

TRANSIT FIELD BOOK

No. 8152-00

Property of	
Address	
Telephone	

This Book is manufactured of a High Grade 50% Rag Ledger Paper having a Water Resistant Surface, and is sewed with Nylon Water-proof Thread.

INDEX

			·	
	 			
	 	•		
	 		·	
	 			
				
			-	
				-
				-
				8
				-
				-
				-
				-
				-
				-
				-
				-
				-
				-
				-

_			THICKNESS	BELLINEITED STONE THE COLUMN TIES COLUMN TEST TO STONE THE STONE T			
3		ABSAROKA VOLCANIC SUPERGROUP	8000	MAINLY ANDESITIC, BASALTIC, AND DACITIC VOLCANICLASTICS (INCLUDING BRECCIAS, CONGLOMERATES, SANOSTONES, SILTSTONES, AND TUFFS) INTERBEDDED MITH LAVA FLOMS AND VENT BRECCIAS; PETHIFIED TREES AND LEAF FOSSILS COMMON.			
EOCENE		WILLWOOD FM	5300,	VARIEGATED UNITS OF GRAY, RED AND PURPLE MUDSTONES WITH OCCASSIONAL THIN SAROSTORES. MAMMALIAM BONES COMMON, PLANT MEMAINS PRESENT IN TABULAR AND LENTICULAR CARBONACEOUS SHALES.			
PALEOCENE		FORT UNION FM	3,000'- 12,000'	INTERBEQUED TELLOWISM. LENTICULAR SANOSTOMES AND YELLOW-GRAY MUDSTONES; LACUSTRINE BELFRY MEMBER MEAR Niggle; CDAL-Bearing member in upper part; syntectomic conglomerates and breccias at top of section along Nountain Front; Fossil Leaves Common, Bones Rare.			
		LANCE FM	750-10001	THICK AND LATERALLY EXTENSIVE YELLOW SANOSTONES INTERBEDDED WITH GRAB. GRAY NUOSTONES; DCCASSIONAL Dindsaur Bones.			
		MEETEETSE FM	1200'	BANGEO GRAY MUOSTONES WITH INTERBECCEC SANGSTONES AND OCCASIONAL THIN LIGHTES. MUOSTONES ARE ROOTED AND CONTAIN PLANTS, FRESHWATER MOLLUSCS, AND GINOSAUR BONES; A SANGSTONE UNIT REAR RIGGLE CONTAINS A MARINE TRACE FOSSIL ASSEMBLAGE.			
		JUDITH RIVER FM	500-900'	LIGHT-COLORED YELLOWISH SANDSTONES INTERBEDOED MITH YELLOWISH-GRAY SANDY SHALES AND SICISIONES: PER BLUS DE DARK BRAY CARBONACEDUS SHALES: OCCASIONAL THIR COAL BEDS: COMMON GINOSAUR BONES AND OCCASSIONAL FOSSIL PLANTS			
		CLAGGETT FM	120-5001	BROWN TO GRAY SHALE WITH STRINGER SAIDS REAR TOP. GRADING UPHARO LUTD MASSIVE RUSTY SAIDSTONE. COMMONLY DARK MEAN BOTTOM AND LIGHTER MEAR TOP - PARKMAN MEMBER: THICK BEHTONITE BELOM SHALE, NEAR BASE OF FORMATION.			
0 0 8		EAGLE FM 200-		INTERBEDOED RIGGE-FORMING SANDSTONES WITH INTERBEDDED SHALES: COAL BETWEEN LOWER SANDS; SANDSTONES NOT CONTINUOUS; MASSIVE, RUSTY, PITTED SANDSTONE AT BASE - VIRGELLE MEMBER.			
A C E		TELEGRAPH CREEK FM	150-4001	GREENISH-GRAY SHALE, SOME GYPSUM; SALT AND PEPPER SANDSTONE FORMS SHOULDER-LIKE MOUIS IN UPPER PART; THO PARTHENT RUSTY SANDSTONE RIDGE-FORMERS AT BASE, VERY FOSSILIFEROUS - ELK BASIN SANDSTONE MEMBER.			
CRET		CARLILE - CODY SH SH	1000~1600	VERY THICK SHALE, GRAY ON FRESH SURFACE, MEATHERS ALMOST WHITE: VERY LARGE CONCRETIONS MEAR TOP AS MELL AS LOWER IN FORMATION: LARGE AMMONITES FOUND IN CERTAIN LOCALITIES - EQUAL TO PART OR ALL OF LODY SHALE.			
		FROMTTER FM	300-600'	MASSIVE GRAY, RESISTANT SANOSTOMES INTERCALATED MITH THINLY-BEDDED BROWN SANDY SHALE AND BLACK SHALE; LARGE THREE-FODT CONCRETIONS NEAR TOP: FEW BEDS OF CHERT-PEBBLE CONGLOMERATE.			
		POWRY SH	350-500.	BROWNISH-GRAY, MARD. RESISTANT SANDSTONE AND SOME BLACK SHALE; NUMEROUS FISH SCALES UP TO ONE AND ONE-HALF INCHES IN JOHER 259 FEET; SIDER:TE CONCRETIONS COMMON 150 TO 100 FEET FROM TOP IN BLACK SHALES.			
	三	THERMOPOLIS SH	500-600'	DARK GRAY TO BLACK. THINLY-BECDED, SOFT BHALES, MON-RESISTANT, INTERBEDDED WITH SEVERAL BENTONITE BEDS: SANDSTONE WHIT BETHEEN THE AND THREE HUMBRED FEST ABOVE BISE,			
		CLOVERLY FM	150-150'	BASAL BLACK CHERT CONGLOMERATES OR PEBBLY. YELLOWISH SANDSTONES: REDDISH SHALES INTERCALATED WITH ANDESITIC AGGLOMERATES AND YELLOW SANDSTONE IN MIDDLE PORTION: GRAY-SROWN SANDSTONE AND SANDS YEARS TOWARD TOP. VARIEGATED REDDISH, GHEENISH, PURPLISH, ARD GRAY CLAYS AND SHALES INTERBEDED WITH LIGHT YELLOWISH-GRAY			
JURASSIC		MORRISON FM SUNDANCE FM	300-900,	SANDSTONES: RARE OCCURRENCES OF DIMOSAUR BORES AND GASTROLITHS. BASAL GREEN-BROWN & RED CLAY, SHALES; THIN BEDS OF GYPSUM AND LS; MIDDLE GRAY CLAYS & SANDSTONES WEATHERING			
- N		GYPSUM SPRINGS FM	40-2001	GREEN-BROWN: UPPER RESISTANT SS. GLAUCOMITIC: COMMON BELEMMITES. CRINGID STEMS. AND THE MOLLUSCS, GRYPHEA THIN-BEDDED GRAY LIMESTONES AND NEDDISH SHALES: THINLY TO MASSIVELY BEDDED GYPSUM TOWARD TOP.			
TRIASS.		CHUGHATER FM	1R0-600'	BRIGHT TO DARK RED SHALES. SILTSTOMES, AND SANDSTONES: MUCH GYPSUM SCATTERED IN BASAL TWENTY FEET.			
PF RM		PARK CITY FM	10-70'	PORDUS. THIN-BEDDED. GRAY LIMESTONES: FEW DOLOMITE BEDS AND THIN CALCAREOUS SANDSTONES (*PHOSPHDRIA FM)			
H		TENSLEEP SS	40-280'	GRAY TO TAH, MASSIVE, CROSS-BEDDED. MEDIUM TO COARSE SANOSTONES: RESISTANT TO EROSION: UNFOSSILIFEROUS.			
		AMSDEN FM	R0-140'	RED SHALES AND SILTSTONES WITH INTERCALATED GRAY LIMESTONE AND DOLONITE: LOCALLY GRAY, CHERTY SANDSTONE.			
MISSISSIPPIAN		P MADISON LS	700-200'	CHIEFLY MASSIVE. LIGHT GRAY TO TAN LIMESTOMES. COARSELY CRYSTALLINE TO FINE-GRAINED: SOME DOLOMITE AND LOCAL CHERTY ZONES: A PEW THINLY-BEDDED LIMESTOMES; A VARIETY OF MARINE INVENTEBRATE FOSSILS FAIRLY COMMON.			
		THREE FORKS FM	70-140'.	PLATY, LIGHT GRAY AND YELLOW TO BROWN AND REDDISH LIMESTONE AND DOLONITE; THICKER CALCAREOUS SANDSTONE AT BASE.			
DEVORTAN		JEFFERSON LS 220-375'		ALTERNATING THINLY-TO-THICKLY BEDDED LIGHT BRAY TO BROWN LIMESTONES AND BOLOWITES WITH PETID ODOR; FEW FINE BRECCIA BEDS; CALCAREOUS BANGSTONE AT BASE; BRACKIOPODS (ATRYPAS, ETC.) PAINLY COMMON.			
		BEARTOOTH BUTTE FM	0-150°	LOCAL LENSES OF THINLY-BEDDED RED AND BUFF CALCAREOUS SMALES AND THICKER BEDS OF YELLOWISH-MEATHERING. GRAY			
		BIGICRI DOLCHITE	150-400*	LIMESTOME AND INTRAFORMATIONAL LIMESTOME CONGLOMERATE: YEAR FLORES BASAL CONGLOMERATE: FOSSIL FISHES AND PLANTS. YELLOMISH-GRAY SANCY BOLOMITE. TEN FEET, OVERLAIN AY MASSIVE, CLIFF-FORMING BUFF. ROUGH MEATHENING BOLOMITE MOTTLED WITH GRAY GTO'II THEN LESS REBISTANT DOLOMITE IN MIDDLE. SIXTY FEET THIS UNIT: TOP EIGHTY PEFT SAME MASSIVE, MOTTLED DOLOMITE NEAR BOTTOM: FOSSILS RARE,			
E V		SHOWY RANGE FM	250-300'	INTERCALATED GREENISH-GRAY BNALES AND INTRAFORMATIDNAL CONGLOMENATE; LATTER CONTAINS DISTINCT SUB-ANGULAR. PLAT, GRAY PEBBLES; UPPER PORTY TO FIFTY FEET YELLON TO GREENISH BHALE, SRAY TO BUFF DOLDMITE AND INTRAFORMATIONAL CONGLOMERATE (- GROVE CREEN MEMBER); PEBBLES MELL-MOUNDED. GRAY WITH GREEN FOR STAN-SHAPED FISSILES IN MATRIX.			
=======================================		MAURICE FM .	90-150'	CLIFF-FORMING, THICKLY BEDDED, CRYSTALLINE LIMESTONE, LIGHT GRAY TO BUFF WITH SOME MOTTLING; OCCASIONALLY OCLITIC: THILDBITE REMAINS COMMON IN COQUINA ABOUT THIRTY FEET ABOVE BASE AND IN TOPMOST BED.			
CAR		PARK SH	350-475*	GREENISH TO PURPLE BHALE INTERBEDDED WITH ONE INCH BEDS AND LERSES OF GRAY LINESTONE; TOP FIFTY FEET CONTAINS DISTINCTIVE EDGENISE CONGLOWERATES WITH CLASTS AT ALL ANGLES TO BEDDING.			
1		MEAGHER LS	40-100*	THIN-BEDDED GRAY LIMESTONE, USUALLY IRREGULARLY MAVY-BEDDED: NIDDLE HEMBER, IF PRESERT, MAINLY SOFT, GREER SHALES.			
	1444	WOLSEY SH	\$0-200'	GREEN. GRAY. PURPLE. PAPERY SHALES GRADING UP TO GREER. BROWN. SANDY SHALES & SILTSTONES: TRILDBITES FAIRLY COMMON.			
1	1700	FLATHEAD SS	0-60'	LIGHT TAN TO REDDISH TO MMITE, MEDIUM SANDSTONE, DUARTRITE, LOCALLY CGL: SANDSTONE COARSE & ARKOSIC TOWARD BASE.			
PRE-C		"BASEMENT"		COMPLEX OF GRANITIC CHEISSES AND DARK SCHISTS, INTRUDED BY MAFIC DIRES, ETC.			
			MOTE .	AFIATIVE THICKNESSES PROPRETIONAL (APPROXIMATELY TO BOALS) MITHUR SACTORS AND			

CONTILED BY EXLING BORF H. E. LAUFFHAN E. JOHNSON

NOTE: RELATIVE THICKNESSES PROPORTIONAL (APPROXIMATELY TO BCALE) MITHIN EACH ERA BUT NOT BETWEEN ERAS.

TOTAL PALEDZOIC ABOUT 3000', TOTAL MESDZDIC ABOUT 8500'; TOTAL CENOZOIC ABOUT 13.000'PEET.

LOC 942 Belleybutton BuTTC CENTER Sec. 14, T95, R 24E CARBON Co., MT. - Lower Meetectse Glypto strobus eurognes Parataxodium Platenoids Crediphyllum ellipticum mystery pinnete, wide obluny leaf. Cone schles PISTIA CUrrupator frags Aspidium Klanerylii at base of laminated drink - BENTONAL Trey CARD. MJdST. LEAGUEST STIVETURE less Roots & grey mide leaf & (a) - CArb modst layer CAN be mods 2 Learned

Benjumilia CAND CAVA JEALLEY ent lave. PIT IN SARPHOR 942 6 VITIS OXXIKI 942 C 20 m ATAXDE VI

943		6/30	94	
			,	. ' _
1				+
<u></u>				
N. Committee of the com				4
-				_
			CHROSE - Man V.	
				!
				. Proceedings
				_

944 S. ELK-B 7/1/94 1 Fagle FM, 5m above C SANG 4m below JASON HICKS 128 50 98 W on GPS. NW, ME, Sec 6, 757N, A GOW PARK CON benting that gave 81 Ma date ~ 10 m below top of D. and base of Claygott, PHANT SITC. Eagle 1evel 87 m in JFH EIK BASIN Sect D. FILER, UNA SMITH.

Plays occur on a light grex to butf my penenth a IT, grey Usg Some 00 75 m 55a3 m 17 gras > 0,5 m some plants accur in 0,3 m mail interval between 55 4 Silerite coves, Some toward top of the INTO VAL BELOW Zue conce, Pare 19 XOQUIN dom. Crassidantacilum 3P. Elutides Crate or pass wor at a (1) Celastrophyllum val TAXa

944 (CONI.) Very low diverse UNIT PART Of A Terre 17 minl Transguessive polse - marked by Contition of depositional area. Unit is a yellowish light transh grey SI. mayly 1/4 mudst. MOSTLY MASSIVE ONLY Ma WEAKLY / MINNETER 3/11/ knard top PARATOROGIUM IS IN TAXORIVIE &
CUTTESCO, S - Cryptomeroid 1 4 Crassidentichum of has cuticle PATATOX. becomes more abundant

7/2/94 CENSUS 1 Para taxolium 1th HH HH HH HH DEROTE HH HH I HT HH HH HE 1 Contraction HH AH HH HH 5 wonternesse > med Hot HHH 111 6 Indet dicot w gerc. yeins Tridet disot lys. 1 8 ENTINE 9 Entire merginate 11 evt. 14. 11 Indet obtuse hase 4 11 -1- May propage

0.6 55, Vfg 5/8/ X-headed W/ VEITICAIR -0.6 M-547/2 MUNST W/P/ANTS 0,25m UNIT becomes a 545/2 MUNSTE AT BASE O.Sm. Con1 > SS is done 17/29 at base O.4 m of COAL INTERP of the fossil IAYER WISTAL SPLAY

Census en reusion Alla 2. 1PARATAYON HAT HIT IIII Al MERCUR WARN O Top of "C" SAND 5,5 p Base of Joseph bed + 5,7 + 0 JASON & HICKS STRAGEBB- 02 PMAG + 26 TO BENTON ITE OF T STORK EBB 94-9 Benton ITE SAMPLE Cives 81,2 Me dare

945 7/2/94 Fragle FM SAME STAT between CYDSS ME, NW, NW, Sec 31, ISEN 1994, PARK CO. WYD FIK BASIN 71/2 QUAD, 5,55:15 4T Two levels THE IN a CLAY HON STONE 17 prst 1 croup 55 745 + \$45h alt 1/2 m higher Palms W level B Alevel Credneria Flatides quella emai Source OTHER dicots These are C'HANCE MARGIN 120,75

16 = LOC 8731 7/6/94 Meeteetse damp NW, NW, NE Sec 10, T 198N, R100 W PARK CO., WYO, PAST 200VES C. Of Drap 946 a PIT 114 8AST OF Thuites caet Transfer of confee PICUS FRANKE Fodichrangeteris sperisa 946 6 Port Site in her town to 03 mabure The Pond Claystone language chared got 10 cm Marcantia 1 Equisetum w Jill Mc Eldery, Fleur Tiver, ANA, Craig van Boskirk, Durian Fuller, Jory Twist

946c 3Mahore VITIS SIMKII TAXOGIVED CONFER Cercidiphylloid C' Avenue fremouris Delow 114 186 142 180 828

7/6/94 (dipes) 09466 9-16C Loc 946 Meetee758 Dump = Fleur Tiver SITE FT941 946C Basal EquiseTum F-14 Suplich Possible Palm or Inder mon Endet dicot

NEREMENT SEC STAMPS DW 0.4 Ligar 15 modsi 11.20 Brown Sh. 0,7 Fossil plants Sver Tux, a MANGETS Base of Lais ligarite Sheather a charre Dona UTTING bx abt The TAST CHANNEL STAIRE 15

53 m. LT grey Jaminuted
55 IN a CANNEL CAAB F155/E 5h. y interpedded IT grey SS. ThAT Thickens INTO Chaynel axis channel is a of sport and its axis LT getx VSg /AMIN. fissle carb sh ut cim. Ferry 55 representing The bhorizon of a stal soil Vfg 55. biotorbated

- 0,45 below Tipul NUMEROUS ROOTS -0.15 m. - brown Bouted. mudst we enther Om pent w top 2.2 m. Benzon, Te Plant 100, 9460 IN basal 0.08 Cm. 0.52 2+ gres vyg laminated end of measured section

7/8/74 Stup 947 VISION QUEST Section

sunvera 5/TC GUNNERA EITX at JFH per 20 \$5 0017. ATUNIT 127 of JFH sec GUNNERA MONOCOT Cercido phylls Morden Existala Probably in NW, NW, NW, Sec 32 T 49N B 100 W , N. W. of Town of meetectse Prink Co. Wy But This is a largely unsurveyed township LONY 1080 34' 36" W, LAT 44010' 57" N Also w/ Filisires Know Itorii (1996) UNIT appears to be a distal splay 55 above a Thin se lignire, follower by a CARD. SHATE. CONNECTA GEARING heds extend some 20 m. To CAST along face of ourcomp. (1196 ohs.).

949 VISION QUEST VALLEY BASE of UNIT 140 N SFH Secr Pond seds. TAN IMMINATED mulst w dimonite CNVJTJ. FILUS planicostata movocos Quereuxix

9411 Scotts MRACIE LAYER SALPICA wood. Indo phieb offded ia JFH UNIT 255 Under Doner Ima BeNTUNITR

94/2 13/9 Cedar 11/19 e at 104 36, 36, 1, 36, 2 again Acer Crez. Ferns Ela71des LOG. W SCOTT W

9412 Green Bug arca
LATE? PALEDEENE ~

140 m below wo

Surna in basal willwood. NW, NE Sec 19, + 46N, K 89W WAShyly Scott Wing Loc 943 Co MYO Castle Gardens 7/2 MENE, NE, Ser 19 THON, R89W WASHAKIE CO, WYO HONCYCUMBS WILDENESS STUDY SIW Protophyllum or
9412 (erciliphyllum (race 1) LAIGE ENTIRE EUCHMPT) averers Gre Cos In while Plat of BAXNOLASIN. Amplelogses acred

Crevasse Splay or distat

Splan 5,0/2 LOC W SCOTT WING.

9413 Center, 300 18, 416M, 859 W IN- LITTLE COTTONWOOD Crock SOUTH SIDE OF BUTTE FIAT bodded. SANDSTONE W. BASICALLY SAME FLORA OF AT 5LW 9412 Ficus phuscos 14 TUSDO Tillaceous 1504 Mypro 10000 41 BOTH SLW 9412 + 9413 and ~ 40 m will word Contract Unionapprox ~ 30 m below control

No 19/11/100/ N/407 Sec 19, etc. 4880 CONTINI PIAT RAYNOLDSIL Betuluid (doninunt) FU 503 Thujites interruptus FINUS PLANICUSTATA FU SOS LAURACPAR FU 539 Tiliaceurs lenf Possible Prerocarya

LOC. 9412 SLW 943. NIT - PIAT raywolds ii

Protophyllum

Pinnately compound

Platanood wa pinnate segona oc Cercidin hyllum 503 Pajaulus genetrix.

Fussella

Pajaulus genetrix.

G. Aleurites

d. 12 Max g. Collecting

w/ Crew of 6 5

LOC 940 7/13/94
POND IN UPPER FORT
UNION FM. \$ MUDSTONE BASIL & INChes a SOUTY roited SILTSTONE. HINCHES DENSE /enf MAT IN WAXX MATERIAL 2' INTerhelded grev mulit 5/11/15 of INTER BALLED 6' Soil & limonite on hedding planes SITST w fragmentary leaves. ENTIRE MARY W/ resen dos Betula. Alnus? Fern? at very base Corcidi CENTER S line Sec 18, THIN, A

Drove D w of Windsoll
Montant to Craig
Van Boskink's Sites Oin 11/4

7115 194 Visited Three Lows IN The Judith muer Finn WITH Craig QVB UB 9403 Upper SudiTh Bluer SS. SE, SE, Sec 3, T 22N, A 18E , Fergus Co., MT -LOW DIVERSITY SCRAPPY MATCHIAL. IN a f.g. SS. VITIS STANTONII PISTIA EINTIDES. VB 9404 LOW DIVERSITY STRAPPU material in a fig. 55. SE, SEC. 1, T 22N, R. 17 E Fergus Co. MT. VITIS STANDNIT UB 9405 Modernoe Clivensity flora IN a It, grey S/ts T. D 55 Flatides PlATANIA PiperAleno ef Sararma

CO3 CONIFER.

CF. Crassidenticulum 3p

Ex Trochodondroid

NOT Transported for T

7/11/94 2 14 9413 Traverse 12 The prominent POINT IN SE, SEC 31, T 23 N, R 18E, Fly US Co., MT JudiTh BIVER FM. OASE is a SS about 2750' CINTOUR abt 10-15 m. ThICK obive This SS is a CArbonAccous layer prob. representing The backbarrier march Then a sequence of modst, SITST, Thin SS, W Christes, rooted inceptions, Thin lignites Pour straps of plants Top of J. O supposedly MARKED bx oxster bed This occus 500' Thick

9/16/14 J.B. Quite different in Mi rum ITS OCCUPIENCE PACKMAN 13 a for 24 55 That m Shallow Fa Cinquer below has no abvious stringer sand "vait bods do seeve in it. 1/1 Also No Ardmore Bentinite IN' Clayet here.
Does has BACULITS (deFermin) 11 MAN FAJIE TOP IS a WhITE S
forms prominents legge 111

9414
BACULITE 50' below
TOP of Clayset

7/17/921
Drose To Bed Lidge
Through Vingelle, Montany 9/18/94

FIRST dax of BASIN

FROM Marianton Tour w/

CRAIG VAN BOSKIAK.

115, Tel again w/ Craig Obtained seeds of Nordenskilldia

Loc. 9415 Addy Gurry Avecume Co. PA Terstane Base of Alewellyn Fm. 1 605 Pothoter. phont phy 1/4 in Brailed STrem is rooted

POSTCARD

MESSAGE

ADDRESS

MEETEETSE MEETSE MEETEETSE MEETEETSE MEETEETSE MEETEETSE MEETEETSE MEETEETSE

MEETEETSE ●

NANCY STIMSON

INTERPRETIVE SPECIALIST
Worland District Office

101 S. 23rd St. P.O. Box 119 Worland, WY 82401

Office: (307) 347-9871 FTS: (307) 321-5126

5100 mailed

INDEX OF CURVE AND REDUCTION TABLES

Table I—SLOPE STAKE

Table II-STADIA CORRECTION AND HORIZONTAL DISTANCES

Table III—TRIGONOMETRIC FORMULAE

Table IV-NATURAL TRIGONOMETRICAL FUNCTIONS

CURVE FORMULAE

Table V-TANGENTS AND EXTERNALS TO A 1° CURVE

USEFUL RELATIONS

Table VI-INCHES TO DECIMALS OF A FOOT

Table VII-MINUTES IN DECIMALS OF A DEGREE

Table VIII-MIDDLE ORDINATES OF RAILS

Table IX-SHORT RADIUS CURVES

Table X-RODS IN FEET, 10THS AND 100THS OF FEET

Table XI-LINKS IN FEET, 10THS AND 100THS OF FEET

DISTANCES FROM SIDE STAKES FOR CROSS-SECTIONING RDADWAY OF ANY WIDTH. SIDE SLOPES 1½ TO 1. SIDE STAKE STAKE STAKE STAKE 10.7 24.3

10°

==	Dis	tance	out	fro	yn Si	de o	r Sh	oulde	r St	ake.	==
# E	0	.1	.2	.3	.4	.5	.6	.7	.8	.9	Eut Fill
0	0.00	0 15	0.80	0.45	0.60	0.75	0.90	1.05	1.20	1.35	0
1	1 50	1 65	1 80	1.95	2.10	2.25	2.40	2.55	2.70	2.85	1
2	3.00	8.15	8,80	3 45	3,60	3 75	3.90	4.05	4.20	4 35	2 3
4	4.50 6.00	4 65	4.80	4.95	5 10	5 25	5 40	5.55	8.70	5.85	3
4	7 50	6 15 7.65	6.30 7.80	6.45 7.95	6.60 8.10	6 75	6.90	7.05	7.20	7.35	4 5 6
5 6 7	9 00	9 15	9.30	9.45	9.60	8.25 9.75	8.40 9.90	8.55 10.05	8.70 10.20	8.85 10 35	6
7	10.50	10 65	10 80	10.95	11.10	11.25	11.40	11.55	11 70	11.85	7
8	12.00	12 15	12.80	12.45	12 60	12.75	12.90	13 95	13.20	13.35	8
9	13 50	13 65	18 80	13 95	14.10	14.25	14.40	14 55	14.70	14.85	9
10	15 00	15 15	15 80	15 45	15.60	15.75	15.90	16.05	16.20	16 35	10
11	16 50	16 65	16 80	16.95	17 10	17.25	17.40	17.55	17.70	17.85	11
12	18 00	18 15	18.30	18 45	18 60	18 75	18.90	19.05	19.20	19 85	12
13	19 50	19 65	19.80	19.95	20.10	20.25	20 40	20.55	20.70	20.85	13
14	21.00	21 15	21.80	21.45	21 50	21.75	21,90	22 05	22 20	22 85	14
15	22 50	22 65	22 60	22 95	23.10	23.25	23.40	23.55	23.70	23.85	15
16 17	24.00 25.50	24 15 23 65	24 30 25.80	24 45 25 95	24 60	24.75	24 90	25 05	25.20	25.85	16
18	27.00	27 15	27.30	27 45	26.10 27.60	26 25 27.75	28 40	26.55	26.70	26.85	17
19	29 50	28 65	28 80	28,95	29.10	29.25	27.90 29.40	28.05 29.55	28 20 29.70	28.85	18 19
20	30 00	30 15	30.30	30.45	30.60	30.75	30.90	31.05	31.20	29.85 31.85	20
21	31 50	31 65	31.80	31.95	32 10	32 25	32.40	32,55	32 70	82 85	21
22	33 00	33 15	33 30	33 45	33.60	83 75	33.90	34.05	34.20	34.35	22
23	34 50	34 65	34.60	34.95	35.10	85 25	35 40	35.55	35.70	35 85	23
24	86 00	86 15	36,30	36 45	36.60	36,75	36.90	37.05	37 20	37.35	24
25	87.50	37.65	37 80	37.95	38.10	38,25	38.40	38 55	38,70	38.85	25
28	39 00	39 15	39 80	39 45	39 60	39.75	39.90	40.05	40.20	40.35	26
27 28	40 50	40 65	40 80	40.95	41.10	41.25	41 40	41.55	41.70	41.85	27
29	42 00 43 50	42 15	42 30	42.45	42.60	42 75	42,90	43,05	43.20	48.35	28
30	45 00	43 65 45 15	43.80 45.30	43 95	44.10	44 25	44 40	44.55	44.70	44 85	29
31	48.50	46.65	46.80	45 45 46 95	45.60	45.75	45.90	48.05	46 20	46.35	80
32	48 00	48.15	48.30	48 45	47.10 48.60	47.25	47.40	47.55	47.70	47.85	31
33	49.50	49 65	49.80	49.95	50.10	48 75 50,25	48.90	49.05	49 20	49.35	32
34	51 00	51.15	51.30	51.45	51.60	51.75	50,40 51,90	50.55 52.05	50.70 52.20	50.85	33 34
35	52 50	52.65	52.80	52,95	53.10	53.25	53,40	53,55	53.70	52.85 53.85	35
36	54 00	54.15	54 30	54 45	54.60	54.75	54.90	55.05	55.20	55.35	36
37	55 50	55 65	55.80	55.95	56.10	56.25	56.40	56.55	56.70	56.85	37
38	57.00	57.15	57.30	57 45	57.60	57 75	57.90	58.05	58.20	58 35	38
39	58 50	58.65	58 80	58.95	59.10	59 25	59.40	59 55	59.70	59.85	39
40	60 00	60 15	60 30	60 45	60 60			61.05	61 20	61.35	

TABLE II. STADIA CORRECTION AND HORIZONTAL DISTANCES

	PERMICETALIS	TOD.	DELETING 100
STADIA	REDUCTIONS	FUR	READING 100

Verticol Angle	Horizontol Correction	Difference in Elevation	Verticol Angle	Horizontal Correction	Difference in Elevation
2°-00′	0.1	3.5	18°-30′	10.1	30.1
3°-00′	0.3	5.3	19°-00′	10.6	30.8
4°-00′	0.5	7.0	19°-30′	11.2	31.5
5°-00'	0.8	8.7	20°-00′	11.7	32.1
6°-00′	1.1	10.4	· 20°-30′	12.3	32.8
7°—00′	1.5	12.1	21°-00′	12.8	33.5
8°-00′	1.9	13.8	21°-30′	13.4	34.1
9°-00′	2.5	15.5	22°-00′	14.0	34.7
10°-00′	3.0	17.10	22°-30′	14.7	35.4
10°-30′	3.3	17.9	23°-00′	15.3	36.0
 11°–00′	3.6	18.7	23°—30′	15.9	36.6
11°-30′	4.0	19.5	24°-00′	16.5	37.2
12°-00′	4.3	20.3	24°-30′	17.2	37.7
12°-30′	4.7	21.1	25°-00′	17.9	38.3
13°-00′	5.1	21.9	25°—30′	18.6	39.0
13°-30′	5.5	22.7	26°-00′	19.2	39.4
14°-00′	5.9	23.4	26°-30′	19.9	39.9
14°-30′	6.3	24.2	27°-00′	20.6	40.5
15°-00′	6.7	25.0	27°-30′	21.3	41.0
15°-30′	7.2	25.8	28°-00′	22.0	42.0
16°-00′	7.6	26.5	28°-30′	22.8	41.9
16°-30′	8.1	27.2	29°-00′	23.5	42.4
17°-00′	8.5	28.0	29°-30′	24.3	42.9
17°-30′	9.0	28.7	30°-00′	25.0	43.3
18°-00′	9.5	29.4			
			Loot	to Chaine	

Cha	ains	to	Feet
1			66
2			132
3			198
4			264
5			330
6			396
7			462
8			528
9			594
10			660

			1
Feet	to	Chains	
100		1.515	
200		3.030	
300		4.545	
400		6.060	
500		7.575	
600		9.090	
700		10.606	
800		12.121	
900		13.636	
1,000		15.151	

r sid

e no

(3)

1 39 1100

147

DOE 5 20

620

I Ji 1.05

I 39

0,00

REDUCTION TO HORIZONTAL

Horizontal distance = Slope distance multiplied by the cosine of the vertical angle. Thus: slope distance = 319.4 ft. Vert. angle = 5° 10′. From Table. 1V. cos 5° 10′ = 9959. Horizontal distance = 319.4 · 9559 = 318.09 ft. Horizontal distance also = Slope distance minus slope distance times (1 - cosine of vertical angle). With the same figures as in the preceding example, the following result is obtained. Cosine 5° 10′ = .9959. 1 - .9959 = .0041. 318.04 ft. 318.04 ft. 318.04 ft. 318.04 ft.

319.4×.0041=1.31. 519.4-1.31=318.09 ft.

When the rise is known, the horizontal distance is approximately:—the slope distance less the square of the rise divided by twice the slope distance. Thus: rise=14 ft. slope distance=302.6 ft. Horizontal distance=302.6 $-\frac{14 \times 14}{2 \times 2003}$ = 302.6 -0.32 - 302.28 ft. 2×302.6

TABLE IV. NATURAL TRIGONOMETRICAL FUNCTIONS

0 0 0 0 1. 0 0 1. 0 0 1. 0 0 1. 0 0 0 1. 0 0 0 1. 0 0 0 1. 0 0 0 1. 0 0 0 0	Angle	Sin	Ton.	Sec.	Cosec.	Cotg.	Cosin.		Angle	Sin.	Ton.	Sec.	Cosec.	Cotg.	Cosin.	
10 0.0099 0.0299 0.028	.,								.,							
10 0.0099 0.0299 0.028	ا م	0	0	1	\sim	· ~	1	90		1202	1405	1 0008	7 185	7 115	99027	82
20	-	-	_	"												
30 0087 0087 0087																
40 0.01 0.01 0.00 0.																
50 0.145 0.045 0.000 0.876 0.875 0.9989 10 50 1.536 1.554 1.0120 0.512 0.435 0.8814 10 10 0.0024 0.004 0.0024 49.11 49.10 9.9979 50 10 1.593 1.614 1.0129 0.277 6.179 8973 50 0.023 0.023 0.023 0.023 3.020 38.19 9.9996 30 30 1.650 1.673 1.0119 0.059 5.976 9.9627 30 40 0.291 0.004 43.88 43.77 9.9988 0.004 0.291 0.004 43.88 43.77 9.9988 0.005	1			1.0001												
10 0.004 0.004 0.002 0.003																
20 0.0233 0.0233 0.0033 0.003 0.004 0.024 0.029 0.029 0.0004 0.029 0.0004 0.029 0.0004 0.029 0.0005 0.0005 0.020 0.0005 0.0005 0.020 0.0005 0.0005 0.020 0.0005	1 -								1							
30 2022 2022 10003 38.20 38.19 99966 30 30 1.650 1.673 1.0139 0.099 9.976 9.8629 30 20 2020 0.320 0.0005 31.26 31.24 99917 10 50 1.708 1.703 1.0144 5.955 5.871 9.8831 10 20 20 20 20 20 20 2	10											1.0129				
40 0.0291 0.2991 1.00004 34.38 34.37 9.9958 20 40 18.79 1.703 1.0144 5.955 5.871 9.8580 20 10.0007 20.0007 20.0007 20.0007 20.45 26.43 9.9949 10 50 1.708 1.733 1.0149 5.855 5.769 9.8531 10 0.0007 20				-											,	
10 0.320 0.320 0.0005 31.26 31.24 9.9949 10 50 1.708 1.733 1.0149 5.855 5.769 9.8531 10 10 10 10 10 10 10																
20 0.049																
10	50	.0320	.0320	1.0005	31.26	31.24	.99949	10	50	.1708	.1733	1.0149	5.855	5.769	.98531	10
20 0.407 0.407 1.0008 24.56 24.54 9.9917 40 20 1.794 1.823 1.0165 5.575 5.885 9.8378 40 30 0.436 0.407 1.0010 21.99 21.47 9.9892 20 40 1.851 1.883 1.0176 5.481 8.39 9.8325 30 0.494 0.495 1.0012 20.23 20.21 9.9878 10 50 1.880 1.914 1.0181 5.320 5.226 9.8218 10 0.552 0.533 1.0015 18.10 18.07 9.9847 50 10 1.937 1.974 1.0193 5.164 5.065 9.8107 50 20 0.581 0.592 1.0017 17.20 11.717 9.9831 40 20 1.0052 0.533 1.0015 18.10 18.07 9.9847 50 10 1.937 1.974 1.0193 5.164 5.066 9.8107 50 20 0.581 0.592 1.0017 17.20 11.717 9.9831 40 20 1.055 20.053 1.0015 18.10 18.07 9.9847 50 10 1.937 1.974 1.0193 5.164 5.066 9.8107 50 20 0.581 0.592 1.0017 17.20 11.717 9.9831 40 20 1.055 20.054 1.0019 5.088 4.989 9.8050 40 20 20 0.581 0.592 1.0017 17.20 11.717 9.9831 40 20 1.055 20.054 1.0020 15.64 15.60 9.9795 20 40 2.022 2.0055 1.0211 4.945 4.483 9.79792 30 40 0.640 0.641 1.0020 15.64 15.60 9.9795 20 40 2.022 2.0055 1.0211 4.945 4.483 9.79793 20 40 0.0027 0.0022 14.96 14.92 9.9776 10 50 2.051 2.0995 1.0217 4.877 4.773 9.7875 10 0.0777 0.729 1.0027 13.76 13.73 9.9736 50 10 2.108 2.156 1.0220 4.745 4.638 9.7754 50 0.005 0.	2	.0349	.0349	1.0006	28.65	28,64	.99939	88	10	.1736	.1763	1.0154	5.759	5.671	.98481	80
30 0.436 0.437 1.0010 22.93 22.90 99905 36 30 1822 1853 1.0176 5.488 5.396 98225 30 30 30 1822 1853 1.0176 5.403 5.309 98272 30 30 30 30 1822 1833 1.0176 5.403 5.309 98272 30	10	.0378	.0378	1.0007												
40 0.465 0.466 1.0011 21.49 21.47 0.9892 20 40 1851 1883 1.0176 5.403 5.309 0.98272 20 5.00494 0.495 1.0012 20.23 20.21 0.99878 10 50 1.880 1.914 1.0181 5.320 5.226 0.98218 10 10 0.552 0.553 1.0015 18.10 18.07 0.99847 50 10 1.974 1.0187 5.245 5.245 1.486 167 79 10 0.552 0.553 1.0015 17.20 17.17 0.9983 40 0.010 0.012 1.0019 16.38 16.35 0.99813 30 30 1.994 2.035 1.0205 5.016 4.915 0.9992 30 0.0640 0.041 1.0022 14.96 14.92 0.9976 10 50 0.0669 0.0670 1.0022 14.96 14.92 0.9976 10 50 0.0669 0.0670 1.0022 14.96 14.92 0.9976 10 50 0.0669 0.0670 1.0022 14.96 14.92 0.9976 10 50 0.0669 0.0670 1.0022 14.96 14.92 0.9976 10 50 0.0669 0.0670 1.0022 14.96 14.92 0.9976 10 50 0.0669 0.0670 1.0022 14.96 14.92 0.9976 10 50 0.0669 0.0670 1.0022 14.96 14.92 0.9976 10 50 0.0669 0.0670 1.0022 14.96 14.92 0.9976 10 50 0.0669 0.0670 1.0022 14.96 14.92 0.9976 10 50 0.0669 0.0670 1.0022 1.0027 13.76 13.73 0.99736 50 10 2.108 2.156 1.0223 4.810 4.705 0.9781 50 0.0669 0.0670 1.0021 12.75 12.71 0.99692 30 30 2.104 2.150 1.0223 4.810 4.705 0.9781 50 0.0660 0.0788 1.0029 1.2.29 12.25 0.9668 20 40 2.193 2.2447 1.0249 4.500 4.449 0.97560 20 0.0814 0.0814 0.0041 11.10 11.06 0.99594 50 10 2.108 2.126 1.0223 4.482 4.511 0.9760 30 0.0785 0.9063 1.0041 11.10 11.06 0.99594 50 10 2.278 2.339 1.0226 4.445 4.331 0.9743 77 10 0.901 0.904 1.0041 11.10 11.06 0.99594 50 10 2.278 2.339 1.0227 4.336 4.219 0.9730 40 0.0989 0.9963 1.0046 10.043 10.39 0.9961 0.0040 10.013 10.08 0.9951 20 40 2.236 2.370 1.0227 4.336 4.219 0.9730 40 0.0989 0.9963 1.0046 10.043 10.39 0.9968 0.9963 1.0046 10.043 10.39 0.9968 0.9963 1.0046 10.043 10.39 0.9968 0.0049 10.13 10.08 0.9951 20 40 2.236 2.370 1.0227 4.336 4.219 0.9730 40 0.0989 0.9963 1.0046 10.043 10.39 0.9968 0.9963 1.0046 10.0048 0.0048 0.9951 20 40 2.236 2.370 1.0227 4.336 4.219 0.9730 40 0.0989 0.9963 1.0046 10.0048 0.0048 0.9951 20 40 2.236 2.370 1.0227 4.336 4.219 0.9730 40 0.0989 0.9963 1.0046 10.0048 0.0048 0.0048 0.9951 20 40 2.236 2.2370 1.0227 4.336 4.219 0.9730 40 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048 0.0048	20	.0407	.0407	1.0008	24.56				20				5.575	5.485	.98378	40
10	30	.0436	.0437	1.0010	22.93											
3	40															
10 0.552 0.553 1.0015 18.10 18.07 .99847 50 10 1.937 1.974 1.0193 5.164 5.066 .98107 50 20 0.581 .0582 1.0017 17.20 17.17 .99831 40 20 1.965 .2004 1.0199 5.089 4.989 .98050 40 40 .0640 .0641 1.0020 15.64 15.06 .99795 20 40 .2022 .2065 1.0211 4.945 4.843 .97934 20 50 0.669 .0670 1.0022 14.96 14.92 .99776 10 50 0.2051 .2095 1.0217 4.877 4.773 .97875 10 40 .0027 0.729 1.0027 13.76 13.73 .99736 50 10 .2108 .2156 1.0230 4.745 4.638 .97754 50 0.0758 .0758 1.0029 13.23 13.20 .99714 40 20 .2136 .10230 4.745 4.638 .97754 50 0.0843 .0846 1.0033 12.29 12.25 .99668 20 40 .2193 .2247 1.0243 4.620 4.511 .97630 30 .0785 .0872 .0875 1.0031 12.75 12.71 .99692 30 .30 .2164 .2217 1.0243 4.620 4.511 .97630 30 .0788 .0843 .0846 1.0036 11.87 11.83 .99644 10 50 .2278 .3239 1.0256 4.502 4.390 4.7745 .020 6.20 0.0904 1.0041 11.10 11.06 .99594 50 10 .2288 .2339 1.0226 4.390 4.449 .97566 20 0.0904 1.0041 11.10 11.06 .99594 50 10 .2278 .2339 1.0227 4.336 4.219 .97730 40 0.0929 .0934 1.0043 10.76 10.71 .99567 40 20 .2306 .2370 1.0247 4.336 4.219 .97304 40 .0987 .0992 1.0049 1.013 10.08 .99511 20 40 .2263 2.339 1.0227 4.336 4.219 .97304 40 .0987 .0992 1.0049 1.013 10.08 .99511 20 40 .2263 2.339 1.0227 4.336 4.219 .97304 40 .0987 .0992 1.0049 1.013 10.08 .99511 20 40 .2363 2.432 1.0229 4.182 4.165 .97237 30 .2306 2.310 1.016 1.022 1.0052 9.839 9.788 .99482 10 50 .2391 .2402 1.0299 4.182 4.061 .97100 10 6 .1024 1.0058 8.844 8.777 .99375 30 .2504 .2555 1.0321 4.034 3.949 3.949 3.867 .98815 30 .2504 .2556 1.0321 4.034 3.949 3.949 3.867 .98815 30 .2504 .2566 1.0329 .3994 3.867 .98815 30 .2504 .2566 1.0329 .3994 3.867 .98815 30 .2504 .2566 1.0329 .3994 3.867 .98815 30 .2504 .2566 1.0329 .3994 3.867 .98815 30 .2504 .2566 1.0329 .3994 3.867 .98815 30 .2504 .2566 1.0329 .3994 3.867 .98815 30 .2504 .2566 1.0329 .3994 3.867 .98815 30 .2504 .2566 1.0329 .3994 3.867 .98815 30 .2504 .2566 1.0329 .3994 3.867 .98815 30 .2504 .2566 1.0329 .3994 3.867 .98815 30 .2504 .2566 1.0329 .3994 3.867 .98815 30 .2504 .2566 1.0334 3.3904 3.703 3.566 .9686 30 .2012 .266	50	.0494	.0495	1.0012	20.23	20.21	.99878	10	50	.1880	.1914	1.0181	5 .320	5.226	.98218	10
10	3	.0523	.0524	1.0014	19.11	19.08	.99863	87	111	.1908	1944	1.0187	5.241	5.145	.98163	79
20 DSB1 .0582 1.0017 17.20 17.17 .99831 40 20 .1965 .2004 1.0199 5.089 4.989 .98050 40 40 .0640 .0641 1.0020 15.64 15.60 .99795 20 40 .2022 .2005 1.0217 4.945 4.843 .97934 20 .90669 .0670 1.0022 14.96 14.92 .99776 10 50 .2051 .2095 1.0217 4.877 4.773 .97875 10 .0727 .0729 1.0027 13.76 13.73 .99736 50 10 .2108 .2156 1.0230 4.745 4.638 .97754 50 .0756 .0758 1.0029 13.23 13.20 .99714 40 20 .2136 .2186 1.0236 4.620 4.574 .97630 30 .0785 .0787 1.0031 12.75 12.71 .99692 30 .30 .2164 .2217 1.0243 4.620 4.511 .97630 30 .9944 .0584 .0846 1.0036 11.87 11.83 .99644 10 50 .2221 .2278 1.0256 4.502 4.390 .97566 20 .0929 .0994 .0044 11.10 11.06 .99594 50 10 .2278 .2339 1.0270 4.390 4.275 .97331 50 .0902 .0992 .0934 .0043 10.076 10.71 .99667 40 .2278 .2339 .0270 4.390 4.275 .97331 50 .0968 .0963 1.0046 10.43 10.98 .99511 20 40 .2363 .2432 1.0299 4.232 4.113 .97169 20 .0978 .0992 1.0049 10.13 10.08 .99511 20 40 .2363 .2432 1.0299 4.232 4.113 .97169 20 .0978 .0992 1.0049 .013 10.08 .99511 20 40 .2363 .2432 1.0299 4.232 4.113 .97169 20 .0103 .0116 .0022 .0052 .9839 9.788 .99482 10 50 .2391 .2462 1.0299 4.182 4.061 .97100 10 .0054 .0058 .9309 9.255 .99421 50 .0116 .1022 1.0052 .8834 .8777 .99357 30 .0264 .2555 .0321 .0345 .3994 .3665 .99309 .0255 .99421 50 .0116 .1169 .0068 .6148 .5556 .99394 .0043 .0364 .0345	10	0552	.0553	1.0015	18.10	18.07		50	10	.1937	1974	1.0193	5.164	5.066	.98107	50
30					17.20	17,17	.99831	40	20		.2004	1.0199	5.089	4.989	.98050	40
40 0640 0641 10020 15.64 15.00 99795 20 40 2022 2065 10211 4.945 4.843 97794 20 0698 0669 0.670 1.0022 14.96 14.92 99776 10 50 2051 2095 1.0217 4.877 4.773 97875 10 0.0727 0729 1.0027 13.76 13.73 .97365 50 10 2108 2156 1.0230 4.745 4.638 97754 50 20 0756 0.758 1.0029 13.23 13.20 99714 40 20 2136 2136 1.0236 4.692 4.574 .97692 40 0.0814 0.0816 1.0033 12.29 12.25 .99668 20 4.0 2193 .2247 1.0249 4.602 4.511 .97630 30 0.0843 0.0846 1.0036 11.87 11.83 .99644 10 50 2221 2278 1.0256 4.502 4.499 .97566 20 0.0929 0.0934 1.0041 11.10 11.06 .99594 50 10 2278 2.309 1.0277 4.336 4.219 .97304 40 0.0987 0.0929 1.0049 10.13 10.08 .99511 20 40 2330 2.334 2.420 1.0244 4.284 4.165 .97337 50 0.0987 0.0929 1.0049 10.13 10.08 .99511 20 40 2330 2.423 1.02291 4.232 4.113 .97169 20 0.0987 0.0929 1.0059 2.0049 10.13 10.08 .99511 20 40 2330 2.423 1.02291 4.232 4.113 .97169 20 0.0987 0.0929 1.0055 9.839 9.788 .99482 10 50 2391 2.462 1.0229 4.182 4.061 .97100 10 0.110 1.0061 9.065 9.010 .9936 0.1106 1.0021 1.0052 9.839 9.788 .99482 10 50 2391 2.462 1.0299 4.182 4.061 .97100 10 0.0110 1.0061 9.065 9.010 .9936 0.1006 8.834 8.777 .99357 30 30 2.346 2.255 1.0321 4.039 3.914 .96887 40 0.1161 1.169 1.0068 8.614 8.556 .99324 20 40 2.532 2.617 1.0337 3.949 3.867 .96815 30 0.1190 1.198 1.0072 8.405 8.345 .99290 10 50 2.506 2.648 1.0329 3.994 3.867 .96815 30 0.1335 1.317 1.0086 8.614 8.556 .99324 20 40 2.532 2.617 1.0337 3.949 3.867 .96815 30 0.1335 1.317 1.0086 8.614 8.556 .99324 20 40 2.532 2.617 1.0337 3.949 3.867 .96815 30 0.1335 1.317 1.0086 8.614 8.556 .99324 20 40 2.532 2.617 1.0337 3.949 3.867 .96815 30 0.1335 1.317 1.0086 8.614 8.556 .99324 20 40 2.532 2.617 1.0337 3.949 3.867 .96815 30 0.1335 1.317 1.0086 8.614 8.556 .99324 20 40 2.532 2.617 1.0337 3.949 3.867 .96815 30 0.1335 1.317 1.0086 8.614 8.556 .99324 20 40 2.532 2.617 1.0337 3.949 3.867 .96815 30 0.1335 1.317 1.0086 8.614 8.556 .99324 20 40 2.532 2.617 1.0337 3.949 3.867 .96815 30 0.1335 1.317 1.0086 8.614 8.556 .99324 20 40 2.536 2.617 1.0337 3.844 3.640 4.040 4.040 4.040 4.040 4.						16.35	.99813	30	30	.1994	.2035	1.0205	5.016	4.915	.97992	
4 0.698 0.699 1.0024 14.34 14.30 0.99756 86 12 2.079 2126 1.0223 4.810 4.705 0.97815 78 10 0.077 0.729 1.0027 13.76 13.73 0.99736 50 10 0.2108 2156 1.0230 4.745 4.638 9.7754 50 20 0.0756 0.758 1.0029 13.23 13.20 0.99714 40 20 0.2136 0.2136 1.0236 4.682 4.574 0.97692 40 20 0.0756 0.9843 0.0846 1.0033 12.29 12.25 0.99688 20 40 0.0844 0.0814 0.0814 0.0814 0.0816 1.0033 12.29 12.25 0.9968 20 40 0.0843 0.0846 1.0036 11.87 11.83 0.99614 10 50 0.221 0.278 1.0249 4.560 4.449 0.97566 20 0.0929 0.0924 1.0041 11.10 11.06 0.99594 50 10 0.0921 0.0904 1.0041 11.10 11.06 0.99594 50 10 0.2278 2.339 1.0270 4.390 4.275 0.97371 50 10 0.0958 0.0963 1.0046 10.43 10.73 0.9958 0.0958 0.0963 1.0046 10.43 10.73 0.9951 0.0049 10.13 10.08 0.9951 0.0040 10.03 10.049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0049 10.13 10.08 0.9951 0.0040 0.0058 0.0040 0.0058 0.0058 0.0060	40			1.0020	15.64	15.60	.99795	20	40	.2022	.2065	1.0211	4.945	4.843	.97934	20
10	50	.0669	.0670	1.0022	14.96	14.92	.99776	10	50	,2051	.2095	1.0217	4.877	4.773	.97875	10
10 0.727 0.729 1.0027 13.76 13.73 9.9736 50 10 2.108 2.156 1.0230 4.745 4.638 9.7754 50 20 0.756 0.758 1.0029 13.23 13.20 9.9714 40 20 2.136 2.186 1.0236 4.682 4.574 9.7692 40 40 0.0814 0.816 1.0033 12.75 12.71 9.9692 30 30 2.164 2.217 1.0243 4.620 4.511 9.7630 30 30 2.164 2.217 1.0243 4.620 4.511 9.7636 30 30 2.164 3.218 3.2250 3.227 1.0249 4.500 4.449 9.7566 20 4.778 3.2278	4	0698	0699	1 0024	14 34	14.30	.99756	86	12	2079	.2126	1.0223	4.810	4.705	.97815	78
20	10	1					.99736	50	10	.2108	.2156	1.0230	4.745	4.638	.97754	50
30						13 20	.99714	40	20	.2136	.2186	1.0236	4.682	4.574	.97692	
50 .0843 .0846					12.75	12.71	.99692	30	.30	.2164	.2217	1.0243				
5	40	.0814	.0816	1.0033	12.29	12.25	.99668		40							
10 0.0901 0.0904 0.0041 11.10 11.06 0.99594 50 10 2278 2339 1.0270 4.390 4.275 9.7371 50 20 0.0929 0.0934 1.0043 10.76 10.71 9.9567 40 20 2.306 2.370 1.0277 4.336 4.219 9.7304 40 40 4.306 4.219 9.7304 40 4.306 4.219 9.7304 40 4.306 4.219 9.7304 40 4.306 4.219 9.7304 40 4.306 4.219 9.7304 40 4.306 4.219 9.7304 40 4.306 4.219 9.7304 40 4.306 4.219 9.7304 40 4.306 4.219 9.7304 40 4.306 4.219 9.7304 4.201 1.0244 4.284 4.284 4.165 9.7237 4.306 4.113 9.7169 20 4.306 4.113 4.011 9.7169 20 4.306 4.306 4.306 9.7100 10 4.306 4.306 3.762 9.7959 4.306 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 4.306 3.762 9.7959 4.306 3.762 9.7959 4.306 4.306 3.762 9.7959 4.306 9.706	50	.0843	.0846	1.0036	11.87	11.83	.99644	10	50	.2221	.2278	1.0256	4.502	4.390	.97502	10
10	5	0872	.0875	1.0038	11.47	11.43	.99619	85	13	.2250	.2309	1,0263	4.445	4.331	.97437	77
20	_								10			1.0270				
40 .0987 .0992 1.0049 10.13 10.08 .9951 20					10.76	10.71	.99567	40	20	.2306	.2370	1.0277				
10 10 10 10 10 10 10 10	30	.0958	.0963	1.0046	10.43	10.39	.99540	30								
6	40	.0987	.0992	1.0049	10.13	10.08	.99511	20								
10 .1074 .1080 1.0058 9.309 9.255 .99421 50 10 .2447 .2524 1.0314 4.086 3.962 .99595 50 20 .1103 .1110 1.0061 9.065 9.010 .99390 40 20 .2476 .2555 1.0321 4.039 3.914 .96887 40 40 .1161 .1169 1.0068 8.614 8.556 .99324 20 40 .2532 .2617 1.0337 3.949 3.821 .96742 20 .1198 1.0072 8.405 8.345 .99290 10 50 .2560 .2648 1.0345 3.906 3.776 .96667 10 .1248 .1257 1.0079 8.016 7.953 .99219 50 10 .2616 .2711 1.0361 3.822 3.689 .96517 50 .1276 1.287 1.0082 7.681 7.770 .99182 40 20 .2644 .2742 1.0369 3.782 3.6440 40 .2532 .2617 1.0386 3.782 .96593 75 .10 .1248 .1257 1.0082 7.834 7.770 .99182 40 20 .2644 .2742 1.0369 3.782 3.643 .96517 50 .1363 .1376 1.0090 7.496 7.429 .99106 20 40 .2728 .2836 1.0394 3.665 3.526 .96206 10 .2728 .2836 1.0394 3.665 3.526 .96206 10 .2728 .2836 1.0394 3.665 3.526 .96206 10 .2748 .2836 1.0394 3.665 3.526 .96206 10 .2748 .2836 1.0394 3.665 3.526 .96206 10 .2748 .2836 1.0394 3.665 3.526 .96206 10 .2748 .2836 1.0394 3.665 3.526 .96206 10 .2728 .2836 1.0394 3.665 3.526 .96206 10 .2748 .2836 1.0394 3.665 3.526 .96206 10 .2748 .2836 1.0394 3.665 3.526 .96206 10 .2728 .2836 1.0394 3.665 3.526 .96206 10 .2468 .2448 .2	50	.1016	.1022	1.0052	9.839	9.788	.99482	10	50	.2391	.2462	1.0299	4.182	4.061	.97100	10
10	6	.1045	.1051	1.0055		9.514	.99452									
20 1103 1110 1.0061 9.065 9.010 .99390 40 20 .2476 .2555 1.0321 4.039 3.914 .96887 40 30 1132 1139 1.0068 8.834 8.777 .99357 30 30 .2504 .2586 1.0329 3.994 3.867 .96815 30 30 .1161 .1169 1.0068 8.614 8.556 .99324 20 40 .2532 .2617 1.0337 3.949 3.821 .96742 20 .0198 1.0076 8.405 8.345 .99290 10 50 .2560 .2648 1.0345 3.906 3.776 .96667 10 .0198 1.228 1.0075 8.206 8.144 .99255 83 15 .2588 .2679 1.0353 3.864 3.732 .96593 75 .0076 .0	10	.1074	.1080	1.0058	9.309											
40 1132 1.0068 8.614 8.556 .99324 20 40 .2532 .2617 1.0337 3.949 3.821 .96742 20 50 .1190 .1198 1.0072 8.405 8.345 .99290 10 50 .2560 .2648 1.0345 3.996 3.776 .9667 10 7 .1219 .1228 1.0075 8.206 8.144 .99255 83 15 .2588 .2679 1.0353 3.864 3.732 .96593 75 10 .1248 .1257 1.0082 7.834 7.770 .99182 40 20 .2644 .2741 1.0361 3.822 3.689 .96517 50 20 .1276 .1287 1.0082 7.834 7.770 .99182 40 20 .2644 .2742 1.0369 3.782 3.604 .96440 40 30 .1305 .1317 1.0086 7.640 7.429 .99106		.1103	.1110													
50 1190 1198 10072 8.405 8.345 59290 10 50 .2560 2648 1.0345 3.906 3.776 .96667 10 7 .1219 .1228 1.0075 8.016 7.953 .99219 50 10 .2616 .2711 1.0361 3.822 3.689 .96517 50 .1276 .1287 1.0082 7.834 7.770 .99182 40 20 .2644 .2742 1.0369 3.782 3.647 .96440 40 .334 .1346 1.0090 7.496 7.429 .99106 20 .40 .2700 .2805 1.0386 3.703 3.566 .96285 .96206 .96285 .96																
7	40															
10 1248 1257 1.0079 8.016 7.953 .99219 50 10 .2616 2711 1.0361 3.822 3.689 .96517 50 1267 1.267 1.0082 7.631 7.770 .99182 40 20 .2644 2.742 1.0369 3.782 3.647 .96440 30 .1305 1317 1.0086 7.661 7.556 .99144 30 30 .2672 2773 1.0377 3.742 3.606 .96363 3.783 3.566 .96363 3.783 3.566 .96285 20 3.363 3.376 3.366 3.783 3.566 .96285 20 3.363 3.366 3.526 .96206 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526 .96206 .96206 3.526 .96206 3.526 .96206 3.526 .96206 3.526	50	.1190	.1198	1 0072	8.405	8.345	.99290	10	50	.2560	-2548	1.0345	3,906	3.776	.9000/	10
10	7	.1219	.1228	1.0075	8.206	8.144	.99255	83	15						1	
20 .1276 1287 1.0082 7.834 7.770 .99182 40 20 .2644 .2742 1.0369 3.782 3.647 .96440 40 30 .1305 .1317 1.0086 7.661 7.556 .99144 30 30 .2672 .2773 1.0377 3.742 3.606 .96363 30 .2672 .2773 1.0377 3.742 3.606 .96363 3.783 3.566 .96285 20 .3683 .3763 .3764 .3694 .	10					7.953	.99219	50	10							
40 .1334 .1346 1.0090 7.496 7.429 .99106 20 40 .2700 .2805 1.0386 3.703 3.566 .96285 20 50 .1363 .1376 1.0094 7.337 7.269 .99067 10 82 0 .74 0 .					7.834	7.770	.99182									_
50 .1363 .1376 1.0094 7.337 7.269 .99067 10 50 .2728 .2836 1.0394 3.665 3.526 .96206 10 74 °°° /	30	.1305	.1317	1.0086		7.596										
82 ° ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′	40	.1334	.1346	1.0090												
o,	50	.1363	.1376	1.0094	7.337	7.269	.99067		50	.2728	.2836	1.0394	3.665	3,526	.90206	
o' fun fun fun fan Sin Angl								82								
Cosin Cotg. Cosec. Sec. Ton. Sin. Angle Cosin. Cotg. Cosec. Sec. Ton. Sin. Angle								0 /								۰,
		Cosin	Cotg.	Cosec.	Sec.	Ton.	Sin.	Angle		Cosin.	Cotg.	Cosec.	Sec.	Ton.	Sin.	Angle

1

0 0

1

<u>)</u>

the str

ou. oul. igh

TABLE IV CONTD. NATURAL TRIGONOMETRICAL FUNCTIONS

		Τ.		1.	Ι.	Τ	Т	Ţ	1	Ι.		Τ.	T.	1	1
Angle	Sin.	Tan.	Sec.	Casec.	Cotg.	Cosin.		Angle	Sin.	Tan.	Sec.	Cosec.	Cotg.	Cosin.	1
٠,								.,							
16	.2756	.2867	1.0403	3.628	3.487	.96126	5 74	24	.4067	.4452	1.0946	2.459	2.246	.9135	66
10		.2899			3.450					.4487			2.229		
20	.2812									.4522					
	.2840					1.				.4557			2.194		
40				1		.95799		1		.4592			2 177		
50	.2870	.3026	1.0448	3.453	3.305	95715	10	50	.4200	.4628	1,1019	2.381	2.161	.90753	10
17	.2924	.3057	1.0457	3.420	3.271	.95630	73	25	.4226	.4663	1.1034	2.366	2,145	.90631	65
10			1.0466			95545		10	.4253		1.1049	2.351		.90507	50
20	.2979	.3121	1.0476		3.204			20	.4279			2.337			
30	.3007		1.0485					30	.4305		1 1079	2,323			
40			1.0495		3.140	.95284		50	.4331	.4806	1,1095	2.309	2.081		
30	.3002	.3217	1.0303	3.203	3.106	1.73173	10	30	.4336	.4041	1.1110	2.273	2.000	70007	10
18	.3090	.3249	1.0515	3.236	3,078	,95106	72	26	4384	.4877	1.1126	2.281	2.050	.89879	64
10		.3281	1.0525			.95015		10		.4913		2.268	2.035		50
			1.0535			.94924		20		.4950	1.1158		2.020	.89623	40
30 40	.3173		1.0545			94832	1	30	.4462		1.1174	2.241	2.006	89493	30
	.3228		1.0566		2.932	.94740		40 50	.4488		1.1190	2.228	1.991	.89363 .89232	10
"	.0240	.0-771	1.0300	0.070	2., 52	.,,,,,,,	1.0	1 30	.7517	.50.	1.1207	2.213	1.777	. 67 232	10
19	.3256		1.0576		2.904	.94552	71	27	4540	.5095	1.1223	2.203	1.963	.89101	63
10	.3283		1.0587		2.877	94457			.4566		1,1240	2.190		.88968	50
	.3311		1.0598			.94361	40				1.1257			.88835	40
40			1.0608			.94264	30	30 40			1 1274	2.166		88701	30
			1.0631			.94068	10	50			1.1291 1.1308	2.154 2.142		.88566 88431	20 10
20	.3420	.3640	1.0642	2.924	2.747	.93969	70	28	.4695	.5317	1,1326	2.130	1 991	.88295	62
10			1.0653		2.723	93869	50				1 1343	2,119		88158	50
20	.3475		1.0665			.93769	40				1.1361	2.107		.88020	40
	.3502		1.0676			.93667	30	30			1.1379	2.096		87882	30
	.3529 .3557	.3772	1.0688 1.0700	2.833		.93565 .93462	10	40	4797		1.1397	2.085		.87743	20
30	.5557	.5005	1.0700	2.011	2.020	73402	10	50	.4823	.5505	1.1415	2.073	1.816	87603	10
21	.3584	.3839	1.0711	2.790	2.605	.93358	69	29	.4848	.5543	1.1434	2.063	1.804	.87462	61
	.3611		1.0723		2.583	93253	50		4874			2.052		.87321	50
20 30	.3638		1,0736		2.560	.93148	40		4899					.87178	40
40			1.0748		2.539 2.517	.93042	30		4924		1.1490		1.767	.87036	30
- 1	.3719				2.496	.92935 92827	20 10	40 50	4950 4975		1,1509	2.020	1.756	.86892	20 10
												2.0:0	1./44	.86748	10
10	.3746				2.475	.92718	68	30	5000				1.732	.86603	60
20	.3773 .3800		1.0798	2.650		.92609	50		5025			1.990		.86457	50
30	.3827	1	1.0824			.92499 92388	40 30	20 30	.5050 .5075		1.1586	1.980		86310	40
40	.3854				2.394	.92276	20	40	5100		1.1626		1.698	.86163 .86015	30 20
50	.3881				2.375	92164	10	50	5125		1.1646		1.675	85866	10
23	.3907	.4245	1.0864	2 550	2 354	02052									
				2.559	2.356	.92050 .91936	67 50		5150 5175		1.1666		1.664	.85717	59
- 1				2.525		91822	40						1.653	.85567	50
30	.3987	.4348				.91706	30	30	5225				1.632	.85416 .85264	40 30
	.4014		1.0918		2.282	91590	20	1	5250				1.621	.85112	20
50	.4041	.4417	1.0932	2.475	2.264	.91472	10	50	5275	.6208	1.1770		1.611	84959	10
							66								58
							0 '								0 1
	Cosin.	Cotg.	Casec.	Sec.	Ton.	Sin.	Angle		Cosin.	Cotg.	Cosec.	Sec.	Tan.	Sin.	Angle
											*****	J	7011.	JIH.	Ludia

1

TABLE IV CONTD. NATURAL TRIGONOMETRICAL FUNCTIONS

125 M 114 G 175 Z 171 T

B CO I

979 M 751 % 620 £

Angle	Sin.	Tan.	Sec.	Cosec.	Cotg.	Cosin.		Angle	Sin.	Tan	Sec.	Cosec.	Cotg.	Cosin.	
٠,		•					۰,	0 /							۰,
32	.5299	.6249	1.1792	1.887	1.600	.84805	58	39	.6293	.8098	1.2868	1.589	1.235	.77715	51
10	.5324	.6289	1.1813	1.878	1.590	.84650	50	10			1.2898	1.583		.77531	50
20	.5348	.6330	1.1835	1.870	1.580	.84495	40	20	.6338	.8195	1.2929		1.220	.77347	40
30	.5373	.6371	1.1857	1.861	1.570	.84339	30	30	.6361	.8243	1.2959	1.572		.77162	30
40	.5398	.6412 6453	1.1879	1.853	1.560	.84182	20	40 50	.6383	.8292 .8342	1.2991	1.567	1.206	.76977 .76791	20 10
50	.5422	0433	1.1901	1.844	1.5501	84025	10	30	.0400	.6342	1.3022	1.501	1.179	.70791	10
33	.5446	.6494	1.1924	1.836	1.540	.83867	57	40	.6428	.8391	1.3054	1.556	1.192	.76604	50
10	.5471	.6536	1.1946	1.828	1.530	.83708	50	10	.6450	.8441			1.185	.76417	50
20	.5495	.6577	1.1969	1.820	1.520	.83549	40	20	.6472	.8491	1.3118	1.545	1.178	.76229	40
30	.5519	.6619	1.1992		1,511	.83389	30	30	.6494	.8541	1.3151	1.540	1.171	.76041	30
40	.5544	6661	1.2015		1.501	.83228	20	40	.6517	.8591	1.3184		1.164	.75851	20
50	.5568	.6703	1 2039	1.796	1.492	.83066	10	50	.6539	.8642	1.3217	1.529	1.157	.75661	10
34	.5592	.6745	1,2062	1.788	1.483	.82904	56	41	.6561	.8693	1.3251	1.524	1,150	.75471	49
10	.5616	.6787	1.2086	1.781	1.473	.82741	50	10	.6583	.8744	1.3284	1.519	1.144	.75280	50
20	.5640		1.2110	1.773	1.464	.82577	40	20	.6604	.8796	1.3318	1.514	1.137	75088	40
30	.5664	1	1.2134		1,455	.82413	30	30	.6626	.8847	1.3352	1.509	1.130	.74896	30
40	.5688	.6916	1.2158	1.758	1.446	.82248	20	40	.6648	.8899	1.3386	1.504	1124	.74703	20
50	.5712	.6959	1.2183	1.751	1.437	.82082	10	50	.6670	.8952	1.3421	1.499	1.117	.74509	10
35	.5736	.7002	1 2208	1.743	1.428	.81915	55	42	.6691	.9004	1,3456	1.494	1,111	.74314	48
10	.5760	.7046	1.2233	1.736	1.419	.81748	50	10	.6713	.9057	1.3492	1.490	1,104	.74120	50
20	.5783	.7089	1.2258	1.729	1.411	.81580	40	20	.6734	.9110	1.3527	1.485	1.098	.73924	40
30	.5807	.7133	1 2283	1.722	1.402	.81412	30	30	.6756	.9163	1,3563	1.480	1.091	.73728	30
40	.5831	.7177	1,2309	1.715	1.393	.81242	20	40	.6777	.9217	1.3600	1.476	1.085	.73531	20
50	.5854	.7221	1.2335	1.708	1.385	.810 <i>7</i> 2	10	50	.6799	.9271	1.3636	1.471	1.079	.73333	10
	5070	7045	1 2241	1 701	1.376	.80902	54	43	.6820	.9325	1.3673	1.466	1.072	.73135	47
36	.5878	.7265	1.2361	1.701	1.368	80730	50	10	.6841	.9380	1.3711	1.462	1.066	.72937	50
20	.5925	.7355	1.2413	1.688	1.360	.80558	40	20	.6862	.9435	1 3748	1.457	1,060	.72737	40
30	.5948	.7400	1 2440	1.681	1.351	.80386	30		.6884	.9490	1.3786	1.453	1.054	.72537	30
40	.5972	.7445	1.2466		1.343	.80212	20	40	.6905	.9545	1.3824	1.448	1.048	.72337	20
50	.5995	.7490	1.2494	1.668	1.335	.80038	10	50	.6926	.9601	1,3863	1,444	1,042	.72136	10
						7004	53	44	.6947	.9657	1,3902	1.440	1,036	.71934	46
37	.6018	.7536		1.662	1.327	.79864	50	10	.6967	.9713	1.3941	1.435	1,030	.71732	50
10		.7581	1.2549	1.655	1,311	.79512	40	20	.6988	.9770	1.3980	1.431	1.024	.71529	40
30		.7673		1.643	1.303	.79335	30	30	.7009	.9827	1.4020	1.427	1.018	.71325	30
40		.7720		1.636	1.295	.79158	20	40	7030	.9884	1.4061	1.422	1.012	.71121	20
50		.7766	1	1.630	1.288	.78980	10	50	.7050	.9942	1.4101	1.418	1.006	.70916	10
		7010	1 0/65	1 424	1.280	.78801	52		.7071	1.	1.414	1.414	1.	.70711	45
38 10	.6157	.7813 .7860	1.2690	1.624	1.272	.78622	50		./0/1	l' .	1.4		l		1
20		.7907		1.612	1.265	.78442	40								
30		.7954		1.606	1.257	.78261	30								
40	1	8002		1.601	1.250	.78079	20								
50	.6271	.8050		1,595	1.242	.77897	10								
	-	<u> </u>			ļ. <u> </u>	_		-	-	-		-	7		Arel
	Cosin.	Cotg.	Cosec.	Sec.	Tan.	Sin.	Angle	2	Cosin.	Cotg.	Cosec.	Sec.	Ton.	Sin.	Angle

CURVE TABLE

Table of Tangent and External to a 1° Curve

To find Tangent and External for curve of any other degree, divide by degree of curve and add correction found in column of corrections.

Degree of curve with a given I may be found by dividing tangent, (or external), opposite I by given tangent, (or external).

The distance from a point on the tangent to the curve is very nearly the square of the tangent length divided by twice the radius.

CURVE FORMULAS

Radius: $R = \frac{50}{\sin \frac{1}{2} D}$

Length of Curve: $L = 100 \frac{\Delta}{D}$

also L = .0174533 \times \triangle \times R

Degree of Curve: $D = 100 \frac{\Delta}{L}$

Tangent: $T = R \tan \frac{1}{2} \Delta$

Long Cord: LC = $2R \sin \frac{1}{2} \Delta$

Middle Ordinate: $M = R (1 - Cos \frac{1}{2} \Delta)$

External: $E = T \tan \frac{1}{4} \Delta$

TABLE V. TANGENTS AND EXTERNALS TO A 1° CURVE

	I	T	E	I=10°	I	Ť	E	1=20°	I	ī	E	I=30°
	10° 20° 30° 40° 50°	50.00 58.34 66.67 75.01 83.34 91.68	.297 .388 .491 .606	+ 5° C. T .03 E.	11° 10′ 20′ 30′ 40′ 50′	551.70 560.11 568.53 576.95 585.36 593.79		+ 5° C. T .06 E	21° 10' 20' 30' 40' 50'	1061.9 1070.6 1079.2 1087 8 1096.4 1105.1	99.155 100.75 102.35 103.97	+ 5° C. T .10 E
3	10' 20' 30' 40' 50'	100.01 108.35 116.68 125.02 133.36 141.70	.873 1.024 1.188 1.364 1.552 1.752	.001	12° 10′ 20′ 30′ 40′ 50′	602.21 610.64 619.07 627.50 635.93 644.37	31.561 32.447 33.347 34.259 35.183 36.120	.006	10' 20' 30' 40' 50'	1131.0 1139.7 1148.4	107.24 108.90 110.57 112.25 113.95 115.66	.013
	10′ 20′ 30′ 40′ 50′	150.04 158.38 166.72 175.06 183.40 191.74	1.964 2.188 2.425 2.674 2.934 3.207	10° C. T .06 E .003	13° 10' 20' 30' 40' 50'	652,81 661,25 669,70 678,15 686,60 695,06	37.070 38.031 39.006 39.993 40.992 42.004	10° C. T .13 E .011	23° 10′ 20′ 30′ 40′ 50′	1183.1	120.87 122.63	10° C. T ,19 E ,025
3	10° 20° 30° 40° 50°	200.08 208.43 216.77 225.12 233.47 241.81	3.492 3.790 4.099 4.421 4.755 5.100	15° C.	14° 10′ 20′ 30′ 40′ 50′	703.51 711.97 720.44 728.90 737.37 745.85	43.029 44.066 45.116 46.178 47.253 48.341	15° C.	24° 10′ 20′ 30′ 40′ 50′	1217.9 1226.6 1235.3 1244.0 1252.8 1261.5	131.65 133.50	15° C.
3	10' 20' 30' 40' 50'	250.16 258.51 266.86 275.21 283.57 291.92	5.459 5.829 6.211 6.606 7.013 7.432	7 .09 E .004	15° 10′ 20′ 30′ 40′ 50′	754.32 762.80 771.29 779.77 788.26 796.75	49.441 50.554 51.679 52.818 53.969 55.132	T .19 E .017	25° 10′ 20′ 30′ 40′ 50′	1270.2 1279.0 1287.7 1296.5 1305.3 1314.0	141.01 142.93 144.85 146.79	T ,29 E .038
3	10 [,] 20 [,] 30 [,] 40 [,] 50 [,]	300.28 308.64 316.99 325.35 333.71 342.08	7,863 - 8,307 8,762 9,230 9,710 10,202	20° C.	16° 10′ 20′ 30′ 40′ 50′	805.25 813.75 822.25 830.76 839.27 847.78	56.309 - 57.498 58.699 59.914 61.141 62.381	20° C. T	26° 10′ 20′ 30′ 40′ 50′	1349.2	152.69 154.69 156.70 158.72	20° C. T
3	10, 20, 40, 50,	350.44 358.81 367.17 375.54 383.91 392.28	10.707 11.224 11.753 12.294 12.847 13.413	.13 E .006	17° 10′ 20′ 30° 40′ 50′	856.30 864.82 873.35 881.88 890.41 898.95	63.634 64.900 66.178 67.470 68.774 70.091	.26 E .022	27° 10′ 20′ 30′ 40′ 50′	1375.6 1384.4 1393.2 1402.0 1410.9 1419.7	162.81 164.86 166.95 169.04 171.15 173.27	.39 E .051
3	10' 20' 30' 40'	400.66 409.03 417.41 425.79 434.17 442.55	13,991 14,582 15,184 15,799 16,426 17,065	25° C. T .16 E	18° 10' 20' 30' 40' 50'	907.49 916.03 924.58 933.13 941.69 950.25	71.421 72.764 74.119 75.488 76.869 78.264	25° C. T .32 E	28° 10′ 20′ 30′ 40′ 50′	1455.1 1464.0		25° C. T .49
3	10, 10, 10,	450.93 459.32 467.71 476.10 484 49 492.88	17,717 18.381 19.058 19.746 20.447 21.161	.007	19° 10′ 20′ 30′ 40′ 50′	958.81 967.38 975.96 984.53 993.12 1001.7	79.671 81.092 82.525 83.972 85.431 86.904	.028	10° 20° 30° 40° 50°	1508.5	188.51 190.74 192.99 195.25 197.53 199.82	.065
3	90' 10' 10' 10'	501.28 509.68 518.08 526.48 534.89 543.29	21.887 22.624 23.375 24.138 24.913 25.700	30° C. T 19 E .008	20° 10′ 20′ 30· 40′ 50′	1010.3 1018.9 1027.5 1036.1 1044.7 1053.3	88.389 89.888 91.399 92.924 94.462 96.013	30° C. T .39 E .034	30° 10′ 20′ 30′ 40′ 50°	1562.1 1571.0	202.12 204.44 206.77 209.12 211.48 213.86	30° C. T .59 E .078

T = R tan ½I

E = R exsec ½ I

TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

1

I	т	E	I ≔40°	I	Ţ	E	I= 50°	I	1	E	I=60°
31° 10′ 20′ 30′ 40′ 50′	1589.0 1598.0 1606.9 1615.9 1624.9 1633.9	216.3 218.7 221.1 223.5 226.0 228.4	+ 5° C. T .13 E	10° 20° 30° 40° 50°	2142.2 2151.7 2161.2 2170.8 2180.3 2189.9	387.4 390.7 394.1 397.4 400.8 404.2	+ 5° C. T .17 E	51° 10′ 20′ 30′ 40′ 50′	2732.9 2743.1 2753.4 2763,7 2773.9 2784.2	618.4 622,8 627.2 631.7 636.2 640.7	+ 5° C. T .21
10' 20' 30' 40' 50'	1643.0 1652.0 1661.0 1670.0 1679 1 1688.1	230.9 233.4 235.9 238.4 241.0 243.5	.023	10° 20° 30° 40° 50°	2199.4 2209.0 2218.6 2228.1 2237.7 2247.3	407.6 411.1 414.5 418.0 421.4 425.0	.037	10° 20° 30° 40° 50°	2794.5 2804.9 2815.2 2825.6 2835.9 2846.3	645.2 649.7 654.3 658.8 663.4 668.0	.056
10' 20' 30' 40' 50'	1697.2 1706.3 1715.3 1724.4 1733.5 1742.6	246.1 248.7 251.3 253.9 256.5 259.1	10° C. T ,26 E .046	43° 10' 20' 30' 40' 50'	2257.0 2266.6 2276.2 2285.9 2295.6 2305.2	428.5 432.0 435.6 439.2 442.8 446.4	10° C. T .34 E .075	53° 10' 20' 30' 40' 50'	2856.7 2867.1 2877.5 2888.0 2898.4 2908.9	672.7 677.3 682.0 686.7 691.4 696.1	10° C. T 42 E .112
10' 20' 30' 40' 50'	1751.7 1760.8 1770.0 1779.1 1788.2 1797.4	261.8 264.5 267.2 269.9 272.6 275.3	15° C.	44°, 10°, 20°, 30°, 40°, 50°	2314 9 2324.6 2334.3 2344 1 2353.8 2363.5	450.0 453.6 457.3 461.0 464.6 468.4	15° C.	10' 20' 30' 40' 50'	2919.4 2929.9 2940.4 2951.0 2961.5 2972.1	700.9 705.7 710.5 715.3 720.1 725.0	15° C.
35° 10′ 20′ 30′ 40′ 50′	1806.6 1815.7 1824.9 1834.1 1843.3 1852.5	278.1 280.8 283.6 286.4 289.2 292.0	.40 E .070	45° 10' 20' 30' 40' 50'	2373.3 2383.1 2392.8 2402.6 2412.4 2422.3	472.1 475.8 479.6 483.4 487.2 491.0	.51 E .116	55° 10' 20' 30' 40' 50'	2982.7 2993.3 3003.9 3014.5 3025.2 3035.8	729.9 734.8 739.7 744.6 749.6 754.6	.63 E .168
36° 10' 20' 30' 40' 50'	1861.7 1870.9 1880.1 1889.4 1898.6 1907.9	294.9 297.7 300.6 303.5 306.4 309.3	20° C.	46° 10' 20' 30' 40' 50'	2432.1 2441.9 2451.8 2461.7 2471.5 2481.4	494.8 498.7 502.5 506.4 510.3 514.3	20° C.	56° 10′ 20′ 30′ 40′ 50′	3046.5 3057.2 3067 9 3078.7 3089.4 3100.2	759 6 764.6 769.7 774.7 779.8 784.9	20° C. T
10° 20° 30° 40° 50°	1917 1 1926.4 1935.7 1945.0 1954.3 1963 6	312.2 315.2 318.1 321.1 324.1 327.1	.53 E .093	47° 10' 20' 30' 40' 50'	2491.3 2501.2 2511.2 2521 1 2531.1 2541.0	518.2 522.2 526.1 530.1 534.2 538.2	.68 E 151	57° 10' 20' 30' 40' 50'	3110.9 3121.7 3132.6 3143.4 3154.2 3165.1	790.1 795.2 800.4 805.6 810.9 816.1	E .225
10' 20' 30' 40' 50'	1972.9 1982.2 1991.5 2000.9 2010.2 2019.6	330.2 333.2 336.3 339.3 342.4 345.5	25° C. T .67	48° 10′ 20° 30′ 40′ 50′	2551.0 2561.0 2571.0 2581.0 2591.0 2601.1	542.2 546.3 550.4 554.5 558.6 562.8	25° C. T .85 E	58° 10° 20° 30° 40° 50°	3176.0 3186.9 3197.8 3208.8 3219 7 3230.7	821.4 826.7 832.0 837.3 842.7 848.1	25° C T 1.05
10' 20' 30' 40' 50'	2029.0 2038.4 2047.8 2057.2 2066.6 2076.0	348.6 351.8 354.9 358.1 361.3 364.5	.117	49° 10' 20' 30' 40' 50'	2611.2 2621.2 2631.3 2641.4 2651.5 2661.6	566.9 571.1 575.3 579.5 583.8 588.0	.189	59° 10′ 20′ 30′ 40′ 50	3241.7 3252.7 3263.7 3274.8 3285.8 3296.9	853.5 858.9 864.3 869.8 875.3 880.8	.283
10° 20° 30° 40° 50°	2085.4 2094.9 2104.3 2113.8 2123.3 2132.7	367.7 371.0 374.2 377.5 380.8 384.1	30° C. T .80 E .141	50° 10' 20' 30' 40' 50'	2671.8 2681.9 2692.1 2702.3 2712.5 2722.7	592.3 596.6 600.9 605.3 609.6 614.0	30° C. T 1.02 E .227	60° 10' 20' 30' 40' 50'	3308.0 3319.1 3330.3 3341.4 3352.6 3363.8	886.4 892.0 897.5 903.2 908.8 914.5	30 C T 1.27 E .340

T = R tan ½ I

E = R exsec ½ T

TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

I	ī	E	I=70°	I	Ţ	E	I=80°	I	ī	E	I=90°
61° 10′ 20′ 30′ 40′ 50′	3375.0 3386.3 3397.5 3408.8 3420.1 3431.4	920.2 925.9 931.6 937.3 943.1 948.9	+ 5° C. T .25 E	10° 20′ 30′ 40′ 50′		1308.2 1315.6 1322.9 1330.3 1337.7 1345.1	+ 5° C. T .30 E	81° 10 20′ 30′ 40′ 50°	4893.6 4908.0 4922.5 4937.0 4951.5 4966.1	1805.3 1814.7 1824.1 1833.6 1843.1 1852.6	+ 5° C. T ,36
62° 10' 20' 30' 40' 50'	3442.7 3454.1 3465.4 3476.8 3488.3 3499.7	954.8 960.6 966.5 972.4 978.3 984.3	.080	10° 20° 30° 40° 50°	4201.2	1367.6 1375.2 1382.8	.110	82° 10′ 20′ 30′ 40′ 50′	4980.7 4995.4 5010.0 5024.8 5039.5 5054.3	1862.2 1871.8 1881.5 1891.2 1900.9 1910.7	.149
63° 10′ 20′ 30′ 40′ 50′	3511.1 3522 6 3534.1 3545.6 3557.2 3568.7	990.2 996.2 1002.3 1008.3 1014.4 1020.5	10° C. T .51 E .159	73° 10′ 20° 30′ 40′ 50′	4265.6 4278.5	1398.0 1405.7 1413.5 1421.2 1429.0 1436.8	10° C. T .61 E .220	83° 10′ 20′ 30′ 40′ 50′	5069.2 5084.0 5099.0 5113.9 5128.9 5143.9	1920.5 1930.4 1940.3 1950.3 1960.2 1970.3	10° C. T .72 E .299
64° 10′ 20′ 30′ 40′ 50′	3580.3 3591.9 3603.5 3615.1 3626.8 3638.5	1026.6 1032.8 1039.0 1045.2 1051.4 1057.7	15° C.	74° 10′ 20′ 30′ 40′ 50′	4317.6 4330.7 4343.8 4356.9 4370.1 4383.3	1444.6 1452.5 1460.4 1468.4 1476.4 1484.4	15° C.	10' 20' 30' 40' 50'	5159.0 5174.1 5189.3 5204.4 5219.7 5234.9	1980.4 1990.5 2000.6 2010.8 2021.1 2031,4	15° C.
65° 10′ 20′ 30′ 40′ 50′	3650.2 3661.9 3673.7 3685.4 3697.2 3709.0	1063.9 1070.2 1076.6 1082.9 1089.3 1095.7	.76 E .240	75° 10′ 20′ 30′ 40′ 50′	4396.5 4409.8 4423.1 4436.4 4449.7 4463,1	1492.4 1500.5 1508.6 1516.7 1524.9 1533.1	.91 E .332	85° 10′ 20′ 30′ 40′ 50'	5250.3 5265.6 5281.0 5296.4 5311.9 5327.4	2041.7 2052.1 2062.5 2073.0 2083.5 2094.1	T 1.09 E .450
66° 10′ 20′ 30′ 40′ 50	3720.9 3732.7 3744.6 3756.5 3768.5 3780.4	1102.2 1108.6 1115.1 1121.7 1128.2 1134.8	20° C.	76° 10' 20' 30' 40' 50'	4476.5 4489.9 4503.4 4516.9 4530.4 4544.0	1541.4 1549.7 1558.0 1566.3 1574.7 1583.1	20° C.	86° 10′ 20′ 30′ 40′ 50′	5343.0 5358.6 5374.2 5389.9 5405.6 5421.4	2104.7 2115.3 2126.0 2136.7 2147.5 2158.4	20° C.
67° 10° 20′ 30′ 40′ 50′	3816.4 3828.4 3840.5	1141.4 1148.0 1154.7 1161.3 1168.1 1174.8	1.02 E .321	77° 10′ 20′ 30′ 40′ 50′	4557.6 4571.2 4584.8 4598.5 4612.2 4626.0	1591.6 1600.1 1608.6 1617.1 1625.7 1634.4	1.22 E .445	10° 20° 30° 40° 50°	5437 2 5453.1 5469.0 5484.9 5500.9 5517.0	2169.2 2180.2 2191 1 2202.2 2213.2 2224.3	1.45 E .603
68° 10′ 20′ 30′ 40′ 50′	3864.7 3876.8 3889.0 3901.2 3913.4 3925.6	1195.2 1202.0 1208.9	25ª C. T 1.28 E	78 ⁵ 10 ⁴ 20 ⁷ 30 ⁷ 40 ⁷ 50 ⁷	4639.8 4653.6 4667.4 4681.3 4695.2 4709.2	1669.2	25° C. T 1.53 E	88° 10′ 20′ 30′ 40′ 50′	5565.4 5581.6 5597.8	2235.5 2246.7 2258.0 2269.3 2280.6 2292.0	25° C. T 1.83
69° 10′ 20′ 30′ 40′ 50′	3962.5 3974.8 3987.2	1243.7 1250.8	.403	79" 10' 20' 30' 40' 50'	4723.2 4737.2 4751.2 4765.3 4779.4 4793.6	1695.8 1704.7 1713.7 1722.7 1731.7 1740.8	.558	89° 10′ 20′ 30′ 40′ 50′	5630.5 5646.9 5663.4 5679.9 5696.4 5713.0	2303.5 2315.0 2326.6 2338.2 2349.8 2361.5	.756
70° 10′ 20° 30′ 40′ 50′	4011.9 4024.4 4036.8 4049.3 4061.8 4074.4	1279.3 1286.5 1293.6	30° C. T 1,54 E .485	80° 10′ 20′ 30′ 40′ 50′	4807.7 4822.0 4836.2 4850.5 4864.8 4879.2	1749.9 1759.0 1768.2 1777.4 1786.7 1796.0	30° C. T 1.84 E .671	90° 10' 20' 30' 40' 50'	5729.7 5746.3 5763.1 5779.9 5796.7 5813.6	2373.3 2385.1 2397.0 2408.9 2420.9 2432.9	30° C. T 2,20 E .910

T = R tan ½I

E = R exsec ½ I

TABLE V CONTD. TANGENTS AND EXTERNALS TO A 1° CURVE

I	ī	E	I=100°	I	T	E	I=110°	I	T	E	I=120°
91° 10′ 20′ 30′ 40′ 50′	5830.5 5847.5 5864.6 5881.7 5898.8 5916.0	2444.9 2457.1 2469.3 2481.5 2493.8 2506.1	+ 5° C. T .43	101° 10′ 20′ 30′ 40′ 50′	6950.6 6971.3 6992.0 7012.7 7033.6 7054.5	3278.1 3294.1 3310.1 3326.1 3342.3 3358.5	+ 5° C. T .51 E	111° 10′ 20′ 30′ 40′ 50	8336.7 8362.7 8388.9 8415.1 8441.5 8468.0	4386.1 4407.6 4429.2 4450.9 4472,7 4494.6	+ 5 ° C. T .62 E
92° 10′ 20′ 30′ 40′ 50′	5933.2 5950.5 5967.9 5985.3 6002.7 6020.2	2518.5 2531 0 2543.5 2556.0 2568.6 2581.3	.200	102° 10′ 20′ 30′ 40′ 50′	7075.5 7096.6 7117.8 7139.0 7160.3 7181.7	3374.9 3391.2 3407.7 3424.3 3440.9 3457.6	.268	112° 10' 20' 30' 40' 50'	8494.6 8521.3 8548.1 8575.0 8602.1 8629.3	4516.6 4538.8 4561 1 4583.4 4606.0 4628.6	.360
93° 10′ 20′ 30′ 40′ 50′	6037.8 6055.4 6073.1 6090.8 6108.6 6126.4	2594.0 2606.8 2619.7 2632.6 2645.5 2658.5	10° C. T .86 E ,401	103° 10' 20' 30' 40' 50'	7203.2 7224.7 7246.3 7268.0 7289.8 7311.7	3474.4 3491.3 3508 2 3525.2 3542.4 3559.6	10° C. T .103 E .536	113° 10' 20' 30' 40' 50'	8656.6 8684.0 8711.5 8739.2 8767.0 8794.9	4651.3 4674.2 4697.2 4720.3 4743.6 4766.9	10° C. T 1.25 E .721
94° 10′ 20′ 30′ 40′ 50′	6144.3 6162.2 6180.2 6198.3 6216.4 6234.6		15° C.	104° 10' 20' 30' 40' 50'	7333.6 7355.6 7377.8 7399.9 7422.2 7444.6	3576.8 3594.2 3611.7 3629.2 3646.8 3664.5	15° C.	114° 10' 20' 30' 40' 50'	8879.3	4790.4 4814.1 4837.8 4861.7 4885.7 4909.9	15° C.
95° 10' 20' 30' 40' 50'	6307.9 6326.3	2751.3 2764.8 2778,3 2792,0 2805.6 2819.4	1.30 E .604	105° 10' 20' 30' 40' 50'	7467.0 7489.6 7512.2 7534.9 7557.7 7580.5	3700.2 3718,2	T 1.56 E .806	115° 10' 20' 30' 40' 50'	8993.8 9022.7 9051.7 9080.9 9110.3 9139.8	4958.6 4983.1	1.93 E 1.09
96° 10' 20' 30' 40' 50'	6363.4 6382.1 6400.8 6419.5 6438.4 6457.3	2833.2 2847.0 2861.0 2875.0 2889.0 2903,1	20° C.	106° 10' 20' 30' 40' 50'	7603.5 7626.6 7649.7 7672.9 7696.3 7719.7	3791 0 3809.4 3827.9 3846.5 3865.2 3884.0	20° C. T	116° 10° 20° 30° 40° 50°	9169.4 9199.1 9229.0 9259.0 9289.2 9319.5	5082.7 5107.9 5133.3 5158.8 5184.5 5210.3	20° C. T
97° 10′ 20′ 30′ 40′ 50′	6476.2 6495.2 6514.3 6533.4 6552.6 6571.9	2917.3 2931.6 2945.9 2960.3 2974.7 2989.2	1.74 E .809	107° 10′ 20′ 30′ 40′ 50′	7743.2 7766.8 7790.5 7814.3 7838.1 7862.1	3902.9 3921.9 3940.9 3960.1 3979.4 3998.7	2,08 E 1.08	117° 10' 20' 30' 40' 50'	9349.9 9380.5 9411.3 9442.2 9473.2 9504.4	5236.2 5262.3 5288.6 5315.0 5341.5 5368.2	2.52 E 1.46
98° 10′ 20′ 30′ 40′ 50′	6591.2 6610.6 6630.1 6649.6 6669.2 6688.8	3003.8 3018.4 3033.1 3047.9 3062.8 3077.7	25°C. T 2.18 E	108° 10′ 20′ 30′ 40′ 50′	7886.2 7910.4 7934.6 7959.0 7983.5 8008.0	4018.2 4037.8 4057.4 4077.2 4097.1 4117.0	25° C. T 2.61 E	118° 10° 20° 30° '40° 50°	9535.7 9567.2 9598.9 9630.7 9662.6 9694.7	5395.1 5422.1 5449.2 5476.5 5504.0 5531.7	25° C. T 3.16 E
99° 10′ 20′ 30′ 40′ 50′	6708.6 6728.4 6748.2 6768.1 6788.1 6808.2	3122.9 3138.1 3153.3	1.02	109° 10' 20' 30' 40' 50'	8057.4 8082.3 8107.3	4177.5 4197.9 4218.4	1.36	119° 10' 20' 30' 40' 50'	9727.0 9759.4 9792.0 9824.8 9857.7 9890.8	5559.4 5587.4 5615.5 5643.8 5672.3 5700.9	1.83
100° 10′ 20′ 30′ 40′ 50′	6828.3 6848.5 6868.8 6889.2 6909.6 6930.1	3184.1 3199.6 3215.1 3230.8 3246.5 3262.3	30° C. T 2.62 E 1.22	110° 10' 20' 30' 40' 50'	8208 2		30° C. T 3.14 E 1.63		9924.0 9957.5 9991.0 10025.0 10059.0 10093.0	5758.6 5787.7 5817.0 5846.5	30° C. T 3.81 E 2.20

USEFUL RELATIONS

Lineal feet $\times .00019$ = miles Lineal yards $\times .0006$ = miles Square inches ×.007 = square feet Square feet $\times.111$ = square yards Square yards $\times .0002067 = acres$ Acres = square yards $\times 4840$ Cubic inches $\times .00058$ = cubic feet Cubic feet $\times .03704$ = cubic yards Links $\times .22$ = yards

Links $\times .66$ = feet Feet $\times 1.5$ = links

 $360^{\circ} = 21600' = 1296000''$

Radius = arc of 57.2957790° Arc of 1° (radius = 1) = .017453292

Arc of 1' (radius = 1) = .01/453292Arc of 1' (radius = 1) = .000290888

Arc of 1" (radius = 1) = .000230088

Curvature of Earth's surface = about 0.7 feet in 1 mile Curvature in feet = 0.667 (Dist. in miles)³ Difference between arc and chord length, 0.05 feet in 11½

miles

Probable error of a single observation = $0.6754 \sqrt{\frac{\approx v^3}{n-1}}$ Error in chaining of 0.01 feet in 100 feet: Due to—

1. Length of tape error of 0.01 feet

2. Alignment. One end 1.4 feet out of line

3. Sag of tape at center of 0.61 feet.

4. Temperature difference of 15°

5. Difference of pull of 15 lbs.

SQUARE MEASURE

144 sq. inches = 1 sq. ft.

9 sq. ft. = 1 sq. yard

 $30 \frac{1}{4}$ sq. yds. = 1 sq. rd.

40 sq. rds. = 1 rood.

4 roods = 1 acre

640 acres = 1 sq. mile.

SURVEYORS' MEASURE

7.92 inches = 1 link.

25 links = 1 red.

4 rds. = 1 chain.

10 sq. chains or 160 sq. rods = 1 acre.

640 acres = 1 sq. mile.

36 sq. miles (6 miles sq.) = 1 township.

TABLE VI. INCHES TO DECIMALS OF A FOOT

Ia.	0	1	2	3	4	5	6	7	8	9	10	11	In.
0	Foot	0833	. 1667	.2500	.3333	.4167	.5000	.5833	6667	.7500	.8333	.9167	0
1-32	0008	0.850	1,000	9596	3359	4193	.5026	.5859	. 6030	. 1020	.8359	.9193	1-32
1-16													3-32
3_32	.0078	.0911	.1745 .1771	.2578	.3411	4971	5104	.5911	6771	7604	8438	9271	1-8
1-8													5-32
5-32 3-16													3-16
3-10 7-32	0182	1016	.1849	2682	.3516	.4349	.5182	.6016	.6849	.7682	.8516	.9349	7-32
	0000	1040	.1875	0200	95.49	4975	5208	6042	5875	7708	.8542	.9375	1-4
1-4	00204	4000	1001	0734	25,634	44111	33.7.74	DM.FO.FO	LUNGO.	. 4 4 12 1	.ovvo	.9401	9-32
9-32 5-16	0260	1094											
11-32	.0286	1129	1053	2786	3620	.4453	.5200	.6120	. ರ೪ನಾ	. 1100	, oueu	. 5100	11-06
3-8		,1146											
13-32	0220	1179	0.005	0830	2672	4505	53039	.6172	. UUD	1.1559	.0014	.9000	13-32 7-16
7-16	.0365	.1198	.2031	.2865	.3698	.4531	.0300 E901	.0195	7057	7901	9724	9557	15-32
15_32	.0391	.1224	.2057	.2891	.3724	.4301	.5591	.0204	. (001	. 1001	0000	0500	100
1-2	.0417	.1250	.2083	.2917	.3750	.4583	.5417	,6250	.7083	.7917	.8750	9583	1-2
17-32													
9-16	.0469	. 1302	.2135	.2969	.3802	4635	.0109	6900	7161	7005	8828	9661	19_32
19-32	.0495	.1328	.2188	2000	2854	4688	5521	6354	7188	8021	.8854	9688	5-8
5-8 21-32													
11-16	0.000	1 1400	063.10	9079	200%	1 4740	5543	I DAUN	1 4 25 44 1	CX17.0		1. 3140	11-10
23-32	.0599	.1432	.2266	.3090	.3932	.4766	.5599	.6432	.7266	.8099	.8932	.9766	23-32
3-4	OCT.	1450	0000	9105	2059	4700	5895	6458	7292	R125	.8958	.9792	3-4
25-32													
13-16	0.000	1510	0244	9177	1 4010	4×11	1 00014	6510	1.1.344	1.0144	1.20110	1.302	110-10
27-32	1 0709	1 1536	103541	20013	4036	4800	57(18)	りついり	4/241	II. nzua		. 9010	141 -04
7-8	10790	1563	0306	30000	4063	4896	1.5729	6563	1.390	H. 5223	1.9000	I. YOYU	1-0
29-32	,0755	.1589	.2422 .2448	. 3255	.4089	4922	5755	.0589	7410	9981	9115	9949	15_16
15-16	.0/81	1615	.2474	9307	4115	4974	5807	6641	7474	8307	.9141	9974	31-32
31-32	.0007	. 1041	.24/4	.0007	.4141	.4014	.0001	.0041			1		
	0	1	2	8	4	5	6	7	8	9	10	11	

TABLE VII. MINUTES IN DECIMALS OF A DEGREE

								,			
0′ 30″	.00833	10′ 30″	.17500	20′ 30″	.34167	30′ 30′′	,50833	40′ 30′′	.67500	50' 30"	.84167
1 00	.01667	11 00	.18333	21 00	.35000	31 00	.51667	41 00	.68333	51 00	.85000
30	.02500	30	.19167	30	.35833	30	.52500	30	.69167	30	.85833
2 00	.03333	12 00	.20000	22 00	.36667	32 00	.53333	42 00	.70000	52 00	.86667
30	.04167	30	.20833	30	.37500	30	,54167	30	.70833	30	.87500
3 00	.05000	13 00		23 00	.38333	33 00	.55000	43 00	.71667	53 00	.88333
30	.05833	30	.22500		.39167	30	.55833	30	.72500	30	.89167
4 00	.06667	14 00	.23333		.40000	34 00	.56667	44 00	.73333	54 00	.90000
			.24167	30	.40833	30	.57500	30	.74167	30	.90833
30	.07500	30	.25000		.41667	35 00	.58333	45 00		55 00	.91667
5 00	.08333	15 00				30	.59167	30	.75833	30	.92500
30	.09167	30	.25833	30	.42500						
6 00	,10000	16 00			.43333	36 00	.60000	46 00		56 00	.93333
30	.10833	30	.27500	30	.44167	30	.60833	30	.77500	30	.94167
7 00	.11667	17 00	.28333	27 00	.45000	37 00	.61667	47 00	.78333	57 00	.95000
30	.12500	30	.29167	30	.45833	30	.62500	30	.79167	30	,95833
8 00	.13333	18 00	,30000	28 00	.46667	38 00	.63333	48 00	.80000	58 00	.96667
30	.14167	30	.30833	30	.47500	30	.64167	30	.80833	30	.97500
9 00	.15000	19 00	.31667	29 00	.48333	39 00	.65000	49 00	.81667	59 00	.98333
30	.15833	30	.32500	30	.49167	30	.65833	30	.82500	30	.99167
10 00	.16667	20 00	.33333	30 00	.500000	-	.66667	50 00	.83333	60 00	1.00000
10 00	1.20007	20 00		30 00	.000000	1 20 00	1.00001	00 00	+00000	00	

TABLE VIII. MIDDLE ORDINATES OF RAILS

Length of Rail (feet)

	ъ	20	00	O.C.	04	00	00	La	D	20	00			00	
C	R	30	28	26	24	22	20		R	30	28	26	24	22	20
0 /	Feet	Inch	Inch	lnch	Inch	Inch	Inch	0	Feet	Inch	Inch	Inch	Inch	Inch	Inch
0.00	17100	00	07	0.0	0.5	0.4	02		7100	1 00			1 00	1 01	
	17189	.08	.07			.04	.03	8	716.8	-					.84
0-40	8594	.16	.14	.12	.10	.08	.07	9	637.3	2.12	1.84	1.60	1.35	1.14	.94
1-0	5730	.24	.20	.18	.15	.13	.10	10	573.7	2.36	2,05	1.78	1.50	1.27	1.04
1-20	4297	.31	.27	.23	.20	.17	.13	11	521.7	2.59	2.26	1.95	1.65	1.39	1.15
1-40	3438	.39	.34	.29	.25	. 21	.17	12	478.3	3.83	2.47	2.15	1.81	1.54	1.26
2-0	2865	.47	.41	.35	.30	.25	.20	13	441.7	3.05	2,66	2.30	1.96	1.66	1.36
2-20	2456	.55	.48	.41	.35	.29	,23	14	410.3	3.30	2.87	2.48	2.10	1.78	1.46
2-40	2149	.63	.55	.47	.40	.33	.27	15	383.1	3.54	3.08	2.68	2.26	1.91	1.57
3-0	1910	.71	.62	.53	.45	,38	.31	16	359.3	3.76	3.28	2.83	2.40	2.04	1.67
3-20	1719	.78	.68	.59	.50	.42	.35	17	338.3	4.00	3.48	3.02	2.57	2.16	1.78
3-40	1563	.86	.75	.65	.55	.46	.38	18	319.6	4.21	3.67	3.18	2.70	2.28	1.87
4-0	1433	.94	.82	.71	.60	.50	.42	19	302.9	4.45	3.89	3.36	2.86	2.41	1.98
4-20	1323	1.02	.89	.77	.65	.55	.45	20	287,9	4.70	4.09	3,55	3.00	2.54	2.09
4-40	1228	1.10	.96	.83	.70	.59	.48	22	262.0	5.16	4.44	3.84	3.30	2.80	2.29
5	1146	1.18	1.03	.89	.75	.63	.52	24	240.5	5.64	4.92	4.20	3.59	3.04	2.50
6	955.3	1.41	1,23	1,06	.90	.76	.62	26	222.3	6.07	5.29	4.58	3.88	3.29	2.70
7	819.0	1.65	1.44	1.24	1.05	.89	.73								
			_					_					_	_	

TABLE IX. SHORT RADIUS CURVES

Radius Feet	Chord Feet	Central Angle	Deflection Angle	Deflection for 1 Foot
35	10	16-26	8-13	49.3
45	10	12-46	6-23	38.3
50	15	17-16	8-38	34.5
60	15	14-22	7-11	28.8
75	15	11-30	5-45	23.0
100	20	11-30	5-45	17.3
120	20	9-34	4-47	14.3
150	20	7-39	3-49	11.5
190	25	7-32	3-46	9.15
200	25	7-10	3-35	8.6
225	25	6-25	3-12	7.7
240	25	5-58	2-59	7.2
250	25	5-44	2-52	6.9
275	25	5-12	2-36	6.2
288	50	9-58	4-59	6.0 5.7
300	50	9-32	4-46	4.9
350	50	8-12	4-06 3-50	4.6
376	50	7-40	3-35	4.3
400	50 50	7-10 7-00	3-30	4.2
 410	30	7-00	3-30	7.2

To find length of curve divide angle from P. C. to P. T. by central angle of chord, and multiply by length of chord.

TABLE X. RODS IN FEET, 10THS AND 100THS OF FEET

-	Rods	Feet	Rods	Feet	Rods	Feet	Rods	Feet	Rods	Feet
-	1	16.50	21	346.50	41	676.50	61	1006.50	81	1336.50
	2	33.00	22	363.00	42	693.00	62	1023.00	82	1353.00
	3	49.50	23	379.50	43	709.50	63	1039.50	83	1369.50
	4	66.00	24	396.00	44	726.00	64	1056.00	84	1386.00
	5	82.50	25	412.50	45	742.50	65	1072.50	85	1402.50
	6	99.00	26	429.00	46	759.00	66	1089.00	86	1419.00
	7	115.50	27	445.50	47	775.50	67	1105.50	87	1435.50
	8	132.00	28	462.00	48	792.00	68	1122.00	88	1452.00
	9	148.50	29	478.50	49	808.50	69	1138.50	89	1468.50
	10	165.00	30	495.00	50	825.00	70	1155.00	90	1485.00
	11	181.50	31	511.50	51	841.50	71	1171.50	91	1501.50
	12	198.00	32	528.00	52	858.00	72	1188.00	92	1518.00
	13	214.50	33	544.50	53	874.50	73	1204.50	93	1534.50
	14	231.00	34	561.00	54	891.00	74	1221.00	94	1551.00
	15	247.50	35	577.50	55	907.50	75	1237.50	95	1567.50 1584.00
	16	264.00	36	594.00	56	924.00	76	1254.00	96	1600.50
	17	280.50	37	610.50	57	940.50	77	1270.50	11	1617.00
	18	297.00	38	627.00	58	957.00	78	$1287.00 \\ 1303.50$	98	1633.50
	19	313.50	39	643.50	59	973.50	79	1320.00	100	1650.00
	20	330.00	40	660.00	60	990.00	80	1320.00	100	1000.00

TABLE XI. LINKS IN FEET, 10THS AND 100THS OF FEET

Links	Feet	Links	Feet	Links	Feet	Links	Feet	Línks	Feet	Links	Feet
1	0.66	18	11.88	35	23.10	52	34.32	69	45.54	86	56.76
2	1.32	19	12.54	36	23.76	53	34.98	70	46.20	87	57.42
3	1.98	20	13.20	37	24.42	54	35.64	71	46.86	88	58.08
4	2.64	21	13.86	38	25.08	55	36.30	72	47.52	89	58.74
5	3.30	22	14.52	39	25.74	56	36.96	73	48.18	90	59.40
6	3.96	23	15.18	40	26.40	57	37.62	74	48.84	91	60.06
7	4.62	24	15.84	41	27.06	58	38.28	75	49.50	92	60.72
8	5.28	25	16.50	42	27.72	59	38.94	76	50.16	93	61.38
9	5.94	26	17.16	43	28.38	60	39.60	77	50.82	94	62.04
10	6.60	27	17.82	44	29,04	61	40.26	78	51.48	95	62.70
11	7.26	28	18.48	45	29.70	62	40.92	79	52.14	96	63.36
12	7.92	29	19.14	46	30.36	63	41.58	80	52.80	97	64.02
13	8.58	30	19.80	47	31.02	64	42.24	81	53.46	98	64.68
14	9.24	31	20.46	48	31.68	65	42.90	82	54.12	99	65.34
15	9.90	32	21.12	49	32.34	66	43.56	83	54.78	100	66.00
16	10.56	33	21.78	50	33.00	67	44.22	84	55.44	101	66.66
17	11.22	34	22.44	51	33.66	68	44.88	85	56.10	102	67.32

S OF FEET

81 13365

88 | 1452,00 89 | 1468,30 90 | 1485,00

91 | 1501.50 92 | 1518.00 93 | 1534.50

> 1551.00 1567.50 1584.00

7 | 1600.50 98 | 1617.00 99 | 1633.50 .00 | 1650.00

SURVEYING INSTRUMENTS, EQUIPMENT AND SUPPLIES

- EDM Systems
- Theodolites
- Levels
- Transits
- Tripods
- Rods
- Hand Levels
- Tapes
- Planimeters
- Accessories

OF FEET

50.82 94 51.48 95 52.14 96 52.80 9 53.46 9 54.12 9

54.78 100 55.44 101 56.10 102

The paper in this book is a fine quality thick 50% rag ledger specially treated during the making to give "High Wet Strength." It retains its strength and writing surface when dried after having been subjected to extreme weather conditions.

FIELD BOOKS

Rain resistant fine quality ledger paper, bound in high visibility chrome yellow imitation leather. Printed in waterproof ink.

Left page: blue horizontal lines; red vertical lines.

Right page: 4 horizontal and 8 vertical blue lines; red vertical center line.

Stock No. 8152-00 Transit Field Book. Size 4½ x 7½ inches.

Stock No. 8152-05 Economy Field Book. Spiral Bound Paperback. Size 4½ x 7½ inches.

Left page: blue horizontal lines; red vertical lines. Right page: 8 x 8 blue lines; red vertical center line.

Stock No. 8152-20 Mining Transit Book. Size 4½ x 7½ inches.

Left page: blue horizontal lines; red vertical lines.

Right page: 10 x 10 blue lines; red vertical center line. Inch lines heavy.

lines neavy.

Stock No. 8152-30 Engineers Field Book. Size 4½ x 7½ inches.

Both pages: blue horizontal lines; red vertical lines. 6 vertical columns.

Stock No. 8152-50 Level Book. Size 4 x 6½ inches. Stock No. 8152-55 Level Book. Size 4½ x 7½ inches.

Left page: blue horizontal lines; red vertical lines. Right page: 4 x 4 blue lines; red vertical center line.

Stock No. 8152-60 Field Book. Size 4½ x 7¼ inches.

Both pages: 10 x 10 blue lines; inch lines slightly heavier.

Stock No. 8152-75 Cross Section Book. Size 6½ x 8½ inches.

CURVE FORMULAE

D = Degree of Curve

1° = 1-Degree of Curve

2° = 2-Degree of Curve

P.C. = Point of Curve

P.T. = Point of Tangent

P.I. = Point of Intersection

I = Intersection of Angle, Angle between Two Tangents

L = Length of Curve, from P.C. to P.T.

T = Tangent Distance

E = External Distance

R = Radius

L.C. = Length of Chord

M = Length of Middle Ordinate

c = Length of Sub-Chord

d = Angle of Sub-Chord

$$R = \frac{L.C.}{2 \sin \frac{1}{2} I} T = R \tan \frac{1}{2} I = \frac{L.C.}{2 \cos \frac{1}{2} I}$$

$$\frac{L.C.}{2} = R \sin \frac{I}{2}, D \, 1^{\circ} = R = 5730, D \, 2^{\circ} = \frac{5730}{2}, D = \frac{5730}{R}$$

$$M = R \, (1 - \cos \frac{1}{2} I), = R - R \cos \frac{I}{2}$$

$$\frac{E + R}{R} = \sec \frac{I}{2}, \frac{R - M}{R} = \cos \frac{I}{2}$$

$$c = 2 R \sin I \, d \, d = \frac{C}{2}$$

$$c = 2 R \sin \frac{1}{2} d, d = \frac{c}{2R}$$

L.C. = 2 R sin $\frac{1}{2}$ I, E = R (sec $\frac{1}{2}$ I - 1), = R sec $\frac{1}{2}$ - R

Minutes in Decimals of a Degree

Inches in Decimals of a Foot

18 ·0052	3 32 0078	·0104	3 16 ∙0156	·0208	·0 2 60	·0313	·0417	·0521	-06 2 5	7 8 ∙07 2 9
1	2	3	4	5	6	7	8	9	10	11
·0833	·1667	• 2 500	·3333	•4167	•5000	·5833	•6667	·7500	•8333	•9167

The market