<u>Agnirva Project Report</u>

Project Report Topic: **Differences Between Space Robotics and Earth-based Robotics**

Internship Organisation : The Agnirva Space Internship program

Intern: Aryan Dnyaneshwar Wankhade.

Email: aryanwankhade0gmail.com

Date: **03-10-2024**

Table of Contents

- Introduction
 - Definition of Robotics
 - Importance of Robotics in Space and Earth Applications
 - Objectives of the Report
- Environmental Conditions
 - Challenges in Space Environments
 - Construction Materials for Space Robots
 - Comparison with Earth Environments
- Power Management Systems
 - Energy Sources for Space Robots
 - o Efficiency and Storage Considerations
 - o Traditional Power Systems for Earth Robots
- Levels of Autonomy
 - Need for Autonomy in Space Robotics
 - AI and Machine Learning in Space
 - Real-time Control in Earth Robotics
- Mobility Systems
 - Specialized Mobility for Space Robots
 - Terrain Navigation on Other Celestial Bodies
 - Mobility Requirements for Earth Robots
- Durability and Reliability
 - Importance of Reliability in Space Missions
 - Redundancy and Testing Protocols for Space Robots
 - o Maintenance Capabilities for Earth Robots
- Communication Systems
 - Communication Challenges in Space
 - Data Transmission Over Long Distances
 - o Terrestrial Communication Networks for Earth Robots
- Mission Objectives
 - Goals of Space Robotics
 - Applications of Earth-based Robotics
 - Comparison of Mission Objectives
- Conclusion
 - Summary of Key Differences
 - Implications for Future Robotics Development
 - The Importance of Specialized Designs

Future Directions

- Emerging Trends in Robotics
- Potential for Cross-Domain Innovations
- Challenges Ahead

Introduction

• Definition of Robotics

Define robotics and its relevance to various fields, particularly space exploration and terrestrial applications.

- Importance of Robotics in Space and Earth Applications
 Discuss the role of robotics in advancing technology and achieving mission objectives in both environments.
- Objectives of the Report
 Outline the aims of the report, focusing on comparing space and Earth robotics.

Environmental Conditions

- Challenges in Space Environments
 Explain the extreme conditions of space, including vacuum, temperature fluctuations, and radiation levels.
- Construction Materials for Space Robots
 Discuss the materials used in space robotics, such as radiation-resistant composites and thermal control systems.
- Comparison with Earth Environments
 Contrast these conditions with the more stable environments on Earth.

Power Management Systems

- Energy Sources for Space Robots
 Detail the power sources used by space robots, such as solar panels and nuclear power.
- Efficiency and Storage Considerations
 Highlight the need for efficient energy management in the absence of traditional power supplies.
- Traditional Power Systems for Earth Robots
 Discuss how Earth robots typically rely on batteries and direct electrical connections.

Levels of Autonomy

- Need for Autonomy in Space Robotics
 Explain the necessity for high autonomy in space due to communication delays.
- AI and Machine Learning in Space
 Describe the advanced AI technologies that enable autonomous operation.
- Real-time Control in Earth Robotics
 Discuss how Earth-based robots often have real-time human oversight.

Mobility Systems

- Specialized Mobility for Space Robots
 Explain how space robots are designed to navigate unique terrains and gravity conditions.
- Terrain Navigation on Other Celestial Bodies
 Discuss examples, such as the advanced mobility systems in Mars rovers.
- Mobility Requirements for Earth Robots
 Describe the more predictable mobility systems used in Earth environments.

Durability and Reliability

- Importance of Reliability in Space Missions
 Discuss the critical nature of durability given the costs of repairs in space.
- Redundancy and Testing Protocols for Space Robots
 Explain the rigorous testing and design protocols to ensure reliability.
- Maintenance Capabilities for Earth Robots
 Contrast this with the ability to perform regular maintenance on Earth-based robots.

Communication Systems

Communication Challenges in Space
 Detail the difficulties faced by space robots in transmitting data over

- vast distances.
- Data Transmission Over Long Distances
 Discuss the technologies used for reliable long-distance communication.
- Terrestrial Communication Networks for Earth Robots
 Highlight the advantages of existing communication infrastructure on Earth.

Mission Objectives

- Goals of Space Robotics
 - Discuss the primary focus areas for space robots, including exploration and research.
- Applications of Earth-based Robotics
 Outline the diverse applications of Earth-based robots across various sectors.
- Comparison of Mission Objectives
 Compare and contrast the objectives of space and Earth robotics.

Conclusion

- Summary of Key Differences
 Recap the significant differences discussed in the report.
- Implications for Future Robotics Development
 Discuss how these differences impact the design and development of future robots.
- The Importance of Specialized Designs
 Emphasize the necessity for tailored solutions in both domains.

Future Directions

- Emerging Trends in Robotics
 Discuss upcoming technologies and innovations in both space and Earth robotics.
- Potential for Cross-Domain Innovations
 Explore opportunities for integrating technologies from both fields.
- Challenges Ahead
 Identify ongoing challenges that need to be addressed in both areas of robotics.