QCM 5

Jeudi 17 septembre 2015

Question 11

La fonction $x \longmapsto \sqrt{1+x}$ est

- a. définie en −1
- b. définie au voisinage de -1
- c. définie en $+\infty$
- d. définie au voisinage de $+\infty$
- e. définie au voisinage de $-\infty$

Question 12

La fonction $x \mapsto \ln(x - 2015)$ est

- a. définie en 2015
- b. définie au voisinage de 2015
 - c. définie en 0
- $\overline{\mathrm{d.}}$ définie au voisinage de $+\infty$
- e. définie en $+\infty$

Question 13

Soit f une fonction de $\mathbb R$ dans $\mathbb R$ telle qu'il existe $B\in\mathbb R$ vérifiant $f(B)>10^{28}$. Alors, $\lim_{x\to+\infty}f(x)=+\infty$

- a. vrai
- b, faux

Question 14

Soit f une fonction définie sur une partie I de $\mathbb R$ à valeurs dans $\mathbb R$. Alors, « f admet la limite 8 en 7 » signifie que f est définie au voisinage de 7 et

a.
$$\forall \varepsilon > 0 \ \exists \alpha > 0 \ \forall x \in I \ (|x-8| < \alpha \Rightarrow |f(x)-7| < \varepsilon)$$

b.
$$\forall \varepsilon > 0 \ \forall \alpha > 0 \ \forall x \in I \ (|x-8| < \alpha \Rightarrow |f(x)-7| < \varepsilon)$$

c.
$$\forall \varepsilon > 0 \ \forall \alpha > 0 \ \forall x \in I \ (|x-7| < \alpha \Rightarrow |f(x)-8| < \varepsilon)$$

d.
$$\forall \varepsilon > 0 \ \exists \alpha > 0 \ \forall x \in I \ (|x-7| < \alpha \Rightarrow |f(x)-8| < \varepsilon)$$

e. rien de ce qui précède

Question 15

Soit $n \in \mathbb{N}^*$. Alors, $\int_{-\pi}^{\pi} x^4 \sin(nx) \, dx$ est égale à

- a. $\frac{\pi}{2}$
- b. $-\pi$
- c. π
- d. 0

e. rien de ce qui précède

Question 16

Soit f une fonction définie sur une partie I de \mathbb{R} à valeurs dans \mathbb{R} . Alors, $\lim_{x\to -\infty} f(x) = 0$ signifie que f est définie au voisinage de $-\infty$ et

- a. $\forall \, \varepsilon > 0 \ \forall \, A \in \mathbb{R} \ \forall \, x \in I \ (x < A \Rightarrow |f(x)| < \varepsilon)$
- b. $\forall \, \varepsilon > 0 \;\; \exists \, A \in \mathbb{R} \;\; \forall \, x \in I \;\; (x < A \; \mathrm{et} \; |f(x)| < \varepsilon)$
- c. $\forall A \in \mathbb{R} \ \exists \alpha > 0 \ \forall x \in I \ (|x| < \alpha \Rightarrow f(x) < A)$
- d. $\forall A \in \mathbb{R} \ \exists \alpha > 0 \ \forall x \in I \ (|x| < \alpha \text{ et } f(x) < A)$

e. rien de ce qui précède

Question 17

Parmi les affirmations suivantes, lesquelles sont correctes?

a. La fonction
$$\begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto \frac{|x|}{x^2+1} \end{cases}$$
 est continue en 0

b. La fonction
$$\begin{cases} \mathbb{R}^+ & \to & \mathbb{R} \\ x & \mapsto & \begin{cases} \sqrt{x} & \text{si} & x \in [0,4] \\ 1 & \text{si} & x \in]4, +\infty[\end{cases} \end{cases}$$
 est continue en 4

C. La fonction
$$\begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto \frac{1}{1+x^2} \end{cases}$$
 est continue en 0

d. La fonction
$$\left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \sqrt{3+x^2} \end{array} \right.$$
 est continue en $-\sqrt{3}$

e. Aucune affirmation n'est correcte

Question 18

$$\displaystyle \lim_{x \to -\infty} \frac{x^2 + x - 7}{1 - x}$$
est égale à

$$a. +\infty$$

b.
$$-\infty$$

$$d. -1$$

e. rien de ce qui précède

Question 19

Soit $f: x \longmapsto \cos^4(3x^3+1)$. Alors, f'(x) est égale à $36\sin(3x^3+1)\cos^3(3x^3+1)$

a. vrai

b. faux

Question 20

Soit f la fonction définie sur \mathbb{R} par f(x) = |x|. Dire que f est continue en -1 signifie

a.
$$\forall \varepsilon > 0 \; \exists \, \alpha > 0 \; \forall \, x \in \mathbb{R} \; \left(|x-1| < \alpha \; \Rightarrow \; |f(x)+1| < \varepsilon \right)$$

b.
$$\forall \varepsilon > 0 \; \exists \, \alpha > 0 \; \forall \, x \in \mathbb{R} \; \left(|x-1| < \alpha \; \Rightarrow \; |f(x)-1| < \varepsilon \right)$$

c.
$$\forall \varepsilon > 0 \; \exists \, \alpha > 0 \; \forall \, x \in \mathbb{R} \; \left(|x+1| < \alpha \text{ et } |f(x)-1| < \varepsilon \right)$$

d.
$$\forall \varepsilon > 0 \; \exists \alpha > 0 \; \forall x \in \mathbb{R} \; (|x+1| < \alpha \; \Rightarrow \; |f(x-1)| < \varepsilon)$$

e. rien de ce qui précède