

5V, 3.1A, 550KHz High Efficiency Low Ripple Synchronous Step-Up Converter

Description

The FP6717 is a high efficiency, fixed frequency 550KHz, current mode PWM boost DC/DC converter which could operate battery such as input voltage down to 2.5V. The converter output voltage can be adjusted to a maximum of 5.25V by an external resistor divider. Besides the converter includes a $39m\Omega$ N-channel **MOSFET** switch 42mΩP-channel synchronous rectifier. So no external Schottky diode is required and could get better efficiency near 90%.

The converter is based on a fixed frequency, current mode, pulse-width-modulation PWM controller that goes automatically into PSM mode at light load.

When converter operation into discontinuous mode, internal anti-ringing switch will interference and radiated electromagnetic energy.

The FP6717 is available in a space-saving SOP-8 (Exposed Pad) package for portable application.

Pin Assignments

SP Package (SOP-8 Exposed Pad)

Figure 1. Pin Assignment of FP6717

Features

- High Efficiency up to 90%
- Low R_{DS}(ON) Integrated Power MOSFET
- NMOS $39m\Omega/PMOS$ $42m\Omega$
- Wide Input Voltage Range: 2.5V to 5.25V
- Fixed 550KHz Switching Frequency
- Low-Power Mode for Light Load Conditions
- ±2.0% Voltage Reference Accuracy
- Adjustable Current Limit
- PMOS Current Limit for Short Circuit Protection
- Low Quiescent Current
- Input Under Voltage Lockout
- Internal Compensation Function
- **Built-In Soft Start Function**
- Over-Temperature Protection with Auto Recovery
- **Output Overvoltage Protection**
- SOP-8 (Exposed Pad) Pb-Free Package

Applications

- Portable Power Bank
- Wireless Equipment
- Handheld Instrument
- **GPS** Receiver

Ordering Information

Typical Application Circuit

注意:IC第5脚是限流脚,限制的是输入端的电流。

输出电流2A时,建议阻值:1M Figure 2. Typical Application Circuit

ILIM Resistar ce Value (MΩ)	Typical Input Limits (A)
0.5	8
V 1	4
2	2
4	1
8	0.5

Functional Pin Description

Pin Name	Pin No.	Pin Function
VIN	1	Power Supply Input Pin.
OUT	2	Output of the Synchronous Rectifier.
FB	3	Voltage Feedback Input Pin.
GND	4	Ground Pin. Connect GND to exposed pad.
ILIM	5	Programming Input for Average Input Current.
EN	6	Logic Controlled Shutdown Input.
LX	7,8	Power Switching Connection. Connect LX to the inductor and output rectifier.
PGND	9	Power Ground Pin.

Block Diagram

Figure 3. Block Diagram of FP6717

Absolute Maximum Ratings (Note 1)

Supply Voltage V _{IN}	-0.3V to +6.5V
• LX Voltage V _{LX}	-0.3V to +6.5V
All Other Pins Voltage	-0.3V to +6.5V
Maximum Junction Temperature (T _J)	+150℃
• Storage Temperature (T _S)	-65℃ to +150℃
• Lead Temperature (Soldering, 10sec.)	+260℃
 Package Thermal Resistance, (θ_{JA}) 	
SOP-8 (Exposed Pad)	60℃/W
 Package Thermal Resistance, (θ_{JC}) 	
SOP-8 (Exposed Pad)	15℃/W
Note 1: Stresses beyond this listed under "Absolute Maximum Ratings" may cause permanent damage	to the device.

Recommended Operating Conditions

• Supply Voltage V _{IN} +2.5	5V to +5.25V
---------------------------------------	--------------

• Output Voltage Range ----- up to +5.25V

Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
VIN Input Supply Voltage	V _{IN}		2.5		5.25	V
VIN Supply Current (Switching)		V _{IN} =3.3V, V _{FB} =0.7V Measure V _{IN}		300	500	μА
VIN Supply Current (No witching)		V _{FB} =1V		45		μA
Feedback Voltage	V _{FB}	$2.5V \leq V_{IN} \leq 5.5V$	0.784	0.8	0.816	V
High-Side PMOSFET R _{DS} (ON)				42		mΩ
Low-Side NMOSFET R _{DS} (ON)				39		mΩ
High-Side MOSFET Leakage Current	I _{LX(leak)}	V _{LX} =5.5V, V _{OUT} =0V			10	μΑ
Low-Side MOSFET Leakage Current		V _{LX} =5.5V			10	μA
Oscillation Frequency	Fosc		450	550	650	KHz
Short Circuit Trip Point		Monitored FB voltage		0.3		V
Short Circuit Current Limit		V _{IN} = 3.3V		50		mA
Maximum Duty Cycle	D _{MAX}	V _{IN} =3.3V	90			%
ILIM Current		R _{ILIM} =500K		8		Α
ILIM Current Gain		V _{IN} =3.3V		8		ΜΩ-Α/Α
Line Regulation		V _{IN} =2.5V to 5.5V, I _{OUT} =100mA			1	%
Load Regulation		I _{OUT} =0A to 1A		0.5		%
Input UVLO Threshold	V _{UVLO(VTH)}	V _{IN} Rising		2.3		V
Under Voltage Lockout Threshold Hysteresis	V _{UVLO(HYS)}	V _{IN} Falling		250		mV
OVP Threshold Voltage on OUT Pin				5.7		V
OVP Threshold Hysteresis				350		mV
Internal Soft-Start Time				1	3	ms
EN Input Low Voltage	V _{EN (L)}				0.4	V
EN Input High Voltage	V _{EN (H)}		1.4			V
EN Input Current	I _{EN}	V _{IN} =3.3V		2		μA
Thermal Shutdown Threshold (Note 2)	TSD			150		С
Thermal Shutdown Hysteresis				30		C

5 FP6717-Preliminary 0.1-JUN-2014

Outline Information

SOP-8 (Exposed Pad) Package (Unit: mm)

	D		_		
^-'				74	A
 		Н-		F4	

SYMBOLS	DIMENSION IN	DIMENSION IN MILLIMETER			
UNIT	MIN	MAX			
Α	1.25	1.70			
A1	0.00	0.15			
A2	1.25	1.55			
В	0.31	0.51			
D	4.80	5.00			
D1	3.04	3.50			
E	3.80	4.00			
E1	2.15	2.41			
е	1.20	1.34			
Н	5.80	6.20			
L	0.40	1.27			

Note: Followed From JEDEC MO-012-E.

Carrier Dimensions

ſ	Tape Size	Pocket Pitch	Reel Size (A)		Reel Width	Empty Cavity	Units per Reel
	(W1) mm	(P) mm	in	mm	(W2) mm	Length mm	
	12	8	13	330	12.4	400~1000	2,500

Life Support Policy

Fitipower's products are not authorized for use as critical components in life support devices or other medical systems.

FP6717 IC特性

- 92%高效能同步升压转换器.
- 输入电压应用范围: 2.5V 至 5.25V.
- IC 在关断状态可完全隔离 输入端VIN 与输出端VOUT.
- 内置低内阻功率 MOSFET管.

NMOS $39m\Omega$ / PMOS $42m\Omega$

- 550KHz 固定操作频率.
- PWM / PSM 双套式控制, 能自动切换到PSM 套式以提升轻载状态效能.
- ±2.0% 电压精确度.
- 可调电感峰值限流点,藉由ILIM 脚位电阻值.
- 输出端短路保护机制.
- IC静态电流低.
- 快速暂态反应
- 内置软启动功能及输入欠压锁定.
- IC过温保护及自动恢复侦测

外部元件选择及设定

FP6716/17 反馈电压 V_{FB} =0.8V ,所以输出电压计算公式Vout=0.8V * (1+R1/R2), 分压电阻阻值 以 10KΩ or 100KΩ 为建议级距 .

Part Number	Output Voltage (V)	R1 (KΩ)	R2 (KΩ)	Note
	5.0	525	100	
FP6716 FP6717	5.1	645	120	Resistor accuracy is 1%
	5.25	584.1	105	

最大输出电压额定建议值为5.25V。上表为输出端反馈分压电阻设定值。

输入/输出电容尺寸型式,电感电流额定会影响升压 IC 的稳定性及可靠度。

Part Number	Output Loading	C _{IN} (uF)	C _{OUT} (uF)	Inductor (uH)
FP6716SPCTR	5.0V/2.1A	22 (1206)	2x22(1206)	2.2~4.7 (6A current rating)

电感额定电流的计算公式为: $\{P_{OUT}/(V_{IN} * \eta)\}^*$ 1.3 倍。1.3倍的设定倍率是考量电感电流峰值涟波。

举例来说, {(5V * 2.1A)/ (3V* 0.85)}* 1.3= 5.35A, 所以使用者可挑选6A 额定电流的电感。.

FP6717典型应用电路

BOM 表:

编号	元件类别	功能描述	附注
R1	贴片电阻	525KΩ 1/10W 1% 0603	
R2	贴片电阻	100KΩ 1/10W 1% 0603	
R4	贴片电阻	0805 2Ω 1/8W 5% 0805 (optional)	
R5	贴片电阻	510KΩ 1/10W 1% 0603	
R6	贴片电阻	10KΩ 1/10W 1% 0603	
C1	贴片电容	MLCC 22uF±10% X5R 1206 type /16V	
C2	贴片电容	Ceramic Cap. 100nF 0603 type /50V	
C3	贴片电容	MLCC 22uF±10% X5R 1206 type /16V	
C4	贴片电容	Ceramic Cap. 100nF 0603 type /50V	
C5	贴片电容	MLCC 22uF±10% X5R 1206 type /16V	
C6	贴片电容	Ceramic Cap. 100nF 0603 type /50V	
C7	贴片电容	MLCC 22uF±10% X5R 1206 type /16V	
C8	贴片电容	Ceramic Cap. 1nF 0603 type /50V (optional)	
L1	电感	4.7uH 8A	
U1	IC	FP6717 (SOP-8 EP)	
	PCB	公板FP6717	

FP6717 PCB 佈局指南

上视图 下视图

佈局指南一输入电容 C_{IN} (一)

输入旁通电容必须靠近Vin 脚位 (IC脚位 1),为了提升IC PSRR 抗无用信息能力。

如图所示,C2旁通电容及C1稳压电容必须靠近IC Vin 脚位。

佈局指南一输出电容Cour(二)

输出旁通电容必须靠近OUT 脚位 (IC脚位 2) , 可抑制高频无用信息。

C3/C5/C7 稳压电容也尽可能靠近OUT 脚位。

电感L走线铜箔必须宽且短,尽可能与IC在同一板面,因为IC内部MOS管依据占空比执行切换动作,则LX脚位有较高能量的切换干扰无用信息。

佈局指南一电感L (三)

如图所示,电感L的位置必须在 C1 电容之后,因为LX 脚位的切 ▲ 换无用信息能先被C1 电容抑制, 避免直接干扰IC.

实际应用

注意事项

• 注意点: 1、DCM 时,L电流未过零时,HS PMOS 切换至 body-diode,故出现如下波形,属正常波形。

• 注意点2:负载用纯电阻做带载插拔测试,输出电压正常。 电子负载 CC 模式带载插拔会触发SCP,至输出无电压。

---->可更改CC mode 最小带载电压,最小卸载电压(

Voff 3V,通常电池充电IC工作电压都在4V以上。)

