MIPS32® Instruction Set Quick Reference

 $\begin{array}{lll} R\text{d} & & - \text{ Destination register} \\ Rs,\,Rt & & - \text{ Source operand registers} \\ Ra & & - \text{ Return address register (R31)} \end{array}$

PC — PROGRAM COUNTER
ACC — 64-BIT ACCUMULATOR

Lo, HI — Accumulator low (Acc_{31:0}) and high (Acc_{63:32}) parts

± — Signed operand or sign extension

Ø — Unsigned operand or zero extension

∷ — Concatenation of bit fields

R2 — MIPS32 Release 2 instruction

ASSEMBLER PSEUDO-INSTRUCTION

PLEASE REFER TO "MIPS32 ARCHITECTURE FOR PROGRAMMERS VOLUME II: THE MIPS32 INSTRUCTION SET" FOR COMPLETE INSTRUCTION SET INFORMATION.

Arithmetic Operations				
ADD	RD, Rs, RT	$R_D = R_S + R_T$ (overflow trap)		
ADDI	Rd, Rs, const16	$R_D = R_S + const 16^{\pm}$ (overflow trap)		
ADDIU	Rd, Rs, const16	$R_D = R_S + const 16^{\pm}$		
ADDU	RD, Rs, RT	$R_D = R_S + R_T$		
CLO	RD, RS	Rd = CountLeadingOnes(Rs)		
CLZ	RD, RS	Rd = CountLeadingZeros(Rs)		
LA	Rd, label	$R_{\rm D} = A_{\rm DDRESS}(LABEL)$		
LI	Rd, імм32	$R_D = I_{MM}32$		
LUI	Rd, const16	$R_D = CONST16 << 16$		
MOVE	RD, Rs	$R_D = R_S$		
NEGU	RD, Rs	$R_D = -R_S$		
SEB ^{R2}	RD, RS	$R_D = R_{S_{7:0}}^{\pm}$		
SEH ^{R2}	RD, RS	$R_D = R_{S_{15.0}}^{\pm}$		
SUB	RD, Rs, RT	$R_D = R_S - R_T$ (overflow trap)		
SUBU	Rd, Rs, Rt	$R_D = R_S - R_T$		

SHIFT AND ROTATE OPERATIONS		
ROTR ^{R2}	Rd, Rs, bits5	$R_D = R_{S_{BITS5-1:0}} :: R_{S_{31:BITS5}}$
ROTRV ^{R2}	RD, RS, RT	$R_D = R_{S_{RT4:0-1:0}} :: R_{S_{31:RT4:0}}$
SLL	Rd, Rs, shift5	$R_D = R_S << _{SHIFT}5$
SLLV	RD, Rs, RT	$R_D = R_S << R_{T_{4:0}}$
SRA	Rd, Rs, shift5	$R_D = R_S^{\pm} >> SHIFT5$
SRAV	Rd, Rs, Rt	$R_D = R_S^{\pm} >> R_{T_{4:0}}$
SRL	Rd, Rs, shift5	$R_D = R_S^{\varnothing} >> shift5$
SRLV	Rd, Rs, Rt	$R_D = R_S^{\varnothing} >> R_{T_{4:0}}$

LOGICAL AND BIT-FIELD OPERATIONS		
AND	Rd, Rs, Rt	$R_D = R_S \& R_T$
ANDI	RD, Rs, CONST16	$R_D = R_S \& const 16^{\varnothing}$
EXT ^{R2}	RD, Rs, P, S	$R_S = R_{S_{P+S-1:P}}^{\varnothing}$
INS ^{R2}	RD, Rs, P, S	$R_{D_{P+S-1:P}} = R_{S_{S-1:0}}$
NOP		No-ор
NOR	Rd, Rs, Rt	$R_D = \sim (R_S \mid R_T)$
NOT	RD, Rs	$R_D = \sim R_S$
OR	Rd, Rs, Rt	$R_D = R_S \mid R_T$
ORI	Rd, Rs, const16	$R_D = R_S \mid \text{const} 16^{\varnothing}$
WSBH ^{R2}	RD, RS	$R_D = R_{S_{23:16}} :: R_{S_{31:24}} :: R_{S_{7:0}} :: R_{S_{15:8}}$
XOR	Rd, Rs, Rt	$R_D = R_S \oplus R_T$
XORI	RD, Rs, CONST16	$R_D = R_S \oplus const 16^{\varnothing}$

CONDITION TESTING AND CONDITIONAL MOVE OPERATIONS		
MOVN	Rd, Rs, Rt	IF $R_T \neq 0$, $R_D = R_S$
MOVZ	RD, Rs, RT	$_{\mathrm{IF}}\mathrm{R}_{\mathrm{T}}=0,\mathrm{R}_{\mathrm{D}}=\mathrm{R}_{\mathrm{S}}$
SLT	Rd, Rs, Rt	$R_D = (R_S^{\pm} < R_T^{\pm}) ? 1 : 0$
SLTI	Rd, Rs, const16	$R_D = (R_S^{\pm} < CONST16^{\pm}) ? 1 : 0$
SLTIU	Rd, Rs, const16	$R_D = (Rs^{\varnothing} < \text{const} 16^{\varnothing}) ? 1 : 0$
SLTU	Rd, Rs, Rt	$R_D = (R_S^{\varnothing} < R_T^{\varnothing}) ? 1 : 0$

Multiply and Divide Operations		
DIV	Rs, Rt	$Lo = Rs^{\pm} / Rr^{\pm}; H_I = Rs^{\pm} \mod Rr^{\pm}$
DIVU	Rs, RT	$L_0 = R_S^{\varnothing} / R_T^{\varnothing}; H_I = R_S^{\varnothing} \mod R_T^{\varnothing}$
MADD	Rs, Rt	$A_{CC} += R_S^{\pm} \times R_T^{\pm}$
MADDU	Rs, Rt	$A_{CC} += R_S^{\varnothing} \times R_T^{\varnothing}$
MSUB	Rs, Rt	$A_{CC} = R_S^{\pm} \times R_T^{\pm}$
MSUBU	Rs, Rt	$Acc = Rs^{\varnothing} \times Rt^{\varnothing}$
MUL	Rd, Rs, Rt	$R_{\rm D} = R_{\rm S}^{\pm} \times R_{\rm T}^{\pm}$
MULT	Rs, Rt	$Acc = Rs^{\pm} \times Rr^{\pm}$
MULTU	Rs, Rt	$Acc = Rs^{\varnothing} \times Rr^{\varnothing}$

Accumulator Access Operations		
MFHI	Rd	$R_D = H_I$
MFLO	Rd	$R_D = L_O$
MTHI	Rs	$H_{\rm I} = R_{\rm S}$
MTLO	Rs	Lo = Rs

Jumps And Branches (Note: One Delay Slot)		
В	OFF18	PC += OFF18 [±]
BAL	OFF18	$R_A = PC + 8$, $PC += OFF18^{\pm}$
BEQ	Rs, Rt, off18	$_{\rm IF}$ $R_{\rm S}$ = $R_{\rm T}$, PC += $_{\rm OFF}18^{\pm}$
BEQZ	Rs, off18	$_{\rm IF}$ Rs = 0, PC += $_{\rm OFF}18^{\pm}$
BGEZ	Rs, off18	IF Rs ≥ 0 , PC $+=$ OFF 18^{\pm}
BGEZAL	Rs, off18	$R_A = PC + 8$; IF $R_S \ge 0$, $PC += OFF18^{\pm}$
BGTZ	Rs, off18	IF $R_S > 0$, $PC += OFF18^{\pm}$
BLEZ	Rs, off18	IF Rs \leq 0, PC += OFF18 [±]
BLTZ	Rs, off18	IF $R_S < 0$, $PC += OFF18^{\pm}$
BLTZAL	Rs, off18	$R_A = PC + 8$; IF $R_S < 0$, $PC += OFF18^{\pm}$
BNE	Rs, Rt, off18	IF Rs \neq RT, PC $+=$ OFF 18^{\pm}
BNEZ	Rs, off18	IF Rs \neq 0, PC += OFF18 [±]
J	ADDR28	$PC = PC_{31:28} :: ADDR28^{\varnothing}$
JAL	ADDR28	$R_A = PC + 8$; $PC = PC_{31:28} :: ADDR 28^{\emptyset}$
JALR	RD, RS	$R_D = PC + 8$; $PC = R_S$
JR	Rs	PC = Rs

Load and Store Operations		
LB	RD, OFF16(Rs)	$R_D = \text{MEM}8(R_S + \text{OFF}16^{\pm})^{\pm}$
LBU	Rd, off16(Rs)	$R_{\rm D} = {}_{\rm MEM}8(R_{\rm S} + {}_{\rm OFF}16^{\pm})^{\varnothing}$
LH	Rd, off16(Rs)	$R_{\rm D} = _{\rm MEM} 16 (R_{\rm S} + _{\rm OFF} 16^{\pm})^{\pm}$
LHU	RD, OFF16(Rs)	$R_{\rm D} = _{\rm MEM} 16 (R_{\rm S} + _{\rm OFF} 16^{\pm})^{\varnothing}$
LW	RD, OFF16(Rs)	$R_D = \text{MEM}32(R_S + \text{OFF}16^{\pm})$
LWL	Rd, off16(Rs)	$R_D = L_{OAD}W_{ORD}L_{EFT}(R_S + off 16^{\pm})$
LWR	RD, OFF16(Rs)	$R_D = L_{OAD}W_{ORD}R_{IGHT}(R_S + off 16^{\pm})$
SB	Rs, off16(Rt)	$_{\text{MEM8}}(R_{\text{T}} + _{\text{OFF}}16^{\pm}) = R_{\text{S7:0}}$
SH	Rs, off16(Rt)	$_{\text{MEM}}16(R_{\text{T}} + _{\text{OFF}}16^{\pm}) = R_{S_{15:0}}$
SW	Rs, off16(Rt)	$_{\text{MEM}}32(R_{\text{T}} + _{\text{OFF}}16^{\pm}) = R_{\text{S}}$
SWL	Rs, off16(Rt)	STOREWORDLEFT(RT + OFF 16 [±] , Rs)
SWR	Rs, off16(Rt)	STOREWORDRIGHT(RT + OFF 16 [±] , Rs)
ULW	RD, OFF16(Rs)	$R_D = UNALIGNED_MEM32(R_S + OFF16^{\pm})$
USW	Rs, off16(Rt)	UNALIGNED_MEM $32(R_T + off16^{\pm}) = R_S$

Atomic Read-Modify-Write Operations		
LL	Rd, off16(Rs)	$R_D = \text{MEM}32(R_S + \text{OFF}16^{\pm}); \text{LINK}$
SC	Rd, off16(Rs)	IF ATOMIC, MEM32(Rs + off 16^{\pm}) = RD; RD = ATOMIC ? 1 : 0

REGISTERS			
0	zero	Always equal to zero	
1	at	Assembler temporary; used by the assembler	
2-3	v0-v1	Return value from a function call	
4-7			