Практикум по курсам «Основы информатики», «Алгоритмы и структуры данных».

Курсовой проект: 8 факультет, І курс, І семестр 2011/12 уч. года.

Задание III. Вещественный тип. Приближенные вычисления. Табулирование функций

Составить программу на Си, которая печатает таблицу значений элементарной функции, вычисленной двумя способами: по формуле Тейлора и с помощью встроенных функций языка программирования. В качестве аргументов таблицы взять точки разбиения отрезка [a,b] на п равных частей (n + 1 точка включая концы отрезка), находящихся в рекомендованной области хорошей точности формулы Тейлора. Вычисления по формуле Тейлора проводить по экономной в сложностном смысле схеме с точностью $\varepsilon *k$, где ε — машинное эпсилон аппаратно реализованного вещественного типа для данной ЭВМ, а k — экспериментально подбираемый коэффициент, обеспечивающий приемлемую сходимость. Число итераций должно ограничиваться сверху числом порядка 100. Программа должна сама определять машинное ε и обеспечивать корректные размеры генерируемой таблицы.

Дополнительное задание

Для углубленного изучения вещественных типов рекомендуется провести вычисление машинного эпсилон для других (нестандартных) разновидностей вещественных типов на DEC Alpha, а также, по возможности, для других систем программирования и аппаратных средств. Сравните полученные результаты со встроенными константами системы программирования.

Для изучения атрибутов вещественного и целого типов определите границы допустимого диапазона значений программным путем и сравните с соответствующими константами. Объясните полученные результаты.

Дополнительное задание оформляется в виде отдельных программ.

Полученные результаты необходимо включить в отчет по курсовому проекту. Успешное выполнение дополнительного задания учитывается при оценке основного задания.

Замечание. Формула Тейлора сводит вычисление трансцендентных функций к алгебраическим (полиномам; схему Горнера – в студию!). Однако этот простой способ не применяется на практике ввиду большой ресурсоёмкости и значительной погрешности. Изучение более совершенных способов вычисления значений трансцендентных функций на ЭВМ производится в курсе численных методов.

Пример результатов для
$$\sin(x) = \sum_{n=0}^{N} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$$

Машинное эпсилон для типа long double в системе Compaq C на Digital Alpha = ...

Таблица вначений ряда Тейлора и стандартной функции для $f(x) = \sin x$

X	част. сумма ряда для sin х	значения функции sin x	число итераций
0.00	•••	0.0	•••
0.05		0.0008	
0.10		0.0017	
0.15		0.0026	
•••	•••	•••	•••
0.50	•••	•••	•••

Варианты заданий

No	ряд	a	b	функция
	$\frac{x}{9} - \frac{x^3}{9^2} + \ldots + (-1)^n \frac{x^{2n+1}}{9^{n+1}}$	-1.0	1.0	$\frac{x}{9+x^2}$
2	$2(\frac{x}{1} + \frac{x^3}{3} + \ldots + \frac{x^{2n+1}}{2n+1})$	0.0	0.5	$ \ln \frac{1+x}{1-x} $
3	$x - \frac{5}{2}x^2 + \ldots + \frac{(-1)^{n+1} \cdot 2^n - 1}{n}x^n$	-0.2	0.3	$\ln(1+x-2x^2)$
4	$\ln 2 + \frac{x}{2} - \frac{x^2}{2^3} + \ldots + (-1)^{n-1} \frac{x^n}{n \cdot 2^n}$	-1.0	1.0	ln(2+x)
5	$-\frac{4x^2}{2} + \frac{16x^4}{24} + \ldots + (-1)^n \frac{(2x)^{2n}}{(2n)!}$	0.0	0.5	$2(\cos^2 x - 1)$
6	$x + \frac{x^3}{3!} + \dots + \frac{x^{2n-1}}{(2n-1)!}$	0.0	1.0	sh x

7	$3x + 8x^2 + \ldots + n \cdot (n+2)x^n$	0.0	0.5	$\frac{x(3-x)}{(1-x)^3}$
8	$-\frac{1}{5} - \frac{2x}{5^2} - \frac{4x^2}{5^3} - \dots - \frac{2^{n-1}x^{n-1}}{5^n}$	0.0	2.0	$\frac{1}{2x-5}$
9	$-(1+\frac{2}{3})-(1+\frac{2}{3^2})x(1+\frac{2}{3^{n+1}})x^n$	0.0	0.5	$\frac{3x-5}{x^2-4x+3}$
10	$\frac{2x^2}{2!} - \frac{2^3 x^4}{4!} + \ldots + (-1)^{n-1} \frac{2^{2n-1} x^{2n}}{(2n)!}$	0.0	1.0	$\sin^2 x$
	$1 - \frac{3}{2}x^2 + \dots + (-1)^n \frac{2n^2 + 1}{(2n)!}x^{2n}$	0.1	0.6	$(1-\frac{x^2}{2})\cos x - \frac{x}{2}\sin x$
12	$1 + \frac{\ln 3}{1!}x + \frac{\ln^2 3}{2!}x^2 + \dots + \frac{\ln^n 3}{n!}x^n$	0.0	1.0	3 ^x
13	$x - \frac{x^3}{3!} + + (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	0.0	1.0	sin x
14	$-3-4x-5x^2(n+3)x^n$	0.1	0.6	$\frac{2x-3}{(x-1)^2}$
15	$1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!}$	0.0	1.0	$\cos x$
16	$1 + 3x^2 + \ldots + \frac{2n+1}{n!}x^{2n}$	0.0	1.0	$(1+2x^2)e^{x^2}$
17	$\frac{x-1}{x+1} + \frac{1}{3} \left(\frac{x-1}{x+1}\right)^3 + \dots + \frac{1}{2n+1} \left(\frac{x-1}{x+1}\right)^{2n+1}$	0.2	0.7	$\frac{1}{2}\ln x$
18	$\frac{x^3}{3} - \frac{x^5}{15} + \dots + (-1)^{n+1} \frac{x^{2n+1}}{4n^2 - 1}$	0.1	0.6	$\frac{1+x^2}{2}\arctan x - \frac{x}{2}$
19	$1 + \frac{x^2}{2} + \dots + \frac{x^{2n}}{(2n)!}$	0.1	0.6	ch x
20	$1+\frac{2x}{1!}+\ldots+\frac{(2x)^n}{n!}$	0.1	0.6	e^{2x}
21	$1+2\frac{x}{2}++\frac{n^2+1}{n!}(\frac{x}{2})^n$	0.1	0.6	$(\frac{x^2}{4} + \frac{x}{2} + 1)e^{\frac{x}{2}}$
22	$1 - \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{n-1}{n!} x^n$	0.0	1.0	$(1+x)e^{-x}$
23	$x - \frac{x^3}{3} + \ldots + (-1)^n \frac{x^{2n+1}}{2n+1}$	0.0	0.5	arctg x
24	$ \frac{2}{1 - \frac{x^{2}}{2} + \frac{x^{3}}{3} + \dots + (-1)^{n-1} \frac{n-1}{n!} x^{n}} $ $ \frac{x - \frac{x^{3}}{3} + \dots + (-1)^{n} \frac{x^{2n+1}}{2n+1}}{1 + \frac{x^{2}}{1} + \frac{x^{4}}{2} + \dots + \frac{x^{2n}}{n!}} $	0.0	1.0	e^{x^2}
25	$\frac{1}{4} + \frac{x^4}{4^2} + \dots + \frac{x^{4n}}{4^{n+1}}$	0.0		$\frac{1}{4-x^4}$
26*	$-\cos x + \frac{\cos 2x}{2^2} + \ldots + (-1)^n \frac{\cos nx}{n^2}$	$\frac{\pi}{5}$		$\frac{1}{4}(x^2-\frac{\pi^2}{3})$
27*	$1 + \frac{\cos x}{1!} + \ldots + \frac{\cos nx}{n!}$	0.1	0.6	$e^{\cos x} \cdot \cos(\sin x)$
28*	$\cos x + \frac{\cos 2x}{2} + \dots + \frac{\cos nx}{n}$	$\frac{\pi}{5}$	$\frac{6\pi}{5}$	$-\ln 2\sin\frac{x}{2} $

Задание составил к.ф.-м.н., доц. Зайцев В.Е. Варианты подготовлены к.ф.-м.н., доц. Сопруненко И.П.