МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №1 по дисциплине «Машинное обучение» ТЕМА: Предобработка данных.

Студент гр. 6302	 Барбарич И.Г.
Руководитель	Жангиров Т. Р

Санкт-Петербург 2020

Цель работы

Ознакомиться с методами предобработки данных из библиотеки Scikit Learn

1. Загрузить датасет по ссылке

age, anaemia, creatinine_p<u>hosphokinase</u>, diabetes, ejection_fraction, high_blood_pressure, platelets, serum_creatinine, serum_sodium, sex, smoking, time, DEATH_EVENT 75,0,582,0,20,1,265800,1.9,130,1,0,4,1 55,0,7861,0,38,0,263358.03,1.1,136,1,0,6,1

Рисунок 1. Загруженный датасет.

2. Загрузить датасет в датафрейм, и исключить бинарные признаки и признак времени.

C:	\Users\L	ion\PycharmProjects\python	Proje	ct1\venv\Scripts\p	ython.exe C:/Users/Li
	age	creatinine_phosphokinase		serum_creatinine	serum_sodium
0	75.0	582		1.9	130
1	55.0	7861		1.1	136
2	65.0	146		1.3	129
3	50.0	111		1.9	137
4	65.0	160		2.7	116
29	4 62.0	61		1.1	143
29	5 55.0	1820		1.2	139
29	6 45.0	2060		0.8	138
29	7 45.0	2413		1.4	140
29	8 50.0	196		1.6	136

Рисунок 2. Загруженный датасет в датафрейм.

3. Построить гистограмму признаков

Рисунок 3. Гистограмма признаков.

4. На основании гистограмм определите диапазоны значений для каждого из признаков, а также возле какого значения лежит наибольшее количество наблюдений.

Код программы:

```
axs[0, 2].hist(df['ejection_fraction'].values, bins = n_bins)
axs[0, 2].set_title('ejection_fraction')
print('min { }'.format(df['ejection_fraction'].values.min()),
   'max {}'.format(df['ejection_fraction'].values.max()))
axs[1, 0].hist(df['platelets'].values, bins = n_bins)
axs[1, 0].set_title('platelets')
print('min { }'.format(df['platelets'].values.min()),
   'max { }'.format(df['platelets'].values.max()))
axs[1, 1].hist(df['serum_creatinine'].values, bins = n_bins)
axs[1, 1].set_title('serum_creatinine')
print('min { }'.format(df['serum_creatinine'].values.min()),
   'max {}'.format(df['serum_creatinine'].values.max()))
axs[1, 2].hist(df['serum_sodium'].values, bins = n_bins)
axs[1, 2].set_title('serum_sodium')
print('min {}'.format(df['serum_sodium'].values.min()),
   'max { }'.format(df['serum_sodium'].values.max()))
plt.show()
```

Результат:

min 40.0 max 95.0 min 23 max 7861 min 14 max 80 min 25100.0 max 850000.0 min 0.5 max 9.4 min 113 max 148

Таблица 1

Признак	диапазоны	Наибольшее кол-во наблюдений
age	40 – 95	60
creatinine_phosphokinase	23 – 7861	50
ejection_fraction	14 – 80	35
platelets	25100 - 850 000	250000

serum_creatinine	0.5 - 9.4	1,25
serum_sodium	113 - 148	136

5. Преобразовал *датафрейм* к двумерному массиву *NumPy*, где строка соответствует наблюдению, а столбец признаку.

Стандартизация данных.

1. Была настроена стандартизация данных на основе 150 наблюдений, используя StandartScaler и построена гистограмма на стандартизированных данных.

Рисунок 4. Гистограмма данных первых 150 наблюдений, используя StandartScaler.

- 2. Сравнение данных до и после стандартизации.
 - Объекты после стандартизации центрированы вокруг 0.
 - Масштаб изменился до единичной дисперсии.
- 3. Рассчитайте мат. ожидание и СКО до и после стандартизации.

Код программы:

print('до стандартизации')
print (np.mean(data[:150, :], axis=0))
print (np.std(data[:150, :], axis=0))
...
print('после стандартизации')
print (np.mean(data[:150, :], axis=0))
print (np.std(data[:150, :], axis=0))

Результат:

до стандартизации

мат ожидание: [6.29466667e+01 6.07153333e+02 3.79466667e+01 2.66746749e+05

1.52060000e+00 1.36453333e+02]

CKO: [1.24497854e+01 1.18974318e+03 1.30393183e+01 9.61917902e+04 1.16641630e+00 4.53958393e+00]

после стандартизации

мат ожидание: [-0.16970362 -0.02127675 0.01050249 -0.03522879 - 0.1086408 0.0379076]

CKO: [0.95382379 0.81417905 0.90610822 1.01506113 0.88542887 0.9703736]

4. На основе значений можно вывести формулу

$$Y = \frac{X - mean(X)}{std(X)};$$

5. Сравните значений из формул с полями mean_ и var_ объекта scaler

Код программы:

print ('mean scaler', scaler.mean_)
print ('var scaler', scaler.var_)

Результат:

mean scaler [6.29466667e+01 6.07153333e+02 3.79466667e+01 2.66746749e+05 1.52060000e+00 1.36453333e+02]

var scaler [1.54997156e+02 1.41548882e+06 1.70023822e+02 9.25286050e+09 1.36052697e+00 2.06078222e+01]

Mean_ scaler соответствует мат ожиданию

6. Проведите настройку стандартизации на всех данных и сравните с результатами настройки на основании 150 наблюдений.

Рисунок 5. Гистограмма данных всех наблюдений, используя StandartScaler.

мат ожидание: [5.70335306e-16 0.00000000e+00 -3.26754603e-17

7.72329061e-17

1.42583827e-16 -8.67384945e-16]

CKO: [1. 1. 1. 1. 1. 1.]

Приведение к диапазону

1. Приведите данные к диапазону, используя MinMaxScaler.

Рисунок 6. Приведение данные к диапазону, используя MinMaxScaler.

2. Через параметры MinMaxScaler определите минимальное и максимальное значение в данных для каждого признака.

Код программы:

print ('min', min_max_scaler.data_min_)
print ('max', min_max_scaler.data_max_)

Результат:

min [4.00e+01 2.30e+01 1.40e+01 2.51e+04 5.00e-01 1.13e+02]
max [9.500e+01 7.861e+03 8.000e+01 8.500e+05 9.400e+00 1.480e+02]

3. Аналогично трансформируйте данные используя MaxAbsScaler и RobustScaler. Постройте гистограммы. Определите к какому диапазону приводятся данные.

Рисунок 7. Приведение данные к диапазону, используя MaxAbsScaler.

Рисунок 8. Приведение данные к диапазону, используя и RobustScaler.

MaxAbsScaler масштабирует так, что максимальное значение равно 1, a RobustScaler центрирует относительно 0.

4. Напишите функцию, которая приводит все данные к диапазону [-5 10] Трансформируется по следующей формуле.

$$X_{std} = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))$$

$$X_scaled = X_std * (max - min) + min$$

В результате, получаем:

$$X_{scaled} = 15 * \frac{(X - X.min())}{X.max() - X.min()} - 5;$$

Код программы:

min_max_scaler = preprocessing.MinMaxScaler().fit(data)

data_min_max_scaled = min_max_scaler.transform(data)*15-5

Рисунок 9. Приведение данные к диапазону [-5 10].

Нелинейные преобразования

1. Приведение данных к равномерному распределению используя QuantileTransformer.

Рисунок 8. Приведение к равномерному распределению с помощью QuantileTransformer при 100 квантелях.

Рисунок 8. Приведение к равномерному распределению с помощью QuantileTransformer при 150 квантелях.

Рисунок 9. Приведение к равномерному распределению с помощью QuantileTransformer при 50 квантелях.

Чем больше квантелей, тем лучше приближение к требуемому распределению.

2. Приведите данные к нормальному распределению передав в QuantileTransformer параметр output distribution='normal

Рисунок 10. Приведение к нормальному распределению с использованием параметра output distribution='normal'.

Рисунок 11. Приведение данных к нормальному распределению используя PowerTransformer

Дискретизация признаков

- 1. Проведите дискретизацию признаков, используя KBinsDiscretizer, на следующее количество диапазонов:
 - age 3
 - creatinine_phosphokinase 4
 - ejection_fraction 3
 - platelets 10
 - serum_creatinine 2 s
 - erum_sodium 4 2
- 2. Постройте гистограммы. Объясните полученные результаты

Рисунок 12. Приведение дискретизацию признаков, используя KBinsDiscretizer.

3. Через параметр bin_edges_ выведите диапазоны каждого интервала для каждого признака

```
[array([40., 55., 65., 95.])
array([ 23. , 116.5, 250. , 582. , 7861. ])
array([14., 35., 40., 80.])
array([ 25100., 153000., 196000., 221000., 237000., 262000., 265000., 285200., 319800., 374600., 850000.])
array([0.5, 1.1, 9.4]) array([113., 134., 137., 140., 148.])]
```

Вывод

В результате работы были получены навыки с различными методами предобработки данных.