Financial Data Analysis with Python

Instructor: Luping Yu

Mar 22, 2022

Project 1

It's time to test your new pandas skills! Use the provided .csv file to complete the tasks below!

Student Name 1:

Student Name 2:

Task 1. Bank M&A

Note: failed banks (Bank Name) are bought by another bank (Acquiring Institution).

	Bank Name	City	ST	CERT	Acquiring Institution	Closing Date	Updated Date
0	Fayette County Bank	Saint Elmo	IL	1802	United Fidelity Bank, fsb	26- May-17	1-Jun-17
1	Guaranty Bank, (d/b/a BestBank in Georgia & Mi	Milwaukee	WI	30003	First-Citizens Bank & Trust Company	5-May- 17	1-Jun-17
2	First NBC Bank	New Orleans	LA	58302	Whitney Bank	28-Apr- 17	23-May- 17
3	Proficio Bank	Cottonwood Heights	UT	35495	Cache Valley Bank	3-Mar- 17	18-May- 17
4	Seaway Bank and Trust Company	Chicago	IL	19328	State Bank of Texas	27-Jan- 17	18-May- 17
•••			•••				•••
546	Superior Bank, FSB	Hinsdale	IL	32646	Superior Federal, FSB	27-Jul- 01	19-Aug- 14
547	Malta National Bank	Malta	ОН	6629	North Valley Bank	3-May- 01	18-Nov- 02
548	First Alliance Bank & Trust Co.	Manchester	NH	34264	Southern New Hampshire Bank & Trust	2-Feb- 01	18-Feb- 03
549	National State Bank of Metropolis	Metropolis	IL	3815	Banterra Bank of Marion	14- Dec-00	17-Mar- 05
550	Bank of Honolulu	Honolulu	НІ	21029	Bank of the Orient	13-Oct- 00	17-Mar- 05

551 rows × 7 columns

• Step 1. How many States (ST) are represented in this data set?

```
In [140... len(df['ST'].drop_duplicates())
Out[140]: 44
```

• Step 2. What are the top 5 states with the most failed banks? (tips: groupby 'ST' and use <u>count</u>)

• Step 3. What are the top 5 states with the highest **average** CERT (Certificate) value of failed banks? (tips: groupby 'ST' and use <u>mean</u>)

• Step 4. What are the top 5 acquiring institutions?

```
In [143... df['Acquiring Institution'].value_counts()[:5]
#df.groupby('Acquiring Institution').count()['Bank Name'].sort_values(ascended)

Out[143]: No Acquirer 31
State Bank and Trust Company 12
First-Citizens Bank & Trust Company 11
Ameris Bank 10
U.S. Bank N.A. 9
Name: Acquiring Institution, dtype: int64
```

• Step 5. How many banks has the State Bank of Texas acquired?

```
In [144...
          df[df['Acquiring Institution']=='State Bank of Texas']
Out[144]:
                                                                        Acquiring
                                                                                   Closing
                                                                                             Updated
                                  Bank Name
                                                  City ST
                                                             CERT
                                                                       Institution
                                                                                      Date
                                                                                                Date
                        Seaway Bank and Trust
                                                                     State Bank of
                                                                                   27-Jan-
                                                                                             18-May-
               1
                                               Chicago
                                                         IL 19328
                                    Company
                                                                            Texas
                                                                                        17
                                                                                                   17
                    The National Republic Bank
                                                                     State Bank of
                                                                                   24-Oct-
              21
                                               Chicago
                                                                                             6-Jan-16
                                   of Chicago
                                                                            Texas
                                                                                        14
                       Millennium State Bank of
                                                                     State Bank of
                                                                                     2-Jul-
                                                                                              26-Oct-
             450
                                                 Dallas TX 57667
                                                                                        09
                                        Texas
                                                                            Texas
                                                                                                   12
```

Step 6. What is the most common city in California for a bank to fail in? (tips: 'ST' == 'CA' and groupby 'City')

• Step 7. How many failed banks don't have the word "Bank" in their name?

```
In [146... len(df) - sum(df['Bank Name'].str.contains('Bank'))
#sum(df['Bank Name'].str.contains('Bank') == False)
#sum(~df['Bank Name'].str.contains('Bank'))
#sum(df['Bank Name'].apply(lambda name: 'Bank' not in name))
```

```
Out[146]: 14
```

• Step 8. How many bank names consist of just two words? (e.g. "First Bank", "Bank Georgia")

```
In [147... sum(df['Bank Name'].str.split(' ').str.len() == 2)
#sum(df['Bank Name'].str.count(' ') + 1 == 2)
Out[147]:
113
```

Task 2. Occupation

```
In [148... import pandas as pd
           df = pd.read csv('occupation.csv', index col='user id')
In [149...
           df
Out[149]:
                     age gender
                                    occupation zip_code
            user_id
                  1
                      24
                               М
                                     technician
                                                   85711
                                                  94043
                  2
                      53
                                         other
                  3
                      23
                               М
                                         writer
                                                  32067
                                     technician
                                                  43537
                  5
                      33
                               F
                                         other
                                                   15213
               939
                               F
                                                   33319
                      26
                                       student
               940
                                  administrator
                      32
                                                   02215
               941
                      20
                               М
                                       student
                                                  97229
               942
                      48
                                       librarian
                                                  78209
               943
                      22
                               М
                                       student
                                                   77841
```

943 rows × 4 columns

• Step 1. What is the mean age per occupation? (tips: groupby 'occupation')

```
In [150... df.groupby('occupation')['age'].mean()
  #df.groupby('occupation')['age'].apply('mean')
  #df.groupby('occupation')['age'].agg('mean')
```

```
Out[150]: occupation administrator 38.746835 artist 31.392857 doctor 43.571429 educator 42.010526 engineer 36.388060 entertainment 29.222222 executive 38.718750 healthcare 41.562500 homemaker 32.571429 lawyer 36.750000 librarian 40.000000 marketing 37.615385 none 26.555556 other 34.523810 programmer 33.121212 retired 63.071429 salesman 35.666667 scientist 35.548387 student 22.081633 technician 33.148148 writer 36.311111 Name: age, dtype: float64
```

• Step 2. For each occupation, calculate the minimum and maximum ages.

```
In [151... df.groupby('occupation')['age'].agg(['min', 'max'])
```

Out[151]: min max

occupation		
administrator	21	70
artist	19	48
doctor	28	64
educator	23	63
engineer	22	70
entertainment	15	50
executive	22	69
healthcare	22	62
homemaker	20	50
lawyer	21	53
librarian	23	69
marketing	24	55
none	11	55
other	13	64
programmer	20	63
retired	51	73
salesman	18	66
scientist	23	55
student	7	42
technician	21	55
writer	18	60

• Step 3. For each combination of occupation and gender, calculate the **median** age.

```
In [152... df.groupby(['occupation', 'gender'])['age'].median()
```

```
Out[152]: occupation gender
         administrator F
                              38.5
                              35.0
                     M
         artist
                    F
                              30.0
                     M
                              32.0
         doctor
                     M
                              45.0
         educator
                     F
                              40.5
                              44.0
                     M
         engineer
                     \mathbf{F}
                              29.5
                              36.0
                      M
         entertainment F
                              31.0
                      M
                               25.0
         executive
                     F
                              44.0
                     M
                              36.0
         healthcare
                              43.0
                     F
                     M
                               47.0
         homemaker
                     F
                               33.5
                      M
                               23.0
                     F
         lawyer
                              39.5
                     M
                              34.0
         librarian
                     F
                              39.0
                              38.5
                     M
         marketing
                     F
                               36.5
                     M
                               34.5
         none
                     \mathbf{F}
                              32.5
                     M
                              16.0
         other
                     F
                              34.0
                     M
                              32.0
         programmer
                    F
                               32.0
                      M
                              30.0
         retired
                     F
                              70.0
                     M
                              61.0
         salesman
                     F
                              30.0
                     M
                              35.0
         scientist
                     F
                              28.0
                              38.0
                     M
         student
                     F
                              20.0
                     M
                              22.0
         technician
                    F
                              38.0
                      M
                              30.0
         writer
                      F
                              40.0
                      M
                               31.0
         Name: age, dtype: float64
```

• Step 4. Create a column named 'male', which equals to 1 if gender is 'M' and zero otherwise. (tips: covert 'gender' column to numeric type: M: 1; F: 0)

943 rows × 5 columns

```
In [154... def gender_to_numeric(x):
    if x == 'M':
        return 1
    if x == 'F':
        return 0

df['male'] = df['gender'].apply(gender_to_numeric)

df
```

Out [154]: age gender occupation zip_code male

user_id					
1	24	М	technician	85711	1
2	53	F	other	94043	0
3	23	М	writer	32067	1
4	24	М	technician	43537	1
5	33	F	other	15213	0
•••					
939	26	F	student	33319	0
940	32	М	administrator	02215	1
941	20	М	student	97229	1
942	48	F	librarian	78209	0
943	22	М	student	77841	1

943 rows × 5 columns

```
In [155... import numpy as np

df['male'] = np.where(df['gender'] == 'M', 1, 0)
```

_		
\cap	11551	
U U L	[155]	

	age	gender	occupation	zip_code	male
user_id					
1	24	М	technician	85711	1
2	53	F	other	94043	0
3	23	М	writer	32067	1
4	24	М	technician	43537	1
5	33	F	other	15213	0
•••		•••			•••
939	26	F	student	33319	0
940	32	М	administrator	02215	1
941	20	М	student	97229	1
942	48	F	librarian	78209	0
943	22	М	student	77841	1

943 rows × 5 columns

• Step 5. What is the Male ratio per occupation? Sort it from the most to the least.

In [156... df.groupby('occupation')['male'].mean().sort_values(ascending=False)

```
Out[156]: occupation
```

doctor 1.000000 0.970149 engineer 0.962963 technician retired 0.928571 programmer 0.909091 0.906250 executive 0.903226 scientist entertainment 0.888889 lawyer 0.833333 0.750000 0.726316 salesman educator 0.693878 student other 0.657143 marketing 0.615385 0.577778 writer 0.555556 administrator 0.544304 0.535714 artist librarian 0.431373 healthcare 0.312500 0.142857 homemaker Name: male, dtype: float64