Astronomia planetaria: transiti ed esopianeti in classe

Gianluigi Filippelli

Liceo "C. Cavalleri", Parabiago (Milano). 29/11/2017

Il sistema tolemaico

Schema huius præmissæ diuisionis Sphærarum.

Altrimondi

Una timeline: il primo presunto esopianeta

1916 1917 1918 1919 1920 1921 1922 1923 1924 1923 1926 1927 1928 1929 1930 1931 1932 1933 1934 19

• Spettro di van Maanen 2; nel riquadro le linee associate con gli elementi sulla superficie della stella via Phil Plait

Una timeline: le prime osservazioni

• Prima osservazione di un disco planetario

Una timeline: le prime osservazioni

• Esistenza del pianeta confermata nel 2002

Una timeline: le prime osservazioni

• Il primo esopianeta a essere confermato come tale. Orbita intorno a una stella nella sequenza principale

Una timeline: la prima osservazione ottica

 La prima osservazione di un esopianeta fatta dal VLT via Phil Plait

Ipotesi

La velocità radiale di una stella è influenzata dalla presenza di un pianeta in orbita intorno alla stessa.

Ipotesi

La velocità radiale di una stella è influenzata dalla presenza di un pianeta in orbita intorno alla stessa.

Cosa osservare

La velocità radiale proveniente dalla stella sarà tendente al blu quando il pianeta sulla sua orbita si muove verso la Terra, sarà tendente al rosso quando il pianeta si allontana.

Vantaggi

Efficace per rilevare pianeti massicci.

Vantaggi

Efficace per rilevare pianeti massicci.

Difficoltà

Difficoltà nel determinare l'esatta orbita di un pianeta e quindi il periodo di rotazione orbitale e l'eccentricità.

Metodo del transito: un'infografica

Metodo del transito

Cosa osservare

Si studia l'intensità della luce emessa dalla stella (la luminosità): quando la luce diminuisce, questo vuol dire che davanti alla stella sta passando un oggetto.

Vantaggi

Si possono determinare: il raggio dell'oggetto e il suo periodo orbitale. Inoltre è anche possibile studiarne l'atmosfera, la sua composizione, la temperatura e l'eventuale presenza e formazione di nuvole.

Kepler: l'esposione degli esopianeti

Kepler: grafici dai dati reali

Un po' di trigonometria

Eccentricità

$$r' = a \frac{1 - e^2}{1 + e \cos\left(2\pi \frac{t}{p}\right)}$$

a semi asse maggiore, e eccentricità, r' raggio orbitale del pianeta, p periodo orbitale

LoPresto, M., McKay, R. (2005). An introductory physics exercise using real extrasolar planet data *Physics Education*, 40 (1), 46-50 DOI: 10.1088/0031-9120/40/1/003 (pdf)

Kepler: utilizzare i dati

Studio diretto dei dati astronomici

Pubblici e liberamente consultabili (generalmente dopo 6 mesi), alcuni anche in formati semplici da leggere anche con gli usuali *editor* di testo. Ciò permette di confrontarsi con dati reali e alla loro elaborazione statistica.

Kepler: un po' di matematica

Il raggio del pianeta

La profondità del transito

$$\Delta F = \frac{B_{\text{max}} - B_{\text{min}}}{B_{\text{max}}}$$

è direttamente proporzionale a

$$\left(\frac{R_p}{R_s}\right)^2$$

dove B_{max} , B_{min} sono rispettivamente le intensità luminose prima/dopo e durante il transito; R_s , R_p rispettivamente i raggi della stella e del pianeta

Kepler: un po' di matematica

Le dimensioni dell'orbita

La durata del transito

$$\tau = \frac{RP}{\pi a}$$

è legata al raggio della stella R, al periodo orbitale P, al raggio medio dell'orbita a.

L'equazione precedente, data v_c la velocità circolare del pianeta, è ricavata dal confronto tra

$$P = \frac{2\pi a}{v_c}$$
$$\tau = \frac{2R}{v_c}$$

Kepler: un po' di matematica

La massa della stella

$$P = \frac{2\pi}{\sqrt{GM_s}} a^{\frac{3}{2}}$$

con P periodo orbitale, M_s massa della stella, a raggio medio dell'orbita

Kepler: simulare il transito in laboratorio

Bibliografia

- Timeline della NASA sulla ricerca degli esopianeti
- Grafici con i dati di Kepler
- Exoplanet Orbit Database
- Edu INAF: Una simulazione della missione Kepler
 - Simulare il transito di pianeti extrasolari
 - Choopan, W., Ketpichainarong, W., Laosinchai, P., Panijpan, B.
 (2011). A demonstration setup to simulate detection of planets outside the solar system *Physics Education*, 46 (5), 554-558 DOI: 10.1088/0031-9120/46/5/007
 - George, S. (2011). Extrasolar planets in the classroom Physics Education, 46 (4), 403-406 DOI: 10.1088/0031-9120/46/4/004 (arXiv)