Trieze Groups

Definition A frieze group is a subgroup \overline{f} of 9 no that \overline{f} n T is a cyclic group generated by a non-identity translation T; that is, \overline{f} n T = $\langle \overline{c} \rangle$ and we note that $\langle \overline{c} \rangle$ is an infinite group.

Let 7 be a frieze group with 7 n J = < z>
REMARKS.

- (1) Let $T = T_{AB}$. Then \overrightarrow{AB} is the direction of T \overrightarrow{AB} is the length of T $\overrightarrow{AB} = T_{AB}$ $\overrightarrow{AB} = A'B'$ and $\overrightarrow{AB} | | \overrightarrow{A'B'}|$
- ② Let $T' \in \mathcal{F} \cap \mathcal{J}$. Then $T' = T' \quad \text{for nome integer } n$. $T' = T_{CD} \Rightarrow CD \geq AB \quad \text{and} \quad \overline{CD} \quad || \quad \overline{AB} \quad .$ (we say that T is shorter then T' if AB < CD)
- (3) Let $x \in \mathcal{F} \setminus \langle \tau \rangle$ and $\tau = \tau_{AB}$. (50, $B = \tau(A)$)

 Then $x \in \mathcal{F}$ (because \mathcal{F} is a group)

 However, $x \in \mathcal{F}$ (because \mathcal{F} is a group)

 and so $\tau_{AB} x^{-1} = \tau_{A(A)} x(B)$ is a translation

 and so $\tau_{A(A)} x(B) \in \langle \tau \rangle$ and so x(A) x(B) !! AB.

Now, for any point $P \in \mathbb{R}^2$, Since $\Delta T \Delta'(\Delta(P)) = \Delta T(P)$ and $\Delta T \Delta' = T_{\Delta(A), \Delta(B)}$ we have $\Delta(P) \Delta(T(P)) \parallel \Delta(A) \Delta(B) \parallel AB \parallel P T(P)$

Thus, if α is a reflection then $\alpha = \sigma$ for nome line ℓ | ℓ

if α is a rotation then α must be a halfturn, if α is a glide reflection then the axis of α must be parallel to \overrightarrow{AB} (note that $\alpha^2 \in \overrightarrow{A} \cap \overrightarrow{J}$ in this ease).

For simplicity, let c be a line parallel to \overrightarrow{AB} . Then T'(l)=l for all line l | l | c and $T' \in \overrightarrow{F} \cap T$.

(4) Let $S \subseteq \mathbb{R}^2$ much that $F = \mathcal{I}_S$. (We call S a frieze pattern) Then $T^n(S) = S$ for all $n \in \mathbb{Z}$, and $n \in \mathbb{Z}$ and $P \in S$, and hence $T^n(P) \in S$ for all $n \in \mathbb{Z}$ and $P \in S$, and hence $T^{n-1}(P) T^n(P)$ $11 \in S$ for all $n \in \mathbb{Z}$ and $P \in S$

to S is rimply an infinite number of copies of R layed side by side in the direction of Z.

R is called a fundamental domain of F

Possibilities FOR 7.

This is the case R has no symmetry

(meaning, $\theta_R = 3ii$).

In this case d(c) = c for all $d \in \mathcal{F}_1$.

(2) $f_1 = \langle \tau, \sigma_c \rangle$. This is the case R has a line of symmetry (in direction of τ)

Note: In this case, $\tau' = \tau_c \tau'$ for all $\tau' \in \langle \tau \rangle$. This is because $\tau' = \tau_a \sigma_b$ where all b $\perp e$ and so

 $T'\sigma_c = \sigma_a(\sigma_b, \sigma_c) = \sigma_a\sigma_c\sigma_b = \sigma_c\sigma_a\sigma_b = \sigma_c\tau'$.

Thus, $T'_1 = {\tau^n \sigma_c \mid n \in \mathbb{Z}} \cup {\tau^n \mid n \in \mathbb{Z}} \supseteq T'_1$ and $\chi(c) = c$ for all $\chi(c) = c$ for χ

(3) $f_1 = \langle \tau, \sigma_a \rangle$ where $a \perp c$. This is the case R has a as a line of symmetry.

In this case, $\tau = \sigma_b \sigma_a$ and $\sigma_b = \tau \sigma_a \in \tau_1^2$.

Thus, $\sigma_a(R) = R$ and $\sigma_b(R) = R$.

Note: $\tau'\sigma_a = \sigma_a \tau'^{-1}$ for all $\tau' \in \langle \tau \rangle$ $\tau'\sigma_a$ is a reflection and τ' $(\tau'\sigma_a)^2 = i$.

 $\mathcal{F}_{i}^{2} = \{ \sigma_{a} z^{n} \mid n \in \mathbb{Z} \} \cup \{ z^{n} \mid n \in \mathbb{Z} \} \supset \mathcal{F}_{i}$.

and $\chi(c) = c$ for all $\alpha \in \Upsilon_1^2$.

(4) $\mp \frac{3}{1} = \langle 8 \rangle$ where 8 is a glide reflection with axis c and $8^2 = 7$.

- d(c) = c for all $d \in \mathcal{T}_1^3$.

- The cases $8^2 = 7^m$, m > 1, are already covered.

When m is even, m = 2n, for some n > 1.

 $\chi^2 = \tau^{2n}$ and $\chi = \tau^2 =$

and σ_{c} , $S = \overline{C}^{n-1} \overline{C} \sigma_{c} \Rightarrow \overline{C} \sigma_{c}$ is in the group and $\overline{C} \sigma_{c}$ is a glide reflection so that $(\overline{C} \sigma_{c})^{2} = \overline{C}$.

(5)
$$f_2 = \langle \tau, \sigma_A \rangle$$
 where $A \in C$. Thus, A is a point of symmetry for S.

Put
$$A_0 = A$$
 and $A_i = T^i(A)$. Then since $T \circ T^{-1} = \sigma = \sigma$, A_i is also a point $A_{i-1} = \sigma = \sigma$

of symmetry for S.

Note that T5 is a halfturn (being the product of three halfturns), so $\tau_A = \sigma_M$ for some point M and hence with $M_0 = M$, $M_i = Z^i(M)$, the points M_i are points of symmetry for S.

Note.

6
$$f_2 = \langle \tau, \sigma_A, \sigma_C \rangle$$
 where $A \in C$.

Note that $\sigma_{A} = \sigma_{e} \sigma_{a}$ => 0 = 0 = 0 = 7! and hence F_2 , F_1^2 and F_1^1 .

There are points and lines symmetries in this case.

and
$$d(c) = c$$
 for all $d \in \mathcal{F}_2^1$.

$$(7)$$
 $\mathcal{F}_{2}^{2} = \langle 8, \sigma_{A} \rangle$ where 8 is a glide reflection with axis c $8^{2} = 7$ and $A \in C$.

Note that $F_2^2 \supset \langle r \rangle = F_1^3$

 $8 = \overline{7} \sigma_c$ where $\overline{7}^2 = \overline{7}$

Thoose line a $L \subset \infty$ that $X = \sigma_A \sigma_A$

(note that $\sigma_A = \sigma_C \sigma_b$ and $\overline{\tau} = \sigma_b \sigma_a$)

Note that: $T = 8^2$, $\sigma_a = \sigma_A 8 \Rightarrow \langle T, \sigma_A, \sigma_a \rangle \subseteq \overline{\Psi}_2^2$

and $X = \sigma_A \sigma_A \Rightarrow f_2^2 = \langle \tau, \sigma_A, \sigma_A \rangle$

Thus, $F_1^2 = \langle 8, \sigma_A \rangle = \langle \overline{c}, \sigma_A, \sigma_A \rangle$ where $A \in c$, $S = \overline{\sigma}, \sigma_A$, $\sigma_A = \overline{c}$ and $S^2 = \overline{c}$.

Note that $\alpha(c) = c$ for all $\alpha \in \mathcal{F}_2^2$.

FRIEZE THEOREM: Let F be a frieze group with $F \cap J = \langle \tau \rangle$. Then there is a line c such that d(c) = c for all $d \in F$ (c is called the center of F) and F is one of the following groups

$$F_{1} = \langle \tau \rangle$$
 $F_{1}^{1} = \langle \tau, \sigma_{c} \rangle$
 $F_{1}^{2} = \langle \tau, \sigma_{a} \rangle$, alc

 $F_{1}^{3} = \langle \tau, \sigma_{a} \rangle$, alc

with axis c, $r^{2} = \tau$

$$F_2 = \langle \tau, \sigma_A \rangle$$
, Acc
 $F_2^1 = \langle \tau, \sigma_A, \sigma_c \rangle$, Acc.
 $F_2^1 = \langle \tau, \sigma_A, \sigma_c \rangle$, Acc.
 $F_2^2 = \langle \tau, \sigma_A \rangle = \langle \tau, \sigma_A, \sigma_a \rangle$
 $Y = \sigma_A \sigma_a$, a.l.c., Acc
and $S_2^2 = \tau$.