Chap III - Estimation ponctuelle

Soit X une variable aléatoire dont la loi, de forme connue, dépend d'un paramètre θ inconnu, $\theta \in \Theta \subset \mathbb{R}$. On suppose que l'on dispose de n observations x_1, x_2, \dots, x_n qui sont les réalisations de variables aléatoires X_1, X_2, \dots, X_n indépendantes et identiquement distribuées (i.i.d.), de même loi que X. On dit que (X_1, X_2, \dots, X_n) est un \underline{n} -échantillon de la loi de X.

On cherche à estimer θ à partir des *n*-observations (x_1, x_2, \dots, x_n) . Pour tout $\theta \in \Theta$, θ représente en général une valeur caractéristique de la loi de X telle que son espérance, sa variance, son étendue...

1 Définition d'un estimateur

Définition 1 Soit (X_1, X_2, \dots, X_n) un n-échantillon d'une loi \mathbb{P}_{θ} dépendant d'un paramètre inconnu $\theta \in \Theta \subset \mathbb{R}$. On appelle <u>estimateur de θ </u> une variable aléatoire T_n obtenue comme fonction du n-échantillon aléatoire (X_1, X_2, \dots, X_n) ; autrement dit $T_n = f(X_1, X_2, \dots, X_n)$.

Définition 2 Soit T_n un estimateur de θ . On appelle <u>estimation de θ </u>, la réalisation t_n de la v.a. T_n , obtenue à partir de la réalisation (x_1, x_2, \dots, x_n) du n-échantillon (X_1, X_2, \dots, X_n) ; $t_n = f(x_1, x_2, \dots, x_n)$.

2 Propriétés d'un estimateur

2.1 Biais

Si T_n est un estimateur de θ , une première propriété est l'absence ou non de biais :

Définition 3 On dit que T_n est un estimateur sans biais de θ si $\mathbb{E}_{\theta}(T_n) = \theta$ où \mathbb{E}_{θ} désigne l'espérance sous la loi \mathbb{P}_{θ} .

Sinon T_n est dit <u>biaisé</u> et le biais de T_n est donné par $B_n(\theta) = \mathbb{E}_{\theta}(T_n) - \theta$. Si $B_n(\theta)$ tend vers 0 quand n tend vers l'infini, alors T_n est un estimateur de θ <u>asymptotiquement</u> sans biais.

2.2 Risque quadratique

Définition 4 Soit T_n un estimateur de θ . On appelle risque quadratique, ou erreur quadratique moyenne, de T_n (comme estimateur de θ) la quantité $EQM(T_n) = \mathbb{E}_{\theta} [(T_n - \theta)^2]$.

Théorème 1 On a l'égalité

$$\mathbb{E}_{\theta} \left[(T_n - \theta)^2 \right] = \mathbb{V}_{\theta}(T_n) + \left[B_n(\theta) \right]^2$$

où $V_{\theta}(T_n)$ est la variance de T_n et $B_n(\theta)$ est le biais de T_n pour estimer θ .

Pour un estimateur sans biais, le risque quadratique est égal à la variance de l'estimateur. Si T_n^1 et T_n^2 sont deux estimateurs de θ (avec ou sans biais), on choisira celui qui a le plus petit risque quadratique. Si T_n^1 et T_n^2 sont sans biais, choisir l'estimateur ayant le plus petit risque quadratique revient bien sûr à choisir celui de plus petite variance.

2.3 Consistance

Une autre propriété requise est la convergence de l'estimateur vers la valeur θ à estimer, quand la taille n de l'échantillon tend vers l'infini. Cette propriété s'appelle la <u>consistance</u> de l'estimateur. L'estimateur T_n étant une variable aléatoire, il existe plusieurs façons de définir la convergence de T_n vers θ . Nous définissons ici :

Définition 5 T_n est un estimateur consistant de θ si pour tout $\varepsilon > 0$ on a

$$\mathbb{P}_{\theta}(|T_n - \theta| \ge \varepsilon) \to 0$$

quand $n \to \infty$.

Lorsque le risque quadratique $EQM(T_n)$ tend vers 0 quand n tend vers l'infini, on dit que T_n converge en moyenne quadratique.

La convergence en moyenne quadratique implique la consistance.

3 Estimation d'une proportion

Soit (X_1, \dots, X_n) un n-échantillon de la loi $\mathcal{B}(p), p \in [0, 1]$. On estime p par l'estimateur intuitif

$$\hat{p}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

qui représente la proportion aléatoire dans l'échantillon. C'est un estimateur sans biais de p car $\mathbb{E}_p(\hat{p}_n) = p$ et de variance $\mathbb{V}_p(\hat{p}_n) = \frac{p(1-p)}{n}$. Son risque quadratique vaut donc $\frac{p(1-p)}{n}$ et tend vers 0 quand n tend vers l'infini. Par conséquent, \hat{p}_n converge en moyenne quadratique vers p et est donc un estimateur consistant de p.

4 Estimation d'une espérance

Soit (X_1, \dots, X_n) un n-échantillon. On note $\mathbb{E}(X_i) = m$ et $\mathbb{V}(X_i) = \sigma^2$. On estime m par l'estimateur intuitif

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

qui représente la moyenne empirique dans l'échantillon. C'est un estimateur sans biais de m car $\mathbb{E}(\bar{X}_n) = m$ et de variance $\mathbb{V}(\bar{X}_n) = \frac{\sigma^2}{n}$. Son risque quadratique vaut donc $\frac{\sigma^2}{n}$ et tend vers 0 quand n tend vers l'infini. Par conséquent, \bar{X}_n converge en moyenne quadratique vers m et est donc un estimateur consistant de m.

5 Estimation d'une variance

Soit (X_1, \dots, X_n) un n-échantillon. On note $\mathbb{V}(X_i) = \sigma^2$. On estime σ^2 par l'estimateur

$$\hat{\sigma}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 - (\bar{X}_n)^2$$

qui représente la variance empirique dans l'échantillon. $\hat{\sigma}_n^2$ est un estimateur consistant de σ^2