Understanding the Difficulty of Training Transformers

kimcando94@gmail.com

Overall

- Not about unbalanced gradients(e.g, gradient vanishing),
- But amplification of small parameter updates(perturbations) due to heavy dependency residual branch
 - Leading to disturbance in model output
 - If with light dependency, lower model potential
- Propose adaptive model initialization

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension

```
i. encoder와 decoder의 hidden size => 12
```

```
ii. batch size => 8,000
```

- iii. train steps => 500,000
- iv. tokenizing method => BPE
- v. Text Infilling + Sentence Shuffling => masking 30% of token, permute all sentences
- vi. train step의 마지막 10% => dropout off
- vii. pre-training data => 160Gb (news + books + stories + web text)

Content Planning for Neural Story Generation with Aristotelian Rescoring

A.4 Hyper-Parameters for Mixture Weight Tuning

Mixture weights are tuned with a held out validation set of 10,000 samples. The models train for 3 epochs, but all converge in 1 epoch, which takes 24 hours on 1 RTX 2080 GPU (11GB). We use SGD at each step, with learning rates set to 0.001.

Spelling Error Correction with Soft-Masked BERT

The pre-trained BERT model utilized in the experiments is the one provided at https://github.com/huggingface/transformers. In fine-tuning of BERT, we kept the default hyper-parameters and only fine-tuned the parameters using Adam. In order to reduce the impact of training tricks, we did not use the dynamic learning rate strategy and maintained a learning rate $2e^{-5}$ in fine-tuning. The size of hidden unit in Bi-GRU is 256 and all models use a batch size of 320.

RoBERTa: A Robustly Optimized BERT Pretraining Approach

2.4 Optimization

BERT is optimized with Adam (Kingma and Ba, 2015) using the following parameters: $\beta_1 = 0.9$, $\beta_2 = 0.999$, $\epsilon = 1\text{e-}6$ and L_2 weight decay of 0.01. The learning rate is warmed up over the first 10,000 steps to a peak value of 1\text{e-}4, and then linearly decayed. BERT trains with a dropout of 0.1 on all layers and attention weights, and a GELU activation function (Hendrycks and Gimpel, 2016). Models are pretrained for S = 1,000,000 updates, with minibatches containing B = 256 sequences of maximum length T = 512 tokens.

Text Summarization with Pretrained Encoders

We use two Adam optimizers with $\beta_1 = 0.9$ and $\beta_2 = 0.999$ for the encoder and the decoder, respectively, each with different warmup-steps and learning rates:

$$lr_{\mathcal{E}} = \tilde{lr}_{\mathcal{E}} \cdot \min(step^{-0.5}, step \cdot warmup_{\mathcal{E}}^{-1.5})$$
 (6)

$$lr_{\mathcal{D}} = \tilde{lr}_{\mathcal{D}} \cdot \min(step^{-0.5}, step \cdot warmup_{\mathcal{D}}^{-1.5})$$
 (7)

where $\tilde{lr}_{\mathcal{E}}=2e^{-3}$, and warmup_{$\mathcal{E}}=20,000$ for the encoder and $\tilde{lr}_{\mathcal{D}}=0.1$, and warmup_{\mathcal{D}} = 10,000 for the decoder. This is based on the assumption that the pretrained encoder should be fine-tuned with a smaller learning rate and smoother decay (so that the encoder can be trained with more accurate gradients when the decoder is becoming stable).}

The loss of the model is the binary classification entropy of prediction \hat{y}_i against gold label y_i . Inter-sentence Transformer layers are jointly finetuned with BERTSUM. We use the Adam optimizer with $\beta_1=0.9$, and $\beta_2=0.999$). Our learning rate schedule follows (Vaswani et al., 2017) with warming-up (warmup = 10,000):

$$lr = 2e^{-3} \cdot \min \left(\text{step}^{-0.5}, \text{step} \cdot \text{warmup}^{-1.5} \right)$$

Pre LN, Post LN

Figure 2: The Architecture and notations of Pre-LN Transformers (Left) and Post-LN Transformers (Right).

Pre LN , Post LN

Pre-LN

Post-LN

Pre-LN Post-LN Notation Table $\mathbf{x}^{(pd)}$ $\Box^{(pe)}$: Pre-LN encoder $Var[\cdot]$: dimension-wise variance Layer Norm $\mathbf{x}^{(od)}$ $\square^{(pd)}$: Pre-LN decoder $\hat{\square}$: normalized outputs, i.e., $\operatorname{Var}[\hat{\square}] = 1$ $\square^{(oe)}$: Post-LN encoder **a**: residual output N: layer # H: head # $\mathbf{x}_{3i}^{(od)}$ $\Box^{(od)}$: Post-LN decoder b: intermediate output D: hidden # Layer Norm Add $\mathsf{b}_{3i}^{(od)}$ x: sub-layers outputs (i.e., FFN, Self-Attention and Encoder-Attention) **FFN** Add $\mathbf{a}_{3i}^{(od)}$ $\mathbf{x}^{(pe)}$ Layer Norm **FFN** Layer Norm $\mathbf{x}^{(oe)}$ - $\mathbf{x}_{3i-1}^{(od)}$ $\mathbf{v}^{(pd)}$ $\mathbf{x}_{2i}^{(oe)}$ $\mathbf{x}_{2i}^{(pe)}$ Layer Norm Add attention Laver Norm Add $\mathbf{b}_{2i}^{(oe)}$ $\mathbf{b}_{3i-1}^{(od)}$ Attention Add **FFN** Add $\mathbf{a}_{2i}^{(oe)}$ $\mathbf{a}_{3i-1}^{(od)}$ Layer Norm Layer Norm **FFN** Attention $\mathbf{x}_{3i-2}^{(pd)}$ $\mathbf{x}_{2i-1}^{(oe)}$ $\cdot \mathbf{x}_{3i-2}^{(od)}$ Layer Norm Layer Norm Add $\mathbf{b}_{2i-1}^{(oe)}$ $\mathbf{b}_{3i-2}^{(od)}$ Attention attention Add Add Residual bloc $\mathbf{a}_{2i-1}^{(oe)}$ (od) ${\bf a}_{3i-2}^{(3a)}$ Layer Norm Attention Attention $\mathbf{x}_{3i-3}^{(pd)}$ $\mathbf{x}_{3i-3}^{(od)}$ $\mathbf{x}_{2i-2}^{(oe)}$ $\mathbf{x}_0^{(od)}$ $\mathbf{x}_0^{(oe)}$ Decoder Encoder Encoder Decoder

Figure 2: The Architecture and notations of Pre-LN Transformers (Left) and Post-LN Transformers (Right).

Pre LN , Post LN

Layer Norm

Add

Attention

Layer Norm

Decoder Encoder

Layer Norm

Add

Attention

Layer Norm

 $\mathbf{x}_{3i-2}^{(pd)}$

 $\mathbf{x}_{3i-3}^{(pd)}$

Pre-LN

Post-LN

 $\mathbf{a}_{3i-1}^{(od)}$

 $\cdot \mathbf{x}_{3i-2}^{(od)}$

 $\mathbf{a}_{3i-2}^{(od)}$

Attention

Layer Norm

Encoder Decoder

Pre-LN Post-LN Notation Table $\mathbf{x}^{(pd)}$ $\Box^{(pe)}$: Pre-LN encoder $Var[\cdot]$: dimension-wise variance Layer Norm $\mathbf{x}^{(od)}$ $\square^{(pd)}$: Pre-LN decoder $\hat{\square}$: normalized outputs, i.e., $\operatorname{Var}[\hat{\square}] = 1$ $\square^{(oe)}$: Post-LN encoder **a**: residual output N: layer # H: head # $\mathbf{x}_{3i}^{(od)}$ $\Box^{(od)}$: Post-LN decoder b: intermediate output D: hidden # Layer Norm Add $\mathsf{b}_{3i}^{(od)}$ x: sub-layers outputs (i.e., FFN, Self-Attention and Encoder-Attention) **FFN** Add $\mathbf{a}_{3i}^{(od)}$ $\mathbf{x}^{(pe)}$ Layer Norm **FFN** Layer Norm $\mathbf{x}^{(oe)}$ - $\mathbf{x}_{3i-1}^{(od)}$ $\mathbf{v}^{(pd)}$ $\mathbf{x}_{2i}^{(oe)}$ $\mathbf{x}_{2i}^{(pe)}$ Layer Norm Add Laver Norm attention Add $\mathbf{b}_{3i-1}^{(od)}$ Attention Add **FFN** Add

(oe

FFN

Layer Norm

Add

Attention

 $\mathbf{x}_0^{(oe)}$

Figure 2: The Architecture and notations of Pre-LN Transformers (Left) and Post-LN Transformers (Right).

attention

 $\mathbf{x}_{2i-2}^{(oe)}$

 $\boldsymbol{\cdot} \mathbf{x}_{2i-1}^{(pe)}$

Layer Norm

각 input feature 의 평균과 분산

18th layers Transformer

$$\frac{||\Delta \mathbf{x}_i^{(\cdot)}||_2}{\max_j ||\Delta \mathbf{x}_j^{(\cdot)}||_2}$$

Encoder	Decoder	Gradient	Training	
Post-LN	Post-LN	Varnishing	Diverged	
Post-LN	Pre-LN	Varnishing	Diverged	
Pre-LN	Pre-LN	Varnishing	Converged	

Table 1: Changing decoders from Post-LN to Pre-LN fixes gradient vanishing, but does not stabilize model training successfully. Encoder/Decoder have 18 layers.

Pre LN decoder

Post LN encoder

Relative Gradient Norm
$$\frac{|\nabla w_i^t|}{\max_j |\nabla w_j^t|}$$
 Relative Parameter $\frac{|w_i^{t+1} - w_i^t|}{\max_j |w_j^{t+1} - w_j^t|}$

업데이트되는 양의 range는 적음

Gradient 의 range 범위는 크나

Figure 5: Histogram of relative norm of gradient and $|W_{i+1} - W_i|$ where W_i is the checkpoint saved after training for i epochs.

Gradient가 parameter 마다 unbalance 하나, adaptive optimizer 가 제 역할을 하고 있다!

- → SGD가 작동 어려운 이유!
- → 불안정한 학습이 unbalanced gradient만의 문제가 아니지 않을까

Unbalanced gradients are largely handled by

adaptive optimizers.

Relative Gradient $\frac{|\nabla w_i^t|}{\text{Norm}}$ Relative Parameter $\frac{|w_i^{t+1} - w_i^t|}{\text{max}|\nabla w_j^t|}$ Update Norm $\frac{|w_i^{t+1} - w_i^t|}{\text{max}|w_j^{t+1} - w_j^t|}$

As unbalanced gradients are largely handled by adaptive optimizers, it necessitates the use of adaptive optimizers.

Instability from amplification effect

Layer dependence

1. Layer norm --> Pre LN은 input을, post LN은 output을 정규화

Instability from amplification effect

Layer dependence

Pre-LN residual block의 아웃풋== residual block안의 attention

Encode

- 새로운 residual의 input attention, FFN 아웃풋 🐾
- $Var[a_{2i-2}^0]$ 에 따라 x_{2i-1} 가 영향 받는 정도가 달라짐
- Post LN 은 새로운 레이어의 인풋으로 들어가기전에 2번 의 LN을 거치게 됨(레이어가 쌓이면 post LN은 새로운 레이어에 들어가기전에 몇번의 LN을 거치게됨

Instability from amplification effect >

$\beta_{i,j}$ integrates LNs and captures layer dependency

Refer $\beta_{i,i}$ as the dependency on its own residual branch.

standard deviation of jth output

For example,
$$\beta_{i,j} = \frac{\boxed{\operatorname{Std}[a_i]}}{\boxed{\operatorname{Std}[\sum_{k \le i} a_k]}}$$
 for Pre-LN

standard deviation of the sum of the first i outputs.

→ Results in fluctuation on outputs

Under some conditions, we have: $Var[\mathcal{F}(\mathbf{x_0}, W) - \mathcal{F}(\mathbf{x_0}, W + \delta)] \approx \sum_{i=1}^{N} \beta_{i,i}^2 C$

Model output change.

Dependency on its own residual branch (the weight for ith residual outputs in ith layer outputs).

Corollary 1. For Pre-LN, $Var[\mathcal{F}(\mathbf{x_0}, W) - \mathcal{F}(\mathbf{x_0}, W + \delta)] = O(\log N)$ where N is layer #.

Corollary 2. For Post-LN, $Var[\mathcal{F}(\mathbf{x_0}, W) - \mathcal{F}(\mathbf{x_0}, W + \delta)] = O(N)$ where N is layer #.

→ Results in fluctuation on outputs

Figure 4: Encoder output changes for parameter changes, i.e., $|\mathcal{F}(\mathbf{x}_0, W) - \mathcal{F}(\mathbf{x}_0, W^*)|_2^2$ where $W^* - W$ is random perturbations (left) or gradient updates (right). Intuitively, very large $|\mathcal{F} - \mathcal{F}^*|$ indicates the training to be ill-conditioned.

Adaptive model initialization

$$\mathbf{x}_i = f_{\text{LN}}(\mathbf{b_i})$$
, where $\mathbf{b_i} = \mathbf{x_{i-1}} \cdot \boldsymbol{\omega_i} + f_i(\mathbf{x_{i-1}})$

Post LN 이 불안정해도 좋은 성능을 가질 수 있는 potential이 있기 때문에, Post LN을 쓰더라도 output의 fluctuation을 줄일 수 있는 방안 제안

- 1. Profiling : w_i 는 1로 초기화하고 파라미터 업데이트 없이 일부 inference 시켜서 $var[f_i(x_i-1)]$ 을 얻음
- 2. initialization : w_i 를 $\sqrt{\sum_{j < i} var[f_i(x_i 1)]}$ 로 초기화하고 전체 파라미터를 profiling 했을 때로 돌림 \rightarrow 특 정 parameter들을 rescaling 해줄 수 있는 것으로 볼 수 있음

Initialization. Set $\omega_i = \sqrt{\sum_{j < i} \text{Var}[f_j(\mathbf{x}_{j-1})]}$ and initialize all other parameters with the same method used in the *Profiling* phrase.

In the early stage, Admin sets $\beta_{i,i}^2$ to approximately $\frac{1}{i}$ and ensures an $O(\log N)$ output change, thus stabilizing training. Model training would become more stable in the late stage (the constant C in Theorem 2 is related to parameter gradients), and each layer has the flexibility to adjust ω and depends more on its residual branch to calculate the layer outputs. After training finishes, Admin can be reparameterized as the conventional Post-LN structure (i.e., removing ω). More implementation details are elaborated in Appendix C.

With Equation 7, we have

$$\operatorname{Var}[\widehat{\mathbf{x}}_{i} - \widehat{\mathbf{x}}_{i}^{*}] = \beta_{i,i}^{2} \operatorname{Var}[\widehat{\mathbf{a}}_{i} - \widehat{\mathbf{a}}_{i}^{*}] + (1 - \beta_{i,i}^{2}) \operatorname{Var}[\widehat{\mathbf{x}}_{i} - \widehat{\mathbf{x}}_{i}^{*}]$$

$$\approx \beta_{i,i}^{2} (\operatorname{Var}[\widehat{\mathbf{x}}_{i-1} - \widehat{\mathbf{x}}_{i-1}^{*}] + C) + (1 - \beta_{i,i}^{2}) \operatorname{Var}[\widehat{\mathbf{x}}_{i} - \widehat{\mathbf{x}}_{i}^{*}]$$

$$= \operatorname{Var}[\widehat{\mathbf{x}}_{i} - \widehat{\mathbf{x}}_{i}^{*}] + \beta_{i,i}^{2} C$$

Therefore, we have $Var[\mathcal{F}(\mathbf{x}_0, W) - \mathcal{F}(\mathbf{x}_0, W^*)] \approx \sum_{i=1}^N \beta_{i,i}^2 C$.

Figure 4: Encoder output changes for parameter changes, i.e., $|\mathcal{F}(\mathbf{x}_0, W) - \mathcal{F}(\mathbf{x}_0, W^*)|_2^2$ where $W^* - W$ is random perturbations (left) or gradient updates (right). Intuitively, very large $|\mathcal{F} - \mathcal{F}^*|$ indicates the training to be ill-conditioned.

Dataset	IWSLT'14 De-En WMT'14 En-Fr		WMT'14 En-De			
Enc #-Dec #	6L-6L (small)	6L-6L	60L-12L	6L-6L	12L-12L	18L-18L
Post-LN	35.64±0.23	41.29	failed	27.80	failed	failed
Pre-LN	35.50±0.04	40.74	43.10	27.27	28.26	28.38
Admin	35.67±0.15	41.47	43.80	27.90	28.58	29.03