Proof of LEMMA 4.1 (by Contradiction)

LEMMA 4.1 Given a [n,k,d] stabilizer code C with stabilizer set $S=\{S_1,S_2,...,S_i,...,S_{n-k}\}$. Let P be a quantum operator, and $|\psi\rangle$ be the state of the codespace. If the operator P will not change the state of the data qubits, then P must commute with any stabilizer. That's, if $P|\psi\rangle=|\psi\rangle$, then $P\cdot S_i=S_i\cdot P$, for $\forall S_i\in S$.

Proof.

Suppose, for the sake of contradiction, that the statement

If
$$P|\psi\rangle = |\psi\rangle$$
, then $\exists S_i \in S \text{ such that } P \cdot S_i = -S_i \cdot P$

is true.

Since $P \cdot S_i = -S_i \cdot P$, we can deduce that

$$P \cdot S_i |\psi\rangle = -S_i \cdot P |\psi\rangle.$$

On the left-hand side, we have $P\cdot S_i|\psi\rangle$ = $|\psi\rangle$, because $S_i\in S$ implies that $S_i|\psi\rangle$ = $|\psi\rangle$, and $P|\psi\rangle$ = $|\psi\rangle$ by assumption.

However, on the right-hand side, we obtain $-|\psi\rangle$.

This leads to a contradiction, as we now have

$$|\psi
angle = -|\psi
angle.$$

Therefore, our assumption must be false, and thus **LEMMA 4.1** is proven.

Proof of THEOREM 4.2 (by Contradiction)

THEOREM 4.2 Let \mathcal{VE} be a virtual error, \mathcal{PE}_1 be a set of physical errors that $\mathcal{VE} \notin \mathcal{PE}_1$ and $|\mathcal{PE}_1|$ is the maximum correction capacity of QEC code, and $S(\mathcal{VE} \cup \mathcal{PE}_1)$ be the syndrome of errors composed of \mathcal{VE} and \mathcal{PE}_1 . There exists another set of physical errors \mathcal{PE}_2 s.t. $|\mathcal{PE}_2|$ is less than or equal to the maximum correction capacity, such that its syndrome $S(\mathcal{PE}_2)$ is the same as $S(\mathcal{VE} \cup \mathcal{PE}_1)$. As such, based on LEMMA 4.1, we cannot find an operator P that makes $P|\psi\rangle = |\psi\rangle$ and distinguishes errors $\mathcal{VE} \cup \mathcal{PE}_1$ and \mathcal{PE}_2 .

Proof.

Suppose, for the sake of contradiction, that there exists an operator P such that $P|\psi\rangle=|\psi\rangle$ and that P can distinguish the errors $E_1=\mathcal{VE}\cup\mathcal{PE}_1$ and $E_2=\mathcal{PE}_2$, which cannot be distinguished by all original stabilizers $S=\{S_1,S_2,\ldots,S_{n-k}\}$, in the sense that their syndromes for operation P satisfy

$$S(E_1) \neq S(E_2)$$
.

Because the errors E_1 and E_2 yield the same syndromes with respect to original stabilizers, we have, for every $S_i \in S$,

$$S_i E_1 |\psi
angle = \lambda_S E_1 |\psi
angle \quad ext{and} \quad S_i E_2 |\psi
angle = \lambda_S E_2 |\psi
angle,$$

where $\lambda_S \in \{+1,-1\}$, and $|\psi\rangle$ is an invalid state in the codespace.

If the operator P can distinguish between E_1 and E_2 , it must act with opposite eigenvalues on the two erroneous states, i.e.,

$$PE_1|\psi\rangle = \lambda_P E_1|\psi\rangle \quad \text{and} \quad PE_2|\psi\rangle = -\lambda_P E_2|\psi\rangle,$$

where $\lambda_P \in \{+1, -1\}$.

Now, consider the quantity $\langle \psi | E_2 P S_i E_1 | \psi \rangle$. On the one hand, using the assumptions on S_i and P, we have

$$egin{aligned} \langle \psi | E_2 P S_i E_1 | \psi
angle &= \langle \psi | E_2 (-\lambda_P) S_i E_1 | \psi
angle & ext{ (since } P E_2 | \psi
angle = -\lambda_P E_2 | \psi
angle) \ &= \langle \psi | E_2 (-\lambda_P) \lambda_S E_1 | \psi
angle & ext{ (since } S_i E_1 | \psi
angle = \lambda_S E_1 | \psi
angle) \ &= -\lambda_P \lambda_S \langle \psi | E_2 E_1 | \psi
angle. \end{aligned}$$

On the other hand, since by Lemma 4.1 the operator P commutes with every stabilizer generator S_i (i.e., $P\cdot S_i=S_i\cdot P$ for all $S_i\in S$), we also have

$$egin{aligned} \langle \psi | E_2 P S_i E_1 | \psi
angle &= \langle \psi | E_2 S_i P E_1 | \psi
angle \ &= \langle \psi | E_2 S_i \lambda_P E_1 | \psi
angle & ext{ (since } P E_1 | \psi
angle &= \lambda_P E_1 | \psi
angle) \ &= \langle \psi | E_2 \lambda_S \lambda_P E_1 | \psi
angle & ext{ (since } S_i E_2 | \psi
angle &= \lambda_S E_2 | \psi
angle) \ &= \lambda_P \lambda_S \langle \psi | E_2 E_1 | \psi
angle . \end{aligned}$$

Comparing the two expressions, we find

$$-\lambda_P\lambda_S\langle\psi|E_2E_1|\psi
angle=\lambda_P\lambda_S\langle\psi|E_2E_1|\psi
angle.$$

4

Assuming $\langle \psi|E_2E_1|\psi \rangle \neq 0$ (which can always be arranged by choosing a suitable $|\psi \rangle$), it follows that

$$-\lambda_P\lambda_S=\lambda_P\lambda_S,$$

which implies

$$2\lambda_P\lambda_S=0.$$

However, since $\lambda_P, \lambda_S \in \{+1, -1\}$, their product $\lambda_P \lambda_S$ is also either +1 or -1, so this equality is impossible.

Thus, we arrive at a contradiction. Therefore, our initial assumption must be false, and no such operator P can exist. This completes the proof of **THEOREM 4.2**.