Inverse iteration

October 15, 2018

1 Inverse iteration experimentation

For this set of exercises, create a random 10×10 matrix X, a diagonal matrix D whose diagonal entries are $(k/10)^2$ for k = 1, ..., 10, and let $A = XDX^{-1}$. (Thus, you know the eigenvalues and their eigenvectors.)

1.1 1. Inverse iteration with shift 0

Starting with a random normalized vector, do 40 inverse iterations with shift $\mu = 0$. Within each iteration use a Rayleigh quotient to estimate the eigenvalue, and record in a vector how accurate that eigenvalue estimate is.

Make a semilog plot showing the error convergence as a function of the number of iterations. To this plot add a straight line corresponding to the asymptotic convergence estimate of the process.

1.2 2. Inverse iteration with shift 2

Repeat the previous part, with $\mu = 2$.

1.3 3. Rayleigh quotient iteration

Now start with $\mu = 2$, but use the Rayleigh quotient estimate to update μ after each iteration. Try to verify that the eigenvalue convergence is approximately quadratic.