Синолитические сети в классификации мозговой активности

Власенко Даниил Владимирович, гр.19.504-мм

Научный руководитель: к.ф.-м.н. Шпилёв П.В.

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Отчет по научно-исследовательской работе

Санкт-Петербург, 2023

Функциональная магнитно-резонансная томография

Разновидность магнитно-резонансной томографии, которая проводится с целью измерения изменений в токе крови. вызванных нейронной активностью головного мозга.

Рис. 1: фМРТ сканер.

Рис. 2: Классификация на основе характеристик графов, содержащих информацию о работе мозга.

Цель работы

Реализация и тестирование метода классификации режимов мозговой активности на основе фМРТ данных, в основе которого будут лежать синолитические сети (Demichev V. 2022).

Задача классификации

Пусть Ω — множество объектов, Σ — множество классов. Существует неизвестная функция $f:\Omega\to\Sigma$, значения которой известны только на объектах выборки $(\widetilde\Omega,\widetilde\Sigma)=\{(\omega_n,\sigma_n)\}_n$.

Требуется построить алгоритм $\widehat{f}:\Omega\to\Sigma$, способный классифицировать произвольный объект $\omega\in\Omega$, то есть правильно сопоставить ему соответствующий класс $\sigma\in\Sigma$.

 Ω — множество фМРТ, а $\Sigma = \{\mathsf{I}, \mathsf{II}\}$ — множество режимом мозговой активности. $(\Omega, \Sigma) = \{(\omega_n, \sigma_n)\}_n$ — конечная выборка из (Ω, Σ) .

 $oldsymbol{0}$ $\omega \in \Omega$ конвертируется массив a. a_{xyzt} — значение вокселя с индексами x, y, z в момент времени t, а a_{xyz} — все значения вокселя с индексами x, y, z.

Ha основе a будет строится граф $g = (V = \{v_i\}_i, E = \{e_{ij}\}_{ij},$ $R = \{r_i\}_i, W = \{w_{ij}\}_{ij}$

② С помощью статистики T вычисляется $a^T = T(a)$, т.е. для $\forall x,y,z \ a_{xyz}^T = T(a_{xyz})$. Значения массива a^T будут использоваться в качестве значений вершин R.

5/9

Вероятностное определение w_{ij}

$$w_{ij} = P(y_k = II | r_i, r_j) - P(y = I | r_i, r_j)$$

- lacktriangle С помощью классификаторов $Cl_{ij}:\{y|(r_i,r_j),\{(r_i^n,r_j^n)\}_n,\{y_n\}_n\} o [0,1]$, обученных на выборке $(\widetilde{\Omega},\widetilde{\Sigma})$, вычисляется W (Platt J. 1999).
- Строится граф-сетка g, т.е. граф, в котором каждый внутренний воксель связан с 26 соседними вокселями.
- ullet Из g удаляются ребер $\{e_{ij} : r_i < r | r_j < r | w_{ij} < w \}_{ij}.$
- **6** Вычисляются характеристики графа $\{f_u\}_u = \{F_u(g)\}_u$.
- С помощью классификатора $Cl:\{\{f_u\}_u|\{\{f_u^n\}_u\}_n,\{y_n\}_n\}\to\{0,1\}$, обученного на выборке (Ω,Σ) , происходит итоговая классификация фМРТ данных ω .

Рис. 3: Наблюдение или воображение объекта.

7/9

	seen		imagined		
	training	test	training	test	
sub-01	17	7	14	6	44
su b-02	17	7	14	6	44
su b-03	17	7	14	6	44
su b-04	17	7	14	6	44
su b-05	16	8	14	6	44
	84	36	70	30	220
	120		100		220

Таблица 1: Разделение выборки.

	seen	imagined
seen	32	4
imagined	0	30

	seen	imagined
seen	32	4
imagined	1	29

Таблица 2: T — среднее значение Таблица 3: T — минимум вокселя, точность 93.9%. значений вокселя, точность 90.9%.

	seen	imagined
seen	34	2
imagined	1	29

 $\mathsf{Taблицa}\ 4:\ T$ — разница квантилей уровня $0.9\ \mathsf{u}\ 0.1\ \mathsf{знa}$ чений вокселя. точность 95.5%.