ANÁLISIS FUNCIONAL, GRADO EN MATEMÁTICAS

Cuarto curso, 26/01/2015

- 1. Teorema de Banach-Steinhaus (Principio de la acotación uniforme).
- 2. Sea X un espacio normado y M un subespacio propio de X. Pruébese que $int(M) = \emptyset$.
- 3. Considérese el espacio l_2 con la norma usual y sea $\{\lambda_n\}$ una sucesión de números reales dada.
 - (a) Demuéstrese que $\{\lambda_n x_n\} \in l_2$, $\forall \{x_n\} \in l_2$ si y solamente si la sucesión $\{\lambda_n\}$ es acotada.
 - (b) Si la sucesión $\{\lambda_n\}$ es acotada, demuéstrese que el operador lineal $L: l_2 \to l_2$, definido como $Lx = L\{x_n\} = \{\lambda_n x_n\}$ es continuo.
 - (c) Si la sucesión $\{\lambda_n\}$ es acotada, calcúlese la norma de L.
- 4. Sea H un espacio prehilbertiano y $x,y\in H$. Pruébese que x e y son ortogonales si y solamente si $\|x\|^2+\|y\|^2=\|x+y\|^2$.