STATS 205: Homework Assignment 5

Brian Liu 6/10/2019

Solution to Problem 1

We say that two observations X_1 and X_2 are independent of one another with respect to a collection of events A if

$$Pr\{X_1 \in A \text{ and } X_2 \in B\} = Pr\{X_1 \in A\} Pr\{X_2 \in B\}$$

where A and B are any two not necessarily distinct sets of outcomes belonging to A^3 .

- 2.2.1 Independent Observations; Permutation, Parametric, and Bootstrap Tests of Hypotheses; Good, Phillip I

In deciding whether your own observations are exchangeable and a permutation test applicable, the key question is the one we posed in the very first chapter: Under the null hypothesis of no differences among the various experimental or survey groups, can we exchange the labels on the observations without significantly affecting the results?

– 2.2.2 Exchangeable Observations; Permutation, Parametric, and Bootstrap Tests of Hypotheses; Good, Phillip I

Solution to Problem 2

```
cysticerci <- c(28.9, 32.8, 12.0, 9.9, 15.0, 38.0, 12.5, 36.5, 8.6, 26.8);cysticerci

## [1] 28.9 32.8 12.0 9.9 15.0 38.0 12.5 36.5 8.6 26.8

worms_reco <- c(1.0, 7.7, 7.3, 7.9, 1.1, 3.5, 18.9, 33.9, 28.6, 25.0); worms_reco
```

```
## [1] 1.0 7.7 7.3 7.9 1.1 3.5 18.9 33.9 28.6 25.0
```

The null hypothesis is that the mean weight of introduced cysticerci has no correlation with the mean weight of worms recovered. That is,

$$H_0: \tau = 0$$

The alternative hypothesis is that the mean weight of introduced cysticerci is *positively correlated with* the mean weight of worms recovered. That is,

$$H_A: \tau > 0$$

To test the null hypothesis against the alternative hypothesis, we will use the Kendall test, a distribution-free test for independence based on signs.

```
cor.test(x = cysticerci, y = worms_reco, method = "kendall", alt = "greater")
```

Kendall's rank correlation tau

##

```
## data: cysticerci and worms_reco
## T = 19, p-value = 0.7578
## alternative hypothesis: true tau is greater than 0
## sample estimates:
## tau
## -0.1555556
```

The p-value is 0.7578, which is not significant at the $\alpha = 0.05$ level. There is not enough evidence that the mean weight of introduced cysticerci is positively correlated with the mean weight of worms recovered.

Solution to Problem 3

```
cysticerci <- c(28.9, 32.8, 12.0, 9.9, 15.0, 38.0, 12.5, 36.5, 8.6, 26.8) worms_reco <- c(1.0, 7.7, 7.3, 7.9, 1.1, 3.5, 18.9, 33.9, 28.6, 25.0) cor.test(x = cysticerci, y = worms_reco, method = "kendall", alt = "greater") 
##

## Kendall's rank correlation tau

##

## data: cysticerci and worms_reco

## T = 19, p-value = 0.7578

## alternative hypothesis: true tau is greater than 0

## sample estimates:

## tau

## -0.1555556

The estimate for \tau = -0.1555556.
```

Solution to Problem 4

```
brain_weight = c(515, 286, 469, 410, 461, 436, 479, 198, 389, 262, 536); length(brain_weight)
## [1] 11
fiber_count = c(32500, 26800, 11410, 14850, 23640, 23820, 29840, 21830, 24650, 22500, 26000); length(f
## [1] 11
library(bootstrap)
theta.hat = cor(brain_weight, fiber_count); theta.hat
## [1] 0.1604644
library(partitions)
n = length(brain_weight)
allCompositions = compositions(n, n);allCompositions[,1:length(brain_weight)]
##
         [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
##
   [1,]
           11
                10
                            8
                                 7
                                      6
  [2,]
            0
                       2
                                      5
                                            6
                                                 7
                                                            9
                                                                  10
##
                 1
                            3
                                 4
                                                      8
   [3,]
            0
                 0
                       0
                            0
                                 0
                                      0
                                            0
                                                            0
                                                                   0
##
                                                      0
                                      0
## [4,]
            0
                 0
                      0
                            0
                                 0
                                           Λ
                                                 0
                                                      0
                                                            0
                                                                   0
## [5,]
            0
                 0
                       0
                            0
                                 0
                                      0
                                                            0
                                                                   0
## [6,]
                                 0
            0
                 0
                      0
                            0
                                      0
                                           0
                                                 0
                                                      0
                                                            0
                                                                   0
## [7,]
                                 0
                                                                   0
                            0
```

```
##
    [8,]
            0
                  0
                            0
                                 0
                                       0
                                            0
                                                       0
                                                                    0
##
   [9,]
            0
                  0
                       0
                            0
                                 0
                                       0
                                            0
                                                  0
                                                       0
                                                             0
                                                                    0
## [10,]
                  0
                       0
                            0
                                  0
                                       0
                                            0
                                                  0
                                                       0
                                                                    0
                                                                    0
## [11,]
            0
                  0
                       0
                            0
                                  0
                                       0
                                            0
                                                  0
                                                       0
                                                              0
\# all Compositions. \# sub = all Compositions [, \# sample (1: \# dim (all Compositions) [2], \# size=1000, \# replace=FALSE)]
# draw.bootstrap.samples = function(df){
    n = dim(df)[1]
    ind = sample(n, replace = TRUE)
#
#
    cor.bootstrap.replicate = cor(df[ind, "LSAT"], df[ind, "GPA"])
#
    return(cor.bootstrap.replicate)
# }
\# R = 1000
# theta.hat.star = replicate(R, draw.bootstrap.samples(law))
# # make a gaplot
# library(ggplot2)
# theta.hat.star.df = data.frame(theta.hat.star = theta.hat.star)
# ggplot(theta.hat.star.df) +
   qeom_density(aes(x = theta.hat.star, y = ...scaled..),
      fill = "lightblue") +
#
#
    qeom_hline(yintercept=0, colour="white", size=1) +
#
   theme\_bw() +
   ylab("density") +
#
   xlab(bquote(hat(theta))) +
    geom_vline(xintercept = theta.hat, col = "red")+
    scale_y_continuous(expand = c(0,0))
```

Solution to Problem 5

```
cysticerci <- c(28.9, 32.8, 12.0, 9.9, 15.0, 38.0, 12.5, 36.5, 8.6, 26.8)
worms_reco <- c(1.0, 7.7, 7.3, 7.9, 1.1, 3.5, 18.9, 33.9, 28.6, 25.0)
```

The null hypothesis is that the mean weight of introduced cysticerci has no correlation with the mean weight of worms recovered. That is,

$$H_0: r_s < r_{s,\alpha}$$

The alternative hypothesis is that the mean weight of introduced cysticerci is *positively correlated with* the mean weight of worms recovered. That is,

$$H_A: r_s \geq r_{s,\alpha}$$

Otherwise, do not reject.

To test the null hypothesis against the alternative hypothesis, we will use the Spearman test, a distribution-free test for independence based on ranks.

```
# this method of performing the test was given in the textbook library(SuppDists) qSpearman(p = 0.05, r = 10)
```

```
## [1] -0.5393939
```

Since $r_{s,\alpha} = -0.5393939$, we will reject the null hypothesis only if $r_s \ge -0.5393939$.

Calculating r_s ,

```
cor(x = cysticerci, y = worms_reco, method = "spearman")
```

```
## [1] -0.2
```

Since $r_s = -0.2$ and $r_{s,\alpha} = -0.5393939$, the statement $r_s \ge r_{s,\alpha}$ is true. Thus, we reject the null hypothesis. There is sufficient evidence that the mean weight of introduced cysticerei is positively correlated with the mean weight of worms recovered.

NOTE: At this point, I tried to use cor.test() with method = "spearman" but I got a different result than I expected, and I'm not sure why. Maybe I'm interpreting the output incorrectly?

```
cor.test(x = cysticerci, y = worms_reco, method = "spearman", alternative = "greater")

##

## Spearman's rank correlation rho

##

## data: cysticerci and worms_reco

## S = 198, p-value = 0.72

## alternative hypothesis: true rho is greater than 0

## sample estimates:

## rho

## -0.2
```

The p-value is 0.72, which is not significant at the $\alpha = 0.05$ level. There is not enough evidence that the mean weight of introduced cysticerci is positively correlated with the mean weight of worms recovered.

Solution to Problem 6

```
x = c(0, 5000, 10000, 15000, 20000, 25000, 30000, 100000)

y = c(0.924, 0.988, 0.992, 1.118, 1.133, 1.145, 1.157, 1.357)
```

The null hypothesis is that the mean weight of introduced cysticerci has no correlation with the mean weight of worms recovered. That is,

$$H_0: \beta = \beta_0$$

$$H_0: \beta = 0$$

The alternative hypothesis is that the mean weight of introduced cysticerci is *positively correlated with* the mean weight of worms recovered. That is,

$$H_A: \beta > \beta_0$$

$$H_A: \beta > 0$$

To test the null hypothesis against the alternative hypothesis, we will use the Theil test, a distribution-free test for the slope of the regression line.

```
library(NSM3)
```

```
## Loading required package: combinat
##
## Attaching package: 'combinat'
## The following object is masked from 'package:utils':
##
##
       combn
## Loading required package: MASS
## Loading required package: survival
## fANCOVA 0.5-1 loaded
## Registered S3 methods overwritten by 'ggplot2':
     method
##
                    from
##
     [.quosures
                    rlang
##
     c.quosures
                    rlang
     print.quosures rlang
theil(x, y, alpha=0.05, beta.0=0, type = "u")
                                                                           0
ω.
1.0
             0
       0
    0e+00
                  2e+04
                                4e+04
                                             6e+04
                                                           8e+04
                                                                         1e+05
## Alternative: beta greater than 0
## C = 28, C.bar = 1, P = 0
## beta.hat = 0
## alpha.hat = 0.975
##
## 1 - alpha = 0.95 upper bound for beta:
## -Inf, 0
theil.fit = theil (x,
  у,
  beta.0 = 0,
  slopes=TRUE,
  type = "u",
  doplot = FALSE)
theil.fit
```

Alternative: beta greater than 0

```
## C = 28, C.bar = 1, P = 0
## beta.hat = 0
## alpha.hat = 0.975
##
## All slopes:
## i j
               S.ij
## 1 2 1.280000e-05
## 1 3 6.800000e-06
##
   1 4 1.293333e-05
## 1 5 1.045000e-05
## 1 6 8.840000e-06
## 1 7 7.766667e-06
## 1 8 4.330000e-06
## 2 3 8.00000e-07
## 2 4 1.300000e-05
## 2 5 9.666667e-06
## 2 6 7.850000e-06
## 2 7 6.760000e-06
## 2 8 3.884211e-06
## 3 4 2.520000e-05
## 3 5 1.410000e-05
## 3 6 1.020000e-05
## 3 7 8.250000e-06
## 3 8 4.055556e-06
## 4 5 3.00000e-06
## 4 6 2.700000e-06
## 4 7 2.600000e-06
## 4 8 2.811765e-06
## 5 6 2.400000e-06
## 5 7 2.400000e-06
## 5 8 2.800000e-06
## 6 7 2.400000e-06
## 6 8 2.826667e-06
## 7 8 2.857143e-06
##
##
## 1 - alpha = 0.95 upper bound for beta:
## -Inf, 0
theil.output = theil(x,
 у,
 beta.0 = 0,
 slopes=TRUE,
 type = "u", doplot = FALSE, alpha = .05)
c(theil.output$L, theil.output$U)
```

[1] -Inf (

TODO: Interpret these results correctly.

Solution to Problem 7

```
height = c(42.8, 63.5, 37.5, 39.5, 45.5, 38.5, 43.0, 22.5, 37.0, 23.5, 33.0, 58.0)
weight = c(40.0, 93.5, 35.5, 30.0, 52.0, 17.0, 38.5, 8.5, 33.0, 9.5, 21.0, 79.0)
```

```
heart_catheter_length = c(37.0, 49.5, 34.5, 36.0, 43.0, 28.0, 37.0, 20.0, 33.5, 30.5, 38.5, 47.0)
cor.test(x = height, y = heart_catheter_length, method = "pearson")
##
##
   Pearson's product-moment correlation
##
## data: height and heart_catheter_length
## t = 5.8936, df = 10, p-value = 0.0001524
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6216270 0.9663721
## sample estimates:
##
         cor
## 0.8811691
cor.test(x = weight, y = heart_catheter_length, method = "pearson")
##
   Pearson's product-moment correlation
##
## data: weight and heart_catheter_length
## t = 6.3033, df = 10, p-value = 8.871e-05
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.6568763 0.9700971
## sample estimates:
##
         cor
## 0.8938226
From the Pearson correlation tests, there is strong evidence that, individually, height and weight contribute
to the determination of heart catheter length.
library(Rfit)
r.01 <- rfit(heart_catheter_length ~ height)</pre>
f.01 <- rfit(heart_catheter_length ~ height + weight)</pre>
first_drop_test <- drop.test(f.01, r.01)</pre>
first_drop_test
##
## Drop in Dispersion Test
## F-Statistic
                   p-value
##
       1.55202
                    0.24429
r.02 <- rfit(heart_catheter_length ~ weight)</pre>
second_drop_test <- drop.test(f.01, r.02)</pre>
second_drop_test
##
## Drop in Dispersion Test
## F-Statistic
                   p-value
      0.014435
                   0.907007
```

However, based on the large p-values from the Drop in Dispersion tests, there is *not enough evidence* to suggest that height or weight contribute significantly over each other to the determination of heart catheter length.

Note

Treating length of heart catheter as the independent variable, test for the importance of height and weight in determining the required catheter length.

If height and weight are the determiners of length of heart catheter, length of heart catheter must be the dependent variable.