Курс "Теория случайных процессов". Домашнее задание номер 2.

Предельные теоремы для процессов восстановления. Крайний срок сдачи - 1 октября 2019, 12:10

1. В начальный момент времени в резервном фонде России лежит c рублей. Правительство приняло решение добавлять в n-ый год ξ_n рублей, если цена на нефть η_n превышает некоторое фиксированное значение, R долларов за баррель. Как только размер фонда превысит C рублей, правительство начнёт использовать средства фонда на национальные проекты.

Величины ξ_1, ξ_2, \dots независимые и одинаково распределённые, с конечным математическим ожиданием. Величины η_1, η_2, \dots также независимые и одинаково распределённые, с функцией распределения F. Для любого $i=1,2,..,\xi_i$ и η_i независимы.

Найти асимптотическое поведение количества лет до начала использования средств резервного фонда при $C \to \infty$.

- 2. Владелец ресторана тратил A рублей в день на полное соблюдение санитарных норм. Однако он решил сэкономить и стал тратить на эти цели B < A рублей в день. Роспотребнадзор проводит проверку ресторана в соответствии с некоторым процессом восстановления, причём математическое ожидание времени между двумя последовательными проверками составляет 45 дней. Вероятность обнаружения нарушения равна p, а вероятность того, что нарушение не найдут (1-p). В случае обнаружения нарушения необходимо заплатить штраф, размер которого имеет равномерное распределение на интервале (0,C), причём параметр C зависит от отношения A/B.
 - (i) Найти математическое ожидание времени обнаружения первого нарушения.
 - (ii) Какое асимптотическое поведение имеет суммарный штраф за время t при $t \to \infty$?

- (iii) Какое соотношение между параметрами A, B, C означает, что стратегия экономии выгоднее, чем полное соблюдение санитарных норм?
- 3. Автомобиль ломается в соответствии с процессом восстановления, причём в среднем между двумя последовательными поломками проходит 18 месяцев. Вероятность события, что машину можно починить самостоятельно, составляет $p \in (0,1)$, а математическое ожидание стоимости самостоятельной починки равно m. Машину требуется отвести в автосервис с вероятностью (1-p), и стоимость ремонта в этом случае имеет равномерное распределение на интервале [m, M]. События {ремонт в автосервисе потребовался на k-ой поломке}, k = 1, 2, ... являются независимыми.

Иногда самостоятельный ремонт оказывается некачественным, и автомобиль приходится повторно ремонтировать в автосервисе. События $\{k$ -ый самостоятельный ремонт оказался некачественным $\}$, k=1,2,... являются независимыми, вероятность каждого из них равна $q\in(0,1)$.

- (i) Найдите асимптотическое поведение суммарных затрат на некачественный самостоятельный ремонт автомобиля за t месяцев при $t \to \infty$.
- (ii) Найдите соотношение между параметрами m, M, q, при котором имеет смысл пытаться чинить автомобиль самостоятельно, то есть при котором значение суммарных затрат на ремонт за t месяцев при $t \to \infty$ (с учётом возможного некачественного самостоятельного ремонта) меньше затрат на ремонт в автосервисе при каждой поломке за t месяцев при $t \to \infty$.
- 4. Автобусы прибывают к остановке в соответствии с процессом восстановления $S_n = S_{n-1} + \xi_n$, где $\xi_1, \xi_2, ...$ последовательность i.i.d. случайных величин. Введём обозначения:
 - $Z_t := t S_{N_t}$ время, прошедшее с момента прибытия "последнего автобуса до t' до момента времени t;
 - $V_t = S_{N_{t+1}} S_{N_t}$ время, прошедшее между прибытием "последнего автобуса до t" и "первого автобуса после t".

Докажите, что

$$(i) \quad \lim_{t \to \infty} \left[\frac{1}{t} \int_0^t Z_u du \right] = \frac{\mathbb{E}[\xi^2]}{2\mathbb{E}[\xi]}; \qquad (ii) \quad \lim_{t \to \infty} \left[\frac{1}{t} \int_0^t V_u du \right] = \frac{\mathbb{E}[\xi^2]}{\mathbb{E}[\xi]}.$$

5*. Пусть задан *процесс вознаграждения*: вознаграждение к моменту времени *t* равно

$$Y_t := \int_0^t r_u du,$$

где r_t — некоторый случайный процесс. Предположим, что также задан считающий процесс $S_n = S_{n-1} + \xi_n$ такой, что случайные величины

$$R_n = \int_{S_{n-1}}^{S_n} r_u du$$

являются i.i.d. Докажите, что

$$\lim_{t \to \infty} \frac{Y_t}{t} = \frac{\mathbb{E}R_1}{\mathbb{E}\xi_1}, \quad \text{a.s.}$$

 6^* . Пусть задан процесс восстановления $S_n = S_{n-1} + \xi_n, \ n=1,2,...,$ причём $\mu = \mathbb{E}[\xi_1] < \infty$. Докажите, что для математического ожидания считающего процесса N_t выполнено

$$\lim_{t \to \infty} \frac{\mathbb{E}[N_t]}{t} = \frac{1}{\mu}.$$

Подсказка. Данная задача может быть решена путём последовательного решения нескольких более простых задач:

(і) используя тождество Вальда

$$\mathbb{E}\left[S_{N_t+1}\right] = \mu \cdot \mathbb{E}\left[N_t + 1\right],$$

докажите, что

$$\frac{\mathbb{E}[N_t]}{t} > \frac{1}{\mu} - \frac{1}{t};$$

(ii) примените тождество Вальда к процессу восстановления $\check{S}_n=\check{S}_{n-1}+\check{\xi}_n(b),\;$ с приращениями $\check{\xi}_n(b):=\min(b,\xi_n),\;$ (b - произвольная положительная константа) и покажите, что при выборе $b=\sqrt{t},\;$ выполнено

$$\frac{\mathbb{E}[N_t]}{t} \le \frac{\mathbb{E}[\check{N}_t]}{t} \le \frac{1}{\check{\mu}(\sqrt{t})} + \frac{1}{\sqrt{t} \cdot \check{\mu}(\sqrt{t})},$$

где через \breve{N}_t обозначен считающий процесс, построенный по процессу $\breve{S}_n,$ и $\breve{\mu}(\sqrt{t})=\mathbb{E}[\breve{\xi}_n(\sqrt{t})];$

(iii) докажите, что $\breve{\mu}(\sqrt{t}) \to \mu$ при $t \to \infty$.