Linked Open Data per un Content-based Recommender System

Luciano Quercia Simone Rutigliano

Accesso intelligente alle informazioni ed elaborazione del linguaggio naturale

Corso di Laurea in Informatica Magistrale

29 aprile 2013

Outline

- Obiettivi
- 2 Progetto
 - Sorgente dati
 - Realizzazione
 - Fattori
 - Output
- Sperimentazione
 - Dataset
 - Protocollo Sperimentale
 - Risultati
- 4 Conclusioni e sviluppi futuri
 - Document Image Understanding

Obiettivi

- Realizzazione di un content-based recommender system
- Basato sulla Linked Open Data Cloud
- Utilizzando il formalismo RDF

Content-based Recommender System

Il sistema stabilisce a priori la distanza trai film al fine di raccomandare i più simili alle preferenze dell'utente

Linked Open Data

Il più grande Cloud al mondo di:

- dataset semantici
- fortemente interconnessi
- descritti attraverso RDF

Linked Open Data

Resource Description Framework

Strumento base proposto da *W3C* per la codifica, lo scambio e il riutilizzo di metadati strutturati.

L'RDF Data Model si basa su tre principi chiave:

- Qualunque cosa può essere identificata da un (URI)
- 2 utilizzare il linguaggio meno espressivo per definire qualunque cosa
- Qualunque cosa può dire qualunque cosa su qualunque cosa

Sorgente dati Realizzazione Fattori Output

DBPedia

Fulcro della LODC Trasformazione in RDF di Wikipedia

Proprietà estratte

Per la raccomandazione di film, abbiamo estratto le seguenti proprietà

- director
- subject
- starring
- productor
- writer
- cinematography
- music
- •
- •
- •

Sorgente dati Realizzazione Fattori Output

Grafo delle Risorse

Attraverso query SPARQL sono state estratte tutte le triple che avevano proprietà nota e un film come soggetto È stato generato il grafo relle risorse

Grafo dei Film

Tutte le risorse non film

Sorgente dati Realizzazione Fattori Output

Distanze

Sono state applicate 4 distanze su grafo:

- Direct
- Combinated
- Direct Weighted
- Combinated Weighted

Sorgente dati Realizzazione Fattori Output

Rappresentazione del profilo

Il profilo è stato rappresentato in 2 modi:

Simple Insieme di film positivi per l'utente

Weighted Ogni film influisce, positivamente o negativamente, alle raccomandazioni, secondo un peso

Raccomandazioni

Dataset Protocollo Sperimentale Risultati

MovieLens

Protocollo Sperimentale

Metriche

Risultati

Conclusioni e sviluppi futuri

TEPaC

TEPaC

Transductive Emerging Pattern based Classifier

- classificatore di strutture logiche
- basato su pattern emergenti
- utilizza un approccio trasduttivo

- Comprensione automatizzata di documenti cartacei
- La maggior parte della conoscenza mondiale si trova su supporti cartacei
 - Libri
 - Document
 - Giornali
- La digitalizzazione offre innumerevoli vantaggi

- Comprensione automatizzata di documenti cartacei
- La maggior parte della conoscenza mondiale si trova su supporti cartacei
 - Libri
 - Documenti
 - Giornali
- La digitalizzazione offre innumerevoli vantaggi

- Comprensione automatizzata di documenti cartacei
- La maggior parte della conoscenza mondiale si trova su supporti cartacei
 - Libri
 - Documenti
 - Giornali
- La digitalizzazione offre innumerevoli vantaggi

	minSup (%)		
minGR	30	40	50
1	528032	344798	254805
2	523274	341534	252355
8	516958	336733	248658
64	513503	334292	246843

Dataset TPAMI

	minSup (%)			
minGR	10	20	30	
1	386996	176407	114492	
2	382639	173372	112476	
8	376645	169406	109814	
64	374736	167742	108595	

Dataset ICML

	minSup (%)		
minGR	10	20	30
1	128327	88684	58603
2	126840	87644	58091
8	122591	84208	55718
64	121363	82980	54490

Dataset BG

Grazie per l'attenzione.

