Solution to COMP9334 Revision Questions for Week 2 — Part 2 Question 1

- (a) Since the mean arrival rate is 20 requests per second. The mean inter-arrival time is $\frac{1}{20}$ = 50ms.
- (b) The mean number of requests arriving in 1 minute = 20 requests per seconds \times 60 seconds / minute = 1200 requests per minute.
- (c) and (d) Recalling that for Poisson arrivals with mean arrival rate λ and time interval t, the probability of n arrivals is

$$\frac{(\lambda t)^n \exp(-\lambda t)}{n!}. (1)$$

For this question, $\lambda = 20$ and t = 60, so $\lambda t = 1200$.

In order to calculate the probability of no arrivals in a minute, we put n=0 to obtain

$$\exp(-\lambda t) = \exp(-1200) \tag{2}$$

In order to calculate the probability of 10 arrivals in a minute, we put n=10 to obtain

$$\frac{(1200)^{10}\exp(-1200)}{10!}\tag{3}$$

Question 2

In order to refer to the two Poisson processes in a convenient way, I call them P_1 and P_2 . The Poisson processes P_1 and P_2 , have rates r_1 and r_2 , respectively.

Consider a time interval T. Since P_1 is a Poisson process with rate r_1 , we know that the probability that there are k arrivals in time interval T is

$$\frac{e^{-r_1T}(r_1T)^k}{k!} \tag{4}$$

Similarly, the probability that there are j arrivals in time interval T from P_2 is

$$\frac{e^{-r_2T}(r_2T)^j}{j!} \tag{5}$$

Let us consider the aggregation of the two Poisson processes P_1 and P_2 over the time interval T. The arrivals can come from P_1 or P_2 . Let us find the probability that there are n arrivals in T. If there are n arrivals from P_1 and P_2 together, this can be resulted from

- 0 arrivals from P_1 and n arrivals from P_2
- 1 arrivals from P_1 and (n-1) arrivals from P_2

- 2 arrivals from P_1 and (n-2) arrivals from P_2 ...
- \bullet (n-1) arrivals from P_1 and 1 arrivals from P_2
- ullet n arrivals from P_1 and 0 arrivals from P_2

Therefore

Probability that there are n arrivals over time T from P_1 and P_2 together

 $=\sum_{i=0}^{n}$ Probability of i arrivals over time T from $P_1 \times$ Probability of (n-i) arrivals over time T from P_2

$$= \sum_{i=0}^{n} \frac{e^{-r_1 T} (r_1 T)^i}{i!} \frac{e^{-r_2 T} (r_2 T)^{n-i}}{(n-i)!}$$

$$= \frac{1}{n!}e^{-(r_1+r_2)T}\sum_{i=0}^{n}\frac{n!}{i!(n-i)!}(r_1T)^i(r_2T)^{(n-i)}$$

$$= \frac{1}{n!}e^{-(r_1+r_2)T}((r_1+r_2)T)^n$$

This shows that the aggregation of P_1 and P_2 is a Poisson process with rate $r_1 + r_2$.