



# Datenmodellierung

Datenmodellierung, Berechnungen, Measures und Neue Tabellen



#### Datenmodell erstellen

- In dieser Übung werden Daten aus zwei unterschiedlichen Datenquellen geladen:
  - SQL Server und Excel
- Um ein Datenmodell zu erzeugen, kann eine Datenquelle oder bei Bedarf auch mehrere unterschiedliche Datenquellen geladen und zusammengeführt werden
- Nachfolgend wird eine SQL-Datenbank mitsamt mehrerer Tabellen als Relationen ins Datenmodell geladen
- Anschließend noch eine Excel-Datei die mit einer SQL Tabelle verbunden wird





#### Grundlegendes zu Sternschemas



- Im Sternschema haben wir eine Faktentabelle, die mit mehreren Dimensionstabellen verknüpft ist.
- Diese Trennung vereinfacht die Daten und bietet eine klare Hierarchie und einen klaren Kontext für die Analyse.
- Indem wir die Faktentabelle mit diesen Dimensionstabellen verknüpfen, richten wir Beziehungen ein und bestimmen die Detailebene in den Daten.





## Datenmodellierung

- Beziehungen sind vorhanden (automatische **Erkennung**)
- Beziehungen erstellen (Drag & Drop) von einer Spalte auf eine andere





#### Daten mit relationalen Beziehungen

- Nun wird eine SQL Datenbank verbunden und mehrere in Beziehung zueinander stehende Daten geladen
- Daten abrufen -> SQL Server ->
  - Server angeben (z.B. win10-base) ->
  - Datenbank leer oder "Northwind" eingeben ->
  - Datenkonnektivitätsmodus "Importieren" wählen
- Zuerst wird die Tabelle "Order Details" markiert -> "Verknüpfte Tabellen auswählen" anklicken -> "Orders" und "Products" werden markiert -> "Verknüpfte Tabellen auswählen" -> "Categories", "Customers", "Employees", "Shippers", "Suppliers"
- Dann noch manuell "Territories", "Region" und "EmployeeTerritories" markieren
- Abschließend alle markierten Tabellen per Klick auf "Laden" ins Datenmodell laden



# Beziehungen definieren



- Tabellen können verschiedene Beziehungen zu anderen Tabellen aufweisen, dabei spielen die "Kardinalität" und die "Kreuzfilterrichtung" eine Rolle
- Beziehungen können aktiviert oder wahlweise deaktiviert werden



## Beziehungen verändern

- Die geladenen Daten anzeigen per "Modell" in der linken Leiste anzeigen
- Reiter Start -> "Beziehungen verwalten" -> Kreuzfilterrichtung "Beide" einstellen für alle Tabellen
- Trainer Beispiel: werden nicht alle Tabellen mit "Beide" formatiert, kann es dazu führen, dass kumulierte Auswertungen über mehrere Tabellen hinweg nicht funktionieren werden!



# Beziehungen bearbeiten



Abbrechen



#### Datenstrukturen in Power BI erstellen

- Daten werden üblicherweise ins Power BI Datenmodell hineingeladen
- Gleichwohl ist es möglich diese ebenso in Power BI manuell einzugeben, was zugegebenermaßen kaum sinnvoll wäre
- Aus einer anderen Datenquelle kopieren und in Power BI hineinkopieren – das könnte schon mehr Sinn machen
- Es kann Sinn machen, wenn z.B. eine kleine Dimensiontabelle mit zwei Spalten und z.B. vier Zeilen benötigt würde, um Daten nach Regionen zu gruppieren.
- Erstelle nach dem auf der nächsten Folie dargestelltem Vorgehen eine kleine Tabelle





#### Daten manuell eingeben



- Register "Start"
- Schaltfläche -> "Daten eingeben"
- Spaltenüberschriften definieren
- Inhalte händisch eingeben oder hineinkopieren, z.B. aus Excel
- Name der Tabelle -> "Laden"

Hinweis: sobald die Daten geladen worden sind, ist weiterhin eine nachträgliche Bearbeitung möglich!





# Einführung in DirectQuery

Daten abrufen und verarbeiten





## DirectQuery verwenden





#### Vorteile und Nachteile von DirectQuery

#### Vorteile

- Bei häufig ändernden Daten
- Wenn Echtzeit erforderlich
- Große Datenmengen
- Mehrdimensionale Daten

#### **Nachteile**

- Sind abhängig von der Datenquellenleistung
- Eingeschränkte Modellierungsfunktionen
- Eingeschränkte Transformationsfeatures
- DAX Funktionen eingeschränkt





# Datenprofilerstellung im Power Query-Editor



- Register -> "Ansicht"
- Optionen einschalten
  - Spaltenqualität
  - Spaltenverteilung
  - Spaltenprofil



### Kardinalität einer Spalte bestimmen



- Anzahl der unterschiedlichen Werte: Gesamtzahl der verschiedenen Werte, die gefunden wurden (geringe Kardinalität)
- Anzahl der eindeutigen Werte: Gesamtzahl der Werte, die nur einmal vorkommen (hohe Kardinalität)
- Eine geringere Kardinalität führt zu einer besseren Leistung



#### Daten transformieren

• Zu den häufigen Transformationen im Power Query-Editor zählen das Umbenennen oder Entfernen von Spalten "Spalte hinzufügen" und Formatierungen im Menüband "Transformieren".









#### Tabellen strukturieren







#### Parameter in Berichten verwenden

• Es können Parameter verwendet werden, indem Sie die Werte festlegen, für die Daten im Bericht angezeigt werden sollen. Daraufhin wird der Bericht durch Filtern der Daten entsprechend aktualisiert.









### Empfehlungen zur Leistung in Power Bl

- Bewahren Sie nur erforderliche Daten auf.
- Überprüfen Sie die Datentypen.
- Verringern der Kardinalität
- Datenkonvertierung in PowerQuery statt Power BI per DAX
- Spaltenberechnungen (Indexspalte erstellen, Mehrwertsteuer berechnen) vor dem Laden in Power Query erstellen
- Parameter verwenden