

Bachelorarbeit

Multi-Photon-Photoemission an Gold-Nanospitzen mit sichtbarem und nah-infrarotem Licht

Multiphoton-photoemission at gold nanotips with visible and near-infrared light

angefertigt von

Michael Alexander Lohmann

aus Randburg (RSA)

am 4. Physikalischen Institut

Bearbeitungszeit: 23. Mai 2016 bis 29. August 2016

Betreuer: Dr. Reiner Bormann und Benjamin Schröder

Erstgutachter: Prof. Dr. Claus Ropers

Zweitgutachter: Prof. Dr. Christian Jooß

Zusammenfassung

Ziel der Arbeit ist die erstmalige Untersuchtung des nichtlinearen Photoeffektes aus Gold-Nanospitzen über einen großen Wellenlängenbereich. Dafür wurde ein Optisch Parametrischer Verstärker (OPA) verwendet, der Laserlicht mit kontinuierlich durchstimmbarer Wellenlänge liefert. Der Laser-Puls wurde dazu verwendet, mit Multi-Photon-Photoemission Elektronen aus der Oberfläche auszulösen.

Es zeigt sich, dass die Nichtlinearität (entspricht der Anzahl an benötigten Photonen) im untersuchten Bereich nicht stufenförmig (wie im einfachsten Modell), sondern annähernd linear ist.

Stichwörter: lokalisierte Elektronenemission, Gold Nano-Spitze, multiphoton Photoemission

Abstract

The aim of this work is to determine the work function of Au nanotips. An optic parametric amplifier was used to continuously vary the laser wavelength. The fs-Laserpulses exacted electrons with multiphoton photoemission.

The results do show a nearly linear growth in the examined region instead of a stepfunction (like the simplest model).

Keywords: localized electron emission, gold nano-tip, multiphoton photoemission

Inhaltsverzeichnis

1.	Einl	eitung	1
2.	Gru	ndlagen	3
	2.1.	Austrittsarbeit	3
	2.2.	Mechanismen der Photoemission	3
	2.3.	Fowler-Du Bridge-Theorie der Multiphoton-Photoemission	6
	2.4.	Der Schottky-Effekt	7
	2.5.	Die Elektronische Zustandsdichte	9
3.	Ехр	erimentelle Vorgehensweise	11
	3.1.	Supressor-Extraktor Geometrie	12
	3.2.	Intensitätsabhängiger Photostrom	13
	3.3.	Laser	14
	3.4.	Zählalgorithmus der Elektronen	14
4.	Erge	ebnisse	17
	4.1.	Intensitätsabhängigkeit	17
5.	Disk	cussion und Ausblick	23
	5.1.	Stabilität der Laserintensität	23
	5.2.	Degradation der Spitze	23
	5.3.	Effekte zur <+Linearisierung+> der Daten $\ \ldots \ \ldots \ \ldots \ \ldots$	24
Α.	Anh	ang	27

Nomenklatur

Lateinische Buchstaben

Variable	Bedeutung	Einheit
$U_{ m Tip}$	Spannung zwischen Spitze und Extraktor	V
U_{Sup}	Spannung zwischen Suppressor und Extraktor	V
U_p	Ponderomotive Energie	J
e	Elementarladung	Q
m_e	Elektronenmasse	$ m kg \ Wm^{-2}$
I	Intensität des Lasers	${ m Wm^{-2}}$

Griechische Buchstaben

Variable	Bedeutung	Einheit
λ	Wellenlänge	nm
ω	Frequenz	${ m Hz}$
γ	Keldysh-Parameter	
Φ	Austrittsarbeit	eV

Indizes

Index	Bedeutung
e	Elektron
Tip	Nano-Spitze
Sup	Supressor

Abkürzungen

Abkürzung	Bedeutung
2D	zweidimensional
3D	dreidimensional
OPA	Optisch Parametrischer Verstärker
MCP	Micro Channel Plate
SHG	Second Harmonic Generation
TEM	Transmissions Elektronen Mikroskop
UTEM	Ultrafast TEM
ULEED	Ultrafast Low Energy Elektron Defraction
ATP	Above Threshhold Photoemission

1. Einleitung

Ein grundlegendes Verständnis der Materie ist ein essentielles Ziel der Forschung. Daher wurden gerade seit den dreißiger Jahren des 19. Jahrhunderts immer ausgefeiltere Mikroskopietechniken entwickelt [?]. Die höchsten räumlichen Auflösungen bieten hierbei noch immer Rastertunnelmikroskope (engl. scanning tunneling microscopy, kurz STM) und Transmissionenelektronenmikroskope (transmission elektron microscope, kurz TEM). Deren Auflösungsvermögen, welches wichtig ist, um makroskopische Prozesse auch auf mikroskopischer Skala zu verstehen, liegt zwar auf atomarer Ebene ($\approx 1 \,\text{Å}$), jedoch ist die Zeitauflösung beider Methoden sehr begrenzt. Gerade um dynamische Prozesse wie strukturelle Änderungen und Phasenübergänge zu untersuchen ist dies jedoch wichtig. Um auch die temporale Auflösung zu erhalten, ist eine Elektronenquelle notwendig, welche räumlich kohärente kurze Elektronenpulse bereitstellt (z.B. [?]).

Eine Lösungsmöglichkeit besteht darin, Nanospitzen mit Femtosekunden-Laserpulsen zu beleuchten. Die kleine Emissionsfläche, die durch Feldverstärkung und elektrostatische Felder auf den nanometrischen Apex begrenzbar ist, gewährleistet eine hohe räumliche Kohärenz der e^- -Pulse. Dieser Ansatz wurde bisher schon erfolgreich in der ultraschnellen niedrigenergetischen Beugung von Elektronen (ULEED) und der ultraschnellen Transmissionselektronenmikroskopie (UTEM) verwendet (z.B. [?] und [?]). <+Dabei wird die hohe Zeitauflösung durch das Pump-Probe verfahren erreicht, bei dem das Experiment sehr häufig wiederholt wird und durch Aufnahmen zu unterschiedlichen Zeitpunkten ein Verlauf aufgenommen wird. Ein Laserpuls regt beispielsweise einen Phasenübergang an. Der Elektronenpuls trifft nun mit variabler Verzögerung auf die zu untersuchende Position und gibt ein variables Signal abhängig von dem momentanen Zustand der Probe zurück. Dies ist allerdings nur machbar bei reversiblen Prozessen.+>

Um ein Elektron zu emittieren kann entweder die Energie eines einzelnen Photons ausreichen, um die Austrittsarbeit zu überwinden, oder es muss Multiphotonemission stattfinden. Dabei treffen N Photonen annähernd gleichzeitig auf ein Elektron.

1. Einleitung

Die Wahrscheinlichkeit der Emission ist proportional zu I^N , wobei I die Intensität des einfallenden Lichtes beschreibt.

Allerdings stellten dabei zahlreiche Publikationen (s. Tab. ??) fest, dass bei der Intensität der emittierten Elektronen eine nicht erwartete Anzahl an benötigten Photonen benötigt wird. So stellte man bei vielen Experimenten beispielsweise eine benötigte Anzahl von 4.4 Photonen zur Auslösung fest.

In dieser Arbeit soll diese nichtlineare Photoemission einer systematischen Untersuchung über einen breiten Wellenlängenbereich erfolgen. Im genauen wird eine Gold-Nanospitze mit fs-Pulsen mit 1.5 eV bis 2.7 eV Photonenergie beleuchtet.

Um die Wellenlänge des Lasers verändern zu können wurde einen Optisch Parametrischen Verstärker (OPA) verwendet, mit dessen Hilfe sich die Wellenlänge des Lasers kontinuierlich von $250-20\,000\,\mathrm{nm}$ durchstimmen lässt. Im Rahmen dieser Arbeit wurde der Bereich von 460 bis $850\,\mathrm{nm}$ untersucht.

Im Folgenden werden zunächst die Grundlagen der Arbeit erläutert, dann das Experiment erklärt und die Ergebnisse vorgestellt. Abschließend werden diese diskutiert.

2. Grundlagen

In diesem Kapitel werden die grundlegenden Begriffe und Formeln für diese Arbeit eingeführt, sowie die dahinterstehende Theorie erklärt. Zunächst werden die Eigenschaften der Austrittsarbeit erklärt. Dann wird ein Überblick über die verschiedenen Mechanismen der Photoemission gegeben, bevor die Multiphoton-Photoemission mit Hilfe der Fowler-DuBridge-Theorie hergeleitet wird. Folgend wird der Schottky-Effekt erläutert, bevor abschließend eine kurze Bemerkung über die elektronische Zustandsdichte gemacht wird.

2.1. Austrittsarbeit

Mit dem Begriff Austrittsarbeit wird die Energie, die benötigt wird, um ein Elektron aus einem Atom oder Festkörper zu entfernen. Sie ist material- und strukturspezifisch.

Für das in dieser Arbeit verwendete Gold sind in Tabelle 2.1 einige Messwerte aufgeführt, welche mit verschiedensten Methoden ermittelt wurden. Zu erkennen ist, dass sie von der jeweiligen Kristallfläche abhängt. Aber auch bei der gleichen Kristallebene finden sich Unterschiede in den Ergebnissen (z.B. gibt es zu der (1 1 1)-Ebene Messwerte von 5.3 bis 5.5 eV)

2.2. Mechanismen der Photoemission

Photoemission (PES) beschreibt die Auslösung von Elektronen aus Materie durch Bestrahlung mit Licht. Dabei muss die absorbierte Energie die Austrittsarbeit übersteigen.

PES lässt sich in mindestens fünf Bereiche unterteilen, welche sich in der eingestrahlten Intensität I unterscheiden:

• Klassischer (linearer) Photoeffekt Der klassische Photoeffekt nach EINSTEIN [?] besagt, dass Elektronen aus einem Festkörper nur dann ausgelöst werden,

2. Grundlagen

Quelle und Jahr	Kristallfläche	Austrittsarbeit [eV]	Methode
[?]	?	4.9	th
[?]	?	4.81	ph
[?]	?	5.30 bis 5.45	ph
[?]	?	4.8	ec
[?]	$(1\ 1\ 1)$	5.5	ph
[?]	?	5.1 ± 0.15	XPS
[?]	(1 1 1)	5.30 ± 0.05	ph
	$(3\ 1\ 1)$	5.16 ± 0.07	Kontakt
	$(1\ 1\ 0)$	5.12 ± 0.07	Kontakt
	$(2\ 1\ 0)$	4.96 ± 0.07	Kontakt
[?]	$(1\ 0\ 0)$	5.47	ph
	$(1\ 1\ 0)$	5.37	ph
	$(1\ 1\ 1)$	5.31	ph

Tab. 2.1.: Auftragung verschiedener Austrittsarbeiten nach verschiedenen Publikationen. Abkürzungen Methoden: th \equiv thermisch, ph \equiv photoelektrisch, ec \equiv elektrochemisch, XPS \equiv Röntgen-Photoelektron-Spektroskopie, Kontakt \equiv Kontaktpotential zu (1 1 1)-Facette

wenn ein einzelnes Photon genügend Energie $W_{\rm Ph}$ besitzt, um die Auslösearbeit Φ zu leisten. In einem einfachen Bild ist diese bedingt durch die unterschiedliche Ladung von Atomkern und Elektron, weshalb sich diese anziehen und Energie aufgewendet werden muss, um sie zu trennen. Die Bilanzgleichung lautet dann

$$W_{\rm El} = W_{\rm Ph} - \Phi$$
 .

Es muss also gelten $W_{\rm Ph} \geq \Phi$, damit die kinetische Energie des Elektrons $W_{\rm EL}$ positiv ist. Eine größere Photonenenergie bewirkt eine höhere Überschussenergie. Kann man diese messen, so kann man Rückschlüsse auf die Austrittsarbeit schließen und mit der Photoelektron Spektroskopie eine Analyse der Inhaltsstoffe einer Probe machen. Für typische Metalle gilt $\Phi \approx 4...7\,\mathrm{eV}$ was einer Wellenlänge von höchstens 300 nm entspricht [?]. Höhere Intensitäten des eingestrahlten Lichts führen zu einem größerem Elektronenstrom, jedoch nur, wenn die Photonenenergie ausreichend groß ist. e

• Multi-Photon-Emission Nach Einstein ist nur die Photonenenergie ausschlaggebend für die Fähigkeit des Lichtes, Elektronen zu emmittieren. Allerdings

trifft dies nur für kleine Intensitäten zu, da im Rahmen einer störungstheoretischen Betrachtung des Emissionsprozesses gezeigt werden kann, dass für große Intensitäten des eingestrahlten optischen Feldes die Wahrscheinlichkeit mit I^N ansteigt, dass N Photonen <+annähernd gleichzeitig+> auftreffen und wechselwirken. Dann steht die Summe der Einzelenergien zur Verfügung. Dann berechnet sich die kinetische Energie der Elektronen aus der folgenden Formel:

$$W_{\rm El} = N \cdot W_{\rm Ph} - \Phi$$

- Optische Feldemission Bei höheren Intensitäten wird das Atompotential durch das eingestrahlte elektrische Feld derart verformt, dass ein elektronischer Tunnelprozess stattfinden kann.
- Photo-assisted field-emission Dabei tunnelt das Elektron analog zur optischen Feldemission heraus, wird jedoch vorher durch ein oder mehrere Photonen angeregt, was die Tunnelwahrscheinlichkeit erhöht.
- Above Threshhold Ionisation <+Ist dies nur bei Multiphoton PE möglich oder tritt das auch bei Feldemission auf?+> Absorbiert ein Elektron mehr Photonen, als es zum Überwinden der Austrittsarbeit benötigen würde, so kann es deutlich höhere kinetische Energien besitzen, als anders ausgelöste.

Eine Abschätzung, ob Photoemission oder Feldemission der dominante Prozess ist, liefert der Keldysh-Parameter [?]. Dieser berechnet sich durch

$$\gamma = \sqrt{\frac{\Phi}{2U_p}} \qquad . \tag{2.1}$$

Ist $\gamma \ll 1$ (F groß \Rightarrow optisches Feld größer als atomares Potential), so wird die Emission bestimmt durch das Tunneln der Elektronen. Für $\gamma \gg 1$ (F klein \Rightarrow atomares Potential überwiegt) werden die Atome durch Multi-Photon Prozesse ionisiert.

Die in dieser Arbeit verwendeten Parameter führen zu 12 $\leq \gamma \leq$ 22. Es ist also Multi-Photon-PES zu erwarten.

In der Formel wird mit U_p die ponderomotive Energie bezeichnet, welche der mitt-

2. Grundlagen

leren kinetischen Energie der Elektronen im oszillierenden Lichtfeld entspricht:

$$U_p = \frac{e^2 F^2}{4m_e \omega^2} \quad . {2.2}$$

Hierbei bezeichnet e die Elementarladung, m_e die Elektronenmasse, sowie F die elektrische Feldstärke an der Spitze, welche mit der Frequenz ω oszilliert. Die kinetische Energie der Elektronen ist nach dem Auslösen nicht konstant, da das elektrische Feld sich verändert (zeitlich und räumlich) und so das Elektron immer wieder beschleunigt und verzögert wird.

Die elektrische Feldstärke wird durch die Feldverstärkung an Nanostrukturen verstärkt. Dies bedeutet, dass die Feldlinien, welche senkrecht auf der Oberfläche stehen, bei kleinen Krümmungsradien dichter beieinander liegen, was einem stärkerem Feld entspricht (s. Lightning-Rod-Effect). Für eine Kugel mit Radius r, an der eine Spannung U anliegt, ist das elektrische Feld $E = \frac{U}{r}$ nach [?]. Die sogenannte Feldverstärkung ist das Verhältnis von verstärktem zu eingestrahltem Feld. Für die hier verwendete Spitze beträgt sie nach [?] für den beleuchteten Apex 3.8 . Dies ist nach [?] ein häufig zu findender Wert, auch wenn es für Goldspitzen auch viele andere Messungen gab (z.B. [?] mit einem Wert von 10).

2.3. Fowler-DuBridge-Theorie der Multiphoton-Photoemission

Die Multiphoton-PES kann durch die FOWLER-DUBRIDGE-Theorie beschrieben werden [?] [?]. Nach ihr setzt sich der Elektronenstrom aus

$$J = \sum_{N=0}^{\infty} J_N = \sum_N \sigma_N I^N \quad , \tag{2.3}$$

 $_{\mathrm{mit}}$

$$\sigma_N = \alpha_N A \left(\frac{e}{\hbar \omega}\right)^N (1 - R_\omega)^N T^2 F \left(\frac{N \cdot \hbar \omega - \Phi}{k_B T}\right) \qquad \text{(Wirkungsquerschnitt)} \quad (2.4)$$

und
$$F(x) = \int_0^\infty dy \ln \left(1 + e^{-(y+x)}\right)$$
 (Fowler-Funktion).

zusammen. Hierbei ist $A=120\,\mathrm{Acm^{-2}K^{-2}}$ die Richardson-Konstante, e die Elementarladung, k_B die Boltzmann-Konstante und R_ω die Oberflächenreflektivität. Des Weiteren ist T die Temperatur, $\hbar\omega$ die Photonenenergie und α_N ist eine materialspezifische Konstante, welche die restlichen bisher unberücksichtigten Prozesse berücksichtigt (z.B. Streuung im Metall und Reflektionswahrscheinlichkeit an der Oberfläche) [?]. Mit der Fowler-Funktion wird die dominante Ordnung des nichtlinearen Prozesses ausgewählt.

Der Wirkungsquerschnitt ist somit ein Maß für die Wahrscheinlichkeit der N-Photonen-Emission.

Wichtig für diese Arbeit ist die Proportionalität des Elektronenstroms zu der Laserintensität mit der Potenz N, sowie die Tatsache, dass σ_N für $N \leq \frac{\Phi}{\hbar \omega}$ und $N \gg \frac{\Phi}{\hbar \omega}$ sehr klein ist.

In den Messungen wurde statt der Intensität die Leistung P mit einem Powermeter gemessen. Da jedoch die Intensität die eingestrahlte Leistung pro Fläche ist und sich diese durch die Reduzierung der Intensität bei konstanter Wellenlänge nicht ändert, gilt $I \propto P$. In einem doppellogarithmischen Plot verursacht die Proportionalität einen Achsenabschnitt, aber keine Steigungsänderung.

Die Austrittsarbeit kann jedoch zum Beispiel durch den sogenannten Schottky Effekt verändert werden.

2.4. Der Schottky-Effekt

Der sogenannte Schottky-Effekt ermöglicht die Verringerung der Austrittsarbeit durch das Anlegen einer Spannung U. Dies wird in der schematischen Abbildung 2.1 dargestellt. Dies ist möglich, da sich Elektron und die induzierte Sipegelladung durch ihr unterschiedliches Vorzeichen in der Ladung anziehen (siehe unverändertes

2. Grundlagen

Potential in schwarz mit $U=0\,\mathrm{V}$). Auf langen Distanzen nimmt die Reduktion des Potentials durch die attraktive Bildladung jedoch ab, sodass zum Emittieren ohne zusätzliches Feld noch die volle Austrittsarbeit $E_{\infty}-E_F$ geleistet werden muss. Wirkt jedoch eine elektrische Feldstärke (in diesem Fall eine angelegte Spannung zwischen Spitze und Extraktor, eingezeichnet in rot), so wird das Potential im Vergleich zu dem gestrichelten Fall ohne Spiegelladung um

$$\Delta W = \sqrt{\frac{e^3 F}{4\pi\epsilon_0}} \tag{2.5}$$

$$mit F = \frac{U}{k \cdot r} (2.6)$$

erniedrigt. Dabei wird mit k der geometrischer Abschwächungsfaktor bezeichnet. Dieser bezieht die Tatsache mit ein, dass Teile des Feldes im Vergleich zu einer Kugel durch den Schaft abgeschirmt werden. In der Literatur wird meist $k \approx 5$ angenommen (z.B. []). Für die hier verwendeten Parameter Spitzenradius $r=45\,\mathrm{nm}$ und angelegte Spannung $U_{\mathrm{Tip}}=100\,\mathrm{V}$ ergibt sich eine Feldstärke von $F=0.35\,\mathrm{V}\,\mathrm{nm}^{-1}$. Daher wird die Austrittsarbeit um $\Delta W=0.8\,\mathrm{eV}$ gesenkt.

Abb. 2.1.: Schematische Darstellung des Schottky-Effektes. Eingezeichnet ist das ungestörte potential in schwarz, das externe Feld in rot, das resultierende Potential in blau und das Potential ohne den Schottky-Effekt mit externem Feld gestrichelt. Deutlich zu sehen ist, dass mit dem Effekt die Austrittsarbeit von Φ auf $\Phi_{\rm eff}$ gesenkt wird.

2.5. Die Elektronische Zustandsdichte

Elektronen mit Spin ½ müssen dem Pauli-Prinzip genügen, nach dem sich keine zwei Elektronen in dem selben Zustand befinden können. Dies führt dazu, dass mit dem hinzufügen von weiteren Elektronen zu einem System immer energetisch höhere Zustände besetzt werden müssen. Mit einem Band werden viele energetisch dicht beieinander liegende mögliche Zustände bezeichnet. In einem Isolator sind alle Bänder entweder komplett gefüllt, oder leer, was dazu führt, dass kein Strom fließen kann. Auch sind die Bänder im Gegensatz zu einem Halbleiter so weit entfernt, dass keine Elektronen aus einem gefüllten Valenzband (zum Beispiel durch thermische Fluktuation) in ein leeres Band (Leitungsband) kommt. Ist dies der Fall, so können sowohl Elektron, als auch Loch zu einem Stromfluss beitragen. Bei Metallen ist mindestens eines der Bänder nur teilweise gefüllt, wodurch ein Strom fließen kann. Durch die Interaktion zwischen Kristallgitter mit dem periodischen Potential und den Elektronen ergibt sich die sogenannte elektronische Zustandsdichte. Mit der elektronischen Zustandsdichte werden die Anzahl von stationären Elektronenzuständen in einem Energieintervall und Volumen bezeichnet.

In Abb. 2.2 ist diese für Gold aufgeführt. Zu sehen ist, dass es um eine Größenordnung mehr Elektronen gibt, die im d-Band 2 eV weniger Energie besitzen, als die Fermi-Energie. Dies bedeutet, dass zur Ionisierung zwar ungefähr ein Photon mehr benötigt wird, es jedoch auch deutlich mehr Elektronen gibt.

Aufgrund der Tatsache, dass ein drei-Photonen-Prozess bei gleicher Intensität deutlich unwahrscheinlicher ist, als ein zwei-Photonen-Prozess, dieser Unterschied jedoch nicht so stark bei höheren Ordnungen ist, ist zu erwarten, dass je höher die Nichtlinearität ist, mehr Elektronen aus dem d-Band gelöst werden.

Abb. 2.2.: Elektronische Zustandsdichte aus [?]

3. Experimentelle Vorgehensweise

Im Rahmen des folgenden Kapitels soll das verwendete Experiment näher erläutert werden.

In der hier vorgestellten Arbeit wurde der in Abb. 3.1 dargestellte Aufbau verwendet. Dieser beinhaltet einen fs-Laser, dessen Leistung mit einem kontinuierlichen ND-Filterrad variabel abgeschwächt werden kann. Dieser ist in der Achse der Spitze polarisiert. Um die Laserintensität zeitlich zu stabilisieren wird ein Teil des transmittierten Strahls mit einem Beamsplitter auf den Messkopf eines Powermeters geleitet, welches mit einer Feedback-Schleife das Filterrad steuert. Der restliche Teil des Strahls wird mit einer in drei Richtungen beweglichen Linse auf die Spitze fokussiert. Kleinere Korrekturen der Strahlposition werden so durch einen nicht zentralen Einfall auf die Linse korrigiert.

Die emittierten Elektronen werden (wie in Grafik 3.2 dargestellt) zunächst mit der Beschleunigungsspannung U_{Tip} zum Extraktor hin beschleunigt. Der Supressor, dessen Spannung U_{Sup} jedoch bei den hier durchgeführten Versuchen auf dem selben Potential (100 V) lag, wie die Spitze, fokussiert den Elektronenstrahl, damit die Elektronen auf die MCP treffen.

Anschließend treffen die einzelnen Elektronen (wie in Abb. 3.2 zu sehen) auf eine Micro Channel Plate (MCP), welche ortsaufgelöst die Elektronen verstärkt. Die austretenden Elektronenbündel treffen daraufhin auf einen Phosphorschirm, den sie punktuell zum Leuchten anregen. Dieses kann nun mit einem CCD-Chip aufgenommen werden und dient als Datenquelle zur Auswertung.

Abb. 3.1.: Schematischer Aufbau des Strahlengangs: Der Laserstrahl wird zunächst mit Hilfe eines Beamsplitters abgeschwächt, durch ein Teleskop (Vergrößerung 1:1) kollimiert woraufhin die Laserleistung mit einem kontinuierlichen ND-Filterrad erneut reduziert wird. Dieses wird über einen weiteren Beamsplitter mit einem Powermeter (PW) in einer Feedback-Schleife gesteuert. Die Strahlposition wird durch eine bewegliche Linse festgelegt.

Abb. 3.2.: Detektion der Fotoelektronen: Die vom Laser aus der Spitze emittierten Elektronen werden durch die Spannung U_{Tip} zum Extraktor hin beschleunigt. Durch U_{Sup} werden sie zusätzlich fokussiert. Mit Hilfe einer Micro Channel Plate (MCP) werden die Einzelelektronen verstärkt, so dass sie einen Phosphorschirm zum Leuchten anregen, was von einem CCD-Sensor aufgenommen wird. <+Geometrie und Abstände einzeichen+>

3.1. Supressor-Extraktor Geometrie

Die hier verwendete Geometrie (Abb. 3.2) besteht aus der Spitze, einem Supressor und einem Extraktor.

Die Spitze wurde aus einem geglühten Golddraht mit einem Durchmesser von 0.25 mm durch elektrochemisches Ätzen mit Salzsäure hergestellt (ausführliche Ausführungen hierzu in [?] und [?]). Das anschließende Ausglühen hat den Effekt, dass die zu Beginn polykristalline Struktur größere Körner gleicher Kristallstrukturen ausbildet. Daher ist der Apex mit hoher Wahrscheinlichkeit monokristallin, was dazu führt, dass keine weiteren Facetten (und damit Austrittsarbeiten) durch Korngrenzen hinzukommen.

Die Abmaße des verwendeten Aufbaus sind in Abb. 3.2 dargestellt. Die Entfernung zwischen Suppressor und Extraktor beträgt 1.44 mm, die Länge der Spitze 0.29 mm. Der Apex ist von der MCP 26 mm entfernt, welche einen Durchmesser von 26 mm hat. Die Apertur des Extraktors hat einen Durchmesser von 3 mm.

3.2. Intensitätsabhängiger Photostrom

Ein wesentliches Ziel der vorliegenden Arbeit ist die Bestimmung des intensitätsabhängigen Photostroms in Abhängigkeit der Wellenlänge.

Dabei wird der Photostrom in Abhängigkeit der Laserintensität bei konstanter Wellenlänge gemessen. Nach Gleichung 2.3 gilt $J \propto I^N$, wodurch sich N als Geradensteigung in einem doppel-logarithmischen Plot ablesen lässt.

Als größter Störfaktor stellte sich bei den Messungen heraus, dass die Strahlposition sich bei geänderter Wellenlänge verstellte. Dies führte dazu, dass der Strahl augenscheinlich bei leichten Korrekturen noch immer am Apex zu sein schien, obwohl er in Wirklichkeit auf einem anderen hellen Spot war. Damit lässt sich begründen, dass einige Daten deutliche Ausreißer waren, welche an der exakt selben Position auch vergleichbare Werte lieferten. Bei einer erneuten Messung unter Beachtung der genauen Position des Apex konnten diese Ausreißer jedoch nicht nachvollzogen werden.

Um sicherzugehen, dass die gezählten Elektronen nur vom Apex kommen können, hätte man die Supressorspannung auf ca. 123 V erhöhen müssen. Dann verschiebt sich der Abschneidepunkt so weit nach vorne, dass keine anderen mehr durchkommen (Abschneidepunkt siehe [?, S. 71 ff.]). Das Problem hierbei ist jedoch, dass die Elektronen in diesem Fall sehr fokussiert auf dem Phosphorschirm auftreffen, was dazu führt, dass man sie nicht einzeln zählen kann (siehe Kapitel 3.4). Deshalb wurden bei den hier vorgestellten Messungen immer Spitze und Supressor auf die selbe Spannung gestellt (soweit keine andere Bemerkung gilt $U_{\text{Tip}} = U_{\text{Sup}} = 100 \,\text{V}$).

3.3. Laser

In dem verwendeten Aufbau wurde ein Lasersystem der Firma $Light\ Conversion$ verwendet. Dieses besteht aus einem Pumplaser (Pharos), welcher 200 fs Pulse mit einigen mJ Pulsenergie und 100 kHz Repetitionsrate zum Pumpen des Optisch Parametrischen Verstärkers (Orpheus) bereitstellt. Dieser erzeugt wiederum Pulse mit Pulslängen von ≈ 200 fs in einem Resonator mit einem nichtlinearen optischen Kristall[?]. Dabei entstehen zwei Laserstrahlen unterschiedlicher Wellenlänge (das sogenannte Signal mit höherer Energie und Idler mit größerer Wellenlänge). Um an dem Experiment nur einen der beiden zu bekommen, muss der andere mit einem Wellenlängenseparator getrennt werden. Jedoch funktioniert die optisch parametrische Verstärkung nur in einem relativ kleinen spektralen Bereich um die eingestrahlten Frequenzen. Wünscht man höhere Energien, so muss der Strahl mit Hilfe der Second-Harmonic-Generation (SHG) noch einmal frequenzverdoppelt werden.

3.4. Zählalgorithmus der Elektronen

Für die Auswertung wurde der Elektronenstrom computergestützt ausgewertet. Als Datenquelle dienten 2D-Intensitäts-Aufnahmen, welche von der Kamera aus Grafik 3.2 aufgenommen werden.

Um die Anzahl der Elektronen auf den einzelnen Bildern zu bestimmen, gibt es zwei Möglichkeiten:

- Elektronen maschinell zählen: Ein Algorithmus, welcher in jedem Bild die Elektronen zählt. Von Vorteil ist, dass die Helligkeit der einzelnen Elektronen (sollte sie sich bei verschiedenen kinetischen Energien unterscheiden) keinen Einfluss auf die Detektion hat. Der Nachteil ist jedoch, dass möglicherweise falsche Elektronen detektiert werden oder vorhandenen (insbesondere bei hohen Intensitäten) nicht erkannt werden.
- Helligkeit integrieren: Die Helligkeit der einzelnen Pixel über das ganze Bild summieren. Vorteilhaft an dieser Methode ist, dass gerade bei hohen Intensitäten der Algorithmus zuverlässiger ist. Sollten die Elektronen jedoch nicht

vergleichbar in der Helligkeit sein (z.B. da die Kamera keine lineare Intensitätsskala besitzt), gibt der Algorithmus eine falsche Anzahl heraus. Insbesondere kleine Anzahlen an Elektronen in einem Bild kann diese Methode nur schlecht ermitteln.

Da die verwendeten Bilder nur eine relativ geringe Anzahl an Elektronen besaßen, wurde das erste Programm zur Auswertung gewählt. Dieses bestimmt zunächst aus Bildern ohne Elektronensignal die toten Pixel, indem er diejenigen aussortiert, welche über 100 Bilder gemittelt mehr als 120% des Mittelwerts haben. Dies wurde getan, um nicht versehentlich scheinbare Elektronen zu detektieren, welche aus fehlerhaften Pixeln des CCD-Chips resultieren können.

Im Folgenden werden die Elektronen in der Region Of Interest (ROI - dem Bereich des Bildes, der tatsächlich den Phosphorschirm beinhaltet) gezählt. Damit das Rauschen einen möglichst geringen Effekt hat, werden alle Pixel unter einer bestimmten Schwelle (hier einem Wert von 12, da fast alle Pixel in einem unbeleuchteten Bild unter diesem Wert liegen) auf Null gesetzt. Dann wird das Bild gefaltet mit einer Matrix

$$A = \begin{pmatrix} 1/9 & 1/6 & 1/4 & 1/6 & 1/9 \\ 1/6 & 1/3 & 1/2 & 1/3 & 1/6 \\ 1/4 & 1/2 & 1 & 1/2 & 1/4 \\ 1/6 & 1/3 & 1/2 & 1/3 & 1/6 \\ 1/9 & 1/6 & 1/4 & 1/6 & 1/9 \end{pmatrix}$$

um verbleibendes Rauschen zu filtern. Ein Beispiel für ein gefaltetes Bild ist in Abb. 3.3(b) dargestellt. Nach einem weiteren Threshhold, über den die gefalteten Daten kommen müssen um weiteres Rauschen zu minimieren, werden die Maxima in den Daten gesucht. Da dicht beienander liegende Elektronen nur ein gemeinsames haben, kann dieser Algorithmus solche nicht auseinanderhalten. Die Anzahl und Position der Maxima in den verarbeiteten Daten sollte dann mit denen der Elektronen übereinstimmen.

In Abb. 3.3(a) kann man die ROI eines typischen Bildes erkennen. Zu erkennen ist, dass die Elektronen noch räumlich getrennt sind. Daher ist es nicht verwunderlich, dass die in Bild 3.3(c) gefundenen Elektronen in guter Übereinstimmung mit den von Menschen erkannten liegen. Einige Punkte, welche man auf dem Bild erkennt nicht detektiert wurden, liegt daran, dass die Farbskala sehr eingeschränkt ist und die Punkte nur sehr schwach sind. Die blau umrandeten beispielsweise sind nur wenige Pixel im Durchmesser und können so auch durch Rauschen hervorgerufen worden

3. Experimentelle Vorgehensweise

sein und nur für das Auge dominant wirken.

Bei einer zu großen Elektronenanzahl (bzw. Belichtungszeit) kann der Algorithmus zwischen einzelnen Elektronen nicht mehr differenzieren. Dies geschieht langsam und von der Mitte, wo die meisten Elektronen auftreffen, beginnend. Daher sinkt in diesem Fall die Steigung der Messpunkte zum Beispiel in Diagramm 4.1(b) langsam.

(a) Wellenlänge $460\,\mathrm{nm}$, Belichtungszeit $10\,\mathrm{ms}$, Laserleistung $109\,\mu\mathrm{W}$

(b) Bild (a) gefaltet mit Matrix A

(c) Bild (a) mit den vom Algorithmus gefundenen Elektronenpositionen

Abb. 3.3.: Vergleich von Aufnahmen des Phosphorschirms und den darauf gefundenen Elektronenpositionen

4. Ergebnisse

In diesem Kapitel soll die Auswertung der Daten präsentiert werden.

4.1. Intensitätsabhängigkeit

In Abb. 4.1 sind beispielhaft für Wellenlängen von 480 nm, 520 nm und 690 nm die Anzahl der Elektronen gegen die Intensität des Laserstrahls doppellogarithmisch aufgetragen. Es lässt sich eindeutig ein linearer Zusammenhang erkennen, welcher ebenfalls gefittet ist. Bei sehr schwachen Laserintensitäten ist offensichtlich, dass die Streuung der Werte stark zunimmt. Da dies jedoch mit einer unzureichenden Anzahl an Elektronen in den Bildern zu erklären ist, wurden die linearen Regressionen ohne Aufnahmen mit weniger als 10 Elektronen pro Sekunde durchgeführt. Darüber hinaus konnte der Algorithmus zum Elektronenzählen bei großen Anzahlen an Elektronen nicht zwischen diesen differenzieren, so dass die zugehörigen Werte, wie in Grafik 4.1(b) von Hand aussortiert werden mussten.

Betrachtet man die Bilder mit den sättingenden Daten, so lässt sich erkennen, dass ab einer gewissen Dichte viele Elektronen nicht mehr gezählt werden.

In Abb. 4.3 sind die Steigungen für die jeweiligen Wellenlängen eingetragen.

Plottet man wie in Abb. 4.3 zu sehen alle Steigungen, so ergibt sich nicht das einfachste zu erwartende Bild einer Treppenfunktion. Die Gründe hierfür können vielfältig sein: Zum Beispiel wurden die meisten bisherigen Messungen der Austrittsarbeit wie in Tabelle 2.1 an einer einzigen Kristallfacette durchgeführt. Eine Spitze hat jedoch viele Kristallebenen an der Oberfläche welche alle unterschiedliche Austrittsarbeit besitzen. Daher erhält man eine Überlagerung der verschiedenen Austrittsarbeiten. Nicht ganzzahlige Nichtlinearitäten bekommen so eine sinnvolle Erklärung, da sich die verschiedenen Ordnungen an unterschiedlichen Flächen überlagern. Dies führt dazu, dass man sowohl energiearme, als auch energiereiche Elektro-

4. Ergebnisse

- (a) 480nm Gefittete Steigung: 2.1 ± 0.2
- (b) 520nm Gefittete Steigung ohne die letzten 28 Werte: 2.6 ± 0.1

(c) 690nm - Gefittete Steigung: 3.7 ± 0.1

Abb. 4.1.: Beispielhafte Auftragung des Elektronenstroms gegen die eingestrahlte Intensität zu drei beispielhaften Wellenlängen.

nen detektieren können müsste. Dies wäre im Rahmen einer zukünftigen Messreihe empfehlenswert zu überprüfen. Sollte die Hypothese der Überlagerung verschiedener Multiphotonen-Prozesse zutreffen, so kann man bei größeren Wellenlängen keine energetisch schmalbandigen Elektronen zum Beispiel für das Ultrafast Low Energy Electron Defraction (ULEED) Experiment mit dieser Methode bereitstellen. Dies benötigt sehr schmalbandige Elektronenspektren, damit die Elektronenpulse durch Dispersion nicht zu stark verlängert werden, was die Zeitauflösung verringern würde [?].

In Abb. 4.2 ist die Nichtlinearität aus Diagramm 4.3 multipliziert mit der Photonenenergie der jeweiligen Wellenlänge aufgetragen. Dies entspricht der mittleren

Energie, die bei einem Emissionsprozess freigesetzt wird. Zu erkennen ist, dass bei 480 nm eine Energie von 5.49 eV vorliegt, was gut zu den Literaturwerten passt. Bei höheren Ordnungen N steigt der relative Wirkungsquerschnitt σ_N aus Gleichung 2.4 von Prozessen mit einer ähnlichen Anzahl an Photonen. Mit dieser zusätzlichen Energie ist es dann jedoch möglich, nicht nur Elektronen von der Fermi-Kante, sondern auch aus dem d-Band zu emittieren. Da es von diesen jedoch nach Kapitel 2.5 um eine Größenordnung mehr Elektronen gibt, steigt die Wahrscheinlichkeit einer Emission.

Abb. 4.2.: Auftragung der Nichtlinearität aus Abb. 4.3 multipliziert mit der jeweiligen Photonenenergie.

In Abb. 4.3 ist der Wellenlängenbereich aufgetragen, in dem doppelt gemessen wurde. Zu erkennen ist, dass die Kurven überwiegend in guter Übereinstimmung liegen und die Ausreißer durch Datenpunkte der jeweils anderen Kurve ausgeglichen werden. Allerdings ist es nicht auszuschließen, dass manche der Messwerte in blau nicht am Apex, sondern an dem nächsten hellen Spot 20 µm von der Spitze entfernt aufgenommen wurden. Dies führt dazu, dass manche Werte deutliche Abweichungen von der Kurve zeigen. Es ist vermutlich nicht darin begründet, dass die Messungen

4. Ergebnisse

sehr streuen, da erneute Messungen an den selben Positionen kaum Abweichungen hatten.

Abb. 4.3.: Vergleich der ersten mit der zweiten Messung der Nichtlinearität in dem doppelt vermessenen Wellenlängenbereich. Zu erkennen ist, dass die beiden Messreihen vergleichbare Ergebnisse lieferten und meist in den Fehlerintervallen der jeweils anderen.

In Grafik 4.5 sind ausgewählte Messreihen zusammen dargestellt. Erkennbar ist, dass mit steigender Wellenlänge die Geradensteigung zunimmt, der Achsenabschnitt jedoch nicht konstant ist. Die Farbe der Geraden entspricht in etwa der des Lichtes, bei der die Gerade gefittet wurde.

Abb. 4.4.: Daten aus Abb. 4.3 zusammen mit dem einfachsten denkbaren Modell, welches Stufen vorhersagt. Eingetragen sind in grün mit 4.8 eV Austrittsarbeit ein niedriger Wert der Fermienergie aus [?], welcher die Daten nach unten hin begrenzen sollte. In rot ist der höchste Wert einer Austrittsarbeit für eine Facette nach [?] eingezeichnet als Referenz, um zu sehen, ob Elektronen ausschließlich von der Fermikante kommen. Wäre dies der Fall, so müssten die Daten zwischen den beiden Kurven liegen. In pink ist dann die ungefähre Lage des d-Bandes eingezeichnet. Klar zu erkennen ist, dass die Messwerte zwischen der grünen und der pinken, jedoch auf beiden Seiten der roten Kurve liegen.

Abb. 4.5.: Ausgewählte Messreihen verschiedener Wellenlängen aufgetragen. Die Farbe der Messpunkte entspricht in etwa der wahrgenommenen Farbe des Lichts.

5. Diskussion und Ausblick

In diesem Abschnitt soll auf mögliche Fehlerquellen eingegangen werden, sowie ein Ausblick auf mögliche zukünftige ergänzende Experimente gegeben werden.

5.1. Stabilität der Laserintensität

Die SHG ist sehr sensitiv auf das interne Beampointing, so dass selbst ein relativ geringer Luftzug mit seinen Dichteschwankungen schon deutliche Einbrüche in der Intensität bedeutet. Dies bedeutet, dass selbst das Vorbeigehen am Laser Einbrüche von bis zu 50% an Leistung bewirkte. Die Feedback-Schleife war jedoch nicht darauf ausgelegt, kontinuierlich zu regeln, sondern stellte nur zu Beginn jeder Messung die Intensität ein. Während die Bilder aufgenommen wurden regelte sie also nicht nach. Da jedoch nicht viele Leute an dem Lasersystem vorbeigingen und im späteren Verlauf der Messungen darauf geachtet wurde, dass während der Messungen kein Luftzug entstand, sind höchstens einzelne Datenpunkte von einzelnen Wellenlängen betroffen.

5.2. Degradation der Spitze

In Abb. 5.1 sind REM-Aufnahmen der verwendeten Spitze vor und nach dem Experiment gezeigt. Deutlich zu sehen ist, dass nach den Messungen sich Strukturen auf der Spitze befanden. Diese Hahnenkamm-ähnlichen Auswüchse haben sehr viel kleinere Radien. Allerdings ist es möglich, dass sie erst entstanden, als die Spitze aus der Vakuumkammer genommen wurde, um sie ins REM einzubauen. Bild 5.1(b) ist zwar etwas unscharf, jedoch scheint auch da schon der Krümmungsradius des Apexes gegenüber 5.1(a) größer zu sein und eine Ausbuchtung nach oben entstanden zu sein. Dies ist insofern wahrscheinlich, als dass die Spitze vor dem Ausbau nicht besonders viele Elektronen emittiert hat, wie es bei einer hohen Feldüberhöhung zu erwarten gewesen wäre. Auch lässt sich ein leichter Farbkontrast zwischen der Spitze

und dem gewachsenen erkennen, was dafür spricht, dass es sich bei dem angelagerten Material nicht um Gold handelt. Denkbar wäre es, dass beim Ausbau durch elektrostatische Felder Schmutz angezogen wurde und sich niedergeschlagen hat.

(a) REM-Bild der Spitze vom 12.06.14

(b) REM-Bild der Spitze vom 23.10.14

(c) REM-Bild der Spitze vom 31.05.16

Abb. 5.1.: REM-Bild der Spitze vor und nach den Messungen.

Als Strahler, der sich ungefähr in der Mitte zwischen Apex und Gitter befand könnten die zwei Körner mit einem Durchmesser von 230 und 260 nm fungiert haben.

5.3. Effekte zur <+Linearisierung+> der Daten

Die Daten in Grafik 4.3 scheinen zunächst annähernd linear zu sein. Bei genauerer Betrachtung fällt auf, dass sich Ansätze von Plateaus bei den ganzzahligen Nichtlinearitäten ausmachen lassen. Fittet man die ermittelten Ordnungen linear, so ergibt sich eine Steigung von $-2\,\mathrm{eV}^{-1}$.

Die folgenden Effekte können zu einer Glättung der Stufenfunktion führen:

• Durch den Energieeintrag in die Spitze wird diese aufgeheizt. Die Elektronen werden so angeregt und benötigen gegebenenfalls weniger Photonen, als bei Raumtemperatur oder dem absoluten Nullpunkt.

- Wie in Kapitel 2.5 beschrieben, existieren nicht nur Elektronen an der Fermi-Kante. Daher können sowohl Elektronen niedrigerer, als auch (jedoch weniger) höherer Energie ausgelöst werden.
- In dem d-Band befinden sich um eine Größenordnung mehr Elektronen, als an der Fermikante (s. Kap. 2.5). Daher trifft der vorherige Punkt besonders stark für diesen Energiebereich zu.
- Durch den Schottky-Effekt (Kap. 2.4) findet eine Erniedrigung der effektiven Austrittsarbeit statt. Thermisch angeregte Elektronen können somit tunneln (entweder durch Photo-assisted field-emission oder durch einen reinen Tunnelprozess).
- Zudem führen die unterschiedlichen Kristall-Facetten mit unterschiedlichen Austrittsarbeiten zu einer Glättung der Kurve. Dies ist der Fall, da sich die unterschiedlichen Steigungen überlagern in den Bereichen, wo die Flächen eine unterschiedliche Ordnung in der Nichtlinearität haben.

A. Anhang

Abb. A.1.: Ausgangsleistung des Orpheus im gesamten emittierenden Wellenlängenbereich aus dem Datenblatt des Herstellers 1 .

¹Light Conversion Produktkatalog 2013, http://www.lightcon.com/upload/iblock/2db/2db3f7cec5ac57521f58ced3aa1eb9aa.pdf, Abgerufen 27.06.2016

Literaturverzeichnis

Erklärung

nach §13(8) der Prüfungsordnung für den Bachelor-Studiengang Physik und den Master-Studiengang Physik an der Universität Göttingen:

Hiermit erkläre ich, dass ich diese Abschlussarbeit selbständig verfasst habe, keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe und alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten Schriften entnommen wurden, als solche kenntlich gemacht habe.

Darüberhinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht auszugsweise, im Rahmen einer nichtbestandenen Prüfung an dieser oder einer anderen Hochschule eingereicht wurde.

Göttingen, den 7. September 2016

(Michael Alexander Lohmann)