Election Administration

Gov 1347: Election Analytics

Kiara Hernandez

October 27, 2022

Harvard University

Today's agenda

- Why do we care about election admin?
- Review: What do we know about the cost of voting (from discussion)?
 - Fundamental questions
 - What is the relationship between the cost of voting index and turnout? Vote margin by party?
 - How do we empirically understand the causal relationship between COVI and election outcomes?
 - How this might affect election night
- Redistricting: What to do about it in our models
 - Fundamental questions
 - -How does (can) it substantively affect election outcomes?
 - Suggestions for incorporating it into a predictive model
- Updating our data
 - Pulling up-to-date polling and expert ratings
 - Pulling 2022 district shapefiles from the Census

Why do we care about election

admin?

What is election administration?

Component	Examples	
Information	registration status,	
	polling place look-up	
Registration	eligibility, roll-off	
Convenience voting	vote-by-mail, early voting	
Ballot access	wait times, photo ID, provisional balloting	
Ballot count	security, technology, audits	
News coverage	exit polls, decision desks	
Redistricting	polling places, incentives to vote (individual power)	

Discussion: what do we know about the cost of voting?

-From discussion:

$$U = pB - C + D$$
, where $-U = Utilty$

- -if U > 0, vote
- -if U < 0, don't vote
- -p = probability of casting pivotal vote
- -B = benefit of candidate winning
- $-C = \cos t$
- -D =expressive benefit of voting

COVI and turnout - visualization

-What time trends do we see?
-What regional and state trends do we see?

plo

$geom_smooth()$ using formula 'y ~ x'

COVI and turnout - regression

Table 1: State-level turnout and COVI

	Dependent variable:		
	avg_state_turnout		
	(1)	(2)	
FinalRank black age20_29	-0.001*** (0.0002)	-0.001*** (0.0002) 0.035* (0.020) -0.632*** (0.084)	
Constant	0.532*** (0.005)	0.656*** (0.017)	

COVI and voteshare margin by party - visualization

plot2

`geom_smooth()` using formula 'y ~ x'

COVI and voteshare margin by party - regression

Table 2: State-level Democratic voteshare and COVI

	Dependent variable: avg_state_demshare		
	(1)	(2)	
FinalRank black age20 29	-0.469*** (0.013)	-0.463*** (0.013) -3.350** (1.585) 0.831 (6.796)	
Constant	63.350*** (0.394)	63.454*** (1.378)	

Prediction using COVI - can we predict the probability of Democrats winning in 2022 from historical COVI data?

Prediction using COVI - can we predict turnout from COVI?

-Try this on your own! Would this be a more or less useful than predicting turnout based on historical turnout data?

Trying to empirically understand the relationship between election admin and voting

- -Read the following sections of this paper by Grimmer et al. (2018):
- -INTRO; USE OF NATIONAL SURVEYS FOR STATE RESEARCH; ESTIMATING VOTER ID LAWS' EFFECTS ON TURNOUT
- -In small groups, discuss the following questions:
 - 1) What makes identifying the effects of voter ID laws (and election admin more broadly) on turnout empirically challenging? (Think endogeneity)
 - 2) What analyses do the authors present as evidence?
 - 3) What should we take away normatively from a paper like this?

The (maybe not so bad after all) bane of our existence as Midterm election forecasters: redistricting

-High-level thoughts:

(1) In general, we can assume that most districts retain a substantial portion of their previous voters from one redistricting cycle to the next

⁻We want to corroborate this, though — but how? → let's take a look at district-level population overlap between cycles

⁻Courtesy of Chris Kenny from the Gov PhD program: '../section data/pop_overlap_vtd_estimates.csv'

⁻What this tells us: an estimated x% of new district i in 2022 came from old districts {i,j,k} in 2012...

⁻Population and VAP come from the 2020 Decennial Census

⁻Take the map outputs from the 50-states simulations and gets a VTD (voting district) level estimate

⁻https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/SLCD3E

⁻What would be the best way to use this? No right answer, but a few suggestions:

⁽a) interact the proportion overlap with the old district with IVs

ex: interact with incumbency. This would dampen the effect of incumbency. In any interaction, you would basically being downweighting or upweighting accordingly.

⁻Assess model fit with and without interactions

Redistricting options continued

- (2) Reconstructing the dependent variable -Recalculate new vote totals from historical vote totals at the precinct level for new districts → Lucy's VTD estimates! -Precinct boundaries do change some, so this approach does involve some error
- (3) Including a variable at the district level that accounts for changes in expert predictions, so if lean R/D doesn't change between two districts from one redistricting cycle to the next, we may feel more comfortable making predictions based on last redistricting cycles' data
- (4) Because we're using all districts 2012-2020 as the training data (as opposed to only one district 2012-2020) and applying national betas to the individual seat, we can feel more comfortable with our predictions