Therefore, f^{*_l} is linear. We call it the *left adjoint* of f.

Now, for any fixed $u \in E_2$, we can consider the linear form in E_1^* given by

$$x \mapsto \overline{\varphi_2(u, f(x))} \quad x \in E_1.$$

Since $l_{\varphi_1} : \overline{E_1} \to E_1^*$ is bijective, there is a unique $y \in E_1$ so that

$$\overline{\varphi_2(u, f(x))} = \overline{\varphi_1(y, x)}, \text{ for all } x \in E_1.$$

If we denote this unique $y \in E_1$ by $f^{*_r}(u)$, then we have

$$\varphi_2(u, f(x)) = \varphi_1(f^{*_r}(u), x), \text{ for all } x \in E_1, \text{ and all } u \in E_2.$$

Thus, we get a function $f^{*r}: E_2 \to E_1$. As in the previous situation, it easy to check that f^{*r} is linear. We call it the *right adjoint* of f. In summary, we make the following definition.

Definition 29.14. Let E_1 and E_2 be two K-vector spaces, and let $\varphi_1: E_1 \times E_1 \to K$ and $\varphi_2: E_2 \times E_2 \to K$ be two sesquilinear forms. Assume that l_{φ_1} and r_{φ_1} are bijective, so that φ_1 is nondegnerate. For every linear map $f: E_1 \to E_2$, there exist unique linear maps $f^{*_l}: E_2 \to E_1$ and $f^{*_r}: E_2 \to E_1$, such that

$$\varphi_2(f(x), u) = \varphi_1(x, f^{*_l}(u)), \text{ for all } x \in E_1, \text{ and all } u \in E_2$$

$$\varphi_2(u, f(x)) = \varphi_1(f^{*_r}(u), x), \text{ for all } x \in E_1, \text{ and all } u \in E_2.$$

The map f^{*_l} is called the *left adjoint* of f, and the map f^{*_r} is called the *right adjoint* of f.

If E_1 and E_2 are finite-dimensional with bases (e_1, \ldots, e_m) and (f_1, \ldots, f_n) , then we can work out the matrices A^{*_l} and A^{*_r} corresponding to the left adjoint f^{*_l} and the right adjoint f^{*_r} of f. Assumine that f is represented by the $n \times m$ matrix A, φ_1 is represented by the $m \times m$ matrix M_1 , and φ_2 is represented by the $n \times n$ matrix M_2 . Since

$$\varphi_1(x, f^{*_l}(u)) = (A^{*_l}u)^* M_1 x = u^* (A^{*_l})^* M_1 x$$
$$\varphi_2(f(x), u) = u^* M_2 A x$$

we find that $(A^{*l})^*M_1 = M_2A$, that is $(A^{*l})^* = M_2AM_1^{-1}$, and similarly

$$\varphi_1(f^{*r}(u), x) = x^* M_1 A^{*r} u$$

$$\varphi_2(u, f(x)) = (Ax)^* M_2 u = x^* A^* M_2 u,$$

we have $M_1 A^{*_r} = A^* M_2$, that is $A^{*_r} = (M_1)^{-1} A^* M_2$. Thus, we obtain

$$A^{*_l} = (M_1^*)^{-1} A^* M_2^*$$
$$A^{*_r} = (M_1)^{-1} A^* M_2.$$