Classificação de COVID-19 em imagens de radiografia torácica utilizando Redes Neurais Convolucionais

Leonardo Gabriel Ferreira Rodrigues

Orientador: Prof. Dr. João Fernando Mari Coorientadora: Profa. Me. Larissa Ferreira Rodrigues

Roteiro

Introdução

COVID-19 - Principais Sintomas

Introdução

Objetivo

Realizar a classificação binária e multiclasse para identificar COVID-19 em imagens de raio-X utilizando Redes Neurais Convolucionais

Ferramentas Computacionais

- Intel i5 3.00 GHz;
- 16 *GB RAM*;
- GPU GeForce GTX Titan X;
- Sistema Operacional: Ubuntu;
- Linguagem: Python;
 - Numpy, scipy, ndimage, matplotlib;
 - Scikit-image, scikit-learn.

Conjuntos de Imagens

Material e Métodos

Redes Neurais Convolucionais

- AlexNet
- VGG-11
- SqueezeNet
- DenseNet-121

Shallow Fine-tuning (SFT)

Material e Métodos

Protocolo de Avaliação

- Validação cruzada K-fold (k=5)
- Matriz de Confusão
 - Acurácia
 - Precisão
 - Recall
 - F1-Score

Resultados

Classificação Binária

Classe	Fonte	Quantidade de Imagens
COVID-19	Github Dr. Cohen (acesso em abril de 2020)	108
Pneumonia	Kaggle	299

Resultados

Classificação Binária

CNN	Acurácia (%)	Precisão (%)	Recall (%)	F1-Score (%)
AlexNet	99,00	98,90	98,60	99,00
VGG-11	97,20	96,30	98,60	99,00
SqueezeNet	99,20	99,40	98,50	99,10
DenseNet-121	98,30	98,50	96,90	97,80

Classificação Binária

Resultados

Classificação Multiclasse

Classe	Fonte	Quantidade de Imagens	
COVID-19	Github Dr. Cohen (acesso em agosto de 2020)	180	
Pneumonia	Chest X-Ray 8	500	
Saudável	Chest X-Ray 8	500	

Resultados

Classificação Multiclasse

CNN	Acurácia (%)	Precisão (%)	Recall (%)	F1-Score (%)
VGG-11	78,90	80,90	78,70	78,40
SqueezeNet	75,70	77,60	74,70	75,40

Resultados

Resultados

SqueezeNet

Resultados

Comparação com Trabalhos Relacionados

Trabalho	Acurácia (%)	
Narin, Kaya e Pamuk (2020)	98,00	
Hemdan, Shouman e Karar (2020)	98,90	
Sethy e Behera (2020	95,38	
Wang, Lin e Wong (2020)	93,30	
Apostolopoulos e Mpesiana (2020)	96,78	
Khan, Shah e Bhat (2020)	89,60	
Ozturk et al. (2020)	98,08	
Presente trabalho (2021)	99,20	

Resultados

Comparação com Trabalhos Relacionados

Trabalho	F1-Score (%)	
Pereira et al. (2020)	89.00	
Presente trabalho (2021)	99,10	

Conclusões

- CNNs pré-treinadas e aumento de dados podem ser úteis para lidar com a baixa disponibilidade de imagens de COVID-19;
- Essa abordagem fornece novas perspectivas para a identificação automática de COVID-19 com distinção de outros tipos de pneumonia;
- Os resultados deste trabalho contribuem com pesquisas que envolvam diagnóstico médico auxiliado por computador.

Trabalhos Futuros

- Testar o método proposto em conjuntos de imagens maiores;
- Avaliar outras arquiteturas CNNs;
- Explorar diferentes técnicas de aumento de dados;
- Aplicar técnicas de otimização de hiperparâmetros e combinar diferentes técnicas de classificação.

Contribuição em Produção Bibliográfica

Evaluating Convolutional Neural Networks for COVID-19 classification in chest X-ray images

Leonardo Gabriel Ferreira Rodrigues, Larissa Ferreira Rodrigues,
Danilo Ferreira da Silva, João Fernando Mari
Instituto de Ciências Exatas e Tecnológicas
Universidade Federal de Viçosa - UFV
Caixa Postal 22 - 38.810-000 - Rio Paranaíba - MG - Brasil
Email: {leonardo,g.rodrigues, larissa.f.rodrigues, danilo.f.silva, joaof.mari}@ufv.br

Abstract—Coronavirus Disease 2019 (COVID-19) pandemic rapidly spread globally, impacting the lives of billions of people. The effective screening of infected patients is a critical step to struggle with COVID-19, and treating the patients avoiding this quickly disease spread. The need for automated and scalable methods has increased due to the unavailability of accurate automated toolkits. Recent researches using chest X-ray images suggest they include relevant information about the COVID-19 virus. Hence, applying machine learning techniques combined with radiological imaging promises to identify this disease accurately. It is straightforward to collect these images once it is spreadly shared and analyzed in the world. This paper presents a method for automatic COVID-19 detection using chest Xray images through four convolutional neural networks, namely: AlexNet, VGG-11, SqueezeNet, and DenseNet-121, This method had been providing accurate diagnostics for positive or negative COVID-19 classification. We validate our experiments using a ten-fold cross-validation procedure over the training and test sets. Our findings include the shallow fine-tuning and data augmentation strategies that can assist in dealing with the low number of positive COVID-19 images publicly available. The

of distributing the kits and collecting the samples and the waiting time for results, auxiliary diagnostics methods are welcome to assist the medical team decision making. In this context, the development of computer-aided diagnosis systems based on machine learning is essential and widely applied in several fields of medicine [6] [7] [8].

Early studies demonstrated that many patients infected with COVID-19 present abnormalities in chest X-ray images [9] [10] [11]. These images can be easily collected, shared, and analyzed around the world. Moreover, the task of COVID-19 identification is not easy, and the specialist reviewing the chest X-ray needs to look for white patches in the lungs, i.e., air sacs filled with pus or water. However, these white patches can also be confused with diseases such as tuberculosis, bronchitis, and other types of pneumonia caused by different viruses or bacteria

In this study, we aim to explore the identification of

SIA UFV VIRTUAL 2020

CERTIFICADO DE HONRA AO MÉRITO

O Simpósio de Integração Acadêmica, em sua Edição SIA UFV Virtual 2020, confere Menção Honrosa, no nível Graduação, Modalidade Pesquisa, Área de Conhecimento Ciências Exatas e Tecnológicas, a **Leonardo Gabriel Ferreira Rodrigues** (autor) e **Larissa Ferreira Rodrigues** (orientadora), pela apresentação do trabalho "Classificação automática de COVID-19 em imagens de raio-X utilizando redes neurais profundas".

Presidente da Comissão Organizadora do SIA UFV Virtual 2020

Obrigado!

leonardo.g.rodrigues@ufv.br joaof.mari@ufv.br larissarodrigues@ufu.br