EQUILÍBRIO IÔNICO

EQUILÍBRIO IÔNICO

Hidrólise de sais - 2

- 1) Constante de hidrólise
- 2) Cálculo do pH de um sal
 - a) Hidrólise do ânion apenas
 - b) Hidrólise do cátion apenas
 - c) Hidrólise de um ânion bivalente

PROFESSOR: THÉ

LIÇÃO: 108

CONSTANTE DE HIDRÓLISE (KH)

a) Considere a hidrólise do íon acetato (A_c⁻)

$$\mathbf{Ac}^{-} + \mathbf{H}_{2}\mathbf{O} \rightleftharpoons \mathbf{HA}_{C} + \mathbf{OH}^{-}$$
$$\mathbf{K}(\mathbf{A}_{C}^{-}) = \mathbf{K}_{b} = \mathbf{K}_{h}$$

Constante da base acetato

Constante de hidrólise do acetato

$$\left(\mathbf{K_b} = \frac{\mathbf{K_W}}{\mathbf{K_a}}\right) \rightarrow \left(\mathbf{K_b} \cdot \mathbf{K_a} = \mathbf{K_W}\right)$$

O produto das constantes da base conjugada pela a do ácido conjugado é igual ao produto iônico da água

b) Hidrólise do cátion amônio (NH₄)

$$NH_4^+ + H^+OH^- \rightleftharpoons \langle NH_4OH \rangle + H^+$$

 $\langle NH_4OH \rangle \rightarrow NH_3 + HOH$

ou simplesmente: $NH_4^+ \rightarrow NH_3 + H_3^+$

ou ainda:
$$\mathbf{NH}_4^+ + \mathbf{H}_2\mathbf{O} \rightarrow \mathbf{NH}_3 + \mathbf{H}_3\mathbf{O}^+ \quad \left(\mathbf{H}_3\mathbf{O}^+ = \mathbf{H}^+\right)$$

$$\boxed{\mathbf{K}\big(\mathbf{NH}_4^+\big) = \mathbf{K}_\mathbf{a} = \mathbf{K}_\mathbf{H}}$$

Constante do ácido amônio

Constante de Hidrólise do amônio.

$$\mathbf{K_{a}} = \left[\frac{\left[\mathbf{NH_{3}} \right] \left[\mathbf{H^{+}} \right]}{\left[\mathbf{NH_{4}^{+}} \right]} \mathbf{x} \left(\frac{\left[\mathbf{OH^{-}} \right]}{\left[\mathbf{OH^{-}} \right]} \right) = \frac{\left[\mathbf{NH_{3}} \right] \left[\mathbf{H^{+}} \right] \left[\mathbf{OH^{-}} \right]}{\left[\mathbf{NH_{4}^{+}} \right] \left[\mathbf{OH^{-}} \right]}$$

$$\left(\mathbf{K_a} = \frac{\mathbf{K_W}}{\mathbf{K_b}}\right) \rightarrow \left(\mathbf{K_a} \cdot \mathbf{K_b} = \mathbf{K_W}\right)$$

Cálculo do pH de um sal

a) Hidrólise do ânion, apenas

EXEMPLO - 1

Qual o pH de uma solução 0,1M de NaAc?

$$K(HAc) = 2.10^{-5}$$

RESOLUÇÃO

1) Dissociação

NaAc
$$\rightarrow$$
 Na⁺ + Ac⁻
0,1 0,1 0,1

2) Hidrólise

	$Ac^- + H_2O \rightleftharpoons HAc + OH^-$			
1	0,1		0	0
R	Х		х	х
E	0,1-x		Х	Х

$$\begin{bmatrix}
\mathbf{K_b} = \frac{\mathbf{[HAc]} \mathbf{[OH^-]}}{\mathbf{[Ac^-]}} \\
\frac{10^{-14}}{2.10^{-5}} = \frac{\mathbf{(x)} \mathbf{(x)}}{\mathbf{(0,1-x)}} \\
0,5.10^{-10} = \mathbf{x}^2 \rightarrow \mathbf{x} = 7.10^{-6} \mathbf{M}
\end{bmatrix}$$

$$pOH = -(log 7.10^{-6})$$

b) Hidrólise de cátions, apenas.

EXEMPLO - 2

Qual o pH de uma solução 0,2M de NH₄Cl?

$$K(NH_3) = 2.10^{-5}$$

RESOLUÇÃO

1) Dissociação

$$\mathbf{NH_4CI} \rightleftharpoons \mathbf{NH_4^+} + \mathbf{CI}^-$$

$$0,2 \qquad 0,2 \qquad \underbrace{0,2}_{\text{neutro}}$$

2) Hidrólise

	NH_4^+	\rightleftharpoons NH ₃	+ H ⁺
1	0,2	0	0
R	Х	х	X
Е	0,2-x	х	х

$$K_a = \frac{K_W}{K_b}$$

$$K_a = \frac{10^{-14}}{2.10^{-5}} = 0,5.10^{-9} = \boxed{5.10^{-10}}$$

$$5.10^{-10} = \frac{(\mathbf{x})(\mathbf{x})}{(0.2 - \cancel{\mathbf{x}})} \rightarrow \mathbf{x} = 10^{-5}$$

c) Hidrólise de um ânion bivalente

Os sais que apresentam ânions bivalentes sofrem duas hidrólise consecutivas.

$$A^{2-} + HOH \rightarrow HA^{-} + OH^{-}$$
 K₁

$$HA^- + HOH \rightarrow H_2A + OH^- K_2$$

A primeira reação numa extensão muito maior que a segunda, geralmente.

EXEMPLO - 3

Qual o pH de uma solução de Na₂S 0,2M ? O sulfeto de sódio, Na₂S, é uma substância química usada na eliminação de pelos de animais.

$$H_2S \rightarrow K_{a1} = 1.10^{-7}$$

$$HS^- \rightarrow K_{a2} = 1.10^{-14}$$

RESOLUÇÃO

1) Dissociação do sal

$$Na_2S \rightarrow \underbrace{2 Na^+}_{c ext{ation neutro}} + S^{2-}$$

$$0,2 \qquad \underbrace{2(0,2)}_{0,2} \qquad 0,2$$

2) Hidrólise do ânion sulfeto (S^{2-})

	S^{2-} + HOH \rightleftharpoons HS $^-$ + OH $^-$				
1	0,2		0	0	
R	х		Х	х	
Ε	0,2-x		Х	Х	

$$K_{b_1} = \frac{\begin{bmatrix} HS^- \end{bmatrix} \begin{bmatrix} OH^- \end{bmatrix}}{\begin{bmatrix} S^{2-} \end{bmatrix}} K_{b_1} = \frac{K_w}{K_{a_2}}$$

$$\mathbf{K_{b_1}} = \frac{10^{-14}}{1.10^{-14}} = \boxed{1}$$

$$\mathbf{K_{b_1}} = \frac{\left[\mathbf{HS}^{-}\right]\!\!\left[\mathbf{OH}^{-}\right]}{\left\lceil\mathbf{S}^{2^{-}}\right\rceil}$$

$$1 = \frac{(x)(x)}{0.2 - x} \rightarrow 0.2 - x = x^2$$

$$\mathbf{x}^2 + \mathbf{x} - 0, 2 = 0$$

$$\mathbf{x} = \frac{-1 \pm \sqrt{(1)^2 - 4(1)(-0,2)}}{2(1)} = \frac{-1 \pm \sqrt{1 + 0.8}}{2}$$

$$x_1 = \frac{-1 \pm 1,34}{2} = -\frac{2,34}{2} = -1,17$$
 (sem significado físico)

$$\mathbf{x}_2 = \frac{-1+1,34}{2} = \frac{0,34}{2} = \boxed{0,17 \text{ mol/L}}$$

3) Hidrólise do ânion hidrogenosulfeto (HS⁻)

	$HS^- + HOH \rightleftharpoons H_2S + OH^-$				
1	0,17		0	0,17	
R	Υ		Υ	У	
Е	0,17− y		٧	0,17+ y	

$$\mathbf{K}_{\mathbf{b}_2} = \frac{10^{-14}}{1.10^{-7}} = \boxed{10^{-7}}$$

$$10^{-7} = \frac{(y)(0,17 + y)}{(0,17 - y)} \rightarrow y = 10^{-7} \,\text{mol/L}$$

4) Cálculo das concentrações finais

$$\begin{bmatrix} \mathbf{S}^{2^{-}} \end{bmatrix} = 0,2 - \mathbf{x} \rightarrow 0,2 - 0,17 = 0,03 \text{ mol/L}$$

$$\begin{bmatrix} \mathbf{H}_{2}\mathbf{S} \end{bmatrix} = \mathbf{y} \rightarrow \mathbf{y} = 10^{-7} \text{ mol/L}$$

$$\begin{bmatrix} \mathbf{O}\mathbf{H}^{-} \end{bmatrix} = 0,17 + \mathbf{y} \rightarrow 0,17 + 10^{-7} \cong 0,17 \text{ mol/L}$$

$$\begin{bmatrix} \mathbf{H}\mathbf{S}^{-} \end{bmatrix} = 0,17 - \mathbf{y} \rightarrow 0,17 - 10^{-7} \cong 0,17 \text{ mol/L}$$

5) Cálculo de pOH e do pH

$$pOH = -\log[OH^{-}]$$

$$pOH = -\log 0,17$$

$$pOH = 0,77 \therefore pH = 13,23$$

O ânion sulfeto é uma base fortíssima como se vê pelo seu pH