Section 5.2. Multiple linear regression

Highland Statistics Ltd.

highstat@highstat.com www.highstat.com

RIKZ data

- Previous section:
 - Applied bivariate linear regression model
 - arbitrary used NAP as X
- More explanatory variables available:
 - grainsize,
 - humus,
 - angle of the beach,
 - exposure,
 - week,
 - etc.

RIKZ data

- In this section:
 - discuss multiple linear regression

- Allow one to model:
 - response variable (e.g. species richness)
 - as a linear function of multiple explanatory variables

- Hence the name:
 - multiple linear regression

Mathematical formulation multiple regression model:

$$Y_i = \alpha + \beta_1 X_{1i} + \dots + \beta_p X_{pi} + \varepsilon_i$$

Example RIKZ data:

$$\begin{aligned} R_i &= \alpha &+ \beta_1 NAP_i + \beta_2 Grainsize_i + \\ \beta_3 & Humus_i + Week_i + \beta_4 Angle_i + \epsilon_i \end{aligned}$$

Spot the difference

To reduce numerical output:

concentrate on these 5 explanatory variables.

- •Difference with bivariate regression:
 - Interpretation parameters

- •The parameter β_1 shows:
 - change in species richness for a one-unit change in NAP
 - while holding all other variables constant.

- Same for other parameters.
- Partial regression slopes.
- Measure:
 - change in Y for particular X,
 - keeping remaining p-1 variables constant.

• What does that mean?

- Choose values for Grainsize, humus, angle, and pick a week:
 - Grainsize = 200
 - Humus = 50
 - Angle = 10
 - Week = 1

$$\begin{aligned} R_i &= \alpha + \beta_1 NAP_i + \\ \beta_2 \times 200 + \beta_3 \times 50 + \beta_4 \times 10 + 0 * 1 + \epsilon_i \end{aligned}$$

$$R_i = constant + \beta_1 NAP_i + \varepsilon_i$$

of SS MS Source Df variation $\sum_{i=1}^{\infty} (Y_i^{\hat{\mathbf{U}}} - \overline{Y})^2$ $p \qquad \sum_{i=1}^{n} (Y_{i}^{U} - \overline{Y})^{2}$ Regression $\sum_{i=1}^{\infty} (Y - Y_i^{U})^2$ n-p-1 $\sum_{i=1}^{n} (Y - Y_i^{U})^2$ n-p-1Residual $\sum_{i=1}^{n} (Y_i - \overline{Y})^2$ **Total** n-1

ANOVA table has similar form

- Null hypothesis:
 - All slopes are equal and 0
 - H_0 : $\beta_1 = \beta_2 = ... = \beta_p = 0$.
- Just as in bivariate linear regression:
 - Ratio of
 - MS_{regression}
 - MS_{residual}
 - follows F distribution
- Ratio is used to test H₀.
- Here: F- statistic is 11.18
 - highly significant (p <0.001).

• Hence:

– Hypothesis H_0 : $\beta_1 = ... = \beta_5 = 0$ is rejected.

• F-statistic does not indicate whether one of the parameters is zero.

• t- test can be used for this.

• Estimated parameters, standard errors and t-values:

(Intercept) angle2 NAP grainsize humus as.factor(week)2 as.factor(week)3	Estimate 9.30 0.02 -2.27 0.00 0.52 -7.07 -5.72	Std. Error 7.97 0.04 0.53 0.02 8.70 1.76 1.83	t value 1.17 0.39 -4.30 0.11 0.06 -4.01 -3.13	Pr(> t) 0.25 0.70 <0.001 \$\equiv 92 0.95 <0.001 <0.001
as.factor(week)4	-1.48	2.72	-0.55	0.59

What is the aim of building a model?

- Prediction?
 - Keep it as it is
- Know which covariates are important?
 - Drop the rubbish.
 - Easier to explain
 - Significant terms become more significant

• Week:

- All levels go in, or week doesn't go in at all.
- We need something that gives us one p-value for week
- Put on the wish-list

- Here: know which covariates are important
- How to decide what to remove?
 - Drop smallest beta?
 - All non-significant terms at once?

We need a protocol

- Collinearity spoils the fun
 - Increases SE, and therefore p-values
 - Will discuss VIFs later

IT approach

(Burnham and Anderson, 2002) Specify a priori 10-15 models Calculate differences in AIC Model averaging **Hypothesis testing**

t-test

F-test

Model Selection

Stepwise selection
Classical model
selection approaches

AIC, CAIC or BIC

Do not do model selection at all!

Do it only on Interactions (Bolker, 2008)

Model selection

Four approaches:

- 1. Keep the model as it is
- 2. Hypothesis testing
 - t-statistics
 - F statistic
- 3. Use measure of goodness of fit
 - AIC or CAIC. BIC, Adjusted R²
- 4. Information criteria
 - Burnham and Anderson (2002)

1. Keep the model as it is

Or do only model selection on interaction

- Interactions are difficult to explain
- Bolker, 2008
- Mind collinearity!

2. Hypothesis testing approach

- Approach 1: t-statistic
 - Choose covariate with highest p-value
 - Drop and refit the model
 - Works OK for Gaussian distribution, and if there are no factors with >2 levels

Estimated parameters, standard errors and t-values:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	9.30	7.97	1.17	0.25
angle2	0.02	0.04 _	0.39	0.70
NAP	-2.27	0.53 Drop	-4.30	< 0.001
grainsize	0.00	0.02	0.11	0.92
humus	0.52	8.70	0.06	0.95
as.factor(week)2	-7.07	1.76	-4 .01	< 0.001
as.factor(week)3	-5.72	1.83	-3.13	< 0.001
as.factor(week)4	-1.48	2.72	-0.55	0.59
,				

2. Hypothesis testing approach

Approach 2: F-statistic

- Compare two nested models.
- Definition of nested:
 - Two models are nested if we start with the full model and set some parameters equal to, for example, 0

Nested model: $Y_i = \alpha + \beta_1^* Angle 2 + \epsilon_i$

Full model: $Y_i = \alpha + \beta_1^* \text{Angle2} + \beta_2^* \text{NAP} + \epsilon_i$

Model 1: $Y_i = \alpha + \beta_1^* \text{Angle2} + \epsilon_i$ Model 2: $Y_i = \alpha + \beta_1^* \text{Angle2} + \beta_2^* \text{NAP} + \epsilon_i$

- Which model is always equal or better?
- Suppose H_0 : $\beta_2 = 0$
- Calculate F statistic:

$$F = \frac{(RSS_1 - RSS_2)/(p - q)}{RSS_2/(n - p)}$$

• Big F-value is evidence against H₀

- For continuous variables:
 - F and t statistics give same p-values

Model 1:
$$R_i = \alpha + \beta_1 \text{ NAP}_i + \beta_2 \text{ Grainsize}_i + \beta_3 \text{ Humus}_i + \beta_4 \text{ Angle}_i + \epsilon_i$$

Model 2:
$$R_i = \alpha + \beta_1 \text{ NAP}_i + \beta_2 \text{ Grainsize}_i + \beta_3 \text{ Humus}_i + \mathbf{Week}_i + \beta_4 \text{ Angle}_i + \epsilon_i$$

Why do it?

What are we testing?

$$H_0 = \beta_{w2} = \beta_{w3} = \beta_{w4} = 0$$

 $H_a = \beta_{w2} = \beta_{w3} = \beta_{w4} \neq 0$

F value
$$= 6.19$$

F-statistic gives one p-value for Week!

How to do it...

- a) "Drop 1" R function
 - Drop one explanatory variable
 - Apply an F-test.
 - Drop1 function again

	Df	Sum of Sq	RSS	AIC	\mathbf{F} $\mathbf{Pr}(\mathbf{F})$
<none></none>		353.66	108.78		
angle2	1	1.46	355.12	106.96	0.15 0.70
NAP	1	176.37	530.03	124.98	18.45 0.00
grainsize	1	0.11	353.77	106.79	0.011 0.92
humus	1	0.03	353.70	106.78	0.004 0.95
as.factor(w	eek) 3	177.51	531.17	121.08	6.190 0.00

How to do it...

b) Do it manually Convince yourself that the drop1 is doing this:

Model 1:
$$R_i = \alpha + \beta_1 \text{ NAP}_i + \beta_2 \text{ Grainsize}_i + \beta_3 \text{ Humus}_i + \beta_4 \text{ Angle}_i + \epsilon_i$$

Model 2:
$$R_i = \alpha + \beta_1 \text{ NAP}_i + \beta_2 \text{ Grainsize}_i + \beta_3 \text{ Humus}_i + \text{Week}_i + \beta_4 \text{ Angle}_i + \epsilon_i$$

anova (M1,M2)

```
Res.Df RSS Df Sum of Sq F Pr(>F)

1 37 353.66

2 40 531.17 -3 -177.51 6.1902 0.00162
```

Same results!!

2. Hypothesis testing approach

Approach 3: "sequential F-statistic":

anova (M1)

angle2 NAP grainsize humus as.factor(week)	Df 1 1 1 1 3	Sum Sq 124.86 319.32 106.76 19.53 177.51	Mean Sq 124.86 319.32 106.76 19.53 59.17	F value 13.06 33.41 11.17 2.04 6.19	Pr(>F) 0.001 <0.001 0.002 0.161 0.003
as.factor(week) Residuals	3 37	177.51 353.66	59.17 9.56	6.19	0.003

Spot the difference!

anova (M1,M2)

- √ nested models
- √ drop 1 function in R
- √ trustable

anova (M1)

- ✓ sequential testing
- √ the order matters
- √ do not use it unless covariates are 100% independent

3. Goodness of fit approach

- Use statistical criteria to select a model:
 - -AIC, BIC, adjusted R², etc.
- Defined by:

$$AIC = n \log(SS_{residual}) + 2(p+1)$$

= how good is model + model complexity

Mind: Missing values / non-nested models Various different definitions

- Lowest AIC is best model
- Highest is adjusted R² is best model

- Problem:
 - many possible combinations of covariates
 - Apply a backwards
 - or forwards selection
 - backwards is prefered

Demonstrate for:

$$R_{i} = \alpha + \beta_{1} \text{ NAP}_{i} + \beta_{2} \text{ Grainsize}_{i} + \beta_{3} \text{ Humus}_{i} + \text{Week}_{i} + \beta_{4} \text{ Angle}_{i} + \epsilon_{i}$$

•See R code

Alternative

Adjusted
$$r^2 = 1 - \frac{SS_{residual} / (n - (p + 1))}{SS_{total} / (n - 1)}$$

Is like R², but take into account n and p.

4. Information criteria

- IT approach
 (Burnhan and Anderson, 2000)
- Specify a priori 10-15 models
- Calculate differences in AIC
- Model averaging

We will discuss this in another exercise

Problems with selection procedures:

- Collinearity.
- Multiple comparisons

Collinearity:

- forward selection and backward selection might give different results.
- Avoid using covariates that represent same ecological signal!!

Problem multiple comparisons:

• Each time 5% chance making wrong statement.

- Apply large number of forward/backward selections:
 - this chance increases.

Three ways to deal with this:

- ignore the problem,
- avoid using selection methods
- apply a correction method
 - Bonferonni method.

• Bonferonni:

 p-values are adjusted for the number of tests that are carried out.

- F test is for nested models
- AIC is for nested and non-nested models