

Conservative, reversible and dissipative dynamical systems

Jean-Christophe Loiseau

jean-christophe. loiseau@ensam. eu Laboratoire DynFluid Arts et Métiers. France.

Two major classes of dynamical systems

Conservative

$$\dot{x} = y$$

$$\dot{y} = -\sin(x)$$

Dissipative

$$\dot{x} = y$$

$$\dot{y} = -y - x - x^3$$

Conservative systems

The equations of motion of many physical systems can be derived from Newton's principles. They are of the form

$$m\ddot{x} = F(x)$$

where F(x) is independent of both \dot{x} and t, i.e. the system is autonomous and frictionless.

Conservative systems

Under this assumption, we can show that $F(\boldsymbol{x})$ derives from a potential, i.e.

$$F(x) = -\frac{dV}{dx}$$

such as the gravitational potential energy V(x)=mgx or the elastic potential energy of a spring $V(x)=\frac{1}{2}kx^2.$

Conservative systems

From there, the equations of motion can be rewritten as

$$m\ddot{x} + \frac{dV}{dx} = 0.$$

One can then show that

$$\frac{d}{dt}\left(\frac{1}{2}m\dot{x}^2 + V(x)\right) = 0.$$

The quantity $\frac{1}{2}m\dot{x}^2 + V(x)$ is thus **conserved** over time.

Conservative systems

For the pendulum, the equations of motions are

$$\underbrace{mL\ddot{\theta}}_{\text{Acceleration}} + \underbrace{mg\sin(\theta)}_{\text{-Weight}} = 0$$

Multiplying by the velocity $L\dot{\theta}$ yields

$$\frac{d}{dt}\left(\frac{1}{2}m(L\dot{\theta})^2 - mgL\cos(\theta)\right) = 0.$$

We thus recover that the **total energy** of the system is conserved (in the absence of friction).

Conservative systems

For a conservative system, the energy remains constant along a given trajectory.

Fixed points cannot be attractive and the trajectories are closed orbits.

Conservative systems

Hamiltonian formalism

Conservative systems are crucially important in physics and gave rise to Hamiltonian mechanics (in opposition to Lagrangian mechanics).

In a suitable reference frame (p,q) where p and q are the **generalized** coordinates, the equations of motion take a special form known as the **Hamilton equations**.

Hamilton equations

$$\dot{\boldsymbol{p}} = -\frac{d\mathcal{H}(\boldsymbol{p}, \boldsymbol{q})}{d\boldsymbol{q}}$$
$$\dot{\boldsymbol{q}} = +\frac{d\mathcal{H}(\boldsymbol{p}, \boldsymbol{q})}{d\boldsymbol{p}}$$

Dissipative systems

Let us reconsider the pendulum example but now taking into damping. The equations of motion now read

$$\ddot{\theta} + 2k\dot{\theta} + \sin(\theta) = 0$$

where the term $2k\dot{\theta}$ models friction at the joint or viscous drag due to the surrounding air.

Dissipative systems

Multiplying by $\dot{ heta}$ to obtain the energy equation yields

$$\frac{d}{dt}\left(\frac{1}{2}\dot{\theta}^2 - \cos(\theta)\right) = -k\dot{\theta}^2 < 0.$$

The total energy is no longer conserved. It decreases over time. We'll say it gets **dissipated** due to friction.

Dissipative systems - Attractors

As $t \to \infty$, the dynamics of a dissipative systems settle on an **attractor**.

For a two-dimensional system, these attractors can only be fixed points or limit cycles.

Periodic orbits in conservative systems vs. limit cycles in dissipative systems

Conservative system

Dissipative system

Dissipative systems - Volume contraction in phase space

Thinking of the dynamics f(x) as a vector field, dissipativity can be understood as volume contraction in phase space.

Using the divergence theorem, it can easily be shown that a volume ${\cal V}(t)$ of initial conditions evolves as

$$\dot{V} = \int_{V} \nabla \cdot \boldsymbol{f}(\boldsymbol{x}) \ dV.$$

For a conservative system, we thus have $\nabla \cdot \boldsymbol{f}(\boldsymbol{x}) = 0 \ \forall \boldsymbol{x}$. For a dissipative system, we have that on average $\nabla \cdot \boldsymbol{f}(\boldsymbol{x}) < 0$.

