Coreset Technique

(Part 2)

OUTLINE

- Coresets and Composable Coresets (Part 1)
- 2 Case study: k-center-clustering (Part 1)
- Coresets of other clustering problems
 - k-means/median
 - Clustering evaluation

k-means/median

Definition of the problems

Let us review the two problems

Given a pointset P of N points from a metric space (M, d), determine a set $S \subset P$ of k centers which minimizes

$$\Phi_{\text{kmeans}}(P,S) = \sum_{x \in P} (d(x,S))^2$$
 (k-means)

$$\Phi_{\text{kmedian}}(P,S) = \sum_{x \in P} (d(x,S))$$
 (k-median)

Observation: depending on the application and/or the algorithm used, the requirement that S be a subset of P may be lifted, and the centers can be allowed to be aribtrary points of M.

Lloyd's algorithm: (a.k.a. "k-means algorithm")

- APPLICABILITY. Used only for k-means when $M = \mathbb{R}^D$, $d(\cdot, \cdot)$ is the standard Euclidean distance (L_2 -distance), and centers can be selected outside P.
- ACCURACY. If initial centers are selected well (e.g., through k-means++) it usually provides good solutions, but, if not, it may be trapped into local optima.
- EFFICIENCY. Efficient implementations are provided by most common software packages, but a limit on the number of iterations is needed in case of very slow convergence.
- SUITABILITY FOR MASSIVE INPUTS. Yes if data can be processed by a distributed platform and only few iterations are executed. However, it is not suitable to process data streams,

k-means++ algorithm: (by Arthur & S. Vassilvitskii, 2007).

```
c_1 \leftarrow random point chosen from P with uniform probability; S \leftarrow \{c_1\}; for 2 \le i \le k do foreach x \in P - S do \pi(x) \leftarrow (d(x,S))^2 / \sum_{y \in P - S} (d(y,S))^2; c_i \leftarrow random point in P - S according to distribution \pi(\cdot); S \leftarrow S \cup \{c_i\} return S
```

Observation: k-means++ is a randomized algorithm and it is known that in expectation, the returned solution is an α -approximation, with $\alpha = \Theta(\ln k)$.

k-means++ algorithm:

- APPLICABILITY. It can be used for both k-means and k-median, and enforces S ⊂ P.
- ACCURACY. It provides decent solutions, but it is often useful to refine them to get better accuracy.
- EFFICIENCY. Very easy and efficient implementation.
- SUITABILITY FOR MASSIVE INPUTS. Yes if data can be processed by a distributed platform and k is small. However, it is not suitable to process data streams.

Partitioning Around Medoids (PAM) algorithm (a.k.a. k-medoids).

Devised by Kaufman and Rousseeuw in 1987, it is based on a local search strategy which starts from an arbitrary solution S and progressively improves it by performing the best swap between a point in S and a point in S, until no improving swap exists.

- APPLICABILITY. Mainly used for k-median, and enforces $S \subset P$.
- ACCURACY. It provides good solutions.
- EFFICIENCY. Very slow since each iterations requires checking about N · k possible swaps and the convergence can be very slow.
- SUITABILITY FOR MASSIVE INPUTS. Not at all!

Consequences of the above scenario

Clustering of massive data remains very challenging when

Coreset-based approach for k-means/median

The composable coreset technique can be employed to devise k-means/median algorithms which are able: (i) to handle massive data (in a distributed setting); and (ii) to provide good accuracy.

- Each point x ∈ T is given a weight w(x) = the number of points in P for which x is the closest representative in T.
- The local coresets T_i's are computed using a sequential algorithm for k-means/median.
- The final solution S is also computed using a sequential algorithm for k-means/median, adapted to handle weights.

Why are weights needed?

12									

13										

From now on we focus on k-means

What we will say applies as well to k-median (with very minor adaptations)

Weighted k-means clustering

Weighted variant of the k-means clustering problem

Input:

- Set P of N points from \mathbb{R}^D .
- Integer weight w(x) > 0 for every $x \in P$.
- Target number k of clusters.

Output: Set S of k centers in \mathbb{R}^D minimizing

$$\Phi_{\mathrm{kmeans}}^{w}(P,S) = \sum_{x \in P} w(x) \cdot (d(x,S))^{2}.$$

Observations:

- This formulation allows centers outside P.
- If w(x) = 1 for every $x \in P$ we have the standard k-means clustering problem.

ĺ									

Coreset-based MapReduce algorithm for k-means

MR-kmeans(\mathcal{A}): MapReduce algorithm for k-means (described in the next slide) which uses a sequential algorithm \mathcal{A} for k-means, as an argument (functional approach!), such that:

- A solves the more general weighted variant.
- A requires space proportional to the input size.

Input Set P of N points in \mathbb{R}^D , integer k > 1, sequential k-means algorithm A.

Output Set S of k centers in \mathbb{R}^D which is a good solution to the k-means probelm on P.

MR-kmeans(\mathcal{A})

Round 1:

- Map Phase: Partition P arbitrarily in ℓ subsets of equal size $P_1, P_2, \dots, P_{\ell}$.
- Reduce Phase: for every $i \in [1, \ell]$ separately, run \mathcal{A} on P_i (with unit weights) to determine a set $T_i \subseteq P_i$ of k centers, and define
 - For each $x \in P_i$, the proxy $\tau(x)$ as x's closest center in T_i .
 - For each $y \in T_i$, the weight w(y) as the number of points of P_i whose proxy is y.

Round 2:

- Map Phase: empty.
- Reduce Phase: gather the coreset $T = \bigcup_{i=1}^{\ell} T_i$ of $\ell \cdot k$ points, together with their weights, and run, using a single reducer, \mathcal{A} on T (with the given weights) to determine a set $S = \{c_1, c_2, \ldots, c_k\}$ of k centers, which is then returned as output.

Example for Round 1

Set T_i (green points) computed in a partition P_i

Analysis of MR-kmeans(\mathcal{A})

Assume $k \leq \sqrt{N}$. By setting $\ell = \sqrt{N/k}$, it is easy to see that MR-kmeans(\mathcal{A}) requires

- Local space $M_L = O\left(\max\{N/\ell, \ell \cdot k\}\right) = O\left(\sqrt{N \cdot k}\right) = o(N)$
- Aggregate space $M_A = O(N)$

Accuracy of MR-kmeans(\mathcal{A})

Does MR-kmeans(A) provide accurate solutions?

Assume that \mathcal{A} is an α -approximation algorithm for weighted k-means, for some $\alpha > 1$.

Theorem

Let S be the set of k centers returned by MR-kmeans(A) on input P. Then:

$$\Phi_{\mathrm{kmeans}}(P,S) = O\left(\alpha^2\right) \cdot \Phi_{\mathrm{kmeans}}^{\mathrm{opt}}(P,k).$$

That is, MR-kmeans(A) is an $O(\alpha^2)$ -approximation algorithm.

Why is this result useful?

Accuracy of MR-kmeans(\mathcal{A})

The above theorem is proved by combining the following two lemmas.

Lemma 1: coreset quality

Let $T = \bigcup_{i=1}^{\ell} T_i \subseteq P$ be the coreset computed by MR-kmeans(A) and let $\tau: P \to T$ be the associated proxy function.

Then, T is an α -coreset for P, k and the k-means objective, that is:

$$\sum_{p \in P} (d(p, \tau(p)))^2 \le \alpha \cdot \Phi_{\text{kmeans}}^{\text{opt}}(P, k).$$

Accuracy of MR-kmeans(\mathcal{A})

Lemma 2: final solution quality

Let $T \subseteq P$, with associated proxy function $\tau: P \to T$, be an α -coreset for P, k and the k-means objective. Suppose that the points of T are weighted according to the proxy function τ .

Then, the solution S computed by $\mathcal A$ on the weighted coreset T, is an $O\left(\alpha^2\right)$ -approximate solution to k-means for P, that is

$$\Phi_{\mathrm{kmeans}}(P,S) = O\left(\alpha^2\right) \cdot \Phi_{\mathrm{kmeans}}^{\mathrm{opt}}(P,k).$$

Observations on MR-kmeans(A)

- For k-means (as well as for k-center and k-median) good coresets are obtained by combining solutions to the same problem on smaller partitions. However, this is not always the case for other problems (e.g., diameter, diversity maximization).
- Two different k-means sequential algorithms can be used in R1 and R2. For example, one could use k-means++ in R1, and k-means++ plus LLoyd's in R2.
- In practice, the algorithm is fast and accurate.
- If k' > k centers are selected from each P_i in R1 (e.g., through k-means++), the quality of T, hence the quality of the final clustering, improves.

Exercises

Exercise

Recall that k-means++ is a randomized algorithm and the quality of the solution is a random variable. Letting S be the set of centers returned by k-means++ for P it is known that there is a value $\alpha = \Theta(\ln k)$ such that

$$\Pr\left(\Phi_{\text{kmeans}}(P,S) \leq \alpha \cdot \Phi_{\text{kmeans}}^{\text{opt}}(P,k)\right) \geq 1/2.$$

Show that the above probability can be made $\geq 1-1/N$, if we run several *independent instances* of k-means++, and return the set of centers which yields the minimum value of the objective function, among the ones computed in the various runs.

Clustering evaluation

Unsupervised Evaluation

- Let P be a set of N points from a metric space (M, d)
- Let $C = (C_1, C_2, ..., C_k)$ be a partition of P into k clusters (i.e., a k-clustering ignoring cluster centers, if available).

Goal of unsupervised evaluation: assess the *quality* of \mathcal{C} without reference to external information or ground truth.

Quality measures:

- Specific objective function, if any, which was used to select C among all feasible clusterings. For example
 k-center/k-means/k-median objective functions which, however, capture only intra-cluster similarity.
- Silhouette coefficient, which captures both intra-cluster similarity and inter-cluster dissimilarity.

Observation: the silhouette coefficient is often used to select the most suitable number of clusters k, for a given clustering algorithm.

Unsupervised evaluation: silhouette

For a point $x \in P$ belonging to some cluster C_i let

$$a_x = d_{\text{sum}}(x, C_i)/|C_i|$$

$$b_x = \min_{j \neq i} d_{\text{sum}}(x, C_j)/|C_j|,$$

where $d_{\text{sum}}(x, C)$ denotes the sum of the distances between x and the points of a cluster C (i.e., $d_{\text{sum}}(x, C) = \sum_{v \in C} d(x, v)$).

Unsupervised evaluation: silhouette

Definition: silhouette coefficient

Let $C = (C_1, C_2, \dots, C_k)$ be a partition of P into k clusters. For any $x \in P$ the silhouette coefficient for x is

$$s_{x} = \frac{b_{x} - a_{x}}{\max\{a_{x}, b_{x}\}},$$

To measure the quality of \mathcal{C} we define the average silhouette coefficient as

$$s_{\mathcal{C}} = \frac{1}{|P|} \sum_{x \in P} s_x.$$

Unsupervised evaluation: silhouette

Computational considerations

- The straightforward computation of s_C requires $\Theta(|P|^2)$ distance computations, unfeasible for very large |P|.
- Simplified computation for cosine and squared Euclidean distances $(\Theta(|P|k))$ distance computations). Methods are provided in the Spark library.
- There exhist heuristics to approximate $s_{\mathcal{C}}$, some with provable guarantees (from Padova!).

Approximating the sum of distances

Consider a point x and a set C. The following method can be used to approximate $d_{\text{sum}}(x, C)$. Let n = |C|.

- 1 Fix a target sample size $t \in [1, n]$.
- 2 Select a sample $S_t \subset C$, where each $y \in C$ is independently included in S_t with probability t/n (*Poisson sampling*)..
- 3 Compute the approximation

$$\tilde{d}_{\mathrm{sum}}(x,C,t) = \frac{n}{t} \sum_{y \in S_t} d(x,y)$$

Remark. $\tilde{d}_{sum}(x, C, t)$ is a random variable, whose value depends on the random sample S_t .

Proposition

$$\tilde{d}_{\text{sum}}(x, C, t)$$
 is an unbiased estimator of $d_{\text{sum}}(x, C)$, i.e.,

$$E[\tilde{d}_{sum}(x,C,t)] = d_{sum}(x,C).$$

Proof of Proposition 38

39									

Approximating the sum of distances

Observations:

- The absolute error of the estimate $|\tilde{d}_{\text{sum}}(x, C, t) d_{\text{sum}}(x, C)|$ can be upper bounded analytically as a function of t (see [EW04]).
- While the theoretical bound is somewhat weak, in practice the error is rather low even with small t.

Exercise

Let P be a pointset of N points from a metric space (M,d) and let $C \subseteq P$ be a subset of size n. Show how to compute $\tilde{d}_{\text{sum}}(x,C,t)$ efficiently in MapReduce, for all $x \in P$. Assume that t and n are know and

- $t \in O(\log N)$ but n can be large (up to N);
- each point $x \in P$ is represented by a pair $(ID_x, (x, f_x))$, where ID_x is a distinct integer in [0, N-1] and f_x is a binary flag with value 1 if $x \in C$, and 0 otherwise.

Approximating the Silhouette

Let $C = (C_1, C_2, \dots, C_k)$ be a partition of P into k clusters.

Fix a sample size t and define $t_i = \min\{t, |C_i|\}$, for $1 \le i \le k$.

For $1 \le i \le k$ and $x \in C_i$, define

$$ilde{a}_{\scriptscriptstyle
m X} = ilde{d}_{\scriptscriptstyle
m sum}(x, C_i, t_i)/|C_i|$$
 and $ilde{b}_{\scriptscriptstyle
m X} = \min_{j
eq i} ilde{d}_{\scriptscriptstyle
m sum}(x, C_j, t_j)/|C_j|,$

The approximate silhouette coefficient of x is

$$ilde{s}_{\scriptscriptstyle X} = rac{ ilde{b}_{\scriptscriptstyle X} - ilde{a}_{\scriptscriptstyle X}}{\max\{ ilde{a}_{\scriptscriptstyle X}, ilde{b}_{\scriptscriptstyle X}\}},$$

The approximate average silhouette coefficient of \mathcal{C} is

$$\tilde{s}_{\mathcal{C}} = (1/|P|) \sum_{\mathbf{x} \in P} \tilde{s}_{\mathbf{x}}.$$

Exercise

Determine the expected number of distance computations needed to obtain $\S_{\mathcal{C}}$.

45									

Summary of Parts 1 and 2

- (Composable) coreset technique.
- Metric space and prominent distance functions.
- Combinatorial optimization problem and approximation algorithm.
- k-center clustering:
 - Definition of the problem.
 - Farthest-First Traversal algorithm.
 - MR-Farthest-First Traversal.
- k-means/median clustering:
 - Definition of the problem.
 - Critical review of known algorithms.
 - Weighted variant of the problem.
 - MR-kmeans
- Unsupervised clustering evaluation:
 - Silhouette coefficient.
 - Approximating the sum of distances.
 - Approximating the Silhouette.

References

- LRU14 J. Leskovec, A. Rajaraman and J. Ullman. Mining Massive Datasets.

 Cambridge University Press, 2014. Sections 3.1.1 and 3.5, and Chapter 7
- BHK18 A. Blum, J. Hopcroft, and R. Kannan. Foundations of Data Science. Manuscript, June 2018. Chapter 7
 - AV07 D. Arthur, S. Vassilvitskii. k-means++: the advantages of careful seeding. Proc. of ACM-SIAM SODA 2007: 1027-1035.
- CPPU17 M. Ceccarello, A. Pietracaprina, G. Pucci, E. Upfal. MapReduce and Streaming Algorithms for Diversity Maximization in Metric Spaces of Bounded Doubling Dimension. Proc. VLDB Endow. 10(5): 469-480 (2017)
 - TSK06 P.N.Tan, M.Steinbach, V.Kumar. Introduction to Data Mining. Addison Wesley, 2006. Chapter 8.
 - EW04 D. Eppstein, J. Wang: Fast Approximation of Centrality. J. Graph Algorithms Appl. 8: 39-45 (2004).