Solution for PS13-1. In each case, the sample space is \mathbb{Z}_n and the probability function is $\Pr[j] = 1/n$ for all $j \in \mathbb{Z}_n$.

- a. $\operatorname{Ex}[Y] = \sum_{j=0}^{n-1} Y(j) \operatorname{Pr}[j] = (1/n) \sum_{j=0}^{n-1} \gcd(j,n) = (1/7) \left(7 + \sum_{j=1}^{6} 1\right) = 13/7.$
- **b.** In this case, gcd(j, 9) equals 9 for one value of j (namely, j = 0), equals 3 for two values of j (namely, j = 3 and j = 6), and equals 1 for the remaining six values of j. Therefore, $Ex[Y] = (1/9)(9 \times 1 + 3 \times 2 + 1 \times 6) = 21/9 = 7/3$.
- c. By similar reasoning, $Ex[Y] = (1/15)(15 \times 1 + 3 \times 4 + 5 \times 2 + 1 \times 8) = 45/15 = 3$.
- **d.** Please solve this yourself. The final answer is 3-2/p.
- e. Please solve this yourself. The final answer is (2-1/p)(2-1/q).

Solution for PS13-3. Let the random variable *X* denote the amount (in dollars) that you win. Then range(*X*) = $\{0, 10^7\}$ and $Pr[X = 10^7] = 1/{\binom{50}{6}}$. Therefore,

$$\operatorname{Ex}[X] = 0 \cdot \Pr[X = 0] + 10^7 \cdot \Pr[X = 10^7] = \frac{10^7}{\binom{50}{6}} \approx 0.63.$$

Since this is below the ticket's price of \$1, the ticket is not worth its price.

Solution (Sketch) for PS13-4.

a. Let X_j be the indicator r.v. for the event " $W_j = 6$." Then $\text{Ex}[X_j] = \Pr[X_j = 1] = \Pr[W_j = 6] = 1/6$. The number of sixes seen is $Y := \sum_{j=1}^{24} X_j$, so by linearity of expectation,

$$\operatorname{Ex}[Y] = \operatorname{Ex}\left[\sum_{j=1}^{24} X_j\right] = \sum_{j=1}^{24} \operatorname{Ex}[X_j] = 4.$$

b. This doesn't affect our answer. Linearity of expectation always holds and has nothing to do with correlation (or independence).

Solution for PS13-6.

a. Let's use the sample space $\{1, 2, 3, 4, 5, 6\}$ for the experiment of rolling the red die. Upon conditioning on the event "*X* is a perfect square," the probability function is as follows:

$$Pr[1] = \frac{1}{2}$$
, $Pr[4] = \frac{1}{2}$, $Pr[2] = Pr[3] = Pr[5] = Pr[6] = 0$.

Therefore, $\operatorname{Ex}[X^2 \mid X \text{ is a perfect square}] = 1^2 \times \frac{1}{2} + 4^2 \times \frac{1}{2} = 17/2$.

b. We compute

$$\operatorname{Ex}[WX] = \operatorname{Ex}[X^2 + XY] = \operatorname{Ex}[X^2] + \operatorname{Ex}[X] \operatorname{Ex}[Y],$$

$$\operatorname{Ex}[W] \operatorname{Ex}[X] = \operatorname{Ex}[X + Y] \operatorname{Ex}[X] = \operatorname{Ex}[X]^2 + \operatorname{Ex}[X] \operatorname{Ex}[Y].$$

The two are unequal because $\text{Ex}[X^2] \neq \text{Ex}[X]^2$, by direct computation.

Solution (Sketch) for PS13-7. Number the pairs of students as pair 1, pair $2, \ldots, pair \binom{n}{2}$ in some manner. Let Y be the number of bonds. Let X_i be the indicator r.v. for the event "pair i forms a bond." Then $\text{Ex}[X_i] = \text{Pr}[X_i = 1] = 1/d$, so

$$\operatorname{Ex}[Y] = \operatorname{Ex}\left[\sum_{i=1}^{\binom{n}{2}} X_i\right] = \sum_{i=1}^{\binom{n}{2}} \operatorname{Ex}[X_i] = \frac{1}{d} \binom{n}{2}.$$

Solution (Sketch) for PS13-9. Let Y be the number of bins that remain empty. Let X_i be the indicator r.v. for the event "bin i remains empty."

Then
$$\text{Ex}[X_i] = \text{Pr}[X_i = 1] = (1 - 1/n)^n$$
, so $\text{Ex}[Y] = \text{Ex}\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n \text{Ex}[X_i] = n(1 - 1/n)^n$.

If you've taken calculus, you know that $\lim_{n\to\infty}(1-1/n)^n=1/e$, so $\mathrm{Ex}[Y]\approx n/e$ for large n.

Solution (Sketch) for PS13-11. Please do this computation. The final answer is $\frac{n^2-1}{3n}$.

Solution (Sketch) for PS13-12. The square of the previous expression, with n = 1000.