CSE 233 Lab-4 Mehmet Hüseyin YILDIZ 200104004095

Why Thevenin and Norton Theorems are used in the circuits?

Thevenin and Norton Theorems used circuits to simplify. If we don't want to calculate and deal with a complex part of the circuit. We apply Thevenin and Norton theorems.

How Norton current and Thevenin voltage are found in a circuit?

We find the R equivalent between nodes by making all independent sources off. We calculate or measure the voltage between 2 open nodes. This is thevenin voltage. Then calculate current using voltage or measure current between 2 open nodes. This is norton current.

$R_{\rm L}$ for the maximum power transfer is 3.3k ohm.

Thevenin Equivalent Circuit

Norton Equivalent Circuit

 I_N Norton short circuit current (equivalent to current in norton circuit)

 $R_L = 0.1R_{Th}$

 $R_L=0.1R_{Th}$

$R_L = 10R_1$	Γŀ
---------------	----

Load Res	Meas I_{RL} (mA)	Meas V_{RL} (V)	P_{RL}	P_{Rth}	I_{RL} (mA)	V_{RL}	P_{RL}	P_{Rth}
$R_L = 0.1R_{Th}$,	(v)	(11100)	(11100)		0.727		16
$R_L = R_{Th}$					1.212	4	4.848	4.848
$R_L = 10R_{Th}$					0.220386	7.273	1.6	0.16