Midterm Presentation:

Risk Properties in Bandable Precision Matrix Estimation

Addison Hu Statistics 490 o1 March 2017

Outline

- 1. Refresher on Graphical Models & Multivariate Gaussian
- 2. Pairwise Inference for Entrywise Recovery of Σ^{-1}
- 3. Risk Bounds for Entrywise Recovery in $\|\cdot\|_{\infty}$
- 4. Next Steps

Refresher

Graphical Models

- Graphical models provide a framework within which to consider dependence structure within a group of variables.
- In doing so, we may relax the i.i.d. assumption and still perform inference feasibly.
- Examples:
 - Facebook users graph
 - Gene interaction networks

Markov Random Fields

- Consider a graph G = (V, E), and a corresponding set of random variables $\{X_i\}_{i=1}^{|V|}$, where the random variables are indexed by $u \in V$.
- **Pairwise Markov property:** $X_u \perp \!\!\! \perp X_v | X_{V \setminus \{u,v\}}$ for any two non-adjacency nodes u, v.
- Local Markov property: $X_u \perp \!\!\! \perp X_{V \setminus \operatorname{cl}(u)} | X_{\operatorname{nb}(u)}$ for any node v.
- Inference is easy when the edges are known; but is more interesting when they are unknown.

Example: Hub and Spoke Model

Γ1	0	0	1	0 0 0 1 1 0	0	0
0	1	0	1	0	0	0
0	0	1	1	0	0	0
1	1	1	1	1	1	1
0	0	0	1	1	0	0
0	0	0	1	0	1	0
0	0	0	1	0	0	1

Multivariate Gaussian

Suppose $X \sim \mathcal{N}(\mu, \Sigma)$. Its density function is given by:

$$p(\mathbf{x}) = (2\pi)^{-\frac{\rho}{2}} \left| \Sigma \right|^{-\frac{1}{2}} \exp \left\{ -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^\top \Sigma^{-1} (\mathbf{x} - \boldsymbol{\mu}) \right\}$$

- Closure properties:
 - Sum of independent Gaussian random variables is Gaussian.
 - Marginal of a joint Gaussian distribution is Gaussian.
 - Condition of a joint Gaussian distribution is Gaussian.
- The sparsity pattern of Σ^{-1} concides with the adjacency matrix of the associated MRF.

Multivariate Gaussian, cont.

– Closure under marginalization: Suppose $A \subset V$. Then

$$\Sigma_A = (\Sigma_{ij})_{i \in A, j \in A}$$

- Closure under conditioning: Suppose A, B ⊂ V, $A \cup B = V$, $A \cap B = \emptyset$. Then:

$$(\Omega_A)^{-1} = \Sigma_{A|B}$$
$$(\Sigma_A)^{-1} = \Omega_{A|B}$$

Precision Matrix Estimation

Maximum Likelihood Estimation

Assume $\mu = 0$. Then the maximum likelihood estimation problem is:

$$\begin{array}{ll} \text{maximize} & -\log \det |\Sigma| - \langle \hat{\Sigma}, \Sigma^{-1} \rangle \\ \text{subject to} & \Sigma \succeq 0 \end{array}$$

- Maximum Likelihood Estimate given by $\hat{\Sigma} = \frac{1}{n} \mathbf{X}^{\top} \mathbf{X}$.
- Idea: $\hat{\Omega} = \hat{\Sigma}^{-1}$.
- Issues:
 - Invertibility & Conditioning
 - Noise & Sparsity

Graphical Lasso

Asymptotic Normal Thresholding (ANT)

Risk Bounds in $\|\cdot\|_{\infty}$

Risk Upper Bound

Theorem. Lorem ipsum.

Oracle Inequalities

Coupling Argument

Risk Lower Bound

Le Cam's Two-Point Argument

NEXT STEPS