115:BL (rst) rst 116:BL $sign \le 0;$ $sign_1 <= 0;$ sign 2 <= 0; $sign_3 <= 0;$ sign 4 <= 0; sign 5 <= 0; $sign_6 <= 0;$ $sign_7 <= 0;$ sign 8 <= 0; $sign^{-}9 <= 0;$ sign 10 <= 0;sign 11 <= 0;sign 12 <= 0;sign 13 <= 0;sign 14 <= 0; sign 15 <= 0;sign 16 <= 0;sign 17 <= 0;sign 18 <= 0;sign 19 <= 0;sign 20 <= 0; mantissa a1 \leq 0; mantissa $b1 \le 0$; mantissa a2 \leq 0; mantissa $b2 \le 0$; exponent $a \le 0$; exponent $b \le 0$; rm 1 <= 0; rm 2 <= 0; $rm^{-}3 <= 0;$ rm 4 <= 0; $rm^{-}5 <= 0;$ rm 6 <= 0; $rm^{-}7 <= 0;$ $rm^{-}8 <= 0;$ $rm_{9} <= 0;$ $rm_10 <= 0;$ $rm^{-}11 <= 0;$ $rm^{-}12 <= 0;$ $rm_1^{-}13 <= 0;$ $rm^{-}14 <= 0;$ $rm^{-}15 <= 0;$ a is zero ≤ 0 ; b is zero ≤ 0 ; a is $\inf \le 0$; $b^{-}is^{-}inf <= 0;$ in inf 1 <= 0; $in_i^-inf_2^- <= 0;$ in zero $1 \le 0$; exponent terms $1 \le 0$; exponent terms $2 \le 0$; exponent terms 3 <= 0; exponent terms $4 \le 0$; exponent terms $5 \le 0$; exponent_terms_ $6 \le 0$; exponent terms $7 \le 0$; exponent terms $8 \le 0$; exponent terms 9 <= 0; exponent_ $g\bar{t}$ _expoffset <= 0; exponent $1 \le 0$; exponent $\overline{2}$ 0 <= 0; $exponent_2_1 <= 0;$ exponent $\overline{2} \le 0$; exponent_gt_prodshift <= 0; exponent is infinity ≤ 0 ; exponent $3 \le 0$; exponent $4 \le 0$; set_mantissa_zero <= 0; set mz $\overline{1} \leq 0$; mul a \leq 0; mul $b \le 0$; mul a1 <= 0; mul b1 <= 0; $mul^a2 <= 0;$ $mul^{-}b2 <= 0;$ $mul^{-}a3 <= 0;$ mul b3 <= 0; $mul^a4 <= 0;$ $mul^{-}b4 <= 0;$ $mul_{a5} <= 0;$ mul b5 <= 0; $mul^{-}a6 <= 0;$ mul b6 <= 0; $mul^{-}a7 <= 0;$ enable $mul^{-}b7 <= 0;$ $mul^{-}a8 <= 0;$ $mul_b8 <= 0;$ product_a <= 0; product a $2 \le 0$; product a $3 \le 0$; product a $4 \le 0$; product a $5 \le 0$; product a $6 \le 0$; product a $7 \le 0$; product a $8 \le 0$; product a 9 <= 0; product a $10 \le 0$; product $\bar{b} \le 0$; product $c \le 0$; product d <= 0; product $e \le 0$; product $f \le 0$; product_g <= 0; product $h \le 0$; product $i \le 0$; $product_j \le 0$; sum 0 <= 0; sum $\bar{0} \ 2 <= 0$; $sum^{-0}3 <= 0;$ $sum_0^-4 <= 0;$ $sum^{-0}5 <= 0;$ $sum^{-0}6 <= 0;$ sum 0 7 <= 0; $sum_0^-8 <= 0;$ sum 0 9 <= 0; sum $\bar{1} \leq 0$; sum 1 $2 \le 0$; $sum_1^3 <= 0;$ sum $1 \ 4 <= 0$; $sum^{-1}5 <= 0;$ $sum^{-1}6 <= 0;$ $sum_1^{-7} <= 0;$ sum $1 \ 8 <= 0$; sum $\bar{2} \leq 0$; $sum_{\bar{2}}2 <= 0;$ $sum_2^3 <= 0;$ $sum_2^4 <= 0;$ $sum_2^5 <= 0;$ $sum^{2}6 <= 0;$ $sum_2^7 <= 0;$ $sum_{\bar{3}} <= 0$; $sum^{-}4 <= 0;$ $sum_{4}^{2} <= 0;$ $sum_{4}^{4} < 0$; $sum^{-}4^{-}4 <= 0;$ $sum_{4}^{4}5 <= 0;$ sum $\bar{5} \leq 0$; $sum_{\bar{5}}2 <= 0;$ $sum^{-}5^{-}3 <= 0;$ $sum_5^4 <= 0;$ $sum \bar{6} <= 0;$ $sum_{7} <= 0;$ $sum_{7}^{2} <= 0;$ $sum_{\overline{8}} <= 0$; $product \le 0$; product_1 <= 0; product 2 <= 0; product_3 <= 0; $product^4 \le 0$; product_5 <= 0; product overflow <= 0; product_6 <= 0; exponent 5 <= 0;exponent $6 \le 0$; exponent $7 \le 0$; exponent $8 \le 0$; $product_shift \le 0;$ product_7 <= 0; $exponent_9 <= 0;$ round_nearest_mode <= 0; round posinf mode <= 0; round_neginf_mode <= 0; round_nearest_trigger <= 0;</pre> round_nearest_exception <= 0;</pre> round_nearest_enable <= 0; round_posinf_trigger <= 0; round posinf enable <= 0; round neginf trigger <= 0; round_neginf_enable <= 0; round_enable <= 0; $sign_1 \le opa[63] \cap opb[63];$ $sign 11 \le sign 10;$ sign 12 <= sign 11; sign_13 <= sign_12; $sign 14 \le sign 13;$ sign_15 <= sign_14; $sign 16 \le sign 15;$ $sign 17 \le sign 16;$ sign 18 <= sign 17; sign_19 <= sign_18; $sign 20 \le sign 19;$ mantissa a1 \leq opa[51:0]; mantissa $b1 \le opb[51:0];$ mantissa a2 <= mantissa a1; mantissa b2 <= mantissa b1; exponent a \leq opa[62:52]; exponent $b \le opb[62:52];$ a_is_zero <= !(|exponent_a); b_is_zero <= !(|exponent_b); $a_{is_{inf}} <= exponent_a == 2047;$ b is inf \leq exponent b == 2047; $in_inf_1 \le a_is_inf_ib_is_inf;$ $\overline{\text{in}}$ inf $2 \leq \overline{\text{in}}$ inf $\overline{1}$; in zero $1 \le a$ is zero b is zero; exponent terms 1 <= exponent a + exponent b; exponent_terms_2 <= exponent_terms_1;</pre> exponent terms 3 <= (in zero 1)? 12'b0 : exponent terms 2; exponent_terms_4 <= (in_inf_2) ? 12'b110000000000: exponent_terms_3; exponent terms 5 <= exponent terms 4; exponent terms 6 <= exponent terms 5; exponent terms 7 <= exponent terms 6; exponent_terms_8 <= exponent_terms_7;</pre> exponent_terms_9 <= exponent_terms_8; exponent gt expoffset <= exponent terms 9 > 1022; exponent_1 <= exponent_terms_9 - 1022; exponent_2_0 <= (exponent_gt_expoffset)? exponent_1 : exponent; exponent_2_1 <= exponent_2_0; exponent $\overline{2}$ <= exponent $\overline{2}$ $\overline{1}$; exponent_is_infinity <= (exponent_3 > 2046) & exponent_gt_prodshift; exponent_3 <= exponent_2 - product_shift; exponent_gt_prodshift <= exponent_2 >= product_shift; exponent_4 <= (exponent_gt_prodshift)? exponent_3 : exponent; exponent_5 <= (exponent_is_infinity)? 12'b0111111111111 : exponent_4; set_mantissa_zero <= (exponent_4 == 0) | exponent_is_infinity; set mz 1 <= set mantissa zero; $exponent_6 \le exponent_5$; mul_a <= { !a_is_zero, mantissa_a2 };</pre> mul_b <= { !b_is_zero, mantissa_b2 }; mul_b8 <= mul_b7; product_a <= mul_a[23:0]* mul_b[16:0]; $product_a_2 \le product_a[1\overline{6}:0];$ product_a_3 <= product_a_2;</pre> product_a_4 <= product_a_3;</pre> product_a_5 <= product_a_4;</pre> product_a_6 <= product_a_5;</pre> product_a_7 <= product_a_6;</pre> product_a_8 <= product_a_7;</pre> product_a_9 <= product_a_8;</pre> product_a_10 <= product_a_9; product_b <= mul_a[23:0] * mul_b[33:17]; product_c <= mul_a2[23:0] * mul_b2[50:34]; product_d <= mul_a5[23:0] * mul_b5[52:51]; product_e <= mul_a1[40:24] * mul_b1[16:0]; product_f <= mul_a4[40:24] * mul_b4[33:17]; product_g <= mul_a7[40:24] * mul_b7[52:34]; $product_h \le mul_a3[52:41] * mul_b3[16:0];$ product_i <= mul_a6[52:41] * mul_b6[33:17]; product_j <= mul_a8[52:41] * mul_b8[52:34]; sum_0 <= product_a[40:17] + product_b; $sum_0_2 \le sum_0[6:0];$ $sum \overline{0} 3 \le sum \overline{0} 2;$ $sum^{-0}4 \le sum^{-0}3;$ $sum^{-0}5 \le sum^{-0}4;$ $sum^{-0}6 \le sum^{-0}5;$ $sum^{-0}7 \le sum^{-0}6;$ $sum^{-0}8 \le sum^{-0}7;$ $sum^{-0}9 \le sum^{-0}8;$ $sum_1 <= sum_0[41:7] + product_e;$ sum 1 2 \leq sum 1[9:0]; $sum_{1}^{-}3 \le sum_{1}^{-}2;$ sum_1_4 <= sum_1_3; sum_1_5 <= sum_1_4; sum 1 6 <= sum 1 5; sum_1_7 <= sum_1_6; sum_1_8 <= sum_1_7; sum_2 <= sum_1[35:10] + product_c; sum_2_2 <= sum_2[6:0]; $sum_{\overline{2}}3 \le sum_{\overline{2}}2;$ sum_2_4 <= sum_2_3; sum_2_5 <= sum_2_4; sum_2_6 <= sum_2_5; sum_2_7 <= sum_2_6; sum_3 <= sum_2[41:7] + product_h; sum_4 <= sum_3 + product_f; $sum_4_2 \le sum_4[9:0];$ $sum_{\overline{4}}3 \le sum_{\overline{4}}2;$ sum_4_4 <= sum_4_3; sum_4_5 <= sum_4_4; sum_5 <= sum_4[36:10] + product_d; sum_5_2 <= sum_5[6:0]; $sum_{\overline{5}_3} \le sum_{\overline{5}_2}$ sum_5_4 <= sum_5_3; round_posinf_mode <= rm_15 == 2'b10; round_neginf_mode <= rm_15 == 2'b11; round_neginf_mode <= rm_15 == 2'b11;
round_nearest_trigger <= product_1[52];
round_nearest_exception <= !(|product_1[51:0]) & (product_1[53] == 0);
round_nearest_enable <= round_nearest_mode & round_nearest_trigger & !round_nearest_exception;
round_posinf_trigger <= |product_1[52:0] & !sign_15;
round_neginf_trigger <= |product_1[52:0] & sign_15;
round_neginf_enable <= round_neginf_mode & round_neginf_trigger;
round_enable <= round_neginf_enable | round_neginf_enable | round_nearest_enable;
product_5 <= (round_enable & !set_mz_1)? product_4 + 1 : product_4;
product_overflow <= product_5[53];
product_6 <= product_5;
product_7 <= (product_overflow)? product_6 >> 1 : product_6;
exponent_7 <= exponent_6;
exponent_7 <= exponent_7; exponent_8 <= exponent_7; exponent 9 <= (product overflow)? exponent 8 + 1 : exponent 8;

151:BL

 $sign 2 \le sign 1;$ $sign 3 \le sign 2;$ $sign 4 \le sign 3;$ $sign 5 \le sign 4;$ sign $6 \le sign 5$; $sign 7 \le sign 6;$ $sign 8 \le sign 7;$ $sign_9 \le sign_8;$ $sign_10 \le sign_9;$

 $sign \le sign 20;$

 $rm 1 \le rmode;$ rm 2 <= rm 1;rm 3 <= rm 2;rm 4 <= rm 3;rm 5 <= rm 4;rm 6 <= rm 5;rm 7 <= rm 6;rm 8 <= rm 7;rm 9 <= rm 8; $rm \ 10 <= rm \ 9;$ $rm 11 \le rm 10;$ rm 12 <= rm 11;rm 13 <= rm 12;rm¹⁴ <= rm¹³; rm_15 <= rm_14;

 $mul a1 \le mul a;$ $mul^b1 \le mul^b$; mul_a2 <= mul_a1; $mul^b2 \le mul^b1;$ mul a3 <= mul a2; mul_b3 <= mul_b2; mul a4 <= mul a3; mul b4 <= mul b3; $mul^a5 \le mul^a4;$ $mul^b5 \le mul^b4;$ mul_a6 <= mul_a5; mul_b6 <= mul_b5; mul a7 <= mul a6; mul b7 <= mul b6; mul_a8 <= mul_a7;

Leaf_114:AL