

Sami BEN AMMAR
Pierre DEVELTER
Pierre-Adrien VERGEAU

Project Report : Fix oscillations in binomial tree engines

I. Project description

A widespread method for computing option prices numerically is to use binomial trees. For an option of maturity T and n timesteps, a tree containing n level is built, where the ith level represent the state of the option and the underlying at time T^*n/i . An assumption is made than at each time step, the underlying price can go up by u or down by d.

Figure 1: Example of a Binomial tree with n=4

At the last level, the option prices can easily be computed as max(P-K,0), where P is the price of the underlying and K is the strike.

It is actually possible to go back a level in computing the option price using a noarbitrage argument: it is shown that

 $f = e^{-rT}[pf_u + (1-p)f_d]$ with $p = (e^{rT} - d)/(u - d)$ where f is the price of the option at the current node, and f_u and f_d are the prices of the option at following up and down nodes.

Repeting this calculation several times enable pricing the option at current time.

The choice of parameters u, d and the probability of going up or down at each step depends on the volatility, the risk-free interest rate, the time step and the chosen model.

This is a serviceable way to compute option prices. However, it suffers a problem : as the time step increases, the option prices oscillate around a value, which makes it longer to reach a certain precision.

Step	Value	
	360	12,67449686
	361	12,67902568
	362	12,685347
	363	12,68132474
	364	12,67514563
	365	12,68159961
	366	12,68515567
	367	12,68884421
	368	12,68505241
	369	12.68210949

Table 1: Oscillation of Cox-Ross-Rubinstein tree for different number of time steps, with parameters S=100, q=0.0, r=0.03, sigma=0.2, k=110.0, T=1

Our goal during this project was to fix that by making the oscillations stop when option prices are computed using Quantlib's BinomialVanillaEngine class. To do this, we implemented a solution found by Chung and Shackleton in [1], which consists in setting the option price to the analytical values Black-Scholes values of a European option at the *n-1*th node. We then studied some characteristics of this solution, such as the number of steps needed to attain convergence and the time taken for the computation to be made.

II. Implementation details

To implement this new method, we modified the BinomialVanillaEngine class. It now has a boolean attribute named no_osc, which decides whether or not the new method is to be applied. It is set when calling the constructor.

If no_osc is set to true, then we rollback to the second last step and computes the analytical BS formula for its nodes. The Black-Scholes formula is computed thanks to a function named bsformula, which is implemented in another file, binomialformula.cpp, which we have included.

Figure 2: the changes made to the BinomialVanillaEngine class

Figure 3: The Black-Scholes Formula Computation

III. Experiments and result

At first, it was made sure that the pricing scheme was working as intended. We checked that with our implementation, the oscillations disappeared, for different kind of trees. They all compute the parameters u and d in different ways:

Step	Value, no_	osc = False	Value, no_osc = True	
	360	12,67449	686	12,68312372
	361	12,67902	568	12,68306574
	362	12,685	347	12,6831157
	363	12,68132	474	12,68305852
	364	12,67514	563	12,68310799
	365	12,68159	961	12,68305395
	366	12,68515	567	12,68309911
	367	12,68884	421	12,68304846
	368	12,68505	241	12,68308896
	369	12,68210	949	12,68304378

Table 2: Cox-Ross-Rubinstein tree for different number of time steps, with previous parameters

Step	Value, no_	osc = False	Value, no_osc = True	
	360	12,6789	4614	12,68313769
	361	12,6754	1614	12,68318579
	362	12,6818	7914	12,68313385
	363	12,6851	9331	12,68317575
	364	12,6788	2015	12,683132
	365	12,6850	8975	12,68316703
	366	12,6823	3233	12,68313012
	367	12,6761	9844	12,68315764
	368	12,6825	4214	12,6831268
	369	12,6848	6484	12,68314718

Table 3: Jarrow-Rudd tree for different number of time steps, with previous parameters

Step	Value, no_	osc = False	Value, no_osc = True	
-	360	12,6764082	4	12,68277667
	361	12,6779443	6	12,68276507
	362	12,6842130	8	12,68276217
	363	12,682821	8	12,68275281
	364	12,6763394	9	12,68275421
	365	12,6827612	4	12,68274622
	366	12,6842577	3	12,68275035
	367	12,6780994	3	12,6827444
	368	12,6842851	1	12,68275054
	369	12 6826534	5	12 68274606

Table 4: Tian tree for different number of time steps, with previous parameters

We can see that the implemented princing scheme doesn't completely remove the oscillations, but it greatly reduces them for all the tree types: for the Cox-Ross-Rubinstein and Jarrow-Rudd models, the amplitude of oscillations is reduced by a hundred approximately, and the decrease is even greater for the Tian model.

This makes the option prices converge more quickly in terms of steps needed: to reach a precision of 0.0001 it originally took 387 steps with a Cox-Ross-Rubinstein model. Now it only takes 71 steps, which represents a 81,7 % decrease in the number of steps needed.

It does come at a small computational cost however: for 1000 steps, the former method took approximately 0,02159 seconds to compute. It now takes 0,02168 seconds, which is a little less than 1 more microsecond.