Report: Voice Emotion Classification

Objective

The aim of this project was to classify emotions from voice recordings using a machine learning approach. The model extracts features from audio data and predicts emotions such as fear, neutrality, and others using a deep learning model.

Methodology

1. Data Loading and Preprocessing

- Dataset: Audio files stored in directories. Labels were extracted from file names.
- Loading Files:
 - Paths to audio files were collected.
 - Labels were derived by parsing file names.
- DataFrame Creation: A pandas DataFrame was constructed with two columns: speech (file path) and label (emotion).
- Visualization:
 - Distribution of emotions was visualized using a countplot from seaborn.

2. Exploratory Data Analysis

- Waveform and Spectrogram Visualization:
 - For selected emotions (e.g., fear, neutral), waveforms and spectrograms were plotted using librosa.
 - These visualizations provided insights into the frequency and timedomain characteristics of the audio signals.

3. Feature Extraction

MFCC Features:

- Mel-frequency cepstral coefficients (MFCCs) were computed for each audio file.
- Librosa was used to extract MFCCs with 40 coefficients per file.
- MFCCs were averaged across the time axis to form a fixed-length feature vector.

4. Data Preparation

Input Features:

- Extracted MFCCs were stored in a NumPy array with the shape (number of samples, 40, 1).
- The extra dimension was added to prepare data for the LSTM model.

Output Labels:

• Labels were one-hot encoded using **OneHotEncoder** to convert categorical labels into numerical arrays.

5. Model Architecture

• Deep Learning Model:

- Sequential model consisting of:
 - An LSTM layer with 123 units.
 - Dense layers with 64 and 32 units using ReLU activation.
 - Dropout layers (20%) to prevent overfitting.
 - A final Dense layer with a softmax activation for classification into 7 emotion classes.

Compilation:

- Loss function: categorical_crossentropy.
- o Optimizer: adam.
- Metric: Accuracy.

6. Training

- The model was trained with:
 - **Epochs**: 100

• Batch Size: 512

• Validation Split: 20% of the data was used for validation.

Data was shuffled before training.

Results

1. Training and Validation Accuracy

- The accuracy plot demonstrated a gradual improvement in training and validation accuracy over epochs.
- Final training accuracy reached approximately 90%, with validation accuracy stabilizing around 88%.

•

2. Training and Validation Loss

 Loss curves showed consistent decreases during training, indicating the model learned effectively. Validation loss remained close to training loss, suggesting minimal overfitting.

•

3. Observations

- The model was able to classify emotions effectively based on MFCC features.
- Closely related emotions (e.g., fear vs. surprise) may still pose challenges due to overlapping audio characteristics.

Conclusions

1. Model Performance:

• The model performed well in classifying emotions from voice data, achieving high accuracy on the validation set.

2. Key Insights:

• MFCCs provided robust features for emotion classification.

• The deep learning architecture (LSTM with Dense layers) effectively captured temporal patterns in audio data.

3. Future Work:

- Enhance the dataset with more samples and diverse audio recordings.
- Experiment with other features like chroma or spectral contrast to improve classification.
- Deploy the model in real-world applications like virtual assistants or customer service analytics.

4. Challenges:

- Closely related emotions could benefit from more nuanced features or larger datasets.
- The model's performance depends on the quality of audio recordings and preprocessing steps.