۱۴.۲ جلسهی بیست و ششم

سرانجام همهی مقدمات برای اثبات قضیهی زیر از مُرلی فراهم آمد. در این جلسه این قضیه را ثابت میکنیم.

قضیه ۲۳۴ (قضیه ی مُرلی): فرض کنیم که T یک تئوریِ کاملِ شمارای به طورناشمارا جازم باشد. آنگاه T در هر کاردینال $\kappa \geq \kappa$ ، جازم است.

قضیهی بالا از لم زیر به آسانی نتیجه میشود:

لم ۲۳۵: فرض کنیم که T یک تئوری ω پایدار باشد و κ کاردینالی ناشمارا. فرض کنیم که تمام مدلهای دارای اندازه κ از κ اشباع باشند. آنگاه برای هر کاردینال ناشمارای κ همه مدلهای دارای اندازه ی κ از κ اشباعند.

اثبات قضیه ی مُرلی به عنوان نتیجه ی لم بالا. قبلاً ثابت کرده ایم که اگر T در یک کاردینالِ ناشمارای جازم باشد، آنگاه تنها مدلِ (همه ی مدلهای) آن با اندازه ی κ اشباعند. برای هر کاردینال ناشمارای دلخواهِ κ نیز بنا به لمِ بالا، تمام مدلهای T از اندازه ی κ ، اشباعند. از این رو (با کمک سامانههای رفت و برگشتی) همه ی مدلهای با اندازه ی κ از κ با هم ایزومرفند؛ یعنی تئوری یادشده، κ جازم است.

اثبات ِلم. فرض کنید که T مدلی چون \mathfrak{M} داشته باشد دارای اندازه ی λ ، که اشباع نباشد. بنابراین \mathfrak{M} نباشد. بنابراین \mathfrak{M} با $A\subseteq M$ با $A\subseteq M$ و \mathfrak{M} و \mathfrak{M} بان موجودند که \mathfrak{M} در \mathfrak{M} برآورده نمی شود. قبلاً ثابت کرده ایم که دنباله ی بازنشناختنی چون \mathfrak{M} و \mathfrak{M} در \mathfrak{M} موجود است.

از آنجا که p در M برآورده نمی شود، به ویژه p(x) روی p(x) روی p(x) ایزوله نیست (اگر ایزوله بود، p(x) برآورده می شد). بنابراین هیچ فرمولی چون $p(x) \in L_{A \cup I}$ سازگار با $p(x) \in L_{A \cup I}$ موجود نیست، به طوری که برای هر $p(x) \in L_{A \cup I}$ داشته باشیم $p(x) \in p(x)$ بس برای هر فرمول $p(x) \in D$ داشته باشیم $p(x) \in p(x)$ بان موجود است که $p(x) \in D$ که با $p(x) \in D$ بان موجود است که $p(x) \in D$ شماراست. در عای ۲۳۶: بدون کاسته شدن از کلیت می توان فرض کرد که مجموعه $p(x) \in D$ شماراست.

برای توجیه ادعای بالا، فرض کنیم که $A.\subseteq A$ شمارا باشد. در این صورت، مجموعهی برای توجیه ادعای بالا، فرض کنیم که برای هر فرمول \mathfrak{M} با \mathfrak{M} سازگار باشد، شمارای $A_1\supseteq A$ چنان موجود است که برای هر فرمول $\theta(x)\in L_{A,\cup I}$ که با \mathfrak{M} سازگار باشد، فرمول $\theta(x)\in \mathfrak{M}$ چنان موجود است که برای هر فرمول $\theta(x)\in \mathfrak{M}$ بدین ترتیب فرمول \mathfrak{M}

میتوان مجموعههای $A \in A_1 \subseteq A_1 \subseteq A_2$ را چنان یافت که برای هر فرمول $\phi \in L_{A_n \cup I}$ فرمولی میتوانیم قرار دهیم چون $\mathfrak{M} \models \exists x \quad (\phi(x) \land \neg \theta(x))$ در این شود به طوری که $\mathfrak{M} \models \exists x \quad (\phi(x) \land \neg \theta(x))$ میتوانیم قرار دهیم $\mathfrak{M} \models \exists x \quad (\phi(x) \land \neg \theta(x))$ در این صورت برای هر فرمول \mathfrak{M} متعلق به این تایپ، فرمولی در $\mathfrak{M} \models \exists x \quad (\phi(x) \land \neg \theta(x))$ مانند $\mathfrak{M} \land \mathfrak{M} \models \exists x \quad (\phi(x) \land \neg \theta(x))$ و در آن دنباله بازنشناختنی روی $\mathfrak{M} \land \mathfrak{M} \models \mathfrak{M}$ مانند $\mathfrak{M} \not \models \mathfrak{M}$ و در آن دنباله بازنشناختنی روی $\mathfrak{M} \land \mathfrak{M} \models \mathfrak{M}$ مانند $\mathfrak{M} \land \mathfrak{M} \models \mathfrak{M}$ و در آن دنباله بازنشناختنی روی $\mathfrak{M} \land \mathfrak{M} \models \mathfrak{M}$ از سوئی، بنا به چنان موجودند که برای هر $\mathfrak{M} \land \mathfrak{M} \land \mathfrak{M} \models \mathfrak{M$

$$\mathfrak{N} \models \psi(x, b_i, \dots, b_{i_n}, \bar{a}) \rightarrow \theta(x).$$

ایزوله است؛ فرض کنیم فرمول $\psi(x,b_{i_1},\ldots,b_{i_n},ar{a})\in \operatorname{tp}(c/A\cup I')$ آن را ایزوله کند. پس

پس

برای هر فرمول $\theta(x) \in p(x)$ داریم

$$\forall x(\psi(x) \to \theta(x)) \in \operatorname{tp}(b_i, \dots, b_{i_n}/A) = \operatorname{tp}(a_1, \dots, a_n/A).$$

.پس برای هر
$$\theta(x) \in \psi(x,a_1,\ldots,a_n,ar{a}) o heta(x)$$
 داریم $heta(x) \in \psi(x,a_1,\ldots,a_n,ar{a})$ تناقض

خلاصه ی اثبات. فرض کنیم همه ی مدلهای از اندازه ی κ اشباع باشند ولی مدلی داشته باشیم از اندازه ی κ که اشباع نباشد. در این مدل یک دنباله ی بازنشناختنی κ موجود است. اگر تاییی باشد که در κ برآورده نشود، روی κ ایزوله نیست.

از طرفی در یک توسیع مقدماتی از $\mathfrak M$ دنبالهای مانند I' همتایپ با I داریم که اندازهاش κ است. روی این دنباله و K مدلی ساخته شدنی در نظر می گیریم. تایپ K در این مدل توسط فرمولی در K ایزوله می شود؛ بنابراین،از آنجا که دنباله ی K با دنباله ی K همتایپ است، این تایپ توسط فرمولی در K نیز ایزوله می شود؛ تناقض با انتهای بند قبل.