## **CS4487 - Machine Learning**

## **Lecture 5b - Supervised Learning - Regression**

#### Dr. Antoni B. Chan

### Dept. of Computer Science, City University of Hong Kong

#### **Outline**

- 1. Linear Regression
- 2. Selecting Features
- 3. Removing Outliers
- 4. Non-linear regression

### **Outliers**

- Too many outliers in the data can affect the squared-error term.
  - regression function will try to reduce the large prediction error for outliers, at the expense of worse prediction for other points



#### **RANSAC**

- RANdom SAmple Consensus
  - attempt to robustly fit a regression model in the presence of corrupted data (outliers).
  - works with any regression model.
- Idea:
  - split the data into inliers (good data) and outliers (bad data).
  - learn the model only from the inliers

## **Random sampling**

- Repeat many times...
  - randomly sample a subset of points from the data. Typically just enough to learn the regression model
  - fit a model to the subset.
  - classify all data as inlier or outlier by calculating the residuals (prediction errors) and comparing to a threshold. The set of inliers is called the *consensus* set.
  - save the model with the highest number of inliers.
- Finally, use the largest consensus set to learn the final model.



#### **RANSAC**

- More iterations increases the probability of finding the correct function.
  - higher probability to select a subset of points contains all inliers.
- Threshold typically set as the median absolute deviation of y.

```
In [7]:
        # use RANSAC model (defaults to linear regression)
         rlin = linear model.RANSACRegressor(random state=1234)
         rlin.fit(outlinX, outlinY)
         inlier_mask = rlin.inlier_mask_
         outlier mask = logical not(inlier mask)
         plt.figure()
         plot regr trans 1d(rlin, axbox, outlinX, outlinY)
         plt.plot(outlinX[inlier mask], outlinY[inlier mask], 'b.', label='inliers', mark
         eredgecolor='k')
         plt.plot(outlinX[outlier_mask], outlinY[outlier_mask], 'co', label='outliers', m
         arkeredgecolor='k')
         leg = plt.legend(fontsize=8, loc='upper left')
         plt.title('estimated (w,b) = (%0.4g, %0.4g) \setminus \text{ntrue} (w,b) = (%0.4g, %0.4g)' %
                   (rlin.estimator .coef , rlin.estimator .intercept , lincoefs, linbias)
         );
```



## Non-linear regression

- So far we have only considered linear regression:  $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$
- Similar to classification, we can do non-linear regression by forming a feature vector of **x** and then performing linear regression on the feature vector.

## **Polynomial regression**

p-th order Polynomial function

$$f(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + \dots + w_n x^p$$

• Collect the terms into a vector

$$f(x) = \begin{bmatrix} w_0 & w_1 & w_2 & \cdots & w_p \end{bmatrix} * \begin{bmatrix} 1 \\ x \\ z^2 \\ \vdots \\ x^p \end{bmatrix} = \mathbf{w}^T \phi(x)$$

Collect the terms into a vector

$$\mathbf{f}(x) = \begin{bmatrix} w_0 & w_1 & w_2 & \cdots & w_p \end{bmatrix} * \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^p \end{bmatrix} = \mathbf{w}^T \phi(x)$$
• weight vector  $\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_p \end{bmatrix}$ ; polynomial feature vector:  $\phi(x) = \begin{bmatrix} 1 \\ x \\ x^2 \\ \vdots \\ x^p \end{bmatrix}$ 

Now it's a linear function, so we can use the same linear regression!

## **Example**

1st to 6th order polynomials

```
In [8]:
        # example data
        polyX = random.normal(size=200)
        polyY = sin(polyX) + 0.1*random.normal(size=200)
        polyX = polyX[:,newaxis]
        plt.figure(figsize=(9,6))
        axbox = [-4, 4, -2, 2]
        for d in [1,2,3,4,5,6]:
            # extract polynomial features with degree d
            polyfeats = preprocessing.PolynomialFeatures(degree=d)
            polyXf = polyfeats.fit_transform(polyX)
            # fit the parameters
            plin = linear model.LinearRegression()
            plin.fit(polyXf, polyY)
            # make plot
            plt.subplot(2,3,d)
            plot_regr_trans_1d(plin, axbox, polyX, polyY, polyfeats.transform)
            plt.title("degree " + str(d))
```



# **Example: Boston data**

- Using "percentage of lower-status" feature
- Increasing polynomial degree d will decrease MSE of training data
  - more complicated model always fits data better
  - (but it could overfit)

```
In [10]: polyfeats = {}
    plin = {}
    MSE = {}
    for d in [1,2,3,4,5,6]:
        # extract polynomial features with degree d
        polyfeats[d] = preprocessing.PolynomialFeatures(degree=d)
        bostonXf = polyfeats[d].fit_transform(bostonX)

# fit the parameters
    plin[d] = linear_model.LinearRegression()
    plin[d].fit(bostonXf, bostonY)

# calculate mean-square error on training set
    MSE[d] = metrics.mean_squared_error(bostonY, plin[d].predict(bostonXf))
```



# **Select degree using Cross-Validation**

- · Minimizing the MSE on the training set will overfit
  - More complex function always has lower MSE on training set
- Use cross-validation to select the proper model
  - the parameters we want to change are in feature transformation step
  - use pipeline to merge all steps into one object for easier cross-validation

```
{'polyfeats__degree': 5}
```

```
In [16]: avgscores,pnames,bestind = extract_grid_scores(plincv, paramgrid)
    plt.figure()
    plt.plot(paramgrid['polyfeats__degree'], -avgscores, 'bo-')
    plt.xlabel('degree'); plt.ylabel('MSE'); plt.grid(True);
    plt.title('MSE vs degree');
```



## Polynomial features: 2D Example

- 2D feature:  $\mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T$
- degree 2:  $\phi(\mathbf{x}) = \begin{bmatrix} x_1^2 & x_1 x_2 & x_2^2 \end{bmatrix}^T$
- degree 3:  $\phi(\mathbf{x}) = \begin{bmatrix} x_1^3 & x_1^2 x_2 & x_1 x_2^2 & x_3^3 \end{bmatrix}^T$

```
In [18]:    plin = {}
    polyfeats = {}
    for i,d in enumerate([2,3]):
        # get polynomial features
        polyfeats[d] = preprocessing.PolynomialFeatures(degree=d)
        bostonXf = polyfeats[d].fit_transform(bostonX)

# learn with both dimensions
    plin[d] = linear_model.LinearRegression()
    plin[d].fit(bostonXf, bostonY)

# calculate MSE
    MSE = metrics.mean_squared_error(bostonY, plin[d].predict(bostonXf))
```

In [20]: pfig





# **Kernel Ridge Regression**

- Apply kernel trick to ridge regression
  - turn linear regression into non-linear regression
- Closed form solution:
  - for an input point x\*,
    - prediction:  $y_* = \mathbf{k}_* (\mathbf{K} + \alpha I)^{-1} \mathbf{y}$ 
      - $\circ$  **K** the kernel matrix  $(N \times N)$
      - $\mathbf{k}_*$  vector containing the kernel values between  $\mathbf{x}_*$  and all training points  $\mathbf{x}_i$ .

### **Example: Polynomial Kernel**

- Note: it's the same as using polynomial features and linear regression!
  - Using the kernel, we don't need to explicitly calculate the polynomial features.
  - But, we do need to calculate the kernel function between all pairs of training points.

```
In [21]: plt.figure(figsize=(9,6))
   axbox = [-4, 4, -2, 2]

for d in [1,2,3,4,5,6]:

   # fit the parameters
   krr = kernel_ridge.KernelRidge(alpha=1, kernel='poly', degree=d)
   krr.fit(polyX, polyY)

# plot the function
   plt.subplot(2,3,d)
   plot_regr_trans_ld(krr, axbox, polyX, polyY)
   plt.title("degree " + str(d))
```



### **Example: RBF kernel**

- · gamma controls the smoothness
  - small gamma will etimate a smooth function
  - large gamma will estimate a wiggly function

```
In [22]: plt.figure(figsize=(9,6))
    axbox = [-4, 4, -2, 2]

for i,g in enumerate(logspace(-3,2,6)):
    # fit the parameters
    krr = kernel_ridge.KernelRidge(alpha=1, kernel='rbf', gamma=g)
    krr.fit(polyX, polyY)

# plot the function
    plt.subplot(2,3,i+1)
    plot_regr_trans_ld(krr, axbox, polyX, polyY)
    plt.title("gamma " + str(g))
```



## **Boston Data: Cross-validation**

- RBF kernel
  - cross-validation to select  $\alpha$  and  $\gamma$ .

```
In [23]:
          # parameters for cross-validation
          paramgrid = {'alpha': logspace(-3,3,10),
                      'gamma': logspace(-3,3,10)}
          # do cross-validation
          krrcv = model selection.GridSearchCV(
            kernel_ridge.KernelRidge(kernel='rbf'), # estimator
                                                         # parameters to try
            scoring='neg mean squared error',
                                                         # score function
                                                         # number of folds
            cv=5,
            n jobs=-1, verbose=True)
          krrcv.fit(bostonX, bostonY)
          print(krrcv.best_score_)
          print(krrcv.best params )
          Fitting 5 folds for each of 100 candidates, totalling 500 fits
          -20.406861548069113
          {'gamma': 0.004641588833612777, 'alpha': 0.004641588833612777}
          [Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed:
                                                                         2.4s finished
In [25]:
          kfig
Out[25]:
                                                                    KRR plot
                 MSE for different parameters
                                                600
                                                       40
                                                                                          60
             0 -
                                                    low-status households
                                                                                          50
                                                500
                                                      30
             2
           gamma index
9
                                                400
                                               300
                                                       15
                                                     οţ
                                               200
                                                     cent
                                                       10
             8
                                                100
                                                        0 -
                         alpha index
                                                                  number of rooms
```

## **Support Vector Regression (SVR)**

- Borrow ideas from classification
  - Suppose we form a "band" of width  $\epsilon$  around the function:
    - if a point is inside, then it is "correctly" predicted
    - if a point is outside, then it is incorrectly predicted

In [28]:

svrfig

Out[28]:



- Allow some points to be outside the "tube".
  - penalty of point outside tube is controlled by *C* parameter.
- SVR objective function:

$$\min_{\mathbf{w},b} \sum_{i=1}^{N} |y_i - (\mathbf{w}^T \mathbf{x}_i + b)|_{\epsilon} + \frac{1}{C} ||\mathbf{w}||^2$$

- Similar to SVM classifier, the points on the band will be the support vectors that define the function.

## Different tube widths

The points on the tube or outside the tube are the *support vectors*.



## **Kernel SVR**

- Support vector regression can also be kernelized similar to SVM turn linear regression to non-linear regression
- Polynomial Kernel:

```
In [31]: plt.figure(figsize=(9,6))
    axbox = [-4, 4, -2, 2]
    epsilon = 0.2

for d in [1,2,3,4]:
    # fit the parameters (poly SVR)
    svr = svm.SVR(C=1000, kernel='poly', coef0=0.1, degree=d, epsilon=epsilon)
    svr.fit(polyX, polyY)

    plt.subplot(2,2,d)
    plot_svr_ld(svr, axbox, polyX, polyY, showsv=True)
    plt.title("degree " + str(d))
```



**SVR** with RBF kernel

```
In [32]: plt.figure(figsize=(9,6))
    axbox = [-4, 4, -2, 2]
    epsilon = 0.2

for i,g in enumerate([0.01, 0.1, 1, 10]):
    # fit the parameters: SVR with RBF
    svr = svm.SVR(C=1000, kernel='rbf', gamma=g, epsilon=epsilon)
    svr.fit(polyX, polyY)

    plt.subplot(2,2,i+1)
    plot_svr_ld(svr, axbox, polyX, polyY, showsv=True)
    plt.title("gamma = " + str(g))
```



## **Boston Data**

- Cross-validation to select 3 parameters
  - **■** C, γ, ε

```
In [33]:
          # parameters for cross-validation
           paramgrid = {'C':
                                      logspace(-3, 3, 10),
                                     logspace(-3, 3, 10),
                          'qamma':
                          'epsilon': logspace(-2,2,10)}
           # do cross-validation
           svrcv = model selection.GridSearchCV(
               svm.SVR(kernel='rbf'), # estimator
               paramgrid,
                                                  # parameters to try
               scoring='neg mean squared error', # score function
               n_jobs=-1, verbose=1)
                                                         # show progress
           svrcv.fit(bostonX, bostonY)
           print(svrcv.best score )
           print(svrcv.best params )
          Fitting 5 folds for each of 1000 candidates, totalling 5000 fits
           [Parallel(n_jobs=-1)]: Done 952 tasks
                                                          | elapsed:
          -19.47732071915685
           {'epsilon': 1.6681005372000592, 'C': 1000.0, 'gamma': 0.004641588833612777}
           [Parallel(n jobs=-1)]: Done 5000 out of 5000 | elapsed: 11.9s finished
In [35]:
           kfiq
Out[35]:
                 MSE for different parameters
                          \varepsilon=1.668
                                                                                            60
                                                        40
             0
                                                 100
                                                      35
30
25
                                                                                            50
                                                90
             2
                                                                                            00 00 04 OF Price ($1000s)
                                                 80
                                                        25
                                                      low-status
                                                70
                                                        20
                                                60
                                                                                            20
                                                        15
             6
                                                - 50
                                                      οę
                                                      percent
                                                        10
                                                                                            10
                                                40
             8
                                                30
                                       8
                0
                            4
                                                                         6
                         gamma index
                                                                   number of rooms
```

# **Random Forest Regression**

- Similar to Random Forest Classifier
  - Average predictions over many Decision Trees
    - Each decision tree sees a random sampling of the Training set
    - Each split in the decision tree uses a random subset of features
    - Leaf node of tree contains the predicted value.

## **Example**

- Four decision trees
  - the regressed function has "steps" because of the decision tree has a constant prediction for ranges of feature values.

```
In [37]: axbox = [-4, 4, -2, 2]
    rf = ensemble.RandomForestRegressor(n_estimators=4, random_state=4487, n_jobs=-1
    )
    rf.fit(polyX, polyY)

plt.figure(figsize=(10,8))
    for i in range(4):
        plt.subplot(2,2,i+1)
        plot_regr_trans_ld(rf.estimators_[i], axbox, polyX, polyY)
        plt.title('Decision Tree ' + str(i+1))
```



```
In [38]: # the aggregated function
   plt.figure()
   plot_rf_ld(rf, axbox, polyX, polyY)
   plt.title('Random Forest Regressor w/ 4 trees')
```

Out[38]: Text(0.5,1,'Random Forest Regressor w/ 4 trees')



• Using more trees...

```
In [39]: plt.figure(figsize=(10,6))
    for i,n in enumerate([5, 10, 50, 100, 500, 1000]):
        plt.subplot(2,3,i+1)
        rf = ensemble.RandomForestRegressor(n_estimators=n, random_state=4487, n_job
        s=-1)
        rf.fit(polyX, polyY)

        plot_regr_trans_ld(rf, axbox, polyX, polyY)
        plt.title('n='+str(n))
```



### **Boston data**

- The regressed function looks "blocky"
  - looks more reasonable for areas without any data

```
In [40]: plt.figure(figsize=(10,6))
    for i,n in enumerate([5, 10, 50, 100, 500, 1000]):
        plt.subplot(2,3,i+1)
        rf = ensemble.RandomForestRegressor(n_estimators=n, random_state=4487, n_job
        s=-1)
        rf.fit(bostonX, bostonY)
        MSE = metrics.mean_squared_error(bostonY, rf.predict(bostonX))

        plot_regr_trans_2d(rf, bostonaxbox2, bostonX, bostonY)
        plt.title('n={}, MSE={:.4f}'.format(n, MSE))
```



#### • plot of MSE versus number of trees



• Use cross-validation to select the tree depth

{'max\_depth': 4}

```
In [43]: | # parameters for cross-validation
         paramgrid = {'max_depth': array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15]),
                     }
         # do cross-validation
         rfcv = model selection.GridSearchCV(
             ensemble.RandomForestRegressor(n_estimators=100, random_state=4487), # esti
         mator
             paramgrid,
                                            # parameters to try
             scoring='neg_mean_squared_error', # score function
             n_jobs=-1, verbose=True
         rfcv.fit(bostonX, bostonY)
         print(rfcv.best_score_)
         print(rfcv.best_params_)
         Fitting 5 folds for each of 11 candidates, totalling 55 fits
         [Parallel(n_jobs=-1)]: Done 42 tasks
                                                elapsed:
         [Parallel(n_jobs=-1)]: Done 55 out of 55 | elapsed: 11.5s finished
         -21.419077779026953
```

```
In [44]: (avgscores, pnames, bestind) = extract_grid_scores(rfcv, paramgrid)

plt.figure(figsize=(10,4))
# show scores
plt.subplot(1,2,1)
plt.plot(paramgrid['max_depth'], -avgscores, 'bo-')
plt.xlabel('max_depth'); plt.ylabel('MSE')
plt.title('MSE vs. max_depth')
plt.grid(True)

# show regression function
plt.subplot(1,2,2)
plot_regr_trans_2d(rfcv, bostonaxbox2, bostonX, bostonY)
cbar = plt.colorbar()
cbar.set_label('Home_Price_($1000s)')
plt.xlabel('number_of_rooms'); plt.ylabel('percent_of_low-status_households');
```



## **Regression Summary**

- Goal: predict output  $y \in \mathbb{R}$  from input  $\mathbf{x} \in \mathbb{R}^d$ .
  - i.e., learn the function  $y = f(\mathbf{x})$ .

| Name                                      | Function                           | Training                                                                             | Advantages                                                                                                                | Disadvantages                                                                                                                                          |
|-------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ordinary<br>Least<br>Squares              | linear                             | minimize square error between observation and predicted output.                      | - closed-form solution.                                                                                                   | - sensitive to outliers and overfitting.                                                                                                               |
| ridge<br>regression                       | linear                             | minimize squared error with $  w  ^2$ regularization term.                           | <ul><li>closed-form</li><li>solution;</li><li>shrinkage to</li><li>prevent overfitting.</li></ul>                         | - sensitive to outliers.                                                                                                                               |
| LASSO                                     | linear                             | minimize squared error with $\sum_{j=1}^{d}  w_j $ regularization term.              | - feature selection<br>(by forcing weights<br>to 0)                                                                       | - sensitive to outliers.                                                                                                                               |
| RANSAC                                    | same as<br>the base<br>model       | randomly sample subset of training data and fit model; keep model with most inliers. | - ignores outliers.                                                                                                       | - requires enough iterations to find good consensus set.                                                                                               |
| kernel ridge<br>regression                | non-linear<br>(kernel<br>function) | apply "kernel trick" to ridge regression.                                            | <ul><li>non-linear</li><li>regression.</li><li>Closed-form</li><li>solution.</li></ul>                                    | - requires calculating kernel matrix $O(N^2)$ cross-validation to select hyperparameters.                                                              |
| kernel<br>support<br>vector<br>regression | non-linear<br>(kernel<br>function) | minimize squared error, insensitive to epsilon-error.                                | <ul><li>non-linear</li><li>regression.</li><li>faster predictions</li><li>than kernel ridge</li><li>regression.</li></ul> | <ul> <li>requires calculating kernel matrix O(N²).</li> <li>iterative solution (slow).</li> <li>cross-validation to select hyperparameters.</li> </ul> |
| random forest regression                  | non-linear<br>(ensemble)           | aggregate predictions from decision trees.                                           | - non-linear<br>regression.<br>- fast predictions.                                                                        | - predicts step-wise function.  - cannot learn a completely smooth function.                                                                           |

# **Other Things**

- Feature normalization
  - feature normalization is typically required for regression methods with regularization.
  - makes ordering of weights more interpretable (LASSO, RR).
- Output transformations
  - sometimes the output values y have a large dynamic range (e.g.,  $10^{-1}$  to  $10^{5}$ ).
    - large output values will have large error, which will dominate the training error.
  - in this case, it is better to transform the output values using the logarithm function.
    - $\circ \ y = \log_{10}(y)$
  - For example, see the tutorial.