Heat Transfer: Radiation

Radiation of real Objects

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning goals

Interaction between Radiation and Body:

Definition and interpretation of Emissivity, Absorptivity, Transmissivity and Reflectivity

Spectral Intensity Distribution of real bodies:

Behaviour of real bodies compared to ideal bodies

Angle dependent radiation properties:

Angular dependence of the radiation properties of real bodies

Wavelength dependence of radiation properties

Wavelength dependence of radiation properties

Wavelength dependence of radiation properties

Real Body

Distribution of the radiation:

$$\dot{q}_{\lambda,0}^{"} = \dot{q}_{\lambda,\rho}^{"} + \dot{q}_{\lambda,\alpha}^{"} + \dot{q}_{\lambda,\tau}^{"}$$

$$1 = \frac{\dot{q}_{\lambda,\rho}^{"}}{\dot{q}_{\lambda,0}^{"}} + \frac{\dot{q}_{\lambda,\alpha}^{"}}{\dot{q}_{\lambda,0}^{"}} + \frac{\dot{q}_{\lambda,\tau}^{"}}{\dot{q}_{\lambda,0}^{"}}$$

$$1 = \rho(\lambda) + \alpha(\lambda) + \tau(\lambda)$$

Body properties:

- Reflectivity
- Absorptivity
- Transmissivity

- $\rho(\lambda)$
- $\alpha(y)$

Wavelength dependent properties (e.g. glass window)

Wavelength dependent properties (e.g. glass window)

Distribution of the radiation:

 $1 = \rho + \alpha + \tau$

In the interaction of radiation from a source with an object:

Properties of source and object influence the result.

Spectral properties of object 2

Spectral Emission of Real Objects/Bodies

Heat radiation:

Every body with T > 0 K emits heat radiation

The **emissivity** ε of a body indicates how much radiation it emits in comparison with a **black body**.

Spectral Emission of Real Bodies

Physik: Einführung in die Wärmelehre, Matthias Kohl

Spectral Emission of Real Bodies

What does the video show:

- Radiation emission = f(surface properties and temperature)
- IR Camera detects radiation intensity, no temperatures
- Correlation of picture content and temperature → software
- ► Thermographic images with different objects → temperature correlation usually not correct

Black, Grey and real Bodies

Special Cases

Properties:

No Transmission

•
$$\tau(\lambda) = 0$$

Properties:

Absorption of all incoming Radiation

•
$$\rho(\lambda) = \rho = 0$$

•
$$\alpha(\lambda) = \alpha = 1$$

•
$$\tau(\lambda) = \tau = 0$$

What does the video show:

Wavelength-independent Properties

•
$$\rho(\lambda) = \rho$$

•
$$\alpha(\lambda) = \alpha$$

•
$$\tau(\lambda) = \tau$$

Angle dependent radiation properties: non-conductive materials

Non-conductive at room temperature:

(a) wet ice, (b) wood, (c) glass, (d) paper, (e) chalk, (f) copper oxide, (g) aluminium oxide

Angle dependent radiation properties: non-conductive materials

Angle dependent Radiation Properties: Example

Comprehension questions

In which proportions is divided the radiation that hits a body (real bodies)?

What is the difference between black, grey and real bodies (related to wavelength)?

Safety Advice

Advice:

- Our clothing shows "black body behavior" in the dark
- Unfortunately, our eyes adapt and suggest us, that we can actually still see well → this is a mistake

Wear something reflective that will greatly increase your visibility!

Deutscher Verkehrssicherheitsrat (DVR):

Image Caption:

DVR gives tips for more safety in autumn and winter / Good visibility is essential in the dark season. The German Road Safety Council - Deutsche Verkehrssicherheitsrat (DVR) - points this out. Further text about ots and www.presseportal.de/nr/17147 / The use of this picture is free of charge for editorial purposes. Please publish it with reference: "obs/Deutscher Verkehrssicherheitsrat e.V."

Picture rights: Deutscher Verkehrssicherheitsrat e.V. **Photographer:** Deutscher Verkehrssicherheitsrat

