

第六节 DC/DC 系统

一、 DC 与空调驱动器位置

图14 e6 DC与空调驱动器在整车中的位置

1. DC 与空调驱动器零部件及其明细表

图15.a DC与空调驱动器零部件

编号	部件		
1	上箱盖		
2	上箱盖固定螺栓		
3	12VDC输出接插件1		
4	DC与空调驱动器箱体		
5	负极搭铁点		
6	进水管		
7	出水管		
8	12VDC输出接插件2		
9	DC与空调驱动器前支架		
10	下箱盖固定螺栓		
11	线束卡口固定点		

图15.b DC与空调驱动器零部件

编号	部件	
1	上下箱体固定螺栓	
2	透气孔	
3	下箱盖	
4	低压电源接口	
5	DC与空调驱动器高压输入接插件	
6	空调PTC高压输出接插件	
7	DC与空调驱动器CAN接口	
8	空调压缩机高压输出接插件	
9	DC与空调驱动器后支架	
10	DC与空调驱动器低压输出接插件	

二、 DC 与空调驱动器电气图

图 16 DC 与空调驱动器电气图

三、 DC 与空调驱动器故障模式

1).漏电

DC 或空调没有输入

压缩机或 PTC 或低压没有、输出异常

CAN 异常

其它故障

四、 故障模式下问题的判定

1.DC 与空调驱动器漏电

1).DC 与空调驱动器漏电分两种情况: 1.一般漏电; 2.严重漏电。DC 与空调驱动器漏电主要是由于自身绝缘阻值过小或漏电流过大导致。

DC 与空调驱动器出现漏电时,仪表会报电池包漏电故障 ,出现严重漏电时,车辆会自动将车辆动力切断进行保护。

出现电池包漏电情况,请立即将车辆靠路边停靠,联系 BYD 工作人员进行处理。 检测方法:

- a) ED400 读取电池管理器数据流(漏电故障)
- b) 断电后拔掉 DC 与空调驱动器输入 8 芯线, 重新上电读取电池管理器数据流:
- c) 如果漏电故障未消除,请查找电池包等其他模块;
- d) 如果漏电故障消除,接上 DC 与空调驱动器输入,断开输出(压缩机, PTC,以及两个 13.8V 输出,排列组合测试,查找具体的漏电零部件).
- e) 如果接上 DC 与空调驱动器输入,依次排列组合断开输出,漏电故障均出现,确定 DC 与空调驱动器漏电。
- f) 测量绝缘阻值:测量 DC 与空调驱动器输出(压缩机,PTC,两个低压输出)对地电阻,低压 M 欧级不正常。测量 DC 输入对地电阻,低压 M 欧级不正常。

2.DC 或空调没有输入

1).DC 或空调没有输入: DC 与空调驱动器的输入电压通过高压配电箱和保险后,由八芯 线直接传送过来。

八芯线包括空调的直流高压输入、两路通过 DC 转换成低压的高压输入。出现空调没有高压直流输入时,空调不能工作。出现两路电压没有输入电压时,低压没有输出。

检测方法 (空调没有输入):

- a) 测试空调制冷、制热是否正常。
- b) 如果不正常排查了空调自身故障后,测量输入端 A、B 是否有电压(请注意安全保护措施:断 开电源,拔下输入接插件,用万用表表头接好 A、B端,车辆上电测量输入电压)。

- c) 如果没有电压,测量高压配电箱处空调保险是否烧毁。
- d) 如果保险未烧毁,请转入高压配电箱的维修(可能接触器未吸合配电过来)。

检测方法 (DC 没有输入):

- a) 测试是否有 DC 两路低压输出。
- b) 如果正常,检查 DC 与空调驱动器自身;如果不正常,测量输入端 C、D,F、G 端的电压是否正常(请注意安全保护措施:断开电源,拔下输入接插件,分别用万用表表头接好 C、D,F、G端,车辆上电测量输入电压)。
- c) 如果没有电压,测量高压配电箱处 DC 保险是否烧毁。
- d) 如果保险未烧毁,请转入高压配电箱的维修(可能接触器未吸合配电过来)。

3. 压缩机或 PTC 或低压没有输出、输出异常

1).压缩机或 PTC 或低压没有输出、输出异常会导致空调不制冷或不制热或蓄电池馈电、 转向无助力等故障

检测方法(压缩机或 PTC 或低压没有输出)

- a) 测量八芯输入是否正常;
- b) 测试压缩机输入是否正常:如果正常,请查找压缩机自身故障;如果不正常,请查找 DC 与空调驱动器内部故障,通过更换 DC 与空调驱动器验证
- c) 测量 PTC 输入是否正常:如果正常,请查找 PTC 自身故障;如果不正常,请查找 DC 与空调驱动器内部故障,通过更换 DC 与空调驱动器验证
- d) 测量低压输出是否有输出(正常值为 13.8V): 如果不正常,请查找 DC 与空调驱动器内部故障,通过更换 DC 与空调驱动器验证

五、 诊断仪 DC 与空调驱动器模块故障诊断码

DC-DC(1)模块			
故障诊断码 (DTC)	故障描述	可能发生部位	
P1DA0	输出1#电压故障(保留)	DC/DC	
P1DA1	输出2#电压故障(保留)	DC/DC	
P1DA2	DC(1)输出过压	DC/DC	
P1DA3	DC(1)输出欠压	DC/DC	
P1DA4	DC(1)输出过流	DC/DC	
P1DA5	DC(1)散热器过温	DC/DC、冷却系统	
P1DA6	DC (1) 输入过压	动力电池	
P1DA7	DC(1)输入欠压	动力电池、高压配电箱,高压线	
P1DA8	DC(1)输出断路	输出接插件未接	
P1DA9	DC1、2输出断路	输出接插件未接	

U0111	与高压电池管理器 (BMS) 通讯故障	BMS、其他动力网模块、低压线束
-------	---------------------	------------------

DC-DC(2)模块			
故障诊断码 (DTC)	故障描述	可能发生部位	
P1E00	输出1#电压故障(保留)	DC/DC	
P1E01	输出2#电压故障(保留)	DC/DC	
P1E02	DC(2)输出过压	DC/DC	
P1E03	DC(2)输出欠压	DC/DC	
P1E04	DC(2)输出过流	DC/DC	
P1E05	DC(2)散热器过温	DC/DC、冷却系统	
P1E06	DC(2)输入过压	动力电池	
P1E07	DC(2)输入欠压	动力电池、高压配电箱,高压线	
P1E08	DC(2)输出断路	输出接插件未接	
U0111	与高压电池管理器 (BMS) 通讯故障	BMS、其他动力网模块、低压线束	

六、 DC 与空调驱动器故障诊断码处理方法

1.DC-DC 输入故障

1).DC-DC 输入故障可以分为输入过压和输入欠压。导致 DC-DC 输入故障的原因有两种: 1、 DC-DC 自身故障导致对输入的电压范围判断有误; 2、从配电箱出来的母线正、负极 电压超出 DC-DC 工作电压范围。

DC-DC 出现输入保护时会停止工作,请立即将车辆靠路边停靠,联系维修工作人员进行处理。

处理方法:

在确保安全的情况下,将车辆电源档位上到 OK 档,用万用表测量 DC-DC 的高压输入端(如下图 所示)C、F 引脚两端电压是否在在 200~400V 范围内,若无高压则请检查配电箱(方法详见高压配电箱),若有高压则请更换功能正常的 DC 与空调驱动器,并将故障件拆卸后交付 BYD 进行专业检修。

引脚	功能定义	
A	空调供电高压正	
В	空调供电高压负	
С	12VDC I 供电高压负	
D	12VDCII 供电高压负	
Е	空	
F	12VDC I 供电高压正	
G	12VDCII 供电高压正	
Н	空	

2.DC-DC 输出故障

1).DC-DC 输出故障可以分为输出过压、输出欠压和输出过流。在确认 DC-DC 高压输入电压正常的情况时,DC-DC 出现输出故障常为自身内部故障导致。

DC-DC 出现输出保护时,请立即将车辆靠路边停靠,联系维修工作人员进行处理。 处理方法:

DC-DC的12V回路电路原理图

将车辆电源档位上到 OK 档,用万用表测量 DC-DC 的 12VDC 输出接插件 1.2(如下图所示)对车身地的电压范围是否在 $9\sim14.49$ V 范围(输入电压为 $260\sim400$ V,输出电压为 $13.11\sim14.49$ V;输入

电压为 $200\sim260V$,输出电压>9V)内,若超出范围则请更换功能正常的 DC 与空调驱动器,并将故障件拆卸后交付 BYD 进行专业检修。

12VDC输出1

12VDC输出2

3. 散热器过温故障

1).DC-DC 出现过温故障的故障原因有三种: 1、整车冷却系统出现故障,车辆散热效果不佳,导致 DC-DC 零件温度过高; 2、冷却液循环系统中 DC-DC 的上级零部件出现故障,导致流入 DC-DC 的冷却液温度过高,使 DC-DC 出现过温故障; 3、DC-DC 内部故障导致自身零件温度过高。

当出现散热器过温故障时,会导致整车性能下降,请立即将车辆靠路边停靠,联系维修工作人员进行处理。

处理方法:

首先检查整车冷却系统是否工作正常,如冷却液是否流动正常,或散热风扇是否正常开启等(方法详见冷却系统),在排除冷却系统故障后用诊断仪查看 DC-DC 数据流中的 DC 温度,并对比 DC-DC 的上级冷却零部件(VTOG)的数据流显示温度,若发现 VTOG 温度正常且 DC 温度明显高于 VTOG 温度,则是 DC-DC 内部发热量过大导致过温,请更换功能正常的 DC 与空调驱动器,并将故障件拆卸后交付BYD 进行专业检修。

4. 与高压电池管理器 (BMS) 通讯故障

1).DC-DC 出现通讯故障的原因有两种: 1、CAN 总线接插件及线束出现问题; 2、DC-DC 内部 CAN 模块出现故障。

当出现通讯故障时,仪表会点亮 DC-DC 故障灯 (1) ,此时请立即将车辆靠路边停靠,联系维修工作人员进行处理。

处理方法:

检查 DC-DC 的低压接插件(如下图所示)中 CAN_H、CAN_L、CAN 屏蔽的针脚及线束是否正常,

若存在问题则调整、维修、更换。若无问题,则测量其在 OK 档下电压值(CAN_H、CAN_L 均为 2.5V 左右,CAN_H 略高于 CAN_L),或者测量其电阻值,断开蓄电池后,CAN_H 和 CAN_L 两引脚间电阻 值应在 $60\,\Omega$ 左右,若电压或电阻不在有效范围内,则可能为 DC-DC 内部 CAN 模块存在故障,请更换 功能正常的 DC 与空调驱动,并将故障件拆卸后交付 BYD 进行专业检修。

引脚	功能定义		
1	ON档正		
2	ON档地		
3	空		
4	空		
5	CAN_H		
6	CAN_L		
7	CAN屏蔽地		
8	空		

5.DC-DC 低压控制信号故障

1).检查高压配电箱低压控制端接插件 M31 (如下图所示)。

端子	线色	条件	正常值
M31-5→车身地	W/B	OK 档	11~14V
M31-7→车身地	B/L	OK 档	11~14V
M31-3→车身地	B/Y	OK 档	11~14V
M31-10→车身地	В	始终	小于1Ω

测量步骤:

- a) 将电源档位上到 OK 档。
- b) 拔下高压配电箱 M31 连接器。
- c) 测量线束端连接器各端子间电压或电阻。

若测量结果不正常,则请检查高压配电箱(方法详见高压配电箱)。若测量结果正常,则请更换功能正常的 DC 与空调驱动器,并将故障件拆卸后交付 BYD 进行专业检修。

七、 DC 与空调驱动器的拆卸和安装

1. 拆卸维修前需:

1).点火开关 OFF 档 拔掉紧急维修开关 蓄电瓶断电 放掉冷却系统冷却液 拆卸 DC 和空调驱动器总成冷却管路

2. 拆卸

1).断开高压电缆

a) 断开 DC 输入、充电器输入、空调驱动器输入三合一接插件。

断开空调驱动输出1接插件。

断开空调驱动输出2接插件。

拆卸 DC 和空调驱动器总成

断开 DC 和空调驱动器总成上 5 个接插件

拆卸 DC 前端两个螺栓

拆卸 DC 后端一个螺母。

卸下 DC 和空调驱动器总成。

3. 安装

1).将 DC 和空调驱动器总成放在支架上对准孔位。

安装 DC 后端一个螺母。

安装 DC 前端两个螺栓。

接上 DC 和空调驱动器总成上 5 个接插件;

安装 DC 和空调驱动器总成冷却管路并排空气;

装上维修开关及蓄电瓶线路。