Linear_Regression

July 29, 2025

**
OLS Regression Analysis using a used car Dataset.
**
**
By Conrad Katlego Mogane
**

1 1. Introduction

OLS Regression Analysis using a used car Dataset

This project explores the relationship between a vehicle's age and its corresponding mileage and market price using linear regression models. Based on data from 13075 cars.

2 2. Background

According to Nedbank Learn, the following criterion is used to determine eligibility for Sale on the market.

- High mileage typically results in lower car prices due to increased wear and tear and the likelihood of frequent part replacements.
- Older vehicles tend to have reduced engine power.
- Unusually low mileage in an old car may indicate potential issues stemming from extended periods of inactivity. -Cars are designed for regular use, so prolonged inactivity can lead to the need for costly repairs.
- Reasonable mileage for a used car is 15 000 to 20 000 km per year.
- 5-year-old cars with normal usage typically have 75 000 to 100 00 km.
- A **3-year-old car** with **100 000 km** indicates above-average use then check the service and accidents history.
- Be cautious about costly repairs if a car is out of warranty.
- A 5-year-old car with 50 000 km is likely in better condition due to moderate use.
- Always check accident and service history, regardless of mileage.
- A 5-year-old car with only 25 000 km might have spent a lot of time at the mechanic, potentially leading to high repair costs.

2.1 3. Methodology & Results

- Sales data of 13075 cars from south african e-commerce i.e Autotrader, cars.co.za, the carplace was collected and aggregated.
- Age of vehicle was calculated by subtracting the manufacturing year from the year the data was collected.
- OLS Regression Analysis was done on vehicles under 21 years old and 250 000 kilometers in mileage against age.
- Evaluate model performance through statistical metrics such as \mathbb{R}^2 , p-values, and standard errors visualizations and regression summaries.

2.2 3.1. install and import libraries

```
[]: pip install -r requirements.txt

[15]: # Data analysis libraries
  import numpy as np
  import pandas as pd
  # Statistics
  from scipy.stats import linregress
  import statsmodels.api as sm
  # Data Visualisation
  import matplotlib.pyplot as plt
  import seaborn as sns
  sns.set_theme(rc = {'figure.dpi': 100,},font_scale = 0.85,style = "darkgrid")
```

2.3 3.2. Data Wrangling

```
[16]: #Loading sets
    df_one = pd.read_excel(r"D:\GitHub\buyable2023.xlsx")
    df_two = pd.read_excel(r'D:\GitHub\fortuner.xlsx')
    df_three = pd.read_excel(r'D:\GitHub\VW_POLO_DATASET.xlsx')
    #combinin
    df_pool = pd.concat([df_one,df_two,df_three], ignore_index= True,)
    #Creating Age Variable
    df_pool['Age'] = df_pool['Year_Data_Collected']-df_pool['Year']
    #Selecting Target Variables
    df_select = df_pool[['Model','Price','Mileage','Age']]
    df_select.head(5)
```

```
[16]:
                                                                    Age
                                            Model
                                                    Price Mileage
            RENAULT CAPTUR 900T BLAZE 5DR (66KW)
                                                  149950
                                                             96000
      0
        NISSAN MICRA 1.2 VISIA+ AUDIO 5DR (D86V)
                                                  129950
                                                             22000
                                                                      6
                               KIA PICANTO 1.2 LS 114999
                                                             70000
                                                                      6
      3
                     VOLKSWAGEN POLO VIVO 1.4 5Dr
                                                 124995
                                                            166134
                                                                      9
      4
                           FORD FIGO 1.4 AMBIENTE
                                                    82995
                                                            162123
                                                                     10
```

2.3.1 Removing outlier based on According to Nedbank Learn

- Cars over 20 years.
- Cars with mileage over 250~000~km

```
[17]: cars = df_select[(df_select['Age']<21)&(df_select['Mileage']<250000)] cars
```

[17]:	Model	Price	Mileage	Age
0	RENAULT CAPTUR 900T BLAZE 5DR (66KW)	149950	96000	6
1	NISSAN MICRA 1.2 VISIA+ AUDIO 5DR (D86V)	129950	22000	6
2	KIA PICANTO 1.2 LS	114999	70000	6
3	VOLKSWAGEN POLO VIVO 1.4 5Dr	124995	166134	9
4	FORD FIGO 1.4 AMBIENTE	82995	162123	10
•••			•••	
13064	Volkswagen Polo 1.4	47900	59653	19
13065	Volkswagen Polo 1.6 Comfortline	89900	59300	19
13066	Volkswagen Polo Classic 1.6 Comfortline	89900	59163	19
13067	Volkswagen Polo Classic 1.6 Comfortline	89900	58933	19
13068	Volkswagen Polo Classic 1.6i SEDAN	69950	58928	19

[12550 rows x 4 columns]

2.3.2 Summary Statistiscs

```
[18]: plt.figure(figsize=(10, 6))
    sns.histplot(cars,x='Age',color = 'r' ,edgecolor='black',bins=20, kde=True)
    plt.title('Frequency Distribution of Cars by Age')
    plt.xlabel('Age of Cars')
    plt.xscale('linear')
```



```
[19]: plt.figure(figsize=(10, 6))
    sns.histplot(cars,x='Mileage',color='g',edgecolor='black',bins=20, kde=True)
    plt.title('Mileage Distribution')
    plt.xlabel('Mileage')
    plt.xscale('linear')
```



```
[20]: plt.figure(figsize=(10, 6))
    sns.histplot(cars,x='Price',color ='b',edgecolor='black',bins=20, kde=True)
    plt.title('Price Distribution ')
    plt.xlabel('Price')
    plt.xscale('linear')
```


[21]:	cars.de	scribe(inc	lude=' <mark>al</mark>	l').fillna	a('')	.round(2)		
[21]:						Model	Price	Mileage	\
	count					12542	12550.0	12550.0	
	unique					1144			
	top	Volkswage	n Polo V	ivo Hatch	1.4 Tr	endline			
	freq					1305			
	mean						275142.282789	75595.776733	
	std						145694.80137	67259.963094	
	min						46900.0	0.0	
	25%						164999.0	12394.75	
	50%						249900.0	61683.0	
	75%						334950.0	125302.75	
	max						2099900.0	249180.0	
		Age							
	count	12550.0							
	unique								
	top								
	freq								
	mean	4.346693							
	std	4.295156							
	min	0.0							
	25%	1.0							

```
50% 3.0
75% 7.0
max 20.0
```

2.4 3.3. Regression Analysis

- Mileage vs Age
- Price vs Age

2.4.1 3.3.1. Mileage vs Age

The average mileage and price per year was was used to perform the regression analysis.

```
[22]: #aggregation
      cars_km = cars.groupby('Age')['Mileage'].aggregate(['mean', 'std', 'count']).
       →round(2).reset index()
      cars_km.rename(columns={'mean': 'mean_mileage', 'std': 'std_mileage', 'count':
      # Regression Analysis
      x = sm.add_constant(cars_km['Age'])
      model_km = sm.OLS(cars_km['mean_mileage'],x).fit()
      # Compute regression variables
      result_km = linregress(cars_km['Age'],cars_km['mean_mileage'])
      slope_km = result_km.slope
      intercept_km = result_km.intercept
      r_value_km = result_km.rvalue
      p_value_km = result_km.pvalue
      std_err_km = result_km.stderr
      # Plotting the regression line
      sns.scatterplot(x=cars_km['Age'], y=cars_km['mean_mileage'], color='blue',_
       ⇔label='Mean Mileage')
      sns.lineplot(x=cars_km['Age'], y=slope_km * cars_km['Age'] + intercept_km,_
       ⇔color='red',
                   label='Regression Line')
      plt.xlabel("Age (Years)")
      plt.ylabel("Mileage (Km)")
      plt.title("Mileage vs. Age_of_Vehicle")
      plt.legend()
      plt.grid()
      plt.show()
      #results
      print(f"Mileage Regression equation: y = {slope_km:.2f}x + {intercept_km:.
       \hookrightarrow 2f}",'\n')
      print(f''R^2 = \{r_value_km**2:.3f\}'', '|', f''P-value = \{p_value_km:.3f\}'', '|',
            f"Std Error = {std_err_km:.3f}",'|',f"intercept = {intercept_km:.2f}",'|',
            f"Slope = {slope_km:.2f}",'\n')
```

print('======')
print(model_km.summary())

Mileage Regression equation: y = 4953.18x + 52037.73

 R^2 = 0.789 | P-value = 0.000 | Std Error = 587.967 | intercept = 52037.73 | Slope = 4953.18

OLS Regression Results

============			
Dep. Variable:	${\tt mean_mileage}$	R-squared:	0.789
Model:	OLS	Adj. R-squared:	0.778
Method:	Least Squares	F-statistic:	70.97
Date:	Tue, 29 Jul 2025	Prob (F-statistic):	7.71e-08
Time:	10:58:40	Log-Likelihood:	-232.44
No. Observations:	21	AIC:	468.9
Df Residuals:	19	BIC:	471.0
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const Age	5.204e+04 4953.1780	6873.603 587.967	7.571 8.424	0.000	3.77e+04 3722.548	6.64e+04 6183.808
=======						
Omnibus:		0.19	97 Durbir	n-Watson:		1.257
Prob(Omni	bus):	0.90	06 Jarque	e-Bera (JB)	:	0.271
Skew:		0.19	94 Prob(JB):		0.873
Kurtosis:		2.60	O1 Cond.	No.		22.7
=======	=========				========	

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

2.4.2 3.3.2. Price vs Age

```
[23]: #Data aggregation
     cars_price = cars.groupby('Age')['Price'].aggregate(['mean', 'std', 'count']).
       →round(2).reset_index()
     cars_price.rename(columns={'mean': 'mean_price', 'std': 'std_price', 'count':__
      # Regression Analysis
      # Add constant for intercept for analysis
     x1 = sm.add_constant(cars_price['Age'])
     model_price = sm.OLS(cars_price['mean_price'], x1).fit()
     # Compute regression variables
     result_price = linregress(cars_price['Age'],cars_price['mean_price'])
     slope_price = result_price.slope
     intercept_price = result_price.intercept
     r_value_price = result_price.rvalue
     p_value_price = result_price.pvalue
     std_err_price = result_price.stderr
     # Plotting the regression line
     sns.scatterplot(x=cars_price['Age'], y=cars_price['mean_price'], color='blue',_
       ⇔label='Mean Mileage')
     sns.lineplot(x=cars_price['Age'], y=slope_price * cars_price['Age'] +__
       →intercept_price, color='red',
                  label='Regression Line')
     plt.xlabel("Age (Years)")
     plt.ylabel("Price (Rands)")
     plt.title("Price vs. Age_of_Vehicle")
     plt.legend()
     plt.grid()
     plt.show()
```



```
Price Regression equation: y = -13303.50x + 326354.14
```

 R^2 = 0.877 | P-value = 0.000 | Std Error = 1144.771 | intercept = 326354.14 | Slope = -13303.50

OLS Regression Results

Dep. Variable: mean_price R-squared: 0.877
Model: OLS Adj. R-squared: 0.870

```
Method:
                Least Squares F-statistic:
                                                 135.1
Date:
             Tue, 29 Jul 2025 Prob (F-statistic):
                                              4.45e-10
Time:
                   10:58:41 Log-Likelihood:
                                               -246.44
No. Observations:
                       21
                          AIC:
                                                 496.9
Df Residuals:
                       19
                          BIC:
                                                 499.0
Df Model:
                        1
Covariance Type:
                 nonrobust
______
                                P>|t|
           coef
                           t
                                        [0.025
                                                0.975]
                std err
       3.264e+05 1.34e+04
                       24.386
                               0.000 2.98e+05
                                              3.54e+05
const
       -1.33e+04 1144.771 -11.621
                                 0.000 -1.57e+04 -1.09e+04
______
Omnibus:
                     0.358
                          Durbin-Watson:
                                                 0.468
Prob(Omnibus):
                     0.836
                          Jarque-Bera (JB):
                                                 0.163
Skew:
                     0.200 Prob(JB):
                                                 0.922
Kurtosis:
                     2.838
                          Cond. No.
                                                  22.7
______
```

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Plotting both line plots on a same graph

```
[24]: x = cars_km['Age']
      y = cars km['mean mileage']
      y1 = cars_price['mean_price']
      fig, ax1 = plt.subplots() # initializes figure and plots
      ax2 = ax1.twinx() # applies twinx to ax2, which is the second y axis.
      sns.lineplot(x = x, y = y, marker = 'o', ax = ax1, color = 'blue') # plots the
       \hookrightarrow first set of data, and sets it to ax1.
      sns.lineplot(x = x, y = y1, marker = 'o', color = 'red', ax = ax2) # plots the
      \rightarrowsecond set, and sets to ax2.
      # these lines add the annotations for the plot.
      ax1.set_xlabel('Age')
      ax1.set_ylabel('Mileage', color='black')
      ax2.set_ylabel('Price', color='red')
      plt.show(); # shows the plot.
      pd.DataFrame(pd.DataFrame({'Age':cars_km['Age'],
              'Price':cars_price['mean_price'],
              'Mileage':cars_km['mean_mileage']}))
```


[24]:		Age	Price	Mileage
	0	0	331682.55	75329.30
	1	1	362409.28	49976.79
	2	2	343857.28	54053.19
	3	3	307696.92	83208.15
	4	4	287863.49	62826.04
	5	5	262237.75	65349.75
	6	6	246378.88	72070.78
	7	7	181774.34	66638.02
	8	8	166916.42	81817.89
	9	9	168981.86	93322.01
	10	10	155583.21	91088.27
	11	11	156980.35	110993.77
	12	12	149000.70	128124.51
	13	13	150418.88	133902.77
	14	14	132211.72	137971.37
	15	15	127700.39	158984.75
	16	16	116210.31	136196.58
	17	17	97892.56	125659.04
	18	18	97079.07	136539.50
	19	19	89413.03	113167.18
	20	20	127412.50	155740.00

3 4. Discussion & Conclusion

```
Mileage Regression equation : y = 4953.18x + 52037.73
Price Regression equation : y = -13303.50x + 326354.14
```

[25]:		Mileage Regression	Price Regression
	Intercept	52037.73	326354.14
	Slope	4953.18	-13303.50
	R ²	0.89	-0.94
	Standard Error	587.97	1144.77
	p-value	0.00	0.00

The hypothesis: As vehicles age, their resale price declines and mileage accumulates.

- Data was filtered to include only vehicles under 20 years old, with mileage capped at 250,000 km.
- The dataset contained 13,075 entries, with 12,999 valid for analysis after filtering.
- Ordinary Least Squares (OLS) regression was used to model both price and mileage against vehicle age.
- Strong statistical significance was found in both models (p < 0.001), validating that age is a powerful predictor.

Findings:

- A negative slope in the price model confirms depreciation
 - Mileage Model: Mileage increases by approximately 5,000 km per year (slope = 4953.18), with an intercept of $52\ 037.73$ km.
- A positive slope in the mileage model supports consistent usage over time.
 - **Price Model**: Price decreases by about R13,000 per year (slope = -13303.5), with an intercept of R32,6354.14.

Model Performance:

- Mileage model:
 - $R^2 = 0.89$, indicating that 89% of the variance in mileage can be explained by age.
- Price model:
 - $R^2 = 0.94$, indicating that 94% of the variance in price can be explained by age.

- Both models show strong predictive power, with low standard errors (mileage: 0.000, price: 0.000).
- The p-values for both models are less than 0.001, confirming statistical significance.

4 5. Recommendations

- However, the **Durbin-Watson statistic (0.468 for price)** indicates **possible autocorrelation** particularly in the residuals of the price model which needs further testing.
- These results could inform vehicle replacement schedules, public transport planning, or insurance valuation algorithms.

5 6. References & Acknowledgemnts

- Nedbank Learn -Age or Mileage more important when buying a used car
- Ordinary Least Squares (OLS) regression Linear Regression
- Statsmodels Statistical Models in Python
- Scipy Statistical Functions in Python
- Pandas Data Analysis Library in Python
- Matplotlib Plotting Library in Python
- Seaborn Statistical Data Visualization Library in Python

_		
**		
Author: Conrad Katlego	Mogane 28/07/2025	
**		