



# DAVIDSON LABORATORY

Technical Report SIT-DL-82-9-2299
November 1982

TESTS OF TOWED ARRAYS OF
AIR CUSHION AMPHIBIOUS VEHICLES
IN CALM WATER AND WAVES

by G. Fridsma and W.E. Klosinski

APPROVED FOR PUBLIC RELEASE:
DISTRIBUTION UNLIMITED

DTIC

NOV 29 1983

A

33

R-2299



| REPORT DOCUMENTATION                                                                                                                                       | ì                                                         | READ INSTRUCTIONS BEFORE COMPLETING FORM                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------|
| 1. REPORT NUMBER SIT-DL-82-9-2299                                                                                                                          | AD-4135                                                   | 3. RECIPIENT'S CATALOG NUMBER                                                    |
| 4 TITLE (and Subtitle)                                                                                                                                     | 7.5 7. 20                                                 | 5. TYPE OF REPORT & PERIOD COVERED                                               |
| TESTS OF TOWED ARRAYS OF AIR CU                                                                                                                            | <br> SHION AMPHIBLOUS                                     | FINAL<br>July - November 1982                                                    |
| VEHICLES IN CALM WATER AND WAVE                                                                                                                            | 1                                                         | 6. PERFORMING ORG. REPORT NUMBER                                                 |
| 7. AUTHOR(a)                                                                                                                                               | <del></del>                                               | 6. CONTRACT OR GRANT NUMBER(#)                                                   |
|                                                                                                                                                            |                                                           |                                                                                  |
| G. Fridsma and W.E. Klosinski                                                                                                                              |                                                           | N00167-82-K-0114                                                                 |
| 9. PERFORMING ORGANIZATION NAME AND ADDRESS DAVIDSON LABORATORY                                                                                            |                                                           | 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS                      |
| Stevens Institute of Technology                                                                                                                            | •                                                         |                                                                                  |
| Castle Point Station, Hoboken,                                                                                                                             |                                                           |                                                                                  |
| DAVID W. TAYLOR NAVAL SHIP RESE                                                                                                                            | ARCH                                                      | 12. REPORT DATE                                                                  |
| AND DEVELOPMENT CENTER                                                                                                                                     |                                                           | November 1982                                                                    |
| Bethesda, MD 20084                                                                                                                                         |                                                           | 13. NUMBER OF PAGES                                                              |
| 14. MONITORING AGENCY NAME & ADDRESS(II dilleren                                                                                                           | I from Controlling Office)                                | 15. SECURITY CLASS. (of this report)                                             |
| U.S. MARINE CORPS PROGRAM OFFICE Department of the Navy                                                                                                    | E, CODE 112                                               | UNCLASSIFIED                                                                     |
| Bethesda, MD 20084                                                                                                                                         |                                                           | 150. DECLASSIFICATION/DOWNGRADING                                                |
| APPROVED FOR PUBLIC RELEASE: 0                                                                                                                             |                                                           |                                                                                  |
| 18. SUPPLEMENTARY NOTES                                                                                                                                    |                                                           |                                                                                  |
| 19. KEY WORDS (Continue on reverse side if necessary a                                                                                                     | •                                                         |                                                                                  |
| AMPHIBIOUS TRACKED VEHICLES AIR CUSHION VEHICLES COUPLED VEHICLES                                                                                          | AMPHIBIANS<br>VEHICLE TRAINS                              |                                                                                  |
| <u> </u>                                                                                                                                                   |                                                           |                                                                                  |
| 20. ABSTRACT (Continue on reverse elde il necessary an                                                                                                     | •                                                         |                                                                                  |
| Amphibious tracked vehicle trains up to 4 units in calm was were tested as though being too speeds of 45 mph. Additional particle position. The towing for | ater and waves.<br>Wed by a helicopt<br>Darameters includ | The ACV unrestrained arrays er or by an LCAC, up to led intervehicle spacing and |

speed, number of units, and intervehicle spacing. Acceleration and pressure

fluctuations were independent of configuration.

\_1

# STEVENS INSTITUTE OF TECHNOLOGY DAVIDSON LABORATORY

Castle Point Station, Hoboken, New Jersey 07030

Technical Report 2299 November 1982

TESTS OF TOWED ARRAYS OF
AIR CUSHION AMPHIBIOUS VEHICLES
IN CALM WATER AND WAVES

Ьу

G. Fridsma and W.E. Klosinski

Prepared for DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

CODE 112

under

Contract N00167-82-K-0114

(Davidson Laboratory Project 5047/219)

APPROVED:

hadbour

P. Ward Brown, Manager Marine Craft Development Group

Accession For MTIS GRA&I DTIC TAB Unamounced

Justification

Distribution/

Availability Codes

Avail and/or

st | Special

# TR-2299

# TABLE OF CONTENTS

| INTRODUCTI   | ON          | •    | •   | •   | •   | • | • | •    | •   | •   | •   | • | • | •   | •  | • | • | •           | • | • |
|--------------|-------------|------|-----|-----|-----|---|---|------|-----|-----|-----|---|---|-----|----|---|---|-------------|---|---|
| MODELS Fan C | alibrat     | :ion | •   | •   | •   | • | • | •    | •   | •   | •   | • | • | •   |    | • | • | •           | • | • |
| MODEL TEST   | PROCE       | DURE | ۶.  | •   | •   | • | • | •    | ٠   | •   | •   | • | • | •   | •  | • | • | •           | • | • |
| APPARATUS    | AND INS     | STRU | MEN | TAT | ION |   | • |      |     |     |     |   | • | •   | •  |   | • | •           |   |   |
|              | graphy      | •    | •   | •   | •   | • | • | ٠    | •   | •   | •   | • | • | •   | •  | • | • | •           | • | • |
| Wavem        | aker .      | •    | •   | •   | •   | • | • | •    | •   | •   | •   | • | • | •   | •  | • | • | •           | • | • |
| DATA REDUC   | TION .      | •    | •   | •   | •   | • | • | •    | •   | •   | •   | • | • | •   | •  | • | • | •           | • | • |
| RESULTS .    |             | •    | •   | •   | •   | • | • | •    | •   | •   | •   | • | • | •   | •  | • | • | •           | • | • |
| DISCUSSION   |             | •    | •   | •   | •   | • | • | •    | •   | •   | •   | • | • | •   | •  | • | • | •           | • | 1 |
| CONCLUDING   | REMARI      | KS.  | •   | •   | •   | • | • | •    | •   | •   | •   | • | • | •   | •  | • | • | •           | • | 1 |
| REFERENCES   | • •         | •    | •   | •   | •   | • | • | •    | •   | •   | ٠   | • | • | •   | •  | • | • | •           | • | 1 |
| BIBLIOGRAP   | нү          | •    | •   | •   | •   | • | • | •    | •   | •   | •   | • | • | •   | •  | • | • | •           | • | 1 |
| TABLE OF P   | ARTICU      | LARS | •   | •   | •   | • | • | •    | •   | •   | •   | • | • | •   | •  | • | • | •           | • | 1 |
| TABLES       |             |      |     |     |     |   |   |      |     |     |     |   |   |     |    |   |   |             |   |   |
| TABLE        | SEA<br>STAT | E    | 0   |     | BER |   |   |      | YPE |     |     |   |   | ACK |    |   |   | PACI<br>FT. |   |   |
| 1            | 0           |      |     |     | 1   |   |   | He 1 | ico | pte | er  |   |   | Dow | 'n |   |   | NA          |   |   |
| 2            | 0           |      |     |     | 2   |   |   | Hel  | ico | pte | ·r  |   |   | Dow | 'n |   | 2 | 2.7         | , |   |
| 3            | 0           |      |     |     | 2   |   |   | He 1 | ico | pte | er. |   |   | Dow | 'n |   | 4 | 2.7         | , |   |
| 4            | 0           |      |     |     | 2   |   |   |      | LCA | C   |     |   |   | Dow | 'n |   | 2 | 22.7        | 7 |   |
| 5            | 0           |      |     |     | 3   |   |   |      | LCA | C   |     |   |   | Dow | 'n |   | 2 | 22.7        | 7 |   |
| 6            | 0           |      |     |     | 2   |   |   |      | LCA | C   |     |   |   | Up  | ,  |   | 2 | 22.7        | 7 |   |
| 7            | 2           |      |     |     | 3   |   |   |      | LCA | C   |     |   |   | Dow | 'n |   | 2 | 22.7        | 7 |   |
| 8            | 2           |      |     |     | 4   |   |   |      | LCA | C   |     |   |   | Dow | /n |   | 2 | 22.7        | 7 |   |
| Q            | 2           |      |     |     | 4   |   |   |      | LCA | ıc. |     |   |   | Dos | /n |   |   | 13.7        |   |   |

# TR-2299

| FIGURES |                                                                           |
|---------|---------------------------------------------------------------------------|
| 1 to 4  | Various Photographs of ACV Model and Construction Details                 |
| 5       | Four Unit Train in Sea State 2 at 12.5 mph                                |
| 6       | Fan Calibration Setup                                                     |
| 7       | ACV Fan Characteristics                                                   |
| 8 to 13 | Calm Water Performance for Individual Configurations                      |
| 14      | Effect of Tow Type and Number of Units on the Calm Water Drag             |
| 15      | Effect of Inter-Vehicle Spacing and Track Position on the Calm Water Drag |
| 16      | Composite Plot of Fan Horsepower Requirements                             |
| 17      | Wave Spectrum                                                             |
| 18      | Mean Drag in Sea State 2                                                  |
| 19      | Significant Drag Variations in Sea State 2                                |
| 20      | RMS Pressures in Sea State 2                                              |
| 21      | Significant Pressures in Sea State 2                                      |
| 22      | Significant Vertical Accelerations in Sea State 2                         |
| 23      | RMS Vertical Accelerations in Sea State 2                                 |
| 24      | RMS Vertical Accelerations in Unit Three,<br>Sea State 2                  |
| 25      | Significant Horizontal Appalametican in                                   |

Sea State 2

#### INTRODUCTION

A series of investigations into the hydrodynamic and vehicle mobility characteristics of tracked amphibious vehicles is being carried out by the Davidson Laboratory in support of the Marine Corps Surface Mobility Exploratory Development Plan. These investigations have been initiated under the direction of the David W. Taylor Naval Ship Research and Development Center (NSRDC), Code 112 which manages the Mobility Program. A bibliography of the results achieved in previous investigations is reported herein.

The present tests undertake to provide basic technology contributing to the development and implementation of improvements in the surface mobility of amphibious vehicles by supporting them on an air cushion and coupling them together in a towed array. Measurements of the towing force (drag) and seakeeping characteristics in Sea State 2 were the primary objectives.

Supporting an amphibious tracked vehicle on an air cushion has some advantages over the conventional vehicle because the bow burying and deck wetness problems are eliminated. The total effective drag of the air cushion vehicle (ACV), which may be expected to be of the same order as that of the conventional displacement hull at speeds up to 15 mph. is significantly reduced at higher speeds. Consequently the towing force, which does not include fan drag, is expected to be lower over the speed range up to 45 mph. The propulsion of an ACV amphibian presents serious problems however, since air propulsion is out of the question and water propulsion requires retractable drive-shafts passing through the support bubble. In order to realize the potential benefits of ACV support while avoiding the propulsion problem, Code 112 suggested that the ACV amphibian should be towed rather than be self-propelled. This "tug and barge" concept led to the concept of a vehicle train which would reduce the unit vehicle drag. Candidates considered for the role of towing the train of ACV's included a helicopter and an air-cushion landing craft (LCAC).

t...;

in addition to speed and type of tow, other parameters investigated included number of vehicles in the train (up to four), inter-vehicle spacing, and track position, whether retracted or extended.

Tests were carried out in the Tank 3 facility of the Davidson Laboratory during the period 9 to 22 September 1982. Mr. Walter Zeitfuss, Jr. (NSRDC, Code 112) and Mr. Nic Economou (Bell Aerospace, Textron) were present for part of the tests to monitor the behavior of the ACV's and to offer technical assistance.

#### MODELS

Four identical 1/8 scale test models of the ACV were fabricated at the Davidson Laboratory according to drawings supplied by Bell Aerospace (Buffalo) and NSRDC. The configuration consisted of a hull very similar to the small amphibian "FLASH" (Reference 2) supplemented by an inflatable trunk to retain the air cushion. Views of one of the complete ACV models are included on Figures 1 and 2.

Lucite was used in the construction of the hull, neopeene impregnated cloth was used for the trunk, and aluminum was used for the trunk support (apron) and other fastenings. The photograph on Figure 3 shows the model's constituent parts.

In order to make the trunk, a wooden mold was constructed which included the shape of the trunk itself and those parts of the apron and hull to which the trunk would be attached. The 0.008 inch thick neoprene cloth was applied on the mold, cut and seamed, and then fitted to the attachment points. The mold as constructed to the drawings supplied by Bell, however, failed to produce a smooth rounded trunk that was tangent to the ground plane. Modifications to the mold were necessary to achieve this smoothness, particularly in the four corners where the various segments of cloth joined. After some trial and error, a good fit was obtained and four trunks were constructed. Excess material was provided at the attachment points for final fitting to the model with the trunk inflated. The resulting trunk achieved a good tangent plane when placed on a carpeted surface table. Final assembly included the gluing and sewing of surgical tape over the seams, inside and out, for additional reinforcement of these joints.

A lucite fan-housing box was built inside the model and attached to the starboard side of each model, just above the tracks. Holes for two fans were cut in this nousing which supported two sets of stacked fans, for a total of four Aximax 3 fans in each model. Air through these holes supplied the trunk, whose upper half was attached to the hull at the apron and whose lower half was attached to the bottom of the track covers and the hull at the bow and stern. The following sketch shows the air supply to the trunk and cushion.



Provision for adjusting the trunk pressure was made by a hole, cut in the apron, on the stern centerline to vent air from the trunk to atmosphere. To supply air from the trunk to the cushion, the original design called for holes to be cut in the trunk fabric, as indicated in the sketch. Because of the possibility of water getting into the trunk, Davidson Laboratory recommended that the cushion feed holes be sealed and holes in the track covers be provided. This modification to the design was discussed with Bell Aerospace and thought to be an improvement in the design. As a result eighteen 6 inch diameter holes (full scale) were drilled to provide the inlet area specified by Bell for air from the trunk to the cushion, 6 in each of the port and starboard track covers and 6 at the bow. Here and hereafter all quantities are given in full scale terms. The holes were positioned longitudinally in the track covers at the approximate locations specified in the Bell drawings. Some minor adjustment was necessary in order for the air to be supplied between the road wheels, otherwise the airflow would be throttled by the wheels when the tracks were retracted.

To duct air through the bow structure, from the trunk to the cushion, an enclosed compartment was built inside the lower hull which straddled the lower trunk attachment point on the bow. The upper half of this compartment had a 280 square inch slotted hole milled in it which opened into the trunk. The lower half had six 6 inch diameter holes drilled in it which opened into the cushion.

During the fan calibration tests, it was found that the design pressure drop between the trunk and cushion could not be achieved with the specified holes. Consequently the holes in the track covers were enlarged to 8 inch diameter, which provided the proper pressure drop. The total inlet area to the cushion became 5.36 square feet, full size.

The track-suspension system, road wheels and tracks, were attached to a horizontal plate which could be mounted to the hull to simulate either the fully extended or retracted track positions. Photographs showing the cushion air-supply inlet area and the suspension system are shown on Figure 4.

Two pressure taps were mounted in the model. The trunk pressure tap was located on the port side, 15 inches forward of the transom and 39 inches above the hull bottom. The cushion pressure tap was located in the hull bottom on the craft centerline, 35 inches forward of the transom. These can be seen in the top photo of Figure 4.

The models were ballasted to a 30,000 lb displacement, with a VCG 28 inches above the hull bottom, and an LCG 110 inches aft of the bow hard structure. Other ACV particulars can be found in the table following the text of this report.

During on-cushion check out tests on a surface table, a vibration was observed in the forward trunk region. A narrow aluminum "finger" curved in the shape of the trunk was fastened to the apron at the bow and effectively suppressed the oscillation (see Figures 1 and 2). It was demonstrated by Mr. Economou that the same effect could be achieved by adding a small weight to the trunk at the bow.

#### Fan Calibration

An overall calibration of the fan system was requested by Bell Aerospace. The fans were calibrated, while they were mounted in a model, by the use of a specially constructed calibration box (see Figure 6). This air tight box was fabricated from 1/2 inch plywood and consisted of a large upper compartment into which the test model was placed and a smaller lower compartment, which served as an extension of the cushion plenum. The lower plenum was equipped with a pressure tap and various sized orifices through which the air discharged into the atmosphere. To provide an air-tight seal between the model and upper compartment, neoprene impregnated material was fastened between the metal apron of the model and the external periphery of the upper compartment. This ensured that all of the air flow exited either through the holes in the lower compartment, or through the trunk pressure adjustment orifice located in the aft end of the model apron.

The pressure-flow relationship for the trunk and cushion could be controlled by either changing the hole diameter in the vertical track covers or by varying the area of the trunk vent in the stern apron

After spending some time calibrating the system and experimenting with the variables, a combination was obtained which produced a pressure—flow curve very similar to the prototype requirement (see Figure 7). The trunk to cushion area was 5.37 square feet and the trunk vent area was 1.79 square feet. The experimental design point (full size) was 119 psf for the trunk pressure and 72 psf for the cushion at a flow rate of 610 cfs.

#### MODEL TEST PROCEDURES

A ground board was constructed inside the dock end of Tank 3, just above the still water surface, for the purpose of stowing the models when off cushion prior to and after the end of each test run. This was necessary because a back flow of water through the cushion air-supply holes when the fans were off could cause the trunks to fill with water and the model to sink. The test procedure was as follows. With the models resting on the ground board and the fans off, zeroes were taken. The fans were then turned on, and the models were slowly towed off the board and into the water to the starting position of the run. At the end of the

run, the models were towed back to the dock and up onto the ground board, where the fans were shut off.

The ACV models were towed by lines, simulating a tow by either a helicopter or an LCAC, singly or in a train of up to four vehicles. helicopter tow consisted of a single line 100 feet long attached on the lead craft centerline at the bow and angled upwards at 10 degrees. LCAC tow consisted of a V-shaped bridle attached 18 1/2 feet apart at the LCAC and on the bow centerline of the lead ACV. This tow line was 30 feet long with a 7 degree upward slope. The tow lines between the ACV's were all V-shaped bridles attached on the bow centerline and spread 8 feet across at the stern of the ahead ACV. The lengths of the towing bridles were adjusted to achieve three spacings between the ACV's resulting in hard hull structure spacings of 42.7 feet, 22.7 feet and 13.3 feet and trunk to trunk spacings minimum distances between ACV's) of 30.7 feet. 10.7 feet and 1.3 feet respectively. Nylon cord was used for all model tow lines (rather than stainless steel wire) in order to simulate a degree of stiffness somewhat representative of the prototype lines. were fitted at the ends with heavy-duty swivels and snap-hooks for quick attachment to the eye bolts in the models.

#### APPARATUS AND INSTRUMENTATION

The train of ACV LVT's was to be towed by either a helicopter or an LCAC. The towing vehicle was simulated by a spreader bar attached to a drag balance for measuring the horizontal component of the tow line tension. The spreader bar was equipped with three eye bolts located symmetrically under the balance, one on the centerline for the helicopter tow, and two outboard for the LCAC tow.

Since the models were towed by flexible lines, they had all six degrees of freedom. No yaw restraint was employed to allow for observations of the tracking stability.

The trunk and cushion pressures in each model were measured in the calm water tests as well as the drag or towing force. In Sea State 2 additional measurements were taken of the vertical accelerations in each ACV at the driver's station, and the vertical and horizontal accelerations in the troop compartment. The vertical units were located, respectively, 4.7 and 13.8 feet aft of the bow hard structure. A wave strut was used to

monitor the waves and to record encounters.

C

The signals from the transducers were relayed by overhead cable to the data station on shore, where they were filtered (40 Hz low pass) and processed by an on-line PDP-8e computer, which includes an analog to digital converter. The rough water data, which were scanned at 250 Hz, were stored on the computer's disks. For the four-unit train, twenty-two channels of data were measured and recorded. Test run data were monitored on a direct writing oscillograph.

### Photography

Video tape recordings were made of ach run by a television camera mounted ahead and to port of the lead model. Selected above—water color still photographs were taken of the models in calm water and in waves, see Figure 5.

#### Wavemaker

The newly installed Davidson Laboratory Tank 3 wavemaker was used for these tests. This is an articulated double flap wet-back wavemaker, consisting of upper and lower flaps each powered by a hydraulic cylinder. A PDP 11/23 computer generates the signals for controlling the movement of the hydraulic actuator-flap system and, therefore, the size and shape of the waves. For the present tests, a wave train, having a variance density approximating the Pierson-Moskowitz spectrum with a 2.2 foot significant wave height, was used corresponding to Sea State 2 (see Figure 17).

#### DATA REDUCTION

Calibrations of the instrumentation were made by applying known loads to the force balance, gravity multiples to the accelerometers, and known pressures to the pressure transducers. During calibration, the outputs from the transducers were relayed to the PDP-8e computer. All calibrations were linear, and straight lines were fitted to three data by the least squares technique.

Test results were determined from the differences between transducer outputs in the running and static, off-cushion conditions. Velocities were computed from the time taken to travel through the data trap, which

was 50 feet for the calm water tests and 150 feet for the wave tests.

Processing of the calm water data produced mean values for the drag, and for the trunk and cushion pressures in each ACV. For the wave tests, a peak-trough analysis was performed on the drag, the trunk and cushion pressures, the troop and driver vertical accelerations, and the horizontal acceleration in each ACV. A peak-trough analysis of each signal resulted in the mean and rms, the number of oscillations, the average of the peaks and troughs, the average of the 1/3 highest and the 1/10 highest peaks and troughs, and the extreme values of the peaks and troughs. Buffers were used to suppress small oscillations associated with noise rather than the substantive time histories.

Repeat runs were made in different portions of the irregular wave train, at speeds above 15 mph, to get adequate samples of data for statistical analysis.

In addition to the above data processing, air flow and fan drag were computed for all tests. The following equations were used:

Cushion Flow = 95 \* SQRT (PT - PC)

Fan Drag = (PT x Flow)/V

where: PT = Trunk Pressure, psf
PC = Cushion Pressure, psf
V = Forward Speed, fps

Mean values of pressure were used for these computations in the wave tests.

#### RESULTS

ではなっては<br />
■ではないない。<br />
■ないないでは、<br />
■ないないできょう。<br />
■ないないできょう。<br />
●ないないできょう。<br />
●ないないできょう。<b

The results of the tests in calm water and waves are presented in Tables 1 to 9. Each table is labeled as to the number of units in the train, the type of tow, the spacing between vehicles, and the position of the tracks. The calm water data (Tables 1-6) have been sorted by values of increasing speed for each of the six configurations tested. The model quantities have been expanded to full size by the following ratios

Ship Drag = 526 \* Model Drag

Ship Pressure = 8 \* Model Pressure

Ship Flow = 181 \* Model Flow

Ship Fan Drag = 512 \* Model Fan Drag

こうし しょうけん いっぱん いっぱん

The fan drag is included because it is useful in determining the efficiency of the vehicle in terms of the lift/drag ratio. The fan drag is simply a conversion of the fan horsepower into an "equivalent" drag. The decrease in hydro-drag must be offset by the fan drag in order to account for the energy being expended to sustain the air cushion beneath the vehicle. To obtain the true lift/drag ratio the "total" drag can be divided into the weight. Thus in Table 1 for speeds of 10, 20 and 30 mph, the lift/drag ratios are respectively 2.9, 4.9 and 5.7.

Spacing in this report refers to the inter-vehicle spacing between the hard structure, i.e. between the bow and stern of the hull in the absence of the apron and trunk.

The data for the rough water tests are included in Tables 7 to 9, each table applying to a particular length for the ACV train. Each page presents the full scale values for a given set of test conditions such as speed, weight, LCG, and sea state. The mean drag or horizontal component of the towing force and the number of wave encounters are displayed at the top of the page along with a statistical analysis of the drag variations. Normally drag statistics are not presented because of the frequency response of the drag balance. For the tests reported herein, the elastic nylon cord tow line determines the frequency response. The model nylon tow line had a stiffness corresponding to 1,600 lb/in full size.

The rest of the page in Tables 7 through 9 presents, for each vehicle in the train, the statistics of the driver and troop acceleration, the horizontal acceleration, and the cushion and trunk pressures. The statistics include the mean and RMS values and the average, the average of the 1/3 highest, the average of the 1/10 highest, and the extreme values of the peaks and troughs. Blanks in the table of statistics generally indicate that the sample size was too small (a minimum of 5 oscillations must be observed to record a statistic).

The calm water performance of the ACV train is plotted on Figures 8 to 16. The performance in Sea State 2 is presented on Figures 18 to 25.

A video tape recording of all runs has been sent to NSRDC. Code 112, together with still photographs of selected runs. A scenario for the video tape is contained in the Appendix.

#### DISCUSSION

The pressure-flow requirements specified by Bell for the ACV are shown on Figure 7 along with the actual model fan calibrations. The calibrations match the specification at the design point, and the slopes of the pressure-flow curves for the trunk and cushion are in reasonable agreement with those specified. Under operating conditions, at speeds above 20 mph, the trunk and cushion pressures were 119 and 78 psf respectively at a cushion flow of 608 cfs. These are the precise design requirements for the ACV. They were achieved, however, with a 52 percent increase in the design cushion inlet area of 3.53 square feet. The discharge coefficient for the model was determined from these numbers and was equal to 0.61, the value expected from a ninety degree sharp-edged orifice. Pressure-flow measurements at the hover condition produced consistent readings of 110 and 65 psf for the trunk and cushion pressures respectively and 637 cfs for the cushion air flow.

Before discussing the specific performance characteristics, some comments about the general behavior of the ACV train are offered. These comments relate to the two-unit train in calm water over a range of speeds, and are based on observations made during the test trials. In general they also apply to three and four unit trains.

the state of the s

Speed is the predominate parameter affecting the ACV's behavior in At 5 mph the ACV's ride at a level trim much like the hover condition. Spray is thrown forward as well as out from the model all around the periphery of the trunk. In general tracking (the ability of the trailing vehicles to align themselves behind the lead vehicle) was poor at this speed. Tracking, however, improves with speed and decreased spacing. At 7.5 mph an unusual "tuck under" oscillation occurs at the forward end of the trunk on the lead ACV. It appears as though suction forces due to the flow under the trunk create a bow down moment forcing the trunk into the water. The trunk is then seen to suddenly "pop up", possibly when the suction is overcome by the increased buoyancy. cycle is repeated as the models proceed down the tank. The following units, riding in the wake of the lead ACV, do not exhibit this phenomenon. Spray continues to be thrown out around the trunk periphery but diminishes with Increasing speed. Tracking is noticeably improved. At 10 and 11 mph, the ACV is operating just below or at the hump speed. A lot of water is seen to pile up against the front of the trunk. The "tuck under" phenomenon has disappeared, but the second unit of the train is still prone to wander a bit. As the speed is increased to 12.5 mph, the wave generated at the bow gets smaller and the second ACV of the train rides at a high trim angle. At 15 mph a small bow wave is still present and tracking is improved. Between 20 and 45 mph, the bow wave disappears, spray is generally deflected aft, and the models run cleanly. The higher the speed of the ACV, the better its behavior in terms of spray and tracking. In general the helicopter towed train tracked less well than the LCAC towed train, probably because of the single line tow as compared to a bridle tow.

in addition to speed, the spacing between vehicles has a significant effect on performance. Trains with the shortest spacing (13.3 ft) tracked better than trains with the longer spacings (22.7 and 43.8 ft). There was a considerable amount of spray generated between vehicles, however, at the 13.3 ft spacing. This can be attributed to the fact that with the trunks close together, the air flowing under the trunk trailing edge of the lead vehicle interacts with the spray generated at the bow of the following vehicle. Inter-vehicle spacing also has a dramatic effect on the drag characteristics particularly at the hump speed. Closer spacing reduces the hump drag.

While the effect of raising the track-suspension system level with the hull bottom did not effect the overall performance of the ACV's, it appeared that tracking deteriorated.

These qualitative comments are the result of observations or impressions obtained during the period of tank testing. The quantitive results are presented on Figures 8 to 25.

The calm water behavior of drag and pressure as a function of speed is shown in absolute terms for each of the six configurations in Figures 8 through 13. The drag curve has a destinctive characteristic that is very typical of ACV type craft (Reference 3). Starting from zero speed, the drag rises quickly to a rather sharply defined peak at the hump speed of 11 to 12 mph.

Above hump speed the drag falls dramatically and at 20 mph is approximately one half its maximum value. As speed increases beyond 20 mph, the drag rises moderately until the maximum test speed of 45 mph is reached. There does not appear to be an appreciable change in the hump speed with changing configuration. Also typical of ACV craft is the way the cushion pressure varies with speed. Starting from the hover condition the cushion pressure decreases slowly at first, then drops suddenly until a minimum is reached at the hump speed. This is followed by an abrupt recovery, however, when the cushion pressure rises with speed up to 20 mph. At the higher speeds the cushion pressure stays more or less constant. This characteristic applies to the single ACV and to the lead vehicle for the train configurations. Because of the inter-dependence between the trunk and cushion pressure for this particular ACV design, the trunk pressure's behavior parallels that of the cushion.

The pressure characteristics for the lead ACV are not necessarily those of the other units in the train. From Figures 8 to 13, it is clear that there is less fluctuation of the cushion and the trunk pressure with speed for the second and third units in the train than there is for the lead vehicle. Riding in the wake of an ACV therefore tends to smooth out the mean trunk and cushion pressures with speed.

Starting with Figure 14 some drag comparisons are made between the various configurations. The specific resistance or drag per ton of displacement is a useful quantity to plot versus speed. The drag is shown

to be independent of the type of tow for the 2 unit train (Figure 14). The drag reduction usually associated with coupled vehicles (on a specific basis) is not realized with the ACV trains. While some reduction is shown up to speeds of 25 mph, it does not compare with the order of magnitude experienced for the coupled LVT7 (Reference 1). The reason for this is that the nominal spacing of the ACV units of 22.7 feet is on the order of 1 cushion length. This would be equivalent to spacing the LVT7's 1 boat length apart. It is not until the ACV's are brought closer together that any real drag reduction is realized. Figure 18 shows the 4 unit train in Sea State 2 for the nominal and shortest spacing. Here the effect of the closer spacing is to reduce the hump drag significantly (about 37 percent). Lengthening the inter-vehicle tow line for this two-unit train, to make the spacing about 2 cushion lengths, increases the hump drag and in general degrades the performance (Figure 15).

The effect of retracting the tracks level with the hull bottom is presented on Figure 15. There is little change in drag until above hump speed, and then there is a slight improvement over the limited speed range of 18 to 35 mph after which the drag with tracks up is greater than that with tracks down. Because of the poorer course keeping of the two unit train with the tracks retracted and the lack of drag reduction, together with the added complexity and weight associated with track retraction, the remaining configurations were tested with the tracks extended.

An analysis of the fan drag for all calm water configurations is presented on Figure 16. The height of the rectangles in the upper plot is an indication of the amount of variation between test conditions. The assumed linear decrease of fan horsepower with speed shown in the lower plot is consistent with the curve in the upper plot. This curve fits the data remarkably well, which confirms the assumed linear relation. Thus, as speed is increased, less horsepower is required to maintain the ACV cushion. This is consistent with the reduction in air flow with speed due to less leakage from the cushion.

in rough water, 3 configurations were tested, three and four unit trains with a spacing of 22.7 ft, and a four unit train with a 13.3 ft spacing. These results are presented in Figures 18 to 25.

figures 18 and 19 present the drag results in Sea State 2. For the three-unit train, a drag comparison can be made between operations in calm water and Sea State 2. There is only a minimal increase in drag (8.5 percent at hump) at the low speed (Figure 18), from 20 to 35 mph, waves create a 20 to 35 percent increase in ACV resistance over that in calm water. It bears repeating that the drag reduction per ton of weight expected from running trains rather than single vehicles is not realized at the nominal spacings of 22.7 feet. It is when the vehicles are at their closest spacing that the specific drag is reduced significantly.

To design a tow line for the ACV train, the dynamic drag must be taken into account. The significant drag variations are plotted on Figure 19 where the maximum values are those of interest. It would appear that for three and four vehicle trains, a tow line able to take dynamic loads of 40,000 lb would be in order.

(A)の10間におれるのの100mmであるというでは、10mmになるとの10mmでは、10mmには10mmであるのでは10mmである。

FOR STANFAR COLOR

The rms and significant cushion and trunk pressure variations are included in Figures 20 and 21 respectively. The pressure fluctuations build up with increasing speed. The lead ACV experiences the largest pressure fluctuations. The fluctuations of the other three ACV's are almost identical. For speeds above 25 mph it is possible for the fluctuating cushion pressure to be zero or reach negative values. The significant maximum values over the same speed range are about double their mean values for vehicles 2, 3 and 4 in Sea State 2 and about triple their mean values for vehicle 1.

The acceleration data is presented on Figures 22 to 25 with trends similar to those for the pressures. The worst ride as measured by acceleration occurs near the bow where significant accelerations of 3 g's at 45 mph are experienced in the first and second units. These are gradually reduced to 1.5 g's as one proceeds along the train to the last unit. Accelerations in the lead ACV are comparable to those measured on the FSACV (Reference 3).

Figure 24 is presented to show that the accelerations experienced in a Sea State 2 are independent of spacing and the number of vehicles in the train. That is to say, the seakeeping results for the 4 unit train with shorter spacing are very similar to the results for the three and four vehicle train at the longer spacing, as typified by the behavior of the third unit in either train. An examination of the tabulated data

indicates that the drag, pressure and horizontal acceleration variations are also independent of vehicle spacing and number.

The horizontal accelerations depicted in Figure 25 are typical for all three configurations in Sea State 2 and are practically identical in all four units of the train. The significant values vary from  $\pm 0.2$  to  $\pm 0.6$  g's over the speed range from 5 to 45 mph. With positive accelerations being in the direction of motion, there does not appear to be a bias or preferred direction, fore and aft.

#### CONCLUDING REMARKS

Towing trains of amphibious tracked vehicles, supported by an air cushion, is a hydrodynamically viable alternative to the separately self-propelled amphibians currently employed for assault operations. The tow-line force (drag) is independent of how the trains are towed and is most affected by speed. Maximum drag occurs at the hump speeds between 11 and 12 mph, and the hump speed is not altered significantly with changes in either vehicle spacing or number. Close inter-vehicle spacing of the ACV's, together with increasing the number of vehicles in the train improves the specific resistance.

Seakeeping behavior is independent of the spacing and number of units in the train. The lead ACV experiences the worst ride with significant accelerations exceeding 2 and 3 g's over the speed range from 20 to 45 mph. Other units operating in the wake of the lead ACV have similar pressure variations, but progressively smaller accelerations toward the rear of the train. Excursions from the mean drag are also insensitive to spacing and number of units in the train.

Fan horsepower, required to maintain the cushion, decreases linearly with speed. When converted to a "equivalent drag" and added to the hydrodynamic drag, the total drag can be divided into the weight to obtain a lift/drag ratio. For the 4 unit train in Sea State 2 at the 13.3 ft spacing, overall lift/drag ratios of 3.9, 5.3 and 5.6 are obtained at 12.5 mph (hump speed). 20 mph and 30 mph respectively: this performance is comparable with that of a planing LVT.

#### TR-2299

#### REFERENCES

- 1. Fridsma, G. and Klosinski, W.E., "A Model Study of Coupled Amphibious Vehicle Trains in Calm Water and Waves," Davidson Laboratory Technical Report 2239, March 1982.
- 2. Fridsma, G. and Klosinski, W.E., "The Performance of a Small 14 Ton Tracked Amphibian in Calm and Rough Water," Davidson Laboratory Technical Report 2250, January 1982.
- 3. Van Dyck R.L., "FSACV Model Development Tests, Calm and Rough Water Performance, and Stability Characteristics," Davidson Laboratory Report 1921, December 1976.

#### **BIBLIOGRAPHY**

- Brady, P.M., Brown, P.W. and Kamm. 1.0., "An Evaluation of the Coupled LVT Concept," Davidson Laboratory Report 2082, November 1979.
- 2. Brown, P.W. and Klosinski, W.E., "Modification for the LVTP-7 Bow Form to Improve Calm Water and Seakeeping Performance," Davidson Laboratory Technical Report 2074, December 1979.
- 3. Brown, P.W. and Klosinski, W.E., "An Investigation of Forced Air Ventilation of Amphibious Vehicle Tracks LVTP-7,"
  Davidson Laboratory Technical Report 2104, December 1979.
- 4. Brown, P.W. and Klosinski, W.E., "The Contribution of Tracks to the Drag of an Amphibious Vehicle (LVTP-7),"

  Davidson Laboratory Technical Report 2109, December 1979.
- 5. Kamm, I.O. and Nazalewicz, J., "The Water Performance of Single and Coupled LVTP-7's with and without Bow Plane Extensions," Davidson Laboratory Report 2167, November 1980.
- 6. Numata, E. and Chiocco, M., "Effect of Low Freeboard on the Behavior of an Amphibious Vehicle in Head Seas," Davidson Laboratory Technical Report 2155, January 1981.
- 7. Brown, P.W., "Estimation of the Hydrodynamic Performance of Candidate LVT Amphibians."
  Davidson Laboratory Technical Report 2187, June 1981.
- 8. Brown, P.W. and Klosinski, W.E., "Experiments with Track Ventilation for Amphibious Tracked Vehicles and with Track Covers and Retraction,"

  Davidson Laboratory Technical Repot 2208, September 1981.
- 9. Kamm, I.O., "The AAI Coupled M-116 Vehicles."
  Davidson Laboratory Technical Report 2240, September 1981.

#### TR-2299

- 10. Wray, G., "Water Performance of an LVTP-7 with a Bow Plane Extension,"
  Davidson Laboratory Report 2241, December 1981.
- 11. Brady, P.M., "Analysis of Obstacle Negotiation by Articulated Tracked Vehicle The State of the Art,"

  Davidson Laboratory Report 2245, December 1981.
- 12. Fridsma, G. and Klosinski, W.E., "Performance of a Small 14 Ton Tracked Amphibian in Calm and Rough Water," Davidson Laboratory Technical Report 2250, January 1982.

TR-2299
TABLE OF PARTICULARS

|                                    | Prototype | Mode 1 |
|------------------------------------|-----------|--------|
| Displacement, 1b.                  | 30,000    | 57.1   |
| Length of ACV, in.                 |           |        |
| Hard Structure                     | 204       | 25.5   |
| Overall Including Trunk            | 349       | 43.6   |
| Beam of ACV, in.                   |           |        |
| Hard Structure                     | 106       | 13.25  |
| Overall including Trunk            | 242       | 30.25  |
| Depth of ACV to Deck, in.          |           |        |
| Hard Structure                     | 58.5      | 7.31   |
| Overall Including Trunk            | 81.5      | 10.19  |
| Center of Gravity, in.             |           |        |
| Aft of Bow Hard Structure          | 110       | 13.75  |
| Above Hull Bottom                  | 28        | 3.50   |
| Hull Clearance Above Tangent Plane | 23        | 2.88   |
| Design Pressures, psf              |           |        |
| Trunk                              | 117       | 14.6   |
| Cushion                            | 79        | 9.9    |

TABLE 1

CALM WATER SINGLE ACV, HELICOPTER TOW TRACKS DOWN

|   | MAH   | INRAG | L.B | 10260. | 7140.      | 4510. | 4470. | 4400. | 3640. | 2670. | 2190. | 1830. | 1450. | 1340. | 1250. | 1250. |
|---|-------|-------|-----|--------|------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| - |       | FLOW  | CFS | 671.   | 685.       | 639,  | 694.  | .669  | 655.  | 645.  | 657.  | 656.  | 609   | 636   | 598.  | 676.  |
|   | TRUNK | PRESS | PSF | 112.   | 115.       | 104.  | 104.  | 115.  | 122.  | 122.  | 122.  | 123.  | 122.  | 123.  | 123.  | 122.  |
|   | CUSH  | PRESS | PSF | 62.    | 63.        | 58.   | 51.   | 61.   | 75.   | 76.   | 74.   | 75.   | 81.   | 78.   | 83.   | 71.   |
| • |       | DRAG  |     | _      |            |       | _     | _     | _     | _     | _     |       | 3320. | _     | _     | _     |
|   | ٠     | SPEED | MFH | 5.00   | 7.50       | 10.00 | 11.00 | 12.51 | 15.00 | 20.01 | 25.02 | 29.71 | 35.04 | 40.04 | •     | 45.10 |
|   |       | RUN   |     | Ø      | 2 <b>1</b> | M     | 14    | 13    | 4     | เว    | 9     | 7     | 8     | 15    | 10    | 11    |

TABLE 2

CALM WATER
TWO UNIT ACV TRAIN, HELICOPTER TOW
22.7 FT SPACING, TRACKS DOWN

TABLE 2

| /     | FAN   |       |        | • •    |       |              |        |       |          |       |       |       |       |                   | . 1890.<br>. 1540.<br>. 1440. |
|-------|-------|-------|--------|--------|-------|--------------|--------|-------|----------|-------|-------|-------|-------|-------------------|-------------------------------|
|       | i     | FLOW  | CFS    | 629    | 643   | 646          | 620    | 295   | 653      |       |       | 602   | 593   | 593<br>593<br>628 | 602.<br>593.<br>628.<br>585.  |
| 1     |       |       |        |        |       |              |        |       |          |       |       |       |       |                   | 118.                          |
|       | CUSH  | PRESS | PSF    | 64.    | .89   | 67.          | 74.    | 77.   | 70.      | 71.   | 75.   |       | 75.   | 75.               | 75.<br>75.<br>80.             |
| /     | FAN   | nrag  | r<br>B | 10930. | 8380. | 4600.        | 4060.  | 3770. | 2820.    | 2850. | 2120. |       | 1800. | 1800.             | 1800.<br>1540.<br>1320.       |
| 1     | •     | FLOW  | CFS    | 718.   | 776.  | 646.         | 655.   | 702.  | 674.     | 690.  | 635.  |       | 642.  | 642.              | 642.<br>649.<br>629.          |
| TINIT | TRUNK | PRESS | PSF    | 112.   | 119.  | 104.         | 100.   | 118.  | 123.     | 121.  | 123.  |       | 123.  | 123.<br>122.      | 123.<br>122.<br>123.          |
| 1     | CUSH  | PRESS | PSF    | 54.    | 52.   | 58.          | 53.    | 64.   | 72.      | .69   | 78.   | !     | 77.   | 77.               | 77.<br>76.<br>79.             |
| `     |       | DRAG  | LR     | 870.   | 2700. | <b>8520.</b> | 10380. | 7870. | 5940.    | 5800. | 6320. | 7100  | 0/40  | 7200.             | 7200.<br>7820.                |
|       |       | SPEFD | MFI    | 5.00   | 7.50  | 10.00        | 11.00  | 15.01 | 20.01    | 20.02 | 25.03 | בט טב | 1000  | 35.04             | 35.04<br>40.08                |
|       |       | FILE  |        | 16     | 30    | 18           | 31     | 20    | CI<br>CI | 2     | 23    | 40    |       | 10<br>10          | 27                            |

TABLE 3

TABLE 3

CALM WATER
TWO UNIT ACV TRAIN, HELICOPTER TOW
42.7 FT SPACING, TRACKS DOWN

| /                                       | FAN   | DRAG       | LB  |      | .0906  | 5710.    | 4070.  | 3270.  | 3230.  | 3240.  | 2250. | 2390. | 2320. | 1880. | 1830. | 1620. | 1300. | 1110. | 1070. |
|-----------------------------------------|-------|------------|-----|------|--------|----------|--------|--------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 2                                       |       | FLOW       | CFS | 635. | 617.   | 564.     | 559.   | 517.   | 612.   | 623.   | 575.  | 613.  | 590.  | 586.  | .580. | 613.  | 575.  | 561.  | 611.  |
| UNIT                                    | TRUNK | PRESS      | PSF | 109. | 108.   | 111.     | 107.   | 102.   | 116.   | 115.   | 115.  | 114.  | 115.  | 118.  | 116.  | 116.  | 116.  | 116.  | 116.  |
| !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | СИЅН  | PRESS      | FSF | 64.  | .99    | 76.      | 72.    | 72.    | 75.    | 72.    | 78.   | 72.   | 77.   | 80.   | 79.   | 75.   | 79.   | 81.   | 75.   |
| /                                       | FAN   | DRAG       | E I |      | 12790. | 8200.    | 5500.  | 5190.  | 3820.  | 3490.  | 3020. | 2740. | 2710. | 2030. | 2180. | 1740. | 1510. | 1290. | 1130. |
|                                         | -     | FLOW       | CFS | 662. | 773.   | 723.     | 708    | 752,   | 717.   | 657.   | 709.  | 654.  | 644.  | 607.  | 641,  | 626.  | 629.  | 616.  | 607.  |
| TINIT-                                  | TRUNK | PRESS      | PSF | 113. | 121.   | 125.     | 114.   | 112.   | 117.   | 117.   | 125.  | 123.  | 124.  | 122.  | 125.  | 122.  | 123.  | 123.  | 123,  |
| 1                                       | CUSH  | PRESS      | PSF | 64.  | 55.    | 67.      | 58.    | 49.    | 61.    | .69    | 69.   | 75.   | 78.   | 82.   | 79.   | 79.   | 79.   | B1.   | 83.   |
| `                                       | •     | DRAG       | LB  |      | B30.   | 2850.    | 10050. | 11980. | 11220. | 10990. | 7190. | 7090. | 6890. | 6160. | 6120. | 6580. | 7420. | 7440. |       |
|                                         |       | SPEED      | MPH | 0.00 | 5.00   | 7.50     | 10.00  | 11.00  | 15.01  | 15.01  | 20.01 | 20.01 | 20.01 | 25.02 | 25.03 | 30.04 | 35.04 | 40.08 | 45.10 |
|                                         |       | SUN<br>SUN |     | 39   | 33     | 33<br>33 | 34     | 35     | 36     | 40     | 37    | 41    | 4     | 38    | 43    | 44    | 4.5   | 46    | 47    |

TABLE 4

4

CALM WATER
TWO UNIT ACV TRAIN, LCAC TOW
22.7 FT SPACING, TRACKS DOWN

|                    |            | \     |                                         | UNIT   | 1            | /        |       | UNIT  | 2    | /     |
|--------------------|------------|-------|-----------------------------------------|--------|--------------|----------|-------|-------|------|-------|
| COSH               | COSH       | COSH  | TR                                      | Y<br>N |              | HAN<br>N | CUSH  | TRUNK |      | FAN   |
| DRAG PRESS         | DRAG PRESS | PRESS | G.                                      | ESS    | FLOW         | DRAG     | FRESS | PRESS | FLOW | DRAG  |
| LB PSF             | LB PSF     | PSF   | <u>е</u> ,                              | 'n.    | CFS          | LB       | PSF   | FSF   | CFS  | LB    |
| <b>65.</b>         | <b>65.</b> | 65.   | ∓                                       | 3.     | 662.         |          | 65.   | 107.  | 619. |       |
| 3070. 57.          | 3070. 57.  | 57.   | 퓌                                       | 5.     | 719.         | 7500.    | 62.   | 113.  | 681. | 7010. |
| 8110. 58.          | 8110. 58.  | 58.   | 10                                      | 9.     | 652.         | 4690.    |       | 115.  |      | .0609 |
| 10030. 52.         | 10030. 52. | 52.   | 10                                      | 4      | <b>.</b> 089 | 4370.    | 64.   | 115.  | 678. | 4830. |
| 10470. 63.         | 10470. 63. | 63.   | 11                                      |        | 676.         | 4180.    | 72.   | 115.  | 620. | 3880, |
| 8080. 72.          | 8080. 72.  | 72.   | -                                       | 1.     | 661.         | 3630.    | 81.   | 120.  | 593. | 3240. |
| 6150. 80.          | 6150. 80.  | 80.   | 7                                       | м<br>М | 625.         | 2630.    | 64.   | 114.  | 668. | 2590. |
| 7030. 81.          | 7030. 81.  | 81.   | ======================================= | 33.    | 614.         | 1720.    | 72.   | 114.  | 618. | 1610. |
| 40.08 7630. 82. 12 | 7630. 82.  | 82.   | <del>-</del> -                          | М      | <b>608</b>   | 1270.    | 71.   | 114.  | 624. | 1210. |
| 8570. 79.          | 8570. 79.  | 79.   | **                                      | 0.     | 611.         | 1110.    | 72.   | 114.  | 616. | 1070. |

TABLE 5

CALM WATER
THREE UNIT ACV TRAIN, LCAC TOW
22.7 FT SPACING, TRACKS DOWN

| `    |       |       |     |          |       |        |        |        |        |        |       |       |        |
|------|-------|-------|-----|----------|-------|--------|--------|--------|--------|--------|-------|-------|--------|
| 1    | FAN   | INRAG | Ë   | 9940.    | 6910. | 5230.  | 4800.  | 4190.  | 4040.  | 3640.  | 2800. | 2000. | 1160.  |
| 3    |       | FLOW  | CFS | 654.     | 654.  | 670.   | 654    | 651.   | .099   | 653.   | 695.  | 721.  | 640.   |
| UNIT | TRUNK | FRESS | FSF | 111.     | 116.  | 115.   | 118.   | 118.   | 121.   | 123.   | 118.  | 122.  | 120.   |
|      | CUSH  | PRESS | FSF | 64.      | .69   | 65.    | 71.    | 71.    | 73.    | 76.    | 64.   | 65.   | 74.    |
| /    | HAN   | DRAG  | LR  |          | 6320. | 4690.  | 4820.  | 3860.  | 4040.  | 3350.  | 2520. | 1660. | .086   |
| 2    |       | FLOW  | CFS |          | 619.  | 605.   | 658.   | 615.   | 652.   | 614.   | 641.  | 638.  | 580.   |
| UNIT | TRUNK | PRESS | PSF |          | 112.  | 114.   | 118.   | 115.   | 123.   | 120.   | 116.  | 115.  | 111.   |
| 1    | CUSH  | FRESS | PSF | 62.      | 70.   | 73.    | 70.    | 73.    | 75,    | 78.    | 70.   | 70.   | 74.    |
| /    | FAN   | DRAG  | LR  | 10856.   | 7590. | 4130.  | 3930.  | 4550.  |        | 3490.  | 2800. | 1930. | 1210.  |
| 1    |       | _     | 1   |          |       |        |        |        |        |        |       |       | 649.   |
| UNIT | TRUNK | PRESS | PSF | 107.     | 114.  | 102.   | 100.   | 110.   |        | 118.   | 125.  | 127.  | 123.   |
| 1    |       | PRESS | PSF | 46.      | 55.   | 63.    | 55.    | 46.    | 62.    | 71.    | 77.   | 78.   | 76.    |
|      |       | DRAG  | LB  | 1190.    | 3830. | 11130. | 13670. | 15840. | 14950, | 11220. | 8840. | 9890. | 11780. |
|      |       | SPFED | 工业  | 2.00     | 7.50  | 10.00  | 11.00  | 12.51  | 13.57  | 15.01  | 20.02 | 30.02 | 44.89  |
|      |       | 2     |     | о.<br>ИТ | 9     | 61     | 69     | 82     | 70     | 64     | 65    | 99    | 67     |

TABLE 6

TABLE 6

CALM WATER
TWO UNIT ACV TRAIN, LCAC TOW
22.7 FT SPACING, TRACKS UP

| /                                       | FAN   | nRAG         | <u>a</u> | 7010  | 5240.                 | 4790.  | 4140.  | 3510. | 2580. | 1560. | 1330. | 1010. | 1000. |
|-----------------------------------------|-------|--------------|----------|-------|-----------------------|--------|--------|-------|-------|-------|-------|-------|-------|
| · · · · · · · · · · · · · · · · · · ·   | i     | FI OW        | F F S    | 654   | 649                   | 647.   | 639    | 631.  | 662.  | 598   | 588.  | 555.  | 594.  |
| TINI                                    | TRUNK | PRESS        | PSF      | 118.  | 119.                  | 120.   | 119.   | 123.  | 114.  | 115.  | 116.  | 107.  | 111.  |
| !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! | CUSH  | PRESS        | PSF      | 71.   | 72.                   | 73.    | 74.    | 78.   | .99   | 75.   | 78.   | 73.   | 72.   |
| /                                       | FAN   | DRAG         | LB       | 7390. | 4460.                 | 4430.  | 3930.  | 3340. | 2490. | 1650. | 1410. | 1370. | 1190. |
| 11                                      |       | FLOW         | CFS      | 696.  | 611.                  | 688    | 641.   | 612.  | 590.  | 583.  | 578.  | 642.  | 619.  |
| UNIT                                    | TRUNK | <b>PRESS</b> | PSF      | 117.  | 107.                  | 104.   | 112.   | 120.  | 124.  | 125.  | 126.  | 125.  | 127.  |
| 1                                       | CUSH  | PRESS        | PSF      | 63.   | 99                    | 51.    | 67.    | 78.   | 85.   | 87.   | 89.   | 80.   | 84.   |
| `                                       |       | DRAG         | LR       | 2860, | <b>8</b> ∑8 <b>0.</b> | 10366. | 10740. | 7710. | 5660. | 6310. | 7260. | 8450. | 9040. |
|                                         |       | SPEED        | MPH      | 7.50  | 10.00                 | 11.00  | 12.50  | 15.01 | 20.01 | 30.04 | 35.04 | 40.04 | 45.06 |
|                                         |       | N.C.N        |          | 72    | 73                    | 74     | 75     | 76    | 77    | 78    | 81    | 80    | 29    |

PAGE 1

DAVIDSON LABORATORY

# TABLE 7-1 ACV BARGE TRAIN

15-SEF-82

THREE UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

FUN 86

|                 | WEIGHT     | 5.0<br>30000.<br>1440. | LB          |                 |                 |        | SEA | TERS<br>STATE<br>110.0 | 2          |
|-----------------|------------|------------------------|-------------|-----------------|-----------------|--------|-----|------------------------|------------|
|                 | i          | MEAN/RMS               | OSC/BUF     | FF AVG          | 1/3             | 1/     | 10  | EXTRE                  | EME        |
| TIRAG<br>KIPS   |            | 1.445<br>1.251         |             | 4.24<br>-0.38   |                 |        |     | 7.(<br>-1.1            |            |
| LUT             | 1          | FLOW                   | 660. CF     | SF              | AN DRAG         | 10080. | LB  |                        |            |
| DRIVER A        | CC         | 0.007<br>0.176         | 26<br>0.60  | 0.44<br>-0.41   | 0.57<br>-0.51   |        |     | 0.7                    |            |
| TROOF ACC       | C          | -0.022<br>0.150        | 21<br>0.60  | 0.41<br>-0.35   | 0.55<br>-0.41   |        |     | 0.8                    |            |
| HOR ACC<br>G,#1 |            | -0.111<br>0.082        |             | 0.07<br>-0.29   |                 |        |     | 0.1                    |            |
| CUSH FRES       | <b>3</b> S | 62.981<br>6.279        |             |                 |                 |        | ·   | 91.3<br>42.9           |            |
| TRUNK FRE       | ESS        | 111.610<br>9.429       |             |                 |                 |        |     | 154.3                  | 37         |
| LUT 2           | 2          | FLOW                   | 650. CF     | SFA             | N DRAG          | 9570.  | LB  |                        | · <b>-</b> |
| DRIVER AC       | CC         | -0.001<br>0.164        | 22<br>0.60  | 0.37<br>-0.43   | 0.44<br>-0.54   |        |     | 0.5                    |            |
| TROOP ACC       | :          | -0.012<br>0.150        |             | 0.39<br>-0.32   |                 |        |     | 0.5                    |            |
| HOR ACC<br>G•#2 |            |                        | 15<br>0.25  | 0.10<br>-0.26   | 0.14            |        |     | 0.1                    |            |
| CUSH PRES       | SS         | 61.947<br>7.295        | 24<br>24.00 | 80.76<br>45.25  | 92.53<br>40.37  |        |     | 117.1<br>38.2          | 2          |
| TRUNK FRE       | :SS        | 108.381<br>9.051       | 18<br>40.00 | 133.87<br>85.97 | 139.29<br>82.07 |        |     | 142.0<br>79.5          | 2          |

-0.17

111.03

156.78

73.56

17.47

|                   |                                    | •              | TR-2299                 |      |                                                                   |
|-------------------|------------------------------------|----------------|-------------------------|------|-------------------------------------------------------------------|
| DAVIDSON          | LABORATORY                         | ACV E          | ABLE 7-1<br>BARGE TRAIN |      | PAGE 2<br>15-SEP-82                                               |
| RUN 86            |                                    |                |                         |      |                                                                   |
|                   | SPEED (<br>WEIGHT 3000<br>DRAG 144 | 00. LB         | F AVG                   | 1/3  | WAVE ENCOUNTERS 26<br>SEA STATE 2<br>LCG 110.0 IN<br>1/10 EXTREME |
| LUT 3             | FLOW                               | 430. CF        | 5FAN                    | DRAG | 9600. LB                                                          |
| DRIVER AC         | C -0.01                            | 1 29<br>4 0.60 | 0.43                    | 0.58 | A 77                                                              |
| TROOP ACC<br>G,#3 | -0.00<br>0.15                      | 5 40<br>8 0.45 | 0.35<br>-0.31           | 0.45 | A 50                                                              |
| HOR ACC<br>G,#3   | 0.08<br>0.07                       |                | 0.32<br>-0.11           |      | 0.45<br>-0.17                                                     |

C

CUSH PRESS

TRUNK PRESS

P'SF

PSF

67.220

111.469

10.838

9.797

76

56

24.00

36.00

86.05

49.33

136.54

88,95

94.05

42.51

143.87

82.87

101.71

150.96

77.89

36.59

DAVIDSON LABORATORY

## TABLE 7-2

28-0CT-82

## ACV BARGE TRAIN

THREE UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

RUN 87 , 112

| WEIGH              | 10.0<br>30000.<br>12760. | LB          |                 |                 |                 | INTERS 44<br>STATE 2<br>110.0 IN |
|--------------------|--------------------------|-------------|-----------------|-----------------|-----------------|----------------------------------|
|                    | MEAN/RMS                 | OSC/BUFF    | AVG             | 1/3             | 1/10            | EXTREME                          |
| DRAG<br>KIPS       | 12.761<br>3.700          | 60<br>3.42  | 18.13<br>7.49   | 21.36<br>5.33   | 23.25<br>4.12   | 24.66<br>2.90                    |
| LVT 1              | FLOW                     | 616. CFS    | F               | AN DRAG         | 4230. LB-       | من من من سنة مند لخد لك 100 (17  |
| DRIVER ACC         | 0.001<br>0.186           | 11          | 0.42            |                 |                 | 0.51<br>-0.49                    |
| TROOF ACC<br>G:#1  | -0.008<br>0.154          | 6<br>0.60   | 0.44            |                 |                 | 0.61<br>-0.54                    |
| HDR ACC<br>G:#1    | -0.055<br>0.132          | 63<br>0.25  | 0.17<br>-0.28   | 0.26<br>-0.40   | 0.31<br>-0.51   | 0.34<br>-0.60                    |
| CUSH PRESS<br>PSF  | 58.659<br>18.753         | 84<br>32.00 | 100.35<br>33.81 | 123.46<br>23.14 | 140.42<br>18.12 | 158.36<br>14.08                  |
| TRUNK FRESS<br>PSF | 100.739<br>12.695        | 8<br>48.00  | 130.83<br>64.86 |                 |                 | 139.83<br>54.96                  |
| LUT 2              | FLOW                     | 690. CFS    | F               | AN DRAG         | 5220. LB-       |                                  |
| DRIVER ACC<br>G:#2 | 0.003<br>0.195           | 45<br>0.60  | 0.41            | 0.51<br>-0.57   |                 | 0.97<br>-0.78                    |
| TROOF ACC<br>G,#2  | 0.003<br>0.182           | 46<br>0.50  | 0.39            | 0.54<br>-0.44   |                 | 0.79<br>-0.55                    |
| HOR ACC<br>G:#2    | -0.030<br>0.124          | 54<br>0.25  | 0.18            | 0.28<br>-0.34   | 0.35<br>-0.39   | 0.42<br>-0.44                    |
| CUSH PRESS<br>PSF  | 59.185<br>16.163         | 87<br>24.00 | 94.43<br>40.04  | 132.64<br>26.17 |                 | 250.44<br>-5.20                  |
| TRUNK PRESS<br>PSF | 111.457<br>11.032        | 38<br>40.00 | 136.01<br>94.29 | 143.93<br>77.73 |                 | 145.88<br>74.13                  |

DAVIDSON LABORATORY

TABLE 7-2

28-0CT-82

# ACV BARGE TRAIN

(Continued)

RUN 87 , 112

| SFEED<br>WEIGHT<br>DRAG | 10.0<br>30000.<br>12760. | LB       |     |   | WAVE |      | NTERS<br>STATE<br>110.0 | 2  |
|-------------------------|--------------------------|----------|-----|---|------|------|-------------------------|----|
| ME                      | EAN/RMS                  | OSC/BUFF | AVG | - | 1/3  | 1/10 | EXTRE                   | ME |

| LVT 3              | FLCW                     | 700.               | CFSFAN             | DRAG           | 5620. LB-        |                  |
|--------------------|--------------------------|--------------------|--------------------|----------------|------------------|------------------|
| DRIVER ACC<br>G,#3 | -0.020<br>0.222          | 61<br>0.60         | - · · <del>-</del> | 0.53           | 0.62<br>-0.72    | 0.68<br>-0.81    |
| TROOP ACC<br>G+#3  | -0.007<br>0.195          | 52<br>0.45         | • • • •            | 0.58           | 0.70<br>-0.54    | 0.86             |
| HOR ACC<br>G,#3    | 0.036<br>0.133           | 36<br>0.35         |                    | 0.44           |                  | 0.60<br>-0.45    |
| CUSH PRESS<br>PSF  | 63.87 <b>5</b><br>16.899 | <b>54</b><br>24.00 |                    | 28.44<br>-2.99 | 183.79<br>-29.99 | 242.82<br>-34.85 |
| TRUNK PRESS<br>PSF | 117.940<br>13.031        | 67<br>36.00        |                    | 50.46<br>83.39 | 156.32<br>76.66  | 162.19<br>67.27  |

TABLE 7-3

28-0CT-82

## ACV BARGE TRAIN

# THREE UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

RUN 113, 88

|                  | WEIGHT       | 12.5<br>30000.<br>17210. | LB          |                 | l.i             |               | NTERS 40<br>STATE 2<br>110.0 IN |
|------------------|--------------|--------------------------|-------------|-----------------|-----------------|---------------|---------------------------------|
|                  | i            | MEAN/RMS                 | OSC/BUFF    | AVG             | 1/3             | 1/10          | EXTREME                         |
| DRAG<br>KIPS     |              | 17.210<br>6.063          | 57<br>3.42  | 25.37<br>9.85   | 30.22<br>4.43   | 33.23<br>3.71 | 35.57<br>0.71                   |
| LUT              | 1            | FLOW                     | 746. CFS    | FA              | N DRAG          | 4645. LB-     |                                 |
| DRIVER A<br>G•#1 | CC           | -0.012<br>0.287          | 29<br>1.00  |                 |                 |               | 1.33<br>-0.86                   |
| TROOF AC<br>G,#1 | С            | 0.010<br>0.296           | 33<br>0.90  |                 | 0.76<br>-0.73   |               | 0.85<br>-1.04                   |
| HOR ACC<br>G•#1  |              | -0.171<br>0.177          | 69<br>0.25  | 0.10<br>-0.43   | 0.23<br>-0.56   | 0.33<br>-0.65 | 0.57<br>-0.67                   |
| CUSH FRE<br>FSF  | SS           | 52.573<br>8.561          | 28<br>32.00 |                 | 85.83<br>27.76  |               | 107.53<br>19.55                 |
| TRUNK FR<br>FSF  | ESS          | 114.197<br>17.328        | 43<br>48.00 |                 |                 |               | 291.78<br>60.62                 |
| LUT              | 2            | FLOW                     | 600, CFS    | FA              | N DRAG          | 3670. LB-     |                                 |
| DRIVER A<br>G,#2 | cc           | -0.004<br>0.211          | 38<br>0.60  |                 |                 |               | 0.76<br>-0.68                   |
| TROOF AC<br>G,#2 | C            | 0.002<br>0.231           | 49<br>0•50  |                 |                 |               | 0.72<br>-0.91                   |
| HOR ACC<br>G•#2  |              | 0.063<br>0.179           | 53<br>0.25  | 0.23<br>-0.35   | 0.35<br>-0.51   | 0.48<br>-0.63 | 0.66<br>-0.76                   |
| CUSH FRE         | : <b>S</b> S | 73.732<br>7.986          | 40<br>24.00 | 98.58<br>63.43  | 110.30<br>49.83 |               | 117.94<br>32.26                 |
| TRUNK PR         | ESS          | 112.999<br>13.209        | 39<br>40.00 | 138.87<br>83.84 | 147.46<br>75.56 |               | 156.33<br>65.27                 |

28-0CT-82

DAVIDSON LABORATORY

TABLE 7-3
ACV BARGE TRAIN
(Continued)

I

EUN 113, 88

 SPEED
 12.5 MPH
 WAVE ENCOUNTERS
 40

 WEIGHT
 30000. LB
 SEA STATE
 2

 DRAG
 17210. LB
 LCG 110.0 IN

MEAN/RMS OSC/BUFF AVG 1/3 1/10 EXTREME

| LVT 3       | FLOW    | 580.  | CFSFAN   | DRAG   | 3660. LB- |        |
|-------------|---------|-------|----------|--------|-----------|--------|
| DRIVER ACC  | -0.023  | 42    | 0.44     | 0.63   |           | 0.88   |
| G,#3        | 0.254   | 0.60  | -0.54    | -0.67  |           | -0.87  |
| TROOP ACC   | -0.008  | 52    | 0.38     | 0.50   | 0.61      | 0.78   |
| G,#3        | 0.210   | 0.45  | -0.37    |        | -0.58     | -0.70  |
| HOR ACC     | 0.109   | 37    | 0.43     | 0.53   |           | 0.73   |
| G,#3        | 0.151   | 0.35  | -0.15    | -0.26  |           | -0.33  |
| CUSH PRESS  | 76.795  | 26    | 78.57    | 91.76  |           | 103.04 |
| PSF         | 14.366  | 24.00 | 34.85    | 19.82  |           | 3.79   |
| TRUNK PRESS | 114.679 | 52    | 142.10 j | .52.06 | 159.32    | 163.68 |
| PSF         | 14.709  | 36.00 | 87.10    | 78.35  | 73.12     | 65.03  |

DAVIDSON LABORATORY

## TABLE 7-4

28-00T-82

### ACV BARGE TRAIN

THREE UNITS LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

| RUN 89 , 114            |                          |                     |                 |                 |                 |                                |
|-------------------------|--------------------------|---------------------|-----------------|-----------------|-----------------|--------------------------------|
| SPEED<br>WEIGHT<br>DRAG | 15.0<br>30000.<br>13330. | MPH<br>LB<br>LB     |                 | W               |                 | TERS 37<br>STATE 2<br>110.0 IN |
|                         | MEAN/RMS                 | OSC/BUFF            | AVG             | 1/3             | 1/10            | EXTREME                        |
| DRAG<br>KIPS            | 13.628<br>5.620          | 50<br>3.42          | 21.07           | 25.34<br>2.66   | 28.23<br>0.96   | 28.91<br>-0.28                 |
| LVT 1                   | FLOW                     | 560. CFS            | F               | AN IRAG         | 3060. LB        |                                |
| DRIVER ACC<br>G:#1      | -0.011<br>0.387          |                     |                 | 1.36<br>-0.90   |                 | 2.88<br>-1.15                  |
| TROOF ACC<br>G,#1       |                          | 44<br>0.90          |                 |                 |                 | 1.19<br>-1.13                  |
| HOR ACC<br>G,#1         |                          |                     |                 |                 | 0.49<br>-0.77   |                                |
| CUSH FRESS<br>FSF       | 85.564<br>16.703         | 66<br>32.00         | 114.74<br>55.42 | 131.33<br>40.13 | 152.50<br>28.60 | 189.64<br>17.60                |
| TRUNK PRESS<br>FISF     | 120.363<br>23.542        | 73<br><b>48.</b> 00 | 173.79<br>83.53 | 211.47<br>60.52 | 251.97<br>47.79 | 307.13<br>35.56                |
| LUT 2                   | FLQW                     | 670. CFS            | F               | AN IIRAG        | 3610. LB-       |                                |
| DRIVER ACC<br>G,#2      | 0.005<br>0.348           | 52<br>0.60          | 0.66<br>-0.53   | 0.91<br>-0.72   | 1.18<br>-0.79   | 1.54<br>-0.85                  |
| TROOF ACC<br>G,#2       |                          |                     |                 |                 | 0.90<br>-0.93   |                                |
| HOR ACC<br>G+#2         | -0.070<br>0.209          | 65<br>0.25          | 0.24<br>-0.36   |                 | 0.60<br>-0.65   |                                |
| CUSH PRESS<br>PSF       | 68.015<br>15.968         | 75<br>24.00         | 96.82<br>43.69  |                 |                 |                                |
| TRUNK PRESS<br>FSF      | 118.172<br>15.256        |                     |                 | 154.81<br>78.12 | 162.64<br>70.78 |                                |

TABLE 7-4

28-0CT-82

## ACV BARGE TRAIN

(Continued)

RUN 89 , 114

SFEED 15.0 MPH WEIGHT 30000. LB DRAG 13630. LB WAVE ENCOUNTERS 37 SEA STATE 2 LCG 110.0 IN

MEAN/RMS OSC/BUFF AVG 1/3 1/10 EXTREME

| LVT 3       | 638. (  | CFSF  | AN DRAG | 3498. LB- |        |        |
|-------------|---------|-------|---------|-----------|--------|--------|
| DRIVER ACC  | -0.022  | 33    | 0.57    | 0.81      |        | 1.26   |
| G,#3        | 0.324   | 06.0  | -0.53   | -0.68     |        | -0.81  |
| TROOP ACC   | -0.012  | 57    | 0.48    | 0.70      | 0.88   | 1.06   |
| G,#3        | 0.282   | 0•45  | -0.43   | -0.61     | -0.70  | -0.74  |
| HOR ACC     | 0.133   | 38    | 0.50    | 0.68      |        | 1.22   |
| G,#3        | 0.178   | 0.35  | -0.13   | -0.23     |        | -0.38  |
| CUSH FRESS  | 75.657  | 30    | 104.07  | 117.82    |        | 143.25 |
| PSF         | 18.207  | 24.00 | 56.50   | 41.85     |        | 29.50  |
| TRUNK PRESS | 120.702 | 63    | 151.39  | 165.36    | 181.20 | 189.10 |
| PSF         | 17.452  | 36.00 | 93.40   | 80.26     | 71.11  | 65.03  |

PAGE 1

#### DAVIDSON LABORATORY

### TABLE 7-5

28-0CT-82

## ACV BARGE TRAIN THREE UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

RUN 117 , 118

|                   | WEIGHT   | 25.0<br>30000.<br>11260. | LB          |                 |                 |                 | NTERS 36<br>STATE 2<br>110.0 IN |
|-------------------|----------|--------------------------|-------------|-----------------|-----------------|-----------------|---------------------------------|
|                   |          | MEAN/RMS                 | OSC/BUF     | F AVG           | 1/3             | 1/10            | EXTREME                         |
| DRAG<br>KIFS      |          | 11.258<br>4.335          |             |                 | 20.55<br>2.73   |                 | 23.81<br>1.51                   |
| LUT 1             |          | FLOW                     | 681. CF     | SF              | AN DRAG         | 2158. LB-       |                                 |
| DRIVER AC         | CC       | -0.009<br>0.754          | 50<br>1.00  | 1.70<br>-0.73   | 2.48<br>-1.07   | 2.96<br>-1.22   | 3.09<br>-1.60                   |
| TROOF ACC         |          | 0.022<br>0.550           | 51<br>0.90  | 1.11<br>-0.59   | 1.60<br>-0.89   | 1.89<br>-1.00   | 2.54<br>-1.05                   |
| HOR ACC<br>G•#1   |          | -0.120<br>0.255          |             |                 | 0.46<br>-0.67   |                 | 0.64<br>-1.10                   |
| CUSH PRES         | SS       | 64.875<br>38.089         | 38<br>32.00 | 130.25<br>28.20 | 163.83<br>8.31  |                 | 188.54<br>-21.52                |
| TRUNK FRE         | ESS      | 116.196<br>47.074        | 79<br>48.00 | 208.02<br>70.40 | 263.91<br>48.76 | 301.48<br>36.57 | 324.11<br>16.97                 |
| LUT :             | <u> </u> | FLOW                     | 635 CF      | SF              | AN DRAG         | 1947 LB         |                                 |
| DRIVER AG<br>G,#2 | CC       | 0.004<br>0.616           |             |                 | 2.09<br>-0.93   |                 | 2.58<br>-1.14                   |
| TROOP ACC<br>G:#2 |          | 0.006<br>0.373           |             |                 | 0.94<br>-0.70   |                 | 1.34<br>-0.94                   |
| HOR ACC<br>G;#2   |          | -0.028<br>0.190          | 44<br>0+25  | 0.30<br>-0.30   | 0.48<br>-0.39   |                 | 0.62<br>-0.54                   |
| CUSH PRES         | 6S       | 67.764<br>27.913         | 33<br>24.00 | 109.80          | 145.31<br>19.56 |                 | 186.41<br>1.28                  |
| TRUNK PRE<br>PSF  | ESS      | 112.442<br>28.946        | 48<br>40.00 | 166,86<br>75,91 |                 |                 | 204.08<br>35.82                 |
|                   |          |                          |             |                 |                 |                 |                                 |

#### TABLE 7-5

28-0CT-82

### ACV BARGE TRAIN

(Continued)

RUN 117, 118

C

|                    | 25.0<br>T 30000.<br>11260. | LB          |                 |                 |                 | NTERS 36<br>STATE 2<br>110.0 IN |
|--------------------|----------------------------|-------------|-----------------|-----------------|-----------------|---------------------------------|
|                    | MEAN/RMS                   | OSC/BUFF    | F AVG           | 1/3             | 1/10            | EXTREME                         |
| LVT 3              | FLOW                       | 680. CF     | SFA             | N DRAG          | 2180. LB-       |                                 |
| DRIVER ACC         | -0.008<br>0.514            | 46          | 0.88<br>-0.58   | 1.36            |                 | 2.03                            |
| TROOF ACC          |                            |             |                 |                 | 1.06            | -1.03<br>1.23                   |
| G, #3              | 0.382                      | 0.45        | -0.44           | -0.66           | -0.79           |                                 |
| HOR ACC<br>G,#3    | 0.053<br>0.189             | 28<br>0.35  | 0.39<br>-0.28   | 0.51<br>-0.39   |                 | 0.69<br>-0.54                   |
| CUSH PRESS<br>PSF  | 67.241<br>25.004           |             | 100.54<br>35.06 |                 |                 | 124.11<br>-50.42                |
| TRUNK PRESS<br>PSF | 118.075<br>26.594          | 50<br>36.00 | 163.70<br>85.67 | 189.30<br>69.66 | 208.42<br>58.65 | 219.55                          |

28-0CT-82

TABLE 7-6

## ACV BARGE TRAIN

## THREE UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

RUN 116, 92

|                   | WEIGHT    | 30.0<br>30000.<br>12490. | LB            |                 |                 |                 | NTERS 28<br>STATE 2<br>110.0 IN |
|-------------------|-----------|--------------------------|---------------|-----------------|-----------------|-----------------|---------------------------------|
|                   |           | MEAN/RMS                 | OSC/BUF       | F AVG           | 1/3             | 1/10            | EXTREME                         |
| JRAG<br>KIPS      |           | 12.487<br>4.758          | 23<br>3.42    | 18.43<br>6.25   | 21.66<br>3.42   |                 | 27.77<br>1.59                   |
| LVT               | ļ <b></b> | FLOW                     | 603, CF       | 3F              | AN DRAG         | 1540. LR-       |                                 |
| DRIVER AC<br>G+#1 | CC        | 0.010<br>0.783           | 36<br>1.00    | 1.63<br>-0.67   | 2.27<br>-1.07   |                 | 3.04<br>-1.49                   |
| TROOP ACC<br>G,#1 |           | 0.007<br>0.608           | 36<br>0.90    | 1.14<br>-0.59   | 1.48<br>-0.97   |                 | 1.98<br>-1.36                   |
| HOR ACC<br>G,#1   |           | -0.102<br>0.282          | 28<br>0.25    | 0.32<br>-0.50   | 0.46<br>-0.65   |                 | 0.65<br>-0.89                   |
| CUSH PRES         |           | 30,430                   | <b>3</b> 2.00 | 38.43           | 14.61           | 177.21<br>6.57  | 1.96                            |
| TRUNK PRE<br>PSF  | SS        | 112.444<br>45.396        | 32<br>48.00   | 200.27<br>67.74 | 235.35<br>46.80 | 251.36<br>35.36 | 268.34<br>29.10                 |
| LVT 2             |           | FLOW                     | 590. CFS      | F               | N DRAG          | 1510. LB        |                                 |
| DRIVER AC<br>G,#2 | С         | -0.014<br>0.692          | 37<br>0.60    | 1.25<br>-0.62   | 1.80<br>-0.98   |                 | 2.38<br>-1.06                   |
| TROOF ACC<br>G,#2 |           | 0.003<br>0.415           | 35<br>0.50    | 0.73<br>-0.46   | 1.06<br>-0.72   |                 | 1.43<br>-0.97                   |
| HOR ACC<br>G,#2   |           | -0.035<br>0.203          | 04<br>0+25    | 0.27<br>-0.31   | 0.38<br>-0.47   |                 | 0.56<br>-0.71                   |
| CUSH PRES<br>PSF  | ទ         | 73.757<br>33.340         | 45<br>24.00   | 131.26<br>43.73 | 161.11<br>17.51 |                 | 191.94<br>3.45                  |
| TRUNK FRE         | SS        | 112.471<br>31.311        | 35<br>40.00   | 145.04<br>76.82 | 181.27<br>58.59 |                 | 191.24<br>39.06                 |

TABLE 7-6

28-0CT-82

EXTREME

218.70

47.84

#### ACV BARGE TRAIN

(Continued)

RUN 116, 92

TRUNK PRESS

PSF

116.740

31.739

| SFEED          | 30.0             | MPH | WAVE ENCOUNTE | S 28   |  |
|----------------|------------------|-----|---------------|--------|--|
| WEIGHT<br>DRAG | 30000.<br>12490. |     | SEA ST        | _      |  |
| 271110         | 127/01           | LD  | LCG 11        | ••0 IN |  |

1/3

192.31

61.19

1/10

----LVT 3------FLOW 694. CFS-----FAN DRAG 1842. LB-----DRIVER ACC -0.025 33 1.07 1.57 2.49 G,#3 0.635 0.60 -0.70 -1.01 -1.18 TROOP ACC -0.008 41 0.78 1.06 1.43 G,#3 0.483 0.45 -0.46 -0.85 -1.11 HOR ACC 0.070 22 0.49 0.68 0.99 G,#3 0.277 0.35 -0.34 -0.48 -0.59 CUSH FRESS 43.308 17 106.63 138.88 174.34 FSF 30.967 24.00 25.87 1.52 -10.70

167.73

80.71

MEAN/RMS DSC/BUFF AVG

35

36.00

#### TABLE 7-7

#### 28-0CT-82

#### ACV BARGE TRAIN

#### THREE UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

FUN 120 , 119

|                   | WEIGH | 35.0<br>30000.<br>14110. | LB          |                        |                 |                  | NTERS 31<br>STATE 2<br>110.0 IN |
|-------------------|-------|--------------------------|-------------|------------------------|-----------------|------------------|---------------------------------|
|                   |       | MEAN/RMS                 | OSC/BUFF    | AVG                    | 1/3             | 1/10             | EXTREME                         |
| DRAG<br>KIFS      |       | 14.108<br>5.463          | 27<br>3.42  | 20.73<br>7.45          | 26.31<br>4.11   |                  | 33.15<br>2.22                   |
| LVT               | 1     | FLOW                     | 650. CF     | 6F                     | AN IIRAG        | 1460. LB-        |                                 |
| DRIVER ANGLE      | CC    | -0.007<br>0.873          | 46<br>1.00  | 1.70<br>-0.76          | 2.53<br>-1.16   |                  | 4.52<br>-1.64                   |
| TROOF ACC<br>G+#1 | С     | 0.070<br>0.590           | 39<br>0.90  | 1.14<br>-0.62          | 1.57<br>-0.90   |                  | 2.76<br>-1.20                   |
| HOR ACC<br>G,#1   |       | -0.101<br>0.325          |             |                        |                 |                  | 1.15<br>-1.27                   |
| CUSH FRES         | SS    | 67.405<br>42.140         | 60<br>32.00 |                        |                 | 183.09<br>-17.34 |                                 |
| TRUNK PRI<br>PSF  | ESS   | 114,796<br>56,781        | 63<br>48.00 | 210.63<br>62.70        | 272.19<br>36.68 | 311.06<br>24.02  | 411.40<br>9.70                  |
| LUT 2             | 2     | FLOW                     | 570. CFS    | 6F                     | AN DRAG         | 1210. LB-        |                                 |
| DRIVER AG<br>G,#2 | CC    | 0.002<br>0.693           | 45<br>0.60  | 1.22<br>-0.63          | 1.92<br>-1.00   |                  | 4.41<br>-1.30                   |
| TROOF ACC         | C     | -0.001<br>0.507          | 40<br>0.50  | 0.95<br>-0. <b>5</b> 1 | 1.53<br>-0.84   |                  | 3.28<br>-1.10                   |
| HOR ACC<br>G,#2   |       | -0.037<br>0.234          | 42<br>0.25  | 0.28<br>-0.38          | 0.49<br>-0.57   |                  | 0.69<br>-0.80                   |
| CUSH FRES         | SS    | 72.590<br>33.693         | 49<br>24.00 | 126.83<br>39.41        | 156.96<br>21.69 |                  | 247.48<br>-1.60                 |
| TRUNK PRE<br>PSF  | ESS   | 108.930<br>33.673        | 40<br>40.00 | 164.54<br>69.87        | 187.01<br>49.86 |                  | 210.75<br>24.99                 |

31

DAVIDSON LABORATORY

SPEED

WEIGHT

#### TABLE 7-7

28-0CT-82

WAVE ENCOUNTERS

SEA STATE

#### ACV BARGE TRAIN

(Continued)

35.0 MPH

30000. LB

RUN 120, 119

CANDERSON AND DESCRIPTION OF THE PROPERTY OF T

| DRAG          | 14110.   | LB       |        |        | LCG       | 110.0 IN |
|---------------|----------|----------|--------|--------|-----------|----------|
|               | MEAN/RMS | USC/BUFF | AVG    | 1/3    | 1/10      | EXTREME  |
|               |          |          |        |        |           |          |
| LVT 3         | FLOW     | 630. CF  | 5FA    | N DRAG | 1440. LB- |          |
| DRIVER ACC    | -0.006   | 43       | 1.22   | 1.83   |           | 2.32     |
| G,#3          | 0.773    | 0.60     | 0.72   | -1.17  |           | -1.53    |
| TROOF ACC     | -0.018   | 41       | 0.86   | 1.50   |           | 2.46     |
| G•#3          | 0.630    | 0.45     | -0.61  | -1.00  |           | -1.51    |
| HOR ACC       | 0.058    |          |        |        |           | 1.55     |
| G• <b>‡</b> 3 | 0.364    | 0.35     | -0.43  | -0.66  |           | -1.01    |
| CUSH PRESS    | 72.281   | 50       | 109.74 | 135.51 | 151.61    | 160.42   |
| PSF           | 29.618   | 24.00    | 41.51  | 8.40   | -14.39    | -36.67   |
| TRUNK PRESS   | 116.770  | 41       | 178.09 | 204.82 |           | 248.12   |
| PSF           | 40.189   | 36.00    | 71.43  | 45.65  |           | 24.06    |

TABLE 7-8

28-0CT-82

#### ACV BARGE TRAIN

#### THREE UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

RUN 93, 121

SPEED 44.7 MPH WAVE ENCOUNTERS 26
WEIGHT 30000. LB SEA STATE 2
LB LCG 110.0 IN
MEAN/RMS OSC/BUFF AVG 1/3 1/10 EXTREME

| LUT 1       | C      | FSF   | AN DRAG | LB      |        |
|-------------|--------|-------|---------|---------|--------|
| DRIVER ACC  | -0.021 | 25    | 2.08    | 2.92    | 3.67   |
| G+#1        | 1.004  | 1.00  | -0.96   | -1.23   | -1.37  |
| TROOF ACC   | 0.002  | 20    | 1.03    | 1.46    | 1.72   |
| G,#1        | 0.529  | 0.90  | -0.63   | -0.91   | -1.26  |
| HOR ACC     | -0.078 | 23    | 0.40    | 0 : 63  | 0.93   |
| G+#1        | 0.326  | 0.25  | -0.48   | -0 : 74 | -0.90  |
| CUSH PRESS  | 68.089 | 38    | 136.70  | 179.39  | 202.94 |
| PSF         | 44.714 | 32.00 | 29.05   | 1.41    | -12.90 |
| TRUNK PRESS |        |       |         |         |        |

|             |         | 580. CI | 580. CFSFAN |        | 980. LB |  |
|-------------|---------|---------|-------------|--------|---------|--|
| DRIVER ACC  | 0.014   | 32      | 1.32        | 2.20   | 3.26    |  |
| G.#2        | 0.786   | 0.60    | -0.55       | -1.04  | -1.28   |  |
| TROOF ACC   | -0.002  | 25      | 0.99        | 1.46   | 1.79    |  |
| G+#2        | 0.523   | 0.50    | -0.55       | -0.82  | -1.07   |  |
| HOR ACC     | -0.027  | 24      | 0.22        | 0.38   | 0.52    |  |
| G+#2        | 0.194   | 0.25    | -0.31       | -0.46  | -0.73   |  |
| CUSH PRESS  | 72.506  | 38      | 133.31      | 166.68 | 220.89  |  |
| PSF         | 36.718  | 24.00   | 45.18       | 15.93  | 1.72    |  |
| TRUNK PRESS | 110.244 | 26      | 169.52      | 198.29 | 218.91  |  |
| PSF         | 39.101  | 40.00   | 67.20       | 41.68  | 30.11   |  |

28-0CT-82

DAVIDSON LABORATORY

TABLE 7-8

ACV BARGE TRAIN

(Continued)

RUN 93 , 121

SFEED 44.7 MPH WEIGHT 30000. LB DRAG LB

WAVE ENCOUNTERS 26 SEA STATE 2

LCG 110.0 IN

MEAN/RMS OSC/BUFF AVG 1/3 1/10 EXTREME

-----FLOW CFS----FAN DRAG LB-----DRIVER ACC -0.015 31 1.13 1.70 2.50 G, #3 0.659 0.60 -0.63 -0.94 -1.25 TROOF ACC -0.012 31 0.63 1.03 1.62 G,#3 0.424 0.45 -0.46 -0.71 -1.01 HOR ACC 0.036 7 0.36 0.62 G,#3 0.174 0.35 -0.23 -0.38 CUSH PRESS PSF TRUNK PRESS 116.539 29 170.68 190.60 214.90 PSF 32,750 36.00 78.79 55.81 41.01

C

C

r

IJ. € TABLE 8-1

16-SEF-82

#### ACV BARGE TRAIN

FOUR UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

|                   | WEIGHT | 5.0<br>30000.<br>1760. | LB          |                 |                 |                 | NTERS 46<br>STATE 2<br>110.0 IN |
|-------------------|--------|------------------------|-------------|-----------------|-----------------|-----------------|---------------------------------|
|                   |        | MEAN/RMS               | OSC/BUF     | F AVG           | 1/3             | 1/10            | EXTREME                         |
| DRAG<br>KIPS      |        | 1.760<br>1.279         |             |                 | 5.46<br>-0.47   |                 | 6.24<br>-0.63                   |
| LUT 1             |        | FLOW                   | 640. CFS    | 5F              | AN DRAG         | 9660. LB-       |                                 |
| TROOF ACC         |        | -0.189<br>0.142        | 46<br>0.60  | 0.23<br>-0.54   | 0.33<br>-0.61   |                 | 0.42<br>-0.78                   |
| HOR ACC<br>G:#1   |        | -0.078<br>0.082        | 50<br>0.25  | 0.09<br>-0.25   | 0.15<br>-0.29   | 0.19<br>-0.31   | 0.20<br>-0.32                   |
| F'SF              |        | 65.540<br>6.613        | 32.00       | 47.56           | 43.93           |                 | 117.03<br>42.21                 |
| TRUNK FRE         | SS     | 110.821<br>10.678      | 72<br>48.00 | 143.60<br>85.97 | 153.23<br>80.55 | 158.21<br>78.20 | 161.65<br>74.36                 |
| LUT 2             |        | FLOW                   | 630. CFS    | F               | AN DRAG         | 9180. LB        |                                 |
| DRIVER ACC        | C      | -0.003<br>0.150        | 68<br>0.60  | 0.34            | 0.40<br>-0.47   | 0.43<br>-0.51   | 0.50<br>-0.52                   |
| TROOP ACC<br>G,#2 |        | -0.016<br>0.141        | 46<br>0.50  | 0.34<br>-0.33   | 0.43<br>-0.42   | 0.49<br>-0.49   | 0.52<br>-0.53                   |
| HOR ACC<br>G•#2   |        | -0.074<br>0.079        | 40<br>0.25  | 0.11<br>-0.26   | 0.16<br>-0.31   |                 | 0.21<br>-0.35                   |
| CUSH FRESS        | 3      | 63.462<br>5.681        | 24<br>24.00 | 83.82<br>47.70  | 95.65<br>40.17  |                 | 113.21<br>31.76                 |
| TRUNK PRES        | SS     | 107.210<br>8.180       | 22<br>40.00 | 132.41<br>85.40 | 135.83<br>82.13 |                 | 137.62<br>77.16                 |

16-SEF-82

DAVIDSON LABORATORY

TABLE 8-1

ACV BARGE TRAIN

(Continued)

RUN 94

TRUNK PRESS

FSF

| WEIGH              | 5.0<br>T 30000.<br>1760.<br>MEAN/RMS | LB<br>LB   | FF AVG        |               | LCG             | STATE 2<br>110.0 IN |
|--------------------|--------------------------------------|------------|---------------|---------------|-----------------|---------------------|
| +LUT 3             | FLOW                                 | 710. C     | FSFA          | N DRAG 1      | 0890. LB        |                     |
| DRIVER ACC<br>G+#3 | 0.040<br>0.227                       | 33<br>1.00 | 0.61<br>-0.56 | 0.71<br>-0.65 |                 | 1.32<br>-0.73       |
|                    |                                      |            |               |               |                 |                     |
|                    |                                      |            |               |               |                 |                     |
| CUSH PRESS<br>PSF  |                                      |            |               |               | 90.12<br>25.93  |                     |
| TRUNK FRESS        |                                      |            |               |               | 150.79<br>81.39 |                     |
|                    |                                      |            |               |               |                 |                     |
| LUT 4              | FLOW                                 | C          | FSFA          | N DRAG        | LB              |                     |
|                    | -0.023                               |            |               |               |                 |                     |
| G• <b>*</b> 4      | 0.172                                | 0.60       | -0.39         | -0.51         | -0.64           | -0.84               |
| TROOF ACC          |                                      |            | 0.35          | 0.46          | 0.58            | 0.75                |
| G• #4              | 0.169                                | 0.50       | -0.38         | -0.50         | -0.61           | -0.71               |
|                    | 0.043                                |            |               |               |                 | 0.36                |
| G , #4             | 0.076                                | 0.40       | -0.18         | -0.20         | -0.21           | -0.21               |
| CUSH PRESS         | 66.664                               | 114        | 83.79         | 90.31         | 95.03           | 97.39               |
| PSF                | 8.784                                | 24.00      | 49.00         | 42.74         | 34.83           | 26.45               |

FAGE 1

DAVIDSON LABORATORY

## TABLE 8-2 ACV BARGE TRAIN

17-SEP-82

FOUR UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

|                   | WEIGHT | 10.0<br>30000.<br>15880. | LB                  |                 |                 |                 | NTERS 48<br>STATE 2<br>110.0 IN |
|-------------------|--------|--------------------------|---------------------|-----------------|-----------------|-----------------|---------------------------------|
|                   |        | MEAN/RMS                 | OSC/BUF             | F AVG           | 1/3             | 1/10            | EXTREME                         |
| DRAG<br>KIFS      |        | 15.882<br>3.900          | 53<br>3.42          | 20.80<br>10.13  | 23.74<br>7.50   | 25.54<br>5.87   | 27.62<br>4.72                   |
| <del>-</del> -LVT | 1      | FLOW                     | 650. CF             | SF              | AN DRAG         | 4750. LB-       |                                 |
| TROOF ACC         |        | -0.033<br>0.264          | 44<br>1.00          | 0.42<br>-0.63   | 0.77<br>-0.76   |                 | 0.89<br>-0.98                   |
| HOR ACC<br>G,#1   |        | -0.045<br>0.119          | 55<br>0.25          | 0.17<br>-0.25   | 0.24<br>-0.35   | 0.28<br>-0.40   | 0.37<br>-0.43                   |
| CUSH PRES         | SS     | 59.973<br>18.601         | 81<br>32.00         | 96.29<br>35.16  | 121.88<br>24.20 | 139.80<br>18.29 | 149.26<br>11.51                 |
| TRUNK FRE         | ESS    | 106.962<br>17.789        | 72<br>48.00         | 152.84<br>76.20 | 186.03<br>65.10 | 242.17<br>59.61 | 365.33<br>52.54                 |
| LVT 2             | 2      | FLOW                     | 690. CFS            | 6F              | AN DRAG         | 5260. LB        |                                 |
| DRIVER AC<br>G,#2 | CC     | 0.008<br>0.209           | 57<br>0.60          | 0.43<br>-0.42   | 0.57<br>-0.56   | 0.64<br>-0.64   | 0.70<br>-0.68                   |
| TROOP ACC         | ;      | -0.001<br>0.192          | 63<br>0.50          | 0.36<br>-0.39   | 0.48<br>-0.54   | 0.57<br>-0.62   | 0.67<br>-0.65                   |
| HOR ACC<br>G:#2   |        | -0.022<br>0.111          | 39<br>0.25          | 0.20<br>-0.23   | 0.27<br>-0.31   |                 | 0.36<br>-0.35                   |
| CUSH PRES<br>PSF  | S      | 57.866<br>±2.437         | 72<br>24.00         | 81.45<br>40.26  | 103.08<br>30.72 | 128.02<br>26.25 | 150.20<br>19.43                 |
| TRUNK PRE         | SS     | 111.218<br>11.947        | 82<br><b>4</b> 0.00 | 135.94<br>84.10 | 143.01<br>76.60 | 149.10<br>71.54 | 157.43<br>66.64                 |

FAGE 2

DAVIDSON LABORATORY

# TABLE 8-2 ACV BARGE TRAIN

17-SEF-82

(Continued)

| RUN | 98 |
|-----|----|
|-----|----|

|                 | WEIGHT | 10.0<br>30000.<br>15880. | LB         |                    |        |                 | NTERS 48<br>STATE 2<br>110.0 IN |
|-----------------|--------|--------------------------|------------|--------------------|--------|-----------------|---------------------------------|
|                 |        | MEAN/RMS                 | OSC/BUF    | F AVG              | 1/3    | 1/10            | EXTREME                         |
| LUT 3           | 3      | FLOW                     | 730. CF    | SFA                | N DRAG | 5820. LB        |                                 |
| DRIVER AD       | C      | -0.009                   | 58         | 0.46               | 0.60   | 0.73            | 0.90                            |
| 0,40            |        | 0.210                    | 0.80       | -0.43              | ~0.57  | -0.69           | -0.76                           |
| TROOP ACC       | ;      | -0.005                   | 75<br>0 45 | 0.39               | 0.54   | 0.60<br>-0.57   | 0.70                            |
| 0,10            |        | 0.208                    | 0.43       | -0.32              | -0.48  | -0.57           | -0.68                           |
| HOR ACC<br>G•≢3 |        |                          |            |                    |        |                 |                                 |
| CUSH PRES       | s      | 58.394                   | 94         | 79.92              | 98.35  | 118.55          | 150.57                          |
| PSF             |        | 14.848                   | 24.00      | 37.64              | 23.01  | 13.43           | -17.43                          |
| TRUNK PRE       | SS     | 117.176                  | 108        | 144.29             | 155.10 | 161.79          | 17/ /0                          |
| PSF             |        | 13.620                   | 36.00      | 92.99              | 83.88  | 78.81           | 66,17                           |
| LUT 4           |        | FLOW                     | 600. CF    | SFA                | N DRAG | 4520. LB        |                                 |
| DRIVER AC       |        |                          |            |                    |        |                 |                                 |
| G, #4           |        |                          | 0.60       | -0.45              | U.54   | 0.66<br>-0.68   | 0.76                            |
|                 |        |                          |            |                    |        |                 | -0.77                           |
| TROOF ACC       |        | -0.017                   | 59         | 0.39               | 0.55   | 0.67            | 0.76                            |
| G•#4            |        | 0.204                    | 0.50       | -0.39              | -0.56  | -0.68           |                                 |
| HOR ACC         |        | 0.042                    | 17         | 0.33               | 0.42   |                 | 0.47                            |
| G,#4            |        | 0.113                    | 0.40       | -0.22              | -0.28  |                 | -0.33                           |
| CUSH PRES       | S      | 69.113                   | 40         | 00 70              | 00 00  |                 |                                 |
| PSF             |        | 11.374                   |            | 07 • 38<br>48 : 77 | 77.89  | 111.63<br>32.43 | 117.33                          |
| TRUNK PRE       | SS     |                          | • • • •    | , u , , u          | 30171  | J 43            | ∠6•U/                           |

TABLE 8-3

ACV BARGE TRAIN

PAGE 1

DAVIDSON LABORATORY FOUR UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

16-SEP-82

EXTREME

1/10

R:UN 95

SFEED 12.5 MPH WAVE ENCOUNTERS 43 WEIGHT 30000. LB SEA STATE 2 DRAG LB LCG 110.0 IN MEAN/RMS OSC/BUFF AVG 1/3

| LVT 1       | EL OH          | 700 C  | FC     | AN ESTAC  | 4/10 10   |        |
|-------------|----------------|--------|--------|-----------|-----------|--------|
|             | FLOW           | /00. C | r 5    | HIN TIVER | 4010. LB  |        |
| IRIVER ACC  | -0.010         | 60     | 0.68   | 0.90      | 1.03      | 1.19   |
| G•#1        | 0.337          | 1.00   | -0.72  | -0.90     | -0.98     | -1.07  |
| TROOF ACC   | -0.019         | 72     | 0.49   | 0.71      | 0.85      | 1.19   |
| G,#1        | 0.292          | 0.60   | -0.52  | -0.72     | -0.83     | -1.05  |
| HOR ACC     | -0.121         | 57     | 0.13   | 0.25      | 0.31      | 0.38   |
| G,#1        | 0.154          | 0.25   | -0.37  | -0.48     | -0.56     | -0.65  |
| CUSH FRESS  | 65.301         | 87     | 89.44  | 98.27     | 106.37    | 112.43 |
| <b>P</b> SF | 12.885         | 32.00  | 41.53  | 31.65     | 25.50     | 21.87  |
| TRUNK PRESS | 120.160        | 132    | 163.09 | 192.71    | 230.98    | 442.92 |
| FSF         | 23.668         | 48.00  | 85.47  | 70.83     | 61.66     | 50.92  |
|             |                |        |        |           |           |        |
| LVT 2       | FLOW           | 580. C | FSF    | AN DRAG   | 3520. LB- |        |
| DRIVER ACC  | 0.001<br>0.216 | 65     | 0.41   | 0.56      | 0.68      | 0.75   |
| G•#2        | 0.216          | 0.40   | -0.45  | -0.61     | -0.72     | -0.81  |
| TROOF ACC   | -0.009         | 95     | 0.38   | 0.59      | 0.74      | 0.88   |
| G,#2        | 0.243          | 0.50   | -0.40  |           |           |        |
| HOR ACC     | -0.064         | 51     | 0.19   | 0.30      | 0.36      | 0.41   |
| G, #2       | 0.150          | 0.25   | -0.31  | -0.41     | -0.45     | -0.50  |
| CUSH FRESS  | 74.514         | 45     | 89.14  | 93.86     |           | 100.88 |
| F'SF        | 5.993          | 24.00  | 59.50  | 55.45     |           | 50.82  |
| TRUNK PRESS |                |        |        | 155.68    | 148.30    | 192.50 |
| F'SF        | 15.525         | 40.00  | 83.85  | 71.43     | 64.26     | 51.71  |

TABLE 8-3 ACV BARGE TRAIN DAVIDSON LABORATORY (Continued)

16-SEF-82

PAGE 2

RUN 95

F'SF

|                | , ,    |                          |              |                 |                 |                 |                                 |
|----------------|--------|--------------------------|--------------|-----------------|-----------------|-----------------|---------------------------------|
|                | WEIGHT | 12.5<br>30000.<br>20470. | LB           |                 | h               |                 | NTERS 43<br>STATE 2<br>110.0 IN |
|                |        | MEAN/RMS                 | OSC/BUF      | F AVG           | 1/3             | 1/10            | EXTREME                         |
| LUT            | 3      | FLOW                     | 710. CF      | 5F              | AN DRAG         | 4350. LB        |                                 |
| DRIVER<br>G•#3 | ACC    | 0.012<br>0.276           | 116<br>0.60  | 0.48<br>-0.44   | 86.0<br>86.0-   | 0.83<br>-0.84   | 1.09<br>-0.96                   |
|                |        |                          |              |                 |                 |                 |                                 |
|                |        |                          |              |                 |                 |                 |                                 |
| CUSH FR        | ESS    | 57.740                   | 80           | 79.94           | 89.97           | 95.84           | 117.29                          |
| PSF            |        | 12.790                   | 24.00        | 42.62           | 29.20           | 18.03           | -21.00                          |
| TRUNK P<br>FSF | RESS   | 113.056<br>16.588        | 163<br>36.00 | 141.00<br>89.57 | 154.21<br>77.44 | 162.29<br>70.43 | 175.65<br>59.06                 |
|                |        |                          |              |                 |                 | 3310. LB        | P the rate and rate the pay and |
| DRIVER         | ACC :  | 0.001                    | 64           | 0.47            | 0.64            | 0.76            | 0.92                            |
| G • #4         |        | 0.249                    | 0.60         | -0.46           | -0.61           | -0.72           | -0.78                           |
| TROOP A        | רר     |                          |              |                 |                 |                 |                                 |
| G • #4         |        | 0.235                    | 0.50         | 0.40            | 0.60            | 0.81            | 0.98                            |
|                |        | V+255                    | 0.30         | -0.39           | ~0.53           | -0.63           | -0.76                           |
| HOR ACC        |        | 0.099                    | 22           | 0.46            | 0.61            |                 | 0.94                            |
| G , #4         |        | 0.149                    | 0.40         | -0.17           | -0.26           |                 |                                 |
| CUSH PR        | ESS    | 69.343                   | 90           | 00 07           | 05 4 4          | 100 -           |                                 |
| F'SF           |        | 12.434                   | 24.00        | 48.45           | 75.16<br>36.10  | 100.84<br>25.54 | 103.53                          |
|                |        |                          | - • • •      | ,0,,,0          | 30 • 17         | £U+U4           | 12.60                           |
| TRUNK PI       | RESS   |                          |              |                 |                 |                 |                                 |

FAGE 1

DAVIDSON LABORATORY

## TABLE 8-4

#### ACV BARGE TRAIN

17-SEF-82

FOUR UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

|                   | WEIGHT       | 12.5<br>30000.<br>20470. | LB           |                 |                 |                 | NTERS 42<br>STATE 2<br>110.0 IN |
|-------------------|--------------|--------------------------|--------------|-----------------|-----------------|-----------------|---------------------------------|
|                   | i            | MEAN/RMS                 | OSC/BUFF     | F AVG           | 1/3             | 1/10            | EXTREME                         |
| DRAG<br>KIFS      |              | 22.353<br>6.322          |              | 30.98<br>14.27  |                 |                 | 39.03<br>3.89                   |
| LVT 1             | l            | FLOW                     | 730. CFS     | 6FAN            | DRAG            | 4560. LB        | ~                               |
| DRIVER AC<br>G+#1 | CC           | -0.011<br>0.318          | 48<br>1.00   | 0.67<br>-0.70   | 0.87<br>-0.84   |                 | 1.01<br>-0.99                   |
| TROOF ACC         |              | 0.032<br>0.351           | 95<br>0.90   | 0.69<br>-0.61   | 0.89<br>-0.89   | 1.02<br>-1.07   | 1.32<br>-1.28                   |
| HOR ACC<br>G∙#1   |              | -0.117<br>0.155          | 52<br>0.25   | 0.14<br>-0.39   | 0.24            | 0.32<br>-0.57   | 0.43<br>-0.59                   |
| CUSH FRES<br>PSF  | SS           |                          |              |                 |                 |                 |                                 |
| TRUNK FRE         | : <b>s</b> s | 113.776<br>18.193        | 64<br>48.00  | 159.22<br>83.22 | 183.84<br>71.53 | 221.23<br>62.70 | 341.89<br>54.96                 |
| LUT 2             |              | FLOW                     | 620. CFS     | FAN             | DRAG            | 3780. LR        |                                 |
| DRIVER AC         |              |                          |              | 0.43<br>-0.43   |                 |                 | 0.91<br>-0.64                   |
| TROOF ACC         |              | -0.002<br>0.227          | 56<br>0.50   | 0.42<br>-0.40   | 0.56<br>-0.55   | 0.66<br>-0.63   | 0.72<br>-0.66                   |
| HOR ACC<br>G,#2   |              | -0.026<br>0.162          | 53<br>0 - 25 | 0.23<br>-0.28   | 0.33            | 0.41<br>-0.48   |                                 |
| CUSH PRES         | :5           | 68.277<br>8.358          | 44<br>24.00  | 86.65<br>50.95  |                 |                 | 99.01<br>40.35                  |
| TRUNK PRE         | SS           | 111.299<br>13.189        | 41<br>40.00  | 138.80<br>82.34 | 146.13<br>75.50 |                 | 158.27<br>70.80                 |

TABLE 8-4
ACV BARGE TRAIN
(Continued)

17-SEP-82

| KUN | 75 |
|-----|----|
|     |    |
|     |    |

C

| SF<br>We<br>Dr    | PEED 12.5<br>HIGHT 30000.<br>RAG 20470. | MFH<br>LB<br>LB |        |         |           | NTERS 42<br>STATE 2<br>110.0 IN |
|-------------------|-----------------------------------------|-----------------|--------|---------|-----------|---------------------------------|
|                   | MEAN/RMS                                | OSC/BUFF        | ` AVG  | 1/3     | 1/10      | EXTREME                         |
| LVT 3             | FLOW                                    | 730. CFS        | F      | AN DRAG | 4620. LB- |                                 |
| DRIVER ACC        | -0.016                                  | 42              | 0.46   | 0.63    |           | 0.85                            |
| G,#3              | 0.246                                   | 0.60            | -0.51  | -0.65   |           | -0.81                           |
| TROOF ACC         | -0.007                                  | 65              | 0.37   | 0.53    | 0.64      | C.74                            |
| G,#3              | 0.231                                   | 0.45            | -0.39  | -0.59   | -0.78     | -0.99                           |
| HOR ACC<br>G,‡3   |                                         |                 |        |         |           |                                 |
| CUSH PRESS<br>PSF |                                         |                 |        |         |           |                                 |
| TRUNK PRESS       | 115.334                                 | 56              | 141.10 | 148.44  | 153.01    | 157.14                          |
| PSF               | 13.349                                  | 36.00           | 89.84  | 81.56   | 75.31     | 69.17                           |
| LUT 4             | FLOW                                    | CFS             | FA     | N DRAG  | LB        |                                 |
| DRIVER ACC        | -0.007                                  | 45              | 0.47   | 0.65    |           | 0.92                            |
| G,#4              | 0.241                                   | 0.60            | -0.45  | -0.60   |           | -0.81                           |
| TROOF ACC         | -0.014                                  | 53              | 0.44   | 0.45    | 0.84      | 1.02                            |
| G,#4              | 0.235                                   | 0.50            | -0.39  | -0.55   | -0.65     | -0.70                           |
| HOR ACC           | 0.037                                   | 26              | 0.38   | 0.54    |           | 0.87                            |
| G,#4              | 0.157                                   | 0.40            | -0.23  | -0.33   |           | -0.45                           |
| CUSH FRESS        | 68.461                                  | 55              | 87.59  | 94.08   | 98.35     | 101.23                          |
| PSF               | 11.311                                  | 24.00           | 47.71  | 38.08   | 31.44     | 25.69                           |
| TRUNK PRESS       |                                         |                 |        |         |           |                                 |

#### TABLE 8-5

#### ACV BARGE TRAIN

17-SEF-82

FOUR UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

|                 | WEIGH | 15.0<br>T 30000.<br>17820. | LB                |                 |                 |                 | NTERS 42<br>STATE 2<br>110.0 IN |
|-----------------|-------|----------------------------|-------------------|-----------------|-----------------|-----------------|---------------------------------|
|                 |       | MEAN/RMS                   | OSC/RUFF          | AVG             | 1/3             | 1/10            | EXTREME                         |
| DRAG<br>KIPS    |       | 17.816<br>7.446            | 54<br>3.42        | 24.54<br>7.94   | 31.90<br>2.78   | 34.57<br>-1.35  | 37.67<br>-6.56                  |
| LVT 1           |       | FLOW                       | CFS               | F               | AN DRAG         | LB-             |                                 |
| DRIVER AC       |       | -0.005<br>3.421            |                   |                 |                 |                 | 2.03<br>-1.45                   |
| TROOF ACC       | :     |                            |                   |                 |                 |                 |                                 |
| HOR ACC<br>G,#1 |       | -0.113<br>0.231            | 47<br>0.25        |                 | 0.40            |                 | 0.79<br>-0.77                   |
| CUSH PRES       | SS    | 66.317<br>16.646           | 57<br>32.00       | 96.51<br>39.02  | 110.65<br>26.56 | 128.80<br>17.84 | 145.81<br>9.98                  |
| TRUNK FRE       | SS    |                            |                   |                 |                 |                 |                                 |
| LUT 2           | ?     | FLOW                       | 670. CFS          | F               | AN DRAG         | 3810. LB-       |                                 |
| DRIVER AC       | C     | -0.001<br>0.336            | 42<br>0.60        |                 |                 |                 | 1.30<br>-0.85                   |
| TROOF ACC       |       | -0.007<br>0.318            | <b>45</b><br>0.50 |                 |                 |                 | 1.02<br>-0.93                   |
| HOR ACC<br>G,#2 |       | -0.069<br>0.242            | 47<br>0.25        |                 |                 |                 | 0.76<br>-1.03                   |
| CUSH FRES       | S     |                            |                   |                 |                 | 120.75<br>23.04 |                                 |
| TRUNK FRE       | ESS   | 124.598<br>17.166          |                   | 159.40<br>94.28 | 171.06<br>83.20 | 180.76<br>77.80 |                                 |

TABLE 8-5

17-SEF-82

## ACV BARGE TRAIN

(Continued)

| RU | N | 1 | 0 | 0 |
|----|---|---|---|---|
|    |   |   |   |   |

FSF

| SPEEI<br>Weich<br>Drag | 15.0<br>T 30000.<br>17820. | LB<br>FB<br>WE:H |               |        |           | NTERS 42<br>STATE 2<br>110.0 IN |
|------------------------|----------------------------|------------------|---------------|--------|-----------|---------------------------------|
|                        | MEAN/RMS                   | OSC/BI           | UFF AVG       | 1/3    | 1/10      | EXTREME                         |
|                        |                            |                  |               |        |           |                                 |
| LVT 3                  | FLOW                       | 640.             | CFSFAN        | DRAG   | 3480. LB- |                                 |
| DRIVER ACC             | -0.010                     | 37               | 0.73          | 1.03   |           | 1.58                            |
| 6, \$3                 | 0.382                      | 0.40             | 0.73<br>-0.56 | -0.85  |           | -1.15                           |
|                        |                            |                  |               |        |           | •                               |
| TROOP ACC              | -0.014                     | 53               | 0.47          | 0.73   | 0.84      | 0.95                            |
| G, \$3                 | 0.334                      | 0.45             | -0.50         | -0.76  | -0.98     |                                 |
| HOR ACC<br>G, (3       |                            |                  |               |        | 2772      | 1135                            |
| CUSH PRESS             | 77.400                     | 40               | 00 50         | 115 70 | 400       |                                 |
| PSF                    | 18.877                     | 24.00            | 45.93         | 112.37 | 128.61    | 137.89                          |
|                        |                            |                  |               |        |           |                                 |
| TRUNK FRESS            | 119.279                    | 51               | 155.27        | 168.51 | 177.82    | 189.72                          |
| F'SF                   | 19.421                     | 36.00            | 91.76         | 77.09  | 69.17     | 67.67                           |
|                        |                            |                  | -             |        |           | 0,.0,                           |
| 6 11 <del>79</del> - A |                            |                  |               |        |           |                                 |
| LUT 4                  | FLOW                       | C                | FSFAN         | DRAG   | LB        |                                 |
| DRIVER ACC             | 0 004                      | 76               | 0.63          |        |           |                                 |
| G, #4                  | 0.008                      | 0.40             | -0.51         | 0.84   |           | 1.15                            |
| <b>4.4</b>             | V•321                      | 0.60             | -0.51         | -0./1  |           | -0.92                           |
| TROOP ACC              | -0.015                     | 37               | 0.49          | 0 71   |           | 4 04                            |
| G+#4                   |                            | 0.50             | -0.50         | ~0.4P  |           | 1.06<br>-0.99                   |
|                        |                            |                  |               |        |           | -0.99                           |
| HOR ACC                | 0.125                      | 28               | 0.53          | 0.70   |           | 0.89                            |
| G , #4                 | 0.202                      | 0.40             | -0.18         | -0.30  |           | -0.50                           |
| CHOM PRESS             | 04.04.5                    |                  |               |        |           |                                 |
| CUSH FRESS<br>PSF      | 84.014                     | 50               | 104.75        | 112.46 | 118.94    | 124.62                          |
| rar                    | 14.636                     | 24.00            | 61.04         | 48.65  | 40.57     | 30.67                           |
| TRUNK PRESS            |                            |                  |               |        |           |                                 |

#### TABLE 8-6

28-0CT-82

#### ACV BARGE TRAIN

FOUR UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

RUN 101 , 108

| Į.                 | WEIGH1     | 20.0<br>30000.<br>14240. | LB                  |                 |                       |                 | NTERS 42<br>STATE 2<br>110.0 IN |
|--------------------|------------|--------------------------|---------------------|-----------------|-----------------------|-----------------|---------------------------------|
|                    |            | MEAN/RMS                 | OSC/BUFF            | F AVG           | 1/3                   | 1/10            | EXTREME                         |
| DRAG<br>KIPS       |            | 14.241<br>5.515          | 45<br>3.42          | 21.21           | 25.31<br>3.57         |                 | 29.39<br>0.05                   |
| LVT 1-             | ~~         | FLOW                     | 669. CFS            | 6F              | AN DRAG               | 2822. LB-       |                                 |
| DRIVER ACC<br>G,#1 | C          | -0.016<br>0.636          | 65<br>1.00          | 1.32<br>-0.77   | 2.19<br>-1.12         | 3.09<br>-1.25   | 3.54<br>-1.30                   |
| TROOF ACC<br>G,#1  |            | 0.041<br>0.417           | 69<br>0.90          | 0.89<br>-0.58   | 1.17<br>-0.84         | 1.38<br>-1.00   | 1.73<br>-1.24                   |
| HOR ACC<br>G:#1    |            | -0.099<br>0.241          | <b>56</b><br>0.25   | 0.26<br>-0.43   | 0 <b>.45</b><br>-0.56 | 0.56<br>-0.66   | 0.68<br>-0.81                   |
| CUSH PRESS<br>PSF  | 5          | 74.132<br>28.641         | 91<br>32.00         | 122.43<br>42.35 | 151.76<br>23.90       | 182.10<br>11.30 | 199.81<br>2.74                  |
| TRUNK PRES         | <b>8</b> 8 | 123.719<br>35.961        |                     |                 |                       |                 | 312.79<br>47.69                 |
| LVT 2-             |            | FLOW                     | 740. CFS            | 6F              | AN DRAG               | 2790. LB-       |                                 |
| DRIVER ACC<br>G:#2 | C          | 0.003<br>0.507           | 52<br>0.60          | 0.89<br>-0.64   | 1.42<br>-0.93         | 1.89<br>-1.06   | 2.71<br>-1.30                   |
| TROOF ACC<br>6,#2  |            | 0.007<br>0.347           | 53<br>0 <b>.5</b> 0 | 0.55<br>-0.53   | 0.82<br>-0.75         | 0.96<br>-0.85   | 1.06<br>-0.95                   |
| HOR ACC<br>G•#2    |            | -0.052<br>0.234          | 47<br>0.25          | 0.31<br>-0.41   | 0.47<br>-0.59         |                 | 0.92<br>-0.85                   |
| CUSH PRESS<br>PSF  | 3          | 49.820<br>33.716         | 71<br>24.00         | 88.02<br>15.90  | 116.95<br>-25.44      |                 | 218.82<br>-59.96                |
| TRUNK PRES         | 35         | 110.656<br>21.469        | 53<br>40.00         | 152.89<br>77.77 | 169.88<br>63.63       |                 | 199.08<br>51.65                 |

PAGE 2 28-00T-82

DAVIDSON LABORATORY

TABLE 8-6
ACV BARGE TRAIN
(Continued)

RUN 101 , 108

|          |           | •      |          |       |         |          |      |        |         |    |
|----------|-----------|--------|----------|-------|---------|----------|------|--------|---------|----|
| •        |           | WEIGHT |          | LB    |         | ţ        | JAVE | SEA    | NTERS 4 | 2  |
| •        |           | DRAG   | 14240.   | LB    |         |          |      | LCG    | 110.0   | .N |
| •        |           |        | MEAN/RMS | OSC/B | UFF AVG | 1/3      |      | 1/10   | EXTREM  | 1E |
| (        | •         |        |          |       |         |          |      |        |         |    |
| • `      | LVT 3     |        | FLOW     | 775   | CFS     | FAN DRAG | 303  | 7 LB-  |         | _  |
| €.       | DRIVER AC | С      | -0.028   | 39    | 0.87    | 1.35     |      |        | 2.14    | 1  |
|          | G,#3      |        | 0.451    | 0.60  | -0.64   | -0.88    |      |        | -1.01   |    |
| C        | TROOP ACC |        | -0.003   | 45    | 0.47    | 0.73     |      |        | 1.29    | )  |
| 0        | G+#3      |        |          | 0.45  |         | -0.54    |      |        | -0.70   | )  |
| C        | HOR ACC   |        | 0.022    | 15    | 0.28    | 0.38     |      |        | 0.49    | ,  |
|          | G,#3      |        |          |       | -0.30   |          |      |        | -0.42   |    |
| 0        | CUSH PRES | S      | 48.516   | 19    | 90.73   | 131.14   |      |        | 172.35  |    |
| •        | PSF       |        |          |       | 11.56   |          |      |        | -59.55  |    |
| C        | TRUNK FRE | SS     | 114,997  | 48    | 158.52  | 183.22   |      |        | 214.29  | ,  |
|          | PSF       |        | 23.803   | 36.00 | 81.58   | 65.98    |      |        | 55.64   | }  |
| _ (·     | LUT 4     |        | ELOU     | 712   | CEC     | TAN DEAC | 2611 | 1 15 ~ |         | _  |
|          |           |        |          | 1 1 3 | Cr 5    | HIA DKHG | 2044 | CP     |         | _  |
| C        | DRIVER AC | C      |          |       | 0.76    |          |      |        | 1.20    |    |
|          | G,#4      |        | 0.483    | 0.60  | -0.72   | -0.99    |      |        | -1.28   | 3  |
| C        | TROOP ACC |        | -0.012   | 32    | 0.59    | 0,92     |      |        | 1.38    | 5  |
| <b>(</b> | G,#4      |        | 0.291    | 0.50  | -0.46   | -0.66    |      |        | -0.79   | 7  |
| C        | HOR ACC   |        | 0.059    | 28    | 0.41    | 0.57     |      |        | 0.87    | 7  |
|          | G • #4    |        | 0.184    | 0.40  |         | -0.35    |      |        | -0.46   |    |
| •        | CUSH PRES | S      | 52.530   | 38    |         | 108.38   |      |        | 148.49  |    |
| •        | PSF       |        | 27.019   | 24.00 | 9.28    | -24.55   |      |        | -62.75  | 5  |
| £.       | TRUNK PRE | SS     | 108.825  |       |         | 156.20   |      |        | 179.8   | 7  |
|          | FSF       |        | 34.953   | 36.00 | 38.90   | -31.92   |      |        | -88.7   | 6  |

TABLE 8-7

20-SEF-82

EXTREME

#### ACV BARGE TRAIN

FOUR UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

**F:UN** 105

SPEED 25.0 MPH WAVE ENCOUNTERS 21 WEIGHT 30000. LE SEA STATE 2 IIRAG LB LCG 110.0 IN MEAN/RMS OSC/BUFF AVG

1/3

1/10

----LVT 1-----FLOW 650. CFS----FAN DRAG 2120. LR-----DRIVER ACC -0.026 25 1.70 2.48 3.34 G,#1 0.781 1.00 -0.81 -1.10 -1.26 TROOP ACC 0.007 24 1.06 1.46 1.56 G, #1 0.556 0.90 -0.60 -0.93 -1.00 HOR ACC -0.086 21 0.36 0.53 0.77 G, #1 0.25 0.286 -0.47 -0.67 -0.96 CUSH FRESS 71.018 36 131.69 161.52 184.65 F'SF 35.114 32.00 34.22 11.91 -37.18 TRUNK FRESS 118.541 37 205.84 253.73 297.43 FSF 44.161 48.00 74.58 54.96 40.41 -----------------------FL.OW 660. CFS----FAN IRAG 1910. LB----DRIVER ACC 0.002 26 1.31 2.01 2.79 G,#2 0.647 0.60 -0.66 -0.89 -1.03TROOF ACC 0.002 23 0.76 1.14 1.75 G - #2 0.434 0.50 -0.52 -0.75 -1.03 HOR ACC -0.066 23 0.25 0.49 0.76 G, #2 0.240 0.25 -0.29 -0.53 -0.75 CUSH FRESS 57.798 38 112.27 152.22 218.39 F'SF 33.088 24.00 27.63 3.52 -72.90 TRUNK FRESS 106.022 26 160.35 178.35 202.42 F'SF 28.185 40.00 70.68 57,20 44.98

TABLE 8-7

20-SEF-82

## ACV BARGE TRAIN (Continued)

| SPEEI<br>WEIGH<br>DRAG | 25.0<br>IT 30000. | FB<br>FB<br>Weh |               |        | WAVE | SEA  | NTERS<br>STATE<br>110.0 | 2              |
|------------------------|-------------------|-----------------|---------------|--------|------|------|-------------------------|----------------|
|                        | MEAN/RMS          | OSC/BU          | FF AVG        | 1/3    | -    | 1/10 | EXTRI                   | EME            |
| LUT 3                  | FLOW              | 650. CF         | FSFA          | N DRAG | 2070 | • FB |                         |                |
| DRIVER ACC             | -0.015            | 26              | 0.91          | 1.34   |      |      | 1.                      | 77             |
| G,#3                   | 0.541             | 0.60            | -0.58         | -0.91  |      |      | -1.3                    |                |
| TROOP ACC              |                   |                 |               |        |      |      |                         | - ,            |
| TROOF ACC<br>G,#3      | -0.011            | 25              | 0.54          | 0.83   |      |      | 1.                      | 18             |
| 0743                   | 0.381             | 0.45            | -0.46         | -0.76  |      |      | -1.                     | 10             |
| HOR ACC                | 0.006             | 17              | 0.41          | A (A   |      |      |                         |                |
| G • #3                 | 0.274             | 0.35            | 0.41<br>-0.43 | -0.62  |      |      | 0.7                     |                |
|                        |                   |                 |               |        |      |      | -0.8                    | 36             |
| CUSH PRESS             | 71.843            | 38              | 112.23        | 139.07 |      |      | 190.8                   | ) <del>-</del> |
| PSF                    | 31.139            | 24.00           | 44.74         | 19.80  |      |      | -89.5                   |                |
| TEUNE DEECC            |                   |                 |               |        |      |      | G / • •                 |                |
| TRUNK FRESS<br>FSF     | 117,961           | 27              | 165.91        | 187.13 |      |      | 205.2                   | 26             |
| 7 37                   | 27.645            | 36.00           | 84.66         | 67.67  |      |      | 50.3                    | 38             |
|                        |                   |                 |               |        |      |      |                         |                |
| LUT 4                  | FLOW              | CF              | SFA           | N DRAG | LB   |      |                         |                |
|                        |                   |                 |               |        |      |      |                         |                |
| DRIVER ACC<br>G,#4     | -0.005            | 20              | 1.14          | 1.81   |      |      | 3.1                     | 1              |
| 0,44                   | 0.600             | 0.60            | -0.75         | -0.99  |      |      | -1.1                    | 3              |
| TROOP ACC              | -0.014            | 10              | A 74          |        |      |      |                         |                |
| G • #4                 | 0.378             | 0.50            | -0.51         | 1.16   |      |      | 1.5                     |                |
|                        |                   | 0.30            | -0.51         | -0.66  |      |      | -0.7                    | 2              |
| HOR ACC                |                   | 13              | 0.52          | 0.68   |      |      | Λ. σ                    |                |
| G• <b>#</b> 4          | 0.226             | 0.40            | -0.31         | -0.44  |      |      | 0.8                     |                |
| OHOU DEMAN             |                   |                 |               |        |      |      | -0.2                    |                |
| CUSH PRESS<br>FSF      | 69.207            | 22              | 104.95        | 119.02 |      |      | 132.7                   | 4              |
| r <b>3</b> r           | 24.232            | 24.00           | 36.87         | 16.00  |      |      | -20.2                   |                |
| TRUNK PRESS<br>PSF     |                   |                 |               |        |      |      |                         |                |

#### TABLE 8-8

28-0CT-82

#### ACV BARGE TRAIN

FOUR UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

RUN 109 , 102

|                  | WEIGH | 30.0<br>30000.<br>14930. | LB          |                 | i               |                 | NTERS 30<br>STATE 2<br>110.0 IN |
|------------------|-------|--------------------------|-------------|-----------------|-----------------|-----------------|---------------------------------|
|                  |       | MEAN/RMS                 | OSC/BUFF    | AVG             | 1/3             | 1/10            | EXTREME                         |
| DRAG<br>KIPS     |       |                          |             |                 |                 | 24.39<br>7.01   |                                 |
| LVT              | 1     | FLOW                     | 710. CFS    | 6F              | AN DRAG         | 2000. LB-       |                                 |
| DRIVER A         | CC    | 0.001<br>0.792           | 53<br>1.00  | 1.65<br>-0.77   | 2.56<br>-1.15   | 3.04<br>-1.29   | 3.26<br>-1.39                   |
| TROOF AC<br>G,#1 | С     | -0.003<br>0.552          | 24<br>0.90  |                 |                 |                 | 1.94<br>-1.03                   |
| HOR ACC<br>G,#1  |       | -0.064<br>0.237          |             |                 |                 |                 | 0.68<br>-0.79                   |
| CUSH FRE<br>PSF  |       |                          |             |                 |                 | 168.03<br>3.35  |                                 |
| TRUNK PR<br>PSF  | ESS   |                          |             |                 |                 | 314.14<br>38.98 |                                 |
| LVT              | 2     | FLOW                     | 600. CF     | 6F              | AN DRAG         | 1530. LB-       |                                 |
| DRIVER A<br>G:#2 |       | 0.013<br>0.637           | 58<br>0.60  | 1.08<br>-0.62   | 1.71<br>-0.97   | 2.26<br>-1.13   | 2.91<br>-1.27                   |
| TROOF AC<br>G,#2 |       | -0.001<br>0.404          | 46<br>0.50  | 0.74<br>-0.48   | 1.06<br>-0.73   |                 | 1.34<br>-0.89                   |
| HOR ACC<br>G:#2  |       | -0.033<br>0.165          | 46<br>0.25  | 0.23<br>-0.27   | 0.35<br>-0.35   |                 | 0.57<br>-0.48                   |
| CUSH FRE         | SS    | 72.103<br>27.757         | 63<br>24.00 | 118.02<br>42.92 | 153.99<br>23.48 |                 | 211.93<br>6.55                  |
| TRUNK PR         | ESS   | 112.231<br>27.993        | 52<br>40.00 | 159.39<br>76.38 | 178.77<br>59.88 |                 | 205.75<br>46.65                 |

## TABLE 8-8

28-0CT-82

## ACV BARGE TRAIN (Continued)

RUN 109,102

| <u></u>  | SFEE<br>Weig<br>Drag | HT 30000.         | LB           |                 |                 | WAVE ENCOUNTERS 30<br>SEA STATE 2<br>LCG 110.0 IN |
|----------|----------------------|-------------------|--------------|-----------------|-----------------|---------------------------------------------------|
| Ĺ        |                      | MEAN/RMS          | OSC/BUFF     | AVG             | 1/3             | 1/10 EXTREME                                      |
| Ĺ        | LVT 3                | FLOW              | 640, CFS     | 6F              | AN DRAG         | 1680. LB                                          |
| (        | DRIVER ACC<br>G•#3   | 0.004<br>0.557    | 48<br>0.60   | 0.96<br>-0.62   | 1.47<br>-0.92   | 1.91<br>-1.14                                     |
| C        | TROOP ACC<br>G, \$3  | -0.006<br>0.334   | 39<br>0 • 45 | 0.57<br>-0.42   | 0.78<br>-0.60   | 1.03<br>-0.79                                     |
| C        | HOR ACC<br>G+#3      | 0.017<br>0.212    | 15<br>0.35   | 0.36<br>-0.31   | 0.50<br>-0.42   | 0.83<br>-0.54                                     |
| O        | CUSH FRESS<br>FSF    | 71.031<br>15.155  |              |                 |                 | 149.21                                            |
| C        | TRUNK FRESS<br>PSF   | 115.997<br>24.299 | 46<br>36+00  | 159.02<br>85.93 | 179.04<br>72.32 | 202.24                                            |
| (        | LUT 4                |                   |              |                 |                 | 1478 LB                                           |
| (        |                      | -0.003            |              | 0.90            |                 | 2.07                                              |
| •        | TROUP ACC            | -0.041<br>0.315   | 42<br>0.50   | 0.53            |                 | 1.58                                              |
| Ĺ        | HOR ACC<br>G,#4      | 0.048<br>0.135    | 14           | 0.32            |                 | 0.43                                              |
| C        | CUSH PRESS<br>PSF    | 68.941<br>21.322  | 20           | 99.13           | 113.02<br>24.94 |                                                   |
| <b>€</b> | TRUNK PRESS          | 108.658           | 40           | 148.06          | 195.19          |                                                   |
| ,        |                      | 751200            | 39.00        | 774/7           | -2/.44          | -80.90                                            |

#### TABLE 8-9

#### 28-0CT-82

#### ACV BARGE TRAIN

FOUR UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

| RUN | 106 | 111 |  |
|-----|-----|-----|--|
|     |     |     |  |

|               | _                       |                          |                 |                 |                 |                 |                                          |
|---------------|-------------------------|--------------------------|-----------------|-----------------|-----------------|-----------------|------------------------------------------|
|               | SPEED<br>WEIGHT<br>DRAG | 34.8<br>30000.<br>17770. | MFH<br>LB<br>LB |                 | 1               |                 | NTERS 29<br>STATE 2<br>110.0 IN          |
|               |                         | MEAN/RMS                 | OSC/BUF         | F AVG           | 1/3             | 1/10            | EXTREME                                  |
| DRAG<br>KIPS  |                         | 17.768<br>6.026          |                 | 25.11<br>11.15  |                 |                 | 35.82<br>5.15                            |
| L             | VT 1                    | FLOW                     | 570. CF         |                 | AN DRAG         | 1240. LB-       |                                          |
| DRIVE<br>6,#1 |                         | -0.003<br>0.899          |                 | 1.86<br>-0.84   |                 |                 | 4.34<br>-1.37                            |
| TROOF<br>G,#1 | ACC                     | 0.010<br>0.589           | 43<br>0.90      | 1.05<br>-0.66   | 1.51<br>-0.98   | ·               | 2.04<br>-1.19                            |
| HOR A<br>G,#1 | cc                      | -0.037<br>0.339          | 39<br>0.25      | 0.47<br>-0.50   | 0.67<br>-0.73   |                 | 0.86<br>-0.94                            |
| CUSH<br>F'SF  | P'RESS                  | 76.030<br>39.910         | 61<br>32.00     | 137.54<br>42.50 | 172.97<br>10.26 | 190.05<br>-3.59 | 206.11<br>-39.76                         |
| TRUNK<br>FSF  | PRESS                   |                          |                 |                 |                 | 314.98<br>28.06 |                                          |
| <u>L</u>      | VT 2                    | FLOW                     | 640. CF         |                 | AN DRAG         | 1350. LR-       | e ur filter ulder vom dem dem beste dere |
| DRIVE<br>G:#1 | R ACC                   |                          |                 | 1.29<br>-0.69   |                 |                 | 2.49<br>-1.35                            |
| TROOF<br>G+#2 | ACC                     | -0.003<br>0.518          | 38<br>0.50      | 0.83<br>-0.56   | 1.25<br>-0.90   |                 | 1.88<br>-1.07                            |
| HOR A<br>G,#2 | CC                      | -0.058<br>0.229          | 38<br>0.25      | 0.29<br>-0.39   | 0.44<br>-0.53   |                 | 0.64<br>-0.62                            |
| CUSH<br>FSF   | PRESS                   | 62.992<br>33.416         | 48<br>24.00     | 118.78<br>30.62 | 149.82<br>9.41  |                 | 181.29<br>-9.59                          |
| TRUNK<br>PSF  | PRESS                   | 108.214<br>35.541        | 40<br>40.00     | 164.58<br>67.49 | 188.97<br>45.04 |                 | 213.24<br>21.66                          |

TABLE 8-9
ACV BARGE TRAIN

28-0CT-82

(Continued)

RUN 106, 111

| WEIGH              | 34.8<br>T 30000.<br>17770. | LB          |                 | i               |           | NTERS 29<br>STATE 2<br>110.0 IN |
|--------------------|----------------------------|-------------|-----------------|-----------------|-----------|---------------------------------|
|                    | MEAN/RMS                   | OSC/BUF     | F AVG           | 1/3             | 1/10      | EXTREME                         |
| LVT 3              | FLOW                       | 618, CF     |                 | AN DRAG         | 1428. LB- |                                 |
| DRIVER ACC<br>G,#3 | 0.003<br>0.688             | 40<br>0.60  | 1.18<br>-0.69   | 1.89<br>-1.04   |           | 3.06<br>-1.13                   |
| TROOP ACC<br>G+#3  | -0.007<br>0.443            | 43<br>0.45  | 0.67<br>-0.49   | 1.03<br>-0.76   |           | 1.55<br>-0.99                   |
| HOR ACC<br>G•#3    | 0.020<br>0.335             |             |                 |                 |           | 0.93<br>-0.92                   |
| CUSH PRESS<br>PSF  | 75.600<br>37.514           | 23<br>24.00 | 131.57<br>33.74 | 162.92<br>9.62  |           | 206.75<br>-1.48                 |
| TRUNK PRESS<br>PSF | 117.932<br>32.802          | 39<br>36.00 | 170.62<br>79.08 | 196.70<br>59.40 |           | 218.05<br>45.86                 |
| LVT 4              | FLOW                       | 623. CF     | SF              | AN DRAG         | 1329. LB- |                                 |
| DRIVER ACC<br>G•#4 | 0.006<br>0.819             | 21<br>0.60  | 1.43<br>-0.66   | 2.15<br>-1.25   |           | 2.73<br>-1.38                   |
| TROOFCC<br>G•#4    | -0.039<br>0.592            | 77<br>3     | 0.97<br>-0.65   | 1.49<br>-1.01   |           | 1.89<br>-1.13                   |
| HOR ACC<br>G,#4    | 0.008                      | 21<br>0.40  | 0.54<br>-0.46   | 0.77<br>-0.69   |           | 0.98<br>-1.00                   |
| CUSH PRESS<br>PSF  | 66.032<br>3(.863           | 39<br>24.00 | 107.54<br>33.35 | 141.27<br>14.84 |           | 205.25                          |
| TRUNK PRESS<br>PSF | 108.975<br>40.898          |             | 150.44<br>51.79 |                 |           | 267.06<br>-61.27                |

DAVIDSON LABORATORY

#### TABLE 8-10

#### 28-0CT-82

#### ACV BARGE TRAIN

FOUR UNITS, LCAC TOW, 22.7 FT SPACING, TRACKS DOWN

RUN 110 , 107

SPEED 44.7 MFH WEIGHT 30000. LB DRAG LB

WAVE ENCOUNTERS 25 SEA STATE 2 LCG 110.0 IN

MEAN/RMS OSC/BUFF AVG

1/3 1/10 EXTREME

| LVT 1         | FLOW    | 650.  | CFSF4                                   | N TIPAC     | 1000 15  |         |
|---------------|---------|-------|-----------------------------------------|-------------|----------|---------|
|               |         |       |                                         | IV DIVING   | 1080. FR |         |
| DRIVER ACC    | -0.008  | 35    | 2.23                                    | 3.28        |          |         |
| G,#1          | 1.041   | 1.00  | -0.88                                   | -1.25       |          | 4.09    |
|               |         |       |                                         | -1.0        |          | -1.48   |
| TROOF ACC     | -0.006  | 29    | 1.17                                    | 1.62        |          |         |
| G•#1          | 0.626   | 0.90  | -0,69                                   | -1.03       |          | 2.2     |
|               |         |       | • • • • • • • • • • • • • • • • • • • • | 1.03        |          | -1.25   |
| HOR ACC       | -0.044  | 35    | 0.44                                    | 0 41        |          |         |
| G• <b>+</b> 1 | 0.340   | 0.25  | -0.45                                   | -0.73       |          | 0.85    |
|               |         |       | V.75                                    | -0./3       |          | -1.26   |
| CUSH FRESS    | 62.188  | 46    | 130.44                                  | 172.30      |          |         |
| PSF .         | 43.813  | 32.00 |                                         | -6.24       |          | 199.61  |
|               |         |       | 21170                                   | 70+24       |          | -25.15  |
| TRUNK PRESS   | 109.011 | 54    | 212.36                                  | 701 07      | 747      | <b></b> |
| PSF           |         |       |                                         | 301.77      | 343.37   |         |
|               |         |       | 57.51                                   | 30.22       | 19.40    | 15.36   |
|               |         |       |                                         |             |          |         |
| LUT 2         | FLOW    | 610.  | CFSFAN                                  | J TIEVAG    | 970 15   |         |
|               |         |       |                                         | . 211110    | 770. LB- |         |
| DRIVER ACC    | 0.006   | 36    | 1.70                                    | 7 70        |          |         |
| G, #2         | 0.872   | 0.60  | -0.74                                   | ֥/0<br>1 1/ |          | 4.14    |
|               |         |       | 0.74                                    | -1.10       |          | -1.42   |
| TROOF ACC     | -0.006  | 39    | 1.01                                    | 1 55        |          | _       |
| G•#2          |         | 0.50  | -0.53                                   |             |          | 2.20    |
|               | · -     | 0.00  | -0+33                                   | -0.78       |          | -0.96   |
| HOR ACC       | -0.048  | 35    | 0.29                                    | A = 1       |          |         |
| G,#2          | 0.257   | 0.25  |                                         | 0.51        |          | 0.96    |
|               |         | 0120  | -0.38                                   | -0.56       |          | -0.76   |
| CUSH FRESS    | 64.346  | 48    | 123.77                                  | 4 / / ** 4  |          |         |
| PSF           | 38,921  | 24.00 |                                         | 166.31      |          | 203.04  |
|               |         | 1+00  | 21.00                                   | 6.69        |          | -11.51  |
| TRUNK FRESS   | 105.158 | 30    | 175.37                                  | 105 00      |          |         |
| PSF           | 40,271  | 40.00 |                                         |             |          | 213,24  |
|               |         | .0.00 | 03+20                                   | 37.48       |          | 19.99   |

## TABLE 8-10 ACV BARGE TRAIN

28-0CT-82

(Continued)

RUN 110 , 107

|                    | 44.7<br>T 30000.  | LB          |                 |                  |                  | NTERS 25<br>STATE 2<br>110.0 IN |
|--------------------|-------------------|-------------|-----------------|------------------|------------------|---------------------------------|
|                    | MEAN/RMS          | OSC/BL      | IFF AVG         | 1/3              | 1/10             | EXTREME                         |
|                    |                   |             |                 |                  |                  |                                 |
| LVT 3              | FLOW              | 642 (       | CFSF            | AN DRAG          | 1145. LR-        |                                 |
| DRIVER ACC<br>G,#3 | 0.023<br>0.618    | 22<br>0.60  | 1.03            | 1.50<br>-0.96    |                  | 1.86<br>-1.29                   |
| TROOP ACC<br>G•#3  | 0.004<br>0.447    | 36<br>0.45  | 0.83<br>-0.46   | 1.22<br>-0.70    |                  | 1.97<br>-0.96                   |
| HOR ACC<br>G,#3    | -0.004<br>0.268   | 24<br>0.35  | 0.39<br>-0.42   | 0.63<br>-0.64    |                  | 0,95<br>-0,82                   |
| CUSH PRESS<br>PSF  | 71.230<br>41.951  |             | 135.38<br>30.83 |                  |                  | 210.45                          |
| TRUNK PRESS<br>PSF | 116.916<br>35.375 | 40<br>36.00 | 171.99<br>78.44 | 193.93<br>52.79  |                  | 209.02<br>29.32                 |
| LVT 4              | FLOW              | 600. C      | FSF             | AN DRAG          | 1000. LB         |                                 |
| DRIVER ACC<br>G,#4 |                   |             |                 |                  |                  |                                 |
| TROOP ACC<br>G,#4  | -0.047<br>0.544   | 33<br>0.50  | 0.87<br>-0.61   | 1.44             |                  | 2.64<br>-1.15                   |
| HOR ACC<br>G,#4    | 0.026<br>0.258    | 16<br>0.40  | 0.43<br>-0.45   | 0. <b>5</b> 7    |                  | 0.77<br>-1.13                   |
| CUSH PRESS         |                   | 31          | 114.08          | 134.43           |                  | 179.49                          |
| TRUNK FRESS<br>PSF | 108.416<br>54.359 | 55<br>36.00 | 167.75<br>46.30 | 229.81<br>-14.97 | 262.87<br>-52.89 |                                 |

DAVIDSON LAROPATORY

#### TABLE 9-1

22-SEF-82

#### ACV BARGE TRAIN

#### FOUR UNITS, LCAC TOW, 13.3 FT SPACING, TRACKS DOWN

|                  | WEIGHT | 5.0<br>30000.<br>1670. | LB               |                 | WA              | SEA             | NTERS 77<br>STATE 2<br>110.0 IN |
|------------------|--------|------------------------|------------------|-----------------|-----------------|-----------------|---------------------------------|
|                  | i      | MEAN/RMS               | OSC/BUFF         | AVG             | 1/3             | 1/10            | EXTREME                         |
| DRAG<br>KIPS     |        | 1.673<br>1.341         | 39<br>3.42       | 4.65<br>0.02    | 5.79<br>-0.18   |                 | 7.55<br>-0.53                   |
| LUT              | 1      | FLOW                   | 700. CFS         | F               | AN DRAG 10      | 630. LB-        |                                 |
| DRIVER A<br>G,#1 | CC     | -0.011<br>0.180        |                  |                 |                 |                 | 0.97<br>-0.69                   |
| TROOF AC         |        | 0.003<br>0.141         | <b>4</b><br>0.90 | 0.72<br>-0.39   |                 |                 | 0.76<br>-0.44                   |
| HOR ACC<br>G,#1  |        | -0.066<br>0.082        |                  |                 | 0.21<br>-0.28   |                 | 0.28<br>-0.33                   |
| CUSH PRE<br>PSF  | SS     | 58.316<br>11.357       | 42<br>32.00      | 93.43<br>35.96  | 122.29<br>26.07 |                 | 181.94<br>11.07                 |
| TRUNK PR<br>PSF  | ESS    | 112.052<br>12.650      | 72<br>48.00      | 158.94<br>87.25 | 185.93<br>79.11 | 226.11<br>71.73 | 306.32<br>60.62                 |
| LVT              | 2      | FLOW                   | 620. CFS         | 3F              | AN DRAG 9       | 420. LB-        |                                 |
| DRIVER A         |        |                        |                  |                 | 0.44<br>-0.45   |                 |                                 |
| TROOF AC         |        |                        |                  |                 | 0.46<br>-0.33   |                 |                                 |
| HOR ACC<br>G:#2  |        | -0.100<br>0.084        | 46<br>0.25       | 0.12<br>-0.28   | 0.21<br>-0.35   |                 | 0.49<br>-0.48                   |
| CUSH FRE<br>FSF  | :55    | 67.627<br>5.446        | 19<br>24.00      | 87.86<br>53.75  | 95.79<br>47.46  |                 | 109.03<br>43.80                 |
| TRUNK PR<br>PSF  | ESS    | 110.765<br>6.997       | 8<br>40.00       | 137.96<br>93.29 |                 |                 | 143.27<br>90.80                 |

22-SEP-82

DAVIDSON LABORATORY

TABLE 9-1 ACV BARGE TRAIN

(Continued)

| WEIGH              | 5.0<br>T 30000.<br>1670. | LB          |                 |                |           | NTERS 77<br>STATE 2<br>110.0 IN |
|--------------------|--------------------------|-------------|-----------------|----------------|-----------|---------------------------------|
|                    | MEAN/RMS                 | OSC/RUFF    | F AVG           | 1/3            | 1/10      | EXTREME                         |
| LUT 3              | FLOW                     | 680. CF9    | 3FAN            | DRAG           | 10660. LB |                                 |
| DRIVER ACC         | -0.011                   | 45          | 0.37            | 0.47           | 0.56      | 0.65                            |
| G,#3               | 0.159                    | 0.60        | -0.39           |                | -0.56     | -0.62                           |
| TROOP ACC          | -0.002                   | 63          | 0.33            | 0.40           | 0.45      | 0.54                            |
| G,#3               | 0.135                    | 0.45        | -0.27           | -0.35          | -0.42     | -0.50                           |
| HOR ACC            | 0.074                    | 31          | 0.33            | 0.42           |           | 0.54                            |
| G,#3               | 0.085                    | 0.35        | -0.16           | -0.24          |           | -0.53                           |
| CUSH PRESS         | 64.591                   | 37          | 81.92           | 89.14          |           | 92.09                           |
| PSF                | 8.525                    | 24.00       | 43.88           | 25.24          |           | -33.29                          |
| TRUNK FRESS<br>PSF | 115.439<br>6.667         | 10<br>36.00 | 137.44<br>96.92 |                |           | 142.11<br>92.48                 |
| LUT 4              | FLOW                     | 630. CFS    | 3FAN            | DRAG           | 9590. LB  |                                 |
| DRIVER ACC         | -0.004                   | 53          | 0.40            | 0.48           | 0.54      | 0.67                            |
| G,#4               | 0.162                    | 0.60        | -0.38           |                | -0.50     | -0.55                           |
| TROOF ACC          | -0.002                   | 52          | 0.37            | 0.46           | 0.57      | 0.72                            |
| G:#4               | 0.147                    | 0.50        | -0.29           | -0.37          | -0.45     | -0.51                           |
| HOR ACC<br>G,#4    | 0.074<br>0.070           | 4           | 0.34<br>-0.18   |                |           | 0.42<br>-0.20                   |
| CUSH PRESS         | 67.487                   | 84          | 84.63           | 90.20          | 93.95     | 97.47                           |
| PSF                | 8.329                    | 24.00       | 51.00           | 45.54          | 41.87     | 38.83                           |
| TRUNK PRESS        | 111.549                  | 87          | 136.68          | 1 <b>44.53</b> | 151.25    | 159.45                          |
| PSF                | 10.450                   | 36.00       |                 | 84.10          | 80.47     | 76.98                           |

TABLE 9-2

22-SEF-82

#### ACV BARGE TRAIN

## FOUR UNITS, LCAC TOW, 13.3 FT SPACING, TRACKS DOWN

**RUN 124** 

|                   | WEIGHT | 10.0<br>30000.<br>12160. | LB          |                 |                 |                 | NTERS 44<br>STATE 2<br>110.0 IN       |
|-------------------|--------|--------------------------|-------------|-----------------|-----------------|-----------------|---------------------------------------|
|                   |        | MEAN/RMS                 | OSC/RU      | FF: AVG         | 1/3             | 1/10            | EXTREME                               |
| DRAG<br>KIFS      |        | 12.160<br>2.964          | 46<br>3.42  | 16.52<br>7.97   | 18.62<br>6.13   |                 | 23.43<br>4.77                         |
| LVT               | 1      | FLOW                     | 620. C      | FSF4            | AN DRAG         | 4160. LR        |                                       |
| DRIVER A          | CC     | -0.013<br>0.182          | 20<br>0.60  | 0.39<br>-0.42   | 0.48<br>-0.52   |                 | 0.55<br>-0.60                         |
| TROOF ACC         | C      | 0.005<br>0.153           | 14          | 0.38<br>-0.37   | 0.45<br>-0.45   |                 | 0.49                                  |
| HOR ACC<br>G,#1   |        | -0.045<br>0.095          | 42<br>0.25  | 0.15<br>-0.22   | 0.22<br>-0.29   |                 | 0.29<br>-0.45                         |
| CUSH PRES         |        | 56.456<br>19.082         | 38<br>32.00 | 100.61<br>33.03 | 123.47<br>22.44 | 143.5/<br>16.30 | 174.19<br>8.49                        |
| TRUNK PRE<br>PSF  | ESS    | 98.740<br>14.374         | 33<br>48.00 | 146.61<br>72.52 | 177.81<br>63.19 |                 | 301.48<br>58.19                       |
| LVT 1             | ?      | FLOW                     | 630. CI     | FSFA            | N DRAG          | 4930. LB        | · · · · · · · · · · · · · · · · · · · |
| DRIVER AC<br>G:#2 | CC     | 0.006<br>0.210           | 35<br>0.60  | 0.42<br>-0.47   | 0.53<br>-0.60   |                 | 0.66<br>-0.66                         |
| TROOF ACC<br>G+#2 | 2      | 0.000                    | 40<br>0.50  | 0.40<br>-0.35   | 0.52<br>-0.44   |                 | 0.67<br>-0.56                         |
| HOR ACC<br>G+#2   |        | -0.049<br>0.091          | 42<br>0.25  | 0.13<br>-0.23   | 0.18<br>-0.30   |                 | 0.22<br>-0.44                         |
| CUSH FRES         | S      | 71.326<br>8.291          | 35<br>24.00 | 86.50<br>53.52  | 90.75<br>48.17  |                 | 93.69<br>39.65                        |
| TRUNK FRE         | SS     | 115.079<br>8.214         | 7<br>40.00  | 139.23<br>38.53 |                 |                 | 154.94<br>82.47                       |

## TABLE 9-2 ACV BARGE TRAIN

22-SEP-82

(Continued)

TUN 124

|            | WEIGHT   | 10.0<br>30000.<br>12160. | LB      |               |               |           | NTERS 44<br>STATE 2<br>110.0 IN |
|------------|----------|--------------------------|---------|---------------|---------------|-----------|---------------------------------|
|            | ٣        | 1EAN/RMS                 | OSC/BUF | F AVG         | 1/3           | 1/10      | EXTREME                         |
| LUT 3      |          | FLOW                     | 650. CF | SF            | AN DRAG       | 5240. LR- |                                 |
| DRIVER ACI | С        | 0.009                    | 33      | 0.45<br>-0.44 | 0.57<br>-0.56 |           | 0.79                            |
| TROOF ACC  |          | -0.006                   | 54      | 0.33          | 0.47          | A 57      | A 50                            |
| G+#3       |          | 0.185                    | 0.45    | ~0.33         | -0.44         | -0.51     | -0.55                           |
| HOR ACC    |          | 0.064                    | 23      | 0.29          | 0.34          |           | 0.45                            |
| G•#3       |          |                          |         | 0.29<br>-0.19 |               |           | -0.40                           |
| CUSH PRESS | 3        | 72.574                   | 17      | 88.50         | 97.58         |           | 1.03.93                         |
| #SF        |          | 7.661                    | 24.00   | 44.69         | 26.26         |           | -13.31                          |
| TRUNK PRES | 35       | 118.882                  | 17      | 141.44        | 146.87        |           | 154.89                          |
| PSF        |          | 9.136                    | 36.00   | 96.55         | 92.73         |           | 90.23                           |
| L.VT 4-    |          | FLOW                     | 620. CF | SFA           | N DRAG        | 4890. LB  |                                 |
| DRIVER ACC | <b>-</b> | -0.013                   | 3       | 0.37          |               |           | 0.46                            |
| G•#4       |          | 0.111                    | 0.60    | -0.72         |               |           | -0.77                           |
| TROOP ACC  |          | -0.042                   | 31      | 0.38          | 0.50          |           | 0.76                            |
| G, #4      |          | 0.196                    | 0.50    | -0.38         | -0.52         |           | -0.71                           |
| HOR ACC    |          | 0.080                    | 15      | 0.37          | 0.44          |           | 0.56                            |
| G•#4       |          | 0.100                    | 0.40    | -0.16         | -0.22         |           | -0.31                           |
| CUSH PRESS | 3        | 2.177                    | 42      | 90.09         | 97.25         |           | 105.40                          |
| F'5)       |          | 9.955                    | 24.00   | 51.61         | 42.34         |           | 30.11                           |
| TRUNK FRES | 88       | 115.169                  | 51      | 139.80        | 148.13        | 153.56    | 141 00                          |
| PSF        |          | 12.474                   | 36.00   | 90.38         | 82.89         | 79.20     | 76.19                           |

FAGE 1

TABLE 9-3
DAVIDSON LABORATORY

### ACV BARGE TRAIN

22-SEF-82

FOUR UNITS, LCAC TOW, 13.3 FT SPACING, TRACKS DOWN

**RUN 125** 

PERSONAL PROPERTY PROPERTY OF STATES OF STATES AND STAT

| WE                 | PEED 12.9<br>SIGHT 30000<br>RAG 14180 | · LB         |                 |               |           | NTERS 38<br>STATE 2<br>110.0 IN |
|--------------------|---------------------------------------|--------------|-----------------|---------------|-----------|---------------------------------|
|                    | MEAN/RMS                              | OSC/BUFF     | AVG             | 1/3           | 1/10      | EXTREME                         |
| DRAG               | 1 <b>4.</b> 177                       | 49           | 20.30           | 23.43         |           | 27.19                           |
| KIPS               | <b>4.4</b> 80                         | 3.42         | 8.70            | 5.98          |           | 2.47                            |
| LUT 1              | FLOW                                  | 660. CFS     | F               | AN DRAG       | 4200. LB- |                                 |
| DRIVER ACC         | -0.010                                | 22           | 9.67            | 0.84          |           | 1.17                            |
| G,#1               | 0.299                                 | 1.00         | -0.64           | -0.79         |           | -0.90                           |
| TROOF ACC          | 0.008                                 | 27           | 0.63            | 0.81          |           | 1.24                            |
| G,#1               | 0.320                                 | <b>0.9</b> 0 | -0.58           | -0.74         |           | -1.00                           |
| HOR ACC<br>G:#1    | -0.128<br>0.187                       | 56<br>0.25.  | 0.14            | 0.27<br>-0.57 |           | 0.53<br>-0.87                   |
| CUSH PRESS         | 68.313                                | 16           | 91.43           | 95.89         |           | 98.91                           |
| PSF                | 7.466                                 | 32.00        | 49.04           | .43.92        |           | 38.01                           |
| TRUNK PRESS        | 116.676                               | 57           | 161.08          | 178.79        | 200.04    | 258.64                          |
| PSF                | 19.096                                | 48.00        | 86.01           | 73.76         | 63.58     | 58.19                           |
| LVT 2              | FLOW                                  | 630. CFS     | F               | AN DRAG       | 4070. LB- |                                 |
| DRIVER ACC         | 0.011                                 | 42           | 0.62            | 0.86          |           | 1.08                            |
| G,#2               | 0.306                                 | 0.60         | -0.50           | -0.70         |           | -0.82                           |
| TROOF ACC<br>G,#2  | 0.000<br>0.256                        | 41<br>0.50   | 0.48            | 0.64<br>-0.59 |           | 0.95<br>-0.78                   |
| HOR ACC            | -0.045                                | 54           | 0.21            | 0.34          | 0.43      | 0.46                            |
| G∙≢2               | 0.140                                 | 0.25         | -0.26           | -0.37         | -0.45     | -0.52                           |
| CUSH PRESS         | 75.864                                |              | 95.84           | 104.01        | 111.97    | 124.70                          |
| PSF                | 11.819                                |              | 56.61           | 49.84         | 46.30     | 44.12                           |
| TRUNK PRESS<br>PSF | 119.228<br>9.500                      |              | 147.79<br>94.13 |               |           | 166.60<br>78.30                 |

|                 |                     |                | TR              | -2299         |        |                |
|-----------------|---------------------|----------------|-----------------|---------------|--------|----------------|
|                 | DAVIDSON LABORATORY |                | TAB             | LE 9-3        |        | · F            |
| DAVIDSON        |                     |                | ACV BARGE TRAIN |               |        | 22-9           |
|                 |                     |                | (Con            | tinued)       |        |                |
| RUN 125         |                     |                |                 |               |        |                |
|                 | SPEED               | 12.5           | MEH             |               | i      | WAVE ENCOUNTER |
|                 | WEIGHT              | 30000.         |                 |               | `      | SEA STA        |
| -               | DRAG                | 14180.         | LB              |               |        | LCG 110        |
|                 | 4                   | IEAN/RMS       | OSC/BUFF        | AVG           | 1/3    | 1/10 EX        |
| LVT 3           |                     | FLOW           | 650. CF9        | SFAI          | N DRAG | 4300. LB       |
| DRIVER AC       |                     |                | 34              |               |        |                |
| G,#3            |                     |                |                 | 0.52<br>-0.50 | -0.70  | -              |
| TROOP ACC       |                     | -0.002         | 41              | 0.42          | 0.60   |                |
| G•#3            |                     | 0.242          | 0.45            | -0.40         | -0.54  |                |
| HOR ACC         |                     |                | 40              | 0.42          | 0.60   |                |
| G•#3            |                     | 0.155          | 0.35            | -0.21         | -0.34  | -              |
| CUSH FRES       | S                   | 74.153         | 39              | 92.26         | 99.24  | 10             |
| PSF             |                     | 10.676         | 24.00           | 53.34         | 42.76  | <del>-</del> 1 |
| TRUNK PRE       | SS                  | 121.087        |                 | 143.29        |        | 15             |
| F'SF            |                     | 9.855          | 36.00           | 96.83         |        | 8              |
| LUT 4           |                     | FLOW           | 640. CFS        | FAI           | N DRAG | 4100. LB       |
| DRIVER AC       | С                   | -0.019         | 5               | 0.25          |        |                |
| G, #4           |                     | 0.148          | 0.60            | -0.66         |        | -              |
| TROOP ACC       |                     | -0.056         | 42              | 0.41          | 0.61   |                |
| G + #4          |                     | 0.244          | 0.50            | -0.42         | -0.56  |                |
|                 |                     |                |                 |               |        |                |
| HOR ACC<br>G:#4 |                     | 0.100<br>0.134 | 21              | 0.46          | 0.62   |                |

72.447 35

10.746 24.00

14.159 36.00

45

117.676

91.29

53.20

145.05

92.06

99.12

44.15

154.00

83.47

111.34

29.32

163.24

73.83

CUSH PRESS

TRUNK PRESS

F'SF

FSF

FAGE 1

DAVIDSON LABORATORY

#### TABLE 9-4 ACV BARGE TRAIN

22-SEF-82

#### FOUR UNITS, LCAC TOW, 13.3 FT SPACING, TRACKS DOWN

|                  | WEIGHT     | 15.0<br>30000.<br>12410. | LB          |                 |                 |                 | NTERS 38<br>STATE 2<br>110.0 IN |
|------------------|------------|--------------------------|-------------|-----------------|-----------------|-----------------|---------------------------------|
|                  | М          | EAN/RMS                  | OSC/BUFF    | AVG             | 1/3             | 1/10            | EXTREME                         |
| DRAG<br>TFS      |            | 12.415<br>3.561          | 39<br>3.42  |                 |                 |                 | 22.92<br>3.46                   |
| LUT 1            | \ <b>-</b> | FLOW                     | 660. CFS    | F               | AN DRAG         | 3410. LB-       |                                 |
| DRIVER AC        | cc         |                          | 30<br>1.00  |                 |                 |                 | 2.05<br>-1.06                   |
| TROOF ACC        |            | -0.011<br>0.385          |             |                 |                 |                 | 1.60<br>-1.02                   |
| HOR ACC<br>G•#1  |            |                          |             |                 |                 | 0.41<br>-0.68   |                                 |
| CUSH PRES        |            |                          |             |                 |                 | 132.92<br>12.73 |                                 |
| TRUNK PRE        |            |                          |             |                 |                 | 227.35<br>49.19 |                                 |
| L.VT 2           | ?          | FLOW                     | 620. CFS    | ;               | AN DRAG         | 3360. LB-       | ~~~~~                           |
| DRIVER AC        | cc         | 0.011<br>0.364           | 43<br>0.60  |                 |                 |                 | 1.49<br>-1.01                   |
| TROOF ACC        | 2          | 0.003                    | 38<br>0.50  |                 |                 |                 | 0.81<br>-0.99                   |
| HOR ACC<br>G,#2  |            |                          | 70<br>0.25  |                 |                 | 0.64            |                                 |
| CUSH FRES        | 68         | 78.084<br>13.463         |             | 99.02<br>54.83  | 109,69<br>41.35 |                 | 119.90<br>-1.60                 |
| TRUNK FRE<br>PSF | ESS        | 120.050<br>16.979        | 36<br>40.00 | 151.63<br>89.87 |                 |                 | 169.10<br>69.97                 |

PAGE 2

DAVIDSON LABORATORY

## TABLE 9-4 ACV BARGE TRAIN (Continued)

22-SEF-82

| <b>C</b> 1 | HN  | 4 | 26 | ,  |
|------------|-----|---|----|----|
| TC.        | UIN |   |    | ٠, |

| WEI                | ED 15.0<br>GHT 30000.<br>G 12410. | LB          |                         | I               |               | STATE 2<br>110.0 IN |
|--------------------|-----------------------------------|-------------|-------------------------|-----------------|---------------|---------------------|
| -                  | MEAN/RMS                          | OSC/BUFF    | AVG                     | 1/3             | 1/10          | EXTREME             |
| LVT 3              | FLOW                              | 640. CFS    | ;F                      | AN DRAG         | 3610. LB      |                     |
| DRIVER ACC<br>G:#3 | 0.016<br>0.395                    |             |                         |                 |               | 1.19<br>-1.00       |
| TROOP ACC<br>G+#3  | -0.007<br>0.292                   | 43<br>0.45  | 0.50<br>-0.42           | 0.71<br>-0.61   |               | 1.00<br>-0.79       |
| HOR ACC<br>G•#3    |                                   |             |                         |                 | 0.78<br>-0.66 |                     |
| CUSH PRESS<br>PSF  | 70.765<br>14.145                  |             |                         | 103.99<br>29.93 |               | 117.61<br>4.81      |
| TRUNK PRESS<br>PSF | 119.626<br>14.258                 |             |                         |                 |               | 163.16<br>69.17     |
| LUT 4              | FLOW                              | 680. CF9    | F                       | AN DRAG         | 3610. LB      |                     |
| DRIVER ACC<br>G:#4 | -0.126<br>0.328                   | 21<br>0.60  | 0.35<br>-0.76           | 0.52<br>-1.13   |               | 0.58<br>-1.35       |
| TROOP ACC<br>G,#4  | •                                 | 33<br>0.50  |                         |                 |               | 0.76<br>-1.00       |
| HOR ACC<br>G+#4    | 0.081<br>0.154                    | 25<br>0.40  |                         |                 |               | 0.79<br>-0.32       |
| CUSH FRESS<br>FSF  | 66.950<br>11.543                  | 22<br>24.00 | 86.33<br>44.36          | 94.85<br>28.23  |               | 108.96<br>6.34      |
| TRUNK PRESS<br>PSF | 117.550<br>15.974                 | 36.00       | 1 <b>46.64</b><br>90.00 | 159.06<br>77.17 |               | 172.02<br>64.41     |

DAVIDSON LABORATORY

### TABLE 9-5

### 28-0CT-82

### ACV BARGE TRAIN

### FOUR UNITS, LCAC TOW, 13.3 FT SPACING, TRACKS DOWN

RUN 128 , 127

|                  | WEIGHT | 20.0<br>30000.<br>12790. | LB                   |                 |                 |                 | NTERS 43<br>STATE 2<br>110.0 IN |
|------------------|--------|--------------------------|----------------------|-----------------|-----------------|-----------------|---------------------------------|
|                  |        | MEAN/RMS                 | OSC/BUFF             | AVG             | 1/3             | 1/10            | EXTREME                         |
| DRAG<br>KIFS     |        | 12.792<br>2.877          | 43<br>3.42           | 16.55<br>8.62   | 19.02<br>6.50   | 1               | 21.38<br>4.72                   |
| LVT              | 1      | FLOW                     | CFS                  | F               | AN DRAG         | LF-             |                                 |
| DRIVER A<br>G,#1 | CC     | -0.009<br>0.597          | 46<br>1.00           |                 |                 |                 | 3.47<br>-1.18                   |
| TROOF AC<br>G•#1 | С      |                          |                      |                 |                 | 1.36<br>-0.85   |                                 |
| HOR ACC<br>G##1  |        | -0.085<br>0.207          | 71<br>0.25           | 0.23<br>-0.36   | 0.44<br>-0.50   | 0.58<br>-0.63   | 0.75<br>-0.80                   |
| CUSH PRE<br>PSF  | SS     | 75.497<br>27.382         | 86<br>32.00          | 121.38<br>44.36 | 150.33<br>25.94 | 180.51<br>12.10 | 208.88<br>4.06                  |
| TRUNK FR<br>PSF  | ESS    | 39.424                   |                      |                 |                 |                 |                                 |
| LVT              | 2      | FLOW                     | 630. CFS             | F               | AN DRAG         | 2430. LP-       |                                 |
| DRIVER A<br>G•#2 | CC     |                          |                      |                 |                 | 2.04<br>-1.09   |                                 |
| TROOF AC         | С      | 0.002<br>0.324           | 61<br>0.50           | 0.57<br>-0.41   | 0.82<br>-0.62   | 0.98<br>-0.76   | 1.26<br>-1.00                   |
| HOR ACC<br>G+#2  | •      | -0. <b>05</b> 1<br>0.170 | 74<br>0.25           | 0.22<br>-0.31   | 0.39<br>-0.45   | 0.59<br>-0.55   | 0.87<br>-0.67                   |
| CUSH PRE<br>PSF  | SS     | 68.258<br>26.972         | 66<br>2 <b>4.</b> 00 | 116.57<br>38.68 | 158.10<br>17.40 |                 | 235.65<br>-10.23                |
| TRUNK FR         | ESS    | 112.537<br>22.161        | 50<br>40.00          | 153.07<br>81.20 | 171.50<br>68.79 |                 | 195.75<br>49.15                 |

PAGE 2

28-0CT-82

TABLE 9-5 DAVIDSON LABORATORY ACV BARGE TRAIN

(Continued)

| NUR IZO , IZ( | KUN | 128, | 127 |
|---------------|-----|------|-----|
|---------------|-----|------|-----|

| KOK II.      | 1 . TE                  |                          |                 |        |          |           |                                 |
|--------------|-------------------------|--------------------------|-----------------|--------|----------|-----------|---------------------------------|
|              | SPEED<br>WEIGHT<br>DRAG | 20.0<br>30000.<br>12790. | MPH<br>LB<br>LB |        |          |           | NTERS 43<br>STATE 2<br>110.0 IN |
|              |                         | MEAN/RMS                 | OSC/BUF         | F AVG  | 1/3      | 1/10      | EXTREME                         |
| LUT          | 3                       | FI (16)                  | AAO. CE         | 'SE    | AN TIPAC | 2700. LB- |                                 |
|              |                         |                          |                 |        |          |           |                                 |
| DRIVER A     | ACC                     | 0.016                    | 49              | 0.65   | 0.95     |           | 1.58                            |
| G•#3         |                         | 0.401                    | 0.60            | -0.50  | -0.74    |           | -0.86                           |
| TROOP A      | CC                      | -0.004                   | 46              | 0.48   | 0.49     |           | 1.02                            |
| G•#3         |                         | 0.275                    | 0.45            | -0.41  | -0.54    |           | -0.77                           |
| HUE VCC      |                         |                          |                 |        |          |           |                                 |
| G + #3       |                         | 0.044<br>0.187           | 4/              | 0.37   | 0.53     |           | 0.92                            |
| <b>374</b> 3 |                         | 0.18/                    | 0.35            | -0.28  | -0.47    |           | -1.06                           |
| CUSH PRE     | ESS                     | 70.481                   | 53              | 99.46  | 118.35   | 144.43    | 224.50                          |
| FSF          |                         | 16.619                   | 24.00           | 46.18  | 25.05    | 3.82      | -27.37                          |
| TOTAL DE     |                         |                          |                 |        |          |           |                                 |
| PSF          | (E35                    | 119.380                  | 46              | 151.36 | 162.45   |           | 182.71                          |
| , 0.         |                         | 18.811                   | 30.00           | 92,02  | 80.36    |           | 56.39                           |
|              |                         |                          |                 |        |          |           |                                 |
| LVT          | 4                       | FLOW                     | 630. CF         | 8F     | AN DRAG  | 2520. LB- |                                 |
| DRIVER 4     | 20C                     | -0.068                   | 1.0             | A =A   | 0 70     |           |                                 |
| G,#4         | .00                     | 0.209                    | 0.60            | 0.50   | 0.70     |           | 1.00                            |
|              |                         |                          |                 |        |          |           |                                 |
| TROOP AC     | CC                      | -0.035                   | 45              | 0.48   | 0.73     |           | 1.06                            |
| G,#4         |                         | -0.035<br>0.266          | 0.50            | -0.40  | -0.40    |           | -0.85                           |
| HOR ACC      |                         | 0.059                    | 24              | 0.44   | 0 70     |           |                                 |
| G , #4       |                         | 0.059<br>0.162           | 0.40            | -0.21  | -0.34    |           | 1.18                            |
|              |                         |                          |                 |        |          |           | -0.49                           |
| CUSH FRE     | SS                      | 72.303                   | 42              | 98.28  | 109.67   |           | 121.25                          |
| PSF          |                         | 18.631                   | 24.00           | 45.13  | 25.39    |           | 5.55                            |
| TRUNK PR     | FSS                     | 114 017                  | 40              | 157 54 |          |           |                                 |
| FSF          |                         | 116.813                  | 47<br>34.00     | 153.94 | 1/4.00   |           | 222.29                          |
| . <b>-</b> . |                         | 20.359                   | 30.00           | 07.72  | /6+28    |           | 63.62                           |

DAVIDSON LABORATORY

### TABLE 9-6

28-0CT-82

### ACV BARGE TRAIN

FOUR UNITS, LCAC TOW, 13.3 FT SPACING, TRACKS DOWN

RUN 137 , 136

|                    | •      |                          |                     |                 |                        |                 |                                 |
|--------------------|--------|--------------------------|---------------------|-----------------|------------------------|-----------------|---------------------------------|
|                    | WEIGHT | 25.0<br>30000.<br>13300. | LB                  |                 |                        |                 | NTERS 37<br>STATE 2<br>110.0 IN |
|                    | М      | EAN/RMS                  | OSC/BUFF            | F AVG           | 1/3                    | 1/10            | EXTREME                         |
| DRAG<br>KIPS       |        | 13,298<br>3,427          | 34<br>3.42          | 18.30<br>8.74   | 21.98<br>6.77          |                 | 28.50<br>4.17                   |
| LVT 1              |        | FLOW                     | 700. CFS            | 6F              | AN DRAG                | 2320. LB-       |                                 |
| DRIVER AC<br>G,#1  | C      | 0.006<br>0.7 <b>48</b>   | 54<br>1.00          | 1.61<br>-0.74   | 2.34<br>-1.10          | 2.82<br>-1.25   | 3.14<br>-1.39                   |
| TROOF ACC<br>G,#1  |        |                          |                     |                 |                        |                 |                                 |
| HOR ACC<br>G,#1    |        | -0.073<br>0.228          | 63<br>0.25          | 0.27<br>-0.36   | 0:47<br>-0 <b>:</b> 54 | 0.62<br>-0.73   | 0.77<br>-0.87                   |
| CUSH FRES<br>PSF   | S      | 67.883<br>36.304         | 76<br>32.00         | 128.47<br>30.67 | 158.75<br>6.83         | 180.98<br>-4.11 |                                 |
| TRUNK FRE          | SS     | 121.810<br>43.883        | 76<br><b>48.0</b> 0 | 205.27<br>79.00 | 253.32<br>59.34        | 294.71<br>47.28 | 321.68<br>29.10                 |
| LUT 2              |        | FLOW                     | 670, CFS            | F               | AN DRAG                | 2070. LB        |                                 |
| DRIVER ACC<br>G,#2 | C      | 0.014<br>0.583           | 53<br>0.60          | 1.00            | 1.49<br>-0.98          | 1.83<br>-1.11   | 2.09<br>-1.23                   |
| TROOF ACC<br>G,#2  |        | 0.002<br>0.438           | 52<br>0.50          | 0.73<br>-0.47   | 1.00<br>-0.79          | 1.14<br>-0.95   | 1.33<br>-1.03                   |
| HOR ACC<br>G,#2    |        | -0.054<br>0.197          | 63<br>0.25          | 0.21<br>-0.35   | 0.39<br>-0.52          | 0.52<br>-0.70   |                                 |
| CUSH PRESS<br>PSF  | 6      | 63.109<br>30.007         | 66<br>24.00         | 106.91<br>30.09 | 132.17<br>11.54        | 149.09<br>1.23  | 161.47<br>-15.35                |
| TRUNK PRES         | SS :   | 112.996<br>26.575        |                     | 157.31<br>79.94 | 176,27<br>65,57        | 184.78<br>58.45 | 191.59<br>50.81                 |

DAVIDSON LABORATORY

### TABLE 9-6

### 28-0CT-82

### ACV BARGE TRAIN (Continued)

RUN 137 , 136

|                 | SPEED<br>WEIGHT<br>DRAG | 25.0<br>30000.<br>13300. | MPH<br>LB<br>LB |        |                     | SE       | DUNTERS 37<br>EA STATE 2<br>CG 110.0 IN |
|-----------------|-------------------------|--------------------------|-----------------|--------|---------------------|----------|-----------------------------------------|
|                 |                         | MEAN/RMS                 | OSC/B           | UFF AV | 3 1/3               |          | ) EXTREME                               |
| LVT             | 3                       | FLOW                     | 730.            | CFS    | FAN DRAG            | 2400. LI | 3                                       |
|                 | CC                      | 0.017                    | 46              | 0.8    | 36 1.2              | 4        | 1.73                                    |
| 0,43            |                         | 0.485                    | 0.60            | -0.5   | 50 -0.7             | 9        | -0.94                                   |
| TROOP ACC       | 3                       | 0.000<br>0.344           | 45<br>0.45      | 0.5    | 59 0.9:<br>14 -0.6  | 1        | 1.45<br>-0.79                           |
|                 |                         |                          |                 |        |                     |          | -0.79                                   |
| HOR ACC<br>S,#3 |                         | 0.033                    | 45              | 0.3    | 39 0.6.<br>29 -0.45 | 3        | 1.15                                    |
| 3,43            |                         | 0.206                    | 0.35            | -0.2   | 29 -0.45            | 5        | -0.73                                   |
| CUSH PRES       | S                       | 60.594                   | 52              | 91.4   | 2 113.30            | 177 (/   | 170 04                                  |
| FSF             |                         | 27.419                   | 24.00           | 25.3   | 6 -3.18             | 3 -23.12 | 132.04                                  |
| TRUNK 665       |                         |                          |                 |        |                     |          | 3/•3/                                   |
| PSF             | 255                     | 120.151                  | 48              | 162.8  | 88 179.18           | 3        | 187.22                                  |
| rar             |                         | 20.833                   | 36.00           | 87.8   | 69.83               | 3        | 54.14                                   |
|                 |                         |                          |                 |        |                     |          |                                         |
| LVT 4           |                         |                          |                 |        |                     |          |                                         |
| DRIVER AC       | 22                      | 0.011                    | 46              | 0.8    | 1.19                | ?        | 1.98                                    |
| G <b>, #</b> 4  |                         | 0.461                    | 0.60            | -0.5   | 1.19<br>3 -0.78     | 5        | -0.92                                   |
|                 |                         |                          |                 |        |                     |          |                                         |
| G > #4          | ,                       | 0.320                    | 0.50            | -0.5   | 7 0.90<br>2 -0.40   | )        | 1.19                                    |
|                 |                         |                          |                 |        |                     |          | -0.82                                   |
| HOR ACC         |                         | 0.055                    | 24              | 0 • 4  | 5 0.61              |          | 0.84                                    |
| G•#4            |                         | 0.180                    | 0.40            | -0.2   | 4 -0.35             | 5        | -0.44                                   |
| CUSH PRES       | S                       | 44 441                   | 40              | 07.4   |                     |          |                                         |
| PSF             |                         | 22.264                   | 74.00           | 7/•1   | 4 111.99<br>3 19.34 | ,        | 131.15                                  |
|                 |                         |                          |                 |        |                     |          | -3.17                                   |
| TRUNK FRE       | SS                      | 115.558                  | 53              | 160.3  | 1 183.19            | 204.61   | 221.50                                  |
| PSF             |                         | 26.341                   | 36.00           | 83.1   | 1 70.39             | 61.27    | 51.06                                   |

PAGE 1

28-OCT-82

TABLE 9-7

ACV BARGE TRAIN

FOUR UNITS, LCAC TOW, 13.3 FT SPACING, TRACKS DOWN

RUN 131 , 129

DAVIDSON LABORATORY

|           |     | 30.0<br>30000 |            |        |          | WAVE ENCOU | NTERS 32<br>STATE 2 |
|-----------|-----|---------------|------------|--------|----------|------------|---------------------|
|           |     | 14550.        |            |        |          |            | 110.0 IN            |
|           |     | MEAN/RMS      | OSC/BUFF   | AVG    | 1/3      | 1/10       | EXTREME             |
| DRAG      |     | 14,546        |            |        |          |            | 31.96               |
| KIPS      |     | 5.330         | 3.42       | 8.29   | 5.59     |            | 1.01                |
| LVT 1     | 1   | FLOW          | 680. CFS   | F      | AN DRAG  | 1790. LB-  |                     |
| DRIVER AC | 30  | -0.001        | 49<br>1.00 | 1.54   | 2.28     | }          | 3.56                |
| G•#1      |     | 0.770         | 1.00       | -0.68  | -1.06    | •          | -1.37               |
| TROOP ACC | 2   | 0.014         | 46         | 1.04   | 1.38     | 1          | 1.98                |
| G,#1      |     | 0.556         | 0.90       | -0.63  | -0.93    | }          | -1.17               |
| HOR ACC   |     | -0.060        | 56         | 0.28   | 0.46     | 0.63       | 0.81                |
| G•#1      |     | 0.253         | 0.25       | -0.38  | -0.58    | -0.66      | -0.79               |
| CUSH FRES | SS  | 62,989        | 60         | 127.85 | 155.70   | 175.92     | 210.36              |
| FSF       |     | 36.932        | 32.00      | 24.92  | 2.51     | -3.81      | -9.60               |
| TRUNK FRI | ESS | 114.944       | 66         | 207.01 | 260.40   | 297.78     | 359.67              |
| PSF       |     | 47.472        | 48.00      | 72.42  | 45.26    | 30.25      | 19.40               |
| LVT       | 2   | FLOW          | 560. CF9   | 3F     | FAN DRAG | 1340. LB-  |                     |
| DRIVER A  | cc  | 0.005         | 47         | 1.09   | 1.72     | 2          | 2.91                |
| G•#2      |     | 0.647         | 0.60       | -0.61  | -1.01    | Ĺ          | -1.20               |
| TROOF AC  | С   | -0.013        | 46         | 0.85   | 1.29     |            | 2.05                |
| G•#2      |     | 0.524         | 0.50       | -0.58  | -1.01    | Į.         | -1.39               |
| HOR ACC   |     | -0.023        | 54         | 0.31   | 0.51     | 0.61       | 0.67                |
| G • #2    |     | 0.243         | 0.25       | -0.37  | -0.55    | -0.68      | -0.75               |
| CUSH PRE  | SS  | 71.455        | 60         | 121.29 |          |            |                     |
| PSF       |     | 33.452        | 24.00      | 40.07  | 21.0     | 5 7.67     | -15.35              |
| TRUNK PR  | ESS | 106.016       | 46         | 154.46 | 1.75.50  |            | 196.58              |
| PSF       |     | 29.630        | 40.00      | 71.13  | 52.74    | 4          | 28.32               |

TABLE 9-7
ACV BARGE TRAIN
(Continued)

PAGE 2

28-0CT-82

DAVIDSON LABORATORY

RUN 131, 129

| WEIG          | TD 30.0<br>GHT 30000.<br>G 14550. | LB      |        |          |               | NTERS 32<br>STATE 2<br>110.0 IN |
|---------------|-----------------------------------|---------|--------|----------|---------------|---------------------------------|
|               | MEAN/RMS                          | OSC/BU  | FF AUG | 1/3      | 1/10          | EXTREME                         |
|               |                                   |         |        |          |               |                                 |
| LVT 3         | FLOW                              | 710. C  | FSF1   | AN IIRAG | 1890. LB-     |                                 |
| DRIVER ACC    | 0.010                             | 45      | 1.06   | 1.66     |               | 2.37                            |
| G,‡3          | 0.605                             | 0.60    | -0.61  | -0.99    |               | -1.15                           |
| TROOF ACC     | -0.007                            | 53      | 0.64   | 0.97     | 1.13          | 1.19                            |
| G• <b>*</b> 3 | 0.397                             | 0.45    | -0.44  | -0.73    | 1.13<br>-0.90 | -1.15                           |
| HOR ACC       | 0.007                             | 45      | 0.41   | 0.64     |               | 0.94                            |
| G• ‡3         | 0.257                             | 0.35    | -0.39  | -0.54    |               | -1.23                           |
| CUSH PRESS    | 59.943                            | 61      | 97.99  | 122.62   | 140,97        | 163.48                          |
| PSF           | 30.793                            | 24.00   | 23.04  | 1.34     | -11.41        | -33.66                          |
| TRUNK PRESS   | 116.347                           | 48      | 164.41 | 188.25   |               | 223.31                          |
| PSF           | 30.178                            | 36.00   | 81.95  | 60.39    |               | 44.36                           |
|               |                                   |         |        |          |               |                                 |
| LVT 4         | FLOW                              | 570. CF | 'SFA   | N DRAG   | 1500. LB-     |                                 |
| DRIVER ACC    | 0.150                             | 54      | 0.93   | 1.31     | 1.56<br>-0.89 | 1.85                            |
| G • #4        | 0.581                             | 0.40    | -0.48  | -0.76    | -0.89         | -0.96                           |
| TROOF ACC     |                                   | 23      | 0.56   | 0.81     |               | 0.96                            |
| G, #4         | 0.249                             | 0.50    | -0.40  | 0.57     |               | -0.77                           |
| HOR ACC       | 0.044                             | 24      | 0.56   | 0.85     |               | 1.27                            |
| G, ‡4         | 0.234                             | 0.40    | -0.29  | -0.41    |               | -0.63                           |
| CUSH FRESS    | 79.398                            | 45      | 112.62 | 129.01   |               | 137.89                          |
| PSF           | 22.022                            | 24.00   | 53.95  | 33.36    |               | 14.26                           |
| TRUNK PRESS   | 115.717                           | 47      | 170.51 | 200.83   |               | 248.99                          |
| F'SF          | 115.717<br>31.062                 | 36.00   | 81.67  | 65.54    |               | 33.78                           |

TABLE 9-8

DAVIDSON LABORATORY A

### ACV BARGE TRAIN

28-0CT-82

FOUR UNITS, LCAC TOW, 13.3 FT SPACING, TRACKS DOWN

| RUN | 135 . | 134 |
|-----|-------|-----|
|     |       |     |

| , , _ , , , , , , , , , , , , , , , , , | , -5   |                          |             |                 |                       |                |                                 |
|-----------------------------------------|--------|--------------------------|-------------|-----------------|-----------------------|----------------|---------------------------------|
|                                         | WEIGHT | 35.0<br>30000.<br>16470. | LB          |                 | ı                     |                | NTERS 33<br>STATE 2<br>110.0 IN |
|                                         |        |                          |             | AVG             | 1/3                   | 1/10           | EXTREME                         |
| DRAG<br>KIPS                            |        | 16.47 <b>4</b><br>5.683  | 24<br>3.42  | 23.53<br>9.59   | 29.6 <b>5</b><br>6.70 |                | 32.57<br>3.84                   |
| LVT                                     | 1      | FLOW                     | 528. CF9    | 6F <i>F</i>     | AN DRAG               | 1104. LB-      |                                 |
| DRIVER AU<br>G:#1                       | CC     | -0.006<br>0.844          | 39<br>1.00  |                 |                       |                | 3.90<br>-1.42                   |
| TROOF ACC                               |        | -0.006<br>0.548          | 23<br>0.90  | 1.12<br>-0.59   | 1.45<br>-0.85         |                | 1.57<br>-1.17                   |
| HOR ACC                                 |        | -0.048<br>0.307          |             |                 |                       | 0.98<br>-0.79  |                                 |
| CUSH PRES                               | SS     | 76.421<br>36.828         | 59<br>32.00 | 138.43<br>40.46 | 174.19<br>15.63       | 194.37<br>6.83 | 207.78<br>-2.58                 |
| TRUNK PRI<br>PSF                        | ESS    | 107.318<br>53.431        | 33<br>48.00 | 197.92<br>58.88 | 262.39<br>34.53       | )<br>3         | 345.12<br>-4.04                 |
| LVT                                     | 5      | FLOW                     | 640. CFS    | 5F              | AN IIRAG              | 1370. LB-      |                                 |
| DRIVER A                                |        | 0.012<br>0.660           | 42<br>0+60  |                 |                       |                | 4.14<br>-1.17                   |
| TROOF AC                                | С      | -0.003<br>0.485          | 40<br>0.50  | 0.91<br>-0.50   | 1.37<br>-0.84         |                | 2.70<br>-1.24                   |
| HDR ACC<br>G•#2                         |        |                          | 51<br>0.25  | 0.35            | 0.60<br>-0.61         | 0.77<br>-0.80  |                                 |
| CUSH PRE<br>PSF                         | SS     | 65.135<br>33.909         | 52<br>24.00 | 118.28<br>33.94 | 161.26<br>5.77        |                |                                 |
| TRUNK PR                                | ESS    | 110.154<br>30.233        | 41<br>40.00 | 162.55<br>73.57 | 187.84<br>59.20       |                | 219.91<br>41.65                 |

PAGE 2

DAVIDSON LABORATORY

## TABLE 9-8 ACV BARGE TRAIN (Continued)

28-0CT-82

| RUN 135 , 13       | 4                              |             |               |                     |                 |                                 |
|--------------------|--------------------------------|-------------|---------------|---------------------|-----------------|---------------------------------|
| WEIG               | II 35.0<br>HT 30000.<br>16470. | LB          |               |                     |                 | NTERS 33<br>STATE 2<br>110.0 IN |
|                    | MEAN/RMS                       | OSC/BUF     | F AVG         | 1/3                 | 1/10            | EXTREME                         |
| LUT 3              | FLOW                           | 690. CF     |               | AN DRAG             | 1590. LB-       |                                 |
| DRIVER ACC         | 0.004                          | 45          | 1.02          | 1.61                |                 | 2.36                            |
|                    | 0.604                          |             |               |                     |                 |                                 |
| TROOP ACC          | -0.007                         | <b>1</b>    | 0.49          | 1 04                |                 | 1.51                            |
| G+#3               | 0.397                          |             |               |                     |                 | -1.03                           |
|                    |                                |             |               |                     |                 |                                 |
| HOR ACC            | 0.048                          | 42          | 0.48          | 0.79                | 0.94            | 1.17                            |
| G•#3               | 0.278                          | 0.35        | -0.36         | -0.62               | -0.83           | -1.13                           |
| CUSH FRESS         | 65.187                         | 49          | 107.66        | 127,56              |                 | 156.45                          |
| PSF                | 32.970                         | 24.00       | 24.52         | -0.63               |                 | -14.79                          |
| TOUR DEFEN         | 440.000                        |             | <del></del>   |                     |                 |                                 |
| TRUNK PRESS<br>FSF | 118+209                        | 50<br>77 AA | 163.41        | 186.69              | 199.40<br>54.59 | 212.78                          |
| ror                | 20+343                         | 30.00       | 84.76         | 6/,78               | 34,37           | 45.11                           |
| LUT 4              | FLOW                           | 610. CF     | SF            | AN DRAG             | 1340. LB        |                                 |
|                    |                                |             |               |                     |                 |                                 |
| DRIVER ACC         | 0.013<br>0.655                 | 41          | 1.15          | 1.69                |                 | 2.73                            |
| G+#4               | 0.655                          | 0.40        | -0.60         | -1.05               |                 | -1.27                           |
| TROOF ACC          | -0.021                         | 39          | 0.81          | 1,20                |                 | 1.65                            |
| G•#4               | -0.021<br>0.497                | 0.50        | -0.54         | ~0.87               |                 | -1.11                           |
| HOR ACC            | 0.027                          | 27          | ¢ (5          | () () <del>""</del> |                 |                                 |
| Gy#4               | 0.798                          | دن<br>۱.۵۵  | 0.62<br>-0.40 | U+B/<br>() 41       |                 | 1.22                            |
| <b>₩</b> 7.83      | V•2/0                          | V• 7V       | -0.40         | -0.81               |                 | -0.96                           |
| CUSH FRESS         | 72.754                         | 44          | 112.36        | 138.37              |                 | 201.29                          |
| F'SF               | 27.685                         | 24.00       | 41.26         | 22.93               |                 | 10.70                           |
| TRUNK PRESS        | 117 404                        | E* 1        | 1 ~7 ~7 4 4   | 73.0 79 . 77 4      | A M             |                                 |
| TRUNK PRESS<br>PSF | 37.130                         | 74 VV       | 79.15         | 203.76              | 227.13          |                                 |
| ,                  | □/ + I ∪ U                     | 20+00       | ノグ・エコ         | 55.95               | 43.72           | 35.35                           |

BAVIDSON LABORATORY

### TABLE 9-9

#### - <del>-</del>

28-00T-82

### ACV BARGE TRAIN

FOUR UNITS, LCAC TOW, 13.3 FT SPACING, TRACKS DOWN

RUN 133 , 132

190日間ではあるの間であるのである。 190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、19日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、190日には、1

SFEED 44.8 MFH WEIGHT 30000. LB DRAG LB

WAVE ENCOUNTERS 28 SEA STATE 2

LCG 110.0 IN

MEAN/RMS OSC/BUFF AVG 1/3

/3 1/10 EXTREME

|                                                               | FLOW                                                          | 620. C                                                | FSF                                                                | AN DRAG                                                           | 1090. LB                                                  |
|---------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|
| DRIVER ACC                                                    | 0.013                                                         | 33                                                    | 2.22                                                               | 3.23                                                              | 4.81                                                      |
| G,#1                                                          | 1.035                                                         | 1.00                                                  |                                                                    | -1.30                                                             | -1.64                                                     |
| TROOP ACC                                                     | 0.066                                                         | 33                                                    | i.32                                                               | 1.93                                                              | 2.70                                                      |
| G • #1                                                        |                                                               |                                                       | -0.56                                                              |                                                                   | -1.01                                                     |
| HDR ACC                                                       | -0.038                                                        | 41                                                    | 0.36                                                               | 0 (1                                                              |                                                           |
| G v #1                                                        | 0.266                                                         |                                                       | -0.39                                                              |                                                                   | 0.82<br>-0.82                                             |
| CUSH FRESS                                                    | 77. 450                                                       | ΛE                                                    | 151.45                                                             | 204.07                                                            |                                                           |
| PSF                                                           | 47.516                                                        |                                                       |                                                                    | -6.13                                                             | 264.98<br>-47:98                                          |
| TRUNK PRESS                                                   | 115.794                                                       | 40                                                    | 220 (4                                                             | 714 04                                                            |                                                           |
| FSF                                                           | 65.971                                                        |                                                       | 59.64                                                              |                                                                   | 452.62<br>-3.23                                           |
|                                                               |                                                               |                                                       |                                                                    |                                                                   |                                                           |
|                                                               |                                                               |                                                       |                                                                    |                                                                   |                                                           |
| LVT 2                                                         | FLOW                                                          | 586. C                                                | FSF <i>F</i>                                                       | AN IIRAG                                                          | 951. LB                                                   |
|                                                               |                                                               |                                                       |                                                                    |                                                                   |                                                           |
|                                                               | 0.022                                                         | 34                                                    |                                                                    | 2.88                                                              | 951. LB<br>3.82<br>-1.33                                  |
| DRIVER ACC                                                    | 0.022<br>0.863                                                | 34<br>0.60                                            | 1.75<br>-0.71                                                      | 2.88<br>-1.11                                                     | 3.82<br>-1.33                                             |
| DRIVER ACC<br>G,#2                                            | 0.022<br>0.863<br>0.006                                       | 34<br>0.60<br>36                                      | i.75                                                               | 2.88<br>-1.11                                                     | 3.82                                                      |
| DRIVER ACC<br>Gy#2<br>TROOF ACC                               | 0.022<br>0.863<br>0.006<br>0.519                              | 34<br>0.60<br>36<br>0.50                              | 1.75<br>-0.71<br>1.02<br>-0.52                                     | 2.88<br>-1.11<br>1.76<br>-0.78                                    | 3.82<br>-1.33<br>3.00<br>-0.98                            |
| DRIVER ACC<br>Gy#2<br>TROOP ACC<br>Gy#2                       | 0.022<br>0.863<br>0.006<br>0.519                              | 34<br>0.60<br>36<br>0.50                              | 1.75<br>-0.71<br>1.02<br>-0.52                                     | 2.88<br>-1.11<br>1.76<br>-0.78                                    | 3.82<br>-1.33<br>3.00                                     |
| DRIVER ACC<br>Gy#2<br>TROOP ACC<br>Gy#2<br>HOR ACC            | 0.022<br>0.863<br>0.006<br>0.519<br>-0.018<br>0.261<br>68.658 | 34<br>0.60<br>36<br>0.50<br>44<br>0.25<br>24          | 1.75<br>-0.71<br>1.02<br>-0.52<br>0.33<br>-0.37                    | 2.88<br>-1.11<br>1.76<br>-0.78<br>0.55<br>-0.55                   | 3.82<br>-1.33<br>3.00<br>-0.98<br>0.86<br>-0.90           |
| DRIVER ACC<br>G,#2<br>TROOP ACC<br>G,#2<br>HOR ACC<br>G,#2    | 0.022<br>0.863<br>0.006<br>0.519<br>-0.018<br>0.261           | 34<br>0.60<br>36<br>0.50<br>44<br>0.25<br>24          | 1.75<br>-0.71<br>1.02<br>-0.52<br>0.33<br>-0.37                    | 2.88<br>-1.11<br>1.76<br>-0.78<br>0.55<br>-0.55                   | 3.82<br>-1.33<br>3.00<br>-0.98                            |
| DRIVER ACC G, #2 TROOP ACC G, #2 HOR ACC G, #2 CUSH PRESS FSF | 0.022<br>0.863<br>0.006<br>0.519<br>-0.018<br>0.261<br>68.658 | 34<br>0.60<br>36<br>0.50<br>44<br>0.25<br>24<br>24.00 | 1.75<br>-0.71<br>1.02<br>-0.52<br>0.33<br>-0.37<br>135.26<br>38.40 | 2.88<br>-1.11<br>1.76<br>-0.78<br>0.55<br>-0.55<br>195.04<br>9.87 | 3.82<br>-1.33<br>3.00<br>-0.98<br>0.86<br>-0.90<br>287.13 |

DAVIDSON LABORATORY

TABLE 9-9

28-0CT-82

## ACV BARGE TRAIN (Continued)

| RUN | 133 |   | 132 |
|-----|-----|---|-----|
| NUN | 100 | • | 1)2 |

|             | D 44.8<br>HT 30000. |            |        |         | WAVE ENCOUNTERS 28<br>SEA STATE 2<br>LCG 110.0 IN |
|-------------|---------------------|------------|--------|---------|---------------------------------------------------|
|             | MEAN/RMS            | OSC/BU     | F AVG  | 1/3     | 1/10 EXTREME                                      |
| LVT 3       | FLOW                | 65 C       | FSF    | AN DRAG | 1140. LB                                          |
| DRIVER ACC  | 0.021               | <b>3</b> 9 | 1.05   | 1.66    | 3.07                                              |
| G,#3        | 0.598               | 0.60       | -0.59  | -0.92   | -1.11                                             |
| TROOF ACC   | -0.)13              | 38         | 0.77   | 1.18    | 2.35                                              |
| G:#3        | 0.450               | 0.45       | -0.42  | -0.69   | -0.93                                             |
| HUR ACC     | 0.025               | 29         | 0.42   | 0.62    | 0.79                                              |
| G,#3        | 0.225               | 0.35       | -0.33  |         | -0.72                                             |
| CUSH FRESS  | 67.001              | 37         | 108.29 | 129.22  | 144.98                                            |
| FSF         | 34.533              | 24.00      | 24.47  | -0.80   | -21.82                                            |
| TRUNK FRESS | 114.363             | 43         | 161.76 | 185.61  | 213.53                                            |
| FSF         | 32.453              | 36.00      | 77.20  | 57.09   | 41.35                                             |
| LVT 4       | FLOW                | 600. CF    |        | N DRAG  | 1030. LB                                          |
| DRIVER ACC  | 0.000               | 38         | 1.03   | 1.59    | 2.56                                              |
| G, #4       | 0.652               | 0.60       | -0.55  | -1.01   | -1.23                                             |
| TROOF ACC   | 0.003               | 34         | 0.67   | 1.07    | 1.45                                              |
| G,#4        | 0. <b>3</b> 97      | 0.50       | -0.43  |         | -0.78                                             |
| HOR ACC     | 0.040               | 19         | 0.46   | 0.65    | 0.86                                              |
| G•#4        | 0.210               | 0.40       | -0.28  | -0.45   | -0.64                                             |
| CUSH FIRESS | 72.195              | 32         | 108.06 | 128.78  | 1.45 <b>.23</b>                                   |
| PSF         | 27.226              | 24.00      | 40.84  | 19.60   | 7 <b>.9</b> 2                                     |
| TRUNK PRESS | 112.606             | 41         | 171.08 | 204.45  | 255 <b>.</b> 28                                   |
| PSF         | 37.381              | 36.00      | 77.70  | 52.29   | 29 <b>.</b> 85                                    |



FIGURE 1 - BOW VIEW OF ACV MODEL ON CUSHION



**BOW QUARTER VIEW** 



SIDE VIEW

FIGURE 2 - ACV MODEL ON CUSHION







STERN VIEW



BOW VIEW

FIGURE & - UNDERSIDE OF ACV MODEL HULL





FIGURE A FAN CALIBRATION SETUP



KEUFFEL & ESSER CO MACHINES



KEN HENDEL & ESSENT CO MANUAL MUCHES

KUNTHEL & ESSENCE MINISTER OF THE BOTTOM OF

KEUPPEL & ESSER CO MADE IN U.S.A.







ENCHANT OF THE MENT OF THE WASHINGTON



FIGURE 17 EXPERIMENTAL WAVE SPECTRUM SIGNIFICANT HEIGHT 2.2 FT



WE KENNEL A STATE OF DE WAY AND A STATE OF THE WAY IN T

**de 1356** 



ACCUMANCE OF HAME OF OUR OF MANAGE AND ACCUMANCE OF MANAGEMENT AND ACCUMANCE OF MANAGEMENT AND ACCUMANCE OF THE PROPERTY OF TH



TO X TO LO TO INCHES AND INCHES





C

SHOW OF SECULO PARTY OF SECULOR X OF SECULOR S

O

|                                        | . :                                    |          |                                         |          |                | ·<br>:      | ·               |                                         |                           |                                                  | ·<br>                                             | ·                     | ••••                                             |
|----------------------------------------|----------------------------------------|----------|-----------------------------------------|----------|----------------|-------------|-----------------|-----------------------------------------|---------------------------|--------------------------------------------------|---------------------------------------------------|-----------------------|--------------------------------------------------|
|                                        |                                        |          |                                         |          | : <u>.</u> .   |             |                 |                                         |                           | -                                                |                                                   |                       |                                                  |
|                                        |                                        |          |                                         | : ·.     |                |             | -Eout-          | i<br>Hote T                             | '<br>F <del>ra</del> in₃⊹ | 22.7. F                                          | t- Soar                                           | ina                   | <del>.</del>                                     |
| _ :                                    |                                        |          |                                         |          |                |             |                 |                                         | [rain,                    |                                                  |                                                   |                       |                                                  |
|                                        |                                        | -        |                                         |          |                |             |                 |                                         | •                         | -                                                | 1                                                 |                       |                                                  |
| · · ·                                  | Troo                                   | p RMS    |                                         |          |                |             | Three           | - Un+t                                  | <del>Trai</del> n,        | - 22.44.                                         | + € - SPe                                         | HC+NG                 |                                                  |
| 1                                      |                                        | 9        |                                         | 1        |                |             |                 |                                         |                           |                                                  | i                                                 | :                     |                                                  |
| *****                                  | -1-0                                   |          | 1 2 2 2 2 2                             |          |                |             |                 |                                         | <del>:</del>              | <u> </u>                                         | <u>:</u>                                          |                       | <u> </u>                                         |
|                                        |                                        |          | 11.12                                   |          |                |             |                 |                                         | <del> </del>              |                                                  | <del>.</del>                                      | • :                   | ÷ := :                                           |
|                                        | 0.8                                    |          |                                         | <u> </u> |                | 1-1-1-1     |                 |                                         |                           | <u></u>                                          | <u> </u>                                          | !                     |                                                  |
|                                        |                                        |          |                                         |          |                | : : · · · · | <del></del> -   |                                         | <u> </u>                  | :                                                | ļ                                                 | :                     | <u>.i</u>                                        |
|                                        | 0.6                                    |          |                                         | <u> </u> |                |             | <u> </u>        | 1                                       |                           | <u> </u>                                         | 1                                                 |                       | <del>                                     </del> |
| 1111111                                |                                        |          | 1                                       |          | <u> </u>       |             |                 | .1 221<br>10 - 221                      |                           | ļ <u>.</u>                                       | <u>.</u>                                          | ·                     | :<br>                                            |
|                                        | 0,4                                    |          |                                         |          |                |             |                 | *************************************** | <u>}</u>                  | ====1                                            | <u> </u>                                          |                       |                                                  |
|                                        |                                        |          |                                         |          | 9              | لسسير       |                 | •                                       |                           |                                                  | <u>.</u>                                          |                       |                                                  |
|                                        | 0,2                                    |          |                                         |          |                | •           |                 |                                         |                           |                                                  |                                                   |                       |                                                  |
|                                        |                                        |          |                                         |          |                |             |                 |                                         |                           |                                                  | 1                                                 |                       |                                                  |
|                                        |                                        |          | ļ                                       |          |                |             |                 |                                         |                           |                                                  |                                                   | 1.                    |                                                  |
|                                        | 0                                      |          |                                         | n        |                | 71          |                 | 30                                      |                           | 10                                               |                                                   | 50                    |                                                  |
|                                        |                                        | <u> </u> |                                         | <b>M</b> |                |             | mph:            |                                         |                           |                                                  |                                                   |                       | 1                                                |
|                                        | <b>*</b>                               | 100      |                                         |          |                |             | mptr.           |                                         |                           |                                                  | 1                                                 | 1 1 1 1               |                                                  |
|                                        | UE IVE                                 | r RMS    |                                         |          |                |             |                 |                                         |                           | 1                                                |                                                   | 1 1 1 1               | · <del> </del>                                   |
| · :::::::::::::::::::::::::::::::::::: | 1.0                                    |          | 1:::::::::::::::::::::::::::::::::::::: |          |                | 1           | 11777           |                                         |                           | 1                                                | 1                                                 | 1                     | 1                                                |
|                                        |                                        |          |                                         |          |                | 11          |                 |                                         |                           |                                                  | 1                                                 | 1                     | ·!                                               |
|                                        | 0.8                                    | -        |                                         |          | <u> </u>       |             | : <del>:</del>  | 1                                       | <b>C</b>                  | <u>:</u>                                         | · <del>· · · · · · · · · · · · · · · · · · </del> | <del>-</del>          | <del>.</del>                                     |
| <u> </u>                               |                                        |          |                                         |          | 10.27          |             |                 |                                         |                           |                                                  |                                                   | · <u> </u>            | <br>. <b>:</b>                                   |
|                                        | 0.6                                    |          |                                         | 7.11.2   |                | <u> </u>    | ļ <del></del> . |                                         | <u> </u>                  |                                                  | <del>.</del>                                      | <u> </u>              |                                                  |
|                                        |                                        |          | 1                                       |          |                |             |                 | <b>Φ</b>                                |                           |                                                  |                                                   | :                     | _i                                               |
|                                        | 0.4                                    |          |                                         |          |                | ، سرو       | <b>n</b> -      |                                         | 11                        |                                                  |                                                   | :::                   |                                                  |
|                                        |                                        |          |                                         |          |                |             |                 |                                         |                           |                                                  |                                                   |                       |                                                  |
|                                        |                                        |          | •                                       | 1        |                |             |                 |                                         |                           | 1                                                |                                                   |                       | :                                                |
|                                        | <del></del>                            |          |                                         |          | 1              |             |                 |                                         |                           |                                                  |                                                   | :                     |                                                  |
|                                        | 1                                      | 1        | <del> :-</del> -                        |          | - <u>ii-</u> - |             |                 |                                         |                           | <u> </u>                                         |                                                   | :: : : <del>-</del> : |                                                  |
|                                        | 0:                                     | h        |                                         | ıh.      | 1 2::::-       | 2 <b>n</b>  |                 | 20                                      | +                         | +0                                               |                                                   | 50                    |                                                  |
|                                        | 1::-:-                                 | p        |                                         | ib<br>:  |                | 20          |                 |                                         |                           |                                                  |                                                   |                       | -                                                |
|                                        | <u> </u>                               | 1        | 1                                       | 12.7.7.7 | <u>-:</u>      | V , m       | pn -            | 1                                       | 1                         | <del>                                     </del> |                                                   | <del></del>           | <del></del>                                      |
|                                        | 1                                      |          |                                         |          |                | 1           |                 | <u> </u>                                |                           |                                                  |                                                   |                       |                                                  |
|                                        | ###################################### | FIGUR    | E 24 1                                  | HS VE    |                | ACCELE      |                 | NS IN                                   | THE TH                    | RD UN                                            | <u> </u>                                          |                       |                                                  |
|                                        | 1                                      |          | .1                                      |          | 5              | EA STAT     | E 2             | ; ;<br>;;                               |                           |                                                  | · · · · · · · · · · · · · · · · · · ·             |                       |                                                  |
|                                        |                                        |          |                                         |          | · i .          | : _ :::::   |                 | ` :: .: .                               |                           |                                                  |                                                   | : ::                  | ; ;                                              |
|                                        |                                        |          |                                         |          | _ <del></del>  |             | <u> </u>        |                                         |                           | <del></del>                                      | <u></u>                                           | <del></del>           | <del>_                                    </del> |
|                                        |                                        |          |                                         |          |                |             | <del> </del>    |                                         |                           |                                                  | <u> </u>                                          |                       |                                                  |



TOTAL TO A MACHINE OF THE WORLD

APPENDIX
ACV BARGE TRAIN
VIDEO SCENARIO

| SEA<br>STATE | NO. OF<br>UNITS | TYPE OF TOW | INTER-<br>VEHICLE<br>SPACING<br>ft | TRACK<br>CONFIGURATION | RUN | SHIP<br>SPEED<br>mph | FOOTAGE |
|--------------|-----------------|-------------|------------------------------------|------------------------|-----|----------------------|---------|
| Calm         | 1               | Kelicopter  | NA                                 | Down                   | 1   | 5.0                  | 6       |
|              |                 |             |                                    |                        | 2   | 5.0                  | 14      |
|              |                 |             |                                    |                        | 3   | 10.0                 | 25      |
|              |                 |             |                                    |                        | 4   | 15.0                 | 30      |
|              |                 |             |                                    |                        | 5   | 20.0                 | 33      |
|              |                 |             |                                    |                        | 6   | 25.0                 | 35      |
|              |                 |             |                                    |                        | 7   | 30.0                 | 39      |
|              |                 |             |                                    |                        | 8   | 35.0                 | 43      |
|              |                 |             |                                    |                        | 9   | 40.0                 | 45      |
|              |                 |             |                                    |                        | 10  | 40.0                 | 46      |
|              |                 |             |                                    |                        | 11  | 45.0                 | 47      |
|              |                 |             |                                    |                        | 12  | 7.5                  | 48      |
|              |                 |             |                                    |                        | 13  | 12.5                 | 56      |
|              |                 |             |                                    |                        | 14  | 11.0                 | 60      |
|              |                 |             |                                    | •                      | 15  | 40.0                 | 65      |
| Calm         | 2               | Helicopter  | 22.7                               | Down                   | 16  | 5.0                  | 69      |
|              |                 |             |                                    |                        | 17  | 10.0                 | 81      |
|              |                 |             |                                    |                        | 13  | 10.0                 | 86      |
|              |                 |             |                                    |                        | 19  | 15.0                 | 89      |
|              |                 |             |                                    |                        | 20  | 15.0                 | 94      |
|              |                 |             |                                    |                        | 21  | 20.0                 | 97      |
|              |                 |             |                                    |                        | 22  | 20.0                 | 103     |
|              |                 |             |                                    |                        | 23  | 25.0                 | 105     |
|              |                 |             |                                    |                        | 74  | 30.0                 | 107     |
|              |                 |             |                                    |                        | 45  | 35.0                 | 109     |
|              |                 |             |                                    |                        | 26  | 40.0                 | 111     |

# APPENDIX VIDEO SCENARIO (Continued)

| SEA<br>STATE | NO. OF<br>UNITS | TYPE OF TOW | INTER-<br>VEHICLE<br>SPACING<br>ft | TRACK<br>CONFIGURATION | RUN | SHIP<br>SPEED<br>mph | FOOTAGE |
|--------------|-----------------|-------------|------------------------------------|------------------------|-----|----------------------|---------|
| Calm         | 2               | Helicopter  | 22.7                               | Down                   | 27  | 40.0                 | 112     |
|              |                 |             |                                    |                        | 28  | 45.0                 | 113     |
|              |                 |             |                                    |                        | 29  | 7.5                  | 117     |
|              |                 |             |                                    |                        | 30  | 7.5                  | 120     |
|              |                 |             |                                    |                        | 31  | 11.0                 | 125     |
| Calm         | 2               | Helicopter  | 42.7                               | Down                   | 32  | 5.0                  | 128     |
|              |                 |             |                                    |                        | 33  | 7.5                  | 136     |
|              |                 |             |                                    |                        | 34  | 10.0                 | 141     |
|              |                 |             |                                    |                        | 35  | 11.0                 | 143     |
|              |                 |             |                                    |                        | 36  | 15.0                 | 148     |
|              |                 |             |                                    |                        | 37  | 20.0                 | 155     |
|              |                 |             |                                    |                        | 38  | 25.0                 | 160     |
|              |                 |             |                                    |                        | 40  | 15.0                 | 161     |
|              |                 |             |                                    |                        | 41  | 20.0                 | 164     |
|              |                 |             |                                    |                        | 42  | 20.0                 | 166     |
|              |                 |             |                                    |                        | 43  | 25.0                 | 169     |
|              |                 |             |                                    |                        | 44  | 30.0                 | 17.2    |
|              |                 |             |                                    |                        | 45  | 35.0                 | 175     |
|              |                 |             |                                    |                        | 46  | 40.0                 | 179     |
|              |                 |             |                                    |                        | 47  | 45.0                 | 180     |
| Calm         | 2               | LCAC        | 22.7                               | Down                   | 49  | 7.5                  | 182     |
|              |                 |             |                                    |                        | 50  | 10.0                 | 195     |
|              |                 |             |                                    |                        | 51  | 11.0                 | 197     |
|              |                 |             |                                    |                        | 52  | 12.5                 | 200     |
|              |                 |             |                                    |                        | 53  | 15.0                 | 204     |

APPENDIX
VIDEO SCENARIO
(Continued)

| SEA<br>STATE | NO. OF<br>UNITS | TYPE OF TOW | INTER-<br>VEHICLE<br>SPACING<br>ft | TRACK<br>CONFIGURATION | RUN | SHIP<br>SPEED<br>mph | FOOTAGE |
|--------------|-----------------|-------------|------------------------------------|------------------------|-----|----------------------|---------|
| Calm         | 2               | LCAC        | 22.7                               | Down                   | 54  | 20.0                 | 209     |
|              | _               |             |                                    |                        | 55  | 30.0                 | 212     |
|              |                 |             |                                    |                        | 56  | 45.0                 | 215     |
|              |                 |             |                                    |                        | 57  | 40.0                 | 217     |
| Calm         | 3               | LCAC        | 22.7                               | Down                   | 59  | 5.0                  | 219     |
|              |                 |             |                                    |                        | 60  | 7.5                  | 228     |
|              |                 |             |                                    |                        | 61  | 10.0                 | 233     |
|              |                 |             |                                    |                        | 62  | 12.5                 | 238     |
|              |                 |             |                                    |                        | 64  | 15.0                 | 241     |
|              |                 |             |                                    |                        | 65  | 20.0                 | 247     |
|              |                 |             |                                    |                        | 66  | 30.0                 | 249     |
|              |                 |             |                                    |                        | 67  | 45.0                 | 251     |
|              |                 |             |                                    |                        | 69  | 11.0                 | 252     |
|              |                 |             |                                    |                        | 70  | 13.5                 | 256     |
| Calm         | 2               | LCAC        | 22.7                               | Retracted              | 72  | 7.5                  | 259     |
|              |                 |             |                                    |                        | 73  | 10.0                 | 265     |
|              |                 |             |                                    |                        | 74  | 11.0                 | 269     |
|              |                 |             |                                    |                        | 75  | 12.5                 | 273     |
|              |                 |             |                                    |                        | 76  | 15.0                 | 276     |
|              |                 |             |                                    |                        | 77  | 20.0                 | 279     |
|              |                 |             |                                    |                        | 78  | <b>30.</b> 0         | 281     |
|              |                 |             |                                    |                        | 79  | 45.0                 | 283     |
|              |                 |             |                                    |                        | 80  | 40.0                 | 288     |
|              |                 |             |                                    |                        | 81  | 35.0                 | 291     |

APPENDIX
VIDEO SCENARIO
(Continued)

| SEA<br>STATE | NO. OF<br>UNITS | TYPE OF TOW | INTER-<br>VEHICLE<br>SPACING<br>ft | TRACK<br>CONFIGURATION | RUN | SHIP<br>SPEED<br>mph | FOOTAGE |
|--------------|-----------------|-------------|------------------------------------|------------------------|-----|----------------------|---------|
| 2            | 3               | LCAC        | 22.7                               | Down                   | 86  | 5.0                  | 304     |
| -            |                 |             |                                    |                        | 87  | 10.0                 | 312     |
|              |                 |             |                                    |                        | 88  | 12.5                 | 317     |
|              |                 |             |                                    |                        | 89  | 15.0                 | 320     |
|              |                 |             |                                    |                        | 90  | 20.0                 | 323     |
|              |                 |             |                                    |                        | 92  | 30.0                 | 325     |
|              |                 |             |                                    |                        | 93  | 45.0                 | 328     |
| 2            | 4               | LCAC        | 22.7                               | Down                   | 95  | 12.5                 | 338     |
| _            |                 |             |                                    |                        | 96  | 10.0                 | 342     |
|              |                 |             |                                    |                        | 98  | 10.0                 | 348     |
|              |                 |             |                                    |                        | 99  | 12.5                 | 353     |
|              |                 |             |                                    |                        | 100 | 15.0                 | 356     |
|              |                 |             |                                    |                        | 101 | 20.0                 | 360     |
|              |                 |             |                                    |                        | 102 | 30.0                 | 363     |
|              |                 |             |                                    |                        | 103 | 45.0                 | 364     |
|              |                 |             |                                    |                        | 105 | 25.0                 | 367     |
|              |                 |             |                                    |                        | 106 | 35.0                 | 369     |
|              |                 |             |                                    |                        | 107 | 45.0                 | 371     |
|              |                 |             |                                    |                        | 108 | 20.0                 | 374     |
|              |                 |             |                                    |                        | 109 | 30.0                 | 377     |
|              |                 |             |                                    |                        | 110 | 45.0                 | 379     |
|              |                 |             |                                    |                        | 111 | 35.0                 | 381     |
| 2            | 3               | LCAC        | 22.7                               | Down                   | 112 | 10.0                 | 383     |
| -            | -               |             |                                    |                        | 113 | 12.5                 | 389     |
|              |                 |             |                                    |                        | 114 | 15.0                 | 393     |

APPENDIX
VIDEO SCENARIO
(Continued)

| SEA<br>STATE | NO. OF<br>UNITS | TYPE OF TOW | INTER-<br>VEHICLE<br>SPACING<br>ft | TRACK<br>CONFIGURATION | RUN | SHIP<br>SPEED<br>mph | FOOTAGE |
|--------------|-----------------|-------------|------------------------------------|------------------------|-----|----------------------|---------|
| 2            | 3               | LCAC        | 22.7                               | Down                   | 115 | 20.0                 | 397     |
|              |                 |             |                                    |                        | 116 | 30.0                 | 400     |
|              |                 |             |                                    |                        | 117 | 25.0                 | 402     |
|              |                 |             |                                    |                        | 118 | 25.0                 | 404     |
|              |                 |             |                                    |                        | 119 | 35.0                 | 406     |
|              |                 |             |                                    |                        | 120 | 35.0                 | 408     |
|              |                 |             |                                    |                        | 121 | 45.0                 | 409     |
|              | ,               |             | 45.5                               | _                      | 400 | 5.0                  | 4.0     |
| 2            | 4               | LCAC        | 13.3                               | Down                   | 123 | 5.0                  | 412     |
|              |                 |             |                                    |                        | 124 | 10.0                 | 417     |
|              |                 |             |                                    |                        | 125 | 12.5                 | 422     |
|              |                 |             |                                    |                        | 126 | 15.0                 | 426     |
|              |                 |             |                                    |                        | 127 | 20.0                 | 429     |
|              |                 |             |                                    |                        | 128 | 20.0                 | 432     |
|              |                 |             |                                    |                        | 129 | 30.0                 | 434     |
|              |                 |             |                                    |                        | 130 | 30.0                 | 438     |
|              |                 |             |                                    |                        | 131 | 30.0                 | 439     |
|              |                 |             |                                    |                        | 132 | 45.0                 | 441     |
|              |                 |             |                                    |                        | 133 | 45.0                 | 443     |
|              |                 |             |                                    |                        | 134 | 35.0                 | 444     |
|              |                 |             |                                    |                        | 135 | 35.0                 | 446     |
|              |                 |             |                                    |                        | 136 | 25.0                 | 448     |
|              |                 |             |                                    |                        | 137 | 25.0                 | 449     |