GEORISKACCESS: GIS-BASED PM2.5 POLLUTION AND RISK FACTOR ANALYSIS.

Name
Ashish Jha
Harsh Bachhav
Mohit Deo
Pratham Jain

Factors Influencing Residential Decisions:

Environmental Quality:

Air Quality

Development:

Population and Infrastructure

Climate:

Temperature and Humidity

Free Space:

- Opportunities for Outdoor Activities
- Greenery

PROBLEM STATEMENT

PM2.5 pollution poses significant health risks, including respiratory and cardiovascular diseases. Assessing and managing this pollution is crucial for public health.

Maharashtra, India

The average annual particulate matter 2.5 (PM 2.5) in this area between 1998 and 2016 was 32.5 micrograms per cubic meter. The World Health Organization's guideline is 10 micrograms per cubic meter.

PM 2.5 Deaths in 19 years

WHY WE NEED TO MONITOR AND KNOW IT

Informed Policy Making:

Public Awareness and Engagement

Environmental Protection

Efficient Resource Allocation

Health Impact Mitigation

Study Area

Lat,Lon 18.47664,73.79799 18.41569,73.81621 18.47078,73.90039 18.42025,73.90692

HARDWARE

- DHT Sensor: Measure temperature and humidity.
- RTC Module: Recortrd real-time data with a timestamp.
- MQ135 Sensors: Monitor gases like CO, NO2, and SO2.
- Sharp Optical Dust Sensor (GP2Y1014AU0F): Detect fine particulate matter (PM2.5).

PROPOSED SOLUTION

- Enhanced Decision-Making: Provides data-driven insights to policymakers for effective air quality management.
- Targeted Interventions: Identifies high-risk areas for focused pollution control efforts and health interventions.
- Public Health Improvement: Reduces health risks by addressing PM2.5 pollution more efficiently.
- Resource Optimization: Ensures optimal use of resources by directing them to the most affected areas

Risk Factor Calculation Formula:

RISK_FACTOR = w_EPI * EPI + w_UDI * UDI + w_LUV * LUV + w_CRI * CRI

Where:

EPI : Environmental Performance Index

UDI : Urban Development Index

LUV : Land Use Variable

CRI : Crime Rate Index

Weight of $x (w_x) = | corr (x, RISK_FACTOR)| / Sum of absolute correlations of all features$

OUR 4 PARAMETERS

5-Step Ordering Process

NO2: Sentinel-5P (S5P), 7 km x 3.5 km, Daily

SO2: Sentinel-5P (S5P), 7x3.5 km² (along-track x across-track) at nadir, Daily

CO: Sentinel-5P (S5P), 7 km x 3.5 km, Daily

NDVI: MODIS, 250 meters,, 8-days

PM2.5: CAAQMS, Point data, Hourly

AOD: MODIS (Moderate Resolution Imaging Spectroradiometer), 1 km, 8 days

Result

Basic Analysis using Qgis We found Some Basic Trends

for ex: NDVI During The Year 2023

during summer

may to july

sep to jan

Regression And Risk factor Clustering

Distrbution of Predicted Risk factors for India Locations

This Indicates that Most of Bad Localities Have More Settlements in a Specific Radius