Programação Linear Relatório EP3 – Método Simplex

Daniel Augusto Cortez – 2960291 Lucas Rodrigues Colucci – 6920251

18 de junho de 2012

1 Introdução

Apresentamos neste relatório a implementação do método simplex (full tableau), utilizando a linguagem de programação Octave. O algoritmo é desenvolvido em detalhes em [1]. Considera-se o problema de programação linear em seu formato padrão

minimizar
$$\mathbf{c}^T \mathbf{x}$$

sujeito a $\mathbf{A}\mathbf{x} = \mathbf{b}$
 $\mathbf{x} \ge \mathbf{0}$, (1.1)

onde $\mathbf{x}, \mathbf{c} \in \mathbb{R}^n$, $\mathbf{b} \in \mathbb{R}^m$ e $\mathbf{A} \in \mathbb{R}^{m \times n}$. O algoritmo pode ser descrito pelos seguintes passos:

Fase I.

- 1. Multiplique algumas das restrições por -1, modificando o problema de tal forma que $\mathbf{b} \geq 0$.
- 2. Introduza variáveis artificiais y_1, \ldots, y_m e aplique o método simplex ao problema auxiliar com custo $\sum_{i=1}^m y_i$.
- 3. Se o custo ótimo do problema auxiliar é positivo, o problema original é inviável e o algoritmo termina.
- 4. Se o custo ótimo do problema auxiliar é nulo, uma solução viável do problema original é obtida. Se nenhuma variável artificial está na base

- final, as variáveis artificiais e respectivas colunas são eliminadas, e uma base viável para o problema original está disponível.
- 5. Se a ℓ -ésima variável básica é artificial, examine a ℓ -ésima entrada das colunas $\mathbf{B}^{-1}\mathbf{A}_j,\ j=1,\ldots,n$. Se todas as entradas são nulas, então a ℓ -ésima linha representa uma restrição redundante e é eliminada. De outra forma, se a ℓ -ésima entrada da j-ésima coluna é diferente de zero, aplique uma mudança de base: a ℓ -ésima variável básica sai e x_j entra na base. Repita esse procedimento até que todas as variáveis artificiais sejam levadas para fora da base.

Fase II.

- 1. Faça a base e o tableau final obtidos na fase I serem a base e o tableau inicial para a fase II.
- 2. Calcule o custo reduzido de todas as variáveis para essa base inicial, usando o vetor de custos do problema original.
- 3. Aplique o método simplex ao problema original.

Uma iteração da implementação através do tableau.

- 1. Uma iteração típica começa com um tableau associado com uma matriz básica ${\bf B}$ e a solução básica correspondente ${\bf x}$.
- 2. Examine todos os custos reduzidos na linha zero do tableau. Se todos forem não-negativos, a solução viável básica atual é ótima, e o algoritmo termina. Caso contrário, escolha algum j tal que $\bar{c}_j < 0$.
- 3. Considere o vetor $\mathbf{u} = \mathbf{B}^{-1}\mathbf{A}_j$, que é a j-ésima coluna (a coluna pivô) do tableau. Se nenhuma componente de \mathbf{u} é positiva, o custo ótimo é $-\infty$ e o algoritmo termina.
- 4. Para cada i tal que $u_i > 0$, calcule a razão $x_{B(i)}/u_i$. Seja ℓ o índice da linha que corresponde à menor razão. A coluna $\mathbf{A}_{B(\ell)}$ saí da base e a coluna \mathbf{A}_j entra.
- 5. Adicione a cada linha do tableau um múltiplo constante da ℓ -ésima linha tal que o u_{ℓ} (elemento pivô) se torne um e todas as outras entradas da coluna pivô se tornem zero.

A implementação do método simplex em Octave seguiu extamente os passos acima, conforme descrevemos a seguir.

2 Funções Implementadas

No arquivo simplex.m, escrevemos a função

```
[ind x] = simplex(A, b, c, m, n, print)
```

que pode ser chamada externamente para resolver qualquer PL na forma (1.1). Os parâmetros de entrada da função são:

- A: matriz de dimensão $m \times n$ de coeficientes das restrições;
- b: vetor de dimensão m do lado direito das restrições;
- \mathbf{c} : vetor de dimensão n de custos;
- m: número de restrições;
- n: número de variáveis;
- print: booleano indicando se o tableau deve ser impresso a cada iteração.

Os parâmetros de saída são:

- ind: valor 0 se o problema tiver solução ótima finita, -1 se tiver solução ilimitada e + 1 se o problema for inviável;
- x: solução ótima do problema, quando existir.

A função simplex começa resolvendo a fase I do método simplex. Em seguida, testa se o custo encontrado na fase I é positivo. Nesse caso, o problema é inviável. Caso contrário, prossegue com a fase II.

A fase I do método é resolvida pela função

Os parâmetros de entrada da função são:

- A: matriz de dimensão $m \times n$ de coeficientes das restrições;
- b: vetor de dimensão m do lado direito das restrições;
- m: número de restrições;

- n: número de variáveis;
- print: booleano indicando se o tableau deve ser impresso a cada iteração.

Os parâmetros de saída são:

- T: matriz de dimensão $(m+1) \times (n+1)$ que representa o tableau final da fase 1;
- B: vetor de índices das variáveis básicas;
- m: número de linhas do tableau final, excluindo a primeira linha.

A função phase_1 começa colocando o problema (1.1) no formato $\mathbf{b} \geq 0$, depois adiciona as m variáveis artificiais à matriz \mathbf{A} (colocando uma matriz identidade $m \times m$ depois da última coluna de \mathbf{A}). Em seguida, monta o tableau inicial em T (implementado na função phase_1_tableau). O vetor de índices das variáveis básicas B é inicialmente definido com os índices das variáveis artificiais. O tableau T é então iterado, pivotando de acordo com o método simplex, através da função tableau_solve. O tableau resultante das iterações é testado para verificar a viabilidade do problema original (custo nulo). Se o problema for viável, prossegue removendo as colunas das variáveis artificias do tableau, depois removendo possíveis restrições redundantes (função remove_redundants), e finalmente remove as variáveis artificials da solução básica encontrada, se estiverem presentes (função exit_artificials). Essas duas últimas funções implementam o passo 5 da fase I do método simplex.

A fase II do método é resolvida pela função

Os parâmetros de entrada da função são:

- T: matriz de dimensão $(m+1) \times (n+1)$ que representa o tableau final da fase 1;
- B: vetor de índices das variáveis básicas;
- \mathbf{c} : vetor de dimensão n de custos;
- m: número de restrições;

- n: número de variáveis;
- print: booleano indicando se o tableau deve ser impresso a cada iteração.

Os parâmetros de saída são:

- ind: valor 0 se o problema tiver solução ótima finita, -1 se tiver solução ilimitada e + 1 se o problema for inviável;
- x: solução ótima do problema, quanado existir.

A fase II começa calculando o custo e os custos reduzidos do problema original em função do tableau final retornado pela fase I. Esses custos são utilizados para atualizar a primeira linha do tableau, que é iterado em seguida pela função tableau_solve.

Tanto a fase I quanto a fase II utilizam essencialmente a função

```
[T B iter ind x] = tableau_solve(T, B, m, n, print, iter)
```

cujos parâmetros de entrada são

- T: matriz de dimensão $(m+1) \times (n+1)$ que representa o tableau da iteração iter-1;
- B: vetor de índices das variáveis básicas da iteração iter-1;
- m: número de variáveis básicas;
- n: número de variáveis;
- print: booleano indicando se o tableau deve ser impresso a cada iteração.
- iter: número da iteração atual.

Os parâmetros de saída são:

- T: matriz de dimensão $(m+1) \times (n+1)$ que representa o tableau da iteração iter;
- B: vetor de índices das variáveis básicas da iteração iter;

- iter: número da iteração atual.
- ind: valor 0 se o problema tiver solução ótima finita, -1 se tiver solução ilimitada e + 1 se o problema for inviável;
- x: solução ótima do problema, quando existir.

A função acima implementa os passos descritos no algoritmo "Uma iteração da implementação através do tableau" (página 2). A mesma utiliza a regra Bland [1] na determinação da variável básica a sair da base e da não-básica a entrar na mesma. Com isso, evita-se a possibilidade do algoritmo ciclar. A operação básica em tableau_solve é a pivotação do tableau, que é feita pela função pivot.

A impressão do tableau durante a execução do programa é feita pela função

```
print_tableau(T, B, m, n, i_pivot, j_pivot, iter, msg)
```

Os parâmetros de entrada dessa função são

- T: matriz de dimensão $(m+1) \times (n+1)$ que representa o tableau da iteração iter;
- B: vetor de índices das variáveis básicas da iteração iter;
- m: número de variáveis básicas;
- n: número de variáveis:
- i_pivot: linha de pivotamento do tableau (zero caso não aplicável);
- j_pivot: coluna de pivotamento do tableau (zero caso não aplicável)
- iter: número da iteração atual.
- msg: observação a ser impressa ao lado do número da iteração.

A função basicamente itera sobre todas as entradas da matriz T, imprimindo o seu conteúdo com a formatação adequada. Caso o elemento iterado corresponda à posição (i_pivot, j_pivot), um símbolo * é impresso para marcar o pivô.

As demais funções implementadas são utilizadas para modularizar o código e são de propósito específico:

```
[A b] = make_b_positive(A, b, m, n)
[T B m] = remove_redundants(T, B, m, n, print, iter)
[T B] = exit_artificials(T, B, m, n, print, iter)
bool = is_zero_vector(v)
x = get_solution(T, B, m, n)
T = pivot(T, i_pivot, j_pivot, m, n)
```

Não entraremos em detalhes sobre a implementação das mesmas.

3 Alguns Exemplos

Os exemplos abaixo mostram a saída gerada ao se rodar o script ep3.m com o Octave. (\$ ocatve -qf ep3.m). O script apresenta a formulação de 7 problemas no formato (1.1) que são resolvidos com a função simplex implementada em simplex.m e descrita anteriormente. Os exemplos mostram problemas com uma solução ótima finita (1, 2 e 3), problemas inviáveis (4 e 5) e problemas ilimitados com custo $-\infty$ (6 e 7).

```
Exemplo 1 - Solução Ótima - Linhas LI
                  0
    20
  -12
Simplex: Fase 1
Iteração 1
                           | x4 |
| -1.000 |
                                                                 | x5 |
| -1.000 |
     -60.000 I
                   -5.000 I
                                                                                 -1.000 |
                                2.000 |
                                             2.000 |
                                                          1.000 |
                                                                      0.000 |
                                                                                   0.000 |
                                                                                                1.000 |
     20.000 |
20.000 |
                                1.000 |
2.000 |
                                             2.000 |
1.000 |
                                                         0.000 |
0.000 |
                                                                      1.000 |
0.000 |
                                                                                   0.000 |
1.000 |
                                                                                               0.000 |
0.000 |
                                                                                                            1.000 |
0.000 |
                                                                                                                        0.000 |
1.000 |
                    2.000*
                    2.000 |
Iteração 2
                              x2 |
-2.500 |
                                                     | x4 |
| -1.000 |
                    0.000 |
                                0.500 |
1.000*|
                                                                     0.500
-1.000
      10.000
                    1.000
                                             1.000
                                                          0.000
                                                                                   0.000
                                                                                                0.000
                                                                                                            0.500
```

```
Iteração 3
               -10.000 I
                                                             1.000 I
                                                                                              1.000 | -1.500
1.000 | -0.500
     10.000
                 0.000
                            0.000 I
                                       2.500*1
                                                  1.000 I
                                                                       -1.500
                                                                                   1.000 I
     10.000 |
0.000 |
                 1.000 |
0.000 |
                            0.000 |
1.000 |
                                     1.500 |
-1.000 |
                                                  0.000 I
0.000 I
                                                           1.000 |
                                                                       -0.500 |
1.000 |
                                                                                   0.000 I
0.000 I
                                                                                            1.000 | -0.500 | -1.000 |
x2
Iteração 4
                        | x8 |
| 1.000 |
                                                                                                       x9 |
1.000 |
                 0.000 |
                                                                                   1.000
      0.000 I
      4.000 |
                 0.000 |
                            0.000 |
                                       1.000 |
                                                  0.400 |
                                                             0.400 |
                                                                       -0.600 |
                                                                                   0.400 |
                                                                                              0.400 |
                                                                                                        -0.600 |
хЗ
x1
x2
                 1.000 |
0.000 |
                            0.000 |
1.000 |
                                       0.000 I
0.000 I
                                                 -0.600 |
0.400 |
                                                            0.400 |
-0.600 |
                                                                        0.400 |
0.400 |
                                                                                  -0.600 |
0.400 |
                                                                                             0.400 |
-0.600 |
                                                                                                         0.400 |
0.400 |
      4.000
      4.000 |
Iteração 5 (tableau final da fase 1)
               x1 | x2 | x3
0.000 | 0.000 | 0
                                                x4 |
0.000 |
                                                           x5 | x6 |
0.000 | 0.000 |
                                       0.000
      4.000 |
                 0.000 |
                            0.000 |
                                       1.000
                                                  0.400
                                                             0.400 |
x3
                            0.000 |
1.000 |
                                                 -0.600 |
0.400 |
x1
      4 000
                 1.000
                                       0.000 I
                                                             0.400 I
                                                                        0.400
x2
      4.000 |
                 0.000 |
                                       0.000 |
                                                            -0.600 |
                                                                        0.400
Simplex: Fase 2
Iteração 1
                 1 | x2 | x3 | x4 | 
0.000 | 0.000 | 0.000 | 3.600 |
                                                           x5 |
1.600 |
    136.000
                            0.000
      4.000 I
                 1.000 I
                            0.000 I
                                       0.000 I
                                                 -0.600 I
                                                             0.400 I
                                                                        0.400
                            1.000 |
                                       0.000 |
                                                 0.400 |
Solução ótima encontrada com custo -136.00000:
   4
4
0
0
   0
Exemplo 2 - Solução Ótima - Linhas LD
       2
4
0
            3
6
9
3
                0
0
0
   0
   2
c =
Simplex: Fase 1
    | x1 | x2 | x3 | x4 | x5 | x6 | x7 | x8 | -11.000 | -0.000 | -8.000 | -21.000 | -1.000 | 0.000 | 0.000 | 0.000 | 0.000 |
```

Iteração 2

x6

3.000 I

2.000

5.000 | 1.000 | 1.000 I

-1.000 |

0.000 | 0.000 |

0.000 I

0.000 | 1.000 |

0.000

1.000 I

0.000 | 0.000 |

8

0.000

0.000 I

0.000 I

1.000

0.000 I

0.000

0.000

0.000 |

0.000 |

1.000 | 0.000 |

2.000 | 2.000*|

4.000 | 0.000 | 3.000 I

6.000 |

9.000 | 3.000 |

	-3.000	l -4.000	0.000	3.000	l -1.000	0.000	4.000	0.000	x8 0.000
X5	1.000	2.000*	0.000	3.000	0.000	1.000	1 -1.000	0.000	0.000 0.000
x2 x7									0.000
x8	1.000	1 0.000	1 0.000	1 3.000	1 1.000	1 0.000	1 0.000	1 0.000	1.000
110	1.000	, 0,000	, 0.000	, 0.000	, 1.000	, 0.000	, 0.000	, 0.000	1 21000 1
Iteração 3 x1 x2 x3 x4 x5 x6 x7 x8									
									0.000
									0.000
x2	1.250	0.000	1.000	2.250	0.000	0.250	0.250	0.000	0.000
	0.000	0.000	0.000	0.000	0.000	l -1.000	-1.000	1.000	0.000
8x	1.000	0.000	0.000	3.000*	1.000	0.000	0.000	0.000	1.000
Iteração 4									
1001		x1	x2	x3	x4	x5	x6	x7	x8
									1.000
x1	1.000	1.000	0.000	0.000	0.500	0.500	1 -0.500	0.000	0.500 -0.750
									0.000
x3	0.333	0.000	0.000	1.000	0.333	0.000	0.000	0.000	0.333
Iter		removendo							
		x1 0.000							
x1	1.000	1.000	0.000	0.000	0.500	I			
x2	0.500	1.000 0.000	1.000	0.000	-0.750	1			
x3	0.333	0.000	0.000	1.000	0.333	1			
T4	F (4-1-1 <i>4</i> 2-		- 4)					
Itel	açao 5 (tableau fii x1	lai ua ias v2	e 1) v3	l v4	ı			
		0.000							
						-			
		1.000							
		0.000							
хэ	0.333	0.000	0.000	1.000	0.333	ı			
Simp	Simplex: Fase 2								
Iter	ação 1	x1	l0	l2	l4	1			
		0.000							
x1	1.000	1.000 0.000	0.000	0.000	0.500				
x2	0.500	0.000	1.000	0.000	-0.750	1			
хЗ	0.333	0.000	0.000	1.000	0.333*	I			
Iter	ação 2								
	-3	x1	x2	x3	x4	I			
	-1.750	0.000	0.000	0.250	0.000	1			
		1.000 0.000							
x4	1.000	0.000	I 0.000	I 3.000	1 1.000	i i			
	1.000	, 0,000	, 0.000	, 0.000	, 1.000	'			
Solução ótima encontrada com custo 1.75000:									
x =									
0	.50000								
	.25000								
	.00000								
1	.00000								
Exem	plo 3 -	Solução Ót:	ima - Remo	vendo Vari	áveis Arti	ficiais na	Fase 1		
m =	_								
n =	2								
A =									
1	-2								
	8								
Ъ =									

```
-5
-1
Simplex: Fase 1
Iteração 1
    x3 2.000 | 1.000*| -2.000 | 1.000 | 0.000 | x4 4.000 | 2.000 | -8.000 | 0.000 | 1.000 |
Iteração 3 (removendo variável artificial)
     x1 2.000 | 1.000 | -2.000 | x4 0.000 | 0.000 | -4.000*|
Simplex: Fase 2
Iteração 1
 | x1 | x2 |
| 10.000 | 0.000 | 0.000 |
x1 2.000 | 1.000 | 0.000 | x2 -0.000 | -0.000 | 1.000 |
Solução ótima encontrada com custo -10.00000:
Exemplo 4 - Problema Inviável - Simples
Simplex: Fase 1
    | x1 | x2 | x3 | x4 | -4.000 | -3.000 | -6.000 | 0.000 | 0.000 |
x3 1.000 | 1.000*| 2.000 | 1.000 | 0.000 | x4 3.000 | 2.000 | 4.000 | 0.000 | 1.000 |
```

Iteração 2 | x1 | x2 | x3 | x4 |

```
1.000 I
              1.000 I
                       2.000 I
                                1.000 I
                                         0.000 1
     1.000
              0.000
                       0.000 |
Problema inviável.
Exemplo 5 - Problema Inviável
m =
n =
A =
  -2
       -3
     -13
6
  -12
  -1
-2
1
Simplex: Fase 1
Iteração 1
            x7 | x8 |
0.000 | 0.000 |
    9.000 | 2.000*| 3.000 | -5.000 | -3.000 |
12.000 | -1.000 | 13.000 | -4.000 | -1.000 |
                                                  6.000 |
                                                           1.000 |
                                                                    0.000 |
                                                                             0.000 |
   12.000 |
                                                  7.000 |
                                                           0.000 |
                                                                    1.000 |
                                                                             0.000
    1.000 |
             0.000 |
                      6.000 |
                               2.000 |
                                         3.000 |
                                                  1.000 |
                                                           0.000 |
                                                                    0.000
                                                                             1.000
Iteração 2
   0.000 | 0.000 |
              1.000 | 1.500 | -2.500 | -1.500 | 0.000 | 14.500 | -6.500 | -2.500 |
                                                3.000 |
10.000 |
                                                           0.500 |
0.500 |
    4.500 I
                                                                    0.000 |
    16.500
                                                                    1.000 |
                                                                             0.000
    1.000 |
              0.000 | 6.000*| 2.000 | 3.000 |
                                                 1.000 |
                                                           0.000 |
                                                                    0.000 |
                                                                             1.000
Iteração 3
   0.500 I
                                                                   0.000 |
                                                  2.750 |
7.583 |
x1
     4 250 I
              1.000 I
                       0.000 | -3.000 | -2.250 |
                                                           0.500 I
                                                                    0.000 |
                                                                            -0.250
              0.000 |
                       0.000 | -11.333 |
                                        -9.750 |
    14.083 |
                                                           0.500
                                                                    1.000 |
                     1.000 | 0.333 | 0.500 |
x2
     0.167 |
              0.000 |
                                                  0.167*|
                                                           0.000 |
                                                                    0.000
                                                                            0.167
Iteração 4
    0.000 | 11.000 |
                                                 0.000 I
                                                           0.500 I
     1.500 I
            1.000 | -16.500 | -8.500 | -10.500 |
                                                  0.000 1
                                                           0.500 I
                                                                    0.000 | -3.000 |
     6.500 | 0.000 | -45.500 | -26.500 | -32.500 |
1.000 | 0.000 | 6.000 | 2.000 | 3.000 |
                                                  0.000
                                                                    1.000 | -10.000
                                                           0.000
x5
                                                                    0.000 | 1.000 |
                                                  1.000 |
Problema inviável.
Exemplo 6 - Problema Ilimitado - Simples
m = 1
n = 3
A =
  0 1 1
  -1
  0
```

0.000 |

3.000 |

-1.000 | 0.000 | 0.000 |

```
x4 1.000 | 0.000 | 1.000*| 1.000 | 1.000 |
Iteração 2
  x2 1.000 | 0.000 | 1.000 | 1.000 | 1.000 |
Iteração 3 (tableau final da fase 1)
Simplex: Fase 2
Iteração 1
   | x1 | x2 | x3 | -0.000 | -1.000 | 0.000 | 0.000 |
x2 1.000 | 0.000 | 1.000 | 1.000 |
Problema ilimitado.
Exemplo 7 - Problema Ilimitado
m = 3
n = 5
A =
 -5
-2
-1
         1 0 0
0 -1 0
0 0 -1
      1
1
1
Simplex: Fase 1
Iteração 1
             -4.000 I
                                                                                 0.000
    1.000 | -5.000 | 1.000 |
                                 1.000*I
                                           0.000 |
                                                    0.000 |
                                                              1.000 I
                                                                       0.000 |
                                                              0.000 |
             2.000 | -1.000 | -0.000 | 1.000 |
1.000 | -1.000 | -0.000 | -0.000 |
                                                   -0.000 |
1.000 |
                                                                       1.000 |
0.000 |
    2.000 |
                                                                                 1.000
x8
Iteração 2
    | x1 | x2 | x3 | x4 | x5 | x6 | x7 | -3.000 | -3.000 | 2.000 | 0.000 | -1.000 | -1.000 | 1.000 | 0.000 |
                                                                               0.000
             -5.000 | 1.000 |
2.000*| -1.000 |
1.000 | -1.000 |
                                           0.000 |
1.000 |
0.000 |
    1.000 I
                                  1.000 I
                                                    0.000 I
                                                              1.000
                                                                       0.000
                                                                                 0.000
x3
                                 0.000 |
0.000 |
                                                    0.000 |
1.000 |
                                                              0.000 I
0.000 I
                                                                       1.000 |
0.000 |
                                                                                 0.000 |
1.000 |
     2.000 |
x8
Iteração 3
           -1.500 İ
    3.500 |
              0.000 | -1.500 | 1.000 | 2.500 |
1.000 | -0.500 | 0.000 | 0.500 |
0.000 | -0.500 | 0.000 | -0.500 |
                                                    0.000 |
                                                              1.000 |
                                                                      2.500 |
                                                                                 0.000 |
x3
    0.500 |
1.500 |
                                                    0.000 |
                                                              0.000 | 0.500 |
0.000 | -0.500 |
                                                                                 0.000 |
1.000 |
```

Simplex: Fase 1

12

Iteração 4

	x5							
	500 0.000 1.000 2.500 0.000 500 0.000 0.000 0.500 0.000							
Iteração 5 (tableau final da fase 1) x1 x2 x3 x4 0.000 0.000 0.000 0.000 0.000	000 0.000							
x3 3.500 0.000 -1.500 1.000 2.5 x1 0.500 1.000 -0.500 0.000 0.5 x5 1.500 0.000 -0.500 0.000 -0.5	500 0.000							
Simplex: Fase 2								
Iteração 1 x1 x2 x3 x4 -2.500 0.000 0.500 0.000 -2.5	x5							
x3 3.500 0.000 -1.500 1.000 2.5 x1 0.500 1.000 -0.500 0.000 0.5 x5 1.500 0.000 -0.500 0.000 -0.5	500 0.000							
Iteração 2								
x1 x2 x3 x4 0.000 5.000 -2.000 0.000 0.0	000 0.000							
x3 1.000 -5.000 1.000* 1.000 0.0 x4 1.000 2.000 -1.000 0.000 1.0 x5 2.000 1.000 -1.000 0.000 0.0	000 0.000 000 0.000							
Iteração 3 x1 x2 x3 x4 x5								
x1 x2 x3 x4 2.000 -5.000 0.000 2.000 0.0								
x2 1.000 -5.000 1.000 1.000 0.0 x4 2.000 -3.000 0.000 1.000 1.0 x5 3.000 -4.000 0.000 1.000 0.0								

Referências

Problema ilimitado.

[1] D. Bertsimas & J. N. Tsitsiklis, $Introduction\ to\ Linear\ Optimization,\ 1997,$ Athena Scientific.