Periféricos

Prof. Sérgio L. Cechin

Entradas e Saídas

- Os computadores comunicam-se com o meio ambiente através dos periféricos
- Exemplos de periféricos internos ao computador
 - Controlador de interrupções
 - Controlador de barramentos de dados
 - Controlador do relógio de tempo real
- Exemplos de periféricos externos ao computador
 - Teclado
 - Vídeo
 - Disco
 - Rede
 - Mouse
 - Impressoras
 - etc

Entradas e Saídas

Periféricos no CESAR16i

- Teclado
 - Simulado pelo próprio teclado do PC
- Visor
 - Possui 36 posições
 - Cada posição pode apresentar um caractere
 - Os caracteres são representados em ASCII
 - 20H (espaço) até 7AH ('z')
- Temporizador
 - Gera pulsos com periodicidade programável entre 1 e 255 milisegundos

Tabela ASCII

	000	001	010	011	100	101	110	111
0000	null	dle		0	@	Р	`	р
0001	soh	dc1	!	1	А	Q	а	q
0010	stx	dc2	"	2	В	R	b	r
0011	etx	dc3	#	3	С	S	С	S
0100	eot	dc4	\$	4	D	Т	d	t
0101	enq	nak	%	5	E	U	е	u
0110	ack	syn	&	6	F	V	f	V
0111	bell	etb		7	G	W	g	W
1000	bsp	can	(8	Н	Х	h	Х
1001	ht	em)	9	I	Y	i	у
1010	lf	sub	*	:	J	Z	j	Z
1011	vt	esc	+	• ,	K	[k	{
1100	ff	fs	,	<	L	١	I	
1101	cr	gs	-		М]	m	}
1110	so	rs	-	^	N	٨	n	~
1111	si	us	/	?	0	_	0	del

Formas de acesso à E/S

- Memory Mapped I/O
 - As E/S são mapeadas em endereços de memória
 - Alguns bytes da memória são perdidos
 - O acesso ao periférico é feito com as mesmas instruções que o acesso à memória
 - Ex: Motorola, CESAR
- I/O Ports (I/O Mapped I/O)
 - Cria-se uma espaço de endereçamento adicional
 - Os computadores geram dois sinas de seleção: memória e E/S
 - São necessárias instruções específicas
 - Ex: Intel

Memory Mapped I/O

Espaço de Endereçamento Alocação de Endereçamento (Visão do processador) (Acesso real) H0000 0000H Endereços de memória Endereços em geral Endereços de periféricos FFFFH **FFFFH**

Circuito de decodificação

I/O Ports

Espaço de Endereçamento (Visão do processador e real)

H0000 H0000 Endereços de periféricos Endereços em geral

FFFFH

Circuito de decodificação

Periféricos no CESAR16i

Acesso aos periféricos

- Acesso aos endereços na região HFFC0 até HFFFF
 - São acessados byte a byte
 - Acesso diferente do acesso à memória
 - Quem faz isso é o "Circuito de Entrada"
- Escrita: MOV R0, Endereco
 - Escreve LSByte de R0 em Endereco
 - Ignora o MSByte
- Leitura: MOV Endereco, R0
 - Lê Endereco para LSByte de R0
 - Zera o MSByte do R0

Acesso aos periféricos

(região FFC0 até FFFF)

Endereços Especiais (Periféricos)

- Timer
 - Programação do timer –TIMDT: HFFD7 (65495)
 - Notificação de tempo INTS: HFFD8 (65496)
- Teclado
 - Status do Teclado TECST: HFFDA (65498)
 - Dado do Teclado TECDT: HFFDB (65499)
- Visor
 - HFFDC (65500) até HFFFF (65535)

0FFDCH	VISOR	0FFFFH

Operação do Teclado

- Se TECST=80H, então há tecla
 - O usuário digitou alguma tecla
 - Esta ficou armazenada
 - E este fato é sinalizado pelo TECST
- Se há tecla, pode-se ler de TECDT
 - Basta ler o valor de TECDT
 - Se TECST≠80H, o valor de TECDT é sem significado
- Após lê-la, deve-se "resetar" o TECST (escrever 00H)
 - Cuidado! Só "resetar" após ler TECDT, para impedir a alteração de TECDT
 - Deve-se "resetar" TECST, para liberar o armazenamento de uma nova tecla

Operação do Visor

- <u>Escrita</u>: escreve-se o código ASCII do caractere no endereço da posição desejada
 - A cada operação é escrito apenas o byte menos significativo da origem (registro ou memória)
 - O mais significativo é ignorado
- <u>Leitura</u>: lê-se o endereço da posição desejada
 - A cada operação é lido apenas o byte menos significativo
 - O mais significativo é zerado

Operação do Timer

- <u>Escrita</u>: escreve-se a periodicidade de notificação do timer em TIMDT
 - O valor escrito deve estar em milisegundos
 - O valor tem 1 byte, sem sinal
 - Portanto, pode-se programar para 1ms até 255ms
- A programação com valor "0" fornece um tempo de 100 milisegundos
- Para verificar se houve notificação, deve-se ler INTS
 - Se o bit "0" estiver ligado ("1"), houve notificação
 - Após detectada a notificação, deve-se desligar esse bit
- De forma semelhante aos anteriores
 - A cada operação é escrito apenas o byte menos significativo da origem (registro ou memória)
 - O mais significativo é ignorado

Exemplo 1

- Escrever um programa para ler teclado.
- Assim que entrar uma tecla, deve ser escrito "Oi" no visor
- Encerrar o programa

Solução em "C"

```
#include <cesar.h>

proid main(void) {
    waitkey();
    visor("Oi");
}
```

- A solução em "C" não ajudou muito!
- O motivo é que o acesso à periféricos em "C" depende de bibliotecas
 - Então, temos que criar uma biblioteca para acesso aos periféricos do CESAR

Biblioteca: waitkey()

void waitkey(void);

Visor("Oi")

- Não vamos fazer a biblioteca do visor (por enquanto)
- Vamos implementar o acesso direto ao visor

```
hw_visor[0] = '0';
hw_visor[1] = 'i';
```


Exemplo 2

- Escrever um programa para ler teclado e colocar esta tecla no visor
- O programa deve apresentar todas as teclas digitadas, até que seja digitada a letra "F" (maiúscula)

Solução em "C"

```
void main(void) {
   char c;

while ( (c=getchar()) != 'F') {
   hw_visor[0] = c;
}
```

- Estamos usando nova função (que vai estar na biblioteca)
- Continuamos acessando o visor de forma direta

Biblioteca: getchar()

```
char getchar(void);
```

- Onde retornar o valor lido?
- Sugestão: no R0
 - Na realidade, vamos definir que todas a funções devem retornar valores pelo R0

getchar()

```
char getchar(void) {
    char c;

while ( hw_status != 0x80 );
    c = hw_data;
    hw_status = 0;

return c;
}
```

```
; char getchar(void)
; char c -> R0
getchar:
; while ( hw status != 0x80 );
getchar While:
   CMP STATUS, #H80
   BNE getchar While
; c = hw data;
   MOV DATA, RO
; hw status = 0;
   CLR STATUS
; return c;
   RTS R7
```


main

```
pvoid main(void) {
    char c;

while ( (c=getchar()) != 'F') {
    hw_visor[0] = c;
}
```

```
; void main(void) {
; char c ---> R0
; while ( (c=getchar()) != 'F') {
InicioWhile:
   JSR
          R7, getchar
          RO,#H46
   CMP
          FimWhile
   BEQ
; hw visor[0] = c;
   VOM
           R0, VISOR
          InicioWhile
   JMP
; }
FimWhile:
   HLT
```


Exemplo 3

- Escrever um programa para colocar um contador de 1 dígito no visor
 - Deve iniciar em "0"
 - Ao chegar a "9", deve retornar a "0"
- O programa deve incrementar o contador em passos de 1 segundo

Solução em "C"

```
□void main() {
         TIMDT = 0;
         VISOR = c = '0';
         n=0;
         while(1) {
                  if (INTS & 1) {
                          INTS &= 0xFE
                          n++;
                          if (n>=10) {
                                   n=0;
                                   C++
                                   if (c>'9') c='0';
                                   VISOR=c;
```


Periféricos

Prof. Sérgio L. Cechin

