Universidade Federal do Rio Grande do Sul Faculdade de Ciências Econômicas Departamento de Economia Disciplina: Teoria Microeconômica II

Disciplina: Teoria Microeconômica II Autores: Luciano Marchese Silva e Camila Steffens

Capítulo 5

Bens Públicos

Tópicos

1.	Int	trodução	3		
2.	Pro	Provisão de um Bem Público			
	Diferentes Níveis do Bem Público				
4.	Pre	eferências Quase-lineares e Bens Públicos	7		
	Referências				
6.	ANI	IEXOS	8		
•	6.1.	ANEXO I: Links	8		
(6.2.	ANEXO II: Exercícios	11		
	6.3.	ANEXO II: Exercícios Resolvidos	14		

1. Introdução

Como vimos no capítulo 4, na presença de falhas de mercado, o mecanismo de mercado por si só não garante que as alocações de equilíbrio sejam eficientes. Uma dessas falhas consiste na existência de Bens Públicos, os quais possuem como características serem <u>não rivais e não excludentes</u>. O Bem Público é aquele que, independente da avaliação individual de cada consumidor (a qual pode ser diferente), deve ser consumido na mesma quantidade por todos.

Figura 1 – Falhas de Mercado

Fonte: elaborada pelos autores

2. Provisão de um Bem Público

✓ Suponha dois estudantes (1 e 2) que dividem um apartamento e precisam decidir sobre comprar uma TV. Uma vez comprada, nenhum deles pode ser impedido de assisti-la (a TV é um bem público).

$$x_1 + g_1 = w_1$$
 $w_1 e w_2$: dotação inicial; $g_1 e g_2$: contribuição para a compra da TV; $x_1 e x_2$: dinheiro após a compra; $g_1 + g_2 \ge c$ c: custo da TV.

✓ As funções de utilidade dos indivíduos são:

$$U_1(x_1, G)$$
 $G = \begin{bmatrix} 0, \text{ sem TV} \\ 1, \text{ com TV} \end{bmatrix}$

✓ Cada indivíduo tem um <u>preço de reserva</u> (r) tal que:

COM TV SEM TV
$$U_1 (w_1 - r_1, 1) = U_1 (w_1, 0)$$

$$U_2 (w_2 - r_2, 1) = U_2 (w_2, 0)$$

- √ Há dois tipos de alocação interessantes:
- 1. A TV NÃO É ADQUIRIDA: $(w_1, w_2, 0)$
- 2. A TV É ADQUIRIDA: $(w_1 g_1, w_2 g_2, 1)$ x_1 x_2
- ✓ Quando a TV deve ser oferecida:

$$U_1(x_1, 1) > U_1(w_1, 0)$$

 $U_2(x_2, 1) > U_2(w_2, 0)$

A utilidade de ter a TV deve ser maior que a utilidade de não a ter.

COM A TV > INDIFERENTE ENTRE TER OU NÃO A TV

$$U_{1}\left(\frac{w_{1}-g_{1}}{s},\ 1\right) =U_{1}\left(x_{1}\, ,\, 1\right) >U_{1}\left(w_{1},\, 0\right) =U_{1}\left(\frac{w_{1}-r_{1}}{s},\, 1\right)$$

$$U_2(w_2-g_2, 1) = U_2(x_2, 1) > U_2(w_2, 0) = U_2(w_2-r_2, 1),$$

Logo: $w_1 - g_1 > w_1 - r_1$ $r_1 > g_1$ $r_2 > g_2$ $r_2 > g_2$

Preço de reserva > contribuição de cada indivíduo.

CONCLUSÃO: $r_1 + r_2 > g_1 + g_2$ $r_1 + r_2 > c$ **CONDIÇÃO DE AQUISIÇÃO DA TV:** O preço de reserva somado de cada indivíduo tem que ser maior que o custo da TV.

2.1. PEGANDO CARONA

Se ambos os colegas de apartamento cooperarem na compra da TV e se $r_1 + r_2 > c$, então a TV será adquirida e ambos contribuirão. Mas eles podem não ter o incentivo de revelar seu verdadeiro preço de reserva (valor que avaliam a TV).

- Se $r_1 > c$ e $r_2 > c$: ambos avaliam a TV da mesma forma e o preço de reserva de cada indivíduo poderia pagar a TV sem a contribuição do outro.
 - Indivíduos são tentados a mentir -> **Pegar Carona** (cada um deixaria para o outro comprar a TV sozinho).

3. Diferentes Níveis do Bem Público

- ✓ O bem público pode ser um bem contínuo (com diferentes níveis de qualidade/tamanho).
- ✓ Exemplo: construção de uma praça pública -> pode ter diferentes tamanhos.
- ✓ Quanto maior a disposição dos indivíduos a gastar com o bem público, maior o tamanho ou a qualidade deste.

 G: tamanho/qualidade;
- ✓ Restrição orçamentária: $x_1 + x_2 + C(G) = w_1 + w_2$
- ✓ Problema de maximização do consumidor 1: Máx. U₁ (x₁, G), sujeito a U₂ = (x₂, G) constante; e x₁ + x₂ + C(G) = w₁ + w₂
- ✓ Solução: ∑ (Taxa Marginal de Substituição) = CMg (G)

C (G): custo do bem público;

x_i: gasto com outros bens;

Se a soma das taxas marginais de substituição fosse maior que o custo marginal, seria possível ampliar o tamanho/ a qualidade do Bem Público.

3.1. PEGANDO CARONA

- ✓ Na ausência de externalidade, o mercado pode prover a quantidade suficiente de um bem privado e gerar uma alocação eficiente de Pareto.
- ✓ E no caso de bens públicos?
- ✓ EXEMPLO:

Quando o indivíduo i está maximizando, j considera G como dado. Assim, i deverá ter uma previsão da contribuição de j para o bem público (g_i).

- Custo (G) = G -> CMg (G) = 1;
- Quantidade do bem público: G = g₁ + g₂;
- Utilidade de cada indivíduo: U_i (x_i, G);
- Cada indivíduo tem a dotação wi;
- Cada pessoa deve maximizar U_i (x_i, gi + ḡ_j), sujeito a x_i + gi = w_i
- Equilíbrio: cada um faz sua contribuição ótima, dada a contribuição do outro.

- O indivíduo i já proveu toda a quantidade do bem público (g_i = G);
- O indivíduo j considera o nível de bem público provido por i suficiente: logo, não é vantagem ampliar a oferta de G (g_i = 0);
- Preferências de j -> é ótimo pegar carona;
- Nível menor de bem público no equilíbrio -> geralmente, o mecanismo de mercado não resulta na provisão eficiente do bem público.

Cada pessoa se preocupa com a

total

do

bem

quantidade

público (G).

4. Preferências Quase-lineares e Bens Públicos

✓ Quando as <u>preferências são quase-lineares</u>, a quantidade do bem público é única em cada alocação eficiente -> apenas a distribuição do bem privado difere.

EXERCÍCIOS ADICIONAIS

5. Referências

- ✓ Varian, Hal R. (2010). Microeconomia: Princípios Básicos, 8ª Edição, Editora Campus;
- ✓ PINDYCK, Robert S.; RUBINFELD, Daniel. L. (2002). Microeconomia. 5ª ed. São Paulo: Prentice Hall;
- ✓ Notas de aula do professor Sérgio Marley Modesto Monteiro;
- ✓ Notas dos próprios autores.

6.ANEXOS

6.1. ANEXO I: Links

1) Características dos Bens Públicos: um bem público é não excludente, pois o uso por um indivíduo não exclui o uso do bem por outro indivíduo (ex.: segurança nacional, estrada sem pedágio) e não rival, pois o custo marginal de uma unidade adicional é zero.

VOLTAR

2) **Preço de Reserva:** é o preço máximo que cada indivíduo está disposto a pagar por um bem. Acima desse preço, ele prefere não consumir o bem em questão.

VOLTAR

- 3) Problema do carona (free rider): ocorre quando cada indivíduo espera que o outro adquira o bem público sozinho. Como o bem público é não excludente, o free rider o pode utilizar mesmo sem contribuir para sua aquisição.

 Dessa forma, o problema do carona desincentiva a aquisição do bem público:
 - ✓ Suponha que cada estudante tenha uma riqueza de 700 reais e esteja disposto a contribuir 450 reais para a aquisição de uma TV para o apartamento compartido. O custo da TV é 800 reais.
 - \checkmark $r_1 + r_2 = R$ \$ 900 > c (R\$ 800,00) -> Portanto, é eficiente de Pareto comprar a TV.
 - ✓ Se ambos adquirem o bem, ficarão com um pay-off igual a $w_i g_i + r_i = 700 400 + 450 = 750$.
 - ✓ Se cada estudante estiver disposto a pagar sozinho a TV e caso o outro não contribua, então o indivíduo que adquirir a TV ficará com satisfação igual a $w_1 c + r_1 = 700 800 + 450 = 350$. O free rider ficará com satisfação igual a $w_2 + r_2 = 700 + 450 = 1.150$.
 - ✓ Se nenhum estudante comprar a TV, ambos ficarão apenas com a riqueza inicial de R\$ 700,00.

ESTUDANTE 2

		COMPRAR	NÃO COMPRAR
ESTUDANTE	COMPRAR	750, 750	350, 1.150
1	NÃO COMPRAR	1.150, 350	700, 700
		<u>VOLTAR</u>	Equilíbrio de Nash: {Não Comprar, Não Comprar}: não é eficiente de Pareto.

4) Derivação da determinação do nível de Bem Público:

- Suponha dois estudantes que estão decidindo sobre o gasto com uma TV.
- G: qualidade da TV;
- C (G): custo da TV.

Problema de maximização do consumidor 1:

Máx.
$$U_1(x_1, G)$$
, sujeito a $U_2 = (x_2, G) = \bar{U}_2$; e $x_1 + x_2 + C(G) = w_1 + w_2$

L = U₁ (x₁, G)
$$-\lambda_1$$
 (U₂ $-\bar{U}_2$) $-\lambda_2$ (x₁ + x₂ + C(G) $-w_1 - w_2$)

$$\frac{dL}{dx_1} = \frac{dU_1}{dx_1} - \lambda_2 = 0 \qquad - \frac{dU_1}{dx_1} = \lambda_2 \quad - \frac{dx_1}{dU_1} = 1/\lambda_2$$

$$\frac{dL}{dx_2} = -\lambda_1 \frac{dU_2}{dx_2} - \lambda_2 = 0 \qquad -> -\lambda_1 \frac{dU_2}{dx_2} = \lambda_2 \qquad -> \frac{\lambda_2}{\lambda_1} = -\frac{dU_2}{dx_2} \qquad -> -\frac{\lambda_1}{\lambda_2} = \frac{dx_2}{dU_2}$$

$$\frac{dL}{dG} = \frac{dU_1}{dG} - \lambda_1 \frac{dU_2}{dG} - \lambda_2 \frac{dC(G)}{dG} = 0$$
, dividindo por λ_2 :

$$\frac{1}{\lambda^2} \cdot \frac{dU_1}{dG} - \frac{\lambda 1}{\lambda^2} \cdot \frac{dU_2}{dG} - \frac{dC(G)}{dG} = 0$$
, substituindo os lambdas:

$$\frac{\mathrm{d} \mathbf{x}_1}{\mathrm{d} \mathbf{U}_1} \cdot \frac{d U_1}{d G} + \frac{d \mathbf{x}_2}{d U_2} \cdot \frac{d U_2}{d G} = \frac{d C(G)}{d G}$$

$$\frac{\mathrm{dx}_1}{\mathrm{dG}} + \frac{\mathrm{dx}_2}{\mathrm{dG}} = \frac{dC(G)}{dG}$$

 $TMS_1 + TMS_2 = CMg(G)$

Equilíbrio: ∑ disposição a pagar pelo bem público = CMg (G);

Ou seja: Benefício = CMg (G).

VOLTAR

5) Preferências quase-lineares: $U_i(G, x_i) = v_i(G) + x_i$

- Consiste em uma função de utilidade híbrida entre a Cobb-Douglas (a parte não linear da função: v (G)) e Substitutos Perfeitos (a parte linear da função, representada por x_i no exemplo);
- Exemplos: $U_i(G, x_i) = \sqrt{G} + x_i$; $U_i(G, x_i) = \ln G + x_i$

Resolvendo o problema de definição do nível do bem público com preferências quase-lineares: $U_i(G, x_i) = v(G) + x_i$

✓ Utilidade Marginal de x:
$$\frac{dU_i}{dx_i}$$
 = 1

TMS_i =
$$\frac{UMg\ G}{UMg\ x_i} = \frac{\frac{dU}{dG}}{\frac{dU}{dx_i}} = \frac{\frac{d\ v_i(G)}{dG}}{1} = \frac{d\ v_i(G)}{dG}$$

- ✓ Utilidade Marginal de G: $\frac{dU_i}{dG} = \frac{d v_i(G)}{dG}$
- ✓ Definição do nível do bem público: $\sum_{i=1}^{n} TMS = CMg$ (G)
- ✓ Supondo 2 indivíduos: TMS₁ + TMS₂ = CMg (G) -> $\frac{d v_1(G)}{dG} + \frac{d v_2(G)}{dG}$ = CMg (G)

VOLTAR

6.2. ANEXO II: Exercícios

EXERCÍCIOS RESOLVIDOS

1. QUESTÃO ANPEC 13 (2010) - adaptada

Considere o problema de provisão eficiente de um bem público contínuo com dois consumidores. Seja u_i (γ , x_i) = ℓn (γ) + 1/2 x_i a utilidade do consumidor i sobre o bem público e o bem privado, em que γ é a quantidade do bem público e x_i é a quantidade do bem privado consumido pelo consumidor i, para i = 1,2. A produção do bem público depende das contribuições g_1 e g_2 dos consumidores 1 e 2, respectivamente (considere $\gamma = g_1 + g_2$). Cada consumidor possui uma dotação inicial de 2 unidades de bem privado. Calcule a quantidade eficiente de bem público que deve ser produzida.

SOLUÇÃO

VOLTAR

2. QUESTÃO ANPEC 12 (2011)

Considere uma comunidade com n indivíduos, com uma dotação inicial de bens de w_i , e cuja utilidade é dada pelo seu consumo de bens, x_i , e do volume de um bem público G, que é igual à soma dos valores de contribuição de cada um dos indivíduos, $G = \sum_{i=1}^{n} g_i$. A utilidade de cada um dos indivíduos é dada por $u_i = x_i + a_i \ln(G)$, em que $a_i > 1$. Suponha que, na determinação de sua escolha de contribuição, o indivíduo assuma que os outros não alterarão sua contribuição em resposta.

- © Neste caso, metade dos indivíduos maximizando sua utilidade contribuirá igualmente 2G/n.
- ① Apenas metade dos indivíduos caroneará (free ride) no dispêndio dos outros.
- ② A solução Pareto Ótima envolve apenas o indivíduo com maior a_i contribuindo.
- 3 A solução Pareto Ótima coincide com a solução descentralizada.
- 4 O indivíduo com maior a_i colabora com metade do valor do bem público.

SOLUÇÃO

VOLTAR

EXERCÍCIOS ADICIONAIS

1. QUESTÃO ANPEC 10 (2005)

Com relação aos conceitos de externalidade e bens públicos, avalie as afirmativas:

① Como os bens públicos são não de uso exclusivo, a presença de "caronistas" (free riders) geralmente faz com que mercados competitivos deixem de prover quantidades eficientes desses bens.

2. QUESTÃO ANPEC 15 (2005)

Uma cidade tem 1000 habitantes, os quais consomem apenas um bem privado: cervejas. Será construído nesta cidade um bem público: uma praça. Suponha que todos os habitantes tenham a mesma função de utilidade $U(X_i,G)=X_i-\frac{10}{G}$, em que X_i é a quantidade de cervejas consumidas e G é o tamanho da praça, em m^2 . Suponha que o preço da cerveja seja R\$ 1,00 por garrafa e o preço do metro quadrado construído da praça seja R\$ 100,00. Qual o valor de G (tamanho da praça) que é Pareto eficiente? (Divida o resultado por 10).

3. QUESTÃO ANPEC 12 (2008)

Com relação à teoria dos bens públicos, julgue as afirmações:

- © Se um bem público puder ser provido em quantidade continuamente variável, então, para que sua provisão seja eficiente, é necessário que a média dos benefícios marginais de todos os usuários se iguale ao custo marginal de produção do bem.
- ① A presença de "caronas" dificulta a oferta eficiente dos bens públicos pelos mercados.
- ② No que tange à provisão de um bem público, o imposto de Groves-Clarke garante que, para as partes envolvidas, a revelação do valor líquido verdadeiro do bem público seja uma estratégia fracamente dominante.
- ③ O imposto de Groves-Clarke só funciona para utilidades quase-lineares.
- ④ Se as preferências individuais tiverem pico único, então a preferência coletiva poderá apresentar a intransitividade característica do paradoxo do voto.

4. QUESTÃO ANPEC 14 (2009)

Suponha que existem dois agentes e que existe um bem público e um bem privado, ambos disponíveis em quantidades contínuas. A provisão do bem público é dada por $G = g_1 + g_2$, em que g_i é a contribuição do agente i (para i=1,2) para a provisão do bem público. A utilidade do agente 1 é u_1 (G, u_2) = $3\sqrt{G} + u_2$ e a do agente 2 é u_2 (u_2) = $2\sqrt{G} + u_2$ em que u_2 for consumo do bem privado pelo agente u_2 (em que u_2). Determine o nível u_2 de provisão eficiente do bem público.

5. QUESTÃO ANPEC 10 (2014)

Com relação à teoria dos bens públicos, indique quais das afirmações abaixo são verdadeiras e quais são falsas:

- O Para determinar o nível eficiente de oferta de um bem público é necessário igualar a soma dos benefícios marginais dos usuários do bem público ao custo marginal de sua produção;
- ① Um bem é não exclusivo quando as pessoas não podem ser impedidas de consumilo:
- ② Um bem é dito não disputável ou não rival quando para qualquer nível de produção o custo marginal de se atender um consumidor adicional é zero;
- ③ Um carona é um indivíduo que não paga por um bem não disputável ou não rival, na expectativa de que outros o façam;
- ④ O uso do imposto de Clarke para determinar a oferta de bens públicos exige preferências quase lineares.

6.3. ANEXO II: Exercícios Resolvidos

1. Máx. $u_1(\gamma, x_1) = \ln(\gamma) + 1/2x_1$, sujeito a $u_2(\gamma, x_2) = \bar{U}_2 e x_1 + x_2 + g_1 + g_2 = 4$

$$L = \ell n (\gamma) + 1/2x_1 - \lambda_1 (\ell n (\gamma) + 1/2x_2 - \bar{U}_2) - \lambda_2 (x_1 + x_2 + g_1 + g_2 - 4)$$

$$L = \ell n (\gamma) + 1/2x_1 - \lambda_1 (\ell n (\gamma) + 1/2x_2 - \bar{U}_2) - \lambda_2 (x_1 + x_2 + \gamma - 4)$$

$$\frac{dL}{dx_1} = \frac{1}{2} - \lambda_2 = 0$$
 $-> \frac{1}{2} = \lambda_2$

$$\frac{dL}{dx_2} = -\lambda_1 \frac{1}{2} - \lambda_2 = 0 \quad -> -\lambda_1 \frac{1}{2} = \lambda_2 \quad -> \quad -\lambda_1 \frac{1}{2} = \frac{1}{2} \quad -> \quad \lambda_1 = -1$$

$$\frac{dL}{d\gamma} = \frac{1}{\gamma} - \lambda_1 \frac{1}{\gamma} - \lambda_2 \frac{d(\gamma)}{d\gamma} = 0$$

Substituindo os lambdas: = $\frac{1}{\gamma} + \frac{1}{\gamma} - \frac{1}{2} = 0$ \rightarrow $\frac{2}{\gamma} = \frac{1}{2}$ \rightarrow $\gamma = 4$

VOLTAR

2. O problema de maximização de cada indivíduo consiste em Máx. $u_i = x_i + a_i \ln(G)$, sujeito a $w_i = x_i + g_i$, sendo $G = \sum g_i$.

$$L = x_i + a_i \ln(G) - \lambda (x_i + g_i - w_i)$$

$$\frac{dL}{dx_i} = 1 - \lambda = 0 \qquad -> \lambda = 1$$

$$\frac{dL}{dG} = \frac{a_i}{G} - \lambda = 0 \qquad -> \frac{a_i}{G} - 1 = 0 \qquad -> \quad \mathbf{G} = \mathbf{a_i}$$

Conforme vimos no exemplo do caso do carona (free rider), nessa questão, apenas o indivíduo com maior a_i contribuirá para o bem público, sendo que os demais irão na carona deste. A solução ótima de Pareto consiste em todos os indivíduos contribuindo, tal que $\sum_i^n TMS_i = CMg$ (G). Dessa forma, a solução ótima é a solução centralizada (em que o governo providencia o bem público). A solução descentralizada (privada) não é eficiente, justamente devido ao problema do carona.