Abstract Integration (MT version) (sketchy details)

Setting:

- μ a measure (finite or σ -finite) on (S, S)
- Write $\mathcal{H}_+ := \text{set of measurable } h : S \to [0, \infty]$

Basic Theorem There exists a unique map $I: \mathcal{H}_+ \to [0, \infty]$ such that:

(a)
$$I(1_A) = \mu(A), \forall A \in \mathcal{S}$$

(b)
$$I(h_1 + h_2) = I(h_1) + I(h_2), \forall h_i \in \mathcal{H}_+$$

(c)
$$I(ch) = cI(h), \forall h \in \mathcal{H}_+, \forall c \geq 0$$

(d) If
$$o \leq h_n \uparrow h \in \mathcal{H}_+$$
, then $I(h_n) \uparrow I(h) \leq \infty$

Background 1.1

 $h \to \int_{-infty}^{\infty} h(x) dx$ will be the case $S = \mathbb{R}$, $\mu =$ Lebesgue measure. In practice, write

$$I(h) := \int_{S} h d\mu = \int_{S} h(s)\mu(ds) \tag{1.1}$$

$$I(h) := \int_{S} h d\mu = \int_{S} h(s)\mu(ds)$$

$$\int_{A} h d\mu := \int_{S} (h1_{A}) d\mu \quad \text{for } a \in \mathcal{S}$$

$$(1.1)$$

Definite integrals

Figure 1: Area under curve interpretation of definite integral

1.1.2 Steps

- (1) Define $I(1_A) := \mu(A)$
- (2) For simple functions $h = \sum_i c_i 1_{A_i}$, define $I(h) = \sum_i c_i \mu(A_i)$
- (3) For $0 \le h \le m$, constant, can write $h = \lim_n h_n$, h_n simple (old lemma) and define $I(h) := \lim_n I(h_n)$
- (4) For general $h \in \mathcal{H}_+$, set $h_m = \min(h, m)$, so $h_m \uparrow h$. Define $I(h) = \lim_{m \uparrow \infty} I(h_m)$.

Note: Consider

$$h(s) = \begin{cases} \infty, & s \in A \text{where } \mu(A) = 0\\ 0, & s \notin A \end{cases}$$
 (1.3)

Here, $h_m(s) = \min(h(s), m) = m1_A$, $I(h_m) = m \cdot \mu(A) = 0$, $I(h) = \lim_{m \uparrow \infty} I(h_m) = 0$.

Notation (ALMOST EVERYWHERE): $h_1 = h_2$ a.e. means $\{s : h_1(s) \neq h_2(s)\}$ has μ measure = 0.

Notation: $x \in \mathbb{R}$, $x^+ = \max(x, 0)$, $x^- = \max(-x, 0)$, $h^+(s) = (h(s))^+ = \max(h(s), 0)$

 $\Rightarrow x = x^+ - x^-, |x| = x^+ + x^-, |x - y| \le |x| + |y|$ **Definition**: A measurable $h: S \to \bar{\mathbb{R}}$ is *integrable* (w.r.t. μ) if $\int_S |h| d\mu < \infty$. For integrable h, define $I(h) = I(h^+) - I(h^-)$ (but finite)

Lemma: Suppose h_1 , h_2 integrable.

- (1) (LINEARITY): For $c_1, c_2 \in \mathbb{R}$, $h := c_1h_1 + c_2h_2$, then h is integrable and $\int h d\mu =$ $c_1 \int h_1 d\mu + c_2 \int h_2 d\mu$
- (2) If $h_1 = 0$ a.e., then $\int h_1 d\mu = 0$
- (3) If $h_1 > 0$ a.e., then $\int h_1 d\mu > 0$
- (4) If $h_1 \leq h_2$ a.e., then $\int h_1 d\mu \leq \int h_2 d\mu$
- (5) $|\int h d\mu| \leq \int |h| d\mu$

Proof of (5):

$$\left| \int h d\mu \right| = \left| \int h^+ d\mu - \int h^- d\mu \right| \tag{1.4}$$

$$\leq \left| \int h^+ d\mu \right| + \left| \int h^- d\mu \right| \tag{1.5}$$

$$= \int (h^+ + h^-) d\mu \tag{1.6}$$

$$= \int |h| d\mu \tag{1.7}$$

Probability Theory (MT version) 2

Freshman: A r.v. X is a quantity with a range of possible values, the actual values determined somehow by chance. $P(X \le 4)$ is the "chance it turns out that $X \le 4$ "

MT Version: Probability Space (Ω, \mathcal{F}, P) :

- Ω : sample space, states of universe
- \mathcal{F} : events, σ -field on Ω
- *P*: probability measure

Events $A \in \mathcal{F}$ have probability P(A).

Definition: A *random variable* (r.v.) is a measurable function $X : \Omega \to (S, S)$ or often \mathbb{R} .

So for measurable set $B \in \mathcal{S}$, $\{\omega : X(\omega) \in B\}$ is an event in \mathcal{F} and so has a probability $P(\{\omega : X(\omega) \in B\}) = P(X \in B).$

A given RV $X : \Omega \to (S, S)$ has a *distribution* (or *law*) μ defined by $\mu(B) = P(X \in B)$

Pushforward measure: The domain *S* of the RV has a PM obtained by pushing-forwards the PM P on Ω

Figure 2: Pushforward of p.m. P on Ω through X to a p.m. U on S.

Notation by example: \mathbb{R} -valued RVs X, Y, Z. $X^2 + Y^2 \leq 2 + 4a.s.$ means $P(\{\omega :$ $X^2(\omega) + Y^2(\omega) \le Z(\omega) + 4\}) = P(X^2 + Y^2 \le Z + 4) = 1$ Given \mathbb{R} -valued RVs X_n , X, $X_n \to X$ a.s. means $P(\{\omega : X_n(\omega) \to X(\omega) \text{ as } n \to \infty\}) = 0$

Note also: Given arbitrary \mathbb{R} -valued X_n , $n \in \mathbb{N}$, can define $X^* := \limsup_n X_n$, $X^*(\omega) \coloneqq \limsup_n X_n(\omega)$ and X^* is a RV (\limsup of measurable functions are measurable).

Expectation 2.1

The *expectation* of a RV $Y : (\Omega, \mathcal{F}, P) \to \mathbb{R}$ is

$$\mathbb{E}[Y] := \int_{\Omega} Y d\mathbb{P} \tag{2.1}$$

provided $\mathbb{E}|Y| \coloneqq \int_{\Omega} |Y| d\mathbb{P} \le \infty$ ("Y is integrable")

"Change of variable" lemmas 2.2

See Jim Pitman's notes for good explanation.

Figure 3: Functions of random variables h(X) viewed as composition of measurable functions $h \circ X : \Omega \to \mathbb{R}$

Lemma 1: If h(X) is integrable, then $\mathbb{E}h(X) = \int_S h d\mu$ for $\mu =$ distribution of X **Lemma 2**: If ν is a PM on \mathbb{R} with density f, then $\int_{\mathbb{R}} h d\nu = \int_{-\infty}^{\infty} h(x) f(x) dx$ provided his ν -integrable

Proof: Consider the collection of h for which the stated = is true.

- Consider $h = 1_B$, $B \in \mathcal{S}$. LHS = $\mathbb{E}h(X) = 1_{X \in B} = \mu(B) = \int 1_B d\mu = \text{RHS}$
- Consider $h = 1_B, B \subset \mathbb{R}$ LHS = $\int 1_B d\nu = \nu(B) = \int_B f(x) dx$ (definition of density f(x) of ν) = RHS

2.2.1 Steps of sketch proof of Basic Theorem

Both sides of $\cdot = \cdot$ are integrals, so:

- True for 1_B , $\forall B \in \mathcal{S}$
- True for simple functions *h*
- True for bounded measurable *h*
- True for integrable *h*

Text: "Monotone class theorem"

Can combine Lemma 1 and Lemma 2:

Lemma: Suppose RV X is \mathbb{R} -valued, and its distribution has density f. Then $\mathbb{E}h(X) =$ $\int h(x)f(x)dx$ provided h(X) is integrable