

现代管理科学方法(第8讲)

郭仁拥 博士/教授/博导

讲授内容

- 1. 求解TSP的构造启发式方法
- 2. 求解TSP的改进启发式方法

1. 求解TSP的构造启发式方法

求解TSP的构造启发式方法:

- 最近邻域算法(Nearest Neighbour algorithm)
- 插入算法(Insertion algorithm)
- 修补/合并算法(Patching/Merger algorithm)
- 最小生成树算法(Minimum spanning tree algorithm)
- 克里斯托费兹算法(Christofides' algorithm)

TSP启发式方法的执行保障

针对一般情形的坏消息

定理:设A是一个启发式算法。对于一个TSP算例l,A(l)是由算法A得到的车辆旅行长度,Opt(l)是最优车辆旅行长度。给定一个常数 $1 \le r < \infty$,如果对于任一算例l,有 $A(l) \le r \cdot Opt(l)$,则P = NP。

这意味着:对于一般TSP情形,不能找到一个具有固定执行保障的启发式算法

对于满足三角不等式距离度量的STSP,该定理不成立

NP完全问题(NP-C问题),是世界七大数学难题之一。

NP的英文全称是Non-deterministic Polynomial

Complete的问题,即多项式复杂程度的非确定性问题。

简单的写法是 NP=P? ,问题就在这个问号上,到底是

NP等于P, 还是NP不等于P。

P类问题: 所有可以在多项式时间内求解的判定问题构成P类问题。

NP类问题: 所有的非确定性多项式时间可解的判定问题构成NP类问题。

最近邻域算法(NN)

从一个顶点v(例如仓库)开始,设置k=1和 $U=\{v\}$ (U是访问顶点集合)

当 *k* < *n*

- ightharpoonup 选择下一个访问顶点w,使得 $c_{vw} = \min_{h \notin U} c_{vh}$
- \triangleright 更新 $U = U \cup \{w\}$,设置当前顶点v = w和k = k + 1

一类贪婪启发式算法

缺陷:算法仅仅在前面迭代中选择较短弧,后面迭代中的 弧一般较长

算法解(平均意义上)比最优解大25%

计算复杂性: $O(n^2)$ (对于超过1万个顶点的问题计算速度 太慢)

该算法可以为改进启发式算法提供一个较好初始解

一个例子: 欧式距离矩阵

仓库: 开始顶点

一个关于NN算法的定理:

对于每个r > 0,存在n 个顶点的算例 I (满足三角不等式),对于任意大的n,有 $NN(I) \ge r \cdot Opt(I)$ 。

插入算法(IA)

- 基本算法:从一个部分圈开始;在部分圈中插入新的 顶点,直到所有顶点被考虑
- 插入规则(平均误差):最近顶点(20%);最远顶点(10%);随机(11%)

一个例子(最远顶点规则)

对称距离矩阵

Α	В	С	D	E		
0	85	47	57	87		
85	0	43	52	38		
47	43	0	48	58		
57	52	48	0	32		
87	38	58	32	0	ဝ	A
				ВС		O
	0 85 47 57	0 85 85 0 47 43 57 52	0 85 47 85 0 43 47 43 0 57 52 48	0 85 47 57 85 0 43 52 47 43 0 48 57 52 48 0	0 85 47 57 87 85 0 43 52 38 47 43 0 48 58 57 52 48 0 32	0 85 47 57 87 85 0 43 52 38 47 43 0 48 58 57 52 48 0 32

第1步: 从顶点A(仓库)开始

对称距离矩阵

	Α	В	С	D	Е	
Α	0	85	47	57	87	the farthest
В	85	0	43	52	38	`
С	47	43	0	48	58	
D	57	52	48	0	32	
Е	87	38	58	32	0	C
					В	
				length(T)	=174	// O_
						EQ D

第2步:从A或E最远的顶点

对称距离矩阵

	Α	В	С	<u> D</u>	E
Α	0	\$(85)	(47)	(57)	87
В	85	0	43	52	38
С	47	43	0	48	58
D	57	52	48	0	32
Е	87	(38)	(58)	(32)	0

length(T)=210

Tour(T,k): 选择旅行T 中边(i,j) 的过程, $B^{\mathbb{C}}$ 其中插入顶点k 满足

$$\arg\min_{(i,j)} \left(c_{ik} + c_{kj} - c_{ij} \right)$$

第3步:从A或E或B最远的顶点

对称距离矩阵

	Α	В	С	D	E
Α	0	85	(47)	(57)	87
В	85	0	(43)	(52)	38
С	47	43	0	48	58
D	57	52 <	√ 48	0	32
E	87	38	(58)	32	0

length(T)=215

Tour(T, C):

(A, B):
$$\Delta c = 47 + 43 - 85 = 5$$

(B, E):
$$\Delta c = 43 + 58 - 38 = 63$$

(E, A):
$$\Delta c = 58 + 47 - 87 = 18$$

第4步: 确定在哪插入D

对称距离矩阵

	A	В	С	D	E
Α	0	85	47	57	87
В	85	0	43	52	38
С	47	43	0	48	58
D	57	52	48	0	32
E	87	38	58	32	0

length(T)=217

Tour(T, E)

(A, C):
$$\Delta c = 57 + 48 - 47 = 58$$

(C, B):
$$\Delta c = 48 + 52 - 43 = 57$$

(B, E):
$$\Delta c = 52 + 32 - 38 = 46$$

(E, A):
$$\Delta c = 32 + 57 - 87 = 2$$

修补/合并算法(PMA)

合并

 M_n 个单顶点旅行开始 当旅行数 > 1

- ▶ 选择一对将被合并的旅行(T,T'),使得 $\min\{c_{ij}:i\in T,j\in T'\}$
- 一 合并选定的旅行:如果T或T'是单顶点旅行,则Tour (T,k')或Tour (T',k);否则,确定 $(i,j) \in T$ 和 $(k,h) \in T'$,使得 $c_{ik} + c_{hj} c_{ij} c_{kh}$ 最小

修补

从ATSP的分配问题(AP)松弛所产生的子闭迹开始 当旅行数 > 1

- 选择一对将被合并的旅行(T,T'),确定 $(i,j) \in T$ 和 $(k,h) \in T'$,使得 $c_{ik} + c_{hj} c_{ij} c_{kh}$ 最小
- ▶ 合并选定的旅行

基于最小生成树(MST)的算法

基础

给定一个完全无向图G,一个Hamiltonian路径(HP)是G中一个树,其费用不少于最小生成树(MST)费用c最小生成树的计算量是 $O(n^2)$

一个Hamiltonian圈(HC)是一个添加了一条边的HP 最小费用HC的费用表示为c(TSP),则有 $c(MST) \le c(TSP)$ 一个圈(可能访问某一顶点多次)可由一个MST产生,通 过一个翻倍所有MST边的过程

深度优先的遍历过程

- ▶ 从一个叶顶点(当前顶点)开始
- ▶ 重复
- 如果存在与当前顶点相连的未遍历MST边,则沿着该 边到达一个新的当前顶点
- > 否则沿着之前访问的边,返回到单次遍历过的顶点
- ▶ 直到所有的MST边被遍历两次

该过程在重新访问到开始顶点处终止

该圈的费用是 $2 \cdot c(MST)$,则有

$$c(MST) \le c(TSP) \le 2 \cdot c(MST)$$

一个例子

一个例子

双MST (DMST) 圈: B-E-D-A-D-C-D-E-B

如果三角不等式成立,则由引入最短割,DMST圈能被转换成一个具有更少费用的HC($c(HC) \le 2 \cdot c(MST)$)最短割遍历(Shortcut traversal):当深度优先遍历向后访问一个已经访问过的顶点时,跳过该遍历,直接访问下一个未被访问顶点(如果所有顶点已经被访问,则返回开始顶点)

算法(MSTS)

- ▶ 找出 G 的一个MST
- ➤ 由一个具有最短割的深度优先遍历来构造一个HC

HC费用是下有界和上有界的

$$c(MST) \le c(TSP) \le c(HC) \le 2 \cdot c(MST)$$

MSTS $(I) \le 2 \cdot \text{Opt}(I)$

最短割遍历: B-E-D-A-C-B

注意:跟随一个不同的深度优先遍历B-E-D-C-D-A-D-E-

B和引入最短割,最终得到的HC更长一些

克里斯托费兹算法(Christofides' algorithm)

算法(CA)

- \rightarrow 找出G的一个MST
- ▶ 由引入奇数度顶点对间的最小费用边(最小权重匹配问题),转换一个欧拉图中的MST
- ➤ 由一个最短割欧拉遍历来构造一个HC

注意:

- 一个图中的奇数度顶点数量总是偶数
- ightharpoonup 最小权重匹配问题(The minimum weight matching problem)能在多项式时间($O(n^3)$)内被求解
- > 可以证明 $C(I) \le 3/2 \cdot \text{Opt}(I)$

一个例子

MST

由最小权重匹配 得到的欧拉图

一个例子

图的欧拉遍历

HC(最短割)

注意:由MSTS算法产生的解是不同的ABCDEFGHI, 是更长的

2. 求解TSP的改进启发式方法

求解TSP的改进启发式方法:

- 基于2-OPT(两元素优化)的局部搜索
- 基于3-OPT(三元素优化)的局部搜索
- Lin-Kerninghan (LK) 算法

基本局部搜索(LS)算法

初始化:

- \rightarrow 产生一个初始解x
- \triangleright 设置当前解和优化目标($x_c = x$ 和 $Z_c = Z(x)$)

重复

- \triangleright 设置 $x_b = x_c$ 和 $Z_b = Z_c$
- 》 对于每个候选解 $x \in N(x_b)$, 如果 $Z(x) < Z_c$, 则 $x_c = x$ 和 $Z_c = Z(x)$

直到 $Z_c < Z_b$

N(x) 是解x 的邻域

 \rightarrow $- \uparrow x$ 的邻域—改进 x 所产生的解构成

如果 $x_a \in N(x_b)$,则 $x_b \in N(x_a)$

- 2-OPT (3-OPT) -N(x) 是由2-exchange (3-exchange) 移动产生
- ➢ 当前解中的2(3)条边被移去,由2(3)条其他边替 代,产生一个不同的HC

优点:好的执行效果(算法计算结果与最优解比较,具有 较小偏差)

如果所有可能的移动都被检验, 计算时间量太大

将被移去的弧 接下来的步骤 翻转路径 新的弧

3-OPT: 一个例子 (ATSP)

将被移去的边

Lin-Kerninghan算法(可变k-OPT)

k-exchange移动提供了k-最优解:一个旅行被称为k-最优

(k-OPT),如果满足:通过替代任意k条路段均不能得到

一个更短的旅行

任意一个k-OPT旅行也是k'-OPT,这里 $k' \leq k$

一个旅行是最优的,如果它是n-OPT

k值越大,对应解越可能是最优的

增加k值会导致算法计算时间快速增加(计算量是 $O(n^k)$,

k一般取2或3)

缺点: k值必须提前设定

Lin-Kerninghan算法

- ▶ 最好的有效启发式方法之一
- ➤ 可变k-OPT
- \rightarrow 平均运行时间 $O(n^{2.2})$ (原始实施)
- ➤ 不容易实施⇒广泛的研究
- ightharpoons 在算法实施过程中k的值是变化的,在每次迭代需要先确定一个k值

基本的LK启发式(LKH)

- ➤ 在每次迭代,如果*k*条边的互换可以得到一个更短的旅行,则检验*k*的递增值(给定*r*条边的交换被考虑,一系列测试需要被执行,为了确定是否 *r* +1条边的交换应该被考虑)
- 迭代继续,直到某停止条件被满足

在每一步,LKH考虑一个潜在交换增长集(从r=2开始)交换被选择,使得在该过程的每一次迭代,一个可行的旅行被形成

如果在一个迭代中找到一个新的更短的旅行,则当前的旅行被替代

设 X 是将被移去的 r 条边的集合, Y 是将被添加的 r 条边的集合(初始为空); (v_i, v_{i+1}) 是一条边, x 是 X 中一条边, y 是 Y 中的一条边; $G = c(x_i) - c(y_i)$ 是由 y_i 替代 x_i 的损益

一个LKH迭代的例子

一个旅行必须以边(v4,v1)来闭合

这样的边不被选择因为G<0

一个旅行能以边 (v_6,v_1) 来闭合

该步执行一个k=3 exchange