Diskrete Mathematik Solution 9

9.1 Diffie-Hellman

a) Let $g \in \langle \mathbb{Z}_n; \oplus \rangle$ be the generator, which Alice and Bob use as the basis. Alice chooses x_A at random from $\{0, \dots, n-1\}$ and sends $y_A = R_n(g \cdot x_A)$. Analogously, Bob chooses x_B at random from $\{0, \dots, n-1\}$ and sends $y_B = R_n(g \cdot x_B)$. The established shared key is $k_{AB} = R_n(g \cdot x_A \cdot x_B)$.

As shown in Example 5.27, we have $\gcd(g,n)=1$. Therefore, Eve can use the Extended GCD algorithm to efficiently find an $a\in\mathbb{Z}$ such that $a\cdot g\equiv_n 1$. Then she can compute k_{AB} using the eavesdropped messages y_A and y_B as $k_{AB}=R_n(a\cdot y_A\cdot y_B)$. This is because

$$k_{AB} \equiv_n g \cdot x_A \cdot x_B \equiv_n g \cdot x_A \cdot (a \cdot g) \cdot x_B \equiv_n a \cdot (g \cdot x_A) \cdot (g \cdot x_B) \equiv_n a \cdot y_A \cdot y_B$$

b) Let us make Bob's argument more explicit: The Diffie-Hellman protocol using a cyclic group $G=\langle g\rangle$ is insecure if the discrete logarithm problem in G is easy. Since by Theorem 5.7 there exists an isomorphism $\varphi:G\to\mathbb{Z}_n$, one can compute x such that $g^x=h$ by instead computing x such that $\varphi(g)^x=\varphi(h)$. Since this can be done efficiently (both $\varphi(g)$ and $\varphi(h)$ are in \mathbb{Z}_n), Bob concludes that the discrete logarithm problem is easy in all cyclic groups.

Bob's argument is incorrect, because the above procedure is efficient only if the isomorphism φ can be efficiently computed, which is not always the case. For example, computing the isomorphism given in the proof of Theorem 5.7 requires solving the discrete logarithm problem in G (so Bob's procedure would give no advantage).

9.2 The Group \mathbb{Z}_m^*

a) The order of the group $\langle \mathbb{Z}_{36}^*; \odot \rangle$ is $\varphi(36)$. By Lemma 5.12,

$$\varphi(36) = (2-1) \cdot 2^{2-1} \cdot (3-1) \cdot 3^{2-1} = 2 \cdot 2 \cdot 3 = 12.$$

 \mathbb{Z}_{36}^* consists of all numbers in \mathbb{Z}_{36} which are relatively prime with 36, that is, $\mathbb{Z}_{36}^* = \{1, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35\}.$

b) We will verify for each $a \in \mathbb{Z}_{11}^*$ whether it is a generator (but more efficiently than by computing $\langle a \rangle$). An $a \in \mathbb{Z}_{11}^*$ is a generator if and only if $\operatorname{ord}(a) = 10$. By Lagrange's Theorem, $\operatorname{ord}(a) \in \{1, 2, 5, 10\}$, so a is a generator if and only if $\operatorname{ord}(a) \notin \{1, 2, 5\}$, that is, if and only if $a \neq 1$, $a^2 \neq 1$ and $a^5 \neq 1$. We can now compute $R_{11}(a^2)$ and $R_{11}(a^5)$ for all $a \in \{2, \ldots, 10\}$. The generators are 2, 6, 7 and 8.

Note. Another way to solve this exercise for any $\langle \mathbb{Z}_m^*; \odot \rangle$ is to first use Theorem 5.15 to determine whether $\langle \mathbb{Z}_m^*; \odot \rangle$ is cyclic. If so, it is isomorphic to $\langle \mathbb{Z}_{\varphi(m)}; \oplus \rangle$. Now we find one generator g of \mathbb{Z}_m^* (by trying all possibilities) and prove that for any $i \in \mathbb{Z}_{\varphi(m)}, g^i$ is a generator if and only if $\gcd(i, \varphi(m)) = 1$ (see Example 5.27).

c) We prove that $f: \mathbb{Z}_{nm}^* \to \mathbb{Z}_n^* \times \mathbb{Z}_m^*$, defined by $f(x) = (R_n(x), R_m(x))$ is an isomorphism. Throughout the proof we will use the fact that $\gcd(R_m(x), m) = \gcd(x, m)$ for any x, m, which follows from Lemma 4.2.

```
f is a function. We show that f(x) \in \mathbb{Z}_n^* \times \mathbb{Z}_m^* for all x \in \mathbb{Z}_{nm}^*.
```

Let $x \in \mathbb{Z}_{nm}^*$, which means that $\gcd(x,nm) = 1$. Let $d = \gcd(x,n)$. Then, $d \mid x$ and $d \mid n$, which implies that $d \mid x$ and $d \mid nm$, so by the definition of \gcd , $d \mid \gcd(x,nm)$. Hence, $d \mid 1$, so d = 1. Therefore, $\gcd(R_n(x),n) = \gcd(x,n) = 1$, so $R_n(x) \in \mathbb{Z}_n^*$.

The proof that $R_m(x) \in \mathbb{Z}_m^*$ is analogous.

f is surjective. Take any $(a,b) \in \mathbb{Z}_n^* \times \mathbb{Z}_m^*$. Since $\gcd(m,n) = 1$, by CRT, there exists an $x \in \mathbb{Z}_{nm}$ such that $(R_n(x), R_m(x)) = (a,b)$. To show that $x \in \mathbb{Z}_{nm}^*$, assume towards a contradiction that $d = \gcd(x,nm) > 1$. Let p be an arbitrary prime in the decomposition of d. Since $p \mid mn$, by Lemma 4.7, $p \mid n$ or $p \mid m$. In the first case, since also $p \mid x$, we get $p \mid \gcd(x,n)$. But $\gcd(x,n) = \gcd(R_n(x),n) = \gcd(a,n) = 1$ (because $a \in \mathbb{Z}_n^*$), so this is a contradiction. Analogously, in the second case we get $p \mid \gcd(b,m)$.

f is injective. By CRT, the x defined above is unique in \mathbb{Z}_{nm} , hence, it is also unique in \mathbb{Z}_{nm}^* .

f is a homomorphism. For any $a, b \in \mathbb{Z}_{nm}^*$,

$$f(a \odot_{nm} b) = (R_n(a \odot_{nm} b), R_m(a \odot_{nm} b))$$

$$= (R_n(R_{nm}(ab)), R_m(R_{nm}(ab)))$$

$$= (R_n(ab), R_m(ab))$$

$$= (R_n(R_n(a) \cdot R_n(b)), R_m(R_m(a) \cdot R_m(b)))$$

$$= (R_n(a) \odot_n R_n(b), R_m(a) \odot_m R_m(b))$$

$$= (R_n(a), R_m(a)) \star (R_n(b), R_m(b))^1$$

$$= f(a) \star f(b).$$

9.3 An RSA Attack

First, consider the case when n_1 , n_2 and n_3 are not relatively prime. Without loss of generality, assume that $gcd(n_1, n_2) > 1$. We can now use the Extended GCD algorithm to compute $p = gcd(n_1, n_2)$ and this way efficiently factorize n_1 . This allows us to compute the secret key of Alice and decrypt c_1 .

¹The operation \star on $\mathbb{Z}_n^* \times \mathbb{Z}_m^*$ is defined as $(a_1, b_1) \star (a_2, b_2) := (a_1 \odot_n a_2, b_1 \odot_m b_2)$.

Secondly, assume that n_1 , n_2 and n_3 are relatively prime. Consider the following system of congruence equations:

$$x \equiv c_1 \pmod{n_1}$$

 $x \equiv c_2 \pmod{n_2}$
 $x \equiv c_3 \pmod{n_3}$

Let $N = n_1 n_2 n_3$. Using the Chinese Remainder Theorem, we can efficiently find the solution x_0 to the above system of equations, such that $0 \le x_0 < N$.

Notice now that m^3 is also a solution to the system of equations, because $c_i \equiv m^3 \pmod{n_i}$ for $i \in \{1,2,3\}$. Moreover, since $0 \le m < n_i$ for $i \in \{1,2,3\}$, we have $0 \le m^3 < n_1 \cdot n_2 \cdot n_3 = N$. Since by the Chinese Remainder Theorem x_0 is unique in $\{0,\ldots,N-1\}$, it follows that $x_0 = m^3$.

What is left is to compute the cube root of x_0 over \mathbb{Z} , which can be done efficiently.

Note. This attack is also possible for e > 3. However, for given e one needs e ciphertexts, each encrypted for a different recipient.

9.4 Non Minimality of Ring Axioms

We only need to show that the operation + is commutative. Let $a, b \in R$. We have

$$(1+1)(a+b) = (1+1)a + (1+1)b$$
 (Axiom iii), distributivity)
= $(1a+1a) + (1b+1b)$ (Axiom iii), distributivity, twice)
= $(a+a) + (b+b)$ (Axiom ii), neutral element)
= $a+a+b+b$ (Axiom i), associativity)

But also

$$(1+1)(a+b) = 1(a+b) + 1(a+b)$$
 (Axiom iii), distributivity)
= $(1a+1b) + (1a+1b)$ (Axiom iii), distributivity, twice)
= $(a+b) + (a+b)$ (Axiom ii), neutral element)
= $a+b+a+b$ (Axiom i), associativity)

Therefore

$$a+b+a+b=a+a+b+b$$

 $\Leftrightarrow a+b+a+b+(-b)=a+a+b+b+(-b)$ (Add $-b$ on the right)
 $\Leftrightarrow a+b+a=a+a+b$ (Axiom i), associativity and inverse)
 $\Leftrightarrow (-a)+a+b+a=(-a)+a+a+b$ (Add $-a$ on the right)
 $\Leftrightarrow b+a=a+b$ (Axiom i), associativity and inverse)

9.5 Elementary Properties of Rings

a) We have

$$(-a)b + ab \stackrel{\text{distrib.}}{=} (-a+a)b \stackrel{\text{def. inverse}}{=} 0b \stackrel{\text{Lemma 5.17 (i)}}{=} 0.$$

Therefore, (-a)b is the additive inverse of ab, which means that (-a)b = -ab.

b) We have

$$(-a)(-b) + (-(ab)) \stackrel{\mathrm{a})}{=} (-a)(-b) + (-a)b \stackrel{\mathrm{distrib.}}{=} (-a)(-b+b)$$

$$\stackrel{\mathrm{def.\ inverse}}{=} (-a)0 \stackrel{\mathrm{Lemma}}{=} \stackrel{5.17\ (\mathrm{i})}{=} 0.$$

Therefore, (-a)(-b) is the additive inverse of -(ab), which means that (-a)(-b) = -(-(ab)) = ab.

9.6 Properties of Commutative Rings

- a) From a|b it follows that $\exists d\ b = ad$ and, thus, bc = (ad)c = a(dc). Hence, a|bc.
- **b)** From a|b it follows that $\exists d\ b=ad$ and from a|c it follows that $\exists e\ c=ae$. By the distributive law, we have b+c=ad+ae=a(d+e). Hence, a|(b+c).

9.7 Ideals in Rings

- a) We have $0=x0\in(x)$. Let $a,b\in(x)$. Than $a=xk_1$ and $b=xk_2$ for $k_1,k_2\in\mathbb{Z}$, so that $a+b=x(k_1+k_2)\in(x)$. This shows that (x) is an additive subgroup of R. Let $a\in(x)$ and $z\in\mathbb{Z}$. We have $az=(xk)z=x(kz)\in(x)$ for some $k\in\mathbb{Z}$. This shows that (x) is closed under multiplication by elements of \mathbb{Z} .
- **b)** Let I be an ideal of \mathbb{Z} . If $I=\{0\}$ then I=(0). Let d be the smallest positive element of I. Suppose $d\neq 1$. Let $x\in I$. We can write x=qd+r with $0\leq |r|< d$. We can also rewrite this as r=x-qd, and since both x and qd are elements of I, then $r\in I$. We can assume $r\geq 0$ (otherwise, $-r\in I$ is positive). But then r is positive and smaller than d which means r=0 by assumption on d. This shows I=(d).
- c) First of all $0=0x+0y\in (x,y)$. Also, if $a,b\in (x,y)$ then $a=xk_1+y\ell_1$ and $b=xk_2+y\ell_2$ for some $k_1,k_2,\ell_1,\ell_2\in R$. Therefore $a+b=x(k_1+k_2)+b(\ell_1+\ell_2)\in (x,y)$. This shows that (x,y) is an additive subgroup of R. Let $a\in (x,y)$ and $r\in \mathbb{R}$. Then $ar=(xk+y\ell)=x(kr)+y(\ell r)\in (x,y)$. This shows that (x,y) is closed under multiplication by elements of R.
- **d)** Suppose that there exists $p(x) \in \mathbb{Z}[x]$ such that (p(x)) = (2, x). If $\deg p(x) \geq 1$, then the product of $\deg p(x)f(x) \geq 1$ for all $0 \neq f \in \mathbb{Z}[x]$, so that $2 \notin (p(x))$. Suppose then that $\deg p(x) = 0$. Since $p(x) \in I$, then p(x) = 2k for some $k \in \mathbb{Z}$. But then $p(x)f(x) \iff (2k)(f(x)) = x$. If a is the coefficient of the first degree term of f(x), we would have (2k)a = 2(ka) = 1, but 2 does not have an inverse in \mathbb{Z} . This concludes the proof.

The proof of subtask b) does not go through here because we cannot perform division with remainder in $\mathbb{Z}[x]$.