CS498AML HW7 Report Qingkang Zhang(qzhang72), Ramya Narayanaswamy(rpn2)

Code: multi_EM.py

• Cluster this to 30 topics, using a simple mixture of multinomial topic model, as lectured in class.

For this part, we utilized random initialization with 1500 documents and were able to generate initial 30 multinomial distributions(clusters). To find near local optimization, we implemented EM algorithm as mentioned in lecture.

• Produce a graph showing, for each topic, the probability with which the topic is selected.

Produce a table showing, for each topic, the 10 words with the highest probability for that topic.

	0	1	2	3	4	5	6	7	8	9
0	system	model	network	neural	functio n	input	signal	output	circuit	informat ion
1	unit	network	input	learnin g	weight	hidden	layer	output	pattern	function
2	learnin g	action	model	task	control	reinforce ment	robot	function	system	states

3	algorit hm	vector	function	learnin g	loss	class	set	weight	bound	problem
4	networ k	unit	input	hidden	output	learning	function	training	pattern	weight
5	weight	network	error	training	set	input	noise	generalizat ion	function	learning
6	networ k	task	neural	learnin g	training	architectu re	control	solution	input	problem
7	input	network	output	neural	noise	function	training	set	data	informat ion
8	networ k	training	set	data	neural	error	input	output	unit	learning
9	classifi er	training	network	rbf	set	error	neural	problem	center	gaussia n
1 0	word	network	recognit ion	training	system	model	speech	hmm	neural	set
1 1	cell	head	directio n	rat	model	angular	system	velocity	mcnaugh ton	neural
1 2	model	data	network	set	neural	parameter	learning	algorithm	training	function
1	charac ter	field	system	window	network	input	net	set	word	training
1 4	data	model	algorith m	set	parame ter	point	learning	distributio n	method	function
1 5	networ k	neural	system	input	functio n	learning	weight	output	model	unit
1 6	learnin g	algorith m	function	proble m	policy	action	system	optimal	model	result
1 7	hint	learning	example s	functio n	error	market	performa nce	method	informati on	network
1 8	monte	carlo	player	decisio n	policy	base	move	rollout	network	trial
1 9	object	image	network	images	model	recognitio n	view	system	set	feature

2 0	functio n	threshol d	network	weight	neural	input	circuit	size	number	result
2 1	functio n	set	training	vector	algorith m	error	kernel	data	problem	classifie r
2	speech	network	system	model	input	signal	recogniti on	neural	output	informat ion
2	functio n	network	algorith m	learnin g	neural	model	input	problem	set	data
2 4	cell	model	input	neuron	visual	field	cortex	orientation	response	network
2 5	neuron	network	input	model	neural	synaptic	system	function	learning	firing
2 6	david	michael	john	richard	peter	author	index	thomas	eric	paul
2 7	eeg	compon ent	respons e	trial	artifact	ica	data	single	visual	erp
2 8	learnin g	network	error	weight	training	input	function	algorithm	neural	set
2 9	model	learning	control	movem ent	motor	forward	field	arm	dynamic	trajector y

Part2:

Code : Part2Final.R

SmallSunset

of clusters = 10

RobertMixed

of clusters = 20

<u>Smallstrelitzia</u>

of clusters = 50

Different Seeds for small sunset

Seed1:

Seed2:

Seed3:

Seed4:

Seed5:

Conclusion: There are very minuscule variations when images are obtained with different seed. One needs to look keenly to see the differences.