3. Programovatelné a neprogramovatelné logické obvody

- Charakteristika, vznik a rozdělení PLD
- Popis dílčích PLD obvodů
 - o PLA, PAL, GAL, CPLD, FPGA
- Makrobunka vs. logický blok
- Vývojové prostředí WebPack
 - o PLD kompilátor
- Charakteristika NPLD
- Popis a využití vybraných obvodů
 - 0 74164, 74166, 74595, 74573, 74244, 74245, 74688, 74193

Charakteristika, vznik a rozdělení PLD

- Charakteristika
 - Číslicové obvody, které lze konfigurací naprogramovat
 - Vytváření / přerušování propojek nebo zápis do paměťových buněk
 - o Prostředek pro návrh / realizaci kombinačních a sekvenčních obvodů
 - Díky vývojovým prostředkům, které lze pro práci s nimi použít, umožňují podstatným způsobem usnadnit práci vývojáře / návrháře
- Vznik
 - Nahrazují kombinační a sekvenční LO
 - Sestaveny z obvodů střední inteligence (hradla, čítače, registry, ...)
 - Na rozdíl od hradel, registrů a jiných obvodů, které mají z výroby pevně danou funkci, musí být PLD před použitím naprogramováno
- Rozdělení
 - Nejjednodušší PLD je PROM
 - SPLD (Simple PLD)
 - Spíše pro kombinační logiku
 - o CPLD (Complex PLD)
 - Charakteristické počtem makro-buněk
 - o FPGA (Field Programmable Gate Array)
 - Makro-buňky nahrazené logickými bloky

Popis dílčích PLD obvodů

- PAL (Programmable Array Logic)
 - Můžeme programovat AND pole
 - Hradla OR jsou pevně dané
 - Eliminovala nespolehlivost zapojení, zjednodušila návrh a snížila spotřebu energie integrováním složitějších logických funkcí do jediného čipu
- PLA (Programmable Logic Array)
 - Můžeme kromě ANDu programovat i OR pole
 - Je nákladnější a složitější než PAL
 - Spojení jsou vytvořena pomocí pojistky v každém průsečíku, kde lze nežádoucí spojení odstranit "vyfukováním" pojistek
- GAL (Generic Array Logic)
 - Vylepšená verze PAL
 - Má stejné vlastnosti a parametry, ale může být přeprogramováno
 - Využíváno v prototypní fázi designu, kdy každý problém může být opraven pomocí jednoduchého přeprogramování (pomocí PAL programmeru nebo in-circuit programmingu v případě podpory čipem)

- CPLD
 - Složitější než SPLD
 - Větší množství logiky na jednom čipu
 - Několik obvodů patřících do SPLD (PAL nebo GAL) propojených propojovacími poli
 - o Počet makro-buněk v řádech desítek a stovek
 - SPLD v řádu jednotek
 - Většina pinů je univerzálních
 - Pár speciálních (CLK, programování, ...)

FPGA

- Nejsložitější, ale zároveň nejobecnější PLD
- IOB (IO blok) přísluší každému IO pinu a mohou obsahovat registr, budič, multiplexor a ochranné obvody
- Jednotlivé LO jsou propojeny GIM /AIM (globální propojovací matice)
 - Signály sousedních LO mohou být propojeny přímo pro rychlejší, realizaci např. čítaček nebo násobiček
- Většina obsahuje paměť SSRAM (Synchronous Static RAM), ze které se berou data
- Mohou obsahovat speciální bloky (HW násobičky; PLL, DLL – pro práci s CLK)
- Využití EEPROM, kterou automaticky přečte po zapnutí a uloží do SSRAM

Makro-buňka vs. Logický blok

- Makro-buňka (OLMC Output Logic Macro Cell)
 - Umožňuje výrobu sekvenčních automatů a pamatování předchozího stavu
 - Umožňuje převod mezi Mealyho a Mooreho automatem
 - Základní částí je D kopný obvod (bez něj pouze jako KLO (Kombinační Logický Obvod)) doplněný o pomocná hradla

- Skládá se z kombinatoriky AND OR hradel a klop. O. a v podstatě každá buňka může představovat malou booleovskou rovnici
- V každé makro buňce může být vytvořena logická funkce s až 16 logickými součiny
- Složení makro buněk dohromady nám dává logický blok

Logický Blok

- Samotná programovatelná logika
- Logický blok je programovatelný a je složitější
- Může obsahovat třeba budič nebo registr a jiné obvody
- Logický blok v FPGA může být stejně jednoduchý a malý jako makro buňka, ale taky velký a komplexní, nicméně nejsou nic víc, než například pár tabulek logických funkcí nebo klopného obvodu
- Logické bloky jsou nejběžnější architekturou FPGA a jsou rozloženy do pole logických bloků

Vývojové prostředí WebPack

- PLD kompilátor
 - Vývojové systémy / prostředí umožní definovat návrh číslicového obvodu bez ohledu na konkrétní typ PLD, jež bude nakonec použit
 - o Převádí definice logických funkcí do implementačního prostředí konkrétního PLD
 - o Dříve výstupem soubor .jedec dnes .bit
 - Programuje se do konkrétního PLD přes LPT nebo USB
 - Transformace zápisu včetně minimalizace
 - Zjednodušení návrhu
 - Doplněno optimalizací pro konkrétní PLD
 - Minimalizace vstupů, výstupů, vnitřních termů a makro-buněk

Charakteristika NPLD

- Funkce je pevně daná při výrobě
- V podobě integrovaných obvodů
- Použití:
 - Posuvné registry
 - Záchytné registry
 - o Posilovače sběrnice
 - Komparátory
 - Čítače

Popis a využití vybraných obvodů

- 74164 8bit posuvný registr
 - sériový vstup -> paralelní výstup
 - Pro převod sériové informace na paralelní (např. vysílací jednotka)
 nebo pro rozšíření počtu výstupů u uP
 - Je potřeba 8 clk, aby se změnila informace ze sériové na paralelní
 - o Vstupy A, B
 - Výstupy Qa Qe
 - CLR pro vymazání

• 74166 – 8bit posuvný registr

- Paralelní vstup -> sériový výstup
- Pro převod paralelní informace na sériovou (přijímací jednotka) rozšíření počtu výstupů u uP
- o Vstupy A-H
- Výstup Q_H
- O CLK INH (Inhibita) zastaví clock
- SER Sériová informace
- o SH Shift
- o LD Load
- o CLR Clear

- 74595–8bit posuvný registr
 - 3 stavový výstup
 - Sériový vstup -> paralelní výstup
 - o Pro Převod paralelní informace na sériovou, světelné tabule, rozšíření počtu pinů u uP

20] V_{CC} 19] 1Q

18] 2Q 17] 3Q

16 4Q

15] 5Q 14] 6Q

13 7Q

12 3 8Q

11 LE

'573

- 74573 8bit střadač / Záchytný registr (Latch Register)
 - 3 stavový výstup
 - Pro rychlé zachytávání informací na sběrnici nebo pro rozšíření uP o vnější paměť

- 74244 2x 4bit Jednosměrný budič posilovač sběrnice
 - Jednosměrný budič
 - Vstup 3.3 nebo 5V
 - Výstup 5V
 - 3 stavový výstup
 - o Používán jako vysílač pro sběrnici, možno spínat náročnější součástky

- 74245 2x 8bit Oboustranný budič Posilovač sběrnice
 - o Vstup 3.3 nebo 5V
 - Výstup podle směru 3.3 nebo 5V
 - 3 stavový výstup
 - o Používán jako vysílač pro sběrnici, možno spínat náročnější součástky

20 V_{CC}

19 20E

1Y1

17 2A4

1Y2

2A3

14 1Y3

13 2A2

12 1Y4

11 2A1

10E [

2Y4[

1A2 [

2Y3 [

1A3 🛚

2Y2

1A4 [

2Y1 [GND [

- 74688 2x 8bit Komparátor
 - 3 stavový výstup
 - Pro porovnávání 2 8bit slov jako adresní dekodér 1 vstup pevně daný

- 74193 4bit Obousměrný čítač
 - o Kaskádní zapojení (Výstup z předchozího na vstup následujícího)
 - o Přednastavení vstupu
 - o Používán jako čítač událostí / odpočet, pořadník

