Colorado State University -Aries IV Liquid Motor

Colum Ashlin, Eric Lufkin, Trent Sieg

Details of Design and Supporting

Analysis

Introduction

Project Overview

Mission: Optimize and improve the Aries III tribrid liquid propellant rocket motor design to reach 10,000 ft

- Develop an efficient, robust, and re-launchable design
- Optimize motor to increase efficiency
- Design reliable plumbing system
- Increase accessibility of motor

Design Summary Overview

Major Design Innovations:

- Separation of propellant tanks and combustion chamber
- Custom slide check valves
- Pintle Injector

Tribrid Liquid Propellant Engine

Tank/Chamber Separation

Slide Check Valves

Pintle Injector

Ignition Process

Details of Design and Supporting Analysis

Details of Design and Supporting Analysis

 $V = c_{tf} \cdot c_{time} \cdot V_0$ Full scale volume: $\frac{A_{throat}}{2} \ge 16$ Throat to Oxidizer ratio: Normalized combustion chamber length:

Design Summary

Testing and Evaluation

- Impulse is the area under the thrust curve
- Around 85% of the total impulse during ethanol phase

Testing and Evaluation

Full ethanol combustion

Hybrid mode (depleted ethanol)

Testing and Evaluation

Measure of Tendency	Impulse (lb*s)	Thrust (lbs)
Average	524*	187
Median	503*	191
Range	490-560*	182-196

*Hybrid mode included

Appendix

A: Static Structural

Safety Factor Type: Safety Factor Time: 1 12/4/2017 2:54 PM

Model name:top bulk head Study name:top bulkhead(-Default-) Plot type: Factor of Safety Factor of Safety1 Criterion : Automatic

Appendix Combustion Tank Thick Walled Pressure Vessel Analysis

Material :Al6061-T6	ID(in)	OD(in)	P(bar)	T (Deg K)	T (DegF)	Hoop Stress (Mpa)	LongitudinalStress	SF1
	5.499999824	6.000000074		313		-47.967944	-47.967944	4.068516731
	5.625000033	6.125000283	76.675255	313		-48.922892	-48.922892	3.989106655
	5.750000242	6.249999906	76.675255	313		-49.877928	-49.877928	3.91272974
	5.874999865	6.375000115	76.675255	313		-50.832888	-50.832888	3.839228153
	6.000000074	6.499999738	76.675255	313		-51.787984	-51.787984	3.768426895
	6.125000283	6.624999947	76.675255	313		-52.743048	-52.743048	3.700191736
	6.249999906	6.750000157	76.675255	313		-53.698072	-53.698072	3.634386539
	6.375000115	6.874999779	76.675255	313		-54.653228	-54.653228	3.570872068
	6.499999738	6.999999989	76.675255	313		-55.60828	-55,60828	3.509545803
	6.624999947	7.125000198	76.675255	313		-56.5634	-56.5634	3.45028615
	6.750000157	7.249999821	76.675255	313		-57.518592	-57.518592	3.392990351
	6.874999779	7.37500003	76.675255	313		-58.47366	-58.47366	3.33757329
	6.999999989	7.500000239	76.675255	313		-59.428796	-59.428796	3.283933401
	7.125000198	7.624999862	76.675255	313		-60.384	-60.384	3.231986761
	7.249999821	7.750000071	76.675255	313		-61.339068	-61.339068	3.181664944
	7.37500003	7.875000281	76.675255	313		-62.2942	-62.2942	3.132882833
	7.500000239	7.999999903	76.675255	313		-63.249396	-63.249396	3.085570812
	7.624999862	8.125000113	76.675255	313		-64.204448	-64.204448	3.039673328
	7.750000071	8.249999735	76.675255	313		-65.159632	-65.159632	2.99511528
	7.875000281	8.374999945	76.675255	313		-66.114736	-66.114736	2.95184803
	7.999999903	8.500000154	76.675255	313		-67.069756	-67.069756	2.909816742
	8.125000113	8.624999777	76.675255	313		-68.024912	-68.024912	2.868959904
	8.249999735	8.749999986	76.675255	313		-68.979904	-68.979904	2.829241276
	8.374999945	8.875000195	76.675255	313		-69.93496	-69.93496	2.790604591
	8.500000154	8.999999818	76.675255	313		-70.890072	-70.890072	2.753006935

Appendix Combustion Tank Thick Walled Pressure Vessel Analysis

Material :Al6061-T6	ID(in)	OD(in)	P(bar)	T (Deg K)	T (DegF)	Hoop Stress (Mpa)	LongitudinalStress	SF1
	2.875000121	3.499999994	76.675255	313		-23,563664	-23.563664	8.28117656
	3.00000037	3.62499991	76.675255	313		-24.322416	-24.322416	8.02298355
	3.124999953	3.75000012	76.675255	313		-25.081638	-25.081638	7.7802443
	3.249999869	3.875000036	76.675255	313		-25.84129	-25.84129	7.55162572
	3.375000078	3.999999952	76.675255	313		-26.601328	-26.601328	7.33594465
	3.499999994	4.124999868	76.675255	313		-27.361692	-27.361692	7.1321492
	3.62499991	4.250000077	76.675255	313		-28.122344	-28.122344	6.93929433
	3.75000012	4.374999993	76.675255	313		-28.883288	-28.883288	6.75652170
	3.875000036	4.499999999	76.675255	313		-29.64446	-29.64446	6.58307
	3.999999952	4.625000118	76.675255	313		-30.405836	-30.405836	6.4182658
	4.124999868	4.750000034	76.675255	313		-31.16742	-31.16742	6.26146221
	4.250000077	4.87499995	76.675255	313		-31.929192	-31.929192	6.11209917
	4.374999993	5.00000016	76.675255	313		-32.691098	-32.691098	5.96967029
	4.499999999	5.124999782	76.675255	313		-33.45317	-33.45317	5.83369779
	4.625000118	5.249999992	76.675255	313		-34.215364	-34.215364	5.7037596
	4.750000034	5.375000201	76.675255	313		-34.977656	-34.977656	5.57946729
	4.87499995	5.499999824	76.675255	313		-35.740084	-35.740084	5.46045446
	5.0000016	5.625000033	76.675255	313		-36.502592	-36.502592	5.34640073
	5.124999782	5.750000242	76.675255	313		-37.265156	-37.265156	5.23700523
	5.249999992	5.874999865	76.675255	313		-38.02786	-38.02786	5.13197755
	5.375000201	6.00000074	76.675255	313		-38.790604	-38.790604	5.0310735
	5.499999824	6.125000283	76.675255	313		-39.55338	-39.55338	4.93405675
	5.625000033	6.249999906	76.675255	313		-40.316276	-40.316276	4.84069633
	5.750000242	6.375000115	76.675255	313		-41.079192	-41.079192	4.7508006
	5.874999865	6.499999738	76.675255	313		-41.842148	-41.842148	4.66417789

Appendix NASA CEA Output

O/F= 6.00000 %FUE	L= 14.2	8571	4 R.E	Q.RAT	IO= 0.961	508	PHI, EQ. RATIO= 0.955379
CHAMB		ROAT			EXIT	EX	IT
Pinf/P 1.0	000 1	.735	4 45	0	50	55	
P, BAR 31.	026 1	7.87	8 0.6	8947	0.62053	0.56	411
T, K 3168	.06 29	91.1	8 201	9.44	1985.85	1955	0.28
RHO, KG/CU M 3.145	1 0 1.9	406	0 1.15	65-1	1.0590-1	9.781	42737
H, KJ/KG 742	.67 2	17.0	8 -223	7.8	-2300.07	-2355	0.48
U, KJ/KG -243	.83 -7	04.2	1 -283	3.95	-2886.04	-2932	0.22
G, KJ/KG -3052	4.4 -29	304.	3 -221	68.6	-21899.4	-2165	3.1
S, KJ/(KG)(K) 9.8	695 9	.869	5 9.	8695	9.8695	9.8	695
M, (1/n) 26.	701 2	6.995	28	0.165	28.178	28	188
GAMMAs 1.1	425 1	.141	0 1.	1932	1.1977	1.2	18
SON VEL, M/SEC 106	1.6 1	025.	3 8	43.4	837.7	83	2.5
MACH NUMBER 0.	0	1.00	0 2	0.895	2.945	2	990
Ae/At	1	.000	0 7.	462	7.6162	8.1	719
CSTAR, M/SEC	1	559.	4 15	59.4	1559.4	155	9.4
CF	0	.657	5 1.	5657	1.5819	1.5	963
Ivac, M/SEC	1	923.	8 26	85.7	2704.4	272	0.9
Isp, M/SEC	1	025.	3 24	41.5	2466.9	248	9.2
Pin = 500.0 PSIA							
O/F= 6.00000 %FUE	L= 14.2	8571	4 R,E	Q.RAT	IO= 0.961	508	PHI, EQ. RATIO= 0.955379
CHAMB	ER TH	ROAT	E	XIT	EXIT	EX	IT
Pinf/P 1.0	000 1	.735	8 45	C	50	55	C
P, BAR 34.	474 1	9.86	0 0.7	6608	0.68947	0.62	679
T, K 3177	.39 29	98.9	0 201	8.82	1985.02	1954	0.28
RHO, KG/CU M 3.487	1 0 2.1	517	0 1.28	56-1	1.1773-1	1.087	1-Apr
H, KJ/KG 742	.67 2	15.8	1 -224	1.22	-2303.46	-2358	0.84
U, KJ/KG -245	.95 -7	07.2	0 -283	7.11	-2889.12	-2935	0.23
G, KJ/KG -3051	2.3 -29	283.	4 -220	99.7	-21829.5	-2158	2.5
S, KJ/(KG)(K) 9.8	367 9	.836	7 9.	8367	9.8367	9.8	367
M, (1/n) 26.	723 2	7.01	4 28	0.169	28.181	28	191
GAMMAs 1.1	431 1	.141	6 1.	1945	1.1989	1.2	29
SON VEL, M/SEC 106	3.1 1	026.	5 8	43.7	838	83	2.7
MACH NUMBER 0.	0	1.00	0 2	0.896	2.946	2	991
Ae/At	1	.000	0 7.	329	7.6013	8.1	553
CSTAR, M/SEC	1	560.	8 15	60.8	1560.8	156	0.8
CF	0	.657	7 1.	5652	1.5814	1.5	957
Ivac, M/SEC	1	925.	7 26	86.8	2705.5	272	2

Appendix Combustion Chamber Sizing

	Chamber	Throat	Exit	Constants/inputs		dm (kg/s)	At (m^2)	Ae(m^2)	Dt (in)	De(in)	Chamber Length (in	Expansion Ratio	Thrust (N)	Thrust (lbf)
Pressure(Pa)	3447400	1986000	62679	Gas constant	8314.46	0.25	0.000107318	0.00087521	0.460212	1.314249	0.92648654	8.1553	622.29375	139.8972356
Temp (K)	3177	2998.9	1954.28	kb	1.38065E-23	0.300000012	0.000128782	0.00105025	0.504137	1.439688	1.111783892	8.1553	746.7525297	167.8766894
Density (kg/m^3)	3.487	2.1517	0.1087	L* (m)	1	0.349999994	0.000150245	0.00122529	0.54453	1.55504	1.297081133	8.1553	871.2112352	195.8561266
H (KJ/K)	742.67	217.08	-2355.5	Chamber Area (m^2)	0.004560367	0.400000006	0.000171709	0.00140034	0.582127	1.662408	1.482378485	8.1553	995.6700148	223.8355804
M(1/n)	26.723	27.014	28.191			0.449999988	0.000193172	0.00157538	0.617439	1.76325	1.667675727	8.1553	1120.12872	251.8150175
gamma	1.1431	1.1416	1.229			0.5	0.000214636	0.00175042	0.650838	1.858629	1.852973079	8.1553	1244.5875	279.7944713
SonicV (m/sec)	1063.1	1026.5	832.7			0.550000012	0.0002361	0.00192546	0.682604	1.949346	2.038270431	8.1553	1369.04628	307.7739251
Ae/At		1	8.1553			0.600000024	0.000257563	0.00210051	0.712957	2.036026	2.223567783	8.1553	1493.505059	335.7533789
ISP(s)			253.8838			0.649999976	0.000279027	0.00227555	0.742069	2.119163	2.408864915	8.1553	1617.963691	363.7327993
Mach Number		1	2.991			0.699999988	0.00030049	0.00245059	0.770081	2.199159	2.594162267	8.1553	1742.42247	391.7122531
Velocity (m/s)		832.7	2489.175			0.75	0.000321954	0.00262563	0.79711	2.276346	2.779459619	8.1553	1866.88125	419.6917069
						0.800000012	0.000343418	0.00280067	0.823252	2.351	2.964756971	8.1553	1991.34003	447.6711607
						0.850000024	0.000364881	0.00297572	0.848588	2.423355	3.150054323	8.1553	2115.798809	475.6506145
						0.899999976	0.000386345	0.00315076	0.87319	2.493612	3.335351454	8.1553	2240.257441	503.630035
						0.949999988	0.000407808	0.0033258	0.897118	2.561943	3.520648806	8.1553	2364.71622	531.6094888
						1	0.000429272	0.00350084	0.920423	2.628498	3.705946158	8.1553	2489.175	559.5889426
						1.049999952	0.000450736	0.00367588	0.943153	2.693409	3.89124329	8.1553	2613.633631	587.568363
						1.100000024	0.000472199	0.00385093	0.965348	2.756792	4.076540863	8.1553	2738.092559	615.5478502
						1.149999976	0.000493663	0.00402597	0.987044	2.81875	4.261837994	8.1553	2862.551191	643.5272706
						1.200000048	0.000515127	0.00420101	1.008273	2.879375	4.447135567	8.1553	2987.010119	671.5067578
						1.25	0.00053659	0.00437605	1.029065	2.93875	4.632432698	8.1553	3111.46875	699.4861782
						1.299999952	0.000558054	0.0045511	1.049444	2.996949	4.817729829	8.1553	3235.927381	727.4655987
						1.350000024	0.000579517	0.00472614	1.069435	3.054039	5.003027402	8.1553	3360.386309	755.4450858
						1.399999976	0.000600981	0.00490118	1.08906	3.110081	5.188324533	8.1553	3484.844941	783.4245063
						1.450000048	0.000622445	0.00507622	1.108337	3.165131	5.373622106	8.1553	3609.303869	811.4039934
						1.5	0.000643908	0.00525126	1.127284	3.219239	5.558919238	8.1553	3733.7625	839.3834139

Appendix Special Trajectory Code Ascent

```
ActiveSheet.Cells(count, 1).Activate
told = 0
                                                                                                Selection.EntireRow.Interior.ColorIndex = 3
ttold = 0
                                                                                                ta = 0
tnew = ActiveSheet.Cells(hg, gh)
ttnew = ActiveSheet.Cells(hg, gh + 1)
                                                                                                thrust = 0
For hg = 101 To 131 'Import the thrust curve
                                                                                                dm = 0
  Do While t <= tnew
                     'Loop for while the rocket is burning
     rho = (3.775 * 10 ^ -8 * ((h + 1594) ^ 2) - 0.00116425 * (h + 1594) + 12.24675) / 10 'kg/m^3 2nd degre' Do While vv > 0
                                                                                                                     'Continue calculating trajectory until rocket begins decent
                                                                                                    mu = (-1.313417396 * 10 ^ -25) * (h + 1594) ^ 2 - (3.2 * 10 ^ -10) * (h + 1594) + 0.0000179 'N*s/m^2
      Tout = Touto - 0.0058 * h
                                                                                                    mu = ((-1.313417396 * 10 ^ -25) * (h + 1594) ^ 2 - (3.2 * 10 ^ -10) * (h + 1594) + 0.0000179) /
      x = 2 * 0.3048 'Starting after nosecone which should have low skin friction drag
      Rex = rho * (Height * 0.0254) * vv / mu + 0.01
                                                                                                    Rex = rho * (Height * 0.0254) * vv / mu
      Lturb = (Height * 0.0254) - 2 * 0.3048
      cfxturb = 0.055 * (Rex) ^ -0.182
                                                                                                    Lturb = (Height * 0.0254) - 2 * 0.3048
      sfa = -((3.141592654 * (OD * 0.0254) * 0.5 * (vv ^ 2) * rho * (cfxturb * Lturb))) / m
                                                                                                    cfxturb = 0.055 * (Rex ^ -0.182)
      fda = -0.5 * cdf * rho * FA * (vv ^ 2) / m
                                                                                                    sfa = -((3.141592654 * (OD * 0.0254) * 0.5 * (vv ^ 2) * rho * (cfxturb * Lturb))) / m
      cda = -0.5 * cdc * rho * CSA * (vv ^ 2) / m
                                 'Specific Drag coefficient in N*s^2/m^2
      b = 0.5 * cd * rho * a
                                                                                                    fda = -0.5 * cdf * rho * FA * (vv ^ 2) / m
      da = -(b * vv ^ 2) / m + sfa + fda + cda
                                                  'm^s^2 Drag Force divided by mass of rocket
                                                                                                    cda = -0.5 * cdc * rho * CSA * (vv ^ 2) / m
      ga = -G * mearth / (re ^ 2) 'm^s^2 Gravitational acceleration
                                                                                                    b = 0.5 * cd * rho * a
                                 'm^s^2 Coriolis Acceleration
      coa = 2 * vv * we * slat
      ca = clat * re * we ^ 2
                                'm^s^2 Centrifugal Acceleration
                                                                                                    da = -(b * vv ^ 2) / m + sfa + fda + cda
      thrust = ttold + (t - told) * (ttnew - ttold) / (tnew - told)
                                                                                                    ga = -G * mearth / (re ^ 2)
      ta = thrust / m
                                 'm^s^2 ThrustAcceleration
                                                                                                    coa = 2 * vv * we * slat.
      va = qa + ca + ta + da
                                'm^s^2 Vertical Acceleration
      vv = vv + va * dt
                                'm's Vertical Velocity
                                                                                                    ca = clat * re * we ^ 2
      h = h + vv * dt + 0.5 * va * dt ^ 2
                                                                                                    va = ga + ca + da
      If vv < 0 Then
         \nabla \nabla = 0
                                                                                                    vv = vv + va * dt
         h = 0
                                                                                                    h = h + vv * dt + 0.5 * va * dt ^ 2
      End If
                                                                                                    ha = (0.5 * hcd * AH * rho * (hv0 - hv) ^ 2) / m
                                                                                                                                                             'Horizontal Acceleration due to wind speed
      ha = (0.5 * hcd * AH * rho * (hv0 - hv) ^ 2) / m
                                                   'Horizontal Acceleration due to wind speed
                                                                                                    hv = hv + ha * dt
                                                                                                                                                        'Horizontal velocity
      hv = hv + ha * dt
                                            'Horizontal velocity
      d = d + hv * dt + ha * dt ^ 2
                                        'Horizontal distance travelled
                                                                                                    d = d + hv * dt + ha * dt ^ 2
                                                                                                                                                'Horizontal distance travelled
                      'Radius of Earth
      re = reo + h
                      'New mass of rocket after propellant loss
                                                                                                    m = m - dm * dt
                       'Total time passed since ignition
      count = count + 1
                                                                                                    t = t + dt
      ActiveSheet.Cells(count, 2).Value = vv 'Print max vertical velocity in ft/s
                                                                                                    count = count + 1
      ActiveSheet.Cells(count. 3).Value = va / 9.81 'Print max vertical velocity in gs
                                                                                                    ActiveSheet.Cells(count, 2).Value = vv 'Print max vertical velocity in ft/s
      ActiveSheet.Cells(count, 1).Value = h / 0.3048 'Print vertical displacement in ft
      ActiveSheet.Cells(count, 4).Value = t 'Print max vertical velocity in ft/s
                                                                                                    ActiveSheet.Cells(count, 3).Value = va / 9.81 'Print max vertical velocity in qs
      ActiveSheet.Cells(count, 11).Value = da / 9.81 'Print max vertical velocity in ft/s
                                                                                                    ActiveSheet.Cells(count, 1).Value = h / 0.3048
                                                                                                                                                               'Print vertical displacement in ft
      ActiveSheet.Cells(count, 12).Value = sfa / 9.81 'Print max vertical velocity in ft/s
                                                                                                    ActiveSheet.Cells(count, 4).Value = t 'Print max vertical velocity in ft/s
      ActiveSheet.Cells(count, 13).Value = fda / 9.81 'Print max vertical velocity in ft/s
      ActiveSheet.Cells(count, 14).Value = cda / 9.81 'Print max vertical velocity in ft/s
                                                                                                    ActiveSheet.Cells(count, 11).Value = da / 9.81 'Print max vertical velocity in ft/s
      ActiveSheet Cells (count, 15) Value = thrust 'Print max vertical velocity in ft/s
                                                                                                    ActiveSheet.Cells(count, 12).Value = sfa / 9.81 'Print max vertical velocity in ft/s
      ActiveSheet.Cells(count, 16).Value = ha
                                              'Print max vertical velocity in m/s^2
                                                                                                    ActiveSheet.Cells(count, 13).Value = fda / 9.81 'Print max vertical velocity in ft/s
      ActiveSheet.Cells(count, 17).Value = hv
                                               'Print horizontal velocity in m/s
                                                                                                    ActiveSheet.Cells(count, 14).Value = cda / 9.81 'Print max vertical velocity in ft/s
      ActiveSheet.Cells(count, 18).Value = d / 0.3048 'Print distance in ft/s
                                                                                                    ActiveSheet.Cells(count, 16).Value = ha
                                                                                                                                                          'Print max vertical velocity in m/s^2
told = tnew
                                                                                                    ActiveSheet.Cells(count, 17).Value = hv
                                                                                                                                                          'Print horizontal velocity in m/s
ttold = ttnew
                                                                                                    ActiveSheet.Cells(count, 18).Value = d / 0.3048 'Print distance in ft/s
tnew = ActiveSheet.Cells(hg, gh)
ttnew = ActiveSheet.Cells(hg, gh + 1)
                                                                                                Loop
```

Appendix Special Trajectory Code Descent

```
td = t
Do While h > hd - 200
rho = (3.775 * 10 ^ -8 * ((h + 1594) ^ 2) - 0.00116425 * (h + 1594) + 12.24675) / 10 'kg/m^3 2nd degre
    mu = ((-1.313417396 * 10 ^ -25) * (h + 1594) ^ 2 - (3.2 * 10 ^ -10) * (h + 1594) + 0.0000179) / 10
   Rex = (-1) * rho * (Height * 0.0254) * vv / mu
   Lturb = (Height * 0.0254) - 2 * 0.3048
   cfxturb = 0.055 * (Rex ^ -0.182)
    sfa = ((3.141592654 * (OD * 0.0254) * 0.5 * (vv ^ 2) * rho * (cfxturb * Lturb))) / m
    fda = 0.5 * cdf * rho * FA * (vv ^ 2) / m
   cda = 0.5 * cdc * rho * CSA * (vv ^ 2) / m
   pda = 0.5 * cdp * rho * PAR * (vv ^ 2) / m
   b = 0.5 * cd * rho * a
   da = (b * vv ^ 2) / m + sfa + fda + cda + pda
   ga = -G * mearth / (re ^ 2)
    coa = 2 * vv * we * slat.
    ca = clat * re * we ^ 2
   h = h + vv * dt + 0.5 * va * dt ^ 2
   ha = (0.5 * hcd * AH * rho * (hv0 - hv) ^ 2) / m
                                                         'Horizontal Acceleration due to wind speed
                                                 'Horizontal velocity
    hv = hv + ha * dt
   d = d + hv * dt + ha * dt ^ 2
                                           'Horizontal distance travelled
    re = reo + h
   PAR = PAR + tota * (hl - h) / 200
   h1 = h
    count = count + 1
   ActiveSheet.Cells(count, 2).Value = vv 'Print max vertical velocity in ft/s
   ActiveSheet.Cells(count, 3).Value = va / 9.81 'Print max vertical velocity in gs
   ActiveSheet.Cells(count. 1).Value = h / 0.3048
                                                       'Print vertical displacement in ft
   ActiveSheet.Cells(count. 4).Value = t 'Print max vertical velocity in ft/s
   ActiveSheet.Cells(count, 11).Value = da / 9.81 'Print max vertical velocity in ft/s
   ActiveSheet.Cells(count, 12).Value = sfa / 9.81 'Print max vertical velocity in ft/s
   ActiveSheet.Cells(count, 13).Value = fda / 9.81 'Print max vertical velocity in ft/s
   ActiveSheet.Cells(count, 14).Value = cda / 9.81 'Print max vertical velocity in ft/s
   ActiveSheet.Cells(count, 16).Value = ha
                                                    'Print max vertical velocity in m/s^2
   ActiveSheet.Cells(count, 17).Value = hv
                                                    'Print horizontal velocity in m/s
   ActiveSheet.Cells(count, 18).Value = d / 0.3048 'Print distance in ft/s
ActiveSheet.Cells(count, 1).Activate
Selection.EntireRow.Interior.ColorIndex = 5
ActiveWorkbook, Save
PAR = 9.3
```

```
dt = 1
Do While h > 0
              'Continue calculating trajectory after rocket begins decent
   rho = (3.775 * 10 ^ -8 * ((h + 1594) ^ 2) - 0.00116425 * (h + 1594) + 12.24675) / 10 'kg/m^3 2nd de
   mu = (1-1.313417396 * 10 ^ -25) * (h + 1594) ^ 2 - (3.2 * 10 ^ -10) * (h + 1594) + 0.0000179) / 10
   Rex = (-1) * rho * (Height * 0.0254) * vv / mu
   Lturb = (Height * 0.0254) - 2 * 0.3048
   cfxturb = 0.055 * (Rex ^ -0.182)
   sfa = ((3.141592654 * (OD * 0.0254) * 0.5 * (vv ^ 2) * rho * (cfxturb * Lturb))) / m
   fda = 0.5 * cdf * rho * FA * (vv ^ 2) / m
   pda = 0.5 * cdp * rho * PAR * (vv ^ 2) / m
   cda = 0.5 * cdc * rho * CSA * (vv ^ 2) / m
   b = 0.5 * cd * rho * a
   da = (b * vv ^ 2) / m + sfa + fda + cda + pda
   ga = -G * mearth / (re ^ 2)
   coa = 2 * vv * we * slat
   ca = clat * re * we ^ 2
   va = ga + ca + da
   vv = vv + va * dt
   h = h + vv * dt + 0.5 * va * dt ^ 2
   ha = (0.5 * hcd * AH * rho * (hv0 - hv) ^ 2) / m 'Horizontal Acceleration due to wind speed
   hv = hv + ha * dt
                                              'Horizontal velocity
   d = d + hv * dt + ha * dt ^ 2
                                        'Horizontal distance travelled
   re = reo + h
   m = m - dm * dt
   t = t + dt
   count = count + 1
   ActiveSheet.Cells(count, 3).Value = va / 9.81 'Print max vertical velocity in gs
   ActiveSheet.Cells(count, 1).Value = h / 0.3048
                                                   'Print vertical displacement in ft
   ActiveSheet.Cells(count, 4).Value = t 'Print max vertical velocity in ft/s
   ActiveSheet.Cells(count, 11).Value = da / 9.81 'Print max vertical velocity in ft/s
   ActiveSheet.Cells(count, 12).Value = sfa / 9.81 'Print max vertical velocity in ft/s
   ActiveSheet.Cells(count. 13).Value = fda / 9.81 'Print max vertical velocity in ft/s
   ActiveSheet.Cells(count, 14).Value = cda / 9.81 'Print max vertical velocity in ft/s
   ActiveSheet.Cells(count, 16).Value = ha
                                                'Print max vertical velocity in m/s^2
   ActiveSheet.Cells(count, 17).Value = hv
                                                'Print horizontal velocity in m/s
   ActiveSheet.Cells(count, 18).Value = d / 0.3048 'Print distance in ft/s
ActiveSheet.Cells(count, 1).Activate
Selection, EntireRow, Interior, ColorIndex = 4
```

Appendix Semiempirical Fluid Analysis

```
athroat = 0.00064516 * 0.25 * pi * 0.8 ^ 2
ae = athroat * 8
odn = 3.365
ode = 1.878
lhs = 1.33
lpis = 2.25
ide = 1.6
leth = 11.875
vnhs = (lhs * 0.25 * pi * (odn ^ 2 - ode ^ 2)) * 0.0000163871
vnot = leth * 0.25 * pi * (odn ^ 2 - ode ^ 2) * 0.0000163871
pp = 700 * 6894.76
pc = 400 * 6894.76
Pco = pc - 100000
deltap = pp - pc
pn = 0.029 * 27679.9
                                   'lb/in^3
pe = 0.0285 * 27679.9
                                    'lb/in^3
cstar = 1500
cf = 1.1
mo = (vnot - vnhs) * pn + 0.3 * pn * vhs
mf = (leth - lpis) * 0.25 * 0.0000163871 * pi * ide ^ 2 * pe
anos = 0.039475 * 0.00064516
aeth = 6 * 0.25 * pi * (0.0008 ^ 2)
gamma = 1.15
Tc = 3000
mw = 26.6
count = 2
unhan = unha
cvan = 500
dt = 0.001
t. = 0
count2 = 2
Do While mf > 0
    ep = 2
    Do While ep > 1
        deltap = pp - Pco
        dmn = cdo * (anos * ((2 * deltap * pn) ^ 0.5))
            dme = cfo * (aeth * ((2 * deltap * pe) ^ 0.5))
            otf = dmn / dme
            dme = 0
            otf = 0
        End If
        gamma = -0.00126 * otf ^ 4 + 0.0234 * otf ^ 3 - 0.146 * otf ^ 2 + 0.31936 * otf + 1.05515
        cstar = ((8.9105 * (otf ^ 4)) - 115.25 * otf ^ 3 + 390.87 * otf ^ 2 + 159.69 * otf + 3473) * 0.3048
        pc = (dmn + dme) * cstar / athroat
        ep = pc - Pco
        ep = (ep ^ 2) ^ 0.5
        Pco = (pc + Pco) / 2
        count2 = count2 + 1
```

```
Loop
   count2 = 2
   Pco = pc
   mf = mf - dme * dt
    mo = mo - dmn * dt
   vnhs = vnhs + dmn * dt / pn
   If vnhs > 0.00119126 Then
        vnhs = leth * 0.25 * pi * (odn ^ 2 - ode ^ 2) * 0.0000163871
       pn = 0.3 * 0.029 * 27679.9
   End If
   pp = (-45.633 * t + 620.57) * 6894.76
   ActiveSheet.Cells(count, 12).Value = vnhso
   vnhso = vnhs
   t = t + dt
   deltap = pp - pc
   ActiveSheet.Cells(count, 1).Value = t
   ActiveSheet.Cells(count, 2).Value = pc
   ActiveSheet.Cells(count, 3).Value = pp
   ActiveSheet.Cells(count, 4).Value = vn
   ActiveSheet.Cells(count, 5).Value = ve
   ActiveSheet.Cells(count, 6).Value = dmn
   ActiveSheet.Cells(count, 7).Value = dme
   ActiveSheet.Cells(count, 8).Value = cstar
   ActiveSheet.Cells(count, 9).Value = mf
   ActiveSheet.Cells(count, 10).Value = mo
   ActiveSheet.Cells(count, 11).Value = vnhs
   ActiveSheet.Cells(count, 13).Value = pp * cvap * vnhs * dt
   count = count + 1
Loop
End Sub
```

Appendix Propellant Expansion Equations

Throat Calculation $A^*=(mdot/P0)^*((T0^*R/k)^*.5)^*((2/(k+1))^*(2^*(k-1)))^*-1\\ LC=(L^*)^*At/AC$

Appendix Safety Factor

https://ntrs.nasa.gov/search.isp?R=20140011147 2017-12-04T21:52:55+00:00Z

The 1.5 & 1.4 Ultimate Factors of Safety for Aircraft & Spacecraft – History, Definition and Applications

> C. T. Modlin J. J. Zipay February, 2014

Establishment of the Factor of Safety of 1.5 as an Aircraft Design Criterion

- In March 1934, Revision G of The Handbook of Instructions for Airplane Design (HIAD)
 established the 1.5 Ultimate Factor of Safety as a formal Air Corps design requirement.
- · Aircraft could continue operation if within limit load conditions.
 - · Criteria for no detrimental, permanent deformation was first established.
- If loads beyond limit are experienced and detrimental deformation is suspected to have occurred:
 - · Inspect and repair, if necessary, before continued flight.
- In service, loads above limit may be part of the statistical distribution (e.g. Turbulence), may exceed a selected criteria (e.g. a 3-sigma distribution and prescribed confidence interval), or may be a unique, stand-alone event.
- Federal Airworthiness Regulation Part 25.303 Factor of Safety
 - Unless otherwise specified, a factor of safety of 1.5 must be applied to the prescribed limit loads which are considered external loads on the structure.

Sources