

Измерение вращательной и колебательной температуры в газовом разряде по спектру молекулы N2

Абдрахимов Даниил Крохалев Олег 643 гр Цель данной работы - оценить вращательные и колебательные температуры различных частей газового разряда, а так же проверить наличие зависимостей этих температур от тока и давления.

1. Вступление

Энергия молекул есть сумма кинетических энергий движения составных частей друг относительно друга, а также энергий их взаимодействия. Очевидно, они оказывают влияние друг на друга. В квантовой теории описания атома в качестве первого приближения положено покоящееся ядро. Описание его электронной конфигурации таким образом также зафиксировано. Поскольку в молекуле много ядер, то описание её электронной конфигурации уже зависит от взаимного расположения ядер, например, в двухатомной молекуле от расстояния между ними. Для соседних электронных, колебательных и вращательных уровней справедливо соотношение:

$$\Delta E_e \gg \Delta E_{vib} \gg \Delta E_{rot}$$

$$10^4 \text{ cm}^{-1} 10^3 \text{ cm}^{-1} 10^0 \text{ cm}^{-1}$$

Для электронно-колебательно-вращательных переходов выполняются правила отбора:

- 1) $\Delta\Lambda = 0, \pm 1$
- 2) мультиплетность 2S + 1 не меняется
- 3) при изменении колебательного квантового числа выполняется принцип Франка-Кондона
- 4) вращательное квантовое число меняется $\Delta J=0,\pm 1,$ причём переход $0\to 0$ запрещён
- 5) для перехода $\Sigma \to \Sigma$ выполняется $\Delta J \neq 0$

Приближение Борна-Оппенгеймера: электронная, колебательная и вращательная энергии независимы;

Принцип Франка-Кондона: электронный переход происходит столь быстро, что межъядерное расстояние не успевает измениться.

$$E_{tot} = E_e + E_{vib} + E_{rot} = E_e + hc\omega_e \left(\nu + 1/2 - \chi_e(\nu + 1/2)^2\right) + hcJ(J+1)\left(B_e - DJ(J+1)\right),$$

где ν - колебательное квантовое число, ω_e - волновое число колебательного перехода, $c M^{-1}$, χ_e - постоянная ангармонизма, $B_e = \frac{h}{8\pi^2 cI}$ - вращательная постоянная, I - момент инерции молекулы, J - вращательное квантовое число, $D = \frac{4B_e^2}{\omega^2}$ - постоянная центробежного растяжения.

Вращательная и колебательная температуры определяются по относительной интенсивности электронно-колебательно-вращательных переходов молекул азота.

Энергетические состояния имеют различную заселённость, вероятности оптических переходов варьируются (из-за правила отбора и взаимного расположения термов). Из-за этого интенсивности колебательных полос и вращательных линий неодинаковы.

Зависимость имеет вид:

$$\int I_{\nu} d\nu = \frac{64\pi^4}{3c^3} \nu_{n'n''\nu'\nu''J'J''}^4 \frac{N_{n'\nu'J'}}{g'} \left| R_{n'n''\nu'\nu''J'J''} \right|^2,$$

где $|R_{n'n''\nu'J''J''}|$ - дипольный момент перехода, $N_{n'\nu'J'}$ - заселённость верхнего уровня, g' - степень вырождения верхнего уровня, $\nu_{n'n''\nu'J''J'}$ - частота перехода.

Зависимость интенсивности линии от колебательных чисел ν' и ν'' определяется заселённостью верхнего уровня $N(\nu')$ и величиной фактора Франка—Кондона., например для больцмановского распределения с колебательной температурой T_{vib} :

$$N' \sim \exp\left[-\frac{G'(\nu)}{T_{vib}}\right]$$

2. Экспериментальная установка

В данной работе источником излучения служит тлеющий разряд в воздухе. Излучение регистрируется через боковую стенку разрядного отсека плазмотрона. Изображение плазмы в масштабе с помощью линзы из фокусируется на входную щель монохроматора МДР-23.В качестве

Рис. 1. Принцип Франка-Кондона: переход осуществляется по вертикали

диспергирующего элемента монохроматора используется дифракционная решетка, имеющая 1200 штрихов на миллиметр. За выходной щелью монохроматора помешается фотоумножитель ФЭУ-100. Конструкция монохроматора позволяет осуществлять сканирование спектра в автоматическом режиме с заданной скоростью. Дифракционная решетка при этом поворачивается с помощью шагового двигателя.

Рис. 2. Принципиальная схема установки

3. Результаты

Рис. 3. Калибровочный график для определения вращательной температуры

Давление ~6700 Па Ток 0,4А Спектр центральной части разряда

Вращательная температура в центре разряда $T_{rot} \sim 1100 K$

	jump	L	I	q	G	x	у
0	0-0	337.12	7.168229	0.45270	1016.7	-20.519572	1468.158845
1	1-2	353.63	1.799945	0.20330	3011.1	-21.292176	4348.158845
2	0-1	357.69	4.819605	0.32910	1016.7	-20.834581	1468.158845
3	3-5	367.15	0.346035	0.09426	6826.0	-22.322598	9857.039711
4	2-4	371.01	0.681553	0.16050	4951.9	-22.218836	7150.758123
5	1-3	375.52	1.240749	0.19900	3011.1	-21.883081	4348.158845

Колебательная температура в центре разряда $T_{vib} \sim 4000 K$

Давление \sim 6700 Па Ток 0,4А Спектр приэлектродной области разряда

Вращательная температура в приэлектродной области разряда $T_{rot} \sim 1000 K$

Таблица пиков:

	jump	L	I	q	G	X	у
0	0-0	337.13	37.871372	0.45270	1016.7	-18.855153	1468.158845
1	1-2	353.66	9.576049	0.20330	3011.1	-19.621006	4348.158845
2	0-1	357.71	25.569057	0.32910	1016.7	-19.166114	1468.158845
3	3-5	367.16	1.076267	0.09426	6826.0	-21.187994	9857.039711
4	2-4	371.02	3.313051	0.16050	4951.9	-20.637693	7150.758123
5	1-3	375.51	7.227425	0.19900	3011.1	-20.120807	4348.158845
6	0-2	380.51	8.905013	0.14620	1016.7	-19.656656	1468.158845

Колебательная температура в приэлектродной области разряда $T_{vib} \sim 3700 K$

Давление \sim 6700 Па Ток 0,4А Спектр разряда полностью

Вращательная температура разряда $T_{rot} \sim 800 K$

	jump	L	I	q	G	X	у
0	0-0	337.12	348.226501	0.45270	1016.7	-16.636377	1468.158845
1	1-2	353.60	90.660759	0.20330	3011.1	-17.372468	4348.158845
2	0-1	357.64	258.866943	0.32910	1016.7	-16.850400	1468.158845
3	3-5	367.12	7.228692	0.09426	6826.0	-19.282999	9857.039711
4	2-4	371.00	28.589985	0.16050	4951.9	-18.482290	7150.758123
5	1-3	375.46	73.213837	0.19900	3011.1	-17.804773	4348.158845
6	0-2	380.44	98.601341	0.14620	1016.7	-17.251449	1468.158845

Колебательная температура разряда $T_{vib} \sim 3350 K$

Давление ~6700 Па Ток 0,5А Спектр центральной области разряда

Вращательная температура в центре разряда $T_{rot} \sim 1200 K$

	jump	L	1	q	G	x	у		
0	0-0	337.14	11.266798	0.4527	1016.7	-20.067607	1468.158845		
1	1-2	353.66	3.102534	0.2033	3011.1	-20.748052	4348.158845		
2	0-1	357.71	7.687943	0.3291	1016.7	-20.367844	1468.158845		
3	2-4	371.02	0.977588	0.1605	4951.9	-21.858229	7150.758123		
4	1-3	375.53	2.319659	0.1990	3011.1	-21.257483	4348.158845		
5	0-2	380.50	2.655177	0.1462	1016.7	-20.866654	1468.158845		
		05А максимум							

Давление $\sim\!6700~\Pi a$ Ток 0,5A Спектр приэлектродной области разряда

13 - 0.35/27/3 log

12 - 11 - 0.9 - 0.8 - 0.7 - 335.00 335.25 335.50 335.75 336.00 336.25 336.50 336.75

Вращательная температура в центре разряда $T_{rot} \sim 1100 K$

	jump	L	1	q	G	x	у
0	0->0	337.14	54.400	0.45270	1016.7	-18.493103	1468.158845
1	2->3	350.02	2.628	0.06345	4951.9	-19.708235	7150.758123
2	1->2	353.69	14.150	0.20330	3011.1	-19.230896	4348.158845
3	0->1	357.72	35.396	0.32910	1016.7	-18.841010	1468.158845
4	3->5	367.23	1.285	0.09426	6826.0	-21.011496	9857.039711
5	2->4	371.08	4.640	0.16050	4951.9	-20.301495	7150.758123
6	1->3	375.54	9.670	0.19900	3011.1	-19.829981	4348.158845
7	0->2	380.51	11.798	0.14620	1016.7	-19.375340	1468.158845

Колебательная температура приэлектродной области разряда T_{vib} ~3550K

Давление $\sim\!6700~\Pi a$ Ток 0,5A Спектр разряда полностью

Вращательная температура разряда $T_{rot} \sim 950 K$

	jump	L	I	q	G	x	у
0	0 -> 0	337.08	423.390	0.45270	1016.7	-16.440462	1468.158845
1	1->2	353.64	106.990	0.20330	3011.1	-17.207310	4348.158845
2	0->1	357.63	300.360	0.32910	1016.7	-16.701620	1468.158845
3	3->5	367.20	6.440	0.09426	6826.0	-19.399400	9857.039711
4	2->4	371.01	33.730	0.16050	4951.9	-18.317067	7150.758123
5	1->3	375.49	82.600	0.19900	3011.1	-17.684467	4348.158845
6	0->2	380.44	114.367	0.14620	1016.7	-17.103122	1468.158845

Колебательная температура разряда $T_{vib} \sim 3350 K$

Давление ~6640 Па Ток 0,4А

Вращательная температура разряда $T_{rot} \sim 1500 K$

Таблица пиков:

	jump	L	I	q	G	x	у
0	0->0	337.12	6.22300	0.4527	1016.7	-20.660978	1468.158845
1	1->2	353.65	1.52600	0.2033	3011.1	-21.457508	4348.158845
2	0->1	357.71	3.98667	0.3291	1016.7	-21.024540	1468.158845
3	1->3	375.49	1.07890	0.1990	3011.1	-22.022535	4348.158845
4	0->2	380.49	1.41400	0.1462	1016.7	-21.496637	1468.158845

Колебательная температура разряда $T_{vib} \sim 2200 K$

Давление ~6640 Па Ток 0,4А Спектр разряда полностью

Вращательная температура разряда $T_{rot} \sim 900 K$

	jump	L	I	q	G	x	у
0	0->0	337.08	319.85800	0.45270	1016.7	-16.720878	1468.158845
1	2->3	350.03	8.49800	0.06345	4951.9	-18.534742	7150.758123
2	1->2	353.61	75.04200	0.20330	3011.1	-17.561658	4348.158845
3	0->1	357.65	228.15065	0.32910	1016.7	-16.976820	1468.158845
4	3->5	367.26	1.56400	0.09426	6826.0	-20.815335	9857.039711
5	2->4	371.04	19.34680	0.16050	4951.9	-18.873251	7150.758123
6	1->3	375.49	56.70000	0.19900	3011.1	-18.060703	4348.158845
7	0->2	380.42	86.33800	0.14620	1016.7	-17.384054	1468.158845

Колебательная температура разряда $T_{vib}\,{\sim}\,2270 K$

4. Вывод

Температуры в центральной области разряда выше, чем в приэлектродных областях. С увеличением тока вращательная температура возрастает, в то время как колебательная падает. То же самое происходит и при повышении давления при неизменном токе.