

DATASHEET

JMS578 SuperSpeed USB to SATA 6.0Gb/s Bridge Controller

Document No.: PDS-16002 / Revision: 1.05 / Date: 9/18/2017

JMicron Technology Corporation

1F, No. 13, Innovation Road 1, Science-Based Industrial Park, Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Website: http://www.jmicron.com

Certificate No.: TW16/00614

Copyright © 2017, JMicron Technology Corp. All Rights Reserved.

Printed in Taiwan 2017

JMicron and the JMicron Logo are trademarks of JMicron Technology Corporation in Taiwan and/or other countries.

Other company, product and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use implantation or other life supports application where malfunction may result in injury or death to persons. The information contained in this document does not affect or change JMicron's product specification or warranties. Nothing in this document shall operate as an express or implied license or environments, and is presented as an illustration. The results obtained in other operating environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will JMicron be liable for damages arising directly or indirectly from any use of the information contained in this document.

For more information on JMicron products, please visit the JMicron web site at http://www.JMicron.com or send e-mail to sales@jmicron.com. For product application support, please send e-mail to fae@jmicron.com.

JMicron Technology Corporation

1F, No.13, Innovation Road 1, Science-Based Industrial Park, Hsinchu, Taiwan 300, R.O.C.

Tel: 886-3-5797389 Fax: 886-3-5799566

Revision History

Revision	Effective		Description of revision	Author	
number	date	Reference	Description of change	Author	
1.00	1/13/2015		Initial release.	Mika Cheng	
1.01	9/2/2016		Removed the SPI list and performance benchmark:	Mika Cheng	
			to individual documents due to frequent update.		
1.02	1/20/2017		Revised Crystal pin assign	Mika Cheng	
1.03	6/7/2017		1. Revised 26, 47 pin assign	Mika Chang	
			2. Removed 4.6 Vbus detector	Mika Cheng	
1.04	8/23/2017		Added the outline drawing of LQFP		
			2. Added package pin-out information of LQFP	Mika Chang	
			3. Added the statement of product naming rule for	Mika Cheng	
			LQFP		
1.05	9/18/2017		Added the reason for removing SPI list and performance	Lorny Chian	
			benchmark to the description of change of revision 1.01.	Larry Chien	

Table of Contents

Re	evisio	n History	Ì
Та	ble of	Contents	ii
Fiç	gure L	_ist	V
Та	ble Li	st	V
1	Intro	oduction	1
2	Feat	tures	1
3	Bloc	k diagram	2
4	Pacl	kage dimension	3
	4.1	QFN48 6x6	3
	4.2	LQFP48 7x7	4
5	Pacl	kage pin-out	5
	5.1	Pin assignment	5
		5.1.1 QFN48	5
		5.1.2 LQFP48	6
	5.2	Pin type definition	7
	5.3	Pin description	7
		5.3.1 Serial ATA interface	7
		5.3.2 USB3.0 interface	8
		5.3.3 USB2.0 interface	8
		5.3.4 Crystal interface	9
		5.3.5 Voltage regulation	9
		5.3.6 Digital power and system control interface	10
6	Cloc	k and reset	11
	6.1	Crystal input	11
	6.2	Reset input	11
7	Elec	trical characteristics	12
	7.1	Absolute maximum rating	12
	7.2	Recommended power supply operation conditions	12
	7.3	Recommended external clock source conditions	12
	7.4	Power supply DC characteristics	13
		7.4.1 Power on (no USB connected)	13
		7.4.2 USB2.0 to SATA mode	13
		7.4.3 USB3.0 to SATA mode	13

	7.5	I/O DC characteristics	.14
	7.6	Switching power efficiency (VREG_IN)	.15
	7.7	Internal linear regulator	.15
	7.8	Power ripple	.16
	7.9	Power-on sequence	.16
8	Inter	nal switch regulator	.17
9	Proc	luct naming rule and ordering information	.18
	9.1	Format of the part number	.18
	9.2	Definition of the part number	.18

Figure List

Figure 1	Block diagram	2
	Package dimension of QFN48 6x6	
_	-	
Figure 3	Package dimension of LQFP48 7x7	4
Figure 4	Pin assignment of QFN48	5
Figure 5	Pin assignment of LQFP48.	6
Figure 6	Switching power efficiency	.15
Figure 7	Illustration of power-on sequence	.16
Figure 8	Format of the part number	18

Table List

Table 1	Pin type definition	7
Table 2	Description of Serial ATA interface pins	7
Table 3	Description of USB3.0 interface pins	8
Table 4	Description of USB2.0 interface pins	8
Table 5	Description of crystal interface pins	9
Table 6	Description of voltage regulation interface pins	9
Table 7	Description of digital power and system control interface pins	10
Table 8	Crystal input	11
Table 9	Absolute maximum rating	12
Table 10	Recommended power supply operation conditions	12
Table 11	Recommended external clock source conditions	12
Table 12	Power supply DC characteristics – Power on (no USB connected)	13
Table 13	Power supply DC characteristics – USB2.0 to SATA mode	13
Table 14	Power supply DC characteristics – USB3.0 to SATA mode @ U0 state	13
Table 15	Power supply DC characteristics – USB3.0 to SATA mode @ U3 state (suspend @S4)	14
Table 16	Power supply DC characteristics – USB3.0 to SATA mode @ U1/U2 state	14
Table 17	I/O DC characteristics	14
Table 18	Internal liner regulator	15
Table 19	Power ripple	16
Table 20	Recommended power sequence and timing requirements	17
Table 21	Explanation of the part number	18

1 Introduction

JMS578 is a SuperSpeed USB to SATA 6Gb/s bridge controller with high performance and low power consumption. It can support external SPI NVRAM for Vendor VID/PID of USB2.0/USB3.0 device controller. It has 10 GPIOs to do customization for various applications. It supports software utilities for downloading the upgraded firmware code under USB2.0/USB3.0. It complies with both the USB Mass Storage Class Bulk-Only Transport (BOT) Specification and USB Attached SCSI Protocol (UASP) Specification.

2 Features

- Complies with Gen2i/Gen2m of Serial ATA II Electrical Specification 2.6
- Complies with Gen3 of Serial ATA III Electrical Specification 3.2
- Complies with USB 3.0 Specification, USB Mass Storage Class, Bulk-Only Transport Specification
- Complies with USB Attached SCSI Protocol (UASP) Specification
- Supports USB Super-Speed/High-Speed/Full-Speed Operation
- Supports USB2.0/USB3.0 power saving mode
- Supports SHA-1/SHA-256 for IEEE-1667 digest calculation
- Supports external SPI NVRAM for Vendor VID/PID of USB2.0/USB3.0 device controller
- Supports ATA/ATAPI PACKET command set
- 10 GPIOs for customization
- Provides hardware control PWM
- Provides software utilities for downloading the upgraded firmware code under USB2.0/USB3.0
- Design for Windows 7, Windows 10 and MAC 10.9.5 or later version.
- Supports 30MHz external crystal
- Embedded 5V to 1.2V voltage regulator
- Embedded 5V to 3.3V linear voltage regulator (LDO)
- QFN48 package (6x6) and LQFP48 package (7x7)

3 Block diagram

Figure 1 Block diagram

4 Package dimension

4.1 QFN48 6x6

		SYMBOL	MIN	NOM	MAX	
TOTAL THICKNESS	А	A 0.8 0.		0.9		
STAND OFF		A1	0	0.035	0.05	
MOLD THICKNESS		A2		0.65	0.67	
L/F THICKNESS		А3		0.203 REF		
LEAD WIDTH		b	0.15	0.2	0.25	
DADY 017E	Χ	D		6 BS	С	
BODY SIZE	Υ	E		6 BS	С	
LEAD PITCH		е	0.4 BSC			
ED CIZE	Χ	J	4.1	4.2	4.3	
EP SIZE	Υ	К	4.1	4.2	4.3	
LEAD LENGTH		L	0.35 0.4		0.45	
PACKAGE EDGE TOLE	RANCE	aaa	0.1			
MOLD FLATNESS		bbb	0.1			
COPLANARITY		ccc	0.08			
LEAD OFFSET		ddd	0.1			
EXPOSED PAD OFFSE	Т	eee		0.1		

Unit: mm

Note: The ground pad size is (J * K)

Figure 2 Package dimension of QFN48 6x6

4.2 LQFP48 7x7

		SYMBOL	MIN	NOM	MAX
TOTAL THICKNESS	Α			1.6	
STAND OFF		A1	0.05		0.15
MOLD THICKNESS		A2	1.35		1.45
LEAD WIDTH(PLATING)		ь	0.17		0.27
LEAD WIDTH		b1	0.17		0.23
L/F THICKNESS(PLATIN	NG)	С	0.09		0.2
L/F THICKNESS		c1	0.09		0.16
	X	D		9 BSC	
	Υ	E		9 BSC	
BODY SIZE	Х	D1		7 BSC	
BODT SIZE	Υ	E1		7 BSC	
LEAD PITCH		e	0.5 BSC		
		L	0.45	0.6	0.75
FOOTPRINT		L1	1 REF		
		θ	0.	3.5*	7.
		θ1	0.		
		θ2	11'	12*	13*
		θ3	11*	12*	13*
		R1	0.08		
		R2	0.08		0.2
		S	0.2		
PACKAGE EDGE TOLER	aaa		0.2		
LEAD EDGE TOLERANC	bbb		0.2		
COPLANARITY	ccc		80.0		
LEAD OFFSET	ddd		0.08		
MOLD FLATNESS		eee		0.05	

Unit: mm

Figure 3 Package dimension of LQFP48 7x7

Revision 1.05 4 Document No.: PDS-16002

5 Package pin-out

5.1 Pin assignment

5.1.1 QFN48

Figure 4 Pin assignment of QFN48

5.1.2 LQFP48

Figure 5 Pin assignment of LQFP48

5.2 Pin type definition

 Table 1
 Pin type definition

Pin Type	Definition
Α	Analog
D	Digital
1	Input
0	Output
10	Bi-directional
L	Internal weak pull-low (Max. 164K Ω , Typical 96 K Ω , Min. 61K Ω)
Н	Internal weak pull-high (Max. 141K Ω , Typical 93 K Ω , Min. 66K Ω)

5.3 Pin description

5.3.1 Serial ATA interface

Table 2 Description of Serial ATA interface pins

O:	Pin	No.	T	Description
Signal Name	QFN	LQFP	Туре	Description
RXP	30	30	AI	Serial ATA Port RX+ signal. A 10nF CAP should be connected between this pin and SATA connector.
RXN	31	31	AI	Serial ATA Port RX- signal. A 10nF CAP should be connected between this pin and SATA connector.
ТХР	34	34	AO	Serial ATA Port TX+ signal. A 10nF CAP should be connected between this pin and SATA connector.
TXN	33	33	AO	Serial ATA Port TX- signal. A 10nF CAP should be connected between this pin and SATA connector.
NC	35	35	Al	Non Connect Don't Care on the connectivity
AVDDL	32	32	Al	SATA Analog 1.2V Power Supply.
REXT	36	36	AI	External Reference Resistance. A $12K\Omega\pm1\%$ external resistor should be connected to this pin.

5.3.2 USB3.0 interface

Table 3 Description of USB3.0 interface pins

Cinnal Nama	Pin	No.	Toma	Description
Signal Name	QFN	LQFP	Туре	Description
SSRXP	23	23	AI	Super Speed RX+ signal.
SSRXN	22	22	Al	Super Speed RX- signal.
SSTXP	20	20	АО	Super Speed TX+ signal. A 100nF CAP should be connected between this pin and USB connector.
SSTXN	19	19	АО	Super Speed TX- signal. A 100nF CAP should be connected between this pin and USB connector.
NC	16	16	N/A	Non Connect Don't Care on the connectivity
NC	17	17	N/A	Non Connect Don't Care on the connectivity
AVDDL	18,21,24	18,21,24	AI	USB3.0 Analog 1.2V Power Supply.

5.3.3 USB2.0 interface

Table 4 Description of USB2.0 interface pins

Cianal Nama	Pin	No.	Tyroo	Description
Signal Name	QFN	LQFP	Туре	Description
DM	13	13	AIO	USB2.0 Bus D- Signal.
DP	15	15	AIO	USB2.0 Bus D+ Signal.
VBUS	12	12	Al	USB2.0/3.0 Cable Power Input.
AV33O	14	14	AO	USB2.0 Analog 3.3V Output. A capacitance to ground is recommended on this pin. The value should be 1uF. The output voltage range is 3.3V±10%. Note: 1. This PIN provides power less than 100mA @ 3.3V. 2. This pin can afford chip internal power usage only.

5.3.4 Crystal interface

Table 5 Description of crystal interface pins

Cianal Nama	Pin No.		Turns	Basarintian	
Signal Name	QFN	LQFP	Туре	Description	
XIN	28	28	AI	Crystal Input/Oscillator Input. It is connected to a 30MHz crystal or crystal oscillator. The variation range should be ±30ppm. And the input voltage should range in 1.2V±5%.	
хоит	27	27	АО	Crystal Output. It is connected to a crystal. While crystal oscillator is applied, this pin should be reserved as No Connection (NC). The output variation range is around ±30ppm (input dependent). And the output voltage range is 1.2V±5% (input dependent).	
NC	25	25	N/A	Non Connect Don't Care on the connectivity	
AVDDL	29	29	Al	1.2V Analog Power Supply	

5.3.5 Voltage regulation

Table 6 Description of voltage regulation interface pins

Cinnal Nama	Pin	No.	Time	Description			
Signal Name	QFN	LQFP	Туре	Description			
VREG_IN	45	45	AI	Voltage Regulator Power Supply			
GND	43	43	AI	Voltage Regulator Ground			
LXO	44	44	АО	Voltage Regulator Output Switch node. Connect with external power inductor with a value of 4.7uH.			

5.3.6 Digital power and system control interface

 Table 7
 Description of digital power and system control interface pins

6 :	Pin	No.		2
Signal Name	QFN	LQFP	Туре	Description
vcco	7, 39	7, 39	Р	3.3V I/O Power Supply.
VCCK	4, 10, 40	4, 10, 40	Р	1.2V Core Power Supply.
GND	E-PAD, 26	26, 47	Р	Ground.
RST#	38	38	DI	System Global Reset Input. Schmitt trigger input pin. Active-low to reset the entire chip. An external RC should be connected to this pin.
ТМЕ	1	1	DI	MP Test Mode Enable. Schmitt trigger input pin. This pin is reserved for IC mass production testing. Keep this pin to logic "0" in normal operation.
MODE[1:0]	42, 46	42, 46	DIL	Chip Operation Mode Selection. Value MODE[1:0] = 2'b01 is recommended in normal operation. For the others, they are using in IC mass production testing.
GPIO[0]	2	2	DIOH	Serial Flash (SO) After power on status detecting, this pin becomes Data Output of serial flash. This pin is by default set to input.
GPIO[1]	3	3	DIOH	Serial Flash (SCK) This pin is Serial Flash Data Clock (SCK) of serial flash. This pin is by default set to output.
GPIO[2]	5	5	DIOH	Serial Flash(SI) Serial Flash Data Input (SI) of serial flash. This pin is by default set to output.
GPIO[3]	6	6	DIOH	Serial Flash(CE0#) This pin functions as Chip Enable (CE0#) of Serial Flash
GPIO[4]	8	8	DIOH	GPIO[4] Can be configured by customer firmware.
GPIO[5]	9	9	DIOH	GPIO[5] Can be configured by customer firmware.
GPIO[6]	11	11	DIOH	GPIO[6] Can be configured by customer firmware.
GPIO[7]	41	41	DIOH	GPIO[7] Can be configured by customer firmware.
UAO/GPIO[8]	37	37	DIOH	8051 UART interface/GPIO[8] Can be configured by customer firmware.
UAI/GPIO[9]	48	48	DIOH	8051 UART interface/GPIO[9] Can be configured by customer firmware.
NC	47	-	N/A	Non Connect Don't Care on the connectivity or connect to ground

LED indicator

By default, GPIO[4] is used as HDD access indicator. If user has different application for LED function, please contact JMicron's AE before PCB layout.

GPIO initial value

All GPIOs are set as input mode and their internal pull-up function is enabled during reset.

After reset, the firmware code programs all of GPIOs as input mode, and then the initial values of GPIOs are read and stored in the system RAM for future usage.

6 Clock and reset

6.1 Crystal input

Table 8 Crystal input

Parameter	Symbol	Min	Typical	Max	Unit
Crystal start up time vs. AVDDL	T _{Crystal}			150	mS
Crystal frequency	f _{clk}		30		MHz
Long term stability (crystal only)	$\Delta \mathbf{f}_{MAX_Crystal}$	-30		30	ppm
Long term stability (on board)	$\Delta \mathbf{f}_{MAX_OnBoard}$	-150		150	ppm
Equivalent series resistance	ESR			55	ОНМ
Drive level	DL		50		uW

6.2 Reset input

All functions will be initialized by reset except the Analog Power-On Reset Circuit depending on the Power on-off.

The reset input pin is the Schmitt trigger input pin. VT+ Schmitt Trigger Low to High Threshold Point is 1.31V and VT-Schmitt Trigger High to Low Threshold Point is 0.96V.

7 Electrical characteristics

7.1 Absolute maximum rating

Table 9 Absolute maximum rating

Parameter	Symbol	Min	Max	Unit
Digital 3.3V power supply	VCCO _(ABS)	-0.3	3.6	V
Digital 1.2V power supply	VCCK _(ABS)	-0.3	1.32	V
Analog 1.2V power supply	AVDDL _(ABS)	-0.3	1.32	V
Digital I/O input voltage	V _{I(D)}	-0.3	3.6	V
USB VBUS power supply	VBUS	4.0	5.5	V
Storage Temperature	T _{STORAGE}	-40	150	°C

7.2 Recommended power supply operation conditions

Table 10 Recommended power supply operation conditions

Parameter	Symbol	Min	Typical	Max	Unit
Digital 3.3V power supply	VCCO	3.0	3.3	3.6	V
Digital 1.2V power supply	VCCK	1.08	1.2	1.32	V
Analog 1.2V power supply	AVDDL	1.08	1.2	1.32	V
Digital I/O input voltage	V _{I(D)}	0	3.3	3.6	V
Ambient operation temperature	T _A	0		70	°C
Case operation temperature	T _C	0		90	°C
Junction Temperature	TJ			125	°C

7.3 Recommended external clock source conditions

 Table 11
 Recommended external clock source conditions

Parameter	Symbol	Min	Typical	Max	Unit
External reference clock			30		MHz
Clock Duty Cycle		45	50	55	%

Revision 1.05 12 Document No.: PDS-16002

7.4 Power supply DC characteristics

7.4.1 Power on (no USB connected)

 Table 12
 Power supply DC characteristics – Power on (no USB connected)

USB2.0 PHY, USB3.0 PHY and SATA PHY are OFF.

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V power supply	VCCO	Operate @3.3V	0.01	0.1	0.3	mA
Digital 1.2V power supply	VCCK	Operate @1.2V	22	26.5	35	mA
Analog 1.2V power supply	AVDDL	Operate @1.2V	20	22	30	mA

7.4.2 USB2.0 to SATA mode

 Table 13
 Power supply DC characteristics – USB2.0 to SATA mode

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V power supply	VCCO	Operate @3.3V	0.1	0.2	0.5	mA
Digital 1.2V power supply	VCCK	Operate @1.2V	50	55	65	mA
Analog 1.2V power supply	AVDDL	Operate @1.2V	110	117	130	mA

7.4.3 USB3.0 to SATA mode

Table 14 Power supply DC characteristics – USB3.0 to SATA mode @ U0 state

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V power supply	VCCO	Operate @3.3V	0.1	0.2	0.5	mA
Digital 1.2V power supply	VCCK	Operate @1.2V	75	82	90	mA
Analog 1.2V power supply	AVDDL	Operate @1.2V	160	175	185	mA

Table 15 Power supply DC characteristics – USB3.0 to SATA mode @ U3 state (suspend @S4)

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V power supply	VCCO	Operate @3.3V	0.1	0.2	0.5	mA
Digital 1.2V power supply	VCCK	Operate @1.2V	1	2	4	mA
Analog 1.2V power supply	AVDDL	Operate @1.2V	2	3	6	mA

Table 16 Power supply DC characteristics – USB3.0 to SATA mode @ U1/U2 state

No pending commands, SATA OFF, USB2 OFF.

Parameter	Symbol	Condition	Min	Typical	Max	Unit
Digital 3.3V power supply	VCCO	Operate @3.3V	0.1	0.2	0.3	mA
Digital 1.2V power supply	VCCK	Operate @1.2V	19	24	29	mA
Analog 1.2V power supply	AVDDL	Operate @1.2V	15	20	25	mA

7.5 I/O DC characteristics

Table 17 I/O DC characteristics

Parameter	Symbol	Min	Typical	Max	Unit
Input low voltage	V _{IL}			0.7	V
Input high voltage	V _{IH}	1.5			V
Output low voltage	V _{OL}			0.3	V
Output high voltage	V _{OH}	1.9			V
Output Current	lo		10	12	mA

7.6 Switching power efficiency (VREG_IN)

Efficiency = $Vout \times Iout/Vin \times Iin$, Vin = 5V, Vout = 1.2V

Figure 6 Switching power efficiency

7.7 Internal linear regulator

Table 18 Internal liner regulator

Parameter	Symbol	Min	Typical	Max	Unit
Input voltage range	V _{IN_LINEAR}	4	5	5.5	V
Output voltage range	V _{OUT_LINEAR}	3.10	3.3	3.45	V
Max output current	I _{MAX}	-	-	100	mA

Revision 1.05 Document No.: PDS-16002

7.8 Power ripple

Table 19 Power ripple

Parameter	Symbol	Condition	Min	Typical	Max	Unit
5V Power Supply ¹	P _{5V}	Operate @ USB3.0	-	80	150	mV
3.3V Power Supply ²	P _{3V3}	Operate @ USB3.0	-	80	150	mV
1.2V Power Supply ³	P _{1V2}	Operate @ USB3.0	1	80	100	mV

Notes: 1. Test point near Vbus capacitor.

2. Test point at LDO output capacitor.

3. Test point at AVDDL bypass capacitor.

7.9 Power-on sequence

The power-on sequence rules are defined in this section. Designers should follow all the rules for external power designs.

T_{5V}: Rise time for 5V power rail from 10% to 90%

T1: Rise time for 3V3 power rail from 10% to 90%

T2: Rise time for 1V2 power rail from 10% to 90%

T3: Time interval between 3.3V power and 1.2V power

T4: Rise time for RST# signal from 0.0V to 2.2V

T_{Crystal}: Time interval between 1.2V and 90% clock swing

Note: Clock must meet 30MHz +/-30ppm in the mean time.

Figure 7 Illustration of power-on sequence

The recommended power sequence and timing requirements are listed as below.

Table 20 Recommended power sequence and timing requirements

Time	Minimum	Maximum
T _{5V}	-	20 ms
T1	0.0 ms	10 ms
T2	0.0 ms	10 ms
Т3	-10 ms	10 ms
T4	100 ms	500 ms
Tcrystal	-	150.0 ms

The RESET timing constrain is based on the external RC reset circuits. In order to control the charge and discharge time for RC circuits, minimum and maximum requirements are listed. If designers apply timing control chip to control the reset signal, the only requirement will be minimum value. In other words, the maximum value can be skipped without problems.

8 Internal switch regulator

■ Input voltage range: 2.25V ~ 5.50V

Output voltage range: 1.05V ~ 1.32V (programmable)

■ Output voltage accuracy : I_{LOAD}= 700 mA, V_{OUT}±10%

■ Max. output current : 700 mA

Over-current protection (OCP): Yes (1,500mA)

■ Input capacitor: 10uF

■ Output capacitor: 10uF ~ 20uF

Output inductor: 4.7uHStart-up time : < 500usThermal shutdown: No

Faster shutdown: No

9 Product naming rule and ordering information

9.1 Format of the part number

The part number covers the information of the provider, product category, device number, package type, material type, product grade (based on operating temperature), mask ROM version and device version. The format of the part number is illustrated in **Figure 8** below.

Figure 8 Format of the part number

9.2 Definition of the part number

Table 21 defines each section of the part number illustrated in Figure 8.

Section Length Designation Code(s) **Definition** а 2 digits Brand name JM **JM**icron 1 digit S SuperSpeed USB h Product category The serial number assigned randomly to form the device name "JMS578" in Device number 578 3 digits С conjunction with brand name and product category. L = LQFPL d 1 digit Package type Q Q = QFNG = RoHS compliant Green product with JEDEC MSL 3 and commercial grade operating temperature G ranging from 0 to 70°C. 1 digit Material & grade е U = "G" product encapsulated using the Ultra low alpha particle mold compound required by the specific customer. f 1 digit Internal bonding type Α Wire bonding option A 2 digit Version of mask ROM Α1 Version A1 g h 1 digit Version of the IC Α Version A

 Table 21
 Explanation of the part number

