metaSeq: Meta-analysis of RNA-seq count data

Koki Tsuyuzaki¹, and Itoshi Nikaido².

September 25, 2013

 $^{1}\mathrm{Department}$ of Medical and Life Science, Tokyo University of Science. $^{2}\mathrm{Bioinformatics}$ Research Unit, Advanced Center for Computing and Communication, RIKEN.

k.t.the-answer@hotmail.co.jp

Contents

1	Introduction	2
2	RSE: Read-Size Effect	2
3	Robustness against RSE	3
4	Getting started	5
5	Meta-analysis by non-NOISeq method	6

1 Introduction

This document provides the way to perform meta-analysis of RNA-seq data using metaSeq package. Meta-analysis is a attempt to integrate multiple data in different studies and retrieve much reliable and reproducible result. In our package, the probability of one-sided NOISeq [1] is applied in each study. This is because the numbers of reads are often different depending on its study and NOISeq is robust method against its difference (see the next section).

2 RSE: Read-Size Effect

In many cases, the number of reads in each study are often different. For example, here we prepared multiple RNA-Seq count data designed as Breast Cancer cell lines vs Normal cells measured in 4 different studies (this data is also accessible by data(BreastCancer)).

ID in this vignette	Accession (SRA / ERA)	Experimental Design
StudyA	SRP008746	Breast Cancer (n=3) vs Normal (n=2)
StudyB	SRP006726	Breast Cancer (n=1) vs Normal (n=1)
StudyC	SRP005601	Breast Cancer (n=7) vs Normal (n=1)
StudyD	ERP000992	Breast Cancer (n=2) vs Normal (n=1)

Zero inflation caused by insufficient library size

Figure 1: Difference of the number of reads

As shown in the figure 1, the number of reads in StudyA, B, C, and D are relatively different. Generally, statistical test is influenced by the number of reads; the more the number of reads is large, the more the statistical tests are tend to be significant (see the next section). Therefore, in meta-analysis of RNA-seq data, data may be suffered from this bias. Here we call this bias as RSE (Read Size Effect).

3 Robustness against RSE

In the point of view of robustness against RSE, we evaluated five widely used method in RNA-seq; DESeq [2], edgeR [3], baySeq [4], and NOISeq [1]. Here we used only StudyA data. All counts in the matrix are repeatedly down-sampled in accordance with distributions of binomial (the probability equals 0.5). 1 (original), 1/2, 1/4, 1/8, 1/16, and 1/32 data are prepared as artificial low read size situation. In each read size, five methods are conducted (figure 2.A, this data is also accessible by data(StudyA) and data(pvals)). Next we focussed on the member of top 500 genes in order of significance (figure 2.B).

Figure 2: A(left): RSE in each RNA-Seq method, B(right): Top 500 genes in order of significance

Ideal method will returns same result regardless of read size, because same data was used. As shown in figure 2, NOISeq is robustly detect same genes as DEGs in any read size. Therefore, we concluded that NOISeq is suitable method at least in the point of view of meta-analysis. Note that probability of NOISeq is not equal to p-value; it is the probability that a gene is differentially expressed [1]. Our package integrates its probability by Fisher's method [5] or Stouffer's method (inverse normal method) [6]. In regard to Stouffer's method, weighting by the number of replicates (sample size) is used.

4 Getting started

At first, install and load the metaSeq and snow.

```
> library("metaSeq")
> library("snow")
```

The RNA-seq expression data in breast cancer cell lines and normal cells is prepared. The data is measured from 4 different studies. The data is stored as a matrix (23368 rows \times 18 columns).

> data(BreastCancer)

We need to prepare two vectors. First vector is for indicating the experimental condition (e.g., 1: Cancer, 2: Normal) and second vector is for indicating the source of data (e.g., A: StudyA, B: StudyB, C: StudyC, D: StudyD).

Then, we use meta.readData to create R object for meta.oneside.noiseq.

```
> cds <- meta.readData(data = BreastCancer, factor = flag1, studies = flag2)
```

oneside.noiseq is performed in each studies and each probabilities are summalized as list.

```
> ## This is very time consuming step.
> # cl <- makeCluster(4, "SOCK")
> # result <- meta.oneside.noiseq(cds, k = 0.5, norm = "tmm", replicates = "biological",
> # factor = flag1, conditions = c(1, 0), studies = flag2, cl = cl)
> # stopCluster(cl)
>
> ## Please load pre-calculated result (Result.Meta)
> ## by data function instead of scripts above.
> data(Result.Meta)
> result <- Result.Meta</pre>
```

Fisher's method and Stouffer's method can be applied to the result of meta.oneside.noiseq.

```
> F <- Fisher.test(result)
> S <- Stouffer.test(result)</pre>
```

These outputs are summalized as list whose length is 3. First member is the probability which means a gene is upper-regulated genes, and Second member is lower-regulated genes. Weight in each study is also saved as its third member (weight is used only by Stouffer's method).

```
> head(F[[1]])
```

```
[1] 0.3799577 0.5249790 0.5308748
                                 NA 0.1356067 0.2263183
> head(F[[2]])
[1] 0.8431580 0.6293839 0.4216739
                                      NA 0.3793319 0.6147443
> F[[3]]
Study 1 Study 2 Study 3 Study 4
> head(S[[1]])
[1] 0.3696589 0.2615383 0.2680294
                                        NA 0.2933731 0.3009430
> head(S[[2]])
[1] 0.6303411 0.7384617 0.7319706
                                  NA 0.7066269 0.6990570
> S[[3]]
Study 1 Study 2 Study 3 Study 4
     5
             2
```

5 Meta-analysis by non-NOISeq method

For some reason, we may want to use non-NOISeq method like *DESeq*, *edgeR*, or even cuffdiff [7]. We prepared other.oneside.noiseq as optional function for such methods. Returned object can be directly applied for Fisher.test and Stouffer.test.

```
> ## Assume this matrix as one-sided p-values
> ## generated by non-NOISeq method (e.g., cuffdiff)
> upper <- matrix(runif(300), ncol=3, nrow=100)</pre>
> lower <- 1 - upper
> weight <- c(3,6,8)
> ## other.oneside.pvalues function return a matrix
> ## which can input Fisher.test or Stouffer.test
> result <- other.oneside.pvalues(upper, lower, weight)
> ## Fisher's method (without weighting)
> F <- Fisher.test(result)
> str(F)
List of 3
 $ Upper : num [1:100] 0.7898 0.0968 0.5994 0.3499 0.6957 ...
 $ Lower : num [1:100] 0.282 0.895 0.127 0.383 0.297 ...
 $ Weight: Named num [1:3] 3 6 8
  ..- attr(*, "names")= chr [1:3] "Exp 1" "Exp 2" "Exp 3"
```

\$Upper

[1] 0.789838863 0.096795668 0.599444899 0.349903337 0.695651473 [6] 0.671057340 0.451253842 0.489641816 0.820693032 0.888758327 [11] 0.601662147 0.283659308 0.162119561 0.898456988 0.365651260 [16] 0.978825733 0.456562458 0.538769232 0.485387611 0.767353204 [21] 0.319966552 0.404867967 0.354989250 0.898284328 0.759080214 [26] 0.315379871 0.409944663 0.924937972 0.627922001 0.893040100 [31] 0.853122769 0.493368620 0.005249929 0.003330611 0.328253405 [36] 0.280239751 0.889734011 0.863620389 0.477750240 0.622826923 [41] 0.844484811 0.783276664 0.048758012 0.493259410 0.442405393 [46] 0.310545247 0.126025164 0.436364981 0.353224448 0.557552371 [51] 0.319525161 0.584665827 0.750867627 0.946333812 0.871195064 [56] 0.525309355 0.358056814 0.869300407 0.697666361 0.323677345 [61] 0.219108253 0.268509273 0.872709754 0.319294266 0.313393637 [66] 0.432329229 0.046068788 0.670856732 0.281566107 0.983933688 [71] 0.380377646 0.677052480 0.066761072 0.061412597 0.814534918 [76] 0.530219005 0.048613848 0.922277741 0.805504064 0.354627531 [81] 0.750535799 0.054314790 0.266229021 0.607809971 0.430652136 [86] 0.315311391 0.090920266 0.045870051 0.112713288 0.744572331 [91] 0.224112498 0.785292948 0.923937874 0.598118832 0.078885196 [96] 0.320236099 0.759569859 0.926613242 0.320672887 0.650519016

\$Lower

[1] 0.282145370 0.894595348 0.126996428 0.382918268 0.296963644 [6] 0.476599439 0.790129481 0.120337323 0.371423662 0.185830262 [11] 0.023125951 0.190063358 0.426603345 0.096257385 0.777076570 [16] 0.069616454 0.236218933 0.330164833 0.624076290 0.501288150 [21] 0.824162169 0.325587628 0.632094471 0.315573052 0.252588812 [26] 0.141865820 0.226108411 0.009135413 0.224527740 0.276894202 [31] 0.207612906 0.687144912 0.999332343 0.990747249 0.760924649 [36] 0.699129936 0.319612540 0.374362239 0.251066910 0.606919023 [41] 0.194088841 0.264780347 0.744155056 0.707532970 0.563605280 [46] 0.876361262 0.827898241 0.815407765 0.397766160 0.650069788 [51] 0.416951240 0.259988623 0.069897491 0.061347480 0.209298766 [56] 0.754321950 0.843302879 0.164251988 0.403007576 0.233231684 [61] 0.802048850 0.829363605 0.129572297 0.894405959 0.583661983 [66] 0.813479490 0.846866053 0.423385567 0.882817498 0.043740760 [71] 0.801161429 0.263328478 0.938272844 0.711244368 0.134910223 [76] 0.105354078 0.685520348 0.054368857 0.324797902 0.503951427 [81] 0.403699116 0.503020551 0.801939201 0.616425474 0.145310076 [86] 0.705339692 0.775233510 0.585518515 0.946214352 0.039103937 [91] 0.805095674 0.269497734 0.200463089 0.196612288 0.952336810 [96] 0.755449991 0.125257644 0.137716336 0.609787187 0.468263314

```
$Weight
Exp 1 Exp 2 Exp 3
   3
          6
> ## Stouffer's method (with weighting by sample-size)
> S <- Stouffer.test(result)
> str(S)
List of 3
 $ Upper : num [1:100] 0.656 0.126 0.62 0.72 0.694 ...
 $ Lower : num [1:100] 0.344 0.874 0.38 0.28 0.306 ...
 $ Weight: Named num [1:3] 3 6 8
  ..- attr(*, "names")= chr [1:3] "Exp 1" "Exp 2" "Exp 3"
> S
$Upper
  [1] 0.655698905 0.126418900 0.619812412 0.719877907 0.694145362
  [6] 0.711094714 0.389616007 0.914217631 0.660985766 0.873501601
 [11] 0.655023182 0.357811087 0.374036220 0.828525986 0.370416934
 [16] 0.938393620 0.472206103 0.415961019 0.324365021 0.678437951
 [21] 0.218800137 0.467203763 0.499782734 0.801376060 0.801158427
 [26] 0.370450533 0.472552725 0.989728850 0.743550297 0.780701624
 [31] 0.883499790 0.416476703 0.005235421 0.006501836 0.292725040
 [36] 0.475540710 0.797487248 0.724266860 0.595659837 0.599876937
 [41] 0.761213082 0.683473781 0.087195819 0.451637759 0.614110095
 [46] 0.172103281 0.227786554 0.353327506 0.709328685 0.359513643
 [51] 0.395934207 0.432929314 0.899957661 0.885267801 0.734759685
 [56] 0.424918743 0.234696457 0.838107255 0.525191924 0.332563418
 [61] 0.168702677 0.132301321 0.924290184 0.229973066 0.474970006
 [66] 0.312548489 0.150993232 0.674671935 0.155343584 0.972593419
 [71] 0.296094049 0.602290895 0.054043265 0.156766756 0.919125457
 [76] 0.791964116 0.198532853 0.955603057 0.815969285 0.245257197
 [81] 0.553254783 0.503415198 0.274904212 0.578074878 0.861250148
 [86] 0.255272425 0.239332829 0.083570283 0.046526396 0.936016377
 [91] 0.179480905 0.864238259 0.838892588 0.539202128 0.112950766
 [96] 0.320593605 0.684029274 0.831509932 0.386864303 0.612213241
$Lower
  [1] 0.34430109 0.87358110 0.38018759 0.28012209 0.30585464
  [6] 0.28890529 0.61038399 0.08578237 0.33901423 0.12649840
 [11] 0.34497682 0.64218891 0.62596378 0.17147401 0.62958307
 [16] 0.06160638 0.52779390 0.58403898 0.67563498 0.32156205
 [21] 0.78119986 0.53279624 0.50021727 0.19862394 0.19884157
 [26] 0.62954947 0.52744728 0.01027115 0.25644970 0.21929838
```

```
[31] 0.11650021 0.58352330 0.99476458 0.99349816 0.70727496 [36] 0.52445929 0.20251275 0.27573314 0.40434016 0.40012306 [41] 0.23878692 0.31652622 0.91280418 0.54836224 0.38588990 [46] 0.82789672 0.77221345 0.64667249 0.29067131 0.64048636 [51] 0.60406579 0.56707069 0.10004234 0.11473220 0.26524031 [56] 0.57508126 0.76530354 0.16189274 0.47480808 0.66743658 [61] 0.83129732 0.86769868 0.07570982 0.77002693 0.52502999 [66] 0.68745151 0.84900677 0.32532806 0.84465642 0.02740658 [71] 0.70390595 0.39770910 0.94595674 0.84323324 0.08087454 [76] 0.20803588 0.80146715 0.04439694 0.18403071 0.75474280 [81] 0.44674522 0.49658480 0.72509579 0.42192512 0.13874985 [86] 0.74472757 0.76066717 0.91642972 0.95347360 0.06398362 [91] 0.82051909 0.13576174 0.16110741 0.46079787 0.88704923 [96] 0.67940640 0.31597073 0.16849007 0.61313570 0.38778676
```

\$Weight

Exp 1 Exp 2 Exp 3 3 6 8

References

- [1] Tarazona, S. and Garcia-Alcalde, F. and Dopazo, J. and Ferrer, A. and Conesa, A. Genome Research Differential expression in RNA-seq: A matter of depth, 21(12): 2213-2223, 2011.
- [2] Simon Anders and Wolfgang Huber Genome Biology Differential expression analysis for sequence count data., 11: R106, 2010.
- [3] Robinson, M. D. and McCarthy, D. J. and Smyth, G. K. Bioinformatics edgeR: a Bioconductor package for differential expression analysis of digital gene expression data., 26: 139-140, 2010
- [4] Thomas J. Hardcastle R package version 1.14.1. baySeq: Empirical Bayesian analysis of patterns of differential expression in count data., 2012.
- [5] Fisher, R. A. Statistical Methods for Research Workers, 4th edition, Oliver and Boyd, London, 1932.
- [6] Stouffer, S. A. and Suchman, E. A. and DeVinney, L. C. and Star, S. A. and Williams, R. M. Jr. The American Soldier, Vol. 1 - Adjustment during Army Life. Princeton, Princeton University Press, 1949
- [7] Trapnell, C. and Williams, B. A. and Pertea, G. and Mortazavi, A. and Kwan, G. and Baren, M. J. and Salzberg, S. L. and Wold, B. J. and Pachter, L. Nature biotechnology Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiaiton, 28: 511-515, 2010.