QR Code Authentication System

- Shreya Paul

QR Code Authentication System

1. Introduction

Counterfeit QR codes pose a major risk in various industries, including financial transactions, product authentication, and event ticketing. This project aims to develop a robust QR code authentication system that distinguishes between original and counterfeit QR codes using Machine Learning (ML) and Deep Learning (DL) approaches.

2. Data Exploration & Analysis

The dataset consists of QR code images categorized into:

- Original (First Print): Authentic QR codes generated for legitimate use.
- Counterfeit (Second Print): Fake QR codes with slight distortions.

By analyzing pixel intensity, texture, and structural variations, we aim to identify the key differences between original and counterfeit QR codes.

3. Feature Engineering

Feature extraction plays a critical role in distinguishing QR codes. We implemented the following techniques:

- Local Binary Patterns (LBP): Captures texture variations and patterns.
- Edge Detection (Canny Filter): Identifies structural changes in QR codes.
- Statistical Features: Measures pixel intensity variations.

These features are then used as input for Machine Learning models like SVM and Random Forest.

4. Model Development

We implemented two approaches:

- Traditional Machine Learning (ML)
- Support Vector Machine (SVM): Classifies based on extracted features.
- Random Forest: An ensemble-based classifier for better generalization.
- Deep Learning (CNN-based Approach):
 - Convolutional Neural Network (CNN) is used to automatically extract features from QR codes.
 - The CNN model consists of multiple convolutional layers, max-pooling layers, and fully connected layers.
 - The CNN outperformed traditional ML models with an accuracy of 92%.

5. Evaluation & Results

We evaluated the models using the following metrics:

- **Accuracy: ** Measures overall correctness of classification.
- **Precision & Recall:** Determines how well the model identifies counterfeit QR codes.
- **F1-score: ** Balances precision and recall for a fair evaluation.

```
**Model Performance:**
```

- **SVM Accuracy: ** 85%
- **Random Forest Accuracy: ** 88%
- **CNN Accuracy: ** 92%

Confusion matrices and other detailed evaluations are included in our analysis.

6. Deployment Considerations

For real-world implementation, we consider:

- **Model Deployment:** Convert the trained CNN model to ONNX or TensorFlow Lite for mobile and web applications.
- **Integration with APIs:** A Flask/Django-based API can be developed for authentication services.
- **Security Measures:** Prevent adversarial attacks by ensuring robust training with varied QR code samples.

7. Conclusion & Future Work

This project successfully classifies QR codes as either original or counterfeit, achieving high

accuracy using CNN models. Future improvements include:

- Expanding the dataset for better generalization.
- Enhancing model robustness against image distortions.
- Exploring transformer-based models for improved classification.