The MITRE Security Automation Framework (MITRE SAF)©

Aaron Lippold Emily Rodriguez Will Dower

May 2023

https://saf.mitre.org
saf@groups.mitre.org

What is the MITRE Security Automation Framework®?

A suite of open-source security automation tools that facilitate the development, collection, and standardization of content for use by government and industry organizations to:

MITRE SAF® VISION

Implement evolving security requirements while deploying apps at speed

Did You Know?

- ✓ MITRE SAF[©] is FREE and OPEN-SOURCE (under Apache 2 license)
- ✓ MITRE SAF[©] OASIS Heimdall Data Format is in the process of becoming an OASIS international data standard
- ✓ MITRE SAF[©] content is used by sponsors, vendors, and contractors, and often written by non-MITRE contributors
- ✓ Creating new content is quick and easy

MITRE SAF[©] Capabilities

Plan

Choose, tailor, and create security guidance appropriate for your mission

Harden

Implement security baselines using our Ansible, Chef, and Terraform content

Validate

Generate detailed security testing results throughout the lifecycle of a system via automated tests and manual attestation

Normalize

Convert security results from all your security tools into a common data format

Visualize

Identify overall security status and deep-dive to solve specific security defects

MITRE SAF[©] Security Validation Lifecycle

Plan

Harden

Validate

Normalize

Visualize

<u>Develop STIGs</u> <u>from SRGs</u>

Vulcan

Pre-existing Benchmarks

- DISA STIG
- CIS
- Vendor
 Security
 Checklist

Infrastructure as Code

SAF CLI

Automated conversion

Human Code Refinement

3rd Party Tools

SAF CLI

OASIS Heimdall Data Format (OHDF)

Heimdall Lite or Server

Emasser

SAF CLI

MITRE SAF© Capabilities

Normalize

Visualize

MITRE SAF©: PLAN

Security Requirements Guide (SRG)

SAF[©] Vulcan

Package (STIG, CSV, Hardening & Validation content)

Use MITRE SAF® VULCAN to:

- √ Develop STIG-ready content aligned to SRGs
- ✓ Speed STIG development via collaboration, reuse, revision across many programs and stakeholder experiences
- √ Speed team creation of automated hardening and validation code

MITRE SAF© Capabilities

late Normalize

Visualize

30AL

INPUTS

A HARDEN

Implement security baselines using our Ansible, Chef, and Terraform content

Based On Standards

(STIGs, CIS Benchmarks, Agency Baselines)

MITRE SAF©: HARDEN

Use SAF® Hardening content to:

- ✓ Automate Configuration Compliance
- √ Use standard configuration management tools
 - Terraform, Chef, Ansible, Puppet
- √ Share across security community
 - Open-source content (Apache v2)
- √ Span entire development stack
 - Cloud infrastructure, platform, & OS
 - Database, webserver, & application

https://saf.mitre.org/#/harden

Hardening Library

Cloud Service Providers

Azure CIS Benchmark

Virtual Platforms

Docker CIS Benchmark

Docker Enterprise 2.x STIG

VMware VCSA 6.7 STIG

VMware VCSA 7.0 STIG Read...

VMware vSphere 6.5 STIG

VMware vSphere 7.0 STIG Re...

Operating Systems

Red Hat 7 STIG

Red Hat 7 STIG

Red Hat 8 STIG

SUSE 15 STIG

With the Control of t

W Ubuntu 18.04 LTS STIG

W Ubuntu 18.04 STIG

Databases

PostgreSQL 9.x STIG

Application Logic

Keycloak Custom Modules

Network

Web Servers

M Apache CIS Benchmark

MITRE SAF[©] Capabilities

Plan

Normalize

Visualize

Generate detailed security testing results throughout the lifecycle of a system via automated tests and manual attestation

Based On Standards

(STIGs, CIS Benchmarks, Agency Baselines)

Manual Attestation

INSPEC plugin for manual attestation via interviews and examination

Vulcan

Author standards to create 9 INSPEC validation code

saf generate

(formerly InSpec_Tools) Generate 9 INSPEC validation code and set threshold checks within the pipeline

saf validate

Validate threshold checks within the pipeline

Use SAF[©] Validation content to:

- √ Confirm configuration compliance
 - Automatically run at every build
- √ Share across security community
 - Open-source, under Apache 2 license
- √ Span entire development stack
 - Cloud infrastructure, platform, & OS
 - Database, webserver, & application
- √ Incorporate manual attestation
 - 100% coverage of interview, examine, or policy requirements

Validation Library https://saf.mitre.org/#/validate

			· · · · ·	
Cloud Service Providers	Virtual Platforms	Operating Systems	Databases	Web Servers
AWS CIS	O Oocker CE CIS	Red Hat 6 STIG	AWS MSQL 2014 STIG	Apache Server 2.2 STIG
AWS RDS Best Practices Benchmark	K3s Cluster STIG	Red Hat 7 STIG	AWS RDS MySQL 5.7 CIS	Apache Server 2.4x STIG
AWS RDS CIS	(S) K3s Node STIG	Red Hat 8 STIG	AWS RDS Oracle Database 12c STIG	Apache Site 2.2 STIG
⊘ ⊗ AWS S3	Kubernetes CIS	Red Hat CVE Scan	AWS RDS PostgreSQL 9.x STIG	Apache Site 2.4x STIG
AWS S3 Best Practices Benchmark	Kubernetes Cluster STIG	O W Ubuntu 16.04 STIG	AWS RDS PostgreSQL STIG	Apache Tomcat 9.x STIG
GCP CIS Benchmark	Kubernetes Node STIG	Ubuntu 20.04 STIG	MSQL 2014 Database STIG	DRAFT: Tomcat 7 CIS
GCP PCI-DSS 3.2.1	VMWare ESXI 6.5 STIG	№ Windows 10 STIG	MSQL 2014 Instance STIG	DRAFT: Tomcat 8 CIS
GKE CIS Benchmark	VMWare ESXI 6.7 STIG		MongoDB STIG	IIS 8.5 Server STIG
Application Logic	VMWare VCSA 6.7 STIG	Windows 2016 STIG	Oracle Database 12c STIG	IIS 8.5 Site STIG
⊘ Ø JRE 7 STIG	VMWare VCSA 7.0 STIG Readiness Guide	Windows 2019 STIG	Oracle Database 19c CIS	NGINX Baseline
⊘ Ø JRE 8 STIG	VMWare vSphere 7.0 STIG Readiness Gui		Oracle MySQL 5.7 CIS	NGINX STIG Ready Baseline
RSA Archer 6 SCG	VMWare vSphere VM 6.7 STIG		Oracle MySQL 8.0 STIG	

PostgreSQL 9.x STIG

PostgreSQL STIG

Red Hat Jboss EAP 6.3 STIG

Automating Hardening and Validation

By building security into the software development process, teams prepare in advance to receive approval when seeking an Authorization to Operate

Automating Hardening and Validation

By building security into the software development process, teams prepare in advance to receive approval when seeking an Authorization to Operate

SAF CLI Utility Command Line Tool SAF CLI

SAF CLI – emasser

- One of Army ECMA's first deliverables from the Security Automation team in partnership with DISA eMASS PMO
- Automates interactions with ATO packages
- Connect eMASS to your pipeline/workflow output

eMASS API

eMASS Cybersecurity

Management Application

MITRE SAF© Capabilities

Harden

Validate

Visualize

Use SAF © Normalize tools to

- ✓ Translate data into a standard format to ensure interoperability
- ✓ Use OHDF converters as a library in your custom application
- ✓ Add data conversion in your pipeline for automatic normalization in each run

- OHDF
 Converters
- SAF[©] CLI (command line interface)
- SAF[©] GitHub Actions
- Heimdall Lite
- Heimdall Server

Supported Risk Information Sources

- AWS Security Hub
- Splunk
- AWS Config
- Snyk
- Trivy
- Tenable Nessus
- DBProtect
- CSV/XLSX
- Netsparker
- Burp Suite
- GoSec
- Ion Channel
- Prisma
- SonarQube
- OWASPZAP
- Prowler
- Fortify
- JFrog Xray
- Nikto
- Sarif
- Scoutsuite
- Twistlock
- DISA Checklist
- DISAXCCDF Results

MITRE SAF© Capabilities

Harden

Validate

Normalize

MITRE SAF©: VISUALIZE

✓ VISUALIZE

Identify overall security status and deep-dive to solve specific security defects

Aggregated Data

(Compile All Results For Analysis)

Heimdall Lite / Server

Visualize security status, drill-down to identify root cause

Reporting

Display security controls and their status, critical/high findings, and recommended remediation actions

saf convert:hdf2

(formerly InSpec_Tools) Convert HDF to other tool formats and report styles (e.g. csv, html)

saf view

View summary of security status or spin up a Heimdall instance Use SAF Heimdall Lite / Heimdall Server to:

- √ Aggregate test results into rollups, charts, and timelines
- ✓ Deep dive to make decisions on how best to reduce risk

A Look at MITRE Heimdall

Questions?

Heimdall Lite	https://heimdall-lite.mitre.org/
Heimdall Server	https://heimdall-demo.mitre.org/
Vulcan	https://mitre-vulcan-staging.herokuapp.com
SAF CLI	https://saf-cli.mitre.org/
SAF GitHub Action	https://github.com/marketplace/actions/saf-cli-action
Emasser	https://mitre.github.io/emasser/
MITRE GitHub	https://github.com/mitre/(*baseline or app)
SAF Training	https://mitre.github.io/saf-training/

Security Automation Framework©

https://saf.mitre.org
saf@groups.mitre.org

Backup

Select Security Automation Framework Sponsors

Additional MITRE SAF® Vendor Partners

SAF® Sponsor Success Stories – DoD

Organization	SAF Implementation
Army ECMA, cArmy	Integrated the SAF [®] into their platform services and customer-facing pipelines
Army G2/C2S	Piloted security validation of high-side AWS environments for use by the Department
Space Force	Utilized the SAF [®] Emasser [®] client and API to create dashboards of their security packages
Air Force MXS	Integrated the SAF® into IL-2 and IL-5 GovCloud Kubernetes deployment to perform automatic security scans
AF Platform One	Provided hardened and accredited container images of SAF® tooling via IronBank for use by Platform One users
AF Kessel Run	Utilized the SAF [®] automated scanning and Checklist generation to obtain their initial ATO
DSCA	Piloting a proof-of-concept to determine the extent to which the SAF® will be implemented across the Cyber Security Program
DCSA	Streamlining accreditation processes across DCSA emerging and production services in container and cloud environments
DHA	Utilized the SAF [®] to pilot and demonstrate a streamlined accreditation process for medical devices receiving an ATO for multiple components over a 6-month period
NGA	Utilized the SAF [©] toolchain and personnel to achieve their ATO-in-a-day project, a founding sponsor of the SAF
NRO	Automated and streamlined validation of JWICS cloud environments and systems
DISACTO	Supported the initial development of SAF® Vulcan®: a proof-of-concept for streamlining security guidance development
DISAC2SF	Used InSpec scanning and the SAF [©] CLI to ensure Software Factory cloud infrastructure images passed STIG-aligned security thresholds
DISACCM	Researched techniques for containerized components, implemented results as container-aware InSpec profiles
OSDT&E	Provided exemplar DevSecOps SME content for the Department-wide Cybersecurity Test & Evaluation Guidebook
MITRE	© 2023 THE MITRE CORPORATION. ALL RIGHTS RESERVED. APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED 22-00390-7.

Sponsor Success Stories – Federal Government

Organization	SAF Implementation
CMS/HHS	Full adoption of the SAF (saf.cms.gov), tailored profiles to meet organizational requirements
CDC/HHS	Utilized the SAF to help formulate their approach and execution of DevSecOps and utilized the SAF toolchain as a reference implementation for their team
DHS	Piloted and demonstrated the SAF capabilities for validation of AWS resources in GovCloud
FEMA/DHS	Utilized the SAF to streamline AWS AMI gold discs for RedHat and Windows

It has already been written

SAF CLI – Delta

https://saf-cli.mitre.org/

InSpec Delta

Security Benchmarks are always changing – How do you keep things current?

Delta allows you to easily and efficiently keep your profiles up to date by using the standard publications of common benchmarks to update and merge the latest guidance into your profiles!

From the DODI 8500.01

https://www.esd.whs.mil/portals/54/documents/dd/issuances/dodi/850001_2014.pdf

- "2.b. Develops and maintains control correlation identifiers (CCIs), security requirements guides (SRGs), security technical implementation guides (STIGs), and mobile code risk categories and usage guides that implement and are consistent with DoD cybersecurity policies, standards, architectures, security controls, and validation procedures, with the support of the NSA/CSS, using input from stakeholders, and using automation whenever possible."
- "3.g. Using automation whenever possible in support of cybersecurity objectives including, but not limited to, secure configuration management, continuous monitoring, active cyber defense, and incident reporting and situational awareness."
- "4 d. Standards-Based Approach. The DoD cybersecurity and cyberspace defense data strategy will enable semantic, technical, and policy interoperability through a standards-based approach that has been refined by many in industry, academia, and government. It is an informationoriented approach (see for example the security content automation protocol (SCAP) discussion in NIST SP 800-126 (Reference (ci))."
 - (ci) National Institute of Standards and Technology Special Publication 800-126, "The Technical Specification for Security Content Automation Protocol (SCAP): SCAP Version 1.1," current edition

SAF[©] and the DODI 8500.01

Goals and Intentions based on the policy

- Ongoing technology improvements <u>would evolve</u> the state of the art for the capability requirement
- II. That the instruction specifically did not define any specific implementation technology
- III. Technology examples referenced to then current standards and exemplars

SAF's part of the process

- Provide automation that is all based on standards (DISA STIGs, SRGs, CIS Benchmarks, etc.) and can be exported in necessary formats for GRC tools (eMASS, Splunk, RSA Archer, DISA Checklist)
- Integration with eMASS Program of Record for pulling and pushing data
- Working with DoD CIO to update recommendations and policy to better articulate requirements in the face of ever evolving technologies and capabilities, enabling automated and continuous ATO

Example: SCAP vs. InSpec Output Comparison

RedHat 7 Operating System Scans

SCAP (SCC)

Note that the SCAP checklist only contains 178/246 checks making the score much lower

InSpec, visualized by Heimdall, includes all 246 checks even if they are not applicable

Heimdall

Example: SCAP vs. InSpec Output Comparison Heimdall

RedHat 7 Operating System Scans

SCAP (SCC)

SCAP output only contains 178 checks out of the 246 STIG items

This does not provide accurate representation of the true compliance posture

Heimdall

InSpec, visualized by Heimdall, includes all 246 checks even if they are not applicable

SAF[©] Use Cases by Role

Planning

- Identify Potential
 SAF Requirements
- Assess Best Practices
- Identify SAF Tools
- Participate in SAF

Development

- Harden with SAF
- Validate/Aggregate
- Detect Root Cause
- Set Thresholds
- Store Evidence

Assessment

- Aggregate All Data
- Prioritize Activities
- Run priority checks
- Identify Root
 Cause for Risk
 Assessment

Operations

- Monitor Security
- Visualize Security
 Testing Results
- Assign Remediation Actions

A Look at MITRE Vulcan

Develop STIG Ready Content from SRGs with Vulcan

Avoiding repeated manual assessment for programs and capturing the value of collaboration

Analysis to determine what guidance is relevant to the system

General Guidance (e.g. SRG)

SRG-aligned STIG Ready Guidance

High-Level Security Requirements, Best Practices, Standards

Specific Instructions for Specific System Components

Government and Industry Sources

STIG Ready Content

Security Community

MITRE

ট Projects ≛
Released Components

SRGs

Q Search by SRG Version

■ Upload SRG

Security Requirements Guides

Use the following guides to start a new Project

SRG ID	Title	Version	Release Date	Actions
AAA_Service_SRG	Authentication, Authorization, and Accounting Services (AAA) Security Requirements Guide	V1R2	2020-01-24	□ Remove
Application_Security_Development_STIG	Application Security and Development Security Technical Implementation Guide	V5R1	2020-10-23	■ Remove

Vulnerability Discussion 1

Application management includes the ability to control the number of users and user sessions that utilize an application. Limiting the number of allowed users and sessions per user is helpful in limiting risks related to DoS attacks.

This requirement may be met via the application or by utilizing information system session control provided by a web server or other underlying solution that provides specialized session management capabilities.

If it has been specified that this requirement will be handled by the application, the capability to limit the maximum number of concurrent single user sessions must be designed and built into the application.

This requirement addresses concurrent sessions for individual system accounts and does not address concurrent sessions by single users via multiple system accounts.

The maximum number of concurrent sessions should be defined based upon mission needs and the operational environment for each system.

Ensure the value for max_logon_sessions listed in the session.conf file is set to 5.

MYCO-00-000001 // APSC-DV-000010

Documentation Inspec Control Body Inspec Control (Read-Only) Visual Studio Dark Language Rubv Copy È Theme Ensure the number of sessions allowed per user is specified in accordance with the organi 23 24 For development environments; have the developer provide design documentation or demonst 25 26 If the application is not configured to limit the number of logon sessions per user as $d\epsilon$ 27 28 desc "fix", "Design and configure the application to specify the number of logon sessions 29 impact 0.5 30 31 tag severity: "medium" 32 tag gtitle: "APSC-DV-000010" tag gid: nil 33 tag rid: nil 34 tag stig_id: "MYCO-00-000001" 35 tag cci: ["CCI-000054"] 36 tag nist: ["AC-10"] 37 describe parse_config_file('session.conf') do 38 its('max_logon_ssessions') { should cmp 5 } 39 40 end 41 42 end

SAF Heimdall Screen Shots

Tree Map: NIST SP 800-53 Control Coverage

SAF Heimdall Screen Shots

SAF Heimdall Screen Shots

Demonstrate Progress with Trending Graphs

Supporting Tools – Delta – Notional Workflow

Delta will:

- Compare them control-by-control
- Update the InSpec Profile where the metadata has changed
- Easily show you which tests need to change given the updates

InSpec Profile

Metadata at V2R1

Now the human only needs to update the describe blocks!

InSpec Profile at V1R1

What is MITRE SAF©?

MITRE Security Automation Framework (SAF®) is a suite of open-source security automation tools that facilitate the development, collection, and standardization of content for use by the wider security community for use by government and industry organizations to

- Accelerate Authorization
- Establish Security Requirements
- Build Security In
- Assess/Monitor Vulnerabilities