Information Security 2022 2nd Project

Prof. Junbeom Hur
TA. Woonghee Lee
(whlee@isslab.korea.ac.kr)

Information System Security Lab., Department of Computer Science and Engineering, Korea University, Seoul, Korea

Finding a Hash Collision pair

- Given a hash function H(m, t), find a message pair which has the same hash value, but different messages when t = 5.
- H(m, t)
 - m: message
 - t: special value for a hash function
 - Input m is a 256-bit message, m = (m[0], m[1], ..., m[31])
 - Output o is a 128-bit value, o = (o[0], o[1], ..., o[15])
 - Each of o[i] and m[i] is a unit vector of which size is 8-bit

Hash Function, H(m, t)

H(m, t)

- 1. $A_0 = (m[0], m[1], ..., m[15])$
- 2. $B_0 = (m[16], m[17], ..., m[31])$
- 3. For i = 0, 1, ..., t 2:
- 4. $rb_i = (B_i[0], B_i[1], B_i[2], B_i[3])$
- 5. $A_{i+1} = Round(rb_i, A_i)$
- 6. $B_{i+1} = Round((i, i + 1, i + 2, i + 3), A_i)$
- 7. End For
- 8. $rb_{t-1} = (B_{t-1}[0], B_{t-1}[1], B_{t-1}[2], B_{t-1}[3])$
- 9. $A_t = Round'(rb_{t-1}, A_{t-1})$
- 10. $O = A_t \oplus A_0 \oplus B_0$ (which is $A_t[0] \oplus A_0[0] \oplus B_0[0], ..., A_t[15] \oplus A_0[15] \oplus B_0[15]$)

Round and Round' Function

Y = Round(rb, X)

Each of rb and X is a 32-bit value which can be represented by rb = (rb[0], rb[1], rb[2], rb[3]) and X = (X[0], X[1], ..., X[15]).

Each of rb[i] and X[i] is a unit vector of which size is 8-bit.

- 1. $(Y[0], ..., Y[3]) = F(rb, (X[0], ..., X[3])) \oplus (X[4], ..., X[7])$
- 2. (Y[4], ..., Y[7]) = (X[8], ..., X[11])
- 3. (Y[8], ..., Y[11]) = (X[12], ..., X[15])
- 4. (Y[12], ..., Y[15]) = (X[0], ..., X[3])

Y = Round'(rb, X)

- 1. (Y[0], ..., Y[3]) = (X[4], ..., X[7])
- 2. $(Y[4], ..., Y[7]) = F(rb, (X[0], ..., X[3])) \oplus (X[8], ..., X[11])$
- 3. (Y[8], ..., Y[11]) = (X[12], ..., X[15])
- 4. (Y[12], ..., Y[15]) = (X[0], ..., X[3])

(F function will be described at slide #5)

F Function

$$Y = F(rb, X)$$

Each of rb and X is a 32-bit value which can be represented by rb = (rb[0], rb[1], rb[2], rb[3]) and X = (X[0], X[1], X[2], X[3]).

Each of rb[i] and X[i] is a unit vector of which size is 8 bit.

- 1. $p[i] = X[i] \oplus rk[i]$ (for i = 0,1,2,3)
- 2. q[i] = S(p[i]) (for i = 0,1,2,3) // AES S-box function
- 3. $y^T = M \cdot q^T // AES MixColumn function$
- \checkmark S(p) is the same as S-box of AES
- $\checkmark y^T = M \cdot q^T$ is the same as AES MixColumn function

S-box Function

- S-box function: S(xy)
 - Input is an 8-bit value represented by hexadecimal number
 - ex) If xy = d2, S(d2)=b5 given the S-box table

hex		у															
		0	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f
x	0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
	1	ca	82	с9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
	2	b7	fd	93	26	36	3f	£7	CC	34	a5	e5	f1	71	d8	31	15
	3	04	c 7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
	4	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
	5	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
	6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9f	a8
	7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
	8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
	9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
	a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
	b	e 7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
	С	ba	78	25	2e	1c	a6	b4	с6	e8	dd	74	1f	4b	bd	8b	8a
	d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
	е	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
	f	8c	al	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

$y^T = M \cdot x^T$ - 32bit Matrix Product

$$y^T = M \cdot x^T$$

- Same as the AES MixColumn
- The 32-bit value x is composed of four 8-bit unit vectors (a 1×4 matrix with size 4): x = (x[0],x[1],x[2],x[3])
- The multiplication operations are conducted in $GF(2^8)$

$$y^{T} = \begin{bmatrix} y[0] \\ y[1] \\ y[2] \\ y[3] \end{bmatrix} = M \cdot x^{T} = \begin{bmatrix} 2 & 3 & 1 & 1 \\ 1 & 2 & 3 & 1 \\ 1 & 1 & 2 & 3 \\ 3 & 1 & 1 & 2 \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}$$

Submission Guideline

- Please upload the followings as a single compressed file into Blackboard
- 1. Source codes and exe files for solution (C and C++ are encouraged, but if you want you can use Python, Java, etc).
 - You may use C++ to implement those functions easily.
- 2. A message pair and a hash value (.txt)
- 3. Report (.doc, .hwp, or pdf file)
 - It must include detailed analysis of Hash function and description of your solution. Even if your final answer is right, your score would be deducted if such description is not enough.
- 4. Deadline: **2022. Dec. 4, 23:59**
- **Late submission, or any kind of plagiarism will result in 0 point**

KOREA UNIVERSITY

