(see Figure 4) of a type discussed by Clulow, [4, Section 2.3]. Here the key k_2 is first wrapped under k_2 itself, and then unwrapped, gaining a new handle $h(n_3, k_2)$. The intruder then wraps k_1 under k_2 , and sets the decrypt attribute on handle $h(n_3, k_2)$, allowing him to ob $tain k_1$. **Initial state:** The intruder knows the handles $h(n_1, k_1), h(n_2, k_2); n_1$ has the attributes sensitive, extract and whereas n_2 has the attribute extract set. Trace: Set_wrap: $h(n_2, k_2)$ $wrap(n_2)$ \longrightarrow $h(n_2, k_2), h(n_2, k_2)$ Wrap: $senc(k_2, k_2)$ $unwrap(n_2)$ Set_unwrap: $h(n_2, k_2)$ new n₄ Unwrap: $h(n_2, k_2), senc(k_2, k_2)$ $h(n_4, k_2)$ Wrap: $h(n_2, k_2), h(n_1, k_1)$ $senc(k_1, k_2)$ Set_decrypt: $h(n_4, k_2)$ $decrypt(n_4)$ SDecrypt: $h(n_4, k_2)$, senc (k_1, k_2) k_1 Figure 4. Attack discovered in Experiment 3

Experiment 3. To prevent the attack shown in Figure 3, we add encrypt and unwrap to the list of conflicting attribute pairs. Another new attack is discovered