Convolutional Neural Networks

Thomas Ranvier

Ynov

Thomas Ranvier Convolutional Neural Networks 13 avril 2022

Sommaire

- Introduction
- 2 Convolution
- Architecture d'un CNN
- Applications

Introduction

Convolutional Neural Networks

 maire
 Introduction
 Convolution
 Architecture d'un CNN

 ○●○○○
 ○○○○
 ○○○○

La vision par ordinateur

Applications

Pourquoi?

On souhaite permettre à un ordinateur de voir et comprendre des images pour être ensuite capable de réaliser différentes tâches

 ommaire
 Introduction
 Convolution
 Architecture d'un CNN
 Applications

 0
 00
 000
 00000
 00000

Apprendre automatiquement les features à partir d'images

Objectif

On souhaite que le modèle soit capable d'apprendre les features définissant des objets de lui-même, sans que l'on ait besoin de les définir manuellement

Low level features

Edges, dark spots

Mid level features

Eyes, ears, nose

High level features

Facial structure

Représentation numérique

• Les images sont constitués d'un ensemble de pixel organisés sur une grille 2D : (1920, 1080)

Représentation numérique d'une image

Représentation numérique

- Les images sont constitués d'un ensemble de pixel organisés sur une grille 2D : (1920, 1080)
- Chaque pixel est associé à une valeur entre 0 et 255

Représentation numérique d'une image

Représentation numérique

- Les images sont constitués d'un ensemble de pixel organisés sur une grille 2D : (1920, 1080)
- Chaque pixel est associé à une valeur entre 0 et 255
- Les pixels d'images en couleurs ont 3 valeurs, 1 pour chaque channel de RGB : (1920, 1080, 3)

Vision par ordinateur avec un MLP

Désavantages d'un MLP pour le traitement d'images

Perte de l'information spatiale 2D

Applications

Vision par ordinateur avec un MLP

Désavantages d'un MLP pour le traitement d'images

- Perte de l'information spatiale 2D
- Quantité énorme de paramètres, chaque neurone de la première couche est relié à chaque pixel

Vision par ordinateur avec un modèle spécialisé pour le traitement d'images

Applications

Intuition d'une convolution

• Définir un neurone comme une fenêtre opérant sur une partie de l'image

Vision par ordinateur avec un modèle spécialisé pour le traitement d'images

Applications

Intuition d'une convolution

- Définir un neurone comme une fenêtre opérant sur une partie de l'image
- Faire parcourir la fenêtre glissante sur l'ensemble de l'image pour générer une feature map

Vision par ordinateur avec un modèle spécialisé pour le traitement d'images

Applications

Intuition d'une convolution

- Définir un neurone comme une fenêtre opérant sur une partie de l'image
- Faire parcourir la fenêtre glissante sur l'ensemble de l'image pour générer une feature map
- Utiliser n neurones pour générer une feature map de profondeur n (on parlera de n "channels")

Convolution

L'opération de convolution

Intuition derrière une convolution

• On appelle les neurones d'une couche de convolution des "filtres"

0 1 0 1 0 1 1 0 1

Filter

=

Feature map

Applications

- On appelle les neurones d'une couche de convolution des "filtres"
- Les filtres se déplacent de gauche à droite et haut en bas selon un pas que l'on appelle "strides"

- On appelle les neurones d'une couche de convolution des "filtres"
- Les filtres se déplacent de gauche à droite et haut en bas selon un pas que l'on appelle "strides"
- Un filtre fait la somme du produit Hadamard entre les valeurs d'input et les valeurs du filtre

- On appelle les neurones d'une couche de convolution des "filtres"
- Les filtres se déplacent de gauche à droite et haut en bas selon un pas que l'on appelle "strides"
- Un filtre fait la somme du produit Hadamard entre les valeurs d'input et les valeurs du filtre
- On appelle l'output d'une couche à convolutions une "feature map"

- On appelle les neurones d'une couche de convolution des "filtres"
- Les filtres se déplacent de gauche à droite et haut en bas selon un pas que l'on appelle "strides"
- Un filtre fait la somme du produit Hadamard entre les valeurs d'input et les valeurs du filtre
- On appelle l'output d'une couche à convolutions une "feature map"

- On appelle les neurones d'une couche de convolution des "filtres"
- Les filtres se déplacent de gauche à droite et haut en bas selon un pas que l'on appelle "strides"
- Un filtre fait la somme du produit Hadamard entre les valeurs d'input et les valeurs du filtre
- On appelle l'output d'une couche à convolutions une "feature map"

- On appelle les neurones d'une couche de convolution des "filtres"
- Les filtres se déplacent de gauche à droite et haut en bas selon un pas que l'on appelle "strides"
- Un filtre fait la somme du produit Hadamard entre les valeurs d'input et les valeurs du filtre
- On appelle l'output d'une couche à convolutions une "feature map"

- On appelle les neurones d'une couche de convolution des "filtres"
- Les filtres se déplacent de gauche à droite et haut en bas selon un pas que l'on appelle "strides"
- Un filtre fait la somme du produit Hadamard entre les valeurs d'input et les valeurs du filtre
- On appelle l'output d'une couche à convolutions une "feature map"

- On appelle les neurones d'une couche de convolution des "filtres"
- Les filtres se déplacent de gauche à droite et haut en bas selon un pas que l'on appelle "strides"
- Un filtre fait la somme du produit Hadamard entre les valeurs d'input et les valeurs du filtre
- On appelle l'output d'une couche à convolutions une "feature map"

- On appelle les neurones d'une couche de convolution des "filtres"
- Les filtres se déplacent de gauche à droite et haut en bas selon un pas que l'on appelle "strides"
- Un filtre fait la somme du produit Hadamard entre les valeurs d'input et les valeurs du filtre
- On appelle l'output d'une couche à convolutions une "feature map"

- On appelle les neurones d'une couche de convolution des "filtres"
- Les filtres se déplacent de gauche à droite et haut en bas selon un pas que l'on appelle "strides"
- Un filtre fait la somme du produit Hadamard entre les valeurs d'input et les valeurs du filtre
- On appelle l'output d'une couche à convolutions une "feature map"

- On appelle les neurones d'une couche de convolution des "filtres"
- Les filtres se déplacent de gauche à droite et haut en bas selon un pas que l'on appelle "strides"
- Un filtre fait la somme du produit Hadamard entre les valeurs d'input et les valeurs du filtre
- On appelle l'output d'une couche à convolutions une "feature map"

Le padding

L'intérêt du padding

On ajoute des "pixels" à 0 sur les contours de l'image, cela permet de ne pas perdre l'information sur les bords

Input with padding						
0	0	0	0	0	0	0
0	0	1	0	1	0	0
0	1	0	1	0	1	0
0	1	0	1	0	1	0
0	0	1	0	1	0	0
0	0	1	0	1	0	0
0	0	0	0	0	0	0

Filter

Feature map

Le padding

Calculer la taille de l'output

La taille de la feature map obtenue en sortie peut être calculée avec la formule suivante :

$$O = \frac{I - K + 2P}{S} + 1$$

Avec:

- I = Taille de l'input
- K = Taille du filtre (aussi appelé kernel)
- P = Taille du padding
- S = Strides

Intérêt des convolutions

Intérêt des convolutions

• Le but de chaque filtre de convolution est d'extraire une feature spécifique de l'image

Intérêt des convolutions

Applications

Intérêt des convolutions

- Le but de chaque filtre de convolution est d'extraire une feature spécifique de l'image
- Un modèle à convolutions enchaîne les couches à convolutions pour extraire des features à différents niveaux d'abstractions

Architecture d'un CNN

Blocs utilisables pour construire un modèle à convolutions

Couches

Convolution : Extrait des features à partir de l'input donné

Thomas Ranvier Convolutional Neural Networks 13

Applications

Couches

- Convolution : Extrait des features à partir de l'input donné
- Activation : Utilisation d'une non-linéarité après chaque couche de convolutions

Thomas Ranvier Convolutional Neural Networks 1

Applications

Couches

- Convolution : Extrait des features à partir de l'input donné
- Activation : Utilisation d'une non-linéarité après chaque couche de convolutions
- 3 Pooling : Réduit la taille de l'input

Applications

Couches

- Convolution : Extrait des features à partir de l'input donné
- Activation : Utilisation d'une non-linéarité après chaque couche de convolutions
- 3 Pooling : Réduit la taille de l'input
- a Batch norm: Normalise les données, généralement entre la partie conv et celle fully-connected

Thomas Ranvier Convolutional Neural Networks

Applications

Couches

- 1 Convolution : Extrait des features à partir de l'input donné
- Activation : Utilisation d'une non-linéarité après chaque couche de convolutions
- Pooling : Réduit la taille de l'input
- a Batch norm : Normalise les données, généralement entre la partie conv et celle fully-connected
- 6 Fully-connected : Utilise les features extraites par les convolutions pour classifier les données

Thomas Ranvier Convolutional Neural Networks

- tf.keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding="valid", activation=None)
- filters : Nombre de filtres à créer, correspondra à la profondeur de la feature map générée

- tf.keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding="valid", activation=None)
 - filters : Nombre de filtres à créer, correspondra à la profondeur de la feature map générée
 - · kernel size : Dimensions des filtres

- tf.keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding="valid", activation=None)
 - filters : Nombre de filtres à créer, correspondra à la profondeur de la feature map générée
 - · kernel size : Dimensions des filtres
 - strides : Pas de déplacement des filtres sur l'input

Applications

- tf.keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding="valid", activation=None)
 - filters : Nombre de filtres à créer, correspondra à la profondeur de la feature map générée
 - kernel_size : Dimensions des filtres
 - strides : Pas de déplacement des filtres sur l'input
 - padding: "valid" n'applique pas de padding, "same" génère un padding tel que l'output ait les mêmes dimensions que l'input

- tf.keras.layers.Conv2D(filters, kernel_size, strides=(1, 1), padding="valid", activation=None)
 - filters : Nombre de filtres à créer, correspondra à la profondeur de la feature map générée
 - kernel_size : Dimensions des filtres
 - strides : Pas de déplacement des filtres sur l'input
 - padding: "valid" n'applique pas de padding, "same" génère un padding tel que l'output ait les mêmes dimensions que l'input
 - activation : La non-linéarité à appliquer après la couche de convolutions

Pooling

Pooling

Les 2 principaux types de pooling utilisés sont les Max et Average poolings :

1 tf.keras.layers.MaxPooling2D(pool size=(2, 2))

Pooling

Pooling

Les 2 principaux types de pooling utilisés sont les Max et Average poolings :

- 1 tf.keras.layers.MaxPooling2D(pool size=(2, 2))
- 2 tf.keras.layers.AveragePooling2D(pool_size=(2, 2))

Exemple d'architecture en pratique

Architecture de modèle à convolutions sous Keras

```
model = tf.keras.Sequential([
    # First conv layer
    tf.keras.layers.Conv2D(32, 5, strides=1, padding='same', activation='relu'),
    tf.keras.layers.MaxPool2D(pool size=(2,2)).
    # Second conv laver
    tf.keras.layers.Conv2D(64, 3, strides=1, padding='same', activation='relu').
    tf.keras.layers.MaxPool2D(pool size=(2,2)),
    # Batch norm for stabilization
    tf.keras.layers.BatchNormalization(),
    # Flatten data into a vector for the fully-connected part
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(units=128, activation='relu'),
    tf.keras.layers.Dense(units=10, activation='softmax')
])
```

Applications

Applications réelles de CNN

Détection d'objets

Applications

Voiture autonome

Imagerie médicale

Applications

Segmentation

Applications

Transfert de style

Applications

Thomas Ranvier Convolutional Networks 22