Lecture 16: Solute transport
Logistics: - 4W5 is due (10/17)
- HW3 special deal if you complete
over spring break just - 15% lake peually?
- 14W6 will be posted due Mar 21
⇒ Streamfunction
Last time: Correlated randon fields
Properties: 1) correlation length
z) amplitude
3) meau
• Cov (X, Y)
• $C(h) = Cov(Z(\underline{x}), Z(\underline{x}+\underline{h}))$
=> controlls correlation leught
· covariance models
Today: - Solute transport
- Advection-dissusion aquation
- 2 new as pects: time derivative, advection

Solute Balance Equation

General balance Equation: $\frac{\partial u}{\partial t} + \nabla \cdot j(u) = \hat{f}(u)$

1) Define the unknown

- mass/mols of aqueous solute per unit

volume of porous medium

X = mars/mole fracticu M N p = density of fluier 34 c=pX=mans/moles conc. 13 13

2) Define fluxes

· Advective flux due to fluid flow

$$\int_{A} = \frac{1}{4} \times C = qC \qquad \left[1 + \frac{H}{L^{2}} = \frac{H}{L^{2}}\right]$$

· Diffusive solute flux due la concentration gradionts

· Mechanical Disposion:
Def: Spreading of solutes due to variation)
in fluid relocity around the ave. relocity.
V = 9 " mean intershipal velocity"
Causes: ay Velocityvouriahien iu
siugle pore
between poros
cy Variation of length 3000000000000000000000000000000000000
4) Stronger in direction of flow wealer in the
transverse direction => anisotropic
z) Magnitude increases lineally with relocity/flux
Dispersion in 1D: $D_d = \alpha_L q$ L $\frac{L}{7}$
a _L =longitudinal [L]
iu sphere paoli: « x x d dispersivity L'grain diametr

Mechanical dispersion tensor

$$D_{H} = (\alpha_{L} - \alpha_{T}) \frac{9 \cdot 9}{|9|} + \alpha_{T} |9| \underline{I}$$

Dyadic product:
$$q \otimes q = \begin{pmatrix} q_x \\ q_y \end{pmatrix} (q_x q_y q_z) = \begin{pmatrix} q_x \\ q_y \end{pmatrix} q_x q_y q_z$$
Outes

Outes

Inner product:
$$q \cdot q = (q_x \, q_y \, q_z) \left(q_x\right) = q_x^2 + q_y^2 + q_z^2$$

3) source tesus

Malu interest in reactive transport

mere simple example

Solute balance:

substitute into general balance law

Advection - Diffusion - Reaction Equ

Scaling of ADR equation

nou-dimensionalize the variables

in dependent variables: x, t

dependent variable: c(x,t), q(x,t) Dy(x,t)

pich 3 characteristic scales: Xe, te, ce, qe, De

diu. Less vasiables: $x' = \frac{x}{x_c}$ $t' = \frac{t}{t_c}$ $c' = \frac{c}{c}$ $q' = \frac{q}{q}$

supepipale: 3c 3ccc, cc 3c, DH = DG

Π, Π, Π, Π, ware dimensionless groups

They suggest intrinsic fine sales:
$$9=92$$

Π, = $9e^{\frac{1}{4}}$ = 1 => 1 => 1 = 1 => 1 = 1 => 1

$$\Pi_z = \frac{D_c + c}{\phi \times_c^z} = 1 \implies t_c = \frac{\phi \times_c^z}{D_c} = t_D$$
 diffusion hime

thus to diffuse a cross dishon $\infty \times_c$

Have to pick one time scale

try to pick dominant process

Ground we have: advection te=ta

$$\frac{\partial c'}{\partial t'} + \nabla \cdot \left[\frac{t_e}{t_A} q'c' - \frac{t_e}{t_D} D'_H \nabla c' \right] = \frac{t_e}{t_R} c'$$

$$choose: t_e = t_A$$

$$\frac{3c'}{3t'} + \nabla' \cdot \left[q'c' - \frac{t_A}{t_D} D'_{H} \nabla' c' \right] = \frac{t_A}{t_R} c'$$

compones diffusive & advection transpor Pe >> 1 advection dominants Pe al diffusion dominants

$$\frac{\partial c'}{\partial t'} + \nabla \cdot \left[e'c' - \frac{1}{Pe} D'_{\mu} \nabla c' \right] = De c'$$

$$\frac{\partial c}{\partial b} + \nabla \cdot \left[P_{e} qc - D_{H} \nabla c \right] = \dots c$$

$$P_{e} Dq$$