STANDARD	PROBABILITY	DISTRIBUTION

Table A.1 Cont	inuous distributions	
Distribution	Notation	Parameters
Uniform	$\theta \sim \mathrm{U}(\alpha, \beta)$ $p(\theta) = \mathrm{U}(\theta \alpha, \beta)$	boundaries α, β with $\beta > \alpha$
Normal	$ \begin{aligned} \theta &\sim \mathcal{N}(\mu, \sigma^2) \\ p(\theta) &= \mathcal{N}(\theta \mu, \sigma^2) \end{aligned} $	location μ scale $\sigma > 0$
Lognormal	$\begin{aligned} \theta &\sim \text{lognormal}(\mu, \sigma^2) \\ p(\theta) &= \text{lognormal}(\theta \mu, \sigma^2) \end{aligned}$	location μ log-scale $\sigma > 0$
Multivariate normal	$\theta \sim N(\mu, \Sigma)$ $p(\theta) = N(\theta \mu, \Sigma)$ (implicit dimension d)	symmetric, pos. definite, $d \times d$ variance matrix Σ
Gamma	$\begin{aligned} \theta &\sim \operatorname{Gamma}(\alpha, \beta) \\ p(\theta) &= \operatorname{Gamma}(\theta \alpha, \beta) \end{aligned}$	shape $\alpha > 0$ inverse scale $\beta > 0$
Inverse-gamma	$\begin{aligned} \theta &\sim \text{Inv-gamma}(\alpha, \beta) \\ p(\theta) &= \text{Inv-gamma}(\theta \alpha, \beta) \end{aligned}$	shape $\alpha > 0$ scale $\beta > 0$
Chi-square	$\begin{array}{l} \theta \sim \chi^2_\nu \\ p(\theta) = \chi^2_\nu(\theta) \end{array}$	degrees of freedom $\nu > 0$
Inverse-chi-square	$\begin{array}{l} \theta \sim \text{Inv-}\chi^2_{\nu} \\ p(\theta) = \text{Inv-}\chi^2_{\nu}(\theta) \end{array}$	degrees of freedom $\nu > 0$
Scaled inverse-chi-square	$\begin{aligned} \theta &\sim \text{Inv-}\chi^2(\nu, s^2) \\ p(\theta) &= \text{Inv-}\chi^2(\theta \nu, s^2) \end{aligned}$	degrees of freedom $\nu > 0$ scale $s > 0$
Exponential	$\theta \sim \text{Expon}(\beta)$ $p(\theta) = \text{Expon}(\theta \beta)$	inverse scale $\beta > 0$
Laplace (double-exponential)	$\begin{aligned} \theta &\sim \text{Laplace}(\mu, \sigma) \\ p(\theta) &= \text{Laplace}(\theta \mu, \sigma) \end{aligned}$	location μ scale $\sigma > 0$
Weibull	$\begin{aligned} \theta &\sim \text{Weibull}(\alpha, \beta) \\ p(\theta) &= \text{Weibull}(\theta \alpha, \beta) \end{aligned}$	shape $\alpha > 0$ scale $\beta > 0$
Wishart	$W \sim \text{Wishart}_{\nu}(S)$ $p(W) = \text{Wishart}_{\nu}(W S)$ (implicit dimension $k \times k$)	degrees of freedom ν symmetric, pos. definite $k \times k$ scale matrix S
Inverse-Wishart	$\begin{aligned} W &\sim \text{Inv-Wishart}_{\nu}(S^{-1}) \\ p(W) &= \text{Inv-Wishart}_{\nu}(W S^{-1}) \\ \text{(implicit dimension } k \times k) \end{aligned}$	degrees of freedom ν symmetric, pos. definite $k \times k$ scale matrix S
LKJ correlation	$\begin{split} \Sigma &\sim \text{LkjCorr}(\eta) \\ p(\Sigma) &= \text{LkjCorr}(\Sigma \eta) \\ \text{(implicit dimension } k \times k) \end{split}$	shape $\eta > 0$

5	78	STANDARD	PROBABILITY	DISTRIBUTIONS

Table A.1	Continuous distributions continued	
Distribution	Notation	Parameters
t	$\begin{aligned} \theta &\sim t_{\nu}(\mu, \sigma^2) \\ p(\theta) &= t_{\nu}(\theta \mu, \sigma^2) \\ t_{\nu} \text{ is short for } t_{\nu}(0, 1) \end{aligned}$	degrees of freedom $\nu > 0$ location μ scale $\sigma > 0$
Multivariate t	$\begin{array}{l} \theta \sim t_{\nu}(\mu, \Sigma) \\ p(\theta) = t_{\nu}(\theta \mu, \Sigma) \\ \text{(implicit dimension } d) \end{array}$	degrees of freedom $\nu > 0$ location $\mu = (\mu_1, \dots, \mu_d)$ symmetric, pos. definite $d \times d$ scale matrix Σ
Beta	$\theta \sim \text{Beta}(\alpha, \beta)$ $p(\theta) = \text{Beta}(\theta \alpha, \beta)$	'prior sample sizes' $\alpha>0, \beta>0$
Dirichlet	$\theta \sim \text{Dirichlet}(\alpha_1, \dots, \alpha_k)$ $p(\theta) = \text{Dirichlet}(\theta \alpha_1, \dots, \alpha_k)$	'prior sample sizes' $\alpha_j>0;\ \alpha_0\equiv \textstyle\sum_{j=1}^k\alpha_j$
Logistic	$\begin{aligned} \theta &\sim \text{Logistic}(\mu, \sigma) \\ p(\theta) &= \text{Logistic}(\theta \mu, \sigma) \end{aligned}$	location μ scale $\sigma > 0$
Log-logistic	$\begin{aligned} \theta &\sim \text{Log-logistic}(\alpha, \beta) \\ p(\theta) &= \text{Log-logistic}(\theta \alpha, \beta) \end{aligned}$	scale $\alpha > 0$ shape $\beta > 0$
Table A.2	Discrete distributions	
Distribution	Notation	Parameters
Poisson	$\theta \sim \text{Poisson}(\lambda)$ $p(\theta) = \text{Poisson}(\theta \lambda)$	'rate' $\lambda > 0$
Binomial	$\theta \sim \text{Bin}(n, p)$ $p(\theta) = \text{Bin}(\theta n, p)$	'sample size' n (positive integer) 'probability' $p \in [0, 1]$
Multinomial	$\theta \sim \text{Multin}(n; p_1, \dots, p_k)$ $p(\theta) = \text{Multin}(\theta n; p_1, \dots, p_k)$	'sample size' $n \text{ (positive integer)}$ 'probabilities' $p_j \in [0, 1];$ $\sum_{j=1}^k p_j = 1$
Negative binomial	$\begin{aligned} \theta &\sim \text{Neg-bin}(\alpha, \beta) \\ p(\theta) &= \text{Neg-bin}(\theta \alpha, \beta) \end{aligned}$	shape $\alpha > 0$ inverse scale $\beta > 0$
Beta- binomial	$\begin{aligned} \theta &\sim \text{Beta-bin}(n,\alpha,\beta) \\ p(\theta) &= \text{Beta-bin}(\theta n,\alpha,\beta) \end{aligned}$	'sample size' $n \text{ (positive integer)}$ 'prior sample sizes' $\alpha > 0, \beta > 0$

CONTINUOUS DISTRIBUTIONS	
--------------------------	--

Density function	Mean, variance, and mode
	$E(\theta) = \frac{\alpha + \beta}{2}$
$p(\theta) = \frac{1}{\beta - \alpha}, \ \theta \in [\alpha, \beta]$	$var(\theta) = \frac{(\beta - \alpha)^2}{12}$
	no mode
	$E(\theta) = \mu$
$p(\theta) = \frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{1}{2\sigma^2}(\theta - \mu)^2\right)$	$var(\theta) = \sigma^2$
	$mode(\theta) = \mu$
	$E(\theta) = \exp(\mu + \frac{1}{2}\sigma^2),$
$p(\theta) = (\sqrt{2\pi}\sigma\theta)^{-1} \exp(-\frac{1}{2\sigma^2}(\log\theta - \mu)^2)$	$var(\theta) = \exp(2\mu + \sigma^2)(\exp(\sigma^2) - 1)$
20	$mode(\theta) = exp(\mu - \sigma^2)$
(a) (a)=d/2 x =1/2	$E(\theta) = \mu$
$p(\theta) = (2\pi)^{-d/2} \Sigma ^{-1/2}$	$var(\theta) = \Sigma$
$\times \exp\left(-\frac{1}{2}(\theta-\mu)^T\Sigma^{-1}(\theta-\mu)\right)$	$mode(\theta) = \mu$
	$mode(\theta) = \mu$ $E(\theta) = \frac{\alpha}{\beta}$
$p(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{\alpha-1} e^{-\beta \theta}, \theta > 0$	$var(\theta) = \frac{\alpha}{\beta^2}$
1(a)	$\operatorname{mode}(\theta) = \frac{\alpha - 1}{2}$, for $\alpha \ge 1$
	$\operatorname{mode}(\theta) = \frac{\alpha - 1}{\beta}, \text{ for } \alpha \ge 1$ $\operatorname{E}(\theta) = \frac{\beta}{\alpha - 1}, \text{ for } \alpha > 1$
$p(\theta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \theta^{-(\alpha+1)} e^{-\beta/\theta}, \theta > 0$	$\operatorname{var}(\theta) = \frac{\alpha - 1}{\beta^2}$ $\alpha > 2$
$\Gamma(\sigma) = \Gamma(\alpha)$ σ σ σ	$\forall \alpha (0) = (\alpha-1)^2(\alpha-2), \alpha \geq 2$
	$E(\theta) = \frac{\beta}{\alpha - 1}, \text{ for } \alpha > 1$ $var(\theta) = \frac{\beta^2}{(\alpha - 1)^2(\alpha - 2)}, \alpha > 2$ $mode(\theta) = \frac{\beta}{\alpha + 1}$ $E(\theta) = \alpha$
$p(\theta) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} \theta^{\nu/2-1} e^{-\theta/2}, \theta > 0$	$E(\theta) = \nu$
same as Gamma($\alpha = \frac{\nu}{2}, \beta = \frac{1}{2}$)	$var(\theta) = 2\nu$
	$mode(\theta) = \nu - 2$, for $\nu \ge 2$
$p(\theta) = \frac{2^{-\nu/2}}{\Gamma(\nu/2)} \theta^{-(\nu/2+1)} e^{-1/(2\theta)}, \theta > 0$	$E(\theta) = \frac{1}{\nu - 2}$, for $\nu > 2$
$\Gamma(\nu) = \Gamma(\nu/2)$, $\Gamma(\nu/2)$, $\Gamma($	$var(\theta) = \frac{2}{(\nu-2)^2(\nu-4)}, \nu > 4$
same as $\text{Inv-gamma}(\alpha = \frac{\nu}{2}, \beta = \frac{1}{2})$	$\operatorname{mode}(\theta) = \frac{1}{\nu+2}$ $\operatorname{E}(\theta) = \frac{\nu}{\nu-2}s^2$
$p(\theta) = \frac{(\nu/2)^{\nu/2}}{\Gamma(\nu/2)} s^{\nu} \theta^{-(\nu/2+1)} e^{-\nu s^2/(2\theta)}, \theta > 0$	$E(\theta) = \frac{\nu}{\nu - 2}s^2$
	$var(\theta) = \frac{2\nu^2}{(\nu-2)^2(\nu-4)}s^4$
same as Inv-gamma($\alpha = \frac{\nu}{2}, \beta = \frac{\nu}{2}s^2$)	$mode(\theta) = \frac{\nu}{\nu+2}s^2$
(θ) β = βθ θ > 0	$E(\theta) = \frac{1}{\beta}$
$p(\theta) = \beta e^{-\beta \theta}, \ \theta > 0$ same as $Gamma(\alpha = 1, \beta)$	$var(\theta) = \frac{1}{\beta^2}$
same as $Gamma(\alpha = 1, \beta)$	$mode(\theta) = 0$
	$E(\theta) = \mu$
$p(\theta) = \frac{1}{2\sigma} \exp \left(-\frac{ x-\mu }{\sigma}\right)$	$var(\theta) = 2\sigma^2$
20 1 (0)	$mode(\theta) = \mu$
$p(\theta) = \frac{\alpha}{\beta^{\alpha}} \theta^{\alpha-1} \exp(-(\theta/\beta)^{\alpha}), \theta > 0$	$E(\theta) = \beta\Gamma(1 + \frac{1}{\alpha})$
	$\operatorname{var}(\theta) = \beta^2 \left[\Gamma(1 + \frac{2}{\alpha}) - (\Gamma(1 + \frac{1}{\alpha}))^2\right]$ $\operatorname{mode}(\theta) = \beta(1 - \frac{1}{\alpha})^{1/\alpha}$
	$mode(\theta) = \beta(1 - \frac{1}{\alpha})^{1/\alpha}$
$p(W) = \left(2^{\nu k/2} \pi^{k(k-1)/4} \prod_{i=1}^{k} \Gamma\left(\frac{\nu+1-i}{2}\right)\right)^{-1}$	
$(N) = (2 - N) \prod_{i=1}^{k} (1 - 2) $ $\times S ^{-\nu/2} W ^{(\nu-k-1)/2}$	$E(W) = \nu S$
	` '
$\times \exp\left(-\frac{1}{2}\operatorname{tr}(S^{-1}W)\right), W \text{ pos. definite}$	
$p(W) = \left(2^{\nu k/2} \pi^{k(k-1)/4} \prod_{i=1}^{k} \Gamma\left(\frac{\nu+1-i}{2}\right)\right)^{-1}$	P(III) (1 1)-1 G
$\times S ^{\nu/2} W ^{-(\nu+k+1)/2}$	$E(W) = (\nu - k - 1)^{-1}S$
$\times \exp\left(-\frac{1}{2}\operatorname{tr}(SW^{-1})\right)$, W pos. definite	
$p(\Delta) = \det(\Delta)^{\gamma}$	
$\times 2^{\sum_{i=1}^{k} (2\eta-2+k-i)(k-i)}$	$E(\Sigma) = I_k$,
$\times \prod_{i=1}^{k} \left(B\left(\frac{i+1}{2}, \frac{i+1}{2}\right) \right)^k$	(/ - ~)
^ 11 _{i=1} (D (\(\frac{1}{2}\), \(\frac{1}{2}\))	

CONTINUOUS DISTRIBUTIONS

579

Density function	Mean, variance, and mode
P((-11)(0)	$E(\theta) = \mu$, for $\nu > 1$
$p(\theta) = \frac{\Gamma((\nu+1)/2)}{\Gamma(\nu/2)\sqrt{\nu\pi}\sigma} \left(1 + \frac{1}{\nu} \left(\frac{\theta-\mu}{\sigma}\right)^2\right)^{-(\nu+1)/2}$	$var(\theta) = \frac{\nu}{\nu - 2}\sigma^2$, for $\nu > 2$
	$mode(\theta) = \mu$
$p(\theta) = \frac{\Gamma((\nu+d)/2)}{\Gamma(\nu/2)\nu^{d/2}\pi^{d/2}} \Sigma ^{-1/2}$	$E(\theta) = \mu$, for $\nu > 1$
$p(\theta) = \frac{\Gamma(\nu/2)\nu^{d/2}\pi^{d/2}}{\Gamma(\nu/2)\nu^{d/2}\pi^{d/2}} \Delta $	$\operatorname{var}(\theta) = \frac{\nu}{\nu-2} \Sigma$, for $\nu > 2$
$\times (1 + \frac{1}{\nu}(\theta - \mu)^T \Sigma^{-1}(\theta - \mu))^{-(\nu+d)/2}$	$mode(\theta) = \mu$
$\Gamma(\alpha+\beta)$ - 10 - 21	$E(\theta) = \frac{\alpha}{\alpha + \beta}$
$p(\theta) = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1} (1-\theta)^{\beta-1}$	$var(\theta) = \frac{\alpha \beta}{(1+\beta)^2(1+\beta+1)}$
$\theta \in [0,1]$	$\operatorname{mode}(\theta) = \frac{(\alpha+\beta)^{-}(\alpha+\beta+1)}{\alpha-1}$
	$var(\theta) = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$ $mode(\theta) = \frac{\alpha}{\alpha+\beta-2}$ $E(\theta_j) = \frac{\alpha_j}{\alpha_0}$
$p(\theta) = \frac{\Gamma(\alpha_1 + \cdots + \alpha_k)}{\Gamma(\alpha_1 + \cdots + \alpha_k)} \theta_1^{\alpha_1 - 1} \cdots \theta_1^{\alpha_k - 1}$	$E(\theta_j) = \frac{\omega_j}{\alpha_0}$ $var(\theta_j) = \frac{\alpha_j(\alpha_0 - \alpha_j)}{\alpha_0^2(\alpha_0 + 1)}$ $var(\theta_j) = \frac{\alpha_j(\alpha_0 - \alpha_j)}{\alpha_0^2(\alpha_0 + 1)}$
$p(\theta) = \frac{\Gamma(\alpha_1 + \dots + \alpha_k)}{\Gamma(\alpha_1) \dots \Gamma(\alpha_k)} \theta_1^{\alpha_1 - 1} \dots \theta_k^{\alpha_k - 1}$ $\theta_1, \dots, \theta_k \ge 0; \sum_{j=1}^k \theta_j = 1$	$cov(\theta_i, \theta_j) = -\frac{\alpha_0(\alpha_0 + 1)}{\alpha_0^2(\alpha_0 + 1)}$
	$cov(\theta_i, \theta_j) = -\frac{\alpha_0 (\alpha_0 + \alpha_i \alpha_j)}{\alpha_0^2 (\alpha_0 + 1)}$ $mode(\theta_j) = \frac{\alpha_j - 1}{\alpha_0 - k}$
($E(\theta) = \mu$
$p(\theta) = \frac{\exp(-\frac{x-\mu}{\sigma})}{\sigma(1+\exp(-\frac{x-\mu}{\sigma}))}$	$var(\theta) = \frac{1}{3}\sigma^2\pi^2$
$\sigma(1+\exp(-\frac{1}{\sigma}))$	$\operatorname{mode}(\theta) \stackrel{\circ}{=} \mu$
	$E(\theta) = \frac{1}{1 + (x)^{-\beta}}$
$p(\theta) = \frac{\frac{\beta}{\alpha} (\frac{x}{\alpha})^{\beta-1}}{[1+(\frac{x}{\alpha})^{\beta}]^2}, \theta > 0$	$\operatorname{var}(\theta) = \alpha^2 \frac{2\pi/\beta}{\sin(2\pi/\beta)}, \beta > 2$
$P(\theta) = \frac{1}{\left[1 + \left(\frac{\pi}{\alpha}\right)^{\beta}\right]^2}, \theta > 0$	
	$mode(\theta) = \alpha \left(\frac{\beta - 1}{\beta + 1}\right)^{\frac{1}{\beta}}, \ \beta > 1$
Density function	Mean, variance, and mode
$p(\theta) = \frac{1}{a!} \lambda^{\theta} \exp(-\lambda)$	$E(\theta) = \lambda$, $var(\theta) = \lambda$
$\theta = 0.1, 2, \dots$	$\operatorname{mode}(\theta) = \lambda $
$p(\theta) = \binom{n}{a} p^{\theta} (1-p)^{n-\theta}$	$E(\theta) = np$
	$var(\theta) = np(1 - p)$
$\theta = 0, 1, 2, \dots, n$	$\operatorname{mode}(\theta) = \lfloor (n+1)p \rfloor$
	$E(\theta_i) = np_i$
$p(\theta) = \binom{n}{\theta_1 \theta_2 \dots \theta_k} p_1^{\theta_1} \dots p_k^{\theta_k}$	$var(\theta_i) = np_j$ $var(\theta_i) = np_i(1 - p_i)$
$\theta_i = 0, 1, 2,, n; \sum_{i=1}^{k} \theta_i = n$	$var(\theta_j) = np_j(1 - p_j)$ $cov(\theta_i, \theta_j) = -np_ip_j$
,	$cov(\theta_i, \theta_j) = -np_ip_j$
$p(\theta) = \begin{pmatrix} \theta + \alpha - 1 \\ \alpha - 1 \end{pmatrix} \begin{pmatrix} \frac{\beta}{\beta + 1} \end{pmatrix}^{\alpha} \begin{pmatrix} \frac{1}{\beta + 1} \end{pmatrix}^{\theta}$	$E(\theta) = \frac{\alpha}{\beta}$
	$var(\theta) = \frac{\alpha}{\beta^2}(\beta + 1)$
$\theta = 0, 1, 2, \dots$	β= (-)
$p(\theta) = \frac{\Gamma(n+1)}{\Gamma(\theta+1)\Gamma(n-\theta+1)} \frac{\Gamma(\alpha+\theta)\Gamma(n+\beta-\theta)}{\Gamma(\alpha+\beta+n)}$	$E(\theta) = n \frac{\alpha}{\alpha + \beta}$ $var(\theta) = n \frac{\alpha\beta(\alpha + \beta + n)}{(\alpha + \beta)^2(\alpha + \beta + 1)}$
$\times \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}, \theta = 0, 1, 2,, n$	$var(\theta) = n \frac{\alpha\beta(\alpha+\beta+n)}{\alpha\beta(\alpha+\beta+n)}$