Perceptual Computing: Making Machines Sense, Perceive, and Interact

Achin Bhowmik, Ph.D.
VP & GM, Perceptual Computing Group
Intel Corporation

Perceptual Computing Mission

Add "Senses" to the "Brain":
Eyes, Ears, Voice, Touch,
Emotion and Context for a
Natural, Intuitive and Immersive
Life-like Experience

First, a quick look at the "Brain"

Intel® 4004 1971

2.3K Transistors 740KHz

Intel[®] Core[™] Processor 2014

~2B Transistors

>3GHz

Homo Sapiens Brain

~100B Neurons

<1KHz

Cerebral Cortex: Sensory Processing Areas

Visual Sensing

Human Visual System: 3D Vision

Traditional Computing Devices: 2D Vision

2D Imaging Limitations

Perspective projection matrix

World to camera coord. trans. matrix

3D point

2D Imaging Limitations

Perspective projection matrix

World to camera coord. trans. matrix

3D point

Life's Much Easier with Depth-Imaging

Color Image

Depth Image

Captured with Intel® RealSense Camera

Color Image vs. Depth Map

Color Image vs. Depth Map

3D/Depth Imaging Techniques

- Stereo-3D Imaging
- Structured/coded light
- Time-of-flight

Binocular Depth Perception

Stereo-3D Imaging

 Δ = Binocular Disparity

Stereo-3D Imaging

3D imaging with structured light

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and Multi-pass Dynamic Programming. 3DPVT 2002

3D imaging with time-of-flight

Towards Ubiquitous Proliferation: Key Requirements

- Usages: why should people care
- Form-factor: small enough for integration
- Power: easy on batteries
- Cost: affordable to consumers

Towards Ubiquitous Proliferation: Key Requirements

- Usages: why should people care
- Form-factor: small enough for integration
- Power: easy on batteries
- Cost: affordable to consumers

PC Usages ("User-Facing" Config)

Immersive Collaboration

Gaming and Play

Interact Naturally

Learning and Edutainment

Capture and Share

Mobile Usages ("World-Facing" Config)

Capture the World in 3D

Enhanced Photo & Video

Immersive Gaming

Education & Training

Collaboration

Towards Ubiquitous Proliferation: Key Requirements

- Usages: why should people care
- Form-factor: small enough for integration
- Power: easy on batteries
- Cost: affordable to consumers

Intel® RealSense Cameras

More info/SDK: www.intel.com/RealSense

Q&A

Intel® RealSense SDK

Transforming of Light Energy Into Electrical Energy

Distribution of Rods and Cones

Adapted from Human Information Processing, by P. Lindsay and D. A. Norman, 1977, 2nd ed., p. 126. Copyright © 1977 Academic Press, Inc. Adapted with permission.

- Fovea consists solely of cones.
- Peripheral retina has both rods and cones.
- More rods than cones in periphery.

Normal Vision

Color Blind

Ponzo Illusion

Courtesy of Mary Bravo