Homework 2 - Topics in Topology

23 February 2023

Please return Thursday 2 March 2023.

- 1. (a) Show that for any pair of knots $K, K' \subset \mathbb{R}^3$, we have $\Delta_{K\#K'}(t) = \Delta_K(t)\Delta_{K'}(t)$.
 - (b) Use the skein relation to show that $\Delta_K(1) = 1$.
 - (c) Conclude from the previous part that for any Seifert matrix V of a knot we have $\det(V-V^T)=1$.
- 2. In this exercise we investigate the universal tangle invariant for the Dilbert algebra Dlb. We will show that $Z_{\text{Dlb}}(K) \in \mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}$ for all long knots K.
 - (a) Recall that the center of an algebra A is $\mathcal{Z}(A) = \{c \in A | \forall a \in A : ca = ac\}$. Determine the center for the Dilbert algebra Dlb.
 - (b) Interpreting our long knot K as an 1-strand planar XC-tangle labelled 0 argue that if $L:=\check{m}_0^{0,1}(K\check{X}_{1,2})$ and $R:=\check{m}_0^{1,0}(K\check{X}_{1,2})$ then L=R is an equality of XC-tangles (hint: make a sketch!).
 - (c) Explain why $Z_{\text{Dlb}}(L) = Z_{\text{Dlb}}(R)$.
 - (d) Since $Z(K) \in \text{Dlb}^{\otimes\{0\}}$ we must have $Z_{\text{Dlb}}(K) = w + xd_0 + yl_0 + zb_0$ for some $w, x, y, z \in \mathbb{C}$. Why are they actually in $\mathbb{Z}[i]$?
 - (e) Compute $Z_{\text{Dlb}}(L)$ and $Z_{\text{Dlb}}(R)$ explicitly in terms of w, x, y, z.
 - (f) Use your computation to show that x = y = z = 0 and conclude $Z_{Dlb}(K) = w \in \mathbb{Z}[i]$.
 - (g) (BONUS): Improve the result of the previous item in the case of knots with writhe equal to 0: You should get $Z_{\text{Dlb}}(K) \in \mathbb{Z}$.
- 3. Prove that if G is an Abelian group, then the XC-algebra D(G) is commutative. Conclude that $Z_{D(G)}(K) = Z_{D(G)}(\check{1})$ where K is any long knot with writhe 0. Also compute the $Z_{D(G)}$ invariants of the XC-tangles $\check{m}_{1}^{1,4}\check{m}_{2}^{2,3}(\check{X}_{12}\check{X}_{34})$ and $\check{1}_{1}\check{1}_{2}$.
- 4. Imagine an algebra A.
 - (a) Show that $m_{\diamondsuit}^{\circlearrowleft, \spadesuit} \circ m_{\circledcirc}^{\heartsuit, \clubsuit} = m_{\diamondsuit}^{\heartsuit, \circlearrowleft} \circ m_{\circledcirc}^{\clubsuit, \spadesuit}$. Both sides should be interpreted as maps $A^{\otimes \{\heartsuit, \clubsuit, \spadesuit\}} \to A^{\otimes \{\diamondsuit\}}$.
 - (b) Prove that $A \otimes A$ is also an algebra with respect to the multiplication $(a \otimes b)(c \otimes d) := ac \otimes bd$.
 - (c) What about $A^{\otimes S}$ for a finite set S? Can you describe a similar algebra structure on :
 - (d) Is it true that if B is another algebra and A and B are finitely presented then so is $A \otimes B$?
- 5. Prove that the XC-tangle diagrams $\check{m}_1^{1,3,5}\check{m}_2^{2,4,6}(\check{X}_{3,4}^{-1}\check{C}_1\check{C}_2\check{C}_5^{-1}\check{C}_6^{-1})$ and $\check{X}_{1,2}^{-1}$ are related by the XC-Reidemeister moves shown in Lecture 5.