

## HW4: SVM

## Prof. Chia-Yu Lin National Central University

**2022 Fall** 

## Prediction by the trained SVM model



- We have finished the training of SVM model in the class.
- We can use "test.csv" to do the test.

```
1 #取得測試資料的欄位
2 testset = testset[testset.columns[:449]]
```

## SVM預測



- But Prof. doesn't have the answer of test.csv. I cannot check the correctness of the prediction.
- So....
- We can randomly choose some data from training dataset to do the test.

## HW4-1: Randomly choose data from training dataset to do the test (1/2)



- Read training data.
- Check the row of training data.
- Set the range of random function. Randomly generate 10 integers.

```
資料的形式: (1741, 450)
[1062 236 1097 906 716 1670 848 961 145 130]
```

# HW4-1: Randomly choose data from training dataset to do the test (2/2)



 Use the result of random function be the index to get the row.

|      | col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9  | col10 | <br>col440 | col441 | col442 | col443 | col444 | col445 | col446 | col447 | col448 | col449 |
|------|------|------|------|------|------|------|------|------|-------|-------|------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1062 | 70.1 | 70.1 | 70.1 | 70.0 | 70.2 | 70.2 | 70.4 | 70.5 | 70.7  | 70.8  | <br>0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 236  | 78.6 | 78.6 | 78.6 | 78.6 | 79.2 | 79.9 | 80.5 | 81.3 | 82.2  | 83.6  | <br>0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 1097 | 81.4 | 81.4 | 81.4 | 81.5 | 81.8 | 82.0 | 82.3 | 82.6 | 82.9  | 83.1  | <br>0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 906  | 76.2 | 76.2 | 76.2 | 76.2 | 76.4 | 76.7 | 77.0 | 77.5 | 78.2  | 79.2  | <br>0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 716  | 69.7 | 69.7 | 69.8 | 69.8 | 72.0 | 71.3 | 72.4 | 75.7 | 75.4  | 77.2  | <br>0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 1670 | 70.0 | 70.0 | 70.0 | 70.1 | 70.4 | 70.7 | 70.8 | 71.0 | 71.2  | 71.5  | <br>0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 848  | 84.9 | 84.9 | 84.9 | 84.9 | 84.9 | 85.1 | 85.4 | 86.2 | 86.6  | 87.5  | <br>0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 961  | 72.3 | 72.3 | 72.3 | 72.3 | 72.8 | 73.3 | 74.2 | 75.2 | 76.5  | 78.2  | <br>0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 145  | 81.2 | 81.2 | 81.2 | 81.2 | 81.4 | 82.0 | 83.0 | 84.1 | 85.2  | 86.7  | <br>0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |
| 130  | 92.0 | 92.0 | 92.0 | 92.0 | 93.4 | 94.2 | 96.1 | 98.3 | 101.0 | 103.0 | <br>0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    | 0.0    |

10 rows x 449 columns

### **SVM Prediction**



#### Prediction

```
predicted=svm.predict(dataset_fortest)
predicted

array([5, 1, 5, 4, 4, 7, 4, 4, 3, 0])
```

#### Actual Answer

```
1 expected=label.values
2 expected
array([5, 1, 5, 4, 4, 7, 4, 4, 1, 0])
```

## Accuracy



```
print(metrics.classification_report(expected, predicted))
print(metrics.confusion_matrix(expected, predicted))
accuracy = accuracy_score(expected, predicted)
print("Accuracy: %.2f%%" % (accuracy * 100.0))
print('precision:',metrics.precision_score(expected, predicted, average='macro'))
print('recall:',metrics.recall_score(expected, predicted, average='macro'))
print('Fl-score:',metrics.fl_score(label,predicted,average='macro'))
```

| I                               | orecision   | recall | f1-score | support |
|---------------------------------|-------------|--------|----------|---------|
| 0                               | 1.00        | 1.00   | 1.00     | 1       |
| 1                               | 1.00        | 0.50   | 0.67     | 2       |
| 3                               | 0.00        | 0.00   | 0.00     | 0       |
| 4                               | 1.00        | 1.00   | 1.00     | 4       |
| 5                               | 1.00        | 1.00   | 1.00     | 2       |
| 7                               | 1.00        | 1.00   | 1.00     | 1       |
| accuracy                        |             |        | 0.90     | 10      |
| macro avg                       | 0.83        | 0.75   | 0.78     | 10      |
| weighted avg                    | 1.00        | 0.90   | 0.93     | 10      |
| [[1 0 0 0 0 0]<br>[0 1 1 0 0 0] |             |        |          |         |
| [0 0 0 0 0 0]                   |             |        |          |         |
| [0 0 0 4 0 0]                   |             |        |          |         |
| [0 0 0 0 2 0]                   |             |        |          |         |
| [0 0 0 0 0 1]]                  | 500         |        |          |         |
| Accuracy: 90.00                 |             |        |          |         |
| precision: 0.83                 | 33333333333 | 3334   |          |         |
| recall: 0.75                    |             |        |          |         |
| F1-score: 0.777                 | 7777777777  | 777    |          |         |

### HW4-2



Repeat the above steps using random forest model.

## HW Submission (1/2)



- According to the following description to finish "HW4-SVM.ipynb"
- Printscreen
  - Predicted result of SVM model
  - Actual answer
  - Accuracy of the SVM model

```
predicted=svm.predict(dataset_fortest)
predicted

array([5, 1, 5, 4, 4, 7, 4, 4, 3, 0])

expected=label.values
expected

array([5, 1, 5, 4, 4, 7, 4, 4, 1, 0])
```

| 1.00    | 1.00                 | 1.00                                | 1                                                          |
|---------|----------------------|-------------------------------------|------------------------------------------------------------|
|         | 0 50                 |                                     | -                                                          |
|         | 0.50                 | 0.67                                | 2                                                          |
| 0.00    | 0.00                 | 0.00                                | C                                                          |
| 1.00    | 1.00                 | 1.00                                | 4                                                          |
| 1.00    | 1.00                 | 1.00                                | 2                                                          |
| 1.00    | 1.00                 | 1.00                                | 1                                                          |
|         |                      | 0.90                                | 10                                                         |
| 0.83    | 0.75                 | 0.78                                | 10                                                         |
| 1.00    | 0.90                 | 0.93                                | 10                                                         |
|         |                      |                                     |                                                            |
|         |                      |                                     |                                                            |
|         |                      |                                     |                                                            |
|         |                      |                                     |                                                            |
|         |                      |                                     |                                                            |
|         |                      |                                     |                                                            |
|         |                      |                                     |                                                            |
| 3333333 | 3331                 |                                     |                                                            |
|         | 1.00<br>0.83<br>1.00 | 1.00 1.00<br>0.83 0.75<br>1.00 0.90 | 1.00 1.00 1.00<br>0.90<br>0.83 0.75 0.78<br>1.00 0.90 0.93 |

## HW Submission (2/2)



- Same as random forest model. Printscreen the predicted result of random forest model, actual answer and accuracy of random forest model.
- Put the printscreens in the word document.
- Compress the word document and HW4-SVM.ipynb and upload.
- Deadline: 2022. Nov. 14