MANUAL USUARIO

UNIVERSIDAD CENTRAL DEL ECUADOR

FACULTAD DE INGENIERÍA CIENCIAS FÍSICAS Y MATEMÁTICAS
CARRERA DE INGENIERÍA INFORMÁTICA Y COMPUTACION GRAFICA
ANALISIS NUMERICO

GRUPO DE DESARROLLO DE SOFTWARE

HEMISEMESTRE 2

MICHAEL PONCE

MARLON OÑA

FRANCISCO VALLE

ALISON CUPUERÁN

Índice

Contenido

1.	Intro	oducción	3
	1.1.	Objetivos Generales	3
	1.2.	Objetivos Especificos	3
2.	Req	uerimimento de Hardware y Software	3
	2.1.	Requerimiento de Hardware	3
	2.2.	Requerimiento de Software	3
3.	Desc	cripción del problema	4
	3.1.	Main	4
	3.1.1	Opciones	4
	3.2.	Soluciones de Ecuaciones	5
	3.2.1	Biseccion	5
	3.2.2	Punto Fijo	8
	3.2.3	Newton	9
	3.3.	Interpolación y aproximación	. 1
	3.3.1	Taylor1	2
	3.3.2	Lagrange	4
	3.3.3	Neville	.7
	3.4.	Diferenciación e Integración numérica	20
	3.4.1	Diferenciación	20
	3.4.2	Integración (Trapecio, Simpson 1/3 y Simpson 3/8)	23
	3.5.	Solución Numérica de Ecuaciones Diferenciales	25
4.	Ben	eficios del Programa	27
5.	Rec	omendaciones	27
6.	Con	clusiones2	27
7.	Ane	xo2	28
	7.1.	Eiercicios Propuestos	28

1. Introducción

1.1 Objetivos Generales

Crear un programa que recopile los principales métodos de análisis numérico para permitir resolver problemas matemáticos.

1.2 Objetivos Específicos

- Aplicar y entender el funcionamiento de los distintos métodos de análisis numérico.
- Recopilar los distintos métodos de análisis numérico en un programa.
- Aprovechar las ventajas y facilidades que ofrece Matlab para implementar algoritmos que permiten realizar métodos numéricos.

2. Requerimientos de Hardware y Software

2.1. Requerimiento de Hardware

- ➤ Procesador Intel core i3 @ 2.00 GHZ o superior
- Memoria Ram: 3 GB
- Disco Duro: 40GB
- ➤ Otros Dispositivos: Monitor VGA (800x600) o con mayor resolución

2.2. Requerimiento de Software

- Matlab R2017A
- ➤ Recomendado: Sistema Operativo Windows 7 o 10

3. Descripción del Programa

3.1. Main

Ventana principal donde se tiene la opción de llamar a un método de análisis numérico específico.

INGENIERÍA INFORMÁTICA Y COMPUTACIÓN GRAFÍCA

ASIGNATURA: Análisis Numérico

3.1.1 Opciones

Salir: Permite salir del Sistema

Acerca de: Muestra Información de los integrantes del proyecto.

3.2 Soluciones de ecuaciones

3.2.1 Bisección

• Ingrese los datos:

F(x)= ingresar las funciones continuas definidas en el intervalo [a,b], con f(a) y f(b) de signos distintos.

a1= Es el límite inferior del intervalo [a, b]

b1= Es el límite superior del Intervalo [a, b]

Tol= Es el valor de la tolerancia que se quiere admitir en el programa

• Grafica de f(x)

a= Es el límite inferior del intervalo [a, b].

b= Es el límite superior del intervalo [a, b].

Resultado

Raíz: Raíz Aproximada de la función

Ejemplo

Sea f(x) = x - tan(x), en el intervalo [4; 4, 5] con una tolerancia $Tol = 10^{-3}$

Ingreso de datos

Tabla de valores

	an	pn	bn	f(pn)	ea	er
1	4.0000000	4.2500000	4.5000000	2.2436910		
2	4.2500000	4.3750000	4.5000000	1.5243879	0.1250000	0.0285714
3	4.3750000	4.4375000	4.5000000	0.8917623	0.0625000	0.0140845
4	4.4375000	4.4687500	4.5000000	0.4458527	0.0312500	0.0069930
5	4.4687500	4.4843750	4.5000000	0.1749484	0.0156250	0.0034843
6	4.4843750	4.4921875	4.5000000	0.0245308	0.0078125	0.0017391
7	4.4921875	4.4960938	4.5000000	-0.0548924	0.0039063	0.0008688
8	4.4921875	4.4941406	4.4960938	-0.0148139	0.0019531	0.0004346
9	4.4921875	4.4931641	4.4941406	0.0049490	0.0009766	0.0002173

Raíz

Gráfica

3.2.2 Punto Fijo

Ingreso de Datos:

Ingrese la función: Ingresamos la función g(x).

Ingrese p0: Es la aproximación inicial.

Ingrese la tolerancia: Es el valor de la tolerancia que se quiere admitir en el programa.

de iteraciones: El número de iteraciones que realizará el programa.

Resultado

Raíz aproximada: Raíz de la función.

de Iteraciones: El número de iteraciones realizadas para calcular la raíz.

Ejemplo:

Sea
$$g(x) = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x - 1}$$
, $p_0 = 1$, $Tol = 10^{-4}$, $N^{\underline{o}}$ $Iteraciones = 20$

Ingreso de Datos

Tabla de datos

	pn	g(pn)	er	ea
1	1.1428571	1.1244817	0.1250000	0.1428571
2	1.1244817	1.1241232	0.0163413	0.0183755
3	1.1241232	1.1241230	0.0003189	0.0003585
4	1.1241230	1.1241230	0.0000001	0.0000001

Gráfica

-Resultado	
Raíz aproximada:	1.1241230
# de Iteraciones:	4

3.2.3 Newton

• Ingreso de Datos

Ingrese la función: Ingresamos la función f(x).

Ingrese p0: Es la aproximación inicial.

Ingrese la tolerancia: Es el valor de la tolerancia que se quiere admitir en el programa.

de iteraciones: El número de iteraciones que realizará el programa.

Resultado

Raíz aproximada: Raíz de la función.

de Iteraciones: El número de iteraciones realizadas para calcular la raíz.

Ejemplo:

$$f(x) = e^{0.2x^2} - 5x - 2$$
; $p_0 = -0.5$, $Tol = 10^{-3}$, N° Iteraciones: 20

Ingreso de Datos

Ingrese la función:	exp(0.2*x^2)-5*x-2
Ingrese p0:	-0.5
Ingrese la tolerancia:	1e-3
# de iteraciones:	20

Tabla de Datos

	pn	f(pn)	ea	er
1	-0.2022644	0.0195379	0.2977356	1.4720115
2	-0.1984196	0.0000029	0.0038449	0.0193775
3	-0.1984190	-0.0000000	0.0000006	0.0000029

Gráfica

-Resultado ——————				
Raíz aproximada:	-0.19842			
# de Iteraciones:	3			

3.3 Interpolación y Aproximación

3.3.1 Taylor

• Ingreso de datos:

Ingrese la función: Ingresar f(x) de la cual se calcula el polinomio de Taylor.

Ingrese el grado del polinomio: El grado del Polinomio de Taylor.

Ingrese c: El punto alrededor del cual se genera el polinomio.

Ingrese el punto a aproximar: Punto de aproximación.

Resultado

Valor aproximado

Polinomio de Taylor

Ejemplo

Sea
$$f(x) = \ln\left(\sqrt{\frac{1+x}{1-x}}\right)$$
; $Grado = 5$; $c = 0$; $Punto\ aproximar = 0.5$

Ingreso de datos

Ingrese la función:	+x)/(1-x))^(1/2))
Ingrese el grado del polinomio:	5
Ingrese c:	0
Ingrese el punto a aproximar:	0.5

Gráfica

3.3.2 Lagrange

• Ingreso de datos:

> Ingresar solo vectores:

x= los puntos en el eje x

y=la función f(x) evaluada en los puntos x_i

Ingrese el punto a aproximar: El punto a aproximar

Resultado

Valor aproximado

Polinomio de Lagrange

Ejemplo 1:

X=2, 2.2, 2.3

Y = log(2), log(2.2), log(2.3)

Punto a aproximar=2.1

Ingreso de Datos

Gráfica

Resultado

• Ingreso de datos:

> Ingresar la función

f(x)= Función

x= los puntos en el eje x

Ingrese el punto a aproximar: El punto a aproximar

• Resultado

Valor aproximado

Polinomio de Lagrange

Ejemplo 2

Sea
$$f(x) = \frac{1}{x}$$
; $x = 2, 2.5, 3.5, 4$; Punto a approximar = 3

Ingreso de Datos

Gráfica

3.3.3 Neville

• Ingreso de datos:

Ingresar Función

Ingresar la función: Ingresa la función f(x)

X=los puntos en x

X0=Punto a aproximar

Resultado

Estimación: Valor estimado

Ejemplo 1

Sea
$$f(x) = \ln(x)$$
; $x_0 = 2.1$; $x = 2, 2.2, 2.3$

Ingreso de datos

Gráfica

Resultado

• Ingreso de Datos:

 \triangleright Ingresar Puntos (f(x0)):

X=Punto eje x

Y=Punto eje y

X0=Punto a aproximar

Resultado

Estimación: Valor estimado

Ejemplo 2

 $Sea\ X = 200, 250, 300, 350, 400, 450;$ Y = 1.708, 1.367, 1.139, 0.967, 0.854, 0.759; X0 = 330

Ingreso de Datos

Gráfica

3.4 Diferenciación e integración Numérica

3.4.1 Diferenciación

• Ingreso de datos

5 o 3 Puntos: El número de puntos a evaluar

f(x)= la función f(x) a la cual se calcula la aproximación de la derivada en el punto x0.

x0= punto en el cual se le aproxima la derivada

• Resultado

f(x0) = La primera derivada evaluada en x0

ea=error absoluto

er=error relativo

Ejemplo 1

Sea
$$f(x) = x * e^x$$
; $x0 = 2$, $x = 1.8,1.9,2,2.1,2.2$

> 5 Puntos

Ingreso de Datos

Gráfica

3 Puntos

$$x = 1.9,2,2.1$$

Ingreso de datos

Gráfica

3.4.2 Integración:

Método del Trapecio, Simpson 1/3 y Simpson 3/8

• Ingreso de datos

f(x)= es la función a integrar.

a= límite inferior de la integral.

b=límite superior de la integral.

#part= número de particiones.

Resultado

Aprox=valor aproximado.

Ejemplo

Sea
$$f(x) = e^{-x^2}$$
; $a = 0$; $b = 1$; # part = 4

Ingreso de Datos

Gráfica

Resultado método Trapecio

Resultado método Simpson 1/3

Resultado método Simpson 3/8

3.5 Solución numérica de ecuaciones diferenciales

Contiene los métodos de: Euler implícito y explicito, Runge Kutta y Runge Kutta de orden 2

• Ingreso de Datos

y`= la ecuación diferencial

a= límite inferior del intervalo [a, b]

b= limite Superior del intervalo [a, b]

N=número de Particiones

X0=Valor Inicial de x

y0=Valor Inicial de y

Ejemplo

$$Sea\ y' = y - x^2 + 1; a = 0; b = 2; N = 10; x_0 = 0; y_0 = 0.5$$

Ingreso de Datos

-Ingrese los datos					
y'	y-x*2+1				
a	0				
b	2				
N	10				
x0	0				
y0	0.5				

Gráfica

Tabla 1

	xk	exacto	
0	0.0000000	0.5000000	_
1	0.2000000	0.7892986	
2	0.4000000	1.0540877	
3	0.6000000	1.2889406	
4	0.8000000	1.4872295	
5	1.0000000	1.6408591	
6	1.2000000	1.7399415	
7	1.4000000	1.7724000	
8	1.6000000	1.7234838	
9	1.8000000	1.5751763	
10	2.0000000	1.3054720	
	« :	2	>

Tabla 2

4. Beneficios del Programa

Tener en un solo programa los algoritmos de métodos numéricos para resolver los ejercicios matemáticos.

5. Recomendaciones

 Se recomienda utilizar la sintaxis válida para Matlab para el ingreso de funciones.

6. Conclusiones

- De los métodos numéricos para la resolución de ecuaciones diferenciales, el Método de Runge Kutta es el que más se aproxima al valor exacto.
- Frente a los métodos de interpolación polinomio se recomienda usar Lagrange.

ANEXOS

7.1 Ejercicios Propuestos

Bisección

Sea $f(x) = e^{-x} - \ln(x)$ en el intervalo [1,1.5] con una tolerancia $Tol = 10^{-4}$

Sea $f(x) = \ln(x) - \cos(2x)$ en el intervalo [0.5,1]con una tolerancia $Tol = 10^{-3}$

Punto Fijo

Sea
$$g(x) = \frac{x^2 - e^x}{5}$$
, $p0 = -1$, con una tolerancia $Tol = 10^{-5}$, $N = 15$
Sea $g(x) = \frac{1}{2\sqrt{2x}}$, $p0 = 1$ con una tolerancia $Tol = 10^{-4}$, $N = 15$

Newton

Sea
$$f(x) = 2x + \ln(4\sqrt{x})$$
, $p0 = 0.5$, con una tolerancia $Tol = 10^{-3}$, $N = 30$
Sea $f(x) = \frac{x}{2} + \frac{0.2e^{x^3}}{5}$, $p0 = -0.5$, con una tolerancia $Tol = 10^{-4}$, $N = 10$

Taylor

Sea
$$f(x) = \frac{\ln(x+1)}{4x^2+1}$$
, $grado = 5$, $c = 0$, $punto\ a\ aproximar = 2.2$
Sea $f(x) = \frac{1}{2-x^4}$, $grado = 6$, $c = 1$, $punto\ a\ aproximar = 1.4$

Lagrange

Sea
$$x = 4,0,-6,1,-4$$

 $y = 808,4,1438,10,160$
punto a aproximar = -1

Sea
$$f(x) = \frac{\ln(x+1)}{e^x}$$

 $x = 3.1,3.2,3.3,3.5$
punto a aproximar = 3.4

Neville

Sea
$$x = -2, -1, 2, 3$$

 $y = -7, -6, 12, 18$
punto a aproximar = 1

Sea
$$f(x) = 2^x - 3x^3$$

 $x = -1.1, -1.2, -1.3, -1.4, -1.6$
punto a aproximar = -1.5

Diferenciación

Sea
$$f(x) = \frac{x^4}{e^x}$$
; $x0 = 4.2, x = 3.8,4,4.2$
Sea $f(x) = \frac{\ln(2x + x^2)}{x}$; $x0 = 3.5, x = 3.3,3.4,3.5,3.6,3.7$

Integración

Sea
$$f(x) = 2^{x-1}e^{-x}$$
; $a = 1.5$; $b = 2$; # $part = 6$
Sea $f(x) = \frac{\ln(x+2)}{x^3}$; $a = 0.5$; $b = 1.5$; # $part = 8$

EDO

Sea
$$y' = 3x - 2y$$
; $a = 0$; $b = 2$; $N = 10$; $x_0 = 0$; $y_0 = 1.5$
Sea $y' = 2x - 3y + 1$; $a = 1$; $b = 2$; $N = 10$; $x_0 = 1$; $y_0 = 5$