Project Development Phase Model Performance Test

Date	10 November 2022		
Team ID	PNT2022TMID21489		
Project Name	Essential Water Quality Analysis and Prediction		
	using Machine learning		
Maximum Marks	10 Marks		

Model Performance Testing:

Project team shall fill the following information in model performance testing template.

S.No.	Parameter	Values	Screenshot
1.	Metrics	Classification Model:	<pre> // (31] #Splitting the data into dependent and independent variables X= df[['year', 'DO', 'PH', 'CO', 'BOD', 'NI', 'Tot_col']] df['wqi']=df['wqi'].astype('int') Y= df[['wqi']]</pre>
			√ _{0s} [32] X.shape
			(1900, 7)
			√ [33] Y.shape
			(1900, 1)
			<pre> 34 from sklearn.model_selection import train_test_split from sklearn.tree import DecisionTreeClassifier from sklearn.neural_network import MuPClassifier from sklearn.neural_network import MuPClassifier from sklearn.metrick import metrics import math from sklearn.metrics import mean_squared_error X_train, X_test, Y_train, Y_test = train_test_split(X, Y,test_size=0.2, random_state=10) #from sklearn.preprocessing import StandardScaler #sc_X = StandardScaler() #X_train = sc_X.fit_transform(X_train) #X_test = sc_X.transform(X_test) #{Decision Tree Model} clf = DecisionTreeClassifier() clf = clf.fit(X_train,Y_train) clf_pred-clf.predict(X_test) clf_accuracy_metrics.accuracy_score(Y_test,clf_pred) clf_accuracy_metrics.accuracy_</pre>

```
#(K Weighbors Classifier)
                                             knn = WheighborsClassifier(n_neighbors=7)
                                             knn-knn.fit(X_train,V_train.values.ravel())
knn_pred-knn.predict(X_test)
                                             knn_accuracy=metrics.accuracy_score(Y_test,knn_pred)
                                             print ("2) Using K Neighbors Classifler Prediction, Accuracy is " + str(knn_accuracy))
                                             #(using MLPClassifier)
                                             mlpc = MLPClassifier()
                                             mlpc.fit(X_train,Y_train.valves.ravel())
                                             mlpc_pred-mlpc.predict(X_test)
                                             mlpc_accuracywmetrics.accuracy_score(Y_test,mlpc_pred)
print ("3) Using MLPC Classifier Prediction, Accuracy is " + str(mlpc_accuracy))
                                             #(using MLPClassifler)
                                             rfor = HandomForestClassifier()
                                             rfor.fit(X_train,Y_train.values.ravel())
                                             rfor_pred=rfor.predict(X_test)
                                             rfor_accuracy=metrics.accuracy_score(Y_test,rfor_pred)
                                             print ("4) Using RandomForest Classifier Prediction, Accuracy is " + str(rfor_accuracy))
                                             #(using Linear Repression)
                                             linreg-linear_model.tinearRegression()
                                             linreg.fit(X_train,Y_train)
                                             linreg_pred=rfor.predict(X_test)
                                             linreg_accuracy=metrics.accuracy_score(V_test,linreg_pred)
rmse = math.sqrt(mean_squared_error(Y_test,linreg_pred))
                                             print ("5) Using Linear Regression Prediction, Accuracy is " * str(linea_accuracy))
                                          1) Using Decision Tree Prediction, Accuracy is 0.8131578947368421
                                          2) Using K Neighbors Classifier Prediction, Accuracy is 0.3157894736842105
                                          3) Using MLPC Classifler Prediction, Accuracy is 0.14473684210526316
4) Using RandomForest Classifler Prediction, Accuracy is 0.8164210526315780
                                          5) Using Linear Regression Prediction, Accuracy is 8.8184218526315789
                                         [35] metrics.confusion matrix(Y test, rfor pred)
Confusion Matrix
                                                   array([[ 0, 0, 1, ..., 0, 0, 0],
                                                               [0, 0, 0, ..., 0, 0, 0],
                                                               [0, 0, 3, ..., 0, 0, 0],
                                                               [0, 0, 0, ..., 12, 0, 0],
                                                               [0, 0, 0, ..., 0, 11, 0],
                                                               [0, 0, 0, ..., 1, 1, 1]])
                                           Accuracy of algorithms
Accuracy Score

 Decision Tree - 81.57%

    KNN - 31.57%

    MLPC classifier - 12.36%

 Random Forest - 82.10%

    Linear Regression - 82.10%
```

r		1					
		<pre>/ [36] print(metrics.</pre>	classificati	on_report	(Y_test, rf	or_pred))	
	Classification Report	Us					
		50	0.75	1.00	0.86	6	
		51	0.00	0.00	0.00	2	
		52	0.00	0.00	0.00	1	
		53	0.00	0.00	0.00	1	
		54	0.00	0.00	0.00	1	
		55	0.86	0.92	0.89	13	
		56	0.00	0.00	0.00	2	
		58	0.00	0.00	0.00	1	
		59	0.00	0.00	0.00	1	
		60	1.00	0.67	0.80	6	
		61	0.76	0.81	0.79	16	
		62	0.00	0.00	0.00	1	
		64	0.00	0.00	0.00	1	
		65	1.00	0.67	0.80	3	
		66	0.73	0.62	0.67	13	
		67	0.85	0.85	0.85	13	
		68	0.00	0.00	0.00	2	
		69	1.00	1.00	1.00	1	
		70	0.86	1.00	0.92	6	
		71	1.00	0.62	0.77	8	
		72	0.79	0.88	0.83	17	
		73	0.73	0.73	0.73	11	
		74	0.00	0.00	0.00	1	
		75	0.00	0.00	0.00	2	
		76	0.71	0.71	0.71	17	
		77	0.71	0.62	0.67	8	
		78	0.79	0.73	0.76	15	
		79	0.76	0.89	0.82	18	
		√ [36] 76	0.71	0.71	0.71	17	
		77	0.71	0.62	0.67	8	
		78	0.79	0.73	0.76	15	
		79	0.76	0.89	0.82	18	
		81	0.40	1.00	0.57	2	
		82	0.93	0.96	0.94	69	
		83	0.81	0.94	0.87	18	
		84	0.83	0.83	0.83	6	
		85	0.83	0.83	0.83	6	
		87	0.57	1.00	0.73	4	
		88	0.95	0.98	0.96	42	
		89	0.75	1.00	0.86	6	
		90	1.00	1.00	1.00	2	
		93	1.00	1.00	1.00	12	
		94	0.92	1.00	0.96	11	
		99	1.00	0.67	0.80	3	
		accuracy			0.83	380	
		macro avg	0.50	0.52	0.50	380	
		weighted avg	0.80	0.83	0.81	380	

```
2.
          Tune the
                                         Hyperparameter Tuning
                                                                                                     - Hyperparameter tuning and cross validation
          Model
                                                                                                     (48) # automatic mested cross-validation for random forest on a classification dataset
                                         Validation Method -
                                                                                                                # automatic mested cross-validation for random fores
from numpy import std
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import GridSearchCV
from sklearn.ensemble import RandomForestClassifier
                                                                                                                # create dataset
                                                                                                                # configure the cruss-validation procedure
cv_inner = KFold(n_splits=2, shuffle=True, random_state=1)
# define the model
model = RandomForestClassifier(random_state=1)
                                                                                                                 # define smarch space
                                                                                                                space - dict()
                                                                                                                space['n_estimators'] = [10, 100, 500]
space['ndx_features'] = [2, 4, 6]
                                                                                                                search = GridSearchCV(model, space, scoring='accuracy', n_jobs=1, cv=cv_inner, refit=True)
                                                                                                                * configure the cross-validation procedure
cv_outer - KFold(n_splits=10, shuffle=True, random_state=1)
                                                                                                                 # execute the nested cross-validation
                                                                                                                 scores = cross_val_score(search, X, Y, scoring='accuracy', cv=cv_outer, n_fobs=-1)
                                                                                                                # report perform
                                                                                                                print('Accuracy: %.3F (%.3F)' % (wean(scores), std(scores)))
                                                                                                                Accuracy: 8.869 (0.821)
```