Spectral Gravity Forward Modelling of Continuous 3D Mass Density Distributions [G33A-0533]

Blažej Bucha¹

¹Department of Theoretical Geodesy and Geoinformatics, Slovak University of Technology in Bratislava

Abstract

We generalize spectral gravity forward modelling to any continuous 3D mass density distributions of topographic masses. The density function is modelled by a polynomial in the radial direction, while each density polynomial coefficient is expanded into surface spherical harmonics. The method is generalized to any integration radius, enabling to integrate near-zone, far-zone and global topographic masses.

Method

The gravitational potential of topographic masses is given by the Newton integral

$$V(r,\Omega) = G \iint_{\Omega'} \int_{r'=R}^{R+H(\Omega')} \frac{\rho(r',\Omega')}{\ell(r,\psi,r')} (r')^2 dr' d\Omega',$$
(1)

where we assume the density ρ to be any 3D continuous function, so that it can be expressed as

$$\rho(r', \Omega') = \sum_{i=0}^{\infty} \rho_i(\Omega') (r')^i, \quad \text{where} \quad \rho_i(\Omega') = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \bar{\rho}_{nm}^{(i)} \bar{Y}_{nm}(\Omega'). \quad (2)$$

Global variant

Substituting

$$\frac{1}{\ell(r,\psi,r')} = \sum_{n=0}^{\infty} \frac{(r')^n}{r^{n+1}} \frac{1}{2n+1} \sum_{m=-n}^{n} \bar{Y}_{nm}(\Omega) \, \bar{Y}_{nm}(\Omega'), \quad r > r', \tag{3}$$

into Eq. (1) and analytically evaluating the integral over the spherical radius r', we get

$$V(r,\Omega) = \frac{GM}{R} \sum_{n=0}^{\infty} \left(\frac{R}{r}\right)^{n+1} \sum_{m=-n}^{n} \bar{V}_{nm} \bar{Y}_{nm}(\Omega), \tag{4}$$

where

$$\overline{H}\overline{\rho}_{nm}^{(pi)} = \frac{1}{4\pi} \iint_{\Omega'} \left[\left(\frac{H(\Omega')}{R} \right)^p \rho_i(\Omega') R^i \right] \overline{Y}_{nm}(\Omega') d\Omega', \tag{5}$$

$$\bar{V}_{nm} = \frac{2\pi R^3}{M} \sum_{p=1}^{\infty} \sum_{i=0}^{\infty} S_{npi} \,\overline{H} \rho_{nm}^{(pi)}, \qquad S_{npi} = \frac{2}{2n+1} \frac{1}{n+i+3} \binom{n+i+3}{p}. \tag{6}$$

Cap-modified variant

To spatially restrict the integration to near- or far-zone topographic masses, we employ the concept of Molodensky's truncation coefficients, here denoted as $Q_{npi}^{0,0,j}(r,\psi_0)$, where ψ_0 is the integration radius. The near- and far-zone effects on the gravitational potential (j= 'In' or 'Out', respectively) read

$$V^{j}(r,\Omega,\psi_{0}) = \frac{GM}{R} \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \bar{V}_{nm}^{0,0,j}(r,\psi_{0},R) \, \bar{Y}_{nm}(\Omega),$$
(7)

where

$$\bar{V}_{nm}^{0,0,j}(r,\psi_0,R) = \frac{2\pi R^3}{M} \sum_{n=1}^{\infty} \sum_{i=0}^{\infty} Q_{npi}^{0,0,j}(r,\psi_0,R) \, \overline{\mathrm{H}} \overline{\rho}_{nm}^{(pi)}. \tag{8}$$

Formally similar relations were derived for the full gravitational vector and the full gravitational tensor. Interestingly, only **three** groups of truncation coefficients and of their radial derivatives are needed to describe 10 gravitational field quantities and all their radial derivatives, $Q_{npi}^{0,0,j}(r,\psi_0,R)$, $Q_{npi}^{1,1,j}(r,\psi_0,R)$ and $Q_{npi}^{2,2,j}(r,\psi_0,R)$.

Implementation

- Programming language: C,
- Parallelization: OpenMP (shared memory architectures),
- SIMD parallelization: AVX, AVX2 and AVX-512,
- Harmonic analysis: Gauss-Legendre quadrature,
- External C libraries: FFTW3 (fast Fourier transform), GNU GMP and GNU MPFR (multiple-precision floating-point computations).
- Precision (except for truncation coefficients): double (available also in single and quadruple precision)

The GMP and MPFR libraries are used to extend the number of significant digits (often well-beyond the quadruple precision) when computing the truncation coefficients.

The implementation will be soon available through **CHarm**, a C library for high-degree spherical harmonic transforms (visit https://www.charmlib.org).

Experiment Setup

• Moon's topographic masses: MoonTopo2600p.shape [1] up to degree 360 referenced to $R=1{,}728{,}200$ m (Fig. 1)

Figure 1. Moon's topographic masses (m) above the reference sphere of radius 1,728,200 m

• Density model: maximum harmonic degree 180, $i_{\rm max}=1$ (obtained from 3D density model due to [2]; the original model is shown in Fig. 2)

Figure 2. Surface density (left; kg m⁻³) and its first-order gradient (right; kg m⁻³ km)

- Evaluation points: $5' \times 5'$ grid on a Brillouin sphere with the radius r = 1,750,000 m
- Integration radius ψ_0 : 10°
- Maximum topography power p_{max} : 20
- Precision to evaluate $Q_{npi}^{0,0,j}(r,\psi_0)$: 200 bits for the significand

Results

■ Near-zone effects: maximum degree 2160 (Fig. 3)

Figure 3. Gravitational potential induced by near-zone masses (m^2 s⁻²)

• Far-zone effects: maximum degree 2160 (Fig. 4)

Figure 4. Gravitational potential induced far-zone masses (m^2 s⁻²)

Only **less than 1.5 minutes** were needed to compute one of the two gravitational effects (inluding 40 harmonic analyses and 40 harmonic syntheses, I/Os, etc.). The computations were conducted on an ordinary PC with 6 CPU cores clocked at 3.40GHz.

Summary

- Spectral gravity forward modelling of 3D density distributions developed
- Implemented in CHarm
- Can be used for evaluation points on irregular surface (e.g., the Earth's surface)

References

- [1] M. A. Wieczorek, "Gravity and topography of the terrestrial planets," in *Treatise on Geophysics* (G. Schubert, ed.), ch. 10.5, pp. 153–193, Elsevier, 2 ed., 2015.
- [2] S. Goossens, T. J. Sabaka, M. A. Wieczorek, G. A. Neumann, E. Mazarico, F. G. Lemoine, J. B. Nicholas, D. E. Smith, and M. T. Zuber, "High-resolution gravity field models from GRAIL data and implications for models of the density structure of the Moon's crust," *Journal of Geophysical Research: Planets*, vol. 125, p. e2019JE006086, 2020.