KNN (K Nearest Neighbors) Classification: Machine Learning Tutorial Using Sklearn


```
In [1]:
         import pandas as pd
         from sklearn.datasets import load_iris
         iris = load_iris()
In [2]: iris.feature_names
Out[2]: ['sepal length (cm)',
           'sepal width (cm)',
'petal length (cm)',
           'petal width (cm)']
In [3]: iris.target_names
         array(['setosa', 'versicolor', 'virginica'], dtype='<U10')</pre>
Out[3]:
In [4]: df = pd.DataFrame(iris.data, columns=iris.feature_names)
         df.head()
Out[4]:
            sepal length (cm) sepal width (cm) petal length (cm) petal width (cm)
         0
                         5.1
                                                                           0.2
                                          3.5
                                                           1.4
                         4.9
                                                                           0.2
                                          3.0
         1
                                                           14
         2
                                                                           0.2
                         4.7
                                          3.2
                                                           1.3
                                                                           0.2
                         4.6
                                          3.1
                                                           1.5
         4
                                                                           0.2
                         5.0
                                          3.6
                                                           1.4
         df.shape
         (150, 4)
Out[5]:
In [6]: df['target'] = iris.target
         df.head()
```

Out[6]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	0	5.1	3.5	1.4	0.2	0
	1	4.9	3.0	1.4	0.2	0
	2	4.7	3.2	1.3	0.2	0
	3	4.6	3.1	1.5	0.2	0
	4	5.0	3.6	1.4	0.2	0

In [7]: df[df.target==1].head()

Out[7]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	50	7.0	3.2	4.7	1.4	1
	51	6.4	3.2	4.5	1.5	1
	52	6.9	3.1	4.9	1.5	1
	53	5.5	2.3	4.0	1.3	1
	54	6.5	2.8	4.6	1.5	1

In [8]: df[df.target==2].head()

Out[8]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
	100	6.3	3.3	6.0	2.5	2
	101	5.8	2.7	5.1	1.9	2
	102	7.1	3.0	5.9	2.1	2
	103	6.3	2.9	5.6	1.8	2
	104	6.5	3.0	5.8	2.2	2

In [9]: df['flower_name'] = df.target.apply(lambda x: iris.target_names[x])
 df.head()

Out[9]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	0	5.1	3.5	1.4	0.2	0	setosa
	1	4.9	3.0	1.4	0.2	0	setosa
	2	4.7	3.2	1.3	0.2	0	setosa
	3	4.6	3.1	1.5	0.2	0	setosa
	4	5.0	3.6	1.4	0.2	0	setosa

In [10]: df[45:55]

ut[10]:		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
	45	4.8	3.0	1.4	0.3	0	setosa
	46	5.1	3.8	1.6	0.2	0	setosa
	47	4.6	3.2	1.4	0.2	0	setosa
	48	5.3	3.7	1.5	0.2	0	setosa
	49	5.0	3.3	1.4	0.2	0	setosa
	50	7.0	3.2	4.7	1.4	1	versicolor
	51	6.4	3.2	4.5	1.5	1	versicolor
	52	6.9	3.1	4.9	1.5	1	versicolor
	53	5.5	2.3	4.0	1.3	1	versicolor
	54	6.5	2.8	4.6	1.5	1	versicolor

sepal length vs sepal width (Setosa vs Versicolor)

```
In [13]: plt.xlabel('Sepal Length')
  plt.ylabel('Sepal Width')
  plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'], color='green', marker='+')
  plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'], color='blue', marker='.')
```

 ${\tt Out[13]:} \verb| <matplotlib.collections.PathCollection| at 0x211f4ca3b80> \\$

petal length vs petal width (Setosa vs Versicolor)

```
In [14]: plt.xlabel('petal Length')
   plt.ylabel('petal Width')
   plt.scatter(df0['petal length (cm)'], df0['petal width (cm)'], color='green', marker='+')
   plt.scatter(df1['petal length (cm)'], df1['petal width (cm)'], color='blue', marker='.')
```

Out[14]: <matplotlib.collections.PathCollection at 0x211f55bcc10>

Train test split

```
In [15]: from sklearn.model_selection import train_test_split

In [16]: X = df.drop(['target', 'flower_name'], axis='columns')
y = df.target

In [17]: X_train, x_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=1)

In [18]: len(X_train)
Out[18]: 120

In [19]: len(x_test)
Out[19]: 30
```

Create KNN (K Nearest Neighbour Classifier)

```
from sklearn.neighbors import KNeighborsClassifier
In [20]:
         knn = KNeighborsClassifier(n_neighbors=10)
         knn.fit(X_train, y_train)
Out[21]:
                  KNeighborsClassifier
         KNeighborsClassifier(n_neighbors=10)
In [22]:
         knn.score(x_test, y_test)
         0.9666666666666667
Out[22]:
         from sklearn.metrics import confusion_matrix
In [23]:
         y_pred = knn.predict(x_test)
         cm = confusion_matrix(y_test, y_pred)
         cm
```

Out[24]: Text(58.2222222222214, 0.5, 'Truth')

In [25]: from sklearn.metrics import classification_report
 print(classification_report(y_test, y_pred))

upport
11
13
6
30
30
30
ı

You can find this project on Github.