Máster en Ciencia de Datos

Recuperación de información

Pablo Castells y Alejandro Bellogín

Escuela Politécnica Superior

Universidad Autónoma de Madrid

Curso 2023 – 2024

Presentación

- Introducción a la materia
- Temario
- Bibliografía
- Actividades, evaluación, puesta en marcha

Quiénes somos

Pablo Castells
https://castells.github.io

Alejandro Bellogín https://abellogin.github.io

- Grupo de recuperación de información, desde ~2005
- Motores de búsqueda, sistemas de recomendación
- Departamento de Ing. Informática & Amazon scholar

¿De qué va la asignatura?

1. Motores de búsqueda (orientada a texto)

2. Sistemas de recomendación

Recuperación de información en el máster en Ciencia de Datos

Aspectos únicos de la IR como problema de aprendizaje automático

Factor humano

- Personas deciden lo que es acertado o no
- Parte de la información de entrada son acciones humanas espontáneas
- Subjetividad, inestabilidad, inconsistencia, incertidumbre

Información no estructurada

- Aspecto común con NLP y procesamiento de señal
- Escala masiva, retos de escalabilidad

La tarea de ranking

- No es exactamente regresión ni clasificación
- Optimización de una ordenación

Problemas típicos de recuperación de información

Fundamentos para dar soporte a preguntas o tareas tales como:

- Cómo funcionan las criptomonedas
- Por qué se extinguieron los Neandertal
- Cómo preparar una entrevista de trabajo
- Dónde cenar este sábado
- Organizar un viaje
- Comprar unos auriculares
- Ver una buena serie
- Descubrir música
- Ver vídeos de gatos
- Buscar pareja

- Páginas Web
- Compras
- Vídeo, películas, música
- Personas
- Lugares
- Intranets
- Email, escritorio
- ...

- No estructurada: texto, imagen, audio, vídeo, "objetos"
- "Documentos", "items"
- Escala masiva

- No estructurada: texto,
 imagen, audio, vídeo,
 "objetos"
- "Documentos", "items"
- Escala masiva

¿Cómo lo resolvemos?

• Un problema de clasificación (acierto/fallo)

- No estructurada: texto,
 imagen, audio, vídeo,
 "objetos"
- "Documentos", "ítems"
- Escala masiva

¿Cómo lo resolvemos?

- Un problema de clasificación (acierto/fallo)
- O "aprender un ranking"
- ¿O clasificación de pares de ítems?

Factor humano

Una persona decide lo que es útil o no

Imprecisión

 \Rightarrow incertidumbre

- No estructurada: texto, imagen, audio, vídeo, "objetos"
- "Documentos", "ítems"
- Escala masiva

¿Cómo lo resolvemos?

- Un problema de clasificación (acierto/fallo)
- O "aprender un ranking"
- ¿O clasificación de pares de ítems?

En resumen...

La recuperación de información trata problemas de:

- Acceso a información masiva (p.e. Web)
- No estructurada (p.e. texto)
- Con expresión imprecisa (p.e. consulta) del resultado deseado

Se aborda como un problema de aprendizaje automático

- Supervisado o no supervisado
- Típicamente el objetivo es generar un ranking
- Etiquetas o ground truth (resultado correcto) definidas subjetivamente por personas

Por todo ello, se caracteriza por altos grados de incertidumbre

Documents Queries q₁ q_2 • q₃

Jocuments Queries q₁ q_2 • q₃

How to find a good f?

$$f: \mathcal{D} \times \mathcal{Q} \to \mathbb{R}$$

$$f() = s$$

Given query q, sort $d \in \mathcal{D}$ by decreasing score s = f(d, q)

Jocuments Queries q₁ q_2 • q₃

$$f(\stackrel{\triangleright}{=}, \stackrel{\bullet}{\circ}) = s$$

How to find a good f?

- 1. Unsupervised IR (1950's 2000)
 - Pull it out of our sleeve: intuition + trial and error

- Good principles+ trial and error
- 2. Supervised IR (Since 2000)

Given query q, sort $d \in \mathcal{D}$ by decreasing score s = f(d, q)

Supervised IR

Supervised IR

Model

(supervised

ranker)

Aprendiendo a recuperar información

- ¿Cómo se extraen características?
 - De documento
 - De consulta
 - De documento × consulta
- ¿De dónde salen las etiquetas?
- ¿Cómo se definen los modelos?
 - Espacios de hipótesis
 - Funciones de predicción (a.k.a. scoring, ranking), pérdida, coste
 - Entrenamiento
- ¿Qué métricas offline?
 - Ajuste de parámetros, selección de modelos
- ¿Cómo sabemos si el sistema funciona?
- ♦ ¿Y si no hay consulta?

Búsqueda sin consulta: recomendación

1. Observamos las acciones de los usuarios

2. Predecimos qué les puede interesar

3. Ofrecemos sugerencias a los usuarios

Recomendación como machine learning

- Aprendizaje automático supervisado Input (features)
 - Interacción usuarios ítems
 - Atributos de ítems y de usuarios Output (labels)
 - Interacción usuarios ítems

Nuevas perspectivas: aprendizaje de secuencias

Recomendación: algoritmos

- Si te gustó Narcos te gustará Drug Lords
 - Recomendación basada en contenido
- Usuarios que vieron Narcos vieron Kaleidoscope
 - Vecinos próximos
- Espacio de factores latentes

and Sequential / Session-Based Recommendation. RecSys 2021.

- Factorización de matriz de interacción usuarios / ítems
- Deep learning models

50's - 80's	 Búsqueda en bibliotecas Teoría, evaluación, métricas Bag of words, modelo vectorial, relevance feedback Modelos probabilísticos Stemming, tratamiento morfológico
No supervisado s _o o	 Datasets (TREC) BM25 La Web!! Arranca la explosión industrial IR Google, PageRank, sistemas de recomendación (Amazon) Modelos de lenguaje
opes i.s	 Aprendizaje automático (investigación) Evaluación online: A/B testing, interleaving
Supervisado 10's	 Aprendizaje automático (comercial) Tratamiento NLP Deep learning

Recomendación: algoritmos

- Si te gustó Narcos te gustará Drug Lords
 - Recomendación basada en contenido
- Usuarios que vieron Narcos vieron Kaleidoscope
 - Vecinos próximos
- Espacio de factores latentes

and Sequential / Session-Based Recommendation. RecSys 2021.

- Factorización de matriz de interacción usuarios / ítems
- Deep learning models

¿Qué tiene que decir ChatGPT a todo esto?

IR & LLMs

- Los LLMs están resolviendo problemas de IR que parecían imposibles
- Han cambiado completamente la experiencia del usuario

Marca

https://www.marca.com > 2024/01/24 · Translate this page

Carlos Alcaraz se queda a media remontada ante Zverev ...

4 days ago — **Open de Australia 2024**: Carlos Alcaraz se queda a media remontada ante Zverev y dice adiós en cuartos del Open de Australia. Marca.

Mundo Deportivo

https://www.mundodeportivo.com > ... · Translate this page

Australian Open 2024 | La cruda declaración de Alcaraz ...

2 days ago — El mundo del tenis quedó shockeado este miércoles por la sorpresiva eliminación de Carlos **Alcaraz** en el **Australian Open**.

Australian Open

https://ausopen.com > players > spain > carlos-alcaraz

Carlos Alcaraz [ESP] | AO

Assured Alcaraz relishing debut second week at AO Carlos Alcaraz is through to the

Australian Open second week for the first time after teenage wildcard Jerry

IR & LLMs

IR & LLMs

IR complementa a un LLM

- Adquisición de información reciente que el LLM no ha visto
- Consistencia factual, mitigar alucinación
- Enlaces a fuentes documentales

LLM complementa IR: generative retrieval, generative recom.

- Comprensión de consultas, matices semánticos
- Elaboración del output
- Interacción y diálogo avanzado
- Conocimiento del mundo

Temario

1. Motores de búsqueda

- Búsqueda no supervisada (features)
 - Modelo vectorial
 - Modelos probabilísticos: Naïve Bayes,
 BM25, modelos de lenguaje
- Búsqueda supervisada (learning to rank)

2. Evaluación

- Evaluación offline
 - Datos de prueba
 - Métricas básicas
 - Métricas basadas en modelo
- Evaluación en producción: A/B testing

3. Búsqueda avanzada

- Búsqueda Web
 - Crawling e indexación
 - Ránking basado en enlaces:PageRank y HITS
- Búsqueda personalizada
 - PageRank personalizado
 - Personalización de consultas y ránkings
 - Relevance Feedback

Temario (cont)

4. Sistemas de recomendación

- La tarea de recomendación
- Métodos basados en vecinos
- Factorización de matrices
- Modelos deep learning
- Evaluación de recomendaciones

5. Temas avanzados

- Diversidad en búsqueda y recomendación
- Sesgos en búsqueda y recomendación
- Recomendación sensible al tiempo

Bibliografía

 Information Retrieval – Implementing and Evaluating Search Engines

Stefan Büttcher, Charles L. A. Clarke, Gordon V. Cormack, 2010

- Introduction to Information Retrieval
 - C. D. Manning, P. Raghavan, H. Schütze, 2008
- Recommender Systems Handbook, 3rd ed
 - F. Ricci, L. Rokach, B. Shapira (eds.), 2022
- Recommender Systems: A primer
 - P. Castells, D. Jannach, 2023

Evaluación

- 50% prácticas (3 prácticas)
 - Principalmente Python
 - Algún ejercicio en hoja de cálculo
 - Baremo orientativo sobre 3 puntos
 - 0 Práctica no entregada
 - 1 Práctica con defectos, entregada con retraso, etc.
 - 2 Práctica realizada correctamente sin parte opcional
 - 3 Práctica realizada correctamente con parte opcional
 - > 3 Práctica excepcional
- ◆ 50% examen final
 - Con libros y apuntes
 - ¡Traed calculadora!
 - Miércoles 22 de mayo, 16h