MATH 620 HOMEWORK DUE 9/5

HIDENORI SHINOHARA

Exercise 0.1. Prove that $\{\partial_1, \dots, \partial_n\}$ is a basis of $T_p \mathbb{R}^n$.

Exercise 0.2. Show that $\{dx^1, \dots, dx^n\}$ is a basis of $T_p^*\mathbb{R}^n$ that is dual to $\{\frac{\partial}{\partial x^j}\}_{j=1}^n \subset T_p \mathbb{R}^n$.

Proof.

- Dual? Let $i, j \in \{1, \dots, n\}$. $dx^i(\frac{\partial}{\partial x^j}) = \frac{\partial}{\partial x^j}x^i$. The partial derivative of x^i with respect to x^j is 1 if i = j and 0 otherwise. Thus $dx^i(\frac{\partial}{\partial x^j}) = \delta^i_j$.
 Linearly independent? Let $c_1, \dots, c_n \in \mathbb{R}$ be given. Suppose
- that $c_1 dx^1 + \cdots + c_n dx^n = 0$. For any $i \in \{1, \cdots, n\}$,

$$(c_1 dx^1 + \dots + c_n dx^n)(\partial_i) = 0 \implies c_1 (dx^1(\partial_i)) + \dots + c_n (dx^n(\partial_i)) = 0$$
$$\implies c_1 (\partial_i (x^1)) + \dots + c_n (\partial_i (x^n)) = 0$$
$$\implies c_i \partial_i (x^i) = 0$$
$$\implies c_i = 0.$$

Therefore, $c_1 = \cdots = c_n = 0$. Therefore, $\{dx^1, \cdots, dx^n\}$ is indeed linearly independent.

• Span? Let $f \in T_p^* \mathbb{R}^n$ be given. We claim that $f = \sum_{i=1}^n f(\partial_i) dx^i$. Let $\sum_{i=1}^n c_i \partial_i \in T_p \mathbb{R}^n$ be given where c_i 's are in \mathbb{R} . (It makes

sense to assume that every element in $T_p\mathbb{R}^n$ is in this form because we showed earlier that $\{\partial_1, \dots, \partial_n\}$ is a basis of $T_p\mathbb{R}^n$.)

$$\begin{split} (\sum_{i=1}^n f(\partial_i) dx^i) (\sum_{j=1}^n c_j \partial_j) &= \sum_{i=1}^n \left[f(\partial_i) dx^i (\sum_{j=1}^n c_j \partial_j) \right] \\ &= \sum_{i=1}^n f(\partial_i) \left[\sum_{j=1}^n c_j dx^i (\partial_j) \right] \\ &= \sum_{i=1}^n f(\partial_i) \left[\sum_{j=1}^n c_j \partial_j (x^i) \right] \\ &= \sum_{i=1}^n f(\partial_i) c_i \\ &= f(\sum_{i=1}^n c_i \partial_i). \end{split}$$