COMPUTER SCIENCE & IT

Lecture No: 04

Sequential Circuit

Counters and its barries

Asynchronous Counter durign

Counters	Cont.		I di

Clear and Preset input

griput per FF

Clear input or CLR PIN input: 9t is asynchronous in nature and when it is activated then expective of Clock i/P & inputs it will reset (clear) the O/P Q.

> 9 mput of FF

Préset input or PRE PIN input: 9t is asynchronous in nature and when it is activated then irrespective of clock if & infents it will set the 0/1 Q.

Low Enable and High Enable CLR and PRE input:

Designing of Asynchronous Counter with MOD no. other than 2ⁿ

- BCD Counter Design:
 - BCD Counter Counts \rightarrow 0-1-2-3-4-5-6-

-> MOD-10 Counter

Design:

• Table: fux/10 fux/10 fux/10 fux/2

acio.es.	1001-11-	7,55,7-17		10017-
CLK	Q_3	Q_2	Q_1	Q_0
Start	0	0	0	0
18+	0	0	0	1
2 nd	0	0		0
3 rd	0	0	1	
4th	O)	6	0
5 th	O		O	1
6 th	Ö	1)	0
7th	0	1		
8th	t	0	0	0

MOD-12 Wy country (0-11) $(12) \rightarrow CLR$ Imp:

. BCD counter is MOD-10 Counter but not all MOD-10 Counters are BCD counter.

up counter

A Counter is designed as given below:

Then the counter is

- (a) MOD-6 up counter
- (c) MOD-5 up counter

MOD-5 down counter

 $(d)^{\times}$

MOD-6 down counter

A sequential circuit is designed as shown:

For above circuit to work as MOD-5 counter, the logic circuit will be

(a) 2-input OR GATE

- (b) X
- 2-input AND GATE

- (c) 2-input NAND GATEX
- (d)

2-input NOR GATEX

down counter

A sequential circuit is as given below:

The circuit works as:

- (a) MOD-5 down counter
- (c) MOD-6 down counter

(b)

MOD-4 down counter

(d)

MOD-5 up counter

We have a MOD-32 down counter. If its starting state is $(3)_{10}$ then after application of 72 clock pulses the count of the counter will be

$$(27)_{10}$$
.

$$(3)_{10} \xrightarrow{2\times32} (3)_{10} \xrightarrow{3\text{QK}} (0)_{10} \xrightarrow{1\text{QK}} (31)_{10} \xrightarrow{4\text{QK}} (27)_{10}$$

In module-6 ripple counter shown in figure, the output of 2-input gate is used to clear the J-K FF.

gate

We have 10-bit ripple counter which is counting in up sequence. Two most significant bits are NAND together to generate an output y. Output y is periodic waveform with $T_{\rm ON}$ (time duration for which y is high in one period) 15000 μ sec. Then the clock frequency (kHz) $\underline{> 1 \ge 1 \le 100}$

$$\begin{array}{c} MOD = 2^{10} = 1024 \longrightarrow \boxed{0 - 1023} \end{array}$$

$$fuk = \frac{256}{5} KH_3$$

= 51.2 KH3

A sequential circuit is as given below:

If starting state of the counter $Q_zQ_yQ_x$ is $(101)_2$ then after 251 CLK pulses output $Q_zQ_yQ_x$ is $\begin{pmatrix} & & \\ & & \end{pmatrix}_{10}$.

3rd 4th 6th 0 7th 8th 0

B-dom

Max. Clock Frequency:

Pw

Lets take a 4-bit asynchronous counter:

Ripple Counter

Lets understand the worst case delay and max clock frequency:

Topic: 2 Min Summary

Thank you

Soldiers!

