4. Liniowe i nieliniowe układy analogowe ze wzmacniaczami operacyjnymi

Wprowadzenie

Przetwarzanie i obróbka danych w przyrządach pomiarowych oraz układach regulacji automatycznej odbywa się dzisiaj wyłącznie w technice cyfrowej. Jedyne sygnały, na których wykonujemy operacje matematyczne to najczęściej sygnały analogowe, których źródłem są przetworniki pomiarowe.

Zatem, aby zrealizować komunikację między światem zewnętrznym i maszyną cyfrową trzeba zastosować przetworniki analogowo-cyfrowe i cyfrowo-analogowe. Częścią tych obwodów są układy analogowe realizujące najważniejsze operacje matematyczne: dodawanie, odejmowanie, mnożenie, dzielenie, różniczkowanie i całkowanie oraz tworzenie specjalnych funkcji, np. logarytmicznej, wykładniczej.

W niniejszy wykładzie omówiono zasady działania podstawowych układów analogowych liniowych z ujemnym sprzężeniem zwrotnym oraz układów nielinowych, w których zastosowano zarówno ujemne jaki i dodatnie sprzężenie zwrotne, realizujących wyżej wymienione funkcje.

Do grupy układów liniowych z ujemnym sprzężeniem zwrotny zalicza się między innymi:

- 1. Sumatory
- 2. Układy odejmujące
- 3. Układy ze zmiennym znakiem współczynnika wzmocnienia
- 4. Integratory
- 5. Układy różniczkujące
- 6. Sterowane źródła napięcia
- 7. Sterowne źródła prądu

Sumator

Po przekształceniu napięcie wyjściowe jest równe:

$$U_2 = -\frac{R_2}{R_{11}}U_{11} - \frac{R_2}{R_{12}}U_{12} + \dots - \frac{R_2}{R_{1n}}U_{1n}$$

Rys. 4.1. Sumator

Układ odejmujący

Rys. 4.2. Układ odejmujący

Układ ze zmiennym znakiem wzmocnienia

Rys. 4.3. Układ ze zmiennym znakiem wzmocnienia

Integrator

Rys. 4.4. Układ całkujący

Układ różniczkujący

 $u_2 = -RC \frac{du_1}{dt}$

Rys. 4.5. Układ różniczkujący

Źródła napięcia

Źródła napięcia sterowane napięciem

Źródło napięcia sterowane prądem

4.6. Źródła napięcia sterowane napięciem lub prądem

Źródło prądu sterowane napięciem z uziemionym odbiornikiem

4.7. Źródło prądu sterowane napięciem z uziemionym odbiornikiem

Do grupy układów nieliniowych z ujemnym sprzężeniem zwrotnym zalicza się między innymi:

- 1. Ogranicznik napięcia
- 2. Prostownik liniowy jednopołówkowy
- 3. Układ modułu
- 4. Prostownik liniowy z mostkiem Gretza
- 5. Układ logarytmujący
- 6. Układ realizujący funkcję wykładniczą
- 7. Generatory funkcji nieliniowych

Ogranicznik napięcia

Rys. 4.8. Ogranicznik napięcia

Prostownik liniowy jednopołówkowy

Układ modułu (prostownik liniowy dwupołówkowy)

Rys. 4.9. Układ modułu

Układy nieliniowe, w których zastosowano dodatnie sprzężenie zwrotne działają dwustanowo. Można wśród nich wyróżnić:

- 1. Komparatory napięcia
- 2. Przerzutniki
 - Przerzutnik Schmitta
 - przerzutnik bistabilny
 - przerzutnik astabilny (multiwibrator)
 - przerzutnik monostabilny (uniwibrator)

Komparatory napięcia

Najprostszy komparator napięcia przedstawiono na (Rys.4.10), a przebiegi: wejściowy u_1 i wyjściowy u_2 na (Rys.4.11). Układ porównuje sygnał wejściowy u_1 z potencjałem 0 V. Każda zmiana znaku wartości chwilowej tego napięcia powoduje przejście wzmacniacza operacyjnego z jednego stanu nasycenia do drugiego. Kiedy chwilowe wartości u_1 są dodatnie, wzmacniacz jest w stanie plus nasycenia U_{NP} , kiedy ujemne w minus stanie nasycenia U_{NN} .

Czas przejścia z jednego stanu nasycenia do drugiego zależy między innymi od pasma przenoszenia wzmacniacza. Komparator ze wzmacniaczem operacyjnym μA741 będzie poprawnie pracował, jeżeli częstotliwość sygnału u₁ będzie rzędu kilkuset herców. Ważne jest także, żeby przejście chwilowej wartości sygnału u₁ było jednoznaczne i szybkie.

Komparator przedstawiony na (Rys.4.12.) działa podobnie jak układ z (Rys.4.10.), dla dodatniej półfali napięcia sterującego u₁ dioda D w pętli ujemnego sprzężenia zwrotnego wzmacniacza operacyjnego jest spolaryzowana w kierunku zaworowym i można ją traktować jak łącznik otwarty. Pętla sprzężenia wrotnego jest zatem przerwana i wzmacniacz jest w stanie minus nasycenia. Dla ujemnej półfali napięcia u₁ dioda jest spolaryzowana w kierunku przewodzenia i w tej sytuacji można ją potraktować jak łącznik zamknięty. Działanie ujemnej pętli sprzężenia zwrotnego wprowadza w tym wypadku wzmacniacza w stan aktywny. Na wyjściu komparatora jest napięcie u₂ bliskie 0 V. Jeżeli w miejsce diody półprzewodnikowej D będzie włączona jedna lub szeregowo dwie przeciwnie spolaryzowane diody Zenera wzmacniacz będzie zawsze w stanie aktywnym, a poziomy sygnału wyjściowego będą określone przez odpowiednie napięcia przewodzenia tych diod.

Przerzutnik Schmitta

Klasyczny układ przerzutnika Schmitta przedstawiono na (Rys.4.14), a przebiegi sygnału wejściowego u_1 i wyjściowego u_2 na (Rys.4.15). Napięcie wyjściowe jest zawsze równe napięciu nasycenia U_{NP} lub U_{NN} . Przełączenie stanów występuje, gdy zrównają się potencjały wejść + i - wzmacniacza operacyjnego. Jeżeli wzmacniacz operacyjny jest w stanie plus nasycenia U_{NP} przełączenie nastąpi, kiedy napięcie wejściowe u_1 jest równe dodatniemu napięciu przełączania U_{PP} . Napięcie U_{PP} można wyznaczyć z zależności:

$$U_{PP} = \frac{R_1}{R_1 + R_2} U_{NP} \tag{4.1}$$

Kiedy wzmacniacz jest w stanie minus nasycenia napięcie przełączania U_{PN} jest równe:

$$U_{PN} = \frac{R_1}{R_1 + R_2} U_{NN} \tag{4.2}$$

W przerzutniku przedstawionym na (Rys. 4.16.) wejście inwertujące (–) wzmacniacza jest połączone z masą układu (ma potencja zero), a sygnał wejściowy steruje przez rezystor R₁ wejście powtarzające (+). Tym razem, kiedy na wyjściu układu jest stan plus nasycenie, chwilowa wartość sygnału u₁, która spowoduje przełączenie musi mieć taką wartość, przy której potencjał wejścia (+) będzie równy zero.

Warunek zatem jaki musi być spełniony ma postać:

$$\frac{U_{NP} - U_{PP}}{R_1 + R_2} R_1 + U_{PP} = 0 (4.3)$$

Oznacz to, że dodatnie napięcie przełączania ma wartość:

$$U_{PP} = -\frac{R_1}{R_2} U_{NP} \tag{4.4}$$

Kiedy wzmacniacz jest w stanie minus nasycenia napięcie przełączania U_{PN} jest równe:

$$U_{PN} = -\frac{R_1}{R_2} U_{NN} \tag{4.5}$$

Z zależności (4.4) i (4.5) wynika, że napięcia przełączania są przeciwnego znaku względem napięć nasycenia wzmacniacza. Przebiegi napięcia wyjściowego u₂ w układzie z (Rys.4.15) i z (Rys.4.17) są przesunięte względem siebie o półokresu.

Bibliografia

- 1. Kaźmierkowski M. P., Matysik J. T.: Wprowadzenie do elektroniki i energoelektroniki, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa 2005
- 2. Baranowski J., Nosal Z.: Układy elektroniczne cz. I. Układy analogowe liniowe, Wydawnictwa Naukowo-Techniczne, Warszawa 1998