Deep Learning for COMP6714 - Part I

Wei Wang @ CSE, UNSW

October 8, 2018

Outline

- ML basics
- Feed forward Network

Problem Definition

The standard *supervised* classification/regression setting:

- Input:
 - Labelled data: $\{\mathbf{x}_{(i)}, y_{(i)}\}_{i \in [n]}$
 - Can be deemed as [X, y], i.e., *Data Matrix* consisting of training samples, and the corresponding *Class Labels*.
 - Domain of $y_{(i)}$
 - Binary classification: $y_{(i)} \in \{-1, 1\}$, or $\{0, 1\}$.
 - |C|-class classification: $y_{(i)} \in \{0, 1, \dots, |C| 1\}$.
 - Regression: $y_{(i)} \in \mathbb{R}$.
- Output: a function/mapping (typically within a function class) from dom x → dom y such that some loss function is minimized.
- Assumption:
 - Training and test data are drawn i.i.d. from the same (unknown) distribution (defined over dom X × dom y).

Key Concepts

Ultimate goal:

• Generalization error: Errors (of the model) on unseen data

How to approximate it?

- Labelled datasets are divided into two/three subsets.
 - Training data:
 - (Optional) Development/validation data:
 - Test data:
- Use the errors on the test data

How to train a model?

- Minimize the loss function on the training data
- (Optionally) also considering some regularization measures.
 - To prevent overfitting

Loss Functions

Used to

- Characterize how bad a prediction is, compared with the ground truth.
- An important tuning knob: tradeoff of prediction accuracies among training examples.

Commonly Used Loss Functions

Loss functions
$$L(\{\hat{\mathbf{y}}_1, \hat{\mathbf{y}}_2, \dots, \hat{\mathbf{y}}_n\}, \{\mathbf{t}_1, \mathbf{t}_2, \dots, \mathbf{t}_n\})$$
: Typically, $L = \sum_{i=1}^n \ell(\hat{\mathbf{y}}_i, \mathbf{t}_i)$

- Classification:
 - Cross entropy-loss: $\ell(\hat{\mathbf{p}}, \mathbf{t}) = \sum_{j=1}^{|C|} t_j \log(\hat{p_j})$
 - For hard classification problems, it is just $-\log(\hat{p_{j^*}})$, where j^* is the correct class.
 - Exercise: write out the loss function for (hard) binary classification problems.
- Regression:
 - MSE (Mean Squared Error): $\ell(\hat{\mathbf{y}}, \mathbf{t}) = \frac{1}{2} ||\hat{\mathbf{y}} \mathbf{t}||^2$

(Traditional) Machine Learning vs. Deep Learning

- ML: Features are defined/engineered.
- DL: Features are learned in an end-to-end fashion.

Examples

OCR

- ML: define *invariant* features. E.g., number of circles, number of (almost) horizontal strokes, . . .
 - Even with such features, usually a powerful (non-linear) model need to be used (e.g., SVM with non-linear kernels).
- DL: features are learned in a hierarchical fashion automatically by the model.
 - The final classifier is in fact a simple softmax classifier (i.e., a linear classifier).

Feed Forward Network / Multilayer Perceptron (MLP)

Concepts:

- Neurons
- Input / hidden / output layers
- Activitation function

NN with Multiple Hidden Layers

NN with One Hidden Layer and Biases

•
$$\mathbf{a}_n = \sigma_n(\underbrace{\mathbf{W}_n \mathbf{a}_{n-1} + \mathbf{b}_n}_{\mathbf{z}_n})$$

- $\mathbf{y} = \mathbf{a}_n$ and $\mathbf{x} = \mathbf{a}_1$
- σ_ns are typically non-linear functions, applied element-wise to the input vector.

Non-linearalities /1

- sigmoid (aka. logistic): $\sigma(z) = \frac{1}{1 + \exp(-z)}$
 - Special case of $\operatorname{Softmax}([z,0])$, where $\operatorname{Softmax}([z_1,z_2,\ldots,z_m]) = [\frac{\exp(z_1)}{Z},\frac{\exp(z_2)}{Z},\ldots,\frac{\exp(z_m)}{Z}]$
 - Intuition:
 - Squashing \mathbb{R} to [0,1], and differentiable every where.
 - A smooth approximation of the step function.
 - $\sigma'(z) = \sigma(z)(1 \sigma(z))$

Logit and Logistic Functions

Recall that $\operatorname{logit}(p) = \log \frac{p}{1-p}$. It follows that

$$logit(p) = z \iff logistic(z) = p$$

Non-linearalities /2

- tanh: $tanh(z) = \frac{exp(z) exp(-z)}{exp(z) + exp(-z)}$
 - It is a rescaled sigmoid: $tanh(z) = 2\sigma(2z) 1$
 - Squashing \mathbb{R} to [-1,1], and differentiable every where.
 - $\tanh'(z) = 1 \tanh^2(z)$
- ReLU (Rectified linear unit): ReLU(z) = max(0, z).
 - Inexpensive to calculate derivatives, and alleviates gradient vanishing problems. Hence, popular for DL models.
 - There exist many slight variants.
 - $\operatorname{ReLU}'(z) = \begin{cases} z & \text{, if } z \geq = 0 \\ 0 & \text{, otherwise.} \end{cases}$

Illustration of Non-linearalities

Forward Computation

Notations: $\mathbf{w}_{i \to j}^{[I]}$: the weight on the edge from the *i*-th neuron in layer I-1 to the *j*-th neuron in layer I.

Things to ponder:

- Which weights influence $z_1^{[2]}$?
- What's the impact to y if x_1 increases by a tiny amount ϵ ?

Function Approximation

- ANN can well approximate any function (despite potentially huge size requirement)
- Learning: find $\theta^* = \arg\min_{\theta} \sum_{i} \ell(\mathbf{y}_i, \mathbf{t}_i)$, where $\mathbf{y}_i = f(\mathbf{x}_i; \theta)$

Function Minimization

- Typically, NP-hard to minimize a general function.
- However, we can find a good-quality local minima instead of the global minimum.
- Gradient Descent:
 - Start at a random x.
 - ② Approximate a tiny neighborhood around x using a linear function
 - Based on this approximation, find the best direction to move x within the tiny neighborhood. Then, goto Step 2.
- Extending Taylor series to functions with vector input.

$$f(\mathbf{x}_0 + \epsilon) \approx f(\mathbf{x}_0) + f'(\mathbf{x}_0)\epsilon$$

 $f(\mathbf{x}_0 + \epsilon) \approx f(\mathbf{x}_0) + \langle \nabla f(\mathbf{x}_0), \epsilon \rangle$

Which ϵ can minimize $f(\mathbf{x}_0 + \epsilon)$ subject to $\|\epsilon\| \le$ some small constant?

Illustration of GD

Variants of GD

Gradient descent (GD):

$$\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} - \alpha \cdot \nabla_L(\boldsymbol{\theta}^{(t)})$$

- Stochastic gradient descent (SGD):
 - $\nabla_L(\theta)$ is evaluated only on a randomly chosen training sample.
 - Inexpensive to compute the ∇ , but bringing in much variance.
- Mini batch SGD:
 - $\nabla_L(\theta)$ is evaluated only on a mini-batch of training sample.
 - Tuning minibatach sizes may achieve good results.
- SGD with momentum:
 - ullet Think of the gradient as the velocity, and ullet as the position. Then this method keeps a portion of the last velocity value together with new gradient.
 - Helps to get over some difficult regions quickly (e.g., avoid too much oscillation).

Derivative

Let
$$y(x, a) = \sin(a \cdot x + 3 \exp(x))$$
. Compute $\frac{\partial y}{\partial x}$.

•
$$\frac{\partial y}{\partial x} =$$

Rewrite y in a verbose manner:

- $y = \sin(z_1)$
- $z_1 = z_2 + 3z_3$
- $z_2 = a \cdot x$
- $z_3 = 3 \exp(x)$

Then:

$$\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z_1} \frac{\partial z_1}{\partial x}$$

$$\frac{\partial z_1}{\partial x} = \frac{\partial z_2}{\partial x} + 3\frac{\partial z_3}{\partial x}$$

Rules

Important rules about (partial) derivatives (useful for NN):

- Chain rule: $\frac{\partial y}{\partial x} = \frac{\partial y}{\partial z_1} \frac{\partial z_1}{\partial z_2} \dots \frac{\partial z_k}{\partial x}$
- Sum rule: $\frac{\partial(z_1+z_2)}{\partial x} = \frac{\partial z_1}{\partial x} + \frac{\partial z_2}{\partial x}$

These rules still hold for functions with vector/matrix input(s). Note:

- We require that $\frac{\partial y}{\partial x}$ has the same shape as x.
- We can use this as a cue to work out which term needs a transposition.

Computational Graph

$$y(x, a) = \sin(a \cdot x + 3\exp(x))$$

Baby Network

Model:

- For single $\mathbf{x} \in \mathbb{R}^d$: $\mathbf{v} = \mathbf{W}\mathbf{x} + \mathbf{b}$
- For many **x**s: $y = \mathbf{xW} + \mathbf{b}$
- not the same x, W above

Shapes:

- y is a scalar
- **x** is a row vector, $\mathbb{R}^{1 \times d}$ (d = 3 here)
- W is a matrix, $\mathbb{R}^{d\times 1}$
- b (plot as x_0) is a scalar

Input layer Output layer

Simplifying the Bias Terms

Model:

- Extend **x** to \mathbb{R}^{d+1} and let $x_0 := 1$.
- y = xW
- i.e., $y = \sum_{i=0}^{d} x_i W_{i1}$. Therefore, W_{01} is the bias term.

Shapes:

- y is a scalar
- **x** is a row vector, $\mathbb{R}^{1 \times (d+1)}$ (d=3 here)
- **W** is a matrix. $\mathbb{R}^{(d+1)\times 1}$

Input layer Output layer

Add the Non-linear Transformation

Model:

- For simplicity, ignore the bias terms from now on in this lecture only.
- $y = \sigma(\underbrace{\mathbf{W}\mathbf{x}}_{\mathbf{z}})$
- Let σ be the sigmoid function, then $\sigma'(u) =$

Shapes:

Exercise:

• $\frac{\partial y}{\partial \mathbf{W}} =$

Figure: NN1

Add the Loss Function

Model:

 $I = \ell(\sigma(\underbrace{\mathbf{W}\mathbf{x}}_{Z}), t)$

• $\ell(u, v) = \frac{1}{2}(u - v)^2$

Exercise:

$$\bullet \ \frac{\partial I}{\partial \mathbf{W}} = \frac{\partial I}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial \mathbf{W}} =$$

Vectorized Version

Model:

$$\bullet \ \ \textit{I} = \ell(\sigma(\underbrace{\textbf{WX}}_{\textbf{z}}), \textbf{t})$$

•
$$\ell(\mathbf{u}, \mathbf{v}) = \frac{1}{2} \|\mathbf{u} - \mathbf{v}\|^2$$

Exercise:

$$\bullet \ \frac{\partial I}{\partial \mathbf{W}} = \frac{\partial I}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial \mathbf{W}} =$$

Computational Graph

Model:

$$\bullet \ \mathit{I} = \ell(\sigma(\underbrace{\mathsf{WX}}_{\mathsf{z}}), \mathsf{t})$$

• $\ell(\mathbf{u}, \mathbf{v}) = \frac{1}{2} \|\mathbf{u} - \mathbf{v}\|^2$

Exercise:

•
$$\frac{\partial I}{\partial \mathbf{W}} = \frac{\partial I}{\partial y} \cdot \frac{\partial y}{\partial z} \cdot \frac{\partial z}{\partial \mathbf{W}} =$$

Figure: NN2

Model Learning

- Backpropagation (BP) is the prevalent training method for NNs.
 - Forward pass/propagation
 - Backward pass/propagation
- Supported by Autograd modules in most DL frameworks by building the computational graph (explicitly or implicitly).

Forward Propagation

Backward Propagation /1

Define $\delta^{(l)} := \frac{\partial \ell}{\partial \mathbf{z}^{(l)}}$; intuitively, meaning "how much each $\mathbf{z}_i^{(l)}$ needs to move".

- ullet For a non-final layer: $oldsymbol{\delta}^{(l)} = \left((\mathbf{W}^{(l+1)})^{ op} oldsymbol{\delta}^{(l+1)}
 ight) \ * \ \sigma'(\mathbf{z}^{(l)})$
- For the final layer: $\delta^{(I)}$ can be calculated directly (by chain rules).

Backward Propagation /2

 $\frac{\partial \ell}{\partial \mathbf{W}^{(l)}}$ can be easily obtained from $\boldsymbol{\delta}^{(l)}$ as: $\boldsymbol{\delta}^{(l)}(\mathbf{a}^{l-1})^{\top}$.

References

TBA