

Chương 2

Biểu diễn thông tin trong máy tính

- 1. Hệ số đếm và biểu diễn số đếm
- 2. Mã hóa và biểu diễn dữ liệu máy tính
- 3. Số học nhị phân

Giảng viên: ThS. Phan Như Minh

Hệ cơ số q tổng quát

Tổng quát số nguyên có n chữ số thuộc hệ cơ số q bất kỳ được biểu diễn:

$$x_{n-1}...x_1x_0 = x_{n-1}.q^{n-1} + ... + x_1.q^1 + x_0.q^0$$

(mỗi chữ số x; lấy từ tập X có q phần tử)

- Ví dụ:
 - Hệ cơ số 10: $A = 123 = 100 + 20 + 3 = 1.10^2 + 2.10^1 + 3.10^0$
 - q = 2, X = {0, 1}: hệ nhị phân (binary)
 - $q = 8, X = \{0, 1, 2, ..., 7\}$: hệ bát phân (octal)
 - $q = 10, X = \{0, 1, 2, ..., 9\}$: hệ thập phân (decimal)
 - $q = 16, X = \{0, 1, 2, ..., 9, A, B, ..., F\}$: hệ thập lục phân (hexadecimal)
- Chuyển đổi: A = 123 d = 01111011 b = 173 o = 7B h
- Hệ cơ số thường được biển diễn trong máy tính là hệ cơ số 2

- Đặc điểm
 - Con người sử dụng hệ thập phân
 - Máy tính sử dụng hệ nhị phân, bát phân, thập lục phân
- Nhu cầu
 - Chuyển đổi qua lại giữa các hệ đếm?
 - Hệ khác sang hệ thập phân (... → dec)
 - Hệ thập phân sang hệ khác (dec → ...)
 - Hệ nhị phân sang hệ khác và ngược lại (bin ←→ ...)
 - **...**

Chuyển đổi các hệ đếm

UNIVERSITY OF DAHSASTIECHOLOGY

Chuyển đổi giữa các hệ cơ số

[1] Decimal (10) \rightarrow Binary (2)

- Lấy số cơ số 10 chia cho 2
 - Số dư đưa vào kết quả
 - Số nguyên đem chia tiếp cho 2
 - Quá trình lặp lại cho đến khi số nguyên = 0
- Ví dụ: A = 123
 - □ 123 : 2 = 61 dư 1

 - 30:2 = 15 du' 0
 - 15:2 = 7 du 1
 - 7 : 2 = 3 du 1
 - 3 : 2 = 1 du 1
 - $\Box 1 : 2 = 0 \text{ du } 1$

Kết quả: 1111011, vì 123 là số dương,

thêm 1 bit hiển dấu vào đầu là 0 vào

→ Kết quả cuối cùng: **01111011**

[2] Decimal (10) \rightarrow Hexadecimal (16)

5

- Lấy số cơ số 10 chia cho 16
 - Số dư đưa vào kết quả
 - Số nguyên đem chia tiếp cho 16
 - Quá trình lặp lại cho đến khi số nguyên = 0
- Ví dụ: A = 123
 - 123 : 16 = 7 dư 12 (B)
 - 7 : 16 = 0 du 7

→ Kết quả cuối cùng: **7B**

[3] Binary (2) \rightarrow Decimal (10)

6

Khai triển biểu diễn và tính giá trị biểu thức

$$x_{n-1}...x_1x_0 = x_{n-1}.2^{n-1} + ... + x_1.2^1 + x_0.2^0$$

■ Ví dụ:

$$1011_2 = 1.2^3 + 0.2^2 + 1.2^1 + 1.2^0 = 11_{10}$$

[4] Binary (2) \rightarrow Hexadecimal (16)

7

- Nhóm từng bộ 4 bit trong biểu diễn nhị phân rồi chuyển sang ký số tương ứng trong hệ thập lục phân (0000 → 0,..., 1111 → F)
- Ví dụ

$$\blacksquare$$
 1001011₂ = 0100 1011 = 4B₁₆

HEX	BIN	HEX	BIN	HEX	BIN	HEX	BIN
0	0000	4	0100	8	1000	C,	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	Α	1010	Е	1110
3	0011	7	0111	В	1011	F	1111

[5] Hexadecimal (16) \rightarrow Binary (2)

_ C.²v

Sử dụng bảng dưới đây để chuyển đổi:

HEX	BIN	HEX	BIN	HEX	BIN	HEX	BIN
0	0000	4	0100	8	1000	C,	1100
1	0001	5	0101	9	1001	D	1101
2	0010	6	0110	Α	1010	Е	1110
3	0011	7	0111	В	1011	F	1111

□ Ví dụ:

$$\blacksquare$$
 4B₁₆ = 1001011₂

[6] Hexadecimal (16) \rightarrow Decimal (10)

Khai triển biểu diễn và tính giá trị biểu thức

$$\left| x_{n-1} ... x_1 x_0 = x_{n-1} .16^{n-1} + ... + x_1 .16^1 + x_0 .16^0 \right|$$

Ví dụ:

$$\blacksquare$$
 7B₁₆ = 7.16¹ + 12 (B).16⁰ = 123₁₀

Hệ nhị phân

$$\left| x_{n-1} ... x_1 x_0 = x_{n-1} .2^{n-1} + ... + x_1 .2^1 + x_0 .2^0 \right|$$

- Được dùng nhiều trong máy tính để biểu diện các giá trị lưu trong các thanh ghi hoặc trong các ô nhớ. Thanh ghi hoặc ô nhớ có kích thước 1 byte (8 bit) hoặc 1 word (16 bit).
- n được gọi là chiều dài bit của số đó
- Bit trái nhất x_{n-1} là bit có giá trị (nặng) nhất MSB (Most Significant Bit)
- □ Bit phải nhất x₀ là bit ít giá trị (nhẹ) nhất LSB (Less Significant Bit)

Ý tưởng nhị phân

- Số nhị phân có thể dùng để biểu diễn bất kỳ việc gì mà bạn muốn!
- Một số ví dụ:
 - □ Giá trị logic: $0 \rightarrow \text{False}$; $1 \rightarrow \text{True}$
 - Ký tự:
 - 26 ký tự (A \rightarrow Z): 5 bits (2⁵ = 32)
 - Tính cả trường hợp viết hoa/thường + ký tự lạ → 7 bits (ASCII)
 - Tất cả các ký tự ngôn ngữ trên thế giới → 8, 16, 32 bits (Unicode)
 - Màu sắc: Red (00), Green (01), Blue (11)
 - Vị trí / Địa chỉ: (0, 0, 1)...
 - Bộ nhớ: N bits → Lưu được tối đa 2^N đối tượng

Thực hành chuyển đổi các hệ đếm

Hệ 2	Hệ 8	Hệ 10	Hệ 16
10101.101			
	5321		
		2345	
			6F

6.2 Mã hóa và biểu diễn dữ liệu máy tính

Nguyên tắc chung về mã hoá dữ liệu

Mọi dữ liệu được đưa vào máy tính được mã hoá thành số nhị phân.

Các loại dữ liệu:

- Dữ liệu nhân tạo: do con người quy ước
- Dữ liệu tự nhiên: tồn tại khách quan với con người
 Mã hoá dữ liệu nhân tạo
- Dữ liệu số nguyên: mã hoá theo một số chuẩn đã qui ước
- Dữ liệu số thực: mã hoá bằng số dấu chấm động
- Dữ liệu phi số (ký tự): mã hoá theo các bộ mã ký tự hiện hành như: ASCII, Unicode,...

Mô hình mã hóa và tái tạo tín hiệu

Các dữ liệu vật lý thông dụng

- ✓ Âm thanh
- ✓ Hình ảnh

Thứ tự lưu trữ dữ liệu bên trong máy tính

- *Bộ nhớ chính tổ chức lưu trữ dữ liệu theo đơn vị byte
- ❖ Độ dài từ dữ liệu có thể chiếm từ 1 đến 4 byte. Vì vậy cần phải biết thứ tự chúng lưu trữ trong bộ nhớ chính đối các dữ liệu nhiều byte.
- Có hai cách lưu trữ được đưa ra
- ✓ Little Endian (đầu nhỏ): Byte có ý nghĩa thấp hơn được lưu trữ trong bộ nhớ ở vị trí có địa chỉ nhỏ hơn.
- ✓ Big Endian (đầu to): Byte có ý nghĩa thấp hơn được lưu trữ trong bộ nhớ ở vị trí có địa chỉ lớn hơn.

🕶 Ví dụ: lưu trữ một từ 32bit

0001 1010 0010 1011 0011 1100 0100 1101B

A 2 B 3

Biểu diễn trong ngăn nhớ theo 2 cách

300	4D
301	3C
302	2B
303	1A

Little Endian

300	1A
301	2B
302	3C
303	4D

Big Endian

Minh Hoa

- Lưu trữ của các bộ vi xử lý điển hình
- ❖ Loại máy Intel: 80x86, Petium → little endian
- ❖ Motorola 680x0 và các bộ xử lý RISC -> big endian
- Power PC & Itanium: tích hợp cả hai cách trên

Biểu diễn số nguyên

- ❖ Số nguyên không dấu (Unsigned Integer)
- Số nguyên có dấu (Signed Integer)

UNIVERSITY OF BANGACTIECHACLOGY

a. Biểu diễn số nguyên không dấu

Nguyên tắc tổng quát: Dùng n bit biểu diễn số nguyên không dấu A:

$$a_{n-1} a_{n-2} ... a_2 a_1 a_0$$

Giá trị của A được tính như sau:

$$A = \sum_{i=0}^{n-1} a_i 2^i$$

❖ Dải biểu diễn của A: từ 0 đến 2ⁿ-1

UNIVERSITY OF BANGACH TECHNOLOGY

Các ví dụ

❖ Ví dụ 1: Biểu diễn các số nguyên không dấu sau đây bằng 8-bit: A=41; B=151

$$A = 41 = 32 + 8 + 1 = 2^5 + 2^3 + 2^0$$

$$=>41=0010\ 1001$$

■ B =
$$151 = 128 + 16 + 4 + 2 + 1 = 27 + 24 + 22 + 21 + 20$$

$$\Rightarrow$$
 151 = 1001 0111

UNIVERSITY OF BANGACTIECHACLOGY

Các ví dụ (tiếp)

- ❖ Ví dụ 2. Cho các số nguyên không dấu M, N được biểu diễn bằng 8-bit như sau:
 - $M = 0001 \ 0010$
 - N = 1011 1001

Xác định giá trị của chúng?

❖Bài giải:

■
$$M = 0001 \ 0010 = 2^4 + 2^1 = 16 + 2 = 18$$

$$N = 1011 \ 1001 = 2^7 + 2^5 + 2^4 + 2^3 + 2^0$$

$$= 128 + 32 + 16 + 8 + 1 = 185$$

UNIVERSITY OF BANGCRITECHICLOGY

$V \acute{o} i n = 8 bit$

❖ Biểu diễn được các giá trị từ 0 đến 255

$$0000\ 0000 = 0$$

$$0000\ 0001 = 1$$

$$0000\ 0010 = 2$$

$$0000\ 0011 = 3$$

• • •

$$1111 \ 1111 = 255$$

```
Chú ý:

1111 1111

+ 0000 0001

1 0000 0000

Vậy: 255 + 1 = 0?

=> do tràn nhớ ra
ngoài
```


Trục số học số với n = 8 bit

* Trục số học:

Trục số học máy tính:

UNIVERSITY OF BANSPORT TECHNOLOGY

Với n = 16 bit, 32 bit, 64 bit

- ❖ n= 16 bit: dải biểu diễn từ 0 đến 65535 (2¹⁶ − 1)
 - 0000 0000 0000 0000 = 0
 - •
 - **•** 0000 0000 1111 1111 = 255
 - **•** 0000 0001 0000 0000 = 256
 - ...
 - **•** 1111 1111 1111 1111 = 65535
- \bullet n= 32 bit: dải biểu diễn từ 0 đến $2^{32}-1$
- n = 64 bit: dải biểu diễn từ 0 đến 2^{64} 1

UNIVERSITY OF BANGACTIECHICLOGY

b. Biểu diễn số nguyên có dấu

- a. Số bù chín và Số bù mười
- Cho một số thập phân A được biểu diễn bằng n chữ số thập phân, ta có:
 - Số bù chín của A = (10ⁿ-1) − A
 - Số bù mười của A = 10ⁿ A
- ❖ Số bù mười của A = (Số bù chín của A) +1

Số bù chín và Số bù mười (tiếp)

- **❖** Ví dụ: với n=4, cho A = 3265
 - Số bù chín của A:

Số bù mười của A:

UNIVERSITY OF

b. Số bù một và Số bù hai

- ❖Định nghĩa: Cho A là một số nhị phân biểu diễn bằng n bit, ta có:
 - Số bù một của A: (2ⁿ-1)-A
 - Số bù hai của A = 2ⁿ-A
- \$Số bù hai của A = (Số bù một của <math>A) + 1

UNIVERSITY OF BANGPORT TECHNOLOGY

Số bù một và Số bù hai (tiếp)

- ❖ Ví dụ: Cho số N = 0001 0001₂ được biểu diễn bởi n=8bit. Xác định số bù 1 và bù 2 của N.
- Số bù 1 của N
 - Áp dụng công thức
 1111 1111 (28-1)
 0001 0001 (N)
 số bù một của N 1110 1110
- Số bù 2 của N
 - Áp dụng công thức

 1 0000 0000 (28)

 0001 0001 (N)

 số bù hai của N: 1110 1111

UNIVERSITY OF

Quy tắc tìm Số bù một và Số bù hai

- ❖ Số bù một của A = đảo giá trị các bit của A
- ❖ Ví dụ:
 - Cho A = $0010\ 0101$
 - Số bù một = $1101\ 1010$

- Số bù hai = 1101 1011
- ❖ Nhận xét:
 - \bullet A = 0010 0101
 - Số bù hai $= +1101 \ 1011$
 - 1 0000 0000 = 0

(bỏ qua bit nhớ ra ngoài)

c. Biểu diễn số nguyên có dấu bằng mã bù hai

Nguyên tắc tổng quát: Dùng n bit biểu diễn số nguyên có dấu A:

$$a_{n-1} a_{n-2} ... a_2 a_1 a_0$$

- **Với A là số dương**: bit $a_{n-1} = 0$, các bit còn lại biểu diễn độ lớn như số không dấu
- **Với A là số âm**: được biểu diễn bằng số bù hai của số dương tương ứng, vì vậy bit $a_{n-1} = 1$

Biểu diễn số dương

Dạng tổng quát của số dương A:

$$0a_{n-2}...a_2a_1a_0$$

• Giá trị của số dương A:
$$A = \sum_{i=0}^{n-2} a_i 2^i$$

❖ Dải biểu diễn cho số dương: 0 đến 2ⁿ⁻¹-1

Biểu diễn số âm

Dạng tổng quát của số âm A:

$$1a_{n-2}...a_2a_1a_0$$

❖ Giá trị của số âm A:

$$A = -2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

❖ Dải biểu diễn cho số âm: -1 đến -2ⁿ⁻¹

Biểu diễn tổng quát cho số nguyên có dấu

Dạng tổng quát của số nguyên A:

$$a_{n-1}a_{n-2}...a_2a_1a_0$$

Giá trị của số nguyên A:

$$A = -a_{n-1} 2^{n-1} + \sum_{i=0}^{n-2} a_i 2^i$$

❖ Dải biểu diễn cho số nguyên A: -2ⁿ⁻¹ đến 2ⁿ⁻¹-1

UNIVERSITY OF DAHSOSTIECHOLOGY

Các ví dụ

♦ Ví dụ 1: Biểu diễn số nguyên có dấu sau đây theo hai dạng kiểu n=8 bit và n=16 bit trong máy tính:

$$A=+97 \text{ và } B=-101$$

- ❖ Giải: n = 8 bit
 - Biểu diễn số A dạng số nguyên có dấu trong máy tính
 - A: 97 = **0110 0001**
 - Biểu diễn số B dạng số nguyên có dấu trong máy tính

• Biểu diễn số
$$+101 = 0110 0101$$

•
$$\Rightarrow$$
 B = - 101 = **1001 1011**

N = 16 bit ?

UNIVERSITY OF RANSPORT TECHNOLOGY

Các ví dụ

- ❖ Ví dụ 2: Hãy xác định giá trị của các số nguyên có dấu được biểu diễn dưới đây:
 - P = 01100010
 - Q = 1101 1011
- * Giải:
 - $P = 0110\ 0010 = 64 + 32 + 2 = +98$
 - $\mathbf{Q} = 1101 \ 1011 = -128 + 64 + 16 + 8 + 2 + 1 = -37$

UNIVERSITY OF SUMBOUT TECHNOLOGY

$V\acute{o}i n = 8 bit$

- ❖ Biểu diễn được các giá trị từ -128 đến +127
- 00000000 = 0
- 00000001 = +1
- 00000010 = +2
- 00000011 = +3
- •
- 0111111111 = +127
- 1000 0000 = 128
- 1000 0001 = 127
- •
- 1111 1110 = **-**2
- 1111 1111 = -1

Chú ý:

$$+127 + 1 = -128$$

$$-128 - 1 = +127$$

Trục số học số nguyên có dấu với n = 8 bit

Trục số học:

* Trục số học máy tính:

Với n = 16 bit, 32 bit, 64 bit

- ❖ Với n=16bit: biểu diễn từ -32768 đến +32767
 - 0000 0000 0000 0000 = 0
 - $0000\ 0000\ 0000\ 0001 = +1$
 - •
 - 0111 1111 1111 1111 =+32767
 - 1000 0000 0000 0000 =-32768
 - ...
 - 1111 1111 1111 1111 =-1
- ❖ Với n=32bit: biểu diễn từ -2³¹ đến 2³¹-1
- ❖ Với n=64bit: biểu diễn từ -2⁶³ đến 2⁶³-1

Chuyển đổi từ byte thành word

* Đối với số dương:

$$-19 = 0001\ 0011$$
 (8bit)

$$-19 = 0000\ 0000$$
 0001 0011 (16bit)

=>thêm 8 bit 0 bên trái

♦ Đối với số âm:

=> thêm 8 bit 1 bên trái

UNIVERSITY OF WANGFORT REMINDLOGY

Minh họa

Câu 1: Kết quả hiển thi lên màn hình là bao nhiêu? Khi thực hiện đoạn lệnh sau:

```
Var a: shortint;

Begin

a:=-1;

writeln('Gia tri a:=',a);

writeln('Gia tri ngan nho:=', mem[seg(a):ofs(a)]);

End.
```

UNIVERSITY OF RAMPORT TECHNOLOGY

Minh họa

<u>Câu 2:</u> Kết quả hiển thi lên màn hình là bao nhiêu? Khi thực hiện đoạn lệnh sau:

```
Var a: shortint;

Begin

a:=-128;

writeln('Gia tri a:=',a);

writeln('Gia tri ngan nho:=', mem[seg(a):ofs(a)]);

End.
```

UNIVERSITY OF BANGACH HECKACLOGY

Minh họa

<u>Câu 3:</u> Kết quả hiển thi lên màn hình là bao nhiêu? Khi thực hiện đoạn lệnh sau:

```
Var a: shortint;

Begin

a:=$6A;

writeln('Gia tri a:=',a);

writeln('Gia tri ngan nho:=', mem[seg(a):ofs(a)]);

End.
```

UNIVERSITY OF SAMSPORT RECINICACION

Minh họa

Câu 4: Kết quả hiển thi lên màn hình là bao nhiêu? Khi thực hiện đoạn lệnh sau:

```
Var b: integer absolute 3715:100;
a: shortint absolute 3715:100;

Begin
b:=$00B5;
writeln('Gia tri a:=',a);
writeln('Gia tri ngan nho:=', mem[seg(a):ofs(a)]);

End.
```

UNIVERSITY OF

Minh họa

Câu 5: Kết quả hiển thi lên màn hình là bao nhiêu? Khi thực hiện đoạn lệnh sau:

```
b: integer absolute 3715:100;
Var
       a: shortint absolute 3715:100;
Begin
  b := -75;
  writeln('Gia tri a:=',a);
  writeln('Gia tri ngan nho:=', mem[seg(a):ofs(a)]);
  writeln('Gia tri ngan nho:=', mem[seg(a):ofs(a)+1]);
  writeln('Gia tri ngan nho:=', memw[seg(a):ofs(a)]);
End.
```


c. Biểu diễn số nguyên theo mã BCD

- Binary Coded Decimal Code
- ❖ Dùng 4 bit để mã hoá cho các chữ số thập phân từ 0 đến 9

$$0 \rightarrow 0000$$
 $5 \rightarrow 0101$
 $1 \rightarrow 0001$ $6 \rightarrow 0110$
 $2 \rightarrow 0010$ $7 \rightarrow 0111$
 $3 \rightarrow 0011$ $8 \rightarrow 1000$
 $4 \rightarrow 0100$ $9 \rightarrow 1001$

- * Có 6 tổ hợp không sử dụng:
 - **•** 1010, 1011, 1100, 1101, 1110, 1111

Ví dụ số BCD

- Biểu diễn số
 - $-38 = 0011 \ 1000_{BCD}$
 - $61 = 0110\ 0001_{BCD}$
 - $\bullet \quad 1087 = 0001\ 0000\ 1000\ 0111_{BCD}$

UNIVERSITY OF

Các kiểu lưu trữ số BCD

- ❖ BCD không gói (Unpacked BCD): Mỗi số BCD 4-bit được lưu trữ trong 4-bit thấp của mỗi byte.
 - Ví dụ: Số 38 được lưu trữ như sau:

0011 1000

- ❖ BCD gói (Packed BCD): Hai số BCD được lưu trữ trong 1 byte.
 - Ví dụ: Số 38 được lưu trữ như sau:

0011 1000

UNIVERSITY OF BANGORI TECHNOLOGY

Phép cộng số BCD

```
35 	 -> 	 0011 0101_{BCD}
     +\underline{61} -> + 0110 0001<sub>BCD</sub>
       96 <- 1001 0110<sub>BCD</sub>
=> kết quả đúng (không phải hiệu chỉnh)
               \rightarrow 1000 0111<sub>BCD</sub>
       87
       <u>96</u>
               -> + 10010110_{BCD}
+
                                               => kết quả sai
       183
                     1 0001 1101
                                               <= hiệu chỉnh
                   + 01100110
                0001\ 1000\ 0011_{BCD} => kết quả đúng
```

Hiệu chỉnh: cộng thêm 6 ở những vị trí có nhớ (>9)

6.3 Số học nhị phân

1. Phép cộng số nguyên không dấuBộ cộng n-bit

UNIVERSITY OF RANSPORT TECHNOLOGY

Nguyên tắc cộng số nguyên không dấu

- Khi cộng hai số nguyên không dấu n-bit, kết quả nhận được là n-bit:
 - Nếu C_{out}=0 => nhận được kết quả đúng.
 - Nếu C_{out}=1 => nhận được kết quả sai, do tràn nhớ ra ngoài (Carry Out).
 - Tràn nhớ ra ngoài khi: $t \circ ng > (2^n 1)$

UNIVERSITY OF BANGFORT RENNOLOGY

Ví dụ cộng số nguyên không dấu

♦ 57 = 0011 1001
+ 34 = + 0010 0010
91 0101 1011 = 64+16+8+2+1=91 => đúng
♦ 209 = 1101 0001
+ 73 = + 0100 1001
282 1 0001 1010
0001 1010 = 16+8+2=26 => sai
=>có tràn nhớ ra ngoài (
$$C_{out}$$
=1)

Để có kết quả đúng ta thực hiện cộng theo 16-bit:

$$\begin{array}{rcl} 209 & = & 0000\ 0000\ 1101\ 0001 \\ + & 73 & = + & 0000\ 0000\ 0100\ 1001 \\ & & 0000\ 0001\ 0001\ 1010 = 256 + 16 + 8 + 2 = 282 \end{array}$$

Phép đảo dấu

* Ta có:

bù hai = $0010\ 0101 = +37$

* Kết luận: Phép đảo dấu trong máy tính thực chất là lấy bù hai

+1

UNIVERSITY OF BANGACHT ISCHALLOGY

Cộng số nguyên có dấu

- ❖ Khi cộng hai số nguyên có dấu n-bit, kết quả nhận được là n-bit và không cần quan tâm đến bit C_{out}
 - Cộng hai số khác dấu: kết quả luôn luôn đúng.
 - Cộng hai số cùng dấu:
 - nếu dấu kết quả cùng dấu với các số hạng thì kết quả là đúng.
 - nếu kết quả có dấu ngược lại, khi đó có tràn xảy ra (Overflow) và kết quả bị sai.
 - Tràn xảy ra khi tổng nằm ngoài dải biểu diễn:

$$[-(2^{n-1}),+(2^{n-1}-1)]$$

Ví dụ cộng số nguyên có dấu không tràn

UNIVERSITY OF

Ví dụ cộng số nguyên có dấu bị tràn

❖ Cả 2 ví dụ trên đều tràn vì tổng nằm ngoài dải biểu diễn [-128, +127]

Nguyên tắc thực hiện phép trừ

- ❖ Phép trừ hai số nguyên: X-Y = X+(-Y)
- ❖ Nguyên tắc: Lấy bù hai của Y để được –Y, rồi cộng với X

Mạch phần cứng cho phép cộng, trừ

OF = overflow bit

SW = Switch (select addition or subtraction)

Thực hiện phép nhân

```
Nhân số nguyên không dấu
          Số bị nhân (Multiplicand) (11 hệ 10)
     1011
   x 1101 Số nhân (Multiplier)
                                     (13)
     1011
    0000
   1011
             Tích riêng
  1011
              phần
              Tích
 10001111
                         (Product)
                                         (143)
```

UNIVERSITY OF BANBORT RECINCLOSY

Nhân số nguyên không dấu (tiếp)

- * Các tích riêng phần được xác định như sau:
 - Nếu bit của số nhân bằng 0 => tích riêng phần bằng 0.
 - Nếu bit của số nhân bằng 1 => tích riêng phần bằng số bị nhân.
 - Tích riêng phần tiếp theo được dịch trái một bit so với tích riêng phần trước đó.
- * Tích bằng tổng các tích riêng phần
- Nhân hai số nguyên n-bit, tích có độ dài 2n bit (không bao giờ tràn).

Bộ nhân số nguyên không dấu

UNIVERSITY OF BANGNOR RECHICLOGY

Ví dụ

C 0	A 0000	Q 1101	M 1011	Initial	Values
0	1011	1101	1011	Add	First
	0101	1110	1011	Shift	Cycle
0	0010	1111	1011	Shift	Second Cycle
0	1101	1111	1011	Add	Third
	0110	1111	1011	Shift	Cycle
1	0001	1111	1011	Add	Fourth
	1000	1111	1011	Shift	Cycle

Lưu đồ nhân số nguyên không dấu

Nhân số nguyên có dấu

- Sử dụng thuật giải nhân không dấu
- Sử dụng thuật giải Booth

UNIVERSITY OF BANGAST TECHNOLOGY

Sử dụng thuật giải nhân không dấu

- Bước 1. Chuyển đổi số bị nhân và số nhân thành số dương tương ứng
- Bước 2. Nhân hai số dương bằng thuật giải nhân số nguyên không dấu, được tích của hai số dương.
- Bước 3. Hiệu chỉnh dấu của tích:
 - Nếu hai thừa số ban đầu cùng dấu thì giữ nguyên kết quả ở bước 2.
 - Nếu hai thừa số ban đầu là khác dấu thì đảo dấu kết quả của bước 2.

Giải thuật Booth

UNIVERSITY OF BANSACRI TECHNOLOGY

Ví dụ

	M	Q_{-1}	Q	A
Initial Values	0111	0	0011	0000
A A - M } First Shift Cycle	0111 0111	0 1	0011 1001	1001 1100
Shift Second Cycle	0111	1	0100	1110
A A + M } Third Shift Cycle	0111 0111	1 0	0100 1010	0101 0010
Shift Fourth Cycle	0111	0	0101	0001

Thực hiện phép chia

Lưu đồ chia số nguyên không dấu

Vi dụ

M=0011 (Divisor), Q=0111 (Dividend)

A	Q	
0000	0111	Initial value
0000	1110	Shift
1101		Use twos complement of 0011 for subtraction
1101		Subtract
0000	1110	Restore, set $Q_0 = 0$
0001	1100	Shift
1101		
1110		Subtract
0001	1100	Restore, set $Q_0 = 0$
0011	1000	Shift
1101		
0000	1001	Subtract, set $Q_0 = 1$
0001	0010	Shift
1101		
1110		Subtract
0001	0010	Restore, set $Q_0 = 0$

Chia số nguyên có dấu

- ❖ Bước 1. Chuyển đổi số bị chia và số chia về thành số dương tương ứng.
- ❖ Bước 2. Sử dụng thuật giải chia số nguyên không dấu để chia hai số dương, kết quả nhận được là thương Q và phần dư R đều là dương
- ❖ Bước 3. Hiệu chỉnh dấu của kết quả như sau:

(Lưu ý: phép đảo dấu thực chất là thực hiện phép lấy bù hai)

- (+): (+) → không hiệu chỉnh dấu kết quả
- (+): (-) → đảo dấu thương
- (-): (+) → đảo dấu thương và phần dư
- (-): (-) → đảo dấu phần dư

UNIVERSITY OF BANGACH TECHNOLOGY

Số dấu phẩy động

Cho hai giá trị:

Để lưu trữ con số này thì máy tính cần đến số bit rất lớn. Như vậy, trong trường hợp này thì loại số có dấu chấm tĩnh sẽ rất bất tiện. Vì vậy tất cả máy tính lưu trữ những số trên dưới dạng dấu chấm động (floating point) 1.990 x 10³³ và 0.910956x 10⁻²⁷ hay theo số khoa học là : 1.999E+33 và 0.910956E-27.

UNIVERSITY OF BAMBACH REPHICLORY

Số dấu phẩy động

- 1. Nguyên tắc chung
- ❖ Floating Point Number → biểu diễn cho số thực
- Tổng quát: một số thực X được biểu diễn theo kiểu số dấu chấm động như sau:

$$X = M * R^{E}$$

- M là phần định trị (Mantissa),
- R là cơ số (Radix),
- E là phần mũ (Exponent).

Chuẩn IEEE754/85

- ❖ Cơ số R = 2
- Các dạng:
 - Dang 32-bit
 - Dang 44-bit
 - Dang 64-bit
 - Dang 80-bit

Các dạng biểu diễn chính

Single (32 bit)

Double (64 bit)

❖ Dạng 80 bit

Dang 32-bit

- ❖ S là bit dấu:
 - $S = 0 \rightarrow S\hat{o} duong$
 - $S = 1 \rightarrow S\hat{o} \hat{a} m$
- ❖ e (8 bit) là mã excess-127 của phần mũ E:
 - $e = E + 127 \rightarrow E = e 127$
 - giá trị 127 được gọi là độ lệch (bias)
- * m (23 bit) là phần lẻ của phần định trị M:
 - M = 1.m
- Công thức xác định giá trị của số thực:

$$X = (-1)^{S*}1.m*2^{e-127}$$

ightharpoonup Dải biểu diễn: 2^{-127} đến 2^{+127} (10^{-38} đến 10^{+38})

UNIVERSITY OF BANGACHI REMICLOGY

Ví dụ

- 1. Xác định giá trị của số thực được biểu diễn bằng 32-bit như sau:
- - $S = 1 \rightarrow S\hat{o} \hat{a} m$
 - $e = 1000\ 0010_2 = 130 \rightarrow E = 130 127 = 3$
- ❖ Vậy: X = -1.10101100 * 2³ = -1101.011 = -13.375

UNIVERSITY OF BAHBON IECHOLOGY

Ví dụ

Biểu diễn số thực X = -2345,125 về dạng số dấu chấm động IEEE754 32-bit

B1: Chuyển đổi số trên ra hệ hai

-2345,125d = -1001 0010 1001.001b (dãy số nhị phân được biểu diễn bình thường)

B2: Chuẩn hoá theo IEEE 32bit

-1.001 0010 1001 001 x 2¹¹

B3: Xác định các thông số biểu diễn s,M,E

S: phần định trị là số âm, nên s là 1

E: phần mũ được xác định e = E-127

=> E = 11+127=138=10001010

M: phần định trị được xác định là 001 0010 1001 0010 0000 0000 (số 32 bit)

Ví dụ

- ❖ Biểu diễn số thực X = 83.75 về dạng số dấu chấm động IEEE754 32-bit
- * Giải:
- $X = 83.75_{10} = 1010011.11_2 = 1.010011111 \times 26$
- * Ta có:
 - S = 0 vì đây là số dương
 - $E = e-127=6 \rightarrow e = 127+6=133_{10} = 1000\ 0101_2$
- Vậy:

 $X = 0100\ 0010\ 1010\ 0111\ 1000\ 0000\ 0000\ 0000$

UNIVERSITY OF BANBORI IECHIOLOGY

Bài tập

Biểu diễn các số thực sau đây về dạng số dấu phẩy động IEEE754 32-bit:

$$X = -27.0625$$
; $Y = 1/32$

Các quy ước đặc biệt

- ❖ Các bit của e bằng 1, còn m có ít nhất 1 bit bằng 1, thì nó không biểu diễn cho số nào cả (NaN − not a number)

Dang 64-bit

- ❖ S (1 bit) là bit dấu
- ❖ e (11 bit) là mã excess-1023 của phần mũ E:

$$\rightarrow$$
 E = e - 1023

- ❖ m (52 bit) là phần lẻ của phần định trị M: M=1.m
- Giá trị của số thực:

$$X = (-1)^{S*1}.m*2^{e-1023}$$

❖ Dải giá trị biểu diễn: 10-308 đến 10+308

UNIVERSITY OF BANGACHI REMICLOGY

Dang 80-bit

- ❖ S là bit dấu
- ❖ e (15 bit) là mã *excess-16383 của phần mũ E:*− 16383

- \rightarrow E = e
- ❖ m (64 bit) là phần lẻ của phần định trị M: M=1.m
- **Giá** trị của số thực: $X = (-1)^{S*}1.m*2^{e-16383}$
- ❖ Dải giá trị biểu diễn: 10-4932 đến 10+4932

UNIVERSITY OF BANDON IECHNOLOGY

Thực hiện phép toán số dấu phẩy động

- X1 = M1 * RE1
- X2 = M2 * RE2
- Ta có
 - $X1 * X2 = (M1* M2) * R^{E1+E2}$
 - $X1 / X2 = (M1 / M2) * R^{E1-E2}$
 - $X1 \pm X2 = (M1*R^{E1-E2} \pm M2) * R^{E2}$, với $E2 \ge E1$

Biểu diễn mã

Các loại mã thông dụng

- * Mã ASCII (American Standard Code for Information Interchange): 8 bit
- Unicode: 16 bit
- Mã EBCDI (Extendend Binary Coded Decimal Interchange): 8
 bit
- * Mã BAUDOT: Sử dụng nhiều trong ngành bưu điện

UNIVERSITY OF RANDORI ISCHOLOGY

Mã ASCII

Ctil	Dec	Hex	Char	Code	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Hex	Char	Dec	Нех	Char	Dec	Hex	Char	Dec	Hex	Char
°@	0	00		NUL	32	20	sp	64	40	6	96	60		128	80	ç	160	A0	á	192	တ	L	224	E0	Œ
٩	1	01	•	SOH	33	21	1	65	41	A	97	61	a	129	81	ü	161	A1	í	193	Cl	1	225	E1	ß
°В	2	02	8	SIX	34	22	10	66	42	В	98	62	Ъ	130	82	é	162	A2	ó	194	C2	т	226	E.2	Г
°C	3	03		EIX	35	23	#	67	43	C	99	63	C	131	83	â	163	A3	ú	195	C3	-	227	E3	П
٩D	4	04	+	EOI	36	24	\$	68	44	D	100	64	d	132	84	ä	164	A4	ñ	196	C4	-	228	E4	Σ
۰E	5	05	•	ENQ	37	25	2	69	4.5	E	101	65	e	133	85	à	165	A5	Ñ	197	CS	1	229	E.5	σ
۰F	6	06	+	ACK	38	26	&	70	4.6	F	102	66	f	134	86	å	166	A6	<u>a</u>	198	C6	⊧	230	E6	J.
°G	7	07	•	BEL	39	27	9	71	47	G	103	67	9	135	87	g	167	A7	•	199	C7	10	231	E7	T
٩	8	08	•	BS	40	28	(72	48	H	104	68	h	136	88	ê	168	A8	2	200	C8	LL	232	E8	2
°Ι	9	09	0	HĪ	41	29)	73	49	I	105	69	i	137	89	ë	169	A9	***	201	CO	le l	233	E9	0
۰J	10	0A	0	LF	42	2A	*	74	4 A	J	106	6A	j	138	8A	è	170	AA	500 E	202	CA	Ψ	234	E.A.	Ω
۰ĸ	11	0B	3	VI	43	2B	+	75	4B	K	107	6B	k	139	8B	ï	171	AB	1/2	203	СВ	TT	235	EB	δ
٩L	12	0C	Q	FF	44	2C	30	76	4C	L	108	6C	1	140	8C	î	172	AC	1	204	œ		236	EC	-00
°M	13	0D	r	CIR	45	2D	-	77	4D	M	109	6D	Ph.	141	8D	ì	173	AD	1	205	CD	"	237	ED	95
٩N	14	0E	Л	S O	46	2E		78	4 E.	N	110	6E	m	142	8E	Ä	174	AE	-ec	206	CE	#	238	E.E.	ϵ
00	15	0F	*	SI	47	2F	1	79	4 F	0	111	6 F	•	143	8F	Å	175	AF	35	207	CF	T	239	EF	n
٩P	16	10	-	SLE	48	30	0	80	50	P	112	70	P	144	90	É	176	B0		208	D0	ш	240	FO	
٩Q	17	11	4	CS1	49	31	1	81	51	Q	113	71	q	145	91	56	177	Bl		209	Dl	Ŧ	241	Fl	+
°R	18	12	1	DC2	50	32	2	82	52	R	114	72	r	146	92	A	178	B2	III	210	D2	W.Coo.	242	F2	2
°s .	19	13	!!	DC3	51	33	3	83	53	S	115	73	\$	147	93	ô	179	B3	T 1	211	D3	$\ \mathbb{I} \ $	243	F3	₹
٩ī	20	14	-PI	DC4	52	34	4	84	54	T	116	74	t	148	94	ö	180	B4	-	212	D4	F	244	F4	ſ
°U	21	15	δ	NAK	53	35	5	85	55	U	117	75	u	149	95	ò	181	B5	-	213	D5	E	245	F5	J
٠V	22	16	E	SYN	54	36	6	86	56	V	118	76	U	150	96	û	182	B6	14	214	D6	n	246	F6	÷
٠w	23	17	ŧ	EIB	55	37	7	87	57	W	119	77	w	151	97	ù	183	B7	iii	215	D7	#	247	F7	22
°X	24	18	1	CAN	56	38	8	88	58	x	120	78	×	152	98	ij	184	B8	7.	216	D8	I¥ I	248	F8	0
۰Y	25	19	1	EM	57	39	9	89	59	Y	121	79	y	153	99	Ö	185	B9		217	D9	1	249	F9	100
۰z	26	1A	→	SIB	58	3A	:	90	5A	Z	122	7A	z	154	9A	Ü	18 6	BA		218	DA	1	250	FA	35
]^	27	1B	+	ESC	59	3B	;	91	5B	1	123	7B	{	155	9B	¢	187	BB	7	219	DB		251	FB	1
n	28	1C		FS	60	3C	<	92	5C		124	7C	1	156	9C	£	188	BC	1	220	DC		252	FC	n
^]	29	1D	+	GS	61	3D	=	93	5D]	125	7D	3	157	9D	¥	189	BD	Ш	221	DD		253	FD	2
00	30	1E	•	RS	62	3E	>	94	5E	٨	126	7E	~	158	9E	R	190	BE	3	222	DE		254	FE	
۰_	31	1F	*	US	63	3F	?	95	5F	-	127	7F	4	159	9F	-f	191	BF	la II	223	DF		255	FF	

[†] ASCII code 127 has the code DEL. Under MS-DOS, this code has the same effect as ASCII 8 (BS). The DEL code can be generated by the CT RL+BKSP key.

Mã BAUDOT

UNIVERSITY OF BANGARTIECHICLOGY

Các loại mã thông dụng

* Các mã số học:

- Mã nhị phân: là mã trọng số.
- Mã quá 3: được tạo từ mã nhị phân tương ứng và cộng thêm 3.
- Mã Gray: Hai tổ hợp kế cận khác nhau một bit
- Mã thập phân hóa BCD (Binary Code Decimal): dùng 4 bit để biểu diễn số thập phân và các loại khác của BCD: BCD5421, BCD2421, BCD5121,

