Warm-up

Problem 1. If you repeatedly perform an experiment whose outcome has a Geometric Distribution with probability of success p, what is the expected number of times you need to repeat the experiment before you get a success?

Problem solving

Problem 2. Suppose you only have access to a biased coin that lands heads with probability p and tails with probability (1 - p). Show how to design a fair coin without even knowing what p is. How many times does your algorithm flip the biased coin in expectation?

Problem 3. Suppose you only have access to a fair coin that lands heads with probability 1/2 and tails with probability 1/2. Show how to design an algorithm for uniformly sampling an integer from $\{1, ..., n\}$. How many times does your algorithm flip the coin in expectation?

Problem 4. Suppose you only have access to a random generator for sampling real numbers from the interval [0,1]. Show how to design an algorithm for uniformly sampling points (x,y) from the square $[-1,1]^2$ (i.e., $-1 \le x \le 1$ and $-1 \le y \le 1$). How many samples does your algorithm need in expectation?

Problem 5. Suppose you only have access to a random generator for sampling real numbers from the interval [0,1]. Show how to design an algorithm for uniformly sampling points (x,y) from the unit radius disk centered at the origin (i.e., $x^2 + y^2 \le 1$). How many samples does your algorithm need in expectation?

Problem 6. Suppose we want to add a new operation to the existing skip list implementation. This operation, RangeSearch(k1, k2), returns all the items with keys in the range [k1, k2]. Design this operation and show that it runs in expected time $O(\log n + s)$, where n is the number of elements in the skip list and s is the number of items returned.

1.
$$\Rightarrow$$

2. $p^2 \Rightarrow HH$ 3 ignore these

 $(1-1^2) \Rightarrow 777$
 $P(1-1^2) \Rightarrow 777$

Same

 $(1-p) p \Rightarrow 1-17$

Problem 3. Suppose you only have access to a fair coin that lands heads with probability 1/2 and tails with probability 1/2. Show how to design an algorithm for uniformly sampling an integer from $\{1, \ldots, n\}$. How many times does your algorithm flip the coin in expectation?

(1) Using binary number

each binary number correspond to a number

Problem 4. Suppose you only have access to a random generator for sampling real numbers from the interval [0,1]. Show how to design an algorithm for uniformly sampling points (x,y) from the square $[-1,1]^2$ (i.e., $-1 \le x \le 1$ and $-1 \le y \le 1$). How many samples does your algorithm need in expectation?

Problem 5. Suppose you only have access to a random generator for sampling real numbers from the interval [0,1]. Show how to design an algorithm for uniformly sampling points (x,y) from the unit radius disk centered at the origin (i.e., $x^2 + y^2 \le 1$). How many samples does your algorithm need in expectation?