```
In [1]:
```


import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

In [2]:

sns.set()

In [3]:

train_data = pd.read_excel("Data_Train.xlsx")

In [4]:

train_data

Out[4]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price
0	IndiGo	24/03/2019	Banglore	New Delhi	BLR → DEL	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897
1	Air India	1/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \\ \to \\ IXR \\ \to \\ BBI \to \\ BLR \end{array}$	05:50	13:15	7h 25m	2 stops	No info	7662
2	Jet Airways	9/06/2019	Delhi	Cochin	DEL → LKO → BOM → COK	09:25	04:25 10 Jun	19h	2 stops	No info	13882
3	IndiGo	12/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \\ \to \\ NAG \\ \to \\ BLR \end{array}$	18:05	23:30	5h 25m	1 stop	No info	6218
4	IndiGo	01/03/2019	Banglore	New Delhi	BLR → NAG → DEL	16:50	21:35	4h 45m	1 stop	No info	13302
10678	Air Asia	9/04/2019	Kolkata	Banglore	CCU → BLR	19:55	22:25	2h 30m	non-stop	No info	4107
10679	Air	27/04/2019	Kolkata	Banglore	CCU →	20:45	23:20	2h 35m	non-stop	No info	4145

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price
10680	Jet Airways	27/04/2019	Banglore	Delhi	BLR → DEL	08:20	11:20	3h	non-stop	No info	7229
10681	Vistara	01/03/2019	Banglore	New Delhi	BLR → DEL	11:30	14:10	2h 40m	non-stop	No info	12648
10682	Air India	9/05/2019	Delhi	Cochin	DEL → GOI → BOM → COK	10:55	19:15	8h 20m	2 stops	No info	11753

10683 rows × 11 columns

In [5]:

```
pd.set_option('display.max_columns',None)
```

In [6]:

train_data.head()

Out[6]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price
0	IndiGo	24/03/2019	Banglore	New Delhi	BLR → DEL	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897
1	Air India	1/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to \\ IXR \to \\ BBI \to \\ BLR \end{array}$	05:50	13:15	7h 25m	2 stops	No info	7662
2	Jet Airways	9/06/2019	Delhi	Cochin	$\begin{array}{c} DEL \to \\ LKO \to \\ BOM \to \\ COK \end{array}$	09:25	04:25 10 Jun	19h	2 stops	No info	13882
3	IndiGo	12/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to \\ NAG \to \\ BLR \end{array}$	18:05	23:30	5h 25m	1 stop	No info	6218
4	IndiGo	01/03/2019	Banglore	New Delhi	$\begin{array}{c} BLR \to \\ NAG \to \\ DEL \end{array}$	16:50	21:35	4h 45m	1 stop	No info	13302

In [7]:

train_data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10683 entries, 0 to 10682
Data columns (total 11 columns):

Data	COTUMNIS (COCAT I	T COTUMNIS).	
#	Column	Non-Null Count	Dtype
0	Airline	10683 non-null	object
1	Date_of_Journey	10683 non-null	object
2	Source	10683 non-null	object
3	Destination	10683 non-null	object
4	Route	10682 non-null	object
5	Dep_Time	10683 non-null	object
6	Arrival_Time	10683 non-null	object
7	Duration	10683 non-null	object
8	Total_Stops	10682 non-null	object
9	Additional_Info	10683 non-null	object
10	Price	10683 non-null	int64

dtypes: int64(1), object(10)
memory usage: 918.2+ KB

In [8]:

```
| ######### data pre-processing #########
train data['Duration'].value counts() ###### how many times a duration has been used in the da
ta set #####
Out[8]:
2h 50m
1h 30m
2h 55m
          337
          337
2h 45m
2h 35m
           329
31h 30m
30h 10m
47h
3h 25m
13h 35m
            1
Name: Duration, Length: 368, dtype: int64
In [9]:
train data.dropna(inplace=True) ####### dropping na values #######
In [10]:
train data.isnull().sum() ######## checking Null values ############
Out[10]:
Airline
Date of Journey
Source
                   0
Destination
                   0
Route
                   0
Dep_Time
                  0
Arrival Time
Duration
                  0
Total Stops
                  0
Additional Info
Price
                   0
dtype: int64
In [11]:
####### Exploratory Data Analysis ##########
##### date of journey, dep time is in string format and arrival time is having character type dat
a like "mar", "jun". etc.. we need to change these.
train data["Journey day"] = pd.to datetime(train data.Date of Journey,format = "%d/%m/%Y").dt.day
#### .dt.day will extract day from the date ###
train data["Joourney month"] = pd.to datetime(train data["Date of Journey"], format = "%d/%m/%Y").dt
.month ### .dt.month will extract month from the date ###
```

In [12]:

train_data.head()

Out[12]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price	Jou
0	IndiGo	24/03/2019	Banglore	New Delhi	BLR → DEL	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897	
1	Air India	1/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \\ \to \\ IXR \\ \to \\ BBI \to \\ BLR \end{array}$	05:50	13:15	7h 25m	2 stops	No info	7662	

	Α	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price	Jou
	2 Ai	Jet irways	9/06/2019	Delhi	Cochin	LKO BOM COK	09:25	04:25 10 Jun	19h	2 stops	No info	13882	
	3 li	ndiGo	12/05/2019	Kolkata	Banglore	CCU → NAG → BLR	18:05	23:30	5h 25m	1 stop	No info	6218	
	4 lı	ndiGo	01/03/2019	Banglore	New Delhi	BLR → NAG → DEL	16:50	21:35	4h 45m	1 stop	No info	13302	
4	1										1		▶

In [13]:

since we have converted "dat_of_journey" into integer , we can now drop it as it is of no u se

train_data.drop(["Date_of_Journey"], axis = 1, inplace = True)

In [14]:

train_data.head()

Out[14]:

	Airline	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price	Journey_day	Joourne
O	IndiGo	Banglore	New Delhi	BLR → DEL	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897	24	
1	Air India	Kolkata	Banglore	$\begin{array}{c} CCU \\ \to \\ IXR \\ \to \\ BBI \to \\ BLR \end{array}$	05:50	13:15	7h 25m	2 stops	No info	7662	1	
2	Jet Airways	Delhi	Cochin	DEL → LKO → BOM → COK	09:25	04:25 10 Jun	19h	2 stops	No info	13882	9	
3	IndiGo	Kolkata	Banglore	CCU → NAG → BLR	18:05	23:30	5h 25m	1 stop	No info	6218	12	
4	· IndiGo	Banglore	New Delhi	BLR → NAG → DEL	16:50	21:35	4h 45m	1 stop	No info	13302	1	
4												Þ

In [15]:

train_data["Dep_hour"] = pd.to_datetime(train_data["Dep_Time"]).dt.hour #### .dt.hour will
extract hour from the time ###

train_data["Dep_min"] = pd.to_datetime(train_data["Dep_Time"]).dt.minute ### .dt.minute will
extract minute from the date ###

In [16]:

train_data.head()

Out[16]:

	Airline	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Price	Journey_day	Joourne
C	IndiGo	Banglore	New Delhi	BLR → DEL	22:20	01:10 22 Mar	2h 50m	non-stop	No info	3897	24	
1	Air India	Kolkata	Banglore	$\begin{array}{c} CCU \\ \to \\ IXR \\ \to \\ BBI \to \\ BLR \end{array}$	05:50	13:15	7h 25m	2 stops	No info	7662	1	
2	Jet Airways	Delhi	Cochin	DEL → LKO → BOM → COK	09:25	04:25 10 Jun	19h	2 stops	No info	13882	9	
3	s IndiGo	Kolkata	Banglore	CCU → NAG → BLR	18:05	23:30	5h 25m	1 stop	No info	6218	12	
4	IndiGo	Banglore	New Delhi	BLR → NAG → DEL	16:50	21:35	4h 45m	1 stop	No info	13302	1	
4												Þ

In [17]:

```
train_data.drop(["Dep_Time"], axis = 1, inplace = True)
```

In [18]:

train_data.head()

Out[18]:

	Airline	Source	Destination	Route	Arrival_Time	Duration	Total_Stops	Additional_Info	Price	Journey_day	Joourney_month	С
0	IndiGo	Banglore	New Delhi	BLR → DEL	01:10 22 Mar	2h 50m	non-stop	No info	3897	24	3	
1	Air India	Kolkata	Banglore	$\begin{array}{c} CCU \\ \to \\ IXR \\ \to \\ BBI \to \\ BLR \end{array}$	13:15	7h 25m	2 stops	No info	7662	1	5	
2	Jet Airways	Delhi	Cochin	DEL → LKO → BOM → COK	04:25 10 Jun	19h	2 stops	No info	13882	9	6	
3	IndiGo	Kolkata	Banglore	CCU → NAG → BLR	23:30	5h 25m	1 stop	No info	6218	12	5	
4	IndiGo	Banglore	New Delhi	BLR → NAG → DEL	21:35	4h 45m	1 stop	No info	13302	1	3	
4												F

In [19]:

train_data["Arrival_min"] = pd.to_datetime(train_data["Arrival_Time"]).dt.minute ### .dt.minute wil
l extract minute from the date ###

In [20]:

train_data.head()

Out[20]:

		Airline	Source	Destination	Route	Arrival_Time	Duration	Total_Stops	Additional_Info	Price	Journey_day	Joourney_month	С
(0	IndiGo	Banglore	New Delhi	BLR → DEL	01:10 22 Mar	2h 50m	non-stop	No info	3897	24	3	
	1	Air India	Kolkata	Banglore	$\begin{array}{c} CCU \\ \to \\ IXR \\ \to \\ BBI \to \\ BLR \end{array}$	13:15	7h 25m	2 stops	No info	7662	1	5	
:	2	Jet Airways	Delhi	Cochin	DEL → LKO → BOM → COK	04:25 10 Jun	19h	2 stops	No info	13882	9	6	
;	3	IndiGo	Kolkata	Banglore	CCU → NAG → BLR	23:30	5h 25m	1 stop	No info	6218	12	5	
	4	IndiGo	Banglore	New Delhi	BLR → NAG → DEL	21:35	4h 45m	1 stop	No info	13302	1	3	
4												1	▶

In [21]:

train_data.drop(["Arrival_Time"], axis = 1, inplace = True)

In [22]:

train_data.head()

Out[22]:

	Airline	Source	Destination	Route	Duration	Total_Stops	Additional_Info	Price	Journey_day	Joourney_month	Dep_hour	Dep
0	IndiGo	Banglore	New Delhi	BLR → DEL	2h 50m	non-stop	No info	3897	24	3	22	
1	Air India	Kolkata	Banglore	$\begin{array}{c} CCU \\ \to \\ IXR \\ \to \\ BBI \to \\ BLR \end{array}$	7h 25m	2 stops	No info	7662	1	5	5	
2	Jet Airways	Delhi	Cochin	DEL → LKO → BOM → COK	19h	2 stops	No info	13882	9	6	9	
3	IndiGo	Kolkata	Banglore	CCU → NAG → BLR	5h 25m	1 stop	No info	6218	12	5	18	
4	IndiGo	Banglore	New Delhi	BLR → NAG →	4h 45m	1 stop	No info	13302	1	3	16	

```
Airline Source Destination Route Duration Total Stops Additional Info Price Journey day Joourney month Dep hour Dep

In [23]:

######## assigning and converting duration column into list #######

duration = list(train_data["Duration"])
```

```
In [24]:
```

```
for i in range(len(duration)):
   if len(duration[i].split()) != 2: ####### check if duration contains only hour and
minute #######
       if "h" in duration[i]:
          duration[i] = duration[i].strip() + " 0m "
                                                        ###### adding 0 minute ######
       else:
           duration[i] = " Oh "+duration[i]
                                                         ###### adding 0 hour ########
duration hours = []
duration mins = []
for i in range(len(duration)):
   duration hours.append(int(duration[i].split(sep = "h")[0])) ##### extracting hours from the
time #########
  duration mins.append(int(duration[i].split(sep = "m")[0].split()[-1])) ##### extracting
minutes from time ######
4
```

In [25]:

```
######### adding "duration_hours" and "duration_mins" to train datasets #####

train_data["Duration_hours"] = duration_hours
train_data["Duration_mins"] = duration_mins
```

In [26]:

```
train_data.head()
```

Out[26]:

	Airline	Source	Destination	Route	Duration	Total_Stops	Additional_Info	Price	Journey_day	Joourney_month	Dep_hour	Dep
() IndiGo	Banglore	New Delhi	BLR → DEL	2h 50m	non-stop	No info	3897	24	3	22	
1	l Air India	Kolkata	Banglore	$\begin{array}{c} CCU \\ \to \\ IXR \\ \to \\ BBI \to \\ BLR \end{array}$	7h 25m	2 stops	No info	7662	1	5	5	
2	Jet Airways	Delhi	Cochin	DEL → LKO → BOM → COK	19h	2 stops	No info	13882	9	6	9	
3	3 IndiGo	Kolkata	Banglore	CCU → NAG → BLR	5h 25m	1 stop	No info	6218	12	5	18	
4	I IndiGo	Banglore	New Delhi	BLR → NAG → DEL	4h 45m	1 stop	No info	13302	1	3	16	
4												Þ

In [27]:

```
train_data.drop(["Duration"], axis = 1, inplace = True)
```

In [28]:

```
train_data.head()
```

Out[28]:

	Airline	Source	Destination	Route	Total_Stops	Additional_Info	Price	Journey_day	Joourney_month	Dep_hour	Dep_min	Arri
0	IndiGo	Banglore	New Delhi	BLR → DEL	non-stop	No info	3897	24	3	22	20	
1	Air India	Kolkata	Banglore	$\begin{array}{c} CCU \\ \to \\ IXR \\ \to \\ BBI \to \\ BLR \end{array}$	2 stops	No info	7662	1	5	5	50	
2	Jet Airways	Delhi	Cochin	DEL → LKO → BOM → COK	2 stops	No info	13882	9	6	9	25	
3	IndiGo	Kolkata	Banglore	CCU → NAG → BLR	1 stop	No info	6218	12	5	18	5	
4	IndiGo	Banglore	New Delhi	BLR → NAG → DEL	1 stop	No info	13302	1	3	16	50	
4												Þ

In [29]:

Out[29]:

Jet Airways	3849
IndiGo	2053
Air India	1751
Multiple carriers	1196
SpiceJet	818
Vistara	479
Air Asia	319
GoAir	194
Multiple carriers Premium economy	13
Jet Airways Business	6
Vistara Premium economy	3
Trujet	1
Name: Airline, dtype: int64	

In [30]:

```
###### from graph we can see that jet airways business have the highest price ######
###### apart from first airline almost all are having similar median ######
###### Airline vs price #####
sns.catplot(y = "Price",x = "Airline",data = train_data.sort_values("Price", ascending = False),kin
d = "boxen", height=6, aspect=3)
plt.show()
```

```
70000
```


In [32]:

```
###### as Airline is nominal categorical data , hence we will use one hot encoding #########
Airline = train_data[["Airline"]]
Airline = pd.get_dummies(Airline, drop_first=True)
Airline.head()
```

Out[32]:

	Airline_Air India	Airline_GoAir	Airline_IndiGo	Airline_Jet Airways	Airline_Jet Airways Business	Airline_Multiple carriers	Airline_Multiple carriers Premium economy	Airline_SpiceJet	Airline_Trujet	Ai
0	0	0	1	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	0	0	
2	0	0	0	1	0	0	0	0	0	
3	0	0	1	0	0	0	0	0	0	
4	0	0	1	0	0	0	0	0	0	
4										F

In [34]:

```
train_data["Source"].value_counts()
```

Out[34]:

Delhi 4536 Kolkata 2871 Banglore 2197 Mumbai 697 Chennai 381

Name: Source, dtype: int64

In [35]:

```
sns.catplot(y = "Price",x = "Source",data = train_data.sort_values("Price", ascending = False),kind
= "boxen", height=6, aspect=3)
plt.show()
```


+ r 4 ^ 1

ın [40]:

```
##### as source is also a nominal categorical data hence we can apply one-hot encoding
#############

Source = train_data[["Source"]]
Source = pd.get_dummies(Source,drop_first = True)
Source.head()
```

Out[40]:

	Source_Chennai	Source_Delhi	Source_Kolkata	Source_Mumbai
0	0	0	0	0
1	0	0	1	0
2	0	1	0	0
3	0	0	1	0
4	0	0	0	0

In [41]:

```
train_data["Destination"].value_counts()
Destination = train_data[["Destination"]]
Destination = pd.get_dummies(Destination,drop_first = True)
Destination.head()
```

Out[41]:

	Destination_Cochin	Destination_Delhi	Destination_Hyderabad	Destination_Kolkata	Destination_New Delhi
0	0	0	0	0	1
1	0	0	0	0	0
2	1	0	0	0	0
3	0	0	0	0	0
4	0	0	0	0	1

In [42]:

```
train_data["Route"]
```

Out[42]:

```
BLR → DEL
Ω
           CCU → IXR → BBI → BLR
            \texttt{DEL} \ \rightarrow \ \texttt{LKO} \ \rightarrow \ \texttt{BOM} \ \rightarrow \ \texttt{COK}
                    CCU \rightarrow NAG \rightarrow BLR
3
                    BLR → NAG → DEL
10678
                            CCU → BLR
10679
                             CCU → BLR
10680
                             BLR → DEL
10681
                             BLR → DEL
          DEL → GOI → BOM → COK
Name: Route, Length: 10682, dtype: object
```

In [43]:

```
###### Additional_Info contains almost 80% no_info#######
###### Route and Total_Stop are related to each other ########

train_data.drop(["Route","Additional_Info"], axis = 1, inplace = True)
```

In [45]:

```
train_data["Total_Stops"].value_counts()
```

Out[45]:

1 stop 5625 non-stop 3491 2 stops 1520 3 stops 45 4 stops 1

Name: Total_Stops, dtype: int64

In [46]:

######## as Total_Stops is a ordinal categorical data hence we can use label encoder here ######
######## here values are assigned with corresponding keys #########
train_data.replace({"non-stop":0,"1 stop":1,"2 stops":2,"3 stops":3,"4 stops":4},inplace = True)

In [47]:

train_data.head()

Out[47]:

	Airline	Source	Destination	Total_Stops	Price	Journey_day	Joourney_month	Dep_hour	Dep_min	Arrival_hour	Arrival_min	[
0	IndiGo	Banglore	New Delhi	0	3897	24	3	22	20	1	10	
1	Air India	Kolkata	Banglore	2	7662	1	5	5	50	13	15	
2	Jet Airways	Delhi	Cochin	2	13882	9	6	9	25	4	25	
3	IndiGo	Kolkata	Banglore	1	6218	12	5	18	5	23	30	
4	IndiGo	Banglore	New Delhi	1	13302	1	3	16	50	21	35	
4												F

In [49]:

######### concatenate data frame #########
data_train = pd.concat([train_data,Airline,Source,Destination], axis = 1)

In [50]:

data_train

Out[50]:

	Airline	Source	Destination	Total_Stops	Price	Journey_day	Joourney_month	Dep_hour	Dep_min	Arrival_hour	Arrival_m
0	IndiGo	Banglore	New Delhi	0	3897	24	3	22	20	1	,
1	Air India	Kolkata	Banglore	2	7662	1	5	5	50	13	,
2	Jet Airways	Delhi	Cochin	2	13882	9	6	9	25	4	2
3	IndiGo	Kolkata	Banglore	1	6218	12	5	18	5	23	:
4	IndiGo	Banglore	New Delhi	1	13302	1	3	16	50	21	:
10678	Air Asia	Kolkata	Banglore	0	4107	9	4	19	55	22	2
10679	Air India	Kolkata	Banglore	0	4145	27	4	20	45	23	2
10680	Jet Airways	Banglore	Delhi	0	7229	27	4	8	20	11	2
10681	Vistara	Banglore	New Delhi	0	12648	1	3	11	30	14	,
10682	Air India	Delhi	Cochin	2	11753	9	5	10	55	19	,

10682 rowwinds Destination Total_Stops Price Journey_day Joourney_month Dep_hour Dep_min Arrival_hour Arrival_m

In [51]:

####### now we can drop first three column as we have already applied onehot encoding of all the p
arameters ##########

data_train.drop(["Airline", "Source", "Destination"], axis = 1, inplace = True)

In [52]:

data_train.head()

Out[52]:

	Total_Stops	Price	Journey_day	Joourney_month	Dep_hour	Dep_min	Arrival_hour	Arrival_min	Duration_hours	Duration_mins
0	0	3897	24	3	22	20	1	10	2	50
1	2	7662	1	5	5	50	13	15	7	25
2	2	13882	9	6	9	25	4	25	19	0
3	1	6218	12	5	18	5	23	30	5	25
4	1	13302	1	3	16	50	21	35	4	45
4										Þ

In [53]:

data_train.shape

Out[53]:

(10682, 30)

In [54]:

In [55]:

test_data

Out[55]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info
0	Jet Airways	6/06/2019	Delhi	Cochin	$\begin{array}{c} DEL \to \\ BOM \to \\ COK \end{array}$	17:30	04:25 07 Jun	10h 55m	1 stop	No info
1	IndiGo	12/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to \\ MAA \to \\ BLR \end{array}$	06:20	10:20	4h	1 stop	No info
2	Jet Airways	21/05/2019	Delhi	Cochin	$\begin{array}{c} DEL \to \\ BOM \to \\ COK \end{array}$	19:15	19:00 22 May	23h 45m	1 stop	In-flight meal not included
3	Multiple carriers	21/05/2019	Delhi	Cochin	$\begin{array}{c} DEL \to \\ BOM \to \\ COK \end{array}$	08:00	21:00	13h	1 stop	No info
4	Air Asia	24/06/2019	Banglore	Delhi	$BLR \to DEL$	23:55	02:45 25 Jun	2h 50m	non-stop	No info
2666	Air India	6/06/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to \\ DEL \to BLR \end{array}$	20:30	20:25 07 Jun	23h 55m	1 stop	No info
2667	IndiGo	27/02/2010	Kalkata	Randora	$CCU \to$	1/1.20	16.55	2h 25m	non-eton	No info

2001	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info
2668	Jet Airways	6/03/2019	Delhi	Cochin	DEL → BOM → COK	21:50	04:25 07 Mar	6h 35m	1 stop	No info
2669	Air India	6/03/2019	Delhi	Cochin	$\begin{array}{c} DEL \to \\ BOM \to \\ COK \end{array}$	04:00	19:15	15h 15m	1 stop	No info
2670	Multiple carriers	15/06/2019	Delhi	Cochin	$\begin{array}{c} DEL \to \\ BOM \to \\ COK \end{array}$	04:55	19:15	14h 20m	1 stop	No info

2671 rows × 10 columns

In [56]:

```
test_data.head()
```

Out[56]:

	Airline	Date_of_Journey	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info
0	Jet Airways	6/06/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \\ \to COK \end{array}$	17:30	04:25 07 Jun	10h 55m	1 stop	No info
1	IndiGo	12/05/2019	Kolkata	Banglore	$\begin{array}{c} CCU \to MAA \\ \to BLR \end{array}$	06:20	10:20	4h	1 stop	No info
2	Jet Airways	21/05/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \\ \to COK \end{array}$	19:15	19:00 22 May	23h 45m	1 stop	In-flight meal not included
3	Multiple carriers	21/05/2019	Delhi	Cochin	$\begin{array}{c} DEL \to BOM \\ \to COK \end{array}$	08:00	21:00	13h	1 stop	No info
4	Air Asia	24/06/2019	Banglore	Delhi	$BLR \to DEL$	23:55	02:45 25 Jun	2h 50m	non-stop	No info

In [57]:

```
test_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2671 entries, 0 to 2670
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtvpe
π	COTUMIT	NOII NUII COUIIC	рсуре
0	Airline	2671 non-null	object
1	Date_of_Journey	2671 non-null	object
2	Source	2671 non-null	object
3	Destination	2671 non-null	object
4	Route	2671 non-null	object
5	Dep_Time	2671 non-null	object
6	Arrival_Time	2671 non-null	object
7	Duration	2671 non-null	object
8	Total_Stops	2671 non-null	object
9	Additional Info	2671 non-null	object

dtypes: object(10) memory usage: 208.8+ KB

In [58]:

```
test_data.dropna(inplace=True)
test_data.isnull().sum()
```

Out[58]:

```
0
Airline
Date_of_Journey
                 0
                  0
Source
Destination
Route
                  0
Dep_Time
Arrival_Time
                  0
Duration
                  0
Total_Stops
Additional_Info
                  0
```

dtype: int64

In [59]:

In [60]:

```
###### since we have converted "dat_of_journey" into integer , we can now drop it as it is of no u
se ######
test_data.drop(["Date_of_Journey"], axis = 1, inplace = True)
```

In [61]:

test_data.head()

Out[61]:

	Airline	Source	Destination	Route	Dep_Time	Arrival_Time	Duration	Total_Stops	Additional_Info	Journey_day	Joourney_mont
0	Jet Airways	Delhi	Cochin	DEL → BOM → COK	17:30	04:25 07 Jun	10h 55m	1 stop	No info	6	
1	IndiGo	Kolkata	Banglore	CCU → MAA → BLR	06:20	10:20	4h	1 stop	No info	12	
2	Jet Airways	Delhi	Cochin	DEL → BOM → COK	19:15	19:00 22 May	23h 45m	1 stop	In-flight meal not included	21	
3	Multiple carriers	Delhi	Cochin	DEL → BOM → COK	08:00	21:00	13h	1 stop	No info	21	
4	Air Asia	Banglore	Delhi	BLR → DEL	23:55	02:45 25 Jun	2h 50m	non-stop	No info	24	•

In [62]:

In [63]:

```
test_data.drop(["Dep_Time"], axis = 1, inplace = True)
```

In [64]:

```
test_data.head()
```

Out[64]:

	Airline	Source	Destination	Route	Arrival_Time	Duration	Total_Stops	Additional_Info	Journey_day	Joourney_month	Dep_hou
0	Jet Airways	Delhi	Cochin	DEL → BOM → COK	04:25 07 Jun	10h 55m	1 stop	No info	6	6	1
1	IndiGo	Kolkata	Banglore	CCU → MAA → BLR	10:20	4h	1 stop	No info	12	5	(
2	Jet Airways	Delhi	Cochin	DEL → BOM → COK	19:00 22 May	23h 45m	1 stop	In-flight meal not included	21	5	1
3	Multiple carriers	Delhi	Cochin	DEL → BOM → COK	21:00	13h	1 stop	No info	21	5	ł
4	Air Asia	Banglore	Delhi	BLR → DEL	02:45 25 Jun	2h 50m	non-stop	No info	24	6	2
4											Þ

In [65]:

test_data["Arrival_hour"] = pd.to_datetime(test_data["Arrival_Time"]).dt.hour #### .dt.hour will
extract hour from the time ###

test_data["Arrival_min"] = pd.to_datetime(test_data["Arrival_Time"]).dt.minute ### .dt.minute will
extract minute from the date ###

In [66]:

```
test_data.drop(["Arrival_Time"], axis = 1, inplace = True)
```

In [67]:

test_data.head()

Out[67]:

	Airline	Source	Destination	Route	Duration	Total_Stops	Additional_Info	Journey_day	Joourney_month	Dep_hour	Dep_min	,
0	Jet Airways	Delhi	Cochin	DEL → BOM → COK	10h 55m	1 stop	No info	6	6	17	30	
1	IndiGo	Kolkata	Banglore	CCU → MAA → BLR	4h	1 stop	No info	12	5	6	20	
2	Jet Airways	Delhi	Cochin	DEL → BOM → COK	23h 45m	1 stop	In-flight meal not included	21	5	19	15	
3	Multiple carriers	Delhi	Cochin	DEL → BOM → COK	13h	1 stop	No info	21	5	8	0	
4	Air Asia	Banglore	Delhi	BLR → DEL	2h 50m	non-stop	No info	24	6	23	55	
4											D	٠

```
In [68]:
####### assigning and converting duration column into list #######
duration = list(test_data["Duration"])
In [69]:
for i in range(len(duration)):
    if len(duration[i].split()) != 2:
                                                      ####### check if duration contains only hour and
         if "h" in duration[i]:
             duration[i] = duration[i].strip() + " 0m " ###### adding 0 minute #######
         else:
             duration[i] = " Oh "+duration[i]
                                                                 ###### adding 0 hour #########
duration hours = []
duration mins = []
for i in range(len(duration)):
    duration hours.append(int(duration[i].split(sep = "h")[0])) ##### extracting hours from the
    duration_mins.append(int(duration[i].split(sep = "m")[0].split()[-1])) ##### extracting
minutes from time ######
In [701:
######## adding "duration hours" and "duration mins" to test datasets ######
test data["Duration hours"] = duration hours
test data["Duration mins"] = duration mins
In [71]:
test data.drop(["Duration"], axis = 1, inplace = True)
In [72]:
test_data.head()
Out[72]:
    Airline
           Source Destination Route Total_Stops Additional_Info Journey_day Joourney_month Dep_hour Dep_min Arrival_hou
                              DEL
      Jet
             Delhi
                      Cochin
                             BOM
                                                   No info
                                                                                        17
                                                                                                 30
                                       1 stop
   Airways
                             COK
                             CCU
                                                                 12
                                                                                5
                                                                                         6
    IndiGo
           Kolkata
                    Banglore
                             MAA
                                       1 stop
                                                   No info
                                                                                                 20
                                                                                                           1
                              BLR
                              DEL
      Jet
                                               In-flight meal
                             BOM
             Delhi
                      Cochin
                                       1 stop
                                                                 21
                                                                                        19
                                                                                                 15
   Airways
                                               not included
                             COK
                             DEL
   Multiple
             Delhi
                      Cochin
                             BOM
                                       1 stop
                                                   No info
                                                                 21
                                                                                5
                                                                                         8
                                                                                                 0
                                                                                                           2
                             COK
                              BLR
 4 Air Asia Banglore
                       Delhi
                                                   No info
                                                                 24
                                                                                        23
                                                                                                 55
                                     non-stop
                              DEL
4
```

```
######## ordinal data : data are in order : label encoder
test data["Airline"].value counts()
Out[73]:
                                       897
Jet Airways
                                       511
IndiGo
Air India
                                       440
Multiple carriers
                                       347
SpiceJet
                                       208
                                       129
Vistara
Air Asia
                                        86
GoAir
                                        46
                                         3
Multiple carriers Premium economy
Jet Airways Business
                                         2
                                         2
Vistara Premium economy
Name: Airline, dtype: int64
In [75]:
##### from graph we can see that jet airways business have the highest price ######
##### apart from first airline almost all are having similar median ######
##### Airline vs price #####
sns.catplot(y = "Price", x = "Airline", data = test data.sort values("Price", ascending = False), kind
= "boxen", height=6, aspect=3)
plt.show()
KevError
                                            Traceback (most recent call last)
<ipython-input-75-bf3c31c0e468> in <module>
      3 ##### Airline vs price #####
---> 5 sns.catplot(y = "Price",x = "Airline",data = test data.sort values("Price", ascending = Fal
se) , kind = "boxen", height=6, aspect=3)
      6 plt.show()
~\anaconda3\lib\site-packages\pandas\core\frame.py in sort values(self, by, axis, ascending,
inplace, kind, na position, ignore index)
   4925
   4926
                     by = by[0]
-> 4927
                     k = self. get label or level values (by, axis=axis)
   4928
   4929
                     if isinstance(ascending, (tuple, list)):
~\anaconda3\lib\site-packages\pandas\core\generic.py in get label or level values(self, key,
axis)
   1690
                     values = self.axes[axis].get level values(key). values
   1691
                else:
-> 1692
                    raise KeyError (key)
   1693
                 # Check for duplicates
   1694
KeyError: 'Price'
In [76]:
###### as Airline is nominal categorical data , hence we will use one hot encoding ##########
Airline = test data[["Airline"]]
Airline = pd.get_dummies(Airline, drop_first=True)
Airline.head()
Out[76]:
                                                                  Airline_Multiple
                                            Airline_Jet Airline_Multiple
           Airline_GoAir Airline_IndiGo Airline_Jet
   Airline Air
                                                                        carriers
                                              Airways
                                                                               Airline_SpiceJet Airline_Vistara
                                                                       Premium
       India
                                                           carriers
                                             Business
```

0

0

0

1

0

0

0

1

0

economy

0

0

0

0

0

0

```
0
2
                                                                                     O Airline_Multiple
                                                           Airline Jet
  Airline_Air
India Airline_GoAir Airline_IndiG0
                                              Airline_Jet
                                                                       Airline_Multiple
                                                                                                 carriers
                                                                                                           Airline_SpiceJet Airline_Vistara
                                                              Airway 8
                                                                                                Premium
                                                 Airwayš
                                                                                carriers
                                                             Business
0
                                                                                               economy
                                            0
                                                        0
4
           0
                           0
                                                                                      0
                                                                                                                         0
```

In [78]:

```
##### as source is also a nominal categorical data hence we can apply one-hot encoding
#############

Source = test_data[["Source"]]
Source = pd.get_dummies(Source,drop_first = True)
Source.head()
```

Out[78]:

	Source_Chennai	Source_Delhi	Source_Kolkata	Source_Mumbai
0	0	1	0	0
1	0	0	1	0
2	0	1	0	0
3	0	1	0	0
4	0	0	0	0

In [79]:

```
test_data["Destination"].value_counts()
Destination = test_data[["Destination"]]
Destination = pd.get_dummies(Destination, drop_first = True)
Destination.head()
```

Out[79]:

	Destination_Cochin	Destination_Delhi	Destination_Hyderabad	Destination_Kolkata	Destination_New Delhi
0	1	0	0	0	0
1	0	0	0	0	0
2	1	0	0	0	0
3	1	0	0	0	0
4	0	1	0	0	0

In [80]:

```
###### Additional_Info contains almost 80% no_info#######
###### Route and Total_Stop are related to each other ########

test_data.drop(["Route","Additional_Info"], axis = 1, inplace = True)
```

In [81]:

```
######### as Total_Stops is a ordinal categorical data hence we can use label encoder here #######
######### here values are assigned with corresponding keys #########

test_data.replace({"non-stop":0,"1 stop":1,"2 stops":2,"3 stops":3,"4 stops":4},inplace = True)
```

In [82]:

```
test_data.head()
```

Out[82]:

0	Airline Airways	SolDedei	Desti@atiloin	Total_Stop\$	Journey_da@	Joourney_mont®	Dep_hoti7	Dep_min	Arrival_hou*	Arrival_m26	Duration
1	IndiGo	Kolkata	Banglore	1	12	5	6	20	10	20	
2	Jet Airways	Delhi	Cochin	1	21	5	19	15	19	0	
3	Multiple carriers	Delhi	Cochin	1	21	5	8	0	21	0	
4	Air Asia	Banglore	Delhi	0	24	6	23	55	2	45	
4									188)

In [83]:

```
######## concatenate data frame #########
```

data_test = pd.concat([test_data,Airline,Source,Destination], axis = 1)

In [84]:

now we can drop first three column as we have already applied onehot encoding of all the p arameters

data_test.drop(["Airline","Source","Destination"], axis = 1, inplace = True)

In [85]:

data_test.head()

Out[85]:

	Total_Stops	Journey_day	Joourney_month	Dep_hour	Dep_min	Arrival_hour	Arrival_min	Duration_hours	Duration_mins	Airline_ In
0	1	6	6	17	30	4	25	10	55	
1	1	12	5	6	20	10	20	4	0	
2	1	21	5	19	15	19	0	23	45	
3	1	21	5	8	0	21	0	13	0	
4	0	24	6	23	55	2	45	2	50	
4			1							

In [86]:

data_test.shape

Out[86]:

(2671, 28)

In [88]:

data train.columns

Out[88]:

	Total_Stops	Journey_day	Joourney_month	Dep_hour	Dep_min	Arrival_hour	Arrival_min	Duration_hours	Duration_mins	Airline_ In
0	0	24	3	22	20	1	10	2	50	
1	2	1	5	5	50	13	15	7	25	
2	2	9	6	9	25	4	25	19	0	
3	1	12	5	18	5	23	30	5	25	
4	1	1	3	16	50	21	35	4	45	
4			1							Þ

In [91]:

```
y = data_train.iloc[:,1]
```

In [92]:

```
y.head()
```

Out[92]:

0 3897 1 7662 2 13882 3 6218

13302

Name: Price, dtype: int64

In [94]:

```
######## find correaltion between independent and dependent variable ##########

plt.figure(figsize=(15,15))
sns.heatmap(train_data.corr(),annot=True,cmap = "RdYlGn")
plt.show()
```


In [95]:

```
####### Important feature using extraTreeRegressor #######

from sklearn.ensemble import ExtraTreesRegressor
selection = ExtraTreesRegressor()
selection.fit(x,y)
```

Out[95]:

In [96]:

```
print (selection.feature_importances_)

[2.51385867e-01 1.44243495e-01 5.26502805e-02 2.46295344e-02
2.09025618e-02 2.75839981e-02 2.02208164e-02 9.63074123e-02
1.73388461e-02 9.43568839e-03 1.94717422e-03 1.93925626e-02
1.37071913e-01 6.69296734e-02 1.98750338e-02 8.51248521e-04
3.84927812e-03 1.16774184e-04 5.00140040e-03 7.83913107e-05
4.70179598e-04 9.05530587e-03 3.37652805e-03 8.06784688e-03
1.05625968e-02 1.70362823e-02 6.36691548e-03 4.88064001e-04
2.47643322e-02]
```

In [98]:

In [99]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size = 0.2, random_state = True)
```

In [100]:

```
from sklearn.ensemble import RandomForestRegressor
reg_rf = RandomForestRegressor()
reg_rf.fit(x_train,y_train)
```

Out[100]:

In [101]:

```
y_pred = reg_rf.predict(x_test)
```

In [102]:

```
reg_rf.score(x_train,y_train) ##### R^2 score #########
```

Out[102]:

0.9544700547426853

In [103]:

```
reg_rf.score(x_test,y_test)
```

Out[103]:

0.8083117905428086

In [104]:

```
sns.distplot(y_test-y_pred)
plt.show()
```


In [105]:

```
############# scatter plot ##########

plt.scatter(y_test,y_pred,alpha=0.5)

plt.xlabel("y_test")

plt.ylabel("y_pred")

plt.show()
```


In [107]:

```
from sklearn import metrics
```

In [108]:

```
print('MAE:',metrics.mean_absolute_error(y_test,y_pred))
print('MSE:',metrics.mean_squared_error(y_test,y_pred))
print('RMSE:',np.sqrt(metrics.mean_squared_error(y_test,y_pred)))
```

MAE: 1210.66953190278 MSE: 3931657.519265643 RMSE: 1982.8407700230603

In [110]:

```
metrics.r2_score(y_test,y_pred)
```

Out[110]:

0.8083117905428086

```
In [112]:
########### Hyper parameter tunning #############
from sklearn.model_selection import RandomizedSearchCV
##### no. of trees in the random forest
n estimators = [int(x) for x in np.linspace(start = 100, stop = 1200, num = 12)]
###### no. of features to consider in every split ########
max features = ['auto','sqrt']
##### max no. of levels in tree#########
max depth = [int(x) for x in np.linspace(5,30, num = 6)]
##### min. no of samples required to split a node #######
min samples split = [2,5,10,15,100]
###### min no. of samples required at each leaf node ######
min samples leaf = [1,2,5,10]
In [117]:
random grid = {'n estimators': n estimators,
               'max features': max features,
               'max depth': max depth,
               'min samples split': min samples split,
               'min samples leaf': min samples leaf}
In [120]:
rf_random = RandomizedSearchCV(estimator = reg_rf,param_distributions= random_grid,scoring='neg_mea
n squared error', n iter = 10, cv =5, verbose=2, random state=42, n jobs=1)
rf random.fit(x train,y train)
Fitting 5 folds for each of 10 candidates, totalling 50 fits
[CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10
[Parallel(n jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, max_depth=10,
total= 7.1s
[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, max_depth=10
[Parallel(n_jobs=1)]: Done 1 out of 1 | elapsed: 7.0s remaining:
[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, max_depth=10,
total= 7.9s
[CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10
[CV] n_estimators=900, min_samples_split=5, min_samples_leaf=5, max_features=sqrt, max_depth=10,
       8.5s
total=
[CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10
[CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10,
total = 9.1s
[CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10
[CV] n estimators=900, min samples split=5, min samples leaf=5, max features=sqrt, max depth=10,
total=
        8.8s
[CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt, max depth=15
[CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt,
max depth=15, total= 16.2s
[CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt, max depth=15
[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt,
max depth=15, total= 15.0s
[CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt, max depth=15
```

[CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt,

[CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt,

[CV] n_estimators=1100, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, max_depth=15

max depth=15, total= 10.6s

```
max depth=15, total= 14.2s
[CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt, max depth=15
[CV] n estimators=1100, min samples split=10, min samples leaf=2, max features=sqrt,
max depth=15, total= 13.1s
[CV] n estimators=300, min samples split=100, min samples leaf=5, max features=auto, max depth=15
[CV] n_estimators=300, min_samples_split=100, min_samples leaf=5, max features=auto,
max depth=15, total= 8.6s
[CV] n estimators=300, min samples split=100, min samples leaf=5, max features=auto, max depth=15
[CV] n estimators=300, min samples split=100, min samples leaf=5, max features=auto,
                     8.2s
max depth=15, total=
[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, max_depth=15
[CV] n estimators=300, min samples split=100, min samples leaf=5, max features=auto,
max depth=15, total=
                     6.2s
[CV] n_estimators=300, min_samples_split=100, min_samples_leaf=5, max_features=auto, max_depth=15
[CV] n estimators=300, min samples split=100, min samples leaf=5, max features=auto,
max depth=15, total= 5.8s
[CV] n estimators=300, min samples split=100, min samples leaf=5, max features=auto, max depth=15
[CV] n estimators=300, min samples split=100, min samples leaf=5, max features=auto,
                     5.5s
max depth=15, total=
[CV] n estimators=400, min samples split=5, min samples leaf=5, max features=auto, max depth=15
[CV] n estimators=400, min samples split=5, min samples leaf=5, max features=auto, max depth=15,
total= 10.8s
[CV] n estimators=400, min samples split=5, min samples leaf=5, max features=auto, max depth=15
[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max features=auto, max depth=15,
total= 11.1s
[CV] n estimators=400, min samples split=5, min samples leaf=5, max features=auto, max depth=15
[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, max_depth=15,
total= 12.6s
[CV] n estimators=400, min samples split=5, min samples leaf=5, max features=auto, max depth=15
[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, max_depth=15,
total= 14.7s
[CV] n estimators=400, min samples split=5, min samples leaf=5, max features=auto, max depth=15
[CV] n_estimators=400, min_samples_split=5, min_samples_leaf=5, max_features=auto, max_depth=15,
total= 13.8s
[CV] n estimators=700, min samples split=5, min samples leaf=10, max features=auto, max depth=20
[CV] n estimators=700, min samples split=5, min samples leaf=10, max features=auto, max depth=20,
[CV] n estimators=700, min samples split=5, min samples leaf=10, max features=auto, max depth=20
[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max features=auto, max depth=20,
total= 21.2s
[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, max_depth=20
[CV] n estimators=700, min samples split=5, min samples leaf=10, max features=auto, max depth=20,
total= 21.6s
[CV] n_estimators=700, min_samples_split=5, min_samples_leaf=10, max_features=auto, max_depth=20
[CV] n estimators=700, min samples split=5, min samples leaf=10, max features=auto, max depth=20,
total= 21.1s
[CV] n estimators=700, min samples split=5, min samples leaf=10, max features=auto, max depth=20
[CV] n estimators=700, min samples split=5, min samples leaf=10, max features=auto, max depth=20,
total= 19.2s
[CV] n estimators=1000, min samples split=2, min samples leaf=1, max features=sqrt, max depth=25
[CV] n estimators=1000, min samples split=2, min samples leaf=1, max features=sqrt, max depth=25,
total= 20.8s
[CV] n estimators=1000, min samples split=2, min samples leaf=1, max features=sqrt, max depth=25
[CV] n estimators=1000, min samples split=2, min samples leaf=1, max features=sqrt, max depth=25,
total= 20.9s
[CV] n estimators=1000, min samples split=2, min samples leaf=1, max features=sqrt, max depth=25
[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, max_depth=25,
total= 19.9s
[CV] n estimators=1000, min samples split=2, min samples leaf=1, max features=sqrt, max depth=25
[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, max_depth=25,
total= 20.2s
[CV] n estimators=1000, min samples split=2, min samples leaf=1, max features=sqrt, max depth=25
[CV] n_estimators=1000, min_samples_split=2, min_samples_leaf=1, max_features=sqrt, max_depth=25,
total= 16.6s
[CV] n estimators=1100, min samples split=15, min samples leaf=10, max features=sqrt, max depth=5
[CV] n estimators=1100, min samples split=15, min samples leaf=10, max features=sqrt,
max depth=5, total=
                    6.6s
[CV] n estimators=1100, min samples split=15, min samples leaf=10, max features=sqrt, max depth=5
[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt,
max depth=5, total=
                     7.6s
[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, max_depth=5
[CV] n estimators=1100, min samples split=15, min samples leaf=10, max features=sqrt,
max depth=5, total= 6.8s
[CV] n_estimators=1100, min_samples_split=15, min_samples_leaf=10, max_features=sqrt, max_depth=5
[CV] n estimators=1100, min samples split=15, min samples leaf=10, max features=sqrt,
max depth=5, total=
                    7.3s
```

[CV] n estimators=1100, min samples split=15, min samples leaf=10, max features=sqrt, max depth=5

```
[CV] n estimators=1100, min samples split=15, min samples leaf=10, max features=sqrt,
max depth=5, total= 7.0s
[CV] n estimators=300, min samples split=15, min samples leaf=1, max features=sqrt, max depth=15
[CV] n estimators=300, min samples split=15, min samples leaf=1, max features=sqrt, max depth=15,
total= 3.4s
[CV] n estimators=300, min samples split=15, min samples leaf=1, max features=sqrt, max depth=15
[CV] n estimators=300, min samples split=15, min samples leaf=1, max features=sqrt, max depth=15,
total= 3.9s
[CV] n estimators=300, min samples split=15, min samples leaf=1, max features=sqrt, max depth=15
[CV] n estimators=300, min samples split=15, min samples leaf=1, max features=sqrt, max depth=15,
total= 3.3s
[{\tt CV}] \ \ n\_estimators=300, \ min\_samples\_split=15, \ min\_samples\_leaf=1, \ max\_features=sqrt, \ max \ depth=15, \ max\_features=15, \ max\_fea
[CV] n estimators=300, min samples split=15, min samples leaf=1, max features=sqrt, max depth=15,
total= 3.2s
[CV] n estimators=300, min samples split=15, min samples leaf=1, max features=sqrt, max depth=15
[CV] n estimators=300, min samples split=15, min samples leaf=1, max features=sqrt, max depth=15,
total= 3.2s
[CV] n estimators=700, min samples split=10, min samples leaf=2, max features=sqrt, max depth=5
[CV] n estimators=700, min samples split=10, min samples leaf=2, max features=sqrt, max depth=5,
total = 4.7s
[CV] n estimators=700, min samples split=10, min samples leaf=2, max features=sqrt, max depth=5
[CV] n estimators=700, min samples split=10, min samples leaf=2, max features=sqrt, max depth=5,
total=
            4.5s
[CV] n estimators=700, min samples split=10, min samples leaf=2, max features=sqrt, max depth=5
[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, max_depth=5,
total= 3.3s
[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, max_depth=5
[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, max_depth=5,
total=
             3.2s
[CV] n estimators=700, min samples split=10, min samples leaf=2, max features=sqrt, max depth=5
[CV] n_estimators=700, min_samples_split=10, min_samples_leaf=2, max_features=sqrt, max_depth=5,
total= 3.4s
[CV] n estimators=700, min samples split=15, min samples leaf=1, max features=auto, max depth=20
[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, max_depth=20,
total= 20.7s
[CV] n estimators=700, min samples split=15, min samples leaf=1, max features=auto, max depth=20
[CV] n estimators=700, min samples split=15, min samples leaf=1, max features=auto, max depth=20,
total= 18.6s
[CV] n estimators=700, min samples split=15, min samples leaf=1, max features=auto, max depth=20
[CV] n estimators=700, min samples split=15, min samples leaf=1, max features=auto, max depth=20,
total= 19.2s
[CV] n estimators=700, min samples split=15, min samples leaf=1, max features=auto, max depth=20
[CV] n estimators=700, min samples split=15, min samples leaf=1, max features=auto, max depth=20,
total= 18.9s
[CV] n_estimators=700, min_samples_split=15, min_samples_leaf=1, max_features=auto, max_depth=20
[CV] n estimators=700, min samples split=15, min samples leaf=1, max features=auto, max depth=20,
total= 18.7s
```

[Parallel(n jobs=1)]: Done 50 out of 50 | elapsed: 9.7min finished

Out[120]:

```
RandomizedSearchCV(cv=5, error_score=nan,
```

```
estimator=RandomForestRegressor(bootstrap=True,
                                ccp alpha=0.0,
                                criterion='mse',
                                max depth=None,
                                max features='auto',
                                max_leaf_nodes=None,
                                max samples=None,
                                min impurity decrease=0.0,
                                min impurity split=None,
                                min samples leaf=1,
                                min samples split=2,
                                min weight fraction leaf=0.0,
                                n estimators=100,
                                n jobs=None, oob score=Fals...
iid='deprecated', n iter=10, n jobs=1,
param_distributions={'max_depth': [5, 10, 15, 20, 25, 30],
                      'max_features': ['auto', 'sqrt'],
                      'min samples leaf': [1, 2, 5, 10],
                      'min samples split': [2, 5, 10, 15,
                                            100],
                     'n estimators': [100, 200, 300, 400,
                                       500, 600, 700, 800,
                                       900, 1000, 1100,
```

```
return_train_score=False, scoring='neg_mean_squared_error',
                     verbose=2)
In [122]:
rf_random.best_params_
Out[122]:
{'n_estimators': 700,
 'min_samples_split': 15,
'min_samples_leaf': 1,
 'max_features': 'auto',
 'max_depth': 20}
In [123]:
prediction = rf_random.predict(x_test)
In [124]:
plt.figure(figsize=(12,8))
sns.distplot(y_test-prediction)
plt.show()
 0.0004
 0.0003
 0.0002
 0.0001
 0.0000
                -10000
                                               10000
                                                               20000
                                                                              30000
                                                                                              40000
In [125]:
plt.figure(figsize=(8,8))
plt.scatter(y_test,y_pred,alpha=0.5)
plt.xlabel("y_test")
plt.ylabel("y_pred")
plt.show()
   50000
```

40000

1200]},

pre_dispatch='2*n_jobs', random_state=42, refit=True,

In [127]:

```
print('MAE:',metrics.mean_absolute_error(y_test,prediction))
print('MSE:',metrics.mean_squared_error(y_test,prediction))
print('RMsE:',np.sqrt(metrics.mean_squared_error(y_test,prediction)))
```

MAE: 1175.3759459098128 MSE: 3635126.711854808 RMsE: 1906.6008265640735

In [133]:

```
import pickle
file = open('flight_rf.pkl','wb')
####### dump info to that file #######
pickle.dump(rf_random,file)
```

In [134]:

```
model = open('flight_rf.pkl','rb')
forest = pickle.load(model)
```

In [135]:

```
y_prediction = forest.predict(x_test)
```

In [136]:

```
metrics.r2_score(y_test,y_prediction) ######## increasing R^2 value by using rf_random
```

Out[136]:

0.8227691686951393

In []: