

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Информа	тика и системы управлен	ия_							
КАФЕДРА	Системы	мы обработки информации и управления								
РАСЧЕТІ	коп-он	СНИТЕЛЬНАЯ	І ЗАПИСКА							
К НАУЧІ	К НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ									
НА ТЕМУ: Классификация выдачи кредитной карты										
Студент <u>ИУ5-63Б</u> (Группа)		(Подпись, дата)	<u>Сергеев М.Ю.</u> (И.О.Фамилия)							
Руководитель		(Подпись, дата)	<u> Гапанюк Ю.Е.</u> (И.О.Фамилия)							
Консультант		(-104	Гапанюк Ю.Е							

(Подпись, дата)

(И.О.Фамилия)

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(МГТУ им. Н.Э. Баумана)

	УТІ	ВЕРЖДАЮ
	Заведующи	ий кафедройИУ5
		(Индекс) В.М.Черненький
		(И.О.Фамилия) 20 г.
	""	201.
ЗАДА	НИЕ	
на выполнение научно-ис		ой работы
по теме Классификация жанров музыки		
Студент группы <u>ИУ5-63Б</u>		
Ветошкин Артем Алексеевич		
(Фамилия, им		
Направленность НИР (учебная, исследовательст	кая, практическая, пр	оизводственная, др.)
исследовательская		
Источник тематики (кафедра, предприятие, НИ	P) <u>НИР</u>	
График выполнения НИР: 25% к нед., 50°	% к нед., 75% к _	_ нед., 100% к нед.
Техническое задание <u>Исследовать различн</u> кредитной карты на языке Python	ые модели для задач	и классификации выдачи
Оформление научно-исследовательской рабом	mы:	
Расчетно-пояснительная записка на листа Перечень графического (иллюстративного) мате	ах формата А4.	каты, слайды и т.п.)
Дата выдачи задания « 20 » _февраля 2022_	г.	
Руководитель НИР		Гапанюк Ю.Е
Студент	(Подпись, дата)	(И.О.Фамилия) Сергеев М.Ю.
• • •	(Подпись, дата)	(И.О.Фамилия)

<u>Примечание</u>: Задание оформляется в двух экземплярах: один выдается студенту, второй хранится на кафедре.

ВВЕДЕНИЕ

Цели:

Исследование различные модели для задачи классификации выдачи кредитной карты и выбора среди них наилучшего с использованием готовых библиотек, включающих функцию выполнения метода ближайших соседей, специальные функции оценки качества модели. Знакомство и освоение базового функционала используемых библиотек, и применение полученных знаний на практике.

Задачи:

Для выбранного набора данных обучить и сравнить качество разных регрессионных моделей. Для этого воспользоваться методами из библиотек sklearn, numpy, pandas, и библиотекой seaborn для визуализации разработки.

Описание набора данных:

Для анализа был выбран набор данных «Analytics Vidhya - JOB A THON - May 2021».

В нем содержится полный набор данных о клиенте банка.

ОСНОВНАЯ ЧАСТЬ

Сергеев М.Ю. ИУ5-63Б

Научно исследовательская работа студента по дисциплине: "Технологии машинного обучения".

Анализ данных.

В качестве набора данных мы будем использовать набор данных для банка - https://www.kaggle.com/datasets/nextbigwhat/analytics-vidhya-job-athon-may-2021

Эта задача является очень актуальной для банковской системы.

Датасет состоит из двух файлов:

- train s3TEQDk.csv обучающая выборка
- test mSzZ8RL.csv тестовая выборка

Каждый файл содержит следующие колонки:

- ID Уникальный идентификатор строки.
- Gender Пол клиента.
- Age Возраст клиента (в годах).
- Region_Code Код региона для клиентов.
- Occupation Род занятий для клиента.
- Channel_Code Код канала приобретения для клиента (закодированный)
- Vintage Винтаж для клиента (в месяцах).
- Credit_Product Есть ли у Клиента есть какой-либо активный кредитный продукт (Жилищный кредит, Персональный кредит, Кредитная карта
- AvgAccountBalance Средний остаток на счете Клиента за последние 12 месяцев.
- Is Active был ли клиент активен за последние 3 месяца.
- Is lead целевой признак датасета. Если Клиент заинтересован в кредитной карте то 1 иначе 0.

В данной задаче будем решать задачу классификации:

• Для решения задачи классификации в качестве целевого признака будем использовать "Is lead". Поскольку признак содержит только значения 0 и 1, то это задача бинарной классификации.

Импорт библиотек

Импортируем библиотеки с помощью команды import. Как правило, все команды import размещают в первых ячейках ноутбука.

In [1]:

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

from sklearn.preprocessing import MinMaxScaler

from sklearn.linear_model import LinearRegression, LogisticRegression

from sklearn.model selection import train test split

from sklearn.neighbors import KNeighborsRegressor, KNeighborsClassifier

from sklearn.metrics import accuracy_score, balanced_accuracy_score

from sklearn metrics import precision_score, recall_score, f1_score, classification_report

from sklearn.metrics import confusion_matrix

from sklearn.metrics import plot_confusion_matrix

from sklearn.model_selection import GridSearchCV

from sklearn.metrics import mean_absolute_error, mean_squared_error, mean_squared_log_error, median_absolute_error, r2_score

from sklearn.metrics import roc_curve, roc_auc_score

from sklearn.svm import SVC, NuSVC, LinearSVC, OneClassSVM, SVR, NuSVR, LinearSVR

from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, export_graphviz

from sklearn.ensemble import RandomForestClassifier, RandomForestRegressor

from sklearn.ensemble import ExtraTreesClassifier, ExtraTreesRegressor

from sklearn.ensemble import GradientBoostingClassifier, GradientBoostingRegressor

%matplotlib inline

sns.set(style="ticks")

Загрузка данных

Загрузим файлы датасета с помощью библиотеки Pandas.

Часто в файлах формата CSV в качестве разделителей используются символы ",", ";" или табуляция. Поэтому вызывая метод read_csv всегда стоит явно указывать разделитель данных с помощью параметра sep. Чтобы узнать какой разделитель используется в файле его рекомендуется предварительно посмотреть в любом текстовом редакторе.

Обучающая выборка
original_train = pd.read_csv('C:/Users/maxim/OneDrive/Paбочий стол/TMO/archive/train_s3TEQDk.csv', sep=",")
Тес т овая выборка
original_test = pd.read_csv('C:/Users/maxim/OneDrive/Paбочий стол/TMO/archive/test_mSzZ8RL.csv', sep=",")

In [3]:

Удалим дубликаты записей, если они присутствуют train = original_train.drop_duplicates() test = original_test.drop_duplicates()

Проведение разведочного анализа данных. Построение графиков, необходимых для понимания структуры данных. Анализ и заполнение пропусков в данных.

Основные характеристики датасетов

#Первые 5 строк датасета train.head()

Out[4]:

In [4]:

	ID	Gender	Age	Region_Code	Occupation	Channel_Code	Vintage	Credit_Product	Avg_Account_Balance	Is_Active	ls_Lead
0	NNVBBKZB	Female	73	RG268	Other	Х3	43	No	1045696	No	0
1	IDD62UNG	Female	30	RG277	Salaried	X1	32	No	581988	No	0
2	HD3DSEMC	Female	56	RG268	Self_Employed	X3	26	No	1484315	Yes	0
3	BF3NC7KV	Male	34	RG270	Salaried	X1	19	No	470454	No	0
4	TEASRWXV	Female	30	RG282	Salaried	X1	33	No	886787	No	0

In [5]:

test.head()

Out[5]:

	טו	Gender	Age	Region_Code	Occupation	Channel_Code	viiitage	Credit_Product	Avg_Account_balance	is_Active	
0	VBENBARO	Male	29	RG254	Other	X1	25	Yes	742366	No	
1	CCMEWNKY	Male	43	RG268	Other	X2	49	NaN	925537	No	
2	VK3KGA9M	Male	31	RG270	Salaried	X1	14	No	215949	No	
3	TT8RPZVC	Male	29	RG272	Other	X1	33	No	868070	No	
4	SHQZEYTZ	Female	29	RG270	Other	X1	19	No	657087	No	

In [6]:

Размер обучающего датасета - 245725 строк, 11 колонок train.shape, test.shape

 $((245725,\,11),\,(105312,\,10))$

Список колонок train.columns

Index(['ID', 'Gender', 'Age', 'Region_Code', 'Occupation', 'Channel_Code', 'Vistage', 'Credit Product', 'Avg. Assount Polance', 'Id. Active',

'Vintage', 'Credit_Product', 'Avg_Account_Balance', 'Is_Active', 'Is_Lead'],

dtype='object')

Список колонок с типами данных

убедимся что типы данных одинаковы в обучающей и тестовых выборках train.dtypes

Out[6]:

In [7]:

Out[7]:

In [8]:

Out[8]: ID object Gender object int64 Age Region_Code object Occupation object Channel_Code object Vintage int64 Credit_Product object Avg_Account_Balance int64 Is_Active object Is_Lead int64 dtype: object In [9]: test.dtypes Out[9]: ID object Gender object int64 Age Region_Code object Occupation object Channel_Code object Vintage int64 Credit Product object Avg_Account_Balance int64 Is Active object dtype: object In [10]: # Проверим наличие пустых значений train.isnull().sum() Out[10]: ID 0 Gender 0 0 Age Region_Code 0 Occupation 0 Channel_Code 0 Vintage 0 Credit Product 29325 Avg_Account_Balance Is Active 0 Is_Lead 0 dtype: int64 In [11]: test.isnull().sum() Out[11]: ID 0 Gender 0 Age 0 Region_Code 0 Occupation Channel Code 0 Vintage 12522 Credit Product 0 Avg_Account_Balance Is_Active dtype: int64 In [12]: #Заполним пропуски 'No'

train=train.fillna('No')

test=test.fillna('No') #Удалим ненужный столбец train=train.drop(columns=['ID'], axis=1)

test=test.drop(columns=['ID'], axis=1)

#Произведем кодировку категориальных признаков from sklearn.impute import SimpleImputer

from sklearn.preprocessing import OrdinalEncoder

In [14]:

In [13]:

In [15]:

```
[0, 31, 2, 0, 0, 0],
    [0, 23, 2, 0, 0, 0]
    [ 1, 19, 2, 0, 0, 0]], dtype=int64)
                                                                                                                                                               In [19]:
df = pd.DataFrame(cat enc oe, columns =['Gender', 'Region Code', 'Occupation', 'Channel Code', 'Credit Product', 'Is Active'])
                                                                                                                                                               In [20]:
 train_int = train[['Age', 'Vintage', 'Avg_Account_Balance', 'Is_Lead']]
train=train_int.join(df)
train
                                                                                                                                                              Out[20]:
          Age
                Vintage
                         Avg_Account_Balance Is_Lead
                                                           Gender
                                                                    Region_Code
                                                                                   Occupation
                                                                                                Channel_Code
                                                                                                                 Credit_Product Is_Active
                                                                                                              2
      0
           73
                     43
                                       1045696
                                                        0
                                                                 0
                                                                               18
                                                                                                                               0
                                                                                                                                          0
           30
                    32
                                        581988
                                                       0
                                                                 0
                                                                               27
                                                                                             2
                                                                                                              0
                                                                                                                               0
                                                                                                                                          0
      1
      2
           56
                    26
                                       1484315
                                                        0
                                                                 0
                                                                               18
                                                                                             3
                                                                                                              2
                                                                                                                               0
                                                                                                                                          1
                                                                                             2
                                                                                                              0
      3
           34
                     19
                                        470454
                                                       0
                                                                 1
                                                                               20
                                                                                                                               0
                                                                                                                                          0
      4
           30
                     33
                                        886787
                                                        0
                                                                 0
                                                                               32
                                                                                             2
                                                                                                              0
                                                                                                                               0
                                                                                                                                          0
 245720
                                       1925586
                                                       0
                                                                                             3
                                                                                                              2
                                                                                                                               0
                                                                                                                                          0
           51
                    109
                                                                               34
                                        862952
                                                        0
                                                                                             2
                                                                                                              0
                                                                                                                               0
 245721
           27
                     15
                                                                               18
                                                                                                                                          1
 245722
           26
                     13
                                        670659
                                                                 0
                                                                               31
                                                                                             2
                                                                                                                                          0
 245723
           28
                    31
                                        407504
                                                        0
                                                                 0
                                                                               23
                                                                                             2
                                                                                                              0
                                                                                                                               0
                                                                                                                                          0
 245724
           29
                    21
                                       1129276
                                                        0
                                                                               19
                                                                                             2
                                                                                                              0
                                                                                                                               0
                                                                                                                                          0
245725 rows × 10 columns
                                                                                                                                                               In [21]:
test_oe = test[['Gender', 'Region_Code', 'Occupation', 'Channel_Code', 'Credit_Product', 'Is_Active']]
                                                                                                                                                               In [22]:
 imp = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='NA')
test_filled = imp.fit_transform(test_oe)
test_filled
                                                                                                                                                              Out[22]:
array([['Male', 'RG254', 'Other', 'X1', 'Yes', 'No'],
    ['Male', 'RG268', 'Other', 'X2', 'No', 'No'],
    ['Male', 'RG270', 'Salaried', 'X1', 'No', 'No'],
    ['Male', 'RG254', 'Salaried', 'X4', 'No', 'No'],
     ['Male', 'RG254', 'Other', 'X3', 'No', 'Yes'],
    ['Male', 'RG256', 'Salaried', 'X1', 'No', 'No']], dtype=object)
```

train oe = train[['Gender', 'Region Code', 'Occupation', 'Channel Code', 'Credit Product', 'Is Active']]

imp = SimpleImputer(missing_values=np.nan, strategy='constant', fill_value='NA')

train_filled = imp.fit_transform(train_oe)

oe = OrdinalEncoder(dtype='int64')
cat_enc_oe = oe.fit_transform(train_filled)

array([[0, 18, 1, 2, 0, 0], [0, 27, 2, 0, 0, 0], [0, 18, 3, 2, 0, 1],

array([['Female', 'RG268', 'Other', 'X3', 'No', 'No'], ['Female', 'RG277', 'Salaried', 'X1', 'No', 'No'], ['Female', 'RG268', 'Self_Employed', 'X3', 'No', 'Yes'],

['Female', 'RG281', 'Salaried', 'X1', 'No', 'No'], ['Female', 'RG273', 'Salaried', 'X1', 'No', 'No'],

['Male', 'RG269', 'Salaried', 'X1', 'No', 'No']], dtype=object)

train filled

cat_enc_oe

In [16]:

In [17]:

Out[17]:

In [18]:

Out[18]:

```
In [23]:
```

Out[23]:

```
oe = OrdinalEncoder(dtype='int64')
cat_enc_oe = oe.fit_transform(test_filled)
cat_enc_oe
```

...,
[1, 4, 2, 3, 0, 0],
[1, 4, 1, 2, 0, 1],

[1, 6, 2, 0, 0, 0]], dtype=int64)

df = pd.DataFrame(cat_enc_oe, columns =['Gender', 'Region_Code', 'Occupation', 'Channel_Code', 'Credit_Product', 'Is_Active'])

In [25]:

In [24]:

test_int = test[['Age', 'Vintage', 'Avg_Account_Balance']]
test=test_int.join(df)
test

Out[25]:

	Age	Vintage	Avg_Account_Balance	Gender	Region_Code	Occupation	Channel_Code	Credit_Product	Is_Active
0	29	25	742366	1	4	1	0	1	0
1	43	49	925537	1	18	1	1	0	0
2	31	14	215949	1	20	2	0	0	0
3	29	33	868070	1	22	1	0	0	0
4	29	19	657087	0	20	1	0	0	0
105307	52	86	4242558	1	18	2	1	1	1
105308	55	86	1159153	1	27	1	1	1	0
105309	35	15	1703727	1	4	2	3	0	0
105310	53	93	737178	1	4	1	2	0	1
105311	27	21	591565	1	6	2	0	0	0

105312 rows × 9 columns

Вывод. Мы избавились от пропусков, убрали ненужные столбцы и закодировали котигориальные признаки.

Построение графиков для понимания структуры данных

Парные диаграммы sns.pairplot(train_int)

In [26]:

 $sns.pairplot(train_int,\ hue="ls_Lead")$

In [27]:

Out[27]:

```
In [28]:

# Убедимся, что целевой признак

# для задачи бинарной классификации содержит только 0 и 1
train['Is_Lead'].unique()

Out[28]:

array([0, 1], dtype=int64)

In [29]:

# Оценим дисбаланс классов для Is_Lead
fig, ах = plt.subplots(figsize=(2,2))
plt.hist(train['Is_Lead'])
plt.show()
```

In [30]:

Out[30]:

In [31]:

In [32]:

Out[32]:

In [33]:

150000 100000 50000

0.5

train['Is_Lead'].value_counts()

Name: Is_Lead, dtype: int64

total = train.shape[0]

train.columns

'Is_Active'], dtype='object')

plt.show()

sns.violinplot(x=train[col])

посчитаем дисбаланс классов

class_0, class_1 = train['ls_Lead'].value_counts()

print('Класс 0 составляет {}%, а класс 1 составляет {}%.'

Класс 0 составляет 76.28%, а класс 1 составляет 23.72%.

Скрипичные диаграммы для числовых колонок for col in ['Age', 'Vintage', 'Avg_Account_Balance']:

.format(round(class_0 / total, 4)*100, round(class_1 / total, 4)*100))

Вывод. Дисбаланс классов присутствует, но является приемлемым.

0.0

0 187437 1 58288

Выбор признаков, подходящих для построения моделей. Масштабирование данных. Формирование вспомогательных признаков, улучшающих качество моделей.

In [34]:

train.dtypes

Out[34]:

int64 Age Vintage int64 int64 Avg_Account_Balance Is Lead int64 Gender int64 Region_Code int64 Occupation int64 Channel_Code int64 Credit Product int64 Is Active int64 dtype: object

Категориальные признаки уже закодированы. Исключением является признак Is_Lead, но в представленном датасете он уже закодирован на основе подхода LabelEncoding.

Выполним масштабирование данных.

In [35]:

Числовые колонки для масштабирования scale_cols = ['Age', 'Vintage', 'Avg_Account_Balance', 'Region_Code', 'Occupation', 'Channel_Code']

In [36]:

train_all=train

In [37]:

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(train[scale_cols])
```

In [38]:

Добавим масш τ абированные данные в набор данных for i in range(len(scale_cols)):

col = scale_cols[i] new_col_name = col + '_scaled'

train[new_col_name] = sc1_data[:,i]

train_all.head()

Out[39]:

In [39]:

	Age	Vintage	Avg_Account_Balance	Is_Lead	Gender	Region_Code	Occupation	Channel_Code	Credit_Product	Is_Active	Age_scaled	Vintage_scaled /
0	73	43	1045696	0	0	18	1	2	0	0	0.806452	0.281250
1	30	32	581988	0	0	27	2	0	0	0	0.112903	0.195312
2	56	26	1484315	0	0	18	3	2	0	1	0.532258	0.148438
3	34	19	470454	0	1	20	2	0	0	0	0.177419	0.093750
4	30	33	886787	0	0	32	2	0	0	0	0.112903	0.203125

<u>▶</u> In [40]:

Проверим, что масштабирование не повлияло на распределение данных for col in scale_cols:

col_scaled = col + '_scaled'

fig, ax = plt.subplots(1, 2, figsize=(8,3))

ax[0].hist(train_all[col], 50)

ax[1].hist(train_all[col_scaled], 50)

ax[0].title.set_text(col)

ax[1].title.set_text(col_scaled)

plt.show()

Проведение корреляционного анализа данных. Формирование промежуточных выводов о возможности построения моделей машинного обучения.

```
In [41]:
```

```
# Воспользуемся наличием тестовых выборок,
# включив их в корреляционную матрицу
corr_cols_1 = scale_cols + ['ls_Lead', 'Gender', 'Credit_Product', 'ls_Active']
corr_cols_1
```

```
['Age',
'Vintage',
'Avg_Account_Balance',
'Region_Code',
'Occupation',
'Channel_Code',
'Is_Lead',
'Gender',
'Credit_Product',
'Is_Active']
```

```
'Vintage_scaled',
'Avg_Account_Balance_scaled',
'Region_Code_scaled',
'Occupation_scaled',
'Channel_Code_scaled',
'Is_Lead',
'Gender',
'Credit_Product',
'Is_Active']
```

['Age_scaled',

fig, ax = plt.subplots(figsize=(10,5)) sns.heatmap(train_all[corr_cols_1].corr(), annot=**True**, fmt='.2f') ax.set_title('Исходные данные (до масштабирования)') plt.show()

fig, ax = plt.subplots(figsize=(10,5)) sns.heatmap(train_all[corr_cols_2].corr(), annot=**True**, fmt='.2f') ax.set_title('Масштабированные данные') plt.show()

Out[41]:

In [42]:

Out[42]:

In [43]:

In [44]:

- Корреляционные матрицы для исходных и масштабированных данных совпадают.
- Целевой признак классификации "Is_Lead" наиболее сильно коррелирует с Vintage (0.28), возрастом (0.23) и Channel_Code (0.26). Эти признаки обязательно следует оставить в модели классификации.
- Большие по модулю значения коэффициентов корреляции свидетельствуют о значимой корреляции между исходными признаками и целевым признаком. На основании корреляционной матрицы можно сделать вывод о том, что данные позволяют построить модель машинного обучения.

Выбор метрик для последующей оценки качества моделей.

В качестве метрик для решения задачи классификации будем использовать:

Метрики, формируемые на основе матрицы ошибок:

Метрика precision:

Можно переводить как точность, но такой перевод совпадает с переводом метрики "ассигасу".

```
$precision = \frac{TP}{TP+FP}$
```

Доля верно предсказанных классификатором положительных объектов, из всех объектов, которые классификатор верно или неверно определил как положительные.

Используется функция precision_score.

Метрика recall (полнота):

```
recall = \frac{TP}{TP+FN}
```

Доля верно предсказанных классификатором положительных объектов, из всех действительно положительных объектов.

Используется функция recall_score.

Метрика \$F_1\$-мера

Для того, чтобы объединить precision и recall в единую метрику используется \$F_\beta\$-мера, которая вычисляется как среднее гармоническое от precision и recall:

 $F_\beta = (1+\beta^2) \cdot (1+\beta^2) \cdot (1+\beta^2) \cdot (1+\beta^2)$

где \$\beta\$ определяет вес точности в метрике.

На практике чаще всего используют вариант F1-меры (которую часто называют F-мерой) при \$\beta=1\$:

\$F_1 = 2 \cdot \frac{precision \cdot recall}{precision + recall}\$

Для вычисления используется функция f1 score.

Метрика ROC AUC

Основана на вычислении следующих характеристик:

\$TPR = \frac{TP}{TP+FN}\$ - True Positive Rate, откладывается по оси ординат. Совпадает с recall.

\$FPR = \frac{FP}{FP+TN}\$ - False Positive Rate, откладывается по оси абсцисс. Показывает какую долю из объектов отрицательного класса алгоритм предсказал неверно.

Идеальная ROC-кривая проходит через точки (0,0)-(0,1)-(1,1), то есть через верхний левый угол графика.

Чем сильнее отклоняется кривая от верхнего левого угла графика, тем хуже качество классификации.

В качестве количественной метрики используется площадь под кривой - ROC AUC (Area Under the Receiver Operating Characteristic Curve). Чем ниже проходит кривая тем меньше ее площадь и тем хуже качество классификатора.

Для получения ROC AUC используется функция roc_auc_score.

Сохранение и визуализация метрик

Разработаем класс, который позволит сохранять метрики качества построенных моделей и реализует визуализацию метрик качества.

In [45]:

```
class MetricLogger:
```

```
Формирование данных с фильтром по метрике
  temp_data = self.df[self.df['metric']==metric]
  temp_data_2 = temp_data.sort_values(by='value', ascending=ascending)
  return temp_data_2['alg'].values, temp_data_2['value'].values
def plot(self, str_header, metric, ascending=True, figsize=(5, 5)):
  Вывод графика
  array_labels, array_metric = self.get_data_for_metric(metric, ascending)
  fig, ax1 = plt.subplots(figsize=figsize)
  pos = np.arange(len(array_metric))
  rects = ax1.barh(pos, array_metric,
             align='center',
             height=0.5,
             tick_label=array_labels)
  ax1.set title(str header)
  for a,b in zip(pos, array_metric):
     plt.text(0.5, a-0.05, str(round(b,3)), color='white')
  plt.show()
```

Выбор наиболее подходящих моделей для решения задачи классификации или регрессии.

Для задачи классификации будем использовать следующие модели:

- Логистическая регрессия
- Метод ближайших соседей
- Машина опорных векторов
- Решающее дерево
- Случайный лес
- Градиентный бустинг

Формирование обучающей и тестовой выборок на основе исходного набора данных.

```
In [46]:
# На основе масш табированных данных выделим
# обучающую и тестовую выборки с помощью фильтра
train all part=train all.head(50000)
train_data_all, test_data_all = train_test_split(train_all_part,test_size=0.2)
train_data_all.shape, test_data_all.shape
                                                                                                                                                Out[46]:
((40000, 16), (10000, 16))
                                                                                                                                                 In [47]:
# Признаки для задачи классификации
task clas cols = ['Age scaled', 'Vintage scaled', 'Channel Code scaled', 'Avg Account Balance scaled',
           'Region_Code_scaled', 'Gender', 'Occupation_scaled', 'Credit_Product', 'Is_Active']
                                                                                                                                                 In [48]:
# Выборки для задачи классификации
clas_X_train = train_data_all[task_clas_cols]
clas_X_test = test_data_all[task_clas_cols]
```

```
((40000, 9), (10000, 9), (40000,), (10000,))
```

clas_X_train.shape, clas_X_test.shape, clas_Y_train.shape, clas_Y_test.shape

clas_Y_train = train_data_all['ls_Lead']
clas_Y_test = test_data_all['ls_Lead']

Out[48]:

Построение базового решения (baseline) для выбранных моделей без подбора гиперпараметров. Производится обучение моделей на основе обучающей выборки и оценка качества моделей на основе тестовой выборки.

Решение задачи классификации

In [49]:

```
'GB':GradientBoostingClassifier()}
```

```
# Сохранение метрик
clasMetricLogger = MetricLogger()
```

In [51]:

In [50]:

```
# Отрисовка ROC-кривой
def draw_roc_curve(y_true, y_score, ax, pos_label=1, average='micro'):
  fpr, tpr, thresholds = roc_curve(y_true, y_score,
                       pos_label=pos_label)
  roc_auc_value = roc_auc_score(y_true, y_score, average=average)
  #plt.figure()
  lw = 2
  ax.plot(fpr, tpr, color='darkorange',
        lw=lw, label='ROC curve (area = %0.2f)' % roc auc value)
  ax.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
  ax.set_xlim([0.0, 1.0])
  ax.set_xlim([0.0, 1.05])
  ax.set_xlabel('False Positive Rate')
  ax.set_ylabel('True Positive Rate')
  ax.set_title('Receiver operating characteristic')
  ax.legend(loc="lower right")
```

In [52]:

```
def clas train model(model name, model, clasMetricLogger):
  model.fit(clas_X_train, clas_Y_train)
  # Предсказание значений
  Y_pred = model.predict(clas_X_test)
  # Предсказание вероя т нос т и класса "1" для гос аис
  Y_pred_proba_temp = model.predict_proba(clas_X_test)
  Y_pred_proba = Y_pred_proba_temp[:,1]
  precision = precision_score(clas_Y_test.values, Y_pred)
  recall = recall_score(clas_Y_test.values, Y_pred)
  f1 = f1_score(clas_Y_test.values, Y_pred)
  roc_auc = roc_auc_score(clas_Y_test.values, Y_pred_proba)
  clasMetricLogger.add('precision', model name, precision)
  clasMetricLogger.add('recall', model_name, recall)
  clasMetricLogger.add('f1', model_name, f1)
  clasMetricLogger.add('roc_auc', model_name, roc_auc)
  fig, ax = plt.subplots(ncols=2, figsize=(10,5))
  draw_roc_curve(clas_Y_test.values, Y_pred_proba, ax[0])
  plot_confusion_matrix(model, clas_X_test, clas_Y_test.values, ax=ax[1],
             display_labels=['0','1'],
             cmap=plt.cm.Blues, normalize='true')
  fig.suptitle(model_name)
  plt.show()
```

In [53]:

for model_name, model in clas_models.items():
 clas_train_model(model_name, model, clasMetricLogger)

KNN_5

Receiver operating characteristic

. . [

Подбор гиперпараметров для выбранных моделей.

Задача классификации

scoring='roc_auc')

KNeighborsClassifier(n_neighbors=50)

Лучшее значение параметров

Лучшая модель clf_gs.best_estimator_

clf_gs.best_params_

clas_X_train.shape

Out[54]: (40000, 9)In [55]: $n_range_list = list(range(0,1250,50))$ $n_range_list[0] = 1$ In [56]: n_range = np.array(n_range_list) tuned_parameters = [{'n_neighbors': n_range}] tuned_parameters Out[56]: [{'n_neighbors': array([1, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200])}] In [57]: %%time clf_gs = GridSearchCV(KNeighborsClassifier(), tuned_parameters, cv=5, scoring='roc_auc') clf_gs.fit(clas_X_train, clas_Y_train) Wall time: 9min 8s Out[57]: GridSearchCV(cv=5, estimator=KNeighborsClassifier(), param_grid=[{'n_neighbors': array([1, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200])}],

In [54]:

In [58]:

Out[58]:

In [59]:

Out[59]: {'n_neighbors': 50}
In [60]:

clf_gs_best_params_txt = str(clf_gs.best_params_['n_neighbors'])
clf_gs_best_params_txt

Out[60]:

In [61]:

Повторение для найденных оптимальных значений гиперпараметров. Сравнение качества полученных моделей с качеством baseline-моделей.

Решение задачи классификации

In [63]:

In [62]:

for model_name, model in clas_models_grid.items():
 clas_train_model(model_name, model, clasMetricLogger)

Формирование выводов о качестве построенных моделей на основе выбранных метрик.

Решение задачи классификации

In [64]:

Метрики качества модели clas_metrics = clasMetricLogger.df['metric'].unique() clas_metrics

Out[64]:

array(['precision', 'recall', 'f1', 'roc_auc'], dtype=object)

In [65]:

clasMetricLogger.plot('Метрика: ' + metric, metric, figsize=(7, 6))

Вывод: на основании двух метрик из четырех используемых, лучшей оказалась модель грудиентного бустинга.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

Методические указания по курсу "Технологии машинного обучения", МГТУ им. Н.Э.Баумана кафедры ИУ5 бакалавриат, 6 семестр.

https://scikit-learn.org

Источник набора данных

https://www.kaggle.com/datasets/nextbigwhat/analytics-vidhya-job-a-thon-may-2021

ПРИЛОЖЕНИЕ