CS 440/ECE 448 Artificial Intelligence Assignment 3: Naive Bayes Classification

Haoen CUI; Guohao (Holden) DOU; Chuchao LUO[‡] November 27, 2017

Contents

1	Par	Part 1: Digit Classification				
	1.1	Single	Pixels as Features (For Everybody)	2		
		1.1.1	Implementation	2		
		1.1.2	Smoothing Constant	2		
		1.1.3	Classification Rate and Confusion Matrix	2		
		1.1.4	Posterior Probabilities: Highest and Lowest	2		
		1.1.5	Visualization of Likelihoods and Odds Ratios	2		
	1.2	Pixel C	Groups as Features (For Four-Credit Students)	2		
		1.2.1	Accuracy on Test Set	2		
		1.2.2	Trends for Different Feature Sets	2		
		1.2.3	Running Time for Different Feature Sets	2		
	1.3	Extra (
		1.3.1	Ternary Features			
		1.3.2	Naive Bayes Classifier on Face Data			
2	Par	art 2: Audio Classification				
_	2.1	Binary	Classification: Hebrew words of "yes" and "no" (For Everybody)	9		
		2.1.1	Implementation			
		2.1.2	Classification Rate and Confusion Matrix	9		
	2.2	Multi-C	Class Classification: Audio Digits 1-5 Spoken by Four Different Speakers (For Four-Credit			
			ts)	:		
			Implementation	9		
		2.2.2	Overall Accuracy	9		
		2.2.3	Classification Rate and Confusion Matrix	9		
	2.3	Extra (Credit	9		
		2.3.1	Binary Classification on Unsegmented Data			
		2.3.2	Alternative Method (RNN) on XXX Data			
		2.3.3	Average-Column Method on Hebrew Yes-No Corpus			
3	Stat	tement	of Individual Contribution	۶		
•	~ 000		or andriada committation	-		

^{*}Haoen CUI's Email hcui10@illinois.edu

[†]Guohao (Holden) DOU's Email gdou2@illinois.edu

[‡]Chuchao LUO's Email chuchao2@illinois.edu

1 Part 1: Digit Classification

1.1 Single Pixels as Features (For Everybody)

1.1.1 Implementation

We treated this problem as a special case of *pixel group as features* where the pixel groups are simply disjoint and of size 1 by 1. Please see the next section for details.

- 1.1.2 Smoothing Constant
- 1.1.3 Classification Rate and Confusion Matrix
- 1.1.4 Posterior Probabilities: Highest and Lowest
- 1.1.5 Visualization of Likelihoods and Odds Ratios
- 1.2 Pixel Groups as Features (For Four-Credit Students)

1.2.1 Accuracy on Test Set

```
sizes_to_run_disj <- c(11, 22, 24, 42, 22)
sizes_to_run_overlap <- c(22, 24, 42, 44, 23, 32, 33)
for (kernel.size in sizes_to_run_disj) {
    i <- kernel.size '%', 10
    j <- kernel.size '%', 10
    path.to.file <- paste("img/conf_mat_disj", kernel.size, ".png", sep = "")
    print(path.to.file)
    knitr::include_graphics(path = path.to.file)
}

## [1] "img/conf_mat_disj11.png"
## [1] "img/conf_mat_disj22.png"
## [1] "img/conf_mat_disj24.png"
## [1] "img/conf_mat_disj22.png"
## [1] "img/conf_mat_disj22.png"
## [1] "img/conf_mat_disj22.png"

knitr::include_graphics(path = "img/conf_mat_disj11.png")</pre>
```

- 1.2.2 Trends for Different Feature Sets
- 1.2.3 Running Time for Different Feature Sets
- **1.2.3.1** Training
- 1.2.3.2 Testing

- 1.3 Extra Credit
- 1.3.1 Ternary Features
- 1.3.2 Naive Bayes Classifier on Face Data

2 Part 2: Audio Classification

- 2.1 Binary Classification: Hebrew words of "yes" and "no" (For Everybody)
- 2.1.1 Implementation
- 2.1.2 Classification Rate and Confusion Matrix
- 2.2 Multi-Class Classification: Audio Digits 1-5 Spoken by Four Different Speakers (For Four-Credit Students)
- 2.2.1 Implementation
- 2.2.2 Overall Accuracy
- 2.2.3 Classification Rate and Confusion Matrix
- 2.3 Extra Credit
- 2.3.1 Binary Classification on Unsegmented Data
- 2.3.2 Alternative Method (RNN) on XXX Data
- 2.3.3 Average-Column Method on Hebrew Yes-No Corpus

3 Statement of Individual Contribution

Table 1: Statement of Individual Contribution

	NetID	Contribution
Haoen CUI	hcui10	visualization, report, and ideas generation
Guohao DOU	gdou2	part 1 (algorithm design and programming) and ideas generation
Chuchao LUO	chuchao2	part 2 (algorithm design and programming) and ideas generation