Probabilidad - 3er Curso (Doble Grado en Ingeniería Informática y Matemáticas) Control del día 25 de octubre de 2022

Apellidos, nombre:

- 1. Dado el vector bidimensional (X,Y) distribuido uniformemente en el recinto limitado $R = \{(x,y) \in \mathbb{R}^2 : y \le x \le -y \le 1\}$:
 - a) (1 punto) Obtener su función de densidad conjunta.
 - b) (1.5 puntos) Obtener su función de distribución conjunta.
 - c) (1.25 puntos) Obtener las distribuciones marginales.
 - d) (1.25 puntos) Obtener las distribuciones condicionadas.
 - e) (**1 punto**) Obtener la probabilidad de que $X + Y + 1 \ge 0$.

Indicación 1. Un vector aleatorio bidimiensional está uniformemente distribuido en un recinto del plano si su función de densidad es una constante no negativa en dicho recinto.

2. Realizar los siguientes apartados:

- a) (2 puntos) Se considera el experimento aleatorio de lanzar tres monedas al aire de forma simultánea y anotar el número de caras obtenidas. Probar que la aplicación del espacio de probabilidad que define el experimento anterior, que asigna el valor 0 si el número de caras que aparecen es par y 1 si el número de caras que aparecen es impar, así definida, es una variable aleatoria.
- b) (2 puntos) De un vector aleatorio $X = (X_1, ..., X_n)$ se sabe que su función de distribución conjunta es el producto de las funciones de distribución marginales y que cada una de sus componentes es una variable aleatoria unidimensional continua. Probar que X es un vector aleatorio continuo.

Observación. En el apatado a) un resultado de 0 caras se considera número par.