ALGORITHMIQUE REPARTIE LES COMMUNICATIONS

Chargée de cours: Lélia Blin Transparents: http://www-npa.lip6.fr/~blin/Enseignements.html Email: lelia.blin@lip6.fr

Lélia Blin

DIFFUSION

- Nous allons nous intéresser dans ce cours
 - Aux protocoles de communications
 - En particulier la diffusion
 - Un site donné envoie un message
 - vers tous les autres sites

DIFFUSION

- La diffusion est très largement utilisée
 - mise à jour de caches
 - envoie de résultat partiel
 - envoie d'information

PROTOCOLE DE DIFFUSION

- Sert à fournir à une application un service fiable
- Il doit gérer
 - les réceptions
 - et envois de messages avec le réseau
- Il sert de filtre entre le réseau et l'application

DIFFUSION

L'application veut les messages avec certaines garanties

Délivrer

Le protocole est chargé de délivrer les messages à l'application avec ces garanties

Recevoir

Réseau

PROTOCOLE DE DIFFUSION

- Lorsque le protocole
 - est sûr qu'un message donné est «bon»
 - il utilise la primitive Délivrer
 - pour faire passer l'information à l'application
 - Il peut y avoir un décalage entre
 - le moment où le site reçoit un message
 - et où l'application prend en compte le message

Diffusion asynchrone en cas de pannes de sites

PROTOCOLE DE DIFFUSION

- A partir d'un site p donné
- Dans un réseau physique complet
- Dans lequel les sites peuvent tomber en panne
- Soit V l'ensemble de tous les sites
- et $S_0 = \{q_1, q_2, ..., q_t\}$ un sous-ensembles de sites $(S_0 \subset V)$
- Ce sous-ensemble de sites est nommé sites relais

LA PROCÉDURE POUR P∉S₀

```
Procédure diffuser (M)  \hbox{Envoyer (<M>) à $q_1,q_2,\ldots,q_t$ dans cet ordre}    \hbox{Pour tout } (q{\in}V{-}S_0{-}\{p\}) \hbox{ faire}    \hbox{Envoyer (<M>) à $q$ }
```


LA PROCÉDURE POUR TOUT SITE Q

```
Lors de la réception de <M>
   si (q \in S_0) alors /* Supposons que q = q_{\nu} * /
      si(k < t) alors
        Envoyer (<M>) à q_{k+1}, \ldots, q_{t} dans cet ordre
     Pour tout (r \in V - S_0 - \{p\}) faire
       Envoyer (<M>) à r
     Accepter(M);
   Sinon Accepter (M);
```

Lélia Blin

EXEMPLE

Lélia Blin

REDONDANCE

- On voit dans cet exemple qu'un site va recevoir plusieurs fois le message
 - $|S_0|+|\{p\}|$ fois si il n'y a pas de panne
- Pour simplifier on supposera ici que
 - la fonction Accepter ne délivre à l'application qu'un seul exemplaire de chaque message diffusé par p

Lélia Blin

PANNE(S)

- On appelle ici panne d'un site
 - l'arrêt soudain de se site
 - lorsque un site est en panne il ne fait plus rien
 - cet arrêt est définitif

GARANTIE

- Comment se déroule l'algo lorsqu'il y a une panne?
- Lorsqu'il y a s pannes?
- Que peut-on garantir?

POUR UNE SEULE PANNE

- Si p qui tombe en panne
 - si il a eu le temps d'envoyer au moins un message
 - alors tous les autres sites le recevront
 - sinon personne ne le reçoit
- C'est le principe du tout ou rien
- Si $q \in S_0$ tombe en panne tous les sites vont recevoir le message

POUR PLUSIEURS PANNES

Lemme: Le protocole de diffusion proposé ne peut vérifier le principe du tout ou rien avec la présence de plus de t pannes

- Preuve: Examinons la situation suivante
 - p envoie son message à q_1 et tombe en panne

- **9...**

- D'après l'algo r accepte le message et ne fait plus rien
- Ainsi avec t+1 pannes il y a un site valide qui accepté le message mais pas les autres
- Le principe du tout ou rien n'est pas respecté Lélia Blin

COMPLEXITÉ EN NOMBRE DE MESSAGES

- Complexité lorsqu'il n'y a pas de panne
 - le site ρ envoie n-l
 - chaque site q_i envoie
 - t-i+n-(t+1)=n-i-1 messages
 - Les sites de V-S₀-{p} n'envoient pas de messages
 - Il y a donc
 - $n-1+\sum_{(i=1 \ \dot{a} \ t)} n-i-1$
 - = n-1+t(n-1)-(t(t+1)/2)
 - = (t+1)(n-1-t/2) messages

Diffusion respectant l'ordre FIFO des messages

Lélia Blin

ORDRE FIFO DES MESSAGES

- Réseau asynchrone à n sites
- On supposera que les communications
 - entre deux sites
 - ne respectent pas l'ordre FIFO
 - que le temps d'acheminement est fini mais quelconque
 - On considère la diffusion par un site p
 - On veut créer un protocole de diffusion respectant l'ordre FIFO

Lélia Blin

ORDRE FIFO DES MESSAGES

- p va numéroter chaque message créé
- p va diffuser ce message avec ce numéro
 - numéro d'envoi ou numéro de séquence
- p a une variable locale num_envoip
 - c'est le numéro du dernier message diffusé par p

Lélia Blin Université d'Evry

ORDRE FIFO DES MESSAGES

- Tous les autres sites i
 - ont une variable d'attente
 - dont la valeur doit correspondre au numéro d'envoi
 - pour que le message soit délivrer

PSEUDO-CODE POUR P

```
Initialisation:
    num_envoip:=0

Procédure diffuser(M)

    num_envoip:= num_envoip+1

    pour tout (xp∈V-{p}) faire

Envoyer (<M, num envoip>) à xp
```


CODE DU SITE I

```
Initialisation:
     seq_i := 1
 Lors de la reception de \langle M, num\_envoi_M \rangle de p
     Stoker(M)
     Attendre(num envoi_{M} = seq_{i})
     Délivrer (M)
     seq_i = seq_i + 1
     Détruire(M)
```


INCONVÉNIENTS DU PROTOCOLE

- Un site i
 - peut avoir à stocker beaucoup de messages
 - avant de pouvoir les délivrer
 - utilisation de beaucoup d'espace mémoire
 - Ex: si les messages arrivent dans l'ordre inverse d'envoi

INCONVÉNIENTS DU PROTOCOLE

- Si il y a perte d'un seul message
 - le protocole peut être bloqué
- Le numéro de séquence des messages
 - croît au delà de toute limite raisonnable
 - si p diffuse beaucoup de message
- problème de la taille des messages

SOLUTIONS

- On peut mettre en place
 - un système d'accusé de réception
 - ou d'acquittement dans une fenêtre t fixée

SOLUTIONS

- Dans ce système le site p
 - fait au plus t diffusion de suite
 - avant de recevoir des acquittements
 - chaque fois qu'un site i
 - a pu délivrer un message
 - il envoie un acquittement à p
 - omprenant le numéro de message acquitté
 - Lorsque p a reçu les acquittement de tous les sites
 - pour les derniers messages envoyés non encore acquittés
 - il peut continuer à diffuser

Diffusion respectant l'ordre causal

Lélia Blin

DIFFUSION RESPECTANT L'ORDRE CAUSAL

- Le système est composé de n sites
- Qui font des diffusions à n'importe quel moment
- On supposera le modèle
 - Sans panne
 - Avec un délais non bornés d'acheminement des messages
 - Des messages qui ne respecte pas forcément l'ordre FIFO

BUT

- Le but est de proposé
 - Un protocole qui permet à une application de
 - Recevoir les messages diffusés
 - Avec la garantie que les messages soient délivrées
 - Dans l'ordre induit par l'ordre causal.

PROTOCOLE

- On va construire ce protocole avec
 - Envoyer
 - Délivrer
 - Recevoir
- On va supposer qu'envoyer n-1 message
 - se fait en une seule opération atomique

PROTOCOLE

- Prenons m₁ et m₂ deux messages délivrés à P_i
- Si on a Envoyer(m₁) → Envoyer(m₂)
- Alors on veut qu'en P_i on ait
 - Délivrer(m₁) → Délivrer(m₂)

Lélia Blin

PRÉCÉDENCE IMMÉDIATE DE MESSAGES

- si m₁ et m₂ sont deux messages, on dira
 - m₁ précède immédiatement m₂
 - ou $m_1 \rightarrow m_2$
- si
 - Envoyer $(m_1) \rightarrow Envoyer(m_2)$
 - ∄ m₃ tel que
 - Envoyer $(m_1) \rightarrow Envoyer(m_3)$
 - et Envoyer $(m_3) \rightarrow Envoyer(m_2)$

PRÉCÉDENCE IMMÉDIATE DES MESSAGES

Fig. 3.3 - 5 diffusions.

GRAPHE DE PRÉCÉDENCE IMMÉDIATE

Fig. 3.4 – Graphe de précédence immédiate des messages de la figure 3.3.

PROTOCOLE

- On numérotera chaque site de 1 à n
- Chaque site P_i a
 - une variable locale:
 - num_envoi;
 - Un tableau à n cases
 - DEL_i[j]
 - DEL_i[j]=d
 - le dernier message diffusé à partir de P_i et délivré à P_i avait le numéro d

PROTOCOLE SUITE

- Chaque message M sera identifié par la paire
 - (id,num)
 - id est l'identifiant de l'envoyeur
 - num le numéro du message
- Chaque message transportera aussi
 - un ensemble CB_M (Barrière causale)
 - o composé des identificateurs des messages
 - qui précédent immédiatement M

PRISE EN COMPTE DES CONTRAINTES DE PRÉCÉDENCE

- Lorsqu'un site P_i reçoit un message M avec de telles données
- Sous quelles condition peut-il délivrer M
- En prenant en compte les contraintes de précédence immédiates?

38

PRISE EN COMPTE DES CONTRAINTES DE PRÉCÉDENCE

- La condition est:
 - \bullet $\forall (k,d) \in CB_M: d \leq DEL_i[k]$
- Cela exprime que
 - Toutes les prédécesseurs immédiats de M
 - ont déjà été délivrer

PSEUDO-CODE DU PROTOCOLE

Initialisation:

num envoi:=0

 $CB_i : = \emptyset$

Procedure diffuser(M):

num_envoi_i++

Pour tout $(x_i \in V)$ faire

Envoyer(<M, num_envoi, CB;) à x;</pre>

CB;:=(i, num envoi;)

```
Lors de la réception de (<M, num\_envoi_i, CB_M>) de P_j
Attendre(\forall (k,d) \in CB_M: d \leq DEL_i[k])
DEL_i[j] := num_M
CB_i := CB_i - CB_M \cup \{(j, num_M)\} *
Delivrer(M)
```

Rm: Le stockage et la destruction ne sont pas indiqué ici mais sont implicite * A faire de façon atomique

LEMME

Soit m_0 identifié par (k_0,d_0) et m_1 tels que $m_0 \rightarrow m_1$ alors $(k_0,d_0) \in CB_{m_1}$

Lélia Blin

PREUVE

- Soit P_i l'envoyeur de m₁.
- Comme m₀→m₁ deux cas doivent être considérés.
 - m₀ a été délivré à P_i
 - m₀ a été envoyé à P_i
- Dans les deux cas
 - P_i met à jour CB_i (voir algorithme) en prenant compte de m₀.
- **La délivrance d'un message m' entre m** $_0$ et l'envoie de m $_1$ soit ne change rien soit est impossible (car m $_0$ → m_1).

Lélia Blin

THÉORÈME

Les délivrances de messages respectent l'ordre causal

PREUVE

- Considérons deux messages m₀ et m_x tels que:
 - Envoyer $(m_0) \rightarrow$ Envoyer (m_x)
 - et m₀ et m₁ sont délivrés à P_i
- Il faut montrer que m₀ est délivré avant m_x en P_i.

- On montre cela par récurrence
 - sur le longueur L du chemin entre m₀ et m_x
 - dans le graphe des précédence immédiate des messages.
- Cas de base:
 - si L=1, $m_0 \rightarrow m_x$
 - et d'après le résultat du lemme précédent, $m_0 \in CB_x$.
 - Or P_i va attendre d'avoir délivré m₀
 - avant de délivrer m_x
 - c'est l'attente de l'algorithme lors de la réception de m_x.

Lélia Blin

Hypothèse de récurrence:

- lorsque le chemin de causalité est de longueur strictement inférieure à L≥2,
- les contraintes de précédence sont respectées.

- Considérons maintenant
 - un chemin de longueur L de m₀ à m_x:
 - \bullet $m_0 \rightarrow m_1 \rightarrow \dots \rightarrow m_{L-1} \rightarrow m_x$
- Ainsi par hypothèse:
 - tous les messages m₀,m₁,...,m_{L-1} délivrés à P_i
 - le sont suivant l'ordre causal.

- Le message m_L est délivré à P_i.
- Comme $m_{L-1} \rightarrow m_{x}$
 - m_{L-1} est délivrer avant m_x (c'est le cas de base).
- De plus, comme par hypothèse de récurrence on a
 - \bullet $m_0 \rightarrow m_1 \rightarrow \rightarrow m_{L-1}$
- m₀ est délivré avant m_{l-1}.
- Ainsi m₀ est délivré avant m_x en P_i.

Université d'Evry

Lélia Blin