- ✅ 模型剪枝
 - ❷ ICCV经典论文,通俗易懂!
 - ❷ 卷积后能得到多个特征图,这些图一定都重要吗?
 - ❷ 训练模型的时候能否加入一些策略, 让权重参数提现出主次之分?
 - 这两点就是论文的核心,先看论文再看源码其实并不难!

❤ 模型剪枝

❷ 基本思想,这一张图就足够解释了

参考论文: Learning Efficient Convolutional Networks through Network Slimming

- ✅ 如何得到每个特征图的重要性呢?
 - Ø Network slimming,就是利用BN层中的缩放因子γ

✓ BatchNorm

∅ 如果训练时候输入数据的分布总是改变, 网络模型还能学的好吗?

必 对于卷积层来说,它的输入可不是只有原始输入数据

∅ 如果对每层的学习结果不加以限制可能会出问题!

参考论文: Learning Efficient Convolutional Networks through Network Slimming

- ✓ BatchNorm的本质
 - Ø BN要做的就是把越来越偏离的分布给他拉回来!
 - ❷ 再重新规范化到均值为0方差为1的标准正态分布
 - ② 这样能够使得激活函数在数值层面更敏感,训练更快
 - Ø 有一种感觉:经过BN后,把数值分布强制在了非线性函数的线性区域中

✓ BatchNorm参数

- ∅ 如果都是线性的了,神经网络还有意义吗?
- Ø BN另一方面还需要保证一些非线性,对规范化后的结果再进行变换
- ② 这两个参数是训练得到的: $y^{(k)} = \gamma^{(k)} \hat{x}^{(k)} + \beta^{(k)}$
- Ø 感觉就是从正太分布进行一些改变,拉动一下,变一下形状!

✓ L1与L2正则化

❷ 论文中提出: 训练时使用L1正则化能对参数进行稀疏作用

♂ L1: 稀疏与特征选择; L2: 平滑特征

$$egin{aligned} egin{aligned} egin{aligned} \mathsf{L1}$$
正贝比: $J(ec{ heta}) = rac{1}{2} \sum_{i=1}^m \left(h_{ ilde{ heta}} \left(x^{(i)}
ight) - y^{(i)}
ight)^2 + \lambda \sum_{j=1}^n | heta_j| \end{aligned}$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} \mathsf{L2}$$
正则化: $J(ec{ heta}) = rac{1}{2} \sum_{i=1}^m \left(h_{ec{ heta}} \left(x^{(i)}
ight) - y^{(i)}
ight)^2 + \lambda \sum_{j=1}^n heta_j^2 \end{aligned}$

✓ L1与L2正则化

L1求导后为: sign(θ)

♂ 相当于稳定前进,都为1,最后学成0了

❷ 相当于越来越慢,很多参数都接近0,平滑

✅ 论文核心点

Ø 以BN中的γ 为切入点,即γ越小,其对应的特征图越不重要

Ø 为了使得γ能有特征选择的作用,引入L1正则来控制γ

$$L = \sum_{(x,y)} l(f(x,W),y) + \lambda \sum_{\gamma \in \Gamma} g(\gamma)$$

✅ 论文核心点

∅ 训练-剪枝-再训练,整体流程如下图所示:

❤ 论文核心点

∅ 部分实验结果:

(a) Test Errors on CIFAR-10

Model	Test error (%)	Parameters	Pruned	FLOPs	Pruned
VGGNet (Baseline)	6.34	20.04M	-	7.97×10^{8}	-
VGGNet (70% Pruned)	6.20	2.30M	88.5%	3.91×10^{8}	51.0%
DenseNet-40 (Baseline)	6.11	1.02M	-	5.33×10^{8}	-
DenseNet-40 (40% Pruned)	5.19	0.66M	35.7%	3.81×10^{8}	28.4%
DenseNet-40 (70% Pruned)	5.65	0.35M	65.2%	2.40×10^{8}	55.0%
ResNet-164 (Baseline)	5.42	1.70M	_	4.99×10^{8}	-
ResNet-164 (40% Pruned)	5.08	1.44M	14.9%	3.81×10^{8}	23.7%
ResNet-164 (60% Pruned)	5.27	1.10M	35.2%	2.75×10^{8}	44.9%