Distance Vector Multicast Routing Protocol (DVMRP)

- Multicast routing protocol, RFC1075 (1988).
- Used in first internet multicast backbone (MBONE, 1992).
- IPv4 address types: unicast, broadcast, multicast.
- Not connection-oriented, best-effort delivery (IP).
- Not guarenteed to reach all group members.
- Hosts are free to join or leave a group at any time.
- Sender need to be aware of group members.
- Multicast conserves bandwidth by forcing network to do packet replication.
- Radio / VIdeo broadcasts, Video conferencing, Distance learning
- Shared applications, Multiplayer gaming, Chat rooms
- Advertisements, Stocks, Distributed databases

- Interconnected subnetworks and multicast routers.
- Created by Jacobson, Deering, Casner (1992).
- Uses tunnels for connecting through unicast routers.
- Uses DVMRP, MOSPF for routing along with IGMP.
- IP Address: 224.2.0.0 (audio 64kbps, video 120 kbps)
- IETF meetings, US House & Senate sessions
- NASA Space shuttle missions, Satellite weather photos
- **1992**: 40 subnets in 4 countries
- 1993: Live band performance by Severe Tire Damage
- **1995**: M-bone links in Russia, Antarctica
- **1996**: 2800 subnets in 25 countries
- 2008: Virtual video conferencing system in use

Major MBONE Routers and Links

Multicast Addressing

- Class D IP addresses are used for multicast.
- Start with "1110" followed by 28-bit group ID.
- Fixed vs Transient multicast IP (logical address).
- 224.0.0.0: Reserved Class D
- 224.0.0.1: All multicast devices
- 224.0.0.2: All multicast routers
- 224.0.0.4: All DVMRP routers
- 224.0.0.5: All OSPF routers
- 224.0.1.11: IETF-1-Audio
- 224.0.1.12: IETF-1-Video
- 224.0.0.255: Last reserved for routing
- 239.0.0.0: Site-local applications
- 239.255.255.255: Last Class D

0	1	2	3	3	1
1	1	1	0	Multicast Group ID	
				28 bits	_

Distance Vector Routing (eg. RIP)

Dest	Cost	Next Hop
A	1	A
C	3	C
E	9	E

Initial Routing table at B

Dest	Cost	Next Hop
A	1	A
C	3	C
D	7	C
E	9	E

Final Routingstable at B

Periodic update helps when a route becomes invalid

$$d_x(y) = \min_{v} \{c(x,v) + d_v(y)\}$$

Bellman-Ford distance update equation

- Find the **least cost path** between 2 nodes.
- Also called Bellman-Ford algorithm (distributed).
- Each node maintains a routing table.
- Originally used in ARPAnet, RIP (now used rarely).
- Initial: Distance (cost) to its neighbours is known.
- Goal: Distance to all neighbours & next-hop known.
- Routing table info is shared with neighbours (except next-hop).
- On receiving message, routing table updated with min-cost path.
- After N rounds, N+1 hop paths become known.
- Triggered update: link / node failure or cost change
- Periodic update: Still alive, update DV if some route becomes invalid

Multicast Flooding

Each Host Receives the Multicast Stream

Multicast Stream is filtered by Switch through Multicast MAC address

- Router / Host sends packet on all interfaces.
- If router has been seen packet before, its discarded.
- Used on local network for multicast communication.
- Filtering can be done with Multicast MAC address.

48-bit Multicast-Mapped Hardware Address (01-00-5E-4D-62-B1)

Internet Group Management Protocol (IGMP)

Multicast Service Model Overview

IGMPv2 – Maintaining a Group

- Hosts tell router about group membership (RFC 1112).
- Router uses this to help route multicast packets.
- Filtering can be done with IGMP snooping by switch.
- Report: Host says to router, "I want to receive multicast data for X.X.X.X.".
- Query: Router asks hosts, "Is anone still interested in data for X.X.X.X."?
- Report is sent to address X.X.X.X, and received by other members & router.

Reverse Path Multicasting (RPM)

- Forward packet that arrives on shortest path to source.
- Router discards packet if it arrives on any other interface. RPB
- Delivery tree is truncated if leaf subnet has no members. TRPB
- Prune message is sent if all child links are truncated. RPM
- Opt: Forward only if on downstream router's shortest path. RPB
- Duplicates are possible since shortest path is source-based.

DVMRP

- It is a **distance vector** multicast protocol, like RIP.
- Suitable for use within autonomous system.
- Tunnels are used between non-multicast routers.
- Routers need to run a unicast protocol too.
- Reverse path multicasting (RPM) used between routers.
- Intially (S,G) packet is broadcasted using TRPB.
- IGMP is used to find group members in subnets.
- Routers send **prune** message to parent if subnet has no group member.
- Routers send graft message to parent if subnet has new group member.
- **DVMRP**, MOSPF, PIM: within Autonomous System
- MBGP: between Autonomous Systems

d. RPM (after grafting)

Source Subnet	Subnet Mask	From Gateway	<u>Metric</u>	Status	TTL	<u>InPort</u>	<u>OutPorts</u>	Source Subnet	<u>Multicast Group</u>	TTL	<u> InPort</u>	<u>OutPorts</u>
128.1.0.0	255.255.0.0	128.7.5.2	3	v_p	200	1	2,3	128.1.0.0	224.1.1.1	200	1 Pr	2р Зр
		128.7.5.2		_			•		224.2.2.2	100	1	2p 3
128.3.0.0	255.255.0.0	128.6.3.1	2	υp	150	2	1,3		224.3.3.3	250	1	2
128.4.0.0	255.255.0.0	128.6.3.1	4	$v_{ m p}$	200	1	2	128.2.0.0	224.1.1.1	150	2	2p 3
												-

DVMRP Datagrams

- DVMRP uses **IGMP** to exchange routing datagrams (type 3).
- Message is a stream of **tagged data** (key=value, ... max 512B).
- Routers provide **periodic** and **triggered** updates.
- Messages sent to multicast address 224.0.0.4 (TTL=1).
- Request: request route to sources
- Response: provide route to sources
- **Non-membership report**: prune path for T seconds (no member)
- Non-membership cancellation: graft path (new member)
- NULL, Flags0, Infinity, Metric
- Address Family Indicator (AFI), Subnet mask
- Destination Address (DA)
- Requested Destination Address (RDA)
- Non Membership Report (NMR)
- Non Membership Report Cancel (NMR Cancel)

```
|Version| Type |
                  Subtype
DVMRP header
Subtype 1,
AFI 2, Metric 2, Infinity 16, Subnet Mask 255.255.255.0
{2} {2} {4} {2}
                  {6} {16}
                                {3} {1} {255} {255} {255} {0}
DA Count=1 [128.2.251.231]
{7} {1} {128} {2} {251} {231}
Response of route for 128.2.251.231 with metric 2, INF=16, SM=255.255.255.0
Subtype 1,
AFI 2, Metric 2, Infinity 16, Subnet Mask 255.255.255.0
{2} {2} {4} {2}
                   {6} {16}
                                 {3} {1} 255} {255} {255} {0}
DA Count=2 [128.2.251.231] [128.2.236.2]
{7} {1} {128} {2} {251} {231} {128} {2} {236} {2}
Response of route for 128.2.251.231 & 128.2.236.2 with metric 2, INF=16, SM=255.255.255.0
Subtype 2, AFI 2, RDA Count = 0
          {2} {2} {8} {0}
Request all routes (to source).
```

```
Subtype 3,

AFI 2, NMR Count = 3 [224.2.3.1, 20]
{2} {2} {10} {3} {224} {2} {3} {1} {0} {0} {0} {20}

[224.5.4.6, 20] [224.7.8.5, 40]
{224} {5} {4} {6} {0} {0} {20} {224} {7} {8} {5} {0} {0} {0} {40}

NMR for groups 224.2.3.1 & 224.5.4.6 (20s), 224.7.8.5 (40s)
```