

AS431

General Description

The AS431 series ICs are three-terminal adjustable shunt regulators with guaranteed thermal stability over a full operation range. These ICs feature sharp turn-on characteristics, low temperature coefficient and low output impedance, which make them ideal substitutes for Zener diodes in applications such as switching power supply, charger and other adjustable regulators.

The output voltage of these ICs can be set to any value between V_{REF} (2.5V) and the maximum cathode voltage (36V).

The AS431 precision reference is offered in two bandgap tolerance: 0.4% and 0.8%.

These ICs are available in 4 Packages: TO-92, SOT-23-3, SOT-23-5 and SOT-89.

Features

Programmable Precise Output Voltage from 2.5V to 36V

Very Accurate Reference Voltage: 0.15% Typical

High Stability under Capacitive Load

Low Temperature Deviation: 4.5mV Typical

Low Equivalent Full-range Temperature Coeffi-

cient with 20PPM/°C Typical

Low Dynamic Output Resistance: 0.15Ω Typical Sink Current Capacity from 1mA to 100 mA

Low Output Noise

Wide Operating Range of -40 to 125°C

Applications

Charger Voltage Adapter Switching Power Supply Graphic Card Precision Voltage Reference

Figure 1. Package Types of AS431

AS431

Pin Configuration

Figure 2. Pin Configuration of AS431 (Top View)

Functional Block Diagram

Figure 3. Functional Block Diagram of AS431

Nov. 2005 Rev. 1. 1

AS431

Ordering Information

Package	Temperature Range	Voltage Tolerance	Part Number		Mar	Packing	
			Tin Lead	Lead Free	Tin Lead	Lead Free	Type
SOT-23-3	-40 to 125°C	0.4%		AS431ANTR-E1		EB5	Tape & Reel
		0.8%		AS431BNTR-E1		EB6	Tape & Reel
SOT-23-5	-40 to 125°C	0.4%		AS431AKTR-E1		Е6Н	Tape & Reel
		0.8%		AS431BKTR-E1		E6I	Tape & Reel
TO-92	-40 to 125°C	0.4%		AS431AZ-E1		AS431AZ-E1	Bulk
		0.4%		AS431AZTR-E1		AS431AZ-E1	Ammo
		0.8%		AS431BZ-E1		AS431BZ-E1	Bulk
		0.8%		AS431BZTR-E1		AS431BZ-E1	Ammo
SOT-89	-40 to 125°C	0.4%		AS431ARTR-E1		E43G	Tape & Reel
		0.8%		AS431BRTR-E1		E43H	Tape & Reel

BCD Semiconductor's Pb-free products, as designated with "E1" suffix in the part number, are RoHS compliant.

Advanced Analog Circuits Data Sheet

ADJUSTABLE PRECISION SHUNT REGULATORS

AS431

Absolute Maximum Ratings (Note 1)

Parameter	Symbol	Value	Unit	
Cathode Voltage	V _{KA}	40	V	
Cathode Current Range (Continuous)	I_{KA}	-100 to 150	mA	
Reference Input Current Range	I _{REF}	10	mA	
Power Dissination	P_{D}	Z, R Package: 770	mW	
Power Dissipation	ı D	N, K Package: 370		
Junction Temperature	T_{J}	160	°C	
Storage Temperature Range	T_{STG}	-65 to 150	°C	
		N Package: 330		
Package Thermal Impedance	$\theta_{ m JA}$	Z Package: 150	°C/W	
rackage Thermai impedance	OJA	R Package: 50		
		K Package: 250		
ESD (Human Body Model)		4000	V	

Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Cathode Voltage	V _{KA}	V _{REF}	36	V
Cathode Current	I_{KA}	1.0	100	mA
Operating Ambient Temperature Range		-40	125	°C

AS431

Electrical Characteristics for AS431

Operating Conditions: $T_A=25^{\circ}C$, unless otherwise specified.

Parameter		Test	Crombal	Conditions		AS431			TI\$4
rarameter	Circuit	Symbol	Min			Тур	Max	Unit	
Reference Voltage	0.4%	- 4	V _{REF}	V _{KA} =V _{REF,} I _{KA} =10mA		2.490	2.500	2.510	V
Reference voltage	0.8%					2.480	2.500	2.520	
Deviation of Reference Voltage Over-temperature		4	ΔV_{REF}	V _{KA} =V _{REF} I _{KA} =10mA	0 to 70°C		4.5	8	mV
					-40 to 85°C		4.5	10	
Ratio of Change in Reference Voltage to the Change in Cathode Voltage		5	$\frac{\Delta V_{REF}}{\Delta V_{KA}}$	I _{KA} =10mA	$\Delta V_{KA} =$ 10V to V_{REF}		-1.0	-2.7	mV/V
					$\Delta V_{KA} =$ 36V to 10V		-0.5	-2.0	
Reference Current		5	I _{REF}	I_{KA} =10mA, R1=10KΩ, R2=∞			0.7	4	μΑ
Deviation of Reference Current Over Full Temperature Range		5	ΔI_{REF}	I_{KA} =10mA, R1=10KΩ R2=∞, T_{A} =-40 to 85°C			0.4	1.2	μΑ
Minimum Cathode Current for Regulation		4	I _{KA} (Min)	$V_{KA} = V_{REF}$			0.4	1.0	mA
Off-state Cathode Current		6	I _{KA} (Off)	V _{KA} =36V, V _{REF} =0			0.05	1.0	μΑ
Dynamic Impedance		4	Z_{KA}	$V_{KA}=V_{REF}$, $I_{KA}=1$ to 100mA, $f \le 1.0$ KHz			0.15	0.5	Ω

AS431

Electrical Characteristics (Continued)

Figure 4. Test Circuit 4 for $V_{KA}=V_{REF}$

Figure 5. Test Circuit 5 for V_{KA} > V_{REF}

Figure 6. Test Circuit 6 for I_{OFF}

AS431

Typical Performance Characteristics

Figure 7. Reference Voltage vs. Ambient Temperature

Figure 8. Reference Current vs. Ambient Temperature

Figure 9. Cathode Current vs. Cathode Voltage

Figure 10. Cathode Current vs. Cathode Voltage

AS431

Typical Performance Characteristics (Continued)

Figure 11. Off-state Cathode Current vs.

Ambient Temperature

Figure 12. Ratio of Delta Reference Voltage to the Ratio of Delta Cathode Voltage

Figure 13. Small Signal Voltage Gain vs. Frequency

Nov. 2005 Rev. 1. 1

AS431

Typical Performance Characteristics (Continued)

Figure 14. Reference Impedance vs. Frequency

Figure 15. Stability Boundary Conditions vs. Load Capacitance

AS431

Typical Performance Characteristics (Continued)

Figure 16. Pulse Response of Input and Output Voltage

AS431

Typical Application

Figure 17. Shunt Regulator

Figure 18. High Current Shunt Regulator

Figure 19. Current Source or Current Limit

AS431

Typical Application (Continued)

Figure 20. Precision 5V 1A Regulator

Figure 21. PWM Converter with Reference

AS431

Mechanical Dimensions

TO-92 Unit: mm (inch)

AS431

Mechanical Dimensions (Continued)

SOT-23-3 Unit: mm(inch)

AS431

Mechanical Dimensions (Continued)

SOT-23-5 Unit: mm(inch)

AS431

Mechanical Dimensions (Continued)

SOT-89 Unit: mm(inch)

http://www.bcdsemi.com

IMPORTANT NOTICE

BCD Semiconductor Manufacturing Limited reserves the right to make changes without further notice to any products or specifications herein. BCD Semiconductor Manufacturing Limited does not assume any responsibility for use of any its products for any particular purpose, nor does BCD Semiconductor Manufacturing Limited assume any liability arising out of the application or use of any its products or circuits. BCD Semiconductor Manufacturing Limited does not convey any license under its patent rights or other rights nor the rights of others.

MAIN SITE

BCD Semiconductor Manufacturing Limited - Wafer Fab Shanghai SIM-BCD Semiconductor Manufacturing Limited

800, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6485 1491, Fax: +86-21-5450 0008

REGIONAL SALES OFFICE

Shenzhen Office

Shanghai SIM-BCD Semiconductor Manufacturing Co., Ltd. Shenzhen Office Advanced Analog Circuits (Shanghai) Corporation Shenzhen Office 27B, Tower C, 2070, Middle Shen Nan Road, Shenzhen 518031, China Tel: +86-755-8368 3987, Fax: +86-755-8368 3166

BCD Semiconductor Manufacturing Limited

- IC Design Group Advanced Analog Circuits (Shanghai) Corporation 8F, Zone B, 900, Yi Shan Road, Shanghai 200233, China Tel: +86-21-6495 9539, Fax: +86-21-6485 9673

Taiwan Office

BCD Semiconductor (Taiwan) Company Limited 4F, 298-1, Rui Guang Road, Nei-Hu District, Taipei,

Tel: +886-2-2656 2808, Fax: +886-2-2656 2806

USA Office **BCD Semiconductor Corporation** 3170 De La Cruz Blvd., Suite 105, Santa Clara, CA 95054-2411, U.S.A Tel: +1-408-988 6388, Fax: +1-408-988 6386