МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ПРИКЛАДНОЙ МАТЕМАТИКИ И ИНФОРМАТИКИ

Ничипорук Роман Олегович

Конфигурирование DHCP-сервера

Отчет по лабораторной работе № 6, Вариант № 17 "Компьютерные сети" студента 3-го курса 4-ой группы

Преподаватель: Горячкин В.В.

ОГЛАВЛЕНИЕ

1	Задание 1. Конфигурирование DHCP-сервера	3
	1.1 Первая часть задания 1	3
	1.2 Вторая часть задания 1	6
2	Задание 2. Сконфигурировать маршрутизатор Cisco в качес сервера DHCP	стве 12
3	Задание 3	15

ГЛАВА 1

Задание 1. Конфигурирование DHCP-сервера

Номер варианта	
17	189.102.0.0/16

1.1 Первая часть задания 1

- 1. Реализовать схему подключения группы компьютеров через Hub к DHCPсерверу. Для того, чтобы можно было добавить узлы, необходимо Hub-у добавить дополнительные модули (разъёмы) в свободные слоты.
- 2. Согласно вашему варианту продумайте адресацию для узлов, шлюза, DNSсервера.
- 3. В отчете раскройте понятие DHCP-сервер, его назначение.

DHCP — прикладной протокол, позволяющий сетевым устройствам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети TCP/IP.

Для автоматической конфигурации компьютер-клиент на этапе конфигурации сетевого устройства обращается к DHCP-серверу и получает от него нужные параметры. Сетевой администратор может задать диапазон адресов, распределяемых сервером, среди компьютеров.

4. В чем основное отличие между DHCP и ARP

DHCP — протокол, позволяющий сетевым устройствам автоматически получать IP-адрес и другие параметры, необходимые для работы в сети TCP/IP.

ARP — протокол, предназначенный для определения MAC-адреса по IP-адресу другого компьютера.

- 5. Сконфигурируйте сервер, как DHCP- сервер.
- 6. В отчете отобразите разработанную Вами схему.

Рисунок 1.1 Реализованая схема

7. Выберите согласно варианту пул адресов, который будет динамически распределяться.

Для данного DHCP-сервера используйте только первые 50% из пула адресов.

IP-адрес сети: 189.102.0.0/16

Минимальный адрес сети: 189.102.0.1

Максимальный адрес сети: 189.102.255.254

Адрес шлюза: 189.102.0.1

DNS-сервер: 189.102.0.2

Так как мы должны использовать только первые 50% из пула адресов, то адреса, доступные в нашей сети будут следующие: 189.102.0.1 - 189.102.127.0

- 8. Опишите процедуру настройки DHCP-сервера, используя скриншоты с комментариями.
 - (a) Нажимаем левой кнопкой мыши на Server0s
 - (b) Переходим в раздел Dektop
 - (c) Переходим в IP Configuration

(d) Переходим в раздел Services и выбираем DHCP на панели, расположенной слева и заполняем поля в соответствии с условием

Pool Name	Default Gateway	DNS Server	Start IP Address	Subnet Mask	Max User	TFTP Server
serverPool	189.102.0.1	189.102.0.2	189.102.0.0	255.255.0.0	512	0.0.0.0

9. На любых двух ПК освободите IP – адреса и через некоторое время обновите их. Обновить в обратном порядке освобождения их IP-адресов.

Освободить IP-адрес можно с помощью команды ipconfig /release.

Обновить с помощью команды ipconfig /renew.

10. Отразите в отчете, какие IP – адреса были до обновления и какие IP – адреса стали после обновления. Ваши выводы.

Название компьютера	До обновления	После обновления
PC0	189.102.0.1	189.102.0.11
PC1	189.102.0.2	189.102.0.10
PC2	189.102.0.4	189.102.0.9
PC3	189.102.0.5	189.102.0.8
PC4	189.102.0.6	189.102.0.7
PC5	189.102.0.7	189.102.0.6

11. Проанализируйте результат исследования по первой части задания 1, сделайте выводы, дайте обоснование полученного результата.

После освобождения адреса с помощью команды ipconfig /release компьютер посылает DHCP-серверу сообщение, о том, что IP-адрес освобожден.

После команды ipconfig /renew компьютер запрашивает новый IP-адрес, а DHCP-сервер выдает один из свободных адресов

1.2 Вторая часть задания 1

1. Создайте копию модели сети.

2. На скопированной модели добавьте ещё один DHCP-сервер с другой сетевой конфигурацией (выберите самостоятельно).

Настройку проводим аналогично 1ой части, меняя 189.102.0.0 на 189.101.0.0.

3. Добавьте новый узел и посмотрите, какая конфигурация будет ему назначена (Какой DHCP – сервер будет выбран добавленным узлом).

Был выбран второй DHCP-сервер.

4. Отключите первый DHCP-сервер (в смысле надо отключить питание). Добавьте новый узел и посмотрите, какая конфигурация будет ему назначена.

5. Изучите новую сетевую конфигурацию на узлах.

После отключения первого сервера новому ΠK выдается IP-адрес из пула адресов второго сервера. IP-адреса других ΠK не изменились

6. Отключите второй DHCP-сервер.

IP-адреса не изменились.

7. На любых двух выбранных ПК освободите IP — адреса и через некоторое время обновите их. Некоторое время означает, например, надо сделать несколько пингов.

Рисунок 1.2 РС0

```
PC>ipconfig /release

IP Address.....: 0.0.0.0
Subnet Mask.....: 0.0.0.0
Default Gateway....: 0.0.0.0
DNS Server....: 0.0.0.0
```

Рисунок 1.3 РС7

8. Отразите в отчете, какие IP – адреса были до обновления и какие IP – адреса стали после обновления.

PC>ipconfig /renew	
IP AddressSubnet Mask Default Gateway DNS Server.	255.255.0.0 189.101.0.1

Рисунок 1.4 РС0

Рисунок 1.5 РС7

ГЛАВА 2

Задание 2. Сконфигурировать маршрутизатор Cisco в качестве сервера DHCP

1. Реализовать схему сети аналогичную приведенной на рисунке 2.

- 2. Присвоить имена маршрутизаторам и хостам по принятым ранее правилам.
- 3. Выполните все этапы 1-8 (кроме 7) подраздела "2.2. Настройке DHCP в CLI"
- 4. Создайте пул адресов DHCP с именем pool_Номер вашего варианта задания. Из пула адресов исключите около 50% адресов. Доменное имя выбрать по правилу: FIOстудента.FPMI.by

```
Router>enable
Router#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router (config)#hostname R1
R1(config)#ip dhcp pool pool_17
R1(dhcp-config)#network 189.102.0.0 255.255.0.0
R1(dhcp-config)#dns-server 189.102.0.2
R1(dhcp-config)#default-router 189.102.0.1
R1(dhcp-config)#ip domain name NRO.FPMI.by
R1(config)#ip dhcp excluded-address 189.102.0.1 189.102.0.3
R1(config)#ip dhcp excluded-address 189.102.127.1 189.102.255.25
R1#sh run
Building configuration ...
Current configuration: 800 bytes
version 12.4
no service timestamps log datetime msec
no service timestamps debug datetime msec
no service password-encryption
hostname R1
ip dhcp excluded-address 189.102.127.1 189.102.255.254
ip dhcp excluded-address 189.102.0.1 189.102.0.3
ip dhep pool pool 17
 network 189.102.0.0 255.255.0.0
 default-router 189.102.0.1
 dns-server 189.102.0.2
```

5. На рабочих станциях проверьте (как это сделать?) настройки DHCP.

Рисунок 2.1 РС0

- 6. На любых двух ΠK освободите IP адреса и через некоторое время обновите их.
- 7. Отразите в отчете, какие IP адреса были до обновления и какие IP адреса стали после обновления.

Адреса до обновления (сначала освобождаем РС0 затем РС1)

PC0:176.141.64.4

PC3:176.141.64.5

Адреса после обновления (сначала обновляем РС1, затем РС0)

PC0: 176.141.64.5

PC3: 176.141.64.4

ГЛАВА 3

Задание 3

На личном ноутбуке войдите в сеть БГУ. Определите IP-адреса интерфейсов вашего ПК. Аналогичные процедуры выполните в любой другой сети (например, дома).

n/n	Сетевой интерфейс ноутбука	ІР-адрес в сети БГУ	ІР-адрес в другой сети
n/n	Беспроводная сеть	10.161.20.246	192.168.0.105

1. Как Вы получили ІР-адреса интерфейсов?

С помощью команды ipconfig /all

```
Адаптер беспроводной локальной сети Беспроводная сеть:
  DNS-суффикс подключения . . . . .
  Описание. . . . . . . . . . . . . . . . Realtek 8821CE Wireless LAN 802.11ac PCI-E NIC
  Физический адрес. . . .
                              . . . : EC-2E-98-52-93-79
  DHCP включен. . . . . . . . . . . Да
  Автонастройка включена. . . . . . Да
  Локальный IPv6-адрес канала . . . : fe80::7c6b:4b07:80d2:eb33%9(Основной)
  . . . : 255.255.255.0
  Маска подсети . . . . .
  Аренда получена. . . . . . . . . : 17 марта 2024 г. 23:09:06
  Срок аренды истекает. . . .
                                          : 18 марта 2024 г. 1:09:06
  Основной шлюз. . . . . . . . : 192.168.0.1
  DHCP-сервер. . . . . . . . . . : 192.168.0.1
  IAID DHCPv6 . . . . . . . .
                               . . : 149696152
  DUID клиента DHCPv6 . . . . . . : 00-01-00-01-2B-D3-33-A8-EC-2E-98-52-93-79
  DNS-серверы. . . . . . . . . . : 192.168.0.1
NetBios через TCP/IP. . . . . . . : Включен
```

Рисунок 3.1 РС7

2. Проанализируйте строки таблицы и сделайте обоснование полученных данных.

Мы получали адреса в разных сетях, в которых различным образом настроены DHCP-сервера, соответственно получили различные динамические адреса.