Lista de Exercícios de Computabilidade (INF1015 e INF2218) 2016-2

Prof. Edward Hermann Haeusler

29 de Setembro de 2016

1 Questões gerais sobre funções recursivas e primitivas recursivas

1. Prove que as sequintes funções são primitivas recursivas:

(a)
$$f(x, y, k) = x^{x^{\cdot \cdot \cdot x}}$$
 $\left. \begin{cases} k - vezes \end{cases} \right.$

(b)
$$g(x) = \begin{cases} 0 & \text{se } x \text{ \'e primo} \\ 1 & x \text{ \'e composto} \end{cases}$$

- (c) max(x, y, z) = 0 maior de x, y e z.
- (d) raizquadint(x) = a raiz quadradra de x truncada.

Opcional caminho(x) = y, onde x em binário representa a matriz de adjacências de um grafo G_x e y é 1 ou 0 conforme exista um ciclo hamiltoniano no Grafo G_x .

- 2. Para os items 1a e 1d acima, mostre programas imperativos na linguagem LP também.
- 3. Mostre que se f e g são primitivas recursivas, então $f^g(x) = f(x)^g(x)$ também é primitiva recursiva.
- 4. Mostre que se f e g são primitivas recursivas e $h: N \times N \to N$ é primitiva recursiva então h(f,g) definida como h(f,g)(x) = h(f(x),g(x)) é primitiva recursiva também.
- 5. Mostre que é possível enumerar efetivamente todas as funções primitivas recursivas. Isto é, prove que existe um algoritmo que tendo por entrada um número natural n tenha por saída uma expressão sintática de uma função primitivamente recursiva. Toda função recursiva primitiva recursiva possui uma expressão sintática (código) que é gerado pelo algoritmo. Obviamente o algoritmo pode gerar duas expressões para a mesma função primitiva recursiva.
- 6. No ítem acima, o que ficaria fica diferente se em vez de funções primitivas recursivas o algoritmo tivesse que gerar funções parcialmente recursivas. Faça o mesmo com respeito a enumeração efetiva de máquinas de Turing.

- 7. É possível enumerar efetivamente as funções recursivas ?? Isto é, somente as funções parcialmente recursivas que são totais. Dica: Lembre-se da prova (via diagonalização) que mostra que existem funções computáveis que não são primitivas recursivas. (opcional)
- 8. É possível enumerar efetivamente as funções primitivas recursivas sem repeti-las ?? Isto é, para cada função primitiva recursiva o algoritmo gera uma e somente uma das expressões sintáticas que a represente.
- Responda a pergunta acima no caso das funções serem parcialmente recursivas. (opcional)
- 10. Suponha que M_1 e M_2 são, respectivamente, as implementações mais eficientes (em tempo) para as funções (totais) recursivas f_1 e f_2 . A máquina de Turing M_1 ; M_2 (sequenciamento de M_1 com M_2) é necessariamente a implementação mais eficiente para $f_2 \circ f_1$?? Exiba contra-exemplo ou prove a asserção.
- 11. Suponha uma máquina de Turing M que computa uma função total $f: N \to N$. Suponha que M é a implementação mais eficiente em tempo para f. Mostre que existe uma função recursiva total g cuja a implementação mais eficiente M_g (uma máquina de Turing) consome mais tempo que M para todas as entradas.
- 12. A mesma questão acima levando em conta a memória utilizada no processamento (quantidade de células distintas utilizadas durante a computação da MT).