

SIERRA

MECH 10 Fundamentals of Electronics

- Digital Logic
 - Boolean Logic
 - A system of logical operators (AND, OR, NOT) that form the basis of relay and digital logic

Gorge Boole

Claude Shannon

2

MECH 10 Fundamentals of Electronics

- Digital Logic
 - Logic Voltage Levels
 - Logic HIGH voltage level interpreted as a logic 1
 - Logic LOW voltage level interpreted as a logic 0

Technology	Logic LOW (volts)	Logic HIGH (volts)		
TTL	0 V to 0.8 V	2 V to 5 V		
ECL	-5.2 V to −1.4 V	-1.2 V to 0 V		
CMOS	0 V to V _{DD} /2	$V_{DD}/2$ to V_{DD}		

3

SIERRA

MECH 10 Fundamentals of Electronics

- Digital Logic
 - Information Storage Units
 - **Bit** from binary digit
 - The output of one transistor or switch
 - Nibble 4-bits
 - Byte from bite
 - The output of multiple transistors
 - 8-bit de facto standard
 - 16, 32, 64 bit processors
 - Word the processor bus size
 - **8**, 16, 32, 64

4

CIE 04 Fundamentals of Mechatronics

- Digital Logic
 - Numbering Systems
 - Decimal ten unique digits (from ten fingers?)
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
 - 9,999,999

Millions	H-Thousands	T-Thousands	Thousands	Hundreds	Tens	Ones	
						9	$= 9 \times 10^{0}$
					9	0	$= 9 \times 10^{1}$
				9	0	0	$= 9 \times 10^{2}$
			9	0	0	0	$= 9 \times 10^3$
		9	0	0	0	0	$= 9 \times 10^4$
	9	0	0	0	0	0	= 9 x 10 ⁵
9	0	0	0	0	0	0	$= 9 \times 10^6$

5

CIE 04 Fundamentals of Mechatronics

- Digital Logic
 - Numbering Systems
 - Binary two unique digits (from transistor states)
 - 0, 1
 - 11111111 binary = 255 decimal

256's	128's	e4's	32's	16's	8's	4's	<i>2</i> 's	1's	
								1	$= 1 \times 2^{0}$
							1	0	$= 1 \times 2^{1}$
						1	0	0	$= 1 \times 2^2$
					1	0	0	0	$= 1 \times 2^3$
				1	0	0	0	0	$= 1 \times 2^4$
			1	0	0	0	0	0	$= 1 \times 2^{5}$
		1	0	0	0	0	0	0	$= 1 \times 2^6$
	1	0	0	0	0	0	0	0	$= 1 \times 2^7$
1	0	0	0	0	0	0	0	0	$= 1 \times 2^8$

6

CIE 04 Fundamentals of Mechatronics

- Digital Logic
 - Numbering Systems
 - Binary ASCII
 - American Standard Code for Information Interchange

						US	ASCII	code	chart				
07 D6 D	5 -		=			۰۰,	°0 ,	٥, ٥	۰,	100	¹ o ,	110	11
0,10	b.4	b 3	b 2	b,	Row	0	1	2	3	4	5	6	7
	0	0	0	0	0	NUL .	DLE	SP	0	0	Р	,	P
	0	0	0	1	1	SOH	DC1	!	1	Α.	Q	0	q
	0	0	1	0	2	STX	DC2		2	В	R	b	r
	0	0	1	1	3	ETX	DC3	#	3	С	S	С	5
	0	1	0	0	4	EOT	DC4		4	D	Т	d	1
	0	ı	0	1	5	ENQ	NAK	%	5	Ε	U	e	U
	0	1	1	0	6	ACK	SYN	8	6	F	V	f	٧
	0	1	1	1	7	BEL	ETB	'	7	G	w	9	w
	1	0	0	0	8	BS	CAN	(8	н	X	h	×
	T	0	0	1	9	нТ	EM)	9	1	Y	i	у
	T	0	1	0	10	LF	SUB	*	: .	J	Z	j	z
	1	0	1	1	11	VT	ESC	+	:	к	С	k.	
	1	1	0	0	12	FF	FS		<	L	١	ı	1
	T	1	0	1	13	CR	GS	-	**	М	3	m	}
	1	.1	1	0	14	SO	RS		>	N	^	n	>
	T	T	T	1	15	SI	US	1	?	0	_	0	DEL

7

SIERRA

CIE 04 Fundamentals of Mechatronics

- Digital Logic
 - Numbering Systems
 - Octal eight unique digits (from 12, 24, 36 bit bytes)
 - 0, 1, 2, 3, 4, 5, 6, 7

17667215	2097152's	262144	32768	4096	512	64	8	1	
								7	$= 7 \times 8^{0}$
							7	0	$= 7 \times 8^{1}$
						7	0	0	$= 7 \times 8^{2}$
					7	0	0	0	$= 7 \times 8^3$
				7	0	0	0	0	$= 7 \times 8^4$
			7	0	0	0	0	0	$= 7 \times 8^{5}$
		7	0	0	0	0	0	0	$= 7 \times 8^6$
	7	0	0	0	0	0	0	0	$I = 7 \times 8^7$
7	0	0	0	0	0	0	0	0	$= 7 \times 8^8$

The Yuki language in California used octal systems because the speakers count the spaces between their fingers rather than the fingers themselves.

8

CIE 04 Fundamentals of Mechatronics

- Mechatronics Real Skills Real Jobs
- "A human-friendly representation of binarycoded values in computing and digital electronics"

- Digital Logic
 - Numbering Systems
 - Hexadecimal 16 unique digits
 - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F
 - FFFFFFF hexadecimal = 42,949,672,950 decimal

4294967296	268435456	16777216	1048576	65536	4096	256	16	1	
								F	= 15 x 16 ⁰
							F	0	= 15 x 16 ¹
						F	0	0	$= 15 \times 16^2$
					F	0	0	0	$= 15 \times 16^3$
				F	0	0	0	0	$= 15 \times 16^4$
			F	0	0	0	0	0	= 15 x 16 ⁵
		F	0	0	0	0	0	0	= 15 x 16 ⁶
	F	0	0	0	0	0	0	0	= 15 x 16 ⁷
П)	^	^	^	0	0	^	^	- 15 × 108

9

MECH 10 Fundamentals of Electronics

- Digital Logic
 - Boolean Logic
 - AND Gate A AND B \rightarrow Q (A x B = Q)

MECH 10 Fundamentals of Electronics

- Digital Logic
 - Boolean Logic
 - XOR Gate A OR B (but not both) → Q

25

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- Digital Logic
 - Boolean Logic
 - Truth Tables

AND	GATE	
-----	------	--

0 1 0

XOR GATE

A_	В	Q
0	0	0
1	0	1
0	1	1
1	1	0

26

SDG 13

OR GATE

0

1 1

1

MECH 10 Fundamentals of Electronics

- Digital Logic
 - Laboratory Logic Gates

Learning Objectives

- Build and test digital logic gates using integrated circuits
- Construct truth tables for fundamental logic gates
- Construct a complex logic gate from fundamental logic gates

		Points Possible
Documentation	Quality of documentation (completeness, neatness, clarity, spelling, grammar, research)	10
Fundamental Logic Gates	All logic circuits tested and witnessed with instructor / lab technician initials	10
Logic Gate Inversion	AND , OR logic gates inverted, circuits tested and witnessed with instructor / lab technician initials	10
Fundamental to Complex Logic	XOR logic gate constructed from fundamental gates, circuits tested and witnessed with instructor / lab technician initials	10
Conclusions	Questions answered completely and accurately	20
	Total	60

27