Test 3 Review July 15, 2015

1. Use the graphs of x = f(t) and y = g(t) to sketch the parametric curve with equations x = f(t), y = g(t). Indicate with arrows the direction in which the curve is traced as t increases.





- 2. Find  $\frac{dy}{dx}$  and  $\frac{d^2y}{dx^2}$  for the parametric curve  $x=2\sin t,\,y=3\cos t.$
- 3. Find the area of the ellipse  $x = a \cos \theta$ ,  $y = b \sin \theta$ .
- 4. Set up an integral that represents the length of the curve  $x=t+e^{-t}, \ y=t-e^{-t}$  for  $0 \le t \le 2$ .
- 5. Set up an integral that represents the area of the surface obtained by rotating the curve  $x = t^2 t^3$ ,  $y = t + t^4$  for  $0 \le t \le 1$  about the x-axis.
- 6. Set up an integral that represents the area of the region that lies inside the curve  $r = 3\cos\theta$  and outside the curve  $r = 1 + \cos\theta$ .
- 7. Set up an integral that represents the length of the curve  $r = 5^{\theta}$  for  $0 \le \theta \le 2\pi$ .
- 8. Determine whether the sequence  $\left\{n^2e^{-n}\right\}_{n=1}^{\infty}$  converges or diverges.
- 9. Determine whether the series  $\sum_{n=1}^{\infty} \frac{1+3^n}{2^n}$  converges or diverges.
- 10. Suppose that every time a ball falls from a height of h, it rebounds to a height of  $\frac{1}{4}h$ . If it is dropped from an initial height of 1 meter, find the total distance that it travels.