

Unit 7 Building the IS-LM Model

Instructor: Nguyen Tai Vuong School of Economics and Management Hanoi University of Science and Technology

Learning Objectives

- the IS curve, and its relation to the Keynesian cross
- the LM curve, and its relation to the theory of liquidity preference
- how the IS-LM model determines income/output and the interest rate in the short run when P is fixed

Contents

- 1. The IS curve
- 2. The LM curve
- 3. The Equilibrium in goods and money markets
- Impact of fiscal and monetary policy under IS-LM Model

2

The IS - LM Model

- IS-LM model, or Hicks-Hansen model, is a two-dimensional macroeconomic tool that shows the relationship between interest rates and real output in goods and services market.
 - The model was created, developed and taught by J. M. Keynes. However, it is often believed that John Hicks invented it in 1937, and was later extended by Alvin Hansen.
- IS: Investment Saving
- LM: Liquidity preference Money supply

Building the IS Curve

- IS curve Relationship between aggregate output and the interest rate in the goods market.
- The IS curve represents various combinations of interest and income/output along which the goods market is in equilibrium.

4

The Effect of an Interest Rate Change on Planned Aggregate Expenditure and Equilibrium Output

- A high interest rate (r) discourages planned investment (I).
- Planned investment is a part of planned aggregate expenditure (AE).
- Thus, when the interest rate rises, planned aggregate expenditure (AE) at every level of income falls.
- Finally, a decrease in planned aggregate expenditure lowers equilibrium output (income) (Y) by a multiple of the initial decrease in planned investment.

The Effect of an Interest Rate Increase on Planned Aggregate Expenditure and Equilibrium Output

An increase in the interest rate from 3 percent to 6 percent lowers planned aggregate expenditure and thus reduces equilibrium output from Y_0 to Y_1 .

The Effect of an Interest Rate Change on Planned Aggregate Expenditure and Equilibrium Output

Using a convenient shorthand:

$$r \uparrow \rightarrow I \downarrow \rightarrow AE \downarrow \rightarrow Y \downarrow$$

$$r \downarrow \rightarrow I \uparrow \rightarrow AE \uparrow \rightarrow Y \uparrow$$

Deriving the IS curve

$$\downarrow \mathbf{r} \Rightarrow \uparrow \mathbf{I}$$

$$\Rightarrow \uparrow \mathbf{AE}$$

$$\Rightarrow \uparrow \mathbf{Y}$$

8

Why the IS curve is negatively sloped?

- A fall in the interest rate motivates firms to increase investment spending, which drives up total planned spending (AE).
- To restore equilibrium in the goods market, output (a.k.a. actual expenditure, Y) must increase.

Construct IS Function

Components of Keynesian Cross Model:

$$C = C_0 + mpcY_D$$

$$I = I_0 + I_r r$$

$$G = G_0$$

$$T = T_0$$

$$AE = C_0 + mpc(Y - T_0) + I_0 + I_r r + G_0$$

$$AE = [C_0 + I_0 + G_0 - mpc T_0] + mpcY + I_r r$$

At equilbirum in good market: Y = AE

→ IS: Y =
$$\frac{[C_0 + I_0 + G_0 - mpcT_0] + I_r r}{1 - mpc}$$

An economy:

Good Market

$$C = 200 + 0.8 (Y - T)$$

$$I = 100 - 500r$$

G = 80

$$T = 80$$

Find the IS function?

10

Fiscal Policy and the IS curve

- We can use the IS-LM model to see how fiscal policy (G and T) affects aggregate demand and output.
- Let's start by using the Keynesian cross to see how fiscal policy shifts the IS curve...

Shifting the IS curve: ΔG

At any value of \mathbf{r} , $\uparrow \mathbf{G} \Rightarrow \uparrow \mathbf{AE} \Rightarrow \uparrow \mathbf{Y}$

...so the *IS* curve shifts to the right.

The horizontal distance of the *IS* shift equals

$$\Delta \mathbf{Y} = \frac{1}{1 - \mathsf{MPC}} \Delta \mathbf{G}$$

12

Exercise: Shifting the IS curve

 Use the diagram of the Keynesian cross to show how an increase in taxes shifts the IS curve.

Developing LM curve

The LM curve shows the combinations of interest rates and levels of real income for which the money market is in equilibrium.

$$\blacksquare \text{ At } Y_1 \to M_1^D = C_M - c_r r + c_Y Y_1 \ \to \ M^S = M_1^D \ \to equilbrium \ r_1$$

• At
$$Y_2 \rightarrow M_2^D = C_M - c_r r + c_Y Y_2 \rightarrow M^S = M_2^D \rightarrow equilbrium \ r_2$$

$$\blacksquare$$
 $Y_2 > Y_1$ $r_2 > r_1$

Deriving the *LM* **curve**

Why the *LM* curve is upward sloping?

- An increase in income raises money demand.
- Since the supply of money is fixed, there is now excess demand in the money market at the initial interest rate.
- The interest rate must rise to restore equilibrium in the money market.

16

Contruct LM Function

$$MD = C_M - c_r r + c_Y Y$$

$$MS = M1$$

$$MS = MD \rightarrow M1 = C_M - c_r r + c_r Y$$

$$\rightarrow$$
 LM: $r = \frac{(C_M - M1) + c_Y Y}{c_r}$

An economy: Money market

MD = 200 - 300r + 0.3Y

MS = 650

Find the LM function?

Find Equilibrium Interest Rate and Income?

Good Market C = 200 + 0.8 (Y - T)I = 100 - 500r

G = 80T = 80

IS:

Money market

MD = 200 - 300r + 0.3Y

MS = 650

LM:

20

Policy analysis with the IS-LM model

We can use the *IS-LM* model to analyze the effects of

• fiscal policy: **G** and/or **T**

• monetary policy: M

An increase in government purchases

- 1. IS curve shifts right by $\frac{1}{1-\text{MPC}}\Delta \boldsymbol{G}$ causing output & income to rise.
- 2. This raises money demand, causing the interest rate to rise...
- 3. ...which reduces investment, so the final increase in \mathbf{Y} is smaller than $\frac{1}{1-\mathsf{MPC}}\Delta\mathbf{G}$

22

MACROTECHOMICS

A tax cut

Consumers save (1-MPC) of the tax cut, so the initial boost in spending is smaller for ΔT than for an equal ΔG ... and the *IS* curve shifts by

2. ...so the effects on r and Y are smaller for ΔT than for an equal ΔG .

Monetary policy: An increase in M

- 1. $\Delta M > 0$ shifts the LM curve down (or to the right)
- 2. ...causing the interest rate to fall
- 3. ...which increases investment, causing output & income to rise.

24

Interaction between monetary & fiscal policy

- Model: Monetary & fiscal policy variables (M, G, and T) are exogenous.
- Real world:
 Monetary policymakers may adjust *M* in response to changes in fiscal policy, or vice versa.
- Such interaction may alter the impact of the original policy change.

The Central Bank's response to $\Delta G > 0$

- Suppose the government increases **G**.
- Possible central bank responses:
 - 1. hold M constant
 - 2. hold r constant
 - 3. hold Y constant
- In each case, the effects of the ΔG are different:

26

Response 1: Hold M constant

If the government raises **G**, the *IS* curve shifts right.

If central bank holds **M** constant, then *LM* curve doesn't shift.

Results:

$$\Delta \mathbf{Y} = \mathbf{Y}_2 - \mathbf{Y}_1$$

$$\Delta r = r_2 - r_1$$

Response 2: Hold r constant

If the government raises *G*, the *IS* curve shifts right.

To keep *r* constant, central bank increases *M* to shift *LM* curve right.

Results:

$$\Delta \mathbf{Y} = \mathbf{Y}_3 - \mathbf{Y}_1$$

$$\Delta r = 0$$

28

Response 3: Hold Y constant

If government raises **G**, the *IS* curve shifts right.

To keep **Y** constant, central bank reduces **M** to shift *LM* curve left.

Results:

$$\Delta Y = 0$$

$$\Delta r = r_3 - r_1$$

Estimates of fiscal policy multipliers

Assumption about monetary policy	Estimated value of $\Delta Y/\Delta G$	Estimated value of $\Delta Y/\Delta T$
Fed holds money supply constant	0.60	-0.26
Fed holds nominal interest rate constant	1.93	-1.19

30

Practice

Illustrate each of the following situations with a graph showing the IS – LM model, and explain what happens to the equilibrium values of the interest rate and output:

- 1. An increase in public spending by the government with the money supply held constant.
- 2. An increase in interest rates by the central bank to offset the effects of a reduction in taxation on prices.
- 3. An increase in the aggregate price level due to a rise in world energy prices. The central bank and the government do not react.
- 4. A decrease in the money supply due to inflationary pressures by the central bank in an attempt to keep the real money supply constant.
- A decrease in public spending by the government with the interest rates held constant by the central bank.