ESTIMACIÓ DELS PARÀMETRES EN MODELS DE CUES

- TEST DE χ^2 PER ALS PROCESOS DE LLEGADA Y SERVEI.
- INTERVALS DE CONFIANÇA PER A λ , μ , ρ .
- SIMULACIÓ D'UNA CUA M/M/1.
- PRÀCTICA 3.

Pràctica 3

Objectiu: Es disposa de una mostra dels temps entre arribades a un S.E. i dels temps de servei del servidor d'aquest S.E. En ambdós casos la grandària de la mostra es de 1000 observacions. Se sap que corresponen a distribucions exponencials de temps. Es pretén:

- a) Verificar mitjançant el test de χ^2 que efectivament corresponen a una distribució exponencial.
- b) Obtenir els intervals de confiança per a la taxa d'arribades per unitat de temps (paràmetre λ de la distribució exponencial del procés de arribades) i per al factor de càrrega ρ del S.E.
- c) Utilitzeu un programa de simulació de cues comparant les magnituds L, W, W_q obtingudes mitjançant la simulació amb aquelles que proporciona la teoria de cues.

Simulació del S.E. M/M/1.

La simulació pot efectuar-se mitjançant la macro mm1.mtb. Prèviament requereix que las constants K1, K2, K3, K4 estiguin degudament inicialitzades:

```
K1 = N, número de clients.
```

 $K2 = 1/\lambda$, temps mig entre arribades.

 $\kappa 3 = 1/\mu$ temps mig de servei.

```
MTB> let K1= 500
MTB> let K2= 20,0
MTB> let K3= 8,0
MTB> exec "mm1.mtb"
```


RESULTATS DE LA SIMULACIÓ

K1	500,000 N=Número de clients que han ent	rat en el S.E.
K2	$20,0000$ $1/\lambda$	
К3	$8,00000$ $1/\mu$	
P0	$0,578429$ P $_0$ Fracció de temps que el ser	vidor està ociòs.
rho	0,421571 $ ho$ (estimació per simulació)	
inrate	0,049953 λ (estimació per simulació)	
WaitS	13,4386 W	
WaitQ	4,98271 W _q	
Lsistavg	0,67130 L	
LastWs	1,60498 Permanència del darrer client	en el S.E.
T_H	10009,3 Temps entre la 1ª i darrera e	entrada.

Rojo = Nº de jobs en el procesador (Lsist) TX

Azul = Nº de jobs en cola (Queue)

Intervals de confiança per a les taxes λ y μ i per al factor de càrrega $\rho = \lambda/\mu$.

Es disposa de dues mostres t_1 , t_2 , ..., t_n y s_1 , s_2 , ..., s_m per als processos de arribada i de servei (temps distribuïts exponencialment).

Se vol determinar un interval de confiança de probabilitat 1- α per a les taxes d'arribada λ , de servei μ i per al factor de càrrega ρ d'un S.E. M/M/1 partint de les dues mostres.

El estimador màxim versemblant per a λ i μ és:

$$\hat{\lambda} = \frac{n}{\sum_{i=1}^{n} t_i} = \frac{n}{T_n}$$

$$\hat{\boldsymbol{\mu}} = \frac{m}{\sum_{i=1}^{m} S_i} = \frac{m}{S_m}$$

Ja que T_n es distribueix segons una llei n-Erlang de paràmetre $\theta = \lambda/k$ (o també una Gamma(λ , n)),

$$E\left[2\boldsymbol{\lambda}\sum_{i=1}^{n}t_{i}\right]=E\left[2\boldsymbol{\lambda}T_{n}\right]=2n \implies 2\boldsymbol{\lambda}T_{n} \sim Gamma\left(\frac{1}{2},n\right)=\boldsymbol{\chi}_{2n}^{2}$$

$$2n\frac{\lambda}{\hat{\lambda}} \sim \chi_{2n}^2, \quad 2m\frac{\mu}{\hat{\mu}} \sim \chi_{2m}^2 \qquad \Rightarrow \qquad \frac{\frac{\lambda}{\hat{\lambda}}}{\frac{\mu}{\hat{\mu}}} = \frac{\rho}{\hat{\rho}} \sim F_{2n,2m}$$

I.C. al 1- α per a λ : $\left[\frac{\hat{\lambda}}{2n}x_{-}, \frac{\hat{\lambda}}{2n}x_{+}\right]$ I.C. al 1- α per a ρ $\left[\hat{\rho} f_{-}, \hat{\rho} f_{+}\right]$

Taula amb les grandàries de mostra necessàries per a obtenir un I.C. del 95% i sa amplitud.

n=m	f-	f+	<i>e_f</i> (%)	x-/2n	$x_+/2n$	$e_{x}(\%)$.
10	0,405 2	2,461	143	0,479	1,708	112
100	0,757	L,321	54	0,813	1,205	38
1000	0,916	L,091	17	0,939	1,062	12
10000	0,972	L,028	5	0,980	1,019	3

TEST DE BONANÇA D'AJUSTAMENT DE χ^2

Es vol comprovar la bondat d'ajustament de una mostra t_1 , t_2 , ..., t_n a una distribució (p.ex: k-Erlang de paràmetres: k etapes i $1/\lambda$ =temps mig per etapa=E[t]/k (o Gamma(λ ,k)).

a) Es fixen un conjunt de subintervals $[x_{i}, x_{i+1}]$ en número total N que recobreixen tot l'interval de valors possibles per a la v.a. t de forma que $P(x_i \le t \le x_{i+1}) = 1/N$. El número esperat d'elements de la mostra que haurien d'estar compresos en cada subinterval hauria ser constant:

$$n_e = n/N$$
.

c) Es compte el número d'elements n_i de la mostra que cauen en cada subinterval i.

Es calcula una mesura global de la discrepància entre n_i y n_e :

$$X^{2} = \sum_{i=1}^{N} \frac{(n_{i} - n_{e})^{2}}{n_{e}}$$

 \boldsymbol{X}^2 es distribueix aproximadament segons una llei $\boldsymbol{\mathcal{X}}_{N-m-1}^2$, sent \boldsymbol{m} el número de paràmetres de la distribució que hagin estat estimats utilitzant la mateixa mostra.

Se rebutjarà la distribució proposada si

$$P(x \ge X^2) = p$$
-valor $< \alpha$

Procediment per a usar la macro "x2.mtb":

Suposem, por exemple, que es disposa d'una mostra per a la que les estadístiques bàsiques són:

Variable sample	N	Mean	Median	TrMean	StDev	SE Mean
	500	19,914	19,607	19,702	5,990	0,268
Variable sample	Minimum 6,607	Maximum 41,172	Q1 15,660	Q3 23,373		

1) Estimació dels paràmetres de la distribució:

Etapes $_{k = \left[\left(\frac{\bar{t}}{s_{t}}\right)^{2}\right] = \left[\left(\frac{19.91}{5.99}\right)^{2}\right] = \left[11.05\right]}$; s'adopta 11; temps mig per etapa 19,91/11= 1,81036

2) Establiu els valors de les constants k100, k101, k102, k103.

MTB> let k100=11

MTB> let k101=1,81036

MTB> let k102=500

MTB> let k102=500

MTB> let k103=7

MTB> exec "x2.mtb"

N° de etapes

Temps mig per etapa

Grandària de la mostra

Graus de llibertat

Proporciona:

- El p-valor en la constant k105 i la resta de constants k100-k104 amb les que ha executat.
- El valor de χ^2 en k104

