代数学1,第5回の内容の理解度チェックの解答

2024/10/24 担当:那須

① (1) 置換 $(1 \cdots 13)(14 \cdots 33)(34 \cdots 43)(44 \cdots 77)(78 \cdots 123) \in S_{123}$ の偶奇を判定せよ. ただし、 は連続する整数を表す.

解答) 13-1=12, 33-14=19, 43-34=9, 77-44=33, 123-78=45. 与えられた置換は 1 つの偶置換と 4 つの奇置換の合成なので、偶置換となる.

(2) 置換 $(1\ 2\ 3\ 4\ 5)(5\ 6\ 7\ 8\ 9)(9\ 10\ 11\ 12\ 13) \in S_{13}$ の位数を求めよ.

解答) (1 2 3 4 5)(5 6 7 8 9)(9 10 11 12 13) = (1 2 3 4 5 6 7 8 9 10 11 12 13) に注意する. 長さ 13 の巡回置換 (サイクル) なので位数は13となる. ■

- 2 (1) x,y,z を変数とする次の3変数多項式 f_1,f_2,f_3,f_4 の中から対称式であるものを全て選べ.
 - $f_1 = x^3 + y^3 + z^3$
 - $f_2 = x^2 + y^2$
 - $f_3 = (x-y)^2 + (y-z)^2 + (z-x)^2$
 - $\bullet \ f_4 = x^2y + y^2z + z^2x$

解答) f_1 と f_3 は任意の $\sigma \in S_3$ に関して, $\sigma f(x,y,z) = f(\sigma(x),\sigma(y),\sigma(z))$ を満たすので x,y,z に関する対称式である. f_2 は 2 変数では対称式であるが, 3 変数では非対称である. f_4 は例えば, $(1,2)f_4 = y^2x + x^2z + z^2y \neq f_4$ となるため、非対称である. したがって対称式は f_1,f_3 である.

(2) 4変数 x, y, z, wの基本対称式を書け(各1点):

解答)
$$\sigma_1 = x + y + z + w$$

 $\sigma_2 = xy + xz + xw + yz + yw + zw$

 $\sigma_3 = xyz + xyw + xzw + yzw$

 $\sigma_4 = xyzw$

- ③ 次の3変数多項式 f,g,h に置換 $\sigma=\begin{pmatrix}1&2&3\\3&2&1\end{pmatrix}=(1\ 3)\in S_3$ を作用させたときの多項式 $\sigma f,\sigma g,\sigma h$ をそれぞれ求めよ.
 - 解答) σ は 1 と 3 の互換であるので, σ を多項式 $f(x_1, x_2, x_3)$ に作用させると,

$$\sigma f(x_1, x_2, x_3) = f(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}) = f(x_3, x_2, x_1)$$

となり, σf は x_1 と x_3 を入れ替えた式に等しくなる.

- (1) $f = 3x_1 + 2x_2x_3 + x_1^2x_3$ $\sigma f = 3x_3 + 2x_2x_1 + x_3^2x_1$
- (2) $g = x_1x_2 + x_2x_3 + x_3x_1$ $\sigma g = \underbrace{x_3x_2 + x_2x_1 + x_1x_3 = g}$ どちらでも正解

$$(3) \ h = \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{vmatrix} \qquad \qquad \sigma h = \underbrace{\begin{vmatrix} 1 & 1 & 1 \\ x_3 & x_2 & x_1 \\ x_3^2 & x_2^2 & x_1^2 \end{vmatrix}}_{\text{Express, Times}} - \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 & x_2^2 & x_3^2 \end{vmatrix} = -h$$

- $\boxed{4}$ 次の2変数対称式 f(x,y) を基本対称式 $\sigma_1 = x + y$ および $\sigma_2 = xy$ を用いて表せ.
 - (1) $f(x,y) = x^2 7xy + y^2$ 解答)

$$f(x,y) = x^2 + 2xy + y^2 - 9xy$$
$$= (x+y)^2 - 9xy$$
$$= \sigma_1^2 - 9\sigma_2.$$

 $(2) f(x,y) = x^4y + xy^4$ **解答)**

$$f(x,y) = x^{4}y + xy^{4}$$

$$= xy(x^{3} + y^{3})$$

$$= xy ((x+y)^{3} - 3x^{2}y - 3xy^{2})$$

$$= xy ((x+y)^{3} - 3xy(x+y))$$

$$= \sigma_{2} (\sigma_{1}^{3} - 3\sigma_{2}\sigma_{1})$$

$$= \sigma_{1}^{3}\sigma_{2} - 3\sigma_{1}\sigma_{2}^{2}.$$

(3) $f(x,y) = x^4 + x^2y^2 + y^4$ 解答)

$$f(x,y) = x^4 + x^2y^2 + y^4$$
$$= (x^2 + y^2)^2 - (xy)^2$$

ここで

$$x^{2} + y^{2} = (x+y)^{2} - 2xy = \sigma_{1}^{2} - 2\sigma_{2}$$

より

$$f(x,y) = (\sigma_1^2 - 2\sigma_2)^2 - \sigma_2^2$$

= $\sigma_1^4 - 4\sigma_1^2\sigma_2 + 4\sigma_2^2 - \sigma_2^2$
= $\sigma_1^4 - 4\sigma_1^2\sigma_2 + 3\sigma_2^2$.