开发成功数据库应用的要点

- 需要理解数据库体系结构
- 需要理解锁和并发控制特性
 - 每个数据库都以不同的方式实现
- 不要把数据库当 "黑盒"
- 性能、安全性都是适当的被设计出来的
- 用尽可能简单的方法解决问题
 - "创造"永远追不上开发的步伐
- DBA和RD之间的关系

数据库体系结构的差异

- ·不能把数据库当成"黑盒"使用,因为每个数据库都是非常不同的
- Oracle和MySQL的差别,类似
 - Windows和Linux的差别
 - iOS和Android的差别
 - 虽然都是DBMS,但它们也有相当的差异
- 了解这种差异,了解你所使用数据库的特性,是开发成功数据库应用的基础

并发控制的问题

- 现实存在并发,我们需要保持数据的一致性,所以要做并发控制
- 锁机制, 使得并发控制成为可能
- 不同的数据库, 实现锁机制是不一样的

比如: Oracle的锁机制就比较特别

• 这个时候,Transaction1能提交吗?

时序	Transaction 1	Transaction 2
T1	Begin	
T2	Read (X) $x=1000$	Begin
Т3		Read (X) x=1000
T4		Write (X) $x=x-800=200$
T5		Submit
Т6	Submit	

Oracle存在有时读不到正确数据的现象

- Oracle的多版本控制,读一致性的并发模型
 - 读一致查询:对于一个时间点 (point time), 查询会产生一致的结果
 - 非阻塞查询: 查询不会被写入器阻塞, 但在其它数据库中可能不是这样的

```
有一个最简单的方式演示Oracle中的多版本:
Create table t
As
Select * from all_users

/ Delete from t;

Variable x refcursor
Begin
Open:x for select * from t;

End;
/ /
```


Oracle这种锁机制的好处是什么?

• 例子:ACCOUNTS (account_number, account_balance) 一个银行的账户余额 为了简单,只考虑一个仅有四行的表(同时假设每个数据库块中只存放一行数据。)

帐号,余额

1: 500

2: 250

3: 400

4; 100

- 我们想运行一个日报表,了解银行里有多少钱。下面是一个非常简单的查询。
 - Select sum(account_balance) from accounts;

Oracle和其它数据库在并发上的差别

帐号,余额

1; 500

2; 250

3; 400

4; 100

Oracle的做法

	R&W	W
T1	Read (1)	
T2	Read (2)	Write (1) 500-400
Т3	Read (3)	Write (4) 100+400
T4	Read (4)	commit
T5	Sum (1+2+3+4)	
Т6	Commit	

其它数据库的做法

	R&W	W
Т0	Lock (T)	
T1	Read (1)	
T2	Read (2)	Write (1) 500-400
Т3	Read (3)	Write (4) 100+400
Т4	Read (4)	Commit (Waiting and Roll Back)
Т5	Sum (1+2+3+4)	
Т6	Commit	Roll Back

从体系结构和特性中了解具体数据库的锁机制

- 比如Oracle实现的锁机制
 - 只有修改才加行级锁
 - Read绝对不会对数据加锁
 - Writer不会阻塞Reader
 - 读写器绝对不会阻塞写入器

课后思考

- 对大多数码农而言,数据库锁机制好像都是自动和透明实现的,那么深入了解每个数据库的锁机制实现细节,对码农编码有什么影响嘛?
- 根据这节课Oracle的锁机制特征的分析,你尝试去了解一下MySQL、 SQLServer这些其它数据库锁机制实现的特征

・请将你的思考和分析,完成课后的小作业(不是两次大作业),优秀的作业会予以表扬或 其它奖励

End

休息一下,等待下一节视频

