Mathematical Formulations of ARIMAX

Jerome Chou

January 31, 2025

What is ARIMAX?

- ARIMAX (Autoregressive Integrated Moving Average with Exogenous Variables) extends ARIMA by incorporating exogenous predictors.
- ▶ It is used for time series forecasting when external factors influence the target variable.
- ARIMAX is represented as:

$$ARIMAX(p,d,q) + X_t$$

where X_t represents exogenous variables.

Mathematical Definition of ARIMA

An ARIMA(p, d, q) model is given by:

$$\Phi_p(B)(1-B)^d y_t = \Theta_q(B)\epsilon_t$$

- y_t is the observed time series.
- ▶ *B* is the backshift operator ($By_t = y_{t-1}$).
- d is the differencing order.
- $ightharpoonup \epsilon_t$ is white noise.

Mathematical Definition of ARIMAX

► The ARIMAX(p, d, q) model extends ARIMA by adding exogenous variables:

$$\Phi_p(B)(1-B)^d y_t = \Theta_q(B)\epsilon_t + \beta X_t$$

- \triangleright X_t represents the exogenous variable(s).
- $ightharpoonup \beta$ is the coefficient for the exogenous input.
- ► This allows ARIMAX to capture the effect of external variables on the time series.

Autoregressive (AR) Process

► The AR component models past values:

$$y_t = c + \sum_{i=1}^{p} \phi_i y_{t-i} + \epsilon_t$$

- $ightharpoonup \phi_i$ are the autoregressive coefficients.
- c is a constant term.
- $ightharpoonup \epsilon_t$ is white noise.

Moving Average (MA) Process

► The MA component models past error terms:

$$y_t = \mu + \epsilon_t + \sum_{j=1}^q \theta_j \epsilon_{t-j}$$

- \triangleright θ_i are the moving average coefficients.
- \blacktriangleright μ is the mean of the series.
- $ightharpoonup \epsilon_t$ is white noise.

Exogenous Variables in ARIMAX

Exogenous variables allow ARIMAX to account for external influences:

$$y_{t} = c + \sum_{i=1}^{p} \phi_{i} y_{t-i} + \sum_{j=1}^{q} \theta_{j} \epsilon_{t-j} + \sum_{k=1}^{m} \beta_{k} X_{t-k} + \epsilon_{t}$$

- \triangleright X_{t-k} represents the exogenous variables.
- \triangleright β_k are the regression coefficients for exogenous variables.

Loss Function for ARIMAX

Mean Squared Error (MSE):

$$J(\theta) = \frac{1}{N} \sum_{t=1}^{N} (y_t - \hat{y}_t)^2$$

Log-Likelihood Function for MLE:

$$L(\theta) = -\frac{N}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{t=1}^{N}(y_t - \hat{y}_t)^2$$

Model Selection Criteria

▶ **Akaike Information Criterion (AIC):**

$$AIC = 2k - 2 \log L$$

where k is the number of parameters.

▶ **Bayesian Information Criterion (BIC):**

$$BIC = k \log N - 2 \log L$$

where N is the number of observations.

Lower AIC/BIC values indicate a better model.

Conclusion

- ARIMAX extends ARIMA by incorporating exogenous predictors.
- ► The model captures both autoregressive and moving average dynamics, along with external influences.
- Parameters are estimated using MLE or Least Squares.
- Model selection relies on AIC and BIC to balance complexity and fit.