Plan for Remaining 5 Weeks

Date	Торіс
Nov 6	n-gram models
Nov 8	Python
Nov 13	Deep learning and neural networks
Nov 15	Python
Nov 20 Nov 22	What a human-like model would look like No class
Nov 27 Nov 29	Impact on society Final Python class
Dec 4	Summary
Dec 6	Q&A session

Learning More

Related courses in the spring:

Syntax (LIN 311) Prerequisite: Lin 101

► Parsing and Processing (Lin 630)

Graduate level!

Prerequisite: Lin 311, having done well in this course

► Revising my MathMethods Lecture Notes

Prerequisite: reliability and independence

SBC: EXP+

Language & Technology

Lecture 6: From Unigrams to n-Grams

Thomas Graf

Stony Brook University lin120@thomasgraf.net

Generalizing Unigrams

- Unigram models perform reasonably well:
 - cultuormics
 - stylistic analysis
 - authorship attribution
 - word semantics
 - ad placement
 - ▶ web search
- ▶ But they only consider words in isolation.
- ► An n-gram model looks at **sequences of words**.

Example: Word Prediction

Your phone can make suggestions for the most likely next word(s).

A (Bad) Solution with Unigrams

- Build corpus.
- 2 For each word type, calculate number of tokens.
- 3 Calculate the **frequency** of the word in the sample:

$$freq(word, sample) = \frac{number of tokens of word}{word length of whole sample}$$

4 Suggest words with highest frequency.

Example Calculation

Sample: 1000 words long **Words:** be, bed, bee, bell **Type** be bed bee bell **Tokens** 13 2 0 3
$$freq(be) = \frac{13}{1000} = 1.3\% \qquad freq(bee) = \frac{0}{1000} = 0.0\%$$

$$freq(bed) = \frac{2}{1000} = 0.2\% \qquad freq(bell) = \frac{3}{1000} = 0.3\%$$

л

This is a Workable Solutin for Word Completion

word completion completing a partially typed word

A frequency-based unigram model can work reasonably well for word completion.

Example

$$\begin{split} &\text{freq(be)} = \frac{13}{1000} = 1.3\% & \text{freq(bee)} = \frac{0}{1000} = 0.0\% \\ &\text{freq(bed)} = \frac{2}{1000} = 0.2\% & \text{freq(bell)} = \frac{3}{1000} = 0.3\% \end{split}$$

Partial input: be

Ranked completions: be, bell, bed, bee

Why This is a Horrible Solution for Word Prediction

word prediction suggesting next word before it is typed

Unigram models are horrible for word prediction:

- always suggest the same words
- only suggest stop words (because they're most frequent)
- do not take context into account

The n-Gram Hypothesis

One can reliably predict the next word based on the **preceding** n-1 **words**.

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

String John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{n-gram}\ \operatorname{a}\ \operatorname{contiguous}\ \operatorname{sequence}\ \operatorname{of}\ n\ \operatorname{words}$

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

$\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{n-gram}\ \operatorname{a}\ \operatorname{contiguous}\ \operatorname{sequence}\ \operatorname{of}\ n\ \operatorname{words}$

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

 $\operatorname{\mathsf{n-gram}}$ a contiguous sequence of n words

n	Name	Example
1	unigram	John
2	bigram	John to
3	trigram	John to be
4	4-gram	John to be in
5	5-gram	John to be in the car

Example

String

John and Marie are not Bill and Sue

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

String
when buffalo buffalo buffalo buffalo buffalo

► Bigram token list

Bigram counts and frequencies

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

String

when buffalo buffalo buffalo buffalo buffalo

- Bigram token list when buffallo,
- Bigram counts and frequencies

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

String

when buffalo buffalo buffalo buffalo buffalo

- Bigram token list when buffallo, buffalo buffalo,
- Bigram counts and frequencies

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

- String
 when buffalo buffalo buffalo buffalo buffalo
- Bigram token list when buffallo, buffalo buffalo, buffalo buffalo,
- Bigram counts and frequencies

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

- String
 when buffalo buffalo buffalo buffalo buffalo
- ► Bigram token list when buffalo, buffalo buffalo, buffalo buffalo, buffal
- Bigram counts and frequencies

Frequencies for n-grams

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

- String
 when buffalo buffalo buffalo buffalo buffalo
- Bigram token list when buffallo, buffalo buffalo, buffalo buffalo, buffalo, buffalo, buffalo,
- Bigram counts and frequencies

Frequencies for n-grams

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

- String
 when buffalo buffalo buffalo buffalo buffalo
- ► Bigram token list
 when buffallo, buffalo buffalo, buffalo buffalo,
 - buffalo buffalo, buffalo buffalo
- Bigram counts and frequencies

Frequencies for n-grams

Frequencies can be computed for n-grams, too.

Example: Calculating Bigram Frequencies

- String
 - when buffalo buffalo buffalo buffalo buffalo
- Bigram token list when buffallo, buffalo buffalo, buffalo buffalo, buffalo buffalo, buffalo buffalo, buffalo buffalo
- Bigram counts and frequencies
 - 1 when buffalo: $1 \Rightarrow \frac{1}{6} = 16.7\%$
 - 2 buffalo buffalo: $5 \Rightarrow \frac{5}{6} = 83.3\%$

Q

How Your Phone Does it

- ▶ Frequency database for n-grams $(2 \le n \le 5)$
- ▶ Look at previous n-1 words.
- ► Pick fitting *n*-gram with highest frequency.

Example

► Trigram frequencies

```
bus is late 30\% train is late 15\% bus is cheap 25\% train is cheap 8\% bus is early 20\% train is early 2\%
```

- Input
 I will text you if the train is
- Word suggestion

How Your Phone Does it

- ▶ Frequency database for n-grams $(2 \le n \le 5)$
- ▶ Look at previous n-1 words.
- ▶ Pick fitting *n*-gram with highest frequency.

Example

► Trigram frequencies

```
bus is late 30\% train is late 15\% bus is cheap 25\% train is cheap 8\% bus is early 20\% train is early 2\%
```

- Input
 I will text you if the train is
- Word suggestion late

Zipf's Law Strikes Again

- As with words, n-grams have a Zipfian distribution.
- This creates a major problem: sparse data

The Overwhelming Number of *n*-Grams

- ► Suppose English has 5,000 words (it acutally has way more)
- Suppose each word has two inflected forms see the picture and see the pictures are distinct trigrams!
- ▶ Then there are $10,000^n = 10^{4n}$ distinct *n*-grams.

n	number of possible n-grams
2	100 million
3	1 trillion
4	10 quadrillion
5	100 quintillion

Is That a Lot?

► Assuming 10,000 English word forms, the number of 5-grams rivals the number of seconds since the Big Bang!

The Sparse Data Problem

- \blacksquare We want a large n for better accuracy.
- f 2 But the larger the n, the more data we need.
- 3 Because of Zipf's law, the majority of the data consists of the same *n*-grams.
- 4 Hence most grammatical n-grams have a frequency of 0.
- This means they will never be suggested, even if there is no grammatical alternative.

11

- ► The Unix dictionary american-english-insane has 650,000 entries.
- ► This makes the numbers much worse. Can you guess how many 5-grams there are then?

- ► The Unix dictionary american-english-insane has 650,000 entries.
- ► This makes the numbers much worse. Can you guess how many 5-grams there are then?

116 octillion $\approx 10^{29}$

- ► The Unix dictionary american-english-insane has 650,000 entries.
- ► This makes the numbers much worse. Can you guess how many 5-grams there are then?

	116 octillion $pprox {f 10^{29}}$
Number	Real-world counterpart
10^{14}	distance in millimeters from Earth to Sun
10^{18}	seconds since Big Bang
10^{24}	milliliters of water in the oceans

- ► The Unix dictionary american-english-insane has 650,000 entries.
- ► This makes the numbers much worse. Can you guess how many 5-grams there are then?

	116 octillion $pprox 10^{29}$
Number	Real-world counterpart
10^{14}	distance in millimeters from Earth to Sun
10^{18}	seconds since Big Bang
10^{24}	milliliters of water in the oceans

 10^{29} is larger than the number of shotglasses it takes to drain Earth's oceans over 2000 times.

Trick 1: Stemming and Lemmatization

- Removing inflectional markers reduces number of words
- Two solutions:
 - stemming is quick and dirty
 - lemmatization is accurate but complex

stemming cut off word ends that look like inflection

Example

- ▶ cats ⇒ cat
- ▶ tasks ⇒ task (noun and verb)
- ▶ asking ⇒ ask
- ▶ meeting ⇒ meet (noun and verb)

Trick 1: Stemming and Lemmatization [cont.]

lemmatization stemming with context information

Example

- ▶ cats ⇒ cat
- ▶ tasks ⇒ task (noun and verb)
- ▶ asking ⇒ ask
- ▶ meeting ⇒ meet (only verb)

Evaluation

- Stemming/lemmatization reduces the number of words.
- ▶ But we still have at least 10,000 words and thus 10^{20} 5-grams.

Trick 2: Statistics

- ▶ Backoff Method If an n-gram has frequency 0, use the frequency of the corresponding (n − 1)-gram.
- ► Good-Turing Smoothing Change frequency from 0 to a very low value while lowering high frequency values.

Evaluation

- ► These tricks solve the issue of n-grams with 0% frequency.
- ▶ But they do not solve the basic problem that n-gram models are incredibly data hungry.

Future of n-Gram Models

- Moving from unigrams to n-gram models increases performance in many applications we discussed.
 - culturomics
 - stylistic analysis
 - web search
 - ad placement
- But we quickly hit diminishing returns.
- Even 5-gram models are no match for humans, and it's unlikely we'll be able to move on to 6-grams any time soon.

New Areas of Application

- ▶ N-gram models are nearly maxed out in current applications.
- ▶ But this still leaves areas where they haven't been used at all.
- ► Let's briefly look at one example: OCR.

Optical Character Recognition

OCR the process of

- scanning in images of text and
- **2** converting it into digital text.

"making computers read"

- ▶ In a purely digital world, OCR would be superfluous.
- ▶ But there's still many analog texts that need to be digitized. old books, paper forms, signed contracts, . . .
- A special (and much harder) case of OCR is handwriting recognition.

The Quality of Current OCR Software

- OCR sounds trivial; even a 4-year old can recognize letters
- So why are my ebooks full of mistakes?

- That was-n't entirely true;
- ▶ 1 want sharp borders, right now.
- ▶ The carpets seem to he vulnerable.
- If they can shorten wormholes, the\, might visit us.
- ► He fell silent, abruptly realizing "it'll she t, as feeling: electing not to wake up again [...]
- Seaweed every twenty -seven -seven I DIASPORA 231 light years.

The Prototype Problem

- Characters have prototypical shapes.
- ▶ But numerous deviations are possible, with fuzzy borders.

Non-Mandatory Properties of the Letter A

- two angular strokes, meeting at top
- cross bar
- no horizontal top stroke
- no horizontal bottom stroke
- no curves or arcs
- no disconnected parts

Recognizing Characters is Not Enough

- Mapping pixels in an image to characters is a probabilistic process that is affected by many parameters
 - ▶ font
 - low-quality printing process
 - ▶ stains on page

:

- Some misidentifications are unavoidable.
- Why don't humans run into the same problems?
 Because humans do not read character by character.

Basic Properties of Human Reading

Saccades

reading proceeds not character by character, eyes move in **saccades**:

- 1 focus on several words at once and identify words,
- 2 once done, move eyes to next cluster of words to the right,
- 3 focus, absorb, then move again, and so on.

Word Identification

pattern-match whole words rather than character sequences ⇒ order of character usually of little relevance

I cnduo't byleiee taht I culod aulacity uesdtannrd waht I was rdnaieg.

Predictive

speakers use information about sentence to predict next word \Rightarrow unexpected words read more slowly

Proposal: OCR-ed sequence of characters must be a word in our dictionary

- That was-n't entirely true;
- ▶ 1 want sharp borders, right now.
- ► The carpets seem to he vulnerable.
- ▶ If they can shorten wormholes, the\, might visit us.
- ► He fell silent, abruptly realizing "it'll she t, as feeling: electing not to wake up again [...]
- Seaweed every twenty seven seven I DIASPORA 231 light years.

Proposal: OCR-ed sequence of characters must be a word in our dictionary

- That was n't entirely true;
- ▶ 1 want sharp borders, right now.
- The carpets seem to he vulnerable.
- ▶ If they can shorten wormholes, the\, might visit us.
- ► He fell silent, abruptly realizing "it'll she t, as feeling: electing not to wake up again [...]
- Seaweed every twenty seven I DIASPORA 231 light years.

Proposal: OCR-ed sequence of characters must be a word in our dictionary

- ► That was n't entirely true;
- ▶ 1 want sharp borders, right now.
- The carpets seem to he vulnerable.
- ► If they can shorten wormholes, the\, might visit us.
- ► He fell silent, abruptly realizing "it'll she t, as feeling: electing not to wake up again [...]
- Seaweed every twenty seven I DIASPORA 231 light years.

Proposal: OCR-ed sequence of characters must be a word in our dictionary

- That was n't entirely true;
- ▶ 1 want sharp borders, right now.
- The carpets seem to he vulnerable.
- ▶ If they can shorten wormholes, the\, might visit us.
- ► He fell silent, abruptly realizing "it'll she t, as feeling: electing not to wake up again [...]
- Seaweed every twenty seven I DIASPORA 231 light years.

Proposal: only pick words that yield licit bigram

- That was-n't entirely true;
- 1 want sharp borders, right now.
- ► The carpets seem to he vulnerable.
- ▶ If they can shorten wormholes, the\, might visit us.
- ► He fell silent, abruptly realizing "it'll she t, as feeling: electing not to wake up again [...]
- Seaweed every twenty seven I DIASPORA 231 light years.

Proposal: only pick words that yield licit bigram

- That was-n't entirely true;
- ▶ 1 want sharp borders, right now.
- The carpets seem to he vulnerable.
- ▶ If they can shorten wormholes, the\, might visit us.
- ► He fell silent, abruptly realizing "it'll she t, as feeling: electing not to wake up again [...]
- Seaweed every twenty seven seven I DIASPORA 231 light years.

Proposal: only pick words that yield licit bigram

- That was-n't entirely true;
- ▶ 1 want sharp borders, right now.
- The carpets seem to he vulnerable.
- ▶ If they can shorten wormholes, the\, might visit us.
- ► He fell silent, abruptly realizing "it'll she t, as feeling: electing not to wake up again [...]
- Seaweed every twenty seven I DIASPORA 231 light years.

Proposal: only pick words that yield licit bigram

- That was-n't entirely true;
- ▶ 1 want sharp borders, right now.
- ► The carpets seem to he vulnerable.
- ▶ If they can shorten wormholes, the\, might visit us.
- ► He fell silent, abruptly realizing "it'll she t, as feeling: electing not to wake up again [...]
- Seaweed every twenty seven seven I DIASPORA 231 light years.

Problems of the Approach

Why don't OCR models use n-grams? They **create new problems**.

- ► Lexical creativity

 Neal Stephensons's *Anathem*: speely captor,
 jeejah, fraa, suur, cartabla, orth, saunt, suvin
- ► Grammatical creativity

 Diaspora: gender-neutral pronoun ve/vis/ver
- ► (Deliberately) Archaic language Tolkien's *LotR*: anon, askance, ere, furlong, lissom, recreant, thraldom
- ► Multiple languages
 German and French in *The Magic Mountain*
- Typos

Summary: OCR Needs Fixing

- Current OCR models operate purely character-by-character.
- ► They do not produce stellar results. even 99% accuracy means at least one mistake every other page
- ▶ Humans are much more competent and use linguistic insights.
- ▶ Adding *n*-grams is a first step in the same direction.