Resumen de la Clase: Modelos Probabilísticos

Reinaldo B. Arellano Valle Departamento de Estadística Pontificia Universidad Católica de Chile

1. Introducción

La teoría de la probabilidad es la base sobre la cual se construyen todas las herramientas estadísticas. Proporciona un modelo probabilístico para representar poblaciones, experimentos o fenómenos aleatorios, y se fundamenta en la teoría de conjuntos. Este resumen recoge los contenidos teóricos presentados en la clase, enfatizando definiciones, teoremas, demostraciones y conceptos esenciales.

2. Teoría de Conjuntos

2.1. Conceptos Básicos y Operaciones en Conjuntos

Definición 1.1 Conjunto contable: Un conjunto Ω es *contable* (o discreto) si es finito o si sus elementos pueden ponerse en correspondencia uno a uno con algún subconjunto de los números naturales $\mathbb{N} = \{1, 2, \ldots\}$. En caso contrario, se dice que Ω es no contable.

Inclusión y subconjuntos: Se dice que un conjunto A es subconjunto de B, denotado $A \subseteq B$, si para cada $x \in A$ se tiene $x \in B$. Se define $A \subset B$ (subconjunto propio) si además existe al menos un elemento en B que no pertenece a A.

Definición 1.2 Operaciones elementales:

- Unión: $A \cup B = \{x : x \in A \text{ o } x \in B\}.$
- Intersección: $A \cap B = \{x : x \in A \ y \ x \in B\}.$
- Complemento: $A^c = \{x : x \notin A\}.$
- Diferencia: $A B = A \cap B^c = \{x : x \in A \lor x \notin B\}.$

Definición 1.3 Conjuntos disjuntos: Dos conjuntos A y B son disjuntos si $A \cap B = \emptyset$. Una secuencia de conjuntos $\{A_i\}_{i\in\mathbb{N}}$ es mutuamente disjunta si $A_i \cap A_j = \emptyset$, para todo $i \neq j$.

2.2. Propiedades de las Operaciones en Conjuntos

[Teorema 1.1] Sean A, B y C conjuntos, se cumplen las siguientes propiedades:

a) Conmutatividad:

$$A \cup B = B \cup A$$
, $A \cap B = B \cap A$.

b) Asociatividad:

$$A \cup (B \cup C) = (A \cup B) \cup C, \quad A \cap (B \cap C) = (A \cap B) \cap C.$$

c) Leyes Distributivas:

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C), \quad A \cup (B \cap C) = (A \cup B) \cap (A \cup C).$$

d) Leyes de De Morgan:

$$(A \cup B)^c = A^c \cap B^c, \quad (A \cap B)^c = A^c \cup B^c.$$

2.3. Secuencias de Conjuntos y Particiones

Uniones e intersecciones infinitas: Dada una colección $\{A_i\}_{i\in I}$ de subconjuntos de Ω , se definen:

$$\bigcup_{i\in I} A_i = \{x \in \Omega : \exists i \in I \text{ tal que } x \in A_i\},\$$

$$\bigcap_{i \in I} A_i = \{ x \in \Omega : \forall i \in I, \ x \in A_i \}.$$

Definición 1.4 Partición: Una secuencia de subconjuntos $\{A_i\}_{i\in\mathbb{N}}$ es una partición de Ω si:

- I) $\bigcup_{i=1}^{\infty} A_i = \Omega$ (exhaustividad).
- II) $A_i \cap A_j = \emptyset$ para todo $i \neq j$ (mutua exclusión).

Definición 1.5 Secuencia monótona:

- Una secuencia $\{A_n\}$ es creciente (monótona creciente) si $A_1 \subseteq A_2 \subseteq A_3 \subseteq \dots$.
- Es decreciente (monótona decreciente) si $A_1 \supseteq A_2 \supseteq A_3 \supseteq \cdots$.

Definición 1.6 Límite de una secuencia monótona:

• Si $\{A_n\}$ es creciente, entonces

$$\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n.$$

• Si $\{A_n\}$ es decreciente, entonces

$$\lim_{n \to \infty} A_n = \bigcap_{n=1}^{\infty} A_n.$$

2

3. Álgebra de σ

3.1. Definiciones y Propiedades Básicas

Definición 1.7 σ -álgebra: Una colección \mathcal{A} de subconjuntos de un conjunto Ω (no vacío) es una σ -álgebra si:

- a) $\Omega \in \mathcal{A}$.
- b) Si $A \in \mathcal{A}$, entonces $A^c \in \mathcal{A}$ (cerrada bajo complemento).
- c) Si $\{A_i\}_{i=1}^{\infty} \subseteq \mathcal{A}$, entonces

$$\bigcup_{i=1}^{\infty} A_i \in \mathcal{A} \quad \text{(cerrada bajo uniones contables)}.$$

Definición 1.8 Espacio medible: La pareja (Ω, \mathcal{A}) , donde \mathcal{A} es una σ -álgebra sobre Ω , se llama espacio medible. Los elementos de \mathcal{A} se denominan eventos medibles.

3.2. Teorema sobre σ -álgebras

[Teorema 1.2] Sea \mathcal{A} una σ -álgebra de subconjuntos de Ω . Entonces:

- a) $\varnothing \in \mathcal{A}$.
- b) \mathcal{A} es cerrada bajo intersecciones contables.
- c) \mathcal{A} es cerrada bajo uniones e intersecciones finitas.

3.3. Aplicación: σ -álgebra de Borel

En el caso de $\Omega = \mathbb{R}$, se puede definir la σ -álgebra que contiene a todos los intervalos del tipo [a,b], (a,b], (a,b) y [a,b), con $-\infty < a < b < \infty$. Esta σ -álgebra se conoce como la σ -álgebra de Borel, y sus elementos se llaman borelianos. La definición se extiende de manera análoga a \mathbb{R}^n .

4. Conclusiones

La clase establece las bases teóricas de la probabilidad a partir de la teoría de conjuntos, enfatizando las operaciones elementales, secuencias de conjuntos y la estructura algebraica necesaria (mediante σ -álgebras) para definir espacios medibles. Estos conceptos son fundamentales para comprender la formulación de modelos probabilísticos y su posterior aplicación en el estudio estadístico.