Table des matières

C	OURS 1 CONTINUITÉ ET LIMITES	PAGE 2
I	Rappels:	2
	1 Continuité :	
	2 Prolongement par continuité :	3
	3 Continuité sur un intervalle :	
	4 Opérations sur les limites :	4
II	Branches infinies:	
III	Continuité et limite d'une fonction composée :	6
	1 Composée de deux fonctions :	7
	2 Limite d'une fonction composée :	7
IV	Limites et ordre :	ATH.CO
V	Image d'un intervalle par une fonction continue :	
VI	Image d'un intervalle par une fonction strictement monotone :	TO TO THE SEZ LES M

Rappels:

1. Continuité:

Activité 1

- 1 a Vérifier que pour tout $x \in \frac{1}{2}, \frac{\pi}{2}, \frac{\pi}{2}$ \\ $\{0\}, \frac{1-\cos x}{x^2} = \frac{\sin^2 x}{x^2} \cdot \frac{1}{1+\cos x}$.
 - On admet que : $\lim_{x\to 0} \frac{\sin x}{1-\cos x} = 1$.

 Déduire que : $\lim_{x\to 0} \frac{1-\cos x}{x^2} = \frac{1}{2}$ et $\lim_{x\to 0} \frac{1-\cos x}{x} = 0$.
- Déterminer les limites suivantes : $\lim_{x\to 0} \frac{\sin x}{1-\cos x}$ et $\lim_{x\to 0} \frac{1+\cos x-2}{\sin^2 x}$.

Théorème

Soit a un réel non nul.

•
$$\lim_{x\to 0}\frac{\sin x}{x}=1$$

•
$$\lim_{x\to 0}\frac{\tan x}{x}=1$$

•
$$\lim_{x\to 0}\frac{\sin ax}{x}=a$$

•
$$\lim_{x\to 0}\frac{\tan ax}{x}=a$$

$$\bullet \lim_{x\to 0}\frac{1-\cos x}{x^2}=\frac{1}{2}$$

Théorème >

Soit f une fonction définie sur un intervalle ouvert I et a un réel de I. La fonction f est continue en a, si et seulement si, $\lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a)$.

Autrement dit : La fonction f est continue en a, si et seulement si, f est continue à gauche et à droite en a.

Activité 2

Soit f la fonction définie sur R par $g(x) = \begin{bmatrix} \frac{x^2 + 5x - 6}{|x - 1|} & \sin x / = 1 \\ 0 & \sin x = 1 \end{bmatrix}$. Étudier la continuité de f en 1.

Activité 3

Soit g la fonction définie sur R par $g(x) = \begin{cases} \frac{\sin 2x}{x} & \text{si } x < 0 \\ \frac{x^2 - 1}{x + 7} & \text{si } 0 \le x < 2 \end{cases}$. Étudier la continuité de g en 0 et 2.

Théorème

Soient f et g deux fonctions définies sur un intervalle ouvert I et a un réel de I.

• Soit f est continue en a alors les fonctions $\alpha f_n(\alpha \in \mathbb{R})$, $f = \text{et } f^n(n \in \mathbb{N}^*)$ sont continues en a.

- Si f est continue en a et f(a) /= 0 alors les fonctions $\frac{1}{f}$ et $\frac{1}{f^n}$, $(n \in \mathbb{N}^*)$ sont continues en a.
- Si f et g sont continues en a et g(a) /= 0 alors la fonction $\frac{f}{g}$ est continue en a.
- Si f est continue en a et f est positive sur I alors f est continue en a.

Théorème

- Toute fonction polynôme est continue en tout réel.
- Toute fonction rationnelle est continue en tout réel de son ensemble de définition.
- Les fonctions $x \rightarrow \rightarrow \sin x$ et $x \rightarrow \cos x$ sont continues en tout réel.

2. Prolongement par continuité :

Théorème

Sot f une fonction définie sur un intervalle ouvert I, sauf en un réel a de I. Si la fonction f admet une limite finie ℓ lorsque x tend vers a, alors la fonction g définie sur I par $g(x) = \int_{a}^{b} \frac{\sin x}{a} dx$ est continue en a.

La fonction g est appelée le prolongement par continuité de f en a.

Activité 4

Soit f la fonction définie sur f par $f(x) = \frac{x^2 + \sin x}{x}$.

Montrer que f est prolongeable par continuité en 0 et déterminer son prolongement.

3. Continuité sur un intervalle :

Définition

- Une fonction continue sur un intervalle ouvert I si elle est continue en tout réel de I.
- Une fonction est continue sur un intervalle $(a,b)^{\alpha}$ si elle est continue sur $(a,b)^{\alpha}$, à droite en $(a,b)^{\alpha}$ et à gauche en (b,c)
- Pe façon analogue, on définit la continuité d'une fonction f sur les intervalles a, b, a, b,

Activité 5

Soit f la fonction définie sur $[0,\pi]$ par $f(x) = \begin{bmatrix} 1-\cos x & \sin x \in]0,\pi] \\ 0 & \sin x = 0 \end{bmatrix}$

Montrer que la fonction f est continue sur $[0, \pi]$.

4. Opérations sur les limites :

Les résultats résumés dans le tableau ci-dessous concernent les opérations sur les limites des fonctions en un réel a, à droite en a, à gauche en b ou à l'infini. Soit ℓ et ℓ' deux réels.

a - Limite d'une somme :

limite de f	limite de g	limite de $f + g$
e	e	l + l '
e	+∞	+∞
e	-∞	-∞
+∞	+∞	+∞
-∞	-∞	-∞
-∞	+∞	F.I

b - Limite d'un produit :

limite de f	limite de g	limite de $f \times g$
e	e	e × e ′
l /= 0	∞	(R.S) ∞
∞	∞	(R.S) ∞
0	∞	F.I

c - Limite d'un quotient :

limite de f	limite de g	limite de $\frac{I}{g}$
e	e ' /= 0	<u>e</u>
e	+∞	+∞
e	∞	0
∞	e	(R.S) ∞
<i>l</i> /= 0	0	(R.S) ∞
0	0	F.I
∞	∞	F.I

Théorème

- La limite d'une fonction polynôme à l'infini est la même que celle de son terme de plus haut degré.
- La limite d'une fonction rationnelle à l'infini est la même que celle du quotient des termes de haut degré.

Activité 6

Déterminer les limites ci-dessous :

$$\lim_{x\to+\infty}3x^2-x+1$$

$$\lim_{x \to +\infty} \frac{4x^2 + 2x - 3}{\sqrt{2x + 5}}$$

$$\lim_{x\to 0} \frac{x+4-2}{\sqrt{x}}$$

$$\lim_{x \to -\infty} \frac{2x^{2} - x + 1}{x^{2} + 2x - 3}$$

$$\lim_{x \to -\infty} \frac{9x^2}{+3} + x$$

$$\lim_{x \to -\infty} x^2 + x + x$$

$$\lim_{x \to +\infty} \frac{2x+3}{x^2 + 5x - 4}$$

$$\lim_{x \to +\infty} 4x^2 + 1 - 2x$$

$$\lim_{x \to 1} \frac{x^2 - 2x + 1}{x^2 + x - 2}$$

II Branches infinies:

Activité 7

Activité 1 page 9

Définition

- Soit f une fonction définie sur un intervalle ouvert I, sauf en un réel a de I et C_f sa courbe représentative dans un repère orthogonl $(o, \overrightarrow{i}, \overrightarrow{j})$. Lorsque $\lim_{x \to a^-} f(x) = \pm \infty$ ou $\lim_{x \to a^+} f(x) = \pm \infty$, on dit que la droite d'équation x = a est une asymptote verticale à la courbe C_f .
- Soit f une fonction et C_f sa courbe représentative dans un repère orthonornal (0, i, j). Lorsque lim f(x) = L ou lim f(x) = L (L ∈ R), on dit que la droite d'équation y = L est une asymptote horizontale à la courbe C_f.
 Lorsque lim (f(x) (ax + b)) = 0 ou lim (f(x) (ax + b)) = 0 (a ∈ R*, b ∈ R) alors la droite d'équation y = ax + b est une asymptote oblique à la courbe C_f.

Exercice 1

Soit f la fonction définie sur $\mathbb{R}\setminus\{1\}$ par $f(x) = \frac{2x+1}{|x-1|}$. On désigne par C_f la courbe représentative de f dans un repère orthonormé (0, i, j).

- Déterminer $\lim_{x\to 1} f(x)$. Interpréter graphiquement.
- Calculer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$. Interpréter graphiquement les résultats obtenus.

Exercice 2

Soit g la fonction définie sur R par $g(x) = \frac{x}{x^2 + 1}$. On désigne par C_g la courbe représentative de g dans un repère orthonormé (0, i, j). Calculer $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to +\infty} g(x)$. Interpréter graphiquement.

Exercice 3

Soit h la fonction définie sur R par $h(x) = \sqrt[n]{x^2 + 2x + 2}$. On désigne par C_h la courbe représentative de h dans un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$ du plan.

Montrer que la droite Δ d'équation y = x + 1 est une asymtote oblique à la courbe C_h au voisinage de $+\infty$.

Théorème

Soit f une fonction et C_f sa courbe représentative dans un repère orthogonal $(o, \overrightarrow{i}, \overrightarrow{j})$ du plan. Lorsque $\lim_{x \to \infty} f(x)$ est infinie, alors la branche infinie de C_f au voisinage de $+\infty$ dépend de

$$\lim_{X\to+\infty}\frac{f(x)}{x}.$$

- Si $\lim_{x \to \infty} \frac{f(x)}{f(x)}$ est infinie, alors la courbe C_f admet une branche parabolique de dierction O, \vec{j} au voisinage de + ∞ .
- Si $\lim_{x \to +\infty} \frac{f(x)}{x} = 0$, alors la courbe C_f admet une branche parabolique de direction O_f au voisinage de + ∞ .
- Si $\lim_{x \to a} \frac{f(x)}{f(x)} = a$, $(a \in \mathbb{R}^*)$ alors deux cas peuvent se présenter selon $\lim_{x \to a} (f(x) ax)$.
 - Si $\lim_{x \to a} (f(x) ax) = b$, $(b \in \mathbb{R})$ alors la droite d'équation y = ax + b est une asymptote obli qu e à la courbe Cfau voisinage de +∞.
 - Si lim (f(x)-ax) est infinie alors la droite d'équation y = ax est une direction asymptoti que à la courbe C_f au voisinage de $+\infty$.

Remarque

Les autres cas se déterminent d'une façon analogue.

Exercice (1

Soit f la fonction définie sur [1,+ ∞ [par f(x) = x - 1. On note C_f la courbe représentative de fdans un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$ du plan.

Déterminer $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to +\infty} \frac{f(x)}{x}$. Interpréter graphiquement.

Exercice A

Soit g la fonction définie sur R_+ par g(x) = x'x. On appelle C_g la courbe représentative de g dans un plan muni d'un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$.

Déterminer $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to +\infty} \frac{g(x)}{x}$. Interpréter graphiquement.

Exercice 6

Soit h la fonction définie sur R_+ par h(x) = x - x. On désigne par C_h la courbe représentative de h dans le plan muni d'un repère orthonormé $(0, \overrightarrow{i}, \overrightarrow{j})$.

Déterminer $\lim h(x)$, $\lim \frac{h(x)}{x}$ et $\lim (h(x)-x)$. Interpréter graphiquement.

III Continuité et limite d'une fonction composée :

1. Composée de deux fonctions :

Définition

Soit u une fonction définie sur un ensemble I et v une fonction définie sur un ensemble I telle que $u(I) \subset J$. La fonction notée $v \cdot u$, définie sur I par $v \cdot u(x) = v(u(x))$, est appelée fonction composée de u et v.

Activité 8

Activité 2 page 12

Théorème

Soit u une fonction définie sur un intervalle ouvert 1 contenant un réel a.

Soit v une fonction définie sur un intervalle ouvert I contenant le réel u(a).

Si u est continue en a et v est continue en u(a) alors la fonction $v \cdot u$ est continue en a.

DEMONSTRATION

Théorème

La composée de deux fonctions continues est une fonction continue.

Plus précisément : Si u est continue sur un intervalle I et v est continue sur un intervalle I telle que $u(I) \subset I$ alors la fonction $v \cdot u$ est continue sur l'intervalle I.

Remarque

Si $I = \mathbb{R}$ alors la condition $u(I) \subset I$ devient unitile.

Activité 9

Activité page 12

2. Limite d'une fonction composée :

Théorème

Soient u et v deux fonctions et a, b et c finis ou infinis.

Si $\lim u(x) = b$ et $\lim v(x) = c$ alors $\lim v \cdot u(x) = c$.

Activité 10

Les activités 1, 2, 3, 4 et 5 page 12

IV Limites et ordre :

Théorème

Soient f, u et v des fonctions définies sur un intervalle ouvert I suaf peut-être en un réel a de I.

Soient e et e deux réels.

- Si $u(x) \le v(x)$, pour tout $x \in I \setminus \{a\}$ et si $\lim_{x \to a} u(x) = \ell$ et $\lim_{x \to a} v(x) = \ell'$ alors $\ell \le \ell$.
- Si $u(x) \le f(x) \le v(x)$, pour tout $x \in I \setminus \{a\}$ et si $\lim_{x \to a} u(x) = \lim_{x \to a} v(x) = \ell$ alors $\lim_{x \to a} f(x) = \ell$.
- Si $u(x) \le f(x)$, pour tout $x \in I \setminus \{a\}$ et si $\lim_{x \to a} u(x) = +\infty$ alors $\lim_{x \to a} f(x) = +\infty$.
- Si $f(x) \le u(x)$, pour tout $x \in I \setminus \{a\}$ et si $\lim_{x \to a} u(x) = -\infty$ alors $\lim_{x \to a} f(x) = -\infty$.

Remarque

Ces résultats restent valables lorsque l'on considère des limites à gauche en a, à droite en a ou à l'infini.

DEMONSTRATION

Exercice (7

Soient f et g les fonctions définies sur R par $f(x) = \frac{x + \cos x}{x^2 + 1}$ et $g(x) = 2x - \sin x$.

- Vérifier que : $\forall x \in \mathbb{R}$, $\frac{x-1}{x^2+1} \le f(x) \le \frac{x+1}{x^2+1}$, en déduire $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
- Vérifier que : $\forall x \in \mathbb{R}$, $2x 1 \le g(x) \le 2x + 1$, en déduire $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to -\infty} f(x)$.

Exercice (8

Soient les fonctions f et g définies sur \mathbb{R} par $f(x) = xE^{\mu} \mathbf{1}^{\mu}$ et $g(x) = x^2E^{\mu} \mathbf{1}^{\mu}$.

- Montrer que : $\forall x \in \mathbb{R}^*$, $x x^2 \le g(x) \le x$, en déduire $\lim_{x \to a} g(x)$.
- Déterminer alors $\lim f(x)$.

Image d'un intervalle par une fonction continue :

Théorème `

L'image d'un intervalle par une fonction continue est un intervalle

Théorème 🔪

Soit f une fonction continue sur un intervalle I.

Soit a et b deux réels de I tels que a < b.

Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet au moins une solution a dans l'intervalle [a,b].

En particulier si $f(a) \times f(b) < 0$ alors l'équation f(x) = 0 admet au moins une solution dans l'intervalle a,b.

Théorème

Soit f une fonction continue et strictement monotone sur un intervalle 1.

Soit a et b deux réels de I tels que a < b.

Pour tout réel k compris entre f(a) et f(b), l'équation f(x) = k admet une unique solution dans l'intervalle [a,b].

Activité 11

Activité 5 page 17

Activité 12

Soit f une fonction continue sur [0,1] et telle que ppur tout $x \in [0,1]$, $f(x) \in [0,1]$.

Montrer qu'il existe au moins un réel β de [0,1] tel que $f(\beta) = \beta$.

Théorème

Soit f une fonction continue sur un intervalle I.

Si f ne s'annule en aucun réel de I alors f gardre un signe constant sur I.

DEMONSTRATION

Théorème

L'image d'un intervalle fermé borné [a,b] par une fonction continue est un intervalle fermé borné [m,M].

m est minimum de f sur [a,b]. Il existe un réel $\alpha \in [a,b]$ tel que $m = f(\alpha)$.

M est le maximum de f sur [a,b]. Il existe un réel $\beta \in [a,b]$ tel que $M = f(\beta)$.

On dit que f atteint des bornes en α et β .

Exercice (9)

Soit f une foncțion définie sur R par $f(x) = \sin^2 x$

Montrer que $f^{3h} - \frac{\pi}{6}, \frac{\pi}{6}^{1} = 0, \frac{1}{4}$.

Théorème

Soit f une fonction définie sur un intervalle de type [a,b[(b fini ou infini)

- Si la fonction f est croissante et majorée alors f possède une limite finie en b.
- Si la fonction f est croissante et non majorée alors f tend vers $+\infty$ en b.
- Si la fonction f est décroissante et minorée alors f possède une limite finie en b.
- Si la fonction f est décroissante et non minorée alors f tend vers $-\infty$ en b.

Activité 13

Activité 1 page 19

Théorème

L'image d'un intervalle par une fonction continue et strictement monotone est un intervalle de même nature.

Exemple:

Soient a et b deux réels.

Intervalle I	Si <i>f</i> est continue et strictement	Si <i>f</i> est continue et strictement
	croissante sur I	décroissante sur <i>I</i>
$I = {}_{\mathfrak{L}}a, b {}_{\mathfrak{L}}^{\mathfrak{A}}$	f(I) = f(a), f(b) g	$f(I) = \int_{\mathfrak{D}}^{\mathfrak{L}} f(b), f(a) \Big _{\mathfrak{D}}$
£ a,b	$f(I) = f(a), \lim_{b^-} f$	$\int (I) = \lim_{\mathbb{R}} \int_{b^{-}} \int (a)^{\mathbb{R}}$
$I = a, +\infty$	$f(I) = f(a), \lim_{+\infty} f_{\pounds}$	$f(I) = \lim_{\mathbb{X} + \infty} f f(a)$
I = a, b	$f(I) = \lim_{a^+} f, \lim_{b^-} f$	$f(I) = \lim_{b^{-}} f, \lim_{a^{+}} f$

Exercice (10

Soit f la fonction définie sur 2,+ ∞ par $f(x) = \frac{x+1}{x-2}$ Déterminer $f([2,+\infty[)]$.

Exercice 11

On donne ci-dessous le tableau de variation d'une fonction f définie et continue sur chacun des intervalles $]-\infty$, 3[et $]3,+\infty[$.

X	-∞	-5	2	3	+∞
f	+∞	-3	8	- ∞ - o	7

Déterminer l'image par f de chacun des intervalles suivants :

- $]-\infty,-5]$

- -] -∞, 3[

-]3,+∞[