Iperf 使用方法与参数说明

Iperf 是一个网络性能测试工具。可以测试 TCP 和 UDP 带宽质量,可以测量最大 TCP 带宽,具有多种参数和 UDP 特性,可以报告带宽,延迟抖动和数据包丢失。Iperf 在 linux 和 windows 平台均有二进制版本供自由使用。

Iperf was developed by NLANRDAST as a modern alternative for m easuring maximum TCP and UDP bandwidth performance. Iperf allows t he tuning of various parameters and UDP characteristics. Iperf reports bandwidth, delay jitter, datagram loss.

Iperf 使用方法与参数说明

参数说明

- -s 以 server 模式启动, eg: iperf -s
- -c host 以 client 模式启动, host 是 server 端地址, eg: iperf -c 22 2.35.11.23

通用参数

- -f [kmKM] 分别表示以 Kbits, Mbits, KBytes, MBytes 显示报告,默认以 Mbits 为单位, eg: iperf -c 222.35.11.23 -f K
 - -i sec 以秒为单位显示报告间隔, eg: iperf -c 222.35.11.23 -i 2
 - -1 缓冲区大小, 默认是 8KB, eg: iperf -c 222, 35, 11, 23 -1 16
 - -m 显示 tcp 最大 mtu 值
- -o 将报告和错误信息输出到文件 eg: iperf -c 222.35.11.23 -o cipe rflog.txt
- -p 指定服务器端使用的端口或客户端所连接的端口 eg: iperf -s -p 9 999; iperf -c 222. 35. 11. 23 -p 9999
 - -u 使用 udp 协议
 - -w 指定 TCP 窗口大小, 默认是 8KB
 - -B 绑定一个主机地址或接口(当主机有多个地址或接口时使用该参数)
 - -C 兼容旧版本(当 server 端和 client 端版本不一样时使用)
 - -M 设定 TCP 数据包的最大 mtu 值
 - -N 设定 TCP 不延时
 - -V 传输 ipv6 数据包

server 专用参数

- -D 以服务方式运行 iperf, eg: iperf -s -D
- -R 停止 iperf 服务,针对-D, eg: iperf -s -R

client 端专用参数

- -d 同时进行双向传输测试
- -n 指定传输的字节数, eg: iperf -c 222.35.11.23 -n 100000
- -r 单独进行双向传输测试

- -t 测试时间, 默认 10 秒, eg: iperf -c 222.35.11.23 -t 5
- -F 指定需要传输的文件
- -T 指定 ttl 值

应用实例

使用 iperf -s 命令将 Iperf 启动为 server 模式,在客户机上使用 i perf -c 启动 client 模式。

iperf -s

Server listening on TCP port 5001

TCP window size: 8.00 KByte (default)

iperf -c 59.128.103.56 上面使用服务端和客户端的默认设置进行测试

iperf -s -w 300K

KB

Server listening on TCP port 5001

TCP window size: 300 KByte

iperf -c 59.128.103.56 -f K -i 2 -w 300K 设定报告间隔为 2 秒,服务器端和客户端的 TCP 窗口都开到 300

iperf -c 59.128.103.56 -f K -i 2 -w 300K - n 1000000 测试传输约 1MB 数据

iperf -c 59.128.103.56 -f K -i 2 -w 300K - t 36 测试持续 36 秒

iperf -c 59.128.103.56 -f K -i 2 -w 300K -n 10400000 - d 测试双向的传输

iperf -c 59.128.103.56 -f K -i 2 -w 300K - u UDP 测试

其中 -i 参数的含义是周期性报告的时间间隔(interval),单位为秒; 在上面的例子中,表示每隔 2 秒报告一次带宽等信息。

启动一个 iperf 服务器进程

首先要介绍的命令用来启动 iperf 服务器监听进程以便监听客户端连接的。命令如下:

iperf.exe -s -P 2 -i 5 -p 5999 -f k

这个命令会启动 iperf,后续参数用来设定监听 5999 端口(默认端口是 5001),限定 iperf 只允许两个连接,每5秒汇报一次连接情况。连接限制参数(-P 参数)非常重要,当两个连接建立后,服务器进程就会退出。如果这个参数设定为0,那么 iperf 进程将持续监听端口,并且不限制连接数量。在 Windows 主机上键入该命令,会显示出如图 A 所示界面

图 A

启动一个 iperf 客户端连接

iperf 的另一半就是客户端,用来连接到服务器监听端口。比如我们要连接到一台叫做 s-network1. amcs. tld 的服务器,端口为 5999,连接 6 0 秒并且每 5 秒显示一次状态,命令行如下:

iperf.exe -c s-network1.amcs.tld -P 1 -i 5 -p 5999 -f B -t $60\ \text{-T}\ 1$

命令启动后,s-network1 主机被用来进行网络性能检测。与 Jperf GUI 界面提供的漂亮图形不同, iperf 只会根据测量参数简单的报告网络带宽状况,在本例中是以 比特为单位(-f 参数)进行带宽表示的。图 B 显示了远程客户端与 s-network1 主机间的带宽性能。

图 B

届时填入服务器名称即可实现快速检测。以下为实际使用的拷屏:

```
为了应对日常便捷应用的需求,我们可以建立一个 . bat 批处理文件,
   C:\jperf\jperf\bin>iperf
Usage: iperf [-s | -c host] [options]
Try `iperf --help' for more information.
   C:\jperf\jperf\bin>iperf --help
Usage: iperf [-s -c host] [options]
       iperf [-h|--help] [-v|--version]
   Client/Server:
 -f, --format
                  [kmKM]
                          format to report: Kbits, Mbits, KBytes,
MBytes
 -i, --interval
                 #
                          seconds between periodic bandwidth repo
rts
  -1, --1en
                 #[KM]
                          length of buffer to read or write (defa
ult 8 KB)
  -m, --print_mss
                          print TCP maximum segment size (MTU - T
CP/IP header)
  -o, --output
                (filename) output the report or error message to
 this specified file
 -p, --port
                          server port to listen on/connect to
 -u, --udp
                          use UDP rather than TCP
 -w, --window
                 #[KM]
                          TCP window size (socket buffer size)
 -B, --bind
                          bind to <host>, an interface or multica
                  <host>
st address
  -C, --compatibility
                          for use with older versions does not se
nt extra msgs
  -M, --mss
                          set TCP maximum segment size (MTU - 40
bytes)
                          set TCP no delay, disabling Nagle's Alg
 -N, --nodelay
```

```
orithm
  -V, --IPv6Version
                           Set the domain to IPv6
   Server specific:
                           run in server mode
  -s, --server
  -D, --daemon
                           run the server as a daemon
  -R, --remove
                           remove service in win32
   Client specific:
  -b, --bandwidth #[KM]
                           for UDP, bandwidth to send at in bits/s
ec
                            (default 1 Mbit/sec, implies -u)
  -c, --client
                  <host>
                           run in client mode, connecting to <host>
  -d, --dualtest
                           Do a bidirectional test simultaneously
  −n, −−num
                  #[KM]
                           number of bytes to transmit (instead of
 -t)
  -r, --tradeoff
                           Do a bidirectional test individually
  -t, --time
                           time in seconds to transmit for (defaul
t 10 secs)
  -F, --fileinput <name>
                           input the data to be transmitted from a
 file
  -I, --stdin
                           input the data to be transmitted from s
tdin
  -L, --listenport #
                           port to recieve bidirectional tests bac
k on
  -P, --parallel #
                           number of parallel client threads to ru
n
  -T, --tt1
                           time-to-live, for multicast (default 1)
                  #
   Miscellaneous:
  -h, --help
                           print this message and quit
  -v, --version
                           print version information and quit
   [KM] Indicates options that support a K or M suffix for kilo-
or mega-
   The TCP window size option can be set by the environment varia
ble
TCP_WINDOW_SIZE. Most other options can be set by an environment v
ariable
IPERF_<long option name>, such as IPERF_BANDWIDTH.
```

1. iperf 能够做什么

提起 iperf,想必大家都知道它是用了<u>测试</u>网络性能的。具体说来,Iperf 是美国伊利诺斯大学(University of Illinois)开发的一种开源的网络<u>性能测试</u>工具。可以用来测试网络节点间(也包括回环)TCP 或 UDP 连接的性能,包括带宽、抖动以及丢包率,其中抖动和丢包率适应于 UDP 测试,而带宽测试适应于 TCP 和 UDP。

这里需要特别提出的是, iperf 不能够用来测试时延, 想一想这是为什么。

2. 网络性能参数

以上提到了网络的主要性能参数包括带宽,时延,抖动和丢包率,这些用一个名词代替,就是 **QOS**(服务质量)。

对于时延和抖动, 见如下图

图中 D1, D2 分别表示包 A 和包 B 的时延。

抖动=|D2-D1|

对于时延,iperf 无能为力。但是 iperf 能够计算抖动,想想这又是为什么。 我们知道,在 iperf 中,我们测试时需要发送大量的包,因此计算出来的抖动 值就是连续发送时延差值的平均值。

3. 安装 iperf

在 Unix 系统下,安装 iperf 最方便的方法是直接下载 rpm 包,使用 rpm 指定安装即可。

当然也可以直接去 sourceforge 上下载源代码,使用如下命令安装即可。

#./configure

#make

#make install

前提是该机器上已经有 C++编译器和 make 等程序。安装完成之后,可以进行一个简单的回环测试 iperf 是否安装成功。

\$ iperf -s

Server listening on TCP port 5001

TCP window size: 85.3 KByte (default)

[4] local 127.0.0.1 port 5001 connected with 127.0.0.1 port 35589

[ID] Interval Transfer Bandwidth

[4] 0.0-10.0 sec 26.3 GBytes 22.6 Gbits/sec

\$ iperf -c 127.0.0.1

Client connecting to 127.0.0.1, TCP port 5001

TCP window size: 49.5 KByte (default)

[3] local 127.0.0.1 port 35589 connected with 127.0.0.1 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0-10.0 sec 26.3 GBytes 22.6 Gbits/sec

4. iperf 主要参数

iperf 中的可选参数比较多,具体可以参见其用户手册。

http://webfolder.wirelessleiden.nl/iperf/

一般来说,我们在做性能测试的时候需要指定包长,不同的包长会得到不同的吞吐量,通过-1指定,而使用-b指定带宽。

5. 测试吞吐量, 抖动和丢包率

如何需要同时测试以上三个参数,那么只能通过 UDP 获得。使用-u 参数进行 UDP 测试(iperf 默认为 TCP)。

在测试的最后 server 端会给出一个报告。

```
[3] local 192.168.1.1 port 2152 connected with 192.168.101.2 port 56768
```

[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams

[3] 0.0- 1.0 sec 1.40 MBytes 11.7 Mbits/sec 0.069 ms 0/14671 (0%)

[3] 1.0- 2.0 sec 1.40 MBytes 11.8 Mbits/sec 0.050 ms 0/14703 (0%)

[3] 2.0- 3.0 sec 1.40 MBytes 11.8 Mbits/sec 0.052 ms 0/14708 (0%)

[3] 3.0- 4.0 sec 1.40 MBytes 11.8 Mbits/sec 0.057 ms 0/14704 (0%)

 $[\ 3]\ 4.0\text{--}\ 5.0\ \sec\ 1.40\ MBytes\ 11.8\ Mbits/sec}\ \ 0.072\ ms\ \ \ 0/14706\ \ (0\%)$

[3] 5.0- 6.0 sec 1.40 MBytes 11.8 Mbits/sec 0.075 ms 0/14705 (0%)

 $[\ 3]\ 6.0\text{--}\ 7.0\ sec\ 1.40\ MBytes\ 11.8\ Mbits/sec\ 0.060\ ms\ 0/14707\ (0\%)$

[3] 7.0- 8.0 sec 1.40 MBytes 11.8 Mbits/sec 0.073 ms 0/14703 (0%)

[3] 8.0- 9.0 sec 1.40 MBytes 11.8 Mbits/sec 0.073 ms 0/14706 (0%)

[3] 0.0-10.0 sec 14.0 MBytes 11.8 Mbits/sec 0.064 ms 0/147020 (0%)

要获得带宽数据,需要不断在 client 端增加带宽值,直到 server 端出现轻微的丢包为止,此时 server 端显示的带宽就是被测系统的吞吐量。

6. 测试时延

那么有朋友会问,iperf 不能用来测试时延,而时延又是比较重要的 QOS 参数,有什么办法吗?

其实最简单的办法就是使用 Ping 程序。我们经常用它来测试特定主机能 否通过 IP 到达,

程序会按时间和反应成功的次数,估计丢包率和分组来回时间(即网络时延)。

当然,如果我们能成功构造一个回环测试路径,那么测试时延就轻而易举了,我们可以使用 iperf 发送数据,同时结合 tcpdump 抓包工具,经过 wi reshark 分析. cap 文件就可以得出包来回时间,也就是往返时延。

7. 使用 TCP 测试带宽应注意的问题

有时候,我们需要使用 TCP 来测试网络带宽。这里有一个参数需要特别注意,那就是 TCP 窗口大小,可以使用-w 参数指定。

网络通道的容量 capacity = bandwidth * round-trip time

而理论 TCP 窗口的大小就是网络通道的容量。

比如,网络带宽为 40Mbit/s,回环路径消耗时间是 2ms,那么 TCP 的窗口大小不小于 40Mbit/s×2ms = 80kbit = 10Kbytes

此时我们可以查询iperf默认的TCP窗口大小来决定是否需要设置此参数, 在此例中,窗口大小应设计大于10Kbytes,当然,这仅仅是理论值,在实际 测试中可能需要作出调整。