BLG 335E ANALYSIS OF ALGORITHMS I MIDTERM - NOVEMBER 13, 2013, 13:30-15:30 PM (2 hours)

1	2	2	3	4	5	Total (100 pt)
(10 pt	(18 pt)	(22 pt)	(15 pt)	(30 pt)	(15 pt)	

On my honor, I declare that I neither give nor receive any unauthorized help on this exam.

Student Signature:

Write your name on each sheet.

Write your answers neatly (in English) in the space provided for them.

You <u>must show</u> all your work for credit.

Books and notes are closed.

Good Luck!

Q1[10 points]:

1a) Is
$$2^{n+1} = O(2^n)$$
?

1b) Is
$$2^{2n} = O(2^n)$$
?

Show your work. Define c, n₀.

Hint: Definition if O-notation (page 44 from textbook)

Q2[18 points]:

Find the solutions for the following recurrences. Feel free to use one of the three methods: substitution method, recursion-tree method, master method. **Show your work.**

a)
$$T(n) = 3T(n/2) + nlgn$$

b)
$$T(n) = T(n/2) + T(n/4) + T(n/8) + n$$

c)
$$T(n) = T(n-1) + lgn$$

HINT: If you want to benefit from **MASTER THEOREM** for Q2:

Master theorem:

Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) can be bounded asymptotically as follows.

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \theta(n^{\log_b a})$.
- 2. If $f(n) = \theta(n^{\log_b a})$, then $T(n) = \theta(n^{\log_b a} \lg n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < l and all sufficiently large n, then $T(n) = \theta(f(n))$.

Q3) [22 pts]

3a) (**7 pts**) Given a sample space S and an event A in the sample space S, let $X_A = I$ {A}. Show that E $[X_A] = Pr$ {A}. Note that I {A} is indicator random variable.

3b) (15 pts) How many people do you need in a room to have at least 2 with the same birthday? Assume that birthdays are distributed equally among all days of the year and neglect leap years, that is you can take 1 year = 365 days) Hint. Use indicator random variable

PART-A SOLUTIONS

1)

$$2^{n+1} = O(2^n)$$
, but $2^{2n} \neq O(2^n)$.

To show that $2^{n+1} = O(2^n)$, we must find constants $c, n_0 > 0$ such that

$$0 \le 2^{n+1} \le c \cdot 2^n$$
 for all $n \ge n_0$.

Since $2^{n+1} = 2 \cdot 2^n$ for all n, we can satisfy the definition with c = 2 and $n_0 = 1$.

To show that $2^{2n} \neq O(2^n)$, assume there exist constants $c, n_0 > 0$ such that

$$0 \le 2^{2n} \le c \cdot 2^n$$
 for all $n \ge n_0$.

Then $2^{2n} = 2^n \cdot 2^n \le c \cdot 2^n \Rightarrow 2^n \le c$. But no constant is greater than all 2^n , and so the assumption leads to a contradiction.

2)

a)

$$T(n) = 3T(n/2) + n \lg n$$

We have $f(n) = n \lg n$ and $n^{\log_b a} = n^{\lg 3} \approx n^{1.585}$. Since $n \lg n = O(n^{\lg 3 - \epsilon})$ for any $0 < \epsilon \le 0.58$, by case 1 of the master theorem, we have $T(n) = \Theta(n^{\lg 3})$.

b)

$$T(n) = T(n/2) + T(n/4) + T(n/8) + n$$

Using the recursion tree shown below, we get a guess of $T(n) = \Theta(n)$.

We use the substitution method to prove that T(n) = O(n). Our inductive hypothesis is that $T(n) \le cn$ for some constant c > 0. We have

$$T(n) = T(n/2) + T(n/4) + T(n/8) + n$$

$$\leq cn/2 + cn/4 + cn/8 + n$$

$$= 7cn/8 + n$$

$$= (1 + 7c/8)n$$

$$\leq cn \quad \text{if } c \geq 8.$$

Therefore, T(n) = O(n).

Showing that $T(n) = \Omega(n)$ is easy:

$$T(n) = T(n/2) + T(n/4) + T(n/8) + n \ge n$$
.

Since T(n) = O(n) and $T(n) = \Omega(n)$, we have that $T(n) = \Theta(n)$.

c)

$$T(n) = T(n-1) + \lg n$$

We guess that $T(n) = \Theta(n \lg n)$. To prove the upper bound, we will show that $T(n) = O(n \lg n)$. Our inductive hypothesis is that $T(n) \le cn \lg n$ for some constant c. We have

$$T(n) = T(n-1) + \lg n$$

$$\leq c(n-1)\lg(n-1) + \lg n$$

$$= cn\lg(n-1) - c\lg(n-1) + \lg n$$

$$\leq cn\lg(n-1) - c\lg(n/2) + \lg n$$

$$(since \lg(n-1) \geq \lg(n/2) \text{ for } n \geq 2)$$

$$= cn\lg(n-1) - c\lg n + c + \lg n$$

$$< cn\lg n - c\lg n + c + \lg n$$

$$\leq cn\lg n,$$
if $-c\lg n + c + \lg n \leq 0$. Equivalently,
$$-c\lg n + c + \lg n \leq 0$$

$$c \leq (c-1)\lg n$$

$$\lg n \geq c/(c-1).$$

This works for c = 2 and all $n \ge 4$.

To prove the lower bound, we will show that $T(n) = \Omega(n \lg n)$. Our inductive hypothesis is that $T(n) \ge cn \lg n + dn$ for constants c and d. We have

$$T(n) = T(n-1) + \lg n$$

$$\geq c(n-1)\lg(n-1) + d(n-1) + \lg n$$

$$= cn\lg(n-1) - c\lg(n-1) + dn - d + \lg n$$

$$\geq cn\lg(n/2) - c\lg(n-1) + dn - d + \lg n$$

$$(\text{since } \lg(n-1) \geq \lg(n/2) \text{ for } n \geq 2)$$

$$= cn\lg n - cn - c\lg(n-1) + dn - d + \lg n$$

$$\geq cn\lg n,$$

$$\text{if } -cn - c\lg(n-1) + dn - d + \lg n \geq 0. \text{ Since}$$

$$-cn - c\lg(n-1) + dn - d + \lg n >$$

$$-cn - c\lg(n-1) + dn - d + \lg n >$$

it suffices to find conditions in which $-cn-c\lg(n-1)+dn-d+\lg(n-1)\geq 0$. Equivalently,

$$-cn - c \lg(n-1) + dn - d + \lg(n-1) \ge 0$$

 $(d-c)n \ge (c-1) \lg(n-1) + d$.

This works for c = 1, d = 2, and all $n \ge 2$.

Since $T(n) = O(n \lg n)$ and $T(n) = \Omega(n \lg n)$, we conclude that $T(n) = \Theta(n \lg n)$.

3)

a)

Proof Letting \overline{A} be the complement of A, we have

$$\begin{split} \mathbf{E}\left[X_A\right] &= \mathbf{E}\left[\mathbf{I}\left\{A\right\}\right] \\ &= 1 \cdot \Pr\left\{A\right\} + 0 \cdot \Pr\left\{\overline{A}\right\} \quad \text{(definition of expected value)} \\ &= \Pr\left\{A\right\} \; . \end{split}$$

b)

We can use indicator random variables to provide a simpler but approximate analysis of the birthday paradox. For each pair (i, j) of the k people in the room, we define the indicator random variable X_{ij} , for $1 \le i < j \le k$, by

$$X_{ij} = I\{\text{person } i \text{ and person } j \text{ have the same birthday}\}\$$

$$= \begin{cases} 1 & \text{if person } i \text{ and person } j \text{ have the same birthday }, \\ 0 & \text{otherwise }. \end{cases}$$

By equation (5.7), the probability that two people have matching birthdays is 1/n, and thus by Lemma 5.1, we have

$$E[X_{ij}] = Pr \{person \ i \ and \ person \ j \ have the same birthday\}$$

= $1/n$.

Letting X be the random variable that counts the number of pairs of individuals having the same birthday, we have

$$X = \sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{ij} .$$

Taking expectations of both sides and applying linearity of expectation, we obtain

$$E[X] = E\left[\sum_{i=1}^{k} \sum_{j=i+1}^{k} X_{ij}\right]$$
$$= \sum_{i=1}^{k} \sum_{j=i+1}^{k} E[X_{ij}]$$
$$= \binom{k}{2} \frac{1}{n}$$
$$= \frac{k(k-1)}{2n}.$$

When $k(k-1) \ge 2n$, therefore, the expected number of pairs of people with the same birthday is at least 1. Thus, if we have at least $\sqrt{2n} + 1$ individuals in a room, we can expect at least two to have the same birthday. For n = 365, if k = 28, the expected number of pairs with the same birthday is $(28 \cdot 27)/(2 \cdot 365) \approx 1.0356$.

BLG 335E ANALYSIS OF ALGORITHMS I MIDTERM - NOVEMBER 5, 2014, 13:30-15:30 PM (2 hours)

1	2	3	4	5	6	Total
(10 pt)	(18 pt)	(22 pt)	(20 pt)	(12 pt)	(18 pt)	(100 pt)

Q4) [20points]

4a) [10pts] Sort the array A={3,4,2,1} in increasing (ascending) order using Heapsort. Show all the steps of your work. Use tree representation for the heap.

Which type of Heap do you need to use? Max- heap

4b) [10points]

Sort the array A={3,14,13,11}, in increasing (ascending) order using Radix sort. Show all the steps of your work.

03	0,3	1 1 0 3	03
13	1 3 1 1	1,3	1 4
	Stable sort digit 1	Stable sort Ligit 2	Sorted

Q5) [12 points]

Given the following algorithm which computes the minimum of an array, prove its correctness using a loop invariant.

MINIMUM(A) $1 \min \leftarrow A[1]$ 2 for $i \leftarrow 2$ to length[A] 3 do if min > A[i]4 then min \leftarrow A[i] 5 return min

State the Loop Invariant:

At the begining of the for loop, (on line 2) min is the minimum of A[1...i-1]

Initialization:

$$i=2$$
, min = A[1] // line 1
A[1.. $i-1$] = A[1]

Therefore min is A[1] which is the only minimum array

Maintenance: Assume loop invariant true for i, show it true for it.

Two cases to consider min is the minimum of A[1..i-1]

(line3) Two cases to consider

if min>A[i]

then A[i] is the smallest of A [1 ... i]

Jif min & A[i]

then A[i] is not minimum and min does not need to be changed.

Min is assigned to A[i] on line 4 min contains the minimum of A[1.-i]

Therefore at :teration 1+1, Loop invariant is true.

Termination:

At termination

$$i' = length[A] + 1$$

loop invariant:

min is the minimum of A[1...length[A]]

Therefore the algorithm computes the correct value.

Q6) [18pts]: Fill in the following table according to the implementations we learned in class:

Hint: All con	nparisons used in	Insertion, H.	eap, Merge:	sort are < or >
	Worst Case	In Place?	Stable?	
	Time Complexity	(Yes or No?)	(Yes or No?)	
,	T(n)=			,
Insertion Sort	O(n ²)	Yes	Yes	
Heapsort	O(nlogn)	Yes	No	
Mergesort	O(nlogn)	No	Yes	

Only if an element is > key it is moved

i'=j-1

while A[i] > key move ith element to it

Let ca=cb (a & b used to indicate which
element)

if A[j]=ca and A[j+k]=cb

then when sorted the order will be

CaCb

Merge Sort

Merge compares $L[i] \leq R[j]$ if true moves L[i] to A[L]else moves R[j] to A[L]

Ca Cb remain in the same order.

(25)

(20)

26 2a

Extract max swaps 2a 826