Polyadisches Zahlensystem

B: Basis des Zahlensystems

$$0 \le a_i < B$$

$$a_i \in N_0$$

$$a_i \in N_0 \quad B \in (N > 1)$$

Ganze Zahlen:

$$\mathbf{Z} = \sum_{i=0}^{N-1} a_i \cdot B^i$$

$$Z = a_0 \cdot B^0 + a_1 \cdot B^1 + a_2 \cdot B^2 + \dots + a_{n-1} \cdot B^{n-1}$$

Rationale Zahlen:

$$\mathbf{Z} = \sum_{i=-m}^{m} a_i \cdot B^i$$

$$Z = a_{-m} \cdot B^{-m} + \dots + a_0 \cdot B^0 + a_1 \cdot B^1 + a_2 \cdot B^2 + \dots + a_{n-1} \cdot B^{n-1}$$

Wandlung einer Dezimalzahl in ein anderes System

Verfahren für ganzzahligen Anteil

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 2
-------------------------	----------	-----------------	--------	---------

Wandlung einer Dezimalzahl in ein anderes System

Verfahren für gebrochenen Anteil

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 3
-------------------------	----------	-----------------	--------	---------

Wichtige Dualzahlen

Oktal-Ziffern (2->8)

000	=	0
001	=	1
010	=	2
011	=	3
100	=	4
101	=	5
110	=	6
111	=	7

Hex-Ziffern (2->16)

0000	=	0
0001	=	1
0010	=	2
0011	=	3
0100	=	4
0101	=	5
0110	=	6
0111	=	7
1000	=	8
1001	=	9
1010	=	Α
1011	=	В
1100	=	C
1101	=	D
1110	=	Ε
1111	=	F
1101 1110	=	D E

Tabelle der Zweierpotenzen

n	2 ⁿ	2 ⁻ⁿ
0	1	1
1	2	0,5
3	4	0,25
3	8	0,125
4	16	0,0625
5	32	0,03125
6	64	0,015625
7	128	0,0078125
8	256	0,00390625
9	512	0,001953125
10	1.024 = 1K	0,0009765625
11	2.048 = 2K	
12	4.096 = 4K	
13	8.192 = 8K	
14	16.384 = 16K	
15	32.768 = 32K	
16	65.536 = 64K	
17	131.072 = 128K	
18	262.144 = 256K	
19	524.288 = 512K	
20	1.048.576 = 1M	

Gängige Abkürzungen:

$10^3 = 1k \text{ (Kilo)}$	$2^{10} = 1 \text{Ki (Kibi)}$
$10^6 = 1M \text{ (Mega)}$	2 ²⁰ = 1Mi (Mebi)
$10^9 = 1G (Giga)$	$2^{30} = 1 \text{Gi (Gibi)}'$
$10^{12} = 1T (Tera)$	2 ⁴⁰ = 1Ti (Tebi)
$10^{15} = 1P (Peta)$	2 ⁵⁰ = 1Pi (Pebi)
$10^{18} = 1E (Exa)$	$2^{60} = 1 \text{Ei (Exbi)}$
$10^{21} = 1Z (Zetta)$	2 ⁷⁰ = 1Zi (Zebi)
$10^{24} = 1Y \text{ (Yotta)}$	2 ⁸⁰ = 1Yi (Yobi)
	,
$10^{-3} = 1m \text{ (Milli)}$	2-10
$10^{-6} = 1\mu \text{ (Micro)}$	2-20
	Z = °
$10^{-9} = 1n \text{ (Nano)}$	2 ⁻³⁰
$10^{-9} = 1n (Nano)$	2-30
$10^{-9} = 1n \text{ (Nano)}$ $10^{-12} = 1p \text{ (Pico)}$	2-30 2-40
$10^{-9} = 1n \text{ (Nano)}$ $10^{-12} = 1p \text{ (Pico)}$ $10^{-15} = 1f \text{ (Femto)}$	2-30 2-40 2-50

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 5
-------------------------	----------	-----------------	--------	---------

Zahlensystem-Darstellung in verschiedenen Sprachen

Sprache	Dual	Oktal	Hexadezimal
Zahlen	1011 01112	267 ₈	B7 ₁₆
Assembler	1011_0111B	267Q	0B7H
VHDL Variante 1	2#1011_0111#	8#267#	16#B7#
VHDL Variante 2	B"1011_0111"		X"B7"
С		0267	0xB7

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 6
-------------------------	----------	-----------------	--------	---------

Darstellung ganzer Zahlen (ohne Vorzeichen)

3 Bit

000 = 0 001 = 1 010 = 2 011 = 3 100 = 4 101 = 5 110 = 6 111 = 7

8 Bit

_			
	0000 0000	=	0
	0000 0001	=	1
	0000 0010	=	2
	0000 0011	=	3
	0000 0100	=	4
	0000 0101	=	5
	0000 0110	=	6
	0000 0111	=	7

Darstellung ganzer Zahlen (mit Vorzeichen)

4 Bit

1000 = -0 1001 = -1 1010 = -2 1011 = -3 1100 = -4 1101 = -5 1110 = -6 1111 = -7

8 Bit

```
      1000 0000
      =
      -0

      1000 0001
      =
      -1

      1000 0010
      =
      -2

      1000 0011
      =
      -3

      1000 0100
      =
      -4

      1000 0101
      =
      -5

      1000 0110
      =
      -6

      1000 0111
      =
      -7
```

Nachteile der Vorzeichendarstellung

1. Die Darstellung negativer Zahlen verändert sich bei Bereichserweiterungen:

2. Die Addition einer positiven und einer negativen Zahl funktioniert anders als üblich:

3. Null hat zwei verschiedene Darstellungen:

$$1000\ 0000 = -0$$
$$0000\ 0000 = +0$$

Ziel: Subtraktion durch Addition des Komplements

Komplementbildung:

- Erweiterung einer n-stellige Zahl ohne VZ zu einer n+1-stelligen Zahl mit VZ
- Ergänzung zu Bⁿ⁺¹

Weg für Addition und Subtraktion:

- Positive Zahlen um VZ-Stelle mit Null erweitern
- Negative Zahlen komplementieren
- Normale Addition durchführen
- Überlauf auf Stelle n+2 ignorieren
- Negative Zahlen ggf. komplementieren

Überlauferkennung

Überlauf falls, VZ der beiden zu verknüpfenden Zahlen gleich, aber unterschiedlich vom Ergebnis.

Überlauf:

0... 1...

0... 1...

Ok:

0... 1... 0... 1...
1... 0... 1...
---- --- --- --.... 0... 1...

Komplementarithmetik (modifizierter Weg)

Weg für Addition und Subtraktion:

- Positive Zahlen um VZ-Stelle mit Null erweitern
- Negative Zahlen <u>ziffernweise</u> zur höchsten Ziffer ergänzen (komplementieren)
- Normale Addition durchführen
- Falls Überlauf auf Stelle n+2, 1 addieren
- Negative Zahlen ggf. ziffernweise zur höchsten Zahl ergänzen (komplementieren)

Einerkomplement

Einerkomplementdarstellung

In der Einerkomplementdarstellung negiert man Zahlen durch bitweises Komplementieren.

0000	=	0	1000	=	- 7
0001	=	1	1001	=	- 6
0010	=	2	1010	=	- 5
0011	=	3	1011	=	- 4
0100	=	4	1100	=	- 3
0101	=	5	1101	=	- 2
0110	=	6	1110	=	- 1
0111	=	7	1111	=	- 0

Das erste Bit gibt das Vorzeichen an. Es gibt zwei Darstellungen für Null.

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 14
-------------------------	----------	-----------------	--------	----------

Komplementarithmetik (2. modifizierter Weg)

Weg für Addition und Subtraktion:

- Positive Zahlen um VZ-Stelle mit Null erweitern
- Negative Zahlen <u>ziffernweise</u> zur höchsten Ziffer ergänzen (komplementieren)
- 1 addieren
- Normale Addition durchführen
- Überlauf auf Stelle n+2 ignorieren
- Negative Zahlen ggf. ziffernweise zur höchsten Zahl ergänzen (komplementieren) und 1 addieren

Zweierkomplement

Zweierkomplementdarstellung

Einerkomplementdarstellung: Zahlen-Negierung durch bitweises Komplementieren

0000	=	0	1000	=	- 7
0001	=	1	1001	=	- 6
0010	=	2	1010	=	- 5
0011	=	3	1011	=	- 4
0100	=	4	1100	=	- 3
0101	=	5	1101	=	- 2
0110	=	6	1110	=	- 1
0111	=	7	1111	=	- 0

Zweierkomplementdarstellung: Durchlauf zunächst der positiven Zahlen, dann der negativen Zahlen in umgekehrter Reihenfolge

0000	=	0	1000	=	- 8
0001	=	1	1001	=	- 7
0010	=	2	1010	=	- 6
0011	=	3	1011	=	- 5
0100	=	4	1100	=	- 4
0101	=	5	1101	=	- 3
0110	=	6	1110	=	- 2
0111	=	7	1111	=	- 1

Erstes Bit: Vorzeichen Zwei Darstellungen für Null.

Auch bei Zweierkomplementdarstellung Erste Ziffer: Vorzeichen

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kan 1	Folie 16
Technische Informatik I	WS 16/17	Dr. Ruft Sutter	Ναρ. Ι	Folle 16

Zweierkomplement am Zahlenkreis

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 17
-------------------------	----------	-----------------	--------	----------

Binärcodierte Dezimalziffern

4 Bits entsprechen genau einer Hexadezimalziffer. Verzichtet man auf die Nutzung der Bitfolgen 1010 .. 1111, dann kann man jeweils 4 Bits nutzen um eine Dezimalziffer zu codieren:

BCD - Code (Binary Coded Decimal)

BCD

An der Dezimaldarstellung orientierte Abspeicherung von Zahlen. Einzelne Ziffern (0 bis 9) werden binär abgespeichert. n Dezimalstellen erfordern n Speicherworte

Beispiel:

Angenommen sei ein 16bit-System, Abspeichern der Zahl 255₁₀

	Dual	BCD
Adresse n:	0000 0000 1111 1111	0000 0000 0000 0101
Adresse n+1	-	0000 0000 0000 0101
Adresse n+2	-	0000 0000 0000 0010

Sehr aufwendig und speicherintensiv.

Mögliche Abhilfe: **Packed BCD**Mehrere BCD Ziffern werden in einem Speicherwort zusammengefasst.

0000 0010 0101 0101

|--|

BCD-Arithmetik


```
Beispiel: 5 + 7

0101 (5)

+0111 (7)

1100 (?) ist keine gültige BCD Ziffer

+0110 (6) Korrekturwert falls Ergebnis > 9)

10010 (1,2) 2 mit Übertrag in die nächste Stelle.
```

Normale Addition und Subtraktion, aber: Korrektur des Ergebnisses falls es keine BCD Ziffer ist. Abarbeitung von rechts nach links!!

Wird oft von der Prozessorhardware unterstützt Addition einer Stelle mit 2 Befehlen:

1. Normale Addition, 2. BCD Korrektur

Vorteil: Beliebige Genauigkeit, unter Software Kontrolle.

Nachteil: Langsam, alles wird über Schleifen abgewickelt

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 20
-------------------------	----------	-----------------	--------	----------

Gleitkommazahlen

Analog zu der Schreibweise 815 = 0.815 * 10³

werden binäre Gleitkommazahlen gebildet.

Gleitkommazahlen (engl.: floating point numbers)

bestehen aus:

- dem Vorzeichen V
- dem Exponenten E
 - der Mantisse M

V, E und M repräsentieren dann die Zahl

$$(-1)^{V} * M * 2^{E}$$

Normierte Gleitkommazahlen

Durch Verschieben des Kommas und gleichzeitiger Anpassung des Exponenten kann man erreichen, dass die erste Stelle der Mantisse 1 ist.

Diese Darstellung heißt normierte Gleitkommadarstellung.

$$0.01010111 * 2 14$$
= $0.1010111 * 2 13$
= $1.010111 * 2 12$
= $10.10111 * 2 11$

Vorteil normierter Gleitkommazahlen: Optimale Nutzung der Mantissenbits, da keine überflüssigen Nullen gespeichert werden müssen.

Die führende 1 braucht auch nicht gespeichert zu werden.

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 22
-------------------------	----------	-----------------	--------	----------

Darstellung von Gleitkommazahlen nach IEEE 754

Einfache Genauigkeit (Single Precision): 32 bit

V Exponent e 1 bit 8 bit

Mantisse m 23 bit

Doppelte Genauigkeit (Double Precision): 64 bit

V Exponent e 1 bit 11 bit Mantisse m 52 bit

V: Vorzeichen. 0 = positiv; 1 = negativ. Betragsdarstellung der Mantisse.

m: Mantisse, normiert. Nur fraktioneller Teil, ohne die 1 vor dem Komma.

=> mit 23 bit Mantisse 24 bit Genauigkeit

e: Exponent, dargestellt als e = E+127 bzw. e = E+1023 -> Immer positiv

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 23
-------------------------	----------	-----------------	--------	----------

Darstellung von Gleitkommazahlen nach IEEE 754

Darstellbare Zahlenbereiche

	Einfache Genauigkeit	Doppelte Genauigkeit
Bereich für E:	-126 127	-1022 1023
Kleinste positive Zahl	$2^{-126} \approx 1.2 * 10^{-38}$	$2^{-1022} \approx 2.2 * 10^{-308}$
Bits in Mantisse	24	53
Größte positive Zahl	$(2-2^{-23}) * 2^{127} \approx 3.4 * 10^{38}$	$(2-2^{-52}) * 2^{1023} \approx 1.8 * 10^{308}$
Größter relativer Fehler	2 ⁻²⁴	2 ⁻⁵³
Genauigkeit	\approx 7 Dezimalstellen	_≈ 16 Dezimalstellen

Darstellung von Gleitkommazahlen nach IEEE 754

Warum Exponent nur -126 bis 127 (254 Werte). Restliche 2?

Kleinster Exponent 00 und größter Exponent 0FFH werden für Sonderfälle benutzt.

Vorzeichen	Exponent	Mantisse	Bedeutung
0/1	0	0	+/- Null
0/1	0	1 bis 11111	Nicht normierte Zahlen
0/1	FFH	0	+/- Unendlich
-	FFH	1 bis 11111	NaN (Not a Number)

e = 0, M = 0: Plus oder Minus Null

e = 0, M ≠ 0: Nicht normiert: 0,M: Zahlenbereich um die 0 herum

e = 0FFH, M = 0: Plus oder Minus (V) Unendlich

e = 0FFH, M \neq 0: NAN, Not A Number, Undefiniert, z.B. ∞ / ∞ , ∞ – ∞

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 25
-------------------------	----------	-----------------	--------	----------

Beispielaufgabe zu IEEE 754

Stellen Sie die Dualzahl -1 0011 10011,000 0110 0111 als einfach genaue Gleitkommazahl gemäß IEEE754 dar.

(5 Punkte)

Es gilt das folgende Schema:

v e1 e2 ... e8 m1 m2 ... m23

v: Vorzeichen (0:positiv, 1:negativ)

e: Exponent e = e1 e2 ... e8

m: Mantisse m = m1 m2 ... m23

aus normierter dualer Gleitkommadarstellung 1. mk...mk+n *2E

m: nur fraktioneller Anteil der Mantisse der dualen Gleitkommadarstellung

e = E + 127

Zeichen des ASCII Codes

	High	000	001	010	011	100	101	110	111
Low	Hex	0	1	2	3	4	5	6	7
0000	0	NUL	DLE		0	(C).	Р	`	р
0001	1	SOH	DC	!	1	А	Q	а	q
0010	2	STX	DC	"	2	В	R	b	r
0011	3	ETX	DC	#	3	С	S	С	s
0100	4	EOT	DC	\$	4	D	Т	d	t
0101	5	ENQ	NAK	%	5	E	U	е	u
0110	6	ACK	SYN	&	6	F	V	f	V
0111	7	BEL	ETB	•	7	G	W	g	w
1000	8	BS	CAN	(8	Н	X	h	Х
1001	9	HT	EM)	9	I	Υ	i	У
1010	Α	LF	SUB	*	:	J	Z	i	Z
1011	В	VT	ESC	+	;	K	[k	{
1100	С	FF	FS	,	<	L	١	ı	1
1101	D	CR	GS	-	=	М]	m	}
1110	E	so	RS		>	N	٨	n	~
1111	F	SI	US	1	?	0	_	0	DEL

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 27
-------------------------	----------	-----------------	--------	----------

Zeichen des IBM ASCII Codes

Ctrl	Dec	Hex	Char	Code
@	0	00		NUL
Â	1	01		SOH
Î B	2	02	8	STX
C	3	03	*	ETX
B C D	4	04	7	EOT
Î E	5	05	ŧ	ENQ
r F	6	06	₩	ACK
G	7	07	•	BEL
^H	8	08	0	BS
Î I	9	09	0	нт
^J	10	0 A		LF
ΓK	11	OB	ď	VT
l^L	12	0C	Q	FF
M	13	0D	ŗ	CR
N	14	0E	Ħ	so
O	15	0F	*	SI
P Q	16	10	፠▲▼₩≕₽	DLE
^Q	17	11	4	DC1
Î R	18	12	#	DC2
Î S	19	13	ii	DC3
ΓÎ	20	14	P	DC4
T U V	21	15	8	NAK
$ \hat{v} $	22	16	•	SYN
w	23	17	6 9 ■ ±	ETB
$\int_{1}^{\infty} \mathbf{W}$	24	18	Ť	CAN
Ŷ	25	19	ļ	EM
Ŷ Z	26	1A	+	SUB
	27	1B	+	ESC
\ \ \	28	1C	L	FS
ر َ ا	29	1D	#	GS
	30	1E	++++++	RS
	31	1F	•	US

Dec	Hex	Char
32	20	
33	21	† •
34	22	10
35	22 23 24 25 26 27 28	#
36	24	\$
37	25	7.
38	26	å
39	27	,
40	28	
41	29)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55	29 2A 2B 2C 2D 2E 2F 30 32 33 34 35	#\$%&,()*+,-
43	2B	+
44	2C	,
45	2D	-
46	2E	•
47	2F	/
48	30	0
49	32	1
50	32	2
51	33	3
52	34	4
53	35	5
54	36	6
55	37	7
56	138	8
57	39	9
58	3 A	:
59	3B	;
58 59 60	39 3A 3B 3C	(
61	3D	=
61 62	3E	
63	3F	./0123456789<=>?
$\overline{}$		

Dec	Hex (Char	
64	4 0	0	
65	41	A	
66	42	B	
67	43	C	
68	44	D	
69	45	E	
70	46	F	
71	47	G	
72	48	H	
73	49	I	
74	44 45 46 47 48 49 4A 4B 4C 4D 4E	J	
75	4B	K	
76	4C	$ \mathbf{L} $	
77	4 D	M	
78	4E	N	
79	41	0	
80	50	P	
81	51	Q	
82	52	R	
83	53	S	
84	51 52 53 54	T	
85	55 56	U	
86	56	V	
87	57	W	
88	58	X	
89	59	Y	
90	5A	@ABCDEFGHIJKL MNOPQRST BVKXYNL/]<	
91	5B	[]	
92	5C	$ \setminus $	
93	5C 5D]	
94	5E	^	
95	5F		

Dec	Hex	Char
96	60	3
97	61	a
98	62	b
99	63	C
100	64	d
101	65	£
102	66	f
103	67	g
104	68	h
105	69	i
106	6A	j
107	6B	k
108	6C	1
109	6D	M
110	6E	ח
111	6F	h i j k l m o
112	70	p
113	71	q
114	72	r
115	73	5
116	74	t
117	75	u
118	76	v
119	77	₩
120	78	X
121	79	y
122	7 A	Z
123	7B	{
124	7C	[
125	7D	}
126	7E	~
127	7 F	Ơ

Dec	Hex	~
128	80	ç
129	81	ü
130	82	e
1	83	3
132	84	ä
133	85	a
134	86	a
135	87	5
136	88	휻
137	89	ë
138	8A	ė
139	8B	ï
140	[8C]	Î
141	8D	1
142	8E	Ă
143	8F	Ą
144	90	E
145		푠
146	92	Æ
147	93	ô
148	94	ö
149	95	ō
150	96	û
151	97	ū
152	98	ÿ
153	99	0
154	9A	ΰ
155	9B	¢
156	9C	£
157	9D	¥
158	9E	Children (4)は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、は、
159	9F	£

Dec		
160	A 0	á)
161	A1	á í ó
162	A2	
163	A 3	ű
164	A4	ñ
165	A5	ă.
166	A6	₫
167	A 7	<u> </u>
168	A81	ان
169	A9	-
170		51.0 L L/2
171	AB	と
172	AC.	146
173		i «
174	AE ₁	
175		>>
176	B O	
177	B1	#
178	B2	1
	В3	
180	B4	1
181	B5	4
182	B6	1
183	B 7	π
184	B 8	7
185	В9	11
186	BA	
187	BB	1
188	BC	ᆁ
189	BD	ш
190	BE	4
191	BF	7

Dec Hex	Char		Dec	Hex	Cha
192 C0	L		224	E0	α
193 C1	I		225	E1	β
194 C2	т		226	E2	Г
195 C3	 	}	227	E3	I
196 C4	_	}	228	E4	Σ
197 C5	+		229	E5	σ
198 C6	¥		230	E6	μ
199 C7	1		232	E 7	7
200 C8	Æ		232	E8	Ŷ
201 C9	Į,		233	E9	0
202 CA	11		234	EA	Ω
203 CB	ī		235	EB	δ
204 CC	1		236	EC	0
205 CD	=		237	ED.	ø
206 CE	it ir		238	EE.	Ð
207 CF	±		239	EF	U
208 DO	11		240	F 0	Ξ
209 D1	₹		241	F1	+1~1~1
210 D2	π		242		<u>}</u>
211 D3	Ц		243		<u> </u>
212 D4	F		244	F4	
213 D5	F		245	F5	J
214 D6	Ħ		246		÷
215 D7	#		247	F7	~
216 D8	#		248	F8	•
217 D9	1	1	249	F9	•
218 DA	1		250	FA	•
219 DB			251	FB	1
220 DC			252	FC	J
221 DD	-		253	FD	5
222 DE				FE	•
223 DF			255	FF	

Zeichen des ANSI Codes

Ta	belle A	A.1	ANS	I-Zeic	hensa	atz										Tabe	lle A	.1 A	NSI-Z	Zeiche	nsatz	L (Forts	setzung)
0	•	24	•	48	0	72	Н	96	`	120	X	144	•	168		192	À	208	Ð	224	à	240	ð
1	•	25	•	49	1	73	I	97	a	121	y	145	4	169	©	193	Á	209	$ ilde{\mathbf{N}}$	225	á	241	ñ
2	•	26	•	50	2	74	J	98	b	122	Z	146	•	170	а	194	Â	210	Ò				
3	•	27		51	3	75	K	99	c	123	{	147	-	171	«					226	â	242	ò
4	-	28	•	52	4	76	L	100	d	124	j	148		172	7	195	Ã	211	Ó	227	ã	243	Ó
5.	•	29	•	53	5	77	M	101	e	125	}	149		173	-	196	Ä	212	Ô	228	ä	244	ô
6	•	30	•	54	6	78	N	102	f	126	~	150	•	174	®	197	Å	213	Õ	229	å	245	õ
7	•	31	•	55	7	79	O	103	g	127	•	151	•	175	-	198	Æ	214	Ö	230	æ	246	ö
8	* *	32		56	8	80	P	104	h	128	•	152	•	176	0	199	Ç	215	×	231	ç	247	÷
9	* *	33	!	57	9	81	Q	105	i	129	•	153	•	177	±	200	È	216	Ø	232	è	248	
10	* *	34	**	58	:	82	R	106	j	130	•	154		178	2		_						Ø
11	•	35	#	59	;	83	S	107	k	131	•	155	•	179	3	201	É	217	Ù	233	é	249	ù
12		36	\$	60	<	84	T	108	l	132	•	156	•	180	,	202	Ê	218	Ú	234	ê	250	ú
13	* *	37	%	61	=	85	U	109	m	133	•	157	•	181	μ	203	Ë	219	Û	235	ë	251	û
14		38	&	62	>	86	\mathbf{V}	110	n	134	•	158	•	182	¶	204	Ì	220	Ü	236	ì	252	ü
15		39	'	63	?	87	W	111	0	135	•	159	•	183	•	205	Í	221	Ý	237	í	253	ý
16	•	40	(64	@	88	X	112	p	136	•	160		184	•	206	Î	222	Þ	238	î	254	•
17	•	41)	65	A	89	Y	113	\mathbf{q}	137	•	161	i	185	1			223	В				þ
18	•	42	*	66	В	90	Z	114	r	138	•	162	¢	186	o	207	I	223	D	239	ï	255	ÿ
19	•	43	+	67	C	91	[115	S	139	•	163	£	187	»								
20	•	44	,	68	D	92	١	116	t	140	•	164	¤	188	1/4								
21	•	45	-	69	E	93]	117	u	141	•	165	¥	189	1/2								
22		46	•	70	F	94	^	118	v	142	•	166	ł	190	3/4								
23	•	47	1	71	\mathbf{G}	95	-	119	W	143	•	167	§	191	ં								

Technische Informatik 1	WS 16/17	Dr. Kurt Sutter	Kap. 1	Folie 29
-------------------------	----------	-----------------	--------	----------

ISO 8859

- 8-Bit Codefamilie
- 15 verschiedene Teilnormen
- Code 000-127 bei allen Teilnormen gleich (entspricht ASCII-Code)
- Besonders wichtig: ISO-8859-1 (Latin-1, ANSI, EBCDIC)
- ISO 8859-x

-1	Latin-1, Westeuropäisch
-2	Latin-2, Mitteleuropäisch
-3	Latin-3, Südeuropäisch
-4	Latin-4, Baltisch
-5	Kyrillisch
-6	Arabisch
-7	Griechisch
-8	Hebräisch
-9	Latin-5, Türkisch
-10	Latin-6, Nordisch
-11	Thai
-13	Latin-7, Baltisch
-14	Latin-8, Keltisch
-15	Latin-9, Westeuropäisch
-16	Latin-10, Südosteuropäisch

Unicode

- Universelle Symboltabelle
- Jedes Zeichen bekommt einen eindeutigen binären Code mit 5+16=21 Bit
- Der Binärcode ist auf <u>jeder</u> Hardware, unter <u>jedem</u>
 Betriebssystem und in <u>jeder</u> Programmiersprache gleich.
- Es gibt 17 Codebereiche (Planes) mit je 65536 möglichen Zeichen
- Wichtig: Basic Multilingual Plane (BMP)
- Die ersten 256 Zeichen der BMP sind identisch mit ISO 8859-1
- Zur Codierung des Unicode:
 Universal Transformation Format (UTF)
- UTF-8, UTF-16, UTF-32

Einige Zeichen des Unicodes

Latin Extended-A										Cherokee B						Воро	Sopomofo Extended			
	010	011	012	013	014	015	016	017		13A	13B	13C	13D	13E	13F		31A	31B		
0	Ā	Ð 0110	Ġ	İ	1.	Ő 0150	Š	Ű 0170	0	D 13A0	I -1	G 1300	-	J	B	0	31A0	3180		
1	ā	đ	ġ 0121	1	Ł	Ő	Š 0161	ű	1	R 13A1	T 13B1	1301	3D1	13E1	√) 13F1	1]] 31A1	3181		
2	Ă 0102	Ē	Ģ	IJ ₀₁₃₂	1 0142	Œ 0152	Ţ 0162	Ų 0172	2	T 13A2	Q - 13B2	h 13C2	R 1302	P 13E2	6 13F2	2	닠 31A2	31B2		
3	ă	ē	ģ 0123	ij 0133	Ń 0143	œ 0153	t	ų	3	5) 13A3	W 13B3	Z 13C3	L 13D3	G 13E3	G** 13F3	3	⟨⟨ _o 31A3	d 31B3		
4	A	Ĕ 0114	Ĥ	Ĵ	ń	Ŕ 0154	Ť	ŵ	4	O ²	6	1304	W 13D4	T/	B 13F4	4	31A4	5		
5	a	ĕ 0115	$\hat{\mathbf{h}}_{_{_{0125}}}$	ĵ 0135	Ņ 0145	ŕ	t' 0165	ŵ	5	1	P	13C5	S	I1 13E5		5	31A5	/ 3 3185		
6	Ć	Ė	H	Ķ 0136	ņ 0146	Ŗ 0156	T	$\hat{\mathbf{Y}}_{_{0176}}$	6	S	1386	T 13C6	T ₁₃₀₆	K 13E6		6	31A6	万 3186		
7	Ć	ė	ħ	ķ	Ň 0147	r 0157	ŧ	ŷ	7	Q) 13A7	M 13B7	1307	<i>J</i>	<u>J</u>		7	ر 31A7	3187		
8	Ĉ	Ę	Ĩ	K 0138	ň	Ř 0158	$ ilde{\mathbf{U}}_{_{0168}}$	Ÿ 0178	8	1	1	13C8	J	13E8		8	★			
9	ĉ	ę 0119	1	Ĺ 0139	'n	ř	ũ 0169	Ź	9	У 13А9	1389	1309	V 13D9	G 13E9		9	31A9			
_	<u> </u>	Ť	Ŧ	í	N T	4	TT	,	 											
Technische Informatik 1									WS 16/17				Dr. Kurt Sutter					Kap. 1	Folie 32	