Herbst 13 Themennummer 3 Aufgabe 5 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

Sei $G \subset \mathbb{C}$ ein einfach zusammenhängendes Gebiet und sei $z_0 \in G$. Ist die Menge

$$\{f'(z_0)|f:G\to G \text{ holomorph}, f(z_0)=z_0\}$$

beschränkt? Unterscheiden Sie dabei die Fälle $G = \mathbb{C}$ und $G \neq \mathbb{C}$.

Lösungsvorschlag:

Für $G = \mathbb{C}$ ist die Menge unbeschränkt. Sei $z_0 \in \mathbb{C}$ beliebig, aber fest gewählt. Sei $n \in \mathbb{N}$, dann ist die Funktion $f : \mathbb{C} \to \mathbb{C}$, $f(z) = nz - (n-1)z_0$ holomorph und erfüllt $f(z_0) = z_0$ sowie $f'(z_0) = n$. Damit ist \mathbb{N} eine Teilmenge dieser Menge, die dann natürlich unbeschränkt ist.

Sei jetzt $G \neq \mathbb{C}$, dann ist die Menge beschränkt. Sei wieder $z_0 \in G$ beliebig, aber fest gewählt. Nach dem Riemannschen Abbildungssatz existiert eine bijektive, holomorphe Abbildung $g: G \to \mathbb{D} := \{z \in \mathbb{C} : |z| < 1\}$ mit $g(z_0) = 0$.

Die Funktion $h: \mathbb{D} \to \mathbb{D}, h = g \circ f \circ g^{-1}$ ist holomorph und erfüllt

 $h(0) = g(f(z_0)) = g(z_0) = 0$. Aus dem Schwarzschen Lemma folgt $|h'(0)| \le 1$.

Aus der Definition von h folgt $f = g^{-1} \circ h \circ g$, also ist

$$f'(z_0) = (g^{-1})'(h(g(z_0)) \cdot h'(g(z_0)) \cdot g'(z_0) = (g^{-1})'(0) \cdot h'(0) \cdot g'(z_0),$$

woraus $|f'(z_0)| \leq |(g^{-1})'(0)| \cdot |g'(z_0)|$ folgt, was eine obere Schranke liefert.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$