Question 1

The heat equation, $\frac{\partial u}{\partial t} = v \frac{\partial^2 u}{\partial x^2}$ is discretised with the following finite-difference method on a uniform mesh (Δx is constant):

$$u_i^{n+1} = u_i^n + v\Delta t \frac{2u_i^n - 5u_{i+1}^n + 4u_{i+2}^n - u_{i+3}^n}{\Delta x^2}$$

Derive the modified equation. What statement is correct?

- The method is inconsistent.
- The method is consistent; first order accurate in space and first order accurate in time.
- The method is consistent; first order accurate in space and second order accurate in time.
- The method is consistent; second order accurate in space and first order accurate in time.
- The method is consistent; second order accurate in space and second order accurate in time.

Question 2

Compute the expression for the amplification factor ρ for the following implicit differentiation scheme for the linear advection equation, $\frac{\partial u}{\partial t} + c \frac{\partial u}{\partial x} = 0$:

$$\frac{u_i^{n+1} - u_i^n}{\Delta t} + c \frac{u_{i+1}^{n+1} - u_{i-1}^{n+1}}{2\Delta x} = 0$$

Question 3

A discretisation for the following PDE, $\frac{\partial^3 u}{\partial x^3} + \frac{\partial u}{\partial t} = 0$, is designed to have the truncation error of the form

$$\epsilon = \mathcal{O}\left(\Delta x\right) + \mathcal{O}\left(\Delta t^2\right)$$

A mesh refinement study is performed, where Δx is decreased by a factor 4 at each refinement, and Δt by a factor 2 at each refinement. This produces the plot below.

Based on this information, what is the *most* likely cause of the levelling off in the curve shown above?

- Discretisation errors in space
- Discretisation errors in time
- Solution iteration errors
- Rounding errors

Question 4

Consider the PDE

$$u_{xx} = f$$
, on $0 < x < 1, u_x(0) = 3, u(1) = 2t$

Part 1)

Indicate which of the following statements are correct when using the integrated-by-parts weak form of the solution, using the spectral approach:

- All basis functions of the discrete solution will be zero at x = 1.
- As u_{xx} appears in the equation, all suitable basis functions must be at least twice differentiable without reducing to zero.

Part 2)

For this problem, indicate which of the following functions would be suitable weighting functions:

- w(x) = 1 x
- $w(x) = \ln(x)$
- $w(x) = \cos(\pi x)$
- \bullet w(x) = x
- w(x) = 1/x

Part 3)

Consider now that instead of a Neumann boundary at x = 0, one would impose a Robin boundary at x = 0, so that the problem statement becomes

$$u_{xx} = f$$
, on $0 < x < 1, u(0) + u_x(0) = q, u(1) = 2t$

Integration by parts will give an equation similar to

$$A - \int\limits_{0}^{1} B dx = \int\limits_{0}^{1} C dx + D$$

where A, B, C and D may or may not be zero. Give the expressions for all these quantities.

Question 5

Consider the PDE

$$u_{xx} + 2u_x + u = 3x^2$$
, on $-1 < u < 1, u_x (-1) = -18, u_x (1) = -6$

The following basis functions are used to compute the discrete solution:

$$T_0(x) = \frac{\sqrt{2}}{2}$$

$$T_1(x) = \frac{\sqrt{6}}{2}x$$

$$T_2(x) = \frac{\sqrt{90}}{4}(2x^2 - 1)$$

$$T_3(x) = \frac{\sqrt{1190}}{34}(4x^3 - 3x)$$

Sam van Elsloo

Find the expression for the discrete solution. Also, bonus points if you remember correctly how these polynomials are called (note that they are the normalised versions of a certain set of polynomials.

Question 6

Consider the following problem on the domain 0 < x < 1:

$$u_x - u_{xx} = f$$
, $u(0) = u(1) = 0$

Integration by parts leads to

$$\int_{0}^{1} (w + w_{x}) u_{x} dx - [w u_{x}]_{0}^{1} = \int_{0}^{1} w f dx$$

This is to be solved using a finite-element methods using a mesh with two elements and piecewise linear basis functions, as shown below (left). For the master element, the basis functions are:

$$\begin{array}{rcl} \phi_L & = & 1 - \xi \\ \phi_R & = & \xi \end{array}$$

and the general transformation is $\xi = (x - x_0)/h$, where x_0 is the element starting coordinate and h is its length.

This leads to a matrix equation

$$K\mathbf{a} = \mathbf{f}$$

where *K* is the stiffness matrix of size 3×3 .

Part 1)

Find entry K_{21} , i.e. the entry in K in the second row, first column.

Part 2)

Find entry K_{22} , i.e. the entry in K in the second row, second column.