Aproksymacja profilu wysokościowego terenu

Metody Numeryczne - Projekt 3

Stanisław Nieradko 193044 2024-05-05

1. Wstęp

Celem projektu jest zaimplementowanie oraz porównanie algorytmów interpolacji funkcji na przykładzie aproksymacji profilu wysokościowego terenu.

W ramach projektu zaimplementowano:

- metodę interpolacji wielomianowej Lagrange'a
- metodę interpolacji wykorzystującą funkcje sklejane trzeciego stopnia

wraz z wymaganymi funkcjami macierzowymi oraz algorytmami rozwiązywania układów równań liniowych.

Implementacja została wykonana w języku Python, bez wykorzystania zewnętrznych bibliotek do jakichkolwiek obliczeń numerycznych. Wykorzystane zostały biblioteki do obsługi plików (*Pandas*) oraz rysowania wykresów (*matplotlib*).

W ramach projektu porównane zostaną wyniki interpolacji dla 5 różnych zestawów danych o różnych cechach, w celu zbadania zachowania obu metod w różnych warunkach. Ponadto zostaną zbadane różnice wynikające z różnych parametrów interpolacji, takich jak liczba punktów czy ich rozmieszczenie.

1.1. Interpolacja wielomianowa Lagrange'a

Pierwszą zaimplementowaną metodą była interpolacja wielomianowa Lagrange'a. Metoda ta polega na znalezieniu wielomianu stopnia n-1, który przechodzi przez n punktów.

Jest to możliwe dzięki policzeniu bazy Lagrange'a dla każdego z punktów:

$$\varphi_i(x) = \prod_{j=1, j \neq i}^{n+1} \frac{x - x_j}{x_i - x_j}$$

a następnie złożeniu ich w jeden wielomian:

$$F(x) = \sum_{i=1}^{n+1} y_i \varphi_i(x)$$

Metoda ta jest bardzo prosta w implementacji, jednakże ma swoje wady w postaci efektu Rungego, który polega na oscylacjach wielomianu na krańcach przedziału interpolacji, i może być zaobserwowany w dalszych częściach raportu.

1.2. Interpolacja funkcjami sklejanymi trzeciego stopnia

Drugą zaimplementowaną metodą była interpolacja funkcjami sklejanymi trzeciego stopnia. Metoda ta polega na znalezieniu funkcji sklejanej, która przechodzi przez wszystkie punkty, a jej pochodne pierwszego i drugiego rzędu są ciągłe.

Metoda ta polega na znalezieniu funkcji sklejanej w postaci:

$$S_i(x) = a_i + b_i(x-x_i) + c_i(x-x_i)^2 + d_i(x-x_i)^3 \label{eq:sigma}$$

gdzie współczynniki

$$a_i, b_i, c_i, d_i$$

są znane dla każdego z przedziałów.

W celu znalezienia współczynników, należy rozwiązać układ równań liniowych, który jest złożony z równań dla każdego z punktów.

Metoda ta jest bardziej skomplikowana w implementacji, jednakże pozwala na uzyskanie lepszych wyników, bez efektu Rungego.