Integer Programming Formulation for the Graceful Coloring Problem

Given a simple graph G = (V, E) with vertex set $V = \{v_1, v_2, \dots, v_n\}$, we create an integer variable x_i for each vertex $v_i \in V$, where $x_i \in \mathbb{N}_{\geq 1}$. The value of variable x_i is the color of vertex v_i .

The ILP formulation is, thus, given below.

```
\begin{array}{lll} \text{minimize} & z \\ \text{subject to} & x_i & \leq z & \text{for all } v_i \in V, \\ & |x_i - x_j| & \geq 1 & \text{for all } v_i, v_j \in V \text{ such that } d(v_i, v_j) \leq 2 \text{ and } i \neq j, \\ & |(x_i + x_k) - 2x_j| \geq 1 & \text{for all } v_i v_j, v_j v_k \in E, i \neq k, i \neq j, k \neq j, \\ & x_i & \in \mathbb{N}_{\geq 1} & \text{for all } v_i \in V, \\ & z & \in \mathbb{N}_{> 1} \end{array}
```

In order to linearize the constraints $|x_i - x_j| \ge 1$, we first add a binary variable $b_{ij} \in \{0, 1\}$ for all $v_i, v_j \in V$ such that $d(v_i, v_j) \le 2$ and $i \ne j$. Moreover, we remove each constraint $|x_i - x_j| \ge 1$ and in its place we add two new constraints:

- Constraint 1: $x_i x_i \ge 1 M \cdot (1 b_{ij})$
- Constraint 2: $x_i x_i \ge 1 M \cdot b_{ij}$

Here, M is a sufficiently large constant that bounds the possible differences between x_i and x_j . Since x_i and x_j are vertex labels, we know that $1 \le x_i, x_j \le 2\Delta^2 - \Delta + 1$, which implies that $|x_i - x_j| \le |(2\Delta^2 - \Delta + 1) - 1|$. Therefore, a good choice for M is $M = 2\Delta^2 - \Delta + 1$.

Note that if $b_{ij} = 0$, then $x_j - x_i \ge 1$, which implies that $x_j > x_i$. In this case, $x_i - x_j \ge 1 - M$. With $M = 2\Delta^2 - \Delta + 1$, the first constraint is always fulfilled.

On the other hand, if $b_{ij} = 1$, then $x_i - x_j \ge 1$, which implies that $x_i > x_j$. In this case, $x_j - x_i \ge 1 - M$. With $M = 2\Delta^2 - \Delta + 1$, the second constraint is always fulfilled. In both cases, we obtain that $|x_i - x_j| \ge 1$, as required.

In order to linearize the constraints $|(x_i - x_k) - 2x_j| \ge 1$, we first add a binary variable $d_{ijk} \in \{0, 1\}$ for all $v_i v_j, v_j v_k \in E$. Moreover, we remove each constraint $|(x_i - x_k) - 2x_j| \ge 1$ and in its place we add two new constraints:

- Constraint 1: $((x_i + x_k) 2x_i) \ge 1 L \cdot (1 d_{ijk})$
- Constraint 2: $(2x_i (x_i + x_k)) \ge 1 L \cdot d_{ijk}$

Here, L is a sufficiently large constant that bounds the possible differences between $(x_i + x_k)$ and $2x_j$. Since x_i, x_j, x_k are vertex labels, we know that $1 \le x_i, x_j, x_k \le 2\Delta^2 - \Delta + 1$. This fact and the fact that $x_i \ne x_k$ imply that $3 \le x_i + x_k \le 4\Delta^2 - 2\Delta + 1$. Moreover, we obtain that $2 \le 2x_j \le 4\Delta^2 - 2\Delta + 2$. These facts imply that $|(x_i + x_k) - 2x_j| \le (4\Delta^2 - 2\Delta + 1) - 2 = 4\Delta^2 - 2\Delta - 1$. Therefore, a good choice for L is $L = 4\Delta^2 - 2\Delta$.

Note that if $d_{ijk} = 0$, then the second constraint is satisfied, that is, $(2x_j - (x_i + x_k)) \ge 1$, which implies that $2x_j > x_i + x_k$. With $L = 4\Delta^2 - 2\Delta$, the first constraint is always fulfilled.

On the other hand, if $d_{ijk} = 1$, then the first constraint is satisfied, that is, $((x_i + x_k) - 2x_j) \ge 1$, which implies that $x_i + x_k > 2x_j$. With $L = 4\Delta^2 - 2\Delta$, the second constraint is always fulfilled. In both cases, we obtain that $|x_i - x_j| \ge 1$, as required.