第零章 預備知識

0.1 基本概念

記號

\overline{A}	 對所有	for all
3	存在	there exists
∃!	存在唯一	there exists uniquely
\in	屬於	belongs to
$A \Longrightarrow B$	若A則B	if A then B
$A \iff B$	A 等價於 B	A if and only if B
∞	無限大	infinity
V	或	or
\wedge	且	and
·:·	因為	because
∴.	所以	therefore
\neg	非	not
=	等價於	is equivalent to

數

\mathbb{N}	自然數	natural number	$1,2,3,\ldots$
		integer	$\ldots, -2, -1, 0, 1, 2, \ldots$
\mathbb{Q}	有理數	rational number	$\frac{p}{q}: p, q \in \mathbb{Z}$
\mathbb{R}	實數	real number	1
\mathbb{C}	複數	complex number	$\alpha + \beta i : \alpha, \beta \in \mathbb{R}, i = \sqrt{-1}$

集合

$x \in S$	x 為集合 S 的元素	
$S_1 = \{x_1, x_2, \ldots\}$	列舉式	
$S_2 = \{x \mid x $ 滿足某性質 $\}$	敘述式	
$S \cap T$	$\{x \mid x \in S \ \land \ x \in T\}$	交集 (intersection)
$S \cup T$	$\{x \mid x \in S \ \lor \ x \in T\}$	聯集 (union)
$S \setminus T$	$\{x \mid x \in S \land x \notin T\}$	差集 (difference)
$S \times T$	$\{(x,y) \mid x \in S \land y \in T\}$	積集 (Cartesian product)
Ø	空集合	
$S_1 \subset S_2, S_2 \supset S_1$	S_1 為 S_2 的真子集合	
$S_1 \subseteq S_2, S_2 \supseteq S_1$	S_1 為 S_2 的子集合	
$\bigcap_{i=1}^{n} S_i$	$S_1 \cap S_2 \cap \cdots \cap S_n$	
$\bigcup_{i=1}^{n} S_i$	$S_1 \cup S_2 \cup \cdots \cup S_n$	

高間

端點為 a, b 的開區間 $(a,b) = \{x \mid a < x < b\}$ $[a,b] = \{x \mid a \leqslant x \leqslant b\}$ 端點為 a, b 的閉區間 $[a,b) = \{x \mid a \le x < b\}$ $(a, b] = \{x \mid a < x \le b\}$ $(a, \infty) = \{x \mid a < x\}$ $[a, \infty) = \{x \mid a \leqslant x\}$ $(-\infty, b) = \{x \mid x < b\}$

 $(-\infty, b] = \{x \mid x \leqslant b\}$

不等式

性質. 令 $a,b,c \in \mathbb{R}$.

- 1. $a < b \implies a + c < b + c$
- $2. \ a < b, c < d \implies a + c < b + d$
- 3. a < b. $c > 0 \implies ac < bc$

- 4. a < b, $c < 0 \implies ac > bc$
- 5. $0 < a < b \implies \frac{1}{a} > \frac{1}{b}$

例. 解下列不等式.

- 1. 2x 3 < x + 4 < 3x 2
- 2. $x^3 > x$

- 3. $(2-x)(1-x)^2x^3 \le 0$
- 4. $-2 < \frac{2x-3}{x+1} < 1$

解.

- 1. 3 < x < 7
- 2. $x^3 x > 0 \implies x(x^2 1) > 0 \implies x(x + 1)(x 1) > 0 \implies x > 1 \lor -1 < x < 0$
- 3. $(2-x)(1-x)^2x^3 \le 0 \implies (x-2)(x-1)^2x^3 \ge 0 \implies x \ge 2 \lor x \le 0 \lor x = 1$
- $4. -2 < \frac{2x-3}{x+1} < 1 \implies \left(-2 < \frac{2x-3}{x+1}\right) \land \left(\frac{2x-3}{x+1} < 1\right) \implies \left(\frac{4x-1}{x+1} > 0\right) \land \left(\frac{x-4}{x+1} < 0\right)$ $\implies \left(x < -1 \lor x > \frac{1}{4}\right) \land \left(-1 < x < 4\right) \implies \frac{1}{4} < x < 4$

絕對值

令 $a \in \mathbb{R}$; a 的絕對值 (absolute value) |a| 定義為 $|a| = \begin{cases} a & \text{ if } a \geq 0 \\ -a & \text{ if } a < 0 \end{cases}$

性質. 若 a > 0, 則

- 1. $|x| = a \iff x = \pm a$
- 2. $|x| < a \iff -a < x < a$ 3. $|x| > a \iff x < -a \lor x > a$

性質. 若 $a, b \in \mathbb{R}$, 則

1. |-a| = |a|

3. |ab| = |a| |b|

5. $|a+b| \leq |a| + |b|$

2. $\sqrt{a^2} = |a|$

 $4. \ \left| \frac{b}{a} \right| = \frac{|b|}{|a|}$

6. $|a| - |b| \le |a - b|$

證 (不等式).

- $|a| = |(a-b)+b| \le |a-b|+|b| \implies |a|-|b| \le |a-b|$; $|b| = |(b-a)+a| \le |b-a|+|a| = |a-b|+|a| \implies |a|-|b| \ge -|a-b|$. $\exists x \mid |a|-|b| \mid \le |a-b|$.

例. 解下列不等式與方程式.

1.
$$|5 - 2x| < 3$$

2.
$$\left| \frac{2x-1}{x+1} \right| = 3$$

3.
$$|x-1| - |x-10| \ge 5$$

解.

- 1. $|5 2x| < 3 \implies -3 < 5 2x < 3 \implies -8 < -2x < -2 \implies 1 < x < 4$
- 2. $\left| \frac{2x-1}{x+1} \right| = 3 \implies \frac{2x-1}{x+1} = 3 \lor \frac{2x-1}{x+1} = -3 \implies x = -4 \lor x = -\frac{2}{5}$
- 3. 當 x < 1, $|x 1| |x 10| \ge 5 \Longrightarrow (1 x) (10 x) \ge 5 \Longrightarrow -9 \ge 5$, 不合. 當 $1 \le x < 10$, $|x 1| |x 10| \ge 5 \Longrightarrow (x 1) (10 x) \ge 5 \Longrightarrow 2x \ge 16 \Longrightarrow x \ge 8$, 則 $8 \le x < 10$. 當 $x \ge 10$, $|x 1| |x 10| \ge 5 \Longrightarrow (x 1) (x 10) \ge 5 \Longrightarrow 9 \ge 5$ 恆成立. 綜上, $8 \le x$.

平面幾何

性質.

- $P_1:(x_1,y_1)$ 與 $P_2:(x_2,y_2)$ 之距離為 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$
- 一非鉛直線通過 $P_1:(x_1,y_1)$ 與 $P_2:(x_2,y_2)$, 則直線斜率 m 為 $m=\frac{\Delta y}{\Delta x}=\frac{y_2-y_1}{x_2-x_1}$
- 直線方程式表示法 點斜式: $y y_1 = m(x x_1)$; 斜截式: y = mx + b; 截距式: $\frac{x}{a} + \frac{y}{b} = 1$
- 兩非鉛直線 平行: 斜率相等; 垂直: 斜率相乘為 -1

0.2 函數

定義.

- 函數 (function) $f:A\to B$ 是一個對應關係: 對所有 $a\in A$, 存在唯一 $b\in B$, 使得 f 將 a 對應到 b. $\forall\,a\in A\;\exists\,!\;b\in B\;(f(a)=b).$
- A 定義域 (domain): $\operatorname{dom} f = A$; B 對應域 (codomain): $\operatorname{codom} f = B$ $f(A) = \{f(a) \mid a \in A\} \subseteq B$ 值域 (range): $\operatorname{ran} f \equiv f(A)$

註(函數形式).

- 公式型 y = f(x) = 3x + 1, dom $f = \operatorname{ran} f = \mathbb{R}$; $y = f(x) = 3x^2 + 1$, dom $f = \mathbb{R}$, ran $f = \{x \mid x \ge 1\}$; $y = f(x) = \sin \pi x$, dom $f = \mathbb{R}$, ran f = [-1, 1].
- 抽象型 例: 令 $A = \{\text{Mon, Tue, Wed, Thu, Fri}\}, B = \{\text{a, b, c, ..., z}\},$ 定義函數 $f : A \to B$ 使得 f(工作日) = (開頭小寫英文字母): f(Mon) = m, f(Wed) = w, f(Tue) = f(Thu) = t, f(Fri) = f. 故 dom f = A, codom f = B, ran $f = \{\text{m, w, t, f}\}$.

例. $f(x) = \sqrt{-x^2 + x + 2}$, 求 dom f 與 ran f.

解. 由 $-x^2 + x + 2 = -(x+1)(x-2) \ge 0 \Longrightarrow (x+1)(x-2) \le 0 \Longrightarrow -1 \le x \le 2$, dom f = [-1,2]. 又 $-x^2 + x + 2 = -\left(x - \frac{1}{2}\right)^2 + \frac{9}{4}$, 當 $x \in [-1,2]$ 時, $f(x) \in \left[0, \sqrt{\frac{9}{4}}\right] = \left[0, \frac{3}{2}\right]$, 故 ran $f = \left[0, \frac{3}{2}\right]$.

例. $f(x) = \frac{1}{(x-2)(x-3)}$, 求 dom f 與 ran f.

解. dom $f = \mathbb{R} \setminus \{2,3\}$. 令 $y = \frac{1}{(x-2)(x-3)} = \frac{1}{x^2 - 5x + 6} \Longrightarrow x^2 - 5x + \left(6 - \frac{1}{y}\right) = 0$. 當判別式 $\geqslant 0$ 時 有實數解 $\Longrightarrow (-5)^2 - 4\left(6 - \frac{1}{y}\right) \geqslant 0 \Longrightarrow 1 + \frac{4}{y} \geqslant 0 \Longrightarrow \frac{y+4}{y} \geqslant 0$, 故 ran $f = \{y \mid y > 0 \lor y \leqslant -4\}$.

嵌射與蓋射

定義. 給定函數 $f: A \to B$.

- f 為嵌射 (one-to-one, injective): $\forall x_1, x_2 \in A \ (f(x_1) = f(x_2) \implies x_1 = x_2)$.
- f 為蓋射 (onto, surjective): $\forall b \in B \ \exists a \in A \ (f(a) = b)$.

例. 證明函數 $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1 為嵌射.

PR. $\forall x_1, x_2 \in \mathbb{R}, f(x_1) = f(x_2) \implies (2x_1 + 1) = (2x_2 + 1) \implies x_1 = x_2.$

例.

- 說明函數 $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ 不為嵌射.
- 證明函數 $f: \mathbb{R}_+ = \{x \mid x \geq 0\} \to \mathbb{R}, f(x) = x^2$ 為嵌射.

解.

- \mathbb{R} $x_1 = 1, x_2 = -1, x_1 \neq x_2, \ \ f(x_1) = f(x_2) = 1.$
- $\forall x_1, x_2 \in \mathbb{R}, f(x_1) = f(x_2) \implies x_1^2 = x_2^2 \implies (x_1 x_2)(x_1 + x_2) = 0 \implies x_1 x_2 = 0 \lor x_1 + x_2 = 0 \implies x_1 = x_2 \lor x_1 = x_2 = 0 \implies x_1 = x_2.$

例. 證明函數 $f: \mathbb{R} \to \mathbb{R}, f(x) = x^3$ 為嵌射.

解. $\forall x_1, x_2 \in \mathbb{R}, f(x_1) = f(x_2) \implies x_1^3 = x_2^3 \implies (x_1 - x_2)(x_1^2 + x_1x_2 + x_2^2) = 0 \implies x_1 - x_2 = 0 \lor x_1^2 + x_1x_2 + x_2^2 = 0 \implies x_1 = x_2 \lor \left(x_1 + \frac{x_2}{2}\right)^2 + \frac{3x_2^2}{4} = 0 \implies x_1 = x_2 \lor \left(x_2 = 0 \land x_1 + \frac{x_2}{2} = 0\right) \implies x_1 = x_2 \lor x_2 = x_1 = 0 \implies x_1 = x_2.$

0.3 函數運算

$$(f \pm g)(x) = f(x) \pm g(x) \quad \operatorname{dom}(f \pm g) = \operatorname{dom} f \cap \operatorname{dom} g$$

$$(f \cdot g)(x) = f(x) \cdot g(x) \quad \operatorname{dom}(f \cdot g) = \operatorname{dom} f \cap \operatorname{dom} g$$

$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)} \quad \operatorname{dom} \frac{f}{g} = \operatorname{dom} f \cap \operatorname{dom} g \setminus \{x \mid g(x) = 0\}$$

$$(f \circ g)(x) = f(g(x)) \quad \operatorname{dom}(f \circ g) = \{x \in \operatorname{dom} g \mid g(x) \in \operatorname{dom} f\}$$

例.

- 2. 設 f(x) = x, $g(x) = \frac{1}{x}$, $h(x) = (f \cdot g)(x) = x \cdot \frac{1}{x} = 1$, 求 dom h.
- 3. 設 $F(x) = \sin^3(x+3)$, 求函數 f, g, h 使得 $F = f \circ g \circ h$.
- 4. 設 $f(x) = \frac{x+1}{1+\frac{1}{x+1}}$, 求 dom f.
- 5. 設 $f(x) = \sqrt{x}$, $g(x) = \sqrt{2-x}$, 求 $f \circ f$, $f \circ g$, $g \circ f$, $g \circ g$, 以及其定義域.
- - 求函數 f(x) 使得 $f \circ q = h$.

- 求函數 f(x) 使得 $g \circ f = h$.
- 7. 若 $f_0(x) = \frac{x}{x+1}$, $f_{n+1} = f_0 \circ f_n$, $n = 0, 1, 2, \ldots$ 求 $f_n(x)$ 之公式.

解.

- 2. $\boxplus \operatorname{dom}(f \cdot g) = \operatorname{dom} f \cap \operatorname{dom} g, \operatorname{dom} h = \mathbb{R} \cap (\mathbb{R} \setminus \{0\}) = \mathbb{R} \setminus \{0\}.$
- 3. $f(x) = x^3$, $g(x) = \sin x$, h(x) = x + 3.
- 4. $\boxplus \operatorname{dom} \frac{f}{g} = \operatorname{dom} f \cap \operatorname{dom} g \setminus \{x \mid g(x) = 0\}, \operatorname{dom} f = \mathbb{R} \cap (\mathbb{R} \cap (\mathbb{R} \setminus \{-1\})) \setminus \{x \mid 1 + \frac{1}{x+1} = 0\}$ = $\mathbb{R} \setminus \{-1, -2\}$
- 5. $f \circ f = \sqrt[4]{x}$, $f \circ g = \sqrt[4]{2-x}$, $g \circ f = \sqrt{2-\sqrt{x}}$, $g \circ g = \sqrt{2-\sqrt{2-x}}$, $\text{dom } f \circ f = [0,\infty)$, $\text{dom } f \circ g = (-\infty, 2]$, $\text{dom } g \circ f = [0, 4]$, $\text{dom } g \circ g = [-2, 2]$.
- 6. $f(x) = x^2 + 6$, $f(x) = 2x^2 + 2x + 3$.
- 7. 使用數學歸納法驗證 $f_n(x) = \frac{x}{(n+1)x+1}$.

0.4 函數圖形

定義. 若 $A,B\subseteq\mathbb{R}$,則函數 $f:A\to B$ 稱為實數值函數 (real-valued function),集合 $\{(x,f(x))\,|\,x\in A\}$ 稱為 f 的圖形 (graph) .

性質. 函數 / 圖形判斷法

- 垂直線判斷法:函數圖形 ←⇒ 任一垂直線與其至多交於一點
- 水平線判斷法: 嵌射圖形 ←⇒ 任一水平線與其至多交於一點

性質. 變換後圖形方程式

- 垂直平移: y = f(x) + h
- 水平平移: y = f(x+h)
- 垂直伸縮: y = c f(x)

- 水平伸縮: y = f(cx)
- y = -f(x) 為 y = f(x) 對 x 軸的鏡射.
- y = f(-x) heta y = f(x) heta y = f(x)

0.5 函數範例

例. 分段定義函數

•
$$|x| = \begin{cases} x & x \geqslant 0 \\ -x & x < 0 \end{cases}$$

- (最大整數 / Gauss / 地板) 函數 (greatest integer / Gauss / floor) $\lfloor x \rfloor$ |x| = n, 若 $n \le x < n+1$, $n \in \mathbb{Z}$. |x| 為小於或等於 x 的最大整數.
- 天花板函數 (ceiling) $\lceil x \rceil$ $\lceil x \rceil = n+1, \ \,$ 若 $n < x \leqslant n+1, \ \,$ $n \in \mathbb{Z}$. $\lceil x \rceil$ 為大於或等於 x 的最小整數.
- $\lceil x \rceil = |-x|$.
- 若 g, h 為實數値函數, 則 $f(x) = \max\{g(x), h(x)\} = \frac{|g(x) h(x)|}{2} + \frac{g(x) + h(x)}{2}$.

0.6 函數特性

奇偶性

定義. 給定實數值函數 $f, \forall x \in \text{dom } f$

- 若 f(-x) = f(x), 則 f 為偶函數 (even function).
- 若 f(-x) = -f(x), 則 f 為奇函數 (odd function).

性質. 任意實數值函數可唯一表示成一個偶函數與一個奇函數的和.

證. 設實數值函數為 f.

- (存在性) 令 $E(x) = \frac{f(x) + f(-x)}{2}$, $O(x) = \frac{f(x) f(-x)}{2}$, 則 E 為偶函數, O 為奇函數, f(x) = E(x) + O(x).
- (唯一性) 已知 $f(x) = E_1(x) + O_1(x) = E_2(x) + O_2(x)$. 令 $E_1(x) E_2(x) = e(x)$, $O_1(x) O_2(x) = o(x)$, 則 e(x) 為偶函數, o(x) 為奇函數, 且 e(x) + o(x) = 0. 若 $x \leftarrow -x$, 則 $e(-x) + o(-x) = 0 \implies e(x) o(x) = 0$, 故 e(x) = 0, o(x) = 0.

增減性

定義. 給定實數値函數 f 與區間 $I. \forall x,y \in I, x < y$:

- 若 f(x) < f(y), 則稱 f 在 I 為嚴格遞增 / 嚴格上升 (increasing) .
- 若 f(x) > f(y), 則稱 f 在 I 為嚴格遞減 / 嚴格下降 (decreasing).
- 若 $f(x) \leq f(y)$, 則稱 f 在 I 為遞增 / 上升 (non-decreasing) .
- 若 $f(x) \geqslant f(y)$, 則稱 f 在 I 為遞減 / 下降 (non-increasing) .

0.7 反函數

定義. 若函數 f 為嵌射, 則其反函數 f^{-1} : ran $f \to \text{dom } f$ 定義為 $f^{-1}(b) = a \iff f(a) = b$, 其中 $a \in \text{dom } f$, $b \in \text{ran } f$.

性質 (常用規則). 1.
$$f^{-1}(y) = x \iff f(x) = y$$

2. dom
$$f^{-1}=\operatorname{ran} f,\,\operatorname{ran} f^{-1}=\operatorname{dom} f$$

3.
$$f^{-1}(x) = (f(x))^{-1} \neq \frac{1}{f(x)}$$

4.
$$(f^{-1} \circ f)(x) = x, \forall x \in \text{dom } f$$

5.
$$(f \circ f^{-1})(y) = y, \forall y \in \text{dom } f^{-1} = \text{ran } f$$

6.
$$y = f(x)$$
 與 $y = f^{-1}(x)$ 之圖形對 $y = x$ 對稱.

7. 若 f 為嚴格遞增或嚴格遞減函數, 則 f 為嵌射 \implies 存在 f^{-1} .

例. 令 $f(x) = \sin x$, 若定義在

[0, π] 時, 非為嵌射 (一對一)

• $\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$ 時為嚴格遞增,存在反函數 $\sin^{-1}:[-1,1]\to\left[\frac{-\pi}{2},\frac{\pi}{2}\right]$

例.

1. 求 $f(x) = x^3 + 2$ 的反函數.

2. 求 $f(x) = x^2, x \ge 0$ 的反函數, 並求 $x \le 0$ 時的反函數.

3. 求 $f(x) = \frac{1+9x}{4-x}, x < 4$ 的反函數.

解.

1. $y = x^3 + 2$; $x \longleftrightarrow y$: $x = y^3 + 2 \implies y^3 = x - 2 \implies y = \sqrt[3]{x - 2} \implies f^{-1}(x) = \sqrt[3]{x - 2}$.

2. $y = x^2$, $x \geqslant 0$; $x \longleftrightarrow y$: $x = y^2 \Longrightarrow y^2 = x \Longrightarrow y = \sqrt{x} \Longrightarrow f^{-1}(x) = \sqrt{x}$; $f^{-1}:[0,\infty) \to [0,\infty)$. $y = x^2$, $x \leqslant 0$; $x \longleftrightarrow y$: $x = y^2 \Longrightarrow y^2 = x \Longrightarrow y = -\sqrt{x} \Longrightarrow f^{-1}(x) = -\sqrt{x}$; $f^{-1}:[0,\infty) \to (-\infty,0]$.

0.8 指數函數

 $y = f(x) = a^x, a > 0 \land a \neq 1.$

圖 1: $y = a^x$: 圖左 0 < a < 1, 圖右 a > 1

性質. 若 $a, b > 0, x, y \in \mathbb{R}$, 則

$$\bullet \quad a^x \cdot a^y = a^{x+y}$$

$$\bullet \quad a^{-x} = \frac{1}{a^x}$$

$$\bullet \quad \frac{a^x}{a^y} = a^{x-y}$$

$$\bullet \quad (a^x)^y = a^{xy} = (a^y)^x$$

•
$$a^x \cdot b^x = (ab)^x$$

$$\bullet \quad \frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$$

0.9 對數函數

 $y = f(x) = \log_a x, a > 0 \land a \neq 1.$

性質. 給定 $a > 0 \land a \neq 1, x > 0, y \in \mathbb{R}$.

圖 2: $y = \log_a x$

•
$$\log_a x = y \iff a^y = x$$

•
$$\log_a a^y = y$$

•
$$a^{\log_a x} = x$$

性質. 給定 b > 0, x > 0, a > 0 $\land a \neq 1$, c > 0 $\land c \neq 1$, $r \in \mathbb{R}$.

•
$$\log_a b x = \log_a b + \log_a x$$

•
$$\log_a x^r = r \log_a x$$

•
$$\log_a x = \frac{\log_c x}{\log_c a}$$

例.解下列 x 的方程式與不等式.

1.
$$\log_{10} x + \log_{10} (x - 21) = 2$$

4.
$$3^{\log_3 7} - 4^{\log_4 2} = 5^{\log_5 x - \log_5 x^2}$$

2.
$$\log_2(x^2 - 2x - 2) \le 0$$

5.
$$\left(\frac{4}{2}\right)^{-x^2+\frac{3}{2}x+1} < \left(\frac{\sqrt{3}}{2}\right)^{-4x+1}$$

3. $x^{\log_3 x} = 27x^2$

解.

2.
$$x^2 - 2x - 2 > 0 \land x^2 - 2x - 2 \le 1 \implies x \in [-1, 1 - \sqrt{3}) \cup (1 + \sqrt{3}, 3].$$

3. 方程式兩邊取
$$\log_3$$
 得 $\log_3\left(x^{\log_3 x}\right) = \log_3(27x^2) \Longrightarrow (\log_3 x)^2 = \log_3 27 + 2\log_3 x$. 令 $\log_3 x = y$, 則 $y^2 = 3 + 2y \Longrightarrow y = 3 \lor -1 \Longrightarrow x = 27 \lor -\frac{1}{3}$.

4.
$$7-2=\frac{1}{x} \implies x=\frac{1}{5}$$
.

$$5. \left(\frac{4}{3}\right)^{-x^2+\frac{3}{2}x+1} < \left(\frac{\sqrt{3}}{2}\right)^{-4x+1} \implies \left(\frac{2}{\sqrt{3}}\right)^{-2x^2-x+3} < 1 \implies -2x^2-x+3 < 0 \implies x > 1 \ \lor \ x < -\frac{3}{2}.$$

例. 若 x > 0, 若 $f(x) = (32x)^{7-\log_2 x}$ 在 x = a 有最大値 M, 求 (a, M).

解. 令 $u = \log_2 x$, 則 $x = 2^u$; $f(u) = (32 \cdot 2^u)^{7-u} = (2^5 \cdot 2^u)^{7-u} = 2^{(5+u)(7-u)} = 2^{-u^2+2u+35} = 2^{-(u-1)^2+36}$. 故 f(u) 在 u = 1, 亦即 x = 2 有最大値 2^{36} ; $(a, M) = (2, 2^{36})$.

例. 證明 $f(x) = \log_2(x + \sqrt{x^2 + 1})$ 為奇函數, 並求其反函數.

解.

•
$$f(-x) = \log_2(-x + \sqrt{x^2 + 1}) = \log_2\left(\frac{(\sqrt{x^2 + 1})^2 - x^2}{\sqrt{x^2 + 1} + x}\right) = \log_2\left(\frac{1}{x + \sqrt{x^2 + 1}}\right) = -f(x).$$

•
$$y = \log_2(x + \sqrt{x^2 + 1}); x \longleftrightarrow y$$
: $x = \log_2(y + \sqrt{y^2 + 1}) \implies 2^x - y = \sqrt{y^2 + 1} \implies 2^{2x} - 2 \cdot 2^x y + y^2 = y^2 + 1 \implies y = \frac{2^x - 2^{-x}}{2}$.

0.10 三角函數

定義.

• 弧度 / 弳度 (radian)

• 直角三角形: 畢氏定理 (Pythagorean Theorem) $c^2 = a^2 + b^2$ 證明: 由直角三角形面積公式 $\frac{1}{2}c \cdot \overline{CO} = \frac{1}{2}a \cdot b \Longrightarrow \overline{CO} = \frac{ab}{c}$. 又 $\Delta ABC \sim \Delta CBO \sim \Delta ACO$, 則 $\overline{AC}: \overline{BC} = \overline{CO}: \overline{BO} = \overline{AO}: \overline{CO} \Longrightarrow b: a = \frac{ab}{c}: \overline{BO} = \overline{AO}: \frac{ab}{c} \Longrightarrow \overline{BO} = \frac{a^2}{c}, \overline{AO} = \frac{b^2}{c}$. 由 $\overline{AB} = \overline{AO} + \overline{BO} \Longrightarrow c = \frac{b^2}{c} + \frac{a^2}{c} \Longrightarrow c^2 = a^2 + b^2$.

• 銳角三角函數

$$\sin \alpha = \frac{a}{c}$$
 $\csc \alpha = \frac{c}{a}$
 $\cos \alpha = \frac{b}{c}$ $\sec \alpha = \frac{c}{b}$
 $\tan \alpha = \frac{a}{b}$ $\cot \alpha = \frac{b}{a}$

• 廣義角三角函數

$$\sin \alpha = \frac{y}{r}$$
 $\csc \alpha = \frac{r}{y}$
 $\cos \alpha = \frac{x}{r}$ $\sec \alpha = \frac{r}{x}$
 $\tan \alpha = \frac{y}{x}$ $\cot \alpha = \frac{x}{y}$

• $\sin(-\alpha) = -\sin \alpha$, $\cos(-\alpha) = \cos \alpha$.

• $\sin^2 \alpha + \cos^2 \alpha = 1$, $\tan^2 \alpha + 1 = \sec^2 \alpha$, $\cot^2 \alpha + 1 = \csc^2 \alpha$.

• $\forall n \in \mathbb{Z}$: $\sin n\pi = 0$, $\cos n\pi = (-1)^n$.

性質. 和角公式 (addition formula)

• $\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$

• $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$

性質. 兩倍角公式

• $\sin 2\alpha = 2\sin \alpha\cos \alpha$

• $\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$

• $\cos^2 x = \frac{1 + \cos 2x}{2}$, $\sin^2 x = \frac{1 - \cos 2x}{2}$

性質. 積化和差公式

• $\sin \alpha \cos \beta = \frac{1}{2} \left(\sin(\alpha - \beta) + \sin(\alpha + \beta) \right)$

• $\cos \alpha \cos \beta = \frac{1}{2} (\cos(\alpha - \beta) + \cos(\alpha + \beta))$

• $\sin \alpha \sin \beta = \frac{1}{2} (\cos(\alpha - \beta) - \cos(\alpha + \beta))$

證 (和角公式). 設 $p=(1,0), q=(\cos(\alpha+\beta),\sin(\alpha+\beta)).$ 座標系旋轉 α 後, $p=(\cos\alpha,-\sin\alpha), q=(\cos\beta,\sin\beta).$ p,q 距離不變 $\Longrightarrow \sqrt{(\cos(\alpha+\beta)-1)^2+\sin^2(\alpha+\beta)}=\sqrt{(\cos\beta-\cos\alpha)^2+(\sin\beta+\sin\alpha)^2}$ $\Longrightarrow \cos(\alpha+\beta)=\cos\alpha\cos\beta-\sin\alpha\sin\beta.$ 代入 $\alpha=x, \beta=-\frac{\pi}{2}$ 可得 $\sin x=\cos\left(x-\frac{\pi}{2}\right),$ 則 $\sin(\alpha+\beta)=\cos\left(\alpha+\beta-\frac{\pi}{2}\right)=\cos\alpha\cos\left(\beta-\frac{\pi}{2}\right)-\sin\alpha\sin\left(\beta-\frac{\pi}{2}\right)=\cos\alpha\sin\beta-\sin\alpha\cos\left(\beta-\pi\right)=\cos\alpha\sin\beta-\sin\alpha\cos\beta$.

0.11 反三角函數

定義. 在以下定義域上之三角函數為嵌射:

$$\sin x : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \to [-1, 1]$$

$$\cos x : \left[0, \pi \right] \to [-1, 1]$$

$$\tan x : \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \to (-\infty, \infty)$$

$$\csc x : \left(0, \frac{\pi}{2}\right] \cup \left(\pi, \frac{3\pi}{2}\right] \to (-\infty, -1] \cup [1, \infty)$$
$$\sec x : \left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right) \to (-\infty, -1] \cup [1, \infty)$$
$$\cot x : \left(0, \pi\right) \to (-\infty, \infty)$$

故存在反三角函數:

$$\sin^{-1} x : [-1, 1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$
$$\cos^{-1} x : [-1, 1] \to \left[0, \pi \right]$$
$$\tan^{-1} x : (-\infty, \infty) \to \left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$$

$$\csc^{-1} x : (-\infty, -1] \cup [1, \infty) \to \left(0, \frac{\pi}{2}\right] \cup \left(\pi, \frac{3\pi}{2}\right]$$
$$\sec^{-1} x : (-\infty, -1] \cup [1, \infty) \to \left[0, \frac{\pi}{2}\right) \cup \left[\pi, \frac{3\pi}{2}\right)$$
$$\cot x : (-\infty, \infty) \to \left(0, \pi\right)$$

 $3: \ y = \sin x, \ y = \sin^{-1} x$

 $3: y = \cos x, y = \cos^{-1} x$

性質.

- $\sin^{-1}(-x) = -\sin^{-1}x$; $\tan^{-1}(-x) = -\tan^{-1}x$; $\cos^{-1}(-x) = \pi \cos^{-1}x$.

例. 基本反三角函數求值.

1.
$$\sin^{-1} \frac{\sqrt{3}}{2} = \frac{\pi}{3}$$

2.
$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$

3.
$$\tan^{-1} 1 = \frac{\pi}{4}$$

1.
$$\sin^{-1}\frac{\sqrt{3}}{2} = \frac{\pi}{3}$$
 2. $\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$ 3. $\tan^{-1}1 = \frac{\pi}{4}$ 4. $\cos\left(\sin^{-1}\frac{3}{5}\right) = \frac{4}{5}$

例. 若 $\alpha = \sin^{-1} \frac{2}{3}$, 求 $\cos \alpha$, $\tan \alpha$, $\cot \alpha$, $\sec \alpha$, $\csc \alpha$.

解.
$$\cos \alpha = \frac{\sqrt{5}}{3}$$
, $\tan \alpha = \frac{2}{\sqrt{5}}$, $\cot \alpha = \frac{\sqrt{5}}{2}$, $\sec \alpha = \frac{3}{\sqrt{5}}$, $\csc \alpha = \frac{3}{2}$.

例. 若
$$f(x) = \frac{1}{\sin^{-1}\left(\frac{1}{x}\right)}$$
, 求 dom f .

解. dom
$$f = \{x \mid -1 \leqslant \frac{1}{x} \leqslant 1\} = (-\infty, -1] \cup [1, \infty).$$

例. 令
$$f(x) = \sin(\sin^{-1} x)$$
, $g(x) = \sin^{-1}(\sin x)$, 求 dom f , dom g 與其圖形.

解.

- dom $f = \text{dom sin}^{-1} = [-1, 1]; f(x) = x, \forall x \in [-1, 1].$
- dom $g = \mathbb{R}$; $g(x) = \begin{cases} -x + (2n+1)\pi & x \in [(2n+\frac{1}{2})\pi, (2n+\frac{3}{2})\pi) \\ x (2n+2)\pi & x \in [(2n+\frac{3}{2})\pi, (2n+\frac{5}{2})\pi) \end{cases} \quad n \in \mathbb{Z}.$

例. 將 $\sin(\cos^{-1}x)$ 與 $\tan(\cos^{-1}x)$ 化簡為 x 的 (不含三角函數之) 表示式, 其中 $-1\leqslant x\leqslant 1$.

解. 令
$$u = \cos^{-1} x$$
, 則 $0 \le u \le \pi$, $\cos u = x$, $\sin u = +\sqrt{1-x^2}$, $\tan u = \frac{\sqrt{1-x^2}}{x}$.

例. 化簡以下表示式.

1.
$$\cos(\sin^{-1} x)$$

$$2. \sin(\tan^{-1} x)$$

3.
$$\sin(2\tan^{-1}x)$$

Pr. 1.
$$\cos(\sin^{-1} x) = \sqrt{1 - x^2}$$

1.
$$\cos(\sin^{-1} x) = \sqrt{1 - x^2}$$
 2. $\sin(\tan^{-1} x) = \frac{x}{\sqrt{1 + x^2}}$

3.
$$\sin(2\tan^{-1}x) = \frac{2x}{1+x^2}$$

例. 將 $\sin(\cos^{-1}x + \tan^{-1}y)$ 化簡為 x, y 的 (不含三角函數之) 表示式, 其中 $-1 \leqslant x \leqslant 1, y \in \mathbb{R}$.

解. 令 $u = \cos^{-1} x, \ v = \tan^{-1} y, \$ 則 $\cos u = x, \ \tan v = y,$ 由此 $\sin u = \sqrt{1 - x^2}, \ \cos v = \frac{1}{\sqrt{1 + y^2}}, \ \sin v = \frac{y}{\sqrt{1 + y^2}};$ 原式為 $\sin(\cos^{-1} x + \tan^{-1} y) = \sin(u + v) = \sin u \cos v + \cos u \sin v = \sqrt{1 - x^2} \cdot \frac{1}{\sqrt{1 + y^2}} + x \cdot \frac{y}{\sqrt{1 + y^2}}.$

例. 證明 $\cos^{-1}(1-2x^2)=2\sin^{-1}x$, $0 \le x \le 1$.

解. 令 $u = \sin^{-1} x$, 則 $\cos^{-1} (1 - 2x^2) = \cos^{-1} (1 - 2\sin^2 u) = \cos^{-1} (\cos 2u) = 2u = 2\sin^{-1} x$.

例.解 $2\sin^{-1}x + \cos^{-1}x = \pi$.

解. 令 $\sin^{-1} x = u$, $\cos^{-1} x = v$, 則 $\sin u = \cos v = x$, $\cos u = \sin v = \sqrt{1 - x^2}$. 方程式兩邊取 $\cos \cos(2u + v) = -1 \implies \cos 2u \cos v - \sin 2u \sin v = (1 - 2\sin^2 u)\cos v - 2\sin u\cos u\sin v = -1 \implies (1 - 2x^2)x - 2x(1 - x^2) = -1 \implies x = 1$.