

Team Name : Orbit

Institute Name: KIET Group of Institutions, Ghaziabad

Team member details

Team Name			
	Orbit		
Institute Name			
	KIET Group of Institutions, Ghaziabad		
Team Members >	1 (Leader)	2	3
Name			
	Md. Aanis Noor	Pravesh Narayan Soni	Prateek Gupta
Batch			
	2022	2022	2022
Area of expertise	+Project Planning +Software testing/debugging +Computer Vision	+Embedded firmware +Hardware +Drone tech	+Al training +Software coding +Ul

Functionalities of the UAV drone

- What all can the drone do?
 - + Autonomous path traversal
 - + Carry/drop payloads up to 3kgs
 - + Detect obstacles and correct its path
 - + Show a camera-feed
- What all activities can it perform?
 - + Reach a defined height automatically
 - + Grab a payload; drop the payload
 - + Detect gates; go through them
 - + Move on its x-y axis automatically; z-axis fixed for this task
- Are there any things that the drone can do above and beyond the requirement?
 - + Can be tweaked to traverse other dissimilar paths
 - + Actual payload capacity > required payload capacity
- Are there any out of the box functionalities?
 - + Can read bar-codes for exact point delivery and other programmed functions
 - + Available on demand camera-feed
 - + Live (trained) object detection

Drone specifications

Frame model / Material Mini 290 (Carbon Fiber)

Frame wheelbase (mm) 290

Frame arm size (mm) $125 \times 25 (L \times W)$

Multi-copter type Hexacopter

ESC category 25A

Motor rating 2300kV BLDC

Propeller rating 5" 5030

Flight Controller DJI Naza M-lite

Battery 3300mAh LiPO battery 3S

Claw servo M-995 10kg Servo

Compass Module HMC5883L

Master microcontroller STM32F103C8

Camera for obstacle detection Pixy2cam

IR Sensor for obstacle avoidance Sharp GP2D12

RxTx Radiolink R12DS pair

Robot/solution limitations

- Q. Are there any limitations compared to the requirements?
 - + No limitations wrt the requirements.
- Q. What can the robot not do?
 - Cannot lift payloads above 3kg
 - Speed limited to approximately 0.5m/s while carrying payload (when automated)

Robot Visualization -3D Diagram/Sketch

Architecture

Architecture(Core)

Brief on Programming Module

- Q. What programming language will be used?
 - + C language
 - + Python language
- O. What all software modules will be built?
 - + Mission training utility (Python & C)
 - + Master firmware PID loops (3)
 - + AI for going through gates
 - + GUI for camera feed

Execution Plan

With the idea on paper, we proceed in the following way:

- 1. Simulate the assembled hexacopter physics on pre-available platforms like VelociDrone.
- 2. Test separately the standalone modules used for desired functioning.
- 3. Calibrate the AI-Camera feedback for precise detection of objects, here 'gates'.
- 4. After successful simulation/testing, go on to fabricate/assemble the modules & the drone itself.
- 5. Calibrate the modules & sensors used for precise function through PID.
- 6. Test the prototype in different environmental scenarios.
- 7. Test the MVP (Minimal Viable Product) in a self-made arena, simulating the needs of the actual scenario.

Extra: Our own Flight-controller

We take this opportunity to introduce teammate Prayesh's hard-work and expertise in the making of our own Flight-controller - "ORBIT"

(Repository: https://github.com/Elvez/STM32F746-Flight-Controller)

Orbit: Future Production Plan

(continued...)

- With Orbit, we aim to make the mass production of utility-drones cheaper and efficient in India (and maybe abroad).
- We wish to keep our project open-source for more widespread & creative development(s).
- The cost of a typical market-available DJI Naza flight controller ranges somewhere between ₹5000/- to ₹15000/- but our flight controller costs merely ₹30/- for PCB fabrication + ₹1000/- for all modules attached to it. Increasing module quality would result in a slight increase of the total cost.
- Orbit has its own firmware plus it can also support other common firmwares like ArduPilot, Betaflight, Cleanflight and iNav.

(Repository: https://github.com/Elvez/STM32F746-Flight-Controller)

Flipkart

