Pregunta 1
Correcta
Puntúa 5,0 sobre
5,0

Marcar

pregunta

En el mercado actual se ofrece una variedad de vehículos deportivos y camionetas. Para muchos de los compradores es un factor importante el valor de reventa del vehículo. Se realizó un estudio donde se investigó el efecto que tiene el precio (X, en miles de dólares) sobre el porcentaje de reventa (Y) luego de dos años, de acuerdo a la clase de vehículo (V) con niveles 1: deportivo, 2: camioneta pequeña y 3: camioneta grande. Se tomó una muestra de un total de 36 vehículos (12 en cada clase).

TABLA 1. Parámetros Estimados

```
TABLA 2. Tabla de todas las regresiones posibles
                    SSE Cp Variables_in_model
   k R_sq adj_R_sq
1 1 0.5657 0.5530 461.70 77.42
                                             Χ -
2 1 0.2224 0.1995 826.73 163.93
                                                           TABLA 3. Valores críticos de la distribución f_{
m v_1,v_2} a un nivel de significancia lpha={
m af}
3 1 0.1909 0.1672 860.18 171.86
                                           X:V1
4 1 0.1596 0.1349 893.48 179.75
                                            V1
                                                            alfa v1 v2 f_Tab .... alfa v1 v2 f_Tab .... alfa v1 v2 f_Tab
5 1 0.1176 0.0916 938.20 190.35
                                           X:V3
                                                            0.02 1 30 6.038 .... 0.02 1 31 6.016 .... 0.02 1 32 5.996
6 2 0.7711 0.7573 243.31 27.66
                                          X V3
                                                            0.05 1 30 4.171 .... 0.05 1 31 4.160 .... 0.05 1 32 4.149
7 2 0.7548 0.7399 260.70 31.79
                                                                  1 30 3.284 .... 0.08 1 31 3.276 .... 0.08 1 32 3.269
1 30 2.881 .... 0.10 1 31 2.875 .... 0.10 1 32 2.869
                                         X X:V3
                                                            0.08
8 2 0.7386 0.7227 277.94 35.87
                                          X V1
                                                           0.10
                                                                  1 30 2.881 .... 0.10
9 2 0.6944 0.6759 324.93 47.01
                                         X X:V1
                                                            0.02 2 30 4.470 .... 0.02 2 31 4.450 .... 0.02 2 32 4.432
10 2 0.4327 0.3983 603.18 112.95
                                        V3 X:V3
                                                            0.05 2 30 3.316 .... 0.05 2 31 3.305 .... 0.05 2 32 3.295
11 2 0.2789 0.2352 766.62 151.69
                                        V3 X:V1
                                                            0.08 2 30 2.751 .... 0.08 2 31 2.743 .... 0.08 2 32 2.736
12 2 0.2581 0.2132 788.73 156.93
                                         V1 V3
                                                            0.10 2 30 2.489 .... 0.10 2 31 2.482 .... 0.10 2 32 2.477
13 2 0.2151 0.1676 834.47 167.77
                                       X:V1 X:V3
                                                            0.02 3 30 3.809 .... 0.02 3 31 3.791 .... 0.02 3 32 3.773
14 2 0.2023 0.1539 848.12 171.00
                                        V1 X:V1
                                                            0.05 3 30 2.922 .... 0.05 3 31 2.911 .... 0.05 3 32 2.901
15 2 0.1888 0.1396 862.49 174.41
                                        V1 X:V3
                                                            0.08 3 30 2.482 .... 0.08 3 31 2.474 .... 0.08 3 32 2.467
16 3 0.8187 0.8017 192.74 17.68
                                        X V1 V3 - 7
                                                            0.10 3 30 2.276 .... 0.10 3 31 2.270 .... 0.10 3 32 2.263
                                      X V1 X:V3
17 3 0.8096 0.7918 202.41 19.97
                                                            0.02 4 30 3.434 .... 0.02 4 31 3.416 .... 0.02 4 32 3.399
18 3 0.7983 0.7793 214.50 22.84
                                      X V1 X:V1
                                                            0.05 4 30 2.690 .... 0.05 4 31 2.679 .... 0.05 4 32 2.668
19 3 0.7962 0.7771 216.68
                         23.35
                                       X V3 X:V1
                                                            0.08 4 30 2.317 .... 0.08 4 31 2.309 .... 0.08 4 32 2.302
20 3 0.7828  0.7624 230.97  26.74
                                     X X:V1 X:V3
                                                            0.10 4 30 2.142 .... 0.10 4 31 2.136 .... 0.10 4 32 2.129
21 3 0.7730 0.7517 241.37 29.21
                                      X V3 X:V3
                                                            0.02 5 30 3.188 .... 0.02 5 31 3.170 .... 0.02 5 32 3.153
22 3 0.4892 0.4413 543.07 100.71
                                    V3 X:V1 X:V3
                                                                  5 30 2.534 .... 0.05 5 31 2.523 .... 0.05 5 32 2.512
23 3 0.4684 0.4186 565.18 105.95
                                     V1 V3 X:V3
                                                            0.08 5 30 2.205 .... 0.08 5 31 2.197 .... 0.08 5 32 2.189
24 3 0.3008 0.2353 743.36 148.18
                                      V1 V3 X:V1
                                                            0.10 5 30 2.049 .... 0.10 5 31 2.042 .... 0.10 5 32 2.036
25 3 0.2314 0.1594 817.12 165.66
                                    V1 X:V1 X:V3
26 4 0.8806 0.8652 126.93 4.08
                                  X V1 X:V1 X:V3
27 4 0.8748 0.8587 133.07 5.54
                                   X V1 V3 X:V1
28 4 0.8201 0.7968 191.31 19.34
                                    X V1 V3 X:V3
29 4 0.7992 0.7733 213.47 24.59
                                  X V3 X:V1 X:V3
30 4 0.5111 0.4480 519.81 97.20
                                 V1 V3 X:V1 X:V3
31 5 0.8809 0.8611 126.58 6.00 X V1 V3 X:V1 X:V3 -7
```

Preguntas y Opciones de respuesta para cada una (recuerde que solo una opción es correcta)

- a. Con la información suministrada por la Tabla 1 de Parámetros estimados de un modelo de Y en función de las predictoras X y V. ¿Cuál de las siguientes afirmaciones es correcta?
 - El modelo planteado con las variables usadas en este problema es:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 V 1_i + \beta_3 V 3_i + \varepsilon_i \operatorname{con} \varepsilon_i \stackrel{\text{iid}}{\sim} N(0, \sigma^2), \quad i = 1, 2, \dots, 36.$$

- El nivel de referencia adoptado en este modelo fue: la clase de vehículo 2: camioneta pequeña.
- \bigcirc La matriz X asociada a este problema, de acuerdo a la definición de variables es singular. \succeq
- Considere una prueba para decidir si al estudiar la relación entre el precio y el porcentaje de reventa luego de dos
 años, es importante considerar la clase del vehículo. ¿Cuél de las siguientes afirmaciones es correcta?
 - La hipótesis nula para la prueba es: $H_0: eta_2 = eta_3 = eta_4 = eta_5 = 0.$
 - ullet El valor crítico que sirve para establecer la región de rechazo es $f_{0.05,1,30}=4.171$.
 - igcup El valor calculado del estadístico de prueba es $F_0=79.42.$
- La decisión en la prueba es: se concluye que la relación entre el precio y el porcentaje de reventa no depende de la clase de vehículo.

c. Considere una prueba para decidir si las ecuaciones para cada nivel de la clase de vehículo obtenidas a partir del	
modelo planteado son paralelas. ¿Cuál de las siguientes afirmaciones es correcta?	
La decisión en la prueba es: se concluye que las ecuaciones para cada nivel de la clase de vehículo obtenidas a	
partir del modelo planteado son paralelas.	
\circ El valor crítico que sirve para establecer la región de rechazo es $f_{0.08,1,30}=3.284$.	
\odot El valor calculado del estadístico de prueba es $F_0=15.68$.	
$_{\odot}$ La hipótesis nula para la prueba es: $H_0:eta_4=eta_5=0.7$	
d. Considere una prueba para decidir si la relación entre el precio y el porcentaje de reventa luego de dos años, para las clases de camionetas son iguales o no. ¿Cuál de las siguientes afirmaciones es correcta?	
\odot El valor calculado del estadístico de prueba es $T_{0,5} = -1.239035.$	
$^{ ext{@}}$ La hipótesis nula para la prueba es: $H_0:eta_3=eta_5=0$:	
La decisión en la prueba es: la relación entre el precio y el porcentaje de reventa luego de dos años, para las clases de camionetas son iguales	
Al menos dos de las otras opciones son correctas.	
e. Suponga que se está usando el método Backward (eliminación hacia atrás) y se asume que la primera variable en salir es v3. A partir de este punto, si se da un paso más en el método, ¿Cuál de las siguientes afirmaciones es	
correcta?	
La segunda variable candidata a salir es la variable V1.	
Outsando un nivel de significancia del 8%, el valor crítico usado para la decisión es: $f_{0.08,1,32}=3.269$.	
Usando un nivel de significancia del 8%, la decisión en la prueba de significancia es: la segunda variable candidata a salir del modelo sale	
$^{\odot}$ El valor del estadístico de prueba en la prueba de significancia es: $F_0=16.07.5$	
I	
El gerente de ventas de una empresa distribuidora de partes de automóvil desea predecir para una región las ventas anuales	
totales. Él supone que: el número de tiendas al menudeo en la región que almacenan las partes producidas por la empresa	
tien, el número de autos registrados en la región car, el ingreso personal total ing, la antigüedad promedio de los carros de la región antig y el número de supervisores de ventas jefes son posibles predictores de las ventas en millones de dólares de	
cada región ven. Se tienen datos para 25 regiones.	
TABLA 1. Tabla de todas las regresiones posibles	
k R_sq adj_R_sq SSE Cp Variables_in_model 1 1 0.9211 0.9177 236.32 262.73 ing	
2 1 0.8159 0.8079 551.77 641.45 tien	
3 1 0.2065 0.1720 2377.88 2833.86 jefes 4 1 0.1980 0.1631 2403.53 2864.65 car	
5 1 0.0644 0.0237 2803,75 3345.15 6 2 0.9893 0.9884 31.95 19.36 cer ing	
7 2 0.9540 0.9498 07.88 146.54 ing jefes	
8 2 0.9478 0.9430 156.46 168.84 tien ing 9 2 0.9211 0.9140 236.32 264.73 ing antig	
10 2 0.8222 0.8060 532.89 620.78 tien jefes	
11 2 0.8188	
13 2 0.3179 0.2559 2044.14 2435.17 antig jefes 14 2 0.2530 0.1851 2238.59 2668.63 car jefes	
15 2 0.2136 0.1421 2356.57 2810.27 car antig	
17 3 0.9907 0.9894 27.80 16.38 car ing jefes	
18 3 0.9898 0.9884 30.52 19.65 tien car ing 19 3 0.9654 0.9605 103.61 107.40 tien ing jefes	
20 3 0.9565 0.9503 130.39 139.54 ing antig jefes	
21 3 0.9491 0.9419 152.40 165.97 tien ing antig - 22 3 0.8282 0.8036 514.90 601.18 tien car jefes -	
23 3 0.8229 0.7976 530.67 620.11 tien antig jefes 24 3 0.8192 0.7934 541.76 633.43 tien car antig	
- 25 3 0.3207 0.2237 2035.64 2426.97 car antig jefes	
26 4 0.9947 0.9937 15.83 4.01 tien car ing antig	
- 28 4 0.9911 0.9893 26.74 17.11 tien car ing Jefes -	
29 4 0.9656 0.9587 103.05 108.72 tien ing antig jefes 30 4 0.8282 0.7939 514.82 603.08 tien car antig jefes	
— 31 5 0.9947 0.9933 15.83 6.00 tien car ing antig jefes —	

TARIA 4 Valores of	e da la diet-ihié f	un nivel de significancia o — o f					
	s de la distribución f_{v_1,v_2} a $v_2 \dots af v_1 v_2 f_a$:	un nivel de significancia $lpha={ m af}$ f_v1_v2					
0.02 1 19 6.4	49 0.02 21 81 0.05 1 21	6.339					
0.08 1 19 3.4	21 0.08 1 21	3.384	_				
	90 0.10 1 21 40 0.02 2 21	2.961 4.740					
	22 0.05 2 21 93 0.08 2 21	3.467 2.855					
0.10 2 19 2.6	06 0.10 2 21	2.575	_				
0.05 1 20 4.3	91 0.02 1 22 51 0.05 1 22	6.292 4.301					
	02 0.08 1 22 75 0.10 1 22	3.369 2.949	_				
	88 0.02 2 22 93 0.05 2 22	4.698 3.443					
0.08 2 20 2.8	73 0.08 2 22	2.839	-				
0.10 2 20 2.5	89 0.10 2 22	2.561					
a. Suponga que se está usa	ndo el método Forward (se	elección hacia adelante) y que ya es	tán en el modelo las variables	Г			
ing y car. Si se da un pas	so más en el método, ¿Cuá	l de las siguientes afirmaciones es o	orrecta?				
La tercera variable o	candidata a entrar es: la var	iable jefes.					
Usando un nivel de	significancia del 2%, el valo	r crítico usado para la decisión es: f	0.02,1,22 = 6.292.	_			
 Usando un nivel de a entrar al modelo no en 		sión en la prueba de significancia es	la tercera variable candidata				
		de significancia es: $F_0=19.01$.		_			
			nrimer nace calié la variable				
		eliminación hacia atrás) y que en el las siguientes afirmaciones es corr					
El valor del estadíst	tico de prueba en la prueba	de significancia es: $F_0=18.56$.					
	candidata a salir es la varia						
		r crítico usado para la decisión es: f	0.02,1 $= 6.339.$				
		sión en la prueba de significancia es		L			
candidata a salir del mod				Γ			
			W 1	Maria V danda sa	mulere incluir upa vari	shla	
7. Considere un mo	delo de regresión de	una respuesta Y en funció	n de una predictora cuan s es correcta?	ntitativa X donde se	quiere incluir una vari	ible	
Market in Edit man	a a niveles 11 H2 C	a las signientes attituduone	3 63 COLLEGE				
cualitativa W co	n c niveles. ¿Cual di eneral con interaccio	ones considera que las ecuac	iones para los diferentes r				
(a) El modelo go	eneral con interaccio	ones considera que las ecuaciones de regresió	iones para los diferentes r	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	ones considera que las ecuaciones de regresió	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			
(a) El modelo go (b) Del modelo	n c niveles. ¿Cual de eneral con interacción planteado surgen c eneral con interacción	nes considera que las ecuaciones de regresión ones considera tanto cambiones considera cambiones cambiones considera cambiones considera cambiones cambiones considera cambiones cambi	iones para los diferentes r n. ios de intercepto como c	niveles de W sólo dif			