

Soft Skills und Technische Kompetenz

Elektrotechnik und Löten Gruppe - Dienstag

Rina Ferdinand, 24.11.2020

Agenda

- Fragen zum letztem Aufgabenblatt?
- Erweiterte Elektrotechnik
- Widerstands Berechnung
- Schaltungen bauen
- Schaltplan lesen
- Erste Lötübung

Fragen zu letzten Übung?

- Wie lief der Courseware Kurs?
- Was habt ihr gelernt?
- Gibt es Fragen?

Widerstände

- Wurde bereits letzte Übung angeschnitten
- Analog zu einem Wasserrohr was verengt ist
- Elektronen werden "gebremst"

Widerstands Berechnung

- Das Ohm'schen Gesetz hilft uns
- "Die Stärke des durch ein Objekt fließenden elektrischen Stroms ist proportional der elektrischen Spannung."

$$- U = R * I$$

Die LED

- Das Ohm'schen Gesetz hilft uns
- "Die Stärke des durch ein Objekt fließenden elektrischen
 Stroms ist proportional der elektrischen Spannung."
- Volt und Ampere beachten

Wichtige Daten

Electrical / Optical Characteristics at TA=25°C

Symbol	Parameter	Device	Тур.	Max.	Units	Test Conditions
λpeak	Peak Wavelength	Super Bright Red	660		nm	IF=20mA
λD [1]	Dominant Wavelength	Super Bright Red	640		nm	IF=20mA
Δλ1/2	Spectral Line Half-width	Super Bright Red	20		nm	IF=20mA
С	Capacitance	Super Bright Red	45		pF	VF=0V;f=1MHz
VF [2]	Forward Voltage	Super Bright Red	1.85	2.5	٧	IF=20mA
lR	Reverse Current	Super Bright Red		10	uA	VR = 5V

Navelength: +/-1nm.
 Forward Voltage: +/-0.1V.

Vorwiderstand einer LED

- -1. SchrittDaten heraussuchenU_{Ges} = 5V, I = 20mA, U_D = 2.5V
- –2. SchrittIn die Formeln einsetzen

Vorwiderstand einer LED

$$U_R = U_{ges} - U_D$$

$$R_V = \frac{U_R}{I}$$

$$Vorwiderstand \ R_{V} = \frac{Spannung \ am \ Vorwiderstand \ U_{R}}{Strom \ I}$$

$$R_V = \frac{U_R}{I}$$

Vorwiderstand einer LED

$$-U_{Ges} = 5V, I = 20mA, U_{D} = 2.5V$$

Spannungsdifferenz

$$U_{ges} - U_{D} = U_{R}$$

5V - 2.5V = 2.5V

-Ohm'sches Gesetz $U_D/I = R_V$ 2.5 V/20mA = 125 Ohm

LED anschließen

- -2 Beine
- Anode langes Bein
- Katode kurzes Bein

"Einfacher Schaltplan"

Verschiedene Symbole

G/OV/GND/VSS/ Masse/Erde/Ground

Aufgabe: LED-Berechnung

- Spannung: 5V, LED: 3.3 3.8 V, Strom: 30mA
- 1. Berechne einen geeigneten Vorwiderstand
- 2. Wie sieht der passende Kohleschicht-Widerstand aus?
- 3. Bewerte die folgende Aussage: Ein Vorwiderstand muss immer vor der LED platziert werden.
- 4. Bewerte die folgende Aussage: Die LED leuchtet, weil sie den Strom verbraucht.

Widerstände LED-Berechnung

Lösung: LED-Berechnung

- Spannung: 5V, LED: 3.3 3.8 V, Strom: 30mA
- 1. 40 Ohm falls 3.8V oder 57Ohm mit 3.3V
- 2. Wie sieht der passende Kohlefaser-Widerstand aus?

Lösung: LED-Berechnung

3. Beim Strom handelt es um elektrische Ladung, die sich in bestimmter Zeit durch einen Leiter bewegen und diesen Leiter nicht verlassen können.

Wenn man den Strom vor oder hinter der LED misst, stellt man fest, dass dieser identisch ist.

Die Elektronen bewegen aber elektrische Energie.

Diese wird durch die LED in Licht und (leider auch) Wärme umgewandelt.

4. Aus diesem Grund bezahlt man die Stadtwerke auch nicht für den verbrauchten Strom oder verbrauchte Elektronen, sondern die Energie, die die Elektronen mit sich geführt haben.

Sicherheitshinweise

- Besprechung des Blattes
- -Fragen?

Widerstände biegen

- Biegen ist wichtig!
- Mehr Platz auf dem Breadboard
- Ein Legostein funktioniert gut
- -Oder eine Biegelehre

μC und Taster im Board

μC und Taster im Board

Erste Lötübung

Stecke einen Widerstand durch die Lochrasterplatine und löte das Bauteil fest. Bewerte deine Lötstelle. Gibt es Verbesserungsbedarf? Wiederhole den Vorgang mit weiteren Widerständen bis mehrere Lötstellen in Folge gut gelungen sind. Dokumentiere deinen Fortschritt mit Fotos!

Stecke deinen Mikrocontroller-Board wie in der folgenden Abbildung in das Steckbrett. Achte darauf, dass die männlichen Stiftleisten sich vollständig im Steckbrett befinden. Verlöte nun die Stiftleiste mit den Pins des Mikrocontroller-Boards.

Dokumentiere deine Lötstellen mit Fotos!

Erste Lötübung

Zeit für ein paar Fragen

- Schreib mir eine Mail: rina.martina.ferdinand@uol.de
- Schreib ins Forum der Veranstaltung

Danke für eure Zeit!

- Freut euch schon auf komplexere Schaltungen!

