

Redução de Dimensionalidade 1

Uma maneira de se reduzir a dimensionalidade de <u>matrizes</u> preservando-se a <u>informação</u> existente consiste em uma subamostragem de seus elementos. Uma abordagem é o *Max Pooling 2D*, que recebe uma <u>matriz</u> $A_{N\times M}$ de entrada e um fator de redução f e gera uma nova <u>matriz</u> B de dimensões $\frac{N}{f} \times \frac{M}{f}$. Nesse processo, a <u>matriz</u> A pode ser vista como diversas regiões disjuntas (que não se sobrepõem) $f \times f$, em que em cada uma seleciona-se **o maior elemento** que será colocado em uma posição correspondente na <u>matriz</u> B.

Por exemplo, a figura abaixo ilustra o processo de subamostragem Max Pooling 2D para f=2, em que as diversas regiões 2×2 são demarcadas pelos quadrados pontilhados e a cor desse quadrado está associada com o respectivo elemento que é colocado na $\underline{\text{matriz}}$ B:

Sua tarefa consiste em desenvolver a subamostragem por Max Pooling 2D. Dada uma $\underbrace{\mathsf{matriz}}\ N \times M$, deve-se gerar uma nova $\underbrace{\mathsf{matriz}}\ \frac{N}{f} \times \frac{M}{f}$ em que f é o fator de redução. Para propósitos de simplicidade, os casos de teste apenas consideram entradas em que N e M são divisíveis por f.

A Entrada consiste de:

- A primeira linha da entrada contém três números inteiros separados por espaço N, M e f $(1 \le N, M \le 100, 1 \le f \le N, M)$. É garantido que N e M sejam divisíveis por f.
- Em seguida, existem N linhas descrevendo a <u>matriz</u> de entrada. Cada linha contém M inteiros separados por espaço em branco, em que o elemento na i-ésima linha e j-ésima coluna é denotado por $a_{i,j}$ ($0 \le a_{i,j} \le 10^3$).

A Saída deve apresentar:

A matriz ^N/_f × ^M/_f resultante do processo de redução de dimensionalidade. Os números inteiros devem estar separados por espaço em branco e não deve-se colocar um espaço em branco após o elemento da última coluna.

Observações:

• Não é necessário validar se os valores de entrada são do tipo definido.

Descrição dos Exemplos:

• A figura no enunciado corresponde ao segundo exemplo de teste.

For example:

Input						Result		
2	2	2				7		
3	5							
7	1							
4	4	2				5	7	
5	5	7	1			9	8	
2	3	1	0					
7	6	8	4					
4	9	3	2					

Input	Result		
6 6 3	19 12		
1 2 3 4 5 6	12 13		
8 9 10 12 1 3			
19 3 0 1 2 1			
7 8 4 3 2 9			
7 4 8 9 10 2			
6 4 12 13 2 8			

Answer: (penalty regime: 0, 0, 10, 20, ... %)

1		
_		
		//

PRECHECK VERIFICAR

