Abstract Problem Set

Rippy

April 2019

1 Problems

1.1 Problem 1

Let $H \leq G$ and define $X := \{aH \mid a \in G\}$ and $Y := \{Ha \mid a \in G\}$.

- (a) Show that the map $\psi: X \to Y$ given by $\psi(aH) = Ha$ is not well-defined in general (i.e. is not a function) by showing that there exists $a, b \in S_3$ such that aH = bH but $Ha \neq Hb$ where $H = \langle (1,2) \rangle$.
- (b) Prove that the map $\phi: X \to Y$ given by $\phi(aH) = Ha^{-1}$ is a 1-1 and onto function. Consequently, there are always the same number of left and right cosets of H in G.

```
Proof. (a) Let a = (1, 2, 3), b = (1, 3), and H = \langle (1, 2) \rangle = \{(1)(2), (1, 2)\}. aH = (1, 2, 3)\{(1)(2), (1, 2)\} = \{(1, 2, 3), (1, 3)\} bH = (1, 3)\{(1)(2), (1, 2)\} = \{(1, 3), (1, 2, 3)\} Thus, aH = bH and a \neq b. Ha = \{(1)(2), (1, 2)\}(1, 2, 3) = \{(1, 2, 3), (1)(2, 3)\} Hb = \{(1)(2), (1, 2)\}(1, 3) = \{(1, 3), (1, 3, 2)\} Thus Ha \neq Hb.
```

Proof. (b)

Onto: For every $Ha \in Y$ there exists some $a^{-1}H \in X$ such that $\phi(a^{-1}H) = H(a^{-1})^{-1} = Ha$ 1-1: $\phi(aH) = \phi(bH)$

$$\Rightarrow Ha^{-1} = Hb^{-1}$$

$$\Rightarrow H = Hb^{-1}a$$

$$\Rightarrow b^{-1}a \in H$$

Then there exists some $h \in H$ such that $h = b^{-1}a$.

- $\Rightarrow bh \in bH$
- $\Rightarrow b(b^{-1}a)H = bH$
- $\Rightarrow aH = bH$

Since ϕ is 1-1, for every left coset $\in X$, there is a unique right coset $\in Y$ that ϕ maps to. Since ϕ is onto, every right coset $\in Y$ has some left coset $\in X$ that maps to it. Thus, the number of left cosets exactly matches the number of right cosets.

1.2 Problem 2

- (a) Consider the arbitrary k-cycle $(a_1, a_2, ..., a_k)$ from S_n (with $k \leq n$). When will this cycle be odd versus even?
- (b) The set A_n forms a group under composition of permutations and has order $\frac{n!}{2}$.

Proof. (a)

Let the k-cycle $(a_1, a_2, ..., a_k) \in S_n$ (with $n \leq k$).

Induction:

Base Case: n = 2, (a_1, a_2) thus, k-cycle can be written as n - 1 cycles.

Assume kth case: $(a_1, a_2, ..., a_k)$ can be written as k-1 cycles.

Prove kth + 1 case: $(a_1, a_2, ..., a_k, a_{k+1}) = (a_1, a_2, ..., a_k)(a_k, a_{k+1})$ which is (k-1) + 1 = k transposition cycles. The cycle $(a_1, a_2, ..., a_k)$ can be written as a composition of k-1 transpositions, $(a_1, a_2)(a_2, a_3) \cdots (a_{k-1}, a_k)$. Thus, if k is odd, the cycle will be even, and if k is even, the cycle will be odd.

Proof. (b)

 A_4 contains all cycles of even length.

Closure: Let $a, b \in A_n$ such that $a = (a_1, a_2 \cdots a_t)$ and $b = (b_1, b_2, \cdots b_k)$ where $ab = (a_1, a_2 \cdots a_t)(b_1, b_2, \cdots b_k)$ which still can be written as an even number of transpositions, since a, b are even.

Associative: We know composition of permutations is associative.

Inverse and Identity: Any element is a product of transpositions and can be flipped, while still remaining the same number of transpositions, thus the inverse cycle remains even, so the inverse cycles exists within A_n . Since the inverse cycle exists in A_n , then the original cycle composed the inverse gives the trivial cycle, the identity, which is even.

Let X be even permutations $\in S_n$, and Y be odd permutations $\in S_n$. Consider the map from X to Y, as $\phi(\alpha) \to (1,2)(\alpha)$.

1-1: Let $\alpha, \beta \in X$

 $\phi(\alpha) = \phi(\beta)$

 \Rightarrow $(1,2)(\alpha) = (1,2)(\beta)$

 \Rightarrow (1,2)(1,2)(α) = (1,2)(1,2)(β)

 $\Rightarrow \alpha = \beta$

Onto: Let $\gamma \in Y$.

For every $\gamma \in Y$, there exists some $(1,2)(\gamma) \in X$ such that $\phi((1,2)\gamma) \to (1,2)(1,2)(\gamma) = \gamma$ Thus, by this bijection, there is exactly as many even permutations as odd. Since $|S_n| = n!$, and S_n is composed of odd and even permutations, there are $\frac{n!}{2}$ even permutations. Thus $|A_4| = \frac{n!}{2}$

1.3 Problem 3

- (a) Find all abelian groups up to isomorphism of order 48. Which, if any, are cyclic?
- (b) Find the maximum possible order for some element of $\mathbb{Z}_4 \times \mathbb{Z}_{18} \times \mathbb{Z}_{15}$.

Proof. (a)

48 factors down into 3,2,2,2,2, or 3, 2^4 . Thus, the 5 abelian groups of isomorphism of 48 are: $\mathbb{Z}_3 \times \mathbb{Z}_{16}$ (only cyclic group)

 $\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_8$

 $\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4$

 $\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_4$

 $\mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$

Proof. (b) Take the least common multiple of the orders of the groups. Thus the lcm(4,18,15) is 180. Maximum possible order for an element is 180.

1.4 Problem 4

Prove that the converse to Lagrange's Theorem is false by showing that A_4 has no subgroup of order 6. (Hint: Prove this by contradiction. Suppose there is a subgroup H of A_4 . Think about its index, and consider elements of A_4 of order 3.)

Proof. Let there be a subgroup, H, of A_4 such that |H| = 6. Since we know $|A_4| = 12$, the index is 12/6 = 2, indicating H is a normal subgroup. Thus, aH = Ha for all $a \in G$. Because the index is 2, there are two distinct cosets, one of them being H since eH = He = H. Let b be an element of order $3 \in A_4$.

 \Rightarrow Assume that $b \notin H$. Since b is order 3, $b \neq b^2 \neq e$. Thus, since $b, b^2 \notin H$, $bH, b^2H \neq H$. Thus since there is only one other distinct coset, bH must be the other coset. However, since $b^2H \neq H$, it must be equal to bH. Thus, $bH = b^2H$, multiplying by the inverse, we get H = bH, which is not true, indicating by contradiction that b, b^2 must exist within H. However, since there are 8 elements of order $3 \in A_4$ and 8 > 6, this creates a contradiction, thus there can be no subgroup of order 6, disproving the converse.

1.5 Problem 5

Let G be a group of order pq, where p and q are prime numbers. Show that every proper subgroup of G is cyclic.

Proof. Let $H \leq G$. Since G is of finite order pq, by Lagrange's Theorem, the proper subgroups of G will be of order p,q or 1 since these are the only numerical divisors of pq. The subgroup of order 1 is the trivial subgroup and is always cyclic. Let $H \leq G$, and let |H| = p (WLOG, since p is an arbitrary prime, it could just as easily be q). By Lagrange's Theorem, the subgroups of H must be of order p or 1. Let $h \in H \neq e$, then $|\langle h \rangle| = p$. This proves h is a generator of H since the subgroup generated by h is an improper subgroup, thus H is cyclic. Thus, every proper subgroup of G is cyclic.