# I. Venn Diagrams:

- 1. Visual or picture representation of sets.
- 2. Starts with a broad / general group called the Universe. The universe is a rectangle.
- 3. Inside the rectangle are smaller groups called subsets. Subsets are usually a circle.



u= All MTSU students
A= All Female students

# II. Compliment of a Set:

- 1. compliment means opposite, not, or outside
- 2. They are elements not part of a given set.
- 3. These elements are still part of the universe
- 4. noted by A raised mark A A-compliment A-prime
- 5. A and A' equal the Universe



u= All MTSU Students

A = All Female Students

A' = All male students

#### **EXAMPLE:**



 $\mathcal{U}$  = {American Alphabet}

A = Consonants

A' = vowels

**EXAMPLE:** What is the compliment of the given set?

$$\mathcal{U}$$
 = {a, b, c, d, e, f, g, h}

$$M = \{a, b, e, f\}$$
  $M' = \{c, d, g, h\}$ 

$$N = \{b, d, e, g, h\}$$
  $N' = \{a, c, f\}$ 

#### **EXAMPLE:**

1. If a Universe contains all sets, then the compliment of the Universe is what?

2. If an Empty set has no sets, then the compliment of an Empty set is what?

### III. Subset of a Set:

- 1. is a part or group of the universe
- 2. CAn be part or group of another set
- 3. is A combination of elements
- 4. All elements in subset B must be in set A

To show a set is a subset of another set, use this symbol:

To show a set is not a subset, use this symbol:



W= All mTSU students
A= All female students ASU
A'= All male students
B= All female athlets BSA.

### **EXAMPLE:**



 $\mathcal{U} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ 

 $A = \{2, 4, 6, 8, 10\}$   $A \subseteq U$ 

 $B = \{2, 6, 10\}$   $\beta \subseteq A$ 

# **EXAMPLE:** True or False, is the set a subset?

1.  $\{3, 4, 5, 6\} \subseteq \{2, 3, 4, 5, 6\}$ 

True

2.  $\{1, 2, 3\} \subseteq \{2, 3, 4, 5\}$ 

FAISE

3.  $\{5, 6, 7, 8\} \subseteq \{5, 6, 7, 8\}$ 

True

can be a subset of yourself. can be equal

IV. A proper subsets is a subset but just not equal to itself.

To show a set is a proper subset use this symbol:

**EXAMPLE:** decide if each is a subset or proper subset and which symbol to use.

- 1. {1, 2, 3} <u>⊆</u> {1, 2, 3} <u>Subset</u>
- 2. {1, 2, 3} \_ {1, 2, 3, 4} Subset and proper subset
- 3. {a, b, c, d} \_ {a, b, c, d, e, f, g} subset and proper subset

# V. Number of subsets in a set

The number of possible subsets that can be made from a single set follows this simple

formula: 2 n is the number of elements in the set 21-1 is the number of proper subsets

**EXAMPLE:** List all the possible subsets.

THINK......How many combinations can you make?

Set  $A = \{1, 2, 3\}$ 

How many total possible subsets?  $2^n - 2^3 = 8$ 

How many proper subsets?  $2^3 - 1 = 7$ 

List all the subsets from set A:

 $\{1\}$   $\{1,2\}$   $\{1,2,3\}$ 

{a} {1,3}

{3} {2,3}