Понимание путаницы матрицы в Python

Эй, ребята! Сегодня мы посмотрим на одну из самых важных концепций науки о данных – путаницу матрицы и его реализации в Python.

ABTOP: <u>Pankaj Kumar < https://pythobyte.com/author/5173065252783846647/> 09.04.2021 < https://pythobyte.com/confusion-matrix-62369a52/> </u>

<u>Aвтор оригинала: Pankaj Kumar < https://www.askpython.com/python/examples/confusion-matrix></u>.

Понимание путаницы матрицы в Python

Эй, ребята! Сегодня мы посмотрим на одну из самых важных концепций науки о данных – Путаница матрицы и его реализация в Python Отказ

Наука данных является огромным доменом, в котором мы изучаем данные, очистите данные и выполняем прогнозы, используя различные алгоритмы машинного обучения. После того, как использовал любой алгоритм, для нас очень важно проверить точность и влияние алгоритма вклад вклад желаемого выхода.

Одной из таких ошибок метрики для оценки производительности модели является путаница матрицы.

Что такое путаница матрицы?

Время от времени мы сталкиваемся с ситуациями, когда нам нужно применить определенные алгоритмы ML для прогнозирования результатов для Задача классификации I.Е. Бизнес-проблемы, в которых исход/переменная целевой/ответной перемены является

категорические данные Отказ Пример: обнаружить, является ли электронная почта SPAM или Not-Spam.

Итак, в приведенном выше сценарии нам нужна специальная метрика ошибок для оценки точности и точности модели для лучшего приспособления.

Путаница Matrix – это **Ошибка метрики**, это используется для оценки производительности алгоритмов обучения машины классификации. Он предоставляет нам подробную информацию о уровне точности, точной скорости и процентах ошибок модели.

Используя путаницу Matrix, мы можем различить фактический правильный и прогнозируемый результат категорической переменной реагирования.

Итак, поняв необходимость путаницы Matrix, давайте теперь сосредоточимся на различных компонентах, через которые мы можем судить и предсказать правильный алгоритм посадки для любой модели.

Компоненты путаницы матрицы

Посмотрите на нижестоящую структуру путаницы Matrix!

	Actual Positive (1)	Actual Negative (0)		
Predicted positive (1)	TP	FP		
Predicted Negative (0)	FN	TN		

Он представляет собой краткое изложение прогнозов, выполненных классификационными моделями.

- Истинный отрицательный (тн) : Значения, которые на самом деле негативны, а также предсказаны как отрицательные.
- Ложно отрицательный (FN) : Значения, которые на самом деле являются позитивными, но предсказаны как отрицательные.
- **Ложный положительный (FP)** : Значения, которые на самом деле негативны, но предсказаны как позитивные.
- **Истинный положительный (ТР)** : Значения, которые на самом деле являются позитивными и предсказаны как положительны.

Итак, теперь давайте посмотрим на другую информацию о том, что путаница Matrix доставляет о модели

1. Точность – Он определяется как значение, которое показывает процент успешного прогнозирования от приведенного ввода.

$$T$$
очность + $TN/(TP + TN + FP + FN)$

2. <u>Точность балла</u> – Это значение, которое определяет набор значений, которые правильно предсказаны как истинные, а также происходит, чтобы быть верным в фактическом наборе.

По точному точности мы хотим понимать, что положительные ценности действительно предсказывают как позитивные.

$$Toчнoсть/(TP + FP)$$

3. <u>Напомним счет</u> – Это значение, которое представляет собой набор значений, которые на самом деле верны, а также правильно предсказаны так же, как правильно,

Напомним, мы хотим понимать, что конкретный класс образцов правильно предсказан.

Напомним/(TP + FN)

4. <u>Оценка F1</u>

Оценка F1 помогает нам оценить точность и эффективность модели, когда данные неразбавлены. Это на самом деле гармоническое среднее значение точности и результатов отзыва.

```
F1 * (отзыв * точность)/(отзыв + точность)
```

Давайте теперь реализуем концепцию путаницы матрицы через пример, как показано в предстоящем разделе.

Реализация путаницы матрицы в Python

В этом примере мы передали список прогнозируемых значений и фактические значения для создания матрицы путаницы. Нам нужно импортировать библиотеку Sklearn, чтобы использовать функцию Matrix Confusion.

```
from sklearn import metrics

pred = ["T", "F", "T", "T", "F"] #predicted set of values

actual = ["F", "F", "F", "T", "T"] #actual set of values

CM = metrics.confusion_matrix(pred, actual, labels=["T", "F"]

print(CM)
report = metrics.classification_report(pred, actual, labels=[print(report)])
```

Классификация_Matrix () Функция Представляет набор значений, которые были правильно и неправильно идентифицированы. Далее Классификация_Report () Функция Представляет значение метрик для каждой категории входов прошло я. «Т» и «F».

Выход:

[[1 2] [1 1]]					
	precision	recall	f1-score	support	
Т	0.50	0.33	0.40	3	
F	0.33	0.50	0.40	2	
accuracy			0.40	5	
macro avg	0.42	0.42	0.40	5	
weighted avg	0.43	0.40	0.40	5	

Заключение

По этому, мы подошли к концу этой темы. Не стесняйтесь комментировать ниже, если вы столкнетесь с любым вопросом.

До этого, счастливое обучение!

Читайте Ещё По Теме:

- NumPy ogrid и его использование в Python <
 https://pythobyte.com/numpy-ogrid-00060/>
- Редкая матрица в Python упрощенная <
 https://pythobyte.com/sparse-matrix-9b193d51/>

© 2022 pythobyte.com < https://pythobyte.com/>

Вверх↑

Политика конфиденциальности < https://pythobyte.com/privacy-policy/>