< VOLTAR

()

Histórico das Metodologias de Desenvolvimento de Sistemas

A etapa de análise é fundamental para o desenvolvimento de software. Esse tópico discute a importância do uso de metodologia nessa etapa, apresentando o histórico da evolução das abordagens existentes.

NESTE TÓPICO

- > Análise Estruturada
- > Análise Essencial
- > Análise Orientada a Objetos
- > Recapitulando

Marcar tópico

> Referências

Desenvolver softwares utilizando conceitos de engenharia. Essa é a maneira hoje utilizada dentro das organizações para tentar evitar o que ficou conhecido como Crise do Software. O termo foi apresentado no final da década de 1960, mas até hoje desafia aqueles que trabalham com desenvolvimento de software. Isso porque a teoria levantada, em que quanto mais complexo fosse o hardware, muito mais complexo seria a construção do software, não só é realidade, como também trouxe todas as consequências previstas já naquela época. Não é incomum vermos projetos de software falharem, seja por conta no erro de seu orçamento, prazo e/ou funcionalidades atendidas.

Na verdade, números mais atuais indicam que mais de 60% dos projetos de software falham! Desses, 20% a 25% são cancelados ou não chegam a ser usados. Fica então a pergunta – Como melhorar esses percentuais?

A Engenharia de Software surgiu com essa perspectiva. Considerando que na década de 1990 mais de 80% dos projetos falhavam, não se pode negar que houve evolução, apesar de muito aquém do esperado para uma área tão crítica como a desenvolvimento de software, onde cada vez mais se vê sua utilização em diferentes ramos e negócios.

O fato é que a Engenharia de Software defende atividades fundamentais para a construção de um programa, chamado também de ciclo de vida do projeto de software. Veja abaixo cada uma das etapas fundamentais de um projeto de software.

ATIVIDADES FUNDAMENTAIS NO DESENVOLVIMENTO DE SOFTWARE

Dentre as atividades fundamentais mencionadas, a Análise vem sendo estudada ao longo dos anos com diferentes abordagens. Isso porque a intenção dessa etapa é justamente simplificar a complexidade de se representar o software que será construído. Ao longo do tempo, portanto, uma série de metodologias para análise de sistemas foram sendo apresentadas, respeitando inclusive a estrutura das linguagens de programação que estavam sendo utilizadas. Esse tópico vai discutir três metodologias largamente conhecidas: Análise Estruturada, Análise Essencial e Análise Orientada a Objetos.

Análise Estruturada

A análise estruturada surgiu na década de 1970 com o objetivo de representar as funcionalidades dos grandes sistemas de armazenamento que estavam surgindo naquela época. Sendo assim, essa abordagem está voltada para os aspectos funcionais e de dados do sistema.

A análise estruturada tem como artefatos produzidos os diagramas de Entidade-Relacionamento (DER) e de Fluxo de Dados (DFD). Além disso, espera-se a construção de um Dicionário de Dados. Conceitualmente, espera-se a construção do sistema de forma *top-down* (do todo para as partes). Dessa maneira, consegue-se apresentar os processos existentes no sistema, como exemplificado nas figuras abaixo.

Exemplo de diagrama de fluxo de dados (DFD)

Exemplo de diagrama de entidade-relacionamento (DER)

Análise Essencial

A Análise Essencial é uma evolução da Análise Estruturada, que adiciona a questão do Controle como aspecto a ser modelado além das Funções e dos Dados. Esse novo aspecto tem muita relação com os sistemas em tempo real, onde o fator evento se torna necessário visualizar. A análise essencial é formada por dois modelos:

 Modelo Ambiental: Composto pelo Diagrama de Contexto, por uma lista de eventos e pela descrição dos objetivos do sistema. O seu objetivo é apresentar uma visão externa do sistema.

 Modelo Comportamental: Composto pelo Diagrama de Fluxo de Dados, o Diagrama Entidade Relacionamento, o Diagrama de Transição de Estados e pelo Dicionário de Dados. Esse modelo apresenta uma visão interna do sistema.

Exemplo de diagrama de contexto

Exemplo de diagrama de transição de estados

Análise Orientada a Objetos

O mundo real é composto por objetos. A Análise Orientada a Objetos é uma abordagem que muda o enfoque dado pelas análises anteriormente mencionadas. Por tal razão, consideramos essa abordagem uma quebra de paradigma, uma vez que ela inclusive, altera a maneira de se construir software.

Um sistema construído usando um método Orientado a Objetos é aquele cujos componentes são partes encapsuladas de dados e funções, que podem herdar atributos e comportamentos de outros componentes da mesma natureza, e cujos componentes comunicam-se entre si por meio de mensagens

(YOURDON)

O método para modelagem utilizado deixa de ser top-down (todo para as partes) e passa a ser bottom-up (partes para o todo). O analista passa pela experiência de "brincar de lego". Além disso, essa maneira de se modelar facilita a comunicação com o usuário.

Também é importante ressaltar que, nas abordagens anteriores, dados e funções / processos estão estruturados de forma separada. Na orientação a objetos existe a união dessas estruturas dentro do conceito de objeto. A representação de um conjunto de objetos com características (dados / atributos) e comportamentos (funções / métodos) semelhantes é chamada de <u>Classe</u>.

Abordagem Orientada a Objetos

Abordagem orientada a objetos

Recapitulando

Neste tópico vimos a importância de se trabalhar com o desenvolvimento de sistemas utilizando como base os conceitos de Engenharia de Software. Vimos ainda que temos a Análise como uma das atividades fundamentais para o desenvolvimento de um software. Estudamos três metodologias para análise de sistemas: Análise Estruturada, Análise Essencial e Análise Orientada a Objetos.

Quiz

Exercício Final

Histórico das Metodologias de Desenvolvimento de Sistemas

INICIAR >

Referências

BOOCK, Grady; JACOBSON, Ivar; RUMBAUGH, James. **UML**: guia do usuário. Rio de Janeiro: Campus, 2000.

COAD, R; YOURDON, E. **Object-oriented Design**, (2nd Edition), Englewood Cliffs, NJ: Yourdon Press. 1991.

DEMARCO, T. Análise Estruturada e Especificação de Sistemas, Rio de Janeiro: Campus, 1989.

PRESSMAN, R. S. **Engenharia de Software**: Uma abordagem profissional. 7ª. ed. Porto Alegre: AMGH, 2011.

SOMMERVILLE, I. Engenharia de Software. 9ª. ed. São Paulo: Pearson Prentice Hall, 2011.

YOURDON, E. Análise Estruturada Moderna, Rio de Janeiro: Campus, 1990.

Avalie este tópico

Biblioteca

İndice

(https://www.uninove.br/conheca-

a-

uninove/biblioteca/sobre-

a-

biblioteca/apresentacao/)

Portal Uninove

(http://www.uninove.br)

Mapa do Site

Ajuda?
PRÁYMS://ava.un
Conceitos de Orientação a Objetoso=)

® Todos os direitos reservados

