Reinforcement Learning for Improving the Performance of Recovery Algorithm in Noisy Group Testing

Seyedeh Nahid Esmati, Arghamitra Talukder, and Ya Mei Department of Electrical and Computer Engineering

Texas A&M University

Professor: Dr. Dileep Kalathil

May 5, 2021

Tasks Done by Each Team Member

Seyedeh Nahid Esmati:

- Implementing advantage actor-critic policy gradient with four different notions of states, and four different notions of rewards as stated in the slides.
- For the baseline work on GT and LDPC: Implementing the BP recovery algorithm (without RL) with flooding and maximum-residual node scheduling policies for both GT and LDPC, in order to reproduce the benchmarks.
- For the baseline paper on LDPC: Implementing Q-learning with direct update rule (no function approximation)+clustering+quantization.

Arghamitra Talkuder:

- Implementing DQN with multiple agents (NNs) to learn multiple action-value functions in parallel (one agent for each BP iteration) for the state and reward definitions stated in the slides.
- Monte-Carlo simulation to reproduce the benchmark results for the BP algorithm with maximal-residual node scheduling policy for GT.

Ya Mei:

- Implementing DQN with a single agent (NN) to learn a universal action-value function (one agent for all BP iterations) with two different notions of states, and two different notions of rewards as stated in the slides.
- Monte-Carlo simulation to reproduce the benchmark results for the BP algorithm with flooding for GT.

Group Testing

Design testing algorithms by using (binary) tests to identify all defective items among a much larger group of items.

How to minimize # tests for an unknown config. of def. items?

Applications of Group Testing

- Public health
- Cybersecurity
- Bloom filters
- Data science
- Information theory

Problem Setup

- Population of n items (labeled $1, \ldots, n$)
- $k \ll n$ are defective (i.e., probability of defective $= q = \frac{k}{n}$)
- $x = [x_1, \dots, x_n]$: binary vector representing status of the items
- $H \in \{0,1\}^{m \times n}$: binary matrix representing the testing matrix

4

Noiseless Setting vs. Noisy Setting

Noiseless:

Noisy:

BSC ($\epsilon_0 = \epsilon_1 = \delta$); Z-channel ($\epsilon_0 = 0$); reverse Z-channel ($\epsilon_1 = 0$).

Exact Recovery vs. Partial Recovery

```
Exact Recovery: (no false negatives/positives)
  • Requirement: \hat{x} = x:
  • Success probability: Pr(\hat{x} = x).
Partial Recovery: (\leq d_{\text{max}} false neg.'s and \leq d_{\text{max}} false pos.'s)
  • Requirement: d(x,\hat{x}) \leq d_{max}, where
         d(x, \hat{x}) = \max\{|\sup(x) \setminus \sup(\hat{x})|, |\sup(\hat{x}) \setminus \sup(x)|\}
     and
           supp(x) = index set of all nonzero components of x.
  • Success probability: Pr(d(x,\hat{x}) < d_{max}).
```

Recovery Algorithm: Belief Propagation (BP)

Check-to-variable messages: $m_{c \to v}^{(l)}(u_v)$

If
$$z_c = 0$$
:

$$\propto \begin{cases} \delta & u_{v} = 1 \\ \delta + (1 - 2\delta) \prod_{v' \in \mathcal{N}(c) \setminus \{v\}} m_{v' \to c}^{(l-1)}(0) & u_{v} = 0 \end{cases}$$

If
$$z_c = 1$$
:

$$\propto \begin{cases} 1-\delta & u_v = 1\\ 1-\delta - (1-2\delta) \prod_{v' \in \mathcal{N}(c) \setminus \{v\}} m_{v' \to c}^{(l-1)}(0) & u_v = 0 \end{cases}$$

Variable-to-check messages: $m_{v \to c}^{(1)}(u_v)$

$$\propto \begin{cases} q \prod_{c' \in \mathcal{N}(v) \setminus \{c\}} m_{c' \to v}^{(l)}(u_v) & u_v = 1\\ (1-q) \prod_{c' \in \mathcal{N}(v) \setminus \{c\}} m_{c' \to v}^{(l)}(u_v) & u_v = 0 \end{cases}$$

Recovery Algorithm: Belief Propagation (BP)

Log Likelihood Ratio (LLR): $L_v^{(I)}$

$$= \begin{cases} \ln \frac{q}{1-q} & I = 0\\ \ln \frac{q}{1-q} + \sum_{c \in \mathcal{N}(v)} \ln \frac{m_{c \to v}^{(I)}(1)}{m_{c \to v}^{(I)}(0)} & I \ge 1 \end{cases}$$

Decoding Rule:

- If $L_v^{(I)} > 0$: $\hat{x}_v^{(I)} = 1$
- If $L_v^{(I)} = 0$: $\hat{x}_v^{(I)} = 1$ or 0 w.p. $\frac{1}{2}$
- If $L_v^{(I)} < 0$: $\hat{x}_v^{(I)} = 0$

Flooding vs. Node Scheduling

Flooding: In each iteration, all CNs send messages to their neighboring VNs, and all VNs send messages to their neighboring CNs.

Node Scheduling: In each iteration, a single CN sends messages to its neighboring VNs, and these VNs send messages to their neighboring CNs.

Goal: Given testing matrix H, # defectives k, and crossover prob. δ , find an optimal node scheduling policy that maximizes the success probability.

Apply RL to Learn Optimal Node Scheduling Policy

- Scheduling a single check node at each iteration of the BP algo. can be viewed as a Multi-Armed Bandits (MAB) process.
- State:
 - (1) The sum of the LLRs of the VNs connected to each CN,

$$\left[\textstyle\sum_{\nu\in\mathcal{N}(1)}L_{\nu}^{(1)},\textstyle\sum_{\nu\in\mathcal{N}(2)}L_{\nu}^{(1)},\ldots,\textstyle\sum_{\nu\in\mathcal{N}(m)}L_{\nu}^{(1)}\right],$$

where

$$L_{\nu}^{(I)} = \begin{cases} \ln \frac{q}{1-q} & I = 0 \\ \ln \frac{q}{1-q} + \sum_{c \in \mathcal{N}(\nu)} \ln \frac{m_{c \to \nu}^{(I)}(1)}{m_{c \to \nu}^{(I)}(0)} & I \geq 1 \end{cases}.$$

(2) The LLRs of the VNs connected to each CN,

$$\left[\{\boldsymbol{L}_{v}^{(I)}\}_{v\in\mathcal{N}(1)}, \{\boldsymbol{L}_{v}^{(I)}\}_{v\in\mathcal{N}(2)}, \ldots, \{\boldsymbol{L}_{v}^{(I)}\}_{v\in\mathcal{N}(m)}\right].$$

- (3) A quantized version of (1) or (2);
- (4) (1), (2), or (3) + the observed noisy test results $\hat{y}_1, \dots, \hat{y}_m$.

Apply RL to Learn Optimal Node Scheduling Policy

Reward:

 Max. change in LLR of a variable node incident to the currently-scheduled check node c*,

$$r_{c^*} = \max_{v \in \mathcal{N}(c^*)} |L_{c^* \to v}^{\text{new}} - L_{c^* \to v}^{\text{old}}|,$$

where

$$L_{c \to v}^{\mathrm{new}} = \ln \frac{m_{c \to v}^{\mathrm{new}}(1)}{m_{c \to v}^{\mathrm{new}}(0)}, \quad L_{c \to v}^{\mathrm{old}} = \ln \frac{m_{c \to v}^{\mathrm{old}}(1)}{m_{c \to v}^{\mathrm{old}}(0)}.$$

(2) Ratio of the max. change in LLR of a variable node incident to the currently-scheduled check node c^* to the max. change in LLR of any variable node when scheduling any check node c,

$$R = \frac{r_{c^*}}{\max_{c \in [m]} r_c}.$$

(3) Minus the Hamming distance between the original signal $x = [x_1, x_2, ..., x_n]$ and the currently-estimated signal $\hat{x}^{(l)}$,

$$\hat{x}^{(l)} = \left[\mathbb{1}_{(L_{1}^{(l)}>0)}, \mathbb{1}_{(L_{2}^{(l)}>0)}, \dots, \mathbb{1}_{(L_{n}^{(l)}>0)}\right].$$

(4) A linear/non-linear function of (1), (2), or (3) to further encourage higher rewards and/or discourage lower rewards.

Case Study

Problem parameters:

- # items n = 100
- # tests m = 20
- # defective items k = 2
- Testing matrix *H*: A randomly generated 20×100 Bernoulli matrix with probability $1 = \ln(2)/2 \approx 0.35$
- Crossover probability of noisy channel $\epsilon = 0.05$
- # BP iterations: flooding = 10, node scheduling = 100

Benchmarks:

	Flooding	Maximum-Residual Node Scheduling
Success Probability (%) (Unknown k)	32.99	51.22
Success Probability (%) (Known k)	50.00	61.34

Policy Gradient (Advantage Actor-Critic)

State: Sum of the LLRs of the VNs connected to each CN,

$$\left[\sum_{\nu \in \mathcal{N}(1)} L_{\nu}^{(I)}, \sum_{\nu \in \mathcal{N}(2)} L_{\nu}^{(I)}, \ldots, \sum_{\nu \in \mathcal{N}(m)} L_{\nu}^{(I)}\right]$$

where

$$L_{v}^{(I)} = \begin{cases} \ln \frac{q}{1-q} & I = 0\\ \ln \frac{q}{1-q} + \sum_{c \in \mathcal{N}(v)} \ln \frac{m_{c \to v}^{(I)}(1)}{m_{c \to v}^{(I)}(0)} & I \geq 1 \end{cases}.$$

Reward: A non-linear function of the ratio R,

$$10 \tanh(R - 0.5)$$

where

$$\begin{split} R &= \frac{\max_{v \in \mathcal{N}(c^*)} \lvert L_{c^* \to v}^{\mathrm{new}} - L_{c^* \to v}^{\mathrm{old}} \rvert}{\max_{c \in [m]} \max_{v \in \mathcal{N}(c)} \lvert L_{c \to v}^{\mathrm{new}} - L_{c \to v}^{\mathrm{old}} \rvert}, \\ L_{c \to v}^{\mathrm{new}} &= \ln \frac{m_{c \to v}^{\mathrm{new}}(1)}{m_{c \to v}^{\mathrm{new}}(0)}, \quad L_{c \to v}^{\mathrm{old}} = \ln \frac{m_{c \to v}^{\mathrm{old}}(1)}{m_{c \to v}^{\mathrm{old}}(0)}. \end{split}$$

Results: Policy Gradient (Advantage Actor-Critic)

Learning parameters:

- Learning rate $\alpha = 0.001$
- Discount factor $\gamma = 0.99$

Actor and critic NNs:

- # hidden layers: 2
- # nodes per layer: 60

	Flooding Max-Res	Max-Res	RL-based Node Scheduling					
		NS	500	1000	1500	2000	2500	3000
			eps	eps	eps	eps	eps	eps
Success Probability (%) (Unknown k)	32.99	51.22	35.4	45.5	47.1	48.3	48.9	49.2
Success Probability (%) (Known k)	50.00	61.34	47.2	56.4	57.6	58.1	58.5	59.0

DQN with Multiple NNs (One NN for Each BP Iterations)

Following the sequential steps as code: Declaring agent.

Goal: To train I_{max} NNs, each as a nonlinear approx. of the action-value function $Q^{(I)}(\text{state}, \text{action})$ for the BP iteration $1 \leq I \leq I_{max}$. Individual agent for each iteration

```
For state (1) and reward (1):
```

- # hidden layers: 2
- # nodes per layer: {32,64}
- Batch size: 64
- Replay buffer size: 1e5
- Learning rate α : 1e 4
- Discount factor γ : 0.99
- Decay rate (ϵ -greedy): 0.999
- Iteration per episode: 101

DQN with Multiple NNs

(One NN for Each BP Iterations)

First observation

State: The sum of the LLRs of the VNs connected to each CN,

$$\left[\textstyle\sum_{\nu\in\mathcal{N}(1)}L_{\nu}^{(I)},\textstyle\sum_{\nu\in\mathcal{N}(2)}L_{\nu}^{(I)},\ldots,\textstyle\sum_{\nu\in\mathcal{N}(m)}L_{\nu}^{(I)}\right],$$

where

$$L_{\nu}^{(I)} = \begin{cases} \ln \frac{q}{1-q} & I = 0\\ \ln \frac{q}{1-q} + \sum_{c \in \mathcal{N}(\nu)} \ln \frac{m_{c \to \nu}^{(I)}(1)}{m_{c \to \nu}^{(I)}(0)} & I \geq 1 \end{cases}.$$

DQN with Multiple NNs (One NN for Each BP Iterations)

First iteration: Choose action

ϵ-greedy: For first iteration selecting a random node. Action space

is same as state space

First iteration: New observation based on chosen action

DQN with Multiple NNs

(One NN for Each BP Iterations)

First iteration: Reward

Reward: The max. change in LLR of a variable node incident to the currently-scheduled check node c^* ,

$$\max_{v \in \mathcal{N}(c^*)} |L_{c^* \to v}^{\text{new}} - L_{c^* \to v}^{\text{old}}|,$$

where

$$L_{c \to v}^{\mathrm{new}} = \ln \frac{m_{c \to v}^{\mathrm{new}}(1)}{m_{c \to v}^{\mathrm{new}}(0)}, \quad L_{c \to v}^{\mathrm{old}} = \ln \frac{m_{c \to v}^{\mathrm{old}}(1)}{m_{c \to v}^{\mathrm{old}}(0)}.$$

DQN with Multiple NNs (One NN for Each BP Iterations)

First iteration: After reward

- Store in replay buffer
- Learn: loss, backpropagation, step

Table: Success probability for different episodes

Success Probability	500	1500	2500	3000
% for unknown k	39.2	41.3	46.9	48.7
% for known k	50.2	53.5	58.3	60.3

- We see a gradual increase in success probability as the number of episodes increases.
- Reward remains almost same, irrespective of episodes (around 55);
 and a gradual learning can be noticed from episode 0-500.

DQN with a Single NN (One NN for All BP Iterations)

State:

(1) The LLRs of the VNs connected to each CN,

$$\left[\{L_{v}^{(I)}\}_{v\in\mathcal{N}(1)},\{L_{v}^{(I)}\}_{v\in\mathcal{N}(2)},\ldots,\{L_{v}^{(I)}\}_{v\in\mathcal{N}(m)}\right].$$

(2) The sum of the LLRs of the VNs connected to each CN,

$$\left[\textstyle\sum_{\nu\in\mathcal{N}(1)}L_{\nu}^{(\mathit{I})},\textstyle\sum_{\nu\in\mathcal{N}(2)}L_{\nu}^{(\mathit{I})},\ldots,\textstyle\sum_{\nu\in\mathcal{N}(m)}L_{\nu}^{(\mathit{I})}\right].$$

Reward:

(1) Minus the Hamming distance between the original signal $x = [x_1, x_2, \dots, x_n]$ and the currently-estimated signal $\hat{x}^{(l)}$,

$$\hat{x}^{(l)} = \left[\mathbb{1}_{(L_1^{(l)} > 0)}, \mathbb{1}_{(L_2^{(l)} > 0)}, \dots, \mathbb{1}_{(L_n^{(l)} > 0)}\right].$$

(2) The max. change in LLR of a variable node incident to the currently-scheduled check node *c**,

$$\max_{v \in \mathcal{N}(c^*)} |L_{c^* \to v}^{\text{new}} - L_{c^* \to v}^{\text{old}}|.$$

DQN with a Single NN (One NN for All BP Iterations)

Goal: To train a neural network (NN) as a nonlinear approx. of the action-value function Q(state, action).

For state (1) and reward (1):

- # hidden layers: {1, 2, 3, 4, 5}
- # nodes per layer (3 layers): {1000, 500, 100}
- Batch size (exp. replay): {4,16,32}
- Update freq. (target net): {4,8,16}
- Learning rate α : {0.01, 0.005, 0.001, 0.0001}
- Discount factor γ : {0.9, 0.95, 0.99}
- Decay rate (ε-greedy): {0.99, 0.999, 0.9999, 0.99999}

Training: Not successful! (Success probability = 0%)

Summary

Goal: To find a node scheduling (NS) policy that maximizes the success probability of the BP recovery algo. for noisy group testing.

Our RL-based NS policies (actor-critic and DQN + multiple NNs):

- outperform the flooding approach in terms of success probability.
- perform closely to the maximum-residual NS policy in terms of success probability, and are less computationally complex.

Future Work

- Applying variance reducing methods e.g. Averaged-DQN, which is an extension to the DQN based on averaging previously learned Q-values estimates.
- Improving PG by applying a more directed exploration strategy that promotes exploration of under-appreciated rewards.
- Applying other policy gradient algorithms e.g., Natural Policy Gradient (NPG), Proximal Policy Optimization (PPO).
- Implementing DQN + multiple NNs with target network to improve the performance.
- Different variations of the problem:
 - BSC with different cross-over probabilities
 - Z-channel and reverse Z-channel
 - Partial recovery guarantee