§ 23. Подпространства и линейные многообразия

Б.М.Верников

Уральский федеральный университет, Институт математики и компьютерных наук, кафедра алгебры и дискретной математики

Определение подпространства

Поскольку, как отмечалось в § 21, векторные пространства являются универсальными алгебрами, к ним можно применять понятие подалгебры (см. § 4). Для облегчения восприятия дальнейшего материала, укажем явно, какой вид принимает это понятие в случае векторных пространств.

Определение

Непустое подмножество M векторного пространства V над полем F называется *подпространством* пространства V, если выполняются следующие условия:

- 1) если $x, y \in M$, то $x + y \in M$ (замкнутость подпространства относительно сложения векторов);
- 2) если $x \in M$, а $t \in F$, то $tx \in M$ (замкнутость подпространства относительно умножения вектора на скаляр).

Примеры подпространств (1)

Приведем ряд примеров подпространств.

Пример 1. Пусть V — произвольное векторное пространство. Очевидно, что все пространство V и множество $M = \{ \mathbf{0} \}$ являются подпространствами в V.

Очевидно, что множество всех подпространств векторного пространства с отношением включения является чумом. Подпространство V является наибольшим элементом этого чума, а подпространство $\{\mathbf{0}\}$ — наименьшим. Первое из этих двух утверждений очевидно, а второе вытекает из следующего замечания.

Замечание о нулевом векторе и подпространствах

Нулевой вектор содержится в любом подпространстве M пространства V.

Доказательство. Если ${\bf x}$ — произвольный вектор из M, то, по условию 2) из определения подпространства, ${\bf 0}=0\cdot {\bf x}\in M$.

Пример 2. Пусть V — обычное трехмерное пространство, а M — множество векторов из V, коллинеарных некоторой плоскости π . Ясно, что сумма двух векторов, коллинеарных π , и произведение вектора, коллинеарного π , на любое число коллинеарны π . Следовательно, M — подпространство в V. Аналогично доказывается, что подпространством в V является и множество векторов, коллинеарных некоторой прямой ℓ .

Примеры подпространств (2)

Пример 3. В силу теоремы о строении общего решения системы линейных уравнений (см. § 6) общее решение произвольной однородной системы линейных уравнений с n неизвестными над полем F есть подпространство пространства F_n .

Пример 4. Пусть V — произвольное векторное пространство и $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \in V$. Обозначим через M множество всевозможных линейных комбинаций векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Пусть $\mathbf{x}, \mathbf{y} \in M$, т. е.

$$\mathbf{x} = s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \cdots + s_k \mathbf{a}_k$$
 u $\mathbf{y} = t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \cdots + t_k \mathbf{a}_k$

для некоторых скаляров s_1, s_2, \ldots, s_k и t_1, t_2, \ldots, t_k . Пусть, далее, t — произвольный скаляр. Тогда

$$\begin{aligned} \mathbf{x} + \mathbf{y} &= (s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k) + (t_1 \mathbf{a}_1 + t_2 \mathbf{a}_2 + \dots + t_k \mathbf{a}_k) = \\ &= (s_1 + t_1) \mathbf{a}_1 + (s_2 + t_2) \mathbf{a}_2 + \dots + (s_k + t_k) \mathbf{a}_k \quad \mathbf{u} \\ t\mathbf{x} &= t(s_1 \mathbf{a}_1 + s_2 \mathbf{a}_2 + \dots + s_k \mathbf{a}_k) = (ts_1) \mathbf{a}_1 + (ts_2) \mathbf{a}_2 + \dots + (ts_k) \mathbf{a}_k. \end{aligned}$$

Мы видим, что $\mathbf{x}+\mathbf{y},t\mathbf{x}\in M$, т.е. M — подпространство пространства V. Оно называется *подпространством, порожденным векторами* $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$ или *линейной оболочкой* векторов $\mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k$, и обозначается через $\langle \mathbf{a}_1,\mathbf{a}_2,\ldots,\mathbf{a}_k \rangle$.

Примеры подпространств (3)

Ясно, что если $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ — система порождающих (в частности, базис) пространства V, то $\langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \rangle = V$. Таким образом,

• любое подпространство конечномерного векторного пространства является подпространством, порожденным некоторым набором векторов (например, своим базисом).

Замечание о подпространстве, порожденном набором векторов

Пусть V — векторное пространство и $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k \in V$. Тогда $\langle \mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k \rangle$ — наименьшее подпространство пространства V, содержащее векторы $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$.

Доказательство. Пусть M — подпространство пространства V, содержащее векторы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$. Из определения подпространства вытекает, что любая линейная комбинация векторов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k$ лежит в M. Следовательно, $\langle \mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_k \rangle \subset M$.

Размерность подпространства (1)

Очевидно, что подпространство векторного пространства само является векторным пространством. Это позволяет говорить о размерности и базисе подпространства.

Предложение о размерности подпространства

Пусть M- подпространство векторного пространства V . Тогда $\dim M\leqslant \dim V$, причем $\dim M=\dim V$ тогда и только тогда, когда M=V .

Доказательство. Если M или V — нулевое пространство, то оба утверждения предложения выполняются тривиальным образом. Будем поэтому считать, что M и V — ненулевые пространства. Зафиксируем базис $(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k)$ подпространства M и базис $(\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_\ell)$ пространства V. Если $k > \ell$, то в силу леммы о большом наборе векторов $(\mathsf{cm}.\ \S\,22)$ система векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ линейно зависима. Но это противоречит определению базиса. Следовательно, $k \leqslant \ell$, т. е. $\dim M \leqslant \dim V$.

Размерность подпространства (2)

Пусть теперь $\dim M = \dim V$, т. е. $k = \ell$. Тогда система векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$ является максимальной линейно независимой. В самом деле, в противном случае существует вектор \mathbf{a} такой, что система $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k, \mathbf{a}$ линейно независима. Но она содержит k+1 вектор, что противоречит лемме о большом наборе векторов (см. § 22). Таким образом, система векторов $(\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k)$ является базисом пространства V. Следовательно, любой вектор из V является линейной комбинацией векторов $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_k$. Поскольку эти векторы лежат в M, а M — подпространство в V, это означает, что любой вектор из V лежит в M, т. е. $V \subseteq M$. Обратное включение выполнено по условию, и потому M = V. Итак, если $\dim M = \dim V$, то M = V. Обратное утверждение очевидно.

Алгоритм нахождения базиса и размерности подпространства, порожденного данным набором векторов

Укажем способ нахождения базиса и размерности подпространства, порожденного данным набором векторов.

Алгоритм нахождения базиса и размерности подпространства, порожденного данным набором векторов

Запишем координаты данных векторов в некотором фиксированном базисе пространства в матрицу по строкам и приведем эту матрицу к ступенчатому виду. Ненулевые строки полученной матрицы будут базисом нашего подпространства, а число этих строк равно его размерности.

Обоснование этого алгоритма будет дано в § 27.

Линейные многообразия (1)

Определение

Пусть V — векторное пространство, $\mathbf{x}_0 \in V$, а M — подпространство в V. Множество всех векторов вида $\mathbf{x}_0 + \mathbf{y}$, где $\mathbf{y} \in M$, называется линейным многообразием в V и обозначается через $\mathbf{x}_0 + M$. Вектор \mathbf{x}_0 называется вектором сдвига многообразия $\mathbf{x}_0 + M$, а подпространство M — направляющим подпространством этого многообразия.

Приведем примеры линейных многообразий.

Пример 1. Если $\mathbf{x}_0=\mathbf{0}$, то $\mathbf{x}_0+M=M$. Таким образом, всякое подпространство пространства V является линейным многообразием в V.

Пример 2. Если $M=\{{\bf 0}\}$, то ${\bf x}_0+M=\{{\bf x}_0\}$. Таким образом, всякий вектор из V также является линейным многообразием в V.

Пример 3. Согласно теореме о строении общего решения системы линейных уравнений (см. § 6), общее решение произвольной совместной системы линейных уравнений с n неизвестными над полем F является линейным многообразием в F_n , вектором сдвига которого является произвольное частное решение системы, а направляющим подпространством — общее решение соответствующей однородной системы.

Линейные многообразия (2)

Пример 4. Рассмотрим произвольную плоскость π . Зафиксируем на ней прямоугольную декартову систему координат и рассмотрим прямую ℓ на π . Будем отождествлять прямую ℓ с множеством всех направленных отрезков, начинающихся в начале координат и заканчивающихся на ℓ . Про такие направленные отрезки мы будем говорить, что они «принадлежат прямой». Если ℓ проходит через начало координат, то она, очевидно, является подпространством, а значит, и линейным многообразием (см. пример 1 на предыдущем слайде). Пусть теперь ℓ не проходит через начало координат. Выберем произвольным образом и зафиксируем направленный отрезок \vec{x}_0 , принадлежащий ℓ . Обозначим через ℓ_1 прямую, параллельную ℓ и проходящую через начало координат. Тогда всякий направленный отрезок \vec{x} , принадлежащий ℓ , может быть представлен как сумма направленного отрезка $\vec{x_0}$ и некоторого направленного отрезка \vec{y} , принадлежащего ℓ_1 (см. рис. 1). Обратно, всякий направленный отрезок вида $\vec{x}_0 + \vec{y}$, где $\vec{y} \in \ell_1$, принадлежит ℓ . Поскольку ℓ_1 — подпространство. получаем, что ℓ — линейное многообразие с вектором сдвига \vec{x}_0 и направляющим подпространством ℓ_1 . Аналогично можно проверить, что любая плоскость (рассматриваемая как множество направленных отрезков, идущих из начала координат в точки плоскости) является линейным многообразием в трехмерном пространстве.

Линейные многообразия (3)

Рис. 1. Прямая как линейное многообразие

Критерий равенства линейных многообразий (1)

В примерах 3 и 4 в качестве вектора сдвига можно было взять произвольный вектор, принадлежащий данному линейному многообразию. Оказывается, что это не случайно: этот факт справедлив для любого линейного многообразия. Мы получим это утверждение как следствие из следующего результата.

Критерий равенства линейных многообразий

Пусть $P=\mathbf{x}_0+M$ и $Q=\mathbf{y}_0+N$ — линейные многообразия в векторном пространстве V. Равенство P=Q имеет место тогда и только тогда, когда M=N и $\mathbf{x}_0-\mathbf{y}_0\in M$.

Доказательство. Необходимость. Предположим, что P=Q. Докажем сначала, что M=N. Пусть $\mathbf{a}\in M$. Поскольку $\mathbf{x}_0+\mathbf{a}\in P$ и P=Q, получаем, что $\mathbf{x}_0+\mathbf{a}\in \mathbf{y}_0+N$. Следовательно, существует вектор $\mathbf{b}\in N$ такой, что $\mathbf{x}_0+\mathbf{a}=\mathbf{y}_0+\mathbf{b}$. Далее,

$$\mathbf{x}_0 \in \mathbf{y}_0 + N, \tag{1}$$

так как $\mathbf{x}_0=\mathbf{x}_0+\mathbf{0}\in P$ и P=Q. Следовательно, существует вектор $\mathbf{c}\in N$ такой, что $\mathbf{x}_0=\mathbf{y}_0+\mathbf{c}$. Имеем

$$y_0+b=x_0+a=y_0+c+a,\\$$

откуда $\mathbf{a} = \mathbf{b} - \mathbf{c} \in N$. Итак, если $\mathbf{a} \in M$, то $\mathbf{a} \in N$. Следовательно, $M \subseteq N$. Аналогично проверяется, что $N \subseteq M$ и потому M = N.

Критерий равенства линейных многообразий (2)

Остается проверить, что $\mathbf{x}_0 - \mathbf{y}_0 \in M$. В самом деле, из (1) и доказанного только что равенства M = N вытекает, что $\mathbf{x}_0 \in \mathbf{y}_0 + M$. Следовательно, $\mathbf{x}_0 = \mathbf{y}_0 + \mathbf{a}$ для некоторого вектора $\mathbf{a} \in M$ и потому $\mathbf{x}_0 - \mathbf{y}_0 = \mathbf{a} \in M$.

Достаточность. Пусть теперь M=N и $\mathbf{x}_0-\mathbf{y}_0\in M$. Требуется доказать, что P=Q. Пусть $\mathbf{a}\in P$. Тогда $\mathbf{a}=\mathbf{x}_0+\mathbf{b}$ для некоторого вектора $\mathbf{b}\in M$. По условию $\mathbf{x}_0-\mathbf{y}_0=\mathbf{c}$ для некоторого вектора $\mathbf{c}\in M$. Следовательно, $\mathbf{x}_0=\mathbf{y}_0+\mathbf{c}$ и $\mathbf{a}=\mathbf{x}_0+\mathbf{b}=\mathbf{y}_0+(\mathbf{c}+\mathbf{b})$. Поскольку $\mathbf{c}+\mathbf{b}\in M$ и M=N, имеем $\mathbf{a}\in Q$. Следовательно, $P\subseteq Q$. Рассуждая аналогичным образом, получаем, что $Q\subseteq P$ и потому P=Q.

В частности, из доказанного критерия видно, что

• направляющее подпространство данного линейного многообразия определено однозначно.

Это позволяет определить размерность линейного многообразия $\mathbf{x}_0 + M$ как размерность подпространства M.

Следствие о векторе сдвига

Докажем теперь обещанное выше следствие.

Следствие о векторе сдвига

Пусть $P = \mathbf{x}_0 + M$ — линейное многообразие в векторном пространстве V и $\mathbf{x}_1 \in P$. Тогда $P = \mathbf{x}_1 + M$.

Доказательство. По условию $\mathbf{x}_1 \in P$, т. е. $\mathbf{x}_1 \in \mathbf{x}_0 + M$. Следовательно, существует вектор $\mathbf{y} \in M$ такой, что $\mathbf{x}_1 = \mathbf{x}_0 + \mathbf{y}$. Но тогда $\mathbf{x}_1 - \mathbf{x}_0 = \mathbf{y} \in M$. Из доказанной выше теоремы вытекает, что $P = \mathbf{x}_1 + M$.

Таким образом,

 в качестве вектора сдвига данного линейного многообразия можно взять произвольный принадлежащий ему вектор.