Relational Algebra

Eugene Wu

Supplemental Materials

Helpful References

https://en.wikipedia.org/wiki/Relational_algebra

Relational algebra is the basis for the most popular query language on earth

What's a Query Language?

Allows manipulation and retrieval of data from a database.

```
Traditionally: QL != programming language

Doesn't need to be turing complete

Not designed for computation

Supports easy, efficient access to (very) large databases
```

Today

Scaling to large datasets is a reality
Powerful way to think about...

data algorithms that scale
asynchronous/parallel programming

2 Formal Relational Query Languages

Relational Algebra

Operational, used to represent execution plans

```
\pi_{\text{name}}(\sigma_{\text{age}<30}(\text{Sailors})) sailor names younger than 30
```

Relational Calculus

Logical, describes what data users want (declarative)

```
{ s: name | s ∈ Sailors ^ s.age < 30 }
(this is shorthand)</pre>
```

Journey of a Query

SQL

SELECT ... FROM ...

Relational Algebra

 $\pi_b(P\bowtie Q\bowtie...)$

Query Rewriting

 $\pi_b(P\bowtie S)\bowtie Q...)$

Query execution

Prelims

Query is a function over relation instances

$$Q(R_1,...,R_n) = R_{result}$$

Schemas of input and output relations are *fixed* and well defined by the query Q.

Positional vs Named field notation

Position easier for formal defs

one-indexed (not 0-indexed!!!)

Named is more readable

Both used in SQL

Prelims

Relation (for this lecture)

Instance: **set** of tuples (important!)

Schema: list of field names and types (domains)

Students(sid int, name text, major text, gpa int)

How are relations different than generic sets (\mathbb{R}) ?

Can assume item structure due to schema

Some algebra operations (x) need to be modified

Will use this later

Relational Algebra Overview

Core 5 operations

PROJECT (π)

SELECT (σ)

UNION (U)

SET DIFFERENCE (-)

CROSSPRODUCT (x)

Additional operations

RENAME (p)

INTERSECT (∩)

JOIN (⋈)

DIVIDE (/) not on exam

Instances Used Today: Library

Students, Reservations

RI

sid	rid	day
	101	10/10
2	102	11/11

Use positional or named field notation

SI

sid	name	gpa	age
I	eugene	4	20
2	barb	3	21
3	tanya	2	88

Fields in query results are inherited from input relations (unless specified)

S2

sid	name	gpa	age
4	aziz	3.2	21
2	barb	3	21
3	tanya	2	88
5	rusty	3.5	21

$$\pi_{\langle attr1,...\rangle}(A) = R_{result}$$

Pick out desired attributes (subset of columns)

Schema is subset of input schema in the projection list

 $\pi_{\langle a,b,c\rangle}(A)$ has output schema (a,b,c) w/ types carried over

S2

sid	name	gpa	age
4	aziz	3.2	21
2	barb	3	21
3	tanya	2	88
5	rusty	3.5	21

$$\pi_{\text{name,age}}(S2) =$$

name	age
aziz	21
barb	21
tanya	88
rusty	21

S2

sid	name	gpa	age
4	aziz	3.2	21
2	barb	3	21
3	tanya	2	88
5	rusty	3.5	21

$$\pi_{\text{name,name,age}}(S2) =$$

name	name	age
aziz	aziz	21
barb	barb	21
tanya	tanya	88
rusty	rusty	21

S2

sid	name	gpa	age
4	aziz	3.2	21
2	barb	3	21
3	tanya	2	88
5	rusty	3.5	21

$$\pi_{age}(S2) = \frac{21}{88}$$

Where did all the rows go? Real systems typically don't remove duplicates by default. Why?

Select

$$\sigma_{}(A) = R_{result}$$

Select subset of rows that satisfy condition *p p*: Boolean expr over constants and attributes in A
Won't have duplicates in result. Why?
Result schema same as input

Select

SI sid gpa age name 4 20 eugene 2 barb 3 21 3 2 88 tanya

$$\sigma_{age < 30}$$
 (S1) =

sid	name	gpa	age
I	eugene	4	20
2	barb	3	21

$$\pi_{\text{name}}(\sigma_{\text{age} < 30} (S1)) = \begin{bmatrix}
\text{name} \\
\text{eugene}
\end{bmatrix}$$

Commutative Operations

$$A + B = B + A$$

$$A * B = B * A$$

$$A + (B * C) = (B * C) + A$$

Associative Operations

$$A + (B + C) = (A + B) + C$$

 $A + (B * C) = (A + B) * C$

Commutative Operations

$$A + B = B + A$$

$$A * B = B * A$$

$$A + (B * C) = (B * C) + A$$

Associative Operations

$$A + (B + C) = (A + B) + C$$

 $A + (B * C) = (A + B) * C$

$$\pi_{age}(\sigma_{age < 30} (SI))$$

	sid	name	gpa	age	
	I	eugene	4	20	
$\sigma_{age < 30}$	2	barb	3	21	
	3	tanya	2	88	

sid	name	gpa	age
1	eugene	4	20
2	barb	3	21

$$\pi_{age}(\sigma_{age < 30} (SI))$$

Tage sid name gpa age leugene 4 20 leugenb 3 21

age
20
21

$$\sigma_{\text{age} < 30}(\mathbf{\pi}_{\text{age}}(SI))$$

$$\sigma_{\text{age} < 30}(\pi_{\text{age}}(SI))$$

Does Project and Select always commute?

$$\mathbf{\pi}_{age}(\sigma_{age < 30} (SI)) = \sigma_{age < 30}(\mathbf{\pi}_{age}(SI))$$

What about

$$\pi_{\text{name}}(\sigma_{\text{age}<30} (SI))$$
?

Does Project and Select commute?

$$\mathbf{\pi}_{age}(\sigma_{age < 30} (SI)) = \sigma_{age < 30}(\mathbf{\pi}_{age}(SI))$$

What about

$$\pi_{\text{name}}(\sigma_{\text{age} < 30} (SI)) := \sigma_{\text{age} < 30}(\pi_{\text{name}}(SI))$$

Does Project and Select commute?

$$\mathbf{\pi}_{age}(\sigma_{age < 30} (SI)) = \sigma_{age < 30}(\mathbf{\pi}_{age}(SI))$$

What about

$$\pi_{\text{name}}(\sigma_{\text{age} < 30} (SI)) := \sigma_{\text{age} < 30}(\pi_{\text{name, age}}(SI))$$

Does Project and Select commute?

$$\mathbf{\pi}_{age}(\sigma_{age < 30} (SI)) = \sigma_{age < 30}(\mathbf{\pi}_{age}(SI))$$

What about

$$\mathbf{\pi}_{\text{name}}(\sigma_{\text{age} < 30} (SI)) = \mathbf{\pi}_{\text{name}}(\sigma_{\text{age} < 30}(\mathbf{\pi}_{\text{name, age}}(SI)))$$

OK!

Union, Set-Difference

A op
$$B = R_{result}$$

A, B must be union-compatible

Same number of fields

Field i in each schema have same type

Result Schema taken from first relation (A)

A(id int, imgid int) U B(blah int, gloop int) = ?

Union, Set-Difference

A op
$$B = R_{result}$$

A, B must be union-compatible

Same number of fields

Field i in each schema have same type

Result Schema taken from first relation (A)

A(id int, imgid int) U B(blah int, gloop int) = R_{result}(id int, imgid int)

Union, Intersect, Set-Difference

SI

sid	name	gpa	age
I	eugene	4	20
2	barb	3	21
3	tanya	2	88

S2

sid	name	gpa	age
4	aziz	3.2	21
2	barb	3	21
3	tanya	2	88
5	rusty	3.5	21

SIUS2 =

sid	name	gpa	age	
1	eugene	4	20	
4	aziz	3.2	21	
5	rusty	3.5	21	
3	tanya	2	88	
2	barb	3	21	

Union, Intersect, Set-Difference

SI

sid	name	gpa	age
1	eugene	4	20
2	barb	3	21
3	tanya	2	88

S2

sid	name	gpa	age
4	aziz	3.2	21
2	barb	3	21
3	tanya	2	88
5	rusty	3.5	21

$$SI-S2 =$$

sid	name	gpa	age
1	eugene	4	20

Note on Set Difference & Performance

Notice that most operators are monotonic increasing size of inputs \rightarrow outputs grow if $A \supseteq B \rightarrow Q(A,T) \supseteq Q(B,T)$ can compute incrementally

Set Difference is not monotonic

if
$$A \supseteq B$$
 \rightarrow $T-A \subseteq T-B$
e.g., $5 > I$ \rightarrow $9-5 < 9-I$

Thus, set difference is blocking:

For T – S, must wait for all S tuples before any results

Cross-Product

$$A(a_1,...,a_n) \times B(a_{n+1},...,a_m) = R_{result}(a_1,...,a_m)$$

Each row of A paired with each row of B

Result schema **concats** A and B's fields, inherit if possible Names of fields found in both A and B are undefined in result (some DBMSes set a default)

$$\{(1),(2)\} \times \{(3,4)\} = \{ (1,3,4), (2,3,4) \}$$

Not same as mathematical "X", which returns **nested** results:

math A
$$\times$$
 B = { (a, b) | a \in A ^ b \in B }
{(1),(2)} \times {(3,4)} = { ((1),(3,4)), ((2),(3,4)) }

Cross-Product

SI

sid	name	gpa	age
I	eugene	4	20
2	barb	3	21
3	tanya	2	88

RI

sid	rid	day
	101	10/10
2	102	11/11

SIxR1 =

(sid)	name	gpa	age	(sid)	rid	day
I	eugene	4	20	I	101	10/10
2	barb	3	21	I	101	10/10
3	tanya	2	88	I	101	10/10
I	eugene	4	20	2	102	11/11
2	barb	3	21	2	102	11/11
3	tanya	2	88	2	102	11/11

Rename

p(<newRelationName>(<mappings>), Q)

Explicitly defines/changes field names of schema

Mappings of the form: <input attr> -> <new name>

$$p(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$$

SIG I	name	gpa	age	sid2	rıd	day
1	eugene	4	20	I	101	10/10
2	barb	3	21		101	10/10
3	tanya	2	88	I	101	10/10
I	eugene	4	20	2	102	11/11
2	barb	3	21	2	102	11/11
3	tanya	2	88	2	102	11/11

Rename alternate syntax

<newRelationName>(<attrnames>) = Q

attrnames is list of attributes $(a_1,...,a_n)$.

- Same # attrs as output of Q
- a_i will be assigned ith output attribute of Q

$$C = C(sid,rid,day) = RI$$

$$C(foo, bar, baz) = RI$$

RI

sid	rid	day
I	101	10/10
2	102	11/11

Compound/Convenience Operators

INTERSECT (∩)

JOIN (⋈)

DIVIDE (/)

$$A \cap B = R_{result}$$

A, B must be union-compatible

SI

sid	name	gpa	age
I	eugene	4	20
2	barb	3	21
3	tanya	2	88

S2

sid	name	gpa	age
4	aziz	3.2	21
2	barb	3	21
3	tanya	2	88
5	rusty	3.5	21

SI∩S2 =

sid	name	gpa	age
2	barb	3	21
3	tanya	2	88

$$A \cap B = R_{result}$$

A, B must be union-compatible

Can we express using core operators?

$$A \cap B = ?$$

$$A \cap B = R_{result}$$

Can we express using core operators?

 $A \cap B = A - ?$ (think venn diagram)

$$A \cap B = R_{result}$$

Can we express using core operators?

$$A \cap B = A - (A - B)$$

What if you want to query across all three tables? e.g., all names of students that reserved "The Purple Crayon"

Need to combine these tables

Cross product? But that ignores foreign key references

SI

sid	name	gpa	age
	eugene	4	20
2	barb	3	21
3	tanya	2	88

RI

sid	rid	day
I	101	10/10
2	102	11/11

BI

rid	name
101	The Purple Crayon
102	1984

SI

sid	name	gpa	age
I	eugene	4	20
2	barb	3	21
3	tanya	2	88

RI

sid	rid	day
I	101	10/10
2	102	11/11

BI

rid	name		
101	The Purple Crayon		
102	1984		

SI RBI

sid	name	gpa	age
ı	eugene	4	20
2	barb	3	21
3	tanya	2	88

sid	(rid)	day	(rid)	name
I	101	10/10	101	The Purple Crayon
2	102	11/11	102	1984

SI RBI

sid	name	gpa	age
1	eugene	4	20
2	barb	3	21
3	tanya	2	88

sid	(rid)	day	(rid)	name
1	101	10/10	101	The Purple Crayon
2	102	11/11	102	1984

SRBI

(sid)	(name)	gpa	age	(sid)	(rid)	day	(rid)	(name)
L	eugene	4	20	1	101	10/10	101	The Purple Crayon
2	barb	3	21	2	102	11/11	102	1984

Joins

Theta (θ) Join Equi-join

$$A \bowtie_{c} B = \sigma_{c}(A \times B)$$

Most general form

Result schema same as cross product

Often far more efficient to compute than cross product

Commutative

$$(A\bowtie_c B)\bowtie_c C = A\bowtie_c (B\bowtie_c C)$$

SI

sid	name	gpa	age
1	eugene	4	20
2	barb	3	21
3	tanya	2	88

sid	rid	day
	101	10/10
2	102	11/11

$$SI \bowtie_{SI.sid} \leq_{RI.sid} RI = \sigma_{SI.sid} \leq_{RI.sid} (SI \times RI) = \sigma_{SI.sid} (SI \times RI) = \sigma_{SI.sid$$

	(sid)	name	gpa	age	(sid)	rid	day
		eugene	4	20	I	101	10/10
=	2	barb	3	21	I	101	10/10
	3	tanya	2	88		101	10/10
	I	eugene	4	20	2	102	11/11
	2	barb	3	21	2	102	11/11
	3	tanya	2	88	2	102	11/11

SI

sid	name	gpa	age
1	eugene	4	20
2	barb	3	21
3	tanya	2	88

sid	rid	day
	101	10/10
2	102	11/11

```
SI \bowtie_{SI.sid \leq RI.sid} RI = 
\sigma_{SI.sid \leq RI.sid}(SI \times RI) =
```

	(sid)	name	gpa	age	(sid)	rid	day
	I	eugene	4	20	I	101	10/10
=	2	barb	3	21	I	101	10/10
	3	tanya	2	88	I	101	10/10
	I	eugene	4	20	2	102	11/11
	2	barb	3	21	2	102	11/11
	3	tanya	2	88	2	102	11/11

SI

sid	name	gpa	age
1	eugene	4	20
2	barb	3	21
3	tanya	2	88

sid	rid	day
	101	10/10
2	102	11/11

```
SI \bowtie_{SI.sid \leq RI.sid} RI = 
\sigma_{SI.sid \leq RI.sid}(SI \times RI) =
```

(sid)	name	gpa	age	(sid)	rid	day
	eugene	4	20	1	101	10/10
I	eugene	4	20	2	102	11/11
2	barb	3	21	2	102	11/11

Equi-Join

$$A \bowtie_{attr} B = \pi_{all \ attrs \ except \ B.attr} (A \bowtie_{A.attr = B.attr} B)$$

List the attributes that the two relations will be joined on.

 $A\bowtie_{x,y} B$ is an equijoin on attributes x and y

Special case where the condition is attribute equality Result schema only keeps *one copy* of equality fields Natural Join ($A\bowtie B$):

Equijoin on all shared fields (fields w/ same name)

Not recommended since query results can unexpectedly change if someone changes the schemas (renames an attr)

Equi-Join

SI

sid	name	gpa	age
I	eugene	4	20
2	barb	3	21
3	tanya	2	88

sid	rid	day
I	101	10/10
2	102	11/11

sid	name	gpa	age	rid	day
I	eugene	4	20	101	10/10
2	barb	3	21	102	11/11

Equi-Join

SI

sid	name	day	gpa	age
I	eugene	10/10	4	20
2	barb	12/12	3	21
3	tanya	3/3	2	88

RI

sid	rid	day
1	101	10/10
2	102	11/11

 $SI \bowtie_{sid,name} RI = INVALID!$ name not in RI

$$SI\bowtie_{sid,day}RI = \pi_{SI.*,RI.rid}SI\bowtie_{sI.sid=RI.sid \land sI.day}RI$$

$$SI \bowtie RI = SI \bowtie_{sid,day} RI$$

Different Plans, Same Results

Semantic equivalence: results are *always* the same

Note that it is independent of the database instance!

$$\pi_{\text{name}}(\sigma_{\text{rid}=2} (R1) \bowtie SI)$$

Equivalent Queries

tmp1 =
$$\sigma_{rid=2}$$
 (R1)
tmp2 = tmp1 \bowtie SI
 π_{name} (tmp2)

$$\pi_{\text{name}}(\sigma_{\text{rid}=2}(\text{R1}\bowtie\text{SI}))$$

Book(rid, type) Reserve(sid, rid) Student(sid, name)

Need to join DB books with reserve and students $\sigma_{type='db'}$ (Book)

Book(rid, type) Reserve(sid, rid) Student(sid, name)

Need to join DB books with reserve and students

 $\sigma_{\text{type='db'}}$ (Book) \bowtie_{rid} Reserve

Book(rid, type) Reserve(sid, rid) Student(sid, name)

Need to join DB books with reserve and students

 $\sigma_{\text{type='db'}}$ (Book) \bowtie_{rid} Reserve \bowtie_{sid} Student

Book(rid, type) Reserve(sid, rid) Student(sid, name)

Need to join DB books with reserve and students

 $\pi_{\text{name}}(\sigma_{\text{type='db'}} \text{ (Book)} \bowtie_{\text{rid}} \text{Reserve} \bowtie_{\text{sid}} \text{Student)}$

Book(rid, type) Reserve(sid, rid) Student(sid, name)

Need to join DB books with reserve and students

 $\pi_{name}(\sigma_{type='db'}, (Book) \bowtie_{rid} Reserve \bowtie_{sid} Student)$

More efficient query

ookrids = $\pi_{rid} \sigma_{type='db'}$ (Book) π_{sid} (bookrids \bowtie_{rid} Reserve)

Book(rid, type) Reserve(sid, rid) Student(sid, name)

Need to join DB books with reserve and students

 $\pi_{name}(\sigma_{type='db'}, (Book) \bowtie_{rid} Reserve \bowtie_{sid} Student)$

More efficient query

bookrids = $\pi_{rid} \sigma_{type='db'}$ (Book) $\pi_{name}(\pi_{sid}(bookrids \bowtie_{rid} Reserve) \bowtie_{sid} Student)$

Query optimizer can find the more efficient query!

Students that reserved DB or HCI book

- I. Find all DB or HCI books
- 2. Find students that reserved one of those books

tmp =
$$\sigma_{\text{type='DB' v type='HCl'}}$$
 (Book)
 Π_{name} (tmp \bowtie Reserve \bowtie Student)

"v" means logical OR

Alternatives define tmp using UNION (how?)

Using UNION

tmpI =
$$\sigma_{type='DB'}$$
 (Book)
dbnames = π_{name} (tmpI \bowtie Reserve \bowtie Student)

$$tmp2 = \sigma_{type='HCI'}$$
 (Book)

hcinames = π_{name} (tmp2 \bowtie Reserve \bowtie Student)

dbnames UNION hcinames

Students that reserved a DB and HCI book

Can we change v into ^ (AND)?

tmp =
$$\sigma_{\text{type='DB' }^{\text{}} \text{ type='HCI'}}$$
 (Book)
 π_{name} (tmp \bowtie Reserve \bowtie Student)

Why?

```
tmp = \sigma_{\text{type='DB' }^{\text{} \text{}^{\text{}}} \text{ type='HCl'}} (Book)

\pi_{\text{name}} \text{(tmp } \bowtie \text{Reserve } \bowtie \text{Student)}
```

Students that reserved a DB and HCI book

Does previous approach work?

- Find students that reserved DB books
- 2. Find students that reversed HCl books
- 3. Intersection

tmpDB =
$$\pi_{sid}(\sigma_{type='DB'}, Book) \bowtie Reserve$$

tmpHCI = $\pi_{sid}(\sigma_{type='HCI'}, Book) \bowtie Reserve$
 $\pi_{name}((tmpDB\cap tmpHCI) \bowtie Student)$

Students where, **for all books**, the student reserved the book no concept of "for all" in relational algebra...

Students – Students that didn't reserve all books

Students where, **for all books**, the student reserved the book no concept of "for all" in relational algebra...

Students – Students where there is a book that they did not reserve

```
Students where, for all books, the student reserved the book
no concept of "for all" in relational algebra...
Students – (Students s where (Books – Books s reserved)) (say s is bob)
                     s_{reserved} = \pi_{bid} \sigma_{sid=bob} (Reserve)
Students – (Students s where (Books – Books s reserved))
               s not reserved = \pi_{bid}(Books) - s reserved
Students – (Students s where (Books – Books s reserved)) (for each student)
                        \pi_{sid,bid}(Students x Books)
```

```
Students where, for all books, the student reserved the book
no concept of "for all" in relational algebra...
Students – (Students s where (Books – Books s reserved)) (say s is bob)
                     s_{reserved} = \pi_{bid} \sigma_{sid=bob} (Reserve)
Students – (Students s where (Books – Books s reserved))
               s not reserved = \pi_{bid}(Books) - s reserved
Students – (Students s where (Books – Books s reserved)) (for each student)
                        \pi_{sid,bid}(Students x Books) - \pi_{sid,bid}(Reserve)
```

```
Students where, for all books, the student reserved the book
no concept of "for all" in relational algebra...
Students – (Students s where (Books – Books s reserved)) (say s is bob)
                     s_{reserved} = \pi_{bid} \sigma_{sid=bob} (Reserve)
Students – (Students s where (Books – Books s reserved))
               s not reserved = \pi_{bid}(Books) - s reserved
Students – (Students s where (Books – Books s reserved)) (for each student)
   del_sids = \pi_{sid}(\pi_{sid,bid}(Students \times Books) - \pi_{sid,bid}(Reserve))
```

```
Students where, for all books, the student reserved the book
no concept of "for all" in relational algebra...
Students – (Students s where (Books – Books s reserved)) (say s is bob)
                     s_{reserved} = \pi_{bid} \sigma_{sid=bob} (Reserve)
Students – (Students s where (Books – Books s reserved))
               s not reserved = \pi_{bid}(Books) - s reserved
Students – (Students s where (Books – Books s reserved)) (for each student)
   del_sids = \pi_{sid}(\pi_{sid,bid}(Students \times Books) - \pi_{sid,bid}(Reserve))
\pi_{sid} (Students) – del_sids
```

Let's step back

Relational algebra is expressiveness benchmark

A language that can express relational algebra is "relationally complete"

```
Limitations
nulls
aggregation
recursion
duplicates
can't really type on keyboard...
```

Equi-Joins are everywhere

Matching of two sets based on shared attributes

Yelp: Join between your location and restaurants

Market: Join between consumers and suppliers

High five: Join between two hands on time and space

Communication: Join between minds on ideas/concepts

Who Cares about Relational Alg?

Clean query semantics & rich program analysis

Helps/enables optimization

Opens up rich set of topics

Materialized views

Data lineage/provenance

Query by example

Distributed query execution

• • •

You see its fingerprints EVERYWHERE!

What can we do with RA?

Query(DB instance) \rightarrow Relation instance

What can we do with RA?

Query(DB instance) = Relation instance

Query by example

Here's DB instance and result, generate the query

Data Generation:

Here's query and result, generate a DB instance

Novel relationally complete interfaces

GestureDB. Nandi et al.

Summary

Relational Algebra (RA) operators

Operators are closed inputs & outputs are relations

Multiple Relational Algebra queries can be equivalent

It is operational

Same semantics but different performance

Forms basis for optimizations