$\cdot U \perp X$

Afirmación 1: U⊥X

• Camino entre U y X : $U \leftarrow T \rightarrow X$

Este es un Common Cause $(A \leftarrow B \rightarrow C)$ con B = T.

- o Si *T* no está observado, el Common Cause es activo.
- o Si *T* está observado, el Common Cause es inactivo.
- Condición: No hay ninguna variable condicional, así que *T* no está observado.
- Resultado: El camino es activo, por lo tanto, *U* y *X* no son independientes .

Falsa

 $U \perp X|T$

Afirmación 2: U⊥X|T

• Camino entre U y X : $U \leftarrow T \rightarrow X$

Este es un Common Cause $(A \leftarrow B \rightarrow C)$ con B = T.

- o Si T está observado, el Common Cause es inactivo .
- Condición: Aquí, *T* está condicionalmente observado.
 - Resultado: El camino es inactivo, por lo tanto, *U* y *X* son independientes condicionalmente dado *T* .

Verdadera

· $V \perp W|Y$

Afirmación 3: V⊥W |Y

Camino entre V y W: V→Y←W

Este es un Common Effect ($A \rightarrow B \leftarrow C$) con B = Y.

- o Si Y está observado, el Common Effect es activo.
- o Si Y no está observado, el Common Effect es inactivo.
- Condición: Aquí, Y está condicionalmente observado.
- Resultado: El camino es activo, por lo tanto, *V* y *W* no son independientes condicionalmente dado *Y*.

Falsa

$V \perp W|T$

Afirmación 4: V₁W|T

Camino entre V y W: V→Y←W

Este es un Common Effect ($A \rightarrow B \leftarrow C$) con B=Y.

- o Si Y está observado, el Common Effect es activo.
- o Si Y no está observado, el Common Effect es inactivo.
- · Condición: Aquí, T está condicionalmente observado, pero Y no está observado.
- Resultado: El camino es inactivo, por lo tanto, V y W son independientes condicionalmente dado T.

Verdadera

P(A D,X)			
+d	+x	+a	0.9
+d	+x	-a	0.1
+d	-x	+a	0.8
+d	-x	-a	0.2
-d	+x	+a	0.6
-d	+x	-a	0.4
-d	-x	+a	0.1
-d	-x	-a	0.9

P(D)
+d	0.1
-d	0.9

P(X D)			
+d	+x	0.7	
+d	-x	0.3	
-d	+x	0.8	
-d	-x	0.2	

P(B D)			
+d	+b	0.7	
+d	-b	0.3	
-d	+b	0.5	
-d	-b	0.5	

a) P(+d,+a)

Variables de Consulta: D, A

Ocultas: X

Evidencia: No hay

Eliminación de Variables: Eliminar X

Tablas a trabajar:

P(D) P(X|D) P(A|D,X)

Sabemos según la pregunta D es +d y A es +a por tanto podemos reducir las tablas a:

P(+d) P(X|+d) P(+a|+d,X)

P(+d) = 0.1

P(X|+d)

D	Х	P(X D)
+d	+x	0.7
+d	-X	0.3

P(+a|+d,X)

D	Х	Α	P(X D)
+d	+x	+a	0.9
+d	-x	+a	0.8

Join: P(X|+d)*P(+a|+d,X)

$$(0.7*09) + (0.3*0.8) = 0.63 + 0.24 = 0.87$$

Sum(eliminación): P(+d)*P(+a,X,+d) = 0.1*0.87 = 0.087

b) **P(+d|+a)** =
$$\frac{P(+d,+a)}{P(+a)}$$

Se obtuvo P(+d,+a) del inciso anterior o sea 0.087

$$P(+a) = \Sigma P(+a,D) = P(+a,+d) + P(+a,-d)$$

P(+a,+d) es lo mismo que P(+d,+a) o sea 0.087, por tanto solo debemos encontrar P(+a,-d)

 $P(+a,-d) = \Sigma P(+a,X,-d)$ entonces eliminación de variables, para eliminar X

$$\Sigma P(+a,X,-d) = P(+a \mid -d, X) P(X \mid -d) P(-d)$$

D	Х	Α	P(X D)
-d	+x	+a	0.6
-d	-x	+a	0.1

D	Х	P(X D)
-d	+x	0.8
-d	-X	0.2

0.9*(0.6*08)+(0.2*0.1)=0.45

Entonces P(+d|+a) =
$$\frac{P(+d,+a)}{P(+a)} = \frac{P(+d,+a)}{P(+a,+d)+P(+a,-d)} = \frac{0.087}{0.087+0.45} = 0.162$$

c)
$$P(+d|+b) = \frac{P(+d,+b)}{P(+b)} = \frac{P(+b|+d)P(+d)}{P(+b)}$$

P(+b|+d) lo conocemos de la tabla P(B|D) y tambien P(+d) de P(D) por tanto solo queda calcular P(+b) = Σ P(+b,D) = P(+b,+d) + P(+b,-d) P(+b,+d) + P(+b,-d) P(+b|+d)

Según las tablas

$$P(-d) = 0.9$$

$$P(+b|-d) = 0.5$$

$$P(+d) = 0.1$$

$$P(+b|+d) = 0.7$$

$$P(+b) = \Sigma P(+b,D) = (0.9*0.5)+(0.1*0.7) = 0.52$$

Sabiendo que P(+b|+d) = 0.7 y P(+d) = 0.1

Entonces P(+d|+b) =
$$\frac{0.7*0.1}{0.52}$$
 = 0.135

Serie 3

M	F	P(L = +l M, F)
+m	+f	0.05
+m	-f	0.01
-m	+f	0.9
-m	-f	0.02

Valor de <i>M</i>	Símbolo	Probabilidad <i>P(M</i>)
"Tiene clase matutina"	+m	0.7
"No tiene clase matutina"	-m	1 - 0.7 = 0.3

Valor de F	Símbolo	Probabilidad $P(F)$
"Amigos regresan"	+ <i>f</i>	0.8
"Amigos no regresan"	-f	1 - 0.8 = 0.2

a) Fórmula para la distribución de probabilidad conjunta

La red Bayesiana tiene la siguiente estructura:

- M (clase matutina) y F (amigos regresan) son nodos padres de L (disfrute universitario)
- La distribución de probabilidad conjunta en una red bayesiana se expresa como:

$$P(X_1, X_2, ..., X_n) = \prod_{i=1}^{n} P(X_i \mid Padres(X_i))$$

Respuesta:

$$P(M, F, L) = P(M) \times P(F) \times P(L \mid M, F)$$

Donde:

- P(M) es la probabilidad marginal de tener clase matutina
- P(F) es la probabilidad marginal de que los amigos regresen
- P(L|M,F) es la probabilidad condicional de disfrutar dado M v F (tabla proporcionada)

b) Probabilidad de que sus amigos regresen y no tenga clase matutina

Queremos calcular P(F=+f,M=-m):

Datos:

- P(F=+f)=0.8
- P(M=+m)=0.7, por lo tanto P(M=-m)=1-0.7=0.3

Como M y F son independientes (no tienen padres en común en la red):

$$P(F = +f, M = -m) = P(F = +f) \times P(M = -m) = 0.8 \times 0.3 = 0.24$$

Respuesta: La probabilidad es 0.24 o 24%.

c) Probabilidad de que sus amigos regresen dado que le está gustando el semestre

Queremos calcular P(F=+f|L=+I). Usaremos el teorema de Bayes:

$$P(F = +f \mid L = +l) = \frac{P(L = +l \mid F = +f) \times P(F = +f)}{P(L = +l)}$$

1. Calcular $P(L=+I \mid F=+f)$

Marginalizamos sobre M:

$$P(L = +l \mid F = +f) = \sum_{M} P(L = +l \mid M, F = +f) P(M)$$

$$= P(L = +l \mid M = +m, F = +f) P(M = +m) + P(L = +l \mid M = -m, F = +f) P(M = -m)$$

$$= 0.05 \times 0.7 + 0.9 \times 0.3$$

$$= 0.035 + 0.27 = 0.305$$

2. Calcular P(L=+I)P(L=+I)

Marginalizamos sobre M y F:

$$P(L = +l) = \sum_{M,F} P(L = +l \mid M,F) P(M) P(F)$$

$$= P(L = +l \mid M = +m,F = +f) P(M = +m) P(F = +f) +$$

$$P(L = +l \mid M = +m,F = -f) P(M = +m) P(F = -f) +$$

$$P(L = +l \mid M = -m,F = +f) P(M = -m) P(F = +f) +$$

$$P(L = +l \mid M = -m,F = -f) P(M = -m) P(F = -f)$$

$$= 0.05 \times 0.7 \times 0.8 + 0.01 \times 0.7 \times 0.2 + 0.9 \times 0.3 \times 0.8 + 0.02 \times 0.3 \times 0.2$$

$$= 0.028 + 0.0014 + 0.216 + 0.0012$$

$$= 0.2466$$

3. Aplicar Bayes

$$P(F = +f \mid L = +l) = \frac{0.305 \times 0.8}{0.2466}$$
$$= \frac{0.244}{0.2466} \approx 0.9895$$

Respuesta: La probabilidad es aproximadamente 0.9895 o 98.95%.

1. Calcular los log-odds (z) para cada dato

La fórmula de los log-odds es:

$$z=\beta_0+\beta_1\cdot X$$

Donde:

- β 0=-58.0264 (intercepto)
- β 1=0.0116 (coeficiente de ingresos)

Aplicamos para cada cliente:

Ingresos (X)	Cálculo de z	Log-odds (z)
2000	-58.0264+0.0116·2000	-58.0264+23.2=-34.8264
4000	-58.0264+0.0116·4000	-58.0264+46.4=-11.6264
6000	-58.0264+0.0116·6000	-58.0264+69.6=11.5736
8000	-58.0264+0.0116·8000	-58.0264+92.8=34.7736

2. Aplicar la función sigmoide para obtener probabilidades

La sigmoide convierte log-odds (z) en probabilidades (P):

$$P = \frac{1}{1 + e^{-z}}$$

Calculamos para cada z:

Ingresos (X)	Log-odds (z)	Cálculo de P	Probabilidad <i>P</i>	
2000	-34.8264	$\frac{1}{1 + e^{34.8264}}$	≈0 (prácticamente 0)	

4000	-11.6264	$\frac{1}{1 + e^{11.6264}}$	≈0 (muy cercano a 0)
6000	11.5736	$\frac{1}{1 + e^{-11.5736}}$	≈1 (muy cercano a 1)
8000	34.7736	$\frac{1}{1 + e^{-34.7736}}$	≈1 (prácticamente 1)

Nota:

- Si z es negativo grande, *P*≈0.
- Si z es positivo grande, *P*≈1.

3. Predecir para nuevos valores de X

Usamos el mismo proceso para $X=\{3000,5000,7000\}$, con umbral 0.5:

Ingresos (X)	Probabilidad <i>P</i>	Predicción	
3000	∞	0 (no compra)	
5000	0.493	0 (no compra)	
7000	≈1	1 (compra)	

Interpretación

- El modelo "aprendió" que:
 - Clientes con ingresos altos (X≥6000) tienden a comprar (y=1).
 - Clientes con ingresos bajos (X≤5000) no compran (y=0).
- El punto de corte está cerca de X=5000:
 - o En *X*=5000, *P*≈0.5, lo que indica incertidumbre.

Calcular las métricas clave:

Precisión para spam y Recall para spam. El objetivo es encontrar el modelo que:

- Maximice la precisión para spam (evitar falsos positivos, FP).
- Mantenga un buen recall (capturar la mayoría del spam, TP).

Métricas:

- Precisión (Precision): Cuando el modelo predice la clase positiva, ¿cuántas veces acierta? = TP / (TP + FP)
- Sensibilidad (Recall): Proporción de ejemplos positivos correctamente clasificados.
 - o sensibilidad = TP / (TP + FN)

Modelo	Precisión (spam)	Recall (spam)	Resultado
Α	58.3%	70%	Mejor equilibrio : Precisión aceptable y recall decente.
В	31.0%	90%	Más spam detectado (TP) , pero muchos FP (200).
С	80%	20%	Alta precisión, pero recall muy bajo (pierde 80% del spam).
D	14.3%	50%	El peor: baja precisión y recall mediocre.

• a): El Modelo A es el mejor equilibrado.

Para resolver la pregunta b), en la tabla anterior vemos que el modelo B es la respuesta, porque prioriza la cantidad de spam detectado (recall alto), incluso si eso implica clasificar incorrectamente muchos no-spam como spam (FP altos), o de otra manera:

Modelo	TP (spam detectado)	FP (errores graves)	Recall	Precisión
Α	70	50	70%	58.3%
В	90 (más alto)	200 (alto)	90%	31.0%
С	20 (bajo)	5 (más bajo)	20%	80%
D	50	300 (más alto)	50%	14.3%

• b): El Modelo B detecta más spam (TP alto) pero con muchos errores (FP alto).

Nota: Naive Bayes asume independencia entre características, lo que puede explicar los altos FP en algunos modelos (ej. B).