ADVANCED PLACEMENT CHEMISTRY EQUATIONS AND CONSTANTS

ATOMIC STRUCTURE

$$E = hv c = \lambda v$$

$$\lambda = \frac{h}{mv} p = mv$$

$$E_n = \frac{-2.178 \times 10^{-18}}{n^2} \text{ joule}$$

EOUILIBRIUM

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

$$K_{b} = \frac{[OH^{-}][HB^{+}]}{[B]}$$

$$K_{w} = [OH^{-}][H^{+}] = 1.0 \times 10^{-14} @ 25^{\circ}C$$

$$= K_{a} \times K_{b}$$

$$pH = -\log[H^{+}], pOH = -\log[OH^{-}]$$

$$14 = pH + pOH$$

$$pH = pK_{a} + \log\frac{[A^{-}]}{[HA]}$$

$$pOH = pK_{b} + \log\frac{[HB^{+}]}{[B]}$$

$$pK_{a} = -\log K_{a}, pK_{b} = -\log K_{b}$$

$$K_{p} = K_{c}(RT)^{\Delta n},$$

where Δn = moles product gas – moles reactant gas

THERMOCHEMISTRY/KINETICS

THERMOCHEMISTRY/RINETICS
$$\Delta S^{\circ} = \sum S^{\circ} \text{ products } -\sum S^{\circ} \text{ reactants}$$

$$\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ products } -\sum \Delta H_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ products } -\sum \Delta G_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= -RT \ln K = -2.303 RT \log K$$

$$= -n \mathcal{F} E^{\circ}$$

$$\Delta G = \Delta G^{\circ} + RT \ln Q = \Delta G^{\circ} + 2.303 RT \log Q$$

$$q = mc\Delta T$$

$$C_{p} = \frac{\Delta H}{\Delta T}$$

$$\ln[A]_{t} - \ln[A]_{0} = -kt$$

$$\ln k = \frac{-E_a}{R} \left(\frac{1}{T}\right) + \ln A$$

 $\frac{1}{[A]_{\star}} - \frac{1}{[A]_{0}} = kt$

E = energyv = velocityv = frequencyn = principal quantum number λ = wavelength m = massp = momentum

Speed of light, $c = 3.0 \times 10^8 \,\mathrm{m \ s^{-1}}$ Planck's constant, $h = 6.63 \times 10^{-34} \text{ J s}$ Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J K}^{-1}$ Avogadro's number = $6.022 \times 10^{23} \text{ mol}^{-1}$ Electron charge, $e = -1.602 \times 10^{-19}$ coulomb

1 electron volt per atom = 96.5 kJ mol^{-1}

Equilibrium Constants

 K_a (weak acid) K_b (weak base) K_w (water)

 K_p (gas pressure)

 K_c (molar concentrations)

 $S^{\circ} = \text{standard entropy}$

 H° = standard enthalpy

 G° = standard free energy

 E° = standard reduction potential

T = temperature

n = moles

m = mass

q = heat

c =specific heat capacity

 C_n = molar heat capacity at constant pressure

 E_a = activation energy

k = rate constant

A =frequency factor

Faraday's constant, $\mathcal{F} = 96,500$ coulombs per mole of electrons

> Gas constant, $R = 8.31 \text{ J mol}^{-1} \text{ K}^{-1}$ $= 0.0821 \text{ L atm mol}^{-1} \text{ K}^{-1}$ $= 8.31 \text{ volt coulomb mol}^{-1} \text{ K}^{-1}$

-4-