002

Bird's-eye view, and aims

Spring 2023

Optimization on manifolds, MATH 512 @ EPFL

Instructor: Nicolas Boumal

What tools do we need solve $\min_{x \in \mathcal{M}} f(x)$?

To be concrete, say \mathcal{M} is the unit sphere:

$$S^{n-1} = \{ x \in \mathbf{R}^n : x^{\mathsf{T}} x = 1 \}$$

- 1. What does it mean that S^{n-1} is smooth?
- 2. What does it mean for $f: S^{n-1} \to \mathbf{R}$ to be smooth?

(1)
$$h(z) = x^{T}z - 1$$
; $S^{n-1} = \{z \in \mathbb{R}^{n} : h(z) = 0\}$.
Pick $z \in S^{n-1}$; Consider $v \in \mathbb{R}^{n}$.
 $h(z+v) \sim h(z) + Dh(z)[v]$

$$Dh(2e)[v] = \lim_{t\to 0} \frac{h(x+tv) - h(x)}{t} = \lim_{t\to 0} \frac{t x^{T}v + tv^{T}x + t^{2}v^{T}v}{t}$$

$$= 2x^TV.$$

ku Dh(x) = {
$$V \in \mathbb{R}^n$$
: $z^T V = 0$ } $\stackrel{\triangle}{=} T_z S^{n-1}$

(2)
$$\overline{f}:\mathbb{R}^n \to \mathbb{R}$$
, Amost $P(C^{\infty})$; ? $f = \overline{f}|_{S^{n-1}}:S^{n-1}\to \mathbb{R}$ Amost R .

Simplest algorithm to minimize $g: \mathbb{R}^n \to \mathbb{R}$ is gradient descent:

$$x_{k+1} = x_k - \alpha \operatorname{grad} g(x_k)$$

How to extend this for $f: S^{n-1} \to \mathbb{R}$?

3. How can we move around on the sphere?

Given
$$x \in S^{n-1}$$
, $v \in T_x S^{n-1}$, pick a new point on the sphere:
$$R_x(v) = \frac{x+v}{11x+v11} \quad \text{(one possible choice)}.$$

4. What could be a reasonable notion of gradient for $f: S^{n-1} \to \mathbb{R}$?

$$g: \mathbb{R}^n \to \mathbb{R}$$
; $Dg(x)[v] = \lim_{t \to 0} \frac{g(x+tv) - g(x)}{t}$

$$\langle g(adg(x), v \rangle = Dg(x)[v]$$
; need inner product.

If
$$\langle u, v \rangle = u^{T}v$$
, then $gradg(x) = \begin{bmatrix} \frac{\partial g}{\partial x_{i}} \\ \frac{\partial g}{\partial x_{n}} \end{bmatrix}(x)$.

Beyond gradient descent

More advanced optimization algorithms in \mathbb{R}^n may use Hessians.

The Hessian of f is the derivative of its gradient vector field.

Differentiating vector fields on manifolds requires care.

We'll study Riemannian connections,

and build from there to construct, e.g., trust-region methods.

If you work diligently, you will be:

Fluent in basic differential and Riemannian geometry, with an emphasis on computation, beginning with embedded geometry;

Familiar with both first- and second-order algorithms on manifolds, in terms of both mathematics and implementation;

Acquainted with some advanced topics to be determined, such as quotient manifolds, geodesic convexity, vector transports++, ...

Ready to tackle research and applied challenges in+with $\min_{\mathcal{M}} f$.