

Lógica Computacional

Examen 1

PCIC - UNAM

20 de abril de 2020

Diego de Jesús Isla López

(dislalopez@gmail.com)

(diego.isla@comunidad.unam.mx)

Problema 1

Demostrar que $\vdash (A \rightarrow B) \lor (B \rightarrow C)$ en el sistema de Hilbert \mathcal{H} .

 $\neg (A \to B) \to \neg (A \to B)$

Demostración.

1.

	(11 / 2) / (11 / 2)	
2.	$\neg (A \to B) \vdash A \to \neg B$	Def. implicación (1) 🗡
3.	$\neg (A \to B) \vdash \neg B \to (B \to C)$	Teorema 3.20
4.	$\neg (A \to B) \vdash A \to (B \to C)$	Transitividad (2,3)
5.	$\neg (A \to B) \to (A \to (B \to C))$	Deducción (4)
6.	$(A \to B) \lor (A \to (B \to C))$	Def. implicación (5)
7	$(-A \lor P) \lor (-A \lor (-P \lor C))$	Def implicación (6)

Sub. Teorema 3.10

7.
$$(\neg A \lor B) \lor (\neg A \lor (\neg B \lor C))$$
 Def. implicación (6) 8. $\neg A \lor B \lor \neg A \lor \neg B \lor C$ Def. $(\lor (7)$ 9. $(\neg A \lor B) \lor (\neg B \lor C)$ Def. $\lor (8)$

10.
$$(A \rightarrow B) \lor (B \rightarrow C)$$
 Def. implicación (9)

7/2.5

Problema 2

Calcular la expansión de Shannon de $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$ con respecto a su proposición atómica r. ¿Por qué usted sabe la respuesta aún antes de comenzar los

cálculos?

Solución. Tomando $A = p \rightarrow (q \rightarrow r)$ y $B = (p \rightarrow q) \rightarrow (p \rightarrow r)$ tenemos las siguientes restricciones:

$$\begin{aligned} A|_{r=T} &= p \to (q \to T) \equiv p \to T \equiv T \\ B|_{r=T} &= (p \to q) \to p \equiv p \\ A|_{r=F} &= p \to (q \to F) \equiv p \to \neg q \equiv \neg (p \land q) \\ B|_{r=F} &= (p \to q) \to (p \to F) \equiv (p \to q) \to \neg p \equiv \neg (p \land q) \end{aligned}$$

Desarrollando la expansión de Shannon tenemos:

$$[p \land (T \to p)] \lor [\neg p \land (\neg (p \land q) \to \neg (p \land q))]$$

$$(p \land p) \lor (\neg p \land T)$$

$$p \lor \neg p$$

$$T$$

Podemos saber la solución sin hacer la expansión ya que la fórmula es consistente con el axioma 2 de Hilbert.

2.5/25

Problema 3

Demostrar que si el conjunto de cláusulas que etiquetan a las hojas de un árbol de resolución es satisfactible, entonces la cláusula que etiqueta a la raíz es satisfactible.

Lema. El resolvente C es satisfactible sii las cláusulas padre C_1 y C_2 son ambas satisfactibles.

Demostración. Por construcción del árbol de resolución, la raíz tiene como etiqueta al resolvente C de las cláusulas C_1 y C_2 en sus hojas. Por el lema anterior, C es satisfactible sii las cláusulas padre C_1 y C_2 son ambas satisfactibles.

2/2.5

Jest y, por la hipótesis de inducción estructural,

C, y Con satisfactibles porque
son las respectivas raices de subárboles
del érbol dado,

Problema 4

Sea A una fórmula construida solo con cuantificadores y los operadores booleanos \neg , \vee y \wedge . La forma dual de A, A', se obtiene intercambiando \forall con \exists y \vee con \wedge . Demostrar que $\vdash A$ sii $\vdash \neg A'$.

Demostración. Por construcción de A', es posible ver que $\neg A'$ siempre será la fórmula A original pero con una distribución contraria de signos \neg . De este modo, si desarrollamos tableaux semánticos T y T' para A y A' respectivamente, podemos observar que ambos tableaux tienen exactamente las mismas aplicaciones de las reglas de construcción. A su vez, se llegarán a los mismos conjuntos de literales y fórmulas γ en ambos casos. Teniendo esto en cuenta, se sigue que si T es un árbol abierto, T' también lo será; de igual manera si T es un árbol cerrado, T' también lo será.

El caso opuesto es análogo.

2.5/2.5