PORTFOLIO THEORY NOTES

Contents

1. Risk Measures	1
1.1. Value at Risk	1
1.2. Expected Shortfall	1
2. Estimation of Risk	5
2.1. Estimating the Value at Risk in the IID Case	5
2.2. Estimating the Expected Shortfall in the IID Cas	se 5
References	6

Note 0.1. In these notes we will mostly consider a probability space (Ω, \mathcal{F}, P) and a random variable $X:\Omega\to\mathbb{R}$. We assume that $X\in L^1(P)$ and $F_X:\mathbb{R}\to(0,1)$ is strictly increasing and continuous. We will call such a random variable "nice". The random variable X will usually refer to the return on some portfolio. As such, we will define the loss of X to be $L_X = -X$.

1. Risk Measures

1.1. Value at Risk.

Definition 1.1. Let X be a nice random variable and $\alpha \in (0,1)$. We define the value at **risk of** X at confidence level α , denoted by $v_{\alpha}(X)$, to be

$$v_{\alpha}(X) = F_{L_X}^{-1}(\alpha)$$

Thus

$$P(L_X > v_{\alpha}(X)) = 1 - \alpha$$

Note 1.2. In practice, we take $\alpha = .95$ or $\alpha = .99$.

1.2. Expected Shortfall.

Definition 1.3. Let X be a nice random variable and $\alpha \in (0,1)$. We define the **expected** shortfall of X with tail probability $1-\alpha$, denoted by $e_{\alpha}(X)$, to be

$$e_{\alpha}(X) = \frac{1}{1 - \alpha} \int_{[\alpha, 1)} v_p(X) dm(p)$$

Note 1.4. If X represents the return on a portfolio, then $e_{\alpha}(X)$ is just the average of the $v_p(X)$ on the interval $(\alpha, 1]$.

Exercise 1.5. Let X be a nice random variable and $\alpha \in (0,1)$. Then

$$e_{\alpha}(X) = E[L_X | L_X \ge v_{\alpha}(X)]$$

Proof. Recall that for measurable spaces (X, \mathcal{A}) and (Y, \mathcal{B}) , a measurable function $f: X \to Y$ and a measure $\mu: \mathcal{A} \to [0, \infty]$, we may form the push-foreward measure of μ by $f, f_*\mu: \mathcal{B} \to [0, \infty]$ with the following property: for each $g: Y \to \mathbb{C}$, $g \in L^1(f_*\mu)$ iff $g \circ f \in L^1(\mu)$ and for each $B \in \mathcal{B}$,

$$\int_{f^{-1}(B)}g\circ fd\mu=\int_Bgdf_*\mu$$

Also recall that for an increasing continuous, bijective $F : \mathbb{R} \to (0,1)$, we may form the Borel measure μ_F with $\mu_F((a,b]) = F(b) - F(a)$. Then observe that $F_*\mu_F = m$ because

$$F_*\mu_F((a,b]) = \mu_F(F^{-1}((a,b]))$$

$$= \mu_F((F^{-1}(a), F^{-1}(b)))$$

$$= F(F^{-1}(b)) - F(F^{-1}(a))$$

$$= b - a$$

Then

$$E[L_X|L_X \ge v_{\alpha}(X)] = E[L_X|L_X \ge F_{L_X}^{-1}(\alpha)]$$

$$= \frac{1}{1-\alpha} E[L_X I_{\{L_X \ge F_{L_X}^{-1}(\alpha)\}}]$$

$$= \frac{1}{1-\alpha} \int_{\{L_X \ge F_{L_X}^{-1}(\alpha),\infty\}} L_X dP$$

$$= \frac{1}{1-\alpha} \int_{[F_{L_X}^{-1}(\alpha),\infty)} p dF_{L_X}(p)$$

$$= \frac{1}{1-\alpha} \int_{[F_{L_X}^{-1}(\alpha),\infty)} p dF_{L_X}(p)$$

$$= \frac{1}{1-\alpha} \int_{[F_{L_X}^{-1}(\alpha),\infty)} (F_{L_X}^{-1} \circ F_{L_X})(p) dF_{L_X}(p)$$

$$= \frac{1}{1-\alpha} \int_{[\alpha,1)} F_{L_X}^{-1}(p) dm(p)$$

$$= \frac{1}{1-\alpha} \int_{[\alpha,1)} v_p(X) dm(p)$$

$$= e_{\alpha}(X)$$

Lemma 1.6. Let $\alpha \in (0,1)$. Define $f_{\alpha} : \mathbb{R} \to \mathbb{R}$ by

$$f_{\alpha}(\theta) = \theta + \frac{1}{1 - \alpha} E[(L_X - \theta)^+]$$

Then f_{α} is convex and

$$\frac{df_{\alpha}}{d\theta}(\theta) = \frac{F_{L_X}(\theta) - \alpha}{1 - \alpha}$$

Proof. Recall that given $g: \Omega \times \mathbb{R} \to \mathbb{R}$, if for each $\omega \in \Omega$, $g(\omega, \theta)$ is convex in θ , then $E[g(\cdot, \theta)]$ is convex in theta. For $\omega \in \Omega$, $\theta \in \mathbb{R}$, put

$$g(\omega, \theta) = (L_X(\omega) - \theta)^+$$

So

$$f_{\alpha}(\theta) = \theta + \frac{1}{1-\alpha} E[g(\cdot, \theta)]$$

Then for each $\omega \in \Omega$, $g(\omega, \cdot)$ is convex. This implies that for each $\alpha \in (0, 1)$, f_{α} is convex and therefore continuous.

Now Let $\theta, \theta' \in \mathbb{R}$. Suppose that $\theta < \theta'$. Then

$$\frac{f_{\alpha}(\theta') - f_{\alpha}(\theta)}{\theta' - \theta} = 1 + \frac{1}{1 - \alpha} E \left[\frac{(L_X - \theta')^+ - (L_X - \theta)^+}{\theta' - \theta} \right]$$

For $\omega \in \Omega$, we have that

$$\frac{(L_X(\omega) - \theta')^+ - (L_X(\omega) - \theta)^+}{\theta' - \theta} = \begin{cases} -1 & \theta' \le L_X(\omega) \\ 0 & L_X(\omega) \le \theta \\ \epsilon \in (-1, 0) & \theta < L_X(\omega) < \theta' \end{cases}$$

This implies that

$$\begin{split} -(F_{L_X}(\theta') - F_{L_X}(\theta)) &= -P(\theta < L_X < \theta') \\ &\leq E\left[\frac{(L_X - \theta')^+ - (L_X - \theta)^+}{\theta' - \theta} I_{L_X \in (\theta, \theta')}\right] \\ &< 0 \end{split}$$

Thus there exists $c \in (0,1)$ such that

$$E\left[\frac{(L_X - \theta')^+ - (L_X - \theta)^+}{\theta' - \theta} I_{L_X \in (\theta, \theta')}\right] = -c(F_{L_X}(\theta') - F_{L_X}(\theta))$$

In addition, $P(\theta' \leq L_X) = 1 - F_{L_X}(\theta')$. Therefore

$$E\left[\frac{(L_X - \theta')^+ - (L_X - \theta)^+}{\theta' - \theta}\right] = -(1 - F_{L_X}(\theta')) - c[F_{L_X}(\theta') - F_{L_X}(\theta)]$$

This implies that

$$\lim_{\theta' \to \theta^+} E\left[\frac{(L_X - \theta')^+ - (L_X - \theta)^+}{\theta' - \theta}\right] = F_{L_X}(\theta) - 1$$

Finally we have that

$$\lim_{\theta' \to \theta^+} \frac{f_{\alpha}(\theta') - f_{\alpha}(\theta)}{\theta' - \theta} = 1 + \frac{1}{1 - \alpha} \lim_{\theta' \to \theta^+} E\left[\frac{(L_X - \theta')^+ - (L_X - \theta)^+}{\theta' - \theta}\right]$$

$$= 1 + \frac{F_{L_X}(\theta) - 1}{1 - \alpha}$$

$$= \frac{F_{L_X}(\theta) - \alpha}{1 - \alpha}$$

The case is similar for the lefthand limit.

Theorem 1.7. Let X be a nice random variable and $\alpha \in (0,1)$. Then

$$v_{\alpha}(X) = \operatorname*{arg\,min}_{\theta \in \mathbb{R}} \left(\theta + \frac{1}{1 - \alpha} E[(L_X - \theta)^+] \right)$$

and

$$e_{\alpha}(X) = \min_{\theta \in \mathbb{R}} \left(\theta + \frac{1}{1 - \alpha} E[(L_X - \theta)^+] \right)$$

Proof. Define f_{α} as before. The previous lemma tells us that

$$\frac{df_{\alpha}}{d\theta}(\theta) = \frac{F_{L_X}(\theta) - \alpha}{1 - \alpha}$$

Thus

$$\lim_{\theta \to \infty} \frac{df_{\alpha}}{d\theta}(\theta) = 1$$

and

$$\lim_{\theta \to -\infty} \frac{df_{\alpha}}{d\theta}(\theta) = -\frac{\alpha}{1 - \alpha} < 0$$

Thus $\lim_{\theta \to \infty} f_{\alpha}(\theta) = \lim_{\theta \to -\infty} f_{\alpha}(\theta) = \infty$. The convexity of f_{α} implies that there exists a unique $\theta^* \in \mathbb{R}$ such that $f_{\alpha}(\theta^*) = \inf_{\theta \in \mathbb{R}} f_{\alpha}(\theta)$ Thus

$$\frac{df_{\alpha}}{d\theta}(\theta^*) = 0$$

which implies that

$$F_{L_X}(\theta^*) = \alpha$$

By definition, $\theta^* = v_{\alpha}(X)$. Finally, evaluating f_{α} at θ^* shows us that

$$f_{\alpha}(\theta^{*}) = \theta^{*} + \frac{1}{1 - \alpha} E[(L_{X} - \theta^{*})^{+}]$$

$$= \theta^{*} + \frac{1}{P(L_{X} > \theta^{*})} E[(L_{X} - \theta^{*})I_{\{L_{X} > \theta^{*}\}}]$$

$$= \theta^{*} + \frac{1}{P(L_{X} > \theta^{*})} E[L_{X}I_{\{L_{X} > \theta^{*}\}}] - \frac{1}{P(L_{X} > \theta^{*})} E[\theta^{*}I_{\{L_{X} > \theta^{*}\}}]$$

$$= \theta^{*} + \frac{1}{P(L_{X} > \theta^{*})} E[L_{X}I_{\{L_{X} > \theta^{*}\}}] - \theta^{*}$$

$$= E[L_{X}|L_{X} > \theta^{*}]$$

$$= E[L_{X}|L_{X} > v_{\alpha}(X)]$$

$$= e_{\alpha}(X)$$

2. Estimation of Risk

2.1. Estimating the Value at Risk in the IID Case.

Definition 2.1. Let X be a random nice random variable, $X_1, \dots, X_n \stackrel{iid}{\sim} X$ and $\alpha \in (0, 1)$. Define

$$\widehat{v}_{\alpha} =$$

2.2. Estimating the Expected Shortfall in the IID Case.

Definition 2.2. Let X be a nice random random variable, $X_1, \dots, X_n \stackrel{iid}{\sim} X$ and $\alpha \in (0,1)$. Define

$$\widehat{e}_{\alpha,n} = \frac{\sum_{i=1}^{n} L_{X_i} I_{L_{X_i \ge \widehat{v}_{\alpha}}}}{\sum_{i=1}^{n} I_{L_X \ge \widehat{v}_{\alpha}}}$$

Lemma 2.3. Let X be a nice random random variable, $X_1, \dots, X_n \stackrel{iid}{\sim} X$ and $\alpha \in (0,1)$. Then $\widehat{e}_{\alpha,n} \xrightarrow{a.e.} e_{\alpha}(X)$.

Proof. Since $(L_X)_{i=1}^n \subset L^1$ are iid, the SLLN tells us that for each $v \in \mathbb{R}$,

$$\frac{1}{n} \sum_{i=1}^{n} L_{X_i} I_{\{L_{X_i} \ge v\}} \xrightarrow{\text{a.e.}} E[L_X I_{\{X > v\}}]$$

Proof. For each $\alpha \in (0,1), \omega \in \Omega$ and $\theta \in \mathbb{R}$, define

$$f_{\alpha}(\omega)(\theta) = \theta + \frac{1}{n(1-\alpha)} \sum_{i=1}^{n} \max(-X_i(\omega) - \theta, 0)$$

Note that for each $\alpha \in (0,1)$ and $\omega \in \Omega$, $f_{\alpha}(\omega)$ is convex and continuous. In this case with no expectation, it is easy to show that

$$\lim_{\theta \to \infty} \frac{\partial f_{\alpha}(\omega)}{\partial \theta}(\theta) = 1$$

and

$$\lim_{\theta \to -\infty} \frac{\partial f_{\alpha}(\omega)}{\partial \theta}(\theta) = -\frac{\alpha}{1-\alpha} < 0$$

So for each $\alpha \in (0,1)$ and $\omega \in \Omega$, $f_{\alpha}(\omega)$ achieves its minimum at . Then $\{\theta \in \mathbb{R} : f_{\alpha}(\omega)(\theta) \leq m+1\}$ is bounded

Since f_{α} is continuous, we have that

$$\inf_{\theta \in \mathbb{R}} f_{\alpha}(\theta) = \inf_{\theta \in \mathbb{Q}} f_{\alpha}(\theta)$$

which is measurable.

References