FORT SAM HOUSTON DINING FACILITIES

San Antonio, Texas

Energy Engineering Analysis Program (EEAP)

Executive Summary

Final Submittal

19971022 106

Conducted by:

CARTER :: BURGESS

Consultants in Engineering, Architecture,
Planning and the Environment
3880 Hulen Street
Fort Worth, Texas 76107
(817) 735-6000

DISTRIBUTION STRITTSIENT &

Approved to public telegas:

c. Distributor Unlimeted

June -Amil 19

-April, 1994

DTIC QUALITY INSPECTED 3

C&B Job No. 91109912F

DEPARTMENT OF THE ARMY

CONSTRUCTION ENGINEERING RESEARCH LABORATORIES, CORPS OF ENGINEERS P.O. BOX 9005 CHAMPAIGN, ILLINOIS 61826-9005

REPLYTO ATTENTION OF:

TR-I Library

17 Sep 1997

Based on SOW, these Energy Studies are unclassified/unlimited. Distribution A. Approved for public release.

Marie Wakeffeld, Librarian Engineering

TABLE OF CONTENTS

PAGE NO.
INTRODUCTION 1
BUILDINGS/FACILITIES AUDITED 1
PRESENT ENERGY CONSUMPTION
TABLE 1. BASE YEAR ENERGY CONSUMPTION DATA (Individual Meter) 2
COMPOSITE PROJECT SUMMARY 3
SUMMARY OF PROJECT 3
SPECIAL CONSIDERATIONS
TABLE 2A. SUMMARY OF RECOMMENDED ECO'S AND M & O'S 4
TABLE 3A. COMPOSITE ECO SUMMARY (BY BUILDING)
TABLE 3B. COMPOSITE ECO SUMMARY (BY SIR)
TABLE 4. ECIP SUMMARY
LIFE CYCLE COST ANALYSIS SUMMARY
CONCLUSIONS
MAINTENANCE AND OPERATIONAL RECOMMENDATIONS

EXECUTIVE SUMMARY

INTRODUCTION

This report was conducted to identify Energy Conservation Opportunities (ECO's) for twenty one (21) dining and kitchen facilities at Fort Sam Houston and Camp Bullis. All sources of energy consumption were considered in this report, including electricity, natural gas, and steam.

BUILDINGS/FACILITIES AUDITED

FORT SAM HOUSTON

The dining/kitchen facilities at Fort Sam Houston analyzed for this report range in age from late 19th century to less than 10 years old. Construction types also vary widely. The majority of the facilities are constructed of concrete block walls with face brick, although wood frame, stone and stucco construction was also observed.

CAMP BULLIS

The dining/kitchen facilities at Camp Bullis are all of similar construction and were built in the early 1900's. These facilities are wood frame construction with lapboard exteriors.

PRESENT ENERGY CONSUMPTION

Electricity and gas are not sub-metered to the building level. The gas supply is sub-metered randomly with some buildings having multiple meters and some meters feeding multiple buildings. The electrical usage is primarily metered thru two central sub-stations for the entire base. Therefore, the energy consumption information is based on the total base consumption as metered thru the two main sub-stations. (Refer to Table 1 for Base Year Utility Consumption).

TABLE 1, BASE YEAR ENERGY CONSUMPTION DATA (Individual Meter)

For prior 12 month period beginning September, 1992 and ending August, 1993.

Gas	Cost \$	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/N
Natural Gas	Consumption Unit	N/A	N/A	N/A	A/N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	A/A
	Total Cost \$	472,867	417,992	457,489	510,107	579,119	756,066	784,822	801,535	760,361	629,878	514,344	445,411	7,129,991.00
	PCRF or Cogeneration \$/KWH	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Fuel Adjustment \$/KWH	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Electrical	Power Factor	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Demand Charged KW or KVA	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Demand Metered KW or KVA	18,984	18,984	19,032	22,912	25,680	30,336	29,952	30,960	31,616	31,312	28,672	19,800	308,240.00
	Consumption KWH	10,253,600	9,085,600	9,643,200	10,156,000	12,276,800	15,378,400	16,056,000	16,658,400	16,269,600	13,277,600	11,700,00	9,788,800	140,014,000.00
	Months	January, 93	February, 93	March, 93	April, 93	May, 93	June, 93	July, 93	August, 93	September, 92	October, 92	November, 92	December, 92	Total

	Electricity	Natural Gas
Company Name:	City Public Service	City Public Service
Company Rate Schedule:	Large Lighting and Power	Large Volume

COMPOSITE PROJECT SUMMARY

Listed in Table 2A is a compilation of all recommended ECO's. Tables 3A and 3B are compilations of all recommended ECO's studied as well as the analysis results for each ECO. Table 3A is sorted by building number and Table 3B is sorted by descending SIR. Also, shown in Table 2A is the ECO numbers and ECO descriptions analyzed for this report. A detailed summary of each ECO may be found with each building description and analysis.

SUMMARY OF PROJECT

(All recommended ECO's included - see Table 4 for ECIP summary calculations)

KWH Savings:	2,263,894	KWH/yr
Demand Savings:	7.241.9	KW
Gas Savings:	1,648.4	MCF/yr
Cost Savings:	\$ 140,319.00	/Year
Implementation Cost:	\$ 1,187,540.00	•
Simple Payback:	6.2	Years
Savings to Investment:	2.43	
Ratio (SIR)		

This report identified capital intensive projects which, if implemented, will result in the savings and costs summarized above. The savings for the recommended composite project listed above account for interdependence of savings of individual ECO's.

SPECIAL CONSIDERATIONS

UTILITY REBATES

City Public Service does not currently offer any utility rebate incentives for energy retrofit measures.

MAINTENANCE AND OPERATION OF RETROFITTED SYSTEMS.

The combination of ECO's identified in this report will result in an overall decrease in maintenance labor and cost. This is due primarily to the installation of new lighting systems with increased service lives and a reduction in operating hours for mechanical equipment with the addition of automatic stop/start functions. Addition of automatic stop/start functions will also extend the useful life of the equipment.

TABLE 2A. SUMMARY OF RECOMMENDED ECO'S AND M & O'S

					I				l										
ENERGY CONSERVATION OPPORTUNITIES	W & O	4	368	407 1350 1387	55 138	138	1395 1462	1520 1630	<u>88</u>	2265	2300	2521	2265 2399 2521 2530 2652	82 28	2841 5105	5 5108	5107	5114 5124	5124
A ADDITIONAL INC. ATOMICEALING	10	+	,	+	+	1	_			1	t	\dagger	+	+	+	+	1		T
A. AUDITIONAL INSULATION/SEALING	O Ø ∑	+	<	+	+	1			Ī	†	†	\dagger	+	+	+	+	1		T
C. WFATHER STRIPING AND CALIFKING		+	1	+	+	-	1		T		+	1	+	+	+	-			T
. HOT WATER		+	L		-	-				T	\dagger	\dagger	-	+	-	-	-		
A. SHUTDOWN ENERGY TO WATER HEATER		-															_		
B. ADDITION OF BOOSTER HEATERS AT MAJOR HW USERS																			
C. ADDITION OF INSTANTANEOUS WATER HEATERS		\mathbb{H}		_															
III. HEAT RECOVERY				+	-	_										-			
A. HEAT RECOVERY FROM DISHWASHERS HOT WATER		1		+	+	-				1		1	_	1	+	_	-		
B. HEAT RECLAIM FROM KITCHEN EXHAUST		1	1	1	+	1					1	1	+	+	+	1	4		
C. WASTE HEAT RECOVERY		+		1	-	1				1	1	1	1	1		-	-		
IV. HVAC				1	-								+			-			
A. NIGHT SETBACK/SETUP THERMOSTAT	8	×	×								×	×	-	_	×	4			
B. ECONOMIZER CYCLE(DRY BULB) 0																_			
C. UPGRADE HVAC CONTROLS					_	_						_							
1) ADD STOP/START FUNCTION TO HVAC EQUIPMENT	8			×										×			×		
D. IMPROVE EFFICIENCY OF OPERATIONS				-									-	1					
1) REPLACE CHILLER WITH HIGHER EFF/OFC FREE CHILLER	8	-		×		×				×	×	1		-	1	-	4		
2) REPLACE RTU WITH HIGHER EFFICIENCY UNIT				-												-			
E. BALANCE HVAC SYSTEM	Ø Ø Ø			-	-					×			-						
F, INSTALL MAKE - UP AIR SUPPLY FOR KITCHEN AREAS	0			-							×					-			
G. SHUT-OFF RANGE HOOD											_								
H. THERMAL STORAGE													_						
V. BOILET/STEAM																			
A. STEAM TRAP INSPECTION	M&O										×				_				
B. INSULATE STEAM AND CONDENSATE LINES																			
M. POWER																			
A. CONVERT TO ENERGY EFFICIENT/SMALLER MOTORS	M & O																		
MI. REDUCE/ENHANCE LIGHTING													_	-					
A. PHOTOCELLS FOR LIGHTING														_					
B. TIMERS FOR LIGHTING					_														
C. REMOVE UNEEDED LAMPS OR FIXTURES	83			×						×			-	1	×				
D. REDUCE INDOOR/OUTDOOR LIGHTING TO AEI LEVELS	63	×	×	×	×	×	×	×	×	×	×	×	×	×	×		×		
E. LOWER LIGHT FIXTURES				_											_				
F. IMPROVE REFLECTION WITH LIGHT COLORED CEILINGS/WALLS		_											-	-					
WIII, IMPROVE LIGHTING CONTROLS				-								_	_			_	_		
A. INSTALL OCCUPANCY SENSORS						L	L			Г				_			_		
B. SEPERATE SWITCHES TO CONTROL LIGHTING				-	_		L					-	_	H					
IX, IMPROVE LIGHTING EFFICIENCY		L			L						-	-	-	_		L	L		
A. REPLACE INCANDESCENT LAMPS WITH COMPACT FLUORESCENTS	83	×	×	×	×	×		×	×		×	×		×	×		×		
B. REPLACE INCANDESCENT EXIT FIXTURES WITH LED		_		×	L		×	×		×	×	-	×	-	_	_	×		
C. REPLACE STANDARD LAMPS WITH ENERGY SAWING LAMPS		×	×	┝	\vdash	×	×	×	×	×	×	×	×	\vdash	×	L	×		
D. REPLACE STANDARD BALLAST WITH ENERGY SAVING BALLAST	8	×	×	×	×	×	×	×	×	×	×	×	╁	×	L	-	×	L	
E. REPLACE EXISTING FIXTURES WITH HIGH EFF, FIXTURES	8	_		-	\vdash								H	-	_	_			
. REFRIGERATION EQUIPMENT													-		-	_	L		
A. IMPROVE EFFICIENCY OF REFIGERATION EQUIPMENT																			
	M&O	-	×	×	×	×					×			_	×		×		
A. OTHER		+		+	+					1	1	1	+	+	1	-	4		
A. HEPLACE BOILERS WITH 99% EFFICIENT BOILER D. DEDLICE UNITEMBERATION TO ACCUM	1	+	,	+	+	1				Ì	1	1	+	+	+	+	1		
O DESTON CAMPERATIONE TO 140 TF	O (+	*	+	+								_	_		_	_		
						-	_			-	-	-		_		+	,		

BUILDING	ECO	USAGE	DEMAND	GAS	MAINT.	COST	IMPLEMENTATION	SIMPLE	SAVING TO
NUMBER	NUMBER	SAVINGS	SAVINGS	SAVINGS	SAVINGS	SAVINGS	COST	PAYBACK	INV. RATIO
		(KWH/YR)	(KW/YR)	(MCF/YR)	(\$/YR)	(\$/YR)	(\$)	(YEARS)	(SIR)
BUILDING 44 IV.A	A	472	0	3.5	-\$5.00	\$29.00	\$122.00	5.1	2.7
BUILDING 44 VII.	VII.C,D & IX C, D	8,409	18.6	N/A	\$33.00	\$460.00	\$2,117.00	4.6	2.28
BUILDING 48 IX.A	A	709	2.6	A/A		\$54.00	\$89.00	1.7	5.41
Н	A	2,649	0.0	19.6	-\$15.00	\$164.00	\$363.00	2.4	5.5
Н	VII.C,D & IX A, C, D	19,807	43.9	N/A	\$110.00	\$1,116.00	\$2,244.00	2	5.07
BUILDING 407 IV.	IV.C.1	181,265	0.0	9.099	-\$45.00	\$8,781.00	\$2,233.00	0.3	34.9
	VII.C, D & IX A, B, C, D	12,315	23.2	N/A	\$214.00	\$1,012.00	\$4,557.00	4.5	1.97
BUILDING 1350 IV.	IV.D.1)	126,750	528.0	0.0		\$8,084.00	\$231,987.00	11.8	1.05
	VII.C,D, & IX B,C,D.	23,724	0.79	N/A	\$289.00	\$2,783.00	\$9,130.00	3.3	3.45
BUILDING 1387 VII	VII C,D, & IX.A,B,C,D	19,311	6'62	N/A	\$127.00	\$1,022.00	\$2,592.00	2.5	4.46
BUILDING 1395 IV.	IV.D. 1)	123,020	1,152.0	A/A		\$12,302.00	\$159,262.00	8.2	
BUILDING 1395 VII.C,D & IX.A,B,C,D	.C,D & IX.A,B,C,D	42,637	23.7	N/A	\$286.00	\$2,179.00	\$4,850.00	2.2	5.08
BUILDING 1462 VII.	VII.C,D & IX.B,C,D	8,760	15.4	N/A	\$37.00	\$455.00	\$1,037.00	2.3	4.96
	VII C, D, & IX.A,B,C,D	12,030	26.8	N/A	\$52.00	\$664.00	\$2,447.00	3.7	3.06
BUILDING 1630 VII.	VII.C,D & IX.A,C,D	2,397	5.5	N/A	\$10.00	\$133.00	\$357.00	2.7	4.21
BUILDING 2265 IV.I	IV.D 1)	424,595	1,740.0	A/N		\$26,888.00	\$338,516.00	7.7	2.02
BUILDING 2265 VII.C,D, & IX B,C,D	.C,D, & IX B,C,D	49,856	46.7	N/A	\$242.00	\$2,349.00	\$2,723.00	1.2	9.77
BUILDING 2399 IV.A	A	7,528	0.0	89.1	-\$15.00	\$575.00	\$363.00	9.0	21.15
BUILDING 2399 IV. D. 1)	D. 1)	856,098	3,192.0	N/A		\$54,626.00	\$365,824.00	5.1	3.02
	IV. F. 1.	41,614	0.0	617.0		\$3,604.00	\$31,268.00	8.7	2.09
	IV. F. 2.	4,776	0.0	70.8		\$414.00	\$3,976.00	9.6	1.89
	VII.C,D & IX.A,B,C,D	18,019	28.4	A/A	\$269.00	\$1,574.00	\$8,895.00	5.7	2
	Ä.	278	0.0	2.1	-\$5.00	\$17.00	\$122.00	10	1.42
	VII.C,D & IX.A,C,D	2,994	13.3	A/A	\$15.00	\$212.00	\$866.00	4.1	2.75
	VII, C,D & IX.B,C,D	5,444	9.1	A/A	\$23.00	\$280.00	\$591.00	2.1	5.36
- 1	IV.C. 1)	41,114	0.0	39.0		\$1,613.00	\$2,292.00	1.4	8.49
	VIII.C,D & IX,A,B,C,D	8,090	11.7	Υ Υ	\$36.00	\$406.00	\$1,588.00	3.9	2.89
	A		0.0	23.5	-\$10.00	\$152.00	\$242.00	1.7	8.13
	VII.C,D, & IX.A,B,C,D,E	111,658	185.9	N/A	\$1,703.00	\$6,903.00	\$4,343.00	0.6	18.1
_	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
BUILDING 5107 IV.C.	c. 1)	22,613	0.0	N/A	-\$15.00	\$814.00	\$425.00	0.5	22.17
	VII.C,D, & IX.A,B,C,D	12,962	18.2	N/A	\$66.00	\$654.00	\$2,119.00	3.2	3.49
	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
BUILDING 5124 N/A	4	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
1777		,00000	7.01	0.02.	30 007 00	20 010 01.7	00 07 1 20 7 74	000	
IOIAL		2,263,894	7,241.9	1,525.2	\$3,402.00	\$140,319.00	\$1,187,540.00	6.20	2.43

Eng Sav = 2, 200 890 4 Kouth x 3, 413 BTU x 10 BTU = 7,729 MBTU

\$ Sav = \$ 140,319 /8

5

BUILDING	ECO	USAGE	DEMAND	GAS	MAINT.	COST	IMPLEMENTATION	SIMPLE	SAVING TO
NUMBER	NUMBER	SAVINGS	SAVINGS	SAVINGS	SAVINGS	SAVINGS	COST	PAYBACK	INV. RATIO
		(KWH/YR)	(KW/YR)	(MCF/YR)	(\$/YR)	(\$/YR)	(\$)	(YEARS)	(SIR)
BUILDING 407	IV.C.1	181,265	0.0	9.099	-\$45.00	\$8,781.00	\$2,233.00	0.3	34.9
1	IV.C. 1)	22,613	0.0	A/A	-\$15.00	\$814.00	\$425.00	0.5	22.17
BUILDING 2399	IV.A	7,528	0.0	89.1	-\$15.00	\$575.00	\$363.00	9.0	21.15
1	VII.C,D, & IX.A,B,C,D,E	111,658	185.9	A/N	\$1,703.00	\$6,903.00	\$4,343.00	9.0	18.1
BUILDING 2265	VII.C,D, & IX B,C,D	49,856	46.7	A/A	\$242.00	\$2,349.00	\$2,723.00	1.2	9.77
1	IV.C. 1)	41,114	0.0	39.0		\$1,613.00	\$2,292.00	1.4	8.49
_	IV.A	2,000	0.0	23.5	-\$10.00	\$152.00	\$242.00	1.7	8.13
_	IV.A	2,649		19.6	-\$15.00	\$164.00	00.8983	2.4	5.5
BUILDING 48	X.A	709		N/A		\$54.00	00.68\$	1.7	5.41
စ္က	VII, C,D & IX.B,C,D	5,444	9.1	N/A	\$23.00	\$280.00	\$591.00	2.1	5.36
BUILDING 1395	VII.C.D & IX.A,B,C,D	42,637	53.7	A/A	\$286.00	\$2,179.00	\$4,850.00	2.2	5.08
1	VII.C,D & IX A, C, D	19,807	43.9	A/N	\$110.00	\$1,116.00	\$2,244.00	2	5.07
1	VII.C,D & IX.B,C,D	8,760	15.4	A/A	\$37.00	\$455.00	\$1,037.00	2.3	4.96
1	VII C,D, & IX.A,B,C,D	19,311	29.9	A/A	\$127.00	\$1,022.00	\$2,592.00	2.5	4.46
BUILDING 1630	VII.C,D & IX.A,C,D	2,397	5.5	N/A	\$10.00	\$133.00	\$327.00	2.7	4.21
BUILDING 5107	VII.C,D, & IX.A,B,C,D	12,962	18.2	A/A	\$66.00	\$654.00	\$2,119.00	3.2	3.49
BUILDING 1350	VII.C,D, & IX B,C,D.	23,724	67.0	A/N	\$289.00	\$2,783.00	\$9,130.00	3.3	3.45
BUILDING 1520	VII C, D, & IX.A,B,C,D	12,030	26.8	A/N	\$52.00	\$664.00	\$2,447.00	3.7	3.06
BUILDING 2399	IV. D. 1)	926,098	3,192.0	N/A		\$54,626.00	\$365,824.00	5.1	3.02
BUILDING 2652	VIII.C,D & IX,A,B,C,D	8,090	11.7	N/A	\$36.00	\$406.00	\$1,588.00	3.9	2.89
BUILDING 2521	VII.C,D & IX.A,C,D	2,994	13.3	A/A	\$15.00	\$212.00	00.998\$	4.1	2.75
BUILDING 44	IV.A	472	0	3.5	-\$5.00	\$29.00	\$122.00	5.1	2.7
BUILDING 44	VII.C,D & IX C, D	8,409	18.6	A/N	\$33.00	\$460.00	\$2,117.00	4.6	2.28
BUILDING 2399	IV. F. 1.	41,614	0.0	617.0		\$3,604.00	\$31,268.00	8.7	2.09
BUILDING 2265	IV.D 1)	424,595	1,740.0	N/A		\$26,888.00	\$338,516.00	7.7	2.02
1	VII.C,D & IX.A,B,C,D	18,019	28.4	N/A	\$269.00	\$1,574.00	\$8,895.00	5.7	2
BUILDING 407	VII.C, D & IX A, B, C, D	12,315	23.2	N/A	\$214.00	\$1,012.00	\$4,557.00	4.5	1.97
BUILDING 2399	IV. F. 2.	4,776	0.0	70.8		\$414.00	\$3,976.00	9.6	1.89
BUILDING 1395	IV.D. 1)	123,020	1,152.0	N/A		\$12,302.00	\$159,262.00	8.2	1.81
BUILDING 2521	IV A.	278	0.0	2.1	-\$5.00	\$17.00	\$122.00	9	1.42
BUILDING 1350 I	IV.D.1)	126,750	528.0	0.0		\$8,084.00	\$231,987.00	11.8	1.05
BUILDING 5114 N/A	N/A	N/A	W/A	N/A	N/A	N/A	N/A	N/A	N/A
BUILDING 5105 N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
BUILDING 5124 N	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TOTAL		2 263 894	7 241 9	1 525 2	\$3 402 00	\$140 319 00	\$1 187 540 00	6.20	2.43
		21200100			20	20.010			

TABLE 4. ECIP SUMMARY

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

LOCATION:	FUI	TI SAM HOUS I		_REGION NO.		PHOJECT NO. 91109912F
PROJECT TITLE:		FORT SAM HO	USTON DINING			FISCAL YEAR 1994
DISCRETE PORTIC	ON NAME:		C	OMPOSITE EC	O SUMMARY	
ANALYSIS DATE:	NOVEMBER 1	, 1993 EC	CONOMIC LIFE	20	PREPARER	S. P. CLARK
					_	
4 INVESTMENT C	OOTO.					
1. INVESTMENT C	0515:					
A. CONSTRUCTIO	N COST		\$1,065,058			
B. SIOH			\$58,578			
C. DESIGN COST			\$63,903			
D. TOTAL COST (1	A+1B+1C)		\$1,187,540			
E. SALVAGE VALU		EQUIPMENT	<u> </u>	\$0		
F. PUBLIC UTILITY				\$0	_	
G. TOTAL INVESTM	MENT (1D-1E-	-1F)			\$1,187,540	
	,	•				·
2. ENERGY SAVIN	NGS (+)/COST	<u>(-</u>):				
DATE OF NISTIR 8	5-3273-X USI	ED FOR DISCO	UNT FACTORS:	<u>/\</u>	OVEMBER 4, 1	992
ENERGY	COST	SAVINGS	ANNUAL \$	DISCOUNT	DISCOUNTED)
SOURCE	\$/MBTU(1)	MBTU/YR(2)	SAVINGS(3)	FACTOR(4)	SAVINGS(5)	•
			C	17101011(4)	O/17 1 GO(3)	
A. ELEC	\$10.55	7726.67	\$81,516	14.65	\$1,194,215	
B. DIST			\$0	17.70	\$0	
C. RESID			\$0	20.99	\$0	
D. NG	\$3.31	1699.50	\$5,625	20.60	\$115,882	
E. PPG			\$0	13.59	\$0	
F. COAL			\$0	16.32	\$0	
G. SOLAR			\$0	13.59	\$0	
H. GEOTH			\$0	13.59	\$0	
I. BIOMA		****	\$0	13.59	\$0	
J. REFUS			\$0	13.59	\$0	
K. WIND			\$0	13.59	\$0	
L. OTHER			\$0	13.59	\$0	
M. DEMAND SAVIN	NGS		\$48,279	13.59	\$656,109	
N. TOTAL		9426.17	\$135,421		\$1,966,206	
3. NON ENERGY	SAVINGS (+) C	DR COST (-):	_			
A. ANNUAL RECUF	RRING (+/-)	\$3,402				
1. DISCOUNT FAC			13.59			
2. DISCOUNTED S				\$46,233		

12 4. 1 52, 104 52, 1540. 191, 527

LIFE CYCLE COST ANALYSIS SUMMARY ENERGY CONSERVATION INVESTMENT PROGRAM (ECIP)

B. NON RECURRING SAVINGS (+) OR COST(-)

6. SAVINGS TO INVESTMENT RATIO (SIR) 5/1G:

7. ADJUSTED INTERNAL RATE OF RETURN (AIRR):

	ITEM	SAVINGS(+) COST(-)(1)	YEAR OF OCCUR.(2)	DISCOUNT FACTOR(3)	DISCOUNTED SAV- INGS(+)COST(-)(4)
a.	N/A	\$429,288	1	0.96	\$ 412,116
b.	N/A	\$0	2	0.92	\$0
C.	N/A	\$338,516	3	0.89	\$301,279
d.	N/A	\$0	4	0.85	\$0
e.	N/A	\$0	5	0.82	\$0
f.	N/A	\$0	6	0.79	\$0
g.	N/A	\$0	7	0.76	\$0
ĥ.	N/A	\$0	8	0.73	\$0
i.	N/A	\$0	9	0.7	\$0
j.	N/A	\$0	10	0.68	\$0
k.	N/A	\$0	11	0.65	\$0
I.	N/A	\$0	12	0.62	\$0
m.	N/A	\$51,000	13	0.6	\$30,600
n.	N/A	\$0	14	0.58	\$0
0.	Chiller	\$231,987	15	0.56	\$129,913
p.	TOTAL	\$1,050,791			\$873,908
C.	TOTAL NON E	ENERGY DISCOL	UNTED SAVING	3S (3A2 + 3Bp4)	\$920,142
4. S	IMPLE PAYBA	CK 1G/(2N3+3A	+(3Bp1/ECON	IOMIC LIFE)):	6.2 YEARS
5. T	OTAL NET DIS	SCOUNTED SAV	INGS (2N5+30	<u>):</u>	\$2,886,347

2.43

8.7%

CONCLUSIONS

The results of this analysis indicate that the ECO's recommended result in a project which is eligible of ECIP funding. The approximate implementation cost for the project is \$1,187,540.00 with a simple payback of 6.2 years and an SIR of 2.43. The adjusted internal rate of return is 8.7%.

MAINTENANCE AND OPERATIONAL RECOMMENDATIONS

I. ENVELOPE

A. Additional Insulation/Sealing

The ductwork for the rooftop unit serving the office area in Building 368 should be resealed.

IV. HVAC

E. Balance HVAC System

The make-up air kitchen hoods for Building 2265 have the make-up supply louvers closed. These supply louvers should be fully open in order for the hood to function properly.

V. BOILER/STEAM

A. Steam Trap Inspection

The steam traps for Building 2399 appear to be original to the building and should be replaced to prevent blow by of live steam.

X. REFRIGERATION EQUIPMENT

B. Add Plastic Air Curtains to Prevent Infiltration

The following buildings have walk-in freezers and refrigerators that do not have plastic air curtains or have torn curtains in need of replacement; Buildings 368, 407, 1387, 1395, 2399, 2841 and 5107. Addition or replacement of air curtains will reduce energy consumption due to infiltration and exfiltration.

XI. OTHER

B. Reduce Hot Water Temperature to 140°F

Currently, the domestic hot water temperature is set at 160°F for Building 368. This facility contains an automatic dishwasher with a booster heater for sanitization. The optimum temperature for the domestic hot water is 140°F. Reducing the temperature will result in a reduction in energy consumption.

C. Restore Operation of Ventilation Unit

Currently, a ventilation unit is disabled which is intended to serve the kitchen area for Building 5107. As a result, the kitchen hoods are exhausting conditioned air from the adjacent dining area. Restoring operation of this unit would reduce energy consumption related to the exhausted conditioned air.