



# HW8-Low Pass Filter

Professor: Paul C.-P. Chao





## **Low Pass Filter**

Vdd=1.8V



#### Generation of Equivalent Feedback Loops (Cont'd)



If we apply the complementary transformation to the feedback loop in Fig. 13.34(a), we obtain the equivalent loop in Fig. 13.34(b). The new loop in Fig. 13.34(b) can be used to realize a low-pass function by injecting the input signal as shown in Fig. 13.34(c).



**Figure 13.34 (a)** Feedback loop obtained by placing the bridged-T network of Fig. 13.28(b) in the negative-feedback path of an op amp. **(b)** Equivalent feedback loop generated by applying the complementary transformation to the loop in **(a)**. **(c)** A low-pass filter obtained by injecting  $V_i$  through  $R_1$  into the loop in **(b)**.

# TOPO OPTOBLETADNIC OPTOBLETADNIC LIG

### Synthesis of the Feedback Loop (Cont'd)

- Aims to have complex-conjugate transmission zeros.
- The simplest such networks are the <u>bridged-T networks</u> shown in Fig. 13.28 together with their transfer functions t(s) from b to a, with a open-circuited.







## **Low Pass Filter**



Transfer function :

$$t(s) = \frac{s^2 + s\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\frac{1}{C_4} + \frac{1}{C_3C_4R_1R_2}}{s^2 + s\left(\frac{1}{C_4R_1} + \frac{1}{C_4R_2} + \frac{1}{C_3R_2}\right) + \frac{1}{C_3C_4R_1R_2}}$$

#### Generation of Equivalent Feedback Loops(Cont'd)





- Application of the complementary transformation
- The design of the circuit in Fig. 13.33(b) is based on Eqs. (13.73) through (13.76): namely,  $R_3 = R$ ,  $R_4 = R/4Q^2$ ,  $C_1 = C_2 = C$ ,  $CR = 2Q/\omega_0$  and the value of C is arbitrarily chosen to be practically convenient --- a high-pass function.





**Figure 13.33 (a)** Feedback loop obtained by applying the complementary transformation to the loop in Fig. 13.29. **(b)** Injecting the input signal through  $C_1$  realizes the <u>high-pass</u> function. This is one of the **Sallenand-Key** family of circuits.

#### Generation of Equivalent Feedback Loops (Cont'd)





As another example, Fig. 13.34(a) shows the feedback loop generated by placing the two-port RC network of Fig. 13.28(b) in the negative-feedback path of an op amp. Using the expression for t(s) given in Fig. 13.28(b), we can write for the active-filter poles

• 
$$\omega_0 = 1/\sqrt{C_3 C_4 R_1 R_2}$$
 (13.77)

$$\omega_0 = 1/\sqrt{C_3C_4R_1R_2} \qquad (13.77)$$

$$Q = \left[\frac{\sqrt{C_3C_4R_1R_2}}{C_4}\left(\frac{1}{R_1} + \frac{1}{R_2}\right)\right]^{-1} \qquad \text{(13.78)}$$
(the only different result from the previous in page 75) ormally the design of this circuit is based on selecting  $R_1$ 



• 
$$m = 4Q^2$$
 (13.79)

• 
$$CR = 2Q/\omega_0$$
 (13.80)



with the remaining degree of freedom (the value of C or R) left to the designer to choose.







# Two stage opamp

Vdd=1.8V, Vin+=Vin-=0.9V







## **Simulation Result**

Frequency response



#### **Passband gain**







## **Simulation Result**

Transient analysis

Input**→1**kHz



Input→10kHz



Input→100kHz







# **Design Specification**

| Parameter            | Value   |
|----------------------|---------|
| Power supply VDD     | 1.8V    |
| Passband (fpass)     | 0-10kHz |
| Passband gain        | 0dB     |
| Stopband (fstop)     | 100kHz  |
| Stopband attenuation | 40dB    |

- 作業上傳到E3, 繳交以下檔案,檔名: hw8 \_學號
  - 報告(.pdf) (ex:hw8\_0560030.pdf)
    - 1. 每個規格需符合,並附上模擬結果圖
      - AC analysis (output frequency response)
      - Transient analysis (with 1kHz, 10kHz, 100kHz of 1Vpp sine wave input)
    - 2. 解釋設計方法
  - Spice file (.sp) (ex:hw8\_0560030.sp)
- Deadline:12/25
- 12/25以後繳交作業,遲交一個禮拜分數-10%,兩個禮拜-20%,以此類推分數





# **END**