Probabilistic Graph Models

Liu Xuefeng

June 3, 2019

Bayesian Networks

 The core of Bayesian network representation is a directed acyclic graph (DAG) G, whose nodes are the random variables in our domain and whose edges correspond, intuitively, to direct influence of one node on another.

Student Example

$$P(I,D,G,S,L) = P(I)P(D)P(G|I,D)P(S|I)P(L|G)$$

Bayesian Network Structure

A Bayesian network structure G is a directed acyclic graph whose nodes represent random variables x_1, x_2, \cdots, x_n . Let $Pa_{x_i}^G$ denote the parents of x_i in G, and $NonDescendants_{x_i}$ denote the variables in the graph that are not descendants of x_i . Then G encodes the following set of conditional independence assumptions, called the local independencies:

 $(x_i \perp \!\!\! \perp NonDescendants_{x_i} | Pa_{x_i}^G)$

Indirect Connection

- a Indirect causal effect.
- b Indirect evidential effect.
- c Common cause.
- d Common effect.

d-separation

Definition

Let G be a BN structure, and $x_1 - x_2 - \cdots - x_n$ a trail in G. Let Z be a subset of observed variables. The trail is active given Z if

- Whenever we have a v-structure $x_{i-1} \rightarrow x_i \leftarrow x_{i+1}$, then x_i or one of its descendants are in Z:
- no other node along the trail is in Z.

d-separation

Definition

Let X, Y, Z be three sets of nodes in G. We say that X and Y are d-separated given Z, denoted $d - sep_G(X; Y|Z)$, if there is no active trail between any node $x \in X$ and $y \in Y$ given Z. We use L(G) to denote the set of independencies that corresponds to d-separation:

$$L(G) = \{(X \perp \!\!\! \perp Y|Z) : d - sep_G(X; Y|Z)\}$$

Misconception Example

- $(B_{\perp \!\!\! \perp} D | \{A, C\})$
- $(A \perp \!\!\! \perp \!\!\! \perp \!\!\! \subset |\{B,D\})$

Markov Network

Definition

Let D be a set of random variables. We define a factor ϕ to be a function from Val(D) to R. The set of variables D is called the scope of the factor and denoted $Scope[\phi]$.

Definition

Let X, Y, Z be three disjoint sets of variables, and let $\phi_1(X,Y)$ and $\phi_2(Y,Z)$ be two factors. We define the factor product $\phi_1 \times \phi_2$ to be factor $\phi: Val(X,Y,Z) \to R$ as follows:

$$\phi(X,Y,Z) = \phi_1(X,Y)\phi_2(Y,Z).$$

Misconception Example

$\phi_1(A,B)$		$\phi_2(B,C)$			$\phi_3(C,D)$			$\phi_4(D,A)$		
$egin{array}{ccc} a^0 & b^0 \\ a^0 & b^1 \\ a^1 & b^0 \\ a^1 & b^1 \\ \end{array}$	30 5 1 10	b^{0} b^{0} b^{1} b^{1}	c^{0} c^{1} c^{0} c^{1} c^{1}	100 1 1 100	c^0 c^0 c^1 c^1	d^0 d^1 d^0 d^1	1 100 100 1	$\begin{bmatrix} d^0 \\ d^0 \\ d^1 \\ d^1 \end{bmatrix}$	a^0 a^1 a^0 a^1	100 1 1 1

A	ssig	nme	nt	Unnormalized	Normalized		
a^0	b^0	c^0	d^0	300,000	0.04		
a^0	b^0	c^0	d^1	300,000	0.04		
a^0	b^0	c^1	d^0	300,000	0.04		
a^0	b^0	c^1	d^1	30	$4.1 \cdot 10^{-6}$		
a^0	b^1	c^0	d^0	500	$6.9 \cdot 10^{-5}$		
a^0	b^1	c^0	d^1	500	$6.9 \cdot 10^{-5}$		
a^0	b^1	c^1	d^0	5,000,000	0.69		
a^0	b^1	c^1	d^1	500	$6.9 \cdot 10^{-5}$		
a^1	b^0	c^0	d^0	100	$1.4 \cdot 10^{-5}$		
a^1	b^0	c^0	d^1	1,000,000	0.14		
a^1	b^0	c^1	d^0	100	$1.4 \cdot 10^{-5}$		
a^1	b^0	c^1	d^1	100	$1.4 \cdot 10^{-5}$		
a^1	b^1	c^0	d^0	10	$1.4 \cdot 10^{-6}$		

