

2016中国开源年会

China Open Source Conference 2016

时间: 2016年10月15日-16日

地点: 北京航空航天大学

Building a Reliable Large-Scale Distributed Database

Principles and Practice

shenli @ PingCAP

About Me

- Shenli 申砾
- VP of Engineering at PingCAP
- 有道词典 / 360 搜索
- TiDB Tech Leader

Database system nowadays

- Not only human, but also devices (IoT)
 - Big data
- Sharding is painful
- SQL => NoSQL => NewSQL
 - Programming paradigm is changing

What we need?

NewSQL:

- Scalability is first-class citizen
- SQL
- ACID Transaction
- Auto-failover / Self recovery / Survivable

NewSQL is a class of modern relational database management systems that seek to provide the same scalable performance of NoSQL systems for online transaction processing (OLTP) read-write workloads while still maintaining the ACID guarantees of a traditional database system.

-- From Wikipedia

So we build TiDB

- Horizontal scalability
- Consistent distributed transactions
- Compatible with MySQL protocol
- Based on Google Spanner / F1
- One of the most popular open source
 NewSQL database all over the world

tidb

Go ★ 4.786 ₺ 609

TiDB is a distributed NewSQL database compatible with MySQL protocol Updated 3 hours ago

tikv

Rust # 1,064 \$ 89

Distributed transactional key value database powered by Rust and Raft

Updated 4 hours ago

Rule #1:

Always believe shit is about to happen

You might assume...

- Network is reliable and homogeneous
- Latency is small and stable
- Bandwidth is infinity
- Machine is never down
- System administrator is always online
- Process will never be killed
- The whole IDC will never down

But...

Design for disaster recovery

- Replica matters
- Master-slave is not that reliable!
- Multi-Paxos / Raft saves the world

Rule #2:

Don't rely on humans

Machine won't be tired, people would.

Automate everything

- Auto-scale
- Auto-failover
- Auto-deployment

Auto-scale: Sharding strategy

- Hash-based partitioning
 - e.g. Redis cluster, Codis, Cassandra...
 - Good for balancing workload, but no way to do range scan or prefix seek
- Range-based partitioning
 - o e.g. HBase, Spanner, TiDB
 - Good for scanning and prefix seeking, but hard to balance work load

Auto-scale: Balance strategy

- Add replica => Block write => Delete old data
 - Blocking problem
- Non-blocking data transfer
 - o e.g. Codis
- Raft
 - Membership change

Master-Slave is not that reliable

- Recovery from network isolation
 - O How to detect a network isolation?
 - How to decide which slave should be promoted?
 - You may lose data

Raft / Multi-Paxos in a nutshell

- Replicated state machine
 - Highly autonomous
- Based on election (quorum always wins)
- Just remember:
 - It never lose any data and it's automatic.

Rule #3:

Talk is cheap, show me the tests

Test matters and it's complex

- The hardest part of building a database is how to test it
- It is even harder for a distributed database
- How can we make sure that our code is correct?
- How can we make sure that out pull request is correct?
- Will the new commit slow down the performance?
- What will happen when machine failed?

How to test

- Unit tests
- MySQL tests
- ORM tests
- Home made tests
 - Transfer test, Block write test, Stability test
- Performance tests
- Tests with fault injection
- All tests should be run automatically

Tools

- Jepsen
- Namazu
 - ZooKeeper:

Found ZOOKEEPER-2212, ZOOKEEPER-2080 (race): (blog article)

o Etcd:

Found etcdctl bug #3517 (timing specification), fixed in #3530. The fix also resulted a hint of #3611 Reproduced flaky tests {#4006, #4039}

O YARN:

Found YARN-4301 (fault tolerance), Reproduced flaky tests{1978, 4168, 4543, 4548, 4556}

Rule #4: Is in computer scie

"All problems in computer science can be solved by another level of indirection"

--- David Wheeler

Fighting complexity

- A story about TiDB and TiKV
- SQL layer on a memdb
- SQL layer on local storage
- SQL layer on Hbase as storage engine
- SQL layer on TiKV as storage engine

Highly layered

- Focus on one thing, and do it well.
 - o SQL
 - o KV
 - Metadata storage
 - Data placement

Rule #5:

Don't try to teach your user, just follow them

Middleware vs NewSQL from scratch

- What's wrong with middleware?
 - Cross node transaction
 - Global consistency snapshot
 - Cross node join
 - Optimized query plan
 - Seamless horizontal scale
- So let's start from scratch

Compatibility matters

- User don't like change.
- User often writes shit code.

Rule #6:

Make it right, and then make it fast

How we make TiDB right and fast

- We build a runnable database in less than a month
- Then we add test framework
- We focus on correctness and elasticity, not performance in the early days
- Strict code review makes sure that we have good architecture and abstraction
- Premature optimization is the root of all evil. --Donald Knuth

Rule #7:

Embrace the community you don't need to do everything

Open source matters

- We want to be part of the whole big data environment.
- No vendor lock-in.
- Professional guys handle professional things.
- Use standard interfaces such as SQL, Binlog.
- Contribute to the open source community and enjoy the benefit from the open source community
 - tidb/parser
 - rust-prometheus/rust-grpc
 - o go-mysql, go-hbase
 - o etcd, rocksdb

Open source tools

- Storage Engine
 - facebook/rocksdb
 - o liblz4
- Monitoring
 - Prometheus
 - Grafana
- Deployment
 - Docker
 - Kubernetes

Q&A

TiDB: http://github.com/pingcap/tidb

(4700+ stars)

TiKV: https://github.com/pingcap/tikv

(1000+ stars)

My Wechat

PingCAP Official Accounts

