Test Study Guide

Arthur J. Redfern axr180074@utdallas.edu Sep 26, 2018

Example Network

Introduction

- 4 steps in an information extraction framework (data to information)
 - Pre processing
 - Feature extraction
 - Prediction
 - Post processing
- Pre and post processing
 - Tend to be application dependent
- Feature extraction and prediction
 - Can use CNNs for feature extraction and prediction for many applications
 - Use machine learning to learn CNN parameters from data

Linear Algebra

CNN style 2D convolution

- With an input size of N_i x L_r x L_c
- With an input 0 pad of $(F_r 1)$ rows and $(F_c 1)$ cols
- With a filter size of N₀ x N₁ x F_r x F_c
- What is the output size (note zero padding of F 1)?
- What is the equivalent matrix problem size?
- How many MACs not taking advantage of 0s in pad?

$N_o \times L_r \times L_c$

$$\begin{aligned} \mathbf{M}_{\mathsf{BLAS}} &= \mathbf{N}_{\mathsf{o}}, \ \mathbf{N}_{\mathsf{BLAS}} &= \mathsf{L}_{\mathsf{r}} \ \mathsf{L}_{\mathsf{c}}, \ \mathsf{K}_{\mathsf{BLAS}} &= \mathsf{N}_{\mathsf{i}} \ \mathsf{F}_{\mathsf{r}} \ \mathsf{F}_{\mathsf{c}} \\ (\mathsf{M}_{\mathsf{BLAS}} \ \mathsf{x} \ \mathsf{N}_{\mathsf{BLAS}}) &= (\mathsf{M}_{\mathsf{BLAS}} \ \mathsf{x} \ \mathsf{K}_{\mathsf{BLAS}}) \ ^* \ (\mathsf{K}_{\mathsf{BLAS}} \ \mathsf{x} \ \mathsf{N}_{\mathsf{BLAS}}) \end{aligned}$$

$$N_o N_i F_r F_c L_r L_c$$

Matrix vector multiplication

- With an input size of N_i x 1
- With a filter size of N_o x N_i
- What is the output size?
- Can you use an inner product to write output m?
- How many weights?

$$N_o$$
 x 1
 $<$ H(m, :)^T, x>, strength $||$ H(m, :) $||_2$, alignment θ N_o N_i

Calculus

Gradient

- Start with a scalar function of multiple variables $y = f(x_0, x_1, ..., x_{K-1})$
- Gradient is the partial derivative with respect to each variable
- Points in direction of maximum change of function
- $\nabla f(\mathbf{x}) = [(\partial f/\partial x_0) (\partial f/\partial x_1) \dots (\partial f/\partial x_{K-1})]^T$
- Compute the gradient of the error with respect to the final output

• Error gradient propagation

•	How do we propagate?	Reverse mode automatic differentiation / chain rule from calculus
•	What does it do?	Constructs a graph that propagates the error gradient from the end to the beginning
•	How does it work?	$\partial e/\partial \mathbf{x}_{d} = (\partial \mathbf{x}_{d+1}/\partial \mathbf{x}_{d}) (\partial e/\partial \mathbf{x}_{d+1}) = (\partial \mathbf{f}_{d}/\partial \mathbf{x}_{d}) (\partial e/\partial \mathbf{x}_{d+1})$

Parameter update

 How do we update? 	Gradient descent (later, many variants)
What does it do?	Update the parameters in a small step in the opposite direction of the error gradient
How does it work?	$\partial e/\partial \mathbf{h}_{d} = (\partial \mathbf{x}_{d+1}/\partial \mathbf{h}_{d}) (\partial e/\partial \mathbf{x}_{d+1}), \mathbf{h}_{d} \leftarrow \mathbf{h}_{d} - \alpha \partial e/\partial \mathbf{h}_{d}$

Probability

Input normalization

- Assume the input \mathbf{x} has mean μ and std dev σ
- How can you normalize x to 0 mean unit variance?

$$\mathbf{x} \leftarrow (\mathbf{x} - \mathbf{\mu}) / \sigma$$

Soft max cross entropy error

- · What does soft max do?
- What does cross entropy do for a 1 hot input?
- What is the soft max cross entropy error gradient?
- Converts network output to a ~ PMF $\mathbf{p} = f(\mathbf{x}) = (1/(\Sigma_k e^{x(k)})) [e^{x(0)} e^{x(1)} \dots e^{x(K-1)}]^T$ Divergence between network PMF and true PMF \mathbf{p}^* $e = f(\mathbf{p}^*, \mathbf{p}) = -\Sigma_k p^*(k) \log(p(k))$
- $\mathbf{p} \mathbf{p}^*$ where \mathbf{p} is the network PMF and \mathbf{p}^* is the true PMF

Feature map compression

- Assume feature map elements are independent
- And all have the same PMF and 8 bit quantization
- $p_X(0) = 0.5$, $p_X(!=0) = 0.5 / 255$
- What is the entropy bound for compression?

H(X) =
$$-(0.5 \log_2(0.5)) - ((255) (0.5/255) \log_2(0.5/255))$$

~ 5 bits per element

Algorithms

Pooling

• What does it do? Reduces the spatial resolution of the feature maps

• What else? Increases the receptive field size

- Sequential comparison sort
 - For unknown input require O(N log2(N)) comparisons
 - Can you outline a short proof of this bound?
 - · Proof outline
 - There are N! possible arrangements of a sequence of length N
 - View the arrangements as a random variable X(s)
 - The probability of each arrangement is 1/N!
 - Uniform probability mass function with support of size N!
 - The entropy (information) of a realization of this random variable
 - $H(X(s)) = -\Sigma (1/N!) \log_2(1/N!) = \log_2(N!)$
 - Each comparison in a comparison sort gives at most 1 bit of information
 - To reduce the entropy to 0 with C comparisons need $log_2(N!) C \le 0$
 - $C \ge \log_2(N!) \approx O(N \log_2(N))$ via Stirling's approximation

Design

Tail

• What is a common tail design?

64 x 3 x 7 x 7 / 2 conv, 3 x 3 / 2 max pool

Body

- How is CNN convolution commonly split?
- Why?
- How does a residual building block work?
- Why?

Standard convolution (spatial), 1x1 CNN convolution (channel)

Save computation and memory, still get spatial and channel mixing

 $\mathbf{x}_{d+1} = \mathbf{f}_{d}(\mathbf{x}_{d}) = \mathbf{x}_{d} + \mathbf{h}_{d}(\mathbf{x}_{d})$

Error gradient propagates as identity + perturbation, allows deeper nets

Head

- What is a common head design?
- · What is assumed in this?

Global avg pool, matrix vector mult, bias add, soft max or arg max Output classes are linearly (affine) separable from final features

Receptive field size

- What is the receptive field size at x₅?
- How was that calculated?

((1+2)*2+2+2)*2+2+2=24 pixels in the original input Start at end with 1, filter adds F -1 and down sampling multiplies