# Probabilidade e Estatística

#### **Professores**:

Otton Teixeira da Silveira Filho Regina Célia Paula Leal Toledo



# Aula 2

#### **Professores**:

Otton Teixeira da Silveira Filho Regina Célia Paula Leal Toledo

# Organização dos dados: tabelas de freqüência e gráficos

#### Conteúdo:

2.1 Tabelas de frequência Exemplos

2.2 Gráficos Exemplos

$$\sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$\sigma_X^2 \quad \overline{Y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$A \cap B = \emptyset$$



# Lembrando...vimos na aula 1 - "Introdução à Estatística"

estatística descritiva

probabilidade

inferência estatística

estatística descritiva (consistência dos dados, interpretações iniciais)



#### Questão colocada ao final da Aula 1:

A partir de um conjunto de dados, como tratar os valores - numéricos ou não - para extrair informações e/ou características de interesse? Ou seja: como organizar os dados de uma população ou de uma amostra? Como fornecer informações sobre o conjunto dos dados?

V

TABELAS DE FREQÜÊNCIA E GRÁFICOS

# 2 <u>Organização dos dados: tabelas de</u> <u>freqüência e gráficos.</u>



"O uso e a divulgação ética e criteriosa dos dados devem ser pré-requisitos indispensáveis e inegociáveis".



# 2.1 Tabelas de frequência

Tabela com informações resumidas das variáveis de interesse, construída a partir da tabela dos dados brutos.

Contém os valores das variáveis e a contagem do número de ocorrências



# 2.1 Tabelas de frequência

Tabela com informações resumidas das variáveis de interesse, construída a partir da tabela dos dados brutos.

Contém os valores das variáveis e a contagem do número de ocorrências

freqüências absolutas ou freqüências



Para variáveis qualitativas ou quantitativas discretas:

consiste em listar os possíveis valores da variável (numéricos ou não) e fazer a contagem do número de ocorrências na tabela de dados brutos.

É usual chamarmos de  $n_i$  a frequência de ocorrência da variável i e por n a frequência total.



Na tabela sugerida na bibliografia [1] e apresentada na Aula 1 (disponível no endereço www.ime.usp.br/~noproest), verificar a freqüência associada à variável sexo.

| Sexo    | $n_i$         |
|---------|---------------|
| Mas (1) | 13            |
| Fem (2) | 37            |
| Total   | <i>n</i> = 50 |



Na tabela sugerida na bibliografia [1] e apresentada na Aula 1 (disponível no endereço www.ime.usp.br/~noproest), verificar a freqüência associada à variável sexo.

| Sexo    | $n_i$         |
|---------|---------------|
| Mas (1) | 13            |
| Fem (2) | 37            |
| Total   | <i>n</i> = 50 |

Quando temos que comparar freqüências de ocorrência dos valores de uma dada variável de diferentes grupos ou conjunto de dados





Calcular a frequência relativa da variável sexo do exemplo anterior

| Sexo    | $n_i$         | $f_{i}$ |
|---------|---------------|---------|
| Mas (1) | 13            |         |
| Fem (2) | 37            |         |
| Total   | <i>n</i> = 50 |         |

onde

$$f_i = \frac{n_i}{n}$$



Calcular a frequência relativa da variável sexo do exemplo anterior

| Sexo    | $n_i$         | $f_{i}$ |
|---------|---------------|---------|
| Mas (1) | 13            | 0,26    |
| Fem (2) | 37            |         |
| Total   | <i>n</i> = 50 |         |

onde

$$f_i = \frac{n_i}{n}$$

ou seja:

$$\frac{13}{50} = 0,26$$



Calcular a frequência relativa da variável sexo do exemplo anterior

| Sexo    | $n_i$         | $f_i$ |
|---------|---------------|-------|
| Mas (1) | 13            | 0,26  |
| Fem (2) | 37            | 0,74  |
| Total   | <i>n</i> = 50 |       |

onde

$$f_i = \frac{n_i}{n}$$

ou seja: 
$$\frac{13}{50} = 0,26$$
 e  $\frac{37}{50} = 0,74$ 

$$\frac{37}{50} = 0,74$$



Calcular a frequência relativa da variável sexo do exemplo anterior

| Sexo    | $n_i$         | $f_i$ |
|---------|---------------|-------|
| Mas (1) | 13            | 0,26  |
| Fem (2) | 37            | 0,74  |
| Total   | <i>n</i> = 50 | (1)   |

Observe que:

$$\sum_{i} f_i = 1$$



# Para variáveis quantitativas ou qualitativas ordinais:

Nesses casos é usual acrescentarmos a frequência acumulada que tem por objetivo fornecer pontos de corte com uma determinada frequência nos valores das variáveis.



## Para variáveis quantitativas ou qualitativas ordinais:

Nesses casos é usual acrescentarmos a frequência acumulada que tem por objetivo fornecer pontos de corte com uma determinada frequência nos valores das variáveis.

Chamaremos de  $f_{ac}$  a freqüência acumulada, calculada como o somatório das freqüências de todos os valores da variável menores ou iguais ao valor considerado.



aula 2: Organização dos Dados Tabelas de freqüência

### Exemplo:



aula 2: Organização dos Dados Tabelas de frequência

#### **Exemplo:**

Construir a tabela de frequências e frequências acumuladadas para a variável "idade".

i) inicialmente montar a tabela para a frequência de ocorrência de cada idad $(n_i)$ ;



Construir a tabela de frequências e frequências acumuladadas para a variável "idade".

|   | L |
|---|---|
|   |   |
|   |   |
|   | 7 |
|   |   |
| • |   |

| Idade | n <sub>i</sub> |  |
|-------|----------------|--|
| 17    | 9              |  |
| 18    | 22             |  |
| 19    | 7              |  |
| 20    | 4              |  |
| 21    | 3              |  |
| 22    | 0              |  |
| 23    | 2              |  |
| 24    | 1              |  |
| 25    | 2              |  |
| Total | n = 50         |  |

i) inicialmente montar a tabela para a frequência de ocorrência de cada idad $(n_i)$ ;



Construir a tabela de frequências e frequências acumuladadas para a variável "idade".

| Idade | n <sub>i</sub> |  |
|-------|----------------|--|
| 17    | 9              |  |
| 18    | 22             |  |
| 19    | 7              |  |
| 20    | 4              |  |
| 21    | 3              |  |
| 22    | 0              |  |
| 23    | 2              |  |
| 24    | 1              |  |
| 25    | 2              |  |
| Total | n = 50         |  |

i) inicialmente montar a tabela para a frequência de ocorrência de cada idad $(n_i)$ ;

ii) calcular a freqüência relativa  $f_i$ ) dividindo cada linha da coluna  $n_i$  por 50;



Construir a tabela de frequências e frequências acumuladadas para a variável "idade".



| Idade | n <sub>i</sub> | f i  |  |
|-------|----------------|------|--|
| 17    | 9              | 0,18 |  |
| 18    | 22             | 0,44 |  |
| 19    | 7              | 0,14 |  |
| 20    | 4              | 0,08 |  |
| 21    | 3              | 0,06 |  |
| 22    | 0              | 0    |  |
| 23    | 2              | 0,04 |  |
| 24    | 1              | 0,02 |  |
| 25    | 2              | 0,04 |  |
| Total | n = 50         | 1    |  |

i) inicialmente montar a tabela para a frequência de ocorrência de cada idad $(n_i)$ ;

ii) calcular a freqüência relativa  $f_i$ ) dividindo cada linha da coluna  $n_i$  por 50;



Construir a tabela de frequências e frequências acumuladadas para a variável "idade".

| Idade | n <sub>i</sub> | f i  |  |
|-------|----------------|------|--|
| 17    | 9              | 0,18 |  |
| 18    | 22             | 0,44 |  |
| 19    | 7              | 0,14 |  |
| 20    | 4              | 0,08 |  |
| 21    | 3              | 0,06 |  |
| 22    | 0              | 0    |  |
| 23    | 2              | 0,04 |  |
| 24    | 1              | 0,02 |  |
| 25    | 2              | 0,04 |  |
| Total | n = 50         | 1    |  |

i) inicialmente montar a tabela para a frequência de ocorrência de cada idad $(n_i)$ ;

ii) calcular a freqüência relativa  $f_i$ ) dividindo cada linha da coluna  $n_i$  por 50;

iii) calcular a freqüência acumu $\log(f_{ac})$  .



| 1 | , |
|---|---|
|   |   |

| Idade | n <sub>i</sub> | f i    | f <sub>ac</sub> |
|-------|----------------|--------|-----------------|
| 17    | 9              | 0,18 — | <b>0</b> ,18    |
| 18    | 22             | 0,44   |                 |
| 19    | 7              | 0,14   |                 |
| 20    | 4              | 0,08   |                 |
| 21    | 3              | 0,06   |                 |
| 22    | 0              | 0      |                 |
| 23    | 2              | 0,04   |                 |
| 24    | 1              | 0,02   |                 |
| 25    | 2              | 0,04   |                 |
| Total | n = 50         | 1      |                 |

- i) inicialmente montar a tabela para a frequência de ocorrência de cada idad $(n_i)$ ;
- ii) calcular a freqüência relativa  $f_i$ ) dividindo cada linha da coluna  $n_i$  por 50;
- iii) calcular a freqüência acumu $\log(f_{ac})$  .



| ldade | n <sub>i</sub> | f i  | f <sub>ac</sub> |
|-------|----------------|------|-----------------|
| 17    | 9              | 0,18 | 0,18            |
| 18    | 22             | 0,44 | 0,62            |
| 19    | 7              | 0,14 |                 |
| 20    | 4              | 0,08 |                 |
| 21    | 3              | 0,06 |                 |
| 22    | 0              | 0    |                 |
| 23    | 2              | 0,04 |                 |
| 24    | 1              | 0,02 |                 |
| 25    | 2              | 0,04 |                 |
| Total | n = 50         | 1    |                 |

- i) inicialmente montar a tabela para a frequência de ocorrência de cada idad $(n_i)$ ;
- ii) calcular a freqüência relativa  $f_i$ ) dividindo cada linha da coluna  $n_i$  por 50;
- iii) calcular a freqüência acumulada $(f_{ac})\,$  .



| Idade | n <sub>i</sub> | f i  | f <sub>ac</sub> |
|-------|----------------|------|-----------------|
| 17    | 9              | 0,18 | 0,18            |
| 18    | 22             | 0,44 | 0,62            |
| 19    | 7              | 0,14 | <b>0</b> ,76    |
| 20    | 4              | 0,08 |                 |
| 21    | 3              | 0,06 |                 |
| 22    | 0              | 0    |                 |
| 23    | 2              | 0,04 |                 |
| 24    | 1              | 0,02 |                 |
| 25    | 2              | 0,04 |                 |
| Total | n = 50         | 1    |                 |

- i) inicialmente montar a tabela para a frequência de ocorrência de cada idad $(n_i)$ ;
- ii) calcular a freqüência relativa  $f_i$ ) dividindo cada linha da coluna  $n_i$  por 50;
- iii) calcular a freqüência acumu $\log(f_{ac})$  .



| 1 |
|---|
|---|

| Idade | n <sub>i</sub> | f i  | f <sub>ac</sub> |
|-------|----------------|------|-----------------|
| 17    | 9              | 0,18 | 0,18            |
| 18    | 22             | 0,44 | 0,62            |
| 19    | 7              | 0,14 | 0,76            |
| 20    | 4              | 0,08 | 0,84            |
| 21    | 3              | 0,06 | 0,9             |
| 22    | 0              | 0    | 0,9             |
| 23    | 2              | 0,04 | 0,94            |
| 24    | 1              | 0,02 | 0,96            |
| 25    | 2              | 0,04 | 1               |
| Total | n = 50         | 1    |                 |

- i) inicialmente montar a tabela para a frequência de ocorrência de cada idad $(n_i)$ ;
- ii) calcular a freqüência relativa  $f_i$ ) dividindo cada linha da coluna  $n_i$  por 50;
- iii) calcular a freqüência acumulada $(f_{ac})\,$  .



| Idade | n <sub>i</sub> | f i  | f <sub>ac</sub> |
|-------|----------------|------|-----------------|
| 17    | 9              | 0,18 | 0,18            |
| 18    | 22             | 0,44 | 0,62            |
| 19    | 7              | 0,14 | 0,76            |
| 20    | 4              | 0,08 | 0,84            |
| 21    | 3              | 0,06 | 0,90            |
| 22    | 0              | 0    | 0,90            |
| 23    | 2              | 0,04 | 0,94            |
| 24    | 1              | 0,02 | 0,96            |
| 25    | 2              | 0,04 | 1               |
| Total | n = 50         | 1    |                 |





| Idade | n <sub>i</sub> | f i  | f <sub>i</sub> x 100% | f <sub>ac</sub> |  |
|-------|----------------|------|-----------------------|-----------------|--|
| 17    | 9              | 0,18 | 18                    | 0,18            |  |
| 18    | 22             | 0,44 | 44                    | 0,62            |  |
| 19    | 7              | 0,14 | 14                    | 0,76            |  |
| 20    | 4              | 0,08 | 8                     | 0,84            |  |
| 21    | 3              | 0,06 | 6                     | 0,90            |  |
| 22    | 0              | 0    | 0                     | 0,90            |  |
| 23    | 2              | 0,04 | 4                     | 0,94            |  |
| 24    | 1              | 0,02 | 2                     | 0,96            |  |
| 25    | 2              | 0,04 | 4                     | 1               |  |
| Total | n = 50         | 1    | 100                   |                 |  |





| Idade | n <sub>i</sub> | f i  | f <sub>i</sub> x 100% | f <sub>ac</sub> |  |
|-------|----------------|------|-----------------------|-----------------|--|
| 17    | 9              | 0,18 | 18                    | 0,18            |  |
| 18    | 22             | 0,44 | 44                    | 0,62            |  |
| 19    | 7              | 0,14 | 14                    | 0,76            |  |
| 20    | 4              | 0,08 | 8                     | 0,84            |  |
| 21    | 3              | 0,06 | 6                     | 0,90            |  |
| 22    | 0              | 0    | 0                     | 0,90            |  |
| 23    | 2              | 0,04 | 4                     | 0,94            |  |
| 24    | 1              | 0,02 | 2                     | 0,96            |  |
| 25    | 2              | 0,04 | 4                     | 1               |  |
| Total | n = 50         | 1    | 100                   |                 |  |





| Idade | n <sub>i</sub> | f i  | f <sub>i</sub> x 100% | f <sub>ac</sub> | f <sub>ac</sub> x 100% |
|-------|----------------|------|-----------------------|-----------------|------------------------|
| 17    | 9              | 0,18 | 18                    | 0,18            | 18                     |
| 18    | 22             | 0,44 | 44                    | 0,62            | 62                     |
| 19    | 7              | 0,14 | 14                    | 0,76            | 76                     |
| 20    | 4              | 0,08 | 8                     | 0,84            | 84                     |
| 21    | 3              | 0,06 | 6                     | 0,90            | 90                     |
| 22    | 0              | 0    | 0                     | 0,90            | 90                     |
| 23    | 2              | 0,04 | 4                     | 0,94            | 94                     |
| 24    | 1              | 0,02 | 2                     | 0,96            | 96                     |
| 25    | 2              | 0,04 | 4                     | 1               | 100                    |
| Total | n = 50         | 1    | 100                   | _               |                        |





| Idade | n <sub>i</sub> | f i  | f <sub>i</sub> x 100% | f <sub>ac</sub> | f <sub>ac</sub> x 100% |
|-------|----------------|------|-----------------------|-----------------|------------------------|
| 17    | 9              | 0,18 | 18                    | 0,18            | 18                     |
| 18    | 22             | 0,44 | 44                    | 0,62            | 62                     |
| 19    | 7              | 0,14 | 14                    | 0,76            | 76                     |
| 20    | 4              | 0,08 | 8                     | 0,84            | 84                     |
| 21    | 3              | 0,06 | 6                     | 0,90            | 90                     |
| 22    | 0              | 0    | 0                     | 0,90            | 90                     |
| 23    | 2              | 0,04 | 4                     | 0,94            | 94                     |
| 24    | 1              | 0,02 | 2                     | 0,96            | 96                     |
| 25    | 2              | 0,04 | 4                     | 1               | 100                    |
| Total | n = 50         | 1    | 100                   |                 |                        |



para variáveis quantitativas contínuas ou para quantitativas discretas com um conjunto possível de valores muito grandes é comum adotar-se a construção de faixas, com amplitude definida, e contar-se o número de ocorrências em cada faixa.



para variáveis quantitativas contínuas ou para quantitativas discretas com um conjunto possível de valores muito grandes é comum adotar-se a construção de faixas, com amplitude definida, e contar-se o número de ocorrências em cada faixa.

Exemplo: na tabela da Aula 1 a variável peso que varia de 44 a 95kg, podemos estabelecer faixas de 10kg, começando de 40k, por exemplo:



para variáveis quantitativas contínuas ou para quantitativas discretas com um conjunto possível de valores muito grandes é comum adotar-se a construção de faixas, com amplitude definida, e contar-se o número de ocorrências em cada faixa.

Exemplo: na tabela da Aula 1 a variável peso que varia de 44 a 95kg, podemos estabelecer faixas de 10kg, começando de 40k, por exemplo:

```
de 40kg (inclusive) até 50kg (exclusive) de 50kg (inclusive) até 60kg (exclusive) de 60kg (inclusive) até 70kg (exclusive) de 70kg (inclusive) até 80kg (exclusive) de 80kg (inclusive) até 90kg (exclusive) de 90kg (inclusive) até 100kg (exclusive)
```

para variáveis quantitativas contínuas ou para quantitativas discretas com um conjunto possível de valores muito grandes é comum adotar-se a construção de faixas, com amplitude definida, e contar-se o número de ocorrências em cada faixa.

Exemplo: na tabela da Aula 1 a variável peso que varia de 44 a 95kg, podemos estabelecer faixas de 10kg, começando de 40k, por exemplo:

Notação

de 40kg (inclusive) até 50kg (exclusive) de 50kg (inclusive) até 60kg (exclusive) de 60kg (inclusive) até 70kg (exclusive) de 70kg (inclusive) até 80kg (exclusive) de 80kg (inclusive) até 90kg (exclusive) de 90kg (inclusive) até 100kg (exclusive)

40— 50 ou [40,50)

para variáveis quantitativas contínuas ou para quantitativas discretas com um conjunto possível de valores muito grandes é comum adotar-se a construção de faixas, com amplitude definida, e contar-se o número de ocorrências em cada faixa.

Exemplo: na tabela da Aula 1 a variável peso que varia de 44 a 95kg, podemos estabelecer faixas de 10kg, começando de 40k, por exemplo:

Notação

de 40kg (inclusive) até 50kg (exclusive) de 50kg (inclusive) até 60kg (exclusive) de 60kg (inclusive) até 70kg (exclusive) de 70kg (inclusive) até 80kg (exclusive) de 80kg (inclusive) até 90kg (exclusive) de 90kg (inclusive) até 100kg (exclusive)

50 ou [40,50)

60 ou [50,60)

#### Classes ou faixas de valores:

para variáveis quantitativas contínuas ou para quantitativas discretas com um conjunto possível de valores muito grandes é comum adotar-se a construção de faixas, com amplitude definida, e contar-se o número de ocorrências em cada faixa.

Exemplo: na tabela da Aula 1 a variável peso que varia de 44 a 95kg, podemos estabelecer faixas de 10kg, começando de 40k, por exemplo:

Notação

| de 40kg (inclusive) até | 50kg (exclusive)  | <del>40</del> — | 50 ou [40,50)   |
|-------------------------|-------------------|-----------------|-----------------|
| de 50kg (inclusive) até | 60kg (exclusive)  | 50              | 60 ou [50,60)   |
| de 60kg (inclusive) até | 70kg (exclusive)  | 60              | 70 ou [60,70)   |
| de 70kg (inclusive) até | 80kg (exclusive)  | 70              | 80 ou [70,80)   |
| de 80kg (inclusive) até | 90kg (exclusive)  | 80              | 90 ou [80,90)   |
| de 90kg (inclusive) até | 100kg (exclusive) | 90—             | 100 ou [90,100) |

| Peso  |      | $n_i$ |
|-------|------|-------|
| 40    | - 50 | 8     |
| 50⊢   | - 60 | 22    |
| 60⊢   | - 70 | 8     |
| 70⊢   | - 80 | 6     |
| 80    | - 90 | 5     |
| 90    | -100 | 1     |
| Total |      | 50    |



| Peso   | $n_i$ | $f_i$ |
|--------|-------|-------|
| 40- 50 | 8     | 0,16  |
| 50- 60 | 22    | 0,44  |
| 60-70  | 8     | 0,16  |
| 70-80  | 6     | 0,12  |
| 8090   | 5     | 0,10  |
| 90100  | 1     | 0,02  |
| Total  | 50    |       |



| Peso   | $n_i$ | $f_i$ | $f_{ac}$ |
|--------|-------|-------|----------|
| 40- 50 | 8     | 0,16  | 0,1      |
| 50- 60 | 22    | 0,44  | 0,6      |
| 60-70  | 8     | 0,16  | 0,7      |
| 70-80  | 6     | 0,12  | 0,8      |
| 8090   | 5     | 0,10  | 0,9      |
| 90100  | 1     | 0,02  | 1        |
| Total  | 50    |       |          |



## Observações:

- sempre que possível utilizar faixas com mesma amplitude, embora faixas com valores desiguais podem ser convenientes nas extremidades das tabelas;
- é usual utilizarmos também a frequência acumulada  $(f_{ac})$  em variáveis quantitativas discretas com um conjunto grande de valores possiveis .



- Qual a porcentagem de alunos de Rio Azul que vê de 12 a 17 horas de televisão por semana (variável TV)?
- E quantos vêm até 23 horas por semana?

| TV    |    | $n_i$ |
|-------|----|-------|
| 0 —   | 6  | 14    |
| 6 —   | 12 | 17    |
| 12    | 18 | 11    |
| 18├── | 24 | 4     |
| 24⊢—  | 36 | 4     |
| Total |    | 50    |



- Qual a porcentagem de alunos de Rio Azul que vê de 12 a 17 horas de televisão por semana (variável TV)?
- E quantos vêm até 23 horas por semana?

| TV      | $n_i$ |                   |
|---------|-------|-------------------|
| 0 - 6   | 14    |                   |
| 6 — 12  | 17    | Tamanho: 6 horas  |
| 12      | 11    |                   |
| 18 ─ 24 | 4     |                   |
| 2436    | 4     | Tamanho: 12 horas |
| Total   | 50    |                   |



- Qual a porcentagem de alunos de Rio Azul que vê de 12 a 17 horas de televisão por semana (variável TV)?
- E quantos vêm até 23 horas por semana?

| TV       | $n_i$ | $f_i$ |
|----------|-------|-------|
| 0        | 14    | 0,28  |
| 6 — 12   | 17    | 0,34  |
| 12⊢ 18   | 11    | 0,22  |
| 18── 24  | 4     | 0,08  |
| 24├── 36 | 4     | 0,08  |
| Total    | 50    | 1     |



- Qual a porcentagem de alunos de Rio Azul que vê de 12 a 17 horas de televisão por semana (variável TV)?
- E quantos vêm até 23 horas por semana?

| TV    | $n_i$ | $f_i$ |
|-------|-------|-------|
| 0     | 14    | 0,28  |
| 6     | 2 17  | 0,34  |
| 12⊢ 1 | 8 11  | 0,22  |
| 18⊢ 2 | 4 4   | 0,08  |
| 24⊢ 3 | 6 4   | 0,08  |
| Total | 50    | 1     |



- Qual a porcentagem de alunos de Rio Azul que vê de 12 a 17 horas de televisão por semana (variável TV)?
- E quantos vêm até 23 horas por semana?

| TV       | $n_i$ | $f_i$ | $f_{ac}$ |
|----------|-------|-------|----------|
| 0        | 14    | 0,28  | 3 0,2    |
| 6 — 12   | 17    | 0,34  | 1 0,62   |
| 12⊢ 18   | 11    | 0,22  | 2 0,84   |
| 18⊢ 24   | 4     | 0,08  | 0,92     |
| 24├── 36 | 4     | 0,08  | 3 1      |
| Total    | 50    |       |          |



- Qual a porcentagem de alunos de Rio Azul que vê de 12 a 17 horas de televisão por semana (variável TV)?
- E quantos vêm até 23 horas por semana?

| TV     | $n_i$ | $f_i$ | $f_{ac}$ |
|--------|-------|-------|----------|
| 0      | 14    | 0,28  | 0,2      |
| 6      | 17    | 0,34  | 0,62     |
| 12⊢ 18 | 11    | 0,22  | 0.84     |
| 18⊢ 24 | 4     | 0,0   | 0,9      |
| 24⊢ 36 | 4     | 0,08  | 3 1      |
| Total  | 50    |       |          |



# 2.2 Gráficos

Muitas vezes os dados são melhor visualizados através de gráficos. Existe uma grande variedade de tipos de gráficos. Definiremos 3 tipos básicos:

- disco ou pizza
- barras
- histograma
- box-plot

Cuidado - um gráfico desproporcional ou distorcido pode conduzir a conclusões equivocadas!



consiste de um disco repartido em setores circulares que representam as porcentagens de ocorrência (  $f_i*100\%$  ) de cada valor de uma determinada variável



| sexo      | $n_i$ | $f_i$ |
|-----------|-------|-------|
| masculino | 13    | 0,26  |
| feminino  | 37    | 0,74  |
| total     | n=50  | 1     |



| sexo      | $n_i$ | $f_i$ |
|-----------|-------|-------|
| masculino | 13    | 0,26  |
| feminino  | 37    | 0,74  |
| total     | n=50  | 1     |





| sexo      | $n_i$ | $f_i$ |
|-----------|-------|-------|
| masculino | 13    | 0,26  |
| feminino  | 37    | 0,74  |
| total     | n=50  | 1     |





| sexo      | $n_i$ | $f_i$ |
|-----------|-------|-------|
| masculino | 13    | 0,26  |
| feminino  | 37    | 0,74  |
| total     | n=50  | 1     |







consiste de um gráfico feito no plano cartesiano que apresenta no eixo das abcissas os valores da variável e no eixo das ordenadas a freqüência ou porcentagem equivalente.

| Idade | $n_i$ |
|-------|-------|
| 17    | 9     |
| 18    | 22    |
| 19    | 7     |
| 20    | 4     |
| 21    | 3     |
| 22    | 0     |
| 23    | 2     |
| 24    | 1     |
| 25    | 2     |
| total | n=50  |



#### Alunos de Rio Azul





#### Idade dos alunos de Rio Azul





#### Idade dos alunos de Rio Azul



#### Alunos de Rio Azul





## <u>Histograma</u>

Consiste de retângulos contíguos com área igual a freqüência relativa da respectiva faixa, tendo como base as faixas de valores da variável. A altura de cada retângulo é chamada de densidade de freqüência (ou simplesmente densidade) e é calculada pela divisão da área do retângulo (freqüência relativa) pela base (faixa de valor).



Calcular a frequência relativa ( $f_i$ ) e fazer o histograma associado à variável "peso".

| Peso  |      | $n_i$ | $f_i$ | $\begin{array}{c} \text{densidade} \\ f_i/10 \end{array}$ |
|-------|------|-------|-------|-----------------------------------------------------------|
| 40⊢   | - 50 | 8     | 0,16  | 0,016                                                     |
| 50⊢   | - 60 | 22    | 0,44  | 4 0,044                                                   |
| 60⊢   | - 70 | 8     | 0,16  | 0,016                                                     |
| 70⊢   | - 80 | 6     | 0,12  | 2 0,012                                                   |
| 80    | - 90 | 5     | 0,10  | 0,010                                                     |
| 90 —  | -100 | 1     | 0,02  | 2 0,002                                                   |
| Total |      | 50    |       |                                                           |



Calcular a frequência relativa ( $f_i$ ) e fazer o histograma associado à variável "peso".





| Alt        | $n_i$ |
|------------|-------|
| 1,45  1,60 | 8     |
| 1,60  1,70 | 22    |
| 1,70  1,80 | 13    |
| 1,80  1,85 | 7     |
| Total      | 50    |







| Alt        | $n_i$ | $f_i$ |
|------------|-------|-------|
| 1,45  1,60 | 8     | 0,16  |
| 1,60  1,70 | 22    | 0,44  |
| 1,70  1,80 | 13    | 0,26  |
| 1,80  1,85 | 7     | 0,14  |
| Total      | 50    |       |



| Alt        | $n_i$ | $f_i$ | densidade |                             |
|------------|-------|-------|-----------|-----------------------------|
| 1,45  1,60 | 8     | 0,16  | 0,011     | <b>←</b> f <sub>i</sub> /15 |
| 1,60  1,70 | 22    | 0,44  | 0,044     |                             |
| 1,70  1,80 | 13    | 0,26  | 0,026     |                             |
| 1,80  1,85 | 7     | 0,14  | 0,028     |                             |
| Total      | 50    |       |           |                             |



| Alt        | $n_i$ | $f_i$ | densidade |                             |
|------------|-------|-------|-----------|-----------------------------|
| 1,45  1,60 | 8     | 0,16  | 0,011     | <b>←</b> f <sub>i</sub> /15 |
| 1,60  1,70 | 22    | 0,44  | 0,044     | <b>f</b> <sub>i</sub> /10   |
| 1,70  1,80 | 13    | 0,26  | 0,026     | 1,710                       |
| 1,80  1,85 | 7     | 0,14  | 0,028     |                             |
| Total      | 50    |       |           |                             |



| Alt        | $n_i$ | $f_i$ | densidade |                             |
|------------|-------|-------|-----------|-----------------------------|
| 1,45  1,60 | 8     | 0,16  | 0,011     | <b>←</b> f <sub>i</sub> /15 |
| 1,60  1,70 | 22    | 0,44  | 0,044     | f <sub>i</sub> /10          |
| 1,70  1,80 | 13    | 0,26  | 0,026     | 1,710                       |
| 1,80  1,85 | 7     | 0,14  | 0,028     | <b>←</b> f <sub>i</sub> /5  |
| Total      | 50    |       |           |                             |



#### Histograma da altura dos alunos de Rio Azul



| Alt        | $n_i$ | $f_i$ | densidade |                             |
|------------|-------|-------|-----------|-----------------------------|
| 1,45  1,60 | 8     | 0,16  | 0,011     | <b>←</b> f <sub>i</sub> /15 |
| 1,60  1,70 | 22    | 0,44  | 0,044     | f <sub>i</sub> /10          |
| 1,70  1,80 | 13    | 0,26  | 0,026     | 1,710                       |
| 1,80  1,85 | 7     | 0,14  | 0,028     | <b>←</b> f <sub>i</sub> /5  |
| Total      | 50    |       |           |                             |



Em várias situações é importante ter uma representação gráfica que possa mostrar determinados limites de interesse, por exemplo mediana e quartis que apresentaremos ao longo do curso.

Em várias situações é importante ter uma representação gráfica que possa mostrar determinados limites de interesse, por exemplo mediana e quartis que apresentaremos ao longo do curso.

|                                             | masc. e fem. | fem. | masc. |
|---------------------------------------------|--------------|------|-------|
| peso mínimo                                 | 44           | 44   | 60    |
| 1º quartil (25% com peso menor)             | 52           | 50   | 71,9  |
| 2 <sup>o</sup> quartil (50% com peso menor) | 58           | 55   | 75    |
| 3 <sup>o</sup> quartil (75% com peso menor) | 66           | 58   | 85,6  |
| peso máximo                                 | 95           | 70   | 95    |

Em várias situações é importante ter uma representação gráfica que possa mostrar determinados limites de interesse, por exemplo mediana e quartis que apresentaremos ao longo do curso.

|                                             | masc. e fem. | fem. | masc. |
|---------------------------------------------|--------------|------|-------|
| peso mínimo                                 | 44           | 44   | 60    |
| 1º quartil (25% com peso menor)             | 52           | 50   | 71,9  |
| 2 <sup>o</sup> quartil (50% com peso menor) | 58           | 55   | 75    |
| 3 <sup>o</sup> quartil (75% com peso menor) | 66           | 58   | 85,6  |
| peso máximo                                 | 95           | 70   | 95    |

Nesse caso o box-plot é uma "caixa" com os limites inferiores e superiores dados pelos quartis, um traço no interior dessa "caixa" para a mediana e uma traço vertical que vai do valor mínimo ao valor máximo.



|                                             | masc. e fem. | fem. | masc. |
|---------------------------------------------|--------------|------|-------|
| peso mínimo                                 | 44           | 44   | 60    |
| 1º quartil (25% com peso menor)             | 52           | 50   | 71,9  |
| 2 <sup>o</sup> quartil (50% com peso menor) | 58           | 55   | 75    |
| 3 <sup>o</sup> quartil (75% com peso menor) | 66           | 58   | 85,6  |
| peso máximo                                 | 95           | 70   | 95    |



|                                             | m | nasc. e fem.   | fem. | masc. |
|---------------------------------------------|---|----------------|------|-------|
| peso mínimo                                 |   | 44             | 44   | 60    |
| 1º quartil (25% com peso menor)             |   | 52             | 50   | 71,9  |
| 2 <sup>o</sup> quartil (50% com peso menor) | 4 | <del></del>    | 55   | 75    |
| 3 <sup>o</sup> quartil (75% com peso menor) |   | <del></del> 66 | 58   | 85,6  |
| peso máximo                                 |   | 95             | 70   | 95    |



|                                             | masc. e fem. | fem. | masc. |
|---------------------------------------------|--------------|------|-------|
| peso mínimo                                 | 44           | 44   | 60    |
| 1º quartil (25% com peso menor)             | 52           | 50   | 71,9  |
| 2 <sup>o</sup> quartil (50% com peso menor) | 58           | 55   | 75    |
| 3 <sup>o</sup> quartil (75% com peso menor) | 66           | 58   | 85,6  |
| peso máximo                                 | 95           | 70   | 95    |



|                                             | masc. e fem. | fem. | masc. |
|---------------------------------------------|--------------|------|-------|
| peso mínimo                                 | 44           | 44   | 60    |
| 1 <sup>º</sup> quartil (25% com peso menor) | 52           | 50   | 71,9  |
| 2 <sup>o</sup> quartil (50% com peso menor) | 58           | 55   | 75    |
| 3 <sup>o</sup> quartil (75% com peso menor) | 66           | 58   | 85,6  |
| peso máximo                                 | 95           | 70   | 95    |



|                                             | masc. e fem. | fem. | masc. |
|---------------------------------------------|--------------|------|-------|
| peso mínimo                                 | 44           | 44   | 60    |
| 1º quartil (25% com peso menor)             | 52           | 50   | 71,9  |
| 2 <sup>o</sup> quartil (50% com peso menor) | 58           | 55   | 75    |
| 3 <sup>o</sup> quartil (75% com peso menor) | 66           | 58   | 85,6  |
| peso máximo                                 | 95           | 70   | 95    |



|                                             | masc. e fem. | fem. | masc. |
|---------------------------------------------|--------------|------|-------|
| peso mínimo                                 | 44           | 44   | 60    |
| 1º quartil (25% com peso menor)             | 52           | 50   | 71,9  |
| 2 <sup>o</sup> quartil (50% com peso menor) | 58           | 55   | 75    |
| 3 <sup>o</sup> quartil (75% com peso menor) | 66           | 58   | 85,6  |
| peso máximo                                 | 95           | 70   | 95    |

**Lembrando...**vimos na <u>aula 2</u> - "<u>Organização dos dados:</u> <u>tabelas de freqüência e gráficos"</u>

Tabelas de frequência

freqüência absoluta  $-n_i$  freqüência relativa  $-f_i$  freqüência acumulada  $f_{ac}$ 

**Lembrando...**vimos na <u>aula 2</u> - "<u>Organização dos dados:</u> <u>tabelas de freqüência e gráficos"</u>

Tabelas de frequência — frequência frequência

frequência absoluta  $-n_i$  frequência relativa  $-f_i$  frequência acumulada  $f_{ac}$ 



Sugestão da Aula 2:

Organização dos dados: tabelas de freqüência e gráficos

Fazer exercícios do Capítulo 1da Referência [1]: "Noções de Probabilidade e Estatística", Marcos Nascimento Magalhães e Antonio Carlos Pedroso de Lima.

Sugestão da Aula 2:

Organização dos dados: tabelas de freqüência e gráficos

Fazer exercícios do Capítulo 1da Referência [1]: "Noções de Probabilidade e Estatística", Marcos Nascimento Magalhães e Antonio Carlos Pedroso de Lima.

#### e... lembrando que:

"O uso e a divulgação ética e criteriosa dos dados devem ser pré-requesitos indispensáveis e inegociáveis".

# Aula 2

#### **Professores**:

Otton Teixeira da Silveira Filho Regina Célia Paula Leal Toledo

# Organização dos dados: tabelas de freqüência e gráficos

#### Conteúdo:

- 2.1 Tabelas de frequência Exemplos
- 2.2 Gráficos Exemplos

$$\sum_{i=1}^{n} (X_i - \overline{X})^2$$

$$\sigma_X^2 \quad \overline{Y} = \frac{\sum_{i=1}^{n} y_i}{n}$$

$$A \cap B = \emptyset$$

