SVM (Support Vector Machines)

Máquinas de Vetores-Suporte

Evelyn Perez Cervantes

© 1995 Kluwer Academic Publishers, Boston, Manufactured in The Nether

Support-Vector Networks

Antiga União Soviética

CORINNA CORTES VLADIMIR VAPNIK

AT&T Bell Labs., Holmdel, NJ 07733, USA

corinna@neural att com vlad@neural.att.com

Editor: Lorenza Saitta

t. The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very highon an anion feature space. In this feature space a linear decision surface is constructed. Special properties of the decision surface ensures high generalization ability of the learning machine. The idea behind the support-vector network was previously implemented for the restricted case where the training data can be separated without errors. We here extend this result to non-separable training data.

High generalization ability of support-vector networks utilizing polynomial input transformations is demonstrated. We also compare the performance of the support-vector network to various classical learning algorithms that all took part in a benchmark study of Optical Character Recognition.

Keywords: pattern recognition, efficient learning algorithms, neural networks, radial basis function classifiers, polynomial classifiers.

Support-vector networks

C Cortes, V Vapnik - Machine learning, 1995 - Springer

The support-vector network is a new learning machine for two-group classification problems. The machine conceptually implements the following idea: input vectors are non-linearly mapped to a very high-dimension feature space. In this feature space a linear decision ...

Cited V 43188 Related articles All 30 versions

A note on a class of perceptrons

Call #: TJ212 .A85 v.25 no.1-6 (1964 JAN-JUN)

Location: Compact Shelves

OSU ILLIAD TN#: 1015912

Journal Title: Automation and Remote Control

Borrower: Huang, Liang EMAIL: HUANLIAN@OREGONSTATE.EDU Email: huanlian@oregonstate.edu

Delivery location: VALLEY

Article Author: Vladimir N. Vapnik and Alexey Ya. Chervonenkis Article Title: On a class of

perceptrons

Library Contact Information: Valley Library (541) 737-4488 valley.ill@oregonstate.edu http://osulibrary.oregonstate.edu/ill/

Vapnik-Chervonenkis (VC) dimension

Aprendizado com estatística

reconhecimento de padrões

Inteligência artificial

Como resolver um problema de classificação de duas classes de forma directa?

Tentamos encontrar um plano que separa as classes no espaço de características.

E se um plano não consegue separar? o que podemos fazer?

- Nós suavizamos o que queremos dizer com "separar", e
- Enriquecemos e ampliamos o espaço de características para que a separação seja possível.

O que é um hiperplano?

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 = 0$$

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p = 0$$

$$\beta = (\beta_1, \beta_2, \cdots, \beta_p)$$

Em particular num espaço de duas dimensões (*p*=2) o hiperplano é uma linha.

No espaço tridimensional o hiperplano é um plano bidimensional

Um hiperplano num espaço de **p** dimensões é um sub-espaço de **p-1** dimensão.

Como separar com um hiperplano?

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p = 0$$

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p < 0,$$

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p > 0.$$

Se $X = (X_1, X_2, ..., X_p)^T$ cumpre com a equação, então pertence ao hiperplano, caso contrário ele não pertence ao hiperplano.

Como separar com um hiperplano?

Como separar com um hiperplano?

Classificador de Margem Máxima

Constrained optimization problem

Datos no separables, o que fazer?

Datos no separables, o que fazer?

Datos separables ... mas com ruído

Classificador de vetor de suporte

Classificador de vetor de suporte

Parâmetro C

Parâmetro C

e quando o parâmetro C não dá conta?

e quando o parâmetro C não dá conta?

Expansão de características

Expansão de características

podemos combinar de alguma maneira as características que temos.

$$X_1^2, X_1^3, X_1X_2, X_1X_2^2, \dots$$

De maneira tal que vamos nos mover de um espaço de duas dimensões (p=2) para um outro de q en que q > p

Expansão de características

$$(X_1, X_2, X_1^2, X_2^2, X_1X_2)$$

Então trabalhando no novo espaço de 5 dimensões o novo hiperplano de separação estaria definido da seguinte maneira:

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 = 0$$

Expansão de características

$$\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1^2 + \beta_4 X_2^2 + \beta_5 X_1 X_2 + \beta_6 X_1^3 + \beta_7 X_2^3 + \beta_8 X_1 X_2^2 + \beta_9 X_1^2 X_2 = 0$$

O problema do espaço de duas dimensões é resolvido no espaço expandido, e se projetamos a resposta no espaço de duas dimensões resulta num limite de separação não linear, neste caso dois segmentos

SVM e produto interno

$$\langle x_i, x_{i'} \rangle = \sum_{j=1}^p x_{ij} x_{i'j}$$
 — inner product between vectors

Um classificador linear de vetores de suporte pode ser representado utilizando o produto interno

$$f(x) = \beta_0 + \sum_{i=1}^{n} \alpha_i \langle x, x_i \rangle$$
 — n parameters $\binom{n}{2}$

A maioria dos $\hat{\alpha}_i$ é 0 pelo qual ficamos com a seguinte fórmula em q S é o conjunto de índices em que $\hat{\alpha}_i > 0$

$$f(x) = \beta_0 + \sum_{i \in S} \hat{\alpha}_i \langle x, x_i \rangle$$

SVM e produto interno

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \hat{\alpha}_i \langle x, x_i \rangle$$

SVM e produto interno

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \hat{\alpha}_i \langle x, x_i \rangle$$

SVM e Kernels

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \hat{\alpha}_i \langle x, x_i \rangle$$

Em resumo se conseguimos calcular o produto interno entre nossas observações*, podemos treinar um classificador de vetores de suporte. Mas existem outras funções que podem fazer isso e são chamadas de funções kernel.

$$f(x) = \beta_0 + \sum_{i \in \mathcal{S}} \hat{\alpha}_i K(x, x_i).$$

$$K(x_i, x_{i'}) = \left(1 + \sum_{j=1}^{p} x_{ij} x_{i'j}\right)^d$$

$$K(x_i, x_{i'}) = \exp(-\gamma \sum_{j=1}^{p} (x_{ij} - x_{i'j})^2).$$

SVM com mais de duas clases

LAB

```
beta=drop(t(svmfit$coefs)%*%x[svmfit$index,])
beta0=svmfit$rho #negattve intercept
plot(xgrid,col=c("red","blue")[as.numeric(ygrid)],pch=20,cex=.2)
points(x,col=y+3,pch=19)
points(x[svmfit$index,],pch=5,cex=2)
abline(beta0/beta[2],-beta[1]/beta[2])
abline((beta0-1)/beta[2],-beta[1]/beta[2],lty=2)
abline((beta0+1)/beta[2],-beta[1]/beta[2],lty=2)
```


Obrigado!

Contato: Evelyn P Cervantes

epcervantes7@gmail.com

https://www.linkedin.com/in/ep cervantes/

Fonte: Diego Delso Creative Commons Atribuição-Compartilhalgual 4.0 Internacional

Principais referências

- James, Gareth, et al. *An introduction to statistical learning*. Vol. 112. New York: springer, 2013.
- Cortes, Corinna, and Vladimir Vapnik. "Support-vector networks." *Machine learning* 20.3 (1995): 273-297.
- Statistical Learning Course (Trevor Hastie and Rob Tibshirani) https://web.stanford.edu/~hastie/MOOC-Slides/svm.pdf
- http://faculty.marshall.usc.edu/gareth-james/ISL/code.html
- https://altaf-ali.github.io/ISLR/chapter9/lab.html