elevvo-ml-intern

August 14, 2025

https://colab.research.google.com/drive/1WgFGPhsLwmuWpaHR-Pj3X_QbWERf1Nfl?usp=sharing

Github Repository

```
[6]: %cd https://github.com/zoya4477/ML-intern.git
     git clone!
     git config --global user.email "zoyahafeez785@gmail.com"
     |git config --global user.name "zoya4477"
    [Errno 2] No such file or directory: 'https://github.com/zoya4477/ML-intern.git'
    fatal: You must specify a repository to clone.
    usage: git clone [<options>] [--] <repo> [<dir>]
        -v, --verbose
                              be more verbose
        -q, --quiet
                              be more quiet
        --progress
                              force progress reporting
        --reject-shallow
                              don't clone shallow repository
        -n, --no-checkout
                              don't create a checkout
        --bare
                              create a bare repository
        --mirror
                              create a mirror repository (implies bare)
        -1, --local
                              to clone from a local repository
        --no-hardlinks
                              don't use local hardlinks, always copy
        -s, --shared
                              setup as shared repository
        --recurse-submodules[=<pathspec>]
                              initialize submodules in the clone
                            alias of --recurse-submodules
        --recursive ...
        -j, --jobs <n>
                              number of submodules cloned in parallel
        --template <template-directory>
                              directory from which templates will be used
        --reference <repo>
                              reference repository
        --reference-if-able <repo>
                              reference repository
        --dissociate
                              use --reference only while cloning
        -o, --origin <name>
                              use <name> instead of 'origin' to track upstream
        -b, --branch <branch>
                              checkout <branch> instead of the remote's HEAD
        -u, --upload-pack <path>
```

```
path to git-upload-pack on the remote
    --depth <depth>
                          create a shallow clone of that depth
    --shallow-since <time>
                          create a shallow clone since a specific time
   --shallow-exclude <revision>
                          deepen history of shallow clone, excluding rev
   --single-branch
                          clone only one branch, HEAD or --branch
    --no-tags
                          don't clone any tags, and make later fetches not to
follow them
    --shallow-submodules any cloned submodules will be shallow
    --separate-git-dir <gitdir>
                          separate git dir from working tree
    -c, --config <key=value>
                          set config inside the new repository
    --server-option <server-specific>
                          option to transmit
   -4, --ipv4
                          use IPv4 addresses only
   -6, --ipv6
                          use IPv6 addresses only
    --filter <args>
                         object filtering
    --remote-submodules any cloned submodules will use their remote-tracking
branch
    --sparse
                          initialize sparse-checkout file to include only files
at root
```

1 Task 1: Student Score Prediction

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import PolynomialFeatures
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score
import seaborn as sns
```

```
[]: #Load Dataset

df = pd.read_csv("/content/archive.zip")

df.head()
```

```
[]:
        Hours_Studied Attendance Parental Involvement Access_to_Resources \
     0
                   23
                               84
                                                    Low
                                                                        High
     1
                   19
                               64
                                                    Low
                                                                     Medium
     2
                   24
                               98
                                                 Medium
                                                                     Medium
     3
                   29
                               89
                                                    Low
                                                                     Medium
                   19
                               92
                                                 Medium
                                                                      Medium
```

```
0
                                No
                                              7
                                                               73
                                                                                Low
                                               8
                                                               59
     1
                                No
                                                                                Low
     2
                               Yes
                                              7
                                                               91
                                                                             Medium
     3
                               Yes
                                               8
                                                               98
                                                                             Medium
     4
                               Yes
                                               6
                                                                             Medium
                                                               65
                        Tutoring_Sessions Family_Income Teacher_Quality \
       Internet_Access
     0
                   Yes
                                         0
                                                      Low
                                                                   Medium
                                         2
     1
                   Yes
                                                   Medium
                                                                   Medium
     2
                   Yes
                                         2
                                                   Medium
                                                                   Medium
     3
                   Yes
                                         1
                                                   Medium
                                                                   Medium
     4
                                         3
                   Yes
                                                   Medium
                                                                      High
       School_Type Peer_Influence Physical_Activity Learning_Disabilities
            Public
     0
                          Positive
                                                     3
                                                                           No
            Public
                          Negative
                                                     4
     1
                                                                           No
                                                     4
     2
            Public
                           Neutral
                                                                           No
     3
            Public
                          Negative
                                                     4
                                                                           No
            Public
                           Neutral
                                                                           No
       Parental_Education_Level Distance_from_Home Gender Exam_Score
                    High School
                                                        Male
                                                                       67
     0
                                                Near
                                           Moderate Female
     1
                        College
                                                                       61
     2
                   Postgraduate
                                                Near
                                                        Male
                                                                      74
                                                        Male
     3
                    High School
                                           Moderate
                                                                       71
                        College
                                                Near Female
                                                                       70
    Data Cleaning
[]: # Check for missing values
     print(df.isnull().sum())
     # Drop rows with nulls or fill them
     df = df.dropna() # or df.fillna(method='ffill', inplace=True)
     # View data types and check unique values
     df.info()
    Hours_Studied
                                     0
                                     0
    Attendance
    Parental_Involvement
    Access_to_Resources
    Extracurricular_Activities
    Sleep_Hours
                                     0
    Previous_Scores
                                    0
    Motivation_Level
                                     0
```

Sleep_Hours Previous_Scores Motivation_Level

Extracurricular_Activities

```
Internet_Access
                                   0
    Tutoring_Sessions
                                   0
    Family_Income
                                   0
    Teacher_Quality
                                  78
    School Type
                                   0
    Peer_Influence
                                   0
    Physical_Activity
                                   0
    Learning_Disabilities
                                   0
    Parental_Education_Level
                                  90
    Distance_from_Home
                                  67
                                   0
    Gender
    Exam_Score
                                   0
    dtype: int64
    <class 'pandas.core.frame.DataFrame'>
    Index: 6378 entries, 0 to 6606
    Data columns (total 20 columns):
         Column
                                     Non-Null Count Dtype
    ___
         ----
     0
         Hours_Studied
                                     6378 non-null
                                                      int64
     1
         Attendance
                                     6378 non-null
                                                      int64
         Parental Involvement
     2
                                     6378 non-null
                                                     object
         Access to Resources
                                     6378 non-null
                                                     object
     4
         Extracurricular_Activities
                                     6378 non-null
                                                     object
     5
                                     6378 non-null
                                                     int64
         Sleep_Hours
     6
         Previous_Scores
                                     6378 non-null
                                                     int64
     7
         Motivation_Level
                                     6378 non-null
                                                      object
     8
         Internet_Access
                                     6378 non-null
                                                      object
     9
         Tutoring_Sessions
                                     6378 non-null
                                                      int64
     10 Family_Income
                                     6378 non-null
                                                      object
     11 Teacher_Quality
                                     6378 non-null
                                                     object
     12 School_Type
                                     6378 non-null
                                                      object
     13 Peer_Influence
                                     6378 non-null
                                                     object
     14 Physical_Activity
                                     6378 non-null
                                                     int64
     15 Learning_Disabilities
                                     6378 non-null
                                                     object
     16 Parental Education Level
                                     6378 non-null
                                                      object
     17 Distance_from_Home
                                     6378 non-null
                                                      object
     18 Gender
                                     6378 non-null
                                                      object
     19 Exam Score
                                     6378 non-null
                                                      int64
    dtypes: int64(7), object(13)
    memory usage: 1.0+ MB
    Basic Data Visualization
[]: # Correlation matrix
     plt.figure(figsize=(10, 8))
     # Select only numerical columns for correlation calculation
     numerical_df = df.select_dtypes(include=[np.number])
     sns.heatmap(numerical_df.corr(), annot=True, cmap='coolwarm')
```

```
plt.title('Correlation Matrix')
plt.show()

# Scatter plot: study time vs final grade
plt.scatter(df['Hours_Studied'], df['Exam_Score'])
plt.xlabel('Hours Studied')
plt.ylabel('Exam Score')
plt.title('Hours Studied vs Exam Score')
plt.show()
```


Feature Selection

```
[]: # Let's use Hours_Studied to predict Exam_Score
X = df[['Hours_Studied']] # Features
y = df['Exam_Score'] # Target variable
```

Train Test Split

```
[]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, userandom_state=42)
```

Train Linear Regression Model

```
[]: lr_model = LinearRegression()
    lr_model.fit(X_train, y_train)
    y_pred = lr_model.predict(X_test)
```

Visualize Prediction

```
[]: plt.scatter(X_test, y_test, color='blue', label='Actual')
plt.scatter(X_test, y_pred, color='red', label='Predicted')
```

```
plt.xlabel('Study Time')
plt.ylabel('Final Grade (G3)')
plt.legend()
plt.title('Actual vs Predicted Scores')
plt.show()
```

Actual vs Predicted Scores

Model Evaluation

```
[]: mse = mean_squared_error(y_test, y_pred)
r2 = r2_score(y_test, y_pred)

print(f"Mean Squared Error: {mse:.2f}")
print(f"R-squared: {r2:.2f}")
```

Mean Squared Error: 12.35

R-squared: 0.21

Polynomial Regression

```
[ ]: poly = PolynomialFeatures(degree=3)
X_poly = poly.fit_transform(X)
```

Polynomial MSE: 12.37 Polynomial R^2 : 0.20

Feature Engineering (Multiple Regression)

Try experimenting with different feature combinations (e.g., removing or adding features like sleep, participation, etc.)

```
[]: # Experimenting with different feature combinations
    features_experiment = ['Hours_Studied', 'Attendance', 'Previous_Scores', __
     X_experiment = df[features_experiment]
    y_experiment = df['Exam_Score']
    # Split the data with the new features
    X_train_exp, X_test_exp, y_train_exp, y_test_exp =_
     # Train a new linear regression model with the experimental features
    lr_model_exp = LinearRegression()
    lr_model_exp.fit(X_train_exp, y_train_exp)
    y_pred_exp = lr_model_exp.predict(X_test_exp)
    # Evaluate the new model
    mse_exp = mean_squared_error(y_test_exp, y_pred_exp)
    r2_exp = r2_score(y_test_exp, y_pred_exp)
    print(f"Experimental Model MSE: {mse exp:.2f}")
    print(f"Experimental Model R-squared: {r2_exp:.2f}")
```

Experimental Model MSE: 6.47
Experimental Model R-squared: 0.58


```
[]:
```

2 Task 2: Customer Segmentation

```
[]: #libraries
import pandas as pd
import numpy as np
```

```
import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.cluster import KMeans
     from sklearn.preprocessing import StandardScaler
     from sklearn.metrics import silhouette_score
     from sklearn.cluster import DBSCAN
[]: #Data Loading
     df = pd.read_csv('/content/mall_cutomer.zip')
     df.head()
[]:
       CustomerID Gender Age Annual Income (k$)
                                                     Spending Score (1-100)
                1
                     Male
                             19
                                                 15
     1
                2
                     Male
                             21
                                                 15
                                                                         81
     2
                 3 Female
                             20
                                                                          6
                                                 16
                                                                         77
     3
                4 Female
                             23
                                                 16
     4
                 5 Female
                             31
                                                 17
                                                                         40
    Data Cleaning
[]: print(df.info())
     print(df.isnull().sum())
    <class 'pandas.core.frame.DataFrame'>
    RangeIndex: 200 entries, 0 to 199
    Data columns (total 5 columns):
     #
         Column
                                 Non-Null Count
                                                 Dtype
         ----
                                 _____
                                                 ____
     0
         CustomerID
                                 200 non-null
                                                 int64
         Gender
                                 200 non-null
     1
                                                 object
     2
                                 200 non-null
                                                 int64
         Age
     3
         Annual Income (k$)
                                 200 non-null
                                                 int64
         Spending Score (1-100)
                                 200 non-null
                                                 int64
    dtypes: int64(4), object(1)
    memory usage: 7.9+ KB
    None
    CustomerID
                              0
                              0
    Gender
    Age
                              0
                              0
    Annual Income (k$)
    Spending Score (1-100)
    dtype: int64
```

Feature Scaling

[]: X = df[['Annual Income (k\$)', 'Spending Score (1-100)']]

```
[]: scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

Visualize Raw Data

```
[]: plt.figure(figsize=(8, 6))
   plt.scatter(X['Annual Income (k$)'], X['Spending Score (1-100)'], c='blue')
   plt.xlabel('Annual Income (k$)')
   plt.ylabel('Spending Score')
   plt.title('Customer Distribution')
   plt.show()
```


Optimal K using Elbow Method

```
[]: wcss = []
K_range = range(1, 11)

for k in K_range:
    kmeans = KMeans(n_clusters=k, random_state=42)
    kmeans.fit(X_scaled)
```

```
wcss.append(kmeans.inertia_)

plt.plot(K_range, wcss, 'bo-')
plt.xlabel('Number of Clusters (k)')
plt.ylabel('WCSS')
plt.title('Elbow Method For Optimal k')
plt.grid(True)
plt.show()
```

Elbow Method For Optimal k

K- Means Clustering

```
[]: kmeans = KMeans(n_clusters=5, random_state=42)
df['Cluster'] = kmeans.fit_predict(X_scaled)
```

Visualize Cluster

```
plt.legend()
plt.grid(True)
plt.show()
```


Analyze Clusters

Average values per cluster:

	Annual Income (k\$)	Spending Score (1-100)
Cluster		
0	55.296296	49.518519
1	86.538462	82.128205
2	25.727273	79.363636
3	88.200000	17.114286
4	26.304348	20.913043

Try DBSCAN

Analyze Average Spending per DBSCAN Cluster

```
[]: # Group by DBSCAN cluster and compute means
dbscan_summary = df.groupby('DBSCAN_Cluster')[['Annual Income (k$)', 'Spending
→Score (1-100)']].mean().round(2)

print(" Average values per DBSCAN cluster:\n")
print(dbscan_summary)
```

Average values per DBSCAN cluster:

3 Task 3: Forest Cover Type Classification

```
[]: #Libraries
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
     from sklearn.model_selection import train_test_split, GridSearchCV
     from sklearn.metrics import classification_report, confusion_matrix, __
      →ConfusionMatrixDisplay
     from sklearn.ensemble import RandomForestClassifier
     from xgboost import XGBClassifier
     from sklearn.preprocessing import StandardScaler
[]: #Load Dataset
     df = pd.read_csv('/content/Forest_cover.zip')
     df.head()
[]:
        Elevation Aspect
                           Slope Horizontal_Distance_To_Hydrology
             2596
                       51
                                                                258
                               2
             2590
                       56
     1
                                                                212
     2
             2804
                      139
                               9
                                                                268
             2785
     3
                      155
                              18
                                                                242
     4
             2595
                       45
                               2
                                                                153
        Vertical_Distance_To_Hydrology Horizontal_Distance_To_Roadways \
                                                                     510
     0
                                      0
     1
                                     -6
                                                                     390
     2
                                    65
                                                                     3180
     3
                                                                     3090
                                   118
                                    -1
                                                                     391
        Hillshade_9am Hillshade_Noon Hillshade_3pm \
                                  232
     0
                  221
                                                  148
```

```
2
              234
                               238
                                               135
3
              238
                               238
                                               122
4
              220
                               234
                                               150
   Horizontal_Distance_To_Fire_Points ...
                                             Soil_Type32
                                                           Soil_Type33
0
                                   6279
                                                                      0
                                   6225
                                                        0
                                                                      0
1
2
                                   6121
                                                        0
                                                                      0
3
                                   6211
                                                        0
                                                                      0
4
                                   6172
                                                        0
                                                                      0
   Soil_Type34 Soil_Type35
                              Soil_Type36
                                             Soil_Type37
                                                           Soil_Type38
0
              0
              0
                            0
                                          0
                                                        0
                                                                      0
1
2
              0
                            0
                                          0
                                                        0
                                                                      0
3
              0
                            0
                                          0
                                                        0
                                                                      0
4
              0
                            0
                                          0
                                                        0
                                                                      0
   Soil_Type39
                Soil_Type40
                               Cover_Type
0
              0
                                         5
1
              0
                            0
2
              0
                            0
                                         2
3
              0
                            0
                                         2
              0
                                         5
```

[5 rows x 55 columns]

Explore and Data Clean

```
[]: df.info()
print(df.isnull().sum())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 581012 entries, 0 to 581011
Data columns (total 55 columns):

#	Column	Non-Null Count	Dtype
0	Elevation	581012 non-null	int64
1	Aspect	581012 non-null	int64
2	Slope	581012 non-null	int64
3	<pre>Horizontal_Distance_To_Hydrology</pre>	581012 non-null	int64
4	Vertical_Distance_To_Hydrology	581012 non-null	int64
5	Horizontal_Distance_To_Roadways	581012 non-null	int64
6	Hillshade_9am	581012 non-null	int64
7	Hillshade_Noon	581012 non-null	int64
8	Hillshade_3pm	581012 non-null	int64
9	<pre>Horizontal_Distance_To_Fire_Points</pre>	581012 non-null	int64
10	Wilderness_Area1	581012 non-null	int64

11	Wilderness_Area2		581012	non-null	int64
12	Wilderness_Area3		581012	non-null	int64
13	Wilderness_Area4		581012	non-null	int64
14	Soil_Type1		581012	non-null	int64
15	Soil_Type2		581012	non-null	int64
16	Soil_Type3		581012	non-null	int64
17	Soil_Type4		581012	non-null	int64
18	Soil_Type5		581012	non-null	int64
19	Soil_Type6		581012	non-null	int64
20	Soil_Type7		581012	non-null	int64
21	Soil_Type8		581012	non-null	int64
22	Soil_Type9		581012	non-null	int64
23	Soil_Type10		581012	non-null	int64
24	Soil_Type11		581012	non-null	int64
25	Soil_Type12		581012	non-null	int64
26	Soil_Type13		581012	non-null	int64
27	Soil_Type14		581012	non-null	int64
28	Soil_Type15		581012	non-null	int64
29	Soil_Type16		581012	non-null	int64
30	Soil_Type17		581012	non-null	int64
31	Soil_Type18		581012	non-null	int64
32	Soil_Type19		581012	non-null	int64
33	Soil_Type20		581012	non-null	int64
34	Soil_Type21		581012	non-null	int64
35	Soil_Type22		581012	non-null	int64
36	Soil_Type23		581012	non-null	int64
37	Soil_Type24		581012	non-null	int64
38	Soil_Type25		581012	non-null	int64
39	Soil_Type26		581012	non-null	int64
40	Soil_Type27		581012	non-null	int64
41	Soil_Type28		581012	non-null	int64
42	Soil_Type29		581012	non-null	int64
43	Soil_Type30		581012	non-null	int64
44	Soil_Type31		581012	non-null	int64
45	Soil_Type32		581012	non-null	int64
46	Soil_Type33		581012	non-null	int64
47	Soil_Type34		581012	non-null	int64
48	Soil_Type35		581012	non-null	int64
49	Soil_Type36		581012	non-null	int64
50	Soil_Type37		581012	non-null	int64
51	Soil_Type38		581012	non-null	int64
52	Soil_Type39		581012	non-null	int64
53	Soil_Type40		581012	non-null	int64
54	Cover_Type		581012	non-null	int64
dtyp	es: int64(55)				
	ry usage: 243.8 MB				
Elev	ation	0			
Aspe	ct	0			

C3	^
Slope	0
Horizontal_Distance_To_Hydrology	0
Vertical_Distance_To_Hydrology	0
Horizontal_Distance_To_Roadways	0
Hillshade_9am	0
Hillshade_Noon	0
Hillshade_3pm	0
Horizontal_Distance_To_Fire_Points	0
Wilderness_Area1	0
Wilderness_Area2	0
Wilderness_Area3	0
Wilderness_Area4	0
Soil_Type1	0
Soil_Type2	0
Soil_Type3	0
Soil_Type4	0
· -	
Soil_Type5	0
Soil_Type6	
Soil_Type7	0
Soil_Type8	0
Soil_Type9	0
Soil_Type10	0
Soil_Type11	0
Soil_Type12	0
Soil_Type13	0
Soil_Type14	0
Soil_Type15	0
Soil_Type16	0
Soil_Type17	0
Soil_Type18	0
Soil_Type19	0
Soil_Type20	0
Soil_Type21	0
Soil_Type22	0
Soil_Type23	0
Soil_Type24	0
Soil_Type25	0
Soil_Type26	0
Soil_Type27	0
Soil_Type28	0
Soil_Type29	0
Soil_Type30	0
Soil_Type31	0
	0
Soil_Type33	0
Soil_Type34	0
Soil_Type34	
Soil_Type35	0
Soil_Type36	0

```
Soil_Type37
                                           0
                                           0
    Soil_Type38
    Soil_Type39
                                           0
    Soil_Type40
                                           0
    Cover Type
                                           0
    dtype: int64
    Feature and Target split
[]: X = df.drop('Cover_Type', axis=1)
     y = df['Cover_Type'] - 1 # Subtract 1 to make labels O-indexed
    Scale Numeric Feature
[]: scaler = StandardScaler()
     X_scaled = scaler.fit_transform(X)
    Train Test Split
[]: X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2,_u
      →random_state=42, stratify=y)
    Train Random Forest Classifier
[]: rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
     rf_model.fit(X_train, y_train)
     rf_preds = rf_model.predict(X_test)
    Train XGBoost Classifier
[]: xgb_model = XGBClassifier(use_label_encoder=False, eval_metric='mlogloss',__
      →random_state=42)
     xgb_model.fit(X_train, y_train)
     xgb_preds = xgb_model.predict(X_test)
    /usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
    [13:40:53] WARNING: /workspace/src/learner.cc:738:
    Parameters: { "use_label_encoder" } are not used.
      bst.update(dtrain, iteration=i, fobj=obj)
    Evaluate Models
[]: def evaluate_model(name, y_true, y_pred):
         print(f"\n Classification Report for {name}:\n")
         print(classification_report(y_true, y_pred))
         cm = confusion_matrix(y_true, y_pred)
         disp = ConfusionMatrixDisplay(confusion_matrix=cm)
         disp.plot(cmap='Blues')
         plt.title(f'Confusion Matrix: {name}')
         plt.show()
```

```
evaluate_model("Random Forest", y_test, rf_preds)
evaluate_model("XGBoost", y_test, xgb_preds)
```

Classification Report for Random Forest:

	precision	recall	f1-score	support
		0.04	2 25	40000
0	0.96	0.94	0.95	42368
1	0.95	0.97	0.96	56661
2	0.94	0.96	0.95	7151
3	0.92	0.86	0.89	549
4	0.95	0.77	0.85	1899
5	0.93	0.89	0.91	3473
6	0.97	0.95	0.96	4102
accuracy			0.95	116203
macro avg	0.95	0.91	0.92	116203
weighted avg	0.95	0.95	0.95	116203

Confusion Matrix: Random Forest

 ${\tt Classification}\ {\tt Report}\ {\tt for}\ {\tt XGBoost:}$

	precision	recall	f1-score	support
0	0.86	0.84	0.85	42368
1	0.87	0.90	0.88	56661
2	0.89	0.91	0.90	7151
3	0.88	0.86	0.87	549
4	0.89	0.61	0.72	1899
5	0.85	0.80	0.82	3473
6	0.95	0.91	0.93	4102
accuracy			0.87	116203
macro avg	0.88	0.83	0.85	116203
weighted avg	0.87	0.87	0.87	116203

Feature Importance

```
[]: # Random Forest
importances_rf = rf_model.feature_importances_
indices_rf = np.argsort(importances_rf)[-10:] # top 10

plt.figure(figsize=(10, 6))
plt.barh(range(len(indices_rf)), importances_rf[indices_rf], align='center')
plt.yticks(range(len(indices_rf)), [X.columns[i] for i in indices_rf])
plt.title("Top 10 Feature Importances (Random Forest)")
plt.xlabel("Importance")
plt.show()

# XGBoost
xgb_model.feature_importances_[:10]
```



```
[]: array([0.09264691, 0.0071369 , 0.00419376, 0.01318378, 0.00703175, 0.01357988, 0.00856525, 0.01079951, 0.00502013, 0.01228627], dtype=float32)
```

Compare Random Forest vs. XGBoost

```
[]: from sklearn.metrics import accuracy_score

acc_rf = accuracy_score(y_test, rf_preds)
acc_xgb = accuracy_score(y_test, xgb_preds)

print(f" Random Forest Accuracy: {acc_rf:.4f}")
print(f" XGBoost Accuracy: {acc_xgb:.4f}")
```

Random Forest Accuracy: 0.9532

XGBoost Accuracy: 0.8696

Hyperparameter Tuning

Fitting 3 folds for each of 8 candidates, totalling 24 fits
Best Random Forest Params: {'max_depth': 20, 'min_samples_split': 2,
'n_estimators': 100}

Classification Report for Tuned Random Forest:

	precision	recall	f1-score	support
0	0.91	0.85	0.88	42368
1	0.87	0.94	0.90	56661
2	0.92	0.93	0.92	7151
3	0.90	0.84	0.87	549
4	0.97	0.39	0.56	1899
5	0.91	0.79	0.85	3473
6	0.98	0.87	0.92	4102
accuracy			0.89	116203
macro avg	0.92	0.80	0.84	116203
weighted avg	0.89	0.89	0.89	116203

Hyperparameter Tuning for XGBoost

```
param_grid_xgb = {
    'n_estimators': [50, 100],
    'max_depth': [3, 6],
    'learning_rate': [0.01, 0.1]
}

grid_xgb = GridSearchCV(XGBClassifier(use_label_encoder=False,
    eeval_metric='mlogloss', random_state=42), param_grid_xgb, cv=3,
    escoring='accuracy', verbose=1)
grid_xgb.fit(X_train, y_train)

print(" Best XGBoost Params:", grid_xgb.best_params_)
best_xgb = grid_xgb.best_estimator_
evaluate_model("Tuned XGBoost", y_test, best_xgb.predict(X_test))
```

Fitting 3 folds for each of 8 candidates, totalling 24 fits
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:04:00] WARNING: /workspace/src/learner.cc:738:

```
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:04:13] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:04:25] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:04:38] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:05:02] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:05:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:05:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:06:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:06:26] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:06:43] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
```

```
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:07:16] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:07:48] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:08:20] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:08:34] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:08:47] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:09:00] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:09:28] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:09:53] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:10:19] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:10:35] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
```

```
bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:10:52] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:11:09] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:11:40] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:12:13] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
/usr/local/lib/python3.11/dist-packages/xgboost/training.py:183: UserWarning:
[14:12:46] WARNING: /workspace/src/learner.cc:738:
Parameters: { "use_label_encoder" } are not used.
 bst.update(dtrain, iteration=i, fobj=obj)
 Best XGBoost Params: {'learning_rate': 0.1, 'max_depth': 6, 'n_estimators':
100}
```

${\tt Classification}\ {\tt Report}\ {\tt for}\ {\tt Tuned}\ {\tt XGBoost:}$

		precision	recall	f1-score	support
	0	0.81	0.78	0.80	42368
	1	0.81	0.76	0.84	56661
	2	0.79	0.86	0.82	7151
	3	0.83	0.83	0.83	549
	4	0.88	0.31	0.46	1899
	5	0.74	0.49	0.59	3473
	6	0.90	0.80	0.85	4102
accura	acy			0.81	116203
macro a	avg	0.82	0.71	0.74	116203
weighted a	avg	0.81	0.81	0.81	116203

4 Task 4: Loan Approval Prediction Description

```
with zipfile.ZipFile('/content/loan_approval.zip', 'r') as zip_ref:
    zip_ref.extractall('/content/')

df_train = pd.read_csv('/content/train_u6lujuX_CVtuZ9i.csv')

print("Training data:")
display(df_train.head())
```

Training data:

	· ·						
	Loan_ID	Gender	Married	Dependents	Education	n Self_Employed \	\
0	LP001002	Male	No	0	Graduate	e No	
1	LP001003	Male	Yes	1	Graduate	e No	
2	LP001005	Male	Yes	0	Graduate	e Yes	
3	LP001006	Male	Yes	0	Not Graduate	e No	
4	LP001008	Male	No	0	Graduate	e No	
	Applicant	Income	Coappli	icantIncome	${\tt LoanAmount}$	${\tt Loan_Amount_Term}$	\
0		5849		0.0	NaN	360.0	
1		4583		1508.0	128.0	360.0	
2		3000		0.0	66.0	360.0	
3		2583		2358.0	120.0	360.0	
4		6000		0.0	141.0	360.0	
	Credit_Hi	istory I	Property_	_Area Loan_S	tatus		
0		1.0	J	Jrban	Y		
1		1.0	F	Rural	N		
2		1.0	Ţ	Jrban	Y		
3		1.0	Ţ	Jrban	Y		
4		1.0	Ţ	Jrban	Y		

Exploratory Data Analysis(EDA)

```
[]: print(df_train.info())
   print(df_train.isnull().sum())
   print(df_train['Loan_Status'].value_counts())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 614 entries, 0 to 613
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Loan_ID	614 non-null	object
1	Gender	601 non-null	object
2	Married	611 non-null	object
3	Dependents	599 non-null	object
4	Education	614 non-null	object
5	Self_Employed	582 non-null	object
6	ApplicantIncome	614 non-null	int64

```
7
                                             float64
         CoapplicantIncome
                             614 non-null
     8
         LoanAmount
                             592 non-null
                                             float64
     9
         Loan_Amount_Term
                             600 non-null
                                             float64
     10 Credit_History
                             564 non-null
                                             float64
     11 Property_Area
                             614 non-null
                                             object
     12 Loan_Status
                             614 non-null
                                             object
    dtypes: float64(4), int64(1), object(8)
    memory usage: 62.5+ KB
    None
    Loan_ID
                           0
    Gender
                          13
    Married
                           3
                          15
    Dependents
    Education
                           0
    Self_Employed
                          32
    ApplicantIncome
                           0
    CoapplicantIncome
                           0
    LoanAmount
                          22
    Loan_Amount_Term
                          14
    Credit_History
                          50
    Property_Area
                           0
    Loan_Status
                           0
    dtype: int64
    Loan_Status
    Y
         422
    N
         192
    Name: count, dtype: int64
[]: #Visualize Class Imbalance
     sns.countplot(data=df_train, x='Loan_Status')
     plt.title("Loan Status Distribution")
```

[]: Text(0.5, 1.0, 'Loan Status Distribution')

Handle Missing values

Encode Categorical Varaiables

Feature and Target Split

```
[ ]: X = df_train.drop(columns=['Loan_ID', 'Loan_Status'])
y = df_train['Loan_Status']
```

Train Test Split

```
[]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, u

→random_state=42, stratify=y)
```

Handle Imbalanced Data using SMOTE

Class Distribution After SMOTE:

Loan_Status

1 337

0 337

Name: count, dtype: int64

Train Classification Model

Logistic Regression

```
[]: lr = LogisticRegression(max_iter=1000)
lr.fit(X_train_bal, y_train_bal)
lr_preds = lr.predict(X_test)
```

/usr/local/lib/python3.11/dist-packages/sklearn/linear_model/_logistic.py:465: ConvergenceWarning: lbfgs failed to converge (status=1):

```
STOP: TOTAL NO. OF ITERATIONS REACHED LIMIT.
```

```
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html
Please also refer to the documentation for alternative solver options:
    https://scikit-learn.org/stable/modules/linear_model.html#logistic-
regression
    n_iter_i = _check_optimize_result(
```

Decision Tree

```
[]: dt = DecisionTreeClassifier(random_state=42)
    dt.fit(X_train_bal, y_train_bal)
    dt_preds = dt.predict(X_test)
```

Evaluate Model Performance

Logistic Regression Classification Report:

	precision	recall	f1-score	support
Not Approved	0.65	0.68	0.67	38
Approved	0.86	0.84	0.85	85
accuracy			0.79	123
macro avg	0.75	0.76	0.76	123
weighted avg	0.79	0.79	0.79	123

Decision Tree Classification Report:

	precision	recall	f1-score	support
Not Approved	0.51	0.68	0.58	38
Approved	0.83	0.71	0.76	85
accuracy			0.70	123
macro avg	0.67	0.70	0.67	123
weighted avg	0.73	0.70	0.71	123

5 Task 5: Movie Recommendation System Description

```
[]: #Libraries
import pandas as pd
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from sklearn.metrics import precision_score
from sklearn.metrics import pairwise_distances
from sklearn.decomposition import TruncatedSVD
```

Load and Merge Data

```
[]: #Load Dataset
import zipfile

# Extract the zip file
with zipfile.ZipFile('/content/Movie.zip', 'r') as zip_ref:
    zip_ref.extractall('/content/')
```

```
# Load ratings data
ratings_columns = ['user_id', 'item_id', 'rating', 'timestamp']
ratings_df = pd.read_csv('/content/ml-100k/u.data', sep='\t',__
 →names=ratings_columns)
# Load movie titles data
→'IMDb_URL', 'unknown', 'Action', 'Adventure', 'Animation', "Children's", u
 _{\,\hookrightarrow\,}'Comedy', 'Crime', 'Documentary', 'Drama', 'Fantasy', 'Film-Noir', 'Horror', _{\,\sqcup\,}
 →'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Thriller', 'War', 'Western']
movies_df = pd.read_csv('/content/ml-100k/u.item', sep='|',__
 →names=movies columns, encoding='latin-1')
print("Ratings data:")
display(ratings_df.head())
print("\nMovie titles data:")
display(movies_df.head())
Ratings data:
   user_id
          item_id rating timestamp
0
      196
               242
                         3 881250949
1
      186
               302
                         3 891717742
2
       22
               377
                         1 878887116
3
      244
                51
                         2 880606923
      166
               346
                         1 886397596
Movie titles data:
   item id
                       title release date video release date
0
            Toy Story (1995) 01-Jan-1995
                                                          NaN
            GoldenEye (1995) 01-Jan-1995
1
                                                          NaN
        3 Four Rooms (1995) 01-Jan-1995
                                                          NaN
        4 Get Shorty (1995) 01-Jan-1995
3
                                                          NaN
        5
              Copycat (1995) 01-Jan-1995
                                                          NaN
                                           IMDb_URL unknown Action \
0 http://us.imdb.com/M/title-exact?Toy%20Story%2...
                                                         0
                                                                 0
1 http://us.imdb.com/M/title-exact?GoldenEye%20(...
                                                         0
                                                                 1
2 http://us.imdb.com/M/title-exact?Four%20Rooms%...
                                                         0
3 http://us.imdb.com/M/title-exact?Get%20Shorty%...
                                                         0
                                                                 1
4 http://us.imdb.com/M/title-exact?Copycat%20(1995)
                                                                  0
  Adventure Animation Children's
                                       Fantasy Film-Noir Horror Musical \
0
          0
                     1
                                             0
                                                        0
                                                                0
                                                                        0
1
                     0
                                 0
                                             0
                                                        0
                                                                0
                                                                        0
          1
2
                     0
```

```
0 ...
    3
                0
                           0
                                                     0
                                                                         0
                                                                                  0
                0
                           0
                                                     0
                                                                                  0
       Mystery Romance
                          Sci-Fi
                                   Thriller War
                                                   Western
                                               0
    0
             0
                       0
                                0
                                          0
                                                         0
    1
             0
                       0
                                0
                                          1
                                               0
                                                         0
    2
             0
                       0
                                0
                                          1
                                               0
                                                         0
    3
             0
                       0
                                0
                                          0
                                               0
                                                         0
             0
                       0
                                0
                                                         0
    [5 rows x 24 columns]
    Create a User-Item Matrix
[]: # Merge ratings and movies dataframes to get movie titles
     merged_df = pd.merge(ratings_df, movies_df[['item_id', 'title']], on='item_id')
     # Create a User-Item Matrix
     user_item_matrix = merged_df.pivot_table(index='user_id', columns='title',_
     ⇔values='rating')
     user_item_matrix.fillna(0, inplace=True)
     display(user_item_matrix.head())
    title
              'Til There Was You (1997) 1-900 (1994)
                                                         101 Dalmatians (1996) \
    user id
    1
                                     0.0
                                                    0.0
                                                                            2.0
    2
                                     0.0
                                                    0.0
                                                                            0.0
    3
                                     0.0
                                                    0.0
                                                                            0.0
    4
                                     0.0
                                                    0.0
                                                                            0.0
    5
                                     0.0
                                                    0.0
                                                                            2.0
              12 Angry Men (1957) 187 (1997) 2 Days in the Valley (1996) \
    title
    user_id
                              5.0
                                           0.0
                                                                          0.0
    1
    2
                              0.0
                                           0.0
                                                                          0.0
    3
                              0.0
                                           2.0
                                                                          0.0
    4
                              0.0
                                           0.0
                                                                          0.0
    5
                              0.0
                                           0.0
                                                                          0.0
    title
             20,000 Leagues Under the Sea (1954) 2001: A Space Odyssey (1968) \
    user_id
                                               3.0
                                                                               4.0
    1
    2
                                               0.0
                                                                               0.0
    3
                                               0.0
                                                                               0.0
    4
                                               0.0
                                                                               0.0
    5
                                               0.0
                                                                               4.0
```

title

3 Ninjas: High Noon At Mega Mountain (1998) 39 Steps, The (1935) \

```
user_id
                                                    0.0
                                                                           0.0
1
2
                                                    1.0
                                                                           0.0
3
                                                    0.0
                                                                           0.0
4
                                                    0.0
                                                                           0.0
5
                                                    0.0
                                                                           0.0
            Yankee Zulu (1994) Year of the Horse (1997) \
title
user_id
                            0.0
                                                        0.0
1
2
                            0.0
                                                        0.0
3
                            0.0
                                                        0.0
4
                            0.0
                                                        0.0
5
                            0.0
                                                        0.0
         •••
         You So Crazy (1994) Young Frankenstein (1974) Young Guns (1988) \
title
user_id
                          0.0
                                                       5.0
                                                                           3.0
1
2
                          0.0
                                                       0.0
                                                                           0.0
3
                          0.0
                                                       0.0
                                                                           0.0
4
                                                       0.0
                          0.0
                                                                           0.0
5
                          0.0
                                                       4.0
                                                                           0.0
title
         Young Guns II (1990) Young Poisoner's Handbook, The (1995)
user_id
1
                           0.0
                                                                     0.0
2
                           0.0
                                                                     0.0
3
                           0.0
                                                                     0.0
4
                           0.0
                                                                     0.0
5
                           0.0
                                                                     0.0
title
         Zeus and Roxanne (1997) unknown Á köldum klaka (Cold Fever) (1994)
user_id
1
                              0.0
                                        4.0
                                                                              0.0
2
                              0.0
                                        0.0
                                                                              0.0
3
                              0.0
                                        0.0
                                                                              0.0
4
                              0.0
                                        0.0
                                                                              0.0
5
                              0.0
                                        4.0
                                                                              0.0
```

[5 rows x 1664 columns]

Compute User Similarity (Cosine)

```
[]: from sklearn.metrics.pairwise import cosine_similarity

# Compute cosine similarity between users
user_similarity = cosine_similarity(user_item_matrix)
```

```
[]: user id
                 1
                          2
                                    3
                                             4
                                                      5
                                                               6
    user id
            1.000000 0.168937 0.048388 0.064561 0.379670 0.429682 0.443097
    1
            0.168937 \quad 1.000000 \quad 0.113393 \quad 0.179694 \quad 0.073623 \quad 0.242106 \quad 0.108604
    3
            0.048388 0.113393 1.000000 0.349781 0.021592 0.074018
                                                                    0.067423
    4
            0.064561 0.179694 0.349781 1.000000 0.031804 0.068431
                                                                    0.091507
    5
            0.379670 0.073623 0.021592 0.031804 1.000000 0.238636 0.374733
                          9
    user_id
                 8
                                    10
                                                934
                                                         935
                                                                  936 \
    user id
    1
            0.320079 0.078385 0.377733
                                        ... 0.372213 0.119860 0.269860
    2
            3
            0.084419 0.062039 0.066217
                                        ... 0.033885 0.043453 0.167140
    4
            5
            0.248930 0.056847 0.201427 ... 0.340183 0.080580 0.095284
    user id
                 937
                          938
                                    939
                                             940
                                                      941
                                                               942
                                                                         943
    user_id
            0.193343 0.197949 0.118722 0.315064 0.149086 0.181612 0.399432
            0.410725 \quad 0.322713 \quad 0.231096 \quad 0.228793 \quad 0.162911 \quad 0.175273 \quad 0.106732
    3
            0.026990
    4
            0.196561 \quad 0.146058 \quad 0.030202 \quad 0.196858 \quad 0.152041 \quad 0.171538 \quad 0.058752
            0.081053 \quad 0.148607 \quad 0.071612 \quad 0.239955 \quad 0.139595 \quad 0.153799 \quad 0.313941
    5
```

[5 rows x 943 columns]

Recommend Movies for a Target User

```
weighted ratings = weighted ratings.drop(seen movies, errors='ignore')
         return weighted_ratings.sort_values(ascending=False).head(n_recommendations)
[]: #Recommend for user id 50
     recommendations = recommend_movies(50, user_item_matrix, user_similarity_df)
     print("Top recommended movies for user 50:")
     print(recommendations)
    Top recommended movies for user 50:
    title
    Star Wars (1977)
                                        9.834995
    Welcome to the Dollhouse (1995)
                                        8.124998
    Postino, Il (1994)
                                        7.531862
    Bound (1996)
                                        7.506599
    Godfather, The (1972)
                                        7.344310
    dtype: float64
    Evaluation
[]: def precision at k(user_id, recommended movies, user_item_matrix, k=5):
         actual_rated = user_item_matrix.loc[user_id]
         relevant_items = actual_rated[actual_rated >= 4].index # consider rating_
      \Rightarrow >= 4 as relevant
         recommended_set = set(recommended_movies.index[:k])
         relevant_set = set(relevant_items)
         true_positives = recommended_set.intersection(relevant_set)
         return len(true_positives) / k
    Item-Based Collaborative Filtering
[]: # Transpose the user-item matrix
     item_user_matrix = user_item_matrix.T
     # Compute item similarity
     item_similarity = cosine_similarity(item_user_matrix)
     item_similarity_df = pd.DataFrame(item_similarity, index=item_user_matrix.
      →index, columns=item_user_matrix.index)
     item_similarity_df.head()
[]: title
                                'Til There Was You (1997) 1-900 (1994) \
    title
     'Til There Was You (1997)
                                                                0.000000
                                                  1.000000
     1-900 (1994)
                                                 0.000000
                                                                1.000000
     101 Dalmatians (1996)
                                                 0.024561
                                                                0.014139
```

0.099561

0.009294

12 Angry Men (1957)

187 (1997) 0.185236 0.007354 title 101 Dalmatians (1996) 12 Angry Men (1957) \ title 'Til There Was You (1997) 0.024561 0.099561 1-900 (1994) 0.014139 0.009294 101 Dalmatians (1996) 1.000000 0.167006 12 Angry Men (1957) 0.167006 1.000000 187 (1997) 0.056822 0.061105 title 187 (1997) 2 Days in the Valley (1996) \ title 'Til There Was You (1997) 0.185236 0.159265 1-900 (1994) 0.007354 0.004702 101 Dalmatians (1996) 0.061105 0.143878 12 Angry Men (1957) 0.056822 0.167235 187 (1997) 1.000000 0.132327 title 20,000 Leagues Under the Sea (1954) \ title 'Til There Was You (1997) 0.000000 1-900 (1994) 0.010055 101 Dalmatians (1996) 0.203781 12 Angry Men (1957) 0.304078 187 (1997) 0.042928 title 2001: A Space Odyssey (1968) \ title 'Til There Was You (1997) 0.052203 1-900 (1994) 0.067038 101 Dalmatians (1996) 0.225803 12 Angry Men (1957) 0.422506 187 (1997) 0.065060 title 3 Ninjas: High Noon At Mega Mountain (1998) \ title 'Til There Was You (1997) 0.000000 1-900 (1994) 0.000000 101 Dalmatians (1996) 0.027642 12 Angry Men (1957) 0.072682 187 (1997) 0.043133 title 39 Steps, The (1935) ... Yankee Zulu (1994) \ title 0.033326 ... 0.000000 'Til There Was You (1997) 1-900 (1994) 0.000000 ... 0.152499 101 Dalmatians (1996) 0.092337 ... 0.000000

```
12 Angry Men (1957)
                                       0.394854 ...
                                                               0.060946
187 (1997)
                                       0.027300 ...
                                                               0.000000
title
                           Year of the Horse (1997) You So Crazy (1994) \
title
                                           0.000000
'Til There Was You (1997)
                                                                 0.000000
1-900 (1994)
                                           0.015484
                                                                 0.000000
101 Dalmatians (1996)
                                           0.021965
                                                                 0.030905
12 Angry Men (1957)
                                                                 0.000000
                                            0.016502
187 (1997)
                                            0.141997
                                                                 0.000000
title
                           Young Frankenstein (1974) Young Guns (1988) \
title
'Til There Was You (1997)
                                             0.027774
                                                                0.118840
1-900 (1994)
                                             0.069284
                                                                0.018243
101 Dalmatians (1996)
                                             0.274877
                                                                0.204267
12 Angry Men (1957)
                                             0.403270
                                                                0.259436
187 (1997)
                                             0.068257
                                                                0.067786
title
                           Young Guns II (1990) \
title
'Til There Was You (1997)
                                       0.142315
1-900 (1994)
                                       0.023408
101 Dalmatians (1996)
                                       0.101199
12 Angry Men (1957)
                                       0.145519
187 (1997)
                                       0.091293
title
                           Young Poisoner's Handbook, The (1995) \
title
'Til There Was You (1997)
                                                         0.029070
1-900 (1994)
                                                         0.006694
101 Dalmatians (1996)
                                                         0.056976
12 Angry Men (1957)
                                                         0.105226
187 (1997)
                                                         0.099490
title
                           Zeus and Roxanne (1997) unknown \
title
'Til There Was You (1997)
                                          0.000000 0.110208
1-900 (1994)
                                           0.079640 0.042295
101 Dalmatians (1996)
                                           0.172155 0.045714
12 Angry Men (1957)
                                           0.038901 0.060101
187 (1997)
                                           0.025184 0.142667
title
                           Á köldum klaka (Cold Fever) (1994)
title
'Til There Was You (1997)
                                                      0.000000
1-900 (1994)
                                                      0.00000
```

```
101 Dalmatians (1996)
                                                           0.000000
     12 Angry Men (1957)
                                                           0.081261
     187 (1997)
                                                           0.096449
     [5 rows x 1664 columns]
[]: #To recommend based on similar items:
     def recommend_similar_items(movie_name, item_user_matrix, item_similarity_df,__
      \hookrightarrown=5):
         similar_scores = item_similarity_df[movie_name].
      ⇒sort_values(ascending=False)[1:n+1]
         return similar_scores
print("Movies similar to 'Star Wars (1977)':")
     print(recommend_similar_items("Star Wars (1977)", item_user_matrix,
      →item_similarity_df))
    Movies similar to 'Star Wars (1977)':
    title
    Return of the Jedi (1983)
                                        0.884476
    Raiders of the Lost Ark (1981)
                                        0.764885
    Empire Strikes Back, The (1980)
                                        0.749819
    Toy Story (1995)
                                        0.734572
    Godfather, The (1972)
                                        0.697332
    Name: Star Wars (1977), dtype: float64
    Matrix Factorization using SVD
[]: from scipy.sparse.linalg import svds
     import numpy as np
     # Convert to numpy matrix
     R = user_item_matrix.values
     user_ratings_mean = np.mean(R, axis=1)
     R_demeaned = R - user_ratings_mean.reshape(-1, 1)
     # Perform SVD
     U, sigma, Vt = svds(R_demeaned, k=50)
     sigma = np.diag(sigma)
     # Reconstruct the predicted ratings
     predicted_ratings = np.dot(np.dot(U, sigma), Vt) + user_ratings_mean.
      \hookrightarrowreshape(-1, 1)
     predicted df = pd.DataFrame(predicted ratings, columns=user_item_matrix.
      ⇔columns, index=user_item_matrix.index)
```

```
[]: #Recommend for User 50 using SVD
     def recommend_from_svd(user_id, predictions_df, user_item_matrix, n=5):
         user_row = predictions_df.loc[user_id]
         watched_movies = user_item_matrix.loc[user_id][user_item_matrix.
      →loc[user_id] > 0].index
         recommendations = user_row.drop(watched_movies, errors='ignore').
      ⇔sort_values(ascending=False).head(n)
         return recommendations
     print("SVD Recommendations for User 50:")
     print(recommend_from_svd(50, predicted_df, user_item_matrix))
    SVD Recommendations for User 50:
    title
                                        1.306506
    Bound (1996)
    Twelve Monkeys (1995)
                                        1.252929
    Boogie Nights (1997)
                                        1.173483
    Welcome to the Dollhouse (1995)
                                        1.139967
    Game, The (1997)
                                        0.979868
    Name: 50, dtype: float64
[]:
    Task 6: Music Genre Classification Description
```

```
[]: import zipfile
     import os
     zip_path = "/content/drive/MyDrive/music genre.zip"
     extract_path = "/content/music_genre"
     with zipfile.ZipFile(zip_path, 'r') as zip_ref:
         zip_ref.extractall(extract_path)
     # Check extracted files
     for root, dirs, files in os.walk(extract_path):
         print(root, len(files))
    /content/music_genre 0
    /content/music_genre/Data 2
    /content/music_genre/Data/images_original 0
    /content/music_genre/Data/images_original/jazz 99
    /content/music_genre/Data/images_original/blues 100
    /content/music_genre/Data/images_original/hiphop 100
    /content/music_genre/Data/images_original/pop 100
    /content/music_genre/Data/images_original/classical 100
    /content/music_genre/Data/images_original/reggae 100
    /content/music_genre/Data/images_original/metal 100
```

```
/content/music_genre/Data/images_original/disco 100
    /content/music_genre/Data/images_original/country 100
    /content/music_genre/Data/images_original/rock 100
    /content/music_genre/Data/genres_original 0
    /content/music genre/Data/genres original/jazz 100
    /content/music_genre/Data/genres_original/blues 100
    /content/music genre/Data/genres original/hiphop 100
    /content/music_genre/Data/genres_original/pop 100
    /content/music_genre/Data/genres_original/classical 100
    /content/music_genre/Data/genres_original/reggae 100
    /content/music_genre/Data/genres_original/metal 100
    /content/music_genre/Data/genres_original/disco 100
    /content/music_genre/Data/genres_original/country 100
    /content/music_genre/Data/genres_original/rock 100
[]: import glob
     import os
     # Path to audio files
     audio_path = "/content/music_genre/Data/genres_original"
     # Get genre folders
     genres = [g for g in os.listdir(audio_path) if os.path.isdir(os.path.
      →join(audio_path, g))]
     print("Genres found:", genres)
     filepaths = []
     labels = []
     for genre in genres:
         files = glob.glob(os.path.join(audio_path, genre, "*.wav"))
         for f in files:
             filepaths.append(f)
             labels.append(genre)
     print(f"Found {len(filepaths)} audio files.")
    Genres found: ['jazz', 'blues', 'hiphop', 'pop', 'classical', 'reggae', 'metal',
    'disco', 'country', 'rock']
    Found 1000 audio files.
    Audio Feature Extraction (MFCC) – Tabular Approach
[]: import librosa
     import numpy as np
     from sklearn.preprocessing import LabelEncoder, StandardScaler
     from sklearn.model_selection import train_test_split
     from sklearn.ensemble import RandomForestClassifier
```

```
from sklearn.metrics import classification_report, accuracy_score
import warnings
warnings.filterwarnings('ignore')
# Extract MFCC Features
X = []
y = []
for idx, filepath in enumerate(filepaths):
        audio, sr = librosa.load(filepath, duration=30) # load 30 sec clip
        mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=20)
        mfccs_mean = np.mean(mfccs.T, axis=0) # mean over time
        X.append(mfccs_mean)
        y.append(labels[idx])
    except Exception as e:
        print(f"Error processing {filepath}: {e}")
X = np.array(X)
y = np.array(y)
print("Feature matrix shape:", X.shape)
print("Labels count:", len(y))
Error processing /content/music_genre/Data/genres_original/jazz/jazz.00054.wav:
Feature matrix shape: (999, 20)
```

Labels count: 999

```
[]: # Encode Labels
    label_encoder = LabelEncoder()
    y_encoded = label_encoder.fit_transform(y)
    # Scale Features
    scaler = StandardScaler()
    X_scaled = scaler.fit_transform(X)
    # Train/Test Split
    X_train, X_test, y_train, y_test = train_test_split(
        X_scaled, y_encoded, test_size=0.2, random_state=42
```

Train a Classifier

```
[]: # Train Classifier (Random Forest)
    clf = RandomForestClassifier(n_estimators=200, random_state=42)
    clf.fit(X_train, y_train)
```

[]: RandomForestClassifier(n_estimators=200, random_state=42)

Evaluation

Accuracy: 0.625

Classification Report:

precision	recall	f1-score	support
0.55	0.55	0.55	11
0.80	0.80	0.80	15
0.46	0.50	0.48	22
0.50	0.68	0.58	19
0.62	0.54	0.58	24
0.76	0.62	0.68	21
0.62	0.72	0.67	18
0.76	0.83	0.79	23
0.62	0.67	0.64	27
0.64	0.35	0.45	20
		0.62	200
0.63	0.63	0.62	200
0.63	0.62	0.62	200
	0.55 0.80 0.46 0.50 0.62 0.76 0.62 0.76 0.62 0.64	0.55	0.55

Generate Spectrogram Images – CNN Approach

```
[]: import tensorflow as tf
    from tensorflow.keras.preprocessing.image import ImageDataGenerator
    from tensorflow.keras.applications import MobileNetV2
    from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout
    from tensorflow.keras.models import Model

# Paths
    img_dir = "/content/music_genre/Data/images_original"

# Data Generator with Augmentation
    datagen = ImageDataGenerator(
        rescale=1./255,
        validation_split=0.2,
        rotation_range=15,
        width_shift_range=0.1,
        height_shift_range=0.1,
        horizontal_flip=True
```

```
train_gen = datagen.flow_from_directory(
         img_dir,
        target_size=(224, 224),
        batch_size=32,
        class_mode='categorical',
        subset='training'
    )
    val_gen = datagen.flow_from_directory(
         img_dir,
        target_size=(224, 224),
        batch_size=32,
        class_mode='categorical',
        subset='validation'
    )
    Found 800 images belonging to 10 classes.
    Found 199 images belonging to 10 classes.
[]: # Load MobileNetV2 Pretrained Model
    base_model = MobileNetV2(weights='imagenet', include_top=False,_
      →input_shape=(224, 224, 3))
    base_model.trainable = False # freeze base layers
[]: # Build Model
    x = base_model.output
    x = GlobalAveragePooling2D()(x)
    x = Dropout(0.3)(x)
    predictions = Dense(train_gen.num_classes, activation='softmax')(x)
    model = Model(inputs=base_model.input, outputs=predictions)
model.compile(optimizer='adam', loss='categorical_crossentropy',__
      →metrics=['accuracy'])
     # Train
    history = model.fit(
        train_gen,
        validation_data=val_gen,
        epochs=5
    )
    Epoch 1/5
    25/25
                      34s 919ms/step -
    accuracy: 0.1312 - loss: 2.5960 - val_accuracy: 0.2915 - val_loss: 1.9250
```

```
Epoch 2/5
    25/25
                      14s 567ms/step -
    accuracy: 0.2975 - loss: 1.9927 - val_accuracy: 0.4472 - val_loss: 1.6598
    Epoch 3/5
    25/25
                      14s 565ms/step -
    accuracy: 0.3894 - loss: 1.6612 - val_accuracy: 0.4623 - val_loss: 1.5527
    Epoch 4/5
    25/25
                      15s 623ms/step -
    accuracy: 0.3993 - loss: 1.6027 - val_accuracy: 0.4925 - val_loss: 1.4535
    Epoch 5/5
    25/25
                      14s 565ms/step -
    accuracy: 0.5046 - loss: 1.4637 - val accuracy: 0.4975 - val loss: 1.4372
[]: # Evaluate
     loss, acc = model.evaluate(val_gen)
    print(f"\nValidation Accuracy: {acc:.2f}")
    7/7
                    4s 513ms/step -
    accuracy: 0.5191 - loss: 1.3870
    Validation Accuracy: 0.50
[]:
```

Task 7: Sales Forecasting Description

```
[]: import pandas as pd
import zipfile

# Load dataset
# Extract the zip file
with zipfile.ZipFile('/content/wallmart.zip', 'r') as zip_ref:
    zip_ref.extractall('/content/')

# Load the training data
df = pd.read_csv("/content/train.csv")
```

Data Preparation

```
[]: # Convert date column to datetime
df['Date'] = pd.to_datetime(df['Date'])

# Sort by date for time series
df = df.sort_values(by='Date')
```

Feature Engineering

Handle Missing Values

```
[]: #Lag and rolling averages will create NaN for the first few rows → drop them: df = df.dropna()
```

Train-Test Split (Time-Aware)

```
[]: #Use time-aware split so the future is not leaked into the past from sklearn.model_selection import TimeSeriesSplit

# Example split
tscv = TimeSeriesSplit(n_splits=5)
```

Model 1 — Baseline Linear Regression

```
rmse_lr = np.sqrt(mean_squared_error(y_test, y_pred_lr))
print("Linear Regression RMSE:", rmse_lr)
```

Linear Regression RMSE: 3464.0457885246215

 ${\it Model 2-XGBoost}$

```
[]: from xgboost import XGBRegressor

model_xgb = XGBRegressor(n_estimators=200, learning_rate=0.1, max_depth=6)
model_xgb.fit(X_train, y_train)
y_pred_xgb = model_xgb.predict(X_test)

rmse_xgb = np.sqrt(mean_squared_error(y_test, y_pred_xgb))
print("XGBoost RMSE:", rmse_xgb)
```

XGBoost RMSE: 3220.954432468477

Visualization — Actual vs Predicted

```
[]: import matplotlib.pyplot as plt

plt.figure(figsize=(12,6))
plt.plot(y_test.values, label='Actual Sales', color='blue')
plt.plot(y_pred_xgb, label='Predicted Sales (XGBoost)', color='red')
plt.legend()
plt.title('Actual vs Predicted Sales')
plt.xlabel('Time')
plt.ylabel('Weekly Sales')
plt.show()
```


Seasonal Decomposition

[]:

Task 8: Traffic Sign Recognition Description

```
[]: #Libraries
import os
import cv2
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
```

```
from tensorflow.keras.utils import to_categorical
```

Unzip the Data

```
[]: import zipfile

# Define the path to the zip file
zip_path = '/content/drive/MyDrive/traffic.zip'
extract_path = '/content/drive/MyDrive/traffic/'

# Unzipping the file
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
    zip_ref.extractall(extract_path)

print("Dataset unzipped successfully.")
```

Dataset unzipped successfully.

```
[]: # List the contents of the extracted folder os.listdir(extract_path)
```

Load the Data

```
[]: # Path to dataset
extract_path = '/content/drive/MyDrive/traffic/'

# Paths to CSV files
train_csv = os.path.join(extract_path, 'Train.csv')
test_csv = os.path.join(extract_path, 'Test.csv')

# Read CSVs
train_df = pd.read_csv(train_csv)
test_df = pd.read_csv(test_csv)

# Remove any extra spaces in column names (important!)
train_df.columns = train_df.columns.str.strip()
test_df.columns = test_df.columns.str.strip()
```

```
print(train_df.head())
```

```
Width Height Roi.X1 Roi.Y1 Roi.X2 Roi.Y2 ClassId \
0
      27
               26
                        5
                                 5
                                                 20
                                        22
                                                          20
               27
                        5
                                                          20
1
      28
                                 6
                                        23
                                                 22
2
      29
               26
                        6
                                 5
                                        24
                                                 21
                                                          20
                        5
3
      28
               27
                                 6
                                        23
                                                 22
                                                          20
                        5
                                 5
4
      28
               26
                                        23
                                                 21
                                                          20
```

Path

- 0 Train/20/00020_00000_00000.png
- 1 Train/20/00020_00000_00001.png
- 2 Train/20/00020 00000 00002.png
- 3 Train/20/00020_00000_00003.png
- 4 Train/20/00020_00000_00004.png

Load & Preprocess Images

```
# Load training images
train_images = []
train_labels = []

for idx, row in train_df.iterrows():
    img_path = os.path.join(extract_path, row['Path'])
    img = cv2.imread(img_path)
    img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
    train_images.append(img)
    train_labels.append(row['ClassId'])

X_train = np.array(train_images) / 255.0 # normalize
y_train = to_categorical(np.array(train_labels))
```

Train-validation split

Train shape: (31367, 32, 32, 3) Validation shape: (7842, 32, 32, 3)

Build & compile CNN

```
[]: from tensorflow.keras.models import Sequential
     from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense,
      →Dropout
     model = Sequential([
         Conv2D(32, (3,3), activation='relu', input_shape=(IMG_SIZE, IMG_SIZE, 3)),
         MaxPooling2D(2,2),
         Conv2D(64, (3,3), activation='relu'),
         MaxPooling2D(2,2),
         Flatten(),
         Dense(128, activation='relu'),
         Dropout(0.5),
         Dense(y_train.shape[1], activation='softmax')
     ])
     model.compile(optimizer='adam', loss='categorical_crossentropy', u
      →metrics=['accuracy'])
    model.summary()
```

/usr/local/lib/python3.11/dist-

packages/keras/src/layers/convolutional/base_conv.py:113: UserWarning: Do not pass an `input_shape`/`input_dim` argument to a layer. When using Sequential models, prefer using an `Input(shape)` object as the first layer in the model instead.

super().__init__(activity_regularizer=activity_regularizer, **kwargs)

Model: "sequential"

Layer (type)	Output Shape	Param #	
conv2d (Conv2D)	(None, 30, 30, 32)	896	
<pre>max_pooling2d (MaxPooling2D)</pre>	(None, 15, 15, 32)	0	
conv2d_1 (Conv2D)	(None, 13, 13, 64)	18,496	
<pre>max_pooling2d_1 (MaxPooling2D)</pre>	(None, 6, 6, 64)	0	
flatten (Flatten)	(None, 2304)	0	
dense (Dense)	(None, 128)	295,040	
dropout (Dropout)	(None, 128)	0	
dense_1 (Dense)	(None, 43)	5,547	

```
Trainable params: 319,979 (1.22 MB)
     Non-trainable params: 0 (0.00 B)
    Train the Model
[]: history = model.fit(
         X_train, y_train,
         validation_data=(X_val, y_val),
         epochs=3,
         batch_size=32
     )
    Epoch 1/3
    981/981
                        17s 9ms/step -
    accuracy: 0.3413 - loss: 2.4550 - val_accuracy: 0.9118 - val_loss: 0.4010
    Epoch 2/3
    981/981
                        5s 5ms/step -
    accuracy: 0.8233 - loss: 0.5659 - val_accuracy: 0.9651 - val_loss: 0.1538
    Epoch 3/3
                        4s 4ms/step -
    981/981
    accuracy: 0.8950 - loss: 0.3371 - val_accuracy: 0.9776 - val_loss: 0.0964
    Test Data Evaluation
[]: test_images = []
     test_labels = []
     for idx, row in test_df.iterrows():
         img_path = os.path.join(extract_path, row['Path'])
         img = cv2.imread(img_path)
         img = cv2.resize(img, (IMG_SIZE, IMG_SIZE))
         test_images.append(img)
         test_labels.append(row['ClassId'])
     X_test = np.array(test_images) / 255.0
     y_test = to_categorical(np.array(test_labels))
     loss, acc = model.evaluate(X_test, y_test)
     print(f"Test Accuracy: {acc*100:.2f}%")
    395/395
                        2s 6ms/step -
    accuracy: 0.9318 - loss: 0.2764
    Test Accuracy: 93.10%
```

Total params: 319,979 (1.22 MB)

```
[]: from tensorflow.keras.preprocessing.image import ImageDataGenerator
     datagen = ImageDataGenerator(
         rotation_range=10,
         zoom_range=0.1,
         width_shift_range=0.1,
         height_shift_range=0.1,
         shear_range=0.1,
         horizontal flip=False,
         fill_mode='nearest'
     )
     datagen.fit(X_train)
     # Retrain the same CNN with augmentation
     history_aug = model.fit(
         datagen.flow(X_train, y_train, batch_size=32),
         validation_data=(X_val, y_val),
         epochs=10
    Epoch 1/10
    /usr/local/lib/python3.11/dist-
    packages/keras/src/trainers/data_adapters/py_dataset_adapter.py:121:
    UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in
    its constructor. `**kwargs` can include `workers`, `use_multiprocessing`,
    `max_queue_size`. Do not pass these arguments to `fit()`, as they will be
    ignored.
      self._warn_if_super_not_called()
    981/981
                        26s 24ms/step -
    accuracy: 0.6251 - loss: 1.3288 - val_accuracy: 0.9652 - val_loss: 0.1443
    Epoch 2/10
    981/981
                        40s 25ms/step -
    accuracy: 0.7540 - loss: 0.7829 - val_accuracy: 0.9759 - val_loss: 0.1234
    Epoch 3/10
    981/981
                        29s 29ms/step -
    accuracy: 0.7985 - loss: 0.6382 - val_accuracy: 0.9753 - val_loss: 0.1136
    Epoch 4/10
    981/981
                        23s 23ms/step -
    accuracy: 0.8245 - loss: 0.5410 - val_accuracy: 0.9790 - val_loss: 0.0944
    Epoch 5/10
    981/981
                        38s 20ms/step -
    accuracy: 0.8524 - loss: 0.4723 - val_accuracy: 0.9856 - val_loss: 0.0658
    Epoch 6/10
    981/981
                        24s 24ms/step -
```

```
accuracy: 0.8602 - loss: 0.4257 - val_accuracy: 0.9839 - val_loss: 0.0689
    Epoch 7/10
    981/981
                        22s 22ms/step -
    accuracy: 0.8788 - loss: 0.3758 - val_accuracy: 0.9890 - val_loss: 0.0479
    Epoch 8/10
    981/981
                        20s 20ms/step -
    accuracy: 0.8897 - loss: 0.3459 - val accuracy: 0.9888 - val loss: 0.0482
    Epoch 9/10
    981/981
                        21s 22ms/step -
    accuracy: 0.9003 - loss: 0.3235 - val_accuracy: 0.9893 - val_loss: 0.0431
    Epoch 10/10
    981/981
                        21s 21ms/step -
    accuracy: 0.9026 - loss: 0.3022 - val_accuracy: 0.9911 - val_loss: 0.0345
    MobileNetV2 Transfer Learning
[]: from tensorflow.keras.applications import MobileNetV2
     from tensorflow.keras.models import Model
     from tensorflow.keras.layers import GlobalAveragePooling2D
     # Load MobileNetV2 without top layers
     base_model = MobileNetV2(weights='imagenet', include_top=False,_
      →input_shape=(IMG_SIZE, IMG_SIZE, 3))
     base_model.trainable = False # freeze base model
     # Add custom layers on top
     x = base_model.output
     x = GlobalAveragePooling2D()(x)
     x = Dense(128, activation='relu')(x)
     x = Dropout(0.5)(x)
     predictions = Dense(y_train.shape[1], activation='softmax')(x)
     mobilenet model = Model(inputs=base_model.input, outputs=predictions)
     mobilenet_model.compile(optimizer='adam', loss='categorical_crossentropy', u
      →metrics=['accuracy'])
    mobilenet_model.summary()
    /tmp/ipython-input-859176245.py:6: UserWarning: `input_shape` is undefined or
    non-square, or `rows` is not in [96, 128, 160, 192, 224]. Weights for input
    shape (224, 224) will be loaded as the default.
      base_model = MobileNetV2(weights='imagenet', include_top=False,
    input_shape=(IMG_SIZE, IMG_SIZE, 3))
    Downloading data from https://storage.googleapis.com/tensorflow/keras-applicatio
    ns/mobilenet_v2/mobilenet_v2_weights_tf_dim_ordering_tf_kernels_1.0_224_no_top.h
    5
    9406464/9406464
                                0s
```

Ous/step

Model: "functional_1"

Layer (type)	Output	Shape	Param #	Connected to
<pre>input_layer_1 (InputLayer)</pre>	(None,	32, 32, 3)	0	-
Conv1 (Conv2D)	(None, 32)	16, 16,	864	input_layer_1[0]
bn_Conv1 (BatchNormalizatio	(None, 32)	16, 16,	128	Conv1[0][0]
Conv1_relu (ReLU)	(None, 32)	16, 16,	0	bn_Conv1[0][0]
<pre>expanded_conv_dept (DepthwiseConv2D)</pre>	(None, 32)	16, 16,	288	Conv1_relu[0][0]
expanded_conv_dept (BatchNormalizatio		16, 16,	128	expanded_conv_de
expanded_conv_dept (ReLU)	(None, 32)	16, 16,	0	expanded_conv_de
expanded_conv_proj (Conv2D)	(None, 16)	16, 16,	512	expanded_conv_de
expanded_conv_proj (BatchNormalizatio	(None, 16)	16, 16,	64	expanded_conv_pr
block_1_expand (Conv2D)	(None, 96)	16, 16,	1,536	expanded_conv_pr
block_1_expand_BN (BatchNormalizatio	(None, 96)	16, 16,	384	block_1_expand[0
<pre>block_1_expand_relu (ReLU)</pre>	(None, 96)	16, 16,	0	block_1_expand_B
block_1_pad (ZeroPadding2D)	(None, 96)	17, 17,	0	block_1_expand_r
block_1_depthwise (DepthwiseConv2D)	(None,	8, 8, 96)	864	block_1_pad[0][0]

block_1_depthwise (BatchNormalizatio	(None, 8	8, 8,	96)	384	block_1_depthwis
block_1_depthwise (ReLU)	(None, 8	8, 8,	96)	0	block_1_depthwis
block_1_project (Conv2D)	(None, 8	8, 8,	24)	2,304	block_1_depthwis
block_1_project_BN (BatchNormalizatio	(None, 8	8, 8,	24)	96	block_1_project[
block_2_expand (Conv2D)	(None, 8	8, 8,	144)	3,456	block_1_project
block_2_expand_BN (BatchNormalizatio	(None, 8	8, 8,	144)	576	block_2_expand[0
block_2_expand_relu (ReLU)	(None, 8	8, 8,	144)	0	block_2_expand_B
block_2_depthwise (DepthwiseConv2D)	(None, 8	8, 8,	144)	1,296	block_2_expand_r
block_2_depthwise (BatchNormalizatio	(None, 8	8, 8,	144)	576	block_2_depthwis
block_2_depthwise (ReLU)	(None, 8	8, 8,	144)	0	block_2_depthwis
block_2_project (Conv2D)	(None, 8	8, 8,	24)	3,456	block_2_depthwis
block_2_project_BN (BatchNormalizatio	(None, 8	8, 8,	24)	96	block_2_project[
block_2_add (Add)	(None, 8	8, 8,	24)	0	block_1_project block_2_project
block_3_expand (Conv2D)	(None, 8	8, 8,	144)	3,456	block_2_add[0][0]
block_3_expand_BN (BatchNormalizatio	(None, 8	8, 8,	144)	576	block_3_expand[0
block_3_expand_relu (ReLU)	(None, 8	8, 8,	144)	0	block_3_expand_B

block_3_pad (ZeroPadding2D)	(None, 9, 9	, 144)	0	block_3_expand_r
<pre>block_3_depthwise (DepthwiseConv2D)</pre>	(None, 4, 4	, 144)	1,296	block_3_pad[0][0]
block_3_depthwise (BatchNormalizatio	(None, 4, 4	, 144)	576	block_3_depthwis
block_3_depthwise (ReLU)	(None, 4, 4	, 144)	0	block_3_depthwis
block_3_project (Conv2D)	(None, 4, 4	, 32)	4,608	block_3_depthwis
block_3_project_BN (BatchNormalizatio	(None, 4, 4	, 32)	128	block_3_project[
block_4_expand (Conv2D)	(None, 4, 4	, 192)	6,144	block_3_project
block_4_expand_BN (BatchNormalizatio	(None, 4, 4	, 192)	768	block_4_expand[0
<pre>block_4_expand_relu (ReLU)</pre>	(None, 4, 4	, 192)	0	block_4_expand_B
<pre>block_4_depthwise (DepthwiseConv2D)</pre>	(None, 4, 4	, 192)	1,728	block_4_expand_r
block_4_depthwise (BatchNormalizatio	(None, 4, 4	, 192)	768	block_4_depthwis
block_4_depthwise (ReLU)	(None, 4, 4	, 192)	0	block_4_depthwis
block_4_project (Conv2D)	(None, 4, 4	, 32)	6,144	block_4_depthwis
block_4_project_BN (BatchNormalizatio	(None, 4, 4	, 32)	128	block_4_project[
block_4_add (Add)	(None, 4, 4	, 32)	0	block_3_project block_4_project
block_5_expand (Conv2D)	(None, 4, 4	, 192)	6,144	block_4_add[0][0]

block_5_expand_BN (BatchNormalizatio	(None,	4,	4,	192)	768	block_5_expand[0
block_5_expand_relu (ReLU)	(None,	4,	4,	192)	0	block_5_expand_B
<pre>block_5_depthwise (DepthwiseConv2D)</pre>	(None,	4,	4,	192)	1,728	block_5_expand_r
block_5_depthwise (BatchNormalizatio	(None,	4,	4,	192)	768	block_5_depthwis
block_5_depthwise (ReLU)	(None,	4,	4,	192)	0	block_5_depthwis
block_5_project (Conv2D)	(None,	4,	4,	32)	6,144	block_5_depthwis
block_5_project_BN (BatchNormalizatio	(None,	4,	4,	32)	128	block_5_project[
block_5_add (Add)	(None,	4,	4,	32)	0	block_4_add[0][0 block_5_project
block_6_expand (Conv2D)	(None,	4,	4,	192)	6,144	block_5_add[0][0]
block_6_expand_BN (BatchNormalizatio	(None,	4,	4,	192)	768	block_6_expand[0
block_6_expand_relu (ReLU)	(None,	4,	4,	192)	0	block_6_expand_B
block_6_pad (ZeroPadding2D)	(None,	5,	5,	192)	0	block_6_expand_r
block_6_depthwise (DepthwiseConv2D)	(None,	2,	2,	192)	1,728	block_6_pad[0][0]
block_6_depthwise (BatchNormalizatio	(None,	2,	2,	192)	768	block_6_depthwis
block_6_depthwise (ReLU)	(None,	2,	2,	192)	0	block_6_depthwis
block_6_project (Conv2D)	(None,	2,	2,	64)	12,288	block_6_depthwis

block_6_project_BN (BatchNormalizatio	(None, 2	2, 2,	64)	256	block_6_project[
block_7_expand (Conv2D)	(None, 2	2, 2,	384)	24,576	block_6_project
block_7_expand_BN (BatchNormalizatio	(None, 2	2, 2,	384)	1,536	block_7_expand[0
block_7_expand_relu (ReLU)	(None, 2	2, 2,	384)	0	block_7_expand_B
block_7_depthwise (DepthwiseConv2D)	(None, 2	2, 2,	384)	3,456	block_7_expand_r
block_7_depthwise (BatchNormalizatio	(None, 2	2, 2,	384)	1,536	block_7_depthwis
block_7_depthwise (ReLU)	(None, 2	2, 2,	384)	0	block_7_depthwis
block_7_project (Conv2D)	(None, 2	2, 2,	64)	24,576	block_7_depthwis
block_7_project_BN (BatchNormalizatio	(None, 2	2, 2,	64)	256	block_7_project[
block_7_add (Add)	(None, 2	2, 2,	64)	0	block_6_project block_7_project
block_8_expand (Conv2D)	(None, 2	2, 2,	384)	24,576	block_7_add[0][0]
block_8_expand_BN (BatchNormalizatio	(None, 2	2, 2,	384)	1,536	block_8_expand[0
block_8_expand_relu (ReLU)	(None, 2	2, 2,	384)	0	block_8_expand_B
block_8_depthwise (DepthwiseConv2D)	(None, 2	2, 2,	384)	3,456	block_8_expand_r
block_8_depthwise (BatchNormalizatio	(None, 2	2, 2,	384)	1,536	block_8_depthwis
block_8_depthwise (ReLU)	(None, 2	2, 2,	384)	0	block_8_depthwis

block_8_project (Conv2D)	(None,	2, 2,	64)	24,576	block_8_depthwis
block_8_project_BN (BatchNormalizatio	(None,	2, 2,	64)	256	block_8_project[
block_8_add (Add)	(None,	2, 2,	64)	0	block_7_add[0][0 block_8_project
block_9_expand (Conv2D)	(None,	2, 2,	384)	24,576	block_8_add[0][0]
block_9_expand_BN (BatchNormalizatio	(None,	2, 2,	384)	1,536	block_9_expand[0
block_9_expand_relu (ReLU)	(None,	2, 2,	384)	0	block_9_expand_B
block_9_depthwise (DepthwiseConv2D)	(None,	2, 2,	384)	3,456	block_9_expand_r
block_9_depthwise (BatchNormalizatio	(None,	2, 2,	384)	1,536	block_9_depthwis
block_9_depthwise (ReLU)	(None,	2, 2,	384)	0	block_9_depthwis
block_9_project (Conv2D)	(None,	2, 2,	64)	24,576	block_9_depthwis
block_9_project_BN (BatchNormalizatio	(None,	2, 2,	64)	256	block_9_project[
block_9_add (Add)	(None,	2, 2,	64)	0	block_8_add[0][0 block_9_project
block_10_expand (Conv2D)	(None,	2, 2,	384)	24,576	block_9_add[0][0]
block_10_expand_BN (BatchNormalizatio	(None,	2, 2,	384)	1,536	block_10_expand[
block_10_expand_re (ReLU)	(None,	2, 2,	384)	0	block_10_expand
block_10_depthwise (DepthwiseConv2D)	(None,	2, 2,	384)	3,456	block_10_expand

block_10_depthwise (BatchNormalizatio	(None,	2,	2,	384)	1,536	block_10_depthwi
block_10_depthwise (ReLU)	(None,	2,	2,	384)	0	block_10_depthwi
block_10_project (Conv2D)	(None,	2,	2,	96)	36,864	block_10_depthwi
block_10_project_BN (BatchNormalizatio	(None,	2,	2,	96)	384	block_10_project
block_11_expand (Conv2D)	(None,	2,	2,	576)	55,296	block_10_project
block_11_expand_BN (BatchNormalizatio	(None,	2,	2,	576)	2,304	block_11_expand[
block_11_expand_re (ReLU)	(None,	2,	2,	576)	0	block_11_expand
block_11_depthwise (DepthwiseConv2D)	(None,	2,	2,	576)	5,184	block_11_expand
block_11_depthwise (BatchNormalizatio	(None,	2,	2,	576)	2,304	block_11_depthwi
block_11_depthwise (ReLU)	(None,	2,	2,	576)	0	block_11_depthwi
block_11_project (Conv2D)	(None,	2,	2,	96)	55,296	block_11_depthwi
block_11_project_BN (BatchNormalizatio	(None,	2,	2,	96)	384	block_11_project
block_11_add (Add)	(None,	2,	2,	96)	0	block_10_project block_11_project
block_12_expand (Conv2D)	(None,	2,	2,	576)	55,296	block_11_add[0][
block_12_expand_BN (BatchNormalizatio	(None,	2,	2,	576)	2,304	block_12_expand[
block_12_expand_re (ReLU)	(None,	2,	2,	576)	0	block_12_expand

block_12_depthwise (DepthwiseConv2D)	(None,	2,	2,	576)	5,184	block_12_expand
block_12_depthwise (BatchNormalizatio	(None,	2,	2,	576)	2,304	block_12_depthwi
block_12_depthwise (ReLU)	(None,	2,	2,	576)	0	block_12_depthwi
block_12_project (Conv2D)	(None,	2,	2,	96)	55,296	block_12_depthwi
block_12_project_BN (BatchNormalizatio	(None,	2,	2,	96)	384	block_12_project
block_12_add (Add)	(None,	2,	2,	96)	0	block_11_add[0][block_12_project
block_13_expand (Conv2D)	(None,	2,	2,	576)	55,296	block_12_add[0][
block_13_expand_BN (BatchNormalizatio	(None,	2,	2,	576)	2,304	block_13_expand[
block_13_expand_re (ReLU)	(None,	2,	2,	576)	0	block_13_expand
block_13_pad (ZeroPadding2D)	(None,	3,	3,	576)	0	block_13_expand
block_13_depthwise (DepthwiseConv2D)	(None,	1,	1,	576)	5,184	block_13_pad[0][
block_13_depthwise (BatchNormalizatio	(None,	1,	1,	576)	2,304	block_13_depthwi
block_13_depthwise (ReLU)	(None,	1,	1,	576)	0	block_13_depthwi
block_13_project (Conv2D)	(None,	1,	1,	160)	92,160	block_13_depthwi
block_13_project_BN (BatchNormalizatio	(None,	1,	1,	160)	640	block_13_project
block_14_expand (Conv2D)	(None,	1,	1,	960)	153,600	block_13_project

block_14_expand_BN (BatchNormalizatio	(None,	1,	1,	960)	3,840	block_14_expand[
block_14_expand_re (ReLU)	(None,	1,	1,	960)	0	block_14_expand
block_14_depthwise (DepthwiseConv2D)	(None,	1,	1,	960)	8,640	block_14_expand
block_14_depthwise (BatchNormalizatio	(None,	1,	1,	960)	3,840	block_14_depthwi
block_14_depthwise (ReLU)	(None,	1,	1,	960)	0	block_14_depthwi
block_14_project (Conv2D)	(None,	1,	1,	160)	153,600	block_14_depthwi
block_14_project_BN (BatchNormalizatio	(None,	1,	1,	160)	640	block_14_project
block_14_add (Add)	(None,	1,	1,	160)	0	block_13_project block_14_project
block_15_expand (Conv2D)	(None,	1,	1,	960)	153,600	block_14_add[0][
block_15_expand_BN (BatchNormalizatio	(None,	1,	1,	960)	3,840	block_15_expand[
block_15_expand_re (ReLU)	(None,	1,	1,	960)	0	block_15_expand
block_15_depthwise (DepthwiseConv2D)	(None,	1,	1,	960)	8,640	block_15_expand
block_15_depthwise (BatchNormalizatio	(None,	1,	1,	960)	3,840	block_15_depthwi
block_15_depthwise (ReLU)	(None,	1,	1,	960)	0	block_15_depthwi
block_15_project (Conv2D)	(None,	1,	1,	160)	153,600	block_15_depthwi
block_15_project_BN (BatchNormalizatio	(None,	1,	1,	160)	640	block_15_project

block_15_add (Add)	(None, 1,	1, 160)	0	block_14_add[0][block_15_project
block_16_expand (Conv2D)	(None, 1,	1, 960)	153,600	block_15_add[0][
block_16_expand_BN (BatchNormalizatio	(None, 1,	1, 960)	3,840	block_16_expand[
block_16_expand_re (ReLU)	(None, 1,	1, 960)	0	block_16_expand
<pre>block_16_depthwise (DepthwiseConv2D)</pre>	(None, 1,	1, 960)	8,640	block_16_expand
block_16_depthwise (BatchNormalizatio	(None, 1,	1, 960)	3,840	block_16_depthwi
block_16_depthwise (ReLU)	(None, 1,	1, 960)	0	block_16_depthwi
block_16_project (Conv2D)	(None, 1,	1, 320)	307,200	block_16_depthwi
block_16_project_BN (BatchNormalizatio	(None, 1,	1, 320)	1,280	block_16_project
Conv_1 (Conv2D)	(None, 1, 1280)	1,	409,600	block_16_project
Conv_1_bn (BatchNormalizatio	(None, 1, 1280)	1,	5,120	Conv_1[0][0]
out_relu (ReLU)	(None, 1, 1280)	1,	0	Conv_1_bn[0][0]
global_average_poo (GlobalAveragePool	(None, 128	30)	0	out_relu[0][0]
dense_2 (Dense)	(None, 128	3)	163,968	global_average_p
<pre>dropout_1 (Dropout)</pre>	(None, 128	3)	0	dense_2[0][0]
dense_3 (Dense)	(None, 43)		5,547	dropout_1[0][0]

```
Trainable params: 169,515 (662.17 KB)
     Non-trainable params: 2,257,984 (8.61 MB)
    Train MobileNetV2
[]: history_mobilenet = mobilenet_model.fit(
         datagen.flow(X_train, y_train, batch_size=32),
         validation_data=(X_val, y_val),
         epochs=7
     )
    Epoch 1/7
    981/981
                        27s 28ms/step -
    accuracy: 0.2825 - loss: 2.4340 - val_accuracy: 0.3192 - val_loss: 2.2776
    Epoch 2/7
    981/981
                        28s 28ms/step -
    accuracy: 0.2860 - loss: 2.3973 - val_accuracy: 0.3277 - val_loss: 2.2460
    Epoch 3/7
    981/981
                        27s 28ms/step -
    accuracy: 0.2932 - loss: 2.3779 - val_accuracy: 0.3315 - val_loss: 2.2198
    Epoch 4/7
    981/981
                        26s 26ms/step -
    accuracy: 0.2984 - loss: 2.3605 - val_accuracy: 0.3333 - val_loss: 2.2042
    Epoch 5/7
    981/981
                        41s 26ms/step -
    accuracy: 0.2972 - loss: 2.3432 - val_accuracy: 0.3391 - val_loss: 2.1873
    Epoch 6/7
    981/981
                        24s 25ms/step -
    accuracy: 0.3020 - loss: 2.3190 - val_accuracy: 0.3406 - val_loss: 2.1776
    Epoch 7/7
    981/981
                        24s 24ms/step -
    accuracy: 0.3061 - loss: 2.3096 - val_accuracy: 0.3486 - val_loss: 2.1603
    Compare Models
[]: import matplotlib.pyplot as plt
     def plot_history(histories, titles):
         plt.figure(figsize=(12,5))
         for history, label in zip(histories, titles):
             plt.plot(history.history['val_accuracy'], label=f'{label} Val Acc')
         plt.title('Validation Accuracy Comparison')
         plt.xlabel('Epochs')
         plt.ylabel('Accuracy')
```

Total params: 2,427,499 (9.26 MB)

```
plt.legend()
  plt.show()

plot_history(
    [history, history_aug, history_mobilenet],
    ['Custom CNN', 'CNN + Augmentation', 'MobileNetV2']
)
```



```
[]: %%shell
cd Elevvo-Pathways-ML-intern/
git add .
git commit -m "Update notebook with tasks"
git push origin HEAD
```