Project INSA - "De l'électricité 100% issue des ENR en 2050 ? L'analyse de Philippe Quirion"

Eoles model performs optimization of the investment and operation of the energy system in order to minimize the total cost while satisfying energy demand.

Goals:

- Analyse of the EOLES model of P. Quirion
- Development of a random model of the weather (ENR profiles)

Gitlab link of P. Quirion resources:

https://gitlab.in2p3.fr/nilam.de oliveira-gill/eoles/-/tree/master

https://github.com/BehrangShirizadeh/EOLES_elecRES

Information on the dependencies you must install:

https://gitlab.in2p3.fr/nilam.de_oliveira-gill/eoles/-/blob/master/README.md

Solver:

Put the file cbc.exe (https://ampl.com/products/solvers/open-source/#cbc) in the repertory bin of Python (if you have anaconda: \anaconda3\Library\bin).

Structure of the project:

- **inputs**: input data (refer here).
- **outputs**: output data (refer <u>here</u>).
- data visualization: display of the provided data (inputs and outputs).
- **Quirion_results_analysis**: analysis of the outputs of M. Quirion.
- **model_simulation**: optimisation of the mix energetic in order to minimize the total cost while satisfying energy demand.
- **opti_model**: .py used in model_simulation to optimize the mix without optimizing the starting variables which are fixed at the beginning of the year.
 - **Q**: the installed capacity
 - **S**: entrance flux of a storage technology
 - **VOLUME**: energy capacity of each storage technology
- complete_model_simulation: optimisation of the starting variables and the mix energetic in order to minimize the total cost while satisfying energy demand.
 (Output: Simulations_completes)
- complete_model: .py used in model_simulation to optimize the mix and the starting variables Q, S and VOLUME.
 (Output: Simulations_opti)

Resources of the different projects INSA:

Elisa Escanez and Sébastien Castets:

Theo Renouard and Zoe Philippon: https://github.com/trenouard/Mix_energetique_2050

Pour un bon résumé des paramètres et variables du modèle les tableaux du rapport d'Elisa et Sébastien m'ont bien aidé :

Index of the set	Description	Technologies
tec	Technologies used for electricity generation and energy storage	offshore, onshore, PV, river, lake, biogas, PHS, battery, methana- tion
gen	Technologies used for electricity generation	offshore, onshore, PV, river, lake, biogas
str	Technologies used for energy storage	PHS, battery, methanation
vre	Renewable electricity generation technologies	onshore, offshore, PV
frr	Dispatchable technologies for secondary reserves	lake, battery, PHS, biogas

Table 1: Sets defined for the EOLES model

Variable	Description	
$G_{tec,h}$	Electricity generation by a technology at hour h	GWh_e
Q_{tec}	Installed capacity of a technology	GW_e
$STORAGE_{str,h}$	Electricity entering in a storage technology at hour h	GWh
$STORED_{str,h}$	Stored electricity in a storage technology at hour h	GWh_e
S_{str}	Charging capacity of a storage technology	GW
$VOLUME_{str}$	Energy capacity of a storage technology	GWh
$RSV_{frr,h}$		GWe
COST	Overall investment cost over the year	b€

Table 2: Variables

Parameter	Description	Unit
$demand_h$	Hourly electricity demand profile	GW_e
$\delta_{uncertainty}^{load}$, $\delta_{variation}^{load}$	Uncertainty coefficient for electricity demand / Load variation factor	
$cf_{vre,h}$	Hourly capacity factor profile of variable renewable energies	
ϵ_{vre}	Additional frequency restoration requirement for renewables	
$river_h$	Hourly capacity factor profile for run-of-river	
$lake_m$	Producible energy of a lake during a month	GWh_e
q^{ex}_{tec}	Existing capacity for a technology	GW_e
η_{str}^{in} , η_{str}^{out}	Charging and discharging efficiency for a storage technology	
q^{pump}	Pumping capacity of PHS	GW_e
e_{PHS}^{max}	Maximum energy volume of a PHS	GWh_e
e_{biogas}^{max}	Maximum energy generation by biogas over a year	TWh_e
$annuity_{tec}, annuity_{str}^{en}$	Capital cost of each technology / energy volume storage	$M \in /GW_e/year$, $M \in /GWh/year$
$capex_{str}^{ch}$	Capital cost of charging power for storage technology	$M \in /GW/year$
$fO\&M_{str}^{ch}, fO\&M_{tec}$	Fixed Operation and Maintenance cost of charging power for storage technologies / for a technology	$M \in /GW/year$, $M \in /GW_e/year$
$vO\&M_{tec}$	Variable Operation and Maintenance cost for a technology	$M \in /GWh_e$

Table 3: Description of the EOLES model parameters

Fonction coût : coûts liés à la production et au stockage d'électricité sur une année (investissements, coûts fixes et variables d'opération et de maintenance).

$$\begin{split} COST &= \Big(\sum_{tec} \left((Q_{tec} - q_{tec}^{ex}) \times annuity_{tec} \right) + \sum_{str} (VOLUME_{str} \times annuity_{str}^{en}) \\ &+ \sum_{tec} (Q_{tec} \times fO\&M_{tec}) + \sum_{str} (S_{str} \times (capex_{str}^{ch} + fO\&M_{str}^{ch})) \\ &+ \sum_{tec} \sum_{s} \left(G_{tec,h} \times vO\&M_{tec} \right) \Big) / 1000 \end{split}$$

Les contraintes sont également détaillées dans le rapport de M. Quirion pages 8 à 11.

Inputs

VRE profiles :

vre_profiles2006new : profils des vre (hourly capacity factors) selon renewables.ninja factorsexisting_capas_elec_new : capacités existantes (regroupe toutes les données sur les capacités)capacity_ex : donnée de

- phs
- Batterie 1
- Batterie 4
- Hydrogène

```
fix_capas : capacités fixes (river / lake)

max_capas_elec_new: maximum des capacités
(offshore_f / offshore_g / onshore / pv_g / pv_c / river)

reserve_requirements_new : volume des réserves requises pour les sources
(les mêmes que max_capas)

eta_in : efficacité de charge et décharge (eta_out)

miscellaneous : diverses données

lake2006 : par mois
```

Cost data:

annuities_elec_new : annuité des technologies génératrices (paiement annuel) (€/kW/year) *str_annuities_elec_new* : annuité des technologies de stockage (€/kW/year)

- Phs
- Batterie 1
- Batterie 4
- Hydrogène

 s_capex : CAPEX (capital expenditure) (\notin /kW) s_opex : OPEX (operational expenditure) (\notin /kW) $fO\&M_elec_new$: coûts fixes et maintenance (\notin /kW/year)

vO&M_elec_new : coûts variables et maintenance (€/MWh)

Electricity demand profils:

demand2050_RTE : demande d'électricité heure par heure en 2050 prédite par RTE demand2050_ademe : demande d'électricité heure par heure en 2050 prédite par l'ADEME demand2050_negawatt : demande d'électricité heure par heure en 2050 prédite par Négawatt

Outputs

weather years: valeurs optimales des configurations des capacités de début chaque année. (installed capacity of each power production technology in GWe and energy storage capacity of each storage technology during each optimization period)

cost decomposition for all scenarios : coût de chaque technologie pour les différents scénarios

LCOEs : coût actualisé de l'énergie » il correspond au prix complet d'une énergie (l'électricité dans la plupart des cas) sur la durée de vie de l'équipement qui l'a produit.

robustness results: résultats robustes (sur le prix des PV, Onshore, Offshore, Méthanation, Batteries)

sensitivity results: résultats sensibles aux perturbations

scenarios complete : Excel

scenarios : coût des différentes énergies après la simulation et pourcentages prix paramètres