Instrucciones: Puede usar cualquiera de las proposiciones o ejercicios vistos en clase. Tenga el cuidado de escribir muy claramente las proposiciones (o ejercicios) que usa.

1. Sea T el operador lineal sobre \mathbb{R}^3 representado en la base ordenada canónica por:

$$A = \begin{bmatrix} -1 & 0 & -5 \\ 5 & 4 & 5 \\ -5 & 0 & -1 \end{bmatrix}.$$

- a) Hallar vectores no nulos v_1, \ldots, v_r que satisfacen las condiciones del teorema de descomposición cíclica.
- b) Escribir la forma racional de A.
- c) Hallar una matriz real P inversible, tal que $P^{-1}AP$ esté en la forma racional.
- d) Escribir la forma de Jordan de A.

Answer. Podemos verificar que $f_A(\lambda) = (\lambda - 4)^2(\lambda + 6)$ y $p_A = (\lambda - 4)(\lambda + 6)$. Concluimos que los factores invariantes son

$$p_1 = (\lambda - 4)(\lambda + 6) \text{ and } p_2 = \lambda - 4.$$

Ahora calculamos los espacios propios de A:

- $V_4 = \langle (0,1,0), (1,0,-1) \rangle$
- $V_{-6} = \langle (1,0,1) \rangle$.
- a) Para v_1 podemos tomar cualquier vector que no es un vector proprio, por ejemplo $v_1 = (1, 0, 0)$. En este case

$$W = \langle v_1, T(v_1) \rangle = (1, 0, 0), (-1, 5, -5) \rangle$$

Ahora para v_2 podemos tomar cualquier vector propio asociado con 4 tal que $v_2 \notin W$, por ejemplo $v_2 = (0, 1, 0)$.

b) La forma racional es

$$\begin{bmatrix} 0 & 24 & 0 \\ 1 & -2 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

c) Podemos tomar

$$P = \begin{bmatrix} v_1 & T(v_1) & v_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 5 & 1 \\ 0 & -5 & 0 \end{bmatrix}.$$

d) La forma Jordan es

$$\begin{bmatrix} -6 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}.$$

2. Sean V un espacio vectorial sobre \mathbb{R} , $\langle \cdot, \cdot \rangle$ un producto interno en V, y V^* el espacio dual de V. Para $w \in V$, se define:

$$\phi_w: V \to \mathbb{R}, v \mapsto \langle v, w \rangle.$$

Y luego se define:

$$\phi: V \to V^*, w \mapsto \phi_w.$$

- a) Probar que la función ϕ está bien-definida y es lineal.
- b) Probar que si $\dim(V) < \infty$, entonces ϕ es un isomorfismo lineal.
- c) Dar un ejemplo de un espacio V de manera que ϕ no sea un isomorfismo lineal.

Answer.

a) Ya que el producto interno es lineal en la segunda variable, ϕ_w es lineal para todo $w \in V$ y ϕ es bien-definido.

Ya que el producto interno es lineal en la primera variable, ϕ es lineal.

b) Primero supóngase que $\phi_w = 0$. Entonces $\langle v, w \rangle = 0$ para todo $v \in V$ y por lo tanto w = 0. Entonces ϕ es inyectiva.

Ahora podemos usar el hecho que $\dim(V) = \dim(V^*)$ y el resulto sigue. Alternativamente, sea $f \in V^* \setminus \{0\}$ y sea $K = \operatorname{Ker}(f)$, un subespacio de V de dimensión n-1. Sea w un elemento de K^{\perp} y observe que, para $v \in V$, hay $k \in K$ y $c \in \mathbb{R}$ tal que v = k + cw. Sea $d \in \mathbb{R}$ y tenemos que

$$\phi_{dw}(v) = \phi(dw, k + cw) = \phi(dw, k) + cd\phi(w, w) = \langle w, k \rangle + cd\langle w, w \rangle = cd||w||^2.$$

$$f(v) = f(k + cw) = f(k) + cf(w) = cf(w).$$

Escogemos $d = f(w)/||w||^2$ y hemos terminado.

c) Sea

$$V = \{(a_1, a_2, \dots,) \mid a_i \in \mathbb{R} \text{ y un número finito de entradas son no-ceros}\}$$

$$f: V \to \mathbb{R}, (a_1, a_2, \dots,) \mapsto \sum_{i=1}^{\infty} a_i.$$

Afirmo que $f \neq \phi_w$ para todo $w \in V$. Para ver este, sea e_i el elemento de V con i-ésima entrada igual a 1, los otros iguales a 0. Observe que $f(e_i) = 0$ para todo i = 1, ..., n. Por otra parte observe que $\phi_w(e_i) \neq 0$ si y solo si la i-ésima entrada de w no es igual a 0. Ya que $w \in V$, concluimos que $\phi_w(e_i) = 1$ para un número finito de los vectores e_i . Entonces $f \neq \phi_w$.

3. Sean V un espacio finito-dimensional sobre un cuerpo \mathbb{F} , un automorfismo σ de \mathbb{F} y Ω el conjunto de las formas σ -sesquilineales. Defina una relación \sim sobre Ω como sigue: para $f, g \in \Omega$, escriba $f \sim g$ si hay bases ordenadas \mathcal{B} y \mathcal{C} tales que $[f]_{\mathcal{B}} = [g]_{\mathcal{C}}$. Probar que \sim es una relación de equivalencia.

Answer.

Reflexiva: Es claro que $f \sim F$ ya que $[f]_{\mathcal{B}} = [f]_{\mathcal{B}}$ para toda base \mathcal{B} de V.

Simétrica. Si $f \sim g$, entonces hay bases $\mathcal{B} y \mathcal{C}$ tal que $[f]_{\mathcal{B}} = [g]_{\mathcal{C}}$. Por lo tanto $[g]_{\mathcal{C}} = [f]_{\mathcal{B}}$ y temos $g \sim f$.

Transitiva. Supóngase que $f \sim g$ y $g \sim h$, entonces hay bases $\mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}$ tal que $[f]_{\mathcal{B}} = [g]_{\mathcal{C}}$ y $[g]_{\mathcal{D}} = [h]_{\mathcal{E}}$.

Sea P la matriz de cambio de base $\mathcal{D} \to \mathcal{C}$. En particular $[Pv]_{\mathcal{C}} = [v]_{\mathcal{D}}$ para todo $v \in V$. Sea \mathcal{F} la base tal que P es la matriz de cambio de base $\mathcal{B} \to \mathcal{F}$. Ahora

$$[f]_{\mathcal{F}} = P^*[f]_{\mathcal{B}}P = P^*[g]_{\mathcal{C}}P = [g]_{\mathcal{D}} = [h]_{\mathcal{E}}$$

y concluimos que $f \sim h$.

4. Considere \mathbb{C}^4 con el producto interno canónico. Sea $W := \langle v_1, v_2, v_3 \rangle$ el subespacio de \mathbb{C}^4 generado por los vectores:

$$v_1 := \begin{bmatrix} 1+i\\1\\1\\0 \end{bmatrix}, \qquad v_2 := \begin{bmatrix} 2\\1-2i\\1+4i\\\sqrt{3} \end{bmatrix}, \qquad v_3 := \begin{bmatrix} 0\\0\\0\\\frac{25}{\sqrt{3}} \end{bmatrix}.$$

- a) Use el procedimiento de Gram-Schmidt para escribir una base ortonormal de W.
- b) Encontrar un vector $w \in W$, no cero, tal que $\langle w, v_1 \rangle = \langle w, v_2 \rangle = 0$.

Answer. Observe que $||v_1|| = 2$, entonces, define

$$u_1 = \frac{1}{2}v_1 = \frac{1}{2}(1+i,1,1,0).$$

Ahora $\langle v_2, u_1 \rangle = 2$, entonces

$$u_2^* = v_2 - \langle v_2, u_1 \rangle u_1$$

= $(2, 1 - 2i, 1 + 4i, \sqrt{3}) - (1 + i, 1, 1, 0)$
= $(1 - i, -2i, 4i, \sqrt{3}).$

Ahora $||u_2^*|| = 5$, entonces

$$u_2 = \frac{1}{5}u_2^* = \frac{1}{5}(1 - i, -2i, 4i, \sqrt{3}).$$

Al final $\langle v_3, u_1 \rangle = 0$ y $\langle v_3, u_2 \rangle = 5$, entonces

$$u_3^* = v_3 - \langle v_3, u_1 \rangle u_1 - \langle v_3, u_2 \rangle u_2$$

= $(0, 0, 0, 25/\sqrt{3}) - (1 - i, -2i, 4i, \sqrt{3})$
= $(-1 + i, 2i, -4i, 22/\sqrt{3}).$

Ahora $||u_3^*|| = \sqrt{550/3}$, entonces

$$u_3 = \sqrt{\frac{3}{550}}u_3^* = \sqrt{\frac{3}{550}}(-1+i,2i,-4i,\frac{22}{\sqrt{3}}).$$

Podemos tomar nuestra base normal igual a $\{u_1, u_2, u_3\}$ y el vector $w = u_3$.

5. Sea \mathcal{E} la base ordenada canónica de $V=\mathbb{R}^3$. Defina la función:

$$f \colon V \times V \to \mathbb{R}, \quad (v, w) \mapsto ([w]_{\mathcal{E}})^t \cdot \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \cdot [v]_{\mathcal{E}}.$$

- a) Probar que f es un producto interno.
- b) Sea $W = \langle (1, 1, 0) \rangle$. Hallar el complemento ortogonal de W en V, con respecto al producto interno f.
- c) Sea $E_W: V \to W$ la proyección ortogonal de V sobre W, con respecto al producto interno f. Escribir la matriz $(E_W)_{\mathcal{E}}$.

Answer.

a) Sea $v_1, v_2, w \in V$ y $a_1, a_2 \in \mathbb{R}$ y sea $A = [f]_{\mathcal{E}}$. Entonces

$$f(a_1v_1 + a_2v_2, w) = [a_1v_1 + a_2v_2]_{\mathcal{E}} \cdot A \cdot [w]_{\mathcal{E}}$$

$$= (a_1[v_1]_{\mathcal{E}} + a_2[v_2]_{\mathcal{E}}) \cdot A \cdot [w]_{\mathcal{E}}$$

$$= a_1([v_1]_{\mathcal{E}} \cdot A \cdot [w]_{\mathcal{E}}) + a_2([v_2]_{\mathcal{E}} \cdot A \cdot [w]_{\mathcal{E}})$$

$$= a_1f(v_1, w) + a_2f(v_2, w).$$

Entonces f es lineal en la primera variable. Similarmente f es lineal en la segunda variable, entonces es una forma bilineal.

Ahora observa que A es simétrica, entonces f(v, w) = f(w, v).

Por fin, sea $v = (a, b, c) \in \mathbb{R}^3$ y observe que

$$f(v,v) = \begin{bmatrix} a & b & c \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
$$= 2a^2 - ab - ab + 2b^2 - bc - bc + 2c^2$$
$$= a^2 + (a - b)^2 + b^2 + (b - c)^2 + c^2 > 0$$

siempre que $(a, b, c) \neq (0, 0, 0)$.

b) Un elemento $v=(x,y,z)\in W^{\perp}$ si y solo si

$$f((1,1,0),v) = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ x \end{bmatrix} = 0$$

Es decir que v es en el conjunto solución de la ecuación

$$x + y - z = 0.$$

Ahora este conjunto es el subespacio

$$\langle (1,0,1), (-1,1,0) \rangle.$$

c) Sea $\mathcal{B}=\{(1,1,0),(1,0,1),(-1,1,0\}.$ Entonces es claro que

$$[E_W]_{\mathcal{B}} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Ahora sea

$$P = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix},$$

la matriz de cambio de base $\mathcal{E} \to \mathcal{B}$. Entonces

$$[E_W]_{\mathcal{E}} = P \cdot [E_W]_{\mathcal{B}} P^{-1}$$

$$= \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 1 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & 0 \end{bmatrix}$$

- 6. Sea $A \in M(6,\mathbb{R})$ con polinomio característico igual a $(\lambda^2 + 1)(\lambda 1)^4$.
 - a) Escribir las formas racionales posibles para A.
 - b) ¿Para cuales de estas formas (racionales) existe una matriz (inversible) $P \in M(6, \mathbb{C})$ tal que $P^{-1}AP$ es diagonal?

Answer. Escribimos los factores invariantes posibles con la forma racional correspondiente.

$p_1 = p_A$	p_2	p_3	p_4	Forma racional
$(\lambda^2 + 1)(\lambda - 1)^4$				$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 & 0 & 4 \\ 0 & 1 & 0 & 0 & 0 & -7 \\ 0 & 0 & 1 & 0 & 0 & 8 \\ 0 & 0 & 0 & 1 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{bmatrix}$
$(\lambda^2 + 1)(\lambda - 1)^3$	$\lambda - 1$			$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & -3 & 0 \\ 0 & 1 & 0 & 0 & 4 & 0 \\ 0 & 0 & 1 & 0 & -4 & 0 \\ 0 & 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
$(\lambda^2 + 1)(\lambda - 1)^2$	$(\lambda-1)^2$			$\begin{bmatrix} 0 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 & 1 & 2 \end{bmatrix}$
$(\lambda^2 + 1)(\lambda - 1)^2$	$\lambda - 1$	$\lambda - 1$		$\begin{bmatrix} 0 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 2 & 0 & 0 \\ 0 & 1 & 0 & -2 & 0 & 0 \\ 0 & 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$
$(\lambda^2 + 1)(\lambda - 1)$	$\lambda - 1$	$\lambda - 1$	$\lambda - 1$	$\begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$

La forma final es la forma única que es diagonalizable sobre \mathbb{C} (ya que es la forma única tal que la polinomio minimal es un producto de factores lineales distintos sobre \mathbb{C}).