Construção de Compiladores

Prof. Dr. Daniel Lucrédio

DC - Departamento de Computação

UFSCar - Universidade Federal de São Carlos

Tópico 04 - Análise Sintática Descendente

Referências bibliográficas

Alfred V. Aho, Monica S. Lam, Ravi Sethi, Jeffrey D. Ullman. Compiladores: Princípios, Técnicas e Ferramentas (2a. edição). Pearson, 2008.

Kenneth C. Louden. Compiladores: Princípios E Práticas (1a. edição). Cengage Learning, 2004.

Terence Parr. The Definitive Antlr 4 Reference (2a. edição). Pragmatic Bookshelf, 2013.

Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*) parsing: the power of dynamic analysis. In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications (OOPSLA '14). Association for Computing Machinery, New York, NY, USA, 579–598.

DOI:https://doi.org/10.1145/2660193.2660202

Análise sintática ... recordando

 Vimos duas formas de reconhecer uma linguagem através de uma gramática

```
    Inferência recursiva
    Derivação
    I → a
```

Ex: Gramática para expressões aritméticas

| (E)

→ a
| b
| Ia
| Ib

T()

E + E

Análise sintática ... recordando

- Inferência recursiva
 - Dada uma cadeia (conjunto de símbolos terminais)
 - Vamos do corpo para a cabeça

```
Ex: a^*(a+b00)

a^*(a+b00) \leftarrow a^*(a+l00) \leftarrow a^*(a+l0) \leftarrow

a^*(a+l) \leftarrow a^*(a+E) \leftarrow a^*(l+E) \leftarrow a^*(E+E) \leftarrow

a^*(E) \leftarrow a^*E \leftarrow l^*E \leftarrow E^*E \leftarrow E
```

```
E + E
 E *
 (E)
 Ta
 Th
 T()
```

Análise sintática ... recordando

- Derivação
 - Dada uma cadeia (conjunto de símbolos terminais)
 - Vamos da cabeça para o corpo

```
E + E
                                                                                           E *
                                                                                            (E)
                                                                               \Box \rightarrow a
Ex: a*(a+b00)
E \Rightarrow E^*E \Rightarrow I^*E \Rightarrow a^*E \Rightarrow a^*(E) \Rightarrow a^*(E+E) \Rightarrow
                                                                                           Ta
a^*(I+E) \Rightarrow a^*(a+E) \Rightarrow a^*(a+I) \Rightarrow a^*(a+I0) \Rightarrow
                                                                                           Th
a^*(a+100) \Rightarrow a^*(a+b00)
                                                                                           T()
```

- Produz uma derivação mais à esquerda da cadeia
 - Os tokens são lidos da esquerda para a direita
 - Em cada passo,
 - o problema é determinar qual produção aplicar

- Minha próxima "chave" é o "a"
- Existem 3 portas que abrem com um "a"
- não-determinismo
- Vamos escolher uma!

- Deixei o "a" na sala anterior
- Minha próxima "chave" é o "+"
- Só há uma porta, e ela abre com o "*"
- Beco sem saídal

- Abordagem com retrocesso (tentativa e erro)
- Tempo exponencial

- Outra opção é "adivinhar" a porta correta
 - Abordagem preditiva
- Como fazer isso?
 - Tentamos prever a porta correta com base na informação disponível "ao redor"
 - É uma "tentativa e erro" limitada
 - Tentamos uma das portas até um certo limite
- Na prática
 - É comum olhar apenas uma sala à frente

- Minha próxima "chave" é o "a"
 - A próxima depois desta é o "+"
- Existem 3 portas que abrem com um "a"
 - Mas apenas uma tem um "+" depois
- Determinismo!

Abordagem preditiva

- Na construção do labirinto, tentamos "marcar" as portas com mais símbolos (K símbolos à frente)
- Dependendo das características do labirinto, sua execução pode ser 100% preditiva com um K determinado
 - Mas pode ser que n\u00e3o (mais sobre isso depois)

 $E \rightarrow T + E \mid T$ $T \rightarrow F * T \mid F$ $F \rightarrow a \mid b \mid (E)$

Entrada: a * b

$$K = 2$$

Olhando apenas dois símbolos à frente não é possível resolver o não-determinismo em E

 $E \rightarrow T + E \mid T$ $T \rightarrow F * T \mid F$ $F \rightarrow a \mid b \mid (E)$

Entrada: a * b

$$K = 3$$

Olhando apenas três símbolos à frente não é possível resolver o não-determinismo em E

 $E \rightarrow T + E \mid T$ $T \rightarrow F * T \mid F$ $F \rightarrow a \mid b \mid (E)$

Entrada: a * b

$$K = 4$$

Olhando quatro símbolos à frente é possível resolver o não-determinismo em E (escolhendo E→T)

Entrada: a * b

$$E \rightarrow T + E \mid T$$
 $T \rightarrow F * T \mid F$
 $F \rightarrow a \mid b \mid (E)$
 $K = 4$

Olhando quatro símbolos à frente é possível resolver o não-determinismo em T (escolhendo T → F * T)

Entrada: a * b

(7)	(2)	(3)	(4)	(5)	(6)	
axbé	axb E	a ≠ 5 €	axb E	axbé	axbe	
Ε	E	E	E	Ε	Ε	
٨	l	1	1	\ \ \ \ \	ı	
	T	Т	T	T	T	
	^	1	1	1	^	/ F*T
		FXT	F×T	F(*)T	F*T	Ş
			l	1 ×	1	F
		(<u>බ</u>	a	a	
		>	~			

$$E \rightarrow T + E \mid T$$
 $T \rightarrow F * T \mid F$
 $F \rightarrow a \mid b \mid (E)$

$$K = 4$$

Olhando quatro símbolos à frente é possível resolver o novo não-determinismo em T (escolhendo T → F)

$$E \rightarrow T + E \mid T$$
 $T \rightarrow F * T \mid F$
 $F \rightarrow a \mid b \mid (E)$

Entrada: a * b

[1] (2) (3) (4) (5) (6) (7) (8) (9)

$$a \neq b \in a \neq b \in$$

Cadeia reconhecida

- A abordagem preditiva é mais eficiente
 - Ela não precisa tentar todos os caminhos
 - Portanto, o tempo de execução não é exponencial
 - Como a força bruta da abordagem com retrocesso
 - Porém, ela é mais cautelosa/preguiçosa ...

- Não é de todo labirinto que ela encontra a saída
 - Apenas alguns labirintos "especiais"
 - Com propriedades interessantes
 - Como pontos de não-determinismo limitados a 1, 2 ou k salas adjacentes
- Deve existir uma garantia de que naquele labirinto:
 - Para TODA sala com mais de uma porta com a mesma palavra ...
 - ... é SEMPRE possível determinar que a escolha da porta foi correta olhando no máximo k salas à frente

- Mas chega de labirintos, portas, palavras e listas
- Vamos fazer as associações:

Labirinto

Porta

Palavra na porta

Lista de palavras

Não-terminal / regra

Programa / modelo

Gramática

Terminal / token

- Mas chega de labirintos, portas, palavras e listas
- Vamos fazer as associações:

Veremos algumas técnicas de implementação deste tipo de analisador sintático

Preditivo de descida recursiva – LL(1)

Preditivo de descida não-recursiva (usando pilha) – LL(1)

Técnica do macaco treinado – LL(*)

Adaptive LL(*) - All-Star

Gramáticas LL

Conjuntos primeiros e seguidores

Conjuntos gerados com base em funções associadas a uma gramática

Ajudam na construção de analisadores descendentes e ascendentes

Ajudam a escolher qual produção aplicar

Conjuntos primeiros

α é uma cadeia de símbolos gramaticais (terminais e não-terminais)

$$primeiros(\alpha) =$$

conjunto de terminais que começam as cadeias derivadas de a

Conjuntos primeiros

```
Gramática

S \rightarrow A B

A \rightarrow a A | a | d

B \rightarrow b B | c | A | Cd

C \rightarrow x | y | \epsilon

D \rightarrow \epsilon
```

```
primeiros(abcd) = { a }
primeiros(ABC) = { a,d }
primeiros(AxCd) = { a,d }
primeiros(BzSB) = { b,c,a,d,x,y }
```

- primeiros(CzSB) = { x,y,z }
- primeiros(SABC) = { a,d }
- primeiros(C) = { x,y,ε }
- primeiros(DAB) = { a,d }
- primeiros(DCe) = { x,y,e }
- primeiros(DC) = $\{x,y,\epsilon\}$

Conjuntos seguidores

A é um não-terminal

seguidores (A)

- É o conjunto de terminais que podem aparecer imediatamente após A em alguma forma sentencial
- Em outras palavras, é o conjunto de terminais a tal que existe uma derivação na forma S ⇒ αAaβ
 - \circ {a | S $\stackrel{*}{\Rightarrow}$ α Aa β }

Conjuntos seguidores

- Símbolo especial \$ (fim de cadeia)
 - Se A pode ser o símbolo mais à direita em alguma forma sentencial, \$
 está em seguidores(A)

Conjuntos seguidores

```
Gramática

S \rightarrow A B

A \rightarrow a A | a | d

B \rightarrow b B | c | A | Cd

C \rightarrow x | y | \epsilon

D \rightarrow \epsilon
```

- seguidores(S) = { \$ }
- seguidores(A) = { b,c,a,d,x,y,\$ }
- seguidores(B) = { \$ }
- seguidores(C) = { d }
- seguidores(D) = {} (não existem! Na verdade D é inalcançável a partir de S)

- LL(k) = classe de gramáticas / analisador sintático
 - Left-to-right = da esquerda para a direita
 - Leftmost derivation = derivação mais à esquerda
 - k = # símbolos à frente para previsão correta
- k > 1 geralmente acarreta em baixa eficiência
 - Por isso, estudaremos o caso LL(1)
 - LL(1) é bastante rica para a maioria das construções de linguagens de programação

- Uma gramática G é LL(1) sse para duas produções distintas A → α | β:
 - α e β não derivam cadeias começando com o mesmo terminal
 - No máximo um dentre α e β deriva a cadeia vazia
 - Se β *⇒ ε, então α não deriva nenhuma cadeia começando com um terminal em seguidores(A)
 - O correspondente vale para α

primeiros(α) e primeiros(β) são disjuntos

- Uma gramática G é LL(1) sse para duas distintas A → α | β:
 - α e β não derivam cadeias começando com o mesmo terminal
 - No máximo um dentre α e β deriva a cadeia vazia
 - Se β *⇒ ε, então α não deriva nenhuma cadeia começando com um terminal em seguidores(A)
 - O correspondente vale para α

Ex: a gramática a seguir não é LL(1)

```
declaracao → if-decl | 'outra'
   if-decl → 'if' '(' exp ')' declaracao else-parte
   else-parte → 'else' declaracao | ε
   exp → '0' | '1'
   comando → declaracao | if-decl

primeiros (declaracao) = { 'outra', 'if' }
   primeiros (if-decl) = { 'if' }
```

Ex: a gramática a seguir não é LL(1)

```
ExprRel → TermoRel ExprRel2
  ExprRel2 → 'OU' FatorRel ExprRel2 | ε
  FatorRel → '(' ExprRel ')' | Expr '<' Expr
  Expr → Termo Expr2
  Expr2 \rightarrow '+' Termo Expr2 | \epsilon
  Termo → Fator Termo2
  Termo2 \rightarrow '*' Fator Termo2 | \epsilon
  Fator → '(' Expr ')' | id
primeiros('(' ExprRel ')')={'('}
primeiros(Expr '<' Expr) = { id, '(')</pre>
```

- Uma gramática G é LL(1) sse par distintas A → α | β:
 - α e β não derivam cadeias come terminal
 - No máximo um dentre α e β⁄αeriva a cadeia vazia
 - Se β *⇒ ε, então α não deriva nenhuma cadeia começando com um terminal em seguidores(A)
 - O correspondente vale para α

Quer dizer que se ε está em primeiros (β), então primeiros (α) e seguidores (A) são disjuntos

∡o com o mesmo

Gramáticas LL(1)

Ex: a gramática a seguir não é LL(1)

```
listaComandos → comando ';' listaComandos | '{' listaComandos '}'
  comando → if-decl | 'outra' | ε
  if-decl → 'if' '(' exp ')' then-parte
  then-parte → comandoThen | listaComandos
  comandoThen → 'soma' | ε
  \exp \rightarrow '0' \mid '1'
primeiros (comandoThen) = { 'soma', ε}
primeiros(listaComandos) = { 'if', 'outra', ';', ' { ' }
sequidores(then-parte) = { ';'}
```

Gramáticas LL(1)

 Estas condições garantem ser possível escolher a produção apropriada olhando apenas o símbolo atual

• Ex:

 Se o símbolo atual for 'if', 'while' ou '{' é possível decidir exatamente qual alternativa usar

- Minha próxima "chave" é o "a"
 - A próxima depois desta é o "+"
- Existem 3 portas que abrem com um "a"
 - Mas apenas uma tem um "+" depois
- Determinismo
 - Mas somente com k=2
- Esse labirinto não é LL(1)

- Tabela de predição
 - Array bidimensional M[A,a]
 - Linha corresponde à produção atual

Coluna corresponde ao próximo terminal

			3
	Terminais e \$	se	r escolhida
Não-terminais			

Produção a

Ideia geral

 ○ A produção A → α é escolhida se o próximo símbolo de entrada "a" estiver em primeiros (α)

- Se α = ε ou α * ⇒ ε, escolhemos A → α se
 - o próximo símbolo de entrada "a" estiver em seguidores (A)
 - se \$ foi alcançado e \$ está em seguidores (A)

- Objetivo
 - Colocar na tabela as possibilidades de escolha de produção, dados:
 - Um símbolo da entrada (terminal)
 - que representa o próximo símbolo a ser lido
 - A produção (não-terminal) sendo expandida
 - que representa qual símbolo precisa ser substituído no processo de derivação

- Algoritmo
 - 1. Para cada terminal "a" em primeiros (α)
 - Adicione A $\rightarrow \alpha$ em M[A,a]
 - 2. Se ε está em primeiros (α) então, para cada terminal "b" em sequidores (Α)
 - Adicione A \rightarrow α em M[A,b]
 - 3. Se ϵ está em primeiros (α) e \$ está em seguidores (A)
 - Adicione A \rightarrow α em M[A,\$]
- Células vazias correspondem a erro sintático

Exemplo Tabela LL(1)

```
• E \rightarrow TE'

• E' \rightarrow +TE' | \epsilon

• T \rightarrow FT'

• T' \rightarrow *FT' | \epsilon

• F \rightarrow (E) | id
```

```
primeiros(E) = \{(,id)\}
primeiros(T) = \{(,id)\}
primeiros(F) = \{(,id)\}
primeiros("(")={(}
primeiros(id) = { id }
primeiros (E') = \{+, \epsilon\}
primeiros(+) = \{+\}
primeiros (T') = \{ \star, \epsilon \}
primeiros(*) = \{*\}
primeiros(TE') = { (, id}
primeiros(+TE') = {+}
primeiros(FT') = { (,id}
primeiros(*FT')={*}
primeiros("("E")") = { ( }
primeiros (E'T) = \{+, (, id)\}
primeiros (T'E') = \{*, +, \epsilon\}
```

```
seguidores(E) = {$,)}
seguidores(E') = {$,)}
seguidores(T) = {+,$,)}
seguidores(T') = {+,$,)}
seguidores(F) = {*,+,$,)}
```

Exemplo Tabela LL(1)

	+	*	()	id	\$
E			E→TE'		E→TE'	
E'	E'→+TE'			E'→ε		E'→ε
Т			T→FT'		T→FT'	
T'	T'→ε	T'→*FT'		T'→ε		T'→ε
F			F→(E)		F→id	

Exercício Tabela LL(1)

Construa a tabela LL(1) da gramática

```
primeiros(iEtSS') = {i}
S \rightarrow iEtSS' \mid a
                                 primeiros(a) = \{a\}
S' \rightarrow eS \mid \varepsilon
                                 primeiros(eS) = {e}
E \rightarrow b
                                 primeiros(b) = \{b\}
                                 sequidores(S) = \{\$, e\}
                                 sequidores(S') = {$,e}
                                 sequidores(E) = \{t\}
```

Resposta

	i	t	е	а	b	\$
S	S→iEtSS'			S→a		
S'			S'→eS S'→ε			S'→ε
E					E→b	

Não-determinismo causado pela ambiguidade da gramática

- O algoritmo anterior serve, portanto, para detectar se uma gramática é LL(1)
 - Células com múltiplos valores são indícios de:
 - Ambiguidade
 - Necessidade de fatoração
 - Recursão à esquerda

- Pode ajudar a transformar uma gramática em LL(1)
 - Mas existem gramáticas que nunca podem ser transformadas em LL(1)
 - Gramática do exercício anterior é um exemplo

Lembrando um pouco de LFA

- Estamos lidando com gramáticas livres de contexto
 - o Gramáticas LL(1), para ser mais específico

 A máquina capaz de processar este tipo de linguagem é um PDA (ou autômato com pilha)

 Portanto, vamos usar um PDA para implementar um analisador sintático LL

Análise preditiva sem recursão

Análise preditiva sem recursão


```
Condições iniciais:
   entrada = w$
   símbolo S no topo da pilha, sobre $
Algoritmo:
      ip = primeiro símbolo de w
1.
2.
      X = \text{topo da pilha} // inicialmente, } X = S
     enquanto(X != $) { // pilha não vazia
3.
    \mathbf{a} = \mathbf{w}[\mathbf{i}\mathbf{p}]
5.
          se(X == a) desempilhar e avançar ip
6.
          senão se(X é terminal) erro
7.
          senão se(M[X,a] é vazio) erro
          senão se(M[X,a] = X \rightarrow Y_1Y_2 \dots Y_k {
8.
9.
10.
             desempilhar
             empilhar Y, Y, 1, ..., Y, // nessa ordem
11.
12.
13.
        X = topo da pilha
14.
```

Algoritmo de análise sintática preditiva

Análise sintática preditiva sem recursão

- Exercício
 - Entrada = id + id * id \$

	+	*	()	id	\$
E			E→TE'		E→TE'	
E'	E'→+TE'			E'→ε		E'→ε
Т			T→FT'		T→FT'	
T'	T'→ε	T'→*FT'		T'→ε		T'→ε
F			F→(E)		F→id	

Exercício

Casamento	Pilha	Entrada	Ação
	<u> </u>	<u>id</u> +id*id\$	E→TE ′
	<u>T</u> E'\$	<u>id</u> +id*id\$	T→FT'
	<u>F</u> T'E'\$	<u>id</u> +id*id\$	F→id
	<u>id</u> T'E'\$	<u>id</u> +id*id\$	match
<u>id</u>	<u>T'</u> E'\$	<u>+</u> id*id\$	Τ ′ →ε
	<u>E′</u> \$	<u>+</u> id*id\$	E ′ →+TE ′
	<u>+</u> TE ′ \$	<u>+</u> id*id\$	match
id <u>+</u>	<u>"</u> E"	<u>id</u> *id\$	T→FT'
	<u>F</u> T'E'\$	<u>id</u> *id\$	F→id
	<u>id</u> T'E'\$	<u>id</u> *id\$	match
id+ <u>id</u>	<u>T'</u> E'\$	<u>*</u> id\$	T'→*FT'
	<u>*</u> FT'E'\$	<u>*</u> id\$	match
id+id <u>*</u>	<u>F</u> T'E'\$	<u>id</u> \$	F→id
	<u>id</u> T'E'\$	<u>id</u> \$	match
id+id* <u>id</u>	<u>T'</u> E'\$	<u>\$</u>	Τ ΄ →ε
	<u>E′</u> \$	<u>\$</u>	E ′ →ε
	<u>\$</u>	<u>\$</u>	OK

LL(k) e LL(*)

LL(1)

- A grande vantagem do algoritmo LL(1) é a sua facilidade no entendimento/depuração!
 - É mais fácil seguir a execução em um processo de derivação (quando comparado com a inferência)
 - A grande desvantagem são os não-determinismos
 - Ambiguidade
 - Fatoração à esquerda

- Estendendo o algoritmo LL(1) para LL(k), onde k > 1
 - Ao invés de primeiros e seguidores, teríamos primeiros, e seguidores,
 - Teríamos uma LL(k), construída exatamente da mesma maneira
- A diferença é que, ao tentar prever qual regra usar, é preciso olhar (e comparar) k símbolos adiante

Exemplo:

```
stat : ID '=' expr
| ID ':' stat
;
```

Essa gramática não é LL(1), mas é LL(2)

É possível gerar o seguinte analisador preditivo de descendência recursiva

```
void stat() {
  if ( LA(1)==ID&&LA(2)==EQUALS ) { //
    match(ID);
                                        MATCH
    match(EQUALS);
    expr();
  else if ( LA(1)==ID&&LA(2)==COLON ) {
    match(ID);
                                            MATCH
    match(COLON);
    stat();
  else «error»;
```

- Mas, na prática k>1 não é muito interessante
 - A tabela seria (exponencialmente) grande, com muitas colunas para cobrir todas as combinações de k símbolos à frente
 - A tabela precisaria considerar diferentes contextos para os conjuntos seguidores
 - Muitas vezes, se uma gramática não é LL(1), ela provavelmente não é LL(k) também
 - Ex: recursividade à esquerda independe de k

- Outro exemplo de uma gramática que não é LL(k)
 - O Nenhum k fixo pode resolver o problema de decidir qual regra usar

O Solução (menos legível, ruim para adicionar semântica)

```
method
: type ID '(' args ')' (';' | '{' body '}')
;
```

- Em resumo, LL(1) era o melhor que podíamos fazer de forma automática
- A alternativa é construir o analisador "na mão" ou partir para a análise LR
 - Que veremos a seguir
- Mas analisadores LR são mais complexos de implementar/utilizar em outros aspectos
 - Apesar de as gramáticas ficarem mais legíveis
 - E construir à mão é trabalhoso
- Felizmente, existe uma técnica chamada LL(*), que une o melhor dos mundos LL e LR
 - Foi desenvolvida há alguns anos, e não consta nos livros clássicos de compiladores (Dragão, Louden)

Outro exemplo

Podemos fatorar à esquerda (ruim)

```
def : modifiers* (classDef|interfaceDef) ;
```

Outra opção: método de busca feito à mão (findAhead)

$\mathsf{LL}(^*)$

- O método findAhead serve apenas para a predição
 - Ele inspeciona símbolos à frente, em busca de um determinado símbolo de decisão
 - Portanto, é um método leve e eficiente
- O número de símbolos inspecionado é variável
 - k=*, por isso LL(*)

Voltando à analogia do labirinto: É como se pudéssemos mandar um macaco treinado na frente, para encontrar o caminho rapidamente

A técnica LL(*) consiste essencialmente em gerar automaticamente o método lookAhead com base na definição da gramática

Voltando ao exemplo

```
| ID ':' expr
| ID ':' stat
|;
```

- Nesse caso, a decisão consiste em encontrar um ponto de divergência entre as duas regras
 - Normalmente é um único token que fica alguns símbolos à frente
 - Podemos ver como um DFA!

- Faz sentido então pensarmos em um DFA de decisão
 - Um modelo mais simples, não chega a ser uma gramática livre de contexto
 - o De fato, é uma gramática regular
 - Serve apenas para tomar a decisão
- Importante:
 - Em análise LL(k), com k fixo, o DFA é sempre ACÍCLICO!!!
 - Ou seja, o macaco não passa por uma mesma sala mais do que uma única vez
 - LL(*) utiliza um DFA que pode conter ciclos

• Observe o seguinte exemplo:

• O DFA de decisão seria:

Outro exemplo:

• O DFA ficaria:

- Ou seja, LL(*) é uma técnica poderosa, com grande poder de reconhecimento
 - Não precisa fatorar à esquerda, o que leva a gramáticas mais intuitivas
 - Permite a geração de analisadores de descendência recursiva
 - Mais legíveis e fáceis de compreender (quando comparado com analisadores LR – que veremos a seguir)
 - Facilita a inserção de ações semânticas (veremos mais adiante)

ALL(*) - Adaptive LL(*)

- Geração do DFA de decisão em tempo de execução
 - Múltiplos subparsers em cada ponto de dúvida
 - Fase de especulação
 - Em caso de ambiguidade: predicado semântico ou "a regra que aparecer primeiro"
- Uso da pilha de execução do parser
 - Para realizar a previsão de acordo com o contexto anterior
- Resultado: qualquer gramática não-recursiva à esquerda pode ser analisada

- Além disso:
 - Reescrita automática de regras remoção da recursividade direta à esquerda
 - Muitas otimizações permite recursividade no léxico!
- Resultado:
 - Quase qualquer gramática "roda"!

Resumo

- Analisadores descendentes derivação
- 2. Esforço é conseguir 100% de predição / eficiência
 - Sem abrir mão da facilidade de uso e desenvolvimento
- 3. Técnicas automatizadas
- 4. Evolução até a mais recente

Simples e eficiente
Porém com
restrições na
gramática que
dificultavam
bastante seu uso e
abrangência

Simples e eficiente
Praticamente
qualquer
gramática pode
ser utilizada sem
necessidade de
reescrita

Fim