

UNIVERSIDADE FEDERAL DE OURO PRETO DEPARTAMENTO DE COMPUTAÇÃO

PLANO DE ENSINO

Nome do Componente Curricular em português:			Código:	
Otimização Não Linear			BCC405	
Nome do Componente Curricular e				
Nonlinear Optimization				
Nome e sigla do departamento:			Unidade acadêmica:	
Departamento de Computação (DECOM)			ICEB	
Nome do docente:				
Rodrigo César Pedrosa Silva				
Carga horária semestral:	Carga horária semanal teórica:	Carga horária semanal prática:		
60 horas	4 horas/aula	0 horas/aula		
Data de aprovação na assembleia departamental:				
19/07/2024				
Ementa:				
Ementa: Caracterização das Funções; Otimização Não Linear; Direções de Busca; Exclusão de				
Semi-Espaços;				
Otimização por Populações.				

Conteúdo Programático:

- Introdução e Conceitos Preliminares
 - 2. Otimização em Projetos Assistidos por Computador
- Caracterização das Funções
 - 4. Superfícies de Nível e Modalidade
 - 5. Continuidade e Diferenciabilidade
 - 6. Convexidade e Quasi-Convexidade
 - 7. Caracterização dos Mínimos Locais
- Otimização Escalar
 - 9. Formulação do Problema de Otimização
 - 10. Otimização Sem Restrições
 - 11. Otimização com Restrições de Desigualdade
 - 12. Otimização com Restrições de Igualdade
- Direções de Busca
 - 14. Estrutura Básica
 - 15. Algoritmo do Gradiente
 - 16. Aproximações Quadráticas
 - 17. Tratamento de Restrições
 - 18. Comportamento dos Métodos de Direção de Busca
- Exclusão de Semi-Espaços
 - 20. Formulação Geral
 - 21. Métodos de Planos de Corte

- 22. Tratamento de Restrições
- Otimização por Populações
 - 24. Algoritmo Evolucionário
 - 25. Algoritmos Genéticos
 - 26. Tratamento de Restrições
 - 27. Características de Comportamento

Objetivos:

Metodologia:

Aulas expositivas sobre o conteúdo programático

Estudos Dirigidos: atividades individuais práticas contendo exercícios e implementações dos métodos estudados. Serão distribuidos e avaliados durante as aulas.

Leituras recomendadas: leitura de textos técnicos com a finalidade de proporcionar ao discente a oportunidade de consulta e desenvolvimento de sua capacidade de análise, síntese e crítica de uma bibliografia específica.

Observações: A principal linguagem de programação deste curso será a linguagem Python. O código fonte dos trabalhos práticos será submetido pelo GitHub. O aluno precisará ter acesso à internet e um computador (desktop ou laptop).

Atividades avaliativas:

Estudos dirigidos (EDs) de 10 pontos

1 Trabalho Prático dividido em duas estapas: (i) apresentação do tema (T1) - 10 pontos e (ii) Apresentção do desenvolvimento e resultados (T2) - 10 pontos

Nota Final = $(0.1 \times T1 + 0.5 \times T2 + 0.4 \times média(ED))/10,0$

Exame Especial: Os alunos que tiverem pelo menos 75% de frequência (mínimo para aprovação) e média inferior a seis pontos poderão fazer o Exame Especial ou o Exame Especial Parcial. Estes exames serão provas únicas, individuais.

Cronograma:		
Semana	Conteúdo	
25/03/2024 à 27/03/2024	Introdução e motivação	
01/04/2024 à 03/04/2024	Revisão de conceitos matemáticos	
08/04/2024 à 10/04/2024	Máximos e míminos de funcões com várias variáveis	
08/07/2024 à 10/07/2024	Máximos e mínimos de funções com várias variáveis	
15/07/2024 à 17/07/2024	Questões de convexidade e Globalidade	
22/07/2024 à 24/07/2024	Apresentações dos temas dos trabalhos	
29/07/2024 à 31/07/2024	Algoritmos de descida	
05/08/2024 à 07/08/2024	Métodos de primeira ordem (I)	
12/08/2024 à 14/08/2024	Variações modernas do método do gradiente	
19/08/2024 à 21/08/2024	Métodos de primeira ordem (II)	
26/08/2024 à 28/08/2024	Método de segunda ordem	
02/09/2024 à 04/09/2024	Método de quase Newton	
09/09/2024 à 11/09/2024	Otimização com restrições	
16/09/2024 à 18/09/2024	Otimização com restrições	

23/09/2024 à 25/09/2024 Otimização com restrições 30/09/2024 e 07/10/2024 Apresentações dos trabalhos 14/10/2024 ----- Exame Especial

Bibliografia Básica:

- RIBEIRO, Ademir Alves; KARAS, Elizabeth Wegner. Otimização Contínua: aspectos teóricos e computacionais. São Paulo: Cengage Learning, 2013.
- ZÖRNIG, Peter. Introdução à programação não linear. Brasília: UNB, 2011.
- BORTOLOSSI, Humberto José. Cálculo diferencial a várias variáveis. São Paulo: Edições Loyola, 2002.

Bibliografia Complementar:

- IZMAILOV, A.; SOLODOV, M. Otimização, volume 2: métodos computacionais. Rio de Janeiro: IMPA, 2007.
- MATEUS, G. R.; LUNA, H. P. L. Programação não linear. Belo Horizonte: UFMG, 1986.
- BAZARAA, M. S.; SHERALI, H. D.; SHETTY, C. M. Nonlinear programming: Theory and algorithms. 3rd ed. Hoboken, N.J.: Wiley-Interscience, 2006.
- TAVARES, L. V.; CORREIA, F. N. Optimização linear e não linear: conceitos, métodos e algoritmos. 2. ed. Lisboa: Fundação Calouste Gulbenkian, 1999.
- BEVERIDGE, G. S. G.; SCHECHTER, R. S. Optimization: theory and practice. Tóquio, Auckland, Düsseldorf, Joanesburgo, Londres, México, Nova Deli, Panamá, São Paulo, Cingapura, Sydney: McGraw-Hill Kogakusha, Ltda, 1970.