HW4

Ran Zhang

2/13/2019

Store HW4 working environment

```
set.seed(02112019)
```

Problem 1a

Read the data

```
data1 <- read.table("hemangioma.txt",header = TRUE)</pre>
```

Build the dataset

```
data1 <- matrix(unlist(data1), ncol=8, byrow=FALSE)
colnames(data1) <- c("Age", "RB", "p16", "DLK", "Nanog", "C.Myc", "EZH2", "IGF.2")</pre>
```

Check for the normality

```
## sROC 0.1-2 loaded
```


mvn(data1[,2:8], mvnTest = "royston", multivariatePlot = "qq")

Chi-Square Q-Q Plot


```
##
  $multivariateNormality
##
        Test
                   Η
                          p value MVN
## 1 Royston 68.8651 2.755476e-12 NO
##
## $univariateNormality
##
             Test Variable Statistic
                                        p value Normality
## 1 Shapiro-Wilk
                               0.8723 0.0158
                                                   NO
## 2 Shapiro-Wilk
                               0.9692 0.7601
                     p16
                                                   YES
## 3 Shapiro-Wilk
                     DLK
                               0.8235 0.0026
                                                   NO
## 4 Shapiro-Wilk
                    Nanog
                               0.6049
                                       <0.001
                                                   NO
## 5 Shapiro-Wilk
                               0.6365 < 0.001
                                                   NO
                    C.Myc
## 6 Shapiro-Wilk
                    EZH2
                               0.9223 0.1246
                                                   YES
## 7 Shapiro-Wilk
                    IGF.2
                               0.8556 0.0083
                                                   NO
##
## $Descriptives
##
         n
                    Mean
                              Std.Dev
                                            Median
                                                     Min
         19 3.731693e+00 2.277890e+00
                                           2.87076 0.50 7.330000e+00
## RB
## p16
         19 3.278360e+00 1.764494e+00
                                           3.37000 0.00 6.556375e+00
         19 2.768669e+05 3.045860e+05 153060.60000 94.47 1.119258e+06
## DLK
## Nanog 19 5.109990e+02 7.621973e+02
                                         282.29727 14.96 3.072500e+03
## C.Myc 19 5.209137e+00 8.433340e+00
                                           1.77000 0.00 3.564539e+01
## EZH2 19 3.413648e+00 2.214785e+00
                                           3.07000 0.17 9.448814e+00
## IGF.2 19 9.427143e+03 7.615040e+03
                                        8038.53000 29.93 3.272181e+04
##
                 25th
                              75th
                                         Skew
                                                Kurtosis
## RB
             1.878818 6.375000e+00 0.3653069 -1.5520357
## p16
             2.533415 4.143347e+00 -0.1950667 -0.6171533
## DLK
         66929.905000 4.649044e+05 1.2153334 0.6156620
## Nanog
           110.739865 4.229038e+02 2.3256168 4.5486159
             0.490000 6.124258e+00 2.4540173 6.0464772
## C.Myc
## EZH2
             1.979461 4.110000e+00 1.0167412 0.7754154
         5825.205000 1.164033e+04 1.4093342 2.2524263
## IGF.2
```

Comment: As the results from Shapiro-Wilk test, the p16, EZH2 marginal distributions are normally distributed.

Calculate the Mahalanobis distribution

```
s1 <- cov(data1[,2:8])
x1.cen <- scale(data1[,2:8], center=T, scale=F)
d2 <- diag(x1.cen%*%solve(s1)%*%t(x1.cen))
d2.matrix <- matrix(d2,ncol=1)
colnames(d2.matrix) <- c("d2")
data2 <- cbind(data1,d2.matrix)
data2</pre>
```

```
##
                           p16
                                                                   EZH2
         Age
                   RB
                                      DLK
                                               Nanog
                                                         C.Myc
##
           81 2.046149 3.067127
                                308974.72
                                            94.17336
                                                      6.489601 2.764101
   [1,]
##
   [2,]
           95 6.540000 1.900000
                                 70988.30
                                           381.83000
                                                      1.000000 7.090000
   [3,]
          95 3.610000 3.820000
                                153060.60
                                           237.28000
                                                      0.000000 5.570000
##
##
   [4,]
         165 1.912267 3.735868
                                596991.60
                                            88.23737
                                                      0.000000 2.469633
##
   [5,]
         286 2.625436 5.168293
                                369600.56
                                           282.29727 12.225828 1.628923
##
         299 2.870760 5.755246 1119257.50
                                           176.75143 8.764235 3.511469
   [6,]
##
   [7,]
         380 1.925978 2.396830
                                214070.92
                                            45.26692 5.758915 1.411180
##
   [8,]
         418 7.060000 3.380000
                                  69511.45 264.62000 1.170000 3.070000
##
   [9,]
         420 6.390000 3.370000
                                  81457.12
                                           658.75000 1.880000 3.870000
## [10,]
         547 6.360000 4.050000
                                  64348.36
                                           336.11000 0.780000 4.760000
                                164881.06 2012.47920 35.645386 9.448814
## [11,]
         590 1.813758 5.147162
## [12,] 635 6.700000 2.670000
                                126015.95 3072.50000 0.000000 4.350000
## [13,] 752 1.845369 3.275246
                                567857.56
                                           127.30637
                                                      4.129052 1.004505
## [14,] 760 7.330000 0.920000
                                 43438.04
                                           697.57000 1.770000 3.320000
## [15,] 1171 1.828868 6.556375
                                716259.50 392.08760 12.917779 2.904105
## [16,] 1277 1.340000 0.050000
                                     94.47
                                            14.96000 0.360000 3.830000
## [17,] 1520 4.020000 2.790000
                                  31124.69 453.72000 0.620000 2.330000
                                            33.11000 0.030000 0.170000
## [18,] 2138 0.500000 0.000000
                                  2330.59
## [19,] 3626 4.183583 4.236695
                                560208.30 339.93090 5.432815 1.356589
##
             IGF.2
                          d2
   [1,] 11175.689
##
                   1.521731
##
   [2,]
         5340.170
                   7.547304
##
   [3,]
        6310.240 7.457835
##
   [4,] 7008.523 3.855230
##
   [5,]
         7104.238 7.123146
##
   [6,] 9342.126 12.215844
   [7,] 3725.515 2.657346
##
##
   [8,]
        8038.530 4.125148
##
   [9,] 12583.250 2.680522
## [10,] 6505.150 4.079116
## [11,] 32721.809 15.894008
## [12,] 11762.760 16.225957
## [13,] 10283.141 2.585439
## [14,] 11517.890 8.202557
## [15,] 13263.792 4.273072
## [16,]
           29.930 6.358907
## [17,]
        1162.690
                   3.092665
## [18,]
            66.490
                   6.907369
## [19,] 21173.781
                   9.196805
```

Explanation: As we the combination of Mahalanobis distance and the chi-square plot, observation 11 and 12 which has the biggest distances are outliers.

Problem 1b

Perform EFA on orginal data

```
par(mfrow=c(2,3))
fa.orginal1 <- factanal(x=data1[,2:8], factors = 1)
fa.orginal1</pre>
```

```
##
## Call:
## factanal(x = data1[, 2:8], factors = 1)
##
## Uniquenesses:
                DLK Nanog C.Myc EZH2 IGF.2
##
         p16
## 0.999 0.661 0.931 0.748 0.303 0.738 0.139
##
## Loadings:
##
         Factor1
## RB
## p16
         0.582
## DLK
         0.263
## Nanog 0.502
## C.Myc 0.835
## EZH2
         0.512
## IGF.2 0.928
##
##
                  Factor1
## SS loadings
                    2.482
## Proportion Var
                    0.355
##
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 32.05 on 14 degrees of freedom.
## The p-value is 0.00395
```

```
fa.orginal2 <- factanal(x=data1[,2:8], factors = 2)
fa.orginal2</pre>
```

```
##
## Call:
## factanal(x = data1[, 2:8], factors = 2)
##
## Uniquenesses:
               DLK Nanog C.Myc EZH2 IGF.2
##
          p16
## 0.846 0.335 0.060 0.578 0.316 0.527 0.166
##
## Loadings:
##
        Factor1 Factor2
## RB
         0.107 - 0.377
## p16
         0.427 0.695
## DLK
                 0.970
## Nanog 0.615 -0.209
## C.Myc 0.780
                0.273
## EZH2
         0.647 - 0.234
## IGF.2 0.878
                 0.252
##
##
                 Factor1 Factor2
## SS loadings
                   2.370
                          1.802
## Proportion Var
                   0.339
                           0.257
## Cumulative Var
                   0.339
                           0.596
##
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 14.92 on 8 degrees of freedom.
## The p-value is 0.0607
```

```
fa.orginal3 <- factanal(x=data1[,2:8], factors = 3)
fa.orginal3</pre>
```

```
##
## Call:
## factanal(x = data1[, 2:8], factors = 3)
##
## Uniquenesses:
##
          p16
                DLK Nanog C.Myc EZH2 IGF.2
## 0.050 0.293 0.005 0.609 0.005 0.490 0.249
##
## Loadings:
##
        Factor1 Factor2 Factor3
## RB
         0.141 - 0.144
                        0.954
## p16
         0.366 0.757
        -0.163 0.961 -0.211
## DLK
## Nanog 0.559
                         0.275
## C.Myc 0.841
                0.295 -0.448
## EZH2
         0.682
                         0.193
## IGF.2 0.780
                 0.377
##
##
                 Factor1 Factor2 Factor3
## SS loadings
                   2.274
                           1.757
                                   1.269
## Proportion Var
                   0.325
                           0.251
                                    0.181
                   0.325
## Cumulative Var
                           0.576
                                   0.757
##
## Test of the hypothesis that 3 factors are sufficient.
## The chi square statistic is 1.86 on 3 degrees of freedom.
## The p-value is 0.603
```

Perfom EFA on removed outliers's data

```
fa.remove1 <- factanal(x=datal[-c(11,12),2:8], factors = 1)
fa.remove1</pre>
```

```
##
## Call:
## factanal(x = data1[-c(11, 12), 2:8], factors = 1)
##
## Uniquenesses:
##
         p16
                DLK Nanog C.Myc EZH2 IGF.2
## 0.939 0.291 0.265 0.999 0.369 0.961 0.681
##
## Loadings:
##
         Factor1
## RB
         -0.247
## p16
         0.842
## DLK
         0.857
## Nanog
## C.Myc 0.794
## EZH2 -0.197
## IGF.2 0.565
##
##
                  Factor1
## SS loadings
                    2.494
## Proportion Var
                    0.356
##
## Test of the hypothesis that 1 factor is sufficient.
## The chi square statistic is 29.55 on 14 degrees of freedom.
## The p-value is 0.0088
```

```
fa.remove2 <- factanal(x=data1[-c(11,12),2:8], factors = 2)
fa.remove2</pre>
```

```
##
## Call:
## factanal(x = data1[-c(11, 12), 2:8], factors = 2)
##
## Uniquenesses:
##
           p16
                 DLK Nanog C.Myc EZH2 IGF.2
## 0.005 0.205 0.237 0.373 0.349 0.683 0.472
##
## Loadings:
##
         Factor1 Factor2
## RB
         -0.103
                  0.992
          0.888
## p16
## DLK
          0.823 - 0.291
## Nanog 0.110
                0.784
## C.Myc 0.769 -0.243
## EZH2 -0.111
                0.552
## IGF.2 0.642
                  0.339
##
##
                  Factor1 Factor2
## SS loadings
                    2.506
                            2.170
## Proportion Var
                    0.358
                            0.310
## Cumulative Var
                    0.358
                            0.668
##
## Test of the hypothesis that 2 factors are sufficient.
## The chi square statistic is 5.4 on 8 degrees of freedom.
## The p-value is 0.714
```

```
par(mfrow=c(1,1))
```

Conclusion: We got the different conclusions about how many factors we should use after removing outliers, as the original data we need 3 factors but we only need 2 factors after removing outliers. Because as the fa.remove2 shows we fail to reject the hypothesis test as the p-value is far bigger than 0.05.

Problem 2a

Build the correlation matrix

```
library(sem)
lt <- readMoments("EverittEx5.5.txt", diag = T)
R <- (lt + t(lt)) - diag(1, 6)
colnames(R) <- c("French", "English", "History", "Arithmetic", "Algebra", "Geometry")
rownames(R) <- c("French", "English", "History", "Arithmetic", "Algebra", "Geometry")
R</pre>
```

```
##
              French English History Arithmetic Algebra Geometry
## French
                1.00
                         0.44
                                 0.41
                                             0.29
                                                     0.33
                                                               0.25
## English
                0.44
                         1.00
                                 0.35
                                             0.35
                                                     0.32
                                                               0.33
## History
                0.41
                         0.35
                                 1.00
                                             0.16
                                                     0.19
                                                               0.18
## Arithmetic
                0.29
                         0.35
                                 0.16
                                             1.00
                                                     0.59
                                                               0.47
## Algebra
                0.33
                         0.32
                                 0.19
                                             0.59
                                                     1.00
                                                               0.46
## Geometry
                0.25
                         0.33
                                 0.18
                                             0.47
                                                     0.46
                                                               1.00
```

Perform the test with k=2 from MLE w/t rotation

```
library(psych)
n_2a <- nrow(R)
fa.mle_2a <- fa(r=R,n.obs=n_2a,nfactors= 2, rotate = "none",fm="ml")
print(fa.mle_2a$loadings,digits = 2,cutoff = 0.3)</pre>
```

```
##
## Loadings:
##
             ML1
                   ML2
## French
            0.56 0.42
## English
              0.57
## History
              0.39 0.45
## Arithmetic 0.74
## Algebra
              0.72
## Geometry
             0.59
##
##
                  ML1 ML2
## SS loadings
                 2.20 0.60
## Proportion Var 0.37 0.10
## Cumulative Var 0.37 0.47
```

Interpreatation: The loadings here are difficult to interpret as all variables have impacts to the first factor.

Problem 2b

Perform the test with k=2 from MLE with rotation

```
n_2b <- nrow(R)
fa.mle_2b <- fa(r=R,n.obs=n_2b,nfactors= 2, rotate = "varimax",fm="ml")
print(fa.mle_2b$loadings,digits = 2,cutoff = 0.3)</pre>
```

```
##
## Loadings:
##
            ML1 ML2
## French
                  0.66
             0.32 0.55
## English
## History
                  0.59
## Arithmetic 0.77
## Algebra
             0.72
## Geometry
             0.57
##
##
                  ML1 ML2
## SS loadings
                 1.59 1.21
## Proportion Var 0.27 0.20
## Cumulative Var 0.27 0.47
```

Interpretation: After roration, we can easily found that last three variables contribute to the first factor, and first three variables mainly contribut to the second factor.

Problem 2c

Probability of the Emprical Chi Square given the hypothesis

```
fa.mle_2a$EPVAL
```

```
## [1] 0.9998481
```

```
fa.mle_2b$EPVAL
```

```
## [1] 0.9998481
```

As the p-value of chi-square test is much bigger than 0.05, so we fail to reject the hypothesis test, so this two factor model is sufficient enough.

Problem 3a Read the data

```
library(sem)
lt1 <- readMoments("EverittEx7.1.txt", diag = T)
R1 <- (lt1 + t(lt1)) - diag(1, 9)
R2 <- R1[-9, -9]
R2</pre>
```

```
##
        Х1
              Х2
                    х3
                          X4
                                Х5
                                      Х6
                                            х7
                                                  X8
     1.00 -0.04 0.61 0.45
                              0.03 - 0.29 - 0.30
## X1
                                               0.45
## X2 -0.04 1.00 -0.07 -0.12
                              0.49
                                    0.43 0.30 -0.31
      0.61 -0.07 1.00 0.59
## X3
                              0.03 -0.13 -0.24 0.59
      0.45 -0.12 0.59 1.00 -0.08 -0.21 -0.19 0.63
## X4
## X5
     0.03 0.49 0.03 -0.08
                              1.00
                                    0.47 \quad 0.41 \quad -0.14
## X6 -0.29 0.43 -0.13 -0.21
                              0.47
                                    1.00
                                          0.63 - 0.13
## X7 -0.30 0.30 -0.24 -0.19 0.41
                                    0.63 1.00 -0.26
## X8 0.45 -0.31 0.59 0.63 -0.14 -0.13 -0.26 1.00
```

Input the model in R

```
ability_model <- specifyModel(file="hw4.txt")
```

```
## NOTE: it is generally simpler to use specifyEquations() or cfa()
## see ?specifyEquations
```

```
ability_sem <- sem::sem(model=ability_model,S=R2,N=123)
par(mfrow=c(2,1))
summary(ability_sem)</pre>
```

```
##
##
   Model Chisquare = 63.2304 Df = 19 Pr(>Chisq) = 1.180358e-06
##
   AIC = 97.2304
   BIC = -28.20111
##
##
##
   Normalized Residuals
##
     Min. 1st Ou. Median
                             Mean 3rd Ou.
## -2.0597 -0.3085 -0.0200 0.0122 0.6249 1.9168
##
##
   R-square for Endogenous Variables
##
             Х3
                    X4
                           X8
                                  Х2
                                         Х5
                                                       х7
      Х1
                                                Х6
## 0.4449 0.6502 0.5695 0.5720 0.2804 0.3494 0.6927 0.5350
##
## Parameter Estimates
##
           Estimate
                      Std Error z value
                                           Pr(>|z|)
## lambda11 0.6670173 0.08657199 7.704771 1.310781e-14 X1 <--- DR
## lambda31 0.8063408 0.08164213 9.876528 5.262474e-23 X3 <--- DR
## lambda41 0.7546241 0.08341040 9.047122 1.467856e-19 X4 <--- DR
## lambda81 0.7562965 0.08335235 9.073487 1.152677e-19 X8 <--- DR
## lambda22 0.5295387 0.09314848 5.684888 1.308985e-08 X2 <--- PR
## lambda52 0.5911277 0.09149425 6.460818 1.041384e-10 X5 <--- PR
## lambda62 0.8323020 0.08700206 9.566463 1.106251e-21 X6 <--- PR
## lambda72 0.7314687 0.08859275 8.256531 1.499678e-16 X7 <--- PR
## psi1
            0.5550877 0.08394571 6.612461 3.779834e-11 X1 <--> X1
## psi2
            0.7195887 0.10156760 7.084826 1.392193e-12 X2 <--> X2
## psi3
            0.3498144 0.07038309 4.970148 6.690186e-07 X3 <--> X3
## psi4
            0.4305423 0.07437535 5.788777 7.090077e-09 X4 <--> X4
            0.6505678 0.09583263 6.788584 1.132394e-11 X5 <--> X5
## psi5
## psi6
            0.3072733 0.08761380 3.507133 4.529624e-04 X6 <--> X6
## psi7
            0.4649534 0.08655697 5.371646 7.802124e-08 X7 <--> X7
            0.4280155 0.07422086 5.766782 8.079941e-09 X8 <--> X8
## psi8
## rho
           -0.3049759 0.10136386 -3.008725 2.623469e-03 PR <--> DR
##
   Iterations = 17
```

```
par(mfrow=c(1,1))
```

Graph the results

```
library(pathdiagram)
```

```
## Loading required package: shape
```

```
library(shape)
pathDiagram(ability_sem, ignore.double = FALSE, edge.labels = "both",file="ability_seb_f"
itted",output.type = "dot", node.colors = c("steelblue", "transparent"))
library(DiagrammeR)
grViz("ability_seb_fitted.dot")
```


Problem 3b 95% Confidence interval of two latent variables

```
CI <- c(-0.305-1.96*0.101, -0.305+1.96*0.101)
CI
```

[1] -0.50296 -0.10704