NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET INSTITUTT FOR MATERIALTEKNOLOGI

Faglig kontakt under eksamen: Institutt for materialteknologi, Gløshaugen Førsteamanuensis Hilde Lea Lein, tlf. 73 55 08 80

EKSAMEN I EMNE TMT4110 KJEMI - bokmålsutgave

Tirsdag 31. mai 2011 Tid: kl 0900 – 1300.

Hjelpemidler: B2-Typegodkjent kalkulator, med tomt minne, i henhold til utarbeidet liste. Aylward & Findlay: SI Chemical Data

Oppgave 1.

Det er kun ett riktig svar for hver deloppgave. Sett derfor kun ett kryss. Dersom to eller flere svar avgis, bedømmes denne deloppgaven med null poeng.

i) Hva er definisjonen på en Brønsted-Lowry-syre?	
a) Proton donor	J
b) Proton akseptor	J
c) Elektron donor]
d) Elektron akseptor]
ii) Hvilket av følgende utsagn er ikke en av termodynamikkens lover?	
a) Den totale energien i universet er konstant	
b) En spontan prosess er en prosess der entropien i universet øker]
c) En reaksjon er spontan hvis $\Delta G > 0$.	
d) Entropien for en perfekt krystall ved 0 K er null]
iii) Hva er elektronkonfigurasjonen til S?	
a) [Ne] $3s^23p^6$]
b) [Ne] $3s^23p^4$	
c) $[Ar] 3s^2 3p^4$	
d) $[Ar] 3s^2 3p^6$	J

a) Likevekt som inneholder bare væsker	ı
b) Likevekt hvor $K = 1$	
c) En likevekt som inneholder produkter/reaktanter i flere aggregattilstander	
v) Hvilken av følgende beskriver en likevektssituasjon?	
a) $\Delta H^o = T \Delta S^o$.	
b) $\Delta G^{\circ} = 0$	
c) $\Delta C_p = 0$	
vi) Hva er ikke riktig beskrivelse for et kompleks:	
a) Et kompleks består av et sentralatom omgitt av ligander	
b) Stabiliteten avhenger av likevektskonstanten for dannelsen av komplekset (K_f)	
c) Mange komplekser er fargede	
d) Ladningen på sentralatomet kalles koordinasjonstallet til kompleksionet	
vii) Hvilken monomer er teflon bygd opp av?	
a) C_2H_4	
b) $C_2H_2F_2$.	
c) C_2F_4 \Box \Box \Box \Box \Box	
viii) Hva er riktig for en brenselscelle?	
a) En brenselscelle er en galvanisk celle hvor reaktantene blir kontinuerlig tilført	
b) Elektrolytten må være et fast stoff	
c) Oksidasjonen skjer ved katoden	
d) Strøm benyttes for å lage et reaksjonsprodukt	
ix) Metallet brukes i legeringer blant annet fordi det bidrar til hardhet. Mineralene til metallet	
lett gjenkjennelige pga sine rosa/lilla farger. Elementet brukes også til å oppnå en dyp blå farg	
noe som ble gjort ved Blaafarveverket på Modum i Buskerud. Saltene er giftige, men metallet	er
livsviktig og finnes bl.a. i vitamin B12. Hvilket element?	
a) Mn	
b) Co	
c) Ni	
d) Cr	
x) Navnet på elementet kommer fra latin og betyr "himmelblå". Det er det mest reaktive ustabile grunnstoffet etter F, og smelter om du (teoretisk sett) holder det i hånden. Det okside raskt i luft og danner et farlig superoksid på overflata. Elementet inngår i standardmåling av (atomur) og definisjonen av et sekund. Uran i atomreaktorstaver blir bl.a. spaltet til en isotopene til elementet. Denne isotopen er radioaktiv og pga en relativ lang halveringstid utg	rer tid av
dette en stor miljøtrussel ved ulykker i atomkraftverk. Hvilket element?	
a) Rn	ı.
b) Cs	
c) Xe	
d) I	i

Oppgave 2.

Fremstilling av metallisk sink fra sinkoksid kan skje ved reduksjon med karbon ved ca 1100°C ved at det dannes sinkdamp:

$$ZnO(s) + C(s) = Zn(g) + CO(g)$$

- a) Beregn ΔH°_{r} og ΔS°_{r} for denne reaksjonen ved 25°C.
- b) Diskuter kort
 - i) fortegn på den beregnede ΔS°_r.
 - ii) reaksjonens avhengighet av temperatur og trykk.
- c) Anta at ΔH^{o}_{r} og ΔS^{o}_{r} er uavhengige av temperaturen og beregn likevektskonstantene for reaksjonen ved 25°C og 1100°C. Kontroller om temperaturavhengigheten for K stemmer med det du fant i spørsmål b).
- d) Beregn trykkene av Zn (g) og CO (g) i likevekt med ZnO(s) og C(s) ved 1100 °C. (Man kan anta at spaltingen finner sted i en på forhånd evakuert og lukket beholder).
- e) Gitt en tilfeldig reaksjon som er spontan. Hvilke av størrelsene ΔS_{tot} (den totale entropiendring), ΔS_r (systemets entropiendring), ΔG_r og ΔG^o_r kan du si er: Større en 0, mindre enn 0, eller umulig å vite størrelse og fortegn for med de gitte opplysninger?

Oppgave 3.

- a) Forklar forskjellen på primære, sekundære og tertiære alkoholer. Hvilke oksidasjonsprodukter gir de forskjellige alkoholene?
- b) Hva er en kondensasjonsreaksjon? Gi ett eksempel.
- c) Gi korrekt navn på følgende to organiske forbindelser:

- d) Tegn følgende organiske forbindelser:
 - i) 2-fenyl-3-metylheksan
 - ii) 3-hydroksy-5-kloro-2-heptanon

Oppgave 4.

En galvanisk celle består av følgende halvceller: 1) Nikkelplate dyppet ned i en 0.5 M nikkelnitratløsning og 2) blystav i en 0.1 M blynitratløsning. Kamrene er forbundet med en 6 M ammoniumnitrat saltbro.

- a) Skisser cellen. Angi hvilken vei elektroner og ioner vil vandre.
- b) Gi reaksjonsligninger for halvcellereaksjonene ved de to elektrodene og for totalreaksjonen. Beregn cellepotensialet ved standard betingelser.

- c) Hva blir cellepotensialet ved de gitte betingelser?
- d) Høyre halvcelle (den med bly) tilsettes noe fast Na₂SO₄. Skriv reaksjonsligning for det som skjer og forklar hvordan denne innvirker på potensialet.
- e) Væskevolumet i høyre halvcelle er 100 ml og endres ikke nevneverdig grad ved tilsats av Na₂SO₄ (s). Beregn hvor mange gram Na₂SO₄ (s) som må tilsettes for at $\Delta \epsilon_{\text{celle}} = 0$.

Oppgave 5.

a) Man tenker seg en lukket beholder der følgende gasslikevekt er innstilt:

$$A(g) + 2 B(g) = AB_2(g)$$

Reaksjonen er eksoterm. Forklar hvordan utbyttet av $AB_2(g)$ kan økes på to forskjellige måter uten at det blir introdusert noe mer gass i beholderen. Angi også i begge tilfellene om likevektskonstanten vil bli større, være konstant eller avta når utbyttet av $AB_2(g)$ øker.

- b) i) Hva er bakgrunnen for VSEPR-modellen?
 - ii) Beskriv elektronfordelingen i NH₃-molekylet og hvilken geometri og bindingsvinkler du vil vente for dette molekylet (og hvorfor) ut fra VSEPR-modellen.
 - iii) Bruk modellen til å angi geometrien til følgende molekyler: PCl₅, SF₆ og XeF₄.
- c) Forklar kort forskjellen på en ionebinding og en kovalent binding.
- d) På laboratoriet bestemte dere mengde fosfor i en ukjent prøve ved kolorimetri. Beskriv kort hvordan dette gjøres. (Hvorfor brukes standarder? Hvordan kan den ukjente mengden bestemmes?) Hvorfor måtte en blank prøve analyseres først?

FORMEL	KOMMENTAR
PV = nRT	Ideell gass
$P_i = n_i RT/V (P_T = \sum P_i)$	Partialtrykk av i
i	77 1 20
$C = q/\Delta T$	Varmekapasitet
$\Delta E = q + w$	Endring i indre energi
H = E + PV	Entalpi
$\Delta H = q_p$	Konstant <i>P</i> . Bare volumarb.
$\Delta H^{\circ} = \sum \Delta H_{\rm f}^{\circ}$ (produkter) - $\sum \Delta H_{\rm f}^{\circ}$ (reaktanter)	Husk støkiometriske koeffisienter
$\Delta H_T^{\circ} = \Delta H_{298}^{\circ} + \Delta C_P^{\circ} \times \Delta T$	ΔC_p^o konstant
$ \ln\left(\frac{K_2}{K_1}\right) = \frac{\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right) $	ΔH og ΔS konstant
$dS = \frac{\mathrm{d}q_{\mathrm{rev}}}{T}$	Entropiendring
$\Delta S_T^{\circ} = \Delta S_{298}^{\circ} + \Delta C_P^{\circ} \ln \left(\frac{T}{298,15} \right)$	ΔC_p^o konstant
G = H - TS	Gibbs energi. Fri energi.
$\Delta G = \Delta H - T \Delta S$	Endring i fri energi ved konstant T
$\Delta G_T^\circ = \Delta H_{298}^\circ - T \Delta S_{298}^\circ$	$\Delta C_p^o \approx 0$
$\Delta G = \Delta G^o + RT \ln Q$	Reaksjonskvotient, Q
$G = G^{\circ} + RT \ln a$	Aktivitet (relativ), a
$\Delta G^o = -RT \ln K$	Likevektskonstant, K
$\Delta G = -nFE$	Cellepotensial, E
$Q = It = n_{e}F$	Elektrisk ladning
$E = E^{o} - \frac{RT}{nF} \ln Q = E^{o} - \frac{0,0592}{n} \log Q, 25^{o} \text{ C}$	Nernsts ligning
$r = -\frac{1}{a} \frac{d[A]}{dt} = \frac{1}{c} \frac{d[C]}{dt} = k[A]^{l} [B]^{m} [C]^{n} [D]^{p}$	Reaksjonshastighet for $aA + bB \rightarrow cC + dD$
Total orden = $l + m + n + p$	
$k = A e^{-\frac{E_a}{RT}}$	Hastighetskonstant, k Aktiveringsenergi, E_a
	7 Kuveiligselleigi, Ea