CONTROLE CONTINU 2

Durée : 1h. Tous documents, calculatrices (sauf type collège) et téléphones interdits. La note tiendra compte de la rédaction.

Exercice 1. En justifiant, de façon précise, déterminer nature, limite éventuelle des suites de termes généraux : (*l'étude de la monotonie n'est pas demandée !*)

1)
$$u_n = 3 - \frac{1}{n^2} \sin(n\pi/3)$$
;

2)
$$u_n = -3n^3 + n^3 \cos(n^2)$$
.

Exercice 2. 1) Donner le domaine de définition ainsi que les variations de la fonction f donnée par

$$f(x) = \frac{7x - 12}{3x - 5}.$$

Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

$$u_0 = 3$$
 et pour tout entier naturel n , $u_{n+1} = \frac{7u_n - 12}{3u_n - 5}$.

- 2) Question bonus Cette suite est-elle de type connu?
- 3) Montrer à l'aide d'un raisonnement par récurrence que : pour tout entier naturel $n, 2 \le u_n \le 3$.
- 2) Etudier la monotonie de la suite (u_n) .
- 3) En déduire que la suite (u_n) converge.
- 4) On note $l = \lim u_n$. Trouver la valeur de l en justifiant la réponse.

Exercice 3. On rappelle que si $\alpha \in \mathbb{R}$, $u_n \to 0$ alors : $(1+u_n)^{\alpha}-1 \sim \alpha u_n$, $e^{u_n}-1 \sim u_n$; $\sin(u_n) \sim u_n$. 1) Pour chacune des relations suivantes, indiquer si elle est vraie ou fausse. Justifier les réponses : 1-1)

$$n^2 = o(n^{3/2})$$
 ; $n^{2/3} = \mathcal{O}(n^{3/2})$; $n + \sqrt{n}\sin(n) = \mathcal{O}(n)$; $n^2 + 2n\sqrt{n^2 + 1} \sim n^2$.

- 1-2) Question bonus $n \sin(\frac{1}{n^2}) = o(1)$.
- 2) Trouver, dans chacun des cas suivants, une suite équivalente aussi simple que possible : 2-1)

$$\sqrt{4n^2+n}$$
 ; $\sqrt{4n^2+n}-2n$.

2-2) Question bonus $\sqrt{4n^2+n}-2n-\frac{1}{4}$.

Exercice 4. Soient la suite $(z_n)_{n\in\mathbb{N}^*}$ définie par $z_n=e^{i\pi/3}-\frac{1}{n^2}e^{in/3}$ et la suite définie par récurrence par $u_0=1$ et $u_{n+1}=u_n-3i$.

- 1) Dire dans chacun des cas si c'est une suite bornée. Justifier.
- 2) Dire dans chacun des cas si elle converge et si oui, quelle est sa limite. Justifier.

Barême indicatif: Ex 1:4pts Ex 2:6pts Ex 3:5pts Ex 4:5pts