

Mise en service du robot à câbles RC4 - 20 minutes

0bjectifs	D1-01 : Mettre en œuvre un système en suivant un protocole
	D2-01 : Choisir le protocole en fonction de l'objectif visé.
	D2-02 : Choisir les configurations matérielles et logicielles du système en fonction de l'objectif visé par
	l'expérimentation.
	D2-03 : Choisir les réglages du système en fonction de l'objectif visé par l'expérimentation.
	D2-04: Choisir la grandeur physique à mesurer ou justifier son choix.

Expérimenter e analyser

Activité 1

- ☐ Prendre connaissance de la Fiche 1 (Présentation générale).
- ☐ Prendre connaissance de la Fiche 2 (Mise en service du robot RC4, mise sous tension et mise en mouvement).

Proposer un schéma cinématique minimal du système (ou schéma de principe).

☐ Donner les différences entre le système réel et le système didactique.

Activité 2

Expérimenter et analyser

- ☐ Cliquer sur le bouton « Acquisition Auto. » ⑥.
- Réaliser un essai dans les conditions suivantes
 - Placer le mobile en position (250,75) sur la grille :
 - Réaliser un déplacement vertical vers la position (250,600).
 - La durée d'acquisition doit être d'approximativement 1400 ms.
- Afficher les courbes de **vitesse** chacun des enrouleurs (modifier la période de l'échantillonnage si la totalité de la courbe n'est pas affichée)
- ☐ Commenter les courbes obtenues.

☐ Réaliser une synthèse dans le but d'une préparation orale :

- Expliquer brièvement le contexte industriel du système.
- **Expliquer** brièvement le fonctionnement du système de laboratoire.
- Réaliser une synthèse de l'activité 2.

Pour XENS - CCINP - Centrale :

conserver des copies d'écran dans PowerPoint ou Word

Pour CCMP:

Rédiger les éléments de synthèse sur feuille, imprimer et annoter les courbes nécessaires.

Chaine fonctionnelle – 20 minutes

Objectifs	A3-01	Associer les fonctions aux constituants.
	A3-02	Justifier le choix des constituants dédiés aux fonctions d'un système.
	A3-03	Identifier et décrire les chaines fonctionnelles du système.
	A3-04	Identifier et décrire les liens entre les chaines fonctionnelles.
	A3-05	Caractériser un constituant de la chaine de puissance.
	A3-06	Caractériser un constituant de la chaine d'information.
	D1-02	Repérer les constituants réalisant les principales fonctions des chaines fonctionnelles.
	D1-03	Identifier les grandeurs physiques d'effort et de flux.

Expérimenter et analyser

Activité 1

- ☐ Etablir la chaîne fonctionnelle du robot à câbles RC4.
- ☐ Expliquer le fonctionnement d'un codeur incrémental.
- Prendre connaissance des grandeurs visualisables sur la fiche 3. Donner les grandeurs nécessaires au fonctionnement du système réel. Donner les grandeurs mesurées et celles qui sont calculées.
- ☐ Déterminer l'erreur de mesure sur la longueur d'un câble.

Réaliser une synthèse dans le but d'une préparation orale :

- Présenter la chaîne fonctionnelle sous forme de blocs.
- Préciser la nature des flux transitant entre les blocs.
- Lors de la présentation à l'examinateur, désigner les constituants sur le système.

Pour XENS - CCINP - Centrale :

conserver des copies d'écran dans PowerPoint ou Word.

Pour CCMP:

Rédiger les éléments de synthèse sur feuille, imprimer et annoter les courbes nécessaires.

Détermination des lois de mouvement - 90 minutes

Objectifs pédagogiques		B3-01	Vérifier la cohérence du modèle choisi en confrontant les résultats analytiques et/ou numériques				
		aux résultats expérimentaux.					
		C1-04	Proposer une démarche permettant d'obtenir une loi entrée-sortie géométrique.				
		C2-06	Déterminer les relations entre les grandeurs géométriques ou cinématiques.				
		C3-01	Mener une simulation numérique.				
		D2-04	Choisir la grandeur physique à mesurer ou justifier son choix.				
		D2-05	Choisir les entrées à imposer et les sorties pour identifier un modèle de comportement.				
		A4-03	Interpréter et vérifier la cohérence des résultats obtenus expérimentalement, analytiquement ou				
		numériquement.					
0	П	Δ4-04	Rechercher et proposer des causes aux écarts constatés				

Objectif

L'objectif de ce TP est de déterminer les longueurs de chacun des câbles pour que le mobile réalise le mouvement de translation prévu.

Résoudre analytiquement

Activité 1 – Réalisation d'une loi en trapèze

 \square Lors d'un déplacement en ligne droite, le mobile suit une loi en trapèze de vitesse. On note t_1 , t_2 et t_3 les temps de chacune des phases. L'accélération maximale est notée amax, la vitesse maximale accessible est vmax, la distance à parcourir est notée distance. Déterminer t_1 , t_2 et t_3 et fonction de amax, vmax et distance.

- Implémenter dans python la fonction calcule_temps(amax :float, vmax :float, distance :float) -> float, float, float, renvoyant t_1 , t_2 et t_3 .
- ☐ Ecrire une fonction calcule_profil(amax,vmax,distance) -> np.array, np.array, np.array retournant:
 - les_t : tableau numpy des temps discrétisés toutes les 0,01 s ;
 - les_x: tableau numpy des positions linéaires (en fonction du temps);
 - les v : tableau numpy des vitesses linéaires (en fonction du temps);
 - les_a: tableau numpy des accélérations linéaires (en fonction du temps).
- Tracer les profils de position, vitesse et accélération du mobile, pour un déplacement de 100 mm.

 C_{HD} B_{HL}

Activité 2 – Détermination de la longueur d'enroulement des câbles

On propose le schéma ci-contre où :

- *M* est le centre du mobile ;
- A_{HD} est le point d'accroche du câble sur le mobile;
- B_{HD} est le centre de la poulie en haut à droite ;
- C_{HD} est le point ou le câble vient s'enrouler sur la poulie.

On note:

- $\bullet \quad \overrightarrow{OB_{HD}} = X_{HD}\vec{x} + Y_{HD}\vec{y};$
- $\blacksquare \quad \overrightarrow{A_{HG}A_{HD}} = L_M \overrightarrow{x_M}$
- $A_{BG}A_{HG} = H_M \overrightarrow{y_M}$

- $\bullet \quad A_{BG}A_{HG} = \Pi_M y_M$
- \square Exprimer la distance $D_{HD} = A_{HD}B_{HD}$ en fonction de L_M , H_M , X_M , Y_M , X_{HD} , Y_{HD} .
- On note $\varphi_{HD} = (\vec{x}, \overrightarrow{u_{HD}})$. Exprimer φ_{HD} en fonction des paramètres géométriques.
- Implémenter la fonction calcule_D_phi(H, L, Xm, Ym, Xhd, Yhd, theta = 0) -> float,float renvoyant D_{HD} et φ_{HD} .

Résoudre umériquement

Synthèse

Activité 3 - Déterminer les longueurs de câble en fonction du temps

- ☐ Pour un déplacement de votre choix, tracer les longueurs de chacun des 4 câbles en fonction du temps.
- ☐ Comparer avec les résultats expérimentaux.
- Commenter les résultats obtenus.

☐ Réaliser une synthèse dans le but d'une préparation orale

- Présenter les points clés de la modélisation analytique.
- Comparer les résultats de la simulation et les résultats expérimentaux.
- Conclure.

Pour XENS - CCINP - Centrale :

- Donner l'objectif des activités.
- Présenter les points clés de la modélisation.
- Présenter les points clés de la résolution utilisant Capytale.
- Présenter le protocole expérimental.
- Présenter la courbe illustrant les résultats expérimentaux et ceux de la résolution.
- Analyser les écarts.

Pour CCMP:

- Synthétiser les points précédents sur un compte rendu.
- Imprimer le graphe où les courbes sont superposées.