PROPOSITIONAL AND PREDICATE CALCULUS

Reference Book: Discrete Mathematical Structures with Applications to Computer Science - Tremblay and Manohar

A declarative sentence that is either true or false is called "**PROPOSITION**"

A declarative sentence that is either true or false is called "**PROPOSITION**"

Example

It rained yesterday.

A declarative sentence that is either true or false is called "**PROPOSITION**"

Example

It rained yesterday.

A declarative sentence that is either true or false is called "**PROPOSITION**"

Example

It rained yesterday.

"True" or "False" are called the truth values of the proposition and are denoted by T and F respectively.

A declarative sentence that is either true or false is called "**PROPOSITION**"

Example

It rained yesterday.

"True" or "False" are called the truth values of the proposition and are denoted by T and F respectively.

A proposition that is true under all circumstances is called "Tautology"

A declarative sentence that is either true or false is called "**PROPOSITION**"

Example

It rained yesterday.

"True" or "False" are called the truth values of the proposition and are denoted by T and F respectively.

A proposition that is true under all circumstances is called "Tautology"

Example

15 is divisible by 3.

A declarative sentence that is either true or false is called "**PROPOSITION**"

Example

It rained yesterday.

"True" or "False" are called the truth values of the proposition and are denoted by T and F respectively.

A proposition that is true under all circumstances is called "Tautology"

Example

15 is divisible by 3.

A declarative sentence that is either true or false is called "**PROPOSITION**"

Example

It rained yesterday.

"True" or "False" are called the truth values of the proposition and are denoted by T and F respectively.

A proposition that is true under all circumstances is called "Tautology"

Example

15 is divisible by 3.

A proposition that is false under all circumstances is called "**Contradiction**"

A declarative sentence that is either true or false is called "**PROPOSITION**"

Example

It rained yesterday.

"True" or "False" are called the truth values of the proposition and are denoted by T and F respectively.

A proposition that is true under all circumstances is called "Tautology"

Example

15 is divisible by 3.

A proposition that is false under all circumstances is called "**Contradiction**"

Example

-3 is a natural number.

Two propositions p and q are said to be **Logically Equivalent** if when p is T, q is also T and when p is F, q is also F and conversely.

Two propositions p and q are said to be **Logically Equivalent** if when p is T, q is also T and when p is F, q is also F and conversely.

Example

p: He was born in 1934

q: He'll be 60 years old in 1994

p and q are equivalent

Two propositions p and q are said to be **Logically Equivalent** if when p is T, q is also T and when p is F, q is also F and conversely.

Example

p: He was born in 1934

q: He'll be 60 years old in 1994

p and q are equivalent

Example

p: x is a prime number

q: x is not divisible by 2

Two propositions p and q are said to be **Logically Equivalent** if when p is T, q is also T and when p is F, q is also F and conversely.

Example

p: He was born in 1934

q: He'll be 60 years old in 1994

p and q are equivalent

Example

p: x is a prime number

q: x is not divisible by 2

Two propositions p and q are said to be **Logically Equivalent** if when p is T, q is also T and when p is F, q is also F and conversely.

Example

p: He was born in 1934

q: He'll be 60 years old in 1994

p and q are equivalent

Example

p: x is a prime number

q: x is not divisible by 2

p and q are not equivalent, as x not divisible by 2 does'nt mean its prime

Let p be a proposition, we define **Negation** of p denoted by $\neg p$ or $\sim p$ to be a proposition which is true when p is false and is false when p is true.

Let p be a proposition, we define **Negation** of p denoted by $\neg p$ or $\sim p$ to be a proposition which is true when p is false and is false when p is true.

Let p be a proposition, we define **Negation** of p denoted by $\neg \mathbf{p}$ or $\sim \mathbf{p}$ to be a proposition which is true when p is false and is false when p is true.

~	р	$\sim p$
	Т	F
	F	Т

Let p and q be two propositions. The **Disjunction** of two propositions is denoted by $\mathbf{p} \lor \mathbf{q}(\mathbf{read} \ \mathbf{as} \ \mathbf{p} \ \mathbf{or} \ \mathbf{q})$

Let p and q be two propositions. The **Disjunction** of two propositions is denoted by $\mathbf{p} \lor \mathbf{q}(\mathbf{read} \ \mathbf{as} \ \mathbf{p} \ \mathbf{or} \ \mathbf{q})$

Let p and q be two propositions. The **Disjunction** of two propositions is denoted by $\mathbf{p} \lor \mathbf{q}(\mathbf{read} \ \mathbf{as} \ \mathbf{p} \ \mathbf{or} \ \mathbf{q})$

V	р	q	p∨q
	Т	Т	Т
	Т	F	Т
	F	Т	Т
	F	F	F

Let p and q be two propositions. The **Conjunction** of two propositions is denoted by $\mathbf{p} \wedge \mathbf{q}(\mathbf{read} \ \mathbf{as} \ \mathbf{p} \ \mathbf{and} \ \mathbf{q})$

\land	р	q	p∧q
	Т	Т	Т
	Т	F	F
	F	Т	F
	F	F	F

The Conditional statement is denoted by $\mathbf{p} \to \mathbf{q}(\text{read as if } \mathbf{p} \text{ then } \mathbf{q})$

The Conditional statement is denoted by $\mathbf{p} \to \mathbf{q}(\text{read as if } \mathbf{p} \text{ then } \mathbf{q})$

The Conditional statement is denoted by $p \rightarrow q(read\ as\ if\ p\ then\ q)$

\rightarrow	р	q	p o q
	Т	Т	Т
	Т	F	F
	F	Т	Т
	F	F	Т

The Conditional statement is denoted by $p \rightarrow q(read\ as\ if\ p\ then\ q)$

\rightarrow	р	q	p o q
	Т	Т	Т
	Т	F	F
	F	Т	Т
	F	F	Т

Check whether $p \to q$ is logically equivalent to $\sim p \lor q$? Show that $(p \to q) \to (\sim p \lor q)$ is a tautology.

Check whether $p \to q$ is logically equivalent to $\sim p \lor q$? Show that $(p \to q) \to (\sim p \lor q)$ is a tautology.

(i) $q \rightarrow p$ is called "converse"

p	q	$p \rightarrow q$	q o p	eg p o eg q	eg q o eg p	$\neg p \lor q$
Т	Т	Т	Т	Т	Т	Т
T	F	F	Т	Т	F	F
F	Т	Т	F	F	Т	Т
F	F	Т	Т	Т	Т	Т

Note: For the conditional p o q,

- (i) $q \rightarrow p$ is called "converse"
- (ii) $\neg p \rightarrow \neg q$ is called " inverse"

p	q	p o q	q o p	eg p o eg q	eg q o eg p	$\neg p \lor q$
Т	Т	Т	Т	Т	Т	Т
T	F	F	Т	T	F	F
F	Т	Т	F	F	Т	Т
F	F	Т	Т	Т	Т	Т

Note: For the conditional p o q,

- (i) $q \rightarrow p$ is called "converse"
- (ii) $\neg p \rightarrow \neg q$ is called " inverse"
- (iii) $\neg q \rightarrow \neg p$ is called "contrapositive"

р	q	p o q	q o p	eg p o eg q	eg q o eg p	$\neg p \lor q$
Т	Т	Т	Т	Т	Т	Т
T	F	F	Т	Т	F	F
F	Т	Т	F	F	Т	Т
F	F	Т	Т	Т	T	Т

Note: For the conditional p o q,

- (i) $q \rightarrow p$ is called "converse"
- (ii) $\neg p \rightarrow \neg q$ is called " inverse"
- (iii) $\neg q \rightarrow \neg p$ is called "contrapositive"

р	q	p o q	q o p	eg p o eg q	eg q o eg p	$\neg p \lor q$
Т	Т	Т	Т	Т	Т	Т
T	F	F	Т	Т	F	F
F	Т	Т	F	F	Т	Т
F	F	Т	Т	Т	T	Т

- (i) $q \rightarrow p$ is called "converse"
- (ii) $\neg p \rightarrow \neg q$ is called "inverse"
- (iii) $\neg q \rightarrow \neg p$ is called "contrapositive"

р	q	p o q	q o p	$\neg p ightarrow eg q$	eg q o eg p	$\neg p \lor q$
Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	Т	Т
F	F	Т	Т	T	T	T

Note:

(i) $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are logically equivalent

- (i) $q \rightarrow p$ is called "converse"
- (ii) $\neg p \rightarrow \neg q$ is called "inverse"
- (iii) $\neg q \rightarrow \neg p$ is called "contrapositive"

р	q	p o q	q o p	$\neg p ightarrow eg q$	eg q o eg p	$\neg p \lor q$
Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	Т	Т
F	F	Т	Т	T	T	T

Note:

- (i) $p \rightarrow q$ and $\neg q \rightarrow \neg p$ are logically equivalent
- (ii) Inverse and Converse are logically equivalent. i.e., $q \to p$ and $\neg p \to \neg q$ are logically equivalent

- (i) $q \rightarrow p$ is called "converse"
- (ii) $\neg p \rightarrow \neg q$ is called "inverse"
- (iii) $\neg q \rightarrow \neg p$ is called "contrapositive"

р	q	p o q	q o p	$\neg p ightarrow \neg q$	eg q o eg p	$\neg p \lor q$
Т	Т	Т	Т	Т	Т	Т
Т	F	F	Т	Т	F	F
F	Т	Т	F	F	Т	Т
F	F	Т	Т	T	T	Т

Note:

- (i) p o q and $\neg q o \neg p$ are logically equivalent
- (ii) Inverse and Converse are logically equivalent. i.e., $q \to p$ and $\neg p \to \neg q$ are logically equivalent
- (iii) $p \rightarrow q$ and $\neg p \lor q$ are logically equivalent

Question: There are two restaurants next to each other. One has a sign that says "Good food is not cheap". The other has a sign that says "Cheap food is not good". Are the signs saying the same thing?

Question: There are two restaurants next to each other. One has a sign that says " Good food is not cheap". The other has a sign that says " Cheap food is not good". Are the signs saying the same thing?

Solution: Let A: Food is good

B: Food is cheap

Question: There are two restaurants next to each other. One has a sign that says "Good food is not cheap". The other has a sign that says "Cheap food is not good". Are the signs saying the same thing?

Solution: Let A: Food is good

B: Food is cheap

We have to examine $A \rightarrow \neg B$ and $B \rightarrow \neg A$

Question: There are two restaurants next to each other. One has a sign that says "Good food is not cheap". The other has a sign that says "Cheap food is not good". Are the signs saying the same thing?

Solution: Let A: Food is good

B: Food is cheap

We have to examine $A \rightarrow \neg B$ and $B \rightarrow \neg A$

Α	В	$A \rightarrow \neg B$	$B o \neg A$
Т	Т	F	F
T	F	Т	Т
F	Т	Т	Т
F	F	Т	Т

Inference: Both are saying the same thing.

\leftrightarrow	р	q	$p \leftrightarrow q$
	Т	Т	Т
	Т	F	F
	F	Т	F
	F	F	Т

\leftrightarrow	р	q	$p \leftrightarrow q$
	Т	Т	Т
	Т	F	F
	F	Т	F
	F	F	Т

Two or more propositions can be combined using words like "and, "or", "iff', "if, then" etc. These are called **Logical Connectivities**.

Two or more propositions can be combined using words like "and, "or", "iff', "if, then" etc. These are called **Logical Connectivities**.

Definition

A proposition having one or more logical connectivities is called a **Compound Proposition**. Otherwise is called **Simple**

A WFF is a formula generated using the following groups:

i) A statement variable is a WFF

A WFF is a formula generated using the following groups:

- i) A statement variable is a WFF
- ii) If A is WFF, then $\neg A$ is also a WFF

A WFF is a formula generated using the following groups:

- i) A statement variable is a WFF
- ii) If A is WFF, then $\neg A$ is also a WFF
- iii) If A and B are WFF's, $A \lor B$, $A \land B$, $A \to B$, $A \leftrightarrow B$ are also WFFs.

A WFF is a formula generated using the following groups:

- i) A statement variable is a WFF
- ii) If A is WFF, then $\neg A$ is also a WFF
- iii) If A and B are WFF's, $A \lor B$, $A \land B$, $A \to B$, $A \leftrightarrow B$ are also WFFs.
- iv) A string of symbols consisting of statement variables, connectivities and parenthesis is a WFF iff it can be obtained by finite many applications of the rules (i), (ii) and (iii)

A WFF is a formula generated using the following groups:

- i) A statement variable is a WFF
- ii) If A is WFF, then $\neg A$ is also a WFF
- iii) If A and B are WFF's, $A \lor B$, $A \land B$, $A \to B$, $A \leftrightarrow B$ are also WFFs.
- iv) A string of symbols consisting of statement variables, connectivities and parenthesis is a WFF iff it can be obtained by finite many applications of the rules (i), (ii) and (iii)

Example

- (1) $p \land q$, $\neg(p \land q)$, $(\neg(p \rightarrow q)) \lor r$, $((p \rightarrow q) \rightarrow r \text{ are WFFs.}$
- (2) $p \wedge q \rightarrow r$ is not a WFF as it can be $(p \wedge q) \rightarrow r$ or $p \wedge (q \rightarrow r)$

Definition

Let A and B be two statement formulas and $P_1, P_2, \dots P_n$ denote all the variables occurring in A and B. If the truth value of A is same as that of B for each of 2^n possible set of assignments to the variables $P_1, P_2, \dots P_n$, then A and B are said to be equivalent.

Definition

Let A and B be two statement formulas and $P_1, P_2, \dots P_n$ denote all the variables occurring in A and B. If the truth value of A is same as that of B for each of 2^n possible set of assignments to the variables $P_1, P_2, \dots P_n$, then A and B are said to be equivalent.

Definition

Let A and B be two statement formulas and $P_1, P_2, \cdots P_n$ denote all the variables occurring in A and B. If the truth value of A is same as that of B for each of 2^n possible set of assignments to the variables $P_1, P_2, \cdots P_n$, then A and B are said to be equivalent. We write as $A \Leftrightarrow B$.

Definition

Let A and B be two statement formulas and $P_1, P_2, \cdots P_n$ denote all the variables occurring in A and B. If the truth value of A is same as that of B for each of 2^n possible set of assignments to the variables $P_1, P_2, \cdots P_n$, then A and B are said to be equivalent. We write as $A \Leftrightarrow B$.

Two statement formulas A and B are equivalent iff $A \leftrightarrow B$ is a Tautology.

(1)
$$\neg \neg p \Leftrightarrow p$$

- (1) $\neg \neg p \Leftrightarrow p$
- (2) Commutative: (a) $p \lor q \Leftrightarrow q \lor p$ (b) $p \land q \Leftrightarrow q \land p$

- (1) $\neg \neg p \Leftrightarrow p$
- (2) Commutative: (a) $p \lor q \Leftrightarrow q \lor p$ (b) $p \land q \Leftrightarrow q \land p$
- (3) Associative: (a) $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$ (b) $p \land (q \land r) \Leftrightarrow (p \land q) \land r$

- (1) $\neg \neg p \Leftrightarrow p$
- (2) Commutative: (a) $p \lor q \Leftrightarrow q \lor p$ (b) $p \land q \Leftrightarrow q \land p$
- (3) Associative: (a) $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$ (b) $p \land (q \land r) \Leftrightarrow (p \land q) \land r$
- (4) Distributive: (a) $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ (b) $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

- (1) $\neg \neg p \Leftrightarrow p$
- (2) Commutative: (a) $p \lor q \Leftrightarrow q \lor p$ (b) $p \land q \Leftrightarrow q \land p$
- (3) Associative: (a) $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$ (b) $p \land (q \land r) \Leftrightarrow (p \land q) \land r$
- (4) Distributive: (a) $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ (b) $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
- (5) Absorption: (a) $p \lor (p \land q) \Leftrightarrow p$ (b) $p \land (p \lor q) \Leftrightarrow p$

- (1) $\neg \neg p \Leftrightarrow p$
- (2) Commutative: (a) $p \lor q \Leftrightarrow q \lor p$ (b) $p \land q \Leftrightarrow q \land p$
- (3) Associative: (a) $p \lor (q \lor r) \Leftrightarrow (p \lor q) \lor r$ (b) $p \land (q \land r) \Leftrightarrow (p \land q) \land r$
- (4) Distributive: (a) $p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$ (b) $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$
- (5) Absorption: (a) $p \lor (p \land q) \Leftrightarrow p$ (b) $p \land (p \lor q) \Leftrightarrow p$
- (6) Idempotent: (a) $(p \land p) \Leftrightarrow p$ (b) $(p \lor p) \Leftrightarrow p$

(7) (a)
$$p \land (\neg p) \Leftrightarrow F$$

(b) $p \lor (\neg p) \Leftrightarrow T$

- (7) (a) $p \land (\neg p) \Leftrightarrow F$ (b) $p \lor (\neg p) \Leftrightarrow T$
- (8) (a) $p \lor F \Leftrightarrow p$ (b) $p \land F \Leftrightarrow F$

- (7) (a) $p \land (\neg p) \Leftrightarrow F$ (b) $p \lor (\neg p) \Leftrightarrow T$
- (8) (a) $p \lor F \Leftrightarrow p$ (b) $p \land F \Leftrightarrow F$
- (9) (a) $p \lor T \Leftrightarrow T$ (b) $p \land T \Leftrightarrow p$

- (7) (a) $p \wedge (\neg p) \Leftrightarrow F$ (b) $p \lor (\neg p) \Leftrightarrow T$
- (8) (a) $p \vee F \Leftrightarrow p$ (b) $p \wedge F \Leftrightarrow F$
- (9) (a) $p \vee T \Leftrightarrow T$ (b) $p \wedge T \Leftrightarrow p$
- (10) (a) $\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$

- (7) (a) $p \land (\neg p) \Leftrightarrow F$ (b) $p \lor (\neg p) \Leftrightarrow T$
- (8) (a) $p \lor F \Leftrightarrow p$ (b) $p \land F \Leftrightarrow F$
- (9) (a) $p \lor T \Leftrightarrow T$ (b) $p \land T \Leftrightarrow p$
- (10) (a) $\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$ (b) $\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$
- (11) (a) $p \rightarrow q \Leftrightarrow \neg p \lor q$ (b) $\neg (p \rightarrow q) \Leftrightarrow p \land \neg q$

- (7) (a) $p \land (\neg p) \Leftrightarrow F$ (b) $p \lor (\neg p) \Leftrightarrow T$
- (8) (a) $p \lor F \Leftrightarrow p$ (b) $p \land F \Leftrightarrow F$
- (9) (a) $p \lor T \Leftrightarrow T$ (b) $p \land T \Leftrightarrow p$
- (10) (a) $\neg (p \lor q) \Leftrightarrow (\neg p \land \neg q)$ (b) $\neg (p \land q) \Leftrightarrow (\neg p \lor \neg q)$
- (11) (a) $p \rightarrow q \Leftrightarrow \neg p \lor q$ (b) $\neg (p \rightarrow q) \Leftrightarrow p \land \neg q$
- (12) (a) $p \rightarrow q \Leftrightarrow (\neg q \rightarrow \neg p)$ (b) $q \rightarrow p \Leftrightarrow (\neg p \rightarrow \neg q)$

Question: Show that $p \to (q \to r) \Leftrightarrow p \to (\neg q \lor r) \Leftrightarrow (p \land q) \to r$

Question: Show that $(\neg p \land (\neg q \land r)) \lor (q \land r) \lor (p \land r) \Leftrightarrow r$

Question: Show that $(\neg p \land (\neg q \land r)) \lor (q \land r) \lor (p \land r) \Leftrightarrow r$

$$(\neg p \wedge (\neg q \wedge r)) \vee (q \wedge r) \vee (p \wedge r) \Leftrightarrow$$

$$(\neg p \wedge (\neg q \wedge r)) \vee (q \wedge r) \vee (p \wedge r) \quad \Leftrightarrow \quad (\neg p \wedge (\neg q \wedge r)) \vee$$

$$(\neg p \land (\neg q \land r)) \lor (q \land r) \lor (p \land r) \Leftrightarrow (\neg p \land (\neg q \land r)) \lor (r \land (q \lor p))$$

$$\Leftrightarrow$$

$$(\neg p \land (\neg q \land r)) \lor (q \land r) \lor (p \land r) \Leftrightarrow (\neg p \land (\neg q \land r)) \lor (r \land (q \lor p))$$
$$\Leftrightarrow ((\neg p \land \neg q) \land r) \lor (r \land (p \lor q))$$
$$\Leftrightarrow$$

$$(\neg p \land (\neg q \land r)) \lor (q \land r) \lor (p \land r) \Leftrightarrow (\neg p \land (\neg q \land r)) \lor (r \land (q \lor p))$$

$$\Leftrightarrow ((\neg p \land \neg q) \land r) \lor (r \land (p \lor q))$$

$$\Leftrightarrow (\neg (p \lor q) \land r) \lor (r \land (p \lor q))$$

$$\Leftrightarrow$$

$$(\neg p \land (\neg q \land r)) \lor (q \land r) \lor (p \land r) \Leftrightarrow (\neg p \land (\neg q \land r)) \lor (r \land (q \lor p))$$

$$\Leftrightarrow ((\neg p \land \neg q) \land r) \lor (r \land (p \lor q))$$

$$\Leftrightarrow (\neg (p \lor q) \land r) \lor (r \land (p \lor q))$$

$$\Leftrightarrow r \land [(p \lor q) \lor \neg (p \lor q)]$$

$$\Leftrightarrow$$

$$(\neg p \land (\neg q \land r)) \lor (q \land r) \lor (p \land r) \Leftrightarrow (\neg p \land (\neg q \land r)) \lor (r \land (q \lor p))$$

$$\Leftrightarrow ((\neg p \land \neg q) \land r) \lor (r \land (p \lor q))$$

$$\Leftrightarrow (\neg (p \lor q) \land r) \lor (r \land (p \lor q))$$

$$\Leftrightarrow r \land [(p \lor q) \lor \neg (p \lor q)]$$

$$\Leftrightarrow r \land T$$

$$\Leftrightarrow$$

$$(\neg p \land (\neg q \land r)) \lor (q \land r) \lor (p \land r) \Leftrightarrow (\neg p \land (\neg q \land r)) \lor (r \land (q \lor p))$$

$$\Leftrightarrow ((\neg p \land \neg q) \land r) \lor (r \land (p \lor q))$$

$$\Leftrightarrow (\neg (p \lor q) \land r) \lor (r \land (p \lor q))$$

$$\Leftrightarrow r \land [(p \lor q) \lor \neg (p \lor q)]$$

$$\Leftrightarrow r \land T$$

$$\Leftrightarrow r$$

$$((p \vee q) \wedge \neg [(\neg p) \wedge (\neg q \vee \neg r)]) \vee (\neg p \wedge \neg q) \vee (\neg p \wedge \neg r) \text{ is a tautology}.$$

Question: Show that

$$((p \lor q) \land \neg [(\neg p) \land (\neg q \lor \neg r)]) \lor (\neg p \land \neg q) \lor (\neg p \land \neg r) \text{ is a tautology}.$$

Solution: $[(p \lor q) \land \neg ((\neg p) \land (\neg q \lor \neg r))] \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$

$$((p \lor q) \land \neg [(\neg p) \land (\neg q \lor \neg r)]) \lor (\neg p \land \neg q) \lor (\neg p \land \neg r) \text{ is a tautology}.$$

Solution:
$$[(p \lor q) \land \neg ((\neg p) \land (\neg q \lor \neg r))] \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$$

$$\Leftrightarrow [(p \lor q) \land \neg (\neg p \land (\neg q \lor \neg r))] \lor$$

$$((p \lor q) \land \neg [(\neg p) \land (\neg q \lor \neg r)]) \lor (\neg p \land \neg q) \lor (\neg p \land \neg r) \text{ is a tautology}.$$

Solution:
$$[(p \lor q) \land \neg ((\neg p) \land (\neg q \lor \neg r))] \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$$

$$\Leftrightarrow [(p \lor q) \land \neg (\neg p \land (\neg q \lor \neg r))] \lor (\neg p \land (\neg q \lor \neg r))$$

$$((p \lor q) \land \neg [(\neg p) \land (\neg q \lor \neg r)]) \lor (\neg p \land \neg q) \lor (\neg p \land \neg r) \text{ is a tautology}.$$

Solution:
$$[(p \lor q) \land \neg ((\neg p) \land (\neg q \lor \neg r))] \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$$

$$\Leftrightarrow [(p \lor q) \land \neg(\neg p \land (\neg q \lor \neg r))] \lor (\neg p \land (\neg q \lor \neg r))$$

$$\Leftrightarrow [(p \lor q) \land \neg \neg p \lor (q \land r)] \lor (\neg p \land \neg (q \land r))$$

$$((p \vee q) \wedge \neg [(\neg p) \wedge (\neg q \vee \neg r)]) \vee (\neg p \wedge \neg q) \vee (\neg p \wedge \neg r) \text{ is a tautology}.$$

Solution:
$$[(p \lor q) \land \neg ((\neg p) \land (\neg q \lor \neg r))] \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$$

$$\Leftrightarrow [(p \lor q) \land \neg(\neg p \land (\neg q \lor \neg r))] \lor (\neg p \land (\neg q \lor \neg r))$$

$$\Leftrightarrow [(p \lor q) \land \neg \neg p \lor (q \land r)] \lor (\neg p \land \neg (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor (q \land r))] \lor \neg (p \lor (q \land r))$$

$$((p \lor q) \land \neg[(\neg p) \land (\neg q \lor \neg r)]) \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$$
 is a tautology.

Solution:
$$[(p \lor q) \land \neg((\neg p) \land (\neg q \lor \neg r))] \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$$

$$\Leftrightarrow [(p \lor q) \land \neg(\neg p \land (\neg q \lor \neg r))] \lor (\neg p \land (\neg q \lor \neg r))$$

$$\Leftrightarrow [(p \lor q) \land \neg \neg p \lor (q \land r)] \lor (\neg p \land \neg (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor (q \land r))] \lor \neg (p \lor (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor q) \land (p \lor r)] \lor \neg (p \lor (q \land r))$$

$$((p \lor q) \land \neg [(\neg p) \land (\neg q \lor \neg r)]) \lor (\neg p \land \neg q) \lor (\neg p \land \neg r) \text{ is a tautology}.$$

Solution:
$$[(p \lor q) \land \neg ((\neg p) \land (\neg q \lor \neg r))] \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$$

$$\Leftrightarrow [(p \lor q) \land \neg(\neg p \land (\neg q \lor \neg r))] \lor (\neg p \land (\neg q \lor \neg r))$$

$$\Leftrightarrow [(p \lor q) \land \neg \neg p \lor (q \land r)] \lor (\neg p \land \neg (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor (q \land r))] \lor \neg (p \lor (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor q) \land (p \lor r)] \lor \neg (p \lor (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor r)] \lor \neg (p \lor (q \land r))$$

$$((p \lor q) \land \neg [(\neg p) \land (\neg q \lor \neg r)]) \lor (\neg p \land \neg q) \lor (\neg p \land \neg r) \text{ is a tautology}.$$

Solution:
$$[(p \lor q) \land \neg ((\neg p) \land (\neg q \lor \neg r))] \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$$

$$\Leftrightarrow [(p \lor q) \land \neg(\neg p \land (\neg q \lor \neg r))] \lor (\neg p \land (\neg q \lor \neg r))$$

$$\Leftrightarrow [(p \lor q) \land \neg \neg p \lor (q \land r)] \lor (\neg p \land \neg (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor (q \land r))] \lor \neg (p \lor (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor q) \land (p \lor r)] \lor \neg (p \lor (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor r)] \lor \neg (p \lor (q \land r))$$

$$\Leftrightarrow [(p \lor (q \land r)] \lor \neg (p \lor (q \land r))$$

$$((p \vee q) \wedge \neg [(\neg p) \wedge (\neg q \vee \neg r)]) \vee (\neg p \wedge \neg q) \vee (\neg p \wedge \neg r) \text{ is a tautology}.$$

Solution:
$$[(p \lor q) \land \neg((\neg p) \land (\neg q \lor \neg r))] \lor (\neg p \land \neg q) \lor (\neg p \land \neg r)$$

$$\Leftrightarrow [(p \lor q) \land \neg(\neg p \land (\neg q \lor \neg r))] \lor (\neg p \land (\neg q \lor \neg r))$$

$$\Leftrightarrow [(p \lor q) \land \neg \neg p \lor (q \land r)] \lor (\neg p \land \neg (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor (q \land r))] \lor \neg (p \lor (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor q) \land (p \lor r)] \lor \neg (p \lor (q \land r))$$

$$\Leftrightarrow [(p \lor q) \land (p \lor r)] \lor \neg (p \lor (q \land r))$$

$$\Leftrightarrow [(p \lor (q \land r)] \lor \neg (p \lor (q \land r))$$

$$\Leftrightarrow T$$

Definition

A is said to tautologically imply to statement B if $A \to B$ is a tautology. In this case, we write $A \Rightarrow B$ (read as A implies B)

Definition

A is said to tautologically imply to statement B if $A \to B$ is a tautology. In this case, we write $A \Rightarrow B$ (read as A implies B)

Definition

A is said to tautologically imply to statement B if $A \to B$ is a tautology. In this case, we write $A \Rightarrow B$ (read as A implies B)

NOTE: Let A and B be two statement formula. We say that "B logically follows from A" or "B is a valid conclusion of the premise A" iff $A \to B$ is a Tautology i.e., $A \Rightarrow B$.

Definition

A is said to tautologically imply to statement B if $A \to B$ is a tautology. In this case, we write $A \Rightarrow B$ (read as A implies B)

NOTE: Let A and B be two statement formula. We say that "B logically follows from A" or "B is a valid conclusion of the premise A" iff $A \to B$ is a Tautology i.e., $A \Rightarrow B$.

To show that $A \to B$ is a tautology, it is sufficient to show that an assignment of truth value T to A leads to the truth value T to B.

Definition

A is said to tautologically imply to statement B if $A \to B$ is a tautology. In this case, we write $A \Rightarrow B$ (read as A implies B)

NOTE: Let A and B be two statement formula. We say that "B logically follows from A" or "B is a valid conclusion of the premise A" iff $A \to B$ is a Tautology i.e., $A \Rightarrow B$.

To show that $A \to B$ is a tautology, it is sufficient to show that an assignment of truth value T to A leads to the truth value T to B.

Question: Show that $\sim p \Rightarrow p \rightarrow q$.

Definition

A is said to tautologically imply to statement B if $A \to B$ is a tautology. In this case, we write $A \Rightarrow B$ (read as A implies B)

NOTE: Let A and B be two statement formula. We say that "B logically follows from A" or "B is a valid conclusion of the premise A" iff $A \to B$ is a Tautology i.e., $A \Rightarrow B$.

To show that $A \to B$ is a tautology, it is sufficient to show that an assignment of truth value T to A leads to the truth value T to B.

Question: Show that $\sim p \Rightarrow p \rightarrow q$.

Definition

A is said to tautologically imply to statement B if $A \to B$ is a tautology. In this case, we write $A \Rightarrow B$ (read as A implies B)

NOTE: Let A and B be two statement formula. We say that "B logically follows from A" or "B is a valid conclusion of the premise A" iff $A \to B$ is a Tautology i.e., $A \Rightarrow B$.

To show that $A \to B$ is a tautology, it is sufficient to show that an assignment of truth value T to A leads to the truth value T to B.

Question: Show that $\sim p \Rightarrow p \rightarrow q$.

Question: Show that $\neg(p \rightarrow q) \implies \neg q$

Question: Show that $\neg(p \rightarrow q) \implies \neg q$

Solution: We say that $A \implies B$ if $A \rightarrow B$ is true in all conditions

Question: Show that $\neg(p \rightarrow q) \implies \neg q$

Solution: We say that $A \implies B$ if $A \rightarrow B$ is true in all conditions

Question: Show that $\neg(p \rightarrow q) \implies \neg q$

Solution: We say that $A \implies B$ if $A \rightarrow B$ is true in all conditions

p	q	p o q	$\lnot(p ightarrow q)$	$\neg q$	$\lnot(p ightarrow q) ightarrow \lnot q$
Т	Т	Т	F	F	Т
Т	F	F	Т	Т	Т
F	Т	Т	F	F	Т
F	F	Т	F	Т	Т

Question: Show that $\neg q \land (p \rightarrow q) \implies \neg p$

Question: Show that $\neg q \land (p \rightarrow q) \implies \neg p$

Solution: Suppose $\neg q \land (p \rightarrow q)$ is true.

Question: Show that $\neg q \land (p \rightarrow q) \implies \neg p$

Solution: Suppose $\neg q \land (p \rightarrow q)$ is true.

 $\neg q$ is true and p o q is true

Question: Show that $\neg q \land (p \rightarrow q) \implies \neg p$

Solution: Suppose $\neg q \land (p \rightarrow q)$ is true. $\neg q$ is true and $p \rightarrow q$ is true q is false and $p \rightarrow q$ is true

Question: Show that $\neg q \land (p \rightarrow q) \implies \neg p$

Solution: Suppose $\neg q \land (p \rightarrow q)$ is true. $\neg q$ is true and $p \rightarrow q$ is true q is false and $p \rightarrow q$ is true $\implies p$ is false

Question: Show that $\neg q \land (p \rightarrow q) \implies \neg p$

Solution: Suppose $\neg q \land (p \rightarrow q)$ is true. $\neg q$ is true and $p \rightarrow q$ is true q is false and $p \rightarrow q$ is true $\implies p$ is false $\implies \neg p$ is true

Question: Show that $\neg q \land (p \rightarrow q) \implies \neg p$

Solution: Suppose $\neg q \land (p \rightarrow q)$ is true. $\neg q$ is true and $p \rightarrow q$ is true q is false and $p \rightarrow q$ is true $\implies p$ is false $\implies \neg p$ is true $\therefore \neg q \land (p \rightarrow q) \implies \neg p$

Question: Show that $\neg q \land (p \rightarrow q) \implies \neg p$

Solution: Suppose $\neg q \land (p \rightarrow q)$ is true. $\neg q$ is true and $p \rightarrow q$ is true q is false and $p \rightarrow q$ is true $\implies p$ is false $\implies \neg p$ is true $\therefore \neg q \land (p \rightarrow q) \implies \neg p$

$$\begin{array}{ccc} (1) & p \wedge q \implies p \\ & p \wedge q \implies q \end{array}$$

- $\begin{array}{ccc} (1) & p \wedge q \implies p \\ & p \wedge q \implies q \end{array}$
- $\begin{array}{ccc} (2) & p \implies p \lor q \\ & q \implies p \lor q \end{array}$

- $\begin{array}{ccc} (1) & p \wedge q \implies p \\ & p \wedge q \implies q \end{array}$
- $\begin{array}{c} (2) \ p \implies p \lor q \\ q \implies p \lor q \end{array}$
- (3) $\neg p \implies p \rightarrow q$

- $\begin{array}{ccc} (1) & p \wedge q \implies p \\ & p \wedge q \implies q \end{array}$
- $\begin{array}{c} (2) \ p \implies p \lor q \\ q \implies p \lor q \end{array}$
- $(3) \neg p \implies p \rightarrow q$
- (4) $q \implies p \rightarrow q$

- $\begin{array}{ccc} (1) & p \wedge q \implies p \\ & p \wedge q \implies q \end{array}$
- $\begin{array}{c} (2) \ p \implies p \lor q \\ q \implies p \lor q \end{array}$
- (3) $\neg p \implies p \rightarrow q$
- $(4) q \implies p \rightarrow q$
- $(5) \neg (p \rightarrow q) \implies p$

$$\begin{array}{ccc} (1) & p \wedge q \implies p \\ & p \wedge q \implies q \end{array}$$

$$\begin{array}{c} (2) \ p \implies p \lor q \\ q \implies p \lor q \end{array}$$

(3)
$$\neg p \implies p \rightarrow q$$

(4)
$$q \implies p \rightarrow q$$

$$(5) \neg (p \rightarrow q) \implies p$$

$$(6) \neg (p \rightarrow q) \implies \neg q$$

(7)
$$p \land (p \rightarrow q) \implies q$$

$$(7) p \land (p \rightarrow q) \implies q$$

$$(8) \neg q \land (p \rightarrow q) \implies \neg p$$

(7)
$$p \land (p \rightarrow q) \implies q$$

(8)
$$\neg q \land (p \rightarrow q) \implies \neg p$$

$$(9) \neg p \land (p \lor q) \implies q$$

(7)
$$p \land (p \rightarrow q) \implies q$$

(8)
$$\neg q \land (p \rightarrow q) \implies \neg p$$

$$(9) \neg p \land (p \lor q) \implies q$$

(10)
$$(p \rightarrow q) \land (q \rightarrow r) \implies p \rightarrow r$$

(7)
$$p \land (p \rightarrow q) \implies q$$

(8)
$$\neg q \land (p \rightarrow q) \implies \neg p$$

$$(9) \neg p \land (p \lor q) \implies q$$

(10)
$$(p \rightarrow q) \land (q \rightarrow r) \implies p \rightarrow r$$

(11)
$$(p \lor q) \land (p \to r) \land (q \to r) \implies r$$

(7)
$$p \land (p \rightarrow q) \implies q$$

(8)
$$\neg q \land (p \rightarrow q) \implies \neg p$$

$$(9) \neg p \land (p \lor q) \implies q$$

(10)
$$(p \rightarrow q) \land (q \rightarrow r) \implies p \rightarrow r$$

(11)
$$(p \lor q) \land (p \to r) \land (q \to r) \implies r$$

(7)
$$p \land (p \rightarrow q) \implies q$$

(8)
$$\neg q \land (p \rightarrow q) \implies \neg p$$

$$(9) \neg p \land (p \lor q) \implies q$$

(10)
$$(p \rightarrow q) \land (q \rightarrow r) \implies p \rightarrow r$$

(11)
$$(p \lor q) \land (p \to r) \land (q \to r) \implies r$$

Question: Show that $(p \lor q) \land (p \to r) \land (q \to r) \implies r$

Rules of Inference

To demonstrate that a particular formula is valid consequence of a given set of premises, we use the follow rules of inference.

 $Rule\ P\ :\ A\ premise\ may\ be\ introduced\ at\ any\ point\ in\ the\ derivation$

Rule T: A formula S may be introduced in a derivation if S is

tautologically implied by any one or more of the preceding

formulas in the derivation

 ${f Question}$: Demonstrate that r is a valid inference from the premises

$$p
ightarrow q, \ q
ightarrow r$$
 and p

$$p \rightarrow q$$
 (Rule P)

 ${f Question}$: Demonstrate that r is a valid inference from the premises

$$p
ightarrow q, \ q
ightarrow r$$
 and p

$$p \rightarrow q$$
 (Rule P)
 p (Rule P)

Question : Demonstrate that r is a valid inference from the premises $p \to q, \ q \to r \ and \ p$

$$p o q$$
 (Rule P)
 p (Rule P)
 q (Rule T, $p \land (p \to q) \implies q$)

Question : Demonstrate that r is a valid inference from the premises $p \to q$, $q \to r$ and p **Solution** :

$$p
ightarrow q \qquad (Rule \ P)$$
 $p \qquad (Rule \ P)$
 $q \qquad (Rule \ T, \ p \land (p
ightarrow q) \implies q)$
 $q
ightarrow r \qquad (Rule \ P)$

Question : Demonstrate that r is a valid inference from the premises $p \to q$, $q \to r$ and p **Solution** :

$$p
ightarrow q \qquad (Rule \ P)$$
 $p \qquad (Rule \ P)$
 $q \qquad (Rule \ T, \ p \land (p
ightarrow q) \implies q)$
 $q
ightarrow r \qquad (Rule \ P)$
 $r \qquad (Rule \ T, \ q \land (q
ightarrow r) \implies r)$

Question : Demonstrate that r is a valid inference from the premises $p \to q$, $q \to r$ and p **Solution** :

$$p
ightarrow q \qquad (Rule \ P)$$
 $p \qquad (Rule \ P)$
 $q \qquad (Rule \ T, \ p \land (p
ightarrow q) \implies q)$
 $q
ightarrow r \qquad (Rule \ P)$
 $r \qquad (Rule \ T, \ q \land (q
ightarrow r) \implies r)$

 $\textbf{Question}: \mathsf{RVS} \ \mathsf{follows} \ \mathsf{logically} \ \mathsf{from} \ \mathsf{the} \ \mathsf{premises} \ \ \mathcal{C} \wedge \mathcal{D},$

 $C \lor D \to \neg H$, $\neg H \to (A \land \neg B)$, $(A \land \neg B) \to (R \lor S)$.

Question: RVS follows logically from the premises $C \wedge D$,

$$C \lor D \to \neg H$$
, $\neg H \to (A \land \neg B)$, $(A \land \neg B) \to (R \lor S)$.

$$C \lor D \to \neg H$$
 (Rule P)

Question: RVS follows logically from the premises $C \wedge D$,

 $C \lor D \to \neg H$, $\neg H \to (A \land \neg B)$, $(A \land \neg B) \to (R \lor S)$.

$$C \lor D \to \neg H$$
 (Rule P)

$$\neg H \to A \land \neg B \qquad (Rule \ P)$$

Question: RVS follows logically from the premises $C \wedge D$,

 $C \vee D \rightarrow \neg H, \ \neg H \rightarrow (A \wedge \neg B), \ (A \wedge \neg B) \rightarrow (R \vee S).$

$$C \lor D \to \neg H$$
 (Rule P)

$$\neg H \to A \land \neg B$$
 (Rule P)

$$C \lor D \to A \land \neg B$$
 (Rule T)

Question: RVS follows logically from the premises $C \wedge D$, $C \vee D \rightarrow \neg H$, $\neg H \rightarrow (A \wedge \neg B)$, $(A \wedge \neg B) \rightarrow (R \vee S)$.

$$C \lor D \to \neg H$$
 (Rule P)
 $\neg H \to A \land \neg B$ (Rule P)
 $C \lor D \to A \land \neg B$ (Rule T)
 $A \land \neg B \to R \lor S$ (Rule P)

Question: RVS follows logically from the premises $C \wedge D$, $C \vee D \rightarrow \neg H$, $\neg H \rightarrow (A \wedge \neg B)$, $(A \wedge \neg B) \rightarrow (R \vee S)$.

$$C \lor D \to \neg H$$
 (Rule P)
 $\neg H \to A \land \neg B$ (Rule P)
 $C \lor D \to A \land \neg B$ (Rule T)
 $A \land \neg B \to R \lor S$ (Rule P)
 $C \lor D \to R \lor S$ (Rule T)

Question: RVS follows logically from the premises $C \wedge D$, $C \vee D \rightarrow \neg H$, $\neg H \rightarrow (A \wedge \neg B)$, $(A \wedge \neg B) \rightarrow (R \vee S)$. **Solution**:

$$C \lor D \to \neg H$$
 (Rule P)
 $\neg H \to A \land \neg B$ (Rule P)
 $C \lor D \to A \land \neg B$ (Rule T)
 $A \land \neg B \to R \lor S$ (Rule P)
 $C \lor D \to R \lor S$ (Rule T)
 $C \lor D$ (Rule P)

Question: RVS follows logically from the premises $C \wedge D$, $C \vee D \rightarrow \neg H$, $\neg H \rightarrow (A \wedge \neg B)$, $(A \wedge \neg B) \rightarrow (R \vee S)$.

$$C \lor D \to \neg H$$
 (Rule P)
 $\neg H \to A \land \neg B$ (Rule P)
 $C \lor D \to A \land \neg B$ (Rule T)
 $A \land \neg B \to R \lor S$ (Rule P)
 $C \lor D \to R \lor S$ (Rule T)
 $C \lor D$ (Rule P)
 $R \lor S$ (Rule T)

$$p \lor q$$
 (Rule P)

$$p \lor q$$
 (Rule P)
 $\neg p \to q$ (Rule T i.e., $p \to q \Leftrightarrow \neg p \lor q$)

$$p \lor q$$
 (Rule P)
 $\neg p \to q$ (Rule T i.e., $p \to q \Leftrightarrow \neg p \lor q$)
 $q \to S$ (Rule P)

$$p \lor q$$
 (Rule P)
 $\neg p \to q$ (Rule T i.e., $p \to q \Leftrightarrow \neg p \lor q$)
 $q \to S$ (Rule P)
 $\neg p \to S$ (Rule T)

$$p \lor q$$
 (Rule P)
 $\neg p \to q$ (Rule T i.e., $p \to q \Leftrightarrow \neg p \lor q$)
 $q \to S$ (Rule P)
 $\neg p \to S$ (Rule T)
 $\neg S \to p$ (Rule T, $p \to q \Leftrightarrow \neg q \to \neg p$)

Question : Show that $S \vee r$ is tautologically implied by $(p \vee q) \wedge (p \rightarrow r) \wedge (q \rightarrow s)$ **Solution** :

$$p \lor q$$
 (Rule P)
 $\neg p \to q$ (Rule T i.e., $p \to q \Leftrightarrow \neg p \lor q$)
 $q \to S$ (Rule P)
 $\neg p \to S$ (Rule T)
 $\neg S \to p$ (Rule T, $p \to q \Leftrightarrow \neg q \to \neg p$)
 $p \to r$ (Rule P)

Question : Show that $S \vee r$ is tautologically implied by $(p \vee q) \wedge (p \rightarrow r) \wedge (q \rightarrow s)$ **Solution** :

$$p \lor q$$
 (Rule P)
 $\neg p \to q$ (Rule T i.e., $p \to q \Leftrightarrow \neg p \lor q$)
 $q \to S$ (Rule P)
 $\neg p \to S$ (Rule T)
 $\neg S \to p$ (Rule T, $p \to q \Leftrightarrow \neg q \to \neg p$)
 $p \to r$ (Rule P)
 $\neg S \to r$ (Rule T)

Question : Show that $S \vee r$ is tautologically implied by $(p \vee q) \wedge (p \rightarrow r) \wedge (q \rightarrow s)$ **Solution** :

$$p \lor q$$
 (Rule P)
 $\neg p \to q$ (Rule T i.e., $p \to q \Leftrightarrow \neg p \lor q$)
 $q \to S$ (Rule P)
 $\neg p \to S$ (Rule T)
 $\neg S \to p$ (Rule T, $p \to q \Leftrightarrow \neg q \to \neg p$)
 $p \to r$ (Rule P)
 $\neg S \to r$ (Rule T)
 $S \lor r$ (Rule T, $p \to q \Leftrightarrow \neg (\neg p \lor q)$)

Question: If A works hard, then either B or C will enjoy themselves. If B enjoys himself, then A will not work hard. If D enjoys himself, then C will not, therefore prove that if A works hard, D will not enjoy himself.

Question: If A works hard, then either B or C will enjoy themselves. If B enjoys himself, then A will not work hard. If D enjoys himself, then C will not, therefore prove that if A works hard, D will not enjoy himself.

Solution:

A: A works hard

B: B will enjoy himself

C: C will enjoy himself

D : D will enjoy himself

Question: If A works hard, then either B or C will enjoy themselves. If B enjoys himself, then A will not work hard. If D enjoys himself, then C will not, therefore prove that if A works hard, D will not enjoy himself.

Solution :

A : A works hard

B: B will enjoy himself

C: C will enjoy himself

D : D will enjoy himself

Question: If A works hard, then either B or C will enjoy themselves. If B enjoys himself, then A will not work hard. If D enjoys himself, then C will not, therefore prove that if A works hard, D will not enjoy himself.

Solution :

A : A works hard

B: B will enjoy himself

C: C will enjoy himself

D : D will enjoy himself

To prove, $A \to \neg D$ follows from $A \to B \lor C$, $B \to \neg A$ and $D \to \neg C$

$$A \rightarrow B \lor C$$
 (Rule P)

To prove, $A \to \neg D$ follows from $A \to B \lor C$, $B \to \neg A$ and $D \to \neg C$

$$A \rightarrow B \lor C$$
 (Rule P)
 $\neg (B \lor C) \rightarrow \neg A$ (Rule T i.e., $p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$)

To prove, $A \to \neg D$ follows from $A \to B \lor C$, $B \to \neg A$ and $D \to \neg C$

$$A o B \lor C$$
 (Rule P)
 $\neg (B \lor C) o \neg A$ (Rule T i.e., $p o q \Leftrightarrow \neg q o \neg p$)
 $(\neg B \land \neg C) o \neg A$ (Rule T)

$$A oup B \lor C \qquad (Rule \ P)$$
 $\neg (B \lor C) oup \neg A \qquad (Rule \ T \ i.e., \ p oup q \Leftrightarrow \neg q oup \neg p)$
 $(\neg B \land \neg C) oup \neg A \qquad (Rule \ T)$
 $\neg B oup (\neg C oup \neg A) \qquad (Rule \ T, (p \land q) oup r \Leftrightarrow (q oup r)$

$$A
ightarrow B \lor C \qquad (Rule \ P)$$
 $\lnot (B \lor C)
ightarrow \lnot A \qquad (Rule \ T \ i.e., \ p
ightarrow q \Leftrightarrow \lnot q
ightarrow \lnot p)$
 $(\lnot B \land \lnot C)
ightarrow \lnot A \qquad (Rule \ T)$
 $\lnot B
ightarrow (\lnot C
ightarrow \lnot A) \qquad (Rule \ T, (p \land q)
ightarrow r \Leftrightarrow (q
ightarrow r)$
 $\lnot B
ightarrow (A
ightarrow C) \qquad (Rule \ T, p
ightarrow q \Leftrightarrow \lnot q
ightarrow \lnot p)$

$$A oup B \lor C \qquad (Rule \ P)$$
 $\neg (B \lor C) oup \neg A \qquad (Rule \ T \ i.e., \ p oup q \Leftrightarrow \neg q oup \neg p)$
 $(\neg B \land \neg C) oup \neg A \qquad (Rule \ T)$
 $\neg B oup (\neg C oup \neg A) \qquad (Rule \ T, (p \land q) oup r \Leftrightarrow (q oup r)$
 $\neg B oup (A oup C) \qquad (Rule \ T, p oup q \Leftrightarrow \neg q oup \neg p)$
 $B oup \neg A \qquad (Rule \ P)$

$$A
ightarrow B
ightharpoonup C \qquad (Rule \ P)$$
 $\lnot (B \lor C)
ightarrow \lnot A \qquad (Rule \ T \ i.e., \ p
ightharpoonup q \Leftrightarrow \lnot q
ightharpoonup \lnot p)$
 $(\lnot B \land \lnot C)
ightharpoonup \lnot A \qquad (Rule \ T)$
 $\lnot B
ightharpoonup (\lnot C
ightharpoonup \lnot A) \qquad (Rule \ T, (p \land q)
ightharpoonup r \Leftrightarrow (q
ightharpoonup r)$
 $\lnot B
ightharpoonup (Rule \ T, p
ightharpoonup q \Leftrightarrow \lnot q
ightharpoonup \lnot p)$
 $A
ightharpoonup (Rule \ P)$
 $A
ightharpoonup (Rule \ T, p
ightharpoonup q \Leftrightarrow \lnot q
ightharpoonup \lnot p)$

$$A \rightarrow B \lor C \qquad (Rule \ P)$$

$$\neg (B \lor C) \rightarrow \neg A \qquad (Rule \ T \ i.e., \ p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$(\neg B \land \neg C) \rightarrow \neg A \qquad (Rule \ T)$$

$$\neg B \rightarrow (\neg C \rightarrow \neg A) \qquad (Rule \ T, (p \land q) \rightarrow r \Leftrightarrow (q \rightarrow r)$$

$$\neg B \rightarrow (A \rightarrow C) \qquad (Rule \ T, p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$B \rightarrow \neg A \qquad (Rule \ P)$$

$$A \rightarrow \neg B \qquad (Rule \ T, p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$A \rightarrow (A \rightarrow C) \qquad (Rule \ T, p \rightarrow q, q \rightarrow r \Leftrightarrow p \rightarrow r)$$

$$A \rightarrow B \lor C \qquad (Rule \ P)$$

$$\neg (B \lor C) \rightarrow \neg A \qquad (Rule \ T \ i.e., \ p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$(\neg B \land \neg C) \rightarrow \neg A \qquad (Rule \ T)$$

$$\neg B \rightarrow (\neg C \rightarrow \neg A) \qquad (Rule \ T, (p \land q) \rightarrow r \Leftrightarrow (q \rightarrow r)$$

$$\neg B \rightarrow (A \rightarrow C) \qquad (Rule \ T, p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$B \rightarrow \neg A \qquad (Rule \ P)$$

$$A \rightarrow \neg B \qquad (Rule \ T, p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$A \rightarrow (A \rightarrow C) \qquad (Rule \ T, p \rightarrow q, q \rightarrow r \Leftrightarrow p \rightarrow r)$$

$$(A \land A) \rightarrow C \qquad (Rule \ T)$$

$$A \rightarrow B \lor C \qquad (Rule \ P)$$

$$\neg (B \lor C) \rightarrow \neg A \qquad (Rule \ T \ i.e., \ p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$(\neg B \land \neg C) \rightarrow \neg A \qquad (Rule \ T)$$

$$\neg B \rightarrow (\neg C \rightarrow \neg A) \qquad (Rule \ T, (p \land q) \rightarrow r \Leftrightarrow (q \rightarrow r)$$

$$\neg B \rightarrow (A \rightarrow C) \qquad (Rule \ T, p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$B \rightarrow \neg A \qquad (Rule \ P)$$

$$A \rightarrow \neg B \qquad (Rule \ T, p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$(A \land A) \rightarrow C \qquad (Rule \ T)$$

$$A \rightarrow C \qquad (Rule \ P)$$

$$A \rightarrow B \lor C \qquad (Rule \ P)$$

$$\neg(B \lor C) \rightarrow \neg A \qquad (Rule \ T \ i.e., \ p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$(\neg B \land \neg C) \rightarrow \neg A \qquad (Rule \ T)$$

$$\neg B \rightarrow (\neg C \rightarrow \neg A) \qquad (Rule \ T, (p \land q) \rightarrow r \Leftrightarrow (q \rightarrow r)$$

$$\neg B \rightarrow (A \rightarrow C) \qquad (Rule \ T, p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$B \rightarrow \neg A \qquad (Rule \ P)$$

$$A \rightarrow \neg B \qquad (Rule \ T, p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$(A \land A) \rightarrow C \qquad (Rule \ T)$$

$$A \rightarrow C \qquad (Rule \ P)$$

$$D \rightarrow \neg C \qquad (Rule \ P)$$

$$A
ightarrow B
ightarrow C \qquad (Rule P)$$
 $\lnot(B \lor C)
ightarrow \lnot A \qquad (Rule T i.e., p
ightarrow q \Leftrightarrow \lnot q
ightarrow \lnot p)$
 $(\lnot B \land \lnot C)
ightarrow \lnot A \qquad (Rule T)$
 $\lnot B
ightarrow (\lnot C
ightarrow \lnot A) \qquad (Rule T, (p \land q)
ightarrow r \Leftrightarrow (q
ightarrow r)$
 $\lnot B
ightarrow (A
ightarrow C) \qquad (Rule T, p
ightarrow q \Leftrightarrow \lnot q
ightarrow \lnot p)$
 $A
ightarrow (A
ightarrow C) \qquad (Rule T, p
ightarrow q \Leftrightarrow \lnot q
ightarrow \lnot p)$
 $A
ightarrow (A
ightarrow A)
ightarrow C \qquad (Rule T)$
 $A
ightarrow C \qquad (Rule P)$
 $C
ightarrow \lnot D \qquad (Rule T, p
ightarrow q \Leftrightarrow \lnot q
ightarrow \lnot p)$

$$A \rightarrow B \lor C \qquad (Rule \ P)$$

$$\neg (B \lor C) \rightarrow \neg A \qquad (Rule \ T \ i.e., \ p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$(\neg B \land \neg C) \rightarrow \neg A \qquad (Rule \ T)$$

$$\neg B \rightarrow (\neg C \rightarrow \neg A) \qquad (Rule \ T, (p \land q) \rightarrow r \Leftrightarrow (q \rightarrow r)$$

$$\neg B \rightarrow (A \rightarrow C) \qquad (Rule \ T, p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$B \rightarrow \neg A \qquad (Rule \ P)$$

$$A \rightarrow \neg B \qquad (Rule \ P, p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$(A \land A) \rightarrow C \qquad (Rule \ T, p \rightarrow q, q \rightarrow r \Leftrightarrow p \rightarrow r)$$

$$(A \land A) \rightarrow C \qquad (Rule \ P)$$

$$D \rightarrow \neg C \qquad (Rule \ P)$$

$$C \rightarrow \neg D \qquad (Rule \ T, p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p)$$

$$A \rightarrow \neg D \qquad (Rule \ T, p \rightarrow q, q \rightarrow r \Leftrightarrow p \rightarrow r)$$

Exercise : $R \land (p \lor q)$ is a valid conclusion from the premises $p \lor q$, $q \rightarrow r$, $p \rightarrow M$ and $\neg M$.