Al-based Audio Analysis of Music and Soundscapes

Audio Processing

Dr.-Ing. Jakob Abeßer Fraunhofer IDMT

jakob.abesser@idmt.fraunhofer.de

Audio Processing Sound

- Sound [Merriam-Webster]
 - "Sensation perceived by the sense of hearing"
 - "A particular auditory impression"

Audio Processing Sound

- Sound [Merriam-Webster]
 - "Sensation perceived by the sense of hearing"
 - "A particular auditory impression"
 - "Mechanical radiant energy that is transmitted by longitudinal pressure waves in a material medium (such as air) and is the objective cause of hearing"

Audio Processing Sound

- Mechanical vibration with contact to air
- Rapid modulation of airflow

Audio Processing Sound Waves

Fig. 1

Audio Processing Sound Waves

Fig. 1

- Oscillation of air pressure
- Propagate through medium (air)
- Converted into physical motion by ear / microphone

Audio ProcessingWaveform

- Waveform x(t)
 - Amplitude (vertical displacement) of pressure vs. time

Converting (continuous-time) analog signals into (discrete-time) digital signal

Converting (continuous-time) analog signals into (discrete-time) digital signal

Converting (continuous-time) analog signals into (discrete-time) digital signal

■ Sampling frequency f_s : Number of samples per seconds [Hz]

- (Nyquist-Shannon) sampling theorem: $f_{\text{max}} < f_{\text{s}}/2$
 - Signal must be band-limited
 - If sampling rate is too slow, aliasing occurs (higher frequencies can not be reconstructed properly

FMP Notebooks

Audio Processing Sound Level

- Sound level [dB]
 - $L_{\rm dB} = 20 \log_{10} x_{\rm RMS}$
 - Root mean square $x_{\rm RMS} = \sqrt{\frac{1}{N} \sum_i x_i^2}$

Audio Processing Sound Level

- Sound level [dB]
 - $L_{\rm dB} = 20 \log_{10} x_{\rm RMS}$
 - Root mean square $x_{\rm RMS} = \sqrt{\frac{1}{N} \sum_i x_i^2}$

- Dynamics
 - Volume of a sound
- Sound power
 - Energy per time emitted by sound source (in all directions)

- Dynamics
 - Volume of a sound
- Sound power
 - Energy per time emitted by sound source (in all directions)
- Sound intensity
 - Sound power per unit area
 - Minimum perceivable sound intensity = threshold of hearing
 - $I_{\text{TOH}} = 10^{-12} \text{W/m}^2$

- Dynamics
 - Volume of a sound
- Sound power
 - Energy per time emitted by sound source (in all directions)
- Sound intensity
 - Sound power per unit area
 - Minimum perceivable sound intensity = threshold of hearing
 - $I_{\text{TOH}} = 10^{-12} \text{W/m}^2$
 - Intensity is computed using reference (TOH)
 - $\blacksquare I[dB] = 10 \cdot log_{10} \left(\frac{I}{I_{\text{TOH}}} \right)$

Examples

Source	Intensity	Intensity level	× ТОН
Threshold of hearing (TOH)	10 ⁻¹²	0 dB	1
Whisper	10 ⁻¹⁰	20 dB	10 ²
Pianissimo	10 ⁻⁸	40 dB	10 ⁴
Normal conversation	10 ⁻⁶	60 dB	10 ⁶
Fortissimo	10 ⁻²	100 dB	10 ¹⁰
Threshold of pain	10	130 dB	10 ¹³
Jet take-off	10 ²	140 dB	10 ¹⁴
Instant perforation of eardrum	10 ⁴	160 dB	10 ¹⁶

Table 1.1 from [Müller, FMP, Springer 2015]

Fig. 1.1

Audio Processing Loudness

- Perceptual property (sort sounds from quiet to loud)
- Correlates with sound intensity
- Subjective, further depends on sound duration & frequency

Audio Processing Loudness

- Perceptual property (sort sounds from quiet to loud)
- Correlates with sound intensity
- Subjective, further depends on sound duration & frequency
- Equal loudness curves
 - Perceived loudness [phon]

- Fourier Transform
 - Decompose signal into sum of sinusoids
 - Amplitude, frequency, phase

- Fourier Transform
 - Decompose signal into sum of sinusoids
 - Amplitude, frequency, phase

- Fourier Transform
 - Decompose signal into sum of sinusoids
 - Amplitude, frequency, phase

- Short-Time Fourier Transform (STFT)
 - Moving analysis window

Fig. 2

- Short-Time Fourier Transform (STFT)
 - Moving analysis window
 - Time-frequency energy distribution in audio signal

- Short-Time Fourier Transform (STFT)
 - Moving analysis window
 - Time-frequency energy distribution in audio signal

Waveform

Spectrogram

- Short-Time Fourier Transform (STFT)
 - Moving analysis window
 - Time-frequency energy distribution in audio signal

Waveform

Spectrogram

Audio Processing

Programming Session #1

Audio ProcessingMel Frequency Scale

Logarithmic frequency mapping (human pitch perception)

$$f[mel] = 2595 \cdot \log_{10} \left(1 + \frac{f[Hz]}{700} \right)$$

Audio ProcessingMel Frequency Scale

Logarithmic frequency mapping (human pitch perception)

$$Imel] = 2595 \cdot \log_{10} \left(1 + \frac{f[Hz]}{700} \right)$$

- Mapping from STFT magnitude spectrogram to Mel spectrogram
 - Triangular filterbank + Matrix multiplication

- Mapping from STFT magnitude spectrogram to Mel spectrogram
 - Triangular filterbank + Matrix multiplication
- Example: 16 mel bands, $f_s = 22.05 \text{ kHz}$

- More efficient representation (fewer frequency bands)
- Still captures perceptually relevant information

- More efficient representation (fewer frequency bands)
- Still captures perceptually relevant information

- More efficient representation (fewer frequency bands)
- Still captures perceptually relevant information

Audio Processing Periodic Signals

Period T[s] – Duration of an elementary waveform

Audio Processing Periodic Signals

- Period T[s] Duration of an elementary waveform
- Frequency f Inverse of period ($f = \frac{1}{T}[Hz]$)

Audio Processing Periodic Signals

- Periodic signals:
 - Sum of pure tones (partials)
 - Fundamental frequency f_0

Audio Processing Periodic Signals

- Periodic signals:
 - Sum of pure tones (partials)
 - Fundamental frequency f_0
 - Harmonics f_k (approx. integer multiples of f_0): $f_k \approx (k+1) \cdot f_0$

Audio Processing Periodic Signals

- Periodic signals:
 - Sum of pure tones (partials)
 - Fundamental frequency f_0
 - **Harmonics** f_k (approx. integer multiples of f_0):
 - $\blacksquare f_k \approx (k+1) \cdot f_0$

Audio ProcessingPitch

- Perceptual property (sort sounds from low to high pitch)
- Closely related to frequency

Audio Processing Pitch

- Perceptual property (sort sounds from low to high pitch)
- Closely related to frequency

Audio Processing Pitch Distance (Intervals)

- Depend on ratio between pitch frequencies
- Examples

Note	Pitch p	Frequency <i>f</i>	
A3	57	220 Hz	Octave intervals
A4	69	440 Hz	$f(A4) = 2 \cdot f(A3)$
A5	81	880 Hz	$\int f(A5) = 2 \cdot f(A4)$

Audio ProcessingPitch Distance (Intervals)

Note: Consonant intervals share partial frequencies

Audio Processing Frequency Modulation

- Techniques
 - Glissando continuous transition between note pitches
 - Vibrato periodic frequency modulation

Spectrogram example (frequency x time)

Fig. 2.6

Audio Processing Frequency Modulation

- Example: Opera singing
 - Estimation & sonification of fundamental frequency contours

FMP Notebooks

Audio Processing Transients

- Sound characteristics
 - High amplitude
 - Short duration
 - Wide-band signal
 - Energy distributed over large frequency range (not just a few frequencies)

Transients (Examples)

■ String instruments

Transients (Examples) 10000 0.5 + Frequency (Hz) 7500 String 0.0 instruments 5000 2500 **□**(') Audio 1 -0.50 3 3 10000 0.5 -Frequency (Hz) Bat 7500 vocalizations 5000 **□**')) Audio 2 2500 -0.5 0 + 2 2 1 3

Audio Processing Noise

- Sound characteristics
 - Non-periodic, texture-like
 - Random fluctuations of air pressure

Audio Processing Noise

- Sound characteristics
 - Non-periodic, texture-like
 - Random fluctuations of air pressure
- Examples
 - Consonants (speech)
 - Wind (random aerodynamic turbulences)
 - Waves (ocean) (1) Audio 4

Audio Processing Temporal Envelope

- Smooth curve outlining the signal extreme points
- ADSR envelope model (also used for audio synthesis)
 - Attack, Decay, Sustain, Release

Audio Processing Temporal Envelope

- Smooth curve outlining the signal extreme points
- ADSR envelope model (also used for audio synthesis)
 - Attack, Decay, Sustain, Release

Audio Processing Temporal Envelope

- Tremolo
 - Periodic amplitude modulation
 - Often coincides with frequency modulation (vibrato)
 - Examples: instrument sounds

FMP Notebooks

Fig. 2.7

Audio Processing Timbre

- Perceptual attribute (complements pitch, loudness, duration)
- Difference between musical tones of same pitch & loudness

Audio Processing Timbre

- Perceptual attribute (complements pitch, loudness, duration)
- Difference between musical tones of same pitch & loudness
- Timbre research

(Subjective) perceptual attributes

(Objective) sound characteristics

- Temporal / spectral envelope
- Tonal / noise-like components
 - Partial (frequency) energies

• ..

Compact representation of spectral envelope

Audio signal

- STFT (linearly-spaced frequencies)
- CQT (logarithmically-spaced, closer to human auditory perception)

- STFT (linearly-spaced frequencies)
- CQT (logarithmically-spaced, closer to human auditory perception)
 - Variable number of frequency bins per octave
 - Increasing time resolution towards higher frequencies

- STFT (linearly-spaced frequencies)
- CQT (logarithmically-spaced, closer to human auditory perception)
 - Variable number of frequency bins per octave
 - Increasing time resolution towards higher frequencies

- Suitable for music transcription
 - Partials have a constant frequency pattern
 - Vertically shifted
 - Pitch-independent

Audio Processing Chroma Features

- Human pitch perception is periodic
- 2 pitches one octave apart are perceived as similar
- Pitch = chroma + tone height
 - Chroma: C, C#, D, D#, ..., B (12)
 - Tone height: Octave number

Audio Processing Chroma Features

■ Example (1) Audio 1

Programming Session #2

Distributed sound producing events (sound sources)

- Distributed sound producing events (sound sources)
- Sound propagation through space

- Distributed sound producing events (sound sources)
- Sound propagation through space
- Perceived (ear) or recorded (microphone)

- Distributed sound producing events (sound sources)
- Sound propagation through space
- Perceived (ear) or recorded (microphone)
- Room acoustics
 - Reflection (surfaces)
 - Diffraction (objects)

Images

- Fig. 1: https://www.acs.psu.edu/drussell/Demos/waves-intro/Lwave-Red-2.gif
- Fig. 1.1: TODO FMP
- Fig. 2: https://www.mathworks.com/help/dsp/ref/stft_output.png
- Fig. 2.1: https://upload.wikimedia.org/wikipedia/commons/thumb/3/38/Jupyter_logo.svg/1200px-Jupyter_logo.svg.png
- Fig. 2.5: https://pressbooks.pub/app/uploads/sites/140/2022/07/Piano_to_F.jpg
- Fig. 2.6: https://www.hfm-weimar.de/popvoices/media/_glossar/BH8.png
- Fig. 2.7: TODO FMP
- Fig. 2.8: TODO FMP (https://www.audiolabs-erlangen.de/resources/MIR/FMP/data/C3/FMP_C3_F03a.png)
- Fig. 3: https://i.makeagif.com/media/9-11-2015/6HmpFN.gif
- Fig. 4: https://prezigram-assets.prezicdn.net/e53764d415cd58a530e5f66144779100cc9bdc843686bbb9ea5f5c273ef1d1784bcc63c4f75847717119716f5b62701de16797ec8a51ca9a9247981613460ebc

References

[Merriam-Webster] https://www.merriam-webster.com/dictionary/sound

Audio

```
[Audio 1] https://freesound.org/people/xserra/sounds/196765/
```

[Audio 2] https://freesound.org/people/IliasFlou/sounds/498058/ (~0:00 – 0:05)

[Audio 3] https://freesound.org/people/danlucaz/sounds/517860/ (\sim 0:00 – 0:05)

[Audio 4] https://freesound.org/people/IENBA/sounds/489398/ (~0:00 – 0:07)