

=> d his

(FILE 'HOME' ENTERED AT 14:41:52 ON 27 SEP 2003)

INDEX 'ADISCTI, ADISINSIGHT, ADISNEWS, AGRICOLA, ANABSTR, AQUASCI, BIOBUSINESS, BIOCOMMERCE, BIOSIS, BIOTECHABS, BIOTECHDS, BIOTECHNO, CABA, CANCERLIT, CAPLUS, CEABA-VTB, CEN, CIN, CONFSCI, CROPB, CROPUS, DDFB, DDFU, DGENE, DRUGB, DRUGLAUNCH, DRUGMONOG2, ...' ENTERED AT 14:42:03 ON 27 SEP 2003

SEA (ATP SYNTHASE INHIBITOR) OR IF1

15 FILE AGRICOLA
1 FILE ANABSTR
1 FILE BIOBUSINESS
220 FILE BIOSIS
16 FILE BIOTECHABS
16 FILE BIOTECHDS
70 FILE BIOTECHNO
14 FILE CABA
19 FILE CANCERLIT
330 FILE CAPLUS
1 FILE CEABA-VTB
6 FILE CONFSCI
5 FILE DDFU
68 FILE DGENE
1 FILE DRUGMONOG2
10 FILE DRUGU
1 FILE EMBAL
152 FILE EMBASE
63 FILE ESBIOBASE
6 FILE FEDRIP
2 FILE FSTA
160 FILE GENBANK
70 FILE IFIPAT
3 FILE JICST-EPLUS
81 FILE LIFESCI
188 FILE MEDLINE
9 FILE NTIS
91 FILE PASCAL
1 FILE PHAR
1 FILE PHIN
3 FILE PROMT
4 FILE RDISCLOSURE
192 FILE SCISEARCH
70 FILE TOXCENTER
782 FILE USPATFULL
19 FILE USPAT2
1 FILE VETU
123 FILE WPIDS
123 FILE WPIINDEX

L1 QUE (ATP SYNTHASE INHIBITOR) OR IF1

FILE 'USPATFULL, CAPLUS, BIOSIS, SCISEARCH, MEDLINE, EMBASE, WPIDS'
ENTERED AT 14:45:34 ON 27 SEP 2003

L2 22 S L1 AND DIABETES
L3 15 DUP REM L2 (7 DUPLICATES REMOVED)
L4 160 S (ATP SYNTHASE) AND IF1
L5 8 S L4 AND DIABETES
L6 5 DUP REM L5 (3 DUPLICATES REMOVED)
L7 181213 S FUSION PROTEIN
L8 77 S L7 AND IF1
L9 13 S L8 AND DIABETES

L10 10 DUP REM L9 (3 DUPLICATES REMOVED)
L11 11 S L8 AND (ATP SYNTHASE)
L12 8 DUP REM L11 (3 DUPLICATES REMOVED)

L12 ANSWER 4 OF 8 USPATFULL on STN
ACCESSION NUMBER: 2002:340243 USPATFULL
TITLE: **Fusion proteins comprising**
coiled-coil structures derived of bovine **IF1**
ATPase inhibitor protein
INVENTOR(S): Walker, John, Cambridge, UNITED KINGDOM
Miroux, Bruno, Cambridge, UNITED KINGDOM
PATENT ASSIGNEE(S): Medical Research Council, London, UNITED KINGDOM
(non-U.S. corporation)

	NUMBER	KIND	DATE
PATENT INFORMATION:	US 6498020	B1	20021224
APPLICATION INFO.:	US 1999-464152		19991227 (9)
RELATED APPLN. INFO.:	Continuation of Ser. No. WO 1998-GB2041, filed on 10 Jul 1998		

	NUMBER	DATE
PRIORITY INFORMATION:	GB 1997-14680	19970711
DOCUMENT TYPE:	Utility	
FILE SEGMENT:	GRANTED	
PRIMARY EXAMINER:	Wehbe', Anne M.	
ASSISTANT EXAMINER:	Li, Q. Janice	
LEGAL REPRESENTATIVE:	Williams, Kathleen M., Palmar & Dodge, LLP	
NUMBER OF CLAIMS:	9	
EXEMPLARY CLAIM:	1	
NUMBER OF DRAWINGS:	0 Drawing Figure(s); 0 Drawing Page(s)	
LINE COUNT:	1818	

CAS INDEXING IS AVAILABLE FOR THIS PATENT.

AB The present invention relates to a **fusion protein** comprising a first amino acid sequence comprising the sequence of the C-terminal 40 amino acids of bovine IF.sub.1 ATPase inhibitor protein, and a second amino acid sequence not naturally associated with the first region. The invention further relates to methods for preparing an immunoglobulin comprising immunizing an animal with the **fusion protein** and recovering immunoglobulin specific for a region of the **fusion protein**.

L12 ANSWER 7 OF 8 WPIDS COPYRIGHT 2003 THOMSON DERWENT on STN
 ACCESSION NUMBER: 1999-120909 [10] WPIDS
 DOC. NO. NON-CPI: N1999-088151
 DOC. NO. CPI: C1999-035508
 TITLE: A new **fusion protein** for production
 of small recombinant polypeptides - contains coiled-coil
 structures of bovine IF.
 DERWENT CLASS: B04 D16 S01
 INVENTOR(S): MIROUX, B; WALKER, J
 PATENT ASSIGNEE(S): (MEDI-N) MEDICAL RES COUNCIL
 COUNTRY COUNT: 82
 PATENT INFORMATION:

PATENT NO	KIND	DATE	WEEK	LA	PG
<hr/>					
WO 9902708	A1	19990121 (199910)*	EN	62	
RW:	AT BE CH CY DE DK EA ES FI FR GB GH GM GR IE IT KE LS LU MC MW NL OA PT SD SE SZ UG ZW				
W:	AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW				
AU 9882345	A	19990208 (199924)			
EP 1002105	A1	20000524 (200030)	EN		
R:	AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE				
JP 2001509391	W	20010724 (200147)		61	
AU 740816	B	20011115 (200202)			
US 6498020	B1	20021224 (200303)			

APPLICATION DETAILS:

PATENT NO	KIND	APPLICATION	DATE
<hr/>			
WO 9902708	A1	WO 1998-GB2041	19980710
AU 9882345	A	AU 1998-82345	19980710
EP 1002105	A1	EP 1998-932417	19980710
		WO 1998-GB2041	19980710
JP 2001509391	W	WO 1998-GB2041	19980710
		JP 2000-502202	19980710
AU 740816	B	AU 1998-82345	19980710
US 6498020	B1 Cont of	WO 1998-GB2041	19980710
		US 1999-464152	19991227

FILING DETAILS:

PATENT NO	KIND	PATENT NO
<hr/>		
AU 9882345	A Based on	WO 9902708
EP 1002105	A1 Based on	WO 9902708
JP 2001509391	W Based on	WO 9902708
AU 740816	B Previous Publ.	AU 9882345
	Based on	WO 9902708

PRIORITY APPLN. INFO: GB 1997-14680 19970711

AB WO 9902708 A UPAB: 19990412

A new **fusion protein** comprises: (a) a first region (R1) comprising the 40 amino acid C-terminal of bovine **IF1** ATPase inhibitor protein, or it's derivative; and (b) a second region (R2), not naturally associated with R1, comprising a polypeptide sequence of interest.

Also claimed are: (i) a nucleic acid (N1) encoding the **fusion protein**; (ii) an expression vector comprising N1 operably linked to a promoter, which will express N1 in a host cell and a

cloning site permitting insertion of a second nucleic acid sequence which is expressed in fusion with N1; (iii) a host cell comprising one of the above expression vectors; (iv) a method of preparing a **fusion protein**, comprising: (a) obtaining the above host cell; (b) culturing the cell under expression conditions; and (c) recovering the **fusion protein**; (v) a polypeptide prepared by the above method; (vi) a method for preparing an immunoglobulin, comprising: (a) immunising an animal with the **fusion protein**; and (b) recovering immunoglobulin specific for a region of the **fusion protein** from serum of the animal.

USE - Use for the **fusion protein** in NMR studies is claimed. The **fusion protein** is used to manufacture small recombinant polypeptides, such as fragments of chaperone proteins, metabolic enzymes, DNA and RNA binding proteins, antibodies, viral proteins, intrinsic membrane proteins including mitochondrial transport proteins, seven-helix receptor molecules and T-cell receptors, cytoskeletal complexes, antibody binding peptides, peptide hormones, and small subunits from multi-subunit structures such as respiratory enzymes and **ATP synthase**.

ADVANTAGE - The fusion partner protein of the invention is smaller than those of prior art, allowing the protein of interest to function with a degree of independence.

Dwg.0/0

L12 ANSWER 8 OF 8 CAPLUS COPYRIGHT 2003 ACS on STN
ACCESSION NUMBER: 1993:229085 CAPLUS
DOCUMENT NUMBER: 118:229085
TITLE: Regulation of the mitochondrial **ATP synthase/ATPase complex**: cDNA cloning, sequence, overexpression, and secondary structural characterization of a functional protein inhibitor
AUTHOR(S): Lebowitz, Michael S.; Pedersen, Peter L.
CORPORATE SOURCE: Dep. Biol. Chem., Johns Hopkins Sch. Med., Baltimore, MD, 21205, USA
SOURCE: Archives of Biochemistry and Biophysics (1993), 301(1), 64-70
CODEN: ABBIA4; ISSN: 0003-9861
DOCUMENT TYPE: Journal
LANGUAGE: English
AB The ATPase inhibitor protein of the rat liver mitochondrial **ATP synthase/ATPase complex** has been cloned from a rat liver cDNA library, and its nucleotide sequence detd. The sequence is highly homologous to both the bovine heart (.apprx.70%) and the yeast inhibitor proteins (.apprx.40%). The deduced protein sequence is 107 amino acids in length, and based on homol. to the bovine heart protein, the first 25 N-terminal amino acids encode a putative mitochondrial targeting sequence. The mature protein (without the targeting sequence) fused to the maltose-binding protein has been overexpressed in Escherichia coli. The maltose-binding protein was used as a handle for the development of a rapid one-step purifn. of the **fusion protein** by affinity chromatog. on an amylose resin. The purified **fusion protein** was cleaved with Factor Xa protease at the fusion junction, and the resulting ATPase inhibitor protein was purified to >90% purity. The purified, overexpressed inhibitor protein displays normal inhibitor activity. The protein inhibits ATP hydrolysis catalyzed by the **ATP synthase/ATPase complex** in submitochondrial particles in a manner kinetically indistinguishable from the same protein purified from rat liver mitochondria, and exhibits a specific activity of .apprx.10,000 units/mg. The secondary structure of the inhibitor protein was detd. by CD spectropolarimetry. The exptl. detd. structure shows a high content of .alpha.-helix and is in good agreement with sequence-based structural predictions. As the function of the inhibitor protein is known to exhibit a high dependence on pH, a study of the pH dependence of inhibitor secondary structure was performed. It is shown that as pH is

lowered, conditions which activate inhibitory capacity, the protein loses significant α -helical structure. This is the first report of the overexpression in *E. coli* of a functional ATPase inhibitor protein. Secondary structural anal. of this protein indicates that conversion from its active to its inactive form involves a significant conformational change.