Soal dan Solusi UTS Teori Grup Hingga 2023

Wildan Bagus Wicaksono

MATEMATIKA 2022

Question 1

Buatlah tabel Cayley untuk operasi penjumlahan pada \mathbb{Z}_{10} . Berdasarkan tabel tersebut, tentukan permutasi yang berkorespondensi dengan masing-masing elemen $\overline{3}$, $\overline{6}$, dan $\overline{9}$.

Penyelesaian.

Perhatikan tabel Cayley berikut pada $(\mathbb{Z}_{10},+)$. Diperoleh bahwa permutasi yang berkorespondensi

	$\overline{0}$	$\overline{1}$	$\overline{2}$	$\overline{3}$	$\overline{4}$	$\overline{5}$	$\overline{6}$	$\overline{7}$	8	9
$\overline{0}$	$\overline{0}$	ī	$\overline{2}$	3	<u>4</u>	$\overline{5}$	<u>6</u>	7	8	9
$\overline{1}$	1	$\overline{2}$	3	<u>4</u>	5	<u>6</u>	7	8	9	$\overline{0}$
$\overline{2}$	$\overline{2}$	3	$\overline{4}$	5	<u>6</u>	7	8	9	$\overline{0}$	$\overline{1}$
3	3	$\overline{4}$	<u>5</u>	<u>6</u>	7	8	9	$\overline{0}$	1	$\overline{2}$
$\overline{4}$	$\overline{4}$	5	<u>6</u>	$\overline{7}$	8	$\overline{9}$	$\overline{0}$	1	$\overline{2}$	$\overline{3}$
$\overline{5}$	$\overline{5}$	$\overline{6}$	7	8	9	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$
<u>6</u>	<u>6</u>	7	8	9	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$	$\overline{5}$
$\overline{7}$	7	8	9	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$	5	$\overline{6}$
8	8	9	$\overline{0}$	1	$\overline{2}$	3	<u>4</u>	$\overline{5}$	<u>6</u>	7
9	9	$\overline{0}$	1	$\overline{2}$	3	$\overline{4}$	5	<u>6</u>	7	8

dengan elemen $\overline{3}$ adalah

$$\rho_3 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 5 & 6 & 7 & 8 & 9 & 0 & 1 & 2 \end{pmatrix},$$

permutasi yang berkorespondensi dengan elemen $\overline{6}$ adalah

$$\rho_6 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 6 & 7 & 8 & 9 & 0 & 1 & 2 & 3 & 4 & 5 \end{pmatrix},$$

dan permutasi yang berkorespondensi dengan elemen $\overline{9}$ adalah

$$\rho_9 = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 9 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \end{pmatrix}.$$

1

Buktikan bahwa setiap grup isomorfik dengan grup permutasi pada himpunan elemennya.

Penyelesaian.

Misalkan G merupakan grup. Ambil sebarang $g \in G$ dan definisikan $\rho_g : G \to G$ sebagai $\rho_g(a) = ga$ untuk setiap $a \in G$. Akan dibuktikan bahwa ρ_g well-defined. Ambil sebarang $a, b \in G$ yang memenuhi a = b, maka $\rho_g(a) = ga = gb = \rho_g(b) \implies \rho_g(a) = \rho_g(b)$, terbukti. Akan dibuktikan bahwa ρ_g merupakan fungsi bijektif. Pertama, akan dibuktikan bahwa ρ_g surjektif. Ambil sebarang $x \in G$, tinjau terdapat $y = g^{-1}x \in G$ sedemikian sehingga

$$\rho_g(y) = \rho_g(g^{-1}x) = g(g^{-1}x) = (gg^{-1})x = 1_Gx = x$$

yang membuktikan ρ_g surjektif. Kedua, akan dibuktikan ρ_g injektif. Ambil sebarang $x,y\in G$ yang memenuhi $\rho_g(x)=\rho_g(y)$. Ini berarti $gx=gy\implies x=y$ menurut kanselisasi kiri, terbukti bahwa ρ_g injektif.

Misalkan $S_G = \{ \rho_g \mid g \in G \}$. Akan dibuktikan bahwa (S_G, \circ) merupakan grup. Ambil sebarang $\rho_a, \rho_b \in S_G$ dan tinjau $(\rho_a \circ \rho_b)(x) = \rho_a(\rho_b(x)) = \rho_a(bx) = a(bx) = (ab)x$. Secara analog dapat dibuktikan bahwa $(\rho_a \circ \rho_b)(x)$ merupakan pemetaan bijektif sebagaimana sebelumnya, ini berarti $\rho_a \circ \rho_b \in S_G$. Jelas bahwa bersifat asosiatif sebagaimana sifat komposisi fungsi. Kemudian, $1_{S_G} = \rho_{1_G}$ sebagai elemen identitas di S_G di mana $\rho_{1_G}(x) = x$ untuk setiap $x \in G$. Karena ρ_a pemetaan bijektif, maka ρ_a memiliki invers $\rho_a^{-1} \in S_G$. Jadi, terbukti S_G merupakan grup.

Definisikan $\varphi: G \to S_G$ di mana $\varphi(g) = \rho_g$ di mana S_G merupakan himpunan semua pemetaan bijektif $f: G \to G$ dilengkapi operasi komposisi. Akan dibuktikan φ well-defined. Ambil sebarang $a, b \in G$ yang memenuhi a = b, maka $\varphi(a) = \rho_a = \rho_b = \varphi(b)$, terbukti. Akan dibuktikan φ isomorfisma. Pertama, akan dibuktikan bahwa φ surjektif. Ambil sebarang $\rho_a \in S_G$ dengan $a \in G$, tinjau terdapat $a \in G$ yang memenuhi $\varphi(a) = \rho_a$ sehingga terbukri φ surjektif. Kedua, akan dibuktikan φ injektif. Ambil sebarang $\rho_a, \rho_b \in G$ di mana $a, b \in G$ yang memenuhi $\rho_a = \rho_b$. Ini berarti $\rho_a(x) = \rho_b(x) \iff ax = bx$ untuk setiap $x \in G$ yang memberikan a = b menurut hukum kanselisasi kanan, terbukti φ injektif. Akan dibuktikan φ homomorfisma. Ambil sebarang $\rho_a, \rho_b \in S_G$, maka

$$\varphi(\rho_{ab}) = \rho_{ab} \stackrel{\forall x \in G}{=} \rho_{ab}(x) = (ab)x = a(bx) = \rho_a(bx) = \rho_a(\rho_b(x)) = (\rho_a \circ \rho_b)(x) \stackrel{\forall x \in G}{=} \varphi(a) \circ \varphi(b),$$

terbukti φ homomorfisma.

Jadi, φ merupakan isomorfisma yang membuktikan bahwa G isomorfik dengan S_G .

Pandang G suatu grup dan $a \in G$. Untuk suatu $b \in G$ dan suatu $g \in G$, bentuk suatu relasi

$$b \sim a \iff b = gag^{-1}$$
.

Buktikan relasi tersebut merupakan relasi ekivalen.

Penyelesaian.

Akan dibuktikan \sim bersifat refleksif, tinjau bahwa $a=1_Ga1_G^{-1}$ sehingga $a\sim a$ untuk setiap $a\in G$ sehingga terbukti. Akan dibuktikan \sim bersifat simetris. Ambil sebarang $a,b\in G$ yang memenuhi $a\sim b$, maka $a=gbg^{-1}$ sehingga $b=g^{-1}ag=g^{-1}a\left(g^{-1}\right)^{-1}$ yang menunjukkan $b\sim a$, terbukti. Akan dibuktikan \sim bersifat transitif. Ambil sebarang $a,b,c\in G$ yang memenuhi $a\sim b$ dan $b\sim c$. Ini berarti $a=gbg^{-1}$ dan $b=gcg^{-1}$, diperoleh

$$a = gbg^{-1} = g(gcg^{-1})g^{-1} = g^2c(g^{-1})^2 \implies a \sim c,$$

terbukti.

Jadi, \sim merupakan relasi ekuivalen.

Pandang ${\cal H}$ yang merupakan himpunan bagian dari S_4 berikut:

$$H = \{I, (a \ b \ c \ d), (a \ c)(b \ d), (a \ d \ c \ b), (b \ c)(a \ d)\}.$$

- (a). Periksa apakah H subgrup dari S_4 .
- (b). Jika H subgrup dari S_4 , maka tentukan orbit dari b dan d.

Penyelesaian.

- (a). Tinjau $(a c)(b d)(b c)(a d) = (a b)(c d) \notin H$, maka H bukan subgrup S_4 .
- (b). Tidak dapat dikerjakan karena (a) telah disangkal.

 \blacksquare

- (a). Buat sketsa segilima beraturan yang dilengkapi dengan titik-titik sudutnya.
- (b). Tuliskan semua permutasi yang berkorespondensi dengan isometri pada segilima beraturan.

Penyelesaian.

(a). Beri nama titik-titik segilima dengan 1, 2, 3, 4, 5 berlawanan arah jarum jam.

(b). Misalkan $\mu_{n^{\circ}}$ menyatakan rotasi segilima terhadap titik pusat segilima O sejauh n° berlawanan jarum jam untuk $n \in \{0, 72, 144, 216, 288\}$, dan ρ_m menyatakan pencerminan terhadap garis yang melalui titik m dan tegak lurus dengan sisi di hadapannya untuk $m \in \{1, 2, 3, 4, 5\}$.

Himpunan $\{\mu_{0^{\circ}}, \mu_{72^{\circ}}, \mu_{144^{\circ}}, \mu_{216^{\circ}}, \mu_{288^{\circ}}, \rho_1, \rho_2, \rho_3, \rho_4, \rho_5\}$ merupakan himpunan semua permutasi pada segilima tersebut. Lebih lanjut, dapat diperoleh bahwa

 $\mu_{0^\circ} = (1), \quad \mu_{72^\circ} = (1\ 2\ 3\ 4\ 5), \quad \mu_{144^\circ} = (1\ 3\ 5\ 2\ 4), \quad \mu_{216^\circ} = (1\ 4\ 2\ 5\ 3), \quad \mu_{288^\circ} = (1\ 5\ 4\ 3\ 2).$ Selain itu,

$$\rho_1 = (2\ 5)(3\ 4), \quad \rho_2 = (1\ 3)(4\ 5), \quad \rho_3 = (1\ 5)(2\ 4), \quad \rho_4 = (1\ 2)(3\ 5), \quad \rho_5 = (1\ 4)(2\ 3).$$