ZADANIA Z TOPOLOGII ALGEBRAICZNEJ 1

LISTA 6. Klasyfikacje nakryć, reprezentacje permutacyjne, nakrycia normalne, działania nakrywające.

- 1. Znajdź wszystkie spójne nakrycia przestrzeni $(S^1 \times S^1) \cup (D^2 \times \{s_0\})$.
- 2. Niech a i b będą generatorami grupy $\pi_1(S^1 \vee S^1)$ odpowiadającymi poszczególnym S^1 -skadnikom bukietu.
 - (1) Niech Θ_4 będzie grafem o dwóch wierzchołkach, i o czterech krawędziach, z których każda łączy oba te wierzchołki. Opisz odwzorowanie nakrycia $p:\Theta_4 \to S^1 \vee S^1$ i uzasdanij, że pogrupa w grupie wolnej $\pi_1(S^1 \vee S^1) = F_{a,b}$ odpowiadająca temu nakryciu to podgrupa Q składająca się z wszystkich elementów reprezentowanych słowami nad alfabetem a, b, a^{-1}, b^{-1} o parzystej długości.
 - (2) Znajdź nakrycie bukietu $S^1 \vee S^1$ odpowiadające podgrupie normalnej generowanej przez elementy a^2, b^2 i (ab^4) , wraz z uzasadnieniem.
- 3. Niech $p: \widetilde{X} \to X$ będzie spójnym, lokalnie drogowo spójnym i półlokalnie jedospójnym nakryciem, i niech ρ będzie reprezentacją permutacyjną tego nakrycia, jako działaniem grupy podstawowej $\pi(X, x_0)$ przez permutacje na włóknie $p^{-1}(x_0)$.
 - (1) Pokaż, że komponenty spójności nakrycia \widetilde{X} odpowiadają orbitom działania grupy $\pi_1(X, x_0)$ na $p^{-1}(x_0)$. W szczególności, \widetilde{X} jest spójne dokładnie wtedy gdy działanie $\pi_1(X, x_0)$ na $p^{-1}(x_0)$ jest tranzytywne.
 - (2) Niech $\tilde{x}_0 \in p^{-1}(x_0)$, i niech \tilde{X}_0 będzie komponentą \tilde{X} zawierającą \tilde{x}_0 . Uzasadnij, że $p|_{\tilde{X}_0}: (\tilde{X}_0, \tilde{x}_0) \to (X, x_0)$ jest nakryciem. Pokaż, że podgrupa w $\pi_1(X, x_0)$ odpowiadająca temu nakryciu pokrywa się ze stabilizatorem \tilde{x}_0 , tzn. z podgrupą złożoną z tych wszystkich elementów $g \in \pi_1(X, x_0)$, dla których $\rho(g)(\tilde{x}_0) = \tilde{x}_0$.
- 4. Znajdź wszystkie spójne 2-krotne i 3-krotne nakrycia bukietu $S^1 \vee S^1$ z dokładnością do izomorfizmu nakryć bez punktów bazowych, a także z dokładnością do izomorfizmu z punktem bazowym. Zrób to dwoma sposonami: (1) ręcznym elementarnym sposobem ad hoc, (2) korzystając z permutacyjnych reprezentacji nakryć o ustalonej krotności.
- 5. Przypomnijmy, że płaszczyzna rzutowa RP^2 ma grupę podstawową dwuelementową, $\pi_1RP^2=Z_2$, i że jej spójnym dwukrotnym nakryciem jest sfera S^2 . Znajdź wszystkie spójne nakrycia bukietu $RP^2\vee RP^2$ dwóch płaszczyzn rzutowych. Które spośród tych nakryć nie sa normalne?
- 6. Skonstruuj nienormalne (nieregularne) nakrycia butelki Kleina torusem oraz butelki Kleina butelka Kleina.
- 7. Niech X będzie spójną, lokalnie drogowo spójną i półlokalnie jednospójną przestrzenią. Powiemy, że spójne nakrycie $\widetilde{X} \to X$ jest abelowe, jeśli jest normalne i ma abelową grupę deck-transformacji. Uzasadnij, że X posiada takie abelowe nakrycie, które jest nakryciem każdego innego abelowego nakrycia X, i że nakrycie o takiej własności jest jednoznaczne z dokładnością do izomorfizmu. Będziemy je nazywać uniwersalnym abelowym nakryciem. Opisz abelowe uniwersalne nakrycia bukietów $S^1 \vee S^1$ oraz $S^1 \vee S^1 \vee S^1$. Opisz też wszystkie abelowe nakrycia bukietu płaszczyzn rzutowych $RP^2 \vee RP^2$, w tym abelowe nakrycie uniwersalne.

8. Mając dane nakrywające działania grupy G_1 na przestrzeni X_1 oraz grupy G_2 na przestrzeni X_2 , rozważmy działanie $G_1 \times G_2$ na $X_1 \times X_2$ zdefiniowane przez

$$(g_1, g_2)(x_1, x_2) := (g_1(x_1), g_2(x_2)).$$

Uzasadnij, że jest to także działanie nakrywające. Pokaż, że iloraz $(X_1 \times X_2)/(G_1 \times G_2)$ jest homeomorficzny z produktem ilorazów $(X_1/G_1) \times (X_2/G_2)$.

- 9. Mając dane nakrywające działanie grupy G na spójnej lokalnie drogowo spójnej przestrzeni X, każda podgrupa H < G wyznacza nakrycia $X \to X/H$ oraz $X/H \to X/G$. Uzasadnij, że
 - (a) każde spójne nakrycie pośrednie pomiędzy X i X/G jest izomorficzne (jako nakrycie X/G) z $X/H \to X/G$, dla pewnej podghrupy H < G;
 - (b) dwa nakrycia X/H_1 i X/H_2 jak wyżej są izomorficzne dokładnie wtedy gdy podgrupy H_i są sprzężone w G;
 - (c) nakrycie $X/H \to X/G$ jest normalne dokładnie wtedy gdy H jest normalną podgrupą w G, a grupą deck-transformacji tego nakrycia jest wtedy grupa ilorazowa G/H.
- 10. Dane jest nakrycie $p: \widetilde{X} \to X$ spójnej lokalnie drogowo spójnej półlokalnie jednospójnej przestrzeni X, z reprezentacją permutacyjną $\rho_p: \pi_1(X, x_0) \to \operatorname{Sym}[p^{-1}(x_0)]$. Niech $f: (Y, y_0) \to (X, x_0)$ będzie odwzorowaniem ciągłym określonym na spójnej lokalnie drogowo spójnej półlokalnie jednospójnej przestrzeni Y.
 - (1) Uzasadnij, że włókno $[f^*(p)]^{-1}(y_0)$ cofniętego nakrycia $f^*(p): f^*(\widetilde{X}) \to Y$ ma naturalne utożsamienie z włóknem $p^{-1}(x_0)$.
 - (2) Opisz reprezentację prezentacyjną $\rho_{f^*(p)}: \pi_1(Y, y_0) \to \operatorname{Sym}[f^*(p)^{-1}(y_0)]$ cofniętego nakrycia $f^*(p): f^*(\widetilde{X}) \to Y$, w terminach reprezentacji ρ_p , korzystając z utożsamienia włókien z punktu (1).