

MORPHOLOGICAL PROCESSING

Lecture on 14 February 2023 at Aalto University
Slides by Mathias Creutz and Sami Virpioja

INTRODUCTION

LINGDIG (LINGUISTIC DIVERSITY AND DIGITAL HUMANITIES) MASTER'S PROGRAMME:

LANGUAGE TECHNOLOGY COURSES OFFERED AT THE UNIVERSITY OF HELSINKI

- Computational Morphology (fall 2023, 5 cr: Oct Dec)
- Computational Syntax (spring 2023, 5 cr: Mar May)
- Computational Semantics (spring 2024, 5 cr: Jan Mar)
- Models and Algorithms in NLP applications (fall 2023, 5 cr: Sep Oct)
- Approaches to Natural Language Understanding (spring 2023, 5 cr: Mar May)
- Introduction to Deep Learning (spring 2024, 5 cr, Jan Mar)
- A practical intro to modern Neural Machine Translation (fall 2023, 5 cr: Oct Dec)
- plus courses in General Linguistics, Phonetics, Cognitive Science and Digihum
- More info: http://blogs.helsinki.fi/language-technology/

- Linguistic theory
- Automatic morphological processing
 - Approach 1: Normalization or "Canonical forms"
 - Stemming
 - Lemmatization
 - Approach 2: Analysis and generation
 - Finite-state methods
 - Supervised machine learning: Morphological inflection
 - Approach 3: Segmentation
 - Unsupervised learning, method 1: Harris's method
 - Unsupervised learning, method 2: Morfessor
 - Unsupervised learning, method 3: Byte pair encoding (BPE) and SentencePiece
 - Approach 4: Implicit modeling
 - Feature extraction in word embeddings (word2vec): FastText
 - Character-based models

- Linguistic theory
- Automatic morphological processing
 - Approach 1: Normalization or "Canonical forms"
 - Stemming
 - Lemmatization
 - Approach 2: Analysis and generation
 - Finite-state methods
 - Supervised machine learning: Morphological inflection
 - Approach 3: Segmentation
 - Unsupervised learning, method 1: Harris's method
 - Unsupervised learning, method 2: Morfessor
 - Unsupervised learning, method 3: Byte pair encoding (BPE) and SentencePiece
 - Approach 4: Implicit modeling
 - Feature extraction in word embeddings (word2vec): FastText
 - Character-based models

- Linguistic theory
- Automatic morphological processing
 - Approach 1: Normalization or "Canonical forms"
 - Stemming
 - Lemmatization
 - Approach 2: Analysis and generation
 - Finite-state methods
 - Supervised machine learning: Morphological inflection
 - Approach 3: Segmentation
 - Unsupervised learning, method 1: Harris's method
 - Unsupervised learning, method 2: Morfessor
 - Unsupervised learning, method 3: Byte pair encoding (BPE) and SentencePiece
 - Approach 4: Implicit modeling
 - Feature extraction in word embeddings (word2vec): FastText
 - Character-based models

- Linguistic theory
- Automatic morphological processing
 - Approach 1: Normalization or "Canonical forms"
 - Stemming
 - Lemmatization
 - Approach 2: Analysis and generation
 - Finite-state methods
 - Supervised machine learning: Morphological inflection
 - Approach 3: Segmentation
 - Unsupervised learning, method 1: Harris's method
 - Unsupervised learning, method 2: Morfessor
 - Unsupervised learning, method 3: Byte pair encoding (BPE) and SentencePiece
 - Approach 4: Implicit modeling
 - Feature extraction in word embeddings (word2vec): FastText
 - Character-based models

- Linguistic theory
- Automatic morphological processing
 - Approach 1: Normalization or "Canonical forms"
 - Stemming
 - Lemmatization
 - Approach 2: Analysis and generation
 - Finite-state methods
 - Supervised machine learning: Morphological inflection
 - Approach 3: Segmentation
 - Unsupervised learning, method 1: Harris's method
 - Unsupervised learning, method 2: Morfessor
 - Unsupervised learning, method 3: Byte pair encoding (BPE) and SentencePiece
 - Approach 4: Implicit modeling
 - Feature extraction in word embeddings (word2vec): fastText
 - Character-based models

LINGUISTIC THEORY

10

11

- Morphology: Study (-logy) of shape and form (morpho)
- In linguistics:
 - Identification, analysis and description of the structure of words

- Morphology: Study (-logy) of shape and form (morpho)
- In linguistics:
 - Identification, analysis and description of the structure of words
- Word form vs. word lexeme:

Are "cat" and "cats" the same word or not?

- The same lexeme
- Different forms

- Morphology: Study (-logy) of shape and form (morpho)
- In linguistics:
 - Identification, analysis and description of the structure of words
- Word form vs. word lexeme:

Are "cat" and "cats" the same word or not?

- The same lexeme
- Different forms
- Traditional view: Grammar = morphology + syntax

- Morphology: Study (-logy) of shape and form (morpho)
- In linguistics:
 - Identification, analysis and description of the structure of words
- Word form vs. word lexeme:

Are "cat" and "cats" the same word or not?

- The same lexeme
- Different forms
- Traditional view: Grammar = morphology + syntax
- The morphological complexity of languages vary:
 - "punaviinipullossa" (Finnish) vs. "in the bottle of red wine"
 - "itsega" (Cherokee) vs. "you are all going"

Morphemes are

- "the smallest individually meaningful elements in the utterances of a language" (Charles F. Hockett, A Course in Modern Linguistics, 1958)
- "the primitive units of syntax, the smallest units that can bear meaning" (Peter H. Matthews, Morphology, 1991)
- "minimal meaningful form-units" (Robert de Beaugrande, A New Introduction to the Study of Text and Discourse, 2004)

16

Morphemes are

- "the smallest individually meaningful elements in the utterances of a language" (Charles F. Hockett, A Course in Modern Linguistics, 1958)
- "the primitive units of syntax, the smallest units that can bear meaning" (Peter H. Matthews, Morphology, 1991)
- "minimal meaningful form-units" (Robert de Beaugrande, A New Introduction to the Study of Text and Discourse, 2004)

Meaning elements (cats = CAT + PLURAL) or **form elements** (cats = cat + -s)?

Root: a portion of word without any affixes; carries the principal portion of meaning (buildings → build)

- Root: a portion of word without any affixes; carries the principal portion of meaning (buildings → build)
- **Stem:** a root, or compound of roots together with derivational affixes (buildings → building)

- Root: a portion of word without any affixes; carries the principal portion of meaning (buildings → build)
- Stem: a root, or compound of roots together with derivational affixes (buildings → building)
- Affix: a bound morpheme (does not occur by itself) that is attached before, after, or inside a root or stem
 - Prefix (un-happy)
 - Suffix (build-ing, happi-er)
 - Infix (abso-bloody-lutely)
 - Circumfix (ge-sproch-en)
 - Transfix (e.g., vowel patterns for consonant roots in Semitic languages: k-i-t-aa-b k-u-t-u-b)

- Root: a portion of word without any affixes; carries the principal portion of meaning (buildings → build)
- Stem: a root, or compound of roots together with derivational affixes (buildings → building)
- Affix: a bound morpheme (does not occur by itself) that is attached before, after, or inside a root or stem
 - Prefix (un-happy)
 - Suffix (build-ing, happi-er)
 - Infix (abso-bloody-lutely)
 - Circumfix (ge-sproch-en)
 - Transfix (e.g., vowel patterns for consonant roots in Semitic languages: k-i-t-aa-b k-u-t-u-b)
- Clitic: a bound (but more "independent") morpheme that has syntactic characteristics of a word (that's, hänkin)

MORPHOLOGICAL PROCESSES

Inflection:

- cat cats
- slow slower
- find found

Derivation:

- build (V) building (N)
- do (V) doable (ADJ)
- short (ADJ) shorten (V)
- write rewrite
- do undo

Compounding:

- fireman (fire + man)
- hardware (hard + ware)

MORPHOLOGICAL TYPOLOGY

Isolating or **analytic** (little or no morphology) vs.

synthetic (many morphemes per word)

漢汉語语

* Correct Latin: Romani ite domum

MORPHOLOGICAL TYPOLOGY

Isolating or **analytic** (little or no morphology)

VS.

synthetic (many morphemes per word)

Agglutinative (morphemes joined together to form words) vs.

fusional (overlaying of morphemes; difficult to segment)

漢汉語语

* Correct Latin: Romani ite domum

Different types of morphology in different languages:

EFFECT ON VOCABULARY SIZE

Varjokallio, Kurimo, Virpioja (2016)

Vocabulary growth estimated from Wikipedia

HOCKETT'S MODELS OF MORPHOLOGY

Three general approaches to the modeling of morphology (Charles F. Hockett, 1954):

- 1. Word-and-Paradigm
- 2. Item-and-Arrangement
- 3. Item-and-Process

WORD AND PARADIGM (W&P)

	Paradigms				
Grammatical form	1	II	Ш	IV	V
Infinitive	wait	invite	split	sell	take
Present tense, 3 rd person	waits	invites	splits	sells	takes
Present participle	waiting	inviting	splitting	selling	taking
Past tense	waited	invited	split	sold	took
Past participle	waited	invited	split	sold	taken

WORD AND PARADIGM (W&P)

		F	Paradigms		
Grammatical form	1	П	Ш	IV	V
Infinitive	wait	invite	split	sell	take
Present tense, 3 rd person	waits	invites	splits	sells	takes
Present participle	waiting	inviting	splitting	selling	taking
Past tense	waited	invited	split	sold	took
Past participle	waited	invited	split	sold	taken

New word forms by analogy:

$$\begin{array}{lll} \mathsf{shout} \to \mathsf{I} & \mathsf{like} \to \mathsf{II} & \mathsf{cut} \to \mathsf{III} \\ \\ \mathsf{tell} \to \mathsf{IV} & \mathsf{shake} \to \mathsf{V} \end{array}$$

The W&P model does not describe derivation or compounding.

ITEM & ARRANGEMENT (I&A)

I	II	Ш	IV	V
WAIT	INVITE	SPLIT	SELL	TAKE
WAIT $+$ -S	INVITE $+$ -S	SPLIT + -S	SELL + -S	TAKE + -S
WAIT $+$ -ING	INVITE + -ING	SPLIT + -ING	SELL + -ING	TAKE + -ING
WAIT $+$ -ED	INVITE $+$ -ED	SPLIT + -ED	SELL + -ED	TAKE + -ED
WAIT + -EN	INVITE + -EN	SPLIT + -EN	SELL + -EN	TAKE + -EN

ITEM & ARRANGEMENT (I&A)

1	II	III	IV	V
WAIT	INVITE	SPLIT	SELL	TAKE
WAIT $+$ -S	INVITE $+$ -S	SPLIT + -S	$_{\rm SELL+-S}$	TAKE + -S
WAIT $+$ -ING	INVITE + -ING	SPLIT + -ING	$_{\mathrm{SELL}}+-\mathrm{ING}$	TAKE + -ING
WAIT $+$ -ED	INVITE $+$ -ED	SPLIT + -ED	$_{\rm SELL}+{\rm ED}$	TAKE + -ED
WAIT + -EN	INVITE + -EN	SPLIT + -EN	SELL + -EN	TAKE + -EN

Morphemes and allomorphs:

```
WAIT = {wait}, INVITE = {invite, invit}, SPLIT = {split, splitt}, SELL = {sell, sol}, TAKE = {take, tak, took}, -S = {s}, -ING = {ing}, -ED = {ed, d, \varnothing}, and -EN = {ed, d, \varnothing}, en}
```

Morph (e.g., "splitt"):

 surface realization of a morpheme

Allomorphs (e.g., "split", "splitt"):

 different surface realizations of the same morpheme

ITEM & ARRANGEMENT (I&A)

1	II	III	IV	V
WAIT	INVITE	SPLIT	SELL	TAKE
WAIT $+$ -S	INVITE $+$ -S	SPLIT + -S	$_{\mathrm{SELL}}+-\mathrm{s}$	TAKE + -S
WAIT $+$ -ING	INVITE + -ING	SPLIT + -ING	$_{\mathrm{SELL}}+-\mathrm{ING}$	TAKE + -ING
WAIT $+$ -ED	INVITE $+$ -ED	SPLIT + -ED	$_{\rm SELL}+{\rm ED}$	TAKE + -ED
WAIT $+$ -EN	INVITE + -EN	SPLIT + -EN	SELL + -EN	TAKE + -EN

Morphemes and allomorphs:

WAIT = {wait}, INVITE = {invite, invit}, SPLIT = {split, splitt}, SELL = {sell, sol}, TAKE = {take, tak, took},
$$-s = {s}$$
, $-ING = {ing}$, $-ED = {ed, d, \varnothing}$, and $-EN = {ed, d, \varnothing}$, en}

Rules:

INVITE + -ING \rightarrow invit + ing = inviting SPLIT + -EN \rightarrow split + $\varnothing =$ split SELL + -EN \rightarrow sol + d = sold TAKE + -ED \rightarrow took + $\varnothing =$ took.

Morph (e.g., "splitt"):

 surface realization of a morpheme

Allomorphs (e.g., "split", "splitt"):

 different surface realizations of the same morpheme

31

ITEM & PROCESS (I&P)

- Items: Word forms, free morphemes (wait, invite, split, sell, take) and bound morphemes (-s, -ing, -ed, -en), all represented as lists of features (phonemic/orthographic form and grammatical categories).
- **Processes:** Operations that take one or more items and return a new item. Output and one of the inputs is always a free morpheme or word.

ITEM & PROCESS (I&P)

- Items: Word forms, free morphemes (wait, invite, split, sell, take) and bound morphemes (-s, -ing, -ed, -en), all represented as lists of features (phonemic/orthographic form and grammatical categories).
- **Processes:** Operations that take one or more items and return a new item. Output and one of the inputs is always a free morpheme or word.
 - Present_participle([stem]_V)
 - * add suffix -ing to stem
 - * drop final "e" from stem, if present: tak(e)+ing
 - * double final stem consonant if short syllable: split+t+ing

ITEM & PROCESS (I&P)

- Items: Word forms, free morphemes (wait, invite, split, sell, take) and bound morphemes (-s, -ing, -ed, -en), all represented as lists of features (phonemic/orthographic form and grammatical categories).
- **Processes:** Operations that take one or more items and return a new item. Output and one of the inputs is always a free morpheme or word.
 - Present_participle([stem]_V)
 - * add suffix -ing to stem
 - * drop final "e" from stem, if present: tak(e)+ing
 - * double final stem consonant if short syllable: split+t+ing
 - − Derivation_{ADJ-N}([stem]_{ADJ}, -ness) \rightarrow [stem-ness]_N
 - * e.g. $[black]_{ADJ} \rightarrow [blackness]_{N}$
 - Compound([stem1]_{ADJ}, [stem2]_N) → [stem1+stem2]_N
 - * e.g. $[black]_{ADJ} + [bird]_{N} \rightarrow [blackbird]_{N}$

AUTOMATIC MORPHOLOGICAL PROCESSING

APPROACHES IN MORPHOLOGICAL PROCESSING

- Normalization or "Canonical forms": identification of morphologically related word forms
 - Stemming
 - Lemmatization
- 2. Analysis and generation: full-blown morphological lexicons
- **3. Segmentation:** splitting of words into *morphs*
- 4. Implicit modeling: no explicit selection of morphs or morphemes at input level

Different applications (e.g., information retrieval, speech recognition, machine translation) have different needs.

APPROACH 1: NORMALIZATION OR "CANONICAL FORMS"

MORPHOLOGICAL "CANONICAL FORMS"

- Works both for agglutinative and fusional languages
- Applications that need to identify which word forms "are the same", without having to produce any correct word forms
- Useful in information retrieval

14/02/23

- Reduce inflected word forms to their stem; usually also derived forms to roots.
- Happens through suffix-stripping and reduction rules
- Stemmers for English: e.g., Porter (1980), Snowball: http://snowball.tartarus.org

STEMMING EXAMPLES

Sample text: Such an analysis can reveal features that are not easily visible from the variations in the individual genes and can lead to a picture of expression that is more biologically transparent and accessible to interpretation

Lovins stemmer: such an analys can reve featur that ar not eas vis from th vari in th individu gen and can lead to a pictur of expres that is mor biolog transpar and acces to interpres

Porter stemmer: such an analysi can reveal featur that ar not easili visibl from the variat in the individu gene and can lead to a pictur of express that is more biolog transpar and access to interpret

Paice stemmer: such an analys can rev feat that are not easy vis from the vary in the individ gen and can lead to a pict of express that is mor biolog transp and access to interpret

LIMITATIONS OF STEMMING

- Stemming is typically a much too simplified approximation
- Stemming fails to see connections between irregular forms or more complex phenomena
 - bring brought
 - swim swam swum
 - yksi yhden
 - tähti tähden
- Stemming finds connections between similar, but unrelated forms
 - sing singed
 - tähtien tähteiden

Canonical form 2:

LEMMATIZATION

- Reduce inflected word forms to lemmas
- Lemma = canonical form of the lexeme = dictionary form = base form
 - cat's → cat
 - swum → swim
 - tähtien → tähti
- More accurate than stemming
- Can be used in the same applications as stemming
- Often implemented as a by-product of full morphological analysis (= our "Approach 2" to be looked at next)

FULL MORPHOLOGICAL ANALYSIS

Examples:

cat's cat+N+GEN

swum swim+V+PPART

tähtien tähti N Gen Pl

tähteiden tähde N Gen Pl

epäjärjestyksessä epä#järjestys N Ine Sg

epäjärjestyksessäkö epä#järjestys N Ine Sg Foc_kO

LIMITATIONS OF MORPHOLOGICAL ANALYSIS

- Out-of-vocabulary words
 - epäjärjestelmällistyttämättömyydellänsäkäänköhän epäjärjestelmällistyttämättömyydellänsäkäänköhän+?

LIMITATIONS OF MORPHOLOGICAL ANALYSIS

- Out-of-vocabulary words
 - epäjärjestelmällistyttämättömyydelläänsäkäänköhän epäjärjestelmällistyttämättömyydelläänsäkäänköhän+?
- Ambiguous forms
 - saw
 see+V+PAST or saw+N or saw+V+INF ?
 - "I **saw** her yesterday." → SEE (verb)
 - "The **saw** was blunt." → SAW (noun)
 - "Don't **saw** off the branch you are sitting on." → SAW (verb)

LIMITATIONS OF MORPHOLOGICAL ANALYSIS

- Out-of-vocabulary words
 - epäjärjestelmällistyttämättömyydelläänsäkäänköhän epäjärjestelmällistyttämättömyydelläänsäkäänköhän+?
- Ambiguous forms
 - saw see+V+PAST or saw+N or saw+V+INF?
 "I saw her yesterday." → SEE (verb)
 "The saw was blunt." → SAW (noun)
 "Don't saw off the branch you are sitting on." → SAW (verb)
 - meeting meet+V+PROG or meeting+N ?
 "We are meeting tomorrow." → MEET (verb)
 "In our meeting, we decided not to meet again." → MEETING (noun)
- Solutions?

APPROACH 2: ANALYSIS AND GENERATION

FINITE-STATE MORPHOLOGY

Book:

Kenneth R. Beesley and Lauri Karttunen, Finite State Morphology, CSLI Publications, 2003

http://press.uchicago.edu/ucp/books/book/distributed/F/bo3613750.html

These are **rule-based systems**, i.e., computer programs written by linguists that model morphological lexicons of different languages.

FINITE-STATE MORPHOLOGY CONTRIBUTORS FROM FINLAND

Professor emeritus Kimmo Koskenniemi

Lauri Karttunen (Stanford university, Xerox Research etc.)

FINITE-STATE MORPHOLOGY SOFTWARE

- HFST Helsinki Finite-State Transducer Technology
 - Open source software and demos
 - Python interface also available
 - https://www.kielipankki.fi/tools/demo/cgi-bin/omor/omordemo.bash
- Lingsoft
 - Commercial licenses?

FINITE-STATE AUTOMATON

A finite-state automaton (FSA) – or finite automaton – is a network consisting of nodes, which represent states, and directed arcs connecting the states, which represent transitions between states. Every arc is labeled with a symbol that is consumed from input. State transitions can also take place without consuming any input; these transitions are called epsilon transitions.

From: http://www.tylerpalsulich.com/blog/2015/05/12/introduction-to-finite-state-automata/

FINITE STATE AUTOMATON FOR SOME FINNISH NOUNS WITH CASE ENDINGS

Accepts input strings such as: kisko, kiskoa, kiskolla, kiskolle, kissa, kissaa, kissakoulu, ...

The epsilon transition is written as "00" and does not consume any input.

OPTIMIZED FINITE STATE AUTOMATON OF FINNISH NOUNS WITH CASE ENDINGS

Produced using algorithms for epsilon removal, determinization and minimization of finite state networks.

FINITE-STATE TRANSDUCER

A finite-state transducer (FST) is a finite automaton for which each transition has an input label and an output label.

It recognizes whether the two strings are valid correspondences (or translations) of each other.

From: http://www-01.sil.org/pckimmo/v2/doc/Rules_2.html

FINITE STATE TRANSDUCER FOR SOME FINNISH NOUNS WITH CASE ENDINGS

Transduces (translates) between word forms as input and morphological analyses as output:

Input: kisko → Output: kisko+N+Sg+Nom

Input: kiskoa → Output: kisko+N+Sg+Ptv

Input: kiskolla → Output: kisko+N+Sg+Ade

Input: koululle → Output: koulu+N+Sg+All

Input: kissakoulua → Output: kissakoulu+N+Sg+Ptv

...

OPTIMIZED FINITE STATE TRANSDUCER FOR FINNISH NOUNS WITH CASE ENDINGS

14/02/23

MORPHOLOGICAL ANALYSIS VS. GENERATION

 You have seen how a finite state transducer can be used as a morphological analyzer:

```
Input: kisko → Output: kisko+N+Sg+Nom
Input: kiskoa → Output: kisko+N+Sg+Ptv
Input: kiskolla → Output: kisko+N+Sg+Ade
Input: koululle → Output: koulu+N+Sg+All
Input: kissakoulua → Output: kissakoulu+N+Sg+Ptv
```

. . .

 A morphological generator is simple to produce by inverting the transducer, such that input becomes output and vice versa:

```
Input: kisko+N+Sg+Ade → Output: kiskolla
Input: koulu+N+Sg+Ptv → Output: koulua
```


EXAMPLE OF SUPERVISED MACHINE LEARNING: MORPHOLOGICAL INFLECTION

• Learn morphological inflection patterns from tagged, incomplete data.

Cases\ Numbers	Singular	Plural	Cases \ Numbers	Singular	Plural
Nominative	susi	sudet	Nominative	käsi	?
Genitive	suden	?	Genitive	käden	käsien, kätten
Partitive	sutta	susia	Partitive	?	?
Inessive	sudessa	?	Inessive	kädessä	käsissä
Elative	?	susista	Elative	kädestä	?
Illative	suteen	susiin	Illative	?	käsiin
Adessive	?	?	Adessive	kädellä	?

Check out the SIGMORPHON shared tasks: https://sigmorphon.github.io/sharedtasks/

NEURAL MORPHOLOGICAL ANALYZER

susi+N+Sg+Ptv

Neural network

sutta

Neural network

sutta

Question #1: What type of "black box" do we use?

sutta

Question #1: What type of "black box" do we use?

Question #2: How do we represent the inputs and outputs?

sutta

Question #1: What type of "black box" do we use?

 Sequence to sequence modeling

Question #2: How do we represent the inputs and outputs?

Question #1: What type of "black box" do we use?

 Sequence to sequence modeling

Each letter is its own symbol and the tags are their own symbols

Question #2: How do we represent the inputs and outputs?

Question #1: What type of "black box" do we use?

 Sequence to sequence modeling

Each letter is its own symbol and the tags are their own symbols

Question #2: How do we represent the inputs and outputs?

Every symbol will correspond to a vector, called embedding, which will be learned during training.

APPROACH 3: SEGMENTATION

MORPHOLOGICAL SEGMENTATION

- Suitable for agglutinative languages; problems with fusional languages.
- Applications that need only the surface forms:
 - speech recognition, text prediction, language identification, etc.
- Can be considered as a labeling problem:

Binary labels for boundaries:

BIES label set:

• A related task is word segmentation for languages written without spaces between words; e.g., Chinese word segmentation.

EFFECT OF MORPH-LEVEL MODELING

- Proportion of out-of-vocabulary (OOV) units in different languages as a function of the training corpus size, estimated form the Europarl corpus
- By using morphs instead of words as basic units in the NLP system, the OOV rate is reduced.

- Train a model that predicts the label y_i of the current character x_i given the characters and the previous labels: $P(y_i | (x_0, ..., x_n); (y_0, ..., y_{i-1}))$
- E.g., Hidden Markov Models, Conditional Random Fields

Morphological segmentation:

UNSUPERVISED LEARNING, METHOD 1

- Zellig Harris proposed the first(?) unsupervised morpheme segmentation algorithm (1955)
- Computer experiment carried out in 1967
 - Test data consisted of 48 words...
- Principle:
 - Morpheme boundaries are proposed at intra-word locations with a peak in successor and predecessor variety.
 - Demonstrated on the next slides.

Zellig Harris's morpheme segmentation model:

SUCCESSOR VARIETY

Test word:	Corpus:	Prefix	Successor variety
readable	able		
	ape		
	beatable		
	fixable		
	read		
	readable		
	reading		
	reads		
	red		
	rope		
	ripe		

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

14/02/23

71

Zellig Harris's morpheme segmentation model:

SUCCESSOR VARIETY

Test word:	Corpus:
readable	able
	ape
	beatable
	fixable
	r <u>e</u> ad
	r <u>e</u> adable
	r <u>e</u> ading
	r <u>e</u> ads
	r <u>e</u> d

Prefix	Successor variety		
r	3	e, o, i	

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

r<u>o</u>pe

r<u>i</u>pe

14/02/23

72

SUCCESSOR VARIETY

Test word: readable

Corpus:

able ape

beatable

fixable

read

re<u>a</u>dable

reading

reads

re<u>d</u>

rope

ripe

Prefix	Successor variety	
r	3	e, o, i
re	2	a, d

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

14/02/23

SUCCESSOR VARIETY

Test word: readable

Corpus:

able

ape

beatable

fixable

rea<u>d</u>

rea<u>d</u>able

rea<u>d</u>ing

rea<u>d</u>s

red

rope

ripe

Prefix	Successor variety	
r	3	e, o, i
re	2	a, d
rea	1	d

SUCCESSOR VARIETY

Test word: readable

Corpus:

able

ape

beatable

fixable

read_

read<u>a</u>ble

reading

read<u>s</u>

red

rope

ripe

Prefix	Successor variety	
r	3	e, o, i
re	2	a, d
rea	1	d
read	3*	a, i, s

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

14/02/23

SUCCESSOR VARIETY

Test word: readable

Corpus:

able

ape

beatable

fixable

read

reada<u>b</u>le

reading reads

red

rope

ripe

Prefix	Successor variety	
r	3	e, o, i
re	2	a, d
rea	1	d
read	3*	a, i, s 🗲
reada	1	b

peak here successor variety higher than before and after

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

14/02/23

SUCCESSOR VARIETY

Test word: readable

Corpus:

able

ape

beatable

fixable

read

readab<u>l</u>e

reading reads

red

rope

ripe

Prefix	Successor variety	
r	3	e, o, i
re	2	a, d
rea	1	d
read	3*	a, i, s
reada	1	b
readab	1	I

SUCCESSOR VARIETY

Test word: readable

Corpus:

able

ape

beatable

fixable

read

readabl<u>e</u>

reading reads

red

rope

ripe

Prefix	Successor variety	
r	3	e, o, i
re	2	a, d
rea	1	d
read	3*	a, i, s
reada	1	b
readab	1	I
readabl	1	е

SUCCESSOR VARIETY

Test word: readable

Corpus:

able

ape

beatable

fixable

read

readable_

reading reads

red

rope

ripe

Prefix	Successor variety	
r	3	e, o, i
re	2	a, d
rea	1	d
read	3*	a, i, s
reada	1	b
readab	1	I
readabl	1	е
readable	1*	-

PREDECESSOR VARIETY

Test word:	Corpus:	Suffix	x Predecessor variety
readable	able		
	ape		
	beatable		
	fixable		
	read		
	readable		
	reading		
	reads		
	red		
	rope		
	ripe		

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

14/02/23

PREDECESSOR VARIETY

Test word: Corpus: readable able

a<u>p</u>e

beatab<u>l</u>e

fixab<u>l</u>e

read

readab<u>l</u>e

reading

reads

red

rope

ri<u>p</u>e

Suffix	Predecessor variety	
е	2	l, p

PREDECESSOR VARIETY

Test word: readable

Corpus:

a<u>b</u>le ape

beata<u>b</u>le

fixa<u>b</u>le

read

reada<u>b</u>le

reading

reads

red

rope

ripe

Suffix	Predecessor variety	
е	2	l, p
le	1	b

PREDECESSOR VARIETY

Test word: readable

Corpus:

<u>a</u>ble

ape

beat<u>a</u>ble

fix<u>a</u>ble

read

readable

reading

reads

red

rope

ripe

Suffix	Predecessor variety	
е	2	l, p
le	1	b
ble	1	а

PREDECESSOR VARIETY

Test word: readable

Corpus:

_able ape

bea<u>t</u>able

fi<u>x</u>able read

rea<u>d</u>able

reading

reads red

rope

ripe

Suffix	Predecessor variety	
е	2	l, p
le	1	b
ble	1	а
able	3*	d, t, x

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

14/02/23

PREDECESSOR VARIETY

Test word: readable

Corpus:

able

ape

beatable

fixable

read

re<u>a</u>dable

reading reads

red

rope

ripe

Suffix	Predecessor variety		
е	2	l, p	
le	1	b	
ble	1	а	
able	3*	d, t, x 🔸	
dable	1	а	

peak here predecessor variety higher than before and after

PREDECESSOR VARIETY

Test word: readable

Corpus:

able

ape

beatable

fixable

read

r<u>e</u>adable

reading reads

red

rope

ripe

Suffix	Predecessor variety		
е	2	l, p	
le	1	b	
ble	1	a	
able	3*	d, t, x	
dable	1	a	
adable	1	е	

From: Hafer & Weiss: Word segmentation by letter successor varieties (1974)

14/02/23

PREDECESSOR VARIETY

Test word: readable

Corpus:

able

ape

beatable

fixable

read

<u>r</u>eadable

reading reads

red

rope

ripe

Suffix	Predecessor variety		
е	2	l, p	
le	1	b	
ble	1	a	
able	3*	d, t, x	
dable	1	a	
adable	1	е	
eadable	1	r	

PREDECESSOR VARIETY

Test word: readable

Corpus:

able

ape

beatable

fixable

read

_readable

reading

reads

red

rope

ripe

Suffix	Predecessor variety		
е	2	l, p	
le	1	b	
ble	1	a	
able	3*	d, t, x	
dable	1	a	
adable	1	е	
eadable	1	r	
readable	1*	-	

INSERT A BOUNDARY WHERE THE PEAKS "MEET"

Morphological segmentation:

UNSUPERVISED LEARNING, METHOD 2

- We want to send a vocabulary (= word list) of some language over a channel with limited band-width.
- We want to compress the vocabulary.
- What regularities can we exploit?
- What about morphemes, the smallest meaning-bearing units of language?
- The method is called *Morfessor* (Creutz & Lagus, 2002)

aamu aamua aamuaurinko aamukahvi aamuksi aamulehti aamulla aamun aamunaamasi aamupalalla aamupalan aamupostia aamupäivä aamupäivällä aamuyö aamuyöllä aamuyöstä

aamu aamu a aamu aurinko aamu kahvi aamu ksi aamu lehti aamu lla aamu n aamu naama si aamu pala 11a aamu pala n aamu posti a aamu päivä aamu päivä llä aamu yö aamu yö llä aamu yö stä

TWO-PART CODE

- Instead of sending over the vocabulary as it is, we split it into two parts:
 - 1. a fairly compact lexicon of morphs: "aamu", "aurinko", "ksi", "lla", ...
 - 2. the word vocabulary expressed as sequences of morphs

91

TWO-PART CODE

- Instead of sending over the vocabulary as it is, we split it into two parts:
 - 1. a fairly compact lexicon of morphs: "aamu", "aurinko", "ksi", "lla", ...
 - 2. the word vocabulary expressed as sequences of morphs
- Since we are doing unsupervised learning, we do not know the correct answer.
- Our target is to minimize the combined code length of:
 - 1. the code length of the morph lexicon
 - 2. plus the code length of the word vocabulary expressed using the morph lexicon.

TWO-PART CODE

- Instead of sending over the vocabulary as it is, we split it into two parts:
 - 1. a fairly compact lexicon of morphs: "aamu", "aurinko", "ksi", "lla", ...
 - 2. the word vocabulary expressed as sequences of morphs
- Since we are doing unsupervised learning, we do not know the correct answer.
- Our target is to minimize the combined code length of:
 - 1. the code length of the morph lexicon
 - 2. plus the code length of the word vocabulary expressed using the morph lexicon.
- There are two theories that operate on two-part codes like this:
 - (Two-part code version of) Minimum Description Length (MDL)
 - Minimum Message Length (MML)

CODE LENGTH OF THE MORPH LEXICON

- Let us assume, for simplicity, that there are 32 different letters in our alphabet.
- This means we need 5 bits to encode one letter, because $2^5 = 32$:
 - The letter 'a' could have the code 00000.
 - The letter 'b' could have the code 00001.
 - The letter 'c' could have the code 00010.
 - The letter 'd' could have the code 00011, etc.

CODE LENGTH OF THE MORPH LEXICON

- Let us assume, for simplicity, that there are 32 different letters in our alphabet.
- This means we need 5 bits to encode one letter, because $2^5 = 32$:
 - The letter 'a' could have the code 00000.
 - The letter 'b' could have the code 00001.
 - The letter 'c' could have the code 00010.
 - The letter 'd' could have the code 00011, etc.
- We could send over a four-morph lexicon as the following string:
 aamu#aurinko#ksi#lla## (binary: 00000000001000 ...)
- Here we use the hash tag '#' as a morph separator and use two hash tags '##' to indicate that the lexicon ends.
- The lexicon string contains 22 characters.
- Thus, the code length of this lexicon is 22 * 5 bits = 110 bits.

CODE LENGTH OF THE CORPUS (1)

- Each word in our word vocabulary (or hereafter called corpus) is expressed as a concatenation of morphs:
 - aamu is expressed as Morph1 + EoW (= End of Word)
 - aamuksi is expressed as Morph1 + Morph3 + EoW
 - aamulla is expressed as Morph1 + Morph4 + EoW
 - aamuaurinko is expressed as Morph1 + Morph2 + EoW
- How are the symbols (or "variables") Morph1, Morph2, etc encoded?

CODE LENGTH OF THE CORPUS (2)

- For instance, if there were 64 different morphs, and all morphs were as frequently used, we could use a fixed 6-bit code for every morph (because $2^6 = 64$).
 - The first morph would have the code 000000.
 - The second morph would have the code 000001.
 - The third morph would have the code 000010.
 - The fourth morph would have the code 000011, etc.

CODE LENGTH OF THE CORPUS (2)

- For instance, if there were 64 different morphs, and all morphs were as frequently used, we could use a fixed 6-bit code for every morph (because $2^6 = 64$).
 - The first morph would have the code 000000.
 - The second morph would have the code 000001.
 - The third morph would have the code 000010.
 - The fourth morph would have the code 000011, etc.
- However, the morph distribution of a natural language is not uniform at all:
 - Some morphs are very frequent, such as 'ksi' and 'lla'.
 - Other morphs are infrequent, such as 'aurinko'.

CODE LENGTH OF THE CORPUS (3)

- Suppose that our morph-segmented "corpus" (= word vocabulary) consists of 8 words and looks like this.
 - The underscore '_' represents the end-ofword morph.

- In this segmentation there are 32 morph tokens, representing 16 different morph types.
 - The morph frequencies are as follows:

```
aamu aurinko a _ aamu ksi ko _ aamu lla kin han _ aamu pala lla _ pala a _ pala ksi _ posti n kulje t us _ suu pala _
```

8 _	1 kulje
2 a	2 lla
4 aamu	1 n
1 aurinko	4 pala
1 han	1 posti
1 kin	1 suu
1 ko	1 t
2 ksi	1 us

CODE LENGTH OF THE CORPUS (4)

- It turns out that the optimal code length of a symbol is the **negative logprob** (with base 2) of the symbol in the data.
 - The probability of a symbol is the frequency of the symbol in the data divided by the total frequency of all symbols in the data.
 - For instance, Prob("aamu") = 4/32 = 1/8 = 0.125.
 - The negative logprob of a symbol is: -log₂ Prob(symbol)
 - For instance, neglogprob("aamu") = $-\log_2 1/8 = \log_2 8 = 3$ (because $2^3 = 8$)
 - Frequent morphs will have shorter codes than rare morphs.

CODE LENGTH OF THE CORPUS (4)

- It turns out that the optimal code length of a symbol is the **negative logprob** (with base 2) of the symbol in the data.
 - The probability of a symbol is the frequency of the symbol in the data divided by the total frequency of all symbols in the data.
 - For instance, Prob("aamu") = 4/32 = 1/8 = 0.125.
 - The negative logprob of a symbol is: -log₂ Prob(symbol)
 - For instance, neglogprob("aamu") = $-\log_2 1/8 = \log_2 8 = 3$ (because $2^3 = 8$)
 - Frequent morphs will have shorter codes than rare morphs.
- The code needs to be a so-called prefix code in order to be unambiguous:
 - When symbols have different code lengths, it must be clear to the decoder at every time how many bits to expect for that symbol.
 - For instance, if there is one symbol that has code length = 2, then it could have the code '00'.
 - This means that no other symbol is allowed to have a code that starts with '00', because then this prefix would be ambiguous, and the system would not know when the whole symbol has been read.
- · Let's do the maths for our morph set...

CODE LENGTH OF THE CORPUS (5)

Morph	Frequency	Probability	Neglogprob	Binary prefix code	Morph	Frequency	Probability	Neglogprob	Binary prefix code
_	8	0.25	2	<u>00</u>	kin	1	0.03125	5	<u>11</u> 000
aamu	4	0.125	3	<u>01</u> 0	ko	1	0.03125	5	<u>11</u> 001
pala	4	0.125	3	<u>01</u> 1	kulje	1	0.03125	5	<u>11</u> 010
а	2	0.0625	4	<u>100</u> 0	n	1	0.03125	5	<u>11</u> 011
ksi	2	0.0625	4	<u>100</u> 1	posti	1	0.03125	5	<u>11</u> 100
lla	2	0.0625	4	<u>1010</u>	suu	1	0.03125	5	<u>11</u> 101
aurinko	1	0.03125	5	<u>1011</u> 0	t	1	0.03125	5	<u>11</u> 110
han	1	0.03125	5	<u>1011</u> 1	us	1	0.03125	5	<u>11</u> 111

In the "Binary prefix code" columns above I have underlined the part of the code, after which the decoder knows how long the code for that symbol is.

CODE LENGTH OF THE CORPUS (6)

The code for our corpus is thus:
 0101011010000001010011100100...

• The total code length of the corpus is:

```
8 * 2 bits + (4 + 4) * 3 bits
+ (2 + 2 + 2) * 4 bits + 10 * 5 bits
= 114 bits
```

```
aamu aurinko a _ aamu ksi ko _ aamu lla kin han _ aamu pala lla _ pala a _ pala ksi _ posti n kulje t us _ suu pala _
```

8 _	1 kulje
2 a	2 lla
4 aamu	1 n
1 aurinko	4 pala
1 han	1 posti
1 kin	1 suu
1 ko	1 t
2 ksi	1 us

TO CONSIDER

- In real situations, we don't get tidy integer-number code lengths, such as 2, 3, 4 in the example above.
- Instead, we can get any real-valued number of bits, such as 5.37 or 1.111.
 - There is a proof by Jorma Rissanen (the inventor of MDL) that this does not matter.
- Also, the base of the logarithm does not matter either: we don't have to calculate in bits (with base 2), but can use **nats** (with base e for the natural logarithm).
- Furthermore, we are not really interested in the actual codes of our symbols, because we are not building an encoder/decoder.
 - We use this encode-decode methodology as a "metaphor" to learn a morph segmentation in an unsupervised way.
 - Maximum A Posteriori (MAP) optimization is a fully equivalent method that does not deal with code lengths at all, just plain probabilities.
- Also on the lexicon side, we could have used variable-length codes instead of fixed-length codes for the letters of the alphabet.
- There are other parts of the mathematical formulation that I have been left out, for simplicity.

HOW TO FIND THE BEST SEGMENTATION

- We use a search algorithm that tests different morph segmentations and calculates the two-part code length: code length of lexicon plus code length of corpus.
- The algorithm stops when it has reached a minimum, the shortest code length it can find.

DIFFERENT MORPH SPLITTING SCENARIOS

- 1. The algorithm splits every word into individual letters, such as: a a m u p a 1 a
 - The code length of the lexicon will be very small, because it only contains 32 morphs: every letter of the alphabet is its own morph.
 - The code length of the corpus will be large, because it consists of a very high number of morph symbols.
 - As a consequence, the combined code length will be fairly large.

DIFFERENT MORPH SPLITTING SCENARIOS

- 1. The algorithm splits every word into individual letters, such as: a a m u p a 1 a
 - The code length of the lexicon will be very small, because it only contains 32 morphs: every letter of the alphabet is its own morph.
 - The code length of the corpus will be large, because it consists of a very high number of morph symbols.
 - As a consequence, the combined code length will be fairly large.
- 2. The algorithm does not split any word at all; each word is its own morph, such as aamupala.
 - The code length of the corpus will be fairly small, because it contains the smallest number of morph symbols possible.
 - The code length of the lexicon will be large, because every word form is there as its own morph.
 - As a consequence, the combined code length will be fairly large.

DIFFERENT MORPH SPLITTING SCENARIOS

- 1. The algorithm splits every word into individual letters, such as: a a m u p a 1 a
 - The code length of the lexicon will be very small, because it only contains 32 morphs: every letter of the alphabet is its own morph.
 - The code length of the corpus will be large, because it consists of a very high number of morph symbols.
 - As a consequence, the combined code length will be fairly large.
- 2. The algorithm does not split any word at all; each word is its own morph, such as aamupala.
 - The code length of the corpus will be fairly small, because it contains the smallest number of morph symbols possible.
 - The code length of the lexicon will be large, because every word form is there as its own morph.
 - As a consequence, the combined code length will be fairly large.
- 3. Balanced morph splitting, such as: aamu pala.
 - The shortest combined code length is achieved by an optimal balance (a "compromise"): not the shortest possible lexicon, nor the shortest possible representation of the corpus.

Morfessor:

DOES THIS WORK?

English example output from (the earliest context-insensitive version of) *Morfessor*, which corresponds fairly closely to the model described above:

abandon ed						
abandon ing						
abb						
abb y						
ab del						
able						
ab normal						
a board						
ab out						
a broad						
ab rupt ly						
ab s ence						
ab s ent						
ab s ent ing						

ah a a 1 b a					
absolute					
absolute ly					
absorb					
absorb ing					
absurd					
absurd ity					
ab t					
a bu					
abuse					
abuse d					
abuse r s					
abuse s					
ab y s s					
ac cent					

differ
differ ence
differ ence s
differ ent
differ ent ial
differ ent ly
differ ing
difficult
difficult ies
difficult y
dig
dig est
dig it al
dig li pur

present ed
present ing
present ly
present s
pre serve
pre serve s
provide s
pro vi d ing
pull ed
pull ers
pull ing
pump
pump ed

Morfessor: **ERROR ANALYSIS**

Morphs that make sense in some context appear in contexts where they don't really belong. There are also instances of over- and undersegmentation

abandon ed abandon ina abb abb (y) ab del able ab normal a board ab out a broad ab runt lv ab s ence ab s ent ab s ent ing

absolute absolute ly absorb absorb ing absurd absurd itv ab t a bu apuse abuse d abuse r s abuse . ab(v s ac cent

differ differ ence differ ence s differ ent differ ent ial differ ent ly differ ing difficult difficult ies difficult y dig dig est dig it dig li pur

present ed present ing present ly present s pre serve pre serve s provide s pro vi(d) ina pull ed pull ers pull ing pump pump ed pump inq

110

Morfessor: IMPROVED MODEL

Software available at: http://www.cis.hut.fi/projects/morpho/

- A later context-sensitive version of Morfessor introduces three categories: stem (STM), prefix (PRE) and suffix (SUF) that each morph must belong to.
- A word form must have the structure of the following regular expression: (PRE* STM SUF*)+
- From the updated examples below, you can see that many issues have been fixed, but the model is still fairly crude; for instance, it suggests two consecutive s-suffixes in the word "abyss": aby s s.

abandon/STM ed/SUF
abandon/STM ing/SUF
abb/STM
abby/STM
abdel/STM
able/STM
able/STM
ab/STM normal/STM
aboard/STM
aboard/STM
about/STM
abroad/STM
abrupt/STM ly/SUF
absence/STM
absent/STM
absent/STM ing/SUF

absolute/STM ly/SUF absorb/STM ing/SUF absorb/STM ing/SUF absurd/STM ity/SUF abt/STM abuse/STM abuse/STM abuse/STM d/SUF ab/STM users/STM abuse/STM s/SUF aby/STM s/SUF s/SUF accent/STM

differ/STM ence/STM
differ/STM ence/STM s/SUF
different/STM ence/STM s/SUF
different/STM
differential/STM
different/STM ly/SUF
differ/STM ing/SUF
difficult/STM i/SUF es/SUF
difficult/STM y/SUF
dig/STM
digest/STM
digital/STM
diglipur/STM

present/STM ed/SUF
present/STM ing/SUF
present/STM ly/SUF
present/STM s/SUF
preserv/STM e/SUF
preserv/STM e/SUF
provide/STM s/SUF
provide/STM s/SUF
provi/STM ding/STM
pull/STM ed/SUF
pull/STM er/SUF s/SUF
pull/STM ing/SUF
pump/STM
pump/STM ed/SUF

Pragmatic segmentation approach:

METHOD 3: BYTE PAIR ENCODING (BPE)

- Simple data compression algorithm (like Morfessor)
- Repeat in multiple steps: The *most common* pair of consecutive bytes (characters) of data is replaced with a byte (character) that does not occur within that data:
 - 1. aaabdaaabac
 - 2. Z = aa -> ZabdZabac
 - 3. Y = ab, Z = aa -> ZYdZYac
 - 4. X=ZY, Y = ab, Z = aa -> XdXac
- Stop when you have reached the number of **subword units** you want or when there is no byte pair that occurs more than once.

For more info, see Wikipedia, Philip Gage (1994) or Sennrich, Haddow, and Birch (2016).

SUBWORD UNITS OBTAINED USING BPE OFTEN USED AS INPUT VECTORS TO NEURAL NETWORKS

• For instance, the widely used neural language model BERT creates input embeddings based on a BPE segmentation, even for English input:

Extension of BPE:

METHOD 3++: SENTENCE PIECE

- Supports two segmentation algorithms: BPE and a unigram language model
- Whitespace is treated as a basic symbol
 - · Raw text: Hello world.
 - Tokenized: [Hello] [_wor] [ld] [.]
 - Raw text: こんにちは世界。(Hello world.)
 - Tokenized: [こんにちは] [世界] [。]

For more info, see https://github.com/google/sentencepiece

Extension of BPE:

METHOD 3++: SENTENCE PIECE

Sampling of multiple alternatives

```
>>> import sentencepiece as spm
>>> s = spm.SentencePieceProcessor(model_file='spm.model')
>>> for n in range(5):
... s.encode('New York', out_type=str, enable_sampling=True, alpha=0.1, nbest=-1)
...
['-', 'N', 'e', 'w', '-York']
['-', 'New', '-York']
['-', 'New', '-Y', 'o', 'r', 'k']
['-', 'New', '-York']
['-', 'New', '-York']
```

For more info, see https://github.com/google/sentencepiece

APPROACH 4: IMPLICIT MODELING

116

FASTTEXT: OVERLAPPING SUB-WORD SEGMENTS

- The fastText model is based on the skipgram model of the word2vec package.
- In fastText, word embeddings are created by summing overlapping subword vectors together.
- Also a vector for the whole word is included, if available (not possible for OOV words).

Piotr Bojanowski, Edouard Grave, Armand Joulin and Tomas Mikolov: <u>Enriching Word Vectors with Subword Information</u>. Transactions of the Association for Computational Linguistics, Vol 5, 2017.

FASTTEXT: OVERLAPPING SUB-WORD SEGMENTS

Each word w is represented as a bag of character n-gram. We add special boundary symbols < and > at the beginning and end of words, allowing to distinguish prefixes and suffixes from other character sequences. We also include the word w itself in the set of its n-grams, to learn a representation for each word (in addition to character n-grams). Taking the word where and n=3 as an example, it will be represented by the character n-grams:

<wh, whe, her, ere, re>
and the special sequence

<where>.

Note that the sequence <her>, corresponding to the word *her* is different from the tri-gram her from the word *where*. In practice, we extract all the n-grams for n greater or equal to 3 and smaller or equal to 6.

- The fastText model is based on the skipgram model of the word2vec package.
- In fastText, word embeddings are created by summing overlapping subword vectors together.
- Also a vector for the whole word is included, if available (not possible for OOV words).

Piotr Bojanowski, Edouard Grave, Armand Joulin and Tomas Mikolov: <u>Enriching Word Vectors with Subword Information</u>. Transactions of the Association for Computational Linguistics, Vol 5, 2017.

FAST TEXT: OVERLAPPING SUB-WORD SEGMENTS

	word		n-grams	
	autofahrer	fahr	fahrer	auto
	freundeskreis	kreis	kreis>	<freun< td=""></freun<>
DE	grundwort	wort	wort>	grund
	sprachschule	schul	hschul	sprach
	tageslicht	licht	gesl	tages
En	anarchy	chy	<anar< td=""><td>narchy</td></anar<>	narchy
	monarchy	monarc	chy	<monar< td=""></monar<>
	kindness	ness>	ness	kind
	politeness	polite	ness>	eness>
	unlucky	<un< td=""><td>cky></td><td>nlucky</td></un<>	cky>	nlucky
	lifetime	life	life	time
	starfish	fish	fish>	star
	submarine	marine	sub	marin
	transform	trans	<trans< td=""><td>form</td></trans<>	form
FR	finirais	ais>	nir	fini
	finissent	ent>	finiss	<finis< td=""></finis<>
	finissions	ions>	finiss	sions>

Table 6: Illustration of most important character n-grams for selected words in three languages. For each word, we show the n-grams that, when removed, result in the most different representation.

Piotr Bojanowski, Edouard Grave, Armand Joulin and Tomas Mikolov: <u>Enriching Word Vectors with Subword Information</u>. Transactions of the Association for Computational Linguistics, Vol 5, 2017.

FASTTEXT: OVERLAPPING SUB-WORD SEGMENTS

Figure 2: Illustration of the similarity between character n-grams in out-of-vocabulary words. For each pair, only one word is OOV, and is shown on the x axis. Red indicates positive cosine, while blue negative.

CHARACTER-LEVEL EMBEDDINGS

- No morphology used!
- The neural network learns what it needs (hopefully...) about the internal structure of words.
- Each character (letter) is treated as its own "word" vector.
- Computationally heavy but some people believe this will be the standard approach in the future.

THE END

122

THANK YOU!