

Solução aproximada da equação de uma única variável real: f(x) = 0

• Considere que a equação tem uma solução única \bar{x} em um intervalo [a,b], com a função f derivável em [a,b].

• O Método de Newton é também um método iterativo que consiste na construção de uma sequência de aproximações $x_0, x_1, x_2, ..., x_n, ...$, para a solução \bar{x} , do seguinte modo:

- \triangleright O primeiro termo da sequência de aproximações, denotado por x_0 , será um valor qualquer do intervalo [a, b], tal que $f'(x_0) \neq 0$.
- \triangleright O segundo termo da sequência de aproximações, denotado por x_1 , será a abscissa do ponto de interseção da reta tangente ao gráfico de f(x) no ponto $(x_0, f(x_0))$ com o eixo x (tal interseção é garantida pelo fato de $f'(x_0) \neq 0$).
- \triangleright Vejamos quem é x_1 :

Equação da reta tangente ao gráfico de f no ponto $(x_0, f(x_0))$:

$$y - f(x_0) = f'(x_0)(x - x_0)$$

Interseção desta reta com o eixo x:

Fazemos y = 0 e $x = x_1$ na equação da reta.

$$0 - f(x_0) = f'(x_0)(x_1 - x_0) \implies x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

- \triangleright Considerando que $f'(x_1) \neq 0$, o terceiro termo da sequência de aproximações, denotado por x_2 , será a abscissa do ponto de interseção da reta tangente ao gráfico de f(x) no ponto $(x_1, f(x_1))$ com o eixo x (tal interseção é garantida pelo fato de $f'(x_1) \neq 0$).
- \triangleright Vejamos quem é x_2 :

Equação da reta tangente ao gráfico de f no ponto $(x_1, f(x_1))$:

$$y - f(x_1) = f'(x_1)(x - x_1)$$

Interseção desta reta com o eixo x:

Fazemos y = 0 e $x = x_2$ na equação da reta.

$$0 - f(x_1) = f'(x_1)(x_2 - x_1) \implies x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

De modo análogo, considerando que $f'(x_2) \neq 0$, o quarto termo da sequência de aproximações, denotado por x_3 , será a abscissa do ponto de interseção da reta tangente ao gráfico de f(x) no ponto $(x_2, f(x_2))$ com o eixo x (tal interseção é garantida pelo fato de $f'(x_2) \neq 0$). De onde obteremos: $x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$. E, prosseguindo, obteremos de forma geral os termos da sequência de aproximações a partir da seguinte fórmula iterativa:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
 , $n = 0,1,2,3\dots$ desde que $f'(x_n) \neq 0$

Sendo x_0 (aproximação inicial) um valor qualquer do intervalo [a, b], tal que $f'(x_0) \neq 0$.

OBS: A escolha de um intervalo de busca [a, b], tal que $f'(x) \neq 0 \forall x \in [a, b]$ é um bom começo para usarmos a fórmula acima e construirmos a sequência de aproximações.

Antes de apresentarmos condições suficientes para a convergência do método, vejamos um exemplo:

EXEMPLO

Consideremos a mesma equação do exemplo do método da bisseção: $x^3 + cos x = 0$, que, como sabemos, possui solução única \bar{x} no intervalo [-1,0].

A função, dada por $f(x)=x^3+cosx$ é derivável e no intervalo [-1,0] e $f'(x)=3x^2-senx>0$ para todo x<0. Vamos usar como aproximação inicial $x_0=-0.5$

Usando o método de Newton com aproximação inicial $x_0 = -0.5$

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
, $n = 0,1,...$ $x_{n+1} = x_n - \left(\frac{x_n^3 + \cos x_n}{3x_n^2 - \sin x_n}\right)$, $n = 0,1,...$

$$x_1 = x_0 - \left(\frac{{x_0}^3 + cosx_0}{3{x_0}^2 - senx_0}\right) = -0.5 - \left(\frac{(-0.5)^3 + cos(-0.5)}{3(-0.5)^2 - sen(-0.5)}\right) = -1.11214$$

$$x_2 = x_1 - \left(\frac{{x_1}^3 + cos x_1}{3{x_1}^2 - sen x_1}\right) = -1.11214 - \left(\frac{(-1.11214)^3 + cos(-1.11214)}{3(-1.11214)^2 - sen(-1.11214)}\right) = -0.90967$$

EXEMPLO

$$x_1 = x_0 - \left(\frac{x_0^3 + \cos x_0}{3x_0^2 - \sin x_0}\right) = -0.5 - \left(\frac{(-0.5)^3 + \cos(-0.5)}{3(-0.5)^2 - \sin(-0.5)}\right) = -1.11214 \longrightarrow \boxed{\notin [-1,0]}$$

$$x_2 = x_1 - \left(\frac{x_1^3 + \cos x_1}{3x_1^2 - \sin x_1}\right) = -1.11214 - \left(\frac{(-1.11214)^3 + \cos(-1.11214)}{3(-1.11214)^2 - \sin(-1.11214)}\right) = -0.90967$$

$$x_3 = x_2 - \left(\frac{x_2^3 + \cos x_2}{3x_2^2 - \sin x_2}\right) = -0.90967 - \left(\frac{(-0.90967)^3 + \cos(-0.90967)}{3(-0.90967)^2 - \sin(-0.90967)}\right) = -0.82772$$

$$x_4 = x_3 - \left(\frac{x_3^3 + \cos x_3}{3x_3^2 - \sin x_3}\right) = -0.82772 - \left(\frac{(-0.82772)^3 + \cos(-0.82772)}{3(-0.82772)^2 - \sin(-0.82772)}\right) = -0.86693$$

OBSERVAÇÃO:

Pode ocorrer de algum (ou alguns) dos termos iniciais da sequência de aproximações ficar fora do intervalo de busca [a,b] considerado, mas, quando há condições suficientes de convergência do método de Newton, a partir de um certo n todos os termos da sequência pertencerão ao intervalo.

$$x_1 = -1.11214$$

$$x_2 = -0.90967$$

$$x_3 = -0.82772$$

$$x_4 = -0.86693$$

Calculando mais dois termos:

$$x_5 = -0.86548$$

$$x_6 = -0.86547$$

$$|x_5 - x_4| < 0.00145$$

$$|x_6 - x_5| < 0.00001$$

Lembrando: No método da bisseção, encontramos uma aproximação $x_7 = -0.8671875$ para a solução \bar{x} , com $|x_7 - x_6| < 0.01$

CRITÉRIO DE PARADA NO MÉTODO DE NEWTON

Podemos adotar, aqui, o mesmo critério de parada do Método da Bisseção, baseado no erro (absoluto ou relativo) entre dois termos consecutivos da sequência de aproximações.

Usando o erro absoluto:

Se $|x_{n+1}-x_n|<\varepsilon$, então x_{n+1} é a aproximação da solução exata \bar{x} com erro absoluto menor que ε .

Usando o erro relativo:

Se $\frac{|x_{n+1}-x_n|}{|x_{n+1}|} < \varepsilon$, então x_{n+1} é a aproximação da solução exata \bar{x} com erro relativo menor que ε .

CONVERGÊNCIA DO MÉTODO DE NEWTON

- \Box O Método de Newton já exige desde o início que a função f seja derivável em um intervalo que contenha a solução da equação f(x)=0.
- A fórmula de recorrência $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ que define os termos $x_1, x_2, x_3, ...$, a partir de um termo x_0 , escolhido no intervalo tal que $f'(x_0) \neq 0$, já indica também que importante que exista um intervalo, contendo a solução, onde a derivada f' não se anule, com a garantia de que para todos os x_{n+1} , n = 0,1,2,3,..., tenhamos $f(x_{n+1}) \neq 0$.
- Nestas condições os termos da sequência poderiam ser construídos. Falta, no entanto, uma garantia de que tal sequência realmente converge para a solução.
- ☐ Temos o seguinte resultado que nos dá condições suficientes para tal convergência:

CONVERGÊNCIA DO MÉTODO DE NEWTON

TEOREMA: Seja a equação f(x) = 0, com solução única \bar{x} em um intervalo I = [a, b]. Suponha que f seja duas vezes derivável em I, sendo f, f' e f'' contínuas em I e $f'(\bar{x}) \neq 0$. Então existe um intervalo $I^* \subset I$, contendo a solução \bar{x} , tal que, se $x_0 \in I^*$, a sequência obtida pela fórmula

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$
, $n = 0,1,2,3,...$

convergirá para \bar{x} .

OBSERVAÇÕES:

- O Teorema acima apresenta condições suficientes para a convergência. Portanto, ocorrendo as hipóteses do teorema, há garantia de convergência. Não ocorrendo, o método pode convergir ou não. (CONDIÇÕES SUFICIENTES, MAS NÃO NECESSÁRIAS)
- Na prática, o que se costuma observar é se há condições mínimas para que a fórmula de recorrência $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ possa ser aplicada em algum intervalo centrado na solução \bar{x} .
- É preciso, no entanto, que, ao aplicar tal fórmula, seja "manualmente" (fazendo as contas em uma calculadora) ou usando um algoritmo computacional, tenhamos consciência da possibilidade de inconsistências (cálculos impossíveis, divergência) nos resultados.

CONVERGÊNCIA DO MÉTODO DE NEWTON

- Pode ocorrer de $f'(\bar{x}) = 0$, com $f'(x_i) \neq 0$, para todo i, e a sequência $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ convergir, mas, neste caso, a convergência é mais lenta.
- Quando $f'(\bar{x}) \neq 0$, o Método de Newton apresenta convergência quadrática, isto é, considerando os erros absolutos $e_i = |x_i \bar{x}|$ e $e_{i+1} = |x_{i+1} \bar{x}|$ nas iterações consecutivas, tem-se: $\lim_{i \to \infty} \frac{e_{i+1}}{e_i^2} = c$, onde c é uma constante ("constante assintótica de proporcionalidade").
- \square Se $|f'(x_i)|$ se torna cada vez menor (mais próximo de 0), enquanto $|f(x_i)|$ vai aumentando, é sinal de que o método falha.
- \Box É importante uma boa escolha da aproximação inicial x_0 .

MAIS UM EXEMPLO

Consideremos a equação: lnx - x + 2 = 0.

Esta equação possui duas soluções: $\alpha_1 \in [0.01,1]$ e $\alpha_2 \in [3,4]$

APROXIMAÇÕES DE $lpha_1$ E $lpha_2$ PELO MÉTODO DE NEWTON

$$f'(x) = \frac{1}{x} - 1$$
; $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} = x_n - \frac{\ln x_n - x_n + 2}{\frac{1}{x_n} - 1}$; precisão $\varepsilon = 0.001$ para o erro absoluto.

- □ Usando $x_0=0.1$, encontramos a aproximação $x_3=0.15859234$ para α_1 ; $|x_3-x_2|<0.00073$
- \Box Usando $x_0=0.01$, encontramos a aproximação $x_6=0.15859434$ para α_1 ; $|x_6-x_5|<0.00001$
- □ Usando $x_0=3.0$, encontramos a aproximação $x_3=3.14619322$ para α_2 ; $|x_3-x_2|<0.0000022$
- □ Usando $x_0 = 4.0$, encontramos a aproximação $x_3 = 3.14619322$ para α_2 ; $|x_3 x_2| < 0.000092$
- □ Usando $x_0 = 5.0$, encontramos a aproximação $x_3 = 3.14619328$ para α_2 ; $|x_3 x_2| < 0.00093$