Calibration Report: Low N Sedimentary Site Base Case

Kaveh Gholamhossein Siah

 $28 \ {\rm November} \ 2020$

${\bf Contents}$

	Hydrology	4
	Soil Solution Results	
	Lysimeter Comparisons	10
	Weathering Results	10
	Litter Pool Results	12
	Soil Organic Matter Results	14
	Tree Nutrient Content	
	Analysis 1: Stack Flux Data	
	Cation Exchange Capacity	
	Anion Exchange Capacity	
	0 1 V	
	Other	24
т• ,	C D'	
List	of Figures	
1	Monthly Calcium Concentrations by Soil Layer	6
2	Monthly Magnesium Concentrations by Soil Layer	
3	Monthly Potassium Concentrations by Soil Layer	
4	Monthly Sodium Concentrations by Soil Layer	
5	Monthly Sulfate Concentrations by Soil Layer	
6	Monthly Chloride Concentrations by Soil Layer	
7	Monthly Aluminum Concentrations by Soil Layer	
8	Monthly SiO2 Concentrations by Soil Layer	
9	Monthly Organic Acid Base (R-) Concentrations by Soil Layer	
10	Monthly pH by Soil Layer	
11	Yearly Ammonium concentration by Soil Layer	
12	Yearly Nitrate concentration by Soil Layer	
13	Calcium Weathering (All Layer)	
14	Magnesium Weathering (All Layer)	10
15	Potassium Weathering (All Layer)	
16	Aluminum Weathering (All Layer)	
17	Phosphate Weathering (All Layer)	
18	Silica Weathering (All Layer)	
19	Sodium Weathering (All Layer)	
20	Forest Floor (O-Layer) Carbon Content Over Simulation Period	
$\frac{20}{21}$	Forest Floor (O-Layer) Carbon Content Over Simulation Period	
$\frac{21}{22}$	Forest Floor/O-horizon Ca content over time (a). and net annual Ca return in litterfall (b)	
$\frac{22}{23}$	Forest Floor/O-horizon Mg content over time (a). and net annual Mg return in litterfall (b)	
24	Forest Floor/O-horizon K content over time (a). and net annual K return in litterfall (b)	
25	Forest Floor/O-horizon S content over time (a). and net annual S return in litterfall (b)	15
26	Forest Floor/O-horizon P content over time (a). and net annual P return in litterfall (b)	16
27	Forest Floor/O-horizon N content over time (a). and net annual N return in litterfall (b)	16
28	Base Cation Nutrient Content in Simulated Forest	17
29	N, S, and P Nutrient Contents and biomass per compartment	18
30	Calcium input and output comparison graphs	18
31	Magnesium input and output comparison graphs	19
32	Potassium input and output comparison graphs	19
33	Sulfur input and output comparison graphs	20
34	Nitrogen input and output comparison graphs	20
35	Calcium and Magnesium CEC adsorption over time	21
36	Potassium and Sodium CEC adsorption over time	21
30 37	Ammonium and Aluminum CEC adsorption over time	21
91	Animomani and Adminimin ODO adsorption over time	41

List of Tables

1	Average Soil Solution Concentrations of Reliable Months (2005-2006)	4
2	Lysimeter Measured Soil Solution Concentrations of Reliable Months (2005)	1
3	Simulated Lysimeter Fluxes by Depth (2005-2006)	10
4	Actual Average Lysimeter Fluxes (2005)	10

Hydrology

Soil Solution Results

Table 1: Average Soil Solution Concentrations of Reliable Months (2005-2006)

	$ m \mu mol/L$															
Soil Layer	Ca	Mg	K	Na	NO3	NH4	SO4	Cl	PO4	DOC	Al	Si	H+	рН	R	HR
Layer 1	13.3	16.2	10.80	52.8	1.1822	2.241	12.4	51.6	0.514	160.0	9.77e-04	72.7	12.55	4.90	59.8	20.14
Layer 2	14.1	17.1	11.51	67.5	0.6668	1.824	12.6	58.5	0.236	178.7	7.99e-04	91.1	10.33	4.99	69.2	20.09
Layer 3	13.9	16.8	11.11	77.6	0.3913	1.472	12.5	65.2	0.220	170.4	5.82e-04	91.6	8.16	5.09	68.4	16.86
Layer 4	10.5	16.2	6.15	75.8	0.1936	0.806	11.4	64.6	0.203	104.2	2.09e-04	90.3	3.52	5.45	45.3	6.81
Layer 5	10.9	16.9	6.24	80.6	0.1303	0.665	11.5	68.8	0.140	97.0	2.12e-04	95.0	3.50	5.46	42.1	6.41
Layer 6	10.4	16.2	6.08	81.2	0.1061	0.447	11.4	72.2	0.160	66.3	1.06e-04	98.4	1.93	5.71	29.9	3.24
Layer 7	10.8	16.8	6.17	82.9	0.0974	0.404	11.5	75.8	0.160	61.6	1.42e-04	102.5	2.50	5.60	27.3	3.55
Layer 8	10.6	16.6	6.11	83.9	0.0914	0.391	11.4	78.0	0.137	49.3	$9.95\mathrm{e}\text{-}05$	105.4	1.81	5.74	22.1	2.51

Table 2: Lysimeter Measured Soil Solution Concentrations of Reliable Months (2005)

Layer	Ca	Ca SD	Mg	Mg SD	K	K SD	Na	Na SD	NO3	NO3 SD	NH4	NH4 SD	SO4	SO4 SD	Cl	Cl SD	P^a	P SD	DOC	DOC SD	Al^b	Al SD	Si^c	Si SD	pH^d
1	29	12.9	30	20	32	17	131	71	2.3	2.14	1.1	0.25	18	2.20	167	109	0.07	0.038	123	28	0.98	0.42	82	16	5.6
2	29	12.9	30	20	32	17	131	71	2.3	2.14	1.1	0.25	18	2.20	167	109	0.07	0.038	123	28	0.98	0.42	82	16	5.3
3	29	12.9	30	20	32	17	131	71	2.3	2.14	1.1	0.25	18	2.20	167	109	0.07	0.038	123	28	0.98	0.42	82	16	5.4
4	14	3.3	24	12	12	20	133	58	1.9	0.73	1.2	0.27	12	0.73	152	87	0.05	0.032	63	30	0.37	0.17	84	15	5.5
5	14	3.3	24	12	12	20	133	58	1.9	0.73	1.2	0.27	12	0.73	152	87	0.05	0.032	63	30	0.37	0.17	84	15	5.6
6	14	3.3	24	12	12	20	133	58	1.9	0.73	1.2	0.27	12	0.73	152	87	0.05	0.032	63	30	0.37	0.17	84	15	5.7
7	14	3.3	24	12	12	20	133	58	1.9	0.73	1.2	0.27	12	0.73	152	87	0.05	0.032	63	30	0.37	0.17	84	15	5.8
8	14	3.3	24	12	12	20	133	58	1.9	0.73	1.2	0.27	12	0.73	152	87	0.05	0.032	63	30	0.37	0.17	84	15	5.8

^a Average based on TP annual average
^b Does not distinguish between organic-Al and free Al
^c Model does not simulate Si uptake
^d From Hynicka et al., 2017 (10-50cm) extrapolated to 1m

Figure 1: Monthly Calcium Concentrations by Soil Layer

Figure 2: Monthly Magnesium Concentrations by Soil Layer

Figure 3: Monthly Potassium Concentrations by Soil Layer

Figure 4: Monthly Sodium Concentrations by Soil Layer

Figure 5: Monthly Sulfate Concentrations by Soil Layer

Figure 6: Monthly Chloride Concentrations by Soil Layer

Figure 7: Monthly Aluminum Concentrations by Soil Layer

Figure 8: Monthly SiO2 Concentrations by Soil Layer

Figure 9: Monthly Organic Acid Base (R-) Concentrations by Soil Layer

Figure 10: Monthly pH by Soil Layer

Figure 11: Yearly Ammonium concentration by Soil Layer

Figure 12: Yearly Nitrate concentration by Soil Layer

Lysimeter Comparisons

Table 3: Simulated Lysimeter Fluxes by Depth (2005-2006)

Depth	YEAR	Ca	Mg	K	Na	NO3	NH4	SO4	Cl	Р	DOC	Al	Si
2	2005	8.2	6.0	6.5	25	0.172	0.31	6	34	0.11	28	8.8e-05	49
2	2006	8.8	6.5	6.7	20	0.068	0.23	6	30	0.12	29	2.3e-04	51
8	2005	6.3	5.9	3.3	26	0.046	0.11875	4.7	40	0.059	6.0	5.9e-06	42
8	2006	5.7	5.4	3.1	26	0.000	0.00044	4.7	32	0.057	5.5	8.1e-06	49

Table 4: Actual Average Lysimeter Fluxes (2005)

Sh	allow.and.Deep.fluxes	Layer	NH4	NH4.SD	NO3	NO3.SD	TN	TN.SD	DOC	DOC.SD	TP	TP.SD	Cl	CLSD	SO4	SO4.SD	Ca	Ca.SD	Mg	Mg.SD	K	K.SD	Na	Na.SD	Al	ALSD
	NA																									0.126564555
	NA	2	0.18482098	0.037686163	0.058428056	0.56180591	0.782891773	1.207801926	7.454929603	2.86204934	0.02941534	0.012838737	38.85767377	30.20293147	4.342785568	2.358188679	7.924881994	1.716262595	6.693254137	3.118581853	2.39035473	6.086366362	27.76582547	13.72230984	0.162624321	0.037249254

Weathering Results

Figure 13: Calcium Weathering (All Layer)

Figure 14: Magnesium Weathering (All Layer)

Figure 15: Potassium Weathering (All Layer)

Figure 16: Aluminum Weathering (All Layer)

Figure 17: Phosphate Weathering (All Layer)

Figure 18: Silica Weathering (All Layer)

Figure 19: Sodium Weathering (All Layer)

Litter Pool Results

Figure 20: Forest Floor (O-Layer) Carbon Content Over Simulation Period

Figure 21: Forest Floor (O-Layer) Carbon Content Over Simulation Period

Note that the fine litter pool (the stage between humus and fresh/coarse litter) is growing in this model. This might deviate from observed behavior.

Figure 22: Forest Floor/O-horizon Ca content over time (a). and net annual Ca return in litterfall (b).

Soil Organic Matter Results

Figure 23: Forest Floor/O-horizon Mg content over time (a). and net annual Mg return in litterfall (b).

Figure 24: Forest Floor/O-horizon K content over time (a). and net annual K return in litterfall (b).

Figure 25: Forest Floor/O-horizon S content over time (a). and net annual S return in litterfall (b).

Figure 26: Forest Floor/O-horizon P content over time (a). and net annual P return in litterfall (b).

Figure 27: Forest Floor/O-horizon N content over time (a). and net annual N return in litterfall (b).

I plotted the litterfall return rate and the O-horizons next to each other to show that the inability of the O-horizon to build up certain nutrients is not an issue with nutrient release (these values can be set to be very low, such as 0.05 for Ca and Mg, and losses are still observed), but likely due to a gradual depletion of the soil for specific nutrients. The site builds up with N in the O-horizon, and this likely implies that the system is not limited by N, but that base cations are becoming increasingly limited over time, with the exception of K.

Tree Nutrient Content

(c) Potassium content in each biomass compartment

Figure 28: Base Cation Nutrient Content in Simulated Forest

Figure 29: N, S, and P Nutrient Contents and biomass per compartment

Analysis 1: Stack Flux Data

Figure 30: Calcium input and output comparison graphs

Figure 31: Magnesium input and output comparison graphs

Figure 32: Potassium input and output comparison graphs

Figure 33: Sulfur input and output comparison graphs

I added back a reasonably large sulfate pool, this caused enhanced S losses which were unrealistic. This likely implies that the system had too much S going through it.

Figure 34: Nitrogen input and output comparison graphs

Notice how SOM mineralization starts off highly negative (-358 kg/ha/yr N); implying a large net N uptake in the microbial pool. The mineralization then balances out and steadily returns N to the soil over time, behaving normally. I do need the microbial pool to help calibrate the N cycle, but I may need to reduce the CEC stabilized N and decrease the N-uptake in the microbial pool. These results likely imply too much N is going through the system and that the microbial pool is too large of an N pool.

Cation Exchange Capacity

Figure 35: Calcium and Magnesium CEC adsorption over time

Figure 36: Potassium and Sodium CEC adsorption over time

Figure 37: Ammonium and Aluminum CEC adsorption over time

Anion Exchange Capacity

Phosphate seems stable, generally. It should be noted that P uptake is not being modeled in the foliage (it should remain constant so far) and that phosphate adsorption parameters are completely borrowed from the Burgundy site. As for sulfate, I purged the model of the AEC sulfate pool and relegated all soil S to the SOM organic pool.

I further note that the ALSEA rain chemistry seems to be lacking in Na and Cl, when I completely take away Cl adsorption, I don't get anywhere near the concentration of Cl measured in the lysimeters, like I do for sulfate.

Other

