Sesame

Sesame is a Python3 package for solving the drift diffusion Poisson equations for multi-dimensional systems using finite differences.

Install instructions

Semiconductor current-flow equations (diffusion and degeneracy), R.Stratton,

IEEE Transactions on Electron Devices

https://ieeexplore.ieee.org/document/1477063

Semiconductor Current-Flow Equations (Diffusion and Degeneracy)

ROBERT STRATTON

The correct form for the current-flow equation in semiconductors in the presence of density and temperature gradients, as well as electric fields, is derived from a perturbation solution of Boltzmann's equation. The conditions under which the various widely used approximate forms of the current-flow equation are valid are clearly discussed. A new term that occurs if the relaxation time depends on position is derived, and is shown to be comparable in magnitude to the other terms in the current-flow equation.

Manuscript received March 15, 1972; revised July 20, 1972. The author is with Texas Instruments, Inc., Dallas, Tex. 75222.

I. Introduction

HE ANALYSIS of the electrical characteristics of semiconductor devices invariably involves the electron current-flow equation, i.e.,

$$j = j_F + j_D \tag{1}$$

where j_F is the conduction current due to the electric field F and j_D is the diffusion current, as one of a set of simultaneous equations that must be solved for a given

Carsten Wulff 2021

- Grid

Each axis of the grid is a concatenation of sets of evenly spaced nodes. Edit the form with (x1, x2, number of nodes), (x2, x3 number of nodes),...

Grid x-axis ,100),(3e-4,4e-4,10(cm

Grid y-axis (0,1e-5,5) cm

Manual Generation rate

Use manual generation

Provide a number for uniform illumation, or a space-dependent function, or simply nothing for dark conditions.

A single variable parameter is allowed and will be looped over during the simulation.

Expression [cm⁻³s⁻¹] 0

Paramater name

New Save Remove Save a defect before adding a new one. Location

еV

NA

1.1

epsilon 11.8

Planar Defects

Eg

System Simulation Analysis

Loop over

Voltages Generation rates

Loop values [0.3 \ 0.0,-1]

Working directory same/wulff/pndiode/ Browse...

Output file name pndiode .gzip

.gzip

Simulation log

INFO: step 25,error = 0.9999995808573537

Stop simulation

INFO: step 26,error = 0.9999988596577988

INFO: step 27,error = 0.999996898179034

Run simulation

INFO: step 28, error = 0.9999915642702679

INFO: step 29, error = 0.999977061282639

INFO: step 30,error = 0.9999376312764978

INFO: step 31,error = 0.9998304427570286

INFO: step 32,error = 0.9995391106703418

INFO: step 33,error = 0.9987476260090542

INFO: step 34,error = 0.9965997108182367

INFO: step 35, error = 0.9907879485052914

INFO: step 36, error = 0.9751877095968543

INFO: step 37,error = 0.9342041943279747

INFO: step 38,error = 0.8325334222710672

INFO: step 39,error = 0.614963842698804

INFO: step 40,error = 0.28784490108657

INFO: step 41,error = 0.05031109907804321

INFO: step 42, error = 0.001309360091800371

INFO: step 43,error = 8.591859291703617e-07

INFO: ** Calculations completed successfully **

Thanks!