storm-week2

September 24, 2020

```
[58]: import pandas as pd
      from pandas import read_csv
      import matplotlib.pyplot as plt
[59]: # Import the 2018 Storm Events data
      url = ('StormEvents/StormEvents_2018.csv')
[60]: data = pd.read_csv(url)
      data.head()
[60]:
         EpisodeID
                    Event ID
                                 State Year Month
                                                           Event_Type \
      0
            125578
                      753161
                              NEBRASKA
                                        2018
                                              June
                                                                 Hail
      1
                                        2018
                                              June
                                                                  Hail
            125578
                      753160
                              NEBRASKA
      2
                               VERMONT 2018
            125988
                      755273
                                              June
                                                    Thunderstorm Wind
      3
                                        2018
            125988
                      755929
                               VERMONT
                                              June
                                                    Thunderstorm Wind
            125578
                      753163
                              NEBRASKA
                                        2018
                                              June
                                                               Tornado
             Begin_Date_Time Timezone
                                             End_Date_Time
                                                            Injuries_Direct
         2018-06-06 18:10:00
                                MST-7
                                       2018-06-06 18:10:00
      1 2018-06-06 17:41:00
                                MST-7
                                       2018-06-06 17:41:00
      2 2018-06-30 23:30:00
                                EST-5
                                       2018-06-30 23:32:00
                                                                           0
      3 2018-06-30 23:45:00
                                EST-5
                                       2018-06-30 23:45:00
                                                                           0
      4 2018-06-06 18:24:00
                                MST-7
                                       2018-06-06 18:24:00
                                                                           0
         Damage_Property Property_Cost Damage_Crops Crop_Cost Begin_Lat
                                                             0.0
      0
                   0.00K
                                                0.00K
                                                                    41.9300
                                    0.0
                   0.00K
                                                             0.0
      1
                                    0.0
                                                0.00K
                                                                    42.0300
                                                            0.0
      2
                  15.00K
                                15000.0
                                                0.00K
                                                                    44.9565
      3
                  10.00K
                                10000.0
                                                0.00K
                                                             0.0
                                                                    44.7316
                                                0.00K
                                                                    40.9000
                   0.00K
                                    0.0
                                                             0.0
        Begin_Lon End_Lat
                             End_Lon \
      0 -102.2100
                  41.9300 -102.2100
      1 -102.1000
                  42.0300 -102.1000
      2 -72.8699
                   44.9565
                           -72.8699
      3 -72.7474 44.7316 -72.7474
      4 -101.7900 40.9000 -101.7900
```

```
O Severe storms developed in the Nebraska Panhan...
      1 Severe storms developed in the Nebraska Panhan...
      2 Vermont and northern NY influenced by heat rid...
      3 Vermont and northern NY influenced by heat rid...
      4 Severe storms developed in the Nebraska Panhan...
                                            Event Narrative
      O Hail predominately penny size with some quarte...
      1 Hail mainly quarter size with some half dollar...
              Numerous trees downed by thunderstorm winds.
      3 At least half dozen trees downed or snapped al...
      4 Tornado briefly touched down in a field 5 mile...
      [5 rows x 23 columns]
[61]: data.shape
[61]: (61742, 23)
[62]: data['State'].value_counts()
[62]: TEXAS
                        3370
      VIRGINIA
                        2999
      IOWA
                        2715
      KANSAS
                        2458
      SOUTH DAKOTA
                        2089
      VIRGIN ISLANDS
                           4
      AMERICAN SAMOA
                           3
      HAWAII WATERS
                           2
      GUAM
                            1
      ST LAWRENCE R
      Name: State, Length: 67, dtype: int64
[63]: # which months have the most tornadoes.
      data_month = data.loc[(data['Event_Type'] == 'Tornado')]
      print(data_month.shape)
      data_month['Month'].value_counts()
     (1248, 23)
[63]: May
                   184
      June
                   159
      April
                   150
      October
                   134
```

Episode_Narrative \

September 121 November 108 July 97 August 90 December 68 March 66 February 55 January 16

Name: Month, dtype: int64

[64]: data['Event_Type'].value_counts()

[64].	Thunderstorm Wind	14585
[04].	Hail	7861
	Flood	4715
	Winter Weather	4478
	Flash Flood	4358
	Winter Storm	3375
	High Wind	2944
	Drought	2410
	Heavy Snow	2220
	Marine Thunderstorm Wind	2090
	Heavy Rain	1899
	Heat	1282
	Tornado	1248
	Strong Wind	1021
	Dense Fog	752
	Blizzard	748
	Frost/Freeze	701
	Extreme Cold/Wind Chill	590
	High Surf	531
	Cold/Wind Chill	523
	Excessive Heat	437
	Wildfire	416
	Lightning	393
	Funnel Cloud	349
	Coastal Flood	320
	Tropical Storm	317
	Waterspout	192
	Ice Storm	171
	Debris Flow	136
	Dust Storm	113
	Rip Current	84
	Volcanic Ashfall	65
	Hurricane	60
	Lake-Effect Snow	56
	Dense Smoke	45

```
42
      Marine Tropical Storm
      Tropical Depression
                                        37
      Astronomical Low Tide
                                        33
      Storm Surge/Tide
                                        26
      Marine High Wind
                                        26
      Marine Hail
                                        24
      Avalanche
                                        16
     Lakeshore Flood
                                        10
                                         9
     Marine Strong Wind
      Sleet
                                         8
     Dust Devil
                                         8
      Marine Hurricane/Typhoon
                                         6
      Marine Tropical Depression
                                         5
                                         3
      Freezing Fog
      Sneakerwave
                                         2
                                         2
      Seiche
      Name: Event_Type, dtype: int64
[65]: # which is the third most frequent event type?
      X = data['Event_Type'].value_counts()
      X = X.index.tolist()
      print(X[2])
     Flood
[66]: url = ('hw1.csv')
[67]: data2 = pd.read_csv(url)
      data2.head()
[67]:
             Unnamed: O region area palmitic palmitoleic "stearic"
                                                                          oleic \
                                                        "75"
      0 1.North-Apulia
                               1
                                     1
                                            1075
                                                                  "226"
                                                                         "7823"
                                                        "73"
      1 2.North-Apulia
                                            1088
                                                                  "224"
                                                                         "7709"
                               1
                                     1
      2 3.North-Apulia
                                     1
                                             911
                                                        "54"
                                                                  "246"
                                                                         "8113"
                               1
      3 4.North-Apulia
                                                        "57"
                                                                  "240"
                                                                         "7952"
                               1
                                     1
                                             966
      4 5.North-Apulia
                                     1
                                            1051
                                                        "67"
                                                                  "259"
                                                                         "7771"
                               1
        linoleic linolenic arachidic eicosenoic
           "672"
                      "36"
                                 "60"
                                            "29"
      0
           "781"
                      "31"
                                 "61"
                                            "29"
      1
                                            "29"
                      "31"
                                 "63"
      2
           "549"
                      "50"
                                 "78"
                                            "35"
      3
           "619"
           "672"
                      "50"
                                 "80"
                                            "46"
[68]: #Identify the data types on each column
      data2.dtypes
```

```
int64
      region
      area
                      int64
      palmitic
                      int64
      palmitoleic
                     object
      "stearic"
                     object
      oleic
                     object
      linoleic
                     object
      linolenic
                     object
      arachidic
                     object
                     object
      eicosenoic
      dtype: object
[69]: data3 = data2.rename(columns={'"stearic"': 'stearic'})
      #Delete quotes
      data3['palmitoleic'] = data3['palmitoleic'].str.replace(r"[\"\',]", '')
      data3['stearic'] = data3['stearic'].str.replace(r"[\"\',]", '')
      data3['oleic'] = data3['oleic'].str.replace(r"[\"\',]", '')
      data3['linoleic'] = data3['linoleic'].str.replace(r"[\"\',]", '')
      data3['linolenic'] = data3['linolenic'].str.replace(r"[\"\',]", '')
      data3['arachidic'] = data3['arachidic'].str.replace(r"[\"\',]", '')
      data3['eicosenoic'] = data3['eicosenoic'].str.replace(r"[\"\',]", '')
      #Change to Int
      data3["palmitoleic"] = data3["palmitoleic"].astype(str).astype(int)
      data3["stearic"] = data3["stearic"].astype(str).astype(int)
      data3["oleic"] = data3["oleic"].astype(str).astype(int)
      data3["linoleic"] = data3["linoleic"].astype(str).astype(int)
      data3["linolenic"] = data3["linolenic"].astype(str).astype(int)
      data3["arachidic"] = data3["arachidic"].astype(str).astype(int)
      data3["eicosenoic"] = data3["eicosenoic"].astype(str).astype(int)
[70]: data3.head()
[70]:
             Unnamed: 0 region
                                area palmitic palmitoleic
                                                               stearic
                                                                        oleic \
      0 1.North-Apulia
                                    1
                                            1075
                                                           75
                                                                   226
                                                                         7823
                              1
      1 2.North-Apulia
                              1
                                    1
                                            1088
                                                           73
                                                                   224
                                                                         7709
      2 3.North-Apulia
                                    1
                                             911
                                                           54
                                                                   246
                                                                         8113
                              1
      3 4.North-Apulia
                                    1
                                             966
                                                           57
                                                                   240
                                                                         7952
                              1
      4 5.North-Apulia
                              1
                                    1
                                            1051
                                                           67
                                                                   259
                                                                         7771
         linoleic linolenic
                              arachidic
                                         eicosenoic
      0
              672
                          36
                                     60
                                                  29
              781
                          31
                                     61
                                                  29
      1
                                                  29
      2
              549
                          31
                                     63
      3
              619
                          50
                                     78
                                                  35
```

[68]: Unnamed: 0

object

4 672 50 80 46

[71]: data3.dtypes

[71]: Unnamed: 0 object region int64 int64 area palmitic int64 palmitoleic int64 int64 stearic oleic int64 linoleic int64 linolenic int64 arachidic int64 eicosenoic int64 dtype: object

[72]: # Plot the values of columns 5 through 11, each column individually, beginning \rightarrow from the second row

[73]: data3['palmitoleic'].plot()

[73]: <AxesSubplot:>

[74]: data3['stearic'].plot()

[74]: <AxesSubplot:>

[75]: data3['oleic'].plot()

[75]: <AxesSubplot:>


```
[76]: data3['linoleic'].plot()
```

[76]: <AxesSubplot:>

[77]: data3['linolenic'].plot()

[77]: <AxesSubplot:>

[78]: data3['arachidic'].plot()

[78]: <AxesSubplot:>


```
[79]: data3['eicosenoic'].plot()
```

[79]: <AxesSubplot:>


```
[81]: # Plot the values of columns 11 and 5 together
plt.scatter(data3['eicosenoic'],data3['palmitoleic'])
```

[81]: <matplotlib.collections.PathCollection at 0x11bdaae10>

