

• P1_pracuje (BOOL) - stav sekvencie P1

Otočný stôl:

- STOL_OTACAJ (%Q, BOOL) časované otáčanie o 90°
- STOL_OK (BOOL) stôl zarovnaný
- KS1 (%I, BOOL) ručná inicializácia (drž = otáčaj)
- KS2 (%I, BOOL) potvrdenie odobratia na ${\tt poz4}$
- poz1_id..poz4_id (INT) ID v stole (0 = prázdne)

Piest P2 (opracovanie na poz2):

- P2 (%Q, BOOL) TRUE dole / FALSE hore
- P2_pracuje, P2_dopracoval (BOOL) stavové premenné
- P2_cyklus (INT), T_1 , T_2 , N parametre cyklovania

Piest P3 (odoberanie na poz3):

- P3_k_stolu, P3_k_dopravniku (%Q, BOOL) smerové výstupy
- P3_pracuje (BOOL) stav sekvencie P3

Kompresor:

• KOMPRESOR (%Q, BOOL) – povolenie pneumatických pohybov (zapni, ak sa aktivuje niektorý piest)

Dopravník D1:

- D1 (%Q, BOOL) motor dopravníka
- OS2 (%I, BOOL) koniec dopravníka (NC)
- poz5_id (INT) ID pri P3 (vykladacia pozícia)
- poz6_id (INT) ID pri OS2 (koniec dopravníka)

6 Triediaca výrobná linka – IP 10.3.1.26

Triediaca linka (obr. 16–18) pozostáva zo **4 dopravníkov (D1 – D4)**, **2 strojov (S1, S2)** a **2 posúvačov (P1, P2)**. Obsadenosť sa deteguje pomocou **optických snímačov OS1 – OS4** (po jednom na konci každého dopravníka). Pri začiatku D1 je **kontaktné tlačidlo** (potvrdenie naloženia).

Úlohou je dopraviť a opracovať objekty od D1 po D4 a na D4 ich **triediť podľa typu**, ktorý sa prenáša spolu s objektom pomocou pomocných premenných. Napr. typ 1 sa triedi posúvačom P2 *vzad*, typ 2 *vpred* a typ 3 pokračuje priamo (padá do zásobníka). Výstupné miesta sa *nemusia pamätať* (manuálny odber).

Obr. 16: Triediaca výrobná linka

Obr. 17: Triediaca výrobná linka – zóna posúvača P1

6.1 Vstupy a výstupy

Fyzické adresy vstupov (napr. %I0.0, %I0.1, ...) a výstupov (napr. %Q0.0, %Q0.1, ...) je potrebné najskôr zistiť. Vstupy môžete monitorovať priamo na procesore sledovaním LED indikujúcich aktiváciu vstupov; zároveň ich možno sledovať aj vo $watch\ table$. Výstupy je vhodné identifikovať postupným, krátkodobým zapínaním vo $watch\ table$. Po identifikácii vstupu alebo výstupu si v symbolickej tabuľke (časť $PLC\ tags$ v stromovej štruktúre projektu) vytvorte príslušné symbolické názvy zadaním názvu, dátového typu a zistenej fyzickej adresy. Krátkodobé zapínanie je obzvlášť dôležité pri posúvačoch, aby nedošlo ku kolíziám — samé sa nevypnú, kým to nenaprogramujete.

Digitálne výstupy (%Q):

• Dopravníky: D1, D2, D3, D4 – pohyb vpred dopravníkov

• Stroje: S1, S2 – zapnutie otáčania stroja

Posúvač P1: P1_vpred, P1_vzad

• Posúvač P2: P2_vpred, P2_vzad

Obr. 18: Triediaca výrobná linka – triedenie na D4 (P2)

Digitálne vstupy (%I):

- OS1 (D1), OS2 (D2), OS3 (D3), OS4 (D4) optické snímače (NC) na koncoch dopravníkov
- TL_LOAD tlačidlo potvrdenia naloženia na začiatku D1 (kontakt)
- KS1 (P1 vpred), KS2 (P1 vzad) koncové polohy P1
- KS3 (P2 vpred), KS4 (P2 vzad) koncové polohy P2

6.2 Pomocné premenné

Boolovské:

- Obsadenost pozícií: PosStart (TL_LOAD), Pos1 (OS1), Pos2 (OS2), Pos3 (OS3), Pos4 (OS4)
- Medzipoloha pri P1 (rohová plošinka): PosP (bez snímača, stavová premenná)
- Stavy strojov: S1_pracuje, S1_dopracoval, S2_pracuje, S2_dopracoval

Číselné (INT):

- ID_objektu typ objektu zadaný pred naložením (napr. 1/2/3)
- PosStart_id ID na začiatku D1 po potvrdení naloženia
- Pos1_id, PosP_id, Pos2_id, Pos3_id, Pos4_id ID naprieč linkou (0 = prázdne)
- S1_cyklus, S2_cyklus počty cyklov strojov; parametre T_1, T_2, N

6.3 Logika pohybov (po častiach)

- Dopravník D1 (OS1) a naloženie
 - Po stlačení tlačidla TL_LOAD sa hodnota ID_objektu skopíruje do PosStart_id. V prípade použitia bitových premenných sa nastaví PosStart na TRUE.
 - Ak je Pos1 = FALSE pozícia pri OS1 je voľná, spustí sa D1. Pri detekcii objektu snímačom OS1 sa nastaví Pos1 = TRUE, prenesie sa PosStart_id do Pos1_id a PosStart_id sa vynuluje. Táto časť realizuje odoslanie objektu z nakladacej pozície smerom k OS1. Dopravník je v pohybe aj v prípade, že ak

- je rohová plošinka pri P1 voľná (PosP = FALSE) a P1 je v polohe vzad (KS2 = TRUE) - aby nedošlo ku kolízii s posúvačom. D1 sa zapne na čas T_k_P1 napr. 1-2s. Po uplynutí času sa nastaví PosP = TRUE, PosP_id := Pos1_id, Pos1 = FALSE a Pos1_id = 0. Čiže sme časovým zopnutím D1 odovzdali objekt na plošinku.

• Posúvač P1 (odovzdanie na D2)

- Podmienky pre presun objektu z plošinky na D2 je prítomnosť objektu na plošinke (PosP = TRUE), dopravník nie je obsadený (Pos2 = FALSE) a posúvač je v pozícii vzad KS2 = TRUE.
- Spustí sa P1_vpred. Pri zopnutí KS1 sa výstup P1_vpred okamžite vypne. Súčasne je v chode
 D2 na príjem (pozri podmienky spustenie D2).
- Pri detekcii objektu snímačom OS2 sa nastaví Pos2 = TRUE, Pos2_id := PosP_id; PosP = FALSE a PosP_id = 0, čiže sme odovzdali objekt a jeho údaje na ďalšiu pozíciu. Následne sa spustí P1_vzad. Pri KS2 sa P1_vzad okamžite vypne.

• Dopravník D2 (OS2)

- Prijíma objekt z P1 podľa podmienok uvedených vyššie a po príchode na OS2 sa vykoná výmena stavov a ID.
- Po dokončení práce S1 a ak je Pos3 = FALSE pozícia na D3 je voľná, spustí sa D2 aj D3. Pri detekcii objektu pomocou OS3 sa nastaví Pos3 = TRUE, Pos3_id := Pos2_id a Pos2/Pos2_id sa vynulujú.

• Stroj S1 (na D2)

- Spustí sa, ak je Pos2 = TRUE. Na začiatku si nastavíme S1_pracuje na TRUE lebo stroj začne vykonávať sekvenciu pohybov. Jeden cyklus znamená zapnutie S1 na čas T_1 , následne vypnutie na čas T_2 . Po dokončení zap a vyp navýšime počet napr. pomocou počítadla alebo inkrementujeme INT premennú napr. inštrukciami ADD, INC a pod.
- Cyklus sa opakuje N-krát. Po dokončení sa nastaví S1_dopracoval = TRUE. Po odoslaní objektu na D3 sa vynuluje S1_cyklus a stavové premenné S1_pracuje/S1_dopracoval a vynulujú sa počty.

• Dopravník D3 (OS3)

- Prijíma objekt z D2 po skončení S1. Pri detekcii obektu snímačom OS3 sa nastaví Pos3 =
 TRUE, prenesie sa Pos2_id do Pos3_id a Pos2/Pos2_id sa vynulujú.
- Po dokončení práce S2 a ak je Pos4 = FALSE, spustí sa D3 aj D4. Pri OS4 sa nastaví Pos4 = TRUE, Pos4_id := Pos3_id a Pos3/Pos3_id sa vynulujú. Ide o analogickú podmienku ako v prípade D2.

• Stroj S2 (na D3)

- Spustí sa, ak je Pos3 = TRUE . Na začiatku si nastavíme S2_pracuje na TRUE lebo stroj začne vykonávať sekvenciu pohybov. Jeden cyklus znamená zapnutie S2 na čas T_1 , následne vypnutie na čas T_2 .
- Cyklus sa opakuje N-krát. Po dokončení sa nastaví S2_dopracoval = TRUE. Po odoslaní objektu na D4 sa vynuluje S2_cyklus a stavové premenné S2_pracuje/S2_dopracoval ako aj celočíselné premenné.

• Triedenie na D4 (OS4) pomocou P2

Po prijatí objektu na D4 (Pos4 = TRUE) sa objekt časovo presunie do zóny P2 (čas T_triedenie).
 Triedenie sa vykoná podľa Pos4_id.

- Typ 1: Aktivuje sa pohyb vpred P2_vpreed. Po dosiahnuti KS4 sa výstup vypne. Takto je P2 pripravený na vytiahnutie objektu vzad. Spustí sa D4 na krátky čas. Po uplynutí času sa spustí P2 vzad. Aktiváciou snímača vzad sa bez inej podmienky pohyb hneď vypne.
- Typ 2: Najprv si posunieme objekt k piestu krátkym časovaním podobne ako pre typ 1. Aktivuje sa P2_vpred čim presúvame objekt na pozíciu pred posúvačom. Aktiváciou koncového snímača ihneď vypneme pohyb. Takto sme vytlačili objekt vpred. Aktivujeme pohyb vzad a keď sa aktivuje snímač vzad, tak ihneď vypneme pohyb vzad.
- Typ 3: P2 sa nepohne. Objekt pokračuje priamo do zásobníka, t.j. dopravník D4 spúšťame na dlhší čas, aby spadol do zásobníka na konci dopravníka.
- Po dokončení triedenia sa Pos4 = FALSE a Pos4_id = 0.

6.4 Sumarizácia príkladu zoznamu premenných a funkčných blokov podľa častí linky

Dopravník D1:

- Pos1 (BOOL), Pos1_id (INT) obsadenost/ID pri OS1
- D1 (%Q, BOOL) pohyb vpred dopravníka
- OS1 (%I, BOOL) optický snímač D1
- TL_LOAD (%I, BOOL) potvrdenie naloženia (začiatok D1)
- PosStart_id (INT) ID po potvrdení naloženia

Plošinka pri P1:

- PosP (BOOL), PosP_id (INT) obsadenost/ID rohového miesta (bez snímača)
- T k P1 čas presunu z OS1 na plošinku

Posúvač P1:

- P1_vpred, P1_vzad (%Q, BOOL) výstupy posúvača
- KS1, KS2 (%I, BOOL) koncové polohy (vpred/vzad)

Dopravník D2:

- Pos2 (BOOL), Pos2_id (INT) obsadenost/ID pri OS2
- D2 (%Q, BOOL) pohyb vpred dopravníka
- OS2 (%I, BOOL) optický snímač D2

Stroj S1:

- S1 (%Q, BOOL) výstup pre stroj
- S1_pracuje, S1_dopracoval (BOOL)
- S1_cyklus (INT), T_1 , T_2 , N

Dopravník D3:

- Pos3 (BOOL), Pos3_id (INT) obsadenost/ID pri OS3
- D3 (%Q, BOOL) pohyb vpred dopravníka

• OS3 (%I, BOOL) – optický snímač D3

Stroj S2:

- S2 (%Q, BOOL) výstup pre stroj
- S2_pracuje, S2_dopracoval (BOOL)
- S2_cyklus (INT), $T_1,\,T_2,\,N$

Dopravník D4 (triedenie):

- Pos4 (BOOL), Pos4_id (INT) obsadenost/ID pri OS4
- D4 (%Q, BOOL) pohyb vpred dopravníka
- OS4 (%I, BOOL) optický snímač D4
- T_triedenie čas presunu do zóny P2

Posúvač P2 (triedenie):

- P2_vpred, P2_vzad (%Q, BOOL) výstupy posúvača
- KS3, KS4 (%I, BOOL) koncové polohy (vpred/vzad)