Sign Language Detection Project Proposal

Team 12
Vignesh Ram Ramesh Kutti
Vishnu Priyan Sellam Shanmugavel
Aravind Balaji Srinivasan
Kavin Raj Karuppusamy Ramasamy
Kishan Murali

Project Goal

Task (T)

Recognizing sign language gestures using neural networks.

Experience (E)

Measured by the percentage of gestures correctly classified by the model.

Performance (P)

 Utilized a database of labeled images of sign language gestures for training the model.

Steps Involved

- **Data Collection:** Gather a diverse dataset of sign language gestures from different source.
- **Data Cleaning:** Preprocess the data to remove noise and inconsistencies.
- **Feature Extraction:** Extract key features like hand shapes, orientations, and movements, using neural networks techniques.
- **Model Training:** Train a neural network model on the preprocessed data to recognize and classify sign language gestures.
- **Model Validation:** Evaluate the model's performance using a validation dataset.
- **Model Testing:** Test the model on new data to ensure generalization.
- Real-Time Recognition: Implement the trained model to recognize and translate gestures in real-time.

Phase I Progress

- **Sources:** Gather data from diverse sources, including existing datasets, crowdsourcing platforms, and in-house recordings. **(completed)**
- Diversity: Ensure the dataset includes a wide range of signers, backgrounds, and lighting conditions.
 (completed)
- Quantity: Aim for a large dataset to provide sufficient training data. (completed)
- **Noise Removal:** Remove unwanted noise, artifacts, and distortions from the data.
- Inconsistency Handling: Address inconsistencies in data formatting, labeling, and gesture performance.
- **Normalization:** Standardize the data to a common scale for consistent input to the neural network.

Phase II Steps

Feature Extraction

• **Deep Learning Techniques:** Explore deep learning techniques like Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) to automatically extract relevant features from the images or videos.

Model Training

- **Neural Network Architecture:** Experiment with different neural network architectures, such as CNNs, RNNs, or hybrid models, to find the most suitable approach for your task.
- **Hyperparameter Tuning:** Optimize hyperparameters (e.g., learning rate, batch size, number of epochs) to improve model performance.
- **Transfer Learning:** Consider using pre-trained models (e.g., from image classification tasks) as a starting point to accelerate training and potentially improve accuracy.

Datasets for the Project

- Dataset 1: <u>ASL Dataset</u>
- Dataset 2: <u>Interpret Sign Language with Deep Learning</u>
- Dataset 3: <u>Sign Language MNIST</u>
- Dataset 4: <u>Sign Language Detection Using Images</u>

Challenges and Feasibility

- Building neural networks for accurate gesture recognition.
- Real-time detection with low latency.

Applications & Future Scope

Real-time Sign Language Interpretation

Enabling communication between deaf and hearing individuals by converting sign language into spoken language or text.

Accessible Technology

Developing accessible interfaces for devices and software, allowing deaf individuals to interact with technology using sign language.

Sign Language Education

Creating interactive learning tools and platforms for sign language education, enhancing accessibility and promoting inclusivity.

References

- Camgoz et al., 2018: Neural Sign Language Translation.
 CVPR 2018 Paper
- NeurIPS 2022: Multimodal Sign Language Translation.
 NeurIPS 2022 Paper

Thank You!;)