Turing machines

LINEAR BOUNDED AUTOMATA

Nondeterministic pushdown automata

Deterministic pushdown automata

Finite automata

Recursively enumerable languages

Recursive languages

CONTEXT-SENSITIVE LANGUAGES

Nondeterministic context-free languages

Deterministic context-free languages

Regular languages

5 Context-sensitive languages

- **5.1 Context-sensitive grammar**
- 5.2 Linear bounded automata (LBA)
 - 5.2.1 Construction of an equivalent LBA for a given context-sensitive grammar
 - 5.2.2 Construction of an equivalent context-sensitive grammar for a given LBA
- **5.3 Properties of context-sensitive languages**
 - 5.3.1 Union, concatenation and closure
 - **5.3.2 Intersection and complement**

Note: LBA's and context-sensitive grammars/languages are only covered in the first edition of the textbook, not in the later ones &

5 Context-sensitive languages

- **5.1 Context-sensitive grammar**
- 5.2 Linear bounded automata (LBA)
 - 5.2.1 Construction of an equivalent LBA for a given context-sensitive grammar
 - 5.2.2 Construction of an equivalent context-sensitive grammar for a given LBA
- **5.3 Properties of context-sensitive languages**
 - 5.3.1 Union, concatenation and closure
 - **5.3.2 Intersection and complement**

Context-sensitive grammar

$$\alpha_1 \wedge \alpha_2 \rightarrow \alpha_1 \wedge \alpha_2$$

$$\alpha \rightarrow \beta$$

$$|\alpha| \leq |\beta|, \quad \alpha \neq \varepsilon, \beta \neq \varepsilon$$

Context-sensitive grammar

$$L = \{ a^n b^n c^n \mid n \ge 1 \}$$

7) $b B \rightarrow b b$

- 1) $S \rightarrow abc$
- 2) $S \rightarrow a S B c$
- 3) $c B \rightarrow W B$
- 4) $WB \rightarrow WX$
- 5) $WX \rightarrow BX$
- 6) $BX \rightarrow Bc$

$$n = 1$$

$$S \Rightarrow abc$$

$$n = 3$$

Context-sensitive grammar

1)
$$S \rightarrow ACaB$$
 4) $CB \rightarrow E$

4)
$$CB \rightarrow E$$

2) Ca
$$\rightarrow$$
 aaC 5) aD \rightarrow Da

5)
$$aD \rightarrow Da$$

7)
$$aE \rightarrow Ea$$

3)
$$CB \rightarrow DB$$

3)
$$CB \rightarrow DB$$
 6) $AD \rightarrow AC$

8)
$$AE \rightarrow \varepsilon$$

1)
$$S \rightarrow [ACaB]$$

4)
$$[aCB] \rightarrow [aE]$$

7)
$$[aE] \rightarrow [Ea]$$

8) [AEa] \rightarrow a

2) [Ca]a
$$\rightarrow$$
 aa[Ca]

[Ca]a
$$\rightarrow$$
 aa[Ca] 5) a[Da] \rightarrow [Da]a [Ca][aB] \rightarrow aa[CaB] [aDB] \rightarrow [DaB]

$$a[Ea] \rightarrow [Ea]a$$

 $[Aa][Ea] \rightarrow [AEa]a$

$$[CaB] \rightarrow a[aCB]$$

$$[aDB] \rightarrow [DaB]$$

$$[CaB] \rightarrow a[aCB]$$

$$a[DaB] \rightarrow [Da][aB]$$

$$[ACa]a \rightarrow [Aa]a[Ca]$$

$$[Aa][Da] \rightarrow [ADa]a$$

$$[ACa][aB] \rightarrow [Aa]a[CaB]$$
$$[ACaB] \rightarrow [Aa][aCB]$$

$$[Aa][DaB] \rightarrow [ADa][aB]$$

3)
$$[aCB] \rightarrow [aDB]$$

$$S \Rightarrow [ACaB] \Rightarrow [Aa] [aCB] \Rightarrow [Aa] [aE] \Rightarrow [Aa] [Ea] \Rightarrow [AEa] a \Rightarrow a a$$

$$S \Rightarrow ACaB \Rightarrow AaaCB \Rightarrow AaaE \Rightarrow AaEa \Rightarrow AEaa \Rightarrow aa$$

- **5 Context-sensitive languages**
 - **5.1 Context-sensitive grammar**
 - 5.2 Linear bounded automata (LBA)
 - 5.2.1 Construction of an equivalent LBA for a given context-sensitive grammar
 - 5.2.2 Construction of an equivalent context-sensitive grammar for a given LBA
 - **5.3 Properties of context-sensitive languages**
 - 5.3.1 Union, concatenation and closure
 - **5.3.2 Intersection and complement**

Linear bounded automata (LBA)

Linear bounded automata (LBA)

$$LBA = (Q, \Sigma, \Gamma, \delta, q_0, \mathcal{E}, \mathcal{S}, F)$$

Q

Γ

 $\Sigma \subseteq \Gamma$

δ

$$q_0 \in Q$$
 $F \subseteq Q$

¢, \$

- finite set of states
- finite set of tape symbols
- finite set of input symbols
- transition function

$$\delta: \mathbf{Q} \times \Gamma \rightarrow \mathbf{Q} \times \Gamma \times \{\mathbf{L}, \mathbf{R}\}\$$

- initial (start) state
- set of accepting states
- left and right endmarkers

Linear bounded automata (LBA)

LBA $M = (Q, \Sigma, \Gamma, \delta, q_0, B, F)$ accepts language:

$$L(M) = \{ w \mid w \in (\Sigma \setminus \{\emptyset, \$\})^*$$

$$i \ q_0 \notin w\$ \stackrel{*}{\succ} \alpha q \beta,$$

$$q \in F \}$$

- **5 Context-sensitive languages**
 - **5.1 Context-sensitive grammar**
 - 5.2 Linear bounded automata (LBA)
 - 5.2.1 Construction of an equivalent LBA for a given context-sensitive grammar
 - 5.2.2 Construction of an equivalent context-sensitive grammar for a given LBA
 - **5.3 Properties of context-sensitive languages**
 - 5.3.1 Union, concatenation and closure
 - **5.3.2 Intersection and complement**

Construction of an equivalent LBA for a given context-sensitive grammar

TM – unrestricted grammar

Construction of an equivalent LBA for a given context-sensitive grammar

LBA – context-sensitive grammar

Construction of an equivalent LBA for a given context-sensitive grammar

LBA – context-sensitive grammar

- **5 Context-sensitive languages**
 - **5.1 Context-sensitive grammar**
 - 5.2 Linear bounded automata (LBA)
 - 5.2.1 Construction of an equivalent LBA for a given context-sensitive grammar
 - 5.2.2 Construction of an equivalent context-sensitive grammar for a given LBA
 - **5.3 Properties of context-sensitive languages**
 - 5.3.1 Union, concatenation and closure
 - **5.3.2 Intersection and complement**

Initial configuration LBA: $q_0 \not\in a_1 a_2 --- a_n$ \$

String derived in grammar: $[a_1, q_0 \notin a_1] [a_2, a_2] --- [a_n, a_n \$]$

1)
$$A_1 \rightarrow [a, q_0 \notin a \$]$$

2)
$$A_1 \rightarrow [a, q_0 \notin a] A_2$$

3)
$$A_2 \rightarrow [a, a] A_2$$

4)
$$A_2 \rightarrow [a, a \$]$$

$$\delta(q,X)=(p,Y,R)$$

5)
$$[b, q X] [a, Z] \rightarrow [b, Y] [a, p Z]$$

$$[b, \varphi q X] [a, Z] \rightarrow [b, \varphi Y] [a, p Z]$$

$$[b, q X] [a, Z \$] \rightarrow [b, Y] [a, p Z \$]$$

$$[b, q X \$] \rightarrow [b, Y p \$]$$

$$[a, \varphi q X \$] \rightarrow [a, \varphi Y p \$]$$

$$\delta(q,X)=(p,Y,L)$$

6)
$$[b, Z] [a, q X] \rightarrow [b, p Z] [a, Y]$$

$$[b, Z] [a, q X \$] \rightarrow [b, p Z] [a, Y \$]$$

$$[b, ¢ Z] [a, q X] \rightarrow [b, ¢ p Z] [a, Y]$$

$$[b, ¢ q X] \rightarrow [b, p ¢ Y]$$

$$[a, ¢ q X \$] \rightarrow [a, p¢ Y \$]$$

7)
$$[b, q \notin X] \rightarrow [b, \notin p X]$$

 $[b, X q \$] \rightarrow [b, p X \$]$
 $[a, q \notin X \$] \rightarrow [a, \notin p X \$]$
 $[a, \notin X q \$] \rightarrow [a, \notin p X \$]$

For all accepting states $q \in F$ For all symbols $a \in \Sigma \setminus \{ \emptyset, \$ \}$

8)
$$[a, \alpha q \beta] \rightarrow a$$

9)
$$[a, \alpha] b \rightarrow a b$$

10)
$$b[a, \alpha] \rightarrow ba$$

- **5 Context-sensitive languages**
 - **5.1 Context-sensitive grammar**
 - 5.2 Linear bounded automata (LBA)
 - 5.2.1 Construction of an equivalent LBA for a given context-sensitive grammar
 - 5.2.2 Construction of an equivalent context-sensitive grammar for a given LBA
 - **5.3 Properties of context-sensitive languages**
 - 5.3.1 Union, concatenation and closure
 - **5.3.2 Intersection and complement**

Union

•
$$G_1 = (V_1, T_1, P_1, S_1)$$

•
$$G_2 = (V_2, T_2, P_2, S_2)$$

•
$$L(G_3) = L(G_1) \cup L(G_2)$$

•
$$V_1 \cap V_2 = \emptyset$$

1)
$$V_3 = V_1 \cup V_2 \cup \{S_3\}$$
, $S_3 \notin V_1$ i $S_3 \notin V_2$

$$T_3 = T_1 \cup T_2$$

3)
$$P_3 = P_1 \cup P_2 \cup \{ S_3 \rightarrow S_1 \mid S_2 \}$$

Concatenation

•
$$G_1 = (V_1, T_1, P_1, S_1)$$

•
$$G_2 = (V_2, T_2, P_2, S_2)$$

•
$$L(G_4) = L(G_1) L(G_2)$$

•
$$V_1 \cap V_2 = \emptyset$$

1)
$$V_4 = V_1 \cup V_2 \cup \{S_4\}$$
, $S_4 \notin V_1$ i $S_4 \notin V_2$

$$T_4 = T_1 \cup T_2$$

3)
$$P_4 = P_1 \cup P_2 \cup \{ S_4 \rightarrow S_1 S_2 \}$$

 $V_1 \cap V_2 = \emptyset$ - not a sufficient condition!

 $\alpha_1 A \alpha_2 \rightarrow \alpha_1 \beta \alpha_2$ – productions of grammar G_2

$$\begin{array}{ccc} S_1 & \stackrel{*}{\Rightarrow} & \gamma' \alpha_1 \\ G_1 & & \end{array}$$

$$\begin{array}{ccc} \mathbf{S_2} & \overset{*}{\Rightarrow} & \mathbf{A} \alpha_2 \delta' \\ & \mathbf{G_2} & \end{array}$$

$$S_4 \stackrel{\Rightarrow}{\Rightarrow} S_1 S_2 \stackrel{*}{\Rightarrow} V' \alpha_1 S_2 \stackrel{*}{\Rightarrow} V' \alpha_1 A \alpha_2 \delta'$$

$$\stackrel{*}{\Longrightarrow} \qquad \qquad \gamma' \alpha_1 \beta \alpha_2 \delta' \qquad \stackrel{*}{\Longrightarrow} \qquad \qquad \qquad \Box$$

$$\gamma' \alpha_1 \beta \alpha_2 \delta' \qquad \stackrel{*}{\Rightarrow} w \not\in L(G_4) = L(G_1) L(G_2)$$

$$a \in T$$

$$A_a \in V'$$

$$A_a \rightarrow a$$

For each production $\alpha \to \beta$ In strings α and β replace each terminal a with a fresh nonterminal A_a :

$$\alpha' \rightarrow \beta'$$

Positive closure L⁺

•
$$G = (V, T, P, S)$$

•
$$L(G_5) = L(G)^+$$

Build an auxiliary grammar $G' = (V', T, P', S'), V \cap V' = \emptyset$ Use G and G' to define grammar G_5

1)
$$V_5 = V \cup V' \cup \{S_5, S_5'\}$$

 $S_5', S_5 \notin V$
 $S_5', S_5 \notin V'$

$$T_5 = T$$

3)
$$S_5 \rightarrow S S_5' \mid S$$

 $S_5' \rightarrow S' S_5 \mid S'$

- **5 Context-sensitive languages**
 - **5.1 Context-sensitive grammar**
 - 5.2 Linear bounded automata (LBA)
 - 5.2.1 Construction of an equivalent LBA for a given context-sensitive grammar
 - 5.2.2 Construction of an equivalent context-sensitive grammar for a given LBA
 - **5.3 Properties of context-sensitive languages**
 - 5.3.1 Union, concatenation and closure
 - **5.3.2 Intersection and complement**

- Complment of deterministic context-sensitive language
- Given a DLBA M
 - s number of states of M
 - *n* length of the input w
 - t number of tape symbols of M

Number of different configurations of M with input w

$$s(n+2) t^n < c^n$$
 where c is a constant

Transition of DLBA from configuration to configuration

•
$$K_x \rightarrow K_y$$

- "First LBA problem": Are deterministic LBAs equivalent to nondeterministic LBAs?
 - Still an open problem.
- "Second LBA problem": Is a complement of a (nondeterministic) context-sensitive language also a (nondeterministic) context-sensitive language?
 - Yes! Immerman–Szelepcsényi theorem (1987.)
 - Gödel prize 1995.

