LINJEINTEGRALER FOR SKALARFELT OG 3.4: VEKTORFELT La 1R" være som for. Et skalarfelt på A⊆R" er en funksjon f: A -> R. Et veletorfelt pa ACR" en funkjon F: A -> Rh

MOTIVASJON FOR LINJEINTEGRAL AN SKALARFELT

SER PA EN TRAD DER ET LITE STYKKE

AU LENGE S HER

Z = (x,y) & R2

HAR MASSE

f(x) = masse nor x.

Hvis formen består av N deler, der s i'te del har lengde si og er non Xi

er sen totale masner

$$M = \sum_{i=1}^{N} f(\vec{x}_i) s_i$$

And at C har en parametrisering

$$\overrightarrow{r}: [a,b] \longrightarrow \mathbb{R}^{n}$$
 $t \longmapsto \overrightarrow{r}(t)$

To en partisjon

 $a = to < t_{1} < \dots < t_{N} = b$

(a Ci vane delen av burven

der $t_{1} < t \leq t_{1}$. ($| \leq i \leq N$)

Da er $\overrightarrow{r}(t_{i}) = \overrightarrow{x}_{i}$ et punkt på Ci;

Så $f(\overrightarrow{x}_{i}) = f(\overrightarrow{r}(t_{i}))$.

Ci har lengte va.

 $|\overrightarrow{r}(t_{i}) - \overrightarrow{r}(t_{i-1})|$
 $\overrightarrow{x} \quad \overrightarrow{r}(t_{i})(t_{i} - t_{i-1})$

 $|\vec{r}(t_i) - \vec{r}(t_{i-1})|$ $s \quad r(t_i)(t_i - t_{i-1})$ $farter \quad r(t) = |\vec{r}(t)|$ $= |\vec{r}'(t)|$

Summen is er ute etter

blir
$$N$$

$$\sum_{i=1}^{i=1} f(\vec{r}(t_i)) v(t_i)(t_i - t_{i-1})$$

$$\int_{t_i - t_{i-1}}^{t_i - t_{i-1}} f(\vec{r}(t)) v(t) dt$$

$$\int_{t_i - t_{i-1}}^{t_i - t_{i-1}} \int_{t_i - t_i}^{t_i - t_{i-1}} v(t_i) dt$$

$$\int_{t_i - t_{i-1}}^{t_i - t_{i-1}} \int_{t_i - t_i}^{t_i - t_{i-1}} v(t_i) v(t_i) dt$$

Def La V: [a, b] -> A CR's

parametrisere en kurve C.

La f: A -> TR vare et skalarfelt

pa A. Anta at VIt) = | r'lt)|

og f er kontinuerlige. Da er

linjeintegralet til f langs C definert

Lih

Sfds = Sf(r'lt) Vlt) dt

Eksempel:

$$\overrightarrow{r}:[0,2\pi] \longrightarrow \mathbb{R}^{2}$$

$$\overrightarrow{r}(t) = (\cos t_{1} \sin t_{1})$$

$$f(x,y) = x + 2$$

$$\overrightarrow{r}(t) = (-\sin t_{1} \cos t_{2})$$

$$= \int_{0}^{2\pi} f(\overrightarrow{r}(t)) v(t) dt$$

$$= \int_{0}^{2\pi} (\cos t + 2) \cdot 1 dt$$

$$= \int_{0}^{2\pi} (\cos t + 2) \cdot 1 dt$$

$$= \int_{0}^{2\pi} (\sin t_{1} + 2t)$$

$$= \int_{0}^{2\pi} (\sin t_{2} + 2t)$$

$$= \int_{0}^{2\pi} (\cos t_{1} + 2t)$$

$$= \int_{0}^{2\pi} (\cos t_{2} + 2t)$$

$$= \int_{0}^{2\pi} (\cos t_{1} + 2t)$$

$$= \int_{0}^{2\pi} (\cos t_{2} + 2t)$$

$$= \int_{0}^{2\pi} (\cos t_{1} + 2t)$$

$$= \int_{0}^{2\pi} (\cos t_{2} + 2t)$$

$$= \int_{0}^{2\pi} (\cos t_{1} + 2t)$$

$$= \int_{0}^{2\pi} (\cos t_{2} + 2t)$$

$$= \int_{0}^{2\pi} (\cos t_{1} +$$

Styldens glatte kurver DEF: F: [a,b] - R er stylcheris glatt his det finnes a=to < t(<... < tm=b shk at restrikijonen \vec{r}_i : $[t_{i-1}, t_i] \rightarrow \mathbb{R}^n$ av = hi [ti-1, ti] = [a, b] er deriverbør med dontinuerlig derivert, for hver 1 si & m. La Ci vare parametrisert voil ?.

$$\frac{DEF}{\int_{S} f ds} = \int_{S} f ds + \dots + \int_{C_{m}} f ds$$

Setning 3.3.2 La T: (a,b) - A C Rh

være en stylkeris glett parametrisering
av en kurre C i A, og la

(ambdang

rore to skalarfelt pe A. La hipeR

Da er

Shalarfelt pe A. La hipeR

La c være sammensett av kurvene

Cy.--, Cm. Da er

La C vare sammensett av knowne C_{1} , C_{1} , C_{2} , C_{3} , C_{4} , C_{5} , C_{6} , C_{6} $\int_{C} f ds = \int_{C_{1}} f ds + ... + \int_{C_{m}} f ds$

Varhengished as parametrisering:

$$T_{2}(x) = (u_{1})^{2} - (u_{2})^{2}$$

$$T_{3}(u_{1}) = (u_{3})^{2} - (u_{3})^{2}$$

$$T_{4}(x) = (u_{3})^{2} - (u_{3})^{2}$$

$$T_{5}(u_{1}) = (u_{3})^{2} - (u_{3})^{2}$$

$$T_{7}(u_{1}) = (u_{3})^{2} - (u_{3})^{2}$$

$$T_{1} = \int_{C} f ds = \int_{C} f(r_{1}^{2}(u_{1})) v_{2}(u_{1}) du$$

$$T_{2} = \int_{C} f ds = \int_{C} f(r_{2}^{2}(u_{1})) v_{3}(u_{1}) du$$

Når er to parametrisenger etnisalente?

threat point of the man ha formen

The (u) for en u \(\) [c,d). Ante at

u \(\) for en funksjon \(\) : [a,b]

u \(\) \(\) for en funksjon \(\) \

「けし」= を(中は) なと(a,b).

Omvendt ma hvert punkt

for en 4: [c,d] -) [9,b].

$$r_{i}(t) = r_{i}(\phi(t)) = r_{i}(\phi(\phi(t)))$$

så his T' er injektir (= en-ti)-en)

ma y(p(t))=t for Met.

Tilsvarende må \$(4(n)) =u for

alle u-

... y m'a voire à-1.

Vil anta at \$: (a,b) -> (c,d) οg ψ=φ-1: [c,d) -1 [a,b) er Ron tinuerlig deriverbore. Den'verer t = 4(4(4) og får 1 = 4 (A(+1) · p'(+) 20 pl(t) ≠0 03 y(a) ≠0 DEF: To parametriseringer F. : [9,6] -> IR os Ti: [c14] -> R" er ekvivalente his det finnes en surjektiv finksjøn (=på) A: [a,b] -> (cia) med dondinuerlig deriver p'(f) &0 for alle te (a, b) , og ではり=で(もは)、

* eventuelt t E (a15).

Setn. 3.3.5

La
$$\overrightarrow{r_1}$$
: $[a_1b] \rightarrow A \subset \mathbb{R}^n$ of

 $\overrightarrow{r_2}$: $[c_1d] \rightarrow A \subset \mathbb{R}^n$

voice editivalents parametriseninger av

voice editivalents parametriseninger av

kurven \mathcal{C} : A . Le $f:A \rightarrow \mathbb{R}$

voice et skalenfelt. Da en

 $\int_{a}^{b} f(\overrightarrow{r_1}(t)) v_1(t) dt dt dt$
 $\int_{a}^{b} f(\overrightarrow{r_2}(u)) v_2(u) du$
 $\int_{a}^{b} f(\overrightarrow{r_2}(u)) v_2(u) du$
 $\int_{a}^{b} f(\overrightarrow{r_2}(u)) v_2(u) du$

Bevis La p: (q,b) -> (c,d) vere en reparametrisering sã Andar $\beta^{1}(t)$ <0 for alle t. $I_{1} = \int f(\vec{r}_{1}(t)) v_{1}(t) dt | \vec{r}_{1}(t) = \vec{v}_{2}(\phi(t))$ = $\int_{a}^{b} f(\vec{r_{i}}(\phi(t))) v_{i}(\phi(t)) \phi'(t) dt$ = $\int_{a}^{b} f(\vec{r_{i}}(\phi(t))) v_{i}(\phi(t)) \phi'(t) dt$ = $\int_{a}^{b} f(\vec{r_{i}}(\phi(t))) v_{i}(\phi(t)) dy$ = $\int_{a}^{b} f(\vec{r_{i}}(\phi(t)) dy$ = $\int_{a}^{b} f(\vec{r_{i}}(\phi(t))) v_{i}(\phi(t)) dy$ = $\int_{a}^{b} f(\vec{r_{i}}(\phi(t)) dy$ = $\int_{a}^{b} f(\vec{r_{i}}(\phi(t))) v_{i}(\phi(t)) dy$ = $\int_{a}^{b} f(\vec{r_{i}}(\phi(t))) v_{i}(\phi$ = \[\f(\var{r}_{\chi}(u)) \var{v}_{\chi}(u) du - 12 (() () () ()

DEF: La F: A -> R' vore et Kontinuerlig vekturfelt på ACR" 03 la 7: (9,6) -> A vare en (styloberis) glatt parametrisery or C.S.A. Da er linjeintegralet av velstorfeltet E langs e lik der 7/1t) = 7/1t) (dr) = r'(t) at = v(t) at)

