Junio 2019

Ejercicio 1 Análisis de programa en lenguaje de ensamble

1.8 puntos

La memoria RAM de un microcontrolador basado en un procesador ARM Cortex-MO (littleendian) contiene los datos dados en la siguiente tabla: 0800

Dirección / y	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Ε	F
0x1000 000y	2F	Α7	30	3D	2E	7C	43	12	FF	FF	C6	24	F8	FF	3D	35
0x1000 001y	7F	73	0F	FØ	97	6C	E5	4B	6A	2A	Α4	75	D1	0C	33	65
0x1000 002y	00	00	8A	6A	49	2C	75	3C	С3	EA	3B	3E	F8	36	DF	07

FIOF

Los valores de algunos registros del procesador son:

Registro	Contenido
RØ	0×1000 0002
R1	0xDEAD BEEF
R2	0xFEE1 BAAD
R3	0xA5A5 5A5A

En estas circunstancias se llama a una función cuyo prototipo es int fun(char *) y cuyo cuerpo es:

$$R_1 = 0 \times 1000 \cdot 000 \cdot 2$$
 $R_0 = 0$
 $R_2 = 0$
 $R_3 = 0 \times 0000 \cdot 3030$

Apartado A. Rellene la siguiente tabla indicando cómo quedarán los registros del procesador tras la ejecución de fun() (es decir, cuando se alcance la instrucción BX LR, que retorna de la función).

Registro	Contenido (hexadecimal con 32 bits)	
RØ	00 3	
R1	0x 1000 000 2	\
R2	0x0 0 0 1E	
R3	0	-

OF FI