Accelerating Deep Learning*

CPEN 311

a place of mind
THE UNIVERSITY OF BRITISH COLUMBIA

xkcd #1838

A warp-speed intro to deep learning

- some philosophy
- multilayer perceptrons
- convolutional neural networks
- training?
- computational patterns
- accelerators

A warp-speed intro to deep learning

- some philosophy
- multilayer perceptrons
- convolutional neural networks
- training?
- computational patterns
- accelerators

Gatys+. A Neural Algorithm of Artistic Style. arXiv:1508.06576, 2015.

Deep Learning Revolution (2012+)

part 1: Artificial Neural Networks

An artificial neuron model

input axous synapse activation output axou $\chi_{i} \xrightarrow{w_{i}} \sum_{w_{i}} \varphi$ $\chi_{i} \xrightarrow{w_{i}} \varphi(\sum_{w_{i}} w_{i} x_{i})$

Multilayer Perceptron (MLP)

Can represent fairly complex functions

Can approximate ALL continuous real fns*

but: can't learn hierarchy of concepts \rightarrow training very hard

part 2: Convolutional Neural Nets

edges and corners everywhere and key to recognition but an MLP needs to learn edge @ each location separately!

Convolutional layers

IDEA: convolutional filters

- learn *n*×*n* **filters** (e.g., 5×5) to detect, e.g., edges
- apply each everywhere across the image

learns features that are invariant to translation

Convolution filters

$$*\begin{pmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{pmatrix} =$$

Zeiler & Fergus. Visualizing and understanding convolutional networks. *ECCV* 2014.

Zeiler & Fergus. Visualizing and understanding convolutional networks. *ECCV* 2014.

Zeiler & Fergus. Visualizing and understanding convolutional networks. *ECCV* 2014.

Pooling (downsampling) layers

Variations: other activation functions

Common activation functions

• softplus: $f(x) = log(1+e^x)$

• rectified linear: f(x) = max(0, x)

Adversarial examples for CNNs CNN Prediction

An R-duous task for CNNs

Translationally tolerant
But not rotationally tolerant

part 3: Computation patterns

Dense layer inference computation

can process **batches** of inputs at once \rightarrow matrix × matrix (why?)

Convolutions

diagram: Goodfellow et al, *Deep Learning* (2016)

Convolutions

- edge cases
 - approach 1: ignore
 - approach 2: pad edges
 - zero, average, extend edge, ...
- stride
 - stride = $1 \rightarrow$ typical
 - stride > 1 → a rough kind of downsampling

Conv. as matrix-vector multiplication

IDEA: reorganize input image

Convs. as matrix-matrix multiplication

IDEA: amortize across many convs.

INPUT: [224x224x3] memory: 224*224*3=150K weights: 0 **CONV3-64: [224x224x64]** memory: 224*224*64=3.2M weights: (3*3*3)*64 = 1,728 **CONV3-64:** [224x224x64] memory: 224*224*64=3.2M weights: (3*3*64)*64 = 36,864 **POOL2:** [112x112x64] memory: 112*112*64=800K weights: 0 **CONV3-128:** [112x112x128] memory: 112*112*128=1.6M weights: (3*3*64)*128 = 73,728 **CONV3-128:** [112x112x128] memory: 112*112*128=1.6M weights: (3*3*128)*128 = 147,456 **POOL2: [56x56x128]** memory: 56*56*128=400K weights: 0 **CONV3-256:** [**56x56x256**] memory: 56*56*256=800K weights: (3*3*128)*256 = 294,912 **CONV3-256:** [**56x56x256**] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824 **CONV3-256:** [**56x56x256**] memory: 56*56*256=800K weights: (3*3*256)*256 = 589,824 **POOL2: [28x28x256]** memory: 28*28*256=200K weights: 0 **CONV3-512:** [28x28x512] memory: 28*28*512=400K weights: (3*3*256)*512 = 1,179,648 **CONV3-512: [28x28x512]** memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296 **CONV3-512:** [28x28x512] memory: 28*28*512=400K weights: (3*3*512)*512 = 2,359,296 **POOL2:** [14x14x512] memory: 14*14*512=100K weights: 0 **CONV3-512:** [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 **CONV3-512:** [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 **CONV3-512:** [14x14x512] memory: 14*14*512=100K weights: (3*3*512)*512 = 2,359,296 **POOL2:** [7x7x512] memory: 7*7*512=25K weights: 0 **FC:** [1x1x4096] memory: 4096 weights: 7*7*512*4096 = 102,760,448 **FC:** [1x1x4096] memory: 4096 weights: 4096*4096 = 16,777,216

FC: [1x1x1000] memory: 1000 weights: 4096*1000 = 4,096,000

TOTAL: **138M** parameters

few weights, lots of compute, intra-layer reuse possible

many weights, less compute, reuse only across batched inputs

xkcd #1831

part 4: Accelerator architectures

Direct neural net \rightarrow hardware mapping

Multiply-and-Accumulate (MAC)

- sum can be broken down into multiple multiply-and-accumulate (MAC) operations
- partial sum p fed back to the adder, eventually produces final result

Computing one FC layer

```
for n in [0..N_{out}):

sum[n] = 0
for n in [0..N_{out}):

for i in [0..N_{in}):

sum[n] += w[n][i] * in[i]
out[n] = \phi(sum[n])
```


problem: no parallelism

```
for n in [0..N_{out}):

sum[n] = 0
for n in [0..N_{out}):

psum[0..N_{HW}) = 0
for ii in [0..N_{in}/N_{HW}):

parfor i in <math>[0..N_{HW}):

psum[i] += w[n][i] * in[ii*N_{HW}+i]
out[n] = \phi(sum(psum[0..N_{HW})))
```



```
for n in [0..N_{out}):

sum[n] = 0
for n in [0..N_{out}):

psum[0..N_{HW}) = 0
for ii in [0..N_{in}/N_{HW}):

parfor i in <math>[0..N_{HW}):

psum[i] += w[n][i] * in[ii*N_{HW}+i]
out[n] = \phi(sum(psum[0..N_{HW})))
```



```
for n in [0..N_{out}):

sum[n] = 0
for n in [0..N_{out}):

psum[0..N_{HW}) = 0
for ii in [0..N_{in}/N_{HW}):

parfor i in <math>[0..N_{HW}):

psum[i] += w[n][i] * in[ii*N_{HW}+i]
out[n] = \phi(sum(psum[0..N_{HW})))
```



```
for n in [0..N_{out}):

sum[n] = 0
for n in [0..N_{out}):

psum[0..N_{HW}) = 0
for ii in [0..N_{in}/N_{HW}):

parfor i in <math>[0..N_{HW}):

psum[i] += w[n][i] * in[ii*N_{HW}+i]
out[n] = \phi(sum(psum[0..N_{HW})))
```



```
for n in [0..N_{out}):

sum[n] = 0
for n in [0..N_{out}):

psum[0..N_{HW}) = 0
for ii in [0..N_{in}/N_{HW}):

parfor i in <math>[0..N_{HW}):

psum[i] += w[n][i] * in[ii*N_{HW}+i]
out[n] = \phi(sum(psum[0..N_{HW})))
```



```
for n in [0..N_{out}):

sum[n] = 0
for n in [0..N_{out}):

psum[0..N_{HW}) = 0
for ii in [0..N_{in}/N_{HW}):

parfor i in <math>[0..N_{HW}):

psum[i] += w[n][i] * in[ii*N_{HW}+i]
out[n] = \phi(sum(psum[0..N_{HW})))
```



```
for n in [0..N_{out}):

sum[n] = 0
for n in [0..N_{out}):

psum[0..N_{HW}) = 0
for ii in [0..N_{in}/N_{HW}):

parfor i in <math>[0..N_{HW}):

psum[i] += w[n][i] * in[ii*N_{HW}+i]
out[n] = \phi(sum(psum[0..N_{HW})))
```



```
\begin{split} &\text{for n in } [0..N_{\text{out}}):\\ &\text{sum}[n] = 0\\ &\text{for n in } [0..N_{\text{out}}):\\ &\text{psum}[0..N_{\text{HW}}):\\ &\text{psum}[0..N_{\text{in}}/N_{\text{HW}}):\\ &\text{parfor i in } [0..N_{\text{HW}}):\\ &\text{psum}[i] += w[n][i] * in[ii*N_{\text{HW}}+i]\\ &\text{out}[n] = \phi(\text{sum}(\text{psum}[0..N_{\text{HW}}))) \end{split}
```


problem: each input fetched many times

Multiply-and-Accumulate (MAC)

- worst case:
 - inputs, wts ← DRAM
 - outputs → DRAM
 - partial sums ←→ DRAM

- low bandwidth, accesses cost ~100× more energy
- IDEA: use on-chip storage to reuse input activations

Tile-based processin^a

- Reuse T_{in} inputs for each of T_{out} outputs
 - where $T_{in} \times T_{out} = N_{HW}$
 - need extra psum storage

The Google TPU

- workload characteristics
 - process batches of inputs
 - mostly MLPs and LSTMs only 5% workload are CNNs
 - user-facing apps, must have predictable latency
- matrix multiply accelerator: 256×256 8-bit MACs

• CISC (!)

The Google TPU

The matrix multiply unit: a systolic array

- weights loaded at init
- inputs fed from one side
 - each processing element propagates input and partial sum
- sums fall out the bottom
- **KEY IDEA**: values flow without RF access for intermediates

$$\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix}
\begin{pmatrix}
A & B & C \\
D & E & F \\
G & H & I
\end{pmatrix}$$

$$\begin{pmatrix}
A & B & C \\
D & E & F \\
G & H & I
\end{pmatrix}$$

$$\begin{pmatrix}
A & B & C \\
D & E & F \\
F & I
\end{pmatrix}$$

$$\begin{pmatrix}
A & B & C \\
G & H & I
\end{pmatrix}$$

$$\begin{pmatrix}
A & B & C \\
G & H & I
\end{pmatrix}$$

$$\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix}
\begin{pmatrix}
A & B & C \\
D & E & F \\
G & H & I
\end{pmatrix} = \begin{pmatrix}
C \\
D & F \\
F \\
I & G \\
I & I
\end{pmatrix}$$

$$\begin{pmatrix}
A & A & B \\
D & F \\
F \\
I & I
\end{pmatrix}$$

$$\begin{pmatrix}
A & A & B \\
D & F \\
I & I
\end{pmatrix}$$

$$\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix}
\begin{pmatrix}
A & B & C \\
D & E & F \\
G & H & I
\end{pmatrix} = \begin{pmatrix}
C \\
Aa \\
Db \\
E \\
F
\end{pmatrix}$$

$$i & f & c & G \\
H & I$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{vmatrix} A & B & C \\ D & E & F \\ G & H & I \end{vmatrix} = \begin{vmatrix} \sqrt{1} & \sqrt{1} & \sqrt{1} \\ \sqrt{1} & \sqrt{1} & \sqrt{1} \end{vmatrix}$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{vmatrix} A & B & C \\ D & E & F \\ G & H & I \end{vmatrix} = \begin{vmatrix} \sqrt{1} & \sqrt{1} & \sqrt{1} \\ \sqrt{1} & \sqrt{1} & \sqrt{1} \end{vmatrix}$$

$$\begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \begin{pmatrix} A & B & C \\ D & E & F \\ G & H & I \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

