PATENT ABSTRACTS OF JAPAN

(11) Publication number:

2000-007838

(43) Date of publication of application: 11.01.2000

(51)Int.CI.		CO8L 21/00 B29D 30/38
		B60C 1/00
		COSK 3/18
		CO8K 3/34 CO8K 5/09
(21)Application numb	er : 10-180993	(71)Applicant : BRIDGESTONE CORP
(22)Date of filing:	26.06.1998	(72)Inventor: UCHINO OSAMU

(54) RUBBER COMPOSITION FOR COATING STEEL CORD AND STEEL CORD-RUBBER COMPOSITE PRODUCED BY USING THE COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To produce a rubber composition having excellent initial adhesivity and resistance to the deterioration of the adhesivity to steel cord by compounding a rubber component with a porous inorganic filler.

SOLUTION: The objective composition contains (A) a rubber component [preferably a rubber component containing \Box 50 wt.% of natural rubber and/or synthetic isoprene rubber] and (B) a porous inorganic filler (preferably aluminum hydroxide, aluminum oxide, clay, zeolite, calcium carbonate, etc.). The content of the component B is preferably 3–30 pts.wt. based on 100 pts.wt. of the component A. The composition preferably further contains an organic cobalt salt as an adhesion promoting agent in an amount of 0.1–0.2 pt.wt. in terms of metallic element based on 100 pts.wt. of the component A. The composition is preferably further incorporated with 3–8 pts.wt. of sulfur based on 100 pts.wt. of the component A. A composite composed of the composition and a steel cord is useful as a reinforcing material for automobile tire, etc.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2000 Japan Patent Office

UCHINO

DERWENT-ACC-NO: 2000-142659

DERWENT-WEEK: 200045

COPYRIGHT 1999 DERWENT INFORMATION LTD

TITLE: Rubber composition for coating steel cords -

comprises rubber

component, porous inorganic filler and optionally a cobalt

salt of an organic

acid

PATENT-ASSIGNEE: BRIDGESTONE CORP[BRID]

PRIORITY-DATA: 1998JP-0180993 (June 26, 1998)

PATENT-FAMILY:

PUB-NO PUB-DATE LANGUAGE

PAGES MAIN-IPC

JP 2000007838 January 11, 2000 N/A

004 C08L 021/00

Α

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO

APPL-DATE

JP2000007838A N/A 1998JP-0180993

June 26, 1998

INT-CL (IPC): B29D030/38; B60C001/00; C08K003/18;

C08K003/34;

C08K005/09; C08L021/00

ABSTRACTED-PUB-NO: JP2000007838A

BASIC-ABSTRACT: NOVELTY - A coating composition for steel

cords comprises: (A)

100 pts. wt. of a rubber component; (B) 3-30 pts. wt. of a

porous inorganic

filler; and optionally (C) a cobalt salt of an organic acid.

DETAILED DESCRIPTION - The porous inorganic filler (B) is at

least one kind of

substance selected from Al(OH)3, Al2O3, clay, zeolite, CaCO3

and MgCO3.

USE - (X) is used for coating steel cords.

ADVANTAGE - (X) has high initial adhesion and adhesion deterioration resistance to steel cords.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS:

. .. .

RUBBER COMPOSITION COATING STEEL CORD COMPRISE RUBBER COMPONENT POROUS
INORGANIC FILL OPTION COBALT SALT ORGANIC ACID

DERWENT-CLASS: All Al2 A95 E12 Ol1

CPI-CODES: A08-M01C; A08-R; A08-R05; A12-T01C; E31-P02D; E34-B02; E34-C02; E34-D03;

CHEMICAL-CODES:

Chemical Indexing M3 *01*

Fragmentation Code

A427 A960 C710 H714 H721 J0 J011 J1 J171 M210 M211 M212 M213 M214 M215 M216 M220 M221 M222 M223 M224 M225 M226 M231 M232 M233 M262 M281 M320 M411 M510 M520 M530 M540 M620 M630 M782 M903 M904 Q130 Q610 R042

Markush Compounds
200013-IOX01-K 200013-IOX01-M

Chemical Indexing M3 *02*

Fragmentation Code

A313 A940 C101 C108 C550 C730 C801 C802 C804 C805 C807 M411 M782 M903 M904 M910 Q130 Q606 Q610 R042 Specfic Compounds 02020K 02020M Registry Numbers 2020U

Chemical Indexing M3 *03*

Fragmentation Code

A313 A940 C108 C550 C730 C801 C802 C803 C804 C805 C807 M411 M782 M903 M904 M910 Q130 Q606 Q610 R042 Specfic Compounds 01544K 01544M Registry Numbers 1544U

Chemical Indexing M3 *04*
Fragmentation Code

A220 A940 C106 C108 C530 C730 C801 C802 C803 C805 C807 M411 M782 M903 M904 M910 Q130 Q606 Q610 R042 Specfic Compounds 01278K 01278M Registry Numbers 1278U Chemical Indexing M3 *05* Fragmentation Code A212 A940 C106 C108 C530 C730 C801 C802 C803 C805 C807 M411 M782 M903 M904 M910 Q130 Q606 Q610 R042 Specfic Compounds 01359K 01359M Registry Numbers 1359U Chemical Indexing M3 *06* Fragmentation Code A100 A111 A200 A313 A940 B114 B701 B712 B720 B831 C108 C802 C803 C804 C805 C807 M411 M782 M903 M904 Q130 Q606 Q610 R042 Specfic Compounds 07707K 07707M UNLINKED-DERWENT-REGISTRY-NUMBERS: 1278U; 1359U; 1544U; 1669U ; 1725U ; 2020U ENHANCED-POLYMER-INDEXING: Polymer Index [1.1] 018 ; R24073 D01 D02 D03 D12 D10 D51 D53 D59 D85 P0599 H0124 B5061 ; A999 A782 ; A999 A033 ; H0124*R Polymer Index [1.2] 018 ; ND01 ; K9449 ; Q9999 Q9267 Q9256 Q9212 ; B9999 B5301 B5298 B5276 ; K9574 K9483 ; K9552 K9483 ; K9676*R Polymer Index [1.3] 018 ; R05085 D00 D09 C* 4A ; G3441 D00 F80 Al 3A Si 4A O* 6A; R02020 D00 D67 F21 H* Al 3A O* 6A; R01544 D00 F20 Al 3A O* 6A; R01949 D00 F80 O* 6A Al 3A Si 4A ; R01278 D00 F44 C* 4A O* 6A Ca 2A ; R01359 D00 F44 Mg 2A C* 4A O* 6A ; A999 A237 ; A999 A771 ; B9999 B5221 B4740 Polymer Index [1.4] 018 ; R01725 D00 D09 S* 6A ; A999 A157*R

Polymer Index [1.5]
 018; D01 D61*R Co 8B Tr; A999 A146

Polymer Index [2.1]
 018; H0124*R

Polymer Index [2.2]
 018; ND00; Q9999 Q9256*R Q9212; K9892; B9999 B5301

B5298 B5276
 ; K9574 K9483; K9676*R

Polymer Index [2.3]
 018; G3189 D00 Fe 8B Tr; A999 A419; S9999 S1672

SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C2000-044646 Non-CPI Secondary Accession Numbers: N2000-106838

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-7838 (P2000-7838A)

(43)公開日 平成12年1月11日(2000.1.11)

(51) Int.Cl.7	識別記号	F I	テーマコード(参考)				
C08L 21	1/00	C 0 8 L 21/00	4 F 2 1 2				
B 2 9 D 30	0/38	B 2 9 D 30/38	4 J O O 2				
B60C 1	1/00	B 6 0 C 1/00 C					
C08K 3	3/18	C 0 8 K 3/18					
3	3/34	3/34					
	審査請求	未請求 請求項の数5 OL (全 4 頁)	最終頁に続く				
(21)出願番号	特願平10-180993	(71) 出願人 000005278					
		株式会社プリヂストン					
(22)出願日	平成10年6月26日(1998.6.26)	東京都中央区京橋1丁目10番1号					
		(72)発明者 内野 修					
		東京都東大和市南街 6 -21	- 2				
		(74)代理人 100078732					
		弁理士 大谷 保					
		Fターム(参考) 4F212 AA45 AA46 AB03	AB06 AB11				
		AB16 AB18 AH20	VA10 VD19				
		VD20 VL20					
		4J002 AC011 AC031 AC0	61 AC081				
		BB151 BB181 DE1	146 DE236				
		DJ006 DJ036 FAC	96 FD016				
		GJ01 GN00					

(54)【発明の名称】 スチールコードコーティング用ゴム組成物及びそれを用いたスチールコード-ゴム複合体

(57)【要約】

【課題】 スチールコードに対する初期接着性及び耐劣 化接着性を向上させたスチールコードコーティング用ゴム組成物、及びこの組成物とスチールコードとからなる スチールコードーゴム複合体を提供すること。

【解決手段】 (A) ゴム成分と(B) 多孔質無機充填 剤を含有するスチールコードコーティング用ゴム組成 物、及びこのゴム組成物とスチールコードとからなるス チールコードーゴム複合体である。

1

【特許請求の範囲】

(A)ゴム成分及び(B)多孔質無機充 【請求項1】 填剤を含有することを特徴とするスチールコードコーテ ィング用ゴム組成物。

【請求項2】 (B)成分の多孔質無機充填剤が、水酸 化アルミニウム、酸化アルミニウム、クレー、ゼオライ ト、炭酸カルシウム及び炭酸マグネシウムの中から選ば れた少なくとも一種である請求項1記載のスチールコー ドコーティング用ゴム組成物。

【請求項3】 (B)成分の多孔質無機充填剤の含有量 10 が、(A)成分100重量部当たり、3~30重量部で ある請求項1記載のスチールコードコーティング用ゴム 組成物。

【請求項4】 さらに、有機酸のコバルト塩を含有する 請求項1記載のスチールコードコーティング用ゴム組成

【請求項5】 請求項1ないし4のいずれかに記載のゴ ム組成物とスチールコードとからなるスチールコードー ゴム複合体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、スチールコードコ ーティング用ゴム組成物及びそれを用いたスチールコー ドーゴム複合体に関し、さらに詳しくは、スチールコー ドに対する初期接着性及び耐劣化接着性を向上させたス チールコードコーティング用ゴム組成物、及びこのもの とスチールコードとからなるスチールコードーゴム複合 体に関するものである。

[0002]

【従来の技術】一般に、自動車用タイヤやコンベアベル 30 トなどのゴム製品においては、その性能を向上させるた めに、スチールコードが補強材として使用されている。 特に自動車用タイヤについては、タイヤ走行による発熱 によりスチールコードとゴムとの接着層が破壊されれば 致命的なタイヤ故障の原因となるので、スチールコード とゴムとの間の接着性をさらに向上させることが望まれ る。従来、このスチールコードには、ゴムとの接着力を 高め、その補強効果を高めるために、通常黄銅メッキが 施されている。一方、このスチールコードと接するコー ティングゴム組成物には、ゴムと接着力を高めるため、 接着促進剤として、通常有機酸のコバルト塩が配合され ている。しかしながら、この有機酸のコバルト塩を多量 に用いる場合には、加硫直後の接着性、すなわち初期接 着性には優れるものの、ゴムの熱劣化とそれによる水の 生成を促進するため、耐劣化接着性に劣るという不都合 があった。また最近では、加硫中に、スチールコード上 の黄銅メッキとゴム層間に接着層を形成させるには適度 の水分を必要とすることがわかり、例えば接着促進剤と してコバルト塩を除く特定の有機酸金属塩と含水無機塩

2

されている(国際公開WO97/49776号公報)。 しかし、かかる方法においても、初期接着性と耐劣化接 着性における改良効果を発現するもののそのレベルは必 ずしも満足すべきものではない。

[0003]

【発明が解決しようとする課題】本発明は、このような 状況下で、スチールコードに対する初期接着性及び耐劣 化接着性を向上させたスチールコードコーティング用ゴ ム組成物、及びこのものを用いたスチールコードーゴム 複合体を提供することを目的とするものである。

[0004]

【課題を解決するための手段】本発明者らは鋭意研究を 重ねた結果、多孔質無機充填剤を配合したゴムが、スチ ールコードに対する初期接着性及び耐劣化接着性の双方 の向上に有効であることを見出した。本発明はかかる知 見に基づいて完成したものである。すなわち、本発明 は、(A)ゴム成分及び(B)多孔質無機充填剤を含有 することを特徴とするスチールコードコーティング用ゴ ム組成物を提供するものである。また、本発明は、上記 20 ゴム組成物とスチールコードとからなるスチールコード -ゴム複合体をも提供するものである。

[0005]

【発明の実施の形態】本発明のゴム組成物における (A) 成分であるゴム成分としては、天然ゴムや合成ゴ ムが用いられる。合成ゴムとしては、例えばブタジエン ゴム, イソプレンゴム, スチレン・ブタジエンゴム(S BR)、ブチルゴム、ハロゲン化ブチルゴムが好まし く、さらに臭素化ブチルゴム、パラメチルスチレン基を 有するブチルゴム(具体的にはイソブチレンとpーハロ ゲン化メチルスチレンとの共重合体等)、エチレン・プ ロピレン・ジエンゴム (EPDM) なども好適なものと して挙げることができる。本発明におけるゴム成分は、 スチールコードを補強材とするゴム製品の用途に応じ て、天然ゴム及び上記合成ゴムの中から、適宜一種又は 二種以上選択して用いられるが、該(A)成分として は、特に接着性及びゴム破壊特性などの面から、天然ゴ ム及び/又は合成イソプレンゴムを50重量%以上の割 合で含有するゴム成分が好適である。

【0006】一方、本発明のゴム組成物において、 (B) 成分として用いられる多孔質無機充填剤として は、多孔質であって吸湿性や吸水性を有するものであれ ばよく、特に制限はないが、例えば水酸化アルミニウ ム,酸化アルミニウム,クレー(Al2 O3 ·mSiO 2 · n H₂ ○), ゼオライト, 炭酸カルシウム及び炭酸 マグネシウムを好ましく挙げることができる。これらは 単独で用いてもよく、二種以上を組み合わせて用いても よい。このような多孔質無機充填剤は、その吸湿性や吸 水性により多少水分を含んでいるため、加硫時にこの水 分が放出されて、スチールコードとゴム相との間の接着 とを含有させたスチールコード接着用ゴム組成物が提案 50 層の形成に有効に作用し、初期接着性を向上させる。ま

た、水分が放出された多孔質無機充填剤は、経時による ゴム劣化に伴って生成する水分を吸収するので、水分に よる接着層の破壊が抑制され耐劣化接着性が向上するも のと考えられる。

【0007】本発明のゴム組成物においては、この

(B)成分の多孔質無機充填剤の含有量は、前記(A) 成分であるゴム成分100重量部当たり、好ましくは3 ~30重量部の範囲で選定される。この含有量が3重量 部未満では、初期接着性及び耐劣化接着性の向上効果が 充分に発揮されないおそれがあり、また30重量部を超 10 えるとその量の割には効果の向上が認められず、むしろ 他の物性が損なわれる原因となる。初期接着性や耐劣化 接着性の向上効果及び他の物性などを考慮すると、この (B)成分のより好ましい含有量は、5~10重量部の 範囲である。本発明のゴム組成物においては、所望によ り、従来スチールコードコーティング用ゴム組成物にお いて慣用されている各種接着促進剤を適宜含有させるこ とにより、従来これらを配合した場合の初期接着性およ び耐劣化接着性を一段と向上させることができる。この 接着促進剤としては、例えば有機酸の金属塩、特に有機 20 酸のコバルト塩が好ましく挙げられる。ここで、有機酸 としては、飽和、不飽和、あるいは直鎖状、分岐状のい ずれであってもよく、例えばネオデカン酸,ステアリン 酸、ナフテン酸、ロジン、トール油酸、オレイン酸、リ ノール酸、リノレン酸などが挙げられる。また、かかる 有機酸は金属が多価の場合はその一部をホウ素、ホウ酸 あるいはアルミニウムなどを含有する化合物と置換する こともできる。有機酸の金属塩の配合量は、ゴム100 重量部に対して、金属元素含有量として、0.1~0.2重 成物には、通常硫黄が含有される。この硫黄の含有量 は、前記(A)成分100重量部当たり、3~8重量部 の範囲が好ましい。この含有量が3重量部未満では接着 力発現の元となるCux S(スチールコードの黄銅メッ キ中の銅と硫黄との反応により生成する。)の生成に充 分な硫黄を提供することができず、接着力が不充分にな るおそれがある。また、8重量部を超えるとCux Sが 過剰に生成するため、肥大化したCux Sの凝集破壊が 起こり、接着力が低下するとともに、ゴム物性としての 耐熱老化性も低下する傾向がみられる。

【0008】さらに、本発明のゴム組成物には、前記各 成分以外に、ゴム業界で通常使用される配合剤を通常の 配合量で適宜配合することができる。具体的には、カー ボンブラックやシリカ等の充填剤、アロマオイル等の軟 化剤、ジフェニルグアニジン等のグアニジン類、メルカ プトベンゾチアゾール等のチアゾール類、N, N'ージ シクロヘキシルー2-ベンゾチアゾリルスルフェンアミ ド等のスルフェンアミド類、テトラメチルチウラムジス ルフィド等のチウラム類などの加硫促進剤、酸化亜鉛等 の加硫促進助剤、ポリ(2、2、4-トリメチルー1、

2-ジヒドロキノリン)、フェニル-α-ナフチルアミ ン等のアミン類などの老化防止剤等である。

【0009】これらのうち、カーボンブラックやシリカ などの充填剤は加硫ゴムの引張り強さ、破断強度、引張 応力、硬さなどの増加、及び耐摩耗性、引張り抵抗性の 向上などの補強剤として知られており、酸化亜鉛は脂肪 酸と錯化合物を形成し、加硫促進効果を高める加硫促進 助剤として知られている。また、本発明のゴム組成物が 適用されるスチールコードは、ゴムとの接着層を良好に するために黄銅、亜鉛、あるいはこれにニッケルやコバ ルトを含有する合金でメッキ処理されていることが好ま しく、特に黄銅メッキ処理が施されているものが好適で ある。スチールコードの黄銅メッキ中のCu含有率が7 5重量%以下、好ましくは55~70重量%で、良好で 安定な接着が得られる。なお、スチールコードの撚り構 造については特に制限はない。本発明は、また前記のス チールコードコーティング用ゴム組成物とスチールコー ドとからなるスチールコードーゴム複合体をも提供する ものであり、この複合体は、例えば自動車用タイヤやコ ンベアベルトなどの工業用ゴム製品の性能を向上させる ための補強材として好適に用いられる。

[0010]

【実施例】次に、本発明を実施例により、さらに詳しく 説明するが、本発明は、これらの例によってなんら限定 されるものではない。

比較例1

天然ゴム100重量部に対し、カーボンブラック〔東海 カーボン(株)製、N330]60重量部、酸化亜鉛2 重量部、加硫促進剤N, N'-ジシクロヘキシル-2-量部を配合することが好ましい。また、本発明のゴム組 30 ベンゾチアゾリルスルフェンアミド〔大内新興化学工業 (株)製、商品名:ノクセラーDZ]1重量部、老化防 止剤N-(1,3-ジメチルブチル)-N'-フェニル -p-フェニレンジアミン〔大内新興化学工業(株) 製、商品名:ノクラック6C〕1 重量部、硫黄5重量部 及び接着促進剤(ローヌプーラン社製、商品名:マノボ ンドC、有効成分: コバルト金属として22%) 0.7重 量部を配合し、ゴム組成物を調製した。

【0011】実施例1~3

比較例1の配合組成に、さらに第1表に示す量の水酸化 40 アルミニウムを加え、ゴム組成物を調製した。比較例1 及び実施例1~3で調製したゴム組成物について、以下 に示す方法により初期接着性及び耐劣化接着性を求め た。その結果を第1表に示す。

(1)初期接着性

黄銅メッキ (Cu:63重量%, Zn:37重量%) し たスチールコード (1×5構造、素線径0.25mm)を 12.5 mm間隔で平行に並べ、このスチールコードを両 側から各ゴム組成物からなるシートでコーティングし て、これを160℃×20分間の条件で加硫し、厚さ1 50 2.5 mmのサンプルを作製し、ASTM-D-2229

5

に準拠して、スチールコードを引抜き、その際の引抜き 力を測定し、比較例1の値を100として指数表示し た。数値が大きいほど良好である。

(2)耐劣化接着性

上記(1)と同様にして、160℃×20分間の条件で 加硫し、厚さ12.5mmのサンプルを作製し、これを空* *気中にて100℃で7日間放置して劣化させたのち、A STM-D-2229に準拠して、スチールコードを引 抜き、その際の引抜き力を測定し、比較例1の値を10 0として指数表示した。数値が大きいほど良好である。 [0012]

【表1】

			比較例 1	実施例 1	実施例 2	実施例3
水酸化	水酸化アルミニウム(重量部)		_	5	5 10	
- Avr	評 価	初期接着性	100	105	110	112
3 ₩		耐劣化接着性	100	125	132	130

(水酸化アルミニウムの重量部は、ゴム成分100重量部に対する値である。)

【0013】比較例2

比較例1において、接着促進剤(ローヌプーラン社製、 商品名:マノボンドC、有効成分:コバルト金属として 22%) の配合量を、0.7重量部から0.9重量部に変え たことを以外は、比較例1と同様にしてゴム組成物を調 製した。

実施例4~8

比較例1の配合組成に、さらに第2表に示す種類と量の※

※多孔質無機充填剤を加え、ゴム組成物を調製した。比較 例2及び実施例4~8で調製したゴム組成物について、 上記と同じ方法により初期接着性及び耐劣化接着性を求 めた。ただし、初期接着性及び耐劣化接着性ともに比較 例2の値を100として指数表示した。その結果を第2

20 表に示す。

[0014]

【表2】

l l		比較例2					
		ILAXIVA 2	4	5	6	7	8
	水酸化7ルミニウム	-	1 0	-	_	_	-
多孔質無機	酸化アルミニウム	-	_	10	_		_
充填剤	クレー	-	_	-	10	_	-
(重量部)	炭酸加沙ル	-		_		1 0	_
	炭酸7/ネンウム	-	_	_	_	_	10
評価	初期接替性	100	105	104	107	102	103
	耐劣化接着性	100	137	130	145	130	1 2 5

(多孔質無機充填剤の重量部は、ゴム成分100重量部に対する値である。)

[0015]

【発明の効果】本発明のスチールコードコーティング用 ゴム組成物は、スチールコードに対する初期接着性及び 耐劣化接着性に優れており、また、このゴム組成物とス★40

★チールコードとからなる本発明の複合体は、接着性能に 優れ、自動車用タイヤやコンベアベルトなどの工業製品 の補強材として好適に用いられる。

フロントページの続き

(51) Int. Cl.⁷

識別記号

FΙ

テーマコード(参考

CO8K 5/09

CO8K 5/09