

厦门大学《计算机组成原理》课程试卷 软件学院 软件工程系 2016 级 软件工程专业

主考教师: 曾文华 张海英 试卷类型: (B卷) 答案

	填空题(共 28 分,每空 1 分) 从计算机系统的多级层次结构来看,硬件研究主要涉及 M1 <u>实际机器</u> 和 M0 <u>微程序机器</u> 两
	部分。
2.	总线是各部件 <mark>共享</mark> 的传输介质,总线带宽就是总线的数据 传输率 ,目前的计算机普遍采用
	<u>多总线</u> _结构。
3.	指令一般划分为_ <mark>取指周期</mark> _、 <mark>间指周期</mark> _ 、 执行周期和 <mark>中断周期</mark> 四个工作周期。
4.	对于 24 位地址线的主存而言,按字节寻址的范围是
5.	用海明码对长度为8位的数据进行检/纠错时,若能纠正一位错,则校验码位数至少为4_位。检测
	位是按照
6.	Cache 高速缓冲存储器是根据程序访问的 <u>局部性能</u> 原理设计的。为了体现这一基本原理,Cache 读
	操作,如果 <mark>不命中</mark> _且 Cache <mark>满</mark> 时,需要进行页面替换。Cache 写操作时,必须与主存保持
	<u>致</u> 。
7.	中断服务程序的入口地址是通过向量地址寻找的,该地址是由硬件自动产生的,单重中断
	与多重中断的区别在于 <u>开中断</u> 指令出现的位置。
8.	系统的并行性包含 <mark>同时性</mark> 和 <u>并发性</u> 两个方面的含义。
9.	PROM 是可以实现次编程的 <u>只读</u> 存储器,而 EPROM 可以实现 <u>多</u> 次的改写,是通过
	<u>紫外线</u> 照射实现的。
10.	数据相关主要包括 RAW、wAR和wAW,采取的主要措施是后推法和 <u>旁路法</u> 。
<u> </u>	简答题(共48分,7题)

(5分)

1. $\forall X = -0.1101, Y = -0.1011, \bar{x}[XY]_{*}$

- 2. 一个 $8K \times 8$ 位的动态 RAM 芯片,其内部结构排列成 256×256 形式,读/写周期为 $0.1 \,\mu s$ 。试回答下述问题: (7 分)
 - (1) 动态随机存储器除了正常的读写,还需要额外的刷新工作,为什么? (2分)
 - 答: 电容存在电荷泄漏的问题, 使得"1"的内容被改写。
 - (2) 何为"死时间"?采用集中式刷新、分散刷新和异步刷新的"死区"各是多少?应该如何安排消除掉"死区"? (5分)

答:	内存无法进行正常的读写操作,为"死时间。	1分
	集中式刷新的死区时间是 25.6 <i>山s</i>	1分
	分散刷新的死区时间是 0	1分
	异步刷新的死时间是 0.1 <i>μs</i>	1分
	在指令的译码阶段	1分

- 3. 有一 cache 系统,字长为 16 位,主存容量为 16 字×256 块,cache 的容量为 16 字×8 块。采用全相联地址映射方式,求: (8 分)
 - (1) 主存和 cache 的字地址各为几个 bit?

答:	Cache 7bit	1分	
	Mem 12bit	1分	
	<mark>Cache 地址</mark>	<mark>3 位</mark>	<mark>4 位</mark>
	主存地址	<mark>8 位</mark>	<mark>4 位</mark>

- (2) 如果原先已经依次装入 5 块的信息,问字地址为 338H 所在的主存块将装入 cache 块中的哪一块以及在 cache 中的字地址? 2 分
- 答:<mark>既然是全相联,就是主存可以进入 cache 任何一块的位置。</mark>

338H=00110011 1000 33H=16*3+3=51 cache 目前已经装入 5 块,故该主存块装入第 6 块(下标从 0 开始,所以实际对应下标为 101)。

字地址为: **101** 1000 = 58H

- (3) 如果块表中地址为 1 的行中,标记着 36H 的主存块号标志,则当 CPU 送来主存的字地址为 368H 时,是否命中(1 分)? 如果命中,此时的 cache 的字地址为多少? (2 分)
- 答: 主存地址 368H,对应的高位是 36H,根据块表,其命中。

对应的 cache 地址为 101 1000

- 4. 已知程序查询方式的接口电路如图 2 所示,请回答下述问题:(6分)
- 1) 触发器 D 和 B 的作用是什么? (3分)
 - 答: D和B反映外设的工作状态触发器(D是完成触发器,B是工作触发器)
 - D=0, B=0, 表示 I/O 设备处于暂停状态
 - D=1, B=0,表示 I/O 设备处于已经准备就绪状态
 - D=0, B=1,表示 I/O 设备处于准备状态
- 2) 为何要设置数据缓冲寄存器? (1.5 分)
 - 答:解决外设与 CPU 的速度差
- 3) 准备就绪状态是由哪个信号触发的? (1.5 分)
 - 答: 由 D 触发器触发
- 5. 图 2 为在 DMA 的工作方式中, CPU 暂停方式的时间示意图,请回答下述问题: (7分)

(1) 该方式的优缺点是什么? (2分)

答: 优点: 控制简单,适用于数据传输率很高的 I/O 设备

缺点: CPU 基本处于不工作状态或维持原有状态,对主存的利用率没有得到充分的发挥

(2) 如果采用周期挪用方式,则有何不同?请参照图 2 绘出时间示意图 (5 分)

图 2 停止 CPU 访存

- 6. 设某机器有三个中断源 1、2、3,其优先级按 1>2>3 降序排列。假设中断处理时间均为 t,在图 3 所示的时间内共发生 5 次中断请求,图中①表示 1 级中断源发出中断请求信号,其余类推。(8 分)
 - (1) 画出 CPU 执行程序的轨迹。 (5 分)
 - (2) 如果优先级改为 2>1>3 ,请给出对应的屏蔽字。 (3分)

- 7. 某主存储器部分单元的地址码与存储器内容对应关系如表 1 所示,请回答下述问题: (7 分)
 - (1) 若采用寄存器间址方式读取操作数,指定寄存器 RO 的内容为 1000H,则操作数是多少?

答: A307H

(2) 若采用自减型寄存器间址方式 -(R1) 读取操作数,R1 内容为 1003H,则操作数是多少?指令执行完 后 R1 的内容是多少?

答: F03C R1=1002H

(3) 若采用变址寻址方式 X(R2)读取操作数,指令中给出形式地址 d=3H,变址寄存器 R2 内容为 1000H,则操作数是多少?

答: F03CH

(4) 采用寄存器间址方式,指定寄存器 R3=1002H,则间址两次@@(R3)是多少?

答: D024H

表 1 地址码与存储内容的对应关系

地址码 存储内容 1000H A307H 1001H 0B3FH 1002H 1004H 1003H F03CH 1004H D024H		
1001H 0B3FH 1002H 1004H 1003H F03CH	地址码	存储内容
1002H 1004H 1003H F03CH	1000H	A307H
1003H F03CH	1001H	0B3FH
	1002H	1004H
1004H D024H	1003H	F03CH
	1004H	D024H

三、设计题

- 1. 设CPU内部采用总线连接方式,如图4所示,完成下述任务: (13分)
- (1) 写出完成STAX (X 为主存地址) 指令的全部微操作和控制信号。
- (2) 写出ADD @X(X 为主存地址)指令的全部微操作和控制信号。

答: 第 1 题参考教材 P382-383

2. 设CPU共有16根地址线,8根数据线,并用作为访存控制信号(低电平有效),用作为读写控制信号(高电平为读,低电平为写)。现有如下规格的存储芯片: 1K×4位RAM,4K×8位RAM,MREQWR5

2K×8位ROM,以及74138译码器和各种门电路,如图5所示。画出CPU与存储器连接图,要求: (11分)

- (1) 主存地址空间分配:最大2K为系统程序区;相邻2K为用户程序区。
- (2) 合理选用上述芯片,说明各选几片?
- (3) 详细画出存储芯片的片选逻辑。

答:

- (1) 最大 2K 选用 1片 2K×8位的 ROM, 相邻 2K 选用 4片 1K×4 位的 RAM→
- (2) 片选逻辑~

₽

