قضاء البقاع الغربي	محافظة البقاع	ثانوية سحمر الرسمية (1011)
المدة: 120 دقيقة	الصف: علوم عامة	امتحان :الفصل الأول
الأستاذ: _ علي عيسى	المادة: الرياضيات	العام الدراسي: 2022-2023

I-(10 points)

ABC is a right isosceles triangle of vertex A so that $(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2} + 2k\pi$ and AB = 4

Let O be the midpoint of [BC]

Let (C) be the circle circumscribed about the triangle ABC

The line (OI) is the perpendicular bisector of [AC]

Let r be a rotation of angle $\frac{\pi}{4}$ that transforms C onto A

- 1) Draw a figure
- 2) Show that I is the center of the rotation r
- 3) Let D be the image of A by *r*Show that I, B and D are collinear. Construct D
- 4)Let Q be the point on [AB] such that AQ = COShow that r(O) = Q

- 5) The two straight lines (IA) and (CB) are intersecting at E
 - a) Prove that r(E) = B Hint: Show that the two triangles CEI and ABI are equal
 - b) Prove that CE = AD.
 - c) What is the nature of the quadrilateral ADEC
- 6)a) Prove that the two straight lines (QD) and (AB) are perpendicular
 - b) Deduce that the points Q, E and D are collinear

II- (5 points)

In the below figure : ABD is right at D and BD = 2cm

The points A, B and E are collinear so that AB = 3cm and AE = 8cm

- (C) is a circle circumscribed about the triangle ABD
- 1) Determine the elements of the dilation *h* of center A that transforms B onto E
- 2) a) Construct geometrically the image D', of the point D
 - b) Calculate ED'
 - c) What is the nature of triangle AED'?
- 3) Construct the circle (C'), the image of the circle (C) under *h* and calculate its area.

Correction of exam

I-(10points)

ABC is a right isosceles triangle of vertex A

so that
$$(\overrightarrow{AB}; \overrightarrow{AC}) = \frac{\pi}{2} + 2k\pi$$
 and AB = 4

Let O be the midpoint of [BC]

Let (C) be the circle circumscribed about the triangle ABC

The line (OI) is the perpendicular bisector of [AC]

Let r be a rotation of angle $\frac{\pi}{4}$ that transforms C onto A

- 1) Draw a figure
- 2) Show that I is the center of the rotation r
- 3) Let D be the image of A by *r* Show that I, B and D are collinear. Construct D

- a) Prove that r(E) = B Hint: Show that the two triangles CEI and ABI are equal
- b) Prove that CE = AD.
- c) What is the nature of the quadrilateral ADEC?
- 6)a) Prove that the two straight lines (QD) and (AB) are perpendicular
 - b) Deduce that the points Q, E and D are collinear

Solution

- 1) Draw a figure
 - 0.5 points

2)

IC = IA since (OI) is the perpendicular bisectors of [AC]

Recall: measure of the inscribed angle is half of the facing arc

$$\begin{cases}
\widehat{ABC} = \frac{\widehat{AC}}{2} \\
\widehat{AIC} = \frac{\widehat{AC}}{2}
\end{cases}, \text{ then } \widehat{ABC} = \widehat{AIC} \text{ . But } \widehat{ABC} = 45^{\circ} \text{ , then } \widehat{AIC} = 45^{\circ} \\
\widehat{AIC} = \frac{\widehat{AC}}{2}
\end{cases}$$

$$\begin{cases}
IC = IA \\
(\overrightarrow{IC}; \overrightarrow{IA}) = \frac{\pi}{4} + 2k\pi
\end{cases}, \text{ then I is the center of } r$$
1 points

3) since
$$r(A) = D$$
, then $\begin{cases} IA = ID \\ (\overrightarrow{IA}; \overrightarrow{ID}) = \frac{\pi}{4} + 2k\pi \end{cases}$

$$(\overrightarrow{IC}; \overrightarrow{ID}) = (\overrightarrow{IC}; \overrightarrow{IA}) + (\overrightarrow{IA}; \overrightarrow{ID}) + 2k\pi$$
$$(\overrightarrow{IC}; \overrightarrow{ID}) = \frac{\pi}{1} + \frac{\pi}{1} + 2k\pi$$

$$(\overrightarrow{IC}; \overrightarrow{ID}) = \frac{\pi}{4} + \frac{\pi}{4} + 2k\pi$$

$$(\overrightarrow{IC};\overrightarrow{ID}) = \frac{\pi}{2} + 2k\pi$$
, then (ID) \perp (IC)

But $\widehat{CIB} = 90^{\circ}$ (Diametrically opposite)

then (IB) \perp (IC)

$$(ID) \perp (IC)$$

$$(IB) \perp (IC)$$

, then I, B and D are collinear 1 points

Construction of D

$$\widehat{CID} = 90^{\circ}$$

D is the third vertex of the direct right

isosceles triangle ICD

0.5 points

4) Let Q be the point on [AB] such that $\mathbf{AQ} = \mathbf{CO}$ Show that r(O)=Q

$$(\overrightarrow{CO}; \overrightarrow{AQ}) = (\overrightarrow{CB}; \overrightarrow{AB}) = (-\overrightarrow{BC}; -\overrightarrow{BA})$$
$$= (\overrightarrow{BC}; \overrightarrow{BA}) = \frac{\pi}{4} + 2k\pi$$

We have
$$\begin{cases} CO = AQ \\ (\overrightarrow{CO}; \overrightarrow{AQ}) = \frac{\pi}{4} + 2k\pi \end{cases}$$
 and $r(C) = A$

then by the converse of characteristic property of rotation r(O) = Q1.5 points

- 5) The two straight lines (IA) and (CB) are intersecting at E
 - a) Prove that r(E) = B Hint: Show that the two triangles CEI and ABI are equal
 - b) Prove that CE = AD.
 - c) What is the nature of the quadrilateral ADEB?
- 5)a) In two triangles CEI and ABI, we have

$$*IA = IC$$

*
$$\widehat{IAB} = \widehat{ICE} = \frac{\widehat{IB}}{2}$$
.

*
$$\widehat{AIB} = \widehat{EIC} = \overline{45^0}$$

, then the two triangles are equal by S.A.S

Homologous elements IE = IB

$$\widehat{EIB} = \widehat{AID} = 45^{\circ}$$

Since
$$\left\{ (\overrightarrow{IE} = IB) \right\} = \frac{\pi}{4} + 2k\pi$$
, then $r(E) = B$ 1.5 points

b)since $r: \begin{cases} A \to D \\ C \to A \text{ and rotation preserves distances}, \text{ then CE} = AB \text{ and AC=DA} \\ E \to B \end{cases}$

But AB = AC (given), then hence CE = AD 1 points

c) since
$$r(E) = B$$
, then $\left\{ (\overrightarrow{IE}; \overrightarrow{IB}) = \frac{\pi}{4} + 2k\pi \right\}$

since
$$r(A) = D$$
, then $\begin{cases} IA = ID \\ (\overrightarrow{IA}; \overrightarrow{ID}) = \frac{\pi}{4} + 2k\pi \end{cases}$

The triangles IEB and IAD are isosceles triangles of vertex $I=45^{\circ}$

$$\widehat{IEB} = \widehat{IAD} = \frac{180^{\circ} - 45^{\circ}}{2} = 67^{\circ}.5$$

Since the corresponding angles are equal

,then the lines (AD) and (EB) are parallels

WE have proved $\begin{cases} CE = AD \\ (CE) \parallel (AD) \end{cases}$, then **ADEC** is a parallelogram 1 points

- 6)a) Prove that the two straight lines (QD) and (AB) are perpendicular
 - b) Deduce that the points Q, E and D are collinear

We have proved
$$r: \left\{ \overrightarrow{A} \to D \\ O \to Q \right\}$$
, then $\left(\overrightarrow{AO}; \overrightarrow{DQ} \right) = \frac{\pi}{4} + 2k\pi$

$$(\overrightarrow{AB}; \overrightarrow{DQ}) = (\overrightarrow{AB}; \overrightarrow{AO}) + (\overrightarrow{AO}; \overrightarrow{DQ}) + 2k\pi$$

$$(\overrightarrow{AB}; \overrightarrow{DQ}) = \frac{\pi}{4} + \frac{\pi}{4} + 2k\pi$$

$$(\overrightarrow{AB}; \overrightarrow{DQ}) = \frac{\pi}{4} + \frac{\pi}{4} + 2k\pi$$

$$(\overrightarrow{AB}; \overrightarrow{DQ}) = \frac{\pi}{2} + 2k\pi$$
, then $(DQ) \perp (AB)$

Second method

We have
$$r: \begin{cases} O \to Q \\ A \to D \\ C \to A \end{cases}$$

(OA)
$$\perp$$
 (OC), then $r((OA)) \perp r((OC))$, then (QD) \perp (QA)

since rotation preserves perpendicularity

$$(QD) \perp (QA)$$
, hence $(QD) \perp (AB)$ 1.5 points

b) Deduce that the points Q, E and D are collinear

$$\{(DE) \mid (AC) \text{ (opposite sides of the parallelogram)} \}$$

 $\{(AC) \perp (AB) \text{ (given)}\}$

, then
$$(DE) \perp (AB)$$

$$(DE) \perp (AB)$$

$$\begin{cases} (DE) \perp (AB) \\ (QD) \perp (AB) \end{cases}$$
, then I, B and D are collinear

0.5 points

II- (5points)

In the below figure : ABD is right at B and BD = 2cm

The points A, B and E are collinear so that AB=3cm and AE=8cm

- (C) is a circle circumscribed about the triangle ABD
- 1) Determine the elements of the dilation h of center A that transforms B onto E
- 2)a) Construct geometrically the **point D'**, the image of the point D
- b) Calculate ED'

3) Construct the circle (C'), the image of the circle (C) under hand calculate its area

Solution: First method

$$AE = 8$$
 and $AB = 3$

$$\frac{AE}{AB} = \frac{8}{3}$$
, then $AE = \frac{8}{3}AB$

The vectors \overrightarrow{AE} and \overrightarrow{AB} have the same direction and same sense, then $\overrightarrow{AE} = \frac{8}{3}\overrightarrow{AB}$

Therefore E is the image of B under a positive dilation h of center A and ratio $\frac{8}{3}$

Second method

Let k be the center of h

since
$$h: {A \to A \atop B \to E}$$
, then $\overrightarrow{AE} = \overrightarrow{kAB}$ and so $AE = |k|AB$

The vectors \overrightarrow{AE} and \overrightarrow{AB} have the same direction and same sense, then k > 0 and |k| = k

,then
$$K = \frac{AE}{AB} = \frac{8}{3}$$

Therefore h is a positive dilation of center A and ratio $\frac{8}{3}$ 1 points

2)a) h(D) =D' then
$$\overrightarrow{AD'} = \frac{8}{3}\overrightarrow{AD}$$
 and so $\overrightarrow{D'} \in (\overrightarrow{AD})$

*Since
$$h: \begin{cases} B \to E \\ D \to D' \end{cases}$$
, then $\overrightarrow{ED'} = \frac{8}{3} \overrightarrow{BD}$

and hence the straight lines(ED') and (BD) are parallel

Conclusion: D' is the point of intersection of the line (AD) with the parallel drawn from E to the line (BD)

1.5 points

b) Since $h: \begin{cases} B \to E \\ D \to D' \end{cases}$, then $ED' = \frac{8}{3}BD$ since dilation multiply the distance by |k|

$$ED' = \frac{8}{3}BD = \frac{8}{3} \times 2 = \frac{16}{3} cm$$
 0.5 points

c) What is the nature of triangle AED'?

We have proved
$$h: \begin{cases} A \to A \\ B \to E \\ D \to D' \end{cases}$$

ABD is a direct right triangle at B, the its image

AED' is a direct right triangle at E

Since dilation transform a triangle onto similar one

3)Let (C') be the image of the circle (C) under h

[AD] is the diameter of the circle (C), then

h([AD]) is the diameter of the circle h((C))

But
$$h([AD]) = [AD']$$

Then (C') is the circle of diameter [AD'] 0.5 points Area of (C') = ??

Area of (C') =
$$k^2 \times$$
 area of (C)

First we should find area of the circle (C)

Let I be the midpoint of [AD]
ABD is a right triangle at B and
[BI] is the median of [AD]

,then
$$IB = \frac{AD}{2} = IA = ID$$

,hence I is the center of (C)

Let R be the radius of (C)

, then
$$\mathbf{R} = \frac{AD}{2} = \frac{\sqrt{AB^2 + BD^2}}{2} = \frac{\sqrt{13}}{2}$$

Area of (C) =
$$\pi R^2 = \pi \times (\frac{\sqrt{13}}{2})^2 = \frac{13\pi}{4} cm^2$$

area of (C') =
$$k^2 \times$$
 area of (C)
= $\frac{208}{9}\pi \ cm^2$ 1.5 points

