

CO₂ dynamics

two-phase flow equations

mass balance equation:

$$\frac{\partial}{\partial t}(\phi S_i \rho_i) + \nabla \cdot (\rho_i \mathbf{v}_i) = \rho_i q_i, \quad i = 1,2$$

inject CO₂ to replace water

$$S_1 + S_2 = 1$$

Darcy's law:

$$\mathbf{v}_{i} = -\frac{Kk_{ri}}{\tilde{\mu}_{i}}(\nabla P_{i} - g\rho_{i}\nabla Z), \quad i = 1,2$$

fluid pressure:

$$P_2 = P_1 - P_c(S_2)$$

Symbol	Meaning
K	permeability
φ	porosity
k_{ri}	relative permeability
S_i	fluid saturation
P_i	fluid pressure
P_c	capillary pressure
\mathbf{v}_i	Darcy's velocity
$ ho_i$	fluid density
$ ilde{\mu}_i$	fluid viscosity
q_i	injection/production rate
g	gravity constant
Z	vector of vertical direction

Training samples for the state CO_2 saturation at k=1

 $\mathbf{x}_{k-1} \sim p(\mathbf{x}_{k-1})$

initial saturation

$$\mathbf{x}_k \sim p(\mathbf{x}_k | \mathbf{x}_{k-1})$$

transitioned saturation

$$\mathbf{x}_{k} = \mathcal{M}_{k-1}(\mathbf{x}_{k-1}, \mathbf{K}; \mathbf{q}_{k-1})$$
 with $\mathbf{x}_{0} \sim p(\mathbf{x}_{0}), K \sim p(K)$