

# 第十一课(第31-33课时)

# 时间序列分析和金融数据

- 时间序列及其分析的常见任务
- Python中的时间序列分析功能
- 金融数据分析基础
- 金融数据分析常见任务
- 金融数据分析实战(背景介绍)

### 时间序列概述



#### > 什么是时间序列

- 某些量在时间上的变化,自变量为时间
- 如:



### 时间序列概述



#### > 时间序列的特性

- 趋势
- 周期性(年、季节、月、周、日)

#### **Compare and Contrast**



中国大数据在线教育领导者

### 时间序列分析概述



#### > 时间序列包含的要素

- 时间范围
- 采样频率(间隔)
- 随时间变化的变量

#### > 时间序列分析的组成

- 趋势
  - 模型(线性或非线性)
  - 幅度
- 周期性(季节性)
  - 累加或者累乘
- 噪声:随机变动,需要估计和减少
- 其他:异常值,异常波动,丢失数据,或许暗示特殊事件



### 时间序列分析概述



- > 时间序列分析的主要任务
  - 描述:
    - 解释过去: 趋势、周期性、不确定性(噪声)
    - 训练模型
  - 预测:
    - 研究未来: 预测未来的值
    - 验证模型,使用模型
  - 控制:
    - 锁定现在
    - 使用模型



- > 平滑:
  - 去除序列中短期的效应
- > 移动平均法
  - 简单移动平均法

$$s_i = \frac{1}{2k+1} \sum_{j=-k}^{k} x_{i+j}$$

- 加权移动平均法

$$s_i = \sum_{j=-k}^k w_j x_{i+j}$$
 其中  $\sum_{j=-k}^k w_j = 1$ 



- > 平滑:
- > 指数平均法:

#### (一) 一次指数平滑预测

当时间数列无明显的趋势变化,可用一次指数平滑预测。其预测公式为:

yt+1'=ayt+(1-a)yt' 式中,

- vt+1'--t+1期的预测值,即本期(t期)的平滑值St;
- yt--t期的实际值;
- yt'--t期的预测值,即上期的平滑值St-1 。

#### (二) 二次指数平滑预测

二次指数平滑是对一次指数平滑的再平滑。它适用于具线性趋势的时间数列。其预测公式为:

yt+m=(2+am/(1-a))yt'-(1+am/(1-a))yt=(2yt'-yt)+m(yt'-yt) a/(1-a)

式中, yt= ayt-1'+(1-a)yt-1

显然,二次指数平滑是一直线方程,其截距为:(2yt'-yt), 斜率为:(yt'-yt) a/(1-a), 自变量为预测天数。



#### > 平滑:指数平均法:

一 预测值是以前观测值的加权和,且对不同的数据给予不同的权, 新数据给较大的权,旧数据给较小的权

#### (三) 三次指数平滑预测

三次指数平滑预测是二次平滑基础上的再平滑。其预测公式是:

yt+m=(3yt'-3yt+yt)+[(6-5a)yt'-(10-8a)yt+(4-3a)yt]+am/2(1-a)2+(yt'-2yt+yt')\*a2m2/2(1-a)2

式中, yt=ayt-1+(I-a)yt-I





#### > 相关函数

#### > 自相关

- 自相关现象大多出现在时间序列数据中,随机变量之间不再是完全相互独立的,而是存在某种相关性
- 平滑会增加自相关
- 自相关数据不适于用线性回归模型

$$c(k) = \frac{\sum_{i=1}^{N-k} (x_i - \mu)(x_{i+k} - \mu)}{\sum_{i=1}^{N} (x_i - \mu)^2}$$



图 4-10 图 4-5 显示的呼叫中心数据的相关函数。在 365 天的地方出现了第二个高峰,数据中还包含一个以星期为周期的结构



#### > 时间序列的场景

- 时间戳 timestamp:特定时刻
- 固定时期 period:如2016年,2000年9月
- 时间间隔 interval: 起始~结束时间戳 (period为其特例)
- 实验或过程时间:每个时间点相对于特定起始时间的度量

### **➢ python标准模块**

- from datetime import ...
  - datetime
  - timedelta
  - date
  - time
  - 特定的时间格式:%H,%W等



- ▶ pandas , 以时间戳作为序列索引
  - from datetime import datetime
  - dates=[datetime(2016,7,15),datetime(2016,7,16),datetime(2016,7,17)]
  - ts=pd.Series(np.random.randn(3),index=dates)

```
In [331]: ts
Out[331]:
2016-07-15   -0.870052
2016-07-16   -2.174847
2016-07-17   1.112486
dtype: float64
In [333]: ts.index
Out[333]: DatetimeIndex(['2016-07-15', '2016-07-16', '2016-07-17'],
dtype='datetime64[ns]', freq=None, tz=None)
```

• 自动按时间对齐



- > pd.to\_datetime(datestr)
  - 从包含时间信息的字符串解析时间
- > 生成时间序列索引
  - index=pd.date\_range('7/17/2016',period=1000)
  - index=pd.Datetimeindex([ '7/15/2016', '7/16/2016', '7/17/2016'])

#### > 生成日期范围:

pd.date\_range('7/17/2016', '7/17/2017', freq='BM')

- 参考《利用Python进行数据分析》



- > timestamp和period的互相转换
  - pd.to\_timestamp
  - pd.to\_period

• ts=pd.Series(np.random.randn(6),index=pd.date\_range('

7/17/2017',periods=6,freq='M'))

- ts1=ts.to\_period('M')
- ts1.to\_timestamp(how="start")

```
In [359]: ts1.to_timestamp(how="start")
Out[359]:
2017-07-01     0.865774
2017-08-01     -0.110886
2017-09-01     -0.290815
2017-10-01     -0.205878
2017-11-01     -0.018218
2017-12-01     0.767338
```

```
In [356]: ts1=ts.to_period('M')
In [357]: ts1
Out[357]:
2017-07
          0.865774
2017-08
          -0.110886
2017-09
          -0.290815
2017-10
          -0.205878
2017-11
          -0.018218
          0.767338
2017-12
Freq: M, dtype: float64
```



- ▶ 重采样: resampling
  - ts.resample
    - ts.resample("W-Wed",how='mean')...
  - 高频到低频:降采样
    - 聚合:需要考虑数据点的归属和标记问题
  - 低频到高频:升采样
    - 插值:
  - 其他: "W-Wed",→ "W-Fri "
  - OHLC重采样
    - ts.resample('M',how='ohlc')



- > 绘图:读入数据
  - sh1=pd.read\_csv('sh000001.csv',parse\_dates=True,index\_ col=1)

```
In [380]: sh1.head()
Out[380]:
          index_code
                                                    high
                                 close
                                            100
                                                              volume
                         open
date
2014-12-31
            sh000001 3172.60
                               3234.68
                                        3157.26
                                                3239.36 40599852100
                               3165.82
                                        3130.35
2014-12-30
            sh000001 3160.80
                                                3190.30 39772532000
2014-12-29
            sh000001 3212.56
                               3168.02
                                        3126.94
                                                3223.86 51011143900
            sh000001 3078.01
                                        3064.18
                                                3164.16 46070093200
2014-12-26
                               3157.60
2014-12-25
            sh000001 2992.46 3072.54
                                        2969.87
                                                3073.35 37694777600
                           change
                  money
date
2014-12-31 4.323200e+11
                         0.021752
2014-12-30 4.372630e+11 -0.000695
2014-12-29 5.559040e+11 0.003298
2014-12-26 4.889150e+11 0.027686
2014-12-25 3.790180e+11 0.033643
```



#### > 绘图





#### > 移动窗口函数

- rolling\_mean
- rolling\_std
- ...

#### > 指数加权函数

pd.ewma( , span= )

#### > 二元移动窗口函数

- rolling\_corr
- sz1=pd.read\_csv('sz399001.csv',parse\_dates=True,index\_ col=1)
- corr=pd.rolling\_corr(sh1.change,sz1.change,125,min\_periods=100)



#### > 二元移动窗口函数

- corr.plot()





#### > 货币的时间价值

- P ( Principal ) ——本金,又称期初额,现值 ( PV )
- i (The rate of interest) ——利率,通常指每年利息与本金之比
- I (Interest) ——利息
- S (Summation) ——本金与利息之和, 本利和, 终值 (FV)

#### > 单利

$$I = P \times i \times t$$

终值计算: S=P+P×i×t

现值计算: P=S-I



#### > 复利

- 每经过一个计息期,要将所生利息加入本金再计利息,逐期滚算,"利滚利"
- 复利终值:

$$S = P \times (1+i)^n$$

- 复利初值:

$$P = S \times \frac{1}{(1+i)^n}$$

- 名义利率和实际利率
  - 当利息在一年内要复利几次,给出的年利率叫做名义利率
  - 例:本金1000元,投资5年,利率8%
  - 多次计息时,实际利率比名义利率更高



- > 复利【练习】
  - 信用卡分期利息计算
    - 分期1万元,12期还清(等额本息,每月1期),每期利息为 0.78%,试计算实际利率



| 计息次数<br>(m) | $F = P \left( 1 + \frac{i}{m} \right)^{mn}$                     | $P = F\left(1 + \frac{i}{m}\right)^{-mn}$                       |
|-------------|-----------------------------------------------------------------|-----------------------------------------------------------------|
| 1次(年)       | $F = 100 \left( 1 + \frac{0.08}{1} \right)^{(1)(3)} = 125.97$   | $F = 100 \left( 1 + \frac{0.08}{1} \right)^{-(1)(3)} = 79.38$   |
| 2次(半年)      | $F = 100 \left( 1 + \frac{0.08}{2} \right)^{(2\chi3)} = 126.53$ | $F = 100 \left( 1 + \frac{0.08}{2} \right)^{-(2\chi3)} = 79.03$ |
| 4次 (季)      | $F = 100 \left( 1 + \frac{0.08}{4} \right)^{(4\chi3)} = 126.82$ | $F = 100 \left( 1 + \frac{0.08}{4} \right)^{-(4\chi3)} = 78.85$ |
| 特点          | 一年中计息次数越多,終值越大。                                                 | 一年中计息次数越多,现值越小。                                                 |

#### > 连续复利

$$p_n = \lim_{m \to \infty} p_0 (1 + \frac{i}{m})^{mn} = p_0 \lim_{m \to \infty} \left[ (1 + \frac{i}{m})^{\frac{m}{i}} \right]^{ni} = p_0 e^{ni}$$

In [**396**]: (1+0.08) Out[**396**]: 1.08

In [397]: np.exp(0.08)

Out[**397**]: 1.0832870676749586



- > 现金流
- 固定现金流:按揭、养老金、保险、分期
- > 变化现金流: 投资
  - 投资依据1,净现值(NPV)
    - 投资方案所产生的现金净流量以资金成本为贴现率折现之后与 原始投资额现值的差额
  - 投资依据2:内部收益率(IRR)
    - 资金流入现值总额与资金流出现值总额相等、净现值等于零时的折现率。



#### > 风险与收益

- 风险越大,预期回报也就越高
  - 假定投资国债的回报为5%,投资股票的回报和相应的概率如下

| 概率   | 回报    |
|------|-------|
| 0.05 | +50%  |
| 0.25 | +30%  |
| 0.40 | +10%  |
| 0.25 | -10%  |
| 0.05 | - 30% |

预期回报 =10% 回报的标准差 =18.97%



#### > 风险投资组合

$$\mu_P = w_1 \mu_1 + w_2 \mu_2$$

$$\sigma_{p} = \sqrt{w_{1}^{2}\sigma_{1}^{2} + w_{2}^{2}\sigma_{2}^{2} + 2\rho w_{1}w_{2}\sigma_{1}\sigma_{2}}$$

$$\mu_1 = 10\%$$
 $\mu_2 = 15\%$ 
 $\sigma_1 = 16\%$ 
 $\sigma_2 = 24\%$ 
 $\rho = 0.2$ 





#### > 风险资产的有效边界





#### > 所有投资资产的有效边界





- > 系统与非系统风险
  - 投资收益与市场收益之间的最佳线性拟合关系



### 金融数据分析的常见任务



#### > 量化分析

- 应用:量化投资

- 市场分析:趋势、波动率

#### 风险计量与管理:

- 市场风险、利率风险、信用风险
- 应用:风险评估、征信



- > 风险计量: VaR在险价值
  - 某交易组合T天时损失不超过V元的概率为X%



- 测算方法
  - 历史模拟方法
  - Monte Carlo模拟方法



### > 波动率计量

- 某个变量的波动率定义为该变量在单位时间内连续复利收益率的标准差
  - 假设 $S_i$ 是某个变量在第i天的取值,那么日波动率就可以表示为  $\ln(S_i/S_{i-1})$ 的标准差;时间周期为T的波动率为 $\ln(S_T/S_0)$ 的标准差

$$S_T = S_{T-1}e^{\delta_T} = S_{T-2}e^{\delta_{T-1}}e^{\delta_T} \dots = S_0e^{\delta_1}\cdots e^{\delta_T} = S_0e^{\delta_1+\cdots\delta_T}$$
  $T$ 天连续复利收益率 $\Delta_T = \delta_1 + \cdots + \delta_T = \ln\left(\frac{S_T}{S_0}\right);$ 

当T很小时,连续复利收益率 $\Delta_{\tau}$ 也较小,那么

$$S_T = S_0 e^{\Delta_T} \approx S_0 (1 + \Delta_T) \Rightarrow \Delta_T \approx \frac{S_T - S_0}{S_0}$$

⇒连续复利收益率的方差≈变量百分比变化的方差



#### > 波动率计量

【定律】不定性随时间的平方根成正比!

 ${\bf E}[\delta_i, i=1,2,...]$ 独立同分布的假设下,有:

$$\sqrt{\operatorname{Var}(\delta_1 + \dots + \delta_T)} = \sqrt{\operatorname{T} \cdot \operatorname{Var}(\delta_i)} = \sqrt{\operatorname{T} \cdot \sqrt{\operatorname{Var}(\delta_i)}}$$

$$\Rightarrow \sigma_{\text{year}} = \sqrt{252}\sigma_{\text{day}}; \quad \sigma_{\text{year}} = \sqrt{52}\sigma_{\text{week}}$$

**> 方法1:使用历史数据** 



#### > 波动率计量

| 天数 | 股票闭市价  | 价格比<br>S <sub>i</sub> /S <sub>i-1</sub> | 每天回报 $u_i = \ln(S_i/S_{i-1})$ | 天数 | 股票闭市价  | 价格比<br>S <sub>i</sub> /S <sub>i-1</sub> | 每天回报 $u_i = \ln(S_i/S_{i-1})$ |  |
|----|--------|-----------------------------------------|-------------------------------|----|--------|-----------------------------------------|-------------------------------|--|
| 0  | 20.00  |                                         |                               | 11 | 21.00  | 1. 012 05                               | 0. 011 98                     |  |
| -1 | 20. 10 | 1. 005 00                               | 0. 004 99                     | 12 | 21. 10 | 1. 004 76                               | 0.00475                       |  |
| 2  | 19. 90 | 0. 990 05                               | -0.01000                      | 13 | 20. 90 | 0.99052                                 | -0. 009 52                    |  |
| 3  | 20.00  | 1. 005 03                               | 0. 005 01                     | 14 | 20. 90 | 1.00000                                 | 0.00000                       |  |
| 4  | 20. 50 | 1. 025 00                               | 0. 024 69                     | 15 | 21. 25 | 1.01675                                 | 0.01661                       |  |
| 5  | 20. 25 | 0. 987 80                               | -0.01227                      | 16 | 21. 40 | 1.00706                                 | 0.00703                       |  |
| 6  | 20. 90 | 1. 032 10                               | 0. 031 59                     | 17 | 21. 40 | 1.00000                                 | 0.00000                       |  |
| 7  | 20. 90 | 1.00000                                 | 0.00000                       | 18 | 21. 25 | 0. 992 99                               | -0.00703                      |  |
| 8  | 20. 90 | 1.00000                                 | 0.00000                       | 19 | 21.75  | 1. 023 53                               | 0. 023 26                     |  |
| 9  | 20.75  | 0. 992 82                               | -0.00720                      | 20 | 22. 00 | 1. 011 49                               | 0. 011 43                     |  |
| 10 | 20. 75 | 1. 000 00                               | 0.00000                       |    |        |                                         |                               |  |



#### > 波动率计量

市场变量在第i天末的价格为 $S_i$ ,第i天连续复利收益率 $u_i = \ln(\frac{S_i}{S_{i-1}})$ 

波动率
$$Var(u_i)$$
的无偏估计:  $\sigma_n^2 = \frac{1}{m-1} \sum_{i=1}^m (u_{n-i} - \bar{u})^2 \dots (9-2)$ 

其中: 
$$\bar{u} = \frac{1}{m} \sum_{i=1}^{m} u_{n-i}$$



#### > 波动率计量

指数加权移动平均模型(EWMA)

1. 计算简单,在 前一天波动率 预测值基础上 更新一下即可 得到第二天波 动率预测值

λ衡量波动率 对最新市场价 格百分比变化 的敏感度

3. Mo

2.

Morgan(1994) 研究表明, λ=0.94常见

$$\alpha_{i+1} = \lambda \alpha_{i}, 其中 \lambda \in (0,1), 那么:$$

$$\alpha_{1} + \alpha_{2} + ... + \alpha_{n} = \alpha_{1} + \lambda \alpha_{1} + ... + \lambda^{m-1} \alpha_{1} = 1$$

$$\Rightarrow \frac{1 - \lambda^{m}}{1 - \lambda} \alpha_{1} = 1 \Rightarrow \alpha_{1} = \frac{1 - \lambda}{1 - \lambda^{m}} \approx 1 - \lambda$$

$$\sigma_{n}^{2} = \alpha_{1} u_{n-1}^{2} + \alpha_{2} u_{n-2}^{2} + ... + \alpha_{m} u_{n-m}^{2}$$

$$= \alpha_{1} u_{n-1}^{2} + \lambda \alpha_{1} u_{n-2}^{2} + ... + \lambda^{m-1} \alpha_{1} u_{n-m}^{2}$$

$$\sigma_{n-1}^{2} = \alpha_{1} u_{n-2}^{2} + \alpha_{2} u_{n-3}^{2} + ... + \lambda^{m-1} \alpha_{1} u_{n-m-1}^{2}$$

$$= \alpha_{1} u_{n-2}^{2} + \lambda \alpha_{1} u_{n-3}^{2} + ... + \lambda^{m-1} \alpha_{1} u_{n-m-1}^{2}$$

$$\sigma_{n}^{2} - \lambda \sigma_{n-1}^{2} = \alpha_{1} u_{n-1}^{2} - \lambda^{m} \alpha_{1} u_{n-m-1}^{2} \approx (1 - \lambda) u_{n-1}^{2}$$

$$\Rightarrow \sigma_{n}^{2} - \lambda \sigma_{n-1}^{2} = (1 - \lambda) u_{n-1}^{2} ... (9 - 8)$$

$$\Rightarrow \sigma_{n}^{2} = \sum_{i=1}^{m} \alpha_{i} u_{n-i}^{2} = \frac{1 - \lambda}{1 - \lambda^{m}} \sum_{i=1}^{m} \lambda^{i-1} u_{n-i}^{2} \approx (1 - \lambda) \sum_{i=1}^{m} \lambda^{i-1} u_{n-i}^{2}$$



GARCH(1,1)模型 > 波动率计量

模型:

$$\sigma_n^2 = \gamma V_L + \alpha \cdot u_{n-1}^2 + \beta \sigma_{n-1}^2 \dots (10-9)$$

满足:  $\gamma$ ,  $\alpha$ ,  $\beta$ 皆为正数, 且 $\gamma + \alpha + \beta = 1$ 

$$(1)$$
当 $\gamma = 0$ , $\alpha = 1-\lambda$ , $\beta = \lambda$ 时,模型退化为EWMA模型

(2)该模型可推广为GARCH(p,q)

$$\sigma_n^2 = \gamma V_L + \left(\frac{\Delta}{\alpha}\right) u_{n-1} + \left(\frac{1}{\alpha}\right) u_{n-1} + \left(\frac{$$

若记 $ω = γV_{i}$ ,则:

$$\sigma_n^2 = \omega + \alpha \cdot u_{n-1}^2 + \beta \sigma_{n-1}^2 = \omega + \alpha \cdot u_{n-1}^2 + \beta (\omega + \alpha \cdot u_{n-2}^2 + \beta \sigma_{n-2}^2)$$

$$=\omega+\beta\omega+\beta\omega^2+\alpha\cdot u_{n-1}^2+\alpha\cdot\beta\cdot u_{n-2}^2+\alpha\cdot\beta^2\cdot u_{n-3}^2+\beta^3\cdot\sigma_{n-3}^2$$

= ......

可见:

- $(1)u_{n-}^{i}$ 的权重为 $\alpha\beta^{i-1}$ ,以 $\beta$ 的指数速度下降。
- (2)数据越新,权重越大



GARCH(1,1)模型 > 波动率计量

$$\sigma_{n}^{2} = \gamma V_{L} + \alpha \cdot u_{n-1}^{2} + \beta \sigma_{n-1}^{2} \dots (10-9)$$
若记 $\omega = \gamma V_{L}$ ,则:
$$\sigma_{n}^{2} = \omega + \alpha \cdot u_{n-1}^{2} + \beta \sigma_{n-1}^{2} = \omega + \alpha \cdot u_{n-1}^{2} + \beta (\omega + \alpha \cdot u_{n-2}^{2} + \beta \sigma_{n-2}^{2})$$

$$= \omega + \beta \omega + \beta \omega^{2} + \alpha \cdot u_{n-1}^{2} + \alpha \cdot \beta \cdot u_{n-2}^{2} + \alpha \cdot \beta^{2} \cdot u_{n-3}^{2} + \beta^{3} \cdot \sigma_{n-3}^{2}$$

$$= \dots \dots$$

可见:

- $(1)u_{n-i}^{i}$ 的权重为 $\alpha\beta^{i-1}$ ,以 $\beta$ 的指数速度下降。
- (2)数据越新,权重越大



#### > 估计波动率计量模型中的参数

估计GARCH(1,1)或者EWMA模型中参数 假如随机变量 $U_i$ 服从均值 $N(0,v_i)$ 。其观察值 为 $u_1,u_2,...,u_m$ .

m个观察值刚好为 $u_1,u_2,...,u_m$ 的概率为

$$\prod_{i=1}^{m} \left[ \frac{1}{\sqrt{2\pi v_i}} \exp\left\{ \frac{-u_i^2}{2v_i} \right\} \right]$$

要使上式最大化,等同于使下式最大化,即

$$\sum_{i=1}^{m} \left[ -\ln(v_i) - \frac{u_i^2}{v} \right]$$

用迭代法可使得上式的值达到最大



#### > 使用模型预测波动率

采用GARCH(1,1)模型来预测波动率

*GARCH*(1,1)模型下,第n-1天结束时估算第n天方差为

$$\sigma_n^2 = (1 - \alpha - \beta)V_L + \alpha \cdot u_{n-1}^2 + \beta \cdot \sigma_{n-1}^2$$

$$\Rightarrow \sigma_n^2 - V_L = \alpha \cdot (u_{n-1}^2 - V_L) + \beta \cdot (\sigma_{n-1}^2 - V_L)$$

$$\Rightarrow \sigma_{n+t}^2 - V_L = \alpha \cdot (u_{n+t-1}^2 - V_L) + \beta \cdot (\sigma_{n+t-1}^2 - V_L)$$

因为
$$Eu_{n+t-1}^2 = \sigma_{n+t-1}^2$$
,所以

$$E[\sigma_{n+t}^{2} - V_{L}] = \alpha \cdot (\sigma_{n+t-1}^{2} - V_{L}) + \beta \cdot (\sigma_{n+t-1}^{2} - V_{L})$$
$$= (\alpha + \beta) \cdot (\sigma_{n+t-1}^{2} - V_{L})$$

$$E[\sigma_{n+t}^{2}] = V_{L} + (\alpha + \beta)^{t} \cdot (\sigma_{n}^{2} - V_{L})....(9-14)$$

#### 【分析】

$$(1)\alpha + \beta = 1$$
时,退化为EWMA模型, $E[\sigma_{n+t}^2] = V_L$ 

$$(2)\alpha + \beta < 1$$
时,方差具有均值回归特性, $GARCH$ 模型

$$(3)\alpha + \beta > 1$$
时,方差逃离



- > 市场风险度量
- > 历史模拟法
  - 假设使用至今总共n 天的历史数据
  - vi 为第 i天的某市场变量的值
  - 共 n-1 个场景 ( simulation trials )
  - 根据第 i个场景,则明天的市场变量值(第 n+1天)可被预测为

$$V_n \frac{V_i}{V_{i-1}}$$



#### > 市场风险度量

表 12-1 用于演示 VaR 计算 过程的投资组合

|            | 过程的投资组合    |
|------------|------------|
| 指数         | 组合价值       |
| 7H 9X      | (以1000美元计) |
| DJIA       | 4 000      |
| FTSE 100   | 3 000      |
| CAC 40     | 1 000      |
| Nikkei 225 | 2 000      |
| 总计         | 10 000     |

表 12-2 采用历史模拟法计算 VaR 所需要的数据

|     | The second secon |            |          |           |            |  |  |  |  |  |  |  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------|-----------|------------|--|--|--|--|--|--|--|
| 天数  | 日期                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DJLA       | FTSE 100 | CAC 40    | Nikkei 225 |  |  |  |  |  |  |  |
| 0   | Aug. 7, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 219. 38 | 5 828. 8 | 4 956. 34 | 15 154. 06 |  |  |  |  |  |  |  |
| 1   | Aug. 8, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 173. 59 | 5 818. 1 | 4 967. 95 | 15 464. 66 |  |  |  |  |  |  |  |
| 2   | Aug. 9, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 076. 18 | 5 860. 5 | 5 025. 15 | 15 656. 59 |  |  |  |  |  |  |  |
| 3   | Aug. 10, 2006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11 124. 37 | 5 823, 4 | 4 976. 64 | 15 630. 91 |  |  |  |  |  |  |  |
| ÷   | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | :          | ÷        | :         | ÷          |  |  |  |  |  |  |  |
| 499 | Sept. 24, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 825. 17 | 5 095. 6 | 4 114. 54 | 12 115. 03 |  |  |  |  |  |  |  |
| 500 | Sept. 25, 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11 022. 06 | 5 197. 0 | 4 226. 81 | 12 006. 53 |  |  |  |  |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |          |           |            |  |  |  |  |  |  |  |



如 11.6 节所示,10 天展望期及 99% 置信区间的 VaR 等于 $\sqrt{10}$ 乘以 1 天展望期及 99% 置信区间的 VaR, 10 天的 VaR 等于

$$\sqrt{10} \times 247571 = 782889$$

即 782 889 美元。



- > 市场风险度量
- > VaR值的置信区间
  - 自助法(bootstrap)
  - 设有 500 个场景(500个变化率值)
  - 从500个场景中有放回的抽样 500,000 次,得到1000 个包含500个场景的样本
  - 计算每个样本的95% VaR ,可得VaR的置信区间



- > 数据
- > 综合股指数据(1年期)



|    | А         | В          | С       | D       | Е       | F       | G        | Н        | I        | J | К | L | М | <u> </u> |
|----|-----------|------------|---------|---------|---------|---------|----------|----------|----------|---|---|---|---|----------|
| 1  | index_cod | date       | open    | close   | low     | high    | volume   | money    | change   |   |   |   |   |          |
| 2  | sh000001  | 2014/12/31 | 3172.6  | 3234.68 | 3157.26 | 3239.36 | 4.06E+10 | 4.32E+11 | 0.021752 |   |   |   |   |          |
| 3  | sh000001  | 2014/12/30 | 3160.8  | 3165.82 | 3130.35 | 3190.3  | 3.98E+10 | 4.37E+11 | -0.00069 |   |   |   |   |          |
| 4  | sh000001  | 2014/12/29 | 3212.56 | 3168.02 | 3126.94 | 3223.86 | 5.1E+10  | 5.56E+11 | 0.003298 |   |   |   |   |          |
| 5  | sh000001  | 2014/12/26 | 3078.01 | 3157.6  | 3064.18 | 3164.16 | 4.61E+10 | 4.89E+11 | 0.027686 |   |   |   |   |          |
| 6  | sh000001  | 2014/12/25 | 2992.46 | 3072.54 | 2969.87 | 3073.35 | 3.77E+10 | 3.79E+11 | 0.033643 |   |   |   |   |          |
| 7  | sh000001  | 2014/12/24 | 3039.21 | 2972.53 | 2934.91 | 3050.51 | 3.77E+10 | 3.79E+11 | -0.01981 |   |   |   |   |          |
| 8  | sh000001  | 2014/12/23 | 3085.08 | 3032.61 | 3025.67 | 3136.84 | 4.38E+10 | 4.19E+11 | -0.03032 |   |   |   |   |          |
| 9  | sh000001  | 2014/12/22 | 3129.27 | 3127.45 | 3090.51 | 3189.87 | 6.79E+10 | 6.24E+11 | 0.006064 |   |   |   |   |          |
| 10 | sh000001  | 2014/12/19 | 3053.08 | 3108.6  | 3018.42 | 3117.53 | 5.21E+10 | 5.16E+11 | 0.016705 |   |   |   |   |          |
| 11 | sh000001  | 2014/12/18 | 3062.8  | 3057.52 | 3030.32 | 3089.79 | 4.36E+10 | 4.67E+11 | -0.00114 |   |   |   |   |          |
| 12 | sh000001  | 2014/12/17 | 3031.95 | 3061.02 | 2993.33 | 3076.6  | 5.43E+10 | 5.80E+11 | 0.013074 |   |   |   |   |          |
| 13 | sh000001  | 2014/12/16 | 2953.81 | 3021.52 | 2943.91 | 3021.9  | 4.54E+10 | 4.93E+11 | 0.023057 |   |   |   |   |          |
| 14 | sh000001  | 2014/12/15 | 2921.45 | 2953.42 | 2890.9  | 2960.23 | 4E+10    | 4.11E+11 | 0.00519  |   |   |   |   |          |
| 15 | sh000001  | 2014/12/12 | 2929.36 | 2938.17 | 2914.96 | 2962.51 | 4.09E+10 | 4.20E+11 | 0.004248 |   |   |   |   |          |
| 16 | sh000001  | 2014/12/11 | 2912.35 | 2925.74 | 2892.61 | 2965.68 | 4.83E+10 | 4.80E+11 | -0.00485 |   |   |   |   |          |
| 17 | sh000001  | 2014/12/10 | 2855.94 | 2940.01 | 2807.68 | 2946.71 | 5.13E+10 | 5.35E+11 | 0.029317 |   |   |   |   |          |
| 18 | sh000001  | 2014/12/9  | 2992.49 | 2856.27 | 2834.59 | 3091.32 | 7.72E+10 | 7.93E+11 | -0.0543  |   |   |   |   |          |
| 19 | sh000001  | 2014/12/8  | 2907.82 | 3020.26 | 2879.85 | 3041.66 | 5.88E+10 | 5.93E+11 | 0.028121 |   |   |   |   |          |
| 20 | sh000001  | 2014/12/5  | 2926.57 | 2937.65 | 2813.05 | 2978.03 | 6.41E+10 | 6.39E+11 | 0.013172 |   |   |   |   |          |
| 21 | sh000001  | 2014/12/4  | 2783.47 | 2899.46 | 2772.43 | 2900.51 | 5.33E+10 | 5.09E+11 | 0.043148 |   |   |   |   |          |
| 22 | sh000001  | 2014/12/3  | 2768.68 | 2779.53 | 2733.87 | 2824.18 | 5.62E+10 | 5.30E+11 | 0.005782 |   |   |   |   |          |
| 23 | sh000001  | 2014/12/2  | 2667.82 | 2763.55 | 2665.69 | 2777.37 | 4.38E+10 | 3.97E+11 | 0.031114 |   |   |   |   |          |
| 24 | sh000001  | 2014/12/1  | 2691.73 | 2680.16 | 2668.84 | 2720.74 | 4.47E+10 | 4.01E+11 | -0.001   |   |   |   |   |          |
| 25 | sh000001  | 2014/11/28 | 2629.63 | 2682.84 | 2622.06 | 2683.18 | 4.66E+10 | 4.02E+11 | 0.019901 |   |   |   |   |          |
| 26 | sh000001  | 2014/11/27 | 2615.37 | 2630.49 | 2599.11 | 2631.4  | 3.64E+10 | 3.39E+11 | 0.010037 |   |   |   |   |          |
| 27 | sh000001  | 2014/11/26 | 2572.65 | 2604.35 | 2570.4  | 2605.07 | 3.37E+10 | 3.17E+11 | 0.014312 |   |   |   |   |          |
| 28 | sh000001  | 2014/11/25 | 2532    | 2567.6  | 2527.08 | 2568.38 | 3.14E+10 | 2.82E+11 | 0.013707 |   |   |   |   |          |
| 29 | sh000001  | 2014/11/24 | 2505.53 | 2532.88 | 2495.52 | 2546.75 | 3.63E+10 | 3.30E+11 | 0.018533 |   |   |   |   |          |
| 30 | sh000001  | 2014/11/21 | 2452.64 | 2486.79 | 2446.65 | 2488.2  | 2.12E+10 | 1.98E+11 | 0.013916 |   |   |   |   |          |
|    | ( )       | sh000001   | +       |         |         |         |          | :        | 4        |   |   |   |   | Þ        |



- > 数据
- 个股日线(1年期)





- > 板块轮动效应
  - 证券板块与板块之间出现轮动





- **一任务**:
- > 1. 根据股指进行预测,大盘(股指)数据的EWMA模型,求λ
- > 2. 找出权重股,与真实权重股进行对比,
- > 3. 根据个股数据对个股进行聚类,形成"板块"
- > 4. 发现各股与大盘的关系,尝试挖掘板块之间的关系
- > 5. 尝试对各股进行板块聚类:
  - 如何定义邻近性?
- > 6. 尝试验证板块轮动效应

$$R = \alpha + \beta R_M + \varepsilon$$



### 联系我们:

- 新浪微博: ChinaHadoop

- 微信公号: ChinaHadoop

- 网站: <a href="http://chinahadoop.cn">http://chinahadoop.cn</a>

- 问答社区: http://wenda.ChinaHadoop.cn

