DÉRIVÉE D'UNE FONCTION

DÉRIVÉE

Définition

Définition 1 Soient f une fonction définie sur un intervalle I et $a \in I$. f est dérivable en a si et seulement si

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = l$$

est finie, ou encore $\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = l$ est finie. Le nombre l est appelé nombre derivé de la fonction f en a et est noté f'(a).

1. Le nombre $\frac{f(x) - f(a)}{x - a}$ est appelé taux d'accroissement de f entre Remarque 1 a et x.

2. Si A(a,f(a)) et M(a+h,f(a+h)), le quotient $\frac{f(a+h)-f(a)}{h}$ est le coefficient directeur de la droite (AM).

Définition 2 On dit qu'une fonction f est dérivable sur un intervalle I si f est dérivable en tout point de I.

La fonction dérivee de f sur I est la fonction f', qui à tout a dans I, associe f'(a).

Tangente et approximation affine au voisinage de a

Soit C_f la courbe représentative de la fonction f dans un repère orthonormé. Une équation de la tangente T à C_f au point A d'abscisse a est :

$$y = f'(a)(x - a) + f(a).$$

Proposition 1 Soient I un intervalle ouvert, $a \in I$ et $f: I \to \mathbb{R}$ une fonction.

- 1. Si f est dérivable en a alors f est continue en a.
- 2. Si f est dérivable sur I alors f est continue sur I.

1 IONISX