Normas em Máquinas de Fluxo Referências

B.01.01 – Máquinas Hidráulicas de Fluxo

Normas e Grandezas Básicas

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSc Compiled on 2021-01-28 18h03m02s UTC

B.01.01 - Máquinas Hidráulicas de Fluxo

Definições – IEC 60193

âncies

Nomenclatura

- Máquinas de fluxo são uma aplicação muito antiga em fluidos;
- A nomenclatura empregada é bastante heterogênea;
- Referências incluem acadêmicas e industriais:
- Maiores fornecedores mundiais convergem para o padrão IEC.
- E também o material desta disciplina.

Definições – IEC 60193

Referências

N(A)

of. C. Naaktgeboren, PhD B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições – IEC 60193

Norma IEC 60193

IEC é o acrônimo da *International Electrotechnical Commission*.

- A IEC 60193:2019 cancela e revoga a 2ª Ed. de 1999;
- Aplica-se para modelos de laboratório de máquinas de ação e de reação;
- Aplica-se para turbinas hidráulicas, bombas de armazenamento, ou turbina-bombas;
- com potência unitária > 5 MW, ou
- com diâmetro > 3 m;
- Esta norma objetiva definir termos e quantidades empregados;
- além de estabelecer várias outras especificações, asserções e garantias...

Definições – IEC 60193

Outras Normas

- IEC 60041 Field acceptance test to determine the hydraulic performance of hydraulic turbines, storage pumps and pump-turbines.
- IEC 60609 Cavitation pitting evaluation in hydraulic turbines, storage pumps and pump-turbines.
- IEC 60609-2 Cavitation pitting evaluation in hydraulic turbines, storage pumps and pump-turbines Part 2: Evaluation in Pelton turbines.
- IEC 61364 Nomenclature of hydraulic machinery.
- VIM International vocabulary of basic and general terms in metrology (ABNT ISO/IEC GUIA 99).

Prof. C. Naaktgeboren, PhD B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições - IEC 60193

Normas em Máquinas de Fluxo

Definições - IEC 60193

Subscritos e Símbolos Pertinentes

Símbolo	Definição
1	Seção de referência de alta pressão
2	Seção de referência de baixa pressão
1'	Seção de medição de alta pressão
2'	Seção de medição de baixa pressão
max, min	Máximo ou mínimo valor, respectivamente
P	Referente ao protótipo, em tamanho real
M	Referente ao modelo em escala reduzida
ref	Valores em condição de referência especificada
amb	Valores referentes ao ambiente
pl	Valores da planta
R	Referente à condição de disparo (runaway)

Prof. C. Naaktgeboren, PhD

B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições - IEC 60193

Termos Geométricos

Símbolo	Definição
$A (m^2)$	Área
a (m)	Abertura de palhetas (menor distância média entre palhetas adjacentes)
α ($^{\circ}$)	Ângulo de abertura de palhetas (valor médio à partir do fechamento)
β (°)	Ângulo de abertura de pá de rotor
D(m)	Diâmetro de referência (geralmente mínimo e não variável)
z (m)	Nível, ou quota (elevação em rel. a uma ref.: nível do mar)

Definições - IEC 60193

Normas em Máquinas de Fluxo

Definições - IEC 60193

Termos de Vazão e Velocidade

Símbolo	Definição
$Q (m^3/s)$	Vazão (taxa de escoamento volumétrica) ou descarga
$\rho Q (kg/s)$	Vazão mássica (taxa de massa)
$Q_{1'}$ ou $Q_{2'}$	Vazão volumétrica medida
Q_1 ou Q_2	Vazão volumétrica na seção de referência
$Q_R (\mathrm{m}^3/\mathrm{s})$	Vazão volumétrica em condição de disparo (runaway)
$Q_0 ({\rm m}^3/{\rm s})$	Vazão volumétrica da turbina em potência mecânica nula (no-load)
$q (\mathrm{m}^3/\mathrm{s})$	Vazão de vazamentos (perdas)

Definições - IEC 60193

Quantidades e Propriedades Físicas

Símbolo	Definição
$g (\text{m/s}^2)$	Aceleração devido à gravidade
$\Theta(K)$	Temperatura termodinâmica
θ (°C)	Temperatura em Celsius, $\theta = \Theta - 273, 15$
$\rho (kg/m^3)$	Densidade. Subscritos incluem: w , a e Hg , para água, ar e Mercúrio
p_{va} (Pa)	Pressão absoluta de vapor d'água (uma função da temperatura)
μ (Pa·s)	Viscosidade dinâmica
$v (m^2/s)$	Viscosidade cinemática, ou difusividade do movimento, $v = \mu/\rho$
σ∗ (J/m²)	Tensão superficial

Prof. C. Naaktgeboren, PhD

B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições - IEC 60193

Termos de Vazão e Velocidade (Cont.)

Símbolo	Definição
v (m/s)	Velocidade média, $v = Q/A$
n(1/s)	(Velocidade de) rotação: revoluções por unidade de tempo
u (m/s)	Velocidade periférica (de rotor), $u = \pi Dn$
$n_R (1/s)$	Rotação, em regime permanente, em condição de disparo (runaway)
$n_{Rmax} (1/s)$	Rotação, em regime permanente, máxima em condição de disparo

Definições - IEC 60193

Termos de Pressão

Símbolo	Definição
p _{abs} (Pa)	Pressão absoluta — pressão estática de um fluido em relação ao vácuo
p_{amb} (Pa)	Pressão ambiente — pressão absoluta do ar ambiente
p (Pa)	Pressão manométrica, $p=p_{abs}-p_{amb}$, no nível de referência da
	medição.

Prof. C. Naaktgeboren, PhD B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições – IEC 60193

Termos de Energia Específica (Cont.)

Símbolo	Definição
σ (–)	Número de Thoma, indicativo das condições de operação quanto à
	cavitação, $\sigma = NPSE/E$
σ_{nD} (–)	Coeficiente de cavitação, $\sigma_{nD} = NPSE/(n^2D^2)$
σ_0 (-)	Número de Thoma zero, incipiente da redução de performance
σ_1 (-)	Número de Thoma um, de 1% de redução de performance
σ_i (–)	Número de Thoma incipiente, de visível cavitação em rotor
σ_{pl} (–)	Número de Thoma da planta, nas condições de operação do protótipo
E_I (J/kg)	Perda de energia hidráulica específica, entre quaisquer duas secões

Normas em Máquinas de Fluxo

Definições - IEC 60193

Termos de Energia Específica

Símbolo	Definição
e (J/kg)	Energia específica — energia hidráulica por unidade de massa da água
E(J/kg)	Energia hidráulica específica da máquina
	$E = \frac{p_{abs1} - p_{abs2}}{\bar{\rho}} + \frac{v_1^2 - v_2^2}{2} + (z_1 - z_2)g, \text{ com } \bar{\rho} = \frac{\rho_1 + \rho_2}{2}$
E_0 (J/kg)	Energia hidráulica específica da bomba estrangulada na alta pressão
E_s (J/kg)	Energia potencial específica de sucção da máquina
	$E_s = g(z_r - z_{2'})$
NPSE (J/kg)	
	$NPSE = \frac{p_{abs2} - p_{va}}{\rho_2} + \frac{v_2^2}{2} - g(z_r - z_2)$

Prof. C. Naaktgeboren, PhD

B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições – IEC 60193

Definições - IEC 60193

Prof. C. Naaktgeboren, PhD B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Prof. C. Naaktgeboren, PhD

Definições - IEC 60193

B.01.01 – Máquinas Hidráulicas de Fluxo

Termos de Potência e Torque

Símbolo	Definição
$P_h(W)$	Potência hidráulica disponível (turb.) ou fornecida (bombas) na/à água
	$P_h = E(\rho Q_1)$
P(W)	Potência mecânica entregue pela (turb.) ou à (bombas) máquina
$P_m(W)$	Potência mecânica do rotor
$P_{Lm}(W)$	Perda de potência mecânica, devido a vedações e mancais
	$P = P_m - P_{Lm}$ (turb.) ou $P = P_m + P_{Lm}$ (bombas)

Definições - IEC 60193

Termos de Elevações e Quedas

Símbolo	Definição
h (m)	Queda ou carga: energia por unidade de peso em qualquer seção, $h =$
	e/g
H(m)	Queda da turbina ou carga da bomba, $H = E/g$
H_0 (m)	Carga da bomba em condição de estrangulamento, $H_0 = E_0/g$
Z_s (m)	Altura de sucção da bomba, $Z_s = E_s/g$
NPSH (m)	Net pos. suction head queda de sucção positiva líquida
z_r (m)	Nível de referência (elevação do ponto de referência) da máquina

Prof. C. Naaktgeboren, PhD

B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições - IEC 60193

Termos de Eficiência

Símbolo Definição

Definições - IEC 60193

Termos de Escala e Grupos Adimensionais em Fluidodinâmica

Símbolo Definição

Prof. C. Naaktgeboren, PhD B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Definições - IEC 60193

Coeficientes e Números Adimensionais

Símbolo Definição

Normas em Máquinas de Fluxo

Definições - IEC 60193

Fatores Adimensionais

Símbolo Definição

UTFPR

Prof. C. Naaktgeboren, PhD

B.01.01 – Máquinas Hidráulicas de Fluxo

Normas em Máquinas de Fluxo

Referências

Potter, M. C., et al.

Mecânica dos Fluidos. Seção 12-1.

Cengage. São Paulo. ISBN 978-85-221-1568-6.

Hydraulic turbines, storage pumps and pump-turbines – Model acceptance tests. International Standard. 2019. webstore.iec.ch/publication/60951.

