Resumen MD2 Filmina 1

Lautaro Bachmann

Contents

Grafos .		2
grafe		2
Nota	iones	2
Sub	afos	2
Veci	os de un vértice	3
Grad	o de un vértice	3
У		3
Cícli	os y completos	3
Con	onentes conexas	4
Graf	s conexos	4
$\mathrm{Det}\epsilon$	minación de las componentes conexas	5
DFS y BI	8	5
		5
		6
		6
		6
		6
	lando (G)	7
		7
		7
` ′	0 0	8
0		8

Grafos

grafo

es un par ordenado G = (V, E) donde

 ${\bf V}$ es un conjunto cualquiera.

En esta materia siempre supondremos V finito.

E es un subconjunto del conjunto de subconjuntos de 2 elementos de V.

es decir $E \subseteq \{A \subseteq V : |A| = 2\}$

Notaciones

elementos de V

elementos de E

cantidad de elementos de V,

cantidad de elementos de E,

Un elemento $\{x, y\} \in E$

Subgrafos

Dado un grafo G = (V, E), un **subgrafo** de G es un **grafo** H = (W, F) tal que $W \subseteq V$ y $F \subseteq E$.

Observemos que pedimos que H sea en si mismo un grafo. No cualquier par $(W,\,F)$ con $W\subseteq V$ y $F\subseteq E$ será un subgrafo

Vecinos de un vértice

Dado $x \in V$, los vértices que forman un lado con x se llaman los **vécinos** \in de x. El conjunto de vécinos se llama el

"vecindario"

```
y se denota por \Gamma(x).
```

Es decir
$$\Gamma(x) = \{ y \in V : xy \in E \}$$

Grado de un vértice

La cardinalidad de $\Gamma(x)$ se llama el **grado** de x, y la denotaremos por d(x) (o dG(x)

WARNING:

en algunos libros se denota usando la letra griega delta: (x)

у

El menor de todos los grados

de un grafo lo denotaremos por y al

mayor de todos los grados

```
por .
```

$$= Min\{d(x) : x \in V\} Min\{d(x) \in V\} = Max\{d(x) : x \in V\}$$

Un grafo que tenga = (es decir, todos los grados iguales) se llamará un

grafo regular.

o -regular si queremos especificar el grado común a todos los vértices.

Cíclicos y completos

grafo cíclico

```
en n vértices, (n > 3) denotado por Cn, es el grafo:
```

$$\{x1, ..., xn\}$$
 y lados $\{x1x2, x2x3, ..., xn - 1xn, xnx1\}$).

grafo completo

en n vértices, denotado por Kn, es el grafo:

$$\{x1, ..., xn\}$$
 y lados $\{xixj : i, j \in \{1, 2, ..., n\}, i < j\}$

Cn y Kn tienen ambos n vértices, pero Cn tiene n lados mientras que Kn tiene

$$= n(n-1) = n(n-1) 2$$
lados. $= n(n-1) 2$

Cn se llaman cíclicos porque su representación gráfica es un ciclo de n puntos.

 $\mathrm{dCn}(\mathbf{x})=2$ para todo vértice de Cn, mientras que $\mathrm{dKn}(\mathbf{x})=\mathbf{n}-1$ para todo vértice de Kn.

Por lo tanto ambos son grafos regulares.

es 2-regular y Kn es (n-1)-regular).

Componentes conexas

camino

entre 2 vértices x, y es una sucesión de vértices x1, ..., xr tales que:

x1 = x

xr = y. $xixi+1 \in E \ \forall \ i \in \{1, 2, ..., r-1\}$.

"x \sim y sii existe un camino entre x e y"

es una relación de equivalencia.

Por

lo tanto el grafo G se parte en clases de equivalencia de esa relación de equivalencia.

Esas partes se llaman las componentes conexas de G.

componentes conexas

Grafos conexos

Un grafo se dice conexo si tiene una sola componente conexa.

Cn y Kn son conexos.

arbol

es un grafo conexo sin ciclos.

Determinación de las componentes conexas

El algoritmo básico de DFS o BFS lo que hace es, dado un vértice x, encontrar todos los vértices de la componente conexa de x.

algoritmo

```
(abajo en vez de BFS puede usarse DFS)
```

 $\mathrm{Tomar}\ W=\ ,\, i=1.$

Tomar un vértice cualquiera x de V.

Correr BFS(x).

L'Lamarle Ci a la componente conexa que encuentra BFS(x).

Hacer W = W (vértices de Ci).

Si W = V, return C1, C2, ..., Ci.

Si no, hacer i = i + 1, tomar un vértice $x / \in W$ y repetir [3].

DFS y BFS

breve repaso

a partir de un vértice raiz, los algoritmos van buscando nuevos vértices, buscando vecinos de vértices que ya han sido agregados. DFS agrega de a un vécino por vez y usa una pila.

BFS agrega todos los vecinos juntos y usa una cola.

BFS(x):

Crear una cola con x como único elemento.

Tomar $C = \{x\}$. WHILE (la cola no sea vacia)

Tomar p=el primer elemento de la cola. Borrar p de la cola. IF existen vértices de $\Gamma(p)$ que no esten en C:

Agregar todos los elementos de $\Gamma(p)$ que no estén en C a la cola y a C.

ENDWHILE

return C.

DFS(x):

Crear una pila con x como único elemento.

Tomar $C = \{x\}$. WHILE (la pila no sea vacia)

Tomar p=el primer elemento de la pila. IF existe algún vértice de $\Gamma(p)$ que no esté en C:

Tomar un $q \in \Gamma(p) - C \in -Hacer C = C \{q\}$. $\{q\}$. Agregar q a la pila.

ELSE:

Borrar p de la pila.

ENDWHILE

return C.

Complejidad

la complejidad tanto de DFS como de BFS es O(m).

Coloreos propios

Un coloreo (de los vértices) es una función cualquiera $c:V\to S$ donde S es un conjunto finito

Un coloreo es propio si $xy \in E$ $c(x) \neq c(y)$ (extremos con distinto color)

Si la cardinalidad de S es k diremos que el coloreo tiene k colores. En general usaremos $S = \{0, 1, ..., k-1\}$ para denotar los colores.

Un grafo que tiene un coloreo propio con k colores se dice k-coloreable.

número cromático

 $(G) = \min\{k : un coloreo propio con k colores de G\}$

Calculando (G)

Si uno dice que (G) = k, por la definición misma de este número, hay que hacer dos cosas para probarlo:

1 Dar un coloreo propio de G con k colores. (y obviamente probar que es propio).

Esto prueba la parte del " un coloreo propio con k colores de G"

2 Probar que no existe ningún coloreo propio con k-1 colores de G.

Esto prueba que k es el mínimo.

ayuda útil para probar [2]

Si H es un subgrafo de G, entonces $(H) \leq (G)$.

Entonces si encontramos un subgrafo H de G para el cual sepamos que (H) = k habremos probado [2].

prueba por contradicción:

se asume que existe un coloreo propio con k-1 colores y deduciendo cosas, se llega a un absurdo.

Hay 2 problemas

- 1 Llegar al absurdo puede ser bastante dificil, teniendo que contemplar varios casos, pej.
- 2 Para poder hacer la prueba por contradicción, hay que asumir que existe un coloreo propio con k-1 colores.
- Eso significa que uds. NO TIENEN CONTROL sobre ese coloreo. Sólo saben que hay uno, y deben deducir cosas sobre ese coloreo a partir de la estructura del grafo.

(G) para algunos grafos

En general, dado que para cualquier grafo G podemos darle un color distinto a todos los vértices, tenemos la desigualdad $(G) \le n$. (Kn) = n si quieren probar que $r \le (G)$ basta con ver que existe un Kr subgrafo de G. (G) = 1 si y solo si E = asi que para cualquier grafo que tenga al menos un lado, $(G) \ge 2$. (C2r) = 2 pues podemos colorear $c(i) = (i \mod 2)$ con (C2r+1) pues tendriamos que 2r + 1 y 1 tendrían color 1, absurdo pues forman lado. Podemos colorear: $c(i) = (i \mod 2)$ si i < 2r + 1 y c(2r + 1) = 2.

los ciclos impares tienen número cromático igual a 3.

cualquier grafo que tenga como subgrafo a un ciclo impar debe tener número cromático mayor o igual que 3.

Algoritmo de fuerza bruta

simplemente tomar todos los coloreos posibles con los colores $\{0, 1, ..., n-1\}$ y calcular cuales $\{0, -1\}$ de esos coloreo son propios, y ver de entre esos quien tiene la menor cantidad de colores.

Este algoritmo calcula (G) pero:

Hay no posibles coloreos. Chequear que un coloreo es propio es O(m).

el algoritmo tiene complejidad O(nnm) así que no es útil salvo para n muy chicos.

Algoritmo Greedy

El algoritmo Greedy requiere como input no sólo un grafo G sino un **orden** de los vértices.

para extraer el mayor beneficio posible de Greedy conviene poder llamarlo varias veces cambiando el orden.

Idea de Greedy

La idea de Greedy consiste de dos partes:

- 1 Ir coloreando los vértices de G uno por uno, en el orden dado, manteniendo siempre el invariante que el coloreo parcial que se va obteniendo es propio.
- 2 Darle a cada vértice al momento de colorearlo el menor color posible que se le pueda dar manteniendo el invariante de que el coloreo es propio.

Greedy

Input: Grafo G y orden de los vértices x1, x2,, xn.

c(x1)=0 Para i > 1, asumiendo que los vértices x1, x2, . . . , xi - 1 ya han sido coloreados, colorear xi con:

$$c(xi) = min\{k \ge 0 : k \notin c(\{x1, ..., xi - 1\} \Gamma(xi))\}$$

estamos usando la notación usual de $c(A) = \{c(a) : a \in A\}.$

Es decir, xi recibe el menor color que sea distinto del color de todos los vecinos anteriores a xi.

Complejidad de Greedy

la complejidad de Greedy es $O(d(x1) + d(x2) + \cdots + d(xn))$.

Por el lema del apretón de manos que vieron en Discreta I, la suma de todos los grados es igual a 2m.

Por lo tanto la complejidad de Greedy es O(2m) = O(m), polinomial.