પ્રશ્ન 1(અ) [3 ગુણ]

ડિજિટલ કોમ્યુનિકેશન સિસ્ટમનો બ્લોક ડાયાગ્રામ દોરો.

જવાબ:

મુખ્ય ઘટકો:

• માહિતી સ્રોત: સંદેશ સિગ્નલ જનરેટ કરે છે

• સ્રોત એન્કોડર: એનાલોગને ડિજિટલમાં કન્વર્ટ કરે છે

• યેનલ એન્કોડર: એરર કરેક્શન કોડ ઉમેરે છે

• ડિજિટલ મોક્યુલેટર: ડિજિટલ બિટ્સને એનાલોગ સિગ્નલમાં કન્વર્ટ કરે છે

યાદગાર વાક્ય: "સ્રોત ચેનલ મોડ્યુલેટર ચેનલમાંથી ડિ-મોડ્યુલેટર ચેનલ સિંક સુધી જાય છે"

પ્રશ્ન 1(બ) [4 ગુણ]

ડિજિટલ કોમ્યુનિકેશન સિસ્ટમના ટ્રાન્સમીટર અને રીસીવરના કાર્યો લખો.

જવાબ:

ยวร	รเน็
ટ્રાન્સમીટર	માહિતી સિગ્નલને ટ્રાન્સમિશન માટે યોગ્ય સ્વરૂપમાં કન્વર્ટ કરે છે
સ્રોત એન્કોડર	એનાલોગ ટુ ડિજિટલ કન્વર્ઝન, સેમ્પલિંગ, ક્વાન્ટાઇઝેશન
યેનલ એન્કોડર	એરર ડિટેક્શન અને કરેક્શન કોડિંગ
ડિજિટલ મોક્યુલેટર	ડિજિટલ બિટ્સને એનાલોગ વેવફોર્મમાં કન્વર્ટ કરે છે

828	รเช่	
રીસીવર	પ્રાપ્ત સિગ્નલમાંથી મૂળ માહિતી પુનઃપ્રાપ્ત કરે છે	
ડિજિટલ ડિ-મોક્યુલેટર	પ્રાપ્ત એનાલોગ સિગ્નલને ડિજિટલ બિટ્સમાં કન્વર્ટ કરે છે	
ચેનલ ડિકોડર	એરર ડિટેક્શન અને કરેક્શન	
સ્રોત ડિકોડર	ડિજિટલ ટુ એનાલોગ કન્વર્ઝન	

મુખ્ય કાર્યો:

• સિગ્નલ પ્રોસેસિંગ: એન્કોડિંગ, મોડ્યુલેશન, ફિલ્ટરિંગ

• એરર કન્ટ્રોલ: ટ્રાન્સમિશન એરર્સનું ડિટેક્શન અને કરેક્શન

• સિગ્નલ રિકવરી: રીસીવર પર ડિ-મોક્યુલેશન અને ડિકોડિંગ

યાદગાર વાક્ય: "ટ્રાન્સમીટર એન્કોડ કરી મોક્યુલેટ કરે, રીસીવર ડિ-મોક્યુલેટ કરી ડિકોડ કરે"

પ્રશ્ન 1(ક) [7 ગુણ]

વ્યાખ્યા કરો અને ઉદાહરણ સાથે સમજાવો: કન્ટિન્યુઅસ ટાઇમ અને ડિસક્રીટ ટાઇમ સિગ્નલ્સ, રીઅલ અને કોમ્પ્લેક્સ સિગ્નલ્સ તથા ઇવન અને ઓડ સિગ્નલ્સ.

જવાબ:

સિગ્નલનો પ્રકાર	વ્યાખ્યા	ઉદાહરણ
કન્ટિન્યુઅસ ટાઇમ	તમામ સમય વેલ્યુઝ માટે વ્યાખ્યાયિત સિગ્નલ	$x(t) = \sin(2\pi t)$
ડિસક્રીટ ટાઇમ	ફક્ત ચોક્કસ સમય ક્ષણોએ જ વ્યાખ્યાયિત સિગ્નલ	$x[n] = \sin(2\pi n/8)$
રીઅલ સિગ્નલ	ફક્ત વાસ્તવિક વેલ્યુઝ ધરાવતું સિગ્નલ	$x(t) = 5\cos(t)$
કોમ્પ્લેક્સ સિગ્નલ	વાસ્તવિક અને કાલ્પનિક ભાગો ધરાવતું સિગ્નલ	x(t) = 3 + j4sin(t)

ઇવન અને ઓડ સિગ્નલ્સ:

ગુણઘર્મો:

- **ઇવન સિગ્નલ**: y-અક્ષની આસપાસ સપ્રમાણ, x(t) = x(-t)
- **ઓડ સિગ્નલ**: મૂળબિંદુની આસપાસ વિરોધી-સપ્રમાણ, x(t) = -x(-t)
- કોમ્પ્લેક્સ સિગ્નલ: z(t) = x(t) + jy(t)
- ડિસક્રીટ સિગ્નલ: કન્ટિન્યુઅસ સિગ્નલનું સેમ્પલ કરેલું સ્વરૂપ

યાદગાર વાક્ય: "કન્ટિન્યુઅસ સર્વત્ર, ડિસક્રીટ થોક્કસ, રીઅલ સાદું, કોમ્પ્લેક્સ મિશ્રિત"

પ્રશ્ન 1(ક અથવા) [7 ગુણ]

વ્યાખ્યા કરો અને ઉદાહરણ સાથે સમજાવો: યુનિટ સ્ટેપ ફંકશન, યુનિટ ઇમ્પલ્સ ફંકશન અને યુનિટ રેમ્પ ફંકશન જવાબ:

ફંકશન	વ્યાખ્યા	ગાણિતિક સ્વરૂપ
યુનિટ સ્ટેપ	u(t) = t≥0 माटे 1, t<0 माटे 0	u(t) = t≥0 भा2 ใ
યુનિટ ઇમ્પલ્સ	δ(t) = t=0 માટે ∞, અન્યત્ર 0	$\int \delta(t)dt = 1$
યુનિટ રેમ્પ	r(t) = t≥0 માટે t, t<0 માટે 0	$r(t) = t \cdot u(t)$

Unit Step Function:	Unit Impulse Function:	Unit Ramp Function:	
1	∞	/	
		/	
0	0 _	0 /	
0 t	0 t	0 t	

ઉપયોગો:

• યુનિટ સ્ટેપ: સ્વિય ઓપરેશન્સ, સિસ્ટમ રિસ્પોન્સ વિશ્લેષણ

• યુનિટ ઇમ્પલ્સ: સિસ્ટમ ઇમ્પલ્સ રિસ્પોન્સ, કોન્વોલ્યુશન

• **યુનિટ રેમ્પ**: સિસ્ટમ રેમ્પ રિસ્પોન્સ, ઇન્ટિગ્રેશન

ગુણધર્મો:

• સ્ટેપ: રેમ્પનો વ્યુત્પન્ન, ઇમ્પલ્સનો સંકલન

• ઇમ્પલ્સ: સ્ટેપ ફંકશનનો વ્યુત્પન્ન

• રેમ્પ: સ્ટેપ ફંકશનનો સંકલન

યાદગાર વાક્ય: "સ્ટેપ અથાનક, ઇમ્પલ્સ તાત્કાલિક, રેમ્પ વધતું"

પ્રશ્ન 2(અ) [3 ગુણ]

વ્યાખ્યાયિત કરો: બિટ રેટ, બોડ રેટ અને બેન્ડવિડ્થ.

જવાબ:

પેરામીટર	વ્યાખ્યા	એકમ
બિટ રેટ	પ્રતિ સેકન્ડે ટ્રાન્સમિટ થતી બિટ્સની સંખ્યા	bps (બિટ્સ પર સેકન્ડ)
બોડ રેટ	પ્રતિ સેકન્ડે સિગ્નલ ફેરફારોની સંખ્યા	Baud (સિમ્બોલ્સ પર સેકન્ડ)
બેન્ડવિડ્થ	સિગ્નલમાં ફ્રીકવેન્સીઝની રેન્જ	Hz (త [్] ష్ ను)

સંબંધ:

- બિટ રેટ = બોડ રેટ × log₂(M)
- M = સિગ્નલ લેવલ્સની સંખ્યા
- બેન્ડવિડ્થ 🛮 બોડ રેટ

મુખ્ય મુદ્દાઓ:

• ઊંચો બિટ રેટ: વધુ ડેટા ટ્રાન્સમિશન

• બોડ રેટ: સિમ્બોલ ટ્રાન્સમિશન રેટ

• બેન્ડવિડ્થ: કબજામાં લેવાયેલું ફ્રીક્વેન્સી સ્પેક્ટ્રમ

યાદગાર વાક્ય: "બિટ્સ બોડ બેન્ડવિડ્થ - ડેટા સિમ્બોલ ફ્રીક્વેન્સી"

પ્રશ્ન 2(બ) [4 ગુણ]

એનર્જી અને પાવર સિગ્નલ સમજાવો.

જવાબ:

સિગ્નલનો પ્રકાર	વ્યાખ્યા	ગાણિતિક સ્વરૂપ
એનર્જી સિગ્નલ	મર્યાદિત એનર્જી, ઝીરો એવરેજ પાવર	E = ∫
પાવર સિગ્નલ	મર્યાદિત એવરેજ પાવર, અનંત એનર્જી	P = lim(T→∞) 1/T ∫

વર્ગીકરણ:

ઉદાહરણો:

• એનર્જી સિગ્નલ: ઘટતું exponential સિગ્નલ e^(-t)u(t)

• **પાવર સિંગ્નલ**: Sinusoidal સિંગ્નલ sin(ωt)

• **બંનેમાંથી ક્રોઈ નહીં**: રેમ્પ સિગ્નલ t·u(t)

ગુણધર્મો:

- એનર્જી અને પાવર સિગ્નલ્સ એકબીજાને બાકાત રાખે છે
- આવર્તિ સિગ્નલ્સ સામાન્ય રીતે પાવર સિગ્નલ્સ હોય છે
- બિન-આવર્તિ મર્યાદિત અવધિના સિગ્નલ્સ એનર્જી સિગ્નલ્સ હોય છે

યાદગાર વાક્ય: "એનર્જી સમાપ્ત, પાવર થાલુ"

પ્રશ્ન 2(ક) [7 ગુણ]

ASK, FSK અને PSK મોક્યુલેશન ટેકનિકો વચ્ચે સરખામણી કરો અને તેના વેવફોર્મ્સ દોરો.

જવાબ:

પેરામીટર	ASK	FSK	PSK
પૂરું નામ	Amplitude Shift Keying	Frequency Shift Keying	Phase Shift Keying
બદલાતો પેરામીટર	એમ્પ્લટ્યુડ	ફ્રીકવેન્સી	ફેઝ
બેન્કવિડ્થ	સાંકડી	પહોળી	સાંકડી
નોઇઝ ઇમ્યુનિટી	નબળી	સારી	શ્રેષ્ઠ
પાવર એફિશિયન્સી	નબળી	સારી	શ્રેષ્ઠ
અમલીકરણ	સરળ	મધ્યમ	જટિલ

ઉપયોગો:

- ASK: ઓપ્ટિકલ કોમ્યુનિકેશન, સરળ રેડિયો સિસ્ટમ્સ
- FSK: ટેલિફોન મોડેમ્સ, રેડિયો સિસ્ટમ્સ
- PSK: સેટેલાઇટ કોમ્યુનિકેશન, વાયરલેસ સિસ્ટમ્સ

ફાયદાઓ:

- ASK: સરળ અમલીકરણ, ઓછી કિંમત
- FSK: સારી નોઇઝ પર્ફોર્મન્સ, કોન્સ્ટન્ટ એન્વેલોપ
- **PSK**: શ્રેષ્ઠ નોઇઝ પર્ફોર્મન્સ, બેન્ડવિડ્થ એફિશિયન્ટ

યાદગાર વાક્ય: "ASK એમ્પ્લિટ્યુડ, FSK ફ્રીક્વેન્સી, PSK ફેઝ"

પ્રશ્ન 2(અ અથવા) [3 ગુણ]

8-બિટ જનરેટરમાંથી સિગ્નલ જનરેટરનો બિટ દર 1600 bps છે. સિગ્નલનો બોડ રેટ ની ગणતરી કરો.

જવાબ:

આપેલ:

- બિટ રેટ = 1600 bps
- પ્રતિ સિમ્બોલ બિટ્સની સંખ્યા = 8 બિટ્સ

સૂત્ર:

બોડ રેટ = બિટ રેટ / પ્રતિ સિમ્બોલ બિટ્સની સંખ્યા

ગણતરી:

બોડ રેટ = 1600 bps / 8 બિટ્સ બોડ રેટ = 200 Baud

પરિણામ:

સિગ્નલનો બોડ રેટ **200 Baud** છે.

સમજૂતી:

- દરેક સિમ્બોલ 8 બિટ્સની માહિતી ધરાવે છે
- પ્રતિ સેકન્ડે 1600 બિટ્સ ÷ પ્રતિ સિમ્બોલ 8 બિટ્સ = પ્રતિ સેકન્ડે 200 સિમ્બોલ્સ
- તેથી, બોડ રેટ = 200 Baud

યાદગાર વાક્ય: "બિટ રેટને બિટ્સ પર સિમ્બોલથી ભાગવાથી બોડ મળે"

પ્રશ્ન 2(બ અથવા) [4 ગુણ]

શોદ્યો કે સિગ્નલ્સ ઇવન અથવા ઓડ છે કે નહીં:

- 1. $x(t) = e^{-5t}$
- 2. $x(t) = \sin 2t$
- 3. $x(t) = \cos 5t$

જવાબ:

સિગ્નલ	x(-t) 2ેસ્ટ	પરિણામ	увіз
$x(t) = e^{-5t}$	$x(-t) = e^{(5t)} \neq x(t) \neq -x(t)$	બંનેમાંથી કોઈ નહીં	ન તો ઇવન ન ઓડ
x(t) = sin 2t	$x(-t) = \sin(-2t) = -\sin 2t = -x(t)$	-x(t)	ઓડ સિગ્નલ
x(t) = cos 5t	$x(-t) = \cos(-5t) = \cos 5t = x(t)$	x(t)	ઇવન સિગ્નલ

ટેસ્ટ પ્રક્રિયા:

- 1. **ઇવન સિગ્નલ ટેસ્ટ**: તપાસો કે x(t) = x(-t)
- 2. **ઓડ સિગ્નલ ટેસ્ટ**: તપાસો કે x(t) = -x(-t)

વપરાયેલ ગુણઘર્મો:

• **Exponential**: e^(-at) ન તો ઇવન ન ઓડ છે (a > 0)

• **Sine ફંકશન**: sin(-x) = -sin(x) → ઓંડ ફંકશન

• **Cosine ફંકશન**: cos(-x) = cos(x) → ઇવન ફંકશન

પરિણામો:

• **સિગ્નલ 1**: ન તો ઇવન ન ઓડ

• **સિંગ્નલ 2**: ઓડ સિંગ્નલ

• **સિંગ્નલ 3**: ઇવન સિંગ્નલ

યાદગાર વાક્ય: "Cosine ઇવન, Sine ઓડ, Exponential બંનેમાંથી કોઈ નહીં"

પ્રશ્ન 2(ક અથવા) [7 ગુણ]

QPSK સિગ્નલનો સિદ્ધાંત સમજાવો. તેના મોડ્યુલેટર અને ડિ-મોડ્યુલેટરના બ્લોક ડાયાગ્રામ દોરો. તેમજ તેના કોન્સ્ટેલેશન ડાયાગ્રામ અને વેવફોર્મ્સ દોરો.

જવાબ:

QPSK સિદ્ધાંત:

QPSK (Quadrature Phase Shift Keying) 2 બિટ્સ પર સિમ્બોલ દર્શાવવા માટે ચાર અલગ ફેઝ સ્ટેટ્સનો ઉપયોગ કરે છે.

બિટ્સ	ફેઝ	I	Q
00	45°	+1	+1
01	135°	-1	+1
10	-45°	+1	-1
11	-135°	-1	-1

QPSK મોક્યુલેટર:

કોન્સ્ટેલેશન ડાયાગ્રામ:

QPSK ડિ-મોક્યુલેટર:

ફાયદાઓ:

• **બેન્ડવિડ્થ એફિશિયન્ટ**: પ્રતિ સિમ્બોલ 2 બિટ્સ

• સારી નોઇઝ પર્ફોર્મન્સ: કોન્સ્ટન્ટ એન્વેલોપ

• વ્યાપક ઉપયોગ: ડિજિટલ કોમ્યુનિકેશનમાં સ્ટાન્ડર્ડ

ઉપયોગો:

• સેટેલાઇટ કોમ્યુનિકેશન

• ડિજિટલ TV બ્રોડકાસ્ટિંગ

• વાયરલેસ કોમ્યુનિકેશન સિસ્ટમ્સ

યાદગાર વાક્ય: "QPSK - ક્વાડ્રેચર ફેઝ, 2 બિટ્સ, 4 ફેઝ"

પ્રશ્ન 3(અ) [3 ગુણ]

FSK મોક્યુલેટરનો બ્લોક ડાયાગ્રામ દોરો

જવાબ:

ઘટકો:

- **ડિજિટલ ડેટા ઇનપુટ**: બાઇનરી ડેટા સ્ટ્રીમ (0s અને 1s)
- **બે ઓસિલેટર્સ**: બિટ '1' માટે f₁, બિટ '0' માટે f₂
- ઇલેક્ટ્રોનિક સ્વિચ: ઇનપુટ બિટના આધારે ફ્રીક્વેન્સી પસંદ કરે છે
- FSK આઉટપુટ: ફ્રીક્વેન્સી મોડ્યુલેટેડ સિગ્નલ

કામગીરી:

- **બિટ '1'**: સ્વિય ઓસિલેટર 1 (ઊંચી ફ્રીક્વેન્સી) સાથે જોડાય છે
- **બિટ '0'**: સ્વિચ ઓસિલેટર 2 (નીચી ફ્રીક્વેન્સી) સાથે જોડાય છે
- આઉટપુટ: ડેટાના આધારે સતત ફ્રીક્વેન્સી બદલાતી રહે છે

યાદગાર વાક્ય: "FSK - ડેટા કીઝના આધારે ફ્રીક્વેન્સી સ્વિચ"

પ્રશ્ન 3(બ) [4 ગુણ]

PSK મોક્યુલેટરનો બ્લોક ડાયાગ્રામ દોરો અને સમજાવો.

જવાબ:

ઘટકો અને કાર્ય:

ยรร	รเช้
કિજિટલ કેટા	બાઇનરી ઇનપુટ સ્ટ્રીમ (0s અને 1s)
કેરિયર ઓસિલેટર	રેફરન્સ કેરિયર સિગ્નલ બનાવે છે
બેલેન્સ્ડ મોડ્યુલેટર	ડેટાને કેરિયર સાથે ગુણાકાર કરે છે
PSK આઉટપુટ	ફેઝ મોક્યુલેટેડ સિગ્નલ

કામગીરી:

- **ડેટા '1'**: આઉટપુટ = +cos(ωt) (0° ફેઝ)
- **ડેટા '0'**: આઉટપુટ = -cos(ωt) (180° ફેઝ)
- ફેઝ શિફ્ટ: '1' અને '0' વચ્ચે 180° તફાવત

ગાણિતિક અભિવ્યક્તિ:

- PSK સિગ્નલ: s(t) = A·d(t)·cos(ωt)
- જ્યાં d(t) = '1' માટે +1, '0' માટે -1

ફાયદાઓ:

- **કોન્સ્ટન્ટ એન્વેલોપ**: બહેતર નોઇઝ ઇમ્યુનિટી
- **બેન્ડવિડ્થ એફિશિયન્ટ**: ASK જેટલું જ બેન્ડવિડ્થ લે છે

• **સરળ ડિટેક્શન**: કોહેરન્ટ ડિટેક્શન જરૂરી

યાદગાર વાક્ય: "PSK - બેલેન્સ્ડ મોડ્યુલેટર કીનો ઉપયોગ કરીને ફેઝ શિફ્ટ"

પ્રશ્ન 3(ક) [7 ગુણ]

ASK મોક્યુલેટર અને ડિ-મોક્યુલેટરના બ્લોક ડાયાગ્રામને વેવફોર્મ સાથે સમજાવો.

જવાબ:

ASK મોક્યુલેટર:

ASK ડિ-મોક્યુલેટર:

વેવફોર્મ્સ:

મોડ્યુલેશન પ્રક્રિયા:

ડેટા બિટ	કેરિયર	ASK આઉટપુટ
'1'	A·cos(ωt)	A·cos(ωt)
'0'	A·cos(ωt)	0

ડિ-મોક્યુલેશન પ્રક્રિયા:

1. **ગુણાકાર**: ASK સિગ્નલ × લોકલ કેરિયર

2. **લો પાસ ફિલ્ટરિંગ**: ઊંચી ફ્રીક્વેન્સી ઘટકો દૂર કરો

3. **ડિસિઝન**: થ્રેશહોલ્ડ સાથે સરખાવીને ડેટા પુનઃપ્રાપ્ત કરો

ઉપયોગો:

• **ઓપ્ટિકલ કોમ્યુનિકેશન**: LED/લેઝર ઓન-ઓફ કીઇંગ

• **સરળ રેડિયો સિસ્ટમ્સ**: AM રેડિયો મોડિફિકેશન

• **શોર્ટ રેન્જ કોમ્યુનિકેશન**: IR રિમોટ કન્ટ્રોલ્સ

ફાયદાઓ/નુકસાનો:

ફાયદાઓ	નુકસાનો
સરળ અમલીકરણ	નબળી નોઇઝ પર્ફોર્મન્સ
ઓછી કિંમત	બેન્ડવિડ્થ અકુશળ
સરળ ડિટેક્શન	ફેડિંગ માટે સંવેદનશીલ

યાદગાર વાક્ય: "ASK - એમ્પ્લિટ્યુડ સ્વિય, ગુણાકાર અને ફિલ્ટર કી"

પ્રશ્ન 3(અ અથવા) [3 ગુણ]

MSK નો સિદ્ધાંત લખો અને કોન્સ્ટેલેશન ડાયાગ્રામ દોરો.

જવાબ:

MSK સિદ્ધાંત:

MSK (Minimum Shift Keying) એ સતત-ફેઝ FSK નું એક સ્વરૂપ છે જ્યાં ફ્રીક્વેન્સી ડેવિએશન બરાબર બિટ રેટનો અડધો છે.

મુખ્ય ગુણદ્યમોં:

• સતત ફેઝ: કોઈ ફેઝ અસાતત્યતા નથી

• न्यूनतभ झीड्येन्सी **विला**ष्ठन: Δf = Rb/2

• કોન્સ્ટન્ટ એન્વેલોપ: નોનલીનિયર એમ્પ્લિફાયર્સ માટે સાટું

કોન્સ્ટેલેશન ડાયાગ્રામ:

ગાણિતિક રજૂઆત:

• **Giz '1'**: f₁ = fc + Rb/4

• **Ga '0'**: f₂ = fc - Rb/4

• ફ્રીક્વેન્સી ડેવિએશન: Δf = Rb/2

લાક્ષણિકતાઓ:

• સ્પેક્ટ્ર**લ એફિશિયન્સી**: પરંપરાગત FSK કરતાં બહેતર

• સતત ફેઝ: આઉટ-ઓફ-બેન્ડ રેડિએશન ઘટાડે છે

• **ઓર્થોગોનલ ડિટેક્શન**: OQPSK તરીકે ડિટેક્ટ કરી શકાય છે

યાદગાર વાક્ય: "MSK - મિનિમમ શિફ્ટ, સતત ફેઝ કી"

પ્રશ્ન 3(બ અથવા) [4 ગુણ]

16-QAM નો કોન્સ્ટેલેશન ડાયાગ્રામ દોરો અને સમજાવો

જવાબ:

16-QAM કોન્સ્ટેલેશન:

16-QAM મેપિંગ ટેબલ:

બિર્સ	I	Q	એમ્પ્લિટ્યુડ	ફેઝ
0000	-3	-3	√ 18	225°
0001	-3	-1	√ 10	198.4°
0010	-3	+1	√ 10	161.6°
0011	-3	+3	√ 18	135°
0100	-1	-3	√ 10	251.6°
0101	-1	-1	√2	225°

મુખ્ય લાક્ષણિકતાઓ:

• 16 સિમ્બોલ પોઇન્ટ્સ: પ્રતિ સિમ્બોલ 4 બિટ્સ

• ગ્રે કોડિંગ: નજીકના સિમ્બોલ્સ 1 બિટથી અલગ પડે છે

• વેરિયેબલ એમ્પ્લિટ્યુડ: અલગ પાવર લેવલ્સ

• **ઊંચો ડેટા રેટ**: QPSK કરતાં 4 ગણો ડેટા રેટ

સિગ્નલ રજૂઆત:

 $s(t) = I(t) \cdot cos(\omega t) - Q(t) \cdot sin(\omega t)$

ઉપયોગો:

• **ડિજિટલ કેબલ TV**: ઊંચો ડેટા રેટ ટાન્સમિશન

• માઇક્રોવેવ લિંક્સ: પોઇન્ટ-ટુ-પોઇન્ટ કોમ્યુનિકેશન

• **WiFi સિસ્ટમ્સ**: 802.11 સ્ટાન્ડર્ડ્સ

ફાયદાઓ:

• ઊંચી સ્પેક્ટ્રલ એફિશિયન્સી: પ્રતિ સિમ્બોલ 4 બિટ્સ

• **સારી BER પર્ફોર્મન્સ**: યોગ્ય કોડિંગ સાથે

• લવચીક અમલીકરણ: સોફ્ટવેર ડિફાઇન્ડ રેડિયો

ટ્રેડ-ઓફ્સ:

• **ઊંચી જટિલતા**: QPSK કરતાં વધુ જટિલ

• પાવર વેરીએશન: લીનિયર એમ્પ્લિકાયર્સ જરૂરી

• નોઇઝ સેન્સિટિવિટી: કોન્સ્ટન્ટ એન્વેલોપ સ્કીમ્સ કરતાં ઊંચી

યાદગાર વાક્ય: "16-QAM - 16 પોઇન્ટ્સ, 4 બિટ્સ, ક્વાડ્રેચર એમ્પ્લિટ્યુડ મોડ્યુલેશન"

પ્રશ્ન 3(ક અથવા) [7 ગુણ]

ડિજિટલ મોક્યુલેશન ટેકનિક્સ-ASK, FSK, PSK, QPSK,8-PSK, MSK અને 16-QAM માટે બિટ્સ પર સિમ્બોલની સરખામણી કરો

જવાબ:

બિટ્સ પર સિમ્બોલ સરખામણી:

મોક્યુલેશન	બિટ્સ પર સિમ્બોલ	સિમ્બોલ રેટ	ડેટા રેટ સંબંધ
ASK	1	Rs = Rb	$Rb = Rs \times 1$
FSK	1	Rs = Rb	$Rb = Rs \times 1$
PSK (BPSK)	1	Rs = Rb	Rb = Rs × 1
QPSK	2	Rs = Rb/2	$Rb = Rs \times 2$
8-PSK	3	Rs = Rb/3	$Rb = Rs \times 3$
MSK	1	Rs = Rb	$Rb = Rs \times 1$
16-QAM	4	Rs = Rb/4	$Rb = Rs \times 4$

વિગતવાર વિશ્લેષણ:

બેન્ડવિડ્થ એફિશિયન્સી:

મોક્યુલેશન	М	બિટ્સ/સિમ્બોલ	બેન્ડવિડ્થ એફિશિયન્સી
ASK, FSK, PSK	2	1	1 bit/s/Hz
QPSK	4	2	2 bits/s/Hz
8-PSK	8	3	3 bits/s/Hz
16-QAM	16	4	4 bits/s/Hz

પાવર આવશ્યકતાઓ:

મોક્યુલેશન	સંબંધિત પાવર	BER પર્ફોર્મન્સ
PSK	રેફરન્સ	શ્રેષ્ઠ
ASK	+3dB પેનલ્ટી	નબળી
FSK	PSK જેટલી	સારી
QPSK	PSK જેટલી	PSK જેટલી
8-PSK	+2.5dB પેનલ્ટી	મધ્યમ
16-QAM	+4dB પેનલ્ટી	કોડિંગ સાથે સારી

ટ્રેડ-ઓફ્સ:

• **ઊંચો M**: વધુ બિટ્સ પર સિમ્બોલ પરંતુ ઊંચી જટિલતા

• બેન્ડવિડ્થ વિ પાવર: સ્પેક્ટ્રલ અને પાવર એફિશિયન્સી વચ્ચે ટ્રેડ-ઓફ

• અમલીકરણ: ઊંચા ઓર્ડરના મોક્યુલેશનને બહેતર હાર્ડવેર જોઈએ છે

ઉપયોગો:

• નીચો રેટ: સરળ સિસ્ટમ્સ માટે ASK, FSK, PSK

• મધ્યમ રેટ: સંતુલિત પર્ફોર્મન્સ માટે QPSK

• **ઊંચો રેટ**: હાઇ-સ્પીડ સિસ્ટમ્સ માટે 8-PSK, 16-QAM

સૂત્ર:

બિટ્સ પર સિમ્બોલ = log₂(M), જ્યાં M = સિમ્બોલ્સની સંખ્યા

ચાદગાર વાક્ય: "વધુ સિમ્બોલ્સ, વધુ બિટ્સ, વધુ જટિલતા"

પ્રશ્ન 4(અ) [3 ગુણ]

સંભાવનાની વ્યાખ્યા કરો અને કોમ્યુનિકેશનમાં તેનું મહત્વ લખો

જવાબ:

સંભાવનાની વ્યાખ્યા:

સંભાવના એ કોઈ ઘટના બનવાની શક્યતાનું માપ છે, જે 0 અને 1 વચ્ચેની સંખ્યા તરીકે દર્શાવવામાં આવે છે.

P(ઘટના) = અનુકૂળ પરિણામોની સંખ્યા / કુલ શક્ય પરિણામોની સંખ્યા

કોમ્યુનિકેશનમાં મહત્વ:

ઉપયોગ	મહત્વ
એરર વિશ્લેષણ	બિટ એરર રેટ (BER) ની ગણતરી
ચેનલ મોડેલિંગ	નોઇઝ અને ફેડિંગ આંકડાશાસ્ત્ર
કોડિંગ થિયરી	એરર કરેક્શન સંભાવના
સિગ્નલ ડિટેક્શન	ડિટેક્શન અને ફ્રોલ્સ એલાર્મ રેટ્સ

મુખ્ય ઉપયોગો:

• **BER วเยเสร์**!: P(error) = Q(√(2Eb/N0))

• યેનલ કેપેસિટી: શેનોનનું થિયરમ સંભાવનાનો ઉપયોગ કરે છે

• ઇન્ફોર્મેશન થિયરી: એન્ટ્રહોપી સંભાવના પર આધારિત છે

• સિસ્ટમ ડિઝાઇન: પર્ફોર્મન્સ પૂર્વાનુમાન

ગાણિતિક સાધનો:

• ગોંસિયન ડિસ્ટ્રિબ્યુશન: નોઇઝ વિશ્લેષણ માટે

• રેલે ડિસ્ટ્રિબ્યુશન: ફેડિંગ ચેનલ્સ માટે

• પોઇસન ડિસ્ટ્રિબ્યુશન: આગમન પ્રક્રિયાઓ માટે

યાદગાર વાક્ય: "સંભાવના કોમ્યુનિકેશન સિસ્ટમ્સમાં પર્ફોર્મન્સની આગાહી કરે છે"

પ્રશ્ન 4(બ) [4 ગુણ]

હફમેન કોડ યોગ્ય દાખલા સાથે સમજાવો

જવાબ:

હફમેન કોડિંગ સિદ્ધાંત:

વેરિએબલ લેન્થ કોડિંગ જ્યાં વારંવાર આવતા સિમ્બોલ્સને ટૂંકા કોડ મળે છે.

એલ્ગોરિધમ:

- 1. સંભાવનાઓ સાથે સિમ્બોલ્સની યાદી બનાવો
- 2. બે સૌથી ઓછી સંભાવના વાળા સિમ્બોલ્સને જોડો
- 3. જ્યાં સુધી એક સિમ્બોલ બાકી ન રહે ત્યાં સુધી પુનરાવર્તન કરો
- 4. કોડ આપો: ડાબે = 0, જમણે = 1

ઉદાહરણ:

સિમ્બોલ	સંભાવના	હફમેન કોડ
А	0.4	0
В	0.3	10
С	0.2	110
D	0.1	111

હફમેન ટ્રી નિર્માણ:

કોડ એસાઇનમેન્ટ:

- A: 0 (1 여ሪ)
- **B**: 10 (2 여ሪ)
- **C**: 110 (3 여ሪ)
- **D**: 111 (3 બિટ)

એવરેજ કોડ લેન્થ:

L = 0.4×1 + 0.3×2 + 0.2×3 + 0.1×3 = 1.9 બિટ્સ/સિમ્બોલ

ફાયદાઓ:

• ઓપ્ટિમલ: ન્યૂનતમ એવરેજ કોડ લેન્થ

• પ્રીફિક્સ પ્રોપર્ટી: કોઈ કોડ બીજાનો પ્રીફિક્સ નથી

• એફિશિયન્ટ: ટ્રાન્સમિશન બેન્ડવિડ્થ ઘટાડે છે

યાદગાર વાક્ય: "હફમેન - વારંવાર આવતા સિમ્બોલ્સને ટૂંકા કોડ"

પ્રશ્ન 4(ક) [7 ગુણ]

ઇન્ટરનેટ ઓફ થિંગ્સ (IoT) નો ખ્યાલ અને મુખ્ય લક્ષણો સમજાવો.

જવાબ:

IoT ખ્યાલ:

ઇન્ટરનેટ ઓફ થિંગ્સ એ સેન્સર્સ, સોફ્ટવેર અને કનેક્ટિવિટી સાથે એમ્બેડેડ ભૌતિક ઉપકરણોનું નેટવર્ક છે જે ડેટા એકત્રિત કરવા અને વિનિમય કરવા માટે છે.

IoT આર્કિટેક્ચર:

મુખ્ય લક્ષણો:

લક્ષણ	વર્ણન	ઉદાહરણ
કનેક્ટિવિટી	ઉપકરણો ઇન્ટરનેટ સાથે જોડાયેલા	WiFi, 4G, 5G
બુદ્ધિમત્તા	સ્માર્ટ નિર્ણય લેવા	Al અલ્ગોરિધમ્સ
સેન્સિંગ	પર્યાવરણમાંથી ડેટા એકત્રીકરણ	તાપમાન, ભેજ
એક્ચ્યુએશન	ભૌતિક પ્રક્રિયાઓનું નિયંત્રણ	મોટર્સ, વાલ્વ્સ
ઇન્ટરઓપરેબિલિટી	ઉપકરણો સાથે મળીને કાર્ય	સ્ટાન્ડર્ડ પ્રોટોકોલ્સ

IoT પ્રોટોકોલ સ્ટેક:

લેયર	પ્રોટોકોલ્સ	รเช้
એપ્લિકેશન	HTTP, CoAP, MQTT	ડેટા વિનિમય
ટ્રાન્સપોર્ટ	TCP, UDP	વિશ્વસનીય ટ્રાન્સમિશન
નેટવર્ક	IPv6, 6LoWPAN	રાઉટિંગ
ભૌતિક	WiFi, ZigBee, LoRa	કનેક્ટિવિટી

ઉપયોગો:

• સ્માર્ટ હોમ: સ્વચાલિત લાઇટિંગ, સિક્યોરિટી

• **ઇન્ડસ્ટ્રિયલ IoT**: મેન્યુફેક્ચરિંગ ઓટોમેશન

• આરોગ્યસેવા: દૂરસ્થ પેશન્ટ મોનિટરિંગ

• સ્માર્ટ **સિટીઝ**: ટ્રાફિક મેનેજમેન્ટ, યુટિલિટીઝ

પડકારો:

• સિક્યોરિટી: ઉપકરણની નબળાઈઓ, ડેટા પ્રાઇવેસી

• સ્કેલેબિલિટી: અબજો ઉપકરણો

• ઇન્ટરઓપરેબિલિટી: અલગ અલગ સ્ટાન્ડર્ડ્સ

• પાવર કન્ઝમ્પશન: બેટરી ચાલિત ઉપકરણો

ફાયદાઓ:

• ઓટોમેશન: માનવ હસ્તક્ષેપ ઘટાડો

• એફિશિયન્સી: સંસાધનોનો શ્રેષ્ઠ ઉપયોગ

• રીઅલ-ટાઇમ મોનિટરિંગ: તાત્કાલિક ડેટા ઍક્સેસ

• કોસ્ટ રિડક્શન: પ્રિડિક્ટિવ મેઇન્ટેનન્સ

ટેકનોલોજીઓ:

• કોમ્યુનિકેશન: WiFi, Bluetooth, Cellular, LoRa

• **પ્રોસેસિંગ**: એજ કમ્પ્યુટિંગ, ક્લાઉડ કમ્પ્યુટિંગ

• એનાલિટિક્સ: બિગ ડેટા, મશીન લર્નિંગ • સિક્યોરિટી: એન્ક્રિપ્શન, ઓથેન્ટિકેશન

યાદગાર વાક્ય: "IoT - ઇન્ટરનેટ ઓફ થિંગ્સ, સ્માર્ટ કનેક્ટેડ ઉપકરણો સર્વત્ર"

પ્રશ્ન 4(અ અથવા) [3 ગુણ]

એરર કરેક્શન કોડની વ્યાખ્યા કરો અને સામાન્ય એરર કરેક્ટિંગ કોડની યાદી આપો.

જવાબ:

એરર કરેક્શન કોડ વ્યાખ્યા:

એરર કરેક્શન કોડ એ એવી તકનીકો છે જે ટ્રાન્સમિશન એરર્સને સ્વચાલિત રીતે શોધવા અને સુધારવા માટે ડેટામાં રિડન્ડન્ટ બિટ્સ ઉમેરે છે.

સામાન્ય એરર કરેક્ટિંગ કોડઝ:

કોડનો પ્રકાર	વર્ણન	ક્ષમતા
હેમિંગ કોડ	સિંગલ એરર કરેક્શન	1-બિટ એરર સુધારે છે
રીડ-સોલોમન	બર્સ્ટ એરર્સ માટે બ્લોક કોડ	મલ્ટિપલ એટર્સ સુધારે છે
BCH sìs	બાઇનરી સાયક્લિક કોડ	t એટર્સ સુધારે છે
કોન્વોલ્યુશનલ કોડ	સતત એન્કોડિંગ	નોઇઝી ચેનલ્સ માટે સારું
ટર્બો કોડ	ઇટરેટિવ ડિકોડિંગ	શેનોન લિમિટની નજીક
LDPC sìs	લો ડેન્સિટી પેરિટી ચેક	શ્રેષ્ઠ પર્ફોર્મન્સ

ઉપયોગો:

• મેમરી સિસ્ટમ્સ: ECC RAM

• સ્ટોરેજ ડિવાઇસેસ: હાર્ડ ડ્રાઇવ્સ, CDs

• ક્રોમ્યુનિકેશન: સેટેલાઇટ, સેલ્યુલર

• બ્રોડકાસ્ટિંગ: ડિજિટલ TV, રેડિયો

યાદગાર વાક્ય: "એરર કરેક્શન કોડઝ - હેમિંગ રીડ BCH કોન્વોલ્યુશનલ ટર્બો LDPC"

પ્રશ્ન 4(બ અથવા) [4 ગુણ]

શેનોન કેનો કોડ યોગ્ય દાખલા સાથે સમજાવો

જવાબ:

શેનોન-ફેનો કોડિંગ એલ્ગોરિધમ:

ટોપ-ડાઉન અપ્રોય જે સિમ્બોલ્સને લગભગ સમાન સંભાવનાઓ ધરાવતા બે જૂથોમાં વિભાજિત કરે છે.

એલ્ગોરિદ્યમ સ્ટેપ્સ:

- 1. સિમ્બોલ્સને ઘટતા સંભાવના ક્રમમાં ગોઠવો
- 2. લગભગ સમાન કુલ સંભાવના સાથે બે જૂથોમાં વિભાજિત કરો

- 3. પહેલા જૂથને '0', બીજા જૂથને '1' આપો
- 4. દરેક સબગુપ માટે પુનરાવર્તન કરો

ઉદાહરણ:

સિમ્બોલ	સંભાવના	શેનોન-ફેનો કોડ
А	0.4	00
В	0.3	01
С	0.2	10
D	0.1	11

કન્સ્ટ્રક્શન ટ્રી:

કોડ એસાઇનમેન્ટ:

• જૂથ 1 (A,B): કોડ '0' થી શરૂ થાય છે

• જૂથ 2 (C,D): કોડ '1' થી શરૂ થાય છે

• A: 00, B: 01, C: 10, D: 11

હફમેન સાથે સરખામણી:

• શેનોન-ફેનો: ટોપ-ડાઉન અપ્રોચ

• હફમેન: બોટમ-અપ અપ્રોચ

• હફમેન: હંમેશા ઓપ્ટિમલ

• શેનોન-ફેનો: ઓપ્ટિમલ ન પણ હોય

એવરેજ કોડ લેન્થ:

L = 0.4×2 + 0.3×2 + 0.2×2 + 0.1×2 = 2.0 બિટ્સ/સિમ્બોલ

યાદગાર વાક્ય: "શેનોન-ફેનો - જૂથો વિભાજિત કરો, ટોપ-ડાઉન કોડ આપો"

પ્રશ્ન 4(ક અથવા) [7 ગુણ]

ઓડિયો સિગ્નલના વિવિદ્ય પ્રમાણભૂત ફોર્મેટ્સ સમજાવો.

જવાબ:

ઓડિયો સિગ્નલ ફોર્મેટ્સ:

ફોર્મેટ	પૂરું નામ	કોમ્પ્રેશન	ગુણવત્તા	ફાઇલ સાઇઝ
WAV	Waveform Audio File	અનકોમ્પ્રેસ્ડ	સૌથી ઊંચી	સૌથી મોટી
МР3	MPEG Layer 3	લોસી	સારી	નાની
AAC	Advanced Audio Coding	લોસી	MP3 કરતાં બહેતર	નાની
FLAC	Free Lossless Audio Codec	લોસલેસ	મૂળ	મધ્યમ
OGG	Ogg Vorbis	લોસી	સારી	नानी

ઓડિયો પેરામીટર્સ:

સેમ્પલિંગ સ્ટાન્ડર્ડ્સ:

સ્ટાન્ડર્ડ	સેમ્પલિંગ રેટ	બિટ ડેપ્થ	ઉપયોગ
CD ગુણવત્તા	44.1 kHz	16-બિટ	કન્ઝ્યુમર ઓડિયો
સ્ટુડિયો ગુણવત્તા	48 kHz	24-બિટ	પ્રોફ્રેશનલ રેકોર્ડિંગ
હાઇ રેઝોલ્યુશન	96 kHz	24-બિટ	ઓડિયોફાઇલ
ટેલિફોન	8 kHz	8-બિટ	વૉઇસ કોમ્યુનિકેશન

કોમ્પ્રેશનના પ્રકારો:

• **લોસલેસ**: મૂળ ગુણવત્તા સાચવાય છે (FLAC, ALAC)

• **લોસી**: નાની સાઇઝ માટે કંઈક ગુણવત્તા ગુમાવાય છે (MP3, AAC)

• અનકોમ્પ્રેસ્ડ: કોઈ કોમ્પ્રેશન નથી (WAV, AIFF)

ઉપયોગો:

• **બ્રોડકાસ્ટિંગ**: ડિજિટલ રેડિયો માટે AAC

• સ્ટ્રીમિંગ: ઇન્ટરનેટ માટે MP3, AAC

• પ્રોફેશનલ: સ્ટુડિયો માટે WAV, FLAC

• **મોબાઇલ**: સ્માર્ટફોન માટે AAC

ફાઇલ સાઇઝ સરખામણી (3-મિનિટ ગીત):

• WAV: 30 MB

• FLAC: 20 MB

• MP3: 3 MB

• **AAC**: 2.5 MB

ગુણવત્તા વિ સાઇઝ ટ્રેડ-ઓફ:

• **સૌથી ઊંચી ગુણવત્તા**: WAV (અનકોમ્પ્રેસ્ડ)

• શ્રેષ્ઠ સંતુલન: AAC (લોસી કોમ્પ્રેસ્ડ)

• **સૌથી નાની સાઇઝ**: લો બિટરેટ MP3

• **લોસલેસ કોમ્પ્રેસ્ક**: FLAC

યાદગાર વાક્ય: "WAV MP3 AAC FLAC - વેવ, લેયર3, એડવાન્સ્ક, ફ્રી લોસલેસ"

પ્રશ્ન 5(અ) [3 ગુણ]

E1 કેરિયર મલ્ટિપ્લેક્સિંગ હાયરાર્કી સમજાવો.

જવાબ:

E1 કેરિયર સિસ્ટમ:

વૉઇસ ચેનલ્સને મલ્ટિપ્લેક્સ કરવા માટેનું યુરોપીયન ડિજિટલ ટ્રાન્સમિશન સ્ટાન્ડર્ડ.

E1 હાયરાર્કી:

લેવલ	નામ	ડર્ક ડાંગ	વૉઇસ ચેનલ્સ	મલ્ટિપ્લેક્સિંગ
EO	બેઝિક ચેનલ	64 kbps	1	-
E1	પ્રાઇમરી રેટ	2.048 Mbps	30	30 × E0 + 2
E2	સેકન્ડરી રેટ	8.448 Mbps	120	4 × E1
E3	ટર્શિયરી રેટ	34.368 Mbps	480	4 × E2
E4	ક્વેટર્નરી રેટ	139.264 Mbps	1920	4 × E3

E1 ફ્રેમ સ્ટ્રક્ચર:

```
Frame (125 µs, 256 bits)

|TS0|TS1|TS2|...|TS15|TS16|TS17|...|TS31|

32 time slots × 8 bits = 256 bits

TS0: Synchronization + Alarm

TS16: Signaling (voice channels)

TS1-15, 17-31: 30 voice channels
```

મલ્ટિપ્લેક્સિંગ પ્રક્રિયા:

• **લેવલ 1**: 30 વૉઇસ ચેનલ્સ + 2 કન્ટ્રોલ → E1

• **લેવલ 2**: 4 E1 સ્ટ્રીમ્સ → E2

• લેવલ 3: 4 E2 સ્ટ્રીમ્સ → E3

• **લેવલ 4**: 4 E3 સ્ટ્રીમ્સ → E4

ઉપયોગો:

• ISDN: પ્રાઇમરી રેટ ઇન્ટરફેસ

• સેલ્યુલર: બેઝ સ્ટેશન કનેક્ટિવિટી

• **એન્ટરપ્રાઇઝ**: પ્રાઇવેટ બ્રાન્ય એક્સચેન્જ (PBX)

• **ઇન્ટરનેટ**: ડિજિટલ સબ્સ્ક્રાઇબર લાઇન (DSL)

યાદગાર વાક્ય: "E1 - 30 અવાજો, 2.048 Mbps, યુરોપીયન સ્ટાન્ડર્ડ"

પ્રશ્ન 5(બ) [4 ગુણ]

TDMA સાથે FDMA ની સરખામણી કરો.

જવાબ:

FDMA વિ TDMA સરખામણી:

પેરામીટર	FDMA	TDMA
પૂરું નામ	Frequency Division Multiple Access	Time Division Multiple Access
ડોમેન	ફ્રીક્વેન્સી	સમય
ચેનલ એલોકેશન	દરેક યુઝરને અલગ ફ્રીક્વેન્સી મળે છે	દરેક યુઝરને અલગ ટાઇમ સ્લોટ મળે છે
યુઝર દીઠ બેન્ડવિડ્થ	સતત સાંકડી બેન્ડવિડ્થ	ટૂંકા સમય માટે સંપૂર્ણ બેન્ડવિડ્થ
ગાર્ડ બેન્ડ્સ	ફ્રીક્વેન્સીઝ વચ્ચે જરૂરી	જરૂરી નથી
સિંક્રોનાઇઝેશન	મહત્વપૂર્ણ નથી	મહત્વપૂર્ણ છે
લવચીકતા	ઓછી લવચીક	વધુ લવચીક
હેન્ડઓફ	સરળ	જટિલ
નીયર-ફાર ઇફેક્ટ	ઓછી સમસ્યાજનક	વધુ સમસ્યાજનક

FDMA સિસ્ટમ:

TDMA સિસ્ટમ:

ફાયદાઓ/નુકસાનો:

FDMA ફાયદાઓ	FDMA નુકસાનો
સરળ અમલીકરણ	ગાર્ડ બેન્ડ્સને કારણે બેન્ડવિડ્થનો વેસ્ટેજ
સિંક્રોનાઇઝેશનની જરૂર નથી	ઓછી લવચીક
સતત ટ્રાન્સમિશન	વિવિદ્ય રેટ્સ સામાવવાનું મુશ્કેલ

TDMA ફાયદાઓ	TDMA નુકસાનો
બેન્ડવિડ્થનો કુશળ ઉપયોગ	જટિલ સિંક્રોનાઇઝેશન
લવચીક ડેટા રેટ્સ	બેટરી લાઇફ સમસ્યાઓ (બર્સ્ટ ટ્રાન્સમિશન)
યુઝર્સ ઉમેરવા/કાઢવા સરળ	નીયર-ફાર પ્રોબ્લેમ

ઉપયોગો:

• FDMA: AMPS (1G), સેટેલાઇટ કોમ્યુનિકેશન

• TDMA: GSM (2G), સેટેલાઇટ કોમ્યુનિકેશન

યાદગાર વાક્ય: "FDMA ફ્રીક્વેન્સી, TDMA ટાઇમ - મલ્ટિપલ ઍક્સેસ માટે અલગ ડોમેન્સ"

પ્રશ્ન 5(ક) [7 ગુણ]

CDMA ટેકનિકને વિગતવાર સમજાવો.

CDMA સિદ્ધાંત:

કોડ ડિવિઝન મલ્ટિપલ ઍક્સેસ મલ્ટિપલ યુઝર્સને યુનિક સ્પ્રેડિંગ કોડ્સનો ઉપયોગ કરીને સમાન ફ્રીક્વેન્સી અને સમય શેર કરવાની મંજૂરી આપે છે.

CDMA સિસ્ટમ આર્કિટેક્ચર:

સ્પ્રેડિંગ પ્રક્રિયા:

પેરામીટર	સ્પ્રેડિંગ પહેલાં	સ્પ્રેડિંગ પછી
ડેટા રેટ	Rb	Rb
ચિપ રેટ	-	Rc (= N × Rb)
બેન્કવિડ્થ	Rb	Rc
પ્રોસેસિંગ ગેઇન	1	N = Rc/Rb

CDMA ગુણઘર્મો:

Original Data: 1 0 1
PN Code: 101 010 101
XOR Result: 101 010 101

(Spread Signal)

At Receiver:

Received: 101 010 101 Same PN Code: 101 010 101 XOR Result: 1 0 1

(Original Data)

મુખ્ય લક્ષણો:

લક્ષણ	นญ์า	ફાયદો
સ્પ્રેડિંગ	PN કોડ સાથે ડેટા XOR	બેન્ડવિડ્થ વિસ્તરણ
પ્રોસેસિંગ ગેઇન	Rc/Rb રેશિયો	ઇન્ટરફેરન્સ રિજેક્શન
સોફ્ટ હેન્ડઓફ	એક સાથે બહુવિધ કનેક્શન્સ	બહેતર ગુણવત્તા
પાવર કન્ટ્રોલ	ડાયનામિક પાવર એડજસ્ટમેન્ટ	નીયર-ફાર સોલ્યુશન

CDMA ફાયદાઓ:

• **કેપેસિટી**: FDMA/TDMA કરતાં ઊંચી યુઝર કેપેસિટી

• સિક્યોરિટી: સ્પ્રેડિંગ કોડથી એન્ક્રિપ્ટેડ

• સોફ્ટ હેન્ડઓફ: હેન્ડઓફ દરમિયાન કોલ ડ્રોપિંગ નથી

• એન્ટી-જેમિંગ: સ્પ્રેડ સ્પેક્ટ્રમ ઇમ્યુનિટી

• ફ્રીક્વેન્સી પ્લાનિંગ નથી: સમાન ફ્રીક્વેન્સી રીયુઝ

CDMA નુકસાનો:

• નીચર-ફાર પ્રોબ્લેમ: પાવર કન્ટ્રોલ જરૂરી

• જરિલતા: FDMA/TDMA કરતાં વધુ જટિલ

• સેલ્ફ ઇન્ટરફેરન્સ: યુઝર્સ એકબીજા સાથે ઇન્ટરફેર કરે છે

• બ્રીધિંગ ઇકેક્ટ: લોડિંગ સાથે કવરેજ બદલાય છે

ગાણિતિક વિશ્લેષણ:

• પ્રોસેસિંગ ગેઇન: G = Rc/Rb = 10log₁₀(Rc/Rb) dB

• รันโละ21: M ≈ 1 + G/(Eb/I₀)

• BER: સિક્રિય યુઝર્સની સંખ્યા પર આધારિત

પાવર કન્ટ્રોલ:

• ઓપન લૂપ: પ્રાપ્ત સિગ્નલ સ્ટ્રેન્થના આધારે

• ક્લોઝ્ડ લૂપ: બેઝ સ્ટેશન મોબાઇલને કમાન્ડ કરે છે

• આવશ્યકતા: ±1 dB યોકસાઈ જરૂરી

ઉપયોગો:

• IS-95 (cdmaOne): 2G CDMA સ્ટાન્ડર્ડ

• WCDMA: 3G UMTS સિસ્ટમ

• **GPS**: સેટેલાઇટ નેવિગેશન

• **WiFi**: સ્પ્રેડ સ્પેક્ટ્રમ વિકલ્પ

PN કોડ ગુણધર્મો:

• ઓટોકોરિલેશન: સિંક્રોનાઇઝ્ડ માટે ઊંચું, અનસિંક્રોનાઇઝ્ડ માટે નીચું

• ક્રોસ-કોરિલેશન: અલગ કોડ્સ વચ્ચે નીચું

• બેલેન્સ: 1s અને 0s ની સમાન સંખ્યા

• ૨ન લેન્થ: સતત બિટ્સનું વિતરણ

યાદગાર વાક્ય: "CDMA - કોડ ડિવિઝન, સમાન ફ્રીક્વેન્સી/સમય, મલ્ટિપલ ઍક્સેસ માટે યુનિક કોડ્સ"

પ્રશ્ન 5(અ અથવા) [3 ગુણ]

ટાઇમ ડિવિઝન મલ્ટિપ્લેક્સિંગ ટેકનિક (TDM) નો બ્લોક ડાયાગ્રામ દોરો.

જવાબ:

TDM બ્લોક ડાયાગ્રામ:

TDM ફ્રેમ સ્ટ્રક્ચર:

```
|<---- Frame Period T ---->|
|Ch1|Ch2|Ch3|...|ChN|Sync|
TS1 TS2 TS3         TSN

Each time slot = T/N
Frame Rate = 1/T
```

ઘટકો:

• મલ્ટિપ્લેક્સર: ઇનપુટ્સને અનુક્રમે સેમ્પલ કરે છે

• કલોક/સિંકોનાઇઝેશન: સ્વિચિંગ ટાઇમિંગ કન્ટ્રોલ કરે છે

• યેનલ: ટ્રાન્સમિશન માધ્યમ

• ડિમલ્ટિપ્લેક્સર: મલ્ટિપ્લેક્સ્ડ સિગ્નલને અલગ કરે છે

કામગીરી:

• દરેક ઇનપુટ ચેનલને ડેડિકેટેડ ટાઇમ સ્લોટ મળે છે

• સેમ્પલિંગ રેટ નાયક્વિસ્ટ માપદંડ સંતોષવો જોઈએ

• રીસીવર પર ફ્રેમ સિંકોનાઇઝેશન જરૂરી

યાદગાર વાક્ય: "TDM - ટાઇમ ડિવિઝન, સિકવેન્શિયલ સેમ્પલિંગ, મલ્ટિપ્લેક્સિંગ"

પ્રશ્ન 5(બ અથવા) [4 ગુણ]

મલ્ટિપ્લેક્સિંગ ટેકનિકોના વર્ગીકરણ પર ટૂંકી નોંધ લખો.

જવાબ:

મલ્ટિપ્લેક્સિંગ ટેકનિકોનું વર્ગીકરણ:

વિગતવાર વર્ગીકરણ:

явіг	પદ્ધતિ	ડોમેન	ઉપયોગ
FDM	ફ્રીક્વેન્સી વિભાજન	ફ્રીક્વેન્સી	રેડિયો, TV બ્રોડકાસ્ટિંગ
TDM	ટાઇમ સ્લોટ એલોકેશન	સમય	ડિજિટલ ટેલિફોની
CDM	કોડ વિભાજન	કોડ	CDMA સેલ્યુલર
WDM	વેવલેન્થ વિભાજન	વેવલેન્થ	ઓપ્ટિકલ ફાઇબર
SDM	સ્પેસ વિભાજન	સ્પેસ	MIMO સિસ્ટમ્સ

સિંકોનસ વિ એસિંકોનસ TDM:

પેરામીટર	સિંકોનસ TDM	એસિંકોનસ TDM
ટાઇમ સ્લોટ્સ	ફિક્સ્ડ એલોકેશન	ડાયનામિક એલોકેશન
એફિશિયન્સી	નીચી	ઊંચી
જટિલતા	સરળ	જટિલ
બેન્કવિડ્થ વેસ્ટ	થઈ શકે છે	મિનિમલ

પસંદગીના માપદંડો:

• **સિગ્નલનો પ્રકાર**: એનાલોંગ \rightarrow FDM, ડિજિટલ \rightarrow TDM

• **ผ่-รใจรุข**: หข่าโชิส ightarrow TDM, นุงรightarrow FDM

• **સિંકોનાઇઝેશન**: મહત્વપૂર્ણ → સિંકોનસ, લવચીક → એસિંકોનસ

• ઉપયોગ: અવાજ \rightarrow TDM, Sેટા \rightarrow સ્ટેટિસ્ટિકલ TDM

આધુનિક ટેકનિકો:

• **OFDM**: ઓર્થોગોનલ ક્રીક્વેન્સી ડિવિઝન મલ્ટિપ્લેક્સિંગ

• MIMO: મલ્ટિપલ ઇનપુટ મલ્ટિપલ આઉટપુટ

• કેરિયર એગ્રીગેશન: મલ્ટિપલ ફ્રીક્વેન્સી બેન્ડ્સ

યાદગાર વાક્ય: "FDM TDM CDM WDM SDM - ફ્રીકવેન્સી ટાઇમ ક્રોડ વેવ સ્પેસ ડિવિઝન મલ્ટિપ્લેક્સિંગ"

પ્રશ્ન 5(ક અથવા) [7 ગુણ]

કોડ ડિવિઝન મલ્ટિપ્લેક્સિંગ સર્કિટમાં મુશ્કેલી નિવારણ માટેની પ્રક્રિયાનું વર્ણન કરો

જવાબ:

CDMA ટ્રબલશૂટિંગ પ્રક્રિયા:

1. સિસ્ટમ ઓવરવ્યુ ચેક:

2. સ્ટેપ-બાય-સ્ટેપ ટ્રબલશૂટિંગ:

સ્ટેપ	પેરામીટર	ટેસ્ટ મેથડ	અપેક્ષિત પરિણામ
1	ઇનપુટ ડેટા	ડેટા સ્ટ્રીમ વેરિફાઇ કરો	સ્વચ્છ ડિજિટલ સિગ્નલ
2	PN sìs	કોડ જનરેશન ચેક કરો	યોગ્ય સિકવેન્સ
3	સ્પ્રેડિંગ	XOR આઉટપુટ મોનિટર કરો	સ્પ્રેડ સ્પેક્ટ્રમ સિગ્નલ
4	ટ્રાન્સમિશન**	પાવર લેવલ માપો	પર્યાપ્ત સિગ્નલ સ્ટ્રેન્થ
5	રિસેપ્શન	પ્રાપ્ત સિગ્નલ ચેક કરો	નોઇઝ ફ્લોર ઉપર
6	કોરિલેશન	કોરિલેટર આઉટપુટ વેરિફાઇ કરો	યોગ્ય ટાઇમિંગ પર પીક
7	ડિસ્પ્રેડિંગ	લોકલ PN સાથે XOR ચેક કરો	ડિસ્પ્રેડ સિગ્નલ
8	ડેટા રિકવરી**	આઉટપુટ ડેટા વેરિફાઇ કરો	મૂળ ડેટા પુનઃપ્રાપ્ત

3. સામાન્ય સમસ્યાઓ અને ઉકેલો:

સમસ્યા	લક્ષણો	સંભવિત કારણો	ઉકેલો
સિગ્નલ નથી	ઝીરો આઉટપુટ	પાવર સપ્લાય નિષ્ફળતા	પાવર કનેક્શન્સ ચેક કરો
ઊંચો BER	ઘણી બિટ એરર્સ	નબળો કોરિલેશન	ટાઇમિંગ/પાવર એડજસ્ટ કરો
ઇન્ટરફેરન્સ	ડિગ્રેડેડ પર્ફોર્મન્સ	અન્ય યુઝર્સ/નોઇઝ	પાવર કન્ટ્રોલ એડજસ્ટમેન્ટ
સિંક લોસ	અન્તરવાળો સિગ્નલ	PN કોડ મિસમેય	કોડ સિક્વેન્સિસ વેરિફાઇ કરો

4. જરૂરી ટેસ્ટ ઇક્વિપમેન્ટ:

ઇક્વિપમેન્ટ	હેતુ	માપ
સ્પેક્ટ્રમ એનાલાઇઝર	સિગ્નલ એનાલિસિસ	પાવર સ્પેક્ટ્રલ ડેન્સિટી
BER 2888	એરર મેઝરમેન્ટ	બિટ એરર રેટ
પાવર મીટર	પાવર મેઝરમેન્ટ	ટ્રાન્સમિટેડ/રીસીવ્ક પાવર
ઓસિલોસ્કોપ	વેવફોર્મ એનાલિસિસ	ટાઇમ ડોમેન સિગ્નલ્સ
વેક્ટર એનાલાઇઝર	મોડ્યુલેશન ક્વાલિટી	EVM, કોન્સ્ટેલેશન

5. મેઝરમેન્ટ પ્રક્રિયાઓ:

પ્રોસેસિંગ ગેઇન વેરિફિકેશન:

```
Gp = 10 log10(Rc/Rb) dB
જ્યાં: Rc = ચિપ રેટ, Rb = બિટ રેટ
```

BER વિ Eb/N0 મેઝરમેન્ટ:

```
BER = Q(\sqrt{(2Eb/N0)})
(alau ulas èlaes us hiu)
```

નીયર-ફાર ઇફેક્ટ ચેક:

- વિવિદ્ય યુઝર્સના પાવર લેવલ્સ માપો
- પાવર કન્ટ્રોલ ઓપરેશન વેરિફાઇ કરો
- ડાયનામિક રેન્જ આવશ્યકતાઓ ચેક કરો

6. પર્ફોર્મન્સ ઓપ્ટિમાઇઝેશન:

પેરામીટર	ઓપ્ટિમાઇઝેશન મેથડ	ટાર્ગેટ વેલ્યુ
પાવર કન્ટ્રોલ	લૂપ ગેઇન એડજસ્ટ કરો	±1 dB ચોકસાઈ
કોડ સિલેક્શન	ઓર્થોગોનલ કોડ્સ પસંદ કરો	નીયો ક્રોસ-કોરિલેશન
ટાઇમિંગ	PN જનરેટર્સ સિંક્રોનાઇઝ કરો	<0.5 ચિપ ચોકસાઈ
ફિલ્ટરિંગ	સિગ્નલ્સ બેન્ડલિમિટ કરો	ISI મિનિમાઇઝ કરો

7. ડોક્યુમેન્ટેશન:

- બધા મેઝરમેન્ટ્સ રેકોર્ડ કરો
- સમસ્યાના લક્ષણો ડોક્યુમેન્ટ કરો
- લાગુ કરેલા ઉકેલો નોંધો
- ટ્રબલશૂટિંગ લોગ બનાવો

સિસ્ટેમેટિક એપ્રોય:

1. **આઇસોલેટ**: ખામીયુક્ત સેક્શન ઓળખો

2. **માપો**: યોગ્ય ટેસ્ટ ઇક્વિપમેન્ટનો ઉપયોગ કરો

3. **એનાલાઇઝ**: સ્પેસિફિકેશન્સ સાથે સરખાવો

4. સુધારો: યોગ્ય ઉકેલ લાગુ કરો

5. **વેરિફાઇ**: સમસ્યા ઉકેલાઈ હોવાની પુષ્ટિ કરો

સેફ્ટી કન્સિડરેશન્સ:

• પાવર લેવલ્સ સુરક્ષિત મર્યાદામાં

- યોગ્ય ગ્રાઉન્ડિંગ પ્રક્રિયાઓ
- RF એક્સપોઝર ગાઇડલાઇન્સ
- ઇક્વિપમેન્ટ કેલિબ્રેશન સ્ટેટસ

યાદગાર વાક્ય: "CDMA ટ્રબલશૂટ - ડેટા, PN કોડ, સ્પ્રેડિંગ, ચેનલ, કોરિલેશન, રિકવરી ચેક કરો"