ПРЕДСТАВИМЫЕ ВЫЧИСЛИТЕЛЬНЫЕ МОДЕЛИ. МОДЕЛЬ А.М. ТЬЮРИНГА

ПЛАН ЛЕКЦИИ

- 1. Заслуги А.М. Тьюринга в становлении и развитии теории алгоритмов
- 2. Содержательное описание машины Тьюринга
- 3. Формальное описание машины Тьюринга
- 4. Конфигурации машины Тьюринга
- 5. Вычислимость в сильном и слабом смыслах
- 6. Пример машины Тьюринга для вычислений в сильном смысле
- 7. Пример машины Тьюринга для вычислений в слабом смысле
- 8. Теоремы, связанные с вычислительной моделью Тьюринга
- 9. Тезис Тьюринга
- 10. Синтез машин Тьюринга

ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ (МАШИНА) ТЬЮРИНГА.

1. Заслуги А.М. Тьюринга (1)

Статья А.М. Тьюринга "О вычислимых числах в приложении к теории разрешения" была опубликована в сборнике трудов Лондонского математического общества. Turing A.M. On computable numbers, with an application to the Entscheidungsproblem // Proc. London Math. Soc., ser. 2-1936.-v.42.-N = 3-4, p.230 -265.

Задача доказательства непротиворечивости системы аксиом обычной арифметики – нахождение общего метода определения выполнимости заданного высказывания на языке формальной логики

ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ (МАШИНА) ТЬЮРИНГА. 1. Заслуги А.М. Тьюринга (2)

"… Работая над проблемой Гильберта, Тьюрингу пришлось дать чёткое определение самого понятия метода. Отталкиваясь от интуитивного представления о методе как о некоем алгоритме, т.е. процедуре, которая может быть выполнена механически, без творческого вмешательства, он показал, как эту идею можно воплотить в виде подробного механического процесса. Полученная модель вычисления, в которой каждый алгоритм разбивался на последовательности элементарных шагов, и была логической конструкцией, названной, в последствии, машиной Тьюринга…"

Дж. Хопкрофт

ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ (МАШИНА) ТЬЮРИНГА.

- 2. Содержательное описание машины А.М. Тьюринга:
- (1) машина имеет бесконечную вправо ленту с ячейками;
- (2) в каждой из ячеек может быть записан символ из [рабочего] алфавита A;
- (3) машина имеет головку чтения/записи;
- (4) машина имеет устройство управления (УУ), которое может находиться в одном из состояний множества Q;
- (5) множества A и Q могут быть уникальны для каждой машины Тьюринга;
- (6) ячейка, напротив которой находится головка чтения/записи, называется обозреваемой ячейкой, а символ, в ней обозреваемым символом;
- (7) действия машины на любом шаге **однозначно** определяется *обозреваемым* cимволом $a_i \in A$ и состоянием УУ $q_i \in Q$;
- (8) сущность действия заключается в
- записи в ячейку символа $a_i \in A$ (возможно того, что был ранее);
- смене состояния УУ $q_i \in Q$ (возможно остаться в старом);
- сдвиге ленты (влево, вправо либо отсутствие продвижения);
- (9) имеются начальное q_1 и заключительное q_0 состояния УУ.

3. Формальное описание машины А.М. Тьюринга (1)

Машина Тьюринга описывается тройкой объектов T(A, O, P), где

- A алфавит, конечное множество символов ленты, среди которых есть ε (λ или 0) пустой символ;
- Q конечное множество состояний устройства управления, среди которых особо выделены два: начальное q_1 и заключительное q_0 ;
- *P* функция переходов или программа множество, элементами которых являются команды.

Команда задаёт отображения пары декартова произведения $Q\otimes A$ в тройку декартова произведения $Q\otimes A\otimes \{L,R,S\}$, где третьим компонентом представлены операции с головкой чтения/записи:

- L -сдвиг левый,
- R сдвиг правый,
- S запрет транспорта, иногда S может опускаться.

ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ (МАШИНА) ТЬЮРИНГА.

3. Формальное описание машины А.М. Тьюринга (2)

Пусть в алфавите $A=\{a_0,\,a_1,\,...,\,a_n\}\;(a_0\equiv\varepsilon)$, n символов, а множество состояний $Q=\{q_0,\,q_1,\,...,\,q_m\}$, то команда есть

$$P_{i,j} = q_i a_j \rightarrow q_k a_l L;$$

$$P_{i,j} = q_i a_i \rightarrow q_k a_l R$$
 либо

$$P_{i,j} = q_i a_j \rightarrow q_k a_l S \equiv P_{i,j} = q_i a_j \rightarrow q_k a_l;$$

$$i = 0 \dots m; j = 0 \dots n; k = 0 \dots m; l = 0 \dots n.$$

Понимать команды следует так. Если:

- машина находится в состоянии q_i ;
- обозреваемый символ a_j

то:

- следует записать символ a_l на место обозреваемого;
- перевести машину в состояние q_k ;
- осуществить предписываемую манипуляции с головкой считывания/записи.

3. Формальное описание машины А.М. Тьюринга (3)

При алфавите $A = \{a_0, a_1, ..., a_n\}$ и состояниях $Q = \{q_0, q_1, ..., q_m\}$ программа состоит из $m \times (n+1)$ команд, т.к. должна быть только одна команда для каждого состояния $q_i \in Q \setminus \{q_0\}$, которая начинается $q_i a_i$.

- Решаемая проблема(задача) представлена конечным числом символов подмножества $\Sigma \subseteq A$ на ленте.
- Машина переводится в начальное состояние.
- Головка считывания/записи на крайний левый непустой символ ленты
- Запускается программа.
- Если головка RW в крайней левой позиции и следует команда L, следует безусловный отказ.
- Возможны различные договорённости, что считать отказом либо результатом вычислений в состоянии q_0 .

$igg egin{array}{ c c c c c c c c c c c c c c c c c c c$		arepsilon	S_n		S_{i+1}	S_{i}	S_{i-1}		S_1	ε	
---	--	-----------	-------	--	-----------	---------	-----------	--	-------	---	--

ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ (МАШИНА) ТЬЮРИНГА.

4. Конфигурации машины А.М. Тьюринга (1)

Имеется машина Тьюринга вида $\Theta = \{\{\varepsilon, 1\}; \{q_0, q_1, q_2\}; P\}$, где $P = \{q_1 \varepsilon \rightarrow q_2 \varepsilon R;$ $q_1 1 \rightarrow q_0 1$; (2) (3) $q_2 \varepsilon \rightarrow q_0 1$; $q_2 1 \rightarrow q_2 1R;$ Конфигурация (машинное слово,

мгновенное описание) - тройка, состоящая из

- состояния q_r ;
- положения головки на ленте;
- содержимого ленты.

У нас конфигурации: $\varepsilon q_1 \varepsilon 1 \varepsilon 1$, $\varepsilon \varepsilon q_2 1 \varepsilon 1$, $\varepsilon \varepsilon 1 q_2 \varepsilon 1$, $\varepsilon \varepsilon 1 q_0 1 1$

4. Конфигурации машины А.М. Тьюринга (2)

Пусть k – конфигурация некоторой машины T, из которой возможен переход за один шаг в состояние k^{∇} .

Конфигурация k^{∇} будет *определена*, если

- состояние устройство управления будет отлично от q_0 , и
- программа не потребует сдвига за край ленты.

Считается, что машина T **переработает** конфигурацию k в конфигурацию l

$$k \Rightarrow_T l$$
,

если существует последовательностей конфигураций k_0, k_1, \ldots, k_r , такие, что $k_0 = k, k_r = l$ и для всех i < r определён переход $k_{i+1} = (k_i)^{\nabla}$.

То есть, машина T перерабатывает конфигурацию k в конфигурацию l, если последняя может быть получена из k за несколько шагов работы машины.

ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ (МАШИНА) ТЬЮРИНГА.

5. Вычислимость в сильном и слабом смыслах (1)

Пусть T — машина Тьюринга с алфавитом A, u — слово в этом алфавите. Конфигурация $q_1 \varepsilon u$ называется **начальной конфигурацией** (начальным положением) на исходном данном (входе) u.

Последовательность конфигураций, которая получается при работе T на начальной конфигурации $q_1 \varepsilon u$ называется вычислением T на входе u.

Пусть результат представлен в алфавите $\Delta \subseteq A \setminus \{\varepsilon\}$.

Слово $v \in \Delta^*$ называется результатом вычисления *в сильном смысле*, если вычисление *конечно*, и последняя конфигурация представима в виде $q_0 \mathcal{E} v$.

Слово $v \in \Delta^*$ называется результатом вычисления *в слабом смысле*, если вычисление *конечно*, а последняя конфигурация имеет вид: $\beta v_1 q_0 v_2 \gamma$, где $v_1 v_2 = v$, $v_2 = \varepsilon$, β , $\gamma \notin \Delta$.

5. Вычислимость в сильном и слабом смыслах (2)

Пустое слово $\varepsilon \in \Delta^*$ считается результатом вычисления $\mathbf{\emph{e}}$ слабом смысле, если вычисление конечно, и конечная конфигурация имеет вид $q_0 \beta, \ \beta \in \Delta$.

Пусть Δ и Σ произвольные алфавиты, такие, что $\varepsilon \neq \Delta$ и $\lambda \neq \Sigma$, а T — машина Тьюринга, у которой $\Delta \subset A$ и $\Sigma \subset A$.

Пусть f – частично-рекурсивная функция из Σ^* в Δ^* .

Машина T вычисляет функцию f в слабом (или сильном) смысле, если для всех $u \in \Sigma^*$ и $v \in \Delta^*$ вычисление машины T на слове u завершается остановкой в слабом (или сильном) смысле тогда и только тогда, когда f(u) = v.

Функция f из Σ^* в Δ^* называется вычислимой по Тьюрингу $\mathbf{\emph{e}}$ слабом (или сильном) смысле, если существует машина Тьюринга, которая вычисляет функцию f $\mathbf{\emph{e}}$ слабом (или сильном) смысле.

ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ (МАШИНА) ТЬЮРИНГА.

6. Пример вычислений в сильном смысле (1)

Пусть функция f из $\{a, b\}^*$ в $\{a, b\}^*$ определяется равенством:

$$f(u) \cong \begin{cases} \lambda, \text{когда число букв } a \text{ в слове } u \text{ чётно,} \\ \text{не определено в противном случае.} \end{cases}$$

Данную функцию можно вычислить в сильном смысле на машине Тьюринга. Алфавит входной $A = \{\#, \lambda, a, b\}$. Алфавит состояний $Q = \{q_0, q_1, q_2, q_3, q_4\}$

- $q_1\lambda \rightarrow q_2\#R;$
- $q_2 a \rightarrow q_3 \lambda R;$
- $q_2b \rightarrow q_2\lambda R;$
- $q_3 a \rightarrow q_2 \lambda R;$
- $q_3b \rightarrow q_3\lambda R;$
- $q_2\lambda \rightarrow q_4\lambda L;$
- $q_3\lambda \rightarrow q_3\lambda;$
- $q_4\lambda \rightarrow q_4\lambda L;$
- $q_4 \# \rightarrow q_0 \lambda$.

6. Пример вычислений в сильном смысле (2)

ОПИСАНИЕ РАБОТЫ ПРОГРАММЫ

- Машина записывает символ # в первую ячейку ленты. 1.
- 2. Далее постепенно двигается по слову и стирает буквы.
- 3. Если число букв a чётно, то машина окажется в состоянии q_2 .
- 4. При нечётном числе a машина попадёт в состояние q_3 .
- 5. Дойдя до окончания слова u (правая буква λ) машина зациклится, когда находится в состоянии q_3 и двинется влево, если в q_2 .
- Дойдя до диеза (#) машина заменяет его на литеру λ и останавливается.

Поскольку на ленте записаны только символы λ , то результат, в сильном смысле, равен пустому слову.

ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ (МАШИНА) ТЬЮРИНГА.

7. Пример вычислений в слабом смысле

Пусть функция f из $\{a,b\}^*$ в $\{a,b\}^*$ определяется равенством:

$$f(u) \cong \begin{cases} \lambda, \text{когда число букв } a \text{ в слове } u \text{ чётно,} \\ \text{не определено в противном случае.} \end{cases}$$

Вычисления в слабом смысле по Тьюрингу.

Алфавит входной A = $\{\lambda, a, b\}$. Алфавит состояний $Q = \{q_0, q_1, q_2, q_3\}$.

$$q_1\lambda \rightarrow q_2\lambda R;$$

$$q_{1}\lambda \rightarrow q_{2}\lambda R;$$

$$q_{2}a \rightarrow q_{3}\lambda R;$$

$$q_{2}b \rightarrow q_{2}\lambda R;$$

$$q_{2}\lambda \rightarrow q_{0}\lambda;$$

$$q_2b \rightarrow q_2\lambda R$$

$$q_2 \lambda \rightarrow q_0 \lambda;$$

$$q_3 a \rightarrow q_2 \lambda R;$$

 $q_3 b \rightarrow q_3 \lambda R;$

$$q_3\lambda \rightarrow q_3\lambda$$
.

При нечётном числе литер a в записи, попадая в состояние q_3 , машина зацикливается, а из состоянии q_2 переходит в состояние q_0 , пустой символ записан при этом только в обозреваемой ячейке.

8. Теоремы, связанные с моделью Тьюринга (1)

Теорема 1.

Если частичная функция f из Σ^* в Δ^* вычислима по Тьюрингу в сильном смысле, то существует машина Тьюринга, вычисляющую функцию f в сильном смысле, которая работает бесконечно долго на всех входах $u \in \Sigma^*$, для которых значение f(u) не определено.

Теорема 2.

Каковы бы не были алфавиты Σ и Δ такие, что $\lambda \not\in \Sigma$ и $\lambda \not\in A$ и частичная функция f из Σ^* в Δ^* , функция f вычислима по Тьюрингу в сильном смысле тогда и только тогда, когда f вычислима по Тьюрингу в слабом смысле.

Теорема 3.

Если функция f из Σ^* в Δ^* и функция g из Δ^* в Γ^* вычислимы по Тьюрингу, то их композиция $f \otimes g$ вычислима по Тьюрингу.

Определение.

F из E в E в E в E в есть (E(E) E) E0 E0 E1 записью программы машины E1, дающей на входе E2 результат E3.

ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ (МАШИНА) ТЬЮРИНГА.

8. Теоремы, связанные с моделью Тьюринга (2)

Теорема 4. Об универсальной вычислимой по Тьюрингу функции.

- 1. Функция F вычислима по Тьюрингу.
- 2. Функция F универсальна для вычислимых по Тьюрингу функций из Σ^* в Δ^* в следующем смысле: для любой вычислимой по Тьюрингу функции f из Σ^* в Δ^* существует слово $p \in E^*$, для которого $f(u) \cong F(P, u)$ для всех $u \in \Sigma^*$.

Теорема 5. О неразрешимости проблемы остановки машины Тьюринга.

Функция ОСТ: $\mathcal{B}^* \otimes \mathbb{N} \to \mathbb{N}$, определяемая равенством

$$OCT(P,n) \cong \begin{cases} 1, \text{ если } P - \text{запись программы машины} \\ \text{Тьюринга, останавливающейся на входе } n; \\ 0, \text{ если } P - \text{ не является записью программы никакой машины или машина с записью программы } P \\ \text{ не останавливается на входе } n \end{cases}$$

не является вычислимой по Тьюрингу.

9. Тезис Тьюринга

Каждая функция, для вычисления значений которой существует будькакой алгоритм, оказывается вычислимой посредством некоторой машины Тьюринга.

Это наблюдение трансформировалось в основную гипотезу теории алгоритмов, которая называется тезисом Тьюринга.

ТЕЗИС

Для нахождения значения функции, заданной в некотором алфавите, тогда и только тогда существует какой-нибудь алгоритм, когда функция является вычислимой по Тьюрингу, т.е. когда она может быть вычислена на подходящей машине Тьюринга.

ВЫЧИСЛИТЕЛЬНАЯ МОДЕЛЬ (МАШИНА) ТЬЮРИНГА. 10. Синтез машины Тьюринга

Синтезировать машину Тьюринга означает написать её программу:

- разработать алгоритм вычисления значений функции;
- записать алгоритм на языке машины Тьюринга (запрограммировать алгоритм).

Пример.

Синтезировать машину Тьюринга, которая из n записанных подряд единиц оставляла бы на ленте n-2 единицы, записанных подряд, если n>1, и работала бы вечно, если n=0 или n<1.

,
$q_1 1 \rightarrow q_2 0L;$
$q_2 1 \rightarrow q_3 0 L;$
$q_30 \rightarrow q_00;$
$q_3 1 \rightarrow q_0 1;$
$q_20 \rightarrow q_20R;$
$q_10 \rightarrow q_10R$.
Применима к: 1011, 110011, 111011, 11011,
<i>Не применима к</i> : 101, 1001, 11101, 101101,

A/Q	q_1	q_2	q_3
0	q_10R	q_20R	q_00
1	$q_0 0 L$	q_20L	q_0 1