Youssef Mahmoud 905854027

Alex Hong 905857714

Gedian Wang 705638831

Zachary DeBar 705867064

```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import sklearn
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        from sklearn.preprocessing import PolynomialFeatures
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
        from sklearn.metrics import confusion_matrix, roc_curve, auc, classificatio
        from sklearn import preprocessing
        from patsy import dmatrix
        import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns #visualization library
        from sklearn.linear model import LogisticRegression #problem will be solved
        from sklearn.metrics import accuracy score
        from sklearn.discriminant_analysis import LinearDiscriminantAnalysis # LDA
        from sklearn.discriminant analysis import QuadraticDiscriminantAnalysis # Q
        from sklearn.neighbors import KNeighborsClassifier #(KNN)
        from sklearn.metrics import confusion matrix, classification report, precis
        import statsmodels.api as sm #to compute p-values
        from patsy import dmatrices
        import sklearn.linear model as skl lm
        from sklearn.metrics import mean squared error
        from sklearn.model selection import train test split, LeaveOneOut, KFold, c
        from sklearn.preprocessing import PolynomialFeatures
        from sklearn import tree
        from sklearn.tree import DecisionTreeRegressor, DecisionTreeClassifier, exp
        from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegress
        from sklearn.metrics import confusion matrix, mean squared error
        from BorutaShap import BorutaShap
        from sklearn.model selection import train test split, GridSearchCV
        from sklearn.svm import SVC, LinearSVC
        import matplotlib.pyplot as plt
        from matplotlib.font_manager import FontProperties
        from matplotlib.patches import Ellipse, Polygon
        import matplotlib.gridspec as gridspec
        import matplotlib.colors
        from pylab import rcParams
        from matplotlib.font manager import FontProperties
        from mpl toolkits.axes grid1.inset locator import inset axes
        plt.style.use('seaborn-whitegrid')
        import matplotlib as mpl
        mpl.rcParams['figure.figsize'] = (17, 6)
        mpl.rcParams['axes.labelsize'] = 14
        mpl.rcParams['xtick.labelsize'] = 12
        mpl.rcParams['ytick.labelsize'] = 12
        mpl.rcParams['text.color'] = 'k'
        %matplotlib inline
        import warnings
```

```
warnings.filterwarnings("ignore")
```

```
In [4]: from google.colab import drive
    drive.mount('/content/gdrive')
    df=pd.read_csv('/content/gdrive/Shareddrives/ECON412/finalproject/smoking.c
    df.head()
```

Mounted at /content/gdrive

Out[4]:

	ID	gender	age	height(cm)	weight(kg)	waist(cm)	eyesight(left)	eyesight(right)	hearing(left)	hε
0	0	F	40	155	60	81.3	1.2	1.0	1.0	
1	1	F	40	160	60	81.0	0.8	0.6	1.0	
2	2	М	55	170	60	80.0	0.8	0.8	1.0	
3	3	М	40	165	70	88.0	1.5	1.5	1.0	
4	4	F	40	155	60	86.0	1.0	1.0	1.0	

5 rows × 27 columns

We will now rename and map some of our predictors.

```
In [5]: df1 = df.drop(columns='oral',axis=1)
    df1['gender'] = df1['gender'].map({'F':0, 'M':1})
    df1['tartar'] = df1['tartar'].map({'N':0, 'Y':1})
    df1.rename(columns = {'fasting blood sugar':'fasting_blood_sugar'}, inplace
    df1.rename(columns = {'Urine protein':'Urine_protein'}, inplace=True)
    df1.rename(columns = {'serum creatinine':'serum_creatinine'}, inplace=True
    df1.rename(columns = {'dental caries':'dental_caries'}, inplace=True)
    df1.rename(columns = {'height(cm)':'height'}, inplace=True)
    df1.rename(columns = {'weight(kg)':'weight'}, inplace=True)
    df1.rename(columns = {'eyesight(left)':'eyesight_left'}, inplace=True)
    df1.rename(columns = {'eyesight(right)':'eyesight_right'}, inplace=True)
    df1.rename(columns = {'hearing(left)':'hearing_left'}, inplace=True)
    df1.rename(columns = {'hearing(right)':'hearing_right'}, inplace=True)
```

In []: df1

Out[18]:

	ID	gender	age	height	weight	waist	eyesight_left	eyesight_right	hearing_left	hearin
0	0	0	40	155	60	81.3	1.2	1.0	1.0	
1	1	0	40	160	60	81.0	0.8	0.6	1.0	
2	2	1	55	170	60	80.0	0.8	0.8	1.0	
3	3	1	40	165	70	88.0	1.5	1.5	1.0	
4	4	0	40	155	60	86.0	1.0	1.0	1.0	
55687	55676	0	40	170	65	75.0	0.9	0.9	1.0	
55688	55681	0	45	160	50	70.0	1.2	1.2	1.0	
55689	55683	0	55	160	50	68.5	1.0	1.2	1.0	
55690	55684	1	60	165	60	78.0	0.8	1.0	1.0	
55691	55691	1	55	160	65	85.0	0.9	0.7	1.0	

55692 rows × 26 columns

In []: |df1.corr()

Out[19]:

	ID	gender	age	height	weight	waist	eyesight_left
ID	1.000000	0.008657	-0.000825	0.006306	0.004814	0.005384	0.009616
gender	0.008657	1.000000	-0.290095	0.741556	0.574956	0.419568	0.127424
age	-0.000825	-0.290095	1.000000	-0.479528	-0.324706	-0.026297	-0.195472
height	0.006306	0.741556	-0.479528	1.000000	0.675656	0.378902	0.151133
weight	0.004814	0.574956	-0.324706	0.675656	1.000000	0.822842	0.108433
waist	0.005384	0.419568	-0.026297	0.378902	0.822842	1.000000	0.027458
eyesight_left	0.009616	0.127424	-0.195472	0.151133	0.108433	0.027458	1.000000
eyesight_right	0.003088	0.125680	-0.192723	0.155665	0.113155	0.037996	0.354574
hearing_left	0.002676	-0.009407	0.203993	-0.078663	-0.050094	0.023790	-0.046571
hearing_right	-0.004959	-0.011579	0.208722	-0.078323	-0.052836	0.019286	-0.048788
systolic	0.002489	0.167289	0.134023	0.080585	0.266131	0.316922	-0.019330
relaxation	0.004649	0.177891	0.050745	0.113193	0.271634	0.292627	0.005199
fasting_blood_sugar	0.001493	0.098117	0.182351	0.019619	0.136237	0.211132	-0.041851
Cholesterol	-0.001092	-0.085270	0.055557	-0.082161	0.026403	0.065467	-0.004985
triglyceride	0.002314	0.241520	0.015102	0.156693	0.324429	0.361922	0.019717
HDL	-0.005464	-0.306728	0.007047	-0.213284	-0.358868	-0.376203	-0.015296
LDL	0.001429	-0.042525	0.043007	-0.048419	0.040560	0.072817	-0.007257
hemoglobin	0.006464	0.702214	-0.263078	0.539367	0.492970	0.387066	0.095234
Urine_protein	0.000382	0.015907	0.029625	0.005128	0.032566	0.045492	-0.002752
serum_creatinine	0.003830	0.507249	-0.106118	0.383883	0.324808	0.235024	0.071410
AST	-0.001865	0.095718	0.032576	0.041737	0.120130	0.142690	-0.007966
ALT	-0.002803	0.167903	-0.063937	0.126511	0.250634	0.252478	0.019326
Gtp	0.000823	0.237270	0.013031	0.139720	0.209625	0.243141	0.003850
dental_caries	0.000641	0.084408	-0.114984	0.079331	0.073536	0.044203	0.003684
tartar	0.002474	0.055473	-0.081796	0.055513	0.059921	0.046197	0.012532
smoking	0.011476	0.510340	-0.162557	0.396675	0.302780	0.226259	0.061204

26 rows × 26 columns

Optimization terminated successfully.

Current function value: 0.472327

Iterations 7

Logit Regression Results

	Logit	Regres	sion Results		
=====	========	:=====	:=========	=======	======
Dep. Variable:	sm	oking	No. Observations	5:	
55692					
Model:		Logit	Df Residuals:		
55667					
Method:		MLE	Df Model:		
24	G 20 M	2022	D==1= D==		
Date: 0.2816	Sun, 29 May	2022	Pseudo R-squ.:		
Time:	14.	29:47	Log-Likelihood:		-2
6305.	11.	27.41	Log-likerinood.		-2
converged:		True	LL-Null:		-3
6617.		1140			J
	nonr	obust	LLR p-value:		
0.000			1		
		======			======
=========					
	coef	std e	err z	P> z	0.0
25 0.975]					
	6 7604	0 4	20 15 725	0.000	7.6
Intercept	-6./684	0.4	-15.735	0.000	-7.6
11 –5.925	-0.0002	0 0	01 -0.158	0.875	-0.0
age 02 0.002	-0.0002	0.0	-0.158	0.875	-0.0
gender	2.9168	0.0	56.774	0.000	2.8
16 3.017	2.7100	0.0	30.774	0.000	2.0
height	0.0225	0.0	02 10.117	0.000	0.0
18 0.027					
weight	-0.0103	0.0	02 -4.776	0.000	-0.0
15 -0.006					
waist	-0.0012	0.0	03 -0.465	0.642	-0.0
0.004					
eyesight_left	-0.0196	0.0	-0.870	0.384	-0.0
0.025					
eyesight_right	-0.0103	0.0	23 -0.444	0.657	-0.0
56 0.035	0.0100	0 0	0.00	0.007	0 0
hearing_left	-0.2188	0.0	-2.688	0.007	-0.3
78 -0.059 hearing right	0.0213	0.0	0.264	0.792	-0.1
36 0.179	0.0213	0.0	0.204	0.792	-0.1
systolic	-0.0144	0.0	01 -11.401	0.000	-0.0
17 -0.012	0.0111	0.0	11.101	0.000	•••
relaxation	0.0097	0.0	02 5.604	0.000	0.0
06 0.013		- ' -			
fasting_blood_sugar	0.0035	0.0	01 6.367	0.000	0.0
0.005					

		I II (I IE_	ricorders supple	1 Trotebook		
Choleste		-0.0024	0.001	-4.619	0.000	-0.0
03 -	-0.001					
triglyce	ride	0.0047	0.000	23.358	0.000	0.0
04	0.005					
HDL		0.0021	0.001	2.105	0.035	0.0
00	0.004					
LDL		-0.0001	0.000	-0.350	0.726	-0.0
01	0.001					
hemoglob	in	0.1390	0.011	12.745	0.000	0.1
18	0.160					
Urine_pro	otein	0.0117	0.027	0.439	0.660	-0.0
41	0.064					
serum_cre	eatinine	-0.8690	0.067	-12.949	0.000	-1.0
00 -	-0.737					
AST		-0.0011	0.001	-1.050	0.294	-0.0
03	0.001					
ALT		-0.0054	0.001	-6.835	0.000	-0.0
07 -	-0.004					
Gtp		0.0073	0.000	22.203	0.000	0.0
07	0.008					
dental_ca	aries	0.3163	0.026	12.285	0.000	0.2
66	0.367					
tartar		0.3376	0.022	15.472	0.000	0.2
95	0.380					

==========

Based on the P-values, the following variables are significant: gender, height, weight, relaxation, systolic, fasting_blood_sugar, Cholesterol, triglyceride, HDL, hemoglobin, serum_creatinine, ALT, Gtp, dental_caries & tartar. Now we will run another logit using only the signficant predictors.

```
In [ ]: Y, X = dmatrices('smoking ~ gender + height + weight + systolic + relaxatio
logit1 = sm.Logit(Y, X)
results_logit1 = logit1.fit()
print(results_logit1.summary())
```

Optimization terminated successfully.

Current function value: 0.472436

Iterations 7

Logit Regression Results

========	=======		-		on Results ========	======	=======
====							
Dep. Variabl	e:		smoking	g No	o. Observations:		
55692							
Model:			Logit	: D:	f Residuals:		
55676			MT T	. D.	f Model:		
Method:			MLE	i D:	r moder:		
Date:		Sun 29	May 2022) ро	seudo R-squ.:		
0.2815		buil, 25	11ay 2022		seudo R-squ		
Time:			14:29:48	B Lo	og-Likelihood:		-2
6311.							
converged:			True	e Ll	L-Null:		-3
6617.							
Covariance T	ype:		nonrobust	: L1	LR p-value:		
0.000							
=========	=======================================		======	-====	==========	======	
		CO	ef sto	l err	Z	P> z	[0.0]
25 0.97	51	•	01 500	. 011	_	1. [2]	[0.0
	-						
Intercept		-7.19	71 (.348	-20.671	0.000	-7.8
79 –6.5	15						
gender	•	2.90	39 (.051	57.059	0.000	2.8
04 3.0	04	0.00	20 (11 450	0 000	0 0
height 19 0.0	2.7	0.02	32 (0.002	11.450	0.000	0.0
weight	21	-0.01	na (0.001	-8.584	0.000	-0.0
13 -0.0	0.8	-0.01	09	.001	-0.504	0.000	-0.0
systolic		-0.01	46 (.001	-11.700	0.000	-0.0
17 -0.0	12						
relaxation		0.00	98 (.002	5.702	0.000	0.0
0.0	13						
fasting_bloo	d_sugar	0.00	35 (.001	6.467	0.000	0.0
0.0	05						
Cholesterol		-0.00	26 (0.000	-7 . 799	0.000	-0.0
03 -0.0					0= 600		
triglyceride		0.00	48 (0.000	25.609	0.000	0.0
0.0 HDL	05	0.00	22 (.001	2.507	0.012	0.0
0.0 0.0	0.4	0.00	۷ (2.307	0.012	0.0
hemoglobin	V 1	0.14	08 (.011	13.130	0.000	0.1
20 0.1	62	J. 1	'			0.000	0.1
serum creati		-0.87	33 (.067	-13.094	0.000	-1.0
04 -0.7							
ALT		-0.00	60 (.001	-10.572	0.000	-0.0
07 -0.0	05						

Gtp		0.0073	0.000	22.287	0.000	0.0
07	0.008					
dental_ca	aries	0.3184	0.026	12.430	0.000	0.2
68	0.369					
tartar		0.3398	0.022	15.600	0.000	0.2
97	0.382					

```
In []: X = df1.drop(['smoking'], axis = 1)
Y = df1['smoking']
X_train1, X_test1, Y_train1, Y_test1 = train_test_split(X, Y, test_size=0.0)

Feature_Selector = BorutaShap(importance_measure='shap', classification=Tru
Feature_Selector.fit(X=X_test1, y=Y_test1, n_trials=20, random_state=0)
Feature_Selector.plot(which_features='all')
```

0% | 0/20 [00:00<?, ?it/s]

6 attributes confirmed important: ['gender', 'height', 'triglyceride', 'HDL', 'Gtp', 'hemoglobin']
19 attributes confirmed unimportant: ['eyesight_right', 'ALT', 'weight', 'relaxation', 'hearing_right', 'ID', 'tartar', 'hearing_left', 'systolic', 'Cholesterol', 'dental_caries', 'Urine_protein', 'eyesight_left', 'se rum_creatinine', 'age', 'fasting_blood_sugar', 'LDL', 'AST', 'waist']
0 tentative attributes remains: []

All of our chosen variables are statistically signficant, now we will proceed with our analysis.

LDA

LDA performed better than the Logit Model.

QDA

Out[29]: QuadraticDiscriminantAnalysis()

```
In [ ]: conf_mat = confusion_matrix(Y1_test, qda.predict(X1_test))
    print(conf_mat)
    qda.score(X1_test, Y1_test)
    print('Test Accuracy =', qda.score(X1_test, Y1_test))

[[6528 2337]
    [1374 3684]]
    Test Accuracy = 0.7334626158155569
```

LDA performed better than QDA, implying that our classes might not require a non-linear classifier.

Naive Bayes

Naive Bayes performs poorly when compared to LDA, QDA and Logit.

KNN

```
In [ ]: nbrs2 = KNeighborsClassifier(n neighbors=2)
         nbrs2.fit(X1 train,Y1 train)
         KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                    metric_params=None, n_jobs=1, n_neighbors=2, p=2,
                    weights='uniform')
Out[36]: KNeighborsClassifier(n jobs=1, n neighbors=2)
 In [ ]: conf mat = confusion matrix(Y1 test, nbrs2.predict(X1 test))
         print(conf mat)
         nbrs2.score(X1_test, Y1_test)
         print('Test Accuracy =', nbrs2.score(X1 test, Y1 test))
         [[7909 956]
          [3043 2015]]
         Test Accuracy = 0.7127774186597716
 In [ ]: nbrs3 = KNeighborsClassifier(n_neighbors=3)
         nbrs3.fit(X1_train,Y1_train)
         KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
                    metric_params=None, n_jobs=1, n_neighbors=3, p=2,
                    weights='uniform')
Out[38]: KNeighborsClassifier(n_jobs=1, n_neighbors=3)
 In [ ]: conf mat = confusion matrix(Y1 test, nbrs3.predict(X1 test))
         print(conf mat)
         nbrs3.score(X1 test, Y1 test)
         print('Test Accuracy =', nbrs3.score(X1_test, Y1_test))
         [[6902 1963]
          [2105 2953]]
         Test Accuracy = 0.7078215901745314
 In [ ]: | nbrs4 = KNeighborsClassifier(n neighbors=4)
         nbrs4.fit(X1 train,Y1 train)
         KNeighborsClassifier(algorithm='auto', leaf size=30, metric='minkowski',
                    metric params=None, n jobs=1, n neighbors=4, p=2,
                    weights='uniform')
Out[40]: KNeighborsClassifier(n jobs=1, n neighbors=4)
 In [ ]: conf mat = confusion matrix(Y1 test, nbrs4.predict(X1 test))
         print(conf mat)
         nbrs4.score(X1 test, Y1 test)
         print('Test Accuracy =', nbrs4.score(X1 test, Y1 test))
         [[7645 1220]
          [2841 2217]]
         Test Accuracy = 0.708324355383179
```

KNN with 1 neighbor performed better when compared to other KNNs and all the models ran so far.

Decision Tree Classifier

Out[9]: [<matplotlib.lines.Line2D at 0x7fb2709eb280>]

According to the cross validation plot, the tree depth that produces the lowest training MSE is around 20.

```
In [ ]: clf = DecisionTreeClassifier(max_depth=20)
    clf.fit(X1_train, Y1_train)
    print("Training Accuracy =", clf.score(X1_train, Y1_train))
```

Training Accuracy = 0.9700256170844406

```
In [ ]: pred1 = clf.predict(X1_test)
    cm = pd.DataFrame(confusion_matrix(Y1_test, pred1).T, index=['No', 'Yes'],
    print(cm)
    print('Test Accuracy =',(10707/13923))
```

No Yes
No 7203 1555
Yes 1662 3503
Test Accuracy = 0.7690152984270632

Out[12]: [<matplotlib.lines.Line2D at 0x7fb26ce850a0>]


```
In [ ]: fig, axes = plt.subplots(nrows = 1,ncols = 1,figsize = (60,60))
tree.plot_tree(clf1,feature_names = X1_test.columns,filled = True, class_na
```


So far, Decision Tree Calssifier performed the best with a test accuracy of approximately 77%

SVC

```
In [ ]: |svc1 = SVC(C = 0.01)
        Fit1 = svc1.fit(X1_train, Y1_train)
In [ ]: pred2 = svc1.predict(X1_test)
        cm = pd.DataFrame(confusion_matrix(Y1_test, pred2).T, index=['No', 'Yes'],
        print(cm)
        print('Test Accuracy =',(9606/13923))
               No
                    Yes
             8047 3499
        No
        Yes
              818
                  1559
        Test Accuracy = 0.6899375134669252
In [ ]: svc2 = SVC(C = 0.1)
        Fit2 = svc2.fit(X1_train, Y1_train)
In [ ]: pred3 = svc2.predict(X1_test)
        cm = pd.DataFrame(confusion_matrix(Y1_test, pred3).T, index=['No', 'Yes'],
        print(cm)
        print('Test Accuracy =',(10005/13923))
               No
                    Yes
             7687 2740
        No
        Yes 1178 2318
        Test Accuracy = 0.7185951303598362
In [ ]: svc3 = SVC(C = 1)
        Fit3 = svc3.fit(X1_train, Y1_train)
In [ ]: pred4 = svc3.predict(X1 test)
        cm = pd.DataFrame(confusion_matrix(Y1_test, pred4).T, index=['No', 'Yes'],
        print('Test Accuracy =',(10301/13923))
               No
                    Yes
        No
             7454 2211
        Yes 1411 2847
        Test Accuracy = 0.7398549163255046
In []: |svc4 = SVC(C = 5)
        Fit4 = svc4.fit(X1 train, Y1 train)
In [ ]: pred5 = svc4.predict(X1 test)
        cm = pd.DataFrame(confusion matrix(Y1 test, pred5).T, index=['No', 'Yes'],
        print('Test Accuracy =',(10389/13923))
               No
                    Yes
        No
             7322
                  1991
        Yes 1543 3067
        Test Accuracy = 0.7461753932342168
```

SVC with a linear kernel and C=10 performed better than SVCs with lower values of C, however, it still could not beat the perfromance of the Decision Tree Classifier.

SVM

```
In [ ]: svm1 = SVC(C=1, kernel='rbf')
        Fit6 = svm1.fit(X1_train, Y1_train)
In [ ]: pred7 = svm1.predict(X1_test)
        cm = pd.DataFrame(confusion_matrix(Y1_test, pred7).T, index=['No', 'Yes'],
        print(cm)
               No
                    Yes
             7454
                  2211
        No
        Yes 1411 2847
In [ ]: print('Test Accuracy =',((7454+2847)/13923))
        Test Accuracy = 0.7398549163255046
In [ ]: | svm2 = SVC(C=3, kernel='rbf')
        Fit7 = svm2.fit(X1 train, Y1 train)
In [ ]: pred8 = svm2.predict(X1 test)
        cm = pd.DataFrame(confusion matrix(Y1 test, pred8).T, index=['No', 'Yes'],
        print(cm)
               No
                    Yes
             7365 2063
        No
        Yes 1500
                  2995
In [ ]: | print('Test Accuracy =',((7365+2995)/13923))
        Test Accuracy = 0.7440925087983912
```

```
In [ ]: svm3 = SVC(C=5, kernel='rbf')
        Fit8 = svm3.fit(X1 train, Y1 train)
In [ ]: pred9 = svm3.predict(X1 test)
        cm = pd.DataFrame(confusion_matrix(Y1_test, pred9).T, index=['No', 'Yes'],
        print(cm)
               No
                    Yes
             7322
                   1991
        No
        Yes 1543
                   3067
In [ ]: | print('Test Accuracy =',((7322+3067)/13923))
        Test Accuracy = 0.7461753932342168
In [ ]: | svm4 = SVC(C=8, kernel='rbf')
        Fit9 = svm4.fit(X1_train, Y1_train)
In [ ]: pred10 = svm4.predict(X1 test)
        cm = pd.DataFrame(confusion_matrix(Y1_test, pred10).T, index=['No', 'Yes'],
        print(cm)
               No
                    Yes
        No
             7268
                  1927
        Yes 1597 3131
In [ ]: print('Test Accuracy =',((7268+3131)/13923))
        Test Accuracy = 0.7468936292465704
In [ ]: | svm5 = SVC(C=10, kernel='rbf')
        Fit10 = svm5.fit(X1 train, Y1 train)
In [ ]: pred11 = svm5.predict(X1 test)
        cm = pd.DataFrame(confusion_matrix(Y1_test, pred11).T, index=['No', 'Yes'],
               No
                    Yes
        No
             7237
                   1887
        Yes 1628
                   3171
In [ ]: print('Test Accuracy =',((7237+3171)/13923))
        Test Accuracy = 0.7475400416576887
In [ ]: svm6 = SVC(C=1, kernel='poly')
        Fit11 = svm6.fit(X1_train, Y1_train)
```

```
In [ ]: pred12 = svm6.predict(X1_test)
        cm = pd.DataFrame(confusion matrix(Y1 test, pred12).T, index=['No', 'Yes'],
        print(cm)
               No
                    Yes
        No
             7361
                   2093
             1504
                   2965
        Yes
In [ ]: | print('Test Accuracy =',((7361+2965)/13923))
        Test Accuracy = 0.7416505063563887
In [ ]: svm10 = SVC(C=3, kernel='poly')
        Fit14 = svm10.fit(X1 train, Y1 train)
In [ ]: pred16 = svm10.predict(X1 test)
        cm = pd.DataFrame(confusion_matrix(Y1_test, pred16).T, index=['No', 'Yes'],
        print(cm)
               No
                    Yes
             7264
                   1945
        No
        Yes
             1601
                   3113
In [ ]: | print('Test Accuracy =',((7264+3113)/13923))
        Test Accuracy = 0.7453135100193924
In [ ]: | svm7 = SVC(C=5, kernel='poly')
        Fit12 = svm7.fit(X1 train, Y1 train)
In [ ]: pred13 = svm7.predict(X1 test)
        cm = pd.DataFrame(confusion matrix(Y1 test, pred13).T, index=['No', 'Yes'],
        print(cm)
               No
                    Yes
             7189
                   1826
        No
        Yes 1676
                  3232
In [ ]: print('Test Accuracy =',((7189+3232)/13923))
        Test Accuracy = 0.7484737484737485
In [ ]: svm8 = SVC(C=8, kernel='poly')
        Fit13 = svm8.fit(X1 train, Y1 train)
In [ ]: pred14 = svm8.predict(X1 test)
        cm = pd.DataFrame(confusion matrix(Y1 test, pred14).T, index=['No', 'Yes'],
        print(cm)
               No
                    Yes
             7136
        No
                   1747
        Yes
             1729
                   3311
```

In []: print('Test Accuracy =',((7091+3355)/13923))

Test Accuracy = 0.7502693385046326

SVM with C=8 and a polynomial kernel performed best when compared to other SVMs and SVCs, however, it still couldnt beat the performance of the Decision Tree Classifier.

```
In []: x = preprocessing.scale(X1)
y = np.ravel(Y1)

In []: fig = plt.figure()

fig.suptitle('decison surface using projected features')
labels = ['SVC', 'SVM poly', 'SVM radial']
gs = gridspec.GridSpec(1, 1)
for svm8, lab, grd in zip([Fit13], labels, ([0,0], [1,0],[2,0])):
    svm8.fit(np.stack((x[:,0], x[:,1]), axis=-1), y)
    ax = plt.subplot(gs[grd[0], grd[1]])
    fig = plot_decision_regions(X=np.stack((x[:,0], x[:,1]), axis=-1), y=y,
    plt.title(lab)
plt.show()
```



```
In [ ]: plt.style.use('seaborn-whitegrid')
        fig, ax = plt.subplots(1, figsize=(15,6))
        # false positive rates and true positive rates
        fpr, tpr, _ = roc_curve(Y1_test, clf.predict(X1_test))
        fpr1, tpr1, _ = roc_curve(Y1_test, nbrs1.predict(X1_test))
        = ax.plot(fpr, tpr, lw=2, label='Classification Tree. ROC curve (Area = %
          = ax.plot(fpr1, tpr1, lw=2, label='KNN. ROC curve (Area = %0.2f)' % auc(f
         = ax.set title('Classification Tree and KNN n=1')
          = ax.plot([0, 1], 'k--', lw=2)
          = ax.set_xlim([-0.05, 1.0])
          = ax.set_ylim([0.0, 1.05])
          = ax.set_xlabel('False Positive Rate (FPR)')
          = ax.set_ylabel('True Positive Rate (TPR)')
          = ax.legend(loc='center left', bbox_to_anchor=(.05, -0.3), fontsize = 12)
          = ax.set_aspect(1)
```


Classification Tree. ROC curve (Area = 0.75) KNN. ROC curve (Area = 0.74)