$\label{eq:table I} \textbf{TABLE I} \\ \textbf{Sensors considered on each Sensor Set.}$

Sensor Set	Sensors		
1	Accelerometer, Sound and Gyroscope		
2	Accelerometer, Sound, Orientation,		
	Linear Acceleration, Gyroscope Uncalibrated,		
	Gyroscope, Game Rotation Vector		
	and Rotation Vector		
3	Accelerometer, Sound, Orientation,		
	Linear Acceleration, Gyroscope Uncalibrated,		
	Gyroscope, Game Rotation Vector,		
	Rotation Vector and Speed		

 $TABLE\ II$ Sensors on each cross-validation experiment and respective features extracted from 5 second time windows.

Scenario	Sensor Set	Features		
1	1	Minimum, Maximum, Mean and Standard Deviation of all sensors		
2	2	Minimum, Maximum, Mean and Standard Deviation of all sensors		
3	3	Minimum, Maximum, Mean, Standard Deviation of all sensors		
4	1	3 Principal Components extracted from all sensors Minimum, Maximum, Mean and Standard Deviation		
5	2	8 Principal Components extracted from all sensors Minimum, Maximum, Mean and Standard Deviation		
6	3	9 Principal Components extracted from all sensors Minimum, Maximum, Mean and Standard Deviation		
7	1	Minimum, Maximum, Mean, Standard Deviation, Skewness and Kurtosis of all sensors		
8	2	Minimum, Maximum, Mean, Standard Deviation, Skewness and Kurtosis of all sensors		
9	3	Minimum, Maximum, Mean, Standard Deviation, Skewness and Kurtosis of all sensors		
10	1	3 Principal Components extracted from all sensors Minimum, Maximum, Mean, Standard Deviation, Skewness and Kurtosis		
11	2	8 Principal Components extracted from all sensors Minimum, Maximum, Mean, Standard Deviation, Skewness and Kurtosis		
12	3	9 Principal Components extracted from all sensors Minimum, Maximum, Mean, Standard Deviation, Skewness and Kurtosis		

 ${\it TABLE~III}\\ {\it Hyperparameter~configurations~for~each~machine~learning~algorithm~used~for~each~sensor~set.}$

Learning Algorithm	Sensor Set	Hyperparameter Configuration
<u> </u>		criterion=gini, splitter=best
		max_depth=None, min_samples_split=2
Decision Table	All	min_samples_leaf=1, min_weight_fraction_leaf=0.0
		max_features=None, random_state=None
		max_leaf_nodes=None, min_impurity_decrease=0.0
		min_impurity_split=None, class_weight=None
		presort=False
	All	n_estimators=100, criterion=gini
		max_depth=None, min_samples_split=2
		min_samples_leaf=1, min_weight_fraction_leaf=0.0
Random Forest		max_features=auto, max_leaf_nodes=None
Kanuoili Polest		min_impurity_decrease=0.0, min_impurity_split=None
		bootstrap=True, oob_score=False, n_jobs=1
		random_state=None, verbose=0, warm_start=False
		class_weight=None
		C=180, kernel=rbf, degree=3
	1	gamma=auto, coef0=0.0, shrinking=True
Support Vector Machine		probability=False, tol=0.001, cache_size=200
		class_weight=None, verbose=False, max_iter=-1
		decision_function_shape=ovr', random_state=None
Support Vector Machine	2 and 3	C=100
	1	hidden_layer_sizes=900, activation=relu,
		solver=adam, alpha=0.0001, batch_size=auto
		learning_rate=constant, learning_rate_init=0.001
		power_t=0.5, max_iter=600, shuffle=True
Neural Networks		random_state=None, tol=-1, verbose=False
		warm_start=False, momentum=0.9
		nesterovs_momentum=True, early_stopping=False validation_fraction=0.1, beta_1=0.9, beta_2=0.999
Neural Networks	2	epsilon=1e-08 hidden_layer_sizes=880
Neural Networks	3	hidden_layer_sizes=600
Neurai Networks	3	time_left_for_this_task=300, per_run_time_limit=360
	All	initial_configurations_via_metalearning=25
		ensemble_size=50, ensemble_nbest=50
		seed=1, ml_memory_limit=3072
		include estimators=None
AutoSklearn		exclude estimators=None
Autoskiedili		include_preprocessors=None
		exclude_preprocessors=None
		resampling_strategy='holdout'
1		resampling_strategy_arguments=None
1	1	configuration_mode='SMAC'