

Informatika

1. prednáška

Číselné sústavy

Číselná sústava je systém zobrazenia ľubovoľného čísla pomocou určitého počtu znakov

Číselné sústavy

⇒ nepozičné:

- V období Rímskej ríše alebo antického Grécka sa používali rímske číslice, ktorých hodnota nezávisí od pozície, kde sa číslica v čísle nachádza.
- Obrazy rímskych a desiatkových číslic udáva nasledujúca tabuľka:

Desiatkové číslo	1	2	3	4	5	6	7	8	9
Rímska číslica		II	III	IV	V	VI	VII	VIII	IX
Desiatkové číslo	10	50	100	500	1000				
Rímska číslica	X	L	С	D	M				

Číselné sústavy

⇒ pozičné:

- čísla a ich zápis, ako ich poznáme dnes, zaviedli Arabi,
- zápis čísel pomocou znakov 0 až 9 a ich pozíciou sa vyjadrujú jednotky, stovky, desiatky atď.
- pozičná číselná sústava je taká, ktorá vyjadruje ľubovoľné číslo N polynómom:

$$N = Z_n P^n + Z_{n-1} P^{n-1} + \ldots + Z_1 P^1 + Z_0 P^0 + Z_{-1} P^{-1} + Z_{-2} P^{-2} + \ldots +$$

$$+Z_{-m}P^{-m} = \sum_{i=-m}^{n} Z_{i}P^{i}$$

kde: P – základ číselnej sústavy, Z_i – znaky použiteľné v danej ČS i∈⟨-m, n⟩.

• • Základ ČS

- môže byť ľubovoľné číslo,
- praktický význam z hľadiska informatiky majú len niektoré číselné sústavy:
 - desiatková (dekadická) základ ČS = 10 použiteľné znaky: 0,1,2,3,4,5,6,7,8,9
 - dvojková (binárna) základ ČS = 2
 použiteľné znaky: 0,1
 - osmičková (oktálová) základ ČS = 8
 použiteľné znaky: 0,1,2,3,4,5,6,7
 - šestnástková (hexadecimálna) základ ČS = 16
 použiteľné znaky: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F.

Desiatková ČS

V bežnom živote sa pri výpočtoch najčastejšie stretávame s desiatkovou číselnou sústavou, ktorá na zápis čísla používa 10 znakov (číslice 0, 1, 2, 3, 4, 5, 6, 7, 8 a 9).

Napr. desiatkové číslo 328,75 môžeme zapísať ako: 3x10²+2x10¹+8x10⁰+7x10⁻¹+5x10⁻²

Úplný zápis každého desiatkového čísla môžeme zapísať pomocou polynómu:

$$Z_{n}10^{n} + Z_{n-1}10^{n-1} + Z_{n-2}10^{n-2} + \ldots + Z_{1}10^{1} + Z_{0}10^{0} + Z_{-1}10^{-1} + Z_{-2}10^{-2} + \ldots + Z_{1}10^{-m+1} + Z_{-m+1}10^{-m+1} + Z_{-m}10^{-m}$$
Základ číselnej sústavy
$$P = 10$$

Dvojková číselná sústava

- dvojková (binárna) číselná sústava má význam od obdobia vzniku prvých elektronických počítačov,
- elektronické konštrukčné prvky počítačov sú najrýchlejšie a najspoľahlivejšie tie, ktoré majú dva stabilné stavy,
- tieto fyzikálne prvky svojou činnosťou priamo modelujú znaky dvojkovej číselnej sústavy,
- všetky informácie aj v súčasnom počítači sú uložené pomocou dvoch znakov: 0 a 1 (nie je napätie = 0, je napätie = 1).

Základnú jednotku informácie nazývame 1 bit (z angl. binary digit – binárne číslo).

Zápis čísel v dvojkovej číselnej sústave

P = 10	P = 2		
0	0.20	0	
1	1.20	1	
2	$1.2^{1}+0.2^{0}$	10	
3	$1.2^{1}+1.2^{0}$	11	
4	$1.2^2 + 0.2^1 + 0.2^0$	100	
5	$1.2^2 + 0.2^1 + 1.2^0$	101	
6	$1.2^2 + 1.2^1 + 0.2^0$	110	
7	$1.2^2+1.2^1+1.2^0$	111	
8	$1.2^3 + 0.2^2 + 0.2^1 + 0.2^0$	1000	
9	$1.2^3 + 0.2^2 + 0.2^1 + 1.2^0$	1001	
10	$1.2^3 + 0.2^2 + 1.2^1 + 0.2^0$	1010	

Aritmetické operácie v dvojkovej ČS

- sú jednoduchšie ako v desiatkovej číselnej sústave,
- pravidlá pre vykonávanie aritmetických operácií si treba osvojiť len pre dve číslice, ktoré sa môžu vyskytnúť v jednom ráde.

Pravidlá pre aritmetické operácie v dvojkovej číselnej sústave sú nasledujúce:

Sčítanie:	Odčítanie:	Násobenie
0 + 0 = 0	0 - 0 = 0	$0 \times 0 = 0$
0 + 1 = 1	1 - 0 = 1	$0 \times 1 = 0$
1 + 0 = 1	1 - 1 = 0	$1 \times 0 = 0$
1 + 1 = 10	10 - 1 = 1	$1 \times 1 = 1$

• • Príklady sčítania v dvojkovej ČS

Pr.1: Sčítanie dvoch čísel $[9]_{10}$ a $[6]_{10}$ v dvojkovej číselnej sústave.

$$[6]_{10} = [1 \ 1 \ 1 \ 0]_{2}$$
$$[9]_{10} = [1 \ 0 \ 0 \ 1]_{2}$$
$$[15]_{10} = [1 \ 1 \ 1 \ 1]_{2}$$

Pr.2: Sčítanie dvoch čísel [94]10 a [90]10 v dvojkovej číselnej sústave – pri sčítaní dvoch jednotiek v jednom ráde vzniká tzv. prenos do vyššieho rádu.

$$\begin{bmatrix} 94]_{10} = & 1111 \\ [90]_{10} = & [1011110]_{2} \\ [90]_{10} = & [1011010]_{2} \\ \hline
 [184]_{10} = & [10111000]_{2}$$

Osmičková a šestnástková ČS

- > Základ osmičkovej (oktálovej) číselnej sústavy je P = 8, povolené znaky Z_i sú číslice 0, 1, 2, 3, 4, 5, 6, 7.
- > Základ <u>šestnástkovej</u> (hexadecimálnej) číselnej sústavy je P = 16, povolené znaky Z_i sú 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F.
- V polyadických číselných sústavách so základom nižším ako 10 (P<10) nie sú problémy s definovaním znakov Z_i ich súbor je podmnožinou desiatkovej sústavy, vypustením čísel vyšších a rovných základu.
- V šestnástkovej číselnej sústave je potrebné k súboru znakov desiatkovej sústavy pridať ešte šesť znakov – písmená veľkej abecedy.

Zápisy čísel v osmičkovej a šestnástkovej ČS

P = 10	P = 8		P = 16		
0	0.8^{0}	0	0.16^{0}	0	
1	1.8^{0}	1	1.16^{0}	1	
2	2.8^{0}	2	2.16^{0}	2	
3	3.8^{0}	3	3.16^{0}	3	
4	4.80	4	4.160	4	
5	5.80	5	5.16^{0}	5	
6	6.80	6	6.160	6	
7	7.8^{0}	7	7.16^{0}	7	
8	$1.8^1 + 0.8^0$	10	8.160	8	
9	1.8 ¹ +1.8 ⁰	11	9.160	9	
10	$1.8^1 + 2.8^0$	12	10.16 ⁰	A	
11	1.8 ¹ +3.8 ⁰	13	11.160	В	
12	$1.8^{1} + 4.8^{0}$	14	12.16^{0}	C	
13	1.8 ¹ +5.8 ⁰	15	13.16 ⁰	D	
14	1.8 ¹ +6.8 ⁰	16	14.160	E	
15	1.8 ¹ +7.8 ⁰	17	15.16^{0}	F	
16	$2.8^{1}+0.8^{0}$	20	$1.16^{1} + 0.16^{0}$	10	
17	2.81+1.80	21	1.16 ¹ +1.16 ⁰	11	
18	$2.8^1 + 2.8^0$	22	1.16 ¹ +2.16 ⁰	12	
19	2.81+3.80	23	1.16 ¹ +3.16 ⁰	13	
20	2.81+4.80	24	1.16 ¹ +4.16 ⁰	14	

ČS z hľadiska práce počítača

- Počítač pracuje s číslami v dvojkovej číselnej sústave.
- Dvojkové čísla sú obyčajne dlhé a neprehľadné postupnosti núl a jednotiek.
- Pre jednoduchší zápis dvojkových čísel sa používa osmičková alebo šestnástková číselná sústava.

Prevod medzi dvojkovou, osmičkovou a šestnástkovou sústavou je veľmi jednoduchý.

• • Prevody medzi číselnými sústavami

Prevod čísla z číselnej sústavy so základom **P** do desiatkovej sústavy je jednoduchý.

Prevedie sa vyčíslením výrazu:

$$N = \sum_{i=-m}^{n} Z_{i}.P^{i}$$

Prevod čísla z dvojkovej číselnej sústavy [1 1 0 1 0 1 0 1 0 1]₂ do desiatkovej sústavy.

$$[1 \ 1 \ 0 \ 1 \ 0 \ 1 \ 0 \ 1]_2 =$$

$$= 1.2^{0} + 0.2^{1} + 1.2^{2} + 0.2^{3} + 1.2^{4} + 0.2^{5} + 1.2^{6} + 0.2^{7} + 1.2^{8} + 1.2^{9} =$$

$$= 1 + 0 + 4 + 0 + 16 + 0 + 64 + 0 + 256 + 512 = [853]_{10}$$

Prevod čísla z desiatkovej ČS do sústavy so základom P

Najlepší spôsob prevodu je delením desiatkového čísla N_{10} základom číselnej sústavy P a zaznamenávaním zvyškov po delení, ktoré sú vlastne číslom N_P v zvolenej číselnej sústave.

Prevod čísla realizujeme opakovaným delením základom *P*.

Príklad:

Prevod čísla [39]₁₀ do dvojkovej číselnej sústavy.

 $[39]_{10} = [1\ 0\ 0\ 1\ 1\ 1]_2$

Skúška správnosti: $1.2^0 + 1.2^1 + 1.2^2 + 0.2^3 + 0.2^4 + 1.2^5 =$ $=1+2+4+32=[39]_{10}$

Prevod čísla z desiatkovej ČS do sústavy so základom P

Prevod čísla z desiatkovej do osmičkovej ČS:

Príklad:

Prevod čísla [250]₁₀ do osmičkovej číselnej sústavy.

Zvyšky po delení
$$250: 8 = 31$$
 $2 \uparrow$ $31: 8 = 3$ 7 $3: 8 = 0$ 3 [250]₁₀ = [3 7 2]₈

Skúška správnosti: $2.8^{0}+7.8^{1}+3.8^{2}=2+56+192=[250]_{10}$

Prevod medzi dvojkovou a osmičkovou číselnou sústavou:

Pre základy týchto sústav platí: $2^3 = 8^1$, tri rády dvojkového čísla sa zobrazia jedným rádom osmičkového čísla.

Prevod čísla [11101011010]₂ do osmičkovej číselnej sústavy.

Postup prevodu je nasledujúci:

- číslo rozdelíme po tri číslice sprava doľava,
- každú trojicu číslic prevedieme na číslo v osmičkovej číselnej sústave.

$$[11 \ | 101 \ | 011 \ | 010]_2 = [3 \ 5 \ 3 \ 2]_8$$

Prevod čísla [351]₈ do dvojkovej číselnej sústavy.

Postup: každú číslicu osmičkového čísla prevedieme na trojmiestne číslo do dvojkovej sústavy (zľava doplníme nuly, napr. číslo [1] $_8$ vyjadríme ako [001] $_2$).

$$[3 5 1]_8 = [11 101 001]_2$$

Prevod medzi dvojkovou a šestnástkovou číselnou sústavou:

Pre základy týchto sústav platí: $2^4 = 16^1$,

t.j. štyri rády dvojkového čísla sa zobrazia jedným rádom šestnástkového čísla.

Prevod čísla [11101011010]₂ do šestnástkovej číselnej sústavy.

Postup prevodu je nasledujúci:

- číslo rozdelíme po štyri číslice sprava doľava,
- každú štvoricu číslic prevedieme na číslo v šestnástkovej číselnej sústave.

Prevod čísla [B73C]₁₆ do dvojkovej číselnej sústavy.

Postup: každú číslicu šestnástkového čísla prevedieme na štvormiestne číslo do dvojkovej sústavy (zľava doplníme nuly, napr. číslo [1]₁₆ vyjadríme ako [0001]₂).

Informatika, informácia...

Veda, ktorá sa zaoberá informáciami, ich štruktúrou, uchovávaním a spracovaním sa nazýva *informatika*.

Informatika
 ako vedný odbor nemá jednoznačnú definíciu

Napr.

- definícia American Society for Information Science:
 - informatika je veda, ktorá sa zaoberá vznikom, zhromažďovaním, organizáciou, interpretáciou, ukladaním, vyhľadávaním, rozširovaním, pretváraním a využívaním informácií s osobitným zreteľom na aplikáciu modernej techniky.
- > definícia School of Informatics University v Edinburgu:
 - informatika je veda zaoberajúca sa štúdiom štruktúry, správania a interakcií prirodzených a umelých výpočtových systémov, ktorá študuje zobrazenie, spracovanie a komunikáciu informácií v systéme, vrátane všetkých výpočtových, kognitívnych a sociálnych aspektov.

• • Informatika

Základom všetkých definícií **informatiky** je **informácia**, jej zobrazenie, spracovanie a transformácia pomocou matematických a logických algoritmov a jej bezpečné uchovanie.

• • Rozdelenie informatiky

- > teoretická,
- praktická,
- > technická,
- > aplikovaná.

• • Teoretická informatika

- je založená na matematických metódach a modeloch, z ktorých vychádzajú algoritmy pre spracovanie informácií alebo konštrukcie počítačov,
- na rozdiel od matematických disciplín je však technická informatika charakterizovaná dynamickým priebehom procesov.

Oblasti aplikácie: teória automatov, teória formálnych jazykov, teória zložitosti a pod.

• • Praktická informatika

- zaoberá sa problematikou architektúry a činnosti počítačov,
- zabezpečuje realizáciu algoritmov prostredníctvom výpočtových zariadení,
- zápis algoritmov do programovacích jazykov a preklad programov do strojových kódov,
- riadenie vstupov a výstupov, multitasking a multiuser a pod.
- Oblasti aplikácie: informačné systémy, simulačné techniky, umelá inteligencia, tvorba kompilátorov a pod.

• • • Technická informatika

zaoberá sa logickým návrhom a realizáciou architektúry počítačov a ďalších zariadení a obvodov.

Oblasti aplikácie: riadenie a prevádzka počítačov a procesov, návrh a realizácia integrovaných obvodov a pod.

• • • Aplikovaná informatika

- ovplyvňuje ďalšie vedné odbory a oblasti,
- zahŕňa aplikácie teoretickej, praktickej a technickej informatiky a zaoberá sa automatizáciou procesov pomocou prostriedkov informačných technológií a metódami vývoja a aplikácie programových systémov.

Oblasti aplikácie: podniková informatika, manažérska informatika, hospodárska informatika a pod.

• • Informácia

Jedna z najčastejšie používaných definícií:

- Informácia je prostriedok, ktorý umožňuje dosiahnutie cieľa, predstavuje nové poznatky alebo umožňuje konať určitým spôsobom.
 - s pojmom informácia úzko súvisí správa a údaj.
- Správa postupnosť znakov spracovaná určitým algoritmom, ktorá prináša fakty, vytvára vzťahy a vyjadruje stavy.
 - každá správa, ktorú je prijímateľ schopný spracovať sa označuje ako údaj, resp. v oblasti IT sa používa pojem dáta,
 - všetky údaje nesú so sebou určitý informačný obsah,
 - v prípade, že nám údaj nepovie nič nové, hovoríme, že jeho informačný obsah je nulový.
- > Informácia je výsledok spracovania údajov.

• • Vlastnosti informácie:

- je nehmotná,
- je nezávislá od času a priestoru,
- vyskytuje sa vždy len v spojení s jej fyzikálnym nositeľom – signálom,
- je merateľná prostredníctvom zmien fyzikálnych veličín.

Zobrazenie informácie pomocou fyzikálnych veličín

Z hľadiska spracovania informácií prostredníctvom informačných technológií je s informáciou nerozlučne spojený pojem signál.

Rozumieme ním napr. určitú hodnotu napätia, elektrický impulz, zmenu polarity svetelného lúča a pod.

Signál je fyzikálnym nositeľom informácie a umožňuje jej získavanie, spracovanie a uchovanie.

Pri analógovom zobrazení sa závisle premenná veličina mení spojite podľa daného vzťahu (funkcie) k premennej veličine.

Analógový (spojitý) signál môže nadobúdať nekonečne veľa hodnôt z daného intervalu.

V prípade **číslicového** (digitálneho) zobrazenia sú údaje reprezentované diskrétnymi stavmi logických súčiastok.

Číslicový signál môže nadobúdať spočítateľne veľa hodnôt z daného intervalu, ktoré sú nespojité a ich vzájomný prechod sa realizuje skokovo.

Matematicky je možné digitálny signál vyjadriť pomocou postupnosti celých čísel – v prípade informatiky ide o kódovanie údajov pomocou postupnosti núl a jednotiek.

• • Jednotky informácie

Informácie sa v číslicových (digitálnych) počítačoch zobrazujú pomocou diskrétnych hodnôt napätia, ktoré má zadefinované **dva stavy** – nižšia hodnota predstavuje logickú **0** a vyššia logickú **1**.

Jednotka informácie – 1 bit (1b)

- zaviedol ju Claude E. Shannon (autor Teórie informácie) ako skratku slovného spojenia <u>bi</u>nary digi<u>t</u>.
- bit môže nadobúdať jednu z dvoch logických hodnôt navzájom sa vylučujúcich stavov:
 - "zapnutý vypnutý",
 - "pravda nepravda",
 - "0 1" a pod.

• • Jednotky informácie

1 bit

- je najmenšia jednotka informácie,
- je to množstvo informácií, ktoré získame správou o realizácii jedného z dvoch možných, rovnako pravdepodobných stavov,

Na popísanie viac ako jedného stavu potrebujeme viacero bitov.

Počet potrebných bitov je v prípade informatiky potom daný vzťahom:

 $L = \log_2 N$ kde: L – požadovaný počet bitov,

N – maximálny počet získaných stavov

2 – základ logaritmu (1b predstavuje dva možné stavy)

• • Jednotky informácie

- V oblasti informatiky a číslicových počítačov sa používa pojem Byte (B) - predstavuje osembitovú postupnosť.
- Osem bitov predstavuje jeden byte (B), čo je najmenšia adresovateľná časť pamäti.
- 1Byte predstavuje 256 (28) rôznych kombinácií binárnych stavov.

Binárne vyjadrenie násobkov jednotiek informácie

Hodnota	Označenie	Predpona	Násobok
10241	k	kilo-	$1\ 024b = 2^{10}b$
10242	M	mega-	$1\ 048\ 576b = 2^{20}b$
10243	G	giga-	$1\ 073\ 741\ 824 = 2^{30}\mathbf{b}$
10244	T	tera-	$1\ 099\ 511\ 627\ 776 = 2^{40}\mathbf{b}$
10245	P	peta-	1 125 899 906 842 624 = 2 ⁵⁰ b
10246	E	exa-	2 ⁶⁰ b
10247	Z	zetta-	2 ⁷⁰ b
10248	Y	yotta-	2 ⁸⁰ b