

Emanuel Isaque Cordeiro da Silva

Formulação de Ração para Ovinos

Formulação de Ração para Ovinos

Emanuel Isaque Cordeiro da Silva

Belo Jardim 2021

Formulação de Ração para Ovinos

Copyright © 2021 by Emanuel Isaque Cordeiro da Silva

Todos os direitos reservados

Impresso no Brasil / Printed in Brazil

Departamento de Nutrição Animal do IPA – Instituto Agronômico de Pernambuco Av. Gen. San Martin, 1371 - Bongi, Recife - PE

Presidente do Comitê Editorial

Múcio de Barros Wanderley

Membros do Comitê Editorial

Antônio Raimundo de Sousa

Editor-chefe

Josimar Gurgel Fernandes

Editores de Seção

Antonio Felix da Costa

Supervisão editorial

Almira Almeida de Souza Galdino

Departamento de Nutrição Animal

Dados de Catalogação

E81 Formulação de Ração para Ovinos [recurso eletrônico] / Emanuel Isaque Cordeiro da Sila – Belo Jardim: IPA, 2021.

Il. Color. PDF (estudos técnico e graduação)

ISSN 2446-8053 (online)

- 1. Formulação. 2. Ração. 3. Dietas. 4. Alimentos. 5. Ovinos.
- I. DA SILVA, Emanuel Isaque Cordeiro da Silva. II. Título.

CDD 221-1

APRESENTAÇÃO

O material *Formulação de Ração para Ovinos* é um material de apoio para os estudantes técnicos da área pecuária ou agropecuária e para os acadêmicos da área da ciência animal que necessitam de uma base teórico-científica para a formulação de dietas para ovinos das mais diferentes categorias, idades, estados fisiológicos etc.

A abordagem desse material é a apresentação das exigências nutricionais dos ovinos mediante as bases científicas como o NRC (2007); e, através de equações de predileções, apresentar as exigências nutricionais sob as condições brasileiras. Posteriormente, apresentar exemplos práticos de formulação de dietas mediante as técnicas matemáticas empregadas para a mesma. Será abordada situações reais onde um profissional pode se deparar no cotidiano de propriedades ovinocultoras.

O texto estruturado de forma sistêmica, dividido em três capítulos com as exigências nutricionais, composição dos principais alimentos e a formulação prática de dietas, possibilita que os conceitos e as etapas de elaboração de dietas que supram as necessidades dos animais sejam abordados de forma clara e objetiva, com a finalidade de servir de ferramenta para que os produtores rurais, técnicos, zootecnistas, nutricionistas etc. possam conseguir elaborar dietas para fornecer uma ração que supra os requerimentos dos ovinos e que possam, também, atuar como agentes multiplicadores dessas técnicas de elaboração e planejamento alimentar nas suas regiões de origem/atuação.

SUMÁRIO

EXIGÊNCIAS NUTRICIONAIS DOS OVINOS	1
Equações de predição do consumo de matéria seca (CMS)	1
Equações de predição das formas de energia para ganho de peso	2
Equações de predição das formas de proteína para ovinos	3
Equações de predição de energia para ovinos leiteiros	5
Equações de predição de proteína metabolizável para ovinos leiteiros	6
Tabelas de requerimentos nutricionais dos ovinos	7
ALIMENTOS PARA OVINOS1	7
FORMULAÇÃO DE RAÇÃO PARA OVINOS2	7
RAÇÕES PRONTAS PARA OVINOS	6
CONCLUSÕES	2
REFERÊNCIAS BIBLIOGRÁFICAS 6	3

Departamento de Nutrição Animal

EXIGÊNCIAS NUTRICIONAIS DOS OVINOS

Para a formulação de dietas, tanto para a espécie ovina quanto para outras espécies de interesse zootécnico, deve seguir um padrão, este que é estabelecido com o objetivo de facilitar o processo de elaboração de uma dieta. Um dos passos da elaboração é a determinação das exigências nutritivas do animal para que sirva de base para a ração final obter as mesmas quantidades da exigência, por exemplo, um animal que exige 0,25 kg de proteína, então balanceia-se uma dieta que contenha a mesma quantidade exigida.

As exigências nutricionais dos animais mudam em decorrência de diversos fatores, sendo os mais relevantes a raça, peso, idade, estado produtivo do animal, ambiente, disponibilidade de forragem etc. Das exigências nutricionais dos animais, as de maior destaque são os requisitos proteicos, energéticos, vitamínicos e minerais.

Existem diferentes fontes teóricas e científicas que dispõem de tabelas de requerimentos nutricionais da espécie ovina de acordo com diferentes fatores, sendo eles os de peso vivo; ganho ou perda de peso; estado produtivo ou improdutivo de carne, leite ou lã; animal em início, meio ou fim da gestação com um ou dois fetos; fêmeas paridas em lactação com uma ou duas crias ao pé etc.

Apresentarei aqui algumas equações para predizer as exigências líquidas nutricionais dos ovinos e as principais tabelas de requerimentos dos ovinos que servirão de base teórica para a formulação prática de rações para animais em diferentes situações.

Equações de predição do consumo de matéria seca (CMS)

Na tabela 1, são apresentadas as estimativas para o consumo diário de matéria seca para cordeiros em função da variação do peso vivo (PV) e do ganho de peso diário (GPD), considerando-se a seguinte equação:

CMS (kg/animal/dia) =
$$0.311 + [(0.0197 \text{ x PV}) + (0.682 \text{ x GPD})]$$

Utilizando essa equação para diferentes pesos e médias de ganho de peso diário montamos a tabela de CMS dos cordeiros:

Tabela 1: Estimativas do consumo diário de matéria seca em função do peso vivo e do ganho médio diário de peso de cordeiros

Peso vivo (kg)	GMD'	CMS (kg/dia)"	CMS (% PV)***
	0,15	0,81	4,04
	0,20	0,84	4,21
20	0,25	0,88	4,38
	0,30	0,91	4,55
	0,35	0,94	4,72
	0,15	0,91	3,62
	0,20	0,94	3,76
25	0,25	0,97	3,90
	0,30	1,01	4,03
	0,35	1,04	4,17
	0,15	1,00	3,35
	0,20	1,04	3,46
30	0,25	1,07	3,58
	0,30	1,11	3,69
	0,35	1,14	3,80
	0,15	1,10	3,15
	0,20	1,14	3,25
35	0,25	1,17	3,35
	0,30	1,21	3,44
	0,35	1,24	3,54

Fonte: CABRAL, et al., 2008.

Equações de predição das formas de energia para ganho de peso

Para a estimativa das exigências de energia líquida para ganho de peso dos animais, pode-se utilizar a seguinte fórmula:

$$Y = (2,0411 + (0,0472 \times PV)) \times GPD$$

Onde:

Y = energia líquida (Mcal) necessária para ganho de 1kg de peso vivo

PV= peso vivo dos animais

GPD = ganho médio diário em kg

Para a transformação das exigências em energia líquida para ganho de peso (ELg), foi considerada a eficiência de uso da energia para ganho de peso de 0,47. De posse dos valores de energia metabolizável de mantença (EMm) e energia metabolizável para ganho (EMg), foram obtidos a exigência em energia digestível (ED) e nutrientes digestíveis totais (NDT), dividindo-se o total de EM por 0,82 e a ED por 4,409 (tabela 2):

Tabela 2: Estimativas das exigencias de diferentes formas de energia em função do peso vivo e do ganho médio diário de peso de cordeiros

	CMD	T.I	T.I	EM	EM		
PV (kg)	GMD	ELm	ELg	EMm	EMg	NDT	
1 , (1.8)	(kg)	(Mcal)	(Mcal)	(Mcal)	(Mcal)		
	0,15	0,54	0,43	0,82	1,03	0,51	
	0,20	0,54	0,58	0,82	1,38	0,61	
20	0,25	0,54	0,72	0,82	1,72	0,70	
20	0,30	0,54	0,87	0,82	2,07	0,80	
	0,35	0,54	1,01	0,82	2,41	0,89	
	0,15	0,64	0,47	0,97	1,11	0,57	
	0,20	0,64	0,62	0,97	1,48	0,68	
25	0,25	0,64	0,78	0,97	1,85	0,78	
25	0,30	0,64	0,93	0,97	2,22	0,88	
	0,35	0,64	1,09	0,97	2,59	0,98	
	0,15	0,73	0,50	1,11	1,19	0,63	
	0,20	0,73	0,66	1,11	1,58	0,74	
20	0,25	0,73	0,83	1,11	1,98	0,85	
30	0,30	0,73	1,00	1,11	2,37	0,96	
	0,35	0,73	1,16	1,11	2,77	1,07	
	0,15	0,82	0,53	1,24	1,26	0,69	
	0,20	0,82	0,71	1,24	1,68	0,81	
25	0,25	0,82	0,88	1,24	2,10	0,93	
35	0,30	0,82	1,06	1,24	2,53	1,04	
	0,35	0,82	1,24	1,24	2,95	1,16	

Fonte: CABRAL, et al., 2008.

Equações de predição das formas de proteína para ovinos

Para estimar as necessidades líquidas em proteína em função do ganho de peso, pode-se utilizar a seguinte equação:

$$Y = 189,21 - (0,7652 \times PV) \times GPD$$

Onde:

Y = quantidade (g) de proteína líquida necessária para o ganho de 1 kg de peso vivo PV = peso vivo do animal, que dividido pela eficiência de 0,59 resultou na estimativa da proteína metabolizável para ganho

GPD = ganho médio diário em kg

Para estimar a proteína para cada kg de peso vivo de ganho é usada a fórmula:

$$Y = 189,21 - (0,7652 \times PV)$$

Por sua vez, essa equação foi convertida em proteína metabolizável (PMg) para ganho considerando-se a eficiência de 0,59. Uma vez obtida a quantidade total de proteína metabolizável (PMm + PMg), a mesma foi convertida a proteína bruta (g/animal/dia), a partir das seguintes equações:

Departamento de Nutrição Animal

Onde:

PMic = quantidade de proteína bruta microbiana que flui para o duodeno por dia

PDR = exigência em proteína degradada no rúmen

PNDR = exigência em proteína não degradada no rúmen

PB = exigência em proteína bruta

Através desse sistema de equações determinamos as estimativas das exigências proteicas dos cordeiros em função do peso vivo e do ganho de peso diário (tabela 3). Lembrando-se que essas equações de predição são para ovinos produtores de carne, isto é, para ovinos de corte. As estimativas e algumas equações de predição para ovinos produtores de leite serão apresentadas posteriormente.

Tabela 3: Estimativas das exigencias de diferentes formas de proteína em função do peso vivo e do ganho médio diário de peso de cordeiros

Peso vivo (kg)	GMD	PMm (g)	PLg (g)	PB (g)
	0,15	37,83	27,30	99,9
	0,20	37,83	36,39	118,3
20	0,25	37,83	45,49	136,7
	0,30	37,83	54,59	155,0
	0,35	37,83	63,69	173,4
	0,15	44,72	27,10	107,5
	0,20	44,72	36,13	125,6
25	0,25	44,72	45,16	143,8
	0,30	44,72	54,20	162,0
	0,35	44,72	63,23	180,1
	0,15	51,27	26,91	114,7
	0,20	51,27	35,88	132,6
30	0,25	51,27	44,85	150,6
	0,30	51,27	53,82	168,5
	0,35	51,27	62,79	186,5
	0,15	57,56	26,73	121,5
	0,20	57,56	35,64	139,3
35	0,25	57,56	44,55	157,0
	0,30	57,56	53,46	174,8
	0,35	57,56	62,37	192,6

Fonte: CABRAL, et al., 2008.

Equações de predição de energia para ovinos leiteiros Departamento de Nutrição Animal

De forma geral, os ovinos necessitam de energia para diversas funções, dentre elas para mantença, para movimentação ou trabalho (mudança de posição, por exemplo), para crescimento, gestação e lactação. As equações de predileção para estimar essas exigências são apresentadas abaixo e foram compiladas do AFRC (1993):

Mantença:

Metabolismo em Jejum

 $F(MJ/dia) = C1 \{0.25(PV/1.08)^{0.67}\}$ para animais de até 1 ano

 $F(MJ/dia) = C1 \{0.23(PV/1.08)^{0.67}\}$ para animais acima de 1 ano

C1 = 1,15 para machos inteiros; 1,00 para fêmeas e machos castrados

Estimativas de custo adicional de energia de atividade:

Atividade	Custo energético
Movimento horizontal	0,7 cal/kg/movim.
Movimento vertical	6,7 cal/kg/movim.
Em estação	2,4 kcal/kg/dia
Uma muda de posição	0,06 kcal/kg

Crescimento:

Valor de energia do ganho

VE (MJ/kg) = 2.5 + 0.35PV (Machos não Merino)

VE (MJ/dia) = 4,4+0,32PV (Castrados)

VE (MJ/dia) = 2,1+0,45PV (Fêmeas)

VE (MJ/kg) = 5,7 Mcal/kg de ganho (Fêmeas em lactação)

Gestação (últimos 3 meses):

Retenção diária de energia (EC)

Ec = 0.25 PVo (Et x $0.07372e^{-0.00643}$), onde:

t – número de dias para a composição

PVo – total de peso dos cordeiros ao nascimento (kg)

Lactação:

Valor de energia do leite

VEg (MJ/dia) = $0.0328G \times 0.0025P + 2.2033$, onde

G - conteúdo de gordura do leite (g/kg)

P – conteúdo de proteína do leite (g/kg)

Equações de predição de proteína metabolizável para ovinos leiteiros

Departamento de Nutrição Animal

Mantença:

PMm (g/dia) = 2,1875g/kgPV0,75 + 20,4 (Ovelhas)

PMm (g/dia) = 2,1875g/kgPV0,75 (Cordeiros (as) em crescimento)

Ganho de peso:

Valor de proteína do ganho

NPf (g/dia) = Δ PV (160,4 – 1,22PV + 0,0105PV2) para machos e castrados

 $NPf(g/dia) = \Delta PV (156,01 - 1,94PV + 0,0173PV2)$ para fêmeas

Gestação:

Valor de retenção de proteína líquida no feto e envoltórios fetais (PLc)

PLc (g/dia) = TPt x 0.06744e-0.00601t, onde t = número de dias para a concepção e:

Log10(TPt) = 4,928 - 4,873e-0,00601t

Lactação:

Valor de proteína líquida do leite (Pll)

Pll = 71,9 g/kg de leite

Tabelas de requerimentos nutricionais dos ovinos

Resumidamente, a composição do concentrado dos ovinos, de acordo com a categoria, e as quantidades a serem fornecidas/animal/dia é a seguinte:

Tabela 4: Composição do concentrado e quantidades fornecidas

1 .3							
	Fase	Proteína Bruta (%)	Nutrientes Digestivos Totais (%)	Quantidade (g/animal/dia)			
Machos até	Machos até o Abate		70	400 a 500			
	até 4 meses	16	80	400			
	entre 4 e 8 meses	12	60	400			
Fêmeas	Concepção ao Parto	12	60	300 a 600			
Temedo	Secas ou em Gestação	10	62	500 a 800			
	Lactação	15 a 16	70	500 g + 200 a 300 g/kg de leite produzido			
Reprodutores		15 a 16	55	500 a 600			
Animais Jov	ens - Aleitamento	-	-	20 a 40 g			

Fonte: CODEVASF, 2011.

Agora, vamos dividir os requerimentos dos ovinos de acordo com a categoria, conforme os dados obtidos no NRC (2007).

Tabela 5: Cordeiros desmamados precocemente, potencial de crescimento moderado3

PV	GPD	CMS	CMS	PB	NDT ²	Ca	P
(kg)	(g)	(kg/animal¹)	(% PV)	(g)	(g)	(g)	(g)
10	200	0,5	5	180	410	3,5	1,8
20	250	1	5	170	815	5,5	2,3
30	300	1,3	4,3	190	1000	6,8	3,2
40	350	1,5	3,8	200	1180	7,8	3,7
50	300	1,5	3	190	1180	6,8	3,7

1 – para converter matéria seca em matéria natural, divida o valor em MS pela porcentagem de MS do ingrediente. Por exemplo, em uma ração encontrou-se 100 g MS de milho, sabendo-se que a % de MS do milho é 90%, então: 100/0,9 = 112 g de milho com base na matéria natural.

 $2-453,\!6$ g de NDT equivale a 0,91 Mcal de energia digestível (ED).

Tabela 6: Cordeiros desmamados precocemente, potencial de crescimento rápido3

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
10	250	0,6	6	160	500	5	2,3
20	300	1,2	6	210	910	6,5	2,8
30	350	1,4	4,7	220	1100	7,5	3,2
40	400	1,5	3,8	230	1150	8,5	4,1
50	430	1,7	3,4	240	1270	9,5	6,8
60	350 📗)epar t amen	to ^{2,8} e N	u 240 ão	1270	8,2	4,5

Tabela 7: Terminação de cordeiros (idade entre 4 e 7 meses)3

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
30	300	1,3	4,3	190	950	6,5	3,5
40	270	1,6	4	185	1230	6,5	3,5
50	200	1,6	3,2	160	1230	5,5	3,5

3 – ganhos de peso máximos esperados.

Tabela 8: Borregas de reposição (para reprodução)4

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
30	230	1,2	4	185	770	6,5	3
40	180	1,4	3,5	175	910	5,9	3
50	120	1,5	3	140	860	5	2,5
60	100	1,5	2,5	140	860	4,5	2,5
70	100	1,5	2,1	150	860	4,5	3

Tabela 9: Borregos de reposição (para reprodução)4

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
40	330	1,8	4,5	250	1130	7,7	3,6
60	320	2,4	1 4 MA	270	1550	8,2	4,1
80	290	2,8	3,5	270	1770	8,6	4,5
100	250	3	3	270	1770	8,2	4,5

4 – esses cordeiros são destinados para a reprodução, portanto, o ganho máximo de peso e o acabamento são de importância secundária.

Tabela 10: Mantença de ovinos

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
50	10	1	2	100	550	2	2
60	10)epartamer	1,8e N	utHÇão	A590 _{ma}	2,5	2,5
70	10	1,2	1,7	120	680	2,5	2,5
80	10	1,3	1,6	130	730	3	3
90	10	1,4	1,5	140	770	3	3

Tabela 11: Flushing para ovinos (2 semanas pré-reprodução e primeiras 3 semanas de reprodução)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
50	100	1,6	3,2	150	950	5,5	3
60	100	1,7	2,8	155	1000	5,5	3
70	100	1,8	2,6	165	1050	5,5	3,5

80	100	1,9	2,4	175	1140	6	3,5
90	100	2	2,2	180	1180	6	4

Tabela 12: Primeiras 15 semanas de gestação (não-lactantes)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
50	30	1,2	2,4	115	680	3	2,5
60	30	1,3	2,2	125	730	3,5	2,5
70	30	1,4	2	135	770	4	3
80	30	1,5	1,9	140	820	4	3,5
90	30	1,6	1,8	150	870	4,2	4

Tabela 13: Últimas 4 semanas de gestação (taxa de parição entre 130 e 150%)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
50	180	1,6	3,2	175	950	6	4,5
60	180	1,7	2,8	185	1000	6	5
70	180	1,8	2,6	190	1050	6,5	5,5
80	180	1,9	2,4	200	1100	6,5	6,5
90	180	2	2,2	215	1150	6,5	6,5

Tabela 14: Últimas 4 semanas de gestação (taxa de parição entre 180 e 225%)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g) ~	(g)	(g)	(g)
50	220		3,4	195	1100	6,5	3,5
60	220	1,8	3	205	1180	6,8	4
70	220	1,9	2,7	215	1270	7,7	4,5
80	220	2	2,5	225	1320	8,2	6
90	220	2,1	2,3	235	1360	9,1	6,5

Tabela 15: Primeiras 6 a 8 semanas de lactação (com uma cria)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
50	-30	2,1	4,2	300	1360	9	6
60	-30	2,3	3,9	320	1500	9	6,5
70	-30	2,5	3,6	330	1650	9	6,8

80	-30	2,6	3,2	345	1680	9,5	7,3
90	-30	2,7	3	355	1730	9,5	7,7

Valores negativos de GPD indicam queda do consumo e, consequentemente, queda no ganho de peso.

Tabela 16: Primeiras 6 a 8 semanas de lactação (com duas crias)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
50	-60	2,4	4,8	390	1540	10,5	7,3
60	-60	2,6	4,3	405	1680	10,5	7,7
70	-60	2,8	4	420	1815	11	8,2
80	-60	3	3,8	435	1950	11,5	8,7
90	-60	3,2	3,6	450	2100	11,5	9,1

Tabela 17: Últimas 4 a 6 semanas de lactação (com uma cria)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
50	50	1,6	3,2	170	950	6	4,5
60	50	1,7	2,8	180	1000	6	5
70	50	1,8	2,6	190	1050	6,5	5,5
80	50	1,9	2,4	200	1100	6,5	6
90	50	2	2,2	215	1150	6,5	6,5

Departamento de Nutrição Animal

Tabela 18: Últimas 4 a 6 semanas de lactação (com duas crias)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
50	90	2,1	4,2	300	1360	9	6
60	90	2,3	3,8	320	1500	9	6,5
70	90	2,5	3,6	330	1630	9	7
80	90	2,6	3,2	350	1680	9,5	7,5
90	90	2,7	3	360	1730	9,5	8

Ovinos raças leves

Tabela 19: Primeiras 15 semanas de gestação (não lactantes)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
40	160	1,4	3,5	155	820	6,5	3,5
50	140	1,5	3	160	860	6,5	3,5
60	140	1,6	2,7	160	910	6,5	3,5
70	130	1,7	2,4	165	1000	6,5	3,5

Tabela 20: Últimas 4 semanas de gestação (taxa de parto esperada de 100 a 120%)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
40	180	1,5	3,8	185	950	6,5	3,5
50	160	1,6	// 3,2 \{	190	1000	6,5	3,5
60	160	1,7	2,8	190	1100	6,5	3,5
70	150	1,8	2,6	195	1150	7	4

Tabela 21: Últimas 4 semanas de gestação (taxa de parto esperada de 130 a 175%)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	\mathbf{A} (g)	(g)	(g)
40	230	1,5	3,8	200	1000	7,5	3,5
50	230	1,6	3,2	210	1050	8	3,5
60	230	1,7	2,8	215	1150	8,5	4
70	230 📗	epart8mer	102,6 N	u 215 ão	A150ma	8,5	4,5

Tabela 22: Primeiras 6 a 8 semanas de lactação com uma cria (desmame em 8 semanas)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
40	-50	1,7	4,2	260	1150	6	4
50	-50	2,1	4,2	280	1410	6,5	4,5
60	-50	2,3	3,8	295	1550	7	5
70	-50	2,5	3,6	310	1640	7,5	5,5

Tabela 23: Primeiras 6 a 8 semanas de lactação com duas crias (desmame em 8 semanas)

PV	GPD	CMS	CMS	PB	NDT	Ca	P
(kg)	(g)	(kg/animal)	(% PV)	(g)	(g)	(g)	(g)
40	-90	2,1	5,2	310	1450	8,5	5,5
50	-90	2,3	4,6	325	1590	9	6
60	-90	2,5	4,2	340	1730	9,5	6,5
70	-90	2,7	3,9	350	1860	9,5	7

Concentrações de nutrientes necessárias em rações de ovinos (% da MS)

Tabela 24: Concentrações de nutrientes para rações de ovinos com base na % da MS						
Mantença						
CMS 1,2 kg – PB 9,5% - NDT 55% - EM (Mcal/kg) 2,0 - Ca 0,4 g/kg – P 0,2 g/kg						
Flushing						
CMS 1,8 kg – PB 9% - NDT 60% - EM (Mcal/kg) 2,1 - Ca 0,5 g/kg – P 0,2 g/kg						
Gestantes primeiras 15 semanas						
CMS 1,4 kg – PB 9,5% - NDT 55% - EM (Mcal/kg) 2,0 - Ca 0,5 g/kg – P 0,2 g/kg						

Gestantes últimas semanas (queda de 40% no CMS)

CMS 1,8 kg – PB 11% - NDT 60% - EM (Mcal/kg) 2,1 - Ca 0,6 g/kg – P 0,25 g/kg

Gestantes últimas semanas (queda de 60% no CMS)

CMS 2,0 kg – PB 11,5% - NDT 65% - EM (Mcal/kg) 2,3 - Ca 0,65 g/kg – P 0,3 g/kg

Início da gestação (1 feto)

CMS 1,3 kg – PB 8% - NDT 55% - EM (Mcal/kg) 1,9 - Ca 0,45 g/kg – P 0,32 g/kg

Final da gestação (1 feto)

CMS 1,5 kg – PB 7% - NDT 65% - EM (Mcal/kg) 2,0 - Ca 0,55 g/kg – P 0,4 g/kg

Início da gestação (dois fetos)

CMS 1,5 kg – PB 8,5% - NDT 55% - EM (Mcal/kg) 1,9 - Ca 0,4 g/kg – P 0,28 g/kg

Final da gestação (dois fetos)

CMS 1,5 kg – PB 11% - NDT 75% - EM (Mcal/kg) 2,6 - Ca 0,55 g/kg – P 0,35 g/kg

Lactação (uma cria)

CMS 2,5 kg – PB 13,5% - NDT 65% - EM (Mcal/kg) 2,3 - Ca 0,65 g/kg – P 0,3 g/kg

Lactação (duas crias)

CMS 2,8 kg – PB 15% - NDT 65% - EM (Mcal/kg) 2,5 - Ca 0,75 g/kg – P 0,35 g/kg

Creep-feeding para cordeiros

CMS 0,6 kg – PB 26,5% - NDT 80% - EM (Mcal/kg) 2,9 - Ca 0,95 g/kg – P 0,4 g/kg

Cordeiros crescimento (GPD 270 g/dia)

CMS 1,18 kg – PB 16,5% - NDT 78% - EM (Mcal/kg) 2,8 - Ca 0,6 g/kg – P 0,25 g/kg

Cordeiros terminação (GPD 360 g/dia)

CMS 1,5 kg – PB 14,5% - NDT 78% - EM (Mcal/kg) 2,7 - Ca 0,7 g/kg – P 0,3 g/kg

Cordeiros terminação (GPD 270 g/dia)

CMS 1,6 kg – PB 12% - NDT 75% - EM (Mcal/kg) 2,7 - Ca 0,55 g/kg – P 0,22 g/kg

Borregas reposição

CMS 1,4 kg – PB 10% - NDT 65% - EM (Mcal/kg) 2,4 - Ca 0,45 g/kg – P 0,18 g/kg

Borregos reposição

CMS 2,4 kg – PB 11% - NDT 65% - EM (Mcal/kg) 2,3 - Ca 0,45 g/kg – P 0,18 g/kg

Reprodutores serviço

CMS 3,0 kg – PB 10% - NDT 65% - EM (Mcal/kg) 2,3 - Ca 0,4 g/kg – P 0,15 g/kg

Confinamento de ovinos

PB 14% - NDT 65% - Ca 0,8 % - P 0,4%

Adaptação de BELLUZO et al., 2001; BORGES & GONÇALVES, 2011 e NRC, 2007.

As exigências minerais dos ovinos, segundo autores, são apresentadas na tabela 25.

Tabela 25: Exigências minerais de ovinos

MACROMINERAIS	CHURCH (2002) 20 4 (%)	ZANETTI (2019) (%)
Ca	0,2-0,82	0,3-0,5
P	0,16-0,38	0,17-0,48
Mg	0,12-0,18	0.09 - 0.11
K	0,5-0,8	0,46
S	0,14-0,26	0,15-0,25
Na	0,09-0,18	0,1
Cl	0,09 - 0,18	0,1
MICROMINERAIS	CHURCH (2002) mg/kg	ZANETTI (2019) mg/kg
Со	0,1-0,2	0,1

Cu	7 – 11	4 – 7
Fe	30 - 50	7 - 90
I	0,1-0,8	0,5
Mn	20 - 40	8 - 24
Mo	0,5	5
Se	0,1-0,2	0,04-0,52
Zn	20 - 33	25 – 29

Energia metabolizável para ovinos

A energia metabolizável é a parte da energia bruta que não aparece em fezes, urinas e nos gases produtos da fermentação (principalmente metano). É determinada pela subtração das perdas de energia na urina e gases combustíveis da energia digestível (ED) consumida; para isso, deve-se coletar fezes, urinas e perdas gasosas. É um pouco mais precisa que a ED em termos de estimativa da energia disponível, porém mais caro para determiná-la. Compara-se com a energia proveniente do NDT menos a energia dos gases da fermentação. Determinamos através da fórmula:

EM = EB (energia bruta) – (energia perdida em fezes + energia perdida em gases da fermentação + energia perdida na urina)

Em muitos cálculos da formulação de dietas para animais de produção é utilizada a energia metabolizável no lugar do NDT. Logo, apresentamos as exigências de energia metabolizável dos ovinos em função do peso e da categoria fisiológica do animal.

Tabela 26: Exigências de energia metabolizável para ovinos

PV (kg)	EM (Mcal/dia) Mantença	EM (Mcal/dia) Flushing	EM (Mcal/dia) Início gestação 1 cria	EM (Mcal/dia) Início gestação 2 crias
40	1,48	1,63	1,89	2,20
50	1,75	1,92	2,21	2,51
60	2,00	2,21	2,51	2,89
70	2,25	2,48	2,80	3,22
80	2,49	2,74	3,08	3,52

PV (kg)	EM (Mcal/dia) Final gestação 1 cria	EM (Mcal/dia) Final gestação 2 crias	EM (Mcal/dia) Lactação 1 cria	EM (Mcal/dia) Lactação 2 crias
40	2,38	3,05	2,61	3,35
50	2,76	3,50	3,00	3,85
60	3,11	3,94	3,39	4,31
70	3,45	4,37	3,75	4,73
80	3,78	4,75	4,08	5,15

As exigências nutricionais dos ovinos servem de alicerce para a elaboração de uma dieta, uma vez que, diante os cálculos, é necessário estimar uma quantidade x de um dado alimento para suprir uma exigência final seja proteica, energética ou qualquer outra.

Essas tabelas de exigências dos ovinos servem de base após a caracterização do lote para que deve ser elaborada uma mistura. Por exemplo, um lote de cordeiros com 30 kg de peso vivo, quais são as exigências de cada animal? Basta consultar a tabela 7 deste manual para depois ser levantado os alimentos e a composição destes e começar a elaborar a dieta.

Agora que conhecemos os animais e suas exigências, vamos discorrer sobre o grupo e os principais ingredientes com potencial nutricional para alimentar os ovinos.

Departamento de Nutrição Animal

ALIMENTOS PARA OVINOS

De forma geral, sabemos que os alimentos dividem-se em dois grupos os alimentos volumosos e os concentrados. Os volumosos são aqueles que possuem carga nutritiva menor e que o animal deve consumir em maior quantidade para suprir suas exigências nutricionais, o teor de proteína desses alimentos é variável, mas, na maior parte, não ultrapassa os 20%; por sua vez, a quantidade de fibra é grande já que esse grupo engloba as forragens, pastagens, fenos, palhas, silagens, raízes, tubérculos etc. Os concentrados são aqueles com alta carga nutricional e que o animal, mesmo consumindo poucas quantidades (em torno de 1 kg), supre todas suas exigências nutricionais; estes são divididos em alimentos que fornecem mais energia do que proteína (energéticos) como o milho, e nos que fornecem mais proteína que energia (proteicos) como o farelo de soja.

Existem uma série de alimentos que podem ser utilizados na alimentação dos ovinos como as gramíneas forrageiras como o capim-andropogon, capim-braquiária, capim-buffel, capim tifton, estrela-africana, capim-massai, capim-mombaça, capim-colonião e capim-elefante; as leguminosas que são, muitas vezes, fontes alternativas de alimentos como o amendoim forrageiro, guandu, feijão andu, leucena, estilosantes, algaroba, gliricídia, sabiá etc.; os alimentos concentrados energéticos como a aveia, trigo, cevada, centeio, milho, sorgo, arroz e os subprodutos desses ingredientes; os alimentos concentrados proteicos como farelo de linhaça, farelo de girassol, farelo de amendoim, farelo de soja etc. Existem ainda, os alimentos provenientes da caatinga com alto potencial para a alimentação dos ovinos; a composição proteica desses alimentos e a parte comestível que pode ser fornecida aos ovinos é apresentada na tabela 27.

Tabela 27: Forragens nativas do nordeste brasileiro usadas como alimento

Forrageira	Teor de Proteína(*)	Partes Consumíveis	Forma de Consumo
Angico	10%	Folhas e frutos	Pastejo
Canafístula	19%	Folhas	Pastejo
Catingueira 15%		Folhas no início da brotação, vagens ou folhas secas	Pastejo ou fenação
Favela(**)	20%	Brotos, casca, se- mentes maduras	Pastejo
Faveira-de- bolota	11%	Flores e frutos	Pastejo
Jacazeiro	16%	Folhas e frutos	Pastejo
Jitirana	17%	Folhas e ramas	Pastejo ou fenação
Juazeiro	18%	Folhas e frutos	Pastejo
Jurema-branca	16%	Folhas e frutos	Pastejo
Jurema-preta	16%	Folhas e frutos	Pastejo
Mandacaru	10%	Ramos	Picada
Mororó	19%	Folhas	Pastejo ou fenação
Pau-ferro	20%	Folhas e frutos	Pastejo
Unha-de-gato	17%	Folhas e frutos	Pastejo
Umbuzeiro	18%	Folhas e frutos	Pastejo

Fonte: CODEVASF, 2011.

A composição bromatológica dos ingredientes utilizados na alimentação dos ovinos, que é indispensável para a elaboração de dietas que supram os requisitos é apresentada na tabela 28. É importante frisar que existem outros ingredientes com alto potencial nutricional para os ovinos.

Tabela 28: Composição bromatológica dos alimentos utilizados na alimentação de ovinos

Alimento	MS%	PB%	EE%	EM	NDT%	Ca%	P%
				(Mcal/kg)			
	Conc	entrados	s energét	ticos			
Arroz farelo desengordurado	88,2	16,8	1,66	2,1	24,9	0,09	1,8
Arroz farelo desfinitizado	90,8	18	1,65	-	-	0,31	2,04
Arroz farelo integral	88,9	13,4	16,4	3,3	87,5	0,11	1,73
Arroz farelo parboilizado	91,2	16,2	24,25	-	-	-	0,09
Arroz grão c/casca	89,1	8,2	3,9	2,0	56,1	0,09	0,08
Arroz grão s/casca	86,2	8,5	1,2	-	-	0,04	0,16

Continuação	MS%	PB%	EE%	EM (Mcal/kg)	NDT%	Ca%	P%			
Aveia grão	90,4	14,6	3,8	3,2	83,3	0,13	0,35			
Batata	29,1	3,1	0,3	3,1	84,6	0,33	0,08			
Batata doce	-	6	0,6	-	-	0,05	0,11			
Beterraba	14	2	0,4	-	-	0,18	0,12			
Cacau farelo	88,8	15,9	4,5	2,4	64,5	0,74	0,5			
Centeio grão	88,4	18,1	1,9	-	-	0,68	0,42			
Cevada grão	89,9	12,4	1,5	2,8	76,8	0,05	0,37			
Dendê torta	91	15,4	9,3	3,1	82,3	0,2	0,75			
Faveira vagem	77,3	11,2	1,25	-	72,5	-	-			
Mandioca raspa	87,7	2,8	0,5	3,0	82,2	0,21	0,07			
Milheto grão	88,1	12,1	3,2	-	-	-	-			
Milho grão/fubá	88	9	4	3,3	87,7	0,03	0,26			
MDPS	87,9	7,1	3,15	2,8	75,9	0,04	0,22			
Milho espiga silagem	55,2	8,1	3,7	3,2	85,9	0,05	0,27			
Milho gérmen farelo	89,9	11	22,9	3,9	103,8	0,03	0,42			
Milho grão reidratado silagem	65,8	9,3	4,7	3,75	99,6	-	-			
Milho silagem grão úmido	66,7	9,2	4,6	3,3	88,2	0,03	0,25			
Polpa cítrica	88,4	6,9	3,1	2,9	78,3	1,8	0,13			
Soja casca	90,1	12,6	2,2	2,7	72,5	0,52	0,16			
Sorgo grão	88	9,3	2,9	Animal 3,1	84,4	0,07	0,29			
Sorgo grão reidratado silagem	65,3	9,15	3,4	3,0	79,9	-	-			
Trigo farelo	87,6	16,7	3,6	2,95	77,3	0,17	1,01			
Trigo grão	89,1	14,2	1,45	-	-	-	-			
	Concentrados proteicos									
Algodão caroço	90,6	23,1	19,2	3,45	88,2	0,27	0,75			
Algodão farelo 28	89,8	28	2,0	2,8	68,1	0,26	0,77			
Algodão farelo 38	89,7	38	1,5	2,7	65,6	0,24	0,97			
Algodão farelo 42	90,5	42	1,6	3,0	69,8	0,22	0,96			
Algodão torta	90,4	29,6	9,5	3,0	75,6	0,28	0,58			

Continuação	MS%	PB%	EE%	EM (Mcal/kg)	NDT%	Ca%	P%
Amiréia	90,6	200	5,0	-	22	0,12	0,08
Babaçu farelo	90	20,6	1,6	2,75	71,9	0,13	0,36
Babaçu torta	90,8	19,3	8,0	3,0	78	0,15	0,69
Crambe farelo	89,1	35,9	1,2	3,1	73,9	0,29	0,47
Canola farelo	89,4	40,1	2,5	3,5	83,4	0,62	0,82
Colza farelo	91,2	40	5,2	-	-	0,65	1,34
Colza grão	93,3	23,6	43,7	-	-	0,24	0,81
Farinha de ostras	95,7	33,7	-	-	-	36,2	5,3
Feijão moído	89,6	24,2	1,5	3,2	80,8	0,54	0,43
Girassol farelo	90,2	31,4	1,9	2,9	71,1	0,3	0,9
Linhaça integral	90	21	34	-	-	0,25	0,5
Linhaça torta		32	3,5	\ -	75	0,4	0,8
Linhaça farelo	92	34	1,0	-	-	0,6	0,6
Mamona farelo	89,6	38	2,7	2,95	70,9	0,7	0,77
Mamona farelo detoxificado	89,2	38,1	1,5	2,9	69,3	1,46	0,65
Mamona torta	89,2	31,8	7,0	3,3	81,6	0,72	0,84
Mamona torta detoxificada	86,3	34	5,5	3,0	73,9	2,14	0,8
Milho glúten 60	90,6	60	2,8	3,8	83,9	0,05	0,44
Milho glúten farelo 21	88,8	21	2,8	3,0	76,7	0,16	0,7
Nabo forrageiro torta	91,9	37,3	18,1	3,7	91,2	0,36	1,71
Milho (DDGS)	91,2	31,8	8,2	Allillal	89	0,05	0,86
Resíduo de cervejaria	22,3	25,6	6,3	3,6	92,2	0,33	0,78
Milho - (DDG)	87,5	23,6	12,7	3,4	86,2	0,05	0,32
Milho (WDG)	31,8	32	6,7	-	93	0,05	0,35
Soja farelo	87	45	2,0	3,4	73	0,3	0,61
Soja farelo extrusado	96,7	41	10,6	3,7	89,7	0,07	0,57
Soja grão	92,8	37	18,8	4,1	87	0,25	0,58
Soja grão tostado	91,7	39,1	21	3,9	94,2	0,25	0,49
Ureia	97,9	280	-	-	-	-	-
	Coproc	lutos e/o	u subpr	odutos			
Arroz palha	89	4,4	-	-	-	-	-

Continuação	MS%	PB%	EE%	EM (Mcal/kg)	NDT%	Ca%	P%
Abacaxi desidratado	87,1	8,8	1,5	2,1	58,8	0,41	0,18
Acerola subproduto	84,2	11,7	2,4	1,85	51,2	0,41	0,18
Aveia palha	88,8	4,6	2,3	-	-	-	-
Batata doce folha	-	26,8	-	-	-	-	-
Batata doce rama	17,4	11,5	2,3	2,4	66,8	1,44	0,32
Cana-de-açúcar bagaço	91	2,0	0,69	1,7	46,6	0,21	0,07
Café casca	84,8	10,1	1,6	1,8	49,7	0,33	0,13
Capim elefante colmo	22	5,8	-	2,0	55,9	-	-
Caju subproduto suco	88,7	13,9	3,1	-	47,2	0,43	0,1
Maça bagaço	9,9	9,8	-	-	-	-	-
Mandioca casca	88,6	4,5	1,15	2,7	74,5	0,48	0,06
Maracujá subproduto	85,8	11,9	2,4	1,85	50,8	0,53	0,13
Trigo palha	90	3,9	-	-	-	-	-
Uva bagaço	35,2	15,9	-	_	-	-	-
		Forrage	ns secas				
Alfafa feno	85,8	18,7	2,0	2,1	66,4	1,17	0,33
Alfafa feno peletizado	90	25		-	-	-	-
Aveia feno	90	10	2,3	2,0	54	0,4	0,27
Aveia preta feno	87,7	9,9	1,75	-	-	-	-
Azevém feno	93	13,5	1,4	A mim ol	-	-	-
Brachiaria B. feno	88	4,2	1,2	Animal 1,9	54	0,33	0,11
Brachiaria D. feno	89	7	1,35	1,9	54,5	0,27	0,14
Cevada feno	90	9	2,1	2,1	57	0,3	0,28
Coast-cross feno	87	10,5	1,75	1,9	53	0,27	0,38
Capim elefante feno	87,3	6	1,8	1,8	52	0,24	0,18
Capim tifton 85 feno	88	9,9	1,45	2,2	57,7	0,33	0,27
Jureminha feno	88	15,9	2,0	1,9	51,7	-	-
Maniçoba feno	86	12	4,2	2,1	56,2	-	-
Trevo feno	89	16	2,2	2,1	57	1,73	0,24
Trigo feno	90	9	2,0	2,1	57	0,21	0,22
Triticale feno	90	10	-	2,0	56	0,3	0,26

Continuação	MS%	PB%	EE%	EM (Mcal/kg)	NDT%	Ca%	P%
	Sil	agens (p	ré-secad				
Alfafa silagem	30	18	3,0	2,0	55	1,4	0,29
Arroz silagem planta	37	8,5	-	-	-	-	-
Aveia preta silagem	23,4	11	2,9	-	-	-	-
Aveia silagem	35	12	3,2	2,2	60	0,34	0,3
Azevém silagem	22,4	10,6	1,9	-	-	-	-
Cana-de-açúcar silagem	25,7	3,5	1,7	1,9	54,8	0,3	0,05
Cana silagem 0-0,5% CAO	28,9	2,8	1,1	2,2	62	-	-
Cana silagem 0,5% ureia	28,6	10	-	-	-	-	-
Cana silagem 1% ureia	31	15	-	-	-	-	-
Cana silagem 1,5% ureia	29	18	1	-	-	-	-
Capim elefante silagem	27,5	5,5	2,2	1,7	50	0,31	0,2
Capim mombaça silagem	24,4	7,4	1,7	1,7	49,4	0,44	0,12
Cevada silagem	30	18	3,0	2,0	55	1,4	0,29
Estilosantes silagem	29,3	11,8	1,8	1,8	49	-	-
Girassol silagem	24,7	9,6	12,4	2,0	56,1	1,02	0,24
Milho silagem	31,1	7,2	2,9	2,3	63,8	0,28	0,19
Milheto silagem	19	15	3,8	2,3	62,7	-	-
Milho silagem sem espiga	21,3	6,4	1,4	1,9	53,6	-	-
Soja silagem	25,8	17,8	9,5	2,3	60	-	-
Sorgo silagem	32	je Nul	2,7	Animal 2,1	59	0,48	0,21
Sorgo forrageiro silagem	28,1	6,3	3,4	2,3	63,9	0,14	0,14
Sorgo silagem com tanino	27,6	7,1	2,1	2,2	61,7	-	-
Sorgo silagem sem tanino	28	7,4	2,2	2,2	61	-	-
Triticale silagem	26,3	14	1,4	2,1	58	0,66	0,4
Trigo silagem	33	12	3,2	2,1	59	0,4	0,28
	I	Forragen	s verdes				
Amendoim forrageiro	22,8	18,4	1,9	2,1	54,5	2,1	0,22
Cana-de-açúcar	28,9	2,8	1,5	2,3	64,5	0,24	0,08
Capim braquiária brizantha	34	6,9	2,0	1,8	52	0,31	0,11
Capim bb (46-60 dias)	20,8	9,5	4,0	2,0	55,7	0,71	0,47

Continuação	MS%	PB%	EE%	EM (Mcal/kg)	NDT%	Ca%	P%
Capim bb (61-90 dias)	24,9	6,5	4,0	2,1	58	0,46	0,38
Capim bb (91-120 dias)	27,7	4,8	1,2	1,9	54	0,58	0,17
Capim braquiária marandu	33,2	7,7	2,0	1,8	51,5	0,28	0,09
Capim bm (61-90 dias)	37,8	5,5	1,8	1,8	53	0,08	0,05
Capim braq. marandu outono	31	11,8	1,4	2,0	55	-	-
Capim bm primavera	27	11,3	2,0	2,1	58,7	-	-
Capim bm verão	29	12,3	1,8	2,0	54	-	-
Capim bb MG4	23	9,2	1,9	1,9	52,6	-	-
Capim bb MG4 (61-90 dias)	29	6,4	1,5	1,9	53	-	-
Capim bb piatã (61-90 dias)	34	4,7	1,7	1,9	55,8	-	-
Capim bb xaraés	23	9,3	1,5	2,0	56	0,6	0,09
Capim braquiária decumbens	28,5	6,7	1,8	1,8	51,5	0,4	0,1
Capim bd (61-90 dias)	27,8	7,2	2,1	1,7	49,3	0,3	0,19
Capim bb (91-120 dias)	30	5,7	2,1	1,9	55,2	0,3	0,2
Capim bd (121-150 dias)	43,7	5,1	2,1	2,0	56,7	0,72	0,28
Capim braquiária humidícola	28	7,4	2,5	1,9	54,8	0,38	0,12
Capim buffel (61-90 dias)	34,6	7,8	1,8	1,8	52,3	-	-
Capim coast cross	32,6	12,2	2,5	-	65,4	0,46	0,16
Capim colonião outono	29,4	14,7	1,3	-	-	-	-
Capim colonião primavera	23,4	14,6	1,6	A missol	-	-	-
Capim colonião verão	26,7	16,5	2,6	Animai	-	-	-
Capim elefante	21,7	7	2,3	1,7	50	0,36	0,23
Capim gordura	28	6,9	1,3	2,1	58	0,24	0,07
Capim massai (61-90 dias)	29,5	8	2,1	1,8	51,6	-	-
Capim mombaça	27	11	1,7	1,9	53	0,74	0,19
Capim mombaça (61-90 dias)	26,8	8,3	1,4	1,8	52	-	0,11
Capim setária (61-90 dias)	21,7	9	1,4	1,9	53,7	-	-
Capim sudão	19	12,9	2,9	2,0	55	-	-
Capim tanzânia	23,4	9,5	2,4	1,8	51	0,59	0,14
Capim tanzânia (61-90 dias)	31	5,6	1,7	1,8	53	-	-
Capim tifton 68	23	13,4	2,9	-	-	-	0,08

Continuação	MS%	PB%	EE%	EM (Mcal/kg)	NDT%	Ca%	P%
Capim tifton 85	27	12,9	2,0	1,4	39,5	0,54	0,5
Cunhã	29	16,6	5,1	2,6	69,5	-	0,18
Gliricídia	22	17	5,4	2,2	59	-	-
Leucena	32	21,2	3,9	2,7	69	0,86	0,18
Maniçoba	24,8	19,4	7,1	2,5	65,3	-	0,18
Milheto	20	12,2	3,1	2,2	60	0,72	0,26
Mororó	47,4	11,3	3,8	2,3	62	-	-
Palma miúda	11,3	4,1	2,6	2,3	64,2	3,84	0,22
Sabiá	43,6	12	4,3	2,3	62,2	-	-
Sorgo forrageiro	24	6,9	3,0	1,8	51,6	0,13	0,13
	Forrag	ens verd	es e cult	ivadas			
Alfafa	25	22	2,7	_	65	1,64	0,23
Aveia branca	90	15	-	-	-	-	-
Aveia preta	21	8	1,6	2,2	61,5	0,31	0,25
Aveia + Azevém (cultivada)	19	19	4,8	_	-	-	-
Azevém	15	15	3,6	-	68	0,43	0,28
Azevém pré-florescimento	17,5	15	1,7	2,4	66,6	0,42	0,3
Azevém início floresc.	22,4	12	1,5	2,3	63	0,45	0,27
Cana-de-açúcar caule	26	2,9	3,2	-	-	-	-
Cana-de-açúcar caule+folhas	24	de Nut	3,0	2,3	63,5	0,23	0,21
Centeio	25	13	1,5	2,2	60	0,26	0,29
Cornichão	21	18	2,0	2,3	63	0,92	0,27
Festuca	24	8,5	1,8	2,3	64	0,32	0,3
Trevo branco	16	19	2,1	2,4	64	1,1	0,37
Amendoim branco	36,6	16,8	2,4	2,4	67	1,23	0,18
Braquiarão	-	9	1,7	2,3	57	0,3	0,17
Capim colonião (20-60 dias)	-	11-5	-	-	61-47	$0,45^{1}$	0,242
Capim pangola	35	7,5	-	-	55	-	-
Guandu (40->90 dias)	-	21-13	-	-	-	-	-

Continuação	MS%	PB%	EE%	EM (Mcal/kg)	NDT%	Ca%	P%
	Fontes	alternati	ivas (No	rdeste)			
Coroa de frade	11	8	3,5	2,5	-	2,06	0,17
Facheiro	10,5	7,5	2,4	2,5	-	5,03	0,12
Mandacaru	14,5	3,5	1,8	2,5	-	3,06	0,07
Palma gigante	12	5	1,9	2,5	-	2,35	0,13
Xique-xique	13	6	1,3	1,7	48,3	3,12	0,07
Cana-de-açúcar caldo	23	0,3	-	2,0	-	0,01	0,02
Cana-de-açúcar levedura	89	35	1,9	2,0	-	0,48	0,73
Coco farelo	91	24	9,0	3,0	-	0,29	0,51
Capim buffel feno	87	4,5	1,2	1,2	-	0,21	0,06
Capim tifton feno	91	8,5	1,6	1,75	53	0,49	0,14
Cunhã feno	90,5	18	2,7	3,0	-	0,43	0,18
Erva-sal feno	89	9	1,6	-	-	0,77	0,04
Feijão bravo feno	80	11,5	3,3	3,0	51	-	-
Flor de seda feno	75	14	6	1,9	-	2,6	0,22
Guandu feno	-	14	2,7	-	-	-	0,11
Leucena feno	91	21	3,2	2,8	55	1,18	0,29
Mata-pasto feno	89	9,5	-/	-	-	1,75	0,12
Sorgo forrageiro feno	90,8	4,2		2,0	-	0,4	0,22
Canafístula	40,8	12,9	4,6	2,0	54	-	-
Capim elefante roxo	20	8,5	3,5	Allilliai	-	0,42	0,41
Géria	88	16	1,0	-	-	1,17	0,21
Feijão dos arrozais	24	17	5,0	2,7	69	2,6	0,04
Glicirídia casca	-	13	0,9	-	-	2,06	0,18
Glicirídia caule	-	5,6	0,4	-	-	0,44	0,07
Glicirídia folha	-	22,7	2,0	-	-	2,44	0,18
Guandu parte aérea	35	19	5,0	-	-	0,89	0,12
Jurema preta	35	12	9,0	-	-	0,67	0,25
Leucena caule	49,4	7,5	2,1	-	-	0,56	0,69
Leucena folha	35,5	24	2,2	-	-	2,18	0,2
Mandioca folha	45	22	5,5	2,5	-	0,91	0,23

Continuação	MS%	PB%	EE%	EM (Mcal/kg)	NDT%	Ca%	P%
Siratro	25	16	2,7	-	-	1,02	0,16
Umbuzeiro folha	15	15	8,6	-	-	1,29	0,22
Mandioca parte aérea silagem	12,3	18	3,6	2,0	53	1,21	0,14
Caju castanha	97,5	21,9	40,1	5,5	128,9	-	-
Caju castanha farelo amêndoa	95	23,5	47	3,5	-	0,6	0,25
Caju farelo pseudofruto	89,5	14,8	6,0	-	75	0,06	0,04
Coco amêndoa farelo	96	25	21,7	2,7	-	0,31	0,26
Goiaba subproduto	55	8	4,7	-	35,7	0,15	0,36
Mandioca bagaço	87,6	2	0,6	-	65	0,14	1,8
Maracujá subproduto	92	11	0,7	1,8	52	0,42	0,22
Melão subproduto	92	14	2,1	0,95	37	0,56	0,8
Milho palha	92,3	5,1	0,4	2,5	54	0,15	0,13

Fontes de minerais

Calcário	100% MS – 38% Ca e 1% Mg
Calcário calcítico	100% MS − 33,6% Ca
Calcário dolomítico	92% MS – 20,3% Ca e 9,6% Mg
Cloreto de potássio	100% MS – 39,6% K
Flor de enxofre	100% MS – 96% S
Fosfato bicálcico	100% MS – 23% Ca – 18% P – 1% Mg – 0,08% K e 0,13% Na
Fosfato tricálcico	99,6% MS – 40,2% Ca e 16% P
Iodato de potássio	100% MS − 59,3% I
Óxido de magnésio	98% MS – 0,58% Ca – 53,8% Mg e 0,03% Na
Sal comum	99% MS – 39,5% Na – 2,7% Mn e 9,9% Zn – 1,3% Cu
Selenito de sódio	100% MS – 45,6% Se
Sulfato de cobalto	100% MS - 20% Co
Sulfato de cobre	100% MS − 25,4% Cu
Sulfato de manganês	100% MS − 32,5% Mn
Sulfato de zinco	100% MS − 35% Zn

Fontes proteicas de origem animal³

Proibidos na alimentação de ruminantes dada a IN MAPA – 8/2004 Art. 1°

Fonte: DA SILVA, 2021.

FORMULAÇÃO DE RAÇÃO PARA OVINOS

A formulação de dietas para ovinos e caprinos de corte é análoga ao esquema de formulação para a espécie caprina e demais ruminantes. Sempre é necessário categorizar os animais para determinar situações como peso vivo do animal, estado fisiológico, isto é, se está produzindo ou não, idade etc.; posteriormente, faz-se necessário a busca pelas exigências nutricionais dos animais mediante a literatura, seja através das publicações do NRC, AFRC ou CSIRO; encontrada as exigências dos ovinos é necessário a avaliação de quais são os ingredientes disponíveis para a formulação da dieta e sua composição nutricional para ser utilizado de métodos matemáticos ou programações de computador para balancear as quantidades de cada um para que possam suprir a exigência do animal.

Aqui, apresentarei situações de formulação práticas, que o profissional poderá se deparar no cotidiano profissional, dos quais os animais serão alimentados com o uso do *creep-feeding* e *flushing*; e animais em mantença, confinados para o ganho de peso, sob pastejo, gestantes e, por fim, em lactação com uma ou duas crias ao pé.

Jepartamento de Nutrição Anima

Para a determinação das exigências dos animais utilizarei os valores aqui descritos que foram compilados do NRC, 2007 e descritos nas tabelas do capítulo 1. Para os alimentos serão usados os valores aqui presentes e compilados de diversos autores e descritos na tabela 28 do capítulo 2.

A abordagem matemática utilizada para formular as dietas serão explicadas pelos métodos de formulação do quadrado de Pearson simples, que balanceia apenas um nutriente, ou duplo, que balanceia mais de um nutriente; pelo método algébrico com duas equações e dois ingredientes, ou três equações e três ou mais ingredientes, do qual esse método é capaz de sempre balancear dois ou três nutrientes, sendo os usados a PB e NDT. Os cálculos serão explicados de forma didática visando a facilidade para todos.

EXEMPLO 1: formular uma ração para cordeiros com 12 dias de idade que exigem 20% de PB e 75% de NDT utilizando farelo de trigo, MDPS e farelo de soja. Deixar 1% para suplemento mineral e sal.

Como 1% deve ser reservado para a inclusão de sal mineral e sal, a ração a ser formulada deve ser de 99%.

1º passo: composição dos alimentos:

Ingredientes	MS %	PB %	NDT %
Farelo de trigo	89	16	75
MDPS	90	9	85
Farelo de soja	90	45	80

2º passo: montar o sistema de equações com 3 incógnitas onde x será farelo de trigo, y MDPS e z farelo de soja:

Equação MS: x + y + z = 99

Equação PB: 0.16x + 0.09y + 0.45z = 20

Equação NDT: 0.75x + 0.85y + 0.80z = 75

Sendo:

x farelo de trigo;

y milho desintegrado com palha e sabugo; e Nutrição Animal

z farelo de soja;

0,16 a % de PB do farelo de trigo;

0,09 a % de PB do MDPS;

0,45 a % de PB do farelo de soja;

0,75 a % de NDT do FT;

0,85 a % de NDT do MDPS;

0,80 a % de NDT do FS.

Sempre, para a resolução de um sistema de 3 equações, devemos juntar as equações 1 e 2, nesse caso as equações MS e PB, multiplicar os termos da equação 1 (MS) pelo termo da primeira incógnita da equação 2 (PB), que nesse caso é o de x e multiplicar

todos os termos da equação PB por -1 para obter a equação 4. Do mesmo modo, posteriormente pegamos as equações MS e NDT que serão multiplicadas do mesmo método e os resultados serão adicionados para a determinação da equação 5. Vamos resolver para elucidar melhor:

1º - determinação da equação 4 através de MS e PB:

Equação MS:
$$x + y + z = 99 (x \text{ por } 0.16)$$

Equação PB: $0.16x + 0.09y + 0.45z = 20 (x \text{ por } -1)$
 $0.16x + 0.16y + 0.16z = 15.84$
 $-0.16x - 0.09y - 0.45z = -20$
 $0.07y - 0.29z = -4.16 (equação 4)$

Cortamos a incógnita x que possui termos iguais e fazemos -0.09 + 0.16 = 0.07 e igual para os demais.

2° - determinação da equação 5 através de MS e NDT:

Equação MS:
$$x + y + z = 99 (x \text{ por } 0.75)$$

Equação PB: $0.75x + 0.85y + 0.80z = 75 (x \text{ por } -1)$
 $0.75x + 0.75y + 0.75z = 74.25$
 $-0.75x - 0.85y - 0.80z = -75$
 $-0.10y - 0.05z = -0.75 (\text{equação } 5)$

Cortamos a incógnita x que possui termos iguais e fazemos -0.85 + 0.75 = -0.10 e igual para os demais.

3° - determinação de z através das equações 4 e 5:

Equação 4:
$$0.07y - 0.29z = -4.16$$
 (x por -0.10)
Equação 5: $-0.10y - 0.05z = -0.75$ (x por 0.07)
 $-0.007y + 0.029z = 0.416$
 $-0.007y - 0.0035z = -0.0525$
 $0.0255z = 0.3635$
 $z = 14.25$

Cortamos a incógnita y que possui termos iguais e fazemos -0,0035 + 0,029 = 0,0255 que é o divisor de 0,3635.

4° - substituindo o valor de z (14,25) na equação 4 vamos determinar y:

$$0.07y - (0.29 \times 14.25) = -4.16$$

 $0.07y - 4.1325 = -4.16$
 $0.07y = -4.16 + 4.1325$
 $0.07y = -0.0275 \times -1$ (para o resultado ser positivo)

$$y = 0.39$$

5° - usando a equação MS para determinar x:

$$MS = x + y + z = 99$$

$$x = 99 - y - z$$

$$x = 99 - 0,39 - 14,25$$

$$x = 84,36$$

 3° passo: resolvendo o sistema em 3 passos com, as equações MS e PB para determinar a equação 4, com a MS e NDT para determinar a equação 5 e com as 4 e 5 para determinar z, encontramos z = 14,25; y = 0,39 e x = 84,36.

4º passo: verificar a ração:

Os valores encontrados no sistema de equação refletem a quantidade de MS dos ingredientes. Para calcular o valor dos ingredientes com base na matéria natural, fazemos a divisão da quantidade de MS pela porcentagem de MS do ingrediente, desta forma:

- matéria natural dos ingredientes, tal qual será misturada à ração:

Farelo de trigo: 84,36/0,89 = 94,8 kg

MDPS: 0.39/0.9 = 0.43 kg

Farelo de soja: 14,25/0,9 = 15,83 kg

Suplemento mineral e sal: 1/1 (como exemplo um suplemento com 100% de MS) = 1 kg

- calcular a % dos ingredientes: a soma com base na matéria natural é 112,06, então:

Farelo de trigo: $94.8/112,06 \times 100 = 84.6\%$

MDPS: $0,43/112,06 \times 100 = 0,4\%$

Farelo de soja: $15,83/112,06 \times 100 = 14,1\%$ Suplemento e sal: $1/112,06 \times 100 = 0,9\%$

- verificar a proteína bruta dos ingredientes:

Farelo de trigo:

84,36 kg ----- x% PB

 $x = 84,36 \times 16/100$

x = 13,5%

MDPS: do mesmo modo, teremos: $0.39 \times 9/100 = 0.1\%$

Farelo de soja: teremos: $14,25 \times 45/100 = 6,4\%$

A soma das proteínas é 20%, a exigência foi suprida.

- verificar o NDT dos ingredientes:

Farelo de trigo:

100 kg ----- 75% NDT

84,36 kg ----- x% NDT

 $x = 84,36 \times 75/100$

x = 63,27%

MDPS: $0.39 \times 85/100 = 0.33\%$

Farelo de soja: $14,25 \times 80/100 = 11,4\%$

A soma do NDT é 75%, a exigência foi suprida.

Verificando os resultados no quadro:

PMS kg e	MN kg	% final	PB %	NDT %
84,36	94,8	84,6	13,5	63,27
0,39	0,43	0,4	0,1	0,33
14,25	15,83	14,1	6,4	11,4
1	1	0,9	-	-
100	112,06	100	20	75
100	-	100	20	75
-	-	-	-	-
	84,36 0,39 14,25 1 100	84,36 94,8 0,39 0,43 14,25 15,83 1 1 100 112,06 100 -	84,36 94,8 84,6 0,39 0,43 0,4 14,25 15,83 14,1 1 1 0,9 100 112,06 100 100 - 100	84,36 94,8 84,6 13,5 0,39 0,43 0,4 0,1 14,25 15,83 14,1 6,4 1 1 0,9 - 100 112,06 100 20 100 - 100 20

O fornecimento da ração deverá ser à vontade.

EXEMPLO 2: formular dieta para ovinos da raça Dorper em mantença com média de 70 kg PV. Os alimentos disponíveis na propriedade são cana-de-açúcar com 1% de ureia, raspa de mandioca e farelo de girassol. O animal em mantença ganha cerca de 10 g/dia de PV. Deixar ER de 1,5% para suplemento mineral e sal.

1º passo: exigências nutricionais do animal:

Exigência	CMS g	PB g	NDT g	Ca g	Рg
TOTAL	1100	110	660	4	3
TOTAL %	100	10	60	0,36	0,27

2º passo: composição dos alimentos disponíveis:

Ingrediente	MS %	PB %	NDT %	Ca %	P %
Cana e ureia	30	/// 11 ()	58	0,21	0,06
Raspa de mandioca	88	3	74	0,15	0,8
Farelo de girassol	90	45	65	0,6	0,9
Calcário	100	<u>-</u>	- +	38	-
Fosfato bicálcico	100	_	. -/	23	18

3º passo: montar o sistema de resolução com 3 equações e 3 incógnitas para determinar as quantidades de x raspa, y cana com ureia e z farelo de girassol:

Equação MS:
$$x + y + z = 98,5$$

Equação MS: x + y + z = 98,5Equação PB: 0.03x + 0.11y + 0.45z = 10

Equação NDT: 0.74x + 0.58y + 0.65z = 60

4º passo: da resolução, análoga ao exemplo 1, encontramos 17,2% de raspa de mandioca, 79,7% de cana com ureia e 1,6% de farelo de girassol.

5° passo: 98,5% de um CMS de 1100 g equivale a 1083,5 g, logo, calculamos a quantidade dos ingredientes para esse consumo:

Raspa: 1100 x 17,2% = 189,2 g MS

Cana com ureia: $1100 \times 79,7\% = 876,7 \text{ g MS}$ Farelo de girassol: $1100 \times 1,6\% = 17,6 \text{ g MS}$

A soma das quantidades é 1083,5 g MS que corresponde a 98,5% de 1100 g.

6º passo: verificação da ração:

Ingrediente	MS g	PB g	NDT g	Ca g	Рg
Raspa	189,2	5,7	140	0,3	1,5
Cana	876,7	96,4	508,5	1,8	0,5
Farelo	17,6	7,9	11,5	0,1	0,2
ER	-	-	-	-	-
TOTAL	1083,5	110	660	2,2	2,2
Exigência	1100	110	660	4	3
DÉFICE	16,5	-	-	1,8	0,8

7º passo: a proteína e a energia foram balanceadas, agora vamos ao ajuste mineral com a adição de fosfato bicálcico (18% de P e 23% Ca) e calcário (38% Ca) para suprir o défice de Ca e P:

 $x = 0.8 \times 100/18 = 4.5 \text{ g}$ de fosfato bicálcico supre os 0.8 g de P

Como o fosfato possui Ca, vamos ver quantos g do mineral existem em 4,5 g:

Como há défice de 1,8 g de Ca na ração e o fosfato possui 1 g de Ca, o novo défice de Ca é 0,8 g, logo:

 $x = 0.8 \times 100/38 = 2.1 \text{ g de calcário supre os } 0.8 \text{ g de Ca}$

Para P: 4,5 g de fosfato possui 0,8 g de P e 1 g de Ca

Para Ca: 2,1 g de calcário possui 0,8 g de Ca

8º passo: composição final da dieta:

Ingrediente	MS g	MN g	% final	PB g	NDT g	Ca g	Рg
Raspa	189,2	215	6,8	5,7	140	0,3	1,5
Cana	876,7	2923	92,3	96,4	508,5	1,8	0,5
Farelo	17,6	19,6	0,6	7,9	11,5	0,1	0,2
Fosfato	4,5	4,5	0,2	-	-	1,0	0,8
Calcário	2,1	2,1	0,1	-	-	0,8	-
TOTAL	1090,1	3164,1	100	110	660	4	3
Exigência	1100	-	100	110	660	4	3
DÉFICE	9,9	-	II MA	77.	-	-	-

Por fim, para um ovino Dorper de 70 de kg PV em mantença são necessários o fornecimento de 3 kg de cana-de-açúcar com 1% ureia para a ração volumosa e uma mistura concentrada composta por 220 g de raspa de mandioca, 20 g de farelo de girassol, 5 g de fosfato bicálcico e 2,5 g de calcário para cada animal/dia.

Poderá ser adicionado sal comum à ração para usar os 10 g de MS que sobram. A relação Ca:P da dieta é de 1,3:1.

EXEMPLO 3: formular dieta para fêmeas que encontram-se magras e estão próximas da estação de monta. A estratégia nutricional é a utilização do *flushing* que objetiva a administração suplementar de concentrado para maximizar a taxa de concepção. O lote possui 10 ovelhas com 50 kg de PV que estão ganhando cerca de 100 g de PV/dia. Por fim, calcule o total de alimentos necessários para as 10 ovelhas durante um período de 3 semanas, ou 20 dias. Os alimentos disponíveis para a formulação são bagaço de cana, MDPS e farelo de soja. Deixar 2% de ER para suplemento mineral e sal.

1º passo: determinação das exigências nutricionais:

Exigência	CMS g	PB g	NDT g	Ca g	Рg
Total	1600	152	945	6	3
TOTAL %	100%	9,5%	59%	0,38%	0,19%

20	• ~	1	1.	1'	, .
2° passo: 0	composição	dos	alimentos	dispo	niveis:

Ingrediente	MS %	PB %	NDT %	Ca %	P %
Bagaço	90	2	47	0,21	0,06
MDPS	88	8	72	0,1	0,2
Farelo de soja	90	50	84	0,29	0,64
Calcário	100	-	-	38	-
Fosfato bicálcico	100	-	-	23	18

3º passo: montar o sistema de 3 equações e 3 incógnitas onde x é bagaço, y MDPS e z farelo de soja, de modo que uma dada quantidade supra os requerimentos de 0,152 kg de PB (9,5%) e 0,945 kg de NDT (59%). Podemos solucionar de duas formas:

1^a forma:

Equação MS:
$$x + y + z = 98$$

Equação PB:
$$0.02x + 0.08y + 0.50z = 9.5$$

Equação NDT:
$$0,47x + 0,72y + 0,84z = 59$$

2^a forma:

Equação MS:
$$x + y + z = 1,568$$

Equação PB: 0.02x + 0.08y + 0.50z = 0.152

Equação NDT: 0.47x + 0.72y + 0.84z = 0.945

 4° passo: dada a resolução do sistema, seguindo os mesmos passos do exemplo 1, encontramos x = 51,7%; y = 35% e z = 11,3%. De 98% do CMS de 1,6 kg ou 1600 g, teremos as quantidades de MS de cada ingrediente:

Bagaço: 1600 x 51,7% = 827,2 g MS

MDPS: $1600 \times 35\% = 560 \text{ g MS}$

Farelo: $1600 \times 11,3\% = 180,8 \text{ g MS}$

A soma dos ingredientes é 1568 que corresponde a 98% de 1600 g.

5º passo: verificação da ração:

Ingrediente	MS g	PB g	NDT g	Ca g	Рg
Bagaço	827,2	16,5	389	1,7	0,6
MDPS	560	45	404	0,6	1,1
Farelo	180,8	90,5	152	0,5	1,1
TOTAL	1568	152	945	2,8	2,8
Exigência	1600	152	945	6	3
DÉFICE	32	-	-	3,2	0,2

6º passo: balanceamento de Ca e P:

Para P: 1,2 g de fosfato bicálcico possui 0,2 g P e 0,3 g de Ca Para Ca: 7,7 g de calcário possui 2,9 g de Ca

7º passo: verificação e composição final da dieta:

Ingrediente	MS g	MN g	% final	PB g	NDT g	Ca g	Рg
Bagaço	827,2	920	52,1	16,5	389	1,7	0,6
MDPS	560	637	36,1	45	404	0,6	1,1
Farelo	180,8	200	11,3	90,5	152	0,5	1,1
Calcário	7,7	7,7	0,4	- /	-	2,9	-
Fosfato	1,2	1,2	0,1	N - /		0,3	0,2
TOTAL	1576,9	1765,9	100	152	945	- 6	3
Exigência	1600	-	100	152	945	6	3
DÉFICE	23,1	-	-	-	-	-	-

Por fim, para cada fêmea com 50 kg de PV são necessários 920 g de bagaço de cana, 640 g de MDPS, 200 g de farelo de soja, 8 g de calcário e 2 g de fosfato bicálcico diariamente. A relação Ca:P da dieta é de 2:1 e a composição é de 9,6% PB, 59,9% NDT, 0,38% Ca e 0,19% de P.

Ração para o lote total de 10 fêmeas por 3 semanas ou 20 dias:

8° passo: multiplicar a quantidade de cada ingrediente pelo número de cabeças para determinar o consumo do lote em um dia:

Bagaço: 920 g x 10 animais = 9,2 kg/dia, e assim com os demais

MDPS: 5,6 kg/dia; farelo de soja: 1,81 kg/dia; calcário: 0,08 kg/dia e fosfato: 0,02 kg/dia

9º passo: para um período de 20 dias:

Bagaço: $9.2 \times 20 \text{ dias} = 184 \text{ kg}$, e assim com os demais

MDPS: 112 kg; farelo de soja: 36,2 kg; calcário: 1,6 kg e fosfato: 0,4 kg

Em um período de *flushing* de 3 semanas, as fêmeas ganharão 2 kg de PV e serão gastos 184 kg de bagaço de cana, 112 kg de MDPS, 36,2 kg de farelo de soja, 1,6 kg de calcário e 0,24 kg de fosfato bicálcico. Considerando perdas é necessário aumentar a quantidade dos ingredientes em +10% ou +15%.

EXEMPLO 4: em uma propriedade no Agreste de Pernambuco, um produtor possui um lote de ovinos da raça Santa-Inês e deseja formular uma dieta para manter seus animais durante um período escasso de chuvas. Os alimentos disponíveis na propriedade são palma, capim tifton e leucena. O peso médio dos animais é de 40 kg PV.

1º passo: exigências dos animais:

CMS g	PB g	NDT g	Ca g	Рg
770	60	410	2	1,5
100%	7,8%	53,2%	0,26%	0,19%

Departamento de Nutrição Animal 2º passo: composição dos ingredientes:

Ingrediente	MS %	PB %	NDT %	Ca %	P %
Palma	10	4	60	1,8	0,2
Tifton	27	13	40	0,54	0,5
Leucena	35	24	65	2	0,2

3º passo: montar o sistema de equações onde x é palma, y tifton e z leucena:

Equação MS: x + y + z = 100

Equação PB: 0.04x + 0.13y + 0.24z = 7.8

Equação NDT: 0.60x + 0.40y + 0.65z = 53.2

Ou:

MS:
$$x + y + z = 0.77$$

PB:
$$0.04x + 0.13y + 0.24z = 0.06$$

NDT:
$$0.60x + 0.40y + 0.65z = 0.41$$

4º passo: as duas formas podem solucionar o problema, a primeira é expressa em porcentagem e a segunda na quantidade em kg do ingrediente conforme o CMS da equação MS. Logo, da resolução de ambos os sistemas encontramos os seguintes valores:

1^a forma:
$$x = 61,6\%$$
; $y = 34,9\%$ e $z = 3,5\% = 100\%$ do CMS

$$2^{a}$$
 forma: $x = 474,3$ g; $y = 268,7$ g e $z = 27$ g = 770 g do CMS

5º passo: verificação da ração:

Ingrediente	MS g	PB g	NDT g	Ca g	Рg
Palma	474,3	19	284,8	8,5	0,9
Tifton	268,7	35	107,6	1,4	1,3
Leucena	27	6	17,6	0,5	0,05
TOTAL	770	60	410	10,4	2,25
Exigência	770	60	410	2	1,5
DÉFICE	-		- /	+8,4	+0,75

6º passo: há uma exponencial diferença entre a quantidade de cálcio e a de fósforo, dado que os ingredientes são ricos em Ca. A relação máxima que os ruminantes suportam entre Ca:P chega a 3:1 e o balanço da ração é de 4,6:1, logo é necessário a adição de P para diminuir a diferença. Em nosso caso, utilizaremos uma fonte única de P com 24%. Para um bom balanceamento, vamos diminuir a relação para 2,6:1, para isso é necessário que haja 4 g de P na ração e há 2,25 g, então é necessário a adição de 1,75 g de P. Logo:

x = 7.3 g de fonte de P com 24%.

7º passo: composição final da dieta:

Ingrediente	MS g	MN g	% final	PB g	NDT g	Ca g	Рg
Palma	474,3	4743	81,5	19	284,8	8,5	0,9
Tifton	268,7	995,2	17,1	35	107,6	1,4	1,3
Leucena	27	77,2	1,3	6	17,6	0,5	0,05
Fonte de P	7,3	7,3	0,1	-	-	-	1,75
TOTAL	777,3	5822,7	100	60	410	10,4	4
Exigência	770	-	100	60	410	2	1,5
DÉFICE	+7,3	-	-	-	-	+8,4	+2,5

Por fim, para mantença do lote de ovinos com 40 kg PV, situados no Agreste de Pernambuco, são necessários o fornecimento de 4,7 kg de palma forrageira picada, 1 kg de tifton, 80 g de leucena e 8 g de fonte de P com 24% para cada animal diariamente. O animal vai consumir 5,82 kg de ração por dia para suprir seu requerimento de 0,77 kg de MS. A relação Ca:P da dieta, após a adição da fonte de P, é aceitável ao animal, ou seja, não o prejudica já que está dentro dos limites, sendo de 2,6:1. A composição da ração é 7,7% PB, 52,7% NDT, 1,3% Ca e 0,5% de P.

EXEMPLO 5: formular dieta para cordeiros desmamados precocemente com crescimento moderado. O lote possui peso médio de 20 kg e estão ganhando cerca de 250 g de PV/dia. Os alimentos disponíveis são fubá de milho, farelo de trigo e farelo de soja. Calcule a quantidade de ração necessária para um lote de 100 cordeiros confinados para serem abatidos com 40 kg PV. Deixar 1,5% para suplemento mineral e sal.

1º passo: exigências do animal:

CMS g	РВ д	NDT g	Ca g	Рg
1000	168	800	5,5	3
100%	16,8%	80%	0,55%	0,30%

2º passo: composição dos ingredientes:

Ingredientes	MS %	PB %	NDT %	Ca %	P %
Fubá de milho	88	9	86	0,03	0,31

Farelo de trigo	88	16	75	0,15	0,80
Farelo de soja	90	50	84	0,30	0,65

3º passo: sistema de equações onde x é milho, y farelo de trigo e z farelo de soja:

Equação MS:
$$x + y + z = 98,5$$

Equação PB:
$$0.09x + 0.16y + 0.50z = 16.8$$

Equação NDT:
$$0.86x + 0.75y + 0.84z = 80$$

Ou:

MS:
$$x + y + z = 0.985$$

PB:
$$0.09x + 0.16y + 0.50z = 0.168$$

NDT:
$$0.86x + 0.75y + 0.84z = 0.800$$

4º passo: da resolução através da segunda forma, encontramos os seguintes valores:

Xmilho: 455 g MS

Ytrigo: 406 g MS

Zsoja: 124 g MS

5º passo: verificação da ração:

Ingredientes	MS g	PB g	NDT g	Ca g	Рg
Milho De	epartamer	nto de Ni	391,3 Ar	0,14 nimal	1,4
Farelo de trigo	406	65	304,5	0,61	3,2
Farelo de soja	124	62	104,2	0,37	0,8
TOTAL	985	168	800	1,12	5,4
Exigência	1000	168	800	5,5	3
DÉFICE	-15	-	-	-4,38	+2,4

6º passo: ajuste mineral com calcário usando o ER de 1,5% ou 15 g de um CMS 1000 g.

x = 12 g de calcário

70		• • • ~		• ~	C 1	1	1.
10 1	nacco.	VARITICACAA	A com	nociono	tinal	do	diata
/	Dassu.	verificação	C COIII	DUSICAU	\mathbf{I}	ua	uicia.
•	P ••• • • • • • • • • • • • • • • • • •	, 011110007000		P 0 0 2 7 40 0			

Ingredientes	MS g	MN g	% final	PB g	NDT g	Ca g	Рg
Milho	455	517,1	45,8	41	391,3	0,14	1,4
Farelo de trigo	406	461,4	40,9	65	304,5	0,61	3,2
Farelo de soja	124	137,8	12,2	62	104,2	0,37	0,8
Calcário	12	12	1,1	-	-	4,5	-
TOTAL	997	1128,3	100	168	800	5,62	5,4
Exigência	1000	-	100	168	800	5,5	3
DÉFICE	-3	-	-	-	-	+0,12	+2,4

Por fim, serão necessários diariamente o fornecimento de 1,13 kg de ração/animal/dia composta por 45,8% de milho, 40,9% de farelo de trigo, 12,2% de farelo de soja e 1,1% de calcário.

O CMS da ração é exatamente o exigido pelo animal e a ração possui balanço Ca:P de 1:1.

Cálculo da ração para lote de 100 cordeiros para engorda de 20 kg PV com GPD 0,25 kg 8º passo: quantidade/dia:

Cada animal deverá consumir uma certa quantidade, para determinar o total para 100 animais basta multiplicar a quantidade pelo número de animais, no caso 100, logo:

Milho: 51,7 kg/dia; trigo: 46,14 kg/dia; soja: 13,78 kg/dia e calcário: 1,2 kg/dia 9º passo: quantidade total para tempo de confinamento:

Basta multiplicar a quantidade de alimento/dia pelo número de dias da engorda. Os animais entraram em confinamento com 20 kg e ganham 0,25 kg/dia, para alcançar 40 kg serão necessários, portanto, 80 dias (20 kg PV/0,25 kg). Logo:

Milho: 4,14 toneladas; trigo: 3,7 ton.; soja: 1,1 ton. e calcário: 96 kg.

EXEMPLO 6: formular dieta para cordeiros da raça Santa Inês que foram desmamados precocemente. O lote possui peso de 10 kg e possui alto potencial de crescimento, ou seja, ganham, em média, 250 g de PV/dia. Os alimentos disponíveis para a formulação são raspa de mandioca, milho e farelo de soja. Por fim, calcule a ração necessária para 100 cordeiros para um tempo de engorda onde os animais sairão para abate com 70 kg de PV.

1º passo: exigências nutricionais do animal:

CMS g	РВ д	NDT g	Ca g	Рg
600	160	480	6	3
100%	26,7%	80%	1%	0,5%

2º passo: composição dos alimentos:

Ingrediente	MS %	PB %	NDT %	Ca %	P %
Raspa de mandioca	88	3	74	0,15	0,8
Milho	89	9	86	0,03	0,31
Farelo de soja	90	45	80	0,3	0,65

3º passo: montar o sistema de equações onde x é raspa, y milho e z farelo de soja:

Equação MS:
$$x + y + z = 0,600$$

Equação PB: 0.03x + 0.09y + 0.45z = 0.160

Equação NDT: 0,74x + 0,86y + 0,80z = 0,480 Departamento de Nutricao Animal

4º passo: dada a resolução do sistema, encontramos os seguintes valores em MS:

x = 0.140 kg MS de raspa de mandioca

y = 0.140 kg MS de milho

z = 0.320 kg MS de farelo de soja

5º passo: verificação da ração:

Ingrediente	MS g	PB g	NDT g	Ca g	Рg
Raspa	140	4	103,6	0,21	1,1
Milho	140	12,6	120,4	0,03	0,4
Farelo	320	144	256	0,96	2,1

TOTAL	600	160,6	480	1,2	3,6
Exigência	600	160	480	6	3
DÉFICE	-	-	-	-4,8	+0,6

6º passo: balancear Ca e P adicionando calcário:

13 g de calcário possui 4,9 g de Ca

7º passo: verificação e composição final da dieta:

Ingrediente	MS g	MN g	% final	PB g	NDT g	Ca g	Рg
Raspa de mandioca	140	159,1	23,2	4	103,6	0,21	1,1
Milho	140	157,3	23	12,6	120,4	0,03	0,4
Farelo de soja	320	355,6	51,9	144	256	0,96	2,1
Calcário	13	13	1,9	- \	-	4,9	-
TOTAL	613	685	100	160,6	480	6,1	3,6
Exigência	600		100	160	480	6	3
DÉFICE	+13	-	-	-/	-	-	-

Por fim, para cordeiros de 10 kg PV com alto potencial e GPD de 0,25 kg é necessária uma ração que contenha 160 g de raspa de mandioca, 160 g de milho moído, 360 g de farelo de soja e 15 g de calcário para cada animal diariamente.

O CMS da ração ultrapassou a exigência do animal em 13 g o que é aceitável. O balanço Ca:P é de 1,7:1 que está dentro da zona de conforto. A composição da dieta é de 26,2% PB, 78,3% NDT, 1% Ca e 0,59% P.

Cálculo da ração para lote de 100 cordeiros para abate com 70 kg PV

8º passo: quantidade de cada alimento diariamente:

Raspa: 159,1 g x 100 animais = 15,91 kg, seguindo o mesmo esquema: milho: 15,73 kg; soja: 35,56 kg e calcário 1,3 kg.

9º passo: os animais deverão ir para abate com 70 kg, logo deverão ganhar 60 kg de PV. Com um ganho de 250 g/dia, o tempo total de engorda será de 240 dias (60 kg/0,25 kg), logo:

Raspa: 15,91 x 240 = 3,82 toneladas, seguindo igual: milho: 3,78 ton.; soja: 8,54 ton. e calcário: 312 kg.

EXEMPLO 7: em uma propriedade no Rio Grande do Sul um ovinocultor desmamou 50 animais com 30 kg PV para confiná-los. A estimativa é que os animais ganhem 150 g de PV diariamente até que alcancem 50 kg para abate. A propriedade dispõe de silagem de capim-elefante, aveia e glúten de milho para fornecer aos animais. Formule uma dieta para esses animais para ser fornecida diariamente e a quantidade de ingredientes necessária para o período de engorda. DADOS, segundo QUADROS & CRUZ, as exigências são CMS: 3,35% PV, PB: 115 g; NDT: 630 g.

1º passo: composição dos ingredientes:

Ingrediente	MS %	PB %	NDT %
Silagem de capim-elefante	27	5 \	60
Aveia	88	11	65
Glúten de milho	90	62	85

2º passo: sabendo-se que o CMS de 3,35% de 30 kg equivale a 1 kg MS, montamos o sistema de equações onde x é silagem, y aveia e z glúten:

Equação MS:
$$x + y + z = 1$$

Equação PB: $0.05x + 0.11y + 0.62z = 0.115$
Equação NDT: $0.60x + 0.65y + 0.85z = 0.630$

3º passo: da resolução do sistema encontramos:

x = 830 g MS de silagem

y = 63 g MS de aveia

z = 107 g MS de glúten de milho

4º passo: verificação da ração:

Ingrediente	MS g	PB g	NDT g
Silagem de capim-elefante	830	41,5	498
Aveia	63	7	71

107	66,5	91
1000	115	630
1000	115	630
-	-	-
	1000	1000 115

5º passo: composição final da ração com base na matéria natural tal como vai para o misturador:

Ingrediente	MN g	% final
Silagem de capim-elefante	3074,1	94,2
Aveia	71,6	2,2
Glúten de milho	118,9	3,6
TOTAL	3264,6	100

Por fim, para cada ovino/dia é necessário a administração de 3,1 kg de silagem de capim-elefante e uma mistura de 200 g de concentrado com 80 g de aveia e 120 g de glúten de milho. O CMS da ração é exatamente a exigência do animal.

Neste exemplo não determinamos o conteúdo mineral da dieta, mas você pode fazê-lo de acordo com o percentual de mineral do dado ingrediente.

Quantidade de alimentos/dia e por período de engorda

6º passo: quantidade de ingredientes por dia, basta multiplicar quantidade/animal x total de animais:

Silagem: 153,7 kg/dia; aveia: 3,6 kg/dia e glúten: 6 kg/dia

7º passo: quantidade por período de engorda: os animais têm 30 kg PV e deverão sair para abate com 50 kg PV, logo deverão ganhar 20 kg PV. Como ganham cerca de 0,15 kg/dia o período de engorda será de 134 dias (20 kg/0,15 kg). Então:

Silagem: 153,7 x 134 = 20,6 ton.; aveia: 482 kg e glúten: 804 kg

EXEMPLO 8: em uma propriedade na cidade de Belo Jardim, Pernambuco, 10 ovelhas estão nas primeiras semanas de lactação, todas tiveram parto de um cordeiro. O lote

possui peso variado, mas o médio é de 60 kg PV e perdem cerca de 25 g/dia. Os alimentos disponíveis para a formulação da dieta são capim tifton com melaço, casca de soja e farelo de mamona detoxificado.

1º passo: determinação das exigências nutricionais:

CMS g	PB g	NDT g	Ca g	Рg
2300	320	1500	10	7
100%	13,9%	65,2%	0,43%	0,3%

2º passo: composição dos ingredientes:

Ingrediente	MS %	PB %	NDT %	Ca %	P %
Casca de soja	90	12	75	0,6	0,2
Capim + melaço	35	(5)	25	0,32	0,12
Farelo de mamona	90	40	40	0,7	0,7

3º passo: montar o sistema de equações onde x é casca de soja, y é capim tifton com melaço e z é farelo de mamona:

Equação MS:
$$x + y + z = 2,3$$

Equação PB: $0,12x + 0,05y + 0,40z = 0,32$
Equação NDT: $0,75x + 0,25y + 0,40z = 1,5$

4º passo: da resolução do sistema, encontramos:

x = 1,78 kg MS de casca de soja

y = 0.29 kg MS de capim + melaço

z = 0.23 kg MS de farelo de mamona

O total é exatamente o CMS requerido de 2,3 kg MS.

5º passo: verificação da ração:

Ingrediente	MS g	PB g	NDT g	Ca g	Рg
Casca de soja	1780	213,6	1335	5,7	2,1
Capim + melaço	290	14,5	73	1,8	0,6

Farelo de mamona	230	92	92	1,6	1,6
TOTAL	2300	320,1	1500	9,1	4,3
Exigência	2300	320	1500	10	7
DÉFICE	-	-	-	-0,9	-2,7

6º passo: há deficiência de Ca e P, vamos balanceá-los:

Para P: 15 g de fosfato bicálcico possui 2,7 g de P e 3,4 g de Ca, não é necessário a adição de calcário

7º passo: verificação e composição final da dieta:

Ingrediente	MS g	MN g	% final	PB g	NDT g	Ca g	Рg
Casca de soja	1780	1978	64,2	213,6	1335	5,7	2,1
Capim + melaço	290	830	27	14,5	73	1,8	0,6
Farelo de mamona	230	256	8,3	92	92	1,6	1,6
Fosfato bicálcico	15	15	0,5	-	-	3,4	2,7
TOTAL	2315	3079	100	320,1	1500	12,5	7
Exigência	2300	-	100	320	1500	10	7
DÉFICE	+15	17		-/	-	+2,5	-

Por fim, a ração de ovelhas nas primeiras semanas de lactação com uma cria ao pé e com média de 60 kg PV e perdendo 25 g PV/dia será composta por 2 kg de casca de soja, 830 g de capim tifton com melaço, 260 g de farelo de mamona e 15 g de fosfato bicálcico.

O CMS ultrapassou 15 g, o que é aceitável. O balanço Ca:P da dieta é de 1,8:1 e a composição da ração é 13,8% PB, 64,8% NDT, 0,54% Ca e 0,30% P.

EXEMPLO 9: formular dieta para ovelhas gestantes que encontram-se no terço final da gestação com um feto. As fêmeas possuem peso médio de 60 kg e estão ganhando cerca de 95 g de PV/dia. Recebem suplementação volumosa à base de capim buffel e silagem de sorgo na ordem de 30% da ração. A ração concentrada deverá ser composta por rolão de milho, farelo de milho e farelo de girassol.

1º passo: exigências nutricionais da fêmea gestante de 1 feto:

CMS g	PB g	NDT g	Ca g	Pg
1630	180	860	6	4
100%	11%	52,8%	0,37%	0,25%

2º passo: composição dos ingredientes volumosos e concentrados:

Ingrediente	MS %	PB %	NDT %	Ca %	P %
Capim Buffel	25	10	51	0,21	0,16
Silagem de sorgo	31	6	57	0,3	0,18
Milho rolão	88	5	45	0,12	0,13
Milho	88	9	86	0,03	0,31
Farelo de girassol	90	45	65	0,6	0,95

3º passo: recebem suplementação volumosa na base de 30% do CMS (489 g), então devemos calcular o aporte nutricional em 50% de capim buffel e 50% de silagem de sorgo de 489 g e o défice a ser suprido pela ração concentrada. Desta forma, teremos:

Os nutrientes serão calculados com base na MS encontrada. Por exemplo: PB capim buffel = 244,5 x 10% = 24,4 g. PB silagem de sorgo = 244,5 x 6% = 14,7 g. O mesmo esquema para os demais ingredientes, até obter:

Departamento de Nutrição Animal

Volumoso	MS g	PB g	NDT g	Ca g	Рg
Capim buffel	244,5	24,4	124,7	0,5	0,4
Silagem de sorgo	244,5	14,7	139,4	0,7	0,4
TOTAL	489	39,1	264,1	1,2	0,8
Exigência	1630	180	860	6	4
DÉFICE	1141	140,9	595,9	4,8	3,2

4º passo: montar o sistema de equações onde x é rolão de milho, y é milho e z farelo de girassol onde uma dada quantidade de ambos suprirá o défice de 0,1409 kg de PB e 0,5959 kg de NDT:

Equação MS: x + y + z = 1,141

Equação PB: 0.05x + 0.09y + 0.45z = 0.1409

Equação NDT: 0,45x + 0,86y + 0,65z = 0,5959

5º passo: dada a resolução do sistema encontramos os seguintes valores:

x = 840 g MS de rolão de milho

y = 100 g MS de milho na forma de farelo

z = 200 g MS de farelo de girassol

6º passo: calcular o aporte nutricional da ração concentrada e verificar possíveis défices:

Ingrediente	MS g	PB g	NDT g	Ca g	Рg
Rolão de milho	840	42	380	1	1,1
Milho	100	9	86	0,03	0,31
Farelo de girassol	200	90	130	1,2	1,9
TOTAL	1140	141	596	2,23	3,31
Exigência	1141	140,9	595,9	4,8	3,2
DÉFICE	· -	-	-/	2,57	-

7º passo: há deficiência de Ca então vamos balancear usando calcário:

Para Ca: 6,8 g de calcário possui 2,58 g de Ca

8º passo: verificação e composição final da dieta:

Ingrediente	MS g	PB g	NDT g	Ca g	Рg
Capim buffel	244,5	24,4	124,7	0,5	0,4
Silagem de sorgo	244,5	14,7	139,4	0,7	0,4
Rolão de milho	840	42	380	1	1,1
Milho	100	9	86	0,03	0,31
Farelo de girassol	200	90	130	1,2	1,9
Calcário	6,8	-	-	2,58	-
TOTAL	1636	180,1	860,1	6,01	4,11
Exigência	1630	180	860	6	4
DÉFICE	-	-	-	-	-

9º passo: composição da ração com base na matéria natural do ingrediente:

Ingrediente	MN g	% final
Capim buffel	978	31,9
Silagem de sorgo	788,7	25,8
Rolão de milho	954,5	31,2
Milho	113,6	3,7
Farelo de girassol	222,2	7,2
Calcário	6,8	0,2
TOTAL	3063,8	100

Por fim, para ovelhas gestantes de 1 feto encontradas no terço final da gestação são necessários a administração de ração volumosa baseada em 980 g de capim buffel e 790 g de silagem de sorgo; e uma mistura concentrada baseada em 960 g de rolão de milho, 115 g de milho e 225 g de farelo de girassol.

A composição da ração total é 11% PB, 52,6% NDT, 0,37% Ca e 0,25% P. A relação Ca:P da dieta é de 1,5:1.

EXEMPLO 10: um ovinocultor possui uma ovelha que fica sempre gestante de dois fetos, uma genética herdada da mãe. Sabendo-se que a fêmea pesa 70 kg PV e está prenhe e no início da gestação e ganhando cerca de 45 g PV/dia formule uma dieta baseada em fubá de milho, cevada, farelo de soja e glúten de milho.

1º passo: exigências nutricionais:

РВ д	EM Mcal/dia	
140	3,22	

2º passo: composição dos ingredientes:

Ingrediente	PB g/kg	EM Mcal/kg
Milho	84	3,47

Cevada	93	3,08
Farelo de soja	453	3,32
Glúten de milho	645	2,89

3º passo: fazer duas pré-misturas com o teor de proteína desejado (PB 140 g por exemplo), uma com >3,22 Mcal de energia e outro com <3,22 Mcal:

Pré-mistura 1: milho e farelo de soja:

%milho: 313/369 x 100 = 84,8%

% farelo: 15,2%

EM: $3,47 \times 84,8\% + 3,32 \times 15,2\% = 3,44 \text{ Mcal EM } (>3,22)$

Pré-mistura 2: cevada e glúten de milho:

%cevada: $505/552 \times 100 = 91,5\%$

%glúten de milho: 8,5%

EM: $3.08 \times 91.5\% + 2.89 \times 8.5\% = 3.07 \text{ Meal EM} (< 3.22)$

Pré-mistura final: PM1 e PM2: balanceamento da energia

%PMI: $0.22/0.37 \times 100 = 59.5\%$

%PMII: 40,5%

4º passo: cálculo da incorporação dos alimentos:

Milho: $59.5 \times 84.8\% = 50.46\% \text{ MS}$

Farelo: 59,5 - 50,46 = 9,04% MS

Cevada: $40.5 \times 91.5\% = 37.06\%$ MS

Glúten: 40.5 - 37.06 = 3.44% MS

5º passo: verificação da ração:

PB: $(84 \times 50,46\%) + (453 \times 9,04\%) + (93 \times 37,06\%) + (645 \times 3,44\%) = 140,5 \text{ g PB}$ (exigência 140 g)

EM: $(3,47 \times 50,46\%) + (3,32 \times 9,04\%) + (3,08 \times 37,06\%) + (2,89 \times 3,44\%) = 3,29$ Mcal (exigência 3,22 Mcal)

Departamento de Nutrição Animal 6º passo: composição final da dieta:

Ingrediente	MS %	PB g/kg	EM Mcal
Milho	50,46	42,39	1,75
Farelo de soja	9,04	40,95	0,30
Cevada	37,06	34,97	1,14
Glúten de milho	3,44	22,19	0,10
TOTAL	100	140,5	3,29
Exigência	100	140	3,22
DÉFICE	-	-	-

Por fim, a ração deverá ser composta por 50,5% de milho, 9% de farelo de soja, 37% de cevada e 3,5% de glúten de milho.

EXEMPLO 11: formular uma dieta para ovelhas em lactação que necessitam de 16% de PB e 70% de NDT (tabela 4, capítulo 1). Os ingredientes disponíveis são farelo de trigo (15% PB e 60% NDT), farelo de soja (45% PB e 75% NDT), milho (8% PB e 80% NDT) e farelo de algodão (28% PB e 70% NDT).

1º passo: devemos elaborar duas misturas A e B, ambas com16% de PB e um alimento energético e outro alimento proteico, sendo que uma deve conter mais de 70% de NDT e outra menos de 70%. Assim, podemos utilizar para a mistura A farelo de trigo e farelo de algodão e para a mistura B farelo de soja e milho. Logo:

Pré-mistura A: farelo de trigo e farelo de algodão:

Calcular a % de cada ingrediente:

FT: $12/13 \times 100 = 92,3\%$

FA: $1/13 \times 100 = 7,7\%$

A mistura terá 16% de PB. Para provar calcule: FT: 92,3 x 0,15 = 13,8 e FA: 7,7 x 0,28 = 2,2, somando 13,8 + 2,2 = 16% PB.

Calcular o NDT:

FT: 92,3 x 0,6 (% NDT do FT) = 55,38

FA: 7.7×0.7 (% NDT do FA) = 5.39

Somando o NDT é 60,77%, ou seja, menor que a quantidade desejada de 70%.

Pré-mistura B: milho e farelo de soja:

53

Calcular a % de cada ingrediente:

Milho: $29/37 \times 100 = 78,4\%$

FS: $8/37 \times 100 = 21,6\%$

A mistura terá 16% de PB. Para provar calcule: Milho: $78,4 \times 0,08 = 6,3$ e FS: $21,6 \times 0,45 = 9,7$, somando 6,3 + 9,7 = 16% PB.

Calcular o NDT:

Milho: $78,4 \times 0,8 \ (\% \ NDT \ do \ FT) = 62,72$

FS: 21,6 x 0,75 (% NDT do FA) = 16,2

Somando o NDT é 78,92%, ou seja, maior que a quantidade desejada de 70%.

Calculamos a mistura final, balanceando o NDT, usando os valores da MA e MB:

Calcular a % de cada mistura:

MA: $8,92/18,15 \times 100 = 49,1\%$

MB: $9,23/18,15 \times 100 = 50,9\%$

Então a mistura final será constituída por 49,1% da mistura A e 50,9% da mistura B. Os percentuais de cada ingrediente são obtidos da seguinte maneira: %mistura A ou B x %do ingrediente na mistura A ou B, desta forma:

Mistura A:

FT: $49,1 \times 0.923 = 45,3\%$

FA: $49.1 \times 0.077 = 3.8\%$

Mistura B:

Milho: $50.9 \times 0.784 = 39.9\%$

FS: 50,9 x 0,216 = 11%

2º passo: verificação dos resultados:

Ingrediente	MS %	PB %	NDT %
Farelo de trigo	45,3	6,8	27,2
Farelo de algodão	3,8	1	2,6
Milho	39,9	3,2	31,9
Farelo de soja	11	5	8,3
TOTAL	100	16	70
Exigência	100	16	70
DÉFICE	-	-	-

RAÇÕES PRONTAS PARA OVINOS

Ração 1:

Ingrediente	Quantidade %	Composição
Feno coast-cross	30	DD. 12.50/
Rolão de milho	20	PB: 13,5%
Milho fubá	33,5	NDT: 65%
Farelo de soja 45%	15	Ca: 0,69%
· ·		P: 0,3%
Calcário calcítico	1,5	

Ração 2:

Ingrediente	Quantidade %	Composição
Feno de alfafa	35	PB: 18%
Milho fubá eparta	amento de Nutrição	
Farelo de soja	15	
Farelo de trigo	19	Ca: 0,8%
Calcário	1	P: 0,4%

Ração 3:

Ingrediente	Quantidade %	Composição
Feno alfafa	35	PB: 16%
Milho fubá	36	NDT: 65%
Farelo de trigo	28	Ca: 0,8%
Calcário	1	P: 0,4%

Ração 4:

Ingrediente	Quantidade %	Composição
Milho fubá	70	PB: 19%
Farelo de soja	28	NDT: 76%
Calcário	1,5	Ca: 0,75%
Fosfato bicálcico	0,5	P: 0,4%

Ração 5:

Ingrediente	Quantidade %	Composição
Milho	60	PB: 18,8%
Farelo de soja	23	NDT: 74%
Farelo de trigo	15	Ca: 0,82%
Calcário	$\sqrt{2}$	P: 0,46%

Ração 6:

Ingrediente	Quantidade %	Composição
Milho	68	PB: 16%
Farelo de algodão	30	NDT: 75%
Calcário	2	Ca: 0,8% P: 0,44%

Ração 7:

Ingrediente	Quantidade %	Composição
Milho	52,8	
Farelo de soja	21,5	DD: 10.20/
Farelo de trigo	13	PB: 19,3%
Farelo de algodão	9,5	NDT: 72%
Calcário	2	Ca: 0,86% P: 0,45%
Fosfato bicálcico	0,2	
Sal comum	1	

Ração 8, 9 e 10: rações completas para confinamento de cordeiros:

Ingrediente	Quantidade %	Composição
Feno de gramínea	38	PB: 14%
Milho	37,5	NDT: 62%
Farelo de algodão	23	Ca: 0,7%
Calcário	1,5	P: 0,35%

Ingrediente	Quantidade %	Composição
Feno de gramínea	20	
Milho	31	PB: 15%
Rolão de milho	22	NDT: 68%
Farelo de soja	14	Ca: 0,9%
Farelo de trigo	13	P: 0,4%
Calcário	2	

Ingrediente	Quantidade %	Composição
Feno de gramínea	30	PB: 13,5%
Rolão de milho	55	NDT: 62%
Farelo de soja	15	Ca: 0,7%
Calcário	1,5	P: 0,3%

Ração 11, 12 e 13: concentrados para confinamento de cordeiros:

Ingrediente	Quantidade %	Composição
Rolão de milho	60	PB: 16%
Farelo de algodão	38	NDT: 60%
Calcário	2	Ca: 0,9% P: 0,5%

Ingrediente	Quantidade %	Composição
Milho	58	PB: 20%
Farelo de soja	27	NDT: 75%
Farelo de trigo	12	Ca: 0,9%
Calcário	2	P: 0,5%

01'1	•	1
Sal mineral	para ovinos	
Dai iiiiiciai	para Ovinos	1
	1	

Ingrediente	Quantidade %	Composição
Rolão de milho	70	PB: 19%
Farelo de soja	28,7	NDT: 76%
Calcário	1,3	Ca: 0,6% P: 0,35%

Ração 14 e 15: creep-feeding para cordeiros:

Ingrediente	Quantidade %	Composição
Milho	70	DD. 170/
Farelo de soja	26	PB: 17%
Açúcar		NDT: 78%
Calcário	1,5	Ca: 0,6%
Sal mineral	0,5	P: 0,3%

PB: 15%
FD. 13%
NDT: 75%
Co. 0.80/
Ca: 0,8%
P: 0,4%

Ração 16: ração para cordeiros nos primeiros 50 dias de confinamento:

Ingrediente	Quantidade %
Silagem de milho	58
MDPS	18,44
Farelo de soja	22,61
Calcário	0,59
Sal comum	0,36

Ração 17: ração para cordeiros dos 50 aos 100 dias de confinamento:

Ingrediente	Quantidade %
Silagem de milho	58
MDPS	13,8
Farelo de soja	27,02
Calcário	0,86
Sal comum	0,32

Ração 18: ração para creep-feeding de cordeiros em pastagem:

Ingrediente	Quantidade %
MDPS	80
Farelo de soja	18,5
Calcário	1
Sal mineral (premix)	0,5

Ração 19: mistura múltipla para ovino sob pastejo:

Ingrediente	%	Composição
Milho kg	27	A
Fonte de Ca e P kg ¹	16	
Farelo de soja kg	15	
Ureia kg	10	PB: 37,8%
Flor de enxofre2 de ácido acético	de Nutrição	EM: 1,4 Mcal/kg
10% kg		Ca: 5,8%
Sulfato de zinco g	300	P: 2,7%
Sulfato de cobre g	27	
Sulfato de cobalto g	20	
Sal comum kg	30,3	

¹ - fontes de cálcio e fósforo = fosfato bicálcico (23,0% Ca e 18% P) e superfosfato triplo (13,0% Ca e 17,9% P). ² - podem ser utilizados também o sulfato de amônio (24,0% S) e sulfato de cálcio (17% S).

Ração 20: mistura múltipla 2:

Ingrediente	%	Composição
Milho kg	27,7	PB: 37,84%

Mistura mineral ¹ kg	16	EM: 1,4 Mcal/kg
Farelo de soja kg	15	Ca: 2%
Ureia kg	10	P: 1,5%
Flor de enxofre kg	1,3	
Sal comum kg	30	

^{1 -} escolher mistura mineral sem adição de sal comum. Para este exemplo foram utilizados 8,7% de P e 12,0% de Ca.

Ração 21: mistura para creep-feeding ovinos:

Ingredientes		Ração Inicial	
ingi calcines	1	2	3
Milho moído grosso	68,8	65,3	44,7
Farelo de Soja (49% PB)	23,2	_	25,5
Farelo de algodão (38% PB)	_	28,0	
Polpa cítrica moída	_	-	22,6
Melaço de cana	5,8	4,2	6,1
Mistura mineral	1,1	1,1	1,1
Calcário	1,1	1,4	-
Total (kg)	100,00	100,00	100,00

CONCLUSÕES

A produção de ovinos é uma promissora prática agropecuária que visa a adoção de medidas técnicas para a produção de carne, pele, leite, lã e outros produtos derivados do animal. É uma produção que desperta cada vez mais interesse de produtores em todo o país, principalmente no Nordeste, região que concentra mais da metade do rebanho ovino brasileiro.

Na produção animal, assume-se que 70% dos custos de produção estão relacionados com a alimentação. Sendo assim, é de suma importância a adoção de medidas técnicas que visem a melhor rentabilidade e produtividade animal e alimentar.

Uma dessas técnicas empregadas é a formulação de dietas que supram as exigências mínimas dos animais, seja para produção, gestação, mantença etc. As técnicas aqui apresentadas visam oferecer um suporte ao técnico, produtor e até estudantes da área animal que necessitam de suporte simples e didático para que consigam formular rações com os mais variados ingredientes e misturas e que atendam aos requisitos dos animais.

Dada a uma boa formulação da dieta, os requisitos nutricionais são atendidos, o animal estará bem nutrido e, consequentemente, animal bem alimentado estará sadio e produzindo mais e melhor.

REFERÊNCIAS BIBLIOGRÁFICAS

- DA SILVA, Emanuel Isaque Cordeiro da Silva. **Métodos de formulação e Balanceamento de Rações para Bovinos**.
- DA SILVA, Emanuel Isaque Cordeiro da Silva. Formulação e Fabricação de Rações Para Ruminantes.
- NATIONAL RESEARCH COUNCIL *et al.* **Nutrient requirements of small ruminants: sheep, goats, cervids, and new world camelids**. 中国法制出版社, 2007.
- OLIVEIRA, Rodrigo Vidal *et al*. Manual de criação de caprinos e ovinos. **Brasília:** Codevasf, 2011.
- PULINA, Giuseppe et al. Dairy sheep nutrition. CABI publishing, 2004.
- QUADROS, Danilo Gusmão de; CRUZ, Jurandir Ferreira da. **Produção de ovinos e** caprinos de corte. 2017.

Departamento de Nutrição Animal

Formular rações visa o melhor aproveitamento dos gastos alimentação animal. As técnicas matemáticas com empregadas aqui nesse texto visa apresentar ao produtor, técnico ou estudante da área animal que é possível formular na própria fazenda com os mais variados dietas ingredientes disponíveis de forma fácil, simples e objetiva para o atendimento dos requisitos nutricionais dos ovinos.

Emanuel Isaque Cordeiro da Silva

Técnico em Agropecuária, acadêmico em Zootecnia, caprinocultor, ovinocultor, agricultor, pesquisador Embrapa Semiárido e IPA, professor.

