

Lecture 7. Heap Sort. AVL-Trees. Graphs and their Representation.

SIT221 Data Structures and Algorithms

Sorting with Priority Queues

- We use a Priority Queue
 - Insert the elements with a series of Insert operations.
 - Remove the elements in sorted order with a series of DeleteMin operations.
- The running time depends on the priority queue implementation:
 - Unsorted sequence gives the Selection Sort: $O(n^2)$ time
 - Sorted sequence gives Insertion Sort: $O(n^2)$ time
- Can we do better?

Sorting with Priority Queues

```
Algorithm PriorityQueueSort(S, C)
               sequence S, comparator C for the elements of S
    Input:
    Output: sequence S sorted in increasing order according to C
    // Build priority queue P applying comparator C
    while ( not S.isEmpty() ) do
        Element e = S.First();
        P.Insert(e);
        S.Remove(e);
    // Build back the (sorted) sequence S
    while ( not P.isEmpty() ) do
        Element e = P.DeleteMin();
        S.AddLast(e);
```

Sorting with a Minimum Binary Heap: Heap Sort

Want to have a sorting algorithm based on heaps that runs in time $O(n\log n)$.

Idea:

- Build (the bottom-up strategy) the heap for n elements in time O(n).
- Pick in each step the minimum element and delete it in time $O(\log n)$.
- Iterate until heap is empty.
- The space used is O(n).

In total, n iterations implies the total runtime of $O(n \log n)$

indices:

Sort the sequence [8,10,4,9,14,7,1]

Step 1. Bottom-up heap construction

3

5

Sort the sequence [8,10,4,9,14,7,1]

Step 1. Bottom-up heap construction

value: 8 10 4 9 14 7 1

indices: 1 2 3 4 5 6 7

Sort the sequence [8,10,4,9,14,7,1]

Step 2. Iterative Deletion: Delete 1

value: 4 9 7 10 14 8

Sorted array: 1

Sort the sequence [8,10,4,9,14,7,1]

Step 2. Iterative Deletion: Delete 4

value: 7 9 8 10 14

Sorted array: 1 4

Sort the sequence [8,10,4,9,14,7,1]

Step 2. Iterative Deletion: Delete 7

value: 8 9 14 10

Sorted array: 1 4 7

Sort the sequence [8,10,4,9,14,7,1]

Step 2. Iterative Deletion: Delete 8

value: 9 10 14

Sorted array: 1 4 7 8

Sort the sequence [8,10,4,9,14,7,1]

Step 2. Iterative Deletion: Delete 9

value: 10 14

Sorted array: 1 4 7 8 9

Sort the sequence [8,10,4,9,14,7,1]

Step 2. Iterative Deletion: Delete 10

14

value: 14

Sorted array: 1 4 7 8 9 10

Sort the sequence [8,10,4,9,14,7,1]

Step 2. Iterative Deletion: Delete 14

value:

Sorted array: 1 4 7 8 9 10 14

Heap Sort: Properties and Complexity

- Heapsort is in-place, but is not a stable sort.
- Requires only a constant amount of auxiliary space, i.e. less than the Merge Sort needs.
- Slower in practice on most machines than a well-implemented Quick Sort, it has the advantage of a more favourable worst-case $O(n\log n)$ runtime.

• Worst case: $T(n) = O(n \log n)$ comparisons

• Best case: $T(n) = O(n \log n)$ comparisons

• Average case: $T(n) = O(n \log n)$ comparisons

• Worst-case space complexity O(1) auxiliary

Short Summary of Sorting Algorithms

Algorithm	Time	Notes
Selection Sort	$O(n^2)$	slow
		in-place
		for small data sets (< 1K)
Insertion Sort	$O(n^2)$	slow
		in-place
		for small data sets (< 1K)
Heap Sort	$O(n\log n)$	fast
		in-place
		for large data sets (1K — 1M)
Merge Sort	$O(n\log n)$	fast
		sequential data access
		for huge data sets (> 1M)

Runtimes for Binary Search Tree

Find, insert, and remove:

– Worst case: $\theta(n)$

- Best case: $\theta(\log n)$ and $\theta(1)$ for Find(k)

- Average case: $\theta(\log n)$

Observation: Binary search trees can get imbalanced when

applying insert and/or remove operations.

Aim: Time $O(\log n)$ in the worst case for all operations

Idea: Whenever a subtree rooted at a node v gets

imbalanced, apply operations that balance it out in

time $O(\log n)$.

AVL-Tree: Definition

- An **AVL-Tree** is a binary search tree such that for every internal node v of T, the heights of the children of v can differ by at most 1.
- AVL-trees are balanced.
- The height of an AVL-Tree storing n keys is $O(\log n)$.

An example of an AVL-tree where the heights are shown next to the nodes.

AVL-Tree: Formal Definition

- Let h(T) be the height of a tree T.
- Let v be a node in T, and T_l and T_r be the left and right subtree of v.
- We denote by $b(v) = h(T_l) h(T_r)$ the balance degree of v.

Definition: A binary search tree T is called an AVL-tree if for each $v \in T$, $b(v) \in \{-1,0,1\}$ holds.

- Insertion is as in a binary search tree.
- Always done by expanding an external node.

Example:

- Insertion is as in a binary search tree
- Always done by expanding an external node.

Example:

- Insertion is as in a binary search tree
- Always done by expanding an external node.

Example:

- Insertion is as in a binary search tree
- Always done by expanding an external node.

Example:

Rotation establishes AVL-property again

AVL-Tree: Rebalancing after Insertion

- Inserting a new element z can violate the AVL-property.
- Consider path from the newly inserted leaf z to the root.
- Update the balance values.
- Repair AVL-property (if necessary).

AVL-Tree: Rebalancing after Insertion

- We insert new node z as for Binary Search Trees.
- b(z) = 0 holds after insertion.
- b(v) might change by 1 for a node v on the path from z to the root.
- If $b(v) \notin \{-1,0,1\}$ then rebalance.

AVL-Tree: Rebalancing (Left Rotation)

Assume we have added z into the right subtree of node v. Start examining for v, where v is the parent of z, and continue with the parent of v (if necessary).

Before insertion → After Insertion:

- $b(v) = 1 \rightarrow b(v) = 0$ (height of tree rooted at v has not changed, stop rebalancing)
- $b(v) = 0 \rightarrow b(v) = -1$ (height of tree rooted at v has increased by 1, stop rebalancing only if v is root, otherwise examine parent of v)
- $b(v) = -1 \rightarrow b(v) = -2$ (AVL-property violated, carry out rotation)

AVL-Tree: Left Rotation

Assume node v and right child x of node v is on the path from z to the root.

w denotes the right child of x on the path

⇒Left rotation

New balance values: b(x) = 0 and b(v) = 0

AVL-Tree: Right Rotation

Assume node v and left child x of node v is on the path from z to the root.

w denotes the left child of x on the path

⇒ Right rotation

New balance values: b(x) = 0 and b(v) = 0

AVL-Tree: Right-Left Rotation

w is left child of x on the path \Longrightarrow Right-Left Rotation.

AVL-Tree: Right-Left Rotation

w is right child of x on the path \Longrightarrow Left-Right Rotation.

Example: Create AVL-Tree for sequence 4, 5, 7, 2, 1, 3, 6

0 4

Example: Create AVL-Tree for sequence 4, 5, 7, 2, 1, 3, 6

Balance OK

AVL-Tree: Algorithm to perform Rotations

- **IF** (tree is right heavy)
 - IF (tree's right subtree is left heavy) perform Right-Left Rotation
 ELSE perform Single Left Rotation
- **ELSE IF** (tree is left heavy)
 - IF (tree's left subtree is right heavy) perform Left-Right Rotation
 - ELSE perform Single Right Rotation

IMPORTANT: Maintain the Binary Search Tree Property

Let u, v, and w be three nodes such that u is in the left subtree of v and w is in the right subtree of v. Then we have

$$key(u) \le key(v) \le key(w)$$

AVL-Tree: Deletion

Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, v, may cause an imbalance.

before deletion of 32

after deletion

AVL-Tree: Left Rotation after Deletion

Assume that the deleted node was in the left subtree of ν and height of this tree has decrease by 1.

If B had height h-1 before deletion, the height of the subtree has decreased

AVL-Tree: Right Rotation after Deletion

Assume that the deleted node was in the right subtree of v and height of this tree has decrease by 1.

If B had height h-1 before deletion, the height of the subtree has decreased

AVL-Tree: Right-Left Rotation after Deletion

Either B or C might have height h-1

AVL-Tree: Left-Right Rotation after Deletion

Either B or C might have height h-1

Rebalancing after Deletion

- After having rebalanced for node v the height of the tree previously rooted at v might have decreased after deleting and rebalancing.
- If this is the case, old parent of v might be imbalanced.
- We might have to continue rebalancing until the root has been reached.

Running Times for AVL Trees

- A single restructure is O(1)
 - Using a linked-structure binary tree
- Find is $O(\log n)$
 - Height of tree is $O(\log n)$, no restructures needed
- Insert is $O(\log n)$
 - Initial find is $O(\log n)$
 - Restructuring up the tree, maintaining heights is $O(\log n)$
- Remove is $O(\log n)$
 - Initial find is $O(\log n)$
 - Restructuring up the tree, maintaining heights is $O(\log n)$

Graph: Terminology and Representations

The metropolitan area of Milan, Italy at night. Astronaut photograph ISS026-E-28829, 2011. U.S. government image. NASA-JSC.

Graph: Terminology and Representations

- A graph is a pair G = (V, E), where
 - V is a set of nodes, called vertices.
 - E is a collection of pairs of vertices, called edges.
 - We denote by n = |V| the number of vertices and by m = |E| the number of edges.
- Example:
 - A vertex represents an airport and stores the three-letter airport code.
 - An edge represents a flight route between two airports and stores the mileage of the route.

Graph: Edge Types

Directed edge

- ordered pair of vertices (u, v)
- first vertex u is the origin
- second vertex v is the destination
- e.g., a flight

Directed graph

- all the edges are directed
- e.g., route network

Undirected edge

- unordered pair of vertices (u, v)
- e.g., a flight route

Undirected graph

- all the edges are undirected
- e.g., flight network

Graph: Applications

- Electronic circuits
 - Printed circuit board
 - Integrated circuit
- Transportation networks
 - Highway network
 - Flight network
- Computer networks
 - Local area network
 - Internet
 - Web
- Databases
 - Entity-relationship diagram

Path

- sequence of alternating vertices and edges
- begins with a vertex
- ends with a vertex
- each edge is preceded and followed by its endpoints

Simple path

path such that all its vertices and edges are distinct

Examples

- $-P_1=(v,b,x,h,z)$ is a simple path
- $-P_2=(u,c,w,e,x,g,y,f,w,d,v)$ is a path that is not simple

Cycle

- circular sequence of alternating vertices and edges
- each edge is preceded and followed by its endpoints

Simple cycle

 cycle such that all its vertices and edges are distinct

Examples

- $-C_1=(v,b,x,g,y,f,w,c,u,a)$ is a simple cycle
- C_2 =(u,c,w,e,x,g,y,f,w,d,v,a) is a cycle that is not simple

• The number of outgoing edges of a vertex \boldsymbol{v} is called the outdegree of \boldsymbol{v} :

$$outdegree(v) = |\{(v, u) \in E\}|$$

• The number of incoming edges of a vertex \boldsymbol{v} is called the indegree of \boldsymbol{v} :

$$indegree(v) = |\{(u, v) \in E\}|$$

• A graph G'=(V',E') is a subgraph of G=(V,E) if $V'\subseteq V \text{ and } E'\subseteq E.$

• Given a graph G = (V, E) and a subset $V' \subseteq V$, the subgraph induced by V' is defined as

$$G' = (V', E \cap (V' \times V'))$$

Graph: Simple Graph Algorithm

Given a directed graph G = (V, E). Is G acyclic?

Observation:

Node with outdegree zero can not appear in a cycle.

Idea for an algorithm:

- If there is a node v with outdegree zero, delete v (and the incoming edges) to obtain a graph G';
- G is acyclic if and only if G' is acyclic.

Graph: Simple Graph Algorithm

- If there is a node v of outdegree zero, delete v and its incoming edges to obtain a graph G'.
- Iterate the transformation.

Arrive at a graph G^*

- If G* is the empty graph then G is acyclic;
- If G^* is not the empty graph, we can find a cycle in G^* that is also present in G.

Graph: Graph containing a cycle

Graph: Graph containing a cycle

Graph: Acyclic Graph

Empty Graph G^* implies that G is acyclic

Graph: Trees

An undirected graph is called a tree if there is exactly one path between any pair of nodes.

The following properties of an undirected graph G are equivalent:

- 1. G is a tree.
- 2. G is connected and has exactly n-1 edges.
- 3. G is connected and contains no cycles.

Graph: Operations

We want efficiently support the following operations for graphs:

- Accessing associated information
 (get the information stored at nodes and edges)
- Navigation (access the edges incident to a node)
- Edge queries (ask whether an edge is in the graph, query its reverse edge)
- Construction, conversion and output (translate one graph representation into another)
- Update (Add and remove nodes and edges)

Graph: Representation

Simplest choice:

Unordered sequence of edges (e.g. linked list of edges).

Good if you just want to output the edges of the graph.

Problem:

Most interesting operations take time $\Theta(m)$.

- Assume that the graph is static (i.e. it does not change).
- Then we can store the graph in an array.
- Store the outgoing neighbors of each node in a subarray and concatenate these subarrays into a single edge array E.
- Use an additional array V to store the starting positions of the subarrays.
- Memory consumption: $n + m + \Theta(1)$.

(Bi)-directed Graph

Adjacency Array

- For any node v, V[v] is the index of the first outgoing edge of v.
- Add dummy entry V[n+1] = m+1.
- ullet Outgoing edges of node v are accessible at

$$E[V[v]], ..., E[V[v+1]-1]$$

Are there better representations that allow to add or remove edges in constant time?

Two popular choices:

Adjacency Lists

Adjacency Matrices

(Bi)-directed Graph

Adjacency List

Adjacency Matrix

Idea: Use for each node v a double-linked list that stores its outgoing neighbors (alternatively we can also use the incoming neighbors or lists for both).

Advantage:

- Insertion of edges goes in constant time.
- Well suited for sparse graphs (occur often in practice).

Graph: Adjacency Matrices

Idea: Represent a graph consisting of v nodes by an $v \times v$ matrix A. Set

$$A_{ij} = 1 \text{ if } (i,j) \in E$$

 $A_{ij} = 0 \text{ otherwise}$

Insertion, removal, edge queries work in constant time. O(n) to obtain an edge entering or leaving a node.

Disadvantage: Storage requirement n^2 even for sparse graphs.

Other references and things to do

- Have a look at the attached references in CloudDeakin.
- Read chapters 9.4.2, 11.3, and 14.2 in Data Structures and Algorithms in Java. Michael T. Goodrich, Irvine Roberto Tamassia, and Michael H. Goldwasser, 2014.