TEMA 1

ПРОСТРАНСТВА. СХОДИМОСТЬ

Нормированные векторные пространства. Непустое множество E называется Bekmophim (линейным) пространством над полем K, если для любых двух его элементов x и y определена их сумма x+y, являющаяся элементом множества E, и для любого $x \in E$ и любого $\alpha \in K$ определено произведение αx , которое также является элементом множества E, причём эти операции удовлетворяют следующим аксиомам:

- 1) x + y = y + x;
- 2) (x + y) + z = x + (y + z);
- 3) в E существует такой элемент Θ , что для всех $x \in E$ выполняется соотношение $x + \Theta = x$;
- 4) для каждого элемента $x \in E$ существует такой элемент $-x \in E$, что $x + (-x) = \Theta$;
- 5) $\alpha \cdot (\beta x) = (\alpha \beta) \cdot x;$
- 6) $1 \cdot x = x$, $0 \cdot x = \Theta$;
- 7) $(\alpha + \beta)x = \alpha x + \beta x$;
- 8) $\alpha(x+y) = \alpha x + \alpha y$.

Если на множестве E введены операции сложения и умножения на число так, что E превращено в векторное пространство, то говорят, что E наделено структурой векторного пространства. Векторное пространство над полем $\mathbb R$ называется вещественным векторным пространством, над полем $\mathbb C$ — комплексным векторным пространством.

Векторное пространство E называется нормированным векторным пространством, если каждому элементу $x \in E$ поставлено в

соответствие неотрицательное число ||x|| (норма x) таким образом, что выполнены следующие аксиомы:

- 1) $\|x\| \ge 0; \ \|x\| = 0$ в том и только в том случае, когда $x = \Theta;$
- 2) $\|\alpha x\| = |\alpha| \cdot \|x\|$;
- 3) $||x + y|| \le ||x|| + ||y||$.

Примеры нормированных пространств

1. Пространство \mathbb{R}^m . Пусть $x=(x_1,x_2,\ldots,x_m)$, тогда

$$||x||_c = \left(\sum_{i=1}^m |x_i|^2\right)^{1/2}; \ ||x||_k = \max_{1 \le i \le m} |x_i|; \ ||x||_0 = \left(\sum_{i=1}^m |x_i|\right);$$

$$||x||_p = \left(\sum_{i=1}^m |x_i|^p\right)^{1/p}, \ p \ge 1.$$

2. Пространство C[a,b] непрерывных на отрезке [a,b] функций относительно нормы

$$||x|| = \max_{a \le t \le b} |x(t)|.$$

3. Пространство $C^k[a,b]\ k$ раз непрерывно дифференцируемых на отрезке [a,b] функций будет нормированным, если мы введем норму

$$||x|| = \sum_{i=0}^{k} \max_{a \le t \le b} |x^{(i)}(t)|.$$

4. На векторном пространстве непрерывных на отрезке [a,b] функций определим норму формулой

$$||x||_p = \left(\int_a^b |x(t)|^p dt\right)^{1/p}, \ p \ge 1.$$

Это пространство является нормированным векторным и обозначается $\mathcal{L}_p[a,b], \ p \geq 1.$

5. Пространство m ограниченных числовых последовательностей $x=(x_1,x_2,\ldots,x_i,\ldots), \sup_i |x_i|<\infty,$ является нормированным пространством относительно нормы

$$||x||_m = \sup_i |x_i|.$$

6. Пространство $l_p,\ p\geq 1$, бесконечных числовых последовательностей $x=(x_1,x_2,\ldots,x_i,\ldots),\ \sum\limits_{i=1}^{\infty}|x_i|^p<\infty,$ является нормированным пространством относительно нормы

$$||x||_p = \Big(\sum_{i=1}^{\infty} |x_i|^p\Big)^{1/p}.$$

Свойства нормы

1. Пусть E — нормированное векторное пространство. Тогда для любых элементов $x_1, x_2, \ldots, x_n \in E$ выполняется обобщенное неравенство треугольника:

$$||x_1 + x_2 + \ldots + x_n|| \le ||x_1|| + ||x_2|| + \ldots + ||x_n||.$$

2. Пусть E — нормированное векторное пространство. Тогда для любых $x,y \in E$ справедливо обратное неравенство треугольника:

$$||x - y|| \ge ||x|| - ||y|||.$$

Два числа p и q такие, что $1 \le p \le q \le \infty$, называются conpяжен-нымu, если $\frac{1}{p} + \frac{1}{q} = 2$; если p = 1, то $q = +\infty$.

Теорема 1. Пусть число 1 и пусть <math>q — сопряженное κ нему. Тогда для любых функций x(t) и y(t), заданных на [a,b], для которых существуют интегралы $\int\limits_a^b |x(t)|^p \mathrm{d}t$ и $\int\limits_a^b |y(t)|^q \mathrm{d}t$, имеет место неравенство Гельдера:

$$\int_{a}^{b} |x(t) \cdot y(t)| dt \le \left(\int_{a}^{b} |x(t)|^{p} dt \right)^{1/p} \cdot \left(\int_{a}^{b} |y(t)|^{q} dt \right)^{1/q}.$$

Следствие 1. Пусть p>1 и q- сопряженное κ нему. Если последовательности $(x_i)_{i=1}^{\infty},\ (y_i)_{i=1}^{\infty}$ таковы, что ряды $\sum\limits_{i=1}^{\infty}|x_i|^p$ и $\sum\limits_{i=1}^{\infty}|x_i|^q$ сходятся, тогда имеет место неравенство Гельдера:

$$\sum_{i=1}^{\infty} |x_i y_i| \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} \cdot \left(\sum_{i=1}^{\infty} |y_i|^q\right)^{1/q}.$$

Теорема 2. Пусть $p \geq 1$ и пусть функции x(t), y(t) таковы, что существуют и конечны интегралы $\int\limits_a^b |x(t)|^p {\rm d}t$ и $\int\limits_a^b |y(t)|^p {\rm d}t$, тогда справедливо неравенство Минковского:

$$\int_{a}^{b} |x(t) + y(t)|^{p} dt \le \left(\int_{a}^{b} |x(t)|^{p} dt \right)^{1/p} + \left(\int_{a}^{b} |y(t)|^{p} dt \right)^{1/p}.$$

Следствие 2. Пусть последовательности $(x_i)_{i=1}^{\infty}$, $(y_i)_{i=1}^{\infty}$ таковы, что ряды $\sum\limits_{i=1}^{\infty}|x_i|^p$, $\sum\limits_{i=1}^{\infty}|y_i|^p$, $p\geq 1$, сходятся, тогда справедливо неравенство Минковского:

$$\left(\sum_{i=1}^{\infty} |x_i + y_i|^p\right)^{1/p} \le \left(\sum_{i=1}^{\infty} |x_i|^p\right)^{1/p} + \left(\sum_{i=1}^{\infty} |y_i|^p\right)^{1/p}.$$

Предел последовательности в нормированном векторном пространстве. Рассмотрим в нормированном векторном пространстве E последовательность элементов $(x_n)_{n=1}^{\infty}$. Элемент $a \in E$ называется $npedenom\ nocnedoвameльности\ (x_n)$, если $||x_n - a|| \to 0$ при $n \to \infty$, т. е. для любого $\varepsilon > 0$ существует такое $n(\varepsilon)$, что для всех $n \geq n(\varepsilon)$ выполняется неравенство $|x_n - a|| < \varepsilon$. Если a является пределом (x_n) , то будем писать $a = \lim_{n \to \infty} x_n$ или $x_n \to a$ при $n \to \infty$.

Свойства сходящихся последовательностей

- 1. В нормированном пространстве сходящаяся последовательность имеет только один предел.
- 2. Если последовательность x_n сходится к a в E, то любая ее подпоследовательность сходится также к a.
 - 3. Сходящаяся последовательность ограничена.
- 4. Если $x_n \to x, \ \lambda_n \to \lambda$ при $n \to \infty$, где λ_n числовая последовательность, то $\lambda_n x_n \to \lambda x$ при $n \to \infty$.
- 5. Пусть $x_n \to x, \ y_n \to y$ при $n \to \infty$ в пространстве E, тогда последовательность $x_n + y_n \to x + y$.
- 6. Если последовательность (x_n) сходится в E к элементу x, то числовая последовательность $(\|x_n\|)$ сходится на \mathbb{R} к $\|x\|$.

Рассмотрим типы сходимости последовательностей в конкретных нормированных векторных пространствах.

1. Пространство C[a, b].

Пусть $(x_n) \subset C[a,b]$ и $x_n \to x$ при $n \to \infty$. Это означает, что для $\forall \ \varepsilon > 0 \ \exists \ N(\varepsilon)$ такое, что для всех $n \geq N(\varepsilon) \max_{a \leq t \leq b} |x_n(t) - x(t)| < \varepsilon$. Это широко известное в математическом анализе понятие равномерной сходимости последовательности непрерывных функций.

2. Пространство $\mathcal{L}_p[a,b],\ p\geq 1.$ Условие $\|x_n-x\|\to 0$ при $n\to\infty$ означает, что

$$\left(\int_a^b |x_n(t) - x(t)|^p dt\right)^{1/p} \to 0 \text{ при } n \to \infty.$$

Этот тип сходимости на пространстве непрерывных функций называется *сходимостью в среднем со степенью р*.

3. Пространство $l_p, p \ge 1$.

Рассмотрим последовательность $(x_n) \subset l_p$, т. е. $\sum_{i=1}^{\infty} |x_i^{(n)}|^p < \infty$, которая сходится к элементу $x \in l_p$. Это означает, что для любого $\varepsilon > 0$

выполняется неравенство

$$\left(\sum_{i=1}^{\infty} |x_i^{(n)} - x_i|^p\right)^{1/p} < \varepsilon.$$

Тогда для каждого i выполняется соотношение $|x_i^{(n)}-x_i|<\varepsilon$, из которого следует, что $x_i^{(n)}\to x_i$ при $n\to\infty$. Таким образом, из сходимости по норме пространства $l_p,\ p\ge 1$, вытекает покоординатная сходимость.

4. Пространство m.

Пусть последовательность $(x_n) \subset m$ и $x_n \to x$ при $n \to \infty$. Это означает, что для $\forall \varepsilon > 0 \; \exists \; N(\varepsilon)$ такое, что для всех $n \geq N(\varepsilon)$ выполняется неравенство $\sup_i |x_i^n - x_i| < \varepsilon$.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. а) Задают ли норму в пространстве ℝ следующие функции:

$$\phi_1(x) = |\exp(x)|, \quad \phi_2(x) = |\arcsin x|.$$

б) Показать, что функция

$$\phi_3(x) = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$$

в пространстве \mathbb{R}^n не является нормой при $0 и <math>n \geq 2$.

Решение. а) Функция $\phi_1(x)$ норму не задает, поскольку не выполняется первая аксиома нормы, $\phi_1(0)=1$. Функция $\phi_2(x)$ также не определяет норму, потому что не выполняется вторая аксиома нормы. Действительно, если взять $x=1, \lambda=1/2$, то $\|\lambda x\|=|\arcsin(1/2)|=\frac{\pi}{6}$, а $\|\lambda\|\|x\|=1/2|\arcsin(1)|=\frac{1}{2}\cdot\frac{\pi}{2}=\frac{\pi}{4}$. Поэтому $\|\lambda x\|\neq |\lambda|\|x\|$.

б) Функция $\phi_3(x)$ не является нормой, так как не выполняется третья аксиома нормы. Действительно, возьмем вектор $x=\left(\frac{1}{2},0,\dots,0\right)\in\mathbb{R}^n$ и вектор $y=\left(0,\frac{1}{2},0,\dots,0\right)\in\mathbb{R}^n$. Тогда $\|x\|_p=\|y\|_p=1/2$ для любого

 $0 и <math>\|x\|_p + \|y\|_p = 1$. Однако $\|x + y\|_p = \left\|\left(\frac{1}{2}, \frac{1}{2}, 0, \dots, 0\right)\right\|_p = \left((1/2)^p + (1/2)^p\right)^{1/p} = 2^{1/p-1}$. Поскольку $p \in (0,1)$, то и 1/p - 1 > 0 и $2^{1/p-1} > 1$. Следовательно, $\|x + y\|_p > \|x\|_p + \|y\|_p$.

Задача 2. Найти предел последовательности

$$x_n = \frac{nt^2}{n+t^2}$$

в пространстве C[0,1], если он существует.

Решение. Необходимым условием сходимости последовательности в пространстве C[a,b] является существование предела $x_n(t)$ при каждом фиксированном $t \in [a,b]$. Данная последовательность при фиксированном $t \in [0,1]$ сходится к непрерывной функции $a(t)=t^2$.

Проверим, сходится ли последовательность $x_n(t)$ к a(t) по норме пространства C[0,1], т. е. равномерно. Вычислим $||x_n-a||$. По определению нормы:

$$||x_n - a||_{C[0,1]} = \max_{0 \le t \le 1} \left| \frac{nt^2}{n + t^2} - t^2 \right| = \max_{0 \le t \le 1} \left| \frac{t^4}{n + t^2} \right|.$$

Вычислим максимум функции $\frac{t^4}{n+t^2}$ на отрезке [0,1]. Для этого определим точки, подозрительные на экстремум с помощью производной:

$$\left(\frac{t^4}{n+t^2}\right)' = \frac{2t^5 + 4nt^3}{(n+t^2)^2}; \ 2t^3(t^2 + 2n) = 0, \ t_1 = 0.$$

Таким образом, точками, подозрительными на экстремум, являются концы отрезка $t_1=0,\ t_2=1.$ Вычислим также значение функции на концах отрезка:

$$\left| \frac{nt^2}{n+t^2} - t^2 \right|_{t=0} = 0, \ \left| \frac{nt^2}{n+t^2} - t^2 \right|_{t=1} = \frac{1}{n+1}.$$

Значит,
$$\max_{t \in [0,1]} \left| \frac{nt^2}{n+t^2} - t^2 \right| = \frac{1}{n+1} \xrightarrow[n \to \infty]{} 0.$$

Это означает, что последовательность $x_n(t)$ в пространстве C[0,1] сходится к функции $a(t)=t^2$.

Задача 3. Найти предел последовательности

$$x_n(t) = t^n - t^{2n}$$

в пространстве C[0,1], если он существует.

Решение. Последовательность $x_n(t)$ для каждого фиксированного t при $n\to\infty$ стремится к a(t)=0. Покажем, что $x_n(t)$ к нулю равномерно не сходится. Вычислим $\|x_n-a\|=\max_{t\in[0,1]}|t^n-t^{2n}|$. Так как

$$(t^n - t^{2n})' = nt^{n-1} - 2nt^{2n-1} = nt^{n-1}(1 - 2t^n),$$
 To

$$nt^{n-1}(1-2t^n)=0$$
, если $t_1=0$, $t_2=(1/2)^{1/n}$.

Точкой, подозрительной на экстремум, является и точка $t_3=1$. Непосредственной проверкой убеждаемся, что максимум достигается в точке $t=(1/2)^{1/n}$. Поэтому $\max_{t\in[0,1]}|t^n-t^{2n}|=1/2-1/4=1/4$ и к нулю не стремится. Значит, последовательность $x_n(t)=t^n-t^{2n}$ в пространстве C[0,1] не сходится.

Задача 4. Выяснить, сходится ли последовательность

$$x_n = \left(\frac{1}{5}, \frac{1}{5^2}, \dots, \frac{1}{5^n}, 0, \dots\right)$$

в пространстве l_3 .

Решение. Необходимым условием сходимости последовательности в пространстве $l_p,\ p\geq 1$, является наличие покоординатного предела. Выпишем несколько членов исходной последовательности $x_n: x_1=\left(\frac{1}{5},0,\ldots\right),\ x_2=\left(\frac{1}{5},\frac{1}{5^2},0,\ldots\right)$. Очевидно, что $x_1^{(n)}\to\frac{1}{5}$ при $n\to\infty,\ x_2^{(n)}\xrightarrow[n\to\infty]{}\frac{1}{5^2}$ и т. д. Поэтому последовательность x_n покоординатно сходится к элементу $a=\left(\frac{1}{5},\frac{1}{5^2},\ldots,\frac{1}{5^n},\frac{1}{5^{n+1}},\ldots\right)$. Заметим,

что $a \in l_3$, так как $\sum_{i=1}^\infty \left| \frac{1}{5^i} \right|^3 = \sum_{i=1}^\infty 5^{-3i} < \infty$. Покажем, что последовательность x_n сходится к a по норме пространства l_3 :

$$||x_n - a||^3 = \sum_{i=1}^{\infty} |x_i^{(n)} - a_i|^3 = \sum_{i=n+1}^{\infty} \left| \frac{1}{5^i} \right|^3 = \frac{(5^{-3})^{n+1}}{1 - (1/5)^3} = \frac{1}{124} \cdot (1/5)^{3n} \xrightarrow[n \to \infty]{} 0.$$

Следовательно, $\lim_{n\to\infty} x_n = a$.

Задача 5. Выяснить, сходится ли последовательность

$$x_n = (\underbrace{1, 1, \dots, 1}_{n}, 0, \dots)$$

в пространстве l_1 .

Решение. Очевидно, что $a=(1,1,\ldots,1,\ldots)$ является покоординатным пределом последовательности, но $a\not\in l_1$, так как ряд, составленный из единиц, не является сходящимся. Следовательно, последовательность x_n не имеет предела в пространстве l_1 .

Задача 6. Доказать, что последовательность

$$x_n(t) = n^2 t e^{-nt} (n \in \mathbb{N})$$

сходится поточечно к функции $a(t) \equiv 0$ для всех $t \in [0,1]$, но не сходится в пространстве $\mathcal{L}_1[0,1]$.

Решение. Последовательность $x_n(t)$ при каждом фиксированном $t\in [0,1]$ стремится к нулю, так как $\lim_{n\to\infty}\frac{n^\alpha}{a^n}=0,\ |a|>1.$ Вычислим:

$$||x_n - a||_{\mathcal{L}_1[0,1]} = \int_0^1 |x_n(t) - a(t)| dt = \int_0^1 n^2 t e^{-nt} dt = [nt = z] = \int_0^n z e^{-z} dz = 1 - ne^{-n} - e^{-n} \xrightarrow[n \to \infty]{} 1.$$

Значит, последовательность $x_n(t)$ не сходится в пространстве $\mathcal{L}_1[a,b].$

ЗАДАНИЯ

Задание 1. Можно ли в пространстве дважды непрерывно дифференцируемых функций $C^2[0,1]$, заданных на отрезке [0,1], принять за норму следующую величину:

1.1.
$$|x(0)| + |x'(0)| + \max_{t \in [0,1]} |x''(t)|$$
.

1.2.
$$\max_{t \in [0,1]} |x''(t)| + \left(\int_{0}^{1} |x(t)|^{2} dt \right)^{1/2}$$
.

1.3.
$$|x(0)| + |x(1)| + \max_{t \in [0,1]} |x''(t)|$$
.

1.4.
$$|x(0)| + \max_{t \in [0,1]} |x'(t)| + \int_{0}^{1} |x''(t)| dt$$
.

Можно ли в пространстве непрерывно дифференцируемых функций $C^1[0,1]$ принять за норму величину:

1.5.
$$\max_{t \in [0,1]} |x'(t)|$$
.

1.6.
$$|x(1) - x(0)| + \max_{t \in [0,1]} |x'(t)|$$
.

1.7.
$$|x(0)| + \max_{t \in [0,1]} |x'(t)|$$
.

1.8.
$$\int_{0}^{1} |x(t)| dt + \max_{t \in [0,1]} |x'(t)|.$$

Можно ли в пространстве бесконечных числовых последовательностей l_2 принять за норму величину:

стей
$$l_2$$
 принять за норму величину:
 $1.9. \ \left(\sum_{i=1}^\infty a_i x_i^2\right)^{1/2}, \ 0 < a_i < 1, \ i=1,2,\dots$

1.10.
$$\left(\sum_{i=1}^{\infty} a_i x_i^2\right)^{1/2}$$
, $a_i \ge 0$, $i = 1, 2, \dots$

Определить, задает ли пара (X, ||x||) нормированное векторное пространство:

1.11.
$$X = \{x(t) \in C[0,1] : x(0) = 0\}, ||x|| = \left(\int_{0}^{1} |x(t)|^{2} dt\right)^{1/2}.$$

1.12.
$$X = \{x(t) \in C^1[0,1] : x(0) = x'(1)\}, ||x|| = |x(0)| + \max_{0 \le t \le 1} |x'(t)|.$$

1.13.
$$X = \{x(t) \in C^1[0,1] : x'(0) = 0\}, ||x|| = \int_0^1 |x'(t)| dt + |x(1)|.$$

1.14.
$$X = \{x(t) \in C^1[0,1] : x'(0) = 0\}, ||x|| = \left(\int_0^1 |x'(t)|^2 dt\right)^{1/2}.$$

Задание 2. Найти предел последовательности x_n в нормированном векторном пространстве C[a,b], если он существует.

2.1.
$$x_n(t) = t \arctan(tn), \ t \in [0, 3].$$

2.2.
$$x_n(t) = \frac{t^{n+1}}{n+1} - \frac{t^{n+2}}{n+2}, \ t \in [0,1].$$

2.3.
$$x_n(t) = \sqrt{t^2 + \frac{1}{n^2}}, \ t \in [-2, 2].$$

2.4.
$$x_n(t) = \left(1 + \frac{t}{n}\right)^n, \ t \in [-1, 1].$$

2.5.
$$x_n(t) = n\left(\sqrt{t + \frac{1}{n}} - \sqrt{t}\right), \ t \in [1, 3].$$

2.6.
$$x_n(t) = \frac{nt}{1+n+t}, \ t \in [0,1].$$

2.7.
$$x_n(t) = \frac{2nt}{1 + n^2t^2}, \ t \in [0, 1].$$

2.8.
$$x_n(t) = \sqrt[n]{1 + t^{2n}}, \ t \in [0, 2].$$

2.9.
$$x_n(t) = \frac{nt^2}{1 + n^2t}, \ t \in [0, 1].$$

2.10.
$$x_n(t) = t^2 e^{nt}, \ t \in [0, 2].$$

2.11.
$$x_n(t) = \frac{t^n}{1+t^n}, \ t \in \left[0, \frac{1}{2}\right].$$

2.12.
$$x_n(t) = \frac{4^n t^n - t^{2n}}{4^{2n}}, \ t \in [0, 4].$$

2.13.
$$x_n(t) = \frac{nt}{\sqrt{n^2 + 1}}, \ t \in [0, 1].$$

2.14.
$$x_n(t) = \frac{\sin(nt)}{\sqrt{n^2 + t^2}}, \ t \in [0, 2].$$

Задание 3. Найти предел последовательности x_n в нормированном пространстве l_p , если он существует.

3.1.
$$x_n = \left(\underbrace{\left(\frac{5n+1}{5n+2}\right)^n, \dots, \left(\frac{5n+1}{5n+2}\right)^n}_{}, 0, \dots\right), p = 3/2.$$

3.2.
$$x_n = \left(\underbrace{\frac{1}{n^2}, \dots, \frac{1}{n^2}}, 0, \dots\right), p = 3/2.$$

3.3.
$$x_n = \left(\underbrace{\frac{1}{\sqrt{n}}, \dots, \frac{1}{\sqrt{n}}}, 0, \dots\right), p = 1.$$

3.4.
$$x_n = \left(\frac{\cos(n)}{n^5}, \dots, \frac{\cos(n)}{n^5}, 0, \dots\right), p = 1.$$

3.5.
$$x_n = \left(1, \frac{1}{\sqrt[3]{2}}, \dots, \frac{1}{\sqrt[3]{n}}, 0, \dots\right), p = 4.$$

3.6.
$$x_n = \left(\underbrace{\cos \frac{\pi n}{12}, \dots, \cos \frac{\pi n}{12}}, 0, \dots\right), \ p = 5/2.$$

3.7.
$$x_n = \left(1, \sqrt{2}, \sqrt[3]{3}, \dots, \sqrt[n]{n}, 0, \dots\right), p = 3.$$

3.8.
$$x_n = \left(\frac{n}{1+n}, \frac{n}{1+2n}, \dots, \frac{n}{1+kn}, \dots\right), p = 5.$$

3.9.
$$x_n = \left(\frac{n^2}{1+n^2}, \frac{n^2}{1+2n^2}, \dots, \frac{n^2}{1+kn^2}, \dots\right), \ p = 3.$$

TEMA 2

ОТКРЫТЫЕ И ЗАМКНУТЫЕ МНОЖЕСТВА В НОРМИРОВАННОМ ПРОСТРАНСТВЕ

Рассмотрим нормированное векторное пространство E. Множество $B(x_0,r)=\{x\in E:\|x-x_0\|< r\},\ r>0$, называется omкpытым шаром с центром в точке x_0 радиуса r. Множество $B[x_0,r]=\{x\in E:\|x-x_0\|\le r\},\ r>0$, называется amkhymum шаром в пространстве E. Множество $S(x_0,r)=\{x\in E:\|x-x_0\|=r\}$ называется $c\phi epo \ B[x_0,r]=B(x_0,r)\cup S(x_0,r)$.

Посмотрим, как выглядит шар в пространстве C[a,b] непрерывных на [a,b] функций (в вещественном случае) с нормой $\|x\|_c = \max_{a \leq t \leq b} |x(t)|$. Шар с центром в функции $x_0(t)$ радиуса r состоит из непрерывных функций, удовлетворяющих условию $\max_{a \leq t \leq b} |x(t) - x_0(t)|$. Построим предварительно графики функций $x_1(t) = x_0(t) - r_1$, $x_2(t) = x_0(t) + r$ и отрезки прямых t = a и t = b. Полоса шириной 2r вокруг графика $x_0(t)$ служит шаром с центром в точке $x_0(t)$. В шар $B(x_0,r)$ входят те непрерывные функции, графики которых лежат строго между графиками функций $x_1(t)$ и $x_2(t)$.

Множество $A \subset E$ называется *открытым* в нормированном пространстве $(E,\|\cdot\|)$, если вместе с каждой своей точкой x оно содержит и некоторый открытый шар B(x,r) с центром в этой точке радиуса r>0.

Mножество $M \subset E$ называется $\mathit{замкнутым}$ в E, если его дополнение $E \setminus M$ открыто в E.

Утверждение 1. Пусть $\{A_i\}_{i=1}^{\infty},\ A_i\subset E,$ система открытых множеств, тогда множество $A=\bigcup\limits_{i=1}^{\infty}A_i$ также открыто в E. Утверждение 2. Пусть задана конечная система $\{A_i\}_{i=1}^n$

Утверждение 2. Пусть задана конечная система $\{A_i\}_{i=1}^n$ открытых множеств $A_i \subset E$, тогда множество $A = \bigcap_{i=1}^n A_i$ открыто в E.

Все пространство E содержит все шары и, значит, удовлетворяет определению открытого множества. Пустое множество \emptyset также будем считать открытым.

Утверждение 3. Открытый шар в пространстве Е является открытым множеством.

Множество $M\subset E$ называется *ограниченным* в E, если его можно заключить в некоторый шар сколь угодно большого, но конечного радиуса. Диаметром множества $M\subset E$ называется число $diam M=\sup_{x,y\in M}\|x-y\|.$

Пусть $A \subset E$ — множество в нормированном пространстве E. Точ-ки пространства E могут быть по-разному расположены относительно множества A.

Точка $x_0 \in E$ называется внутренней точкой множества A, если существует такой шар $B(x_0,r)$ радиуса r>0 с центром в этой точке, что $B(x_0,r)\subset A$. Множество всех внутренних точек множества A называется его внутренностью и обозначается int A.

Точка $x_0 \in E$ называется внешней точкой множества A, если существует такой шар радиуса r>0 с центром в этой точке, что $B(x_0,r)\cap A=\emptyset$, т. е. $B(x_0,r)\subset (E\setminus A)$. Совокупность внешних точек множества A образует его внешность.

Точка $x_0 \in E$ называется *граничной точкой* множества A, если в любом шаре $B(x_0,r)$ есть точки, принадлежащие A, и точки, не принадлежащие A. *Границей* множества A называется множество ∂A его граничных точек. Граничная точка множества A может принадлежать A, а может и не принадлежать. Поэтому возможно, что $\partial A \subset A$, что $\partial A \cap A = \emptyset$ или $\partial A \cap A \neq \partial A$.

Точка $x_0 \in E$ называется *точкой прикосновения* множества A, если в любом шаре $B(x_0, r)$ содержится хотя бы одна точка множества A. Все точки множества A являются для него точками прикосновения.

Все точки прикосновения множества A подразделяются на изолированные и предельные точки.

Точка $x_0 \in A$ называется *изолированной точкой* множества A, если в достаточно малом шаре $B(x_0, r)$ нет точек из A, отличных от x_0 .

Точка $x_0 \in E$ называется *предельной точкой* множества A, если в любом шаре $B(x_0, r)$ содержится бесконечно много точек из A.

Предельная точка множества может принадлежать ему, а может и не принадлежать. Например, если A — множество рациональных чисел из отрезка [0,1], то каждая точка этого отрезка — предельная для A.

Совокупность всех точек прикосновения множества A называется замыканием этого множества и обозначается \overline{A} .

Так, $B[x_o, r]$ есть замыкание $B(x_0, r)$.

Теорема 1. Пусть A — множество в нормированном векторном пространстве E. Тогда следующие свойства эквивалентны:

- 1) A замкнутое множество;
- 2) $\overline{A} \subset A$, т. е. A содержит все свои точки прикосновения;
- 3) $\overline{A} = A$, т. е. A совпадает со своим замыканием.

Подпространством нормированного векторного пространства называется замкнутое линейное многообразие.

Теорема 2. Всякое открытое множество на числовой прямой представляет собой сумму конечного или счетного числа попарно непересекающихся интервалов.

Так как замкнутые множества — это дополнения открытых, то отсюда следует, что всякое замкнутое множество на прямой получается выбрасыванием из прямой конечного или счетного числа интервалов.

Определим paccmoshue от точки $x_0 \in E$ до множества $A \subset E$ по формуле $\rho(x_0,A)=\inf_{x\in A}\|x_0-x\|$. Paccmoshue между множествами A и B называется число $\rho(A,B)=\inf_{x\in A,y\in B}\|x-y\|$.

Утверждение 4. Точка $x_0 \in E$ является точкой прикосновения для $A \subset E$ тогда и только тогда, когда $\rho(x_0, A) = 0$.

Пусть A и B — два множества в нормированном пространстве E. Множество A называется n лотным в B, если $B \subset \overline{A}$. В частности, множество A называется b соводу b плотным (в пространстве b), если его замыкание \overline{A} совпадает со всем пространством b. Например, множество рациональных чисел всюду плотно на числовой прямой. Множество b называется b называется b если оно не плотно ни в одном шаре, b если в каждом шаре b содержится другой шар b не имеющий с b ни одной общей точки.

Нормированное пространство E называется cenapa бельным, если в нем существует счетное всюду плотное множество.

Примеры сепарабельных пространств

- 1. Пространство C[0,1] всех непрерывных функций, заданных на отрезке [0,1], сепарабельно, поскольку совокупность всех многочленов с рациональными коэффициентами образует в нем счетное всюду плотное множество. Действительно, по теореме Вейерштрасса для любой функции $x(t) \in C[0,1]$ найдется многочлен $p(t) \in P[0,1]$ такой, что $\|x(t) p(t)\| < \varepsilon$ для любого $\varepsilon > 0$. Значит, $p(t) \in B(x,\varepsilon)$, т. е. x(t) является точкой прикосновения множества многочленов.
- **2.** Пространство l_1 бесконечных числовых последовательностей сепарабельно. Счетным всюду плотным множеством в пространстве l_1 является множество финитных последовательностей с рациональными координатами, т. е. $x = (q_1, q_2, \ldots, q_n, 0, \ldots), q_i \in Q$ для всех i.
- 3. (Пример не сепарабельного пространства.) Рассмотрим пространство ограниченных числовых последовательностей m с $\|x\|_m = \sup_i |x_i|$ и в нем всевозможные последовательности, состоящие из нулей и единиц. Они образуют множество мощности континуума. Расстояние между двумя такими последовательностями как элементами пространства m равно 1. Окружим каждый такой элемент открытым

шаром радиуса 1/2. Эти шары не пересекаются. Если в m существует всюду плотное множество, то каждый из построенных шаров должен содержать хотя бы по одной точке из этого множества, и, следовательно, оно не может быть счетным.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Является ли множество

$$M = \{x \in C[0,1] : x(0) = 0\}$$

открытым, замкнутым в пространствах $C[0,1], \mathcal{L}_1[0,1]$?

Решение. Докажем, что множество M не является открытым в пространстве C[0,1]. Рассмотрим точку $x_0 \in M$, т. е. $x_0(t) \in C[0,1]$ и $x_0(0) = 0$. Для каждого r > 0 существует функция $x(t) = x_0(t) + \alpha$, $|\alpha| < r$, такая, что $x(0) = x_0(0) + \alpha = \alpha \neq 0$. Функция x(t) принадлежит шару $B(x_0,r)$, но не принадлежит множеству M. Таким образом, у множества M нет внутренних точек и M не является открытым.

Проверим, является ли множество M замкнутым в C[0,1]. Напомним, что множество M замкнуто, если $M=\overline{M}$, т. е. из того, что $x_n\in M$ и $x_n\to x_0$, следует, что $x_0\in M$. Другими словами, M замкнуто, если для любой сходящейся в C[0,1] последовательности непрерывных функций таких, что $x_n(0)=0$, предельная функция $x_0(t)$ непрерывна на отрезке [0,1] и $x_0(0)=0$. Учитывая, что сходимость в пространстве C[0,1] равномерная, то из того, что $\max_t |x_n(t)-x_0(t)|\to 0$ при $n\to\infty$, вытекает, что $|x_n(t)-x_0(t)|\to 0$ при $n\to\infty$ для всех $t\in [0,1]$. Следовательно, $x_0(0)=\lim_{n\to\infty} x_n(0)=0$. Итак, в пространстве C[0,1] множество M замкнуто и каждая его точка для множества M является граничной.

Множество M не является открытым и в пространстве $\mathcal{L}_1[0,1]$. Это следует из того, что каждый открытый шар радиуса r пространства $\mathcal{L}_1[a,b]$ содержит открытый шар радиуса r/(b-a) с центром в той же

точке пространства C[a,b]. А так как множество M не является открытым в C[0,1], то оно не будет открытым и в $\mathcal{L}_1[0,1]$.

Множество не замкнуто в пространстве $\mathcal{L}_1[0,1]$, так как существуют точки прикосновения множества M, которые ему не принадлежат. Действительно, рассмотрим функцию $x(t) \equiv 1$, которая не принадлежит множеству M, однако во множестве M существует последовательность x_n , которая сходится к ней:

$$x_n(t) = \left\{ egin{array}{ll} nt, & ext{если } t \in [0, 1/n], \\ 1, & ext{если } t \in [1/n, 1]. \end{array}
ight.$$

Действительно,

$$||x_n - x||_{\mathcal{L}_1[0,1]} = \int_0^{1/n} |x_n(t) - 1| dt \le \int_0^{1/n} (1 - nt) dt = \frac{1}{2n} \xrightarrow[n \to \infty]{} 0.$$

Замыкание множества M совпадает со всем пространством непрерывных функций, потому что для любой непрерывной функции можно построить последовательность непрерывных функций, начинающихся с нуля, которые в среднем будут сходиться к заданной функции.

Задача 2. Выяснить, является ли множество

$$M = \{x \in l_1 : x = (x_1, x_2, \dots, x_i, \dots), x_i > 0\}$$

открытым в пространстве l_1 .

Решение. Покажем, что множество $M\subset l_1$ не открыто. Это означает, что во множестве M существует такая точка, которая не является внутренней для него. Действительно, рассмотрим точку $x_0=\left(1,\frac{1}{2^2},\ldots,\frac{1}{i^2},\ldots\right)\in l_1$. Какой бы шар $B(x_0,r)$ радиуса r>0 мы не взяли, найдется номер i такой, что $1/i^2< r$, а это означает, что точка $y=\left(1,\frac{1}{2^2},\ldots,\frac{1}{(i-1)^2},0,\frac{1}{(i+1)^2},\ldots\right)$ будет принадлежать шару $B[x_0,r]$, потому что $\|y-x_0\|=1/i^2< r$, но не принадлежать M.

Задача 3. Доказать, что множество

$$L = \{x(t) \in C[0,1] : \int_{0}^{1} x(t)dt = 0\}$$

является подпространством в пространстве $\mathcal{L}_1[0,1]$.

Решение. Пусть $x,y\in L$ и $\alpha,\beta\in\mathbb{R}$, тогда $\alpha x+\beta y\in L$. Действительно, справедливо равенство $\int\limits_0^1(\alpha x+\beta y)(t)\mathrm{d}t=\alpha\int\limits_0^1x(t)\mathrm{d}t+\beta\int\limits_0^1y(t)\mathrm{d}t.$

Покажем, что множество L замкнуто. Пусть $x_n \in L$ и $x_n \xrightarrow[n \to \infty]{} x_0,$ тогда $x_0 \in L$.

Действительно, если $\int_{0}^{1} |x_n(t) - x_0(t)| dt \to 0$, то $\int_{0}^{1} |x_n(t) - x_0(t)| dt \ge$ $\ge \left| \int_{0}^{1} x_n(t) dt - \int_{0}^{1} x_0(t) dt \right| \Rightarrow \int_{0}^{1} x_0(t) dt = 0$, поскольку $\int_{0}^{1} x_n(t) dt = 0$. Значит, L – подпространство в $\mathcal{L}_1[0,1]$.

Задача 4. Показать, что множество

$$M = \{x \in l_2 : x = (x_1, \dots, x_i, \dots), \sum_{i=1}^{\infty} x_i = 0\}$$

не является подпространством в l_2 .

Решение. Заметим, что M в l_2 является линейным многообразием в силу того, что сложение последовательностей и умножение последовательности на скаляр в l_2 осуществляется покоординатно. Однако множество M в l_2 не замкнуто, потому что в M существует последовательность $x_n = \left(1, \frac{-1}{n}, \ldots, \frac{-1}{n}, 0, \ldots\right)$, которая в l_2 сходится к элемен-

ту $a=(1,0,\ldots,)$, но a не принадлежит множеству M. Следовательно, точка a является предельной точкой множества M.

Задача 5. Доказать, что множество

$$L_{n_0} = \{x = (x_1, x_2, \dots, x_n, \dots) \in l_2 : x_n = 0, \forall n > n_0,$$

где $n_0 \in N$ фиксировано, нигде не плотно в l_2 .

Р е ш е н и е. По определению, множество является нигде не плотным в нормированном векторном пространстве, если оно не плотно ни в одном шаре, т. е. если в каждом шаре $B \in l_2$ содержится другой шар B_1 , не имеющий с множеством ни одной общей точки.

Пусть B — произвольный шар в l_2 . Возможны два варианта:

- 1) $B \cap L_{n_0} = \emptyset$;
- 2) $z(z_1, z_2, \ldots, z_{n_0}, 0, \ldots) \in B \cap L_{n_0}$.

Первый случай тривиален. Рассмотрим второй случай и построим шар $B_1(z,\varepsilon)\subset B$ и точку $y=(z_1,z_2,\ldots,z_{n_0},\varepsilon/2,\ldots)$. Тогда для всех $x\in L_{n_0}$ имеем $\|x-y\|\geq \varepsilon/2$, т. е. $B_2(y,\varepsilon/2)\subset l_2\setminus L_{n_0}$. Кроме того, $B_2(y,\varepsilon/2)\subset B_1(z,\varepsilon)\subset B$. Таким образом, в шаре B всегда найдется шар B_2 , не содержащий точек множества L_{n_0} , т. е. L_{n_0} нигде не плотно.

Задача 6. Доказать, что множество A последовательностей из l_2 , содержащих лишь конечное число членов, отличных от нуля, плотно в l_2 .

Решение. Пусть $x \in l_2$. Это означает, что $\sum_{i=1}^{\infty} |x_i|^2 < +\infty$. Из сходимости ряда вытекает, что для любого $\varepsilon > 0$ существует номер N такой, что $\sum_{i=N}^{\infty} |x_i|^2 < \varepsilon^2$. Обозначим через $z = (x_1, \dots, x_N, 0, \dots)$. Очевидно, что $z \in A$ и $\|z - x\|_{l_2} < \varepsilon$. Значит, x является точкой прикосновения для множества A, следовательно, A всюду плотно в l_2 .

ЗАДАНИЯ

Задание 1. Определите, является ли данное множество замкнутым, открытым в пространстве $C[0,1], \mathcal{L}_1[0,1].$

1.1.
$$M = \{x(t) \in C[0,1] : x(0)x(1) = 0\}.$$

1.2.
$$M = \{x(t) \in C[0,1] : x(0) = x(1)\}.$$

1.3.
$$M = \{x(t) \in C[0,1] : 0 < x(t) < 1, \forall t \in [0,1] \}.$$

1.4.
$$M = \{x(t) \in C[0,1] : x(0) > 0\}.$$

1.5.
$$M = \{x(t) \in C^1[0,1] : x(0) = 0\}.$$

1.6.
$$M = \{x(t) \in C[0,1] : x(0) < 0\}.$$

1.7.
$$M = \{x(t) \in C^1[0,1] : x'(0) = 0\}.$$

Выяснить, является ли множество M открытым, замкнутым в пространстве $l_p, \ p \ge 1$.

1.8.
$$M = \left(x \in l_1 : x = (x_1, x_2, \ldots), \sum_{i=1}^{\infty} x_i = 0\right).$$

1.9.
$$M = (x \in l_1 : x = (x_1, x_2, \ldots), 0 \le x_i \le 1, i = 1, 2, \ldots).$$

1.10.
$$M = \left(x \in l_1 : x = (x_1, x_2, \ldots), |x_i| < \frac{1}{i}, i = 1, 2, \ldots\right).$$

1.11.
$$M = (x \in l_1 : x = (x_1, x_2, \ldots), |x_i| < 1, i = 1, 2, \ldots).$$

1.12.
$$M = \left(x \in l_2 : x = (x_1, x_2, \ldots), \sum_{i=1}^{\infty} |x_i| < 1\right).$$

1.13.
$$M = (x \in l_1 : x = (x_1, x_2, \ldots), x_i \ge 0, i = 1, 2, \ldots).$$

Задание 2. Образуют ли в пространстве C[-1,1] подпространство следующие множества функций.

- 2.1. Монотонные функции.
- 2.2. Четные функции.
- 2.3. Нечетные функции.
- $2.4.\ M$ ногочлены степени n.
- $2.5.\ M$ ногочлены степени не выше n.
- 2.6. Непрерывно дифференцируемые функции.
- 2.7. Непрерывные кусочно-линейные функции.
- 2.8. Непрерывные функции с ограниченным изменением.
- 2.9. Функции x(t), удовлетворяющие условию x(0) = 0.
- 2.10. Функции x(t), удовлетворяющие условию $\int_{-1}^{1} x(t) dt = 0$.
- 2.11. Функции, удовлетворяющие условию Липшица с какой-нибудь постоянной, зависящей от функции.
 - 2.12. Функции x(t), удовлетворяющие условию x(-1) = x(1).

- 2.13. Функции x(t), удовлетворяющие условию x(-1) = x(1) = 0.
- 2.14. Абсолютно непрерывные функции.

Задание 3. Доказать следующие утверждения.

- 3.1. Пусть множество M в нормированном пространстве E нигде не плотно. Доказать, что его дополнение $E\backslash M$ всюду плотно в E.
- 3.2. Пусть множество M нигде не плотно в нормированном пространстве E. Доказать, что его замыкание \overline{M} также нигде не плотно.
- 3.3. Является ли дополнение к всюду плотному множеству в нормированном пространстве E нигде не плотным. Привести пример. Найти условия, при которых дополнением к всюду плотному множеству будет множество нигде не плотное.
- 3.4. Доказать, что в банаховом пространстве дополнение к множеству первой категории является множеством второй категории.
- 3.5. Доказать, что множество всех иррациональных чисел на числовой прямой является множеством второй категории.
- 3.6. Доказать, что дополнение к открытому всюду плотному множеству в нормированном пространстве E является нигде не плотным.
- 3.7. Доказать, что множество непрерывно дифференцируемых функций в пространстве C[a,b] является множеством первой категории.
- 3.8. Пусть M ограниченное множество в нормированном пространстве E. Доказать, что \overline{M} также ограниченное множество.
- 3.9. Пусть A, B замкнутые множества, расстояние между которыми равно нулю. Могут ли множества A и B не пересекаться. Если да, то привести пример.
- 3.10. Пусть x_0 произвольная точка в нормированном пространстве E, а M множество в нем . Доказать, что $\rho(x_0, M) = \rho(x_0, \overline{M})$.
- $3.11.\$ Пусть L- подпространство сепарабельного нормированного пространства $E.\$ Доказать, что L- сепарабельно.

TEMA 3

БАНАХОВЫ ПРОСТРАНСТВА

Пусть E — нормированное векторное пространство. Последовательность $(x_n)_{n=1}^{\infty} \subset E$ называется $\phi y H \partial a M e H m a ль H o й или последовамельностью Коши, если <math>\lim \|x_n - x_m\| \to 0$ при $n, m \to \infty$.

Свойства последовательности Коши

- 1. Всякая фундаментальная последовательность ограничена.
- 2. Пусть последовательность $(x_n) \subset E$ фундаментальна в E, тогда числовая последовательность $||x_n||$ также фундаментальна в \mathbb{R} .
- 3. Пусть $(x_n), (y_n) \subset E$ фундаментальны в E, а $\alpha \in \mathcal{K}$, тогда последовательности $(x_n \pm y_n), (\alpha x_n)$ также фундаментальны в E.
- 4. Если подпоследовательность (x_{n_k}) фундаментальной последовательности (x_n) сходится к $x \in E$, то сама последовательность (x_n) сходится к $x \in E$.

Всякая сходящаяся в E последовательность фундаментальна. Обратное выполняется не всегда. Тем не менее очень важным является случай, когда это так.

Нормированное векторное пространство называется *полным*, если в нем всякая фундаментальная последовательность сходится. Полное нормированное пространство называется *банаховым*.

Банаховыми относительно норм, приведенных в теме 1, являются следующие пространства: \mathbb{R}^n , \mathbb{C}^n , C[a,b], $C^k[a,b]$, l_p , $p \geq 1$, m.

Банахово пространство \hat{E} называется *пополнением* пространства E, если выполняются следующие условия:

- 1) $E \subset \hat{E}$;
- 2) для любого $x \in E$ выполнено $\|x\|_E = \|x\|_{\hat{E}};$
- 3) E всюду плотно в \hat{E} .

Теорема 1. Для любого нормированного векторного пространства Е существует пополнение.

Пространство непрерывно дифференцируемых на отрезке [a,b] функций относительно нормы $||x||=\left(\int\limits_a^b|x(t)|^2\mathrm{d}t+\int\limits_a^b|x'(t)|^2\mathrm{d}t\right)^{1/2}$ также не является полным. Его пополнением служит пространство Соболева $H^1[a,b]$.

Теорема 2. В банаховом пространстве E любая последовательность замкнутых вложенных шаров $B[x_n, r_n] \subset B[x_{n+1}, r_{n+1}],$ $n = 1, 2, \ldots,$ радиусы которых стремятся κ нулю, имеет единственную общую точку.

Замечание. Справедлива и обратная теорема: если в нормированном пространстве любая последовательность замкнутых вложенных шаров, радиусы которых стремятся к нулю, имеет общую точку, то это пространство банахово.

Множество M в нормированном пространстве называется множе- cmвом I категории, если оно есть объединение счетного числа нигде не плотных множеств. Если M нельзя представить в виде объединения счетного числа нигде не плотных множеств, то M называется множе- cmвом II категории. Например, множество рациональных чисел является на числовой прямой множеством I категории.

В банаховом пространстве множество, дополнительное к множеству I категории, является множеством II категории. Так, иррациональные числа на $\mathbb R$ образуют множество II категории.

Теорема 3. Всякое банахово пространство является множеством II категории.

Замечание. Всякое полное метрическое пространство без изолированных точек несчетно, ибо в таком пространстве каждое множество, содержащее лишь одну точку, нигде не плотно.

Теорема 3 может быть сформулирована по-иному.

Теорема 3′. Пусть E — банахово пространство, F_n — последовательность замкнутых множеств в E и $E = \bigcup_{n=1}^{\infty} F_n$. Тогда хотя бы одно из множеств F_n содержит открытый шар.

Пусть E — нормированное векторное пространство и в E двумя способами введены нормы: $\|\cdot\|_1, \|\cdot\|_2$.

Говорят, что $норма \| \cdot \|_1$ $noдчинена \| \cdot \|_2$, если существует постоянная $\alpha > 0$ такая, что для любого $x \in E \| \|x\|_1 \le \alpha \|x\|_2$. Две нормы $\| \cdot \|_1, \| \cdot \|_2$ называются эквивалентными, если существуют постоянные $\alpha, \beta > 0$ такие, что для всех $x \in E$ выполняется неравенство $\alpha \|x\|_1 \le \|x\|_2 \le \beta \|x\|_1$.

Таким образом, эквивалентные нормы подчинены друг другу.

Теорема 4. Во всяком конечномерном нормированном векторном пространстве все нормы эквивалентны.

Рассмотрим в нормированном векторном пространстве E ряд $\sum_{k=1}^{\infty} x_k$, $x_k \in E(k=1,2,\ldots)$. Ряд $\sum_{k=1}^{\infty} x_k$ называется cxodящимся в E, если последовательность его частичных сумм $S_n = \sum_{k=1}^n x_k$ имеет предел. Элемент $S = \lim_{n \to \infty} S_n$ называется cymmoй ряда и обозначается $S = \sum_{k=1}^{\infty} x_k$.

Теорема 5. Пусть E — нормированное пространство. Для того, чтобы ряд $\sum\limits_{k=1}^{\infty} x_k$ сходился, необходимо, а если E — банахово, то и достаточно, чтобы для любого $\varepsilon > 0$ существовал номер $N(\varepsilon)$ такой, что для всех $n > N(\varepsilon)$ и для всех $p \in N$ выполнялось неравенство $\|\sum\limits_{k=n+1}^{n+p} x_k\| < \varepsilon.$

Теорема 6. Нормированное векторное пространство является банаховым тогда и только тогда, когда в нем каждый абсолютно сходящийся ряд сходится.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Доказать, что в пространстве $C^1[a,b]$ нормы

$$||x||_1 = \max_{t \in [a,b]} |x'(t)| + \int_a^b |x(t)| dt, ||x||_2 = \max_{t \in [a,b]} |x(t)| + \max_{t \in [a,b]} |x'(t)|$$

эквивалентны.

Р е ш е н и е. Две нормы являются эквивалентными, если они подчинены друг другу. Норма $\|\cdot\|_1$ подчинена $\|\cdot\|_2$, если существует положительная постоянная α такая, что $\|x\|_1 \le \alpha \|x\|_2$ для всех $x \in C^1[a,b]$.

Оценим $||x||_1$:

$$||x||_1 = \int_a^b |x(t)| dt + \max_{t \in [a,b]} |x'(t)| \le \max_t |x(t)| \cdot (b-a) + \max_t |x'(t)| \le$$

$$\le \max\{b-a,1\} \cdot \left(\max_t |x(t)| + \max_t |x'(t)|\right) = \alpha \cdot ||x||_2.$$

С другой стороны, используя формулу Ньютона-Лейбница для непрерывно дифференцируемых функций $x(t)=x(a)+\int\limits_a^t x'(s)\mathrm{d} s,$ получаем неравенство $|x(a)|\leq |x(t)|+\int\limits_a^b |x'(s)|\mathrm{d} s.$ Проинтегрировав обе его части по t, получим

$$|(b-a)|x(a)| \le \int_{a}^{b} |x(t)| dt + (b-a) \int_{a}^{b} |x'(t)| dt$$

ИЛИ

$$|x(a)| \le 1/(b-a) \int_{a}^{b} |x(t)| dt + \int_{a}^{b} |x'(t)| dt.$$

Таким образом,

$$||x||_2 = \max_t |x(t)| + \max_t |x'(t)| \le |x(a)| + \int_a^b |x'(t)| dt + \max_t |x'(t)| \le$$

$$\leq \frac{1}{b-a} \int_{a}^{b} |x(t)| dt + 2 \int_{a}^{b} |x'(t)| dt + \max_{t} |x'(t)| \leq
\leq \frac{1}{b-a} \int_{a}^{b} |x(t)| dt + 2((b-a)+1) \cdot \max_{t} |x'(t)| \leq
\leq \max \left\{ \frac{1}{b-a}, 2(b-a)+1 \right\} \cdot \left(\int_{a}^{b} |x(t)| dt + \max_{t} |x'(t)| \right) = \beta \cdot ||x||_{1}.$$

Задача 2. Является ли пространство $C^1[0,1]$ банаховым по норме

$$||x|| = \int_{0}^{1} |x(t)| dt + \max_{0 \le t \le 1} |x'(t)|$$
?

Решение. Нормированное векторное пространство банахово, если любая последовательность Коши в нем сходится. По определению, последовательность является последовательностью Коши, если $\|x_n - x_m\| \to 0$ при $n, m \to \infty$.

Имеем

$$||x_n - x_m|| = \int_0^1 |x_n(t) - x_m(t)| dt + \max_{0 \le t \le 1} |x'_n(t) - x'_m(t)| \xrightarrow[n,m \to \infty]{} 0.$$

Следовательно,

$$\int_{0}^{1} |x_n(t) - x_m(t)| dt \to 0, \quad \max_{0 \le t \le 1} t |x'_n(t) - x'_m(t)| \to 0$$

при $n,m \to \infty$ одновременно.

В силу полноты пространства интегрируемых по Лебегу функций $L_1[0,1]$ последовательность $x_n(t)$ сходится в среднем к функции $x_0(t)$, а последовательность непрерывных функций $x_n'(t)$ сходится равномерно к непрерывной функции $\phi(t)$. Мы должны показать, что функция $x_0(t) \in C^1[0,1]$ и $x_0'(t) = \phi(t)$.

Из сходимости в среднем следует, что существует подпоследовательность x_{n_k} , сходящаяся к $x_0(t)$ почти всюду. Пусть для $t=t_0$ и $x_{n_k}(t_0) \to x_0(t_0)$ при $k \to \infty$, тогда $x_{n_k}(t) - x_{n_k}(t_0) = \int_{t_-}^t x'_{n_k}(s) \mathrm{d}s$.

Перейдем в последнем равенстве к пределу при $k \to \infty$, и тогда $x_0(t) = x_0(t_0) + \int\limits_{t_0}^t \phi(s) \mathrm{d}s$ почти всюду. Учитывая, что $x_0(t)$ абсолютно непрерывная функция, имеем $x_0'(t) = \phi(t)$.

Данная задача может быть решена и следующим образом. Известно, что если в пространстве заданы две эквивалентные нормы, по одной из которых пространство банахово, то оно банахово и по второй норме. В задаче 1 мы показали, что наша норма эквивалентна норме $\max_{t\in[0,1]}|x(t)|+$ $+\max_{t\in[0,1]}|x'(t)|$, по которой $C^1[0,1]$ банахово. Значит, $C^1[0,1]$ банахово и по норме $\max_{t\in[0,1]}|x'(t)|+\int\limits_0^1|x(t)|\mathrm{d}t.$

Задача 3. Доказать, что пространство l_1 банахово по норме

$$||x|| = \sum_{i=1}^{\infty} |x_i|.$$

Решение. Пусть $(x_n) \subset l_1$ — фундаментальная последовательность в l_1 . Это означает, для любого $\varepsilon > 0$ существует $N(\varepsilon)$ такое, что

$$||x_n - x_m|| = \sum_{i=1}^{\infty} |x_i^{(n)} - x_i^{(m)}| < \varepsilon \text{ при } n, m \ge N(\varepsilon).$$
 (3.1)

Из (3.1) следует, что при любом $i |x_i^{(n)} - x_i^{(m)}| < \varepsilon$, т. е. при каждом i последовательность действительных чисел $(x_i^{(n)})$ фундаментальна и поэтому сходится. Положим $x_i = \lim_{n \to \infty} x_i^{(n)}$. Обозначим через x последовательность $(x_1, x_2, \ldots, x_i, \ldots)$.

Нужно показать, что

$$\sum_{i=1}^{\infty} |x_i| < \infty$$
, т. е. $x \in l_1$, $||x_n - x|| = \sum_{i=1}^{\infty} |x_i^{(n)} - x_i| \to 0$ при $n \to \infty$.

Из неравенства (3.1) следует, что для любого фиксированного натурального M выполняется $\sum\limits_{i=1}^M |x_i^{(n)} - x_i^{(m)}| < \varepsilon$. В этой сумме только конечное число слагаемых, и мы можем, зафиксировав n, перейти к пределу при $m \to \infty$. Получим неравенство $\sum\limits_{i=1}^M |x_i^{(n)} - x_i| < \varepsilon$, которое верно при любом натуральном M. Перейдем к пределу при $M \to \infty$ и получим $\sum\limits_{i=1}^\infty |x_i^{(n)} - x_i| < \varepsilon$. Из сходимости рядов $\sum\limits_{i=1}^\infty |x_i^{(n)}|$ и $\sum\limits_{i=1}^\infty |x_i^{(n)} - x_i|$ следует сходимость ряда $\sum\limits_{i=1}^\infty |x_i|$.

Задача 4. Показать, что пространство $\mathcal{L}_1[-1,1]$ не полное.

Решение. Рассмотрим последовательность непрерывных на отрезке [-1,1] функций $(x_n(t))_{n=1}^{\infty}$, которая задается следующим образом:

$$x_n(t) = \left\{ egin{array}{ll} -1, & ext{ если } t \in [-1,-1/n], \\ nt, & ext{ если } t \in (-1/n,1/n), \\ 1, & ext{ если } t \in [1/n,1]. \end{array}
ight.$$

Видно, что $|x_n(t)| \leq 1$ для любых n, но тогда $|x_n(t) - x_m(t)| \leq 2$ и

$$||x_n - x_m||^2 = \int_{-1}^{1} |x_n(t) - x_m(t)|^2 dt \le 4 \int_{-1/n}^{1/n} dt = \frac{8}{n} \to 0$$

при $n \to \infty \ (m < n)$.

Заметим, что в каждой точке $t\in [-1,1]$ при $n\to\infty$ последовательность $x_n(t)$ имеет предел

$$x_0(t) = \left\{ egin{array}{ll} -1, & ext{если } t \in [-1,0), \ 0, & ext{если } t = 0, \ 1, & ext{если } t \in (0,1], \end{array}
ight.$$

при этом $|x_0(t)| < 1$ и $|x_n(t) - x_0(t)| \le 2$. Но тогда $||x_n - x_0||^2 \le 8/n \to 0$ при $n \to \infty$. Таким образом, при $n \to \infty$ $x_n(t) \to x_0(t)$ в среднем, причем $x_0(t)$ разрывная функция, т. е. $x_0(t) \not\in \mathcal{L}_2[-1,1]$. Предположим, что существует непрерывная функция $y_0(t)$, к которой сходится $x_n(t)$.

Запишем неравенство для интегралов

$$\int_{-1}^{1} |x_1(t) - y_0(t)|^2 dt \le \int_{-1}^{1} |x_n - x_0|^2 dt + \int_{-1}^{1} |x_n - y_0|^2 dt.$$

Переходя к пределу при $n \to \infty$, получаем

$$\int_{-1}^{1} |x_0(t) - y_0(t)|^2 dt = 0$$

и, значит, $y_0(t)$ почти всюду совпадает с $x_0(t)$.

Задача 5. Доказать, что пространство M[a,b] ограниченных на отрезке [a,b] функций с нормой $\|x\|=\sup_{t\in [a,b]}|x(t)|$ является банаховым.

Решение. Рассмотрим в пространстве M[a,b] последовательность Коши $(x_n)_{n=1}^\infty$. Из определения вытекает, что для любого $\varepsilon>0$ существует номер n_ε такой, что для всех номеров $n,m>n_\varepsilon$ выполняется неравенство $\sup_{t\in [a,b]}|x_n(t)-x_m(t)|\leq \varepsilon$. Тогда $|x_n(t)-x_m(t)|<\varepsilon$ для любого $t\in [a,b]$. Это в свою очередь означает, что при фиксированном $t\in [a,b]$ числовая последовательность $(x_n(t))$ является последовательностью Коши и, следовательно, имеет предел x(t), поскольку пространство $\mathbb R$ банахово. Теперь нужно показать, что функция x(t) ограничена, т. е. $x(t)\in M[a,b]$, и имеет место сходимость последовательности $x_n(t)$ по норме пространства M[a,b].

В неравенстве $|x_n(t)-x_m(t)|<\varepsilon$ перейдем к пределу при $m\to\infty$ и получим, что $|x_n(t)-x(t)|<\varepsilon$ для всех $n\ge n(\varepsilon)$, тогда $\sup |x_n(t)-x(t)|\le\varepsilon$ для всех $n\ge n(\varepsilon)$. Это означает, что $\|x_n-x\|\to 0$ при $n\to\infty$. Учитывая неравенство $|x(t)|\le |x_n(t)-x(t)|+|x_n(t)|$, имеем $\sup_t |x|\le \sup_t |x_n(t)-x(t)|+\sup_t |x_n(t)|$, что влечет за собой ограниченность функции x(t).

Таким образом, пространство M[a, b] банахово.

ЗАДАНИЯ

Задание 1. Определите, являются ли две нормы $\|x\|_1$ и $\|x\|_2$ эквивалентными в нормированном пространстве два раза непрерывно дифференцируемых на отрезке [a,b] функций $C^2[a,b]$.

1.1.
$$||x||_{C^2[a,b]}$$
 $||x|| = |x(a)| + |x'(a)| + ||x''||_{C[a,b]}$.

1.2.
$$||x||_{C^{2}[a,b]}$$
 и $||x|| = |x(a)| + ||x'||_{C[a,b]} + ||x''||_{C[a,b]}$.

1.3.
$$||x||_{C^2[a,b]}$$
 $||x|| = \left(\int_a^b |x(t)|^2 dt\right)^{1/2} + ||x''||_{C[a,b]}.$

1.4.
$$||x||_1 = |x(a)| + |x'(a)| + ||x''||_{C[a,b]}$$
 и $||x||_2 = |x(a)| + ||x'||_{C[a,b]} + ||x''||_{C[a,b]}$.

1.5.
$$||x||_1 = |x(a)| + |x'(a)| + ||x''||_{C[a,b]}$$
 и $||x||_2 = \left(\int_a^b |x(t)|^2 dt\right)^{1/2} + ||x''||_{C[a,b]}$.

1.6.
$$||x||_1 = |x(a)| + ||x'||_{C[a,b]} + ||x''||_{C[a,b]}$$
 и $||x||_2 = \left(\int_a^b |x(t)|^2 dt\right)^{1/2} + ||x''||_{C[a,b]}$.

Определите, являются ли две нормы эквивалентными в нормированном векторном пространстве непрерывно дифференцируемых на отрезке [a,b] функций.

1.7.
$$||x||_{C^1[a,b]}$$
 $||x|| = |x(a)| + ||x'||_{C[a,b]}$.

1.8.
$$||x||_{C^1[a,b]}$$
 $||x||_a \int_a^b |x(t)| dt + ||x'||_{C[a,b]}.$

1.9.
$$||x|| = |x(a)| + ||x'||_{C[a,b]}$$
 и $||x||_2 = \int_a^b |x(t)| dt + ||x'||_{C[a,b]}$.

1.10. Доказать, что в пространстве C[a,b] норма $\|x\|_{\mathcal{L}_1[a,b]}$ эквивалентна норме $\|x\| = \left(\int\limits_a^b \nu(t) x^2(t) \mathrm{d}t\right)^{1/2}, \ \nu(t) \geq \alpha > 0$ и $\nu(t) \in C[a,b].$

Доказать по определению, эквивалентность норм в пространстве \mathbb{R}^n :

1.11.
$$||x||_i = \max_{1 \le i \le n} |x_i|$$
 if $||x|| = \max_{1 \le i \le n} (\alpha_i |x_i|), \alpha_i > 0, i = 1, 2, \dots, n$.

1.12.
$$||x||_c = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$$
 и $||x|| = \left(\sum_{i=1}^m \sum_{k=1}^i |x_k|^2\right)^{1/2}$.

1.13.
$$||x||_0 = \sum_{i=1}^n |x_i|$$
 If $||x|| = \sum_{i=1}^\infty |\alpha_i| |x_i|$, $\alpha_i > 0$, $i = 1, 2, \dots, n$.

1.14.
$$||x||_i = \max_{1 \le i \le n} |x_i|$$
 и $||x|| = \max_{1 \le k \le n} |\sum_{i=1}^k x_i|$.

 $1.15. \ \|p\| = \max_{0 \leq t \leq 1} |p(t)|$ и $\|p\| = \int\limits_0^1 |p(t)| \mathrm{d}t$ в пространстве многочленов P[0,1].

Задание 2. Проверить, является ли заданное пространство банаховым по указанной норме. Если пространство не полно, то указать его пополнение.

2.1. Пространство непрерывно дифференцируемых на отрезке [0,1] функций с нормой

$$||x|| = \max_{0 \le t \le 1} |x(t)| + \int_{0}^{1} |x'(t)| dt.$$

2.2. Пространство непрерывно дифференцируемых на отрезке [0,1] функций с нормой

$$||x|| = \max_{0 \le t \le 1} |x(t)| + \max_{0 < t < 1/2} |x'(t)|.$$

2.3. Пространство многочленов P[0,1] степени не выше n, заданных на отрезке [0,1], с нормой

$$||p|| = \max_{0 \le t \le 1} |p(t)|.$$

2.4. Пространство бесконечных числовых последовательностей $x==(x_1,\ldots,x_i,\ldots),\ \sum_{i=1}^\infty |x_i|<\infty$ относительно нормы

$$||x|| = \sup_{i} |x_i|.$$

2.5. Пространство непрерывно дифференцируемых на отрезке [0,1] функций с нормой

$$\max_{0 \le t \le \frac{1}{2}} |x(t)| + \max_{0 \le t \le 1} |x'(t)|.$$

2.6. Пространство бесконечных числовых последовательностей $x==(x_1,\ldots,x_i,\ldots),$ $\sum_{i=1}^{\infty}|x_i|^2<\infty$ с нормой

$$||x|| = \sum_{i=1}^{\infty} |x_i|.$$

2.7. Пространство непрерывно дифференцируемых на отрезке [0,1] функций с нормой

$$||x|| = \max_{0 \le t \le 1} |x'(t)| + |x(0)|.$$

2.8. Пространство бесконечных числовых последовательностей $x==(x_1,x_2,\ldots,x_i,\ldots):\sum_{i=1}^\infty \alpha_i|x_i|^2<\infty,$ где $(\alpha_i)_{i=1}^\infty-$ фиксированная последовательность и $\alpha_i>0, i=1,2,\ldots,$ относительно нормы

$$||x|| = \left(\sum_{i=1}^{\infty} \alpha_i |x_i|^2\right)^{1/2}.$$

2.9. Пространство бесконечных числовых последовательностей $x==(x_1,x_2,\ldots,x_i,\ldots):\sum_{i=1}^\infty |x_i|^2<\infty$ относительно нормы

$$||x|| = \left(\sum_{i=1}^{\infty} \alpha_i |x_i|^2\right)^{1/2},$$

где $(\alpha_i)_{i=1}^\infty$: $\sum_{i=1}^\infty |\alpha_i|^2 < \infty$ и $\alpha_i > 0, i=1,2,\ldots$ фиксирована.

2.10. Пространство непрерывно дифференцируемых на отрезке [0,1] функций с нормой

$$||x|| = \max_{0 \le t \le 3/4} |x(t)| + \int_{1/2}^{1} |x'(t)| dt.$$

2.11. Пространство непрерывно дифференцируемых на отрезке [0,1] функций с нормой

$$||x|| = \max_{0 \le t \le 1} |x(t)| + \int_{0}^{1/2} |x'(t)| dt.$$

2.12. Пространство \mathbb{R}^n столбцов $x=(x_i)_{i=1}^n, x_i \in \mathbb{R}$, с нормой

$$||x|| = \left(\sum_{i=1}^{n} \sum_{k=1}^{i} |x_k|^2\right)^{1/2}.$$

2.13. Пространство \mathbb{R}^n столбцов $x=(x_i)_{i=1}^n, x_i\in\mathbb{R},$ с нормой

$$||x|| = \max_{1 \le k \le n} |\sum_{i=1}^{k} x_i|.$$

2.14. Пространство $\mathcal{K}[a,b]$ финитных функций с нормой

$$||x|| = \max_{a \le t \le b} |x(t)|.$$

2.15. Пространство бесконечных числовых последовательностей $x=(x_1,\ldots,x_i,\ldots),\ \sup \alpha_i|x_i|<+\infty,$ где $(\alpha_i)_{i=1}^\infty$ — фиксированная последовательность с нормой

$$||x|| = \sup_{i} \alpha_i |x_i|.$$

Задание 3. Проверить, сходится ли ряд $\sum\limits_{n=1}^{\infty}x_n$ в нормированном пространстве E.

3.1.
$$x_n = \left(\underbrace{\frac{(-1)^n}{n}, \dots, \frac{(-1)^n}{n}}_{n}, 0, \dots\right), E = l_2.$$

3.2.
$$x_n = \left(\frac{1}{n}, 0, \ldots\right), E = l_1.$$

3.3.
$$x_n = \left(\underbrace{\frac{n}{5^n}, \dots, \frac{n}{5^n}}, 0, \dots\right), E = l_2.$$

3.4.
$$x_n = \left(\underbrace{\frac{\cos n}{n}, \dots, \frac{\cos n}{n}}, 0, \dots\right), E = l_2.$$

3.5.
$$x_n = \left(\underbrace{\frac{n^2}{3^n}, \dots, \frac{n^2}{3^n}}_{l_*}, 0, \dots\right), E = l_2.$$

3.6.
$$x_n = \left(0, \dots, \frac{1}{n}, 0, \dots\right), E = l_1.$$

3.7.
$$x_n(t) = \frac{3^n t^n - t^{2n}}{3^{2n}}, E = C[0, 1].$$

3.8.
$$x_n(t) = \frac{t^n}{n} - \frac{t^{n+1}}{n+1}, E = C[0,1].$$

3.9.
$$x_n(t) = \frac{1}{t^2 + n^2}$$
, $E = C[0, 1]$.

3.10.
$$x_n(t) = t^2 e^{-nt}$$
, $E = C[0, 1]$.

3.11.
$$x_n(t) = \frac{t^{2n} - 3t^n}{n!}, E = C[1/2, 2].$$

3.12.
$$x_n(t) = \frac{\arctan(n^2t^2)}{n^2}$$
, $E = C[0, 1]$.

3.13.
$$x_n(t) = \frac{1}{n+t}$$
, $E = L_{3/2}[0,1]$.

3.14.
$$x_n(t) = \frac{\cos(nt)}{n^2}$$
, $E = L_1[-3\pi, 2\pi]$.

3.15.
$$x_n(t) = \frac{\sin(nt)}{n^3}$$
, $E = L_1[-3\pi, 2\pi]$.

TEMA 4

ОТОБРАЖЕНИЯ В НОРМИРОВАННЫХ ВЕКТОРНЫХ ПРОСТРАНСТВАХ

Непрерывные отображения нормированных векторных пространств. Пусть E и F — два нормированных векторных пространства и f — отображение пространства E в F. Таким образом, каждому $x \in E$ ставится в соответствие некоторый элемент y = f(x) из F.

Отображение f называется $enpepывным в точке <math>x_0 \in E$, если для каждого $\varepsilon > 0$ существует такое $\delta(\varepsilon) > 0$, что для всех $x \in E$ таких, что $\|x - x_0\|_E < \delta$, выполнено неравенство $\|f(x) - f(x_0)\|_F < \varepsilon$.

Если отображение f непрерывно во всех точках пространства E, то говорят, что отображение f непрерывно на E.

Определение непрерывного отображения можно сформулировать и в терминах окрестностей. Отображение f называется непрерывным в точке $x_0 \in E$, если для любой окрестности W_{y_0} точки $y_0 = f(x_0)$ найдется такая окрестность V_{x_0} точки x_0 , что $f(V_{x_0}) \subset W_{y_0}$.

Теорема 1. Пусть E и F — нормированные векторные пространства и $f: E \to F$. Тогда следующие свойства отображения f эквивалентны:

- 1) f непрерывно в каждой точке $x \in E$;
- 2) прообраз открытого множества в F открыт в E;
- 3) прообраз замкнутого множества в F замкнут в E;
- 4) для любого множества $M\subset E$ справедливо $f(\overline{M})\subset \overline{f(M)}.$

Легко убедиться, что образ открытого (замкнутого) множества при непрерывном отображении не обязательно открыт (замкнут).

Отображение f называется omкрытым, если оно переводит каждое открытое множество снова в открытое. Отображение, переводящее каждое замкнутое множество в замкнутое, называется замкнутым.

Теорема 2. Пусть E, F, W — нормированные пространства и

пусть f и g соответственно непрерывные отображения E в F и F в W. Тогда отображение $x \to g(f(x))$ пространства E в W непрерывно.

Замечание. Если отображение f непрерывно, а множество M всюду плотно в E, то f(M) всюду плотно в F.

Отображение $f:E\to F$ называется равномерно непрерывным, если для всякого $\varepsilon>0$ существует $\delta(\varepsilon)$ такое, что для всех $x,y\in E$, таких, что $\|x-y\|_E<\delta$, выполняется $\|f(x)-f(y)\|_F<\varepsilon$.

Всякое равномерно непрерывное отображение непрерывно.

Если отображение f удовлетворяет условию: существует постоянная c>0, что $\|f(x)-f(y)\|_F \le c\|x-y\|_E$ для всех $x,y\in E$, то говорят, что f удовлетворяет условию $\mathcal{J}unuuuua$.

Отображение, удовлетворяющее условию Липшица, непрерывно и равномерно непрерывно.

Пусть $f: E \to F$ взаимно однозначно, и существует обратное отображение $f^{-1}: F \to E, \ x = f^{-1}(y)$. Если f взаимно однозначно и взаимно непрерывно (т. е. $f, \ f^{-1}$ — непрерывные отображения), то оно называется f0 в f0 в f0 в f1 между которыми можно установить гомеоморфизм, называются гомеоморфными.

Гомеоморфизм осуществляет взаимно однозначное соответствие между открытыми и замкнутыми множествами. Из определения гомеоморфизма вытекает, что для того чтобы непрерывное отображение было гомеоморфизмом, необходимо и достаточно, чтобы образом открытого множества являлось открытое.

Отображение $f: E \to F$ называется *изоморфизмом*, если оно взаимно однозначно и взаимно непрерывно, при этом существуют постоянные α, β такие, что $\alpha \|x\|_E \leq \|f(x)\|_F \leq \beta \|x\|_E$.

Наиболее интересен тот случай, когда изоморфизм является еще и линейным, т. е. $f(\alpha x + \beta y) = \alpha f(x) + \beta f(y)$ для всех $x, y \in E, \ \alpha, \beta \in \mathcal{K}$.

Два нормированных пространства называются *изоморфными*, если между ними существует по крайней мере один изоморфизм.

Изоморфизм, сохраняющий расстояние между точками, называется изометрией.

Если пространство E изометрично некоторому подпространству E' пространства F, то говорят, что E изометрично вкладывается в F. Например, \mathbb{R}^m изометрично вкладывается в \mathbb{R}^n при m < n. Изометрией при этом является отображение $f: \mathbb{R}^m \to \mathbb{R}^n$ такое, что $f(x) = (x_1, x_2, \ldots, x_m, 0, \ldots, 0)$, если $x = (x_1, \ldots, x_m)$. Например, пространство C[0,1] изометрично C[a,b], отображение изометрии определяется формулой f(x) = x(a(1-t)+bt).

Пространство E вложено в нормированное пространство F, если всюду на E задана линейная функция f такая, что найдется постоянная $\beta>0$ и при этом $\|f(x)\|\leq \beta\|x\|$ для всех $x\in E$. Например, пространство C[a,b] вложено в $\mathcal{L}_p[a,b],\ p\geq 1$. Действительно, рассмотрим тождественное отображение, тогда

$$||x||_p = \left(\int_a^b |x(t)|^p dt\right)^{1/p} \le \max_{a \le x \le b} |x(t)| \left(\int_a^b dt\right)^{1/n} = \sqrt[p]{b-a} ||x||_c.$$

Принцип сжимающих отображений в нормированных векторных пространствах. Пусть в банаховом пространстве E действует отображение f. Точка x^* называется enodenical mouroù omoбражения <math>f, если $f(x^*) = x^*$.

Таким образом, неподвижные точки отображения f — это решение уравнения x = f(x).

Будем говорить, что отображение f является cжимающим (cжа-muem), если существует постоянная $0<\alpha<1$ такая, что выполняется неравенство $\|f(x)-f(y)\|_F \leq \alpha \|x-y\|_E$ для всех $x,y\in E$. Число α называется $\kappa o \Rightarrow \phi \phi$ ициентом $c \Rightarrow a = 1$

Теорема 3 (принцип сжимающих отображений). Пусть f отображает замкнутое в банаховом пространстве E множество M на себя и является на M сжимающим с коэффициентом сжатия α . Тогда в M отображение f имеет единственную неподвижную точку x^* , которая может быть найдена методом последовательных приближений по формуле $x_n = f(x_{n-1}), n = 1, 2, \ldots$, где $(x_n) \subset M$ и $x_n \to x^*$ при $n \to \infty$. Кроме того, справедлива оценка скорости сходимости

$$||x_n - x^*|| \le \frac{\alpha^n}{1 - \alpha} ||x_0 - x_1||.$$

Следствие 1. Пусть f отображает банахово пространство E само на себя и является сжатием. Тогда f имеет g E единственную неподвижную точку.

Следствие 2. Пусть f определено на шаре $B[x_0, r_0] \subset E$, где E — банахово пространство. Пусть f является на $B[x_0, r_0]$ сжатием c коэффициентом α и при этом выполнено условие $||f(x_0) - x_0|| \leq (1 - \alpha)r_0$. Тогда в шаре $B[x_0, r_0]$ существует единственная неподвижная точка отображения f, которая может быть найдена методом последовательных приближений.

Теорема 4. В пространстве \mathbb{R}^n непрерывное отображение замкнутого шара на себя имеет неподвижную точку.

Теорема 5. Пусть f отображает замкнутое множество $M \subset E$ на себя u при некотором $m \in \mathbb{N}$ отображение f^m является на M сжатием. Тогда B M существует единственная неподвижная точка f.

Следствие 3. Пусть f отображает замкнутое выпуклое множество $M \subset E$ на себя, причем на M оно непрерывно дифференцируемо и $\|f'(x)\| \le \alpha < 1$. Тогда справедливы утверждения теоремы 3.

Применение принципа сжимающих отображений к интеграль- ным уравнениям. Рассмотрим интегральное уравнение вида

$$a(t)x(t) - \int_{a}^{b} K(t, s, x(s))ds = y(t), \ t \in [a, b].$$
 (4.1)

Здесь a(t), y(t) — заданные функции; K(t, s, x(s)) — заданная функция, называемая ядром интегрального уравнения; x(t) — неизвестная функция.

Решение x(t) разыскивается в различных пространствах функций в зависимости от свойств функций K(t,s,z) и y. Пространства выбираются так, чтобы интеграл в (4.1) существовал. Уравнение (4.1) называется интегральным уравнением Фредгольма. Если $a(t) \equiv 0$, то уравнение (4.1) называется интегральным уравнением Фредгольма 1-го рода, соответственно при $a(t) \equiv 1 - 2$ -го рода и при $a(t) \neq 0 - 2$ уравнением 3-го рода. Интегральное уравнение (4.1) называется линейным, если функция K(t,s,z) линейна по z. Если $y(t) \equiv 0$, то уравнение (4.1) называется однородным.

Уравнение вида

$$a(t)x(t) - \int_{a}^{t} \mathcal{K}(t, s, x(s)) ds = y(t), \qquad (4.2)$$

называется интегральным уравнением Вольтерра. Уравнение Вольтерра является частным случаем уравнения Фредгольма.

Решением уравнений (4.1), (4.2) называется функция x(t), при подстановке которой в уравнения выполняется равенство для всех $t \in [a,b]$ или почти всех. Линейное однородное уравнение всегда имеет решение $x(t) \equiv 0$.

Остановимся на применении метода последовательных приближений к интегральным уравнениям 2-го рода.

Рассмотрим линейное неоднородное интегральное уравнение Фредгольма 2-го рода:

$$x(t) = \lambda \int_{a}^{b} K(t, s)x(s)ds + y(t). \tag{4.3}$$

Теорема 6. Пусть K(t,s) — непрерывная функция на $[a,b] \times [a,b] = \Omega$ и $M = \max_{(t,s) \in \Omega} |K(t,s)|$, тогда для любого параметра λ такого, что $|\lambda| < \frac{1}{M(b-a)}$, интегральное уравнение Фредгольма 2-го рода (4.3) имеет единственное непрерывное решение для любой правой части $y(t) \in C[a,b]$.

Рассмотрим нелинейное уравнение Фредгольма 2-го рода:

$$x(t) = \lambda \int_{a}^{b} K(t, s, x(s)) ds + y(t).$$

$$(4.4)$$

Теорема 7. Пусть K(t,s,z) — непрерывная функция переменных t,s,z, удовлетворяющая условию Липшица по z, m. e. существует постоянная L>0 такая, что $|K(t,s,z_1)-K(t,s,z_2)| \le L\|z_1-z_2\|$. Если выполнено условие $L(b-a)|\lambda| < 1$, то интегральное уравнение (4.4) имеет единственное непрерывное решение для любой функции $y(t) \in C[a,b]$.

Рассмотрим линейное неоднородное уравнение Вольтерра

$$x(t) = \lambda \int_{a}^{t} K(t, s)x(s)ds + y(t). \tag{4.5}$$

Теорема 8. Пусть K(t,s) — непрерывная функция по переменным t и s. Тогда для любой функции $y(t) \in C[a,b]$ и любого параметра λ интегральное уравнение Вольтерра 2-го рода (4.5) имеет единственное непрерывное решение.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Выяснить, является ли отображение

$$F: L_2[0,1] \to C[0,1], \quad F(x) = \int_0^1 \frac{t^2 x(s)}{\sqrt[3]{s}} ds,$$

непрерывным в точке $x_0(t) = 0$.

Решение. По определению, отображение $F: X \to Y$ непрерывно в точке x_0 , если для любого $\varepsilon > 0$ существует $\delta(\varepsilon)$ такое, что для всех $x \in X$, удовлетворяющих условию $\|x - x_0\|_X < \delta$, выполнено $\|F(x) - F(x_0)\|_Y < \varepsilon$.

Оценим норму

$$||F(x)||_{Y} = ||F(x)||_{C[0,1]} = \max_{0 \le t \le 1} \left| \int_{0}^{1} \frac{t^{2}x(s)}{\sqrt[3]{s}} \, \mathrm{d}s \right| \le \max_{0 \le t \le 1} |t^{2}| \cdot \int_{0}^{1} \frac{|x(s)|}{\sqrt[3]{s}} \, \mathrm{d}s =$$

$$= \int_{0}^{1} \frac{|x(s)|}{\sqrt[3]{s}} \, \mathrm{d}s \le \left(\int_{0}^{1} |x(s)|^{2} \, \mathrm{d}s \right)^{1/2} \cdot \left(\int_{0}^{1} \left(\frac{1}{\sqrt[3]{s}} \right)^{2} \, \mathrm{d}s \right)^{1/2} = \sqrt{3} \|x\|_{L_{2}[0,1]}.$$

Поэтому если $\|x\|_{L_2[0,1]} < \delta$, то $\|F(x)\|_{C[0,1]} < \sqrt{3}\delta$, и для всех $\varepsilon > 0$ найдется $\delta = \varepsilon/\sqrt{3}$ такое, что для $x \in L_2[0,1]$, удовлетворяющих условию $\|x\| < \delta$, выполняется $\|F(x)\| < \varepsilon$. Это означает, что отображение непрерывно в точке x_0 .

Задача 2. Является ли непрерывным отображение

$$F: L_1[0,1] \to L_1[0,1], \quad F(x) = x^2(t).$$

Решение. По критерию Гейне, отображение непрерывно в точке x_0 , если для любой последовательности (x_n) такой, что $x_n \to x_0$, соответствующая последовательность $F(x_n) \to F(x_0)$ при $n \to \infty$. Покажем, что отображение F не является непрерывным в нуле, т. е. существует последовательность функций $(x_n) \subset L_1[0,1]$, которая сходится к нулю, а последовательность $F(x_n) \not\to F(0) = 0$.

Пусть $\varepsilon_0 = 1/3$. Рассмотрим последовательность

$$x_n(t) = \left\{ egin{array}{ll} (1-nt)\sqrt{n}, & \mbox{если } t \in [0,1/n), \\ 0, & \mbox{если } t \in [1/n,1], \end{array}
ight.$$

которая сходится к нулю. Действительно,

$$||x_n(t)||_{L_1[0,1]} = \int_0^1 |x_n(t)dt| = \sqrt{n} \int_0^{1/n} |1 - nt|dt = \sqrt{n} \int_0^{1/n} (1 - nt)dt =$$

$$= [1 - nt = z] = \sqrt{n} \int_0^0 z \frac{dz}{-n} = -\frac{1}{\sqrt{n}} \frac{z^2}{2} \Big|_1^0 = \frac{1}{\sqrt{n}} \frac{1}{2} \xrightarrow[n \to \infty]{} 0.$$

Покажем, что $F(x_n)$ к нулю не стремится:

$$||F(x_n)||_{L_1[0,1]} = \int_0^1 |F(x_n)| dt = \int_0^1 |x_n^2(t)| dt = \int_0^{1/n} n(1-nt)^2 dt =$$

$$= n \int_1^0 z^2 \frac{dz}{-n} = \int_0^1 z^2 dz = \frac{1}{3}.$$

Таким образом, отображение F не является непрерывным.

Задача 3. Показать, что отображение

$$F: C[0,1] \to C[0,1], \quad F(x) = \frac{|x(t)|}{1+|x(t)|},$$

равномерно непрерывно.

Решение. Действительно, пусть задано произвольное $\varepsilon>0$. По-кажем, что существует $\delta(\varepsilon)$ такое, что для всех $x(t),y(t)\in C[0,1]$, удовлетворяющих условию $\|x-y\|=\max_{0\leq t\leq 1}|x(t)-y(t)|<\delta$, выполняется следующее неравенство

$$||F(x) - F(y)|| = \max_{0 \le t \le 1} |F(x) - F(y)| = \max_{0 \le t \le 1} \left| \frac{|x(t)|}{1 + |x(t)|} - \frac{|y(t)|}{1 + |y(t)|} \right| < \varepsilon.$$

Оценим предварительно |F(x) - F(y)|.

$$|F(x) - F(y)| = \left| \frac{|x(t)|}{1 + |x(t)|} - \frac{|y(t)|}{1 + |y(t)|} \right| = \left| \frac{1}{(1 + x(t))(1 + y(t))} \right| \times |x(t) - y(t)| \le |x(t) - y(t)|.$$

Переходя к максимуму по t в левой и правой частях, получаем требуемое неравенство при $\delta \leq \varepsilon$.

Задача 4. Показать, что отображение

$$F: C[0,1] \to C[0,1], \quad F(x) = \frac{\sqrt{|x(t)|}}{1+|x(t)|},$$

не удовлетворяет условию Липшица.

Решение. Отображение F не удовлетворяет условию Липшица, если для любой постоянной L>0 найдутся последовательности функций $x_n(t),\ y_n(t)\in C[0,1]$ такие, что $\|F(x_n)-F(y_n)\|>L\|x_n-y_n\|.$ Выберем стационарные последовательности $x_n(t)=\frac{2}{n^2},\ y_n(t)=\frac{1}{n^2},$ тогда

$$||F(x_n) - F(y_n)|| = \left| \frac{\sqrt{2/n^2}}{1 + 2/n^2} - \frac{\sqrt{1/n^2}}{1 + 1/n^2} \right| =$$

$$= \frac{1}{n} \cdot \frac{n^4}{(n^2 + 2)(n^2 + 1)} > \frac{1}{n} = ||x_n - y_n||.$$

Задача 5. Выяснить, является ли отображение

$$F: l_2 \to l_2, \quad F(x) = \left(\frac{1}{5}x_1, \frac{1}{5^2}x_2, \dots, \frac{1}{5^i}x_i, \dots\right) + \left(\frac{1}{5}, 0, \dots\right)$$

сжимающим? Найти x_3 , где $x_n = F(x_{n-1}), \ x_0 = \left(\frac{1}{5}, \frac{1}{5^2}, \dots, \frac{1}{5^i}, \dots\right)$, и оценить расстояние от x_3 до неподвижной точки.

Решение. Отображение $F:l_2\to l_2$ будет сжатием, если существует постоянная $0<\alpha<1$ такая, что для всех $x,y\in l_2$ справедливо неравенство $\|F(x)-F(y)\|\leq \alpha\|x-y\|$. Посчитаем норму в правой части:

$$||F(x) - F(y)|| = \left(\sum_{i=1}^{\infty} \left(\frac{1}{5^i}\right)^2 |x_i - y_i|^2\right)^{1/2} = \frac{1}{5} ||x - y||_{l_2}.$$

Таким образом, $\alpha=1/5<1$ и отображение F является сжимающим. Поскольку пространство l_2 банахово, то отображение F имеет единственную неподвижную точку, которая может быть найдена методом последовательных приближений по формуле $x_n=F(x_{n-1})$.

Вычислим последовательно x_1, x_2, x_3 :

$$x_{1} = F(x_{0}) = \left(\frac{1}{5}x_{1}^{(0)}, \frac{1}{5^{2}}x_{2}^{(0)}, \dots, \frac{1}{5^{i}}x_{i}^{(0)}, \dots\right) + \left(\frac{1}{5}, 0, \dots\right) =$$

$$= \left(\frac{1}{5} \cdot \frac{1}{5}, \frac{1}{5^{2}} \cdot \frac{1}{5^{2}}, \dots, \frac{1}{5^{i}} \cdot \frac{1}{5^{i}}, \dots\right) + \left(\frac{1}{5}, 0, \dots\right) = \left(\frac{1}{5^{2}} + \frac{1}{5}, \frac{1}{5^{4}}, \dots, \frac{1}{5^{2i}}, \dots\right) =$$

$$= \left(\frac{6}{5^{2}}, \frac{1}{5^{4}}, \dots, \frac{1}{5^{2i}}, \dots\right);$$

$$x_2 = F(x_1) = \left(\frac{1}{5}x_1^{(1)}, \frac{1}{5^2}x_2^{(1)}, \dots, \frac{1}{5^i}x_i^{(1)}, \dots\right) + \left(\frac{1}{5}, 0, \dots\right) =$$

$$= \left(\frac{1}{5} \cdot \frac{6}{5^2}, \frac{1}{5^2} \cdot \frac{1}{5^4}, \dots, \frac{1}{5^i} \cdot \frac{1}{5^{2i}}, \dots\right) + \left(\frac{1}{5}, 0, \dots\right) = \left(\frac{31}{5^3}, \frac{1}{5^6}, \dots, \frac{1}{5^{3i}}, \dots\right);$$

$$x_3 = F(x_2) = \left(\frac{1}{5}x_1^{(2)}, \frac{1}{5^2}x_2^{(2)}, \dots, \frac{1}{5^i}x_i^{(2)}, \dots\right) + \left(\frac{1}{5}, 0, \dots\right) =$$

$$= \left(\frac{1}{5} \cdot \frac{31}{5^3}, \frac{1}{5^2} \cdot \frac{1}{5^6}, \dots, \frac{1}{5^i} \cdot \frac{1}{5^{3i}}, \dots\right) + \left(\frac{1}{5}, 0, \dots\right) = \left(\frac{156}{5^4}, \frac{1}{5^8}, \dots, \frac{1}{5^{4i}}, \dots\right).$$

Оценим расстояние от x_3 до неподвижной точки a отображения F:

$$||x_3 - a|| \le \frac{\alpha^3}{1 - \alpha} \cdot ||x_0 - x_1|| = \frac{1/5^3}{1 - 1/5} \cdot \left(\sum_{i=1}^{\infty} |x_i^{(1)} - x_i^{(0)}|^2\right)^{1/2} =$$

$$= \frac{4}{25} \cdot \left(\left|\frac{6}{5^2} - \frac{1}{5}\right|^2 + \sum_{i=2}^{\infty} \left|\frac{1}{5^{2i}} - \frac{1}{5^i}\right|^2\right)^{1/2}.$$

Задача 6. Показать, что отображение

$$F: L_2[0,1] \to L_2[0,1], \quad F(x) = \frac{1}{4}x(\sqrt[4]{t}) + t,$$

является сжимающим. Вычислить $x_3(t)$, если $x_0(t) = 0$.

Решение. Вычислим

$$\begin{split} \|F(x)-F(y)\|_{L_2[0,1]} &= \Big(\int\limits_0^1 |\frac{1}{4}x(\sqrt[4]{t}) + t - \frac{1}{4}y(\sqrt[4]{t}) - t|^2\mathrm{d}t\Big)^{1/2} \leq \\ &\leq \Big(\frac{1}{4}\int\limits_0^1 |x(z)-y(z)|^2 \cdot 4z^3\mathrm{d}z\Big)^{1/2} = \frac{1}{4}\sqrt{4}\Big(\int\limits_0^1 |x(z)-y(z)|^2 \cdot \max_{z \in [0,1]} |z^3|\,\mathrm{d}z\Big)^{1/2} \leq \\ &\leq \frac{\sqrt{4}}{4} \cdot \Big(\int\limits_0^1 |x(z)-y(z)|^2\mathrm{d}z\Big)^{1/2} = \frac{1}{2}\|x-y\|_{L_2[0,1]}. \\ &\text{Значит, } \alpha = \frac{1}{2}, \text{ тогда} \\ &x_1 = F(x_0) = \frac{1}{4}x_0(\sqrt[4]{t}) + t = t; \\ &x_2(t) = F(x_1) = \frac{1}{4}x_1(\sqrt[4]{t}) + t = \frac{1}{4}\sqrt[4]{t} + t; \end{split}$$

Задача 7. Приводя уравнение к виду, для которого справедлив принцип сжимающих отображений, найти его приближенное решение с точностью 0,01, в качестве начального приближения принять $x_0=0$:

 $x_3(t) = F(x_2) = \frac{1}{4}x_2(\sqrt[4]{t}) + t = \frac{1}{4}\left(\frac{1}{4}\sqrt[4]{\frac{4}{t}} + \sqrt[4]{t}\right) = \frac{1}{16}t^{1/16} + \frac{1}{4}t^{1/4} + t.$

$$q(x) = 3x^2 - 18x + 11 = 0.$$

Решение. Приведем уравнение g(x)=0 к уравнению вида x=F(x) и найдем точку x_0 и радиус r такие, что шар $B[x_0,r]=[x_0-r,x_0+r]=[a,b]$ инвариантен относительно отображения F и в этом шаре отображение F — сжимающее. Привести уравнение к виду x=F(x) можно следующим способом. Выразим из исходного уравнения переменную $x=\frac{1}{18}(3x^2+11)$, тогда $F(x)=\frac{1}{18}(3x^2+11)$.

Поскольку функция F является дифференцируемой, то в качестве константы Липшица можно взять $\alpha = \max_{a < x < b} |F'(x)|$. В нашем случае

F'(x)=1/3x. Согласно следствию 3, условие |F'(x)|<1 выполнено, если |x|<3. Выберем точку x_0 в центре этого промежутка, т. е. $x_0=0$. Число r, радиус шара, в котором существует неподвижная точка, выберем из следующих условий:

$$\begin{cases} ||x_0 - F(x_0)|| \le r(1 - \alpha(r)), \\ \alpha(r) < 1, \end{cases}$$

где $\alpha(r)=\max_{-r\leq x\leq r}|F'(x)|=\frac{r}{3},$ тогда $x_1=F(x_0)=\frac{11}{18}.$ Наши условия примут вид

$$\begin{cases} \frac{11}{18} \le r(1 - \frac{r}{3}), \\ \frac{r}{3} < 1. \end{cases}$$

Выберем одно из решений этой системы. Пусть r=1. Тогда отрезок [-1,1] инвариантен относительно отображения F, на нем отображение F- сжимающее и $\alpha=\frac{1}{3}$. Оценим расстояние

$$||x_n - \alpha|| \le \frac{\alpha}{1 - \alpha} ||x_1 - x_0|| \le \left(\frac{1}{3}\right)^n \cdot \frac{3}{2} \cdot \frac{11}{18} \le \frac{1}{100}.$$

Следовательно, n=5 и x_5 является приближенным решением уравнения с заданной точностью.

Задача 8. Выяснить, при каких значениях параметра $\lambda \neq 0$ к интегральному уравнению Фредгольма 2-го рода

$$x(t) - \lambda \int_{0}^{1} ts^{2}x(s)ds = t$$

применим принцип сжимающих отображений в пространстве C[0,1] и в пространстве $L_2[0,1]$. При $\lambda=1/2$ найти приближенное решение уравнения с точностью $\varepsilon=0,01$ и сравнить его с точным решением.

Решение. Приведем уравнение к виду x = F(x), тогда искомое решение является неподвижной точкой отображения F. Поскольку оба

пространства C[0,1] и $L_2[0,1]$ являются полными, то для того, чтобы применить принцип сжимающих отображений, нужно показать, что отображение F сжимающее на соответствующих пространствах.

Пусть
$$F(x) = \lambda \int_{0}^{1} ts^{2}x(s)\mathrm{d}s + t$$
. Рассмотрим пространство $C[0,1]$.

F задает отображение пространства C[0,1] на себя, поскольку состоит из суммы двух непрерывных функций. Это легко проверить.

Покажем, что отображение F является сжимающим, т. е. существует постоянная $\alpha:0\leq \alpha<1$ такая, что для всех $x,y\in C[0,1]$ выполняется $\|F(x)-F(y)\|_{C[0,1]}\leq \alpha\|x-y\|_{C[0,1]}$. Оценим норму, стоящую в левой части:

$$\max_{0 \le t \le 1} |F(x) - F(y)| = \max_{0 \le t \le 1} \left| \int_{0}^{1} \lambda t s^{2} (x(s) - y(s)) ds \right| \le$$

$$\leq |\lambda| \int_{0}^{1} |s|^{2} \max_{0 \leq s \leq 1} |x(s) - y(s)| ds \leq |\lambda|/3 \cdot ||x - y||.$$

Тогда $\alpha=|\lambda|/3$ является коэффициентом сжатия и при $|\lambda|<3$ или $-3\leq\lambda\leq3$ к интегральному уравнению Фредгольма можно применить теорему 5, согласно которой исходное уравнение имеет единственное решение.

Рассмотрим приближенное решение уравнения при $\lambda=1/2$. Для этого оценим количество приближений по формуле

$$||x_n - a|| \le \frac{\alpha^n}{1 - \alpha} ||x_0 - x_1||.$$

Пусть $x_0(t)=0$, тогда $x_1(t)=F(x_0)=t$, $\alpha=\frac{1}{2}\cdot\frac{1}{3}=\frac{1}{6},\|x_1-x_0\|=\max_{0\leq t\leq 1}|t-0|=1$, тогда $(\frac{1}{6})^n\cdot\frac{6}{3}<0$, 01. Откуда получаем ограничение на $n:6^{-n}<3/400$. Следовательно, уже x_4 является решением данного уравнения с точностью $\varepsilon=0$, 01.

Вычислим последовательно x_2, x_3, x_4 :

$$x_{2}(t) = F(x_{1}) = \frac{1}{2} \int_{0}^{1} t s^{2} x_{1}(s) ds = \frac{1}{2} t \int_{0}^{1} s^{2} s ds + t = \frac{1}{2} t \cdot \frac{1}{4} + t = \frac{1}{8} t + t;$$

$$x_{3}(t) = F(x_{2}) = \frac{1}{2} t \int_{0}^{1} s^{2} \left(\frac{1}{8}s + s\right) ds + t = \frac{1}{2} t \left(\frac{1}{8} \cdot \frac{1}{4} + \frac{1}{4}\right) + t =$$

$$= \frac{1}{2} t \cdot \frac{9}{32} + t = \frac{9}{64} t + t;$$

$$x_{4}(t) = F(x_{3}) = \frac{1}{2} t \int_{0}^{1} s^{2} \left(\frac{9}{64}s + s\right) ds + t = \frac{1}{2} t \left(\frac{9}{64} \cdot \frac{1}{4} + \frac{1}{4}\right) + t = \frac{73}{128} t + t.$$

Таким образом, приближенное решение исходного уравнения имеет вид

$$x_4(t) = \frac{73}{128}t + t.$$

Поскольку данное уравнение представляет собой интегральное уравнение с вырожденным ядром, то можно вычислить его точное решение. Обозначим через $C=\int\limits_0^1 s^2x(s)ds$. Тогда $x(t)=\frac{1}{2}Ct+t$. Подставляя его в исходное уравнение, получаем

$$C(1 - \frac{1}{8}) = \frac{1}{4} \Rightarrow C = \frac{2}{7}.$$

Значит, точное решение имеет вид

$$x(t) = \frac{1}{2} \cdot \frac{2}{7}t + t = \frac{2}{14}t + t.$$

Вычислим $||x - x_4||$:

$$\max_{0 \leq t \leq 1} \left| \frac{73}{512} t + t - \frac{2}{14} t - t \right| = \max_{0 \leq t \leq 1} \left| (\frac{73}{512} - \frac{2}{14}) t \right| = \left| \frac{73}{512} - \frac{2}{14} \right| < \frac{1}{100}.$$

Рассмотрим пространство $L_2[0,1]$. Оценим ядро $K(t,s)=\lambda ts^2$:

$$\int_{0}^{1} \int_{0}^{1} |K(t,s)|^{2} ds dt = |\lambda|^{2} \int_{0}^{1} \int_{0}^{1} t^{2} s^{4} ds dt = |\lambda|^{2} \cdot \frac{1}{3} \cdot \frac{1}{5} = |\lambda|^{2} \cdot \frac{1}{15} < +\infty.$$

Таким образом, F(x) отображает $L_2[0,1]$ на себя и является сжимающим, если $|\lambda|/\sqrt{15}<1$ или $|\lambda|<\sqrt{15}$, поэтому к данному уравнению при $\lambda=\frac{1}{2}$ можно применить принцип сжимающих отображений. В этом случае понадобится число итераций, определяемое соотношением

$$\frac{\left(\frac{1}{2\sqrt{15}}\right)^n}{1 - \frac{1}{2\sqrt{15}}} \cdot \left(\int_0^1 |x_1(t) - x_0(t)|^2 dt\right)^{1/2} < 0, 01,$$

$$\frac{1}{2\sqrt{15}} \cdot \frac{2\sqrt{15}}{2\sqrt{15} - 1} \cdot \left(\int_{0}^{1} t^{2} dt\right)^{1/2} = \frac{1}{(2\sqrt{15})^{n-1} \cdot (2\sqrt{15} - 1)} \cdot \frac{1}{\sqrt{3}} < 0, 01.$$

Из последнего неравенства следует, что n=3.

Задача 9. Доказать, что последовательность цепных дробей

$$2, 2 + \frac{1}{2}, 2 + \frac{1}{2 + \frac{1}{2}}, \dots$$

сходится. Найти ее предел.

Решение. Используем принцип сжимающих отображений в \mathbb{R} и определим $x_1=2,\ x_2=2+\frac{1}{x_1},\dots,\ x_n=2+\frac{1}{x_{n-1}}(n\geq 2).$ Заметим, что $x_n\leq 5/2$ для всех $n\geq 1,$ а так как $x_n=2+\frac{1}{2+\frac{1}{x_{n-2}}}$ $(n\geq 3),$ то $x_n\leq 5/2$ для всех $n\geq 1.$ Кроме того, $x_n\leq 2.$

Рассмотрим отображение $f(x)=2+\frac{1}{x}$ отрезка [2;5/2] на себя. Оно является сжимающим, так как $|f(x)-f(y)|=|\frac{1}{x}-\frac{1}{y}|\leq \frac{1}{4}|x-y|$, поэтому имеет единственную неподвижную точку $x^*=\lim_{n\to\infty}x_n=\lim_{n\to\infty}f(x_{n-1})=\lim_{n\to\infty}(2+\frac{1}{x_{n-1}})$. Решая уравнение $x^*=2+\frac{1}{x^*}$, имеем $x^*=1+\sqrt{2}$.

Таким образом, последовательность цепных дробей сходится, ее предел равен $1+\sqrt{2}$.

ЗАДАНИЯ

Задание 1. Определите, при каких $\lambda \neq 0$ для следующих интегральных уравнений Фредгольма 2-го рода в пространстве $C[a,b], L_2[a,b]$ можно применить метод сжимающих отображений. При $\lambda = \lambda_0$ найти приближенное решение методом последовательных приближений с точностью $\varepsilon = 0,001$, сравнить его с точным решением.

1.1.
$$a = 0$$
, $b = 1$, $x(t) = \lambda \int_{0}^{1} ts^{2}x(s) ds + 1$.
1.2. $a = 0$, $b = 1$, $x(t) = \lambda \int_{0}^{1} e^{t-s}x(s) ds + 1$.
1.3. $a = 0$, $b = 1$, $x(t) = \lambda \int_{0}^{1} \cos \pi(t-s)x(s) ds + 1$.
1.4. $a = 0$, $b = 1$, $x(t) = \lambda \int_{0}^{1} \sqrt[3]{ts} x(s) ds + t^{2}$.
1.5. $a = 0$, $b = 1$, $x(t) = \lambda \int_{0}^{1} (t^{2} - 1)sx(s) ds + t$.
1.6. $a = 0$, $b = 1$, $x(t) = \lambda \int_{0}^{1} \frac{t}{1+s}x(s) ds - 5$.
1.7. $a = 0$, $b = 1$, $x(t) = \lambda \int_{0}^{1} t^{2}sx(s) ds + t$.
1.8. $a = -1$, $b = 1$, $x(t) = \lambda \int_{-1}^{1} (t^{2} - 1)sx(s) ds + t$.
1.9. $a = -2$, $b = 1$, $x(t) = \lambda \int_{0}^{1} (1+s)(1-t)x(s) ds + t$.

1.10.
$$a = 0, b = 1, x(t) = \lambda \int_{0}^{1} \sqrt{1 - t}x(s) ds + 3.$$

1.11.
$$a = -1$$
, $b = 1$, $x(t) = \lambda \int_{-1}^{1} s^{-1/3} x(s) ds + t^2$.

1.12.
$$a = -2$$
, $b = 3$, $x(t) = \lambda \int_{2}^{3} ts^{2}x(s) ds + t^{3}$.

1.13.
$$a = 0, b = 1, x(t) = \lambda \int_{0}^{1} \sin \frac{\pi s}{2} \cos \frac{\pi t}{2} x(s) ds + \cos \frac{\pi t}{2}.$$

1.14.
$$a = -1$$
, $b = 1$, $x(t) = \lambda \int_{-1}^{1} tsx(s) ds + 2$.

1.15.
$$a = 0, b = 1, x(t) = \lambda \int_{0}^{1} t^{2} s^{2} x(s) ds + t^{3}.$$

1.16.
$$a = 0$$
, $b = \pi/4$, $x(t) = \lambda \int_{0}^{\pi/4} t \operatorname{tg} sx(s) \, ds + 1$.

1.17.
$$a = 0, b = \pi/4, x(t) = \lambda \int_{0}^{\pi/4} \sin t \cos sx(s) ds + \sin t.$$

1.18.
$$a = 0, b = \pi, x(t) = \lambda \int_{0}^{\pi} \sin(t - 2s)x(s) ds + \cos 2t.$$

1.19.
$$a = -1$$
, $b = 1$, $x(t) = \lambda \int_{-1}^{1} (ts - t^2s^2)x(s) ds + t^4 + t^2$.

1.20.
$$a = 0, b = \pi, x(t) = \lambda \int_{0}^{\pi} \sin t \cos t \, x(s) \, ds + \sin t.$$

Задание 2. Вычислить приближенное решение следующих уравнений с точностью 0,01.

2.1.
$$g(x) = x^2 - 10x + 1$$
. 2.7. $g(x) = 2x^2 + 16x - 9$.

2.2.
$$g(x) = 3x^2 - 10x - 14$$
. 2.8. $g(x) = 2x^2 + 8x - 3$.

2.3.
$$g(x) = 3x^2 - 100x + 5$$
. 2.9. $g(x) = 3x^2 - 5x + 4$.

2.4.
$$g(x) = 2x^2 + 8x + 5$$
. 2.10. $g(x) = 5x^2 - 18x + 4$.

2.5.
$$g(x) = 4x^2 + 12x - 1$$
. 2.11. $g(x) = x^3 + 5x^2 - 15x - 7$.

2.6.
$$g(x) = 3x^2 + 25x - 1$$
.

Задание 3. Определить, является ли отображение f нормированного пространства E на себя сжимающим. Вычислить x_3 , где $x_k = f(x_{k-1}), x_0 = 0$, и оценить расстояние от x_3 до неподвижной точки.

3.1.
$$E = C[-1, 1], f(x)(t) = \frac{1}{3}\cos(x(t)) + e^t.$$

3.2.
$$E = l_3, f(x) = (\frac{1}{3}x_1 + 1, \dots, \frac{1}{3^k}x_k + \frac{1}{k^2}, \dots).$$

3.3.
$$E = L_3[0, 1], f(x)(t) = \frac{1}{3}x(\sqrt[4]{t}) + t^2.$$

3.4.
$$E = L_2[-1, 1], f(x)(t) = \frac{1}{3}t^{1/9}x(\sqrt[3]{t}) + \sin t.$$

3.5.
$$E = L_4[0,1], f(x)(t) = \frac{1}{4}x(\sqrt[6]{t}) + t.$$

3.6.
$$E = \mathbb{R}^3$$
, $f(x) = \left(\frac{1}{4}x_1 + \frac{1}{8}x_3 + 1, \frac{1}{5}x_1 - \frac{1}{4}x_2 + 2, -\frac{1}{4}x_3 - 3\right)$.

3.7.
$$E = l_2, f(x) = (\frac{1}{2}x_1 + \frac{1}{2}, \dots, \frac{1}{2^k}x_k + \frac{1}{k+1}, \dots).$$

3.8.
$$E = L_2[0,1], f(x)(t) = t \int_0^1 \frac{x(s)}{\sqrt[4]{s}} ds.$$

3.9.
$$E = L_5[0,1], f(x)(t) = \frac{1}{5}tx(t^3) + e^t.$$

3.10.
$$E = C[-1, 1], f(x)(t) = tx(t) + e^{\sin t}.$$

3.11.
$$E = L_2[0,1], f(x)(t) = tx(t^2) + \sin t.$$

3.12.
$$E = L_2[0, 1], f(x)(t) = \frac{1}{3}x(\sqrt{t}) + \operatorname{tg} t.$$

3.13.
$$E = m, f(x) = \left(\frac{1}{2}x_2 + \frac{1}{2}, \dots, \frac{1}{k}x_k + \frac{1}{2^{k-1}}, \dots\right).$$

3.14.
$$E = l_3, f(x) = \left(\frac{1}{2}x_1 + 1, \dots, \frac{1}{2^k} + \frac{1}{k}, \dots\right).$$

Задание 4. Выяснить, является ли отображение $F: X \to Y$ непрерывным, равномерно непрерывным, удовлетворяющим условию Липица.

4.1.
$$X = C[0,1], Y = C[0,1], F(x) = x^3(t).$$

4.2.
$$X = C[0,1], Y = C[0,1], F(x) = \sqrt[3]{|x(t)|}.$$

4.3.
$$X = C[0, 1], Y = C[0, 1], F(x) = \frac{x(t)}{1 + x^2(t)}.$$

4.4.
$$X = C[-2, 4], Y = C[-2, 4], F(x) = x(t) + \sin x(t).$$

4.5.
$$X = C[0, 1], Y = C[0, 1], F(x) = \sqrt[3]{|x(t)|}.$$

4.6.
$$X = L[0,1], Y = L[0,1], F(x) = x^3(t).$$

4.7.
$$X = L_2[0,1], Y = L_2[0,1], F(x) = \int_0^1 e^t x(s) ds.$$

4.8.
$$X = L_2[0,1], Y = L_2[0,1], F(x) = tx(t^2).$$

4.9.
$$X = \mathbb{R}^2$$
, $Y = \mathbb{R}^2$, $F(x) = (x_1^2, x_2^2)$.

4.10.
$$X = \mathbb{R}^2$$
, $Y = \mathbb{R}^2$, $F(x) = \left(\frac{x_1}{x_2}, \frac{x_2}{x_1}\right)$.

4.11.
$$X = C[0,1], Y = C[0,1], F(x) = \frac{x(t)}{1+t^2}.$$

4.12.
$$X = L_2[0, 1], Y = L_2[0, 1], F(x) = \int_0^t x(t) dt.$$

4.13.
$$X = L[0, 1], Y = C[0, 1], F(x) = x^2(t).$$

4.14.
$$X = L[0, 1], Y = C[0, 1], F(x) = \sqrt{|x(t)|}.$$

Задание 5. Доказать утверждения.

- 5.1. Пусть $f:X\to Y,\ g:X\to Y$ непрерывные отображения. Доказать, что множество $M=\{x\in X: f(x)=g(x)\}$ замкнуто в X.
- 5.2. Пусть $f: X \to Y$ непрерывное отображение пространства X на все пространство $Y, \ M$ всюду плотное множество в X. Доказать, что f(M) всюду плотно в Y.
- 5.3. Доказать, что непрерывное отображение $f: \mathbb{R} \to \mathbb{R}$, обладающее тем свойством, что образ каждого открытого множества открыт, монотонная функция.
- 5.4. Пусть $A \subset E$ фиксированное множество. Доказать, что $f(x) = \rho(x,A), \ x \in A,$ непрерывное отображение из E в \mathbb{R} .
- 5.5. Пусть $f: X \to Y$ непрерывное отображение, $A \subset X$ от-крытое либо замкнутое множество. Будет ли образ f(A) открытым, соответственно, замкнутым множеством в Y?
- 5.6. Доказать, что любое непрерывное отображение отрезка на себя имеет неподвижную точку.
- 5.7. Привести пример отображения $f: X \to X$, где X банахово пространство, у которого для любых двух точек $x,y \in X$ выполняется условие $\|f(x) f(y)\| \le \|x y\|$, но неподвижных точек нет.

TEMA 5

ГИЛЬБЕРТОВЫ ПРОСТРАНСТВА

Предгильбертовы пространства. Говорят, что в комплексном векторном пространстве E задано ckannphoe npoussedenue, если каждой паре элементов $x,y \in E$ поставлено в соответствие комплексное число (x,y) так, что выполнены следующие аксиомы:

- 1) $(x,x) \ge 0, (x,x) = 0$ в том и только в том случае, если $x = \Theta$;
- $2) (x,y) = \overline{(y,x)};$
- 3) $(\alpha x, y) = \alpha(x, y), \alpha \in \mathbb{C};$
- 4) (x + y, z) = (x, z) + (y, z).

В вещественном векторном пространстве скалярное произведение (x,y) — вещественное число, удовлетворяющее аксиомам 1-4, аксиома 2 в таком случае имеет вид (x,y)=(y,x).

Векторное пространство, снабженное скалярным произведением, называется *предгильбертовым* пространством.

Конечномерное вещественное предгильбертово пространство называют также евклидовым, а комплексное — унитарным.

Примеры пространств со скалярным произведением

1. Евклидово пространство \mathbb{R}^n и соответственно унитарное пространство \mathbb{C}^n со скалярными произведениями

$$(x,y)_{\mathbb{R}^n} = \sum_{i=1}^n x_i y_i, \quad (x,y)_{\mathbb{C}^n} = \sum_{i=1}^n x_i \overline{y_i}.$$

2. Пространство l_2 .

В векторном пространстве вещественных последовательностей $x==(x_i)_{i=1}^\infty,\ y=(y_i)_{i=1}^\infty$ таких, что $\sum\limits_{i=1}^\infty|x_i|^2<\infty,\ \sum\limits_{i=1}^\infty|y_i|^2<\infty,$ введем

скалярное произведение по формуле

$$(x,y) = \sum_{i=1}^{\infty} x_i y_i.$$

3. Пространство $\mathcal{L}_2[a,b]$.

В векторном пространстве комплекснозначных непрерывных на отрезке [a,b] функций зададим скалярное произведение

$$(x,y) = \int_{a}^{b} x(t)\overline{y(t)} dt.$$

Свойства скалярного произведения

- 1. Антилинейность по второму аргументу. Для любых $x, y_1, y_2 \in E$ и любых $\alpha, \beta \in C$ справедливо равенство $(x, \alpha y_1 + \beta y_2) = \bar{\alpha}(x, y_1) + \bar{\beta}(x, y_2)$. В вещественном предгильбертовом пространстве скалярное произведение линейно по второму аргументу.
- 2. Неравенство Коши Буняковского. Для любых векторов $x,y\in E$ справедливо неравенство

$$|(x,y)|^2 \le (x,x) \cdot (y,y).$$

- 3. Скалярное произведение в предгильбертовом пространстве является непрерывной функцией своих аргументов, т. е. если $x_n \to x$, $y_n \to y$ при $n \to \infty$, то $(x_n, y_n) \to (x, y)$.
- 4. Во всяком предгильбертовом пространстве справедливо тождество параллелограмма

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2).$$

Гильбертовы пространства. Поскольку предгильбертово пространство является нормированным векторным пространством с нормой $||x|| = (x,x)^{1/2}$, то в нем можно рассматривать понятие полноты.

Предгильбертово пространство называется $\it гильбертовым$, если оно полно по норме, порожденной скалярным произведением. Гильбертовы пространства обычно обозначаются буквой $\it H$.

Примеры гильбертовых пространств

1. Пространство $L_2[a,b]$.

В векторном пространстве интегрируемых по Лебегу со степенью p на отрезке [a,b] функций зададим отношение эквивалентности. Будем считать две функции $x(t),\ y(t)$ эквивалентными, если x(t)=y(t) почти всюду. Обозначим через $L_p[a,b]$ — пространство классов эквивалентных последовательностей, состоящих из интегрируемых со степенью p функций. Пространство $L_p[a,b]$ является банаховым относительно нормы

$$|x||_p = \left(\int_a^b |x(t)|^p dt\right)^{1/p}$$

и при p=2 гильбертовым со скалярным произведением

$$(x,y) = \int_{a}^{b} x(t)\overline{y(t)}dt.$$

2. Пространство Соболева $H^1[a,b]$.

Функция $y(t) \in L_2[a,b]$ называется обобщенной производной функции $x(t) \in L_2[a,b]$, если для любой финитной непрерывно дифференцируемой функции v(t) справедливо равенство

$$\int_{a}^{b} x(t)v'(t) dt = -\int_{a}^{b} y(t)v(t) dt.$$

Пространством Соболева $H^1[a,b]$ называется пространство интегрируемых по Лебегу с квадратом функций, имеющих обобщенную производную первого порядка, интегрируемую по Лебегу с квадратом.

Пространство $H^1[a,b]$ является гильбертовым пространством относительно скалярного произведения

$$(x,y) = \int_{a}^{b} x(t)\overline{y(t)}dt + \int_{a}^{b} x'(t)\overline{y'(t)}dt.$$

Теорема 1. Пространство Соболева $H^1[a,b]$ вложено в пространство C[a,b].

Два вектора $x,y \in H$ называются *ортогональными* в H, если (x,y)=0. Очевидно, что нуль пространства H ортогонален любому вектору пространства.

Углом между двумя ненулевыми векторами называется угол φ такой, что $0 \le \varphi \le \pi$ и $\cos \varphi = \frac{(x,y)}{\|x\| \cdot \|y\|}.$

Теорема 2. Пусть H — гильбертово пространство, $L \subset H$ — его замкнутое векторное подпространство. Тогда для любого элемента $x \in H$ существует единственный элемент $y \in L$, являющийся элементом наилучшей аппроксимации x по L, m. e. $\rho(x,L) = \|x-y\|$.

Теорема 1 остается справедливой и в том случае, когда вместо подпространства L рассматривается замкнутое выпуклое множество.

Пусть L — векторное подпространство в H. Проекцией вектора x на L называется вектор $y\in L$ такой, что $x-y\bot L$, т. е. (x-y,l)=0 для любого вектора $l\in L$.

Теорема 3. Пусть H-гильбертово пространство, $L \subset H$ - его замкнутое векторное подпространство. Тогда для любого элемента $x \in H$ существует единственная его проекция y на L, m. e. $y = P_L x$.

Ортонормированные системы. Ряды Фурье. Система элементов $\{x_{\alpha}\},\ \alpha\in\Gamma,\ x_{\alpha}\in H$ называется *ортогональной*, если каждые два ее различных элемента ортогональны.

Ортогональная система векторов называется *ортонормирован-* μ ой, если $\|x_{\alpha}\|=1$.

Система элементов $\{x_{\alpha}\},\ \alpha\in\Gamma,\ x_{\alpha}\in H$ называется линейно независимой, если любая ее конечная подсистема линейно независима.

Пемма 1. Ортонормированная система векторов в гильбертовом пространстве линейно независима.

Пемма 2. Пусть x_1, x_2, \ldots — линейно независимая система векторов в H. Тогда в H существует ортогональная система e_1, e_2, \ldots такая, что $e_k = a_{k1}x_1 + a_{k2}x_2 + \ldots + a_{kk}x_k + \ldots, k = 1, 2, \ldots$

Построение ортогональной системы по заданной линейно независимой системе называется *ортогонализацией*.

Пусть $x \in H$, $\{\varphi_k\}$ — ортонормированная система векторов, числа $C_k = (x, \varphi_k)$ называются $\kappa o \ni \phi \phi$ ициентами Φ урье элемента x по ортонормированной системе $\{\varphi_k\}$, а ряд $\sum\limits_{k=1}^{\infty} C_k \varphi_k - p n \partial o M \Phi$ урье элемента x. Многочлен $\sum\limits_{k=1}^{n} C_k \varphi_k$ — частная сумма ряда Φ урье — называется многочленом Φ урье.

Теорема 4 (о разложении в ряд Фурье). Пусть $\{\varphi_k\}$ — ортонормированная система в гильбертовом пространстве H, x — произвольный элемент в H. Тогда:

- 1) числовой ряд $\sum\limits_{k=1}^{\infty}|C_k|^2$ сходится, причем справедливо неравенство Бесселя $\sum\limits_{k=1}^{\infty}|C_k|^2\leq \|x\|^2;$
 - 2) ряд Фурье $\sum_{k=1}^{\infty} C_k \varphi_k$ сходится;
- 3) сумма ряда Фурье есть проекция элемента x на подпространство L, порожденное системой $\{\varphi_k\}$;
- 4) элемент $x \in H$ равен сумме своего ряда Фурье тогда и только тогда, когда справедливо равенство Стеклова:

$$\sum_{k=1}^{\infty} |C_k|^2 = ||x||^2.$$

Следствие 1. Отрезок ряда Фурье обладает экстремальным свойством, т. е. $\|x - \sum_{k=1}^n C_k \varphi_k\| = \inf_{\ell \in L_n} \|x - \ell\|$, где L - noдпространство, порождённое $\{\varphi_k\}_{k=1}^n$.

Следствие 2. Если $\|\varphi_k\| \ge \alpha > 0, \ k=1,2,\ldots,$ то коэффициенты Фурье C_k любого элемента $x \in H$ стремятся к нулю при $k \to \infty$.

Ортонормированная система $\{\varphi_k\}$ называется *полной*, если из того, что $(x,\varphi_k)=0$ для любого k, следует что $x=\Theta$.

Теорема 5 (о полных ортонормированных системах). Пусть H — гильбертово пространство, $\{\varphi_k\}_{k=1}^{\infty}$ — ортонормированная система в H, L — подпространство, порожденное системой $\{\varphi_k\}$. Тогда следующие утверждения эквивалентны:

- 1) любой элемент $x \in H$ является суммой своего ряда Фурье;
- 2) система $\{\varphi_k\}$ полная;
- 3) для любого $x \in H$ выполняется равенство Стеклова:

$$||x||^2 = \sum_{k=1}^{\infty} |C_k|^2;$$

4) подпространство L, порожденное системой $\{\varphi_k\}$, совпадает с H.

Ортогональное разложение гильбертовых пространств. Пусть M — линейное многообразие в H. Совокупность всех элементов из H, ортогональных к M, называется opmoгoнaльным дополнением к <math>M и обозначается M^{\perp} , т. е. $M^{\perp} = \{z \in H, z \bot M\}$.

Теорема 6. M^{\perp} – подпространство в H.

Теорема 7 (о всюду плотном множестве в H**).** Пусть M – линейное многообразие в гильбертовом пространстве H. M всюду плотно в H тогда и только тогда, когда $M^{\perp} = \{0\}$.

Теорема 8 (о разложении H **в прямую сумму).** Пусть H – гильбертово пространство, $L \subset H$ – его подпространство. То-гда $H = L \oplus L^{\perp}$.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Пусть ряд $\sum_{i=1}^{\infty} \alpha_i$ сходится, $0 < \alpha_i < 1, \ i=1,2,\dots$ Доказать, что в пространстве l_2 бесконечных числовых последовательностей $x=(x_1,x_2,\dots),\ \sum_{i=1}^{\infty}|x_i|^2<\infty,$ можно задать скалярное произведение по формуле

$$(x,y)_{l_2,\alpha} = \sum_{i=1}^{\infty} \alpha_i x_i y_i,$$

и пространство с этим скалярным произведением — гильбертово.

Решение. Выполнение аксиом скалярного произведения легко проверить. Рассмотрим норму, порожденную скалярным произведением: $\|x\|_{l_2,\alpha} = \left(\sum_{i=1}^\infty \alpha_i |x_i|^2\right)^{1/2}$. Очевидно, что $\sum_{i=1}^\infty \alpha_i |x_i|^2 \leq \sum_{i=1}^\infty |x_i|^2$. Поэтому каждая последовательность Коши по норме $\|x\|_{l_2}$ является и последовательностью Коши относительно нормы $\|x\|_{l_2,\alpha}$. Рассмотрим последовательность $x_n = (x_1^{(n)}, x_2^{(n)}, \ldots, x_i^{(n)}, \ldots) \in l_2$ такую, что $x_i^{(n)} = 1$, $1 \leq i \leq n, x_i^{(n)} = 0, i > n$, которая фундаментальна по норме $\|x\|_{l_2,\alpha}$. Действительно, $\|x_n - x_m\|_{l_2,\alpha} = \left(\sum_{i=m+1}^n \alpha_i\right)^{1/2}$, тогда для любого $\varepsilon > 0$ из сходимости ряда $\sum_{i=1}^\infty \alpha_i$ следует, что найдется номер $n(\varepsilon)$ такой, что $\sum_{i=n(\varepsilon)}^\infty \alpha_i < \varepsilon^2$, поэтому при $n,m > n(\varepsilon)$ выполняется $\|x_n - x_m\|_{l_2,\alpha}^2 = \sum_{i=m+1}^n \alpha_i < \varepsilon^2$. Заметим, что данная последовательность не фундаментальна по норме пространства l_2 .

Пусть существует $\lim_{n\to\infty}x_n=a=(a_1,a_2,\dots,a_i,\dots)\in l_2$. Тогда из сходимости ряда $\sum_{i=1}^\infty |a_i|^2$ вытекает, что найдется номер n_0 такой, что при $n>n_0$ выполняется неравенство $a_i<1/2$, а поэтому и неравенство

$$||x_n - a||_{l_2,\alpha}^2 = \sum_{i=1}^{\infty} \alpha_i |x_i^{(n)} - a_i|^2 \ge \sum_{i=1}^{n_0} \alpha_i |1 - a_i|^2 + \sum_{i=n_0+1}^n \alpha_i |1 - a_i|^2 \ge$$

$$\geq \sum_{i=1}^{n_0} \alpha_i |1 - a_i|^2 + 1/4 \sum_{i=n_0+1}^n \alpha_i.$$

Здесь первое слагаемое в правой части неотрицательно, а второе при $n\to\infty$ в силу условия $\alpha_i>0$ стремится к положительному пределу. Следовательно, предел всей правой части при $n\to\infty$ положителен, в то время как предел левой части равен нулю. Поэтому последовательность x_n предела в пространстве l_2 не имеет.

Задача 2. Для функции e^t найти многочлены степени n=0,1,2 такие, что норма $\|e^t-l_n(t)\|$ минимальна в пространстве $L_2[-1,1]$.

Решение. Рассмотрим многочлены $1,\,t,\,t^2$. Они образуют линейно независимую систему. Применим к ним в пространстве $L_2[-1,1]$ процесс ортогонализации Грама — Шмидта и построим ортонормированную систему полиномов Лежандра $p_0(t),\,p_1(t),\,p_2(t)$:

$$e_0(t) = 1; p_0(t) = \frac{e_0}{\|e_0\|} = \frac{1}{(\int_{-1}^{1} 1^2 dt)^{1/2}} = \frac{1}{\sqrt{2}};$$

$$e_1(t) = t - \alpha_{10}e_0, \ \alpha_{10} = \frac{(e_1, t)}{(e_0, e_0)} = \frac{\int\limits_{-1}^{1} t \cdot 1 dt}{\int\limits_{-1}^{1} 1 dt} = 0; \ p_1(t) = \frac{e_1}{\|e_1\|} = \sqrt{\frac{3}{2}}t;$$

$$e_2(t) = t^2 - \alpha_{20}e_0 - \alpha_{21}e_1; \quad \alpha_{20} = \frac{(t^2, 1)}{(1, 1)} = \frac{1}{3}; \quad \alpha_{21} = \frac{(t^2, t)}{(t, t)} = 0;$$

$$e_2(t) = t^2 - \frac{1}{3}; \ p_2(t) = \frac{\sqrt{5} \cdot 3}{2\sqrt{2}} \left(t^2 - \frac{1}{3}\right).$$

По теореме о разложении в ряд Фурье отрезок ряда Фурье обладает экстремальным свойством. Значит, норма $\|e^t - l_0(t)\|$ будет минимальна,

если $l_0(t)$ является проекцией элемента e^t на подпространство, порожденное элементом $p_0(t)$. По теореме о разложении в ряд Фурье элемента x(t) имеем $P_{L(l_1,...,l_n)}x=\sum\limits_{l_{r}=0}^n c_k l_k(t)$.

Поэтому
$$l_0(t) = (e^t, p_0) \cdot p_0 = \left(\int_{-1}^1 e^t \cdot 1 dt\right) \cdot 1 = \frac{e^2 - 1}{2e}.$$

Аналогично определяется $l_1(t)$ и $l_2(t)$:

$$l_1(t) = (e^t, p_0)p_0 + (e^t, p_1), \quad p_1 = \frac{e^2 - 1}{2e} + \frac{3}{e}t;$$
$$l_2(t) = (e^t, p_0)p_0 + (e^t, p_1)p_1 + (e^t, p_2),$$
$$p_2 = -2e + \frac{17}{e} + \frac{15}{4} \cdot \frac{e^2 - 7}{e} \cdot t^2 + \frac{3}{e}t.$$

Задача 3. В гильбертовом пространстве бесконечных числовых последовательностей l_2 найти проекцию вектора $x_0 = \left(\frac{1}{2}, \frac{1}{2^2}, \ldots\right)$ на подпространство $L = \left\{\alpha x + \beta y : x = \left(\frac{1}{7}, \frac{1}{7^2}, \ldots\right), \ y = \left(\frac{1}{8}, \frac{1}{8^2}, \ldots\right)\right\}$, где $\alpha, \ \beta \in \mathbb{R}$.

Решение. Обозначим через z проекцию вектора x_0 на подпространство L, тогда $z=\alpha x+\beta y$ и $x_0-z\perp L$, т. е. $(x_0-z,x)=0$ и $(x_0-z,y)=0$. Из условия ортогональности для определения коэффициентов α и β получим систему линейных алгебраических уравнений:

$$\begin{cases} \alpha(x,x) + \beta(y,x) = (x_0,x); \\ \alpha(x,y) + \beta(y,y) = (x_0,y). \end{cases}$$

Рассчитаем коэффициенты системы:

$$(x,x) = \sum_{k=1}^{\infty} x_k \cdot x_k = \sum_{k=1}^{\infty} \frac{1}{7^{2k}} = \sum_{k=1}^{\infty} \frac{1}{49^k} = \frac{1}{48};$$

$$(x,y) = \sum_{k=1}^{\infty} x_k \cdot y_k = \sum_{k=1}^{\infty} \frac{1}{7^k} \cdot \frac{1}{8^k} = \sum_{k=1}^{\infty} \frac{1}{56^k} = \frac{1}{55};$$

$$(y,y) = \sum_{k=1}^{\infty} y_k \cdot y_k = \sum_{k=1}^{\infty} \frac{1}{8^{2k}} = \sum_{k=1}^{\infty} \frac{1}{64^k} = \frac{1}{63};$$

$$(x_0,x) = \sum_{k=1}^{\infty} x_{0k} \cdot x_k = \sum_{k=1}^{\infty} \frac{1}{7^k} \cdot \frac{1}{2^k} = \sum_{k=1}^{\infty} \frac{1}{14^k} = \frac{1}{13};$$

$$(x_0,y) = \sum_{k=1}^{\infty} x_{0k} \cdot y_k = \sum_{k=1}^{\infty} \frac{1}{2^k} \cdot \frac{1}{8^k} = \sum_{k=1}^{\infty} \frac{1}{16^k} = \frac{1}{15}.$$

Система примет вид

$$\begin{cases} \frac{1}{48}\alpha + \frac{1}{55}\beta = \frac{1}{3}; \\ \frac{1}{55}\alpha + \frac{1}{63}\beta = \frac{1}{15}. \end{cases}$$

Решая систему по правилу Крамера, получаем

$$P_L x_0 = 37312x - 42375y.$$

Задача 4. Найти ортогональное дополнение в пространстве бесконечных числовых последовательностей l_2 к подпространству $L_n = \{x \in l_2: x(x_1,\ldots,x_i,\ldots), \sum_{i=1}^n x_i = 0\}$. Вычислить расстояние от элемента $x_0(1,0,\ldots)$ до подпространства L_n .

Решение. Ортогональное дополнение к подпространству L_n представляет собой одномерное подпространство, натянутое на вектор $e_n=$ $=\underbrace{(1,\ldots,1,0,\ldots)}$. Действительно, пусть $x\in L_n,\ y\in L_n^\perp$, тогда $y=\alpha e_n$ и $(x,y)=\sum_{i=1}^\infty x_iy_i=\alpha\sum_{i=1}^\infty x_ie_i^{(n)}=\alpha\sum_{i=1}^n x_i=\alpha\cdot 0=0$. Расстояние от точки x_0 до подпространства в этом случае вычисляется по формуле $\rho(x_0,L)=\frac{|(x_0,e_n)|}{\|e_n\|}$ (доказать). Значит, $\rho(x_0,L_n)=\frac{1}{\sqrt{n}}$.

Задача 5. Доказать, что если

$$M_m = \{ y = (y_1, \dots, y_m, 0, \dots) \in l_2 : \sum_{i=1}^m y_i = 0 \},$$

$$N_m = \{ z = (z_1, \dots, z_n, \dots) \in l_2 : z_n = 0, \ n > 1 \},$$

то при любом m имеет место разложение $l_2 = M_m \oplus N_m$. Будет ли N_m ортогональным дополнением к M_m ?

Решение. Пусть $x\in l_2,\ y\in M_m,\ z\in N_m$ и имеет место формула $l_2=M_m\oplus N_m$, тогда для любого натурального n $x_n=y_n+z_n$. Из этой системы следует, что при всех n>1 $x_n=y_n$. Выразим y_1 и z_1 через x. Воспользуемся соотношениями $y_1+\ldots+y_m=0,\ x_1=y_1+z_1$. Следовательно, $y_1=-y_2-\ldots-y_m=-x_2-\ldots-x_m$, тогда $z_1=x_1+x_2+\ldots+z_m$.

Таким образом, $l_2=M_m\oplus N_m$. Подпространство N_m не является ортогональным дополнением подпространства M_m ни при каком m>1, так как при $y=(1,-1,0,\ldots)\in M_m,\ z=(1,0,\ldots)\in N_m,\ m=2,3,\ldots,$ скалярное произведение $(y,z)=1\neq 0$.

ЗАДАНИЯ

Задание 1. Провести процесс ортогонализации векторов x_1, x_2, x_3 в гильбертовом пространстве $H_p[a,b]$, в котором скалярное произведение

имеет вид
$$(x,y) = \int_{-\infty}^{b} x(t)y(t)p(t) dt$$
.

1.1.
$$a = -1$$
, $b = 1$, $p(t) = 1$; $x_1 = t$, $x_2 = 2t - t^2$, $x_3 = e^t$.

1.2.
$$a = -1$$
, $b = 1$, $p(t) = e^t$; $x_1 = e^{-t}$, $x_2 = t + t^2$, $x_3 = t^2 + 1$.

1.3.
$$a = -2$$
, $b = 2$, $p(t) = 1$; $x_1 = \cos \pi t$, $x_2 = \sin \pi t$, $x_3 = t - 8$.

1.4.
$$a = -\pi$$
, $b = \pi$, $p(t) = \cos^2 t$; $x_1 = \cos^2 t$, $x_2 = \sin t$, $x_3 = 1 + t$.

1.5.
$$a = 0$$
, $b = 1$, $p(t) = 1$; $x_1 = 3t^2 - 2t$, $x_2 = 1$, $x_3 = 3t^2 - 1$.

1.6.
$$a = 0$$
, $b = 1$, $p(t) = t$; $x_1 = t + 2$, $x_2 = t - 3$, $x_3 = e^t + 1$.

1.7.
$$a = -1$$
, $b = 1$, $p(t) = 1$; $x_1 = \cos \pi t$, $x_2 = 1$, $x_3 = e^t + 1$.

1.8.
$$a = -1$$
, $b = 1$, $p(t) = t^2$; $x_1 = t$, $x_2 = 1 - t^2$, $x_3 = t^3$.

1.9.
$$a = -\pi$$
, $b = \pi$, $p(t) = t^2$; $x_1 = \cos t$, $x_2 = \sin t$, $x_3 = t$.

1.10.
$$a = 0, b = 1, p(t) = e^t; x_1 = \sin t, x_2 = t, x_3 = e^t + 1.$$

1.11.
$$a = -1$$
, $b = 1$, $p(t) = t^2$; $x_1 = t + 1$, $x_2 = 3t^2$, $x_3 = t^3 + 1$.

1.12.
$$a = -1$$
, $b = 1$, $p(t) = e^t$; $x_1 = t + 1$, $x_2 = 2t - t^2$, $x_3 = e^t - 1$.

1.13.
$$a = -1$$
, $b = 1$, $p(t) = t$; $x_1 = e^t$, $x_2 = t + t^2$, $x_3 = t^2 + 1$.

1.14.
$$a = 0$$
, $b = 1$, $p(t) = t^3$; $x_1 = t$, $x_2 = 1 - t^2$, $x_3 = t^3$;

Задание 2. В гильбертовом пространстве $L_2[0,1]$ рассмотрим подпространство L многочленов степени $n \leq 4$. Для заданной непрерывно дифференцируемой функции x(t) найти элемент наилучшей аппроксимации ее многочленами y(t) подпространства L по норме пространства $L_2[0,1]$. Реализовать на ЭВМ алгоритм решения этой задачи со следующими этапами:

- 1) вычислить элементы матрицы и правые части системы с помощью пакета "Mathematica-5";
 - 2) решить систему с помощью пакета "Mathematica-5";
 - 3) проверить правильность алгоритма на примере функции x(t) = t.

2.1.
$$x(t) = 3^t$$
. 2.8. $x(t) = \cos(\pi t)$.

2.2.
$$x(t) = exp(t)$$
. 2.9. $x(t) = \sin(\pi t)$.

2.3.
$$x(t) = \cos(2\pi t)$$
. 2.10. $x(t) = t\sqrt{t}$.

2.4.
$$x(t) = \sin(4\pi t)$$
. 2.11. $x(t) = \ln(1+t)$.

2.5.
$$x(t) = tg(t - 0.5)$$
. 2.12. $x(t) = (1 - 2t^2)^3$.

2.6.
$$x(t) = \sin(2\pi t)$$
. 2.13. $x(t) = \ln(1+t^2)$.

2.7.
$$x(t) = 2^{1+t}$$
. 2.14. $x(t) = t^5$.

Задание 3. В гильбертовом пространстве l_2 найти проекцию элемента $x_0 \in l_2$ на подпространство $L \subset l_2$.

3.1.
$$x_0 = \left(1, \frac{1}{3}, \frac{1}{3^2}, \dots, \frac{1}{3^k}, \dots\right), \quad L = \left\{\alpha x + \beta y : \right\}$$

$$x = \left(1, \frac{1}{5}, \dots, \frac{1}{5^k}, \dots\right), \ y = \left(1, \frac{1}{6}, \dots, \frac{1}{6^k}, \dots\right), \alpha, \beta \in \mathbb{R}$$

3.2.
$$x_0 = \left(1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{k}, \dots\right), \quad L = \left\{\alpha x + \beta y : x = (1, 1, 0, \dots), y = (1, 0, \dots), \alpha, \beta \in \mathbb{R}\right\}.$$

3.3.
$$x_0 = (0, 1, 1, 2, 0, ...), L = \left\{ x \in l_2 : x_1 = 0, \sum_{k=2}^{\infty} \frac{x_k}{2^k} = 0 \right\}.$$

3.4.
$$x_0 = (0, 1, 1, 0, ...), L = \left\{ x \in l_2 : x_2 = 0, \sum_{k=2}^{\infty} \frac{x_k}{3^k} = 0 \right\}.$$

3.5.
$$x_0 = \left(1, 0, \frac{1}{2}, 0, 1, 0, \ldots\right), \quad L = \left\{x \in l_2 : x_1 - x_3 = 0, \ x_2 = 0, \sum_{k=1}^{\infty} \frac{x_k}{k} = 0\right\}.$$

3.6.
$$x_0 = \left(1, \frac{1}{3}, \dots, \frac{1}{3^k}, \dots\right), L = \left\{\alpha x + \beta y : x = (1, 0, 1, 0, \dots), y = (1, 1, 1, 0, \dots), \alpha, \beta \in \mathbb{R}\right\}.$$

3.7.
$$x_0 = (1, 1, 0, ...), L = \left\{ x \in l_2 : x_2 + x_3 = 0, x_1 - x_4 = 0, \sum_{k=5}^{\infty} \frac{x_k}{2^k} = 0 \right\}.$$

3.8.
$$x_0 = (1, 0, 1, 1, 0, ...), L = \left\{ x \in l_2 : x_2 - x_3 = 0, \sum_{k=1}^{\infty} \frac{x_{2k}}{k^2} = 0 \right\}.$$

3.9.
$$x_0 = \left(1, \frac{1}{2}, \dots, \frac{1}{2^k}, \dots\right), \quad L = \left\{x \in l_2 : x_1 - 2x_2 = 0, \sum_{k=1}^{\infty} \frac{x_{2k+1}}{2^k} = 0\right\}.$$

3.10.
$$x_0 = \left(1, 0, \frac{1}{2}, 0, \dots\right), \quad L = \left\{x \in l_2 : x_1 + x_3 = 0, \right\}$$

$$x_2 - x_4 = 0$$
, $\sum_{k=1}^{\infty} \frac{x_{2k+1}}{k^2} = 0$.

3.11.
$$x_0 = \left(1, \frac{1}{5}, \dots, \frac{1}{5^k}, \dots\right), \quad L = \left\{\alpha x + \beta y : x = \left(1, \frac{1}{2}, \dots, \frac{1}{2^k}, \dots\right), y = (1, 0, 1, 0, 0, \dots), \alpha, \beta \in \mathbb{R}\right\}.$$

3.12.
$$x_0 = \left(1, \frac{1}{2}, \dots, \frac{1}{2^k}, \dots\right), \quad L = \left\{\alpha x + \beta y : x = \left(1, \frac{1}{7}, \dots, \frac{1}{7^k}, \dots\right), y = \left(1, \frac{1}{8}, \dots, \frac{1}{8^k}, \dots\right), \alpha, \beta \in \mathbb{R}\right\}.$$

3.13.
$$x_0 = (\frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{k}, \dots), \quad L = \{\alpha x + \beta y : x = (1, 1, 1, 0, \dots), y = (0, 0, 1, 1, 1, 0, \dots), \alpha, \beta \in \mathbb{R}\}.$$

3.14.
$$x_0 = (1, 0, 0, 1, 0, \ldots), L = \left\{ x \in l_2 : x_1 - x_2 = 0, \sum_{k=1}^{\infty} \frac{x_k}{5^k} = 0 \right\}.$$

Задание 4. Доказать следующие утверждения.

- 4.1. Пусть M- замкнутое выпуклое множество в вещественном гильбертовом пространстве H. Доказать, что элемент $y\in M$ удовлетворяет условию $\rho(x,M)=\|x-y\|$ тогда и только тогда, когда для любого $z\in M$ выполнено неравенство $(x-y,y-z)\geq 0$.
- 4.2. В гильбертовом пространстве H рассмотрим замкнутое выпуклое множество $M=B[x_0,r]$. Пусть $x\in H,\ x\notin M$. Доказать, что элемент $y\in M$ такой, что $\rho(x,M)=\|x-y\|$ имеет вид $y=x_0+r\frac{x-x_0}{\|x-x_0\|}$.
- 4.3. Доказать, что для того чтобы элемент x гильбертова пространства H был ортогонален подпространству $L \subset H$ необходимо и достаточно, чтобы для любого $y \in L$ имело место неравенство $||x|| \leq ||x-y||$.
- 4.4. Доказать, что для любого множества M в гильбертовом пространстве H имеет место включение $M \subset (M^{\perp})^{\perp}$. Возможно ли здесь строгое включение? Привести пример.

- 4.5. Пусть M множество в гильбертовом пространстве H. Доказать, что $(M^{\perp})^{\perp}$ совпадает с замыканием линейной оболочки M.
- 4.6. Доказать, что для множества M в гильбертовом пространстве H равенство $M=(M^\perp)^\perp$ выполняется тогда и только тогда, когда M подпространство в H.
- 4.7. Пусть M, N такие множества в гильбертовом пространстве H, что $M \subset N.$ Доказать, что $M^\perp \supset N^\perp.$
- 4.8. Пусть подпространство $X \subset H$ является ортогональным дополнением подпространства $Y \subset H.$ Доказать, что Y является ортогональным дополнением подпространства X.
- 4.9. Пусть Y, Z подпространства гильбертова пространства H и $Z \perp Y$. Доказать, что Y + Z подпространство в H.
- 4.10. Доказать, что для того чтобы подпространство L гильбертова пространства H было плотно в H, необходимо и достаточно, чтобы из условия $x \perp L$ следовало, что x = 0.
- 4.11. В гильбертовом пространстве l_2 рассмотрим множество M= = $\left\{x\in l_2: x=(x_1,x_2,\ldots,x_k,\ldots): \sum_{k=1}^{\infty}x_k=0.\right\}$. Доказать, что M- линейное многообразие, всюду плотное в l_2 . Описать M^{\perp} .
- $4.12.~\mathrm{B}$ гильбертовом пространстве l_2 рассмотрим последовательность $x_n = \left\{1, \frac{1}{2^n}, \ldots, \frac{1}{2^{in}}, \ldots\right\}$. Доказать, что линейная оболочка этой последовательности всюду плотна в пространстве l_2 .
- 4.13. Пусть M одномерное подпространство в гильбертовом пространстве H, элемент $a \in M$ и $a \neq 0$. Доказать, что

$$\rho(x, M^{\perp}) = \frac{|(x, a)|}{\|a\|}.$$

4.14. Пусть H — гильбертово пространство, $(x_n), (y_n) \in H$ последовательности такие, что $||x_n|| \le 1, ||y_n|| \le 1, (x_n, y_n) \to 1$ при $n \to \infty$. Доказать, что $||x_n - y_n|| \to 0$ при $n \to \infty$.

TEMA 6

КОМПАКТНЫЕ МНОЖЕСТВА

Компактные и предкомпактные множества. Семейство $\{U_{\alpha}\}$, $\alpha \in \Gamma$ множеств $U_{\alpha} \in E$ называется *покрытием* множества M из банахова пространства E, если $M \subset \bigcup U_{\alpha}$.

Mножество M в банаховом пространстве E называют κ омпа κ m- μ ым, если из всякого открытого покрытия множества M можно выделить конечное подпокрытие.

Теорема 1. Пусть E — банахово пространство, M — множество в нем. Тогда следующие утверждения эквивалентны:

- 1) у любой последовательности точек из М существует сходящаяся в М подпоследовательность;
- 2) у любого открытого покрытия множества существует конечное открытое подпокрытие.

Компактное множество в банаховом пространстве ограничено, замкнуто, сепарабельно и полно.

Mножество $S_{\varepsilon}\subset E$ называется $\varepsilon\text{-}cemью,\, \varepsilon>0,$ для множества M, если для любого $x\in M$ найдется $s\in S_{\varepsilon}$ такое, что $\|x-s\|<\varepsilon.$

Множество M в банаховом пространстве E называется вполне ограниченным, если для любого $\varepsilon>0$ в E существует конечная ε -сеть для множества M. Всякое вполне ограниченное множество ограничено.

Теорема 2 (Хаусдорфа). Пусть E — банахово пространство, M — множество в нем. Тогда следующие утверждения эквивалентны:

- 1) М компактно;
- 2) М полно и вполне ограничено;
- 3) любая бесконечная последовательность в M имеет по крайней мере одну предельную точку в M.

Множество M в банаховом пространстве E называется npedkom-nakmным (omhocumeльно компактным), если \overline{M} компактно, или, что равносильно, если из каждой последовательности $(x_n) \subset M$ можно выделить фундаментальную подпоследовательность.

Теорема 3. Предкомпактное множество в банаховом пространстве компактно тогда и только тогда, когда оно замкнуто.

Теорема 4. Множество $M \subset E$ предкомпактно тогда и только тогда, когда M вполне ограничено.

Множество $M \subset C[a,b]$ называется равномерно ограниченным, если существует постоянная C такая, что $\|x\| \leq C$ для всех $x \in M$. Множество $M \subset C[a,b]$ называется равностепенно непрерывным, если для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любых $t_1, t_2 \in [a,b], \ |t_1-t_2| < \delta$ выполнено $|x(t_1)-x(t_2)| < \varepsilon$ для всех $x(t) \in M$.

Теорема 5 (Арцела – Асколи). Множество $M \subset C[a,b]$ предкомпактно тогда и только тогда, когда оно равномерно ограничено и равностепенно непрерывно.

Теорема 6. В пространстве \mathbb{R}^n множество M предкомпактно тогда и только тогда, когда оно ограничено.

Теорема 7. Множество $M \subset l_p, \ 1 \leq p < \infty$, предкомпактно тогда и только тогда, когда выполнены условия:

- 1) существует константа $C \ge 0$ такая, что $\sum_{k=1}^{\infty} |x_k|^p \le C$ для всех $x \in M$, т. е. множество M ограничено;
- 2) для любого $\varepsilon>0$ существует номер $n_0(\varepsilon)$ такой, что $\sum\limits_{k=n_0+1}^{\infty}|x_k|^p<\varepsilon^p$ для всех $x\in M.$

Теорема 8. Множество $M \subset L_p[a,b], \ 1 \leq p < \infty,$ предкомпактно тогда и только тогда, когда выполнены условия:

1) существует константа C>0 такая, что $\|x\|\leq C$ для всех $x\in M$;

2) для любого $\varepsilon>0$ существует $\delta(\varepsilon)>0$, такое, что при $0< s<\delta\int\limits_0^1|x(s+t)-x(t)|^p\,\mathrm{d}t<\varepsilon^p$ для всех $x\in M.$

Свойства функций, непрерывных на компакте

Теорема 9. Образ компактного множества при непрерывном отображении компактен.

Теорема 10 (Вейерштрасса). Если функция f непрерывна на компактном множестве $M \subset E$, то она достигает своей верхней и нижней грани на этом множестве, т. е. $\exists x_1 \in M, x_2 \in M,$ что $f(x_1) = \inf_{x \in M} f(x), \ f(x_2) = \sup_{x \in M} f(x).$

Теорема 11 (Кантора). Непрерывная на компакте $M \subset E$ функция f равномерно непрерывна на нем.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача 1. Выяснить, является ли предкомпактным в пространстве C[0,1] множество функций

$$M = \{x \in C[0,1] : |x(0)| \le 1, |x''(t)| \le 4, t \in [0,1]\}.$$

Решение. Согласно теореме Арцела — Асколи, множество в пространстве C[0,1] предкомпактно, если оно равномерно ограничено и равностепенно непрерывно. Данное множество M не является равномерно ограниченным, так как существует последовательность $x_n(t) = nt \in M, \ x_n(0) = 0, \ x_n''(t) = 0$ такая, что норму $x_n(t)$ можно сделать больше любой наперед заданной константы c.

Задача 2. Будет ли предкомпактным в C[0,1] множество функций

$$M = \{x \in C[0,1] : x(t) = \sin nt, \ n \in N\}.$$

Решение. По определению множество M является равностепенно непрерывным, если для любого $\varepsilon>0$ существует $\delta(\varepsilon)$ такое, что для

любых $t_1,\ t_2: |t_1-t_2| < \delta$ выполняется $|x(t_1)-x(t_2)| < \varepsilon$ сразу для всех $x(t)\in M$. Покажем, что наше множество не является равностепенно непрерывным, т. е. существует $\varepsilon_0=1$ такое, что какое бы δ_n мы не взяли, найдутся точки $t_1=0,\ t_2=\frac{\pi}{2n}$, для которых $|t_1-t_2|<\delta_n$, но $|x(t_1)-x(t_2)|\geq \varepsilon_0$. Действительно, $|t_1-t_2|=\frac{\pi}{2n}\leq \frac{2}{n}$ и $|x(t_1)-x(t_2)|=|\sin\frac{\pi}{2n}\cdot n|=1=\varepsilon_0$; значит, M не предкомпактное множество.

Задача 3. Выяснить, является ли предкомпактным в пространстве C[0,1] множество

$$M = \{x \in C[0,1] : |x(t)| \le 1, |x''(t)| \le 4\}.$$

P е ш е н и е. Используя теорему Aрцела — Aсколи, покажем, что M равномерно ограниченно и равностепенно непрерывно.

- 1) M равномерно ограниченно, если существует постоянная c>0 такая, что $\|x\|\le c$ для всех $x\in M$. Пусть c=1, тогда $\|x\|=\max_t |x(t)|\le 1$ для всех $x\in M$.
- 2) M равностепенно непрерывно, если $\forall \varepsilon > 0 \ \exists \delta(\varepsilon) > 0$ такое, что $\forall t_1, t_2 \in [0,1]: |t_1-t_2| < \delta$ выполняется $|x(t_1)-x(t_2)| < \varepsilon$ для всех x(t).

Для доказательства равномерной непрерывности покажем, что ограничена первая производная функция x(t). Известно, что

$$x'(t) = \int_{0}^{t} x''(\tau)d\tau + x'(0).$$

Тогда

$$|x'(t)| \le \int_{0}^{t} |x''(\tau)| d\tau + |x'(0)| \le 4 + |x'(0)|.$$

Покажем, что x'(0) ограничена. Имеем

$$x(t) - x(0) = \int_{0}^{t} x'(\tau)d\tau = \int_{0}^{t} (x'(\tau) - x'(0) + x'(0))d\tau =$$

$$= \int_{0}^{t} (x'(\tau) - x'(0)) d\tau + \int_{0}^{t} x'(0) d\tau = \int_{0}^{t} \int_{0}^{\tau} x''(s) ds + tx'(0).$$

Тогда

$$tx'(0) = x(t) - x(0) - \int_{0}^{t} \int_{0}^{\tau} x''(s) ds,$$

поэтому для всех $t \in [0,1]$

$$|tx'(0)| \le |x(t)| + |x(0)| + \int_0^t \int_0^\tau |x''(s)| ds \le 1 + 1 + 4 = 6.$$

А это означает, что $|x'(0)| \le 6$. Следовательно, $|x'(t)| \le 4+6=10$. Пусть переменные $t_1,\ t_2 \in [0,1]$ такие, что $|t_1-t_2| < \delta$, тогда $|x(t_1)-x(t_2)| \le |x'(\tau)| \cdot |t_1-t_2| \le 10\delta < \varepsilon$. В этом случае для любого $\varepsilon > 0$ существует $\delta = \frac{\varepsilon}{10}$, что для всех $t_1,\ t_2$, удовлетворяющих условию $|t_1-t_2| < \delta$, вытекает, что $|x(t_1)-x(t_2)| < \varepsilon$. А это означает равностепенную непрерывность множества M и его предкомпактность.

Задача 4. Выяснить, является ли множество M предкомпактным в C[0,2], где

$$M = \Big\{ x \in C[0,1] : |x(t)| \le 1, \ t \in [0,1] \Big\}.$$

Решение. Функции вида $x_n(t)=\sin 2^n\pi t,\ n=1,2,\ldots$ принадлежат множеству M, но последовательность $(x_n)_{n=1}^\infty$ не содержит последовательности Коши, так как при k>n

$$||x_n - x_k|| = \max_{0 \le t \le 1} |x_n(t) - x_k(t)| \ge |x_n(\frac{1}{2^{n+1}}) - x_k(\frac{1}{2^{n+1}})| = 1.$$

 Π о определению, множество M не предкомпактно.

Задача 5. Выяснить, будет ли множество M компактным в C[0,1]

$$M = \left\{ x \in C[0,1] : x(0) = 0, \ x(1) = 1, \ |x(t)| \le 1, \ t \in [0,1] \right\}.$$

Решение. Рассмотрим отображение $f:C[0,1]\to\mathbb{R}$, где $f(x)=\int\limits_0^1 x^2(t)\mathrm{d}t$. Заметим, что $f(x)\geq 0$ для всех $x(t)\in C[0,1]$. Данное отображение является равномерно непрерывным. Поэтому, если M компактно, то по теореме Вейерштрасса найдется непрерывная функция $x_0(t)\in M$ такая, что $f(x_0)=\min_{x\in M}f(x)$. Пусть $x_n(t)=t^n,\ t\in [0,1],$ $n\in N,\ x_n(t)\in M$, тогда $f(x_n)=\int\limits_0^1 t^{2n}\mathrm{d}t=\frac{1}{2n+1}\xrightarrow[n\to\infty]{}0$. Следовательно, $f(x_0)=0$. Поэтому $x_n(t)\to x_0(t)$ такой, что $\int\limits_0^1 x_0^2(t)\mathrm{d}t=0$, но тогда $x_0(t)\equiv 0$. Однако $x_0(t)\equiv 0$ не принадлежит множеству M. А это означает, что M не компактно.

ЗАДАНИЯ

Задание 1. Являются ли относительно компактными следующие множества функций в пространстве C[0,1]?

1.1.
$$M = \left\{ \frac{1}{1 + nt^2} : n \in N \right\}.$$

1.2.
$$M = \left\{ \frac{\sin(nt)}{n} : n \in N \right\}.$$

1.3.
$$M = \left\{ n \left(1 - \cos(\frac{t}{n}) \right) : n \in N \right\}.$$

1.4.
$$M = \{\cos(n+t) : n \in N\}.$$

1.5.
$$M = \left\{1 - \frac{2t^2}{n} : n \in N\right\}.$$

1.6.
$$M = \{ \operatorname{arctg}(\alpha t) : \alpha \in (0, 1) \}.$$

1.7.
$$M = \{e^{t-a}: \alpha \ge 0\}.$$

1.8.
$$M = \{a\sin(b+t) : |a| < 10, b > 0\}.$$

1.9.
$$M = \{at^n : |a| \le 1\}.$$

1.10.
$$M = \{|x(t)| < \sin(t)\}.$$

1.11.
$$M = \{at^{\alpha} : 0 \le a \le 1, \ 0 < \alpha < 1\}.$$

1.12.
$$M = \{at^{\alpha} : |a| \le 1, 1 < \alpha < 10\}$$

1.13.
$$M = \{ \operatorname{arctg}(at + b) : |a| < 1, b > 1 \}.$$

1.14.
$$M = \left\{ \frac{\sin(at)}{at} : 0 < a < \infty \right\}.$$

1.15.
$$M = \{x(t) : |x(t)| \le B\}.$$

1.16.
$$M = \{x(t) : |x(t)| \le B, |x(t_1) - x(t_2)| < L|t_1 - t_2| \}.$$

1.17.
$$M = \{x(t) \in C^2[0,1] : |x(t)| \le B_0, |x''(t)| \le B_2 \}.$$

1.18.
$$M = \{x(t) \in C^2[0,1] : |x(t)| \le 2, |x''(t)| \le 3\}.$$

1.19.
$$M = \{x(t) \in C^2[0,1] : |x(t)| \le |x''(t)| \le 1\}.$$

1.20.
$$M = \{x(t) \in C^2[0,1] : |x(0)| \le 1, |x(t_1) - x(t_2)| \le L|t_1 - t_2|\}.$$

1.21.
$$M = \{x(t) \in C^2[0,1] : |x(0)| \le 1, |x''(t)| \le 4\}.$$

Задание 2. Доказать следующие утверждения.

- 2.1. Доказать, что шар B[0,1] пространства $C^1[0,1]$ является относительно компактным множеством в пространстве C[0,1]. Является ли он компактным множеством в пространстве C[0,1]?
- 2.2. Доказать, что всякое компактное множество в $C^1[0,1]$ компактно в C[0,1].
- 2.3. Доказать, что всякое компактное множество в C[0,1] нигде не плотно.
 - 2.4. Доказать, что компактное пространство сепарабельно.
- $2.5.\ \, \Pi$ усть M- такое множество в банаховом пространстве E, что для любой вещественной непрерывной на M функции выполняется хотя бы одно из следующих условий:

- a) f ограничена на M;
- б) если f ограничена на M, то f достигает на M точной верхней и точной нижней граней.

Доказать, что M компактно.

- 2.6. Доказать, что объединение конечного числа компактов из E есть компакт в E, а объединение конечного числа предкомпактных множеств предкомпактное множество.
- 2.7. Пусть $A \subset X$, $B \subset Y$, причем A и B не пусты. Доказать, что для компактности множества $A \times B$ в пространстве $X \times Y$ с нормой $\|z\|_{X \times Y} = (\|x\|_X^2 + \|y\|_Y^2)^{1/2}$ необходимо и достаточно, чтобы A и B были компактами.
- 2.8. Доказать, что для предкомпактности непустого множества $A \times B$ в $X \times Y$ необходимо и достаточно, чтобы A было предкомпактно в X, а B в Y.
- 2.9. Доказать, что множество M в нормированном пространстве E вполне ограничено тогда и только тогда, когда каждая последовательность из M содержит фундаментальную подпоследовательность.
- 2.10. Пусть $M \subset E$ компактное множество в банаховом пространстве E. Доказать, что для любого $x \in E$ найдется $y \in M$ такое, что $\rho(x,M) = \|x-y\|$.
- 2.11. Пусть A компакт, B замкнутое множество в банаховом пространстве E и $A \cap B = \emptyset$. Доказать, что $\rho(A,B) > 0$.
- 2.12. Пусть A и B не пустые предкомпактные множества в банаховом пространстве E. Доказать, что числа ||x-y||, где $x \in A$, $y \in B$ образуют ограниченное числовое множество.
- 2.13. Пусть A и B компактные множества в банаховом пространстве E. Доказать, что существуют такие $x_0 \in A$, $y_0 \in B$, что $\rho(A,B) = \|x_0 y_0\|$. Обязательно ли найдутся такие точки, если A компакт, а B замкнутое множество?

ЛИТЕРАТУРА

Aнтоневич A. B., Kнязев Π . H., Pа ∂ ыно \mathcal{G} . B. Задачи и упражнения по функциональному анализу. Mн.: Выш. шк., 1978.

Городецкий В. В., Нагнибида Н. И., Настасиев П. П. Методы решения задач по функциональному анализу. Киев: Наук. думка, 1990.

Кириллов А. А., Гвишиани А. Д. Теоремы и задачи функционального анализа. М.: Наука, 1988.

Очан Ю. С. Сборник задач по математическому анализу: Общая теория множеств и функций. М.: Просвещение, 1981.

Сборник задач по уравнениям математической физики / Под ред. В. С. Владимирова. М.: Наука, 1974.

Треногин В. А., Писаревский Б. М., Соболева Т. С. Задачи и упражнения по функциональному анализу. М.: Наука, 1984.