Module 2.1 Standard Distributions

S. Lakshmivarahan

School of Computer Science University of Oklahoma Norman, OK, 73071 USA

Univariate normal/Gaussian distribution

 A scalar random variable x is said to have a Gaussian, or normal distribution, if its probability density function is given by

$$P_{x}(x) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left[-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right]$$
 (1)

- This probability density function is described by two parameters, μ the mean (location) and σ^2 , the variance (the spread) of x.
- $P_x(x)$ in (1) is denoted by $\mathbf{N}(\mu, \sigma^2)$.
- When μ =0 and σ^2 =1 in (1), it is called standard normal distribution, $\mathbf{N}(0,1)$

Examples

- $P_x(x)$ is a symmetric function of x with respect to μ , that is, $P_x(x-\mu)=P_x(\mu-x)$
- Variation of $P_x(x)$ with σ^2 is illustrated below

• As σ^2 increases, the peak at $\mu=0$ decreases, the tail gets thicker and the overall spread increases

Cumulative probability distribution

•

If
$$x \sim N(\mu, \sigma^2)$$
, then $Z = \frac{x - \mu}{\sigma} \sim N(0, 1)$. (2)

By definition:

$$F(a) = \mathbf{Prob}[Z \le a] = \int_{-\infty}^{a} P_{z}(z) \, dz$$
$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{a} \exp\left[-\frac{z^{2}}{2}\right] dz. \tag{3}$$

denotes the cumulative probability distribution of z.

• Then, $F(-\infty) = 0$, $F(0) = \frac{1}{2}$, $F(\infty) = 1$.

Probability mass of N(0,1) on intervals

- Since it is not easy to evaluate the integral in (1), numerical values of F(a) have been extensively tabulated.
- Using these tables: F(a) F(a) =area under the curve from a to b

$$F(1) - F(-1) = \mathbf{Prob}[-1 \le z \le 1] = 0.683$$

$$F(2) - F(-2) = \mathbf{Prob}[-2 \le z \le 2] = 0.955$$

$$F(3) - F(-3) = \mathbf{Prob}[-3 \le z \le 3] = 0.997$$
(4)

Probability mass of $N(\mu, \sigma^2)$ on intervals

• Using (2) and (4) it is immediate that

Prob[
$$|x - \mu| \le \sigma$$
] = 0.683
Prob[$|x - \mu| \le 2\sigma$] = 0.955
Prob[$|x - \mu| \le 3\sigma$] = 0.997

Sum of iid random variables

- Let x_1, x_2, \dots, x_n be a set of n independent, identically (not necessarily Gaussian) distributed random variables.
- Define

$$S_n = \sum_{i=1}^n x_i. (6)$$

Verify:

$$\mathbf{Mean}(S_n) = \mathbf{E}(S_n) = n\mu$$

$$\mathbf{var}(S_n) = \mathbf{E}[S_n - \mu]^2$$

$$= \mathbf{E}(\sum_{i=1}^n x_i - n\mu)^2 = \mathbf{E}(\sum_{i=1}^n (x_i - \mu)^2)$$

$$= n\sigma^2$$
(8)

A function of S_n -centering and normalization

- Notice that S_n is such that its mean (7) and variance (8) increases linearly with n
- However, there exists a function, $g(S_n)$ of S_n whose distribution is related to the standard normal distribution
- To this end, define

$$y_n = g(S_N) = \frac{S_n - n\mu}{\sqrt{n}\sigma} \tag{9}$$

• Subtraction of the mean $n\mu$ from S_n is called <u>centering</u>, and dividing by the standard deviation $\sqrt{n}\sigma$ is called <u>normalization</u>.

Central limit theorem (CLT)

• <u>CLAIM</u>: The distribution of the random variable y_n in (9) tends towards the standard normal as $n \to \infty$. That is,

$$\lim_{n \to \infty} \mathbf{Prob}[a < y_n \le b] = \frac{1}{\sqrt{2\pi}} \int_a^b \exp\left(-\frac{y^2}{2}\right) dy \qquad (10)$$

• Gaussian distribution called a "stable" distribution.

Application of CLT

- Let x_1, x_2, \dots, x_n be the iid samples from a distribution with unknown mean μ and known variance σ^2
- A standard estimate for μ is the sample mean.

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n x_i \tag{11}$$

Properties of \overline{X}_n

Verify that:

$$E(\overline{X}_n) = \mu$$

$$var(\overline{X}_n) = \frac{\sigma^2}{n}$$
(12)

• By CLT, the sampling distribution of $\frac{\sqrt{n}(X_n-\mu)}{\sigma}$ is standard normal as $n \to \infty$, that is,

$$\lim_{n \to \infty} \mathbf{Prob} \left[\frac{\sigma}{\sqrt{n}} a \le (\overline{X}_n - \mu) \le \frac{\sigma}{\sqrt{n}} b \right] = \frac{1}{\sqrt{2\pi}} \int_a^b \exp\left(-\frac{y^2}{2}\right) dy$$
(13)

Confidence interval for \overline{X}_n

Let

$$Z_n = \frac{(\overline{X}_n - \mu)}{(\frac{\sigma}{\sqrt{n}})} \tag{14}$$

• By CLT in (13), for $0 < \alpha < 1$, if

$$\mathbf{Prob}[-Z_{\frac{\alpha}{2}} \le Z_n \le Z_{\frac{\alpha}{2}}] = 1 - \alpha \tag{15}$$

then Z_n in (14) lies in the interval $[-Z_{\frac{\alpha}{2}},Z_{\frac{\alpha}{2}}]$ with probability $(1-\alpha)$, where $Z_{\frac{\alpha}{2}}>0$

Examples of Confidence intervals

• Verify from the Tables of standard normal:

$Z_{\frac{\alpha}{2}}$	$(1-\alpha)$	α
1	0.683	0.317
2	0.955	0.045
3	0.997	003

Table: Confidence intervals

Confidence interval for \overline{X}_n

• Substituting Z_n from (14) in (15):

$$\operatorname{Prob}\left[\mu - \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}} \leq \overline{X}_n \leq \mu + \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}}\right] = 1 - \alpha. \tag{16}$$

- That is, \overline{X}_n lies in the interval $\left[\mu \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}}, \mu + \frac{\sigma}{\sqrt{n}} Z_{\frac{\alpha}{2}}\right]$ with probability (1α) . This interval is a function of n and α .
- \bullet α is called the level of confidence

Relation between n and α

• Let d > 0 be such that

$$|\overline{X}_n - \mu| \le d \tag{17}$$

Then

$$-\frac{d}{\left(\frac{\sigma}{\sqrt{n}}\right)} \le \frac{\overline{X}_n - \mu}{\left(\frac{\sigma}{\sqrt{n}}\right)} \le \frac{d}{\left(\frac{\sigma}{\sqrt{n}}\right)} \tag{18}$$

By CLT,

$$\mathbf{Prob}\left[-\frac{\sqrt{n}d}{\sigma} \le Z_n \le \frac{\sqrt{n}d}{\sigma}\right] = 1 - \alpha \tag{19}$$

where
$$Z_{\frac{\alpha}{2}} = \frac{\sqrt{nd}}{\sigma}$$
 or $n = \frac{\sigma^2}{d^2} Z_{\frac{\alpha}{2}}^2$ (20)

• Thus, α decides $Z_{\frac{\alpha}{2}}$ which in turn decides n through (20).

Chi-square (χ^2) distribution

• A scalar random variable x is said to be $\chi^2(n)$ -distributed with n degrees of freedom if

$$f_x(x) = \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})} x^{(\frac{n}{2}-1)} e^{-\frac{x}{2}}, \text{ for } x > 0$$
 (21)

denoted as $x \sim \chi^2(n)$

- $\Gamma(r)$ is the standard Gamma function
- (21) is a special case Gamma distribution

$$f_{x}(x) = \frac{\lambda^{r}}{\Gamma(r)} x^{r-1} e^{-\lambda x}$$
 (22)

with $\lambda = \frac{1}{2}$ and $r = \frac{n}{2}$

Properties of $\Gamma(r)$

•
$$\Gamma(r) = \int_0^\infty x^{r-1} e^{-\lambda} dx r > 0$$

- $\Gamma(1) = 1, \Gamma(\frac{1}{2}) = \sqrt{\pi}$
- $\Gamma(r+1) = r\Gamma(r)$ when r is real and positive
- $\Gamma(r+1) = r!$ when r is an integer
- $\frac{\Gamma(r)\Gamma(s)}{\Gamma(r+s)} = \int_0^1 u^{r-1} (1-u)^{s-1} du$

Mean and variance

Factors of x	Gamma	$\chi^2(n)$
Mean	$\frac{r}{\lambda}$	n
Variance	$\frac{r}{\lambda^2}$	2 <i>n</i>

Table : Mean and variance of x

(23)

Sample plots of $\chi^2(n)$

Examples of $\chi^2(n)$ random variables

- Let z_1, z_2, \dots, z_n be iid samples from N(0,1)
- Then

$$\sum_{i=1}^{n} (z_i)^2 \sim \chi^2(n) \tag{24}$$

Examples of $\chi^2(n)$ random variables

- Let x_1, x_2, \dots, x_n be iid samples from $N(0, \sigma^2)$
- If μ is known, $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \mu)^2$ is an estimator of σ^2
- If μ and σ are <u>not</u> known, $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n x_i$ and $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{X}_n)^2$ are the estimators of μ and σ^2 .
- Then,

$$\frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi^2(n) \text{ and } \frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$
 (25)

F-distribution — after Sir Ronald Fisher

- Let $U \sim \chi^2(m)$, $V \sim \chi^2(n)$ and be independent.
- Then

$$X = \frac{U/m}{V/n} \sim F_{m,n}$$
, called F – distribution (26)

• It is given by

$$f_{x}(x) = \frac{\Gamma(\frac{(m+n)}{2})m^{\frac{m}{2}}n^{\frac{n}{2}}x^{\frac{m}{2}-1}}{\Gamma(\frac{m}{2})\Gamma(\frac{n}{2})(n+mx)^{\frac{m+n}{2}}}$$
(27)

Application of F-distribution

- F-distribution is used to test the properties of a statistic which is the ratio of two χ^2 -distributed variables.
- See the module on linear least squares for an illustration.

Sample plots of F-distribution

Student-t distribution

- Let $Z \sim N(0,1), V \sim \chi^2(n)$ and be independent.
- The ratio x = $\frac{Z}{\sqrt{\frac{V}{n}}}$ is said to inherit the student-t distribution

$$f_{x}(x) = \frac{\Gamma(\frac{n+1}{2})}{\sqrt{n\pi}\Gamma(\frac{n}{2})(1+\frac{x^{2}}{n})^{\frac{n+1}{2}}}$$
(28)

for
$$-\infty < x < \infty$$

This distribution is symmetric with respect to the y-axis.

Sample plots for student-t

References

 The following book contain a wealth of information on various distributions:

Krishnan, V. (2016) "Probability and random processes." Wiley