					(S)		
$ au_1^{\#2}$	0	0	0	$\frac{4 i}{k (1 + 2 k^2) (r_3 + 2 r_5)}$	$\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$	0	$\frac{6k^2(r_3+2r_5)+8t_3}{(1+2k^2)^2(r_3+2r_5)t_3}$
$\mathfrak{r}_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	$\frac{3k^2(r_3+2r_5)+4t_3}{(k+2k^3)^2(r_3+2r_5)t_3}$	0	$-\frac{i\sqrt{2}(3k^2(r_3+2r_5)+4t_3)}{k(1+2k^2)^2(r_3+2r_5)t_3}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	$\frac{2}{k^2 (r_3 + 2 r_5)}$	$\frac{2\sqrt{2}}{k^2(1+2k^2)(r_3+2r_5)}$	0	$-\frac{4i}{k(1+2k^2)(r_3+2r_5)}$
$\tau_1^{\#1}_{+}\alpha\beta$	$-\frac{i\sqrt{2}}{k(1+k^2)(2r_3+r_5)}$	$\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
8	+15)	$\frac{2t_2}{5)t_2}$	+2 <i>t</i> 2)				
$\sigma_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{\sqrt{2}}{k^2(1+k^2)(2r_3+r_5)}$	$\frac{3k^2(2r_3+r_5)+2t_2}{(k+k^3)^2(2r_3+r_5)t_2}$	$-\frac{i(3k^2(2r_3+r_5)+2t_2)}{k(1+k^2)^2(2r_3+r_5)t_2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{lphaeta} \qquad \sigma_{1}^{\#2}{}_{lpha}$	-	$\sigma_{1}^{\#2} + \alpha \beta \left - \frac{\sqrt{2}}{k^2 (1 + k^2) (2 r_3 + r_5)} \right \frac{3 k^2 (2 r_3 + r_5) + k^2}{(k + k^3)^2 (2 r_3 + r_5)}$	$\tau_{1}^{\#1} + \alpha \beta \left \frac{i \sqrt{2}}{k(1+k^2)(2r_3+r_5)} \right - \frac{i(3k^2(2r_3+r_5)-r_5)}{k(1+k^2)^2(2r_3+r_5)}$	$\sigma_{1}^{\#1} + \alpha = 0$ 0	$\sigma_1^{\#2} + \alpha$ 0 0	$t_{1}^{\#1} \dagger^{\alpha} = 0$ 0	$\tau_1^{\#2} + \alpha$ 0 0

	$\omega_{1^{+}lphaeta}^{\sharp1}$	$\omega_{1^{+}\alpha\beta}^{\#2}$	$f_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{-}\alpha}^{\sharp 1}$	$\omega_{1-\alpha}^{\#2}$	$f_{1-\alpha}^{\#1}$	$f_{1-\alpha}^{#2}$
$\omega_{1}^{\#1}\dagger^{\alpha\beta}$	$k^2 (2r_3 + r_5) + \frac{2t_2}{3}$	$\frac{\sqrt{2} t_2}{3}$	$\frac{1}{3}i\sqrt{2}kt_2$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{\alpha\beta}$	$\frac{\sqrt{2} t_2}{3}$	<u>t2</u> 3	<u>i kt2</u> 3	0	0	0	0
$f_{1}^{#1} \dagger^{\alpha\beta}$	$-\frac{1}{3}i\sqrt{2}kt_2$	$-\frac{1}{3} \bar{l} k t_2$	$\frac{k^2 t_2}{3}$	0	0	0	0
$\omega_1^{\sharp 1}\dagger^lpha$	0	0	0	$k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$	$-\frac{\sqrt{2} t_3}{3}$	0	$-\frac{2}{3}ikt_3$
$\omega_1^{\#2} \dagger^{\alpha}$	0	0	0	$-\frac{\sqrt{2} t_3}{3}$	<u>t3</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_1^{#2} \dagger^{\alpha}$	0	0	0	<u>2ikt3</u> 3	$-\frac{1}{3}i\sqrt{2}kt_3$	0	$\frac{2k^2t_3}{3}$

$ \begin{array}{l} \frac{1}{3} t_3 \; \omega_{,}^{\alpha l} \; \omega_{\kappa}^{\ \ \kappa} + \frac{1}{3} t_2 \; \omega_{,}^{\ \ \kappa} l \; \omega_{,}^{\ \ \kappa} $	$\omega_2^{\#1}_{+lphaeta}f_2^{\#1}_{2^+lphaeta}\omega_2^{\#1}_{2^-lphaeta\chi}$	$\omega_2^{\#1} + \alpha \beta \left[-\frac{3 k^2 r_3}{2} \right] 0 0$	$f_{2}^{\#1} + \alpha \beta$ 0 0 0	$\omega_{2}^{\#1} + ^{lphaeta\chi}$ 0 0 0	
$+\frac{1}{3}t_2 \omega_{\kappa\lambda}^{\ \ \ }$ $r_5 \partial_{\mu} \omega^{\kappa\lambda} \partial^{\mu} + \frac{1}{2}t_2 \omega_{\kappa\lambda}^{\ \ \ }$ $\partial_{\kappa} \omega^{\theta \kappa\lambda} + r_5 \partial^{\mu} \partial^{\mu} + \frac{1}{2}t_2 \partial^{\mu} $	$\sigma_{0}^{\#1}$	0	0	0	$\frac{1}{k^2 r_2 + t_2}$
$ \begin{array}{cccc} \omega_{\lambda}{}^{\alpha} \\ \omega_{\lambda}{}^{\alpha} \\ \partial^{\mu} & \partial^{\mu} \\ \partial^{\mu} &$	$ au_0^{\#2}$	3 0	0	0	0
$\frac{+\frac{2}{3}t_{2} \omega_{\kappa}^{\kappa\lambda}}{\alpha^{\beta}\theta_{-\frac{1}{2}}r_{2}\partial_{t}}$ $\frac{\alpha^{\beta}\theta_{-\frac{1}{2}}r_{2}\partial_{t}}{\beta^{2}\theta_{-\frac{1}{2}}r_{3}\partial_{\theta}\omega_{\mu}}$ $\frac{-\frac{1}{2}t_{2}\partial^{2}f_{\kappa}}{\beta^{4}}$ $\frac{4}{3}t_{3}\partial^{2}f_{\kappa}$ $\frac{4}{3}t_{3}\partial^{2}f_{\kappa}$ $\frac{1}{3}t_{2}\omega_{\theta}t_{\kappa}$ $\frac{1}{3}t_{2}\partial^{2}f_{\kappa}$ $\frac{1}{3}t_{2}\partial^{2}f_{\kappa}$ $\frac{1}{3}t_{2}\partial^{2}f_{\kappa}$ $\frac{1}{6}t_{2}\partial^{2}f_{\kappa}$ $\frac{1}{6}$	${\tau_0^\#}_+^1$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma_{0}^{\#1}$	$\frac{1}{(1+2k^2)^2t_3}$	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$		0
$ \mathcal{E}_{\alpha\beta\chi}^{2} = \frac{1}{3} t_{3} c_{\alpha\beta\chi} \\ \mathcal{E}_{\alpha\beta\chi}^{\alpha} = \frac{1}{3} r_{2} \partial_{\alpha} c_{\alpha} \\ r_{5} \partial_{\alpha} c_{\alpha}$		$\sigma_{0}^{\#1}$ \dagger	$\tau_{0}^{\#1}$ \dagger	τ ₀ ^{#2} †	$\sigma_{0}^{\#1}$ \dagger

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2^{+}\alpha\beta}^{\#1}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$-\frac{2}{3k^2r_3}$	0	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	0	0	0
$\sigma_{2}^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0

$\omega_{0}^{\#1}$	0	0	0	$k^2 r_2 + t_2$
$f_0^{\#2}$	0	0	0	0
$f_0^{\#1}$	-i $\sqrt{2} k t_3$	$2 k^2 t_3$	0	0
$\omega_{0}^{\#1}$	<i>t</i> ³	$i\sqrt{2} kt_3$	0	0
	$\omega_0^{\#1} \uparrow$	$f_{0}^{\#1}$ †	$f_0^{\#2} \uparrow$	$\omega_{0}^{\#1} \dagger$

	#	1	1	3	3	3	2	2	21
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 \bar{l} k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha = 0$	0 =:	$\tau_{1}^{\#1}{}^{\alpha\beta} + i k \sigma_{1}^{\#2}{}^{\alpha\beta} == 0$	$\sigma_{2}^{\#1}\alpha\beta\chi == 0$	$\tau_{2+}^{\#1\alpha\beta} == 0$	Total #:

Lagrangian density

Unitarity conditions $r_2 < 0 \&\& r_3 < 0 \&\& r_5 < -\frac{r_3}{2} \&\& t_2 > 0 || r_2 < 0 \&\& r_3 < 0 \&\& r_5 > -2 r_3 \&\& t_2 > 0 ||$ $r_2 < 0 \&\& r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2} \&\& t_2 > 0$

