ALGEBRAIC TOPOLOGY

Dan Margalit Georgia Tech Fall '12 What is algebraic topology?

What kinds of questions does it answer?

1) When are two spaces the Same (or not)?

e.g.
$$\mathbb{R}^m \neq \mathbb{R}^n$$

what about:
$$\mathbb{R}^3 - \mathbb{G}$$
 vs. $\mathbb{R}^3 - \mathbb{G}$

2 Embeddings

What is smallest N s.t. a given manifold embeds in IRN?

Unsolved for IRP".

3 Fixed point theorems

Browner fixed pt theorem: every $D^2 \rightarrow D^2$ has a fixed pt.

Borsuk-Ulam theorem.

4 Actions

Which finite groups act freely on S^n ?

(known in some cases)

Note: 74/n7L Cr S^{2k-1} Y n,k.

(5) Sections

What is the largest k s.t. a given manifold admits a continuously varying k-plane field? Hairy ball theorem.

6 Group theory

Every subgroup of a free group is free. [Fn, Fn] is not finitely generated. Braid groups are torsion free.

7 Algebra

Fundamental theorem of algebra (this week!)

Basic idea of homology

Hk(X) = abelian group of k-dim holes in X

computable

computable

from collapsing

example: $X = pair of parts \bigcirc \bigcirc$ $H_1(X) \cong \mathbb{Z}^2$

 $H^k(X)$ is dual to $H_k(X)$ \longrightarrow consists of functions $H_k(X) \longrightarrow \mathbb{Z}$

Big Goal: Poincaré Dudity

For $X = \frac{n}{manifold}$ $H^{k}(X) \cong H_{n-k}(X)$

More precisely: the functions in H^k look like "intersect with this fixed element of Hn-k"

What do we mean by a space?

Cell complexes aka CW complexes

e.g.

C = closure finiteness
(closure of open cell hits
finitely many open cells)
W = weak topology

Quotient topology: $U \subseteq X/n$ is open iff its preimage in X is open.

We build CW complexes inductively

- (i) Start with a discrete set of points X°. The points are regarded as 0-cells.
- (ii) Inductively form n-skeleton X^n from X^{n-1} by attaching n-cells D_{κ} via $\varphi_{\kappa}: \partial D_{\kappa} \longrightarrow X^{n-1}$

 X^n has quotient topology.

(iii) Either stop at a finite stoge, or continue indefinitely.

In latter case, use weak topology: a set is open iff its intersection with each cell is open.

dim(X) = sup of dim of cells

Examples of CW Complexes

- 1-dim CW complexes are graphs.
- 2) (4g+2)-gon with opposite sides identified

- 3 $5^{\circ} = e^{\circ} v e^{\circ}$ $e^{i} = i cell$.
- @ RP" = space of lines in R"

To see this: $\mathbb{RP}^n = \mathbb{RP}^n S^n / \text{antipodal map}$ = $\mathbb{D}^n / \text{antipodal map}$ on $\partial \mathbb{D}^n = \mathbb{S}^{n-1}$ So on $\partial \mathbb{D}^n$ see \mathbb{RP}^{n-1} , and we glue \mathbb{D}^n to that.

6 $\mathbb{CP}^n = \mathbb{C}^o \cup \mathbb{C}^2 \cup \cdots \cup \mathbb{C}^n$ exercise.

Subcomplexes

Subcomplex = dosed subseq union of cells.

A subcomplex of a CW complex is a CW complex.

example: K-skeleton.

Equivalence of Spaces

Intuition: Two spaces are equivalent if one can be deformed into the other

Special case: A deformation retraction $X \rightarrow A$ is a continuous family $\{f_t: X \rightarrow X \mid t \in I \}$

s.t. $f_0 = id$ $f_1(x) = A$ $f_1(x) = id \quad \forall t$

Continuous means $X \times I \longrightarrow X$ $(x,t) \longmapsto f_t(x)$

is continuous.

Example: Given $f: X \rightarrow Y$, the mapping cylinder is $M_f = (X \times I) \coprod Y / N$

where $(x,1) \sim f(x)$

e.g. X = boundary Y = core

Fact: Mf deformation retracts to Y.

Homotopy Equivalence

A homotopy is a continuous family $\{f_t: X \rightarrow Y \mid t \in I\}$

examples: deformation retraction

A map $f: X \rightarrow Y$ is a homotopy equivalence if there is a $g: Y \rightarrow X$ such that fg = id and gf = id fg = id homotopic

Say: X & Y are homotopy equivalent, or X=Y have the same homotopy type.

Exercise: This is an equivalence relation.

Fact: If A is a deformation retract of X, then $X \cong A$

Exercise: 0-0 00 D 00- all homotopy equiv.

Exercise: $\mathbb{R}^n \cong *$ Say \mathbb{R}^n is contractible.

Read: House with 2 rooms, Hatcher p. 4.

TWO CRITERIA FOR HOMOTOPY EQUIVALENCE

1)
$$(X,A) = CW - pair$$
 (i.e. A subcomplex of X)
A contractible
 $\Rightarrow X \simeq X/A \leftarrow identify A to one point$

$$X/A \cong G^2/\text{north pole}$$
 $\cong G^2/\text{north pole}$

$$X/B \cong G^2 \vee S^1$$

2)
$$(X,A)$$
 CW-pair $f,g:A \rightarrow Y$ homotopic (i.e. \exists homotopy $f,f_0=f,f_1=g$) $\Rightarrow X \coprod_{g} Y \simeq X \coprod_{g} Y$

Note: X LifY = (X Ll Y)/a~f(a)

exercise: Do last example using Criterion 2

Proofs of both criteria use Homotopy Extension Property.

Say a pair of spaces (X,A) has the homotopy extension property if whenever we have

 $f_o: X \longrightarrow Y$ $f_t: A \longrightarrow Y$ homotopy

we can extend ft to X.

In other words every map $M_i \rightarrow Y$ can be extended to $X \times I \rightarrow Y$ where $M_i = \text{mapping } \text{extended of } i : A \rightarrow X$ inclusion.

example. $X = \frac{1}{LA}$ $Y = \mathbb{R}^2$

$$f_0 = \int_t = \int_t extension:$$

A retraction of a space X onto a subspace A is $r: X \rightarrow A$ s.t. $r|_{A} = id$.

Prop: (X,A) has HEP \iff Mi is a retract of $X \times I$ where $i:A \to X$ inclusion.

 $\begin{array}{ccc}
P_{roof} : \implies & \text{Set } Y = M_i, & f_o = id. \\
& \iff & \times I \xrightarrow{r} M_i \xrightarrow{f_t} Y
\end{array}$

Note: f_t deformation retract of X to A $\Rightarrow f_i: X \rightarrow A$ a retraction of X to A

Prop: If (X,A) = CW pair, then M_i is a deformation retract of $X \times I$ (where $i:A \rightarrow X$ incl.)

In particular, (X,A) has HEP.

Proof: First do $X = D^n A = \partial D^n$ via projection:

Retract each n-cell of X^-A^
during [\frac{1}{2}^{n+1}, \frac{1}{2}^n]

Continuous since it is on each cell (no problem near O since each n-skeleton stationary in $[0, \frac{1}{2}^{m+1}]$).

(X,A) has HEP A contractible \Rightarrow q: $X \rightarrow X/A$ is a homotopy equivalence

Idea: Need inverse to q. Contract A, extend to $% f_t: X \to X$. Since $f_i(A) = pt$. can regard $f_i: X/A \rightarrow X$.

exercise: read/write details.

example. $X = \mathbb{R} \quad A = [-1, 1]$

Prop: (X,A) = CW pair $f,g: A \rightarrow Y$ homotopic $\Rightarrow X \sqcup_f Y \cong X \sqcup_g Y$

Idea: Show both are deformation retractions of (XXI) UrY where $F: A \times I \rightarrow Y$ is homotopy from f to q.

example: $X = -A Y = D^2$

details

note: use existence of deformation retraction X × I - Mi (stronger than HEP).

FUNDAMENTAL GROUP

 $TL_1(X) = group of homotopy classes of based paths in X.$

Will see: $X \simeq Y \Rightarrow \pi_1(X) \cong \pi_1(Y)$

Examples: ① \mathbb{R}^3 - unknot $\longrightarrow \mathbb{Z}$

@ R3-unlink

aba 1 b 1:

3 R3 - Hopf link

aba 1 61:

= id ls π , abelian?

these two strands in tandem around the left-hand circle to see triviality.

Formal Definitions

A path in a space X is a map I-X

A homotopy of paths is a homotopy $f_t: I \to X$ such that $f_t(0)$ and $f_t(1)$ are independent of t.

example. Any two paths fo, f_1 in \mathbb{R}^n with same endpoints are homotopic via Straight-line homotopy: $f_t(s) = (1-t) f_0(s) + t f_1(s)$

exercise. Homotopy of paths is an equivalence relation. =

The composition of paths f,g with f(1) = g(0) is the path $\begin{cases} f(2s) & 0 \le s \le 1/2 \\ fg(s) = \left(g(2s-1)\right)^{1/2} \le s \le 1 \end{cases}$

exercises. forfi, go = g1 => fogo = f1g1

A loop is a path f with f(0)=f(1).

The fundamental group of X (based at X_0) is the group of homotopy classes of loops based at X_0 under Composition. Write $TL_1(X,X_0)$.

Prop: π.(X,xo) is a group.

Proof: Identity = constant loop

Associativity:

$$\overline{f}(t) = f(1-t)$$

Prop: X = path connected, Xo, X, &X $\Rightarrow \pi_1(X, X_0) \cong \pi_1(X, X_1)$

The isomorphism is not canonical!

Say X is simply connected if \emptyset X is path connected \emptyset $\eta_{i}(X) = 1$.

This terminology is explained by:

Prop: X is simply connected there is a unique homotopy class of paths joining any two points of X.

fact: Contractible ⇒ simply connected.

FUNDAMENTAL GROUP OF THE CIRCLE

Thm: Mi(S1) = Z

Proof outline:

Given a loop $f: I \rightarrow S^1$, want to find a lift, that is: $f: I \rightarrow \mathbb{R} \qquad \qquad \text{ignore the}$ Such that $\hat{f}(o)=0$, $p\hat{f}=\hat{f} \qquad \qquad \text{date line.}$

The map $\mathcal{N}_1(S^1) \to \mathbb{Z}$ is $f \mapsto \widehat{f}(1)$

Well-definedness: existence/uniqueness of lifts
Multiplicativity: easy
Injectivity: homotopic loops have homotopic lifts
Surjectivity: easy

Remains to show loops lift uniquely and homotopies lift.

Idea: Cover S1 by small pieces whose preimages in IR are unions of open intervals.

Given a loop/homotopy, cut it into pieces, lift piece by piece.

Proof thus follows from Lemma below.

Lemma: Given F: Y×I→S¹
F: Y× {o}→R lift of Fly×{o}

∃! F: Y×I→R lifting F, extending Fly×{o}.

Path lifting: Y= {40} Homotopy lifting: Y= I.

Proof (Y= {40} case): Write I for yoxI.

Cover 5' by {Ux} so that $\forall x$, $p^{-1}(Ux)$ is a dispoint union of open sets, each homeomorphic to Ux.

F continuous, \Rightarrow can choose I compact $0 = t_0 < t_1 < \dots < t_m = 1$ so that $\forall i$, $F([t_i, t_{i+1}])$ is contained in some U_{x} ; call it U_i .

Say \widetilde{F} defined on $[0, t_i]$, $\widetilde{F}(t_i) \in \widetilde{U}_i$, $P|\widetilde{u}_i : \widetilde{U}_i \rightarrow U_i$ homeo.

Define F on [ti, ti+1] via (p[ũi) o F[[ti, ti+1]

Induct.

Exercise. Prove for general Y.

 $P_{rop}: \Upsilon_1(X \times Y) \cong TT_1(X) \times \Upsilon_1(Y)$ for X,Y path connected.

Cor: M1(T2) = 7/2

APPLICATIONS

Browner Fixed Point Theorem: Every h: D2 - D2 has a fixed point.

Proof: Say $h(x) \neq x \ \forall \ x \in \mathbb{D}^2$ Can define $r: \mathbb{D}^2 \to \mathbb{S}^1$ via retraction Let $f_0 = loop$ in $\mathbb{S}^1 = \partial \mathbb{D}^2$ $f_t = any homotopy to a$

point in D^2 $\Rightarrow rf_t = homotopy$ in S^1 of f_0 to trivial loop.

Thus $N_1(S^1)=1$. Contradiction

Also:

Borsuk-Ulam theorem - for any $f: S^2 \to \mathbb{R}^2$, \exists antipodal pair x,-x s.t. f(x) = f(-x).

Ham Sandwich theorem.

Thm: If we write S^2 as a union of 3 closed sets, of least one must contain a pair of antipodal points.

Fundamental Theorem of Algebra: Every nonconstant polynomial with coefficients in C has a root in C.

Define
$$Pt(Z) = Z^n + t(a_1 Z^{n-1} + \cdots + a_n)$$
,
 $\Upsilon: C-O \rightarrow S^1$
 $\chi \longmapsto \chi/|\chi|$
 $R > |a_1| + \cdots + |a_n| + 1$,
 $f_{r,t}(s) : S^1 \rightarrow S^1$
 $f_{r,t}(s) = \Upsilon \circ Pt(re^{2\pi ris})$

Claim: Pt has no roots on |Z| = R for $t \in I$. $\Rightarrow f_{R,t}(s)$ defined.

Thus the shaded path gives a homotopy from constant loop in S' to degree $n \log \Rightarrow n = 0$.

Proof of Claim: For
$$|Z|=R$$
,
 $|Z^n|=R^n=R\cdot R^{n-1}>(|a_1|+\cdots+|a_n|)|Z^{n-1}|$
 $>|a_1Z^{n-1}+\cdots+a_n|$
(But $|\alpha|>|\beta|\Rightarrow \alpha+\beta\neq 0$.).

INDUCED HOMOMORPHISMS

$$\varphi: (X, x_0) \longrightarrow (Y, y_0)$$

$$\longrightarrow \varphi_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$$

$$[f] \mapsto [\varphi f]$$

Functoriality
$$O(\varphi \psi)_* = \varphi_* \psi_*$$

 $O(\varphi \psi)_* = \varphi_* \psi_*$

Fact: φ a homeomorphism $\Rightarrow \varphi_*$ an isomorphism $\frac{1}{2} \operatorname{Proof}$: $\varphi_* \varphi_*^{-1} = (\varphi_* \varphi_{-1}^{-1})_* = \mathrm{id}_* = \mathrm{id}_*$

Proof: $T_1(S^n)=1$ for $n \ge 2$. Proof: $S^n-pt \cong \mathbb{R}^n$, which is contractible. By Fact, suffices to show any loop in S^n is homotopic to one that is not surjective.

Prop: \mathbb{R}^2 is not homeomorphic to \mathbb{R}^n , n > 2. Proof: $\mathbb{R}^n - \text{pt} \cong S^{n-1} \times \mathbb{R}$ $\pi_i(S^{n-1} \times \mathbb{R}) \cong \pi_i(S^{n-1}) \times \pi_i(\mathbb{R})$ $\cong \begin{cases} \mathbb{Z} & n = 2 \\ 1 & n > 2 \end{cases}$

Apply Fact.

Prop: If $\varphi: X \to Y$ homotopy equivalence, then $\varphi_*: \pi_1(X, x_0) \to \pi_1(Y, \varphi(x_0))$ isomorphism.

Proof: Let $\psi: Y \to X$ homotopy inverse. So $\varphi \psi \simeq id$.

Remains to Show: Ht: X -X homotopy

Ho = id $\Rightarrow (H_1)_* : \pi_1(X, x_0) \longrightarrow \pi_1(X, H_1(x_0))$ an isomorphism.

We already know the path $H_t(x_0)$ gives $\pi_1(X, x_0) \xrightarrow{\cong} \pi_1(X, H_1(x_0))$ $f \mapsto H_t(x_0) f H_t(x_0)$ But latter path $\cong H_1 \circ f = (H_1)_*(f)$

So (H1)* an isomorphism.

Prop: $i: A \rightarrow X$ inclusion.

X retracts to $A \Rightarrow i*$ injective.

X deformation retracts to $A \Rightarrow i*$ isomorphism.

exercise. T^2 retracts to S^1 .

In group theory, a retraction is a homomorphism $g: G \longrightarrow H$, where H < G, with $g|_{H} = id$. $\Longrightarrow G \cong H \times kerp$.

FREE GROUPS AND FREE PRODUCTS

Fn = { reduced words in $X_1^{\pm 1}, ..., X_n^{\pm 1}$ } multiplication: concatenate, reduce.

associativity

 $G * H = \{ \text{reduced words in } G, H \}$ $*_{\alpha} G_{\alpha} = \{ g_{i} : g_{m} \mid g_{i} \in G_{\alpha_{i}} \mid \alpha_{i} \neq \alpha_{i+1} \mid g_{i} \neq \alpha_{i} \}$

example. Infinite dihedral group 71/27 * 7/27/ = symmetries of --

Properties

- O Ga < * Ga

 - 3 Any collection $G_{\alpha} \to H$ extends uniquely to $*G_{\alpha} \to H$

VAN KAMPEN'S THEOREM

X = AUB A,B open, path connected.

AnB path connected.

Xo & ANB basepoint for X, A, B, AnB.

The induced $\pi_i(A) \to \pi_i(X)$ & $\pi_i(B) \to \pi_i(X)$ extend to $\Phi: \pi_i(A) * \pi_i(B) \to \pi_i(X)$

Denote ix: A-X, is: B-X.

Let $N = normal subgroup of TL_1(A) * TL_1(B)$ generated by the $i_A(\omega) i_B(\omega)^{-1}$ for $\omega \in \underline{A} TL_1(A \cap B)$.

Theorem: ① Φ is surjective @ $\ker \Phi = N$.

Examples. O $\pi_1(S^1 \vee S^1) \cong F_2$ induction $\longrightarrow \pi_1(\bigvee S^1) \cong F_n$ $\Longrightarrow \pi_1(\mathbb{R}^2 - n \text{ pts}) \cong \pi_1(\mathbb{R}^3 - \text{unlink}) \cong F_n$. $\pi_1(\text{graph}) \cong F_n$.

2) Th (Sn) = 1 n32.

3 $T_1(S^3 - (p,q) - torus knot) \cong \langle x,y \mid x^p = y^q \rangle$ gluing two solid tori along an annulus.

VAN KAMPEN VIA PRESENTATIONS.

$$G_{1} \cong \langle S_{1} | R_{1} \rangle$$

$$G_{2} \cong \langle S_{2} | R_{2} \rangle$$

$$\Rightarrow G_{1} * G_{2} \cong \langle S_{1} \cup S_{2} | R_{1} \cup R_{2} \rangle$$

What is a presentation for TL, (A) * TL, (B) / N?

First, a given
$$f \in TL(A \cap B)$$
 gives two elements of $TL(A) * TL(B)$:

 $TL(A) * TL(B)$
 $TL(A) * TL(B)$

Call them $f_A & f_B$.

Choose a generating set S for TI (AnB). Choose presentations:

so each Si contains each JA or JB for JES.

Then:

$$\pi_1(A) * \pi_1(B) / N \cong \langle S_1 \cup S_2 \mid R_1 \cup R_2 \cup R \rangle$$
where R is the set of relations
 $f_A = f_B$

Proof ① Let $f: I \longrightarrow X$ loop at X_0 .

Choose $0 = S_0 < S_1 < \cdots < S_m = 1$ S.t. $f[S_i, S_{i+1}]$ is a path in either A or B;

call it f_i .

Vi, choose path g_i in A_nB from X_0 to $f(S_i)$ The loop $(f_i \ \overline{g}_i)(g_1 f_2 \ \overline{g}_2) \cdots (g_{m-1} f_m)$ is homotopic to f, and is a composition of loops, \rightleftharpoons each in A or B. $\Rightarrow f \in I_m \ \overline{\Phi}$.

② A factorization of $f \in \pi_1(X)$ is an element of $\overline{\Phi}^{-1}(f)$:

 $f_i \cdots f_m$ $f_i \in T_i(A)$ or $T_i(B)$ We showed in G that each f has a factorization.

Two factorizations are equivalent modulo N

iff they differ by a Sequence of moves:

(i) Combine [fi][fi+1] → [fifi+1]

if fi, fi+1 lie both in TL(A) or in TL(B).

(ii) Regard [fi] ∈ TL(A) as [fi] ∈ TL(B)

if fi ∈ TL(A∩B).

Let $f_i \cdots f_k$, $f_i' \cdots f_i'$ factorizations of f.

To show they are related by (i) & (ii).

Choose a homotopy IxI -> X from one to the other.

Cut IXI into small rectangles, each mapping to A or B, and so induced partitions of top 8 bottom edges are finer than those coming from the factorizations.

Push across one square at a time. Show the new factorization differs from old by (i) & (ii). E.g. two bottom-right squares.

Then rewrite $\[\angle \]$ as $\[\angle \]$ as $\[(move (i)). \]$ rewrite $\[\angle \]$ as $\[\beta_i \in \]$ $\[(\piove (ii)). \]$ Homotope $\[f_2 \[\beta_i \in \]$ $\[(\piove (ii)). \]$ across square. etc.

ATTACHING DISKS

X path connected, based at Xo. Attach 2-cell D^2 via $Q: S^1 \rightarrow X$.

Choose path of from Xo to Q(S1).

The loop of Q(S1) of is nullhomotopic in Y.

Let N= normal subgroup of TI, (X) generated by this loop. Note: N independent of J.

Prop. The inclusion $X \to Y$ induces a surjection $T_{\Gamma}(X, x_0) \to T_{\Gamma}(Y, x_0)$ with Kernel N.

Proof: Choose $y \in \operatorname{int}(D^2)$ Apply Van Kampen to Y - Y, Y - X. Note: $Y - Y \simeq X$ $Y - X \simeq *$ $(Y - Y) \cap (Y - X) = \operatorname{int}(D^2) - Y \simeq S^1$.

Applications. ① Mg = orientable surface of genus g. $TL_1(Mg) \cong \langle a_1, b_1, ..., a_g, b_g | [a_1, b_1] - [a_g, b_g] = 1 \rangle$ $\implies Mg \neq Mh \quad g \neq h \quad as$ $TL_1(Mg)^{ab} \triangleq \mathbb{Z}^{2g}$.

② For any group G, there is a 2-dim cell complex X_G with $T_{I}(X_G) \cong G$.

To do this, choose a presentation $G = \langle g_{\varkappa} | r_{\beta} \rangle$ $X_G = \bigvee_{\varkappa} S^1$ with 2-cells attached along r_{β} .

COVERING SPACES.

In our proof of $T_1(S^1) \cong \mathbb{Z}$ we used $T_1(S^1) \cong \mathbb{Z}^2$ using $T_1(T^2) \cong \mathbb{Z}^2$ using $T_2 \to T^2$ or $T_1(S^1 \vee S^1) \cong F_2$ using $T_4 \to S^1 \vee S^1$. In each case, $T_1(X)$ gives symmetries of the space lying above.

A covering space of X is an \widetilde{X} with $p: \widetilde{X} \to X$

Satisfying: I open cover {Ux} of X so that each p'(Ux) is a disjoint union of open sets, each homeomorphic to Ux.

Examples. $R \rightarrow S'$ $R \times I \rightarrow S' \times I$ $R^2 \rightarrow T^2$ $S^2 \rightarrow RP^2$ $S' \xrightarrow{\times} S'$ $R \times I \rightarrow M\ddot{o}bius$ $R^2 \rightarrow Klein$ bottle

A universal covering space is a covering space that is simply connected.

We will see: ① $\pi_i(X) \iff$ symmetries of univ. cover \widetilde{X} ② Subgroups of $\pi_i(X) \iff$ covers of X.

e.g. $X = S^1$.

1) via path lifting, 10 via path projecting

FUNDAMENTAL THEOREM

$$\rho: \widetilde{X} \to X$$
 covering map $G(\widetilde{X}) = \operatorname{deck} \operatorname{transformation} \operatorname{group} = \rho - \operatorname{equivariant} \operatorname{symmetries} \operatorname{of} \widetilde{X}:$

 $\tilde{X} \rightarrow \tilde{X}$

 $H = p_* \pi_1(\tilde{X}), N(H) = normalizer in \pi_1(X).$

Theorem $1 \to H \to N(H) \to G(\tilde{x}) \to 1$

Cor: $H=1 \Leftrightarrow G(\widetilde{X}) \cong \pi_1(X) \Leftrightarrow \widetilde{X} = \text{universal cover}$

Cor: H normal \iff $G(\tilde{x})$ acts transitively on $p^{-1}(x_0)$.

There is a bijection:

 ${based\ covening} \longleftrightarrow {subgroups}$ spaces of X

X

b (a) b

 $p_*(\mathfrak{N}_i(\widetilde{X}))$

 $\langle a, b^2, bab^1 \rangle$

 $\langle a^2, b^2, ab \rangle$

 $\langle a^4, b^4, ab, ba, a^2b^2 \rangle$

(b'ab">

(a>

1

LIFTING PROPERTIES

 $\rho: \stackrel{\sim}{\chi} \to X$ covering space

A lift of $f:Y \to X$ is $\hat{f}:Y \to \hat{X}$ with $p\tilde{f}=\hat{f}$.

Proposition 1 (Homotopy lifting property) Given a homotopy $f_t: Y \to X$ and $f_o: Y \to X$ lifting f_o , $\exists ! f_t$ lifting f_t .

Proof: Same as S' case.

Y= point ~ path lifting property
Y= I ~ homotopy lifting for paths

Cor: $p_*: \Upsilon_1(\tilde{X}) \to \Upsilon_1(X)$ is injective.

Note: $p_*(\pi_i(\tilde{x}))$ is the subgroup of $\pi_i(x)$ consizing of loops that lift to loops.

Degree of a cover: |p-1(x)| is locally constant, hence constant

Cor: X, \tilde{X} path connected.

degree of $p = [\Upsilon_1(X) : (\Upsilon_1(\tilde{X}))]$ Proof: Let $H = p_* \Upsilon_1(\tilde{X})$.

Define {cosets of H} $\rightarrow p^{-1}(X_0)$ H[g] $\mapsto \tilde{q}(1)$.

Surjective: path proj. Injective: path lifting I

Proposition 2 (Lifting existence criterion) Y = connected, locally path connected. We can lift $f: (Y, y_0) \rightarrow (X, x_0)$ to $f: (Y, y_0) \rightarrow (\widetilde{X}, \widetilde{X}, 0)$ iff $f_*(\tau_1(Y)) \leq p_* \Upsilon_1(\widetilde{X})$.

 $P_{roof}: \implies \hat{f} = p\hat{f} \implies f_* = p_*\hat{f}_*$ $\implies \text{Im } f_* \subseteq \text{Im } p_*.$

Suppose Im f* ⊆ Im p*. Want to build f.

Let $y \in Y$, f a path from y_0 to y. Prop $1 \Longrightarrow ff$ has unique lift $fg: Y \to \widetilde{X}$. Define $\widetilde{f}(y) = \widetilde{f}(1)$.

Why is f well-defined?

Let $f' = \text{another path from } y_0$ to y. $\Rightarrow (ff')(ff)$ is a loop ho at x_0 . $\Rightarrow h_0 = f(ff) \in f_*(\pi_1(Y))$ $\Rightarrow h_0 \in p_*(\pi_1(X))$ by assumption. $\Rightarrow \text{the lifted path } h_0 \text{ is a loop.}$

Uniqueness of lifted paths \Rightarrow $h_o = ff ff'$ $\Rightarrow ff , ff'$ share common endpoint.

Exercise: F continuous.

Proposition 3 (Uniqueness of lifts) Let $f: Y \to X$, Y connected. If lifts \tilde{f} , \tilde{f}_2 agree at one point, then they are equal.

Proof: Will show $A = \{ y \in Y : \widehat{f_i}(y) = \widehat{f_2}(y) \}$ is open and closed in Y.

Let y. Y. Let U be open nobal of Y as in definition of covering space.

Let \tilde{U}_1 , \tilde{U}_2 be the components of $p^{-1}(x)$ containing $\tilde{f}_1(y)$, $\tilde{f}_2(y)$.

Continuity of $\tilde{f}_i \Rightarrow \exists \text{ nbhd } N \text{ of } y \text{ with } \tilde{f}_i(N) \subseteq \tilde{U}_i$

• $\tilde{f}_{1}(Y) \neq \tilde{f}_{2}(Y) \Rightarrow \tilde{U}_{1} \neq \tilde{U}_{2} \Rightarrow \tilde{f}_{1}(N) \cap \tilde{f}_{2}(N) = \emptyset$ $\Rightarrow A \text{ closed}.$

2

• $\tilde{f}_1(y) = \tilde{f}_2(y) \Rightarrow \tilde{u}_1 = \tilde{u}_2 \Rightarrow \tilde{f}_1|_N = \tilde{f}_2|_N$ Thus A open.

CLASSIFICATION OF COVERING SPACES

{ based covers of
$$X$$
} \longleftrightarrow {subgroups of $TL(X)$ }
$$(\tilde{X}, \tilde{X}_{\bullet}) \longmapsto p_{*}(TL(\tilde{X}, \tilde{X}_{\bullet}))$$

First step: find a cover corresponding to. trivial subgroup.

Theorem: X = CW-complex (or any path conn, locally path conn, Semilocally Simply conn.)

Then X has a universal cover \hat{X} .

Proof: We construct \tilde{X} directly.

Points in $\widetilde{X} \iff homotopy classes of paths from {X} is imple connectivity)$ $<math>\iff homotopy classes of paths from Xo$ (homotopy lifting)

So define: $\widetilde{X} = \{[\lambda] : j \text{ a path in } X \text{ at } X_0\}$ $p: \widetilde{X} \longrightarrow X$ $[\lambda] \longmapsto j(1)$ Topology on X

 $\mathcal{U} = \{ \mathcal{U} \subseteq X : \mathcal{U} \text{ path conn.}, \mathcal{V}_1(\mathcal{U}) \rightarrow \mathcal{T}_1(X) \text{ trivial} \}$ For $\mathcal{U} \in \mathcal{U}$, f with $f(1) \in \mathcal{U}$, define $\mathcal{U}_{[T]} = \{ [f \cdot \eta] : \eta \text{ a path in } \mathcal{U}, \eta_{(0)} = f(1) \}$ = open reighborhood of [T] in X.exercise: The $\mathcal{U}_{[T]}$ form a basis.

We now check the properties of a covering space.

- · Continuity. p-1(U) is a union of U[1]
- · Both connectivity. Let $[f] \in X$. $f = \begin{cases} f \text{ on } [o,t] \\ \text{const. on } [t,1] \end{cases}$ is a path from [const] to [f].
- Simple connectivity. p_* injective, so suffices to show $p_* \mathcal{T}_1(\widetilde{X}) = 1$.

 Let $j \in \text{Im } p_* \implies j$ lifts to a loop.

 The lift of j is $\{[jt]\}$ $\{op \implies [j_1] = [j_0]$ or [j] = [const] $\implies j = 1$ in $\mathcal{T}_1(X)$.

· Covering Space.

Note: If [3'] & U[7] then U[7] = U[7']
Thus, for fixed U & U, the U[7]
partition p-'(U)

 $p: U[37] \longrightarrow U$ homeomorphism since it gives a bijection of open sets $V[37] \subseteq U[77] \longleftrightarrow V \subseteq U$ for $V \in U$.

Theorem: For every $H \leq TL_1(X)$ there is a covering space $p: \tilde{X}_H \to X$ with $p_* M_1(\tilde{X}_H, \tilde{X}_0) = 1+1$.

Proof: We realize \widetilde{X}_H as a quotient $\widetilde{X}_H = \widetilde{X}/\sim$: $[f] \sim [f']$ if f(1) = f'(1)and $[f, \overline{f}'] \in H$.

exercise: \sim is an equivalence relation.

Check XH a covering space:

Say [f] ~ [f'] with $f(1) = f'(1) \in U \in U$.

Then [f.n] ~ [f'.n] for any path η in U. $\Rightarrow U[f]$ identified with U[f']

Check $p_* \pi_i(\tilde{X}_H) = H :$ Let $\tilde{X}_0 = [const].$ $f \in Im p_* \iff \{[ft]\} \text{ a loop in } \tilde{X}_H$ $\iff [f_0] \sim [f_1]$ i.e. $[const] \sim [f]$ $\iff f \in H.$

W

To finish classification, need to show XH unique.

Def: Covering spaces $p_1: \widetilde{X}_1 - X$ and $p_2: \widetilde{X}_2 \to X$ are isomorphic if there is a homeomorphism $f: \widetilde{X}_1 \to X_2$ with $p_1 = p_2 f$ (i.e. f preserves fibers).

Prop: Two path connected covering spaces $p_i: (\tilde{X}_i, \tilde{X}_i) \to X$ and $p_2: (\tilde{X}_2, \tilde{X}_2) \to X$ are isomorphic if and only if $\lim (p_i)_* = \lim (p_2)_*$.

Proof: \Rightarrow easy. \Leftarrow Lifting criterion \longrightarrow Lift p_1 to $\tilde{p}_1: (\tilde{X}_1, \tilde{X}_1) \longrightarrow (\tilde{X}_2, \tilde{X}_2)$ with $p_2 \tilde{p}_1 = p_1$ By symmetry \longrightarrow \tilde{p}_2 with $p_1 \tilde{p}_2 = p_2$.

Note $\tilde{p}_1 \tilde{p}_2$ is a lift of p_2 : $p_2 \tilde{p}_1 \tilde{p}_2 = p_1 \tilde{p}_2 = p_2$ Unique lifting $+ \tilde{p}_1 \tilde{p}_2 (\tilde{X}_2) = \tilde{X}_2 \Rightarrow \tilde{p}_1 \tilde{p}_2 = id$.

Symmetry: $\tilde{p}_2 \tilde{p}_1 = id$. $\Rightarrow \tilde{p}_1$ a homeo.

Cor: Every subgroup of a free group is free.

SOME EXAMPLES OF GOVERING SPACES

$$S' \times \mathbb{R} \to \mathbb{T}^2$$

$$T^2 \xrightarrow{(xm,xn)} T^2$$

Annulus - Mobius strip

$$5^2 \rightarrow \mathbb{RP}^2$$

THE FUNDAMENTAL THEOREM

Fix
$$p: (\tilde{X}, \tilde{X}_{o}) \longrightarrow (X, x_{o})$$

 $H = p_{*} \pi_{1}(\tilde{X}, \tilde{X}_{o})$
 $N(H) = \text{normalizer in } \pi_{1}(X, x_{o})$
 $G(\tilde{X}) = \text{group of deck transformations.}$

Say p is regular if $G(\tilde{X})$ acts transitively on $p^{-1}(x_0)$.

Regard
$$\tilde{\chi}_0$$
 as [const]
Then $p^*(\chi_0) = \{ [f] : f = loop \}$
By lifting criterion, $I_{\tilde{q}}$
 $\exists deck trans taking [const] to [f]$
 $\Leftrightarrow p_* \, \Upsilon_1(\tilde{\chi}, [f]) = p_* \, \Upsilon_1(\tilde{\chi}, [const])$
or $f = p_* \, \Upsilon_1(\tilde{\chi}, [const]) \, f^* = p_* \, \Upsilon_1(\tilde{\chi}, [const])$
i.e. $f \in N(H)$.

We thus have:

$$N(H) \rightarrow G(\tilde{X})$$
 $\downarrow \qquad T_1$

Note: well-defined by uniqueness of lifts.

Prop: X regular \iff H normal.

Both are exercises.

COVERING SPACES VIA ACTIONS

An action of a group G on a space Y is a homom: $G \rightarrow Homeo(Y)$

This is a covering space action if $\forall y \in Y \in A$ neighborhood U with $\{g(U): g \in G\}$ all distinct, disjoint.

Fact: The action of $G(\tilde{X})$ on \tilde{X} is a covering space action.

Prop: Y = connected CW-complex(or any path conn, locally path conn) G CY via covering space action. Then: (i) $p: Y \rightarrow Y/G$ a regular covering space. (ii) $G \cong G(Y)$

In particular $G \cong \pi_1(Y|G)/p_*\pi_1(Y)$ $Y = \pi_1(Y|G)/p_*\pi_1(Y)$

Examples. IZ GR ~ S¹

Z GR × I ~ Mobius strip

Z² GR² ~ T²

Klein bottle

Z/2Z GS ~ RP°

Z/mZ G M_{mk+1} ~ M_{k+1}

K(G,1) Spaces

Goal: groups \iff spaces (up to homotopy equiv.) homomorphisms \iff continuous maps (up to homotopy)

A K(G,1) space is a space with fundamental group G and contractible universal cover.

Examples. S^1, T^2 in general $\mathbb{Z}^n \leftrightarrow \mathbb{T}^n$

What about G= Z/mZ?

 $\mathbb{Z}/m\mathbb{Z}$ acts on $S^{\infty} = \text{unit sphere in } \mathbb{C}^{\infty}$ via $(\mathbb{Z}_{i}) \longmapsto e^{2\pi i m} (\mathbb{Z}_{i})$ which is a covering space action. (When m=2, quotient is \mathbb{RP}^{∞}).

Why is S^{∞} contractible? Step 1: $f_t(x_1, x_2,...) = (1-t)(x_1) + t(0, x_1, x_2,...)$ Step 2: Straight line projection to (1,0,0,...).

Later: Any K(Z/mZ) is so-dim!

CONSTRUCTION OF K(G,1) spaces

Prop: Every group G has a K(G,1)

Proof: Define a A-complex EG with:

ordered n-simplices \iff (n+1)-tuples $[g_0,...,g_n]$ $g_i \in G$

To see EG contractible, slide each $x \in [g_0,...,g_n]$ along line segment in $[e,g_0,...,g_n]$ from x to [e]

(Note: This is not a deformation retraction since it moves [e] around [e,e].)

GGEG by left multiplication. exercise: This is a covering space action.

 \rightarrow BG = EG/G is a K(G,1).

This gives one K(G,1), and it is always so-dim. To study a group G, need a good K(G,1), e.g. $K(PBn,1) = C^n \setminus \Delta$.

HOMOMORPHISMS AS MAPS

Prop: X = connected CW - complex Y = K(G, 1)Every homomorphism $TL_1(X, x_0) \longrightarrow G$ is induced by a map $(X, x_0) \longrightarrow (Y, Y_0)$. The map is unique up to homotopy fixing Y_0 .

This implies:

Prop: The homotopy type of a CW-complex K(G,1) is uniquely determined by G.

Proof of 1st Prop: Assume first X has one O-cell, Xo.

Let $\varphi \colon \Pi_1(X, x_0) \longrightarrow \pi_1(Y, y_0)$. Want $f \colon X \to Y$.

Step 0. f(x0) = 40

Step 1. Each edge of X is an element of $T_1(X, x_0)$. Define f(e) via φ .

Step 2. Let $\Delta = 2$ -cell with $\gamma: \partial \Delta \to X^{(1)}$ $f \gamma$ null-homotopic, since φ a homom. $f \to \alpha$ can extend $f \to \alpha$.

HOMOLOGY

Fundamental groups are good at telling spaces apart, but it is not so easy to compute, and the higher dimensional analogs are very hard to compute. Indeed: computing $N_m(S^n)$ is a huge open problem.

Homology is an analogue that is computable. We will lose some information, but it will still be possible to tell many spaces apart.

Example. X = A = front of sphere

B = back.

 C_0 = free abelian group on x,y C_1 = free abelian group on a,b,c,d C_2 = free abelian group on A,B.

An element of H1(X) is a 1-cycle: an element of C1 with no boundary, e.g. ab-1.

Since C1 abelian, ab1 = b1a so we think of ab1 as a loop with no basepoint.

A 1-cycle is trivial if it is the boundary of a 2-cell, or a collection of 2-cells, so:

ab-1 trivial, cd-1 not.

In other words, $H_1(X) = \frac{1-\text{cycles}}{1-\text{boundaries}}$.

Can compute with linear algebra.

 $\partial_1: C_1 \longrightarrow C_0$ "boundary map" $a,b,c,d \longmapsto y-x$

1-cycles = ker d1.

 $\partial_2: C_2 \rightarrow C_1$ $A.B \mapsto a-b$

1-boundaries = im d2.

So: H₁(X) = Kerd1/imd2

Exercise: $\ker \partial_1 = \langle a-b, b-c, c-d \rangle \cong \mathbb{Z}^3$ $\operatorname{im} \partial_2 = \langle a-b \rangle \qquad \wedge$ essentially $\Longrightarrow H_1(X) \cong \mathbb{Z}^2$ lin. alg.

Also: $H_2(X) = \frac{\ker \partial_2}{\lim \partial_3} = \frac{\langle A-B \rangle}{1} \cong \mathbb{Z}.$

SIMPLICIAL HOMOLOGY

X = A -complex $\Delta_n \mathcal{E}_n(X) = \text{free abelian group on } n\text{-simplices of } X.$ $\partial_{n}: \mathcal{C}_{n}(X) \longrightarrow \mathcal{C}_{n-1}(X)$ Hn(X) = Ker On/ im on+1

There is also singular homology: X = any space Cn(X) = free abelian group on all maps $\triangle^n \rightarrow X$. More complicated, but more powerful. Will turn out to be equivalent.

 \triangle -complexes

Simplex vo vi ordening of vertices - ordening of vertices for each face.

To build a \$ Δ-complex:

- · Start with a discrete set of vertices
- · Attach edges to produce a graph. · Attach 2-simplices along edges,

respecting ordenings of vertices

· etc.

 $\Delta_n(X)$ = free abelian group on n-simplices.

Exercise: every simplicial complex has the structure of a D-complex.

Here is a Δ -complex structure on same space:

Boundary homomorphism

$$\partial([V_0,...,V_n]) = \sum (-1)^i [V_0,...,\hat{V}_i,...,V_n]$$

e.g.
$$\partial ([V_0, V_1, V_2]) = [V_1, V_2] - [V_0, V_2] + [V_0, V_1]$$

or: $\partial (V_0, V_1, V_2) = V_0$

where $[V_0,...,V_n]$ is $\Delta^n = \text{Standard } n \text{ simplex}$.

For a simplex
$$T: \Delta^n \to X$$
 in Δ -complex: $\partial \sigma(\Delta^n) = \sigma(\partial \Delta^n)$.

Lemma: $\partial_{n-1} \circ \partial_n = 0$.

Proof: Check on one simplex $= [V_0, ..., V_n]$ $\partial_n(\Delta) = \sum_{i=1}^n (-1)^i [V_0, ..., \hat{V}_i, ..., V_n]$ $\partial_{n-1} \partial_n(\Delta) = \sum_{j < i} (-1)^{i+j} [V_0, ..., \hat{V}_j, ..., \hat{V}_i, ..., \hat{V}_i]$ $+ \sum_{j > i} (-1)^{i+j-1} [V_0, ..., \hat{V}_i, ..., \hat{V}_i, ..., \hat{V}_j, ..., \hat{V}_n]$ $= 0. \qquad (switch roles of i&j in last sum).$

can define: $H_n(X) = \frac{\ker \partial_n}{\lim \partial_{n+1}} = \frac{n - \text{cycles}}{n - \text{boundaries}}$ "nth homology group of X"

$$\Delta_0(X) = \langle v \rangle = 7L$$

$$\Delta_1(X) = \langle e \rangle = 7L$$

$$\Delta_1 = 0 \quad \partial_1(e) = v - v = 0$$

$$H_n(X) = \begin{cases} 7L & n = 0,1 \\ 0 & \text{otherwise}. \end{cases}$$

$$2 \quad \chi = T^2$$

$$\partial_1 = 0$$
 $\partial_0 = \partial_3 = 0$.
 $\partial_2(U) = \partial_2(L) = a+b-c$

$$H_1(X) = \frac{\langle a,b,c \rangle}{\langle a+b-c \rangle} \stackrel{\sim}{=} \frac{\langle a,b \rangle}{=} \mathbb{Z}^2$$

 $H_2(X) = \frac{\langle u-L \rangle}{o} \stackrel{\sim}{=} \mathbb{Z}.$

$$\ker \partial_1 = \langle a-b, c \rangle = \langle c, a-b+c \rangle = \mathbb{Z}^2$$

$$\operatorname{im} \partial_2 = \langle a+b+c, a-b+c \rangle = \langle a-b+c, 2c \rangle = \mathbb{Z}^2$$

Next: ker d2

$$\partial_2(pU+qL) = (q-p)a + (p-q)b + (p+q)c$$

 $\implies \ker \partial_2 = 0.$

X is contractible but not collapsible.

$$H_1(X) = \frac{\langle a \rangle}{\langle a \rangle} = 0$$

 $H_0(X) = \frac{\langle v \rangle}{o} = \mathbb{Z}$
 $H_2(X) = 0$

Exercise: $X \simeq *$ (it is mapping cone of deg 1 map $S' \rightarrow S'$).

$$H_0(X) = \langle V \rangle /_0 \cong \mathbb{Z}$$

 $H_2(X) = 0.$

$$\ker \partial_1 = \langle a,b,c \rangle$$

 $\lim \partial_2 = \langle a+b-c, a-b+c \rangle$

How to compute quotient? Find Smith normal form of:

[1]

[1]

[1]

i.e. use row/col ops to get diagonal matrix where each diagonal entry divides the next.

$$\begin{pmatrix} 1 & 1 \\ -1 & 1 \\ 1 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 0 & -2 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 2 \\ 0 & 0 \end{pmatrix}$$

Will prove: H.(X) = M1(X) ab

SINGULAR HOMOLOGY

Simplicial homology is very computable, but:

- O It is not obvious that homeomorphic \triangle -complexes have isomorphic simplicial homology.
- 1 Hard to prove general facts about spaces.

So: Mr A singular n-simplex in X is a map
$$\tau: \Delta \to X$$

Let $C_n(X) =$ free abelian group on these.
= group of n-chains

$$= \left\{ \begin{array}{l} \sum n_i \tau_i \mid n_i \in \mathbb{Z}, \ \tau_i : \Delta^r \longrightarrow X \right\}$$
Boundary map $\partial_n : C_n(X) \longrightarrow C_{n-1}(X)$

$$\sigma \mapsto \Xi(-1)^i \sigma|_{[V_0, \dots, \hat{V}_i, \dots, V_n]}$$

Still have
$$\partial_{n-1} \cdot \partial_n = 0$$
.

$$I-I_n(X) = \frac{\ker \partial_n}{\lim \partial_{n+1}}$$
 "nth Singular homology group"

Singular homology hard to compute. For example, not obvious that

On other hand, easy to prove general facts like:

fact: Homeomorphic spaces have isomorphic singular hom. groups.

Will show: singular = simplicial.

Note. Elements of $H_1(X)$ rep. by maps $S^1 \to X$ (easy) $H_2(X)$ rep. by maps $Mg \to X$ (less easy) $H_n(X)$ rep. by maps n-manifold $\to X$ (only the over \mathbb{O})

$$\frac{P_{rop}: X = space with path components X_{\alpha}}{\Rightarrow H_n(X) \cong \Phi H_n(X_{\alpha})}$$

Prop:
$$X = nonempty$$
, path conn. $\Rightarrow H_o(X) \cong \mathbb{Z}$
 $X \text{ has } n \text{ path comp.} \Rightarrow H_o(X) \cong \mathbb{Z}^n$

Proof: Say X path conn.

$$C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\partial_0} O$$
 $H_0(X) = \frac{C_0(X)}{\text{Im} \partial_1}$

Given $v, w \in X$, $v-w \in \text{Im} \partial_1 \implies v = w \text{ in } H_0(X)$.

Also, $nv \neq 0$ in $H_0(X)$ since $\text{Im} \partial_1 \subseteq \text{ker} (C_0(X) \xrightarrow{\mathcal{E}} \mathbb{Z})$

where $\mathcal{E}(\mathcal{E} n_i v_i) = \mathcal{E} n_i$.

Prop:
$$X = pt$$
.
 $\Rightarrow Hi(X) = \begin{cases} 7 & i=0 \\ 0 & i>0 \end{cases}$

$$\underbrace{Pf}: C_n(X) \cong \mathbb{Z} \quad \forall n.$$

$$\frac{\partial (T_n)}{\partial T_{n-1}} = \underbrace{\begin{cases} 0 & n \text{ odd} \\ T_{n-1} & n \text{ even} \end{cases}}$$

Reduced Homology ... Z = Z O Z = Z O Z = Z O Z

Looking at last Prop, seems more elegant to replace last 0 map with ≅.

$$\widetilde{H}_n(X) = homology \text{ of } \cdots \to C_i(X) \to C_o(X) \xrightarrow{\varepsilon} \mathbb{Z} \to \mathbb{O}$$
where $\varepsilon (\Xi n_i \tau_i) = \Xi n_i$
= reduced homology of X .

HOMOTOPY INVARIANCE

Goal:
$$f: X \rightarrow Y \longrightarrow f_*: H_n(X) \longrightarrow H_n(Y)$$
 and

BBBB f homotopy equivalence \Rightarrow f_* an isomorphism.

§ First,
$$f \longrightarrow f_{\#}: C_n(X) \longrightarrow C_n(Y)$$

 $\nabla \longmapsto f \sigma$

f# takes cycles to cycles, boundaries to boundaries.

 \Rightarrow for induces $f_*: H_n(X) \rightarrow H_n(X)$

$$\frac{\text{Facts}: (fg)_* = f_*g_*}{\text{id}_* = \text{id}}$$

Theorem.
$$f,g: X \rightarrow Y$$
 homotopic $\Rightarrow f_* = g_*$

Cor: $f: X \rightarrow Y$ homotopy equiv. $\Rightarrow f_*$ an isomorphism.

example. X contractible $\Rightarrow \hat{H}_i(X) = 0 \ \forall i$.

Proof of Theorem: We will define $P: C_n(X) \to C_{n+1}(Y)$ with $\partial P = g_\# - f_\# - P \partial$ "prism operator" P is the homotopy from for to $q\sigma$.

The theorem follows:

If
$$\alpha \in Cn(Y)$$
 is a cycle, then
$$g_{\#}(\alpha) - f_{\#}(\alpha) = \partial P(\alpha) + P \partial(\alpha) = \partial P(\alpha)$$

$$\Rightarrow (g_{\#} - f_{\#})(\alpha) \quad \text{a boundary}$$

$$\Rightarrow g_{\#}(\alpha) = f_{\#}(\alpha)$$

Remains to define P and check $\partial P = g_{+} - f_{+} - P \partial$.

Main ingredient. Cutting $\Delta^* \times I$ into (n+1)-simplices

Label vertices of $\Delta^* \times O$ by $V_0, ..., V_n$ $\Delta^* \times 1$ by $W_0, ..., W_n$. $\Delta^* \times I$ decomposes as sum of $[V_0, ..., V_i, W_i, ..., W_n]$

Define $P(T) = \sum_{i=1}^{n} \left[\nabla \cdot (\nabla \times id) \right] \left[\nabla$

exercise: $\partial P = g_{\#} - f_{\#} - P_{\partial}$ (like proof that $\partial_n \circ \partial_{n+1} = 0$).

7

The relationship $\partial P + P \partial = 9 + F + is$ expressed as:

P is a chain homotopy from f# to g#

Prop: Chain homotopic maps between exact sequences irduce the Same map on homology.

EXACT SEQUENCES

A sequence of homomorphisms

$$\cdots \longrightarrow A_{n+1} \longrightarrow A_n \longrightarrow A_{n-1} \longrightarrow \cdots$$

(ii)
$$A \stackrel{\times}{\rightarrow} B \rightarrow 0 \iff x \text{ surjective}$$

(iv)
$$O \rightarrow A \rightarrow B \rightarrow C \rightarrow O \iff C \cong B/A$$
 "short sequence"

COLLAPSING A SUBCOMPLEX

Theorems
$$(X,A) = CW - pair.$$

There is an exact sequence

 $H_n(A) \xrightarrow{i_*} \widetilde{H}_n(X) \xrightarrow{q_*} \widetilde{H}(X/A)$
 $\xrightarrow{\partial} \widetilde{H}_{n-1}(A) \xrightarrow{i_*} \widetilde{H}_{n-1}(X) \xrightarrow{q_*} \widetilde{H}_{n-1}(X/A) \longrightarrow \cdots$
 $\xrightarrow{\partial} \widetilde{H}_n(X) \xrightarrow{i_*} \widetilde{H}_{n-1}(X/A) \longrightarrow \cdots$
 $\xrightarrow{\partial} \widetilde{H}_n(X/A) \longrightarrow O.$

Where $i: A \hookrightarrow X$, $q: X \to X/A$.

Cor: $\widetilde{H}_i(S^n) = \begin{cases} \mathbb{Z} & i=n \\ O & i\neq n \end{cases}$

Proof: Induction on $n.$
 $\widetilde{H}_n(S^n) = \mathbb{Z} \times (X,A) = (D^n,S^{n-1}) \longrightarrow X/A \cong S^n$

By theorem:

 $\cdots \longrightarrow \widetilde{H}_i(D^n) \longrightarrow \widetilde{H}_{i-1}(S^{n-1}) \longrightarrow \widetilde{H}_{i-1}(D^n) \longrightarrow \cdots$
 $\Longrightarrow \widetilde{H}_i(S^n) \cong \widetilde{H}_{i-1}(S^{n-1}).$

To prove the Theorem, will do something more general ...

RELATIVE HOMOLOGY

 $A \subseteq X \longrightarrow C_n(X,A) \cong C_n(X)/C_n(A)$

Since ∂ takes Cn(A) to Cn-1(A), have chain complex $\cdots \rightarrow Cn(X,A) \rightarrow Cn-1(X,A) \rightarrow \cdots$

~ relative homology groups I-ln(X,A).

Elements of Hn(X,A) are rep by relative cycles: $x \in Cn(X)$ s.t. $\partial x \in Cn-1(A)$

A relative cycle is trivial in $H_n(X,A)$ iff it is a relative boundary:

K & Cn(X) X = 2B+7 some B& Cn+1(X), J& Cn(A)

Will show: Hn(X,A) = Hn(X/A).

Goal: Long exact sequence $-\cdots \to Hn(A) \to Hn(X) \to Hn(X,A)$ $\to Hn-1(A)$

Proof is "diagram chasing".

$$0 \rightarrow C_{n}(A) \xrightarrow{i_{\bullet}} C_{n}(X) \xrightarrow{q_{\bullet}} C_{n}(X,A) \rightarrow 0$$

$$0 \rightarrow C_{n-1}(A) \xrightarrow{i_{\bullet}} C_{n-1}(X) \xrightarrow{q_{\bullet}} C_{n-1}(X,A) \rightarrow 0$$

-> short exact sequence of chain complexes:

$$C_{n+1}(A) \xrightarrow{C} C_{n}(A) \xrightarrow{A} C_{n-1}(A) \xrightarrow{A}$$

$$C_{n+1}(X) \xrightarrow{A} C_{n}(X) \xrightarrow{A} C_{n-1}(X) \xrightarrow{A}$$

$$C_{n}(X) \xrightarrow{A} C_{n}(X) \xrightarrow{A} C_{n-1}(X) \xrightarrow{A}$$

$$C_{n}(X,A) \xrightarrow{A} C_{n}(X,A) \xrightarrow{A} C_{n-1}(X,A) \xrightarrow{A}$$

$$C_{n}(X,A) \xrightarrow{A} C_{n}(X,A) \xrightarrow{A} C_{n}(X,A) \xrightarrow{A} C_{n}(X,A) \xrightarrow{A}$$

Commutativity of squares \Rightarrow is, q. chain maps \rightarrow induced maps on homology.

Need to define $\partial: H_n(x,A) \longrightarrow H_{n-1}(A)$

Let
$$C \in Cn(X,A)$$
 a cycle.
 $C = q(E)$ $C \in Cn(X)$
 $\partial C \in \ker q$ by commutativity.
 $\Rightarrow C = i(a)$ some $a \in Cn-i(A)$ by exactness.
and $\partial a = 0$ by commut: $i\partial(a) = \partial i(a) = \partial \partial(C) = 0$.
 $i \text{ inj}$.
Set $\partial [C] = [a] \in Hn-i(A)$.

Claim: 2: Hn(X,A) -> Hn-1(A) is a well-defined homomorphism.

Well-defined. a determined by $\partial \tilde{c}$ since i injective.

different a choice \tilde{c}' for \tilde{c}' would have $\tilde{c}' - \tilde{c} \in Cn(A), \text{ i.e. } \tilde{c}' = \tilde{c} + i(a')$ $\Rightarrow \text{ a charges to } a + \partial a'$ $\text{ since } i(a + \partial a') = i(a) + i(\partial a') = \partial \tilde{c}' + \partial i(a') = \partial (\tilde{c}' + i(a'))$ $\cdot \text{ different choice for } \tilde{c}' \text{ in } [c] \text{ is of form } c + \partial b c'$ $\text{ Since } c' = q(b') \text{ some } b' \longrightarrow c + \partial c' = c + \partial j(b')$ $= c + q(\partial b') = q(\tilde{c}' + \partial b')$ $\text{ so } \tilde{c}' \text{ replaced by } \tilde{c}' + \partial b'$ $\longrightarrow \partial \tilde{c}' \text{ uncharged}.$

Homomorphism. Say $\partial [Ci] = [ai]$, $\partial [Cz] = [az]$ via $\widetilde{C}_1, \widetilde{C}_2$. Then $q(\widetilde{C}_1 + \widetilde{C}_2) = C_1 + C_2$ $i(a_1 + a_2) = \partial(\widetilde{C}_1 + \widetilde{C}_2)$ so $\partial ([ci] + [cz]) = [ai] + [az]$

Proof. More diagram chasing. We'll do 2 of the 6 inclusions needed.

Im $\partial \subset \ker i_*$ i.e. $i_*\partial = 0$: $i_*\partial = \cot \cos \left[\operatorname{Col} i_* \right] = 0$.

Keri* $\subset \operatorname{Im} \partial$: Say $a \in \operatorname{Cn}_{-1}(A)$, $a \in \ker i_* \Rightarrow i(a) = \partial b \quad b \in \operatorname{Cn}(X)$ $\Rightarrow q(b)$ a cycle since $\partial_{a}^{2}b = \widehat{a}\partial b = qi(a) = 0$. & ∂ takes [q(b)] to [a].

EXACT SEQUENCES

A sequence of homomorphisms

$$A_{n+1} \longrightarrow A_n \longrightarrow A_{n-1} \longrightarrow \cdots$$

is exact if ker & = im &n+1 <u>chain complex</u> if im &n+1 \(\text{ ker } \text{ xn}

Facts: (i) O → A → B ⇔ x injective

"short exact Sequence"

FOUR THEOREMS

- 1 Long exact seq. for collapsing subcomplex.
- 1 20 Long exact seq. for pair
 - 3 Excision
- 2 & Mayer-Vietoris.

COLLAPSING A SUBCOMPLEX

Theorem:
$$(X, A) = CW - pair$$
.

① There is an exact sequence

 $H_n(A) \xrightarrow{\iota_*} \widetilde{H}_n(X) \xrightarrow{q_*} \widetilde{H}(X/A)$
 $\widetilde{H}_{n-1}(A) \xrightarrow{\iota_*} \widetilde{H}_{n-1}(X) \xrightarrow{q_*} \widetilde{H}_{n-1}(X/A) \longrightarrow \widetilde{H}_n(X/A) \longrightarrow \widetilde{$

Cor:
$$\widetilde{H}_{i}(S_{\bullet}^{n}) = \begin{cases} \mathbb{Z} & i=n \\ 0 & i\neq n \end{cases}$$

Proof: Induction on
$$n$$
.

 $\widetilde{H}_{\bullet}(S^{\circ}) \cong \mathbb{Z}$

For $n > 0$: $(X,A) = (D^{n},S^{n-1}) \longrightarrow X/A \cong S^{n}$.

By theorem:

 $\cdots \longrightarrow \widetilde{H}_{i}(D^{n}) \longrightarrow \widetilde{H}_{i-1}(S^{n-1}) \longrightarrow \widetilde{H}_{i-1}(D^{n}) \longrightarrow \cdots$
 $\Longrightarrow \widetilde{H}_{i}(S^{n}) \cong \widetilde{H}_{i-1}(S^{n-1})$.

To prove the Theorem, will do something more general ...

Cor (Brouwer Fixed Pt Thm): Every f: D^ D has a fixed point.

Proof: If not, exists retraction $r: D^n \to \partial D^n$ Consider $\widetilde{H}_{n-1}(\partial D^n) \xrightarrow{i*} \widetilde{H}_{n-1}(D^n) \xrightarrow{G} \widetilde{H}_{n-1}(\partial D^n)$ composition is id & O contradiction.

RELATIVE HOMOLOGY

 $A \subseteq X \longrightarrow C_n(X,A) \cong C_n(X)/C_n(A)$

Since ∂ takes Cn(A) to Cn-1(A), have chain complex $\cdots \rightarrow Cn(X,A) \rightarrow Cn-1(X,A) \rightarrow \cdots$

relative homology groups Hn(X,A).

Elements of Hn(X,A) are rep by relative cycles: $\alpha \in Cn(X)$ s.t. $\partial \alpha \in Cn_{-1}(A)$

A relative cycle is trivial in $H_n(X,A)$ iff it is a relative boundary:

K & Cn(X) X = 2B+7 some B& Cn+1(X), J& Cn(A)

Will show: Hn(X,A) = Hn(X/A).

Goal: Long exact sequence $-\cdots \rightarrow Hn(A) \rightarrow Hn(X) \rightarrow Hn(X,A)$ $\rightarrow Hn-1(A)$

Proof is "diagram chasing".

$$0 \to C_n(A) \xrightarrow{i_{\bullet}} C_n(X) \xrightarrow{q_{\bullet}} C_n(X,A) \to 0$$

$$0 \to C_{n-1}(A) \xrightarrow{i_{\bullet}} C_{n-1}(X) \xrightarrow{q_{\bullet}} C_{n-1}(X,A) \to 0$$

-> Short exact sequence of chain complexes:

$$C_{n+1}(A) \xrightarrow{C} C_{n}(A) \xrightarrow{J} C_{n-1}(A) \xrightarrow{J}$$

$$C_{n+1}(X) \xrightarrow{J} C_{n}(X) \xrightarrow{J} C_{n-1}(X) \xrightarrow{J}$$

$$C_{n+1}(X,A) \xrightarrow{J} C_{n}(X,A) \xrightarrow{J} C_{n-1}(X,A) \xrightarrow{J}$$

$$C_{n}(X,A) \xrightarrow{J} C_{n}(X,A) \xrightarrow{J} C_{n-1}(X,A) \xrightarrow{J}$$

Commutativity of squares $\Rightarrow i_*, q_*$ chain maps \rightarrow induced maps on homology.

Need to define $\partial: H_n(x,A) \longrightarrow H_{n-1}(A)$

Let
$$C \in Cn(X,A)$$
 a cycle.
 $C = q(\tilde{C})$ $\tilde{C} \in Cn(X)$
 $\partial \tilde{C} \in \text{ker } q$ by commutativity.
 $\Rightarrow \tilde{C} = i(a)$ some $a \in Cn-i(A)$ by exactness.
and $\partial a = 0$ by commut: $i\partial(a) = \partial i(a) = \partial \partial(\tilde{C}) = 0$.
 $i \text{ inj.}$
Set $\partial [C] = [a] \in Hn-i(A)$.

Claim: $\partial: H_n(X,A) \to H_{n-1}(A)$ is a well-defined homomorphism.

Well-defined: - a determined by $\partial \tilde{c}$ since i injective · different choice \tilde{c}' for \tilde{c} would have $\tilde{c}' - \tilde{c} \in C_n(A)$ i.e. $\tilde{c}' = \tilde{c} + i(a')$ \Rightarrow a changes to $a + \partial a'$ since $i(a + \partial a') = i(a) + i(\partial a') = \partial \tilde{c} + \partial i(a') = \partial (\tilde{c} + i \dot{a} \dot{a})$ · different choice for c in [c] is of form $c + \partial c'$ $c' = q(\tilde{c}')$ some $\tilde{c}' \longrightarrow c + \partial c' = c + \partial q(\tilde{c}')$ $= c + q(\partial \tilde{c}') = q(\tilde{c} + \partial \tilde{c}')$ So \tilde{c} replaced by $\tilde{c} + \partial \tilde{b}' \longrightarrow \partial \tilde{c}$ unchanged.

Homomorphism: Say $\partial c_1 = \alpha_1$, $\partial c_2 = \alpha_2$ via $\widetilde{c}_1, \widetilde{c}_2$ Then $q(\widetilde{c}_1 + \widetilde{c}_2) = c_1 + c_2$ $i(\alpha_1 + \alpha_2) = \partial(\widetilde{c}_1 + \widetilde{c}_2)$ so $\partial(c_1 + c_2) = \alpha_1 + \alpha_2$.

Theorem. The following sequence is exact: $H_n(X) \xrightarrow{i_*} H_n(X,A) \xrightarrow{J} H_{n-1}(A) \longrightarrow \cdots$

Proof: More diagram chasing. We'll do 2 of the 6 inclusions needed.

 $lm \ \partial \subseteq \ker i \times i \cdot e. \ i \cdot \partial = 0$ $i \cdot \partial = 0$ $i \cdot \partial = 0$ $i \cdot \partial = 0$

 $\ker i_* \subseteq \operatorname{Im} \partial: \operatorname{Say} \ a \in \operatorname{Cn-1}(A), \ a \in \ker i_* \Rightarrow i(a) = \partial b \ b \in \operatorname{Cn}(X)$ $\Rightarrow g(b) \ a \ \text{cycle Since.} \ \partial q b = g \partial b = g i(a) = 0$ & $\partial t \text{ tokes } [g(b)] \ to [a]$ Some facts about relative homology.

 $P_{rop}: H_n(X,A) = 0 \forall n \iff H_n(A) = H_n(X) \forall n.$

Can define reduced relative homology

 \sim $\widetilde{H}_n(X,A) = H_n(X,A)$ whenever $A \neq \emptyset$.

Prop: If $f, g: (X,A) \rightarrow (Y,B)$ are homotopic through maps of pairs then $f_* = 9*$.

For triples B = A = X, have

$$O \longrightarrow G(A,B) \longrightarrow G(X,B) \longrightarrow G(X,A) \longrightarrow O$$

and so:

Then spectral sequences.

MAYER-VIETORIS

$$\begin{array}{cccc}
x = \lambda^{V} + \lambda^{B} & \longrightarrow & 9 \times 4 \\
\times & \longrightarrow & \times \oplus - \times & \\
\times & \longmapsto & \times \oplus - \times & \\
\end{array}$$

- · Reduced version formally identical.
- Mayer-Vietoris is abelian version of Van Kampen: For AnB path conn $MV \longrightarrow H_1(X) = H_1(A) \oplus H_1(B) / H_1(AnB)$

Examples ①
$$X = S^n$$
 A, $B = (neighborhoods of) hemispheres:
 $\widetilde{H}_i(A) \oplus \widetilde{H}_i(B) = O \forall i$.
 $\Longrightarrow \widetilde{H}_i(S^n) \cong \widetilde{H}_{i-1}(S^{n-1})$$

② X = Klein bottle
$$A,B = (nbhdsof)$$
 Möbius bands
 $A,B,AnB = S'$ →
 $O \longrightarrow H_2(X) \longrightarrow H_1(AnB) \longrightarrow H_1(A) \oplus H_1(B) \longrightarrow H_1(K) \longrightarrow O$
 $1 \longmapsto 2 \oplus -2$

EXCISION

Theorem. Let $Z \subseteq A \subseteq X$ closure $Z \subseteq$ interior A(3) Then $(X - A^2, A - Z) \hookrightarrow (X, A)$ induces an isomorphism on homology.

Equivalently: $A, B \subseteq X$, interiors cover X. $(B, AnB) \hookrightarrow (X,A)$ induces \cong on I-1*translation B=X-Z, Z=X-B.

APPLICATION: Invariance of Domain Dimension

Theorem: If nonempty open sets $U \subseteq \mathbb{R}^m$, $V \subseteq \mathbb{R}^n$ are homeomorphic, then m = n.

Proof: Let $x \in U$. $H_k(U, U-x) \cong H_k(\mathbb{R}^m, \mathbb{R}^m-x)$ by Excision. Long exact seq. for $(\mathbb{R}^m, \mathbb{R}^m-x)$: $W_k(\mathbb{R}^m) \longrightarrow W_k(\mathbb{R}^m, \mathbb{R}^m-x) \longrightarrow W_{k-1}(\mathbb{R}^m-x) \longrightarrow W_{k-1}(\mathbb{R}^m) \longrightarrow W_{k-1}(\mathbb{R}^m-x)$ But $W_{k-1}(\mathbb{R}^m-x) \cong W_{k-1}(\mathbb{R}^m-x)$ since \mathbb{R}^m-x ref. to \mathbb{S}^{m-1} .

Thus: $W_k(U, U-x) = \begin{cases} \mathbb{Z} & k=m \\ 0 & o.w. \end{cases}$ In other words, can detect $w \in \mathbb{R}^m$ homology groups. $w \in \mathbb{R}^m$

Excision also used to show $H_n(X,A) \cong \widetilde{H}_n(X/A)$, so Theorem 2 implies Theorem 1. See Hatcher Prop 2.22

Remains to prove Excision and Mayer-Vieton's.

dea: Subdivide.

Another homology: X = space

U= {Uj} collection of subspaces whose interiors cover X.

Cn(X) = chains Eniti so each ti has image in some Uj

 $\partial(C_n^u(X)) \subseteq C_{n-1}^u(X) \longrightarrow \text{chain complex}$

 $\longrightarrow H_{\alpha}^{\alpha}(X)$

Prop: Hn(X) & Hn(X)

Specifically, there is a subdivision operator $g: C_n(X) \rightarrow C_n^u(X)$

that is a chain homotopy inverse to $L: C_n^u(X) \rightarrow C_n(X)$.

Proof of Excision. To show $H_n(B,AnB) \cong H_n(X,A)$.

Let U = {A,B}

Note $C_n^{u}(A)$ naturally identified with $C_n(A)$. by p and ℓ .

$$\Rightarrow \frac{C_n^u(X)}{C_n(A)} \xrightarrow{C_n(X)} \frac{C_n(X)}{C_n(A)}$$

induces isomorphism $H_n^u(X,A) \cong H_n(X,A)$.

But:

obviously an isomorphism: both are free on simplices lying in B but not A. So $Hn(B,AnB) \cong H_n^u(X,A)$.

Proof of Mayer-Vietoris. Recall
$$X = A \cup B$$
.
Let $U = \{A,B\}$
There is a short exact seq. of chain complexes:
 $O \longrightarrow Cn(AnB) \longrightarrow Cn(A) \oplus Cn(B) \longrightarrow Cn(X) \longrightarrow O$

~ long exact seq. in homology as before. Substituting $H_n(X)$ for $H_n^n(X)$ (Proposition) ~ Mayer-Vieton's sequence.

 \square

A description of $\partial: \operatorname{Hn}(X) \longrightarrow \operatorname{Hn-I}(\operatorname{AnB}):$ x & Hn(X) rep. by cycle Z Z= X+Y X & Cn(A), Y & Cn(B) $\partial x = -\partial y$ since $\partial z = 0$. Set dx = dx.

Proof of Prop.

Let S= barycentric subdivision.

First show S is a chain homotopy equiv.

then take $P = S^N$.

Want T: Cn(X) - Cn+1(X) s.t. Ta+OT = S-id.

i.e. for any simplex & want (n+1)-chain To with

boundary S(T)- J- TdT

Do n=1 case on all 3 sides. Then join all simplices to barycenter on top.

4+ pages in Natcher!

HOMOLOGY AND FUNDAMENTAL GROUP

In many examples, can see $H_1(X) = \pi_1(X)^{ab}$, e.g. surfaces, S'VS', S'

Theorem. $H_1(X) = \pi_1(X)^{ab}$

Proof. Regarding loops as 1-cycles, there is a map $h: \pi(X) \rightarrow H_1(X)$

> To show ha well-defined, surjective homomorphism with kernel [TI(X), TI(X)]

Write = for homotopy, ~ for homology.

Fact 1. Const ~ 0

Ps. Hi(pt) = 0 also: const loop = 2 const. 2-simplex

Fact 2. f = q ⇒ f~q

Pf. const boundary = f-g

Fact 3. f.g ~ f+g

Fact 4.
$$\bar{f} \sim -f$$

Pf. $f + \bar{f} \sim f \cdot \bar{f} \sim const \sim 0$

Well-defined. Facts 2 and 3.

Surjective. Let $\sum T_i = 1$ -cycle.

Relabel. $\sum T_i$ By Fact 4, rewrite as $\sum T_i$ Use Fact 3 to organize into loops, relabel $\sum T_i$ Use Facts 3 and 4 to combine into one loops T_i :

The loop T is in image of h.

Note $[\pi_i(x), \pi_i(x)] \subseteq \ker h$ since $H_i(x)$ abelian.

So say $h(f) \sim 0$. To show $f \in [\pi_i(X), \pi_i(X)]$, i.e. f = 0 in $\pi_i(X)^{ab}$.

320°

$$h(f) \sim 0 \implies f = \partial \left(\sum \sigma_i \right) \quad \sigma_i = 2 - \text{Singular}$$

= $\sum \left(\partial_0 \sigma_i - \partial_1 \sigma_i + \partial_2 \sigma_i \right)$

Modify all $\forall i$ by homotopy so all vertices map to basepoint for $\pi_1(X) \Rightarrow \text{Con regard the sum in } \pi_1(X)^{ab}$ In $\pi_1(X)$ have $(\partial_2 \pi_i) \cdot (\partial_0 \pi_i) = (\partial_1 \pi_i)$ see picture $\Rightarrow \text{ each term of sum is } O \text{ in } \pi_1(X)^{ab}$ Alternate ending. Want to show $h(f)=0 \Rightarrow f \in [\pi,(x),\pi,(x)]$

h(f)=0 ⇒ f= ∂ ∑ [i

Claim: ZTi represents an orientable surface with one boundary, namely f.

Pf: Adjacent triangles must have both d's clockwise or both counterclockwise.

Classification of surfaces $\Rightarrow \Sigma \sigma_i$ is

⇒ fa product of g commutators.

W

SOME HISTORY

An n-manifold is a Hausdorff space where each point has a neighborhood homeomorphic to \mathbb{R}^n .

Poincarés First Conjecture. If X is a 3-manifold with $H_1(X) = 0$, then X is homeomorphic to S^3 .

Counterexample: Poincaré Dodecahedral Space.

Tate a solid dodecahedron, glue opposite faces with 2007/10 clockwise twist. This has same homology as S3 ("homology sphere")

This led Poincaré to develop TI. ~ |TI. (PDS) = 120.

The last theorem shows TI, has more information than 14. Sometimes this is important information!

APPLICATIONS OF HOMOLOGY

1 Jordan Curve Theorem, etc.

/ homeo onto image. in this case, any injective continuous map.

Theorem. Let $h: S' \to \mathbb{R}^2$ embedding. Then \mathbb{R}^2 -h(S') has exactly 2 connected components.

Easy for nice curves (e.g. polygonal). Must consider things like Osgood curves, which have positive (extensor) area (these are obtained by perturbing space filling curves).

- Prop: (a) If $h: D^k \to S^n$ an embedding, then $\widetilde{H}_i(S^n h(D^k)) = 0 \ \forall \ i$ (b) If $h: S^k \to S^n$ an embedding, k < n, then $\widetilde{H}_i: (S^n h(S^k)) = \int \mathbb{Z} \quad i = n k 1$ O otherwise
- (.b) implies any S^{n-1} in S^n divides S^n into two components, each with homology of a point. For n=2, Jordan Curve Thm. For n=3, it is possible for one component to be not simply connected. (Alexander homed sphere.)
- (b) also implies H₁ (S³-knot) ≈ Z.

Proof of Prop: (a) Induct on K K=0 ~ 5°-h(Dk) = R° ✓ Replace Dk with Ik. let A=Sn-h(Ik-1 x [0,1/2]) B= 50 - h (IK-1 x [1/2, 1]) Induction $\Rightarrow \hat{H}_i(AUB) = \hat{H}_i(S^n - h(I^{k-1} \times \frac{1}{2})) = 0$. Mayer-Vietoris ⇒ 重: Hi (AnB) → Hi (A) · Hi (B) isomorphism Vi. $\zeta_{\mu}^{\prime} - \mu(D_{\kappa})$ So if [X] +0 in Hi (Sn-h(DK)) then x +0 in Hi(Sn-half of h(DIK)) Say these halves converge to Ik-1 × {p}. By above, x a boundary in $\widetilde{H}_i(S^n - h(I^{k-1} \times \{p\}))$ Say x = dp. B compact \Rightarrow [X]=0 at some finite stage. ~> contradiction.

(b) Induct on K.

$$K=0 \longrightarrow S^n - h(S^0) \cong S^{n-1} \times \mathbb{R}$$
Let $S^k = D_+^k U_{S^{k-1}} D_-^k$

$$A = S^n - h(D_+^k), \quad B = S^n - h(D_-^k)$$
Mayer-Vietoris plus (a) \Longrightarrow

$$\widetilde{H}_{i+1}(S^n - h(S^{k-1})) \cong \widetilde{H}_i(S^n - h(S^k))$$

Exercise. Examine the case K=n ~> Sn cannot embed in Rn TR cannot embed in the m>n. Aside: Alexander Horned Sphere

The Alexander Horned Ball is the intersection in Xi

$$TT_1(AHB^c) = \langle \alpha_0, \alpha_1, \dots | [\alpha_1, \alpha_2] = \alpha_0$$

$$[\alpha_3, \alpha_4] = \alpha_1 [\alpha_5, \alpha_6] = \alpha_2$$

This group is nontrivial - it is an increasing union of free groups. But since each or; is a commutator, the abelianization is trivial.

2) Invariance of Domain

Theorem U open in \mathbb{R}^n , $h: U \to \mathbb{R}^n$ embedding $\Rightarrow h(u)$ open in \mathbb{R}^n .

Proof Think of R as Sn-pt. Equivalent to show h(u) open in S? Let X&U, D = disk about x in U. Suffices to show h(int D") open in S" $Prop(b) \Rightarrow S^n - h(D^n)$ has 2 path components. The components are $h(int D^n)$, $S^n - h(D^n)$. Indeed: · Since h(int Dn) path conn, these sets are disjoint · Sn - h(Dn) path conn by Prop (b) Since $S^n - h(\partial D^n)$ open in S^n ($h(\partial D^n)$ compact in Hausdorff), its path components = connected components (true for lac. comp.) An open set with finitely many comp. must have each comp. open $\Rightarrow h(int D^n)$ open in $S^n - h(\partial D^n)$ ⇒ open in So 网

Cor: M = compact n - manifold, N = connected n - manifoldThen any embedding $M \xrightarrow{h} N$ is surjective, hence a homeo.

Proof: h(M) closed in N (compact in Hausdorff)

Since N conn, Suffices to show h(M) open in N.

Let $x \in M$. Choose neighborhood V of h(x) homeo to \mathbb{R}^n .

Choose nbhd U of x in $h^{-1}(V)$ homeo to \mathbb{R}^n . $h|_{U}$ an embedding into V. Thm $\Rightarrow h(U)$ open in V, hence open in N.

3 Division Algebras

An algebra over \mathbb{R} is \mathbb{R}^n with bilinear multiplication $\mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ (a, b) \mapsto ab

So: a(btc) = abtac, (atb)c = actbc, &(ab) = (&a)b = a(db)

It is a division algebra if ax=b, xa=b always

Solvable for a # 0. ("no zero divisors")

Four classical examples: R, C, Quaternions, Octonians

Theorem. IR & C are the only finite dimensional division algebras over IR that are commutative and have id.

Proof. We'll show: a fin. dim. comm. div alg. has dim ≤ 2 . Suppose \mathbb{R}^n has a comm. div. alg. Structure.

Define $f: S^{n-1} \to S^{n-1}$ by $f(x) = \frac{x^2}{|x^2|}$ included map $f: \mathbb{RP}^{n-1} \to S^{n-1}$ Claim: f injective $f: f(x) = f(y) \Rightarrow x^2 = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x = x^2y^2 \Rightarrow x^2 - x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x = x^2 + x^2y^2 \Rightarrow x^2 + x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x = x^2 + x^2y^2 \Rightarrow x^2 + x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x = x^2 + x^2y^2 \Rightarrow x^2 + x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x = x^2 + x^2y^2 \Rightarrow x^2 + x^2y^2 = 0$ $f: f(x) = f(y) \Rightarrow x = x^2 + x^2y^2 \Rightarrow x^2 + x^2y$

A little more algebra to get full theorem.

DEGREE

$$f: S^n \to S^n \longrightarrow f_*: H_n(S^n) \to H_n(S^n)$$

 $d = \text{degree} \text{ of } f.$

Facts (i) deg id = 1

(ii) deg
$$f = 0$$
 if f not surjective

(iii) deg $f = \deg g \iff f \cong g \implies \deg f$ due to Hapf.

(iv) deg $fg = \deg f \deg g$

(v) deg $f = -1$ $f = \operatorname{reflection}$ along equator

(vi) deg (antipodal) = $(-1)^n$

1 Hairy Ball Theorem

Theorem. S' has a continuous field of nonzero tangent vectors iff n is odd.

Proof. Det $v(x) = \text{vector field on } S^n$. Translate v(x) to origin $v(x) \neq 0 \quad \forall \quad x \quad \text{in } \mathbb{R}^{n+1}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \text{ with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \text{ with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \text{ with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \text{ with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \text{ with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } \frac{v(x)}{|v(x)|}$ $v(x) \neq 0 \quad \forall \quad x \quad \text{can replace } v(x) \quad \text{with } v(x)$ $v(x) \neq 0 \quad \forall \quad x \quad \text{otherwise } v(x)$ $v(x) \neq 0 \quad \forall \quad x \quad \text{otherwise } v(x)$ $v(x) \neq 0 \quad \forall \quad x \quad \text{otherwise } v(x)$ $v(x) \neq 0 \quad \forall \quad x \quad \text{otherwise } v(x)$ $v(x) \neq 0 \quad \forall \quad x \quad \text{otherwise } v(x)$ $v(x) \neq 0 \quad \forall \quad x \quad \text{otherwise } v(x)$ $v(x) \neq 0 \quad \forall \quad x \quad \text{otherwise } v(x)$ $v(x) \neq 0 \quad \forall \quad x \quad \text{otherwise } v(x)$ $v(x) \neq 0 \quad \forall \quad x \quad \text{otherwise } v(x)$ $v(x) \neq 0 \quad \forall \quad x \quad \text{otherwise } v(x)$

One more fact about degree:

(vi) If f has no fixed points, then deg $f = (-1)^{n+1}$ proof: find homotopy to antipodal map (straight line)

Frop: 7/27 is only group that can act freely on Sⁿ if n is even.
Pf: Say G (2 Sⁿ → d: G → ξ±1? homomorphism by

Pf: Say $G \hookrightarrow S^n \longrightarrow d: G \to \{\pm 1\}$ homomorphism by (iv) Action free $\Rightarrow d(\text{eng}) = (-1)^n g \neq id$ by (vi) $n \text{ even } \Rightarrow \text{ Kerd} = 1 \Rightarrow G \cong \mathbb{Z}/2\mathbb{Z}.$

Can also use degree to compute cellular homology compute homology of \mathbb{CP}^n , $S^n \times S^n$, T^n , \mathbb{RP}^n , L(p,q), etc. see text.

@ Borsuk-Ulam Theorem

Prop: Say $f: S^n \rightarrow S^n$, $f(-x) = -f(x) \ \forall \ x \ (add map)$. Then f has odd degree.

Theorem: $g: S^n \to \mathbb{R}^n \Rightarrow \exists \times \text{ s.t. } g(x) = g(-x)$.

Proof: Let f(x) = g(x) - g(-x), say $f(x) \neq 0 \forall x$.

Replace f(x) by f(x)/|f(x)| $f: S^n \to S^{n-1}$ odd

Prop $\Rightarrow f$ lequotor has odd degree.

But either hemisphere gives a nullhomotopy.

Contradiction.

1 Lefschetz Fixed Point Theorem

Trace: for $q: A \rightarrow A$ A = f.g. abelian group $tr \ q = tr(A/torsion \rightarrow A/torsion)$

X = Space with finitely generated homology, trivial H_i : $i \gg N$. e.g. finite simplicial complex.

The Lefschetz number of $f: X \rightarrow X$ is $T(f) = \sum_{i=1}^{n} (-1)^{i} tr(f_*: H_i(X) \rightarrow H_i(X))$

Theorem Z(f) = sum of indices of fixed points

assume fixed' points are isolated

In particular $T(f) \neq 0 \Rightarrow$ fixed points Browner FPT is corollary.

The Index of fixed point p is $deg(\overline{f}:(X,X-p) \rightarrow (X,X-p))$

Linear maps. Modulo torsion, RP^n n even has homology of pt. \Rightarrow every map has a fixed point \Rightarrow every linear map $R^n - R^n$, n odd has an eigenvector (can also use elementary reasoning).

Can do many examples of LFPT with surfaces, e.g.

Preparation: Approximation by simplicial maps

Simplicial maps. K, L simplicial complexes

K→L simplicial if simplices → simplices, linearly.

Theorem. K= finite simplicial complex, L= simplicial complex. Any $f: K \rightarrow L$ is homotopic to a map that is simplicial w.r.t. Some subdivision of K.

Idea of Proof that T(f) +0 => I fixed points.

Assume $f: X \to X$ has no fixed points Simplicial approx $\longrightarrow g: X \to X$ simplicial, homotopic to f $g(\sigma) \cap \sigma = \emptyset \ \forall \ \text{simplies } \sigma.$

Note T(f) = T(g). To show $tr(g_*) = 0$ in all dim.

Key: $Z(g) = \sum (-1)^n \operatorname{tr}(g_*: H_n(X^n, X^{n-1}) \longrightarrow H_n(X^n, X^{n-1}))$ Use the fact that g takes X^n to X^n plus some algebra.

Since g permutes cells without fixing any, all of these traces are O.

COHOMOLOGY

Same basic information as homology, but get

· multiplicative structure

· pairing with homology

· contravariance

Quick idea:
$$X = \Delta$$
-complex

G = abelian group, say 72

 $\Delta^{i}(X) = \text{functions from } i\text{-simplices of } X \text{ to } G.$

= homomorphisms $\Delta_i(X) \rightarrow G$

$$\delta: \Delta^{i}(X,G) \rightarrow \Delta^{i+1}(X,G)$$
 coboundary $(-1)^{k} f(\partial_{k} \sigma)^{i}$
For $f \in \Delta^{i}$, σ an f -simplex, σ

H*(X;G) is homology of this chain complex

X = 1-dim A-complex = oriented graph

Let f & D°(X,G)

8f(e) = f(V+) - f(vo)

= change of f over e "derivative"

think: f = elevation

chain complex:

$$O \rightarrow \Delta^{\circ}(X,G) \xrightarrow{\delta} \Delta'(X,G) \rightarrow O$$

$$H^{\circ}(X,G) = \ker \delta$$

= functions constant on each component

= direct product of components

(as opposed to direct sum in homology case)

$$H'(X,G) = \Delta'(X,G)/\text{Im }\delta$$

So for $f \in \Delta'(X,G)$, have $[f] = 0$ in $H'(X,G)$ iff f has an antiderivative.

Examples. ① X = treeAntiderivatives always exist $\Rightarrow H'(X,G) = O$.
② X = O $\Delta'(X,G) \cong G$ No nontrivial function has an antiderivative $\longrightarrow H'(X,G) \cong G$ ③ $X = V_X S^1$

More generally. X = any tree graph. Let T = maximal tree (or forest), E = edges cutside $T \longrightarrow H'(X,G) = TT_E G$ (again, instead of direct sum).

~ H'(X,G) ≈ TIG

Why? First consider $\{f \mid f|_{T=0}\}$ Two of these are cohomologous \iff they are equal (only possible antidenivative is F= const).

Next show any $f' \in \Delta'$ is cohomologous to some f with $f|_{T} = O$. Modify f' by making one edge of T evaluate to O, say add g to f'(e). Then for any edge e' of X-T, either add or subtract g, depending on whether loop through e,e' traverses them in same or diff directions. Check new f' cohomologous to dd.

Two dimensions.
$$X = 2$$
-dim Δ -complex $F: \Delta'(X,G) \rightarrow \Delta^2(X,G)$
$$Ff([V_0,V_1,V_2]) = f([V_1,V_2]) - f([V_0,V_2]) + f([V_0,V_1])$$

Check that

$$O \longrightarrow \Delta'(X,G) \longrightarrow \Delta'(X,G) \longrightarrow \Delta^2(X,G) \longrightarrow O$$

is a chain complex: say $f \in \Delta^{\circ}(X,G)$.

$$f(v_2) - f(v_0)$$
 $f(v_2) - f(v_1)$
 $f(v_1) - f(v_1)$

$$\delta\delta f([v_0,v_1,v_2]) = (f(v_1) - f(v_0)) + (f(v_2) - f(v_1))$$

 $f(v_2) - f(v_0) = (f(v_1) - f(v_0)) + (f(v_2) - f(v_1)) - (f(v_2) - f(v_0)) + (f(v_2) - f(v_0))$ $f(v_0) - f(v_0) = (f(v_1) - f(v_0)) + (f(v_2) - f(v_0))$ i.e. if you hike a loop, total elevation change is zero.

1-cocycles: of=0 iff $f([v_0,v_2]) = f([v_0,v_1]) + f([v_1,v_2])$ so of measures failure of additivity. This is the local obstruction to f being in $im \delta$ And $f \neq 0$ in $H^1(X) \iff$ does not come from $F \in \Delta^{\circ}$. i.e. if there is a global obstruction.

Analogue with calculus. I-forms on $\mathbb{R}^3 \iff \text{vector fields}$ Want to know if vector field is of local obstruction: curl = 0. (closed) global obstruction: line integrals = 0. (exact)

In IR", all closed forms are exact. Not true in other spaces, e.g. \mathbb{R}^2 -{0} de Rham cohomology: closed forms/exact forms.

Geometric interpretation of 1-cocycles, X a surface.

Take $G=\mathbb{Z}_2$. $\delta f=0$ means f takes value 1 on even # of edges in each Δ . --> collection of curves, arcs [F]=0 (can color regions black & white.

examples. disk, annulus:

Take $G=\mathbb{Z}$. Again $\delta f=0 \longrightarrow \text{collection of curves}$

 $[f] = 0 \iff \text{can assign elevation to each vertex}$ consistently.

exercise. Construct nontrivial cocycle on annulus. So: in annulus, can walk in a loop and change your elevation! cf. international dateline.

Exercise: find geometric interpretations of 1- & 2-cocycles in a 3-manifold.

COHOMOLOGY GROUPS (Some Abstract Algebra)

Start with a chain complex of abelian groups C: $C_n \xrightarrow{\partial n} C_{n-1} \xrightarrow{\cdots} \cdots$ $C_n \xrightarrow{\partial n} C_{n-1} \xrightarrow{\cdots} \cdots$

To get cohomology, we dualize: replace each C_n with its dual $C_n^* = Hom(C_n, G)$ replace each ∂ with $\delta = \partial^* : C_{n-1}^* \longrightarrow C_n^*$ Notice: $\delta \delta = \partial^* \partial^* = (\partial \partial)^* = O^* = O$. $H^n(C,G) = \ker \delta / \inf \delta$

Guess: $H^n(C,G) \cong Hom(H^n(C),G)$ Too optimistic, but almost true. It is true for graphs.

Example. C: $O \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \rightarrow O$ use formula $C : O \rightarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{0} \mathbb{Z} \rightarrow O$ $C : O \leftarrow \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{2} \mathbb{Z} \xrightarrow{1} \mathbb{Z}$

This holds in general, since any chain complex of finitely generated abelian groups splits as a direct sum of $0 \rightarrow \mathbb{Z} \rightarrow 0$ and $0 \rightarrow \mathbb{Z} \xrightarrow{m} \mathbb{Z} \rightarrow 0$

UNIVERSAL COEFFICIENT THEOREM FOR COHOMOLOGY

C: ... — $C_n \rightarrow C_{n-1}$ Chain complex. $\longrightarrow H_n(C)$ $T_n(C) = torsion$ subgroup of $H_n(C)$.

We just showed: If the Hn(C) are finitely generated, and each C_i is free abelian, then $H^n(C, \mathbb{Z}) \cong Hn(C)/T_n(C) \oplus T_{n-1}(C)$

This is a special case of:

Theorem. There is a split short exact sequence: $O \rightarrow Ext(Hm(C),G) \rightarrow H^{\prime\prime}(C,G) \rightarrow Hom(Hn(C),G) \rightarrow O$

The group $\operatorname{Ext}(\operatorname{Hn-I}(C),G)$ is explicit. It describes all extensions of $\operatorname{Hn-I}(C)$ by G. Some properties: If H is finitely gen, then \mathscr{O} $\operatorname{Ext}(H \oplus H',G) \cong \operatorname{Ext}(H,G) \oplus \operatorname{Ext}(H',G)$ $\cong \operatorname{Ext}(H,G) = 0$ if H is free $\cong \operatorname{Ext}(H,G) \cong \operatorname{Ext}(H',G) \cong \operatorname{Ext}(H'$

These imply the special case of UCT above.

Universal coefficient theorem for homology: $H_n(X, \mathbb{Z}) \cong H_n(X, \mathbb{Z}) \otimes \mathbb{Q}$ (later).

COHOMOLOGY OF SPACES

X = space, G = abelian group $C^{n}(X,G) (= \text{singular } n\text{-chains with coefficients in } G, \text{ except allow so sums})$ $= \text{dual of } C_{n}(X)$ $= \text{Hom}(C_{n}(X), G)$ $C = C_{n}(X,G)$

Coboundary δ is ∂_{*} : for $\varphi \in C^{n}(X,G)$ $\delta \varphi : C_{n+1}(X) \xrightarrow{\partial} C_{n}(X) \xrightarrow{\varphi} G$.

Again, $\delta^2 = 0$.

- $H^{n}(X,G)$ cohomology group with coefficients in G. = $\ker \delta / \lim \delta = \cos(\log x)$ coboundaries

Cocycles. A cochain φ is a cocycle iff $\delta\varphi = \varphi \partial = 0$, i.e. φ vanishes on all boundaries. It is a coboundary if it has an "antiderivative." Since Cn(X) free, UCT gives:

 $O \longrightarrow Ext(H_{n-1}(X), G) \longrightarrow H^{n}(X, G) \longrightarrow Hom(H_{n}(X), G) \longrightarrow O$

"Cohomology groups of X with arbitrary coefficients is determined by the homology groups of X with Z coefficients."

What is Ext?

Let $B_n = im \partial_{n} n$ (boundaries) $Z_n = ker \partial_n$ (cycles) $in : B_n \rightarrow Z_n$ $Ext(H_{n-1}(X), G) = Coker i_{n-1}^*$

dual to in-1

COHOMOLOGY IN LOW DIMENSIONS

n=0 Ext term is trivial, so $H^{\bullet}(X,G) \cong Hom(H_{\bullet}(X),G)$

Can See directly from definitions:

sing. 0-simplices \Longrightarrow points of Xcochains \Longrightarrow functions $X \to G$ (not continuous)

cocycles \Longrightarrow vanish on boundaries \Longrightarrow const. on each path component \Longrightarrow $H^{\bullet}_{\bullet}(X,G) = \text{functions} \{ \text{path components of } X \} \longrightarrow G$ $= \text{Hom}(H_{\bullet}(X), G).$

n=1 Ext = 0 since $H_0(X)$ free $\Rightarrow H'(X,G) \cong Hom(H_1(X),G)$ $\cong Hom(\pi_1(X),G)$ if X path conn.

COEFFICIENTS IN A FIELD

Hn(X,F) = homology gps of chain complex of F-vector spaces <math>Cn(X,F)Dual complex $Hom_F(Cn(X,F),F) = Hom(Cn(X),F)$ $\longrightarrow H^n(X,F)$ Can generalize UCT to fields (or pid's) $\longrightarrow Ext$ vanishes for fields $\longrightarrow H^n(X,F) \cong Hom_F(Hn(X,F),F)$

For F= 7407 or Q, Hom= Hom

Examples of 2-cocycles

We know $H^{2}(D^{2}, \mathbb{Z}) = 0$ so $\varphi = \delta \Psi$. What is Ψ ?

Solution:

No obstructions.

Want to show $[\varphi] \neq 0$ in $H^2(S^2, \mathbb{Z})$ i.e. no antiderivative Ψ .

Any ψ with $\partial \psi = \varphi$ must satisfy:

writing a for year

$$b+d=a$$

$$e+c=a$$

$$b+f=c$$

$$e+f=d+1$$

$$\Rightarrow a-a=1.$$

Realize T^3 as Δ -complex by subdividing cube into (6 tetrahedra, identifying app faces of the cube. Let L= line segment in cube that is a loop in T^3 , misses 1-skeletion. Declare $\varphi(T)=1$ if $T \cap L \neq \emptyset$. Show $[\varphi] \neq 0$ in $H^2(T^3, 74/27L)$.

COHOMOLOGY THEORY

Reduced groups, relative groups, long exact seq of pair, excision, Mayer-Vietoris, all work for cohomology.

Induced Homomorphisms - Contravariance

Given
$$f: X \rightarrow Y$$
, get chain maps $f_{\#}: C_{n}(X) \rightarrow C_{n}(Y)$

Dualize: $f^{\#}: C^{n}(Y,G) \rightarrow C^{n}(X,G)$
 $f_{\#}\partial = \partial f_{\#} \text{ dualizes to } \delta f_{\#}^{\#} = f_{\#}^{\#}\delta$
 $f_{\#}: H^{n}(Y,G) \rightarrow H^{n}(X,G)$

with: $(f_{g})^{\#} = g^{\#}f^{\#}$ & $(id)^{\#} = id$

Say $X \mapsto H^{n}(X,G)$ is a contravariant functor.

Homotopy Invariance $f \simeq g : X \longrightarrow Y \Longrightarrow f^* = g^* : H^n(Y) \longrightarrow H^n(X)$.

Dualize the proof for homotopy P s.t. $g_{+} - f_{+} = \partial P + P \partial P$ Dualize: $g^{+} - f^{+} = P^* \mathcal{F} + \mathcal{F} P^*$ $\longrightarrow P^*$ a chain homotopy between f^{+} & g^{+} So all the work has been done.

PRODUCT STRUCTURES

There are three natural products with homology & cohomology:

$$H^{k}(X) \times H_{k}(X) \longrightarrow \mathbb{Z}$$

Can use this to show cocycles, are or cycles, are nontrivial.

1 Cup product:

$$H^{p}(X) \times H^{q}(X) \longrightarrow H^{p+q}(X)$$

$$(\varphi, \psi) \longmapsto \varphi \cup \psi$$

 \longrightarrow H*(X) is a graded ring.

3 Cap product:

$$H^{p}(X) \times H_{n}(X) \longrightarrow H_{n-p}(X)$$

 $(\varphi, \alpha) \longmapsto \varphi \cap \alpha$

Big Goal:

Poincaré Duality Theorem.

Let M = compact, connected, oriented n - manifold. Then

$$H^{p}(M) \rightarrow H_{n-p}(M)$$
 $\varphi \mapsto \varphi \cap [M]$

is an isomorphism.

We have already since examples of cocycles in manifolds of the form "intersect with this (n-p)-cycle". These are Poincaré duals.

Will see: under PD, cap product is intersection.

CUP PRODUCT

Want to define a product on $H_*(X)$.

There is a cross product $H_i(X) \times H_i(Y) \longrightarrow H_{i+j}(X \times Y)$ $(ei, e_j) \longmapsto e_i \times e_j$ Taking $X = Y : H_i(X) \times H_j(X) \longrightarrow H_{i+j}(X \times X) \xrightarrow{?} H_{i+j}(X)$ Need a natural map $X \times X \longrightarrow X$.

If X is a group, can multiply \longrightarrow Pontryagin product.

Otherwise only natural map is projection \longrightarrow stupid product.

For
$$H^*$$
, situation is better. Want

 $A^i(X) \xrightarrow{i} A^j(X) \xrightarrow{j} A^{i + j}(X \times X) \xrightarrow{?} H^{i + j}(X \times X)$
 $H^i(X) \times H^j(X) \longrightarrow H^{i + j}(X \times X) \xrightarrow{?} H^{i + j}(X)$

This requires a natural map $X \to X \times X \longrightarrow \text{diagonal}!$ This is the cup product.

We can also define cup product from scratch:

For
$$\varphi \in C^k(X,R)$$
, $\psi \in C^l(X,R)$ $R = ring$.
the cup product $\varphi \cup \psi \in C^{k+l}(X,R)$ is
given by: $(\varphi \cup \psi)(\sigma) = \varphi(\sigma|_{\Sigma_{0,...,V_{k}}}) \psi(\sigma|_{\Sigma_{V_{k,...,V_{k+l}}}})$
for a simplex $\sigma : \Delta^{k+l} \to X$.

To show cup product induces a product on cohomology.

$$\frac{\text{Lemma}}{Pf} \quad \delta(\phi \cup \psi) = \delta(\phi \cup \psi + (-1)^{k} \phi \cup \delta \psi)$$

$$\frac{\text{Emma}}{Pf} \quad \delta(\phi \cup \psi) = \sum_{\substack{i=0 \ i=0}}^{k+1} (-1)^{i} \phi(\nabla | [\nabla_{i}, ..., \hat{\nabla}_{i}, ..., \nabla_{k+1}]) \psi(\nabla | [\nabla_{k+1}, ..., \nabla_{k+1}])$$

$$(-1)^{k} (\phi \cup \delta \psi)(\nabla) = \sum_{\substack{i=0 \ i=k}}^{k+1} (-1)^{i} \phi(\nabla | [\nabla_{i}, ..., \hat{\nabla}_{i}, ..., \nabla_{k+1}]) \psi(\nabla | [\nabla_{k+1}, ..., \nabla_{k+1}])$$

Last term of first sum cancels first sum of second. Rest is $\delta(\phi u \psi)(\tau) = (\phi u \psi)(\partial \tau)$.

Since $\delta(\varphi v \psi) = \delta \varphi v \psi \pm \varphi v \delta \psi$ \longrightarrow product of cocycles is a cocycle.

Also, the product of a cocycle and a coboundary is a coboundary: $\psi = \delta\Theta$, $\delta\varphi = 0 \implies \delta(\varphi \cup \Theta) = \delta\varphi \cup \Theta \pm \varphi \cup \delta\Theta$ $= \pm \varphi \cup \psi.$

We thus have an induced cup product $H^{k}(X,R) \times H^{l}(X,R) \xrightarrow{\vee} H^{k+l}(X,R)$

It is associative and distributive, since it is on ochain level. If R has 1 then $H^*(X,R)$ has identity, namely: $1 \in H^{\circ}(X,R)$ taking value $1 \in R$ on each O-simplex.

Note: The canonical isomorphism between simplicial/singular H* preserves U, so can switch back & forth.

EXAMPLE: SURFACES

Will show $U: H^1(Mg, \mathbb{Z}) \times H^1(Mg, \mathbb{Z}) \longrightarrow H^2(Mg, \mathbb{Z}) = \mathbb{Z}$ X = Mq. is algebraic intersection.

ai, bi form a basis for H1(Mg, Z). UCT > H'(Mg) = Hom (H, (Mg), Z) Basis for Hy and dual basis for H1 $a_i \longrightarrow \emptyset$ $\phi_i = a_1 \longrightarrow 1$ others $\longrightarrow 0$.

Can represent by simplicial cocycle and dotted arc. Xi, Bi. xi evaluates to 1 on an edge like to -1 on an edgelike +>

Compute Q1 U 1/1 from definition. Takes value 0 on all cells but SE, where it takes value

fundamental We know H2(Mg) = Z = < [Mg]> $UCT \Rightarrow H^2(M_g, \mathbb{Z}) \cong Hom(H_2(M_g), \mathbb{Z}).$ So which elt of H2(Mg, Z) is q, U /1? We check (Q1 U Y1) ([Mg]) = 1 This tells us both that (i) [Mg] generates H2(Mg)

(ii) (PIU) is dual to [Mg],

hence a gen. for $H^2(Mg, \mathbb{Z})$.

In general, identifying $H^2(Mg, \mathbb{Z})$ with \mathbb{Z} :

~ algebraic intersection.

Suffices to check on generators.

EXAMPLE: NONORIENTABLE SURFACES

Use $\mathbb{Z}/2\mathbb{Z}$ coefficients since $H_2(N_g) = 0$ $H_2(N_g; \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$

Claim: H2 (Ng, 7427) = 72/272.

Pf: Any single A gives a cocycle. ©
Any two adjacent triangles are cohomologous

→ any cocycle is k.c.

Can also use UCT and Ext(Z/nZ, G) = G/nG.

Can check: $\alpha_i \cup \alpha_i = 1$ $\alpha_i \cup \alpha_j = 0$

This is again intersection number: if you push off di it intersects itself in one point.

The g=1 case is \mathbb{RP}^2

NATURALITY

Prop: For
$$f: X \rightarrow Y$$
, the induced $f^*: H^n(Y, \mathbb{R}) \rightarrow H^n(X, \mathbb{R})$
Satisfies: $f^*(\alpha \cup \beta) = f^*(\alpha) \cup f^*(\beta)$

Pf: Already true on cochain level:
$$f^{\#}(\varphi) \cup f^{\#}(\psi) = f^{\#}(\varphi) \cup f^{\#}(\psi)$$
.

$$(f^{\#}(\psi) \cup f^{\#}(\psi))(\sigma) = f^{\#}(\varphi) \cup f^{\#}(\psi) \cup f^{\#}(\psi) = f^{\#}(\varphi) \cup f^{\#}(\psi)$$

$$= \varphi(f\sigma | [v_0,...,v_k]) \vee (f\sigma) \cup f^{\#}(\psi)$$

$$= f^{\#}(\psi \cup \psi)(f\sigma) = f^{\#}(\psi \cup \psi)(\sigma).$$

RELATIVE VERSION

 $C^{k}(X,A;R)$ = cochains that vanish on A (more natural than $C_{k}(X,A)$ since it is a subgroup, not a quotient).

Have cup products:
$$H^{k}(X;R) \times H^{k}(X,A;R)$$

 $H^{k}(X,A;R) \times H^{k}(X;R) \longrightarrow H^{k+1}(X,A;R)$
 $H^{k}(X,A;R) \times H^{k}(X,A;R)$

And: $H^k(X,A;R) \times H^k(X,B;R) \longrightarrow H^{k+\ell}(X,A\cup B;R)$.

THE COHOMOLOGY RING

Define $H^*(X,R) = \bigoplus H^k(X,R)$ Elements are finite sums $\Xi \alpha_i$ with $\alpha_i \in H^i(X,R)$. The product is $\Xi \alpha_i \Xi \beta_i = \Xi \alpha_i \beta_i$ (writing xy for $x \cup y$). $\longrightarrow H^*(X,R)$ is a ring. It has 1 if R has 1.

We saw: $H^*(RP^2, 7/27) = \{a_0 + a_1 \propto + a_2 \propto^2 : a_1 \in 7/27\}$ = $7/27 [x]/(x^3)$ nice!

One can also show: $H^*(\mathbb{RP}^n, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[\alpha]/(\alpha^{n+1})$. $|\alpha| = 1$ $H^*(\mathbb{RP}^\infty; \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}[\alpha]$ and $H^*(\mathbb{CP}^n, \mathbb{Z}) = \mathbb{Z}[\alpha]/(\alpha^{n+1})$ $|\alpha| = 2$ $H^*(\mathbb{CP}^\alpha; \mathbb{Z}) = \mathbb{Z}[\alpha].$

It is a graded ring, a ring \longrightarrow of form $\oplus A_k$ with $A_k = additive$ subgroup, $A_k \times A_l = A_{k+l}$. Write |x| for the degree (i.e. which A_k it lives in).

There are spaces with same H_k & H^k groups, but different H*: S'vS'vS², T²

There are distinct spaces with identical H*:

H*(S3VS5) = H*(S(CP2)) = Z100 Z130 Z150 Z150

Prop: XUB = (-1) K+R (BUX) if R commutative.

KUNNETH FORMULA

Cross Product (aka external cup product) $H^*(X, \mathbb{Z}) \times H^*(Y, \mathbb{Z}) \longrightarrow H^*(X \times Y, \mathbb{Z})$ $(a, b) \longmapsto p_i^*(a) \cup p_2^*(b)$ bilinear.

Tensor Products

Bilinear maps are not linear/homomorphisms e.g. $\mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ $(e_1 : e_1) \mapsto 1$ $\Rightarrow (-e_1, -e_1) \mapsto 1$ $\rightarrow \text{replace} \times \text{with } \otimes$

The tensor product of abelian groups A,B is the abelian group $A \otimes B$ with generators $a \otimes b$ $a \in A, b \in B$ and relations $(a+a)\otimes b = a\otimes b + a\otimes b$ $a\otimes (b+b') = a\otimes b + a\otimes b'$

Identity: $0 \otimes 0 = 0 \otimes b = a \otimes 0$ Inverses: $-(a \otimes b) = -a \otimes b = a \otimes -b$.

Universal Property

Basic Properties

- (i) A⊗B≅B⊗A
- (ii) (⊕Ai)&BI = ⊕(Ai⊗B)
- (iii) (A⊗B) & C = A O (B⊗C)
- (iv) Z&A & A
- (V) Z/nZ & A = A/nA
- (vi) $f: A \rightarrow A', g: B \rightarrow B' \longrightarrow f \otimes g: A \otimes B \rightarrow A' \otimes B'$
- (Vii) q: AxB C bilinear f: ABB C

Back to Cross Product

Property (vii)
$$\longrightarrow$$
 homomorphism
$$H^*(X, \mathbb{Z}) \otimes H^*(Y, \mathbb{Z}) \longrightarrow H^*(X \times Y, \mathbb{Z})$$

$$a \otimes b \longmapsto a \times b$$

The left hand side has multiplication
$$(a \otimes b)(c \otimes d) = (-1)^{|b||c|} ac \otimes bd$$

Check: The above map is a ring homomorphism.

THEOREM. (Künneth) $H^*(X,\mathbb{Z}) \otimes H^*(Y,\mathbb{Z}) \xrightarrow{cross} H^*(X\times Y,\mathbb{Z})$ isomorphism if $L^*(X,\mathbb{Z})$ or \mathcal{L} $H^*(Y,\mathbb{Z})$ is fin. gen., free.

Exterior Algebras

 $\Lambda[\alpha_1, \alpha_2, ...] = \text{graded tensor product of } \text{the } \Lambda[\alpha_i], |\alpha_i| \text{ odd}$ As an abelian group, gen by $\alpha_i, ... \alpha_{ik}$ $\alpha_i < ... < \alpha_{ik}$ $\text{Multiplication given by } \alpha_i = -\alpha_j \alpha_i \quad i \neq j$ $\text{All iplication given by } \alpha_i^2 = 0.$

Cor: $H^*(T^n, \mathbb{Z}) \cong \Lambda[\alpha_1, ..., \alpha_n]$ |\(\mathbf{k}: \left| = 1.

oriented elts of H* are sums of: intersect with coordinate tori

More generally, if X is product of odd-dim spheres $H^*(X) \cong \Lambda[\alpha_1,...,\alpha_n]$ but $|\alpha_i|$ varies.

For even-dim spheres get Z[x]/(x2) factors.

Idea of Proof: Induct on dimension.

Polncaré Duality

For M a compact, orientable n-manifold: $H_k(M) \cong H^{n-k}(M)$

or, modulo torsion:

HK(M) = Hn-K(M)

Examples. ① $H_*(S^n)$ Z, 0, ..., 0, Z② $H_*(Mg)$ Z, Z^{2g}, Z ③ $H_*(T^n) = Z^{(R)} = Z^{(R-k)} = |-l_{n-k}(T^n)|$

For Ma A-complex:

compact = finitely many simplices orientable = I choice of $E_i \in \{\pm 1\}$ so $\sum_{i=1}^{N} E_i \forall i$ is a cycle where $\forall i, ..., \forall p$ are n-simplices of M. The class of Such a cycle is called a fundamental class, or orientation. It is written [M].

There are versions of PD for nononientable & manifolds (use 7/127/L coefficients) and manifolds with boundary (Lefschetz duality).

One other duality: Alexander duality. If K is a compact, locally contractible, nonempty proper subspace of S^n , then $\widehat{H}_i(S^n-K) \cong \widehat{H}^{n-i-1}(K)$.

The PD isomorphism will be made explicit: $\varphi \mapsto \varphi \cap [M]$.

THE IDEA OF POINCARÉ DUALITY: DUAL CELL STRUCTURES

For manifolds:

cell structures \iff dual cell structures \leftarrow K-cells \iff (n-k)-cells \longrightarrow face relations reversed.

Examples.

· Platonic solids

· Ag-gon structure on Mg is self-dual.

· Structure on To with one n-cube is self-dual.

Duality with 4/2/2 coefficients.

Can ignore signs - There is a natural pairing between a cell structure C and its dual C*.

 $C_i \iff C_{n-i}^*$

Under this identification d: Ci - Ci.,

T - sum of faces of T

becomes $\delta: C_{n-i}^* \longrightarrow C_{n-i+1}^*$

T* → Sum of dual cells of

which TX is a face.

→ $Hi(C, \frac{7}{2}Z) \cong H^{n-i}(C^*, \frac{7}{2}Z)$ $Hi(M, \frac{7}{2}Z)$ $H^{n-i}(M, \frac{7}{2}Z)$

example. T^2

CAP PRODUCT

$$(\sigma, \varphi) \longmapsto \varphi(\sigma|_{[V_0,...,V_k]}) \, \varphi[V_1,...,V_k]$$

As usual, need to check this includes a cap product on co/homology. The required formula is:

- \longrightarrow induced cap product $H_k(X) \times H^2(X, \mathbb{Z}) \xrightarrow{} H_{k-e}(X)$
 - · Linear in each variable
 - · Natural: f: X -> Y -> f*(x) \(\q = f*(\an f*(\q)) \).

Theorem (Poincaré Duality). M= compact n-manifold with orientation [M]. Then

$$H^{k}(M) \longrightarrow H_{n-k}(M)$$

e → [M] ne

is an isomorphism.

exercise. Check for 52.

Duality with Z coefficients

Need to deal with orientations. Let $M = \Delta$ -complex [M] = orientation

for T = n - simplex, $\nabla = k - dim$ face, define Tz = convex hull in I of barycenters of simplices of I containing T

This is (n-k)-dim subcomplex of barycentric subdivision B(T).

For q=k-cochain, define $D(\varphi) = \sum_{\substack{n-\text{simp } T \\ k-\text{simp } V \leq T}} {\left(\begin{array}{c} \text{sign of} \\ \text{T in } [M] \end{array}\right)} {\left(\begin{array}{c} \text{sign of} \\ \text{V in } T \end{array}\right)} {\left(\begin{array}{c} \varphi(T) \\ \text{T} \end{array}\right)}^*$ simplices of note: ∇_t^* have orientation induced from canonical orientation of B(I), and sign of I in I is whether or not this agrees, with the orientation on This induced by the max. Simplex of BLT containing the orientation of the Sign of I in I: Examples of

Some 1-cells of B(t) with canon. orient.

Same 1-cells with coeff = sign of I in I

Examples of $\mathcal{D}(\varphi)$:

D(41)

THE IDEA OF POINCARÉ DUALITY I

Given φ , want to first relate $D(\varphi)$ and $[M] \cap \varphi$, then show D is an isomorphism $H^k \to H_{n-k}$. Restrict to n=2, k=1. Define an intermediany $L(\varphi) = |evel curves|$ for φ

Claim 1. L(q) is equal to D(q), [M] nq

Two examples of φ , $L(\varphi)$:

Homotopy L(4) ~ [M] n (4: Push endpts of each edge of L(4) along boundary arrows.

Homotopy L(4) ~ D(4): Push onto

Claim 2. $L: H' \rightarrow H_1$ is an isomorphism.

Step 1. • q a coboundary $\iff L(cp)$ boundary $\iff L(cp)$ boundary $\iff L$ is an injective, well-defined map. Step 2. L is surjective.

Given cycle &, tile one side by triangles From Push & up, in general position

~ the cocycle is intersection with the pushoff.

THE PROOF OF POINCARÉ DUALITY

Cohomology with compact support

Idea: Take cohomology only using cochains where, for some compact K, φ kills all chains in $X \setminus K$.

More precisely: $H_c^*(M,R) = \lim_{K} H^p(X,X \setminus K;R)$ In practice, take the direct limit over some exhaustion.

Example. $H_c^{\Gamma}(\mathbb{R}^n) \cong \mathbb{Z}$ Use exhaustion of \mathbb{R}^n by balls,.

LES for cohomology of pairs: $0 \longrightarrow H^{\Gamma}(\mathbb{R}^n - B(r)) \stackrel{\cong}{\longrightarrow} H^{\Gamma}(\mathbb{R}^n, B(r)) \longrightarrow 0$ The inclusion $(\mathbb{R}^n, \mathbb{R}^n \setminus B(r+1)) \hookrightarrow (\mathbb{R}^n, \mathbb{R}^n \setminus B(r))$ clearly induces an \cong on H^{Γ} .

Relative cap product

Usual cap product generalizes to $H^p(X,A) \times H^q(X,A) \longrightarrow H_q-p(X)$ defined in same way on cochain level.

PD for Noncompact Manifolds

Define $D: H^p(M,R) \to Hn-p(M,R)$ as the direct limit of maps $D_k: H^p(M,M \setminus K;R) \to Hn-p(M,R)$ $c \mapsto c \cap [Mk]$ where [Mk] is fundamental class relative to K.

Thm: M = orientable n - manifold $D: H_c^P(M, \mathbb{Z}) \longrightarrow H_{n-p}(M)$ is an isomorphism.

Steps in the Proof

- 1. The theorem holds for $M = \mathbb{R}^n$
- 2. If the theorem holds for U, V, UnV, it holds for UUV.
- 3. If the theorem holds for Uiz = Uz = ..., it holds for Uui
- 4. The theorem holds for open subsets of IR".
- 5. The theorem holds for any M.

Steps 1 & 2 are the work. Steps 3-5 are general nonsense.

Step 1. PD holds for 1Rn.

We saw $H_c^*(TR^n) = \mathbb{Z}_{(n)} = H_{n-*}(TR^n)$ For any K = compact ball, the cap prod. of a generator for $H^n(TR^n, TR^n \setminus K)$ with $[TR^n_K]$ is \pm the generator for $H_0(TR^n)$ since n in this case is evaluation. So the above \cong is indeed induced by n.

Step 2. PD holds for U, V, UnV -> PD holds for UVV.

A Mayer-Victoris argument.

Step 3. PD holds for U, = U2 = ... > PD holds for U Ui

By basic properties of direct limits:

He (UUi) = lim lim HP(Ui, Ui) = lim He (Ui)

Also: $I_{ln-p}(UU_i) = \lim_{i} H_{n-p}(U_i)$

Step 3 follows by naturality of direct limits.

Step 4. PD holds for open subsets of IR?

Write U as $U_1 \subseteq U_2 \subseteq \cdots$, where U_1 is an open ball, and U_1 if obtained from U_1 by adding an open ball. U_2 U_3 U_4 U_4 U_5 U_6 U_6 U_6 U_7 U_8 U_8

Step 5. PD holds for any M.

Steps 1&4 + Zorn's Lemma \Rightarrow I nonempty maximal open set V on which PD holds. If V +M, can take a coordinate hold U disjoint from V.

Steps 1&2 \Rightarrow PD holds for UUV, contradiction.

APPLICATIONS OF POINCARÉ DUALITY

Euler characteristic.

For a manifold M, define
$$\mathcal{K}(M) = \sum_{i=0}^{\dim M} (-1)^i \ rk \ H_i(M)$$

Prop: If dim(M) odd, then $\mathcal{X}(M) = 0$.

Prop: If dim(M) even and X(M) odd (e.g. TRP2) then M is not the boundary of any manifold.