MECHANISMS OF AGEING AND DEVELOPMENT

AUTHOR INDEX

Volume 54 (1990)

Abe, K.	221	Fukushima, S.	259	Nishikawa, T.	259
Ajitsu, S.	143, 163	Guan, J.Y.	103	Ogawa, H.	259
Aksenov, M.Y.	249	Ouni, J. I.	100		
Allorio, F.	207	Habu T	221	Pastoris, O.	207
Amenta, F.	55, 63, 185	Habu, T.		Ricci, A.	55, 63, 185
Andrianova, L.F.	131	Hockwin, O.	13		
		Hofmann, D.	13	Riggs, J.E.	235
Bours, J.	13			Sasagawa, S.	259
Bronzetti, E.	55	Jiang, M.T.	87	Sato, A.I.	1
Butenko, G.M.	131			Schneider, E.L.	
Byard, P.J.	29	Kapitanov, A.B.	249		197
		Katyare, S.S.	121	Schoeffter, P.	-
Cavallotti, C.	55, 63	Kawanishi, H.	143, 163	Sidorenko, A.V.	131
Collier, W.L.	63	Klemera, P.	75	Stoclet, JC.	197
Come, w.L.	-			Subramanian, M.	121
Danner, D.B.	1	Letić-Gavrilović, A.	221	Tanaka, E.	221
Davis, P.B.	29	Li, F.S.	103		
de Arruda Cardoso		Li, L.	103	Vega, J.A.	185
Smith, M.	43	Li, S.Y.	103	Vercesi, L.	207
De Michele, M.	63				
Dossena, M.	207	Macsyuk, T.V.	131	Wegener, A.	13
Doubal, S.	75	Melaragno, M.I.	43	Wei, F.C.	103
Duan, Y.J.	103	Mirabella, S.	143, 163		
ar daming a root		Mong, L.Y.	103	Yan, S.J.	103
Ferrante, F.	55				
Fodisch, H.J.	13	Narayanan, N.	87	Zou, L.M.	103

MECHANISMS OF AGEING AND DEVELOPMENT

SUBJECT INDEX

Volume 54 (1990)

- A. laidlawii, protein biosynthesis and degradation, cell ageing, DNA single-strand breaks, 249
- acetylcholinesterase, aging, kidney, noradrenaline, innervation, rat, 185
- adenylate cyclase, ageing, cyclic AMP, cyclic nucleotide phosphodiesterase, vascular smooth muscle relation, rat aorta, 197
- agarose/polyacrylamide isoelectric focusing, human lens, frozen-sectioning technique, development, ageing, HM-, Pre-α-, β, and αcrystallins, water-soluble crystallins, 13
- aged gut-associated lymphoid tissues, aging and immune responses of GALT, mycobacterial Ag and GALT, 143
- ageing, beta-adrenergic responses, airway reactivity, 29
- ageing, cyclic AMP, adenylate cyclase, cyclic nucleotide phosphodiesterase, vascular smooth muscle relation, rat aorta, 197
- ageing, human lens, frozen-sectioning technique, development, HM-, Pre-σ-, β, and σ-crystallins, agarose/polyacrylamide isoelectric focusing, water-soluble crystallins, 13
- ageing, ovary, noradrenaline, rat, high pressure liquid chromatography, fluorescence microscopy, 55
- aging, bone marrow, hemopoietic and stromal precursor cells, 131
- aging, frontal cortex, dopamine receptors, cAMP, rat, 63
- aging, hypoxia, pharmacological treatment, muscular metabolites, 207
- aging, kidney, noradrenaline, innervation, acetylcholinesterase, rat, 185
- aging, mortality, Gompertz law, reliability, system theory, 75
- aging, mortality, life span, longevity, 235
- aging, protein secretion, submandibular gland, isoproterenol a-methylnoradrenaline, clonidine, 221
- aging, sister chromatid exchange, cell proliferation, premature aging, progeria, 43
- aging and immune responses of GALT, aged gutassociated lymphoid tissues, mycobacterial Ag and GALT, 143

- aging heart, sarcoplasmic reticulum, phosphorylation, phospholamban, Ca²ⁿ transport, 87
- airway reactivity, beta-adrenergic responses, ageing, 29
- beta-adrenergic responses, airway reactivity, ageing, 29
- bone marrow, hemopoietic and stromal precursor cells, aging, 131
- Ca2 transport, aging heart, sarcoplasmic reticulum, phosphorylation, phospholamban, 87
- cAMP, aging, frontal cortex, dopamine receptors, rat, 63
- cell ageing, A. laidlawii, protein biosynthesis and degradation, DNA single-strand breaks, 249
- cell proliferation, sister chromatid exchange, aging, premature aging, progeria, 43
- chemically defined medium, clonal life span, Paramecium, 259
- clonal life span, Paramecium, chemically defined medium, 259
- clonidine, protein secretion, aging, submandibular gland, isoproterenol, amethylnoradrenaline, 221
- cyclic AMP, ageing, adenylate cyclase, cyclic nucleotide phosphodiesterase, vascular smooth muscle relation, rat aorta, 197
- cyclic nucleotide phosphodiesterase, ageing, cyclic AMP, adenylate cyclase, vascular smooth muscle relation, rat aorta, 197
- cytochrome oxidase, mitochondria, mouse liver, weaning, oxidative phosphorylation, 121
- development, human lens, frozen-aectioning technique, ageing, HM-, Pre-α-, β, and αcrystallins, agarose/polyacrylamide isoefectric focusing, water-soluble crystallins, 13
- DNA methylation, dysdifferentiation, 1
- DNA single-strand breaks, A. laidlawii, protein biosynthesis and degradation, cell ageing, 249
- dopamine receptors, aging, frontal cortex, cAMP, rat, 63
- dysdifferentiation, DNA methylation, 1

- fluorescence microscopy, ovary, noradrenaline, rat, high pressure liquid chromatography, ageing, 55
- frontal cortex, aging, dopamine receptors, cAMP, rat, 63
- frozen-sectioning technique, human lens, development, ageing, HM-, Pre-α-, β, and αcrystallins, agarose/polyacrylamide isoelectric focusing, water-soluble crystallins, 13
- glutathione peroxidase, Kaschin-beck disease, selenium, membrane, phospholipid, mucopolysaccharides, 103
- Gompertz law, mortality, aging, reliability, system theory, 75
- hemopoietic and stromal precursor cells, bone marrow, aging, 131
- high pressure liquid chromatography, ovary, noradrenaline, rat, fluorescence microscopy, ageing, 55
- HM-, Pre-α-, β, and β-crystallins, human lens, frozen-sectioning technique, development, ageing, agarose/polyacrylamide isoelectric focusing, water-soluble crystallins, 13
- human lens, frozen-sectioning technique, development, ageing, HM-, Pre-σ-, β, and σcrystallins, agarose/polyacrylamide isoelectric focusing, water-soluble crystallins, 13
- hypoxia, aging, pharmacological treatment, muscular metabolites, 207
- IL2 effect on aged and gut-associated lymphoid tissues, immune interventions with IL2, immune intervention and aging, 163
- immune interventions with IL2, immune intervention and aging, IL2 effect on aged and gut-associated lymphoid tissues, 163
- immune intervention and aging, immune interventions with IL2, IL2 effect on aged and gut-associated lymphoid tissues, 163
- innervation, aging, kidney, noradrenaline, acetylcholinesterase, rat, 185
- isoproternol, protein secretion, aging, submandibular gland, a-methylnoradrenaline, clonidine, 221
- Kaschin-beck disease, selenium, glutathione peroxidase, membrane, phospholipid, mucopolysaccharides, 103
- kidney, aging, noradrenaline, innervation, acetylcholinesterase, rat, 185
- life span, aging, mortality, longevity, 235 longevity, aging, mortality, life span, 235

- membrane, Kaschin-beck disease, selenium, glutathione peroxidase, phospholipid, mucopolysaccharides, 103
- a-methylnoradrenaline, protein secretion, aging, submandibular gland, isoproterenol, clonidine, 221
- mitochondria, mouse liver, weaning, oxidative phosphorylation, cytochrome oxidase, 121
- mortality, aging, Gompertz law, reliability, system theory, 75
- mortality, aging, life span, longevity, 235
- mouse liver, mitochondria, weaning, oxidative phosphorylation, cytochrome oxidase, 121
- mucopolysaccharides, Kaschin-beck disease, selenium, glutathione peroxidase, membrane, phospholipid, 103
- muscular metabolites, hypoxia, aging, pharmacological treatment, 207
- mycobacterial Ag and GALT, aged gut-associated lymphoid tissues, aging and immune responses of GALT, 143
- noradrenaline, aging, kidney, innervation, acetylcholinesterase, rat, 185
- noradrenaline, ovary, rat, high pressure liquid chromatography, fluorescence microscopy, ageing, 55
- ovary, noradrenaline, rat, high pressure liquid chromatography, fluorescence microscopy, ageing, 55
- oxidative phosphorylation, mitochondria, mouse liver, weaning, cytochrome oxidase, 121
- Paramecium, clonal life span, chemically defined medium, 259
- pharmacological treatment, hypoxia, aging, muscular metabolites, 207
- phospholamban, aging heart, sarcoplasmic reticulum, phosphorylation, Ca2 transport, 87
- phospholipid, Kaschin-beck disease, selenium, glutathione peroxidase, membrane, mucopolysaccharides, 103
- phosphorylation, aging heart, sarcoplasmic reticulum, phospholamban, Ca³⁺ transport, \$7
- premature aging, sister chromatid exchange, cell proliferation, aging, progeria, 43
- progeria, sister chromatid exchange, cell proliferation, aging, premature aging, 43
- protein biosynthesis and degradation, A. laidlewii, cell ageing, DNA single-strand breaks, 249
- protein secretion, aging, submandibular gland, isoproterenol, α-methylnoradrenaline, clonidine, 221

- rat, aging, frontal cortex, dopamine receptors, cAMP, 63
- rat, aging, kidney, noradrenaline, innervation, acetylcholinesterase, 185
- rat, ovary, noradrenaline, high pressure liquid chromatography, fluorescence microscopy, ageing, 55
- rat aorta, ageing, cyclic AMP, adenylate cyclase, cyclic nucleotide phosphodiesterase, vascular smooth muscle relation, 197
- reliability, mortality, aging, Gompertz law, system theory, 75
- sarcoplasmic reticulum, aging heart, phosphorylation, phospholamban, Ca^{2*} transport, 87
- selenium, Kaschin-beck disease, glutathione peroxidase, membrane, phospholipid, mucopolysaccharides, 103

- sister chromatid exchange, cell proliferation, aging, premature aging, progeria, 43
- submandibular gland, protein secretion, aging, isoproterenol, o-methylnoradrenaline, clonidine, 221
- system theory, mortality, aging, Gompertz law, reliability, 75
- vascular smooth muscle relation, ageing, cyclic AMP, adenylate cyclase, cyclic nucleotide phosphodiesterase, rat aorta, 197
- water-soluble crystallins, human lens, frozensectioning technique, development, ageing, HM-, Pre-σ-, β, and σ-crystallins, agarose/ polyacrylamide isoelectric focusing, 13
- weaning, mitochondria, mouse liver, oxidative phosphorylation, cytochrome oxidase, 121

