IoT Architectural View

COCSC20

Basic Premises

Devices

send and receive data interacting with the

Network

where the data is transmitted, normalized, and filtered using

Edge Computing

before landing in

Data storage / Databases

accessible by

Applications

which process it and provide it to people who will

Act and Collaborate

IoT 4 Layers model

Reference Model

Levels Collaboration & Processes Data at (Involving People & Business Processes) Center Rest Application (Reporting, Analytics, Control) **Data Abstraction** (Aggregation & Access) Data in Motion **Data Accumulation** (Storage) Edge (Fog) Computing (Data Element Analysis & Transformation) Connectivity (Communication & Processing Units) Edge **Physical Devices & Controllers** Sensors, Devices, Machines, (The "Things" in IoT) Intelligent Edge Nodes of all types

Physical Devices & Device Controllers (The "Things" in IoT)

IoT "devices" are capable of:

- Analog to digital conversion, as required
- Generating data
- Being queried / controlled over-the-net

Connectivity (Communication & Processing Units)

Level 2 functionality focuses on East-West communications

Connectivity includes:

- Communicating with and between the Level 1 devices
- Reliable delivery across the network(s)
- Implementation of various protocols
- Switching and routing
- Translation between protocols
- Security at the network level
- (Self Learning) Networking Analytics

3

Edge (Fog) Computing

(Data Element Analysis & Transformation)

Level 3 functionality focuses on North-South communications

Data packets

Include;

- Data filtering, cleanup, aggregation
- Packet content inspection
- · Combination of network and data level analytics
- Thresholding
- Event generation

Information understandable to the higher levels

Data Accumulation

(Storage)

- Event filtering/sampling
- Event comparison
- Event joining for CEP
- Event based rule evaluation
- Event aggregation
- Northbound/southbound alerting
- Event persistence in storage

Query Based Data Consumption

Event Based Data Generation Making network data usable by applications

- Converts data-in-motion to data-at-rest
- Converts format from network packets to database relational tables
- Achieves transition from 'Event based' to 'Query based' computing
- Dramatically reduces data through filtering and selective storing

Data Abstraction (Aggregation & Access)

Abstracting the data interface for applications

Information Integration

- Creates schemas and views of data in the manner that applications want
- Combines data from multiple sources, simplifying the application
- Filtering, selecting, projecting, and reformatting the data to serve the client applications
- Reconciles differences in data shape, format, semantics, access protocol, and security

6 Application (Reporting, Analytics, Control)

Control Applications

Vertical and Mobile Applications

Business Intelligence and Analytics

How Many Layers in OSI model?

- A. Four
- B. Five
- C. Six
- D. Seven
- E. None of the above.

TCP/IP stands for?

Transmission Control Protocol/Internet Networking Protocol have

- A. Four
- B. Five
- C. Six
- D. Seven
- E. None of the above.

OSI MODEL

TCP/IP MODEL

Application Layer	Application Layer	
Presentation Layer		
Session Layer		
Transport Layer	Transport Layer	
Network Layer	Internet Layer	
Data Link Layer	Network Access Layer	
Physical Layer		

	IoT Stack		Web Stack
TCP/IP Model	loT Applications	Device Management	Web Applications
Data Format	Binary, JSON, CBOR		HTML, XML, JSON
Application Layer	CoAP, MQTT, XMPP, AMQP		HTTP, DHCP, DNS, TLS/SSL
Transport Layer	UDP, DTLS		TCP, UDP
IPv6/IP Routing		Routing	IPv6, IPv4, IPSec
Internet Layer	6LoWPAN		
Network/Link Layer	IEEE 802.15.4 MAC		Ethernet (IEEE 802.3), DSL, ISDN, Wireless LAN
		15.4 PHY / al Radio	(IEEE 802.11), Wi-Fi

ITU-T IoT Reference Model

ICMP stands for

- A. Internet Connect Message Protocol
- B. Internet Control Message Protocol
- C. International Connect Message Protocol
- D. International Control Message Protocol

Comparison

Thank You

Contact me:

gauravsingal789@gmail.com

Gaurav.singal@nsut.ac.in

www.gauravsingal.in

LinkedIn: https://www.linkedin.com/in/gauravsingal789/

Twitter: https://twitter.com/gaurav_singal