

Agenda Warnings and considerations How messages are stored in MQ Above the bar (64-bit) bufferpools Advantages and maybe not so much Summary

MQ for z/OS: 64-bit bufferpools 64-bit buffer pools in MQ for z/OS Allows large numbers of messages to be cached before writing to pagesets Allows MQ to exploit the vast amount of storage on today's machines Improves performance of putting/getting messages by minimizing disk I/O What's the BEST I/O? Minimizes administrative overhead of managing buffer pools You can now have bufferpools 0-99 Buffer pool LOCATION attribute says where it is located relative to the bar BELOW: The default. Buffer pool is located below the bar in 31 bit storage ABOVE: Buffer pool is located above the bar in 64 bit storage This can be altered dynamically Storage can be pagefixed based on pageclass attribute

IBM MQ for z/OS Wildfire Workshop

Definition Changes

- To implement expanded bufferpools
 - New attributes added to the BUFFPOOL commands
 - LOCATION
 - BELOW default, the pool is taken from the 2G address space
 - ABOVE the pool is allocated above the 2G bar
 - PAGECLAS
 - 4KB each 4K page is pageable by the operating system
 - > This is the only option for pools defined in BELOW the bar storage
 - 4KBFIXED each 4K page is fixed in memory
 - REPLACE/NOREPLACE
 - Should this definition override the what is held in the log of the queue manager?

```
) LOCATION( BELOW )
                     ) NOREPLACE
       PAGECLAS (
DEFINE BUFFPOOL
                     BUFFERS( 20000 ) LOCATION( BELOW ) +
       PAGECLAS (
                 4KB
DEFINE BUFFPOOL
                     BUFFERS( 50000 ) LOCATION( ABOVE ) +
                 4KB
      PAGECLAS (
                         REPLACE
DEFINE BUFFPOOL
                     BUFFERS( 20000 ) LOCATION( BELOW ) +
       PAGECLAS (
                       NOREPLACE
DEFINE BUFFPOOL(
                      BUFFERS( 1000 ) LOCATION( BELOW ) +
       PAGECLAS (
                 4KB
                     ) NOREPLACE
DEFINE BUFFPOOL
                      BUFFERS( 1000 ) LOCATION( ABOVE ) +
      PAGECLAS (
                 4KB)
                      REPLACE
DEFINE BUFFPOOL
                      BUFFERS( 1000 ) LOCATION( BELOW ) +
                       NOREPLACE
DEFINE BUFFPOOL
                 13 )
                      BUFFERS( 1000 ) LOCATION( ABOVE ) +
      PAGECLAS( 4KB )
                         REPLACE
                 14 ) BUFFERS( 1000 ) LOCATION( BELOW ) +
      PAGECLAS (
                     ) NOREPLACE
```

IBM MQ for z/OS Wildfire Workshop

TEM

MEMLIMIT

V7.1 MEMLIMIT

```
//QML1MSTR PROC
//PROCSTEP EXEC PGM=CSQYASCP,REGION=0M MEMLIMIT=2G
//*
```

- Allocates 64-bit storage for MQ's use
 - Indexes
 - Security cache
 - SMDS buffers
- V8.0 MEMLIMIT

```
//QML1MSTR PROC
//PROCSTEP EXEC PGM=CSQYASCP,REGION=0M MEMLIMIT=7G
//*
```

 Same storage areas and the above the bar bufferpools (sized for example in MQ V8 Redbook)

IBM MQ for z/OS Wildfire Workshop

TER

The benefit of sufficient buffers

- While QREP was one of the focus areas when testing above the bar bufferpools, any application that overfills a bufferpool will benefit.
- Another example illustrated in the upcoming MP1J, MQ for z/OS performance, is the effect of having sufficient buffers on a normal transmission queue.
- In this example a transmission queue has filled due to an unavailable receiver queue. Please note the following:
 - The below the bar bufferpool had 200,000 pages which is quite large for a buffer pools
 - The above the bar bufferpools had a 1,048,576 page (4GB) buffer pool for the transmission queue.
 - Each test put the same number of messages, batching them at 200 messages per commit.
 - The large bufferpool peaked at 500,000 messages and did not have to write any to the pageset during processing.

IBM MQ for z/OS Wildfire Workshop

ien

Calculating Memory requirements

- As of MQ V7.1 the queue manager set the MEMLIMIT to 2G
 - This storage is used by MQ for things like the INDEX storage, security cache, etc.
 - If bufferpools are above the bar are being allocated, more storage may be needed.
 - To calculate the additional storage requirements:
 - Multiply the number of pages by 4096
 - Calculate the number 200-byte control blocks required for all messages (all bufferpools)
 - Tally the storage requirements and add that to the 2G MEMLIMIT

IBM MQ for z/OS Wildfire Workshop 64 Bit Buffer Pools: Performance Summary Single Requester per Queue: Transaction Rate Transaction Cost LPAR %Busy Channel Path %Busy (per second) (cpu microseconds) 31-bit 232762 35.92 54% 56% 235217 37.48 57% 57.4% 64-bit (enough buffers) 324213 38.12 83% 0.07% 341412 38.23 83% 0.08% 64-bit (4GB per buffer pool) 2 Requesters per Queue: Transaction Rate Transaction Cost LPAR %Busy Channel Path %Busy (per second) (cpu microseconds) 42.3 42% 75.4% 31-bit 145623 44.84 43.5% 75.9% 384062 40.65 99.59% 0.08% 64-bit (4GB per buffer pool) 99.69% •16 CP LPAR •Each transaction puts and gets a random message from a pre loaded gueue. Second test requires a doubling in buffer pool size

