- (1) Sprawdzić, że aksjomaty oddzielania T_i dla $i \leq 3\frac{1}{2}$ dziedziczą się na dowolne podprzestrzenie (tzn. jeśli X jest T_i , $Y \subseteq X$, to Y jest T_i). Udowodnić, że normalność jest dziedziczna ze względu na podprzestrzenie domknięte (tzn. jeśli X jest normalna, $Y \subseteq X$ domknięta to Y jest przestrzenią normalną).
- (2) (a) Wykazać, że jeśli przestrzeń (X, \mathcal{T}) jest metryzowalna w sposób zupełny i U jest zbiorem otwartym w (X, \mathcal{T}) , to podprzestrzeń (U, \mathcal{T}_U) przestrzeni (X, \mathcal{T}) jest metryzowalna w sposób zupełny.

WSKAZÓWKA: Niech $F = X \setminus U$ i niech d będzie metryką na X. Rozważmy d' na U zadaną wzorem:

$$d'(x,y) = d(x,y) + \left| \frac{1}{d(x,F)} - \frac{1}{d(y,F)} \right|.$$

(b) Niech $U_1 \supseteq U_2 \supseteq \ldots$ będą zbiorami otwartymi w przestrzeni metryzowalnej w sposób zupełny (X, \mathcal{T}) . Wykazać, że dla $Y = \bigcap_{n=1}^{\infty} U_n$ podprzestrzeń (Y, \mathcal{T}_Y) przestrzeni (X, \mathcal{T}) jest metryzowalna w sposób zupełny.

WSKAZÓWKA: Dla każdego n ustalić, korzystając z (a), metrykę zupełną d_n na U_n generującą topologię w U_n i rozpatrzyć na Y metrykę

$$d_Y(x,y) = \sum_{n=1}^{\infty} 2^{-n} \min\{d_n(x,y), 1\}.$$

(3) Niech Y będzie podprzestrzenią przestrzeni metrycznej (X,d). Wykazać, że jeśli Y jest metryzowalna w sposób zupełny, to istnieją zbiory $U_1 \supseteq U_2 \supseteq \ldots$ otwarte w X takie, że $Y = \bigcap_{n=1}^{\infty} U_n$.

WSKAZÓWKA: Ustalić metrykę d_Y generującą topologię Y i taką, że (Y,d_Y) jest przestrzenią zupełną. Dla $n \geq 1$ przyjąć jako U_n sumę wszystkich otwartych w X zbiorów U takich, że $U \cap Y \neq \emptyset$, diam $(U) < \frac{1}{n}$ w (X,d) i diam $(U \cap Y) < \frac{1}{n}$ w (Y,d_Y) .

(4) Niech F będzie zbiorem domkniętym o pustym wnętrzu na płaszczyźnie euklidesowej (\mathbb{R}^2, d_e) . Wykazać, że istnieją zbiory gęste A, B na prostej euklidesowej takie, że $(A \times B) \cap F = \emptyset$.

WSKAZÓWKA: Dla każdej pary liczb wymiernych a < b wykazać, że zbiór $K(a,b) = \{x \in \mathbb{R} \colon \{x\} \times [a,b] \subseteq F\}$ jest domknięty, brzegowy i wybrać przeliczalny zbiór A gęsty w \mathbb{R} , rozłączny z każdym takim zbiorem K(a,b). Następnie wybrać przeliczalny zbiór B gęsty w \mathbb{R} , rozłączny z każdym zbiorem $\{y \in \mathbb{R} \colon (a,y) \in F\}$, gdzie $a \in A$

(5) Wykazać, że każda przeliczalna, zupełna przestrzeń metryczna (X,d) ma punkt izolowany, tzn. $a \in X$ taki że $\{a\}$ jest otwarty.

Wywnioskować, że przestrzeń liczb wymiernych z topologią euklidesową nie jest metryzowalna w sposób zupełny.

(6) Pokazać, że istnieje funkcja $f \in C[0,1]$ nieróżniczkowalna dla każdego $x \in [0,1]$ wykorzystując twierdzenie Baire'a.

WSKAZÓWKA: Rozważyć, dla ustalonego $n \in \mathbb{N}$, zbiór $A_n \subseteq C[0,1]$ złożony z tych funkcji f, dla których istnieje $x \in [0,1]$, taki że dla każdego $y \in [0,1] \setminus \{x\}$ zachodzi

$$\left| \frac{f(y) - f(x)}{y - x} \right| \le n.$$

(7) Udowodnić, że odwzorowanie $f: \mathbb{R} \setminus \mathbb{Q} \to \mathbb{R}^{\mathbb{N}}$ dane wzorem

$$f(x) = (x, \frac{1}{|x - q_1|}, \dots, \frac{1}{|x - q_n|}, \dots),$$

gdzie $\{q_1, q_2, \ldots\} = \mathbb{Q}$, jest homeomorfizmem zbioru liczb niewymiernych i pewnej domkniętej podprzestrzeni $\mathbb{R}^{\mathbb{N}}$.

Wywnioskować stąd, że na zbiorze liczb niewymiernych $\mathbb{R}\setminus\mathbb{Q}$ istnieje równoważna metryka zupełna.

- (8) (a) Pokazać, że jeśli w przestrzeni metrycznej $(C_b(X, \mathbb{R}), d_{\sup})$, zbiór \mathcal{F} jest całkowicie ograniczony, to rodzina funkcji \mathcal{F} jest jednakowo ciągła. WSKAZÓWKA: Zauważyć, że jeśli diam $f(V) \leq \epsilon$, to dla każdego $g \in B(f, \epsilon)$, diam $g(V) \leq 3\epsilon$.
 - (b) Pokazać, że warunek sformułowany w Twierdzeniu Arzeli-Ascolego jest warunkiem koniecznym do zwartości domknięcia rodziny \mathcal{F} .
- (9) Przestrzeń

$$X = \{(x, y) : y = \sin(1/x), 0 < x \le 1/\pi\} \cup \{0\} \times [-1, 1],$$

jest zwartym podzbiorem płaszczyzny. Sprawdzić, że X jest spójna, ale nie jest łukowo spójna.

- (10) Niech $X=\{0,1,1/2,1/3,\ldots\}\subseteq\mathbb{R}$ i niech $\mathcal{C}=\{0,1\}^{\mathbb{N}}$ będzie zbiorem Cantora. Czy istnieje odwzorowanie ciągłe
 - (a) z [0,1] na C;
 - (b) $z X \times [0,1]$ na C;
 - (c) z $\mathbb{Q} \times \mathcal{C}$ na $X \times \mathcal{C}$? Na odwrót?
- (11) Zbadać, czy poniższe pary przestrzeni X, Y są homeomorficzne
 - (a) $X = \mathbb{Q} \times \mathbb{R}, Y = (\mathbb{R} \setminus \mathbb{Q}) \times \mathbb{R};$
 - (b) $X = \mathbb{Q} \times [0, 1], Y = \mathbb{N} \times [0, 1].$
- (12) (a) Zauważyć, że przekrój zstępującego ciągu zbiorów spójnych nie musi być spójny.
 - (b) Udowodnić, że przekrój zstępującego ciągu zwartych i spójnych zbiorów (w pewnej przestrzeni metrycznej) jest zwarty i spójny.
- (13) Wykazać, że przestrzeń $X=\mathbb{R}^2\setminus A$ powstała z usunięcia z płaszczyzny euklidesowej zbioru przeliczalnego A jest łukowo spójna.
- (14) Niech $I=[0,1],\ a_n\in I,\ n=1,2,\ldots$ i niech X będzie zbiorem na płaszczyźnie euklidesowej opisanym formułą

$$X = I \times \{0\} \cup \bigcup_{i=1}^{\infty} I \times \{\frac{1}{n}\} \cup \bigcup_{i=1}^{\infty} \{a_n\} \times [\frac{1}{n+1}, \frac{1}{n}].$$

- (a) Wykazać, że zbiór X jest spójny.
- (b) Wykazać, że zbiór X jest łukowo spójny wtedy i tylko wtedy, gdy ciąg $(a_n)_n$ jest zbieżny.
- (15) Funkcja $f: \mathbb{R} \to \mathbb{R}$ ma własność Darboux, jeśli dla każdej pary punktów s < t i liczby r leżącej między f(s) i f(t) istnieje $u \in [s,t]$ takie, że f(u) = r. Wykazać, że jeśli wykres $\{(x,f(x))\colon x\in \mathbb{R}\}$ funkcji $f\colon \mathbb{R} \to \mathbb{R}$ jest spójnym podzbiorem płaszczyzny, to f ma własność Darboux.

- (16) Wykazać, że zwarta przestrzeń metryczna (X,d) jest spójna wtedy i tylko wtedy, gdy dla każdej pary punktów $a,b\in X$ i $\epsilon>0$ istnieją punkty $a_1,\ldots,a_n\in X$ takie, że $a_1=a,$ $a_n=b$ i $d(a_i,a_{i+1})<\epsilon$ dla $i=1,2,\ldots,n-1$.
- (17) Wiemy, że przestrzeń $[0,1]^T$ jest zwarta dla dowolnego T. Pokazać, że dla $|T| \geq \mathfrak{c}$, $[0,1]^T$ nie jest **ciągowo zwarta**, czyli zawiera ciągi bez podciągów zbieżnych. (Nie ma tu sprzeczności ponieważ dla $|T| \geq \mathfrak{c}$, $[0,1]^T$ nie jest metryzowalna.)

 WSKAZÓWKA: Przyjąć, że $T = \{0,1\}^{\mathbb{N}}$. Niech $x_n \in [0,1]^{\{0,1\}^{\mathbb{N}}}$ będzie zdefiniowany przez warunek $x_n(\alpha) = \alpha(n)$ dla $\alpha \in \{0,1\}^{\mathbb{N}}$.
- (18) Niech X będzie podprzestrzenią $[0,1]^{\mathbb{R}}$, złożoną z tych elementów, które mają tylko przeliczalnie wiele niezerowych współrzędnych. Udowodnić, że X jest ciągowo zwarta, ale nie jest zwarta.
- (19) Udowodnić, że przestrzeń zwarta X jest metryzowalna wtedy i tylko wtedy gdy na X istnieje przeliczalna rodzina funkcji ciągłych $X \to [0,1]$, która rozdziela punkty. WSKAZÓWKA: Taka rodzina pozwala zanurzyć X w $[0,1]^{\mathbb{N}}$.