Eighth Semester B. E. (Computer Science and Engineering) Examination

DATA WAREHOUSING AND MINING

Time: 3 Hours [Max. Marks: 60

Instructions to Candidates :—

- (1) All questions carry marks as indicated against them.
- (2) Number your answers properly.
- (3) Assume suitable data and illustrate answers with neat sketches wherever necessary.
- 1. (a) Consider a data warehouse for a hospital where there are three dimensions Doctor, Patient and Time. Consider two measures Count and Charge where Charge is the fee that the doctor charges a patient for a visit. For the above example create a Cube and illustrate the following operations.
 - (i) Rollup
 - (ii) Drill Down
 - (iii) Slice
 - (iv) Dice

(v) Pivot 6(CO1)

- (b) Bring out the differences between
 - (i) OLTP and OLAP
 - (ii) ROLAP and MOLAP 4(CO1)
- 2. (a) Compare and contrast data warehouse and data mart. Also specify reasons for creating data mart. 4(CO2)

CXDW/RW - 18 / 5582 Contd.

- (b) For a Supermarket chain, consider the following dimensions namely product, store, time and promotion. The schema contains central fact table for Sales
 - (i) Design a STAR schema for the above application.
 - (ii) Calculate the maximum number of base fact table records for warehouse with the following values given below
 - Time period : 5 years
 - Store : 300 stores reporting daily sales
 - Product: 40,000 products in each store 6(CO2)
- 3. (a) Write SQL query to create an IOT look_ups with the attributes (lookup_code, lookup_value, lookup_description) in tablespace ts-lookup with following specifications :
 - (i) Constraint: lookup_code should be primary key
 - (ii) PCTTHRESHOLD is 20
 - (iii) lookup_description should be in overflow area and Overflow should be in ts_overflow tablespace

OR

- (b) Write SQL query to create a table with list partition as follows:—
 - (i) Table having columns deptno, deptname, quarterly_sales and state.
 - (ii) Create partition on state:
 - Northwest on OR and WA
 - Southwest on AZ, UT and NM
 - Northeast on NY, VM and NJ
 - Southeast on FL and GA
 - Northcentral on SD and WI
 - Southcentral on OK and TX
 - (iii) Write SQL to alter already created partitioned table to add new partition "Unknown" which will accept any default state values.

 5(CO2)

- (c) Describe query optimization technique with materialized views in data warehouse. Take suitable example for illustration. 3(CO2)
- (d) Bring out essential difference between Cost based and Rule based optimizer. 2(CO2)
- 4. (a) Illustrate with example, each of the following data mining functionalities:—
 - (i) Association and Correlation Analysis
 - (ii) Classification and Prediction
 - (iii) Clustering and Evolution Analysis

7(CO3)

\mathbf{OR}

- (b) Using Equi-Depth binning method, partition the data given below into 4 bins and perform smoothing according to the following methods.
 - (i) Smoothing by bin means
 - (ii) Smoothing by bin median
 - (iii) Smoothing by bin boundaries
 - (iv) How outliers will be determined in the given data? 24,25,26,27,28,56,67,70,70,75,78,79,89,90,91,94,95,96,100,102,103,107,109,112 7(CO3)
- (c) What are the major challenges of mining a huge amount of data (such as billion of tuples) in comparison with mining a small amount of data (few hundred tuple data set)?

 3(CO3)
- 5. (a) A database consists of nine transactions taken from grocery store. Enumerate all the frequent itemset using, Apriori algorithm with minimum support threshold S=3 and minimum confidence threshold C=50%. Show the candidate and frequent itemset for each database scan. List all the association rules that are generated and highlight the strong one, sort them by confidence.

Tid	Item		
1	Milk, Bread, Biscuits		
2	Bread,Sugar		
3	Bread, Cereal		

4	Milk,Bread,Sugar
5	Milk, Cereal
6	Bread, Cereal
7	Milk, Cereal
8	Milk, Bread, Cereal, Biscuits
9	Milk,Bread,Cereal

7(CO4)

OR

(b) Apply FP – growth algorithm on following example with min_sup = 20% Construct FP – Tree and show frequent pattern generated at the end of the algorithm.

Tid	Item		
1	a,b,e		
2	b,d		
3	b,c		
4	a,b,d		
5	a,c		
6	b,c		
7	a,c		
8	a,b,c,e		
9	a,b,c		

7(CO4)

- (c) Calculate the distance between two objects, A = (22, 2, 45, 18) and B = (21, 0, 34, 9) using the Manhattan distance and Minkowski distance for p = 4.
- 6. (a) Consider five points {x1, x2, x3, x4, x5} with the following coordinate as two demension samples for clustering:

X1 = (0, 2), x2 = (1, 0), x3 = (2, 1), x4 = (4, 1), x5(5, 3).

Apply K-Means algorithm on the above data set. The required number of clusters is two, initially clustered are formed from random distribution of samples: C1(x1, x2, x4) and C2(x3, x5) 6(CO4)

(b) The distance between five pair of cases given below:

	A	В	С	D	Е
A	0				
В	8	0			
С	2	6	0		
D	5	4	8	0	
Е	10	9	3	7	0

Cluster the five cases using below procedure and draw the Dendograms structure.

- (a) Single linkage hierarchical procedure.
- (b) Complete linkage hierarchical procedure.
- (c) Average linkage hierarchical procedure. 6(CO4)
- (c) For the following algorithms, write
 - (i) Shape of the cluster that can be determined and
 - (ii) Time complexity.
 - (a) CLARA
 - (b) CLARANS
 - (c) BIRCH
 - (d) DBSCAN 4(CO4)