TEMA №12

Траектории

Съдържание

Тема 12: Траектории

- Движения по окръжност и дъга
- Движения по 3D равнина и 3D повърхнина
- Движения по цилиндър, конус и сфера
- Движения по зададена траектория

Кръгови траектории

Роля в компютърната графика

- Моделиране на всички въртящи движения (като стрелки на часовник)
- Моделиране на движение около обект (като спътник около планета)
- Моделиране на въртене на сцената (като пиле в микровълнова печка)
- Движение вътре във виртуалната сцена

Движение по окръжност

Свързани пространства

- Линейно движение в декартово
- Линейно движение в полярно
- Кръгово движение в декартово

Посока на движение

– Поради своята едномерност има само две посоки

Посоката зависи от

- Промяната на ъгъла: $+\Delta lpha$ или $-\Delta lpha$
- Координатните оси: XY или YX
- Трансформацията: $\sin \alpha$ или $\cos \alpha$
- Знака на радиуса: $R_x > 0$ или $R_x < 0$

Скорост на движение

Ъглова скорост ϕ

- Промяна на ъгъла за една стъпка
- Не зависи от радиуса на окръжността

Линейна скорост v

- Изминато разстояние за една стъпка
- Зависи от ъгловата скорост
- Зависи от радиуса

Връзка между скоростите

- При ъглова скорост $oldsymbol{arphi}$ и радиус R
- Линейната скорост е $v = R \varphi$ (при ъгли измерени в радиани)

Можем да променим

– Всяка от двете скорости, запазвайки другата

Примери

Варианти със скорости

- Противоположни посоки
- Равни ъглови, но различни линейни
- Равни линейни, но различни ъглови

По-сложен пример

 Шест сфери по противоположни кръгови траектории в три взаимно перпендикулярни равнини

Още примери

- Сортиране по метода на мехурчето
- Ефект на Моаре́ с радиални линии
- Модел на Слънчевата система

"Bubble Sort" http://youtu.be/gWkvvsJHbwY

"Moire Patterns - Moving Radials" http://youtu.be/LU6plQYJAV4

"Solar System" http://youtu.be/8KYvOdYzlys

Относително движение

Център на въртене не е (0,0)

- Композиция на транслация и въртене
- Допуска се променлив център

Примери

- Спътник около Луната около Земята около Слънцето
- Засилване на люлка с люлеене на краката

Вложено въртене

Движение около въртящ се център

- Представяне като сума от вектори $p(t) = \sum \vec{v}_i(t)$, при $\vec{v}_i(t) = (R_i \cos \alpha_i(t)$, $R_i \sin \alpha_i(t))$

Примери

Примери за вложени въртения

- Въртене около въртящ се обект
- Слънце + Земя + рояк от *n* на брой спътника

Примери с виртуални механизми

- Механизъм за нефроида
- Механизъм за лемниската на Бернули
- Механизъм за хиперболоид

"Nephroidograph 2" http://youtu.be/KHWMnc2wh74

"Lemniscatograph" http://youtu.be/-znDMqdKWbk

"Hyperboloidograph" http://youtu.be/n83oRmdNcYQ

Варианти на движение

Движение по елипса

- Аналогично на движение по окръжност
- Два различни радиуса по X и по Y

Движение по дъга

- Аналогично на движение по окръжност
- Ъгълът е в определен интервал

Люлеене

- Движение напред-назад по дъга
- В декартовото пространство $R\alpha$ това е движение напред-назад по отсечка

Подобно на движение по отсечка

- Реализира се чрез вектор-ъгъл
- Линейна комбинация на ъгли
- Или параметрично

Реализация

Реализация на два модела

- Петорно махало
- Младеж, девойка и ... муха
 (да се гледа на гладно)

Лабиринт

Кръгов лабиринт

- Дъги от концентрични окръжности (R = const)
- Радиални отсечки ($\alpha = const$)

Най-удобни са полярни координати

- И за движения по дъгите
- И за движения по отсечките

Реализация

– Случайна траектория в полярни координати

Движения по 3D равнина

Движение по повърхност

Общи концепции

- Дефинира се чрез два (минимум!) параметъра
- Параметрите имат собствена координатна система, често нелинейна

Направления

- Движенията са по две направления
- Доминантни направления

Тривиални примери на движение

- По 3D равнина
- По параметрична повърхнина

Нетривиални примери

- По цилиндър
- По конус и пресечен конус
- По сфера

Движения в 3D равнина

Представяне на равнината

- Точка от равнината \vec{P}
- Вектори \vec{u} и \vec{v} , като $|\vec{u}| = |\vec{v}| = 1$ и $\vec{u} \perp \vec{v}$

Всяка точка Q от равнината

- Линейна комбинация $Q = x\vec{u} + y\vec{v}$
- Координати на Q спрямо локалната координатна система Q(x,y)

Афинна координатна система

– При $\vec{u} \times \vec{v} \neq 0$ (т.е. те са ненулеви и неколинеарни)

Примери

Движение в равнина

- Случайни отсечки в случайни равнини
- Окръжност в случайни равнини

Нормиране

- Различни начини
- Ето най-лесен, но не и най-бърз

$$\vec{u} \leftarrow (\vec{u} \times \vec{v}) \times \vec{v}$$

$$\vec{u} \leftarrow \frac{1}{\sqrt{\vec{u} \cdot \vec{u}}} \vec{u}$$

$$\vec{v} \leftarrow \frac{1}{\sqrt{\vec{v} \cdot \vec{v}}} \vec{v}$$

Движения по 3D повърхнина

Параметрична повърхнина

Повърхнината е параметрична

- Стойностите на параметрите са локалните координати на точките
- Няма изискване за биекция

 (различни локални координати могат да съответстват на една и съща точка от повърхнината)

Пример

Движение по повърхнина

 – Листни въшки маршируват по повърхността на цвета на ипомея (по народному: грамофонче)

Уравнение

 Уравнението се използва за създаване на повърхнината и за движението

$$x(u, v) = \frac{1.15}{v + 0.1} \cos u$$
$$y(u, v) = 9v^{2} + \sin 6u$$
$$z(u, v) = \frac{1.5}{v + 0.1} \sin u$$

Движения по цилиндър и конус

Цилиндър

Параметрично движение

- Комбинация от две движения
- Едно кръгово движение (напр. по XZ)
- Едно линейно движение (напр. по Y)

```
x(u, v) = R \cos u

y(u, v) = v

z(u, v) = R \sin u
```


Доминантна скорост

Скоростта по направления

- Това е локалната скорост с колко се променя параметър за един кадър
- Различна е от глобалните скорости

Интересно наблюдение

 При различни локалните скорости, движението се възприема от човек по различен начин

Доминантна скорост

 Скорост по един параметър, визуално значително по-голяма от тази по другия параметър

Пример

- Движения по цилиндър
- С и без доминантни скорости

Конус

Параметрично движение

– Подобно на движение по цилиндър

$$y(u, v) = f(v)$$

$$R(y) = ay + b$$

$$x(u, v) = R \cos u$$

$$z(u, v) = R \sin u$$

За пресечен конус

 Абсолютно същите формули като при конуса

- Разлика има в ограничение на y(u,v) отгоре

Движения по сфера

Сфера

Параметрично движение

 Параметричното пространство на повърхността на сфера е с параметри два ъгъла

```
x(u, v) = R \cos u \cos v

y(u, v) = R \sin v

z(u, v) = R \sin u \cos v
```


Блуждаене по сфера

- Има избрана посока на движение
- Малка стъпка в тази посока и сменяме леко посоката вляво или вдясно

Реализация

- Удобно е да решим задачата в параметричното 2D пространство
- Ето как

- Правим параметрично на параметричното пространството
- Едното е полярно, другото сферично

Ето пълната картинка

- Две възможни наслагвания на параметричното uv-пространство

Пример

Блуждаещ червей

Не ултравиолетово

- Чрез uv-движение
- То е полярно-зависимо

Движения по зададена траектория

Зададена траектория

Основна идея

- Множество от 3D точки описва крива или повърхнина
- След подходящо заглаждане тази крива или повърхнина определя движението на обект

Реализация

- Криви на Безие, сплайн-повърхнини, ...

Криви и повърхнини

С това ще се мъчим чак в теми 23 и 24

Т.е. за днес приключваме с темите за Тест №1

Въпроси?

Повече информация

[**AGO1**] ctp. 68-71, 87-88

[MORT] ctp. 289-291

[PARE] ctp. 50-51, 476-478

А също и:

- Cylindrical coordinates
 http://mathworld.wolfram.com/CylindricalCoordinates.html
- Parametric Surfaces
 http://www.math.oregonstate.edu/home/programs/undergrad/CalculusQuestStudyGuides/vcalc/parsurf/parsurf.html
- Main cone construction
 http://www.math.union.edu/research/student/1998/tolin/maincone.htm

Край