```
In [1]:
         import pandas as pd
         import matplotlib.pyplot as plt
         data = pd.read_csv("RT_IOT2022.csv")
In [2]:
         data = pd.DataFrame(data)
         data.head()
Out[2]:
                id.orig_p id.resp_p proto service flow_duration fwd_pkts_tot bwd_pkts_tot fwd
            no
             0
                    38667
                               1883
                                                         32.011598
                                                                               9
                                                                                             5
         0
                                        tcp
                                               mqtt
         1
                   51143
                               1883
                                                         31.883584
                                                                               9
                                                                                             5
                                               mqtt
                                        tcp
         2
              2
                               1883
                                                                               9
                                                                                             5
                   44761
                                        tcp
                                               mqtt
                                                         32.124053
              3
                   60893
                               1883
                                                         31.961063
                                                                               9
                                                                                             5
         3
                                               mqtt
                                        tcp
                                                                               9
                                                                                             5
              4
                   51087
                               1883
                                        tcp
                                               mqtt
                                                         31.902362
        5 rows × 85 columns
In [3]:
         data = data.set_index("no")
In [4]:
         data.head()
Out[4]:
             id.orig_p id.resp_p proto service flow_duration fwd_pkts_tot bwd_pkts_tot fwd_da
         no
          0
                38667
                            1883
                                                      32.011598
                                                                            9
                                                                                          5
                                     tcp
                                            mqtt
          1
                51143
                            1883
                                           mqtt
                                                      31.883584
                                                                                          5
                                    tcp
          2
                44761
                            1883
                                                      32.124053
                                                                            9
                                                                                          5
                                           mqtt
                                    tcp
          3
                60893
                            1883
                                                      31.961063
                                     tcp
                                           mqtt
          4
                51087
                            1883
                                                                            9
                                                                                          5
                                            mqtt
                                                      31.902362
                                     tcp
        5 rows × 84 columns
In [5]: data.info()
```

<class 'pandas.core.frame.DataFrame'>
Index: 123117 entries, 0 to 2009
Data columns (total 84 columns):

#	Column	Non-Null Count	Dtype
0	id.orig_p	123117 non-null	int64
1	id.resp_p	123117 non-null	int64
2	proto	123117 non-null	object
3	service	123117 non-null	object
<i>3</i>			float64
	flow_duration	123117 non-null	
5	fwd_pkts_tot	123117 non-null	int64
6	bwd_pkts_tot	123117 non-null	int64
7	fwd_data_pkts_tot	123117 non-null	int64
8	bwd_data_pkts_tot	123117 non-null	int64
9	fwd_pkts_per_sec	123117 non-null	float64
10	bwd_pkts_per_sec	123117 non-null	float64
11	flow_pkts_per_sec	123117 non-null	float64
12	down_up_ratio	123117 non-null	float64
13	fwd_header_size_tot	123117 non-null	int64
14	fwd_header_size_min	123117 non-null	int64
15	<pre>fwd_header_size_max</pre>	123117 non-null	int64
16	<pre>bwd_header_size_tot</pre>	123117 non-null	int64
17	bwd_header_size_min	123117 non-null	int64
18	bwd_header_size_max	123117 non-null	int64
19	flow_FIN_flag_count	123117 non-null	int64
20	flow_SYN_flag_count	123117 non-null	int64
21	flow_RST_flag_count	123117 non-null	int64
22	fwd_PSH_flag_count	123117 non-null	int64
23	bwd_PSH_flag_count	123117 non-null	int64
24	flow_ACK_flag_count	123117 non-null	int64
25	fwd_URG_flag_count	123117 non-null	int64
26	bwd_URG_flag_count	123117 non-null	int64
27	flow_CWR_flag_count	123117 non-null	int64
28	flow_ECE_flag_count	123117 non-null	int64
29	fwd_pkts_payload.min	123117 non-null	float64
30	fwd_pkts_payload.max		float64
		123117 non-null	float64
31	<pre>fwd_pkts_payload.tot</pre>	123117 non-null	
32	<pre>fwd_pkts_payload.avg</pre>	123117 non-null	float64
33	<pre>fwd_pkts_payload.std</pre>	123117 non-null	float64
34	bwd_pkts_payload.min	123117 non-null	float64
35	bwd_pkts_payload.max	123117 non-null	float64
36	bwd_pkts_payload.tot	123117 non-null	float64
37	bwd_pkts_payload.avg	123117 non-null	float64
38	<pre>bwd_pkts_payload.std</pre>	123117 non-null	float64
39	flow_pkts_payload.min	123117 non-null	float64
40	flow_pkts_payload.max	123117 non-null	float64
41	flow_pkts_payload.tot	123117 non-null	float64
42	flow_pkts_payload.avg	123117 non-null	float64
43	flow_pkts_payload.std	123117 non-null	float64
44	fwd_iat.min	123117 non-null	float64
45	<pre>fwd_iat.max</pre>	123117 non-null	float64
46	fwd_iat.tot	123117 non-null	float64
47	fwd_iat.avg	123117 non-null	float64
48	fwd_iat.std	123117 non-null	float64
49	bwd_iat.min	123117 non-null	float64
50	bwd_iat.max	123117 non-null	float64
		- · · · · · · · · · · · · · · · · · · ·	

```
51 bwd iat.tot
                             123117 non-null float64
 52 bwd_iat.avg
                           123117 non-null float64
 53 bwd iat.std
                             123117 non-null float64
 54 flow_iat.min
                           123117 non-null float64
 55 flow_iat.max
                           123117 non-null float64
                           123117 non-null float64
 56 flow iat.tot
 57 flow_iat.avg
                           123117 non-null float64
 58 flow_iat.std
                             123117 non-null float64
    payload_bytes_per_second 123117 non-null float64
 60 fwd_subflow_pkts
                             123117 non-null float64
61 bwd_subflow_pkts
                             123117 non-null float64
62 fwd_subflow_bytes
                           123117 non-null float64
                           123117 non-null float64
 63 bwd_subflow_bytes
 64 fwd_bulk_bytes
                           123117 non-null float64
 65 bwd bulk bytes
                             123117 non-null float64
                           123117 non-null float64
 66 fwd_bulk_packets
                           123117 non-null float64
67 bwd_bulk_packets
                           123117 non-null float64
 68 fwd_bulk_rate
 69 bwd bulk rate
                           123117 non-null float64
 70 active.min
                           123117 non-null float64
 71 active.max
                           123117 non-null float64
72 active.tot
                           123117 non-null float64
73 active.avg
                           123117 non-null float64
 74 active.std
                           123117 non-null float64
75 idle.min
                           123117 non-null float64
 76 idle.max
                           123117 non-null float64
 77 idle.tot
                           123117 non-null float64
78 idle.avg
                           123117 non-null float64
79 idle.std
                           123117 non-null float64
80 fwd_init_window_size 123117 non-null int64
81 bwd_init_window_size 123117 non-null int64
82 fwd_last_window_size
                             123117 non-null int64
 83 Attack_type
                             123117 non-null object
dtypes: float64(56), int64(25), object(3)
memory usage: 79.8+ MB
```

In [6]: data_rvst = data.iloc[:, [2, 3, 4, 9, 10, 59, 83]]

data rvst

•		proto	service	flow_duration	fwd_pkts_per_sec	bwd_pkts_per_sec	payload_bytes_pe
	no						
	0	tcp	mqtt	32.011598	0.281148	0.156193	
	1	tcp	mqtt	31.883584	0.282277	0.156821	
	2	tcp	mqtt	32.124053	0.280164	0.155647	
	3	tcp	mqtt	31.961063	0.281593	0.156440	
	4	tcp	mqtt	31.902362	0.282111	0.156728	
	•••						
2	005	tcp	-	0.000006	167772.160000	167772.160000	
2	006	tcp	-	0.000007	144631.172414	144631.172414	
2	007	tcp	-	0.000006	167772.160000	167772.160000	
2	800	tcp	-	0.000006	167772.160000	167772.160000	
2	009	tcp	-	0.000006	167772.160000	167772.160000	
12	23117	7 rows ×	7 colum	ns			
		_	_				•

1. What is the distribution of the Attack_type classes (normal vs. various attacks), and what percentage of the 123,117 instances does each class comprise?

```
In [7]: data_attack = data["Attack_type"].value_counts()
    data_attack = pd.DataFrame(data_attack)
    data_attack
```

Out[7]: count

Attack_type	
DOS_SYN_Hping	94659
Thing_Speak	8108
ARP_poisioning	7750
MQTT_Publish	4146
NMAP_UDP_SCAN	2590
NMAP_XMAS_TREE_SCAN	2010
NMAP_OS_DETECTION	2000
NMAP_TCP_scan	1002
DDOS_Slowloris	534
Wipro_bulb	253
Metasploit_Brute_Force_SSH	37
NMAP_FIN_SCAN	28

```
In [8]: plt.figure(figsize = (12, 6))
labels = ["{0} - {1:1.2f}".format(i,j) for i,j in zip(data_attack.index, data_attack
bars = plt.bar(data_attack.index, data_attack["count"].values)

plt.xlabel("Attack Type")
plt.xticks(rotation = 45)
plt.ylabel("Count", rotation = 0)

plt.title("The Attack Type Frequency")
for bar, label in zip(bars, labels):
    bar.set_label(label)
plt.legend(title = "Attack Type", loc = "upper right")
plt.show()
```


In [9]: data_attack["percentage"] = (data_attack["count"]/data_attack["count"].sum()) * 100
data_attack

Out[9]: count percentage

Attack_type		
DOS_SYN_Hping	94659	76.885402
Thing_Speak	8108	6.585606
ARP_poisioning	7750	6.294825
MQTT_Publish	4146	3.367528
NMAP_UDP_SCAN	2590	2.103690
NMAP_XMAS_TREE_SCAN	2010	1.632593
NMAP_OS_DETECTION	2000	1.624471
NMAP_TCP_scan	1002	0.813860
DDOS_Slowloris	534	0.433734
Wipro_bulb	253	0.205496
Metasploit_Brute_Force_SSH	37	0.030053
NMAP_FIN_SCAN	28	0.022743

```
In [10]: labels = ["{0} - {1:1.2f}%".format(i,j) for i,j in zip(data_attack["percentage"].in
    plt.figure(figsize = (10, 10))
```

```
plt.pie(data_attack["percentage"].values)
plt.title("The Attack Type Distribution on 123117 Instances")
plt.legend(title = "Attack Type", labels = labels, loc = "upper right")
plt.show()
```

The Attack Type Distribution on 123117 Instances

2. How do the categorical features proto (protocol) and service vary across different attack types and normal traffic patterns?

```
In [11]: data["service"].replace({
        "-": "None"
}, inplace = True)
```

C:\Users\TIPQC\AppData\Local\Temp\ipykernel_36600\1427060069.py:1: FutureWarning: A value is trying to be set on a copy of a DataFrame or Series through chained assignment using an inplace method.

The behavior will change in pandas 3.0. This inplace method will never work because the intermediate object on which we are setting values always behaves as a copy.

For example, when doing 'df[col].method(value, inplace=True)', try using 'df.method ({col: value}, inplace=True)' or df[col] = df[col].method(value) instead, to perform the operation inplace on the original object.

data["service"].replace({

```
In [12]: data_cat_1 = data.groupby("proto")["Attack_type"].count()
    data_cat_1 = pd.DataFrame(data_cat_1)
    data_cat_1 = data_cat_1.sort_values(["Attack_type"], ascending = False)

plt.figure(figsize = (12, 6))
    labels = ["{0} - {1:1.2f}".format(i,j) for i,j in zip(data_cat_1.index, data_cat_1[
    bars = plt.bar(data_cat_1.index, data_cat_1["Attack_type"].values)

plt.xlabel("Protocol")
    plt.xticks(rotation = 45)
    plt.ylabel("Count", rotation = 90)
    plt.title("Number of Attack Type per Protocol")
    for bar, label in zip(bars, labels):
        bar.set_label(label)
    plt.legend()
    plt.show()
```



```
In [13]: data_cat_2 = data.groupby("service")["Attack_type"].count()
    data_cat_2 = pd.DataFrame(data_cat_2)
    data_cat_2 = data_cat_2.sort_values(["Attack_type"], ascending = False)

plt.figure(figsize = (12, 6))
```

```
labels = ["{0} - {1:1.2f}".format(i,j) for i,j in zip(data_cat_2.index, data_cat_2[
bars = plt.bar(data_cat_2.index, data_cat_2["Attack_type"].values)

plt.xlabel("Service")
plt.xticks(rotation = 45)
plt.ylabel("Count", rotation = 90)
plt.title("Number of Attack Type per Service")
for bar, label in zip(bars, labels):
    bar.set_label(label)
plt.legend()
plt.show()
```


3. What are the mean and standard deviation of flow_duration for each Attack_type, and are differences statistically significant?

```
In [14]: data_stat_sig = data.groupby(["Attack_type"])["flow_duration"].mean()
    data_stat_sig = pd.DataFrame(data_stat_sig)

In [15]: data_stat_sig["Standard Deviation"] = data.groupby("Attack_type")["flow_duration"].
    data_stat_sig = data_stat_sig.rename(columns = {
        "flow_duration": "Mean"
    })
    data_stat_sig.index = data_stat_sig.index.set_names(["Attack Type"])
    data_stat_sig = data_stat_sig.sort_values(["Mean", "Standard Deviation"], ascending
    data_stat_sig
```

Out[15]:

Mean Standard Deviation

Attack Type		
Wipro_bulb	586.845727	2738.891637
MQTT_Publish	43.397013	24.341563
ARP_poisioning	15.893538	108.261070
DDOS_Slowloris	14.699148	14.124797
Metasploit_Brute_Force_SSH	3.006557	5.210286
Thing_Speak	0.934471	5.251602
NMAP_UDP_SCAN	0.737766	24.909755
NMAP_FIN_SCAN	0.023614	0.108791
NMAP_XMAS_TREE_SCAN	0.001171	0.050426
NMAP_TCP_scan	0.000019	0.000269
NMAP_OS_DETECTION	8000008	0.000007
DOS_SYN_Hping	0.000003	0.000002

4. Which continuous features (e.g., fwd_pkts_per_sec, bwd_pkts_per_sec, payload_bytes_per_second) exhibit the highest correlation with specific attack classes?

In [17]:	data	a_rvst.	head()				
Out[17]:		proto	service	flow_duration	fwd_pkts_per_sec	bwd_pkts_per_sec	payload_bytes_per_s
	no						
	0	tcp	mqtt	32.011598	0.281148	0.156193	3.3
	1	tcp	mqtt	31.883584	0.282277	0.156821	3.3
	2	tcp	mqtt	32.124053	0.280164	0.155647	3.2
	3	tcp	mqtt	31.961063	0.281593	0.156440	3.2
	4	tcp	mqtt	31.902362	0.282111	0.156728	3.3
	4 (_				•
In [18]:	data	a_rvst					

Out[18]: proto service flow_duration fwd_pkts_per_sec bwd_pkts_per_sec payload_bytes_per no 0 32.011598 0.281148 0.156193 tcp mqtt mqtt 31.883584 0.282277 0.156821 tcp 2 0.280164 0.155647 tcp mqtt 32.124053 3 mqtt 31.961063 0.281593 0.156440 tcp 4 0.282111 mqtt 31.902362 0.156728 tcp 2005 tcp 0.000006 167772.160000 167772.160000 2006 0.000007 144631.172414 tcp 144631.172414 2007 0.000006 167772.160000 167772.160000 tcp 2008 0.000006 167772.160000 167772.160000 tcp 2009 0.000006 167772.160000 tcp 167772.160000

123117 rows × 7 columns

In [19]: data_rvst_corr = data_rvst.groupby("Attack_type")[["fwd_pkts_per_sec", "bwd_pkts_per
round(data_rvst_corr, 4)

fwd_pkts_per_sec bwd_pkts_per_sec

Out[19]:

Attack_type		-1 -1 -	-1 -1 -
ARP_poisioning	fwd_pkts_per_sec	1.0000	0.4813
	bwd_pkts_per_sec	0.4813	1.0000
	payload_bytes_per_second	0.4289	0.8931
DDOS_Slowloris	fwd_pkts_per_sec	1.0000	-0.1848
	bwd_pkts_per_sec	-0.1848	1.0000
	payload_bytes_per_second	0.9991	-0.1422
DOS_SYN_Hping	fwd_pkts_per_sec	1.0000	1.0000
	bwd_pkts_per_sec	1.0000	1.0000
	payload_bytes_per_second	1.0000	1.0000
MQTT_Publish	fwd_pkts_per_sec	1.0000	0.9823
	bwd_pkts_per_sec	0.9823	1.0000
	payload_bytes_per_second	0.0370	0.2229
Metasploit_Brute_Force_SSH	fwd_pkts_per_sec	1.0000	1.0000
	bwd_pkts_per_sec	1.0000	1.0000
	payload_bytes_per_second	0.9983	0.9983
NMAP_FIN_SCAN	fwd_pkts_per_sec	1.0000	1.0000
	bwd_pkts_per_sec	1.0000	1.0000
	payload_bytes_per_second	0.9999	0.9999
NMAP_OS_DETECTION	fwd_pkts_per_sec	1.0000	1.0000
	bwd_pkts_per_sec	1.0000	1.0000
	payload_bytes_per_second	NaN	NaN
NMAP_TCP_scan	fwd_pkts_per_sec	1.0000	1.0000
	bwd_pkts_per_sec	1.0000	1.0000
	payload_bytes_per_second	-0.0599	-0.0621
NMAP_UDP_SCAN	fwd_pkts_per_sec	1.0000	-0.0030
	bwd_pkts_per_sec	-0.0030	1.0000
	payload_bytes_per_second	0.9998	0.0182
NMAP_XMAS_TREE_SCAN	fwd_pkts_per_sec	1.0000	1.0000
	bwd_pkts_per_sec	1.0000	1.0000

fwd_pkts_per_sec bwd_pkts_per_sec

Attack_type

	payload_bytes_per_second	-0.0261	-0.0261
Thing_Speak	fwd_pkts_per_sec	1.0000	0.7215
	bwd_pkts_per_sec	0.7215	1.0000
	payload_bytes_per_second	0.7758	0.7213
Wipro_bulb	fwd_pkts_per_sec	1.0000	-0.0106
	bwd_pkts_per_sec	-0.0106	1.0000
	payload_bytes_per_second	0.8457	0.5202

```
In [20]: data_rvst_corr = pd.DataFrame(data_rvst_corr)

# Get the highest correlated feature for each attack type
highest_corr_feature = data_rvst_corr.idxmax(axis = 1)
highest_corr_value = data_rvst_corr.max(axis = 1)

# Combine
data_rvst_corr = pd.DataFrame({
    "Most Correlated Feature": highest_corr_feature,
    "Correlation Value": highest_corr_value
})

data_rvst_corr
```

C:\Users\TIPQC\AppData\Local\Temp\ipykernel_36600\3970150690.py:4: FutureWarning: Th
e behavior of DataFrame.idxmax with all-NA values, or any-NA and skipna=False, is de
precated. In a future version this will raise ValueError
 highest_corr_feature = data_rvst_corr.idxmax(axis = 1)

Out[20]:

		Most Correlated Feature	Correlation Value
Attack_type			
ARP_poisioning	fwd_pkts_per_sec	fwd_pkts_per_sec	1.C
	bwd_pkts_per_sec	bwd_pkts_per_sec	1.0
	payload_bytes_per_second	payload_bytes_per_second	1.0
DDOS_Slowloris	fwd_pkts_per_sec	fwd_pkts_per_sec	1.0
	bwd_pkts_per_sec	bwd_pkts_per_sec	1.C
	payload_bytes_per_second	payload_bytes_per_second	1.C
DOS_SYN_Hping	fwd_pkts_per_sec	payload_bytes_per_second	1.C
	bwd_pkts_per_sec	payload_bytes_per_second	1.0
	payload_bytes_per_second	fwd_pkts_per_sec	1.0
MQTT_Publish	fwd_pkts_per_sec	fwd_pkts_per_sec	1.0
	bwd_pkts_per_sec	bwd_pkts_per_sec	1.0
	payload_bytes_per_second	payload_bytes_per_second	1.0
Metasploit_Brute_Force_SSH	t_Brute_Force_SSH fwd_pkts_per_sec fwd_pkts_per_sec 1	1.0	
	bwd_pkts_per_sec	bwd_pkts_per_sec	1.0
	payload_bytes_per_second	payload_bytes_per_second	1.0
NMAP_FIN_SCAN	fwd_pkts_per_sec	fwd_pkts_per_sec	1.0
	bwd_pkts_per_sec	bwd_pkts_per_sec	1.C
	payload_bytes_per_second	payload_bytes_per_second	1.0
NMAP_OS_DETECTION	fwd_pkts_per_sec	fwd_pkts_per_sec	1.0
	bwd_pkts_per_sec	fwd_pkts_per_sec	1.0
	payload_bytes_per_second	NaN	NaN
NMAP_TCP_scan	fwd_pkts_per_sec	fwd_pkts_per_sec	1.0
	bwd_pkts_per_sec	bwd_pkts_per_sec	1.C
	payload_bytes_per_second	payload_bytes_per_second	1.0
NMAP_UDP_SCAN	fwd_pkts_per_sec	fwd_pkts_per_sec	1.C
	bwd_pkts_per_sec	bwd_pkts_per_sec	1.C
	payload_bytes_per_second	payload_bytes_per_second	1.C
NMAP_XMAS_TREE_SCAN	fwd_pkts_per_sec	fwd_pkts_per_sec	1.C
	bwd_pkts_per_sec	bwd_pkts_per_sec	1.0

Value	Most Correlated Feature		
			Attack_type
1.0	payload_bytes_per_second	payload_bytes_per_second	
1.0	fwd_pkts_per_sec	fwd_pkts_per_sec	Thing_Speak
1.C	bwd_pkts_per_sec	bwd_pkts_per_sec	
1.0	payload_bytes_per_second	payload_bytes_per_second	
1.0	fwd_pkts_per_sec	fwd_pkts_per_sec	Wipro_bulb
1.0	bwd_pkts_per_sec	bwd_pkts_per_sec	
1.0	payload_bytes_per_second	payload_bytes_per_second	

5. How do time-based features like fwd_iat.avg and bwd_iat.avg (mean inter-arrival times) differ between various attack types and normal traffic?

```
In [21]: data_iat = data.iloc[:, [47, 52, 83]]
    data_iat.head()
```

```
Out[21]: fwd_iat.avg bwd_iat.avg Attack_type

no
```

```
    4.001450e+06 506597.757339 MQTT_Publish
    3.985448e+06 469065.248966 MQTT_Publish
    4.015507e+06 503442.466259 MQTT_Publish
    3.995133e+06 470946.013927 MQTT Publish
```

4 3.987795e+06 483996.033669 MQTT_Publish

```
In [22]: data_iat = data_iat.groupby("Attack_type")[["fwd_iat.avg", "bwd_iat.avg"]].mean()
    data_iat = data_iat.sort_values(["fwd_iat.avg", "bwd_iat.avg"], ascending = [False,
    data_iat.index = data_iat.index.set_names(["Attack Type"])
    data_iat = pd.DataFrame(data_iat)
    round(data_iat, 2)
```

Convolation

Out[22]:

fwd_iat.avg bwd_iat.avg

Attack Type		
MQTT_Publish	4941675.20	522207.23
DDOS_Slowloris	2660822.69	2523957.94
Wipro_bulb	2093046.88	2037756.30
ARP_poisioning	744345.54	766425.61
Metasploit_Brute_Force_SSH	431322.70	910038.34
Thing_Speak	118623.23	97260.68
NMAP_UDP_SCAN	14364.67	178.69
NMAP_FIN_SCAN	4114.73	6539.12
NMAP_XMAS_TREE_SCAN	187.43	171.65
NMAP_TCP_scan	7.31	0.00
DOS_SYN_Hping	0.00	0.00
NMAP_OS_DETECTION	0.00	0.00

```
In [23]: plt.figure(figsize = (12, 6))
    labels = ["{0} - {1:1.2f}".format(i,j) for i,j in zip(data_iat.index, data_iat["fwd bars = plt.bar(data_iat.index, data_iat["fwd_iat.avg"].values)

plt.xlabel("Attack Type")
    plt.xticks(rotation = 45)
    plt.ylabel("Count", rotation = 90)
    plt.title("Forward Inter Arrival Time per Attack Type")
    for bar, label in zip(bars, labels):
        bar.set_label(label)
    plt.legend()
    plt.show()
```



```
In [24]: plt.figure(figsize = (12, 6))
    labels = ["{0} - {1:1.2f}".format(i,j) for i,j in zip(data_iat.index, data_iat["bwd bars = plt.bar(data_iat.index, data_iat["bwd_iat.avg"].values)

plt.xlabel("Attack Type")
    plt.xticks(rotation = 45)
    plt.ylabel("Count", rotation = 90)
    plt.title("Backward Inter Arrival Time per Attack Type")
    for bar, label in zip(bars, labels):
        bar.set_label(label)
    plt.legend()
    plt.show()
```


6. Which network flag counts (e.g., flow_SYN_flag_count, flow_RST_flag_count, fwd_PSH_flag_count) are most indicative of specific intrusion patterns?

```
In [25]: data_ind = data.iloc[:, [20, 21, 22, 83]]
    data_ind.head()
```

Out[25]:		flow_SYN_flag_count	flow_RST_flag_count	fwd_PSH_flag_count	Attack_type
	no				
	0	2	1	3	MQTT_Publish
	1	2	1	3	MQTT_Publish
	2	2	1	3	MQTT_Publish
	3	2	1	3	MQTT_Publish
	4	2	1	3	MQTT_Publish

```
In [27]: max_col_per_row = data_ind.idxmax(axis = 1)
   max_val_per_row = data_ind.max(axis=1)
   data_ind_max = pd.DataFrame({
        "Attack Type": data_ind.index,
        "Highest Network Flag": max_col_per_row,
```

```
"Highest Mean Value": max_val_per_row
})

data_ind_max = data_ind_max.set_index("Attack Type")
data_ind_max = data_ind_max.sort_values(["Highest Mean Value"], ascending = 0)
round(data_ind_max, 2)
```

Out[27]:

Highest Network Flag Highest Mean Value

Attack Type

fwd_PSH_flag_count	10.58
fwd_PSH_flag_count	5.03
fwd_PSH_flag_count	2.99
fwd_PSH_flag_count	2.95
fwd_PSH_flag_count	1.95
fwd_PSH_flag_count	1.11
flow_SYN_flag_count	1.00
flow_SYN_flag_count	1.00
flow_RST_flag_count	1.00
fwd_PSH_flag_count	1.00
flow_SYN_flag_count	0.11
flow_SYN_flag_count	0.07
	fwd_PSH_flag_count fwd_PSH_flag_count fwd_PSH_flag_count fwd_PSH_flag_count fwd_PSH_flag_count flow_SYN_flag_count flow_SYN_flag_count flow_RST_flag_count fwd_PSH_flag_count fwd_PSH_flag_count