МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 52

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ ПРЕПОДАВАТЕЛЬ

кандидат технических наук, доцент		Марковская Н.В.
должность, уч. степень, звание	подпись, дата	инициалы, фамилия

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №1

по курсу: НАДЕЖНОСТЬ ИНФОКОММУНИКАЦИОННЫХ СИСТЕМ

РАБОТУ ВЫПОЛНИЛ

СТУДЕНТ ГР. №	5912		Д.Р. Андаев
		подпись, дата	инициалы, фамилия

1. Цель работы:

Изучить пути решения задачи о определении вероятности связности двух вершин в случайном графе.

2. Исходный граф:

Рис. 1. Исходный случайный граф.

3. Первый этап:

Первый этап лабораторной работы состоит из вывода формулы вероятности существования пути в случайном графе, как функции от р. Для этого мы воспользуемся методом декомпозиции (процедура получения более простых случайных графов на основе одного сложного) и упрощением структуры графа.

Рис. 2. Вывод формулы вероятности существования пути в графе.

Полученный многочлен:

4. Второй этап:

Второй этап заключается в разработке программы вычисления вероятности существования пути в случайном графе.

Особенности программы:

- 1) Граф задается в виде матрицы смежности.
- 2) Программа обладает возможностью изменения топологии случайного графа для множеств ребер и вероятностей.
- 3) Для нахождения пути в графе используется алгоритм Дейкстры.
- 4) Вероятность существования пути в графе получена путем полного перебора всех возможных вариантов случайного граф с учетом вероятности их появления.

5) В программе представлено вычисление вероятности существования пути в графе по формуле из этапа 1.

Результат работы программы:

Рис. 3. Результат работы программы.

5. Проверка:

Критерием правильности выполнения лабораторной работы является совпадение результатов первого и второго этапов. Для этого построим по полученным значениям график зависимости вероятности существования пути в случайном графе от вероятности существования ребра.

Рис. 4. График зависимости для первого этапа.

Рис. 5. График зависимости для второго этапа.

Исходя из полученных графиков, можно сделать вывод о том, что результаты первого и второго этапов лабораторной работы сошлись, а значит лабораторная работа была выполнена верно.

6. Вывод

В ходе выполнения работы, изучили пути решения задачи о определении вероятности связности двух вершин в случайном графе. Рассмотрели метод полного неслучайных графов, который можно получить на основе случайного (второй этап) и метод декомпозиции случайного графа (первый этап). Результаты обоих методов сошлись.