AI1103: Assignment 1

Santosh Dhaladhuli - MS20BTECH11007

Download all python codes from

https://github.com/Santosh-Dhaladhuli2003/ AI1103-Assignment-1/blob/main/Assignment %201.py

and latex codes from

https://github.com/Santosh-Dhaladhuli2003/ AI1103-Assignment-1/blob/main/Assignment %201.tex

PROBLEM 5.12

Random Variable X has the following Probability Distribution

X	0	1	2	3	4	5	6	7
P(X)	0	k	2k	2k	3k	k^2	$2k^2$	$7k^2 + k$

Determine:

- 1) k
- 2) Pr(X < 3)
- 3) Pr(X > 6)
- 4) Pr(0 < X < 3)

Solution

PMF of X:

$$\Pr(X) = \begin{cases} 0, & \text{for } X = 0 \\ k, & \text{for } X = 1 \\ 2k, & \text{for } X = 2 \\ 2k, & \text{for } X = 3 \\ 3k, & \text{for } X = 4 \\ k^2, & \text{for } X = 5 \\ 2k^2, & \text{for } X = 6 \\ 7k^2 + k, & \text{for } X = 7 \end{cases}$$
 (5.12.1)

1) It is known that the sum of probabilities of a probability distribution is always one.

$$\therefore 0 + k + 2k + 3k + k^2 + 2k^2 + (7k^2 + k) = 1$$
(5.12.2)

$$\implies 10k^2 + 9k - 1 = 0 \implies (10k - 1)(k + 1) = 0$$
(5.12.3)

$$\implies k = -1, \frac{1}{10}$$
 (5.12.4)

$$\therefore k = \frac{1}{10} (\because k \ge 0) \tag{1}$$

Fig. 1: Probability Mass Function(PMF)

CDF of X:

X	0	1	2	3	4	5	6	7
F(X)	0	1/10	3/10	5/10	8/10	81/100	83/100	1

Fig. 1: Cummulative Distribution Function(CDF)

2)
$$Pr(X < 3) = Pr(X = 0) + Pr(X = 1) + Pr(X = 2)$$

$$\implies$$
 Pr $(X < 3) = 0 + k + 2k = 3k$ (5.12.5)

:.
$$\Pr(X < 3) = \frac{3}{10}$$
 (2)

3)
$$Pr(X > 6) = Pr(X = 7) = 7k^2 + k$$

$$\implies \Pr(X > 6) = \frac{7}{100} + \frac{1}{10}$$
 (5.12.6)

$$\therefore \Pr(X > 6) = \frac{17}{100}$$
 (3)

4)
$$Pr(0 < X < 3) = Pr(X = 1) + Pr(X = 2)$$

$$\implies$$
 Pr $(0 < X < 3) = k + 2k = 3k$ (5.12.7)

$$\therefore \Pr(0 < X < 3) = \frac{3}{10} \tag{4}$$