Sprawozdanie 4

Metody inteligencji obliczeniowej – Informatyka Stosowana, WFIIS, Jakub Salamon, II rok

Celem zajęć laboratoryjnych nr 4 było wykorzystanie algorytmu rojowego do wyznaczenia minimum funkcji

$$f(x,y) = x^2 + y^2 - 20[\cos(\pi x) + \cos(\pi y) - 2], dla x \in [-10, 10], y \in [-10, 10]$$

Algorytm rojowy naśladuje zachowania stadne. Wygenerowane cząsteczki oddziałują na siebie. W każdej iteracji najlepsza cząsteczka przemieszcza się z prędkością określoną na podstawie swoich najlepszych pozycji oraz najlepszych pozycji pozostałych cząstek w roju.

Test algorytmu dla różnych wartości c1 oraz c2

c1, c2 to współczynniki uczenia (nazywanymi, odpowiednio, kognitywnym i socjalnym)

liczba ewaluacji funkcji celu = 2000 maksymalna prędkość cząsteczki = 0.01

Wartości średniego i najlepszego przystosowania oraz odchylenie standardowe są duże w początkowych ewaluacjach i na wykresach nie widać co dzieje się w późniejszych ewaluacjach, dlatego, gdy było trzeba, dla lepszej widoczności złączyłem dwa wykresy w 250 ewaluacji oraz przeskalowałem oś X oraz Y.

Wersja dla
$$c1 = 2$$
, $c2 = 2$

$$f(x, y) = 0.00553497 \text{ dla}$$
 $x = -0.0071798$ $y = 0.00199279$

Jak widać na wykresach algorytm w tym przypadku dopiero w około 1200 ewaluacji znajduje najlepsze rozwiązanie. Cząstki są do siebie bardzo podobne co można wywnioskować z wykresu średniego przystosowania oraz odchylenia standardowego.

Wersja dla c1 = 0, c2 = 2

ewaluacja

0.1

10

Algorytm jeszcze później znajduje najlepsze rozwiązanie (dopiero w około 1800 ewaluacji). Widać, że przy takich parametrach c1 oraz c2 cząsteczkom trudniej jest trafić na właściwe rozwiązanie. Cząsteczki bardziej niż wcześniej różnią się, ponieważ odchylenie standardowe jest większe.

Wersja dla c1 = 2, c2 = 0

$$f(x,y) = 0.02173241$$
 dla $x = 0.00285522$
 $y = -0.00702486$

Cząsteczki bardzo się od siebie różnią co widać na wykresie średniego przystosowania oraz na podstawie odchylenia standardowego. Najlepsze rozwiązanie znajdowane jest późno. Dla powyższych c1 oraz c2 uzyskujemy najgorsze wyniki.

Wersja dla c1 = 1, c2 = 2

$$f(x,y) = 0.000800844 dla$$
 $x = -0.00272506$ $y = 0.00077906$

Najlepsze rozwiązanie znajdowane jest bardzo szybko, bo już w około 400 ewaluacji. Cząsteczki są bardzo do siebie podobne.

$$f(x,y) = 0.000826843 \text{ dla}$$
 $x = -0.000571321$
 $y = -0.00282264$

Najlepsze rozwiązanie jest odnajdowane dopiero w około 1700 ewaluacji. Algorytm później niż poprzednio trafia na właściwe rozwiązanie, co jest związane prawdopodobnie z tym, że c1 jest mniejsze od 1.

Z powyższych przykładów możemy wywnioskować, że chcąc uzyskać dobre wyniku c1 powinno być mniejsze niż c2. Najlepiej, aby c1 wynosiło około 1, a c2 około 2, ponieważ wtedy najszybciej otrzymamy wynik i będzie on najlepszy.

Wersja dla c1 = 2.2, c2 = 2.2 ze współczynnikiem ścisku

Współczynnik ścisku wyraża się wzorem:

$$X = \frac{2}{|2 - fi - \sqrt{fi^2 - 4fi}|}$$
 gdzie fi = c1 + c2, fi > 4

W naszym przykładzie współczynnik ścisku wyniósł 0.536675. Najlepsza znaleziona wartość funkcji to

$$f(x,y) = 0 \text{ dla } x = -9.97507e-163$$

 $y = -8.17652e-163$

Najlepsze rozwiązanie jest znajdowane bardzo szybko i jest bardzo dokładne. Gdy potrzebujemy dużej precyzji rozwiązania warto zastosować współczynnik ścisku Clerka. Wartości odchyleń standardowych są tak minimalne, że możemy już chyba mówić o tym że cząsteczki są niemal identyczne. Nie potrzebujemy wtedy wykonywać, aż 2000 ewaluacji, ponieważ wyniki już praktycznie nie różnią się i nie uzyskujemy znaczącej poprawy.

Algorytm rojowy a algorytm genetyczny

Algorytm genetyczny działa wolniej niż rojowy i jest trudniejszy do zaimplementowania. Nie zawsze zwraca on dokładny wynik.

Wartość najlepszego przystosowania otrzymana w algorytmie genetycznym to:

$$f(x, y) = 0.00732756 \text{ dla}$$
 $x = -0.0074873$
 $y = -0.00417638$

W szukaniu minimum tej funkcji lepiej sprawdził się algorytm rojowy. Można wywnioskować, że podążanie innych rozwiązań za rozwiązaniem najlepszym działa lepiej niż ewolucja, która nie zawsze będzie szła w dobrym kierunku mimo tego, że uzyskamy w końcu prawidłowy wynik.

Jakub Salamon Informatyka Stosowana, WFIIS, II rok