

IT1010 – Introduction to Programming

Lecture 3 – Operators in C

Objectives

- At the end of the Lecture students should be able to
 - Use arithmetic operators in C programs.
 - Correctly apply the precedence of arithmetic operators
 - Use relational operators in C programs.
 - Use logical operators in C programs

Arithmetic Operators

Operation	Arithmetic Operator	C Expression	Example
Addition	+	no1 +8	5 + 6 = 11
Subtraction	-	value – no2	7 - 2 = 5
Multiplication	*	qty * price	4 * 10.5 = 42.0
Division	/	tot/3	100 / 3 = 33
Remainder	%	no1 % no2	10 % 3 = 1

Fractional part of the result is truncated

Arithmetic operators are binary operators.

Operator Precedence and Associativity

- Operator precedence establishes the priority of an operator in relationship to all other operators.
- Parentheses can be used to modify the normal order of execution of an expression.
- Operator associativity establishes the order in which operators of the same precedence are to be executed.

Operator Precedence of Arithmetic Operators

Order	Operator(s)	Associativity
1	() Parentheses	Left to right
2	* Multiplication/ Division% Remainder	Left to right
3	+ Addition- Subtraction	Left to right

```
Example

74 / 10 % 2 * 5 - 10 % (5 - 1)

74 / 10 % 2 * 5 - 10 % 4

7 % 2 * 5 - 10 % 4

1 * 5 - 10 % 4

5 - 10 % 4

5 - 2

3 \rightarrow subtraction
```


Quiz

• Find the result of the following expressions

$$y = -75 / 25 + 5 * 3 + 2 / 3$$

Equality and Relational Operators

Equality and relational operators test the relationship between two expressions and yields true or false

Operation	Operator	C Expression
equal to	==	x == y
not equal to	!=	x != y
greater than	>	x > 30
less than	<	x < y
greater than or equal to	>=	x >= (6 + y)
less than or equal to	<=	x <= y

A Common error is to use assignment operator (=) instead of the equivalence operator (==)

Operator Precedence Revisited

Order	Operator(s)	Associativit y
1	()	Left to right
2	!	Right to left
3	* / %	Left to right
4	+ -	Left to right
5	< <= > >=	Left to right
6	== !=	Left to right
7	=	Right to left

Quiz

Assume no1 = 5 and no2 = 4. Determine whether the following expressions yield a true or false

Logical Operators

Used to form more complex conditions by combining simple conditions.

Operation	Operator	C Expression
Logical AND	&&	gender = 1 && age >= 65
Logical OR	П	semesterAverage >= 90 finalExam >= 90
Logical NOT	!	! (grade == 'F')

Cast operator

- Cast operators force the conversation of a value to a specified type. It is called explicit conversion.
- It is formed by placing parentheses around a data type name.

```
Format: (type) expression
```

```
Example

int total = 203;
int count= 5;
float average;

average = ( float ) total / count;
```


Converting between types implicitly

• Arithmetic expressions can be evaluated only in which the operands' data types are identical. To ensure this, the compiler performs an operation called implicit conversion on selected operands.

Example: In an expression containing the data types int and float, copies of *int* operands are made and promoted to *float*.

Assignment Operators

• There are several assignment operators for abbreviating assignment expressions.

```
variable = variable operator expression;
can be written as
   variable operator= expression;
```

where operator is one of the binary operators +, -, *, / or %

```
Example c = c + 3; // this is same as c += 3;
```


Increment and Decrement operators

- ++ increment operator
- -- decrement operator

```
k = ++n; // prefix increment : n = n + 1; then k = n; k = n++; // postfix increment : k = n; then n = n + 1; k = --n; // prefix decrement : n = n - 1; then k = n; k = n--; // postfix decrement : k = n; then n = n - 1;
```


Quiz

Find the result of following C statements if no = 10 and x = 5.

```
Q1
no -= 4;
printf("%d", no);
```

```
printf("%d\n", x++);
printf("%d\n", x);
```

```
Q3

printf("%d\n", ++x);

printf("%d\n", x);
```


Selection

Obviously in the real world we make choices

Selection

- In solving a problem we can make different choices depending on certain conditions - i.e. we make decisions
- The same can be done in programming as a part of decision making
- Note that even though selection is a separate construct to sequence, the two are combined in the overall solution, and remember that <u>one</u> <u>doesn't replace the other</u>

Selection

• There may be alternative steps that could be taken subject to a particular condition

Example - 01

• A flowchart to input a number from the keyboard and display whether the number is positive or negative.

Exercise

• Draw a flowchart to input two numbers from the keyboard and display the largest number.