

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR Mid-Spring Semester 2016-17

Date of Examination: 15/02/2017(AN) Duration 2hours Marks: 30

Subject No.: MA60056 (Regression and Time Series Models)

Department: Mathematics

Students: PGDBA core + BTech/MSc elective (92)

Questions:

1. Let $\{(x_i, y_i)\}_{i=1}^N$ be a data set for which the following regression model is fit:

$$y = \beta_0 + \beta_1 x + \epsilon$$

where $\epsilon \sim N(0, \sigma^2)$.

a. What is the distribution of the least squares estimator $\hat{\beta}_1$ assuming that the variance σ^2 is also estimated from the data? [2 marks]

b. Suppose N=2 and $|x_1-x_2|=d$ for some positive number d. Assuming that the estimator of σ^2 is bounded by a positive number M (in other words $MS_{Res} < M$), what choice of d will result in $Var(\hat{\beta}_1) < 0.1$? [3 marks]

2. Let $\{(x_i, y_i)\}_{i=1}^N$ be a data set for which the following simple linear regression model is fit:

$$y = \beta_0 + \beta_1 x + \epsilon$$

where $\epsilon \sim N(0, \sigma^2)$.

a. Give a test procedure using t statistic to test whether $\beta_1 = 0$. [2 marks]

b. Give a test procedure to test whether $\beta_1 = 0$ using ANOVA. [2 marks]

c. Show that the approaches in (2a) and (2b) are equivalent. [2 marks]

- Let the true relationship between the variables x and y be given as $y = e^x + e^{-x} + \epsilon$, where $\epsilon \sim N(0, \sigma^2)$. The practical constraint forces you to build at best a polynomial regression model between x and y.
 - a. Propose a polynomial regression model of degree 6 to solve this problem. (Hint: Consider the Taylor's series expansion of y). [2 marks]
 - b. Do all the powers of x up to degree 6 are significant in this model? [1 mark]_{no}
 - c. Assume that the data given to you is $D = \{(x_i, y_i)_{i=1}^n\}$. Write down the general form of the regressor matrix X for this particular model in (3a). [2 marks]
- Let $y = X\beta + \epsilon$ be a multiple regression model where $y \in \mathbb{R}^{n \times 1}$, $X \in \mathbb{R}^{n \times p}$, $\beta \in \mathbb{R}^{p \times 1}$, and $\epsilon \sim N(0, \sigma^2 I_n)$ for the data $D = \{(x_i, y_i)_{i=1}^n\}$. Let $\widehat{\beta}$ be the least squares estimator of β and \widehat{y} be the prediction vector. Define $e = y \widehat{y}$ to be the residual vector. Derive the distribution of the residual vector e. Justify each step in this derivation. [4 marks]
- 5. State whether the following statements are true of false. Justify your answer in each case. [10 marks]
 - a. Let $\{X_1, X_2, ..., X_n\}$ be a random sample from N(0,1) and $\{Y_1, Y_2, ..., Y_m\}$ be another independent random sample from $N(\mu, \frac{1}{m^2})$. Then $\frac{\sum_{i=1}^m (Y_i \mu)}{\sum_{i=1}^n X_i^2}$ follows t distribution with m degrees of freedom.
 - In the simple regression setting with the data $D = \{(x_i, y_i)_{i=1}^n\}$, the degrees of freedom associated with the total variation in y given by $SS_T = \frac{1}{n} \sum_{k=1}^n (y_k \bar{y})^2$ are n 1.
 - c. In the multiple regression setup, consider the ANOVA test to check the significance of the regression coefficients. The F statistic used in this test has $F_{n-p,n-1}$ distribution where p is the number of parameters estimated from n number of data points.
 - d. In a simple regression case, suppose that the t test for significance for the slope parameter $(\beta_1 = 0)$ reveals that the slope parameter is significant. Then the regression model will predict the response variable accurately.
 - e. The condition number of the matrix $\begin{pmatrix} 1 & 1 \\ 1.001 & 1 \end{pmatrix}$ is very high.