STATS 3DA3

Homework Assignment 6

Shujia Zhang
(400390028), Yunxin Li(400323756), Ling Dai(400220798)
 2024-04-18

(Rubini and Eswaran 2015)

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import mean_squared_error, confusion_matrix, classification_report
from sklearn.tree import DecisionTreeClassifier, DecisionTreeRegressor, plot_tree
from patsy import dmatrices, dmatrix
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.metrics import accuracy_score
import statsmodels.api as sm
```

```
pip install ucimlrepo
```

Requirement already satisfied: ucimlrepo in /Users/dailing/Desktop/3da-assignment6/.conda/lib/goode: you may need to restart the kernel to use updated packages.

```
# fetch dataset
chronic_kidney_disease = fetch_ucirepo(id=336)

# data (as pandas dataframes)
X = chronic_kidney_disease.data.features
y = chronic_kidney_disease.data.targets

# metadata
```

print(chronic_kidney_disease.metadata)

variable information

print(chronic_kidney_disease.variables)

{'u	ci_id':	336, 'na	me': 'Chronic	: Kidney Disea	se', 'repository_url':	https://archive.ics.uci.ed
	name	role	type	demographic	description	\
0	age	Feature	Integer	Age	None	
1	bp	Feature	Integer	None	blood pressure	
2	sg	Feature	Categorical	None	specific gravity	
3	al	Feature	Categorical	None	albumin	
4	su	Feature	Categorical	None	sugar	
5	rbc	Feature	Binary	None	red blood cells	
6	рс	Feature	Binary	None	pus cell	
7	pcc	Feature	Binary	None	pus cell clumps	
8	ba	Feature	Binary	None	bacteria	
9	bgr	Feature	Integer	None	blood glucose random	
10	bu	Feature	Integer	None	blood urea	
11	sc	Feature	Continuous	None	serum creatinine	
12	sod	Feature	Integer	None	sodium	
13	pot	Feature	Continuous	None	potassium	
14	hemo	Feature	Continuous	None	hemoglobin	
15	pcv	Feature	Integer	None	packed cell volume	
16	wbcc	Feature	Integer	None	white blood cell count	
17	rbcc	Feature	Continuous	None	red blood cell count	
18	htn	Feature	Binary	None	hypertension	
19	dm	Feature	Binary	None	diabetes mellitus	
20	cad	Feature	Binary	None	coronary artery disease	
21	appet	Feature	Binary	None	appetite	
22	pe	Feature	Binary	None	pedal edema	
23	ane	Feature	Binary	None	anemia	
24	class	Target	Binary	None	ckd or not ckd	

	units	missing_values
0	year	yes
1	mm/Hg	yes
2	None	yes
3	None	yes
4	None	yes
5	None	yes
6	None	yes
7	None	yes
8	None	yes
9	mgs/dl	yes
10	mgs/dl	yes
11	mgs/dl	yes
12	mEq/L	yes
13	mEq/L	yes
14	gms	yes
15	None	yes
16	cells/cmm	yes
17	millions/cmm	yes
18	None	yes
19	None	yes
20	None	yes
21	None	yes
22	None	yes

None

None

X

23

24

yes

no

	age	bp	sg	al	su	rbc	pc	pcc	ba	bgr		hemo	pcv	W
0	48.0	80.0	1.020	1.0	0.0	NaN	normal	notpresent	notpresent	121.0		15.4	44.0	78
1	7.0	50.0	1.020	4.0	0.0	NaN	normal	notpresent	notpresent	NaN		11.3	38.0	60
2	62.0	80.0	1.010	2.0	3.0	normal	normal	notpresent	notpresent	423.0		9.6	31.0	75
3	48.0	70.0	1.005	4.0	0.0	normal	abnormal	present	notpresent	117.0		11.2	32.0	67
4	51.0	80.0	1.010	2.0	0.0	normal	normal	notpresent	notpresent	106.0		11.6	35.0	73
395	55.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	140.0		15.7	47.0	67
396	42.0	70.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	75.0		16.5	54.0	78
397	12.0	80.0	1.020	0.0	0.0	normal	normal	notpresent	notpresent	100.0		15.8	49.0	66
398	17.0	60.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	114.0		14.2	51.0	72
399	58.0	80.0	1.025	0.0	0.0	normal	normal	notpresent	notpresent	131.0	•••	15.8	53.0	68

У

	class
0	ckd
1	ckd
2	ckd
3	ckd
4	ckd
395	notckd
396	notckd
397	notckd
398	notckd
399	notckd

X.dtypes

age float64

float64 bp float64 sg al float64 float64 su rbc object object рс object рсс object ba float64 bgr bu float64 float64 sc float64 sod pot float64 float64 hemo float64 pcv wbcc float64 ${\tt float64}$ rbcc object htn object \mathtt{dm} object cad object appet ре object ane object dtype: object

y.dtypes

class object
dtype: object

#to see if "rbc" is binary, since from the website inormation I found that this variable should
X['rbc'].value_counts()

rbc

normal 201

abnormal 47

Name: count, dtype: int64

#to see if "pc" is binary, since from the website inormation I found that this variable should
X['pc'].value_counts()

рс

normal 259

abnormal 76

Name: count, dtype: int64

#to see if "pcc" is binary, since from the website inormation I found that this variable should
X['pcc'].value_counts()

рсс

notpresent 354

present 42

Name: count, dtype: int64

#to see if "ba" is binary, since from the website inormation I found that this variable should
X['ba'].value_counts()

ba

notpresent 374

present 22

Name: count, dtype: int64

#to see if "htn" is binary, since from the website inormation I found that this variable should $X['htn'].value_counts()$

```
htn
       251
no
       147
yes
Name: count, dtype: int64
#to see if "dm" is binary, since from the website inormation I found that this variable should
X['dm'].value_counts()
dm
        260
no
        137
yes
          1
\tno
Name: count, dtype: int64
#find that "dm" is not binary, but it should be binary.
X_cat = set(X["dm"])
X_cat
{'\tno', nan, 'no', 'yes'}
#make "dm" become binary
X['dm'] = X['dm'].replace('\tno', 'no')
X_cat = set(X["dm"])
X_cat
{nan, 'no', 'yes'}
#to double check if "dm" is binary now.
X['dm'].value_counts()
dm
       261
no
yes
       137
Name: count, dtype: int64
```

```
#to see if "cad" is binary, since from the website inormation I found that this variable should
X['cad'].value_counts()
cad
       364
no
        34
yes
Name: count, dtype: int64
#to see if "appet" is binary, since from the website inormation I found that this variable shows
X['appet'].value_counts()
appet
good
        317
poor
         82
Name: count, dtype: int64
#to see if "pe" is binary, since from the website inormation I found that this variable should
X['pe'].value_counts()
ре
       323
no
yes
        76
Name: count, dtype: int64
#to see if "ane" is binary, since from the website inormation I found that this variable should
X['ane'].value_counts()
ane
       339
no
yes
        60
Name: count, dtype: int64
```

```
#to see if "class" is binary, since from the website inormation I found that this variable shows
y['class'].value_counts()
class
ckd
          248
notckd
          150
ckd\t
            2
Name: count, dtype: int64
#find "class" is not binary, but it should be ninary.
y_cat = set(y["class"])
y_cat
{'ckd', 'ckd\t', 'notckd'}
# make itbecome binary
y['class'] = y['class'].replace('ckd\t', 'ckd')
y_cat = set(y["class"])
y_cat
{'ckd', 'notckd'}
#To double check if it is binary now.
y['class'].value_counts()
class
          250
ckd
notckd
          150
Name: count, dtype: int64
```

```
# number of missing values in X
X.isnull().sum()
age
          9
bp
          12
          47
sg
al
          46
         49
su
rbc
         152
          65
рс
           4
рсс
           4
ba
          44
bgr
          19
bu
          17
sc
sod
          87
          88
pot
          52
hemo
         71
pcv
         106
wbcc
rbcc
         131
htn
dm
cad
           2
appet
           1
ре
           1
ane
dtype: int64
# number of missing values in y
y.isnull().sum()
```

class 0

dtype: int64

 Classification Problem Identification: Define and describe a classification problem based on the dataset.

There are 400 observations and 25 variables in Chronic Kidney Disease dataset. There are 14 float64 type variables, and they are "age", "bp", "sg", "al", "su", "bgr", "bu", "sc", "sod", "pot", "hemo", "pcv", "wbcc", "rbcc". There are 11 object type vaariables, and they are "rbc", "pc", "pcc", "ba", "htn", "dm", "cad", "appet", "pe", "ane", "calss". In these 25 variables, all variables in X are covariates (consists 14 floats and 10 object) and the variable in y is the response (the variable "class" which is an object variable). Moreover, the response is "class" contains only 2 category: "ckd" or "not ckd", so the response is binary.

There are 9 missing values in "age", 12 missing values in "bp", 47 missing values in "sg", 46 missing values in "al", 49 missing values in "su", 152 missing values in "rbc", 65 missing values in "pc", 4 missing values in "ba", 44 missing values in "bgr", 19 missing values in "bu", 17 missing values in "sc", 87 missing values in "sod", 88 missing values in "pot", 52 missing values in "hemo", 71 missing values in "pcv", 106 missing values in "wbcc", 131 missing values in "rbcc", 2 missing values in "htn", 2 missing values in "dm", 2 missing values in "cad", 1 missing value in "appet", 1 missing value in "pe" and 1 missing value in "ane".

0 missing value in "class".

2. Variable Transformation: Implement any transformations chosen or justify the absence of such modifications.

```
X1 = X.copy()
columns_to_convert = ['sg', 'al', 'su']
for col in columns_to_convert:
    X1[col] = pd.Categorical(X1[col])

object_convert = ["rbc", "pc", "pcc", "ba", "htn", "dm", "cad", "appet", "pe", "ane"]
for col in object_convert:
```

```
X1[col] = X1[col].astype('category').cat.codes
X1.dtypes
```

```
float64
age
          float64
bp
         category
sg
         category
al
         category
su
             int8
rbc
             int8
рс
рсс
             int8
             int8
ba
          float64
bgr
          float64
bu
          float64
sc
          float64
sod
          float64
pot
          float64
hemo
          float64
pcv
wbcc
          float64
          float64
rbcc
htn
             int8
dm
             int8
cad
             int8
             int8
appet
             int8
pe
ane
             int8
dtype: object
#cat = ['sg', 'al', 'su', 'rbc', 'pc', 'pcc', 'ba', 'htn', 'dm', 'cad', 'appet', 'pe', 'ane']
#X = pd.get_dummies(X,columns=cat)
#caty = ['class']
```

```
#y = pd.get_dummies(y,columns=caty)
```

X1

	age	bp	sg	al	su	rbc	pc	pcc	ba	bgr	 hemo	pcv	wbcc	rbcc	htn	dm
0	48.0	80.0	1.020	1.0	0.0	-1	1	0	0	121.0	 15.4	44.0	7800.0	5.2	1	1
1	7.0	50.0	1.020	4.0	0.0	-1	1	0	0	NaN	 11.3	38.0	6000.0	NaN	0	0
2	62.0	80.0	1.010	2.0	3.0	1	1	0	0	423.0	 9.6	31.0	7500.0	NaN	0	1
3	48.0	70.0	1.005	4.0	0.0	1	0	1	0	117.0	 11.2	32.0	6700.0	3.9	1	0
4	51.0	80.0	1.010	2.0	0.0	1	1	0	0	106.0	 11.6	35.0	7300.0	4.6	0	0
			•••								 	•••				
395	55.0	80.0	1.020	0.0	0.0	1	1	0	0	140.0	 15.7	47.0	6700.0	4.9	0	0
396	42.0	70.0	1.025	0.0	0.0	1	1	0	0	75.0	 16.5	54.0	7800.0	6.2	0	0
397	12.0	80.0	1.020	0.0	0.0	1	1	0	0	100.0	 15.8	49.0	6600.0	5.4	0	0
398	17.0	60.0	1.025	0.0	0.0	1	1	0	0	114.0	 14.2	51.0	7200.0	5.9	0	0
399	58.0	80.0	1.025	0.0	0.0	1	1	0	0	131.0	 15.8	53.0	6800.0	6.1	0	0

X1['sg'].value_counts()

sg

1.020 106

1.010 84

1.025 81

1.015 75

1.005 7

Name: count, dtype: int64

#why 3 categories?

X1['rbc'].value_counts()

rbc

1 201

```
-1
      152
       47
0
Name: count, dtype: int64
X1['pe'].value_counts()
ре
0
      323
 1
       76
-1
        1
Name: count, dtype: int64
float_col = X1.select_dtypes(include=['float64']).columns
object_col = X1.select_dtypes(include=['object']).columns
#way2
binary = {'rbc':{'normal':1, 'abnormal':0},
          'pc':{'normal':1,'abnormal':0},
          'pcc':{'present':1,'notpresent':0},
          'ba':{'present':1,'notpresent':0},
          'htn':{'yes':1,'no':0},
          'dm':{'yes':1,'no':0},
          'cad':{'yes':1,'no':0},
          'appet':{'good':1,'poor':0},
          'pe':{'yes':1,'no':0},
          'ane':{'yes':1,'no':0}
          }
for i,j in binary.items():
    X1[i] = X1[i].replace(j)
X1
```

	age	bp	sg	al	su	rbc	pc	pcc	ba	bgr	 hemo	pcv	wbcc	rbcc	htn	dm
0	48.0	80.0	1.020	1.0	0.0	-1	1	0	0	121.0	 15.4	44.0	7800.0	5.2	1	1
1	7.0	50.0	1.020	4.0	0.0	-1	1	0	0	NaN	 11.3	38.0	6000.0	NaN	0	0
2	62.0	80.0	1.010	2.0	3.0	1	1	0	0	423.0	 9.6	31.0	7500.0	NaN	0	1
3	48.0	70.0	1.005	4.0	0.0	1	0	1	0	117.0	 11.2	32.0	6700.0	3.9	1	0
4	51.0	80.0	1.010	2.0	0.0	1	1	0	0	106.0	 11.6	35.0	7300.0	4.6	0	0
•••									•••		 					
395	55.0	80.0	1.020	0.0	0.0	1	1	0	0	140.0	 15.7	47.0	6700.0	4.9	0	0
396	42.0	70.0	1.025	0.0	0.0	1	1	0	0	75.0	 16.5	54.0	7800.0	6.2	0	0
397	12.0	80.0	1.020	0.0	0.0	1	1	0	0	100.0	 15.8	49.0	6600.0	5.4	0	0
398	17.0	60.0	1.025	0.0	0.0	1	1	0	0	114.0	 14.2	51.0	7200.0	5.9	0	0
399	58.0	80.0	1.025	0.0	0.0	1	1	0	0	131.0	 15.8	53.0	6800.0	6.1	0	0

```
scale = StandardScaler()

X1[float_col] = scale.fit_transform(X1[float_col])

X1
```

	age	bp	sg	al	su	rbc	pc	pcc	ba	bgr	•••	hemo	pcv	wbe
0	-0.203139	0.258373	1.020	1.0	0.0	-1	1	0	0	-0.341498		0.988022	0.569881	-0.2
1	-2.594124	-1.936857	1.020	4.0	0.0	-1	1	0	0	NaN		-0.421688	-0.098536	-0.8
2	0.613295	0.258373	1.010	2.0	3.0	1	1	0	0	3.473064		-1.006202	-0.878356	-0.3
3	-0.203139	-0.473370	1.005	4.0	0.0	1	0	1	0	-0.392022		-0.456071	-0.766953	-0.5
4	-0.028189	0.258373	1.010	2.0	0.0	1	1	0	0	-0.530963		-0.318538	-0.432744	-0.3
		•••										•••	•••	
395	0.205078	0.258373	1.020	0.0	0.0	1	1	0	0	-0.101509		1.091172	0.904090	-0.5
396	-0.553039	-0.473370	1.025	0.0	0.0	1	1	0	0	-0.922524		1.366237	1.683910	-0.2
397	-2.302541	0.258373	1.020	0.0	0.0	1	1	0	0	-0.606749		1.125555	1.126896	-0.6
398	-2.010957	-1.205114	1.025	0.0	0.0	1	1	0	0	-0.429915		0.575424	1.349701	-0.4
399	0.380028	0.258373	1.025	0.0	0.0	1	1	0	0	-0.215188		1.125555	1.572507	-0.5

3. Dataset Overview: Provide a detailed description of the dataset, covering variables, sum-

maries, observation counts, data types, and distributions (at least three statements).

```
def plot_dist(data,features):
    fig,axes=plt.subplots(nrows=len(features),ncols=1,figsize=(8,4*len(features)))
    if len(features) == 1:
        axes = [axes]
    for ax,feature in zip(axes,features):
        sns.histplot(data[feature],kde=True,ax=ax)
    ax.set_xlabel(feature)
    ax.set_ylabel('Frequency')

numerical_cols = ["age","bp","sg","bgr","bu","sc","sod","pot","hemo","pcv","wbcc","rbcc"]
plt.show()
plot_dist(X,numerical_cols)
```


X1.describe()

	age	bp	rbc	pc	pcc	ba	bgr	bı
count	3.910000e+02	3.880000e+02	400.00000	400.000000	400.000000	400.000000	3.560000e+02	3.
mean	9.994847e-17	-2.380684e-16	0.12250	0.485000	0.095000	0.045000	-1.796316e-16	-3
std	1.001281e+00	1.001291e+00	0.93256	0.759089	0.325946	0.251262	1.001407e+00	1.
min	-2.885708e+00	-1.936857e + 00	-1.00000	-1.000000	-1.000000	-1.000000	-1.591967e+00	-1
25%	-5.530393e-01	-4.733701e-01	-1.00000	0.000000	0.000000	0.000000	-6.193803e-01	-6
50%	2.050779e-01	2.583733e-01	1.00000	1.000000	0.000000	0.000000	-3.414983e-01	-3
75%	7.590867e-01	2.583733e- 01	1.00000	1.000000	0.000000	0.000000	1.890038e-01	1.
max	2.246163e+00	7.575807e + 00	1.00000	1.000000	1.000000	1.000000	4.319341e+00	6.

X1.dtypes

age	float64
bp	float64
sg	category
al	category
su	category
rbc	int8
pc	int8
pcc	int8
ba	int8
bgr	float64
bu	float64
sc	float64
sod	float64
pot	float64
hemo	float64
pcv	float64
wbcc	float64

rbcc float64
htn int8
dm int8
cad int8
appet int8
pe int8
ane int8

dtype: object

Since there are 25 variables and 400 observations in Chronic Kidney Disease dataset.

- 1). There are 14 float64 type variables, and they are "age", "bp", "sg", "al", "su", "bgr", "bu", "sc", "sod", "pot", "hemo", "pcv", "wbcc", "rbcc". There are 11 object type vaariables, and they are "rbc", "pc", "pc", "ba", "htn", "dm", "cad", "appet", "pe", "ane", "calss". In these 25 variables, all variables in X are covariates (consists 14 floats and 10 object) and the variable in y is the response (the variable "class" which is an object variable). Moreover, the response is "class" contains only 2 category: "ckd" or "not ckd", so the response is binary.
- 2). The number of features is 24, and they are: "age", "bp", "sg", "al", "su", "bgr", "bu", "sc", "sod", "pot", "hemo", "pcv", "wbcc", "rbcc", "pc", "pcc", "ba", "htn", "dm", "cad", "appet", "pe", "ane", "calss".
- 3). The number of observations is 400. But we can see that the count of some variables is less than 400, for example: the count of age is 391 which is less than 400. This means there are missing values in some varibales in this dataset.
- 4). The type of variables: There are 14 float64 type variables, and they are "age", "bp", "sg", "al", "su", "bgr", "bu", "sc", "sod", "pot", "hemo", "pcv", "wbcc", "rbcc". There are 11 object type variables, and they are "rbc", "pc", "pcc", "ba", "htn", "dm", "cad", "appet", "pe", "ane", "calss". In these 25 variables, all variables in X are covariates (consists 14 floats and 10 object) and the variable in y is the response (the variable "class" which is an object variable). Moreover, the response is "class" contains only 2 category: "ckd" or "not ckd", so the response is binary.
- 5). Missing values: There are 9 missing values in "age", 12 missing values in "bp", 47 missing values in "sg", 46 missing values in "al", 49 missing values in "su", 152 missing values in "rbc", 65 missing

values in "pc", 4 missing values in "pcc", 4 missing values in "ba", 44 missing values in "bgr", 19 missing values in "bu", 17 missing values in "sc", 87 missing values in "sod", 88 missing values in "pot", 52 missing values in "hemo", 71 missing values in "pcv", 106 missing values in "wbcc", 131 missing values in "rbcc", 2 missing values in "htn", 2 missing values in "dm", 2 missing values in "cad", 1 missing value in "appet", 1 missing value in "pe" and 1 missing value in "ane".

0 missing value in "class".

4. **Association Between Variables:** Analyze variable relationships and their implications for feature selection or extraction (at least three statements).


```
#categorical variables
categorical=X1.select_dtypes(include=['category','int8'])
for column in categorical.columns:
    plt.figure()
    sns.countplot(x=column, data=categorical)
    plt.title(f'Barplot of {column}')
    plt.show()
```


We use heatmap for numerical variables and barplot for categorical variables.

For heatmap:

- 1). This is a symmetric matrix and the elements on the diagonal are the variance. The diagonal of the correlation matrix is 1.
- 2). The elements not on the diagonal are the covariance.
- 3). The smallest number in the matrix is -0.69 which means "sod" and "sc" are neagtively correlated.
- 4). The largest number in the matrix is 1 (the diagonal).
- 5). The largest number other than 1 is 0.9 which means "hemo" and "pcv" are positively correlated.

For barplots:

1). In those binary variables, the category "-1" could suggest missing values.

- 2). For example, in "pe" (pedal edema), the most common category is "0", which could imply the absence of pedal edema, and the second most common category is "1", which could imply the presence of pedal edema, and the least category "-1" are missing values.
- 3). "htn" (hypertension) and "dm" (diabetes mellitus) are not good since the diistribution is not extreme.
 - 5. Missing Value Analysis and Handling: Implement your strategy for identifying and addressing missing values in the dataset, or provide reasons for not addressing them.

X.isnull().sum()

age	9
bp	12
sg	47
al	46
su	49
rbc	152
pc	65
pcc	4
ba	4
bgr	44
bu	19
sc	17
sod	87
pot	88
hemo	52
pcv	71
wbcc	106
rbcc	131
htn	2
dm	2
cad	2

```
appet 1
           1
ре
ane
           1
dtype: int64
y.isnull().sum()
class
dtype: int64
#way2
float_na=X1[float_col].isna()
float_nasum=float_na.sum()
print(float_nasum)
cat_na=X1[columns_to_convert].isna()
cat_nasum=cat_na.sum()
print(cat_nasum)
binary_na = (X1[object_convert] == -1)
binary_nasum=binary_na.sum()
print(binary_nasum)
          9
age
bр
         12
```

bp 12
bgr 44
bu 19
sc 17
sod 87
pot 88
hemo 52
pcv 71

wbcc 106 rbcc 131 dtype: int64 47 sg al 46 49 su dtype: int64 rbc 152 65 рс рсс 4 4 ba 2 htn 2 dm2 cad appet 1 ре ane 1 dtype: int64

Missing values: There are 9 missing values in "age", 12 missing values in "bp", 47 missing values in "sg", 46 missing values in "al", 49 missing values in "su", 152 missing values in "rbc", 65 missing values in "pc", 4 missing values in "pc", 4 missing values in "ba", 44 missing values in "bgr", 19 missing values in "bu", 17 missing values in "sc", 87 missing values in "sod", 88 missing values in "pot", 52 missing values in "hemo", 71 missing values in "pcv", 106 missing values in "wbcc", 131 missing values in "rbcc", 2 missing values in "htn", 2 missing values in "dm", 2 missing values in "cad", 1 missing value in "appet", 1 missing value in "pe" and 1 missing value in "ane".

0 missing value in "class".

```
#the stragegy for addressing missing values
X1_drop= X1.dropna()
X1_drop
```

	age	bp	sg	al	su	rbc	pc	pcc	ba	bgr	 hemo	pcv	wbo
3	-0.203139	-0.473370	1.005	4.0	0.0	1	0	1	0	-0.392022	 -0.456071	-0.766953	-0.5
5	0.496661	0.990117	1.015	3.0	0.0	-1	-1	0	0	-0.935155	 -0.112239	0.012867	-0.2
9	0.088445	0.990117	1.020	2.0	0.0	0	0	1	0	-0.985679	 -1.040585	-1.101161	1.2
11	0.671612	-0.473370	1.010	3.0	0.0	0	0	1	0	2.929931	 -0.593604	-0.766953	-1.3
12	0.963195	-0.473370	1.015	3.0	1.0	-1	1	1	0	0.757399	 -0.971819	-1.212564	1.29
											 •••	•••	
395	0.205078	0.258373	1.020	0.0	0.0	1	1	0	0	-0.101509	 1.091172	0.904090	-0.5
396	-0.553039	-0.473370	1.025	0.0	0.0	1	1	0	0	-0.922524	 1.366237	1.683910	-0.2
397	-2.302541	0.258373	1.020	0.0	0.0	1	1	0	0	-0.606749	 1.125555	1.126896	-0.6
398	-2.010957	-1.205114	1.025	0.0	0.0	1	1	0	0	-0.429915	 0.575424	1.349701	-0.4
399	0.380028	0.258373	1.025	0.0	0.0	1	1	0	0	-0.215188	 1.125555	1.572507	-0.5

dropped the columns if the missing value of this variable is greater than 44.

```
missing_values_count = X1.isna().sum()
columns_to_drop = missing_values_count[missing_values_count > 50].index
columns_to_drop
```

Index(['sod', 'pot', 'hemo', 'pcv', 'wbcc', 'rbcc'], dtype='object')

```
X1_dropped = X1.drop(columns=columns_to_drop)
X1_dropped
```

	age	bp	sg	al	su	rbc	pc	pcc	ba	bgr	bu	sc	htn	dr
0	-0.203139	0.258373	1.020	1.0	0.0	-1	1	0	0	-0.341498	-0.424804	-0.326574	1	1
1	-2.594124	-1.936857	1.020	4.0	0.0	-1	1	0	0	NaN	-0.781687	-0.396338	0	0
2	0.613295	0.258373	1.010	2.0	3.0	1	1	0	0	3.473064	-0.087748	-0.221928	0	1
3	-0.203139	-0.473370	1.005	4.0	0.0	1	0	1	0	-0.392022	-0.028268	0.126891	1	0
4	-0.028189	0.258373	1.010	2.0	0.0	1	1	0	0	-0.530963	-0.623073	-0.291692	0	0

	age	bp	sg	al	su	rbc	pc	pcc	ba	bgr	bu	sc	htn	dr
395	0.205078	0.258373	1.020	0.0	0.0	1	1	0	0	-0.101509	-0.167055	-0.448661	0	0
396	-0.553039	-0.473370	1.025	0.0	0.0	1	1	0	0	-0.922524	-0.523939	-0.326574	0	0
397	-2.302541	0.258373	1.020	0.0	0.0	1	1	0	0	-0.606749	-0.623073	-0.431220	0	0
398	-2.010957	-1.205114	1.025	0.0	0.0	1	1	0	0	-0.429915	-0.147229	-0.361456	0	0
399	0.380028	0.258373	1.025	0.0	0.0	1	1	0	0	-0.215188	-0.781687	-0.344015	0	0

```
numerical_cols = X1_dropped.select_dtypes(include=['number']).columns
column_means = X1_dropped[numerical_cols].mean()

X1_filled = X1_dropped.copy()
X1_filled[numerical_cols] = X1_filled[numerical_cols].fillna(column_means)
```

Replacing the missing value by the mean of the variables for numerical variables.

```
from sklearn.impute import SimpleImputer
```

```
obj_col = X1_filled.select_dtypes(include=['category']).columns.tolist()
cat_imputer = SimpleImputer(strategy='most_frequent',missing_values=np.nan)
X1_filled.loc[:, obj_col] = cat_imputer.fit_transform(X1_filled.loc[:, obj_col])
```

Replacing the missing value by the most frequency input of the variables for categorical variables.

X1_filled.isna().sum()

```
age 0
bp 0
sg 0
al 0
su 0
rbc 0
pc 0
```

0 рсс 0 ba 0 bgr 0 bu 0 sc 0 htn dm0 0 cad appet 0 0 pe 0 ane dtype: int64

The strategy we used for addressing the missing value is: 1. Replacing the missing value of the numerical variables by its variable means. 2. Using the most frequent input to replaced the missing value for categorical variables.

The reason we delete the variables which have missing value size greater than 50 is becasue that large missing value may indicate problems in data qualities. If we using the above stategy to addressing the missing value, the value we replaced may cause 100% accuracy when classified the model. Thus, the most value this variable has missed, the most inaccuracy that the variable will cause when we classified it. Also when the missing values is too large, lets say in "rbc", there are 152 missing values out of 400, then even though we train them and use althorithm to work on them, we will learn nothing from it.

In some algorithms, the missing values can be seen as a seperate category. For instance, in decision tree, KNN, etc. Moreover, when using the KNN classifier, the code can not train on "NA" response values.

6. **Outlier Analysis:** Implement your approach for identifying and managing outliers, or provide reasons for not addressing them.

```
for col in float_col:
    plt.figure(figsize=(6, 4))
```

```
sns.boxplot(x=X1.select_dtypes(include=['float64'])[col])
plt.xlabel(col)
plt.show()
```


-2

ó

2

bp

6

7. **Sub-group Analysis:** Explore potential sub-groups within the data, employing appropriate data science methods to find the sub-groups of patients and visualize the sub-groups. The sub-group analysis must not include the labels (for CKD patients and healthy controls).

```
#prof says use K-means
from sklearn.preprocessing import scale
from sklearn.decomposition import PCA, TruncatedSVD
from sklearn.cluster import KMeans
from scipy.cluster import hierarchy
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_samples, silhouette_score
from sklearn.metrics.cluster import rand_score
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import adjusted_rand_score
from sklearn.decomposition import PCA, TruncatedSVD, FactorAnalysis
import matplotlib.pyplot as plt
from sklearn.metrics import silhouette_score, silhouette_samples
from matplotlib import cm
```

from sklearn.impute import KNNImputer

```
y['class'] = y["class"].astype('category').cat.codes
```

```
class
0
      0
1
      0
      0
3
      0
4
      0
395
     1
396 	 1
397 	 1
398 1
399 	 1
```

```
km1 = KMeans(n_clusters=2, n_init=20, random_state=0)
km1.fit(y)
km1.labels_
```

```
# imputer = KNNImputer(n_neighbors=5)

# X_imputed = pd.DataFrame(imputer.fit_transform(X1), columns=X1.columns)

# X_imputed.head()

# X_imputed.isna().sum()
```

```
range_n_clusters = [2, 3, 4, 5, 6]
for n_clusters in range_n_clusters:
    km = KMeans(n_clusters=n_clusters, n_init=20, random_state=0)
    labels = km.fit_predict(X1_drop)

silhouette_avg = silhouette_score(X1_drop, labels)
    sample_silhouette_values = silhouette_samples(X1_drop, labels)
    fig, ax1 = plt.subplots(1, 1)
    fig.set_size_inches(18, 7)
    ax1.set_xlim([-0.3, 1])

y_lower = 10

for i in range(n_clusters):
    ith_cluster_silhouette_values = sample_silhouette_values[labels == i]
    ith_cluster_silhouette_values.sort()
```

```
size_cluster_i = ith_cluster_silhouette_values.shape[0]
        y_upper = y_lower + size_cluster_i
        # Use the colormap for coloring
        color = cm.nipy_spectral(float(i) / n_clusters)
        ax1.fill_betweenx(
            y=np.arange(y_lower, y_upper),
            x1=0,
            x2=ith_cluster_silhouette_values,
            facecolor=color,
            edgecolor=color,
            alpha=0.7,
        )
        ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i))
        y_lower = y_upper + 10
    ax1.set_title("The silhouette plot for various clusters")
    ax1.set_xlabel("The silhouette coefficient values")
    ax1.set_ylabel("Cluster label")
    ax1.axvline(x=silhouette_avg, color="red", linestyle="--")
    plt.title(
        "Silhouette analysis for KMeans clustering on sample data with n_clusters = %d"
        % n_clusters,
        fontsize=14,
        fontweight="bold",
    )
plt.show()
```



```
kmeans = KMeans(n_clusters=2, n_init=20, random_state=0)
labels = kmeans.fit_predict(y)
labels
```

```
pca_X = PCA()
X = pd.DataFrame(X1_filled, X1_filled.index, X1_filled.columns)
```

	pc1	pc2	pc3	pc4	pc5	pc6	pc7	pc8	pc9
age	0.227990	0.230990	0.295718	-0.031051	-0.575582	-0.656010	0.133337	0.002424	0.021785
bp	0.218657	0.195864	0.182461	-0.453550	0.717207	-0.375424	-0.036042	0.093023	0.039444
sg	-0.001662	0.000410	0.000035	0.000870	0.000296	-0.000717	-0.001237	0.000471	0.001026
al	0.553457	-0.487707	-0.482395	-0.347007	-0.140393	0.010337	0.180866	0.053118	0.087756
su	0.357932	-0.308756	0.426065	0.400909	0.206522	0.046562	0.154558	-0.475340	0.349520
rbc	-0.160721	-0.314032	-0.325148	0.422191	0.147226	-0.553442	-0.342586	0.238952	0.237721
pc	-0.174043	-0.281904	-0.051507	0.116840	0.165232	-0.277618	0.505481	-0.186919	-0.676205
pcc	0.071946	-0.044355	-0.032420	-0.030809	-0.042205	-0.030729	-0.036475	0.017117	0.033291
ba	0.043953	-0.029370	-0.034667	-0.031891	0.001018	-0.018845	-0.006731	-0.005783	0.039313

	pc1	pc2	pc3	pc4	pc5	pc6	pc7	pc8	pc9
bgr	0.337320	-0.236555	0.377282	0.237826	0.014970	0.158208	-0.269555	0.548677	-0.422632
bu	0.348920	0.344499	-0.344170	0.250931	0.056552	-0.049455	-0.410254	-0.465145	-0.346444
sc	0.266765	0.457515	-0.264006	0.424086	0.151383	0.091202	0.523546	0.375210	0.133144
htn	0.187133	0.065908	0.030741	-0.085847	-0.078187	-0.009468	-0.061016	0.053573	-0.091387
dm	0.180008	0.035135	0.115632	-0.019354	-0.062214	0.046096	-0.091541	0.012088	-0.044199
cad	0.061433	0.013987	0.014001	0.013954	-0.026179	-0.008642	0.008890	-0.007925	-0.000104
appet	0.094301	0.028995	-0.029747	-0.083728	-0.020176	0.013642	-0.047902	0.015283	-0.123596
pe	0.099282	0.005992	-0.074849	-0.057811	-0.050081	0.052186	-0.058089	-0.086412	0.013031
ane	0.076863	0.059741	-0.053879	-0.025595	0.035715	0.027753	-0.130954	-0.035215	-0.097805

pc_scores = pd.DataFrame(pca_X.fit_transform(X), columns=['pc1', 'pc2', 'pc3', 'pc4', 'pc5', 'pc11', 'pc12', 'pc13', 'pc14', 'pc15', 'pc16', 'pc17', 'pc18'], index=X.index)
pc_scores

	pc1	pc2	pc3	pc4	pc5	pc6	pc7	pc8	pc9
0	-0.159842	0.123121	0.340298	-1.076715	-0.028920	0.446685	0.604284	-0.200452	-0.546039
1	0.080324	-2.658949	-2.090773	-0.980571	-0.533556	2.899035	1.077587	0.010434	-0.315841
2	2.748405	-2.445865	1.908401	1.610708	0.460511	-0.398526	-0.557039	0.808465	-0.761516
3	1.597823	-1.458225	-2.420973	-0.957120	-0.769911	-0.046338	-0.110910	0.412311	0.653469
4	-0.378850	-1.060810	-0.899482	-0.559600	0.156071	-0.818241	0.426550	0.266685	0.309952
		•••					•••	•••	
395	-1.170494	-0.047818	0.180807	0.277176	0.311051	-0.960873	-0.289116	0.125640	-0.220852
396	-1.872246	-0.239130	-0.396054	0.399566	0.208608	-0.289936	0.067806	-0.182926	0.220656
397	-2.067094	-0.656654	-0.599016	0.127848	1.723678	0.628361	-0.291070	0.061005	0.098355
398	-2.076334	-0.721928	-0.895292	0.973608	0.546345	0.997310	-0.405810	-0.172560	-0.183314
399	-1.355503	-0.144376	0.373565	0.134861	0.189736	-1.053690	0.071790	0.388850	0.057877

var=pc_scores.var()
var

```
3.011006
pc1
        1.418726
pc2
        1.376123
рсЗ
        0.871790
pc4
рс5
        0.843322
        0.780234
pc6
        0.413204
pc7
        0.356221
pc8
        0.333497
рс9
pc10
        0.193763
pc11
        0.135449
        0.107061
pc12
pc13
        0.098757
        0.082265
pc14
        0.071608
pc15
       0.058557
pc16
pc17
        0.044481
        0.000018
pc18
dtype: float64
plt.figure(figsize=(7,5))
plt.plot([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
, pca_X.explained_variance_ratio_, '-o', label='Individual component')
plt.plot([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]
, np.cumsum(pca_X.explained_variance_ratio_), '-s', label='Cumulative')
plt.ylabel('Proportion of Variance Explained')
plt.xlabel('Principal Component')
plt.xlim(0.75,4.25)
plt.ylim(0,1.05)
plt.xticks([1,2,3,4,5,6])
```

plt.legend(loc=2);

pca_loading

	pc1	pc2	pc3	pc4	pc5	pc6	pc7	pc8	pc9
age	0.227990	0.230990	0.295718	-0.031051	-0.575582	-0.656010	0.133337	0.002424	0.021785
bp	0.218657	0.195864	0.182461	-0.453550	0.717207	-0.375424	-0.036042	0.093023	0.039444
sg	-0.001662	0.000410	0.000035	0.000870	0.000296	-0.000717	-0.001237	0.000471	0.001026
al	0.553457	-0.487707	-0.482395	-0.347007	-0.140393	0.010337	0.180866	0.053118	0.087756
su	0.357932	-0.308756	0.426065	0.400909	0.206522	0.046562	0.154558	-0.475340	0.349520
rbc	-0.160721	-0.314032	-0.325148	0.422191	0.147226	-0.553442	-0.342586	0.238952	0.237721
pc	-0.174043	-0.281904	-0.051507	0.116840	0.165232	-0.277618	0.505481	-0.186919	-0.676205
pcc	0.071946	-0.044355	-0.032420	-0.030809	-0.042205	-0.030729	-0.036475	0.017117	0.033291
ba	0.043953	-0.029370	-0.034667	-0.031891	0.001018	-0.018845	-0.006731	-0.005783	0.039313
bgr	0.337320	-0.236555	0.377282	0.237826	0.014970	0.158208	-0.269555	0.548677	-0.422632

	pc1	pc2	pc3	pc4	pc5	pc6	pc7	pc8	pc9
bu	0.348920	0.344499	-0.344170	0.250931	0.056552	-0.049455	-0.410254	-0.465145	-0.346444
sc	0.266765	0.457515	-0.264006	0.424086	0.151383	0.091202	0.523546	0.375210	0.133144
htn	0.187133	0.065908	0.030741	-0.085847	-0.078187	-0.009468	-0.061016	0.053573	-0.091387
dm	0.180008	0.035135	0.115632	-0.019354	-0.062214	0.046096	-0.091541	0.012088	-0.044199
cad	0.061433	0.013987	0.014001	0.013954	-0.026179	-0.008642	0.008890	-0.007925	-0.000104
appet	0.094301	0.028995	-0.029747	-0.083728	-0.020176	0.013642	-0.047902	0.015283	-0.123596
pe	0.099282	0.005992	-0.074849	-0.057811	-0.050081	0.052186	-0.058089	-0.086412	0.013031
ane	0.076863	0.059741	-0.053879	-0.025595	0.035715	0.027753	-0.130954	-0.035215	-0.097805

```
PCA_var=sum(pca_X.explained_variance_ratio_[0:2])
PCA_var
```

0.4344542793757311

```
plt.figure(figsize=(8, 6))

principal_components = pca_X.fit_transform(X)
kmeans = KMeans(n_clusters=2, n_init=20, random_state=0)
kmeans.fit(principal_components)
cluster_labels = kmeans.labels_

# Plot data points
plt.scatter(principal_components[:, 0], principal_components[:, 1], c=cluster_labels, cmap='vi:

# Plot cluster centers
plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], marker='x', c='red',

plt.title('K-means Clustering Visualization (k=2)')
plt.xlabel('Principal Component 1')
plt.ylabel('Principal Component 2')
```

```
plt.legend()
plt.grid(True)
plt.show()
```



```
y_1d = np.ravel(y)
adjusted_Rand_index = adjusted_rand_score(y_1d, cluster_labels)
adjusted_Rand_index
```

0.2663417112554181

8. **Data Splitting:** Segregate 30% of the data for testing, using a random seed of 1. Use the remaining 70% for training and model selection.

9. Classifier Choices: Identify the two classifiers you have chosen and justify your selections.

Algorithm 1: Dicision tree

```
cs_dt = DecisionTreeClassifier(
    max_depth =30,
    random_state=1
)
```

```
cs_dt.fit(X_train, y_train)
```

DecisionTreeClassifier(max_depth=30, random_state=1)

```
fig, axes = plt.subplots(
    nrows = 1,ncols = 1,figsize = (3,3), dpi=300
    )

plot_tree(
    cs_dt,
    max_depth= 30,
    feature_names = X_train.columns.tolist(),
```

```
class_names=['notckd', 'ckd'],
filled = True
)
```

```
Text(0.21428571428571427, 0.75, 'sg <= 1.017 \ngini = 0.351 \nsamples = 132 \nvalue = [30, 102] \norm{1}{3}
 Text(0.14285714285714285, 0.5833333333333333333, 'gini = 0.0 \nsamples = 23 \nvalue = [23, 0] \nclaim [23, 24] \nclaim [23, 24] \nclaim [23, 24] \nclaim [24, 25] \nclaim [25, 25] \nclaim [25,
 Text(0.2857142857142857, 0.58333333333333333334, 'al <= 0.5\ngini = 0.12\nsamples = 109\nvalue =
 Text(0.14285714285714285, 0.25, 'pc <= 0.0\ngini = 0.219\nsamples = 8\nvalue = [1, 7]\nclass:
 Text(0.2857142857142857, 0.25, 'gini = 0.0\nsamples = 95\nvalue = [0, 95]\nclass = ckd'),
 Text(0.35714285714285715, 0.41666666666666667, 'gini = 0.0\nsamples = 6\nvalue = [6, 0]\nclass
 Text(0.7142857142857143, 0.75, 'sg <= 1.022 \ngini = 0.04 \nsamples = 148 \nvalue = [145, 3] \ncline{1}
 Text(0.5714285714285714, 0.583333333333333334, 'age <= 1.605\ngini = 0.014\nsamples = 140\nvalue
 Text(0.5, 0.4166666666666667, 'gini = 0.0\nsamples = 136\nvalue = [136, 0]\nclass = notckd'),
 Text(0.6428571428571429, 0.41666666666666667, 'appet <= 0.5\ngini = 0.375\nsamples = 4\nvalue =
 Text(0.5714285714285714, 0.25, 'gini = 0.0\nsamples = 1\nvalue = [0, 1]\nclass = ckd'),
 Text(0.7142857142857143, 0.25, 'gini = 0.0\nsamples = 3\nvalue = [3, 0]\nclass = notckd'),
 Text(0.7857142857142857, 0.41666666666666667, 'gini = 0.0\nsamples = 2\nvalue = [0, 2]\nclass
 Text(0.9285714285714286, 0.41666666666666667, 'gini = 0.0\nsamples = 6\nvalue = [6, 0]\nclass
```



```
pred = cs_dt.predict(X_test)
pred[:5]
```

array([0, 0, 0, 0, 0], dtype=int8)

```
cm = pd.DataFrame(confusion_matrix(y_test, pred), index=['No', 'Yes'], columns=['No', 'Yes'])
cm.index.name = 'True'
cm.columns.name = 'Predicted'
cm
```

Predicted	No	Yes
True		
No	72	3
Yes	1	44

print(classification_report(y_test, pred))

pr	recision	recall	il-score	support
0	0.99	0.96	0.97	75
1	0.94	0.98	0.96	45

```
0.97
                                                120
   accuracy
                  0.96 0.97
                                                120
                                     0.96
  macro avg
weighted avg
                  0.97
                            0.97
                                     0.97
                                                120
path = cs_dt.cost_complexity_pruning_path(
   X_train,
   y_train
)
ccp_alphas, impurities = path.ccp_alphas, path.impurities
clfs = []
```

```
clfs = []
for ccp_alpha in ccp_alphas:
    clf = DecisionTreeClassifier(
        random_state=0,
        ccp_alpha=ccp_alpha
        )
    clf.fit(X_train, y_train)
    clfs.append(clf)
```

```
depth = [clf.tree_.max_depth for clf in clfs]
depth
```

```
[5, 4, 3, 3, 2, 1, 0]
```

```
test_score = [clf.score(X_test, y_test) for clf in clfs]
```

```
plt.plot(depth, test_score)
plt.xlabel('Depth')
plt.ylabel('Accuracy')
plt.show()
```



```
cs_dt_new = DecisionTreeClassifier(
   max_depth =3,
   random_state=1
)
```

```
cs_dt_new.fit(X_train, y_train)
```

DecisionTreeClassifier(max_depth=3, random_state=1)

```
plot_tree(
    cs_dt_new,
    max_depth= 3,
    feature_names = X_train.columns.tolist(),
    class_names=['notckd', 'ckd'],
    filled = True
    )
```

```
[Text(0.4230769230769231, 0.875, 'sc <= -0.318\ngini = 0.469\nsamples = 280\nvalue = [175, 105]
Text(0.15384615384615385, 0.625, 'sg <= 1.017\ngini = 0.351\nsamples = 132\nvalue = [30, 102]
Text(0.07692307692307693, 0.375, 'gini = 0.0\nsamples = 23\nvalue = [23, 0]\nclass = notckd')
Text(0.23076923076923078, 0.375, 'al <= 0.5\ngini = 0.12\nsamples = 109\nvalue = [7, 102]\ncl.
Text(0.15384615384615385, 0.125, 'gini = 0.019\nsamples = 103\nvalue = [1.0, 102.0]\nclass = 1000\nclass = 1000\n
```



```
pred_new = cs_dt_new.predict(X_test)
pred_new[:5]
```

array([0, 0, 0, 0], dtype=int8)

```
cm_new = pd.DataFrame(confusion_matrix(y_test, pred_new), index=['No', 'Yes'], columns=['No',
cm_new.index.name = 'True'
cm_new.columns.name = 'Predicted'
cm_new
```

Predicted	No	Yes
True		
No	72	3
Yes	1	44

print(classification_report(y_test, pred_new))

	precision	recall	f1-score	support
0	0.99	0.96	0.97	75
1	0.94	0.98	0.96	45
accuracy			0.97	120
macro avg	0.96	0.97	0.96	120
weighted avg	0.97	0.97	0.97	120

Algorithm 2: KNN

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn import neighbors
from sklearn.preprocessing import scale
from sklearn.model_selection import train_test_split
from sklearn import metrics
```

```
x2_train, x2_test, y2_train, y2_test = train_test_split(
   X1_filled,
   y,
   test_size = 0.3,
   random_state = 0,
   stratify = y
)
```

```
k_range = range(1, 15)
scores_r = []

for k in k_range:
    knn_r = neighbors.KNeighborsClassifier(n_neighbors=k)
    y_train_flat = np.ravel(y2_train)
    knn_r.fit(x2_train, y_train_flat)
    y_r_pred = knn_r.predict(x2_test.values)
    scores_r.append(round(metrics.accuracy_score(y2_test, y_r_pred), 2))
```

```
plt.plot(k_range, scores_r)
plt.xlabel('K')
plt.ylabel('test set accuracy')
plt.xticks(range(1,15))
plt.show()
```



```
knn3 = neighbors.KNeighborsClassifier(
    n_neighbors = 2,
    algorithm = 'brute'
    )

y_train_flat = np.ravel(y2_train)

knn3.fit(x2_train, y_train_flat)
```

KNeighborsClassifier(algorithm='brute', n_neighbors=2)

```
pred3 = knn3.predict(x2_test.values)
pred3[1:5]
```

array([0, 0, 0, 0], dtype=int8)

```
round(metrics.accuracy_score(y2_test, pred3), 2)
```

0.99

```
conf_matrix = confusion_matrix(y2_test, pred3)
print(conf_matrix)
```

```
[[74 1]
[ 0 45]]
```

10. **Performance Metrics:** Outline the two metrics for comparing the performance of the classifiers.

```
cm = pd.DataFrame(confusion_matrix(y_test, pred), index=['No', 'Yes'], columns=['No', 'Yes'])
cm.index.name = 'True'
cm.columns.name = 'Predicted'
print('Confusion Matrix of Decision Tree:')
cm
```

Confusion Matrix of Decision Tree:

Predicted	No	Yes
True		
No	72	3
Yes	1	44

For the desicion tree classifier confusion matrix, there are 72 observations been correctly predicted as No, and 44 variables been predicted as Yes truely. Remindered that the y variable has two input, one is no, means this person do not have chronic kidney disease; the other one is yes, means the person has chronic kidney disease.

```
conf_matrix = pd.DataFrame(confusion_matrix(y2_test, pred3), index=['No', 'Yes'], columns=['No
conf_matrix.index.name = 'True'
conf_matrix.columns.name = 'Predicted'
print('Confusion Matrix of KNN:')
conf_matrix
```

Confusion Matrix of KNN:

Predicted	No	Yes
True		
No	74	1
Yes	0	45

73 observations without chronic kidney disease in KNN classifier been corectly predicted as no, and 45 person with chronic kidney disease are correctly predicted as yes.

By comparision of these two confussion matrixs, since the KNN classifier has number of observations of both person with chronic kidney disease and person without chronic kidney disease been predicted truely than the number of observations been predicted by the decision tree classifier. Thus, we considered KNN classifier better than decision tree. Moreover, compare the accuracy score of both classifiers, KNN has 98% accuracy which is greater than decision tree with 97% accuracy.

11. **Feature Selection/Extraction:** Implement methods to enhance the performance of at least one classifier in (9). The answer for this question can be included in (12).

We want to do feature selection for decision tree.

```
feature_importances = cs_dt.feature_importances_

sorted_indices = feature_importances.argsort()[::-1]

sorted_feature_names = X_train.columns[sorted_indices]

sorted_importances = feature_importances[sorted_indices]
```

```
sns.barplot(x = sorted_importances, y = sorted_feature_names)
plt.show()
```


12. Classifier Comparison: Utilize the selected metrics to compare the classifiers based on the test set. Discuss your findings (at least two statements).

```
conf_matrix = confusion_matrix(y2_test, pred3)
print("KNN Result: ")
print(conf_matrix)

print("Decision Tree Result: ")
cm = pd.DataFrame(confusion_matrix(y_test, pred), index=['No', 'Yes'], columns=['No', 'Yes'])
cm.index.name = 'True'
cm.columns.name = 'Predicted'
print(cm)
```

```
KNN Result:
[[74 1]
  [0 45]]

Decision Tree Result:
Predicted No Yes

True

No 72 3

Yes 1 44
```

From the above confusion matrix, we can observe that KNN has a better result.

13. **Interpretable Classifier Insight:** After re-training the interpretable classifier with all available data, analyze and interpret the significance of predictor variables in the context of the data and the challenge (at least two statements).

```
from sklearn.metrics import accuracy_score, classification_report

print("Accuracy:", accuracy_score(y_test, y_pred))

print(classification_report(y_test, y_pred))

plt.figure(figsize=(20,10))

plot_tree(clf, filled=True,feature_names = X_train.columns.tolist(),class_names=['notckd', 'ckc']

plt.show()
```

Accuracy: 0.966666666666667

support	f1-score	recall	precision	
75	0.97	0.96	0.99	0
45	0.96	0.98	0.94	1
120	0.97			accuracy
120	0.96	0.97	0.96	macro avg
120	0.97	0.97	0.97	weighted avg


```
cm = pd.DataFrame(confusion_matrix(y_test, y_pred), index=['No', 'Yes'], columns=['No', 'Yes']
cm.index.name = 'True'
cm.columns.name = 'Predicted'
cm
```

Predicted	No	Yes
True		
No	72	3
Yes	1	44

```
fea_imp = clf.feature_importances_
sorted_indices = fea_imp.argsort()[::-1]
sorted_feature_names = X_train.columns[sorted_indices]
sorted_importances = fea_imp[sorted_indices]
sns.barplot(x = sorted_importances, y = sorted_feature_names)
plt.ylabel("variables")
plt.show()
```


We have retrain the model with a different criteria and less depth. This less complicated model give as a better result. We also find features that are significant to the model.

14. [Bonus] Sub-group Improvement Strategy: If sub-groups were identified, propose and implement a method to improve one classifier performance further. Compare the performance of the new classifier with the results in (12).

We can use resampling to improve one classifier performance further, since we have too many missing values in this sample data.

```
poly = PolynomialFeatures(degree=3, interaction_only=True)

X_polytrain = poly.fit_transform(X_train)

X_polytest = poly.transform(X_test)

logit_model = LogisticRegression()

logit_model.fit(X_polytrain, y_train)

y_polypred = logit_model.predict(X_polytest)

accuracy = accuracy_score(y_test, y_polypred)

accuracy
```

0.9833333333333333

Improved Model Accuracy is 0.9833333333333333.

15. **Team Contributions:** Document each team member's specific contributions related to the questions above.

Ling Dai(400220798): Question Question 1-6,8,9,14

Shujia Zhang(400390028): Question 2, 5, 7,10,11,12,13

Yunxin Li(400323756):3,4, 10, 11, 12, 13

All team members are participated in this project actively. We have a lot of disscusion and communication during the projects, so most of the code are actually done together offline in school.

16. **Link** to the public GitHub repository.

https://github.com/dail9/3da-assignment6/blob/main/assignment6.ipynb

Reference

Rubini, Soundarapandian, L., and P. Eswaran. 2015. "Chronic Kidney Disease." UCI Machine Learning Repository.