"Heavens Light is Our Guide"

Rajshahi University of Engineering and Technology

Course code: 1202

Course title: Circuits & Systems – II Sessional

Report Number: 02

Experiment Name: Study of the relation between phase current and line current in a delta connected 3 – ϕ balanced system.

Date of Submission: 10 September 2024

By

Md Ahnaf Abid Fahim

Roll: 2210022

Registration No: 1076 / 2022 – 2023

Department of Electrical & Computer Engineering, RUET

Submitted to

Oishi Jyoti

Assistant Professor

Department of ECE, RUET

Experiment 2

- **2.1** Name of the Experiment: Study of the relation between phase current and line current in a delta connected $3 - \phi$ balanced system.
- **2.2 Theory:** In a balanced $3-\varphi$ Y Δ system, phase currents are: $I_{ab}=\frac{v_{ab}}{z_{\Delta}},~I_{bc}=\frac{v_{bc}}{z_{\Delta}}$ and $I_{ca}=\frac{v_{ca}}{z_{\Delta}}$

$$I_{ab} = \frac{V_{ab}}{Z_{\Delta}}$$
, $I_{bc} = \frac{V_{bc}}{Z_{\Delta}}$ and $I_{ca} = \frac{V_{ca}}{Z_{\Delta}}$

The line currents can be obtained from applying KCL. So, the line currents will be:

$$I_A = I_{ab} - I_{ca}\,,\, I_B = I_{bc} - I_{ab}$$
 and $I_C = I_{ca} - I_{bc}$

Since $I_{CA} = I_{AB} \angle -240^{\circ}$,

$$I_A = I_{ab} - I_{ca} = I_{ab} (1 - 1 \angle -240^\circ) = I_{ab} (1 + 0.5 - j0.866) = I_{ab} \sqrt{3} \angle 30^\circ$$

Now, if we consider the magnitude only, we get the relation between phase and line current as,

$$I_P = \frac{I_L}{\sqrt{3}}... ... (1)$$

2.3 Required Apparatus:

- 1. Source
- 2. VARIAC
- 3. Voltmeter
- 4. Ammeter
- 5. Resistor
- 6. Multimeter
- 7. Connecting wires

2.4 Circuit Diagram:

Fig: A balanced $3 - \varphi \ Y - \Delta$ system

2.5 Calculation:

1. Reading 1:

Line current, $I_L = 2.25 \text{ A}$

Measured phase current, $I_{P(m)} = 1.26 \text{ A}$

Calculated phase current, $I_{P(calc)} = 1.29 \text{ A}$

Error =
$$\frac{|I_P(calc) - I_P(m)|}{I_P(calc)} \times 100\% = \frac{|1.29 - 1.26|}{1.29} \times 100\% = 2.32\%$$

2. Reading 2:

Line current, $I_L = 0.72 A$

Measured phase current, $I_{P(m)} = 0.39 \text{ A}$

Calculated phase current, $I_{P(calc)} = 0.41 \text{ A}$

$$Error = \frac{|I_P(calc) - I_P(m)|}{I_P(calc)} \times 100\% = \frac{|0.41 - 0.39|}{0.41} \times 100\% = 4.87\%$$

3. Reading 3:

Line current, $I_L = 1.28 \text{ A}$

Measured phase current, $I_{P(m)} = 0.7 \text{ A}$

Calculated phase current, $I_{P(calc)} = 0.74 \text{ A}$

$$Error = \frac{|I_P(calc) - I_P(m)|}{I_P(calc)} \times 100\% = \frac{|0.74 - 0.7|}{0.74} \times 100\% = 5.4\%$$

4. Reading 4:

Line current, $I_L = 1.87 A$

Measured phase current, $I_{P(m)} = 1.04 \text{ A}$

Calculated phase current, $I_{P(calc)} = 1.08 \text{ A}$

Error =
$$\frac{|I_P(calc) - I_P(m)|}{I_P(calc)} X 100\% = \frac{|1.08 - 1.04|}{1.08} X 100\% = 3.7\%$$

5. Reading 5:

Line current, $I_L = 2.79 A$

Measured phase current, $I_{P(m)} = 1.59 \text{ A}$

Calculated phase current, $I_{P(calc)} = 1.61 \text{ A}$

Error =
$$\frac{|I_P(calc) - I_P(m)|}{I_P(calc)} \times 100\% = \frac{|1.61 - 1.59|}{1.61} \times 100\% = 1.24\%$$

$$\therefore \text{ Average error} = \frac{2.32 + 4.87 + 5.4 + 3.7 + 1.24}{5} = 3.506\%$$

2.6 Table for Studying Relation Between Line and Phase Voltage:

Serial	Line Current,	Measured	Calculated	Percentage	Line	Phase
No	$I_{L}(A)$	Phase	Phase	of	Voltage, V _L	Voltage, V _P
		Current, I _{P(m)}	Current, I _{P(calc)}	Error (%)	(V)	(V)
		(A)	(A)			
1	41.47	23.5	24.07	2.32	39.0	38.3
2	34.1	19	19.69	4.87	12.84	12.83
3	55.5	31.4	32.04	5.4	22.15	21.83
4	63.6	35.6	36.72	3.7	32.17	31.6
5	71.7	40.5	41.4	1.24	47.3	47.1

2.7 Result:

Average percentage of error: 3.506%

2.8 Discussion:

Performing the experiment above, we could prove the relation between phase and line current in a $3-\varphi$ balanced Y - Δ system. After all the calculations, we figured our error margin was 3.506% which is negligible. This little error margin certifies that, the line current is $\sqrt{3}$ times that of phase current.

2.9 References:

1. Fundamentals of Electric Circuits by Charles K. Alexander and Mathew N. O. Sadiku.