${\bf Micro-teaching\ Session}$

Carlos Salinas

October 3, 2016

Contents

1	Scri	ipt	1
	1.1	L'Hôpital's rule	1
	1.2	Exercises	1
	1.3	Sample Quiz	3

1 Script

This is my script for the *Micro-teaching recitation presentation* on Monday, October 3, 2016. I have attached a sample 15-minute quiz at the end the document.

1.1 L'Hôpital's rule

Today we go over some of your WebAssign problems to show you how to use l'Hôpital's rule to evaluate the limits of quotients f/g and products fg.

The problems we will be discussing in today's recitations are problems 2, 3, 4, 7, 8, 9, and 10. But first, a vote. (Draw a table on the chalkboard

Problem	Votes	Problem	Votes
2		3	
4		7	
8		9	
10			

Raise your hand if you want to see a detailed solution to problem 2 [pause], problem 3, etc.

1.2 Exercises

PROBLEM (WebAssign, # 2). Find the limit. Use l'Hôpital's rule if appropriate. If there is a more elementary method, consider using it.

$$\lim_{x \to 0} \frac{\sin 2x}{\sin 3x}.$$

SOLUTION. First, let's look at the limit of the numerator and the limit of the denominator, individually. For the numerator, we have

$$\lim_{x \to 0} \sin 2x = 0$$

and, similarly, for the denominator

$$\lim_{x \to 0} \sin 3x = 0.$$

As you may remember for class, this is a limit of the type 0/0 and a prime candidate for l'Hôpital's rule.

Remember that l'Hôpital's rule says that the limit of a quotient f/g is the limit of the quotient of their derivatives f'/g', i.e.,

$$\lim_{x \to 0} \frac{\sin 2x}{\sin 3x} = \lim_{x \to 0} \frac{2\cos 2x}{3\cos 3x}.$$

Now, the limit of the cos in the numerator and denominator, as $x \to 0$, is 1, so

$$\lim_{x\to 0}\frac{\sin 2x}{\sin 3x}=\frac{2}{3}\bigg[\frac{\lim_{x\to 0}\cos 2x}{\lim_{x\to 0}\cos 3x}\bigg]=\frac{3}{2}.$$

easy, right?

Let's have a look at the next problem.

PROBLEM (WebAssign, # 3). Find the limit. Use l'Hôpital's rule if appropriate. If there is a more elementary method, consider using it.

$$\lim_{x \to 0} \frac{e^{7x} - 1 - 7x}{x^2}.$$

SOLUTION.

PROBLEM (WebAssign, # 4). Find the limit. Use l'Hôpital's rule if appropriate. If there is a more elementary method, consider using it.

$$\lim_{x \to \infty} \frac{\left(\ln(x)\right)^2}{5x}.$$

SOLUTION.

PROBLEM (WebAssign, # 7). Find the limit. Use l'Hôpital's rule if appropriate. If there is a more elementary method, consider using it.

$$\lim_{x \to \infty} x \tan(5/x).$$

SOLUTION.

PROBLEM (WebAssign, #8). Find the limit. Use l'Hôpital's rule if appropriate. If there is a more elementary method, consider using it.

$$\lim_{x \to 0} (\csc(x) - \cot(x)).$$

SOLUTION.

PROBLEM (WebAssign, # 9). Find the limit. Use l'Hôpital's rule if appropriate. If there is a more elementary method, consider using it.

$$\lim_{x \to 0} (1 - 8x)^{1/x}.$$

Solution.

PROBLEM (WebAssign, # 10). Find the limit. Use l'Hôpital's rule if appropriate. If there is a more elementary method, consider using it.

$$\lim_{x \to \infty} x^{8/x}.$$

SOLUTION.

1.3 Sample Quiz