1.	What makes a one-way function computationally feasible?	
		Key
		Cipher
		Trapdoor
		Inversion
2.	In asymmetric encryption, the public key is used for	
		Decrypting a message
		Encryption and decryption
		Encrypting a message
		None of the mentioned
3.	Which of the following are asymmetric encryption schemes?	
		DES
		RSA
		AES
		ECC
		ROT13
4.	Which of the following are properties of public-key encryption schemes?	
		They are usually faster than symmetric encryption schemes
		Participants need to agree on a pre-shared secret
		A key is a pair of a public and a secret key
		They are used as part of SSL/TLS (and, thus, https)

One-way property states that it is computationally intractable to compute the pre-image of a digest $h^{-1}(y) = x$.

Collision (second-preimage) resistance implies that it is computationally infeasible to find a second input that has the same output hash.

- 1. With x|y, we denote that x divides y with remainder 0. To show $gcd(a,b) = gcd(b,a \mod b)$, we need to show that $gcd(a,b) \mid gcd(b,a \mod b)$ and $gcd(b,a \mod b) \mid gcd(a,b)$:
 - $gcd(a, b) | gcd(b, a \mod b)$:

Let $d = \gcd(a, b)$, thus $d \mid a$ and $d \mid b$. Moreover, we know $a \mod b = a - \left\lfloor \frac{a}{b} \right\rfloor . b$ Thus, $a \mod b$ is a linear combination of a and b. Hence, $d \mid (a \mod b)$. From this, we can conclude that $d \mid \gcd(b, a \mod b)$, which is equivalent to $\gcd(a, b) \mid \gcd(b, a \mod b)$.

• $gcd(b, a \mod b) \mid gcd(a, b)$ can be shown similarly

Note: In an exam, an informal argument (including examples) would be sufficient.

2. A definition in pseudocode is:

```
euclid(a,b) =
if b = 0
    return a
else
    return euclid(b, a mod b)
```

3. A definition in pseudo code is:

```
ext_euclid(a,b) =
if b = 0
    return (a, 1, 0)
else
    (d', x', y') := ext_euclid(b, a mod b)
    return (d', y', x' - (a div b) * y')
```

4. We have $ext_euclid(33, 40) = (1, 17, -14)$, hence d = 17 and 1 = 33.17 + 40.(-14) = 561 - 560

We can compute ext_euclid(33, 40) = (1, 17, -14) by executing the extended Euclidean algorithms using "paper & pencil":

We first need to compute n=pq and $\Phi=(p-1)(q-1)$:

$$n = p. q = 11.5 = 55$$

$$\Phi = (p-1)(q-1) = (11-1).(5-1) = 10.4 = 40$$

Next, we need to select an e, $1 < e < \Phi$ and e relatively prime to Φ . We choose e = 33 (1 < 33 < 48 and 33 is relatively prime to 40, i.e., gcd(40,33) = 1).

Now, we need to compute the unique integer d, $1 < d < \Phi$ where $ed \mod \Phi$. From the last exercise, we know already d = 17.

Hence, Bob's public key is (55, 33) and his private key is 17.

1. Firstly, we encode the message "geheim":

Secondly, for each encoded letter c, we compute $c=m^{33} \mod 55$ (i.e., encryption using the public key of Alice):

2. First, we decrypt the message by computing for each letter c of the ciphertext via $m = c^5 \mod 39$ (i.e., decryption using the private key of Bob):

Second, we decode the message:

secret

3. It is worth to note that the cipher text can be identical to the plaintext without any precautions. Usually, we want to avoid this behaviour.