Baher S. Salama

May 28, 2013

Outline

- Overview
- Kripke Structures
- Temporal Logics (CTL*, CTL, LTL)
- Model Checking Problem
- Büchi Automata
- Solution algorithm
- State explosion problem
- Model-checking in practice

• An automated technique for formal software verification

- An automated technique for formal software verification
- Introduced in 1981 by Clarke and Emerson (USA) and Sifakis (France)

- An automated technique for formal software verification
- Introduced in 1981 by Clarke and Emerson (USA) and Sifakis (France)
- Uses temporal logic to reason about the correctness of a system

- An automated technique for formal software verification
- Introduced in 1981 by Clarke and Emerson (USA) and Sifakis (France)
- Uses temporal logic to reason about the correctness of a system
- Works with finite-state concurrent system.

• Advantages over other formal methods:

- Advantages over other formal methods:
 - Requires minimal human intervention (and less experience)

- Advantages over other formal methods:
 - Requires minimal human intervention (and less experience)
 - Applies to systems with realistic properties (concurrent interactive/event-based systems)

- Advantages over other formal methods:
 - Requires minimal human intervention (and less experience)
 - Applies to systems with realistic properties (concurrent interactive/event-based systems)
 - Not restricted to input-processing-output paradigm.

- Advantages over other formal methods:
 - Requires minimal human intervention (and less experience)
 - Applies to systems with realistic properties (concurrent interactive/event-based systems)
 - Not restricted to input-processing-output paradigm.
 - Produces a counter-example, in case of failure.

- Advantages over other formal methods:
 - Requires minimal human intervention (and less experience)
 - Applies to systems with realistic properties (concurrent interactive/event-based systems)
 - Not restricted to input-processing-output paradigm.
 - Produces a counter-example, in case of failure.
- Advantages over testing/simulation techniques:

- Advantages over other formal methods:
 - Requires minimal human intervention (and less experience)
 - Applies to systems with realistic properties (concurrent interactive/event-based systems)
 - Not restricted to input-processing-output paradigm.
 - Produces a counter-example, in case of failure.
- Advantages over testing/simulation techniques:
 - Testing cannot cover all the possible cases.

Modeling
 Converting the system to a formalism accepted by the model checker. (Kripke Structure)

- Modeling
 Converting the system to a formalism accepted by the model checker. (Kripke Structure)
- Specification
 Specifying the desired properties in a formal language.
 (Temporal Logic)

- Modeling
 Converting the system to a formalism accepted by the model checker. (Kripke Structure)
- Specification
 Specifying the desired properties in a formal language.
 (Temporal Logic)
- Verification Running the model checking algorithm.

- Modeling
 Converting the system to a formalism accepted by the model checker. (Kripke Structure)
- Specification
 Specifying the desired properties in a formal language.
 (Temporal Logic)
- Verification Running the model checking algorithm.
- 4 Analysis

- Modeling
 Converting the system to a formalism accepted by the model checker. (Kripke Structure)
- Specification
 Specifying the desired properties in a formal language.
 (Temporal Logic)
- Verification Running the model checking algorithm.
- 4 Analysis
 - If the result is **yes**, no analysis is required.

- Modeling
 Converting the system to a formalism accepted by the model checker. (Kripke Structure)
- Specification
 Specifying the desired properties in a formal language.
 (Temporal Logic)
- Verification Running the model checking algorithm.
- 4 Analysis
 - If the result is **yes**, no analysis is required.
 - If the result is no, counter-example needs to be analyzed to discover the source of the bug.

Kripke Structure

A formalism for specifying the possible states of a system and their transition relations.

Definition

A *Kripke Structure M* over a set of atomic propositions *AP* is a 4-tuple:

$$M = \langle S, S_0, R, L \rangle$$

where:

- ① *S* is a finite set of states.
- 2 $S_0 \subseteq S$ is the set of starting states.
- **3** $R \subseteq S \times S$ is a transition relation.
- **4** $L: S \to \mathcal{P}(AP)$ is function that labels each state with the set of propositions that are true in that state.

Alternative definition for $L: S \to (AP \to \{\top, \bot\})$

Kripke Structure Example

Define Kripke Structure M_1 over the atomic propositions $AP = \{P, Q, R\}$ as follows:

$$M_1 = \langle \{s_1, s_2, s_3\}, \{s_1\}, R_1, L_1 \rangle$$

where:

- $R_1 = \{(s_1, s_2), (s_2, s_1), (s_1, s_3), (s_2, s_3), (s_3, s_3)\}$
- $L_1 = \{(s_1 \to \{P,Q\}), (s_2 \to \{Q,R\}), (s_3 \to \{R\})\}$

Paths

Definition (Path)

A path π in a Kripke Structure $M = \langle S, S_0, R, L \rangle$ is an infinite sequence of states s_0, s_1, \ldots such that for each $i \geq 0$, $(s_i, s_{i+1}) \in R$.

- The notation π^i refers to the subsequence of π starting at s_i (i.e. s_i, s_{i+1}, \ldots)
- Kripke Structure unwinding

• Temporal logics: logics of time

- Temporal logics: logics of time
- Two major classes of temporal logics:

- Temporal logics: logics of time
- Two major classes of temporal logics:
 - First-order: times are treated as first-order objects E.g.: Situation Calculus, Interval Calculus

- Temporal logics: logics of time
- Two major classes of temporal logics:
 - First-order: times are treated as first-order objects E.g.: Situation Calculus, Interval Calculus
 - Modal: uses states or possible worlds

- Temporal logics: logics of time
- Two major classes of temporal logics:
 - First-order: times are treated as first-order objects E.g.: Situation Calculus, Interval Calculus
 - Modal: uses states or possible worlds
- In model-checking, temporal modal logics are used to specify the desirable properties of the system.

- Temporal logics: logics of time
- Two major classes of temporal logics:
 - First-order: times are treated as first-order objects E.g.: Situation Calculus, Interval Calculus
 - Modal: uses states or possible worlds
- In model-checking, temporal modal logics are used to specify the desirable properties of the system.
- Commonly used TLs are CTL*, CTL, and LTL.

- Temporal logics: logics of time
- Two major classes of temporal logics:
 - First-order: times are treated as first-order objects E.g.: Situation Calculus, Interval Calculus
 - Modal: uses states or possible worlds
- In model-checking, temporal modal logics are used to specify the desirable properties of the system.
- Commonly used TLs are CTL*, CTL, and LTL.
- LTL is a linear-time logic

- Temporal logics: logics of time
- Two major classes of temporal logics:
 - First-order: times are treated as first-order objects E.g.: Situation Calculus, Interval Calculus
 - 2 Modal: uses states or possible worlds
- In model-checking, temporal modal logics are used to specify the desirable properties of the system.
- Commonly used TLs are CTL*, CTL, and LTL.
- LTL is a linear-time logic
- CTL and CTL* are branching-time logics

CTL*

- stands for "Computational Tree Logic*"
- is a superset of LTL and CTL.
- CTL* has 2 types of formulas:
 - Path formulas: specify properties of a given path.
 - 2 State formulas: specify properties of a given state.

CTL* Path Operators

- **X** *f* ("Next"): The property *f* holds in the *next state* of the given path.
- **F** *f* ("future"): The property *f* holds *finally* (eventually).
- **G** *f* ("globally"): The property *f* holds *globally* (in all future states of the path).
- f U g ("until"): Property f must hold until g holds. g is required to become true eventually.
- fRg ("release"): Property g must hold up-to and including the first state in which f holds. g is released by f.
- Examples: PUQ, PRQ.

CTL* Syntax

- Given a set of atomic propositions AP,
- the syntax of **state formulas** is defined as follows:
 - every proposition $p \in AP$ is a state formula. (Holds if p is true in the given state)
 - ② If f and g are state formulas, then $\neg f$, $f \land g$, $f \lor g$ are state formulas.
 - 3 If f is a path formula, the Af and Ef are state formulas.
- A and E are path quantifiers.
- The syntax of **path formulas** is defined as follows:
 - If f is a state formula then f is also a path formula. (Holds if f is true in the first state of the path)
 - ② If f and g are path formulas then $\neg f$, $f \land g$, $f \lor g$.
 - 3 If f and g are path formulas then X f, F f, G f, f U g, and f R g.

CTL* Formal Semantics

- CTL* semantics are defined in terms of a Kripke structure.
- Given a Kripke structure $M = \langle S, S_0, R, L \rangle$, a state s in M and a state formula f, the notation:

$$M, s \models f$$

means that f in true in M at state s.

• Given a path π through M, and a path formula g, the notation:

$$M, \pi \models g$$

means that g is true in M over path π .

• Also referred to as M, s models f, or M, s satisfies f.

CTL* Formal Semantics

Given a Kripke structure $M = \langle S, S_0, R, L \rangle$. Let $p \in AP$ be an atomic proposition, f_1 and f_2 be state formulas, g_1 and g_2 be path formulas:

- $M, s \models \neg f_1 \text{ iff } M, s \not\models f_1$
- $M, s \models f_1 \lor f_2 \text{ iff } M, s \models f_1 \text{ or } M, s \models f_2.$
- **5** $M, s \models Eg_1$ iff there is a path π starting at s such that $M, \pi \models g_1$.
- **1** $M, s \models Ag_1$ iff for every path π starting at $s, M, \pi \models g_1$.

CTL* Formal Semantics

Given a Kripke structure $M = \langle S, S_0, R, L \rangle$. Let $p \in AP$ be an atomic proposition, f_1 and f_2 be state formulas, g_1 and g_2 be path formulas:

- **1** $M, \pi \models f_1$ iff s is the first state in π and $M, s \models f_1$.
- $M, \pi \models \neg g_1 \text{ iff } M, \pi \not\models g_1$

- **6** $M, \pi \models \mathbf{F} g_1$ iff there exists a $k \geq 0$ such that $M, \pi^k \models g_1$.
- $M, \pi \models G g_1 \text{ iff for all } k \geq 0, M, \pi^k \models g_1.$
- $M, \pi \models g_1 \cup g_2$ iff there exists a $k \ge 0$ such that $M, \pi^k \models g_2$ and for all $0 \le i < k$, $M, \pi^i \models g_1$.
- $M, \pi \models g_1 \mathbb{R} g_2$ iff for all $j \ge 0$, if for every $i < j M, \pi^i \not\models g_1$ then $M, \pi^j \models g_2$.

CTL* Examples

Examples:

- $M, s \models \mathsf{EF} p$
- $M, s \models AF p$
- $M, s \models \mathbf{EG} p$
- $M, s \models AG p$

LTL

- stands for "Linear-Time Logic"
- is a subset of CTL*
- all formulas are (implicitly) universally quantified
- no explicit path quantifiers are used in state formulas (i.e. all state formulas are atomic)
- Provides operators for describing events along a *single* path.
- Example: FG p
 At some point in the future, all the following states will have the property p.

CTL

- stands for "Computational-Tree Logic"
- subset CTL* where only state formulas are allowed.
- every temporal operator (F, G, X, U, R) must be quantified.
- Example: EF AG p
- CTL operators:
 - AX and EX
 - AF and EF
 - 3 AG and EG
 - All and Ell
 - 4 AU and EU
 - AR and ER

The Model Checking Problem

 Using the previous definitions, the Model-Checking problem can be defined as follows:

$$M \models \phi$$

- Given:
 - 1 a finite model M represented as a Kripke structure, and
 - 2 a specification formula ϕ specified in TL, check whether the model satisfies the given formula.

Frequently-Used Properties

• Safety: "Something bad will never happen"

$$M \models \mathbf{G} \neg p$$

• Liveness: "Something good will eventually happen"

$$M \models \mathbf{F} p$$

Finite State Machines

Definition (Finite State Machine)

A Finite State Machine (FSM) ${\cal A}$ is defined as a 5-tuple:

$$\mathcal{A} = \langle Q, \Sigma, \Delta, Q_0, F \rangle$$

where:

- Q is a finite set of states,
- Σ is a finite alphabet,
- $\Delta \subseteq Q \times \Sigma \times Q$ is a transition relation,
- $Q_0 \subseteq Q$ is a set of *initial states*,
- $F \subset Q$ is a set of *final states*.

FSM Acceptance

- A FSM accepts a word $w \in \Sigma^*$ if there is a sequence of states s_0, s_1, \ldots, s_n such that:
 - **1** $s_0 \in Q_0$,
 - \mathbf{o} $s_n \in F$,
 - **③** for each $1 \le i \le n$, $(s_{i-1}, w_i, s_i) \in \Delta$, where w_i is the *i*-th character of w.
- The language of a FSM \mathcal{A} , denoted $\mathcal{L}(\mathcal{A})$, is the set of all words accepted by \mathcal{A} .

FSM Example

Example:

$$\mathcal{A}_1 = \langle \{s_0, s_1\}, \{\mathtt{a}, \mathtt{b}\}, \Delta, \{s_0\}, \{s_1\} \rangle$$

where: $\Delta = \{(s_0, b, s_0), (s_0, a, s_1), (s_1, a, s_1), (s_1, b, s_0)\}$

This FSM accepts all words that end with an a.

Büchi Automata

- A Büchi Automaton is a FSM that recognizes *infinite* words.
- This concept is called ω -acceptance.

Definition (Büchi Automaton)

A Büchi Automaton \mathcal{B} is defined as a 5-tuple:

$$\mathcal{B} = \langle \textit{Q}, \Sigma, \Delta, \textit{Q}_0, \textit{F} \rangle$$

where:

- Q is a finite set of states,
- Σ is a finite alphabet,
- $\Delta \subseteq Q \times \Sigma \times Q$ is a transition relation,
- $Q_0 \subseteq Q$ is a set of *initial states*,
- $F \subseteq Q$ is a set of *final states*.

Büchi Automaton Acceptance (ω -acceptance)

- A Büchi Automaton has a finite number of states.
- However, it recognizes infinite words.
- Therefore, some of the states have to be visited infinitely many times.
- A Büchi Automaton accepts a word w if there is an infinite path $\rho = s_0, s_1, ...$ such that:

 - 2 For all $i \geq 1$, (s_{i-1}, w_i, s_i) ,
 - **3** If $inf(\rho)$ denotes the set of states visited *infinitely-many* times in ρ , then $inf(\rho) \cap F \neq \emptyset$.
- A Büchi Automaton accepts a word if at least one of the final states is visited infinitely-many times.
- The language of a Büchi Automaton \mathcal{B} , denoted $\mathcal{L}(\mathcal{B})$ is the set of all (infinite) words it accepts.
- Note that $\mathcal{L}(\mathcal{B}) \subseteq \Sigma^{\omega}$, where Σ^{ω} is the set of infinite words over Σ .

Büchi Automaton Example

The following Büchi Automaton accepts all words that have infinitely-many a's:

- For example, it accepts the word $(ab)^{\omega} = ababab...$
- In general, it accepts words described by the follows ω -regular expression $(b^*a)^{\omega}$.

From Kripke to Büchi

Convert a Kripke structure $M = \langle S, S_0, R, L \rangle$ over atomic propositions AP to a Büchi automaton $\mathcal{B} = \langle Q, \Sigma, \Delta, Q_0, F \rangle$ such that:

- **1** $Q = S \cup \{i\},$
- ② $\Sigma = \mathcal{P}(AP)$, (i.e. each transition is labeled with a subset of AP)
- Same transitions as the Kripke structure in addition to:
 - Transitions going from i to each of the start states in S_0 .
 - Each transition is labeled with the set of predicates of the target state.
- **4** $Q_0 = \{i\}$

The resulting Büchi Automaton accepts words equivalent to possible state sequences in the Kripke structure.

From Kripke to Büchi (Example)

Example:

Convert the following Kripke structure, defined over $AP = \{P, Q, R\}$, to a Büchi automaton:

Modeling LTL Properties with Büchi Automata

- Every LTL formula over AP can be modeled as a Büchi automaton with alphabet $\Sigma = \mathcal{P}(AP)$.
- The language of the Büchi automaton is the set of *paths* that *satisfy* the LTL formula.
- Examples:

LTL Model Checking with Büchi Automata

Given a model M represented as a Kripke structure, and an LTL formula ϕ , the following algorithm decides whether $M \models \phi$:

- **1** Convert M to a Büchi Automaton \mathcal{B}_1 .
- ② Construct a Büchi Automaton \mathcal{B}_2 equivalent to the *negation* of ϕ $(\neg \phi)$.
- **3** Construct a Büchi Automaton \mathcal{B}_3 that recognizes the language $\mathcal{L}(\mathcal{B}_3) = \mathcal{L}(\mathcal{B}_1) \cap \mathcal{L}(\mathcal{B}_2)$, by calculating the cross-product for $\mathcal{B}_1 \times \mathcal{B}_2$.
- **4** Check the language of \mathcal{B}_3 for emptiness:
 - If the language is empty, then ϕ holds in M.
 - If not, then ϕ does not hold in M. Any word $w \in \mathcal{L}(\mathcal{B}_3)$ is a counter-example.

Emptiness Check for Büchi Automata

Given a Büchi Automaton \mathcal{B}_3 , the following algorithm determines whether its language is empty.

- **1** Determine the *strongly-connected components* (SCC) in \mathcal{B}_3 .
- ② If there is a *reachable*, *non-trivial* strongly-connected component that *contains a final state*, then the language is *not* empty. Otherwise, the language is empty.

Notes:

- A *trivial* SCC, is one that contains only 1 state without a self-transition.
- A reachable SCC, is one that can be reached from a start state.

Time Complexity of Model Checking

- There exist several model checking algorithms.
- The best ones currently have the following upper-bound time-complexities for a formula ϕ and model M:
 - LTL: $O(|M| \cdot 2^{|\phi|})$ • CTL: $O(|M| \cdot |\phi|)$ • CTL*: $O(|M| \cdot 2^{|\phi|})$
 - |M| = n + m, where n in the no. of states, and m is the no. of transitions.
- The following lower-bounds have also been proven for model-checking:
 - LTL: PSPACE-Complete
 - CTL: P-Complete
 - CTL*: PSPACE-Complete

• One of the major-challenges facing model checking.

- One of the major-challenges facing model checking.
- Refers to the exponential increase in the number of possible states with processes and data.

- One of the major-challenges facing model checking.
- Refers to the exponential increase in the number of possible states with processes and data.
- A system with n asynchronous processes, each having m states has up-to mⁿ states.

- One of the major-challenges facing model checking.
- Refers to the exponential increase in the number of possible states with processes and data.
- A system with n asynchronous processes, each having m states has up-to m^n states.
- State transition system for n-bits of data has 2^n states.

- One of the major-challenges facing model checking.
- Refers to the exponential increase in the number of possible states with processes and data.
- A system with n asynchronous processes, each having m states has up-to mⁿ states.
- State transition system for n-bits of data has 2^n states.
- A lot of research has been (and is being) done on the state-explosion problem.

- One of the major-challenges facing model checking.
- Refers to the exponential increase in the number of possible states with processes and data.
- A system with n asynchronous processes, each having m states has up-to m^n states.
- State transition system for n-bits of data has 2^n states.
- A lot of research has been (and is being) done on the state-explosion problem.
- The following are the major results:

- One of the major-challenges facing model checking.
- Refers to the exponential increase in the number of possible states with processes and data.
- A system with n asynchronous processes, each having m states has up-to mⁿ states.
- State transition system for n-bits of data has 2^n states.
- A lot of research has been (and is being) done on the state-explosion problem.
- The following are the major results:
 - \bullet Ordered binary decision diagrams (OBDDs): Works on synchronous systems and has been used for systems with up-to 10^{120} states.

- One of the major-challenges facing model checking.
- Refers to the exponential increase in the number of possible states with processes and data.
- A system with n asynchronous processes, each having m states has up-to m^n states.
- State transition system for n-bits of data has 2^n states.
- A lot of research has been (and is being) done on the state-explosion problem.
- The following are the major results:
 - \bullet Ordered binary decision diagrams (OBDDs): Works on synchronous systems and has been used for systems with up-to 10^{120} states.
 - Partial order reduction: Works on asynchronous systems and exploits certain mutual-independence properties of parallel processes.

SPIN and Promela

- LTL model checker.
- SPIN stands for "Simple Promela Interpreter"
- Model is specified in Promela
- Promela stands for "Process Meta Language"
- Supports parallel synchronous or asynchronous processes that communicate using global variables or message passing.

Structure of a Promela Model Specification

- A Promela specification consists of:
 - type declarations
 - channel declarations
 - variable declarations
 - process declarations
 - Optionally: init process
- since the model needs to be finite, data, channels and processes must be bounded.

Process Declaration in Promela

- A process is declared using the proctype keyword.
- Process declaration consists of:
 - process name
 - Iist of parameters
 - local variable declaration
 - body

Promela Statements

- Promela statements can be either executable or blocked
- A blocked statement blocks the execution until the statement becomes unblocked
- statements:
 - skip: always executable
 - assert(<expr>): asserts that <expr> should always be true. always executable.
 - expression: executable if not zero.
 - assignment: always executable.
 - if:: fi: Provides non-deterministic choice. Executable if at least one choice is executable.
 - do :: od: Like if but repeats. Executable if at least one choice is executable.
 - break: Exits a do statement. Always executable.

Mutual Exclusion Problem

- Organizing access to a shared resource such that:
 - **1** At most 1 process uses the resource at any given time.
 - Every interested process can eventually get access to the resource.
- The program part that accesses a shared resource is called the *critical region*.

Phony Mutual Exclusion Algorithm

```
int flag = 0;

void enter_critical() {
    while(flag != 0);
    flag = 1;
    critical_region();
    flag = 0;
}
```

• Flaw: If process 2 reads the flag before process 1 sets it to 1, both processes will enter critical region at the same time.

Using SPIN to Discover the Bug

References

- Clarke, Edmund M., Orna Grumberg, and Doron Peled. *Model checking*. The MIT press, 1999.
- Clarke, Edmund M., E. Allen Emerson, and Joseph Sifakis. "Model checking: algorithmic verification and debugging." *Communications of the ACM* 52.11 (2009): 74-84.
- Holzmann, Gerard J. "The model checker SPIN." Software Engineering, IEEE Transactions on 23.5 (1997): 279-295.

Thank you