

Langage C Exercices 2 - Boucles

TP 2.1 - Résoudre une équation du second degré

Le but est de résoudre une équation du second degré tel que :

$$A \times x^2 + B \times x + C = 0$$

https://calculis.net/resoudre-equation-second-degre

Exemple d'exécution demandé :

Résoudre l'équation du second degré : $Ax^2 + Bx + C = 0$

Entrer A: 2

Entrer B: -2

Entrer C: -2

L'équation admet 2 solutions qui sont :

- ??

- ??

TP 2.2 - Programmer une suite

• Faire un programme qui calcule la suite (R n) définie par les condition suivante :

$$u_0 = 2 \text{ et } u_{n+1} = \frac{1}{2} \left(u_n + \frac{2}{u_n} \right).$$

Exemple d'exécution :

```
Entrer n : 51

U0 = 2

U10 = ??

U20 = ??

U30 = ??

U40 = ??

U50 = ??
```

Le résultat de U[51] est ??.

Cette suite tant vers le résultat positif de la résolution de l'équation $x^2 - 2$ qui est ??.

TP 2.3 - Fibonacci

• Écrire une fonction calculant le nombre de Fibonacci d'un nombre.

Le nombre de Fibonacci F(n) est défini comme suit :

$$F(0) = 0;$$

 $F(1) = 1;$
 $F(n) = F(n - 1) + F(n-2)$

Exemple d'exécution :

Entrer n:6

Fibonacci de 6 est 8 : F[6] = 8

En mathématiques, la **suite de Fibonacci** est une suite d'entiers dans laquelle chaque terme est la somme des deux termes qui le précèdent. Elle commence par les termes 0 et 1 (on trouve des définitions [réf. nécessaire] qui la font commencer avec 1 et 1). Les termes de cette suite sont appelés *nombres de Fibonacci* (suite A000045 de l'OEIS) :

\mathcal{F}_0	\mathcal{F}_1	\mathcal{F}_2	\mathcal{F}_3	\mathcal{F}_4	\mathcal{F}_5	\mathcal{F}_6	\mathcal{F}_7	\mathcal{F}_8	\mathcal{F}_9	\mathcal{F}_{10}	\mathcal{F}_{11}	\mathcal{F}_{12}	\mathcal{F}_{13}	\mathcal{F}_{14}	\mathcal{F}_{15}	\mathcal{F}_{16}	 \mathcal{F}_n
0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	 $\mathcal{F}_{n-1} + \mathcal{F}_{n-2}$

La suite est définie par $\mathcal{F}_0=0, \quad \mathcal{F}_1=1,$ et $\mathcal{F}_n=\mathcal{F}_{n-1}+\mathcal{F}_{n-2},$ pour n>1.

https://fr.wikipedia.org/wiki/Suite_de_Fibonacci

TP 2.4 – Le nombre d'or & Fibonacci

Soit la suite

O(1)=1

O(n) = F(n+1)/F(n) avec F(n) qui représentante la valeur de Fibonacci à l'ordre n

Programmer la suite O et comparer le résultat au nombre d'or

Exemple d'exécution :

Entrer N: 11

O[1] = ??

O[5] = ??

O[10] = ??

Le résultat de O[11] est ??.

Le nombre d'or est égal à : ??

$$arphi=rac{1+\sqrt{5}}{2}$$
 .

https://www.maths-et-tiques.fr/index.php/histoire-des-maths/nombres/le-nombre-d-or

TP 2.5 - 421

Faire un programme qui simule le lancer de 3 dés afin d'obtenir en 3 lancers max : 4 2 1 - A chaque coup on peut garder 1, 2 ou 3 dés et dès que l'on a 3 dés avec 1,2,4 le jeu est terminé

[2,1]

Exemple:

```
Combien de parties voulez vous jouer : 3
Lancer 1 avec 3 dés : 5 2 1 je garde 2 et 1
```

Lancer 2 avec 1 dé : 3 je ne garde rien [2,1]

Lancer 3 avec 1 dé : 4 je garde 4 [4,2,1]

Partie 1 gagnée en 3 coups

```
Lancer 1 avec 3 dés : 2 2 1 je garde 2 et 1 [2,1]
Lancer 2 avec 1 dé : 4 je garde 4 [4,2,1]
```

Partie 2 gagnée en 1 coup

```
Lancer 1 avec 3 dés : 6 2 1 je garde 2 et 1 [2,1]
Lancer 2 avec 1 dé : 3 je ne garde rien [2,1]
Lancer 3 avec 1 dé : 6 je ne garde rien [2,1]
```

Partie 3 Perdue

D.Palermo

Vous avez joué 3 parties, 2 gagnées pour 1 perdue soit 66,66% de gain

