Particle spectrograph

Wave operator and propagator

$f_{1^{-}\alpha}^{\#2}$	0	0	0	0	0	0	0	
$\omega_{1}^{\#2}_{\alpha} \ f_{1}^{\#1}_{\alpha}$	0	0	0	0	0	0	0	
$\omega_{1^{^{-}\alpha}}^{\#2}$	0	0	0	0	0	0	0	
$\omega_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0	
$f_1^{\#1}$	$\frac{1}{3}\bar{l}\sqrt{2}kt_2$	<u>i kt2</u> 3	$\frac{k^2t_2}{3}$	0	0	0	0	
$\omega_1^{\#_2^2}$	$\frac{\sqrt{2} t_2}{3}$	[2]	$-\frac{1}{3}$ $i k t_2$	0	0	0	0	
$\omega_1^{\#1}{}_+\alpha\beta$	$\frac{1}{6} (9 k^2 r_3 + 4 t_2)$	$\frac{\sqrt{2} t_2}{3}$	$-\frac{1}{3}\bar{l}\sqrt{2}kt_2$	0	0	0	0	
	$\omega_1^{\#1} + \alpha^{\beta}$	$\omega_1^{\#_2} + \alpha \beta$	$f_{1+}^{\#1} \dagger^{\alpha\beta}$	$\omega_{1}^{\#_1} +^{\alpha}$	$\omega_1^{\#2} \dagger^{\alpha}$	$f_{1}^{\#1} +^{\alpha}$	$f_1^{\#2} + \alpha$	

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2}^{\#1}{}_{\alpha\beta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{\scriptscriptstyle 2}^{\scriptscriptstyle \#1}\dagger^{lphaeta}$	$-\frac{3k^2r_3}{2}$	0	0
$f_{2}^{\#1}\dagger^{\alpha\beta}$	0	0	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

	$\omega_0^{\sharp 1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0}^{\#1}$ †	0	0	0	0
$f_{0^{+}}^{#1}\dagger$	0	0	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	$k^2 r_2 + t_2$

Source constraints/g	auge generators
SO(3) irreps	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0}^{\#1} == 0$	1
$\sigma_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} == 0$	3
$\tau_1^{\#1\alpha} == 0$	3
$\sigma_{1}^{\#2\alpha} == 0$	3
$\sigma_{1}^{\#1\alpha} == 0$	3
$\overline{\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta}} = 0$	3
$\sigma_2^{\#1\alpha\beta\chi} == 0$	5
$\tau_{2^{+}}^{\#1\alpha\beta} == 0$	5
Total constraints:	28

_				
$\sigma_{2+\alpha\beta}^{\#1}$ $\tau_{2+\alpha\beta}^{\#1}$ $\sigma_{2}^{\#1}$ $\sigma_{3}^{\#1}$	0	0	0	
$\tau_{2}^{\#1}_{+}\alpha\beta$	0	0	0	
•	$-\frac{2}{3k^2r_3}$	0	0	
	$\sigma_{2}^{\#1} + \alpha \beta$	$\tau_2^{\#1} + \alpha \beta$	$\sigma_{2}^{\#1} +^{lphaeta\chi}$	

_	$\sigma_{0^{+}}^{\#1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1} +$	0	0	0	0
$\tau_{0}^{\#1}$ †	0	0	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

Massive and massless spectra

$\widehat{}$
O O
_
\neg
O)
70
77
<u> </u>
nassless
iń
ĭń
0,
$\overline{\mathbf{c}}$
pai
==
<u> </u>
-
icles
$\overline{-}$
(D
U)

Unitarity conditions