Introducción a los espacios de Hilbert

Pregunta 1 (3 puntos)

Sea $N \in \mathbb{N}$ fijo tal que $N \geq 2$. Sea $F_N = \{x = \{x_n\}_{n \in \mathbb{N}} \in \ell^2(\mathbb{N}) \colon \sum_{n=1}^N x_n = 0\}$.

- a) Demuestre que F_N es un subespacio vectorial cerrado de $\ell^2(\mathbb{N})$.
- b) Demuestre que $F_N^{\perp} = \{x = \{x_n\}_{n \in \mathbb{N}} \in \ell^2(\mathbb{N}) : x_1 = x_2 = \dots = x_N \ y \ x_n = 0 \ \text{si} \ n > N \}.$
- c) Sea $\mathbf{e}_1 = \{a_n\}_{n \in \mathbb{N}}$ tal que $a_1 = 1$ y $a_n = 0$ para todo $n \geq 2$. Calcule la distancia de \mathbf{e}_1 a F_N .

Solución: a) F_N es subespacio vectorial de $\ell^2(\mathbb{N})$ pues si $x=\{x_1,x_2,\ldots,x_n,\ldots\},\ y=\{y_1,y_2,\ldots,y_n,\ldots\}\in F_N$ y $\alpha,\beta\in\mathbb{K}$ entonces $\alpha x+\beta y\in F_N$ ya que $\sum_{n=1}^N(\alpha x_n+\beta y_n)=\alpha\sum_{n=1}^Kx_n+\beta\sum_{n=1}^Ny_n=0$. Para ver que F_N es cerrado basta observar que si $\{x^{(k)}\}_{k=1}^\infty$ es una sucesión en F_N que converge en $\ell^2(\mathbb{N})$ a x, siendo para cada k, $x^{(k)}=\{x_1^{(k)},x_2^{(k)},\ldots,x_n^{(k)},\ldots\}$ y $x=\{x_1,x_2,\ldots,x_n,\ldots\}$, se tiene $\lim_k x_n^{(k)}=x_n$ y

$$\sum_{n=1}^{N} x_n = \sum_{n=1}^{N} \lim_{k} x_n^{(k)} = \lim_{k} \left(\sum_{n=1}^{N} x_n^{(k)} \right) = 0.$$

Notas: 1) También se puede demostrar que F_N es un subespacio vectorial cerrado viendo que la aplicación $T \colon \ell^2(\mathbb{N}) \longrightarrow \mathbb{K}$ definida mediante $T(\{x_n\}_{n \in \mathbb{N}}) = \sum_{n=1}^N x_n$ es un operador lineal (por tanto, el núcleo es subespacio vectorial) continuo (por tanto, el núcleo es cerrado). La continuidad se puede deducir de si $x = \{x_n\}_{n \in \mathbb{N}}$ entonces

$$|T(x)| = |\sum_{n=1}^{N} x_n| = |\langle x, \delta \rangle| \le ||x||_2 ||\delta||_2 = \sqrt{N} ||x||_2$$

donde se ha aplicado la desigualdad de Cauchy Schwarz a x y a δ , siendo δ la sucesión cuyos N primeros términos son unos y el resto ceros.

Obsérvese que el operador T es de la forma $T(x) = \langle x, y \rangle$ para $y = \delta$. En el ejemplo 6.15 se demostró que es un operador lineal y continuo. Lo anterior no es más que una demostración directa de la continuidad.

2) Otra forma de demostrar que F_N es un subespacio vectorial cerrado consiste en demostrar que $F_N = \{\delta\}^{\perp}$ y aplicar la proposición 2.33. Basta observar que

$$x = \{x_n\}_{n \in \mathbb{N}} \in \{\delta\}^{\perp} \iff \langle x, \delta \rangle = 0 \iff \sum_{n=1}^{N} x_n = 0 \iff x \in F_N.$$

b) Veamos que $F_N^{\perp} = A := \{ \{x_n\}_{n=1}^{\infty} : x_1 = x_2 = \dots = x_N \ y \ x_n = 0 \ \text{si} \ n > N \}$. En efecto si $x = \{x_n\} \in A$ entonces $x_1 = x_2 = \dots = x_N \ y \ x_n = 0 \ \text{si} \ n > N \ \text{e} \ y = \{y_1, y_2, \dots, y_n, \dots\} \in F_N \}$ entonces

$$\langle x, y \rangle = \sum_{n=1}^{N} x_n \overline{y_n} = x_1 \overline{\left(\sum_{n=1}^{N} y_n\right)} = 0$$

y por tanto $x \in F_N^{\perp}$.

Inversamente si $x \in F_N^{\perp}$, $\langle x, y \rangle = 0$ para todo $y \in F_N$. En particular, x es ortogonal a $v_1 = (1, -1, 0, \ldots)$, término N

 $v_2 = (1, 0, -1, 0, \dots), \dots, y \ v_{N-1} = (1, 0, \dots, -1), \dots, y \ \text{a todo } \mathbf{e}_n = \{\delta_{n,k}\}_{k=1}^{\infty} \in F_N \text{ si } n > N.$

En consecuencia $x \in A$ pues se cumple que

$$0 = \langle x, v_n \rangle = x_1 - x_{n+1} = 0 \text{ si } n \le N - 1 \text{ y}$$

$$0 = \langle x, \mathbf{e}_n \rangle = \sum_{k=1}^{\infty} x_k \delta_{n,k} = x_n \text{ si } n > N.$$

c) Sea la descomposición ortogonal $\mathbf{e}_1 = x + y$ siendo $x \in F_N$ e $y \in F_N^{\perp}$.

Por el apartado b) $y = \alpha \delta = \{\overbrace{\alpha, \alpha, \cdots, \alpha}^{N}, 0 \cdots\}$ y en consecuencia $x = \mathbf{e}_1 - y = \{1 - \alpha, -\alpha, \cdots, -\alpha, 0, \cdots\}$.

Como $x \in F_N$ resulta $1 - \alpha$ $\overbrace{-\alpha, \dots - \alpha}^{N-1 \text{ veces}} = 1 - N\alpha = 0$ Por tanto, $\alpha = 1/N$. Por último,

$$d(\mathbf{e}_1, F_N) = ||y|| = \frac{1}{N} ||\delta||_2 = \frac{\sqrt{N}}{N}.$$

Pregunta 2 (2 puntos) Sean $\mathcal H$ un espacio prehilbertiano y $\{x_1,x_2,\ldots,x_N\}$ un sistema de $\mathcal H$ tal que

$$\forall n \in \{1, 2, ..., N\}, \|x_i\| \ge 1 \quad \text{y} \quad \forall x \in \mathcal{H}, \|x\|^2 = \sum_{i=1}^{N} |\langle x, x_i \rangle|^2.$$

Demuestre que $\{x_1, x_2, \dots, x_N\}$ es una base ortonormal de \mathcal{H} .

Solución: Para cada j aplicamos la igualdad a $x = x_j$ y se obtiene $||x_j||^2 = \sum_{i=1}^N \left| \langle x_j, x_i \rangle \right|^2 = \left| \langle x_j, x_j \rangle \right|^2 + \sum_{i=1, i \neq j}^N \left| \langle x_j, x_i \rangle \right|^2$.

Por tanto,

$$\sum_{i=1, i \neq j}^{N} \left| \langle x_j, x_i \rangle \right|^2 = \|x_j\|^2 - \|x_j\|^4 = \|x_j\|^2 (1 - \|x_j\|^2)$$

Como $\sum_{i=1,i\neq j}^{N} \left| \langle x_j, x_i \rangle \right|^2 \ge 0$ y $\|x_j\|^2 \left(1 - \|x_j\|^2\right) \le 0$, pues por hipótesis $\|x_j\| \ge 1$, se tiene la igualdad si y sólo si

 $\sum_{i=1,i\neq j}^{N} \left| \langle x_j, x_i \rangle \right|^2 = 0 \text{ y } 1 - \|x_j\|^2 = 0. \text{ Por tanto se cumple que } \langle x_j, x_i \rangle \text{ para todo } i \neq j \text{ y } \|x_j\| = 1. \text{ Por tanto, } \{x_1, x_2, \dots, x_N\} \text{ es un sistema ortonormal de } \mathcal{H}.$

Por otro lado $\forall x \in \mathcal{H}$, si descomponemos ortogonalmente $x = \sum_{i=1}^{N} \langle x, x_i \rangle x_i + y$ se cumple que $||x||^2 = \sum_{i=1}^{N} |\langle x, x_i \rangle|^2 + ||y||^2 = \sum_{i=1}^{N} |\langle x, x_i \rangle|^2 + ||y||^2$. Pero por hipótesis, $||x||^2 = \sum_{i=1}^{N} |\langle x, x_i \rangle|^2$. En consecuencia y = 0 y por tanto, $\{x_1, x_2, \dots, x_N\}$ es una base ortonormal de \mathcal{H} .

Pregunta 3 (2,5 puntos)

Sea $\{\alpha_n\}_{n\in\mathbb{N}}$ una sucesión de números complejos. Sea la aplicación:

$$T: \qquad \ell^2(\mathbb{N}) \qquad \longrightarrow \ell^2(\mathbb{N})$$
$$x = \{x_n\}_{n \in \mathbb{N}} \quad \longmapsto T(x) = \{\alpha_n x_n\}_{n \in \mathbb{N}}$$

- a) Demuestre que el operador lineal T es acotado si y sólo si la sucesión $\{\alpha_n\}_{n\in\mathbb{N}}$ es acotada. Determine en ese caso la norma de T.
- b) Supongamos que $\{\alpha_n\}_{n\in\mathbb{N}}$ es acotada. ¿Qué debe cumplir $\{\alpha_n\}_{n\in\mathbb{N}}$ para que T sea un operador autoadjunto?

Solución: a) Supongamos que la sucesión $\{\alpha_n\}_{n\in\mathbb{N}}$ es acotada. Veamos que T es acotado. En efecto:

$$||T(x)||_2 = \left(\sum_{n=1}^{\infty} |\alpha_n|^2 |x_n|^2\right)^{1/2} \le \left(\sum_{n=1}^{\infty} M^2 |x_n|^2\right)^{1/2} = M||x||_2$$

siendo $M = \sup_n |\alpha_n|$. Además de la desigualdad anterior se deduce que $||T|| \leq M$. Por otro lado, para $\mathbf{e}_j := \{\delta_{j,k}\}_{k=1}^{\infty}$ se tiene que

$$||T(\mathbf{e}_j)|| = ||\{0, \cdots, \alpha_j, 0, \cdots\}|| = |\alpha_j|$$

para todo j, por tanto

$$||T|| = \sup_{\|x\|=1} ||T(x)|| \ge \sup_{j} |\alpha_{j}| = M.$$

En consecuencia, ||T|| = M.

Recíprocamente, supongamos que T es acotado. Entonces, para todo $x \in \ell^2(\mathbb{N})$ se tiene que

$$||T(x)||_2 \le ||T|| ||x||_2||.$$

En particular $||T(\mathbf{e}_n)||_2 = |\alpha_j| \le ||T|| ||\mathbf{e}_n||_2 || = ||T||$ para todo n y en consecuencia $\{\alpha_n\}_{n\in\mathbb{N}}$ es acotada.

b) El operador T es autoadjunto si y sólo si se cumple que

$$\langle T(x), y \rangle = \langle x, T(y) \rangle$$
 para todo $x, y \in \ell^2(\mathbb{N})$,

es decir,

$$\sum_{n} \alpha_{n} x_{n} \overline{y_{n}} = \sum_{n} x_{n} \overline{\alpha_{n} y_{n}} \text{ para todo } x, y \in \ell^{2}(\mathbb{N}).$$

En consecuencia, se debe cumplir que $\alpha_n = \overline{\alpha_n}$ para todo $n \in \mathbb{N}$.

Pregunta 4 (2,5 puntos)

Sabiendo que la transformada de Fourier de la función $g(t) = e^{-|t|}$ es $\sqrt{\frac{2}{\pi}} \frac{1}{1 + \omega^2}$ se pide:

- a) La transformada de Fourier de $f(t) = \frac{1}{1 + t^2}$.
- b) La transformada de Fourier de $h(t) = \frac{t}{(1+t^2)^2}$. Indicación: calcule previamente una primitiva de h.
- c) La transformada de Fourier de $k(t) = \frac{t^2}{(1+t^2)^2}$
- d) La transformada de Fourier de $f^2(t) = \frac{1}{(1+t^2)^2}$. Indicación: exprese f^2 en función f y k.

Solución: a) Como $\widehat{g}(\omega) = \sqrt{\frac{2}{\pi}} \frac{1}{1+\omega^2}$ por tanto $f(t) = \sqrt{\frac{\pi}{2}} \, \widehat{g}(t)$. En consecuencia, usando el corolario 7.26 a la función g continua y tal que $g, \widehat{g} \in L^1(\mathbb{R})$ se tiene

$$\widehat{f}(\omega) = \sqrt{\frac{\pi}{2}} \, \widehat{\widehat{g}}(\omega) = \sqrt{\frac{\pi}{2}} \, g(-\omega) = \sqrt{\frac{\pi}{2}} \, e^{-|\omega|} \, .$$

b) Teniendo en cuenta que $h(t) = \frac{t}{(1+t^2)^2} = \frac{1}{2}(1+t^2)'(1+t^2)^{-2}$ se tiene que $h(t) = -\frac{1}{2}f'(t)$. Por tanto, por el apartado 2 del teorema 7.18 aplicado a f,f' continuas y tales que $f,f'\in L^1(\mathbb{R})$ se obtiene

$$\widehat{h}(\omega) = -\frac{1}{2}\widehat{f}'(\omega) = -\frac{1}{2}(i\omega)\widehat{f}(\omega) = -\frac{\sqrt{\pi}}{2\sqrt{2}}i\omega e^{-|\omega|}.$$

c) Como $k(t) = t \frac{t}{(1+t^2)^2} = th(t)$ y $th(t) \in L^1(\mathbb{R})$ se tiene que

$$\widehat{k}(\omega) = \widehat{th(t)}(\omega) = -i\widehat{h}'(\omega)$$

donde la segunda igualdad se debe al primer apartado del teorema 7.18. Por tanto,

$$\widehat{k}(\omega) = \frac{\sqrt{\pi}}{2\sqrt{2}} \left(\omega e^{-|\omega|}\right)' = \frac{\sqrt{\pi}}{2\sqrt{2}} (1 - |\omega|) e^{-|\omega|}.$$

La derivada de $\omega e^{-|\omega|}$ se ha obtenido derivando por separado en $(-\infty,0)$ y en $(0,\infty)$. d) Basta observar que $\frac{1}{(1+t^2)^2} = \frac{1}{1+t^2} - \frac{t^2}{(1+t^2)^2}$, es decir $f^2(t) = f(t) - k(t)$. En consecuencia,

$$\widehat{f^2}(\omega) = \widehat{f}(\omega) - \widehat{k}(\omega) = \sqrt{\frac{\pi}{2}} e^{-|\omega|} - \frac{\sqrt{\pi}}{2\sqrt{2}} (1 - |\omega|) e^{-|\omega|} = \frac{\sqrt{\pi}}{2\sqrt{2}} e^{-|\omega|} \Big(1 + |\omega| \Big)$$