

Contents

1	Con	traste de Hipótesis	2
	1.1	Principios básicos de un contraste de hipótesis	2
	1.2	Errores de tipo I y de tipo II	3
	1.3	Test uniformemente más potente de tamaño α	5
	1.4	Hipótesis nula simple frente a alternativa simple	5

1 Contraste de Hipótesis

1.1 Principios básicos de un contraste de hipótesis

Sea $X \approx (\chi, \beta_{\chi}, F_{\theta})_{\theta \in \Theta \subset \mathbb{R}^{\ell}}$ modelo estadístico ℓ -paramétrico y $(X_1, \dots X_n)$ muestra de $\{F_{\theta}, \theta \in \Theta\}$

Idea: estudiar si una determinada afirmación sobre $\{F_{\theta}, \theta \in \Theta\}$ es confirmada o invalidada a partir de los datos muestrales

Ejemplo

Supongamos que en un laboratorio se está estudiando cierta reacción química sobre una determinada sustancia y que el resultado de dicha reacción es una variable observable que se puede modelizar mediante una v.a. X con distribución normal. Por experiencias anteriores se sabe que, si en la sustancia está presente cierto mineral, $X \sim N(\mu = 10, \sigma = 4)$ y si no lo está $X \sim N(\mu = 11, \sigma = 4)$. Se puede comprobar por medio de unos análisis si el mineral está o no presente en la sustancia en estudio, pero dichos análisis son muy costosos, por lo que se procede a realizar la reacción química n = 25 veces para decidir, a la luz de los resultados, si $\mu = 10$ o $\mu = 11$

Definición 1.1.1 [Hiptótesis Estadística]

Una hipótesis estadística es cualquier afirmación acerca de un modelo estadístico.

Definición 1.1.2 [Hipótesis Estadística Simple y Compuesta]

Una hipótesis estadística es simple si especifica totalmente el modelo estadístico, en otro caso, se dice que es compuesta

Definición 1.1.3 [Hipótesis Estadística Nula y Alternativa]

Se llama hipótesis nula H_0 a la hipótesis de trabajo y es la hipótesis estadística que vamos a aceptar si no hay suficiente evidencia a partir de los datos para rechazarla, consecuentemente se llama hipótesis alternativa H_1 a la hipótesis estadística que se acepta si hay suficiente evidencia a partir de los datos para rechazar H_0

Definición 1.1.4 [Contraste de Hipótesis Paramétrico]

Un contraste de hipótesis paramétrico es una partición del espacio paramétrico Θ en dos subconjuntos Θ_0 y Θ_1 tales que $\Theta = \Theta_0 \bigcup \Theta_1$ y $\Theta_0 \cap \Theta_1 = \phi$

En el ejemplo anterior $\Theta = \{\mu_0, \mu_1\}, \Theta_0 = \{\mu_0\}, \Theta_1 = \{\mu_1\}$

En un problema de contraste de hipótesis paramétrico se pretende contrastar $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$. Por supuesto, la decisión debe basarse en la evidencia aportada por la observación de una muestra (X_1, \dots, X_n) , o equivalentemente por la observación de un cierto estadístico $T = T(X_1, \dots, X_n)$, que se denomina estadístico del contraste, y que será usualmente un estimador suficiente del parámetro θ

El contraste entre dos hipótesis basado en un estadístico, exige conocer la distribución en el muestreo de dicho estadístico, para los diversos valores del parámetro. De hecho, la idea del contraste consiste en localizar un suceso que sea muy improbable cuando la hipótesis nula es cierta. Si, una vez observada la muestra, acontece dicho suceso, o bien es que el azar ha jugado la mala pasada de elegir una muestra "muy rara" o, como parece más razonable, la hipótesis nula era falsa

Definición 1.1.5 [Región Crítica]

Sea una partición del espacio muestral χ^n en dos subconjuntos C y C^c tales que $\chi^n = C \bigcup C^c$ y $C \cap C^c = \phi.C$ es una región crítica para el contraste $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$ sí y sólo sí, se rechaza H_0 cuando se observa un valor muestral $(x_1, \dots, x_n) \in C$, en cuyo caso se acepta H_1 . Consecuentemente, C^c se denomina región de aceptación y si $(x_1, \dots, x_n) \in C^c$, se dice que no hay suficiente evidencia estadística para rechazar H_0 , en este sentido se acepta H_0

Si $T = T(X_1, \dots, X_n) : \chi^n \to \tau$ es el estadístico del contraste, sea una partición de τ en dos subconjuntos C_τ y C_τ^c tales que $\tau = C_\tau \bigcup C_\tau^c$ y C_τ $\bigcap C_\tau^c = \phi.C_\tau$ es una región crítica para el contraste $H_0 : \theta \in \Theta_0$ frente a $H_1 : \theta \in \Theta_1$ sí y sólo sí, se rechaza H_0 cuando se observa un valor muestral (x_1, \dots, x_n) tal que $T(x_1, \dots, x_n) \in C_\tau$, en cuyo caso acepto H_1 . Consecuentemente, C_τ^c se denomina región de aceptación Así, $C = \{(x_1, \dots, x_n) \in \chi^n : T(x_1, \dots, x_n) \in C_\tau\}$

En el ejemplo anterior, podemos considerar como región crítica $C = \{(x_1, \dots, x_n) : \bar{x} \ge k\}$

En un problema de contraste no sólo es importante conocer las probabilidades de cada resultado posible, sino también valorar el riesgo que estamos dispuestos a correr al tomar una decisión equivocada. En el ejemplo anterior, al rechazar que en la sustancia está presente el mineral cuando en realidad si lo está, o bien al aceptar que en la sustancia está presente el mineral cuando en realidad no lo está. Ambos errores tienen consecuencias prácticas distintas

1.2 Errores de tipo I y de tipo II

Error de tipo I es el error que se comete cuando se rechaza H_0 siendo cierta. Error de tipo II es el error que se comete cuando se acepta H_1 siendo falsa

En el ejemplo anterior, las probabilidades de cometer error de tipo I y error de tipo II son $P(I) = P(\bar{x} \ge k \mid \mu = 10)$ y $P(II) = P(\bar{x} < k \mid \mu = 11)$

Lo idóneo sería conseguir un test para el que ambas probabilidades de error fuesen pequeñas. Sin embargo (salvo en casos excepcionales y triviales), la reducción de la probabilidad de error de tipo II se hace a costa del aumento de la probabilidad de error de tipo l y viceversa, con lo que el único procedimiento para disminuir ambas probabilidades de error simultáneamente es aumentar el tamaño muestral, lo que conlleva un incremento del coste del procedimiento que en la práctica puede ser prohibitivo

Definición 1.2.1 [Función de Potencia]

Si C es una región crítica para el contraste $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$, se define la función de potencia del test como la función $\beta_C: \Theta \to [0,1]$ que a cada valor θ del parámetro le asigna el valor $\beta_C(\theta) = P_{\theta}(C)$, es decir, la probabilidad de rechazar H_0 cuando el valor del parámetro es θ

Definición 1.2.2 [Nivel de significación y tamaño del test]

Un test C tiene nivel de significación $\alpha \in [0,1]$ sí y sólo sí $\sup \beta_C(\theta) \le \alpha$ y se denomina tamaño del test al valor $\sup \beta_C(\theta)$ $\theta \in \Theta_0$

Ejemplo

En el ejemplo anterior, con $n=25, C=\{10<\bar{x}<10,006\},\ P(I)=\beta_C(\mu=10)=P(10<\bar{x}<10.006\mid \mu=10)=0.05\ P(II)=1-\beta_C(\mu=11)=P(10<\bar{x}<10.006\mid \mu=11)=0.976$ En el ejemplo anterior, con $n=25, C=\{\bar{x}\geq k\}$ y $\alpha=0.05,\ P(I)=\beta_C(\mu=10)=P(\bar{x}\geq 11.316\mid \mu=10)=0.05\ P(II)=1-\beta_C(\mu=11)=P(\bar{x}<11.316\mid \mu=11)=0.6554$ En el ejemplo anterior, con $n = 100, C = \{\bar{x} \ge k\}$ y $\alpha = 0.05,$ $P(I) = \beta_C(\mu = 10) = P(\bar{x} \ge 10.658 \mid \mu = 10) = 0.05$ $P(II) = 1 - \beta_C(\mu = 11) = P(\bar{x} < 10.658 \mid \mu = 11) = 0.196$

Definición 1.2.3 [p-valor]

Si para contrastar $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$, el test tiene región crítica

$$C = \{(x_1, \dots, x_n) : T(x_1, \dots, x_n) \ge k\}$$

para T un estadístico conveniente, y se observa la muestra (x_1, \ldots, x_n) , se denomina p-valor correspondiente a (x_1, \ldots, x_n) al valor

$$p(x_1,\ldots,x_n) = \sup_{\theta \in \Theta_0} P\{T(X_1,\ldots,X_n) \ge T(x_1,\ldots,x_n) \mid \theta\}$$

Si el tamaño del test es α y observada la muestra (x_1, \ldots, x_n) el p-valor correspondiente $p(x_1, \ldots, x_n) \leq \alpha$, entonces (x_1, \ldots, x_n) pertenece a la región crítica y por lo tanto se rechaza H_0 . Si el p-valor $p(x_1, \ldots, x_n) > \alpha$, entonces (x_1, \ldots, x_n) pertenece a la región de aceptación y por lo tanto no hay suficiente evidencia estadística para rechazar H_0

Ejemplo

En el ejemplo anterior, con $n = 100, C = \{\bar{x} \ge k\}$ y $\alpha = 0.05,$ $P(I) = \beta_c(\mu = 10) = P(\bar{x} \ge 10.658 \mid \mu = 10) = 0.05$ $P(II) = 1 - \beta_C(\mu = 11) = P(\bar{x} < 10.658 \mid \mu = 11) = 0.196$ Entonces, observada $\bar{x} = 11$

$$p(11) = P(\bar{X} \ge 11 \mid \mu = 10) = P(Z \ge 2.5) = 0.00621$$

Por lo tanto, se rechaza $H_0: \mu = 10$ a favor de $H_1: \mu = 11$

Observación 1.2.1

- 1. $n y \alpha$ son valores fijados de antemano
- 2. Las hipótesis nula y alternativa no son intercambiables puesto que el tratamiento que reciben es asimétrico, la asimetría queda matizada por el valor α que se elija como nivel de significación y por la probabilidad de error de tipo II que resulte una vez diseñado el test, pues podría ocurrir que para $\theta \in \Theta_1$, $P_{\theta}(C^c) = 1 \beta_C(\theta) \le \alpha$
- 3. En el contraste de hipótesis planteado se considera H_0 como la hipótesis de interés, en el sentido que para poder invalidarla es necesario esgrimir una gran evidencia. Por consiguiente, los test de hipótesis se emplean con un carácter conservador, a favor de la hipótesis nula, ya que el nivel de significación que se fija, intenta garantizar que sea muy infrecuente rechazar una hipótesis nula correcta, y la preocupación por dejar vigente una hipótesis nula falsa es menor, pudiéndose aceptar en este último caso riesgos más altos. En este sentido, si el resultado de un contraste de hipótesis es aceptar H_0 , debe interpretarse que las observaciones no han aportado suficiente evidencia para descartarla; mientras que, si se rechaza, es porque se está razonablemente seguro de que H_0 es falsa y, por consiguiente, aceptamos H_1

Proposición 1.2.1 [Criterio de comparación de contrastes]

Si C y C' son dos test con nivel de significación α basados en una muestra $(X_1, \dots X_n)$ de $\{F_{\theta}, \theta \in \Theta\}$, para contrastar $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$, tales que $\beta_C(\theta) \geq \beta_{C'}(\theta), \forall \theta \in \Theta_1$, entonces C es uniformemente más potente que C'

1.3 Test uniformemente más potente de tamaño α

Proposición 1.3.1

Sea C una región crítica para el contraste $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$, basada en una muestra $(X_1, \dots X_n)$ de $\{F_{\theta}, \theta \in \Theta\}$ C es un test uniformemente de máxima potencia de tamaño α (TUMP) sí y sólo sí

- 1. $\sup \beta_C(\theta) = \alpha \ \theta \in \Theta_0$
- 2. Para cualquier otro test basado en $(X_1, \dots X_n)$ con región crítica C' tal que $\sup_{\theta \in \Theta_0} \beta_{C'}(\theta) \le \alpha$, es $\beta_C(\theta) \ge \beta_{C'}(\theta)$, $\forall \theta \in \Theta_1$

1.4 Hipótesis nula simple frente a alternativa simple

Teorema 1.4.1 [Teorema de Neyman-Pearson - Parte I]

Para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, si para algún $k \geq 0$ existe un test con región crítica $c = \left\{ (x_1, \cdots, x_n) \in \chi^n : \frac{f_{\theta_1}(x_1, \cdots, x_n)}{f_0(x_1, \cdots, x_n)} \geq k \right\}$ y región de aceptación $C^c = \left\{ (x_1, \cdots, x_n) \in x^n : \frac{f_{\theta_1}(x_1, \cdots, x_n)}{f_{\theta_0}(x_1, \cdots, x_n)} < k \right\}$ tal que $\alpha = P_{\theta_0}(C)$, entonces C es uniformemente de máxima potencia de tamaño α

Demostración. Observemos que C es un test de tamaño α ya que $\Theta_0 = \{\theta_0\}$ y por lo tanto $\sup_{\theta \in \Theta_0} \beta_C(\theta) = P_{\theta_0}(C) = \alpha$

Sea C' otro test de nivel α , es decir tal que $\alpha \ge \sup_{\theta \in \Theta_0} \beta_{C'}(\theta) = P_{\theta_0}(C')$ y consideremos la siguiente partición del espacio muestral.

$$S^{+} = \{(x_{1}, \cdots x_{n}) \in \chi^{n} : I_{C}(x_{1}, \cdots x_{n}) > I_{C'}(x_{1}, \cdots x_{n})\},$$

$$S^{-} = \{(x_{1}, \cdots x_{n}) \in \chi^{n} : I_{C}(x_{1}, \cdots x_{n}) < I_{C'}(x_{1}, \cdots x_{n})\},$$

$$\chi^{n} - S^{+} \bigcup S^{-} = \{(x_{1}, \cdots x_{n}) \in \chi^{n} : I_{C}(x_{1}, \cdots x_{n}) = I_{C'}(x_{1}, \cdots x_{n})\}$$

$$\int_{\chi^{n}} (I_{C}(x_{1}, \cdots , x_{n}) - I_{C'}(x_{1}, \cdots , x_{n})) (f_{\theta_{1}}(x_{1}, \cdots , x_{n}) - kf_{\theta_{0}}(x_{1}, \cdots , x_{n})) dx_{1} \cdots dx_{n} =$$

$$\int_{S^{+}} (I_{C}(x_{1}, \cdots , x_{n}) - I_{C'}(x_{1}, \cdots , x_{n})) (f_{\theta_{1}}(x_{1}, \cdots , x_{n}) - kf_{\theta_{0}}(x_{1}, \cdots , x_{n})) dx_{1} \cdots dx_{n} +$$

$$\int_{S^{-}} (I_{C}(x_{1}, \cdots , x_{n}) - I_{C'}(x_{1}, \cdots , x_{n})) (f_{\theta_{1}}(x_{1}, \cdots , x_{n}) - kf_{\theta_{0}}(x_{1}, \cdots , x_{n})) dx_{1} \cdots dx_{n} +$$

$$\int_{\chi^{n} - S^{+} \cup S^{-}} (I_{C}(x_{1}, \cdots , x_{n}) - I_{C'}(x_{1}, \cdots , x_{n})) (f_{\theta_{1}}(x_{1}, \cdots , x_{n}) - kf_{\theta_{0}}(x_{1}, \cdots , x_{n})) dx_{1} \cdots dx_{n} \geq 0$$

$$\int_{\chi^{n}} I_{C}(x_{1}, \cdots , x_{n}) f_{\theta_{1}}(x_{1}, \cdots , x_{n}) - \int_{\chi^{n}} I_{C'}(x_{1}, \cdots , x_{n}) f_{\theta_{0}}(x_{1}, \cdots , x_{n}) dx_{1} \cdots dx_{n} \geq 0$$

$$k \left(\int_{\chi^{n}} I_{C}(x_{1}, \cdots , x_{n}) f_{\theta_{0}}(x_{1}, \cdots , x_{n}) - \int_{\chi^{n}} I_{C'}(x_{1}, \cdots , x_{n}) f_{\theta_{0}}(x_{1}, \cdots , x_{n}) dx_{1} \cdots dx_{n} \right)$$

$$P_{\theta_{1}}(C) - P_{\theta_{1}}(C') \geq k \left(P_{\theta_{0}}(C) - P_{\theta_{0}}(C') \right) \geq k(\alpha - \alpha) = 0 \Rightarrow \beta_{C}(\theta) \geq \beta_{C'}(\theta), \forall \theta \in \Theta_{1} = \{\theta_{1}\}$$

Observación 1.4.1

De la demostración del teorema se deduce que los puntos para los que $f(x_1,\ldots,x_n\mid\theta_1)=kf(x_1,\ldots,x_n\mid\theta_0)$ pueden ser colocados tanto en la región crítica como en la región de aceptación.

Es importante señalar que el teorema de Neyman-Pearson no dice que el test de la forma dada en su enunciado deba existir cualquiera que sea $\alpha \in [0,1]$

Ejemplo

Para una muestra de tamaño n=12, extraída de una distribución de Poisson con parámetro θ , donde $\theta \in [0, 0.5]$, se plantea el siguiente contraste de hipótesis:

$$\begin{cases} H_0: \theta = 0\\ H_1: \theta = 0.5 \end{cases}$$

La región crítica para este contraste viene dada por:

$$C = \{(x_1, \dots, x_{12}) : \sum_{i=1}^{12} x_i \ge 2\}$$

En este caso particular, como $\sum_{i=1}^{12} x_i < 2,$ se tiene que $\overline{X} < \frac{1}{6}.$

La probabilidad de error de tipo I (α) y la función de potencia ($\beta(\theta)$) se calculan como sigue:

$$\alpha = \beta(0) = P(C \mid \theta = 0) = P\left(\sum_{i=1}^{12} x_i \ge 2 \mid \theta = 0\right) = 0$$

$$\beta(0.5) = P(C \mid \theta = 0.5) = P\left(\sum_{i=1}^{12} x_i \ge 2 \mid \theta = 0.5\right)$$

$$= P(\text{Poisson}(6) \ge 2)$$

$$= 1 - P(\text{Poisson}(6) = 0) - P(\text{Poisson}(6) = 1)$$

$$= 1 - e^{-6} \left(\frac{6^0}{0!} + \frac{6^1}{1!}\right)$$

$$= 1 - e^{-6} (1 + 6) \approx 0.9826$$

$$\beta(0.25) = P(C \mid \theta = 0.25) = P\left(\sum_{i=1}^{12} x_i \ge 2 \mid \theta = 0.25\right)$$

$$= P(\text{Poisson}(3) \ge 2)$$

$$= 1 - P(\text{Poisson}(3) = 0) - P(\text{Poisson}(3) = 1)$$

$$= 1 - e^{-3} \left(\frac{3^0}{0!} + \frac{3^1}{1!}\right)$$

$$= 1 - e^{-3} (1 + 3) \approx 0.8009$$

Ejemplo

Para una m.a.s.(n) de $X \sim N(\theta, \sigma)$, con σ conocida, encontrar el TUMP de tamaño α para contrastar $H_0: \theta = \theta_0 \text{ frente a } H_1: \theta = \theta_1, \text{ con } \theta_0 < \theta_1$ $\frac{f_{\theta_1}(x_1, \dots, x_n)}{f_0(x_1, \dots x_n)} = e^{\frac{1}{\sigma^2}n(\theta_0^2 - \theta_1^2)} e^{\frac{1}{\sigma^n}n(\theta_1 - \theta_0)} \ge k \Leftrightarrow \bar{x} \ge c$

$$\frac{f_{\theta_1}(x_1, \dots, x_n)}{f_0(x_1, \dots x_n)} = e^{\frac{1}{\sigma^2} n \left(\theta_0^2 - \theta_1^2\right)} e^{\frac{1}{\sigma^n} n n \left(\theta_1 - \theta_0\right)} \ge k \Leftrightarrow \bar{x} \ge \epsilon$$

donde c es tal que $P_{\theta_0}\{\bar{x} \geq c\} = \alpha$, es decir $c = \theta_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$

Ejemplo

Para una m.a.s.(n) de $X \sim \text{Exp}(\theta)$, encontrar el TUMP de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, con $\theta_0 < \theta_1$

frente a
$$H_1: \theta = \theta_1$$
, con $\theta_0 < \theta_1$

$$\frac{f_9(x_1, \dots, x_n)}{f_{\theta_0}(x_1, \dots x_n)} = \left(\frac{\theta_1}{\theta_0}\right)^n e^{(\theta_0 - \theta_1) \sum_{i=1}^n x_i} \ge k \Leftrightarrow 2\theta_0 \sum_{i=1}^n x_i \le c$$

donde c es tal que $P_{\theta_0} \{ 2\theta_0 \sum_{i=1}^n x_i \leq c \} = \alpha$, es decir $c = \chi^2_{2n,\alpha}$

Ejemplo

Para una m.a.s.(n) de $X \sim N(\mu, \theta)$, con μ conocida, encontrar el TUMP de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, con $\theta_0 < \theta_1$

$$\begin{array}{ll} f_{0} \cdot v = b_{0} \text{ fielde } a \ H_{1} \cdot v = b_{1}, \ \text{con } b_{0} < b_{1} \\ \frac{f_{\theta_{1}}(x_{1}, \cdots, x_{n})}{f_{\theta_{0}}(x_{1}, \cdots x_{n})} = \left(\frac{\theta_{0}}{\theta_{1}}\right)^{n} e^{\frac{1}{2}\left(\frac{1}{\theta_{0}^{2}} - \frac{1}{\theta_{1}^{2}}\right)\sum_{i=1}^{n}(x_{i} - \mu)^{2}} \\ P_{\theta_{0}}\left\{\frac{\sum_{i=1}^{n}(x_{i} - \mu)^{2}}{\theta_{0}^{2}} \geq c\right\} = \alpha, \text{ es decir } c = \chi_{n,\alpha}^{2} \end{array} \\ \geq k \Leftrightarrow \frac{\sum_{i=1}^{n}(x_{i} - \mu)^{2}}{\theta_{0}^{2}} \geq c \text{ donde } c \text{ es tal que } c \text{ donde } c \text{ es tal que } c \text{ donde } c \text{ es tal que } c \text{ donde } c \text{ es tal que } c \text{ donde } c \text{ es tal que } c \text{ donde } c \text{ es tal que } c \text{ donde } c \text{ donde } c \text{ es tal que } c \text{ donde } c \text{ donde } c \text{ es tal que } c \text{ donde } c \text{ donde } c \text{ es tal que } c \text{ donde } c \text{ es tal que } c \text{ donde } c \text{$$

Ejemplo

Para una m.a.s.(n) de $X \sim \text{Bin}(1, \theta)$, encontrar el TUMP de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, con $\theta_0 < \theta_1$

frente a
$$H_1: \theta = \theta_1$$
, con $\theta_0 < \theta_1$

$$\frac{f_0(x_1, \dots, x_n)}{f_{\theta_0}(x_1, \dots x_n)} = \left(\frac{1-\theta_1}{1-\theta_0}\right)^n \left(\frac{\theta_1}{\theta_0} \frac{1-\theta_0}{1-\theta_1}\right)^{\sum_{i=1}^n x_i} \Leftrightarrow \sum_{i=1}^n x_i \ge c$$
donde c es tal que $P_{\theta_0} \left\{\sum_{i=1}^n x_i \ge c\right\} = \sum_{j=c}^n \binom{n}{j} \theta_0^j (1-\theta_0)^{n-j} = \alpha_c, c = 0, 1, 2, \dots, n$

Teorema 1.4.2 [Teorema de Neyman-Pearson - Parte II]

Para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, si para algún k > 0 existe un test con región crítica C tal que $P_{\theta_0}(C) = \alpha$ con $\left\{ (x_1, \dots, x_n) \in \chi^n : \frac{f_9(x_1, \dots, x_n)}{f_0(x_1, \dots x_n)} > k \right\} \subset cc \left\{ (x_1, \dots, x_n) \in x^n : \frac{f_9(x_1, \dots, x_n)}{f_0(x_1, \dots x_n)} \ge k \right\}$ entonces cualquier test C' uniformemente de máxima potencia de nivel α , es de tamaño α y verifica $\left\{ (x_1, \dots, x_n) \in \chi^n : \frac{f_{\theta_1}(x_1, \dots, x_n)}{f_{f_0}(x_1, \dots x_n)} > k \right\} \subset c' \subset \left\{ (x_1, \dots, x_n) \in x^n : \frac{f_{\theta_1}(x_1, \dots, x_n)}{f_{\theta_0}(x_1, \dots x_n)} \ge k \right\}$ salvo quizás en un conjunto $A \subset \chi^n$ tal que $P_{\theta_0}(A) = P_{\theta_1}(A)$

Demostración. Si C' es un test uniformemente de máxima potencia de nivel α y existe C de la forma del enunciado con k > 0, entonces por el apartado anterior C es también uniformemente de máxima potencia de nivel α . Por lo tanto, $\beta_C(\theta_1) = \beta_{C'}(\theta_1)$. Entonces, $0 = P_{\theta_1}(C) - P_{\theta_1}(C') \ge k(\alpha - P_{\theta_0}(C')) \ge 0$ y como $k > 0 \Rightarrow P_{\theta_0}(C') = \alpha$ y se sigue que

$$\int_{\chi^n} (I_C(x_1, \dots, x_n) - I_{C'}(x_1, \dots, x_n)) (f_{\theta_1}(x_1, \dots, x_n) - kf_{\theta_0}(x_1, \dots, x_n)) dx_1 \dots dx_n = 0$$

Por lo tanto, o bien $I_C(x_1, \dots, x_n) = I_{C'}(x_1, \dots, x_n), \forall (x_1, \dots, x_n), o$

$$\int_{S^{+}} \left(I_{C}\left(x_{1}, \cdots, x_{n}\right) - I_{C'}\left(x_{1}, \cdots, x_{n}\right) \right) \left(f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - k f_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right) \right) dx_{1} \cdots dx_{n} = 0$$

$$\int_{S^{-}} \left(I_{C}\left(x_{1}, \cdots, x_{n}\right) - I_{C'}\left(x_{1}, \cdots, x_{n}\right) \right) \left(f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - k f_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right) \right) dx_{1} \cdots dx_{n} = 0$$

$$\int_{S^{+}} \left(f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - k f_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right) \right) dx_{1} \cdots dx_{n} = 0 \Rightarrow S^{+} \subset \left\{ f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - k f_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right) = 0 \right\}$$

$$-\int_{S^{-}} \left(f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - k f_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right) \right) dx_{1} \cdots dx_{n} = 0 \Rightarrow S^{-} \subset \left\{ f_{\theta_{1}}\left(x_{1}, \cdots, x_{n}\right) - k f_{\theta_{0}}\left(x_{1}, \cdots, x_{n}\right) = 0 \right\}$$
o bien $P_{\theta_{1}}\left(S^{+}\right) = \int_{S^{+}} f\left(x_{1}, \dots, x_{n} \mid \theta_{1}\right) dx_{1} \cdots dx_{n} = 0, P_{\theta_{0}}\left(S^{+}\right) = \int_{S^{+}} f\left(x_{1}, \dots, x_{n} \mid \theta_{0}\right) dx_{1} \cdots dx_{n} = 0$

$$P_{\theta_{1}}\left(S^{-}\right) = \int_{S^{-}} f\left(x_{1}, \dots, x_{n} \mid \theta_{1}\right) dx_{1} \cdots dx_{n} = 0 \text{ y } P_{\theta_{1}}\left(S^{-}\right) = \int_{S^{-}} f\left(x_{1}, \dots, x_{n} \mid \theta_{0}\right) dx_{1} \cdots dx_{n} = 0$$

Definición 1.4.1 [Test aleatorizado]

Un test aleatorizado es cualquier función medible tal que $\varphi(x_1, \dots, x_n)$ expresa la probabilidad de rechazar la hipótesis nula cuando se observa $(x_1, \dots, x_n) \in \chi^n$

Observación 1.4.2

Como su propio nombre indica, en un test aleatorizado, observado un valor muestral $(x_1, \dots, x_n) \in \chi^n$, se efecua un sorteo con probabilidad $\varphi(x_1, \dots, x_n)$ de rechazar H_0 y $1 - \varphi(x_1, \dots, x_n)$ de aceptarla. En este sentido, una región crítica es un test no aleatorizado, pues observada una muestra nuestra decisión es tajante: rechazamos o aceptamos H_0 .

En cambio, en los test aleatorizados la decisión final depede total o parcialmente del azar. Aunque esta es una regla de conducta no determinística, los tests no aleatorizados son un caso particular de ella para $\varphi(x_1, \dots, x_n) = I_C(x_1, \dots, x_n)$

Definición 1.4.2 [Función de potencia de un test aleatorizado]

Si φ es un test aleatorizado para el contraste $H_0: \theta \in \Theta_0$ frente a $H_1: \theta \in \Theta_1$, se define función de potencia del test a la función $\beta_{\varphi}: \Theta \to [0,1]$ que a cada valor θ del parámetro le asigna el valor $\beta_{\varphi}(\theta) = E_{\theta}(\varphi)$.

Definición 1.4.3 [Nivel de significación y tamaño de un test aleatorizado]

Un test aleatorizado φ tiene nivel de significación $\alpha \in [0,1]$ sí y sólo sí $\sup \beta_{\varphi}(\theta) \leq \alpha$ y se denomina tamaño del test al valor $\sup_{\theta \in \Theta_0} \beta_{\varphi}(\theta)$ $\theta \in \Theta_0$

Teorema 1.4.3

En las mismas condiciones del teorema de Neyman-Pearson, $\forall \alpha \in (0,1)$ existe un test aleatorizado φ de tamaño α de la forma

$$\varphi(x_1, \dots x_n) = \begin{cases} 1 & si & f_{\theta_1}(x_1, \dots x_n) > kf_{\theta_0}(x_1, \dots x_n) \\ \gamma & si & f_{\theta_1}(x_1, \dots x_n) = kf_{\theta_0}(x_1, \dots x_n) \\ 0 & si & f_{\theta_1}(x_1, \dots x_n) < kf_{\theta_0}(x_1, \dots x_n) \end{cases}$$

 $con \ k \geq 0 \ y \ \gamma \in [0,1] \ tales \ que$

$$\alpha = E_{\theta_0}[\varphi] = P_{\theta_0} \{ f_{\theta_1}(x_1, \dots x_n) > k f_{\theta_0}(x_1, \dots x_n) \} + \gamma P_{\theta_0} \{ f_{\theta_1}(x_1, \dots x_n) = k f_{\theta_0}(x_1, \dots x_n) \}$$

Además,

I) φ es uniformemente de máxima potencia de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_0$ θ_1

Para cualquier otro test φ' basado en $(X_1, \dots X_n)$ tal que $\sup_{\theta \in \Theta_0} \beta_{\varphi'}(\theta) \leq \alpha$, es $\beta_{\varphi}(\theta) \geq \beta_{\varphi'}(\theta)$, $\forall \theta \in \Theta_0$

II) existe φ de la forma del enunciado verificando $\alpha = E_{\theta_0}[\varphi]$ para k > 0 y φ' es uniformemente de máxima potencia de nivel α , entonces φ' es de tamaño α y $\varphi'(x_1, \dots, x_n) = \varphi(x_1, \dots, x_n)$ salvo quizá en un conjunto $A \subset \chi^n$ tal que $P_{\theta_0}(A) = P_{\theta_1}(A) = 0$

Definición 1.4.4 [Test insesgado]

Un test φ de tamaño α es insesgado para el contraste $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$ sí y sólo sí $E_{\theta_1}(\varphi) \geq \alpha$

Corolario 1.4.1

El test uniformemente de máxima potencia de tamaño α construido en el lema de Neyman Pearson es insesgado.

Demostración. Sea $\varphi'(x_1, \dots, x_n) = \alpha$, salvo quizá en un conjunto $A \subset \chi^n$ tal que $P_{\theta_0}(A) = P_{\theta_1}(A) = 0$. Como $E_{\theta_0}[\varphi'] = \alpha$ y φ' no es de la forma del enunciado del Teorema 5, $\alpha = E_{\theta_1}[\varphi'] \leq E_{\theta_1}[\varphi]$.

Ejemplo

Para una m.a.s.(n) de $X \sim \text{Bin}(1,\theta)$, encontrar el TUMP de tamaño α para contrastar $H_0: \theta = \theta_0$ frente a $H_1: \theta = \theta_1$, con $\theta_0 > \theta_1$. Particularizarlo para $n = 10, \alpha = 0.05, \theta_0 = 0.5$ y $\theta_1 = 0.4$ $\frac{f_{\theta_1}(x_1, \dots, x_n)}{f_{\theta_0}(x_1, \dots x_n)} = \left(\frac{1-\theta_1}{1-\theta_0}\right)^n \left(\frac{\theta_1}{\theta_0}\frac{1-\theta_0}{1-\theta_1}\right)^{\sum_{i=1}^n x_i} \Leftrightarrow \sum_{i=1}^n x_i \leq c$

$$\frac{f_{\theta_1}(x_1, \dots, x_n)}{f_{\theta_0}(x_1, \dots x_n)} = \left(\frac{1-\theta_1}{1-\theta_0}\right)^n \left(\frac{\theta_1}{\theta_0} \frac{1-\theta_0}{1-\theta_1}\right)^{\sum_{i=1}^n x_i} \Leftrightarrow \sum_{i=1}^n x_i \le c$$

donde c es tal que $P_{\theta_0} \{ \sum_{i=1}^n x_i \leq c \} = \sum_{j=0}^c {n \choose j} \theta_0^j (1 - \theta_0)^{n-j} = \alpha_c, c = 0, 1, 2, \dots, n$

$$\begin{array}{l} P_{\theta_0}\left\{\sum_{i=1}^n x_i < 2\right\} = 0.0108 \\ P_{\theta_0}\left\{\sum_{i=1}^n x_i < 3\right\} = 0.0547 \end{array}$$

$$\varphi(x_1, \dots x_n) = \begin{cases} 1 & \text{si} \quad \sum_{i=1}^n x_i < 2\\ \gamma & \text{si} \quad \sum_{i=1}^{n-1} x_i = 2\\ 0 & \text{si} \quad \sum_{i=1}^n x_i > 2 \end{cases}$$

 $0.05 = E_{\theta_0}[\varphi] = 1 \times P_{\theta_0} \left\{ \sum_{i=1}^n x_i < 2 \right\} + \gamma \times P_{\theta_0} \left\{ \sum_{i=1}^n x_i = 2 \right\} = 0.0108 + \gamma \times 0.0547 \Rightarrow \gamma = 0.892$

Contrastes de hipótesis unilaterales

Familia de distribuciones de razón de verosimilitud monótona Sea $X \approx (\chi, \beta_{\chi}, F_{\theta})_{\theta \in \Theta \subset \mathbb{R}}$ un modelo estadístico continuo (o discreto) uniparamétrico y (X_1, \cdots, X_n) una muestra de $\{F_{\theta}, \theta \in \Theta\}$, siendo $f_{\theta}(x_1, \cdots x_n)$ su función de densidad (o de masa) $\{F_{\theta}, \theta \in \Theta\}$ es una familia de distribuciones de razón de verosimilitud monótona creciente (o decreciente) sí y sólo sí existe un estadístico $T = T(X_1, \cdots, X_n) : \chi^n \to \mathbb{R}$ tal que, si $\theta_0, \theta_1 \in \Theta$ y $\theta_0 < \theta_1$, entonces la razón de verosimilitudes $\frac{f_{\theta_1}(x_1, \cdots, x_n)}{f_{\theta_0}(x_1, \cdots, x_n)}$ es una función monótona creciente (o decreciente) en $T(x_1, \cdots, x_n)$