2012/2013

N.B.

- 1- Les réponses doivent être justifiées.
- 2- Les réponses doivent être rédigées dans un seul cahier d'examen.
- 3- Il sera tenu compte de la présentation du cahier d'examen.

Solution de l'exercice 1:

Soit $n \in \mathbb{N}^*$ et soit le \mathbb{R} - e.v. $M_n(\mathbb{R})$.

1- On dit qu'une matrice $A \in M_n(\mathbb{R})$ est **orthogonale** si elle vérifie : $({}^tA) . A = I_n$. Soit $M \in M_n(\mathbb{R})$ une matrice orthogonale.

 \mathbf{a} / Donner les valeurs possibles de $\det M$.

Solution : On a

$$({}^{t}M) . M = I_n \Rightarrow \det(({}^{t}M) . M) = \det I_n$$

 $\Rightarrow \det({}^{t}M) . \det M = 1$
 $\Rightarrow (\det M)^2 = 1$

Ce qui veut dire que $\det M = 1$ ou $\det M = -1$ (1pt).

 \mathbf{b} / En déduire que M est inversible puis donner son inverse.

Solution: D'après la question a/, det $M \neq 0$ donc la matrice M est inversible (1pt). De plus:

Comme M est orthogonale par hypothèse, elle vérifie $({}^{t}M) . M = I_n$, ce qui veut dire que M est inversible à gauche et donc inversible d'après le cours, et $M^{-1} = {}^t M.(1pt)$

2- Soit $N \in M_n(\mathbb{R})$. Montrer que $({}^tN)$ N est une matrice symétrique et que son déterminant est positif ou nul.

Solution : On a :

$$^{t}\left(\left(^{t}N\right).N\right)=\left(^{t}N\right).^{t}\left(^{t}N\right)=\left(^{t}N\right).N$$

Ce qui veut dire que la matrice $({}^{t}N)$. N est une matrice symétrique. **(0.5pt)** De plus :

$$\det (({}^{t}N).N) = \det ({}^{t}N).\det N = (\det N)^{2}$$

Ainsi det $(({}^{t}N).N) \ge 0.(1pt)$

3- Supposons que n est impair et soit $A \in M_n(\mathbb{R})$ telle que A est antisymétrique. Déterminer $\det A$.

Solution : On a :

$${}^{t}A = -A \Rightarrow \det({}^{t}A) = \det(-A)$$

$$\Rightarrow \det({}^{t}A) = (-1)^{n} \det(A)$$

$$\Rightarrow \det(A) = -\det(A)$$

$$\Rightarrow 2 \det(A) = 0$$

D'où : $\det(A) = 0.(2.5pts)$

Solution de l'exercice 2:

Soit la matrice:

$$A_{\alpha} = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - \alpha & \alpha - 2 & \alpha \end{pmatrix} \in M_3(\mathbb{R}).$$

1- a/- Déterminer det A_{α} .

Solution: On a

$$\det A_{\alpha} = \begin{vmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 - \alpha & \alpha - 2 & \alpha \end{vmatrix}, \text{ on remplace la colonne 3 par (la colonne 3 - la colonne 1)}$$

$$= \begin{vmatrix} 1 & 0 & 0 \\ -1 & 2 & 2 \\ 2 - \alpha & \alpha - 2 & 2\alpha - 2 \end{vmatrix}, \text{ on développe par rapport à la 1ère ligne}$$

$$= \begin{vmatrix} 2 & 2 \\ \alpha - 2 & 2\alpha - 2 \end{vmatrix} = 2 \begin{vmatrix} 1 & 1 \\ \alpha - 2 & 2\alpha - 2 \end{vmatrix} = 2\alpha. \text{(2pts)}$$

b/- Pour quelles valeurs de α la matrice A_{α} est-elle inversible?

Solution: On a le résultat suivant:

 A_{α} inversible si et seulement si $\det A_{\alpha} \neq 0$

D'où A_{α} inversible si et seulement si $\alpha \neq 0.(1pt)$

2- On pose $\alpha = 0$ et soit $f \in End(\mathbb{R}^3)$, $B = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 et $A_0 = M_B(f)$.

 $\mathbf{a}/\mathbf{-}$ Déterminer l'endomorphisme f.

Solution: Soit $(x, y, z) \in \mathbb{R}^3$ et $(x', y', z') \in \mathbb{R}^3$, on a:

$$f(x,y,z) = \begin{pmatrix} x',y',z' \end{pmatrix} \Leftrightarrow A_0. \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

$$\Leftrightarrow \begin{pmatrix} x+z \\ 2y-x+z \\ 2x-2y \end{pmatrix} = \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix}$$

D'où pour tout $(x, y, z) \in \mathbb{R}^3$, on a : f(x, y, z) = (x + z, 2y - x + z, 2x - 2y).(1.5pt)

b/- Sans effectuer de calculs dire si rg(f) = 3. Justifier.

Solution : On a : $rg(f) = rg(A_0) < 3$ car d'après la question **1-b/**, la matrice A_0 n'est pas inversible. (1pt)

c/- Soit $C=(v_1=(1,0,1)\,,\quad v_2=(1,1,0)\,,\quad v_3=(-1,-1,1))$ une base de \mathbb{R}^3 . Déterminer la matrice P de passage de B vers C.

Solution: La matrice de passage de B vers C, est:

$$P = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} . (1pt)$$

d/- En déduire $A_0'=M_C(f)$. Solution : On a : $A_0'=P^{-1}.A_0.P$. On commence d'abord par calculer P^{-1} qui représente la matrice de passage de C vers B, pour cela il suffit d'exprimer les vecteurs de la base canonique dans la base C.

On a:

$$v_1 = e_1 + e_3$$
, $v_2 = e_1 + e_2$ et $v_3 = -e_1 - e_2 + e_3$.

On obtient, après résolution:

$$e_1 = v_1 - v_2 - v_3$$
, $e_2 = -v_1 + 2v_2 + v_3$, $e_3 = v_2 + v_3$.

D'où:

$$P^{-1} = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix} . (2pts)$$

Enfin:

:

$$A_0' = P^{-1}.A_0.P = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 2 & -2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
(1pt)

e/- En déduire A_0^n pour tout $n \in \mathbb{N}^*$.

Solution : D'après la question précedente $A'_0 = P^{-1}.A_0.P$, doù $A_0 = P.A'_0.P^{-1}$, ainsi pour $n \in \mathbb{N}^*$:

$$A_0^n = \left(P.A_0'.P^{-1}\right)^n$$

= $\left(P.A_0'.P^{-1}\right) \cdot \left(P.A_0'.P^{-1}\right) \cdot \dots \cdot \left(P.A_0'.P^{-1}\right) (n \text{ fois})$

En utilisant l'associativité du produit des matrices et la relation $P^{-1}.P = I_n$, on obtient

 $A_0^n = P. \left(A_0^{'} \right)^n . P^{-1}$ (1.5pt)

Mais :
$$(A'_0)^n = \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, d'où :

$$A_0^n = P. \left(A_0'\right)^n . P^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2^n & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 2^n - 1 & 2 - 2^n & 1 \\ -1 & 2 & 1 \\ 2^n & -2^n & 0 \end{pmatrix} . (\mathbf{2pts})$$