

Physique Numérique Python

Hassen Ghalila - Ahmed Ammar – Fahmi Khadri

Chronologie & Histoire

Chronologie & Histoire Continuité

Commandes et Syntaxes

Variables	Tableaux; indices	Boucles	Conditions	SousProgrammes	Output/Inpur
Integers Floats Logicals Strings	Listes [] Matrices[][] 	For i then Do while	If elif operateurs	function def subroutine class	Open (file) Read Write formats
				•••	

```
x = [0]*n
h = (xmax - xmin)/(n-1)
for i in range(n-1):
     x[i+1] = x[i] + h
```

 \Leftrightarrow

import numpy as np
x = np.linspace(xmax,xmin,n)

Chronologie & Histoire Gros codes

MOLPRO-X

Molpro2002 : Fortran Molpro2016 : C++ (???) Physi-Chimie quantique

MAGIC-X

Magic2D : Fortran Magic3D : C++

Electrodynamique- Plasmas

GEANT-X

Geant-3 : Fortran Geant-4 : C++

Physique des particules & hautes énergies

FLUENT-X

FLUENT : Fortran – C++ (???) Mécanique des fluides

NWP-X

NWP : Fortran – C++ Météorologie-Climat

Chronologie & Histoire

Avantages - Inconvénients

Avantages

Open sources

Cross-plateformes

- (Linux, Windows, Apple)
- Androide, Iphone, ...

Nombreux supports

- Documentations
- Exemples
- Forums

Bien adapté pour la formation

Bon éditeurs (IDE)

Créer des logiciels, applis, applettes,

Inconvénients

Performance

Mise à jour

Programmes des ateliers

Lundi	Mardi	Mercredi	
Plénière	Techniques d'intégration Calculs d'aires Jupyter notebook	Application à l'optique Interactivité (widgets) Jupyter notebook	
 1^{er} pas Installation de l'environnement Initiation librairies Initiation à l'éditeur de scripts spyder Initiation à l'éditeur jupyter notebook 	Intégration d'équations différentielles du 1 ^{er} ordre Jupyter notebook Questions - Discussions		