5. Exploratory Data Analysis - ggplot2

Data Science for OR - J. Duggan

Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

1/34

Data Exploration

"Data exploration is the art of looking at your data, rapidly generating hypotheses, quickly testing them, then repeating again and again and again." (Wickham and Grolemund 2017).

Figure 1: Exploring Data

Data visualisation with ggplot2

d <- ggplot2::mpg # get a copy of mpg

"The simple graph has brought more information to the data analyst's mind that any other device." – John Tukey

```
glimpse(d) # show structure and some data
## Observations: 234
## Variables: 11
## $ manufacturer <chr> "audi", "audi", "audi", "audi", "audi'
                                                                                                                       <chr> "a4", 
## $ model
## $ displ
                                                                                                                       <dbl> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8
## $ year
                                                                                                                       <int> 1999, 1999, 2008, 2008, 1999, 1999, 20
## $ cyl
                                                                                                                       <int> 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6, 6,
```

\$ trans

\$ drv

\$ ctv

\$ hwy

Data Science for OR - J. Duggan 5. Exploratory Data Analysis - ggplot2

<chr> "auto(15)", "manual(m5)", "manual(m6)'

<chr> "f", "f", "f", "f", "f", "f", "f", "4'

<int> 18, 21, 20, 21, 16, 18, 18, 18, 16, 20

<int> 29, 29, 31, 30, 26, 26, 27, 26, 25, 28

Fuel Economy Data Set (ggplot2::mpg)

This dataset contains a subset of the fuel economy data that the EPA makes available on http://fueleconomy.gov. It contains only models which had a new release every year between 1999 and 2008 - this was used as a proxy for the popularity of the car.

manufacturer	car manufacturer	drv	drive type
model displ	model name engine disp (I)	cty hwy	city miles per gallon highway miles per gallon
year model cyl trans	year of make model name number of cylinders type of transm.	fl cty class	fuel type city miles per gallon "type" of car

Exploring Data

Generate a first graph to help answer the following question

- Do cars with big engines use more fuel than cars with small engines
- What might the relationship between engine size and fuel efficiency look like?
 - Positive or negative?
 - Linear or non-linear?
- Variable (scatter plot)
 - **displ**, a car engine size in litres (x)
 - hwy, a car's fuel efficiency on highway (y)

Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

5/34

Plotting with ggplot2

```
ggplot(data = d) + # specify the source tibble
geom_point(mapping=aes(x=displ, # map x, y vars
y=hwy))
```


Data Science for OR - J. Duggan

Adding a linear model

```
ggplot(data = d,aes(x=displ, y=hwy)) +
  geom_point() +
  geom_smooth(method = "lm")
```


Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

7/34

Interpreting the plot

- The plot shows a negative relationship between engine size (displ) and fuel efficiency (hwy)
- Cars with big engines use more fuel
- Does this confirm or refute your hypothesis about fuel efficiency and engine size?

Data Science for OR - J. Duggan

Challenge 2.1

- Explore the hypothesis that city driving is less fuel efficient that highway driving
- Use ggplot to present the points on the same graph, and colour each data set differently
- Does the data confirm or refute your initial hypothesis?

Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

9/34

Aesthetic Mappings

- A third variable can be added to a 2-D plot by mapping it to an aesthetic.
- An aesthetic is a visual property of the plot's objects.
- An aesthetic's level could be colour, size or shape

In ggplot2 - Adding the third variable

```
ggplot(data=d)+
  geom_point(aes(x=displ,y=hwy,colour=class))
```


Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

11/34

Facets

- Another way to add categorical variables is to split a plot into facets, subplots that display one subset of the data.
- To facet your plot by a single variable, use facet_wrap(), with ~ followed by the variable name
- To facet on the combination of two variables, used facet_grid()

Facet Example 1

```
ggplot(data=d)+
  geom_point(aes(x=displ,y=hwy))+
  facet_wrap(~class)
```


Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

13/34

Facet Example 2

```
ggplot(data=d)+
  geom_point(aes(x=displ,y=hwy,colour=class))+
  facet_wrap(~manufacturer)
```


- 2seater
- compact
- midsize
- minivan
- pickup
- subcompact
- suv

displ

Data Science for OR - J. Duggan

Facet Grid Example

```
ggplot(data=d)+
  geom_point(aes(x=displ,y=hwy))+
  facet_grid(drv~cyl)
```


Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

15/34

Geoms

- A geom is a geometrical object that a plot uses to represent data
- Bar charts use bar geoms, line charts use line geoms, and scatter plots use the point geom.
- To change the geom in your plot, simply change the geom function that is added to the ggplot call.

Same data - geom 1

```
ggplot(data=d)+
geom_smooth(aes(x=displ,y=hwy))
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

17/34

Same data - geom 2

```
ggplot(data=d)+
geom_point(aes(x=displ,y=hwy))
```


Using different data sources

Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

19/34

Sample plot geoms

Geom	Purpose		
geom_smooth()	Fits a smoother to data and displays the smooth and its standard error		
geom_boxplot()	Produces a box-and-whisker plot to summarise the distribution of a set of points		
geom_histogram() geom_freqpoly()	Shows the distribution of continuous variables		
geom_bar()	Shows the distribution of categorical variables		
geom_path() geom_line()	Draws lines between data points		
geom_area()	Draws an area plot, which is a line plot filled to the y-axis. Multiple groups will be stacked upon each other		
<pre>geom_rect() geom_tile() geom_raster()</pre>	Draw rectangles		
geom_polygon()	Draws polygons, which are filled paths.		

Diamonds Data Set

A dataset containing the prices and other attributes of almost 54,000 diamonds

Table 2: Selected sample from diamonds data set

carat	cut	color	clarity	depth	table	price	X	у	;
0.23	ldeal	E	SI2	61.5	55	326	3.95	3.98	2.43
0.21	Premium	Е	SI1	59.8	61	326	3.89	3.84	2.31
0.23	Good	Е	VS1	56.9	65	327	4.05	4.07	2.31
0.29	Premium	I	VS2	62.4	58	334	4.20	4.23	2.63
0.31	Good	J	SI2	63.3	58	335	4.34	4.35	2.7!
0.24	Very Good	J	VVS2	62.8	57	336	3.94	3.96	2.4{
0.24	Very Good	I	VVS1	62.3	57	336	3.95	3.98	2.47
0.26	Very Good	Н	SI1	61.9	55	337	4.07	4.11	2.53
0.22	Fair	Е	VS2	65.1	61	337	3.87	3.78	2.49
0.23	Very Good	Н	VS1	59.4	61	338	4.00	4.05	2.39
Data Cai	ones for OD I Dura		Fundamatam. F)-4- AI				•	1 / 24

Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

21 / 34

Explanation of Variables

Feature	Explanation
price	price in US dollars \$326-\$18,823
carat	weight of the diamond (0.2–5.01)
cut	quality of the cut (Fair, Good, Very Good, Premium, Ideal)
color	diamond colour, from J (worst) to D (best)
clarity	a measurement of how clear the diamond is (I1 (worst), SI1, SI2, VS1, VS2, VVS1, VVS2, IF (best))
X	length in mm (0–10.74)
У	width in mm (0–58.9)
Z	depth in mm (0–31.8)
depth	total depth percentage = z / mean(x , y) = 2 * z / (x + y) (43–79)
table	width of top of diamond relative to widest point (43–95)

Diamonds summary

> summary(diamonds)

```
carat
                                                   clarity
                         cut
                                     color
                                                                     depth
                                                       :13065
                                                                        :43.00
                                     D: 6775
                                               SI1
Min.
       :0.2000
                  Fair
                            : 1610
                                                                Min.
1st Qu.:0.4000
                           : 4906
                                     E: 9797
                                               VS2
                                                                1st Qu.:61.00
                  Good
                                                       :12258
Median :0.7000
                  Very Good:12082
                                     F: 9542
                                               SI2
                                                       : 9194
                                                                Median :61.80
                  Premium
                           :13791
                                     G:11292
                                               VS1
                                                       : 8171
                                                                Mean
                                                                        :61.75
Mean
       :0.7979
                                                                3rd Qu.:62.50
3rd Qu.:1.0400
                           :21551
                                     H: 8304
                                               VVS2
                  Ideal
                                                       : 5066
Max.
       :5.0100
                                     I: 5422
                                               VVS1
                                                       : 3655
                                                                Max.
                                                                        :79.00
                                     J: 2808
                                               (Other): 2531
    table
                     price
                                        Х
                                                                            Z
                           326
                                         : 0.000
                                                          : 0.000
                                                                             : 0.000
Min.
       :43.00
                 Min.
                                 Min.
                                                    Min.
                                                                      Min.
1st Qu.:56.00
                 1st Qu.:
                           950
                                  1st Qu.: 4.710
                                                    1st Qu.: 4.720
                                                                      1st Qu.: 2.910
Median :57.00
                                 Median : 5.700
                 Median: 2401
                                                    Median : 5.710
                                                                      Median : 3.530
                                         : 5.731
                                                           : 5.735
Mean
       :57.46
                 Mean
                        : 3933
                                 Mean
                                                    Mean
                                                                      Mean
                                                                             : 3.539
3rd Qu.:59.00
                 3rd Qu.: 5324
                                  3rd Qu.: 6.540
                                                    3rd Qu.: 6.540
                                                                      3rd Qu.: 4.040
       :95.00
                        :18823
                                         :10.740
                                                           :58.900
                                                                             :31.800
Max.
                 Max.
                                  Max.
                                                    Max.
                                                                      Max.
```

Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

23 / 34

Statistical Transformations

- Many graphs, like scatterplots, plot the raw values of the dataset
- However, other graphs (e.g. bar charts) calculate new values to plot
 - Bar charts, histograms and frequency polygons bin your data and plot bin counts, the number of points that fall in each bin
 - Smoothers fit a model to your data and the plot predictions from the model
 - Boxplots compute a robust summary of the distribution and display a specially formatted box

Bar Chart

```
ggplot(data=diamonds)+
geom_bar(aes(x=cut))
```


Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

25 / 34

Bar Chart: Adding information with fill

```
ggplot(data=diamonds)+
  geom_bar(aes(x=cut,fill=clarity))
```


Bar Chart: Normalising Plot

```
ggplot(data=diamonds)+
  geom_bar(aes(x=cut,fill=clarity),position="fill")
```


Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

27 / 34

Bar Chart: side-by-side

```
ggplot(data=diamonds)+
  geom_bar(aes(x=cut,fill=clarity),position="dodge")
```


Additional Adjustment

- Recall our first scatterplot
- 126 points displayed, yet there are 234 observations
- Many points can overlap, so it makes it hard to see where the mass of data is
- Are all points spread equally, or is there one special combination that contains 129 values?
- "jitter" adds random noise to each point

Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

29/34

Using jitter

Data Science for OR - J. Duggan

Histogram

```
ggplot(data=diamonds,aes(x=price))+
  geom_histogram(binwidth = 500)
```


Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

31 / 34

Boxplot

- Display the distribution of a continuous variable broken down by a categorical variable
- ullet Box that stretches from the 25th to 75th percentile a distance known as the interquartile range (IRQ)
- Median in the middle of box
- Points outside more that 1.5 times the IQR from either edge of the box are displayed (outliers)
- Whisker extends to the farthest non-outlier point in the distribution

Boxplot Example

```
ggplot(data=mpg,aes(x=class,y=hwy))+
  geom_boxplot()
```


Data Science for OR - J. Duggan

5. Exploratory Data Analysis - ggplot2

33 / 34

Summary

- The ggplot2 approach can be summarised by a template
- It can take seven parameters, but usually not all need to be applied (defaults used)
- These seven parameters comprise the grammar of graphics