

SDS 384 11: Theoretical Statistics

Lecture 8: U Statistics

Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

U Statistics

- We will see many interesting examples of U statistics.
- Interesting properties
 - Unbiased
 - Reduces variance
 - Concentration (via McDiarmid)
 - Aymptotic variance
 - Asymptotic distribution

An estimable parameter

- \bullet Let ${\mathcal P}$ be a family of probability measures on some arbitrary measurable space.
- We will now define a notion of an an estimable parameter. (coined "regular parameters" by Hoeffding.)
- An estimable parameter $\theta(P)$ satisfies the following.

Theorem (Halmos)

 θ admits an unbiased estimator iff for some integer m there exists an unbiased estimator of $\theta(P)$ based on $X_1, \ldots, X_m \stackrel{iid}{\sim} P$ that is, if there exists a real-valued measurable function $h(X_1, \ldots, X_m)$ such that

$$\theta = \mathit{Eh}(X_1, \ldots, X_m).$$

The smallest integer m for which the above is true is called the degree of $\theta(P)$.

U statistics

- The function *h* may be taken to be a symmetric function of its arguments.
- This is because if $f(X_1, ..., X_m)$ is an unbiased estimator of $\theta(P)$, so is

$$h(X_1,\ldots,X_m):=\frac{\sum_{\pi\in\Pi_m}f(X_{\pi_1},\ldots,X_{\pi_m})}{m!}$$

• For simplicity, we will assume *h* is symmetric for our notes.

U Statistics (Due to Wassily Hoeffding in 1948)

Definition

Let $X_i \stackrel{iid}{\sim} f$, let $h(x_1, \dots, x_r)$ be a symmetric kernel function and $\Theta(F) = E[h(x_1, \dots, x_r)]$. A U-statistic U_n of order r is defined as

$$U_n = \frac{\sum_{\{i_1,...,i_r\} \in \mathcal{I}_r} h(X_{i_1}, X_{i_2}, ..., X_{i_r})}{\binom{n}{r}},$$

where \mathcal{I}_r is the set of subsets of size r from [n].

Sample variance as an U-Statistic

Example

The sample variance is an U-statistic of order 2.

Proof.

Let $\theta(F) = \sigma^2$.

$$\sum_{i \neq j}^{n} (X_i - X_j)^2 = 2n \sum_{i} X_i^2 - 2 \sum_{i,j} X_i X_j$$

$$= 2n \sum_{i} X_i^2 - 2n^2 \bar{X}^2$$

$$= 2n(n-1) \frac{\sum_{i} X_i^2 - n\bar{X}^2}{n-1}$$

$$U_n := \frac{\sum_{i < j}^{n} (X_i - X_j)^2 / 2}{n(n-1)/2} = s_n^2$$

Sample variance as U-statistic

- Is its expectation the variance?
- $\frac{1}{2}E[(X_1-X_2)^2] = \frac{1}{2}E(X_1-\mu-(X_2-\mu))^2 = \sigma^2$

U-statistics examples: Wilcoxon one sample rank statistic

Example

$$U_n = \sum_i R_i 1(X_i > 0)$$
, where R_i is the rank of X_i in the sorted order $|X_1| \le |X_2| \dots$

- This is used to check if the distribution of X_i is symmetric around zero.
- Assume X_i to be distinct.

•
$$R_i = \sum_{j=1}^n 1(|X_j| \le |X_i|)$$

U-statistics examples: Wilcoxon one sample rank statistic

Example

 $T_n = \sum_i R_i 1(X_i > 0)$, where R_i is the rank of X_i in the sorted order $|X_1| \leq |X_2| \dots$

$$T_{n} = \sum_{i} R_{i} 1(X_{i} > 0) = \sum_{i=1}^{n} \sum_{j=1}^{n} 1(|X_{j}| \le |X_{i}|) 1(X_{i} > 0)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} 1(|X_{j}| \le X_{i}) 1(X_{i} \ne 0) = \sum_{i \ne j}^{n} 1(|X_{j}| \le X_{i}) + \sum_{i=1}^{n} 1(X_{i} > 0)$$

$$= \sum_{i < j} 1(|X_{j}| < X_{i}) + \sum_{i < j} 1(|X_{i}| < X_{j}) + \sum_{i=1}^{n} 1(X_{i} > 0)$$

$$= \sum_{i < j} 1(X_{i} + X_{j} > 0) + \sum_{i=1}^{n} 1(X_{i} > 0) = \binom{n}{2} U_{2} + nU_{1}$$

• Asymptotically dominated by the first term, which is an U statistic.

Properties of the U-statistic

- The U is for unbiased.
- Note that $E[U] = Eh(X_1, ..., X_r)$
- $var(U(X_1,...,X_r)) \le var(h(X_1,...,X_r))$ (Rao Blackwell theorem)
 - Just $h(X_1, ..., X_r)$ is an unbiased estimator of $\theta(F)$.
 - But averaging over many subsets reduces variance.

Properties of U-statistics

- Let $X_{(1)}, \dots, X_{(n)}$ denote the order statistics of the data.
- The empirical distribution puts 1/n mass on each data point.
- So we can think about the U statistic as

$$U_n = E[h(X_1, ..., X_r)|X_{(1)}, ..., X_{(n)}]$$

We also have:

$$E[(U - \theta)^{2}] = E\left[\left(E[h(X_{1}, ..., X_{r}) - \theta | X_{(1)}, ..., X_{(n)}]\right)^{2}\right]$$

$$\leq E[E[(h(X_{1}, ..., X_{r}) - \theta)^{2} | X_{(1)}, ..., X_{(n)}]]$$

$$= var(h(X_{1}, ..., X_{r}))$$

- Rao-Blackwell theorem says that the conditional expectation of any estimator given the sufficient statistic has smaller variance than the estimator itself.
- For $X_1, X_n \stackrel{iid}{\sim} P$, the order statistics are sufficient. (why?)

More novel examples

Example (Gini's mean difference/ mean absolute deviation)

Let
$$\theta(F) := E[|X_1 - X_2|]$$
; the corresponding U statistic is $U_n = \frac{\sum_{i < j} |x_i - x_j|}{\binom{n}{2}}$.

Example (Quantile Statistic)

Let
$$\theta(F) := P(X_1 \le t) = E[1(X_1 \le t)]$$
; the corresponding U statistic is $U_n = \frac{\sum_i 1(X_i \le t)}{n}$.