МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 4.3.2

Дифракция света на ультразвуковых волнах

Б03-102 Куланов Александр

- **Цель работы:** измерить координаты дифракционных полос, образующихся при дифракции света на акустической решетке, определить период этой решетки методом темного поля, рассчитать скорость ультразвука в воде
- В работе используются: оптическая скамья, осветитель, светофильтры, конденсор, щель, два длиннофокусных объектива, кювета с водой, кварцевый излучатель с микрометрическим винтом, генератор УЗ-частоты, частотомер, линза, отсчетное устройство, микроскоп.

1 Экспериментальная установка

Рис. 1: Схема установки

Источник света Л через светофильтр Φ и конденсор K освещает щель S, которая расположена в фокусе объектива O_1 . Выходящий из объектива параллельный пучок света проходит через кювету C перпендикулярно направлению распространения УЗ-волн. Эти волны возбуждаются в жидкости пьезокварцевой пластинкой Q, прикреплённой к стенке кюветы. На кварцевую пластинку подаётся синусоидальное напряжение ультразвуковой частоты от генератора (на рис. не показан). В результате взаимодействия света с ультразвуковой волной в фокальной плоскости второго объектива O_2 образуется дифракционная картина, наблюдаемая при помощи микроскопа M. При этом обязательно применяют монохроматическое излучение (красный светофильтр).

Дифракционные полосы ориентированы горизонтально. Расстояние между ними можно измерить с помощью специального отсчётного устройства с микрометрическим винтом В. Этот винт передвигает размещённые на стекле отсчётного устройства тонкую реперную линию Рл, перекрестие Π и толстую проволоку Π р, которая используется в методе тёмного поля. Все измерительные линии должны быть расположены в плоскости F резкого изображения щели.

Чёткость дифракционных полос зависит от ряда факторов, например, от ширины щели S, от её наклона по отношению к вертикали, от угла наклона кюветы к падающему лучу и т. д. Длина Λ ультразвуковой волны определяется по формуле

$$\Lambda \sin \Theta_m = m\lambda \tag{1}$$

в силу малости углов Θ_m окончательное выражение может быть представлено в виде

$$l_m = mf \frac{\lambda}{\Lambda} \tag{2}$$

где l_m — измеренное на опыте линейное расстояние между m-м и нулевым максимумами, а f - фокусное расстояние объектива O_2 .

Скорость ν распространения звука в воде можно рассчитать, если известна частота ν кварцевого излучателя:

$$v = \Lambda \nu \tag{3}$$

2 Ход работы

Определение скорости ультразвука по дифракционной картине

Оценим *по порядку величины* скорость звука как удвоенное расстояние между наиболее чёткими дифракционными картинами:

$$n = 66, \Lambda \approx 1316 \text{ MKM}$$

Рабочая частота 1,3 МГц, тогда скорость

$$v \approx \Lambda \nu = 1718 \text{ m/c}$$

Определим положения дифракционных полос. Для этого для нескольких частот зафиксируем дифракционные картины на фото и определим l_m . Далее по формуле (2) найдем Λ , учитывая $\lambda = 640$ нм, f = 28 см:

$$\Lambda = \frac{mf\lambda}{l_m} \tag{4}$$

\mathbf{m}	Λ , mkm	$ u$, М Γ ц	$v, \mathbf{m/c}$
3	1358	1,0	1417
3	1211	1,2	1452
3	1088	1,3	1442
3	946	1,5	1404

Таблица 1: Скорости звука

Тогда среднее

$$v = 1429 \pm 50 \text{ m/c}$$

Определение скорости ультразвука методом тёмного поля

Проведем калибровку: поставим пластинку с калибровочной сеткой. Длина стороны 1 мм соотвествует 21 делению, значит цена деления шкалы микроскопа 1/21 мм.

Закроем проволокой центральный максимум и определим период полученной решетки при фиксированных частотах. Зафиксируем с помощью окулярной шкалы микроскопа разность координат N первой и последней из хорошо видимых в поле зрения тёмных полос и количество m светлых промежутков между ними. По полученным данным рассчитаем длину волны Λ , построим график зависимости $\Lambda = f(1/\nu)$ и по коэффициенту наклона прямой определим скорость звука в воде.

ν , М Γ ц	N, мм	m	Λ , mkm
1,1	7,476	11	1495
1,2	7,619	12	1385
1,3	7,048	12	1175
1,4	5,952	11	1190
1,5	5,571	11	1114
1,6	5,667	12	1030

Таблица 2: Данные с метода темного поля

Рис. 2: График по методу темного поля

Итого:

$$v = 1627 \pm 40 \; {\rm m/c}$$

3 Выводы

Если считать, что скорость звука в воде равна $1500~{\rm m/c}$, то ближе к истине оказался первый метод. Но в целом, оба значения получились неплохие.

Метод	$v, \mathbf{m/c}$
Дифракционная картина	1429 ± 50
Тёмное поле	1627 ± 40

Таблица 3: Итоги