# Методы оптимизации Лекция 12: Линейное программирование

#### Александр Катруца

Факультет инноваций и высоких технологий Физтех-школа прикладной математики и информатики







20 ноября 2019 г.

## На прошлой лекции

▶ Метод проекции градиента

# На прошлой лекции

- Метод проекции градиента
- Проксимальный метод

## На прошлой лекции

- Метод проекции градиента
- Проксимальный метод
- Проксимальный градиентный метод

### Постановка задачи: напоминание

- lackbox Дано:  $\mathbf{c} \in \mathbb{R}^n$ ,  $\mathbf{A} \in \mathbb{R}^{m imes n}$  и  $\mathbf{b} \in \mathbb{R}^m$
- Стандартная форма

$$\min_{\mathbf{x}} \langle \mathbf{c}, \mathbf{x} \rangle$$
s.t.  $\mathbf{A}\mathbf{x} = \mathbf{b}$ 
 $\mathbf{x} \ge 0$ 

- Преобразование задач
  - $Ax \le b \to Ax + y \le b, y \ge 0$
  - ▶ Свободная переменная  $\mathbf{x} \to \mathbf{x} = \mathbf{y} \mathbf{z}, \ \mathbf{y} \ge 0, \ \mathbf{z} \ge 0$
  - lacktriangle Замена знака достигается за счёт умножения на -1
- Минимизация максимума линейных функций сводится к линейному программирования

### Ключевые элементы допустимого множества

#### Определение

Множество P вида  $P = \{\mathbf{x} \mid \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ , где  $\mathbf{A} \in \mathbb{R}^{m \times n}$  и m < n, называется многогранником (polyhedron).

### Определение

Точка  $\mathbf{y} \in P$  называется крайней точкой многоугольника, если не существует двух других точек из P, между которыми она лежит.

### Определение

Точка  $\mathbf{z} \in P$  называется вершиной многоугольника, если найдётся такой вектор  $\mathbf{c} \in \mathbb{R}^n$ , что  $\langle \mathbf{c}, \mathbf{z} \rangle < \langle \mathbf{c}, \mathbf{x} \rangle$  для всех других точек  $\mathbf{x} \in P$  и  $\mathbf{x} \neq \mathbf{z}$ .

## От геометрии к алгебре

Пусть многогранник задан в виде  $\{\mathbf{x} \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i \ \langle \mathbf{a}_j, \mathbf{x} \rangle \leq b_j, \ \langle \mathbf{a}_k, \mathbf{x} \rangle \geq b_k \}.$ 

### Теорема

Пусть  $\mathbf{x} \in \mathbb{R}^n$  и  $I = \{i \mid \langle \mathbf{a}_i, \mathbf{x} \rangle = b_i\}$  — индексы активных ограничений. Тогда следующие утверждения эквивалентны

- 1. Найдётся n линейно независимых векторов в множестве  $\{\mathbf{a}_i \mid i \in I\}$
- 2. Они образуют базис в  $\mathbb{R}^n$
- 3. Система  $\langle \mathbf{a}_i, \mathbf{x} \rangle = b_i, \; i \in I$  имеет единственное решение

### Доказательство

- lacktriangle  $1\Leftrightarrow 2$  очевидно из линейной алгебры
- ▶  $2 \Rightarrow 3$ : если два решения  ${\bf x}_1$  и  ${\bf x}_2$ , то  ${\bf d} = {\bf x}_1 {\bf x}_2$  ортогонален всем  ${\bf a}_i$ , противоречие
- $3 \Rightarrow 2$ : если не базис, то возьмём  ${\bf d}$  ортогональный подпространству для  ${\bf a}_i$ , тогда из любого решения  ${\bf x}^*$  получим другое решение  ${\bf x}^*+{\bf d}$

### Ещё одно определение

#### Базисное решение

Пусть P задан ограничениями равенствами и неравенствами и  $\mathbf{x} \in \mathbb{R}^n$ . Тогда

- $ightharpoonup {f x}$  базисное решение, если все ограничения равенства активны и среди всех активных ограничений n линейно независимых
- ▶ x базисное допустимое решение, если оно базисное и удовлетворяет всем ограничениям

# Эквивалентность определений

### Теорема

Пусть P многогранник и пусть  $\mathbf{x} \in P$ . Тогда следующие факты об  $\mathbf{x}$  эквивалентны

- 1. x вершина
- $2. \ \mathbf{x}$  крайняя точка
- 3.  $\mathbf{x}$  базовое допустимое решение

# Многогранник в стандартной форме

Уточним результаты для  $P=\{{f x}\mid {f A}{f x}={f b},\; {f x}\geq 0\}$ , где строки матрицы  ${f A}$  линейно независимы.

### Теорема

Вектор  ${\bf x}$  базисное решение тогда и только тогда, когда  ${\bf A}{\bf x}={\bf b}$  и найдутся индексы  $B(1),\dots,B(m)$  такие что

- lacktriangle столбцы  ${f A}_{B(1)},\ldots,{f A}_{B(m)}$  линейно независимы
- ▶ Если  $i \not\in \{B(1), \ldots, B(m)\}$  то  $x_i = 0$ .

## Вырожденное базовое решение

#### Определение

Пусть  $P=\{{f x}\mid {f A}{f x}={f b},\ {f x}\geq 0\}$  и  ${f x}$  базовое решение. Тогда оно вырождено, если больше n-m его элементов нули.

## Существование крайней точки

#### Теорема

Пусть многоугольник задан в виде  $\{\mathbf{x} \mid \mathbf{A}\mathbf{x} \geq \mathbf{b}\}$ . Тогда следующие утверждения эквивалентны

- ightharpoonup у P есть хотя бы одна крайняя точка
- Р не содержит прямой
- lacktriangle найдётся n линейно независимых векторов  ${f a}_1,\dots,{f a}_m.$

#### Следствие

Любой ограниченный многоугольник и любой многоугольник в стандартной форме имеют крайнюю точку.

### Оптимальность крайней точки

#### Теорема

Если многоугольник имеет хотя бы одну крайнюю точку, а задача линейного программирования имеет решение, тогда это решение в крайней точки.

#### Доказательство

- $lackbox{ }$  Множество решений  $Q = \{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{x} \geq 0, \langle \mathbf{c}, \mathbf{x} \rangle = c^* \}$  многогранник
- $\triangleright Q \subset P$
- ightharpoonup P имеет крайнюю точку, значит и в Q она есть
- lacktriangle Пусть  ${f x}^*$  крайняя точка в Q, тогда она крайняя для P
- ▶ Если это не так, то найдутся точки  $\mathbf{y}, \mathbf{z} \in P$  такие что  $\mathbf{x}^* = \alpha \mathbf{y} + (1 \alpha) \mathbf{z}, \ \alpha \in [0, 1]$
- $c^* = \langle \mathbf{c}, \mathbf{x}^* \rangle = \alpha \langle \mathbf{c}, \mathbf{y} \rangle + (1 \alpha) \langle \mathbf{c}, \mathbf{z} \rangle$ , также  $\langle \mathbf{c}, \mathbf{y} \rangle \geq c^*$  и  $\langle \mathbf{c}, \mathbf{z} \rangle \geq c^*$
- $ightharpoonup \langle \mathbf{c}, \mathbf{z} \rangle = \langle \mathbf{c}, \mathbf{y} \rangle = c^* \text{ in } \mathbf{z}, \mathbf{y} \in Q$
- lacktriangle Противоречие с тем, что  ${f x}^*$  крайняя точка в Q

### История исследования задачи

- Разработка методики применения линейного программирования в экономике (Л.В. Канторович, 1930-ые гг.)
- ▶ Симплекс-метод (Дж. Данциг, 1949 г.)
- Доказана полиномиальность задачи линейного программирования (Л. Хачиян, 1979)
- Первый практически полезный полиномиальный алгоритм (Н. Кармаркар, 1984)

### Симплекс-метод: идея

- Найти некоторую базовую допустимую точку
- ▶ Перейти в сопряжённую угловую точку так, чтобы целевая функция уменьшилась
- ▶ Проверить, есть ли сопряжённые точки, в которых значение целевой функции меньше

## Симплекс-метод: формулировка

Дана крайняя точка  $\mathbf x$ , матрица базиса  $\mathbf B$  и множество индексов  $\mathcal B$ .

- 1. Вычислить оценки замещения  $\overline{c}_j = c_j c_{\mathcal{B}}^{\top} \mathbf{B}^{-1} \mathbf{A}_j$  для всех  $j \notin \mathcal{B}$ .
  - lacktriangle если  $\overline{c}_j \geq 0$  для всех j, то текущее значение является оптимальным и уменьшить целевую функцию нельзя
  - lacktriangle иначе выбрать индекс  $j^*$ , для которого  $\overline{c}_{j^*} < 0$
- 2. Вычислить  ${\bf u} = {\bf B}^{-1} {\bf A}_{i^*}$ 
  - lacktriangle если все компоненты  ${f u}$  неположительны, то задача неограничена, оптимальное значение равно  $-\infty$
  - ▶ если есть положительные компоненты, то

$$\theta^* = \min_{\{i|u_i>0\}} \frac{x_{\mathcal{B}(i)}}{u_i}$$

3. Пусть  $\ell$  такой индекс, что  $\theta^*=\frac{x_{\mathcal{B}(\ell)}}{u_\ell}$ . Новая матрица базиса  $\hat{\mathbf{B}}$  — замена столбца  $\mathbf{A}_{\mathcal{B}(\ell)}$  на столбец  $\mathbf{A}_{j^*}$ . Новая крайняя точка  $\hat{\mathbf{x}}$   $\hat{x}_{i^*}=\theta^*$ 

$$\hat{x}_{j^*} = heta$$
  $\hat{x}_{\mathcal{B}(k)} = x_{\mathcal{B}(k)} - heta^* u_k,$  если  $k 
eq \ell$ 

#### Условие оптимальности

### Теорема

Пусть  ${\bf x}$  — базовое допустимое решение, которому соответствует матрица базиса  ${\bf B}$  и оценки замещения  $\bar{{\bf c}}$ . Тогда если  $\bar{{\bf c}} \geq 0$ , то  ${\bf x}$  решение.

#### Доказательство

- 1. Пусть  ${f y}$  некоторое допустимое решение, тогда  ${f d}={f y}-{f x}$  и  ${f A}{f d}=0$
- 2. Можно переписать в виде  $\mathbf{Bd_B} + \sum\limits_{i \in N} \mathbf{A}_i d_i = 0$
- 3. Откуда следует  $\mathbf{d_B} = -\sum\limits_{i \in N} \mathbf{B}^{-1} \mathbf{A}_i d_i$
- 4. Вместе с тем  $\langle \mathbf{c}, \mathbf{d} \rangle = \langle \mathbf{c_B}, \mathbf{d_B} \rangle + \sum_{i \in N} c_i d_i = \sum_{i \in N} (c_i \langle \mathbf{c_B}, \mathbf{B}^{-1} \mathbf{A}_i \rangle) d_i = \sum_{i \in N} \bar{c}_i d_i > 0$

## Двухфазный симплекс-метод

Q: как найти начальную базовую допустимую точку?

$$\min y_1 + \ldots + y_m$$
s.t.  $\mathbf{Az} + \mathbf{y} = \mathbf{b}$ 

$$\mathbf{z} \ge 0; \ \mathbf{y} \ge 0$$

- ▶ Начальная точка z = 0, y = b
- ightharpoonup Если оптимальное значение целевой функции равно нулю, то  ${f z}^*$  начальное базовое допустимое решение
- ▶ Иначе, допустимое множество пусто

# Экспоненциальная сложность симплекс-метода

### Пример Klee-Minty

$$\max 2^{n-1}x_1 + \ldots + 2x_{n-1} + x_n$$
s.t.  $x_1 \le 5$ 

$$4x_1 + x_2 \le 25$$

$$\ldots$$

$$2^n x_1 + 2^{n-1}x_2 + \ldots + x_n \le 5^n$$

$$\mathbf{x} \ge 0$$

- $\mathbf{x}_0 = 0$
- ▶  $2^{n} 1$  вершин экспоненциально много!

Как получить полиномиальный метод?

# Как получить полиномиальный метод?

- ▶ Приближаться к нужной вершине изнутри множества
- Одна итерация по сложности сравнима с методом Ньютона
- Очень быстрая сходимость
- Подробности на последней лекции про методы внутренней точки

#### Резюме

- Постановки и преобразования задач линейного программирования
- Свойства допустимого множества
- Симплекс-метод и его свойства