المـــوضوع رقم 14

التمرين رقم: 01

نحقق الدارة الموضحة في الشكل ـ 1 والتي تتكون من العناصر الكهربائية التالية:

- . E مولد توتر مستمر قوته المحركة الكهربائية
 - C مكثفة فارغة سعتها.
 - R_{2} و $R_{1}=1$ و R_{2}
 - .K بادلت
- (A) نضع البادلة بالوضع t=0 عند اللحظة I
- 1 مثل على الدارة المدروسة جهة كل من التيار الكهربائي i وبأسهم جهة التوتر الكهربائي بين طرفي المولد وكل مستقبل كهربائي.
- R_1 أ ـ اكتب المعادلة التفاضلية بدلالة التوتر الكهربائي u_{R_1} بين طرفي الناقل الأومي 2

ب- تحقق أن العبارة $au_{R_1}=Ee^{rac{-t}{ au_1}}$ حلا للمعادلة التفاضلية ،حيث $au_{R_1}=Ee^{rac{-t}{ au_1}}$ عبارته $au_1=R_1C$

جـاعتمادا على التحليل البعدي بين أن ثابت الزمن au_1 متجانس مع الزمن.

- . $\ln u_{R_1} = -\frac{1}{\tau_1}t + \ln E$ دـ بين العبارة التالية:
- $. ln u_{R_1} = f(t)$ البيان. 2 الشكل. 3 مثلنا في الشكل.
 - $. \tau_1$ ا۔ جد قیمتکل من E
 - ب-استنتج قيمة السعة C للمكثفة.
- (B)عند شحن المكثفة كليا وفي لحظة نعتبرها مبدأ جديد للأزمنة (t=0)نضع البادلة K بالوضع (B)
- 1. بين أن المعادلة التفاضلية لتطور شحنة المكثفة تكتب على الشكل التالي: $\alpha = 0 + \alpha q + \alpha q = 0$ ، حيث يطلب تحديد عبارة الثابت α بدلالة مميزات عناصر الدارة.

- 2 تحقق أن العبارة $Q = Q_0 e^{-\alpha t}$ علا المعادلة التفاضلية ،حيث: Q_0 الشحنة الأعظمية المخزنة في المكثفة.
 - q لتطور شحنة المكثفة $q=f\left(t\right)$ ليوضح المنحنى البياني وضح المنحنى البياني وضح المنحنى المكثفة وخلال الزمن q .
 - R_2 جد قيمة كل من Q_0 وثابت الزمن au_2 ، ثم استنتج قيمة الناقل الأومي
 - 4 ـ أـ اكتب العبارة الزمنية $E_{C}\left(t
 ight)$ للطاقة المخزنة في المكثفة.
 - . $t_2 = 0,6s$ و $t_1 = 0$ ب الحظتين اللحظتين

التمرين رقم: 02

بعده (T) بعده الأرض مدار إهليلجي حول الأرض m_S الذي نعتبره نقطة مادية وفق مدار إهليلجي حول الأرض (S) بعده عن سطح الأرض يتغير بين القيمة m_S الميزة لنقطة الحضيض D والقيمة D الميزة لنقطة الحضيض D والقيمة D الميزة لنقطة الأوج D الميزة لنقطة الأوب الأوب الأوب الأوب القيمة القيرة القيمة الأوب الأوب الأوب الميزة لنقطة الأوب ال

A و P والنقطتين P والنقطتين P و مثل بمخطط مدار P موضعا عليه كل من P

2 اكتب نصى القانون الأول والقانون الثالث لكبلر.

3 ماذا يمثل مركز الأرض O بالنسبة لهذا المدار؟

(S) لدار (S) لدار (S)

دبین أن حرکت (S)غیر منتظمت.

عما هو موضح $r = R_T + h$ نعتبر مدار القمر الاصطناعي (S) حول الأرض (T) دائري نصف قطره ثابت $T = R_T + h$ ڪما هو موضح في الشڪل 4.

مثلنا في الشكل - 5 البيان $v^2 = f\left(\frac{1}{r}\right)$ بدلالة مقلوب مثلنا في الشكل - 5 البيان و $v^2 = f\left(\frac{1}{r}\right)$ بدلالة مقلوب بعده عن مركز الأرض.

المرجع الغاليلي المناسب لدراسة حركة (S)، عرفه.

ياً مثل شعاع القوة $\overrightarrow{F}_{T/S}$ التي تجذب بها الأرض T القمر الاصطناعي T اثم T القمر الاصطناعي T الكتب عبارة شدتها بدلالت T و كتلت الأرض T و T و T

ب- بالتحليل البعدي ،حدد وحدة ثابت الجذب العام G في جملة الوحدات الدولية.

3 بتطبيق القانون الثاني لنيوتن:

أـ بين أن حركة (S) دائرية منتظمة حول أ.

.r و G و M_T بدلالة كتلة الأرض M_T و M_T بدلالة كتلة الأرض M_T

عن سطح (T)على ارتفاع قدره $h_1 = 800 km$ عن سطح (S) على ارتفاع قدره $h_1 = 800 km$

 $.r_1$ أ نصف القطر

 v_1 ب السرعة v_1 السرعة

 T_1 بـالدور المداري . T_1

 M_T عادلة البيان، ثم احسب قيمة كتلة الأرض.

. r فصل قطره اصطناعيا جيو مستقرا دوره المونصف قطره S

أـحدد خصائصه.

$$.r$$
 ب. بالاعتماد على العلاقة $\frac{T^2}{G\,M_T}=\frac{4\,\pi^2}{r^3}$ بين أن: $r=r_1 imes\sqrt[3]{T^2\over T_1^2}$ بين أن:

 $\frac{1}{2}$ جـ استنتج قيمة الارتفاع h للقمر الاصطناعي الجيو مستقر عن سطح الأرض.

المعطيات:

 $T_T = 24h$:دور الأرض حول محورها

 $R_T = 6.4 \times 10^6 m$: نصف القطر المتوسط للأرض

. $G = 6,67 \times 10^{-11} SI$ ثابت الجذب العام:

$\Rightarrow \frac{1}{r} \left(\times 10^{-8} \, m^{-1} \right)$

التمرين رقم: 03

قارورة لمحلول تجاري (S_0) لحمض كلور الماء $(H_3O^++Cl^-)$ تركيزه المولي ، تحمل المعلومات التالية: مرجة النقاوة: P=33,2% ، الكثافة: d=1,1 ، الكثافة: M=36,5g .M=36,5g .M=36,5g

نحو البكالوريا الموضوع رقم 14_______الصفحة 2 من 10_____

 $V_0=1 m L$ من المحلول ماصة مزودة بإجاصة مص حجما قدره $V_0=1 m L$ من المحلول ماصة مزودة بإجاصة مص حجما قدره المحلول من المحلول ونمدده C_1 على المحلول (S_1) الذي تركيزه المولى

الطريقة 10:

نأخذ حجما قدره ${\cal U}_a=20\,mL$ من المحلول (S_1) ونعايره بواسطة المحلول $V_a=20\,mL$ نأخذ $\sigma=f\left(igV_b
ight)$ الذي تركيزه المولي C_b ، نتائج العمل التجريبي مكنت من رسم المنحنى البياني المولي $\left(Na^++OH^ight)$.6. لتطور الناقلية النوعية σ للمزيج التفاعلي بدلالة الحجم V_b المبين في الشكل

1ـ أذكر البروتوكول التجريبي لهذه المعايرة ،مع رسم توضيحي عليه كافت البيانات.

2- اكتب معادلة تفاعل المعايرة ، ثم أنشئ جدولا لتقدم التفاعل.

 $\sigma = f(V_b)$ المنحنى البياني على المنحنى البياني 3

 $C_1 = 10^{-2} \, mol \, .L^{-1}$ أ ـ تأكد أن قيمة التركيز المولي للمحلول المحلول أ

 $\cdot \cdot (S_b)$ بـ استنتج قيمة التركيز المولي المحلول

 $\overline{V_b(mL)}$. للمزيج التفاعلي عند نقطة التكافؤ. σ_E للمزيج التفاعلي عند نقطة التكافؤ.

 $P\left(\%\right)$ ، استنتج قيمة درجة نقاوته و $P\left(\%\right)$ للمحلول المحلول استنتج المحلول عبد المحلول المحل

ناخذ حجما قدره $V=200\,mL$ من المحلول (S_1) وعند اللحظة، $V=200\,mL$ ناخذ حجما قدره من معدن الزنك Zn النقي ،معادلة التفاعل المنمذجة للتحول الكيميائي الحادث تكتب على $m_0=0.5g$ الشكل التالي: $2H_3O^+ + Zn = H_2 + Zn^{2+} + 2H_2O$ والنتائج التجريبية مكنتنا من رسم المنحنى البياني .7. لتغيرات حجم غاز ثنائي الهيدروجين H_2 المنطلق خلال الزمن المبين في الشكل $V_{H_2}=f\left(t\right)$

1. اكتب المعادلتين النصفيتين للأكسدة والارجاع مع تحديد الثنائيتين $(Ox/\operatorname{Re} d)$ الداخلتين في التفاعل. 2 أ ـ أنشئ جدول لتقدم هذا التفاعل.

ب- جد قيمة التقدم الأعظمي x_{max} وحدد المتفاعل المحد علما أن التفاعل تام.

 $.P\left(\%
ight)$ جـ جد قيمة كل من C_1 للمحلول C_0 للمحلول رائم استنتج قيمة درجة نقاوته و C_1

د ـ قارن قيمة درجة النقاوة لكل طريقة مع القيمة المدونة على القارورة ،ماذا تستنتج؟

t (min)

الأعظمية. $\frac{dV_{H_2}}{dt}$ احسب قيمتها الأعظمية. $v\left(t\right)$ بدلالة، عن سرعة التفاعل 4.

. حدد بيانيا قيمة زمن نصف التفاعل $t_{1/2}$ مع التعليل.

المعطيات: كل القياسات تمت في درجة حرارة ثابتة.

 $V_m = 25L.mol^{-1}$ $M(Zn) = 65,4g.mol^{-1}$

 $\lambda(Cl^{-}) = 7,63mS.m^{2}.mol^{-1}$ $\lambda(H_{3}O^{+}) = 35mS.m^{2}.mol^{-1}$

 $.\lambda(Na^{+}) = 5mS.m^{2}.mol^{-1}$ $= 19.9mS.m^{2}.mol^{-1}$

__الصفحة 3 من 10_ نحو البكالوريا الموضوع رقم 14_

على المــوضوع رقم 14

حل التمرين رقم: 01

Iالبادلة في الوضع I:

1- تمثيل على الدارة المدروسة جهة كل من التيار الكهربائي i وبأسهم جهة التوتر الكهربائي بين طرفي المولد وكل مستقبل كهربائي: (انظر الشكل).

 u_{R_1} الناقل الأومي: u_{R_1} بين طرفي الناقل الأومي:2

بتطبيق قانون جمع التوترات نجد: E بنطبيق قانون جمع التوترات نجد: u_C بالساواة

 $au_{R_1}=R_1C$ بـ التحقق أن العبارة $au_1=R_1$ حلا للمعادلة التفاضلية، حيث $au_1=R_1$ ثابت الزمن عبارته $u_{R_1}=Ee^{rac{-\iota}{ au_1}}$

$$rac{du_{R_1}}{dt}=-rac{E}{ au_1}e^{rac{-t}{ au_1}}$$
 باشتقاق العبارة $u_{R_1}=Ee^{rac{-t}{ au_1}}$ باشتقاق العبارة بالنسبة للزمن نجد

بتعويض العبارة وعبارة المشتقة في المعادلة التفاضلية نجد: $\frac{E}{ au_1} = \frac{e^{\frac{-t}{ au_1}}}{ au_1} = 0$ بتعويض العبارة وعبارة المشتقة في المعادلة التفاضلية نجد:

 $[au_1] = rac{[U]}{[I]} imes rac{[I] imes [T]}{[U]} = [T]$ ومنه: $au_1 = R_1 imes C$ ومنه: ثابت الزمن متجانس مع الزمن.

$$u_{R_1}=Ee^{rac{-t}{ au_1}}$$
 : الدينا: $\ln u_{R_1}=-rac{1}{ au_1}t+\ln E$ د۔ تبيان العبارة التاليۃ:

.
$$\ln u_{R_1} = -\frac{1}{\tau_1}t + \ln E \dots (1)$$
 إذن: $\ln u_{R_1} = \ln E + \ln e^{\frac{-t}{\tau_1}}$ وبإدخال $\ln t$

 $lnu_{R_1}=at+b.....(2)$ البيان خط مستقيم مائل لايمر من المبدأ معادلته: τ_1 البيان خط مستقيم مائل الايمر من المبدأ معادلته: σ_2

$$a = \frac{\Delta \ln u_{R_1}}{\Delta t} = \frac{-1, 2 - 1, 8}{0, 6 - 0} = -5s^{-1}$$
 حيث: a معامل توجيه البيان نجد:

b=1.8 : في البيان مع محور التراتيب نجد b=1.8

وبالمطابقة بين العلاقة النظرية (1) والعلاقة البيانية (2) طرفا لطرف نجد:

$$. \, au_1 = \frac{1}{5} = 0,2s \,$$
 إذن: $. \, au_1 = \frac{1}{5} = 0,2s \,$ ونجد كذلك: $. \, au_2 = a = -5s^{-1} \,$ إذن: $. \, E = e^{1,8} = 6V \,$

$$C = \frac{\tau_1}{R_1} = \frac{0.2}{10^3} = 2 \times 10^{-4} F$$
 إذن: $\tau_1 = R_1 C$ إذن: $\tau_1 = R_1 C$ إذن

(B)البادلة K إلى الوضع II

لعادلة التفاضلية لتطور شحنة المكثفة تكتب على الشكل التالي: q=0 -حيث يطلب $\frac{dq}{dt}+\alpha q=0$ -حيث يطلب عبارة الثابت α بدلالة مميزات عناصر الدارة:

نحو البكالوريا الموضوع رقم 14_______الصفحة 4 من 10 ____

$$\begin{split} u_C + & \left(R_1 + R_2\right)i = 0 \text{ ومنه: } u_C + u_{R_1} + u_{R_2} = 0 \text{ : sate proof of the pr$$

ك التحقق أن العبارة $q=Q_0e^{-lpha t}$ حلا المعادلة التفاضلية ،حيث: و Q_0 الشحنة الأعظمية المخزنة في المكثفة:

 $rac{dq}{dt}$ = $-\alpha Q_0 e^{-lpha t}$:باشتقاق العبارة $q=Q_0 e^{-lpha t}$ باشتقاق العبارة

 $-\alpha Q_0 e^{-\alpha t} + \alpha Q_0 e^{-\alpha t} = 0$ بتعويض العبارة المعطاة وعبارة المشتقة في المعادلة التفاضلية نجد: $q = Q_0 e^{-\alpha t}$ إذن العبارة $q = Q_0 e^{-\alpha t}$

 Q_0 ن، Q_0

. $Q_0=4\times0,3\times10^{-3}=1,2\times10^{-3}C$. لدينا: $q=Q_0e^{-\alpha t}$ نجد: $q=Q_0e^{-\alpha t}$ نجد: t=0 نجد: t=0 فيمة ثابت الزمن t=0 فيمة ثابت الزمن و

 $au_2=0.3s$ ،نقراً: t=0 عند اللحظة $q=f\left(t
ight)$ ،نقراً: $R_2=0.3s$ ،نقراً: $R_2=0.3s$ ،نقراً: $R_2=0.3s$ ،نقراً: ويستنتاج قيمة الناقل الأومى $R_2=0.3s$ ،

$$\begin{split} R_2 &= \frac{\tau_2}{C} - R_1 = \frac{0,3}{2\times 10^{-4}} - 10^3 = 500\Omega \text{ :ising } (R_1 + R_2) = \frac{\tau_2}{C} \text{ . gains } \tau_2 = (R_1 + R_2)C \text{ :ising } \tau_2 = (R_1 + R_2)C \text{ . ising } \tau_2 = (R_1 + R_$$

$$\begin{split} E_C\left(t_1\right) = & \frac{\left(1,2\times10^{-3}\right)^2}{2\times2\times10^{-4}} = 3,6\times10^{-3}J \quad \text{i.e.} \quad E_C\left(t_1\right) = \frac{Q_0^2}{2\times C} \quad \text{i.e.} \quad t_1 = 0 \text{ i.e.} \quad t_2 = 0,0 \text{ i.e.} \quad t_3 = 0,0 \text{ i.e.} \quad t_4 = 0 \text{ i.e.} \quad t_4 = 0 \text{ i.e.} \quad t_5 = 0,0 \text{ i.e.} \quad t_6 = 0,15\times10^{-3}C \quad \text{i.e.} \quad t_7 = 0,0 \text{ i.e.} \quad t_8 = 0,0$$

حل التمرين رقم: 02

انظر الشكل. (S) و (T) والنقطتين P و (S) انظر الشكل. (S) و (S) والنقطتين (S) انظر الشكل. (S)

2- القانون الأول لكبلر(قانون المسارات): تتحرك الكواكب وفق مدارات إهليلجية تشغل الشمس أحد محرقيها. القانون الثالث لكبلر(قانون الدور الفلكي): إن مربع الدور T^2 لمدار كوكب حول الشمس يتناسب مع مكعب البعد المتوسط $T^2 = k \ a^3$.

نحو البكالوريا الموضوع رقم 14_______الصفحة 5 من 10_____

(T) عول الأرض (S) عدل المتنتاج طول المحور الكبير S لمدار (S): لدينا: S

 $2a = 3.5 \times 10^5 + (2 \times 6.4 \times 10^6) + 1.04 \times 10^6 = 14.19 \times 10^6 m = 14190 km$: قـع

5. تبيان أن حركة (S)غير منتظمة: نعلم أن: $h_P \neq h_A$ يعني أن البعد بين القمر الاصطناعي ومركز الأرض لغير ثابت (مدار إهليلجي) ومنه شدة قوة جذب الأرض للقمر الاصطناعي تتغير من موضع لآخر إذن فسرعة القمر الاصطناعي غير ثابتة $(v \neq Cste)$ وعليه فحركته غير منتظمة.

II المرجع الغاليلي المناسب لدراسة حركة (S): هو المرجع الجيو مركزي (المركزي الأرضي). تعريفه: مرجع مبدأه مركز الأرض وينسب له ثلاثة محاور مبدأها مركز الأرض وتوازي محاور المرجع الهيليو

مركزي (المركزي الشمسي).

2- أ - تمثيل شعاع القوة $F_{T/S}$ التي تجذب بها الأرض القمر الاصطناعي (S) : انظر الشكل. $F_{T/S}=G\frac{m_S\,M_T}{r^2}$ بدلالت m_S و ڪتلۃ الأرض m_T و m_S هي: $\overline{F}_{T/S}=G$ بدلالۃ $\overline{F}_{T/S}=G$ وحدة ثابت الجذب العام G في جملۃ الوحدات الدوليۃ باستعمال التحليل البعدي:

 $G = rac{F_{T/S} imes r^2}{m_S \, M_T}$: ومنه $F_{T/S} = G \, rac{m_S \, M_T}{r^2}$: لدينا

 $.m^3.s^{-2}.kg^{-1}:$ اُي: $[G] = \frac{[M][L][T]^{-2} \times [L]^2}{[M][M]} = [L]^3[T]^{-2}[M]^{-1}$ اي:

لرجع المركزي (S) في المرجع المركزي الثاني النيوتن على القانون الثاني المرجع المرجع المركزي . $\overrightarrow{F}_{T/S}=m_S\,\overrightarrow{a}$(1) ومنه: $\sum \overrightarrow{F}_{ext}=m_S\,\overrightarrow{a}$

أ ـ تبيان حركة (S) دائرية منتظمة حول (T) :بإسقاط العبارة (1)على المحور الماسي نجد: $m_S\,a_t=0$ حيث:

ومنه: $a_t = \frac{dv}{dt} = 0$ ونعلم أن المسار دائري فالحركة دائرية منتظمة. $m_S \neq 0$

 $\cdot r$ و G بدلالة كتلة الأرض M_T و V^2 بدلالة و V^2 بدلالة مربع السرعة V^2

 $a_n = \frac{v^2}{r}$: حيث $m_S \, a_n = F_{T/S}$: بإسقاط العبارة (1) وفق المحور الناظمي الموجه نحو مركز الأرض نجد

$$v^2 = GM_T \times \frac{1}{r}$$
 (I) ابي: $m_S \times \frac{v^2}{r} = \frac{Gm_SM_T}{r^2}$

(T) عن سطح $h_1=800km$ عن سطح $h_1=800km$ عن سطح

 $r_1 = R_T + h_1 = 6,4 \times 10^6 + 800 \times 10^3 = 7,2 \times 10^6 \, m = 7200 \, km$ أـ قيمة نصف القطر r_1 هي:

$$\frac{1}{r_1} = \frac{1}{7,2 \times 10^6} = 14 \times 10^{-8} \, m^{-1}$$
 ومنه: $r_1 = 7,2 \times 10^6 \, m$. لدينا: (S) : لدينا

 $v_1^2 = 5,6 \times 10^7 \, m^2 \, s^{-2}$.ونقرأ: $\frac{1}{r_1} = 14 \times 10^{-8} \, m^{-1}$ ونعلم أن $v_1^2 = 5,6 \times 10^7 \, m^2 \, s^{-2}$.ونقرأ: $v_1^2 = 5,6 \times 10^7 \, m^2 \, s^{-2}$

$$v_1 = \sqrt{5,6 \times 10^7} = 7483,3 m \, s^{-1}$$
 إذن:

 $.T_1 = \frac{2 \times 3,14 \times 7,2 \times 10^6}{7483,3} = 6042,3s = 1,7h : تعلم أن: T_1 = \frac{2 \pi r_1}{v_1} : نعلم أن: T_1 = \frac{2 \times 3,14 \times 7,2 \times 10^6}{v_1} = 6042,3s = 1,7h$

نحو البكالوريا الموضوع رقم 14_______الصفحة 6 من 10_____

$$v^2 = \alpha \times \frac{1}{r}$$
.....(II): معادلة البيان: البيان خط مستقيم مائل امتداده يمر من المبدأ معادلته: $\alpha = \frac{\Delta v^2}{\Delta \left(\frac{1}{r}\right)} = \frac{4 \times 10^7}{10 \times 10^{-8}} = 3,5 \times 10^{14} \, m^3 \, s^{-2}$ حيث α معامل توجيه البيان نجد: $\alpha = \frac{\Delta v^2}{\Delta \left(\frac{1}{r}\right)} = \frac{4 \times 10^7}{10 \times 10^{-8}} = 3,5 \times 10^{14} \, m^3 \, s^{-2}$

حساب قيمة كتلة الأرض M_T بالمطابقة بين العلاقة النظرية (I والعلاقة البيانية (II) طرفا لطرف نجد:

$$.M_{T}=rac{lpha}{G}=rac{4 imes10^{14}}{6,67 imes10^{-11}}=6 imes10^{24}kg$$
 إذن: $GM_{T}=lpha$

6ـ أ ـ خصائص القمر الاصطناعي الجيو المستقر:

- يدور في نفس جهم دوران الأرض حول محورها.

ـ مساره يقع في مستوي خط الاستواء.

 $T=T_T=24\,h$ دوره المداري T يساوي دور الأرض T_T حول محورها ونكتب:

$$r : r$$
 ثم إيجاد قيمة $r = r_1 imes \sqrt[3]{rac{T^2}{T_1^2}} : ين أن: $r = r_1 imes \sqrt[3]{rac{T^2}{T_1^2}} = rac{4 \, \pi^2}{G \, M_T}$ ثم إيجاد قيمة $r = r_1 imes \sqrt[3]{rac{T^2}{T_1^2}} : r$$

$$r^3 = rac{r_1^3 T^2}{T_1^2}$$
 : الذن: $rac{T^2}{r^3} = rac{T_1^2}{r_1^3}$: الذن: $rac{T^2}{r_1^3} = rac{4\pi^2}{G\,M_T}$: الذن: $rac{T^2}{r^3} = rac{4\pi^2}{G\,M_T}$

$$r = 7200 \times \sqrt[3]{\frac{24^2}{\left(1,67\right)^2}} = 42500 km$$
 ت عند $r = T_T = 24h$ حيث: $r = r_1 \times \sqrt[3]{\frac{T^2}{T_1^2}}$ وعليه:

جـ استنتاج قيمة الارتفاع h للقمر الاصطناعي الجيو مستقرعن سطح الأرض:

. $h=r-R_T=42,5 imes 10^6-6,4 imes 10^6=36,1 imes 10^6 m=36100 km$ نعلم أن: $r=R_T+h$ إذن:

حل التمرين رقم: 03

1ـ البروتوكول التجريبي لهذه المعايرة:

. نملأ السحاحة حتى التدريجة "صفر" بالمحلول (S_b) لهيدروكسيد الصوديوم تركيزه المولي و C_b

. بواسطة ماصة مزودة بإجاصة مص نأخذ حجما قدره $V_a=20$ من المحلول ونضعه في بيشر.

- نغمر مسبار جهاز قياس الناقلية النوعية شاقوليا في محتوى البيشر دون ملامسة البيشر والقطعة المغناطيسية.

ين لخلاط المعناطيسي ونبدأ عملية المعايرة ،ونسجل قيمة الناقلية النوعية لكل حجم V_b للمحلول نشغل المخلاط المعناطيسي ونبدأ عملية المعايرة ،ونسجل قيمة الناقلية النوعية للمعاول عملية المعايرة ،

مضاف من السحاحة. (S_h)

رسم توضيحي عليه كافت البيانات:

الاسم	رقمالعنصر
سحاحة مدرجة.	1
محلول هيدروكسيد الصوديوم.	2
بيشر.	3
محلول حمض كلور الماء.	4
مخلاط مغناطيسي.	5
حامل.	6
جهاز قياس الناقلية النوعية	7

الصفحة 7 من 10

ـ حدول تقدم تفاعل المعابرة:

معادلةالتفاعل		$H_3O^+ + OH^- \rightarrow 2H_2O$		
الحالة	التقدم	ڪ ميت ال مادة بـ mol .		
الابتدائية	x = 0	$n_a = C_1 V_a$	n_b	بالزيادة
الانتقالية	х	$n_a - x$	$n_b - x$	بالزيادة
التكافؤ	x_{E}	$n_a - x_E$	$n_b - x_E$	بالزيادة

$C_1 = 10^{-2} \, mol \, L^{-1}$ هي التركيز المحلول (S_1) أ التأكد أن قيمة التركيز المولى

$$\begin{split} \sigma_0 &= \sigma_a = 426, 3mS.m^{-1}: الناقلية النوعية في البيشر قبل بداية المعايرة خاصة بالمحلول الحمضي فقط:
$$\begin{bmatrix} H_3O^+ \end{bmatrix}_0 = \begin{bmatrix} Cl^- \end{bmatrix}_0 = C_1: \\ \sigma_0 &= \lambda \left(H_3O^+ \right) \begin{bmatrix} H_3O^+ \end{bmatrix}_0 + \lambda \left(Cl^- \right) \begin{bmatrix} Cl^- \end{bmatrix}_0: \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(Cl^- \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(L_1 \times L_1 \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(L_1 \times L_1 \right) \right) \\ \sigma_0 &= C_1 \times \left(\lambda \left(H_3O^+ \right) + \lambda \left(L_1 \times L_1 \right) \right)$$$$

 (S_h) باستنتاج قيمة التركيز المولى المحلول ب

 $C_1 V_a = C_b V_{bE}$ ومنه: $n_a = n_b$ ومنه: من جدول تقدم التفاعل وعند حالة التكافؤ يتحقق مزيج ستكيومية وم $C_b = \frac{10^{-2} \times 20}{10} = 2 \times 10^{-2} \, mol \, .L^{-1}$ إذن: $V_{bE} = 10 mL$: أي $C_b = \frac{C_1 V_a}{V_{col}}$

جـ حساب قيمة الناقلية النوعية σ_E للمزيج التفاعلى عند نقطة التكافؤ:

عند نقطة التكافؤ يتحقق مزيج ستكيومتري فيكون الوسط التفاعلي في البيشر ملحيي أي يتكون من $\sigma_E=\lambdaig(Na^+ig)ig\lceil Na^+ig
ceil_{_E}+\lambdaig(Cl^-ig)ig\lceil Cl^-ig
ceil_{_E}$ الشوارد Na^+ و Na^+ فقط أي: $\begin{bmatrix} Cl^{-} \end{bmatrix}_{E} = \frac{C_{1}V_{a}}{V_{a} + V_{bE}} = \frac{10^{-2} \times 20}{(20 + 10)} = \frac{2}{3} \times 10^{-2} \, mol.L^{-1} = \frac{20}{3} \, mol.m^{-3}$ لدينا: $\left[Na^{+}\right]_{E} = \frac{C_{b}V_{b}}{V_{a} + V_{bE}} = \frac{2 \times 10^{-2} \times 10}{(20 + 10)} = \frac{2}{3} \times 10^{-2} \, mol.L^{-1} = \frac{20}{3} \, mol.m^{-3}$ ولدينا: $.1mol / L = 10^3 mol / m^3$ ملاحظة:

$$\sigma_E = \left(7,63 \times 10^{-3} \times \frac{20}{3}\right) + \left(5 \times 10^{-3} \times \frac{20}{3}\right) = 0,084 = 84 \, mS.m^{-1} \quad !ذن: \\ \frac{C_0}{C_1} = F = 1000: نعلم أن: (S_0) للمحلول (C_0): نعلم أن: 1000 = 1000 + 1000 = 10000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 1000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 10000 = 100000 = 100000 = 10000 = 100000 = 100000 = 100000 = 100000 = 100000 = 10000$$

$$C_0 = 1000 \times C_1 = 1000 \times 10^{-2} = 10 mol.L^{-1}$$
 إذن:

$$.P = \frac{C_0 M}{10 \times d} = \frac{10 \times 36.5}{10 \times 1.1} = 33.2\% : إذن: P_0 = \frac{10P d}{M} : نعلم أن: P_0 = \frac{10P d}{M}$$

الداخلتين النصفيتين للأكسدة والارجاع مع تحديد الثنائيتين (Ox/Red) الداخلتين في التفاعل: (Zn^{2+}/Zn) . (Zn^{2+}/Zn الثنائية الموافقة هي: (Zn^{2+}/Zn) . (Zn^{2+}/Zn الثنائية الموافقة هي: (H_3O^+/H_2) . (H_3O^+/H_2 الثنائية الموافقة هي: (H_3O^+/H_2) . (H_3O^+/H_2 الثنائية الموافقة هي: (H_3O^+/H_2) . (H_3O^+/H_2) . و. أ - جدول تقدم التفاعل:

						_	,
	التفاعل	معادلة	$2H_3O^+ + Zn = H_2 -$		H_2 +	Zn^{2+}	+ 2H ₂ O
	الحالة	التقدم	كمية المادة بـ mol .				
)	الابتدائية	x = 0	$n_{01} = C_1 V$	n_{02}	0	0	
	الانتقالية	x(t)	$n_{01}-2x(t)$	$n_{02}-x\left(t\right)$	x(t)	x(t)	بالزيادة
	النهائية	$\mathcal{X}_{ ext{max}}$	$n_{01}-2x_{\text{max}}$	$n_{02} - x_{\text{max}}$	x_{max}	\mathcal{X}_{\max}	

 $n_f\left(H_2
ight) = x_{
m max}$: من جدول تقدم التفاعل عند الحالة النهائية لدينا: $x_{
m max}$ عند الحالة النهائية لدينا: $x_{
m max}$ ولدينا: $x_{
m max} = \frac{V_f\left(H_2\right)}{V_m}$ ومنه: $x_{
m max} = \frac{V_f\left(H_2\right)}{V_m}$

 $.x_{\max} = \frac{25 \times 10^{-3}}{25} = 10^{-3} \, mol$ إذن: $V_f\left(H_2\right) = 5 \times 5 = 25 mL$ إذن: المتفاعل المحد علما أن التفاعل تام:

 $n_{02} = \frac{m_0}{M\left(Zn\right)}$ عند الحالة النهائية لدينا: $n_f\left(Zn\right) = n_{02} - x_{\max}$ عند الحالة النهائية لدينا: $n_f\left(Zn\right) = \frac{0.5}{65.4} - 10^{-3} = 6.6 \times 10^{-3} \ mol \neq 0$ تـع: $n_f\left(Zn\right) = \frac{m_0}{M\left(Zn\right)} - x_{\max}$ إذن:

وبـما أن التفاعل تام فإن شوارد (H_3O^+) هي المتفاعل المحد.

 $C_1V-2x_{
m max}=0$ المحلول (S_1) : بـما أن شوارد (H_3O^+) هي المتفاعل المحلول (S_1) : بـما أن شوارد والمتفاعل المحلول أن شوارد والمتفاعل المحلول أن شوارد والمتفاعل المحلول أن شوارد والمتفاعل المحلول أن شوارد والمتفاعل المتفاعل المحلول أن شوارد والمتفاعل المتفاعل ال

$$.C_1 = \frac{2x_{\text{max}}}{V} = \frac{2 \times 10^{-3}}{200 \times 10^{-3}} = 10^{-2} \, \text{mol.} L^{-1}$$
 إذن:

 $:(S_0)$ للمحلول المحلول المح

 $C_0 = 1000 \times C_1 = 1000 \times 10^{-2} = 10 \\ mol \ L^{-1} \ \ | \ \frac{C_0}{C_1} = F = 1000 \times 10^{-2} = 10 \\ is in the constant of the constant of$

 $\cdot \cdot (S_0)$ استنتاج قيمة درجة النقاوة للمحلول

$$.P = \frac{C_0 M}{10 \times d} = \frac{10 \times 36,5}{10 \times 1,1} = 33,2\%$$
 نعلم أن: $.P = \frac{10 \times d}{M} = \frac{10 \times d}{M}$ نعلم أن:

نحو البكالوريا الموضوع رقم 14_______الصفحة 9 من 10 ____

د ـ مقارنة قيمة درجة النقاوة لكل طريقة مع القيمة المدونة على القارورة :

القيمة المسجلة على القارورة	الطريقة 02	الطريقة 01	
33,2%	33,2%	33,2%	P(%)قیمت

نلاحظ أن: قيمة درجة النقاوة المدونة على القارورة تساوي القيمة المحسوبة لكل طريقة.

نستنتج أن: المحلول
$$\left(S_{0}\right)$$
 لحمض كلور الماء $\left(H_{3}O^{+}+Cl^{-}\right)$ غير مغشوش.

$$v\left(t
ight)=rac{dx\left(t
ight)}{dt}$$
: نعلم أن عبارة سرعة التفاعل $v\left(t
ight)=rac{dV_{H_{2}}}{dt}$ ؛ نعلم أن عبارة سرعة التفاعل هي: $v\left(t
ight)=rac{dV_{H_{2}}}{dt}$

$$v\left(t\right)=rac{dn_{H_{2}}\left(t\right)}{dt}$$
 :من جدول تقدم التفاعل عند الحالة الانتقالية نجد: $n_{H_{2}}\left(t\right)=x\left(t\right)$ ومنه نجد

$$v\left(t
ight)\!=\!rac{1}{V_{m}}\! imes\!rac{dV_{H_{2}}\!\left(t
ight)}{dt}$$
: ونعلم أن: $n_{H_{2}}\!\left(t
ight)\!=\!rac{V_{H_{2}}\!\left(t
ight)}{V_{m}}$

حساب قيمة v(t) الأعظمية (أي عند اللحظة v(t) الأعظمية (أي عند اللحظة المناب

$$v(0) = \frac{1}{V_m} \times \frac{dV_{H_2}(t)}{dt} \bigg|_{t=0} = \frac{1}{25} \times \frac{(25-0)\times10^{-3}}{(2-0)} = 5\times10^{-4} \, \text{mol.min}^{-1}$$

5. تحديد بيانيا قيمة زمن نصف التفاعل $t_{1/2}$ مع التعليل: من جدول تقدم التفاعل عند الحالة الانتقالية نجد:

$$rac{V_{H_2}\left(t
ight.}{V_m}$$
 = $x\left(t
ight.$ أي: $n_{H_2}\left(t
ight.)$ = $rac{V_{H_2}\left(t
ight.}{V_m}$ = عيث: $n_{H_2}\left(t
ight.)$ = $x\left(t
ight.)$

$$\frac{V_{H_2}(t_{1/2})}{V_m} = \frac{x_{\max}}{2}$$
: نجد: $t = t_{1/2}$ حيث: $t = t_{1/2}$ حيث: $t = t_{1/2}$

$$\frac{V_{H_2}\left(t_{1/2}\right)}{V_m} = \frac{V_f\left(H_2\right)}{2V_m}$$
 : ومنه نجد وم

$$V_{H_2}\left(t_{1/2}
ight) = rac{25}{2} = 12,5 mL$$
 : تدع: $V_f\left(H_2
ight) = 25 mL$ حيث: $V_{H_2}\left(t_{1/2}
ight) = rac{V_f\left(H_2
ight)}{2}$ اذن:

. $t_{1/2} = 1,4 \, min$ ومن البيان نقرأ: