三角函数性质整理

目录

1	基本性质				
	1.1	任意角的三角函数	2		
	1.2	函数图象	3		
	1.3	$y = A \sin(\omega x + \varphi)$	4		
	1.4	三角恒等变换	5		
	1.5	三角函数化简求值问题	6		
2 解三角形					
	2.1	正弦、余弦定理	7		
	2.2	解三角形常用结论	8		
	2.3	解三角形问题主要思路	8		
3	练习		9		

1 基本性质

1.1 任意角的三角函数

1.1.1 任意角的概念

- 1) 以 *x* 轴正方向为角度的起始边, 把终边按逆时针方向旋转所成的角叫做正角; 按顺时针旋转的角叫做负角, 没有旋转所成的角叫零角;
- 2) 终边相同的角: 所有与 α 终边相同的角连同 α 在内可以构建一个集合 $S = \{\beta \mid \beta = \alpha + k \cdot 360^{\circ}, k \in \mathbf{Z}\}$.

1.1.2 弧度制

把长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号 rad 表示,读作弧度.

一般的,正角的弧度是正数,负角的弧度是负数,零角的弧度是 0. 如果半径为 r 的圆的圆心角 α 所对的弧的长为 l,那么角 α 的弧度数的绝对值是:

$$|\alpha| = \frac{l}{r}.$$

角度与弧度对应关系:

$$360^{\circ} = 2\pi \ rad, \quad 180^{\circ} = \pi \ rad;$$

 $1^{\circ} = \frac{\pi}{180} rad \qquad 1 \ rad = \frac{180^{\circ}}{\pi} \approx 57.30^{\circ}$

度	0°	30°	45°	60°	90°	120°	135°	150°	180°	270°	360°
弧度	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	$\frac{2\pi}{3}$	$\frac{3\pi}{2}$	$\frac{5\pi}{6}$	π	$\frac{3\pi}{2}$	2π

1.1.3 任意角的三角函数

P(x,y) 是角 α 终边上异于原点的一点, $|OP| = r = \sqrt{x^2 + y^2}$,则

$$\sin \alpha = \frac{y}{r}, \cos \alpha = \frac{x}{r}, \tan \alpha = \frac{y}{x}.$$

其中 x,y 都是带符号数,所以可以根据各象限内 x,y 的正负性得到三角函数的符号规律:一全正,二正弦,三两切 (余切高考不涉及),四余弦.

1.1.4 同角三角函数关系

两个重要的三角函数关系式: ① $\sin^2 \alpha + \cos^2 \alpha = 1$; ② $\tan \alpha = \frac{\sin \alpha}{\cos \alpha}$.

1.1.5 诱导公式

如上图所示,当 $\beta = \frac{\pi}{2} + \alpha$ 时、 $\triangle OMM'$ 和 $\triangle ONN'$ 全等,根据三角函数定义,可以得到:

$$\cos \beta = \frac{ON'}{ON} = -\frac{MM'}{OM} = -\sin \alpha$$

即:

$$\cos\left(\frac{\pi}{2} + \alpha\right) = -\sin\alpha$$

以此类推,可得:

$$\sin\left(\frac{k\pi}{2} \pm \alpha\right) = \begin{cases} +/-\sin\alpha & k$$
为偶数, (奇变偶不变, 符号看象限)
$$+/-\cos\alpha & k$$
为奇数.

此公式为自创精简写法,分析如下: 当 k 为奇数时,正 (余) 弦仍对应正 (余) 弦,当 k 为偶数时,正 (余) 弦 对应余 (正) 弦,右侧的正负号根据 $\frac{k\pi}{2}$ ± α 所在象限的正 (余) 弦值决定.

1.2 函数图象

1.2.1 正弦函数图象

- (1) 定义域: $x \in \mathbb{R}$; 值域: [-1,1]; 奇偶性: 奇函数;
- (2) 对称轴: $x = k\pi + \frac{\pi}{2} (k \in \mathbf{Z});$ 对称中心: $(k\pi, 0) (k \in \mathbf{Z});$ 最小正周期: $T = 2\pi;$
- (3) 单调区间:
 - (i) 单调递增区间: $\left[2k\pi \frac{\pi}{2}, 2k\pi + \frac{\pi}{2}\right](k \in \mathbb{Z});$
 - (ii) 单调递减区间: $\left[2k\pi + \frac{\pi}{2}, 2k\pi + \frac{3\pi}{2}\right](k \in \mathbf{Z}).$

1.2.2 余弦函数图象

- (1) 定义域: $x \in \mathbf{R}$; 值域: [-1,1]; 奇偶性: 偶函数;
- (2) 对称轴: $x = k\pi (k \in \mathbf{Z})$; 对称中心: $\left(k\pi + \frac{\pi}{2}, 0\right)(k \in \mathbf{Z})$; 最小正周期: $T = 2\pi$;
- (3) 单调区间:
 - (i) 单调递增区间: $[2k\pi \pi, 2k\pi] (k \in \mathbb{Z});$
 - (ii) 单调递减区间: $[2k\pi, 2k\pi + \pi] (k \in \mathbb{Z})$.

1.2.3 正切函数图象

- (1) 定义域: $\left\{x \middle| x \neq k\pi + \frac{\pi}{2}\right\} (k \in \mathbb{Z});$ 值域: \mathbb{R} ; 奇偶性: 奇函数;
- (2) 对称中心: $(k\pi, 0)$ $(k \in \mathbb{Z})$; 最小正周期: $T = \pi$;
- (3) 单调区间: 单调递增区间: $\left(k\pi \frac{\pi}{2}, k\pi + \frac{\pi}{2}\right)(k \in \mathbf{Z});$
- 1.3 $y = A \sin(\omega x + \varphi)$

 $y = A \sin(\omega x + \varphi)$ 图象

1) 用 "五点法"作图: 设 $z = \omega x + \varphi$,由 z 取 $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}, 2\pi$ 来求出相应的 x,通过描点连线的方法画出图象。

(注:此处使用的 $z = \omega x + \varphi$ 的方法同样可以应用于求单调区间、最值等问题)

- 2) 由函数 $y = \sin(x)$ 的图象经过变换得到 $y = A \sin(\omega x + \varphi)$ 的图象,有两种主要的途径: "先平移后伸缩" 和 "先伸缩后平移"
 - i) 先平移后伸缩

$$y = \sin x \xrightarrow{rac{\ln E(arphi > 0) \operatorname{sin} \cap E(arphi < 0)}{\operatorname{YP}}} y = \sin (x + arphi)$$
 $y = \sin (x + arphi)$ $y = \sin (x + arphi)$ $y = \sin (\omega x + arphi)$ $y = \sin (\omega x + arphi)$ $y = \sin (\omega x + arphi)$ $y = A \sin (\omega x + arphi)$ $y = A \sin (\omega x + arphi)$

ii) 先伸缩后平移

$$y = \sin x \xrightarrow{\begin{subarray}{c} \begin{subarray}{c} \begin{subarr$$

- 3) 由图象求函数 $y = A \sin(\omega x + \varphi)$ 的解析式一般步骤:
 - i) 由函数的最值确定 A 的取值;
 - ii) 由函数的周期确定 ω 的值, 周期: $T = \frac{2\pi}{|\omega|}$;
 - iii) 由函数图象最高点 (最低点) 的坐标得到关于 φ 的方程, 再由 φ 的范围求 φ 的值.
- 4) 最值: 当x没有范围要求时,A和 -A分别为最大值和最小值; 当x有范围时,切忌将范围两端分别代入得到所谓取值范围.

 $y = A \sin(\omega x + \varphi)$ 的单调区间问题

- 1) 对于选择填空题,可以直接作图得到单调区间(不推荐);
- 2) 通用流程:
 - 1) 确定 ω 为正,若为负,则用诱导公式转化为正;
 - 2) 确定 A 为正, 若为负, 去掉负号反向取值 (求 / 改成求 \,, 求 \ 改成求 /.)
 - 3) 令 $t = \omega x + \varphi$,得到 $y = \sin t$,根据 $y = \sin t$ 增区间和减区间得到 $\omega x + \varphi$ 的范围,进而得到 x 的取 值范围.

$y = A \sin(\omega x + \varphi)$ 在给定区间最值问题

对于给定区间 $x \in [x_1, x_2]$, 有:

- 1. 设 $t = \omega x + \varphi$;
- 2. 将 x 的取值代入 $\omega x + \varphi$ 中计算 t 的取值范围;
- 3. 根据 $y = \sin t$ 的图象 (标准图象) 得到 y 的最值及此时 x 的取值 x_0 .

注:对于类似 $y=f\left[g\left(x\right)\right]$ 类型的复合函数的相关计算问题 (定义域、单调区间、比较大小等),一般可以分解为 $\begin{cases} y=f\left(u\right)\\ u=g\left(x\right) \end{cases}$,通过两个基本函数的性质解题.

例如:
$$y=sin\left(2x+\frac{\pi}{3}\right)$$
可以分解为
$$\begin{cases} y=sin\left(t\right)\\ t=2x+\frac{\pi}{3} \end{cases}$$
,根据 $y=sin\left(t\right)$ 单调增区间有 $t\in\left[2k\pi-\frac{\pi}{2},2k\pi+\frac{\pi}{2}\right](k\in\mathbf{Z})$,代入 $t=2x+\frac{\pi}{3}$ 即可以得到 y 关于 x 的单调区间.

1.4 三角恒等变换

1.4.1 和差公式

如下图,在半径为1的圆内,构建向量 \overrightarrow{OA} , \overrightarrow{OB} .

根据向量夹角公式 $\cos \theta = \frac{\overrightarrow{OA} \cdot \overrightarrow{OB}}{\left|\overrightarrow{OA}\right| \left|\overrightarrow{OB}\right|}$, 将 $\overrightarrow{OA} = (\cos \alpha, \sin \alpha)$, $\overrightarrow{OB} = (\cos \beta, \sin \beta)$ 代入解得:

$$\cos\theta = \cos(\beta - \alpha) = \cos\alpha\cos\beta + \sin\alpha\sin\beta$$

分别令 $\alpha = -\alpha$, $\alpha = \frac{\pi}{2} \pm \alpha$, 由诱导公式可得:

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

$$\sin(\alpha + \beta) = \sin\alpha\cos\beta + \cos\alpha\sin\beta$$
$$\sin(\alpha - \beta) = \sin\alpha\cos\beta - \cos\alpha\sin\beta$$

在 $\sin(\alpha + \beta)$ 和 $\cos(\alpha + \beta)$ 中令 $\beta = \alpha$ 得到倍角公式:

$$\sin 2\alpha = 2\sin \alpha \cos \alpha$$

$$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$$

$$= 2\cos^2 \alpha - 1$$

$$= 1 - 2\sin^2 \alpha.$$

1.4.2 半角公式

$$1) \sin^2 x = \frac{1 - \cos 2x}{2}$$

$$2) \cos^2 x = \frac{1 + \cos 2x}{2}$$

1.4.3 辅助角公式

对于 $y = a \sin x + b \cos x$ 类型的三角函数的性质需要先化简为 $y = A \sin (\omega x + \varphi)$ 形式,所以引入角 φ 使其正余弦和 a,b 对应,根据 $\sin^2 \varphi + \cos^2 \varphi = 1$ 可得到如下形式:

$$a \sin x + b \cos x = \sqrt{a^2 + b^2} \left(\frac{a}{\sqrt{a^2 + b^2}} \sin x + \frac{b}{\sqrt{a^2 + b^2}} \cos x \right)$$
$$= \sqrt{a^2 + b^2} \left(\sin x \cos \varphi + \cos x \sin \varphi \right)$$
$$= \sqrt{a^2 + b^2} \sin \left(x + \varphi \right) \left(\tan \varphi = \frac{b}{a} \right)$$

由此公式可看出 $\sin \varphi = \frac{b}{\sqrt{a^2+b^2}}, \ \cos \varphi = \frac{a}{\sqrt{a^2+b^2}};$ 可根据实际情况令 $\cos \varphi = \frac{b}{\sqrt{a^2+b^2}}, \ \sin \varphi = \frac{a}{\sqrt{a^2+b^2}}$ 得到辅助角公式的余弦形式.

1.5 三角函数化简求值问题

1.5.1 化简 "三看"原则

- (1) 一看"角",通过看角之间的差别与联系(比如出现了 α 和 2α 就会使用倍角公式),正确的使用公式;
- (2) 二看"函数名称",看函数名称之间的差异,从而确定使用的公式,例如:切化弦,正余弦互化;
- (3) 三看"结构特征",分析结构特征可以帮助我们找到变形的方向,常见的有"遇到分式要通分"等.

1.5.2 求最值问题

- (1) $y = a \sin x + b \cos x = \sqrt{a^2 + b^2} \sin (\omega x + \varphi)$, 利用有界性处理 (参考1.3);
- (2) $y = a \sin^2 x + b \sin x \cos x + \cos^2 x \xrightarrow{\beta \wedge x, \text{ $\underline{\textbf{y}}$}} y = A \sin 2x + B \cos 2x + C = \sqrt{A^2 + B^2} \sin(2x + \varphi) + C$, 其中 $\tan \varphi = \frac{B}{A}$. 再利用有界性;

- (3) $y = a \sin^2 x + b \sin x + c$ 或 $y = a \cos^2 x + b \cos x + c$ ($a \neq 0$), 通过 $t = \sin x$ 或 $t = \cos x$ 转化为求关于 t 的 二次函数在区间 [-1,1] 上的最值问题;
- (4) $y = a(\sin x \pm \cos x) + b\sin x \cdot \cos x$, 可令 $t = \sin x \pm \cos x$, 则 $\sin x \cdot \cos x = \pm \frac{t^2 1}{2}$, 把三角问题转化为代数问题解决:
- (5) $y = \frac{a \sin x + c}{b \sin x + d}$ 或 $y = \frac{a \cos x + c}{b \cos x + d}$ 可转化为只有分母含有 $\sin x$ 或 $\cos x$ 的函数式,还可以转化为 $\sin x = f(y)$ 或 $\cos x = f(y)$ 的形式,由正、余弦函数的有界性求解.

化为求圆上的动点与定点连线斜率的最值问题.

2 解三角形

2.1 正弦、余弦定理

2.1.1 正弦定理

在三角形 $\triangle ABC$ 中,角 A,B,C 所对的边为 a,b,c,有

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R (R$$
 外接圆半径, 高考没考过半径)

证明. 此处以直角三角形为例. 如下图, 设角 A,B,C 所对的边分别为 a,b,c,则有:

由直角三角形对应的三角函数定义知

$$\sin A = \frac{a}{c}, \ \sin B = \frac{b}{c}, \ \sin C = \frac{c}{c} = 1$$

即:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = c = 2R$$

非直角三角形推导过程类似,通过构建高线得到直角三角形.

正弦定理的主要作用是方程和分式中的边角互化. 其原则为关于边,或是角的正弦值是否具备齐次的特征. 如果齐次则可直接进行边化角或是角化边,否则不可行.

2.1.2 余弦定理

•
$$c^2 = a^2 + b^2 - 2ab\cos C \stackrel{?}{=} \cos C = \frac{a^2 + b^2 - c^2}{2ab}$$

• 另外两个一样, 我不想写了.

证明. 在三角形 $\triangle ABC$ 中,角 A,B,C 所对的边分别为 a,b,c,如图所示,构建向量 \overrightarrow{a} . \overrightarrow{b} . \overrightarrow{c} .

由向量减法知: $\vec{a} - \vec{b} = \vec{c}$ 两边平方得到

$$\left(\overrightarrow{a} - \overrightarrow{b}\right)^2 = \overrightarrow{c}^2$$

展开得到

$$a^2 + b^2 - 2ab\cos C = c^2$$

(这里直接将向量模长写成边长了, 代码太多了...)

2.2 解三角形常用结论

1) $A + B + C = \pi$; $\sin(A + C) = \sin B$; $\cos(A + C) = -\cos B$.

2)
$$S = \frac{1}{2}ab \sin C = \frac{1}{2}ac \sin B = \frac{1}{2}bc \sin A;$$

3) $\sin^2 A + \sin^2 B - \sin A \sin B = \sin^2 C \Leftrightarrow a^2 + b^2 - ab = c^2$

4) $b\cos C + c\cos B = a \Rightarrow \sin B\cos C + \sin C\cos B = \sin A$ (恒等式)

5) $A > B > C \Leftrightarrow a > b > c \Leftrightarrow \sin A > \sin B > \sin C \Leftrightarrow \cos A < \cos B < \cos C$

2.3 解三角形问题主要思路

2.3.1 公式适用类型

- 1) 已知两角一边,用正弦定理,有解时,只有一解;
- 2) 已知两边及一边对角,用正弦定理,有解的情况(设已知 a,b 和角 A):
 - a) A 为锐角, 当 $a < b \sin A$ 时无解; 若 A 为钝角, 当 a = b, a < b 时均无解;
 - b) 若为求第三边问题, 也可以通过余弦定理构造一元二次方程求解.
- 3) 已知三边,用余弦定理,有解时,只有一解;
- 4) 己知两边及夹角,用余弦定理,必有一解.

2.3.2 解三角形最值问题

- (1) 利用正弦定理将边转化为角,通过三角恒等变换转化为 $y = A \sin(\omega x + \varphi)$,在满足内角和为 π 的范围内求最值.
- (2) 对于某些乘法的最值 (例如面积最大值) 利用余弦定理转化为边的形式,利用基本不等式 $a^2 + b^2 \ge 2ab$ 求最值.

3

3 练习

1. 已知
$$\sin 2\alpha = \frac{2}{3}$$
, 则 $\cos^2(\alpha + \frac{\pi}{4}) =$
(A) $\frac{1}{6}$ (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) $\frac{2}{3}$

2. 若 $\sin(\frac{\pi}{6} - \alpha) = \frac{1}{3}$, 则 $\cos(\frac{2\pi}{3} + 2\alpha) =$
(A) $-\frac{7}{9}$ (B) $-\frac{1}{3}$ (C) $\frac{1}{3}$ (D) $\frac{7}{9}$

3. 并 $\tan \theta + \frac{1}{\tan \theta} = 4$, 则 $\sin 2\theta =$
(A) $\frac{\pi}{5}$ (B) $\frac{1}{4}$ (C) $\frac{1}{3}$ (D) $\frac{1}{2}$

4. 设 $\alpha \in (0, \frac{\pi}{2}), \beta \in (0, \frac{\pi}{2})$, 且 $\tan \alpha = \frac{1 + \sin \beta}{\cos \beta}$, 则 (D) $2\alpha + \beta = \frac{\pi}{2}$ (D) $2\alpha + \beta = \frac{\pi}$

9. 己知 $\omega > 0$, $0 < \varphi < \pi$, 直线 $x = \frac{\pi}{4}$ 和 $x = \frac{5\pi}{4}$ 是函数 $f(x) = \sin(\omega x + \varphi)$ 的图象的两条相邻对称轴,则) (C) $\frac{\pi}{2}$ (A) $\frac{\pi}{4}$

10. 将函数 $f(x) = \sin(2x + \theta) \left(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\right)$ 的图象向右平移 $\varphi(\varphi > 0)$ 个单位长度后得到函数 g(x) 的图象, 若 f(x), g(x) 的图象都经过点 $P\left(0, \frac{\sqrt{3}}{2}\right)$, 则 φ 的值可以是)

(A) $\frac{5\pi}{3}$ (B) $\frac{5\pi}{6}$ (D) $\frac{\pi}{6}$ (C) $\frac{\pi}{2}$

11.	已知函数 $f(x) = 2\sin(\omega x)$ $x = \frac{\pi}{2}$ 时, $f(x)$ 取得最大		$0, -\pi < \varphi \leqslant \pi, 若 f(x)$ 的	的最小正周期为(οπ, (且当	
	(A) $f(x)$ 在区间 $[-2\pi, 0]$	上是增函数	(B) $f(x)$ 在区间 $[-3\pi, -\pi]$	上是增函数			
	(C) $f(x)$ 在区间 $[3\pi, 5\pi]$	上是减函数	(D) f(x) 在区间 [4π, 6π] _	上是减函数			
12.	已知函数 $f(x) = \sin(\omega x)$ 则	$+\varphi)+\cos(\omega x+\varphi)$ $(\omega>$	$ ightarrow 0, \left arphi ight < rac{\pi}{2} ight)$ 的最小正周期	月为 π ,且 $f(-x)$	= <i>f</i>	f(x),	
	$(A) f(x) 在 \left(0, \frac{\pi}{2}\right)$ 上单调	递减	(B) $f(x)$ 在 $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ 上单	周递减			
	(C) $f(x)$ 在 $\left(0, \frac{\pi}{2}\right)$ 上单调	递增	(D) $f(x)$ 在 $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$ 上单	凋递增			
13.	已知函数 $f(x) = \begin{cases} \sin(x + \cos(x)) \\ \cos(x + \cos(x)) \end{cases}$	$(\alpha), x \le 0$ 则 " $\alpha = \frac{\pi}{4}$ "是 $(\alpha), x > 0$	"函数 <i>f</i> (<i>x</i>) 是偶函数"的		()	
	(A) 充分不必要条件		(B) 必要不充分条件				
	(C) 充分必要条件		(D) 既不充分也不必要条	件			
14.	已知函数 $f(x) = \begin{cases} \sin(x + \cos(x)) \\ \cos(x + \cos(x)) \end{cases}$	$(a), x \leq 0$ 是偶函数,则下 $(b), x > 0$	列结论可能成立的是		()	
	(A) $a = \frac{\pi}{4}, b = -\frac{\pi}{4}$		(B) $a = \frac{2\pi}{3}, b = \frac{\pi}{6}$				
	$(C) a = \frac{\pi}{3}, b = \frac{\pi}{6}$		(D) $a = \frac{5\pi}{6}, b = \frac{2\pi}{3}$				
15.	在 $\triangle ABC$ 中, $\angle A = \frac{\pi}{3}$, BC	$C=3$,则 $\triangle ABC$ 的周长为	1		()	
	(A) $4\sqrt{3}\sin\left(B+\frac{\pi}{3}\right)+3$		(B) $4\sqrt{3}\sin\left(B+\frac{\pi}{6}\right)+3$				
	(C) $6\sin\left(B + \frac{\pi}{3}\right) + 3$		(D) $6\sin\left(B + \frac{\pi}{6}\right) + 3$				
16.	$\triangle ABC$ 的内角 A, B, C 所对	的边分别为 a, b, c. 若 a sin	$A\sin B + b\cos^2 A = \sqrt{2}a,$	则 $\frac{b}{a}$ =	()	
	$(A) 2 \sqrt{3}$	(B) $2\sqrt{2}$	(C) $\sqrt{3}$	(D) $\sqrt{2}$			
17.	7. 在 $\triangle ABC$ 中,若 $\sin^2 A + \sin^2 B < \sin^2 C$,则 $\triangle ABC$ 的形状是 (
	(A) 钝角三角形		(B) 直角三角形				
	(C) 锐角三角形		(D) 不能确定				
18.	已知锐角 $\triangle ABC$ 的内角 A ,	B,C 的对边分别为 a,b,c ,	$23\cos^2 A + \cos 2A = 0, a =$	= 7, $c = 6$, 则 $b = 6$	=()	
	(A) 10	(B) 9	(C) 8	(D) 5			
19.	已知函数 $f(x) = \sin(\omega x - y)$ y = f(x) 有五个公共点,只	9,	$a)(n \neq 1)$ 都在曲线 $y = f($	x) 上, 且线段 A	B与 (i曲线)	
	(A) 4	(B) 2	(C) $\frac{1}{2}$	(D) $\frac{1}{4}$	(,	

20. 函数 $y = \cos\left(2x + \frac{\pi}{6}\right) - 2$ 的图像 F 关于向量 a 平移得到 F_1 , F_1 的解析式为 y = f(x), 当 y = f(x) 为 奇函数时,向量 a 等于

$$(A)\left(\frac{\pi}{6},-2\right)$$

(B)
$$\left(\frac{\pi}{6}, 2\right)$$

$$(C)\left(-\frac{\pi}{6},-2\right)$$

(D)
$$\left(-\frac{\pi}{6}, 2\right)$$

- 21. 设 θ 为第二象限角,若 $\tan\left(\theta + \frac{\pi}{4}\right) = \frac{1}{2}$,则 $\sin\theta + \cos\theta = _____.$
- 22. 已知 $\sin \alpha = \frac{1}{2} + \cos \alpha$, 且 $\alpha \in \left(0, \frac{\pi}{2}\right)$, 则 $\frac{\cos 2\alpha}{\sin\left(\alpha \frac{\pi}{4}\right)}$ 的值为_____.
- 23. 函数 $f(x) = \sin(x + 2\varphi) 2\sin\varphi\cos(x + \varphi)$ 的最大值为_____.
- 24. 设当 $x = \theta$ 时,函数 $f(x) = \sin x 2\cos x$ 取得最大值,则 $\cos \theta =$ _____.
- 25. 已知函数 $f(x)=2\sin\omega x\ (\omega>0)$ 在区间 $\left[-\frac{\pi}{3},\frac{\pi}{4}\right]$ 上的最小值是 -2,则 ω 的最小值是 _____.
- 26. 已知函数 $f(x) = \sin(2x + \varphi)$,若 $f\left(\frac{\pi}{12}\right) f\left(-\frac{5\pi}{12}\right) = 2$,则函数 f(x) 的单调增区间为______.
- 27. 设函数 $f(x) = A \sin(\omega x + \varphi) \left(A, \omega, \varphi$ 是常数, $A > 0, \omega > 0 \right)$. 若 f(x) 在区间 $\left[\frac{\pi}{6}, \frac{\pi}{2} \right]$ 上具有单调性,且 $f\left(\frac{\pi}{2} \right) = f\left(\frac{2\pi}{3} \right) = -f\left(\frac{\pi}{6} \right)$,则 f(x) 的最小正周期是_____.
- 28. 将函数 $f(x) = \sin(\omega x + \varphi) \left(\omega > 0, -\frac{\pi}{2} \le \varphi < \frac{\pi}{2}\right)$ 图像上每个点的横坐标缩短为原来的一半,纵坐标不变,再向右平移 $\frac{\pi}{6}$ 个单位长度得到 $y = \sin x$ 的图象,则 $f\left(\frac{\pi}{6}\right) =$ _____.
- 29. 己知点 $A\left(\frac{\pi}{6}, \frac{\sqrt{3}}{2}\right)$, $B\left(\frac{\pi}{4}, 1\right)$, $C\left(\frac{\pi}{2}, 0\right)$, 若这三个点中有且仅有两个点在函数 $f(x) = \sin \omega x$ 的图象上,则正数 ω 的最小值为_____.
- 30. 函数 $y = \cos(2x + \varphi)$ $(-\pi < \varphi < \pi)$ 的图象向右平移 $\frac{\pi}{2}$ 个单位后,与函数 $y = \sin(2x + \frac{\pi}{3})$ 的图象重合,则 $\varphi = _____$.
- 31. 把函数 $y = \sin 2x$ 的图象沿 x 轴向左平移 $\frac{\pi}{6}$ 个单位,纵坐标伸长到原来的 2 倍 (横坐标不变) 后得到函数 y = f(x) 的图象,对于函数 y = f(x) 有以下四个判断:
 - ① 该函数的解析式为 $y = 2\sin\left(2x + \frac{\pi}{6}\right)$;
 - ② 该函数图象关于点 $\left(\frac{\pi}{3},0\right)$ 对称;
 - ③ 该函数在 $\left[0,\frac{\pi}{6}\right]$ 上是增函数;
 - ④ 若函数 y = f(x) + a 在 $\left[0, \frac{\pi}{2}\right]$ 上的最小值为 $\sqrt{3}$, 则 $a = 2\sqrt{3}$. 其中,正确判断的序号是
- 32. 在三角形 $\triangle ABC$ 中, $B = 60^{\circ}$, $AC = \sqrt{3}$,则 AB + 2BC 的最大值为_____.
- 33. 在三角形 $\triangle ABC$ 中, $a=3,b=\sqrt{6}$, $\angle A=\frac{2\pi}{3}$,则 $\angle B=$ ______.
- 34. 在三角形 $\triangle ABC$ 中,若 $a=2,\ b+c=7,\ \cos B=-\frac{1}{4}$,则 $b=\underline{\hspace{1cm}}$
- 35. 在三角形 $\triangle ABC$ 中,a = 4, b = 5, c = 6,则 $\frac{\sin 2A}{\sin C} =$ _____.

- 36. 若 $\triangle ABC$ 的内角满足 $\sin A + \sqrt{2} \sin B = 2 \sin C$,则 $\cos C$ 的最小值是_____.
- 37. 在平面四边形 ABCD 中, $\angle A = \angle B = \angle C = 75^\circ$, BC = 2, 则 AB 的取值范围是 .
- 38. 在 $\triangle ABC$ 中,D 为 BC 边上的一点,BC = 3BD, $AD = \sqrt{2}$, $\angle ADB = 135^{\circ}$.若 $AC = \sqrt{2}AB$,则 $BD = _____$.
- 39. 已知 a, b, c 分别为 $\triangle ABC$ 三个内角 A, B, C 的对边,a = 2,且 $(2 + b)(\sin A \sin B) = (c b)\sin C$,则 $\triangle ABC$ 面积的最大值为_____.
- 40. 在三角形 $\triangle ABC$ 中, $\angle BAD = 30^{\circ}$, $\angle CAD = 45^{\circ}$, AB = 2, AC = 2 则 $\frac{BD}{DC} = _____$.

- 41. 己知函数 $f(x) = \sqrt{3}\cos\left(2x \frac{\pi}{3}\right) 2\sin x \cos x$
 - (1) 求 f(x) 的最小正周期;
 - (2) 求证: 当 $x \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ 时, $f(x) \ge -\frac{1}{2}$.

- 42. 已知 a,b,c 分别为 $\triangle ABC$ 内角 A,B,C 的对边, $\sin^2 B = 2\sin A\sin C$.
 - (1) 若 a = b, 求 $\cos B$;
 - (2) 若 $B = 90^{\circ}$,且 $a = \sqrt{2}$,求 $\triangle ABC$ 的面积.

- 43. 在 $\triangle ABC$ 中, $a^2 + c^2 = b^2 + \sqrt{2}ac$.
 - (1) 求 ∠B 的大小;
 - (2) 求 $\sqrt{2}\cos A + \cos C$ 的最大值.

- 44. 已知函数 $f(x) = 2 \sin \omega x \cos \omega x + \cos 2\omega x (\omega > 0)$ 的最小正周期为 π .
 - (1) 求ω的值;
 - (2) 求 f(x) 的单调递增区间.

- 45. 己知函数 $f(x) = \sqrt{2} \sin \frac{x}{2} \cos \frac{x}{2} \sqrt{2} \sin^2 \frac{x}{2}$.
 - (1) 求 f(x) 的最小正周期
 - (2) 求 f(x) 在区间 $[-\pi, 0]$ 上的最小值.

- 46. 己知函数 $f(x) = \sin x 2\sqrt{3}\sin^2\frac{x}{2}$.
 - (1) 求 f(x) 的最小正周期;
 - (2) 求 f(x) 在区间 $\left[0, \frac{2\pi}{3}\right]$ 上的最小值.

- 47. $\triangle ABC$ 的内角 A,B,C 的对边 a,b,c . 已知 $2\cos C(a\cos B + b\cos A) = c$.
 - (1) 求 C;
 - (2) 若 $c = \sqrt{7}$, $\triangle ABC$ 的面积为 $\frac{3\sqrt{3}}{2}$,求 $\triangle ABC$ 的周长.

- 48. 如图,在三角形 $\triangle ABC$ 中, $\angle B=\frac{\pi}{3},\ AB=8$,点 D 在 BC 边上,且 $CD=2,\ \cos\angle ADC=\frac{1}{7}$
 - (1) 求 $\sin \angle BAD$;
 - (2) 求 BD, AC 的长.

- 49. 己知函数 $f(x) = (2\cos^2 x 1)\sin 2x + \frac{1}{2}\cos 4x$
 - (1) 求 f(x) 的最小正周期及最大值;
 - (2) 若 $\alpha \in \left(\frac{\pi}{2}, \pi\right)$, 且 $f(\alpha) = \frac{\sqrt{2}}{2}$, 求 α 的值.

- 50. 己知函数 $f(x) = 4\cos x \sin\left(x + \frac{\pi}{6}\right) 1$.
 - (1) 求 f(x) 的最小正周期
 - (2) 求 f(x) 在区间 $\left[-\frac{\pi}{6}, \frac{\pi}{4}\right]$ 上的最大值和最小值.

- 51. 已知函数 $f(x) = 2\cos 2x + \sin^2 x 4\cos x$.
 - (1) 求 $f\left(\frac{\pi}{3}\right)$ 的值;
 - (2) 求 f(x) 的最大值和最小值.

- 52. 在三角形 $\triangle ABC$ 中,内角 A, B, C,对边的边长分别是 a, b, c,已知 $c=2, C=\frac{\pi}{3}$.
 - (1) 若三角形 $\triangle ABC$ 的面积等于 $\sqrt{3}$, 求 a,b;
 - (2) 若 $\sin C + \sin(B A) = 2 \sin 2A$, 求 $\triangle ABC$ 的面积.

- 53. 已知函数 $f(x) = \sin^2 \omega x + 2\sqrt{3}\sin \omega x \cdot \cos \omega x \cos^2 \omega x + \lambda$ 的图象关于直线 $x = \pi$ 对称,其中 ω, λ 为 常数,且 $\omega \in \left(\frac{1}{2}, 1\right)$.
 - (1) 求函数 f(x) 的最小正周期;
 - (2) 若 y = f(x) 的图象经过点 $\left(\frac{\pi}{4}, 0\right)$, 求函数 f(x) 的值域.

- 54. 在三角形 $\triangle ABC$ 中,角 A, B, C, 所对的边长分别是 a, b, c, 且 $a\cos B=3$, $b\sin A=4$.
 - (1) 求边长 a;
 - (2) 若三角形 $\triangle ABC$ 的面积 S=10, 求 $\triangle ABC$ 的周长 l.

- 55. 在三角形 $\triangle ABC$ 中,角 A, B, C, 所对的边长分别是 a, b, c, 已知 $\cos C + (\cos A \sqrt{3}\sin A)\cos B = 0$.
 - (1) 求角 B 的大小;
 - (2) 若 a + c = 1, 求 b 的取值范围.

- 56. 在锐角三角形 $\triangle ABC$ 中,角 A, B, C, 所对的边长分别是 a, b, c, 且 $\sqrt{3}a = 2c\sin A$
 - (1) 确定角 C 的大小;
 - (2) 若 $c=\sqrt{7}$, 且三角形 $\triangle ABC$ 的面积为 $\frac{3\sqrt{3}}{2}$, 求 a+b 的值.

- 57. 四边形 ABCD 的内角 A 与 C 互补,AB = 1, BC = 3, CD = DA = 2.
 - (1) 求 C 和 BD;
 - (2) 求四边形 ABCD 的面积.

58. 在三角形 $\triangle ABC$ 中,角 A, B, C, 所对的边长分别是 a, b, c, 已知 $\cos(A-C)+\cos B=1$, a=2c, 求 C.

- 59. 在三角形 $\triangle ABC$ 中,角 A, B, C, 所对的边长分别是 a, b, c, 已知 $A = \frac{\pi}{4}$, $b\sin\left(\frac{\pi}{4} + C\right) c\sin\left(\frac{\pi}{4} + B\right) = a$.
 - (1) 求证: $B-C=\frac{\pi}{2}$;
 - (2) 若 $a = \sqrt{2}$,求 $\triangle ABC$ 的面积.

- 60. $\triangle ABC$ 中的内角 A, B, C 的对边分别为 a, b, c, 已知 $a=b\cos C+c\sin B$.
 - (1) 求 B;
 - (2) 若 b = 2,求 $\triangle ABC$ 面积的最大值.

61. 在 $\triangle ABC$ 中,内角 A, B, C 的对边长分别为 a, b, c, 已知 $a^2-c^2=2b$, 且 $\sin B=4\cos A\sin C$, 求 b.

- 62. 已知函数 $f(x) = -2\sin x \cos 2x$.
 - (1) 比较 $f(\frac{\pi}{4})$, $f(\frac{\pi}{6})$ 的大小;
 - (2) 求函数 f(x) 的最大值.

- 63. 在锐角 $\triangle ABC$ 中,角 A,B,C 所对的边分别为 a,b,c,已知 $a=\sqrt{7},\ b=3,\ \sqrt{7}\sin B+\sin A=2\sqrt{3}.$
 - (1) 求角 A 的大小;
 - (2) 求 △ABC 的面积

- 64. 在三角形 $\triangle ABC$ 中,角 A, B, C 所对的边分别为 a, b, c, 且 $\sin^2 A = \sin B \sin C$.
 - (1) 若 $\angle A = \frac{\pi}{3}$,求 $\angle B$ 的大小;
 - (2) 若 bc = 1, 求 $\triangle ABC$ 的面积的最大值.

- 65. 如图,在三角形 $\triangle ABC$ 中, $\angle ABC=90^{\circ}, AB=4, BC=3$,点 D 在线段 AC 上,且 AD=4DC.
 - (1) 求 BD 的长;
 - (2) 求 sin CBD 的值.

- 66. 已知函数 $f(x) = (1 + \sqrt{3} \tan x) \cos^2 x$.
 - (1) 若 α 是第二象限角,且 $\sin \alpha = \frac{1}{3}$,求 $f(\alpha)$ 的值;
 - (2) 求函数 f(x) 的定义域和值域.

- 67. 在三角形 $\triangle ABC$ 中,角 A, B, C 所对的边分别为 a, b, c, 已知 $b^2 + c^2 = a^2 + bc$.
 - (1) 求 A 的大小;
 - (2) 如果 $\cos B = \frac{\sqrt{6}}{3}, b = 2$,求三角形 $\triangle ABC$ 的面积.

- 68. 已知函数 $f(x)=2\sin\frac{\pi}{6}x\cos\frac{\pi}{6}x$,过两点 $A\left(t,f(t)\right)$, $B\left(t+1,f(t+1)\right)$ 的直线的斜率记为 g(t).
 - (1) 求 g(0) 的值;
 - (2) 写出函数 g(x) 的解析式,求 g(t) 在 $\left[-\frac{3}{2}, \frac{3}{2}\right]$ 上的取值范围.

- 69. 已知函数 $f(x) = \sin \omega x (\cos \omega x \sqrt{3} \sin \omega x) + \frac{\sqrt{3}}{2} (\omega > 0)$ 的最小正周期为 $\frac{\pi}{2}$.
 - (1) 求ω的值;
 - (2) 求函数 f(x) 的单调递减区间.

70. 如图,在三角形 $\triangle ABC$ 中,点 D 在边 AB 上,且 $\frac{AD}{DB}=\frac{1}{3}$. 记 $\angle ACD=\alpha$ $\angle BCD=\beta$.

(1) 求证:
$$\frac{AC}{BC} = \frac{\sin\beta}{3\sin\alpha}$$
;

(2) 若
$$\alpha = \frac{\pi}{6}$$
, $AB = \sqrt{19}$, 求 BC 的长.

71. 已知函数 $f(x) = \sin^2\left(x + \frac{\pi}{4}\right)$.

- (1) 求 f(x) 的最小正周期及其图象的对称轴方程;
- (2) 求 $f\left(\frac{\pi}{3} x\right)$ 的单调递减区间.