计算物理第二次作业

第一题

高斯消元法原理见课件。雅可比迭代法求解线性方程组Ax = b的核心思想:

$$x^{(k+1)} = D^{-1}[b - (L+U)x^{(k)}], \quad k = 0, 1, 2, \cdots$$

其中,A=D+L+U,D是A的对角矩阵,L是A的严格下三角矩阵,U是A的严格上三角矩阵。

关键代码实现:

```
for iteration in range(max_iterations):
    x_new = np.zeros(n)
    for i in range(n):
        sum1 = np.dot(A[i, :i], x[:i]) # L部分, 即Σ_(j=0)^(i-1) a_ij * x_j
        sum2 = np.dot(A[i, i + 1:], x[i + 1:]) # U部分, 即Σ_(j=i+1)^(n-1) a_ij * x_j
        x_new[i] = (b[i] - sum1 - sum2) / A[i, i] # 迭代公式: x_i^(k+1)=(b_i - Σ_(j≠i) a_ij* x_j^(k)) / a_ii
```

运行得到结果:

```
使用高斯消元法求解:
x_1 = 1.000000
x_2 = 2.000000
x_3 = 3.000000
使用雅可比迭代法求解:
x_1 = 1.000000
x_2 = 2.000000
x_3 = 3.000000
```

第二题

第一小问

按照题目要求构造即可。关键代码:

```
1 # 初始化一个二维数组来存储中间计算结果
 2
    phi = np.zeros((n, n))
4 # 填充 phi 的第一列y_values
   for i in range(n):
5
       phi[i][0] = y_values[i]
 6
   # 递推计算 phi 的其他列
8
   for i in range(1, n): # phi 的行
9
       for j in range(1, i+1): # phi 的列
10
           numerator = x_values[j-1] - x_values[i]
11
12
           denominator = phi[j-1][j-1] - phi[i][j-1]
13
           phi[i][j] = numerator / denominator
14
```

```
15 # 提取对角线上的值作为结果
```

此代码构造一个矩阵phi, 形式上满足

$$phi = egin{bmatrix} y_0 \ y_1 & \phi(x_0,x_1) \ y_2 & \phi(x_0,x_2) & \phi(x_0,x_1,x_2) \ y_3 & \phi(x_0,x_3) & \phi(x_0,x_1,x_3) & \phi(x_0,x_1,x_2,x_3) \ \dots \end{bmatrix}$$

得到的 $\phi(x_0, x_1, \cdots, x_n)$ 结果为

第一小问:有理分式内插法中,用于构造连分式的phi值

0.969818

-3.232728

0.338785

3.916865

3.163293

第二小问

根据题意,可以画出有理分式插值和拉格朗日多项式插值的图像

得到的结果

第二小问: 有理分式内插法和拉格朗日插值法的比较有理分式内插法的误差平方和: 2.956786e+04 拉格朗日插值法的误差平方和: 1.608528e+06

从图像以及误差平方和可以看出,有理分式内插法的误差明显小于拉格朗日插值法,说明有理分式内插法在本例中表现更好,能够更准确地逼近函数tan(x)的值。

第三题

第一小问

采用拉格朗日多项式内插法。

x	f(x)	P20(x)	f(x)-P20(x)
-1.000000	0.038462	0.038462	0.000000e+00
-0.950000	0.042440	-39.952449	3.999489e+01
-0.900000	0.047059	0.047059	0.000000e+00
-0.850000	0.052459	3.454958	3.402499e+00
-0.800000	0.058824	0.058824	0.000000e+00
-0.750000	0.066390	-0.447052	5.134420e-01
-0.700000	0.075472	0.075472	0.000000e+00
-0.650000	0.086486	0.202423	1.159361e-01
-0.600000	0.100000	0.100000	0.000000e+00
-0.550000	0.116788	0.080660	3.612833e-02
-0.500000	0.137931	0.137931	0.000000e+00
-0.450000	0.164948	0.179763	1.481418e-02
-0.400000	0.200000	0.200000	0.000000e+00
-0.350000	0.246154	0.238446	7.707912e-03
-0.300000	0.307692	0.307692	0.000000e+00
-0.250000	0.390244	0.395093	4.849151e-03
-0.200000	0.500000	0.500000	0.000000e+00
-0.150000	0.640000	0.636755	3.244664e-03
-0.100000	0.800000	0.800000	0.000000e+00
-0.050000	0.941176	0.942490	1.313909e-03
0.000000	1.000000	1.000000	0.000000e+00
0.050000	0.941176	0.942490	1.313909e-03
0.100000	0.800000	0.800000	0.000000e+00
0.150000	0.640000	0.636755	3.244664e-03
0.200000	0.500000	0.500000	0.000000e+00

х	f(x)	P20(x)	f(x)-P20(x)
0.250000	0.390244	0.395093	4.849151e-03
0.300000	0.307692	0.307692	0.000000e+00
0.350000	0.246154	0.238446	7.707912e-03
0.400000	0.200000	0.200000	0.000000e+00
0.450000	0.164948	0.179763	1.481418e-02
0.500000	0.137931	0.137931	0.000000e+00
0.550000	0.116788	0.080660	3.612833e-02
0.600000	0.100000	0.100000	0.000000e+00
0.650000	0.086486	0.202423	1.159361e-01
0.700000	0.075472	0.075472	0.000000e+00
0.750000	0.066390	-0.447052	5.134420e-01
0.800000	0.058824	0.058824	0.000000e+00
0.850000	0.052459	3.454958	3.402499e+00
0.900000	0.047059	0.047059	0.000000e+00
0.950000	0.042440	-39.952449	3.999489e+01
1.000000	0.038462	0.038462	0.000000e+00

插值结果如图所示

可以看到,使用均匀分布节点的拉格朗日插值法在区间端点附近出现了较大的误差,即Runge现象。

第二小问

由题,构造Chebyshev多项式,关键代码:

```
1 # 计算系数ck
    c = []
 3 for k in range(n):
4
       sum\_ck = 0
 5
       for j in range(1, n):
            sum_ck += y_values[j] * np.cos(k * (2 * j + 1) * np.pi / (2 * n))
 6
 7
        ck = (2 / n) * sum_ck
8
       # 特殊处理c0
9
        if k == 0:
           ck = ck / 2
10
            c.append(ck)
11
```

上述代码计算系数 $c_k=rac{2-\delta_{0k}}{n}\Sigma_{j=0}^{n-1}\cos{(rac{k\pi(j+1/2)}{n})}f[\cos(rac{\pi(j+1/2)}{n})]$ 。

```
1 # 计算bk(x)并计算插值结果
    results = []
 3 for xi in x:
        b_{kplus2} = 0
 5
        b_{kplus1} = 0
 6
        for k in range(n - 1, 0, -1):
            b_k = 2 * xi * b_{kplus1} - b_{kplus2} + c[k]
 7
8
            b_{kplus2} = b_{kplus1}
9
            b_{kplus1} = b_k
        fx = xi * b_kplus1 - b_kplus2 + c[0]
10
11
        results.append(fx)
```

上述代码根据Clenshaw算法计算Chebyshev展开:由于Chebyshev多项式满足

$$T_{k+1}(x) = 2xT_k(x) - T_{k-1}(x)$$

构造新函数b(x)满足

$$b_{n+1}(x) = 0, b_{n+2}(x) = 0, \ b_k(x) = 2xb_{k+1}(x) - b_{k+2}(x) + c_k$$

迭代, 最终得到

$$f(x) = c_0 + xb_1(x) - b_2(x)$$

插值结果列表如下:

x	f(x)	Chebyshev P(x)	f(x)-P(x)
0.997204	0.038669	0.000000	3.866918e-02
0.986066	0.039513	0.022382	1.713123e-02
0.974928	0.040384	0.040384	9.714451e-17
0.952901	0.042193	0.051335	9.141440e-03
0.930874	0.044124	0.044124	2.012279e-16
0.898450	0.047214	0.039339	7.875179e-03
0.866025	0.050633	0.050633	0.000000e+00
0.823928	0.055644	0.063477	7.833552e-03
0.781831	0.061419	0.061419	4.024558e-16
0.731002	0.069642	0.061293	8.349052e-03
0.680173	0.079581	0.079581	8.326673e-17
0.621746	0.093772	0.103117	9.344975e-03
0.563320	0.111942	0.111942	2.081668e-16
0.498602	0.138598	0.127674	1.092400e-02

х	f(x)	Chebyshev P(x)	f(x)-P(x)
0.433884	0.175243	0.175243	2.498002e-16
0.364319	0.231577	0.244798	1.322133e-02
0.294755	0.315257	0.315257	5.551115e-17
0.221899	0.448234	0.432724	1.551070e-02
0.149042	0.642946	0.642946	3.330669e-16
0.074521	0.878090	0.888328	1.023765e-02
0.000000	1.000000	1.000000	6.661338e-16
-0.074521	0.878090	0.888050	9.960119e-03
-0.149042	0.642946	0.642946	8.881784e-16
-0.221899	0.448234	0.433014	1.522037e-02
-0.294755	0.315257	0.315257	1.665335e-16
-0.364319	0.231577	0.244480	1.290291e-02
-0.433884	0.175243	0.175243	2.775558e-16
-0.498602	0.138598	0.128042	1.055623e-02
-0.563320	0.111942	0.111942	2.636780e-16
-0.621746	0.093772	0.102666	8.893966e-03
-0.680173	0.079581	0.079581	2.775558e-17
-0.731002	0.069642	0.061889	7.753689e-03
-0.781831	0.061419	0.061419	5.412337e-16
-0.823928	0.055644	0.062611	6.967041e-03
-0.866025	0.050633	0.050633	6.661338e-16
-0.898450	0.047214	0.040794	6.419912e-03
-0.930874	0.044124	0.044124	2.012279e-16
-0.952901	0.042193	0.048214	6.020591e-03
-0.974928	0.040384	0.040384	1.804112e-16
-0.986066	0.039513	0.033973	5.539692e-03
-0.997204	0.038669	0.038669	4.857226e-17

结果图:

可以看到,Chebyshev 多项式插值法在整个区间上的误差显著小于均匀分布节点的拉格朗日插值法,避免了Runge现象。

第三小问

结果列表如下:

x	f(x)	Lagrange P(x)	Chebyshev P(x)	f(x)-Lagrange P(x)	f(x)-Chebyshev P(x)
-1.000000	1.000000	1.000000	0.994674	0.000000e+00	5.325637e-03
-0.950000	0.950000	64.706500	0.944854	6.375650e+01	5.145959e-03
-0.900000	0.900000	0.900000	0.905797	0.000000e+00	5.797395e-03
-0.850000	0.850000	-4.622894	0.846295	5.472894e+00	3.705399e-03
-0.800000	0.800000	0.800000	0.796272	0.000000e+00	3.728417e-03
-0.750000	0.750000	1.586376	0.755800	8.363759e-01	5.800001e-03
-0.700000	0.700000	0.700000	0.703867	0.000000e+00	3.866819e-03
-0.650000	0.650000	0.457604	0.644344	1.923961e-01	5.656484e-03
-0.600000	0.600000	0.600000	0.593481	0.000000e+00	6.518838e-03
-0.550000	0.550000	0.611706	0.552841	6.170631e-02	2.840956e-03
-0.500000	0.500000	0.500000	0.509262	0.000000e+00	9.261569e-03
-0.450000	0.450000	0.423458	0.453701	2.654191e-02	3.700935e-03

x	f(x)	Lagrange P(x)	Chebyshev P(x)	f(x)-Lagrange P(x)	f(x)-Chebyshev P(x)
-0.400000	0.400000	0.400000	0.392249	0.000000e+00	7.751038e-03
-0.350000	0.350000	0.365067	0.338570	1.506700e-02	1.142959e-02
-0.300000	0.300000	0.300000	0.298435	0.000000e+00	1.565072e-03
-0.250000	0.250000	0.238656	0.262824	1.134449e-02	1.282364e-02
-0.200000	0.200000	0.200000	0.215923	0.000000e+00	1.592270e-02
-0.150000	0.150000	0.161763	0.150438	1.176288e-02	4.376785e-04
-0.100000	0.100000	0.100000	0.076921	0.000000e+00	2.307909e-02
-0.050000	0.050000	0.031045	0.019314	1.895460e-02	3.068599e-02
0.000000	0.000000	0.000000	-0.000000	0.000000e+00	1.665335e-15
0.050000	0.050000	0.031045	0.025505	1.895460e-02	2.449529e-02
0.100000	0.100000	0.100000	0.083114	0.000000e+00	1.688589e-02
0.150000	0.150000	0.161763	0.150290	1.176288e-02	2.895668e-04
0.200000	0.200000	0.200000	0.209359	0.000000e+00	9.358554e-03
0.250000	0.250000	0.238656	0.256530	1.134449e-02	6.529593e-03
0.300000	0.300000	0.300000	0.299336	0.000000e+00	6.643323e-04
0.350000	0.350000	0.365067	0.346209	1.506700e-02	3.790777e-03
0.400000	0.400000	0.400000	0.398232	0.000000e+00	1.768305e-03
0.450000	0.450000	0.423458	0.450408	2.654191e-02	4.084611e-04
0.500000	0.500000	0.500000	0.499754	0.000000e+00	2.457640e-04
0.550000	0.550000	0.611706	0.549461	6.170631e-02	5.385557e-04
0.600000	0.600000	0.600000	0.602537	0.000000e+00	2.536942e-03
0.650000	0.650000	0.457604	0.653630	1.923961e-01	3.629842e-03
0.700000	0.700000	0.700000	0.696232	0.000000e+00	3.768199e-03
0.750000	0.750000	1.586376	0.741666	8.363759e-01	8.333525e-03
0.800000	0.800000	0.800000	0.807934	0.000000e+00	7.933554e-03
0.850000	0.850000	-4.622894	0.862159	5.472894e+00	1.215922e-02
0.900000	0.900000	0.900000	0.867462	0.000000e+00	3.253813e-02
0.950000	0.950000	64.706500	1.016200	6.375650e+01	6.619981e-02
1.000000	1.000000	1.000000	-0.272636	0.000000e+00	1.272636e+00

结果图如下:

对于f(x)=|x|,在 $x\approx 0$ 附近,均匀分布节点的拉格朗日插值法表现出较大的误差,而Chebyshev插值法则表现较好,但仍然存在一定的误差。这是因为f(x)在x=0处不可导,导致插值多项式难以准确逼近该点的行为。

第四小问

结果列表如下:

х	f(x)	Spline P(x)	f(x)-P(x)
-1.000000	0.038462	0.038462	0.000000e+00
-0.966667	0.041049	0.041149	9.972946e-05
-0.933333	0.043902	0.043970	6.744793e-05
-0.900000	0.047059	0.047059	0.000000e+00
-0.866667	0.050562	0.050533	2.891591e-05
-0.833333	0.054463	0.054443	1.993336e-05
-0.800000	0.058824	0.058824	0.000000e+00
-0.766667	0.063717	0.063721	4.615228e-06
-0.733333	0.069231	0.069234	3.366009e-06
-0.700000	0.075472	0.075472	0.000000e+00
-0.666667	0.082569	0.082558	1.108412e-05
-0.633333	0.090680	0.090670	1.006875e-05
-0.600000	0.100000	0.100000	0.000000e+00

x	f(x)	Spline P(x)	f(x)-P(x)
-0.566667	0.110769	0.110766	3.508784e-06
-0.533333	0.123288	0.123292	4.498551e-06
-0.500000	0.137931	0.137931	0.000000e+00
-0.466667	0.155172	0.155107	6.577851e-05
-0.433333	0.175610	0.175534	7.595224e-05
-0.400000	0.200000	0.200000	2.775558e-17
-0.366667	0.229299	0.229374	7.424473e-05
-0.333333	0.264706	0.264847	1.408261e-04
-0.300000	0.307692	0.307692	0.000000e+00
-0.266667	0.360000	0.359435	5.645206e-04
-0.233333	0.423529	0.422610	9.198404e-04
-0.200000	0.500000	0.500000	0.000000e+00
-0.166667	0.590164	0.592714	2.549600e-03
-0.133333	0.692308	0.695142	2.834664e-03
-0.100000	0.800000	0.800000	0.000000e+00
-0.066667	0.900000	0.897916	2.084489e-03
-0.033333	0.972973	0.971180	1.792995e-03
0.000000	1.000000	1.000000	0.000000e+00
0.033333	0.972973	0.971180	1.792995e-03
0.066667	0.900000	0.897916	2.084489e-03
0.100000	0.800000	0.800000	0.000000e+00
0.133333	0.692308	0.695142	2.834664e-03
0.166667	0.590164	0.592714	2.549600e-03
0.200000	0.500000	0.500000	1.110223e-16
0.233333	0.423529	0.422610	9.198404e-04
0.266667	0.360000	0.359435	5.645206e-04
0.300000	0.307692	0.307692	5.551115e-17
0.333333	0.264706	0.264847	1.408261e-04

x	f(x)	Spline P(x)	f(x)-P(x)
0.366667	0.229299	0.229374	7.424473e-05
0.400000	0.200000	0.200000	2.775558e-17
0.433333	0.175610	0.175534	7.595224e-05
0.466667	0.155172	0.155107	6.577851e-05
0.500000	0.137931	0.137931	0.000000e+00
0.533333	0.123288	0.123292	4.498551e-06
0.566667	0.110769	0.110766	3.508784e-06
0.600000	0.100000	0.100000	1.387779e-17
0.633333	0.090680	0.090670	1.006875e-05
0.666667	0.082569	0.082558	1.108412e-05
0.700000	0.075472	0.075472	1.387779e-17
0.733333	0.069231	0.069234	3.366009e-06
0.766667	0.063717	0.063721	4.615228e-06
0.800000	0.058824	0.058824	0.000000e+00
0.833333	0.054463	0.054443	1.993336e-05
0.866667	0.050562	0.050533	2.891591e-05
0.900000	0.047059	0.047059	0.000000e+00
0.933333	0.043902	0.043970	6.744793e-05
0.966667	0.041049	0.041149	9.972946e-05
1.000000	0.038462	0.038462	0.000000e+00

结果图如下:

三次样条插值法在整个区间上表现出良好的逼近效果,误差很小,效果好于Chebyshev多项式和拉格朗日多项式,且没有出现Runge现象。这是因为,三次样条函数是使得一个函数的模

$$||f||=\int_a^b dx |f''(x)|^2$$

最小的函数,而这个模从某种意义上是衡量函数在区间上曲率模方的大小。因此,三次样条函数是最"光滑"的函数。

第五小问

分布曲线如下所示:

Lebesgue 数衡量了插值过程中的误差放大效应。对于均匀分布节点,Lebesgue 数在区间端点附近显著增大,表明误差可能被放大,导致Runge现象的出现。而Chebyshev节点的Lebesgue数相对较小且分布更均匀,说明其插值过程中的误差放大效应较小,更稳定。因此,选择合适的插值节点对于控制插值误差至关重要。

Lebesgue 数确实存在下限,且对于任意节点分布,其Lebesgue 数的下限均大于等于1。这是因为在插值过程中,至少会有一个基函数在某些点处取值为1。例如对于基函数 $L_i(x)$,当 $x=x_i$ 时, $L_i(x_i)=1$,则Lebesgue函数 $\Lambda(x)=\Sigma_i|L_i(x)|$ 在该点处至少为1。因此Lebesgue数有下限,且至少为1。

第四题

第一小问

计算得到的值如下:

t	$x_t = r(\phi)\cos\phi$	$y_t = r(\phi)\cos\phi$
0	0	0
1	$\frac{\sqrt{2}}{2}-\frac{1}{2}$	$\frac{\sqrt{2}}{2} - \frac{1}{2}$
2	0	1
3	$-rac{\sqrt{2}}{2}-rac{1}{2}$	$\frac{\sqrt{2}}{2} + \frac{1}{2}$
4	-2	0
5	$-rac{\sqrt{2}}{2}-rac{1}{2}$	$-rac{\sqrt{2}}{2}-rac{1}{2}$
6	0	-1
7	$\frac{\sqrt{2}}{2}-\frac{1}{2}$	$-\tfrac{\sqrt{2}}{2}+\tfrac{1}{2}$
8	0	0

第二小问

函数中的小数保留6位有效数字:

$$S_{\Delta}(X;t) = \begin{cases} t \cdot (0.245602 - 0.038495t^2) &, & t \in [0,1] \\ -0.221738t^3 + 0.54973t^2 - 0.304128t + 0.183243 &, & t \in [1,2] \\ 0.339662t^3 - 2.81867t^2 + 6.43268t - 4.30796 &, & t \in [2,3] \\ 0.277304t^3 - 2.25745t^2 + 4.749t - 2.62428 &, & t \in [3,4] \\ -0.277304t^3 + 4.39784t^2 - 21.8721t + 32.8706 &, & t \in [4,5] \\ -0.339662t^3 + 5.33322t^2 - 26.549t + 40.6654 &, & t \in [5,6] \\ 0.221738t^3 - 4.77199t^2 + 34.0822t - 80.5971 &, & t \in [6,7] \\ -0.245602t + 19.7095 \cdot (0.125t - 1)^3 + 1.96481 &, & t \in [7,8] \end{cases}$$

```
S_{\Delta}(Y;t) = \begin{cases} t \cdot (0.173495t^2 + 0.0336116) &, & t \in [0,1] \\ -0.281689t^3 + 1.36555t^2 - 1.33194t + 0.455185 &, & t \in [1,2] \\ -0.218311t^3 + 0.985281t^2 - 0.571398t - 0.051845 &, & t \in [2,3] \\ 0.326505t^3 - 3.91806t^2 + 14.1386t - 14.7619 &, & t \in [3,4] \\ 0.326505t^3 - 3.91806t^2 + 14.1386t - 14.7619 &, & t \in [4,5] \\ -0.218311t^3 + 4.25417t^2 - 26.7225t + 53.3401 &, & t \in [5,6] \\ -0.281689t^3 + 5.39499t^2 - 33.5674t + 67.0299 &, & t \in [6,7] \\ 0.0336116t + 88.8295 \cdot (0.125t - 1)^3 - 0.268893 &, & t \in [7,8] \end{cases}
```

第三小问

如下图:

第四小问

三次样条插值通过在每个相邻数据点之间构造三次多项式,并确保这些多项式在数据点处连续且具有连续的一阶和二阶导数,从而实现了平滑连接。这种方法不仅保证了曲线通过所有给定点,还确保了曲线的光滑性,避免了不连续或尖锐的转折。再加上前面提到过的,可以证明它是最"光滑"的函数,因此很多软件采用这个算法。

第五题

第一小问&第二小问

根据加权最小二乘法的计算原理,假设拟合多项式为 $y(x)=a_0+a_1x+a_2x^2+\cdots+a_mx^m$,目标是最小化加权残差平方和 $\chi^2=\sum_{i=1}^n\left(rac{y_i-y(x_i)}{\sigma_i}
ight)^2$ 。

对每个系数 a_j 求偏导并令其为零: $rac{\partial \chi^2}{\partial a_i} = 0, \quad j = 0, 1, \ldots, m$

得到线性方程组:

$$\sum_{k=0}^m \left(\sum_{i=1}^n rac{x_i^{j+k}}{\sigma_i^2}
ight) a_k = \sum_{i=1}^n rac{y_i x_i^j}{\sigma_i^2}$$

用矩阵形式表示为:

$$\mathbf{M} \cdot \mathbf{a} = \mathbf{b}$$

其中,

- **M** 是 (m+1) imes (m+1) 矩阵, $M[j][k] = \sum rac{x_i^{j+k}}{\sigma_i^2}$
- **a** 是系数向量 $[a_0, a_1, \ldots, a_m]^T$
- **b** 是向量, $b[j] = \sum rac{y_i x_i^j}{\sigma_i^2}$

解出a即可得到系数。系数的误差由协方差矩阵给出,协方差矩阵 ${f C}={f M}^{-1}$,系数 a_j 的误差为协方差矩阵对角线元素的平方根: $\sigma_{a_j}=\sqrt{C[j][j]}$

因此需要用到求解线性方程组、矩阵求逆两种算法。前者在第一题中已实现,下面实现矩阵求逆。

矩阵求逆

由于矩阵M是实对称矩阵,因此可以应用Cholesky分解,将其分解为下三角矩阵L和上三角矩阵 L^T 的乘积: $M=LL^T$ 。

因此 $LL^TM^{-1}=LY=I$,其中 $Y=L^TM^{-1}$,I为单位矩阵。求解LY=I得到Y,再求解 $L^TX=Y$,即得到 $X=M^{-1}$ 。

Cholesky分解核心代码:

```
1 for i in range(n):
2 for j in range(i + 1):
3 # 计算对角线元素 (i == j)
4 if i == j:
5 # L[i,i] = sqrt(M[i,i] - sum(L[i,k]^2 for k=0..i-1))
6 sum_sq = np.sum(L[i, :i] ** 2)
7 diag_val = M[i, i] - sum_sq
```

```
if diag_val < eps: # 若被开方数非正,矩阵非正定
8
 9
                    raise ValueError("矩阵非正定, 无法进行 Cholesky 分解")
10
                L[i, i] = np.sqrt(diag_val)
11
            # 计算非对角线元素 (i > j)
12
            else:
13
                \# L[i,j] = (M[i,j] - sum(L[i,k] \cdot L[j,k] \text{ for } k=0..j-1)) / L[j,j]
                sum\_prod = np.sum(L[i, :j] * L[j, :j])
14
                L[i, j] = (M[i, j] - sum\_prod) / L[j, j]
15
```

求逆核心代码:

```
1 # 1. Cholesky分解
2 L = cholesky(M)
   LT = L.T # L的转置
   # 2. 求解L·Y = I, 得到Y (每列对应单位矩阵的一列)
  Y = np.zeros((n, n))
   for j in range(n):
7
8
       e_j = np.zeros(n)
       e_j[j] = 1.0 # 单位向量 (第j个元素为1)
9
10
       Y[:, j] = forward_substitution(L, e_j) # 解第j列方程
11
   # 3. 求解LT·X = Y, 得到X = M^{-1}
12
13
   M_{inv} = np.zeros((n, n))
   for j in range(n):
       M_inv[:, j] = backward_substitution(LT, Y[:, j]) # 解第j列方程
```

结果

1次多项式拟合结果:

 $a_0 = -1.469123 \pm 0.088936$ $a_1 = 3.639348 \pm 0.015647$

2次多项式拟合结果:

 $a_0 = 1.247523 \pm 0.108119$ $a_1 = 1.074951 \pm 0.060110$ $a_2 = 0.274752 \pm 0.006218$

3次多项式拟合结果:

 $a_0 = 1.202997 \pm 0.117696$ $a_1 = 1.218518 \pm 0.161550$ $a_2 = 0.229641 \pm 0.047526$ $a_3 = 0.003321 \pm 0.003468$

如下图所示:

