# Fundamentals of Econometrics Lecture 7: Heteroskedasticity



Homoscedasticity



#### Section 1

Heteroskedasticity

### Model Assumptions: Classical Linear Models

In order to have unbiased and consistent estimates, the classical linear model assumptions must hold:

- **1 Linearity**: The true model is linear in parameters.
- **2** Random Sampling: The data are a random sample from the population.
- No Perfect Collinearity: The regressors are not perfectly collinear.
- **4** Zero Conditional Mean: E(u|x) = 0.
- **1** Homoskedasticity:  $Var(u|x) = \sigma^2$ .
- **o** Normality:  $u|x \sim N(0, \sigma^2)$ .

#### Thought

How do we know if any assumption is violated? And, what to do if they are?

### Heteroskedasticity

- Heteroskedasticity is the violation of the homoskedasticity assumption.
- ullet It occurs when the variance of the error term varies for different values of  ${f x}$ .

#### Consequences

- OLS is still unbiased and consistent under heteroskedasticity.
- Interpretations of  $R^2$  and  $\bar{R}^2$  are not changed:  $R^2 = 1 \sigma_u^2/\sigma_y^2$  where  $\sigma_y^2$  is the **unconditional** error variance. Heteroskedasticity affects the **conditional** error variance.
- Main issue is inference:
  - Variance formulas for OLS estimator are no longer valid.
  - Usual F-tests are no longer valid.
  - OLS is no longer BLUE. There might be more efficient linear estimators.

#### Section 2

Heteroskedasticity Robust Inference

#### Robust Standard Errors

Consider the univariate model:

$$y_i = \beta_0 + \beta_1 x_i + u_i$$

If Assumptions 1-4 hold but 5 does not, then

$$Var(u_i|x_i) = \sigma_i^2$$

The OLS estimator is given by:

$$\hat{\beta}_1 = \beta_1 + \frac{\sum_{i=1}^n (x_i - \bar{x}) u_i}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

The variance of the OLS estimator is now given by:

$$Var(\hat{\beta}_1) = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \sigma_i^2}{SST_x^2}; \quad SST_x = \sum_{i=1}^n (x_i - \bar{x})^2.$$
 (1)

Under homosked asticity,  $\sigma_i^2 = \sigma^2$  for all i. In this case,  $Var(\hat{\beta}_1) = \frac{\sigma^2}{SST_x^2}$ .

#### Robust Standard Errors

- Since the standard error of  $\hat{\beta}_1$  is based on directly estimating  $var(\hat{\beta}_1)$ , we will need a way to estimate Equation (1) when  $\sigma_i^2$  under heteroskedasticity.
- White (1980) proposed a consistent estimator for the variance of the OLS estimator under any form of heteroskedasticity:

$$\widehat{Var}(\hat{\beta}_1) = \frac{\sum_{i=1}^n (x_i - \bar{x})^2 \hat{u}_i^2}{SST_x^2}$$

where  $\hat{u}_i$  is the OLS residual.

• Consistent means that as  $n \to \infty$ ,  $\widehat{Var}(\hat{\beta}_1) \to Var(\hat{\beta}_1)$ .

#### Robust Standard Errors

In a multiple regression model, the White estimator for the variance of the OLS estimator is given by:

$$\widehat{Var}(\hat{\beta}) = \frac{\sum_{i=1}^{n} \hat{r}_{ij}^2 \hat{u}_i^2}{SSR_i^2}$$
 (2)

where  $\hat{r}_{ij}$  is the *ith* residual from regressing  $x_j$  on all other independent variables, and  $SSR_j$  is the sum of squared residuals from this regression. Recall the concept of **partialling out** from earlier.

• The square root of Equation (2) is referred to as the heteroskedasticity-robust standard error for  $\hat{\beta}_j$ .

Usual covariance matrix:

$$\widehat{Var}(\hat{\beta}) = \hat{\sigma}^2 (X'X)^{-1}$$

Robust covariance matrix:

$$\widehat{Var}(\hat{\beta}) = (X'X)^{-1}X'\Omega X(X'X)^{-1}$$
 where  $\Omega = diag(\hat{u}_1^2, \dots, \hat{u}_n^2)$ .

Table 1:

|                         | $Dependent\ variable:$ |           |  |
|-------------------------|------------------------|-----------|--|
|                         | wage                   |           |  |
|                         | OLS                    | Robust SE |  |
|                         | (1)                    | (2)       |  |
| educ                    | 0.556***               | 0.556***  |  |
|                         | (0.050)                | (0.061)   |  |
| exper                   | 0.255***               | 0.255***  |  |
| •                       | (0.035)                | (0.033)   |  |
| expersq                 | -0.004***              | -0.004*** |  |
|                         | (0.001)                | (0.001)   |  |
| female                  | -2.110***              | -2.110*** |  |
|                         | (0.263)                | (0.250)   |  |
| Constant                | -2.320***              | -2.320*** |  |
|                         | (0.739)                | (0.818)   |  |
| Observations            | 526                    | 526       |  |
| R <sup>2</sup>          | 0.350                  | 0.350     |  |
| Adjusted R <sup>2</sup> | 0.345                  | 0.345     |  |

Note:

\*p<0.1: \*\*p<0.05: \*\*\*p<0.01

```
m1 <- lm(wage ~ educ + exper + expersq + female, data = wage1)
# Heteroskedasticity-robust standard errors
# require("sandwich"); require ("lmtest")
# coeftest(m1, vcov = vcovHC(m1, type = "HC1"))
cov1 <- vcovHC(m1, type = "HC0") # Robust covariance matrix</pre>
```

stargazer(m1, m1, se = list(NULL,robust.se), font.size = "scriptsize",

header = FALSE, column.labels = c("OLS", "Robust SE"))

robust.se <- sqrt(diag(cov1)) # Robust standard errors</pre>

keep.stat = c("n", "rsq", "adj.rsq"),

# require("ggfortify")
autoplot(m1, which = c(1:3,5), ncol = 2, label.size = 3)



Table 2:

|                         | Dependent Variable: saleprice/1000 |           |           |           |           |
|-------------------------|------------------------------------|-----------|-----------|-----------|-----------|
|                         | OLS                                | HC0       | HC1       | HC2       | HC3       |
|                         | (1)                                | (2)       | (3)       | (4)       | (5)       |
| gdistance               | -0.002***                          | -0.002*** | -0.002*** | -0.002*** | -0.002*** |
|                         | (0.0002)                           | (0.0002)  | (0.0002)  | (0.0002)  | (0.0002)  |
| wdistance               | 0.001***                           | 0.001***  | 0.001***  | 0.001***  | 0.001***  |
|                         | (0.0002)                           | (0.0001)  | (0.0001)  | (0.0001)  | (0.0001)  |
| cdistance               | 0.002***                           | 0.002**   | 0.002**   | 0.002**   | 0.002**   |
|                         | (0.001)                            | (0.001)   | (0.001)   | (0.001)   | (0.001)   |
| bathrooms               | 2.460                              | 2.460     | 2.460     | 2.460     | 2.460     |
|                         | (1.760)                            | (2.000)   | (2.000)   | (2.020)   | (2.040)   |
| bedrooms                | -5.860***                          | -5.860*** | -5.860*** | -5.860*** | -5.860*** |
|                         | (1.160)                            | (1.330)   | (1.340)   | (1.340)   | (1.350)   |
| sqftbuilding            | 0.073***                           | 0.073***  | 0.073***  | 0.073***  | 0.073***  |
|                         | (0.002)                            | (0.003)   | (0.003)   | (0.003)   | (0.003)   |
| sqftlot                 | 0.001***                           | 0.001***  | 0.001***  | 0.001***  | 0.001***  |
|                         | (0.00005)                          | (0.0001)  | (0.0001)  | (0.0001)  | (0.0001)  |
| age                     | -0.506***                          | -0.506*** | -0.506*** | -0.506*** | -0.506*** |
|                         | (0.037)                            | (0.045)   | (0.045)   | (0.045)   | (0.045)   |
| Constant                | 46.300***                          | 46.300*** | 46.300*** | 46.300*** | 46.300*** |
|                         | (4.310)                            | (5.330)   | (5.340)   | (5.350)   | (5.380)   |
| Observations            | 2,661                              | 2,661     | 2,661     | 2,661     | 2,661     |
| R <sup>2</sup>          | 0.678                              | 0.678     | 0.678     | 0.678     | 0.678     |
| Adjusted R <sup>2</sup> | 0.677                              | 0.677     | 0.677     | 0.677     | 0.677     |



## Why not always use robust standard errors?

- Robust errors are easily computed in R. So why not use them all the time?
- For small samples, the robust standard errors from the White estimator (HCO), for example can be produce inaccurate test statistics.
- Other robust standard errors measures might be better for small samples and might prove more conservative.

#### How can we test for Heteroskedasticity?

#### Heteroskedasticity Robust Inference

- We can use the linearHypothesis() function to conduct joint hypothesis testing on our coefficients (using the usual and robust standard errors).
- Let us assume that we want to test the null hypothesis that the coefficients on sqftbuilding, sqftlot, and age are jointly equal to zero.

```
myH0 <- c("sqftbuilding", "sqftlot", "age")

car::linearHypothesis(p1, myH0) # Usual standard errors

##
## Linear hypothesis test:
## sqftbuilding = 0
## sqftlot = 0
## age = 0
##</pre>
```

## Model 1: restricted model

#### Section 3

Heteroskedasticity Tests

### Testing for Heteroskedasticity

• Breusch-Pagan Test: The null hypothesis is homoskedasticity.

$$\hat{u}_i^2 = \delta_0 + \delta_1 x_{i1} + \ldots + \delta_k x_{ik} + error$$

We will regress the squared residuals on the independent variables and test whether this auxiliary regression has explanatory power.

$$H_0: \delta_1 = \delta_2 = \dots = \delta_k = 0$$

$$F = \frac{R_{\hat{u}^2}^2 / k}{(1 - R_{\hat{u}^2}^2) / (n - k - 1)}$$

Alternatively, we can use the LM test:

$$LM = n \cdot R_{\hat{u}^2}^2 \sim \chi^2(k)$$

• In both cases, a large  $R_{\hat{u}^2}^2$  provides evidence against (rejection of) the null.

### Breusch-Pagan Test

```
h1 <- lm(price ~ lotsize + sqrft + bdrms, data = hprice1)
h1_aux <- lm(resid(h1)^2 ~ lotsize + sqrft + bdrms, data = hprice1)
r2_u <- summary(h1_aux)$r.squared
N <- nobs(h1)
k <- length(coef(h1_aux)) - 1
Fstat <- (r2_u/k) / ((1 - r2_u)/(N - k - 1))
F_crit <- qf(0.95, k, N - k - 1)
pval <- 1 - pf(Fstat, k, N - k - 1)
LM <- N * r2_u
LM_crit <- qchisq(0.95, k)
LM_pval <- 1 - pchisq(LM, k)</pre>
```

- The F-statistic is 5.339 with a p-value of 0.002.
- The F-critical value is 2.713.
- The LM statistic is 14.092 with a critical value  $(\chi^2(3,5\%))$  of 7.815.
- The LM test p-value is 0.003.
- What do we conclude?

### Breusch-Pagan Test

How do the results above change if we used logged variables instead?

## p-value(LM) for the logged variables is 0.238

### White test for Heteroskedasticity

• Modified the Breusch-Pagan test to include quadratic and interaction terms.

#### Trade-offs??

- Generating all the extra terms adds lots of variables to the model thereby using up a lot of the degrees of freedom.
- Even a small number of variables can result in a large number of extra terms.
  - For example k = 6 leads to 27 parameters to be estimated.

#### Issues with Heteroskedasticity Tests

What do we do if we Reject the null of homoskedasticity?

### White test for Heteroskedasticity

$$\hat{u}_i^2 = \delta_0 + \delta_1 x_1 + \delta_2 x_2 + \delta_3 x_3 + \delta_4 x_1^2 + \delta_5 x_2^2 + \delta_6 x_3^2 + \delta_7 x_1 x_2 + \delta_8 x_1 x_3 + \delta_9 x_2 x_3 + error$$

$$H_0: \delta_1 = \delta_2 = \dots = \delta_9 = 0$$
  
$$LM = n \cdot R_{\hat{u}^2}^2 \sim \chi^2(9)$$

#### Conducting the tets

• Breusch-Pagan test: bptest() in the lmtest package.

```
bptest(h1)
```

##

```
## studentized Breusch-Pagan test
##
## data: h1
## BP = 14, df = 3, p-value = 0.003
```

#### Conducting the tets

• White test: using the bptest() function.

```
##
## studentized Breusch-Pagan test
##
## data: h1
## BP = 34, df = 9, p-value = 1e-04
```

#### Alternative Form of White Test

- We can indirectly test the dependence of the squared residuals on the explanatory variables, their squares, and their cross-products (interactions), using the predicted values of y.
- This works because the predicted values of y and its square implicitly contain all these squared and cross-product terms.

$$\hat{u}_i^2 = \delta_0 + \delta_1 \hat{y}_i + \delta_2 \hat{y}_i^2 + error$$
 $H_0: \delta_1 = \delta_2 = 0$ , (Homoskedastic)
 $H_1: \text{At least one is not zero, (Heteroskedastic)}$ 

The LM test is given by:

$$LM = n \cdot R_{\hat{u}^2}^2 \sim \chi^2(2)$$
 
$$R_{\hat{u}^2}^2 = 0.0392, LM = 0.0392 \times 88 \approx 3.45$$
 
$$LM_{p-value} = 1 - \text{pchisq}(3.45, 2) = 0.178$$

```
# Using the log house price equation
bptest(h2, ~fitted(h2) + I(fitted(h2)^2), data = hprice1)
```

```
##
## data: h2
```

## BP = 3, df = 2, p-value = 0.2

studentized Breusch-Pagan test

## ##

#### Section 4

Weighted Least Squares

# Known Form of Heteroskedasticity

• If the form of heteroskedasticity is known, we can use weighted least squares (WLS) to estimate the model.

Assume that

$$var(u_i|x_1) = \sigma^2 h(\mathbf{x})$$

where  $h(\mathbf{x})$  is a known function of the independent variables that determines the heteroskedasticity.

• Because variances must be positive,  $h(\mathbf{x}) > 0$  for all possible values of the independent variables.

$$y_i = \beta_0 + \beta_1 x_{i1} + \ldots + \beta_k x_{ik} + u_i$$

$$\Rightarrow \frac{y_i}{\sqrt{h_i}} = \beta_0 \frac{1}{\sqrt{h_i}} + \frac{\beta_1 x_{i1}}{\sqrt{h_i}} + \dots + \frac{\beta_k x_{ik}}{\sqrt{h_i}} + \frac{u_i}{\sqrt{h_i}}$$

The transformed model is:

$$y_i^* = \beta_0 x_{i0}^* + \beta_1 x_{i1}^* + \ldots + \beta_k x_{ik}^* + u_i^*$$

### Weighted Least Squares

#### Example: Savings and Income

$$sav_i = \beta_0 + \beta_1 inc_i + u_i, \quad var(u_i|inc_i) = \sigma^2 inc_i$$

The transformed model is (note, no intercept):

$$\frac{sav_i}{\sqrt{inc_i}} = \beta_0 \frac{1}{\sqrt{inc_i}} + \beta_1 \frac{inc_i}{\sqrt{inc_i}} + \frac{u_i}{\sqrt{inc_i}}$$

The transformed model is now homoskedastic:

$$E(u_i^{*2}|x_i) = E\left[\left(\frac{u_i^2}{\sqrt{(inc_i)}}\right)^2|x_i\right] = \frac{E(u_i^2|x_i)}{inc_i} = \frac{\sigma^2 \cdot inc_i}{inc_i} = \sigma^2$$

If the GM assumptions hold, OLS applied to the transformed model will be BLUE.

### What is WLS doing?

$$\min \sum_{i=1}^{n} \left( \frac{y_i}{\sqrt{h_i}} - \beta_0 \frac{1}{\sqrt{h_i}} - \dots - \beta_k \frac{x_{ik}}{\sqrt{h_i}} \right)^2$$

Obs with larger  $h_i$  will have smaller weights in the optimization problem.

$$min \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_{i1} - \dots - \beta_k x_{ik})^2 / h_i$$

- WLS is more efficient than OLS in the original model.
  - Observations with a large variance are less informative than observations with small variance and therefore should get less weight.
- WLS is a special case of feasible generalized least squares (FGLS)

Table 3:

|                         |            | Dependent Variable: nettfa |            |            |  |
|-------------------------|------------|----------------------------|------------|------------|--|
|                         | OLS        | WLS                        | OLS        | WLS        |  |
|                         | (1)        | (2)                        | (3)        | (4)        |  |
| inc                     | 0.821***   | 0.787***                   | 0.821***   | 0.740***   |  |
|                         | (0.104)    | (0.063)                    | (0.099)    | (0.064)    |  |
| I((age - 25)^2)         |            |                            |            | 0.018***   |  |
| (( ) ) )                |            |                            |            | (0.002)    |  |
| male                    |            |                            |            | 1.840      |  |
|                         |            |                            |            | (1.560)    |  |
| e401k                   |            |                            |            | 5.190***   |  |
|                         |            |                            |            | (1.700)    |  |
| Constant                | -10.600*** | -9.580***                  | -10.600*** | -16.700*** |  |
|                         | (2.530)    | (1.650)                    | (3.490)    | (1.960)    |  |
| Observations            | 2,017      | 2,017                      | 2,017      | 2,017      |  |
| $\mathbb{R}^2$          | 0.083      | 0.071                      | 0.083      | 0.112      |  |
| Adjusted R <sup>2</sup> | 0.082      | 0.070                      | 0.082      | 0.110      |  |

dep.var.caption = "Dependent Variable: nettfa",
column.labels = c(rep(c("OLS", "WLS"), 2)),

dep.var.labels.include = FALSE, model.names = FALSE)

# Special Case of Heteroskedasticity

• If the observations are reported as averages at the city/county/state/-country/firm level, they should be weighted by the size of the unit.

For example:

$$\overline{contrib_i} = \beta_0 + \beta_1 \overline{earns_i} + \beta_2 \overline{age_i} + \beta_3 \overline{mrate_i} + \overline{u_i}$$

where  $\overline{contrib}_i$ ,  $\overline{earns}_i$ ,  $\overline{age}_i$ , and  $\overline{mrate}_i$  are the average contribution, earnings, age, and firm contribution to the plan, respectively. The error term is assumed to be heteroskedastic.

$$\Rightarrow var(u_i) = var\left(\frac{1}{m}\sum_{i=1}^{m_i}u_{i,e}\right) = \frac{\sigma^2}{m_i}$$

where  $m_i$  is the number of observations (workers) in the  $i^{th}$  group. The error variance is assumed to be homoskedastic at the individual level.

### Unknown Form of Heteroskedasticity

 If the form of heteroskedasticity is unknown, we can use Feasible Generalized Least Squares (FGLS).

#### Option 1:

Assume a general form of heteroskedasticity:

$$var(u_i|x_i) = \sigma^2 \underbrace{exp(\delta_0 + \delta_1 x_{i1} + \ldots + \delta_k x_{ik})}_{\text{Ensures positive values}} = \sigma^2 h(x)$$

We need to estimate the  $\delta$ 's, to get  $\hat{h}(x)$ .

$$u^2 = \sigma^2 \exp(\delta_0 + \delta_1 x_{i1} + \ldots + \delta_k x_{ik}) \cdot \nu$$

Assuming  $\nu$  is independent of x, we can write:

$$log(u^2) = \alpha_0 + \delta_1 x_{i1} + \ldots + \delta_k x_{ik} + e$$

Replacing the unobserved  $u^2$  with residuals, we run the regression:

$$\log(\hat{u}^2) = \alpha_0 + \delta_1 x_{i1} + \ldots + \delta_k x_{ik} + e$$

Collect fitted values,  $\hat{g}_i$  and exponentiate to get  $\hat{h}_i$ .

$$\hat{h}_i = 1/\exp(\hat{g}_i(x)_i)$$

### Summary of Option 1

- **1** Run regression of y on  $x_1, x_2, \ldots, x_k$  and obtain residuals,  $\hat{u}_i$ .
- **3** Regress  $log(\hat{u}^2)$  on  $x_1, x_2, \ldots, x_k$  and obtain the fitted values,  $\hat{g}_i$ .
- **4** Exponentiate  $\hat{g}_i$  to get  $\hat{h}(x)$ .
- **1** Run WLS with weights  $1/\hat{h}(x)$ .

### Unknown Form of Heteroskedasticity

#### Option 2:

• As we saw in the case of the White model modifications of the Breusch-Pagan test, we can estimate  $h_i$  using the predicted and squared predicted values of y,  $\hat{y}_i$  and  $\hat{y}_i^2$  instead.

#### Summary of Step 2

- **Q** Run regression of y on  $x_1, x_2, \ldots, x_k$  and obtain residuals,  $\hat{u}_i$ .
- $\bigcirc$  Create  $log(\hat{u}^2)$
- **3** Regress  $log(\hat{u}^2)$  on  $\hat{y}_i$  and  $\hat{y}_i^2$  and obtain the fitted values,  $\hat{g}_i$ .
- Exponentiate  $\hat{g}_i$  to get  $\hat{h}(x)$ .
- **3** Run WLS with weights  $1/\hat{h}(x)$ .

```
## (Intercept) -3.63984 24.07866 -0.151 8.80e-01
## lincome 0.88027 0.72778 1.210 2.27e-01
## lcigpric -0.75086 5.77334 -0.130 8.97e-01
## educ -0.50150 0.16708 -3.002 2.77e-03
## age 0.77069 0.16012 4.813 1.78e-06
## agesq -0.00902 0.00174 -5.176 2.86e-07
## restaurn -2.82508 1.11179 -2.541 1.12e-02
```

```
# Test for heteroskedasticity
bptest(ols.cig)
```

##

```
## studentized Breusch-Pagan test
##
## data: ols.cig
## BP = 32, df = 6, p-value = 1e-05
```

logu2.cig <- log(resid(ols.cig)^2)</pre>

## lincome

## (Intercept) 5.63546 1.78e+01 0.317 7.52e-01

1.29524 4.37e-01 2.964 3.13e-03

Table 4:

|                                  | Dependent    | Variable: cigs |
|----------------------------------|--------------|----------------|
|                                  | OLS WLS      |                |
|                                  | (1)          | (2)            |
| lincome                          | 0.880        | 1.290***       |
|                                  | (0.728)      | (0.437)        |
| leigpric                         | -0.751       | -2.940         |
|                                  | (5.770)      | (4.460)        |
| educ                             | -0.501***    | -0.463***      |
|                                  | (0.167)      | (0.120)        |
| age                              | 0.771***     | 0.482***       |
|                                  | (0.160)      | (0.097)        |
| agesq                            | -0.009***    | -0.006***      |
|                                  | (0.002)      | (0.001)        |
| restaurn                         | -2.830**     | -3.460***      |
|                                  | (1.110)      | (0.796)        |
| Constant                         | -3.640       | 5.630          |
|                                  | (24.100)     | (17.800)       |
| Observations                     | 807          | 807            |
| $\mathbb{R}^2$                   | 0.053        | 0.113          |
| Adjusted R <sup>2</sup>          | 0.046        | 0.107          |
| Residual Std. Error $(df = 800)$ | 13.400       | 1.580          |
| F Statistic (df = 6; 800)        | 7.420***     | 17.100***      |
| Note:                            | *p<0.1; **p< | 0.05; ***p<0.0 |

# What if our heteroskedasticity function is wrong?

- If the heterosked asticity function is misspecified, WLS is still consistent under MLR.1 – MLR.4, but robust standard errors should be computed.
- WLS is consistent under MLR.4 but not necessarily under MLR.4'
- If OLS and WLS produce very different estimates, this typically indicates that some other assumptions (e.g. MLR.4) are wrong.
- If there is strong heteroskedasticity, it is still often better to use a wrong form of heteroskedasticity in order to increase efficiency.

Table 5:

| ·                              | Dependent Variable: cigs |           |            |
|--------------------------------|--------------------------|-----------|------------|
|                                | OLS                      | WLS       | Robust WLS |
|                                | (1)                      | (2)       | (3)        |
| lincome                        | 0.880                    | 1.290***  | 1.290      |
|                                | (0.728)                  | (0.437)   | (1.290)    |
| lcigpric                       | -0.751                   | -2.940    | -2.940     |
|                                | (5.770)                  | (4.460)   | (-2.940)   |
| educ                           | -0.501***                | -0.463*** | -0.463     |
|                                | (0.167)                  | (0.120)   | (-0.463)   |
| age                            | 0.771***                 | 0.482***  | 0.482      |
|                                | (0.160)                  | (0.097)   | (0.482)    |
| agesq                          | -0.009***                | -0.006*** | -0.006     |
| 31                             | (0.002)                  | (0.001)   | (-0.006)   |
| restaurn                       | -2.830**                 | -3.460*** | -3.460     |
|                                | (1.110)                  | (0.796)   | (-3.460)   |
| Constant                       | -3.640                   | 5.630     | 5.630      |
|                                | (24.100)                 | (17.800)  | (5.630)    |
| Observations                   | 807                      | 807       | 807        |
| $\mathbb{R}^2$                 | 0.053                    | 0.113     | 0.113      |
| Adjusted R <sup>2</sup>        | 0.046                    | 0.107     | 0.107      |
| Residual Std. Error (df = 800) | 13.400                   | 1.580     | 1.580      |
| F Statistic (df = 6; 800)      | 7.420***                 | 17.100*** | 17.100***  |

Note:

 $^*\,\mathrm{p}{<}0.1;\;^{**}\,\mathrm{p}{<}0.05;\;^{***}\,\mathrm{p}{<}0.01$