1 Equivalence relations, examples of equivalences. Equivalence classes, properties of equivalence classes, set partitions, lemma about equivalence classes and partitions

Определение

Бинарное отношение $r \subseteq A^2$ называется **отношением эквивалентно- сти**, тогда и только тогда, когда оно рефлексивно, симметрично и транзитивно. Другими словами, выполняются следующие свойства:

- 1. рефлексивность $\forall a \in A \ (a, a) \in r$
- 2. симметричность $\forall a, b \in A \ (a, b) \in r \Rightarrow (b, a) \in r$
- 3. транзитивность $\forall a, b, c \in A \ (a, b) \in r, \ (b, c) \in r \Rightarrow (a, c) \in r$

Замечание

Для обозначения отношений эквивалентности используются символы вида \sim , \equiv . Если использовать символ \sim (или \equiv) для отношения эквивалентности r, то вместо $(a,b) \in \sim$ можно писать $a \sim b$ и называть \sim просто эквивалентностью.

Примеры отношений эквивалентности

Пример 1

Определим эквивалентность $\sim_{\mathbb{Q}}$ на множестве $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$:

$$(n_1, n_2) \sim_{\mathbb{Q}} (m_1, m_2) \Leftrightarrow n_1 \cdot m_2 = n_2 \cdot m_1$$

Понятно, что $(n_1,n_2)\sim_{\mathbb{Q}}(m_1,m_2)$ означает, что $\frac{n_1}{n_2}=\frac{m_1}{m_2}$ Пусть $n,k\in\mathbb{N}$ - натуральные числа. Введем следующие обозначения:

- $\lfloor n/k \rfloor$ целая часть от деления n на k, т.е. $\lfloor n/k \rfloor \cdot k \leq n < (\lfloor n/k \rfloor + 1) \cdot k$
- ullet $rest(n,k)
 ightleftharpoons n \lfloor n/k \rfloor \cdot k$ остаток от деления n на k

Пример 2

Мы можем определить отношение эквивалентности \equiv_k на множестве \mathbb{Z} :

$$n_1 \equiv_k n_2 \Leftrightarrow rest(n_1, k) = rest(n_2, k)$$

Определение

Пусть \sim - эквивалентность на множестве $A, a \in A$. Тогда множество

$$[a]_{\sim} \leftrightharpoons \{b|b \in A, a \sim b\}$$

называется **классом эквивалентности** элемента a относительно эквивалентности r.

Подмножество $X \subseteq A$ называется классом эквивалентности относительно \sim , тогда и только тогда, когда $X = [a]_{\sim}$ для некоторого $a \in A$.

Лемма

Пусть \sim - эквивалентность. Тогда:

- 1. $a \in [a]_{\sim}$
- 2. если $[a_1]_{\sim} \cap [a_2]_{\sim} \neq \emptyset$, то $[a_1]_{\sim} = [a_2]_{\sim}$
- 3. $A = \bigcup \{ [a]_{\sim} | a \in A \}$

Доказательство

Первое следует из рефлексивности \sim . Докажем второе. Пусть $b \in [a_1]_{\sim} \cap [a_2]_{\sim}$. Тогда $b \in [a_1]_{\sim}$ и $b \in [a_2]_{\sim}$. По определению класса эквивалентности это означает, что $a_1 \sim b$ и $a_2 \sim b$. Поскольку \sim симметрично, $b \sim a_2$, и так как \sim транзитивно, $a_1 \sim a_2$.

Теперь покажем, что $[a_1]_{\sim} \subseteq [a_2]_{\sim}$. Пусть $b \in [a_1]_{\sim}$, тогда $b \sim a_1$, $a_1 \sim a_2$, поэтому $b \sim a_2$, следовательно, $b \in [a_2]_{\sim}$ по определению класса эквивалентности. Обратное включение получается таким же образом, заменим a_1 на a_2 , а a_2 на a_1 . Третье следует из первого.

Определение

Пусть A - множество. Тогда множество подмножеств $X \subseteq \mathcal{P}(A)$ называется **разбиением** множества A, тогда и только тогда, когда

- 1. $\emptyset \notin X$
- 2. для любых $a, b \in X$, если $a \cap b \neq \emptyset$, то a = b
- 3. $A = \bigcup X$

Следствие (из леммы)

Если \sim - эквивалентность на множестве A, то множество всех классов эквивалентности относительно \sim - это разбиение A.

Лемма

Пусть $X \subseteq \mathcal{P}(A)$ - разбиение множества A. Определим бинарное отношение \sim_X следующим образом:

$$a \sim_X b \Leftrightarrow \exists x \in X \ (a \in x)$$
 и $(b \in x)$

Тогда \sim_X - отношение эквивалентности и $X=\{[a]_{\sim_X}|a\in A\}.$

Доказательство

Симметричность \sim_X очевидно из определения. Рефлексивность: так как $A=\cup X$, любой элемент a попадает в какой-то элемент разбиения $a\in x\in X$. Тогда по определению $a\sim_X a$. Транзитивность: пусть $a\sim_X b$ и $b\sim_X c$. Это означает, что для некоторых элементов разбиения $x,y\in X$, $a,b\in x$ и $b,c\in y$. Тогда $b\in x\cap y$, поэтому $x\cap y\neq \emptyset$, следовательно, x=y. Отсюда следует, что $a,c\in x$, это значит, что $a\sim_X c$. Нам нужно показать, что $X=\{[a]_{\sim_X}|a\in A\}$. Докажем включение $X\subseteq \{[a]_{\sim_X}|a\in A\}$. Пусть $x\in X$. тогда $x\neq \emptyset$, следовательно, существует некоторый $a\in x$. Но тогда любой элемент $b\sim_X a$ будет лежать в x, так как, если $a\sim_X b$, то для некоторого $y\in X$ выполняется $a,b\in y$. Поскольку $a\in x$, $x\cap y\neq \emptyset$, поэтому x=y, тогда $b\in y$. Это означает, что $[a]_{\sim_X}\subseteq x$. Обратное, если некоторое $b\in x$, то по определению \sim_X , $b\sim_X a$, т.е. $b\in [a]_{\sim_X}$. Следовательно, $x=[a]_{\sim_X}$.

Обратное включение: если $[a]_{\sim_X}$ - некоторый класс эквивалентности, то так как $A=\cup X,\ a\in x$ для некоторого $x\in X.$ Дальше, рассуждая как в предыдущем случае, мы получим $[a]_{\sim_X}=x.$

2 Term rewriting in λ -calculus: call-by-value and call-by-name strategies

Две основные стратегии редукции:

• вызов по значению: в любом терме вида $((\lambda x.t)s)$ сначала s сводится к s', и только после этого к нему применяется β -редукция и результат сводится к t[x=s'].

Пример: $(\lambda pq.pqp)(\lambda ab.a)(\lambda ab.b)$

- 1. α эквивалентная формула: $(\lambda pq.pqp)(\lambda ab.a)(\lambda cd.d)$.
- 2. Редукция: используя редекс $(\lambda pq.pqp)(\lambda ab.a)$: $\lambda q(\lambda ab.a)q(\lambda ab.a)(\lambda cd.d)$.
- 3. Подстановка $\theta_1 = [q = (\lambda cd.d)]$: $(\lambda ab.a)(\lambda cd.d)(\lambda ab.a)$.
- 4. Подстановка $\theta_2 = [a = (\lambda cd.d)]: (\lambda b.(\lambda cd.d))(\lambda ab.a).$
- 5. Подстановка $\theta_3 = [b = (\lambda ab.b)]$: $(\lambda cd.d)(\lambda ab.a)$.
- вызов по имени: к любому терму вида $((\lambda x.t)s)$ сначала применяется β -редукция, а затем результат сводится к t[x=s].

Пример: $(\lambda pq.pqp)(\lambda ab.a)(\lambda ab.b)$

- 1. α эквивалентная формула: $(\lambda pq.pqp)(\lambda ab.a)(\lambda cd.d)$.
- 2. Подстановка $\theta_1 = [c = (\lambda ab.a)]$: $(\lambda pq.pqp)(\lambda d.d)$.
- 3. Подстановка $\theta_2 = [d = (\lambda pq.pqp)]: (\lambda pq.pqp).$

3 Quotient structure of structure M by congruence θ

Определение

Пусть $\mathcal{M} = (M, \sigma)$ - структура, \sim_{θ} - некоторая конгруэнция на \mathcal{M} . Можно определить **разбиение структуры** или **фактор структуру** $\mathcal{M}/\sim_{\theta}=(N, \sigma)$ по конгруэнции \sim_{θ} следующим образом:

- $N=M/\sim_{\theta}=\{[a]_{\sim_{\theta}}|a\in M\}$ разбиение множества M по эквивалентности \sim_{θ}
- $f^{\mathcal{M}/\sim_{\theta}}([a_1]_{\sim_{\theta}}, \dots, [a_n]_{\sim_{\theta}}) \rightleftharpoons [f^{\mathcal{M}}(a_1, \dots, a_n)]_{\sim_{\theta}}$
- $([a_1]_{\sim_{\theta}}, \dots, [a_n]_{\sim_{\theta}}) \in p^{\mathcal{M}/\sim_{\theta}} \Leftrightarrow \exists \bar{b} \in M^n$ $(b_1 \in [a_1]_{\sim_{\theta}} \wedge \dots \wedge b_n \in [a_n]_{\sim_{\theta}} \wedge \bar{b} \in p^{\mathcal{M}})$

Пример - кольцо вычетов по модулю n

Поскольку отношение \sim_n на кольце $\mathbb Z$ является конгруэнцией, структура $\mathbb Z_n \rightleftharpoons \mathbb Z/\sim_n$ определена и называется кольцом вычетов по модулю n. Носитель $\mathbb Z$ обозначается как Z_n .