

PROGETTO DI CALCOLATORI ELETTRONICI

Linguaggio→MIPS

Traccia scelta→2

Anno accademico 2019-2020

Mattia Giudici 1065452

Andrea Trapletti 1066781

.data		#0X10010000 cella di default
IN_OUT: .half 0		#imposto i nostri 16 bit dell'IN_OUT a
.text		#salvo nei registri s0, s1, s2 i valori corrispondenti ai cicli che il programma deve compiere per corrispondere alle nostre velocità standard.
	li \$s0, 5000000	#70 km/h v= (70/3.6) m/s= 19.4 m/s> t=s/v= 0.05 s> VAL=(t*fclock)/5 = 5000000 (5 sono i passi del ciclo),
		#considero le istruzioni precedenti al ciclo trascurabili, essendo troppo poche per influenzare i tempi
	li \$s1, 4500000	#80km/h v = (80/3.6) m/s=22.2m/s> t=s/v=0.045s> VAL=(t*fclock)/5= 4500000
	li \$s2, 4000000	#90km/h v = (90/3.6) m/s=25m/s> t=s/v=0.04s> VAL=(t*fclock)/5= 4000000
inizio:	add \$s3, \$zero, \$zero	#setto la variabile che rappresenta il numero di cicli del passaggio della macchina a 0.
	la \$s6, IN_OUT	#salvo l'indirizzo della cella IN_OUT nel registro s6
	li \$s5,4096	#(4096 = 0x1000) inserisco nel registro s5, il numero con il 12 bit a 1, la mia Mask
passo1:	Ih \$s4, 0(\$s6)	#controllo con il registro s4 il contenuto della cella in memoria puntata da s6, il mio IN_OUT
		#settare adesso (quindi solo dopo la Ih precedente) il bit a 1 del sensore, immaginando che la macchina stia passando
	and \$t1, \$s4, \$s5	#controllo se la MASK e la cella hanno gli stessi bit corrispondenti, indicando il passaggio della macchina al primo sensore
	bne \$t1, \$s5, passo1	
	li \$s5, 12288	#(12288= 0x3000)setto ad 1 il dodicesimo e il tredicesimo bit della Mask (i bit dei sensori)
passo2:	Ih \$s4, 0(\$s6)	#stesso controllo di prima anche sul secondo sensore
		#settare adesso il bit a 1 del sensore (senza spegnere il bit del primo sensore!) immaginando che la macchina stia passando
	and \$t1, \$s4, \$s5	#confronto Mask e cella verifico se la macchina è passata dal secondo sensore
	addi \$s3, \$s3, 1	#ciclo fino a quando il confronto non si verifica, ad ogni ciclo aumento il contatore di un unità (registro s3).
	beq \$s3, 0xffffffff, reset	
	bne \$t1, \$s5, passo2	
	sltu \$t0, \$s0, \$s3	#verifico che il numero di cicli (il tempo) sia minore o maggiore rispetto a quelli a 70km/h, uso sltu per evitare che si vada nel range dei numeri negativi.
	bne \$t0, \$zero, reset	#se vengono compiuti più cicli quindi una velocità minore, salto a reset, per poi poter tornare a controllare altre vetture
İ	li \$t9, 125000000	#eseguo un ciclo per passare i 0.5secondi, per evitare di dover eseguire il seguente ciclo troppe volte,

loop:	addi \$t9, \$t9, -1	#si consiglia di settare manualmente il registro t9. val=(t * fclock)/2=125000000
	bne \$t9, \$zero, loop	
	slt \$t0, \$s1, \$s3	#verifico, come prima, se il numero dei cicli, quindi il tempo di passaggio della vettura è maggiore di 80 (velocità compresa tra 70 e 80)
	beq \$t0, \$zero, ricerca2	
	li \$s5, 268513538	#(268513538=0x10013102)in caso il tempo sia compreso tra 70 e 80, setto l'IN_OUT attivando il bit in posizione 8,
	sh \$s5, 0(\$s6)	# attivo il bit in posizione 1 della cella, indicando lo scatto della fotocamera, salvandola prima in un registro s5 e poi copiando i bit con una sh.
	j fine	#salto a fine
ricerca	2:slt \$t0, \$s2, \$s3	#verifico che sia compresa tra 80 e 90, come ho fatto in precedenza
	beq \$t0, \$zero, ricerca3	
	li \$s5, 268513794	#(268513794=0x10013202) in caso il tempo sia compreso tra 80 e 90, setto l'IN_OUT accendendo il bit in posizione 9,
	sh \$s5, 0(\$s6)	#attivo il bit in posizione 1 della cella, indicando lo scatto della fotocamera, salvandola prima in un registro s5 e poi copiando i bit con una sh.
	j fine	#salto a fine
ricerca	3:li \$s5, 268514050	#(268514050=0x10013302)i 2 casi precedenti non sono verificati, si entra in automatico nel caso della velocità maggiore di 90
	sh \$s5, 0(\$s6)	
fine:	li \$t9, 25000000	#aspettiamo 0.1 secondi, tempo di scatto della fotocamera. val=(txfck)/2= 25000000
loop2:	addi \$t9, \$t9, -1	
	bne \$t9, \$zero, loop2	
	li \$s5, -16	#(-16=0x11111100), preparo una maschera per rimettere il bit 1 della cella a 0
	Ih \$s4, 0(\$s6)	#leggo e salvo in s4 i bit della cella IN_OUT
	and \$t1, \$s5, \$s4	#rimetto il primo bit della cella a 0 facendo una "and" tra il valore della Mask e quello appena letto e salvato in s4,
	sh \$t1, 0(\$s6)	#così da indicare il completamento dello scatto. Metto i nuovi bit (salvati a t1) nella cella IN_OUT tramite una sh
reset:	li \$t1, 0	#setto a 0 tutta la IN_OUT, così da poter tornare a inizio per poi leggere il tempo di una nuova vettura,
	sh \$t1, 0(\$s6)	#salvando in t1 il valore a 0 e poi andandolo a mettere in IN_OUT
	j inizio	#salto a inizio, controllo la prossima vettura