What happens when? – Course Syllabus Document

Week Starting Date	Tentative Schedule for Lecture Topics	Lab Schedule	Tutorial Schedule
September 12	Introduction How fast are reactions? Chemical Kinetics (Chapter 14)	Orientation for odd-numbered lab sections	No Tutorials **Look ahead: next week's tutorial quiz will require reviewing a lot of material.**
September 19	How fast are reactions? Chemical Kinetics (Chapter 14)	Orientation for even-numbered lab sections	Tutorial 1 Quiz Review Material (Ch. 1 – 4) **See "CHEM 209 Preparation" handout**
September 26	How fast are reactions? Chemical Kinetics (Chapter 14) How far does a reaction proceed? Equilibrium (Chapter 15)	Experiment 1 for odd- numbered lab sections	Tutorial 2A In-class Assignment Kinetics (Ch. 14.1-14.3)

Video: Burning Steel Wool

Source: https://www.youtube.com/watch?v=5MDH92VxPEQ

How Fast do Reactions Go?

Questions you should be able to answer by the end of this topic:

- Why does steel wool burn, while an iron nail does not?
- Why does "fluffing" the steel wool make it burn faster?
- Why does adding KClO make the steel wool burn faster?
- Why doesn't steel wool burn until it is heated?

- Why didn't H₂ and O₂ react when they were mixed?
- Why did the H₂/O₂ balloon react differently than the H₂/air balloon?

Expressing Reaction Rates

Rate of travel

$$\frac{m}{s}$$
 or $\frac{km}{h}$

Rate of reaction

$$\frac{mol/L}{S} = \frac{M}{S} \text{ or } \frac{bar}{S}$$

These reaction rates describe a specific reactant or product, not the entire reaction:

$$2 \text{ Fe}^{3+}(aq) + \text{Sn}^{2+}(aq) \rightarrow 2 \text{ Fe}^{2+}(aq) + \text{Sn}^{4+}(aq)$$

If the reaction starts with $[Fe^{3+}] = 0.0200 \text{ M}$ and $[Fe^{2+}] = 0 \text{ M}$, and after 10s $[Fe^{3+}] = 0.0100 \text{ M}$:

We can write the **rate of disappearance** of a reactant:

Or the **rate of appearance** of a product:

*Either the sign of the rate or the words "appearance" or "disappearance" may be used to describe the direction of change

✓ Qualitatively *describe* what the speed of a reaction depends upon.

The **general rate of reaction** normalizes these values to make them comparable.

For a reaction

$$aA + bB \rightarrow gG + hH$$

The general rate of reaction is:

rate of reaction
$$= -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{g} \frac{\Delta[G]}{\Delta t} = \frac{1}{h} \frac{\Delta[H]}{\Delta t}$$

This gives a single **positive** value for the reaction rate, and is independent of the compound chosen.

e.g. for the previous reaction (2 Fe³⁺(aq) + Sn²⁺(aq) \rightarrow 2 Fe²⁺(aq) + Sn⁴⁺(aq))

For the reaction:

$$H_2 + I_2 \rightarrow 2 HI$$

Which line in the plot below would best represent [HI] during the course of the reaction? The red line represents $[I_2]$.

Reaction rates can be **instantaneous** or **average**. That is, the rate of a reaction may change over time, and the rate quoted may either represent the rate at a specific moment, or across a longer time frame.

Peroxide Decomposition

- ✓ Generate plots of concentration versus time for the chemical species of a reaction.
- ✓ Determine the instantaneous and average rate of reaction from experimental data.

The reaction:

Red → Yellow

was monitored over a period of time. The figure below summarizes the experimental results. Each sphere represents 3.0 mol L⁻¹.

The average reaction rate over the 1.5 min is:

- a. $5.0 \text{ mol } L^{-1} \text{ s}^{-1}$
- b. 1.0 mol L⁻¹ s⁻¹
- c. $1.0 \, s^{-1}$
- d. 0.20 mol L⁻¹ s⁻¹
- e. 0.20 s⁻¹

What Factors affect Rate?

1. Concentration

2. Physical State

3. Temperature

Fig. 14.4, Silberberg 1st ed.

Back to the steel wool:

Fe (s) + O_2 (g) \rightarrow Fe₂ O_3 (s)

Why does steel wool burn, while an iron nail does not?

Why does "fluffing" the steel wool make it burn faster?

• Why does adding KClO make the steel wool burn faster?