Formalisme, Logique élémentaire, Ensembles

M2 - Chapitre 1

I. Implication

$$A \Rightarrow B = \bar{A} \text{ ou } B$$

II. Ensembles

1. Partie d'un ensemble

$$\mathcal{P}(\{a,b\}) = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}\$$

2. Opérations sur les ensembles

3. Applications

Application	Injective	Surjective
		f • • • • • •
Une application de E dans F	f est injective si :	f surjective si :
associe à tout élément de E		$\forall y \in F, \exists \ x \in E, f(x) = y$
un unique élément de F	$\forall (x,y) \in E^2, x \neq y \Rightarrow f(x) \neq f(y)$	

4. Cardinal d'un ensemble

Card E = nombre d'éléments de E

Il existe f injective de E dans F
 ⇒ Card E ≤ Card F
 ⇒ Card E ≥ Card F
 ⇒ Card E ≥ Card F
 ⇒ Card E ≥ Card F

5. Relation d'équivalence

Définition	Propriétés possibles	Classes et ensemble q.
$R: E^2 \rightarrow \{V, F\}$ $(x, y) \rightarrow xRy$	• Réflexive : xRx • Symétrique : $xRy \Rightarrow yRx$ • Transitive : xRy et $yRz \Rightarrow xRz$	$\bar{x} = \{x' \in E \mid xRx'\}$ Eléments en relation avec x $E/R = \{\bar{x} \mid x \in E\}$

R est une relation. Si elle respecte les 3 propriétés, c'est une relation d'équivalence.

Formalisme, Logique élémentaire, Ensembles

M2 – Chapitre 1

III. Structures algébriques

1. Lois de composition interne

Définition	Propriétés possibles	
$*: F^2 \rightarrow F$	Associative :	(x * y) * z = x * (y * z) = x * y * z
$(x,y) \rightarrow x * y$	Commutative :	x * y = y * x
(x,y) $x + y$	 Possède e neutre : 	e * x = x * e = x
	 Tout x a un symétrique x' : 	x * x' = e

2. Groupe

Définition(E, *) est un groupe si * est **associative**, * possède un **neutre** et tout élément de E a un **symétrique** par *.

3. Sous-groupe

Définition	Théorème
Soit $(G, *)$ un groupe et $H \subset G$,	Soit $(G, *)$ un groupe et $H \subset G$,
Si $(H, *)$ est un groupe,	Si $\forall (h, h') \in H^2, h * h'^{-1} \in H$
Alors $(H, *)$ est un sous-groupe de $(G, *)$	Alors $(H, *)$ est un sous-groupe de $(G, *)$

4. Groupe engendré par une partie A

Définition	
Soit $(G, *)$ un groupe et $A \subset G$,	
Alors $gr(A)=$ groupe engendré par A = plus petit sous-groupe de G contenant A	

5. Anneau et corps

Anneau	Corps
Soit $(A, +)$ un groupe commutatif,	Si $(A, +, \cdot)$ est un anneau,
Soit \cdot une l.c.i. associative sur A ,	Et $(A \setminus \{0_A\}, \cdot)$ est un groupe,
Si · possède un neutre 1_A ,	Alors $(A, +, \cdot)$ est un corps
Et · distributive par rapport à +,	
Alors $(A, +, \cdot)$ est un anneau	

6. Sous-groupes de $(\mathbb{Z}, +)$

- $n\mathbb{Z} = \{kn \mid k \in \mathbb{Z}\} = \text{multiples de n}$
- Soient H et H' des sous-groupes de $(\mathbb{Z}, +)$, $H + H' = \{h + h' \mid (h, h') \in H \times H'\}$
- $gr({n}) = n\mathbb{Z}$
- $gr(\{a,b\}) = a\mathbb{Z} + b\mathbb{Z}$
- H sous-groupe de $(\mathbb{Z}, +)$, $\exists ! n \in \mathbb{N}, H = gr(\{n\}) = n\mathbb{Z}$
- $n\mathbb{Z} = n'\mathbb{Z} \Leftrightarrow n = n'$
- Soit $n = a \wedge b$, $(a + b)\mathbb{Z} = n\mathbb{Z}$

Théorème de Bezout :

$$(a,b) \in \mathbb{Z}^2, \exists (u,v) \in \mathbb{Z}^2, \boxed{au + bv = a \land b}$$

 $\boxed{a \land b = 1 \Leftrightarrow \exists (u,v) \in \mathbb{Z}^2, au + bv = 1}$

v2