<u>Help</u>

sandipan_dey >

<u>Calendar</u> **Discussion** <u>Notes</u> <u>Course</u> <u>Progress</u> <u>Dates</u>

☆ Course / Unit 1: Functions of two variab... / Lecture 1: Level curves and partial derivati...

(1)

You are taking "Exam (Timed, No Correctness Feedback)" as a timed exam. Show more

End My Exam

44:59:07

Explore

The graph of a function $f\left(x,y
ight)$ is a surface in space whose height is described by

$$z = f(x, y). (2.3)$$

It can be difficult to visualize functions in three dimensions. Sometimes it is easier to think about what the function looks like in the xy-plane at fixed heights z. To do this, we draw what are called level curves.

Definition 4.1 The **level curves** of a function $f\left(x,y
ight)$ are given by $f\left(x,y
ight)=k$ where k is a constant.

The level curves of $f\left(x,y
ight)=x^{2}+y^{2}$ for k have the form

$$x^2 + y^2 = k \tag{2.4}$$

which represents a circle of radius \sqrt{k} centered at the origin. The level curves for k=1, 2, and 3 are shown in the figure below. These correspond to circles of radius 1, $\sqrt{2}$, and $\sqrt{3}$, respectively.

The level curves are related to the 3-dimensional graph as shown. Notice that the circles of radius \sqrt{k} correspond to circles of height z = k in three dimensions.

▼ Paraboloid with level curves

Interactive 3D Image Below: Click and drag to rotate the image. Right clicking changes the focus of the rotation.

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Connect

<u>Blog</u>

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>