This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

PATENT ABSTRACTS OF JAPAN

(11)Publication number:

11-116481

(43)Date of publication of application: 27.04.1999

(51)Int.Cl.

A61K 31/435 A61K 31/435 A61K 31/435 A61K 31/435 A61K 31/435 A61K 31/435

// C07D471/04

(21)Application number: 09-290258

(71)Applicant: SUMITOMO PHARMACEUT CO

LTD

(22)Date of filing:

06.10.1997

(72)Inventor: INOUE TADAHIRO

IWAI KIYOTAKA

MURATA SHINJI

NISHINAKA SHIGEYUKI

AOKI MIKIO

KAWAKAMI HAJIME

(54) STAT6 ACTIVATION INHIBITOR

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain the subject inhibitor effective in the therapy or prophylaxis of allergic diseases, parasitic infectious diseases, autoimmune diseases or the like by including a specific imidazo[1,2-a] pyridine derivative as an active ingredient therein. SOLUTION: This inhibitor contains an imidazo[1,2-a] pyridine derivative represented by formula I [X1 to X5 are each H, a (substituted)alkyl, a cycloalkyl(alkyl), a (substituted)aralkyl or the like; R1 to R5 are each H, a (substituted) alkyl, a cycloalkyl(alkyl), a (substituted) aralkyl or the like] or its pharmaceutically acceptable salt, e.g. 2-(2-naphthyl) imidazo[1,2-1]pyridine hydrobromide as an active ingredient. The derivative is preferably obtained by reacting a compound represented by

$$\mathbb{R}^2 \xrightarrow{\mathbb{R}^1} \mathbb{X}^1 \xrightarrow{\mathbb{X}^2} \mathbb{X}^3$$

$$r \xrightarrow{K_2} x_2$$
 x_3

formula II with a compound represented by formula III (Y is iodine, bromine or the like) in an inert solvent such as tetrahydrofuran at a temperature within the range of about ambient temperature to the boiling point of the solvent.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

(12) 公開特許公報(A) (11)特許出願公開番号

特開平11-116481

(43)公開日 平成11年(1999)4月27日

(51) Int.Cl.6	戲別記号		FI						_
A 6 1 K 31/435	AED		A 6	LK 3	31/435		AED		
	ABB				•		ABB		
	ABD						ABD		
1	ABF						ABF		
	ADU						ADU		
		審查請求	未請求	請求項	質の数 5	FD	(全 14 頁)	最終頁にお	克<
(21)出願番号	特膜平9-290258		(71)	人類出	000183	370			_
					住友製	英株式	会社		
(22) 出顧日	平成9年(1997)10月6日						中央区道修町	2丁月2番8	ł
			(72) §	初者					
					大阪市	此花区	春日出中3丁	目1番98号	É
		•			友製薬	株式会	此内		-
			(72) 3	砌者	岩井	清高			
					大阪市	此花区	静日出中3丁	目1番98号	借
					友製薬	株式会	此内		
			(72) 3	砌者	村田	贷志			
					大阪市	此花区	第日出中3丁	目1番98号	đ
					友製薬	株式会	灶内		
			(74) f	人野	弁理士	中村	敏夫		
								最終頁に統	!<

(54) 【発明の名称】 スタット6活性化阻害剤

(57)【要約】

【課題】転写因子スタット6の活性化阻害剤の提供。

【解決手段】式1

【化1】

で表されるイミダソ [1, 2-a] ピリジン誘導体を有 効成分とする転写因子スタット6の活性化阻害剤。

【特許請求の範囲】 【請求項1】式1 【化1】

(式中、X1は水素原子、アルキル基、置換アルキル 基、シクロアルキル基、シクロアルキルアルキル基、ア ラルキル基、置換アラルキル基、アリール基、置換アリ ール基、ハロゲン原子、シアノ基、トリフルオロメチル 基、アルコキシ基、フェノキシ基、置換フェノキシ基、 アルカノイル基、アロイル基、置換アロイル基、アルコ キシカルボニル基、カルバモイル基、ニトロ基またはア ルキルアミド基を表す。X²は水素原子、アルキル基、 置換アルキル基、シクロアルキル基、シクロアルキルア ルキル基、アラルキル基、置換アラルキル基、アリール 基、置換アリール基、ハロゲン原子、シアノ基、トリフ ルオロメチル基、アルコキシ基、フェノキシ基、置換フ エノキシ基、アルカノイル基、アロイル基、置換アロイ ル基、アルコキシカルボニル基、カルバモイル基、ニト ロ基またはアルキルアミド基を表す。 X3は水素原子、 アルキル基、置換アルキル基、シクロアルキル基、シク ロアルキルアルキル基、アラルキル基、置換アラルキル 基、アリール基、置換アリール基、ハロゲン原子、シア ノ基、トリフルオロメチル基、アルコキシ基、フェノキ シ基、置換フェノキシ基、アルカノイル基、アロイル 基、置換アロイル基、アルコキシカルボニル基、カルバ モイル基、ニトロ基またはアルキルアミド基を表す。X ⁴は水案原子、アルキル基、置換アルキル基、シクロア ルキル基、シクロアルキルアルキル基、アラルキル基、 置換アラルキル基、アリール基、置換アリール基、ハロ ゲン原子、シアノ基、トリフルオロメチル基、アルコキ シ基、フェノキシ基、置換フェノキシ基、アルカノイル 基、アロイル基、置換アロイル基、アルコキシカルボニ ル基、カルパモイル基、ニトロ基またはアルキルアミド 基を表す。X⁵は水案原子、アルキル基、置換アルキル 基、シクロアルキル基、シクロアルキルアルキル基、ア ラルキル基、置換アラルキル基、アリール基、置換アリ ール基、ハロゲン原子、シアノ基、トリフルオロメチル 基、アルコキシ基、フェノキシ基、置換フェノキシ基、 アルカノイル基、アロイル基、置換アロイル基、アルコ キシカルボニル基、カルバモイル基、ニトロ基またはア ルキルアミド基を表す。またはX1、X2、X3、X4、お よびX5において、2つの隣接する任意の基が結合して フェニル環、または置換フェニル環を形成してもよい。 R¹は水衆原子、アルキル基、置換アルキル基、シクロ

アルキル基、シクロアルキルアルキル基、アラルキル 基、置換アラルキル基、アリール基、置換アリール基、 ハロゲン原子、シアノ基、トリフルオロメチル基、アル コキシ基、フェノキシ基、置換フェノキシ基、アルカノ イル基、アロイル基、置換アロイル基、アルコキシカル ボニル基、カルバモイル基、ニトロ基またはアルキルア ミド基を表す。R²は水素原子、アルキル基、置換アル キル基、シクロアルキル基、シクロアルキルアルキル 基、アラルキル基、置換アラルキル基、アリール基、置 換アリール基、ハロゲン原子、シアノ基、トリフルオロ メチル基、アルコキシ基、フェノキシ基、置換フェノキ シ基、アルカノイル基、アロイル基、置換アロイル基、 アルコキシカルボニル基、カルバモイル基、ニトロ基ま たはアルキルアミド基を表す。R3は水素原子、アルキ ル基、置換アルキル基、シクロアルキル基、シクロアル キルアルキル基、アラルキル基、置換アラルキル基、ア リール基、置換アリール基、ハロゲン原子、シアノ基、 トリフルオロメチル基、アルコキシ基、フェノキシ基、 置換フェノキシ基、アルカノイル基、アロイル基、置換 アロイル基、アルコキシカルボニル基、カルバモイル 基、ニトロ基またはアルキルアミド基を表す。R⁴は水 素原子、アルキル基、置換アルキル基、シクロアルキル 基、シクロアルキルアルキル基、アラルキル基、置換ア ラルキル基、アリール基、置換アリール基、ハロゲン原 子、シアノ基、トリフルオロメチル基、アルコキシ基、 フェノキシ基、置換フェノキシ基、アルカノイル基、ア ロイル基、置換アロイル基、アルコキシカルボニル基、 カルパモイル基、ニトロ基またはアルキルアミド基を表 す。R⁵は水衆原子、アルキル基、置換アルキル基、シ クロアルキル基、シクロアルキルアルキル基、アラルキ ル基、置換アラルキル基、アリール基、置換アリール 基、ハロゲン原子、シアノ基、トリフルオロメチル基、 アルコキシ基、フェノキシ基、置換フェノキシ基または アルコキシカルボニル基を表す。)で表されるイミダゾ [1, 2-a]ピリジン誘導体またはその医薬的に許容さ れる塩を有効成分とするスタット6活件化即零割。

【請求項2】 X^1 、 X^2 、 X^3 、 X^4 、および X^5 において、2つの隣接する任意の基が結合してフェニル環、または置換フェニル環を形成したイミダゾ[1, 2-a]ビリジン誘導体またはその医薬的に許容される塩を有効成分とする請求項1記載のスタット6活性化阻害剤。

【請求項3】アレルギー性疾患、寄生虫感染症、自己免疫疾患、ウイルスあるいはバクテリア感染症、悪性腫瘍、HYG(Host-versus-Graft)病または後天性免疫不全症候群(AIDS)を治療または予防する請求項1または2 記載のスタット6 活性化阻害剤。

【 請求項4】インターロイキン4を拮抗する 請求項1または2 配載のスタット6 活性化阻害剤。

【請求項5】即時型または/および遅延型アレルギーを 抑制する請求項1または2記載のスタット6活性化阻害 剤。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は転写因子スタット6(STAT6)の活性化阻害剤に関する。本発明の転写因子スタット6(STAT6)の活性化阻害剤は具体的には、例えば、アレルギー性疾患、寄生虫感染症、全身性エリテマトーデス等の自己免疫疾患、ウイルスあるいはパクテリア感染症、悪性腫瘍、HVG(Host-versus-Graft)病あるいは後天性免疫不全症候群(AIDS)等の治療剤または予防剤として有用である。

[0002]

【従来の技術】免疫応答において中心的な役割を担っているヘルパーT細胞(以下、Thと略す。)と呼ばれるリンパ球が、異なる二つのサブセットに分類されることを初めてMosmannらが提唱した。彼らはマウスのヘルパーT細胞(Th)を、産生するサイトカインのパターンによりTh1とTh2の2群に分類した(J. Immunol. (1986) 136:2348-2357)。このTh1とTh2の分類は、単にヘルパーT細胞のサブセットの分類にとどまらず、生体における種々の免疫応答をTh1側の免疫応答あるいはTh2側の免疫応答と分類することを可能とした。さらに細胞性免疫はTh1タイプサイトカインが、液性免疫はTh2タイプサイトカインが関与することが知られるようになった。

【0003】Th 2側の免疫応答としては、Th 2から 産生されるインターロイキン4 (11-4)、インター ロイキン5 (IL-5)、インターロイキン10 (IL -10)、インターロイキン13 (IL-13) 等のT h 2 タイプサイトカインによる、B細胞からの抗体産生 (IgEクラスを含む。) などがある。Th 2はアレル ギー反応に関与する多くのサイトカインを産生すること から、アレルギー反応の制御細胞として近年、重要視さ れている。インターロイキン4はIgE抗体の産生を誘 導するとともに肥満細胞の活性化、増殖も誘導する。ま た、好酸球が血管内皮細胞に接着、組織浸潤する際に機 能する重要な分子であるVCAM-1の遺伝子発現も誘 導する。さらに、インターロイキン4は、ヘルパーT細 胞の前駆細胞であるナイープT細胞に作用し、Th2へ の機能的分化を誘導し、分化成熟後のT細胞に対しては 増殖因子としても働く。またインターロイキン13もイ ンターロイキン4と同様の作用を示す。

【0004】 Th2は、IgE抗体や肥満細胞が関与する即時型アレルギー反応のみならず、好酸球が関与する 遅発型アレルギー反応をも惹起する中心的な細胞であると言える。また、インターロイキン4は、そのTh2の分化増殖因子として大きな役割を担っているとともに、一方ではTh2から産生され、即時型および遅発型の両アレルギー反応に深く関与する重要なサイトカインである。しかし、インターロイキン4が生物活性を示すため

には、標的細胞上の特異的レセブターに結合したのち、 細胞内に情報が伝達されなくてはならない。近年の分子 生物学の発展により、インターロイキン4レセプターか らの細胞内情報伝達機構が解明され、主要な細胞内分子 群が同定されてきた。中でもとりわけ重要な分子として スタット6が見出された(Science 265:1701-1706(199 4)).

【0005】スタット6はインターロイキン4の情報を 細胞内に伝達するとともに、それ自身が転写因子として 機能し、遺伝子発現を誘導するユニークな分子である。 しかもスタット6はインターロイキン4あるいはインターロイキン13の刺激によってのみ活性化して機能する。インターロイキン4がインターロイキン4レセプターに結合すると、レセプターの細胞内領域のチロシン残基がリン酸化される。するとここに、常時細胞質内に をするスタット6が特異的に結合できるようになる。 レセプターに結合したスタット6は、JAKキナーゼにより、そのチロシン残基がリン酸化される。チロシン残基がリン酸化されたスタット6は、二量体を形成してレセプターから離れ、細胞核の中へ移動し、転写因子として 機能する.

【0006】最近では遺伝子工学的手法を用いて、スタ ット6の欠損マウスが作製され、その生理的役割が調べ られている (Nature 380:627-630, 630-633(1996), Imm unity 4: 313-319(1996))。これらのマウスでは、イ ンターロイキン4の情報が細胞に伝達できず、その結果 アレルギー反応は起こらないことが確認されている。例 えば、即時型アレルギー反応のみならず、遅発型アレル ギー反応をも惹起する中心的な細胞であるTh2の分化 が誘導できない。さらにこれらのマウスのT細胞はイン ターロイキン4および5を産生できない。同様にこれら のマウスのB細胞はIgE抗体を産生できない。つまり アレルギー反応の誘導にスタット6が必須であることが 直接証明されたのである。さらに重要なのは、感染防御 を担うTh1の分化、活性化などは正常であり、また個 体の異常は何も観察されていないことである。このこと は、スタット6の活性化を阻害することによる副作用の 可能性が低いことを示唆するものである。

【0007】このような背景から、アレルギー性疾患の病態に関与するインターロイキン4の機能を特異的に抑制するためにスタット6の活性化を阻害する全く新しいタイプの薬剤の開発が期待されている。しかもこのような薬剤は副作用を起こすことなく、アレルギー性疾患における即時型反応ならびに遅発型反応を抑制することが可能となる。

[0008]

【発明が解決しようとする課題】本発明の課題は、スタット6の活性化阻害剤の提供にある。

[0009]

【課題を解決するための手段】本発明者らは、上記課題

を解決するために鋭意検討を重ねた結果、(a)式1 【化2】

(式中、X¹は水素原子、アルキル基、置換アルキル 基、シクロアルキル基、シクロアルキルアルキル基、ア ラルキル基、置換アラルキル基、アリール基、置換アリ ール基、ハロゲン原子、シアノ基、トリフルオロメチル 基、アルコキシ基、フェノキシ基、置換フェノキシ基、 アルカノイル基、アロイル基、置換アロイル基、アルコ キシカルボニル基、カルパモイル基、ニトロ基またはア ルキルアミド基を表す。X²は水森原子、アルキル基、 置換アルキル基、シクロアルキル基、シクロアルキルア ルキル基、アラルキル基、置換アラルキル基、アリール 基、置換アリール基、ハロゲン原子、シアノ基、トリフ ルオロメチル基、アルコキシ基、フェノキシ基、置換フ エノキシ基、アルカノイル基、アロイル基、間棒アロイ ル基、アルコキシカルボニル基、カルバモイル基、ニト ロ基またはアルキルアミド基を表す。 X3は水素原子、 アルキル基、置換アルキル基、シクロアルキル基、シク ロアルキルアルキル基、アラルキル基、置換アラルキル 基、アリール基、置換アリール基、ハロゲン原子、シア ノ基、トリフルオロメチル基、アルコキシ基、フェノキ シ基、置換フェノキシ基、アルカノイル基、アロイル 基、置換アロイル基、アルコキシカルボニル基、カルバ モイル基、ニトロ基またはアルキルアミド基を表す。X ⁴は水素原子、アルキル基、置換アルキル基、シクロア ルキル基、シクロアルキルアルキル基、アラルキル基、 置換アラルキル基、アリール基、置換アリール基、ハロ ゲン原子、シアノ基、トリフルオロメチル基、アルコキ シ基、フェノキシ基、置換フェノキシ基、アルカノイル 基、アロイル基、置換アロイル基、アルコキシカルボニ ル基、カルバモイル基、ニトロ基またはアルキルアミド 基を表す。X⁵は水素原子、アルキル基、置換アルキル 基、シクロアルキル基、シクロアルキルアルキル基、ア ラルキル基、置換アラルキル基、アリール基、置換アリ ール基、ハロゲン原子、シアノ基、トリフルオロメチル 基、アルコキシ基、フェノキシ基、置換フェノキシ基、 アルカノイル基、アロイル基、置換アロイル基、アルコ キシカルボニル基、カルバモイル基、ニトロ基またはア ルキルアミド基を安す。またはX1、X2、X3、X4、お よびX⁵において、2つの隣接する任意の基が結合して フェニル環、または置換フェニル環を形成してもよい。 R1は水穀原子、アルキル基、置換アルキル基、シクロ アルキル基、シクロアルキルアルキル基、アラルキル

基、置換アラルキル基、アリール基、置換アリール基 ハロゲン原子、シアノ基、トリフルオロメチル基、アル コキシ基、フェノキシ基、置換フェノキシ基、アルカノ イル基、アロイル基、置換アロイル基、アルコキシカル ボニル基、カルバモイル基、ニトロ基またはアルキルア ミド基を表す。R²は水案原子、アルキル基、置換アル キル基、シクロアルキル基、シクロアルキルアルキル 基、アラルキル基、置換アラルキル基、アリール基、置 換アリール基、ハロゲン原子、シアノ基、トリフルオロ メチル基、アルコキシ基、フェノキシ基、置換フェノキ シ基、アルカノイル基、アロイル基、置換アロイル基、 アルコキシカルボニル基、カルバモイル基、ニトロ基ま たはアルキルアミド基を表す。 R³は水素原子、アルキ ル基、置換アルキル基、シクロアルキル基、シクロアル キルアルキル基、アラルキル基、置換アラルキル基、ア リール基、置換アリール基、ハロゲン原子、シアノ基、 トリフルオロメチル基、アルコキシ基、フェノキシ基、 置換フェノキシ基、アルカノイル基、アロイル基、置換 アロイル基、アルコキシカルボニル基、カルバモイル 基、ニトロ基またはアルキルアミド基を表す。R4は水 素原子、アルキル基、置換アルキル基、シクロアルキル 基、シクロアルキルアルキル基、アラルキル基、置換ア ラルキル基、アリール基、置換アリール基、ハロゲン原 子、シアノ基、トリフルオロメチル基、アルコキシ基、 フェノキシ基、置換フェノキシ基、アルカノイル基、ア ロイル基、置換アロイル基、アルコキシカルボニル基、 カルバモイル基、ニトロ基またはアルキルアミド基を表 す。R⁵は水素原子、アルキル基、置換アルキル基、シ クロアルキル基、シクロアルキルアルキル基、アラルキ ル基、置換アラルキル基、アリール基、置換アリール 基、ハロゲン原子、シアノ基、トリフルオロメチル基、 アルコキシ基、フェノキシ基、置換フェノキシ基または アルコキシカルボニル基を表す。) で表されるイミダソ [1.2-a]ピリジン誘導体またはその医薬的に許容さ れる塩が転写因子スタット6の活性化を阻害することを 見いだし本発明を完成させるに至った。更に具体的に は、(b) X¹、X²、X³、X⁴、およびX⁵において、 2つの隣接する任意の基が結合してフェニル環、または 置換フェニル環を形成したイミダゾ[1, 2-a]ピリジ ン誘導体またはその医薬的に許容される塩を有効成分と する(a) 記載のスタット6活性化阻害剤に関する。更 に詳しくは、(b) アレルギー性疾患、寄生虫感染症、 自己免疫疾患、ウイルスあるいはバクテリア感染症、悪 性腫瘍、HVG(Host-versus-Graft)病または後天性免疫不 全症候群 (AIDS) を治療または予防する (a) また は(b)記載のスタット6活性化阻害剤に関する。

(c) インターロイキン4を拮抗する(a) または(b) 配歳のスタット6活性化阻害剤に関する。更に詳しくは、(d) 即時型または/および遅延型アレルギーを抑制する(a) または(b) 配歳のスタット6活性化

阻害剤に関する。

[0010]

【発明の実施形態】式1で表される化合物で、X¹、
X²、X³、X⁴、およびX⁵において、2つの隣接する任意の基が結合してフェニル環、または置換フェニル環を形成する場合の具体例としては、下記のような式
(2)、式(3)等で表される化合物が挙げられる。
【0011】
【化3】

$$R^2$$
 R^3
 R^4
 R^5
 R^5
 R^5
 R^5
 R^5

$$R^2$$
 R^3
 R^4
 R^5
 X^6
 X^7
 X^8
 X^8

式中、R¹、R²、R³、R⁴およびR⁵は前記と同じ意味 を表す。X⁶は水素原子、アルキル基、置換アルキル 基、シクロアルキル基、シクロアルキルアルキル基、ア ラルキル基、置換アラルキル基、アリール基、間換アリ ール基、ハロゲン原子、シアノ基、トリフルオロメチル 基、アルコキシ基、フェノキシ基、置換フェノキシ基、 アルカノイル基、アロイル基、置換アロイル基、アルコ キシカルボニル基、カルバモイル基、ニトロ基またはア ルキルアミド基を表す。X7は水素原子、アルキル基、 置換アルキル基、シクロアルキル基、シクロアルキルア ルキル基、アラルキル基、置換アラルキル基、アリール 基、置換アリール基、ハロゲン原子、シアノ基、トリフ ルオロメチル基、アルコキシ基、フェノキシ基、置換フ エノキシ基、アルカノイル基、アロイル基、置換アロイ ル基、アルコキシカルポニル基、カルバモイル基、ニト ロ基またはアルキルアミド基を表す。 X8は水素原子、 アルキル基、置換アルキル基、シクロアルキル基、シク ロアルキルアルキル基、アラルキル基、置換アラルキル 基、アリール基、置換アリール基、ハロゲン原子、シア ノ基、トリフルオロメチル基、アルコキシ基、フェノキ シ基、置換フェノキシ基、アルカノイル基、アロイル 基、置換アロイル基、アルコキシカルボニル基、カルバ モイル基、ニトロ基またはアルキルアミド基を表す。X 9は水探原子、アルキル基、躍換アルキル基、シクロア

ルキル基、シクロアルキルアルキル基、アラルキル基 置換アラルキル基、アリール基、置換アリール基、ハロ ゲン原子、シアノ基、トリフルオロメチル基、アルコキ シ基、フェノキシ基、置換フェノキシ基、アルカノイル 基、アロイル基、置換アロイル基、アルコキシカルボニ ル基、カルバモイル基、ニトロ基またはアルキルアミド 基を表す。乙は水素原子または置換基を表す。乙におけ る置換基としては、例えばアルキル基、置換アルキル 基、アルコキシ基、ハロゲン原子、シアノ基、トリフル オロメチル基、ニトロ基、水酸基、アミノ基、アルキル アミノ基、ジアルキルアミノ基、カルバモイル基、アル キルアミノカルボニル基、ジアルキルアミノカルボニル 基、カルボキシル基、アルコキシカルボニル基、アルキ ルスルフォニル基、アルカノイル基、アルキルアミド基 等が挙げられる。置換基は一個または同一もしくは異な って複数個あってもよい。

【0012】本発明におけるX¹、X²、X³、X⁴、X⁵、X⁶、X⁷、X⁸、X⁸、R¹、R²、R³、R⁴、R⁵、及びZにおける基および置換基について具体的に説明する。アルキル基としては、例えば、直鎖または分枝した炭素数1~6個の低級アルキル基が挙げられ、具体的には、例えば、メチル、エチル、プロピル、2ープロピル、ブチル、2ープチル、3ーメチルプロピル、1,1-ジメチルエチル、ペンチル、ヘキシル等が挙げられる。

【0013】置換アルキル基の置換基としては、例えば、水酸基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、ジアルキルアミノ基、カルボキシル基、アルコキシ基等が挙げられる。

【0014】ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。 【0015】アルコキシ基としては、例えば、直鎖または分枝した炭素数1~6個の低級アルコキシ基が挙げられ、具体的には、例えば、メトキシ、エトキシ、プロポキシ、2-プロポキシ、ブトキシ、1,1-ジメチルエトキシ、ペントキシ、ヘキソキシ等が挙げられる。

【0016】アルカノイル基としては、例えば、直鎖または分枝した炭素数1~6個の低級アルカノイル基が挙げられ、具体的には、例えば、フォルミル、アセチル、プロパノイル、2-プロパノイル、ピバロイル等が挙げられる。

【0017】アルコキシカルボニル基としては、例えば、直鎖または分枝した炭素数2~6個の低級アルコキシカルボニル基が挙げられ、具体的には、例えば、メトキシカルボニル、エトキシカルボニル、プロポキシカルボニル、2ープロポキシカルボニル、第が挙げられる。

【0018】アルキルアミド基としては、例えば、直鎖または分枝した炭素数2~6個の低級アルキルアミド基が挙げられ、具体的には、例えば、アセトアミド、プロピオンアミド、ブチルアミド、ダーブチルアミド等が挙

げられる。

【0019】シクロアルキル基としては、例えば、炭素数3~7個の低級シクロアルキル基が挙げられ、具体的には、例えば、シクロプロピル、シクロプチル、シクロペンチル、シクロペナチル等が挙げられる。

【0020】シクロアルキルアルキル基としては、例えば、炭素数4~13個の低級シクロアルキルアルキル基が挙げられ、具体的には、例えば、シクロプロピルメチル、シクロペンチルエチル、シクロペキシルメチル、シクロペキシルプロピル等が挙げられる。

【0021】アラルキル基としては、例えば、炭素数7~15個の基が挙げられ、具体的には、例えば、ペンジル、フェニルエチル、ナフチルメチル、ナフチルプロピル等が挙げられる。

【0022】アロイル基としては、例えば、炭素数7~11個の基が挙げられ、具体的には、例えば、ペンソイル、1ーナフトイル、2ーナフトイル等が挙げられる。 【0023】アリール基としては、例えば、炭素数6~10個の基が挙げられ、具体的には、例えば、フェニル、ナフチル等が挙げられる。

【0024】アラルキル基、フェノキシ基、アロイル 基、アリール基およびフェニル環の置換基としては、例 えば、アルキル基、アルコキシ基、ハロゲン原子、シア ノ基、トリフルオロメチル基、ニトロ基、水酸基、アミ ノ基、アルキルアミノ基、ジアルキルアミノ基、カルバ モイル基、アルキルアミノカルボニル基、ジアルキルア ミノカルボニル基、カルボキシル基、アルコキシカルボ ニル基、アルキルスルフォニル基、アルカノイル基、ア ルキルアミド基等が挙げられる。置換基は一個または同 一もしくは異なって複数個あってもよい。

【0025】アルキルアミノ基としては、例えば、炭素

数1~6個の低級アルキル基で置換されたアミノ基等が 挙げられ、具体的には、例えばメチルアミノ基、エチル アミノ基等が挙げられる。

【0026】ジアルキルアミノ基としては、例えば、同一または異なる炭素数1~6個の低級アルキル基で置換されたアミノ基等が挙げられ、具体的には、例えば、ジメチルアミノ基、ジエチルアミノ基等が挙げられる。

【0027】アルキルアミノカルボニル基としては、例えば、炭寮数1~6個の低級アルキル基で置換されたアミノカルボニル基等が挙げられ、具体的には、例えば、メチルアミノカルボニル基、エチルアミノカルボニル基等が挙げられる。

【0028】ジアルキルアミノカルボニル基としては、例えば、同一または異なる炭素数1~6個の低級アルキル基で置換されたアミノカルボニル基等が挙げられ、具体的には、例えば、ジメチルアミノカルボニル基、ジェチルアミノカルボニル基等が挙げられる。

【0029】アルキルスルフォニル基としては、例えば、炭素数6個以下の低級アルキル基で置換されたスルフォニル基等が挙げられ、具体的には、例えば、メチルスルフォニル基等が挙げられる。

【0030】本発明化合物は酸と塩を形成することができる。塩を形成する酸としては、例えば、塩酸、硫酸、臭化水素酸等の無機酸、酢酸、しゅう酸、くえん酸、りんご酸、酒石酸、フマール酸、マレイン酸等の有機酸等が挙げられる。また、本発明の有効成分は式(1)で表される化合物またはその医薬的に許容される塩の水和物等の溶媒和物も含む。

【0031】本発明の化合物は以下の方法で合成することができる。

【化4】

式中、X¹、X²、X³、X⁴、(川) 、R¹、R²、R³、R⁴ およびR⁵は前配と同じ意味を表す。Yはヨウ寮原子、臭寮原子または塩寮原子等の脱離基を表す。化合物(1)と化合物(1)を不活性溶媒としては例えば、テトラヒドロフラン(以下、THFと略す。)、1、4ージオナン、ジグライム等のエーテル系溶媒、ジメチルフォルムアミド(以下、DMFと略す。)、アセトニトリル等の非プロトン性溶媒、メタノール、エタノール、2一プロパノール、tープチルアルコール等のアルコール系溶媒、ベンゼン、トルエン等の芳香族炭化水案系容媒、アセトン、メチルエチルケトン、メチルイソプチルケトン、メチルエチルケトン、メチルイソプチルケトン

等のケトン系溶媒等が挙げられる。反応温度は例えば、 約室温から溶媒の沸点の範囲から選択される。化合物 (12)の量としては化合物(11)に対し、約等倍モ ルが好ましい。

[0032]

【化5】

式中、R¹、R²、R³およびR⁴は前配と同じ意味を表す。Y¹は臭業原子等の脱離基を表す。化合物(14)は、化合物(13)を、NaNH₂の存在下、ペンゼン等の不活性溶媒中、約室温から溶媒の沸点の範囲で反応させることにより得られる。不活性溶媒としては例えば、ペンゼン、トルエン、キシレン、クメン等の芳香族炭化水素系溶媒、ジメチルアニリン、ジエチルアニリン系溶媒等が挙げられる。反応温度としては約室温から溶媒の沸点の範囲から選択され、約100℃から約150℃の範囲が好ましい。NaNH₂の量は化合物(13)に対して、約1.0倍モルから約2.5倍モルの範囲から選択される。NaNH₂の量は化合物(13)に対して、約1.0倍モルから約2.5倍モルの範囲から選択される。NaNH₂の量は化合物(13)に対して、アニリン系溶媒では約1.25倍モルの付近が、芳香族炭化水素系溶媒では約2倍モル付近の範囲が好ましい。

【0033】化合物(14)は、公知の方法を用いて製造することもができる。例えば下配式のような方法で製造することもできる。

【化6】

式中、 X^1 、 X^2 、 X^3 、 X^4 、 X^5 、 R^3 およびYは前記と同じ意味を表す。化合物(12)は化合物(17)とC 1_2 、 B_{12} 、 1_2 等のハロゲン化試剤を、水等の溶媒中、水酸化ナトリウム等のアルカリ金属等の塩基存在下、反応させ得ることができる。ハロゲン化試剤の量としては化合物(17)に対し約2倍モルへ約4倍モルの範囲か6選択される。塩基の量としては化合物(17)に対し約5倍モルへ約10倍モルの範囲か6選択される。反応温度としては約室温が好ましい。

【0035】化合物(12)は化合物(17)とC 12、B r2、12等のハロゲン化試剤を、酢酸、二硫化 炭森、四塩化炭森、クロロフォルム、塩化メチレン等の ハロゲン化炭化水素溶媒、ジエチルエーテル等のエーテル系溶媒、メタノール等のアルコール系溶媒等の溶媒 中、酢酸ナトリウム等のアルカリ金属の酢酸塩等と微量の臭化水素等の触媒の存在下、反応させ得ることもできる。ハロゲン化試剤の量としては化合物(17)に対し

式中、R^oは1または同一もしくは異なる複数個の水森原子、アルキル基、置換アルキル基、シクロアルキル基、置換アリール基、アリーが表、アリール基、アリール基、アリール基、アリール基、アルコキシ基、アルコキシ基、アルコキシ基、アルコキシ基、アルコキシ基、アルコキシ基、アルカノイル基、アロイル基、アルコキシカルボニル基、カルバモイル基、ニトロ基またはアルキルアミド基を表す。Xはハロゲン原子を表す。化合物(16)はC12、Br2、12等のハロゲン化試剤と酸性溶媒が単けられる。反応温度としては約-50℃から約50℃の範囲から選択され、約25℃付近の範囲が好ましい。

[0034]

【化7】

約等倍モル~約1.5倍モルの範囲が好ましい。反応退度としては約0℃~約室温の範囲が好ましい。

【0036】化合物(1)またはそれを製造するための中間体は通常の方法で精製することができる。例えばカラムクロマトグラフィー、再結晶等で精製することができる。再結晶溶媒としては例えばメタノール、エタノール、2-プロパノール等のアルコール系溶媒、ジエチルエーテル等のエーテル系溶媒、酢酸エチル等のエステル系溶媒、トルエン等の芳香族炭化水素系溶媒、アセトン等のケトン系溶媒、ヘキサン等の炭化水素系溶媒、アセトニトリル等の非プロトン系溶媒等またはこれらの混合溶媒等が挙げられる。

【0037】また上述の反応を実行する際、必要ならば、保護、脱保護の技術を用いることができる。保護、脱保護の技術については、(T. W. Greene and P. G. M. Wuts, "Protecting Groups in Organic Synthesis", 1990) に詳しく記されている。

【0038】化合物(1)において不斉炭素を有する置換基を持つ場合、光学異性体が存在し、これら光学異性体の混合物や単離されたものは化合物(1)に含まれる。そのような光学異性体を純粋に得る方法としては、例えば、光学分割が挙げられる。

【0039】光学分割法としては例えば化合物(1)を不活性溶媒中(例えばメタノール、エタノール、2ープロパノール等のアルコール系溶媒、ジエチルエーテル等のエーテル系溶媒、酢酸エチル等のエステル系溶媒、トルエン等の芳香族炭化水素系溶媒、アセトニトリル等)、光学活性な酸(例えば、マンデル酸、Nーペンジルオキシアラニン、乳酸などのモノカルボン酸類、酒石酸、ロージイソプロピリデン酒石酸、リンゴ酸などのジカルボン酸類、カンファースルフォン酸、プロモカンファースルフォン酸などのスルフォン酸類)または、光学活性なアミン(例えばαーフェネチルアミン、キニン、キニジン、シンコニジン、シンコニン、ストリキニーネ等の有機アミン類)と塩を形成させ、分割することができる。

【0040】塩を形成させる温度としては、室温から溶 媒の沸点の範囲が挙げられる。光学純度を向上させるた めには、一旦、溶媒の沸点付近まで温度を上げることが 望ましい。析出した塩を濾取するまえに必要に応じて冷 却し、収率を向上させることができる。光学活性な酸ま たはアミンの使用量は、基質に対し約0.5~約2.0 当量の範囲、好ましくは1当量前後の範囲が適当であ る。必要に応じ結晶を不活性溶媒中(例えばメタノー ル、エタノール、2-プロパノール等のアルコール系容 媒、ジエチルエーテル等のエーテル系溶媒、酢酸エチル 等のエステル系溶媒、トルエン等の芳香族炭化水素系溶 媒、アセトニトリル等)で再結晶し、高純度の光学活性 な塩を得ることもできる。必要に応じ、得られた塩を通 常の方法で塩基と処理しフリー体を得ることもできる。 【0041】本発明のスタット6活性化阻害剤は経口的 または非経口的に投与することができる。経口的に投与 する場合、通常用いられる投与形態、例えば錠剤、カブ セル剤、シロップ剤、懸濁液等で投与することができ る。非経口的投与する場合は例えば、溶液、乳剤、懸濁 液等の液剤を注射剤として投与すること、坐剤の型で直 **腸投与すること等ができる。このような投与剤型は通常** の担体、賦型剤、結合剤、安定剤などと有効成分を配合 することにより一般的方法に従って製造することができ る。注射剤型で用いる場合には緩衝剤、溶解補助剤、等

田利等を添加することもできる。投与量、投与回数は対象とする疾患、患者の症状、年齢、体重等、及び投与形態等によって異なるが、経口投与する場合、有効成分は通常は成人に対し1日あたり約1~約1000mgの範囲、好ましくは約10~約500mgの範囲を1回または数回に分けて投与することができる。注射利として投与する場合、有効成分は約0.1~約500mgの範囲、好ましくは約3~約100mgの範囲を1回または数回に分けて投与することができる。

【0042】また本発明のSTAT6活性化阻害剤は具 体的に、STAT6の活性化が原因で生じる、例えば、 アレルギー性疾患、寄生虫感染症、全身性エリテマトー デス等の自己免疫疾患、ウイルスあるいはパクテリア威 染症、悪性腫瘍、HVG(Host-versus-Graft)病あるいは後 天性免疫不全症候群 (AIDS) 等の治療剤または予防 剤として用いることができる。本発明のSTAT6活性 化阻害剤は11-4拮抗剤としても用いることができ る。更に詳しくは、本発明のSTAT 6 活性化阻害剤 は、STAT6の活性化が原因の即時型またはノおよび 遅延型アレルギー抑制剤または予防剤としても用いるこ とができる。上記の場合の投与法としては経口的または 非経口的投与法が挙げられる。経口的に投与する場合、 通常用いられる投与形態、例えば錠剤、カプセル剤、シ ロップ剤、懸濁液等で投与することができる。非経口的 投与する場合は例えば、溶液、乳剤、懸濁液等の液剤を 注射剤として投与すること、坐剤の型で直腸投与するこ と等ができる。このような投与剤型は通常の担体、賦型 剤、結合剤、安定剤などと有効成分を配合することによ り一般的方法に従って製造することができる。注射剤型 で用いる場合には緩衝剤、溶解補助剤、等張剤等を添加 することもできる。投与量、投与回数は対象とする疾 患、患者の症状、年齢、体重等、及び投与形態等によっ て異なるが、経口投与する場合、有効成分は通常は成人 に対し1日あたり約1~約1000mgの範囲、好ましく は約10~約500mgの範囲を1回または数回に分けて 投与することができる。注射剤として投与する場合、有 効成分は約0.1~約500mgの範囲、好ましくは約3 ~約100mgの範囲を1回または数回に分けて投与する ことができる。

[0043]

【実施例】

実施例1

【化8】

2- (2-ナフチル) イミダゾ [1, 2-a] ピリジン 臭化水溶酸塩

2-アミノビリジン941mgと2-プロモー1- (2

ーナフチル 1ーエタノン2. 49gとをアセトニトリル10mlに加え、2時間加熱還流した。反応終了後、反応液を冷却し、析出した結晶を濾取し、アセトニ

トリルで洗浄し、乾燥して、標題の2- (2-ナフチル) イミダゾ [1, 2-a] ピリジン 奥化水素酸塩

2.10gを得た。(収率61%)

融点:232~233℃ 【0044】実施例2 【化9】

2- (4-メチルフェニル) イミダゾ [1, 2-a] ピリジン 臭化水素酸塩

実施例1の方法に従い、標題の化合物を153mg (50%) 得た。

融点:207~208℃ 【0045】実施例3 【化10】

$$\bigvee_{\mathsf{NH}_1} + \mathsf{Br} \bigvee_{\mathsf{G}} -\mathsf{G} \longrightarrow \bigvee_{\mathsf{N}} \bigvee_{\mathsf{M}} -\mathsf{G}$$

2- (4-クロロフェニル) イミダソ [1, 2-a] ピリジン 臭化水素酸塩

実施例1の方法に従い、標題の化合物を212mg (65%) 得た。

HB7 融点:204~205℃ 【0046】実施例4 【化11】

2- (4-プロモフェニル) イミダゾ [1, 2-a] ピリジン 臭化水素酸塩

実施例1の方法に従い、標題の化合物を288mg (77%) 得た。

融点:234~236℃ 【0047】実施例5 【化12】

2- (4-フルオロフェニル) -6-クロロイミダソ [1, 2-a] ピリジン臭化水森酸塩 実施例1の方法に従い、標題の化合物を176mg (5 1%) 得た。 融点:231~232℃ 【0048】実施例6 【化13】

2- (4-クロロフェニル) -6-クロロイミダソ [1, 2-a] ピリジン臭化水菜酸塩 実施例1の方法に従い、標題の化合物を218mg (6 0%) 得た。 融点:275~276℃ 【0049】実施例7 【化14】

2- (3-メトキシフェニル) -6-クロロイミダゾ [1, 2-a] ピリジン臭化水素酸塩

実施例1の方法に従い、標題の化合物を205mg (57%) 得た。

融点:231~232℃ 【0050】実施例8 【化15】

2- (2-ナフチル) -6-クロロイミダソ [1, 2-a] ピリジン 臭化水素酸塩

実施例1の方法に従い、標題の化合物を254mg (67%) 得た。

融点:>295℃ 【0051】実施例9 【化16】

2- (4-フェニルフェニル) -6-メチルイミダゾ [1, 2-a] ピリジン臭化水素酸塩 実施例1の方法に従い、標題の化合物を259mg (6 8%) 得た。

融点:283~284℃ 【0052】実施例10 【化17】

$$\bigvee_{N}^{NH_2} + \underset{Br}{\longrightarrow} \bigvee_{0}^{N} - \bigvee_{Me} - \bigvee_{Me} \bigvee_{N}^{N} - \bigvee_{HBr}^{N}$$

2- (4-メチルフェニル) -6-メチルイミダソ

[1, 2-a] ビリジン臭化水素酸塩 実施例1の方法に従い、原題の化合物を174mg (5 4%) 得た。 融点:238~239℃ 【0053】実施例11 【化18】

2-(4-メチルフェニル) -7-メチルイミダソ[1, 2-a] ピリジン臭化水素酸塩

実施例1の方法に従い、標題の化合物を168mg (52%) 得た。

融点:239~240℃ 【0054】実施例12 【化19】

2-(4-フェニルフェニル)-8-メチルイミダゾ[1,2-a] ピリジン臭化水素酸塩

実施例1の芳法に従い、標題の化合物を187mg (49%) 得た。

融点:147~148℃ 【0055】実施例13 【化20】

2- (4-メチルフェニル) -8-メチルイミダソ [1, 2-a] ピリジン臭化水素酸塩 実施例1の方法に従い、標題の化合物を249mg (7 8%) 得た。 融点:269~270℃ 【0056】実施例14 【化21】

2- (4-フェニルフェニル) -6,8-ジクロロイミダソ[1,2-a]ピリジン 臭化水素酸塩 実施例1の方法に従い、標題の化合物を92mg(21%)得た。 融点:229~230℃ 【0057】実施例15 【化22】

2- (4-メチルフェニル) -6, 8-ジクロロイミダ ゾ[1, 2-a] ピリジン 臭化水素酸塩 実施例1の方法に従い、標題の化合物を98mg (26%) 得た。 融点:263~264℃ 【0058】実施例16 【化23】

2- (4-メチルフェニル) -6- (トリフルオロメチル) イミダゾ [1, 2-a] ピリジン 奥化水素酸塩 実施例1の方法に従い、標題の化合物を90mg (24%) 得た。 融点:>280℃ 【0059】実施例17 【化24】

$$Br$$
 NH_2
 NH

2- (4-メチルフェニル) -6,8-ジプロモイミダ ゾ[1,2-a] ピリジン 臭化水素酸塩 実施例1の方法に従い、標題の化合物を92mg (20%) 得た。 融点:>275℃ (分解) 【0060】実施例18 【化25】

2- [4-(トリフルオロメチル) フェニル] イミダソ [1,2-a] ピリジン 臭化水素酸塩

実施例1の方法に従い、標題の化合物を223mg (62%) 得た。

融点: 194~195℃ 【0061】実施例19 【化26】

2- (4-メチルフェニル) -6-クロロイミダソ [1, 2-a] ピリジン臭化水素酸塩

実施例1の方法に従い、標題の化合物を260mg(7 6%)得た。 融点:244~245℃ 【0062】実施例20 【化27】

$$\bigvee_{NH_2}^{NH_2} + B \bigvee_{B} \bigcirc - \bigcirc - \bigcirc$$

2- (4-フェニルフェニル) イミダゾ [1, 2-a] ピリジン 臭化水素酸塩

実施例1の方法に従い、標題の化合物を351mg(5 0%)得た。 融点:228~229℃ 【0063】実施例21 【化28】

2- (3, 4-ジクロロフェニル) イミダソ [1, 2-a] ピリジン

実施例1の方法に従い、標題の化合物の臭化水素酸塩を得、フリー化し、シリカゲルクロマトグラフィー (ヘキサン: 酢酸エチル=2:1) にて精製し、表題化合物を1.13g(21%) 得た。

融点:161~162℃

【0064】実施例38(スタット6括性化の阻害作用)

1) 細胞

マウス線維芽細胞 L929 は、大日本製薬(大阪)より入手したものを使用した。

2) 培地

RPMI 1640培地「ダイゴ」(日本製薬(東京) Code N o. 394-00735)に56度、30分にて非働化した牛胎児 血清(Fetal Bovine Serum, Defined, Code No.A-1111 -L, HyClone Lab., Logan, Utah)を10%、2-メル カプトエタノール(Sigma, St Louis, MO, Code No.M-6 250)を50μMとなるように添加して使用した。

3) 薬剤

被検薬剤はジメチルスルホキシド (ナカライテスク (京

都) Code No. 134-45) にて8 m g / m l となるように 溶解し、培地で希釈して最終濃度10 μ g/ m l とし た。

【0065】4)STAT6レポーター遺伝子の構築マウス免疫グロブリンgermline ε 遺伝子プロモーター上のIL-4応答領域(STAT6結合領域を含む)を3個つないだ配列番号1のオリゴヌクレオチドおよびその相補鎖を日本バイオサービス(埼玉)より購入した。配列番号1のオリゴヌクレオチドおよびその相補鎖を混合し、熱変性、アニール後、5および3端を制限酵素SacI(宝酒造(大津) Code No. 1078A)およびBglII(宝酒造(大津) Code No. 1021A)でそれぞれ切断し、pGL3Promoter Vector (Promega Corporation, Madison, WI, Code No. E1761)のSacI/BglII部位にクローニングした。

5) 遺伝子導入および安定発現細胞株の作製 L929細胞 5×10⁵個をFalcon組織培養用 6 ウェル プレート (Becton Dickinson Labware, Bedford, MA, Code No. 3046) にまいて付着させた後、牛胎児血禕を 含まない培地で細胞を洗浄した。作製したSTAT 6 レ ポーター遺伝子 4 μg、薬剤耐性遺伝子pSV2neo (GIBCOB

RL, Gaithersburg, MD) O. 5μgとリポフェクトア ミン (GIBCO BRL, Gaithersburg, MD, Code No. 1832 4-012)20μlを牛胎児血清を含まない培地0.4ml 中で混合し、室温で30分静置した。その後、牛胎児血 清を含まない培地1. 6 m l をさらに加えて、洗浄後の 細胞に添加し、5時間培養した。牛胎児血清を含む培地 2mlを添加して、さらに19時間培養した。培地交換 して24時間さらに培養後、G418(GIBCO BRL, Ga ithersburg, MD, Code No. 10131-019) を0. 2 m g /mlとなるように添加して培養を継続、薬剤耐性細胞 を選択した。得られた薬剤耐性細胞をG418を含む塔 地に浮遊させ、0. 2個/ウェルとなるようにFalconマ イクロプレート (Becton Dickinson Labware, Bedfor d, MA, Code No. 3072) にまいてクローニングを行な い、IL-4に応答してルシフェラーゼを発現するクロ ーンを取得した。

【0066】6)STAT6活性化阻害試験 遺伝子導入した L929 細胞を1×10⁴個/0.1 ml/ウェルとなるように、マイクロプレート (costar 3610, Corning Costar Corporation, Cambridge, M A) にまき、一晩培養した。翌日、被検薬剤およびIL -4 10U/ml (PharMingen, San Diego, CA, Cod e No. PM-19231V) を添加して0.2ml/ウェルと し、6時間培養した。培養後、上滑を吸引除去し、付着 細胞に可溶化剤の. 0 2 5 m l / ウェルを加えて溶解し た。各ウェルにルシフェラーゼ活性をルミノメーター (Micr olumatlB96P, EG&; G BERTHOLD, Bad Wildbad, German y) で測定した。実験は、triplicateで行い、平均値を 求めた。可溶化剤および基質溶液は市販のLuciferase A ssay System (Promega Corporation, Madison, WI, Co de No. E1500) を用いた。被検化合物のSTAT6活性 化阻害作用は、IL-4刺激で誘導されるルシフェラー ゼ活性に対する阻害率 (%) で表示した。阻害率 (%) は、下記の式により算出した。

阻害率 (%) = 100-(E-B)/(C-B)×10

Experimental Activity (E) :被検化合物の存在下に I L-4刺激で誘導されるルシフェラーゼ活性

Control Activity (C) :被検化合物の非存在下に I L - 4 刺激で誘導されるルシフェラーゼ活性

Background Activity (B) : 被検化合物の非存在下、無刺激時に誘導されるルシフェラーゼ活性 結果は表1に示す。

【表1】

表 1

表1実施例 番号	阻害率	実施例	阻害率 64 91 85 88	
1	100	2		
3	8 2	4		
5	8 9	6		
7	7 9	8		
9	4 4	10	100	
11	100	1 2	54	
13	5 2	14	5.8	
15	5 2	1 6	100	
17	100	18	5 7	
19	100	20	100	
2 1	100			

表中、阻害率は、%を表す。

【配列表】

【0067】配列番号:1

配列の長さ:97

配列の型:核酸

鎖の数: 一本鎖 トポロジー: 直鎖 配列の種類: 合成DNA

配列

CGGAGCTCTG CCTTAGTCAA CTTCCCAAGA ACAGATGCCT TAGTCAACTT CCCAAGAACA GATGCCTTAG TCAACTTCCC AAGAACAGAA GATCTCG

60

97

フロントページの続き

(51) Int. Cl. 6

識別記号

A 6 1 K 31/435

ADY

// CO7D 471/04

A 6 1 K 31/435

ADY

108

C 0 7 D 471/04

FΙ

108A

(72)発明者 西中 重行

兵庫県宝塚市高司4-2-1 住友製薬株

式会社内

(72)発明者 青木 幹雄

兵庫県宝塚市高司4-2-1 住友製薬株

式会社内

(72)発明者 川上 肇

大阪市此花区春日出中3丁目1番98号 住

友製薬株式会社内