(a)
$$\frac{1}{2}$$
 (1+kz) $\frac{1}{2}$ + (kr-kz) $\frac{1}{2}$ + (kr+kz) $\frac{1}{2}$ + (kr+kz) $\frac{1}{2}$ + (kr+kz) $\frac{1}{2}$ + (kr+kz)

It is not possible to find a set of ki and ky such that $T(s) = \frac{Y(s)}{R(s)}$. We introduce an additional gain la precompen

at the ref. isp.

where
$$\frac{|k_1-k_2|}{|i+k_2|} \approx 5.2$$

$$\frac{|k_1-k_2|}{|i+k_2|} \approx 5.2$$

$$\frac{|k_1-k_2|}{|i+k_2|} \approx 5.2$$

$$\frac{|k_1-k_2|}{|i+k_2|} \approx 5.2$$

$$\Rightarrow \frac{Y(s)}{R(s)}$$
 will implement $T(s)$