

Thick Cloud Removal for Sentinel-2 Time-series Images via Combining Deep Prior and Low-Rank Tensor Completion

Qiang Zhang
Wuhan University

https://qzhang95.github.io

2022/5/29

Outline

- 1 Background
- 2 Methodology
- 3 Experiments
- 4 Conclusion

Background

Thick Cloud Removal

Thick Cloud Covering

Sentinel-2 MSI

GF-1 WFV

Thick cloud greatly reduce data usability!

Multitemporal images
Thick Cloud Removal

- Model Driven Strategy: Sparse, Low-rank, Non-local...
- □ Data Driven Strategy: Deep Learning based-methods...

Background

Motivations

- Inherent Characteristics
- > Sensitive Parameter
- > Complex Optimization

- Powerful Feature Expression
- Large Training Labels
- > Overfitting Effects

Complementing Each Other for Thick Cloud Removal?

Model-Driven

Data-Driven

Outline

- 1 Background
- Methodology
- 3 Experiments
- 4 Conclusion

Notation & Preprocessing

Tensor: $\mathcal{X} \in \mathbb{R}^{r_1 \times r_2 \times r_3 \dots}$

Matrix: $\mathbf{X} \in \mathbb{R}^{r_1 \times r_2}$

Vector: $\mathbf{x} \in \mathbb{R}^{r_1}$

Time-series Cloudy Images

Getting Accurate Cloud Location

Cloud Detection [1]

[1] Li et al., *ISPRS P&RS*, 2019.

Cloud Masks

Flowchart

$$(\mathbf{U}_{i}, \mathbf{S}_{i}, \mathbf{V}_{i}^{\mathrm{T}}) = SVD(\mathbf{Y}_{i}) \rightarrow i = 1, 2, 3$$

$$\mathbf{\hat{r}} = rank_{tubal}(\mathcal{Y}) = \max(D(\mathbf{\bar{S}}_{1}), D(\mathbf{\bar{S}}_{2}), D(\mathbf{\bar{S}}_{3}))$$

Simplified

FFT/IFFT

 $\overline{\overline{\mathcal{U}}} = \mathcal{U}(:,1:r,:)$ $\overline{\overline{\mathcal{S}}} = \mathcal{S}(1:r,1:r,:)$ $\overline{\overline{\mathcal{V}}} = \mathcal{V}(:,1:r,:)$

Tensor Tubal Rank:

Maximum number of non-zero tubes

Tensor-Product

Definition of Tensor-Product:

$$\mathcal{B}_{3}(i,j,:) = \mathcal{B}_{1} * \mathcal{B}_{2} = \sum_{k=1}^{n_{2}} \mathcal{B}_{1}(i,k,:) \odot \mathcal{B}_{2}(k,j,:)$$

Deep Spatio-Temporal Prior

Network Training

Jointly Global-Regional Loss:

ADMM Optimization

Algorithm 1 Combined Deep 3D Spatio-temporal Prior with Low-rank Tensor SVD for Thick Cloud Removal via ADMM

Input: Time-series cloudy images \mathcal{Y} , corresponding cloud masks \mathcal{M}

Initialization:
$$\mathcal{Y}^0 = (\mathbf{1} - \mathcal{M}) \odot \mathcal{Y}, \mathcal{X}_D^0 = \mathcal{Y}^0, \mathcal{Q}^0 = \mathbf{0}, \beta^0 = 0.02, \beta_{\max} = 1, \eta = 1.3, \varepsilon = 1e - 5,$$

$$k = 1, k_{\text{max}} = 20$$

1: while not converged and
$$k \leq k_{\text{max}}$$
 do

2: Updating
$$\overline{\mathcal{U}}^k$$
, $\overline{\mathcal{S}}^k$, and $\overline{\mathcal{V}}^k$ via (7) to (11)

3: Updating
$$\mathcal{Z}^k$$
 via (12)

4: Updating
$$\mathcal{P}^k$$
 via (13)

5: Updating
$$\mathcal{X}_D^k$$
 via (14)

6: Updating
$$\mathcal{Y}^k$$
, \mathcal{Q}^k , and β^k via (15), (16), and (17), respectively

7: If
$$\|\mathcal{X}_D^k - \mathcal{X}_D^{k-1}\|_F / \|\mathcal{X}_D^{k-1}\|_F < \varepsilon$$
, stop iteration

8:
$$k = k + 1$$

Output: The construction cloud-free result $\mathcal{X}=\mathcal{X}_D^k$

$$\mathcal{Y}^k = \mathcal{X}_D^{k-1} - 1/\beta^{k-1} \cdot \mathcal{Q}^{k-1}$$

$$\mathcal{Q}^k = \mathcal{Q}^{k-1} + \boldsymbol{\beta}^{k-1} \cdot (\mathcal{Y}^k - \mathcal{X}_D^k)$$

$$\beta^k = \min(\eta \cdot \beta^{k-1}, \beta_{\max})$$

Flowchart

Outline

- 1 Background
- 2 Methodology
- **Experiments**
- 4 Conclusion

Simulated Results (Sentinel-2 MSI)

15/21

Evaluation Indexes

Evaluation indexes of Sentinel-2 MSI simulated experiments 1

Method	CC	SSIM	RMSE	SAM
Cloudy	0.6628	0.7845	0.1983	9.6431
HaLRTC	0.7857	0.8563	0.1246	6.2878
TNN	0.9553	0.9386	0.0571	1.4984
PSTCR	0.9648	0.9412	0.0509	1.2375
Proposed	0.9817	0.9658	0.0383	0.9424

Evaluation indexes of Sentinel-2 MSI simulated experiments 2

Method	CC	SSIM	RSE	SAM
Cloudy	0.6448	0.7535	0.2129	8.2129
HaLRTC	0.7689	0.8346	0.1453	5.2369
TNN	0.9163	0.8826	0.0837	1.6856
PSTCR	0.9675	0.8943	0.0558	1.5294
Proposed	0.9842	0.9359	0.0426	1.1828

Real Results (Sentinel-2 MSI)

Parameter Sensitivity

Scaling Factor & Step Threshold

ADMM & **3D-ST Net**

Outline

- 1 Background
- 2 Methodology
- 3 Experiments
- 4 Conclusion

Conclusion

Combining Deep Spatio-temporal Prior with Low-Rank Tensor SVD (DP-LRTSVD) for thick cloud removal in multitemporal images

> DP-LRTSVD jointly utilizes the low-rank characteristic and deep spatio-temporal prior under the ADMM optimization framework

DP-LRTSVD can simultaneously deal with time-series cloudy Sentinel-2 images, without ensuring cloud-free image

We have released our time-series cloudy Sentinel-2 dataset (including cloud/shadow mask) at https://qzhang95.github.io!

Code & Dataset

Thanks!

Qiang Zhang https://qzhang95.github.io

LIESMARS, Wuhan University