

TECH CENTER 1600/2900

ENTERED

RAW SEQUENCE LISTING

PATENT APPLICATION: US/09/674,195B

DATE: 12/13/2002

TIME: 13:54:12

Page 1 of 8

Input Set : A:\W159565.txt

Output Set: N:\CRF4\12132002\I674195B.raw

```
4 <110> APPLICANT: Rosely M. Zancope-Oliveira
         Timothy J. Lott
         Leonard W. Mayer
 6
 7
         Errol Reiss
         George S. Deepe
11 <120> TITLE OF INVENTION: NUCLEIC ACIDS OF THE M ANTIGEN GENE OF
        HISTOPLASMA CAPSULATUM, ANTIGENS, VACCINES, AND ANTIBODIES,
12
         METHODS AND KITS FOR DETECTING HISTOPLASMOSIS
13
16 <130> FILE REFERENCE: 14114.0325U2
18 <140> CURRENT APPLICATION NUMBER: 09/674,195B
19 <141> CURRENT FILING DATE: 2000-10-26
21 <150> PRIOR APPLICATION NUMBER: PCT/US99/09151
22 <151> PRIOR FILING DATE: 1999-04-27
24 <150> PRIOR APPLICATION NUMBER: 60/083,676
25 <151> PRIOR FILING DATE: 1998-04-30
27 <160> NUMBER OF SEQ ID NOS: 13
29 <170> SOFTWARE: FastSEQ for Windows Version 4.0
31 <210> SEQ ID NO: 1
32 <211> LENGTH: 3862
33 <212> TYPE: DNA
34 <213> ORGANISM: Histoplasma capsulatum
36 <220> FEATURE:
37 <221> NAME/KEY: misc feature
38 <222> LOCATION: 3258
39 <223> OTHER INFORMATION: n = g, a, c or t(u)
41 <400> SEQUENCE: 1
42 ggatcctgct ggctccgata actttgcttt atccaagggt ctcggcgaat gccaggtgcc
                                                                           60
                                                                          120
43 atcgatctat attttgaagt ttatcacctc aatggcttca ccccatgacg caccttttat
44 ttttatttc attcatcttc tctgtggcaa acatgcaggt atgcgagctc tggaccctgg
                                                                          180
45 ggtgtggccc ttgatgcata tggtttattt atagccgccc ggaagccctg gcctgttaaa
                                                                          240
46 ttttggacct cctcccgcca ttctttccaa acttcgtgcg tccgtttccc atttcccccc
                                                                          300
                                                                          360
47 tecceattiq qqttecetat aggecaetge gtgetecaet caagaagggt eecagteaat
                                                                          420
48 ttgqtcccta ccctctccaa cactatctgc atatgtaata tatatcgata tctaactgcc
                                                                          480
49 attgattatt tqtcttcttc aqcatctttt tqtctcgagc aagcttactc cacgttcaat
                                                                          540
50 tcagggggta aaaatgcggt cgctcaagct tatactcgcc tcggcgggtg ttgtttctgc
51 agcctgtccc tacatgtcag gggagatgcc tagcggtcag aaaggccccc tcgatcgccg
                                                                          600
                                                                          660
52 ccatqacact ctctccqacc ctacqqacca gtttcttagc aagttttaca ttgacgatga
                                                                          720
53 acagtcggtg ctaacaacgg acgtgggtgg teccategag gaccaacaca geetgaagge
54 tggaaataga ggcccaactc tacttgagga ttttatcttc cgccagaaga ttcaacactt
                                                                          780
55 tgatcatgag agggtatgta gatacaaaat atgtgaccgt gttgcaaatc cgctaattca
                                                                          840
56 attttacgca ggttcctgag cgcgccgtcc atgctcgagg agctggtgcc catggcgtat
                                                                          900
```

57 tcacatccta taataactgg tcgaatatca cagccgcatc cttcttgaac gcggcaggaa

58 agcagacacc agtattcgtg cggttttcta cagtcgctgg tagcagaggc agtgttgact

960

1020

RAW SEQUENCE LISTING DATE: 12/13/2002 PATENT APPLICATION: US/09/674,195B TIME: 13:54:12

Input Set : A:\W159565.txt

Output Set: N:\CRF4\12132002\I674195B.raw

```
1080
    59 ctgctcgcga tatccacgga tttgcgaccc gtctgtatac cgatgaaggc aattttggta
     60 agcattatat cgtggtagtc atactcataa cagcacaaca aatatgaata caaacccagg
                                                                              1140
                                                                              1200
     61 acctaggetg actactegge aatgtagata tegteggaaa caaegtteea gtettettea
    62 ttcaggacgc tattcaattc cctgatttga ttcacgctgt caagccgcaa ccagacagtg
                                                                              1260
     63 aaattcccca ggctgcaact gcacatgata cggcatggga tttcctcagc cagcagccca
                                                                              1320
     64 gctcattgca tgccctcttc tgggcaatgt caggacatgg aatccctcgc tcaatgcgtc
                                                                              1380
     65 atgttgatgg gtggggcgtc catacettee gaettgteae egaegaggge aactegaeet
                                                                              1440
     66 tggtcaagtt tcgctggaag accctccaag gaagagcggg cctggtatgg gaagaggcac
                                                                              1500
     67 aggetettgg eggaaagaat eeegaettee ategacaaga eetetgggat geeattgaat
                                                                              1560
                                                                              1620
     68 ctggaaggta ccctgagtgg gaggtaagat atgattcccc caaatcatta gttctgacag
     69 tgtttctctg ctctgtcggt tgctcttttc gtcttttct atatcttcaa ctaagactga
                                                                              1680
     70 ctttatatac gttttactca tatagctggg ctttcaattg gtgaatgaag cagatcaatc
                                                                              1740
                                                                              1800
     71 caagtttgat ttcgatctat tagatcccac caaaatcatc ccagaagaac ttgttccttt
                                                                              1860
     72 caccccaatc ggaaaaatgg tcttgaaccg aaacccaaaa agttattttg ccgaaactga
    73 gcagatcatg gttggtccac cccctatata tttggaatat gaatacatgt atagctagat
                                                                              1920
     74 gaagegtata tetaaatata ttteeacagt teeaaceagg teatgtagtt egeggaateg
                                                                              1980
     75 atttcacgga tgaccetttg ettcagggee gettgtaete etacettgae acteaattga
                                                                              2040
     76 atcgccatgg aggtcccaac ttcgagcaac tgccgatcaa cagaccccgc atcccattcc
                                                                              2100
                                                                              2160
     77 ataacaacaa tcgcgacggt gctggtaagc tacttctcac ctaccatgtc aacttccatc
     78 ttgacccaat cgatttgtat agagtattaa catccccgtc tgcacaggac aaatgttcat
                                                                              2220
                                                                              2280
     79 ccctctaaac acggccgcat atacacccaa ctcaatgagc aacggattcc cacaacaagc
    80 caaccggacc cataacagag gattetteac egeacetggg egtatggtaa atggaccaet
                                                                              2340
                                                                              2400
     81 agtgcgcgag ctcagcccga gcttcaacga cgtctggtcc caaccgcgtc tcttctacaa
     82 ctcactcacg gtcttcgaga agcaattcct cgtcaacgcc atgcgcttcg aaaactccca
                                                                              2460
     83 cgtgcggagt gaaaccgtgc gtaagaacgt catcatccag ctgaaccgcg tcgacaacga
                                                                              2520
                                                                              2580
     84 cctcgcccgc cgcgtcgcgc tagctatcgg cgtcgaaccc ccatccccgg acccaacctt
     85 ctaccacaac aaggcaaccg tececategg caeettegge aegaatetee tgeggetega
                                                                              2640
     86 cgggctgaaa atcgccctcc tgacaagaga cgacggtagc ttcacgatcg cggagcagct
                                                                              2700
     87 ccgggccgcg tttaacagcg ccaacaacaa agtagatatc gtcctagtgg gctcatcgct
                                                                              2760
                                                                              2820
     88 tgatccccaa cgcggcgtga acatgaccta ttccggcgcc gacggctcga tcttcgatgc
     89 cgtgatcgtc gtcggcggcc tgctcacgag cgcctcaacg caatacccaa gaggtcgccc
                                                                              2880
     90 gctcaggatt attacggatg catacgcgta tggaaagccc gttggcgccg tcggtgacgg
                                                                              2940
                                                                              3000
     91 tagcaatgaa qcccttcqtq acgtccttat ggccgctggt ggggatgcgt cgaatgggct
     92 ggaccagccc ggtgtgtata tttccaacga tgtgagtgag gcctacgtta gaagtgtctt
                                                                              3060
     93 ggacggattg acggcatatc ggttcttgaa tcggttcccg ttggatagaa gcttggtatg
                                                                              3120
                                                                              3180
     94 aggtttgggg cgcaaatatg ggtttactac cccccccc ccctttttt ttttcctttt
                                                                              3240
     95 ctqtttttcc atctttqqtt qaqqtaatat tgcagatatc agtaaattgc gtttacgaaa
W--> 96 gccggtgtca agcttcanga ggcctaatta atttgaagag gaggttgaag tgaaatcttg
                                                                              3300
                                                                              3360
     97 gtgtaactat aataatttat aataactaat aacttataat taatgtctat tgtaatttcc
     98 tctcacattc aatctatatt tgatccttgt cctttgtagc tgtttaaata taagccaaga
                                                                              3420
                                                                              3480
     99 gagacaaata atgatagatt aacaaataat tgcacaccca ataggccttc cctcacgata
     100 tcagatatta tctatcatgt tgtaatgata cctcaaaaat gccacaagct tgcctgatat
                                                                               3540
     101 tgaatattta tatgctgtaa atgtagggaa gagcgtacca tccaaataac cagaaaaaca
                                                                               3600
     102 tgttttagct taaaatctca ctaaggtcgg tcgtgtctat ttgaaatggc tgcggcaagc
                                                                               3660
                                                                               3720
     103 tgactatctg ataaaaatgt ctgtatttcc gcttcacgac gcatgttatg actttcgaat
                                                                               3780
     104 atagataaaa cctgaacgat ttagcccctg ttgggggaaa taggggttag gggggcgagc
     105 tacatatcat toccatatga ocaaaaacta aaatagatat atatatata atatatat
                                                                               3840
                                                                               3862
     106 acaacacctt caaaaaggat cc
     109 <210> SEQ ID NO: 2
```


RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/674,195B

DATE: 12/13/2002
TIME: 13:54:12

Input Set : A:\W159565.txt

Output Set: N:\CRF4\12132002\I674195B.raw

	0 <211> LENGTH: 707 1 <212> TYPE: PRT															
112		3> OI	RGANI	[SM:	Histoplasma			capsulatum								
115 116	Met	Pro	Ser	Gly	Gln 5	Lys	Gly	Pro	Leu	Asp.	Arg	Arg	His	Asp	Thr 15	Leu
117 118		Asp	Pro	Thr 20	Asp	Gln	Phe	Leu	Ser 25	Lys	Phe	Tyr		Asp 30	Asp	Glu
119 120	Gln	Ser	Val 35	Leu	Thr	Thr	Asp	Val 40	Gly	Gly	Pro	Ile	Glu 45	Asp	Gln	His
	Ser	Leu 50	Lys	Ala	Gly	Asn	Arg 55	Gly	Pro	Thr	Leu	Leu 60	Glu	Asp	Phe	Ile
		Arg	Gln	Lys	Ile	Gln 70	His	Phe	Asp	His	Glu 75	Arg	Val	Pro	Glu	Arg 80
125 126	Ala	Val	His	Ala	Arg 85	Gly	Ala	Gly	Ala	His 90	Gly	Val	Phe	Thr	Ser 95	Tyr
127 128			-	100					Ala 105					110		
130			115					120	Phe				125			
132		130					135		Ile			140				
134	145					150			Ile		155					160
136					165				Phe	170					175	
138				180					Pro 185					190		
140			195					200	Gln				205			
142		210					215		Ile			220				
144	225					230			Arg		235			•		240
146					245				Lys	250					255	
148				260					Leu 265					270		
150			275					280	Ile				285			
152		290					295		Asn			300				
154	305					310			Lys		315					320
156					325				Val	330					335	
158				340					Met 345					350		
159	Arg	Gly	Ile	Asp	Phe	Thr	Asp	Asp	Pro	Leu	Leu	GIn	GLy	Arg	Leu	Tyr

RAW SEQUENCE LISTING
PATENT APPLICATION: US/09/674,195B

DATE: 12/13/2002
TIME: 13:54:12

Input Set : A:\W159565.txt

Output Set: N:\CRF4\12132002\I674195B.raw

160			355					360					365			
	Ser	Tyr		Asp	Thr	Gln	Leu	Asn	Arg	His	Gly	Gly	Pro	Asn	Phe	Glu
163		370		•			375				_	380				
	Gln	Leu	Pro	Ile	Asn	Arq	Pro	Arg	Ile	Pro	Phe	His	Asn	Asn	Asn	Arg
	385					390					395					400
		Glv	Ala	Glv	Gln	Met	Phe	Ile	Pro	Leu	Asn	Íhr	Ala	Ala	Tyr	Thr
167	110P	O _T		0-1	405					410					415	
	Pro	Asn	Ser	Met		Asn	Glv	Phe	Pro	Gln	Gln	Ala	Asn	Arg	Thr	His
169	110	11011	001	420	-		1		425					430		
	Asn	Ara	Glv		Phe	Thr	Ala	Pro		Ara	Met	Val	Asn	Gly	Pro	Leu
171	71311	1119	435	1110				440	0-1	5			445	2		
	Val	Ara		Len	Ser	Pro	Ser		Asn	Asp	Val	Trp	Ser	Gln	Pro	Arq
173	Val	450	Oru	пси	DCI	110	455	2110	11011	1100		460				,
	Len		Tur	Asn	Ser	T.e.ii		Val	Phe	Glu	Lvs		Phe	Leu	Val	Asn
	465	rne	ı yı	LOII	SCI	470	1111	vuı	1110	014	475	02	- ,			480
		Mat	Ara	Pho	Glu		Ser	His	Val	Ara		Glu	Thr	Val	Ara	
177	пта	riec	Arg	1110	485	71511	UCI	1110	V 4 1	490	001	010			495	-1-
	7) cm	Val	т10	T10		Lan	Aen	Δra	Val		Asn	Asp	Leu	Ala		Ara
179	ASII	val	116	500	GIII	пец	ASII	Arg	505	ш	71011	пор	ЦСС	510	9	9
	Wal	717	T O11		Tla	Glv	Val	Glu		Pro	Ser	Pro	Asp	Pro	Thr	Phe
	vaı	Ата	515	ALa	116	Сту	vaı	520	110	110	501	110	525	110		1110
181	Ф~	uic		Tuc	70 7 2	Thr	Val		Tla	Glv	Thr	Phe		Thr	Asn	Leu
	ıyı	530	ASII	пуз	ALG	1111	535	110	110	ОТУ	1111	540	019			
183	Ton		T 011	λcn	Gly	I All		Tla	Δla	T.e.13	T.e.11		Ara	Asp	Asp	Glv
	545	Arg	ьеи	АЗР	Сту	550	цуз	110	111α	пси	555	1111	111.9	ПОР	1101	560
		Dho	Thr	T۱۵	Δla		Gln	T.e.11	Ara	Ala		Phe	Asn	Ser	Ala	
187	261	1116	1111	110	565	Ora	OIII	цец	111.9	570	1114				575	
	Aen	Luc	V = 1	Δen		Val	T.e.11	Val	Glv		Ser	Leu	Asp	Pro		Ara
189	ASII	цуs	Val	580	110	• • • •	Dog		585					590		,
190	Glv	Val	Asn		Thr	Tvr	Ser	Glv		Asp	Glv	Ser	Ile	Phe	Asp	Ala
191	O L y	• • • •	595	1100		- 1		600			- 1		605		•	
	Val	Tle		Val	Glv	Glv	Leu		Thr	Ser	Ala	Ser	Thr	Gln	Tyr	Pro
193		610			1	1	615					620			-	
	Ara		Ara	Pro	Leu	Ara		Ile	Thr	Asp	Ala	Tyr	Ala	Tyr	Gly	Lys
	625	021	5			630				_	635	-		-	_	640
		Val	Glv	Ala	Val	Glv	Asp	Glv	Ser	Asn	Glu	Ala	Leu	Arg	Asp	Val
197			4 -1		645	1				650				-	655	
	Leu	Met	Ala	Ala		Glv	Asp	Ala	Ser	Asn	Gly	Leu	Asp	Gln	Pro	Gly
199				660	1	- 1			665		-		-	670		_
	Val	Tvr	Tle		Asn	Asp	Val	Ser	Glu	Ala	Tyr	Val	Arg	Ser	Val	Leu
201		- 1 -	675			I		680			-		685			
	Asp	Glv		Thr	Ala	Tvr	Ara		Leu	Asn	Arq	Phe	Pro	Leu	Asp	Arg
203		690				- 2	695				,	700			-	_
			Val													
	4 Ser Leu Val 5 705															
	08 <210> SEQ ID NO: 3															
	<21				-											
	<21															
					Hist	topla	asma	cap	sulat	tum						
						-		-								

DATE: 12/13/2002

```
PATENT APPLICATION: US/09/674,195B
                                                             TIME: 13:54:12
                     Input Set : A:\W159565.txt
                     Output Set: N:\CRF4\12132002\I674195B.raw
     213 <400> SEQUENCE: 3
     214 Ser Asp Pro Thr Asp Gln Phe Leu
     217 <210> SEQ ID NO: 4
     218 <211> LENGTH: 15
     219 <212> TYPE: PRT
     220 <213> ORGANISM: Histoplasma capsulatum
     222 <400> SEQUENCE: 4
     223 Asp Phe Ile Phe Arg Gln Lys Ile Gln His Phe Asp His Glu Arg
     226 <210> SEQ ID NO: 5
     227 <211> LENGTH: 9
     228 <212> TYPE: PRT
     229 <213> ORGANISM: Histoplasma capsulatum
     231 <400> SEQUENCE: 5
     232 Thr Leu Gln Gly Arg Ala Gly Leu Val
     233 1
     235 <210> SEQ ID NO: 6
     236 <211> LENGTH: 16
     237 <212> TYPE: PRT
    238 <213> ORGANISM: Histoplasma capsulatum
     240 <400> SEQUENCE: 6
     241 Ala Gln Ala Leu Gly Gly Lys Asn Pro Asp Phe His Arg Gln Asp Leu
                                             10
     244 <210> SEQ ID NO: 7
     245 <211> LENGTH: 6
     246 <212> TYPE: PRT
     247 <213> ORGANISM: Histoplasma capsulatum
     249 <400> SEQUENCE: 7
     250 Ser Gly Arg Tyr Pro Glu
     251 1
     253 <210> SEQ ID NO: 8
     254 <211> LENGTH: 10
     255 <212> TYPE: PRT
     256 <213> ORGANISM: Histoplasma capsulatum
     258 <400> SEQUENCE: 8
     259 Phe Asp Phe Asp Leu Leu Asp Pro Thr Lys
     260 1
     262 <210> SEQ ID NO: 9
     263 <211> LENGTH: 14
     264 <212> TYPE: PRT
     265 <213> ORGANISM: Artificial Sequence
     267 <220> FEATURE:
     268 <223> OTHER INFORMATION: Description of Artificial Sequence; M antigen-specific
oligonucleotide
     270 <400> SEQUENCE: 9
     271 Ile Ile Pro Glu Glu Leu Val Pro Phe Thr Pro Ile Gly Lys
     275 <210> SEQ ID NO: 10
     276 <211> LENGTH: 15
```

RAW SEQUENCE LISTING

RAW SEQUENCE LISTING ERROR SUMMARY PATENT APPLICATION: US/09/674,195B

DATE: 12/13/2002 TIME: 13:54:13

Input Set : A:\W159565.txt

Output Set: N:\CRF4\12132002\I674195B.raw

Please Note:

Use of n and/or Xaa have been detected in the Sequence Listing. Please review the Sequence Listing to ensure that a corresponding explanation is presented in the <220> to <223> fields of each sequence which presents at least one n or Xaa.

Seq#:1; N Pos. 3258
Seq#:11; N Pos. 3,9

VERIFICATION SUMMARY

PATENT APPLICATION: US/09/674,195B

DATE: 12/13/2002 TIME: 13:54:13

Input Set : A:\W159565.txt

Output Set: N:\CRF4\12132002\I674195B.raw

L:96 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:1 after pos.:3240 L:326 M:341 W: (46) "n" or "Xaa" used, for SEQ ID#:11 after pos.:0