Manufacturing System Analysis Experiment

MRP

1. Experiment Overview

■ Title

Development and nervousness observation of MRP using Excel

Objective

- Understanding the concept and fundamental of MRP
- Developing the MRP for the product with simple BOM structure in Excel
- Analyzing the nervousness of MRP by observing the changes in MRP calculation results according to the changes in demand

- Material Requirement Planning (MRP)
 - One of the production management tasks
 - First appeared in 1970s, but had difficulty in application due to lack of database technology
 - Technique to manage the material flow from raw material to final product
 - To supply the needed resource(what) of needed amount (how much) at needed time (when) to needed place (where)
 - Allow supply and demand for materials responding promptly to changes
 - Continued to MRP (Material Resource Planning) II concept in 1980s
 - Currently, combined to ERP (Enterprise Resource Planning)

Assumptions

- > Known deterministic demands
- > Fixed, known production lead times
- > Infinite capacity

Key terms

- > Netting : net requirements against projected inventory
- ➤ Lot sizing : planned order quantities
- > Time phasing : panned orders backed out by lead time
- > BOM Explosion : gross requirements for components

■ Lot sizing types

- 1. <u>Lot-for-lot</u>
 - The simplest lot sizing rule
 - Simply produce in period t the net requirements for period t
 - No inventory at the end of any period

■ Lot sizing types (cont.)

- 2. <u>Fixed Order Quantity</u>
 - To order a predetermined quantity whenever an order is placed
 - Choosing an appropriate fixed order quantity is very similar to EOQ problem, however, in the EOQ model, it assumes a constant demand rate whereas in MRP, demand need not be constant
 - We can make use of the EOQ model by replacing the constant demand of that model with an estimate of the average demand \overline{D}

$$Q = \sqrt{\frac{2A\overline{D}}{h}}$$

 $A = setup \ cost,$ $h = inventory \ carrying \ cost$

■ Lot sizing types (cont.)

- 3. <u>Fixed Order Period</u>
 - If we are going to produce in period t, then produce all the demand for period t, t+1, ..., t+P+1, where P is a parameter of the policy. If P=1, the policy is lot-for-lot.
 - If there are periods with no demand, they are skipped
 - The way to determine an optimal value for P is from EOQ model

$$Q = \sqrt{\frac{2A\overline{D}}{h}}$$
 and $P = \frac{Q}{D}$

- Lot sizing types (cont.)
 - 4. <u>Part-Period Balancing</u>
 - To balance the inventory carrying cost and setup cost
 - That is, making the inventory carrying cost as close to the setup cost as possible

Inputs

- ➤ <u>Master Production Schedule(MPS)</u>: due dates and quantities for all top level items
- ➤ <u>Bills of Material (BOM)</u>: for all parent items
- ➤ <u>Inventory Status</u>: (on hand plus scheduled receipts) for all items
- > Planned Lead times: for all items

3. Experiment Design

Yonsei Co. is the company that produces tables. BOM (Bill Of Materials) for the items needed to make tables is given the next slide. This company uses MRP to manage the inventory, and all the items are ordered using [Lot-for-Lot]. However, conditions are changing. Company wants to try different lot sizing rules for the Item C and D because their production is fluctuating. Company considers [Fixed Order Quantity] as another lot sizing rule. If [Fixed Order Quantity] is used for Item C and D, order quantity Q would be 1500 and 1400 each. If you were to make a recommendation to Yonsei Co., which lot sizing rule would you choose? Explain by comparing [Lot-for-Lot] and [Fixed Order Quantity].

3. Experiment Design

■ BOM (Bill Of Materials)

3. Experiment Design

■ MPS (Master Production Schedule) for Tables of Yonsei Co.

Week	3	7	11	12	15
Demand	160	180	170	50	160

■ Item Master and Inventory Data

Item	Lead time	Projected on-hand	Schedule	ed receipt
			amount	week
Table	1	40		
A	1	0	80	14
В	2	500		
С	3	300	40	9
D	1	220	200	5
D	1	320	120	13

Step 1. Make a table to insert given data

Table														
Lead time	1													
On-hand	40													
Scheduled receipt	0													
Lot sizing ru	ıle = lot-fo	r-lot												
Contents		1	2	3	4	5	6	7	8	9	10	11	12	13
Gross requiren	nent			160				180				170	50	
Projected on-hand	40	40	40	40	0	0	0	0	0	0	0	0	0	0
Scheduled rec	eipts													
Net requireme	ents	0	0	120	0	0	0	180	0	0	0	170	50	0
Planned order re	eceipt	0	0	120	0	0	0	180	0	0	0	170	50	0
Planned order re	elease	0	120	0	0	0	180	0	0	0	170	50	0	0

Step 2. Projected on-hand at time t

= [(Projected on-hand + Planned order receipt - Gross requirements) of t - 1] + [Scheduled receipt of t]

Step 3. Gross requirement

= Planned or release of upper level item * number of item required

: × ✓ f _x	=2*D10+D11						
В	8	D	E	F	G	Н	1
Lot sizing ru	ıle = lot-fo	r-lot					
Contents		1	2	3	4	5	6
Order releas	Order release A		0	0	0	180	0
Order releas	e B	0	0	0	700	0	0
Gross requires	ment	=2*D10+D	0	0	700	360	0
Projected on-hand	300	300	60	60	60	0	0
Scheduled rec	eipts						
Net requirements		0	0	0	640	360	0
Planned order receipt		0	0	0	640	360	0
Planned order r	elease	640	360	0	0	680	500

Step 4. Net requirement

= Gross requirement – Projected on-hand

Net requirement is positive value (MAX function)

$f_{x} = \text{MAX}(D10-D11,0)$										
В	С		D	Е	F	G	Н	1		
Lot sizing rule = lot-for-lot										
Contents	Contents		1	2	3	4	5	6		
Gross requirer	nent				160					
Projected on-hand	40		1 0	40	40	0	0	0		
Scheduled rec	eipts									
Net requirem	Net requirements		X(D10	0	120	0	0	0		
Planned order receipt			0	0	120	0	0	0		
Planned order re	Planned order release		0	120	0	0	0	180		

Step 5. Planned order receipt

a. [Lot-for-Lot] case

Planned order receipts = Net requirements

: × ✓ fx	=D15						
В	С	D	Е	F	G	Н	1
Lot sizing ru	le = lot-for	r-lot					
Contents	Contents		2	3	4	5	6
Order release	Order release A		0	0	0	180	0
Order release	e B	0	0	0	700	0	0
Gross requirer	nent	240	0	0	700	360	0
Projected on-hand	300	300	60	60	60	0	0
Scheduled rece	eipts						
Net requirements		0	0	0	640	360	0
Planned order re	Planned order receipt		0	0	640	360	0
Planned order re	elease	640	360	0	0	680	500

Step 5. Planned order receipt

b. [Fixed order quantity] case

If net requirements is bigger than 0, order fixed order quantity Q (IF function)

(Q for Item
$$C = 1500$$
, Q for Item $D = 1400$)

: × ✓ f _x =IF(D27>0,\$F\$20,0)											
ВС	D	Е	F	G	Н						
Lot sizing rule = Fixed order	r quantity	Q=	1500								
Contents	1	2	3	4	5						
Order release A	120	0	0	0	180						
Order release B	0	0	0	700	0						
Gross requirement	240	0	0	700	360						
Projected on-hand 300	300	60	60	60	860						
Scheduled receipts											
Net requirements	0	0	0	640	0						
Planned order receipt	=IF(D27>0,	0	0	1500	0						
Planned order release	1500	0	0	0	1500						

Step 6. Planned order release

Same as Planned order receipt, but consider the **Lead time**

× ✓ f _x =F15							
В	С	D	E	F	G	Н	I
В							
Lead time	2						
On-hand	500						
Scheduled receipt	0						
Lot sizing r	ule = lot-fo	r-lot					
Contents		1	2	3	4	5	6
Order release	table	0	120	0	0	0	180
Gross require	ment	0	480	0	0	0	720
Projected on-hand	500	500	500	20	20	20	20
Scheduled rec	eipts						
Net requireme	Net requirements		0	0	0	0	700
Planned order receipt		0	0	0	0	0	700
Planned order r	elease	=F15	0	0	700	0	0

Step 7. Repeat the same steps for all items

Step 8. Compare the MRP results when lot sizing rule is [Lot-for-Lot] and [Fixed Order Quantity] for Item C and D

5. Experimental Result & Analysis

Compare the changes in production policy for Item C and D when Lot sizing Rule is [lot-for-lot] or when it is [fixed order quantity].

When demand is changing as shown in the Table below, compare the two Lot Sizing Rules for Item C and D: [lot-for-lot] and [fixed order quantity]. Find out which is more sensitive and analyze the reason.

Week	2	7	11	12	17
Demand	100	150	120	100	90

6. Discussion & Conclusion

1) Explain what nervousness is for MRP system, and discuss why it occurs.

Despite the nervousness of the MRP system, many manufacturers producing different number of parts use the MRP to manage the system efficiently. Consider ways to reduce the nervousness of the MRP system.

Q & A

