School of Computing and Information Systems The University of Melbourne COMP90049

Knowledge Technologies (Semester 1, 2018) Workshop exercises: Week 11

1. For the following dataset:

ID	Outl	Temp	Humi	Wind	Play		
TRAINING INSTANCES							
Α	s	h	h	F	N		
В	s	h	h	T	N		
C	0	h	h	F	Y		
D	r	m	h	F	Y		
E	r	С	n	F	Y		
F	r	С	n	T	N		
Test Instances							
G	0	С	n	T	?		
Н	s	m	h	F	?		

Classify the test instances using a Decision Tree:

- (a) Using the Information Gain as a splitting criterion
- (b) Using the Gini Index as a splitting criterion
- 2. What is **bagging**, in the context of **Decision Trees**?
 - (a) What is a **Random Forest**?
 - (b) What advantages does a Random Forest have, with comparison to a (deterministic) Decision Tree model, or a bag of Decision Trees?
- 3. For the following dataset:

$_apple$	ibm	lemon	sun	CLASS				
Training Instances								
4	0	1	1	FRUIT				
5	0	5	2	FRUIT				
2	5	0	0	COMPUTER				
1	2	1	7	COMPUTER				
Test Instances								
2	0	3	1	?				
1	0	1	0	?				

- (a) Using the Euclidean distance measure, classify the test instances using the 1-NN method.
- (b) It is also possible to use a similarity measure for k-NN, rather than a distance measure: using the **Cosine similarity**, classify the test instances using the 3-NN method.