Package 'STCCGEV'

March 27, 2025

Title Conditional Copula Model for Crop Yield Forecasting

Version 1.0.0

Description Provides functions to model and forecast crop yields using a spatial temporal conditional copula approach.

The package incorporates extreme weather covariates and Bayesian Structural Time Series models to analyze crop

yield dependencies across multiple regions. Includes tools for fitting, simulating, and visualizing results.

This method build upon established R packages, includ-

ing 'Hofert' 'et' 'al'. (2025) <doi:10.32614/CRAN.package.copula>, 'Scott' (2024) <doi:10.32614/CRAN.package.bsts>, and 'Stephenson' 'et' 'al'. (2024) <doi:10.32614/CRAN.package.evd>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports bsts, copula, evd, ggplot2, grDevices, rootSolve, stats, utils

Depends R (>= 4.0.0)

LazyData true

LazyDataCompression xz

Suggests knitr, rmarkdown, testthat (>= 3.0.0),

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Marie Michaelides [aut],

Mélina Mailhot [aut], Yongkun Li [aut, cre]

Maintainer Yongkun Li <yongkun.li@concordia.ca>

Repository CRAN

Date/Publication 2025-03-27 17:30:04 UTC

2 Contents

Contents

Index

clayton.theta	3
copula_list	3
cropyields_covariates	4
dynamic.rho	5
dynamic.theta.clayton	5
dynamic.theta.frank	5
dynamic.theta.gumbel	7
dynamic.theta.joe	7
fit_bsts	3
frank.theta	3
GH.theta	9
init_params_full	9
init_params_full_G)
init_params_noGEV)
joe.theta	1
log_likelihood_Generalized	
log_likelihood_generalized_2d	2
log_likelihood_noGEV	
medoid_names	
n_test	4
n_train	
plot_forecast	
plot_forecast_compare	
simul.fun.noGEV	5
simulation_generalized	7
simul_fun_generalized_2d	9
time_all)
time_test)
time_train	1
uu	1
xx_all	2
xx_test	2
xx_train	3
yy_all	3
yy_test	4
yy_train	4
zz_all	5
zz_test	5
zz_train	5

27

clayton.theta 3

clayton.theta

Compute Clayton Copula Parameter from Kendall's Tau

Description

Computes the Clayton copula dependence parameter based on Kendall's tau.

Usage

```
clayton.theta(tau)
```

Arguments

tau

Numeric, Kendall's tau correlation coefficient.

Value

Numeric, estimated Clayton copula parameter.

copula_list

Supported copula types

Description

A list containing supported copula types.

Usage

```
copula_list
```

Format

A list of copula types.

```
copulas "Gaussian" "Clayton" "Frank" "Gumbel" "Joe"
```

Description

Contains crop yields and climate indices data of 24 CD regions in Ontario from 1950 to 2022

Usage

```
cropyields_covariates
```

Format

```
A data frame with 1752 rows and 38 variables:
```

time chr: year from 1950-2022

CAR CODE num: 1-4

CAR chr: Southern, Western, Central, Eastern Ontario

CD_CODE num

CD chr: 24 subregions

ID chr

lat num: latitudelon num: longitude

yield num: wheat crop yield per census division, in bushel/acre

cdd num: Annual maximum number of consecutive days with daily precipitation below 1mm (unit = days)

cddcold 18 num: Annual cooling degree days above 18C (unit = degree days)

dlyfrzthw_tx0_tn num: Annual number of days with a diurnal freeze-thaw cycle : tmax > 0 degc
 and tmin <= -1 degc</pre>

first_fall_frost num: First day of year with temperature below 0 degc for at least 1 days

frost_days num: Annual number of days with minimum daily temperature below 0C

ice_days num: Annual number of days with maximum daily temperature below 0 degC

nr_cdd num: The annual number of dry periods of 6 days and more, during which the maximal precipitation on a window of 6 days is under 1.0 mm

prcptot num: Annual total precipitation (unit = mm)

r1mm num: Annual number of days with daily precipitation over 1.0 mm/day

r10mm num: Annual number of days with daily precipitation over 10.0 mm/day

r20mm num: Annual number of days with daily precipitation over 20.0 mm/day

rx1day num: Annual maximum 1-day total precipitation (unit = mm)

rx5day num: Annual maximum 5-day total precipitation (unit = mm)

dynamic.rho 5

tg_mean num: Annual mean of daily mean temperatures (unit = C degrees)

tn_mean num: Annual mean of daily minimum temperatures (unit = C degrees)

tn_min num: Annual minimum of daily minimum temperatures (unit = C degrees)

tnlt_-15 num: Annual number of days where daily minimum temperature is below -15 degC

tnlt -25 num: Annual number of days where daily minimum temperature is below -25 degC

tr_18 num: Annual number of tropical nights: defined as days with minimum daily temperature above 18 degc

tr_20 num: Annual number of tropical nights: defined as days with minimum daily temperature above 20 degc

tr_22 num: Annual number of tropical nights : defined as days with minimum daily temperature above 22 degc

tx_max num: Annual minimum of daily maximum temperature (unit = C degrees)

tx_mean num: Annual mean of daily maximum temperature (unit = C degrees)

txgt_25 num: Annual number of days where daily maximum temperature exceeds 25 degC

txgt_27 num: Annual number of days where daily maximum temperature exceeds 27 degC

txgt_29 num: Annual number of days where daily maximum temperature exceeds 29 degC

txgt_30 num: Annual number of days where daily maximum temperature exceeds 30 degC

txgt_32 num: Annual number of days where daily maximum temperature exceeds 32 degC

Source

ClimateData.ca

dynamic.rho

Compute Dynamic Gaussian Copula Correlation Parameter (rho)

Description

Computes the time-varying correlation parameter (rho) for a Gaussian copula.

Usage

```
dynamic.rho(params, lagged_rho, X_t)
```

Arguments

params Numeric vector of parameters: omega, alpha, and gamma coefficients.

lagged_rho Numeric, the previous rho value.

X_t Numeric vector or matrix of covariates at time t.

Value

Numeric, estimated dynamic Gaussian copula correlation.

6 dynamic.theta.frank

dynamic.theta.clayton Compute Dynamic Clayton Copula Parameter

Description

Computes the Clayton copula parameter dynamically based on lagged values and covariates.

Usage

```
dynamic.theta.clayton(params, lagged_theta, X_t)
```

Arguments

params Numeric vector of parameters: omega, alpha, and gamma coefficients.

X_t Numeric vector or matrix of covariates at time t.

Value

Numeric, estimated dynamic Clayton copula parameter.

dynamic.theta.frank Compute Dynamic Frank Copula Parameter

Description

Computes the Frank copula parameter dynamically based on lagged values and covariates.

Usage

```
dynamic.theta.frank(params, lagged_theta, X_t)
```

Arguments

params Numeric vector of parameters: omega, alpha, and gamma coefficients.

X_t Numeric vector or matrix of covariates at time t.

Value

Numeric, estimated dynamic Frank copula parameter.

dynamic.theta.gumbel 7

dynamic.theta.gumbel Compute Dynamic Gumbel Copula Parameter

Description

Computes the Gumbel copula parameter dynamically based on lagged values and covariates.

Usage

```
dynamic.theta.gumbel(params, lagged_theta, X_t)
```

Arguments

params Numeric vector of parameters: omega, alpha, and gamma coefficients.

X_t Numeric vector or matrix of covariates at time t.

Value

Numeric, estimated dynamic Gumbel copula parameter.

Description

Computes the Joe copula parameter dynamically based on lagged values and covariates.

Usage

```
dynamic.theta.joe(params, lagged_theta, X_t)
```

Arguments

params Numeric vector of parameters: omega, alpha, and gamma coefficients.

X_t Numeric vector or matrix of covariates at time t.

Value

Numeric, estimated dynamic Joe copula parameter.

8 frank.theta

fit_bsts

Fit a Bayesian Structural Time Series (BSTS) Model

Description

Fits a BSTS model for a time series y, given a vector or matrix of covariates z.

Usage

```
fit_bsts(y, z, lags = 0, MCMC.iter = 5000)
```

Arguments

y A numeric vector (time series response variable).

z A numeric vector or matrix (covariates).

lags Integer, number of lags for the autoregressive component.

MCMC.iter Integer, number of MCMC iterations.

Value

A fitted BSTS model.

frank.theta

Compute Frank Copula Parameter from Kendall's Tau

Description

Computes the Frank copula dependence parameter based on Kendall's tau.

Usage

```
frank.theta(tau)
```

Arguments

tau

Numeric, Kendall's tau correlation coefficient.

Value

Numeric, estimated Frank copula parameter.

GH.theta 9

GH.theta

Compute Gumbel Copula Parameter from Kendall's Tau

Description

Computes the Gumbel-Hougaard copula dependence parameter based on Kendall's tau.

Usage

```
GH. theta(tau)
```

Arguments

tau

Numeric, Kendall's tau correlation coefficient.

Value

Numeric, estimated Gumbel copula parameter.

init_params_full

Initial Parameters for 2D Pseudo-Loglikelihood Estimation

Description

Initial Parameters for 2D Pseudo-Loglikelihood Estimation

Usage

```
init_params_full
```

Format

```
A numeric vector of length (2 + M + 4 * D * M) where:
```

omega Baseline autoregressive coefficient.

alpha Parameter controlling variance.

gamma1, gamma2, gamma3 Coefficients related to external factors.

phi_gev AR(1) coefficient for GEV.

sigma_mu Std dev of innovations for AR(1) process for GEV.

sigma_gev GEV scale parameter for GEV.

xi_gev GEV shape parameter for GEV.

10 init_params_noGEV

 $init_params_full_G$

Initial Parameters for 2D Pseudo-Loglikelihood-Generalized Estimation

Description

Initial Parameters for 2D Pseudo-Loglikelihood-Generalized Estimation

Usage

```
init_params_full_G
```

Format

A numeric vector of length (2 + M + 4 * D * M), structured as follows:

omega Baseline autoregressive coefficient.

alpha Parameter controlling variance.

gamma1, gamma2, gamma3 Coefficients related to external factors.

Climate variable parameters For each climate variable in each region, the following parameters are included:

• mean(z), sd(z), sd(z), xi_gev for each region and variable.

init_params_noGEV

Initial Parameters for 2D Pseudo-Loglikelihood Estimation without GEV models for covariates

Description

Initial Parameters for 2D Pseudo-Loglikelihood Estimation without GEV models for covariates

Usage

```
init_params_noGEV
```

Format

A numeric vector of length (2 + M) where:

omega Baseline autoregressive coefficient.

alpha Parameter controlling variance.

gamma1, gamma2, gamma3 Coefficients related to external factors.

joe.theta 11

joe.theta	Compute Joe Copula Parameter from Kendall's Tau	

Description

Computes the Joe copula dependence parameter based on Kendall's tau.

Usage

```
joe.theta(tau)
```

Arguments

tau

Numeric, Kendall's tau correlation coefficient.

Value

Numeric, estimated Joe copula parameter.

```
log_likelihood_Generalized
```

Compute Log-Likelihood for a Generalized Dynamic Copula-GEV Model

Description

Computes the log-likelihood for a time-varying copula model combined with Generalized Extreme Value (GEV) margins.

Usage

```
log_likelihood_Generalized(params, U, Z, X, copula)
```

Arguments

params	Numeric vector of model parameters, including copula parameters (omega, alpha, gamma) and GEV distribution parameters.
U	Numeric matrix (n_train x D), pseudo-observations for the copula.
Z	Numeric array (n_train x D x M), observed data for each margin and sub-feature.
Χ	Numeric matrix (n_train x M), risk factors for the dynamic copula parameter.
copula	Character, specifying the copula type: "Clayton", "Frank", "Gumbel", "Joe", or "Gaussian".

Value

Numeric, negative log-likelihood value.

Examples

log_likelihood_generalized_2d

Generalized Log-Likelihood Function for 2D Copula-GEV Model

Description

Computes the negative log-likelihood of a 2-dimensional copula-GEV model, incorporating dynamic Generalized Extreme Value (GEV) parameters and a time-varying copula structure.

Usage

```
log_likelihood_generalized_2d(params, u1, u2, X_t, z1, z2, copula)
```

Arguments

params	Numeric vector, model parameters including copula and GEV parameters.
u1	Numeric vector (length n_train), pseudo-observations for margin 1.
u2	Numeric vector (length n_train), pseudo-observations for margin 2.
X_t	Numeric matrix (n_train x M), risk factors affecting copula parameters.
z1	Numeric matrix (n_train x M), observed data for margin 1.
z2	Numeric matrix (n_train x M), observed data for margin 2.
copula	Character, specifying the copula type: "Clayton", "Frank", "Gumbel", "Joe", or "Gaussian".

Value

The negative log-likelihood value for optimization.

Examples

log_likelihood_noGEV	Compute Log-Likelihood for a Generalized Dynamic Copula Model
	without GEV covariates

Description

Computes the log-likelihood for a time-varying copula model.

Usage

```
log_likelihood_noGEV(params, U, Z, X, copula)
```

Arguments

params	Numeric vector of model parameters, including copula parameters (omega, alpha, gamma).
U	Numeric matrix (n_train x D), pseudo-observations for the copula.
Z	Numeric array (n_train x D x M), observed data for each margin and sub-feature.
Χ	Numeric matrix (n_train x M), risk factors for the dynamic copula parameter.
copula	Character, specifying the copula type: "Clayton", "Frank", "Gumbel", "Joe", or "Gaussian".

Value

Numeric, negative log-likelihood value.

Examples

medoid_names	list containing Dufferin and Wellington

Description

list containing Dufferin and Wellington

Usage

medoid_names

Format

An object of class list of length 2.

plot_forecast

n_test 19

Description

19

Usage

n_test

Format

An object of class integer of length 1.

n_train 54

Description

54

Usage

n_train

Format

An object of class integer of length 1.

plot_forecast

Plot Observed Data and BSTS Forecast

Description

Creates a plot of observed data, forecasted values, and confidence intervals.

plot_forecast_compare 15

Usage

```
plot_forecast(
  forecast,
  data_train,
  data_test,
  time,
  quant_high,
  quant_low,
  observed_col,
  forecast_col,
  title
)
```

Arguments

forecast A matrix of BSTS forecast samples. Numeric vector, training data. data_train data_test Numeric vector, test data. time Numeric vector, representing time indices. Numeric, upper quantile for confidence interval. quant_high Numeric, lower quantile for confidence interval. quant_low observed_col Character, color for observed data. forecast_col Character, color for forecasted data. Character, title of the plot. title

Value

A ggplot2 object.

```
plot_forecast_compare Compare Forecasts from Two Models
```

Description

Generates a time series plot comparing the forecasts from two models along with observed data.

Usage

```
plot_forecast_compare(
  forecast1,
  forecast2,
  data_train,
  data_test,
  time,
```

16 simul.fun.noGEV

```
quant_high,
quant_low,
col1,
title
)
```

Arguments

forecast1 Numeric matrix, forecasted values from the first model (columns: time points). forecast2 Numeric matrix, forecasted values from the second model (columns: time points). data_train Numeric vector, training data used for modeling. data_test Numeric vector, actual test data for evaluation. Numeric vector, representing the time points corresponding to the data. time Numeric, upper quantile (e.g., 0.9) for confidence interval. quant_high quant_low Numeric, lower quantile (e.g., 0.1) for confidence interval. Character, color for observed data lines. col1 title Character, title for the plot.

Value

A ggplot2 object showing the forecast comparison.

simul.fun.noGEV Simulate Multivariate Crop Yield Data Using a Generalized Copula-BSTS Model Without GEV Covariates

Description

This function simulates multivariate crop yield data using a time-varying copula combined with Bayesian Structural Time Series (BSTS) models without GEV covariates for comparision.

Usage

```
simul.fun.noGEV(
   nsim = 100,
   n_train,
   n_test,
   copula,
   init_params,
   fn,
   U_train,
   Z_train,
   Z_test,
   X_train,
   X_test,
   Y_test,
   BSTS_list
)
```

simulation_generalized 17

Arguments

Integer, number of simulation replications. nsim n_train Integer, number of training observations. n_test Integer, number of test observations. Character, specifying the copula type: "Clayton", "Frank", "Gumbel", "Joe", or copula "Gaussian". init_params Numeric vector, initial parameter values for optimization. fn Function, log-likelihood function for parameter estimation. U_train Numeric matrix (n_train x D), pseudo-observations for the copula. Z_train Numeric array (n_train x D x M), observed data for each margin and sub-feature. Z_{test} Numeric array (n_test x D x M), observed data for each margin and sub-feature. Numeric matrix (n_train x M), risk factors for the dynamic copula parameter. X_train X_test Numeric matrix (n_test x M), risk factors for the dynamic copula parameter. Y test Numeric matrix (n test x D), true future values for MSE calculation. BSTS_list List of length D, each element is a BSTS model for a different margin.

Value

A list containing:

optim_results Results from the optimization process.

theta_sim Simulated copula parameters across replications.

Y_sim Simulated final BSTS-based forecasts.

MSE Mean squared error for each simulation run.

simulation_generalized

Simulate Multivariate Crop Yield Data Using a Generalized Copula-GEV-BSTS Model

Description

This function simulates multivariate crop yield data using a time-varying copula combined with Generalized Extreme Value (GEV) margins and Bayesian Structural Time Series (BSTS) models.

Usage

```
simulation_generalized(
  nsim = 100,
  n_train,
  n_test,
  copula,
  init_params,
  fn,
  U_train,
  Z_train,
  X,
  Y_test,
  BSTS_list
)
```

Arguments

nsim Integer, number of simulation replications.

n_train Integer, number of training observations.

n_test Integer, number of test observations.

copula Character, specifying the copula type: "Clayton", "Frank", "Gumbel", "Joe", or

"Gaussian".

init_params Numeric vector, initial parameter values for optimization.

fn Function, log-likelihood function for parameter estimation.

U_train Numeric matrix (n_train x D), pseudo-observations for the copula.

Z_train Numeric array (n_train x D x M), observed data for each margin and sub-feature.

X Numeric matrix (n_train x M), risk factors for the dynamic copula parameter.

Y_test Numeric matrix (n_test x D), true future values for MSE calculation.

BSTS_list List of length D, each element is a BSTS model for a different margin.

Value

A list containing:

optim_results Results from the optimization process.

theta_sim Simulated copula parameters across replications.

Y_sim Simulated final BSTS-based forecasts.

MSE Mean squared error for each simulation run.

```
simul_fun_generalized_2d
```

A Special Case of simulation_generalized in 2 Dimensions

Description

A Special Case of simulation_generalized in 2 Dimensions

Usage

```
simul_fun_generalized_2d(
 nsim,
 n_train,
 n_test,
  copula,
  init_params,
  fn,
  u1,
 u2,
 z1_train,
 z2_train,
 X_t
 y1_test,
 y2_test,
 BSTS_1,
 BSTS_2
)
```

Arguments

Integer, number of simulation replications.
Integer, number of training observations.
Integer, number of test observations.
Character, specifying the copula type: "Clayton", "Frank", "Gumbel", "Joe", or "Gaussian".
Numeric vector, initial parameter values for optimization.
Function, log-likelihood function for parameter estimation.
Numeric vector (n_train), first pseudo-observation for the copula.
Numeric vector (n_train), second pseudo-observation for the copula.
Numeric matrix (n_train x M), observed data for the first margin.
Numeric matrix (n_train x M), observed data for the second margin.
Numeric matrix (n_train x M), risk factors for the dynamic copula parameter.
Numeric vector (n_test), true future values for the first response variable.

20 time_test

y2_test	Numeric vector (n_test), true future values for the second response variable.
BSTS_1	Fitted BSTS model for the first response variable.
BSTS_2	Fitted BSTS model for the second response variable.

Value

A list containing:

theta_simulated

Simulated copula parameters across replications.

y1_simulated Simulated values for the first response variable.
y2_simulated Simulated values for the second response variable.

MSE Mean squared error for each simulation run.

optim_results Results from the optimization process.

time_all 1950-2022

Description

1950-2022

Usage

time_all

Format

An object of class character of length 73.

time_test 2004-2022

Description

2004-2022

Usage

time_test

Format

An object of class character of length 19.

time_train 21

time_train

1950-2003

Description

1950-2003

Usage

 $time_train$

Format

An object of class character of length 54.

uu

Pseudo-Observations of BSTS Residuals for Crop Yield Forecasting

Description

Pseudo-Observations of BSTS Residuals for Crop Yield Forecasting

Usage

uu

Format

A matrix with dimensions $(n_t rain, D)$:

- **n_train** Number of time points used in the training set.
- **D** Number of regions analyzed (Dufferin, Wellington).

Source

Derived from residuals of BSTS models fitted to crop yield data.

22 xx_test

xx_all

Maximized Covariates Matrix for Crop Yield Forecasting

Description

Maximized Covariates Matrix for Crop Yield Forecasting

Usage

xx_all

Format

A three-dimensional array with dimensions $(n_t rain + n_t est, M)$:

n_train+n_test Number of time points used in the training set.

M Number of selected climate covariates used for modeling (cdd,frost_days,rx1day, tg_mean, txgt_25).

Source

Derived from historical climate data from ClimateData.ca.

xx_test

Maximized Covariates Matrix for Crop Yield Forecasting

Description

Maximized Covariates Matrix for Crop Yield Forecasting

Usage

xx_test

Format

A three-dimensional array with dimensions $(n_t est, M)$:

n_test Number of time points used in the testing set.

M Number of selected climate covariates used for modeling (cdd,frost_days,rx1day, tg_mean, txgt_25).

Source

Derived from historical climate data from ClimateData.ca.

xx_train 23

xx_train

Maximized Covariates Matrix for Crop Yield Forecasting

Description

Maximized Covariates Matrix for Crop Yield Forecasting

Usage

xx_train

Format

A three-dimensional array with dimensions $(n_t rain, M)$:

n_test Number of time points used in the training set.

M Number of selected climate covariates used for modeling (cdd,frost_days,rx1day, tg_mean, txgt_25).

Source

Derived from historical climate data from ClimateData.ca.

yy_all

Crop Yield Data

Description

Crop Yield Data

Usage

yy_all

Format

A matrix with dimensions $(n_t rain + n_t est, D)$:

- n_train+n_test Number of time points used in the test set.
- **D** Number of regions analyzed (Dufferin, Wellington).

Source

Historical crop yield records from ClimateData.ca.

24 yy_train

yy_test

Crop Yield Data for Testing in BSTS Models

Description

Crop Yield Data for Testing in BSTS Models

Usage

yy_test

Format

A matrix with dimensions $(n_t rain, D)$:

- **n_train** Number of time points used in the test set.
- **D** Number of regions analyzed (Dufferin, Wellington).

Source

Historical crop yield records from ClimateData.ca.

yy_train

Crop Yield Data for Training in BSTS Models

Description

Crop Yield Data for Training in BSTS Models

Usage

yy_train

Format

A matrix with dimensions $(n_t est, D)$:

- **n_test** Number of time points used in the train set.
- **D** Number of regions analyzed (Dufferin, Wellington).

Source

Historical crop yield records from ClimateData.ca.

zz_all 25

zz_all

Standardized Covariates Array for Crop Yield Forecasting

Description

Standardized Covariates Array for Crop Yield Forecasting

Usage

zz_all

Format

A three-dimensional array with dimensions $(n_t rain + n_t est, D, M)$:

- **n_train+n_test** Number of time points used in the training set.
- **D** Number of regions analyzed (Dufferin, Wellington).
- M Number of selected climate covariates used for modeling (cdd,frost_days,rx1day, tg_mean, txgt_25).

Source

Derived from historical climate data.

zz_test

Standardized Covariates Array for Crop Yield Forecasting

Description

Standardized Covariates Array for Crop Yield Forecasting

Usage

zz_test

Format

A three-dimensional array with dimensions $(n_t est, D, M)$:

- **n_test** Number of time points used in the testing set.
- **D** Number of regions analyzed (Dufferin, Wellington).
- M Number of selected climate covariates used for modeling (cdd,frost_days,rx1day, tg_mean, txgt_25).

Source

Derived from historical climate data.

26 zz_train

zz_train

Standardized Covariates Array for Crop Yield Forecasting

Description

Standardized Covariates Array for Crop Yield Forecasting

Usage

zz_train

Format

A three-dimensional array with dimensions $(n_t rain, D, M)$:

- **n_test** Number of time points used in the training set.
- **D** Number of regions analyzed (Dufferin, Wellington).
- M Number of selected climate covariates used for modeling (cdd,frost_days,rx1day, tg_mean, txgt_25).

Source

Derived from historical climate data from ClimateData.ca.

Index

* datasets	joe.theta, 11
copula_list, 3	
cropyields_covariates,4	log_likelihood_Generalized, 11
<pre>init_params_full, 9</pre>	<pre>log_likelihood_generalized_2d, 12</pre>
<pre>init_params_full_G, 10</pre>	<pre>log_likelihood_noGEV, 13</pre>
<pre>init_params_noGEV, 10</pre>	
medoid_names, 13	medoid_names, 13
n_test, 14	14
n_train, 14	n_test, 14
$time_all, 20$	n_train, 14
time_test, 20	plot_forecast, 14
time_train, 21	·
uu, 21	plot_forecast_compare, 15
xx_all, 22	simul.fun.noGEV, 16
xx_test, 22	simul_fun_generalized_2d, 19
xx_train, 23	simulation_generalized, 17
yy_all, 23	Simulation_generalized, 17
yy_test, 24	$time_all, 20$
yy_train, 24	time_test, 20
zz_all, 25	time_train, 21
zz_test, 25	
zz_train, 26	uu, 21
22_01 0111, 20	,
clayton.theta, 3	xx_all, 22
copula_list, 3	xx_test, 22
cropyields_covariates, 4	xx_train, 23
dynamic.rho, 5	yy_all, 23
dynamic.theta.clayton, 6	yy_test, 24
dynamic.theta.frank, 6	yy_train, 24
dynamic.theta.gumbel, 7	
dynamic.theta.joe, 7	zz_all, 25
	zz_test, 25
fit_bsts, 8	zz_train, 26
frank.theta,8	
GH.theta,9	
<pre>init_params_full, 9</pre>	
init_params_full_G, 10	
·	
init_params_noGEV, 10	