

Maschinelles Lernen: Wie funktioniert Q-Learning?

Manuel Barbi

Motivation

DeepMind Technologies:

- gegründet als britisches Start-up in 2010
- übernommen von Google in 2014

Lernen von Atari 2600 Games direkt auf Pixeldaten

- durch Kombination von Q-Learning und Convolutional Neural Networks
- bedeutender Schritt in Richtung General Al
- Entwicklung von Alpha Go

Agenda

Maschinelles Lernen

Q-Learning

Exkurs: Q-Learning mit Neuronalen Netzen

Q-Learning mit Anki Overdrive

Maschinelles Lernen

Supervised Learning:

- Lernen anhand von "beschrifteten" Beispielen
- Bereitstellung von Eingabe-Ausgabe-Paaren (z.B. Bilderkennung)

Unsupervised Learning:

Erkennen von Mustern und Features

Reinforcement Learning:

- Selbständiges Lernen aus Erfahrung
- anhand von Rewards für jede Aktion (teilweise zeitlich verzögert)

Reinforcement Learning

Wird häufig mit der Art verglichen, wie Tiere lernen

Quelle: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto

- Zustandstransition (s, a, r, s')
- Episode $((s_0, a_0, r_1, s_1), (s_1, a_1, r_2, s_2), \dots, (s_{n-1}, a_{n-1}, r_n, s_n))$
- **Ziel:** Maximiere die Summe der Rewards

$$\sum_{t=1}^{n} r_t$$

Reinforcement Learning

- **Rewards:** Direktes Feedback, wie gut eine Aktion war
- Abschätzen einer Value-Funktion:
 - Langfristiger Wert eines Zustandes bzw. Zustands-Aktions-Paar
 - Discounted Rewards als Maß für den Value

$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} = \gamma^0 r_{t+1} + \gamma^1 r_{t+2} + \cdots, \gamma \in [0, 1]$$

- Zustandstransitionen im Allgemeinen stochastisch
- Einfluss von Rewards nimmt ab, je weiter diese in der Zukunft liegen

Reinforcement Learning

- **Policy** π : Definiert die Vorgehensweise des Agenten
 - Abbildung eines Zustandes auf eine Aktion oder Wahrscheinlichkeitsverteilung über Aktionen
 - Üblicherweise wird die Aktion mit dem höchsten Value ausgeführt

Discounted Rewards

$$G_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} =$$
 $\gamma^0 r_{t+1} + \gamma^1 r_{t+2} + \gamma^2 r_{t+3} + \gamma^3 r_{t+4} \dots =$
 $r_{t+1} + \gamma \left(r_{t+2} + \gamma (r_{t+3} + \gamma (r_{t+4} \dots)) \right) =$
 $r_{t+1} + \gamma G_{t+1}$

Agenda

Maschinelles Lernen

Q-Learning

Exkurs: Q-Learning mit Neuronalen Netzen

Q-Learning mit Anki Overdrive

Q-Learning

Modellfreies Reinforcement Learning Verfahren

Nähert iterativ eine Value-Funktion an

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

- Learning-Rate $\alpha \in [0,1]$
- **Discount-Rate** $\gamma \in [0,1]$
- Schätzt den Erwartungswert der zukünftig erreichbaren Rewards eines Zustands-Aktions-Paares (s, a)

Q-Learning

Explore-Exploit-Dilemma

 Folge dem bisher Gelernten um Rewards zu maximieren versus

 Erkunde neue Bereiche, um potenzielle Verbesserungen ausfindig zu machen

ε-Greedy-Policy

- Führe in der Regel Aktion mit höchstem Q-Value aus
- Führe mit Wahrscheinlichkeit $\varepsilon \in [0,1]$ stattdessen eine zufällige Aktion aus

Q-Learning (Ablauf)

- Der Agent nimmt aktuellen Zustand s wahr
- Policy π gibt die nächste Aktion a für Zustand s vor
 - (In der Regel die Aktion mit dem höchsten Value)
- Der Agent führt Aktion a aus, erhält Reward r und befindet sich dann im Folgezustand s'
- Der Agent aktualisiert den Q-Value für das Zustands-Aktions-Paar (s, a)
- Vorgang wird wiederholt bis die Aufgabe erfolgreich gelöst oder gescheitert ist

-100	-1	-1	-1
-100	-1	-100	-1
-100	-1	-1	-1
	-1	-100	# 0 P

	up	right	down	left
(1,1)	0	0		
(1,2)	0	0	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	0	0	0	0
(2,3)	0	0	0	0
(2,4)		0	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		0	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	0		0	0
(4,4)			0	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	-100	-1
-100	-1	-1	-1
४((भगे) ५ / -1	-1	-100	0

Q'((1,1), up)

	up	right	down	left
(1,1)	0	0		
(1,2)	0	0	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	0	0	0	0
(2,3)	0	0	0	0
(2,4)		0	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		0	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	0		0	0
(4,4)			0	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	-100	-1
100	-1	-1	-1
	-1	-100	102

$$Q'((1,1), up) = 0.9 \times 0 + 0.1(-100 + 0.9 \times 0)$$

	up	right	down	left
(1,1)	0	0		
(1,2)	0	0	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	0	0	0	0
(2,3)	0	0	0	0
(2,4)		0	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		0	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	0		0	0
(4,4)			0	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	-100	-1
-100	-1	-1	-1
	-1	-100	4 0 2

$$Q'((1,1), \frac{up}{up}) = 0.9 \times 0 + 0.1(-100 + 0.9 \times 0) = -10$$

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	0	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	0	0	0	0
(2,3)	0	0	0	0
(2,4)		0	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		0	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	0		0	0
(4,4)			0	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times \max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	-100	-1
	-1	-1	-1
-1	-1	-100	() () () () () () () () () ()

$$Q'((1,2),right) = 0.9 \times 0 + 0.1(-1 + 0.9 \times 0) = -0.1$$

1				
	up	right	down	left
(1,1)	-10	0		
(1,2)	0	0	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	0	0	0	0
(2,3)	0	0	0	0
(2,4)		0	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		0	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	0		0	0
(4,4)			0	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	-100	-1
-100		-1	-1
-1	-1	-100	0

$$Q'((2,2),up) = 0.9 \times 0 + 0.1(-1 + 0.9 \times 0) = -0.1$$

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	0	0	0	0
(2,3)	0	0	0	0
(2,4)		0	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		0	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	0		0	0
(4,4)			0	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100		-100	-1
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((2,3), up) = 0.9 \times 0 + 0.1(-1 + 0.9 \times 0) = -0.1$$

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	0	0	0	0
(2,4)		0	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		0	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	0		0	0
(4,4)			0	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100		-1	-1
-100	-1	-100	-1
-100	-1	-1	-1
-1	-1	-100	02

$$Q'((2,4), right) = 0.9 \times 0 + 0.1(-1 + 0.9 \times 0) = -0.1$$

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		0	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		0	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	0		0	0
(4,4)			0	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1		-1
-100	-1	-100	-1
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((3,4), right) = 0.9 \times 0 + 0.1(-1 + 0.9 \times 0) = -0.1$$

	ир	right	down	left
	ир	Hight	down	777777
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		0	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	0		0	0
(4,4)			0	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times \max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	
-100	-1	-100	-1
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((4,4), down) = 0.9 \times 0 + 0.1(-1 + 0.9 \times 0) = -0.1$$

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		-0.1	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	0		0	0
(4,4)			0	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	-100	
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((4,3), up) = 0.9 \times 0 + 0.1(-1 + 0.9 \times 0) = -0.1$$

	up	right	down	left
(1,1)	-10	0		
(', ',				
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		-0.1	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	0		0	0
(4,4)			-0.1	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	
-100	-1	-100	-1
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((4,4),down) = 0.9 \times -0.1 + 0.1(-1 + 0.9 \times 0) = -0.19$$

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		-0.1	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	-0.1		0	0
(4,4)			-0.1	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	-100	
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((4,3), down) = 0.9 \times 0 + 0.1(-1 + 0.9 \times 0) = -0.1$$

	up	right	down	left
	ир	Hight	down	777777
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		-0.1	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	-0.1		0	0
(4,4)			-0.19	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	-100	-1
-100	-1	-1	
-1	-1	-100	0

$$Q'((4,2), up) = 0.9 \times 0 + 0.1(-1 + 0.9 \times 0) = -0.1$$

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		-0.1	0	0
(4,1)				
(4,2)	0		0	0
(4,3)	-0.1		-0.1	0
(4,4)			-0.19	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	100	
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((4,3), left) = 0.9 \times \frac{0}{1} + 0.1(-100 + 0.9 \times 0) = -10$$

	up	right	down	left
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		-0.1	0	0
(4,1)				
(4,2)	-0.1		0	0
(4,3)	-0.1		-0.1	0
(4,4)			-0.19	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1		-1
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((3,3),up) = 0.9 \times 0 + 0.1(-1 + 0.9 \times 0) = -0.1$$

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	0	0	0	0
(3,4)		-0.1	0	0
(4,1)				
(4,2)	-0.1		0	0
(4,3)	-0.1		-0.1	-10
(4,4)			-0.19	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1		-1
-100	-1	100	-1
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((3,4), down) = 0.9 \times 0 + 0.1(-100 + 0.9 \times 0) = -10$$

		ui albă	down	lof4
	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	-0.1	0	0	0
(3,4)		-0.1	0	0
(4,1)				
(4,2)	-0.1		0	0
(4,3)	-0.1		-0.1	-10
(4,4)			-0.19	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1		-1
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((3,3), right) = 0.9 \times 0 + 0.1(-1 + 0.9 \times -0.1) \approx -0.11$$

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	-0.1	0	0	0
(3,4)		-0.1	-10	0
(4,1)				
(4,2)	-0.1		0	0
(4,3)	-0.1		-0.1	-10
(4,4)			-0.19	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	-100	
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((4,3), up) = 0.9 \times -0.1 + 0.1(-1 + 0.9 \times 0) = -0.19$$

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	-0.1	-0.11	0	0
(3,4)		-0.1	-10	0
(4,1)				
(4,2)	-0.1		0	0
(4,3)	-0.1		-0.1	-10
(4,4)			-0.19	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	
-100	-1	-100	-1
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((4,4), down) = 0.9 \times -0.19 + 0.1(-1 + 0.9 \times -0.1)$$

= -0.28

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	-0.1	-0.11	0	0
(3,4)		-0.1	-10	0
(4,1)				
(4,2)	-0.1		0	0
(4,3)	-0.19		-0.1	-10
(4,4)			-0.19	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times \max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	-100	
-100	-1	-1	-1
-1	-1	-100	0

$$Q'((4,3), down) = 0.9 \times -0.1 + 0.1(-1 + 0.9 \times 0) = -0.19$$

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	-0.1	-0.11	0	0
(3,4)		-0.1	-10	0
(4,1)				
(4,2)	-0.1		0	0
(4,3)	-0.19		-0.1	-10
(4,4)			-0.28	0

$$Q'(s,a) = (1-\alpha)Q(s,a) + \alpha(r + \gamma \times max_{a'}Q(s',a'))$$

$$\alpha = 0.1, \gamma = 0.9, \varepsilon = 0.25$$

-100	-1	-1	-1
-100	-1	-100	-1
-100	-1	-1	
-1	-1	-100	0

$$Q'((4,2), down) = 0.9 \times 0 + 0.1(0 + 0.9 \times 0) = 0.0$$

	up	right	down	left
	ир	Tigitt	down	1010
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	-0.1	-0.11	0	0
(3,4)		-0.1	-10	0
(4,1)				
(4,2)	-0.1		0	0
(4,3)	-0.19		-0.19	-10
(4,4)			-0.28	0

-100	-1	-1	-1
-100	-1	-100	-1
-100	-1	-1	-1
-1	-1	-100	

Puh, endlich geschafft!

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	-0.1	-0.11	0	0
(3,4)		-0.1	-10	0
(4,1)				
(4,2)	-0.1		0.0	0
(4,3)	-0.19		-0.19	-10
(4,4)			-0.28	0

Was wurde bisher gelernt?

	up	right	down	left
(1,1)	-10	0		
(1,2)	0	-0.1	0	
(1,3)	0	0	0	
(1,4)		0	0	
(2,1)	0	0		0
(2,2)	-0.1	0	0	0
(2,3)	-0.1	0	0	0
(2,4)		-0.1	0	0
(3,1)	0	0		0
(3,2)	0	0	0	0
(3,3)	-0.1	-0.11	0	0
(3,4)		\-0.1 √	-10	0
(4,1)				
(4,2)	-0.1		0.0	0
(4,3)	-0.19		-0.19	-10
(4,4)			-0.28	0

16 Durchläufe später ...

	up	right	down	left
(1,1)	-52.32	-1.98		
(1,2)	-10	-0.87	-0.9	
(1,3)	-10	-0.57	-10	
(1,4)		-0.49	-10	
(2,1)	-1.66	-27.1		-1.67
(2,2)	-1.25	-1.24	-1.28	-41.1
(2,3)	-1.13	-19	-1.12	-41
(2,4)		-1.03	-1.02	-34.45
(3,1)	-0.1	0.0		-0.25
(3,2)	-10	-0.65	-34.39	-0.85
(3,3)	-0.22	-0 11	-0.1	-0.1
(3,4)		-0.92	-10	-0.94
(4,1)				
(4,2)	-0.1		0.0	-0.11
(4,3)	-0.42		-0.41	-10
(4,4)			-0.67	-0.79

Nach 100.000 Durchläufen ...

$$\sum_{t=1}^{n} \gamma^{t-1} r_t = 0.9^0 \times -1 + 0.9^1 \times -1 + 0.9^2 \times -1 + 0.9^3 \times -1 + 0.9^4 \times 0 \approx -3.44$$

	up	right	down	left
(1,1)	-102.4	-3.44		
(1,2)	-103.1	-2.71	-4.1	
(1,3)	-103.7	-3.44	-102.4	
(1,4)		-4.1	-95.67	
(2,1)	-2.71	-99.99		-4.1
(2,2)	-3.44	-1.9	-3.44	-102.4
(2,3)	-4.1	-101.7	-2.71	-103.1
(2,4)		-3.44	-3.44	-103.7
(3,1)	-1.9	0.0		-3.44
(3,2)	-101.7	-0.99	-99.99	-2.71
(3,3)	-3.44	-1.9	-1.9	-3.44
(3,4)		-2.71	-101.7	-4.1
(4,1)				
(4,2)	-1.9		0.0	-1.9
(4,3)	-2.71		-0.99	-101.7
(4,4)			-1.9	-3.44

Zwischenfazit

- Wiederholtes Ausführen möglichst vieler Zustands-Aktions-Paare notwendig
 - Rückwärtige Propagation geht nur langsam voran
- Tabellenbasiertes Q-Learning stößt bei großem Zustandsraum schnell an seine Grenzen
 - Value muss f\u00fcr jedes Zustands-Aktions-Paar einzeln gelernt werden
 - Einsatz eines Funktionsaproximators um Erfahrung zu generalisieren

Agenda

Maschinelles Lernen

Q-Learning

Exkurs: Q-Learning mit Neuronalen Netzen

Q-Learning mit Anki Overdrive

Exkurs: Q-Learning mit Neuronalen Netzen

 Zum Beispiel für Bild-Klassifizierung genutzt

- Gewichte an allen Kanten
- Gewichtete Summe der eingehenden Signale
- Berechnung der Aktivierungsfunktion
- Lernen durchBackpropagation

Exkurs: Q-Learning mit Neuronalen Netzen

- Einsatz eines Neuronalen Netzes
 als Funktionsaproximator anstatt einer Tabelle
 - Generalisierender Effekt reduziert die Anzahl der benötigten Zustands-Aktions-Paare
- Einsatz von Experience Replay
 - Netz wird mit zufälligen Samples aus dem Speicher gefüttert.
- Weitere Methoden notwendig, damit das Netz konvergiert

Exkurs: Q-Learning mit Neuronalen Netzen

Convolutional Neural Networks

- Arbeiten direkt auf Pixeldaten
- Extrahieren High Level Features wie Kanten

Prioritybased Experience Replay

 Bevorzuge Samples mit höherer Wahrscheinlichkeit, aus denen man am meisten Lernen kann

Double Q-Learning

 Separate Q-Funktionen für Update und Maximumberechnung

Agenda

Maschinelles Lernen

Q-Learning

Exkurs: Q-Learning mit Neuronalen Netzen

Q-Learning mit Anki Overdrive