Distributed Systems 600.417

Intrusion-Tolerant Networks

Department of Computer Science
The Johns Hopkins University

Y. Amir Fall 19 / Lecture 9

First, Some Context...

- You've just heard about Intrusion-Tolerant State Machine Replication (e.g. Prime)
- So, now we know how to build systems that continue to work correctly, even if some of the replicas are compromised
- We can use diversity and proactive recovery to help the system survive for a long time
- But, those replicas still need to communicate!

Protecting Network Communication

- The Internet is becoming increasingly important to our society
 - Critical infrastructure, global clouds, financial systems, government, ...
- People have been trying to prevent attacks for years
 - Firewalls, Intrusion Detection and Prevention Systems
- Security standards in different layers
 - IPsec, TLS/SSL, and others protect communication
 - BGPsec, DNSsec These contain some good ideas, but aren't widely accepted (yet)
- But, none of these address the vulnerability to intrusions
 - Malicious attacks are becoming more prevalent and sophisticated
 - Therefore: constructing networks that are resilient to the point of intrusion tolerance is crucial – networks that work even if part of them is compromised – under the control of a sophisticated adversary

Y. Amir Fall 19 / Lecture 9

IP Networks Are Vulnerable

- IP networks are efficient, but based on trust
 - Internet routing is susceptible to routing attacks (BGP hijacking)
 - Compromises in the network can completely disrupt communication
- IP networks are scalable, but fragile
 - Single IP networks are susceptible to failures, attacks, and misconfigurations
 - Sophisticated DDoS attacks (Crossfire) can severely degrade QoS of targeted Internet flows

Intrusion-Tolerant Networks Goals

- Support critical infrastructure (power grid, clouds)
 - Requires strong data delivery semantics
 - · Guaranteed Timeliness vs. Guaranteed Reliability
- Performance guarantees under attack
- · Always available
 - No downtime incurred when detecting/finding intrusions
 - No hiccups when adversary launches an attack
 - No startup costs or high delay
- · Optimal intrusion tolerance
- Willing to pay for these properties (for some important messages)

Y. Amir Fall 19 / Lecture 9

Intrusion-Tolerant Networks (more details)

- · Any node can be a source
- Any node can be compromised
- Compromised nodes may be undetectable
 - · Cannot prefer one node's traffic over another's
 - Risk of favoring compromised nodes and starving correct sources' traffic
- Different applications need different messaging semantics (e.g. timely vs. reliable)
- Requires cryptographic mechanisms for authentication and integrity

Intrusion-Tolerant Network Approaches

- · On-Demand Secure Byzantine Routing
- · Authenticated Adversarial Routing
- Network Layer Protocols with Byzantine Robustness (Perlman)
- SCION
- SCION/SIBRA
- Practical Intrusion-Tolerant Networks (Spines)

Y. Amir Fall 19 / Lecture 9

Intrusion-Tolerant Network Approaches

- · On-Demand Secure Byzantine Routing
- Authenticated Adversarial Routing
- Network Layer Protocols with Byzantine Robustness (Perlman)
- SCION
- SCION/SIBRA
- Practical Intrusion-Tolerant Networks (Spines)

On-Demand Secure Byzantine Routing (AHNR2002, ACHN+2008)

- Discovers potential paths by flooding a ping-type message across the network
- Uses source-based routing to specify that path on the data messages
- Uses layers of encryption to obfuscate messages
- If there is a problem, can probe along the path to find the problematic link, remove it, and try again
- Eventually, all bad links are removed and messages are sent along the shortest remaining path (optimal)

Y. Amir Fall 19 / Lecture 9

On-Demand Secure Byzantine Routing

- Probing takes time, during which you may not get any messages
- An adversary can choose when you will experience this downtime

Intrusion-Tolerant Network Approaches

- On-Demand Secure Byzantine Routing
- Authenticated Adversarial Routing
- Network Layer Protocols with Byzantine Robustness (Perlman)
- SCION
- SCION/SIBRA
- Practical Intrusion-Tolerant Networks (Spines)

Y. Amir Fall 19 / Lecture 9

The Slide Protocol (building block) (AGR1992)

- Also called gravitational flow
- · Source "pumps" in messages, destination is a "sink"
- Messages flow across the network (like water), moving from high-pressure to low-pressure nodes
- On each link, a process sends on a link if the other side of that link has fewer messages (lower pressure)
- Once enough messages have been sent, some must arrive at the destination

Authenticated Adversarial Routing (ABO2009)

- Uses the Slide protocol as a building block
- Adds cryptography
 - For every message sent, need a signed receipt
- If enough messages have been pumped in, but no messages arrive at destination, there is a problem
 - Stop system temporarily
 - Audit to detect bad node, tracking receipts for every message in the network
- Eventually optimal (one in, one out)
- Requires n³ messages to start up! Auditing takes n⁴!

. Amir Fall 19 / Lecture 9

Intrusion-Tolerant Network Approaches

- · On-Demand Secure Byzantine Routing
- Authenticated Adversarial Routing
- Network Layer Protocols with Byzantine Robustness (Perlman)
- SCION
- SCION/SIBRA
- Practical Intrusion-Tolerant Networks (Spines)

Network Layer Protocols with Byzantine Robustness

- Radia Perlman's Ph.D. Thesis MIT 1989
- One of the first works to consider how to route packets in the presence of Byzantine faults
- Goal: disseminate link-state routing updates in a network with potentially compromised routers
 - Addresses Byzantine forwarding nodes
 - First to address Byzantine source nodes
- Requires changes to the network infrastructure

Y. Amir Fall 19 / Lecture 9

Network Layer Protocols with Byzantine Robustness

- All messages are signed and verified using public-key cryptography
 - Routers cannot impersonate other routers
- Routers maintain space for the most recent message from each router
- Messages are flooded across the network in round-robin fashion
 - Optimal resiliency for delivery
 - Network fairness
- Overtaken-by-event semantics
 - Data freshness

Network Layer Protocols with Byzantine Robustness

- Meant for routing updates, not data
- No way to provide data delivery semantics needed by applications
 - Reliable delivery only works if routers wait "long-enough" for messages to reach the destination before issuing the next message
 - Applications do not always want their most recent messages to be preferred
- Pre-allocated memory and bandwidth
 - Protects against Byzantine faults, but...
 - No router gets more than ¹/_n of the bandwidth on each link
 - We want better (optimal) network utilization
- Not practical requires changes to network Infrastructure (IP)

Y. Amir Fall 19 / Lecture 9

Intrusion-Tolerant Network Approaches

- · On-Demand Secure Byzantine Routing
- · Authenticated Adversarial Routing
- Network Layer Protocols with Byzantine Robustness (Perlman)
- SCION
- SCION/SIBRA
- Practical Intrusion-Tolerant Networks (Spines)

SCION (ZHHC+2011)

- Clean-slate Internet architecture aiming to secure and protect Internet routing
 - Organize Autonomous Systems (ASes) into Isolation Domains (ISDs) based on policies (e.g., geographic boundaries)
 - Setup ISDs in hierarchical tree, with few trusted core ASes at the root that are common to all path selections (routing)
 - Source/destination jointly setup several end-to-end paths through the tree that only communicate along secure ISDs
- Requires coordination and cooperation of ISPs and ASes at the IP level, creating practical barriers to deployment
 - Incremental deployment is possible can connect SCION-enabled ISPs with IP tunnels (similar to the MBone)
- Vulnerable to resource consumption attacks
 - Compromised end hosts and compromised ASes

Y. Amir Fall 19 / Lecture 9

SCION/SIBRA

(BRSP+2016)

- Recent extension to SCION
- Designed to defeat resource consumption attacks
 - Contractual resource reservation scheme based on AS policies
 - Neighboring ASes establish bandwidth contracts between them, reserving bandwidth for long-term and short-term flows
 - Flows are continuously monitored, and flows violating their contracts are detected, reported, and throttled
- Scalable and efficient almost no overhead imposed on routers for data plane traffic
- Significant practical barriers to deployment
 - ISPs require direct connections to setup and enforce contracts
 - Unlike SCION, incremental deployment is not feasible need a contiguous end-to-end path of SIBRA-enabled ISPs

Intrusion-Tolerant Network Approaches

- · On-Demand Secure Byzantine Routing
- · Authenticated Adversarial Routing
- Network Layer Protocols with Byzantine Robustness (Perlman)
- SCION
- SCION/SIBRA
- Practical Intrusion-Tolerant Networks (Spines)

Y. Amir Fall 19 / Lecture 9 2

Overlay Approach: Resilient Network Architecture [OTBS+2016] Underlying IP Networks • Leverage existing IP network infrastructure

- Sits on multiple IP networks
 - Provide necessary resiliency and timeliness for intrusion tolerance
 - Programmability in the middle of the network

Resilient Overlay Construction

- Resiliency at the overlay level via redundancy
- Place overlay nodes in well-provisioned data centers
- Carefully create overlay edges between overlay nodes
 - Leverage available ISP backbone maps
 - Connect overlay nodes with predictable Internet routing between them to ensure high likelihood of disjoint overlay topology

Diverse Network Providers

- With only one ISP under the overlay, a major problem can bring down the entire overlay
- Assigning diverse ISP variants is more resilient

Y. Amir Fall 19 / Lecture 9

24

Multihoming

- Simultaneously get service from multiple ISPs at each overlay node
 - Overlay link is correct if at least one pair of ISPs can pass messages

Y. Amir Fall 19 / Lecture 9 25

Resilient Network Architecture in Practice

- · Place overlay nodes in well-provisioned data centers
- · Multihoming at each overlay node
- Survive anything short of simultaneous meltdown of multiple underlying ISP backbones!

Attack Resilience: BGP Hijacking

- Malicious advertisements cause BGP to reroute
 - BGP Hijacking has occurred in the wild
- Overcome by Resilient Architecture
 - Traffic that is "on net" will be unaffected

Switching between ISPs happens inside the overlay node; doesn't even use BGP

Y. Amir Fall 19 / Led

Fall 19 / Lecture 9

Attack Resilience: Crossfire DDoS Attack

- Advanced, persistent resource-consumption attack in the underlying physical network
- Overcome by Resilient Architecture
 - Attack must affect many links on many different ISPs to succeed

Y. Amir Fall 19 / Lecture 9

28

Overlay is Susceptible to Compromises

- Resilient Networking Architecture overcomes any attack or compromise in the underlying IP network infrastructure
- But, the overlay itself (just like all networks) is still susceptible to compromises

Intrusion-Tolerant Overlay Network

- Resilient architecture reduces problem to single (albeit hard) issue of tolerating compromises at the overlay level
- Overlays enable new practical solutions that were previously infeasible
 - Programmability
 - Single administrative domain
- Complete solution requires resilient networking architecture combined with intrusion-tolerant overlay

Fairness Example

- Source A is sending at 10 Mbps, Source B at 50 Mbps, Source C at 60 Mbps, and link's capacity is 100 Mbps
- Source A gets all 10 Mbps
- Source B gets 45 out of the 50 Mbps it wants
- Source C gets 45 out of the 60 Mbps it wants

High-Value Applications Require Semantics

- So far, the intrusion-tolerant overlay only provides best-effort message forwarding
- Critical applications require strong messaging semantics
 - Cloud monitoring: real-time stream of updates
 - Cloud control: reliability and consistency
 - SCADA for power grid: 100-200 ms updates
- We provide strong messaging semantics in the presence of compromises

The Problem of Source-Based Fairness in Reliable Communication

 If we used source based fairness, a malicious destination could block a good source

- A sends to C and D, via B
- D is malicious and refuses to acknowledge packets
- A cannot make progress with either C or D (because it's a reliable protocol)

Flow-based Fairness

• Instead, treat each flow separately.

- · The A-D flow becomes blocked
- The A-C flow does not

Cryptographic Protocols

- Network-Wide Authentication
 - Public/Private key pair for each overlay node
 - Each overlay node knows all public keys
 - Source nodes put RSA signature on each message
 - RSA verification of messages at each forwarding node
 - Alternative: EC crypto for low-bandwidth environments
- Hop-by-Hop Authentication
 - Authenticated Diffie-Hellman Key Exchange to establish a shared secret key
 - HMAC using SHA256 on all subsequent messages
- Implemented in Spines using OpenSSL

Y. Amir Fall 19 / Lecture 9 53

Intrusion-Tolerant Network (Spines) Demonstration

- Real time comparison of video channels
 - Local vs. Cross-country and back
 - (ATL to WAS) vs. (ATL to LAX to WAS)
- Compromise at DFW
 - Maliciously injected loss
 - Node goes dark at a point of its choosing
 - Malicious increased delay over time
- Left video: conventional shortest-path routing
- Right video: intrusion-tolerant protocols

- All experiments run on the real cloud no emulation
- · Measured: communication cost, protocols under attack

55

- · All flows experience latency (jagged) close to propagation delay (flat)
- Correct flow is very close to propagation delay because it sends less than its fair share

Y. Amir Fall 19 / Lecture 9 57

Priority Flooding Under Attack

 Timely delivery of highest priority messages within correct flow's fair share is guaranteed

58

Shadow Monitoring System

- Used deployment to carry copy of monitoring messages of the global cloud
 - Status of data centers, network characteristics (e.g. latency, loss), status of cloud clients, etc.
- 10 month deployment
- · Used Priority K-Paths and Priority Flooding
- Validates intrusion-tolerant network
 - Messages were equally as timely with intrusiontolerant guarantees (for a higher tunable cost)

Y. Amir Fall 19 / Lecture 9 65

Summary

- An overlay-based practical solution for intrusion-tolerant networking
- Expensive, but complete solution for highvalue applications
- Validated on a global scale
- Open-Source implementation available in Spines overlay messaging framework – www.spines.org

References

- [AHNR2002] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens. "An on-demand secure routing protocol resilient to Byzantine failures," in Proc. 1st ACM Workshop on Wireless Security, 2002, pp. 21-30.
- [ACHN+2008] B. Awerbuch, R. Curtmola, D. Holmer, C. Nita-Rotaru, and H. Rubens, "ODSBR: An on-demand secure byzantine resilient routing protocol for wireless ad hoc networks," ACM Trans. Information and Syst. Security, vol. 10, no. 4, pp. 6:1–6:35, Jan. 2008.
- [AGR1992] Y. Afek, E. Gafni, and A. Rosén. "The slide mechanism with applications in dynamic networks." In Proc. 11th ACM symposium on Principles of Distributed Computing (PODC), 1992.
- [ABO2009] Y. Amir, P. Bunn, and R. Ostrovsky, "Authenticated adversarial routing," in Proc. 6th Theory of Cryptography Conf (TCC), 2009, pp. 163–182.
- R. Perlman, "Network layer protocols with Byzantine robustness," Ph.D. dissertation, Massachusetts Institute of Technology, 1989.
- [ZHHC+2011] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. Andersen, "SCION: Scalability, control, and isolation on next-generation networks," in IEEE Symp. Security and Privacy (SP), May 2011, pp. 212–227.
- [BRSP+2016] C. Basescu, R. Reischuk, P. Szalachowski, A. Perrig, Y. Zhang, H Hsiao, A. Kubota, and J. Urakawa. "SIBRA: Scalable Internet Bandwidth Reservation Architecture," To appear in Proc. of NDSS 2016.
- [OTBS+2016] D. Obenshain, T. Tantillo, A. Babay, J. Schultz, A. Newell, M. Hoque, Y. Amir, C. Nita-Rotaru. "Practical Intrusion-Tolerant Networks," In Proc. of IEEE International Conference on Distributed Computing Systems (ICDCS), June 2016, pp. 45-56.