chapter1

Loading libraries

lines(v,type = 'l',lty = 2)

```
library(astsa)
library(xts)

## Loading required package: zoo

## ## Attaching package: 'zoo'

## The following objects are masked from 'package:base':

## ## as.Date, as.Date.numeric

Problems 1.1

Part a)

set.seed(90210)
w = rnorm(150)
x = filter(w, filter=c(0,-0.9),method="recursive")[-(1:50)]
v = filter(x,sides = 1,filter = rep(1/4,4))
tsplot(x)
```


Part b)

```
set.seed(90210)
t = 1:100
cs = 2*cos((2*pi*t)/4)
w = rnorm(100)
x = cs + w
v = filter(x,sides = 1,filter = rep(1/4,4))
tsplot(x)
lines(v,type = 'l',lty = 2)
```


Part c)

```
x = log(jj)
v = filter(x,sides = 1,filter = rep(1/4,4))
tsplot(x)
lines(v,type = 'l',lty = 2)
```


Part d)

What is seasonal adjustment?

Seasonal adjustment is a statistical technique that attempts to measure and remove the influences of predictable seasonal patterns.

Part e)

The main learning from this exercise was to smooth out the noise of the time series data to better understand the trend.

Problem 1.3

Part a)

```
par(mfrow = c(3,3))
numberOfLoops <- 1:9
for (number in numberOfLoops)
{
  w = rnorm(500)
  x = cumsum(w)</pre>
```

```
tsplot(x)
}
```


Part b)

```
set.seed(123)
par(mfrow = c(3,3))
numberOfLoops <- 1:9
for (number in numberOfLoops)
{
    w = rnorm(500)
    x = filter(w,sides=2,filter=rep(1/3,3))
    tsplot(x)
}</pre>
```


Part c)

Difference between the two graphs is that plots in figure b) mean oscillates around zero and figure a) is random walk which is random from the previous value.

Problem 1.4

Part a)

tsplot(gdp)

This trend looks closer to random walk with drift.

Part b)

```
tsplot(diff(log(gdp)), type = "o", col=3, ylab="GDP Growth")
points(diff(gdp)/lag(gdp,-1), pch=3, col=2)
```


Both are giving similar results but the method with the log gives us more stable numerical values.

Part c)

The growth of GDP looks similar to auto regression with added white noise.