Quiz 6

Chemistry 3BB3; Winter 2006

1. The non-crossing rule implies that

- (a) In a <u>diatomic</u> molecule, potential energy curves corresponding to wave functions with the <u>same</u> symmetry do not intersect.
- (b) In a <u>diatomic</u> molecule, potential energy curves corresponding to wave functions with the <u>different</u> symmetry do not intersect.
- (c) In a <u>triatomic</u> molecule, potential energy surfaces corresponding to wave functions with the <u>same</u> symmetry do not intersect.
- (d) In a <u>triatomic</u> molecule, potential energy surfaces corresponding to wave functions with the <u>different</u> symmetry do not intersect.

2-7. Complete the following table by filling in the appropriate properties for the molecular ground states.

Molecule	Bond Order	Multiplicity
LiBe		
7.10		
LiB		
CN		
CIV		
CN ⁻		
CO		
HF		

8-10. Label the following approximate (unnormalized) molecular orbitals using the σ,π,δ , u,g, and +,- designations. Here, we denote the 1s orbital on the "left-hand" atom as $\psi_{1s}^{\ l}$ r, with the obvious generalization of notation to the other orbitals and the "right-hand" atom.

Orbital Symmetry Label	Molecular Orbital
	$\left egin{array}{ccc} \psi_{2p_x}^{\ l} & oldsymbol{r} & +\psi_{2p_x}^{\ r} & oldsymbol{r} \end{array} ight.$
	$\left egin{array}{ccc} \psi_{2p_x}^{\ l} & oldsymbol{r} & -\psi_{2p_x}^{\ r} & oldsymbol{r} \end{array} ight.$
	$\psi_{2p_y}^{~l}~oldsymbol{r}~+\psi_{2p_y}^{~r}~oldsymbol{r}$
	$\left egin{array}{ccc} \psi_{2p_y}^{\;l} & oldsymbol{r} & -\psi_{2p_y}^{\;r} & oldsymbol{r} \end{array} ight.$
	$\left egin{array}{ccc} \psi_{2p_z}^{\ l} & oldsymbol{r} & +\psi_{2p_z}^{\ r} & oldsymbol{r} \end{array} ight.$
	$\left egin{array}{ccc} \psi_{2p_z}^{\ l} & oldsymbol{r} & -\psi_{2p_z}^{\ r} & oldsymbol{r} \end{array} ight.$

Quiz 6

Chemistry 3BB3; Winter 2006

- 1. The non-crossing rule implies that
 - (a) In a <u>diatomic</u> molecule, potential energy curves corresponding to wave functions with the <u>same</u> symmetry do not intersect.
 - (b) In a <u>diatomic</u> molecule, potential energy curves corresponding to wave functions with the <u>different</u> symmetry do not intersect.
 - (c) In a triatomic molecule, potential energy surfaces corresponding to wave functions with the same symmetry do not intersect.
 - (d) In a <u>triatomic</u> molecule, potential energy surfaces corresponding to wave functions with the <u>different</u> symmetry do not intersect.

2-7. Complete the following table by filling in the appropriate properties for the molecular ground states.

Molecule	Bond Order	Multiplicity	
LiBe	1/2	2	
LiB	0	1	
CN	2 1/2	2	
CN ⁻	3	1	
CO	3	1	
HF	1	1	

8-10. Label the following approximate (unnormalized) molecular orbitals using the σ,π,δ , u,g, and +,- designations. Here, we denote the 1s orbital on the "left-hand" atom as ψ_{1s}^{l} r, with the obvious generalization of notation to the other orbitals and the "right-hand" atom.

Orbital Symmetry Label	Molecular Orbital
π_u^+	$\psi_{2p_x}^{\;l}\;oldsymbol{r}\;+\psi_{2p_x}^{\;r}\;oldsymbol{r}$
π_g^+	$\left egin{array}{ccc} \psi_{2p_x}^{\ l} & oldsymbol{r} & -\psi_{2p_x}^{\ r} & oldsymbol{r} \end{array} ight.$
π_u^-	$\left egin{array}{ccc} \psi_{2p_y}^{\ l} & oldsymbol{r} \end{array} + \psi_{2p_y}^{\ r} & oldsymbol{r} \end{array} ight.$
π_g^-	$\psi_{2p_y}^{~l}~oldsymbol{r}~-\psi_{2p_y}^{~r}~oldsymbol{r}$
σ_u^+	$\left egin{array}{ccc} \psi_{2p_z}^{\ l} & oldsymbol{r} & + \psi_{2p_z}^{\ r} & oldsymbol{r} \end{array} ight.$
σ_g^+	$\psi_{2p_z}^{~l}~oldsymbol{r}~-\psi_{2p_z}^{~r}~oldsymbol{r}$