TRƯỜNG ĐẠI HỌC GIAO THÔNG VẬN TẢI KHOA ĐIỆN - ĐIỆN TỬ

BÁO CÁO CUỐI KÌ

Môn: Thiết kế mạch VLSI

THIẾT KẾ VÀ KHẢO SÁT MẠCH KHUYẾCH ĐẠI HAI TẦNG

Sinh viên: Trần Thị Diễm Quỳnh - msv: 201414076

Giảng viên: TS. Phạm Thanh Huyền

MỤC LỤC

PHẦN 1: TÍNH TOÁN THÔNG SỐ CỦA MẠCH THIẾT KẾ	1
1. Sơ đồ mạch thiết kế tổng thể	1
2. Tính toán	.2
PHẦN 2: TIẾN HÀNH CHẠY MÔ PHỎNG	6
1. Mô phỏng trong miền thời gian	6
2. Mô phỏng trong miền tần số	.7
KÉT LUÂN	10

PHẦN 1: TÍNH TOÁN THÔNG SỐ CỦA MẠCH THIẾT KẾ

1. Sơ đồ mạch thiết kế tổng thể

2. Tính toán

*	già sử cơ: Piến dp Vpp - 1.5 V Cổ giá ki hụ đượ C2 = 10 pf Biển độ pha 60°. Tốc độ thay đố tớ đa của đón áp đầu ra SR-10 / hu Băng thống GB = 5 MH? Nmos 23 1 MA N2 0, 452 V Pmos 60 MA / N2 -0,431 V
2.	Tinh toon Vo bien do pha lo 60° -> C1 = 0,22 C2 > 0,22 × 10×10 ⁻¹² >2,2pf -> [Chan C1 = 3pt] Tinh ID5 Ip5 = SR × C1 = 10 · 3.10 ⁻¹² = 30 µ A.

3.	Tinh $(W)_3$; $(W)_4$
	$cd: \int \overline{D}_3 = \frac{1}{2} D_5$
	$\int I_{03} = \frac{1}{2} u_p Co_n \left(\frac{W}{L}\right)_3 \cdot \left(\frac{V}{43} - \left \frac{V}{h_3}\right \right)^2$
W- 100	L VSG3 = VDO - ICHRMOX + VH1
	\rightarrow (W) \rightarrow I_{05}
	1 In con (VD - DCMR + VH - VH3))2
	_ 30.10-6
	$60.10^{-6} (1,5-1,2+0,452-1-0,431)^{2}$
	<u>-</u> 4,85.
	$-\frac{1}{\sqrt{\frac{w}{L}}} = \frac{w}{L} = \frac{5}{1}$
4.	Tinh $(\frac{W}{L})_1$; $(\frac{W}{L})_2$ $(\frac{W}{L})_1$; $(\frac{W}{L})_2$ $(\frac{W}{L})_2$ $(\frac{W}{L})_1$; $(\frac{W}{L})_2$
	$gm_1 = gm_1 = $

	Date No
	$\frac{(W) - gm_1^{1/2}}{(L)_1 - \mu_1 co_n co_n} = \frac{(94, 25.10^{-6})^2}{231.10^{-6} \times 30, 10^{-6}}$
	= 1,28
	202
	$- \frac{1}{2} \left[\frac{W}{L} \right]_1 = \left(\frac{W}{L} \right)_2 = \frac{1}{1}$
5.	The (W)
	VDS 5 = ICANRMIN - IDS Vancon (W) that
	$\frac{\text{Tibb} \left(W \right)}{\text{Vps5}} = \frac{\text{TCANR}_{min} - \frac{\text{TDS}}{\text{Vinconc} \left(W \right)}}{\text{Vinconc} \left(\frac{W}{L} \right)_{1}}$ $\frac{30. \ \text{Vo-F}}{\text{Vos}} = \frac{\text{Vos}}{\text{Vinconc}} \left(\frac{W}{L} \right)_{1}$
	30. 10-F 0.452
	$= 1 - \sqrt{\frac{30.6 - 1}{231.10^{-6} \cdot 1}} - 0,452$
	= 0,188 V
	(15 Macon. Vps 2 = 231×10-6 × 0,1882
	= 7,35
	-> Chon (W) - W 7
	(-)500 +
6.	Chon (W)
0.	· (-)6
	gm6 > 10gm1 7, 10x 94,25. [06 > 942,5 MA]V

1	-> Chon gm6 - 943 44
	gm = \ 2Th Mpcox [W]
	$(I_{DH} = I_{DA} = \frac{tos}{2})$ $gm_{4} = \sqrt{2.30 \cdot 10^{-6} \cdot 60.10^{-6} \cdot 5} = 94,87 \text{ MA/}$
	$(\frac{w}{t})_{6} = (\frac{w}{t})_{4} \times \frac{gm6}{gm4} = 5 \times \frac{943.10-6}{94,87.10^{-6}}$
	$= 49,7.$ $\Rightarrow Chan \left(\frac{W}{L}\right)_{E} = 50$
7.	Timb ID6 $\frac{1}{106} = \frac{9me^2}{2\mu_0 \cos(\frac{\pi}{10})} = \frac{(943.10^6)^2}{2.60.10^6.50}$
	- 148,2. MA Tinh (W)
8.	$I_{06} = I_{07} = 148,244$ $I_{06} = I_{07} = 148,244$ $I_{00} = I_{07} \times (\frac{W}{L})_{5} = 30.10^{-6}$
	(V) 7 Ip5 30. W

	= 34,58	
-7	(bon (W) - 35	7
	1 (2)7 - 1	

PHẦN 2: TIẾN HÀNH CHẠY MÔ PHỎNG

1. Mô phỏng trong miền thời gian

❖ Điện áp đầu ra

❖ Đầu ra

out_pp: MAX(v(out))=1.45325 FROM 0 TO 0.003

in_pp: MAX(v(in+)-v(in-))=0.999997 FROM 0 TO 0.003

kv: out pp/in pp=1.45326

pout: v(vdd) * (id(m5)+(-id(m6)))=1.27943e-10

2. Mô phỏng trong miền tần số

Chạy câu lệnh:

- .op .include tsmc018.txt
- .ac dec 100 1 100G .meas AC peak MAX V(out)/(V(in+)-V(in-))

peak: MAX.(v(out)/(v(in+)-v(in-))) = (-97.1076dB, 5.97471°) FROM 1 TO 1e+11

$$\frac{20 \log_{10} (V_{\text{out}} | (V_{\text{(in +)}} - V_{\text{(in -)}}) = -97,1076018}{-9 \log_{10} (V_{\text{out}}) | (V_{\text{(in +)}} - V_{\text{(in -)}}) = -4,856}$$

$$\frac{-9 V(\text{out}) | (V_{\text{(in +)}} - V_{\text{(in -)}}) = 10^{-4,856}$$

$$= 1,39.10^{-5} V_{\text{(in +)}}$$

$$= 0,0139 \text{ viv}$$

* Tính trở kháng đầu vào:

Chạy câu lệnh: .meas Zin find V(in+)/I(V1) at 1k

+ Tại 1k thì Zin có giá trị là 225,69 dB

Tính trở kháng ra:

+ Tại tần số 1K thì Zout có giá trị là 56,33 dB = 655,78 Ω

KẾT LUẬN

- + Về cơ bản mạch đã khuyếch đại ở đầu ra
- + Pout trong mô phỏng có giả trị lệch so với tính toán toán tay

Nhưng cả hai đều nhỏ hơn 2mV

+ Dải điện áp đầu ra: 0 -> 1.5 V