(X_{t}\right)=\frac{\alpha_{0}}{1-\alpha_{1}}$$

$$\gamma\left(k\right) = \mathbb{C}ov\left(X_{t}, X_{t-k}\right) = 0 \quad \text{for } k \neq 0$$

and, the ARCH(1) process is (weakly) stationary.

For more details on the stationarity conditions of an ARCH/GARCH process, see Francq and Zakoian (2010).

Reminder Chapter 1. Stylized Fact 1 (Stationarity)

Fact (stationarity)

In general, the prices are non-stationary whereas the returns are stationary.

Definition

Property 4: If $\{X_t, t \in \mathbb{Z}\}$ is an ARCH(1) process with Gaussian innovations $Z_t \overset{i.i.d.}{\sim} \mathcal{N}(0,1)$, then, its conditional and unconditional **fourth moments** are equal to

$$\mathbb{E}\left(X_t^4 | \underline{X}_{t-1}\right) = 3\left(\alpha_0 + \alpha_1 X_{t-1}^2\right)^2 = 3\sigma_t^4$$

$$\mathbb{E}\left(X_t^4\right) = \frac{3\alpha_0^2 \left(1 + \alpha_1\right)}{\left(1 - 3\alpha_1^2\right) \left(1 - \alpha_1\right)}$$

35 / 149

Corollary

If $\{X_t, t \in \mathbb{Z}\}$ is an ARCH(1) process with Gaussian innovations $Z_t \overset{i.i.d.}{\sim} \mathcal{N}\left(0,1\right)$, then, its unconditional and conditional **Kurtosis coefficients** are equal to

$$\mathbb{K}\left(X_t^4|\underline{X}_{t-1}\right) = \frac{\mathbb{E}\left(X_t^4|\underline{X}_{t-1}\right)}{\left(\mathbb{V}\left(X_t|\underline{X}_{t-1}\right)\right)^2} = 3$$

$$\mathbb{K}(X_t) = \frac{\mathbb{E}(X_t^4)}{(\mathbb{V}(X_t))^2} = 3\left(\frac{1 - \alpha_1^2}{1 - 3\alpha_1^2}\right) > 3 \quad \text{if } \alpha_1^2 < 1/3$$

36 / 149

Innovation

ARCH model

Output: X_t

$$Z_{t} \overset{i.i.d.}{\sim} \mathcal{N}\left(0,1\right) \qquad \Longrightarrow \qquad X_{t} = Z_{t}\sigma_{t} \qquad \Longrightarrow \qquad \mathbb{K}\left(X_{t}\right) > 3 \quad \text{if } \alpha_{1}^{2} < 1/3$$

$$\mathbb{K}\left(Z_{t}\right) = 3 \qquad \qquad \sigma_{t}^{2} = \alpha_{0} + \alpha_{1}X_{t-1}^{2} \qquad \qquad \text{leptokurtic distribution}$$

mesokurtic distribution

Reminder Chapter 1 Stylized Fact 3 (Heavy tails)

Fact (heavy tails)

The return distribution often exhibits heavier tails than those of a normal distribution.

Consequences

• Even if the innovation Z_t has a normal distribution, the marginal distribution of X_t is not Gaussian since

 $X_t \sim$ unknown distribution with

$$\mathbb{E}\left(X_{t}\right) = 0 \quad \mathbb{V}\left(X_{t}\right) = \frac{\alpha_{0}}{1 - \alpha_{1}} \quad \mathbb{S}\left(X_{t}\right) = 0 \quad \mathbb{K}\left(X_{t}\right) = 3\left(\frac{1 - \alpha_{1}^{2}}{1 - 3\alpha_{1}^{2}}\right) > 3 \quad \text{if } \alpha_{1}^{2} < 1/3$$

ullet If the innovation Z_t has a normal distribution, the conditional distribution of X_t is Gaussian

$$\begin{aligned} X_t | \underline{X}_{t-1} &\sim \mathcal{N}\left(0, \sigma_t^2\right) \\ \mathbb{E}\left(X_t | \underline{X}_{t-1}\right) &= 0 \quad \mathbb{V}\left(X_t | \underline{X}_{t-1}\right) = \sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 \\ \mathbb{S}\left(X_t | \underline{X}_{t-1}\right) &= 0 \quad \mathbb{K}\left(X_t | \underline{X}_{t-1}\right) = 3 \end{aligned}$$

Proof: Consider an ARCH(1) model such that

$$X_t = Z_t \sigma_t$$
$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2$$

So, we have

$$\mathbb{E}\left(X_{t}^{4}|\underline{X}_{t-1}\right) = \mathbb{E}\left(Z_{t}^{4}\sigma_{t}^{4}|\underline{X}_{t-1}\right)$$
$$= \mathbb{E}\left(Z_{t}^{4}|\underline{X}_{t-1}\right)\sigma_{t}^{4}$$
$$= \mathbb{E}\left(Z_{t}^{4}\right)\left(\sigma_{t}^{2}\right)^{2}$$

If
$$Z_t \overset{i.i.d.}{\sim} \mathcal{N}\left(0,1\right)$$
, $\mathbb{K}\left(Z_t\right) = \mathbb{E}\left(Z_t^4\right)/1^2 = 3$, or equivalently $\mathbb{E}\left(Z_t^4\right) = 3$. So, we get
$$\mathbb{E}\left(X_t^4|\underline{X}_{t-1}\right) = 3\sigma_t^4 \quad \Box$$

Proof (cont'd): Then, we have

$$\mathbb{E}\left(X_{t}^{4}\right) = \mathbb{E}\left(\mathbb{E}\left(X_{t}^{4}|\underline{X}_{t-1}\right)\right)$$

$$= 3\mathbb{E}\left(\left(\alpha_{0} + \alpha_{1}X_{t-1}^{2}\right)^{2}\right)$$

$$= 3\left(\alpha_{0}^{2} + 2\alpha_{0}\alpha_{1}\mathbb{E}\left(X_{t-1}^{2}\right) + \alpha_{1}^{2}\mathbb{E}\left(X_{t-1}^{4}\right)\right)$$

$$= 3\left(\alpha_{0}^{2} + \frac{2\alpha_{0}^{2}\alpha_{1}}{1 - \alpha_{1}} + \alpha_{1}^{2}\mathbb{E}\left(X_{t-1}^{4}\right)\right)$$

$$= 3\alpha_{0}^{2}\left(\frac{1 + \alpha_{1}}{1 - \alpha_{1}}\right) + 3\alpha_{1}^{2}\mathbb{E}\left(X_{t-1}^{4}\right)$$

If X_t is fourth-order stationary, then $\mathbb{E}\left(X_t^4\right) = \mathbb{E}\left(X_{t-1}^4\right)$ and we get

$$\mathbb{E}\left(X_{t}^{4}\right) = \frac{3\alpha_{0}^{2}\left(1+\alpha_{1}\right)}{\left(1-3\alpha_{1}^{2}\right)\left(1-\alpha_{1}\right)} \quad \Box$$

Proof (cont'd): We have

$$\mathbb{E}\left(X_{t}^{4}|\underline{X}_{t-1}\right)=3\sigma_{t}^{4}\qquad\mathbb{V}\left(X_{t}|\underline{X}_{t-1}\right)=\sigma_{t}^{2}$$

The conditional Kurtosis coefficient is equal to

$$\mathbb{K}\left(X_t^4|\underline{X}_{t-1}\right) = \frac{\mathbb{E}\left(X_t^4|\underline{X}_{t-1}\right)}{\left(\mathbb{V}\left(X_t|\underline{X}_{t-1}\right)\right)^2} = \frac{3\sigma_t^4}{\sigma_t^4} = 3 \quad \Box$$

The conditional distribution is mesokurtic.

Proof (cont'd): We have

$$\mathbb{E}\left(X_{t}^{4}\right) = \frac{3\alpha_{0}^{2}\left(1+\alpha_{1}\right)}{\left(1-3\alpha_{1}^{2}\right)\left(1-\alpha_{1}\right)} \qquad \mathbb{V}\left(X_{t}\right) = \frac{\alpha_{0}}{1-\alpha_{1}}$$

The unconditional Kurtosis coefficient is equal to

$$\mathbb{K}\left(X_{t}^{4}\right) = \frac{\mathbb{E}\left(X_{t}^{4}\right)}{\left(\mathbb{V}\left(X_{t}\right)\right)^{2}} = \frac{3\alpha_{0}^{2}\left(1+\alpha_{1}\right)}{\left(1-3\alpha_{1}^{2}\right)\left(1-\alpha_{1}\right)} \frac{\left(1-\alpha_{1}\right)^{2}}{\alpha_{0}^{2}} = 3\left(\frac{1-\alpha_{1}^{2}}{1-3\alpha_{1}^{2}}\right) > 3 \quad \Box$$

The Kurtosis is finite and positive as soon as $\alpha_1^2 < 1/3$. Moreover, the conditional distribution is **leptokurtic**.

42 / 149

Summary If $\{X_t, t \in \mathbb{Z}\}$ is an ARCH(1) process with Gaussian innovations, then

	Property	Consequences / Interpretation
P1	X_t^2 is an AR(1) process	ARCH effect: $\mathbb{C}\mathit{ov}\left(X_t^2, X_{t-k}^2\right) eq 0$ for "small" k
P2	X_t is a martingale difference	$\mathbb{E}\left(X_{t} \underline{X}_{t-1} ight)=0$ and $\mathbb{C}ov\left(X_{t},X_{t-k} ight)=0\;orall k eq0$
Р3	$\mathbb{E}\left(X_{t} ight)=0,\ \mathbb{V}\left(X_{t} ight)=rac{lpha_{0}}{1-lpha_{1}} \ \mathbb{V}\left(X_{t} \underline{X}_{t-1} ight)=\sigma_{t}^{2}$	$\{X_t\}$ is stationary, unconditionally homoscedastic, and conditionally heteroscedastic
P4	$\mathbb{K}\left(X_{t}\right)>3$	The ARCH model generates leptokurtosis
	$\mathbb{K}\left(X_{t} \underline{X}_{t-1}\right)=3$	The marginal distribution of X_t is not Gaussian
		The conditional distribution of X_t is Gaussian

The properties of the ARCH(1) allows to capture most of the stylized facts of financial data (cf. Chapter 1)

- The returns are stationary
- Absence of autocorrelations
- Heavy tails
- Asymmetry
- Volatility clustering
- Aggregational Gaussianity
- ARCH effect
- Leverage effect

The properties of the ARCH(1) allows to capture most of the stylized facts of financial data (cf. Chapter 1)

- **1** The returns are stationary $=> X_t$ is stationary
- **2** Absence of autocorrelations $=> X_t$ is a martingale difference
- **1** Heavy tails $=> \mathbb{K}(X_t)$ may be larger than 3 given the value of α_1
- Asymmetry
- **Solution** Volatility clustering $=> \mathbb{C}ov\left(X_t^2, X_{t-k}^2\right) \neq 0$
- **Q** Aggregational Gaussianity => The marginal distribution of X_t is not normal
- **4 ARCH effect** => X_t^2 has an AR(1) representation and $\mathbb{C}ov\left(X_t^2, X_{t-k}^2\right) \neq 0$
- Leverage effect

Reminder: Chapter 1

Example (Intel Corp)

In order to illustrate some of these stylized facts, we consider a sample of 1, 259 daily prices and (log-) returns for the S&P500 index (ticker: SPY) from August 19, 2013 to August 17, 2018 (5 years). The data are available in $Data_SP500.xlsx$.

Figure: Daily returns for the S&P500 index are stationary

Figure: ACF for the S&P500 returns

Date: 09/09/18 Time: 15:19 Sample: 8/19/2013 8/17/2018 Included observations: 1259

Autocorrelation	Partial Correlation	AC	PAC	Q-Stat	Prob
	(-	1 -0.019	-0.019	0.4455	0.504
- (0)	•	2 -0.054	-0.054	4.1067	0.128
1)	•	3 0.024	0.022	4.8464	0.183
d)	•	4 -0.043	-0.045	7.1488	0.128
•	•	5 -0.028	-0.027	8.1122	0.150
ψ.	(6 -0.008	-0.014	8.1869	0.225
1)		7 0.013	0.011	8.3965	0.299
•	•	8 -0.037	-0.039	10.165	0.254
d i	•	9 -0.054	-0.057	13.887	0.126
•	. •	10 -0.019	-0.028	14.324	0.159
ų.		11 0.002	-0.003	14.330	0.215
ų.		12 -0.001	-0.004	14.330	0.280
•	•	13 -0.015	-0.022	14.617	0.332
•	(14 -0.020	-0.027	15.102	0.371
d i	•	15 -0.073	-0.079	21.926	0.110

Figure: ACF for the S&P500 squared returns (August 19, 2013 to August 17, 2018)

Date: 09/09/18 Time: 11:25 Sample: 8/19/2013 8/17/2018 Included observations: 1259						
Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
		1 2 3 4 5 6 7 8 9 10 11	0.251 0.288 0.251 0.115 0.135 0.095 0.108 0.102 0.123 0.084	0.176 0.196 0.116 -0.052 0.018 -0.020 0.044 0.043 0.060 0.003	114.94 194.81 299.82 379.50 396.30 419.45 430.83 445.63 458.93 478.14 487.21 490.35	0.000 0.000 0.000 0.000 0.000 0.000
		13 14 15	0.048 0.040	-0.020 -0.012	493.24 495.29 496.51	0.000

Figure: Descriptive statistics for the daily returns of the S&P500 index

Series: SP500_RETURNS Sample 8/20/2013 6/15/2018 Observations 1259				
Mean	0.000189			
Median	0.000231			
Maximum	0.016630			
Minimum	-0.018172			
Std. Dev.	0.003390			
Skew ness	-0.566934			
Kurtosis	6.405986			
Jarque-Bera	675.9989			
Probability	0.000000			

50 / 149

Weaknesses of ARCH Models

Tsay (2002) identifies three main limits of the ARCH models.

- The model assumes that positive and negative shocks have the same effects on volatility because it depends on the square of the previous shocks. In practice, the return of a financial asset responds differently to positive and negative shocks.
- ① The ARCH model is rather restrictive. For instance, the fourth moment $\mathbb{E}\left(X_t^4\right)$ exists only if $\alpha_1^2 < 1/3$.
- The ARCH model does not provide any insight for understanding the source of volatility. It only provides a mechanical way to describe the behavior of the conditional variance. It gives no indication about what causes such behavior to occur.

Key Concepts

If $\{X_t, t \in \mathbb{Z}\}$ has an ARCH(1) representation with Gaussian innovations, then

- X_t^2 has an AR(1) representation
- lacktriangledown X_t is a stationary process under some conditions on the parameters
- \bullet X_t is (unconditionally) homoscedastic
- X_t is conditionally heteroscedastic
- **1** The (marginal) distribution of X_t is leptokurtic

52 / 149

Sub-Section 2.2

Building an ARCH Model

Objectives

- **1** To introduce the ARCH model **of order p** or ARCH(p)
- 2 To introduce a conditional mean model with ARCH errors
- To estimate the ARCH model parameters
- To check the validity of an ARCH model
- To compute volatility forecasts with ARCH model

Definition (ARCH(q))

The process $\{X_t, t \in \mathbb{Z}\}$ is said to be an $\mathsf{ARCH}(p)$ process, if

$$X_t = Z_t \sigma_t$$

where Z_t is a sequence of i.i.d. variables with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$, and σ_t is a non-negative process such that

$$\sigma_t^2 = \alpha_0 + \sum_{i=1}^p \alpha_i X_{t-i}^2$$

with $\alpha_0 > 0$, $\alpha_i \in \mathbb{R}$, $\forall i < p$, $\alpha_p \in \mathbb{R}^*$, and $\sum_{i=1}^p \alpha_i < 1$.

Example (ARCH(2))

The process $\{X_t, t \in \mathbb{Z}\}$ is an **ARCH(3)** if

$$X_t = Z_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 X_{t-1}^2 + \alpha_2 X_{t-2}^2$$

where Z_t is an IID noise with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$.

Example (ARCH(3))

The process $\{Y_t, t \in \mathbb{Z}\}$ is an **ARCH(3)** if

$$Y_t = Z_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 Y_{t-1}^2 + \alpha_2 Y_{t-2}^2 + \alpha_3 Y_{t-3}^2$$

where Z_t is an IID noise with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$.

◆ロト ◆部ト ◆意ト ◆意ト ■ めらぐ

ARMA model with ARCH errors

In general, the structure of a (conditional) volatility model can be described as:

$$R_t = \mu_t + \varepsilon_t$$
$$\varepsilon_t = \sigma_t Z_t$$

where Z_t is a sequence of i.i.d. random variables with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$, and

$$\mu_{t} \equiv \mathbb{E}\left(R_{t}|\mathcal{F}_{t-1}\right) = \mu_{t}\left(\underline{R}_{t-1};\theta\right)$$

$$\sigma_t^2 \equiv \mathbb{V}\left(R_t | \mathcal{F}_{t-1}\right) = \sigma_t^2\left(\underline{R}_{t-1}; \theta\right)$$

where θ denotes the ${\bf set}$ of parameters for the conditional mean and variance and μ_t is typically an ${\bf ARMA}\textsc{-}{type}$ model .

Denote by R_t the daily return of an asset or a portfolio at time t.

$$R_t = \underbrace{\mu_t}_{ ext{cond mean model}} + \underbrace{\varepsilon_t}_{ ext{innovation (martingale diff)}}$$
 $arepsilon_t = \sigma_t Z_t$ $\sigma_t^2 = \alpha_0 + \sum_{i=1}^p lpha_i arepsilon_{t-i}^2$

cond variance model

Example (ARCH(1))

The process $\{R_t, t \in \mathbb{Z}\}$ has an **ARCH(1)** representation if

$$R_t = \phi_0 + \varepsilon_t$$

$$\varepsilon_t = Z_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2$$

where Z_t is a sequence of i.i.d. variables with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$. We have

$$\mu_t = \mathbb{E}\left(R_t | \mathcal{F}_{t-1}\right) = \phi_0$$

$$\sigma_t^2 = \mathbb{V}\left(R_t | \mathcal{F}_{t-1}\right) = \alpha_0 + \alpha_1 \epsilon_{t-1}^2$$

and $\theta = (\phi_0, \alpha_0, \alpha_1)'$ is the vector of parameters to estimate.

Example (AR(1)-ARCH(2))

The process $\{R_t, t \in \mathbb{Z}\}$ has an AR(1)-ARCH(2) representation if

$$R_t = \phi_0 + \phi_1 R_{t-1} + \varepsilon_t$$

$$\varepsilon_t = Z_t \sigma_t$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2$$

where Z_t is a sequence of i.i.d. variables with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$. We have

$$\mu_t = \mathbb{E}\left(R_t | \mathcal{F}_{t-1}\right) = \phi_0 + \phi_1 R_{t-1}$$

$$\sigma_{t}^{2} = \mathbb{V}\left(R_{t}|\mathcal{F}_{t-1}\right) = \alpha_{0} + \alpha_{1}\varepsilon_{t-1}^{2} + \alpha_{2}\varepsilon_{t-2}^{2}$$

and $\theta = (\phi_0, \phi_1, \alpha_0, \alpha_1, \alpha_2)'$ is the vector of parameters to estimate.

4□ > 4□ > 4 = > 4 = > = 90

Example (ARMA(1, 1)-ARCH(1))

The process $\{R_t, t \in \mathbb{Z}\}$ has an $\mathsf{ARMA}(1,1)$ - $\mathsf{ARCH}(1)$ representation if

$$R_t = \phi_0 + \phi_1 R_{t-1} + \theta_1 \varepsilon_{t-1} + \varepsilon_t$$
$$\varepsilon_t = Z_t \sigma_t$$
$$\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2$$

where Z_t is a sequence of i.i.d. variables with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$. We have

$$\mu_t = \mathbb{E}\left(R_t | \mathcal{F}_{t-1}\right) = \phi_0 + \phi_1 R_{t-1}$$

$$\sigma_t^2 = \mathbb{V}\left(R_t | \mathcal{F}_{t-1}\right) = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2$$

and $\theta = (\phi_0, \phi_1, \theta_1, \alpha_0, \alpha_1)'$ is the vector of parameters to estimate.

↓□ → ↓□ → ↓ = → ↓ = → ∫ へ ○ □

Remark: do not make a confusion between the constant term of the conditional mean equation and the constant term of the conditional variance equation

$$R_t = \underbrace{\phi_0}_{ ext{constant term}} + \phi_1 R_{t-1} + arepsilon_t$$

$$arepsilon_t = Z_t \sigma_t$$

$$\sigma_t^2 = \underbrace{\alpha_0}_{ ext{constant term}} + lpha_1 arepsilon_{t-1}^2$$

62 / 149

Estimation: The parameters θ are estimated by

- **Maximum Likelihood (ML)** when one puts a distributional assumption on the innovations term Z_t .
- **Quasi Maximum Likelihood (QML)** when the distribution of Z_t is unknown. The QML only assumes that the true (unknown) distribution of Z_t belongs to a given family (typically the exponential family).
- In most of the statistical software, the model parameters are estimated by ML and the normality assumption is considered by default.

$$Z_t \overset{i.i.d.}{\sim} \mathcal{N}\left(0,1\right)$$

Gouriéroux, C., Monfort, A., and A. Trognon (1984). Pseudo Maximum Likelihood Methods: Theory. *Econometrica* 52:681–700

Remarks

- For more details about the ML estimation method http://www.univ-orleans.fr/deg/masters/ESA/CH/Chapter2_MLE.pdf http://www.univ-orleans.fr/deg/masters/ESA/CH/Chapter2_Exercises.pdf
- For more details about the ML estimation of AR model parameters
- Francq C. and J.M Zakoian (2004), Maximum Likelihood Estimation of Pure GARCH and ARMA-GARCH Processes. *Bernoulli*, 10, 605-637.
 - Francq, C. and J.M. Zakoian (2010), GARCH Models: Structure, Statistical Inference and Financial Applications, Wiley.

 $\label{eq:Figure: Estimation results, AR(1)-ARCH(2) model, US GDP annual growth rate (1961-2017)} % The property of the prop$

Dependent Variable: Y_US Method: ML - ARCH Date: 11/02/18 Time: 22:44 Sample(adjusted): 1962 2017 Included observations: 56 after adjusting endpoints Convergence achieved after 15 iterations

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
С	2.941298	0.410801	7.159914	0.0000		
AR(1)	0.367916	0.152417	2.413879	0.0158		
Variance Equation						
С	1.330471	0.622486	2.137351	0.0326		
ARCH(1)	0.315348	0.251548	1.253627	0.2100		
ARCH(2)	0.370306	0.257393	1.438682	0.1502		
R-squared	0.117311	Mean dependent var		3.110150		
Adjusted R-squared	0.048080	S.D. dependent var		2.071902		
S.E. of regression	2.021480	Akaike info criterion		4.173308		
Sum squared resid	208.4054	Schwarz criterion		4.354143		
Log likelihood	-111.8526	F-statistic		1.694492		
Durbin-Watson stat	1.909427	Prob(F-statistic)		0.165664		
Inverted AR Roots	.37					

Figure: Estimation results for an AR(1)-ARCH(1) model, Intel Corp. (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS
Method: ML ARCH - Normal distribution (Marquardt / Eviews legacy)
Date: 11/05/18 Time: 11:15
Sample: 8/17/2016 7/24/2018
Included observations: 505
Convergence achieved after 15 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(3) + C(4)*RESID(-1)*2

Variable	Coefficient	Std. Error	z-Statistic	Prob.		
C AR(1)	0.000273 -0.058922	0.000250 0.050497	1.092443 -1.166840	0.2746 0.2433		
Variance Equation						
C RESID(-1)^2	3.56E-05 0.211148	1.16E-06 0.056371	30.72748 3.745674	0.0000 0.0002		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.005142 Mean dependent var 0.003164 S.D. dependent var 0.006580 Akaike info criterion 0.021779 Schwarz criterion 1829.375 Hannan-Quinn criter. 2.032375		0.000250 0.006591 -7.229207 -7.195745 -7.216082			
Inverted AR Roots	06					

Model Checking

• For an ARCH model, the standardized innovations

$$Z_t = \frac{\varepsilon_t}{\sigma_t}$$

are i.i.d. random variates (following either a standard normal or Student-t distribution).

 Therefore, one can check the adequacy of a fitted ARCH model by examining the series of standardized residuals

$$\widehat{Z}_t = \frac{\widehat{\varepsilon}_t}{\widehat{\sigma}_t}$$

Model Checking (cont'd)

Tsay (2002) recommend three types of tests on the series $\{\hat{z}_t\}_{t=1}^T$.

- $\ \ \$ The Ljung–Box Q-statistics of \widehat{z}_t can be used to check the adequacy of the mean equation.
- ① The Ljung–Box Q-statistics of \hat{z}_t^2 can be used to check the adequacy of the volatility equation.
- **1** The skewness, kurtosis, and QQ-plot of \hat{z}_t can be used to check the validity of the distribution assumption on Z_t .

Forecasting

We have to distinguish:

- **1** The forecasts on the series R_t itself (typically the returns).
- $oldsymbol{0}$ The forecasts on the volatility (or the variance) of R_t .

Example (forecasting model)

Consider the following AR(1)-ARCH(1) process

$$R_t = \phi_0 + \phi_1 R_{t-1} + \varepsilon_t$$
$$\varepsilon_t = Z_t \sigma_t$$
$$\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2$$

where Z_t is a sequence of i.i.d. variables with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$.

Forecasting

Fact (Forecasting of the series R_t)

The **best linear forecast** of R_t given the information set \mathcal{F}_{t-1} will be no different with or without an ARCH error because the process ε_t is a martingale difference.

$$\widehat{R}_{t|t-1} = \mathbb{E}\left(\left.R_{t}\right| \mathcal{F}_{t-1}\right)$$

Example (forecasting)

If the process $\{R_t, t \in \mathbb{Z}\}$ has an $\mathsf{AR}(1) ext{-}\mathsf{ARCH}(1)$ representation

$$R_t = \phi_0 + \phi_1 R_{t-1} + \varepsilon_t$$

$$\varepsilon_t = Z_t \sigma_t$$
 Z_t i.i.d. $(0,1)$

then, the **forecast** of R_{t+1} given \mathcal{F}_t is given by

$$\widehat{R}_{t+1|t} = \mathbb{E}\left(\left.R_{t+1}\right| \mathcal{F}_{t}\right) = \phi_{0} + \phi_{1} R_{t}$$

since the process ε_t is a martingale difference.

$$\mathbb{E}\left(\left.\varepsilon_{t+1}\right|\mathcal{F}_{t}\right)=0$$

Volatility forecasting

Definition (conditional variance forecast)

The **conditional variance forecast** at the horizon h is defined by

$$\widehat{\sigma}_{t+h|t}^{2} = \mathbb{V}\left(\left.R_{t+h}\right|\mathcal{F}_{t}\right)$$

For the forecast horizon h = 1, we have

$$\widehat{\sigma}_{t+1|t}^{2} = \mathbb{V}\left(\left.R_{t+1}\right|\mathcal{F}_{t}\right) = \sigma_{t+1}^{2}$$

Note: The volatility forecast is defined as

$$\widehat{\sigma}_{t+h|t} = \sqrt{\mathbb{V}(R_{t+h}|\mathcal{F}_t)}$$

Definition (conditional variance forecast)

If the process $\{R_t, t \in \mathbb{Z}\}$ has an $\mathsf{AR}(1)\text{-}\mathsf{ARCH}(1)$ representation

$$R_t = \phi_0 + \phi_1 R_{t-1} + \varepsilon_t$$

$$\varepsilon_t = Z_t \sigma_t \qquad Z_t \text{ i.i.d. } (0, 1)$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2$$

then, the conditional variance forecast at horizon h=1 is given by

$$\widehat{\sigma}_{t+1|t}^{2} = \mathbb{V}\left(\left.R_{t+1}\right|\mathcal{F}_{t}\right) = \alpha_{0} + \alpha_{1}\varepsilon_{t}^{2} = \alpha_{0} + \alpha_{1}\left(R_{t} - \phi_{0} - \phi_{1}R_{t-1}\right)^{2}$$

Example

Using the following estimation results for an AR(1)-ARCH(1) model and the Intel Corp. daily returns, compute the **conditional variance forecast** for the 7/24/2018 given that

$$R_{7/23/2018} = -0.002661$$
 $R_{7/20/2018} = -0.005998$

Dependent Variable: RETURNS Method M. R.A. Homal distribution (Marquardt / Eviews legacy) Date: 1105/18 Time: 11:15 Sample: 8/17/20/8 F7/24/2018 included observations: 505 Convergence active date 115 Iterations Presumple variance: backcast (parameter = 0.7) GRRCH = (0.3) e. (4/PRESIDI-17/2)

Variable	Coefficient	Std. Error	z-Statistic	Prob.
C AR(1)	0.000273 -0.058922	0.000250 0.050497	1.092443 -1.166840	0.2746 0.2433
	Variance	Equation		
C RESID(-1)*2	3.56E-05 0.211148	1.16E-06 0.056371	30.72748 3.745674	0.0000 0.0002
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.005142 0.003164 0.006580 0.021779 1829.375 2.032375	Mean depend S.D. depende Akaike info cr Schwarz crite Hannan-Quin	ent var iterion rion	0.000250 0.006591 -7.229207 -7.195745 -7.216082
Inverted AR Roots	06			

Solution

	Day	R_t
t = 1	7/20/2018	-0.005998
t = 2	7/23/2018	-0.002661
t = 3	7/24/2018	_

Dependent Variable: RETURNS
Method. ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 1105/18 Time: 11:15
Sample: 8117/2016 Tract/2018
Included observations: 505
Convergence achieved after 15 iterations
Presample variance: backcast (parameter = 0.7)

GARCH = C(3) + C(4)*RESID(-1)*2

Coefficient	Std. Error	z-Statistic	Prob.
0.000273	0.000250	1.092443	0.2746
-0.058922	0.050497	-1.166840	0.2433
Variance	Equation		
3.56E-05	1.16E-06	30,72748	0.0000
0.211148	0.056371	3.745674	0.0002
0.005142	Mean depend	lent var	0.000250
0.003164	S.D. depende	ntvar	0.006591
0.006580	Akaike info cr	iterion	-7.229207
0.021779	Schwarz crite	rion	-7.195745
1829.375	Hannan-Quin	n criter.	-7.216082
2.032375			
06			
	0.000273 -0.058922 Variance 3.56E-05 0.211148 0.005142 0.003164 0.006580 0.021779 1829.375 2.032375	0.000273 0.000250 -0.058922 0.050497 Variance Equation 3.56E-05 1.16E-06 0.211148 0.056371 0.005142 Mean depen 0.003144 S.D. dependa 0.005487 Alakie info cr 0.021779 Schwarz crite 129.375 Hannan-Quin 2.032375	0.000273 0.000250 1.092443 -0.059922 0.050497 -1.166840 Variance Equation 3.56E-05 1.16E-06 30.72748 0.211148 0.055371 3.745674 0.005142 Mean dependent var 0.005550 Akaike info criterion 0.005550 Akaike info criterion 1259.375 Hannan-Quinn criter 2.032375

$$\widehat{\sigma}_{3|2}^{2} = \mathbb{V}(R_{3}|\mathcal{F}_{2})
= 3.56e^{-05} + 0.211148 \times (R_{2} - 0.000273 - 0.058922R_{1})^{2}
= 3.56e^{-05} + 0.211148 \times (-0.002661 - 0.000273 - 0.058922 \times 0.005998)^{2}
= 3.7882e^{-05}$$

Figure: Conditional variance forecasts, Intel Corp.

obs	RETURNS	CONDVARAR
6/13/18	0.004123	4.23E-05
6/14/18	0.002505	3.92E-05
6/15/18	-0.008068	3.68E-05
6/18/18	0.009647	4.98E-05
6/19/18	-0.001080	5.22E-05
6/20/18	-0.001750	3.57E-05
6/21/18	-0.002176	3.65E-05
6/22/18	-0.000252	3.70E-05
6/25/18	0.002178	3.57E-05
6/26/18	-0.000585	3.63E-05
6/27/18	0.003334	3.57E-05
6/28/18	-0.001081	3.75E-05
6/29/18	0.002076	3.58E-05
7/02/18	-0.002242	3.62E-05
7/03/18	-0.039001	3.68E-05
7/04/18	9.11E-05	0.000364
7/05/18	0.003718	3.69E-05
7/06/18	0.006364	3.80E-05
7/09/18	0.005921	4.39E-05
7/10/18	0.001315	4.32E-05
7/11/18	-0.002897	3.60E-05
7/12/18	0.003509	3.76E-05
7/13/18	0.002266	3.75E-05
7/16/18	0.001562	3.66E-05
7/17/18	-0.011320	3.60E-05
7/18/18	-0.003571	6.36E-05
7/19/18	-0.002968	3.99E-05
7/20/18	-0.005998	3.81E-05
7/23/18	-0.002662	4.44E-05
7/24/18	-0.000645	3.79E-05

Figure: Estimated conditional variance AR(1)-GARCH(1) model, Intel Corp. daily returns (8/17/2016 to 7/24/2018)

Figure: Estimated conditional variance and observed returns, AR(1)-GARCH(1) model, Intel Corp. daily returns (8/17/2016 to 7/24/2018)

Definition (conditional variance forecasts)

If the process $\{R_t, t \in \mathbb{Z}\}$ has an $\mathsf{AR}(1)\text{-}\mathsf{ARCH}(1)$ representation

$$R_t = \phi_0 + \phi_1 R_{t-1} + \varepsilon_t$$

$$\varepsilon_t = Z_t \sigma_t \qquad Z_t \text{ i.i.d. } (0, 1)$$

$$\sigma_t^2 = \alpha_0 + \alpha_1 \varepsilon_{t-1}^2$$

then, the ${f conditional\ variance\ forecast}$ at any horizon $h\geq 1$ is given by

$$\widehat{\sigma}_{t+h|t}^2 = \left(\frac{\phi_0}{1-\alpha_1}\right) \left(\left(\frac{1-\phi_1^{2h}}{1-\phi_1^2}\right) - \alpha_1 \left(\frac{\alpha_1^h - \phi_1^{2h}}{\alpha_1 - \phi_1^2}\right)\right) + \alpha_1 \left(\frac{\alpha_1^h - \phi_1^{2h}}{\alpha_1 - \phi_1^2}\right) \varepsilon_t^2$$

Key Concepts

- ARCH(q) model
- Conditional mean and conditional variance models
- Estimation methods for ARCH model parameters
- Model checking
- (Conditional) volatility forecasting

Section 3

GARCH Models

Objectives

- To introduce the GARCH model
- To present the main properties of GARCH processes
- To discuss the choice of the conditional distributions
- To present the parameter estimation
- To compute a volatility forecast

Due to the large persistence in volatility, ARCH models often require a large p to fit the data. A more **parsimonious** specification is provided by **GARCH** models.

GARCH = **G**eneralized **A**uto**R**egressive **C**onditional **H**eteroskedasticity

Bollerslev, T. (1986), Generalized Autoregressive Conditional Heteroskedasticity. *Journal of Econometrics*, 31, 307–327

Notations

- Denote R_t the daily return of an asset or a portfolio at time t.
- Consider a (conditional mean) model with an **ARCH/GARCH** error for the process $\{R_t, t \in \mathbb{Z}\}$ given by:

$$R_t = \mathbb{E}\left(R_t | \mathcal{F}_{t-1}\right) + \varepsilon_t$$
$$\varepsilon_t = Z_t \sigma_t$$

where Z_t is a sequence of i.i.d. variables with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$, and σ_t^2 is the **conditional variance** of ε_t and R_t .

$$\sigma_t^2 = \mathbb{V}\left(\varepsilon_t | \mathcal{F}_{t-1}\right) = \mathbb{V}\left(R_t | \mathcal{F}_{t-1}\right)$$

ullet Denote by $\mu_t = \mathbb{E}\left(R_t | \mathcal{F}_{t-1}
ight)$ the **conditional mean** of R_t .

84 / 149

Definition (GARCH model)

The process $\{\varepsilon_t, t \in \mathbb{Z}\}$ is said to be a $\mathsf{GARCH}(p,q)$ process, if

$$\varepsilon_t = Z_t \sigma_t$$

where Z_t is a sequence of i.i.d. variables with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$, and

$$\sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^q \beta_i \sigma_{t-i}^2$$

with $\omega>0$, $\alpha_i\geq 0$, $\beta_i\geq 0$ and $\sum_{i=1}^p \alpha_i+\sum_{i=1}^q \beta_i<1$.

The conditional variance of a GARCH(p, q) depends on:

- The first p lag of the ε_t^2 (e.g., the squared error terms).
- ullet The first q lag of the conditional variance σ_t^2 .

$$\sigma_t^2 = \omega + \underbrace{\sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2}_{\text{ARCH component}} + \underbrace{\sum_{i=1}^q \beta_i \sigma_{t-i}^2}_{\text{GARCH component}}$$

- The parameters α_i are often called the **ARCH parameters**.
- ullet The parameters eta_i are often called the **GARCH** parameters.

Example (GARCH model)

The process $\{\varepsilon_t, t \in \mathbb{Z}\}$ has a **GARCH(2,1)** representation if

$$\varepsilon_t = Z_t \sigma_t$$

$$\sigma_t^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \alpha_2 \varepsilon_{t-2}^2 + \beta_1 \sigma_{t-1}^2$$

where Z_t is i.i.d. with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$.

Example (GARCH model)

The process $\{arepsilon_t, t \in \mathbb{Z}\}$ has a $\mathsf{GARCH}(1,2)$ representation if

$$\varepsilon_t = Z_t \sigma_t$$

$$\sigma_t^2 = \omega + \alpha_1 \varepsilon_{t-1}^2 + \beta_1 \sigma_{t-1}^2 + \beta_2 \sigma_{t-2}^2$$

where Z_t is i.i.d. with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$.

(ロ) (部) (注) (注) 注 の(で)

87 / 149

Fact (GARCH lag orders)

From a practical point, $\mathsf{GARCH}(1,1)$ specifications are generally sufficient to capture the dynamics of the conditional variance and higher-order lags are not required.

Figure: Estimation results for a GARCH(2,1) model, Intel Corp. (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS Method: ML - ARCH Date: 11/04/18 Time: 22:14 Sample: 8/17/2016 7/24/2018 Included observations: 505 Convergence achieved after 20 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
С	0.000147	0.000252	0.583453	0.5596
	Variance	Equation		
C ARCH(1) ARCH(2) GARCH(1)	7.09E-07 0.176223 -0.141629 0.951795	1.45E-07 0.055091 0.052286 0.006419	4.887164 3.198780 -2.708747 148.2774	0.0000 0.0014 0.0068 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000246 -0.008248 0.006618 0.021897 1851.910	Mean depen S.D. depend Akaike info Schwarz crit Durbin-Wats	lent var criterion terion	0.000250 0.006591 -7.314493 -7.272666 2.145515

Note: the ARCH parameters α_1 and α_2 cannot be negative.

Figure: Estimation results for a GARCH(1,2) model, Intel Corp. (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS Method: ML - ARCH Date: 11/04/18 Time: 22:15 Sample: 8/17/2016 7/24/2018 Included observations: 505

Convergence achieved after 17 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
С	0.000179	0.000267	0.669737	0.5030
	Variance	Equation		
C ARCH(1) GARCH(1) GARCH(2)	1.36E-06 0.047376 0.496865 0.423764	6.19E-07 0.026505 0.757230 0.720050	2.194689 1.787474 0.656161 0.588520	0.0282 0.0739 0.5117 0.5562
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000118 -0.008119 0.006617 0.021894 1850.330	Mean depen S.D. depend Akaike info Schwarz cri Durbin-Wats	lent var criterion terion	0.000250 0.006591 -7.308236 -7.266409 2.145789

Figure: Estimation results for a GARCH(1,1) model, Intel Corp. (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS Method: ML - ARCH Date: 11/04/18 Time: 22:08 Sample: 8/17/2016 7/24/2018 Included observations: 505 Convergence achieved after 25 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
С	0.000188	0.000268	0.701286	0.4831
	Variance	Equation		
C ARCH(1) GARCH(1)	6.20E-07 0.028547 0.960202	9.43E-08 0.004738 0.004786	6.570948 6.025243 200.6078	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000089 -0.006078 0.006611 0.021893 1851.174	Mean depen S.D. depend Akaike info Schwarz crit Durbin-Wats	lent var criterion erion	0.000250 0.006591 -7.315541 -7.282079 2.145852

91 / 149

Definition (GARCH(1,1) model)

The process $\{\varepsilon_t, t \in \mathbb{Z}\}$ is said to be a **GARCH**(1,1) process, if

$$\varepsilon_t = Z_t \sigma_t$$

where Z_t is a sequence of i.i.d. variables with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$, and

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

with $\omega > 0$, $\alpha \ge 0$, $\beta \ge 0$ and $\alpha + \beta < 1$.

Remarks

- The conditional variance $\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$ depends on two effects:
 - **1** An **intrinsic persistence** effect through the first lag of the conditional variance.
 - 2 An extrinsic persistence effect.
- Following a positive (or negative) shock at time t-1, the conditional variance at time t increases (impact effect) and thus it has an impact on $\varepsilon_t = Z_t \sigma_t$.

shock
$$z_{t-1} > 0 \Longrightarrow \varepsilon_{t-1} \uparrow \Longrightarrow \sigma_t \uparrow$$

• Starting from the next period (i.e., at time t), the effect of the shock (at time t-1) on the conditional variance at t+1 (and thus on ε_{t+1}) passes through the conditional variance at time t (intrinsic persistence effect).

$$\dots \Longrightarrow \sigma_t \uparrow \Longrightarrow \sigma_{t+1}^2 \uparrow$$

• The overall impact of a shock can be decomposed into a "contemporaneous effect", which depends on α , and a "persistence effect", which depends on β .

Remarks

One often observes that:

- **1** The sum of the estimates of α and β are generally close (but below 1).
- ② The estimate of β is generally greater than the one of α .
- ullet The estimate of eta is generally larger than 0.90 for daily returns and the estimate of lpha is below 0.1.

Be careful: it is not a general rule, just an observation.

Figure: GARCH(1,1) model, Intel Corp. daily returns (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS Method: ML - ARCH Date: 11/04/18 Time: 22:08 Sample: 8/17/2016 7/24/2018 Included observations: 505 Convergence achieved after 25 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
С	0.000188	0.000268	0.701286	0.4831
	Variance	Equation		
C ARCH(1) GARCH(1)	6.20E-07 0.028547 0.960202	9.43E-08 0.004738 0.004786	6.570948 6.025243 200.6078	0.0000 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000089 -0.006078 0.006611 0.021893 1851.174	Mean depen S.D. depend Akaike info Schwarz cri Durbin-Wats	dent var criterion terion	0.000250 0.006591 -7.315541 -7.282079 2.145852

The main properties of a GARCH process are similar to those of an ARCH process.

- \bullet ε_t^2 has an ARMA representation
- **0** ε_t is a stationary process under some conditions on the parameters α and β
- ullet ϵ_t is (unconditionally) homoscedastic
- \mathbf{o} \mathbf{e}_t is conditionally heteroscedastic
- **1** The (marginal) distributions of ε_t and R_t are leptokurtic
- **0** If Z_t has a normal distribution, the conditional distributions of ε_t and R_t are normal

Theorem (ARMA representation)

If $\{\varepsilon_t, t \in \mathbb{Z}\}$ has a GARCH(p,q) representation, with

$$\varepsilon_t = Z_t \sigma_t$$

$$\sigma_t^2 = \omega + \sum_{i=1}^p \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^q \beta_i \sigma_{t-i}^2$$

then $\left\{\epsilon_t^2, t \in \mathbb{Z}\right\}$ has an $\mathsf{ARMA}(\max\left(p,q\right),q)$ representation, with

$$\varepsilon_t^2 = \omega + \sum_{i=1}^{\max(p,q)} \left(\alpha_i + \beta_i\right) \varepsilon_{t-i}^2 + \nu_t - \sum_{i=1}^q \beta_i \nu_{t-i}$$

where $v_t = \varepsilon_t^2 - h_t$ is an innovation process, i.e. $\mathbb{E}\left(v_t | \mathcal{F}_{t-1}\right) = 0$.

Definition

if $\{\varepsilon_t, t \in \mathbb{Z}\}$ is a GARCH(1) process with

$$\varepsilon_t = Z_t \sigma_t$$

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t+1}^2 + \beta \sigma_{t+1}^2$$

then, its two first unconditional moments are equal to

$$\mathbb{E}\left(\varepsilon_{t}\right)=0 \quad \mathbb{V}\left(\varepsilon_{t}\right)=\frac{\omega}{1-\alpha-\beta}$$

with $\omega > 0$, $\alpha \ge 0$, $\beta \ge 0$ and $\alpha + \beta < 1$.

Other properties

① Since $\mathbb{V}\left(arepsilon_{t}
ight)=\omega/\left(1-lpha-eta
ight)$, the GARCH(1,1) is sometimes written as

$$\varepsilon_{t} = Z_{t}\sigma_{t}$$

$$\sigma_{t}^{2} = \mathbb{V}\left(\varepsilon_{t}\right)\left(1 - \alpha - \beta\right) + \alpha\varepsilon_{t-1}^{2} + \beta\sigma_{t-1}^{2}$$

ullet Bollerslev (1986) shows that the **Kurtosis coefficient** of a GARCH(1,1) is equal to

$$\mathbb{K}\left(\varepsilon_{t}\right) = \frac{\mathbb{E}\left(\varepsilon_{t}^{4}\right)}{\mathbb{E}\left(\varepsilon_{t}^{2}\right)^{2}} = \frac{3\left(1 - \left(\alpha + \beta\right)^{2}\right)}{1 - \left(\alpha + \beta\right)^{2} - 2\alpha^{2}}$$

as soon as $(\alpha + \beta)^2 + 2\alpha^2 < 1$.

Estimation:

- The set of parameters θ of an ARMA-GARCH model is estimated by Maximum Likelihood (ML) or Quasi maximum Likelihood (QML).
- **3** When the model is estimated by ML, the most often used distributions for Z_t are:
 - **●** The normal distribution, $Z_t \stackrel{i.i.d.}{\sim} \mathcal{N}\left(0,1\right)$. **IMPORTANT**: the normality assumption on Z_t does not imply that the return R_t has a normal (marginal) distribution.
 - **②** The **Student t-distribution**, $Z_t \stackrel{i.i.d.}{\sim} t(v)$, which is symmetric and leptokurtic (if v is "small").
 - The skewed Student t-distribution, $Z_t \overset{i.i.d.}{\sim} Skewed\ t\ (\delta, v)$, which is asymmetric (if $\delta \neq 1$) and leptokurtic (if v is "small").
 - The Generalized Error Distribution (GED), $Z_t \overset{i.i.d.}{\sim} GED(v)$, which is symmetric and leptokurtic (if v < 2).

Example (GARCH model with Gaussian innovations)

The process $\{R_t, t \in \mathbb{Z}\}$ has a GARCH(1,1) representation with **Gaussian innovations** if

$$R_{t} = c + \varepsilon_{t}$$

$$\varepsilon_{t} = Z_{t}\sigma_{t}$$

$$\sigma_{t}^{2} = \omega + \alpha\varepsilon_{t-1}^{2} + \beta\sigma_{t-1}^{2}$$

$$Z_{t} \stackrel{i.i.d.}{\sim} \mathcal{N}(0, 1)$$

The set of parameters to be estimated is $\theta = (c, \omega, \alpha, \beta)$. Notice that R_t has a conditional normal distribution

$$R_t | \mathcal{F}_{t-1} \sim \mathcal{N}\left(c, \sigma_t^2\right)$$

but a marginal distribution which is not Gaussian

 $R_t \sim$ leptokurtic distribution

Example (GARCH model with Student innovations)

The process $\{R_t, t \in \mathbb{Z}\}$ has a GARCH(1,1) representation with **Student innovations** if

$$R_{t} = c + \varepsilon_{t}$$

$$\varepsilon_{t} = Z_{t}\sigma_{t}$$

$$\sigma_{t}^{2} = \omega + \alpha\varepsilon_{t-1}^{2} + \beta\sigma_{t-1}^{2}$$

$$Z_{t} \stackrel{i.i.d.}{\sim} t(v)$$

where $t\left(v\right)$ is a standardized Student t-distribution with v degrees of freedom. The set of parameters to be estimated is now $\theta=\left(c,\omega,\alpha,\beta,v\right)$.

Why considering non-Gaussian distributions for the innovation Z_t ?

1 The use of a **leptokurtic distribution** for Z_t allows to increase the kurtosis of R_t .

kurtosis of a GARCH process = kurtosis generated by the model (dynamics) + kurtosis of the innovation Z_t

In order to reproduce the level of kurtosis of the financial returns, the kurtosis generated by the model is not sufficient. That is why, we generally consider a leptokurtic distribution for Z_t : Student, GED, etc.

The use of an a skewed distribution for Z_t allows to reproduce the skewness observed in the distribution of the financial returns.

skewed distribution for $Z_t \Longrightarrow$ skewed distribution for R_t

Reminder Chapter 1. Stylized Fact 4 (Asymmetry)

Fact (asymmetry)

The distribution of return is asymmetric and often negatively skewed, reflecting the fact that the downturns of financial markets are often much steeper than the recoveries. Investors tend to react more strongly to negative news than to positive news

Figure: Daily returns S&P500 (8/17/2016 to 7/24/2018)

Figure: GARCH(1,1) model with Gaussian innovations, Intel Corp. (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS
Method: ML ARCH - Normal distribution (Marquardt / EViews legacy)
Date: 11/05/18 Time: 08-55
Sample: 8/17/2016 7/24/2018
Included observations: 505
Convergence achieved after 14 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESI06-1/32 = C(4)*GARCH(-(1))

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	0.000192	0.000270	0.712549	0.4761	
Variance Equation					
C RESID(-1)^2 GARCH(-1)	6.38E-07 0.028572 0.959825	9.65E-08 0.004822 0.004906	6.606469 5.925374 195.6437	0.0000 0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000078 -0.000078 0.006591 0.021893 1851.179 2.145875	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000250 0.006591 -7.315561 -7.282099 -7.302436	

Figure: GARCH(1,1) model with Student innovations, Intel Corp. (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS
Method: ML ARCH - Student's t distribution (Marquardt / EViews legacy)
Date: 11/05/18 Time: 08:50
Sample: 8/17/2016 7/24/2018
Included observations: 505
Convergence achieved after 17 iterations
Presample variance: backcast (parameter = 0.7)

GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1)

	Variable	Coefficient	Std. Error	z-Statistic	Prob.
	С	0.000387	0.000190	2.036120	0.0417
Ξ		Variance I	Equation		
	C RESID(-1) ² GARCH(-1)	5.62E-07 0.050711 0.944133	3.38E-07 0.021913 0.019231	1.664750 2.314185 49.09416	0.0960 0.0207 0.0000
	T-DIST. DOF	3.328842	0.497571	6.690185	0.0000
A S S L	-squared djusted R-squared .E. of regression um squared resid og likelihood urbin-Watson stat	-0.000430 -0.000430 0.006592 0.021901 1918.916 2.145121	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000250 0.006591 -7.579864 -7.538037 -7.563458

Figure: GARCH(1,1) model with GED innovations, Intel Corp. (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS
Method: ML ARCH - Generalized error distribution (GED) (Marquardt / EViews legacy)
Date: 11,05/18 Time: 08:54
Sample: 817/2016 7/24/2018
Included observations: 505
Convergence achieved after 18 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2) + C(3)*RESID(-1/2)* - C(4)*GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	0.000355	0.000173	2.056731	0.0397	
	Variance Equation				
C RESID(-1)*2 GARCH(-1)	5.14E-07 0.036673 0.952122	2.48E-07 0.014939 0.016155	2.071835 2.454783 58.93793	0.0383 0.0141 0.0000	
GED PARAMETER	1.011089	0.062464	16.18668	0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.000256 -0.000256 0.006591 0.021897 1909.326 2.145494	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin	nt var terion ion	0.000250 0.006591 -7.541885 -7.500057 -7.525479	

Forecasting

Definition (conditional variance forecast)

If the process $\{R_t, t \in \mathbb{Z}\}$ has a GARCH(1,1) representation

$$R_t = \mu_t + \varepsilon_t$$

$$\varepsilon_t = Z_t \sigma_t$$

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

the **conditional variance forecast** at time t for an horizon h=1 is defined by the recurrence relation

$$\widehat{\sigma}_{t+1|t}^{2} = \mathbb{V}\left(\left.R_{t+1}\right|\mathcal{F}_{t}\right) = \sigma_{t+1}^{2} = \omega + \alpha \left(R_{t} - \mu_{t}\right)^{2} + \beta \sigma_{t}^{2}$$

where σ_1^2 is fixed.

Figure: Estimated (in sample) conditional variance, GARCH(1,1) model with Gaussian innovations, Intel Corp.daily returns (8/17/2016 to 7/24/2018)

Figure: Estimated conditional variance and observed returns, GARCH(1,1) model with Gaussian innovations, Intel Corp. dialy returns (8/17/2016 to 7/24/2018)

Figure: Estimated conditional variance for various conditional distributions, Intel Corp. daily returns (8/17/2016 to 7/24/2018)

Key Concepts

- GARCH(p, q) model
- GARCH(1,1) model
- ARCH and GARCH parameters
- Properties of a GARCH process
- ARMA representation associated to a GARCH process
- Conditional distributions (normal, Student, skewed Student, GED, etc.)
- Parameter estimation
- Volatility forecasting

Section 4

Extensions of GARCH Models

Objectives

- To introduce the IGARCH model
- To introduce the GARCH-M model
- To introduce the asymmetric GARCH models
- To establish a link between these models and the leverage effect
- To introduce the GJR-GARCH model
- To introduce the TGARCH model
- To introduce the EGARCH model

Overview

Some relevant extensions of the GARCH model have been proposed in order to accommodate particular features of financial series (asymmetry, leverage effect, etc.).

Among others, GARCH models have been refined by introducing:

- Asymmetric responses to negative and positive innovations to handle the observed asymmetry in the reaction of conditional volatility to the arrivals of news.
- Persistence.
- **Output** Long-memory (the dependency for a large number of lags).

Overview

The following GARCH models are often encountered in the empirical financial literature as well as in the industry:

- Asymmetric GARCH models: Exponential GARCH model (EGARCH), Threshold GARCH model (TGARCH), GJR model;
- Integrated GARCH model (IGARCH).
- Long-memory GARCH model (LMGARCH) or Fractionally integrated GARCH model (FIGARCH).

We will focus on the following models:

- IGARCH model
- GARCH-M model
- GJR-GARCH model
- **TGARCH** model
- EGARCH model

We will focus on the following models:

- IGARCH model
- GARCH-M model
- GJR-GARCH model
- **TGARCH** model
- EGARCH model

Definition (IGARCH)

The process $\{\varepsilon_t, t \in \mathbb{Z}\}$ is an Integrated-GARCH(1,1) process or IGARCH(1,1), if

$$\varepsilon_t = Z_t \sigma_t$$

where Z_{t} is i.i.d. with $\mathbb{E}\left(Z_{t}\right)=0$ and $\mathbb{V}\left(Z_{t}\right)=1$, and

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + (1 - \alpha) \, \sigma_{t-1}^2$$

with $\omega > 0$ and $\alpha \in [0, 1[$.

Remarks

- ① The impact of past squared shocks $\eta_{\tau-k}=\varepsilon_{t-k}^2-\sigma_{t-k}^2$ on X_t^2 in the ARMA representation is **persistent**.
- **②** The unconditional variance of ε_t , hence that of R_t , is **not defined** under a IGARCH(1, 1) model.
- A special case of the IGARCH(1,1) is the RiskMetrics volatility model defined as

$$\sigma_t^2 = \lambda \varepsilon_{t-1}^2 + \left(1 - \lambda\right) \sigma_{t-1}^2$$

which is a model used to compute the Value-at-Risk.

For more details

Nelson, D. B. (1990), Stationarity and persistence in the GARCH(1, 1) model, *Econometric Theory*, 6, 318–334.

Figure: IGARCH(1,1) model, S&P500 daily returns (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS
Method: ML ARCH - Normal distribution (Marquardt / Eviews legacy)
Date: 11/05/18 Time: 09:07
Sample: 8/17/2016 7/24/2018
Included observations: 505
Convergence achieved after 11 iterations
Presample variance: backcast (parameter = 0.7)
GARCH = C(2/PRESID(-1/2+ (1-c/C))/GARCH(-1)

Variable	Coefficient	Std. Error	z-Statistic	Prob.	
С	0.000496	4.94E-05	10.03791	0.0000	
Variance Equation					
RESID(-1) ⁴ 2 GARCH(-1)	0.073433 0.926567	0.004180 0.004180	17.56655 221.6533	0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	-0.008401 -0.008401 0.002907 0.004260 2263.082 2.148913	Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion Hannan-Quinn criter.		0.000231 0.002895 -8.954779 -8.938048 -8.948216	

We will focus on the following models:

- IGARCH model
- GARCH-M model
- **GJR-GARCH** model
- **TGARCH** model
- **EGARCH** model

GARCH-M model

- The return of a security may depend on its volatility.
- To model such a phenomenon, one may consider the GARCH-M model, where "M" stands for GARCH in mean.
- The GARCH-M has been introduced by Engle, Lilien and Robbins (1987).
- Engle, R., Lilien, D., and R. Robins (1987). Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model. *Econometrica*, 55(2), 391-407.

Definition (GARCH-M)

An example of GARCH-M(1,1) is given by

$$R_t = c + \delta \sigma_t^2 + \varepsilon_t$$

$$\varepsilon_t = \sigma_t Z_t$$

where Z_t is i.i.d. with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$, and

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

with $\omega > 0$, $\alpha \geq 0$, $\beta \geq 0$ and $\delta \in \mathbb{R}$.

Interpretation

- ullet The parameter δ is called the risk premium parameter.
- ullet A positive δ indicates that the return is positively related to its past volatility.

◆ロト ◆問 > ◆意 > ◆意 > ・意 ・ 夕 Q ②

Alternative GARCH-M specifications

$$R_t = c + \delta \sigma_t^2 + \varepsilon_t$$
 Conditional variance effect

$$R_t = c + \delta \sigma_t + \varepsilon_t$$
 Conditional volatility effect

$$R_t = c + \delta \ln \left(\sigma_t^2
ight) + arepsilon_t$$
 Log-linear specification

Figure: Examples of GARCH-M specifications available in Eviews 9

Figure: GARCH-M (volatility specification), S&P500 daily returns (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS Method: ML - ARCH Date: 11/04/18 Time: 20:50 Sample: 8/17/2016 7/24/2018 Included observations: 505 Convergence achieved after 15 iterations

	Coefficient	Std. Error	z-Statistic	Prob.	
SQR(GARCH)	0.228092	0.205836	1.108123	0.2678	
C	-0.000183	0.000489	-0.374348	0.7081	
Variance Equation					
C	8.34E-07	1.70E-07	4.909816	0.0000	
ARCH(1)	0.168322	0.029165	5.771471	0.0000	
GARCH(1)	0.722121	0.044882	16.08929	0.0000	
R-squared	-0.003518	Mean dependent var		0.000231	
Adjusted R-squared	-0.011546	S.D. dependent var		0.002895	
S.E. of regression	0.002912	Akaike info criterion		-9.115285	
Sum squared resid	0.004239	Schwarz criterion		-9.073458	
Log likelihood	2306.610	Durbin-Watson stat		2.126942	

Figure: GARCH-M (variance specification), S&P500 daily returns (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS Method: ML - ARCH Date: 11/04/18 Time: 20:54 Sample: 8/17/2016 7/24/2018 Included observations: 505 Convergence achieved after 17 iterations

	Coefficient	Std. Error	z-Statistic	Prob.	
GARCH	25.21145	29.78123	0.846555	0.3972	
C	0.000206	0.000201	1.026419	0.3047	
Variance Equation					
C	8.16E-07	1.67E-07	4.879708	0.0000	
ARCH(1)	0.162550	0.028669	5.669930	0.0000	
GARCH(1)	0.729257	0.044119	16.52919	0.0000	
R-squared	0.000041	Mean dependent var		0.000231	
Adjusted R-squared	-0.007959	S.D. dependent var		0.002895	
S.E. of regression	0.002907	Akaike info criterion		-9.114192	
Sum squared resid	0.004224	Schwarz criterion		-9.072364	
Log likelihood	2306.333	F-statistic		0.005141	
Durbin-Watson stat	2.126117	Prob(F-statistic)		0.999947	

We will focus on the following models:

- IGARCH model
- GARCH-M model
- GJR-GARCH model
- **TGARCH** model
- EGARCH model

Asymmetric GARCH models

- The GARCH model assumes that positive and negative shocks have the same effects on volatility because it depends on the square of the previous shocks.
- In practice, the return of a financial asset responds differently to positive and negative shocks.
- The GARCH model does not allow to capture the leverage effect.

Stylized Fact 8: Leverage effect (reminder Chapter 1)

Fact (leverage effect)

Asset returns are negatively correlated with the changes of their volatilities: this negative correlation is called leverage effect.

- As asset prices decline, companies become more leveraged (debt to equity ratios increase) and riskier, and hence their stock prices become more volatile.
- On the other hand, when stock prices become more volatile, investors demand high returns and hence stock prices go down.

Asymmetric GARCH models

- The asymmetric GARCH models are designed to capture the non linearities of the conditional variance dynamics, including the leverage effect.
- Many asymmetric GARCH models have been proposed: GJR-GARCH, TGARCH, EGARCH, APARCH, VSGARCH, QGARCH, LSTGARCH, ANSTGARCH, etc.
- One of the most often used asymmetric models is the GJR-GARCH model, where "GJR" stands for Glosten, Jagannathan and Runkle (1993).

Glosten, L., Jagannathan, R., and D. Runkle, D. (1993). On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. *The Journal of Finance*, 48(5), 1779-1801.

Definition (GJR-GARCH)

The process $\{\varepsilon_t, t \in \mathbb{Z}\}$ is to be a $\mathsf{GJR}\text{-}\mathsf{GARCH}(1,1)$ process, if

$$\varepsilon_t = Z_t \sigma_t$$

where Z_t is i.i.d. with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$, and

$$\sigma_t^2 = \omega + \alpha \varepsilon_{t-1}^2 + \gamma \mathbb{I}_{(\varepsilon_{t-1} < 0)} \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2$$

with $\omega>0$, $\alpha\geq0$, $\beta\geq0$, $\gamma\in\mathbb{R}$, and where $\mathbb{I}_{(.)}$ is the indicator function that takes a value 1 if the condition is true and 0 otherwise.

Interpretation

• The term ε_t can be interpreted as a shock (surprise) on the return, since

$$\varepsilon_t = R_t - \mu_t = R_t - \mathbb{E}\left(R_t | \mathcal{F}_{t-1}\right)$$

• In a GJR-GARCH model, the influence of the past return shock ε_{t-1} on the current conditional variance σ_t^2 depends on its sign

$$\begin{split} \sigma_t^2 &= \omega + \alpha \varepsilon_{t-1}^2 + \gamma \mathbb{I}_{\varepsilon_{t-1} < 0} \, \varepsilon_{t-1}^2 + \beta \sigma_{t-1}^2 \\ &\frac{\partial \sigma_t^2}{\partial \varepsilon_{t-1}^2} = \left\{ \begin{array}{cc} \alpha + \gamma & \text{if } \varepsilon_{t-1} < 0 \\ \alpha & \text{otherwise} \end{array} \right. \end{split}$$

• A leverage effect implies that $\gamma>0$, i.e. the increase in volatility caused by a negative return is larger than the appreciation due a positive return of the same magnitude.

Figure: GJR-GARCH, S&P500 daily returns (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS Method: ML - ARCH Date: 11/04/18 Time: 20:55 Sample: 8/17/2016 7/24/2018 Included observations: 505 Convergence achieved after 5 iterations

	Coefficient	Std. Error	z-Statistic	Prob.	
С	0.000261	0.000101	2.585792	0.0097	
Variance Equation					
C ARCH(1) (RESID<0)*ARCH(1) GARCH(1)	8.35E-07 -0.007291 0.220719 0.750475	1.45E-07 0.028332 0.041923 0.040774	5.775906 -0.257332 5.264862 18.40561	0.0000 0.7969 0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000107 -0.008108 0.002907 0.004225 2319.862			0.000231 0.002895 -9.167772 -9.125945 2.166735	

We will focus on the following models:

- IGARCH model
- GARCH-M model
- GJR-GARCH model
- **TGARCH** model
- EGARCH model

TGARCH model

- The TGARCH, where "T" stands for Threshold, is an asymmetric GARCH model designed to capture the leverage effect.
- The TGARCH is similar to the GJR model, different only because of the use of the conditional volatility, instead of the variance, in the specification.
- The TGARCH has been introduced by Zakoian (1994).
- Rabemananjara R. and J.M. Zakoian (1993), Threshold ARCH models and asymmetries in volatility. *Journal of Applied Econometrics*, 8, 31-49.
 - Zakoian J.M. (1994), Threshold Heteroskedastic Models. *Journal of Economic Dynamic and Control*, 18, 931-955, 1994.

Definition (TGARCH)

The process $\{\varepsilon_t, t \in \mathbb{Z}\}$ is to be a **TGARCH**(1,1) process, if

$$\varepsilon_t = Z_t \sigma_t$$

where Z_t is i.i.d. with $\mathbb{E}\left(Z_t\right)=0$ and $\mathbb{V}\left(Z_t\right)=1$, and

$$\sqrt{\sigma_t^2} = \omega + \alpha_+ \varepsilon_{t-1} \mathbb{I}_{(\varepsilon_{t-1} \geq 0)} + \alpha_- \varepsilon_{t-1} \mathbb{I}_{(\varepsilon_{t-1} < 0)} + \beta \sqrt{\sigma_{t-1}^2}$$

with $(\omega, \alpha_+, \alpha_-, \beta) \in \mathbb{R}^4$ and $\mathbb{I}_{(.)}$ the indicator function.

TGARCH model

• One advantage of the TGARCH is that it does not require any **positivity** constraints on the parameters, since we have $\forall (\omega, \alpha_+, \alpha_-, \beta) \in \mathbb{R}^4$

$$\sigma_t^2 = \left(\omega + \alpha_+ \varepsilon_{t-1} \mathbb{I}_{(\varepsilon_{t-1} \ge 0)} + \alpha_- \varepsilon_{t-1} \mathbb{I}_{(\varepsilon_{t-1} < 0)} + \beta \sqrt{\sigma_{t-1}^2}\right) \ge 0$$

 The TGARCH allows to capture an asymmetry between positive and negative shocks, as

$$rac{\partial \sigma_t}{\partial arepsilon_{t-1}} = \left\{ egin{array}{ll} lpha_- & ext{if } arepsilon_{t-1} < 0 \ lpha_+ & ext{otherwise} \end{array}
ight.$$

• The leverage effect implies that $|\alpha_-| > |\alpha_+|$, i.e. the increase in volatility caused by a negative return is larger than the appreciation due a positive return of the same magnitude.

We will focus on the following models:

- IGARCH model
- GARCH-M model
- GJR-GARCH model
- **TGARCH** model
- **EGARCH** model

EGARCH model

- The EGARCH, where "E" stands for **Exponential**, is an asymmetric GARCH model.
- The EGARCH is designed to capture both (1) the asymmetric effects between positive and negative shocks on the returns and (2) the effects of "big" shocks.
- The TGARCH has been introduced by Nelson (1991).

Nelson, D. B. (1991), "Conditional heteroskedasticity in asset returns: A new approach," *Econometrica*, 59, 347–370.

Definition (EGARCH)

The process $\{\varepsilon_t, t \in \mathbb{Z}\}$ is to be a **EGARCH**(1,1) process, if

$$\varepsilon_t = Z_t \sigma_t$$

$$\ln \left(\sigma_{t}^{2}\right) = \omega + \alpha Z_{t-1} + \gamma \left(\left|Z_{t-1}\right| - \mathbb{E}\left(\left|Z_{t-1}\right|\right)\right) + \beta \ln \left(\sigma_{t-1}^{2}\right)$$

with $(\omega, \alpha, \gamma, \beta) \in \mathbb{R}^4$ and where Z_t is i.i.d. with $\mathbb{E}(Z_t) = 0$ and $\mathbb{V}(Z_t) = 1$.

GARCH model

$$\begin{split} \varepsilon_t &= Z_t \sigma_t \\ \sigma_t^2 &= \omega + \alpha \underbrace{\varepsilon_{t-1}^2}_{\text{depends on } \varepsilon_{t-1}} + \beta \sigma_{t-1}^2 \end{split}$$

EGARCH model

$$\begin{split} \varepsilon_t &= Z_t \sigma_t \\ \ln \left(\sigma_t^2\right) &= \omega + \underbrace{\alpha Z_{t-1} + \gamma \left(|Z_{t-1}| - \mathbb{E}\left(|Z_{t-1}|\right)\right)}_{\text{depends on the standardized error } Z_{t-1}} + \beta \ln \left(\sigma_{t-1}^2\right) \end{split}$$

EGARCH model

• The EGARCH model does not require any **restriction** on the parameters because, since the equation is on log variance instead of variance itself, the positivity of the variance is automatically satisfied $\forall (\omega, \alpha, \gamma, \beta) \in \mathbb{R}^4$

$$\sigma_{t}^{2} = \exp\left(\omega + \alpha Z_{t-1} + \gamma \left(|Z_{t-1}| - \mathbb{E}\left(|Z_{t-1}|\right)\right) + \beta \ln\left(\sigma_{t-1}^{2}\right)\right) > 0$$

 The EGARCH model captures the asymmetric effects between positive and negative shocks on the returns, since

$$rac{\partial \ln \left(\sigma_t^2
ight)}{\partial \left| Z_{t-1}
ight|} = \left\{ egin{array}{ll} \gamma - lpha & ext{if } z_{t-1} < 0 \ \gamma + lpha & ext{otherwise} \end{array}
ight.$$

• The leverage effect, i.e. the fact that negative shocks at time t-1 have a stronger impact on the variance at time t than positive shocks, implies that $\alpha < 0$.

EGARCH model

- The term $(|Z_{t-1}| \mathbb{E}(|Z_{t-1}|))$ measures the **magnitude** of the (positive or negative) shocks.
- If the parameter γ is positive, then the "big" (compared to their expected value) shocks have a stronger impact on the variance than the "small" shocks.
- ullet The mean $\mathbb{E}\left(|Z_{t-1}|
 ight)$ is a constant that depends on the distribution of Z_t .

$$\mathbb{E}\left(|Z_t|
ight) = \sqrt{rac{2}{\pi}}$$
 Gaussian distribution

$$\mathbb{E}\left(\left|Z_{t}\right|\right)=2\frac{\Gamma\left(\frac{v}{2}\right)\sqrt{v-2}}{\sqrt{\pi}\left(v-1\right)\Gamma\left(\frac{v}{2}\right)} \text{ Student } t\left(v\right) \text{ distribution}$$

where $\Gamma(x) = \int_0^\infty u^{x-1} e^{-u} du$ is the **gamma function**.

Example (EGARCH)

Consider a AR(1)-**EGARCH**(1,1) with Gaussian innovation for the returns $\{R_t, t \in \mathbb{Z}\}$

$$R_{t} = \phi_{0} + \phi_{1}R_{t-1} + \varepsilon_{t}$$

$$\varepsilon_{t} = Z_{t}\sigma_{t}$$

$$\ln\left(\sigma_t^2\right) = \omega + \alpha Z_{t-1} + \gamma \left(|Z_{t-1}| - \sqrt{\frac{2}{\pi}}\right) + \beta \ln\left(\sigma_{t-1}^2\right)$$

or equivalently

$$\ln\left(\sigma_t^2\right) = \omega + \alpha\left(\frac{\varepsilon_{t-1}}{\sigma_{t-1}}\right) + \gamma\left(\left|\frac{\varepsilon_{t-1}}{\sigma_{t-1}}\right| - \sqrt{\frac{2}{\pi}}\right) + \beta\ln\left(\sigma_{t-1}^2\right)$$

with Z_t i.i.d. $\mathcal{N}\left(0,1\right)$. The vector of parameters to be estimated is

$$\theta = (\phi_0, \phi_1, \omega, \alpha, \gamma, \beta)'$$

Figure: EGARCH, S&P500 daily returns (8/17/2016 to 7/24/2018)

Dependent Variable: RETURNS Method: ML - ARCH Date: 11/04/18 Time: 20:57 Sample: 8/17/2016 7/24/2018 Included observations: 505

Convergence achieved after 38 iterations

	Coefficient	Std. Error	z-Statistic	Prob.	
С	0.000238	0.000108	2.214508	0.0268	
Variance Equation					
C RES /SQR[GARCH](1 RES/SQR[GARCH](1) EGARCH(1)	-1.477426 0.214937 -0.238090 0.890261	0.251807 0.041854 0.029121 0.019755	-5.867296 5.135363 -8.175833 45.06581	0.0000 0.0000 0.0000 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood	-0.000006 -0.008006 0.002907 0.004224 2322.918			0.000231 0.002895 -9.179873 -9.138046 2.166954	

Key Concepts

- IGARCH model
- GARCH-M model
- GJR-GARCH model
- TGARCH model
- EGARCH model

End of Chapter 6

Christophe Hurlin