# db的日常笔记

dbydd

最后编译日期:2021 年 1 月 25 日

### 注: 本笔记有些部分来自于wikipedia

#### todos

- 1. 誊录纸质笔记 线性代数-线性无关,基和维数.
- 2. 隐函数存在定理,等幂求和,(复变函数),概率论与数理统计(及测度论).
- 3. 重写线性代数
- 4. 补充多个section,计算机图形学等
- 5. 整合冗余部分

# 目录

| 第一章 | 数学    |                 | 3  |
|-----|-------|-----------------|----|
| 1.1 | 三角函   | 数               | 3  |
|     | 1.1.1 | 正三角函数           | 4  |
|     | 1.1.2 | 反三角函数           | 4  |
|     | 1.1.3 | 和差化积            | 4  |
|     | 1.1.4 | 积化和差            | 5  |
|     | 1.1.5 | 诱导公式            | 5  |
|     |       | 1.1.5.1 第一组诱导公式 | 5  |
|     |       | 1.1.5.2 第二组诱导公式 | 6  |
|     |       | 1.1.5.3 第三组诱导公式 | 6  |
|     |       | 1.1.5.4 第四组诱导公式 | 6  |
|     |       | 1.1.5.5 第五组诱导公式 | 6  |
|     |       | 1.1.5.6 第六组诱导公式 | 6  |
|     | 1.1.6 | 倍角公式            | 7  |
|     |       | 1.1.6.1 二倍角公式   | 7  |
|     |       | 1.1.6.2 半倍角公式   | 7  |
|     |       | 1.1.6.3 n倍角公式   | 8  |
|     |       | 1.1.6.4 万能替换公式  | 8  |
|     |       | 1.1.6.5 降幂公式    | 8  |
|     | 1.1.7 | 三角恒等式           | 9  |
|     | 1.1.8 |                 | 10 |
|     | 1.1.9 |                 | 10 |
|     |       |                 | 11 |
|     |       |                 | 11 |
|     |       |                 |    |

# Chapter 1

# 数学

注:由于特殊原因,数学分析,高等代数内容会被拆散放在各个章节中,善用搜索.注:待整理.

# 1 三角函数

三角函数一般由单位圆引出,如下:



## 1.1 正三角函数

| 名字            | 定义            | 定义域                                                              | 值域                                 |
|---------------|---------------|------------------------------------------------------------------|------------------------------------|
| $\sin \alpha$ | $\frac{y}{r}$ | $\mathbb R$                                                      | [-1, 1]                            |
| $\cos \alpha$ | $\frac{x}{r}$ | $\mathbb{R}$                                                     | [-1, 1]                            |
| $\tan \alpha$ | $\frac{y}{x}$ | $\mathbb{R}(\alpha \neq \frac{\pi}{2} + k\pi(k \in \mathbb{Z}))$ | $\mathbb{R}$                       |
| $\cot \alpha$ | $\frac{x}{y}$ | $\mathbb{R}(\alpha \neq k\pi(k \in \mathbb{Z}))$                 | $\mathbb{R}$                       |
| $\sec \alpha$ | $\frac{r}{x}$ | $\mathbb{R}(\alpha \neq k\pi + \frac{\pi}{2}(k \in \mathbb{Z}))$ | $ \sec \alpha  \ge 1$              |
| $\csc \alpha$ | $\frac{r}{y}$ | $\mathbb{R}(\alpha \neq k\pi + \frac{\pi}{2}(k \in \mathbb{Z}))$ | $\left  \csc \alpha \right  \ge 1$ |

## 1.2 反三角函数

| 名字                        | 定义           | 定义域                               | 值域                                                                 |
|---------------------------|--------------|-----------------------------------|--------------------------------------------------------------------|
| $\arcsin x$               | $x = \sin y$ | [-1, 1]                           | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$                        |
| $\arccos x$               | $x = \sin y$ | [-1, 1]                           | $[0,\pi]$                                                          |
| $\arctan x$               | $x = \tan y$ | $\mathbb{R}$                      | $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$                        |
| $\operatorname{arccot} x$ | $x = \cot y$ | $\mathbb{R}$                      | $[0,\pi]$                                                          |
| $\operatorname{arcsec} x$ | $x = \sec y$ | $(-\infty, -1] \cup [1, +\infty)$ | $\left[0,\frac{\pi}{2}\right) \cup \left(\frac{\pi}{2},\pi\right]$ |
| $\operatorname{arccsc} x$ | $x = \csc y$ | $(-\infty, -1] \cup [1, +\infty)$ | $\left[-\frac{\pi}{2},0\right)\cup\left(0,\frac{\pi}{2}\right]$    |

## 1.3 和差化积

$$\sin \alpha + \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\sin \alpha - \sin \beta = 2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

$$\tan \alpha - \tan \beta = \tan(\alpha - \beta) \cdot (1 + \tan \alpha \tan \beta)$$

## 1.4 积化和差

$$\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$$

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$

$$\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]$$

$$\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]$$

$$\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]$$

## 1.5 诱导公式

奇变偶不变,符号看象限.

### 1.5.1 第一组诱导公式

$$\sin(2k\pi + \alpha) = \sin\alpha$$
$$\cos(2k\pi + \alpha) = \cos\alpha$$
$$\tan(2k\pi + \alpha) = \tan\alpha$$
$$\cot(2k\pi + \alpha) = \cot\alpha$$

## 1.5.2 第二组诱导公式

$$\sin(-\alpha) = -\sin\alpha$$

$$\cos(-\alpha) = \cos \alpha$$

$$\tan(-\alpha) = -\tan\alpha$$

$$\cot(-\alpha) = -\cot\alpha$$

### 1.5.3 第三组诱导公式

$$\sin(\pi + \alpha) = -\sin\alpha$$

$$\cos(\pi + \alpha) = -\cos\alpha$$

$$\tan(\pi + \alpha) = \tan \alpha$$

$$\cot(\pi + \alpha) = \cot \alpha$$

## 1.5.4 第四组诱导公式

$$\sin(\pi - \alpha) = \sin \alpha$$

$$\cos(\pi - \alpha) = -\cos\alpha$$

$$\tan(\pi - \alpha) = -\tan\alpha$$

$$\cot(\pi - \alpha) = -\cot\alpha$$

## 1.5.5 第五组诱导公式

$$\sin(\frac{\pi}{2} - \alpha) = \cos \alpha$$

$$\cos(\frac{\pi}{2} - \alpha) = \sin \alpha$$

$$\tan(\frac{\pi}{2} - \alpha) = \cot \alpha$$

$$\cot(\frac{\pi}{2} - \alpha) = \tan \alpha$$

## 1.5.6 第六组诱导公式

$$\sin(\frac{\pi}{2} + \alpha) = \cos \alpha$$

$$\cos(\frac{\pi}{2} + \alpha) = -\sin\alpha$$
$$\tan(\frac{\pi}{2} + \alpha) = -\cot\alpha$$
$$\cot(\frac{\pi}{2} + \alpha) = -\tan\alpha$$

## 1.6 倍角公式

#### 1.6.1 二倍角公式

二倍角公式:由两角和公式推出

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^\alpha = 2\cos^2 \alpha - 1 = 1 - 2\sin^2 \alpha$$

$$\tan 2\alpha = \frac{2\tan \alpha}{1 - \tan^2 \alpha}$$

#### 1.6.2 半倍角公式

半倍角公式:将二倍角公式中的角 $2\alpha$ 看作整体 $\beta$ ,经过变形推出:

$$\sin \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{2}}$$

$$\cos \frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$$

$$\tan \frac{\alpha}{2} = \pm \sqrt{\frac{1 - \cos \alpha}{1 + \cos \alpha}} = \frac{\sin \alpha}{1 + \cos \alpha} = \frac{1 - \cos \alpha}{\sin \alpha}$$

$$\cot \frac{\alpha}{2} = \frac{1 + \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 - \cos \alpha}$$

$$\sec \frac{\alpha}{2} = \frac{\pm \sqrt{\frac{\sec \alpha - 1}{2 \sec \alpha} + \sec^2 \alpha}}{\sec \alpha + 1} = \frac{\pm \sqrt{\frac{4 \sec^3 \alpha + \sec^2 \alpha}{2 \cos \alpha}}}{\sec \alpha + 1}$$

$$\csc \frac{\alpha}{2} = \frac{\pm \sqrt{\frac{\sec \alpha - 1}{2 \sec \alpha} + \sec^2 \alpha}}{\sec \alpha - 1} = \frac{\pm \sqrt{\frac{3 \sec^3 \alpha - \sec^2 \alpha}{2 \sec \alpha}}}{\sec \alpha - 1}$$

### 1.6.3 n倍角公式

$$\cos n\theta = \sum_{i=0}^{\frac{n}{2}} [(-1)^{i} C_{2i+1}^{n} \cos^{n-2i} \theta \sin^{2i} \theta]$$

$$\sin n\theta = \sum_{i=0}^{\frac{n}{2}} [(-1)^{i} C_{2i+1}^{n} \cos^{n-2i-1} \theta \sin^{2i+1} \theta]$$

### 1.6.4 万能替换公式

万能替换公式:尝试将正常的三角函数用半角公式表示时经过变形推出:

$$\sin \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

$$\cos \alpha = \frac{1 - \tan^2 \frac{\alpha}{2}}{1 + \tan^2 \frac{\alpha}{2}}$$

$$\tan \alpha = \frac{2 \tan \frac{\alpha}{2}}{1 - \tan^2 \frac{\alpha}{2}}$$

### 1.6.5 降幂公式

三角函数中的降幂公式可降低三角函数指数幂.多项式各项的先后按照某一个字母的指数逐渐减少的顺序排列,叫做这一字母的降幂.直接运用二倍角公式就是升幂,将公式cos 2α变形后可得到降幂公式.

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2}$$
$$\cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$
$$\tan^2 \alpha = \frac{1 - \cos 2\alpha}{1 + \cos 2\alpha}$$

## 1.7 三角恒等式

#### 倒数关系:

- $\sin \alpha \cdot \csc \alpha = 1$
- $\cos \alpha \cdot \sec \alpha = 1$
- $\tan \alpha \cdot \cot \alpha = 1$

#### 商数关系:

- $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$
- $\cot \alpha = \frac{\cos x}{\sin x}$

#### 平方关系:

- $\sin^2 \alpha + \cos^2 \alpha = 1$
- $1 + \tan^2 \alpha = \sec^2 \alpha$
- $1 + \cot^2 \alpha = \csc^2 \alpha$

### 余角关系:

- $\arcsin \alpha + \arccos \alpha = \frac{\pi}{2}$
- $\arctan \alpha + \operatorname{arccot} \alpha = \frac{\pi}{2}$
- $\operatorname{arcsec} \alpha + \operatorname{arccsc} \alpha = \frac{\pi}{2}$

### 负数关系:

- $\arcsin -\alpha = -\arcsin \alpha$
- $\arccos -\alpha = \pi \arccos \alpha$
- $\arctan -\alpha = -\arctan \alpha$

•  $\operatorname{arccot} -\alpha = \pi - \operatorname{arccot} \alpha$ 

•  $\operatorname{arcsec} -\alpha = \pi - \operatorname{arcsec} \alpha$ 

•  $\operatorname{arccsc} - \alpha = -\operatorname{arccsc} \alpha$ 

## 1.8 其他恒等式

1.  $a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin(x + \arctan \frac{b}{a}), (a > 0)$ 

2.  $a \sin x + b \cos x = \sqrt{a^2 + b^2} \cos x - \arctan \frac{a}{b}$ 

3.  $\cos \alpha = 2\cos^2 \frac{\alpha}{2} - 1 = 1 - 2\sin^2 \frac{\alpha}{2}$ 

4.

$$\arctan x + \arctan \frac{1}{x} = \begin{cases} \frac{\pi}{2} (x > 0) \\ 0 (x = 0) \\ -\frac{\pi}{2} (x < 0) \end{cases}$$

证明:

对此式求导,得
$$\frac{1}{1+x^2} + \frac{1}{1+(\frac{1}{x})^2} \cdot \left(-\frac{1}{x^2}\right)$$

化简后发现恒等于0,导数恒等于0说明是个常数,代入任意值都可得答案为 $\frac{\pi}{2}$ 

□-Q.E.D.(Quod Erat Demonstrandum/证毕)

## 1.9 解斜三角形

三角形的边角、面积、和外接圆半径之间有着密切的联系

设三角形△ABC,角A、B、C的对边为abc,以A为原点O建系,总有以下公式:

$$\mathbf{S}\triangle_{ABC} = \frac{1}{2}AB \cdot CD = \frac{1}{2}cb\sin A, \exists \mathbb{I}\mathbf{S}\triangle_{ABC} = \frac{1}{2}bc\sin A$$

同理得: $\mathbf{S}\triangle_{ABC} = \frac{1}{2}\sin B$ ,  $\mathbf{S}\triangle_{ABC} = \frac{1}{2}ab\sin C$ . 这就是说,三角形的面积等于任意两边与他们夹角正弦值的一半.

#### 1.9.1 正弦定理

并且,做三角形外接圆:



由圆周角定理可知 $\angle D = \angle A, BD = 2R, bc = a$ .于是 $a = BC = BD \sin A = 2R \sin A$ ,即:

$$\frac{a}{\sin A} = 2R$$

由正弦定理,可得:  $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$  所以, $a = 2R \sin A$ ,  $b = 2R \sin B$ ,  $c = 2R \sin C$ 

变形也可得到:

$$\sin C = \frac{c}{2R}, \sin B = \frac{b}{2R}, \sin A = \frac{a}{2R}$$

 $a^2 \sin 2B + b^2 \sin 2A = 2ab \sin C$ 

### 1.9.2 余弦定理

由两点间距离公式,得 $a = |BC| = \sqrt{(b\cos A - c)^2 + (b\sin A - 0)^2}$  两边平方并化简得:

$$a^2 = b^2 - 2b\cos A + c^2$$
 $b^2 = a^2 + c^2 - 2ac\cos B$ 
 $c^2 = a^2 + b^2 - 2ab\cos C$ 
也可变形化为:
 $\cos A = \frac{b^2 + c^2 - a^2}{2bc}$ 
 $\cos B = \frac{a^2 + c^2 - b^2}{2ac}$ 
 $\cos C = \frac{b^2 + a^2 - c^2}{2ab}$ 

这些关系在直角三角形中也成立.