Teoría de Gráficas 2020-2

Guía de ejercicios para al Evaluación Parcial 01

FECHA DE EXAMEN PARCIAL 01 VIERNES 28-FEBRERO-2020 De 09:00 a 10:00 HORAS - Salón P-118

Instrucciones: La siguiente lista que fungirá como guía para el examen parcial, se recomienda resolver todos los ejercicios de la misma.

LISTA DE EJERCICIOS

- 1. Sea G(V(G),A(G)) y H=(V(H),A(H)) gráficas. Demostrar que la relación $G\sim H$ si y solamente si $G\cong H$, es una relación de equivalencia.
- 2. ¿Cuántas gráficas distintas de orden cuatro existen salvo isomorfismo?
- 3. Demostrar que, salvo isomorfismo, para cualquier $n \in \mathbb{N} \setminus \{0\}$ la gráfica completa de orden n es única.
- 4. Demostrar que, salvo isomorfismo, para cualquier $\{n,m\}\subseteq\mathbb{N}\setminus\{0\}$ si |X|=n y |Y|=m entonces la gráfica bipartita completa G[X,Y] es única.²
- 5. Demuestra que todo camino con extremos x y y contiene una trayectoria con extremos x y y.
- 6. ¿Qué relación existe entre K_1 y $K_{1,1}$?
- 7. Demostrar que en toda gráfica se cumple que $|A(G)| \leq {|V(G)| \choose 2}$. ¿En qué caso se da la igualdad?
- 8. Considerar a G[X,Y] para demostrar que:
 - $|A(G[X,Y])| \le |X||Y|$.
 - $4|A(G[X,Y])| \le |V(G[X,Y])|^2$.
 - ¿En qué caso se cumple que $4|A(G[X,Y])| = |V(G[X,Y])|^2$?
- 9. Sea G una gráfica. Considerar lo siguiente:
 - $\delta(G) := \min(\{d_G(x) \in \mathbb{N} \cup \{0\} \mid x \in V(G)\})^3$
 - $\Delta(G) := \max(\{d_G(x) \in \mathbb{N} \cup \{0\} \mid x \in V(G)\})^4$

Demostrar que

$$\delta(G) \leq \frac{2|A(G)|}{|V(G)|} \leq \Delta(G)$$

- 10. Demostrar que para una gráfica G las siguientes son equivalentes:
 - \blacksquare G es conexa.
 - Para cualquier $\{x,y\} \subset V(G)$ con $x \neq y$ existe una trayectoria con extremos $x \neq y$.
 - lacktriangle Existe un camino cerrado en G que contiene a todos los vértices y a todas las aristas de G.

11.

Evaluación Parcial 01 Febrero 2020

 $^{^{1}}$ Por ello, a la gráfica completa de orden n la denotaremos como $K_{n}.$

²Por ello, a la gráfica bipartita completa G[X,Y] la denotaremos como $K_{|X|,|Y|}$.

³A $\delta(G)$ se le conoce como el **gradro mínimo de** G.

 $^{{}^4}$ A $\Delta(G)$ se le conoce como el **gradro máximo de** G.