S.C. Kou, S. Xie, J. Liu

Mingwei Tang

June 15, 2015

Overview

Background

two-state model

Simple two-state Model two-state model with Brownian motion

Continuous diffusive model

Experiment

Simulated data Real data

Discussion

Questions and answers

Molecule: DNA hairpin

- Single-stranded nucleic acid with two ends
- Two states: closed and open
- Transitions between two state

Figure: closed(left),open(right)

Molecule: DNA hairpin

- Single-stranded nucleic acid with two ends
- Two states: closed and open
- Transitions between two state

Figure: closed(left),open(right)

- Question: How often does the transition happen?
- The state can not be observed

Flurescence lifetime experiments

- The arrival time and delay time depends on the DNA state
 - Closed state: less arrivals and shorter delay time
- Goal:
 - 1. Model the state transition
 - Make inference on the parameters related to photon arrival rate and state transition rate

 The transition: continuous-time Markov chain Infinitesimal generator

$$\mathbf{Q} = \left(\begin{array}{cc} -k_{12} & k_{12} \\ k_{21} & -k_{21} \end{array} \right)$$

 The transition : continuous-time Markov chain Infinitesimal generator

$$\mathbf{Q} = \left(\begin{array}{cc} -k_{12} & k_{12} \\ k_{21} & -k_{21} \end{array} \right)$$

- At t=0, start from stationary distribution $\pi=(\pi_1,\pi_2)=(\frac{k_{21}}{k_{12}+k_{12}},\frac{k_{12}}{k_{12}+k_{12}})$
- Use $k = k_{12} + k_{21}$ and π_1 for the transition parameter

 The transition: continuous-time Markov chain Infinitesimal generator

$$\mathbf{Q} = \left(\begin{array}{cc} -k_{12} & k_{12} \\ k_{21} & -k_{21} \end{array} \right)$$

- At t = 0, start from stationary distribution $\pi=(\pi_1,\pi_2)=(\frac{k_{21}}{k_{12}+k_{12}},\frac{k_{12}}{k_{12}+k_{12}})$ • Use $k=k_{12}+k_{21}$ and π_1 for the transition parameter
- State variable $\gamma(t)$: $\gamma(t) = \begin{cases} a & \text{Open state at time } t \\ b & \text{Closed state at time } t \end{cases}$ where a > b > 0

Data Oberseved $(\mathbf{t}, \boldsymbol{\tau})$

- Photon arrival time t_i , $t_0 < t_1 < \cdots < t_n$
 - Counting process from non-homogeneous Poisson Process
 - Rate $\lambda(t) = A_0/\gamma(t)$
 - $A_0 > 0$: Photon arrival intensity
- Delay time τ_i associated with, $t_i \tau_0, \ldots, \tau_n$
 - $[\tau_i|\gamma(t_i)] \sim \mathsf{Exp}(\gamma(t_i))$

Figure: Generative View of the model

Likehood calculation

Y denote the number of arrivals at time t.

$$\Delta Y_t = Y(t+dt) - Y(t)$$

- Likelihood construction $L(\mathbf{t}, \boldsymbol{\tau}, \gamma | \theta)$
 - Assumption: $t_{i+1} t_i \perp \tau_i | \gamma(t_i)$
 - arrival time t_i $P(\Delta Y_{t_i} = 1 | \gamma_{t_i}) = \frac{A_0}{\gamma(t_i)} dt$
 - delay time τ_i $P(\tau_i | \Delta Y_{t_i} = 1, \gamma_{t_i}) = \gamma(t_i) \exp(-\gamma(t_i)\tau_i)$
 - no photon arrives in (t_i, t_{i+1}) :

$$P\left(Y_{t_{i+1}}^{-}-Y_{t_i}=0,\gamma(t_{i+1})|\gamma(t_i)\right)$$

No arrival probability

Theorem

Let Y_t denotes the total number of arrivals at interval [0, t). Then

$$P\left(Y_{t_{i+1}}^{-} - Y_{t_i} = 0, \gamma(t_{i+1})|\gamma(t_i)\right)$$
$$= \left[\exp(\mathbf{Q} - \mathbf{H})(t_{i+1} - t_i)\right]_{(\gamma(t_i), \gamma(t_{i+1}))}$$

where $\mathbf{H} = diag(A_0/a, A_0/b)$ rate for the arrival time

Intuition: Kolmogorov forward equation and ODE

Goal: Inference on parameters

- Parameters $\theta = (a, b, \pi_1, k, A_0)$
- Likelihood function

$$egin{aligned} \mathcal{L}(\mathbf{t}, oldsymbol{ au} | heta) &= \sum_{\gamma} \mathcal{L}(\mathbf{t}, oldsymbol{ au}, \gamma | heta) \ &= (\pi_1, \pi_2) \mathbf{D}_0 \mathbf{H} \left[\prod_{i=0}^{n-1} \exp\{(\mathbf{Q} - \mathbf{H})(t_{i+1} - t_i)\} \mathbf{D}_{i+1} \mathbf{H}
ight] \left(egin{array}{c} 1 \ 1 \end{array}
ight) \end{aligned}$$

where $\mathbf{D}_i = \text{diag}(a \exp(-a\tau_i), b \exp(-b\tau_i))$ density for the delay time

Posterior sampling by MCMC

- $\eta(\theta)$ be the prior distribution
- Posterior distribution

$$P(\theta|\mathbf{t}, \boldsymbol{\tau}) \propto \eta(\theta) L(\mathbf{t}, \boldsymbol{\tau}|\theta)$$

- Direct sampling is impossible
- The posterior can be sampled by Metropolis-Hasting algorithm

Simulations

- 5000 iterations, throw first 2500, draw a sample every 5 iterations
- the posterior sample covers the true parameter

A0

A question with A_0

Constant photon arrival intensity?

•0000

- The DNA molecule will move in the focal volume
- The arrival intensity varies with molecule location

• Use $A(t) = A_0 \alpha(t)$ $\alpha(t) \in (0,1]$

• $(B_x(t), B_y(t), B_z(t))$ position at time t.

$$\alpha(t) = \exp\left\{-\frac{B_x^2(t) + B_y^2(t)}{2w_{xy}^2} - \frac{B_z^2(t)}{2w_z^2}\right\}$$

- Motion of the Molecule: Brownian motion
 - Use a three independent Brownian motion $(B_x(t), B_y(t), B_z(t))$ to model the location
 - $dB_x(t) = \sigma dW_t$
- w_{xy} , w_z are known

• Arrival time t_i $P(\Delta Y_{t_i} = 1 | \gamma_{t_i}, \alpha_{t_i}) = A(t_i) / \gamma(t_i)$

00000

Figure: Generative view of the two-state Model with Brownian motion

Likelihood contruction

• Approximation: $\alpha(t) = \alpha(t_i)$ for $t \in (t_i, t_{i+1})$

00000

• Conditioning on $\alpha(t)$: substitute A_0 with $A(t_i) = A_0 \alpha(t_i)$

Likelihood contruction

- Approximation: $\alpha(t) = \alpha(t_i)$ for $t \in (t_i, t_{i+1})$
- Conditioning on $\alpha(t)$: substitute A_0 with $A(t_i) = A_0 \alpha(t_i)$

$$\begin{split} &L(\mathbf{t}, \boldsymbol{\tau} | \boldsymbol{\theta}, \boldsymbol{\alpha}(t)) \\ &= (\pi_1, \pi_2) \mathbf{D}_0 \mathbf{H}_0 \begin{bmatrix} \prod_{i=0}^{n-1} \exp\{(\mathbf{Q} - \mathbf{H}_i)(t_{i+1} - t_i)\} \mathbf{D}_{i+1} \mathbf{H}_{i+1} \end{bmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ &\text{where } H_i = \begin{pmatrix} A(t_i)/a & 0 \\ 0 & A(t_i)/b \end{pmatrix} \end{split}$$

Posterior distribution has the form

$$P(\theta|\mathbf{t}, \boldsymbol{\tau}) \propto \int \eta(\theta) L(\mathbf{t}, \tau|\theta, \alpha(t)) P(\alpha(t)) d(\alpha(t))$$

$$= \int \eta(\theta) L(\mathbf{t}, \tau|\theta, \alpha(t)) P(\mathbf{B}(t)) d(\mathbf{B}(t))$$

• Posterior distribution has the form

0000

$$P(\theta|\mathbf{t}, \boldsymbol{\tau}) \propto \int \eta(\theta) L(\mathbf{t}, \tau|\theta, \alpha(t)) P(\alpha(t)) d(\alpha(t))$$

$$= \int \eta(\theta) L(\mathbf{t}, \tau|\theta, \alpha(t)) P(\mathbf{B}(t)) d(\mathbf{B}(t))$$

- Method: Data augmentation
 - Draw θ conditioning on current diffusion (B_x, B_y, B_z)

$$\theta \sim [\theta | \mathbf{B}, \mathbf{t}, \boldsymbol{\tau}] \propto \eta(\theta) L(\mathbf{t}, \boldsymbol{\tau} | \theta, \alpha_t)$$

• Draw the diffusion (B_x, B_y, B_z) conditioning on the current value of θ ,

$$[B_x, B_y, B_z | \theta, \mathbf{t}, \tau] \sim L(\mathbf{t}, \tau | \theta, \alpha(t)) P(B_x) P(B_y) P(B_z)$$

Model2: Continuous diffusive model

State transition: non-homogeneous CTMC

• Intuition: Transition depends on energy barrier x_t

• The energy barrier changes with time

Model the change of Energy barrier

• x_t modeled by Ornstein-Uhlenbeck process $\lambda > 0, \xi > 0$

$$\mathrm{d}x_t = -\lambda x_t \mathrm{d}t + \sqrt{2\lambda \xi} \mathrm{d}W_t$$

Model the change of Energy barrier

• x_t modeled by Ornstein-Uhlenbeck process $\lambda > 0, \xi > 0$

$$\mathrm{d}x_t = -\lambda x_t \mathrm{d}t + \sqrt{2\lambda \xi} \mathrm{d}W_t$$

Continuous diffusive model:
 The transition rate is no longer constant

$$\mathbf{Q}(t) = \begin{pmatrix} -k_{12} \exp(-x(t)) & k_{12} \exp(-x(t)) \\ k_{21} \exp(-x(t)) & -k_{21} \exp(-x(t)) \end{pmatrix}$$

• At t = 0, the OU-process starts at stationary distribution

$$x_0 \sim N(0, \xi)$$

A generative view of the model

Continuous diffusion model

Figure: Generative View of the model

Likelihood construction: Approximation

$$\mathbf{Q}(t) = \mathbf{Q}(t_i), t \in (t_i, t_{i+1})$$

$$L(\mathbf{t}, \boldsymbol{\tau} | \boldsymbol{\theta}, \alpha(t), \mathbf{x_t})$$

$$\mathbf{P} = (\pi_1, \pi_2) \mathbf{D}_0 \mathbf{H}_0 \left[\prod_{i=0}^{n-1} \exp\{(\mathbf{Q}(t_i) - \mathbf{H}_i)(t_{i+1} - t_i)\} \mathbf{D}_{i+1} \mathbf{H}_{i+1} \right] \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$

Posterior for continuous diffusive model

• Likelihood construction: Approximation $\mathbf{Q}(t) = \mathbf{Q}(t_i), t \in (t_i, t_{i+1})$

$$L(\mathbf{t}, \boldsymbol{\tau} | \theta, \alpha(t), \mathbf{x_t})$$

$$= (\pi_1, \pi_2) \mathbf{D}_0 \mathbf{H}_0 \left[\prod_{i=0}^{n-1} \exp\{ (\mathbf{Q}(t_i) - \mathbf{H}_i)(t_{i+1} - t_i) \} \mathbf{D}_{i+1} \mathbf{H}_{i+1} \right] \left(\begin{array}{c} 1 \\ 1 \end{array} \right)$$

Posterior distribution

$$P(\theta, \lambda, \xi | \mathbf{t}, \tau) \propto$$

$$\int \int \eta'(\theta, \lambda, \xi) L(\mathbf{t}, \tau | \theta, \alpha_t, \mathbf{x_t}) P(\alpha_t) P(\mathbf{x_t} | \lambda, \xi) d(\alpha_t) d(\mathbf{x_t})$$

• Method: Data augmentation

Sampling Steps

1. Sample parameter θ

$$\theta \sim [\theta | \lambda, \xi, \mathbf{B}, x_t, \mathbf{t}, \boldsymbol{\tau}] \propto \eta'(\theta, \lambda, \xi) L(\mathbf{t}, \boldsymbol{\tau} | \theta, \alpha_t, x_t)$$

2. Sample diffusion parameter λ, ξ

$$(\lambda, \xi) \sim [\lambda, \xi | \boldsymbol{\theta}, \mathbf{B}, x_t, \mathbf{t}, \boldsymbol{\tau}] \propto \eta'(\boldsymbol{\theta}, \lambda, \xi) P(x_t | \lambda, \xi)$$

3. Sample the the Brownian motion path

$$B \sim [B|\theta, \lambda, \xi, x_t, t, \tau] \propto L(t, \tau|\theta, \alpha_t, x_t)P(B)$$

4. Sample the energy barrier path

$$x(t) \sim [x_t | \theta, \lambda, \xi, \mathbf{B}, \mathbf{t}, \boldsymbol{\tau}] \propto L(\mathbf{t}, \boldsymbol{\tau} | \theta, \alpha_t, x_t) P(x_t | \lambda, \xi)$$

Association with two states model

$$dx_t = -\lambda x_t dt + \sqrt{2\lambda \xi} dW_t$$

If $\xi \simeq 0$

- The stationary distribution $N(0,\xi)$ will degenerate to 0
- The SDE has solution $x_t = 0$

Association with two states model

$$dx_t = -\lambda x_t dt + \sqrt{2\lambda \xi} dW_t$$

If $\xi \simeq 0$

- The stationary distribution $N(0,\xi)$ will degenerate to 0
- The SDE has solution $x_t = 0$
- The infinitesimal Q(t)

$$\mathbf{Q}(t) = \left(\begin{array}{cc} -k_{12} & k_{12} \\ k_{21} & -k_{21} \end{array} \right)$$

Association with two states model

$$dx_t = -\lambda x_t dt + \sqrt{2\lambda \xi} dW_t$$

If $\xi \simeq 0$

- The stationary distribution $N(0,\xi)$ will degenerate to 0
- The SDE has solution $x_t = 0$
- The infinitesimal Q(t)

$$\mathbf{Q}(t) = \left(\begin{array}{cc} -k_{12} & k_{12} \\ k_{21} & -k_{21} \end{array} \right)$$

Exactly the two-state model!

Model Comparision

Model Comparision

1. By checking the value of $\boldsymbol{\xi}$

 \mathbf{H}_0 : $\xi = 0$ two-state model

 $\mathbf{H}_1: \xi > 0$ continuous diffusion model

Model Comparision

1. By checking the value of ξ

 $\mathbf{H}_0: \xi = 0$ two-state model

 $\mathbf{H}_1: \xi > 0$ continuous diffusion model

2. By comparing Bayes factor

$$\mathsf{BF} = \frac{P(\mathbf{t}, \tau | M_1)}{P(\mathbf{t}, \tau | M_2)}$$

where M_1 is the two state model, M_2 is the continuous diffusive model

Details on priors and other parameters

- 1. Prior issues
 - 1.1 Informative prior for $\theta = (a, b, \pi_1, k, A_0)$
 - $a \sim \Gamma(2,1)$
 - $b \sim \Gamma(1.5625, 1.5625)$
 - $\pi_1 \sim \mathsf{beta}(0.89, 0.89)$
 - $\pi_1 \sim \mathsf{Exp}(1/40000)$
 - $A_0 \sim \Gamma(1.96, 5.6 \times 10^{-5})$
 - 1.2 Less information for λ, ξ .
 - $\lambda \sim \Gamma(40, 0.5)$
 - ξ ~ Γ(2, 1)
- 2. Other parameters
 - Brownian motion parameters: $w_{xy} = 310, w_z = 1760$
 - BM constant σ^2 is not given, set as 1000

Experiment 1: Simulated datasets

- Simulate 50 sequences of $(\mathbf{t}, \boldsymbol{\tau})$ s
- Each sequence is simulated from two-state BM model with $t_{max} < 0.05$
- The number of observations in each datasets varies from $1000\sim5000$
- Run both two-state model and continuous diffusion model for 5000 iterations

two-state BM model

• Posterior samples for (a, b, π_1, k, A_0)

Continuous diffusive model

• Posterior samples for $(a, b, \pi_1, k, A_0, \xi)$

BF = 0.99, no significant difference between the two model

•0000

Experiment 2: Real data

- 50 real datasets from Xie's lab at Harvard University
- Each contains a sequence of 1815 pairs of (t_i, τ_i)
- Run both two-state model and continuous diffusion model for 5000 iterations

two-state BM model

• posterior samples (a, b, π_1, k, A_0)

00000

Continuous diffusive model

• Posterior samples for $(a, b, \pi_1, k, A_0, \xi)$

• Comparing posterior mean

para	prior	two state BM	Con-diff
а	Γ(1, 0.5)	1.367	1.405
b	$\Gamma(1.56, 1.56)$	0.289	0.289
π_1	Beta(0.89, 0.89)	0.604	0.605
k	Exp(1/4000)	26744	25830
A_0	$\Gamma(1.96, \frac{7}{12500})$	37421	37235

• BF = 0.023, evidence for continuous diffusive model

0000

Summary

- Fluorescence experiment
- Two models: (Likelihood function)
 - two-state model: CTMC transition
 Two state model with BM
 - Continuous diffusion model: OU-process for energy barrier
- Sampling from posterior distribution
 - Metropolis-hasting algorithm
 - Data Augmentation algorithm
- Model selection:
 - By ξ
 - Bayes factor
- Experiment : continuous diffusive model fits better on the real data

Discussion

1. Pros

- First Bayesian model to study s single-molecule experiment
- Can incorporate many conditions in the experiment (BM, OU for EB)
- Can be extended to model other counting process with latent structure
- The computation cost for each iteration is $\mathcal{O}(n)$

2. Cons

- Low efficiency in component-wise update in the Brownian motion path
- Sensitive to prior (λ, ξ)
- Some other models between two-states model and continuous diffusive model

Thank you!

Componentwise update

For
$$i = 0, 1, \dots, n$$

Componentwise update

For
$$i = 0, 1, ..., n$$

1. Propose a new location $B'_i = (B'_x, B'_y, B'_z)$ for the *i*th time point $B(t_i) = (B_x(t_i), B_y(t_i), B_z(t_i))$ Calculate α' at time t_i

Componentwise update

For i = 0, 1, ..., n

- 1. Propose a new location $B'_i = (B'_x, B'_y, B'_z)$ for the *i*th time point $B(t_i) = (B_x(t_i), B_y(t_i), B_z(t_i))$ Calculate α' at time t_i
- 2. Calculate M-H ratio

$$r = \frac{L(\mathbf{t}, \tau | \theta, \alpha_t') P(B_x') P(B_y') P(B_z') T(B' \to B(t_i))}{L(\mathbf{t}, \tau | \theta, \alpha_t) P(B_x) P(B_y) P(B_z) T(B \to B'(t_i))}$$

3. Sample $U \sim U(0,1)$. Update $B(t_i)$ to B' when U < r

The diffusion Path

- Identifiability issues
 - The path of $\alpha(t)$ can be is related conditional likelihood. We can find a path will high posterior probability, if $(B_x(t_0), B_y(t_0), B_z(t_0))$ is fixed.
 - Notice $\alpha(t) = \exp\left\{-\frac{B_x^2(t) + B_y^2(t)}{2w_{xy}^2} \frac{B_z^2(t)}{2w_z^2}\right\}$.
 - The underlying Brownian path is not identifiable. Multiple paths for the sample $lpha_t$

The diffusion path

Problems related to component-wise update

- Low acceptance rate
 - $r = \frac{L(\mathbf{t}, \tau | \theta, \alpha_t')}{L(\mathbf{t}, \tau | \theta, \alpha_t)} \cdot \frac{P(B_x')P(B_y')P(B_z')}{P(B_x)P(B_y)P(B_z)}$ if using symmetric proposed density function
 - $P(\mathbf{B}_{x}) = (2\pi)^{n/2} \exp \left[-\frac{1}{2\sigma^{2}} \sum_{i=0}^{n-1} \frac{[B_{x}(t_{i+1}) B_{x}(t_{i})]^{2}}{\Delta t_{i}} \right]$
 - $L(\mathbf{t}, \boldsymbol{\tau} | \theta, \alpha_t)$ not sensitive to α , $P(B_x)$, $P(B_y)$, $P(B_z)$ sensitive to the change of B_x , B_y , B_z
 - Easily stuck in a "smooth" Brownian motion path

two-stage update

1. stage one:

Propose a change $B_x' \sim N\left(B_x(t_{i-1}), \sigma^2(t_i - t_{i-1})\right)$ $u \sim U(0, 1)$. Accept the change is $u \leq \frac{L(\mathbf{t}, \tau | \theta, \alpha_t')}{L(\mathbf{t}, \tau | \theta, \alpha_t)}$

2. stage two: M-H method with component-wise update

Why bayesian method?

- Tradition methods:
 - Method of Moments
 - Maximum likelihood estimation directly
 - EM

Why bayesian method?

- Tradition methods:
 - Method of Moments
 - Maximum likelihood estimation directly
 - EM
- Why Bayesian?
 - Closed from likelihood function
 - The model can be written as a generative model
 - Informative prior

Computation cost

	simple twostate	twostateBM	cont-diff
#ofparas	5	5	7
#ofupdates/iter	5	3n+6	4n+11
cpu-cost(naive)	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^2)$
cpu-cost(opt)	$\mathcal{O}(n)$	$\mathcal{O}(n)$	$\mathcal{O}(n)$

Backward-forward algorithm

Likelihood function

$$(\pi_1, \pi_2) \left[\prod_{i=0}^{n-1} \mathbf{D}_i \mathbf{H}_i \exp\{(\mathbf{Q} - \mathbf{H}_i)(t_{i+1} - t_i)\} \right] \mathbf{D}_n \mathbf{H}_n \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

• Compute backwards a sequence of matrices K_i by recursion

$$\begin{cases} \mathbf{K}_{n+1} = \mathbf{I}, \\ \mathbf{K}_n = \mathbf{D}_n \mathbf{H}_n, \\ \mathbf{K}_i = \mathbf{D}_i \mathbf{H}_i \exp\{(\mathbf{Q} - \mathbf{H}_i) \Delta t_i\} \mathbf{K}_{i+1}, & i = n-1, \dots, 1, 0 \end{cases}$$

- Forward calculation
 - 1. Propose a change $\mathbf{B}' = (B'_x, B'_y, B'_z)$ for the *i*th time point $(B_x(t_i), B_y(t_i), B_z(t_i))$, calculate $\alpha'_{t_i}, \mathbf{H}'$ based on (B'_x, B'_y, B'_z) .
 - 2. Compute

$$\mathbf{R} = \begin{cases} \mathbf{D}_i \mathbf{H}_i \exp\{(\mathbf{Q} - \mathbf{H}_i)\Delta t_i\} & \text{if } i < n, \\ \mathbf{D}_n \mathbf{H}_n & \text{if } i = n, \end{cases}$$

$$S = \begin{cases} D_i H_i' \exp\{(Q - H_i')\Delta t_i\} & \text{if } i < n, \\ D_n H_n' & \text{if } i = n, \end{cases}$$

and

$$L(\mathbf{t}, au | heta, lpha_t') = \mathbf{v}_i \mathbf{SK}_{i+1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 and $L(\mathbf{t}, au | heta, lpha_t) = \mathbf{v}_i \mathbf{RK}_{i+1} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

$$r = \frac{L(\mathbf{t}, \tau | \theta, \alpha_t') P(\mathbf{B}_x') P(\mathbf{B}_y') P(\mathbf{B}_z') T(\mathbf{B}_i' \to \mathbf{B}(t_i))}{L(\mathbf{t}, \tau | \theta, \alpha_t) P(\mathbf{B}_x) P(\mathbf{B}_y) P(\mathbf{B}_z) T(\mathbf{B}_i \to \mathbf{B}'(t_i))},$$

where $T(\cdot \rightarrow \cdot)$ is the transition density of the proposal distribution.

 Generate u ∼ Uniform(0, 1). If $u < \min(1, r)$, then update $\mathbf{B}(t_i)$ to \mathbf{B}' and $\mathbf{v}_{i+1} = \mathbf{v}_i \mathbf{S}$. Otherwise, keep $\mathbf{B}(t_i)$ unchanged and $\mathbf{v}_{i+1} = \mathbf{v}_i \mathbf{R}$

Sensitivity issues

Likelihood function:

- Sensitive to a, b since τ mainly contains information for a, b
- Not sensitive to π , k, A_0
- Not sensitive to the $\alpha(t)$ path and OU path x_t

Why combining multiple datasets

- 1. Observed sequence (t_i, τ_i) not i.i.d
- 2. Brownian motion model, as $t \to \infty$, $\alpha(t) \to 0$ with high probability
- 3. Identifiability issues for the energy barrier path