

Εισαγωγή στα Συστήματα Ηλεκτρικής Ενέργειας (ΣΗΕ)

Ασύγχρονη μηχανή

Σταύρος Αθ. Παπαθανασίου Καθ. ΕΜΠ

Ο ασύγχρονος κινητήρας

- Ο πλέον διαδεδομένος κινητήρας
 - + Απλός, φθηνός, ελαφρύς, αξιόπιστος, χαμηλής συντήρησης
 - Κατανάλωση αέργου ισχύος (δεν διαθέτει δυνατότητα ρύθμισης του συντελεστή ισχύος, όπως η σύγχρονη μηχανή)

Ασύγχρονη μηχανή (μηχανή επαγωγής)

Δρομέας ασύγχρονης μηχανής τύπου κλωβού

Τυλιγμένος δρομέας ασύγχρονης μηχανής

Αρχή λειτουργίας

- Στάτης διαθέτει 3Φ τύλιγμα ΕΡ (όπως στη σύγχρονη μηχανή)
- Δρομέας: Κλωβού ή τυλιγμένος (3Φ τύλιγμα)
- Αρχή λειτουργίας
 - Στάτης: Ρεύματα με συχνότητα f_{S} \rightarrow πεδίο στρεφόμενο με τη σύγχρονη ταχύτητα $n_{S}=\frac{120f_{S}}{P}$
 - Δρομέας στρέφεται με $n ≠ n_s →$ ολίσθηση $s = \frac{n_s n}{n_s} \Rightarrow n = (1 s)n_s$
 - Πεδίο στάτη: ταχύτητα $n_{\rm S}-n$ ως προς δρομέα ightarrow επάγει στον δρομέα ρεύματα συχνότητας ολισθήσεως $f_{\rm S}-f$
 - Ρεύματα δρομέα εγκαθιστούν πεδίο που στρέφεται με ταχύτητα ολισθήσεως n_s-n ως προς δρομέα και με τη σύγχρονη n_s ως προς τον στάτη
 - Πεδία στάτη και δρομέα στρέφονται στο διάκενο με ίδια ταχύτητα ω_s
 - → Αλληλεπίδραση πεδίων και ανάπτυξη ροπής

Ολίσθηση

 Η ολίσθηση ορίζεται ως η ποσοστιαία απόκλιση της ταχύτητας περιστροφής του δρομέα από τη σύγχρονη ταχύτητα

$$S riangleq rac{n_S-n}{n_S} = rac{\omega_S-\omega_m}{\omega_S}$$
 $n=(1-s)n_S$ kai $\omega_m=(1-s)\omega_S$

Συχνότητα τάσεων/ρευμάτων δρομέα

$$f_r = sf_e$$

(διαφορά ταχυτήτων περιστροφής πεδίου στάτη και δρομέα)

Αυστηρότερα:
$$\omega_r = \frac{P}{2}(\omega_s - \omega_m) = \frac{P}{2}(s\omega_s) = s\left(\frac{P}{2}\omega_s\right) = s\omega_e$$

Παράδειγμα: Έστω Α.Μ. 4 πόλων, 50 Hz με ταχύτητα περιστροφής δρομέα 1400 ΣΑΛ. Ποια η ταχύτητα περιστροφής σε rad/s, η σύγχρονη ταχύτητα, η ολίσθηση και η συχνότητα τάσεων και ρευμάτων του δρομέα;

$$\omega_m = \frac{2\pi n}{60} = \frac{2\pi 1400}{60} = 46,67\pi \frac{rad}{s}$$

$$n_s = \frac{120f}{p} = \frac{120 \cdot 50}{4} = 1500 \Sigma A\Lambda$$

$$\omega_s = \frac{2\pi f_e}{P/2} = \frac{2\pi 50}{2} = 50\pi \frac{\text{rad}}{\text{s}}$$

Παράδειγμα (συνέχεια)

$$s = \frac{n_s - n}{n} = \frac{1500 - 1400}{1500} = 6,67\%$$

Ομοίως:

$$s = \frac{\omega_s - \omega_m}{\omega_s} = 6,67\%$$

$$f_r = sf_e = 0.0667 \cdot 50 = 3.33 \, Hz$$

Ισοδύναμο κύκλωμα

- Λειτουργία ασύγχρονης μηχανής προσομοιάζει σε Μ/Σ: πρωτεύον τύλιγμα ο **στάτης** και βραχυκυκλωμένο δευτερεύον ο **δρομέας**.
- Στάτης έχει ισοδύναμο κύκλωμα ανάλογο του πρωτεύοντος του Μ/Σ:

- \tilde{E}_1 η ΗΕΔ που επάγεται στον στάτη από την κοινή ροή που εμπλέκει στάτη και δρομέα
- \tilde{I}_2 το ρεύμα του δευτερεύοντος (δρομέα) ανηγμένο στο πρωτεύον (στάτη)

Ισοδύναμο κύκλωμα

Βραχυκυκλωμένος δρομέας έχει ισοδύναμο κύκλωμα ανηγμένο στα ελίγματα του στάτη (ο δείκτης s υποδηλώνει μεγέθη συχνότητας ολισθήσεως):

- Αντίδραση σκεδάσεως στη συχνότητα ολισθήσεως: $\omega_r L_2 = s \omega_e L_2 = s X_2$ (X_2 στη συχνότητα του στάτη)
- E_{2s} η ΗΕΔ συχνότητας ολισθήσεως που επάγεται στον δρομέα από το συνιστάμενο πεδίο διακένου

Ανά φάση ισοδύναμο κύκλωμα

- Κλάδος απωλειών πυρήνα g_c συνήθως παραλείπεται
- Κλάδος μαγνήτισης όχι (λόγω του διακένου, σημαντικό ρεύμα για εγκατάσταση του πεδίου στο διάκενο). Αντίδραση μαγνητίσεως:

$$X_{m} = \frac{1}{b_{m}}$$

Ανά φάση ισοδύναμο κύκλωμα

Τυπικές τιμές παραμέτρων:

o $r_1, r_2: 1 \div 10\%$

 $X_1, X_2: 10 \div 20\%$

 $X_m: 200 - 300\%$

3Φ τυλίγματα Υ ή Δ

- Τύλιγμα Υ: **φασική** τάση, ρεύμα **γραμμής**
- Τύλιγμα Δ: **πολική** τάση, ρεύμα **τυλίγματος**
- Εναλλακτικά, **μετατροπή του Δ σε ισοδύναμο Υ** και χρήση του ισοδυνάμου κυκλώματος με φασική τάση και ρεύμα γραμμής

Ισχύς και ροπή

Διαχωρισμός αντίστασης του κλάδου δρομέα:

$$\frac{r_2}{s} = r_2 + r_2 \frac{1-s}{s}$$

Ισχύς διακένου:

$$P_g = 3I_2^2 \frac{r_2}{s}$$

• Απώλειες χαλκού δρομέα:

$$P_{cu,r} = 3I_2^2 r_2 = sP_g$$

Ηλεκτρομαγνητική (εσωτερική) ισχύς:

$$P_{em} = P_g - P_{cu,r} = 3I_2^2 r_2 \frac{1-s}{s} = (1-s)P_g$$

 $sP_g
ightarrow$ απώλειες δρομέα $(1-s)P_g
ightarrow$ μηχανική ισχύς

Αποδοτική λειτουργία για μικρή ολίσθηση (s↓)

Γεννήτρια: $s<0 \to \frac{r_2}{s}<0 \to P_{em}$, $P_g<0$: ροή ισχύος δρομέα \to στάτη Υπολογισμοί κανονικά με ισοδύναμο κύκλωμα, παρ' ότι $\frac{r_2}{s}$ αρνητική

Ισχύς και ροπή

Ηλεκτρομαγνητική ροπή:

$$T_{em} = \frac{P_{em}}{\omega_m} = \frac{(1-s)P_g}{(1-s)\omega_s} = \frac{P_g}{\omega_s} \to T_{em} = \frac{3}{\omega_s}I_2^2 \frac{r_2}{s}$$

Βαθμός απόδοσης κινητήρα:

$$\eta = rac{P_m}{P_e} = rac{P_{em} - P_{lpha\pi,m}}{P_{em} + P_{lpha\pi,cu}} = rac{P_{em} - P_{lpha\pi,m}}{P_{em} + P_{cu,s} + P_{cu,r}} = rac{P_{em} - P_{lpha\pi,m}}{P_g + P_{cu,s}}$$
 $m onup P_e = 3V_1I_1cos \phi$

• Στις μηχανικές απώλειες $P_{\alpha\pi,m}$ συχνά ενσωματώνονται και οι απώλειες σιδήρου (όταν η g_c αγνοηθεί στο ισοδύναμο κύκλωμα)

Γεννήτρια

- $\omega > \omega_s \rightarrow s < 0$, $T_{em} < 0 \rightarrow$ Ροπή τείνει να μειώσει την ω
- Ισχύουν οι ίδιες σχέσεις με μόνη διαφορά ότι P_{em} , T_{em} , $P_g < 0$

• Βαθμός απόδοσης:
$$\eta = \frac{P_e}{P_m} = \frac{|P_g| - P_{cu,s}}{|P_{em}| + P_{\alpha\pi,m}} = \frac{|P_{em}| - P_{cu,r} - P_{cu,s}}{|P_{em}| + P_{\alpha\pi,m}}$$

Πέδη

- $\omega < 0 \rightarrow s > 1$, $T_{em} > 0 \rightarrow \text{Poπή τείνει να μειώσει την } |\omega|$
- $P_{em} = 3I_2^2 r_2 \frac{1-s}{s} < 0$ \rightarrow αφαιρεί μηχανική ενέργεια $\rightarrow |\omega|$ μειώνεται
- $P_g = 3I_2^2 \frac{r_2}{s} > 0$
- Ισχύει $P_g = P_{em} + P_{cu,r} \rightarrow P_{cu,r} = P_g P_{em} \rightarrow P_{cu,r} = P_g + |P_{em}|$
- Απορροφάται ενέργεια ταυτόχρονα από το μηχανικό σύστημα και από την πηγή (στάτη) και μετατρέπεται σε θερμότητα στον δρομέα

Παράδειγμα: 3Φ κινητήρας 10 HP, 50 Hz, P=6 πόλων, $r_1\approx 0$, s = 3% με πλήρες φορτίο, $P_{\alpha\pi}=4\%P_m$. Ζητούνται $P_{cu,r},T_{em},P_g$ και συντελεστής απόδοσης υπό πλήρες φορτίο.

- Πλήρες φορτίο: $P_m = 10 HP = 7,46 kW$
- $P_{em} = P_m + P_{\alpha\pi} = (1 + 0.04)P_m = 7.76 \text{ kW}$
- $P_{em} = (1-s)P_g \rightarrow P_g = \frac{7,76}{0.97} = 8 \text{ kW}$
- $P_{cu,r} = sP_g \rightarrow P_{cu,r} = 0.24 \text{ kW}$
- $N_S = \frac{120f}{P} = 1000 \Sigma A\Lambda$
- $N = (1 s)N_s = 970 \Sigma A\Lambda \text{ kai } \omega_m = \frac{2\pi N}{60} = 101,58 \frac{\text{r}}{\text{s}}$
- $T_{em} = \frac{P_{em}}{\omega_m} = \frac{7760}{101,58} = 76,39 \text{ Nm}$
- $\eta = \frac{P_m}{P_1} = \frac{P_m}{P_g} = \frac{7,46}{8} = 0,93$

Σχέση ροπής-ολίσθησης

Ισοδύναμο κύκλωμα με στάτη και εγκάρσιο κλάδο να έχουν αντικατασταθεί από το ισοδύναμο Thevenin ως προς ακροδέκτες a,b του εγκάρσιου κλάδου:

$$\tilde{V}_{th} = \frac{jX_m}{r_1 + j(X_1 + X_m)} \tilde{V}_1 \equiv \tilde{V}_{1\alpha}$$

$$R_{th} + jX_{th} = \frac{jX_m(r_1 + jX_1)}{r_1 + j(X_1 + X_m)} = R_1 + jX_1$$

$$\tilde{I}_2 = \frac{\tilde{V}_{th}}{\left(R_{th} + \frac{r_2}{s}\right) + j(X_{th} + X_2)}$$

$$T_{em} = \frac{P_g}{\omega_s} = \frac{3I_2^2 \frac{r_2}{s}}{\omega_s} \rightarrow T_{em} = \frac{3}{\omega_s} \frac{V_{th}^2 \frac{r_2}{s}}{\left(R_{th} + \frac{r_2}{s}\right)^2 + (X_{th} + X_2)^2} = T_{em}(s)$$

Καθ. Σταύρος Αθ. Παπαθανασίου

Χαρακτηριστική ροπής-στροφών T_{em}(ω)

19

Χαρακτηριστική ρεύματος Ι1

$$I_1(s) = \frac{V_1}{\left|r_1 + jX_1 + [jX_m // (\frac{r_2}{s} + jX_2)]\right|}$$

 $I_{\text{kp}}\text{: Ρεύμα κενού φορτίου} \\ \text{(κλάδος μαγνητίσεως)} \\ \text{~}30\%I_{\text{ov}}$

Χαρακτηριστική ισχύος-στροφών $P_{em}(\omega) = T_{em}(\omega) \cdot \omega$

Καθ. Σταύρος Αθ. Παπαθανασίου

Βασικά μεγέθη εκκίνησης

$$T_{\varepsilon\kappa\kappa} = \frac{3}{\omega_s} \frac{V_{th}^2 r_2}{(R_{th} + r_2)^2 + (X_{th} + X_2)^2}$$

$$I_{\varepsilon\kappa\kappa} = \frac{V_1}{|r_1 + jX_1 + [jX_m // (r_2 + jX_2)]|}$$

Διαπιστώσεις:

- Ροπή $T_{\varepsilon\kappa\kappa}$ (και γενικά η ροπή T(s)) $\sim V_1^2$
- Ρεύμα *I_{εκκ}*~V₁

Μαχ Ροπή

Μέγιστη ροπή $(\frac{dT_e}{ds} = 0 \rightarrow \alpha κρότατα ροπής)$

$$T_{max} = \frac{1}{\omega_s} \cdot \frac{\frac{3}{2}V_{th}^2}{R_{th} + \sqrt{R_{th}^2 + (X_{th} + X_2)^2}}$$
 για κινητήρα

$$T_{max} = \frac{1}{\omega_s} \cdot \frac{-\frac{3}{2}V_{th}^2}{-R_{th} + \sqrt{R_{th}^2 + (X_{th} + X_2)^2}}$$
 για γεννήτρια (T_{min} αλγεβρικώς)

> T_{max}: ανεξάρτητη της r₂

Ολίσθηση μέγιστης ροπής

$$s_{maxT} = \pm \frac{r_2}{\sqrt{R_{th}^2 + (X_{th} + X_2)^2}}$$
 (+ για κινητήρα και – για γεννήτρια)

 $ightharpoonup s_{maxT}$: ανεξάρτητη της τάσης, ανάλογη της r_2

Χαρακτηριστική ροπής-στροφών T_{em}(ω)

Εισαγωγή εξωτερικής αντίστασης στον δρομέα (δακτυλιοφόρος μηχανή επαγωγής)

Αύξηση της r_2 προκαλεί:

- \mathbf{A} $\mathbf{\hat{u}}$ $\mathbf{\hat{\xi}}$ $\mathbf{\eta}$ $\mathbf{\hat{\sigma}}$ $\mathbf{\hat{\eta}}$ $\mathbf{\hat{\tau}}$ $\mathbf{\hat{\eta}}$ $\mathbf{\hat{\zeta}}$ $\mathbf{\hat{T}}_{\varepsilon\kappa\kappa}$
- Μείωση του $I_{\varepsilon\kappa\kappa}$
- Μείωση της ταχύτητας για δεδομένη ροπή φορτίου

Όταν προσθέτουμε εξωτερική αντίσταση $R_{\varepsilon\xi}$, στο ισοδύναμο κύκλωμα και σε όλους τους τύπους χρησιμοποιούμε ως αντίσταση δρομέα την

$$r_2'=r_2+R_{\varepsilon\xi}$$

Απόδοση κινητήρα επαγωγής

Bαθμός Απόδοσης:
$$η = \frac{P_{\epsilon\xi}}{P_{\epsilon I\sigma}} = \frac{P_m}{P_m + P_{\alpha \pi. \sigma \tau \alpha \theta.} + P_{\alpha \pi. \mu \epsilon \tau.}} = \frac{P_{em} - P_{\alpha \pi. \mu \eta \chi}}{P_{em} + P_{cu,s} + P_{cu,r}}$$

Συνδεσμολογία στάτη σε Υ ή Δ

Συνδεσμολογία Υ:

 Τάση τυλίγματος (ακροδεκτών) στάτη: Φασική

$$V_1 = V_{\omega} = V_{\pi}/\sqrt{3}$$

(μεταξύ φάσης και ουδετέρου)

Ρεύμα τυλίγματος στάτη:

$$I_{T_{Y}} = I_{1}$$

• Ρεύμα γραμμής:

$$I_{L_{Y}} = I_{T_{Y}}$$

Συνδεσμολογία Δ:

 Τάση τυλίγματος (ακροδεκτών) στάτη: Πολική

$$V_1 = V_{\pi} = \sqrt{3}V_{\varphi}$$

(μεταξύ δύο φάσεων)

• Ρεύμα τυλίγματος:

$$I_{T_{\Delta}} = I_1$$

• Ρεύμα γραμμής:

$$I_{L_{\Delta}} = \sqrt{3}I_{T_{\Delta}}$$

Εκκίνηση κινητήρα με συνδεσμολογία ΥΔ

$$V_{TY} = V_{\varphi}$$

$$V_{T\Delta} = V_{\pi} = \sqrt{3}V_{\varphi}$$

$$\Rightarrow V_{T\Delta} = \sqrt{3}V_{TY} \Rightarrow \begin{cases} T_{\Delta} = 3T_{Y} (\alpha\varphi\circ\acute{u} T\sim V^{2}) \\ I_{T\Delta} = \sqrt{3}I_{TY} \end{cases}$$

$$(\alpha\varphi\circ\acute{u} I_{T} = \frac{V_{T}}{z_{T}}, z_{T} \sigma\tau\alpha\theta\epsilon\rho\acute{\eta})$$

Επίσης για Δ: $I_{L,\Delta} = \sqrt{3}I_T$ άρα

$$I_{L,\Delta}=3I_{L,Y}$$

Εκκίνηση κινητήρων επαγωγής

Μέθοδοι εκκίνησης κινητήρων επαγωγής:

- Άμεση ζεύξη
- Διακόπτης αστέρα-τριγώνου (ΥΔ)
- Μειωμένη τάση τροφοδοσίας, μέσω (αυτό)μετασχηματιστή ή σύνθετης αντίστασης σειράς
- Τροφοδότηση μέσω ομαλού εκκινητή (soft-starter)
- Οδήγηση μέσω αντιστροφέα (inverter)
- Προσθήκη εξωτερικών αντιστάσεων δρομέα (μόνο για δακτυλιοφόρο μηχανή επαγωγής)

Δρομέας διπλού κλωβού και βαθειάς αύλακας

- Εκκίνηση: υψηλή συχνότητα δρομέα → ενεργός ο εξωτερικός κλωβός → Υψηλή ροπή, χαμηλό ρεύμα
- Κανονική λειτουργία : χαμηλή συχνότητα δρομέα → ενεργός ο εσωτερικός κλωβός → Υψηλή απόδοση

Βαθειά αύλακα

Επίδοση ποιοτικά αντίστοιχη του διπλού κλωβού

Προκύπτουσα χαρακτηριστική Τ-ω διπλού κλωβού

 Κατάλληλος σχεδιασμός δρομέα κλωβού ώστε στην εκκίνηση μεγαλύτερη αντίσταση δρομέα σε σχέση με την κανονική λειτουργία

Τυποποίηση κινητήρων κατά ΝΕΜΑ

Διαμόρφωση του κλωβού καθορίζει τις χαρακτηριστικές επίδοσης του κινητήρα

Επιλογή κινητήρα

Επιλογή κατάλληλου κινητήρα επαγωγής για δεδομένη εφαρμογή:

- Ταχύτητα και ροπή κανονικής λειτουργίας
- Συσχέτιση με χαρακτηριστική ροπής στροφών φορτίου:
 - ο Επαρκής ροπή εκκίνησης
 - Επαρκής pull-up torque στην περιοχή επιτάχυνσης (επαρκής καθαρή επιταχύνουσα ροπή σε όλη τη διάρκεια επιτάχυνσης)