§ 3.4 中规模计数器 (Counter)

记忆输入脉冲个数的集成芯片。

- 四位二进制计数器
- 可逆四位二进制计数器
- 十进制计数器
- 中规模计数器构成的任意进制计数器
 - ◎清零法
 - ◎ 预置法

计数器种类:

① 按时钟的触发方式: 同步计数器 异步计数器

② 按进位体制: 二进制计数器 十进制计数器 模**N**计数器

③ 按计数功能: 加法计数器 减法计数器 可逆计数器

模: 计数器的容量。

1. 集成同步二进制计数器

(1) 四位二进制加计数器 (74LS161/163)

74LS161采用异步清零方式。

74LS163采用同步清零方式。

1) 逻辑功能:

EP、ET、Co用于级联。

RCO = Ripple clock output

(2) 容量扩展:

1)用四位二进制计数器构成 <u>4×n位</u>二进制计数器

同步级联 (只适用于有使能端计数器)

CP 同时接在各片计数器的时钟输入端;

级联步骤:

- 1) 排列计数器高低位的顺序;
- 2) 找到低位向高位的进位信号;

RCO = Ripple clock output

低位的进位输出 Co 控制高位的计数使能端。

高位的C 端是此计数器的进位输出端,进位信号为Y=1。

2. 同步二进制可逆计数器 (74191)

CP	En	LD	U/D	工作状态
X	1	1	X	保持
X	X	0	X	预置数
	0	1	0	加法计数
	0	1	1	减法计数

1) 逻辑功能:

计数器可逆,异步置数,计数器状态可控,进位(借位)负脉冲输出,最大(最小)标志输出。

En、 Rc: 用于同步级联。

En=0, Max/Min=1时, $R_{Co}=0$,

En=1, Max/Min=1时, $R_{Co}=1$

2) 工作时序图:

构成 4×n位 计数器

$$M = 16 \times 16 = 256$$

不要使用Max/Min做级联

作业题: P106, 12, 四位二进制计数器

二. 集成同步十进制计数器

1. 概述

十进制(0000~1001)同步加法计数器74160(74162)的引脚排列图、逻辑功能示意图与74161相同。

74160: 异步清零方式。

74162: 同步清零方式。

74190:单时钟十进制同步可逆计数器,其引脚排列图和逻辑功能示意图与74191相同。

输入						输出			出					
CR	\overline{LD}	P	T	CP	D_3	$\overline{D_2}$	$\overline{D_1}$	$\overline{D_0}$	Q_3	Q_2	Q_1	Q_0	CO	CT74LS160
0	X	×	X	X	×	X	X	X	0	0	0	0	0	异步置 0
1	0	×	X	†	d_3	d_2	d_1	d_0	d_3	d_2	d_1	d_0		$CO = T \cdot Q_3 \overline{Q_2} \overline{Q_1} Q_0$
1	1	1	1	1	×	X	X	X	Ì	十	数	I		$CO = Q_3 \overline{Q}_2 \overline{Q}_1 Q_0$
1	1	0	X	X	×	X	X	X	1	呆	挦	Ė,		$CO = T \cdot Q_3 \overline{Q}_2 \overline{Q}_1 Q_0$
1	1	X	0	X	×	X	X	X	1	呆	找	Ė,	0	

8421码100进制

$$M=10\times10$$

三. 用中规模计数器构成任意进制计数器

(1)清零法 前M个状态

(3)多次预置法

- 1. 用N 计数器构成M 计数器
 - (1) 清零法

自然态序<u>M进制</u>计数器(0~M-1),利用<u>复位端</u>和<u>置数端</u>实现归零。

- 1) 用同步复位端(置数端)归零(在M-1状态复位)
- 2) 用异步复位(置数端)归零(在M状态复位):亚稳态。

末态不同

•加法计数器中,末态中为"1"的输出端相与,使复位端(置数端)有效。

74LS161 四位二进制,异步复位,同步置数

功能表:

CP	R_d	Sı	S2	LD	功能	C
1	0	Х	Х	Х	清零	0
Х	1	0	1	1	保持	保持
Χ	1	Х	0	1	保持	0
1	1	1	1	0	置数	
1	1	1	1	1	计数	

(2) 预置法: (在末态置初值)

1) 利用进位置数,置初始值;

M = 168

2) 在末态置初始值;

利用74LS161设计一余3BCD码十进制计数器。 余3码的范围: 0011~1100

3. 多次预置(输出对称波)

最高位输出方波。

由二一十进制编码器74LS147和同步十进制计数器74LS160所组成的可控分频器。试说明当输入控制信号A、B、C、D、E、F、G、H、I分别为低电平时,由Y输出的脉冲频率是多少。假定CP脉冲的频率为10kHz.

§ 3.5.2 计数器的应用

组合与时序的综和应用

◎顺序脉冲(节拍)发生器

计数器的M个状态 ,产生M路脉冲

输出序列10011

一、顺序脉冲(节拍)发生器

组成: 计数器+译码电路

计数器的M个状态,产生M路脉冲

1、由环形计数器构成的节拍发生器

直接输出,不需译码

特点:

结构简单,不必附加译码电路。但使用的触发器数目多,M路顺序脉冲用了M个触发器。

2、由扭环形计数器构成的节拍发生器

匹配的译码器应另行设计。

输入: 现态

输出: M个

计数器十译码电路

$$Y_0 = \overline{Q_0}\overline{Q_3}$$
 $Y_1 = Q_0\overline{Q_1}$ $Y_2 = Q_1\overline{Q_2}$ $Y_3 = Q_2\overline{Q_3}$

$$Y_4 = Q_0 Q_3$$
 $Y_5 = \overline{Q_0} Q_1$ $Y_6 = \overline{Q_1} Q_2$ $Y_7 = \overline{Q_2} Q_3$

计数器采用扭环型计数器可从根本上消除竞冒险现象,且译码电路简单。但电路利用率较低

3、 自然态序计数器构成的节拍发生器

计数器+译码器

6 路脉冲分配器。

电路利用率高,有竞争冒险

二、序列信号发生器

1101000101 的序列信号发生器

1
1
0
1
0
0
0
1
0
1

