

Guía de Problemas

La presente guía le permitirá tener una idea bastante precisa del tipo de problemas que debe ser capaz de resolver en una evaluación y el tiempo promedio que debería demorar en resolverlos. En total debería poder resolverla en 3 horas. Le recomendamos que trabaje en ella una hora antes de la clase de trabajo dirigido, que resuelva sus dudas en la clase de trabajo dirigido y que luego dedique una hora a escribir con detalles las soluciones.

- **P1.** (10 min.) Probar que inf $\{\frac{1}{2n+1}: n \in \mathbb{N}\} = 0$.
- **P2.** (30 min.) Sea f una función creciente cuyo dominio es el intervalo [0, 1]. Demuestre que el conjunto f([0, 1]) es acotado superiormente. Calcule el supremo del conjunto f([0, 1]) y determine si posee máximo.
- **P3.** (30 min.) Dados $a \ y \ b$ reales, demuestre que si para cualquier $\epsilon > 0$ se cumple que $a \le b + \epsilon$ entonces $a \le b$. Para argumentar, estudie el conjunto $\{\epsilon > 0 : \epsilon \ge a b\}$.
- **P4.** (30 min.) Sean S y T subconjuntos no vacíos de \mathbb{R} tales que para todo $x \in S$ y para todo $y \in T$ $x \leq y$. Probar que S tiene supremo, que T tiene ínfimo y que $\sup(S) \leq \inf(T)$.
- **P5.** (30 min.) Sean A y B subconjuntos no vacíos de \mathbb{R} , los cuales verifican las siguientes propiedades:
 - (a) $A \cup B = \mathbb{R}$.
 - (b) Todo elemento de A es menor que todo elemento de B

Demuestre que existe un real α que es simultáneamente cota superior de A y cota inferior de B. Pruebe, además, que dicho número real α es único.

- **P6.** (30 min.) Sean $A, B \ y \ C$ subconjuntos de $\mathbb R$ no vacíos y acotados. Pruebe que si para todo $x \in A \ y \ \text{todo} \ y \in B \ \text{existe} \ z \in C \ \text{tal que} \ x + y \le z \ \text{entonces} \ \sup(A) + \sup(B) \le \sup(C).$
- **P7.** (30 min.) Sea $A \subseteq \mathbb{R}$ un conjunto acotado superiormente y tal que su complemento es acotado inferiormente. Muestre que $\inf(A^c) = \sup(A)$ si y sólo si $A = (-\infty, a]$ o $A = (-\infty, a)$ con $a \in \mathbb{R}$.