CSE 2312 – Homework #1

Assigned: Thursday, June 8, 2017

Due: Thursday, June 15, 2017 at the end of class

Note the following about the homework:

1. You must show your work to receive credit.

2. If your submission has more than one page, staple the pages. If I have to staple it for you, the cost is 10 points.

Assignment:

For each problem, include units where appropriate.

- 1. Make the following base conversions.
 - (a) 30_{10} to binary
 - (b) 40_{10} to hexadecimal
 - (c) 101010_2 to decimal
 - (d) 0xC6 to binary
 - (e) 1111011_2 to hexadecimal
- 2. Given the following strings in C (i.e., arrays of characters), what are the ASCII values of the characters stored? You do not need to represent the terminating null. Give your values in hexadecimal.
 - (a) "Cat"
 - (b) "2017"
- 3. For each of the following number of bits, how many bit arrangements are there? Do not leave your answer as something to something power. Give the base-10 number as we would normally write the value, for example, 32768.
 - (a) 4 bits
 - (b) 10 bits
 - (c) 12 bits
 - (d) 20 bits
- 4. Express each of these numbers in binary. Assume the number is an 8-bit signed integer that uses two's complement representation.
 - (a) -5_{10}
 - (b) -16_{10}
 - (c) -93_{10}

- (d) -127_{10}
- 5. For each problem below, convert the base-10 numbers to binary and then perform the arithmetic on the binary representation of the numbers. Give the result in binary and base-10, where the base-10 value is by interpreting the result as an 8-bit signed integer in two's complement. If an overflow or carry occurs, say so. By carry, I am only referring to a carry out of the most significant bits added. Assume each number is an 8-bit signed integer that uses two's complement representation.
 - (a) $64_{10} + 62_{10}$
 - (b) $100_{10} + 30_{10}$
 - (c) $-70_{10} + 50_{10}$
 - (d) 123₁₀ 14₁₀
- 6. Express each of these base-10 numbers in binary. For example, 5.5 would be 101.1_2 .
 - (a) 0.40625
 - (b) 17.03125
 - (c) 0.65625
 - (d) 578.875
- 7. Represent each of the numbers from problem 6 in the IEEE 754 single precision format. When writing the bits, separate the sign, exponent, and fraction parts to make the results easier to read.
- 8. Convert these IEEE 754 single precision bit patterns to the equivalent base-10 number.

 - (b) 0 | 1000 0111 | 0100 1101 1010 0000 0000 000