A Network-Cognizant Bid-Based Transactive Energy System Design

I. APPENDIX A: PROOF OF PROPOSITION 1

[Proof of Proposition 1]: The market is cleared when the aggregate network-cognizant bid function $\sum_{\psi\in\Psi}p_{\psi}^{n*}(\lambda_H)$ is equal to the offer function $H^*(\lambda_H)$. It can be observed (17) that $H^*(\lambda_H)-\sum_{\psi\in\Psi}p_{\psi}^{n*}(\lambda_H)$ is the subgradient of the dual problem (17). Therefore, this clearing signal λ_H^* , satisfying $H^*(\lambda_H^*)-\sum_{\psi\in\Psi}p_{\psi}^{n*}(\lambda_H^*)=0$, is the optimal dual variable for the dual problem (17). As the strong duality holds, then the optimal dual solution d^* for (16) is equal to the optimal primal solution p^* for (14). Thus, we have:

$$p^* = d^* = \min_{\lambda_H} \max_{\boldsymbol{p}_{\Psi} \in \mathcal{P}_{\Psi}, \underline{H} \leq H \leq \overline{H}} L(\boldsymbol{p}_{\Psi}, H, \lambda_H)$$

$$= \max_{\boldsymbol{p}_{\Psi} \in \mathcal{P}_{\Psi}, \underline{H} \leq H \leq \overline{H}} L(\boldsymbol{p}_{\Psi}, H, \lambda_H^*)$$

$$= \max_{\boldsymbol{p}_{\Psi} \in \mathcal{P}_{\Psi}} \sum_{\psi \in \Psi} [U_{\psi}(p_{\psi}) - \lambda_H^* p_{\psi} S_{base} \Delta t]$$

$$+ \max_{\underline{H} \leq H \leq \overline{H}} \lambda_H^* H S_{base} \Delta t - \mu_g C(H)$$

$$= \sum_{\psi \in \Psi} [U(p_{\psi}^{n*}(\lambda_H^*)) - \lambda_H^* p_{\psi}^{n*}(\lambda_H^*) S_{base} \Delta t]$$

$$+ \lambda_H^* H(\lambda_H^*) S_{base} \Delta t - \mu_g C(H(\lambda_H^*))$$
Plus $H^*(\lambda_H^*) - \sum_{\psi \in \Psi} p_{\psi}^{n*}(\lambda_H^*) = 0$, it follows that:
$$p^* = \sum_{\psi \in \Psi} U(p_{\psi}^{n*}(\lambda_H^*)) - \mu_g C(H(\lambda_H^*))$$
(2)

Thus, $p_{\Psi}^{n*}(\lambda_H^*) = \{p_{\psi}^{n*}(\lambda_H^*) | \psi \in \Psi\}, H(\lambda_H^*)$ are the optimal primal variables for the problem (14) to achieve the social welfare maximization. Q.E.D.

II. APPENDIX B: PROOF OF PROPOSITIONS 2 AND 3

[Proof of Proposition 2]: From $\underline{\lambda}_H = \max\{\lambda_{v_{min}}, \lambda_{\overline{p}}\}$, it follows $\underline{\lambda}_H$ is the minimum discretized λ_H , ensuring there are no violations of both the minimum voltage limits and peak demand limit due to $p_{\Psi}^{d*}(\lambda_H)$. We also know that $\overline{\lambda}_H$ is the maximum discretized λ_H , ensuring there are no violations of maximum voltage limits due to $p_{\Psi}^{d*}(\lambda_H)$.

As $\lambda_H \in [\underline{\lambda}_H, \overline{\lambda}_H]$, there are no violations of the minimum and maximum voltage limits, and peak demand limit due to $p_{\Psi}^{d*}(\lambda_H)$. Thus, we have $p_{\psi}^{n*}(\lambda_H) = p_{\psi}^{d*}(\lambda_H)$, for $\lambda_H \in [\underline{\lambda}_H, \overline{\lambda}_H]$. In addition, (19b) indicates $p_{\psi}^{d*}(\lambda_H)$ is non-increasing as λ_H increases. followed by $p_{\psi}^{d*}(\overline{\lambda}_H) \leq p_{\psi}^{d*}(\underline{\lambda}_H)$. We can say the feasible region for p_{ψ} , satisfying the network constraints, is $[p_{\psi}^{d*}(\overline{\lambda}_H), p_{\psi}^{d*}(\underline{\lambda}_H)]$.

The value of objective function $U_{\psi}(p_{\psi}) - \lambda_H p_{\psi}$ is non-decreasing as $p_{\psi} \in (-\infty, p_{\psi}^{d*}(\lambda_H)]$, and it is non-increasing as $p_{\psi} \in [p_{\psi}^{d*}(\lambda_H), +\infty)$. As $\lambda_H \in [\lambda_0, \underline{\lambda}_H)$, there must be either violations of the minimum voltage limits or peak demand limit due to $p_{\psi}^{d*}(\lambda_H)$. When $\lambda_H < \underline{\lambda}_H$, it leads

to $p_{\Psi}^{d*}(\lambda_H) \geq p_{\Psi}^{d*}(\underline{\lambda}_H)$, indicating this feasible region $[p_{\psi}^{d*}(\bar{\lambda}_H), p_{\psi}^{d*}(\underline{\lambda}_H)] \subseteq (-\infty, p_{\psi}^{d*}(\lambda_H)]$. Thus, we can know that the value of objective function $U_{\psi}(p_{\psi}) - \lambda_H p_{\psi}$ is nondecreasing as $p_{\psi} \in [p_{\psi}^{d*}(\overline{\lambda}_H), p_{\psi}^{d*}(\underline{\lambda}_H)]$. In this case, we can conclude that $p_{\Psi} = \{p_{\psi} = p_{\psi}^{d*}(\underline{\lambda}_H) | \forall \psi \in \Psi\}$ maximizes the objective function in (18b) while satisfying the network constraints as $\lambda_H \in [\lambda_0, \underline{\lambda}_H)$. That is, $\boldsymbol{p}_{\Psi}^{n*}(\lambda_H) = \boldsymbol{p}_{\Psi}^{d*}(\underline{\lambda}_H)$ as $\lambda_H \in [\lambda_0, \underline{\lambda}_H)$. As $\lambda_H \in (\overline{\lambda}_H, \lambda_K]$, there must be violations of the maximum voltage limits due to $p_{\Psi}^{d*}(\lambda_H)$. When $\overline{\lambda}_H < \lambda_H$, it leads to $m{p}_{\Psi}^{d*}(\lambda_H) \leq m{p}_{\Psi}^{d*}(\overline{\lambda}_H)$, indicating this feasible region $[p_{\psi}^{d*}(\overline{\lambda}_H), p_{\psi}^{d*}(\underline{\lambda}_H)] \subseteq [p_{\psi}^{d*}(\lambda_H), +\infty)$. Thus, we can know that the value of objective function $U_{\psi}(p_{\psi}) - \lambda_H p_{\psi}$ is non-increasing as $p_{\psi} \in [p_{\psi}^{d*}(\lambda_H), p_{\psi}^{d*}(\underline{\lambda}_H)]$. In this case, we can conclude that $p_{\Psi} = \{p_{\psi} = p_{\psi}^{d*}(\overline{\lambda}_H) | \forall \psi \in \Psi\}$ maximizes the objective function in (18b) while satisfying the network constraints as $\lambda_H \in (\overline{\lambda}_H, \lambda_K]$. That is, $\boldsymbol{p}_{\Psi}^{n*}(\lambda_H) = \boldsymbol{p}_{\Psi}^{d*}(\overline{\lambda}_H)$ as $\lambda_H \in (\overline{\lambda}_H, \lambda_K]$. Q.E.D.

[Proof of Proposition 3]: Proposition 3 can be easily proved by replacing $\underline{\lambda}_H, \overline{\lambda}_H, p_\psi^{n*}(\lambda_H), p_\psi^{d*}(\lambda_H), p_\psi^{d*}(\underline{\lambda}_H), p_\psi^{d*}(\overline{\lambda}_H), U_\psi(p_\psi) - \lambda_H p_\psi S_{base} \Delta t, \ \lambda_0, \ \lambda_K \ \ \text{in the proof of Proposition 2 with } \underline{\pi}, \overline{\pi}, \ p_\psi^{n*}(\pi), \ p_\psi^{d*}(\pi), \ p_\psi^{d*}(\underline{\pi}), \ p_\psi^{d*}(\overline{\pi}), \ U_\psi(p_\psi) - \mu_\psi \pi p_\psi S_{base} \Delta t, \ \pi_0, \ \pi_K. \ \text{Q.E.D.}$

1