

Lecture 7

topic: k-Nearest Neighbors

material: Chapters 7 (book "Data Mining for Business Intelligence")

Summary of previous lectures / Agenda

Date	Lecture contents		Lecturer	Lab topics	Test
Jan-27	1	Intro. to BI+ Data Management	Caron		
Jan-30				SQL-1	1
Jan-28	2	Data warehousing	Caron		
Feb-06				SQL-2	2
Feb-03	3	OLAP business databases & dashboard	Caron		
Feb-13				SQL-3 & OLAP	3a & 3b
Feb-10	4	Data mining introduction	loannou		
rep-10	5	Regression models	Ioannou		
Feb-17	6 🔾	Naïve Bayes	loannou		
reb-17	7 🔾	k nearest neighbors	Ioannou		
Feb-20				Bayes & neighbors	4
Feb-27	8	Performance measures	Ioannou		
Mar-02	9	Decision trees	Ioannou		
Mar-05				Dec. trees	5
Mar-09	10	Association rules	Ioannou		
Mar- 11,12&13				Ass. Rules	6
Mar-16	11	Clustering (+20 mins exam preparation)	loannou		
Mar-19				Clustering	7

Our focus is currently on Data Mining models

Classification

- Common task in DM
- Examine data where the classification is unknown using data with known outcome
- Goal is to predict what that classification
- Learn classification from the training data
 - Relationship between predictors and outcome
- Apply on testing data, which also includes known outcomes, using the selected model finally
 - Measure how well it will do on unknow data

The k-Nearest Neighbors Classifier

- Identify the neighbors of the new record that we wish to classify
 - l.e., the *k* records in the training dataset that are similar to / close by the new record
- Use the neighbors (i.e., these *k* records) to classify the new record into a class
- Assign the new record to the predominant class among these neighbors

Example

- Items classified into a red and blue class (training)
- New item arrives and we must set its class

- Compare with all items
- Find the 3 items that are most close with it
- Set its class to the predominant class among these 3 neighbors

Example

- Items classified into a red and blue class
- New item arrives and we must set its class

- Compare with all items
- Find the 5 items that are most close with it
- Set its class to the predominant class among these 5 neighbors

The k-Nearest Neighbors Classifier

- Identify the neighbors in the training dataset that are similar/close to a new record that we wish to classify
- Use the neighbors (i.e., these *k* records) to classify the new record into a class
- Assign the new record to the predominant class among these neighbors
 Sim() = ?

Processing involves:

- Determining the item's neighbors
- Choosing the number of neighbors, i.e., value *k*
- Computing classification (for a categorical outcome) or prediction (for a numerical outcome)

Determining record's neighbors Choosing the value for k Computing classification or prediction

Determining record's neighbors

- Based on the similarity / closeness between records
- → Measure the distance based on their values distance between records r_i and r_j is d_{ij}
- Distances can be defined in multiple ways
- Typically, some properties are required:
 - P.1. Non-negative: $d_{ij} > 0$
 - P.2. Self-proximity: $d_{ii} = 0$ (dist. from a record to itself)
 - P.2. Symmetry: $d_{ij} = d_{ji}$
 - P.3. Triangle inequality: $d_{ij} \le d_{ik} + d_{kj}$
 - I.e., the distance between any pair cannot exceed the sum of distances between the other two pairs

Euclidean Distance

- Most popular distance measure for numerical values
- Record r_i has values $x_{i1}, x_{i2}, ..., x_{ip}$
- Euclidean distance between r_i and r_j is

$$d_{ij} = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \dots + (x_{ip} - x_{jp})^2}$$

Example:	Company	Fixed	RoR	Cost	Load	Demand	Sales	Nuclear	Fuel Cost
• Record r_1	Arizona Public Service	1.06	9.2	151	54.4	1.6	9077	0.0	0.628
	Boston Edison Co.	0.89	10.3	202	57.9	2.2	5088	25.3	1.555
• Record r_2	Control Louisiana Co	1 // 2	15 /	110	E2 U	2 /.	0212	0.0	1 050

• Euclidean distance between r_1 and r_2 is

$$d_{12} = \sqrt{(1.06 - 0.89)^2 + (9.2 - 10.3)^2 + \dots + (0.628 - 1.555)^2} = 3989:408$$

Euclidean Distance

- Highly scale dependent
 - I.e., Changing the units of one variable can have a huge influence on the results, for example from cents to dollars
- Solution is normalizing the values before computing
- This converts all measurements to the same scale
- → Subtract average and divide by standard deviation

Example:

- Average sales amount across 22 utilities is 8914.045
- Standard deviation is 3549.984
- Sales for Arizona Public Service is 9077
- Normalized sales is (9077-8914.045)/3549.984 = 0.046

Euclidean Distance

- Sensitive to outliers (discussed in next lectures)
 - Record value(s) that differs significantly from other observations
 - Occur from natural deviations, errors, etc.
- Requires a more robust distance
- Good option is the Manhattan distance
- It looks at the absolute differences rather than squared differences
- Manhattan distance between r_i and r_j is

$$d_{ij} = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \dots + |x_{ip} - x_{jp}|$$

Distance measures for binary values

- Records with binary values (categorical data)
- Use similarity measures and not distance measures
- When for all x_{ij} 's we have binary values

		Record r_j				
		0	1	25		
Record r_i	0	a	b	a+b		
	1	c	d	c+d		
,		a+c	b+d	n		

- Matching coefficient: $(\alpha + d) / n$
- Jaquard's coefficient: d / (b + c + d) ignores zeros

Choosing the value for k

• *k* is too low:

may be fitting to the noise in the dataset

• *k* is too high:

miss out on the method's ability to capture the local structure in the dataset, one of its main advantages

• *k* is the number of records in training dataset: assign all records to the majority class in the training data

Choosing the value for k

- Balanced choice depends on the nature of the data
- E.g., the more complex and irregular the structure of the data, the lower the optimum value of k
- Typically:
 - Values of k fall in the range 1 to 20
 - Use odd numbers to avoid ties

How is *k* chosen?

- We use the training data to classify the records in the testing dataset, i.e., use different values for *k*
- Compute error rates for various choices of k
- Choose k with the best classification performance

BUT

 Testing dataset set is now used as part of the training process (to set k)

 We need a new dataset to evaluate the model performance on data that it did not see

... to be discussed in the next lecture

How is *k* chosen?

Validation dataset:

- Take a subset of the training dataset
- Use them for the selecting the model

Error rate:

Percentage of mistakes

I.e., assigned an incorrect class to records

How is *k* chosen?

- Predict the class for the records in validation
- Use different values of *k*, e.g., equal to 3, 4, 5, etc.
- Choose k that minimize validation error

The follow plot shows the error for different values of *k* over the validation dataset.

What is a good value for k?

Numerical Outcome

- Algorithm can be extended to predict continuous values, instead of categorical values
- First step remains unchanged
 I.e., determining neighbors by computing distances
- Second step must be modified
 I.e., determining class through majority voting
- Determine the prediction by taking the average outcome value of the k-nearest neighbors

Advantages

- Simplicity of the method
- Lack of parametric assumptions

Perform surprisingly well especially when

- There is a large enough training set present
- Each class is characterized by multiple combinations of predictor values

Shortcomings

1. Computing the nearest neighbors can be time consuming

Possible solutions:

- Reduce time taken to compute distances by working on less dimensions, generated using dimension reduction techniques
- Speed up identification of nearest neighbors using specialized data structures

Shortcomings

- 1. Computing the nearest neighbors can be time consuming
- 2. For every record to be predicted, we compute its distance from the entire set of training records only at the time of prediction
 - Known as "lazy learner"
 - → This behavior prohibits using this algorithm for real-time prediction of a large number of records simultaneously

Shortcomings

- 1. Computing the nearest neighbors can be time consuming
- 2. For every record to be predicted, we compute its distances from the entire set of training records only at the time of prediction
- 3. Number of records required in the training set to qualify as large increases exponentially with the number of predictors

Known as "curse of dimensionality"

Possible solution:

Reduce the number of predictors

