

Sistemas Digitais Sistema de Controle de uma Máquina de Lavar - Trabalho Prático Relatório

Trabalho realizado por:

João Branquinho nº 42713 Tomás Dias nº42784

<u>Introdução</u>

Foi proposto na cadeira de **Sistemas Digitais** a realização de um trabalho prático tendo em vista a criação de **um sistema de controle de uma máquina de lavar roupa**. Para tal, foi disponibilizado um enunciado onde se encontravam compreendidas todas as informações e procedimentos necessários para a realização do mesmo. Este enunciado foi rigorosamente estudado antes de se passar a qualquer procedimento prático.

Após uma boa interpretação do que era pedido e com os métodos do trabalho bem definidos, começou-se então por analisar os dois módulos de controle que iriam servir de base para o sistema: o **módulo de controle da água** e o **módulo de controle da lavagem**.

<u>Implementação</u>

Depois de analisados os módulos que iriam ser primeiramente implementados, definiu-se as suas **entradas**, **saídas** e **estados**, levando à criação dos **modelos ASM**, da **tabela de transições de estado e saídas**, **e mapas de Karnaugh** representados abaixo:

Módulo de Controle da Água

Entradas: Botão de início (**BI**); Sensor de nível de água (**SNA**); Sensor de temperatura da água (**STA**).

Saídas: Válvula de entrada de água (**VA**); Resistência de aquecimento da água (**RAQ**); (**FIM**): informa que **m.c.** da água acabou de aquecer a água e que o **m.c.** da lavagem pode começar a funcionar quando toma o valor 1.

Módulo de Controle da Lavagem

Entradas: Resistência de aquecimento da água (**RAQ**); Sensor de nível de água (**SNA**).

Saídas: Motor roda para a direita (**MD**); Motor roda para a esquerda (**MD**); Motor modo centrifugação (**MC**); Bomba de água (**BA**); Lavagem Completa (**LC**). Esta última saída toma o valor 1 quando a lavagem está completa.

Nota: Assume-se que a entrada **RAQ** se encontra desativada (toma o valor 1). Quando se encontra ativada toma o valor **0**.

Figura 1: Modelo ASM do Módulo de Controle da Água

Figura 2: Modelo ASM do Módulo de Controle da Lavagem

Tabela de transição de estados e saídas - Módulo de Controle da Água

	Entrad	as			a	ι_n	a_{n+1} Saídas		Flip-	Flop T			
BI	SNA	STA	a_n	a_{n+1}	X1	X0	X1	X0	VA	RAQ	FIM	T1	T0
0	-	-	Α	Α	0	0	0	0	0	0	0	0	0
1	-	-	Α	В	0	0	0	1	0	0	0	0	1
-	0	-	В	В	0	1	0	1	1	0	0	0	0
-	1	-	В	С	0	1	1	0	1	0	0	1	1
-	-	0	С	С	1	0	1	0	0	1	0	0	0
-	-	1	С	D	1	0	1	1	0	1	0	0	1
-	-	-	D	Α	1	1	0	0	0	0	1	1	1

Mapas de Karnaugh - Módulo de Controle da Água

T1 = SNA X0 + X1 X0

T0 = SNA X0 + X1 X0 + STA X1 + BI $\overline{X1}$ $\overline{X0}$

 $VA = \overline{X1} X0$

X1	X0					
SNA STA		00	01	11	10	
	00	0	0	0	1	
	01	0	0	0	1	Para BI = 0 ou BI = 1
	11	0	0	0	1	
	10	0	0	0		

 $RAQ = X1 \overline{X0}$

X1	X0					
SNA STA		00	01	11	10	
	00	0	0	1	0	
	01	0	0	1	0	Para $BI = 0$ ou $BI = 1$
	11	0	0	1	0	
	10	0	0		0	

FIM = X1 X0

Tabela de transição de estados e saídas – Módulo de Controle da Lavagem

Entr	adas				a_n			a_{n+1}			5	Saída	s			FF D)
RAQ	SNA	a_n	a_{n+1}	X2	X1	X0	X2	X1	X0	MD	ME	ВА	MC	LC	D2	D1	D0
0	-	Α	Α	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	-	Α	В	0	0	0	0	0	1	0	0	0	0	0	0	0	1
-	-	В	С	0	0	1	0	1	0	1	0	0	0	0	0	1	0
-	-	С	D	0	1	0	0	1	1	1	0	0	0	0	0	1	1
-	-	D	Ε	0	1	1	1	0	0	0	1	0	0	0	1	0	0
-	-	Е	F	1	0	0	1	0	1	0	1	0	0	0	1	0	1
-	1	F	F	1	0	1	1	0	1	0	0	1	0	0	1	0	1
-	0	F	G	1	0	1	1	1	0	0	0	1	0	0	1	1	0
-	-	G	Н	1	1	0	1	1	1	0	0	1	1	0	1	1	1
-	-	Н	Α	1	1	1	0	0	0	0	0	0	0	1	0	0	0

Mapas de Karnaugh - Módulo de Controle da Lavagem

Para SNA = 0

 $\mathbf{D2} = X2 \overline{X1} + X2 \overline{X0} + \overline{X2} X1 X0$

X1	X0					
RAQ X2		00	01	11	10	-
	00	0	1	0	1	
	01	0	1	0	1	
	11	0	1	0	1	
	10	0		0		

D1 = $X1 \overline{X0} + \overline{SNA} \overline{X1} X0 + SNA \overline{X2} \overline{X1} X0$

X1	X0					
RAQ X2		00	01	11	10	
	00	0	0	0	1	
	01	1	1	0		Para SNA = 1
	11]	11_	1_	0	1	
	10	1J	0	0		

D0 = SNA X2 $\overline{X1}$ + X2 $\overline{X0}$ + RAQ $\overline{X0}$ + X1 $\overline{X0}$

X1	X0					
RAQ X2		00	01	11	10	
	00	0	1	0	1	
	01	0	0	0	0	Para SNA = 0 ou SNA = 1
	11	0	Ω	0	0	
	10	0	[1]	0	1	

 $\mathbf{MD} = \overline{X2} \, \overline{X1} \, X0 + \overline{X2} \, X1 \, \overline{X0}$

 $\mathbf{ME} = X2 \overline{X1} \overline{X0} + \overline{X2} X1 X0$

X1 X0					
RAQ X2	00	01	11	10	_
0	0 0	0	0	0	
0	1 0	1	0	1	Para SNA = 0 ou SNA = 1
1	1 0		0		
1	0 0	0	0	0	

 $\mathbf{BA} = X2 \ \overline{X1} \ X0 + X2 \ X1 \ \overline{X0}$

 $MC = X2 X1 \overline{X0}$

					X1 X0	_
	10	11	01	00	AQ X2	RAQ
	0	0	0	0	00	
Para SNA = 0 ou SNA = 1	0	[1]	0	0	01	
	0		0	0	11	
	0	0	0	0	10	

LC = X2 X1 X0

Com os procedimentos anteriores concluídos, foi possível a construção dos logigramas abaixo.

Logigrama do Módulo de Controle da Água

Logigrama do Módulo de Controle da Lavagem

Por fim, foi possível elaborar o logigrama do **sistema completo de controle da máquina de lavar**:

Logigrama do Sistema de Controle da Máquina de Lavar

