Depth-first search COMS20010 2020, Video 4-2

John Lapinskas, University of Bristol

Path-finding

One of the most basic problems in graph theory: Given a graph G and two vertices $x, y \in V(G)$, is there a path from x to y?

E.g. can an enemy attack the base without breaking down a wall?

Often we want to know the **shortest** path from x to y — see next video!

Component-finding

In fact, it's better to ask for something more.

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Input: v_1

Output: $[v_1, v_2, v_3, v_5, v_6, v_7, v_9, v_{10}, v_{11}, v_{12}]$

Component-finding

In fact, it's better to ask for something more.

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Input: v_6

Output: $[v_1, v_2, v_3, v_5, v_6, v_7, v_9, v_{10}, v_{11}, v_{12}]$

Component-finding

In fact, it's better to ask for something more.

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

In other words, we check whether there is a path from x to y for **all** y. Turns out the worst-case running time is the same either way!

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

Input: G, v_1

Output: $[v_1, v_5]$

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

Input: G, v_1

Output: $[v_1, v_5, v_9]$

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

Input: G, v_1

Output: $[v_1, v_5, v_9, v_{10}]$

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

Input: G, v_1

Output: $[v_1, v_5, v_9, v_{10}, v_{11}]$

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

Output: G, V₁

Output: $[v_1, v_5, v_9, v_{10}, v_{11}, v_{12}]$

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

Input: G, v_1

Output: $[v_1, v_5, v_9, v_{10}, v_{11}, v_{12}, v_6]$

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

Input: G, v_1

Output: $[v_1, v_5, v_9, v_{10}, v_{11}, v_{12}, v_6, v_7]$

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

Input: G, v_1

Output: $[v_1, v_5, v_9, v_{10}, v_{11}, v_{12}, v_6, v_7, v_3]$

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

Output: $[v_1, v_5, v_9, v_{10}, v_{11}, v_{12}, v_6, v_7, v_3, v_2]$

Input: A graph G and a vertex $x \in V(G)$.

Output: A list of all vertices in the component of G containing x.

Idea: Think of the graph as like a **maze**: explore greedily until everything looks familiar, then backtrack.

Input: G, v_1

Output: $[v_1, v_5, v_9, v_{10}, v_{11}, v_{12}, v_6, v_7, v_3, v_2]$

The slick way to implement this is to use recursion.

Pseudocode and example

Algorithm: DFS

- 9 Call helper(v).
- 10 Return $[v_i: explored[i] = 1]$ (in some order).

Pseudocode and example

Algorithm: DFS

```
: Graph G = (V, E), vertex v \in V.
  Input
             : List of vertices in v's component.
  Number the vertices of G as v_1, \ldots, v_n.
  Let explored[i] \leftarrow 0 for all i \in [n].
  Procedure helper (v_i)
       if explored[i] = 0 then
             Set explored[i] \leftarrow 1.
5
             for v_i adjacent to v_i do
6
7
                  if explored[j] = 0 then
                       Call helper (v_i).
8
  Call helper(v).
```

Return $[v_i: explored[i] = 1]$ (in some order).

Pseudocode and example


```
Algorithm: DFS
```

```
Input : Graph G = (V, E), vertex v \in V.

Output : List of vertices in v's component.

1 Number the vertices of G as v_1, \ldots, v_n.

2 Let explored[\hat{j}] \leftarrow 0 for all i \in [n].

3 Procedure helper(v_i)

4 | if explored[\hat{j}] = 0 then

5 | Set explored[\hat{j}] \leftarrow 1.

6 | for v_j adjacent to v_i do

7 | if explored[\hat{j}] = 0 then

8 | Call helper(v_j).

9 Call helper(v_j).
```

We assume G is in adjacency list form.

Time analysis: In total there are $\sum_{v \in V} d(v) = O(|E|)$ calls to helper (each vertex only runs lines 5–7 once), and there is O(1) time between calls. So the running time is O(|V| + |E|).

Correctness I: Output is contained in v's component C

Invariant: "When helper is called, if explored[i] = 1 then $v_i \in V(C)$."

Proof by induction. Vacuously true for initial call and second call.

John Lapinskas Video 4-2 6/8

Correctness I: Output is contained in v's component C

Invariant: "When helper is called, if explored[i] = 1 then $v_i \in V(C)$."

Proof by induction. Vacuously true for initial call and second call.

Suppose it holds at the start of some call $helper(v_j)$ from $helper(v_i)$. If v_i is already explored, we're done.

John Lapinskas Video 4-2 6/8

Correctness I: Output is contained in v's component C

Invariant: "When helper is called, if explored[i] = 1 then $v_i \in V(C)$."

Proof by induction. Vacuously true for initial call and second call.

Suppose it holds at the start of some call $helper(v_j)$ from $helper(v_i)$. If v_j is already explored, we're done. If not, we must show $v_j \in V(C)$.

Since we called from $\mathtt{helper}(v_i)$, $\{v_i, v_j\} \in E$ and v_i is explored. By induction there is a path P from v to v_i . Then Pv_iv_j is a walk from v to v_j , which contains a path, so $v_j \in V(C)$.

John Lapinskas Video 4-2 6/8

Let $w \in V(C)$. Then there is a path $P = x_1 \dots x_t$ from v to w.

Let $w \in V(C)$. Then there is a path $P = x_1 \dots x_t$ from v to w.

Claim: Every vertex in *P* is explored.

Proof by induction: We prove x_1, \ldots, x_i are explored for all $i \leq t$.

 x_1 is explored.

Let $w \in V(C)$. Then there is a path $P = x_1 \dots x_t$ from v to w.

Claim: Every vertex in *P* is explored.

Proof by induction: We prove x_1, \ldots, x_i are explored for all $i \leq t$.

 x_1 is explored.

 \checkmark

If x_i is explored, then $helper(x_{i+1})$ will be called from $helper(x_i)$, so x_{i+1} will also be explored (either then or earlier).

Let $w \in V(C)$. Then there is a path $P = x_1 \dots x_t$ from v to w.

Claim: Every vertex in *P* is explored.

Proof by induction: We prove x_1, \ldots, x_i are explored for all $i \leq t$.

 x_1 is explored.

 \checkmark

If x_i is explored, then $helper(x_{i+1})$ will be called from $helper(x_i)$, so x_{i+1} will also be explored (either then or earlier).

Depth-first search trees

Consider the subgraph formed by the edges **traversed** in DFS:

This is an example of a **DFS tree** rooted at v.

Definition: A **DFS tree** *T* of *G* is a rooted tree satisfying:

- V(T) is the vertex set of a component of G;
- If $\{x,y\} \in E(G)$, then x is an ancestor of y in T or vice versa.

Theorem: DFS always gives a DFS tree. (See problem sheet.)

DFS trees can be independently useful! (See problem sheet.)

Depth-first search works for directed graphs too, in exactly the same way. But paths **between** v and w are replaced by paths **from** v **to** w.