

BE GRAPHES 04/06/2019

RIZZI Emma et ROUSSEAU Patrick

- 1. Conception des algorithmes
- 2. Tests de validités
- 3. Tests de performance
- 4. Problème ouvert

1. Contexte et conception

Jeux de données :

- emptyPath
- singleNodePath
- infeasiblePath
- PathLength_i
- PathLengthCars_i
- PathTime_i
- PathTimeCars_i
- PathTimePedestrian_i

Cartes:

Tests JUnit:

- testPathIsValid()
- testPathStatus()
- testEqualPath()

2. Tests de validité

Résultats

3. Tests de performance

Méthode

- Mesure du temp d'execution (CPU)
- Memoire utilisée en nombre de nodes entrés dans le tas binaire

Temps CPU

Temps CPU

Taille du chemin (nodes)

Mémoire utilisée

Carré dense - distance - mémoire

Taille du chemin (nodes)

Mémoire utilisée

Réunion - temps - mémoire

Point de rencontre

- Déterminer le coût C = O1O2
- Dijkstra modifié : coût supérieur à C+30%
- Parcours des nodes résultats :
 - |O1N O2N| / O1N <= 0.15
 - |O1N O2N| / O2N <= 0.15

Conclusion

Merci pour votre écoute

Des questions?

