Devops – Final Assessment

Section 1: Multiple-Choice Questions (MCQs)

1) What does WSL stand for in the context of Windows?
a. Windows Software Locator
b. Windows System Locator
c. Windows Subsystem for Linux
d. Windows Shell Language
Answer : (c) Windows Subsystem for Linux
2) What is the primary goal of continuous integration (CI) in DevOps?
a. Automating manual testing
b. Frequent integration of code changes
c. Managing cloud infrastructure
d. Monitoring server performance
Answer : (b) Frequent integration of code changes
3) In the Linux command line, what does the cd command do?
a. Copy files and directories
b. Change the working directory
c. Create a new directory
d. Calculate directory size
Answer: (b) Change the working directory

4) Which of the following is not a Linux distribution?

a. Ubuntu
b. CentOS
c. Docker
d. Debian
Answer : (c) Docker
5) What is Docker primarily used for in DevOps and containerization?
a. Managing cloud infrastructure
b. Running virtual machines
c. Packaging and deploying applications in containers
d. Managing network security
Answer: (c) Packaging and deploying applications in containers
6) What is the primary purpose of Azure DevOps?
a. Infrastructure management
b. Software development and delivery
c. Network security
d. Virtualization
Answer : (b) Software development and delivery
7) Which components are part of Azure DevOps?
a. Azure App Service and Azure Functions
b. Azure Monitor and Azure Security Center
c. Azure Boards and Azure Pipelines

d. Azure Virtual Machines and Azure SQL Database

Answer: (c) Azure Boards and Azure Pipelines
8) How does Azure DevOps support version control in software development?
a. It provides automated database backups.
b. It tracks changes in source code and manages versions.
c. It monitors server performance.
d. It optimizes network configurations.
Answer: (b) It tracks changes in source code and manages versions.
9) In Linux, what is the primary role of the root user?
a. Managing user accounts
b. Running GUI applications
c. Administrative tasks with superuser privileges
d. Monitoring network traffic
Answer: (c) Administrative tasks with superuser privileges
10) In Azure DevOps, which component is used to define, build, test, and deploy applications?
a. Azure Boards
b. Azure Repos
c. Azure Pipelines
d. Azure Artifacts
Answer : (c) Azure Pipelines
Section 2: Labs
Lab 1: File and Directory Management
Tasks:

- 1. Create a directory called "lab1" in your home directory.
- 2. Inside "lab1" create a text file named "sample.txt" with some content.
- 3. Make a copy of "sample.txt" and name it "sample_copy.txt"
- 4. Rename "sample_copy.txt" to "new_sample.txt"
- 5. List the files in the "lab1" directory to confirm their names.

```
/home/rahulshetty/.hushlogin file.
 ahulshetty@DESKTOP-P5EP6R1:~$ cd /home
 ahulshetty@DESKTOP-P5EP6R1:/home$ pwd
ahulshetty@DESKTOP-P5EP6R1:/home$ sudo mkdir lab1
[sudo] password for rahulshetty:
 ahulshetty@DESKTOP-P5EP6R1:/home$ cd lab1
 ahulshetty@DESKTOP-P5EP6R1:/home/lab1$ sudo touch sample.txt
ahulshetty@DESKTOP-P5EP6R1:/home/lab1$ sudo nano sample.txt
ahulshetty@DESKTOP-P5EP6R1:/home/lab1$ sudo cp sample.txt new_sample.txt
 ahulshetty@DESKTOP-P5EP6R1:/home/lab1$ sudo mv new_sample.txt sample_copy.txt
ahulshetty@DESKTOP-P5EP6R1:/home/lab1$ ls
sample.txt sample_copy.txt
rahulshetty@DESKTOP-P5EP6R1:/home/lab1$ cat sample.txt
ny name is Rahul Shetty from Mangalore
ahulshetty@DESKTOP-P5EP6R1:/home/lab1$ cat sample_copy.txt
my name is Rahul Shetty from Mangalore
```

Lab 2: Permissions and Ownership

Objective: Understand and manage file permissions and ownership.

Tasks:

- 1. Create a new file named "secret.txt" in the "lab2" directory.
- 2. Set the file permissions to allow read and write access only to the

owner.

- 3. Change the owner of "secret.txt" to another user.
- 4. Verify the new permissions and owner using the ls -l and ls -n commands.

```
rahulshetty@DESKTOP-P5EP6R1:/home/lab1$ sudo add user chethan
sudo: add: command not found
rahulshetty@DESKTOP-P5EP6R1:/home/lab1$ sudo adduser chethan
Adding user `chethan' ...
Adding new group `chethan' (1001) ...
Adding new user `chethan' (1001) with group `chethan' ...
Creating home directory `/home/chethan' ...
Copying files from `/etc/skel' ...
New password:
Retype new password:
passwd: password updated successfully
Changing the user information for chethan
Enter the new value, or press ENTER for the default
       Full Name []: chethan
       Room Number []: 1
        Work Phone []: 7892738960
        Home Phone []: 8971235873
       Other []: 6
Is the information correct? [Y/n] y
rahulshetty@DESKTOP-P5EP6R1:/home/lab1$ sudo mkdir lab2
rahulshetty@DESKTOP-P5EP6R1:/home/lab1$ cd...
cd..: command not found
rahulshetty@DESKTOP-P5EP6R1:/home/lab1$ cd ...
rahulshetty@DESKTOP-P5EP6R1:/home$ sudo mkdir lab2
rahulshetty@DESKTOP-P5EP6R1:/home$ cd lab2
rahulshetty@DESKTOP-P5EP6R1:/home/lab2$ sudo touch secret.txt
rahulshetty@DESKTOP-P5EP6R1:/home/lab2$ sudo chmod 600 secret.txt
rahulshetty@DESKTOP-P5EP6R1:/home/lab2$ nano secret.txt
rahulshetty@DESKTOP-P5EP6R1:/home/lab2$ sudo nano secret.txt
rahulshetty@DESKTOP-P5EP6R1:/home/lab2$ sudo nano secret.txt
rahulshetty@DESKTOP-P5EP6R1:/home/lab2$ cat secret.txt
cat: secret.txt: Permission denied
rahulshetty@DESKTOP-P5EP6R1:/home/lab2$ sudo cat secret.txt
my hobby is travelling
rahulshetty@DESKTOP-P5EP6R1:/home/lab2$ sudo chown chethan secret.txt
ahulshetty@DESKTOP-P5EP6R1:/home/lab2$ ls-l secret.txt
ls-1: command not found
rahulshetty@DESKTOP-P5EP6R1:/home/lab2$ ls -l secret.txt
-rw----- 1 chethan root 23 Oct 23 14:21 secret.txt
rahulshetty@DESKTOP-P5EP6R1:/home/lab2$ ls -n secret.txt
-rw----- 1 1001 0 23 Oct 23 14:21 secret.txt
rahulshetty@DESKTOP-P5EP6R1:/home/lab2$ Z
```


Lab 3: Text Processing with Command Line Tools

Objective: Practice text processing using command-line tools.

Tasks:

1. Create a text file with some random text in the "lab3" directory.

2. Use the grep command to search for a specific word or pattern in the

file.

3. Use the sed command to replace a word or phrase with another in the

file.

4. Use the wc command to count the number of lines, words, and

characters in the file.

```
rahulshetty@DESKTOP-P5EP6RI:/home$ sudo mkdir lab3
[sudo] password for rahulshetty:
rahulshetty@DESKTOP-P5EP6RI:/home$ sudo mkdir lab3
[sudo] password for rahulshetty:
rahulshetty@DESKTOP-P5EP6RI:/home$ cd lab3
rahulshetty@DESKTOP-P5EP6RI:/home/lab3$ sudo touch task3.txt
rahulshetty@DESKTOP-P5EP6RI:/home/lab3$ sudo anno task3.txt
rahulshetty@DESKTOP-P5EP6RI:/home/lab3$ cat task3.txt
India is a country with many states rivers mountains beaches.India has diverse geography and various languages.
rahulshetty@DESKTOP-P5EP6RI:/home/lab3$ grep "India" task3.txt
India is a country with many states rivers mountains beaches.India has diverse geography and various languages.
rahulshetty@DESKTOP-P5EP6RI:/home/lab3$ wc task3.txt
India is a country with many states rivers mountains beaches.India has diverse geography and various languages.
rahulshetty@DESKTOP-P5EP6RI:/home/lab3$ wc task3.txt
India task3.txt
```

Lab 4: Creating a Simple YAML File

Objective: Create a basic YAML configuration file.

Task:

- 1. Create a YAML file named "config.yaml"
- 2. Define key-value pairs in YAML for a fictitious application, including name, version, and description.
- 3. Save the file.
- 4. Validate that the YAML file is correctly formatted.

```
rahulshetty@DESKTOP-P5EP6R1: /home/yaml
 ahulshetty@DESKTOP-P5EP6R1:~$ cd home
-bash: cd: home: No such file or directory
rahulshetty@DESKTOP-P5EP6R1:~$ cd /home
rahulshetty@DESKTOP-P5EP6R1:/home$ sudo mkdir yaml
[sudo] password for rahulshetty:
mkdir: cannot create directory 'yaml': File exists
 cahulshetty@DESKTOP-P5EP6R1:/home$ cd_yaml
 ahulshetty@DESKTOP-P5EP6R1:/home/yaml$ sudo touch cofig.yaml
 ahulshetty@DESKTOP-P5EP6R1:/home/yaml$ sudo nano cofig.yaml
 rahulshetty@DESKTOP-P5EP6R1:/home/yaml$ sudo apt-get install yamllint
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
yamllint is already the newest version (1.26.3-1).
0 upgraded, 0 newly installed, 0 to remove and 105 not upgraded.
 ahulshetty@DESKTOP-P5EP6R1:/home/yaml$ cat cofig.yaml
name: "RahulShetty"
version: "1.0"
description: "I am currently in Chennai"
 rahulshetty@DESKTOP-P5EP6R1:/home/yaml$ yamllint cofig.yaml
 ahulshetty@DESKTOP-P5EP6R1:/home/yaml$ _
```


Objective: Practice working with lists (arrays) in YAML.

Task:

- 1. Create a YAML file named "fruits.yaml"
- 2. Define a list of your favorite fruits using YAML syntax.
- 3. Add items from the list.
- 4. Save and validate the YAML file.

Lab 6: Nested Structures in YAML

Objective: Explore nested structures within YAML.

Task:

- 1. Create a YAML file named "data.yaml"
- 2. Define a nested structure representing a fictitious organization with departments and employees.
- 3. Use YAML syntax to add, update, or remove data within the nested structure.
- 4. Save and validate the YAML file.

```
rahulshetty@DESKTOP-P5EP6R1: /home/yaml
  ahulshetty@DESKTOP-P5EP6R1:~$ sudo nano data.yaml
 [sudo] password for rahulshetty:
 ahulshetty@DESKTOP-P5EP6R1:~$ cd home
 bash: cd: home: No such file or directory
 eahulshetty@DESKTOP-P5EP6R1:~$ cd /home
eahulshetty@DESKTOP-P5EP6R1:/home$ cd yaml
 ahulshetty@DESKTOP-P5EP6R1:/home/yaml$ sudo nano data.yaml
ahulshetty@DESKTOP-P5EP6R1:/home/yaml$ yamlint data.yaml
 Command 'yamlint' not found, did you mean:
  command 'yamllint' from deb yamllint (1.26.3-1)
 ry: sudo apt install <deb name>
 rahulshetty@DESKTOP-P5EP6R1:/home/yaml$ yamllint data.yaml
rahulshetty@DESKTOP-P5EP6R1:/home/yaml$ cat data.yaml
 rganization:
  name: "Indian Cricket Team"
  departments:
     - name: "batting"
       employees:
    - name: "virat kohli"
            position: "onedowm"
          - name: "rohit sharma"
position: "opener"
     - name: "bowling"
       employees:
- name: "jadeja"
            position: "spinner"
 ahulshetty@DESKTOP-P5EP6R1:/home/yaml$ yamllint data.yaml ahulshetty@DESKTOP-P5EP6R1:/home/yaml$ _
```

Adding Data

Updating Data

```
GNU nano 6.2
---
organization:
name: "Indian Cricket Team"
departments:
- name: "batting"
employees:
- name: "virat kohli"
position: "onedowm"
- name: "rohit sharma"
position: "opener"
- name: "bowling"
employees:
- name: "jadeja"
position: "spinner"
- name: "shami"
position: "fastbowler"
```

Removing Data

```
🎑 rahulshetty@DESKTOP-P5EP6R1: /home/yaml
```

```
organization:
name: "Indian Cricket Team"
departments:
- name: "batting"
employees:
- name: "virat kohli"
position: "onedowm"
- name: "rohit sharma"
position: "opener"
- name: "bowling"
employees:
- name: "jadeja"
position: "spinner"

—
```

Lab 7: Create Classic Azure CI Pipeline for Angular Application

Objective: Set up a classic Azure CI pipeline to build a simple Angular application with unit testing using Jasmine and Karma.

Tasks:

- 1. Create an Azure DevOps project.
- 2. Set up a classic CI pipeline to build an Angular application.
- 3. Configure the pipeline to use Jasmine and Karma for unit testing.
- 4. Run the pipeline and validate the test results.

Lab 8: Create YAML Azure CI Pipeline for React Application

Objective: Create a YAML-based Azure CI pipeline to build a simple React application with unit testing using Enzyme and Jest.

Tasks:

- 1. Create an Azure DevOps project.
- 2. Create a YAML-based CI pipeline to build a React application.
- 3. Configure the pipeline to use Enzyme and Jest for unit testing.
- 4. Trigger the pipeline and verify the test results.

Lab 9: Create CI Pipeline for .NET Core Application with MS Unit Test

Objective: Create a CI pipeline, either classic or YAML, to build a .NET Core application and run MS Unit tests.

Tasks:

- 1. Set up a new Azure DevOps project.
- 2. Create a CI/CD pipeline for a .NET Core application.
- 3. Configure the pipeline to use MS Unit tests.
- 4. Trigger the pipeline and validate the test results.

Lab 10: Creating a Docker Image for a .NET Core Web API and Running it in Rancher Desktop

Objective: In this lab, you will create a Docker image for a sample .NET Core Web API application and then run the Web API container in Rancher Desktop.

Prerequisites:

Rancher Desktop installed and running.

.NET Core SDK installed on your machine.

Tasks

Step 1: Create a .NET Core Web API Project

- Step 2: Build the .NET Core Web API Project
- Step 3: Dockerize the .NET Core Web API
- Step 4: Build the Docker Image
- Step 5: Run the Docker Container in Rancher Desktop
- Step 6: Test the .NET Core Web API via swagger.

Logs	Inspect	Bind	mounts	Exec	Files	Stats
2023-10-23 2023-10-23		info:	Microsoft.			
2023-10-23 2023-10-23		info:	Microsoft.	.Hosting.	Lifetime	
2023-10-23 2023-10-23	19:57:22	info:		.Hosting.	Lifetime	[0]
2023-10-23	19:57:22	info:	Microsoft.	.Hosting.	Lifetime	
2023-10-23	19:57:22		Content ro	oot path:	/app/	

