EEP1 ELogBook - Week 7

AXXXXXXX - Brians Tjipto Meidianto

Studio

Activity 1

T = 33.49 ms

$$T = R * C = 100 * (330 * 10^{-6}) = 33 ms$$

Both values are the same.

Activity 2

T = 998.5ns

 $T = L / R = (100 * 10^{-6}) / 100 = 0.000001 = 1000ns$

Roughly the same value

a. Vs to 10 V, the T decreases

b. R to 50 Ω , the V / I decrease

c. C to 660 uF, T doubled

d. L to 200 uH, T doubled

Lab

Activity 1

Vs (V)	R (Ω)	C (uF)	T (ms)
5	100	330	560
5	100	660	924
5	200	330	584
z10	100	330	308

When the Capacitance doubled the time constant also doubled, when the Resistance doubled, increased the time constant by a little bit, conversely, the doubling of the Voltage lead to a decrease in the time constant

Activity 2

It takes 68ms to get to the time constant

It takes approximately 232ms to get fully discharged at 2.48V

During charging, the capacitor is connected to a voltage source through the resistor.

During discharging, the capacitor discharges through the resistor.

= 0.05 A DOON 0.05 A J. SKL = 5x 100 x 100 pH = 0.05 5 //s c) = 500 A R+/L) = (e - 100+/100,0001) # e WI I= (1-e-吐) = 5 (1-e 100t) ※ 3. (00) 5 x 100 - 2.5 V b) -25 x c) 5T = 5RC = 100 MF × 2000 5000 5 = 0.025 Sx d) V4)= V5(1-c==)= \$ 2.5(1-e====) & 1-e10.0258 6)

