

Mark Scheme (Results)

January 2023

Pearson Edexcel International Advanced Level In Statistics S3 (WST03) Paper 01

Question		Scheme		Marks
1 (a)(i)	Meth		Method 2	
	$[\overline{y} =$	$]\frac{847}{100}[=8.47]$	847+100×1000 [=100847]	M1
	So \bar{x}	$\overline{\epsilon} = 1000 + \frac{847}{100} = 1008.47 *$	$\overline{x} = \frac{847 + 1000 \times 100}{100} = 1008.47$ *	A1*
(ii)	$\left[s_x^2\right]$	$= s_y^2 = \left] \frac{13510.09 - 100 \times "8.47"^2}{99} \right]$	$\left[s_x^2\right] = \frac{101707510.1 - \frac{"100847"^2}{100}}{99}$	M1
		= 64		A1 (4)
(b)	H ₀ :	$\mu_{x} = 1010$ $H_{1}: \mu_{x} \neq 1010$		B1
(-)		- " 		(1)
(c)	$\frac{\overline{X}}{"8"}$	$\frac{1010}{\sqrt{100}} = -1.96$ oe $\frac{\overline{X} - 1010}{"8" / \sqrt{100}} =$	1.96 oe	M1 B1
		1008.432 $\bar{X} = 1011.568$ awr	1008 and 1012(or 1011)	A1
	$\bar{X} \leqslant$	$\bar{X} = 1008.432$ " $\bar{X} \geqslant 1011.568$ "		A1ft
(d)	1008	3.47 is not in the critical region		M1
(u)		machine does not need to be stoppe	d /reset	Alft
				(2)
(e)	It is	reasonable since the sample size is	(reasonably) large	B1 (1)
				(1)
			Notes	Total 12
(a)(i)	M1	For 8.47 or $\frac{847}{100}$ or $847 + 100 \times 1$		\ /
(a)(i)	M1 A1*	For 8.47 or $\frac{847}{100}$ or $847 + 100 \times 100$ cso correct solution including $\overline{x} =$ y and must not be just $x \in E(X)$, μ_x	000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must re-	Total 12
(a)(i) (ii)		cso correct solution including $\overline{x} =$	000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must respect to the second of x	Total 12
	A1*	cso correct solution including $\overline{x} =$ y and must not be just $x \in E(X)$, μ_x	000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must respect to the second of x	Total 12
	A1* M1	cso correct solution including $\overline{x} =$ y and must not be just x eg E(X), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00	000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must respect to the second of x	Total 12
(ii)	A1* M1 A1	cso correct solution including $\overline{x} =$ y and must not be just x eg E(X), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00	000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and=1008.47 allow alt notation for \overline{x} but must respect to the second of x . 47 Allow for answer of 1064	Total 12
(ii)	A1* M1 A1	cso correct solution including $\overline{x} =$ y and must not be just x eg E(X), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010	000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and= 1008.47 allow alt notation for \overline{x} but must represent an end of x . 47 Allow for answer of 1064 . Therefore, the end of μ and the end of μ and μ and μ and μ and μ are the end of μ and μ and μ are the end of μ are the end of μ and μ are the end of μ are the end of μ and μ are the end of	fer to x not
(ii) (b)	A1* M1 A1 B1	cso correct solution including $\overline{x} =$ y and must not be just x eg E(X), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. $= \pm 1.96$ or better seen (Calc	000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and= 1008.47 allow alt notation for \overline{x} but must re, mean of x 47 Allow for answer of 1064 terms of μ . (Allow $H_0: \mu_y = 10$ $H_1: \mu_y \neq 10$) their sd_Allow equivalent eg $1010 \pm n \times "8" / \sqrt{100}$	fer to x not
(ii) (b)	A1* M1 A1 B1	cso correct solution including $\bar{x} =$ y and must not be just x eg E(X), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. $= \pm 1.96$ or better seen (Calca one tail hypotheses in (b)	000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and= 1008.47 allow alt notation for \overline{x} but must represent an end of x . 47 Allow for answer of 1064 . Therefore, the end of μ and the end of μ and μ and μ and μ and μ are the end of μ and μ and μ are the end of μ are the end of μ and μ are the end of μ are the end of μ and μ are the end of	fer to x not
(ii) (b)	A1* M1 A1 B1 M1 B1	cso correct solution including $\bar{x} =$ y and must not be just x eg E(X), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = \pm 1.96 or better seen (Calca one tail hypotheses in (b) For both limits 1008 or better and 10 For selecting the correct region ft the	000 or $847 = \sum x - 100 \times 1000$ or 100847 seen and= 1008.47 allow alt notation for \overline{x} but must respect to the proof of x and the proof of x and the proof of x are the proof of x and x are the proof of x are the proof of x and x are the proof of x	fer to x not they have g) ow other
(ii) (b)	A1* M1 A1 B1 M1 A1	cso correct solution including $\bar{x} =$ y and must not be just x eg E(X), μ_x For a correct expression ft their 1008 Cao do not ISW Allow 64.00 Both hypotheses correct. Must be in the Mark (c) and (d) together For \pm standardisation with 1010 and SC condone use of 1008.47 for 1010 For c.v. = \pm 1.96 or better seen (Calca one tail hypotheses in (b) For both limits 1008 or better and 10 For selecting the correct region ft the letters(condone μ) Allow other nota ft their CR if the final A mark in part CR. Must refer to 1008.47 (allow mark)	and=1008.47 allow alt notation for \overline{x} but must respond to their sd. Allow equivalent eg. $\mu_1: \mu_2 \neq 10$. Their sd. Allow equivalent eg. $\mu_2: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3: \mu_3 \neq 10$. Their sd. Allow equivalent eg. $\mu_3: \mu_3: \mu_3: \mu_3: \mu_3: \mu_3: \mu_3: \mu_3: $	fer to x not they have g) ow other 1008] th their

	SC	If the CR in (c) is of the form "1008.432" $< \bar{X} <$ "1011.568" oe (not z values) then award M0A1 for concluding the machine does not need to be stopped/reset.
(e)	B1	Any suitable comment about the sample being large eg n is large

Question			Ç	Scheme							Marks	
	Athl	ete	A	В	С	D	E	F	G	Н		
2 (a)	Ran	k SBT	4	2	1	3	5	6	8	7	M1	
	FP		1	2	3	4	5	6	7	8		
	$\sum d^2 = 9 + 0 + 4 + 1 + 0 + 0 + 1 + 1 = 16$								M1			
		- \frac{6("16")}{8(63)}								awrt 0.81	dM1 A1	
											(4)	
(b)	$H_0: \rho$	$\rho = 0 , H_1: \rho > 0$	0								B1	
	Critic	al Value $r_s = 0$.8333 oı	r CR: r_{s}	$\geqslant 0.83$	33					B1	
	evide	ot reject H ₀ or n nce of a positiv	e correla	ition							M1	
		is no evidence on for these at		sitive co	rrelatior	i betwee	n seasoi	ı's best	time and	d finishing	A1ft	
											(4)	
(c)	$r = -\sqrt{\frac{1}{\sqrt{1 + \frac{1}{2}}}}$	$0.225175 \\ \hline 0.1286875 \times 0.$	55275								M1	
	= 0.8	84428								awrt 0.844	A1	
											(2)	
(d)	Critic	al Value $r = 0$.7887 or	CR: <i>r</i>	≥ 0.788	7					M1	
		re is evidence of these athlete		tive cor	relation	between	season	's best t	ime and	finishing	A1 ft	
											(2)	
			1	1	Note			1		7 12 16	Total 12	
(a)	M1	attempt to rank										
	M1	Attempt to find							correct) a	nd evaluatin	$\log \sum d^2$	
		May be implied						0				
	dM1	dependent on 1	st M1. Us	$\sin 2 1 - \frac{6}{3}$	$\frac{5\sum d^2}{8(63)}$ w	ith their	$\sum d^2$					
	A1 $\frac{17}{21}$ or awrt 0.81(0) SC for reverse rankings May score M1M1dM1A0 order 5 7 8 6 4 3 1 2 $\sum d^2 = 158$											
(b)	both hypotheses correct. Must be in terms of ρ (allow something that looks like rho eg p). N							Must be				
(b)	attached to H_0 and H_1											
	B1	critical value of			hould ma							
	M1	correct stateme	_	_							r CV > 1	
	then it is M0 correct conclusion in context for their value of r_s from (a) and their stated CV. Conclusion must to positive correlation , seasonal best or time and position .						d their st	must refer				
	AIII	to positive cor	relation,	seasonai	Dest of t	inie and	For use of two tailed test:					
		For use of two-	tailed tes	t:			position.					
	SC	For use of two- May score B0F	tailed tes 31M1A0	t:			position.					
(c)	SC M1	For use of two- May score B0E correct method	tailed tes 31M1A0	t:								
(c) (d)	SC	For use of two- May score B0F	tailed tes 31M1A0 used	t: CV alloy	v 0.881	.)		40:10-4:	<i>(</i> L)			

M1 must be awarded. A correct conclusion for their value of r from (c) Conclusion must refer to **A1ft positive correlation, seasonal best** or **time** and **finishing time**. Do not allow contradicting comments. if the |test value| or |CV| > 1 then it is M0

Question			Scheme		Marks		
	86×300 1114×300						
3 (a)	$\frac{33}{120}$	— or —	1200		M1		
		and 278.5	1200		A1		
	21.5	and 276.5			(2)		
	Ho: M	laking a claim a	nd age are independe	nt (not associated)			
(b)			nd age are not independent	· · · · · · · · · · · · · · · · · · ·	B1		
		-		$(O-F)^2$			
		Observed	Expected	$\frac{(O-L)}{F}$			
		14	"21.5"	$\frac{(O-E)^2}{E}$ $\frac{(14-"21.5")^2}{"21.5"} = 2.6162$ $\frac{(286-"278.5")^2}{"278.5"} = 0.20197$	M1		
		286	"278.5"	$\frac{(286 - "278.5")^2}{"278.5"} = 0.20197$			
	$\sum_{i=1}^{\infty}$	$\frac{(O-E)^2}{E} = 7.123 + "2.616" + "0.2019"$					
		9.941		aw	rt 9.94 A1		
	v = (2	= (2-1)(3-1) = 2					
	$\chi_2^2(0.$	$01) = 9.210 \implies C$	$CR: X^2 \geqslant 9.21[0]$		B1ft		
	[in the CR/significant/Reject H ₀] There is sufficient evidence to suggest that making a claim is not independent of age .						
					(7)		
			N	otes	Total 9		
(a)	M1	A correct metho	d for finding one expec	ted value. Implied by one correct value.			
	A1		for both 21.5 and 278.5				
(b)	B1		eses correct. Must men "connection" is B0	tion claim and age at least once. Use of "	relationship" or		
	M1	A correct method for finding both contributions to the χ^2 value or awrt 2.62 or awrt 0.20					
	1411	truncated answers of 2.61 and 0.201 May be implied by awrt 9.94					
	M1	Adding their two values to 7.123 (may be implied by a full χ^2 calculation, with at least 3 c					
	IVII	expressions or values. Do not ISW)					
	A1						
	B1	v = 2 This mark	can be implied by a co	orrect critical value of 9.21 or better			
	B1ft	9.21[0] or better	ft their Degrees of free	edom common ones $v = 3$ is 11.345			
	dA1ft	Independent of hypotheses but dependent on both M marks being awarded. We will ft their test statistic and CV only. A correct contextual conclusion compatible with their values, which has the words claim and age. eg if they have 11.345 and 9.94 they should say it is independent/ not associated. Do not allow contradicting statements.					
Full calcu	lations	for(b)					
(0.4.1	1 22\2	(176 195 (7)	$(49.50.17)^2$	$50 (640.92)^2 (14 121.5 1)^2 (296)$	11070 511)2		

$$\overline{\frac{(24-14.33)^2}{14.33} + \frac{(176-185.67)^2}{185.67} + \frac{(48-50.17)^2}{50.17} + \frac{(652-649.83)^2}{649.83} + \frac{(14-"21.5")^2}{21.5} + \frac{(286-"278.5")^2}{278.5}}$$

or awrt 6.52 + awrt 0.5 + awrt 0.09 + awrt 0.01 + awrt 2.62 + 0.20

or
$$\frac{24^2}{14.33} + \frac{176^2}{185.67} + \frac{48^2}{50.17} + \frac{652^2}{649.83} + \frac{14^2}{"21.50"} + \frac{286^2}{"278.5"} - 1200$$

or awrt 40.19 + awrt 166.83 + awrt 45.92 + awrt 654.17 + awrt 9.116 + awrt 293.702 – 1200

Quest	ion	Scheme	Marks					
4 (a	a)	$H_0: B(4, 0.5)$ is a suitable model						
		$H_1: B(4, 0.5)$ is not a suitable model	B1					
		Expected frequencies 12.5, 50, 75, 50, 12.5	M1 A1					
		$-(O-E)^2$ $(15-"12.5")^2$ $(10-"12.5")^2$						
		$\sum \frac{\left(O-E\right)^2}{E} = \frac{\left(15-"12.5"\right)^2}{"12.5"} + \dots + \frac{\left(10-"12.5"\right)^2}{"12.5"}$						
		$\frac{L}{-Q^2}$ 15 ² 10 ²	M1					
		or $\sum \frac{O^2}{E} - N = \frac{15^2}{"12.5"} + + \frac{10^2}{"12.5"} - 200$						
		= 10.84 (or 10.8)	A1					
		$\nu = 4$	B1					
		$\chi_4^2(0.05) = 9.488 \Rightarrow CR \geqslant 9.488$	B1					
		Sufficient evidence to say that the research students claim is not supported	A1ft					
			(8)					
(b))	$[0 \times 15 +] 1 \times 68 + 2 \times 69 + 3 \times 38 + 4 \times 10 [= 360]$	M1					
		$\frac{360}{200\times4} = 0.45$ *	A1*					
		200×4						
(c)	<u>, </u>	H : Pinomial is a suitable model	(2)					
(0)	,	H ₀ : Binomial is a suitable model	B1					
		H ₁ :Binomial is not a suitable model	B1					
		$\chi_3^2(0.05) = 7.815 \Rightarrow \text{CR} \geqslant 7.815$	B1ft					
		No significant evidence to say that the binomial is not a reasonable model	B1ft (4)					
			1 (41					
		Notes	(4) Total 14					
(a)	B1	Notes Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4)	Total 14					
(a)		Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial,	Total 14					
(a)	B1 M1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or	Total 14					
(a)		Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4)	Total 14					
(a)	M1 A1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if need)	Total 14					
(a)	M1 A1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if need)	Total 14					
(a)	M1 A1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$	Total 14					
(a)	M1 A1 M1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8	Total 14					
(a)	M1 A1 M1 A1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$	Total 14					
(a)	M1 A1 M1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488	Total 14					
(a)	M1 A1 M1 A1 B1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. ft their CV are	rotal 14					
(a)	M1 A1 M1 A1 B1 B1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 = 12.5$ or $4 \times 0.5^4 \times 200 = 50$ or $6 \times 0.5^4 \times 200 = 75$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV are statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (rded) and their test Allow in					
(a)	M1 A1 M1 A1 B1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV are statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the	rotal 14 rded) and their test Allow in an must say					
(a)	M1 A1 M1 B1 B1 A1ft	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. ft their CV are statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV then not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial).	rotal 14 rded) and their test Allow in an must say					
(a)	M1 A1 M1 A1 B1 B1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV are statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the	rotal 14 rded) and their test Allow in an must say					
(b)	M1 A1 B1 B1 A1ft	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 If their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV are statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial) and correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures $[0] + 68 + 138 + 114 + 40$. Implied by 360 or 1.8 cso allow for 360/800 or 1.8/4 or 1.8 = 4p	rotal 14 rded) and their test Allow in an must say mial)					
	M1 A1 B1 A1ft M1 A1* B1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 It their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV at statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial) if their Test statistic their CV then must say supported (is binomial). If their Test statistic their CV then must say supported (is binomial) if it is the correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures [0] + 68+138 + 114 + 40. Implied by 360 or 1.8 cool allow for 360/800 or 1.8/4 or 1.8 = 4p Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/Both Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/Both Both hypotheses correct.	rotal 14 rded) and their test Allow in an must say mial)					
(b)	M1 A1 B1 B1 A1ft M1 A1* B1 B1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 [= 12.5]$ or $4 \times 0.5^4 \times 200 [= 50]$ or $6 \times 0.5^4 \times 200 [= 75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5 \text{ or } \sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. ft their CV at statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomatically and the supported of the supported o	rotal 14 rded) and their test Allow in an must say mial)					
(b)	M1 A1 B1 A1ft M1 A1* B1	Both hypotheses correct. Must mention B(4,0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200 \left[= 12.5 \right]$ or $4 \times 0.5^4 \times 200 \left[= 50 \right]$ or $6 \times 0.5^4 \times 200 \left[= 75 \right]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. ft their CV at statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV the not supported (not binomial). If their Test statistic < their CV then must say supported (is binomial figures $[0] + 68 + 138 + 114 + 40$. Implied by 360 or 1.8 cso allow for $360/800$ or $1.8/4$ or $1.8 = 4p$ Both hypotheses correct. Must mention binomial at least once. Condone inclusion of $B(4,0.45)/B(v = 3)$ This mark can be implied by a correct critical value of 7.815 Condone (their v in part(a) -7.815 ft their degrees of freedom if they have (their v in part(a) -1	nd their test Allow in en must say mial) (0.45,4)					
(b)	M1 A1 B1 B1 A1ft M1 A1* B1 B1	Both hypotheses correct. Must mention B(4, 0.5) at least once. (may be in words need Binomial, probability $(p) = 0.5$ and a reference to 4 children or $n = 4$) Condone B(0.5, 4) For a correct method to find at least one expected frequency e.g. $0.5^4 \times 200[=12.5]$ or $4 \times 0.5^4 \times 200[=50]$ or $6 \times 0.5^4 \times 200[=75]$ May be implied by correct answer 10.84 or 10.8 For all 5 expected frequencies correct. These must be seen and cannot be implied. For an attempt at the test statistic, at least 2 correct expressions/ values seen (include -200 if nee $\sum \frac{(O-E)^2}{E} = 0.5 + 6.48 + 0.48 + 2.88 + 0.5$ or $\sum \frac{O^2}{E} - N = 18 + 92.48 + 63.48 + 28.88 + 8 - 200$ May be implied by correct answer 10.84 or 10.8 10.84 Allow 10.8 $v = 4$ This mark can be implied by a correct critical value of 9.488 9.488 ft their degrees of freedom if given. For $v = 3$ it is 7.815 Dep on the 2^{nd} M1. independent of hypotheses. Need claim or student or binomial. If their CV are statistic only. A correct conclusion based on their test statistic value and their χ^2 critical value (terns of Binomial eg does not follow a binomial distribution) If their Test statistic > their CV then not supported (not binomial). If their Test statistic < their CV then must say supported (is binown A correct method for finding the total number of girls. At least 3 non zero terms correct. useful figures $[0] + 68 + 138 + 114 + 40$. Implied by 360 or 1.8 cso allow for $360/800$ or $1.8/4$ or $1.8 = 4p$ Both hypotheses correct. Must mention binomial at least once. Condone inclusion of B(4,0.45)/B($v = 3$) This mark can be implied by a correct critical value of 7.815 Condone (their v in part(a) -7.815 ft their degrees of freedom if they have (their v in part(a) -1).	nd their test Allow in en must say mial) (0.45,4)					

Questic	on	Scheme	Marks				
5 (a)) I	$I_0: \mu_A = \mu_B$	B1				
3 (u)	F	$H_1: \mu_A > \mu_B$ oe					
		$17.8^2 + 18.4^2$	M1				
	$se = \sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}$						
	1377 – 1368						
	$z = \pm \frac{17.8^2 18.4^2}{}$						
	$z = \pm \frac{1377 - 1368}{\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}}$						
	$=\pm 2.339$ awrt ± 2.34						
	O	ne tailed c.v. $ Z = 2.3263$ or CR: $Z \le -2.3263$ or $Z \ge 2.3263$	B1				
		CR/Significant/Reject H ₀	dM1				
		ufficient evidence to support that the mean <u>yield</u> from plants using fertiliser \underline{A} is					
		reater than the mean $\underline{\text{yield}}$ from plants using fertiliser $\underline{\hat{\textbf{\textit{B}}}}$	A1ft				
			(7)				
ALT	<u>fi</u>	nding the CI can get B1M1M1A0B1M1A1 unless test statistic given					
	av	ward M1 for $z = \pm \frac{D}{\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}}$ dep on first M1 where $2.3 \le z \le 2.4$					
		$\sqrt{\frac{17.8^2}{50} + \frac{18.4^2}{40}}$					
		Tay be implied by $ D = 8.949$					
(b)		$\begin{array}{c} \text{xpected profit per plant} \end{array}$					
, ,			M1				
	A	$: 3 \times 1.377 - \frac{75}{50} \qquad B: \ 3 \times 1.368 - \frac{50}{40} $	M1				
	A	£2.63(1) B: £2.85(4)	A1				
	C	laire should use fertiliser B	dA1 (3)				
		Notes	Total 10				
(a)	B1	Both hypotheses correct. Allow equivalent hypotheses. Must be in terms of μ If A and B not μ	ised the				
(a)	DI	letter must be defined					
	M1	For a correct attempt to find the se or se^2 Condone slip in sample sizes May be implied by $se = awrt 3.85$ or $se^2 = awrt 14.8$. Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097					
	M1	For an attempt to find z value. Allow slip in sample sizes and/or use of 17.8 and 18. 4 rather the	nan 17.8 ²				
		and 18. 4 ² Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097					
	A1	awrt = ± 2.34 Allow for a <i>p</i> -value of 0.0096 or awrt 0.0097					
	B1	± 2.3263 or better seen (Calculator gives 2.3263479) must be compatible with their test state day on praying dM1 awarded fit their test statistic and CV only. A correct statement compatible					
	dM1	dep on previous dM1 awarded, ft their test statistic and CV only. A correct statement compat their test statistic and CV only – need not be contextual but do not allow contradicting non co					
		comments.					
	A1ft	ft their z value and CR only. A correct contextual statement compatible with their test statistic and CV					
		with context of yield (at least once) and A and B NB id they give a p-value of awrt 0.0096/7 they could get B1M1dM1A1B0dM1A1					
	A correct method to find the profit per n plants or m kg for either fertiliser A or fertiliser B						
(b)	M1	$n(3\times1.377-75/50)$ or $n(3\times1.368-50/40)$ or $m(3-75/50\times1.377)$ or $m(3-50/40\times1.377)$	368)				
			.500))				
		where n and $m \ne 0$ Implied by one correct value for A or B must have 2 values which can be compared. ie using same n or m . Profit per n plant £2.63(1)	n and				
	A 1	finds have 2 values which can be compared, let using same n of m . From per n prant £2.05(1) £2.85(4) n or profit per m kg awrt £1.91 m and awrt £2.09 m (2dp) or cost per m kg awrt £1.					
	A1	awrt £0.91 m or number plants per £ y awrt 0.38 y and awrt 0.35 y					
	.1 A 1	Useful numbers ($n = 50$ gives profit 131.55, 142.7) or ($n = 40$ gives profits 105.24 and 114.16) gain M1A					
	dA1	dependent on 1 st A1 being awarded. For a correct statement.					

Question		Scheme	Marks				
6 (a)	$\overline{x} = \frac{8}{3}$	$\frac{06.4}{36} = 22.4$	B1				
	"22.4"	$\pm 2.3263 \times \frac{0.4}{\sqrt{36}}$	M1 B1				
		, 22.55) awrt (22.2, 22.6)	A1				
	NB answers which are awrt (22.2, 22.6) gain full marks						
	[T]	I I incid TThe control is not as a mind and the control of a mind and the control of the	(4)				
(b)	distrib	entral Limit Theorem is not required as] the original population is normally uted	B1				
	22.5:		(1)				
(c)		within the confidence interval	B1 ft				
	50 110 1	reason to doubt the manufacturers claim	$\begin{array}{ c c } dB1 ft \\ \hline (2) \end{array}$				
		$($ $($ z $)^2)$	(2)				
(d)	$\overline{Y} \sim N$	$\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$	B1				
	$P(\overline{Y} <$	$848) = P\left(Z < \frac{848 - 850}{\frac{5}{\sqrt{10}}}\right) = [P(Z < -1.26)]$	M1				
		= 0.1038 (Calculator gives 0.10295) awrt 0.103 / 0.104	A1 (3)				
ALT	N(8500	, 250)	B1				
	$P(\overline{Y} <$	$848) = P\left(Z < \frac{8480 - 8500}{\sqrt{250}}\right) = [P(Z < -1.26)]$	M1				
		=0.1038	A1				
		Notes	Total 10				
(a)	B1	For 22.4					
	M1	For use of $\overline{x} \pm z$ value $\times \frac{\sigma}{\sqrt{n}}$ with $1.2 < z < 2.6$					
	B1	For z value = 2.3263 or better seen (Calculator gives 2.3263479)					
	A1	awrt (22.2, 22.6) This does not imply the B1					
(b)	B1	For reference to the data is modelled by normal distribution					
(c)	B1 ft	ft, their CL For a comment on whether 22.5 (or it) is or is not in their CL allow en range for CL					
	dB1 ft	Dependent on B1 ft. For a correct comment ft their CI eg claim is correct oe					
(d)	for $\overline{Y} \sim N(850,)$ or $\overline{Y} < \frac{848 - 850}{5}$ Must have \overline{Y} or $N\left(850, \left(\frac{5}{\sqrt{10}}\right)^2\right)$ or $N(850, 2.5)$ seen or used or $N(8500, 250)$ seen or used. Both implied by a correct standardisation.						
1							
	M1	For \pm (a correct standardisation) implied by a correct answer					

Question	Scheme	Marks
7 (a)	Let P = time to serve a customer at a standard checkout	
	$Q = P_1 + P_2 + P_3$ $[Q \sim] N(720, 1200)$	B1
	$P(Q < 660) = P\left(Z < \pm \frac{660 - "720"}{"\sqrt{1200}"}\right) [= P(Z < -1.732)]$	M1
	= 0.0418 (Calculator gives 0.04163) <u>awrt 0.04</u>	1 / 0.042 A1
A T / F	6 4 74 74	(3)
ALT	for the B1 M1	
	B1 for $[Q \sim] N\left(12, \frac{1}{3}\right)$	
	M1 for $P(Q < 11) = P\left(Z < \pm \frac{11 - "12"}{\sqrt{"\frac{1}{3}"}}\right) = P(Z < -1.732)$	
(b)	Assume the time taken to serve customers is independent	B1
		(1)
(c)	R = time to serve a customer at an express checkout $S = (P_1 + P_2 + P_3) - (R_1 + + R_7)$ $[S \sim] N(20,1648)$	3.61 4.1
		M1 A1
	$P(S>0) = P\left(Z > \pm \frac{0-20}{\sqrt{1648}}\right) \left[=P(Z>-0.492)\right]$	M1
	= 0.6879 (Calculator gives 0.6888) <u>awrt 0.</u>	688 / 0.689 A1
ALT	For the M1A1M1	
	M1 for $N\left(\frac{1}{3},\right)$	
	A1 for $N\left(\frac{1}{3}, \frac{103}{225}\right)$	
	$0 - \frac{1}{2}$	
	M1 for $\pm \frac{0 - \frac{1}{3}}{\sqrt{103} / \pi}$	
	$\sqrt{\frac{103}{225}}$ "	
	NY /	(4)
	Notes	Total 8
(a)	B1 For N(720,1200) or N $\left(12,\frac{1}{3}\right)$ Maybe awarded if used in standardisate	tion
	M1 For standardising using 660, their mean ≠ 240 or 4 and their standard dev	3
	distribution given the mean and sd must be correct in the standardisation.	Allow ± stand
	A1 awrt 0.041 or awrt 0.042	
(b)	B1 A correct assumption. Must have context of customers or time and independent of the customers of the customers of time and independent of the customers of t	endence(allow random)
(c)	M1 For N(± 20 ,) or N $\left(\frac{1}{3}$,) maybe awarded in standardisation	
	A1 For N(±20, 1648) or N $\left(\frac{1}{3}, \frac{103}{225}\right)$ maybe awarded if used in standardisate	
	M1 For standardising using 0 and mean of ± 20 or $\pm 1/3$ and their standard d	leviation. The 0 may be
	implied by having just the mean on the numerator Allow ± stand A1 awrt 0.688 to 0.689	