第二章 逻辑代数基础

- 1.数制与码制
- 2.逻辑代数基础
- 4.组合逻辑电路
- 5.半导体存储电路
- 3.集成门电路
- 6.时序逻辑电路
- 7.脉冲产生及整形
- 8.A/D, D/A转换

第二章 逻辑代数基础

- 2.1 基本逻辑运算和逻辑门
- 2.2 逻辑函数及其表示方法
- 2.3 逻辑运算公式,定理及化简
- 2.4 逻辑函数的标准形式
- 2.5 逻辑函数的化简方法(K图)

ABC	Y
000	0
001	0
010	0
011	0
100	0
101	1
110	1
111	1

函数1 Y1=AB'C+ABC'+ABC

ABC	Y
000	0
001	0
010	0
011	0
100	0
101	1
110	1
111	1

2.5.1逻辑函数的化简方法(K图)

例1 已知真值表如下,求逻辑函数Y的标准与或式, 并化简成最简与或式。

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

K图(卡诺图)

真值表

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

K图(卡诺图)

真值表

A	В	С	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

K图(卡诺图)

从真值表到卡诺图,仅仅改变了一下形式,有什么好处呢?有利于函数化简,从标准式化简

	A	В	C	Y
A'B'C'	0	0	0	0
A'B'C	0	0	1	1
A'B C'	0	1	0	0
A'B C	0	1	1	1
A B'C'	1	0	0	0
A B'C	1	0	1	0
ABC'	1	1	0	1
ABC	1	1	1	1

K图(卡诺图)

В	С			
A	00	01	11	10
0	000	001	011	010
	A'B'C'	A'B'C	A'BC	A'BC'
1	100	101	111	110
	AB'C'	AB'C	ABC	ABC'

真值表◀

标准式

「标准与或式(<mark>最小项</mark>之和) 标准或与式(最大项之积)

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

K图(卡诺图)

$$Y(A,B,C)=A'B'C+A'BC+ABC'$$

逻辑相邻

逻辑相邻

$$=A'C(B'+B) + AB(C'+C)$$

=A'C + AB

A	В	C	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

K图(卡诺图)

K图{

格雷码

格雷码(gray)与自然二进制码之间的转换

例2 将二进制数(1010010)2转成格雷码,再将格雷码转成二进制数

● 自然二进制码 ——格雷码

码距列

● 格雷码 ── 自然二进制码

 00
 01
 10
 11
 自然码

 ??
 ??
 ??
 格雷码

 000
 001
 010
 011
 100
 101
 110
 111
 自然码

 000
 001
 011
 010
 110
 111
 101
 100
 格雷码

\equiv	$\setminus B$	\mathbf{C}			
变	A	00	01	11	10
量卡	0	0	1	3	2
三变量卡诺图	1	4	5	7	6

	AB	D 00	01	11	10
四变	00	0	1	3	2
四变量卡诺图	01	4	5	7	6
下诺 诺	11	12	13	15	14
图	10	8	9	11	10

K图化简原则

- 圈的个数。2°
- 1) 乘积项最少---圈最少,与门少
- 2) 乘积项中变量最少----圈最大,与门输入端少

注意

K图可重复圈,A+A=A

• K图化简原则

- 1) 乘积项最少---圈最少,与门少
- 2) 乘积项中变量最少---圈最大,与门输入端少

圈最大✓

• K图化简原则

- 1) 乘积项最少---- 圈最少
- 2) 乘积项中变量最少----圈最大

圈最大X

圈几项?/2, 4, 8, 16.... ✓

例3.化简函数Y=ABCD'+A'B'+AC'D'+BC'D'

方法I,Y函数→真值表→ K图 方法Ⅱ, Y函数→K图

14

10

Α	В	С	D	Υ		0.5				
0	0	0	0	1		\CL) —		—	
0	0	0	1	1	Δ	B	00	01	11	1(
0	0	1	0	1	•	, ,				
0	0	1	1	1		00	0	1	3	2
0	1	0	0	1						
0	1	0	1	0		01	4	5	7	6
0	1	1	0	0						
0	1	1	1	0		1 1	12	13	15	14
1	0	0	0	1						
1	0	0	1	0		10	8	9	11	1
1	0	1	0	0)			
1	0	1	1	0						
1	1	0	0	1						
1	1	0	1	0		А	BCD	的顺风	字如何	ī] ?
1	1	1	0	1						
4	4	4	4	Λ						

例3.化简函数Y=ABCD'+A'B'+AC'D'+BC'D'

方法I, Y函数→真值表→ K图 方法II, Y函数→K图

П	Α	В	С	D	Y		CD	\			
	0	0	0	0	1				04	4	40
П	0	0	0	1	1	A	$AB\setminus$	00	01	11	10
П	0	0	1	0	1		00	4	4	1	4
H	0	0	1	1	1		UU	1	1		1
H	0	1	0	0	1		0.4	_			
H	0	1	0	1	0		01	1	0	0	0
П	0	1	1	0	0	/ /		4			
П	0	1	1	1	0		↑ 11	1	0	0	1
П	1	0	0	0	1						
	1	0	0	1	0		110	1	0	0	0
П	1	0	1	0	0		_				
П	1	0	1	1	0						
П	1	1	0	0	1						
	1	1	0	1	0						
	1	1	1	0	1						
\downarrow	1	1	1	1	0						

例3.化简函数Y=ABCD'+A'B'+AC'D'+BC'D' 1110 00 100 100

方法Ⅱ, Y函数→K图

AB	00	01	11	10
00	1	1	1	1
01	1	0	0	0
11	1	0	0	1
10	1	0	0	0

Y何时为1? ABCD=1110时 AB=00时, ACD=100时, BCD=100时

例3 化简函数Y=ABCD'+A'B'+AC'D'+BC'D' 1110 00 100 100

方法Ⅰ, Y函数→**真值表**→ **K图** 方法Ⅱ, Y函数→**K图**

注意

几何相邻一定 逻辑相邻, 非几何相邻也可能 逻辑相邻

太吃蛇

Y=A'B' +C'D'+ABD'

K图巧妙的排列 几何相邻=逻辑相邻

注意2

几何相邻 => 逻辑相邻(一定) 非几何相邻--->逻辑相邻(可能)

CE)					
AB	00	01	11	10		
00	0	1	1	0		
01	0	0	0	0		
11	0	0	0	0		
10	0	1	1	0		
Y= B'D						

注意2

几何相邻 => 逻辑相邻(一定) 非几何相邻--->逻辑相邻(可能)

注意2

几何相邻 => 逻辑相邻(一定) 非几何相邻--->逻辑相邻(可能)

CE AB	00	01	11	10
00	1	1	0	0
01	1	1	1	0
11	0	0	1	1
10	0	0	1	1

Y = A'C' + AC + A'BD

Y = A'C' + AC + BCD

哪个是最简式?

注意3

以上两个都是最简式, 最简式不一定是唯一的

例4: 已知函数Y(A,B,C) = **AB'C'+ AB'C+ ABC** 求Y的最简与或式,最简或与式

最简与或式 图1. 圈最大. 圈最少

最简或与式 方法I 圈0, 圈最大, 圈最少

0⇔A, 1⇔A'

例4: 已知函数Y(A,B,C) = **AB'C'+ AB'C+ ABC** 求Y的最简与或式,最简或与式

最简与或式

圈1,圈最大,圈最少

最简或与式 方法II

Y'最简与或 -> (Y')'

→ 真值表→{标准与或式,使Y=1的 **∑mi**标准或与式,使Y=0的 **∏ Mi** K图 → {最简与或式,圈1,圈最大,圈最少最简或与式,圈0,圈最大,圈最少

练习

1. 已知Y(A, B, C, D)=A'B'+A'C'D'+ABD'+AB'C'D', 求Y的标准与或式,标准或与式,。 求Y的最简与或式,最简或与式

<mark>练习 2. 已知Y(A, B, C, D)=Σm(0, 1, 2, 5, 8, 9, 10, 12, 14)</mark> 求最简与或式 _{B'D'+AD'+I3'C'+A'C'D}

Y & ne (0,1,2,3,7,8,4,)

练习1

Α	В	C	D	Y
0	0	0 0	0	1
0	0	0	1	1
0 0 0	0 0 0	1	0	1
0	0	1	1	1
0	1	0	0	1
0 0 0 0	1	1 0 0	1	1 0 0 0
0	1	1	0	0
0	1	1		0
1	0 0 0 0	0	1 0	1
1 1 1 1	0	0	1	0 0 0 1
1	0	1	1 0	0
1	0	1 1 0	1	0
1	1	0	0	1
1	1	0	1	0
1	1	1	0	1
1	1	1	1	0

```
Y(A, B, C, D) = A'B' + A'C'D' + ABD' + AB'C'D'
   标准与或式
   Y (A, B, C, D)
   =A'B'C'D'+A'B'C'D+A'B'CD'+A'B'CD
    +A'BC'D'+AB'C'D'+ABC'D'+ABCD'
   =m0+m1+m2+m3+m4+m8+m12+m14
   = \sum m(0,1,2,3,4,8,12,14)
标准或与式
Y (A, B, C, D)
= (A+B'+C+D')\cdot (A+B'+C'+D)
·(A+B'+C'+D')·(A'+B+C+D')·(A'+B+C'+D)
·(A'+B+C'+D')·(A'+B'+C+D')·(A'+B'+C'+D')
=M5+M6+M7+M9+M10+M11+M13+M15
= | M(5,6,7,9,10,11,13,15)|
```

练习1

Y(A, B, C, D) = A'B' + A'C'D' + ABD' + AB'C'D'

Y=A'B' +C'D'+ABD'

最简与或式

圈1,圈最大,圈最少

最简或与式

圈0,圈最大,圈最少

练习2 Y(A, B, C, D)= Σ m(0, 1, 2, 5, 8, 9, 10, 12, 14)

最简与或式

圈1,圈最大,圈最少

$$Y=(C'+D')(A'+B'+D')(A+B'+D')$$

最简或与式

圈0,圈最大,圈最少

例5 用基本逻辑门设计一个路口通行声音提示器。

F=1, 开关闭合, 播音乐提示。F=0, 开关打开, 音乐停止

000, 011, 101, 110, 111 这五种输入组合 通常不会许出现

R	Y	G	F
0	0	0	X
0	0	1	1
0	1	0	0
0	1	1	X
1	0	0	0
1	0	1	X
1	1	0	X
1	1	1	X

Y	G	F	
0	0	X	
0	1	1	行
1	0	0	停
1	1	X	
0	0	0	停
0	1	X	
1	0	X	
1	1	X	
	0 1 1 0	0011001	0 0 x 0 1 1 1 0 0 1 1 x 0 0 0 0 1 x 1 0 x

例5: 化简逻辑函数

 $Y(A,B,C,D) = \sum m(2,4,6,8) + d(10,11,12,13,14,15)$

\ CE		. (~;	, 0, 0	,D _j -
AB	00	01	11	10
00	0	0	0	1
01	1	0	0	1
11	X	X	X	X
10	1	0	Х	×

Y=CD' +BD'+AD'

含有约束项的逻辑函数化简

练习3 化简逻辑函数

$$Y(A,B,C,D) = \sum m(3,5,6,7,10) + d(0,1,2,4,8)$$

CE	00	01	11	10
00	X	X		X
01	0			1
11	0	0	O	X
10	X	O	0	

含有约束项的逻辑函数化简子或并否别操修

练习3

化简逻辑函数

Y(A,B,C,D)=
$$\sum m(3,5,6,7,10)+d(0,1,2,4,8)$$

最简与或式 Y=A' + B'D'

圈1,圈最大,圈最少

最简或与式 Y=(A'+B')·(A'+D)

圈0,圈最大,圈最少

K图运算

B	C 00	01	11	10
0	1	0	X	X
1	1	0	0	1

B	C 00	01	11	10
0	0	0	0	X
1	1	0	1	X

 $\mathbf{F_1}$

 $\mathbf{F_2}$

B	C 00	01	11	10
0	1	0	X	X
1	1	0	1	1

B	C 00	01	11	10
0	0	0	0	X
1	1	0	0	X

B	C 00	01	11	10
0	1	0	X	X
1	0	0	1	X

$$\mathbf{F_a} = \mathbf{F_1} + \mathbf{F_2}$$

$$\mathbf{F_b} = \mathbf{F_1} \cdot \mathbf{F_2}$$

$$\mathbf{F_c} = \mathbf{F_1} \oplus \mathbf{F_2}$$

作业

- 2.16, 一般函数-> (K图化简)最简与或式,最简或与式(增加)
- 2.17 (1)(3)(5), 一般函数-> 最简与或式(方法不限)
- 2.18 (a) (d), 逻辑图->逻辑式->最简与或式
- 2.20 一般函数-> 最简与或式(约束项)
- 2.21 一般函数-> 最简与或式(约束项)