Hidden Markov Models

CISC 5800 **Professor Daniel Leeds**

Representing sequence data

- Spoken language
- DNA sequences
- Daily stock values

Example: spoken language

F?r plu? fi?e is nine

- Between F and r expect a vowel: "aw", "ee", "ah"; NOT "oh", "uh"
- At end of "plu" expect consonant: "g", "m", "s"; NOT "d", "p"

Markov Models

Start with:

• *n* states: s₁, ..., s_n

• Probability of initial start states: $\Pi_1,...,\Pi_n$

• Probability of transition between states: $A_{i,j} = P(q_t=s_i | q_{t-1}=s_j)$

A dice-y example

• Two colored die

 $\Pi_A = 0.3, \Pi_B = 0.7$

• What is the probability we start at s_△?

• What is the probability we have the sequence of die choices:

0.3x0.8=0.24 s_A, s_A ?

• What is the probability we have the sequence of die choices:

 s_B, s_A, s_B, s_A ?

0.7x0.2x0.2x0.2 = 0.0056

A dice-y example

• What is the probability we have the die choices s_B at time t=5

$$\Pi_A=0.3, \Pi_B=0.7$$

• Dynamic programming: find answer for q_t , then compute q_{t+1}

State\Time	t ₁	t ₂	t ₃
SA	0.3	0.38	0.428
S _B	0.7	0.62	0.572

$$p_t(i) = \sum_j p(q_t = s_i | q_{t-1} = s_j) p_{t-1}(j)$$

 $p_{\star}(i) = P(q_{\star}=s_{i})$ -- Probability state i at time t

Hidden Markov Models

Probability observe value x_i

- Actual state q "hidden"
- Actual state q "hidden" when state is s_j State produces visible data o: $\phi_{i,j} = P(o_t = x_i | q_t = s_j)$
- Compute

Probability of state sequence Probability of observation sequence, given states

Deducing die based on observed "emissions"

Each color is biased

Intuition – balance transition and emission probabilities

Observed numbers: 554565254556 – the 2 is probably from s_B Observed numbers: 554565213321 - the 2 is probably from s_{Δ}

Deducing die based on observed "emissions"

Each color is biased

0	$P(o s_R)$	P(o s _B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

What is probability of o=5, q=B (blue) • We see: 5

 $\Pi_{\rm B}\phi_{5,\rm B}$ = 0.7 x 0.2 = 0.14

• We see: 5, 3 What is probability of o=5,3, q=B, B? $\Pi_{\rm B}\phi_{5,\rm B}A_{\rm B,\rm B}\phi_{3,\rm B}$ = 0.7 x 0.2 x 0.8 x 0.1 = 0.0112

Goal: calculate most likely states given observable data

$$\operatorname{arg\,max}_{\mathcal{Q}} P(\mathcal{Q} \mid O) = \operatorname{arg\,max}_{\mathcal{Q}} \frac{P(O \mid \mathcal{Q})P(\mathcal{Q})}{P(O)}$$

Define and use $\delta_t(i)$

$$\delta_t(i) = \max_{q_1...q_{t-1}} p(q_1...q_{t-1} \land q_t = s_i \land O_1...O_t)$$

$$\delta_t(i) : \text{max possible value of } P(\mathbf{q_1},..,\mathbf{q_vo_1},..,o_t) \text{ given we}$$

Find the most likely path from q_1 to q_t that

insist q,=s;

- $q_t=s_i$
- Outputs are o₁, ..., o_t

Viterbi algorithm: $\delta_t(i)$

$$\delta_1(i) = \prod_i P(o_1|q_1 = s_i) = \prod_i \phi_{o_1,i}$$

$$\delta_{t}(i) = P(o_{t}|q_{t} = s_{i}) \max_{j} \delta_{t-1}(j) P(q_{t} = s_{i}|q_{t-1} = s_{j}) = \phi_{o_{t},i} \max_{j} \delta_{t-1}(j) A_{i,j}$$

 $P(Q^*|O) = \operatorname{argmax}_{Q} P(Q|O) = \operatorname{argmax}_{i} \delta_t(i)$

Viterbi algorithm: bigger picture

Compute all $\delta_t(i)$'s

- At time t=1 compute $\delta_1(i)$ for every state i
- At time t=2 compute $\delta_2(i)$ for every state i (based on $\delta_1(i)$ values)
- ...
- At time t=T compute $\delta_T(i)$ for every state i (based on $\delta_{T-1}(i)$ values) Find states going from t=T back to t=1 to lead to max $\delta_T(i)$
- Now find state j that gives maximum value for $\delta_T(j)$
- Find state k at time T-1 used to maximize $\delta_T(j)$
- ...
- Find state z at time 1 used to maximize $\delta_2(y)$

Viterbi in action: observe "5, 1"

 $\Pi_A = 0.3, \Pi_B = 0.7$

О	P(o s _A)	P(o s _B)
1	.3	.1
2	.2	.1
3	.2	.1
4	.1	.2
5	.1	.2
6	.1	.3

00	000	
	$\delta_2(A)$	4)

 $\delta_2(B)$:

	t=1 (o ₁ =5)	t=2 (o ₂ =1)
q _t =s _A	.3x.1 = .03	
q _t =s _B	.7x.2 = .14	

15

Parameters in HMM

Initial probabilities: π_i

How do we learn Transition probabilities these values?

Emission probabilities $\phi_{i,i}$

First, assume we know the states Learning HMM parameters: π_i

Compute MLE for each parameter $\mathbf{x}^{1}: \begin{bmatrix} \mathbf{A} \\ \mathbf{B}, \mathbf{A}, \mathbf{A}, \mathbf{B} \end{bmatrix}$ $\mathbf{x}^{2}: \begin{bmatrix} \mathbf{B} \\ \mathbf{B}, \mathbf{B}, \mathbf{A}, \mathbf{A} \end{bmatrix}$ $\pi^{*} = \underset{\pi}{\operatorname{argmax}} \prod_{k} \pi(q_{1}) \prod_{t=2}^{T} p(q_{t}|q_{t-1}) \prod_{t=1}^{T} p(o_{t}|q_{t}, \boldsymbol{\phi})$

$$\pi_A = \frac{\#D(q_1 = s_A)}{\#D}$$

Note: we can add 1 to numerator (and number of states to denominator) to prevent $\pi_A = 0$

 $\pi_A = \frac{^{\#D(q_1 = s_A) + 1}}{^{\#D + |Q|}}$

First, assume we know the states Learning HMM parameters: A_{i,i}

Compute MLE for each parameter

First, assume we know the states Learning HMM parameters: $\phi_{i,j}$

x¹: ABAAB Compute MLE for each parameter o¹: 253,36

 \mathbf{x}^2 : B,B,B,A,A,A,A, $\phi^* = \underset{\phi}{\operatorname{argmax}} \prod_k \pi(q_1) \prod_{t=2}^T p(q_t|q_{t-1}) \prod_{t=2}^T p(o_t|q_t, \boldsymbol{\phi})$

 $\phi_{i,j} = \frac{\#D(o_t = i, q_t = s_j)}{\#D(q_t = s_i)}$

Challenges in HMM learning

Learning parameters (π, A, ϕ) with known states is not too hard

BUT usually states are unknown

If we had the parameters and the observations, we could figure out the states: Viterbi $P(Q^*|O)=argmax_O P(Q|O)$

24

Expectation-Maximization, or "EM"

Problem: Uncertain of \mathbf{y}^i (class), uncertain of $\boldsymbol{\theta}^i$ (parameters)

Note: We presume we know number of possible class labels y (or states q), we just don't know which state occurs at which time

Solution: Guess yⁱ, deduce θ^i , re-compute yⁱ, re-compute θ^i ... etc. OR: Guess θ^i , deduce yⁱ, re-compute θ^i , re-compute yⁱ

Will converge to a solution

E step: Fill in expected values for missing labels y

M step: Regular MLE for $oldsymbol{ heta}$ given known and filled-in variables

Also useful when there are holes in your data

Computing states q.

Instead of picking one state: $q_t=s_i$, find $P(q_t=s_i|\mathbf{o})$

$$P(q_t = s_i | o_1, \dots, o_T) = \frac{\alpha_t(i)\beta_t(i)}{\sum_i \alpha_t(j)\beta_t(j)}$$

Forward probability: $\alpha_t(i) = P(o_1 \dots o_t \land q_t = s_i)$

Backward probability: $\beta_t(i) = P(o_{t+1} \dots o_T | q_t = s_i)$

Details of forward probability

Forward probability:
$$\alpha_t(i) = P(o_1 ... o_t \land q_t = s_i)$$

$$\alpha_{1}(i) = \phi_{o_{1},i}\pi_{i} = P(o_{1}|q_{1} = s_{i})P(q_{1} = s_{i})$$

$$\alpha_{t}(i) = \phi_{o_{t},i}\sum_{j}A_{i,j}\alpha_{t-1}(j)$$

$$\alpha_{t}(i) = P(o_{t}|q_{t} = s_{i})\sum_{j}P(q_{t} = s_{i}|q_{t-1} = s_{j})\alpha_{t-1}(j)$$

Details of backward probability

Backward probability: $oldsymbol{eta}_t(i) = P(o_{t+1} \dots o_T | q_t = s_i)$

$$\beta_{t}(i) = \sum_{j} A_{j,i} \phi_{o_{t+1},j} \beta_{t+1}(j)$$

$$\beta_{t}(i) = \sum_{j} P(q_{t+1} = s_{j} | q_{t} = s_{i}) P(o_{t+1} | q_{t+1} = s_{j}) \beta_{t+1}(j)$$
Final β : $\beta_{T-1}(i)$

$$\beta_{T-1}(i) = \sum_{j} A_{j,i} \phi_{o_{T},j}$$

$$= P(q_{T} = s_{j} | q_{T} = s_{i}) P(o_{T} | q_{T} = s_{j})$$

E-step: State probabilities

One state:

$$P(q_t = s_i | o_1, \dots, o_T) = \frac{\alpha_t(i)\beta_t(i)}{\sum_j \alpha_t(j)\beta_t(j)} = S_t(i)$$

Two states in a row:

$$P(q_t = s_j, q_{t+1} = s_i | o_1, \dots, o_T) = \frac{\alpha_t(j) A_{i,j} \phi_{o_{t+1},i} \beta_{t+1}(i)}{\sum_f \sum_g \alpha_t(g) A_{f,g} \phi_{o_{t+1},f} \beta_{t+1}(f)}$$

= $S_t(i,j)$

		$S_t(i) = \frac{\alpha_t(i)}{\sum_j \alpha_t}$	$\frac{(i)\beta_t(i)}{(j)\beta_t(j)}$	State pr	E-step: obabilities
$\alpha_t(i)$	t=1 (o ₁ =5)	t=2 (o ₂ =1)	t=3 (o ₃ =3)	t=4 (o ₄ =2)	t=5 (o ₅ =2)
q _t =s _A	.03	.0156	.0108	.00212	.00038
q _t =s _B	.14	.0118	.0098	.001	.00012
$\beta_t(i)$	t=1 (o ₁ =5)	t=2 (o ₂ =1)	t=3 (o ₃ =3)	t=4 (o ₄ =2)	
q _t =s _A		0.00532	0.0312	0.18	
$q_t = s_B$		0.00259	0.0168	0.12	
$S_3(A) = \frac{.0108 \times .0312}{\alpha_3(A)\beta_3(A) + \alpha_3(B)\beta_3(B)} = \frac{.000337}{.000337 + .000165} = \frac{.337}{.502} = 0.67$ $P(q_3 = A o_3 = 3) = 0.67$					

$S_t(i,j) = \frac{\alpha_t(j)A_{i,j}\phi_{o_{t+1},i}\beta_{t+1}(i)}{\sum_f \sum_g \alpha_t(g)A_{f,g}\phi_{o_{t+1},f}\beta_{t+1}(f)}$ State probabilities								
	2) 29 - 100 - 100 State probabilities							
$\alpha_t(i)$	t=1 (o ₁ =5)	t=2 (o ₂ =1)	t=3 (o ₃ =3)	t=4 (o ₄ =2)	t=5 (o ₅ =2)			
$q_t = s_A$.03	.0156	.0108	.00212	.00038			
$q_t = s_B$.14	.0118	.0098	.001	.00012			
$\beta_t(i)$	t=1 (o ₁ =5)	t=2 (o ₂ =1)	t=3 (o ₃ =3)	t=4 (o ₄ =2)				
q _t =s _A		0.00532	0.0312	0.18				
$q_t = s_B$		0.00259	0.0168	0.12				
.0108 × .2 × .1 × .12								
$S_3(B,A) = \frac{.0100 \times .2 \times .1 \times .12}{\alpha_3(A) \times .8 \times .2 \times \beta_4(A) + \dots + \alpha_3(B) \times .8 \times .1 \times \beta_4(B)}$								
.0237								
$= \frac{1}{.3110 + .0259 + .0706 + .0941} = \frac{1}{.5016} = 0.05$								
$P(q_3 = A, q_4 = B o_3 = 3, o_4 = 2) = 0.05$								

Recall: when states known

$$\pi_A = \frac{\#D(q_1 = s_A)}{\#D}$$

$$A_{i,j} = \frac{\#D(q_t = s_i, q_{t-1} = s_j)}{\#D(q_{t-1} = s_j)}$$

$$\phi_{i,j} = \frac{\#D(o_t=i)}{\#D(q_t=s_j)}$$

M-step

$$A_{i,j} = \frac{\sum_{t} S_{t}(i,j)}{\sum_{t} S_{t}(j)}$$

$$\phi_{i,j} = \frac{\sum_{t|o_t=i} S_t(j)}{\sum_t S_t(j)}$$

$$\pi_i = S_1(i)$$

Known states:

$$\bullet \ \pi_A = \frac{\#D(q_1 = s_A)}{\#D}$$

•
$$A_{i,j} = \frac{\#D(q_t = s_i, q_{t-1} = s_j)}{\#D(q_{t-1} = s_j)}$$

$$\bullet \phi_{i,j} = \frac{\#D(o_t = i \text{ AND } q_t = s_j)}{\#D(q_t = s_j)}$$

38

Review of HMMs in action

For classification, find highest probability class given features

Features for one sound:

$$\bullet \; [q_{1}, \, o_{1}, \, q_{2}, \, o_{2}, \, ..., \, q_{T}, \, o_{T}]$$

Conclude word:

Generates states: