

Laboratório de Eletrônica Básica I

Práticas de simulação com QUCS

Laboratório 4 - TRANSISTOR BIPOLAR DE JUNÇÃO – CURVAS CARACTERÍSTICAS

Pedro Henrique Fabriz Ulhoa Marina Duda Albuquerque

Resultados do Experimento

3.1.2)

Para a primeira parte do experimento o seguinte circuito foi criado. Recursos utilizados: Parâmetro de varredura para o valor de um Resistor; Equação para plotagem de gráfico.

Figura 1: Circuito montado para primeira parte do experimento

3.1.3) A seguinte tabela foi obtida do circuito da Figura 1

	R	lb.l	Vbe.V		R	lb.l	Vbe.V
	2e04	0.00033	0.805		5.2e05	5.39e-12	0.189
	4e04	0.000138	0.76		5.4e05	4.15e-12	0.182
	6e04	7.26e-05	0.733		5.6e05	3.17e-12	0.175
	8e04	4.04e-05	0.712		5.8e05	2.4e-12	0.169
	1e05	2.16e-05	0.691		6e05	1.78e-12	0.164
	1.2e05	9.95e-06	0.667		6.2e05	1.28e-12	0.159
	1.4e05	3.17e-06	0.634		6.4e05	8.7e-13	0.154
	1.6e05	5.54e-07	0.582		6.6e05	5.29e-13	0.149
	1.8e05	8.85e-08	0.525		6.8e05	2.43e-13	0.145
	2e05	1.98e-08	0.476		7e05	2.18e-15	0.141
	2.2e05	6e-09	0.435		7.2e05	-2.03e-13	0.137
	2.4e05	2.25e-09	0.4		7.4e05	-3.79e-13	0.133
	2.6e05	9.91e-10	0.37		7.6e05	-5.3e-13	0.13
	2.8e05	4.92e-10	0.345		7.8e05	-6.62e-13	0.127
	3e05	2.68e-10	0.323		8e05	-7.77e-13	0.123
	3.2e05	1.57e-10	0.303		8.2e05	-8.78e-13	0.12
	3.4e05	9.78e-11	0.286		8.4e05	-9.67e-13	0.118
	3.6e05	6.4e-11	0.27		8.6e05	-1.05e-12	0.115
	3.8e05	4.35e-11	0.256		8.8e05	-1.12e-12	0.112
	4e05	3.05e-11	0.244		9e05	-1.18e-12	0.11
	4.2e05	2.2e-11	0.233		9.2e05	-1.24e-12	0.108
	4.4e05	1.62e-11	0.222		9.4e05	-1.29e-12	0.105
	4.6e05	1.21e-11	0.213		9.6e05	-1.33e-12	0.103
	4.8e05	9.19e-12	0.204		9.8e05	-1.37e-12	0.101
\forall	5e05	7.02e-12	0.196	V	1e06	-1.41e-12	0.099

Tabela 1: Dados obtidos da variação do valor do resistor em ohms. Corrente e Tensão em unidades do S.I.

3.1.4) Com os dados da Tabela 1, e a utilização do recurso de Equação, o Gráfico 1 foi plotado.

Gráfico 1: Corrente da base do transistor versus tensão base-emissor

3.2)

3.2.2) Para a segunda parte do experimento, o circuito da Figura 2 foi simulado no QUCS utilizando um transistor BC237BP. A corrente da fonte foi configurada para 3 valores diferentes e então os resultados foram registrados em tabelas (Tabela 2, 3 e 4)

Figura 2: Circuito referente à segunda parte do experimento

3.2.3) Para lb = 10μ A

A	Vdc	lc.l	Vce.V
	0	7.94e-06	0
	0.1	0.00154	0.1
	0.2	0.00275	0.2
	0.3	0.00284	0.3
	0.4	0.00285	0.4
	0.5	0.00285	0.5
	0.6	0.00286	0.6
	0.7	0.00286	0.7
	8.0	0.00286	0.8
	0.9	0.00287	0.9
V	1	0.00287	1

Tabela 2: Valores da corrente de coletor e da tensão entre coletor e emissor com variação da fonte de tensão contínua e fonte de corrente definida em 10μA.

3.2.4) Para Ib = 100μ A

\triangle	Vdc	Ic.I	Vce.V
	0	0.000176	0
	0.1	0.0149	0.1
	0.2	0.0262	0.2
	0.3	0.0272	0.3
	0.4	0.0273	0.4
	0.5	0.0273	0.5
	0.6	0.0274	0.6
	0.7	0.0274	0.7
	0.8	0.0275	0.8
	0.9	0.0275	0.9
V	1	0.0275	1

Tabela 3: Valores da corrente de coletor e da tensão entre coletor e emissor com variação da fonte de tensão contínua e fonte de corrente definida em 100μA.

3.2.5) Para Ib = 200μ A

≜ Vdc	lc.l	Vce.V
0	0.000378	0
0.1	0.025	0.1
0.2	0.0463	0.2
0.3	0.0489	0.3
0.4	0.0491	0.4
0.5	0.0492	0.5
0.6	0.0492	0.6
0.7	0.0493	0.7
0.8	0.0494	0.8
0.9	0.0494	0.9
₩ 1	0.0495	1

Tabela 4: Valores da corrente de coletor e da tensão entre coletor e emissor com variação da fonte de tensão contínua e fonte de corrente definida em 200µA.

3.2.6) Com os dados das Tabelas 2, 3 e 4, um gráfico foi plotado. O eixo X é o da Tensão coletor-emissor e o eixo Y é a corrente no coletor. O resultado é mostrado no Gráfico 2.

Gráfico 2: curvas Ic versus Vce, tendo Ib como parâmetro.

3.3) Na terceira parte do experimento, foi montado o circuito representado na Figura 3. Utilizando 2 voltímetros, analisamos a forma de onda da fonte de tensão quadrada e da forma de onda de tensão entre o coletor e o emissor do transistor BC237BP, que podem ser visualizadas no Gráfico 3.

3.3.2)

Figura 3: Circuito referente à terceira parte do experimento

3.3.3)

Gráfico 3: Em azul, a forma de onda quadrada de entrada. Abaixo, em vermelho, a forma de onda de tensão entre o coletor e emissor do transistor.

3.3.4) Para a última análise, metade de um período de onda foi plotado para que pudéssemos observar o tempo de transição (ts - storage time)

Gráfico 4: Em azul, a forma de onda quadrada de entrada. Abaixo, em vermelho, a forma de onda de tensão entre o coletor e emissor do transistor. Foram adicionados marcadores para que fosse possível retornar o tempo de transição.

Calculamos o tempo de transição subtraindo os tempos indicados pelos marcadores no gráfico. Logo,

$$t_s = t_2 - t_1 = 1,07x10^{-5} - 9,9x10^{-6} s$$

$$t_s = 8x10^{-7} \,\mathrm{s}$$