Package 'jjb'

October 13, 2022

Type Package

Title Balamuta Miscellaneous
Version 0.1.1
License GPL (>= 2)
Description Set of common functions used for manipulating colors, detecting and interacting with 'RStudio', modeling, formatting, determining users' operating system, feature scaling, and more!
<pre>URL https://github.com/coatless/jjb</pre>
<pre>BugReports https://github.com/coatless/jjb/issues</pre>
RoxygenNote 7.0.2
Encoding UTF-8
NeedsCompilation no
Author James Balamuta [aut, cre, cph] (https://orcid.org/0000-0003-2826-8458) Maintainer James Balamuta balamuta@illinois.edu>
Repository CRAN
Date/Publication 2020-01-08 16:10:07 UTC
Date/1 ubilcation 2020-01-08 10.10.07 01C
R topics documented:
jjb-package acc celsius_to_fahrenheit celsius_to_kelvin char_at circle_matrix convert_cols external_graphs fahrenheit_to_celsius fahrenheit_to_kelvin feature_scaling

2 jjb-package

	floor_and_cap	12
	int_to_hex	13
	is_rstudio	13
	is_whole	14
	is_windows	14
	kelvin_to_celsius	15
	kelvin_to_fahrenheit	15
	lagged	
	max n	
	mkdir	
	mse	
	pad number	
	require_linux	
	rgb_to_hex	
	rmse	
	shade	
	system_arch	23
	system_graphic_driver	
	tint	
	tr	
	url_title	
Index		27
jjb-	package jjb: Balamuta Miscellaneous	

Description

Set of common functions used for manipulating colors, detecting and interacting with 'RStudio', modeling, formatting, determining users' operating system, feature scaling, and more!

Author(s)

Maintainer: James Balamuta <balamut2@illinois.edu> (ORCID) [copyright holder]

See Also

Useful links:

- https://github.com/coatless/jjb
- Report bugs at https://github.com/coatless/jjb/issues

acc 3

acc

Accuracy of the Model

Description

Calculates the accuracy of the model by taking the mean of the number of times the truth, y, equals the predicted, \hat{y} .

Usage

```
acc(y, yhat)
```

Arguments

y A vector of the true y values yhat A vector of predicted \hat{y} values.

Value

The accuracy of the classification in numeric form.

Examples

```
# Set seed for reproducibility
set.seed(100)
# Generate data
n = 1e2

y = round(runif(n))
yhat = round(runif(n))
# Compute
o = acc(y, yhat)
```

celsius_to_fahrenheit Celsius to Fahrenheit Conversion

Description

Converts temperature recorded in Celsius to Fahrenheit.

Usage

```
celsius_to_fahrenheit(t_celsius)
```

celsius_to_kelvin

Arguments

t_celsius Temperature recorded in Celsius.

Value

A numeric vector.

Examples

```
celsius_to_fahrenheit(33)
celsius_to_fahrenheit(0)
```

celsius_to_kelvin

Celsius to Kelvin Conversion

Description

Converts temperature recorded in Celsius to Kelvin.

Usage

```
celsius_to_kelvin(t_celsius)
```

Arguments

 $t_celsius$

Temperature recorded in Celsius.

Value

A numeric vector.

```
celsius_to_kelvin(92)
celsius_to_kelvin(32)
```

char_at 5

char_at

Character at Position i

Description

Returns the character at location i inside the string.

Usage

```
char_at(x, index)
```

Arguments

x A character vector to extract position from.

index An integer between 1 and length n.

Value

A character vector of length index.

Author(s)

James J Balamuta

Examples

```
# Example string
s = "statistics"

# Single character
char_at(s, 1)

# Vectorized position
char_at(s, c(2, 3))
```

circle_matrix

Create a circle pattern within a matrix

Description

Takes a default matrix and embeds circles within the matrix.

Usage

```
circle_matrix(m, n, x.center, y.center, r, f = 1)
```

6 convert_cols

Arguments

m	A int that is the number of rows of the matrix
n	A int that is the number of the columns of the matrix.
x.center	A vector of x coordinate center position of the circle.
y.center	A vector of y coordinate center position of the circle.
r	A vector of integers denoting the different circle radii.
f	A vector of values that specify what the inside of the circles should be.

Value

A matrix with circles imprinted within its dimensions.

Author(s)

James Balamuta

Examples

```
# Generate a basic circle matrix
circle_matrix(10, 10, 3, 4, 2)
# Generate two circles within the matrix
circle_matrix(10, 20, c(3,6), c(4,6), c(2,2))
# Different fills
circle_matrix(10, 20, c(3,6), c(4,6), c(2,2), f = c(1,2))
```

 $convert_cols$

Convert Multiple Columns of a data. frame All at once conversion of a data. frame from current column types to alternates.

Description

Convert Multiple Columns of a data. frame

All at once conversion of a data. frame from current column types to alternates.

Usage

```
convert_cols(d, cast)
```

Arguments

d A data. frame that needs to have specific columns converted.

cast A string vector containing either: "n" (numeric), "c" (character), or "f"

(factor).

external_graphs 7

Value

A data. frame with converted column types.

Examples

```
n = 100

st = sample(LETTERS, n, replace = TRUE)
sr = sample(letters, n, replace = TRUE)
num = rnorm(n)

d = data.frame(x = st, y = num, z = sr, stringsAsFactors = FALSE)

# Convert all columns

o = convert_cols(d,c("f", "c", "f"))

# Convert a subset
d[, c(1, 3)] = convert_cols(d[, c(1, 3)], c("f", "f"))
```

external_graphs

Change Default Graphing Device from RStudio

Description

Checks to see if the user is in RStudio. If so, then it changes the device to a popup window.

Usage

```
external_graphs(ext = TRUE)
```

Arguments

ext

A logical indicating whether the graph should be done externally or internally in RStudio.

Details

Depending on the operating system, the default drivers attempted to be used are:

OS X: quartz()Linux: x11()Windows: windows()

Note, this setting is not permanent. Thus, the behavioral change will last until the end of the session. Also, the active graphing environment will be killed. As a result, any graphs that are open will be deleted. You will have to regraph them.

8 fahrenheit_to_celsius

Value

There is no return value. Instead, once finished, the function will cause a side effect to occur. See details for more.

Author(s)

James Balamuta

Examples

```
# Turn on external graphs
external_graphs()
# Turn off external graphs
external_graphs(FALSE)
```

fahrenheit_to_celsius Fahrenheit to Celsius Conversion

Description

Converts temperature recorded in Fahrenheit to Celsius.

Usage

```
fahrenheit_to_celsius(t_fahrenheit)
```

Arguments

t_fahrenheit Temperature recorded in Fahrenheit.

Value

A numeric vector.

```
fahrenheit_to_celsius(92)
fahrenheit_to_celsius(32)
```

fahrenheit_to_kelvin 9

fahrenheit_to_kelvin Fahrenheit to Kelvin to Conversion

Description

Converts temperature recorded in Fahrenheit to Kelvin.

Usage

```
fahrenheit_to_kelvin(t_fahrenheit)
```

Arguments

t_fahrenheit Temperature recorded in Fahrenheit.

Value

A numeric vector.

Examples

```
fahrenheit_to_kelvin(92)
fahrenheit_to_kelvin(32)
```

feature_scaling

Feature Scaling

Description

Scale features in a datasets.

Usage

```
feature_rescale(x, x_min = NULL, x_max = NULL)
feature_derescale(x_rescaled, x_min, x_max)
feature_norm(x, x_norm = NULL)
feature_denorm(x_norm_std, x_norm = NULL)
feature_standardize(x, x_mean = NULL, x_sd = NULL)
feature_destandardize(x_std, x_mean = NULL, x_sd = NULL)
```

10 feature_scaling

Arguments

x Numeric values

x_min Minimum non-normalized numeric value x_max Maximum non-normalized numeric value

 $x_rescaled$ Rescaled values of x. $x_rescaled$ Rescaled values of x.

x_norm_std Euclidean vector of normalized x values.

x_mean Mean of x values

x_sd Standard Deviation of x values

x_std Z-transformed x values

Details

The following functions provide a means to either scale features or to descale the features and return them to normal. These functions are ideal for working with optimizers.

Feature Scale Feature Descale feature_rescale feature_derescale feature_denorm feature_standardize feature_destandardize

Value

A numeric vector.

Feature Rescaling

Convert the original data x to x_{scaled} :

$$x[scaled] = (x - x[min])/(x[max] - x[min])$$

To move from the rescaled value x_{scaled} to the original value x use:

$$x = x[scaled] * (x[max] - x[min]) + x[min]$$

Feature Standardization

Convert the original data x to x_{std} :

$$x[std] = (x - avg[x])/(sigma[x])$$

To move from the standardized value x_{std} to the original value x use:

$$x = x[std] * sigma[x] + avg[x]$$

feature_scaling 11

Feature Normalization

Convert the original data x to x_{norm} :

$$x[norm] = (x)/||x||$$

To move from the normalized value x_{norm} to the original value x use:

$$x = x[norm] * ||x||$$

Author(s)

James Balamuta

```
# Rescaling Features
temperatures = c(94.2, 88.1, 32, 0)
temp_min = min(temperatures)
temp_max = max(temperatures)
temperatures_norm = feature_rescale(temp_min, temp_max)
temperatures_denorm = feature_derescale(temperatures_norm, temp_min, temp_max)
all.equal(temperatures, temperatures_denorm)
# Norming Features
x = 1:10
x_norm = sqrt(sum(x^2))
x_norm_std = feature_norm(x, x_norm)
x_recover = feature_denorm(x_norm_std, x_norm)
all.equal(x, x_recover)
# Standardizing Features
      = 1:10
x_{mean} = mean(x)
x_sd = sd(x)
x_std = feature_standardize(x, x_mean, x_sd)
x_recovery = feature_destandardize(x, x_mean, x_sd)
all.equal(x, x_recovery)
```

12 floor_and_cap

floor_and_cap

Floor and Cap a Numeric Variable

Description

Determine the floor and cap of a numeric variable by taking quantiles. Using the quantiles, values in the data found to be *lower* or *higher* than the floor or cap are replaced.

Usage

```
floor_and_cap(x, probs = c(0.025, 0.975))
```

Arguments

 \mathbf{x} A vector that has length N.

probs A vector containing two values between 0 and 1, with the first being less than

the second.

Value

A vector with the values floored and capped.

```
# One case version
n = 100

x = rnorm(n)

x[n - 1] = -99999
x[n] = 10000

y = floor_and_cap(x)

# Dataset example
d = data.frame(x, y = rnorm(n))
o = sapply(d, floor_and_cap)
```

int_to_hex 13

int_to_hex

Convert 0-255 to a Hex number

Description

This is a helper function for rgb_to_hex. This function takes a single R, G, or B numeric value and converts it to hex.

Usage

```
int_to_hex(n)
```

Arguments

n

An int

Value

A string of length 2.

Examples

```
int_to_hex(22)
```

is_rstudio

Is R Open in RStudio?

Description

Detects whether R is open in RStudio.

Usage

```
is_rstudio()
```

Value

A logical value that indicates whether R is open in RStudio.

Author(s)

James Balamuta

```
is_rstudio()
```

is_windows

is_whole

Integer Check

Description

Checks whether the submitted value is an integer

Usage

```
is_whole(x)
```

Arguments

Χ

A numeric value to check to see if it is an integer.

Value

A boolean value indicating whether the value is an integer or not.

Author(s)

James Balamuta

Examples

```
is_whole(2.3)
is_whole(4)
is_whole(c(1,2,3))
is_whole(c(.4,.5,.6))
is_whole(c(7,.8,9))
```

is_windows

Check for an Operating System

Description

Performs a check to determine the OS

Usage

```
is_windows()
is_macos()
is_linux()
is_sun()
```

kelvin_to_celsius 15

Value

Either TRUE or FALSE

Author(s)

James Joseph Balamuta

kelvin_to_celsius

Kelvin to Celsius Conversion

Description

Converts temperature recorded in Kelvin to Celsius.

Usage

```
kelvin_to_celsius(t_kelvin)
```

Arguments

t_kelvin

Temperature recorded in Kelvin.

Value

A numeric vector.

Examples

```
kelvin_to_celsius(92)
```

kelvin_to_celsius(32)

kelvin_to_fahrenheit Kelvin to Fahrenheit Conversion

Description

Converts temperature recorded in Celsius to Kelvin.

Usage

```
kelvin_to_fahrenheit(t_kelvin)
```

Arguments

t_kelvin

Temperature recorded in Kelvin.

lagged

Value

A numeric vector.

Examples

```
kelvin_to_fahrenheit(92)
kelvin_to_fahrenheit(32)
```

lagged

Lag Vector Values

Description

Provides a lagging mechanism for vector data.

Usage

```
lagged(x, lag = 1)
```

Arguments

x A vec of data.

lag An integer value.

Value

A vector with lagged values and NAs.

Author(s)

James Balamuta

Examples

```
x = rnorm(10)
```

lagged(x, 2)

max_n 17

max_n

Maxima and Minima n elements

Description

Obtain the Maximum or Minimum *n* elements from a vector.

Usage

```
max_n(x, n = 1L)
min_n(x, n = 1)
```

Arguments

x Data vector

n Number of observations to select

Details

The underlying function sorts the data using base::sort() and then extracts out the appropriate n-back or n-forward values.

As a result of the sorting procedure, this is an inefficient function.

Value

A vector containing the maximum/minimum of n elements.

```
 \begin{tabular}{ll} $x=1:10$ \\ \# Defaults to traditional max \\ \# This is more costly to compute than using the regular max function. \\ $max_n(x)$ \\ \# Retrieve top two observations (highest first) \\ $max_n(x, 2)$ \\ \# Missing values have no effect on the sorting procedure \\ $x[9] = NA$ \\ $max_n(x, 3)$ \\ \# Defaults to traditional min. \\ \# This is more costly to compute than using the regular min function. \\ $min_n(x)$ \\ $min(x)$ \\ \end{tabular}
```

18 mkdir

```
# Retrieve bottom two observations (lowest first) \min_n(x, 2)
# Missing values have no effect on the sorting procedure x[2] = NA
\min_n(x, 3)
```

mkdir

Make Directory

Description

Create a directory using either a relative path or an absolute path.

Usage

```
mkdir(dir, r = TRUE)
```

Arguments

dir A string indicating the directory to make.

r A boolean that indicates whether the directories should be made recursively

Value

New directory on file system

Author(s)

James Balamuta

```
# Make directory from working directory
mkdir("toad")

## This assumes the computer is on Windows and the C drive exists.
# Make directory from absolute path
mkdir("C:/path/to/dir/toad")
```

mse 19

mse

Mean Squared Error (MSE)

Description

Calculates the mean square of the model by taking the mean of the sum of squares between the truth, y, and the predicted, \hat{y} at each observation i.

Usage

```
mse(y, yhat)
```

Arguments

y A vector of the true y values yhat A vector of predicted \hat{y} values.

Details

The equation for MSE is:

$$\frac{1}{n}\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Value

The MSE in numeric form.

```
# Set seed for reproducibility
set.seed(100)
# Generate data
n = 1e2
y = rnorm(n)
yhat = rnorm(n, 0.5)
# Compute
o = mse(y, yhat)
```

20 require_linux

pad_number

Pad Numeric Numbers

Description

Add zeros before start of the number

Usage

```
pad_number(x)
```

Arguments

Χ

A vector

Value

A character vector that is padded to the length of the maximum entry.

Author(s)

James Balamuta

Examples

```
# Padding applied
pad_number(8:10)

# No padding applied
pad_number(2:3)

# Pads non-negative number with 0.
# This needs to be improved slightly...
pad_number(-1:1)
```

require_linux

Require a Specific Operating System

Description

Mandates the presence of an operating system

rgb_to_hex 21

Usage

```
require_linux()
require_windows()
require_macos()
require_sun()
```

Details

If any of these functions are called on the wrong operating system. A stop error is triggered and the function will fail.

Author(s)

James Joseph Balamuta

rgb_to_hex

Convert RGB Value to Hexadecimal

Description

This function converts an RGB value to the hexadecimal numbering system.

Usage

```
rgb_to_hex(R, G, B, pound = TRUE)
```

Arguments

R	A int that is between 0 and 255 for the Red value.
G	A int that is between 0 and 255 for the Green value.
В	A int that is between 0 and 255 for the Blue value.
pound	A bool that indicates whether a pound sign should be prepended to the hexadecimal.

Value

A string containing the hexadecimal information.

```
# Hexadecimal with pound sign
rgb_to_hex(255,255,255)
# Heaxadecimal without pound sign
rgb_to_hex(255,255,255,FALSE)
```

22 rmse

rmse

Root Mean Squared Error (RMSE)

Description

Calculates the root mean square of the model by taking the square root of mean of the sum of squares between the truth, y, and the predicted, \hat{y} at each observation i.

Usage

```
rmse(y, yhat)
```

Arguments

y A vector of the true y values yhat A vector of predicted \hat{y} values.

Details

The formula for RMSE is:

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}$$

Value

The RMSE in numeric form

```
# Set seed for reproducibility
set.seed(100)
# Generate data
n = 1e2
y = rnorm(n)
yhat = rnorm(n, 0.5)
# Compute
o = mse(y, yhat)
```

shade 23

shade

Shade an RGB value

Description

The function shades or darkens an RGB value by adding black to the values.

Usage

```
shade(rgb_value, shade_factor = 0.1)
```

Arguments

rgb_value

A vector with length 3×1 .

shade_factor

A double that ranges between [0, 1].

Value

A matrix with dimensions 3×1 .

Examples

```
shade(c(22, 150, 230), shade_factor = 0.5)
```

system_arch

System Architecture

Description

System Architecture

Usage

```
system_arch()
```

Value

Either "x64" or "x32"

24 tint

```
system_graphic_driver Natural Graphics Driver for Operating System
```

Description

Provides the default operating system graphics utility

Usage

```
system_graphic_driver()
```

Value

A string that is either:

```
 "quartz": if on MacOS "windows": if on Windows
```

• "x11": if on Linux or Solaris

Author(s)

James Balamuta

See Also

```
is_rstudio
```

Examples

```
# Returns a string depending on test platform
system_graphic_driver()
```

tint

Tint an RGB value

Description

The function tints or lightens an RGB value by adding white to the values.

Usage

```
tint(rgb_value, tint_factor = 0.2)
```

Arguments

```
rgb_value A vector with length 3 \times 1.
```

tint_factor A double that ranges between [0, 1].

tr 25

Value

A matrix with dimensions 3×1 .

Examples

```
tint(c(22, 150, 230), tint_factor = 0.5)
```

tr

Obtain the Trace of a Square Matrix

Description

Calculates and returns the trace of a square matrix.

Usage

tr(x)

Arguments

Χ

A matrix that is square e.g. $N\times N$

Value

A matrix with circles imprinted within its dimensions.

Author(s)

James Balamuta

```
# I_2 matrix
tr(diag(2))
```

26 url_title

url_title

Create a "safe" url title

Description

Takes a string, forces characters to lower case, then removes punctuation and switch spaces to instead of $_$

Usage

```
url_title(st)
```

Arguments

st

A string that needs to be a title in a url

Value

A string with the aforementioned modifications.

Author(s)

James Balamuta

```
url_title("My Name is Jaime!")
```

Index

```
acc, 3
                                                 min_n (max_n), 17
                                                 mkdir, 18
base::sort(), 17
                                                 mse, 19
celsius_to_fahrenheit, 3
                                                 pad_number, 20
celsius_to_kelvin, 4
                                                 require_linux, 20
char_at, 5
                                                 require_macos (require_linux), 20
circle_matrix, 5
                                                 require_sun (require_linux), 20
convert_cols, 6
                                                 require_windows (require_linux), 20
external\_graphs, 7
                                                 rgb_to_hex, 13, 21
                                                 rmse, 22
fahrenheit_to_celsius, 8
fahrenheit_to_kelvin, 9
                                                 shade, 23
feature_denorm(feature_scaling), 9
                                                 system_arch, 23
feature_derescale (feature_scaling), 9
                                                 system_graphic_driver, 24
feature_destandardize
                                                 tint, 24
        (feature_scaling), 9
                                                 tr, 25
feature_norm(feature_scaling), 9
feature_rescale (feature_scaling), 9
                                                 url_title, 26
feature_scaling, 9
feature_standardize (feature_scaling), 9
floor_and_cap, 12
int_to_hex, 13
is_linux (is_windows), 14
is_macos (is_windows), 14
is_rstudio, 13, 24
is_sun(is_windows), 14
is_whole, 14
is_windows, 14
jjb (jjb-package), 2
jjb-package, 2
kelvin_to_celsius, 15
kelvin_to_fahrenheit, 15
lagged, 16
max_n, 17
```