_1-feedback-principles

[AMV2 Ch 2]

goal: introduce fundamental uses and properties of feedback

topics:
1°. mathematical models of systems

1! differential equations (DE)

12. transfer functions

13. block diagrams

2° effects of feedback

2! disturbance attenuation

22 unmodeled dynamics

23 reference tracking

* read [AMV2 ch 2.2.5] to learn how positive feedback used in digital systems * Hwo assigned - Live midnight Fri kne will answer questions thru * we will post HW on Fri -> conrect: won't be solved until Man * create video of ipynb -> poly

1º. mathematical models of systems

· we will work with multiple representations of livear carbol systems each has unique, - himtages & provides

narel insight

1! differential equations

12. transfer functions

13. block diagrams

* what is a control system?

ex: consider on RLC circuit

-> determine the roots of the characteristic polynomial a(s)= Ls2+Rs+/c - are they in left - or right-

x land love in to relate to a tout charact y

* have does input voltage re relate to output charge y? halt place?
1! differential emination 1' differential equation KVL => u = Ri + Lati + -y | * WARMUP PROBLEM! $= R \frac{1}{4}y + L \frac{1}{4}y + \frac{1}{6}y$ 12. transfer function / EC; called the transfer function $u=e^{st}=y=g(s)u=\left(\frac{1}{Ls^2+Rs+c}\right)u$ 2 G(s) 13. block diagram 2 $(9(5) u=R_{\frac{1}{2}}^{\frac{1}{2}}u^{\frac{1}{2}}...)$

1'. (Rivear) differential equation (DE): [AMV2 Ch 2] [NV7 Ch 3,4]

(DE) $\frac{d^n}{dt^n}$ y + $a_1 \frac{d^{n-1}}{dt^{n-1}}$ y + ··· + a_n y u - input t - time $= b_1 \frac{d^{n-1}}{dt^{n-1}}$ $u + \cdots + b_n u$ y - outputwhere $\{a_k\}_{k=1}^n$ $\{b_k\}_{k=1}^n$ $\subset \mathbb{R}$ (=) $\forall k: a_k, b_k \in \mathbb{R}$ or "D"

o note that (DE) is specified by specified by downy voriable two polynomial expressions: $-a(\pi) = \Box^n + a_1 \pi^{n-1} + \cdots + a_m$)

time time

no matter what time t you pick

Fact: every solution to (DE) is a linear combination (i.e. sum) of:

- the homogeneous solution (u = 0)

- a partiallar solution ($u \neq 0$)

Compareous: when u = 0, i.e. $\frac{d^n}{dt^n}y + a_n\frac{d^{n-1}}{dt^n}y + \cdots + a_ny = 0$, $y(t) = C_1 e^{s_1t} + \cdots + C_ne^{s_nt} = \sum_{k=1}^n C_k e^{s_kt}$ where $\{S_k\}_{k=1}^n \subset C$ are the roots of the characteristic polynomial a(s), i.e. $a(s_k) = 0$ and $\{C_k\}_{k=1}^n$ are determined by initial condition $\{y(0), y(0), y(0), \cdots, y(0)\} = \{\frac{d^k}{dt^k}y(k)(0)\}_{k=0}^{n-1}$

Petrousfer function:

France a different perspecture, a sustenn transforms

input u to artput y:

when $u(t) = e^{st}$, $s \notin \{s_k\}_{k=1}^n$ i.e. s is not o root of a(s)guess $y(t) = a(s)e^{st}$, some $a(s)e^{st}$, some $a(s)e^{st}$, some $a(s)e^{st}$, when $a(s)e^{st}$, $a(s)e^$

lec-fa19 Page 4

$$\frac{d}{dt}y = s(q(s)e^{st}) \dots \frac{d}{dt}y = s^{n} G(s)e^{st}$$

$$-sobstituting into (DE): (s^{n} + a_{1}s^{n-1} + \dots + a_{n})G(s)e^{st}$$

$$= (b_{1}s^{n-1} + \dots + b_{n})e^{st}$$
so $G(s) = \frac{b_{1}s^{n-1} + \dots + b_{n}}{s^{n} + a_{1}s^{n-1} + \dots + a_{n}} = \frac{b(s)}{a(s)}$ is the transfer function

ex: compute the roots of characteristic polynamial $L s^2 + Rs + 1/C$ $s = -R \pm \sqrt{R^2 - 41/C}$ • are those in left-balf (complex) plane $\{3 \in C \mid Re \ 3 < 0\}$?

—> yee, assuming: R,L,C>0: $R^2 - 41/C < R^2$ so $Re \ S < 0$, i.e. $S \in left-balf$ plane $\{5 \in C : Re \ S \in C\}$ $\{6 \in C : Re \ S \in C\}$ $\{6 \in C : Re \ S \in C\}$ $\{6 \in C : Re \ S \in C\}$ $\{6 \in C : Re \ S \in C\}$ $\{6 \in C : Re \ S \in C\}$ $\{6 \in C : Re \ S \in C\}$ $\{6 \in C : Re \ S \in C\}$ $\{6 \in C : Re \ S \in C\}$ $\{6 \in C : Re \ S \in C\}$ $\{6 \in C : Re \ S \in C\}$ $\{6 \in C : Re \ S \in C\}$ $\{7 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$ $\{8 \in C : Re \ S \in C\}$

summary & synthesis of 1! & 1?:

• exponential input $2(t) = e^{st}$ to linear time-invariant (LTI) system

yields exp. apput $y(t) = \sum_{k=1}^{\infty} c_k e^{skt} + G(s)e^{st} = u(t)$ $c_k = Resk < 0$ $c_k = Resk$

of characteristic [recall: 5k = 5k + juk then e = k = j]

Advanced particular response to input signal

The case that $lim y(t) \rightarrow g(s)e^{st}$ (when $u(t) = e^{st}$) $lim y(t) \rightarrow g(s)e^{st}$ The what must be true of $\{sk\}_{k=1}^n$?

The Resk of $\{sk\}_{k=1}^n$?

· terminology: -static gain: $u(t) = e^{0 \cdot t} = 1 \Rightarrow y(t) = G(0) = \frac{b_n}{a_n}$ - giver camplex number 3 e C: 13/ is magnitude, 23 is phase $x = re^{y\theta}$ where r=|3|, $\theta=23$ - writing $3 = 8 + j\omega$: 5 = Re3 is the <u>real part</u> $\omega = Re3$ is the <u>imaginary part</u> $ex: given u(t) = \sin \omega t = lmei \omega t$ $ei \omega t = \cos \omega t + j \sin \omega t$ $g(t) = lm([q(j\omega)]e^{i\omega t})$ $= lm([q(j\omega)]e^{i\omega t})$ $= |z| e^{j^2 3}$ $= |G(j\omega)| \sin(\omega t + \angle G(j\omega))$ rult) = ejut = cosut + joinut ~ y(t) = Cq(ju)ejut lmult) = lmejut = ciaut ~ lmylt) = lm(G(ju)ejut) , \rightarrow what happens when $2e(t) = e^{skt}$, a(sk) = 0?

-> what happens when $2(t) = e^{skt}$, $a(s_{1k}) = 0$?

- what does the transfer function tell us?

- " (DE) tell us?

-> same Q's for $2(t) = e^{skt}$, $b(s_{1}) = 0$ > 3k termed a pole, 3k termed a zero

 \rightarrow when is it the case that $\lim_{t\to\infty} g(t) \to G(s)e^{st}$ (when $u(t)=e^{st}$) $\gtrsim t\to\infty$ * what must be true of {sk}k=1? -> Resk <0 for all & { { 1, ..., n} <def: say Lt I system is stable if all roots of char. poly.
one in the left-bulf plane, i.e. * Routh (1831-1907) & Hurwitz (1859-1919)

found criteria for stability using only coefficients
(i.e. not the roots) of characteristic polynomial a(s) (roots of a(s) have (if and) (algebraic conditions) regative real part) (enly if) (algebraic conditions) $\stackrel{\circ}{\rightleftharpoons}$ $\underline{\alpha_1},\underline{\alpha_2}>0$ $a_{0}S^{2}+a_{1}S+a_{2}$ $5^{3} + 0,5^{2} + 0,25 + 0,3$ $Q_{11}Q_{2}Q_{3}>0$ and $Q_{1}Q_{2}>Q_{3}$ 0,,0,0,04>01 54+ a, 53+ a, 52+ a, stay $Q_1 a_2 7 a_3, a_1 a_2 a_3 7 a_1^2 a_4 + a_3^2$

() . - - () (

13. block diagrams

(a)
$$G_{yu}(s) = G_2(s)G_1(s)$$

(b)
$$G_{yu}(s) = G_1(s) + G_2(s)$$

(c)
$$G_{yu}(s) = \frac{G_1(s)}{1 + G_1(s)G_2(s)}$$

2: effects of feedback

- o there are many uses & types of feedback; we'll focus on these important cases:
 - 2! disturbance attenuation
 - 22. unmodeled dynamics
 - 23 reference tracking
- * read [AMV2 ch 2] to learn about other uses & types of feedback

2! disturbance attenuation [AMV2 Ch 2.3]

• cansider the block diagram: (standard "regative feedback" form)

reference cartroller disturbance

process, i.e. physical system or plant

* this diagram is a precise mathematical statement about law signals (-)'s) are transformed (II's)

ex. how does at put y relate to external inputs (, v;

i.e. find an equation of the form y = Ggr + Gyr v

(x = P(x+v) = P(x+c,e)