

Choose the right pipeline for the right task

Scenario	Primary Persona	Azure Offering	OSS Offering	Canonical pipe	Differentiator
Model orchestration	Data scientist	Machine Learning Pipelines	Kubeflow pipelines	Data -> model Training/ retraining	Distribution, caching, code- first, reuse
Data orchestration	Data engineer	Data Factory Pipelines	Apache airflow	Data -> data Data movement/ transform	Strongly typed movement / data-centric activities, activity first
Code & app orchestration	App developer / ops	DevOps Pipelines	Jenkins	Code -> app/svc Validation/ deployment	Most open / flexible activity support, approval queues, phases with gating

Data Science DevOps Pain Points

Activities

- Experimentation
- Modeling
 - Versioning
 - · Lineage
 - Conversion
 - · Export
 - · Quantization
- Inferencing
- Retraining
- A/B Testing
- Etc.

Pain Points

- Need to solve ML problem quickly.
- ML stack might be different from rest of the application stack.
- Lots of Glue code.
- Testing accuracy of ML model.
- ML code is not always version controlled.
- Hard to reproduce models
- Integrating model into application can take weeks
- Need to re-write featurizing and scoring code multiple times (in different languages)
- Want to start using customer data to build models
- Hard to track breaking changes

Model Registry

Goals:

- Track important metadata on a model
 - tags, versions used for discovery what do I have?
 - · runtime info model framework, operators leveraged, memory footprint, ...
 - **key metrics** how has my model evolved over time?
 - **model lineage** what was used to create my model (code / compute / data / other models)?
 - · upstream consumption where has it been deployed? (services, ML pipelines, IoT devices)... is it healthy?
- Make models easy to discover, consume, customize
 - · Determine supported image types and deployment targets for a given model
 - · Promote the best model from my experiment
 - Explore / fork the experiment used to create a model (customize or retrain)

Syntax (CLI)

```
az ml model register {{modelType}} -n modelName -f modelFile(s) [modelFlavor specific metadata]
```

Example model types: pytorch, pyspark, sklearn

Examples:

- az ml model register tensorflow -n mymodel -f model.pb --model-type inceptionv3
- az ml model promote -n promotedModelName -experiment-id experimentId -m mybestmodel
- az ml model update -n mymodel:latest --all