Data Prep, Exploration and Visualization

The most difficult part of this assignment was choosing the variables I wanted to input into my model and how to deal with variables that had NA values. In lines 212-218, I counted the number of variables with NA values and distinguished between categorical variables and numerical values. From there I filtered out NA values in line 289 to "none" and began replacing the numerical variables that I wanted to use in my model with "0" so that the regression would be able to read the variable (as an int and not a string). In lines 343 through 457 I logged the saleprice variable to understand the skewness, then correlated the variables 1stflr, 2ndflr, LowQualFinSF, GRLivArea to see if they would be good variables to use for regression. From there I checked if there were outliers in this data set, removed the outliers, put them in a range and correlated the variables to the response variable Saleprice. After creating multiple scatter plots for each one of the variables and confirming their normality in lines 457-464, I decided to use these variables for my regression.

Design and Modeling Methods

After prepping the data and deciding which categories to utilize, the three machine learning techniques I explored were a traditional linear regression, a lasso regression and elastic net and an elastic net regression. I wanted to test the accuracy of all three types of regressions to see the impact it had on the dataset. In lines 455 I finalized the variables I was going to use from my EDA into a list called data. The way I approached modeling these regressions is by splitting my data set into a test set and train set in lines 468-469.

Results Review and Model Evaluation

In lines 468, 420-424, I evaluated the linear regression accuracy and RSME as well as plotted a chart of the correlation of the predicted vs real models and checked the accuracy score as well. For the linear regression, the accuracy score was 62.94% and the RSME was 184.68. The reason the RSME is so high is because I didn't used the scaled variables for this model, but the residuals

fall in on accurate scale for this dataset. For the Lasso regression, the RSME was 184.69 and the accuracy score was around 62%, and lastly for the Elastic Net regression, the RSME was also 184.68 with an accuracy score of around 62.9%. In line 453, I outputted the results from the linear regression for the Kaggle submission and the output results are in the appendix.

Kaggle Implementation

For https://www.kaggle.com/c/house-prices-advanced-regression-techniques/leaderboard#score.

My Kaggle ran was 4299 with a score of 0.24249.

Insights, Exposition, Problem Description and Management Recommendations

The management question for this assignment was how can we most accurately predict the price of a house utilizing variables we chose from a dataset. The problem is that the data set given has many null values and categorical variables that skew the models. From testing out regression models, I recommend initially using a linear regression through analyzing the variables 1stflr, 2ndflr, LowQualFinSF, GRLivArea. This is because these variables are numerical and have the most amount of non-null values in the dataset. Using this model caused 63% accurate results compared to the lasso and elastic net which was around 62% accuracy. Based on this linear regression accuracy, my recommendation is to look at houses based on area of rooms and size. The larger the squarefootage the area is, the more expensive a home tends to be based on this linear regression output. While linear regression is a great way to initially look at this problem, I truly believe there are more machine learning techniques that would help provide a more accurate predictive sales price model. However the linear regression does prove the intuitive concept that the greater the area of a house is (in this case in the Ames, Iowa area), the more expensive a house will be. I am excited to revisit this Kaggle competition in assignment 4 to see if I can produce a more accurate sales price model for this dataset!

In [209]:

```
import pandas as pd
import math
from math import sqrt
import numpy as np
import random
np.random.seed(42)
import matplotlib.pyplot as plt
import seaborn as sns
import IPython
from IPython.display import display
from scipy.stats import skew
%matplotlib inline
import sklearn
from sklearn import linear model
from sklearn.model_selection import cross val score, train test split, cross val pr
edict
from sklearn.linear model import LinearRegression, RidgeCV, LassoCV, ElasticNetCV
from sklearn.linear model import LinearRegression, Ridge, Lasso, ElasticNet
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import mean squared error, r2 score, make scorer
pd.set option('display.float format', lambda x: '%3f' %x)
from sklearn.utils import resample
from sklearn.decomposition import PCA
from scipy import misc
from scipy import stats as st
from sklearn.model selection import KFold, GridSearchCV
```

In [210]:

```
train= pd.read_csv("train.csv")
test=pd.read_csv("test.csv")
```

In [211]:

#counting the number of null values in the data set

In [212]:

```
nan_data = pd.DataFrame(train.isnull().sum().sort_values(ascending=False)[:20])
nan_data.columns = ['NaN Count']
nan_data
```

Out[212]:

	NaN Count
PoolQC	1453
MiscFeature	1406
Alley	1369
Fence	1179
FireplaceQu	690
LotFrontage	259
GarageCond	81
GarageType	81
GarageYrBlt	81
GarageFinish	81
GarageQual	81
BsmtExposure	38
BsmtFinType2	38
BsmtFinType1	37
BsmtCond	37
BsmtQual	37
MasVnrArea	8
MasVnrType	8
Electrical	1
Utilities	0

In [213]:

#counting the number of categorical values and numerical values

```
In [287]:
```

```
cat_features = train.select_dtypes(include = ["object"]).columns
num_features = train.select_dtypes(exclude = ["object"]).columns
num_features = num_features.drop("SalePrice")
print("Numerical features : " + str(len(num_features)))
print("Categorical features : " + str(len(cat_features)))
```

Numerical features : 38
Categorical features : 42

In [288]:

#filtering out the most frequent null values that are not in the test set

In [289]:

In [290]:

```
train.head()
```

Out[290]:

	ld	MSSubClass	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	LotCo
0	1	60	65.000000	8450	Pave	None	Reg	Lvl	AllPub	In
1	2	20	80.000000	9600	Pave	None	Reg	Lvl	AllPub	
2	3	60	68.000000	11250	Pave	None	IR1	Lvl	AllPub	In
3	4	70	60.000000	9550	Pave	None	IR1	Lvl	AllPub	Co
4	5	60	84.000000	14260	Pave	None	IR1	Lvl	AllPub	

5 rows × 81 columns

In [291]:

```
#The variables still left with null values
```

In [292]:

```
print(train.columns[train.isnull().any()])
```

Index(['GarageYrBlt', 'GarageYrBuilt'], dtype='object')

In [293]:

```
#filling lotFrontage with values
```

```
In [294]:
train["LotFrontage"] = train.groupby("Neighborhood")["LotFrontage"].transform(
    lambda x: x.fillna(x.median()))
In [295]:
#filling MasVnArea with values
In [296]:
train.loc[train["MasVnrArea"].isnull(),"MasVnrArea"] = 0
In [297]:
#1 missing value for electrical, fill it with year value
In [298]:
train["Electrical"] = train["Electrical"].fillna(0)
In [ ]:
In [299]:
#missiing valuef for garage built, replacing with 0
In [300]:
train.loc[train["GarageYrBlt"].isnull(),"GarageYrBuilt"] = 0
In [301]:
train.loc[train["GarageYrBlt"].isnull(),"GarageYrBuilt"] = 0
In [ ]:
In [302]:
# Transforming the training data to have a more normal distribution
```

In [303]:

```
log_SalePrice = np.log(train.SalePrice)
print("Skewness:", log_SalePrice.skew())
sns.distplot(log_SalePrice, bins = 10, kde = False, color='red')
plt.show()
```

Skewness: 0.01611788535318368

In [304]:

#correlating variables with targret variable sales price to see if viable for model

```
In [455]:
```

```
data = train.loc[:,["1stFlrSF", "2ndFlrSF", "LowQualFinSF", "GrLivArea", "SalePric
e" ]]
print(data.corr())
sns.pairplot(data, kind="reg")
```

	1stFlrSF	2ndFlrSF	LowQualFinSF	GrLivArea	SalePrice
1stFlrSF	1.000000	-0.297247	-0.055769	0.502802	0.616656
2ndFlrSF	-0.297247	1.000000	-0.006082	0.671745	0.260519
LowQualFinSF	-0.055769	-0.006082	1.000000	0.037756	-0.080308
GrLivArea	0.502802	0.671745	0.037756	1.000000	0.706825
SalePrice	0.616656	0.260519	-0.080308	0.706825	1.000000

Out[455]:

<seaborn.axisgrid.PairGrid at 0x1c414266a0>

In [456]:

#removing the outliers and retraining them

In [457]:

```
train = train.drop(train[(train['GrLivArea'] > 4000)&(train['SalePrice'] < 250000)]</pre>
train = train.drop(train[(train['OverallQual'] == 10)&(train['SalePrice'] < 210000
)].index)
train = train.drop(train[(train['MasVnrArea'] > 1400)&(train['SalePrice'] < 300000</pre>
)].index)
train = train.drop(train[(train['GarageArea'] > 1200)&(train['SalePrice'] < 300000</pre>
)].index)
train = train.drop(train[(train['TotalBsmtSF'] > 5000)&(train['SalePrice'] < 250000
)].index)
train = train.drop(train['lstFlrSF'] > 4000)&(train['SalePrice'] < 250000)].</pre>
index)
fig = plt.figure(figsize=(15,15))
ax1 = plt.subplot2grid((3,2),(0,0))
plt.scatter(x = train['GrLivArea'], y = train['SalePrice'])
plt.ylabel('SalePrice', fontsize=13)
plt.xlabel('GrLivArea', fontsize=13)
ax1 = plt.subplot2grid((3,2),(0,1))
plt.scatter(x = train['OverallQual'], y = train['SalePrice'])
plt.ylabel('SalePrice', fontsize=13)
plt.xlabel('OverallQual', fontsize=13)
ax1 = plt.subplot2grid((3,2),(1,0))
plt.scatter(x = train['MasVnrArea'], y = train['SalePrice'])
plt.ylabel('SalePrice', fontsize=13)
plt.xlabel('MasVnrArea', fontsize=13)
ax1 = plt.subplot2grid((3,2),(1,1))
plt.scatter(x = train['GarageArea'], y = train['SalePrice'])
plt.ylabel('SalePrice', fontsize=13)
plt.xlabel('GarageArea', fontsize=13)
ax1 = plt.subplot2grid((3,2),(2,0))
plt.scatter(x = train['TotalBsmtSF'], y = train['SalePrice'])
plt.ylabel('SalePrice', fontsize=13)
plt.xlabel('TotalBsmtSF', fontsize=13)
ax1 = plt.subplot2grid((3,2),(2,1))
plt.scatter(x = train['1stFlrSF'], y = train['SalePrice'])
plt.ylabel('SalePrice', fontsize=13)
plt.xlabel('1stFlrSF', fontsize=13)
plt.show()
```


In [458]:

#further exploration of variables that correlate

In [459]:

#Relationship between GrLivArea and SalePrice

In [460]:

```
sns.scatterplot(x=train['GrLivArea'], y=log_SalePrice)
plt.xlabel('GrLivArea')
plt.ylabel('SalePrice')
plt.show()
```


In [461]:

#remove outliers

In [462]:

```
train = train[train['GrLivArea'] < 3000]</pre>
```

In [463]:

#relationship between GarageArea and SalePrice

```
In [464]:
```

```
sns.scatterplot(x=train['GarageArea'], y=log_SalePrice)
plt.xlabel('GarageArea')
plt.ylabel('SalePrice')
plt.show()
```


from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression

```
In []:
In [465]:
#no outliers to remove

In []:

In []:

In [466]:
##Setting up final data set for regression testing
```

In [467]:

```
In [468]:
```

```
X = data.iloc[:,1:-1] #independant variables
y = data.iloc[:,-1] #response variable mv
```

In [469]:

```
#Split data to test and train data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3)
```

In [470]:

```
# Create regressor object
reg = LinearRegression()
# Fitting data
reg.fit(X_train, y_train)
```

Out[470]:

LinearRegression()

In [420]:

```
y_pred = reg.predict(X_test)
```

In [421]:

```
from sklearn.metrics import mean_absolute_error

rmse = sqrt(mean_absolute_error(y_pred, y_test))
print('RMSE = ', rmse)
```

RMSE = 184.68242777372694

In [422]:

```
plt.scatter(y_pred, y_test)
plt.xlabel('Predicted')
plt.ylabel('Real')
```

Out[422]:

Text(0, 0.5, 'Real')

In [453]:

```
linear_reg_df = pd.DataFrame(y_test)
linear_reg_df['predicted_value'] = y_pred
linear_reg_df
linear_reg_df.to_excel("output.xlsx", sheet_name='Sheet_name_1')
```

In [424]:

```
print("Score ", reg.score(X_test, y_test))
```

Score 0.6294954433684751

In []:

```
In [425]:
#Lasso Regression
In [433]:
lasso_reg = Lasso(alpha=0.1)
lasso_reg.fit(X_train, y_train)
lasso_pred = lasso_reg.predict(X_test)
In [434]:
rmse3 = sqrt(mean_absolute_error(lasso_pred, y_test))
print('RMSE = ', rmse)
RMSE = 184.68242777372694
In [ ]:
In [435]:
print("Score ", lasso_reg.score(X_test, y_test))
Score 0.6294954412185361
In [ ]:
In [ ]:
#elastic net
In [442]:
b elastic net = ElasticNet(alpha=0.1, 11 ratio=0.5)
b_elastic_net.fit(X_train, y_train)
e pred = b elastic net.predict(X test)
In [443]:
rmse2 = sqrt(mean_absolute_error(e_pred, y_test))
print('RMSE = ', rmse)
RMSE = 184.68242777372694
```

localhost:8888/lab/workspaces/auto-D

In [444]:
<pre>#Accuracy Score print("Score ", b_elastic_net.score(X_test, y_test))</pre>
Score 0.6294952511737565
In []:
In []:
In []:

Output csv from my model

ID	SalePrice
1461	125500
1462	157000
1463	181000
1464	181000
1465	179200
1466	178000
1467	173000
1468	193000
1469	167000
1470	123000
1471	162000
1472	83000
1473	88000
1474	148500
1475	120000

1476	320000
1477	255000
1478	232000
1479	232000
1480	385000
1481	255000
1482	208900
1483	176432
1484	179000
1485	189000
1486	195000
1487	232000
1488	232000
1489	147000
1490	153500
1491	186500
1492	125000
1493	157000
1494	250000
1495	271000
1496	208900
1497	186500
1498	151000
1499	151000
1500	162000
1501	177500
1502	177500
1503	189000
1504	189000
1505	208900
1506	185000
1507	220000
1508	143000
1509	193000
1510	143000
1511	142000
1512	143000
1513	112000
1514	157000
1515	139000
1516	160000
1517	147000

1518	145000
1519	220000
1520	142000
1521	142000
1522	143000
1523	115000
1524	145000
1525	139000
1526	80000
1527	145000
1528	105000
1529	155000
1530	167000
1531	138000
1532	105000
1533	125000
1534	112000
1535	133000
1536	119000
1537	100000
1538	136000
1539	193000
1540	136000
1541	117000
1542	117000
1543	177000
1544	125500
1545	132500
1546	132500
1547	131000
1548	131000
1549	134900
1550	149000
1551	157000
1552	153900
1553	130500
1554	112000
1555	163500
1556	67000
1557	139000
1558	125500
1559	122000

1560	95000
1561	136000
1562	130000
1563	125000
1564	171000
1565	154000
1566	196000
1567	105000
1568	190000
1569	168000
1570	140000
1571	140000
1572	157000
1573	335000
1574	180500
1575	153500
1576	145000
1577	185000
1578	112000
1579	152000
1580	186500
1581	193000
1582	125500
1583	350000
1584	178000
1585	136500
1586	86000
1587	112000
1588	142000
1589	110000
1590	155000
1591	139000
1592	120000
1593	110000
1594	112000
1595	169000
1596	163000
1597	160000
1598	112000
1599	189000
1600	170000
1601	100000

1602	147000
1603	124000
1604	275000
1605	193000
1606	171000
1607	171000
1608	179000
1609	147000
1610	167500
1611	135000
1612	145000
1613	181000
1614	133000
1615	88000
1616	88000
1617	88000
1618	130000
1619	147000
1620	200000
1621	167500
1622	119500
1623	210000
1624	164000
1625	123000
1626	167900
1627	164000
1628	164000
1629	193000
1630	187500
1631	189000
1632	138000
1633	189000
1634	193000
1635	185000
1636	176000
1637	171000
1638	195000
1639	181000
1640	197500
1641	157000
1642	193000
1643	186500

_	
1644	190000
1645	157000
1646	155000
1647	134000
1648	140000
1649	135000
1650	120500
1651	120500
1652	83000
1653	125000
1654	155000
1655	147000
1656	146000
1657	146000
1658	124000
1659	148500
1660	145000
1661	315000
1662	325000
1663	335000
1664	320000
1665	147000
1666	385000
1667	335000
1668	284000
1669	325000
1670	320000
1671	290000
1672	385000
1673	325000
1674	232000
1675	175900
1676	196000
1677	214000
1678	385000
1679	285000
1680	193000
1681	208900
1682	315000
1683	202500
1684	174000
1685	174000

1686	179000
1687	189000
1688	193000
1689	178000
1690	193000
1691	162000
1692	164000
1693	112000
1694	193000
1695	176000
1696	214000
1697	176500
1698	310000
1699	275000
1700	230000
1701	222000
1702	239000
1703	232000
1704	193000
1705	201000
1706	345000
1707	201000
1708	201000
1709	325000
1710	147000
1711	225000
1712	232000
1713	320000
1714	189000
1715	193000
1716	147000
1717	189000
1718	179000
1719	195000
1720	190000
1721	155000
1722	179000
1723	155000
1724	232000
1725	193000
1726	227000
1727	179200

1728	189000
1729	177500
1730	112000
1731	125000
1732	129000
1733	144000
1734	112000
1735	112000
1736	112500
1737	385000
1738	145000
1739	193000
1740	222000
1741	162000
1742	144000
1743	144000
1744	272000
1745	190000
1746	160000
1747	185000
1748	200000
1749	175000
1750	157000
1751	190000
1752	130000
1753	167000
1754	185000
1755	175000
1756	138000
1757	130000
1758	153000
1759	235000
1760	163000
1761	167000
1762	185000
1763	171000
1764	122000
1765	167000
1766	176500
1767	153500
1768	136000
1769	143000

_	
1770	134500
1771	124000
1772	145000
1773	139000
1774	180500
1775	132500
1776	110000
1777	136000
1778	138000
1779	158000
1780	154000
1781	135000
1782	109900
1783	145000
1784	112000
1785	130000
1786	135000
1787	140000
1788	55000
1789	125000
1790	105000
1791	200000
1792	167000
1793	142000
1794	147000
1795	110000
1796	140000
1797	127500
1798	127000
1799	138000
1800	140000
1801	135000
1802	140000
1803	140000
1804	147000
1805	139000
1806	117000
1807	98000
1808	125500
1809	112000
1810	125500
1811	112000

1812	112000
1813	125500
1814	115000
1815	60000
1816	125000
1817	167500
1818	136000
1819	120000
1820	67000
1821	125000
1822	125000
1823	67000
1824	144000
1825	117000
1826	83000
1827	119000
1828	128000
1829	124000
1830	145000
1831	161000
1832	55000
1833	177000
1834	112000
1835	128000
1836	124000
1837	55000
1838	159500
1839	112000
1840	179000
1841	112000
1842	135000
1843	148000
1844	140000
1845	140000
1846	149500
1847	161500
1848	112000
1849	112000
1850	115000
1851	136000
1852	125500
1853	119500

_	
1854	147000
1855	148000
1856	164000
1857	197500
1858	112000
1859	112000
1860	144000
1861	112000
1862	287000
1863	287000
1864	287000
1865	315000
1866	290000
1867	203000
1868	271000
1869	189000
1870	194000
1871	232600
1872	174000
1873	260000
1874	156000
1875	185000
1876	181000
1877	179000
1878	213000
1879	143000
1880	147000
1881	262500
1882	222500
1883	195000
1884	186500
1885	260000
1886	275000
1887	175000
1888	235000
1889	174000
1890	149900
1891	140000
1892	100000
1893	135000
1894	135000
1895	135000
_	·

1896	143000
1897	139000
1898	125500
1899	207000
1900	125500
1901	125500
1902	152000
1903	160000
1904	155000
1905	153500
1906	133000
1907	256000
1908	124000
1909	151000
1910	124000
1911	190000
1912	224000
1913	193000
1914	86000
1915	275000
1916	60000
1917	236000
1918	147000
1919	127500
1920	152000
1921	255000
1922	232000
1923	112000
1924	190000
1925	201000
1926	385000
1927	142000
1928	149900
1929	124900
1930	140000
1931	125000
1932	176000
1933	125500
1934	181000
1935	185000
1936	193000
1937	168000

1938	185000
1939	193000
1940	179200
1941	181000
1942	173000
1943	193000
1944	325000
1945	193000
1946	180500
1947	232000
1948	180500
1949	240000
1950	112000
1951	215000
1952	149500
1953	157000
1954	171000
1955	112000
1956	250000
1957	152000
1958	235000
1959	136000
1960	115000
1961	115000
1962	118000
1963	112000
1964	119500
1965	155000
1966	127500
1967	153500
1968	235000
1969	232000
1970	325000
1971	325000
1972	271000
1973	186500
1974	215000
1975	385000
1976	272000
1977	315000
1978	255000
1979	318000

1980	180500
1981	350000
1982	138000
1983	147000
1984	175500
1985	177500
1986	164000
1987	179000
1988	193000
1989	195000
1990	195000
1991	230000
1992	164000
1993	178000
1994	164000
1995	195000
1996	176500
1997	236500
1998	385000
1999	239000
2000	250000
2001	290000
2002	214000
2003	167500
2004	147000
2005	285000
2006	250580
2007	232000
2008	176000
2009	189000
2010	186500
2011	232000
2012	147000
2013	193000
2014	193000
2015	193000
2016	193000
2017	193000
2018	124000
2019	129000
2020	125000
2021	100000

_	
2022	180000
2023	117000
2024	190000
2025	285000
2026	181000
2027	151000
2028	146000
2029	146000
2030	222000
2031	196000
2032	189000
2033	193000
2034	146000
2035	176000
2036	131500
2037	131500
2038	193000
2039	151000
2040	325000
2041	215000
2042	186500
2043	145000
2044	167000
2045	190000
2046	90000
2047	154000
2048	147000
2049	106000
2050	112000
2051	112000
2052	110000
2053	112000
2054	83000
2055	139000
2056	120000
2057	145000
2058	154000
2059	139000
2060	181000
2061	167000
2062	139000
2063	112000

-	
2064	145000
2065	119000
2066	167900
2067	193000
2068	180500
2069	100000
2070	125000
2071	86000
2072	153900
2073	140000
2074	153500
2075	165000
2076	115000
2077	127000
2078	132500
2079	105000
2080	119000
2081	125500
2082	136000
2083	140000
2084	115000
2085	155000
2086	176000
2087	117000
2088	125500
2089	80000
2090	125500
2091	112000
2092	135000
2093	136000
2094	115000
2095	140000
2096	109500
2097	116000
2098	144000
2099	86000
2100	112000
2101	112000
2102	125500
2103	117000
2104	122500
2105	79000

2106	67000
2107	200000
2108	135000
2109	115000
2110	120000
2111	112000
2112	140000
2113	125500
2114	125500
2115	132500
2116	117000
2117	117000
2118	132500
2119	119000
2120	125500
2121	123000
2122	132500
2123	112000
2124	131000
2125	153900
2126	188000
2127	189000
2128	193000
2129	112000
2130	164000
2131	127500
2132	104900
2133	110000
2134	125500
2135	167500
2136	112000
2137	109000
2138	139000
2139	140000
2140	134500
2141	151000
2142	142000
2143	147000
2144	125000
2145	129000
2146	170000
2147	235000

125500
144000
215000
128000
118000
163000
136500
139000
145000
260000
215000
179900
189000
239000
235000
318000
194500
154000
145000
235000
235000
193000
230000
144000
107000
167500
228500
235000
235000
164000
186500
136500
235000
192000
214000
185000
135000
175000
134000
115000
125500
235000

2190	82000
2191	107500
2192	125000
2193	81000
2194	112000
2195	134500
2196	93000
2197	117000
2198	136500
2199	154000
2200	144000
2201	178000
2202	130500
2203	178000
2204	160000
2205	115000
2206	163000
2207	239000
2208	240000
2209	180500
2210	124000
2211	119000
2212	135000
2213	136000
2214	125500
2215	115000
2216	186500
2217	60000
2218	125500
2219	105000
2220	80000
2221	275000
2222	275000
2223	222000
2224	169000
2225	112000
2226	180000
2227	180000
2228	176500
2229	179900
2230	167500
2231	197000

2232	175000
2233	175000
2234	176500
2235	190000
2236	153500
2237	385000
2238	201000
2239	147000
2240	164000
2241	153500
2242	145000
2243	127000
2244	91000
2245	91000
2246	142000
2247	112000
2248	130500
2249	119500
2250	126000
2251	160000
2252	167900
2253	180000
2254	140000
2255	164000
2256	164000
2257	200000
2258	112000
2259	178000
2260	160000
2261	170000
2262	180000
2263	310000
2264	335000
2265	160000
2266	232000
2267	232000
2268	278000
2269	112000
2270	130500
2271	171000
2272	193000
2273	153500

2274	181000
2275	175000
2276	207500
2277	153500
2278	144000
2279	129000
2280	144000
2281	179000
2282	162000
2283	119500
2284	224900
2285	140000
2286	115000
2287	337500
2288	147000
2289	318000
2290	318000
2291	186500
2292	315000
2293	385000
2294	310000
2295	385000
2296	239000
2297	233000
2298	255000
2299	310000
2300	340000
2301	225000
2302	232000
2303	201000
2304	239000
2305	194000
2306	194000
2307	224000
2308	193000
2309	190000
2310	202500
2311	208900
2312	112000
2313	174000
2314	176000
2315	174000

2316	195000
2317	179000
2318	227000
2319	174000
2320	179000
2321	215000
2322	179000
2323	140000
2324	170000
2325	179000
2326	162000
2327	195000
2328	215000
2329	164000
2330	178000
2331	176500
2332	285000
2333	239000
2334	174000
2335	250000
2336	290000
2337	153500
2338	271000
2339	208900
2340	385000
2341	179900
2342	213000
2343	213000
2344	190000
2345	213500
2346	147000
2347	147000
2348	270000
2349	112000
2350	270000
2351	147000
2352	232000
2353	290000
2354	147000
2355	84500
2356	155000
2357	201000

_	
2358	248000
2359	124000
2360	125000
2361	139000
2362	250000
2363	149900
2364	175000
2365	196000
2366	147000
2367	153500
2368	208900
2369	199900
2370	176000
2371	164000
2372	201000
2373	239000
2374	239000
2375	154000
2376	220000
2377	335000
2378	140000
2379	167900
2380	140000
2381	153500
2382	190000
2383	232000
2384	228500
2385	155000
2386	153500
2387	140000
2388	90000
2389	125500
2390	144000
2391	129000
2392	115000
2393	155000
2394	140000
2395	144000
2396	165000
2397	168000
2398	117000
2399	55000

=	
2400	87000
2401	125500
2402	136000
2403	124000
2404	160000
2405	143000
2406	129000
2407	135000
2408	145000
2409	124000
2410	167000
2411	139000
2412	170000
2413	140000
2414	140000
2415	90000
2416	106500
2417	145000
2418	129000
2419	140000
2420	134500
2421	136000
2422	153500
2423	136000
2424	119000
2425	200000
2426	139000
2427	135000
2428	140000
2429	136000
2430	129000
2431	102000
2432	127000
2433	139000
2434	127000
2435	167000
2436	112000
2437	115000
2438	134500
2439	115000
2440	140000
2441	91000

_	
2442	115000
2443	140000
2444	105000
2445	98000
2446	87000
2447	112000
2448	140000
2449	87000
2450	124000
2451	125500
2452	122000
2453	112000
2454	170000
2455	138000
2456	117000
2457	112000
2458	132500
2459	119000
2460	149000
2461	125500
2462	149000
2463	131000
2464	153500
2465	139000
2466	135000
2467	177500
2468	87000
2469	67000
2470	180500
2471	117000
2472	87000
2473	125000
2474	67000
2475	171000
2476	125500
2477	125000
2478	175000
2479	125000
2480	147000
2481	153500
2482	125000
2483	115000

=	
2484	125000
2485	144000
2486	170000
2487	129000
2488	125500
2489	144000
2490	139000
2491	112000
2492	235000
2493	176500
2494	143000
2495	140000
2496	256000
2497	144000
2498	125000
2499	112000
2500	130000
2501	119000
2502	184000
2503	132500
2504	170000
2505	215000
2506	232000
2507	239000
2508	232000
2509	212900
2510	213000
2511	153500
2512	190000
2513	225000
2514	215000
2515	145000
2516	176000
2517	145000
2518	155000
2519	164000
2520	193000
2521	195000
2522	164000
2523	149900
2524	140000
2525	125000

_	
2526	149900
2527	122000
2528	123000
2529	120500
2530	144000
2531	236500
2532	226000
2533	178000
2534	285000
2535	237000
2536	235000
2537	203000
2538	164000
2539	179000
2540	176432
2541	174000
2542	186500
2543	144000
2544	124000
2545	144000
2546	140000
2547	137500
2548	112000
2549	138000
2550	385000
2551	140000
2552	129000
2553	82000
2554	124000
2555	105000
2556	125000
2557	127500
2558	200000
2559	119000
2560	120000
2561	125500
2562	140000
2563	125500
2564	125500
2565	93000
2566	135000
2567	125500

-	
2568	235000
2569	190000
2570	151000
2571	112000
2572	145000
2573	272000
2574	197000
2575	125500
2576	130000
2577	130000
2578	87000
2579	80000
2580	84500
2581	129000
2582	134500
2583	127500
2584	160000
2585	227000
2586	153500
2587	173000
2588	115000
2589	147000
2590	196000
2591	160000
2592	201000
2593	270000
2594	124000
2595	179000
2596	285000
2597	199900
2598	215000
2599	239000
2600	160000
2601	151000
2602	119500
2603	112000
2604	88000
2605	112000
2606	194000
2607	215000
2608	153500
2609	193000

_	
2610	123000
2611	135000
2612	173000
2613	119500
2614	130000
2615	185000
2616	157900
2617	250000
2618	143000
2619	320000
2620	193000
2621	168000
2622	178000
2623	222500
2624	232000
2625	239000
2626	173000
2627	170000
2628	310000
2629	325000
2630	325000
2631	290000
2632	290000
2633	275000
2634	335000
2635	144000
2636	152000
2637	144000
2638	235000
2639	170000
2640	157000
2641	123000
2642	196000
2643	88000
2644	130000
2645	118000
2646	83000
2647	118000
2648	156000
2649	130000
2650	124000
2651	146000

_	
2652	350000
2653	232000
2654	235128
2655	385000
2656	255000
2657	290000
2658	190000
2659	250000
2660	186500
2661	385000
2662	255000
2663	280000
2664	190000
2665	232000
2666	193000
2667	174000
2668	174000
2669	200141
2670	255000
2671	201000
2672	179000
2673	215000
2674	215000
2675	164000
2676	195000
2677	177000
2678	164000
2679	239000
2680	230000
2681	272000
2682	290000
2683	250000
2684	290000
2685	340000
2686	280000
2687	232000
2688	181000
2689	185000
2690	318000
2691	186500
2692	84500
2693	194000

_	
2694	84500
2695	186500
2696	201000
2697	201000
2698	193000
2699	179200
2700	179200
2701	177500
2702	125000
2703	112000
2704	144000
2705	128500
2706	124000
2707	106500
2708	142500
2709	88000
2710	128500
2711	190000
2712	271000
2713	194000
2714	151000
2715	177500
2716	112000
2717	176500
2718	262500
2719	153500
2720	143000
2721	149900
2722	144000
2723	129000
2724	129000
2725	153500
2726	143000
2727	155000
2728	154000
2729	177500
2730	135000
2731	119000
2732	109000
2733	157000
2734	136000
2735	135000

2736	136000
2737	119000
2738	124000
2739	157000
2740	110000
2741	127000
2742	161500
2743	149500
2744	153500
2745	135000
2746	134500
2747	144000
2748	140000
2749	163000
2750	153500
2751	117000
2752	180500
2753	167500
2754	310000
2755	125500
2756	135000
2757	100000
2758	112000
2759	186500
2760	175000
2761	290000
2762	153500
2763	170000
2764	180500
2765	215000
2766	117000
2767	90000
2768	136000
2769	140000
2770	139000
2771	125500
2772	84500
2773	161000
2774	125000
2775	55000
2776	117000
2777	140000

=	
2778	125500
2779	140000
2780	119000
2781	91500
2782	109900
2783	91500
2784	132500
2785	125500
2786	100000
2787	125000
2788	91500
2789	128000
2790	116000
2791	144000
2792	67000
2793	186500
2794	105000
2795	112000
2796	91500
2797	180500
2798	87000
2799	125500
2800	91500
2801	119000
2802	136000
2803	153500
2804	157000
2805	93500
2806	91000
2807	153500
2808	144000
2809	152000
2810	153500
2811	176000
2812	142500
2813	190000
2814	135000
2815	115000
2816	153500
2817	175000
2818	125000
2819	112000

2820	166000
2821	125500
2822	180500
2823	200000
2824	153500
2825	112000
2826	135000
2827	144000
2828	250000
2829	147000
2830	180500
2831	194000
2832	230000
2833	203000
2834	186500
2835	227000
2836	186500
2837	180000
2838	230000
2839	178000
2840	153500
2841	193000
2842	280000
2843	119500
2844	119500
2845	125500
2846	190000
2847	193000
2848	203000
2849	200000
2850	193000
2851	250000
2852	235000
2853	164000
2854	136500
2855	203000
2856	186500
2857	186500
2858	179000
2859	117000
2860	127500
2861	157000

-	
2862	188000
2863	84500
2864	179900
2865	140000
2866	130000
2867	125500
2868	105000
2869	124000
2870	157500
2871	91500
2872	86000
2873	112000
2874	125000
2875	125000
2876	125500
2877	125000
2878	136000
2879	170000
2880	105000
2881	144000
2882	140000
2883	160000
2884	140000
2885	230000
2886	250000
2887	91500
2888	125500
2889	86000
2890	86000
2891	117500
2892	84500
2893	127500
2894	55000
2895	275000
2896	275000
2897	180000
2898	124000
2899	201000
2900	171000
2901	275000
2902	153500
2903	270000

2904	285000
2905	112000
2906	153500
2907	115000
2908	130000
2909	112000
2910	84500
2911	119500
2912	155000
2913	88000
2914	88000
2915	81000
2916	88000
2917	168000
2918	84500
2919	236000