DS-HECK: Double-Lasso Estimation of Heckman Selection Model

Di Liu

Principal Econometrician

Stata

Nov 1, 2024

High-dimensional sample selection model

$$y_1 = \mathbf{x}_1' \alpha + u_1$$
 (main equation) $y_2 = \mathbb{I}(\mathbf{x}' \beta + \mathbf{z}' \eta + u_2 \ge 0)$ (selection equation)

- y₁ is the outcome of interest
- x₁ is a low dimensional vector of independent variables
- y₂ is a sample selection indicator
- $\mathbf{x}_2 = (\mathbf{x}_1, \mathbf{x}_2)$ is a low dimensional vector
- z is a high-dimensional vector
- η is a sparse vector

Sparse model for observed outcome

Under some assumptions, the conditional mean of the observed outcome is

$$\mathbb{E}(y_1|\mathbf{x},\mathbf{z},y_2=1) = \mathbf{x}_1'\alpha + \gamma\lambda(\mathbf{x}'\beta + \mathbf{z}'\frac{\eta}{\eta})$$

$$= \mathbf{x}_1'\alpha + \gamma\lambda(\mathbf{x}'\beta) + \gamma\lambda^{(1)}(q)\mathbf{z}'\frac{\eta}{\eta}$$

$$= \mathbf{x}_1'\alpha + \gamma\lambda(\mathbf{x}'\beta) + \mathbf{z}'\omega$$

Sparse $\eta \implies$ the same sparsity pattern in ω .

Objective

Consistently estimate α and γ with high-dimensional **z** with sparse coefficients ω .

- α estimates effects of \mathbf{x}_1 on \mathbf{y}_1 .
- ullet γ estimates the extent of sample selection bias
- ullet ω is nuisance parameter

DS-HECK: Two double-Lassos

Two high-dimensional models:

$$\mathbb{E}(y_1|\mathbf{x},\mathbf{z},y_2=1) = \mathbf{x}_1' \frac{\alpha}{\alpha} + \gamma \lambda(\mathbf{x}' \frac{\beta}{\beta}) + \mathbf{z}' \omega \qquad \text{(Observed outcome)}$$
$$y_2 = \mathbb{I}(\mathbf{x}' \frac{\beta}{\beta} + \mathbf{z}' \eta + u_2 \ge 0) \qquad \text{(selection)}$$

- If we know β , we can estimate α and γ by running the double-Lasso to the linear regression in Eq. (observed outcome).
- ② However, we can consistently estimate β by running the double-lasso to the Probit regression in Eq. (selection).
- **③** Standand errors must be adjusted because β is estimated.

dsheckman: Stata command for DS-HECK

Syntax

```
dsheckman depvar indepvars [if][in]
, selection(depvar_s = indepvars_s)
[selvars(varlist)]
```

Model

$$y_1 = \mathbf{x}_1'\alpha + u_1$$
 (main equation)
 $y_2 = \mathbb{I}(\mathbf{x}'\beta + \mathbf{z}'\eta + u_2 \ge 0)$ (selection equation)

- $depvar \equiv y_1$, $indepvars \equiv \mathbf{x}_1$
- $depvar_s \equiv y_2$, $indepvars_s \equiv (\mathbf{x}, \mathbf{z})$
- $selvars() \equiv x$ if specified. Otherwise, x is chosen by Lasso.

Example: Labor participation and earnings

```
\begin{split} \log \text{(income)} &= \alpha_0 + \alpha_1 \cdot \text{educ} + \alpha_2 \cdot \text{exper} + \textit{u}_1 \\ &\text{inlf} = \mathbb{I}(\textbf{x}'\beta + \textbf{z}'\eta + \textit{u}_2 \geq 0) \end{split} \qquad \text{(labor participation)}
```

Step 1: Define (\mathbf{x}, \mathbf{z}) in the labor participation equation

```
. local vars_sel exper exper2 educ_level childcare_expen_2012 ///
> i.if_kidsle15 num_kids wage_husband exp_appl i.wtr_enrolled ///
> i.wtr_grad_hs i.wtr_attend_college i.wtr_cert_educ ///
> i.wtr_educ_usa i.father_educ_usa i.mother_educ_usa ///
> i.rural urban i.own vehicle i.current state
```

. dsheckman lnwage educ_level exper, selection(inlf = `vars_sel')
step 1: lasso probit to select vars

step 2: dsprobit of y2 on selected zvars $% \left(1\right) =\left(1\right) \left(1\right$

Double selection probit Number of obs = 1,989
Number of controls = 89
Number of selected controls = 10

inlf	Coefficient	Robust std. err.	z	P> z	[95% conf.	interval]
educ_level	.071556	.0228702	3.13	0.002	.0267313	.1163807
exper2	0011333	.0003511	-3.23	0.001	0018214	0004451
childca_2012	.0726106	.0258034	2.81	0.005	.0220368	.1231845
exper	.0156069	.0119473	1.31	0.191	0078093	.0390231
_cons	7051439	.2897608	-2.43	0.015	-1.273065	1372231

step 3: compute lambda

step 4: dsregress v1 on xvars, lambda with controls

Double-selection-lasso Heckman Number of obs = 1,989
Selected = 1,294
Nonselected = 695
Number of variables = 93
Number of selected controls = 3
Number of main variables = 2

	Coefficient	Std. err.	z	P> z	[95% conf.	interval]
educ_level exper lambda	.0320553	.0382198 .0079836 .4908842	4.02	0.154 0.000 0.000	0204791 .0164076 -2.898355	.1293399 .0477029 9741244

Note: in the main equation, there are 2 variables; in the selection equation, 3 among 93 variables are used to predict inverse mills ratio.

option selvars()

```
. dsheckman lnwage educ level exper. selection(inlf = `vars sel') ///
          selvars(num kids educ level exper)
step 1: set varsofinterest in selection equation
step 2: dsprobit of v2 on selected zvars
Double selection probit
                                                                           1.989
                                       Number of obs
                                       Number of controls
                                                                              90
                                       Number of selected controls =
                                                                              12
                              Robust
        inlf
               Coefficient
                            std. err.
                                                 P>|z|
                                                            [95% conf. interval]
                                            Z
    num kids
                -.1008661
                             .0440309
                                         -2.29
                                                 0.022
                                                           -.1871651
                                                                       -.0145671
  educ level
                 .0719182
                             .0229172
                                          3.14
                                                 0.002
                                                            .0270014
                                                                         .116835
                 .0172596
                                         1.44
                                                 0.150
                                                           -.0062385
                                                                        .0407576
       exper
                              .011989
                -.7082983
                             .2901592
                                         -2.44
                                                 0.015
                                                              -1.277
                                                                       -.1395968
       cons
step 3: compute lambda
step 4: dsregress v1 on xvars, lambda with controls
Double-selection-lasso Heckman
                                                                           1,989
                                       Number of obs
                                              Selected
                                                                           1,294
                                              Nonselected
                                                                             695
                                       Number of variables
                                                                              93
                                       Number of selected controls =
                                                                               3
                                       Number of main variables
               Coefficient Std. err.
                                            Z
                                                 P>|z|
                                                            [95% conf. interval]
  educ level
                 .0954287
                             .0356875
                                                 0.007
                                                            .0254825
                                                                        .1653749
                                          2.67
                                          0.95
       exper
                 .0155112
                             .0163068
                                                 0.341
                                                           -.0164495
                                                                        .0474719
      lambda
                -.9183578
                                         -1.21
                                                 0.226
                                                           -2.403431
                             .7577044
                                                                         .5667155
```

Note: in the main equation, there are 2 variables; in the selection equation, 3 among 93 variables are used to predict inverse mills ratio.

Resources

https://github.com/flyingliudi/dsheck_public