Prima prova parziale — temi e correzione

Martedì 30 ottobre 2017

Contenuti

- Testi dei 130 temi d'esame
- Traccia della soluzione degli Esercizi 1 e 2 del Tema 1
- Risposte corrette e commentate alle domande dell'esercizio 3
- Griglie di correzione dei temi

I temi sono basati su uno stesso dataset i cui campioni e attributi vengono riscalati, permutati e leggermante perturbati.

Prima prova parziale, tema 1

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Triste},\texttt{Felice}\}$ come valore da prevedere. In particolare, il secondo valore (Felice) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	1.5	5.6	Felice
2	8.1	6.0	Felice
3	6.1	4.4	Triste
4	0.5	3.4	Triste

i	x_{i1}	x_{i2}	y_i
5	7.9	1.4	Felice
6	6.6	9.4	Felice
7	1.5	6.9	Triste
8	0.9	9.1	Triste

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Felice} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Triste} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 7. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 8. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.

Prima prova parziale, tema 2

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Guasto}, \text{Funzionante}\}$ come valore da prevedere. In particolare, il secondo valore (Funzionante) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.44	0.60	Guasto
2	0.16	0.81	Funzionante
3	0.56	0.14	Funzionante
4	0.96	0.65	Funzionante

i	x_{i1}	x_{i2}	y_i
5	0.60	0.81	Funzionante
6	0.69	0.15	Guasto
7	0.91	0.11	Guasto
8	0.34	0.04	Guasto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Funzionante} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Guasto} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 3. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0,1].
 - (c) Decide la classe di uscita.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 7. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.

Prima prova parziale, tema 3

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Funzionante},\text{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	6.0	7.9	Guasto
2	5.4	1.5	Guasto
3	4.4	5.9	Funzionante
4	9.6	6.4	Guasto

i	x_{i1}	x_{i2}	y_i
5	7.1	1.4	Funzionante
6	1.6	7.9	Guasto
7	9.1	0.9	Funzionante
8	3.5	0.4	Funzionante

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Guasto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Funzionante} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 6. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - $(b) \ \ Un \ metodo \ per \ trovare \ un \ minimo \ locale \ di \ una \ funzione \ differenziabile \ in \ più \ variabili \ reali.$
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.

Prima prova parziale, tema 4

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{Caldo, Freddo\}$ come valore da prevedere. In particolare, il secondo valore (Freddo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.16	0.79	Freddo
2	0.91	0.10	Caldo
3	0.56	0.16	Freddo
4	0.95	0.64	Freddo

i	x_{i1}	x_{i2}	y_i
5	0.61	0.81	Freddo
6	0.71	0.16	Caldo
7	0.46	0.61	Caldo
8	0.36	0.06	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Freddo} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Caldo} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 7. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 9. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Prima prova parziale, tema 5

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, −1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2} \in [0,100]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Mangereccio}, \text{Velenoso}\}$ come valore da prevedere. In particolare, il secondo valore (Velenoso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	59	80	Velenoso
2	34	5	Mangereccio
3	91	11	Mangereccio
4	95	65	Velenoso

i	x_{i1}	x_{i2}	y_i
5	69	15	Mangereccio
6	45	61	Mangereccio
7	14	81	Velenoso
8	54	16	Velenoso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Velenoso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Mangereccio} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 2. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 3. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 6. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.

Prima prova parziale, tema 6

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Respinto},\texttt{Ammesso}\}$ come valore da prevedere. In particolare, il secondo valore (Ammesso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	46	60	Respinto
2	35	4	Respinto
3	14	81	Ammesso
4	95	65	Ammesso

	i	x_{i1}	x_{i2}	y_i
١,	5	61	80	Ammesso
(6	89	9	Respinto
,	7	71	16	Respinto
1	8	54	15	Ammesso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Ammesso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Respinto} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 5. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 7. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - $(b) \ \ Un \ metodo \ per \ trovare \ un \ minimo \ locale \ di \ una \ funzione \ differenziabile \ in \ più \ variabili \ reali.$
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 7

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 100]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Mangereccio}, \text{Velenoso}\}$ come valore da prevedere. In particolare, il secondo valore (Velenoso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	45	61	Mangereccio
2	95	64	Velenoso
3	14	81	Velenoso
4	90	11	Mangereccio

i	x_{i1}	x_{i2}	y_i
5	70	16	Mangereccio
6	54	15	Velenoso
7	34	6	Mangereccio
8	61	79	Velenoso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Velenoso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Mangereccio} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 10. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.

Prima prova parziale, tema 8

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 100]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Mangereccio}, \text{Velenoso}\}$ come valore da prevedere. In particolare, il secondo valore (Velenoso) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
ſ	1	69	15	Mangereccio
	2	14	81	Velenoso
	3	89	10	Mangereccio
	4	61	80	Velenoso

i	x_{i1}	x_{i2}	y_i
5	46	60	Mangereccio
6	94	64	Velenoso
7	36	5	Mangereccio
8	56	14	Velenoso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Velenoso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Mangereccio} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.

Prima prova parziale, tema 9

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Freddo}, \text{Caldo}\}\$ come valore da prevedere. In particolare, il secondo valore (Caldo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.64	0.94	Caldo
2	0.81	0.14	Caldo
3	0.05	0.36	Freddo
4	0.60	0.44	Freddo

i	x_{i1}	x_{i2}	y_i
5	0.09	0.89	Freddo
6	0.14	0.55	Caldo
7	0.16	0.69	Freddo
8	0.80	0.61	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Caldo} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Freddo} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0,1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 7. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.

Prima prova parziale, tema 10

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Malato}, \text{Sano}\}$ come valore da prevedere. In particolare, il secondo valore (Sano) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.36	0.06	Malato
2	0.15	0.80	Sano
3	0.45	0.60	Malato
4	0.95	0.65	Sano

i	x_{i1}	x_{i2}	y_i
5	0.69	0.15	Malato
6	0.54	0.16	Sano
7	0.60	0.81	Sano
8	0.90	0.09	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Sano} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Malato} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 3. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 9. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.

Prima prova parziale, tema 11

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Funzionante},\text{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	46	59	Funzionante
2	15	81	Guasto
3	61	81	Guasto
4	34	6	Funzionante

i	x_{i1}	x_{i2}	y_i
5	56	14	Guasto
6	70	15	Funzionante
7	90	10	Funzionante
8	94	65	Guasto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\operatorname{classe} = \begin{cases} \operatorname{Guasto} & \operatorname{se} \, \hat{y} \geq \frac{1}{2}, \\ \operatorname{Funzionante} & \operatorname{se} \, \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \, \boldsymbol{\beta} = (-1, 2). \qquad \mathbf{1.2)} \, \boldsymbol{\beta} = (-2, 1). \qquad \mathbf{1.3)} \, \boldsymbol{\beta} = (-1, 1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 2. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 7. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 12

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, −1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Caldo},\text{Freddo}\}$ come valore da prevedere. In particolare, il secondo valore (Freddo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	60	81	Freddo
2	16	79	Freddo
3	89	9	Caldo
4	54	15	Freddo

i	x_{i1}	x_{i2}	y_i
5	94	64	Freddo
6	69	16	Caldo
7	44	59	Caldo
8	34	5	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Freddo} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Caldo} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-2,1). \ {\bf 1.2)} \ {\boldsymbol \beta} = (-1,1). \ {\bf 1.3)} \ {\boldsymbol \beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.

Prima prova parziale, tema 13

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Felice},\text{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	59	44	Felice
2	9	90	Felice
3	79	16	Triste
4	16	54	Triste

i	x_{i1}	x_{i2}	y_i
5	6	35	Felice
6	64	95	Triste
7	79	60	Triste
8	15	71	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 2. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 3. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 4. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 8. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Prima prova parziale, tema 14

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 100]$ come variabili indipendenti e una classe a due valori $y_i \in \{Velenoso, Mangereccio\}$ come valore da prevedere. In particolare, il secondo valore (Mangereccio) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	56	15	Mangereccio
2	45	59	Velenoso
3	94	64	Mangereccio
4	15	79	Mangereccio

i	x_{i1}	x_{i2}	y_i
5	91	11	Velenoso
6	35	5	Velenoso
7	69	14	Velenoso
8	60	81	Mangereccio

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Mangereccio} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Velenoso} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 9. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 10. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.

Prima prova parziale, tema 15

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Felice},\texttt{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.80	0.14	Triste
2	0.10	0.89	Felice
3	0.81	0.60	Triste
4	0.04	0.36	Felice

i	x_{i1}	x_{i2}	y_i
5	0.15	0.54	Triste
6	0.61	0.46	Felice
7	0.14	0.69	Felice
8	0.65	0.95	Triste

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.

Prima prova parziale, tema 16

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\mathtt{Sano},\mathtt{Malato}\}$ come valore da prevedere. In particolare, il secondo valore (Malato) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.60	0.80	Malato
2	0.70	0.15	Sano
3	0.35	0.06	Sano
4	0.54	0.16	Malato

i	x_{i1}	x_{i2}	y_i
5	0.15	0.79	Malato
6	0.94	0.64	Malato
7	0.46	0.61	Sano
8	0.91	0.09	Sano

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Malato} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Sano} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 8. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 9. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.

Prima prova parziale, tema 17

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Felice},\texttt{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	66	95	Triste
2	14	56	Triste
3	6	35	Felice
4	80	60	Triste

i	x_{i1}	x_{i2}	y_i
5	9	90	Felice
6	14	71	Felice
7	80	16	Triste
8	61	45	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 9. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 18

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Funzionante},\text{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	60	45	Funzionante
2	80	61	Guasto
3	80	15	Guasto
4	4	34	Funzionante

i	x_{i1}	x_{i2}	y_i
5	64	96	Guasto
6	10	89	Funzionante
7	15	69	Funzionante
8	15	55	Guasto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Guasto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Funzionante} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 3. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 8. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 19

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Felice},\texttt{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	35	4	Felice
2	60	80	Triste
3	45	60	Felice
4	56	15	Triste

i	x_{i1}	x_{i2}	y_i
5	69	16	Felice
6	91	9	Felice
7	16	80	Triste
8	95	65	Triste

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 8. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.

Prima prova parziale, tema 20

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2} \in [0,100]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Ammesso}, \text{Respinto}\}\$ come valore da prevedere. In particolare, il secondo valore (Respinto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	61	79	Respinto
2	96	64	Respinto
3	70	14	Ammesso
4	56	16	Respinto

i	x_{i1}	x_{i2}	y_i
5	36	4	Ammesso
6	15	79	Respinto
7	91	9	Ammesso
8	44	60	Ammesso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Respinto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Ammesso} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.

Prima prova parziale, tema 21

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Felice}, \text{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.34	0.04	Felice
2	0.89	0.11	Felice
3	0.70	0.15	Felice
4	0.59	0.79	Triste

i	x_{i1}	x_{i2}	y_i
5	0.15	0.81	Triste
6	0.56	0.14	Triste
7	0.95	0.66	Triste
8	0.45	0.59	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ \beta = (-2,1). \qquad {\bf 1.2)} \ \beta = (-1,2). \qquad {\bf 1.3)} \ \beta = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 2. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - $(a) \ \ Un \ metodo \ per \ trovare \ un \ minimo \ locale \ di \ una \ funzione \ differenziabile \ in \ più \ variabili \ reali.$
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.

Prima prova parziale, tema 22

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{Caldo, Freddo\}$ come valore da prevedere. In particolare, il secondo valore (Freddo) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
	1	0.60	0.80	Freddo
	2	0.36	0.04	Caldo
ĺ	3	0.14	0.81	Freddo
ĺ	4	0.96	0.65	Freddo

i	x_{i1}	x_{i2}	y_i
5	0.44	0.59	Caldo
6	0.69	0.14	Caldo
7	0.54	0.16	Freddo
8	0.90	0.09	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Freddo} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Caldo} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ \beta = (-2,1). \qquad {\bf 1.2)} \ \beta = (-1,1). \qquad {\bf 1.3)} \ \beta = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 4. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.

Prima prova parziale, tema 23

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Freddo},\texttt{Caldo}\}$ come valore da prevedere. In particolare, il secondo valore (Caldo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	1.1	8.9	Freddo
2	7.9	1.4	Caldo
3	1.4	5.5	Caldo
4	6.4	9.4	Caldo

i	x_{i1}	x_{i2}	y_i
5	5.9	4.6	Freddo
6	0.6	3.4	Freddo
7	8.1	5.9	Caldo
8	1.5	7.1	Freddo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Caldo} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Freddo} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 7. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 24

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Malato},\text{Sano}\}$ come valore da prevedere. In particolare, il secondo valore (Sano) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	80	16	Sano
2	79	61	Sano
3	4	34	Malato
4	9	91	Malato

i	x_{i1}	x_{i2}	y_i
5	64	96	Sano
6	59	44	Malato
7	14	55	Sano
8	14	70	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Sano} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Malato} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 7. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.

Prima prova parziale, tema 25

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2} \in [0,100]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Ammesso}, \text{Respinto}\}\$ come valore da prevedere. In particolare, il secondo valore (Respinto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	5	35	Ammesso
2	81	61	Respinto
3	59	46	Ammesso
4	10	90	Ammesso

i	x_{i1}	x_{i2}	y_i
5	16	71	Ammesso
6	79	15	Respinto
7	65	95	Respinto
8	15	54	Respinto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\mathrm{classe} = \begin{cases} \text{Respinto} & \mathrm{se}\; \hat{y} \geq \frac{1}{2}, \\ \text{Ammesso} & \mathrm{se}\; \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)}\; \boldsymbol{\beta} = (1,-2). \qquad \qquad \mathbf{1.2)}\; \boldsymbol{\beta} = (2,-1). \qquad \qquad \mathbf{1.3)}\; \boldsymbol{\beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 3. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.

Prima prova parziale, tema 26

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Funzionante}, \text{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.79	0.14	Guasto
2	0.59	0.45	Funzionante
3	0.05	0.35	Funzionante
4	0.80	0.60	Guasto

i	x_{i1}	x_{i2}	y_i
5	0.15	0.70	Funzionante
6	0.09	0.91	Funzionante
7	0.14	0.56	Guasto
8	0.64	0.94	Guasto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Guasto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Funzionante} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 7. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.

Prima prova parziale, tema 27

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Freddo}, \text{Caldo}\}\$ come valore da prevedere. In particolare, il secondo valore (Caldo) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
	1	0.69	0.14	Freddo
	2	0.15	0.81	Caldo
ĺ	3	0.45	0.60	Freddo
ĺ	4	0.35	0.06	Freddo

i	x_{i1}	x_{i2}	y_i
5	0.55	0.15	Caldo
6	0.95	0.64	Caldo
7	0.91	0.11	Freddo
8	0.59	0.79	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Caldo} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Freddo} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 6. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 7. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0,1].
- 8. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.

Prima prova parziale, tema 28

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Errato},\texttt{Corretto}\}$ come valore da prevedere. In particolare, il secondo valore (Corretto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	16	70	Errato
2	81	59	Corretto
3	65	94	Corretto
4	59	44	Errato

i	x_{i1}	x_{i2}	y_i
5	79	14	Corretto
6	14	56	Corretto
7	4	36	Errato
8	11	89	Errato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \texttt{Corretto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \texttt{Errato} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 2. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 3. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 9. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.

Prima prova parziale, tema 29

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, −1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Malato}, \text{Sano}\}$ come valore da prevedere. In particolare, il secondo valore (Sano) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.16	0.54	Sano
2	0.04	0.34	Malato
3	0.66	0.94	Sano
4	0.80	0.16	Sano

i	x_{i1}	x_{i2}	y_i
5	0.11	0.90	Malato
6	0.60	0.46	Malato
7	0.81	0.60	Sano
8	0.14	0.71	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Sano} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Malato} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 5. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.

Prima prova parziale, tema 30

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{ \text{Sano}, \text{Malato} \}$ come valore da prevedere. In particolare, il secondo valore (Malato) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.55	0.16	Malato
2	0.96	0.65	Malato
3	0.91	0.09	Sano
4	0.14	0.79	Malato

i	x_{i1}	x_{i2}	y_i
5	0.44	0.60	Sano
6	0.71	0.14	Sano
7	0.35	0.04	Sano
8	0.60	0.80	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Malato} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Sano} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 9. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 31

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Guasto},\text{Funzionante}\}$ come valore da prevedere. In particolare, il secondo valore (Funzionante) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	96	64	Funzionante
2	91	11	Guasto
3	56	16	Funzionante
4	46	61	Guasto

i	x_{i1}	x_{i2}	y_i
5	35	5	Guasto
6	16	81	Funzionante
7	61	81	Funzionante
8	71	16	Guasto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Funzionante} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Guasto} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.

Prima prova parziale, tema 32

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Respinto},\texttt{Ammesso}\}$ come valore da prevedere. In particolare, il secondo valore (Ammesso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.60	0.45	Respinto
2	0.80	0.61	Ammesso
3	0.09	0.90	Respinto
4	0.81	0.15	Ammesso

i	x_{i1}	x_{i2}	y_i
5	0.15	0.71	Respinto
6	0.16	0.54	Ammesso
7	0.64	0.95	Ammesso
8	0.06	0.35	Respinto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\mathrm{classe} = \begin{cases} \text{Ammesso} & \mathrm{se}\; \hat{y} \geq \frac{1}{2},\\ \text{Respinto} & \mathrm{se}\; \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)}\; \boldsymbol{\beta} = (1,-1). \qquad \qquad \mathbf{1.2)}\; \boldsymbol{\beta} = (1,-2). \qquad \qquad \mathbf{1.3)}\; \boldsymbol{\beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 7. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Prima prova parziale, tema 33

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Mangereccio},\text{Velenoso}\}$ come valore da prevedere. In particolare, il secondo valore (Velenoso) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
ĺ	1	0.65	0.95	Velenoso
	2	0.06	0.34	Mangereccio
	3	0.60	0.46	Mangereccio
İ	4	0.09	0.90	Mangereccio

i	x_{i1}	x_{i2}	y_i
5	0.79	0.59	Velenoso
6	0.79	0.16	Velenoso
7	0.15	0.56	Velenoso
8	0.14	0.69	Mangereccio

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Velenoso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Mangereccio se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 34

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Errato},\text{Corretto}\}$ come valore da prevedere. In particolare, il secondo valore (Corretto) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
	1	0.70	0.15	Errato
İ	2	0.90	0.11	Errato
İ	3	0.95	0.65	Corretto
İ	4	0.54	0.15	Corretto

	i	x_{i1}	x_{i2}	y_i
Γ.	5	0.16	0.79	Corretto
	6	0.59	0.81	Corretto
'	7	0.35	0.05	Errato
	8	0.44	0.60	Errato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \texttt{Corretto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \texttt{Errato} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 3. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 4. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.

Prima prova parziale, tema 35

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{ \text{Sano}, \text{Malato} \}$ come valore da prevedere. In particolare, il secondo valore (Malato) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.80	0.16	Malato
2	0.61	0.45	Sano
3	0.09	0.91	Sano
4	0.64	0.94	Malato

i	x_{i1}	x_{i2}	y_i
5	0.05	0.34	Sano
6	0.79	0.60	Malato
7	0.14	0.70	Sano
8	0.16	0.54	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Malato} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Sano} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 8. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.

Prima prova parziale, tema 36

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Triste},\texttt{Felice}\}$ come valore da prevedere. In particolare, il secondo valore (Felice) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	4.5	6.0	Triste
2	7.0	1.6	Triste
3	9.6	6.4	Felice
4	5.4	1.5	Felice

i	x_{i1}	x_{i2}	y_i
5	1.6	7.9	Felice
6	6.1	8.0	Felice
7	3.6	0.4	Triste
8	9.1	1.1	Triste

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Felice} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Triste} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 5. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 6. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 8. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.

Prima prova parziale, tema 37

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2} \in [0,100]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Mangereccio}, \text{Velenoso}\}$ come valore da prevedere. In particolare, il secondo valore (Velenoso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	79	14	Velenoso
2	15	70	Mangereccio
3	61	46	Mangereccio
4	10	89	Mangereccio

i	x_{i1}	x_{i2}	y_i
5	64	95	Velenoso
6	5	34	Mangereccio
7	80	59	Velenoso
8	16	54	Velenoso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Velenoso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Mangereccio} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].

Prima prova parziale, tema 38

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Funzionante},\texttt{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.05	0.34	Funzionante
2	0.64	0.96	Guasto
3	0.59	0.44	Funzionante
4	0.09	0.90	Funzionante

i	x_{i1}	x_{i2}	y_i
5	0.14	0.55	Guasto
6	0.80	0.59	Guasto
7	0.79	0.14	Guasto
8	0.16	0.71	Funzionante

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Guasto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Funzionante} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 6. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.

Prima prova parziale, tema 39

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Guasto},\text{Funzionante}\}$ come valore da prevedere. In particolare, il secondo valore (Funzionante) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	91	10	Guasto
2	59	81	Funzionante
3	46	61	Guasto
4	54	16	Funzionante

i	x_{i1}	x_{i2}	y_i
5	36	5	Guasto
6	16	80	Funzionante
7	94	65	Funzionante
8	71	16	Guasto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Funzionante} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Guasto} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 40

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Felice},\texttt{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	6.5	9.5	Triste
2	7.9	1.4	Triste
3	0.6	3.5	Felice
4	5.9	4.6	Felice

i	x_{i1}	x_{i2}	y_i
5	8.1	6.1	Triste
6	1.6	5.6	Triste
7	1.5	7.0	Felice
8	1.0	9.0	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 5. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 10. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].

Prima prova parziale, tema 41

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 100]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Mangereccio}, \text{Velenoso}\}$ come valore da prevedere. In particolare, il secondo valore (Velenoso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	56	16	Velenoso
2	61	79	Velenoso
3	34	5	Mangereccio
4	16	80	Velenoso

1.1) $\beta = (-1, 2)$.

i	x_{i1}	x_{i2}	y_i
5	71	14	Mangereccio
6	90	9	Mangereccio
7	44	59	Mangereccio
8	95	64	Velenoso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

classe =
$$\begin{cases} \text{Velenoso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Mangereccio} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.2) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 8. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 42

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\texttt{Triste}, \texttt{Felice}\}$ come valore da prevedere. In particolare, il secondo valore (Felice) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.56	0.15	Felice
2	0.15	0.80	Felice
3	0.90	0.11	Triste
4	0.69	0.15	Triste

i	x_{i1}	x_{i2}	y_i
5	0.44	0.60	Triste
6	0.60	0.79	Felice
7	0.94	0.66	Felice
8	0.36	0.05	Triste

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Felice} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Triste} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 2. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Prima prova parziale, tema 43

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Felice},\texttt{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	9.4	6.6	Triste
2	3.6	0.5	Felice
3	8.9	1.0	Felice
4	1.5	7.9	Triste

i	x_{i1}	x_{i2}	y_i
5	6.0	8.1	Triste
6	5.5	1.6	Triste
7	4.5	5.9	Felice
8	6.9	1.5	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-2,1). \qquad \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-1,1). \qquad \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 3. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 7. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.

Prima prova parziale, tema 44

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Ammesso},\text{Respinto}\}$ come valore da prevedere. In particolare, il secondo valore (Respinto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	69	14	Ammesso
2	34	6	Ammesso
3	59	81	Respinto
4	44	61	Ammesso

i	x_{i1}	x_{i2}	y_i
5	96	66	Respinto
6	14	81	Respinto
7	91	11	Ammesso
8	55	16	Respinto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\mathrm{classe} = \begin{cases} \text{Respinto} & \mathrm{se} \ \hat{y} \geq \frac{1}{2}, \\ \text{Ammesso} & \mathrm{se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \ \boldsymbol{\beta} = (-1,1). \qquad \qquad \mathbf{1.2)} \ \boldsymbol{\beta} = (-2,1). \qquad \qquad \mathbf{1.3)} \ \boldsymbol{\beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.

Prima prova parziale, tema 45

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, −1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Felice}, \text{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.06	0.35	Felice
2	0.15	0.56	Triste
3	0.59	0.46	Felice
4	0.09	0.91	Felice

i	x_{i1}	x_{i2}	y_i
5	0.66	0.95	Triste
6	0.15	0.70	Felice
7	0.81	0.61	Triste
8	0.79	0.14	Triste

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 7. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Prima prova parziale, tema 46

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Malato},\text{Sano}\}$ come valore da prevedere. In particolare, il secondo valore (Sano) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	80	60	Sano
2	66	95	Sano
3	5	34	Malato
4	9	90	Malato

i	x_{i1}	x_{i2}	y_i
5	60	46	Malato
6	15	71	Malato
7	81	15	Sano
8	15	55	Sano

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Sano} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Malato} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ \beta = (1,-2). \qquad {\bf 1.2)} \ \beta = (2,-1). \qquad {\bf 1.3)} \ \beta = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 10. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.

Prima prova parziale, tema 47

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2} \in [0,10]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Ammesso}, \text{Respinto}\}$ come valore da prevedere. In particolare, il secondo valore (Respinto) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
	1	6.6	9.5	Respinto
1	2	0.6	3.6	Ammesso
1	3	0.9	8.9	Ammesso
4	4	1.6	7.0	Ammesso

i	x_{i1}	x_{i2}	y_i
5	5.9	4.6	Ammesso
6	8.1	5.9	Respinto
7	8.0	1.4	Respinto
8	1.4	5.6	Respinto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\mathrm{classe} = \begin{cases} \text{Respinto} & \mathrm{se}\; \hat{y} \geq \frac{1}{2}, \\ \text{Ammesso} & \mathrm{se}\; \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)}\; \boldsymbol{\beta} = (2,-1). \qquad \qquad \mathbf{1.2)}\; \boldsymbol{\beta} = (1,-2). \qquad \qquad \mathbf{1.3)}\; \boldsymbol{\beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 8. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.

Prima prova parziale, tema 48

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Felice}, \text{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.15	0.69	Felice
2	0.66	0.96	Triste
3	0.09	0.91	Felice
4	0.79	0.61	Triste

i	x_{i1}	x_{i2}	y_i
5	0.16	0.55	Triste
6	0.80	0.14	Triste
7	0.06	0.34	Felice
8	0.60	0.45	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.

Prima prova parziale, tema 49

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Errato},\text{Corretto}\}$ come valore da prevedere. In particolare, il secondo valore (Corretto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.16	0.56	Corretto
2	0.79	0.16	Corretto
3	0.80	0.59	Corretto
4	0.11	0.91	Errato

	i	x_{i1}	x_{i2}	y_i
ſ	5	0.15	0.69	Errato
	6	0.60	0.45	Errato
İ	7	0.65	0.94	Corretto
l	8	0.04	0.34	Errato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \texttt{Corretto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \texttt{Errato} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 7. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Prima prova parziale, tema 50

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Errato},\text{Corretto}\}$ come valore da prevedere. In particolare, il secondo valore (Corretto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	60	80	Corretto
2	55	14	Corretto
3	89	10	Errato
4	44	61	Errato

	i	x_{i1}	x_{i2}	y_i
ĺ	5	69	14	Errato
	6	94	65	Corretto
	7	36	5	Errato
	8	15	81	Corretto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \texttt{Corretto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \texttt{Errato} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 7. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 51

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Respinto},\texttt{Ammesso}\}$ come valore da prevedere. In particolare, il secondo valore (Ammesso) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
	1	0.34	0.04	Respinto
	2	0.46	0.59	Respinto
	3	0.94	0.66	Ammesso
١	4	0.16	0.79	Ammesso

i	x_{i1}	x_{i2}	y_i
5	0.91	0.11	Respinto
6	0.70	0.15	Respinto
7	0.56	0.14	Ammesso
8	0.59	0.80	Ammesso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\operatorname{classe} = \begin{cases} \operatorname{Ammesso} & \operatorname{se} \hat{y} \geq \frac{1}{2}, \\ \operatorname{Respinto} & \operatorname{se} \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \ \boldsymbol{\beta} = (-1, 2). \qquad \qquad \mathbf{1.2)} \ \boldsymbol{\beta} = (-2, 1). \qquad \qquad \mathbf{1.3)} \ \boldsymbol{\beta} = (-1, 1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 2. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 9. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 52

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Felice},\text{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	79	61	Triste
2	9	91	Felice
3	66	94	Triste
4	80	16	Triste

i	x_{i1}	x_{i2}	y_i
5	14	71	Felice
6	15	55	Triste
7	4	36	Felice
8	60	46	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 5. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 6. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 7. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 53

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Malato},\text{Sano}\}$ come valore da prevedere. In particolare, il secondo valore (Sano) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	80	60	Sano
2	60	45	Malato
3	79	15	Sano
4	15	70	Malato

i	x_{i1}	x_{i2}	y_i
5	10	89	Malato
6	5	34	Malato
7	66	95	Sano
8	14	56	Sano

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Sano} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Malato} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 2. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 8. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 54

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, −1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Felice},\text{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	89	10	Felice
2	61	79	Triste
3	95	66	Triste
4	15	79	Triste

i	x_{i1}	x_{i2}	y_i
5	71	16	Felice
6	54	15	Triste
7	34	4	Felice
8	45	61	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 3. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 6. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.

Prima prova parziale, tema 55

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, −1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Triste},\texttt{Felice}\}$ come valore da prevedere. In particolare, il secondo valore (Felice) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	15	80	Felice
2	59	79	Felice
3	89	10	Triste
4	70	16	Triste

i	x_{i1}	x_{i2}	y_i
5	44	61	Triste
6	56	14	Felice
7	36	6	Triste
8	96	66	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Felice} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Triste} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 3. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 4. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 8. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.

Prima prova parziale, tema 56

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\texttt{Triste}, \texttt{Felice}\}$ come valore da prevedere. In particolare, il secondo valore (Felice) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.10	0.90	Triste
2	0.05	0.34	Triste
3	0.15	0.55	Felice
4	0.66	0.95	Felice

i	x_{i1}	x_{i2}	y_i
5	0.79	0.14	Felice
6	0.14	0.71	Triste
7	0.81	0.61	Felice
8	0.59	0.45	Triste

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Felice} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Triste} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 6. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Prima prova parziale, tema 57

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Guasto}, \text{Funzionante}\}$ come valore da prevedere. In particolare, il secondo valore (Funzionante) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.45	0.60	Guasto
2	0.70	0.15	Guasto
3	0.35	0.05	Guasto
4	0.59	0.80	Funzionante

i	x_{i1}	x_{i2}	y_i
5	0.89	0.09	Guasto
6	0.55	0.14	Funzionante
7	0.95	0.65	Funzionante
8	0.16	0.81	Funzionante

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Funzionante} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Guasto} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 2. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.

Prima prova parziale, tema 58

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 10]$ come variabili indipendenti e una classe a due valori $y_i \in \{Velenoso, Mangereccio\}$ come valore da prevedere. In particolare, il secondo valore (Mangereccio) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	1.4	6.9	Velenoso
2	5.9	4.5	Velenoso
3	1.6	5.5	Mangereccio
4	8.0	1.5	Mangereccio

i	x_{i1}	x_{i2}	y_i	
5	6.6	9.6	9.6 Mangereccio	
6	7.9	6.0	Mangereccio	
7	0.4	3.4	Velenoso	
8	1.0	9.1	Velenoso	

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Mangereccio} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Velenoso} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 10. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.

Prima prova parziale, tema 59

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Freddo}, \text{Caldo}\}\$ come valore da prevedere. In particolare, il secondo valore (Caldo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.81	0.14	Caldo
2	0.04	0.34	Freddo
3	0.66	0.94	Caldo
4	0.10	0.91	Freddo

i	x_{i1}	x_{i2}	y_i
5	0.15	0.56	Caldo
6	0.59	0.46	Freddo
7	0.15	0.70	Freddo
8	0.80	0.60	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Caldo} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Freddo} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 10. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.

Prima prova parziale, tema 60

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Freddo},\text{Caldo}\}$ come valore da prevedere. In particolare, il secondo valore (Caldo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	96	65	Caldo
2	54	15	Caldo
3	90	11	Freddo
4	34	6	Freddo

i	x_{i1}	x_{i2}	y_i
5	44	59	Freddo
6	16	79	Caldo
7	70	15	Freddo
8	60	80	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Caldo} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Freddo} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 4. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.

Prima prova parziale, tema 61

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Malato},\text{Sano}\}$ come valore da prevedere. In particolare, il secondo valore (Sano) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
ĺ	1	96	66	Sano
	2	36	6	Malato
	3	69	16	Malato
	4	55	16	Sano

i	x_{i1}	x_{i2}	y_i
5	61	81	Sano
6	91	11	Malato
7	14	81	Sano
8	45	61	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Sano} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Malato} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0,1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 62

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Respinto},\texttt{Ammesso}\}$ come valore da prevedere. In particolare, il secondo valore (Ammesso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	79	61	Ammesso
2	14	69	Respinto
3	10	89	Respinto
4	4	35	Respinto

	i	x_{i1}	x_{i2}	y_i
	5	14	56	Ammesso
	6	65	94	Ammesso
İ	7	81	15	Ammesso
	8	61	44	Respinto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\mathrm{classe} = \begin{cases} \text{Ammesso} & \mathrm{se}\; \hat{y} \geq \frac{1}{2},\\ \text{Respinto} & \mathrm{se}\; \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)}\; \boldsymbol{\beta} = (2,-1). \qquad \qquad \mathbf{1.2)}\; \boldsymbol{\beta} = (1,-2). \qquad \qquad \mathbf{1.3)}\; \boldsymbol{\beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 6. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 63

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Funzionante},\text{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	1.5	5.5	Guasto
2	8.1	6.1	Guasto
3	7.9	1.4	Guasto
4	0.9	9.1	Funzionante

i	x_{i1}	x_{i2}	y_i
5	6.0	4.5	Funzionante
6	1.5	6.9	Funzionante
7	6.6	9.5	Guasto
8	0.4	3.5	Funzionante

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Guasto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Funzionante} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 6. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 9. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.

Prima prova parziale, tema 64

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Felice},\texttt{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	6.6	9.5	Triste
2	0.9	9.0	Felice
3	0.4	3.6	Felice
4	1.4	5.5	Triste

i	x_{i1}	x_{i2}	y_i
5	1.4	7.1	Felice
6	6.1	4.5	Felice
7	7.9	6.1	Triste
8	8.0	1.5	Triste

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 5. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.

Prima prova parziale, tema 65

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Malato},\text{Sano}\}$ come valore da prevedere. In particolare, il secondo valore (Sano) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	80	61	Sano
2	81	14	Sano
3	9	91	Malato
4	61	44	Malato

i	x_{i1}	x_{i2}	y_i
5	16	54	Sano
6	4	34	Malato
7	64	94	Sano
8	15	70	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Sano} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Malato} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 3. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 6. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 8. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.

Prima prova parziale, tema 66

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Triste},\texttt{Felice}\}$ come valore da prevedere. In particolare, il secondo valore (Felice) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	5.9	4.4	Triste
2	1.4	5.5	Felice
3	8.1	5.9	Felice
4	6.4	9.6	Felice

i	x_{i1}	x_{i2}	y_i
5	7.9	1.4	Felice
6	1.5	6.9	Triste
7	0.5	3.5	Triste
8	0.9	9.0	Triste

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Felice} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Triste} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 3. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 7. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 67

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\texttt{Triste}, \texttt{Felice}\}$ come valore da prevedere. In particolare, il secondo valore (Felice) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.16	0.70	Triste
2	0.05	0.35	Triste
3	0.81	0.15	Felice
4	0.10	0.90	Triste

i	x_{i1}	x_{i2}	y_i
5	0.80	0.61	Felice
6	0.15	0.54	Felice
7	0.59	0.45	Triste
8	0.65	0.96	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Felice} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Triste} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 2. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 10. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.

Prima prova parziale, tema 68

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Felice},\texttt{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	9.6	6.6	Triste
2	9.1	1.1	Felice
3	5.5	1.4	Triste
4	5.9	8.0	Triste

i	x_{i1}	x_{i2}	y_i
5	4.5	6.1	Felice
6	1.6	7.9	Triste
7	6.9	1.5	Felice
8	3.5	0.5	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 3. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 69

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Errato},\texttt{Corretto}\}$ come valore da prevedere. In particolare, il secondo valore (Corretto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.79	0.59	Corretto
2	0.66	0.95	Corretto
3	0.81	0.16	Corretto
4	0.09	0.89	Errato

i	x_{i1}	x_{i2}	y_i
5	0.61	0.44	Errato
6	0.06	0.35	Errato
7	0.15	0.70	Errato
8	0.14	0.54	Corretto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \texttt{Corretto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \texttt{Errato} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.

Prima prova parziale, tema 70

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Ammesso},\text{Respinto}\}$ come valore da prevedere. In particolare, il secondo valore (Respinto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	16	81	Respinto
2	90	10	Ammesso
3	61	79	Respinto
4	56	14	Respinto

i	x_{i1}	x_{i2}	y_i
5	71	15	Ammesso
6	95	66	Respinto
7	46	60	Ammesso
8	36	6	Ammesso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\operatorname{classe} = \begin{cases} \operatorname{Respinto} & \operatorname{se} \hat{y} \geq \frac{1}{2}, \\ \operatorname{Ammesso} & \operatorname{se} \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \ \boldsymbol{\beta} = (-1,1). \qquad \qquad \mathbf{1.2)} \ \boldsymbol{\beta} = (-2,1). \qquad \qquad \mathbf{1.3)} \ \boldsymbol{\beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0,1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 9. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.

Prima prova parziale, tema 71

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Respinto},\texttt{Ammesso}\}$ come valore da prevedere. In particolare, il secondo valore (Ammesso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	9.0	1.0	Respinto
2	9.5	6.6	Ammesso
3	5.6	1.4	Ammesso
4	6.9	1.5	Respinto

i	x_{i1}	x_{i2}	y_i
5	6.1	8.1	Ammesso
6	3.4	0.4	Respinto
7	1.5	7.9	Ammesso
8	4.4	6.1	Respinto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Ammesso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Respinto} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 3. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 8. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.

Prima prova parziale, tema 72

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 10]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Mangereccio}, \text{Velenoso}\}$ come valore da prevedere. In particolare, il secondo valore (Velenoso) è da considerarsi positivo ai fini dell'esercizio.

ſ	i	x_{i1}	x_{i2}	y_i
ſ	1	6.1	8.1	Velenoso
	2	1.4	8.0	Velenoso
	3	9.4	6.6	Velenoso
	4	5.5	1.4	Velenoso

1.1) $\beta = (-1, 2)$.

i	x_{i1}	x_{i2}	y_i
5	7.1	1.4	Mangereccio
6	4.4	6.1	Mangereccio
7	8.9	0.9	Mangereccio
8	3.4	0.5	Mangereccio

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

classe =
$$\begin{cases} \text{Velenoso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Mangereccio} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.2) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 2. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 3. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.

Prima prova parziale, tema 73

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Guasto}, \text{Funzionante}\}$ come valore da prevedere. In particolare, il secondo valore (Funzionante) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.10	0.90	Guasto
2	0.06	0.34	Guasto
3	0.66	0.94	Funzionante
4	0.81	0.61	Funzionante

i	x_{i1}	x_{i2}	y_i
5	0.61	0.46	Guasto
6	0.15	0.69	Guasto
7	0.79	0.14	Funzionante
8	0.16	0.55	Funzionante

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\mathrm{classe} = \begin{cases} \text{Funzionante} & \mathrm{se} \; \hat{y} \geq \frac{1}{2}, \\ \text{Guasto} & \mathrm{se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \; \boldsymbol{\beta} = (1,-1). \qquad \qquad \mathbf{1.2)} \; \boldsymbol{\beta} = (2,-1). \qquad \qquad \mathbf{1.3)} \; \boldsymbol{\beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.

Prima prova parziale, tema 74

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Mangereccio},\text{Velenoso}\}$ come valore da prevedere. In particolare, il secondo valore (Velenoso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.79	0.59	Velenoso
2	0.15	0.54	Velenoso
3	0.16	0.69	Mangereccio
4	0.10	0.89	Mangereccio

i	x_{i1}	x_{i2}	y_i
5	0.64	0.95	Velenoso
6	0.61	0.45	Mangereccio
7	0.81	0.14	Velenoso
8	0.06	0.34	Mangereccio

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Velenoso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Mangereccio} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.

Prima prova parziale, tema 75

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Funzionante},\text{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	1.5	5.4	Guasto
2	1.0	9.0	Funzionante
3	6.0	4.5	Funzionante
4	8.1	1.6	Guasto

i	x_{i1}	x_{i2}	y_i
5	1.4	7.1	Funzionante
6	6.6	9.4	Guasto
7	8.1	5.9	Guasto
8	0.5	3.5	Funzionante

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Guasto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Funzionante} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 5. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 6. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 8. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 76

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 10]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Mangereccio}, \text{Velenoso}\}$ come valore da prevedere. In particolare, il secondo valore (Velenoso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.5	3.6	Mangereccio
2	8.1	5.9	Velenoso
3	1.6	7.1	Mangereccio
4	1.4	5.5	Velenoso

i	x_{i1}	x_{i2}	y_i
5	6.4	9.5	Velenoso
6	6.1	4.5	Mangereccio
7	0.9	8.9	Mangereccio
8	8.1	1.4	Velenoso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Velenoso} & \text{se } \hat{y} \geq \frac{1}{2},\\ \text{Mangereccio} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 2. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 5. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 7. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.

Prima prova parziale, tema 77

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Corretto},\texttt{Errato}\}$ come valore da prevedere. In particolare, il secondo valore (Errato) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
	1	0.15	0.81	Errato
	2	0.61	0.79	Errato
	3	0.44	0.60	Corretto
ĺ	4	0.36	0.05	Corretto

i	x_{i1}	x_{i2}	y_i
5	0.89	0.09	Corretto
6	0.56	0.14	Errato
7	0.96	0.65	Errato
8	0.70	0.14	Corretto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \texttt{Errato} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \texttt{Corretto} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 3. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 9. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.

Prima prova parziale, tema 78

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 10]$ come variabili indipendenti e una classe a due valori $y_i \in \{Velenoso, Mangereccio\}$ come valore da prevedere. In particolare, il secondo valore (Mangereccio) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	1.6	5.6	Mangereccio
2	0.9	8.9	Velenoso
3	6.1	4.5	Velenoso
4	6.5	9.4	Mangereccio

i	x_{i1}	x_{i2}	y_i
5	0.6	3.6	Velenoso
6	7.9	6.0	Mangereccio
7	8.0	1.5	Mangereccio
8	1.6	7.1	Velenoso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Mangereccio} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Velenoso} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Prima prova parziale, tema 79

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Malato},\text{Sano}\}$ come valore da prevedere. In particolare, il secondo valore (Sano) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.6	3.6	Malato
2	8.1	6.1	Sano
3	6.5	9.6	Sano
4	5.9	4.4	Malato

i	x_{i1}	x_{i2}	y_i
5	8.0	1.6	Sano
6	1.4	5.4	Sano
7	0.9	9.0	Malato
8	1.5	6.9	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Sano} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Malato} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 10. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.

Prima prova parziale, tema 80

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2} \in [0,100]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Ammesso}, \text{Respinto}\}\$ come valore da prevedere. In particolare, il secondo valore (Respinto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	15	80	Respinto
2	95	65	Respinto
3	69	14	Ammesso
4	55	16	Respinto

i	x_{i1}	x_{i2}	y_i
5	44	60	Ammesso
6	60	80	Respinto
7	36	4	Ammesso
8	91	11	Ammesso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Respinto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Ammesso} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 8. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.

Prima prova parziale, tema 81

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Respinto},\texttt{Ammesso}\}$ come valore da prevedere. In particolare, il secondo valore (Ammesso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	15	79	Ammesso
2	70	14	Respinto
3	96	65	Ammesso
4	45	61	Respinto

i	x_{i1}	x_{i2}	y_i
5	35	4	Respinto
6	61	81	Ammesso
7	54	16	Ammesso
8	90	10	Respinto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\mathrm{classe} = \begin{cases} \text{Ammesso} & \mathrm{se}\; \hat{y} \geq \frac{1}{2},\\ \text{Respinto} & \mathrm{se}\; \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)}\; \boldsymbol{\beta} = (-1,2). \qquad \qquad \mathbf{1.2)}\; \boldsymbol{\beta} = (-2,1). \qquad \qquad \mathbf{1.3)}\; \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 4. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Prima prova parziale, tema 82

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Mangereccio},\text{Velenoso}\}$ come valore da prevedere. In particolare, il secondo valore (Velenoso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.59	0.44	Mangereccio
2	0.79	0.61	Velenoso
3	0.05	0.36	Mangereccio
4	0.81	0.16	Velenoso

i	x_{i1}	x_{i2}	y_i
5	0.64	0.95	Velenoso
6	0.16	0.54	Velenoso
7	0.15	0.70	Mangereccio
8	0.09	0.90	Mangereccio

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Velenoso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Mangereccio} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 5. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 83

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Felice},\texttt{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	6.0	4.6	Felice
2	1.5	7.0	Felice
3	0.4	3.4	Felice
4	7.9	6.1	Triste

i	x_{i1}	x_{i2}	y_i
5	1.4	5.4	Triste
6	8.1	1.4	Triste
7	1.0	8.9	Felice
8	6.4	9.6	Triste

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 6. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].

Prima prova parziale, tema 84

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\mathtt{Sano},\mathtt{Malato}\}$ come valore da prevedere. In particolare, il secondo valore (Malato) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.14	0.69	Sano
2	0.60	0.45	Sano
3	0.06	0.36	Sano
4	0.11	0.89	Sano

i	x_{i1}	x_{i2}	y_i
5	0.79	0.16	Malato
6	0.80	0.60	Malato
7	0.65	0.96	Malato
8	0.15	0.54	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Malato} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Sano} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 6. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0,1].
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.

Prima prova parziale, tema 85

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Corretto},\texttt{Errato}\}$ come valore da prevedere. In particolare, il secondo valore (Errato) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.69	0.15	Corretto
2	0.54	0.16	Errato
3	0.61	0.79	Errato
4	0.34	0.04	Corretto

i	x_{i1}	x_{i2}	y_i
5	0.91	0.10	Corretto
6	0.46	0.60	Corretto
7	0.95	0.65	Errato
8	0.16	0.80	Errato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\operatorname{classe} = \begin{cases} \operatorname{Errato} & \operatorname{se} \hat{y} \geq \frac{1}{2}, \\ \operatorname{Corretto} & \operatorname{se} \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \ \boldsymbol{\beta} = (-1, 2). \qquad \qquad \mathbf{1.2)} \ \boldsymbol{\beta} = (-2, 1). \qquad \qquad \mathbf{1.3)} \ \boldsymbol{\beta} = (-1, 1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 5. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 6. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 86

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Freddo}, \text{Caldo}\}\$ come valore da prevedere. In particolare, il secondo valore (Caldo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.16	0.81	Caldo
2	0.91	0.11	Freddo
3	0.70	0.15	Freddo
4	0.44	0.60	Freddo

i	x_{i1}	x_{i2}	y_i
5	0.34	0.05	Freddo
6	0.94	0.64	Caldo
7	0.56	0.15	Caldo
8	0.60	0.80	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Caldo} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Freddo} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 2. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0,1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.

Prima prova parziale, tema 87

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Felice},\text{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	64	94	Triste
2	80	60	Triste
3	14	54	Triste
4	11	90	Felice

i	x_{i1}	x_{i2}	y_i
5	5	36	Felice
6	80	14	Triste
7	59	46	Felice
8	14	69	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-1). \qquad \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-2). \qquad \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 6. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 9. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - $(b) \ \ Si, ma\ \grave{e}\ necessario\ addestrare\ un\ classificatore\ KNN\ per\ ciascun\ valore\ della\ classe,\ e\ poi\ confrontarne\ l'output.$
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.

Prima prova parziale, tema 88

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\texttt{Corretto}, \texttt{Errato}\}$ come valore da prevedere. In particolare, il secondo valore (Errato) è da considerarsi positivo ai fini dell'esercizio.

ſ	i	x_{i1}	x_{i2}	y_i
ſ	1	0.81	0.61	Errato
	2	0.61	0.44	Corretto
	3	0.64	0.95	Errato
	4	0.14	0.70	Corretto

i	x_{i1}	x_{i2}	y_i
5	0.80	0.14	Errato
6	0.05	0.36	Corretto
7	0.11	0.90	Corretto
8	0.15	0.55	Errato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \texttt{Errato} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \texttt{Corretto} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 2. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 5. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.

Prima prova parziale, tema 89

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{ \text{Sano}, \text{Malato} \}$ come valore da prevedere. In particolare, il secondo valore (Malato) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.15	0.79	Malato
2	0.95	0.66	Malato
3	0.90	0.11	Sano
4	0.54	0.14	Malato

i	x_{i1}	x_{i2}	y_i
5	0.45	0.59	Sano
6	0.61	0.80	Malato
7	0.36	0.06	Sano
8	0.71	0.14	Sano

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Malato} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Sano} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-2,1). \ {\bf 1.2)} \ {\boldsymbol \beta} = (-1,2). \ {\bf 1.3)} \ {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 6. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.

Prima prova parziale, tema 90

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Funzionante},\text{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	35	5	Funzionante
2	14	81	Guasto
3	94	66	Guasto
4	69	16	Funzionante

i	x_{i1}	x_{i2}	y_i
5	56	16	Guasto
6	60	79	Guasto
7	44	61	Funzionante
8	90	11	Funzionante

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\operatorname{classe} = \begin{cases} \operatorname{Guasto} & \operatorname{se} \, \hat{y} \geq \frac{1}{2}, \\ \operatorname{Funzionante} & \operatorname{se} \, \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \, \boldsymbol{\beta} = (-1, 2). \qquad \mathbf{1.2)} \, \boldsymbol{\beta} = (-1, 1). \qquad \mathbf{1.3)} \, \boldsymbol{\beta} = (-2, 1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 5. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 91

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2} \in [0,10]$ come variabili indipendenti e una classe a due valori $y_i \in \{\texttt{Corretto}, \texttt{Errato}\}$ come valore da prevedere. In particolare, il secondo valore (Errato) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	5.6	1.5	Errato
2	7.0	1.6	Corretto
3	4.6	6.0	Corretto
4	6.1	8.0	Errato

i	į,	x_{i1}	x_{i2}	y_i
5	í	3.5	0.5	Corretto
6	j	1.6	7.9	Errato
7	7	9.4	6.4	Errato
8	3	9.1	1.1	Corretto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Errato} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Corretto} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 5. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.

Prima prova parziale, tema 92

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 100]$ come variabili indipendenti e una classe a due valori $y_i \in \{Velenoso, Mangereccio\}$ come valore da prevedere. In particolare, il secondo valore (Mangereccio) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	91	10	Velenoso
2	35	4	Velenoso
3	56	14	Mangereccio
4	61	79	Mangereccio

i	x_{i1}	x_{i2}	y_i
5	15	81	Mangereccio
6	94	64	Mangereccio
7	44	60	Velenoso
8	71	16	Velenoso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Mangereccio} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Velenoso} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0,1].
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.

Prima prova parziale, tema 93

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 100]$ come variabili indipendenti e una classe a due valori $y_i \in \{Velenoso, Mangereccio\}$ come valore da prevedere. In particolare, il secondo valore (Mangereccio) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	71	16	Velenoso
2	94	66	Mangereccio
3	45	59	Velenoso
4	55	14	Mangereccio

i	x_{i1}	x_{i2}	y_i
5	61	79	Mangereccio
6	16	81	Mangereccio
7	34	4	Velenoso
8	91	10	Velenoso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Mangereccio} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Velenoso} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 2. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 4. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - $(a) \ \ Un \ metodo \ per \ trovare \ un \ minimo \ locale \ di \ una \ funzione \ differenziabile \ in \ più \ variabili \ reali.$
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Prima prova parziale, tema 94

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Guasto}, \text{Funzionante}\}$ come valore da prevedere. In particolare, il secondo valore (Funzionante) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.16	0.54	Funzionante
2	0.59	0.45	Guasto
3	0.09	0.91	Guasto
4	0.79	0.14	Funzionante

i	x_{i1}	x_{i2}	y_i
5	0.81	0.61	Funzionante
6	0.66	0.96	Funzionante
7	0.16	0.70	Guasto
8	0.06	0.34	Guasto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Funzionante} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Guasto} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0,1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.

Prima prova parziale, tema 95

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Caldo},\texttt{Freddo}\}$ come valore da prevedere. In particolare, il secondo valore (Freddo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.44	0.61	Caldo
2	0.55	0.14	Freddo
3	0.59	0.79	Freddo
4	0.14	0.79	Freddo

i	x_{i1}	x_{i2}	y_i
5	0.36	0.04	Caldo
6	0.94	0.64	Freddo
7	0.69	0.15	Caldo
8	0.89	0.11	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Freddo} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Caldo} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 3. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.

Prima prova parziale, tema 96

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Ammesso},\text{Respinto}\}$ come valore da prevedere. In particolare, il secondo valore (Respinto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	56	15	Respinto
2	35	5	Ammesso
3	90	9	Ammesso
4	94	66	Respinto

i	x_{i1}	x_{i2}	y_i
5	69	14	Ammesso
6	44	60	Ammesso
7	59	81	Respinto
8	16	81	Respinto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Respinto} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Ammesso} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ \boldsymbol{\beta} = (-1,1). \qquad \qquad {\bf 1.2)} \ \boldsymbol{\beta} = (-1,2). \qquad \qquad {\bf 1.3)} \ \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 3. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0,1].
 - (c) Decide la classe di uscita.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.

Prima prova parziale, tema 97

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Funzionante},\text{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	96	64	Guasto
2	89	11	Funzionante
3	69	14	Funzionante
4	35	4	Funzionante

i	x_{i1}	x_{i2}	y_i
5	55	14	Guasto
6	61	81	Guasto
7	45	61	Funzionante
8	14	79	Guasto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\operatorname{classe} = \begin{cases} \operatorname{Guasto} & \operatorname{se} \, \hat{y} \geq \frac{1}{2}, \\ \operatorname{Funzionante} & \operatorname{se} \, \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \, \boldsymbol{\beta} = (-1,1). \qquad \mathbf{1.2)} \, \boldsymbol{\beta} = (-1,2). \qquad \mathbf{1.3)} \, \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.

Prima prova parziale, tema 98

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Triste},\texttt{Felice}\}$ come valore da prevedere. In particolare, il secondo valore (Felice) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	6.5	9.6	Felice
2	1.4	5.4	Felice
3	7.9	5.9	Felice
4	5.9	4.5	Triste

i	x_{i1}	x_{i2}	y_i
5	0.9	8.9	Triste
6	0.4	3.5	Triste
7	7.9	1.4	Felice
8	1.6	7.1	Triste

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Felice} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Triste} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 5. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.

Prima prova parziale, tema 99

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Triste},\texttt{Felice}\}$ come valore da prevedere. In particolare, il secondo valore (Felice) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	59	46	Triste
2	9	91	Triste
3	15	56	Felice
4	6	36	Triste

i	x_{i1}	x_{i2}	y_i
5	16	71	Triste
6	80	16	Felice
7	79	60	Felice
8	64	94	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Felice} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Triste} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 8. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 9. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.

Prima prova parziale, tema 100

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Errato},\texttt{Corretto}\}$ come valore da prevedere. In particolare, il secondo valore (Corretto) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
	1	0.65	0.95	Corretto
İ	2	0.59	0.45	Errato
İ	3	0.14	0.54	Corretto
İ	4	0.81	0.61	Corretto

i	x_{i1}	x_{i2}	y_i
5	0.04	0.34	Errato
6	0.10	0.90	Errato
7	0.14	0.71	Errato
8	0.79	0.14	Corretto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \texttt{Corretto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \texttt{Errato} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 9. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - $(b) \ \ Si, ma\ \grave{e}\ necessario\ addestrare\ un\ classificatore\ KNN\ per\ ciascun\ valore\ della\ classe,\ e\ poi\ confrontarne\ l'output.$
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.

Prima prova parziale, tema 101

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Respinto},\texttt{Ammesso}\}$ come valore da prevedere. In particolare, il secondo valore (Ammesso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	59	79	Ammesso
2	35	4	Respinto
3	54	15	Ammesso
4	44	60	Respinto

i	x_{i1}	x_{i2}	y_i
5	96	64	Ammesso
6	91	10	Respinto
7	70	15	Respinto
8	16	79	Ammesso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\mathrm{classe} = \begin{cases} \mathrm{Ammesso} & \mathrm{se}\; \hat{y} \geq \frac{1}{2}, \\ \mathrm{Respinto} & \mathrm{se}\; \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)}\; \boldsymbol{\beta} = (-1,1). \qquad \qquad \mathbf{1.2)}\; \boldsymbol{\beta} = (-1,2). \qquad \qquad \mathbf{1.3)}\; \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 6. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 7. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 10. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.

Prima prova parziale, tema 102

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Triste},\texttt{Felice}\}$ come valore da prevedere. In particolare, il secondo valore (Felice) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	5.4	1.6	Felice
2	3.5	0.5	Triste
3	4.5	6.1	Triste
4	9.4	6.6	Felice

i	x_{i1}	x_{i2}	y_i
5	5.9	8.0	Felice
6	7.0	1.6	Triste
7	9.1	0.9	Triste
8	1.5	8.0	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Felice} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Triste} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.

Prima prova parziale, tema 103

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Errato},\text{Corretto}\}$ come valore da prevedere. In particolare, il secondo valore (Corretto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.35	0.04	Errato
2	0.95	0.64	Corretto
3	0.91	0.09	Errato
4	0.14	0.81	Corretto

i	x_{i1}	x_{i2}	y_i
5	0.44	0.59	Errato
6	0.54	0.14	Corretto
7	0.59	0.81	Corretto
8	0.69	0.16	Errato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \texttt{Corretto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \texttt{Errato} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 5. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0,1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.

Prima prova parziale, tema 104

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Funzionante},\texttt{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
	1	0.55	0.15	Guasto
	2	0.44	0.60	Funzionante
ĺ	3	0.94	0.64	Guasto
ĺ	4	0.60	0.81	Guasto

i	x_{i1}	x_{i2}	y_i
5	0.70	0.14	Funzionante
6	0.89	0.11	Funzionante
7	0.15	0.80	Guasto
8	0.35	0.06	Funzionante

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Guasto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Funzionante} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0,1].
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.

Prima prova parziale, tema 105

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Funzionante},\text{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	89	9	Funzionante
2	36	4	Funzionante
3	70	15	Funzionante
4	60	80	Guasto

i	x_{i1}	x_{i2}	y_i
5	44	59	Funzionante
6	16	79	Guasto
7	94	65	Guasto
8	54	14	Guasto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\operatorname{classe} = \begin{cases} \operatorname{Guasto} & \operatorname{se} \, \hat{y} \geq \frac{1}{2}, \\ \operatorname{Funzionante} & \operatorname{se} \, \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \, \boldsymbol{\beta} = (-1, 2). \qquad \mathbf{1.2)} \, \boldsymbol{\beta} = (-1, 1). \qquad \mathbf{1.3)} \, \boldsymbol{\beta} = (-2, 1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 6. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 7. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 8. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 9. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 106

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Felice},\texttt{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	7.1	1.5	Felice
2	5.9	7.9	Triste
3	5.6	1.5	Triste
4	3.4	0.5	Felice

i	x_{i1}	x_{i2}	y_i
5	1.4	8.0	Triste
6	9.6	6.5	Triste
7	4.4	6.1	Felice
8	9.0	1.1	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 3. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 6. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 7. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 8. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 107

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Errato},\texttt{Corretto}\}$ come valore da prevedere. In particolare, il secondo valore (Corretto) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
	1	0.65	0.94	Corretto
	2	0.05	0.35	Errato
	3	0.60	0.46	Errato
ĺ	4	0.79	0.16	Corretto

i	x_{i1}	x_{i2}	y_i
5	0.14	0.54	Corretto
6	0.79	0.61	Corretto
7	0.15	0.69	Errato
8	0.10	0.90	Errato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \texttt{Corretto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \texttt{Errato} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 2. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.

Prima prova parziale, tema 108

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Guasto}, \text{Funzionante}\}$ come valore da prevedere. In particolare, il secondo valore (Funzionante) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.11	0.91	Guasto
2	0.59	0.44	Guasto
3	0.65	0.95	Funzionante
4	0.04	0.36	Guasto

i	x_{i1}	x_{i2}	y_i
5	0.79	0.14	Funzionante
6	0.14	0.71	Guasto
7	0.14	0.56	Funzionante
8	0.81	0.59	Funzionante

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Funzionante} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Guasto} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.

Prima prova parziale, tema 109

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 10]$ come variabili indipendenti e una classe a due valori $y_i \in \{Velenoso, Mangereccio\}$ come valore da prevedere. In particolare, il secondo valore (Mangereccio) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	8.0	1.4	Mangereccio
2	7.9	5.9	Mangereccio
3	6.6	9.5	Mangereccio
4	1.4	7.0	Velenoso

i	x_{i1}	x_{i2}	y_i
5	1.6	5.5	Mangereccio
6	6.0	4.6	Velenoso
7	0.4	3.6	Velenoso
8	0.9	9.0	Velenoso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Mangereccio} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Velenoso} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 9. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.

Prima prova parziale, tema 110

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Felice},\text{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	6	34	Felice
2	64	95	Triste
3	81	59	Triste
4	14	56	Triste

i	x_{i1}	x_{i2}	y_i
5	80	14	Triste
6	15	69	Felice
7	11	91	Felice
8	59	45	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 3. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 5. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 7. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 8. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 9. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 10. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.

Prima prova parziale, tema 111

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{\texttt{Corretto}, \texttt{Errato}\}$ come valore da prevedere. In particolare, il secondo valore (Errato) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
	1	0.60	0.80	Errato
İ	2	0.71	0.15	Corretto
İ	3	0.44	0.59	Corretto
İ	4	0.16	0.81	Errato

i	x_{i1}	x_{i2}	y_i
5	0.94	0.64	Errato
6	0.89	0.11	Corretto
7	0.54	0.16	Errato
8	0.34	0.04	Corretto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\operatorname{classe} = \begin{cases} \operatorname{Errato} & \operatorname{se} \hat{y} \geq \frac{1}{2}, \\ \operatorname{Corretto} & \operatorname{se} \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \ \boldsymbol{\beta} = (-1,1). \qquad \qquad \mathbf{1.2)} \ \boldsymbol{\beta} = (-1,2). \qquad \qquad \mathbf{1.3)} \ \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 2. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 3. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Decide la classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 112

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Freddo},\text{Caldo}\}$ come valore da prevedere. In particolare, il secondo valore (Caldo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	9	89	Freddo
2	61	45	Freddo
3	81	60	Caldo
4	64	94	Caldo

i	x_{i1}	x_{i2}	y_i
5	80	15	Caldo
6	5	34	Freddo
7	14	71	Freddo
8	14	56	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Caldo} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Freddo} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (1,-2). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre
 - (b) Quattro.
 - (c) Cinque.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 7. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 113

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Funzionante},\text{Guasto}\}$ come valore da prevedere. In particolare, il secondo valore (Guasto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	1.6	6.9	Funzionante
2	1.4	5.4	Guasto
3	5.9	4.5	Funzionante
4	0.6	3.6	Funzionante

i	x_{i1}	x_{i2}	y_i
5	8.0	1.5	Guasto
6	6.5	9.5	Guasto
7	8.0	6.1	Guasto
8	1.0	9.0	Funzionante

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Guasto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Funzionante} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 3. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - $(b) \ \ Un \ metodo \ per \ trovare \ un \ minimo \ locale \ di \ una \ funzione \ differenziabile \ in \ più \ variabili \ reali.$
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.

Prima prova parziale, tema 114

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 100]$ come variabili indipendenti e una classe a due valori $y_i \in \{Velenoso, Mangereccio\}$ come valore da prevedere. In particolare, il secondo valore (Mangereccio) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	89	9	Velenoso
2	45	60	Velenoso
3	15	79	Mangereccio
4	69	14	Velenoso

i	x_{i1}	x_{i2}	y_i
5	56	14	Mangereccio
6	60	80	Mangereccio
7	35	4	Velenoso
8	95	65	Mangereccio

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Mangereccio} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Velenoso} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Quattro.
 - (c) Tre.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 7. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 8. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 115

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 1]$ come variabili indipendenti e una classe a due valori $y_i \in \{ \text{Sano}, \text{Malato} \}$ come valore da prevedere. In particolare, il secondo valore (Malato) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.46	0.59	Sano
2	0.95	0.65	Malato
3	0.71	0.16	Sano
4	0.34	0.04	Sano

i	x_{i1}	x_{i2}	y_i
5	0.54	0.14	Malato
6	0.91	0.10	Sano
7	0.16	0.80	Malato
8	0.59	0.79	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Malato} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Sano} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 2. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1-e^{-t})$.
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 10. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.

Prima prova parziale, tema 116

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Felice},\texttt{Triste}\}$ come valore da prevedere. In particolare, il secondo valore (Triste) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	1.5	6.9	Felice
2	1.1	8.9	Felice
3	1.4	5.4	Triste
4	7.9	1.4	Triste

i	x_{i1}	x_{i2}	y_i
5	6.6	9.6	Triste
6	8.0	6.0	Triste
7	0.6	3.6	Felice
8	5.9	4.5	Felice

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Triste} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Felice} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 8. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.

Prima prova parziale, tema 117

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Freddo},\texttt{Caldo}\}$ come valore da prevedere. In particolare, il secondo valore (Caldo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	4.6	5.9	Freddo
2	5.9	8.1	Caldo
3	8.9	1.0	Freddo
4	9.5	6.5	Caldo

i	x_{i1}	x_{i2}	y_i
5	3.4	0.6	Freddo
6	7.1	1.6	Freddo
7	1.5	8.1	Caldo
8	5.4	1.4	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Caldo} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Freddo} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-1,1). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 3. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 5. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 9. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.

Prima prova parziale, tema 118

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Errato},\text{Corretto}\}$ come valore da prevedere. In particolare, il secondo valore (Corretto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.64	0.95	Corretto
2	0.11	0.91	Errato
3	0.61	0.46	Errato
4	0.05	0.36	Errato

i	x_{i1}	x_{i2}	y_i
5	0.16	0.56	Corretto
6	0.16	0.70	Errato
7	0.79	0.59	Corretto
8	0.81	0.15	Corretto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \texttt{Corretto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \texttt{Errato} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (2,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A eliminare eventuali elementi uguali a zero.
- 2. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 6. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 7. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.

Prima prova parziale, tema 119

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Respinto},\texttt{Ammesso}\}$ come valore da prevedere. In particolare, il secondo valore (Ammesso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	6.1	4.4	Respinto
2	7.9	6.0	Ammesso
3	6.6	9.6	Ammesso
4	1.6	5.4	Ammesso

i	x_{i1}	x_{i2}	y_i
5	0.4	3.6	Respinto
6	7.9	1.5	Ammesso
7	1.1	9.1	Respinto
8	1.5	6.9	Respinto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\mathrm{classe} = \begin{cases} \text{Ammesso} & \mathrm{se}\; \hat{y} \geq \frac{1}{2},\\ \text{Respinto} & \mathrm{se}\; \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)}\; \boldsymbol{\beta} = (2,-1). \qquad \qquad \mathbf{1.2)}\; \boldsymbol{\beta} = (1,-2). \qquad \qquad \mathbf{1.3)}\; \boldsymbol{\beta} = (1,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 2. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 7. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.

Prima prova parziale, tema 120

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Malato},\text{Sano}\}$ come valore da prevedere. In particolare, il secondo valore (Sano) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	16	55	Sano
2	65	96	Sano
3	79	61	Sano
4	81	16	Sano

i	x_{i1}	x_{i2}	y_i
5	11	91	Malato
6	60	44	Malato
7	16	69	Malato
8	6	35	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Sano} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Malato} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 3. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 6. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.

Prima prova parziale, tema 121

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Freddo},\texttt{Caldo}\}$ come valore da prevedere. In particolare, il secondo valore (Caldo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	0.6	3.6	Freddo
2	5.9	4.5	Freddo
3	1.5	5.5	Caldo
4	1.0	9.1	Freddo

i	x_{i1}	x_{i2}	y_i
5	8.1	5.9	Caldo
6	6.4	9.4	Caldo
7	1.6	7.0	Freddo
8	7.9	1.5	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Caldo} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Freddo} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (2,-1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (1,-1). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (1,-2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 2. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 3. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Mappa il valore reale in uscita sull'intervallo [0, 1].
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Prima prova parziale, tema 122

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Freddo},\texttt{Caldo}\}$ come valore da prevedere. In particolare, il secondo valore (Caldo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	3.4	0.6	Freddo
2	9.0	1.0	Freddo
3	4.5	6.1	Freddo
4	5.4	1.6	Caldo

i	x_{i1}	x_{i2}	y_i
5	6.0	7.9	Caldo
6	9.6	6.6	Caldo
7	1.4	7.9	Caldo
8	7.0	1.5	Freddo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Caldo} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Freddo} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Cinque.
 - (b) Tre.
 - (c) Quattro.
- 2. A cosa serve normalizzare le colonne di un dataset?
 - (a) A rimuovere eventuali valori negativi.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A eguagliare gli intervalli di variabilità delle colonne.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 9. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.

Prima prova parziale, tema 123

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Velenoso},\text{Mangereccio}\}$ come valore da prevedere. In particolare, il secondo valore (Mangereccio) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	36	4	Velenoso
2	95	64	Mangereccio
3	60	80	Mangereccio
4	46	59	Velenoso

i	x_{i1}	x_{i2}	y_i
5	89	10	Velenoso
6	69	16	Velenoso
7	14	79	Mangereccio
8	54	16	Mangereccio

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Mangereccio} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Velenoso} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,1). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 2. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 5. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
- 6. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 9. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(e^{-t}-1)$.
 - (c) $1/(1+e^{-t})$.
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).

Prima prova parziale, tema 124

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2} \in [0,10]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Errato}, \text{Corretto}\}$ come valore da prevedere. In particolare, il secondo valore (Corretto) è da considerarsi positivo ai fini dell'esercizio.

	i	x_{i1}	x_{i2}	y_i
	1	9.1	1.1	Errato
	2	3.6	0.6	Errato
İ	3	9.5	6.4	Corretto
İ	4	5.5	1.5	Corretto

i	x_{i1}	x_{i2}	y_i
5	4.4	6.1	Errato
6	5.9	7.9	Corretto
7	6.9	1.5	Errato
8	1.5	7.9	Corretto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\operatorname{classe} = \begin{cases} \operatorname{Corretto} & \operatorname{se} \hat{y} \geq \frac{1}{2}, \\ \operatorname{Errato} & \operatorname{se} \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \ \boldsymbol{\beta} = (-1,1). \qquad \qquad \mathbf{1.2)} \ \boldsymbol{\beta} = (-1,2). \qquad \qquad \mathbf{1.3)} \ \boldsymbol{\beta} = (-2,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 4. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 6. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 9. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 10. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.

Prima prova parziale, tema 125

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,10]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Freddo},\texttt{Caldo}\}$ come valore da prevedere. In particolare, il secondo valore (Caldo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	3.4	0.6	Freddo
2	1.4	8.0	Caldo
3	5.6	1.4	Caldo
4	7.1	1.6	Freddo

i	x_{i1}	x_{i2}	y_i
5	4.5	6.1	Freddo
6	9.0	1.0	Freddo
7	6.0	8.0	Caldo
8	9.6	6.5	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Caldo} & {\rm se} \; \hat{y} \geq \frac{1}{2}, \\ {\rm Freddo} & {\rm se} \; \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \; {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.2)} \; {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.3)} \; {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

- 1. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 4. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 5. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.

Algoritmi Avanzati / Machine Learning for Computer Science, A.A. 2017–2018

Prima prova parziale, tema 126

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\texttt{Respinto},\texttt{Ammesso}\}$ come valore da prevedere. In particolare, il secondo valore (Ammesso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	35	6	Respinto
2	70	15	Respinto
3	44	60	Respinto
4	91	9	Respinto

i	x_{i1}	x_{i2}	y_i
5	61	81	Ammesso
6	14	80	Ammesso
7	96	66	Ammesso
8	54	14	Ammesso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\operatorname{classe} = \begin{cases} \operatorname{Ammesso} & \operatorname{se} \hat{y} \geq \frac{1}{2}, \\ \operatorname{Respinto} & \operatorname{se} \hat{y} < \frac{1}{2}. \end{cases}$$

$$\mathbf{1.1)} \ \boldsymbol{\beta} = (-1, 2). \qquad \mathbf{1.2)} \ \boldsymbol{\beta} = (-1, 1). \qquad \mathbf{1.3)} \ \boldsymbol{\beta} = (-2, 1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

Rispetto ai consueti criteri di valutazione (accuratezza, precisione, sensibilità, F_1 -score), confrontare la bontà di un modello basato solo su x_{i1} e di un modello basato solo su x_{i2} applicando la metodologia leave-one-out sul dataset dell'esercizio 1.

Per ciascuna delle seguenti domande, riportare nel foglio protocollo il numero della risposta ritenuta corretta. Non segnare in alcun modo le domande e le risposte su questo foglio **pena l'annullamento della prova**. In caso di incertezza è consentito motivare una risposta con una riga di testo.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.
- 2. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 6. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 7. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 8. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Determina un valore di soglia per la decisione della classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Decide la classe di uscita.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) Tutte.
- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Algoritmi Avanzati / Machine Learning for Computer Science, A.A. 2017–2018

Prima prova parziale, tema 127

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, −1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,1]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Ammesso},\text{Respinto}\}$ come valore da prevedere. In particolare, il secondo valore (Respinto) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i		
1	0.89	0.10	Ammesso		
2	0.34	$4 \mid 0.06 \mid$ Ammes			
3	0.94	0.66	Respinto		
4	0.71	0.15	Ammesso		

i	x_{i1}	x_{i2}	y_i
5	0.56	0.14	Respinto
6	0.46	0.61	Ammesso
7	0.60	0.81	Respinto
8	0.14	0.80	Respinto

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Respinto} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Ammesso} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (-1,2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (-2,1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

Rispetto ai consueti criteri di valutazione (accuratezza, precisione, sensibilità, F_1 -score), confrontare la bontà di un modello basato solo su x_{i1} e di un modello basato solo su x_{i2} applicando la metodologia leave-one-out sul dataset dell'esercizio 1.

Per ciascuna delle seguenti domande, riportare nel foglio protocollo il numero della risposta ritenuta corretta. Non segnare in alcun modo le domande e le risposte su questo foglio **pena l'annullamento della prova**. In caso di incertezza è consentito motivare una risposta con una riga di testo.

- 1. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(1+e^{-t})$.
- 3. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 6. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0,1].
 - (b) Determina un valore di soglia per la decisione della classe di uscita.
 - (c) Decide la classe di uscita.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 9. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Quattro.
 - (c) Cinque.
- 10. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.

Algoritmi Avanzati / Machine Learning for Computer Science, A.A. 2017–2018

Prima prova parziale, tema 128

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\text{Caldo},\text{Freddo}\}$ come valore da prevedere. In particolare, il secondo valore (Freddo) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	91	9	Caldo
2	44	60	Caldo
3	55	15	Freddo
4	15	80	Freddo

i	x_{i1}	x_{i2}	y_i
5	59	79	Freddo
6	96	64	Freddo
7	71	16	Caldo
8	34	4	Caldo

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Freddo} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Caldo} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-2,1). \ {\bf 1.2)} \ {\boldsymbol \beta} = (-1,1). \ {\bf 1.3)} \ {\boldsymbol \beta} = (-1,2).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

Rispetto ai consueti criteri di valutazione (accuratezza, precisione, sensibilità, F_1 -score), confrontare la bontà di un modello basato solo su x_{i1} e di un modello basato solo su x_{i2} applicando la metodologia leave-one-out sul dataset dell'esercizio 1.

Per ciascuna delle seguenti domande, riportare nel foglio protocollo il numero della risposta ritenuta corretta. Non segnare in alcun modo le domande e le risposte su questo foglio **pena l'annullamento della prova**. In caso di incertezza è consentito motivare una risposta con una riga di testo.

- 1. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi negativi (FN).
- 2. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 3. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.
- 4. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 5. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - $(b) \ \ I \ veri \ positivi \ (TP) \ e \ i \ falsi \ negativi \ (FN).$
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 7. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (b) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 8. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 10. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.

Algoritmi Avanzati / Machine Learning for Computer Science, A.A. 2017-2018

Prima prova parziale, tema 129

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni i = 1, ..., 8, due attributi scalari $x_{i1}, x_{i2} \in [0, 100]$ come variabili indipendenti e una classe a due valori $y_i \in \{\text{Mangereccio}, \text{Velenoso}\}$ come valore da prevedere. In particolare, il secondo valore (Velenoso) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	15	70	Mangereccio
2	4	36	Mangereccio
3	81	14	Velenoso
4	60	44	Mangereccio

i	x_{i1}	x_{i2}	y_i
5	81	60	Velenoso
6	14	56	Velenoso
7	10	90	Mangereccio
8	66	96	Velenoso

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$$\text{classe} = \begin{cases} \text{Velenoso} & \text{se } \hat{y} \geq \frac{1}{2}, \\ \text{Mangereccio} & \text{se } \hat{y} < \frac{1}{2}. \end{cases}$$

$$\textbf{1.1) } \boldsymbol{\beta} = (1,-2). \qquad \textbf{1.2) } \boldsymbol{\beta} = (1,-1). \qquad \textbf{1.3) } \boldsymbol{\beta} = (2,-1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

Rispetto ai consueti criteri di valutazione (accuratezza, precisione, sensibilità, F_1 -score), confrontare la bontà di un modello basato solo su x_{i1} e di un modello basato solo su x_{i2} applicando la metodologia leave-one-out sul dataset dell'esercizio 1.

Per ciascuna delle seguenti domande, riportare nel foglio protocollo il numero della risposta ritenuta corretta. Non segnare in alcun modo le domande e le risposte su questo foglio **pena l'annullamento della prova**. In caso di incertezza è consentito motivare una risposta con una riga di testo.

- 1. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
- 2. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) No, è intrinsecamente adatto a soli problemi di classificazione.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
- 3. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Decide la classe di uscita.
 - (b) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A rimuovere eventuali valori negativi.
 - (c) A eliminare eventuali elementi uguali a zero.
- 6. Come può essere definita una funzione sigmoide?
 - (a) $1/(1-e^{-t})$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(e^{-t}-1)$.
- 7. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (b) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (c) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
- 8. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Tre.
 - (b) Cinque.
 - (c) Quattro.
- 9. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 10. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.

Algoritmi Avanzati / Machine Learning for Computer Science, A.A. 2017–2018

Prima prova parziale, tema 130

Martedì 30 ottobre 2017

- Nota bene: chi non segue queste indicazioni rischia l'annnullamento della prova.
- Al termine dello svolgimento della prova, è necessario riconsegnare **tutti** i fogli, comprese le brutte copie e il presente testo.
- Il presente foglio non deve riportare alcuna scritta.
- Riportare il proprio nome, cognome e numero di matricola e il numero di tema in testa a tutti i fogli protocollo, di bella e di brutta copia.
- Durante lo svolgimento della prova non è consentito l'uso di libri, appunti, dispositivi elettronici.
- Non è consentito uscire prima della consegna, che può avvenire in qualunque momento. Una volta usciti, non sarà consentito il rientro.
- Gli esercizi 1 e 2 valgono 10 punti ciascuno. Le 10 domande dell'esercizio 3 valgono 1 punto ciascuna (+1 se la risposta è corretta, -1 se è errata, 0 per le risposte non date).

Esercizio 1

È dato il seguente dataset, di 8 campioni $i=1,\ldots,8$, due attributi scalari $x_{i1},x_{i2}\in[0,100]$ come variabili indipendenti e una classe a due valori $y_i\in\{\mathtt{Sano},\mathtt{Malato}\}$ come valore da prevedere. In particolare, il secondo valore (Malato) è da considerarsi positivo ai fini dell'esercizio.

i	x_{i1}	x_{i2}	y_i
1	44	61	Sano
2	35	4	Sano
3	59	80	Malato
4	14	80	Malato

i	x_{i1}	x_{i2}	y_i
5	90	10	Sano
6	69	16	Sano
7	96	64	Malato
8	54	16	Malato

Utilizzando questo dataset, si desidera addestrare un modello logistico

$$y \sim \sigma(\boldsymbol{\beta} \cdot \boldsymbol{x}) = \sigma(\beta_1 x_1 + \beta_2 x_2),$$

dove $\sigma(\cdot)$ è la funzione sigmoide e $\beta = (\beta_1, \beta_2)$ sono due coefficienti da determinare.

Per ciascuna delle tre combinazioni di valori di β riportate sotto, stabilire l'accuratezza, la precisione, la sensibilità e l' F_1 -score del modello con il seguente criterio di decisione:

$${\rm classe} = \begin{cases} {\rm Malato} & {\rm se} \ \hat{y} \geq \frac{1}{2}, \\ {\rm Sano} & {\rm se} \ \hat{y} < \frac{1}{2}. \end{cases}$$

$${\bf 1.1)} \ {\boldsymbol \beta} = (-1,2). \qquad {\bf 1.2)} \ {\boldsymbol \beta} = (-2,1). \qquad {\bf 1.3)} \ {\boldsymbol \beta} = (-1,1).$$

Esercizio 2

Si desidera addestrare un classificatore KNN per lo stesso problema di classificazione visto nell'esercizio 1, con un numeero di vicini K=3, utilizzando però uno solo dei due attributi in ingresso.

Rispetto ai consueti criteri di valutazione (accuratezza, precisione, sensibilità, F_1 -score), confrontare la bontà di un modello basato solo su x_{i1} e di un modello basato solo su x_{i2} applicando la metodologia leave-one-out sul dataset dell'esercizio 1.

Per ciascuna delle seguenti domande, riportare nel foglio protocollo il numero della risposta ritenuta corretta. Non segnare in alcun modo le domande e le risposte su questo foglio **pena l'annullamento della prova**. In caso di incertezza è consentito motivare una risposta con una riga di testo.

- 1. Come può essere definita una funzione sigmoide?
 - (a) $1/(e^{-t}-1)$.
 - (b) $1/(1+e^{-t})$.
 - (c) $1/(1-e^{-t})$.
- 2. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eliminare eventuali elementi uguali a zero.
 - (b) A eguagliare gli intervalli di variabilità delle colonne.
 - (c) A rimuovere eventuali valori negativi.
- 3. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.
- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) Tutte.
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 5. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.
- 6. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (b) Un metodo per trovare il valore ottimale di un classificatore KNN.
 - (c) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
- 7. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) I veri positivi (TP) e i falsi positivi (FP).
- 8. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.
- 9. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Cinque.
 - (c) Tre.
- 10. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Perché dobbiamo minimizzare le dimensioni dei due insiemi.
 - (c) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.

Traccia della soluzione del Tema 1

La soluzione è applicabile anche agli altri temi: considerando che i punti e le coordinate sono permutati casualmente, riscalati e leggermente perturbati, le matrici di confusione e gli indici di prestazione sono gli stessi, anche se l'ordine può cambiare.

Esercizio 1

Sappiamo che $\sigma(t) \geq 1/2$ se e solo se $t \geq 0$. Questo significa che non abbiamo mai bisogno di calcolare la funzione sigmoide, ma ci basta vedere se il suo argomento $\beta_1 x_1 + \beta_2 x_2$ è positivo o negativo. Per le tre combinazioni di β proposte nell'esercizio abbiamo le previsioni della tabella sottostante:

i	r.,	T:0	21.	$\boldsymbol{\beta} = (1, -2)$		$\beta = (2, -1)$		$\boldsymbol{\beta} = (1, -1)$	
	x_{i1}	x_{i2}	y_i	\hat{y}_i	$classe_i$	\hat{y}_i	$classe_i$	\hat{y}_i	$classe_i$
1	1.5	5.6	Felice	$\sigma(-9.7)$	Triste	$\sigma(-2.6)$	Triste	$\sigma(-4.1)$	Triste
2	8.1	6.0	Felice	$\sigma(-3.9)$	Triste	$\sigma(10.2)$	Felice	$\sigma(2.1)$	Felice
3	6.1	4.4	Triste	$\sigma(-2.7)$	Triste	$\sigma(7.8)$	Felice	$\sigma(1.7)$	Felice
4	0.5	3.4	Triste	$\sigma(-6.3)$	Triste	$\sigma(-2.4)$	Triste	$\sigma(-2.9)$	Triste
5	7.9	1.4	Felice	$\sigma(5.1)$	Felice	$\sigma(14.4)$	Felice	$\sigma(6.5)$	Felice
6	6.6	9.4	Felice	$\sigma(-12.2)$	Triste	$\sigma(3.8)$	Felice	$\sigma(-2.8)$	Triste
7	1.5	6.9	Triste	$\sigma(-12.3)$	Triste	$\sigma(-3.9)$	Triste	$\sigma(-5.4)$	Triste
8	0.9	9.1	Triste	$\sigma(-17.3)$	Triste	$\sigma(-7.3)$	Triste	$\sigma(-8.2)$	Triste

Le previsioni si traducono nelle seguenti tre matrici di confusione:

		Previsione					
		$\boldsymbol{\beta} = 0$	(1, -2)	$\boldsymbol{\beta} = ($	(2,-1)	$\boldsymbol{\beta} = ($	1, -1)
		Felice	Triste	Felice	Triste	Felice	Triste
Classe corretta	Felice	1	3	3	1	2	2
Classe Colletta	Triste	0	4	1	3	1	3

Sulla base delle matrici di confusione, possiamo calcolare gli indici di prestazione richiesti dall'esercizio:

Criterio	$\beta = (1, -2)$	$\boldsymbol{\beta} = (2, -1)$	$\boldsymbol{\beta} = (1, -1)$
Accuratezza	5/8	3/4	5/8
Precisione	1	3/4	2/3
Sensibilità	1/4	3/4	1/2
F_1 score	2/5	3/4	4/7

Osservazioni

In conclusione (anche se non è richiesto dall'esercizio), vediamo che il secondo caso, $\beta = (2, -1)$ è il migliore sotto tutti i punti di vista ad esclusione della precisione, che è decisamente migliore nel primo caso. Infatti, per $\beta = (1, -2)$ un solo individuo viene previsto positivo (felice) e la previsione, in quel caso, è corretta.

Nella seguente figura riportiamo i campioni nel piano cartesiano. Se tracciamo le rette corrispondenti a $\beta \cdot x = 0$, possiamo vedere in che modo ciascuno dei tre modelli classifica gli individui (positivi, cioè felici, i punti sotto la retta; negativi quelli sopra).

Con riferimento al grafico dell'esercizio precedente, ecco le previsioni relative alla prima coordinata, dove le distanze sono quindi prese fra le proiezioni dei punti sull'asse x_1 .

i u_i		Vicini			Previsione	Tipo
$\mid i \mid y_i \mid$	Primo	Secondo	Terzo	Fievisione	1100	
1	Felice	7(Triste)	8(Triste)	4(Triste)	Triste	FN
2	Felice	5 (Felice)	6(Felice)	3(Triste)	Felice	TP
3	Triste	6 (Felice)	5 (Felice)	2(Felice)	Felice	FP
4	Triste	8(Triste)	7(Triste)	1(Felice)	Triste	TN
5	Felice	2(Felice)	6(Felice)	3(Triste)	Felice	TP
6	Felice	3(Triste)	5 (Felice)	2(Felice)	Felice	TP
7	Triste	1 (Felice)	8(Triste)	4(Triste)	Triste	TN
8	Triste	4(Triste)	1(Felice)	7(Triste)	Triste	TN

Riportiamo la matrice di confusione:

		Previsione	
		Felice	Triste
Classe corretta	Felice	3	1
	Triste	1	3

Sulla base della matrice di confusione, possiamo calcolare tutti gli indici di prestazione richiesti:

$$\mbox{accuratezza} = \mbox{precisione} = \mbox{sensibilit} \\ \mbox{\grave{a}} = F_1 = \frac{3}{4}.$$

Ora ripetiamo la stima per la proiezione su x_2 :

$\begin{bmatrix} i & u_i \end{bmatrix}$		Vicini			Previsione	Tipo
$\begin{vmatrix} i \end{vmatrix} \qquad y_i \qquad \begin{vmatrix} i \end{vmatrix}$	Primo	Secondo	Terzo	1 icvisione	11po	
1	Felice	2(Triste)	3(Triste)	7(Triste)	Triste	FN
2	Felice	1 (Felice)	7(Triste)	3(Triste)	Triste	FN
3	Triste	4(Triste)	1(Felice)	2(Felice)	Felice	FP
4	Triste	3(Triste)	1(Felice)	$5 ({\tt Felice})$	Felice	FP
5	Felice	4(Triste)	3(Triste)	1(Felice)	Triste	FN
6	Felice	8(Triste)	7(Triste)	2(Felice)	Triste	FN
7	Triste	2(Felice)	1(Felice)	8(Triste)	Felice	FP
8	Triste	6 (Felice)	7(Triste)	2(t Felice)	Felice	FP

Osserviamo che il modello sbaglia tutte le previsioni:

		Previsione	
		Felice	Triste
Classe corretta	Felice	0	4
	Triste	4	0

Gli indici di prestazione sono dunque tutti nulli:

$$accuratezza = precisione = sensibilità = F_1 = 0.$$

Si osservi che, tecnicamente, lo score F_1 comporta delle divisioni per zero; per definizione, però, possiamo assumere che, in quanto media di valori nulli, sia nullo.

Esercizio 3

Nel seguente elenco la risposta corretta è riportata per prima.

- 1. A cosa serve normalizzare le colonne di un dataset?
 - (a) A eguagliare gli intervalli di variabilità delle colonne.
 - (b) A eliminare eventuali elementi uguali a zero.
 - (c) A rimuovere eventuali valori negativi.

Alcuni algoritmi sono sensibili a differenze eccessive fra gli ordini di grandezza dei diversi attributi; la normalizzazione serve a far variare tutti gli attributi all'interno di uno stesso intervallo.

I valori negativi o nulli non sono, normalmente, un problema.

- 2. Che effetto ha la funzione sigmoide sull'uscita di un regressore?
 - (a) Mappa il valore reale in uscita sull'intervallo [0, 1].
 - (b) Decide la classe di uscita.
 - (c) Determina un valore di soglia per la decisione della classe di uscita.

La funzione sigmoide non "decide" nulla, né determina valori di soglia, i quali devono semmai essere utilizzati a valle dell'applicazione della sigmoide, come nel primo esercizio.

- 3. Quanti coefficienti vanno determinati un una regressione polinomiale di terzo grado in una variabile?
 - (a) Quattro.
 - (b) Tre.
 - (c) Cinque.

Un polinomio di terzo grado ha la forma $\beta_3 x^3 + \beta_2 x^2 + \beta_1 x + \beta_0$, quindi servono quattro coefficienti.

- 4. Quali caselle della matrice di confusione vanno utilizzate per valutare la precisione di un classificatore?
 - (a) I veri positivi (TP) e i falsi positivi (FP).
 - (b) I veri positivi (TP) e i falsi negativi (FN).
 - (c) Tutte.

La precisione si valuta considerando le sole risposte positive di un classificatore.

- 5. Quali caselle della matrice di confusione vanno utilizzate per valutare la sensibilità (o recall) di un classificatore?
 - (a) I veri positivi (TP) e i falsi negativi (FN).
 - (b) I veri positivi (TP) e i falsi positivi (FP).

(c) Tutte.

La sensibilità si valuta considerando soltanto i casi positivi del dataset

- 6. Quali caselle della matrice di confusione vanno utilizzate per valutare l'accuratezza di un classificatore?
 - (a) Tutte.
 - (b) I veri positivi (TP) e i falsi positivi (FP).
 - (c) I veri positivi (TP) e i falsi negativi (FN).

Non è possibile calcolare l'accuratezza se non si conoscono tutte le caselle, visto che è necessario conoscere la numerosità del dataset.

- 7. È possibile utilizzare l'algoritmo KNN su problemi di regressione?
 - (a) Sì, ad esempio calcolando la media delle y dei K elementi più vicini a quello incognito.
 - (b) Sì, ma è necessario addestrare un classificatore KNN per ciascun valore della classe, e poi confrontarne l'output.
 - (c) No, è intrinsecamente adatto a soli problemi di classificazione.

Un esempio è fornito nelle dispense e considera la media pesata con pesi inversamente proporzionali alla distanza.

- 8. Che cos'è il metodo della discesa lungo il gradiente?
 - (a) Un metodo per trovare un minimo locale di una funzione differenziabile in più variabili reali.
 - (b) Un metodo per trovare le derivate parziali dell'output di un regressore logistico.
 - (c) Un metodo per trovare il valore ottimale di un classificatore KNN.

Si tratta di un algoritmi iterativo di approssimazione per trovare un minimo di una funzione. Non serve a trovare le derivate parziali (che si possono calcolare a tavolino o, in alternativa, stimare), e non ha alcuna connessione immediata con l'ottimizzazione di un classificatore KNN.

- 9. Perché è preferibile che gli insiemi di training e di validazione siano disgiunti?
 - (a) Perché siamo interessati a valutare le prestazioni del sistema su esempi non visti durante l'addestramento.
 - (b) Si tratta di una precauzione per evitare che la presenza di due elementi identici nei dataset causi divisioni per zero.
 - (c) Perché dobbiamo minimizzare le dimensioni dei due insiemi.

La valutazione delle prestazioni richiede, semmai, che le dimensioni dei due dataset siano massimizzate, non minimizzate, ovviamente sotto il vincolo che i due insiemi siano disgiunti.

- 10. Come può essere definita una funzione sigmoide?
 - (a) $1/(1+e^{-t})$.
 - (b) $1/(1-e^{-t})$.
 - (c) $1/(e^{-t}-1)$.

Le altre due funzioni non sono nemmeno definite su tutti i reali.

Griglie di soluzione

Sono elencati, per ogni tema:

- il valore migliore per il vettore β fra quelli proposti per il primo esercizio;
- la coordinata migliore per il classificatore KNN del secondo esercizio;
- l'elenco delle risposte corrette per il terzo esercizio.

```
Tema 1
```

```
Esercizio 1: \beta = (2, -1) (punto 1.2)
Esercizio 2: la coordinata migliore è x_1
Esercizio 3: 1.b 2.a 3.a 4.c 5.a 6.c 7.b 8.c 9.b 10.c
```

Tema 2

```
Esercizio 1: \beta = (-1,2) (punto 1.1)
Esercizio 2: la coordinata migliore è x_2
Esercizio 3: 1.c 2.a 3.b 4.a 5.c 6.b 7.b 8.b 9.b 10.c
```

Tema 3

```
Esercizio 1: \beta = (-1,2) (punto 1.1)
Esercizio 2: la coordinata migliore è x_2
Esercizio 3: 1.b 2.c 3.c 4.a 5.c 6.b 7.b 8.b 9.b 10.c
```

Tema 4

```
Esercizio 1: \beta = (-1,2) (punto 1.1)
Esercizio 2: la coordinata migliore è x_2
Esercizio 3: 1.b 2.b 3.c 4.b 5.c 6.a 7.c 8.b 9.a 10.b
```

Tema 5

```
Esercizio 1: \beta = (-1,2) (punto 1.2)
Esercizio 2: la coordinata migliore è x_2
Esercizio 3: 1.c 2.a 3.b 4.b 5.c 6.a 7.b 8.c 9.a 10.a
```

Tema 6

```
Esercizio 1: \beta = (-1,2) (punto 1.2)
Esercizio 2: la coordinata migliore è x_2
Esercizio 3: 1.c 2.a 3.a 4.c 5.a 6.b 7.c 8.c 9.b 10.c
```

Tema 7

```
Esercizio 1: \beta = (-1,2) (punto 1.1)
Esercizio 2: la coordinata migliore è x_2
Esercizio 3: 1.b 2.c 3.c 4.b 5.c 6.a 7.a 8.c 9.a 10.b
```

Tema 8

```
Esercizio 1: \beta = (-1,2) (punto 1.2)
Esercizio 2: la coordinata migliore è x_2
Esercizio 3: 1.c 2.c 3.b 4.b 5.b 6.c 7.b 8.a 9.a 10.b
```

Tema 9

```
Esercizio 1: \beta=(2,-1) (punto 1.1)
Esercizio 2: la coordinata migliore è x_1
Esercizio 3: 1.b 2.a 3.a 4.a 5.b 6.a 7.a 8.a 9.a 10.a
```

```
Tema 10
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.c 3.a 4.b 5.a 6.c 7.a 8.a 9.a 10.b
Tema 11
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.a 3.c 4.c 5.c 6.c 7.a 8.a 9.c 10.a
Tema 12
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.b 3.c 4.a 5.a 6.c 7.c 8.a 9.a 10.b
Tema 13
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.b 3.b 4.a 5.b 6.b 7.c 8.c 9.c 10.a
Tema 14
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.b 3.a 4.a 5.c 6.b 7.c 8.b 9.b 10.b
Tema 15
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.a 3.a 4.c 5.c 6.b 7.a 8.a 9.b 10.a
Tema 16
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.c 3.a 4.c 5.a 6.b 7.a 8.b 9.b 10.a
Tema 17
      Esercizio 1: \beta = (2, -1) (punto 1.1)
```

Esercizio 2: la coordinata migliore è x_1

Esercizio 3: 1.b 2.b 3.c 4.b 5.c 6.a 7.c 8.a 9.c 10.c

Tema 18

Esercizio 1: $\beta = (2, -1)$ (punto 1.3) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.c 2.a 3.a 4.b 5.b 6.a 7.c 8.b 9.c 10.a

Tema 19

Esercizio 1: $\beta = (-1, 2)$ (punto 1.2) Esercizio 2: la coordinata migliore è x_2 Esercizio 3: 1.a 2.b 3.c 4.b 5.b 6.b 7.b 8.c 9.a 10.b

Tema 20

Esercizio 1: $\beta = (-1, 2)$ (punto 1.2) Esercizio 2: la coordinata migliore è x_2

```
Esercizio 3: 1.c 2.a 3.c 4.b 5.a 6.c 7.a 8.a 9.c 10.b
Tema 21
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.b 3.a 4.a 5.b 6.b 7.a 8.a 9.b 10.b
Tema 22
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.c 3.a 4.b 5.a 6.a 7.b 8.c 9.c 10.c
Tema 23
      Esercizio 1: \beta = (2, -1) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.b 3.b 4.a 5.c 6.c 7.b 8.c 9.c 10.c
Tema 24
      Esercizio 1: \beta = (2, -1) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.c 3.b 4.b 5.b 6.a 7.a 8.b 9.c 10.a
Tema 25
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.c 3.b 4.a 5.c 6.a 7.b 8.a 9.c 10.c
Tema 26
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.b 3.b 4.a 5.b 6.c 7.a 8.b 9.b 10.c
Tema 27
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.a 3.c 4.a 5.a 6.b 7.c 8.a 9.c 10.a
Tema 28
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.b 3.b 4.b 5.c 6.b 7.a 8.c 9.c 10.c
Tema 29
      Esercizio 1: \beta = (2, -1) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.b 3.c 4.b 5.b 6.c 7.a 8.c 9.c 10.c
Tema 30
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.b 3.a 4.a 5.a 6.a 7.c 8.c 9.c 10.c
Tema 31
```

Esercizio 1: $\beta = (-1, 2)$ (punto 1.2)

```
Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.b 2.a 3.c 4.b 5.a 6.a 7.c 8.a 9.b 10.b
Tema 32
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.c 3.c 4.c 5.c 6.c 7.a 8.a 9.a 10.a
Tema 33
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.a 3.b 4.c 5.a 6.b 7.a 8.c 9.c 10.c
Tema 34
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.c 3.b 4.c 5.b 6.c 7.c 8.b 9.c 10.a
Tema 35
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.c 3.b 4.c 5.c 6.b 7.c 8.c 9.c 10.a
Tema 36
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.b 2.b 3.c 4.a 5.b 6.a 7.a 8.b 9.a 10.c
Tema 37
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.a 3.b 4.b 5.b 6.b 7.a 8.a 9.a 10.c
Tema 38
      Esercizio 1: \beta = (2, -1) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.a 3.a 4.c 5.c 6.a 7.c 8.a 9.c 10.b
Tema 39
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.b 2.c 3.c 4.c 5.b 6.c 7.c 8.a 9.a 10.b
Tema 40
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.a 3.c 4.b 5.a 6.b 7.b 8.c 9.c 10.c
Tema 41
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.a 3.a 4.b 5.b 6.b 7.c 8.b 9.b 10.c
```

```
Tema 42
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.b 2.a 3.a 4.c 5.a 6.c 7.c 8.a 9.c 10.a
Tema 43
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.a 3.a 4.c 5.c 6.a 7.c 8.c 9.b 10.a
Tema 44
```

Esercizio 1: $\beta = (-1, 2)$ (punto 1.3) Esercizio 2: la coordinata migliore è x_2 Esercizio 3: 1.a 2.b 3.c 4.a 5.a 6.b 7.c 8.c 9.b 10.c

Tema 45

Esercizio 1: $\beta = (2, -1)$ (punto 1.3) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.a 2.c 3.b 4.b 5.a 6.b 7.c 8.c 9.b 10.b

Tema 46

Esercizio 1: $\beta = (2, -1)$ (punto 1.2) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.b 2.c 3.b 4.b 5.b 6.a 7.b 8.b 9.b 10.b

Tema 47

Esercizio 1: $\beta = (2, -1)$ (punto 1.1) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.c 2.b 3.b 4.a 5.c 6.c 7.b 8.c 9.c 10.c

Tema 48

Esercizio 1: $\beta = (2, -1)$ (punto 1.3) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.a 2.b 3.b 4.b 5.b 6.c 7.b 8.c 9.a 10.a

Tema 49

Esercizio 1: $\beta = (2, -1)$ (punto 1.2) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.b 2.c 3.c 4.b 5.a 6.b 7.c 8.b 9.a 10.b

Tema 50

Esercizio 1: $\beta = (-1, 2)$ (punto 1.2) Esercizio 2: la coordinata migliore è x_2 Esercizio 3: 1.a 2.b 3.c 4.a 5.b 6.b 7.c 8.c 9.a 10.c

Tema 51

Esercizio 1: $\beta = (-1, 2)$ (punto 1.1) Esercizio 2: la coordinata migliore è x_2 Esercizio 3: 1.a 2.a 3.a 4.a 5.b 6.c 7.b 8.c 9.a 10.c

Tema 52

Esercizio 1: $\beta = (2, -1)$ (punto 1.2) Esercizio 2: la coordinata migliore è x_1

```
Esercizio 3: 1.c 2.a 3.c 4.b 5.c 6.b 7.a 8.a 9.c 10.c
Tema 53
      Esercizio 1: \beta = (2, -1) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.a 3.c 4.a 5.b 6.b 7.c 8.b 9.c 10.a
Tema 54
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.a 3.a 4.c 5.a 6.b 7.c 8.a 9.b 10.c
Tema 55
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.a 3.c 4.c 5.b 6.b 7.a 8.b 9.a 10.c
Tema 56
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.a 3.b 4.c 5.b 6.b 7.a 8.c 9.b 10.b
Tema 57
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.b 2.c 3.c 4.a 5.b 6.c 7.a 8.b 9.c 10.a
Tema 58
      Esercizio 1: \beta = (2, -1) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.a 3.c 4.b 5.b 6.c 7.b 8.b 9.c 10.c
Tema 59
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.c 3.b 4.c 5.b 6.c 7.b 8.c 9.c 10.c
Tema 60
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.c 3.a 4.b 5.a 6.b 7.a 8.b 9.a 10.b
Tema 61
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.b 3.a 4.a 5.a 6.a 7.c 8.a 9.b 10.c
Tema 62
      Esercizio 1: \beta = (2, -1) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.b 3.b 4.a 5.a 6.a 7.a 8.a 9.c 10.a
Tema 63
```

Esercizio 1: $\beta = (2, -1)$ (punto 1.3)

```
Esercizio 3: 1.a 2.b 3.a 4.a 5.b 6.c 7.b 8.c 9.b 10.b
Tema 64
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.c 3.a 4.a 5.b 6.b 7.a 8.b 9.c 10.c
Tema 65
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.c 3.c 4.a 5.a 6.a 7.a 8.c 9.c 10.b
Tema 66
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.b 3.c 4.c 5.c 6.b 7.a 8.b 9.c 10.a
Tema 67
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.c 3.a 4.b 5.c 6.c 7.a 8.c 9.b 10.a
Tema 68
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.c 3.b 4.a 5.b 6.c 7.c 8.a 9.a 10.b
Tema 69
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.a 3.a 4.a 5.b 6.b 7.c 8.a 9.a 10.b
Tema 70
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.c 3.b 4.c 5.c 6.a 7.b 8.b 9.c 10.b
Tema 71
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.c 3.c 4.c 5.c 6.b 7.c 8.a 9.c 10.b
Tema 72
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.b 2.c 3.a 4.b 5.a 6.a 7.c 8.a 9.b 10.a
Tema 73
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.b 3.c 4.a 5.a 6.a 7.c 8.b 9.c 10.b
```

Esercizio 2: la coordinata migliore è x_1

```
Tema 74
      Esercizio 1: \beta = (2, -1) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.a 3.a 4.c 5.b 6.a 7.c 8.b 9.c 10.c
Tema 75
      Esercizio 1: \beta = (2, -1) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.c 3.a 4.b 5.b 6.b 7.b 8.b 9.c 10.c
Tema 76
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.c 3.a 4.c 5.b 6.b 7.b 8.a 9.c 10.b
Tema 77
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.b 3.c 4.b 5.a 6.c 7.c 8.b 9.b 10.c
Tema 78
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.b 3.a 4.a 5.c 6.a 7.c 8.b 9.b 10.a
Tema 79
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.c 3.b 4.a 5.c 6.a 7.b 8.b 9.c 10.a
Tema 80
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.b 3.a 4.a 5.c 6.c 7.b 8.b 9.b 10.c
Tema 81
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.c 3.c 4.c 5.c 6.c 7.b 8.c 9.a 10.a
Tema 82
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.c 3.c 4.c 5.a 6.c 7.b 8.c 9.a 10.b
Tema 83
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.c 3.a 4.b 5.c 6.c 7.c 8.a 9.c 10.c
```

Tema 84

Esercizio 1: $\beta = (2, -1)$ (punto 1.3)

Esercizio 2: la coordinata migliore è x_1

```
Esercizio 3: 1.c 2.b 3.a 4.a 5.b 6.b 7.b 8.c 9.c 10.c
Tema 85
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.a 3.c 4.a 5.c 6.a 7.a 8.c 9.a 10.b
Tema 86
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.b 2.b 3.c 4.a 5.a 6.a 7.a 8.c 9.c 10.c
Tema 87
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.c 3.b 4.a 5.b 6.a 7.c 8.b 9.a 10.c
Tema 88
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.c 3.b 4.c 5.a 6.b 7.a 8.a 9.b 10.b
Tema 89
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.b 3.a 4.a 5.b 6.c 7.b 8.c 9.c 10.b
Tema 90
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.b 3.a 4.c 5.c 6.c 7.a 8.b 9.a 10.b
Tema 91
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.c 3.b 4.b 5.b 6.b 7.a 8.a 9.b 10.a
Tema 92
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.c 3.c 4.a 5.a 6.a 7.c 8.c 9.b 10.a
Tema 93
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.b 2.b 3.b 4.c 5.a 6.c 7.b 8.a 9.a 10.b
Tema 94
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.a 3.b 4.a 5.c 6.a 7.c 8.b 9.b 10.a
Tema 95
```

Esercizio 1: $\beta = (-1, 2)$ (punto 1.3)

```
Esercizio 3: 1.a 2.a 3.a 4.b 5.b 6.a 7.b 8.a 9.a 10.a
Tema 96
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.a 3.b 4.a 5.b 6.a 7.b 8.c 9.c 10.b
Tema 97
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.a 3.a 4.c 5.b 6.c 7.b 8.a 9.c 10.b
Tema 98
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.b 3.a 4.a 5.a 6.b 7.a 8.c 9.a 10.c
Tema 99
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.c 3.b 4.a 5.a 6.c 7.b 8.a 9.a 10.b
Tema 100
      Esercizio 1: \beta = (2, -1) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.c 2.b 3.a 4.b 5.a 6.c 7.a 8.a 9.c 10.b
Tema 101
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.b 2.b 3.b 4.b 5.b 6.b 7.a 8.c 9.a 10.b
Tema 102
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.c 3.a 4.a 5.c 6.a 7.c 8.a 9.c 10.b
Tema 103
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.c 3.b 4.a 5.a 6.a 7.c 8.c 9.b 10.b
Tema 104
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.a 3.c 4.a 5.a 6.b 7.c 8.c 9.b 10.c
Tema 105
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.b 2.b 3.c 4.b 5.a 6.a 7.c 8.b 9.a 10.b
```

Esercizio 2: la coordinata migliore è x_2

```
Tema 106 Esercizio 1: \beta = (-1,2) (punto 1.2) Esercizio 2: la coordinata migliore è x_2 Esercizio 3: 1.a 2.c 3.b 4.c 5.c 6.c 7.a 8.a 9.a 10.c
```

Tema 107

Esercizio 1: $\beta = (2, -1)$ (punto 1.2) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.c 2.c 3.c 4.b 5.b 6.a 7.a 8.c 9.a 10.b

Tema 108

Esercizio 1: $\beta = (2, -1)$ (punto 1.1) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.a 2.a 3.a 4.a 5.a 6.c 7.c 8.b 9.a 10.b

Tema 109

Esercizio 1: $\beta = (2, -1)$ (punto 1.3) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.b 2.c 3.a 4.b 5.c 6.c 7.a 8.b 9.c 10.b

Tema 110

Esercizio 1: $\beta = (2, -1)$ (punto 1.1) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.c 2.c 3.c 4.b 5.c 6.c 7.c 8.a 9.c 10.b

Tema 111

Esercizio 1: $\beta = (-1,2)$ (punto 1.2) Esercizio 2: la coordinata migliore è x_2 Esercizio 3: 1.c 2.b 3.c 4.a 5.b 6.c 7.c 8.b 9.b 10.a

Tema 112

Esercizio 1: $\beta = (2, -1)$ (punto 1.2) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.b 2.a 3.b 4.b 5.b 6.c 7.b 8.b 9.b 10.b

Tema 113

Esercizio 1: $\beta = (2, -1)$ (punto 1.3) Esercizio 2: la coordinata migliore è x_1 Esercizio 3: 1.c 2.c 3.b 4.a 5.b 6.b 7.a 8.a 9.b 10.c

Tema 114

Esercizio 1: $\beta = (-1,2)$ (punto 1.2) Esercizio 2: la coordinata migliore è x_2 Esercizio 3: 1.c 2.b 3.b 4.a 5.b 6.c 7.b 8.b 9.b 10.b

Tema 115

Esercizio 1: $\beta = (-1,2)$ (punto 1.3) Esercizio 2: la coordinata migliore è x_2 Esercizio 3: 1.b 2.a 3.c 4.a 5.b 6.a 7.c 8.c 9.a 10.a

Tema 116

Esercizio 1: $\beta = (2, -1)$ (punto 1.1) Esercizio 2: la coordinata migliore è x_1

```
Esercizio 3: 1.a 2.a 3.a 4.c 5.b 6.b 7.c 8.b 9.c 10.c
Tema 117
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.a 3.c 4.a 5.b 6.c 7.a 8.a 9.c 10.c
Tema 118
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.c 3.c 4.a 5.b 6.c 7.b 8.a 9.c 10.b
Tema 119
      Esercizio 1: \beta = (2, -1) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.a 3.c 4.b 5.c 6.c 7.b 8.c 9.b 10.b
Tema 120
      Esercizio 1: \beta = (2, -1) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.b 2.a 3.a 4.b 5.a 6.a 7.b 8.b 9.a 10.c
Tema 121
      Esercizio 1: \beta = (2, -1) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_1
      Esercizio 3: 1.a 2.c 3.b 4.b 5.c 6.b 7.a 8.c 9.b 10.b
Tema 122
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.c 3.b 4.c 5.a 6.b 7.a 8.b 9.a 10.c
Tema 123
      Esercizio 1: \beta = (-1, 2) (punto 1.3)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.c 3.b 4.b 5.a 6.a 7.b 8.c 9.c 10.a
Tema 124
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.c 3.c 4.a 5.a 6.a 7.a 8.b 9.a 10.a
Tema 125
      Esercizio 1: \beta = (-1, 2) (punto 1.2)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.c 2.b 3.a 4.a 5.c 6.b 7.b 8.a 9.b 10.a
Tema 126
      Esercizio 1: \beta = (-1, 2) (punto 1.1)
      Esercizio 2: la coordinata migliore è x_2
      Esercizio 3: 1.a 2.b 3.b 4.a 5.c 6.b 7.c 8.b 9.c 10.b
Tema 127
```

Esercizio 1: $\beta = (-1, 2)$ (punto 1.1)

```
Esercizio 2: la coordinata migliore è x_2
```

Esercizio 3: 1.c 2.c 3.a 4.c 5.b 6.a 7.b 8.a 9.b 10.a

Tema 128

Esercizio 1: $\beta = (-1, 2)$ (punto 1.3)

Esercizio 2: la coordinata migliore è x_2

Esercizio 3: 1.a 2.b 3.b 4.a 5.a 6.b 7.c 8.c 9.c 10.a

Tema 129

Esercizio 1: $\beta = (2, -1)$ (punto 1.3)

Esercizio 2: la coordinata migliore è x_1

Esercizio 3: 1.c 2.c 3.b 4.b 5.a 6.b 7.b 8.c 9.b 10.a

Tema 130

Esercizio 1: $\beta = (-1, 2)$ (punto 1.1)

Esercizio 2: la coordinata migliore è x_2

Esercizio 3: 1.b 2.b 3.c 4.a 5.a 6.c 7.c 8.a 9.a 10.a