

Sustentación de Recomendaciones I período

Please show all your work! Answers without supporting work will not be given credit. Write answers in spaces provided. You have 1 hour and 50 minutes to complete this exam.

Nombre:	Curso:	Fecha:

1. Complete la siguiente tabla escribiendo \in o

Número	2	-3π	-4.5	$-2.\overline{3}$	$\sqrt{49}$
Natural	\in				
Entero					
Racional					
Irracional					
Real					

 $a) \lim_{x \to 3} \frac{\sqrt{x+1} - 2}{x-3}$

Answer		
Answer:		

 $b) \lim_{x \to 0} \frac{\sin(4x)}{8x}$

Answer:		

2. Use the ε - δ definition of limit to prove that

$$\lim_{x \to 2} x^2 - 3x + 2 = 0$$

3. If $h(x) = \sqrt{x^2 + 2} - 1$, find a **non-trivial** decomposition of h into f and g such that $h = f \circ g$.

$$f(x) =$$

$$g(x) =$$

4. Find the first two derivatives of the function $f(x) = x^2 \cos(x)$. Simplify your answers as much as possible. Show all your work.

$$f'(x) =$$

$$f''(x) = \underline{\hspace{1cm}}$$

5. Find the derivative of the function $f(x) = \int_{x^2}^2 \frac{\cos(t)}{t} dt$.

Answer:____

6. Set up, but do not evaluate, the integral for the volume of the solid obtained by rotating the area between the curves y = x and $y = \sqrt{x}$ about the x-axis.