微积分 I: 连续

Calculus I: Continuous

王浩铭

2017 年 · 夏

这篇笔记的参考资料为同济大学《高等数学》与菲赫金戈尔茨《微积分学教程》,部分内容根据我的理解进行调整。因为本人水平有限,无法保证本文内容正确性,这篇笔记仅供参考。若您发现本文的错误,请将这些错误发送到我的邮箱 wanghaoming17@163.com ,谢谢!您可以在我的主页中浏览更多笔记。

目录

1	函数	的连续性与间断点	2
	1.1	连续性的概念	2
	1.2	间断点的概念	2
2	2 连续函数的运算		2
3	闭区间上的连续函数		
	3.1	数列性质补充	3
	3.2	有界性与最值存在	5
	3.3	零点定理与介值定理	6
	2 /	一种在结果	7

1 函数的连续性与间断点

1.1 连续性的概念

定义 1.1 (连续). 若函数 f(x) 在 x_0 某一邻域内有定义,且 $\lim_{x\to x_0} f(x) = f(x_0)$,则称 f(x) 在 x_0 点连续.

定义 1.2 $(\epsilon - \delta$ 语言). f(x) 在 x_0 点连续 $\Leftrightarrow \forall \epsilon > 0 \exists \delta > 0, \forall x \in U(x_0, \delta), \text{s.t.} |f(x) - f(x_0)| < \epsilon$.

注意. x 的邻域,而不去心.

下面说明左连续与右连续的概念.

定义 1.3 (左连续). 若 $\lim_{x\to x_0^-} f(x)$ 存在,且 $\lim_{x\to x_0^-} f(x) = f(x_0)$,则称 f(x) 在 x_0 点左连续.

定义 1.4 (右连续). 若 $\lim_{x\to x_0^+} f(x)$ 存在,且 $\lim_{x\to x_0^+} f(x) = f(x_0)$,则称 f(x) 在 x_0 点右连续.

1.2 间断点的概念

定义 1.5 (间断点). 若函数 f(x) 在 x_0 某去心邻域内有定义,但在 x_0 处不连续,则称 x_0 为函数 f(x) 的间断点.

定义 1.6 (第一类间断点). 若 x_0 为函数 f(x) 间断点,且 $\lim_{x\to x_0^-} f(x)$, $\lim_{x\to x_0^+} f(x)$ 都存在,则称 x_0 为第一类间断点.

定义 1.7 (可去间断点). 若 $\lim_{x\to x_0^-} f(x)$, $\lim_{x\to x_0^+} f(x)$ 都存在,且 $\lim_{x\to x_0^-} f(x) = \lim_{x\to x_0^+} f(x) \neq f(x_0)$,则称 x_0 为可去间断点.

定义 1.8 (跳跃间断点). 若 $\lim_{x\to x_0^+} f(x), \lim_{x\to x_0^+} f(x)$ 都存在,且 $\lim_{x\to x_0^-} f(x) \neq \lim_{x\to x_0^+} f(x)$,则称 x_0 为跳跃间断点.

定义 1.9 (第二类间断点). 若 x_0 为函数 f(x) 间断点,且 $\lim_{x\to x_0^-} f(x)$, $\lim_{x\to x_0^+} f(x)$ 至少一个不存在,则称 x_0 为第二类间断点.

2 连续函数的运算

定理 2.1 (连续性的四则运算法则). 若函数 f(x), g(x) 在点 x_0 连续,则 $f(x)\pm g(x), f(x)\cdot g(x), \frac{f(x)}{g(x)}(g(x_0) \neq 0)$ 在点 x_0 连续.

证明. 由极限的四则运算法则(??)可知:

$$\lim_{x \to x_0} f(x) \pm g(x) = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x) = f(x_0) \pm g(x_0).$$

$$\lim_{x \to x_0} f(x) \cdot g(x) = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x) = f(x_0) \cdot g(x_0).$$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} = \frac{f(x_0)}{g(x_0)}. \quad (g(x_0) \neq 0)$$

定理 2.2 (反函数的连续性与单调性). 若函数 y = f(x) 在区间 I_x 上单调增加(减少)且连续,则其反函数 $x = f^{-1}(y)$ 在对应区间 $I_y = \{y | y = f(x), x \in I_x\}$ 上单调增加(减少)且连续.

定理 2.3 (复合连续函数极限运算法则). 设函数 y = f[g(x)] 是由 y = f(u), u = g(x) 复合而成的函数,f[g(x)] 在 x_0 某去心邻域内有定义,若 $\lim_{u\to u_0} f(u) = f(u_0), \lim_{x\to x_0} g(x) = u_0$,则 $\lim_{x\to x_0} f[g(x)] = \lim_{u\to u_0} f(u) = f(u_0)$.

证明. 由于 $\lim_{u\to u_0} f(u) = f(u_0), \lim_{x\to x_0} g(x) = u_0$ 所以 $\forall \epsilon > 0, \exists \eta > 0, \forall u \in U(u_0, \eta), \text{s.t.} | f(u) - f(u_0)| < \epsilon; \forall \eta > 0, \exists \delta > 0, \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} | g(x) - u_0| < \eta \quad (即 g(x) \in U(u_0, \eta)) , 即 \forall x \in \mathring{U}(x_0, \delta), \text{s.t.} | f(g(x)) - f(u_0)| < \epsilon , 即 \lim_{x\to x_0} f(g(x)) = f(u_0).$

注 2.1. 复合函数 f[g(x)] 满足 $\lim_{x\to x_0} f[g(x)] = f[\lim_{x\to x_0} g(x)]$ 的充分条件:

- 1. 外层函数 f(x) 连续 (复合连续函数极限运算法则, 定理2.3);
- 2. 内层函数单调趋于其极限 (复合函数极限运算法则,定理??)

例 2.1. 求
$$\lim_{x\to 3} \sqrt{\frac{x-3}{x^2-9}}$$

分析. 因为函数由 \sqrt{x} 与 $\frac{x-3}{x^2-9}$ 复合而成,而 $\lim_{x\to 3}\frac{x-3}{x^2-9}=\frac{1}{6}$, \sqrt{x} 在点 $x=\frac{1}{6}$ 处连续,故 $\lim_{x\to 3}\sqrt{\frac{x-3}{x^2-9}}=\sqrt{\lim_{x\to 3}\frac{x-3}{x^2-9}}=\sqrt{\frac{1}{6}}$. 相似的还有幂指函数运算法则.

推论 2.1 (复合连续函数的连续性). 设函数 y = f[g(x)] 是由 y = f(u), u = g(x) 复合而成的函数, f[g(x)] 在 x_0 邻域内有定义,若 $\lim_{u\to u_0} f(u) = f(u_0), \lim_{x\to x_0} g(x) = g(x_0) = u_0$,则 f[g(x)] 在 x_0 处连续.

证明. 由复合连续函数极限运算法则 (定理2.3) 可知: $\lim_{x\to x_0} f[g(x)] = f(u_0) = f[g(x_0)]$,故 f[g(x)] 在 x_0 处连续.

3 闭区间上的连续函数

3.1 数列性质补充

定义 3.1 (子数列). 对于数列 $x_1, x_2, \ldots, x_n, \ldots$, 从中任意部分数列 $x_{n_1}, x_{n_2}, \ldots, x_{n_k}, \ldots$ 称为数列的子列.

定义中 $\{n_k\}$ 是某一自然数的递增的数列:

$$n_1 < n_2 < \dots < n_k < n_{k+1} < \dots$$

在这里依次去所有自然数为值得序号已不是 n , 而是 k ; 而 n_k 已成为一个取自然数为值的整序变量.

定理 3.1. 无论 $\{n_k\}$ 的单调性如何,若有 $k \neq j \Rightarrow n_k \neq n_j$,则有 $\lim_{k \to \infty} n_k \to \infty$.

证明. 利用反证法. 若 $\lim_{k\to\infty} n_k$ 有界,则 $\exists M>0, \text{s.t.} |n_k|\leq M$,易知: [1,M] 中共有 M 个自然数,当 k>M 时,必 $\exists k', \text{s.t.} n_{k'}>M$ 或 $\exists k', j', \text{s.t.} n_{k'}=n_{j'}$,矛盾,因此 $\lim_{k\to\infty} n_k=\infty$.

定理 3.2 (数列极限与子列极限的关系). 若数列 $x_1, x_2, \ldots, x_n, \ldots$ 有确定的极限 (有限或无穷),则 其任意子列必有相同极限.

证明. 设 $\lim_{n\to\infty}x_n=a$,则 $\forall \epsilon>0, \exists N>0, \forall n>N, \text{s.t.} |x_n-a|<\epsilon$. 又因为 $\lim_{k\to\infty}n_k=\infty$,因此对于 $\forall N>0, \exists K>0, \forall k>K, \text{s.t.} n_k>N$,即 $|x_{n_k}-a|<\epsilon$,即 $\lim_{n\to\infty}x_{n_k}=a$.

- **注意.** 1. $n_k \to \infty$ 的性质与 $\{n_k\}$ 的单调性无关,因此无论 $\{n_k\}$ 以何规律趋于 ∞ ,该定理均成立.
 - 2. 证明方法在复合函数极限运算法则 (定理??)、复合连续函数极限运算法则 (定理2.3) 和数列极限与函数极限的关系 (定理3.3) 都有运用.

若整序变量没有确定的极限(如震荡数列), 其子列的极限的存在性得到讨论见布尔查诺-魏尔斯特拉斯引理(引理3.2).

引理 3.1 (区间套引理). 设给定单调增大的整序变量 x_n 以及单调减小的整序变量 y_n , 且恒有 $x_n < y_n$, 若 $\lim_{n\to\infty} y_n - x_n = 0$,则二有序变量存在公共的有限极限: $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = c$.

证明. 因为整序变量 y_n 单调减小,即对于任意 n ,恒有 $y_n \le y_1$,又因为恒有 $x_n < y_n$,故有恒有 $x_n < y_1$,因为整序变量 x_n 单调增大,由于单调有界数列必收敛性质(定理??)可知 x_n 存在有限 极限,使得 $c = \lim_{n \to \infty} x_n$;同理 y_n 存在有限极限,使得 $c' = \lim_{n \to \infty} y_n$

由于整序变量 x_n, y_n 都存在有限极限,由极限四则运算法则可知:

$$\lim_{n \to \infty} y_n - x_n = \lim_{n \to \infty} y_n - \lim_{n \to \infty} x_n = c' - c = 0$$

即 c'=c ,故二有序变量存在公共的有限极限: $\lim_{n\to\infty}x_n=\lim_{n\to\infty}y_n=c$.

引理 3.2 (布尔查诺-魏尔斯特拉斯 (B.Bolzano-C.Weierstrass) 引理). 由任何有界数列内, 恒能选出收敛于有限极限的部分数列.

证明. 设一切数 x_n 都位于界限 a 与 b 之间,将区间 [a,b] 分为两半,则必有一办包含着所给数列的 无穷多个元素(否则在全区间 [a,b] 内所包含着的元素将是有限个),设包含着无穷多个 x_n 的那一半 是 $[a_1,b_1]$.

类似的,在区间 $[a_1,b_1]$ 内分出它的一半 $[a_2,b_2]$,使得在其中包含着所给数列的无穷多个元素.继续这种步骤至无穷.在第 k 次分出的区间 $[a_k,b_k]$ 中依然包含着所给数列的无穷多个元素.

这样构造的区间每一个都包含在前一个之内,以数列 $\{a_n\}$ 为例有:

$$a_n = \begin{cases} a_{n-1} & \text{在区间}[a_{n-1}, \frac{a_{n-1} + b_{n-1}}{2}] \text{中有无穷多元素} \\ \frac{a_{n-1} + b_{n-1}}{2} & \text{在区间}[\frac{a_{n-1} + b_{n-1}}{2}, b_{n-1}] \text{中有无穷多元素} \end{cases}$$

因为 $a_n \leq b_n$,所以有 $a_n \geq a_{n-1}$,同理 $b_n \leq b_{n-1}$; 又因为区间 $[a_n, b_n]$ 长度等于 $[a_{n-1}, b_{n-1}]$ 的一 半,这样第 k 个区间长度为:

$$\iota_k = b_k - a_k = \frac{b - a}{2^k}$$

则有 $\lim_{n\to\infty} \iota_n = 0$,由区间套引理(引理3.1)可知 a_k, b_k 趋于共同的有限极限 c.

现在收敛于有限极限的部分数列由下列方法归纳构造:在所给数列 x_n 内,任取包含于区间 $[a_1,b_1]$ 内的一个(如第一个), 记为 x_{n_1} . 在 x_{n_1} 后面的元素内任选包含于区间 $[a_2,b_2]$ 内的一个(如第一 个),记为 x_{n_2} .由于每个区间 $[a_k,b_k]$ 中包含着所给数列的无穷多个元素,因此这种产生数列的方法 是可行的. 又因为: $a_k \leq x_{n_k} \leq b_k$ 且 $\lim_{k \to \infty} a_k = \lim_{k \to \infty} b_k = c$ 故 $\lim_{k \to \infty} x_{n_k} = c$.

注意 (布尔查诺方法)。在证明这引理时,用了逐次等分所考察区间的方法,成为布尔查诺方法。

定理 3.3 (连续函数与数列极限). 若函数 f(x) 在 [a,b] 上连续, 且 $\lim_{n\to\infty} x_n = c$, 其中 $c \in [a,b]$, 则 $\lim_{n\to\infty} f(x_n) = f(c)$.

证明. 因为函数 f(x) 在 [a,b] 上连续,即 $\lim_{x\to c} f(x) = f(c)$,即 $\forall \epsilon > 0, \exists \delta > 0, \forall x \in U(c,\delta), \text{s.t.} | f(x) - b|$ $|f(c)| < \epsilon$. 又因为 $\lim_{n \to \infty} x_n = c$,故对于 $\delta > 0, \exists N > 0, \forall n > N, \text{s.t.} |x_n - c| < \delta$,即 $x_n \in U(c, \delta)$. 即: $\forall \epsilon > 0, \exists N > 0, \forall n > N, \text{s.t.} |f(x_n) - f(c)| < \epsilon$, 即 $\lim_{n \to \infty} f(x_n) = f(c)$.

3.2 有界性与最值存在

定理 3.4 (魏尔斯特拉斯第一定理). 若函数 f(x) 是在闭区间 [a,b] 内定义且连续的,则它必是有界 的, 即必存在着有限常数 m 及 M , 使得当 $x \in [a,b]$ 时:

$$m \le f(x) \le M$$

证明. 利用反证法,设 $x_0 \in [a,b]$ 使得 $\lim_{x\to x_0} f(x) = \infty$ 则: $\forall n > 0, \exists \delta_n > 0, \forall x \in \mathring{U}(x_0,\delta_n), \text{s.t.} |f(x)| > 0$ n. 即: $\forall n \in \mathbb{N}$, $\diamondsuit x_n = \frac{\delta_n}{2}$, 则 $|f(x_n)| \ge n$, 因此 $\lim_{n \to \infty} f(x_n) = \infty$, 由数列极限与子列极限的 关系 (3.2) 可知对于 $f(x_n)$ 的任意子列 $f(x_{n_k})$ 有 $\lim_{k\to\infty} f(x_{n_k}) = \infty$.

又因为 $\forall n, x_n \in [a, b]$,由布尔查诺-魏尔斯特拉斯引理(引理3.2)可知: $\{x_n\}$ 存在子列 $\{x_{n_k}\}$,使得 $\lim_{k\to\infty}x_{n_k}=c$,由于函数 f(x) 是在闭区间 [a,b] 内定义且连续的,由连续函数与数列极限 的性质 (定理3.3): $\lim_{k\to\infty} f(x_{n_k}) = f(c)$, 由于 f(x) 在 [a,b] 上定义且连续, 故 $f(c) \neq \infty$, 故矛 盾.

定理 3.5 (魏尔斯特拉斯第二定理). 若函数 f(x) 是在闭区间 [a,b] 内定义且连续的,则当 $x \in [a,b]$ 时: f(x) 能取到最大值与最小值.

证明. 利用反证法,若函数 f(x) 是在闭区间 [a,b] 内定义且连续的,由魏尔斯特拉斯第一定理可知函数 f(x) 在闭区间 [a,b] 内有上界,由引理??可知函数 f(x) 在闭区间 [a,b] 内有上确界,令 $M = \sup\{f(x)\}.$

设 f(x) 是在闭区间 [a,b] 内取不到上确界 M ,即 f(x) < M. 构造函数 $\phi(x) = \frac{1}{M-f(x)}$,因为 f(x) < M ,故 M - f(x) > 0 , $\phi(x)$ 连续,由魏尔斯特拉斯第一定理可知函数 $\phi(x)$ 在 [a,b] 上有界,设为 k ,即对 $\forall x \in [a,b]$ 有:

$$\frac{1}{M - f(x)} \le k \Rightarrow f(x) \le M - \frac{1}{k}$$

由上确界的性质($\forall \epsilon > 0, \exists x \in D_f, \text{s.t.} \sup\{f(x)\} - \epsilon < f(x) \le \sup\{f(x)\},$ 注意??)可知矛盾,即 f(x) 能取到最大值,最小值同理.

注意. 辅助函数 $\phi(x)$ 的构造思想:由确界的性质知:对于 $\forall \epsilon$ 有, $M-\epsilon < f(x) \leq M$,即 $|f(x)-M| < \epsilon$. 若存在 $c \in D_f$, s.t. |f(c)-M|=0,则 f(c) 为函数 f(x) 在 D_f 上的最大值,与之对应的时函数 $\phi(x)=\frac{1}{M-f(x)}$ 在点 c 无定义,由无穷小的倒数为无穷大的关系(??)可知 $\lim_{x\to c}\phi(x)=\infty$.

反之若不存在 $c \in D_f$, s.t.|f(c) - M| = 0 ,即 $0 < |f(x) - M| < \epsilon$. ,则 f(x) 在 D_f 上的无最大值,与之对应的时函数 $\phi(x) = \frac{1}{M-f(x)}$ 有定义,此时再由魏尔斯特拉斯第一定理可证 $\phi(x)$ 有界.

3.3 零点定理与介值定理

定理 3.6 (布尔查诺-柯西第一定理 (零点定理)). 若函数 f(x) 在闭区间 [a,b] 上连续, 且 f(a)f(b) < 0 , 则 $\exists c \in (a,b)$, s.t. f(c) = 0.

证明. 利用布尔查诺方法. 不妨设 f(a) < 0, f(b) > 0 , 考察区间 [a,b] 中点 $\frac{a+b}{2}$:

若 $f(\frac{a+b}{2})=0$ 则定理得证;若 $f(\frac{a+b}{2})\neq 0$,则按照如下方法构造区间套:易知区间 $[a,\frac{a+b}{2}]$ 及 $[\frac{a+b}{2},b]$ 必有一个使得函数 f(x) 在端点异号,取该区间,并记为 $[a_1,b_1]$,如此一直进行.

若 $f(\frac{a+b}{2}) > 0$,则函数 f(x) 在端点 $[a, \frac{a+b}{2}]$ 异号,则有: $a = a_1, \frac{a+b}{2} = b_1$,即 $f(a_1) < 0$, $f(b_1) > 0$, 若 $f(\frac{a+b}{2}) < 0$,则函数 f(x) 在端点 $[\frac{a+b}{2}, b]$ 异号,则有: $\frac{a+b}{2} = a_1, b = b_1$,即 $f(a_1) < 0$, $f(b_1) > 0$,由归纳法可知: $\forall n \in \mathbb{N}$,s.t. $f(a_n) < 0$, $f(b_n) > 0$.

因为 $\forall n \in \mathbb{N}, [a_{n+1},b_{n+1}] \subseteq [a_n,b_n]$,即 $a_{n+1} \in [a_n,b_n] \Rightarrow a_{n+1} \geq a_n$,同理 $b_{n+1} \leq b_n$,即整序变量 a_n 单调增大, b_n 单调减小.

对于第 k 个区间 $[a_k,b_k]$ 有: $b_k-a_k=\frac{b-a}{2^k}$,即 $\lim_{n\to\infty}b_n-a_n=0$,区间套引理(引理3.1)可知 $\lim_{n\to\infty}a_n=\lim_{n\to\infty}b_n=c$.

因为函数 f(x) 在区间 [a,b] 上连续,由连续函数与数列极限的关系(定理3.3)与数列极限不等式性(性质??)可知:

$$\lim_{n \to \infty} f(a_n) = f(c) \le 0, \lim_{n \to \infty} f(b_n) = f(c) \ge 0$$

因此 f(c) = 0.

定理 3.7 (布尔查诺-柯西第二定理(介值定理)). 若函数 f(x) 在某一区间 χ 上连续(闭的或不闭的,有限的或无穷的). 若 $\exists a,b \in \chi \ (a < b) \ , \text{s.t.} f(a) = A, f(b) = B \ , 则对于 <math>A, B$ 间的任意数 $C, \exists c \in (a,b), \text{s.t.} f(c) = C.$

证明. 不妨设 A < B,则对于 $\forall C \in (A, B)$,构造函数: $\phi(x) = f(x) - C$,则 $\phi(a) = f(a) - C = A - C < 0$, $\phi(b) = f(b) - C = B - C > 0$,由零点定理知: $\exists c \in (a, b), \text{s.t.}$ $\phi(c) = 0 \Rightarrow f(c) = C$.

定理 3.8. 设 f(x) 在 [0,1] 连续,f(0)=f(1),则对任意正整数 $n(n \ge 2)$,必存在 $\xi \in [0,1]$,s.t. $f(\xi)=f\left(\xi+\frac{1}{n}\right)$.

证明. 令 $F(x) = f(x) - f(x + \frac{1}{n}), x \in [0, 1 - \frac{1}{n}],$ 则有

$$F\left(\frac{i}{n}\right) = f\left(\frac{i}{n}\right) - f\left(\frac{i+1}{n}\right)$$

其中 i = 0, 1, ..., n - 1. 因此

$$F(0) + F\left(\frac{1}{n}\right) + F\left(\frac{2}{n}\right) + \dots + F\left(\frac{n-1}{n}\right) = f(0) - f(1) = 0,$$

设 $\forall x \in [0, 1 - \frac{1}{n}]$ s.t. $F(x) \neq 0$,因为 F(x) 连续,所以 F(x) 恒正或恒负,与上式矛盾,因此必存在 $\frac{k}{n}, \frac{j}{n}$,使 $F\left(\frac{k}{n}\right), F\left(\frac{j}{n}\right)$ 异号,由零点定理可知,存在 $\xi \in \left(\frac{k}{n}, \frac{j}{n}\right)$, s.t. $F(\xi) = 0$.

3.4 一致连续性

定义 3.2 (一致连续性). 设 f(x) 在区间 χ 上有定义,对于 $\forall x_1 \in \chi, \forall \epsilon > 0, \exists \delta > 0, \forall x_2 \in U(x_1, \delta), \text{s.t.} |f(x_2) - f(x_1)| < \epsilon$.

或者定义为:设 f(x) 在区间 χ 上有定义, $\forall \epsilon > 0, \exists \delta > 0$,使得 $\forall x_1, x_2 \in \chi$,若 $|x_1 - x_2| < \delta$,则 $|f(x_1) - f(x_2)| < \epsilon$.

注意. 一致连续性是指函数 dx 只与 dy 有关,而与 x 无关. 换句话说,若把 f(x) 视为一根管子,则对于 $\forall \epsilon > 0, \exists \delta > 0$,使得一个直径为 ϵ ,长为 δ 的套管可以完全水平穿过 f(x).

或者说,对于定义域内任意一点,当自变量任取一个增量时,函数值的增量是有上限的. 如函数 $y=\frac{1}{x}$,令 $x=\epsilon$,对其取一个增量 $\Delta x=-\frac{\epsilon}{2}$,则函数值的增量 $\Delta y=\frac{2}{\epsilon}-\frac{1}{\epsilon}=\frac{1}{\epsilon}$,易知当 $\epsilon\to 0$ 时, Δy 是没有上限的,因此 $y=\frac{1}{x}$ 在定义域 $(0,+\infty)$ 上不是一致连续的.

定理 3.9 (康托定理). 若函数 f(x) 在闭区间 [a,b] 上连续,则其在这区间内一致连续.

证明. 利用反证法. 即: $\exists \epsilon > 0, \forall \delta > 0$,使得 $\exists x_1, x_2 \in \chi$,若 $|x_1 - x_2| < \delta$,则 $|f(x_1) - f(x_2)| \geq \epsilon$. 因此取正数序列 δ_n ,使得 $\delta_n \to 0$,则对于 $\forall \delta_n, \exists x_1^{(n)}, x_2^{(n)} \in [a,b]$,虽然 $|x_1^{(n)} - x_2^{(n)}| < \delta_n$,但是 $|f(x_1^{(n)}) - f(x_2^{(n)})| \geq \epsilon$.

由布尔查诺-魏尔斯特拉斯引理(引理3.2)可知有界序列 $\{x_1^{(n)}\}$ 存在收敛子列 $\{x_1^{(n_k)}\}$,使得 $x_1^{(n_k)}\to x^*$.

以整序变量 $\{n_k\}$ 为标准,从有界序列 $\{x_2^{(n)}\}$ 中构造,子列 $\{x_2^{(n_k)}\}$,由布尔查诺-魏尔斯特拉斯引理知:子列 $\{x_2^{(n_k)}\}$ 存在收敛子子列 $\{x_2^{(n_{k_j})}\}$,使得 $x_2^{(n_{k_j})}\to x'$.

以整序变量 $\{n_{k_j}\}$ 为标准,从子列 $\{x_1^{(n_k)}\}$ 中构造子子列 $\{x_1^{(n_{k_j})}\}$,由数列极限与子列极限的关系(定理3.2)可知: $x_1^{(n_{k_j})}\to x^*$. 综上:

$$\lim_{j \to \infty} x_1^{(n_{k_j})} \to x^*, \lim_{j \to \infty} x_2^{(n_{k_j})} \to x'$$

定义数列 $y^{(n)}=|x_1^{(n)}-x_2^{(n)}|$,则 $y^{(n_{k_j})}=|x_1^{(n_{k_j})}-x_2^{(n_{k_j})}|$. 因为 $|x_1^{(n)}-x_2^{(n)}|<\delta_n\to 0$,又因为数列的子列仍为数列的子列,由数列极限与子列极限的关系(定理3.2)可知: $|x_1^{(n_{k_j})}-x_2^{(n_{k_j})}|\to 0$. 所以 $\{x_1^{(n_{k_j})}\},\{x_2^{(n_{k_j})}\}$ 均收敛与同一点,记为 x^* ,由连续函数与数列极限的关系(定理3.3)可知:

$$f(x_1^{(n_{k_j})}) \to f(x^*), f(x_2^{(n_{k_j})}) \to f(x^*)$$

即 $f(x_1^{(n_{k_j})}) - f(x_1^{(n_{k_j})}) \to 0$. 因为,数列 $x_1^{(n)}, x_2^{(n)}$ 不满足一致连续性,但是它们的子列 $x_1^{(n_{k_j})}, x_2^{(n_{k_j})}$ 却满足,从而矛盾.