Model Adequacy Checking – Part V

Johns Hopkins Engineering

625.461 Statistical Models and Regression

Module 8 – Lecture 8B

Lack of Fit of Regression Model

A formal statistical test for the lack of fit of a regression model assumes that the normality, independence, and constant-variance requirements are met and that only the first-order or straight line character of the relationship is in doubt.

Lack of Fit of Regression Model

Figure 4.15 Data illustrating lack of fit of the straight-line model.

The lack-of-fit test requires that we have replicate observations on the response y for at least one level of x. These replicate observations are used to obtain a model-independent estimate of σ^2 .

 n_i observations on the response at the *i*th level of the regressor x_i , i = 1, ..., m.

 y_{ij} = the jth observation on the response at x_i , i = 1, ..., m.

$$y_{ij} - \hat{y}_i = (y_{ij} - \overline{y}_i) + (\overline{y}_i - \hat{y}_i)$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \hat{y}_i)^2 = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_i)^2 + \sum_{i=1}^{m} n_i (\overline{y}_i - \hat{y}_i)^2$$

$$SS_{PE} = \sum_{i=1}^{m} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_i)^2$$
 $SS_{LOF} = \sum_{i=1}^{m} n_i (\overline{y}_i - \hat{y}_i)^2$

$$SS_{Res} = SS_{PE} + SS_{LOF}$$

The test statistic for lack of fit:

$$F_0 = \frac{SS_{\text{LOF}}/(m-2)}{SS_{\text{PE}}/(n-m)} = \frac{MS_{\text{LOF}}}{MS_{\text{PE}}}$$

Under H_0 : no lack of fit, F_0 is distributed as $F_{(m-2),(n-m)}$. If $F_0 > F_{\alpha,(m-2),(n-m)}$, then conclude that the model has a lack of fit.

Testing for Lack of Fit (Ex 4.8, page 159 of Textbook)

1.0	1.0	2.0	3.3	3.3	4.0	4.0	4.0	4.7	5.0
10.84	9.30	16.35	22.88	24.35	24.56	25.86	29.16	24.59	22,25
5.6	5.6	5.6	6.0	6.0	6.5	6.9			
25.90	27.20	25.61	25.45	26.56	21.03	21.46			•

$$\hat{y} = 13.301 + 2.108x$$

$$SS_{\rm T} = 487.6126$$
, $SS_{\rm R} = 234.7087$, $SS_{\rm Res} = 252.9039$

Testing for Lack of Fit (Ex 4.8, page159 of Textbook)

Level of x	$\sum_{j} (y_{ij} - \overline{y}_{i})^{2}$	Degrees of Freedom		
1.0	1.1858	1		
3.3	1.0805	1		
4.0	11.2467	. 2		
5.6	1.4341	2		
6.0	0.6161	1		
Total	15.5632	7		

Testing for Lack of Fit (Ex 4.8, page159 of Textbook)

$$SS_{LOF} = SS_{Res} - SS_{PE}$$

= 252.9039 - 15.5632 = 237.3407

TABLE 4.4	Analysis of Varia	4.8			
Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	F_0	P Value
Regression	234.7087	1	234.7087		
Residual	252.9039	15	16.8603	-	
(Lack of fit)	237.3407	8	29.6676	13.34	0.0013.
(Pure error)	15.5632	7	2.2233		
Total	487.6126	16	•		
-					

