Matrix Chain Product

張智星 (Roger Jang) jang @mirlab.org

http://mirlab.org/jang

多媒體資訊檢索實驗室 台灣大學 資訊工程系

Matrix Chain Products (MCP)

- Review: Matrix Multiplication.
 - C = A *B
 - $A ext{ is } p \times q ext{ and } B ext{ is } q \times r$

$$C[i,j] = \sum_{k=0}^{q-1} A[i,k] * B[k,j]$$

• O(pqr) time

```
for (i=0; i<p; i++)

for (j=0; j<r; j++){

c[i,j]=0;

for (k=0; k<q; k++)

c[i,j]+=a[i,k]*b[k,j];
}
```


B

Matrix Chain-Products

- Problem definition
 - Given n matrices A_0 , A_1 , ..., A_{n-1} , where A_i is of dimension $d_i \times d_{i+1}$
 - How to parenthesize A₀*A₁*...*A_{n-1} to minimize the overall cost?

Example of MCP

The product A (2×3), B (3×5), C (5×2), D (2×4) can be fully parenthesized in 5 distinct ways:

```
(A (B (C D))) \rightarrow 5 \times 2 \times 4 + 3 \times 5 \times 4 + 2 \times 3 \times 4 = 124

(A ((B C) D)) \rightarrow 3 \times 5 \times 2 + 3 \times 2 \times 4 + 2 \times 3 \times 4 = 78

((A B) (C D)) \rightarrow 2 \times 3 \times 5 + 5 \times 2 \times 4 + 2 \times 5 \times 4 = 110

((A B C) D) \rightarrow 3 \times 5 \times 2 + 2 \times 3 \times 2 + 2 \times 2 \times 4 = 58

(((A B) C) D) \rightarrow 2 \times 3 \times 5 + 2 \times 5 \times 2 + 2 \times 2 \times 4 = 66
```

The way the chain is parenthesized can have a dramatic impact on the cost of evaluating the product.

An Enumeration Approach

Matrix Chain Product Alg.:

■ Try all possible ways to parenthesize $A=A_0*A_1*...*A_{n-1}$

Pick the one that is best

Running time:

- The number of ways of parenthesizations is equal to the number of binary trees with n leave nodes
- It is called the Catalan number, and it is almost 4ⁿ

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

 $((A_0(A_1A_2))A_3)$ binary tree

Observations Leading to DP

- Define subproblems:
 - Find the best parenthesization of A_i*A_{i+1}*...*A_j.
 - Let N_{i,j} denote the minimum number of operations required by this subproblem.
 - The optimal solution for the whole problem is $N_{0,n-1}$.
- Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems
 - There has to be a final multiplication (root of the expression tree) for the optimal solution.
 - Say, the final multiply is at index i: $(A_0^*...*A_i)*(A_{i+1}^*...*A_{n-1})$.
 - Then the optimal solution $N_{0,n-1}$ is the sum of two optimal subproblems, $N_{0,i}$ and $N_{i+1,n-1}$ plus the time for the last multiply.

Three-Step DP Formula

- To solve matrix chain-product with DP
 - Optimum-value function
 - N_{i,i}: the minimum number of operations required by parenthesizing A_i*A_{i+1}*...*A_i.
 - Recurrent equation

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

with $N_{i,i} = 0, \forall i$

$(A_{i+1} * A_{i+1} * A_{k})(A_{k+1} * A_{k+2} * ... * A_{j})$ $d_{i} \times d_{k+1} \qquad d_{k+1} \times d_{j+1}$

- Answer
 - N_{0, n-1}

$$|d_{k+1} \times d_{j+1}|$$

Subproblem Overlap

Due to the overlap, we need to keep track of previous results

Table Filling for DP

- The bottom-up approach fills in the upper-triangle of the nxn array by diagonals, starting from N_{i,i}'s.
- N_{i,i} gets values from pervious entries in row i and column j.
- Filling in each entry in the N table takes O(n) time \rightarrow Total time O(n³)
- Actual parenthesization can be found by storing the best "k" for each entry

Easy for back tracking

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

Walkthrough of an MCP Example

Quiz!

Product of A₀ (2×3), A₁ (3×5), A₂ (5×2), A₃ (2×4)

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

$$N_{0,2} = \min \begin{cases} N_{0,0} + N_{1,2} + 2 \times 3 \times 2 \\ N_{0,1} + N_{2,2} + 2 \times 5 \times 2 \end{cases} = \min \begin{cases} 0 + 30 + 12 \\ 30 + 0 + 20 \end{cases} = 42$$

$$N_{1,3} = \min \left\{ \frac{N_{1,1} + N_{2,3} + 3 \times 5 \times 4}{N_{1,2} + N_{3,3} + 3 \times 2 \times 4} \right\} = \min \left\{ \frac{0 + 40 + 60}{30 + 0 + 24} \right\} = 54$$

$$N_{0,3} = \min \begin{cases} N_{0,0} + N_{1,3} + 2 \times 3 \times 4 \\ N_{0,1} + N_{2,3} + 2 \times 5 \times 4 \\ N_{0,2} + N_{3,3} + 2 \times 2 \times 4 \end{cases} = \min \begin{cases} 0 + 54 + 24 \\ 30 + 40 + 40 \\ 42 + 0 + 16 \end{cases} = 58$$

Optimum value of k (for back tracking)

Solution (after back tracking)
$$\rightarrow$$
 $(A_0A_1A_2)(A_3)=(A_0(A_1A_2))(A_3)$

Exercise

Quiz!

• Product of A_0 (2×3), A_1 (3×5), A_2 (5×2), A_3 (2×4), A_4 (4×1)

A ₀ 2×3	A ₁ 3×5	A ₂ 5×2	A ₃ 2×4	A ₄ 4×1
0 ► 2×3	30 2×5	42 C	-58 2×4 \	2×1

A ₀ 2x3	2×3	2×5 k=0	2×2 k=0	2×4 k=2	2×1 k=
A ₁ 3×5		0 3×5∠	30 3×2 k=1	54 3×4 k=2	3×1 k=
A ₂ 5×2			0 v 5×2	40 5×4 k=2	5×1 k=
				_	

2×4		2×4	2×1 k=3
A ₄			0

$$N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$$

