Devoir maison 4.

À rendre le lundi 7 novembre 2022

Exercice 1

Soit f la fonction définie par

$$f(x) = 2 \operatorname{Arctan}\left(\frac{x}{\sqrt{1-x^2}}\right) - \operatorname{Arcsin}\left(2x\sqrt{1-x^2}\right)$$

- $\mathbf{1}^{\circ}$) Déterminer l'ensemble de définition D de f.
- 2°) Étudier la parité de f.
- 3°) a) Justifier que f est dérivable au moins sur $D\setminus\{x_1,x_2\}$ où x_1 et x_2 sont des réels à expliciter (on fera en sorte d'avoir $x_2 < 0 < x_1$).
 - **b)** Calculer f'(x) pour $x \in D \setminus \{x_1, x_2\}$.
 - c) En déduire l'expression de f(x) pour $x \in D$ tel que $x \ge 0$.
 - d) En déduire l'expression de f(x) pour tout $x \in D$.

Exercice 2

Soit $n \in \mathbb{N}^*$ et $\varphi \in \mathbb{R}$. On considère le système

(S):
$$\begin{cases} (z+it)^n + (z-it)^n = 2\cos(\varphi) \\ z^2 + t^2 = 1 \end{cases}$$

d'inconnue le couple (z,t) de complexes.

- 1°) Soit z et t des complexes. On suppose que (z,t) est solution du système (S). On note u=z+it, v=z-it.
 - a) Justifier que $u \neq 0$ et $v = \frac{1}{u}$.
 - **b)** Montrer que u^n est solution de l'équation (E): $Z^2 2\cos(\varphi)Z + 1 = 0$.
 - c) Résoudre l'équation (E). En déduire la forme de u et v.
 - d) En déduire la forme de z et t.
- 2°) Conclure.