SWEP SSP G8 2023.823.1.0

Date: 09/10/2023

CONDENSEUR - ÉVALUATION

ÉCHANGEUR: P200THx140/1P-SC-H (P200TH/1P-SC-H 35.1+66.8+2x3"VIC)

 Code Art.:
 16095-140

 Alias SSP:
 P200T

DONNÉES DE CONNEXION

Port NND Dénomination

F1	65	SOLDER 66.85 NON-CASTED (54)
F2	58	VICTAULIC 3" NON-CASTED ASME (54)
F3	42	SOLDER 35.1 NON-CASTED (54)
F4	58	VICTAULIC 3" NON-CASTED ASME (54)

LIEU DE CONNEXION	Côté 1 (S1)	Côté 2 (S2)
Entrée	F1	F4
Sortie	F3	F2

CONFIGURATION DU FLUX DE PORT

F - Côté P - Côté

NOTES DE CONNEXIONS

F3: Outlet connection velocity lower than the recommended value of 0.5-2 m/sec

SPÉCIFICATIONS		Côté 1		Côté 2
Fluide		R1233zd-E		Eau
Circulation		Contre-Courant		
Circuit		Contenu		Contenant
Puissance	kW		95,00	
Titre en entrée		1,000		
Titre en sortie		0,000		
Température d'entrée	°C	40,00		15,00
Température de condensation (rosée)	°C	25,00		
Sous-refroidissement	K	3,00		
Température de sortie	°C	22,00		23,00
Débit	kg/s	0,4582		2,839
Débit Massique Condensé	kg/s	0,4582		
ÉCHANGEUR À PLAQUES		Côté 1		Côté 2
Surface d'échange	m²		17,8	
Flux thermique	kW/m²		5,34	
Différence de température moyenne	K		5,49	
Coef. transfert thermiq. (dispo./requis)	W/m²,°C		1300/973	
Pertes de charge - totals	kPa	2,68		3,76
- dans les ports (Entrée/Sortie)	kPa	-1,03/0,128		0,799
- connexions d'entrée	kPa	25,7e-9		0,0372
- connexions de sortie	kPa	3,32e-3		0,0343
Pression en sortie	kPa	127		
Nombre de canaux par passe		69		70
Nombre de plaques			140	
Surpuissance	%		34	
Facteurd'encrassement	m²,°C/kW		0,258	
Diamètre de ports (Haut/Bas)	mm	60,0/34,0		53,0/53,0
Diamètre de Connexion en entrée	mm	57,4 - 128		
Diamètre de Connexion en sortie	mm	15,2 - 30,4		

www.swep.net

www.swep.net

ÉCHANGEUR À PLAQUES	Côté 1		Côté 2
Nombre de Reynolds			331,7
Entrée Vitesse dans les ports	m/s	22,5	1,29
Vitesse dans les canaux	m/s	1,94	0,0853
Tensions de cisaillement	Pa		6,33
Différence maxi de températures de paroi	K	0,21	
Min./Max. température de paroi	°C	15,59/23,74	15,55/23,69

NOTES

- ! Secondary side port pressure drop is high in relation to total pressure drop. This could cause secondary side maldistribution
- $\it i$ Condenser performance prediction does not use two phase correction factors.

PROPRIÉTÉS PHYSIQUES		Côté 1	Côté 2
Température de référence	°C	25,21	19,00
Liquide • Viscosité dynamique	cР	0,285	1,03
Masse volumique	kg/m³	1262	998,4
 Chaleur massique spécifique 	kJ/kg,°C	1,216	4,183
Conductivité	W/m,°C	0,08268	0,5966
Vapeur • Viscosité dynamique	cР	0,0103	
 Masse volumique 	kg/m³	7,086	
 Chaleur massique spécifique 	kJ/kg,°C	0,8271	
Conductivité	W/m,°C	0,01066	
Chaleur latente	kJ/kg	191,2	
Coefficient de film	W/m²,°C	2530	4620
TOTAUX		Côté 1	Côté 2
Masse totale	kg		86,06
Volume (Contenu Circuit)	dm³		16,63
Charge de réfrigérant estimée	kg		2,72
Volume (Contenant Circuit)	dm³		16,87
Diamètre Port F1/P1	mm		60
Diamètre Port F2/P2	mm		53
Diamètre Port F3/P3	mm		34
Diamètre Port F4/P4	mm		53
Empreinte carbone	kg		587,85
Matière plaques			AISI316 Acier inoxydable
Matière Brasage			Cuivre
Pression maxi de service 20°C	bar(g)	61	39
Pression maxi de service 225°C	bar(g)	44	28
Pression d'épreuve	bar(g)	87	55
Min./Max. Température de service	°C		-196/225
DIMENSIONS			

www.swep.net

DIMENSIONS

*Ceci est un plan schématique. Pour obtenir les plans précis, veuillez utiliser la fonction commande de plans ou contacter votre représentant SWEP.

Disclaimer:

Data used in this calculation is subject to change without notice. SWEP strives to use "best practice" for the calculations leading to the above results. Calculation is intended to show thermal and hydraulic performance, no consideration has been taken to mechanical strength of the product. Product restrictions - such as pressure, temperatures and corrosion resistance- can be found in SWEP product sheets and other technical documentation. SWEP may have patents, trademarks, copyrights or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreementfrom SWEP, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property. To the maximum extent permitted by applicable law, the software, the calculations and the results are provided without warranties of any kind, whether express or implied. No advice or information obtained through use of the software (including information provided in the results), will create any warranty not expressly stated in the applicable license terms. Without limiting the foregoing, SWEP does not warrant that the content (including the calculations and the results) is accurate, reliable or correct. SWEP does not warrant that any system comprising heat exchanger and other components, installed on the basis of calculations in this software, will meet your requirements or function to your satisfaction or expectations.

www.swep.net