Električni krugovi

Električne prijenosne linije - primjeri

1.Zadana je linija duljine l=50 km. Primarni parametri linije su R=5,4 Ω /km, L=2mH/km, G=1 μ S/km i C=6nF/km. Odrediti iznos napona i struje na 15 km od početka linije ako je linija zaključena impedancijom Z_2 = Z_0 , a napon na ulazu linije je u(0,t)= 10 cos(5 10³t).

- 2. Zadana je linija bez gubitaka s *L*=4 mH/km i *C*=8 nF/km.
 - a) Koliko najmanje mora biti duga ova linija da kod ω =10⁶ rad/s ulazna impedancija bude jednaka nuli, kad je suprotni kraj otvoren?
 - b) Koliki su u(0,t), u(l,t) i i(l,t) na toj liniji ako je $i(0,t) = 5 \cos(10^6 \text{ t})$?
 - c) Odrediti brzinu širenja signala po liniji,
 - d) Odrediti valnu duljinu signala.

- 3. Zadana je linija bez gubitaka s L=0,8 mH/km, C=80 nF/km i l= λ_0 /4 kod ω_0 . Na ulaz linije priključen je generator napona $u_g(t)$ s unutarnjim otporom R_g , a na kraju linije je otpor R_2 =1k Ω . Na frekvenciji ω_0 =10⁵ rad/s ulazna impedancija je prilagođena na Rg.
 - a) Koliki je Rg?
 - b) Koliko je duga linija?
 - c) Odrediti u(l,t) i i(l,t) na toj liniji ako je $u_g(t) = 4\cos(\omega_0 t)$.

4. Zadana je linija duljine l=100 km. Primarni parametri linije su R=1 Ω/km , L=3mH/km, $G=3\mu\text{S/km}$ i C=9nF/km. Odrediti izraz za napon na izlazu linije ako je linija zaključena svojom karakterističnom impedancijom Z_0 , a na ulazu linije je strujni izvor $i(t)=\delta(t)$.

5. Zadana je linija bez gubitaka s L=400 μ H/km i C=40 nF/km. Na ulaz linije priključen je naponski izvor $u(0,t) = 2 \sin(\omega_0 t)$, u seriju s otporom R=50 Ω , a na izlazu je karakteristična impedancija Z_0 . Duljina linije l jednaka je njenoj valnoj duljini na frekvenciji ω_0 =2 π 10⁵ rad/s. Odrediti: a) karakterističnu impedanciju Z_0 ; b) faktor prijenosa γ ; c) duljinu linije l u km i brzinu širenja vala po liniji v; d) ulaznu impedanciju Z_{ul} i ulazni napon linije u(0,t); e) napon i struju na polovini linije.

6. Na ulazu linije bez gubitaka s L=4mH/km, C=400nF/km, duljine | l=2.5 λ km djeluje stacionarni sinusni izvor napona uz f_0 =6.25kHz. Izlaz linije je u praznom hodu. Odrediti: a) valnu duljinu λ signala na liniji; b) duljinu l linije, c) karakterističnu impedanciju Z_0 , faktor prijenosa γ , te brzinu širenja vala po liniji v; d) ulaznu impedanciju Z_{uI1} ; e) napon i struju na sredini linije (x=l/2)?

