ER to Relational Conversion

Department of Computer Science
 Northern Illinois University
 September 2000

Entity-Relationship Model ENTITIES

Person

- SSN (Identifier)
- Name
- Birth-Date
- Beginning Date
- Address
 - Type (discriminator)
 - Street
 - City
 - State
 - Zip

Faculty

- SSN (Identifier)
- Contact hours
- Tenure status
- Staff
 - SSN (Identifier)
 - Position
- Student
 - SSN (Identifier)
 - Overall GPA
 - Major

ENTITIES

Entity-Relationship Model

- Dept.
 - Dept-Code (ID)
 - Dept-Name
 - Dept-Address
 - Dept-Chair
- Course
 - Crse-Code (ID)
 - Crse-Title
 - Crse-Max-Credit-Hours
 - Crse-Var-Hours-Code
 - Crse-Fee

- Section
 - Sect-Code (ID)
 - Sect-Credit-Hours
 - Sect-Meet-Time
 - Sect-Meet-Day
- Semester
 - Sem-Yr (ID)
 - Sem-Session (ID)

<u>Entity-Re</u>lationship Model

RELATIONSHIPS with attributes

- Student enrolled-in Section
 - Credit-hours
 - In a variable credit section this attribute would be used to hold the credit hours for which a specific student is enrolled.
- Completed
 - Grade
 - A student is allowed to take a course more than once.

ER to Relational Conversion

- 1 Consider all strong entities not subtypes (do not consider "date" entities here)
- 2 Consider sub-type entities
 - two methods
- 3 Consider weak entities
- 4 Consider One-to-many binary relationships

ER to Relational Conversion

- 5 Consider many-to-many binary relationships
- 6 Consider relationships greater than binary (other than those involving "date" entities)
- 7 Consider relationships greater than binary involving a "date" entity
- 8 Consider recursive relationships

Consider All Strong Entities not Subtypes

- create a new relation
- name of the relation is the name of the entity
- attributes of entity become attributes of relation
- primary key of relation is entity identifier

Consider All Strong Entities not Subtypes

Consider Sub-type Entities (First Method)

- treat as a strong entity
- primary key is the entity identifier
- primary key is also a foreign key referencing the relation created from the supertype entity

Consider Sub-type Entities (First Method)

Consider Sub-type Entities (Second Method)

 combine into the relation created from the supertype entity as a composite attribute

Consider Sub-type Entities

 may combine the two methods within the conversion of the sub-types of a single ISA

Consider Weak Entities

- create a new relation
- name of the relation is the name of the weak entity
- attributes of entity become attributes of relation

Consider Weak Entities

- primary key of the relation is the concatenation of the primary key of the relation created from the strong entity and the discriminator of the weak entity
- the attribute which is the primary key of the relation created from the strong entity is also a foreign key

Consider Weak Entities

Consider One-to-many Binary Relationships

 The primary key of the relation created from the "one" entity becomes a foreign key in the relation created from the "many" entity.

Consider One-to-many Binary Relationships

Consider Many-to-many Binary Relationships

- Create a new relation for the relationship whose primary key is the concatenation of the entity-ids of the related entities.
- The primary key attributes are also foreign keys into the relations created from the related entities.

Consider Many-to-many Binary Relationships

- The name of the new relation should reflect the relationship name.
- The intersection data of the relationship become non prime attributes of the relation.

Consider Many-to-many Binary Relationships

Consider Relationships Greater than Binary

- Create a new relation for the relationship.
- The primary key of the new relation depends upon the cardinalities of the relating entities.

Consider Relationships ter than Binary

SSN, Crse-ID \rightarrow Notebook-ID SSN, Notebook-ID → Crse-ID Crse-ID, Notebook-ID \rightarrow SSN

> Student (1,1)(1,1)completes Course

Notebook

A student used exactly one notebook for each course. He/she may be in many courses with many different notebooks. But each notebook belongs to one student and one course.

(1,1)

Consider Relationships

Consider Relationships Greater than Binary

SSN, Crse-ID \rightarrow Proj-ID SSN, Proj-ID \rightarrow Crse-ID

Student

A student is assigned to one project within each course.

A student may be working on many projects but each is for a different course. There may be many students assigned to a project but each project is for a given course.

Consider Relationships Greater than Binary

Proj-ID, Engin-ID → Mgr-ID

Each engineer working on a particular project has exactly one manager, but each manager of a project may manage many engineers, and each manager of an engineer may manage that

engineer on many projects.

Consider Relationships Project leater than Binary

manages

Proj-ID	Engin-ID	Mgr-ID
PK	PK	
FK	FK	FK

Consider Relationships Greater than Binary

No functional dependencies between entities.

Semester Student (1,n)(1,p)completed (1,m)Course

A student can complete many courses in a semester. A student may repeat a course in different semesters. A course can have many students enrolled in it in a semester.

Consider Relationships Greater than

Consider Relationships Greater than

Consider Recursive Relationships

- Treat as the comparable type of relationship
 - one-to-many
 - use a foreign key
 - many-to-many
 - create a new relation for the relationship

Consider Recursive Relationships

Consider Recursive Relationships Person

is-related-to

Completed Sem-Yr Sem-Sess Grade. Relational **SSN** Crse-ID PK PK PK PK Model FK FK FK FK Address Person Staff SSN Name **SSN** <u>Type</u> PK PK PK FK Faculty Section Crse-ID Teach-SSN Sect-ID **SSN** PK FK FK PK

enrolled-in

SSN	Sect-ID	Credit-hours
PK	PK	
FK	FK	

Relational Model

is-related-to

SSN	Relative-SSN
PK	PK
FK	FK

