Who's to say what's funny? A computer using Language Models and Deep Learning, That's Who!

Xinru Yan & Ted Pedersen

{yanxx418,tpederse}@d.umn.edu

Department of Computer Science University of Minnesota Duluth

The Problem

- Traditional humor detection: binary classification
 Our focus: learn a continuous and subjective sense of humor from tweets submitted to the @midnight show in response to hashtags by using Ngram Language
 Models (LMs) and Deep Learning (DL) methods
- We participated in SemEval-2017 Task 6
 #HashtagWars: Learning a Sense of Humor [1]:
- Tweets are in three baskets: top most funny tweet, next nine most funny tweets and all remaining
- Two Subtasks
- A: Pairwise Comparison a system should choose a funnier of two tweets given a hashtag file
- B: Semi-Ranking a system should categorize tweets into the right baskets given a hashtag file
- Dataset
- Tweet Data: provided by the task, 106 hashtag files, about 21,580 tokens
- News Data: We used 6.2 GB English news, about 2 million tokens [2]

Examples from #BreakUpIn5Words (Trigram LM, News Data)						
Tweet	$\boxed{@midnight}$	LM	$\overline{\mathrm{DL}}$			
It's not you, it's meth.	funniest	funny				
Hey, can we NOT talk?	funny	funny				
You need your own Netflix	funny	not funny	?			
Figured I'd try being happy.	not funny	funny				
You're a Mac, I'm PC	not funny	not funny				

Language Models

Ngram LMs learn humor from training data and allow ranking by assigning probability for each statement [3][4]

Language Model Results

We seek high accuracy for A and low distance for B.

Dataset	Ngram	Accuracy (A)	Distance (B)
news	3	0.627 (4th)	0.872 (1st)
news	2	0.624	0.853
tweet	3	0.397 (8th)	0.967 (8th)
tweet	2	0.406	0.944

- The **type** and the **quantity** of the corpora is what really matters -> more tweet data, less news data
- Bigram LMs performed slightly better than trigram LMs
 -> Unigram and character level LMs

Deep Learning

- Humor relies on creative use of language which causes too many OOV
- Jokes often include puns based on invented words

 Barktender #DogJobs

Tinderella #UpdateAFairyTale

- Token-level LMs can not understand such puns
- Character-based CNNs (CharCNN) are not dependent on observing tokens in training data
- Bigram and trigram LMs only use two or three preceding words to predict the next word —> LSTMs are good at making use of sequantial data such as text and are designed for long-term dependencies
- Some hashtags require tweets to have more than three words and some funny tweets are mostly made up of common bigrams or trigrams

Complaining makes it better #AmericaIn4Words
Romantic dinners with the cats #BestWeekendIn5Words

- Ngram LMs do not include external knowledge such as movie titles and song lyrics -> Create word embeddings from domain specific materials
- Our plan: use Keras library to train CharCNN + LSTM LMs on both datasets and investigate ways to include domain knowledge word embeddings in the CharCNN + LSTM LM

References

- [1] Peter Potash, Alexey Romanov, and Anna Rumshisky.
- SemEval-2017 Task 6: #HashtagWars: learning a sense of humor.
- In Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, BC, August 2017.
- [2] EMNLP 2011 SIXTH WORKSHOP ON STATISTICAL MACHINE TRANSLATION.
- http://www.statmt.org/wmt11/translation-task.html.
- [3] Kenneth Heafield, Ivan Pouzyrevsky, Jonathan H. Clark, and Philipp Koehn. Scalable modified Kneser-Ney language model estimation.
- In Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, Bulgaria, August 2013.
- [4] Cristian Danescu-Niculescu-Mizil, Justin Cheng, Jon Kleinberg, and Lillian Lee.
- You had me at hello: How phrasing affects memorability.

 In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Stroudsburg, PA, USA, 2012.