Линейна алгебра и аналитична геометрия

за специалност "Информатика", І курс

лектор: гл. ас. д-р Ива Докузова

Насочена отсечка

Точката, отсечката, правата и равнината са аксиоматични понятия. Всяка отсечка AB, на която точката A е избрана за начало, а точката B за край се нарича насочена отсечка и означаваме \overrightarrow{AB} .

Казваме, че **посоката** на \overrightarrow{AB} е от A къ<u>м</u> B.

Под **дължина** на насочената отсечка \overrightarrow{AB} разбираме дължината на отсечката AB и означаваме с $|\overrightarrow{AB}|$.

Отсечката \overrightarrow{AA} се нарича **нулева насочена отсечка**.

Отсечката \overrightarrow{BA} се нарича противоположна на \overrightarrow{AB} .

Отсечките AB и CD се наричат колинеарни, ако правите AB и CD са успоредни или съвпадат. Означаваме $\overrightarrow{AB} \uparrow \uparrow \overrightarrow{CD}$, когато са еднопосочно колинеарни и $\overrightarrow{AB} \uparrow \downarrow \overrightarrow{CD}$, когато са разнопосочно колинеарни. Точките A,B и C се наричат колинеарни, ако лежат на една права.

Отсечките \overrightarrow{AB} , \overrightarrow{CD} и \overrightarrow{EF} се наричат компланарни, ако правите AB,

CD и EF са успоредни на фиксирана равнина или лежат в тази равнина.

Точките $A,\,B,\,C$ и D се наричат комланарни, ако лежат в една равнина.

Свободен вектор

Две ненулеви насочени отсечки \overrightarrow{AB} и \overrightarrow{CD} се наричат **равни**, ако имат равни дължини и еднакви посоки. Тогава записваме $\overrightarrow{AB} = \overrightarrow{CD}$. **Свободен вектор** наричаме множеството от всички насочени отсечки, които са равни помежду си. Означаваме свободните вектори с малки латински букви: \vec{a} , \vec{b} , \vec{c} ,

Ако \vec{a} е свободен вектор, то насочените отсечки, от които се състои се наричат негови **представители**.

Ако \overrightarrow{AB} е представител на вектора \overrightarrow{a} , записваме $\overrightarrow{AB} = \overrightarrow{a}$.

Нека A е произволна точка, а \vec{a} е произволен вектор. Тогава съществува единствена точка B, така че $\overrightarrow{AB} = \vec{a}$.

Действието се нарича пренасяне на $ec{a}$ в точката A.

Нулевият вектор се означава с \vec{o} и негов представител е насочената отсечка \overrightarrow{AA} .

Противоположният вектор на вектор $\vec{a} = \overrightarrow{AB}$ се означава с $-\vec{a} = \overrightarrow{BA}$. Вектор с дължина единица се нарича **единичен**.

Линейни действия със свободни вектори

Сума на векторите $\vec{a} = \overrightarrow{AB}$ и $\vec{b} = \overrightarrow{BC}$ е вектор $\vec{c} = \overrightarrow{AC}$.

Сума на свободните вектори \vec{a} и \vec{b} можем да получим и чрез следното правилото на успоредника.

Избираме една точка O и построяваме насочени отсечки $\overrightarrow{OA} = \vec{a}$ и $\overrightarrow{OB} = \vec{b}$. Допълваме до успоредник OACB. Тогава $\vec{a} + \vec{b} = \overrightarrow{OC}$.

Произведение на реалното число λ с вектора \vec{a} е вектор $\lambda \vec{a}$. Ако $\lambda=0$ или $\vec{a}=\vec{o}$, то $\lambda \vec{a}=\vec{o}$. В противен случай $\lambda \vec{a}$ е с дължина $|\lambda \vec{a}|=|\lambda||\vec{a}|$ и е еднопосочно колинеарен или разнопосочно колинеарен на \vec{a} в зависимост от това дали $\lambda>0$ или $\lambda<0$.

Разлика на векторите $\vec{a} = \overrightarrow{OA}$ и $\vec{b} = \overrightarrow{OB}$ е вектор $\vec{a} - \vec{b} = \overrightarrow{BA}$.

Свойства на линейните действия

Събирането на вектори и умножението на вектор с число се наричат линейни действия с вектори.

Нека $\vec{a}, \vec{b}, \vec{c}$ са произволни свободни вектори, λ , μ са произволни реални числа. Тогава са в сила следните свойства:

- 1. $\vec{a} + \vec{b} = \vec{b} + \vec{a}$;
- 2. $\vec{a} + (\vec{b} + \vec{c}) = (\vec{a} + \vec{b}) + \vec{c}$;
- 3. Съществува вектор \vec{o} , наречен нулев, такъв че за всеки вектор \vec{a} е изпълнено $\vec{a}+\vec{o}=\vec{a}$;
- 4. За всеки вектор \vec{a} съществува вектор $-\vec{a}$, наречен противоположен на \vec{a} , такъв че $\vec{a}+(-\vec{a})=\vec{o}$;
- 5. $(\lambda + \mu)\vec{a} = \lambda \vec{a} + \mu \vec{a}$;
- 6. $\lambda(\vec{a} + \vec{b}) = \lambda \vec{a} + \lambda \vec{b}$;
- 7. $(\lambda \mu)\vec{a} = \lambda(\mu \vec{a})$;
- 8. $1\vec{a} = \vec{a}$.

Векторно пространство

Едно непразно множество V се нарича **реално векторно пространство**, ако е снабдено с две действия — събиране, което на всеки два елемента $a, b \in V$ съпоставя елемент $a+b \in V$, наречен **сума** на a и b, и умножение с реално число, което на всеки елемент $a \in V$ и всяко число $\lambda \in R$ съпоставя елемент $\lambda a \in V$, наречен тяхно **произведение**, като са изпълнени следните аксиоми:

- 1. a + b = b + a;
- 2. a + (b + c) = (a + b) + c;
- 3. Съществува елемент o наречен нулев, такъв че за всеки елемент a е изпълнено a+o=a;
- 4. За всеки елемент a съществува елемент -a, наречен противоположен на a, така че a+(-a)=o;
- 5. $(\lambda + \mu)a = \lambda a + \mu a$;
- 6. $\lambda(a+b) = \lambda a + \lambda b$;
- 7. $(\lambda \mu)a = \lambda(\mu a)$;
- 8. 1a = a.

Елементите на V се наричат вектори.

Някои следствия от аксиомите за векторно пространство

Нека V е реално векторно пространство.

- 1. Ако a и b са произволни вектори от V, то уравнението a+x=b има единствено решение за x.
 - Това решение е x = b a и се нарича разлика на векторите a и b.
- 2. Нулевият вектор на V единствен.
- 3. Противоположният вектор на даден вектор от V е единствен.
- 4. Равенството 0a=o е изпълнено за всеки вектор a от V.
- 5. Равенството (-1)a = -a е изпълнено за всеки вектор a от V.
- 6. Равенството $\lambda o = o$ е изпълнено за всяко число λ .
- 7. Ако $\lambda a = o$, то или $\lambda = 0$, или a = o.

Векторно подпространство

Непразното подмножество V_1 на векторното пространство V се нарича векторно подпространство на V (озн. $V_1 \leq V$), ако за всеки два елемента $a,\ b \in V_1$ и всяко $\lambda \in R$ е изпълнено:

- 1) $a + b \in V_1$;
- 2) $\lambda a \in V_1$.

Сечението на векторни подпространства V_1 и V_2 на V е векторно подпространство.

Сечението на векторните подпространства се означава $V_1 \cap V_2$.

Сума на векторни подпространства V_1 и V_2 на V се нарича множеството от векторите на V, които се представят като сума на вектор от V_1 и вектор от V_2 .

Сумата на векторните подространства се означава V_1+V_2 .

Сумата V_1+V_2 на векторните подпространства V_1 и V_2 на V се нарича директна и се означава $V_1\oplus V_2$, ако $V_1\cap V_2=\{o\}$.

Примери на векторно пространство

Множеството, състоящо се от нулевия вектор е векторно пространство $V_0 = \{o\}.$

Множеството от свободните вектори $\{\vec{a},\vec{b},\vec{c},\dots\}$ е реално векторно пространство относно двете линейни действия. Нарича се **геометрично векторно пространство.**

Множеството от свободните вектори $V(\alpha)$, компланарни с една равнина α е векторно подпространство на геометричното векторно пространство.

Множеството от свободните вектори V(p), колинеарни с една права p е векторно подпространство на геометричното векторно пространство. Множеството $M_{m \times n}(R)$ на матриците от тип $(m \times n)$ е реално векторно пространство относно операциите събиране на матрици и умножение на матрица с число.

Множеството $R_n[x]$ на полиномите на променливата x от степен $\leq n$;

В частност, матриците от тип (2×2) образуват векторно пространство. Всяка матрица A от $M_{2\times 2}(R)$ има вида:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad a_{ij} \in R.$$

Сумата на две матрици A и B от $M_{2 imes2}(R)$ е матрицата

$$A + B = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} = \begin{pmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix}.$$

Произведението на реално число λ с матрица A от $M_{2 \times 2}(R)$ е матрицата

$$\lambda A = \lambda \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) = \left(\begin{array}{cc} \lambda a_{11} & \lambda a_{12} \\ \lambda a_{21} & \lambda a_{22} \end{array} \right).$$

Множеството R^n на наредените n-ки числа (x_1, x_2, \ldots, x_n) е реално векторно пространство.

Задачи. (1. Тема)

- 1. Дадени са точките $A,\ B$ и C, нележащи на една права. Ако O е произволна точка, да се докаже, че:
- а) точката M е среда на отсечката AB, точно когато

$$\overrightarrow{OM} = \frac{1}{2}(\overrightarrow{OA} + \overrightarrow{OB}).$$

б) точката G е медицентър на $\triangle ABC$, точно когато

$$\overrightarrow{OG} = \frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} + \overrightarrow{OC}).$$

- 2. Установете кое от следните множества е векторно пространство:
- а) множеството $R_2[x]$ на полиномите от степен ≤ 2 ;
- б) множеството $M = \{ax^2 + (a b)x + b; a, b \in R\};$
- в) множеството $N=\{(x,y,z)\in R^3; \quad x-y+z=0, \ 2x-y=0\};$
- г) множеството на матриците от вида $\begin{pmatrix} a & b \\ 2b & 0 \end{pmatrix}$, $(a,b \in R)$;
- д) множеството на матриците от вида $\begin{pmatrix} 1 & a \\ b & -b \end{pmatrix}, \, (a,b \in R).$

Линейна зависимост и независимост на вектори

Нека V е векторно пространство и $\alpha = \{a_1, \ a_2, \ \dots, \ a_n\}$ е система от вектори на V. Нека

$$\lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3 + \dots + \lambda_n a_n = 0, \tag{1}$$

където λ_i са реални числа, а o е нулевият вектор.

Системата α е **линейно зависима**, ако в (1) поне едно от числата λ_i е различно от нула.

Системата α е **линейно независима**, ако (1) е изпълнено само при $\lambda_1=\lambda_2=\cdots=\lambda_n=0$.

Ако един вектор $b \in V$ може да се представи във вида

$$b = \lambda_1 a_1 + \lambda_2 a_2 + \lambda_3 a_3 + \dots + \lambda_n a_n,$$

то той се нарича линейна комбинация на системата α .

От определението следват твърденията:

- 1. Система от един вектор е линейно зависима тогава и само тогава, когато този вектор е нулевият.
- 2. Система от поне два вектора е линейно зависима тогава и само тогава, когато поне един от тези вектори е линейна комбинация от останалите.
- 3. Ако $\alpha=\{a_1,\ a_2,\ \dots,\ a_n\}$ е линейно независима система вектори, а $\alpha'=\{b,a_1,\ a_2,\ \dots,\ a_n\}$ е линейно зависима, то векторът b еднозначно се представя като линейна комбинация на векторите $a_1,\ a_2,\ \dots,\ a_n.$
- 4. Всяка система от вектори, съдържаща линейно зависима подсистема, е линейно зависима. Всяка линейно независима система от вектори съдържа само линейно независими подсистеми.

База и размерност на векторно пространство

Ако всеки вектор на векторно пространство V може да се представи като линейна комбинация на система вектори α , то тя се нарича пораждаща система за V.

Ако една наредена система вектори $\alpha = \{a_1, \ a_2, \ \dots, \ a_n\}$ е линейно независима и пораждаща за векторно пространство V, то тя е **база** на V.

Броят на базисните вектори определя **размерността на пространството.** Ако те са краен брой n, то V има размерност $\dim V = n$. В противен случай V е безкрайномерно.

Векторното пространство $V_0=\{o\}$ не притежава база, тъй като единственият му вектор o е линейно зависим. Приема се, че $\dim V_0=0$.

Векторното пространство $M_{m \times n}(R)$ на матриците от тип $m \times n$ има размерност m.n.

Векторното пространство R^n на наредените n-ки числа $(x_1,x_2,\,\ldots,\,x_n)$ има размерност n.

Векторното пространство $R_n[x]$ на полиномите от степен $\leq n$ има размерност n+1.

Линейна зависимост в геометричното векторно пространство

Един свободен вектор е линейно зависим, точно когато той е нулевият. Свободните вектори \vec{a}_1 и \vec{a}_2 са линейно зависими, точно когато те са колинеарни, т.е. $\vec{a}_2 = \lambda \vec{a}_1$.

Векторното пространство на свободните вектори V(p), колинеарни с една права p, има размерност 1.

Свободните вектори \vec{a}_1 , \vec{a}_2 и \vec{a}_3 са линейно зависими, точно когато те са компланарни, т.е. $\vec{a}_3 = \lambda \vec{a}_1 + \mu \vec{a}_2$, $(\lambda, \mu \in R)$.

Векторното пространство на свободните вектори $V(\alpha)$, компланарни с една равнина α , има размерност 2.

Всеки четири свободни вектора са линейно зависими. Геометричното векторно пространство има размерност 3.

За крайномерно векторно пространство са в сила твърденията:

1. Всички бази на крайномерно векторно пространство V имат равен брой вектори.

Hека $\dim V = n$.

- 2. Всяка пораждаща система от n вектора е база на V.
- 3. Всяка линейно независима система от n вектора е база на V .
- 4. Всяка пораждаща система вектори има най-малко n вектора.
- 5. Всяка линейно независима система вектори има най-много n вектора.
- 6. Ако $x \in V$ е произволен вектор и $\alpha = \{e_1, \ e_2, \ \dots, \ e_n\}$ е база на V, то представянето $x = x_1e_1 + x_2 \ e_2 + \dots + x_ne_n$ е еднозначно. Числата (x_1, x_2, \dots, x_n) се наричат координати x относно базата α .

Координатна система в равнината

Две наредени взаимно перпендикулярни оси с общо начало образуват **декартова координатна система в равнината**. Мерната единица е една и съща по двете оси.

Ако означим началото с т. O, първата ос Ox – абсциса и втората ос Oy – ордината, то координатната система се означава Oxy. Тя разделя равнината на четири квадранта. Равнината на Oxy се нарича координатна равнина.

Координати на точка и вектор

Единичните вектори по абсцисата и ординатата се означават съответно \vec{e}_1 и \vec{e}_2 . Те се наричат базисни вектори (т.е. те са линейно независими и всеки вектор от равнината Oxy може да се представи, като линейна комбинация на \vec{e}_1 и \vec{e}_2 .)

Ако M е точка от координатната равнина, то \overrightarrow{OM} се нарича **радиусвектор** на т. M. Абсцисата x ни дава първата координата на M, а ординатата y ни дава втората координата на M. Тогава записваме $M(x_M,y_M)$, а също и $\overrightarrow{OM}(x_M,y_M)$.

Векторът \overrightarrow{OM} се представя като линейна комбинация на базисните вектори $\vec{e_1}$ и $\vec{e_2}$, т.е. $\overrightarrow{OM} = x_M \vec{e_1} + y_M \vec{e_2}$.

Ако са дадени точките $A(x_1,y_1)$ и $B(x_2,y_2)$ относно координатната система Oxy, то от $\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$, следва

$$\overrightarrow{AB}(x_2-x_1,y_2-y_1).$$

Координатна система в пространството

Три наредени оси, които са две по две взаимно перпендикулярни помежду си и имат общо начало, образуват **декартова координатна** система в пространството.

Ако O е началото на координатната система, то Ox, Oy, Oz са съответно абсциса, ордината и апликата, а базисните вектори по осите са съответно \vec{e}_1 , \vec{e}_2 и \vec{e}_3 . Тогава получаваме координатите на произволна точка $M(x_M,y_M,z_M)$, а също и на нейния радиус-вектор $\overrightarrow{OM}(x_M,y_M,z_M)$.

Векторът се представя, като линейна комбинация на базисните вектори $\vec{e_1}$, $\vec{e_2}$ и $\vec{e_3}$, т.е. $\overrightarrow{OM}=x_M\vec{e_1}+y_M\vec{e_2}+z_M\vec{e_3}$.

Ако са дадени точките $A(x_1,y_1,z_1)$ и $B(x_2,y_2,z_2)$ относно координатната система Oxyz, то от $\overrightarrow{AB}=\overrightarrow{OB}-\overrightarrow{OA}$, следва

$$\overrightarrow{AB}(x_2-x_1,y_2-y_1,z_2-z_1).$$

Декартова (ортонормирана) координатна система Oxyz. Ако $M(x_M,y_M,z_M)$ е произволна точка, точка $M_1(x_M,y_M,0)$ е ортогоналната проекция на M върху координатната равнина Oxy.

Задачи. (2. Тема)

- 1. Установете за всяка от следните системи вектори дали е линейно зависима или независима:
- a) $a_1 = (1, 1, -1), a_2 = (1, -1, 1), a_3 = (-1, 1, 1);$
- 6) $a_1 = (1, 2, 3)$, $a_2 = (3, -2, 1)$, $a_3 = (4, 0, 4)$;
- B) $a_1 = (1,0,0)$, $a_2 = (-1,2,1)$, $a_3 = (3,0,-2)$.
- г) $\overrightarrow{BB_1}$, $\overrightarrow{CC_1}$, $\overrightarrow{DD_1}$, ако ABCD и $AB_1C_1D_1$ са успоредници в пространството.
- 2. Определете размерността на векторните пространства от Задача 2. (1. Тема).
- 3. Да се намерят координатите на средата на отсечка с краища
- a)A(-1,0), B(3,-2);
- 6) A(2,6), B(-4,8);
- B)A(3, -3, 5), B(-1, 1, 3).
- 4. Дадени са точките A(4,-2) и M(1,0). Да се намери точка B така, че M да бъде среда на отсечката AB.

- 5. Да се намерят координатите на медицентъра G на триъгълник, чиито върхове са $A(0,1),\,B(-2,4)$ и C(-4,1).
- 6. Да се провери дали точките A(1,8), B(2,5), C(3,2) лежат на една права.
- 7. Съществува ли триъгълник с върхове
- a) A(1,1,1), B(2,0,5), C(0,3,-7);
- 6) A(1,-4,1), B(0,2,8), C(-2,14,22)?
- 8. Да се намери четвъртият връх C на успоредника ABCD, ако A(-3,0), $B(2,1),\ D(-3,6)$.
- 9. Да се намери точка D така, че правите AB и CD да са успоредни, ако $A(2,11),\ B(7,6),\ C(12,-3).$

Скаларно произведение на свободни вектори

Нека \vec{a} и \vec{b} са ненулеви свободни вектори и $\vec{a} = \overrightarrow{AB}$, $\vec{b} = \overrightarrow{AC}$. Ъгълът $\varphi \in [0,\pi]$ между лъчите AB^{\rightarrow} и AC^{\rightarrow} се нарича ъгъл между векторите \vec{a} и \vec{b} и го означаваме $\varphi = \measuredangle(\vec{a},\vec{b})$.

Скаларно произведение на ненулевите вектори \vec{a} и \vec{b} е числото

$$\vec{a}\vec{b} = |\vec{a}||\vec{b}|\cos\varphi. \tag{2}$$

Действието се нарича скаларно умножение на вектори.

Скаларно произведение на векторите \vec{a} и \vec{b} , ако $\vec{a}=\vec{o}$ или $\vec{b}=\vec{o}$, е числото $\vec{a}\vec{b}=0$.

Числото \vec{a}^2 се нарича **скаларен квадрат на вектора** \vec{a} . Тъй като ъгълът φ между \vec{a} и \vec{a} е 0, то от (2) получаваме $\vec{a}^2=|\vec{a}|^2$, откъдето намираме за **дължината на** \vec{a} : $|\vec{a}|=\sqrt{\vec{a}^2}$.

Ненулевите вектори \vec{a} и \vec{b} се наричат **ортогонални** (перпендикулярни), ако $\varphi=\frac{\pi}{2}.$

Hенулевите вектори \vec{a} и \vec{b} са ортогонални, точно когато $\vec{a}\vec{b}=0$.

Скаларното произведение притежава свойствата:

- 1. $\vec{a}\vec{b} = \vec{b}\vec{a}$;
- 2. $\vec{a}(\vec{b} + \vec{c}) = \vec{a}\vec{b} + \vec{a}\vec{c};$
- 3. $(\lambda \vec{a})\vec{b} = \lambda(\vec{a}\vec{b});$
- 4. $\vec{a}^2>0$, за всеки вектор $\vec{a} \neq \vec{o}$.

Нека относно декартова координатна система Oxy са дадени векторите $\vec{a}(x_1,y_1)$ и $\vec{b}(x_2,y_2)$. Скаларното им произведение е

$$\vec{a}\vec{b} = x_1x_2 + y_1y_2.$$

За дължината на вектор \vec{a} получаваме $|\vec{a}|=\sqrt{x_1^2+y_1^2}.$ Нека относно декартова координатна Oxyz са дадени векторите $\vec{a}(x_1,y_1,z_1)$ и $\vec{b}(x_2,y_2,z_2).$ Скаларното им произведение е

$$\vec{a}\vec{b} = x_1x_2 + y_1y_2 + z_1z_2.$$

За дължината на вектор \vec{a} получаваме $|\vec{a}| = \sqrt{x_1^2 + y_1^2 + z_1^2}.$

Задачи. (3. Тема)

- 1. Ако $\vec{a}(1,-2)$, $\vec{b}(1,1)$, да се пресметнат $\vec{a}\vec{b}$, $|\vec{a}|$, \vec{b}^2 , $(\vec{a}-\vec{b})^2$, $\measuredangle(\vec{a},\vec{b})$.
- 2. Да се пресметне $(2\vec{a}+\vec{b})(\vec{a}-2\vec{b})$, ако $\vec{a}(1,2)$, $\vec{b}(-2,3)$. Да се намери косинусът на ъгъла между векторите $\vec{p}=(2\vec{a}+\vec{b})$ и $\vec{q}=(\vec{a}-2\vec{b})$.
- 3. Ако $\vec{a}(3,2,-3)$, $\vec{b}(2,-3,0)$, да се пресметнат $\vec{a}\vec{b}$, \vec{a}^2 , \vec{b}^2 , $(\vec{a}-\vec{b})^2$, $(\vec{a}+\vec{b})(\vec{a}-3\vec{b})$.
- 4. Да се определи y, така че $\vec{a}(2,y)$ да бъде ортогонален на $\vec{b}(2,-1)$.
- 5. Даден е триъгълник ABC с върхове A(3,5), B(3,0), C(-3,0).
- a) Да се изобрази триъгълникът спрямо декартова координатна система.
- б) Да се намерят дължините на страните на триъгълника.
- в) Да се намерят ъглите на триъгълника.

Евклидово векторно пространство

Скаларното произведение на свободни вектори може да се обобщи за векторите на произволно векторно пространство.

Реалното векторно пространство V се нарича **реално евклидово пространство**, ако е зададено действие наречено **скаларно умножение**, по силата на което на всеки два вектора a и b от V се съпоставя реално число ab, така че за произволни $a,b,c\in V$, $\lambda\in R$ са изпълнени свойствата:

- 1. ab = ba (комутативност),
- 2. a(b+c) = ab + ac (дистрибутивност),
- 3. $(\lambda a)b = \lambda(ab)$ (хомогенност),
- 4. $a^2 > 0$, за всеки вектор $a \neq o$ (позитивност).

Въвежда се дължина на вектор $|a|=\sqrt{a^2}.$

В сила е **неравенството на Коши-Буняковски-Шварц**: $|ab| \leq |a||b|$. Еднозначно е определен ъгъл $\varphi \in [0,\pi]$ между a и b с равенството

$$\cos \varphi = \frac{ab}{|a||b|}.$$

Векторно произведение

Нека векторите $\{e_1,e_2,e_3\}$ образуват дясна ортонормирана база на тримерно евклидово векторно пространство.

Нека a и b са вектори от това пространство и имат координати $a(a_1,a_2,a_3)$ и $b(b_1,b_2,b_3)$ относно $\{e_1,e_2,e_3\}.$

Векторно произведение на a и b е вектор $c=a\times b$ определен, както следва:

$$c = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1).$$

За базата $\{e_1,e_2,e_3\}$ са в сила равенствата $e_1=e_2\times e_3$, $e_2=e_3\times e_1$, $e_3=e_1\times e_2$.

Ако $a(a_1,a_2)$ и $b(b_1,b_2)$ са вектори от двумерно евклидово пространство, то векторното им произведение се пресмята по формулата

$$a \times b = (0, 0, a_1b_2 - a_2b_1).$$

Векторното произведение $c=a\times b$ на векторите a и b има следните свойства:

ullet Ако a=o или b=o, или a и b са линейно зависисми, то

$$c = a \times b = o;$$

- Ако a и b са линейно независими, то
 - 1) c е ортогонален на a и на b;
 - 2) $|a \times b| = |a||b|\sin \varphi$, където $\varphi = \measuredangle(a,b)$;
 - 3) векторите (a, b, c) образуват дясна база.

Други свойства на векторното произведение:

- ullet Aко a imes b=o, то a и b са линейно зависисми.
- $a \times b = -b \times a$ (антикомутативност)
- $a \times (b+c) = a \times b + a \times c$ (дистрибутивност)
- $(\lambda a) \times b = \lambda(a \times b), \ \lambda \in R.$

Двойни векторни произведения пресмятаме с формулите

$$(a \times b) \times c = ac.b - bc.a, \quad a \times (b \times c) = ac.b - ab.c.$$

Очевидно е

$$(a \times b) \times c \neq a \times (b \times c)$$

Геометричен смисъл на векторното произведение

Нека ABCD е успоредник. Лицето му се пресмята с формулата

$$S_{ABCD} = AB.AD. \sin \angle (BAD).$$

Тогава лицето на ABCD може да се получи и с равенството

$$S_{ABCD} = |\overrightarrow{AB} \times \overrightarrow{AD}|.$$

Лицето на триъгълника ABC е

$$S_{ABC} = \frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|.$$

Смесено произведение

Числото $abc=(a\times b)c$ се нарича **смесено произведение** на векторите $a,\,b$ и c.

Смесеното произведение на $a(a_1,a_2,a_3),\,b(b_1,b_2,b_3)$ и $c(c_1,c_2,c_3),\,$ зададени относно декартова координатна система, се получава по формулата

$$abc = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}.$$

Смесеното произведение на три вектора е равно на нула, точно когато те са компланарни.

Смесеното произведение притежава свойствата

- $abc = a(b \times c)$,
- abc = bca = cab = -bac = -cba = -acb,
- $(a_1 + a_2)bc = a_1bc + a_2bc$, $a(b_1 + b_2)c = ab_1c + ab_2c$, $ab(c_1 + c_2) = abc_1 + bca_2$,
- $(\lambda a)bc = a(\lambda b)c = ab(\lambda c) = \lambda(abc).$

Геометричен смисъл на смесеното произведение

Нека ABCD е тетраедър. Обемът му се пресмята с формулата

$$V_{ABCD} = \frac{1}{6} \mid \overrightarrow{AB}\overrightarrow{AC}\overrightarrow{AD} \mid .$$

Задачи. (7. Тема)

- 1. Дадени са векторите $\vec{a}(0,2,3),\ \vec{b}(1,0,4),\ \vec{c}(2,-2,2).$ Да се намерят двойните векторни произведения $(\vec{a}\times\vec{b})\times\vec{c},\ \vec{a}\times(\vec{b}\times\vec{c})$ и смесените произведения $\vec{a}\vec{b}\vec{c},\ \vec{b}\vec{a}\vec{c},\ (4\vec{a})(3\vec{b})\vec{c}.$
- 2. Да се намери лицето на триъгълник ABC, където A(1,-2), B(0,1), C(-3,1).
- 3. Да се докаже, че точките A(1,-2,0), B(1,1,-1), C(2,7,-3) образуват триъгълник. Да се намери дължината на височината към страната AB.
- 4. Даден е тетраедър с върхове A(1,-5,4), B(0,-3,1), C(-2,-4,3), D(4,4,-2). Да се намери дължината на височината през върха A.

Общо уравнение на права в равнината

Ако в равнината са дадени права и точка, то през точката минава единствена права перпендикулярна на дадената права.

Нека Oxy е декартова координатна система в равнината. Ако $\vec{n}(A,B)$ е ненулев вектор от дадена права n, а $M_0(x_0,y_0)$ е дадена точка от равнината, то търсим уравнението на правата p, която минава през точка $M_0(x_0,y_0)$ и е перпендикулярна на \vec{n} .

Нека M(x,y) е произволна точка от правата p. Тогава $\overrightarrow{M_0M} \perp \vec{n}$ и $\overrightarrow{M_0M} \vec{n}=0$, откъдето следва $A(x-x_0)+B(y-y_0)=0$. Полагаме $C=-Ax_0-By_0$.

И получаваме уравнението на правата:

$$p: Ax + By + C = 0, |A| + |B| \neq 0.$$
 (3)

Наричаме го общо уравнение на права в равнината. Вектор $\vec{n}(A,B)$ се нарича нормален вектор на правата p. Вектор $\vec{p}(-B,A)$ е колинеарен с правата p.

Уравнение на права през две точки

През две различни точки минава единствена права.

Нека $M_1(x_1,y_1)$, $M_2(x_2,y_2)$ са две различни дадени точки от правата p, а M(x,y) е произволна точка от p. Тогава векторите $\overrightarrow{M_1M}(x-x_1,y-y_1)$ и $\overrightarrow{M_1M_2}(x_2-x_1,y_2-y_1)$ са колинеарни.

Уравнението на правата е

$$p: \quad \frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1}. \tag{4}$$

То се нарича канонично уравнение на права, определена с две точки.

Уравнението (4) може да се запише и във вида

$$p: \begin{vmatrix} x - x_1 & y - y_1 \\ x_2 - x_1 & y_2 - y_1 \end{vmatrix} = 0.$$
 (5)

В (4) и (5) векторът колинеарен с правата е $\vec{p}(x_2 - x_1, y_2 - y_1)$.

Частни положения на права в равнината

Нека е дадена права $p:\ Ax+By+C=0,\ |A|+|B|
eq 0.$

а) $p \parallel Ox$, точно когато A=0, т.е. p има уравнение

$$p: By + C = 0, \quad B \neq 0;$$

б) $p \parallel Oy$, точно когато B=0, т.е. p има уравнение

$$p: Ax + C = 0, A \neq 0;$$

в) правата p минава през центъра O на координатната система Oxy, точно когато C=0. Тогава

$$p: Ax + By = 0, |A| + |B| \neq 0;$$

- г) абсцисната ос има уравнение Ox: y = 0;
- д) ординатната ос има уравнение Oy: x = 0.

Декартово уравнение на права

Нека относно декартова координатна система Oxy е дадена права, която не е успоредна на ординатата Oy, т.е.

$$p: Ax + By + C = 0, B \neq 0.$$

Ако p сключва ъгъл α с положителната посока на оста Ox и p пресича оста Oy в точка $M_0(0,b)$, то p има уравнение

$$p: \quad y = kx + b, \quad k = \operatorname{tg} \alpha. \tag{6}$$

Уравнението (6) се нарича **декартово уравнение на права**, а $k=\lg\alpha$ се нарича **ъглов коефициент на правата**.

Връзката между коефициентите на двете уравнения на правата p е:

$$k = -\frac{A}{B}, \quad b = -\frac{C}{B}.$$

Взаимни положения на две прави в равнината

Нека са дадени правите

$$p_1: A_1x + B_1y + C_1 = 0, |A_1| + |B_1| \neq 0,$$

$$p_2: A_2x + B_2y + C_2 = 0, |A_2| + |B_2| \neq 0.$$

Тогава

- 1. Правите **съвпадат** $(p_1 \equiv p_2)$, точно когато $\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2};$
- 2. Правите са успоредни $(p_1 \parallel p_2)$, точно когато $\frac{A_1}{A_2} = \frac{B_1}{B_2} \neq \frac{C_1}{C_2};$
- 3. Правите се пресичат $(p_1 \cap p_2)$, точно когато $\frac{A_1}{A_2} \neq \frac{B_1}{B_2}$.

Нека правите p_1 и p_2 са зададени с декартови си уравнения

$$p_1: y = k_1 x + b_1, k_1 = \operatorname{tg} \alpha_1,$$

$$p_2: y = k_2 x + b_2, k_2 = \operatorname{tg} \alpha_2.$$

Острият ъгъл heta между p_1 и p_2 , намираме по формулата

$$\operatorname{tg} \theta = \left| \frac{k_2 - k_1}{1 + k_1 k_2} \right|.$$

3а така зададените p_1 и p_2 са в сила условията:

- а) $p_1 \parallel p_2$, точно когато $k_1 = k_2$;
- б) $p_1 \perp p_2$, точно когато $1 + k_1 k_2 = 0$.

Сноп прави. Разстояние от точка до права

Множество от всички прави в равнината, минаващи през една дадена точка в същата равнина се нарича **сноп прави**. Точката се нарича **център на снопа**.

Нека са дадени пресичащите се прави p_1 и p_2 :

$$p_1: A_1x + B_1y + C_1 = 0, |A_1| + |B_1| \neq 0,$$

$$p_2: A_2x + B_2y + C_2 = 0, |A_2| + |B_2| \neq 0.$$

Те определят сноп с уравнение:

$$\lambda(A_1x + B_1y + C_1) + \mu(A_2x + B_2y + C_2) = 0, \quad |\lambda| + |\mu| \neq 0.$$

Разстояние от точка $M_1(x_1,y_1)$ до правата p, където

$$p: Ax + By + C = 0, |A| + |B| \neq 0,$$

наричаме числото

$$d(M_1, p) = \frac{|Ax_1 + By_1 + C|}{\sqrt{A^2 + B^2}}.$$

Задачи (8. Тема)

- 1. Да се намери уравнението на права p:
- а) през точка P(-2,2) с ъглов коефициент k=-2;
- б) през точка Q(0,1), сключваща ъгъл 120° с Ox;
- в) през точка L(-3,1), успоредна на Oy;
- г) през точка L(-3,1), перпендикулярна на Ox.
- 2. Да се намери тангенсът на острия ъгъл heta между правите:
- a) p: y = -x + 1, q: y = 2x + 3;
- 6) p: x-2y+2=0, q: 3x+2y-1=0.
- 3. Относно декартова координатна система са дадени точките A(1,1),

B(3,1) и M(2,-1). Да се намерят:

- а) правата p минаваща през точките A и B;
- б) ортогонално симетричната точка C на M спрямо правата p;
- в) ъглите и лицето на триъгълник ABC.

- 4. Дадени са точките A(4,6), B(-4,0), C(-1,-4). Да се намерят уравненията на страните на триъгълника ABC и уравнението на височината през т. B.
- 5. Дадена е точката A(1,5) и правата g:x-3y-6=0. Да се намери разстоянието от точка A до правата g и ортогонално симетричната точка A_1 на точката A относно правата g.
- 6. Страните на триъгълника ABC са с уравнения $AB:\ 4x-y-7=0;\ BC:\ x+3y-31=0;\ CA:\ x+5y-7=0.$ Намерете координатите на върховете A,B и C и уравнението на медианата през върха B.

Уравнение на окръжност

Нека е дадена декартова координатна система Oxy. Уравнение от вида

$$a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + 2a_{13}x + 2a_{23}y + a_{33} = 0, (7)$$

където поне един от коефициентите $a_{11},\ a_{12},\ a_{22}$ е различен от нула, се нарича **уравнение от втора степен с две неизвестни** $x,\ y.$

Ако (7) има безброй много реални решения, но не се разпада на линейни уравнения, то е уравнение на крива линия от втора степен в равнината Oxy.

Множество от точки в равнината, които са равноотдалечени от една дадена точка в същата равнина се нарича **окръжност**.

Дадената точка се нарича **център** на окръжността, а разстоянието от центъра до произволна точка от окръжността се нарича **радиус**.

Нека Oxy е декартова координатна система и k е окръжност, лежаща в равнината Oxy, с център $C(x_0,y_0)$ и радиус r.

Ако M(x,y) е произволна точка от k, то **уравнението на окръжността** е

$$k: (x-x_0)^2 + (y-y_0)^2 = r^2,$$
 (8)

което е уравнение от втора степен.

Уравнението от втора степен

$$x^2 + y^2 + mx + ny + p = 0, (9)$$

където m, n, p са реални коефициенти и удовлетворяват

$$m^2 + n^2 - 4p > 0,$$

е уравнение на окръжност.

Центърът на окръжност с уравнение (9) е $C(-\frac{m}{2},-\frac{n}{2})$, а радиусът й е

$$r = \frac{1}{2}\sqrt{m^2 + n^2 - 4p}.$$

Окръжност с център т. O и радиус r има уравнение

$$x^2 + y^2 = r^2$$

и се нарича централна окръжност.

Взаимно положение на точка и окръжност, на права и окръжност

Нека са дадени точка $M_1(x_1,y_1)$ и окръжност k с уравнение

$$(x - x_0)^2 + (y - y_0)^2 = r^2.$$

Точката M_1 лежи вътре в $k\Leftrightarrow (x_1-x_0)^2+(y_1-y_0)^2< r^2$, Точката M_1 лежи върху $k\Leftrightarrow (x_1-x_0)^2+(y_1-y_0)^2=r^2$, Точката M_1 лежи вън от $k\Leftrightarrow (x_1-x_0)^2+(y_1-y_0)^2>r^2$. Правата p и окръжността k с център C и радиус r:

- а) се пресичат $\Leftrightarrow d(C,p) < r$;
- б) се допират $\Leftrightarrow d(C, p) = r$;
- в) нямат обща точка $\Leftrightarrow d(C,p) > r$.

По-горе с d(C,p) е означено разстоянието от точка C до права p.

Задачи. (8. Тема)

- 7. Да се определи кои от следните линии са окръжности и на тези окръжности да се намерят центровете и радиусите:
- a) $x^2 + y^2 4x 4y 1 = 0$; 6) $2x^2 + 2y^2 4x 6 = 0$;
- B) $x^2 2y^2 + x + 2y + 5 = 0$; r) $x^2 + y^2 + 5x + y + 7 = 0$.
- 8. Да се намери окръжност през точките A(1,4) и B(-1,2), ако центърът й лежи върху правата $l:\ y=0.$
- 9. Да се намерят онези допирателни към окръжността $x^2+y^2=9$, които са успоредни на правата $p:\ x-y+2=0$.
- 10. Относно ортонормирана координатна система е даден триъгълник ABC с върхове $A(4,0),\ B(0,3)$ и $C(0,0).\ Да$ се намерят:
- а) уравненията на страната AB и на височината h_c към нея;
- б) уравнението на описаната около триъгълника окръжност.

Уравнение на равнина в пространството

Ако в пространството са дадени точка и права (ненулев вектор), то през точката минава единствена равнина, перпендикулярна на дадената права (дадения вектор).

Нека Oxyz е декартова координатна система в пространството. Ако $\vec{N}(A,B,C)$ е даден ненулев вектор, а $M_0(x_0,y_0,z_0)$ е дадена точка от пространството, то уравнението на равнината α , която минава през M_0 и е перпендикулярна на \vec{N} се получава по следния начин.

За произволна точка M(x,y,z) от α , от условието $\overrightarrow{M_0M} \perp \overrightarrow{N}$, следва $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$. Полагаме $D=-Ax_0-By_0-Cz_0$. Тогава уравнението на равнината е:

$$\alpha: Ax + By + Cz + D = 0, |A| + |B| + |C| \neq 0.$$

Нарича се общо уравнение на равнина в пространството. Вектор \vec{N} се нарича нормален вектор на равнината α .

Уравнение на права през две точки

Нека $M_1(x_1,y_1,z_1)$, $M_2(x_2,y_2,z_2)$ са две различни дадени точки от правата p, а M(x,y,z) е произволна точка от p. Тогава векторите $\overrightarrow{M_1M}(x-x_1,y-y_1,z-z_1)$ и $\overrightarrow{M_1M_2}(x_2-x_1,y_2-y_1,z-z_1)$ са колинеарни. Уравнението на правата е

$$p: \quad \frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}. \tag{10}$$

То се нарича канонично уравнение на права в пространството, определена с две точки.

В (10) векторът колинеарен с правата p е $\vec{p}(x_2-x_1,y_2-y_1,z_2-z_1)$. Ако означим координатите му с $p_1=x_2-x_1,\;p_2=y_2-y_1,\;p_3=z_2-z_1$, то уравнението (10) може да се запише и във вида

$$p: x = x_1 - \lambda p_1, \quad y = y_1 - \lambda p_2, \quad z = z_1 - \lambda p_3, \quad \lambda \in \mathbb{R}.$$
 (11)

Наричат се **скаларни параметрични уравнения на права в прост**ранството.

Уравнение на равнина през три точки

Ако $M_1(x_1,y_1,z_1)$, $M_2(x_2,y_2,z_2)$, $M_3(x_3,y_3,z_3)$ са три дадени неколинеарни точки от равнината α , а M(x,y,z) е произволна нейна точка, то уравнението на α е следствие от условието за компланарност на векторите $\overrightarrow{M_1M}$, $\overrightarrow{M_1M_2}$ и $\overrightarrow{M_1M_3}$. То е

$$\alpha: \begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ x_3 - x_1 & y_3 - y_1 & z_3 - z_1 \end{vmatrix} = 0.$$

Нарича се уравнение на равнина през три точки.

Всяка права p в пространството може да се представи като пресечница на две равнини $p=\alpha_1\cap\alpha_2$:

$$\alpha_1: A_1x + B_1y + C_1z + D_1 = 0, \quad \alpha_2: A_2x + B_2y + C_2z + D_2 = 0,$$

където $\vec{N}_1(A_1,B_1,C_1)$ и $\vec{N}_2(A_2,B_2,C_2)$ са ненулеви и неколинеарни вектори.

Взаимни положения на две равнини

Нека са дадени равнините

$$\alpha_1: A_1x + B_1y + C_1z + D_1 = 0, |A_1| + |B_1| + |C_1| \neq 0,$$

$$\alpha_2$$
: $A_2x + B_2y + C_2z + D_2 = 0$, $|A_2| + |B_2| + |C_2| \neq 0$.

Тогава

1. Равнините съвпадат $(\alpha_1 \equiv \alpha_2)$, точно когато

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} = \frac{D_1}{D_2};$$

2. Равнините са успоредни $(\alpha_1 \parallel \alpha_2)$, точно когато

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2};$$

3. Равнините се пресичат $(\alpha_1 \cap \alpha_2)$, точно когато тройките (A_1,B_1,C_1) и (A_2,B_2,C_2) не са пропорционални.

Частни положения на равнина в пространството

Нека е дадена равнината $\alpha: \ Ax + By + Cz + D = 0, \ |A| + |B| + |C| \neq 0.$

- а) $\alpha \parallel Ox$, точно когато A=0.
- б) $\alpha \parallel Oy$, точно когато B=0.
- в) $\alpha \parallel Oz$, точно когато C=0.
- г) $\alpha \parallel Oxy$, точно когато A=B=0.
- д) $\alpha \parallel Oxz$, точно когато A=C=0.
- e) $\alpha \parallel Oyz$, точно когато B=C=0.
- ж) α минава през началото O, точно когато D=0.
- з) Координатните равнини имат следните уравнения:

$$Oxy: z = 0; Oyz: x = 0; Oxz: y = 0.$$

и) Координатните оси имат следните уравнения:

$$Ox: y = 0, z = 0; Oy: x = 0, z = 0; Oz: x = 0, y = 0.$$

Сноп равнини. Разстояние от точка до равнина

Множество от всички равнини в пространството, минаващи през една дадена права се нарича **сноп равнини**. Правата се нарича **носител на снопа**.

Нека са дадени пресичащите се равнини:

$$\alpha_1: A_1x + B_1y + C_1z + D_1 = 0, |A_1| + |B_1| + |C_1| \neq 0,$$

$$\alpha_2: A_2x + B_2y + C_2z + D_2 = 0, |A_2| + |B_2| + |C_2| \neq 0.$$

Те определят сноп с уравнение:

$$\lambda(A_1x + B_1y + C_1z + D_1) + \mu(A_2x + B_2y + C_2z + D_2) = 0, \quad |\lambda| + |\mu| \neq 0.$$

Разстояние от точка $M_1(x_1,y_1,z_1)$ до равнината lpha, където

$$\alpha: Ax + By + Cz + D = 0, \quad |A| + |B| + |C| \neq 0,$$

наричаме числото

$$d(M_1, \alpha) = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Задачи. (9. Тема)

- 1. Относно декартова координатна система е дадена точка A(2,1,-1). Намерете уравненията на равнините през т. A и
- а) перпендикулярни съответно на Ox, Oy, Oz;
- б) успоредни съответно на Oxy, Oyz, Oxz;
- в) минаващи съответно през Ox, Oy, Oz.
- 2. Относно декартова координатна система са дадени точки A(1,2,-2), B(2,-3,1) и C(0,1,3). Намерете:
- а) уравнението на равнината през т. A и перпендикулярна на правата BC.
- б) уравнението на равнината през точките A, B и C.
- 3. Относно декартова координатна система са дадени точки A(1,2,0),
- B(-3,1,2) и равнината $\alpha:\ 2x+y-3z+4=0.$ Намерете:
- a) уравнението на равнината през т. A успоредна на lpha;
- б) равнината през точките A и B, перпендикулярна на lpha.

- 4. Нека Oxyz е декартова координатна система. Да се намери равнина през правата $p:\ 3x-2y+1=0,\ x-y+z-3=0,$ перпендикулярна на равнината $\alpha:\ x+2y-z=0.$
- 5. Относно декартова координатна система са дадени точки A(1,0,-2), B(2,-3,2). Да се намери третият връх C и равнината на равнобедрения триъгълник ABC, ако C лежи върху правата $p:x+2y-2z=0,\quad 2x+y+z+2=0$.
- 6. Да се намери прободът на правата $p: x+y-5z+1=0, \; x-y-z+2=0$ с равнината $\alpha: \; x+y-z+9=0.$

Уравнение на сфера

Нека е дадена декартова координатна система Oxyz. Уравнение от вида

$$a_{11}x^{2} + a_{22}y^{2} + a_{33}z^{2} + 2a_{12}xy + 2a_{13}xz + 2a_{23}yz + 2a_{14}x + 2a_{24}y + 2a_{34}z + a_{44} = 0,$$
(12)

където поне един от коефициентите a_{11} , a_{22} , a_{33} , a_{12} , a_{13} , a_{23} е различен от нула, се нарича **уравнение от втора степен с три неизвестни** $x,\,y$ и z.

Ако (12) има безброй много реални решения, но не се разпада на линейни уравнения, то е **уравнение на повърхнина от втора степен** в пространството Oxyz.

Множество от точки в пространството, които са равноотдалечени от една дадена точка се нарича **сфера**.

Дадената точка се нарича **център** на сферата, а разстоянието от центъра до произволна точка от сферата се нарича **радиус**.

Нека Oxyz е декартова координатна система и S е сфера, с център $C(x_0,y_0,z_0)$ и радиус r. Ако M(x,y,z) е произволна точка от S, то уравнението на сферата е

$$S: (x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = r^2,$$
(13)

което е уравнение от втора степен.

Уравнението от втора степен

$$x^{2} + y^{2} + z^{2} + lx + my + nz + p = 0,$$
(14)

където $l,\ m,\ n,\ p$ са реални коефициенти и удовлетворяват

$$l^2 + m^2 + n^2 - 4p > 0,$$

е уравнение на сфера.

Центърът на сфера с уравнение (14) е $C(-\frac{l}{2},-\frac{m}{2},-\frac{n}{2})$, а радиусът й е

$$r = \frac{1}{2}\sqrt{l^2 + m^2 + n^2 - 4p}.$$

Сфера с център т. O и радиус r има уравнение

$$x^2 + y^2 + z^2 = r^2$$

и се нарича централна сфера.

Взаимно положение на точка и сфера, на равнина и сфера

Нека са дадени точка $M_1(x_1,y_1,z_1)$ и сфера S с уравнение

$$(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2 = r^2.$$

Точката M_1 лежи вътре в $S\Leftrightarrow (x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2< r^2$. Точката M_1 лежи върху $S\Leftrightarrow (x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2=r^2$. Точката M_1 лежи вън от $S\Leftrightarrow (x_1-x_0)^2+(y_1-y_0)^2+(z_1-z_0)^2>r^2$. Равнината α и сферата S с център C и радиус r:

- а) се пресичат $\Leftrightarrow d(C, \alpha) < r$;
- б) се допират $\Leftrightarrow d(C, \alpha) = r$;
- в) нямат обща точка $\Leftrightarrow d(C, \alpha) > r$.

Пресечницата на сфера с равнина е окръжност, определена от уравненията на сферата и равнината.

Елипса

Множество от точки в равнината, за които сумата от разстоянията до две дадени точки F_1 и F_2 в същата равнина е константа, по-голяма от разстоянието между F_1 и F_2 , се нарича елипса.

Елипсата е конично сечение.

Точките F_1 и F_2 се наричат фокуси на елипсата.

Нека Oxy е декартова координатна система в равнината, M(x,y) е произволна точка от елипса с фокуси $F_1(-c,0)$ и $F_2(c,0)$, и нека

$$|\overrightarrow{F_1M}| + |\overrightarrow{F_2M}| = 2a, \quad (a > c > 0).$$

Ако означим $b=\sqrt{a^2-c^2}$, тогава елипсата има уравнение

$$\varepsilon: \ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. \tag{15}$$

Върховете на елипсата са $A_1(-a,0)$, $A_2(a,0)$, $B_1(0,-b)$ и $B_2(0,b)$.

Правите A_1A_2 и B_1B_2 са **оси на елипсата.**

Изпълнено е a>b. Числото $c=\sqrt{a^2-b^2}$ се нарича линеен ексцентритет.

При a=b уравнението (15) е на окръжност.

Ако (15) не е уравнение на окръжност, то правите

$$d_1: x = -\frac{a^2}{c}, \quad d_2: x = \frac{a^2}{c}$$

се наричат директриси на елипсата.

Ако елипсата има фокуси $F_1(0,-c)$ и $F_2(0,c)$ относно Oxy, то уравнението й отново е (15). Тогава b>a и нейният линеен ексцентритет е $c=\sqrt{b^2-a^2}$. Директрисите имат уравнения

$$d_1: y = -\frac{b^2}{c}, \quad d_2: y = \frac{b^2}{c}.$$

Графика на елипса

Графика на елипса като конично сечение

Хипербола

Множество от точки в равнината, за които абсолютната стойност на разликата от разстоянията до две дадени точки F_1 и F_2 в същата равнина е константа, по-малка от разстоянието между F_1 и F_2 , се нарича хипербола.

Хиперболата е конично сечение.

Точките F_1 и F_2 се наричат фокуси на хиперболата.

Нека Oxy е декартова координатна система, а M(x,y) е произволна точка от хипербола с фокуси $F_1(-c,0)$ и $F_2(c,0)$. Нека

$$|\overrightarrow{F_1M}| - |\overrightarrow{F_2M}|| = 2a, \qquad (c > a > 0).$$

Ако означим $b=\sqrt{c^2-a^2}$, тогава хиперболата има уравнение

$$\chi: \ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. \tag{16}$$

Точките $A_1(-a,0)$, $A_2(a,0)$ се наричат **реални върхове** на хиперболата, а $B_1(0,-b)$ и $B_2(0,b)$ се наричат **имагинерни върхове**.

Права A_1A_2 е **реална ос** на хиперболата, а правата B_1B_2 е **имагинерна ос**.

Числото $c = \sqrt{a^2 + b^2}$ се нарича **линеен ексцентритет**.

При a=b хиперболата е равнораменна.

Правите

$$d_1: x = -\frac{a^2}{c}, \quad d_2: x = \frac{a^2}{c}$$

са директриси на хиперболата.

Правите

$$a_1: y = -\frac{b}{a}x, \quad a_2: y = \frac{b}{a}x$$

са асимптоти на хиперболата.

Хипербола с фокуси $F_1(0,-c)$ и $F_2(0,c)$ има уравнение

$$\chi: \ \frac{y^2}{b^2} - \frac{x^2}{a^2} = 1.$$

Точките $B_1(0,-b)$, $B_2(0,b)$ са реалните върхове на хиперболата. Права B_1B_2 е реалната ос.

Графика на хипербола

Графика на хипербола като конично сечение

Парабола

Множество от точки в равнината, които са на равни разстояния до дадена точка F и дадена права d $(F \notin d)$ в същата равнина, се нарича парабола.

Параболата е конично сечение.

Точката F се нарича фокус на параболата, а правата d е директриса. Разстоянието p от F до d се нарича параметър на параболата. Нека Oxy е декартова координатна система в равнината. Избираме я така, че фокусът и директрисата на параболата π да са съответно с координати $F(\frac{p}{2},0)$ и d: $x=-\frac{p}{2}$.

Ако M(x,y) е произволна точка от параболата, то уравнението й е:

$$\pi: \quad y^2 = 2px, \quad p > 0.$$
 (17)

Нарича се каноничното уравнение на парабола. Връх на параболата е точката O. Ос на параболата е права Ox.

Графика на парабола

Графика на парабола като конично сечение

Уравненията $\pi_1: y^2 = -2px, p > 0, \quad \pi_2: x^2 = 2py, p > 0,$

 $\pi_3: \ x^2 = -2py, \ p > 0$ също са уравнения на параболи.

Ще отбележим, че елипсата, хиперболата и параболата са криви от втора степен.

Крива от втора степен и привеждане на уравнението й в каноничен вид. Класификация на кривите от втора степен

Множеството от точките в реална равнина, чиито координати относно координатна система удовлетворяваща уравнение от вида

$$a_{11}x^2 + a_{22}y^2 + 2a_{12}xy + 2a_{13}x + 2a_{23}y + a_{33} = 0,$$
 (18)

където поне един от коефициентите $a_{11},\ a_{12},\ a_{22}$ е различен от нула, се нарича крива от втора степен, а уравнението (18) е уравнение на кривта.

Предполагаме, че K=Oxy е ортонормирана дясна координатна система. От K може да се получи коя да е еднакво ориентирана с нея ортонормирана координатна система чрез ротация и транслация на K.

Ротация на ортонормираната координатна система $K = Oxy = Oe_1e_2$ до ортонормираната координатна система $K' = Ox'y' = Oe_1'e_2'$ се задава с

$$\begin{aligned}
 x &= t_{11}x' + t_{12}y', \\
 y &= t_{21}x' + t_{22}y',
 \end{aligned}
 \tag{19}$$

където $T=(t_{ij})$ е матрицата на прехода от (e_1,e_2) към (e_1^\prime,e_2^\prime) . Целта ни е уравнението (18) да получи най-прост вид. Тогава квадратичната форма

$$f(x,y) = a_{11}x^2 + a_{22}y^2 + 2a_{12}xy$$

трябва да получи каноничен вид. Тя ще получи каноничен вид, ако $e_1'(t_{11},t_{21}),\,e_2'(t_{12},t_{22})$ са собствени вектори, съответни на характеристичните корени на матрицата на f(x,y). От характеристичното уравнение на матрицата на f(x,y)

$$\begin{vmatrix} a_{11} - \lambda & a_{12} \\ a_{21} & a_{22} - \lambda \end{vmatrix} = 0$$

намираме характеристичните корени λ_1,λ_2 .

След това намираме и съответни на тях собствени вектори $e_1'(t_{11},t_{21}),\,e_2'(t_{12},t_{22})$, така че да образуват дясна ортонормирана база.

Заб. Собствен вектор $p(p_1,p_2)$ съответстващ на λ_i се намира от системата

$$(a_{11} - \lambda_i)p_1 + a_{12}p_2 = 0,$$

$$a_{21}p_1 + (a_{22} - \lambda_i)p_2 = 0.$$

С това ротацията (19) е определена, а след заместване в (18) получаваме следното уравнение на кривата относно K':

$$\lambda_1 x'^2 + \lambda_2 y'^2 + 2a'_{13} x' + 2a'_{23} y' + a_{33} = 0.$$
 (20)

Ъгълът на ротация $\alpha=\measuredangle(Oe_1,O'e_1')$ е определен с функциите $\cos\alpha=t_{11},\,\sin\alpha=t_{21}.$

В равнината **транслацията на координатната система** K' = Ox'y' до K'' = O'XY се задава с равенствата

$$x' = X + \alpha,$$

$$y' = Y + \beta.$$
(21)

Заместваме (21) в (20) и уравнението на кривата относно $K^{\prime\prime}$ добива вида:

$$\lambda_1 X^2 + \lambda_2 Y^2 + 2(\lambda_1 \alpha + a'_{13})X + 2(\lambda_2 \beta + a'_{23})Y + \lambda_1 \alpha^2 + \lambda_2 \beta^2 + 2a'_{13}\alpha + 2a'_{23}\beta + a_{33} = 0.$$
(22)

Трябва да определим коефициентите $lpha,\ eta,\$ така че (22) да получи възможно най-прост вид. От определението на кривата (18) следва, че поне един от корените λ_1,λ_2 е различен от нула.

Имаме следните случаи:

 $1.~\lambda_1 \neq 0, \lambda_2 \neq 0.$ Коефициентите α и β определяме така, че да се анулират коефициентите пред X и Y, т.е. избираме

$$\alpha = -\frac{a'_{13}}{\lambda_1}, \quad \beta = -\frac{a'_{23}}{\lambda_2}.$$
 (23)

Тогава уравнението (22) добива вида

$$\lambda_1 X^2 + \lambda_2 Y^2 + a_{33}' = 0. {(24)}$$

2. Нека единият характеристичен корен е нула, например $\lambda_1=0, \lambda_2 \neq 0.$ Сега уравнението (22) добива вида

$$\lambda_2 Y^2 + 2a'_{13}X + 2(\lambda_2 \beta + a'_{23})Y + \lambda_2 \beta^2 + 2a'_{13}\alpha + 2a'_{23}\beta + a_{33} = 0.$$
 (25)

и коефициента eta ще определим пак от (23). Ще разгледаме два подслучая.

а) Нека $a'_{13} \neq 0$. Коефициента α определяме така, че да се анулира свободният член в (25). Така уравнението (25) се преобразува в

$$\lambda_2 Y^2 + 2a'_{13} X = 0. {(26)}$$

б) Нека $a_{13}^{\prime}=0$. Тогава уравнението (25) се преобразува в

$$\lambda_2 Y^2 + a_{33}' = 0. (27)$$

To не зависи от α и може да изберем $\alpha=0$.

С подходяща ротация и транслация на ортонормираната координатна система може да се намери нова координатна система, относно която уравнението на всяка крива от втора степен да е един от следните три вида (24), (26), (27). Уравненията (24), (26), (27) се наричат канонични. Ще ги разгледаме едно по едно, за да получим видовете криви от втора степен в равнината.

I) Ако в (24) имаме $a_{33}' \neq 0$, то уравнението може да се запише във вида

$$\frac{X^2}{-\frac{a'_{33}}{\lambda_1}} + \frac{Y^2}{-\frac{a'_{33}}{\lambda_2}} = 1. {(28)}$$

Числата $-\frac{a'_{33}}{\lambda_1}$, $-\frac{a'_{33}}{\lambda_2}$ и могат да бъдат едновременно положителни, отрицателни или с различни знаци.

Съответно на тези случаи уравнението (28) задава:

1. Елипса

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = 1, \quad a > 0, b > 0;$$

2. Имагинерна елипса

$$\frac{X^2}{a^2} + \frac{Y^2}{b^2} = -1, \quad a > 0, b > 0;$$

3. Хипербола

$$\frac{X^2}{a^2} - \frac{Y^2}{b^2} = 1 \quad (\frac{Y^2}{b^2} - \frac{X^2}{a^2} = 1), \quad a > 0, b > 0.$$

Ако в (24) имаме $a_{33}^{\prime}=0$, то уравнението (28) може да се запише във вида

$$Y^2 = -\frac{\lambda_1}{\lambda_2} X^2.$$

В зависимост от знака на $-rac{\lambda_1}{\lambda_2}$ имаме следните криви:

4. Две пресичащи се прави (при $-\frac{\lambda_1}{\lambda_2} > 0$)

$$Y^2 = a^2 X^2, \quad a \neq 0;$$

5. Две комплексно спрегнати пресичащи се прави (при $-rac{\lambda_1}{\lambda_2} < 0$)

$$Y^2 = -a^2 X^2, \quad a \neq 0.$$

- II) Уравнението (26) задава
- 6. Парабола

$$Y^2 = 2pX, \quad p \neq 0.$$

III) Сега записваме уравнението (27) във вида

$$Y^2 = -\frac{a'_{33}}{\lambda_2} \quad p \neq 0.$$

В зависимост от коефициента $-rac{a_{33}'}{\lambda_2}$ имаме следните случаи:

7. Две успоредни прави (при $-rac{a_{33}'}{\lambda_2}>0$)

$$Y^2 = a^2, \quad a \neq 0;$$

8. Две комплексно спрегнати успоредни прави (при $-rac{a'_{33}}{\lambda_2} < 0$)

$$Y^2 = -a^2, \quad a \neq 0;$$

9. Двойна права (при $-rac{a'_{33}}{\lambda_2}=0$)

$$Y^2 = 0.$$

Така получихме всичките девет типа криви от втора степен в реалната евклидова равнина — 5 типа изродени криви (разпадащи се на две прави) и 4 типа неизродени криви (елипси, хиперболи, параболи).

Задачи. (10. Тема)

- 1. Дадена е елипсата $\varepsilon: \frac{x^2}{9} + \frac{y^2}{4} = 1$. Да се намерят върховете, фокусите и директрисите й.
- 2. Дадена е хиперболата χ : $\frac{x^2}{9}-\frac{y^2}{16}=1$. Да се намерят върховете, асимптотите, фокусите и директрисите й.
- 3. Дадена е хиперболата $\chi: \frac{y^2}{25} \frac{x^2}{1} = 1$. Да се намерят върховете, асимптотите, фокусите и директрисите й.
- 4. Дадена е параболата $\pi: \ x^2 = 8y$. Да се намерят фокусът и директрисата й.
- 5. Да се построи окръжност с радиус r=3 и център пресечната точка на правата $g:\ y+2=0$ с елипсата $\varepsilon:\ \frac{x^2}{9}+\frac{y^2}{4}=1.$
- 6. Да се намери уравнението на парабола с връх в точката O и директриса $d:\ x+4=0.$
- 7. Да се намери каноничното уравнение и да се определи видът на кривата от втора степен:
- a) $k: 5x^2+8xy+5y^2-18x-18y+9=0$; 6) $k: 6xy+8y^2-12x-26y+11=0$; B) $k: 9x^2-24xy+16y^2-10x-70y+125=0$.

Литература

- [1] Д. Мекеров, Н. Начев, Ст. Миховски, Е. Павлов, "Линейна алгебра и аналитична геометрия", Пловдивско университетско издателство, Пловдив, 2008.
- [2] Д. Мекеров, М. Манев. "Учебно помагало за дисциплината Линейна алгебра и аналитична геометрия", IV изд., Макрос, Пловдив, 2010.
- [3] Д. Мекеров, П. Рангелова, Б. Царева, Е. Павлов. "Ръководство за решаване на задачи по аналитична геометрия", IV изд., УИ "Паисий Хилендарски", Пловдив, 2008.