MTH 410/510 HOMEWORK 2, SET 2

1. Consider the Rosenbrock function given by

$$f(x_1, x_2) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2.$$

- (a) Find the gradient and the Hessian of the function at any point $x = (x_1, x_2)$.
- (b) Find the absolute minimizer of the function and the associated optimal value.
- (c) write a MATLAB code to implement the gradient method with backtracking line search with $s=2, \alpha=0.25, \beta=0.5, x_0=[2;5]$ and $\epsilon=10^{-4}$ to minimize this function. How many iterations does this run require?
- 2. Let $f(x) = \sqrt{1+x^2}$. Prove that f is a $C^{1,1}$ function. Hint: Find f'' and show that it is bounded.
- 3. Suppose that $f \in C_{\ell}^{1,1}$.
- (a) Prove that for any $x \in \mathbb{R}^n$ and t > 0,

$$f(x) - f(x - t\nabla f(x)) \ge t(1 - \frac{t\ell}{2}) \|\nabla f(x)\|^2.$$

(b) Let $\{x_k\}$ be the sequence generated by the gradient method for minimizing the function f with constant stepsize $0 < t < \frac{2}{\ell}$. Prove that $\{f(x_k)\}$ is monotone decreasing. In addition, $f(x_{k+1}) < f(x_k)$ unless $\nabla f(x_k) = 0$.

MTH 410/510 HOMEWORK 2, SET 1

1. Write a MATLAB codes to implement the gradient method to minimize the function $f(x_1, x_2) = x_1^2 + x_1x_2 + x_2^2 + x_1 - x_2$. Run the following methods and compare the number of iterations required by each method when the initial vectors is $x_0 = (5, 10)$ to obtain a solution x with $\|\nabla f(x)\| \le 10^{-4}$.

- (a) The gradient method with exact line search.
- (b) The gradient method with constant stepsize t = 0.1.
- (c) The gradient method with backtracking stepsize rule and parameters $\alpha = 0.5, \beta = 0.5, s = 1$.

Hint: Convert the function to the matrix form $f(x) = x^T A x + b x$, where A = [1, 1/2, 1/2, 1], b = [1, -1].

2. Consider the minimization problem

minimize
$$x^T A x, x \in \mathbb{R}^5$$
,

where A is the 5×5 Hilbert matrix defined by

$$A_{i,j} = \frac{1}{i+j-1}, i, j = 1, 2, 3, 4, 5.$$

The matrix can be constructed via MATLAB command A = hilb(5). Run the following methods and compare the number of iterations required by each method when the initial vectors is $x_0 = (1, 2, 3, 4, 5)$ to obtain a solution x with $\|\nabla f(x)\| \le 10^{-2}$.

- (a) The gradient method with exact line search.
- (b) The gradient method with constant stepsize t = 0.1.
- (c) The gradient method with backtracking stepsize rule and parameters $\alpha = 0.5, \beta = 0.5, s = 1$.
- 3. (Bonus) (a) Use the data set "housing.txt" from d2l and the gradient method to find w_0, w_1, w_2 in the linear function $f(x_1, x_2) = w_0 + w_1x_1 + w_2x_2$ in the linear regression model. Then make prediction for the price of a house with a living area of $2080ft^2$ and 4 bedrooms.
- (b) Use the data set "TwinCityHomes.csv" from d2l and the gradient descent for the linear regression model to predict the price of a house with 4 bedrooms, 2.5 bathrooms, $2080ft^2$, lot size $5600ft^2$, year built 2007, and 2 parking spots.