Álgebra Lineal 2020-4 Tarea 3

Estos son los enunciados para la tarea en equipo. Debes entregar la tarea con todas las indicaciones precisadas en Moodle.

1. Aplica el proceso de Gram-Schmidt a la base de \mathbb{R}^4 que consiste de los vectores $(1,0,0,0),\,(1,1,0,0),\,(1,1,1,0)$ y (1,1,1,1). Expresa a (1,2,3,4) como combinación lineal de la base ortonormal que obtengas.

2. Sean $r_0 < r_1 < r_2 < \ldots < r_n$ números reales. Para cada i, considera la forma lineal $\operatorname{ev}_{r_i}: \mathbb{R}_n[x] \to \mathbb{R}$ que a cada polinomio p(x) lo manda a su evaluación en r_i , es decir,

$$\operatorname{ev}_{r_i}(p(x)) = p(r_i).$$

Muestra que $\text{ev}_{r_0}, \text{ev}_{r_1}, \dots, \text{ev}_{r_n}$ forman una base del espacio dual $(\mathbb{R}_n[x])^*$. Solución:

3. Demuestra que si α_1,\dots,α_n son reales y l_1,l_2,l_3 son formas lineales en $\mathbb{R}^3,$ entonces la función

$$q(x) = \alpha_1 l_1(x) l_2(x) + \alpha_2 l_2(x) l_3(x) + \alpha_3 l_3(x) l_1(x)$$

es una forma cuadrática. Encuentra su forma polar.

4. Considera $V=\mathbb{R}_3[x]$ el espacio vectorial de polinomios con coeficientes reales y grado a lo más 3. Definimos

$$\langle p, q \rangle = \sum_{j=1}^{5} p(j)q(j).$$

- a)Muestra que $\langle \cdot, \cdot \rangle$ así definido es un producto interior.
- $b)\,$ Encuentra el ángulo entre los polinomios $1+x^3$ y $3x-2x^2.$
- c) Para cada entero positivo n, determina la norma del polinomio $1 + nx^3$.
- d) Determina la distancia entre los polinomios 1 y $1 + x + x^2 + x^3$.

5. Sea $f:[0,1]\to\mathbb{R}^+$ una función continua que no toma valores negativos y sea

$$x_n = \int_0^1 t^n f(t) \, dt.$$

Demuestra que para cualesquiera $n, p \ge 0$ se tiene que

$$x_{n+p} \le \sqrt{x_{2n}} \cdot \sqrt{x_{2p}}.$$

Sugerencia: Define un producto interior sobre el cual puedas usar la desigualdad de Cauchy-Schwarz.