

מבני נתונים ומבוא לאלגוריתמים מפגש הנחיה מס' 1

מדעי המחשב, קורס מס' 20407 סמסטר 2016ב

מנחה: ג'ון מרברג

הקדמה

- מנחה הקבוצה: ד"ר ג'ון מרברג 🔳
- 054-4439990 8:00-9:00 ייעוץ טלפוני: יום ג' 1054-4439990 ו
 - john.marberg@openu.ac.il :דוא"ל ■
- נושאי המפגשים לפי לוח התכנון של הקבוצה
 - הגשת ממ"נים
- ב רגילים: ממ"נים 13-11, 17-15 (יש להגיש לפחות שלשה)
- תכנותיים: ממ"ן 18 חובה, 14 רשות (אפשר להגיש בזוגות)
 - תאריכי ההגשה לפי לוח התכנון של הקבוצה
- בקשות לדחיה יש להגיש למנחה מראש, <u>לפני</u> מועד ההגשה שנקבע **-**
 - מותר לחשוב בחברותא, הכתיבה תהיה עצמאית
 - ניסוחים זהים יסומנו כמועתקים, ולא חשוב מהו המקור
 - פורום קבוצתי באתר הקורס
 - מכיל הודעות, מצגות, חומר נלווה
 - מיועד רק להתייחסות ספציפית של מנחה הקבוצה
 - כל הפרסומים בפורום מחייבים יש לבקר באופן שוטף

מפגש ראשון

- נושאי השיעור 🔳
- פרק 1 בספר מבוא כללי לאלגוריתמים
- פרק 2 בספר תכנון אלגוריתמים, ניתוח אלגוריתמים.

 הוכחת נכונות של אלגוריתמים
 - תוכן העניינים
 - אלגוריתמים מושגים בסיסיים
 - בעיית המיון -
 - בעיית החיפוש

מבוסס על מצגת של ברוך חייקין ואיציק בייז

נושאי הקורס

■ **מבוא לאלגוריתמים** – בעיות, סוגי אלגוריתמים, הוכחת נכונות, ניתוח סיבוכיות, הוכחת חסמים, ועוד

■ מבני נתונים – ארגון של הנתונים לתמיכה באלגוריתמים באופן המוגדר ע"י הפעולות הנדרשות. נדבר על ערמות בינאריות, עצים בינאריים, טבלאות (גיבוב), ועוד.

האוניברסיטה הפתוחה

אלגוריתמים

- **בעיה -** קלט נתון, ופלט מבוקש 🔳
- אלגוריתם שיטת חישוב מוגדרת היטב לפתרון בעיה ■
- **הפעולות הבסיסיות** פעולות חשבון, השוואה, השמה
 - עם מעבד יחיד RAM-שובי מודל ה-שובל החישובי מודל ה
 - **תיאור** הקלט, הפלט, כתיבה בפסידו-קוד ■
 - **נכונות** עצירה על כל קלט עם הפלט הדרוש
 - סיבוכיות זמן ומקום השימוש במשאבי המחשב (זכרון, זמן ביצוע) כתלות בגודל הקלט
- **תכונות "טובות" נוספות של אלגוריתם** פשוט, קל לניתוח, קל למימוש, דורש מעט זכרון (מעבר לגודל הקלט)

סיבוכיות

- משאבי המחשב
- זמן מעבד מספר הפעולות הבסיסיות השוואה, השמהפעולות אלגבריות פשוטות, ...
 - מקום בזיכרון כמות "יחידות הזיכרון" בנוסף לקלט משתנים, מצביעים, מחסנית הריצה, מבני עזר, ...
 - גודל הבעיה ■
 - גודל הקלט כמות הזיכרון הדרושה לאחסון הקלט (מספר איברים בקבוצה, מספר סיביות במספר, מספר צמתים וקשתות בגרף...)

ניתוח סיבוכיות

- $T: \mathsf{N} o \mathsf{N}$ זמן הריצה פונקציה אי-שלילית של גודל הקלט -
 - $T(n) = 3n^2 + 4n + 10$ =
 - נשתמש בסימונים מיוחדים שיוגדרו בהמשך
- $T(n) = O(n \log_2 n)$ $T(n) = \Omega(\log_2 n)$ $T(n) = \Theta(n^2)$: $T(n) = O(n^2)$
 - בינתיים נאמר כי הסימונים מבטאים סדרי גודל של זמן הריצה בינתיים נאמר כי הסימונים מבטאים סדרי גודל של זמן הריצה לדוגמע: סדר גודל של 20 אות 20 א
 - $n\log_2 n$ או $\log_2 n$, או $\log_2 n$, או או
 - נתעלם מסדרי גודל נמוכים וממכפלות בקבוע. $n^2 + 4n + 10$ (מדוע?)
- הסימון מאפשר לנתח אלגוריתמים ביתר פשטות ולהשוות בין ביצועיהם
 - מקרים לניתוח 🔳
 - מינימלי (best case): הקלט שעבורו T(n) מינימלי
- הקלט הקלט (worst case). הקלט שעבורו (מקסימלי הקלט adversary) של "יריב מרושע" (adversary) שמכיר את האלגוריתם
 - של (ממוצע משוקלל) של (ממוצע משוקלל) של (ממוצע משוקלל) של המקרה הממוצע (ממוצע משוקלל) של T(n)

בעיית המיון

- קלט אוסף של ערכים + יחס סדר מלא ביניהם
 - **פלט** תמורה מסודרת של הערכים
 - דוגמאות 🏻
 - ≤ מערך של מספרים ממשיים עם יחס סדר ■
- יישובים במפה לפי מרחק בקו אווירי מהבית
- תכונות טובות: מהירות, יציבות, מיון "במקום" (in place)
 - שיטות מיון (על מערך ממשיים עם היחס ≥ ■
 - מבוסס השוואות (ללא הנחות על ערכי הקלט) 🔳
 - מותר לבצע רק השוואות בין איברים -
 - דוגמאות: מיון-בועות, מיון-הכנסה, מיון-בחירה, מיון-מיזוג, מיון-ערמה, מיון-מהיר, ...
 - **לא מבוסס השוואות** (עם הנחות על ערכי הקלט):
- מותר לבצע פעולות מתמטיות מגוונות על ערכי הקלט -
 - ,(counting-sort) דוגמאות: מיון-מנייה
 - (radix-sort), מיון-דלי (radix-sort)

מיון אינקרמנטלי

:הרעיון

- בונים תת סדרה ממוינת הולכת וגדלה. בכל שלב מוסיפים עודאיבר לתת הסדרה ע"י ביצוע ח צעדים לכל היותר
 - תת סדרה התחלתית בגודל 1 היא ממוינת
 - j מתקבלת תת-סדרה ממוינת בגודל j בסוף השלב ה-

:דוגמאות

- מיון-בועות: העבר את האיבר ה-j בגודלו למקומו הנכון ע"י ביצוע החלפות בין איברים סמוכים (בעבוע).
- מיון-בחירה: מצא את האיבר ה-j בגודלו והחלף אותו עם האיבר ה-jהנמצא במקום ה-j.
- מיון-הכנסה: הכנס את האיבר שבמקום ה-j בקלט למקומו הנכוןבתת הסדרה הממוינת 1.j-1 ע"י הזזת איברים בתת הסדרה

מיון-הכנסה – דוגמה

מיון הכנסה – האלגוריתם

```
INSERTION-SORT(A)

1 for j \leftarrow 2 to length[A]

2 do key \leftarrow A[j]

3 \triangleright Insert A[j] into the sorted sequence A[1...j-1].

4 i \leftarrow j-1

5 while i > 0 and A[i] > key

6 do A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow key
```


מיון הכנסה

נכונות:

- א. <u>תנאי עצירה</u>: בלולאה הפנימית (5-7), *i* מוקטן בכל איטרציה ולכן בלולאה הראשית (1-8) כל איטרציה היא סופית, ויש *n* איטרציות ב. <u>שמורת הלולאה</u>: לפני כל איטרציה של הלולאה הראשית, התת-מערך [1 – A[1..j – מורכב מהאיברים שהיו בו בהתחלה בסדר ממוין.
 - (התת-מערך [1] ממוין) j = 2 אתחול: הטענה נכונה עבור j=2
 - <u>תחזוקה</u>: אם הטענה נכונה לפני איטרציה כלשהי, אז היא תהיה נכונה גם לפני האיטרציה הבאה. (מדוע?)
 - .ממוין כולו, כנדרש j=n+1 ממוין כולו, כנדרש j=n+1

סיבוכיות:

- במקרה הגרוע (הקלט ממוין הפוך) במקרה במקרה הגרוע $\Theta(n^2)$ במקרה הזות בכל איטרציה של הלולאה הראשית כי האלגוריתם יבצע j-1 הזזות בכל איטרציה של הלולאה הראשית
 - (in place) מקום Θ(1) מיון במקום =

מיון בשיטת הפרד ומשול

:הרעיון

- *הפרד": חלק* את הסדרה הלא-ממוינת לשתי תת-סדרות שוות בגודלן *"הפרד": חלק* את
 - משול": מיין כל תת-סדרה באופן רקורסיבי 🔳
 - *צרף": חבר* את התת-סדרות הממוינות לסדרה ממוינת אחת ■

:דוגמאות

- מיון-מיזוג: חלק את הסדרה לשתי תת-סדרות, מיין את שני החלקים באמצעות קריאות רקורסיביות, ומזג את התוצאות (באמצעות מערך-עזר)
- מיון-מהיר: בחר איבר "ציר", *חלק* את הסדרה לאיברים הקטנים מאיבר הציר ולאיברים הגדולים ממנו, *ומיין* את שני החלקים באמצעות קריאות רקורסיביות. (אין צורך במיזוג!)
 - יתרונות וחסרונות של רקורסיה לעומת פיתרון איטרטיבי:
 - בדרך כלל הרקורסיה פתרון יותר טבעי לבעיה ויותר פשוט לתאור
 - לקריאות הרקורסיביות עלות נוספת בזיכרון (מחסנית הקריאות) ובזמן הריצה

מיון-מיזוג - דוגמה

מיון מיזוג - האלגוריתם

```
MERGE-SORT(A, p, r)

1 if p < r

2 then q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGE-SORT(A, p, q)

4 MERGE-SORT(A, q+1, r)

5 MERGE(A, p, q, r)
```

Merge-Sort(A,1,length[A]) הקריאה הראשית:

מיון-מיזוג

נכונות:

- יש להוכיח שהאלגוריתם <u>עוצר</u> ומחזיר <u>פלט נכון</u> עבור כל מערך בגודל **ח**
 - האלגוריתם עוצר כי בכל קריאה רקורסיבית המערך קטן יותר
 - הפלט נכון הוכחה באינדוקציה על גודל תת-הסדרה
 - ב*סיס*: האלגוריתם ממין נכון סדרה בגודל 1
 - *הנחת האינדוקציה*: האלגוריתם ממיין בצורה נכונה כל תת-סדרה בגודל *k < n*
 - *צעד*: נוכיח כי האלגוריתם ממיין בצורה נכונה סדרה בגודל *ח* <u>צעד</u>: בהסתמך על הנחת האינדוקציה ונכונות האלגוריתם merge

סיבוכיות:

- "רמות בעץ הקריאות (בכל מקרה $\Theta(\mathsf{lg}n)$ יש $\Theta(\mathsf{lg}n)$ רמות בעץ הקריאות (בכל מקרה) ובכל רמה מתבצע מיזוג בין $\Theta(n)$ איברים בזמן לינארי
 - ח האלגוריתם משתמש במערך עזר בגודל $\Theta(n) = \frac{\Omega(n)}{d}$ לצורך המיזוג (מספיק מערך אחד לכל רמות הרקורסיה)

בעיית החיפוש

- קלט אוסף של נתונים + קריטריון חיפוש ■
- פלט הנתונים (אחד או יותר) העומדים בקריטריון החיפוש, אם ישנם
 - דוגמאות לבעיות חיפוש
- במערך ממוין X (ערך) חיפוש האיבר הראשון בעל מפתח
 - חיפוש האיבר הגדול ביותר במערך -
 - חיפוש החציון של מערך 🛚
 - שיטות לחיפוש במערך ממוין 🔳
 - חיפוש קווי (לינארי) -
 - חיפוש חציה (בינארי) -

חיפוש בינארי

- שיטה: הפרד ומשול
- הקלט: מערך ממוין בסדר עולה (או לא יורד), ומפתח *ע* לחיפוש
 - אינו נמצא במערך ריק $oldsymbol{v}$
- צעד: השווה בין ν לבין המפתח של האיבר האמצעי במערך \blacksquare
 - אם הם שווים, החזר את אינדקס האיבר האמצעי
 - אחרת, אם ν קטן יותר, חפש (רקורסיבית) אחרת, אם ν
 - אחרת, חפש (רקורסיבית) בתת-מערך הימני

חיפוש בינארי - דוגמה

3 > 1

חיפוש בינארי - האלגוריתם

```
BINARY-SEARCH(A, p, r, v)

1 if p > r

2 then return NIL

3 q \leftarrow \lfloor (p+r)/2 \rfloor

4 if v < A[q]

5 then return BINARY-SEARCH(A, p, q-1, v)

6 else if v > A[q]

7 then return BINARY-SEARCH(A, q+1, r, v)

8 else return q
```

Binary-Search(A,1,length[A],v) :הקריאה הראשית

סיבוכיות:

Tמק: $\Theta(\log_2 n)$ במקרה הגרוע והממוצע $\Theta(1)$

חיפוש בינארי

נכונות:

יש להוכיח שהאלגוריתם עוצר ומחזיר פלט נכון עבור כל מערך ממוין בגודל *ח*

- האלגוריתם עוצר כי בכל קריאה רקורסיבית המערך קטן יותר 🔳
 - הפלט נכון הוכחה באינדוקציה על גודל המערך 🔳
 - (n=0) בסיס: טריויאלי עבור עבור מערך ריק = -
 - k < n הנחה: האלגוריתם נכון לכל מערך ממוין בגודל =
- <u>צעד</u>: נוכיח עבור מערך ממוין בגודל *ח* בהסתמך על הנחת האינדוקציה
 ובדיקת איבר החציון
 - סיבוכיות זמן ריצה: במקרה הגרוע (המפתח לא נמצא) ■
 - $T(n) = T(n/2) + \Theta(1)$ אז n > 0 פוסחת נסיגה: אם $T(n) = \Theta(1)$
 - $T(n) = \Theta(\log_2 n)$ = פתרון הנוסחה:

תרגיל

- יהא A מערך בגודל n. במקומות A[1 .. m] נמצא הערר D, כאשר m אינו ידוע A יהא a (יתכן ש-a קטן מאד ביחס ל-a). בשאר המקומות ב-a נמצא הערך a
- המחזיר את הערך m, כלומר את מספר המקומות COUNT0(A) כתבו אלגוריתם A המכילים A המערך מכיל 1, מוחזר הערך A
 - זמן הריצה של האלגוריתם צריך להיות (Igm).כלומר, זמן הריצה תלוי בכמות האפסים ולא בגודל המערך כולו!)
 - סמכיל m רמז: הערך m הוא אינדקס המקום הגבוה ביותר במערך המכיל \blacksquare
 - **הנחייה:** השתמש בפתרון דו-שלבי. ■
 - בשלב ראשון יש להגביל את התחום במערך שבו צריך לבצע חיפוש.
 - בשלב השני יתבצע חיפוש בינארי בתחום המוגבל למציאת האינדקס m.
 מחזיר את BINARY-SEARCH-01(A, p, q) שמחזיר את
 באיזה קריטריון חיפוש משתמש אלגוריתם חיפוש זה?

האוניברסיטה הפתוחה

פתרון

COUNTO(A)

- 1. **if** A[1]=1
- 2. **then return** $0 \rightarrow no 0$ in array
- 3. $n \leftarrow \text{Length}[A]$
- 4. if A[n]=0
- 5. **then return** $n \rightarrow \text{all are } 0$
- 6. $k \leftarrow 1$
- 7. while $k \le n$ and A[k] = 0
- 8. **do** $k \leftarrow k^*2$
- 9. $q \leftarrow \min(k, n) \qquad \blacktriangleright m \leq q$
- 10. return BINARY-SEARCH-01(A, 1, q)

אלגוריתם דו-שלבי

- בשלב הראשון נקבע את תחוםהחיפוש (שורות 6-9)
- בשלב השני נחפש בתחום זה
 - קביעת התחום מתבצעת ע"י

 $A[1], A[2], A[4], \dots, A[2^i]$ דגימת

- $A[2^i]$ =1 עוצרים את הדגימה כאשר
- $\lg(m)+1$ מספר הדגימות לכל היותר
 - $A[1..2^{i}]$ תחום החיפוש הבינארי:
 - 2m גודל התחום לכל היותר
 - אפשר לשכלל ע"י צמצום נוסף של
 תחום החיפוש: [q/2]..q]

m+1 כלומר תחום בגודל לכל היותר

(המשך)

BINARY-SEARCH-01(A, p, q)

- 1. if p>q or A[p]=1 or A[Length[A]]=0
- 2. then return nil
- 3. $mid \leftarrow (\lfloor (p+q)/2 \rfloor)$ \blacktriangleright observe that mid < Length[A] due to line 1
- **4. if** A[mid]=0
- 5. **then if** A[mid+1]=1
- 6. **then return** *mid*
- 7. **else return** BINARY-SEARCH-01(A, mid+1, q)
- 8. **else return** BINARY-SEARCH-01(A, p, mid-1)