To find following the Machine Learning Regression Method using in R2 value SUPPORT VECTOR MACHINE:

S.NO	HYPER	LINEAR	RBF (NON-	RBF	POLY
	PARAMETER		LINEAR)		
1	C100	0.1064	-0.5072	-0.0198	-0.0304
2	C500	0.5928	-0.0243	-0.1146	0.0705
3	C1000	0.7802	0.0067	0.2661	0.1850
4	C2000	0.8767	0.0675	0.4810	0.3970
5	C3000	0.8956	0.1232	0.6370	0.5913
6	C4000	0.8972	0.1723	0.7326	0.6282

The SVM Regression use R value ((LINEAR) and hyper parameter (C4000)) = 0.8972

Decision Tree

S.NO	CRITERION	MAX_FEATURESINT	SPLITTER	R VALUE
1	friedman_mse	sqrt	best	0.6384
2	friedman_mse	log2	random	0.5796
3	absolute_error	sqrt	best	-0.9669
4	absolute_error	log2	random	0.7132
5	poisson	log2	random	0.9026
6	friedman_mse	log2	random	0.7127
7	friedman_mse	sqrt	best	-0.4120
8	absolute_error	sqrt	random	0.4303
9	absolute_error	log2	best	0.7357
10	poisson	sqrt	random	0.5691
11	poisson	log2	best	0.3052

The Decision Tree Regression use R-value (poisson, log2, random) =0.9026

