Оптимальность относительно конуса доминирования

Рассмотрим многокритериальную аналитическую задачу:

$$\Gamma = \langle \mathbf{X}, \mathbf{F}(\mathbf{x}), \wp \rangle \tag{1}$$

Определение 1. Непустое множество $\mathbf{K} \subset \mathbf{E}^m$ называется конусом с вершиной в начале координат, если из того, что $\mathbf{x} \in \mathbf{K}$ следует, что $\lambda \mathbf{x} \in \mathbf{K}$ для всех $\lambda \geq 0$. Если, кроме того, \mathbf{K} - выпуклое множество, то оно называется выпуклым конусом.

Определение 2. Замкнутый выпуклый конус $\Omega \subset \mathbf{E}^m$ называется конусом доминирования, если бинарное отношение строгого предпочтения \wp задается в виде:

$$\mathbf{x} \otimes \mathbf{y} \Leftrightarrow (\mathbf{F}(\mathbf{x}) - \mathbf{F}(\mathbf{y})) \in \mathbf{\Omega}$$
 (2)

- а) выпуклый конус;
- б) невыпуклый конус.

Конус доминирования

Определение 3. Допустимое решение $\mathbf{x}^* \in \mathbf{X}$ задачи (1), (2) называется недоминируемым (оптимальным относительно конуса доминирования Ω ,

 Ω - оптимальным, если для любого допустимого решения $\mathbf{x} \in \mathbf{X}$, $\mathbf{x} \neq \mathbf{x}^*$ имеет место

$$\left(\mathbf{F}(\mathbf{x}) - \mathbf{F}(\mathbf{x}^*)\right) \notin \mathbf{\Omega} . \tag{3}$$

Множество всех Ω - оптимальных решений задачи (1), (2) будем обозначать $Opt_{\Omega}(\mathbf{X})$ в пространстве допустимых решений и $Opt_{\Omega}(\mathbf{F}(\mathbf{X}))$ -в критериальном пространстве , где $\mathbf{F}(\mathbf{X})$ - множество достижимых векторных оценок, определяемое в виде: $\mathbf{F}(\mathbf{X}) = \bigcup_{\mathbf{x} \in \mathbf{X}} \mathbf{F}(\mathbf{x})$

Геометрическая интерпретация:

$$Opt_{\Omega}(\mathbf{F}(\mathbf{X})) = \cup AB$$

Для точки $\mathbf{F}(\mathbf{x}^*) = \mathbf{C} \in \cup \mathbf{AB}$

выполняется условие (3).

Свойства конуса доминирования

Теорема. Пусть в задаче (1), (2) для конусов доминирования Ω_1 и Ω_2 выполняется включение $\Omega_1 \subset \Omega_2$. Тогда для множества $Opt_{\Omega_1}(\mathbf{X})$ и $Opt_{\Omega_2}(\mathbf{X})$ связаны между собой соотношением

$$Opt_{\Omega_2}(\mathbf{X}) \subseteq Opt_{\Omega_1}(\mathbf{X})$$
 (4)

Вывод. Уменьшение неопределенности выбора наиболее предпочтительного решения аналитической задачи (1), (2) на множестве $Opt_{\Omega}(\mathbf{X})$ может быть достигнуто путем «расширения» конуса доминирования Ω .

Геометрическая интерпретация

$$\Omega_1 \subset \Omega_2$$

$$\cup$$
AB= $Opt_{\Omega_1}(\mathbf{F}(\mathbf{X}))$

$$\cup$$
CD= $Opt_{\Omega_2}(\mathbf{F}(\mathbf{X}))$

$$Opt_{\Omega_2}(\mathbf{F}(\mathbf{X})) \subset Opt_{\Omega_1}(\mathbf{F}(\mathbf{X}))$$

Частные случаи конуса доминирования

1.
$$\Omega_1 = \mathbf{E}_{\leq}^m = \left\{ \mathbf{r} \in \mathbf{E}^m \middle| r_i \leq 0, i = \overline{1, m}, \mathbf{r} \neq \mathbf{0} \right\}$$
 (8)

Конус доминирования (8) задает на $\, {f X} \,$ бинарное отношение строгого предпочтения $\, {\cal S}_1 \, :$

$$\mathbf{x} \wp_1 \mathbf{y} \iff \mathbf{F}(\mathbf{x}) - \mathbf{F}(\mathbf{y}) \in \mathbf{\Omega}_1 \iff \begin{cases} f_i(\mathbf{x}) \leq f_i(\mathbf{y}), i = \overline{1, m}, \\ \mathbf{F}(\mathbf{x}) \neq \mathbf{F}(\mathbf{y}) \end{cases}$$

Отношение предпочтения \mathscr{D}_1 называется отношением Парето. Ядро отношения \mathscr{D}_1 на \mathbf{X} $Min_{\mathscr{D}_1}(\mathbf{X})$ обозначим \mathbf{X}_P и, соответственно, $\mathbf{F}_P = \mathbf{F}(\mathbf{X}_P)$.

Ядро отношения \wp_1 называется множеством эффективных (оптимальных по Парето) решений.

2.
$$\Omega_2 = \mathbf{E}^m = \left\{ \mathbf{r} \in \mathbf{E}^m \middle| r_i < 0, i = \overline{1, m} \right\}.$$
 (9)

Открытый конус доминирования (9) задает на ${\bf X}$ бинарное отношение строгого предпочтения ${\cal S}_2$:

$$\mathbf{x} \otimes_2 \mathbf{y} \Leftrightarrow \mathbf{F}(\mathbf{x}) - \mathbf{F}(\mathbf{y}) \in \mathbf{\Omega}_2 \Leftrightarrow \begin{cases} f_i(\mathbf{x}) < f_i(\mathbf{y}), \\ i = \overline{1, m} \end{cases}$$

Отношение предпочтения \wp_2 называется отношением Слейтера.

Ядро отношения \wp_2 называется множеством слабо эффективных (оптимальных по Слейтеру) решений.

Применение на практике

Fr(X) = "AB

$$Q_1 = E_2^2$$

VAC u DB - "MOXUE" YPACTION

ECM MAN XOTUM UCKNOPULS

VAC u DB us haccustpenue,

TO HEO TXO DUMO TION FOUTS KO HYC

TOMMHUPOLGHERS Q2:

$$Q_1 = Q_2 = F_{R_2}(X) = VCD$$

Fre (X) = VCD.