

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

SEPTEMBER 2019

MATHEMATICS P1/WISKUNDE V1 MARKING GUIDELINE/NASIENRIGLYN

MARKS/PUNTE: 150

This marking guideline consists of 19 pages./ *Hierdie nasienriglyn bestaan uit 19 bladsye*.

NOTE/LET WEL:

- If a candidate answers a question TWICE, mark the FIRST attempt ONLY.

 Indien 'n kandidaat 'n vraag TWEE keer beantwoord, merk SLEGS die EERSTE poging.
- Consistent accuracy applies in ALL aspects of the marking guideline. Volgehoue akkuraatheid geld deurgaans in ALLE aspekte van die nasienriglyn.
- If a candidate crossed out an attempt of a question and did not redo the question, mark the crossed-out attempt.
 - Indien 'n kandidaat 'n poging vir 'n vraag deurgetrek het en nie die vraag weer beantwoord het nie, merk die poging wat deurgetrek is.
- The mark for substitution is awarded for substitution into the correct formula. *Die punt vir substitusie word vir substitusie in die korrekte formule toegeken.*

QUESTION 1/VRAAG 1

	·	
1.1.1	$x^2 - 3x - 4 = 0$	
	(x+1)(x-4) = 0	$ \checkmark factors/faktore \checkmark x = -1 \checkmark x = 4 $
	x = -1 or/ of 4	$\checkmark x = -1 \checkmark x = 4$
	Answers only: Antwoorde alleen (2/3)	
	OR/OF	
	Can use quadratic formula / Kan kwadratiese formule gebruik	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	aa 2a	
	$=\frac{-(-3)\pm\sqrt{(-3)^2-4(1)(-4)}}{2(1)}$	✓ correct substitution /
	2(1)	korrekte vervanging
	$=\frac{3\pm\sqrt{25}}{2}$	
	2	✓✓ answers / antwoorde
	$\therefore x = 4 \text{ or } / \text{ of } x = -1$	(3)
1.1.2	$2x^2 - x - 7 = 0$	
	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
	$x = \frac{-(-1) \pm \sqrt{(-1)^2 - (4)(2)(-7)}}{2(2)}$	✓ substitution/vervanging
	$\chi = 2(2)$	
	1+,57	
	$= \frac{1 \pm \sqrt{57}}{4}$ Penalise 1 mark for incorrect rounding off	
	Penaliseer 1 punt vir verkeerde afronding	$\checkmark x = 2.14 \checkmark x = -1.64$
	x = 2,14 or/of $-1,64$	(3)
	,1. 51/0/	(-)

1.1.3	$5^{x+1} - 5^x = 2500$	
	$5^x . 5^1 - 5^x = 2500$	
	$5^x(5-1) = 2500$	✓ factorisation/faktorisering
	$5^{x}.4 = 2500$	
	$5^x = 625$	$\sqrt{5^x} = 625$
	$5^x = 5^4$	
	$\therefore x = 4$	$\checkmark x = 4 \tag{3}$
1.1.4	(x-3)(x+1) < 12	
	$x^2 - 2x - 3 - 12 < 0$	
	$x^2 - 2x - 15 < 0$	✓ standard form/standaardvorm
	(x-5)(x+3) < 0	✓ factorisation/faktorisering
	OR/ <i>OF</i>	
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$\sqrt{-3} < x < 5$ (accuracy)
		(akkuraatheid)
1.0	$-3 < x < 5$ OR / OF $x \in (-3,5)$	(4)
1.2	y = 2x - 1(1)	$\checkmark y = 2x - 1$
	$3x^2 - xy - y^2 = 1 \qquad(2)$	
	(2)	
	(1) into (2)	
	$3x^{2} - x(2x-1) - (2x-1)^{2} = 1$	✓ substitution/vervanging
	$3x^2 - 2x^2 + x - (4x^2 - 4x + 1) = 1$	
	$3x^2 - 2x^2 + x - 4x^2 + 4x - 1 - 1 = 0$	
	$-3x^2 + 5x - 2 = 0$	✓ standard form/standaardvorm
	$3x^2 - 5x + 2 = 0$	
	(3x-2)(x-1) = 0	✓ factorisation/faktorisering
	$\therefore x = \frac{2}{3}$ or/of $x = 1$	✓ <i>x</i> -values/ <i>waardes</i>
	$y = 2\left(\frac{2}{3}\right) - 1$ or/of $y = 2(1) - 1$	
		✓ y-values/waardes
	$y = \frac{1}{3}$ or/of $y = 1$	(6)
L	l .	

PR/OF	$\checkmark x = \frac{y}{x}$

$$x = \frac{y+1}{2} \qquad \dots (1)$$

$$3x^2 - xy - y^2 = 1$$
 ...(2)

✓ substitution/vervanging

$$(1)$$
 into (2) ,

$$3\left(\frac{y+1}{2}\right)^2 - y\left(\frac{y+1}{2}\right) - y^2 = 1$$

$$3\left(\frac{y^2+2y+1}{4}\right) - \frac{y^2+y}{2} - y^2 = 1$$

$$3y^2 + 6y + 3 - 2y^2 - 2y - 4y^2 - 4 = 0$$

$$-3y^2 + 4y - 1 = 0$$

$$3y^2 - 4y + 1 = 0$$
$$(3y-1)(y-1) = 0$$

$$\therefore y = \frac{1}{3} \quad \text{or} \quad y = 1$$

$$x = \left(\frac{\frac{1}{3} + 1}{2}\right) \quad \text{or/of} \quad x = \left(\frac{1 + 1}{2}\right)$$

$$x = \frac{2}{3} \qquad \text{or/of} \quad x = 1$$

 $f(x) = x^2 - 2px + 8 + 2p$ 1.3

For equal roots: *Vir gelyke wortels*:

$$b^2 - 4ac = 0$$

$$(-2p)^2 - 4(1)(2p+8) = 0$$

$$4p^2 - 8p - 32 = 0$$

$$p^2 - 2p - 8 = 0$$

$$(p+2)(p-4)=0$$

$$\therefore p = -2 \text{ or } / \text{ of } p = 4$$

So, $f(x) = x^2 + 4x + 4$

$$\checkmark b^2 - 4ac = 0$$

✓ substitution/vervanging

but
$$/ maar : p < 0 \Rightarrow p = -2$$

$$h(x) = x^2 + 4x + 1$$
$$= x^2 + 4x + 4 - 4 + 1$$

$$=(x+2)^2-3$$

$$h(x) = x^{2} + 4x + 1$$

$$= x^{2} + 4x + 4 - 4 + 1$$

$$= (x + 2)^{2} - 3$$

$$\therefore TP: (-2;-3)$$

 $\checkmark p$ – values / waardes

$$\checkmark h(x) = x^2 + 4x + 1$$

✓ answer in coordinate form/ antwoord in koördinaatvorm

(6)

1.3	OR/OF	$\checkmark b^2 - 4ac = 0$
		✓ substitution/ <i>vervanging</i>
	$b^2 - 4ac = 0$	
	$(-2p)^2 - 4(1)(8+2p) = 0$	
	$4p^2 - 8p - 32 = 0$	
	$p^2 - 2p - 8 = 0$	
	(p-4)(p+2) = 0	
	$\therefore p \neq 4 \text{or/of} p = -2$	✓ p values/waardes
	\therefore Turning point of / Draaipunt van f is $(-2;0)$	√ (-2;0)
	:. Turning point of / Draaipunt van his $(-2; -3)$	✓ (-2;-3)
		(5)
		[24]

QUESTION 2/VRAAG 2

2.1.1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	-17;-27	✓ both terms/beide terme (1)
2.1.2	2a = -2 ∴ a = -1 3a + b = -2 3(-1) + b = -2 ∴ b = 1 ∴ c = 3	$\checkmark a = -1$
	$T_n = -n^2 + n + 3$	$\checkmark T_n = -n^2 + n + 3 \tag{4}$
2.1.3	$-n^{2} + n + 3 = -809$ $n^{2} - n - 812 = 0$ $(n - 29)(n + 28) = 0$ $\therefore n = 29$	✓ equating T_n to -809 $stel T_n gelyk aan -809$ ✓ factors/faktore ✓ choosing/kies $n = 29$
2.2.1	$T_n = 2n - 3$ $T_{53} = 2(53) - 3$ $= 103$	✓ substituting into T_{53} / vervanging in T_{53} ✓ answer/antwoord
	OR/OF $T_{53} = a + 52d$ $= -1 + 52(2)$ $= 103$	✓ substituting into T_{53} vervanging in T_{53} ✓ 103 (2)
2.2.2	$S_n = \frac{n}{2} [2a + (n-1)d]$ $S_{29} = \frac{29}{2} [2(-1) + 28(2)]$ $= 783$	✓ substitution into correct formula vervanging in korrekte formule ✓ 783
2.2.3	$\sum_{n=1}^{29} (2n-3) = 783$	$\checkmark \sum_{n=1}^{29} \checkmark 2n - 3 \tag{2}$

2.3	$T_4 = a + 3d \text{and/en} \qquad T_{10} = a + 9d$ $\therefore T_{10} - T_4 = 6d$ $6d = (8x - 2y) - (2x + y)$ $= 6x - 3y$ $\therefore d = x - \frac{1}{2}y$	$ ✓ T10 - T4 = 6d $ $ ✓ 6d = (8x - 2y) - (2x + y) $ $ ✓ d = x - \frac{1}{2}y $ $ ✓ substitution/vervanging $
	$T_4 = a + 3d$	\checkmark value of a / waarde van a
	$2x + y = a + 3(x - \frac{1}{2}y)$	
	$2x + y = a + 3x - \frac{3}{2}y$	(5)
	$\therefore a = \frac{5}{2} y - x$	[19]

QUESTION 3/VRAAG 3

3.1	$T_1 = (x-1)$	
	$T_1 = (x-1)$ $T_2 = (x-1)^2$	
	$\therefore r = x - 1$	
	for convergence :/ vir konvergensie	
	-1 < r < 1,	$\sqrt{-1} < r < 1$
	$\therefore -1 < x - 1 < 1$	
	0 < x < 2	✓ answer/antwoord (2)
3.2	When / Wanneer: $x = \frac{2}{3}$,	
	$p = (\frac{2}{3} - 1) + (\frac{2}{3} - 1)^2 + (\frac{2}{3} - 1)^3 + \dots$	✓ substituting for x
	$p = (-\frac{1}{3}) + (\frac{1}{9}) + (-\frac{1}{27}) + \dots$	vervanging vir x
	$\therefore a = -\frac{1}{3} \qquad \text{and } / en \qquad r = -\frac{1}{3}$	✓ values for <i>a</i> and <i>r</i> waardes vir a en r
	$\therefore S \infty = \frac{a}{1-r}$	✓ substituting into S_{∞} formula
	$=\frac{-\frac{1}{3}}{1-(-\frac{1}{3})}$	vervanging in $S_{\scriptscriptstyle \infty}$ formule
	$-1-(-\frac{1}{3})$	✓ answer/antwoord
		(4)
	$=-\frac{1}{4}$	[6]

QUESTION 4/VRAAG 4

4.1	x = -3	$\checkmark x = -3$
	y=1	✓ <i>y</i> = 1
		(2)
4.2	$1 + \frac{2}{x+3} = 0$	✓ substitution/vervanging
		oucoulous yer yaniging
	$\frac{2}{x+3} = -1$	
	2 = -x - 3	
	x = -5	✓ x-intercept/x-afsnit
		1 0
	$y = 1 + \frac{2}{0+3}$	
	5	✓ y-intercept/y-afsnit
	$=\frac{5}{3}$	y
		(3)
4.3		
	y = 1 $x = -3$	✓ asymptotes / asimptote ✓ x-intercept / x-afsnit ✓ y-intercept / y-afsnit ✓ shape / vorm (4)
4.4	$h(x) = \frac{-2}{x+3} - 1$ point of intersection of asymptotes	$\checkmark h(x) = \frac{-2}{x+3} - 1$
	snypunt van asimptote	
	(-3;-1) or / of y = -(-x-p) + q	
	y = (x - (-3)) - 1 or / of y = -(-x - 3) - 1	✓ substitute point of intersection of
	y - (x - (-3)) - 1 $0i + 0j$ $y(-x - 3) - 1$	asymptotes /
		vervang die snypunt van asimptote
	y = x + 2	√√ answer/antwoord
	y = x + 2	(4)

4.4	OR/OF $h(x) = \frac{-2}{x+3} - 1$ point of intersection of asymptotes snypunt van asimptote $(-3; -1)$	$ ✓ h(x) = \frac{-2}{x+3} - 1 $ ✓ substitute point of intersection of asymptotes /
	$y = x + k$ $-1 = -3 + k$ $k = 2$ $\therefore y = x + 2$	vervang die snypunt van asimptote ✓✓ answer/antwoord (4) [13]

QUESTION 5/VRAAG 5

5.1	(0;-8)	✓ answer / antwoord
		(1)
5.2	y = mx + c	$\checkmark c = -8$
	y = mx - 8	✓ substituting T(9;10) into equation of line /
	10 = 9m - 8	vervanging van T(9;10) in
	m=2	vergelyking van lyn
		✓ equation / vergelyking
	$\therefore v = 2x - 8$	
	OR/OF	
	$\therefore y = 2x - 8$ $m_{TQ} = \frac{10 - (-8)}{9 - 0}$ OR/OF	✓ substituting T and Q into m_{TQ} vervanging van T en Q in m_{TQ}
	m = 2	✓ <i>m</i> =2
		✓ equation
	$\therefore y = 2x - 8$	(3)
5.3	$y = x^2 - 7x - 8$	
	$= x^2 - 7x + \left(-\frac{7}{2}\right)^2 - 8 - \left(-\frac{7}{2}\right)^2$	✓ completing the square /
	$=(x-\frac{7}{2})^2-\frac{81}{4}$	vierkantsvoltooiing
	2/ 4	✓ equation / vergelyking
5.4	(7 91)	(2) ✓ <i>x</i> - coordinate/ <i>koördinaat</i>
3.4	$\left(\frac{7}{2}; -\frac{81}{4}\right)$	✓ x- coordinate/koordinaat ✓ y- coordinate/koördinaat
		(2)

5.5 Ave gradient/Gem. gradiënt

$$\frac{y-10}{x-9} = 1$$

$$y-10 = x-9$$
$$y = x+1$$

$$f(x) = x^2 - 7x - 8$$

$$x + 1 = x^2 - 7x - 8$$

$$0 = x^2 - 8x - 9$$

$$0 = (x-9)(x+1)$$

$$\therefore x = 9 \text{ or } / of -1$$

$$y = 10 \text{ or } / \text{ of } 0$$

$$: W(-1;0)$$

OR/OF

$$\frac{x^2 - 7x - 8 - (10)}{x - (9)} = 1$$

$$x^2 - 7x - 18 = x - 9$$

$$x^2 - 8x - 9 = 0$$

$$(x-9)(x+1) = 0$$

$$x = 9 \ or / of \ x = -1$$

$$y = 10 \ or / of \ y = 0$$

$$: W(-1;0)$$

✓ method/*metode*

✓ making y the subject maak y die onderwerp

✓ equating 2 equations gelykstel van 2 vergelykings

✓ factors/faktore

✓ specifying coordinates for W / spesifiseer W se koördinate

$$\checkmark \frac{x^2 - 7x - 8 - (10)}{x - (9)}$$

✓ equating to 1 / gelykstel aan 1

✓ standard form/standaardvorm

✓ factors/faktore

✓ specifying coordinates for W. spesifiseer W se koördinate

OR/OF

$$f'(x) = 2x - 7$$
$$f'(9) = 2(9) - 7$$

$$=11$$

$$\frac{f'(9) + f'(x)}{2} = 1$$

$$\frac{11 + 2x - 7}{2} = 1$$

$$\frac{2x+4}{2} = 1$$

$$x + 1 = 1$$

$$x = -1$$

$$y = 0$$

$$\therefore W(-1;0)$$

$$\checkmark f'(x) = 2x - 7$$

$$\checkmark f'(9) = 11$$

✓ average gradient = 1 gemiddelde gradiënt = 1

✓ substitution/*vervanging*

✓ coordinates of W / koördinate van W

(5)

5.6	$x^2 - 7x - 8 = 0$	
	(x-8)(x+1) = 0	
	$\therefore P(-1;0) \text{ and } / \text{ en } R(8;0)$	$\checkmark x$ intercepts of f
	y = 2x - 8	x-afsnitte van f
	0 = 2x - 8	$\checkmark x$ intercept of g
	:.V(4;0)	x-afsnit van g
	$\therefore x < -1 \text{or} / of 4 < x < 8$ OR / OF	\checkmark x < −1 accuracy/akkuraatheid \checkmark 4 < x < 8 accuracy/ akkuraatheid
	$x \in (-\infty; -1) \cup (4; 8)$	(4) [17]

QUESTION 6/VRAAG 6

QUESTION 7/VRAAG 7

No penalty for rounding off in this question. Geen penalisering vir afronding in hierdie vraag nie.

7.1	A = P(1-i) ⁿ R26700 = R40000(1-i) ⁵ $\sqrt[5]{\frac{26700}{40000}} - 1 = -i$	✓ substitution into correct formula vervanging in korrekte formule ✓ simplification / vereenvoudiging
	$-0.0777 \approx -i$ $\therefore r = 7.77\% \text{ p.a.}$	✓ value for r / waarde van r (3)
7.2.1	$P = \frac{x[1 - (1+i)^{-n}]}{i}$ $R1200000 = \frac{x[1 - (1 + \frac{0.115}{12})^{-180}]}{\frac{0.115}{12}}$ $\therefore x = \frac{1200000(\frac{0.115}{12})}{[1 - (1 + \frac{0.115}{12})^{-180}]}$	 ✓ i = 0.115/12 and/en n = 180 ✓ substituting into correct formula vervanging in korrekte formule
	= R14 018,28	✓ answer/antwoord (3)
7.2.2 (a)	Balance = $\frac{x[1-(1+i)^{-n}]}{i}(1+i)^n$ (Balans) = $\frac{R14\ 018,28[1-(1+\frac{0.115}{12})^{-105}]}{\frac{0.115}{12}}(1+\frac{0.115}{12})^5$	 ✓ n = 105 for / vir P and/en n = 5 for / vir A ✓ substituting into correct P formula vervanging in korrekte P formule ✓ substituting into correct A formula vervanging in korrekte A formule
	$= R925435,98(1 + \frac{0,115}{12})^{5}$ $= R970 637,89$	$\checkmark P(1 + \frac{0.115}{12})^5$ $\checkmark \text{ answer/} antwoord$ (5)

OR/OF

Outstanding Balance after 75 months:

$$=A-F_{v}$$

$$=1200\,000\left(1+\frac{11,5\%}{12}\right)^{75}-\frac{14018.28\left[\left(1+\frac{11,5\%}{12}\right)^{75}-1\right]}{\frac{11.5\%}{12}}$$

$$= 2453828,34 - 1528392,76$$

= R925435,58

Outstanding Balance after 80 months:

$$=925435,58\left(1+\frac{11,5\%}{12}\right)^{5}$$

= R970637,48

$$\sqrt{n}$$
 = 75 for both formulae / vir albei formules

- ✓ substituting into correct F formula vervanging in korrekte F formule
- ✓ substituting into correct A formula vervanging in korrekte A formule

$$\sqrt{P(1+\frac{0,115}{12})^5}$$

✓ answer/antwoord

(5)

7.2.2 (b)
$$P = \frac{x[1-(1+i)^{-n}]}{i}$$

$$R970637,89 = \frac{R14018, 28[1 - (1 + \frac{0,115}{12})^{-n}]}{\frac{0,115}{12}}$$

$$\frac{970637,89(\frac{0,115}{12})}{14018,28} - 1 = -(1 + \frac{0,115}{12})^{-n}$$

$$-0,3364416715 = -(\frac{2423}{2400})^{-n}$$

$$\therefore -n = \frac{\log 0,3364416715}{\log \frac{2423}{2400}}$$
$$= -114,2130673$$

 $\therefore n = 115 \text{ months}/maande$

$$\checkmark P = R970 637,89$$

- ✓ substituting into correct formula vervanging in korrekte formule
- ✓ correct use of logs / korrekte gebruik van logs
- ✓ final answer/finale antwoord

(4) [15]

QUESTION 8/VRAAG 8

Penalise once for notation in this question Penaliseer een keer vir notasie in hierdie vraag

	-	
8.1	$f(x) = 3 - 2x^2$	
	$f(x+h) = 3 - 2(x+h)^2$	
	$= 3 - 2(x^2 + 2hx + h^2)$	$\sqrt{3-2x^2-4hx-2h^2}$
	$= 3 - 2x^2 - 4hx - 2h^2$	$\sqrt{3-2x}$ $-4nx-2n$
	$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$	
	$h \to 0 \qquad h$ $\lim_{x \to \infty} 3 - 2x^2 - 4hx - 2h^2 - (3 - 2x^2)$	✓ substitution / vervanging
	$= \lim_{h \to 0} \frac{\frac{3 - 2x^2 - 4hx - 2h^2 - (3 - 2x^2)}{h}}{h}$ $= \lim_{h \to 0} \frac{\frac{3 - 2x^2 - 4hx - 2h^2 - 3 + 2x^2}{h}}{h}$	✓ simplification / vereenvoudiging
	$=\lim_{h\to 0}\frac{3-2x}{h}\frac{-4nx-2n}{h}$	✓ factorisation / faktorisering
	$= \lim_{h \to 0} \frac{h(-4x-2h)}{h}$	✓ answer / antwoord
	$= \lim_{h \to 0} -4x - 2h$ = -4x + 2(0)	
	=-4x	(5)
8.2.1	$D_x \left[x(x-2)^2 \right]$	
	$= D_x \left[x(x^2 - 4x + 4) \right]$	3 4 2 4
	$= D_x \left[x^3 - 4x^2 + 4x \right]$	$\checkmark x^3 - 4x^2 + 4x$ $\checkmark 3x^2 \checkmark -8x \checkmark + 4$
	$=3x^2-8x+4$	(4)
8.2.2		
	$y = ax^{\frac{3}{7}} - \frac{2x}{\sqrt{x}} + 3$	
	$y = ax^{\frac{3}{7}} - \frac{2x}{x^{\frac{1}{2}}} + 3$	1
		$\sqrt{-2x^{\frac{7}{2}}}$
	$=ax^{\frac{3}{7}}-2x^{\frac{1}{2}}+3$	$\sqrt{-2x^{\frac{1}{2}}} \\ \sqrt{\frac{3}{7}}ax^{-\frac{4}{7}} \sqrt{-x^{-\frac{1}{2}}}$
		(derivative of constant must be
	$\frac{dy}{dx} = \frac{3}{7}ax^{-\frac{4}{7}} - x^{-\frac{1}{2}}$	zero to get 3 rd mark)
	$\int dx = 7$	(afgeleide van die konstante moet
		nul wees om 3^{de} punt te kry) (3)
		[12]

QUESTION 9/VRAAG 9

9.1	$x = -\frac{1}{3}$ and/en $x = 1$	$\checkmark x = -\frac{1}{2} \checkmark x = 1$
	3 una en v	(2)
9.2	$x = (1 + (-\frac{1}{3})) \div 2$	
	$=\frac{1}{3}$	√√ answer/antwoord (2)
9.3	g(x) is increasing when $g'(x) > 0$	
	g(x) is stygend wanneer $g'(x) > 0$	
	$-\frac{1}{3} < x < 1 \ OR/OF \ x \in \left(-\frac{1}{3}; 1\right)$	✓✓ answer (accuracy) antwoord (akkuraatheid) (2)
9.4	$y = a(x - x_1)(x - x_2)$	(=)
	$=a(x+\tfrac{1}{3})(x-1)$	
	$\therefore 1 = a(0 + \frac{1}{3})(0 - 1)$	✓ substituting all intercepts
	$1 = -\frac{1}{3}a$	vervanging van alle afsnitte $\checkmark a = -3$
	$\therefore a = -3$	u J
	$y = -3(x + \frac{1}{2})(x - 1)$	$\sqrt{y} = -3(x + \frac{1}{3})(x - 1)$
	$= -3\left(x^2 - \frac{2}{3}x - \frac{1}{3}\right)$	$\checkmark g'(x) = -3x^2 + 2x + 1$
	$g'(x) = -3x^2 + 2x + 1$	
	OR/OF	
	$y = a(x - x_1)(x - x_2)$	
	=a(3x+1)(x-1)	
	$\therefore 1 = a(3(0) + 1)(0 - 1)$	✓ substituting all intercepts
	1 = -a	vervanging van alle afsnitte $\checkmark a = -1$
	a = -1	
	y = -1(3x+1)(x-1)	$\checkmark y = -(3x+1)(x-1)$
	$y = -1(3x+1)(x-1)$ $= -(3x^2 - 2x - 1)$	$\checkmark g'(x) = -3x^2 + 2x + 1$
	$g'(x) = -3x^2 + 2x + 1$	(4)

9.5
$$g(x) = ax^{3} + bx^{2} + cx + d$$

$$g'(x) = 3ax^{2} + 2bx + c$$

$$= -3x^{2} + 2x + 1$$

$$\therefore 3a = -3 \quad 2b = 2 \quad c = 1$$

$$\therefore a = -1 \quad b = 1$$

$$\therefore y = -x^{3} + x^{2} + x + d + 1$$

$$0 = -0^{3} + 0^{2} + 0 + d + 1$$

$$\therefore d = -1$$

$$(5)$$

QUESTION 10/VRAAG 10

Let the two numbers be x and y

Laat die twee getalle x en y wees:

$$x + y = 18$$

$$\therefore y = 18 - x$$

Product/ $Produk : P(x) = vx^2$

$$= (18 - x)x^2$$

$$=18x^2-x^3$$

Product is maximum when: P'(x) = 0Produk is 'n maksimum wanneer: P'(x) = 0

$$P'(x) = 36x - 3x^2$$

$$36x - 3x^2 = 0$$

$$3x(12-x)=0$$

$$\therefore x = 0 \text{ or } x = 12$$

$$\therefore v = 18 - 0 = 18$$

or/of
$$y = 18 - 12 = 6$$

P is maximum when x = 12P is 'n maksimum wanneer x = 12

> ∴ the two numbers are :12 and 6 ∴ die twee getalle is :12 en 6

OR/OF

Let the two numbers be x and y Laat die twee getalle x en y wees

$$x + y = 18$$

$$\therefore y = 18 - x$$

Product/Produk: $P(x) = xy^2$

$$=x(18-x)^2$$

$$= x(324 - 36x + x^2)$$

$$= 324x - 36x^2 + x^3$$

Product is maximum when: P'(x) = 0Produk is 'n maksimum wanneer: P'(x) = 0

$$P'(x) = 324 - 72x + 3x^2$$

$$3x^2 - 72x + 324 = 0$$

$$x^2 - 24x + 108 = 0$$

$$(x-18)(x-6)=0$$

$$\therefore x = 18 \text{ or } x = 6$$

$$v = 18 - 18 = 0$$

or/of

$$v = 18 - 6 = 12$$

∴ The two numbers are 12 and 6 Die twee getalle is 12 en 6

$$\sqrt{x+y} = 18$$

- $\checkmark vx^2$
- ✓ substitution and simplification vervanging en vereenvoudiging
- $\checkmark P'(x)$ and equating to 0 P'(x) en gelykstel aan 0
- ✓ *x*-values/*waardes*
- ✓ y-values/waardes
- ✓ selection of the 2 numbers keuse van die 2 getalle (if/as x = 0, Product/Produk = 0)

$$\checkmark x + y = 18$$

$$\checkmark xv^2$$

✓ substitution and simplification *vervanging en vereenvoudiging*

- $\checkmark P'(x)$ and equating to 0 P'(x) en gelykstel aan 0
- ✓ *x*-values/*waardes*
- ✓ *v*-values/*waardes*
- ✓ selection of the two numbers keuse van die 2 getalle (P = 0 when/wanneer x = 18)

[7]

QUESTION 11 /VRAAG 11

11.1.1	<i>a</i> = 111	✓ answer/antwoord
	<i>b</i> = 106	✓ answer/antwoord
11.1.2	P(a boy who plays cricket) / P('n seun wat krieket speel)	(2)
(a)	$= \frac{108}{530} \text{ or } / \text{ of } \frac{54}{265}$	✓ numerator/teller ✓ denominator/noemer (2)
11.1.2	P(A or / of B) = P(A) + P(B) - P(A and / en B)	✓ formula/formule
(b)	P(girl or not a tennis player) / P(meisie of nie'n tennisspeler nie)	
	$=\frac{288}{530} + \frac{445}{530} - \frac{231}{530}$	✓ substitution into correct formula vervanging in korrekte formule
	$=\frac{502}{530}$	✓ answer / antwoord
	or $\int of \frac{251}{265}$	
	or/of 94,72%	
	OR/OF	
	P(Girl or not Tennis) = 1 – $P(Boy and Tennis)$	✓ method/metode
	$=1-\frac{28}{530}$	✓ substitution/vervanging
	$= \frac{530}{530}$	✓ answer/antwoord
	or $/ of \frac{251}{265}$	
	or/of 94,72%	(3)

11.2.1	9° or / of 387420489	$\checkmark 9^9$ (1)
11.2.2	If vowels are together/As die vokale saam is: 6!×4! ∴ If vowels are not all together: As die vokale nie almal saam is nie: 9! – (6!×4!)	✓ 6! × 4! ✓ subtracting from 9! aftrekking vanaf 9! ✓ answer/antwoord (3)
	= 345 600	
11.2.3	Vowels in odd spaces / Vokale in onewe spasies = $4 \times 5 \times 3 \times 4 \times 2 \times 3 \times 1 \times 2$ = $(4 \times 3 \times 2 \times 1) \times (5 \times 4 \times 3 \times 2)$	
	$= (4 \times 3 \times 2 \times 1) \times (3 \times 4 \times 3 \times 2)$ $= 4! \times 120$ $= 2880$	\checkmark 4! \checkmark × 120 \checkmark Vowels in odd spaces , <i>Vokale in onewe spasies</i>
	$\therefore Probability / Waarskynlikheid = \frac{2880}{(9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2)}$	(9×8×7×6×5×4×3×2) / (9×8×7×6×5×4×3×2)
	$=\frac{2880}{362880}$	✓ answer/antwoord
	$=\frac{1}{126}$	(4) [15]

TOTAL/TOTAAL: 150