Übungen zu Funktionentheorie 1

Sommersemester 2020

Prof. Dr. R. Weissauer Dr. Mirko Rösner Blatt 9 Musterlösung Abgabe auf Moodle bis zum 26. Juni

Bearbeiten Sie bitte nur vier Aufgaben. Jede Aufgabe ist vier Punkte wert. Für jedes Gebiet D bezeichne $\mathcal{O}(D)$ die Menge der holomorphen Funktionen $f:D\to\mathbb{C}$. Sei $D_{r,R}(z_0)=\{z\in\mathbb{C}\mid r<|z-z_0|< R\}$ der Kreisring um $z_0\in\mathbb{C}$ für reelle $0\leq r< R$.

- 37. Aufgabe: Sei $f \in \mathcal{O}(D_{r,R}(z_0))$ mit Laurententwicklung $f(z) = \sum_{\nu=-\infty}^{\infty} a_{\nu} z^{\nu}$.
 - (a) Zeigen Sie die Abschätzung $|a_{\nu}| \leq \rho^{-\nu} \max_{|z-z_0|=\rho} |f(z)|$ für jedes $r < \rho < R$.
 - (b) Berechnen Sie die Laurententwicklung von $f(z) = \frac{1}{z^2 z}$ in den Kreisringen $D_{0,1}(0)$ und $D_{1,2}(0)$ und $D_{0,1}(1)$.

Lösung:

(a) Wir verwenden die Formel für den Laurentkoeffizienten aus dem Skript (Zusatz Seite 54): Sei $\gamma(t) = z_0 + \rho \exp(2\pi i t)$ für $0 \le t \le 1$, dann ist

$$a_{\nu} = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(\zeta)}{(\zeta - z_0)^{\nu+1}} d\zeta = \frac{1}{2\pi i} \int_{0}^{1} \frac{f(\gamma(t))}{(\gamma(t) - z_0)^{\nu+1}} \gamma'(t) dt$$
.

Also folgt durch die Standardintegralabschätzung

$$|a_{\nu}| = \left| \frac{1}{2\pi i} \int_{0}^{1} \frac{f(\gamma(t))}{(\gamma(t) - z_{0})^{\nu+1}} \gamma'(t) dt \right|$$

$$\leq \frac{1}{2\pi} \int_{0}^{1} \frac{|f(\gamma(t))|}{|\gamma(t) - z_{0}|^{\nu+1}} |\gamma'(t)| dt \leq \frac{1}{2\pi} \max_{|\zeta - z_{0}| = \rho} |f(\zeta)| \int_{0}^{1} \frac{1}{\rho^{\nu+1}} |2\pi i \rho \exp(2\pi i t)|| dt$$

$$= \rho^{-\nu} \cdot \max_{|\zeta - z_{0}| = \rho} |f(\zeta)|.$$

- (b) Man verwendet die geometrische Summenformel.
 - (1) Für $z \in D_{0,1}(0)$ gilt |z| < 1 also $f(z) = -\frac{1}{z} \frac{1}{1-z} = -\frac{1}{z} \sum_{\nu=0}^{\infty} z^{\nu} = -\sum_{\nu=-1}^{\infty} z^{\nu}$. Die Laurentkoeffizienten sind also $a_{\nu} = \begin{cases} -1 & \nu \geq -1, \\ 0 & \nu \leq -2. \end{cases}$
 - (2) Für $z \in D_{1,2}(0)$ gilt $|z^{-1}| < 1$ also $f(z) = \frac{1}{z^2} \frac{1}{1-z^{-1}} = \frac{1}{z^2} \sum_{\nu=0}^{\infty} z^{-\nu} = \sum_{\nu=-\infty}^{-2} z^{\nu}$. Die Laurentkoeffizienten sind also $a_{\nu} = \begin{cases} 0 & \nu \geq -1, \\ 1 & \nu \leq -2. \end{cases}$
 - (3) Für $z \in D_{0,1}(1)$ gilt |z 1| < 1 also

$$f(z) = \frac{1}{z-1} \cdot \frac{1}{1-(-z+1)} = \frac{1}{z-1} \sum_{\nu=0}^{\infty} (-z+1)^{\nu} = \sum_{\nu=-1}^{\infty} (-1)^{\nu+1} (z-1)^{\nu}.$$

Die Laurentkoeffizienten sind also $a_{\nu} = \begin{cases} (-1)^{\nu+1} & \nu \geq -1 \\ 0 & \nu \leq -2 \end{cases}$.

Insbesondere ist die Laurententwicklung nicht nur von z_0 abhängig, sondern auch von den Radien des Kreisrings.

38. Aufgabe (Riemannscher Hebbarkeitssatz.): Sei D ein Gebiet und $z_0 \in D$. Sei $f \in \mathcal{O}(D \setminus \{z_0\})$ holomorph und in einer Umgebung von z_0 beschränkt. Sei

$$f(z) = \sum_{\nu = -\infty}^{\infty} a_{\nu} (z - z_0)^{\nu}$$

die Laurent-Entwicklung in $D_{0,R}(z_0)$ für hinreichend kleines R.

- (a) Zeigen Sie $a_{\nu} = 0$ für alle $\nu < 0$.
- (b) Folgern Sie, dass f sich holomorph nach z_0 fortsetzen lässt.

Hinweis: Verwenden Sie Aufgabe 37.

Lösung:

(a) Indem wir R verkleinern, erreichen wir dass f in $D_{0,R}(z_0)$ beschränkt ist. Also gibt es eine reelle Konstante C>0 mit |f(z)|< C für alle $z\in D_{0,R}(z_0)$. Nach Aufgabe 37 gilt die Abschätzung

$$|a_{\nu}| \le \rho^{-\nu} \max_{|z-z_0|=\rho} = \rho^{-\nu} C$$
.

für alle ρ mit $0 < \rho < R$. Für $\nu < 0$ lassen wir nun ρ gegen Null gehen, dann konvergiert die rechte Seite gegen Null. Aber a_{ν} hängt nicht von ρ ab. Also ist $a_{\nu} = 0$ für alle $\nu < 0$.

- (b) Die Laurententwicklung von f um z_0 ist $f(z) = \sum_{\nu=0}^{\infty} a_{\nu}(z-z_0)^{\nu}$, ist also eine Potenzreihe. Insbesondere konvergiert diese Potenzreihe auf der Kreisscheibe $B_R(z_0)$ und stellt dort eine holomorphe Funktion da. Diese ist die holomorphe Fortsetzung von f nach $z=z_0$.
- 39. Aufgabe: Betrachten Sie die holomorphe Funktion $f_k(z) = 2^{-k} \sin(kz)$.
 - (a) Für welche z konvergiert die Reihe $f(z) = \sum_{k=0}^{\infty} f_k(z)$?
 - (b) Für welche z ist f(z) holomorph?

Lösung: a) Es gilt $f_k(z) = 2^{-k} \frac{1}{2i} (e^{ikz} + e^{-ikz})$, also gilt

$$f(z) = \sum_{k=0}^{\infty} f_k(z) = \frac{1}{2i} \sum_{k=0}^{\infty} ((\frac{e^{iz}}{2})^k + (\frac{e^{-iz}}{2})^k) .$$

Die Reihe konvergiert, falls $\left|\frac{e^{iz}}{2}\right| < 1$ und $\left|\frac{e^{-iz}}{2}\right| < 1$. Eine kurze Rechnung zeigt, dass dies äquivalent ist zu $|\mathrm{Im}(z)| < \mathrm{ln}(2)$. Die Reihe konvergiert also im Gebiet $D = \{z \in \mathbb{C} \mid |\mathrm{Im}(z)| < \mathrm{ln}(2)\}$.

b) Jedes f_k ist offensichtlich holomorph. Zu zeigen: Die Reihe $f = \sum_{k=0}^{\infty} f_k$ konvergiert kompakt gleichmäßig in D, ist also in D holomorph. Sei $K \subseteq D$ kompakt, dann gibt es $y_0 < \ln(2)$ sodass $|\mathrm{Im}(z)| < y_0$ für alle $z \in K$. (Andernfalls konstruiere eine Folge $(z_n)_n$ mit $\mathrm{Im}(z_n) \to \ln(2)$. Aber diese hätte dann eine in K konvergente Teilfolge. Widerspruch.) Jetzt gilt für alle $z \in K$ die Abschätzung $|\frac{e^{iz}}{2}| \le \frac{e^{\mathrm{Im}(z)}}{2} \le \frac{e^{y_0}}{2} < 1$ und für $|\frac{e^{-iz}}{2}|$ entsprechend. Also konvergiert f(z) nach dem Majorantenkriterium auf K gleichmäßig. Da K beliebig war, konvergiert f auf D kompakt und ist dort holomorph.

- **40.** Aufgabe: (a) Die in $D_{0,2\pi}(0)$ holomorphe Funktion $f(z) = \frac{z}{e^z-1}$ ist holomorph fortsetzbar nach z = 0.
 - (b) Die in \mathbb{C}^{\times} holomorphe Funktion $\sin(z)/z$ ist holomorph fortsetzbar nach z=0.

Lösung: Mit dem Riemannschen Hebbarkeitssatz ist das leicht. Wir verwenden daher nicht den Riemannschen Hebbarkeitssatz. In $D_{0,2\pi}(0)$ gilt

$$\frac{1}{f(z)} = \frac{e^z - 1}{z} = \frac{1}{z} \sum_{n=1}^{\infty} \frac{1}{n!} z^n = \frac{1}{z} \sum_{n=0}^{\infty} \frac{1}{(n+1)!} z^n.$$

Diese Potenzreihe konvergiert in ganz $\mathbb C$ nach dem Majorantenkriterium, da $\frac{1}{(n+1)!}<\frac{1}{n!}$. Insbesondere lässt sich $g(z) := \frac{1}{f(z)}$ durch diese Potenzreihe holomorph nach z = 0 fortsetzen mit $g(0) = \frac{1}{(0+1)!} = 1$. Da g(0) nicht verschwindet, ist g in einer Umgebung von z = 0 ungleich Null, damit ist

$$z \mapsto \begin{cases} 1 & z = 0 \\ f(z) & z \in D_{0,2\pi}(0) \end{cases},$$

- die holomorphe Fortsetzung von f in die Kreisscheibe $B_{2\pi}(0)$. b) Gleiche Idee. Nach Definition ist $\sin(z) = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!}$ eine auf ganz $\mathbb C$ konvergente Potenzreihe. Nach dem Quotientenkriterium konvergiert auch $h(z) = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k+1)!}$ gegen eine holomorphe Funktion und stimmt für $z \neq 0$ mit $\sin(z)/z$ überein. Damit ist h die holomorphe Fortsetzung von $\sin(z)/z$.
- **41.** Aufgabe: Fixiere eine endliche Menge $S \subseteq \mathbb{C}$ und für jedes $s \in S$ ein Polynom P_s mit $P_s(0) = 0$. Konstruieren Sie eine holomorphe Funktion $f \in \mathcal{O}(\mathbb{C} \setminus S)$, deren Hauptteil in $s \in S$ durch $P_s(\frac{1}{z-s})$ gegeben ist.

Lösung: Die Menge S ist endlich, also diskret, also gibt es für jedes s ein R_s sodass $|s-s'| \geq R_s$ für alle $s \neq s' \in S$. Mit anderen Worten: $D_{0,R_s}(s)$ ist disjunkt zu S. Sei $f(z) = \sum_{s \in S} P_s(\frac{1}{z-s})$. Beachte dass $z \mapsto P_s(\frac{1}{z-s})$ holomorph ist in $z \neq s$. Insbesondere ist $z \mapsto f(z) - P_s(\frac{1}{z-s})$ holomorph in der Kreisscheibe $B_{R_s}(s) = \{z \mid |z - s| < R_s\}.$