INDIAN STATISTICAL INSTITUTE

Mathematics I: BSDS First Year Semester I, Academic Year 2024-25 Practice Final Exam

Full Marks: 50 Duration: 3 Hours

- This is just for your practice no need to submit the solutions. However, writing down the detailed solutions in a time-bound manner will help you in the actual exam.
- In the actual exam, please show all your work and write explanations when needed. If you are using a result stated and/or proved in class, please quote it correctly.
- The actual exam is a closed-book exam. You are NOT allowed to use class notes, books, homework solutions, list of theorems, formulas etc.
- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a twice continuously differentiable function such that f(0) = f'(0) = 0 and $|f''(x)| \le 1$ for all $x \in \mathbb{R}$.
 - (a) (6 marks) Prove that $|f(x)| \le 1/2$ for all $x \in [-1, 1]$.
 - (b) (1 + 3 = 4 marks) Show that f is Riemann integrable on [-1, 1] and

$$\left| \int_{-1}^{1} f(x) dx \right| \leq 1.$$

2. (a) For each $s \in (0, \infty)$, define a function $\phi_s : (0, \infty) \to (0, \infty)$ by

$$\phi_s(x) = x^{-s}, \quad x \in (0, \infty).$$

Show the following:

- (3 marks) ϕ_s is Riemann integrable on (0, 1] if s < 1.
- (3 marks) ϕ_s is Riemann integrable on $[1, \infty)$ if s > 1.
- (b) (4 marks) Show that the function $g:(0,\infty)\to(0,\infty)$ defined by

$$g(x) = \frac{1}{x^3 + \sqrt[3]{x}}, \quad x \in (0, \infty)$$

is Riemann intergrable on $(0, \infty)$.

Please Turn Over

3. Define a map $T: \mathbb{R}^4 \to \mathbb{R}^3$ by

$$T((x_1, x_2, x_3, x_4)^T) = (x_1 - 2x_2, x_2 + x_4, x_1 + 2x_4)^T$$

for all $(x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4$.

- (a) (4 marks) Show that T is a linear transformation.
- (b) (4 marks) Calculate the matrix A for the linear transformation T (with respect to the standard bases).
- (c) (2 marks) Compute the rank of A, where A is as in 3(b) above.
- 4. Suppose $V := \mathbb{R}^4$ and define

$$S_1 := \{ (v_1, v_2, v_3, v_4)^T \in \mathbb{R}^4 : v_1 - v_2 = v_3 - v_4 = 0 \},$$

$$S_2 := \{ (u_1, u_2, u_3, u_4)^T \in \mathbb{R}^4 : u_1 + u_2 = u_3 + u_4 = 0 \}.$$

- (a) (3+3=6 marks) Show that S_1 and S_2 are linear subspaces of V.
- (b) (5 marks) Find, with full justification, a basis for S_1 .
- (c) (1 mark) Compute the diemnsion of S_1 .
- (d) (5 marks) Show that the map ψ defined by

$$\psi((v_1, v_2, v_3, v_4)^T) = (v_1, -v_2, v_3, -v_4)^T$$

for all $(v_1, v_2, v_3, v_4)^T \in S_1$ is a vector space isomorphism from S_1 onto S_2 . Justify all the steps.

(e) (3 marks) Show that $S_1 + S_2 = V$.