Problema2 - Parte2

Arthur Sena 05/01/2015

```
library(ggplot2, quietly = T, warn.conflicts = F)
library(dplyr, quietly = T, warn.conflicts = F)
```

Descrição dos dados:

```
deputados <- read.csv("AnoAtual.csv")
```

Os dados usados nesse experimento foram obtidos do site da Câmara dos Deputados e seu conteúdo pode ser acessado clicando aqui. Tais dados são relativos aos gastos parlamentares registrados na Câmara dos Deputados. Abaixo, pode ser visto uma pequena amostra do seu conteúdo:

```
amostra <- select(deputados, txNomeParlamentar, ideCadastro, sgPartido, vlrLiquido)
head(amostra,n = 10)</pre>
```

##		txNomeParlamentar	ideCadastro	sgPartido	vlrLiquido
##	1	LUIS CARLOS HEINZE	73483	PP	3700.00
##	2	GERALDO THADEU	74151	PSD	3504.55
##	3	CARLOS EDUARDO CADOCA	74474	PCdoB	1450.90
##	4	JOÃO DERLY	178965	PCdoB	988.10
##	5	MILTON MONTI	74787	PR	952.50
##	6	LAERCIO OLIVEIRA	151208	SD	853.60
##	7	NILMÁRIO MIRANDA	74751	PT	694.80
##	8	JOÃO FERNANDO COUTINHO	178917	PSB	603.72
##	9	GORETE PEREIRA	129618	PR	599.00
##	10	JOSÉ AIRTON CIRILO	141464	PT	599.00

Todas as variáveis/colunas e suas, respectivas, descrições podem ser visualizadas no link.

Analisando os dados

Com esses dados em mãos, nós podemos fazer algumas análises interessantes sobre eles. Por exemplo, vamos calcular a média da variável "vlrLiquido" para aquelas despesas relativa à serviços portais.

```
servicosPostais_gastos <- deputados %>% select(txNomeParlamentar,vlrLiquido,txtDescricao,sgUF,sgPartimean(servicosPostais_gastos$vlrLiquido)
```

```
## [1] 118.2888
```

A fim de fazer uma análise mais detalhada, abaixo se encontra a função de distribuição de probabilidade, no qual representas chances de um determinado valor ser assumido pela variavel.

```
ggplot( servicosPostais_gastos, aes(vlrLiquido)) +
geom_density() +
theme_bw()
```



```
ggplot( servicosPostais_gastos, aes(vlrLiquido)) +
geom_density() +coord_cartesian(xlim=c(0, 500))+
theme_bw()
```


Visualizando distribuição de probabilidade do gráfico acima, podemos observar que a variável apresenta uma maior chance de obter valores abaixo de R\$500,00 reais. A partir dos gráficos acima observados, podemos demontrar alguns conceitos interessantes de estatistica, como por exemplo: O teorema do limite central. Tal teorema afirma que "Qualquer que seja a distribuição da variável de interesse para grande amostras, a distribuição das médias amostrais serão aproximadamente normalmente distribuídas". A fim de um melhor entendimento sobre o teorema, podemos demontrá-lo utilizando os gastos de Serviços Postais dos deputados.

Primeiramente, vamos reunir 10 amostras de tamanho 100 da nossa população e calcular, para cada amostra, sua média. Feito isso, vamos visualizar a distribuição de probabilidade para as médias das nossas amostras.

```
dist_original <- servicosPostais_gastos$vlrLiquido
amostra_tamanho <- 100
num_amostras <- 10

amostras_media <- c()
for(i in seq(1, num_amostras)){
   uma_amostra <- sample(dist_original, amostra_tamanho)
   amostras_media[i] <- mean(uma_amostra)
}

ggplot(data.frame(amostras_media), aes(amostras_media)) + geom_histogram(binwidth = 10)</pre>
```


Aparentemente, a distribuição acima, não se apresenta muito similar a uma distribuição normal. Contudo, se continuarmos a aumentar o números de amostras coletadas o Teorema Central do Limite poderá ser constatado.

```
dist_original <- servicosPostais_gastos$vlrLiquido
amostra_tamanho <- 100
num_amostras <- 100

amostras_media <- c()
for(i in seq(1, num_amostras)){
   uma_amostra <- sample(dist_original, amostra_tamanho)
   amostras_media[i] <- mean(uma_amostra)
}

ggplot(data.frame(amostras_media), aes(amostras_media)) + geom_histogram(binwidth = 10)</pre>
```



```
dist_original <- servicosPostais_gastos$vlrLiquido
amostra_tamanho <- 100
num_amostras <- 1000

amostras_media <- c()
for(i in seq(1, num_amostras)){
   uma_amostra <- sample(dist_original, amostra_tamanho)
   amostras_media[i] <- mean(uma_amostra)
}

ggplot(data.frame(amostras_media), aes(amostras_media)) + geom_histogram(binwidth = 10)</pre>
```



```
dist_original <- servicosPostais_gastos$vlrLiquido
amostra_tamanho <- 100
num_amostras <- 10000

amostras_media <- c()
for(i in seq(1, num_amostras)){
   uma_amostra <- sample(dist_original, amostra_tamanho)
   amostras_media[i] <- mean(uma_amostra)
}

ggplot(data.frame(amostras_media), aes(amostras_media)) + geom_histogram(binwidth = 10)</pre>
```


Podemos observar que à medida que aumentamos o número de amostras a forma da nossa distribuição se aproxima cada vez mais da forma de uma distribuição normal.