Model Predictive Control

Lecture 03A - Stochastic Differential Equations (SDEs)

John Bagterp Jørgensen

Department of Applied Mathematics and Computer Science Technical University of Denmark

02619 Model Predictive Control

Deterministic and Stochastic Differential Equations

Ordinary differential equations (ODEs)

$$dx(t) = f(x(t))dt$$

► Stochastic differential equations (SDEs)

$$dx(t) = f(x(t))dt + g(x(t))d\omega(t)$$

drift = normal dist

Deterministic and Stochastic Differential Equations

► Ordinary differential equations (ODEs)

$$dx(t) = f(x(t))dt$$

 Stochastic differential equations (SDEs) with state dependent diffusion

$$d\mathbf{x}(t) = f(\mathbf{x}(t))dt + g(\mathbf{x}(t))d\boldsymbol{\omega}(t)$$

 Stochastic differential equations (SDEs) with state independent diffusion

$$d\mathbf{x}(t) = f(\mathbf{x}(t))dt + \sigma d\mathbf{\omega}(t)$$

This is a special case, where $g(x(t)) = \sigma$

Stochastic Differential Equation - Numerical Methods

► White noise

$$d\boldsymbol{\omega}(t) \sim N_{iid}(0, dt)$$

► Stochastic Differential Equation (SDE)

$$d\mathbf{x}(t) = f(\mathbf{x}(t))dt + g(\mathbf{x}(t))d\boldsymbol{\omega}(t)$$

► Integral form

$$\boldsymbol{x}(t_{k+1}) - \boldsymbol{x}(t_k) = \overbrace{\int_{t_k}^{t_{k+1}} f(\boldsymbol{x}(t)) dt}^{\text{Riemann integral}} + \overbrace{\int_{t_k}^{t_{k+1}} g(\boldsymbol{x}(t)) d\boldsymbol{\omega}(t)}^{\text{Ito integral}}$$

Riemann integral: The integrand can be evaluated for any t in $t_k \le t \le t_{k+1}$ Ito integral: The integrand must be evaluated in $t = t_k$ (i.e. the LHS)

Discretized white noise

$$\Delta w_k \sim N_{iid}(0, \Delta t_k)$$

► Explicit-explicit method (Euler-Maruyama)

$$\boldsymbol{x}_{k+1} - \boldsymbol{x}_k = f(\boldsymbol{x}_k) \Delta t_k + g(\boldsymbol{x}_k) \Delta \boldsymbol{w}_k$$

Implicit-explicit method

$$\boldsymbol{x}_{k+1} - \boldsymbol{x}_k = f(\boldsymbol{x}_{k+1}) \Delta t_k + g(\boldsymbol{x}_k) \Delta \boldsymbol{w}_k$$

Brownian Motion

Discrete-time Brownian Motion

- ► Random walk = discrete Brownian motion
- ► Mathematical model
 - ► Initial value

$$x_0 = 0$$

► Random disturbance

$$\boldsymbol{w}_k \sim F_{iid}(\cdot)$$

► Difference equation

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{w}_k$$

- ► Numerical procedure
 - $x_0 = 0$
 - for k = 0, 1, 2, ...

Generate w_k using a random number generator $x_{k+1} = x_k + w_k$

Discrete-time Brownian Motion - Mean and Variance

► Difference equation

$$x_{k+1} = x_k + w_k, \quad x_0 = x_0 = 0$$

► Equivalent expression

$$x_k = w_0 + w_1 + \ldots + w_{k-1}$$
 $k \ge 1$

 $ightharpoonup N_s$ different realizations of x_k

$$x_k^i = w_0^i + w_1^i + \ldots + w_{k-1}^i \qquad k \ge 0 \quad i \in \{1, 2, \ldots, N_s\}$$

Sample mean

$$\bar{x}_k = \frac{x_k^1 + x_k^2 + \ldots + x_k^{N_s}}{N_s}$$

► Sample variance

$$s_k^2 = \frac{(x_k^1 - \bar{x}_k)^2 + (x_k^2 - \bar{x}_k)^2 + \dots + (x_k^{N_s} - \bar{x}_k)^2}{N_s - 1}$$

▶ Asymptotic limits: $\bar{x}_k \to 0$ and $s_k^2 \to k$ for $N_s \to \infty$

Scalar

Standard Brownian Motion = Standard Wiener Process

- ▶ Standard Brownian Motion = Standard Wiener Process A scalar standard Brownian motion, or standard Wiener process, over [0,T] is a random variable $\omega(t)$ that depends continuously on $t \in [0,T]$ and satisfies the following conditions
 - $\omega(0) = 0$ (with probability 1)
 - $\bullet \ 0 \le s < t \le T : [\boldsymbol{\omega}(t) \boldsymbol{\omega}(s)] \sim N(0, t s)$
 - For $0 \leq s < t < u < v \leq T$, the increments $\omega(t) \omega(s)$ and $\omega(v) \omega(u)$ are independent
- White noise Let $\omega(t)$ be scalar standard Brownian motion and let

$$\boldsymbol{\omega}(t) = \int_0^t d\boldsymbol{\omega}(s)$$

then $d\omega(t) \sim N_{iid}(0, dt)$ is white noise

► Brownian motion is integrated white noise

Realizations of Standard Brownian Motion

```
1 % Scalar Standard Brownian Motion = Standard Wiener Process
2 Ns = 10; % Number of realizations
3 T = 10; % Final time
4 N = 1000; % Number of time steps
5 seed = 100; % Seed for reproducibility
6
7 % Realization of Ns Standard Brownian Motions
8 rng(seed);
9 dt = T/N;
10 dW = sqrt(dt)*randn(Ns,N);
11 W = cumsum(dW,2);
```


Scalar Standard Wiener Process

 $lacktriangleright N_s$ realizations of a scalar standard Wiener process

```
function [W, Tw, dW] = ScalarStdWienerProcess(T, N, Ns, seed)
   % ScalarStdWienerProcess Ns realizations of a scalar std Wiener process
   % Syntax: [W, Tw, dW] = ScalarStdWienerProcess(T, N, Ns, seed)
           W : Standard Wiener process in [0,T]
         Tw : Time points
         dW : White noise used to generate the Wiener process
  % T : Final time
10 % N : Number of intervals
11 % Ns : Number of realizations
12 % seed : To set the random number generator (optional)
13
14 if nargin == 4
15 rng(seed);
16 end
17 dt = T/N;
18 dW = sgrt(dt)*randn(Ns,N);
19 W = [zeros(Ns,1) cumsum(dW,2)];
20 Tw = 0:dt:T;
```

▶ Usage

```
[W,Tw,dW] = ScalarStdWienerProcess(10,1000,10,100);
plot(Tw,W,'linewidth',2);
```

White Noise and Standard Brownian Motion

White Noise and Standard Brownian Motion

Realizations of Standard Brownian Motion

▶ Mean

 $\bar{\omega}(t) = E\boldsymbol{\omega}(t) = 0$

Variance

 $\sigma(t)^2 = V \omega(t) = t$

Standard deviation

 $\sigma(t) = \sqrt{V \boldsymbol{\omega}(t)} = \sqrt{t}$

 $\qquad \qquad \mathbf{Plot} \colon \, \bar{\omega}(t) \pm 2\sigma(t)$

Scalar Sample Mean and Sample Variance (Std Deviation)

ightharpoonup Given $\left\{x_k^i\right\}_{i=1}^{N_s}$

Sample mean:
$$\bar{x}_k=rac{1}{N_s}\sum_{i=1}^{N_s}x_k^i$$
 Sample std dev: $s_k=\left(rac{1}{N_s-1}\sum_{i=1}^{N_s}(x_k^i-ar{x}_k)^2
ight)^{1/2}$

Sample mean and standard deviation

Usage

```
1 [W,Tw,dW] = ScalarStdWienerProcess(T,N,Ns,seed);
2 [Wmean,sW,Wmeanp2sW,Wmeanm2sW]=ScalarSampleMeanStdVar(W);
```

Scalar Sample Mean and Sample Variance (Std Deviation)

Scalar Sample Mean and Sample Variance (Std Deviation)

Stochastic Differential Equations

Integrals

► Time axis

$$a = t_0 < t_1 < t_2 < \ldots < t_{N-1} < t_N = b$$

► Riemann integral (evaluated in the LHS)

$$\int_{a}^{b} f(t)dt = \lim_{\Delta t \to 0} \sum_{i=0}^{N-1} f(t_i) \Delta t_i$$

► Ito integral

$$\int_{a}^{b} f(t)d\boldsymbol{\omega}(t) = \lim_{\Delta t \to 0} \sum_{i=0}^{N-1} f(t_i) \Delta \boldsymbol{w}_i, \quad \Delta \boldsymbol{w}_i \sim N_{iid}(0, \Delta t_i)$$

► Brownian motion (a standard Wiener process)

$$\boldsymbol{\omega}(t) = \int_0^t d\boldsymbol{\omega}(s)$$

 $d\boldsymbol{\omega}(t)$ is called white noise

Ito's Formula

► Ito's formula Let y = f(t, x) then

$$dy = \frac{\partial f}{\partial t}(t,x)dt + \frac{\partial f}{\partial x}(t,x)dx + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}(t,x)dxdx$$

- ► The equivalence of the chain rule
- Reason that analytical solutions looks different than you are used to

► Constant coefficient scalar differential equation

$$d\mathbf{x}(t) = \lambda dt + \sigma d\boldsymbol{\omega}(t), \quad \mathbf{x}(0) = 0$$

Analytical solution

$$\boldsymbol{x}(t) = \boldsymbol{x}(t) - \boldsymbol{x}(0) = \lambda t + \sigma \boldsymbol{\omega}(t)$$

▶ Integral equation

$$\boldsymbol{x}(t) - \boldsymbol{x}(0) = \underbrace{\int_0^t \lambda ds}_{\text{Riemann integral}} + \underbrace{\int_0^t \sigma d\boldsymbol{\omega}(s)}_{\text{Ito integral}}$$

▶ The solution is a combination of drift (λt) and the diffusion of the Brownian motion $(\sigma \omega(t))$

► Constant coefficient scalar differential equation

$$d\mathbf{x}(t) = \lambda dt + \sigma d\boldsymbol{\omega}(t), \quad \mathbf{x}(0) = 0$$

► Analytical solution

$$x(t) = x(t) - x(0) = \lambda t + \sigma \omega(t)$$

▶ Plot of 10 realizations of the solution ($\lambda = 1$ and $\sigma = 1$)

► Geometric Brownian motion

$$d\mathbf{x}(t) = \lambda \mathbf{x}(t)dt + \sigma \mathbf{x}(t)d\boldsymbol{\omega}(t), \quad \mathbf{x}(0) = \mathbf{x}_0$$

► Analytical solution

$$x(t) = \exp\left(\left(\lambda - \frac{1}{2}\sigma^2\right)t + \sigma\omega(t)\right)x_0$$

lacktriangle Plot of 10 realizations of the solution ($\lambda=0.15, \sigma=0.15, x_0=1$)

► Langevin equation

$$d\mathbf{x}(t) = \lambda \mathbf{x}(t)dt + \sigma d\boldsymbol{\omega}(t), \quad \mathbf{x}(0) = \mathbf{x}_0$$

- ► No analytical solution exists
- ► The numerical solution (by the Euler-Maruyama method)

$$\boldsymbol{x}_{k+1} - \boldsymbol{x}_k = (\lambda \boldsymbol{x}_k) \, \Delta t_k + \sigma \Delta \boldsymbol{w}_k, \qquad \Delta \boldsymbol{w}_k \sim N_{iid}(0, \Delta t_k)$$

is called the Ornstein-Uhlenbeck process

▶ Plot of 10 realizations of the solution ($\lambda = -0.5, \sigma = 1, x_0 = 10$)

Matlab code

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + (\lambda \boldsymbol{x}_k) \, \Delta t_k + \sigma \Delta \boldsymbol{w}_k, \qquad \Delta \boldsymbol{w}_k \sim N_{iid}(0, \Delta t_k)$$

```
= 10;
   N = 1000;
   Ns = 10;
    seed = 100;
    x0 = 10;
    lambda = -0.5;
    sigma = 1.0;
10
   [W, Tw, dW] = ScalarStdWienerProcess (T, N, Ns, seed);
11
12
    X = zeros(size(W));
13
   for i=1:Ns;
14
      X(i,1) = x0;
15
     for k=1:N
16
           dt = Tw(k+1) - Tw(k):
17
           X(i,k+1) = X(i,k) + lambda*X(i,k)*dt + sigma*dW(i,k);
18
       end
19
    end
```

 $\lambda = -0.5$, $\sigma = 1$, $x_0 = 10$

Order of a numerical method for SDEs

- ▶ An SDE solver has **order** *p* if the expected value of the error is of *p*th order in the time step size.
- ▶ $\forall t_N > 0$: $E\{|\boldsymbol{x}(t_N) \boldsymbol{x}_N|\} = \mathcal{O}((\Delta t)^p)$ for $\Delta t \to 0$ Analytical solution: $\boldsymbol{x}(t_N)$ Numerical solution: \boldsymbol{x}_N
- Note that this is a concept related to the global error for ODE solvers

Euler-Maruyama Method (explicit-explicit)

▶ SDE

$$d\mathbf{x}(t) = f(\mathbf{x}(t))dt + g(\mathbf{x}(t))d\boldsymbol{\omega}(t)$$

► Numerical method (Euler-Maruyama)

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + f(\boldsymbol{x}_k)\Delta t_k + g(\boldsymbol{x}_k)\Delta \boldsymbol{w}_k$$

► Random number generation

$$\Delta \boldsymbol{w}_k \sim N_{iid}(0, \Delta t_k)$$

▶ Order: $p = \frac{1}{2}$

Matlab Implementation - SDE solver

```
function X = SDEeulerExplicitExplicit(ffun,gfun,T,x0,W,varargin)
    N = size(T,2)-1;
    nx = size(x0,1);
    X = zeros(nx,N+1);
    X(:,1) = x0;
   for k=1:N
     dt = T(k+1) - T(k);
10
     dW = W(:, k+1) - W(:, k)
11
     f = feval(ffun,T(k),X(:,k),varargin{:});
12
    q = feval(gfun, T(k), X(:,k), varargin\{:\});
13
      X(:,k+1) = X(:,k) + f*dt + g*dW;
14
    end
```

Matlab Implementation - Langevin - Driver, drift, diffusion

```
= 10:
        = 1000;
   Ns
         = 10;
    seed = 100;
           = 10:
    lambda = -0.5:
    sigma = 1.0;
          = [lambda: sigma];
10
11
   [W, Tw, dW] = ScalarStdWienerProcess (T, N, Ns, seed);
12
    X = zeros(size(W));
13
   for i=1.Ns
14
        X(i,:) = SDEeulerExplicitExplicit(...
15
                          @LangevinDrift,@LangevinDiffusion,...
16
                          Tw, x0, W(i,:), p);
17
    end
```

```
1 function f = LangevinDrift(t,x,p)
2
3 lambda = p(1);
4 f = lambda*x;
```

```
function g = LangevinDiffusion(t,x,p)

sigma = p(2);
g = sigma;
```

Numerical Solution - Explicit-Explicit Method

Matlab Implementation - Geometric Brownian Motion

```
= 10;
   N = 1000;
3 \text{ Ns} = 10;
   seed = 100;
  x0 = 1;
   lambda = 0.15;
   sigma = 0.15:
    p = [lambda; sigma];
10
11
   [W.Tw.dW]=ScalarStdWienerProcess(T.N.Ns.seed);
12
   X = zeros(size(W));
13
   for i=1:Ns
14
       X(i,:) = SDEeulerExplicitExplicit(...
15
                         @GeometricBrownianDrift,@GeometricBrownianDiffusion...
16
                         Tw,x0,W(i,:),p);
17
    end
```

```
function f = ...
GeometricBrownianDrift(t,x,p)

lambda = p(1);
f = lambda*x;
```

```
function g = ...
GeometricBrownianDiffusion(t,x,p)

sigma = p(2);
g = sigma*x;
```

Numerical Solution - Explicit-Explicit Method

Numerical Solution - Explicit-Explicit Method

Numerical Solution - Distribution of final state, $\boldsymbol{x}(T)$

Implicit-explicit Method

▶ SDE

$$d\mathbf{x}(t) = f(\mathbf{x}(t))dt + g(\mathbf{x}(t))d\boldsymbol{\omega}(t)$$

Numerical method

$$\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + f(\boldsymbol{x}_{k+1})\Delta t_k + g(\boldsymbol{x}_k)\Delta \boldsymbol{w}_k$$

► Random number generation

$$\Delta \boldsymbol{w}_k \sim N_{iid}(0, \Delta t_k)$$

▶ Order: $p = \frac{1}{2}$

Newton Method in Implicit-Explicit SDE Solver

```
function [x,f,J] = SDENewtonSolver(ffun,t,dt,psi,xinit,tol,maxit,varargin)
        I = eye(length(xinit));
        x = xinit;
        [f,J] = feval(ffun,t,x,varargin{:});
        R = x - f*dt - psi;
        it = 1;
        while ((norm(R, 'inf') > tol) & (it <= maxit))
            dRdx = I - J*dt:
10
           mdx = dRdx \ R;
11
           x = x - mdx;
12
           [f,J] = feval(ffun,t,x,varargin{:});
13
           R = x - f*dt - psi;
14
            it = it+1;
15
        end
```

Matlab Implementation

```
function X = SDEeulerImplicitExplicit(ffun,gfun,T,x0,dW,varargin)
   tol = 1.0e-8;
   maxit = 10;
5
   N = size(T, 2) - 1;
   nx = size(x0,1);
    X = zeros(nx,N+1);
g
10 X(:,1) = x0;
11 for k=1:N
12
        dt = T(k+1) - T(k);
13
       f = feval(ffun, T(k), X(:, k), varargin{:});
       q = feval(gfun, T(k), X(:,k), varargin{:});
14
15
        psi = X(:,k) + q*dW(:,k);
16
       xinit = psi + f*dt;
17
       [X(:,k+1),f,\sim] = SDENewtonSolver(...
18
                                      ffun,...
19
                                      T(:,k+1),dt,psi,xinit,...
20
                                      tol, maxit, ...
21
                                      varargin{:});
22
    end
```

Milstein Method (explicit)

► SDE

$$d\mathbf{x}(t) = f(\mathbf{x}(t))dt + g(\mathbf{x}(t))d\boldsymbol{\omega}(t)$$

Numerical method (Milstein)

$$\begin{aligned} \boldsymbol{x}_{k+1} &= \boldsymbol{x}_k + f(\boldsymbol{x}_k) \Delta t_k + g(\boldsymbol{x}_k) \Delta \boldsymbol{w}_k \\ &+ \frac{1}{2} g(\boldsymbol{x}_k) \frac{\partial g}{\partial x} (\boldsymbol{x}_k) ((\Delta \boldsymbol{w}_k)^2 - \Delta t_k) \end{aligned}$$

► Random number generation

$$\Delta \boldsymbol{w}_k \sim N_{iid}(0, \Delta t_k)$$

▶ Order: p = 1

First-order Stochastic Runge-Kutta Method (explicit)

► SDE

$$d\mathbf{x}(t) = f(\mathbf{x}(t))dt + g(\mathbf{x}(t))d\boldsymbol{\omega}(t)$$

► Numerical method (First-order stochastic Runge-Kutta)

$$\begin{aligned} \boldsymbol{k}_k &= \boldsymbol{x}_k + g(\boldsymbol{x}_k) \sqrt{\Delta t_k} \\ \boldsymbol{x}_{k+1} &= \boldsymbol{x}_k + f(\boldsymbol{x}_k) \Delta t_k + g(\boldsymbol{x}_k) \Delta \boldsymbol{w}_k \\ &\quad + \frac{1}{2\sqrt{\Delta t_k}} \left[g(\boldsymbol{k}_k) - g(\boldsymbol{x}_k) \right] \left[(\Delta \boldsymbol{w}_k)^2 - \Delta t_k \right] \end{aligned}$$

► Random number generation

$$\Delta \boldsymbol{w}_k \sim N_{iid}(0, \Delta t_k)$$

▶ Order: p = 1

Summary

- ► Brownian motion (standard Wiener process)
- ► Riemann and Ito integrals
- ► Stochastic Differential Equation (SDE)
- ► Euler Explicit-Explicit Method
- ► Euler Implicit-Explicit Method
- ▶ Order