18.100A Assignment 1

Octavio Vega

February 9, 2023

Problem 1

(a)

Proof. We will show that each set is a subset of the other to prove equality. Let $S = A \cap (B \cup C)$ and $T = (A \cup B) \cap (A \cup C)$.

Let $x \in S$. Then $x \in A$ and $x \in B \cup C$,

 $\implies x \in A \text{ and } x \in B, \text{ or } x \in A \text{ and } x \in C$

 $\implies x \in A \cap B \text{ or } x \in A \cap C$

 $\implies x \in (A \cap B) \cup (A \cap C) = T.$

Thus $x \in S \implies x \in T$, so $S \subseteq T$. Now let $x \in T$. Then $x \in (A \cap B) \cup (A \cap C)$,

 $\implies x \in A \cap B \text{ or } x \in A \cap C$

 $\implies x \in A$, and $x \in B$ or C

 $\implies x \in A \cap (B \cup C) = S.$

Thus $x \in T \implies x \in S$, so $T \subseteq S$, which means S = T.

Hence, $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

(b)

Proof. We proceed as in (a). Let $S = A \cup (B \cap C)$ and $T = (A \cup B) \cap (A \cup C)$.

First let $x \in S$. Then $x \in A$ or $x \in B \cap C$,

 $\implies x \in A \text{ or } x \in B, \text{ and } x \in A \text{ or } x \in C$

 $\implies x \in (A \cup B) \cap (A \cup C) = T.$

Thus $x \in S \implies x \in T$, so $S \subseteq T$. Now let $x \in T$. Then $x \in A \cup B$ and $x \in A \cup C$. If $x \in A$, then the requirement is satisfied immediately, regardless

of whether x is in B or C. Otherwise, if $x \notin A$, then $x \in B$ and $x \in C$ must be true. So $x \in A$, or $x \in B$ and $x \in C$

$$\implies x \in A \cup (B \cap C) = S.$$

Thus $x \in T \implies x \in S$, so $T \subseteq S$, which means S = T.

Hence,
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
.

Problem 2

Proof. (By induction).

The inductive hypothesis P(n) is that, for $n \in \mathbb{N}$, $n < 2^n$.

(Base case): $1 < 2^1$, so P(1) is true.

(Inductive step): Assume P(n) is true for n=m, i.e. that $m<2^m$ holds for $m\in\mathbb{N}.$ Then

$$2^{m+1} = 2 \cdot 2^m > 2m = m+m > m+1$$
, since $m > 1 \implies 2^{m+1} > m+1$. (1)

So $P(m) \implies P(m+1)$, so P(n) is true for all $n \in \mathbb{N}$.

Thus,
$$2^n > n \ \forall n \in \mathbb{N}$$
.