日本 国 特 許 庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2002年 2月 8日

出 願 番 号 Application Number:

特願2002-031916

[ST. 10/C]:

[J P 2 0 0 2 - 0 3 1 9 1 6]

出 願
Applicant(s):

人

株式会社ニコン

特許庁長官 Commissioner, Japan Patent Office 2003年12月25日

【書類名】

特許願

【整理番号】

02-00062

【あて先】

特許庁長官殿

【国際特許分類】

H01L 21/027

【発明者】

【住所又は居所】

東京都千代田区丸の内3丁目2番3号 株式会社ニコン

内

【氏名】

宮下 和之

【発明者】

【住所又は居所】

東京都千代田区丸の内3丁目2番3号 株式会社ニコン

内

【氏名】

三口 貴史

【特許出願人】

【識別番号】

000004112

【氏名又は名称】

株式会社ニコン

【代理人】

【識別番号】

100102901

【弁理士】

【氏名又は名称】

立石 篤司

【電話番号】

042-739-6625

【手数料の表示】

【予納台帳番号】 053132

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1 ·

【物件名】

要約書 1

【包括委任状番号】 9408046

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 光学特性計測方法、露光方法及びデバイス製造方法

【特許請求の範囲】

【請求項1】 第1面上のパターンを第2面上に投影する投影光学系の光学 特性を計測する光学特性計測方法であって、

少なくとも1つの露光条件を変更しながら、前記第1面上に配置された計測用 パターンを前記投影光学系の第2面側に配置された物体上に順次転写してマトリ ックス状に配置された複数の区画領域から成る全体として矩形の第1領域を前記 物体上に形成する第1工程と;

前記第1領域の周囲の少なくとも一部の前記物体上の領域に過露光の第2領域 を形成する第2工程と;

前記第1領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における前記計測用パターンの像の形成状態を検出する第3工程と;

前記検出結果に基づいて前記投影光学系の光学特性を求める第4工程と;を含む光学特性計測方法。

【請求項2】 前記第2工程は、前記第1工程に先立って行われることを特徴とする請求項1に記載の光学特性計測方法。

【請求項3】 前記第2領域は、前記第1領域を取り囲む一回り大きい矩形 枠状の領域の少なくとも一部であることを特徴とする請求項1又は2に記載の光 学特性計測方法。

【請求項4】 前記第2工程では、前記第1面上に配置された所定のパターンを前記投影光学系の第2面側に配置された前記物体上に転写して前記第2領域を形成することを特徴とする請求項1~3のいずれか一項に記載の光学特性計測方法。

【請求項5】 前記所定のパターンは全体として矩形のパターンであり、 前記第2工程では、前記第1面上に配置された前記全体として矩形のパターン を前記投影光学系の第2面側に配置された前記物体上に走査露光方式で転写する ことを特徴とする請求項4に記載の光学特性計測方法。

【請求項6】 前記所定のパターンは全体として矩形のパターンであり、

前記第2工程では、前記第1面上に配置された前記全体として矩形のパターン を前記投影光学系の第2面側に配置された前記物体上に順次転写することを特徴 とする請求項4に記載の光学特性計測方法。

【請求項7】 前記第2工程では、前記第1面上に配置された前記計測用パターンを前記投影光学系の第2面側に配置された前記物体上に過露光となる露光量で順次転写して前記第2領域を形成することを特徴とする請求項1~3のいずれか一項に記載の光学特性計測方法。

【請求項8】 前記第3工程では、前記第2領域の一部を基準として前記第 1領域を構成する複数の区画領域それぞれの位置を算出することを特徴とする請 求項1~7のいずれか一項に記載の光学特性計測方法。

【請求項9】 前記第3工程では、前記第1領域を構成する複数の区画領域及び前記第2領域に対応する撮像データに基づき、テンプレートマッチングの手法により前記第1領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を検出することを特徴とする請求項1~8のいずれか一項に記載の光学特性計測方法。

【請求項10】 前記第3工程では、前記第1領域を構成する複数の区画領域及び前記第2領域に対応する撮像データに基づき、前記第1領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を、各区画領域のピクセルデータに関する代表値を判定値として検出することを特徴とする請求項1~8のいずれか一項に記載の光学特性計測方法。

【請求項11】 第1面上のパターンを第2面上に投影する投影光学系の光学特性を計測する光学特性計測方法であって、

少なくとも1つの露光条件を変更しながら、前記第1面上に配置されたマルチバーパターンを含む計測用パターンを前記投影光学系の第2面側に配置された物体上に順次転写し、隣接する複数の区画領域から成り、各区画領域に転写された前記マルチバーパターンとこれに隣接するパターンとが、前記マルチバーパターンの像のコントラストが前記隣接するパターンによる影響を受けない距離L以上離れている所定の領域を前記物体上に形成する第1工程と;

前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画

領域における像の形成状態を画像処理の手法により検出する第2工程と;

前記検出結果に基づいて前記投影光学系の光学特性を求める第3工程と;を含む光学特性計測方法。

【請求項12】 前記距離Lは、前記各区画領域を撮像する撮像装置の解像度を R_f 、前記マルチパターン像のコントラストを C_f 、プロセスによって定まるプロセスファクタを P_f 、前記撮像装置の検出波長を λ_f とした場合に、L=f(C_f 、 R_f 、 P_f 、 λ_f)なる関数で表されることを特徴とする請求項11に記載の光学特性計測方法。

【請求項13】 前記所定の領域は、前記物体上にマトリックス状に配置された複数の区画領域から成る全体として矩形の領域であることを特徴とする請求項11又は12に記載の光学特性計測方法。

【請求項14】 前記第2工程では、前記所定の領域の外周の輪郭から成る 矩形の外枠を前記所定の領域に対応する撮像データに基づいて検出し、その検出 された外枠を基準として前記所定の領域を構成する複数の区画領域それぞれの位 置を算出することを特徴とする請求項13に記載の光学特性計測方法。

【請求項15】 前記第1工程では、前記所定の領域内の最外周部に位置する複数の区画領域の少なくとも一部の特定の複数の区画領域が過露光の領域となるように前記露光条件の一部として前記物体上に照射されるエネルギビームのエネルギ量を変更することを特徴とする請求項11~14のいずれか一項に記載の光学特性計測方法。

【請求項16】 前記第2工程では、前記所定の領域を構成する複数の区画領域に対応する撮像データに基づき、テンプレートマッチングの手法により前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を検出することを特徴とする請求項11~15のいずれか一項に記載の光学特性計測方法。

【請求項17】 前記第2工程では、前記所定の領域を構成する複数の区画領域に対応する撮像データに基づき、前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を各区画領域のピクセルデータに関する代表値を判定値として検出することを特徴とする請求項1

1~15のいずれか一項に記載の光学特性計測方法。

【請求項18】 前記代表値は、前記ピクセルデータの加算値、微分総和値、分散及び標準偏差の少なくとも1つであることを特徴とする請求項10又は17に記載の光学特性計測方法。

【請求項19】 前記代表値は、各区画領域内の指定範囲内におけるピクセル値の分散及び標準偏差のいずれかであることを特徴とする請求項18に記載の光学特性計測方法。

【請求項20】 前記露光条件は、前記投影光学系の光軸方向に関する前記物体の位置及び前記物体上に照射されるエネルギビームのエネルギ量の少なくとも一方を含むことを特徴とする請求項1~19のいずれか一項に記載の光学特性計測方法。

【請求項21】 前記計測用パターンの転写に際しては、前記投影光学系の 光軸方向に関する前記物体の位置と前記物体上に照射されるエネルギビームのエネルギ量をそれぞれ変更しながら、前記計測用パターンを前記物体上に順次転写し、前記像の形成状態の検出に際しては、前記物体上の前記少なくとも一部の複数の区画領域における前記計測用パターンの像の有無を検出し、前記光学特性を求めるに際しては、前記像が検出された複数の区画領域に対応する前記エネルギビームのエネルギ量と前記投影光学系の光軸方向に関する前記物体の位置との相関関係により最良フォーカス位置を決定することを特徴とする請求項1~20のいずれか一項に記載の光学特性計測方法。

【請求項22】 第1面上のパターンを第2面上に投影する投影光学系の光 学特性を計測する光学特性計測方法であって、

矩形枠状のパターンと該矩形枠状のパターンの内部に位置する計測用パターンとを含む対象パターンを前記第1面上に配置し、少なくとも1つの露光条件を変更しながら、かつ前記投影光学系の第2面側に配置された物体を前記矩形枠状のパターンのサイズに対応する距離以下のステップピッチで順次移動して前記対象パターンを前記物体上に順次転写することにより、マトリックス状に配置された複数の区画領域から成る全体として矩形の所定の領域を前記物体上に形成する第1工程と;

前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画 領域における像の形成状態を画像処理の手法により検出する第2工程と;

前記検出結果に基づいて前記投影光学系の光学特性を求める第3工程と;を含む光学特性計測方法。

【請求項23】 前記第1工程では、前記所定の領域内の最外周部に位置する複数の区画領域の少なくとも一部の特定の複数の区画領域が過露光の領域となるように前記露光条件の一部として前記物体上に照射されるエネルギビームのエネルギ量を変更することを特徴とする請求項22に記載の光学特性計測方法。

【請求項24】 前記第2工程は、前記所定の領域の外周の輪郭から成る矩形の外枠を前記所定の領域に対応する撮像データに基づいて検出する外枠検出工程と;

前記検出された外枠を基準として前記所定の領域を構成する複数の区画領域それぞれの位置を算出する算出工程と;を含むことを特徴とする請求項22又は23に記載の光学特性計測方法。

【請求項25】 前記外枠検出工程では、前記所定の領域の外周の輪郭から成る矩形の外枠を構成する第1辺から第4辺の各辺上でそれぞれ少なくとも2点を求め、前記求めた少なくとも8点に基づいて前記所定の領域の外枠を算出することを特徴とする請求項24に記載の光学特性計測方法。

【請求項26】 前記外枠検出工程は、前記所定の領域の外周の輪郭から成る矩形の外枠を構成する第1辺から第4辺のうちの少なくとも1辺について概略位置検出を行う概略位置検出工程と;

前記概略位置検出工程で算出された少なくとも1辺の概略位置の検出結果を利用して前記第1辺から第4辺の位置を検出する詳細位置検出工程と;を含むことを特徴とする請求項24に記載の光学特性計測方法。

【請求項27】 前記概略位置検出工程では、前記所定の領域の画像中心近 傍を通る第1方向のピクセル列情報を用いて境界検出を行い、前記所定の領域の 前記第1方向の一端,他端にそれぞれ位置し前記第1方向に直交する第2方向に 延びる第1辺,第2辺の概略位置をそれぞれ求め、

前記詳細位置検出工程では、

前記求めた前記第1辺の概略位置より所定距離だけ前記第2辺寄りの位置を通る前記第2方向のピクセル列、及び前記求めた前記第2辺の概略位置より所定距離だけ前記第1辺寄りの位置を通る前記第2方向のピクセル列を用いて境界検出を行い、前記所定の領域の前記第2方向の一端,他端にそれぞれ位置し前記第1方向に延びる第3辺、第4辺及び該第3辺、第4辺上の各2点を求め、

前記求めた第3辺より所定距離だけ前記第4辺寄りの位置を通る第1方向のピクセル列、及び前記求めた第4辺より所定距離だけ前記第3辺寄りの位置を通る前記第1方向のピクセル列を用いて境界検出を行い、前記所定の領域の前記第3辺、第4辺上の各2点を求め、

矩形領域である前記所定の領域の4項点を、前記第1ないし第4辺上の各2点の点に基づいて定まる4本の直線同士の交点として求め、

前記求めた4項点に基づいて最小二乗法による長方形近似を行い、回転を含めた前記所定の領域の矩形の外枠を算出することを特徴とする請求項26に記載の光学特性計測方法。

【請求項28】 前記境界検出に際しては、前記各ピクセル列のピクセル値から成る信号波形と所定の閾値 t との交点を求め、該求めた各交点の近傍の極大値及び極小値を求め、

求めた極大値及び極小値の平均値を新たな閾値t'とし、

前記波形信号が前記極大値と極小値間で新たな閾値 t 'を横切る位置を求め、 その位置を境界位置とすることを特徴とする請求項 2 7 に記載の光学特性計測方 法。

【請求項29】 前記閾値 t は、

所定の範囲の振り幅で閾値を変化させつつ、該閾値と前記境界検出用に取り出した直線状のピクセル列のピクセル値から成る信号波形との交点数を求め、該求めた交点数が、前記計測用パターンによって決まる目標交点数に一致したときの閾値を仮閾値とし、該仮閾値を含み、前記交点数が前記目標交点数となる閾値範囲を求め、その求めた閾値範囲の中心を前記閾値 t として決定することによって設定されていることを特徴とする請求項28に記載の光学特性計測方法。

【請求項30】 前記振り幅は、前記境界検出用に取り出した直線状のピク

セル列におけるピクセル値の平均と標準偏差を基に設定されていることを特徴と する請求項29に記載の光学特性計測方法。

【請求項31】 前記境界検出に際して、誤検出を起こし難い境界の検出情報を用いて、誤検出を起こし易い境界の検出範囲を限定することを特徴とする請求項27~30のいずれか一項に記載の光学特性計測方法。

【請求項32】 前記算出工程では、既知の区画領域の配列情報を用いて前記検出した外枠の内部領域を等分割して、前記所定の領域を構成する複数の区画領域それぞれの位置を算出することを特徴とする請求項24~31のいずれか一項に記載の光学特性計測方法。

【請求項33】 前記第2工程では、前記所定の領域に対応する撮像データに基づき、テンプレートマッチングの手法により前記第1領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を検出することを特徴とする請求項22~32のいずれか一項に記載の光学特性計測方法

【請求項34】 前記第2工程では、前記所定の領域に対応する撮像データに基づき、前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を、各区画領域のピクセルデータに関する代表値を判定値として検出することを特徴とする請求項22~32のいずれか一項に記載の光学特性計測方法。

【請求項35】 前記代表値は、前記ピクセルデータの加算値、微分総和値、分散及び標準偏差の少なくとも1つであることを特徴とする請求項34に記載の光学特性計測方法。

【請求項36】 前記代表値は、各区画領域内の指定範囲内におけるピクセル値の分散及び標準偏差のいずれかであることを特徴とする請求項35に記載の光学特性計測方法。

【請求項37】 前記指定範囲は、前記計測用パターンの像と前記区画領域との設計上の位置関係に応じて定まる縮小率で前記各区画領域を縮小した縮小領域であることを特徴とする請求項36に記載の光学特性計測方法。

【請求項38】 前記露光条件は、前記投影光学系の光軸方向に関する前記

物体の位置及び前記物体上に照射されるエネルギビームのエネルギ量の少なくとも一方を含むことを特徴とする請求項22~37のいずれか一項に記載の光学特性計測方法。

【請求項39】 前記第1工程では、前記投影光学系の光軸方向に関する前記物体の位置と前記物体上に照射されるエネルギビームのエネルギ量をそれぞれ変更しながら、前記対象パターンを前記物体上に順次転写し、

前記第2工程では、前記物体上の前記少なくとも一部の複数の区画領域における前記計測用パターンの像の有無を検出し、

前記第3工程では、その像が検出された複数の区画領域に対応する前記エネルギビームのエネルギ量と前記投影光学系の光軸方向に関する前記物体の位置との相関関係により最良フォーカス位置を決定することを特徴とする請求項22~38のいずれか一項に記載の光学特性計測方法。

【請求項40】 露光用のエネルギビームをマスクに照射し、前記マスクに 形成されたパターンを投影光学系を介して物体上に転写する露光方法であって、

請求項1~39のいずれか一項に記載の光学特性計測方法によって計測された 前記光学特性を考慮して前記投影光学系を調整する工程と;

前記調整された投影光学系を介して前記マスクに形成されたパターンを前記物体上に転写する工程と;を含む露光方法。

【請求項41】 リソグラフィ工程を含むデバイス製造方法であって、

前記リソグラフィ工程では、請求項40に記載の露光方法を用いることを特徴 とするデバイス製造方法。

【発明の詳細な説明】

 $[0\ 0\ 0\ 1]$

【発明の属する技術分野】

本発明は、光学特性計測方法、露光方法及びデバイス製造方法に係り、更に詳しくは、投影光学系の光学特性を計測する光学特性計測方法、該光学特性計測方法によって計測された光学特性を考慮して調整された投影光学系を用いて露光を行う露光方法、及び該露光方法を利用したデバイスの製造方法に関する。

[00002]

【従来の技術】

従来より、半導体素子、液晶表示素子等を製造するためのリソグラフィ工程では、マスク又はレチクル(以下、「レチクル」と総称する)に形成されたパターンを投影光学系を介してレジスト等が塗布されたウエハ又はガラスプレート等の基板(以下、適宜「ウエハ」ともいう)上に転写する露光装置が用いられている。この種の装置としては、近年では、スループットを重視する観点から、ステップ・アンド・リピート方式の縮小投影露光装置(いわゆる「ステッパ」)や、このステッパを改良したステップ・アンド・スキャン方式の走査型露光装置などの逐次移動型の露光装置が、比較的多く用いられている。

[0003]

また、半導体素子(集積回路)等は年々高集積化しており、これに伴い半導体素子等の製造装置である投影露光装置には、一層の高解像力、すなわちより微細なパターンを精度良く転写できることが要求されるようになってきた。投影露光装置の解像力を向上させるためには、投影光学系の光学性能を向上させることが必要であり、従って投影光学系の光学特性(結像特性を含む)を正確に計測し、評価することが重要となっている。

[0004]

投影光学系の光学特性、例えばパターンの像面の正確な計測は、投影光学系の 視野内の各評価点(計測点)における最適なフォーカス位置(最良フォーカス位 置)を正確に計測できることが前提となる。

[0005]

従来の投影露光装置における最良フォーカス位置の計測方法としては、主として以下の2つが知られている。

[0006]

1つは、いわゆるCD/フォーカス法として知られている計測方法である。ここでは、所定のレチクルパターン(例えば、ラインアンドスペースパターン等)をテストパターンとして、このテストパターンを投影光学系の光軸方向に関する複数のウエハ位置でテスト用ウエハに転写する。そして、そのテスト用ウエハを現像して得られるレジスト像(転写されたパターンの像)の線幅値を走査型電子

顕微鏡(SEM)等を用いて計測し、その線幅値と投影光学系の光軸方向に関するウエハ位置(以下、適宜「フォーカス位置」ともいう)との相関関係に基づいて最良フォーカス位置を判断する。

[0007]

他の1つは、いわゆるSMPフォーカス計測法として知られている計測方法である。ここでは、複数のフォーカス位置で、くさび形マークのレジスト像をウエハ上に形成し、フォーカス位置の違いによるレジスト像の線幅値の変化を長手方向の寸法変化に増幅させて置き換え、ウエハ上のマークを検出するアライメント系などのマーク検出系を用いてレジスト像の長手方向の長さを計測する。そして、フォーカス位置とレジスト像の長さとの相関関係を示す近似曲線の極大値近傍を所定のスライスレベルでスライスし、得られたフォーカス位置の範囲の中点を最良フォーカス位置と判断する。

[0008]

そして、種々のテストパターンについて、このようにして得られた最良フォーカス位置に基づいて、投影光学系の光学特性である非点収差や像面湾曲等を計測している。

[0009]

【発明が解決しようとする課題】

しかし、上述したCD/フォーカス法では、例えばレジスト像の線幅値をSE Mで計測するために、SEMのフォーカス合わせを厳密に行う必要があり、1点当たりの計測時間が非常に長く、多数点での計測をするためには数時間から数十時間が必要とされていた。また、投影光学系の光学特性を計測するためのテスト用パターンも微細化するとともに、投影光学系の視野内での評価点の数も増加することが予想される。従って、SEMを用いた従来の計測方法では、計測結果が得られるまでのスループットが大幅に低下するという不都合があった。また、測定誤差や測定結果の再現性についても、より高いレベルが要求されるようになり、従来の計測方法ではその対応が困難となってきた。さらに、フォーカス位置と線幅値の相関関係を示す近似曲線は、誤差を小さくするために4次以上の近似曲線が用いられており、それには、評価点毎に少なくとも5種類のフォーカス位置

に関する線幅値が求められなければならないという制約があった。また、最良フォーカス位置からずれたフォーカス位置(投影光学系の光軸方向に関する+方向と一方向との両方を含む)での線幅値と最良フォーカス位置での線幅値との差は、誤差を小さくするために10%以上であることが要求されているが、この条件を満足させることが困難となってきた。

[0010]

また、上述したSMPフォーカス計測法では、通常、計測を単色光で行うために、レジスト像の形状の違いにより干渉の影響が異なり、それが計測誤差(寸法オフセット)につながることが考えられる。さらに、画像処理にてくさび形マークのレジスト像の長さ計測を行うには、レジスト像の最も細くなる長手方向の両端部分までの情報を詳細に取り込む必要が有り、現状の画像取り込み機器(CCDカメラ等)の分解能では未だ十分ではないという問題点がある。また、テストパターンが大きいために、投影光学系の視野内での評価点の数を増加させることが困難であった。

$[0\ 0\ 1\ 1]$

この他、主として上述のCD/フォーカス法の欠点を改善するものとして、テスト露光によってパターンが転写されたウエハを現像し、現像後にウエハ上に形成されるパターンのレジスト像を撮像し、その撮像データを用いて所定のテンプレートとのパターンマッチングを行い、その結果に基づいて最良フォーカス位置などの最良露光条件を決定する発明が、例えば特開平11-233434号公報などに開示されている。この公報に開示される発明によると、SMP計測法のような現状の画像取り込み機器(CCDカメラ等)の分解能不足や、投影光学系の視野内での評価点の数の増加が困難であるという不都合もない。

$[0\ 0\ 1\ 2]$

しかるに、テンプレートマッチング法を採用して、かつこれを自動化する場合には、そのテンプレートマッチングを容易にするためにパターンとともにマッチングの基準となる枠(パターン)がウエハ上に形成されるのが通常である。

[0013]

しかしながら、上述のようなテンプレートマッチングを用いた最良露光条件の

決定方法にあっては、多種多用なプロセス条件の中にはパターンの近傍に形成されるテンプレートマッチングの基準となる枠の存在により、画像処理方式のウエハアライメント系、例えばFIA(field image alignment)系のアライメントセンサなどで画像取り込みを行った場合に、パターン部のコントラストが著しく低下して計測が不可能になる場合があった。

[0014]

本発明は、かかる事情の下になされたものであり、その第1の目的は、短時間で、精度及び再現性良く投影光学系の光学特性を計測することができる光学特性 計測方法を提供することにある。

[0015]

また、本発明の第2の目的は、高精度な露光を実現できる露光方法を提供する ことにある。

[0016]

また、本発明の第3の目的は、高集積度のデバイスの生産性を向上させること ができるデバイス製造方法を提供することにある。

$[0\ 0\ 1\ 7]$

【課題を解決するための手段】

請求項1に記載の発明は、第1面上のパターンを第2面上に投影する投影光学系(PL)の光学特性を計測する光学特性計測方法であって、少なくとも1つの露光条件を変更しながら、前記第1面上に配置された計測用パターン(MPn)を前記投影光学系の第2面側に配置された物体(WT)上に順次転写してマトリックス状に配置された複数の区画領域(DAi,j)から成る全体として矩形の第1領域(DCn)を前記物体上に形成する第1工程と;前記第1領域の周囲の少なくとも一部の前記物体上の領域に過露光の第2領域(DDn)を形成する第2工程と;前記第1領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における前記計測用パターンの像の形成状態を検出する第3工程と;前記検出結果に基づいて前記投影光学系の光学特性を求める第4工程と;を含む光学特性計測方法である。

[0018]

本明細書において、「露光条件」とは、照明条件(マスクの種別を含む)、像面上における露光ドーズ量等狭義の露光条件の他、投影光学系の光学特性など露光に関連する全ての構成部分の設定条件を含む広義の露光条件を意味する。

[0019]

これによれば、少なくとも1つの露光条件を変更しながら、第1面(物体面) 上に配置された計測用パターンを投影光学系の第2面(像面)側に配置された物 体上に順次転写してマトリックス状に配置された複数の区画領域から成る全体と して矩形の第1領域を物体上に形成するとともに、第1領域の周囲の少なくとも 一部の物体上の領域に過露光の第2領域を形成する(第1、第2工程)。

[0020]

そして、第1領域を構成する複数の区画領域の少なくとも一部の複数の区画領域における計測用パターンの像の形成状態を検出する(第3工程)。ここで、計測用パターンの像の形成状態の検出は、物体が感光物体である場合に、その物体を現像することなく物体上に形成された潜像に対して行っても良いし、上記像が形成された物体を現像した後、物体上に形成されたレジスト像、あるいはレジスト像が形成された物体をエッチング処理して得られる像(エッチング像)などに対して行っても良い。ここで、物体上における像の形成状態を検出するための感光層は、フォトレジストに限らず、光(エネルギ)の照射によって像(潜像及び顕像)が形成されるものであれば良い。例えば、感光層は、光記録層、光磁気記録層などであっても良く、従って、感光層が形成される物体もウエハ又はガラスプレート等に限らず、光記録層、光磁気記録層が形成可能な板等であっても良い

$[0\ 0\ 2\ 1]$

例えば、像の形成状態の検出をレジスト像、エッチング像などに対して行う場合には、SEMなどの顕微鏡は勿論、例えば露光装置のアライメント検出系、例えばアライメントマークの像を撮像素子上に結像する画像処理方式のアライメント検出系、いわゆるFIA(Field Image Alignment)系のアライメントセンサや、コヒーレントな検出光を対象に照射し、その対象から発生する散乱光又は回折光を検出するアライメントセンサ、例えばいわゆるLSA系のアライメントセ

ンサや、その対象から発生する2つの回折光(例えば同次数)を干渉させて検出するアライメントセンサなど)、各種のアライメントセンサをも用いることができる。

[0022]

また、像の形成状態の検出を潜像に対して行う場合には、FIA系などを用いることができる。

[0023]

いずれにしても、第1領域の外側に過露光の第2領域(パターン像が形成されない領域)が存在するので、第1領域内の最外周部に位置する区画領域(以下、「外縁部区画領域」と呼ぶ)の検出の際に、隣接する外側の領域のパターン像の存在によりその外縁部区画領域の像のコントラストが低下するのが防止される。従って、前記外縁部区画領域と第2領域の境界線をS/N比良く検出することが可能となり、その境界線を基準として設計値に基づき他の区画領域の位置を算出することにより、他の区画領域のほぼ正確な位置を求めることが可能となる。これにより、第1領域内の複数の区画領域それぞれの位置をほぼ正確に知ることができるので、例えばそれぞれの区画領域における像のコントラスト、あるいは回折光などの反射光の光量などを検出することにより、パターン像の形成状態を短時間で検出することが可能になる。

[0024]

そして、その検出結果に基づいて投影光学系の光学特性を求める(第4工程) 。ここでは、客観的かつ定量的な像のコントラスト、回折光などの反射光の光量 などを用いた検出結果に基づいて光学特性が求められるために、従来の方法と比 較して光学特性を精度及び再現性良く計測することができる。

$[0\ 0\ 2\ 5]$

また、従来の寸法を計測する方法に比べて、計測用パターンを小さくすることができるため、レチクルのパターン領域内に多くの計測用パターンを配置することが可能となる。従って、評価点の数を増加させることができるとともに、各評価点間の間隔を狭くすることができ、結果的に光学特性計測の測定精度を向上させることが可能となる。

[0026]

従って、請求項1に記載の光学特性計測方法によれば、短時間で、精度及び再 現性良く投影光学系の光学特性を計測することができる。

[0027]

この場合において、第1工程の処理は、第2工程に先立って行われても良いが、請求項2に記載の光学特性計測方法の如く、前記第2工程は、前記第1工程に 先立って行われることとしても良い。後者の場合には、例えば感光剤として、化 学増幅型レジストなどの高感度レジストを用いる場合に、計測用パターンの像の 形成(転写)から現像までの時間を短くできるので、特に好適である。

[0028]

上記請求項1及び2に記載の各光学特性計測方法において、請求項3に記載の 光学特性計測方法の如く、前記第2領域は、前記第1領域を取り囲む一回り大き い矩形枠状の領域の少なくとも一部であることとすることができる。かかる場合 には、第2領域の外縁部を検出することにより、その外縁部を基準として第1領 域を構成する複数の区画領域の位置を容易に算出することも可能である。

[0029]

上記請求項1~3に記載の各光学特性計測方法において、請求項4に記載の光学特性計測方法の如く、前記第2工程では、前記第1面上に配置された所定のパターンを前記投影光学系の第2面側に配置された前記物体上に転写して前記第2領域を形成することとすることができる。この場合において、所定のパターンとしては、矩形枠状のパターン、あるいはその矩形枠の一部形状、例えばコ字状(U字状)のパターンなど種々のパターンが考えられるが、例えば、請求項5に記載の光学特性計測方法の如く、前記所定のパターンが全体として矩形のパターンである場合には、前記第2工程では、前記第1面上に配置された前記全体として矩形のパターンを前記投影光学系の第2面側に配置された前記物体上に走査露光方式で転写することとすることができる。あるいは、請求項6に記載の光学特性計測方法の如く、前記所定のパターンが全体として矩形のパターンである場合に、前記第2工程では、前記第1面上に配置された前記全体として矩形のパターンを前記投影光学系の第2面側に配置された前記全体として矩形のパターンを前記投影光学系の第2面側に配置された前記令体として矩形のパターンを前記投影光学系の第2面側に配置された前記物体上に順次転写することとする

こともできる。

[0030]

この他、上記請求項1~3に記載の各光学特性計測方法において、請求項7に記載の光学特性計測方法の如く、前記第2工程では、前記第1面上に配置された前記計測用パターンを前記投影光学系の第2面側に配置された前記物体上に過露光となる露光量で順次転写して前記第2領域を形成することとすることができる

[0031]

上記請求項1~7に記載の各光学特性計測方法において、請求項8に記載の光学特性計測方法の如く、前記第3工程では、前記第2領域の一部を基準として前記第1領域を構成する複数の区画領域それぞれの位置を算出することとすることができる。

[0032]

上記請求項1~8に記載の各光学特性計測方法において、請求項9に記載の光学特性計測方法の如く、前記第3工程では、前記第1領域を構成する複数の区画領域及び前記第2領域に対応する撮像データに基づき、テンプレートマッチングの手法により前記第1領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を検出することとすることができる。

[0033]

上記請求項1~8に記載の各光学特性計測方法において、請求項10に記載の 光学特性計測方法の如く、前記第3工程では、前記第1領域を構成する複数の区 画領域及び前記第2領域に対応する撮像データに基づき、前記第1領域を構成す る前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態 を各区画領域のピクセルデータに関する代表値を判定値として検出することとす ることができる。かかる場合には、各区画領域のピクセルデータに関する代表値 という客観的かつ定量的な値を判定値として像(計測用パターンの像)の形成状態 態を検出するので、例えばこの代表値と所定の閾値とを比較して二値化すること により、計測用パターンの有無を精度、再現性良く検出することが可能となる。

[0034]

なお、本明細書において、上記の代表値として用いられるピクセル値の加算値、分散あるいは標準偏差などを、適宜、「スコア」あるいは「コントラストの指標値」などとも呼ぶものとする。

[0035]

請求項11に記載の発明は、第1面上のパターンを第2面上に投影する投影光学系の光学特性を計測する光学特性計測方法であって、少なくとも1つの露光条件を変更しながら、前記第1面上に配置されたマルチバーパターンを含む計測用パターンを前記投影光学系の第2面側に配置された物体上に順次転写し、隣接する複数の区画領域から成り、各区画領域に転写された前記マルチバーパターンとこれに隣接するパターンとが、前記マルチバーパターンの像のコントラストが前記隣接するパターンによる影響を受けない距離L以上離れている所定の領域を前記物体上に形成する第1工程と;前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を画像処理の手法により検出する第2工程と;前記検出結果に基づいて前記投影光学系の光学特性を求める第3工程と;を含む光学特性計測方法である。

[0036]

ここで、マルチバーパターンは、複数本のバーパターン(ラインパターン)が 所定間隔で配置されたパターンを意味する。また、マルチバーパターンに隣接す るパターンは、該マルチバーパターンが形成された区画領域の境界に存在する枠 パターン、及び隣接する区画領域のマルチバーパターンのいずれをも含む。

[0037]

これによれば、少なくとも1つの露光条件を変更しながら、第1面(物体面) 上に配置されたマルチバーパターンを含む計測用パターンを投影光学系の第2面 (像面)側に配置された物体上に順次転写し、隣接する複数の区画領域から成り 、各区画領域に転写されたマルチバーパターンとこれに隣接するパターンとが、 マルチバーパターンの像のコントラストが前記隣接するパターンによる影響を受 けない距離し以上離れている所定の領域を物体上に形成する(第1工程)。

[0038]

次いで、前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複

数の区画領域における像の形成状態を画像処理の手法により検出する(第2工程)。

[0039]

ここで、各区画領域に転写されたマルチバーパターンとこれに隣接するパターンとが、マルチバーパターンの像のコントラストが隣接するパターンによる影響を受けない距離L以上離れているので、それぞれの区画領域に転写されたマルチバーパターンの像のS/N比が良好な撮像信号を得ることができ、この撮像信号に基づいて、テンプレートマッチング、あるいはコントラスト検出などの画像処理手法により各区画領域に形成されたマルチバーパターンの像の形成状態を精度良く検出することができる。

[0040]

例えば、テンプレートマッチングによる場合には、客観的、定量的な相関値の情報が区画領域毎に得られ、コントラスト検出の場合には、客観的、定量的なコントラスト値の情報が区画領域毎に得られるので、いずれにしても、得られた情報を、それぞれの閾値と比較することにより、マルチバーパターンの像の形成状態を二値化情報(像の有無情報)に変換することにより、各区画領域毎のマルチバーパターンの形成状態を精度、再現性良く検出することが可能となる。

[0041]

そして、前記検出結果に基づいて前記投影光学系の光学特性を求める(第3工程)。ここでは、客観的かつ定量的な上記の相関値、コントラストなどを用いた 検出結果に基づいて光学特性が求められるために、従来の方法と比較して光学特 性を精度及び再現性良く計測することができる。

[0042]

また、前述と同様の理由により、評価点の数を増加させることができるとともに、各評価点間の間隔を狭くすることができ、結果的に光学特性計測の測定精度を向上させることが可能となる。

[0043]

この場合において、前記距離しは、マルチバーパターンの像のコントラストが 隣接するパターンにより影響を受けない程度の距離であれば良く、例えば、請求 項12に記載の光学特性計測方法の如く、前記距離Lは、前記各区画領域を撮像する撮像装置の解像度を R_f 、前記マルチパターン像のコントラストを C_f 、プロセスによって定まるプロセスファクタを P_f 、前記撮像装置の検出波長を λ_f とした場合に、L=f(C_f 、 R_f 、 P_f 、 λ_f)なる関数で表されることとすることができる。ここで、プロセスファクタは、像のコントラストに影響を与えるので、プロセスファクタを含まない関数L'=f'(C_f 、 R_f 、 λ_f)なる関数によって距離Lを規定しても良い。

[0044]

上記請求項11及び12に記載の各光学特性計測方法において、請求項13に 記載の光学特性計測方法の如く、前記所定の領域は、前記物体上にマトリックス 状に配置された複数の区画領域から成る全体として矩形の領域であることとする ことができる。

[0045]

この場合において、請求項14に記載の光学特性計測方法の如く、前記第2工程では、前記所定の領域の外周の輪郭から成る矩形の外枠を前記所定の領域に対応する撮像データに基づいて検出し、その検出された外枠を基準として前記所定の領域を構成する複数の区画領域それぞれの位置を算出することとすることができる。

[0046]

上記請求項11~14に記載の各光学特性計測方法において、請求項15に記載の光学特性計測方法の如く、前記第1工程では、前記所定の領域内の最外周部に位置する複数の区画領域の少なくとも一部の特定の複数の区画領域が過露光の領域となるように前記露光条件の一部として前記物体上に照射されるエネルギビームのエネルギ量を変更することとすることができる。かかる場合には、上記の外枠の検出に際して外枠部分の撮像データのS/N比が向上するので外枠検出が容易になる。

[0047]

上記請求項11~15に記載の各光学特性計測方法において、請求項16に記載の光学特性計測方法の如く、前記第2工程では、前記所定の領域を構成する複

[0048]

上記請求項11~15に記載の各光学特性計測方法において、請求項17に記載の光学特性計測方法の如く、前記第2工程では、前記所定の領域を構成する複数の区画領域に対応する撮像データに基づき、前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を各区画領域のピクセルデータに関する代表値を判定値として検出することとすることができる。

[0049]

上記請求項10及び17に記載の各光学特性計測方法において、請求項18に記載の光学特性計測方法の如く、前記代表値は、前記ピクセルデータの加算値、 微分総和値、分散及び標準偏差の少なくとも1つであることとすることができる

[0050]

この場合において、請求項19に記載の光学特性計測方法において、前記代表値は、各区画領域内の指定範囲内におけるピクセル値の分散及び標準偏差のいずれかであることとすることができる。

$[0\ 0\ 5\ 1]$

ここで、各区画領域内の指定範囲は勿論、代表値の算出のためピクセルデータ を抽出するエリア(例えば区画領域)の形状は、矩形、円形、楕円形、あるいは 三角形などの多角形、のいずれの形状であっても良い。

$[0\ 0\ 5\ 2]$

上記請求項1~19に記載の各光学特性計測方法において、請求項20に記載の光学特性計測方法の如く、前記露光条件は、前記投影光学系の光軸方向に関する前記物体の位置及び前記物体上に照射されるエネルギビームのエネルギ量の少なくとも一方を含むこととすることができる。

[0053]

上記請求項1~20に記載の各光学特性計測方法において、請求項21に記載の光学特性計測方法の如く、前記計測用パターンの転写に際しては、前記投影光学系の光軸方向に関する前記物体の位置と前記物体上に照射されるエネルギビームのエネルギ量をそれぞれ変更しながら、前記計測用パターンを前記物体上に順次転写し、前記像の形成状態の検出に際しては、前記物体上の前記少なくとも一部の複数の区画領域における前記計測用パターンの像の有無を検出し、前記光学特性を求めるに際しては、前記像が検出された複数の区画領域に対応する前記エネルギビームのエネルギ量と前記投影光学系の光軸方向に関する前記物体の位置との相関関係により最良フォーカス位置を決定することとすることができる。

[0054]

かかる場合には、計測用パターンの転写に際しては、2つの露光条件、すなわち投影光学系の光軸方向に関する物体の位置と物体上に照射されるエネルギビームのエネルギ量を変更しながら計測用パターンの像を物体上の複数の領域に順次転写する。この結果、物体上の各領域には、それぞれ転写時の投影光学系の光軸方向に関する物体の位置及び物体上に照射されるエネルギビームのエネルギ量が異なる計測用パターンの像が転写される。

[0055]

そして、像の形成状態の検出に際しては、物体上の前記少なくとも一部の複数の区画領域について、例えば投影光学系の光軸方向に関する位置毎に計測用パターンの像の有無を検出する。この結果、投影光学系の光軸方向に関する位置毎に、その像が検出されたエネルギビームのエネルギ量を求めることができる。このように、像のコントラスト又は回折光などの反射光の光量などを利用した手法により、像の形成状態を検出しているため、従来の寸法を計測する方法と比較して、短時間で像の形成状態を検出することができる。また、客観的かつ定量的な撮像データを用いているため、従来の方法と比較して、形成状態の検出精度及び検出結果の再現性を向上させることができる。

[0056]

そこで、前記光学特性を求めるに際しては、その像が検出されたエネルギビームのエネルギ量と投影光学系の光軸方向に関する位置との相関関係を示す近似曲

線を求め、例えば、その近似曲線の極値から最良フォーカス位置を求めることが できる。

[0057]

請求項22に記載の発明は、第1面上のパターンを第2面上に投影する投影光学系の光学特性を計測する光学特性計測方法であって、矩形枠状のパターンと該該矩形枠状のパターンの内部に位置する計測用パターンとを含む対象パターンを前記第1面上に配置し、少なくとも1つの露光条件を変更しながら、かつ前記投影光学系の第2面側に配置された物体を前記矩形枠状のパターンのサイズに対応する距離以下のステップピッチで順次移動して前記対象パターンを前記物体上に順次転写することにより、マトリックス状に配置された複数の区画領域から成る全体として矩形の所定の領域を前記物体上に形成する第1工程と;前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を画像処理の手法により検出する第2工程と;前記検出結果に基づいて前記投影光学系の光学特性を求める第3工程と;を含む光学特性計測方法である。

[0058]

ここで、「矩形枠状のパターン」は、文字通りの矩形の枠のような形状をした パターンのみならず、外形線が矩形の枠となるパターン、例えば外縁の形状が矩形状と成る遮光パターン、内縁の形状が矩形状となる遮光パターンの内部に形成された開口パターンなどを含む概念である。

[0059]

これによれば、矩形枠状のパターンと該矩形枠状のパターンの内部に位置する計測用パターンとを含む対象パターンを前記第1面上に配置し、少なくとも1つの露光条件を変更しながら、かつ投影光学系の第2面側に配置された物体を矩形枠状のパターンのサイズに対応する距離以下のステップピッチで順次移動して前記計測用パターンを物体上に順次転写することにより、マトリックス状に配置された複数の区画領域から成る全体として矩形の所定の領域を物体上に形成する(第1工程)。この結果、物体上には、区画領域相互間の境界に従来のような枠線が存在しない複数のマトリックス状配置の複数の区画領域(計測用パターンの像

が投影された領域)が形成される。

[0060]

次に、前記所定の領域を構成する複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を画像処理の手法により検出する(第2工程)。この場合、隣接する区画領域間に枠線が存在しないので、像形成状態の検出対象である複数の区画領域(主として計測用パターンの像の残存する区画領域)において、計測用パターンの像のコントラストが枠線の存在により低下することがない

$[0\ 0\ 6\ 1]$

このため、それらの複数の区画領域の撮像データとしてパターン部と非パターン部のS/N比の良好なデータを得ることができ、これらのデータを用いてテンプレートマッチング法あるいはコントラスト検出法などの画像処理の手法により、像の形成状態を精度良く検出することができる。

$[0\ 0\ 6\ 2\]$

例えば、テンプレートマッチングによる場合には、客観的、定量的な相関値の情報が区画領域毎に得られ、コントラスト検出の場合には、客観的、定量的なコントラスト値の情報が区画領域毎に得られるので、いずれにしても、得られた情報を、それぞれの閾値と比較することにより、計測用パターンの像の形成状態を二値化情報(像の有無情報)に変換することにより、区画領域毎の計測用パターンの形成状態を精度、再現性良く検出することが可能となる。

[0063]

そして、前記検出結果に基づいて投影光学系の光学特性を求める(第3工程) 。ここでは、客観的かつ定量的な上記の相関値、コントラストなどを用いた検出 結果に基づいて光学特性が求められるために、従来の方法と比較して光学特性を 精度及び再現性良く計測することができる。

[0064]

また、前述と同様の理由により、評価点の数を増加させることができるとともに、各評価点間の間隔を狭くすることができ、結果的に光学特性計測の測定精度を向上させることが可能となる。

[0065]

この場合において、請求項23に記載の光学特性計測方法の如く、前記第1工程では、前記所定の領域内の最外周部に位置する複数の区画領域の少なくとも一部の特定の複数の区画領域が過露光の領域となるように前記露光条件の一部として前記物体上に照射されるエネルギビームのエネルギ量を変更することとすることができる。かかる場合には、所定の領域の外縁の検出に際してのS/N比が向上する。

[0066]

上記請求項22及び23に記載の光学特性計測方法において、請求項24に記載の光学特性計測方法の如く、前記第2工程は、前記所定の領域の外周の輪郭から成る矩形の外枠を前記所定の領域に対応する撮像データに基づいて検出する外枠機出工程と;前記検出された外枠を基準として前記所定の領域を構成する複数の区画領域それぞれの位置を算出する算出工程と;を含むこととすることができる。

[0067]

この場合において、請求項25に記載の光学特性計測方法の如く、前記外枠検 出工程では、前記所定の領域の外周の輪郭から成る矩形の外枠を構成する第1辺 から第4辺の各辺上でそれぞれ少なくとも2点を求め、前記求めた少なくとも8 点に基づいて前記所定の領域の外枠を算出することとすることができる。

[0068]

上記請求項24に記載の光学特性計測方法において、請求項26に記載の光学特性計測方法の如く、前記外枠検出工程は、前記所定の領域の外周の輪郭から成る矩形の外枠を構成する第1辺から第4辺のうちの少なくとも1辺について概略位置検出を行う概略位置検出工程と;前記概略位置検出工程で算出された少なくとも1辺の概略位置の検出結果を利用して前記第1辺から第4辺の位置を検出する詳細位置検出工程と;を含むこととすることができる。

[0069]

この場合において、請求項27に記載の光学特性計測方法の如く、前記概略位 置検出工程では、前記所定の領域の画像中心近傍を通る第1方向のピクセル列情 報を用いて境界検出を行い、前記詳細位置検出工程では、前記所定の領域の前記 第1方向の一端,他端にそれぞれ位置し前記第1方向に直交する第2方向に延び る第1辺,第2辺の概略位置をそれぞれ求め、前記求めた前記第1辺の概略位置 より所定距離だけ前記第2辺寄りの位置を通る前記第2方向のピクセル列、及び 前記求めた前記第2辺の概略位置より所定距離だけ前記第1辺寄りの位置を通る 前記第2方向のピクセル列を用いて境界検出を行い、前記所定の領域の前記第2 方向の一端,他端にそれぞれ位置し前記第1方向に延びる第3辺、第4辺及び該 第3辺、第4辺上の各2点を求め、前記求めた第3辺より所定距離だけ前記第4 辺寄りの位置を通る第1方向のピクセル列、及び前記求めた第4辺より所定距離 だけ前記第3辺寄りの位置を通る前記第1方向のピクセル列を用いて境界検出を 行い、前記所定の領域の前記第3辺、第4辺上の各2点を求め、矩形領域である 前記所定の領域の4項点を、前記第1ないし第4辺上の各2点の点に基づいて定 まる4本の直線同士の交点として求め、前記求めた4項点に基づいて最小二乗法 による長方形近似を行い、回転を含めた前記所定の領域の矩形の外枠を算出する こととすることができる。

[0070]

この場合において、請求項28に記載の光学特性計測方法の如く、前記境界検 出に際しては、前記各ピクセル列のピクセル値から成る信号波形と所定の閾値 t との交点を求め、該求めた各交点の近傍の極大値及び極小値を求め、求めた極大 値及び極小値の平均値を新たな閾値 t'とし、前記波形信号が前記極大値と極小 値間で新たな閾値 t'を横切る位置を求め、その位置を境界位置とすることとす ることができる。

[0071]

この場合において、閾値 t は、予め定めた値を用いることもできるが、請求項29に記載の光学特性計測方法の如く、前記閾値 t は、所定の範囲の振り幅で閾値を変化させつつ、該閾値と前記境界検出用に取り出した直線状のピクセル列のピクセル値から成る信号波形との交点数を求め、該求めた交点数が、前記計測用パターンによって決まる目標交点数に一致したときの閾値を仮閾値とし、該仮閾値を含み、前記交点数が前記目標交点数となる閾値範囲を求め、その求めた閾値

範囲の中心を前記閾値 t として決定することによって設定されていることとすることができる。

[0072]

この場合において、請求項30に記載の光学特性計測方法の如く、前記振り幅は、前記境界検出用に取り出した直線状のピクセル列におけるピクセル値の平均と標準偏差を基に設定されていることとすることができる。

[0073]

上記請求項27~30に記載の光学特性計測方法において、請求項31に記載の光学特性計測方法の如く、前記境界検出に際して、誤検出を起こし難い境界の検出情報を用いて、誤検出を起こし易い境界の検出範囲を限定することとすることができる。かかる場合には、特に、所定の領域内の最外周部に位置する複数の区画領域のいずれをも過露光の領域としなかった場合にも、前述の境界検出を精度良く行うことができる。

[0074]

上記請求項24~31に記載の各光学特性計測方法において、請求項32に記載の光学特性計測方法の如く、前記算出工程では、既知の区画領域の配列情報を用いて前記検出した外枠の内部領域を等分割して、前記所定の領域を構成する複数の区画領域それぞれの位置を算出することとすることができる。

[0075]

上記請求項22~32に記載の各光学特性計測方法において、請求項33に記載の光学特性計測方法の如く、前記第2工程では、前記所定の領域に対応する撮像データに基づき、テンプレートマッチングの手法により前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を検出することとすることができる。

[0076]

あるいは、請求項22~32に記載の各光学特性計測方法において、請求項34に記載の光学特性計測方法の如く、前記第2工程では、前記所定の領域に対応する撮像データに基づき、前記所定の領域を構成する前記複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を各区画領域のピクセルデー

タに関する代表値を判定値として検出することとすることができる。

[0077]

この場合において、請求項35に記載の光学特性計測方法の如く、前記代表値は、前記ピクセルデータの加算値、微分総和値、分散及び標準偏差の少なくとも1つであることとすることができる。

[0078]

この場合において、請求項36に記載の光学特性計測方法の如く、前記代表値は、各区画領域内の指定範囲内におけるピクセル値の分散及び標準偏差のいずれかであることとすることができる。

[0079]

この場合において、請求項37に記載の光学特性計測方法の如く、前記指定範囲は、前記計測用パターンの像と前記区画領域との設計上の位置関係に応じて定まる縮小率で前記各区画領域を縮小した縮小領域であることとすることができる。

[0080]

上記請求項22~37に記載の各光学特性計測方法において、請求項38に記載の光学特性計測方法の如く、前記露光条件は、前記投影光学系の光軸方向に関する前記物体の位置及び前記物体上に照射されるエネルギビームのエネルギ量の少なくとも一方を含むこととすることができる。

[0081]

上記請求項22~38に記載の光学特性計測方法において、請求項39に記載の光学特性計測方法の如く、前記第1工程では、前記投影光学系の光軸方向に関する前記物体の位置と前記物体上に照射されるエネルギビームのエネルギ量をそれぞれ変更しながら、前記対象パターンを前記物体上に順次転写し、前記第2工程では、前記物体上の前記少なくとも一部の複数の区画領域における前記計測用パターンの像の有無を検出し、前記第3工程では、その像が検出された複数の区画領域に対応する前記エネルギビームのエネルギ量と前記投影光学系の光軸方向に関する前記物体の位置との相関関係により最良フォーカス位置を決定することとすることができる。

[0082]

請求項40に記載の発明は、露光用のエネルギビームをマスクに照射し、前記マスクに形成されたパターンを投影光学系を介して物体上に転写する露光方法であって、請求項1~39のいずれか一項に記載の光学特性計測方法によって計測された前記光学特性を考慮して前記投影光学系を調整する工程と;前記調整された投影光学系を介して前記マスクに形成されたパターンを前記物体上に転写する工程と;を含む露光方法である。

[0083]

これによれば、請求項1~39に記載の各光学特性計測方法によって計測された投影光学系の光学特性を考慮して最適な転写が行えるように投影光学系が調整され、その調整された投影光学系を介してマスクに形成されたパターンを物体上に転写するので、微細パターンを物体上に高精度に転写することができる。

[0084]

請求項41に記載の発明は、リソグラフィ工程を含むデバイス製造方法であって、前記リソグラフィ工程では、請求項40に記載の露光方法を用いることを特徴とするデバイス製造方法である。

[0085].

これによれば、リソグラフィ工程で、請求項40に記載の露光方法により微細パターンを物体上に精度良く転写することができるので、結果的に高集積度のデバイスの生産性(歩留まりを含む)を向上させることが可能となる。

[0086]

【発明の実施の形態】

以下、本発明の一実施形態を図1~図17に基づいて説明する。

[0087]

図1には、本発明に係る光学特性計測方法及び露光方法を実施するのに好適な 一実施形態に係る露光装置100の概略的な構成が示されている。この露光装置 100は、ステップ・アンド・リピート方式の縮小投影露光装置(いわゆるステッパ)である。

[0088]

この露光装置100は、照明系IOP、マスクとしてのレチクルRを保持するレチクルステージRST、レチクルRに形成されたパターンの像を感光剤(フォトレジスト)が塗布された物体としてのウエハW上に投影する投影光学系PL、ウエハWを保持して2次元平面(XY平面内)を移動するXYステージ20、XYステージ20を駆動する駆動系22、及びこれらの制御系等を備えている。この制御系は装置全体を統括制御するマイクロコンピュータ(あるいはワークステーション)などから成る主制御装置28を中心として構成されている。

[0089]

前記照明系IOPは、図2に示されるように、光源1、ビーム整形光学系2、エネルギ粗調器3、オプティカルインテグレータ(ホモジナイザ)4、照明系開口絞り板5、ビームスプリッタ6、第1リレーレンズ7A、第2リレーレンズ7B、レチクルブラインド8等を備えている。なお、オプティカルインテグレータとしては、フライアイレンズ、ロッド型(内面反射型)インテグレータ、あるいは回折光学素子などを用いることができる。本実施形態では、オプティカルインテグレータ4としてフライアイレンズが用いられているので、以下では、フライアイレンズ4とも呼ぶ。

[0090]

ここで、この照明系 I O P の上記構成各部について説明する。光源 1 としては、 K r F エキシマレーザ(発振波長 2 4 8 n m)や A r F エキシマレーザ(発振波長 1 9 3 n m)等が使用される。光源 1 は、実際には、露光装置本体が設置されるクリーンルーム内の床面、あるいは該クリーンルームとは別のクリーン度の低い部屋(サービスルーム)等に設置され、不図示の引き回し光学系を介してビーム整形光学系の入射端に接続されている。

[0091]

前記ビーム整形光学系2は、光源1からパルス発光されたレーザビームLBの断面形状を、該レーザビームLBの光路後方に設けられたフライアイレンズ4に効率よく入射するように整形するもので、例えばシリンダレンズやビームエキスパンダ(いずれも図示省略)等で構成される。

[0092]

前記エネルギ粗調器 3 は、ビーム整形光学系 2 後方のレーザビーム L B の光路上に配置され、ここでは、回転板 3 1 の周囲に透過率(= 1 - 減光率)の異なる複数個(例えば 6 個)の N D フィルタ(図 2 ではその内の 2 個の N D フィルタ 3 2 A、3 2 D のみが示されている)を配置し、その回転板 3 1 を駆動モータ 3 3 で回転することにより、入射するレーザビーム L B に対する透過率を 1 0 0 %から等比級数的に複数段階で切り換えることができるようになっている。駆動モータ 3 3 は、主制御装置 2 8 によって制御される。

[0093]

前記フライアイレンズ4は、エネルギ粗調器3後方のレーザビームLBの光路上に配置され、レチクルRを均一な照度分布で照明するためにその射出側焦点面に多数の点光源(光源像)から成る面光源、すなわち2次光源を形成する。この2次光源から射出されるレーザビームを以下においては、「パルス照明光IL」と呼ぶものとする。

[0094]

前記フライアイレンズ4の射出側焦点面の近傍に、円板状部材から成る照明系開口絞り板5が配置されている。この照明系開口絞り板5には、ほぼ等角度間隔で、例えば通常の円形開口より成る開口絞り、小さな円形開口より成りコヒーレンスファクタであるσ値を小さくするための開口絞り(小σ絞り)、輪帯照明用の輪帯状の開口絞り(輪帯絞り)、及び変形光源法用に複数の開口を偏心させて配置して成る変形開口絞り(図2ではこのうちの2種類の開口絞りのみが図示されている)等が配置されている。この照明系開口絞り板5は、主制御装置28により制御されるモータ等の駆動装置51により回転されるようになっており、これによりいずれかの開口絞りがパルス照明光ILの光路上に選択的に設定される

[0095]

照明系開口絞り板5後方のパルス照明光ILの光路上に、反射率が小さく透過率の大きなビームスプリッタ6が配置され、更にこの後方の光路上に、レチクルブラインド8を介在させて第1リレーレンズ7A及び第2リレーレンズ7Bから成るリレー光学系が配置されている。

[0096]

レチクルブラインド8は、レチクルRのパターン面に対する共役面に配置され、例えば2枚のL字型の可動ブレード、あるいは上下左右に配置された4枚の可動ブレードから成り、可動ブレード同士で囲まれて形成される開口がレチクルR上の照明領域を規定する。この場合、各可動ブレードの位置を調整することにより、開口の形状を任意の矩形状に設定することが可能である。各可動ブレードは、例えばレチクルRのパターン領域の形状に併せて不図示のブラインド駆動装置を介して主制御装置28によって駆動制御されるようになっている。

[0097]

リレー光学系を構成する第2リレーレンズ7B後方のパルス照明光ILの光路上には、当該第2リレーレンズ7Bを通過したパルス照明光ILをレチクルRに向けて反射する折り曲げミラーMが配置されている。

[0098]

一方、ビームスプリッタ6による反射光路上には、集光レンズ52を介して光電変換素子よりなるインテグレータセンサ53が配置されている。このインテグレータセンサ53としては、例えば遠紫外域で感度があり、且つ光源ユニット1のパルス発光を検出するために高い応答周波数を有するPIN型のフォトダイオード等が使用できる。このインテグレータセンサ53の出力DPと、ウエハWの表面上でのパルス照明光ILの照度(強度)との相関係数(又は相関関数)は予め求められて、主制御装置28内部のメモリ内に記憶されている。

[0099]

このようにして構成された照明系 I O P の作用を簡単に説明すると、光源 1 からパルス発光されたレーザビーム L B は、ビーム整形光学系 2 に入射して、ここで後方のフライアイレンズ 4 に効率よく入射するようにその断面形状が整形された後、エネルギ粗調器 3 に入射する。そして、このエネルギ粗調器 3 のいずれかの N D フィルタを透過したレーザビーム L B は、フライアイレンズ 4 に入射する。これにより、フライアイレンズ 4 の射出側焦点面に多数の点光源(光源像)より成る面光源、すなわち 2 次光源が形成される。この 2 次光源から射出されたパルス照明光 I L は、照明系開口絞り板 5 上のいずれかの開口絞りを通過した後、

透過率が大きく反射率が小さなビームスプリッタ6に至る。このビームスプリッタ6を透過した露光光としてのパルス照明光ILは、第1リレーレンズ7Aを経てレチクルブラインド8の矩形の開口部を通過した後、第2リレーレンズ7Bを通過してミラーMによって光路が垂直下方に折り曲げられた後、レチクルステージRST上に保持されたレチクルR上の矩形(例えば正方形)の照明領域を均一な照度分布で照明する。

[0100]

一方、ビームスプリッタ6で反射されたパルス照明光ILは、集光レンズ52を介して光電変換素子よりなるインテグレータセンサ53で受光され、インテグレータセンサ53の光電変換信号が、不図示のピークホールド回路及びA/D変換器を介して出力DP(digit/pulse)として主制御装置28に供給される。

[0101]

図1に戻り、前記レチクルステージRSTは、照明系IOPの図1における下方に配置されている。このレチクルステージRST上には不図示のバキュームチャック等を介してレチクルRが吸着保持されている。レチクルステージRSTは、不図示の駆動系によってX軸方向(図1における紙面左右方向)、Y軸方向(図1における紙面直交方向)及び θ z方向(XY面に直交するZ軸回りの回転方向)に微小駆動可能とされている。これにより、レチクルステージRSTは、レチクルRのパターンの中心(レチクルセンタ)が投影光学系PLの光軸AXpとほぼ一致する状態でレチクルRを位置決め(レチクルアライメント)できるようになっている。図1では、このレチクルアライメントが行われた状態が示されている。

[0102]

前記投影光学系PLは、レチクルステージRSTの図1における下方に、その 光軸AXpの方向がXY面に直交するZ軸方向となるように配置されている。こ の投影光学系PLとしては、ここでは両側テレセントリックな縮小系であって、 Z軸方向の共通の光軸AXを有する複数枚のレンズエレメントから成る屈折光学 系(図示省略)が用いられている。レンズエレメントのうちの特定の複数枚は、 主制御装置28からの指令に基づいて、図示しない結像特性補正コントローラに よって制御され、投影光学系PLの光学特性(結像特性を含む)、例えば倍率、ディストーション、コマ収差、及び像面湾曲などを調整できるようになっている。

[0103]

この投影光学系PLの投影倍率は、例えば1/5(あるいは1/4)などとされている。このため、レチクルRのパターンとウエハW上の被露光領域との位置合わせ(アライメント)が行われた状態で、パルス照明光ILによりレチクルRが均一な照度で照明されると、レチクルRのパターンが投影光学系PLにより縮小されて、フォトレジストが塗布されたウエハW上に投影され、ウエハW上の被露光領域にパターンの縮小像が形成される。

[0104]

前記XYステージ20は、実際には不図示のベース上をY軸方向に移動するYステージと、このYステージ上をX軸方向に移動するXステージとで構成されているが、図1ではこれらが代表的にXYステージ20として示されている。このXYステージ20上にウエハテーブル18が搭載され、このウエハテーブル18上に不図示のウエハホルダを介してウエハWが真空吸着等によって保持されている。

[0105]

前記ウエハテーブル18は、ウエハWを保持するウエハホルダを2軸方向及び X Y面に対する傾斜方向に微小駆動するもので、2・チルトステージとも称される。このウエハテーブル18の上面には、移動鏡24が設けられており、この移動鏡24にレーザビームを投射して、その反射光を受光することにより、ウエハテーブル18のX Y面内の位置を計測するレーザ干渉計26が移動鏡24の反射面に対向して設けられている。なお、実際には、移動鏡はX軸に直交する反射面を有するX移動鏡と、Y軸に直交する反射面を有するY移動鏡とが設けられ、これに対応してレーザ干渉計もX方向位置計測用のXレーザ干渉計とY方向位置計測用のYレーザ干渉計とが設けられているが、図1ではこれらが代表して移動鏡24、レーザ干渉計とが設けられている。なお、Xレーザ干渉計及びYレーザ干渉計は測長軸を複数有する多軸干渉計であり、ウエハテーブル18のX、

[0106]

レーザ干渉計26の計測値は主制御装置28に供給され、主制御装置28はこのレーザ干渉計26の計測値に基づいて駆動系22を介してXYステージ20を制御することにより、ウエハテーブル18を位置決めする。

[0107]

また、ウエハW表面の Z 軸方向の位置及び傾斜量は、例えば特開平 6 - 2 8 3 4 0 3 号公報等に開示される送光系 5 0 a 及び受光系 5 0 b を有する斜入射方式の多点焦点位置検出系から成るフォーカスセンサ A F S によって計測されるようになっている。このフォーカスセンサ A F S の計測値も主制御装置 2 8 に供給されており、主制御装置 2 8 は、フォーカスセンサ A F S の計測値に基づいて駆動系 2 2 を介してウエハテーブル 1 8 を Z 方向、 θ x 方向及び θ y 方向に駆動して、投影光学系 P L の光軸方向に関するウエハWの位置及び傾きを制御するようになっている。

[0108]

$[0\ 1\ 0\ 9]$

また、ウエハテーブル18上には、その表面がウエハWの表面と同じ高さになるような基準板FPが固定されている。この基準板FPの表面には、後述するアライメント検出系のいわゆるベースライン計測等に用いられる基準マークを含む各種の基準マークが形成されている。

[0110]

更に、本実施形態では、投影光学系PLの側面に、ウエハWに形成されたアライメントマークを検出するマーク検出系としてのオフ・アクシス方式のアライメント検出系ASが設けられている。このアライメント検出系ASは、LSA(La ser Step Alignment)系、FIA(Field Image Alignment)系と呼ばれるアライメントセンサを有しており、基準板FP上の基準マーク及びウエハ上のアライメントマークのX、Y2次元方向の位置計測を行なうことが可能である。

[0111]

ここで、LSA系は、レーザ光をマークに照射して、回折・散乱された光を利用してマーク位置を計測する最も汎用性のあるセンサであり、従来から幅広いプロセスウエハに使用されている。FIA系は、ハロゲンランプ等のブロードバンド(広帯域)光でマークを照明し、このマーク画像を画像処理することによってマーク位置を計測する画像処理方式の結像式アライメントセンサであり、アルミ層やウエハ表面の非対称マークに有効に使用される。

[0112]

本実施形態では、これらのアライメントセンサを、適宜目的に応じて使い分け、ウエハ上の各被露光領域の正確な位置計測を行なうファインアライメント等を行なうようになっている。この他、アライメント検出系ASとして、例えばコヒーレントな検出光を対象マークに照射し、その対象マークから発生する2つの回折光(例えば同次数)を干渉させて検出するアライメントセンサを単独で、あるいは上記FIA系、LSA系などと適宜組み合わせて用いることは可能である。

[0113]

アライメント制御装置 1 6 は、アライメント検出系 A S を構成する各アライメントセンサからの情報 D S を A / D 変換し、このデジタル化された波形信号を演算処理してマーク位置を検出する。この結果は、アライメント制御装置 1 6 から主制御装置 2 8 に供給されるようになっている。

[0114]

さらに、本実施形態の露光装置100では、図示が省略されているが、レチクルRの上方に、例えば特開平7-176468号公報等に開示される、投影光学

系PLを介してレチクルR上のレチクルマーク又はレチクルステージRST上の 基準マーク(共に図示省略)と基準板FP上のマークとを同時に観察するための 露光波長を用いたTTR(Through The Reticle)アライメント系から成る一対 のレチクルアライメント顕微鏡が設けられている。これらのレチクルアライメン ト顕微鏡の検出信号は、アライメント制御装置16を介して主制御装置28に供 給されるようになっている。

[0115]

次に、本発明に係る投影光学系の光学特性を計測するのに用いられるレチクル の一例について説明する。

[0116]

図3には、投影光学系の光学特性を計測するのに用いられるレチクルR $_T$ の一例が示されている。この図3は、レチクルR $_T$ をパターン面側(図1における下面側)から見た平面図である。この図3に示されるように、レチクルR $_T$ は、ほぼ正方形のマスク基板としてのガラス基板42の中央に、クロム等の遮光部材から成るパターン領域PAが形成されている。このパターン領域PAの中心(すなわちレチクルR $_T$ の中心(レチクルセンタ)に一致)及び4隅の部分の合計5箇所に、例えば20 $_\mu$ m角の開口パターン(透過領域)AP $_1$ ~AP $_5$ が形成され、当該各開口パターンの中央部にラインアンドスペースパターン(L/Sパターン)から成る計測用パターンMP $_1$ ~MP $_5$ がそれぞれ形成されている。計測用パターンMP $_n$ ($_n$ =1~5)のそれぞれは、一例として $_1$ 1、報前1.3 $_\mu$ 1、長さ約12 $_\mu$ 1 m程度の5本のラインパターンが、ピッチ約2.6 $_\mu$ 1 mで配列されたマルチバーパターンによって構成されている。このため、本実施形態では、開口パターンA $_1$ 1 と中心を同じくする、該各開口パターンA $_1$ 1 P $_1$ 1 の約60%の縮小領域部分に計測用パターンMP $_1$ 1 がそれぞれ配置されている

[0117]

また、前述のレチクルセンタを通るパターン領域PAのX軸方向の両側には、 一対のレチクルアライメントマークRM1, RM2が形成されている。

[0118]

次に、本実施形態の露光装置100における投影光学系PLの光学特性の計測 方法について、主制御装置28内のCPUの処理アルゴリズムを簡略化して示す 図4及び図5のフローチャートに沿って、かつ適宜他の図面を用いて説明する。

[0119]

先ず、図4のステップ402において、不図示のレチクルローダを介してレチクルステージRST上にレチクルRTをロードするとともに、不図示のウエハローダを介してウエハWTをウエハテーブル18上にロードする。

[0120]

次のステップ404において、レチクルアライメント、レチクルブラインドの 設定などの所定の準備作業を行う。具体的には、まず、ウエハテーブル18上に 設けられた基準板FPの表面に形成されている一対の基準マーク(不図示)の中 点が投影光学系PLの光軸とほぼ一致するように、レーザ干渉計26の計測結果 をモニタしつつ駆動系22を介してXYステージ20を移動する。次いで、レチ クルRTの中心(レチクルセンタ)が投影光学系PLの光軸とほぼ一致するよう に、レチクルステージRSTの位置を調整する。このとき、例えば、前述のレチ クルアライメント顕微鏡(不図示)により投影光学系PLを介してレチクルアラ イメントマークRM1, RM2と対応する前記基準マークとの相対位置を検出す る。そして、レチクルアライメント顕微鏡によって検出された前記相対位置の検 出結果に基づいてレチクルアライメントマークRM1, RM2と対応する前記基 準マークとの相対位置誤差がともに最小となるように不図示の駆動系を介してレ チクルステージRSTのXY面内の位置を調整する。これにより、レチクルRT の中心(レチクルセンタ)が投影光学系PLの光軸と正確にほぼ一致するととも にレチクルRrの回転角もレーザ干渉計26の測長軸で規定される直交座標系の 座標軸に正確に一致する。すなわち、レチクルアライメントが完了する。

[0121]

また、照明光 I L の照射領域がレチクル R T のパターン領域 P A にほぼ一致するように、照明系 I O P 内のレチクルブラインド B の開口の大きさ及び位置を調整する。

[0122]

このようにして、所定の準備作業が終了すると、次のステップ 406 に移行して、後述する第 1 領域の露光終了判定用のフラグ F を立てる(F ← 1)。

[0123]

次のステップ408では、露光エネルギ量の目標値を初期化する。すなわち、カウンタ \mathbf{j} に初期値「 $\mathbf{1}$ 」を設定して露光エネルギ量の目標値 $\mathbf{P}_{\mathbf{j}}$ を $\mathbf{P}_{\mathbf{1}}$ に設定する($\mathbf{j}\leftarrow\mathbf{1}$)。本実施形態では、カウンタ \mathbf{j} は、露光エネルギ量の目標値の設定とともに、露光の際のウエハ $\mathbf{W}_{\mathbf{T}}$ の行方向の移動目標位置の設定にも用いられる。なお、本実施形態では、露光エネルギ量を $\mathbf{P}_{\mathbf{1}}$ から Δ \mathbf{P} 刻みで $\mathbf{P}_{\mathbf{N}}$ (一例として $\mathbf{N}=23$)まで変化させる($\mathbf{P}_{\mathbf{j}}=\mathbf{P}_{\mathbf{1}}\sim\mathbf{P}_{\mathbf{23}}$)。

[0124]

次のステップ410では、ウエハ W_T のフォーカス位置(Z軸方向の位置)の目標値を初期化する。すなわち、カウンタiに初期値「1」を設定してウエハ W_T のフォーカス位置の目標値 Z_i を Z_1 に設定する($i \leftarrow 1$)。本実施形態では、カウンタiは、ウエハ W_T のフォーカス位置の目標値の設定とともに、露光の際のウエハ W_T の列方向の移動目標位置の設定にも用いられる。なお、本実施形態では、ウエハ W_T のフォーカス位置を Z_1 から Δ Z刻みで Z_M (一例としてM=13)まで変化させる($Z_i = Z_1 \sim Z_{13}$)。

[0125]

従って、本実施形態では、投影光学系PLの光軸方向に関するウエハ W_T の位置とウエハ W_T 上に照射される露光光ILのエネルギ量をそれぞれ変更しながら、計測用パターン MP_n ($n=1\sim5$)をウエハ W_T 上に順次転写するための、 $N\times M$ (一例として $2.3\times 1.3=2.9.9$)回の露光が行われることになる。投影光学系PLの視野内の各評価点に対応するウエハ W_T 上の領域(以下「評価点対応領域」という) $DB_1\sim DB_5$ の内の後述する第1領域 $DC_1\sim DC_5$ (図7及び図8参照)には、 $N\times M$ 個の計測用パターン MP_n が転写されることとなる。

[0126]

ここで、評価点対応領域 DB_n $(n=1\sim5)$ 内の第 1 領域 DC_n としているのは、本実施形態では、各評価点対応領域 DB_n は、上記の $N\times M$ 個の計測用パターン MP_n が転写される矩形の第 1 領域 DC_n と、該第 1 領域を囲む矩形枠状の第

2領域DDnとによって構成されるからである(図8参照)。

[0127]

なお、この評価点対応領域 DB_n (すなわち第1領域 DC_n)は、投影光学系 PL の視野内でその光学特性を検出すべき複数の評価点に対応している。

[0128]

[0129]

図4に戻り、次のステップ412では、ウエハ W_T 上の各評価点対応領域 DB_n の仮想の区画領域 $DA_{i,j}$ (ここでは $DA_{1,1}$ (図7参照))に計測用パターン M_T の像がそれぞれ転写される位置に、レーザ干渉計26の計測値をモニタしつの駆動系22を介してXYステージ20(ウエハ W_T)を移動する。

[0130]

次のステップ414では、ウエハ W_T のフォーカス位置が設定された目標値 Z_i (この場合 Z_1)と一致するように、フォーカスセンサAFSからの計測値をモニタしながらウエハテーブル18をZ軸方向及び傾斜方向に微少駆動する。

[0131]

次のステップ416では、露光を実行する。このとき、ウエハ W_T 上の一点における露光エネルギ量(積算露光量)が設定された目標値(この場合 P_1)となるように、露光量制御を行う。この露光エネルギ量の制御方法としては、例えば

、次の第1~第3の方法を、単独で、あるいは適宜組み合わせて用いることがで きる。

[0132]

すなわち、第1の方法として、パルスの繰り返し周波数を一定に維持し、エネルギ粗調器3を用いてレーザビームLBの透過率を変化させ像面(ウエハ面)に与えられる露光光のエネルギ量を調整する。第2の方法として、パルスの繰り返し周波数を一定に維持し、光源1に指示を与えてレーザビームLBの1パルス当たりのエネルギを変化させることにより像面(ウエハ面)に与えられる露光光のエネルギ量を調整する。第3の方法として、レーザビームLBの透過率及びレーザビームLBの1パルス当たりのエネルギを一定に維持し、パルスの繰り返し周波数を変更することによって、像面(ウエハ面)に与えられる露光光のエネルギ量を調整する。

[0133]

これにより、図7に示されるように、ウエハ W_T 上の各第1領域 DC_n の区画領域 DA_1 1にそれぞれ計測用パターン MP_n の像が転写される。

[0134]

図4に戻り、上記ステップ416の露光が終了すると、ステップ418において、前述のフラグFが立っているか、すなわちF=1であるか否かを判断する。 この場合、前述したステップ406でフラグFが立てられているので、ここでの 判断は肯定され、次のステップ420に移行する。

[0135]

ステップ420では、ウエハ W_T のフォーカス位置の目標値が Z_M 以上であるか否かを判断することにより、所定のZ範囲での露光が終了したか否かを判断する。ここでは、最初の目標値 Z_1 での露光が終了しただけなので、ステップ422に移行し、カウンタiを1インクリメントする($i\leftarrow i+1$)とともに、ウエハ W_T のフォーカス位置の目標値に ΔZ を加算する(Z_1 $\leftarrow Z+\Delta Z$)。ここでは、フォーカス位置の目標値を Z_2 ($=Z_1+\Delta Z$)に変更した後、ステップ412に戻る。このステップ412において、ウエハ W_T 上の各第1領域 DC_n の区画領域 $DA_{2,1}$ に計測用パターン MP_n の像がそれぞれ転写される位置にウエハ W_T が位

置決めされるように、XYZテージ20を所定のステップピッチSPだけXY面内で所定方向(この場合-Y方向)に移動する。ここで、本実施形態では、上記のステップピッチSPが、各開口パターン AP_n のウエハ W_T 上の投影像の寸法とほぼ一致する約 5μ mに設定されている。なお、ステップピッチSPは、約 5μ mに限らないが、 5μ mすなわち各開口パターン AP_n のウエハ W_T 上の投影像の寸法以下であることが望ましい。この理由については後述する。

[0136]

次のステップ4 1 4 では、ウエハ W_T のフォーカス位置が目標値(この場合 Z_2)と一致するように、ウエハテーブル 1 8 を Δ Z だけ光軸 A X p の方向にステップ移動し、ステップ 4 1 6 において前述と同様にして露光を行い、ウエハ W_T 上の各第 1 領域 D C_n の区画領域 D $A_{2,1}$ に計測用パターンM P_n の像をそれぞれ転写する。

[0137]

以後、ステップ420における判断が肯定されるまで、すなわちそのとき設定されているウエハ W_T のフォーカス位置の目標値が Z_M であると判断されるまで、ステップ4 $18\rightarrow$ 420 \rightarrow 422 \rightarrow 4 $12\rightarrow$ 4 $14\rightarrow$ 416のループの処理(判断を含む)を繰り返す。これにより、ウエハ W_T 上の各第1領域D C_n の区画領域D $A_{i,1}$ ($i=3\sim$ M)に計測用パターンM P_n がそれぞれ転写される。

[0138]

一方、区画領域 $DA_{M,1}$ に対する露光が終了し、上記ステップ420における判断が肯定されると、ステップ424に移行し、そのとき設定されている露光エネルギ量の目標値が P_N 以上であるか否かを判断する。ここでは、そのとき設定されている露光エネルギ量の目標値は P_1 であるため、このステップ424における判断は、否定され、ステップ426に移行する。

[0139]

ステップ426では、カウンタjを1インクリメントする(j \leftarrow j + 1)とともに、露光エネルギ量の目標値に Δ P を加算する(P_j \leftarrow P_j + Δ P)。ここでは、露光エネルギ量の目標値を P_2 (= P_1 + Δ P)に変更した後、ステップ410に戻る。

[0140]

その後、ステップ410においてウエハ W_T のフォーカス位置の目標値が初期化された後、ステップ412→414→416→418→420→422のループの処理(判断を含む)を繰り返す。このループの処理は、ステップ420における判断が肯定されるまで、すなわち露光エネルギ量の目標値 P_2 での、所定のウエハ W_T のフォーカス位置範囲($Z_1 \sim Z_M$)についての露光が終了するまで、繰り返される。これにより、ウエハ W_T 上の各第1領域 DC_n の区画領域 $DA_{i,2}$ ($i=1\sim M$)に計測用パターン MP_n の像が順次転写される。

[0141]

一方、露光エネルギ量の目標値 P_2 での、所定のウエハ W_T のフォーカス位置範囲($Z_1 \sim Z_M$)についての露光が終了すると、ステップ $4 \ 2 \ 0$ における判断が肯定され、ステップ $4 \ 2 \ 4$ に移行し、設定されている露光エネルギ量の目標値が P_1 以上であるか否かを判断する。この場合、露光エネルギ量の目標値は P_2 であるため、このステップ $4 \ 2 \ 4$ における判断は、否定され、ステップ $4 \ 2 \ 6$ に移行する。ステップ $4 \ 2 \ 6$ において、カウンタ $1 \ 6$ を $1 \ 6$ ともに、露光エネルギ量の目標値に $1 \ 6$ を加算する($1 \ 6$ を $1 \ 6$ を $1 \ 6$ とこでは、露光エネルギ量の目標値を $1 \ 6$ に変更した後、ステップ $1 \ 6$ に戻る。以後、上記と同様の処理(判断を含む)を繰り返す。

[0142]

このようにして、所定の露光エネルギ量の範囲($P_1 \sim P_N$)についての露光が終了すると、ステップ 4 2 4 における判断が肯定され、図 5 のステップ 4 2 8 に移行する。これにより、ウエハ W_T 上の各第 1 領域D C_n には、図 7 に示されるように、それぞれ露光条件が異なる $N \times M$ (一例として 2 3×1 3 = 2 9 9)個の計測用パターン MP_n の転写像(潜像)が形成される。なお、実際には、上述のようにして、ウエハ W_T 上に計測用パターン MP_n の転写像(潜像)が形成された $N \times M$ (一例として 2 3×1 3 = 2 9 9)個の区画領域が形成された段階で、各第 1 領域D C_n が形成されるのであるが、上記の説明では、説明を分かり易くするために、第 1 領域D C_n が予めウエハ W_T 上にあるかのような説明方法を採用したものである。

[0143]

図5のステップ428では、前述のフラグFが降ろされているか、すなわちF = 0であるか否かを判断する。ここでは、前記ステップ406においてフラグF が立てられているので、このステップ428における判断は否定され、ステップ430に移行して、カウンタi、jをそれぞれ1インクリメントする(i \leftarrow i + 1、 $j \leftarrow j + 1$)。これにより、カウンタi = M + 1、J = N + 1となり、露光対象の領域が、図8に示される区画領域 $DA_{M+1}, N+1 = DA_{14,24}$ となる。

[0144]

次のステップ432では、フラグFを降ろし(F \leftarrow 0)、図4のステップ412に戻る。ステップ412では、ウエハ W_T 上の各第1領域 DC_n の区画領域 $DAM_{H+1,N+1}=DA_{14,24}$ に計測用パターン MP_n の像がそれぞれ転写される位置にウエハ W_T を位置決めし、次のステップ414に進む。但し、このとき、ウエハ W_T のフォーカス位置の目標値は Z_M のままなので、特に動作を行うことなく、ステップ416に進んで、区画領域 $DA_{14,24}$ に対する露光を行う。このとき露光エネルギ量Pは、最大露光量 P_N で露光が行われる。

[0145]

次のステップ418では、フラグF=0となっているので、ステップ420、424をスキップして、ステップ428に移行する。このステップ428では、フラグFが降ろされているか否かを判断するが、ここでは、F=0であるので、この判断は肯定され、ステップ434に移行する。

[0146]

ステップ434では、カウンタi=M+1、かつカウンタj>0を満足するか否かが判断されるが、このとき、i=M+1、j=N+1であるので、ここでの判断は肯定され、ステップ436に移行して、カウンタjを1デクリメントし($j\leftarrow j-1$)、ステップ412に戻る。以後、ステップ412→414→416 →418→428→434→436のループの処理(判断を含む)を、ステップ434における判断が否定されるまで、繰り返し行う。これにより、図8に示される区画領域DA_{14,23}からDA_{14,0}まで前述の最大露光量での露光が順次行われる。

[0147]

そして、区画領域DA_{14,0}に対する露光が終了すると、i=M+1(= 14)、j=0となるので、ステップ434における判断が否定され、ステップ438に移行する。このステップ438では、カウンタi>0、かつカウンタj=0を満足するか否かを判断するが、このとき、i=M+1、j=0であるので、ここでの判断は肯定され、ステップ440に移行して、カウンタiを1デクリメントし($i\leftarrow i-1$)、ステップ412に戻る。以後、ステップ412→414→416→418→428→434→438→440のループの処理(判断を含む)を、ステップ438における判断が否定されるまで、繰り返し行う。これにより、図8の区画領域DA_{13,0}からDA_{0,0}まで前述の最大露光量で露光が順次行われる。

[0148]

そして、区画領域DA₀,0に対する露光が終了すると、i=0、j=0となるので、ステップ438における判断が否定され、ステップ442に移行する。このステップ442では、カウンタj=N+1であるか否かが判断されるが、このとき、j=0であるので、ここでの判断は否定され、ステップ444に移行して、カウンタjをインクリメントし($j\leftarrow j+1$)、ステップ412に戻る。以後、ステップ412→414→416→418→428→434→438→442 →444のループの処理(判断を含む)を、ステップ442における判断が肯定されるまで、繰り返し行う。これにより、図8の区画領域DA₀,1からDA₀,24まで前述の最大露光量で露光が順次行われる。

[0149]

そして、区画領域DA_{0,24}に対する露光が終了すると、j=N+1 (=24) となるので、ステップ442における判断が肯定され、ステップ446に移行する。このステップ446では、カウンタi=Mであるか否かが判断されるが、このとき、i=0であるので、ここでの判断は否定され、ステップ448に移行して、カウンタiを1インクリメントし(i ← i + 1)、ステップ412に戻る。以後、ステップ412 → 414 → 416 → 418 → 428 → 434 → 438 → 442 → 446 → 448 のループの処理(判断を含む)を、ステップ446 におけ

る判断が肯定されるまで、繰り返し行う。これにより、図8の区画領域 $DA_{1,24}$ から $DA_{13,24}$ まで前述の最大露光量で露光が順次行われる。

[0150]

そして、区画領域DA $_{13,24}$ に対する露光が終了すると、i=M(= $_{23}$)となるので、ステップ446における判断が肯定され、これにより、ウエハ $_{T}$ に対する露光が終了する。これにより、ウエハ $_{T}$ 上には、図8に示されるような矩形(長方形)の第1領域DC $_{n}$ と、これを取り囲む矩形枠状の第2領域DD $_{n}$ とから成る、評価点対応領域DB $_{n}$ ($n=1\sim5$)の潜像が形成される。この場合、第2領域DD $_{n}$ を構成する各区画領域は、明らかに過露光(オーバードーズ)状態となっている。

[0151]

このようにしてウエハ W_T に対する露光が終了すると、図5のステップ450 に移行する。このステップ450では、不図示のウエハアンローダを介してウエハ W_T をウエハテーブル18上からアンロードするとともに不図示のウエハ搬送系を用いてウエハ W_T を露光装置100にインラインにて接続されている不図示のコータ・デベロッパに搬送する。

[0152]

上記のコータ・デベロッパに対するウエハ W_T の搬送後に、ステップ452に進んでウエハ W_T の現像が終了するのを待つ。このステップ452における待ち時間の間に、コータ・デベロッパによってウエハ W_T の現像が行われる。この現像の終了により、ウエハ W_T 上には、図8に示されるような矩形(長方形)の第1領域D C_n と、これを取り囲む矩形枠状の第2領域D D_n とから成る、評価点対応領域D D_n とから成る、評価点対応領域D D_n (D_n)のレジスト像が形成されたウエハ D_n)のレジスト像が形成されたウエハ D_n)の大学特性を計測するための試料となる。図9には、ウエハ D_n)に形成された評価点対応領域D D_n 0レジスト像の一例が示されている。

[0153]

この図 9 では、評価点対応領域 DB_1 は、(N+2)×(M+2) = 2.5×1 5=3.75 個の区画領域 $DA_{i,j}$ ($i=0\sim M+1$ 、 $j=0\sim N+1$)によって

構成され、隣接する区画領域相互間に仕切りの枠のレジスト像が存在するかのように図示されているが、これは個々の区画領域を分かり易くするためにこのようにしたものである。しかし、実際には、隣接する区画領域相互間に仕切りの枠のレジスト像は存在しない。このように枠を無くすことにより、従来問題となっていた、FIA系のアライメントセンサなどによる画像取り込みに際して、枠による干渉に起因してパターン部のコントラスト低下が生じるのを防止するためである。このため、本実施形態では、前述のステップピッチSPを、各開口パターン AP_n のウエハ W_T 上の投影像の寸法以下となるように設定したのである。

[0154]

また、この場合、隣接する区画領域間のマルチバーパターンから成る計測用パターン MP_n のレジスト像同士の距離をLとすると、この距離Lは、一方の計測用パターン MP_n の像のコントラストに他方の計測用パターン MP_n の像の存在が影響を与えない程度の距離とされている。この距離Lは、区画領域を撮像する撮像装置(本実施形態の場合アライメント検出系ASのFIA系のアライメントセンサ)の解像度を R_f 、計測用パターンの像のコントラストを C_f 、レジストの反射率、屈折率などを含むプロセスによって定まるプロセスファクタを P_f 、FIA系のアライメントセンサの検出波長を λ_f とした場合に、一例として、L=f(C_f 、 R_f 、 P_f 、 λ_f)なる関数で表すことができる。

[0155]

なお、プロセスファクタ P_f は、像のコントラストに影響を与えるので、プロセスファクタを含まない関数L'=f' (C_f 、 R_f 、 λ_f) なる関数によって距離Lを規定しても良い。

[0156]

また、図9からもわかるように、矩形(長方形)の第1領域D C_1 を取り囲む矩形枠状の第2領域D D_1 には、パターン残存領域が見当たらない。これは、前述の如く、第2領域D D_1 を構成する各区画領域の露光の際に過露光となる露光エネルギを設定したためである。このようにしたのは、後述する外枠検出の際にその外枠部のコントラストを向上させ、検出信号のS/N比を高くするためである。

[0157]

上記ステップ452の待ち状態で、不図示のコータ・デベロッパの制御系からの通知によりウエハ W_T の現像が終了したことを確認すると、ステップ454に移行し、不図示のウエハローダに指示を出して、前述のステップ402と同様にしてウエハ W_T をウエハテーブル18上に再度ロードした後、ステップ456の投影光学系の光学特性を算出するサブルーチン(以下、「光学特性計測ルーチン」とも呼ぶ)に移行する。

[0158]

この光学特性計測ルーチンでは、まず、図10のステップ502において、カウンタnを参照して、ウエハ W_T 上の評価点対応領域 DB_n のレジスト像がアライメント検出系ASで検出可能となる位置にウエハ W_T を移動する。この移動、すなわち位置決めは、レーザ干渉計26の計測値をモニタしつつ、駆動系22を介してXYステージ20を制御することにより行う。ここで、カウンタnは、n=1に初期化されているものとする。従って、ここでは、図9に示されるウエハ W_T 上の評価点対応領域 DB_1 のレジスト像がアライメント検出系ASで検出可能となる位置にウエハ W_T が位置決めされる。なお、以下の光学特性計測ルーチンの説明では、評価点対応領域 DB_n のレジスト像を、適宜「評価点対応領域 DB_n 」と略述するものとする。

[0159]

次のステップ504では、ウエハ W_T 上の評価点対応領域 DB_n (ここでは、 DB_1)のレジスト像をアライメント検出系ASのFIA系アライメントセンサ(以下、適宜「FIAセンサ」と略述する)を用いて撮像し、その撮像データを取り込む。なお、FIAセンサは、レジスト像を自身の有する撮像素子(CCD等)のピクセル単位に分割し、ピクセル毎に対応するレジスト像の濃淡を8ビットのデジタルデータ(ピクセルデータ)として主制御装置28に供給するようになっている。すなわち、前記撮像データは、複数のピクセルデータで構成されている。なお、ここでは、レジスト像の濃度が高くなる(黒に近くなる)につれてピクセルデータの値は大きくなるものとする。

[0160]

次のステップ506では、FIAセンサからの評価点対応領域 DB_n (ここでは、 DB_1)に形成されたレジスト像の撮像データを整理し、撮像データファイルを作成する。

[0161]

次のステップ(サブルーチン) $508\sim$ ステップ516では、以下に説明するようにして、評価点対応領域DB $_n$ (ここでは、DB $_1$)の外縁である長方形(矩形)の外枠を検出する。図14(A) \sim 図14(C)及び図15(A)、図15(B)には、シミュレーションにおける、外枠検出の様子が順番に示されている。これらの図において、符号DB $_n$ が付された矩形領域が、外枠検出の対象となる評価点対応領域DB $_n$ に相当する。

[0162]

まず、サブルーチン 5 0 8 において、図 <math>1 4 (A) $に示されるように、評価点対応領域 D B_n$ $(ここでは、D B_1)$ の画像中心近傍を通る縦方向ピクセル列情報を用いて境界検出を行い、評価点対応領域 D B_nの上辺及び下辺の大まかな位置を検出する。図 1 2 に、このサブルーチン 5 0 8 の処理が示されている。

[0163]

このサブルーチン 508では、まず、図 120 サブルーチン 702 において、最適な閾値 tを決定(自動設定)する。図 13 に、このサブルーチン 702 の処理が示されている。

[0164]

サブルーチン702では、まず、図13のステップ802において、境界検出用の直線状のピクセル列、例えば図14(A)に示される直線LVに沿う直線状のピクセル列のデータ(ピクセル列データ)を前述の撮像データファイルの中から抽出する。これにより、例えば図14(A)中の波形データPD1に対応するピクセル値を有するピクセル列データが得られたものとする。

[0165]

次のステップ804では、そのピクセル列のピクセル値(ピクセルデータの値)の平均値と標準偏差(又は分散)を求める。

[0166]

次のステップ806では、求めた平均値と標準偏差とに基づいて閾値(スレッショルドレベルライン)SLの振り幅を設定する。

[0167]

次のステップ808では、図16に示されるように、上で設定した振り幅で閾値(スレッショルドレベルライン)SLを所定ピッチで変化させ、変化位置毎に波形データPD1と閾値(スレッショルドレベルライン)SLとの交点数を求め、その処理結果の情報(各閾値の値と交点数)を不図示の記憶装置に記憶する。

[0168]

次のステップ810では、上記ステップ808で記憶した上記処理結果の情報に基づいて、求めた交点数が、対象パターン(この場合は、評価点対応領域DBn)によって定まる交点数に一致する閾値(仮閾値と呼ぶ) t 0を求める。

[0169]

次のステップ 8 1 2 では、上記仮閾値 t $_0$ を含み、交点数が同じである閾値範囲を求める。

[0170]

次のステップ814では、上記ステップ812で求めた閾値範囲の中心を最適な閾値tとして決定した後、図12のステップ704にリターンする。

[0171]

なお、ここでは、高速化を目的としてピクセル列のピクセル値の平均値と標準 偏差(又は分散)を基に、離散的に(所定ステップピッチで)閾値を変化させて いるが、閾値の変化方法は、これに限定されるものではなく、例えば連続的に変 化させるなどしても良いことは勿論である。

[0172]

図12のステップ704では、上で決定した閾値(スレッショルドレベルライン) t と、前述の波形データPD1との交点(すなわち、閾値 t が波形データPD1を横切る点)を求める。なお、この交点の検出は、図16中に矢印A、A'で示されるように、実際にはピクセル列を外側から内側に走査することによって行われる。従って、交点は、少なくとも2点検出される。

[0173]

図12に戻り、次のステップ706では、求めた各交点の位置からそれぞれ双 方向にピクセル列を走査し、各交点の近傍のピクセル値の極大値及び極小値を、 それぞれ求める。

[0174]

次のステップ708では、求めた極大値及び極小値の平均値を算出し、これを新たな閾値 t とする。この場合、交点が少なくとも2点あるので、新たな閾値 t も交点毎に求められることになる。

[0175]

次のステップ710では、上記ステップ708で求めた交点毎の、極大値と極小値との間で、閾値 t'と波形データPD1との交点(すなわち、閾値 t'が波形データPD1を横切る点)をそれぞれ求め、その求めた各点(ピクセル)の位置を境界位置とする。すなわち、このようにして境界位置(この場合、評価点対応領域DB $_n$ の上辺及び下辺の大まかな位置)を算出した後、図10のステップ510にリターンする。

[0176]

図10のステップ510では、図14(B)に示されるように、上記ステップ508で求めた上辺より少し下側の横方向(X軸方向にほぼ平行な方向)の直線 LH1上のピクセル列、及び、求めた下辺より少し上側の横方向の直線LH2上のピクセル列を用いて、前述のステップ508と同様の手法で境界検出を行い、評価点対応領域DBnの左辺及び右辺上の点を各2点、合計4点求める。図14(B)中には、このステップ510における境界検出に用いられる、上記直線LH1上のピクセル列データのピクセル値に対応する波形データPD2、上記直線LH2上のピクセル列データのピクセル値に対応する波形データPD3がそれぞれ示されている。また、この図14(B)中には、ステップ510で求められた点 $Q_1\sim Q_4$ も併せて示されている。

[0177]

図10に戻り、次のステップ512では、図14(C)に示されるように、上記ステップ510で求めた左辺上の2点 Q_1 、 Q_2 より少し右側の縦方向の直線L V1上のピクセル列、及び、求めた右辺上の2点 Q_3 、 Q_4 より少し左側の縦方向

の直線LV2上のピクセル列を用いて、前述のステップ 508 と同様の手法で境界検出を行い、評価点対応領域DBnの上辺及び下辺上の点を62 点、合計 4 点求める。図 14 (C) 中には、このステップ 512 における境界検出に用いられる、上記直線LV1上のピクセル列データのピクセル値に対応する波形データPD 4 、上記直線LV2上のピクセル列データのピクセル値に対応する波形データPD 5 がそれぞれ示されている。また、この図 14 (C) 中には、ステップ 512 で求められた点25~28 も併せて示されている。

[0178]

図10に戻り、次のステップ514では、図15(A)に示されるように、上記ステップ510、512においてそれぞれ求めた、評価点対応領域 DB_n の左辺、右辺、上辺及び下辺上の各2点(Q_1 , Q_2)、(Q_3 , Q_4)、(Q_5 , Q_6)、(Q_7 , Q_8)に基づいて、各辺上の2点で決まる直線同士の交点として、矩形領域(長方形領域)である評価点対応領域 DB_n の外枠の4項点 p_0 '、 p_1 '、 p_2 '、 p_3 'を求める。ここで、この頂点の算出方法について、頂点 p_0 'を算出する場合を例にとって、図17に基づいて詳述する。

[0179]

図17に示されるように、頂点 p_0 'が、境界位置 Q_2 から Q_1 へ向かうベクトル K1o α 倍 (α > 0) の位置にあり、同時に Q_5 から Q_6 へ向かうベクトル K2o β 倍 (β < 0) の位置にあるとするとき、次の連立方程式(1)が成り立つ。(ここで、添え字 x 、 yは、それぞれ各点の x 座標、 y座標を表す。)

[0180]

【数1】

$$\begin{vmatrix}
p_{0x}' = Q_{2x} + \alpha (Q_{1x} - Q_{2x}) = Q_{5x} + \beta (Q_{6x} - Q_{5x}) \\
p_{0y}' = Q_{2y} + \alpha (Q_{1y} - Q_{2y}) = Q_{5y} + \beta (Q_{6y} - Q_{5y})
\end{vmatrix} \cdots (1)$$

[0181]

上記の連立方程式(1)を解けば、頂点 p_0 'の位置(p_{0x} ', p_{0y} ')が求められる。

[0182]

残りの頂点 p_1 '、 p_2 '、 p_3 'についても、同様の連立方程式を立て、それを解くことにより、それぞれの位置を求めることができる。

[0183]

図10に戻り、次のステップ516では、図15(B)に示されるように、上で求めた4頂点 p_0 '~ p_3 'の座標値に基づいて、最小二乗法による長方形近似を行い、回転を含めた評価点対応領域 DB_n の外枠DBFを算出する。

[0184]

ここで、このステップ 5 1 6 における処理を、図 1 8 に基づいて詳述する。すなわち、このステップ 5 1 6 では、4 頂点 $p_0 \sim p_3$ の座標値を用いて、最小二乗法による長方形近似を行い、評価点対応領域 D B_n の外枠 D B F の幅w、高さ h、及び回転量 θ を求めている。なお、図 1 8 において、y 軸は紙面の下側が正となっている。

[0185]

中心pcの座標を(pcx, pcy)とすると、長方形の4頂点(p0, p1, p2, p3) はそれぞれ次式(2)~(5)のように表せる。

[0186]

【数2】

$$\begin{bmatrix} p_{0x} \\ p_{0y} \end{bmatrix} = \begin{bmatrix} p_{cx} \\ p_{cy} \end{bmatrix} + \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} -w/2 \\ -h/2 \end{bmatrix} \cdots (2)$$

$$\begin{bmatrix} p_{1x} \\ p_{1y} \end{bmatrix} = \begin{bmatrix} p_{cx} \\ p_{cy} \end{bmatrix} + \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} w/2 \\ -h/2 \end{bmatrix} \cdots (3)$$

$$\begin{bmatrix} p_{2x} \\ p_{2y} \end{bmatrix} = \begin{bmatrix} p_{cx} \\ p_{cy} \end{bmatrix} + \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} w/2 \\ h/2 \end{bmatrix} \cdots (4)$$

$$\begin{bmatrix} p_{3x} \\ p_{3y} \end{bmatrix} = \begin{bmatrix} p_{cx} \\ p_{cy} \end{bmatrix} + \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} -w/2 \\ h/2 \end{bmatrix} \cdots (5)$$

[0187]

上記ステップ 5 1 4 で求めた 4 頂点 p_0 ', p_1 ', p_2 ', p_3 'の各点とそれぞれ対応する上式(2)~(5)でそれぞれ表される頂点 p_0 , p_1 , p_2 , p_3 と

の距離の総和を誤差 E_p とする。誤差 E_p は、次式(6)、(7)で表せる。

[0188]

【数3】

$$E_{px} = (p_{0x} - p_{0x}')^2 + (p_{1x} - p_{1x}')^2 + (p_{2x} - p_{2x}')^2 + (p_{3x} - p_{3x}')^2 \cdots (6)$$

$$E_{py} = (p_{0y} - p_{0y}')^2 + (p_{1y} - p_{1y}')^2 + (p_{2y} - p_{2y}')^2 + (p_{3y} - p_{3y}')^2 \cdots (7)$$

[0189]

上記式(6)、(7)を、未知変数 p_{cx} , p_{cy} , w, h, θ でそれぞれ偏微分し、その結果が 0 になるように連立方程式を立て、その連立方程式を解くことによって長方形近似結果が得られる。

[0190]

この結果、評価点対応領域 DB_n の外枠DBFが求められた様子が、図15(B) に実線にて示されている。

[0191]

図10に戻り、次のステップ518では、上で検出した評価点対応領域 DB_n の外枠DBFを、既知の区画領域の縦方向の数=(M+2)=15、区画領域の横方向の数=(N+2)=25を用いて、等分割し、各区画領域 $DA_{i,j}$ ($i=0\sim14$ 、 $j=0\sim24$)を求める。すなわち、外枠DBFを基準として、各区画領域を求める。

[0192]

図15 (C) には、このようにして求められた、第1領域D C_n を構成する各区画領域D $A_{i,j}$ ($i=1\sim13$ 、 $j=1\sim23$) が示されている。

[0193]

図10に戻り、次のステップ520では、各区画領域 $DA_{i,j}$ ($i=1\sim M$ 、 $j=1\sim N$)について、ピクセルデータに関する代表値(以下、適宜「スコア」とも呼ぶ)を算出する。

[0194]

以下、スコア $E_{i,j}$ ($i=1\sim M$ 、 $j=1\sim N$) の算出方法について詳述する

[0195]

通常、撮像された計測対象において、パターン部分と非パターン部分にはコントラスト差がある。パターンが消失した領域内には非パターン領域輝度をもつピクセルだけが存在し、一方、パターンが残存する領域内にはパターン領域輝度をもつピクセルと非パターン領域輝度を持つピクセルとが混在する。従って、パターン有無判別を行うための代表値(スコア)として、各区画領域内でのピクセル値のばらつきを用いることかできる。

[0196]

本実施形態では、一例として、区画領域内の指定範囲のピクセル値の分散(又は標準偏差)を、スコアEとして採用するものとする。

[0197]

指定範囲内のピクセルの総数をS、k番目のピクセルの輝度値を I_k とすると、スコアEは次式(8)で表せる。

【数4】

$$E = \sum_{k=1}^{S} (SI_k - \sum I_k)^2 / S^3 \cdots (8)$$

[0199]

本実施形態の場合、前述の如く、レチクルR_T上で、開口パターンAP_n($n=1\sim5$)と中心を同じくする、該各開口パターンの約60%の縮小領域部分に計測用パターンMP_nがそれぞれ配置されている。また、前述の露光の際のステップピッチSPが、各開口パターンAP_nのウエハW_T上への投影像の寸法とほぼ一致する約5 μ mに設定されている。従って、パターン残存区画領域において、計測用パターンMP_nは、区画領域DA_{i,j}と中心を同じくし、該区画領域DA_{i,j}をほぼ60%に縮小した範囲(領域)に存在することとなる。

[0200]

かかる点を考慮すると、上記の指定範囲として、例えば区画領域 $DA_{i,j}$ ($i=1\sim M$ 、 $j=1\sim N$) と中心を同じくし、その領域を縮小した範囲をスコア算出に用いることができる。但し、その縮小率 A (%) は以下のように制限される

[0201]

[0202]

本実施形態の場合、パターン部が区画領域の約60%を占めているため、スコア算出に用いる領域(指定範囲)の区画領域に対する比を上げるほどS/N比が上がるものと予想される。

[0203]

しかるに、スコア算出に用いる領域内でのパターン部と非パターン部の領域サイズが同じになれば、パターン有無判別のS/N比を最大にすることができる。従って、幾つかの比率を実験的に確認して、最も安定した結果が得られる比率として、A=90%という比率を採用するものとした。勿論Aは、90%に限定されるものではなく、計測用パターン MP_n と開口パターン AP_n との関係、及びステップピッチSPによって決定されるウエハ上の区画領域を考慮して、区画領域に対する計測用パターン MP_n の像が占める割合を考慮して定めれば良い。また、スコア算出に用いる指定範囲は、区画領域と中心を同じくする領域に限定されるものではなく、計測用パターン MP_n の像が区画領域内のどの位置に存在するかを考慮して定めれば良い。

[0204]

従って、ステップ 5 2 0 では、前記撮像データファイルから、各区画領域 D A i,j の前記指定範囲内の撮像データを抽出し、上式(8)を用いて、各区画領域 D A i,j ($i=1\sim M$ 、 $j=1\sim N$)のスコア $E_{i,j}$ ($i=1\sim M$ 、 $j=1\sim N$)を算出する。

[0205]

上記の方法で求めたスコアEは、パターンの有無具合を数値として表しているので、所定の閾値で二値化することによってパターン有無の判別を自動的にかつ安定して行うことが可能である。

[0206]

そこで、次のステップ522(図11)において、区画領域DA $_{i,j}$ 毎に上で求めたスコアE $_{i,j}$ と所定の閾値SHとを比較して、各区画領域DA $_{i,j}$ における計測用パターンMPの像の有無を検出し、検出結果としての判定値F $_{i,j}$ ($_{i=1\sim M}$ 、 $_{j=1\sim N}$)を図示しない記憶装置に保存する。すなわち、このようにして、スコアE $_{i,j}$ に基づいて、区画領域DA $_{i,j}$ 毎に計測用パターンMP $_{n}$ の像の形成状態を検出する。なお、像の形成状態としては、種々のものが考えられるが、本実施形態では、上述の如く、スコアEがパターンの有無具合を数値として表すものであるという点に基づいて、区画領域内にパターンの像が形成されているか否かに着目することとしたものである。

[0207]

ここでは、スコア $E_{i,j}$ が閾値S H以上の場合には、計測用パターン MP_n の像が形成されていると判断し、検出結果としての判定値 $F_{i,j}$ を「0」とする。一方、スコア $E_{i,j}$ が閾値S H未満の場合には、計測用パターン MP_n の像が形成されていないと判断し、検出結果としての判定値 $F_{i,j}$ を「1」とする。図19には、この検出結果の一例がテーブルデータとして示されている。この図19は、前述の図9に対応するものである。

[0208]

図19において、例えば、 $F_{12,16}$ は、ウエハ W_T のZ軸方向の位置が Z_{12} で、露光エネルギ量が P_{16} のときに転写された計測用パターン MP_n の像の形成状態の検出結果を意味し、一例として、図19の場合には、 $F_{12,16}$ は、「1」という値になっており、計測用パターン MP_n の像が形成されていないと判断されたことを示している。

[0209]

なお、閾値SHは、予め設定されている値であり、オペレータが図示しない入

出力装置を用いて変更することも可能である。

[0210]

次のステップ5 2 4 では、上述の検出結果に基づいて、フォーカス位置毎にパターンの像が形成されている区画領域の数を求める。すなわち、フォーカス位置毎に判定値「0」の区画領域が何個あるかを計数し、その計数結果をパターン残存数 T_i ($i=1\sim M$) とする。この際に、周囲の領域と異なる値を持ついわゆる跳び領域は無視する。例えば、図 1 9 の場合には、ウエハ W_T のフォーカス位置が Z_1 ではパターン残存数 T_1 = 8、 Z_2 では T_2 = 1 1、 Z_3 では T_3 = 1 4、2 4では T_4 = 1 6、2 5では T_5 = 1 6、2 6では T_6 = 1 3、2 7では T_7 = 1 1、2 8では T_8 = 8、2 9では T_9 = 5、2 10では10= 3、2 11では11= 2 、2 12では11= 2 、2 13では20 のようにして、フォーカス位置とパターン残存数21 21 22 の関係を求めることができる。

[0211]

なお、上記の跳び領域が生ずる原因として、計測時の誤認識、レーザのミスファイヤ、ゴミ、ノイズ等が考えられるが、このようにして生じた跳び領域がパターン残存数 T_i の検出結果に与える影響を軽減するために、フィルタ処理を行っても良い。このフィルタ処理としては、例えば評価する区画領域を中心とする 3×3 の区画領域のデータ(判定値 $F_{i,j}$)の平均値(単純平均値又は重み付け平均値)を求めることが考えられる。なお、フィルタ処理は、形成状態の検出処理前のデータ(スコア $E_{i,j}$)に対して行っても勿論良く、この場合には、より有効に跳び領域の影響を軽減できる。

[0212]

次のステップ526では、パターン残存数からベストフォーカス位置を算出するためのn次の近似曲線(例えば4~6次曲線)を求める。

[0213]

具体的には、上記ステップ 5 2 4 で検出されたパターンの残存数を、横軸をフォーカス位置とし、縦軸をパターン残存数 T_i とする座標系上にプロットする。この場合、図 2 0 に示されるようになる。ここで、本実施形態の場合、ウエハW Tの露光にあっては、各区画領域 D $A_{i,j}$ を同一の大きさとし、かつ、行方向で隣

接する区画領域間の露光エネルギの差を一定値($=\Delta P$)とし、列方向で隣接する区画領域間のフォーカス位置の差を一定値($=\Delta Z$)としたので、パターン残存数 T_i が露光エネルギ量に比例するものとして扱うことができる。すなわち、図20において、縦軸は露光エネルギ量Pであると考えることもできる。

[0214]

上記のプロット後、各プロット点をカーブフィットすることにより n 次の近似曲線(最小自乗近似曲線)を求める。これにより、例えば図 2 0 に点線で示されるような曲線 P=f (Z) が求められる。

[0215]

図11に戻り、次のステップ528では、上記曲線P=f(Z)の極値(極大値又は極小値)の算出を試みるとともに、その結果に基づいて極値が存在するか否かを判断する。そして、極値が算出できた場合には、ステップ530に移行して極値におけるフォーカス位置を算出して、その算出結果を光学特性の一つである最良フォーカス位置とするとともに、該最良フォーカス位置を図示しない記憶装置に保存する。

[0216]

[0217]

ここで、このステップ 5 3 2 のようなベストフォーカス位置の算出ステップを設けたのは、計測用パターンMPの種類やレジストの種類その他の露光条件によっては、例外的に上述の曲線 P=f (Z) が明確なピークを持たないような場合がある。このような場合にも、ベストフォーカス位置をある程度の精度で算出できるようにしたものである。

[0218]

次のステップ534において、前述のカウンタnを参照して、全ての評価点対応領域 $DB_1 \sim DB_5$ について処理が終了したか否かを判断する。ここでは、評価点対応領域 DB_1 についての処理が終了しただけであるため、このステップ534における判断は否定され、ステップ536に進んでカウンタnをインクリメント($n \leftarrow n+1$)した後、図100のステップ502に戻り、評価点対応領域DB2がアライメント検出系ASで検出可能となる位置に、ウエハ W_T を位置決めする。

[0219]

そして、上述したステップ 5 0 4 \sim 5 3 4 までの処理(判断を含む)を再度行い、上述した評価点対応領域 D B_1 の場合と同様にして、評価点対応領域 D B_2 について最良フォーカス位置を求める。

[0220]

そして、評価点対応領域DB $_2$ について最良フォーカス位置の算出が終了すると、ステップ $_5$ 34で全ての評価点対応領域DB $_1$ ~DB $_5$ について処理が終了したか否かを再度判断するが、ここでの判断は否定される。以後、ステップ $_5$ 34における判断が肯定されるまで、上記ステップ $_5$ 02~ $_5$ 36の処理(判断を含む)が繰り返される。これにより、他の評価点対応領域DB $_3$ ~DB $_5$ について、前述した評価点対応領域DB $_1$ の場合と同様にして、それぞれ最良フォーカス位置が求められることとなる。

[0221]

このようにして、ウエハ W_T 上の全ての評価点対応領域 $DB_1 \sim DB_5$ について最良フォーカス位置の算出がなされると、ステップ534での判断が肯定され、ステップ538に移行して、上で求めた最良フォーカス位置データに基づいて他の光学特性を算出する。

[0222]

例えば、このステップ 5 3 8 では、一例として、評価点対応領域 $DB_1 \sim DB_5$ における最良フォーカス位置のデータに基づいて、投影光学系 PL の像面湾曲を 算出する。

[0223]

ここで、本実施形態では、説明の簡略化のため、投影光学系PLの視野内の各評価点に対応するレチクルRT上の領域に計測用パターンとして前述のパターンMPnのみが形成されていることを前提として、説明を行った。しかし、本発明がこれに限定されないことは勿論である。例えば、レチクルRT上に、例えば各評価点に対応するレチクルRT上の領域の近傍に、前述したステップピッチSPの整数倍、例えば8倍、12倍などの間隔で複数の開口パターンAPnを配置し、各開口パターンAPnの内部に、周期方向が異なるL/Sパターンや、ピッチが異なるL/Sパターンなど複数種類の計測用パターンをそれぞれ配置しても良い。このようにすると、例えば、各評価点に対応する位置に近接して配置された周期方向が直交する1組のL/Sパターンを計測用パターンとして得られた最良フォーカス位置から各評価点における非点収差を求めることができる。さらに、投影光学系PLの視野内の各評価点について、上述のようにして算出された非点収差に基づいて最小二乗法による近似処理を行うことにより非点収差面内均一性を求めるとともに、非点収差面内均一性と像面湾曲とから総合焦点差を求めることも可能となる。

[0224]

そして、上述のようにして求められた投影光学系PLの光学特性データは、図示しない記憶装置に保存されるとともに、不図示の表示装置の画面上に表示される。これにより、図11のステップ538の処理、すなわち図5のステップ456の処理を終了し、一連の光学特性の計測処理を終了する。

[0225]

次に、デバイス製造の場合における、本実施形態の露光装置100による露光 動作を説明する。

[0226]

前提として、上述のようにして決定された最良フォーカス位置の情報、あるいはこれに加えて像面湾曲の情報が、不図示の入出力装置を介して主制御装置28 に入力されているものとする。

[0227]

例えば、像面湾曲の情報が入力されている場合には、主制御装置28は、露光

に先立って、この光学特性データに基づいて、図示しない結像特性補正コントローラに指示し、例えば投影光学系PLの少なくとも1つの光学素子(本実施形態では、レンズエレメント)の位置(他の光学素子との間隔を含む)あるいは傾斜などを変更することにより、その像面湾曲が補正されるように投影光学系PLの結像特性を可能な範囲で補正する。なお、投影光学系PLの結像特性の調整に用いる光学素子は、レンズエレメントなどの屈折光学素子だけでなく、例えば凹面鏡などの反射光学素子、あるいは投影光学系PLの収差(ディストーション、球面収差など)、特にその非回転対称成分を補正する収差補正板などでも良い。さらに、投影光学系PLの結像特性の補正方法は光学素子の移動に限られるものではなく、例えば露光光源を制御して照明光ILの中心波長を僅かにシフトさせる方法、又は投影光学系PLの一部で屈折率を変化させる方法などを単独、あるいは光学素子の移動との組み合わせで採用しても良い。

[0228]

そして、主制御装置28からの指示に応じて、不図示のレチクルローダにより 転写対象となる所定の回路パターン(デバイスパターン)が形成されたレチクル RがレチクルステージRST上にロードされる。同様に、不図示のウエハローダ により、ウエハWがウエハテーブル18上にロードされる。

[0229]

次に、主制御装置28により、不図示のレチクルアライメント顕微鏡、ウエハテーブル18上の基準マーク板FP、アラインメント検出系AS等を用いて、レチクルアラインメント、ベースライン計測などの準備作業が所定の手順で行われ、これに続いてEGA(エンハンスト・グローバル・アラインメント)方式などのウエハアライメントが行われる。なお、上記のレチクルアライメント、ベースライン計測等の準備作業については、例えば特開平4−324923号公報に詳細に開示され、また、これに続くEGAについては、特開昭61−44429号公報に詳細に開示されているので、ここではこれ以上の詳細説明は省略する。

[0230]

上記のウエハアライメントが終了すると、以下のようにしてステップ・アンド・リピート方式の露光動作が行われる。

[0231]

この露光動作にあたって、まず、ウエハW上の最初のショット領域(ファースト・ショット領域)が露光位置(投影光学系PLの直下)に一致するようにウエハテーブル18が位置決めされる。この位置決めは、主制御装置28により、レーザ干渉計26によって計測されたウエハWのXY位置情報(又は速度情報)に基づき、駆動系22等を介してXYステージ20を移動することによって行われる。

[0232]

このようにして、ウエハWが所定の露光位置に移動すると、主制御装置28は、フォーカスセンサAFSによって検出されたウエハWの2軸方向の位置情報に基づき、前述した光学特性補正後の投影光学系PLの像面の焦点深度の範囲内にウエハW表面の露光対象のショット領域が収まるように、駆動系22を介してウエハテーブル18を2軸方向及び傾斜方向に駆動して面位置の調整を行う。そして、主制御装置28は、前述した露光を行う。なお、本実施形態では、ウエハWの露光動作に先立って、前述した各評価点における最良フォーカス位置に基づいて投影光学系PLの像面を算出し、この像面がフォーカスセンサAFSの検出基準となるようにフォーカスセンサAFSの光学的なキャリブレーション(例えば、受光系50b内に配置される平行平面板の傾斜角度の調整など)が行われている。勿論、光学的なキャリブレーションを必ずしも行う必要はなく、例えば先に算出した像面とフォーカスセンサAFSの検出基準との偏差に応じたオフセットを考慮して、フォーカスセンサAFSの出力に基づいてウエハW表面を像面に一致させるフォーカス動作(及びレベリング動作)を行うようにしても良い。

[0233]

このようにしてファースト・ショット領域に対する露光、すなわちレチクルパターンの転写が終了すると、ウエハテーブル18が1ショット領域分だけステッピングされて、前ショット領域と同様に露光が行われる。

[0234]

以後、このようにして、ステッピングと露光とが順次繰り返され、ウエハW上に必要なショット数のパターンが転写される。

[0235]

以上詳細に説明したように、本実施形態に係る露光装置における、投影光学系 P L の光学特性計測方法によると、矩形枠状の開口パターン A P n と該開口パターン A P n の内部に位置する計測用パターン M P n とが形成されたレチクル R T を 、投影光学系の物体面側に配置されたレチクルステージ R S T 上に搭載し、投影光学系 P L の像面側に配置されたウエハ W_T の投影光学系 P L の光軸方向に関する位置(Z)とウエハ W_T 上に照射される照明光 I L のエネルギ量 P をそれぞれ変更しながら、ウエハ W_T を開口パターン A P n のサイズに対応する距離、すなわち開口パターン A P n のウエハ W_T 上への投影像のサイズ以下のステップピッチで順次 X Y 面内で移動して計測用パターン M P n をウエハ W_T 上に順次転写する。これにより、ウエハ W_T 上には、マトリックス状に配置された複数の区画領域 D A i ,j($i=0\sim M+1$ 、 $j=0\sim N+1$)から成る全体として矩形の評価点対応領域 D B n が形成される。この場合、前述した理由により、ウエハ W_T 上には、区画領域相互間の境界に従来のような枠線が存在しない複数のマトリックス状配置の複数の区画領域(計測用パターンの像が投影された領域)が形成される。

[0236]

そして、ウエハ W_T の現像後に、該ウエハ W_T 上に形成された評価点対応領域 D_n を構成する複数の区画領域のうち、第2領域 D_n を除く第1領域 D_n を構成する $M\times N$ 個の領域における像の形成状態を画像処理の手法、具体的には、主制御装置 28 が、アライメント検出系ASOFIAセンサを用いてウエハ W_T 上の評価点対応領域 DB_n を撮像し、取り込んだレジスト像の撮像データを用いて前述の各区画領域 $DA_{i,j}$ のスコア $E_{i,j}$ と閾値SHとを比較した二値化の手法により検出する。

[0237]

本実施形態の場合、隣接する区画領域間に枠線が存在しないので、像形成状態の検出対象である複数の区画領域(主として計測用パターンの像の残存する区画領域)において、計測用パターンの像のコントラストが枠線の干渉に起因して低下することがない。このため、それらの複数の区画領域の撮像データとしてパターン部と非パターン部のS/N比の良好なデータを得ることができる。従って、

区画領域毎の計測用パターンMPの形成状態を精度、再現性良く検出することが可能となる。しかも、像の形成状態を客観的、定量的なスコアE_{i,j}を閾値SHと比較してパターンの有無情報(二値化情報)に変換して検出するので、区画領域毎の計測用パターンMPの形成状態を、再現性良く検出することができる。

[0238]

また、本実施形態では、パターンの有無具合を数値として表したスコアE_{i,j}を用いて像の形成状態をパターン有無情報(二値化情報)に変換して検出するので、パターン有無の判別を自動的にかつ安定して行うことができる。従って、本実施形態では、二値化に際して、閾値は一つだけで足り、複数の閾値を設定しておいて閾値毎にパターンの有無具合を判別するような場合に比べて、像の形成状態の検出に要する時間を短縮することができるとともに、その検出アルゴリズムも簡略化することができる。

[0239]

また、主制御装置 28 は、上述した区画領域毎の像の形成状態の検出結果、すなわち客観的かつ定量的な上記のスコア $E_{i,j}$ (画像のコントラストの指標値)を用いた検出結果に基づいて最良フォーカス位置などの投影光学系PLの光学特性、を求めている。このため、短時間で精度良く最良フォーカス位置などを求めることが可能となる。従って、この最良フォーカス位置に基づいて決定される光学特性の測定精度及び測定結果の再現性を向上させることができるとともに、結果的に光学特性計測のスループットを向上させることが可能となる。

[0240]

また、本実施形態では、上述の如く、像の形成状態をパターンの有無情報(二値化情報)に変換して検出するので、レチクルRTのパターン領域PA内に計測用パターンMP以外のパターン(例えば、比較用の基準パターンや、位置決め用マークパターン等)を配置する必要がない。また、従来の寸法を計測する方法(CD/フォーカス法、SMPフォーカス計測法など)に比べて、計測用パターンを小さくすることができる。このため、評価点の数を増加させることができるとともに、評価点間の間隔を狭くすることが可能となる。結果的に、光学特性の測定精度及び測定結果の再現性を向上させることができる。

[0241]

また、本実施形態では、ウエハWT上に形成される隣接する区画領域間に枠線が存在しないことに鑑み、各評価点対応領域DBnの外周縁である外枠DBFを基準として各区画領域DA $_{i,j}$ の位置を算出する手法を採用している。そして、各評価点対応領域DBn内の最外周部に位置する複数の区画領域から成る第2領域DDnを構成する各区画領域が過露光の領域となるように露光条件の一部としてウエハWT上に照射される照明光ILのエネルギ量を変更している。これにより、前述の外枠DBFの検出に際してのS/N比が向上し、外枠DBFの検出を高精度に行うことができ、この結果、これを基準として各第1領域DCnを構成する各区画領域DA $_{i,j}$ ($i=1\sim M$ 、 $j=1\sim N$)の位置を精度良く検出することができる。

[0242]

また、本実施形態に係る光学特性計測方法によると、統計処理による近似曲線の算出という客観的、かつ確実な方法を基礎として最良フォーカス位置を算出しているので、安定して高精度かつ確実に光学特性を計測することができる。なお、近似曲線の次数によっては、その変曲点、あるいはその近似曲線と所定のスライスレベルとの複数の交点等に基づいて最良フォーカス位置を算出することは可能である。

[0243]

また、本実施形態の露光装置によると、本実施形態に係る光学特性計測方法により精度良く計測された投影光学系PLの光学特性を考慮して最適な転写が行えるように投影光学系PLが露光に先立って調整され、その調整された投影光学系PLを介してレチクルRに形成されたパターンがウエハW上に転写される。更に、上述のようにして決定された最良フォーカス位置を考慮して露光の際のフォーカス制御目標値の設定が行われるので、デフォーカスによる色むらの発生を効果的に抑制することができる。従って、本実施形態に係る露光方法によると、微細パターンをウエハ上に高精度に転写することが可能となる。

[0244]

なお、上記実施形態では、計測用パターン MP_{n} の像の形成状態を、スコア E_{i}

,jを閾値SHと比較してパターンの有無情報(二値化情報)に変換して検出する場合について説明したが、本発明がこれに限定されるものではない。上記実施形態では、評価点対応領域DBnの外枠DBFを精度良く検出し、この外枠を基準として各区画領域DAi,jを演算により算出するので、各区画領域の位置を正確に求めることができる。従って、この正確に求められた各区画領域に対してテンプレートマッチングを行うこととしても良い。このようにすれば、短時間にテンプレートマッチングを行うことができる。この場合、テンプレートパターンとして、例えば像が形成された区画領域あるいは像が形成されなかった区画領域の撮像データを用いることができる。このようにしても、客観的、定量的な相関値の情報が区画領域毎に得られるので、得られた情報を、所定の閾値と比較することにより、計測用パターンMPの形成状態を二値化情報(像の有無情報)に変換することにより、上記実施形態と同様に像の形成状態を精度、再現性良く検出することができる。

[0245]

また、上記実施形態では、評価点対応領域DB_nを構成する第2領域が正確な 矩形枠状である場合について説明したが、本発明がこれに限定されるものではな い。すなわち、第2領域は、その外縁が少なくとも第1領域を構成する各区画領 域の位置算出の基準にできれば良いので、矩形枠状の区画領域の一部の例えばコ 字状(U字状)部分であっても良い。

[0246]

また、第2領域、すなわち矩形枠状の領域、あるいはその一部の領域を形成する方法も、上記実施形態で説明した計測用パターンを過露光の状態でウエハ上に転写する、ステップ・アンド・リピート方式の露光方法以外の方法を採用しても良い。例えば、露光装置100のレチクルステージRST上に例えば矩形枠状の開口パターン、あるいはその一部のパターンなどが形成されたレチクルを搭載し、そのレチクルのパターンを1回の露光で、投影光学系PLの像面側に配置されたウエハ上に転写して、過露光の第2領域をウエハ上に形成することとしても良い。この他、前述した開口パターンAPnと同様の開口パターンが形成されたレチクルをレチクルステージRST上に搭載して、ステップ・アンド・リピート方

式で、その開口パターンを過露光の露光エネルギ量でウエハ上に転写することにより、過露光の第2領域をウエハ上に形成することとしても良い。また、例えば上記の開口パターンを用いてステップ・アンド・スティッチ方式で露光を行い、ウエハ上に開口パターンの複数の像を隣接してあるいは繋ぎ合わせて形成することによって、過露光の第2領域をウエハ上に形成しても良い。この他、レチクルステージRSTを静止させた状態でそのレチクルステージRST上に搭載されたレチクルに形成された開口パターンを照明光で照明しながらウエハW(ウエハテーブル18)を所定方向に移動して過露光の第2領域を形成しても良い。いずれにしても、上記実施形態と同様に、過露光の第2領域の存在により、その第2領域の外縁をS/N比の良好な検出信号に基づいて精度良く検出することが可能となる。

[0247]

これらの場合において、マトリックス状に配置された複数の区画領域 $DA_{i,j}$ から成る全体として矩形の第1領域 DC_n をウエハWT上に形成する工程と、第1領域の周囲の少なくとも一部のウエハ上の領域に過露光の第2領域(例えば DD_n など)を形成する工程とは、上記実施形態の場合と反対であっても良い。特に、像形成状態の検出の対象となる第1区画領域の形成のためのための露光を、後で行うようにした場合には、例えば感光剤として、化学増幅型レジストなどの高感度レジストを用いる場合に、計測用パターンの像の形成(転写)から現像までの時間を短くできるので、特に好適である。

[0248]

また、過露光の第2領域は、上記実施形態のような矩形枠状あるいはその一部のような形状に限定されるものではない。例えば、第2領域の形状は、第1領域との境界線(内縁)のみが矩形枠状の形状を有し、外縁は任意形状であっても良い。かかる場合であっても、第1領域の外側に過露光の第2領域(パターン像が形成されない領域)が存在するので、第1領域内の最外周部に位置する区画領域(以下、「外縁部区画領域」と呼ぶ)の検出の際に、隣接する外側の領域のパターン像の存在によりその外縁部区画領域の像のコントラストが低下するのが防止される。従って、前記外縁部区画領域と第2領域の境界線をS/N比良く検出す

ることが可能となり、その境界線を基準として設計値に基づき他の区画領域(第1領域を構成する各区画領域)の位置を算出することができ、他の区画領域のほぼ正確な位置を求めることが可能である。これにより、第1領域内の複数の区画領域それぞれの位置をほぼ正確に知ることができるので、例えばそれぞれの区画領域に対して、上記実施形態と同様のスコア(像のコントラストの指標値)を用いた方法、あるいはテンプレートマッチング法を適用して像の形成状態を検出することにより、上記実施形態と同様に、パターン像の形成状態を短時間で検出することが可能になる。

[0249]

そして、その検出結果に基づいて投影光学系の光学特性を求めることにより、 客観的かつ定量的な像のコントラストを用いた検出結果に基づいて光学特性が求めることができる。従って、上記実施形態と同等の効果を得ることができる。

[0250]

また、前記外縁部区画領域と第2領域の境界線を検出する場合には、アライメント検出系のFIA系センサ以外のアライメントセンサ、例えばLSA系などの散乱光あるいは回折光の光量などを検出するアライメントセンサを用いても良い

[0251]

かかる場合であっても、第2領域の内縁部を基準として、第1領域内の各区画 領域の位置を精度良く求めることが可能である。

[0252]

また、上記実施形態と同様に、各評価点対応領域を第1領域とその周囲の第2 領域とで形成する場合には、前述のステップピッチSPを、前述した開口パターンAPの投影領域サイズ以下に必ずしも設定しなくても良い。その理由は、これまでに説明した方法で、第2領域の一部を基準として、第1領域を構成する各区画領域の位置がほぼ正確に求まるので、その位置の情報を用いることにより、例えばテンプレートマッチングや、上記実施形態の場合を含むコントラスト検出をある程度の精度でかつ短時間で行うことができるからである。

[0253]

一方、前述のステップピッチSPを、前述した開口パターンAPの投影領域サイズ以下に設定する場合において、第1領域の外側に前述の第2領域を必ずしも形成しなくても良い。かかる場合であっても、上記実施形態と同様にして第1領域の外枠を検出することが可能であり、この検出した外枠を基準として第1領域内の各区画領域の位置を正確に求めることが可能だからである。そして、このようにして求められた各区画領域の位置の情報を用いて、例えばテンプレートマッチングや、上記実施形態のようなスコアを用いた検出(コントラスト検出)により像形成状態を検出する場合に、枠の干渉に起因するパターン部と非パターン部のコントラスト低下のないS/N比の良好な画像データを用いて像形成状態を精度良く検出することが可能となる。

[0254]

但し、この場合には、第1領域内の最外周の区画領域でパターンが残っている 区画領域が並ぶ辺上では境界の誤検出を起こし易くなる。このため、誤検出を起 こし難い境界の検出情報を用いて、誤検出を起こし易い境界の検出範囲を限定す ることによって対処することが望ましい。上記実施形態に則して説明すれば、誤 検出を起こし難い区画領域が並ぶ右辺で検出した境界の情報を基に、誤検出を起 こし易い区画領域が並ぶ左辺上の境界位置の検出範囲を限定する。また、第1領 域の上下辺上の境界検出では、誤検出を起こし難い右側の検出情報を用いて左側 の境界位置の検出範囲を限定することとすれば良い(図9参照)。

[0255]

なお、上記実施形態では、ウエハWTのステップピッチSPを、通常より狭く 設定することにより、ウエハWT上に形成された評価点対応領域を構成する区画 領域間に枠が残存しないようにして、枠の干渉によるパターン部のコントラスト 低下を防止する場合について説明した。しかし、枠の存在によるパターン部のコ ントラスト低下は、以下のようにしても防止することができる。

[0256]

すなわち、前述の計測用パターンMPと同様にマルチバーパターンを含む計測 用パターンが形成されたレチクルを用意し、該レチクルをレチクルステージRS T上に搭載し、ステップ・アンド・リピート方式などで前記計測用パターンをウ エハ上に転写し、これにより、隣接する複数の区画領域から成り、各区画領域に 転写されたマルチバーパターンとこれに隣接するパターンとが、マルチバーパタ ーンの像のコントラストが前記隣接するパターンによる影響を受けない距離し以 上離れている所定の領域をウエハ上に形成することとしても良い。

[0257]

この場合、各区画領域に転写されたマルチバーパターンとこれに隣接するパターンとが、マルチバーパターンの像のコントラストが隣接するパターンによる影響を受けない距離L以上離れているので、前記所定の領域を構成する複数の区画領域の少なくとも一部の複数の区画領域における像の形成状態を、画像処理の手法、テンプレートマッチング、あるいはスコア検出を含むコントラスト検出などの画像処理手法により検出する際に、それぞれの区画領域に転写されたマルチバーパターンの像のS/N比が良好な撮像信号を得ることができる。従って、この撮像信号に基づいて、テンプレートマッチング、あるいはスコア検出を含むコントラスト検出などの画像処理手法により各区画領域に形成されたマルチバーパターンの像の形成状態を精度良く検出することができる。

[0258]

例えば、テンプレートマッチングによる場合には、客観的、定量的な相関値の情報が区画領域毎に得られ、コントラスト検出の場合には、客観的、定量的なコントラスト値の情報が区画領域毎に得られるので、いずれにしても、得られた情報を、それぞれの閾値と比較することにより、マルチバーパターンの像の形成状態を二値化情報(像の有無情報)に変換することにより、各区画領域毎のマルチバーパターンの形成状態を精度、再現性良く検出することが可能となる。

[0259]

従って、かかる場合にも上記実施形態と同様に、上記の検出結果に基づいて投 影光学系の光学特性を求めることにより、客観的かつ定量的な相関値、コントラ ストなどを用いた検出結果に基づいて光学特性が求められる。従って、従来の方 法と比較して光学特性を精度及び再現性良く計測することができる。また、評価 点の数を増加させることができるとともに、各評価点間の間隔を狭くすることが でき、結果的に光学特性計測の測定精度を向上させることが可能となる。

[0260]

なお、上記実施形態では、前述の外枠DBFの検出の際の境界の検出で、ピクセル列データ(生データ)を用い、そのピクセル値の大小(明暗差)により境界位置を検出する場合について説明したが、これに限らず、ピクセル列データ(グレーレベルの生データ)の微分波形を用いても良い。

[0261]

図21(A)は、境界検出に際して得られたグレーレベルの生データを示し、図21(B)は、図21(A)の生データをそのまま微分した微分データである。この微分データが、ノイズや残存パターンによって外枠部分の信号出力が目立ちにくい場合には、図21(C)のようにスムージングフィルタを施してから微分しても良い。このようにしても、外枠の検出が可能である。

[0262]

なお、上記実施形態では、レチクルRT上の計測用パターンMPnとして開口パターンAP内の中央部に配置された1種類のL/Sパターン(マルチバーパターン)を用いる場合について説明したが、本発明がこれに限定されないことは言うまでもない。計測用パターンとしては、周期方向が異なる少なくとも2種類のL/Sパターンや、孤立線やコンタクトホールなどを用いても良い。計測用パターンMPnとしてL/Sパターンを用いる場合には、デューティ比及び周期方向は、任意で良い。また、計測用パターンMPnとして周期パターンを用いる場合、その周期パターンは、L/Sパターンだけではなく、例えばドットマークを周期的に配列したパターンでも良い。これは、像の線幅等を計測する従来の方法とは異なり、像の形成状態をスコア(コントラスト)で検出しているからである。

[0263]

また、上記実施形態では、1種類のスコアに基づいて最良フォーカス位置を求めているが、これに限らす、複数種類のスコアを設定しこれらに基づいて、それぞれ最良フォーカス位置を求めても良く、あるいはこれらの平均値(あるいは重み付け平均値)に基づいて最良フォーカス位置を求めても良い。

[0264]

また、上記実施形態では、ピクセルデータを抽出するエリアを矩形としている

が、これに限定されるものではなく、例えば、円形や楕円形、あるいは三角形などであっても良い。また、その大きさも任意に設定することができる。すなわち、計測用パターン MP_n の形状に合わせて抽出エリアを設定することによりノイズを減少させ、S/N比を高くすることが可能である。

[0265]

また、上記実施形態では、像の形成状態の検出に1種類の閾値を用いているが、これに限らず、複数の閾値を用いても良い。複数の閾値を求める場合、それぞれの閾値を、スコアと比較することで、区画領域の像の形成状態を検出することとしても良い。この場合、例えば第1の閾値での検出結果から最良フォーカス位置が算出困難な場合に、第2の閾値での形成状態の検出を行い、その検出結果から最良フォーカス位置を求めることなどが可能となる。

[0266]

また、予め複数の閾値を設定しておき、閾値毎に最良フォーカス位置を求め、それらの平均値(単純平均値あるいは重み付け平均値)を最良フォーカス位置としても良い。例えば、各閾値に応じて、露光エネルギ量 P が極値を示すときのフォーカス位置を順次算出する。そして、各フォーカス位置の平均値を最良フォーカス位置とする。なお、露光エネルギ量 P とフォーカス位置 Z との関係を示す近似曲線と適当なスライスレベル(露光エネルギ量)との 2 つの交点(フォーカス位置)を求め、両交点の平均値を、各閾値毎に算出し、それらの平均値(単純平均値あるいは重み付け平均値)を最良フォーカス位置としても良い。

[0267]

あるいは、各閾値毎に最良フォーカス位置を算出し、閾値と最良フォーカス位置との関係において、閾値の変動に対して、最良フォーカス位置の変化が最も小さい区間における最良フォーカス位置の平均値(単純平均値あるいは重み付け平均値)を最良フォーカス位置としても良い。

[0268]

また、上記実施形態では、予め設定されている値を閾値として用いているが、これに限定されるものではない。例えば、ウエハ W_T 上の計測用パターン MP_n が転写されていない領域を撮像し、得られたスコアを閾値としても良い。

[0269]

なお、前述の外枠検出を行わない場合には、評価点対応領域DBnに形成されたレジスト像を必ずしも1度に撮像する必要はない。例えば、撮像データの分解能を向上させる必要がある場合には、アライメント検出系ASのFIAセンサの倍率を上げ、ウエハテーブル18をXY2次元方向に所定距離ステッピングさせる動作と、FIAセンサによるレジスト像の撮像とを交互に順次繰り返すことによって、区画領域毎に撮像データの取り込みを行うこととしても良い。さらに、例えば前述の第1領域と第2領域とで、FIAセンサによる画像の取り込み回数を異ならせても良く、このようにすることにより計測時間の短縮などを図ることができる。

[0270]

なお、上記実施形態の露光装置100では、主制御装置28は、図示しない記憶装置に格納されている処理プログラムに従って、前述した投影光学系の光学特性の計測を行うことにより、計測処理の自動化を実現することができる。勿論、この処理プログラムは、他の情報記録媒体(CD-ROM、MO等)に保存されていても良い。さらに、計測を行う時に、図示しないサーバから処理プログラムをダウンロードしても良い。また、計測結果を、図示しないサーバに送付したり、インターネットやイントラネットを介して電子メール及びファイル転送により、外部に通知することも可能である。

[0271]

 及び顕像)が形成されるものであれば良い。例えば、感光層は、光記録層、光磁 気記録層などであっても良く、従って、感光層が形成される物体もウエハ又はガ ラスプレート等に限らず、光記録層、光磁気記録層などが形成可能な板等であっ ても良い。

[0272]

また、撮像装置として露光装置外に設けられた専用の撮像装置(例えば光学顕微鏡など)を用いても良い。また、画像処理以外の方法で外枠検出を行う場合などに、LSA系のアライメントセンサなどを用いることも可能である。さらに、オペレータなどが介在することなく、前述の計測結果(最良フォーカス位置など)に基づいて投影光学系PLの光学特性を調整することができる。すなわち、露光装置に自動調整機能を持たせることが可能となる。

[0273]

また、上記実施形態では、パターンの転写の際に変更される露光条件が、投影光学系の光軸方向に関するウエハWTの位置及びウエハWTの面上に照射されるエネルギビームのエネルギ量(露光ドーズ量)である場合について説明したが、本発明がこれに限定されるものではない。例えば、照明条件(マスクの種別を含む)、投影光学系の結像特性など露光に関連する全ての構成部分の設定条件などの何れかであれば良く、また、必ずしも2種類の露光条件を変更しながら露光を行う必要もない。すなわち、一種類の露光条件、例えば投影光学系の光軸方向に関するウエハWTの位置のみを変更しながら、計測用マスクのパターンを感光物体上の複数の領域に転写し、その転写像の形成状態を検出する場合であっても、上記実施形態と同様のスコアを用いたコントラスト計測、あるいはテンプレートマッチングの手法により、その検出を迅速に行うことができるという効果がある。

[0274]

また、上記実施形態において、最良フォーカス位置とともに最良露光量を決定することができる。すなわち、露光エネルギ量を低エネルギ量側にも設定して、上記実施形態と同様の処理を行い、露光エネルギ量毎に、その像が検出されたフォーカス位置の幅を求め、該幅が最大となるときの露光エネルギ量を算出し、その場合の露光量を最良露光量とする。

[0275]

また、外枠基準による各区画領域の位置算出を行わないのであれば、ウエハ上の評価点対応領域を、上記実施形態の如く、マトリックス状に配置された複数の区画領域によって構成する必要はない。すなわち、ウエハ上のいずれの位置にパターンの転写像が転写されていても、その撮像データを用いてスコアを求めることは十分に可能だからである。すなわち、撮像データファイルが作成できれば良いからである。

[0276]

また、上記実施形態では、一例として、区画領域内の指定範囲のピクセル値の分散(又は標準偏差)を、スコアEとして採用するものとしたが、本発明がこれに限定されるものではなく、区画領域内又はその一部(例えば、前述の指定範囲)のピクセル値の加算値、微分総和値をスコアEとしても良い。また、上記実施形態中で説明した外枠検出のアルゴリズムは一例であって、これに限らず、例えば前述した境界検出と同様の手法により、評価点対応領域DB $_{n}$ の4辺(上辺、下辺、左辺及び右辺)でそれぞれ少なくとも2点を検出することとしても良い。このようにしても、検出された少なくとも8点に基づいて例えば前述と同様の頂点検出、長方形近似などが可能である。また、上記実施形態では、図4に示されるように、開口パターンの内部に遮光部によって計測用パターンMP $_{n}$ が形成された場合について説明したが、これに限らず、図4の場合と反対に、遮光部内に光透過性のパターンから成る計測用パターンを形成しても良い。

[0277]

さらに、本実施形態では、結像特性補正コントローラを介して投影光学系PL の結像特性を調整するものとしたが、例えば、結像特性補正コントローラだけでは結像特性を所定の許容範囲内に制御することができないときなどは、投影光学系PLの少なくとも一部を交換しても良いし、あるいは投影光学系PLの少なくとも1つの光学素子を再加工(非球面加工など)しても良い。また、特に光学素子がレンズエレメントであるときはその偏芯を変更したり、あるいは光軸を中心として回転させても良い。このとき、露光装置100のアライメントセンサを用いてレジスト像などを検出する場合、主制御装置28はディスプレイ(モニタ)

への警告表示、あるいはインターネット又は携帯電話などによって、オペレータなどにアシストの必要性を通知しても良いし、投影光学系PLの交換箇所や再加工すべき光学素子など、投影光学系PLの調整に必要な情報を一緒に通知すると良い。これにより、光学特性の計測などの作業時間だけでなく、その準備期間も短縮でき、露光装置の停止期間の短縮、すなわち稼働率の向上を図ることが可能となる。

[0278]

さらに、本発明が適用される露光装置の光源は、KrFエキシマレーザやArFエキシマレーザに限らず、F2レーザ(波長157nm)、あるいは他の真空紫外域のパルスレーザ光源であっても良い。この他、露光用照明光として、例えば、DFB半導体レーザ又はファイバーレーザから発振される赤外域、又は可視域の単一波長レーザ光を、例えばエルビウム(又はエルビウムとイッテルビウムの両方)がドープされたファイバーアンプで増幅し、非線形光学結晶を用いて紫外光に波長変換した高調波を用いても良い。また、紫外域の輝線(g線、i線等)を出力する超高圧水銀ランプ等を用いても良い。この場合には、ランプ出力制御、NDフィルタ等の減光フィルタ、光量絞り等によって露光エネルギの調整を行えば良い。

[0279]

なお、上記実施形態では、本発明がステップ・アンド・リピート方式の縮小投影露光装置に適用された場合について説明したが、本発明の適用範囲がこれに限定されないのは勿論である。すなわち、ステップ・アンド・スキャン方式、ステップ・アンド・スティッチ方式、ミラープロジェクション・アライナー、及びフォトリピータなどにも好適に適用することができる。例えば、ステップ・アンド・スキャン方式の露光装置に本発明を適用する場合には、前述の開口パターンAPと同様の正方形、あるいは矩形の開口パターンが形成されたレチクルを、そのレチクルステージ上に搭載して、走査露光方式によって、前述の矩形枠状の第2領域を形成することができる。かかる場合には、前述の実施形態の場合に比べて第2領域の形成に要する時間を短縮することができる。

[0280]

さらに、投影光学系 P L は、屈折系、反射屈折系、及び反射系のいずれでもよい し、縮小系、等倍系、及び拡大系のいずれでも良い。

[0281]

例えば、走査型露光装置の場合、非走査方向に細長い矩形又は円弧状のスリット状の照明領域が形成されるが、この照明領域に対応する投影光学系のイメージフィールド内の領域の内部に評価点を配置することにより、上記実施形態と全く同様にして、最良フォーカス位置や像面湾曲等の投影光学系PLの光学特性、及び最良露光量などを求めることができる。また、パルス光源を用いた走査型露光装置の場合、パルス光源から像面に照射される1パルス当たりのエネルギ量、パルス繰り返し周波数、照明領域の走査方向の幅(いわゆるスリット幅)、及び走査速度の少なくとも1つを調整することにより、像面における露光ドーズ量(露光エネルギ量、積算露光量)を所望の値に調整することが可能である。

[0282]

さらに、本発明は、半導体素子の製造に用いられる露光装置だけでなく、液晶表示素子、プラズマディスプレイなどを含むディスプレイの製造に用いられる、デバイスパターンをガラスプレート上に転写する露光装置、薄膜磁気ヘッドの製造に用いられる、デバイスパターンをセラミックウエハ上に転写する露光装置、撮像素子(CCDなど)、マイクロマシン、及びDNAチップなどの製造、さらにはマスク又はレチクルの製造に用いられる露光装置などにも適用することができる。

[0283]

《デバイス製造方法》

次に、上記説明した露光装置及び方法を使用したデバイスの製造方法の実施形態を説明する。

[0284]

図22には、デバイス(ICやLSI等の半導体チップ、液晶パネル、CCD、薄膜磁気ヘッド、DNAチップ、マイクロマシン等)の製造例のフローチャートが示されている。図22に示されるように、まず、ステップ301(設計ステップ)において、デバイスの機能・性能設計(例えば、半導体デバイスの回路設

計等)を行い、その機能を実現するためのパターン設計を行う。引き続き、ステップ302(マスク製作ステップ)において、設計した回路パターンを形成したマスクを製作する。一方、ステップ303(ウエハ製造ステップ)において、シリコン等の材料を用いてウエハを製造する。

[0285]

次に、ステップ304(ウエハ処理ステップ)において、ステップ301~ステップ303で用意したマスクとウエハを使用して、後述するように、リソグラフィ技術によってウエハ上に実際の回路等を形成する。次いで、ステップ305(デバイス組立ステップ)において、ステップ304で処理されたウエハを用いてデバイス組立を行う。このステップ305には、ダイシング工程、ボンディング工程、及びパッケージング工程(チップ封入)等の工程が必要に応じて含まれる。

[0286]

最後に、ステップ306(検査ステップ)において、ステップ305で作製されたデバイスの動作確認テスト、耐久性テスト等の検査を行う。こうした工程を経た後にデバイスが完成し、これが出荷される。

[0287]

図23には、半導体デバイスの場合における、上記ステップ304の詳細なフロー例が示されている。図23において、ステップ311(酸化ステップ)においてはウエハの表面を酸化させる。ステップ312(CVDステップ)においてはウエハ表面に絶縁膜を形成する。ステップ313(電極形成ステップ)においてはウエハ上に電極を蒸着によって形成する。ステップ314(イオン打込みステップ)においてはウエハにイオンを打ち込む。以上のステップ311~ステップ314それぞれは、ウエハ処理の各段階の前処理工程を構成しており、各段階において必要な処理に応じて選択されて実行される。

[0288]

ウエハプロセスの各段階において、上述の前処理工程が終了すると、以下のようにして後処理工程が実行される。この後処理工程では、まず、ステップ315 (レジスト形成ステップ)において、ウエハに感光剤を塗布する。引き続き、ス テップ316 (露光ステップ) において、上記各実施形態の露光装置及び露光方法によってマスクの回路パターンをウエハに転写する。次に、ステップ317 (現像ステップ) においては露光されたウエハを現像し、ステップ318 (エッチングステップ) において、レジストが残存している部分以外の部分の露出部材をエッチングにより取り去る。そして、ステップ319 (レジスト除去ステップ) において、エッチングが済んで不要となったレジストを取り除く。

[0289]

これらの前処理工程と後処理工程とを繰り返し行うことによって、ウエハ上に 多重に回路パターンが形成される。

[0290]

以上のような、本実施形態のデバイス製造方法を用いれば、露光ステップで、 上記実施形態の露光装置及び露光方法が用いられるので、前述した光学特性計測 方法で精度良く求められた光学特性を考慮して調整された投影光学系を介して高 精度な露光が行われ、高集積度のデバイスを生産性良く製造することが可能とな る。

[0291]

【発明の効果】

以上説明したように、本発明に係る光学特性計測方法によれば、短時間で、精度及び再現性良く投影光学系の光学特性を求めることができるという効果がある

[0292]

また、本発明に係る露光方法によれば、高精度な露光を実現できるという効果がある。

[0293]

また、本発明に係るデバイス製造方法によれば、高集積度のデバイスを製造することができるという効果がある。

【図面の簡単な説明】

【図1】

本発明の一実施形態の露光装置の概略構成を示す図である。

[図2]

図1の照明系 I O P の具体的構成の一例を説明するための図である。

【図3】

投影光学系の光学特性の計測に用いられるレチクルの一例を示す図である。

【図4】

光学特性の計測方法を説明するためのフローチャート (その1) である。

【図5】

光学特性の計測方法を示すフローチャート(その2)である。

【図6】

区画領域の配列を説明するための図である。

[図7]

ウエハ W_T 上に第1領域 DC_n が形成された状態を示す図である。

【図8】

ウエハ W_T 上に評価点対応領域 DB_n が形成された状態を示す図である。

【図9】

ウエハ W_T を現像後に W_T 上に形成された評価点対応領域 DB_1 のレジスト像の一例を示す図である。

【図10】

図5のステップ456 (光学特性の算出処理)の詳細を示すフローチャート (その1)である。

【図11】

図5のステップ456(光学特性の算出処理)の詳細を示すフローチャート(その2)である。

【図12】

図10のステップ508の詳細を示すフローチャートである。

【図13】

図12のステップ702の詳細を示すフローチャートである。

【図14】

図14(A)は、ステップ508の処理を説明するための図、図14(B)は

、ステップ510の処理を説明するための図、図14 (C) はステップ512の 処理を説明するための図である。

【図15】

図15 (A) は、ステップ514の処理を説明するための図、図15 (B) は、ステップ516の処理を説明するための図、図15 (C) は、ステップ518 の処理を説明するための図である。

【図16】

外枠検出における境界検出処理を説明するための図である。

【図17】

ステップ514の頂点検出を説明するための図である。

【図18】

ステップ516の長方形検出を説明するための図である。

【図19】

検出結果の一例を示すテーブルデータ形式の図である。

【図20】

パターン残存数(露光エネルギ量)とフォーカス位置との関係を示す図である

【図21】

図21 (A) ~図21 (C) は、境界検出に微分データを用いる場合の例を説明するための図である。

図22】

本発明に係るデバイス製造方法の実施形態を説明するためのフローチャートで ある。

【図23】

図22のステップ304における処理のフローチャートである。

【符号の説明】

MP_n…計測用パターン、DB_n…評価点対応領域(所定領域)、DC_n…第 1 領域、DD_n…第 2 領域、PL…投影光学系、W…ウエハ(物体)、W_T…ウエハ (物体)。

【図2】

【図3】

【図4】

【図5】

【図6】

【図9】

				DB ₁ DC ₁																			
ļiņ,	34				1	a.;	78.7°			× 100	10.18		365	16	iš!		142	100		2.1	172	27.4x	26 July 26 July 20 Jul
34	11111	11111																	2.2.				
	IIIII	BHR																	\vdash	\vdash	\Box		
3.6	IIIII	IIIII																					\$2.5 \$2.5
	11111	IIII	1331																				20f
	11111	11111	11111		8111																		
	IIII	IIII	11111		1111	HIH	#111	11111							Ĺ								
1 22	IIII	11112	11111		IIII	11111		IIIII	IIIII	11111													
	11111			11111		11111	11111		_	11111		11111	11111										
502.2 120.0	11111	IIII	Ш	Ш	11111		mm	11111		11111	Hill	11111	IIIII	HIII	IIIII	Ш							
			Ш		11111	11111	###		IIII		11111	11111	11111	11111	IIII	11111							
	IIIII					11111	Ш	11111	11111		11111	m	11111										TENE
10 m		Ш	IIIII			Ш	11111	11111	1111		tilli												1
	11111	11111	IIII		_		11111	Ш															
1000			Y		を	業			400	25%		37.4	ALC:				BT			Š.	H.		

【図10】

【図11】

【図12】

【図13】

【図15】

【図16】

【図17】

【図18】

【図19】

【図20】

【図21】

【図22】

【書類名】 要約書

【要約】

【課題】 短時間で、精度及び再現性良く投影光学系の光学特性を計測する。

【解決手段】 物体面上に配置されたパターンを投影光学系の像面側に配置されたウエハ W_T 上に順次転写してマトリックス状の複数の区画領域 $DA_{i,j}$ から成る第1領域 DC_n をウエハ上に形成するとともに、第1領域の周囲に過露光の第2領域 DD_n を形成する。そして、複数の区画領域 $DA_{i,j}$ におけるパターンの像の形成状態を、コントラスト検出などの画像処理の手法により検出する。この場合、第1領域の外側に過露光の第2領域が存在するので、第1領域の最外周部の区画領域と第2領域の境界線をS/N比良く検出することができ、その境界線を基準として他の区画領域の位置をほぼ正確に算出できる。従って、パターン像の形成状態を短時間で検出することができ、その検出結果に基づいて投影光学系の光学特性を求めることができる。

【選択図】 図8

認定・付加情報

特許出願の番号

特願2002-031916

受付番号

5 0 2 0 0 1 7 3 7 3 3

書類名

特許願

担当官

第五担当上席 0094

作成日

平成14年 2月12日

<認定情報・付加情報>

【提出日】

平成14年 2月 8日

特願2002-031916 願 人 履 歴 情 報 出

識別番号

[000004112]

1. 変更年月日 [変更理由] 1990年 8月29日

住 所

新規登録

東京都千代田区丸の内3丁目2番3号

氏 株式会社ニコン 名