Umweltproduktdeklaration (EPD)

Deklarationsnummer: EPD-RLE-33.0

Rodeca GmbH

Transparente Bauelemente

Lichtbauelemente

Grundlagen:

DIN EN ISO 14025 EN15804

Firmen-EPD Environmental Product Declaration

Veröffentlichungsdatum: 22.02.2019 Nächste Revision: 22.02.2024

Akkreditierungsstelle D-ZE-11349-01-00

Umweltproduktdeklaration (EPD)

Deklarationsnummer: EPD-RLE-33.0

Programmbetreiber	ift Rosenheim GmbH Theodor-Gietl-Straße 7-9 83026 Rosenheim											
Ökobilanzierer	brands & values GmbH Vagtstr. 48/49 28203 Bremen											
Deklarationsinhaber	Rodeca GmbH Freiherr-vom-Stein-Straße 45473 Mülheim an der Ruh											
Deklarationsnummer	EPD-RLE-33.0											
Bezeichnung des deklarierten Produktes	Lichtbauelemente											
Anwendungsbereich	Fassaden und Dächern un sowie als Raumteiler lichtdurchlässig, wärmedä Sonneneinstrahlung und Stärken 30 mm, 40 mm, 50	e aus Polycarbonat eigner nd können zudem als Inner in größeren Firmen ge immend und bestehen in Hagelschlag. Die Lichtbau) mm und 60 mm angeboter	ntrennwände im Messebau nutzt werden. Sie sind Form und Farbe gegen uelemente werden in den									
Grundlage	15804:2012+A1:2013 ers Erstellung von Typ III Um den PCR-Dokumenten "PC	Diese EPD wurde auf Basis der EN ISO 14025:2011 und der EN 15804:2012+A1:2013 erstellt. Zusätzlich gilt der allgemeine Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen. Die Deklaration beruht auf den PCR-Dokumenten "PCR Teil A" PCR-A-0.1:2018 und "Fassaden und Dächer aus Glas und Kunststoff" PCR-FA-3.1:2018.										
O''lki alaa't	Veröffentlichungsdatum: 22.02.2019	Letzte Überarbeitung: 22.02.2019	Nächste Revision: 22.02.2024									
Gültigkeit		Umweltproduktdeklaration id hat eine Gültigkeit v emäß DIN EN 15804.										
Rahmen der Ökobilanz	Als Datenbasis wurden die GmbH herangezogen sow Ökobilanz wurde über der Werkstor mit Optionen	äß DIN EN ISO 14040 und e erhobenen Daten des Prowie generische Daten der hetrachteten Lebenszyklu (cradle to gate with oper Vorketten wie bspw. Rohs	oduktionswerks der Rodeca Datenbank "GaBi 8". Die s "von der Wiege bis zum otions) unter zusätzlicher									
Hinweise	Es gelten die "Beding Prüfdokumentationen".	·	ur Verwendung von ift									
Mr it Shimmy		Summerlow										

Susanne Volz

Externe Prüferin

Produktgruppe: Transparente Bauelemente

1 Allgemeine Produktinformationen

Produktdefiniton

Die EPD gehört zur Produktgruppe Transparente Bauelemente und ist gültig für:

1 m² Lichtbauelemente der Firma Rodeca GmbH

Die Lichtbauelemente der Firma RODECA GmbH werden in vier verschiedenen Stärken abgebildet:

- 30 mm
- 40 mm
- 50 mm
- 60 mm

In den Stärken 30 mm, 50 mm und 60 mm gibt es jeweils nur eine Variante, somit entfällt eine Worst-Case-Bildung. Für die Lichtbauelemente der Stärke 40 mm wird jedoch ein Worst-Case abgebildet. RODECA bietet Lichtbauelemente der Stärke 40 mm in folgenden Ausführungen an:

Nr.	Paneel	Gewicht kg/m² *
1	2540-4	4,0
2	2540-4 MC	4,0
3	2540-6	4,2
4	2540-7	4,3
5	2540-10	4,2

^{* (}exkl. Rahmensystem und Verpackung)

Da die Modelle sich nicht in der Zusammensetzung der Inputmaterialien unterscheiden, sondern lediglich in der Masse, wird das schwerste Modell (2540-7 mit einem Gewicht von 4,3 kg/m²) als Worst-Case zugrunde gelegt.

Der Bezugszeitraum ist das Jahr 2017.

Produktbeschreibung

LBE 30mm (PC 2530-4)

Die 30mm dicken Paneele verfügen über eine Baubreite von 333mm. Auf Grund der Stärke und der Baubreite liegt die Anwendung eher bei kleineren Wandlichtbändern, kalten Hallen wie z. B. Agrarhallen.

LBE 40mm (PC 2540-XX)

Die 40mm dicken Paneele mit der bewährten Nut- und Federverbindung sind 500mm breit. Dabei unterscheiden sich die Paneele in der Struktur durch die unterschiedliche Anzahl an isolierenden Luftkammern, welche den U-Wert maßgeblich beeinflussen.

Produktgruppe: Transparente Bauelemente

Die U-Werte dieser Paneele reichen von 1,4 bis ca. 1,0 W/m²K (nach DIN EN ISO 10077-2) abhängig vom gewählten Produkt und der Einbausituation.

Die Rahmenprofile, in die die Paneele eingefasst werden, stehen in thermisch getrennter und nicht thermisch getrennter Ausführung zur Verfügung. Die Paneele lassen sich nicht nur im Fassadenbereich optimal verbauen, sondern bieten auch ideale und langlebige Lösungen für geneigte Dachverglasungen.

LBE 50mm (PC 2550-10)

Die 50mm starken Paneele mit einer Baubreite von 495mm verfügen über 10 Schalen und erreichen je nach Einbausituation einen Ucw-Wert von ca. 1,0W/m²K nach DIN EN ISO 10077-2. Das transluzente Fassadensystem verfügt außerdem über eine deutsche bauaufsichtliche Zulassung inklusive thermisch getrennten Rahmenprofilen.

Das Paneel selbst ist in den Standardfarben kristall und opal verfügbar. Ab einer klar definierten Mindestmenge ist es ebenfalls in einer Farbe durchgefärbt oder auch in der zweifarbigen Ausführung "duocolor" produzierbar.

LBE 60mm (PC 2560-12)

Die 60mm starken Paneele mit einer Baubreite von 500mm verfügen über 10 Luftkammern und erreichen einen Ucw-Wert von ca. 0,87W/m²K (nach DIN EN ISO 10077-2). Dieses System ist besonders interessant für hochwertige Industrieverglasungen, für Verglasungen im Dachbereich mit der entsprechenden Mindestneigung sowie überall dort, wo hohe Anforderungen an den Wärmeschutz gestellt werden. Standsicherheitsnachweise nach deutscher allgemeiner bauaufsichtlicher Zulassung garantieren für die Sicherheit der Produkte auch extremen Witterungsverhältnissen. Je nach Projektanforderung können Sie zwischen verschiedenen Ausführungen des UV-Schutzes wählen, wodurch die Langlebigkeit des Produktes gefördert wird. Die Einstufung nach DIN EN 13501 als Bauprodukt mit Brandeigenschaft B-s1, garantiert d0 vielfältige Einsatzmöglichkeiten und ist aktiver Gebäudeschutz.

Das Paneel ist in den Farben kristall und opal produzierbar. Ab einer Mindestmenge von 300m² ist es ebenfalls in einer Farbe durchgefärbt produzierbar.

Für eine detaillierte Produktbeschreibung sind die Herstellerangaben unter www.rodeca.de oder die Produktbeschreibungen des jeweiligen Angebotes zu beachten.

Produktgruppe: Transparente Bauelemente

Produktherstellung

Anwendung

Rodeca Lichtbauelemente aus Polycarbonat eignen sich für den Einsatz in Fassaden und Dächern und können zudem als Innentrennwände im Messebau sowie als Raumteiler in größeren Firmen genutzt werden. Sie sind lichtdurchlässig, wärmedämmend und bestehen in Form und Farbe gegen Sonneneinstrahlung und Hagelschlag. Die Lichtbauelemente werden in den Stärken 30 mm, 40 mm, 50 mm und 60 mm angeboten.

Nachweise (optional)

Folgende allgemeinen bauaufsichtlichen Zulassungen liegen vor:

- Z-10.1-327 "PC 2540", "PC 2540 AF 50", "PC 2540 AF100" und "PC2600-40-7-U AF 49404000" sowie "PC 1540", "PC1540 AF 50", "PC 1540 AF100" und "PC 1600-40-7-U AF 49404000"
- Z-10.1-466 "PC 2550-10", "PC 2550-10 AF 60" und "PC 2550-10 AF 120"
- Z-10.1-656 "PC 2560-12", "PC 2560-12 AF 60" und "PC 2560-12 AF120"

zusätzliche Informationen

Weitere Informationen sind der website <u>www.rodeca.de</u> zu entnehmen.

Produktgruppe: Transparente Bauelemente

2 Verwendete Materialien

Grundstoffe Verwendete Grundstoffe sind der Ökobilanz (siehe Kapitel 7) zu

entnehmen.

Deklarationspflichtige Stoffe In den verwendeten Polycarbonat-Produkten sind keine Stoffe gemäß

REACH Kandidatenliste enthalten (Deklaration vom 10.01.2019).

Alle relevanten Sicherheitsdatenblätter können bei der Rodeca GmbH

bezogen werden.

3 Baustadium

Verarbeitungsempfehlungen Einbau

Es ist die Anleitung für Montage, Betrieb, Wartung und Demontage zu beachten. Siehe hierzu www.rodeca.de

4 Nutzungsstadium

Emissionen an die Umwelt

Es sind keine Emissionen in die Innenraumluft, Wasser und Boden bekannt. Es entstehen ggf. VOC-Emissionen.

Referenz-Nutzungsdauer (RSL)

Die RSL-Informationen stammen vom Hersteller. Die RSL muss sich auf die deklarierte technische und funktionale Qualität des Produkts im Gebäude beziehen. Sie muss in Übereinstimmung mit jeglichen spezifischen Regeln, die in den Europäischen Produktnormen bestehen, etabliert werden und muss die ISO 15686-1, -2, -7 und -8 berücksichtigen. Wenn Angaben zur Ableitung von RSL aus Europäischen Produktnormen vorliegen, dann haben solche Angaben Priorität. Kann die Nutzungsdauer nicht als RSL nach ISO 15686 ermittelt werden, kann auf die BBSR-Tabelle "Nutzungsdauern von Bauteilen zur Lebenszyklusanalyse nach BNB" zurückgegriffen werden. Weitere Informationen und Erläuterungen sind unter www.nachhaltigesbauen.de zu beziehen.

Für diese EPD gilt:

Für eine "von der Wiege bis zum Werktor - mit Optionen"-EPD ist die Angabe einer Referenz-Nutzungsdauer (RSL) nur dann möglich, wenn alle Module A1-A3 und B1-B5 angegeben werden;

Die Nutzungsdauer der Lichtbauelemente der Rodeca GmbH wird mit 30 Jahren laut BBSR-Tabelle optional spezifiziert.

Die Nutzungsdauer hängt von den Eigenschaften des Produkts und den Referenz-Nutzungsbedingungen ab. Es gelten die in der EPD beschriebenen Eigenschaften, im speziellen folgende:

- Außenbedingungen: Wettereinflüsse können sich negativ auf die Referenz-Nutzungsdauer auswirken.
- Innenbedingungen: Es sind keine Einflüsse bekannt, die sich negativ auf die Referenz-Nutzungsdauer auswirken

Die Nutzungsdauer gilt ausschließlich für die Eigenschaften, die in dieser EPD ausgewiesen sind bzw. die entsprechenden Verweise hierzu.

Produktgruppe: Transparente Bauelemente

Die RSL spiegelt nicht die tatsächliche Lebenszeit wieder, die in der Regel durch die Nutzungsdauer und die Sanierung eines Gebäudes bestimmt wird. Sie stellt keine Aussage zu Gebrauchsdauer, Gewährleistung zu Leistungseigenschaften oder Garantiezusage dar.

5 Nachnutzungsstadium

Nachnutzungsmöglichkeiten

Die Lichtbauelemente werden am Ende der Nutzungsphase in Polycarbonat, Aluminium Nylon, Polypropylen sowie und Thermoplastische Elastomere getrennt. Das Aluminium wird entsprechend der gängigen Praxis recycelt. Nylon, Polypropylen und Thermoplastische Elastomere werden getrennt Müllverbrennungsanlage (MVA) entsorgt. Dabei rückgewonnene Energiemengen sind als Nebenprodukt des Entsorgungsprozesses zu verstehen. Das Ende der Abfalleigenschaft ist mit der Deponierung der Schlacke und Asche als Restabfall erreicht. Für die Entsorgung des Polycarbonats werden zwei Szenarien betrachtet. In Szenario 1 werden die Polycarbonat-Anteile der Lichtbauelemente Polycarbonat Regranulat aufbereitet. In Szenario 2 wird das Polycarbonat am Ende der Nutzungsphase in einer MVA verbrannt.

Entsorgungswege

Die durchschnittlichen Entsorgungswege wurden in der Bilanz berücksichtigt.

Alle Lebenszyklusszenarien sind im Anhang detailliert beschrieben.

6 Ökobilanz

Basis von Umweltproduktdeklarationen sind Ökobilanzen, in denen über Stoff- und Energieflüsse die Umweltwirkungen berechnet und anschließend dargestellt werden.

Als Basis dafür wurde für Lichtbauelemente eine Ökobilanz erstellt. Diese entspricht den Anforderungen gemäß der EN 15804 und den internationalen Normen DIN EN ISO 14040, DIN EN ISO 14044, ISO 21930 und EN ISO 14025.

Die Ökobilanz ist repräsentativ für die in der Deklaration dargestellten Produkte und den angegebenen Bezugsraum.

6.1 Festlegung des Ziels und Untersuchungsrahmens

Ziel

Die Ökobilanz dient zur Darstellung der Umweltwirkungen für Lichtbauelemente. Die Umweltwirkungen werden gemäß EN 15804 als Basisinformation für diese Umweltproduktdeklaration über den betrachteten Lebenszyklus dargestellt. Darüber hinaus werden keine weiteren Umweltwirkungen angegeben.

Deklarationsnummer: EPD-RLE-33.0

Veröffentlichungsdatum: 22.02.2019

ift ROSENHEIM

Produktgruppe: Transparente Bauelemente

Datenqualität und Verfügbarkeit sowie geographische und zeitliche Systemgrenzen

Die spezifischen Daten stammen ausschließlich aus dem Geschäftsjahr 2017. Diese wurden im Werk in Mülheim durch eine vor Ort Aufnahme erfasst und stammen teilweise aus Geschäftsbüchern und teilweise aus direkt abgelesenen Messwerten.

Seite 8

Generische Daten stammen aus diversen GaBi-Datenbanken der Software "GaBi 8.7". Die Datenbanken wurden in der aktuellen Version verwendet. Ältere Daten stammen ebenfalls aus dieser Datenbank und sind teilweise älter als zehn Jahre. Es wurden keine weiteren generischen Daten für die Berechnung verwendet.

Datenlücken wurden entweder durch vergleichbare Daten oder konservative Annahmen ersetzt oder unter Beachtung der 1%-Regel abgeschnitten.

Zur Modellierung des Lebenszyklus wurde das Software-System zur ganzheitlichen Bilanzierung "GaBi 8" eingesetzt.

Untersuchungsrahmen/ Systemgrenzen Die Systemgrenzen beziehen sich auf die Beschaffung von Rohstoffen und Zukaufteilen, die Herstellung und die Nachnutzung der Lichtbauelemente (cradle to gate with options).

Das Produktstadium enthält die Produktion der notwendigen Rohstoffe inklusive aller entsprechenden Vorketten (A1) sowie der notwendigen Beschaffungstransporte (A2). Für die Produktion der deklarierten Einheit wurden auch die hierfür notwendigen Hilfs- und Betriebsstoffe sowie deren Vorketten betrachtet (A3).

Die Systemgrenzen umfassen für Modul A1-3 alle Rohstoffgewinnungsprozesse, sowohl für die Stoff- als auch für die Energieflüsse, die von der Wiege bis Werkstor eingesetzt werden, deren Weiterverarbeitung zu Vor- und Zwischenprodukten bis zur Herstellung.

Transporte werden über generische Datensätze abgedeckt, die Systemgrenze liegt bei den LKW-Transporten inputseitig bei den Upstream-Prozessen der Treibstoffe und outputseitig bei den verursachten Emissionen (Abgase).

Abschneidekriterien

Nach Möglichkeit wurden alle erhobenen Daten aus der Stückliste berücksichtigt. Somit wurden auch Stoffströme mit einem Masseanteil kleiner ein Prozent bilanziert. Nachfolgende Tabellen zeigen, welche Stoffe nicht berücksichtigt werden konnten. Es wurden die Abschneideregeln (< 1%, in Summe <5%) eingehalten. In der Herstellung benötigte Anlagen und Infrastruktur sind kein Bestandteil dieser Ökobilanz.

Die für die Verpackung verwendeten Holzpaletten wurden abgeschnitten, da es sich um wiederverwendete Paletten handelt. Lediglich das Gewicht wird für den Transport berücksichtigt, der Rest wird abgeschnitten.

Der Aluminiumrahmen wird von einer externen Firma geliefert. Über die Herstellungsweise (Verschnitt, Energiebedarf etc.) sind keine Informationen bekannt. Es wird für den Rahmen der Datensatz Aluminium Extrusionsprofil (AIMgSi) in Höhe des eingekauften und verlustfrei verwendeten Rahmens im Modell eingesetzt.

Produktgruppe: Transparente Bauelemente

6.2 Sachbilanz

Ziel

In der Folge werden sämtliche Stoff- und Energieströme beschrieben. Die erfassten Prozesse werden als Input- und Outputgrößen dargestellt und beziehen sich auf die deklarierte bzw. funktionelle Einheit.

Lebenszyklusphasen

Der gesamte Lebenszyklus der Lichtbauelemente ist im Anhang dargestellt. Es werden die Herstellung "A1 – A3", die Errichtung "A4 – A5", die Entsorgung "C2 – C3" und die Vorteile und Belastungen außerhalb der Systemgrenzen "D" berücksichtigt.

Gutschriften

Folgende Gutschriften werden gemäß EN 15804 angegeben:

- · Gutschriften aus Recycling
- Gutschriften (thermisch und elektrisch) aus Verbrennung

Allokationsverfahren
Allokationen von Co-Produkten

Bei der Herstellung der Lichtbauelemente treten keine Allokationen auf.

Allokationen für Wiederverwertung, Recycling und Rückgewinnung Sollten Lichtbauelemente bei der Herstellung (Ausschussteile) wiederverwertet bzw. recycelt und rückgewonnen werden, so werden die Elemente sofern erforderlich geschreddert und anschließend nach Einzelmaterialien getrennt. Die Systemgrenzen der Lichtbauelemente wurden nach der Entsorgung gezogen, wo das Ende ihrer Abfalleigenschaften erreicht wurde.

Allokationen über Lebenszyklusgrenzen

Zur Herstellung der Lichtbauelemente wird Sekundärmaterial als Polycarbonat Regranulat (13%) sowie Sekundäraluminium (54%) eingesetzt. Die Systemgrenze vom Recyclingmaterial wurde beim Einsammeln gezogen.

Sekundärstoffe

Der Einsatz von Sekundärstoffen im Modul A3 wurde bei der Firma Rodeca GmbH betrachtet. Sekundärmaterial wird eingesetzt.

Inputs

Folgende fertigungsrelevanten Inputs wurden in der Ökobilanz erfasst:

Energie

Für den Strommix wurde der "Strommix Ökostrom" angenommen, für die Rezyklat-Herstellung der Strommix des dortigen Stromanbieters. Prozesswärme wird zum Teil für die Hallenbeheizung genutzt. Diese lässt sich jedoch nicht quantifizieren und wurde dem Produkt als "worst case" angerechnet.

Wasser

In den einzelnen Prozessschritten zur Herstellung der Lichtbauelemente ergibt sich ein geringer Wasserverbrauch, der den Produkten zugeordnet wurde.

Der in Kapitel 6.3 ausgewiesene Süßwasserverbrauch entsteht unter anderem durch die Prozesskette der Vorprodukte.

Produktgruppe: Transparente Bauelemente

Rohmaterial/Vorprodukte

In der nachfolgenden Grafik wird der Einsatz der Rohmaterial/Vorprodukte prozentual dargestellt.

Nr.	Material	Masse in %
1	Aluminium	3,83%
2	Mahlgut aus Polycarbonat	0,08%
3	PA66	0,02%
4	Polycarbonat Granulat	81,49%
5	Polycarbonat Regranulat	11,99%
6	Polypropylen, Silikon neutral vernetzt	0,33%
7	Wasser	0,13%
8	sonstiges	2,13%

Hilfs- und Betriebsstoffe

Für die Herstellung von Lichtbauelementen fallen Hilfs- und Betriebsstoffe an, die in der Ökobilanz betrachtet wurde

Produktverpackung

Es fallen folgende Mengen an Produktverpackung an:

Nr.	Material	Masse in kg								
INI.	Iviateriai	30mm	40mm	50mm	60mm					
1	Schutzfolie	0,004	0,004	0,004	0,004					
2	Holzpalette	0,091	0,091	0,091	0,091					
3	PP-Unterlagen	0,007	0,007	0,007	0,007					
4	Schrumpffolie	0,005	0,005	0,005	0,005					
3	Kantenschutz	0,003	0,003	0,003	0,003					
4	sonstige Kleinteile	0,001	0,001	0,001	0,001					

Produktgruppe: Transparente Bauelemente

Outputs

Folgende fertigungsrelevante Outputs wurden pro m² Lichtbauelemente in der Ökobilanz erfasst:

Nr.	Motorial	Masse in kg							
	Material	30mm	40mm	50mm	60mm				
1	Produkt inkl. Verpackung	3,746	4,646	5,346	6,146				
2	Abfälle	0,649	0,822	0,955	1,108				
3	PC-Verschnitt	0,622	0,787	0,915	1,061				
4	Mahlgut	0,003	0,004	0,005	0,006				
3	Verpackungen	0,007	0,009	0,010	0,012				
4	Abwasser	0,017	0,022	0,025	0,029				

6.3 Wirkungsabschätzung

Ziel

Die Wirkungsabschätzung wurde in Bezug auf die Inputs und Outputs durchgeführt. Dabei werden folgende Wirkungskategorien betrachtet:

Wirkungskategorien

Die Modelle für die Wirkungsabschätzung wurden angewendet, wie in EN 15804-A1 beschrieben.

Folgende Wirkungskategorien werden in der EPD dargestellt:

- Verknappung von abiotischen Ressourcen (fossile Energieträger);
- Verknappung von abiotischen Ressourcen (Stoffe);
- Versauerung von Boden und Wasser;
- Ozonabbau;
- globale Erwärmung;
- Eutrophierung;
- photochemische Ozonbildung.

Abfälle

Die Auswertung des Abfallaufkommens zur Herstellung pro m² Lichtbauelemente wird getrennt für die Fraktionen hausmüllähnliche Gewerbeabfälle, Sonderabfälle und radioaktive Abfälle dargestellt. Da die Abfallbehandlung innerhalb der Systemgrenzen modelliert ist, sind die dargestellten Mengen die abgelagerten Abfälle. Abfälle entstehen zum Teil durch die Herstellung der Vorprodukte.

Ergebnisse pro m² Lichtbauelemente 30mm										
Umweltwirkungen	Einheit	A1-A3	A4	A 5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Treibhauspotenzial	kg CO₂-Äqv.	14,0	0,028	0,054	0,15	0,028	1,74	9,58	-13,10	-4,41
Abbaupotenzial der stratosphärischen Ozonschicht	kg R11-Äqv.	6,77E-10	7,62E-16	7,01E-16	4,10E-15	7,43E-16	1,43E-09	1,42E-09	-2,32E-10	-2,33E-10
Versauerungspotenzial von Boden und Wasser	kg SO₂-Äqv.	0,023	2,43E-05	4,04E-06	1,18E-04	2,37E-05	4,63E-03	7,56E-04	-0,02	-9,90E-03
Eutrophierungspotenzial	kg PO ₄ ³Äqv.	3,50E-03	5,41E-06	8,43E-07	2,54E-05	5,28E-06	4,34E-04	1,38E-04	-3,06E-03	-8,80E-04
Bildungspotenzial für troposphärisches Ozon	kg C₂H₄-Äqv.	2,08E-03	-7,43E-07	3,80E-07	1,31E-06	-7,25E-07	2,96E-04	7,18E-05	-2,47E-03	-6,96E-04
Verknappung abiotischer Ressourcen (ADP-Stoffe)	kg Sb-Äqv.	4,47E-05	3,01E-09	3,74E-10	1,62E-08	2,93E-09	9,64E-07	1,92E-07	-4,25E-05	-2,03E-06
Verknappung abiotischer Ressourcen (ADP fossile Energieträger)	MJ	283,0	0,38	6,05E-03	2,04	0,37	18,20	2,60	-270,00	-58,0
Ressourceneinsatz	Einheit	A1-A3	A4	A5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Erneuerbare Primärenergie als Energieträger	MJ	45,50	0,026	0,052	0,14	0,025	10,8	0,26	-30,7	-16,8
Erneuerbare Primärenergie zur stofflichen Nutzung	MJ	0,05	0,00	-0,05	0,00	0,00	0,00	0,00	0,00	0,00
Gesamteinsatz erneuerbarer Primärenergie	MJ	45,6	0,026	1,18E-03	0,14	0,025	10,8	0,26	-30,7	-16,8
Nicht erneuerbare Primärenergie als Energieträger	MJ	214	0,38	0,69	2,04	0,37	31,3	89,7	-285,0	-73,2
Erneuerbare Primärenergie zur stofflichen Nutzung	MJ	87,4	0,00	-0,68	0,00	0,00	-1,07	-86,7	0,00	0,00
Gesamteinsatz nicht erneuerbarer Primärenergie	MJ	301	0,38	7,27E-03	2,04	0,37	30,3	2,94	-285,0	-73,2
Einsatz von Sekundärstoffen	kg	0,62	0,00	0,00	0,00	0,00	0,0E+00	0,00	3,05	0,09
Erneuerbare Sekundärbrennstoffe	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nicht erneuerbare Sekundärbrennstoffe	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Einsatz von Süßwasserressourcen	m ³	0,074	2,99E-05	1,21E-04	1,61E-04	2,91E-05	0,015	0,019	-0,054	-0,028
Abfallkategorien und Output-Stoffflüsse	Einheit	A1-A3	A4	A5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Deponierter gefährlicher Abfall	kg	5,31E-07	2,42E-08	5,79E-12	1,30E-07	2,36E-08	1,34E-08	7,09E-10	-2,52E-07	-3,68E-08
Deponierter nicht gefährlicher Abfall	kg	0,37	2,98E-05	1,65E-04	1,60E-04	2,90E-05	0,042	0,031	-0,34	-0,26
Radioaktiver Abfall	kg	7,11E-03	5,99E-07	4,85E-07	3,22E-06	5,84E-07	4,79E-03	1,40E-04	-6,23E-03	-6,01E-03
Komponenten für die Weiterverwendung	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Stoffe zum Recycling	kg	0,00	0,00	0,00	0,00	0,00	3,61	0,21	0,00	0,00
Stoffe für die Energierückgewinnung	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
exportierte Energie elektrisch	MJ	0,00	0,00	0,11	0,00	0,00	0,15	15,3	0,00	0,00
exportierte Energie thermisch	MJ	0,00	0,00	0,2	0,00	0,00	0,31	27,4	0,00	0,00

Ergebnisse pro m² Lichtbauelemente 40mm										
Umweltwirkungen	Einheit	A1-A3	A4	A 5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Treibhauspotenzial	kg CO₂-Äqv.	17,4	0,035	0,054	0,19	0,035	2,16	12,10	-16,30	-5,35
Abbaupotenzial der stratosphärischen Ozonschicht	kg R11-Äqv.	6,79E-10	9,45E-16	7,01E-16	5,18E-15	9,26E-16	1,43E-09	1,42E-09	-2,34E-10	-2,35E-10
Versauerungspotenzial von Boden und Wasser	kg SO₂-Äqv.	0,027	3,01E-05	4,04E-06	1,49E-04	2,95E-05	5,81E-03	9,06E-04	-0,025	-0,012
Eutrophierungspotenzial	kg PO ₄ ³Äqv.	4,32E-03	6,71E-06	8,43E-07	3,20E-05	6,58E-06	5,44E-04	1,70E-04	-3,81E-03	-1,05E-03
Bildungspotenzial für troposphärisches Ozon	kg C₂H₄-Äqv.	2,56E-03	-9,22E-07	3,80E-07	1,67E-06	-9,04E-07	3,70E-04	8,60E-05	-3,06E-03	-8,20E-04
Verknappung abiotischer Ressourcen (ADP-Stoffe)	kg Sb-Äqv.	5,59E-05	3,73E-09	3,74E-10	2,04E-08	3,65E-09	1,18E-06	2,07E-07	-5,35E-05	-2,30E-06
Verknappung abiotischer Ressourcen (ADP fossile Energieträger)	MJ	354,0	0,47	6,05E-03	2,57	0,46	22,60	2,87	-339,0	-71,0
Ressourceneinsatz	Einheit	A1-A3	A4	A5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Erneuerbare Primärenergie als Energieträger	MJ	56,30	0,032	0,052	0,18	0,032	13,6	0,32	-37,6	-20,0
Erneuerbare Primärenergie zur stofflichen Nutzung	MJ	0,05	0,00	-0,05	0,00	0,00	0,00	0,00	0,00	0,00
Gesamteinsatz erneuerbarer Primärenergie	MJ	56,4	0,032	1,18E-03	0,18	0,032	13,6	0,32	-37,6	-20,0
Nicht erneuerbare Primärenergie als Energieträger	MJ	266,0	0,47	0,69	2,58	0,46	38,9	113,0	-358,0	-89,6
Erneuerbare Primärenergie zur stofflichen Nutzung	MJ	110,0	0,00	-0,68	0,00	0,00	-1,07	-109,0	0,000E+00	0,00
Gesamteinsatz nicht erneuerbarer Primärenergie	MJ	376	0,47	7,27E-03	2,58	8 0,46 37,8		3,28	-358,0	-89,6
Einsatz von Sekundärstoffen	kg	0,76	0,00	0,00	0,00	0,00	0,0E+00	0,00	3,83	0,09
Erneuerbare Sekundärbrennstoffe	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nicht erneuerbare Sekundärbrennstoffe	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Einsatz von Süßwasserressourcen	m ³	0,09	3,71E-05	1,21E-04	2,03E-04	3,63E-05	0,019	0,024	-0,066	-0,032
Abfallkategorien und Output-Stoffflüsse	Einheit	A1-A3	A4	A5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Deponierter gefährlicher Abfall	kg	6,61E-07	3,00E-08	5,79E-12	1,64E-07	2,94E-08	1,70E-08	8,95E-10	-3,16E-07	-4,35E-08
Deponierter nicht gefährlicher Abfall	kg	0,40	3,69E-05	1,65E-04	2,02E-04	3,62E-05	0,048	0,033	-0,38	-0,26
Radioaktiver Abfall	kg	8,67E-03	7,42E-07	4,85E-07	4,07E-06	7,28E-07	6,04E-03	1,63E-04	-7,69E-03	-7,42E-03
Komponenten für die Weiterverwendung	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Stoffe zum Recycling	kg	0,00	0,00	0,00	0,00	0,00	4,51	0,21	0,00	0,00
Stoffe für die Energierückgewinnung	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
exportierte Energie elektrisch	MJ	0,00	0,00	0,11	0,00	0,00	0,15	19,4	0,00	0,00
exportierte Energie thermisch	MJ	0,00	0,00	0,2	0,00	0,00	0,31	34,5	0,00	0,00

Ergebnisse pro m² Lichtbauelemente 50mm										
Umweltwirkungen	Einheit	A1-A3	A4	A 5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Treibhauspotenzial	kg CO₂-Äqv.	20,0	0,041	0,054	0,22	0,04	2,48	14,0	-18,80	-6,08
Abbaupotenzial der stratosphärischen Ozonschicht	kg R11-Äqv.	6,80E-10	1,09E-15	7,01E-16	6,01E-15	1,07E-15	1,43E-09	1,42E-09	-2,35E-10	-2,37E-10
Versauerungspotenzial von Boden und Wasser	kg SO₂-Äqv.	0,03	3,47E-05	4,04E-06	1,73E-04	3,41E-05	6,72E-03	1,02E-03	-0,028	-0,013
Eutrophierungspotenzial	kg PO₄³Äqv.	4,97E-03	7,72E-06	8,43E-07	3,72E-05	7,59E-06	6,30E-04	1,95E-04	-4,39E-03	-1,18E-03
Bildungspotenzial für troposphärisches Ozon	kg C₂H₄-Äqv.	2,93E-03	-1,06E-06	3,80E-07	1,95E-06	-1,04E-06	4,27E-04	9,71E-05	-3,52E-03	-9,17E-04
Verknappung abiotischer Ressourcen (ADP-Stoffe)	kg Sb-Äqv.	6,46E-05	4,29E-09	3,74E-10	2,37E-08	4,22E-09	1,36E-06	2,19E-07	-6,21E-05	-2,51E-06
Verknappung abiotischer Ressourcen (ADP fossile Energieträger)	MJ	409,0	0,54	6,05E-03	2,98	0,53	26,0	3,09	-392,0	-81,0
Ressourceneinsatz	Einheit	A1-A3	A4	A5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Erneuerbare Primärenergie als Energieträger	MJ	64,70	0,037	0,052	0,21	0,037	15,8	0,36	-43,0	-22,4
Erneuerbare Primärenergie zur stofflichen Nutzung	MJ	0,05	0,00	-0,05	0,00	0,00	0,00	0,00	0,00	0,00
Gesamteinsatz erneuerbarer Primärenergie	MJ	64,8	0,037	1,18E-03	0,21	0,037	15,8	0,36	-43,0	-22,4
Nicht erneuerbare Primärenergie als Energieträger	MJ	306,0	0,54	0,69	3,0	0,53	44,8	131,0	-414,0	-102,0
Erneuerbare Primärenergie zur stofflichen Nutzung	MJ	128,0	0,00	-0,68	0,00	0,00 0,00		-127,0	0,00	0,00
Gesamteinsatz nicht erneuerbarer Primärenergie	MJ	434,0	0,54	7,27E-03	3,0	3,0 0,53 43,7		3,54	-414,0	-102,0
Einsatz von Sekundärstoffen	kg	0,87	0,00	0,00	0,00	0,00 0,00		0,00	4,44	0,09
Erneuerbare Sekundärbrennstoffe	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nicht erneuerbare Sekundärbrennstoffe	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Einsatz von Süßwasserressourcen	m ³	0,10	4,26E-05	1,21E-04	2,36E-04	4,19E-05	0,022	0,028	-0,074	-0,035
Abfallkategorien und Output-Stoffflüsse	Einheit	A1-A3	A4	A5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Deponierter gefährlicher Abfall	kg	7,62E-07	3,45E-08	5,79E-12	1,91E-07	3,40E-08	1,97E-08	1,04E-09	-3,66E-07	-4,87E-08
Deponierter nicht gefährlicher Abfall	kg	0,42	4,25E-05	1,65E-04	2,35E-04	4,18E-05	0,052	0,035	-0,40	-0,27
Radioaktiver Abfall	kg	9,89E-03	8,54E-07	4,85E-07	4,72E-06	8,40E-07	7,01E-03	1,80E-04	-8,83E-03	-8,51E-03
Komponenten für die Weiterverwendung	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Stoffe zum Recycling	kg	0,00	0,00	0,00	0,00	0,00	5,21	0,21	0,00	0,00
Stoffe für die Energierückgewinnung	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
exportierte Energie elektrisch	MJ	0,00	0,00	0,11	0,00	0,00	0,15	22,5	0,00	0,00
exportierte Energie thermisch	MJ	0,00	0,00	0,2	0,00	0,00	0,31	40,2	0,00	0,00

Ergebnisse pro m² Lichtbauelemente 60mm										
Umweltwirkungen	Einheit	A1-A3	A4	A 5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Treibhauspotenzial	kg CO₂-Äqv.	23,0	0,047	0,054	0,26	0,046	2,85	16,2	-21,70	-6,91
Abbaupotenzial der stratosphärischen Ozonschicht	kg R11-Äqv.	6,82E-10	1,25E-15	7,01E-16	6,96E-15	1,23E-15	1,43E-09	1,42E-09	-2,36E-10	-2,39E-10
Versauerungspotenzial von Boden und Wasser	kg SO₂-Äqv.	0,035	3,99E-05	4,04E-06	2,00E-04	3,93E-05	7,77E-03	1,16E-03	-0,032	-0,014
Eutrophierungspotenzial	kg PO₄³Äqv.	5,71E-03	8,87E-06	8,43E-07	4,31E-05	8,74E-06	7,27E-04	2,23E-04	-5,06E-03	-1,34E-03
Bildungspotenzial für troposphärisches Ozon	kg C₂H₄-Äqv.	3,36E-03	-1,22E-06	3,80E-07	2,27E-06	-1,20E-06	4,92E-04	1,10E-04	-4,05E-03	-1,03E-03
Verknappung abiotischer Ressourcen (ADP-Stoffe)	kg Sb-Äqv.	7,45E-05	4,93E-09	3,74E-10	2,75E-08	4,86E-09	1,55E-06	2,33E-07	-7,18E-05	-2,74E-06
Verknappung abiotischer Ressourcen (ADP fossile Energieträger)	MJ	471,0	0,62	6,05E-03	3,46	0,61	30,0	3,33	-453,0	-92,50
Ressourceneinsatz	Einheit	A1-A3	A4	A5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Erneuerbare Primärenergie als Energieträger	MJ	74,30	0,043	0,052	0,24	0,042	18,4	0,41	-49,1	-25,3
Erneuerbare Primärenergie zur stofflichen Nutzung	MJ	0,05	0,00	-0,05	0,00	0,00	0,00	0,00	0,00	0,00
Gesamteinsatz erneuerbarer Primärenergie	MJ	74,4	0,043	1,18E-03	0,24	0,042	18,4	0,41	-49,1	-25,3
Nicht erneuerbare Primärenergie als Energieträger	MJ	352,0	0,62	0,69	3,47	0,61	51,5	151,0	-479,0	-117,0
Erneuerbare Primärenergie zur stofflichen Nutzung	MJ	148,0	0,00	-0,68	0,00	0,00 0,00		-147,0	0,00	0,00
Gesamteinsatz nicht erneuerbarer Primärenergie	MJ	500,0	0,62	7,27E-03	3 3,47 0,61		50,4	3,83	-479,0	-117,0
Einsatz von Sekundärstoffen	kg	0,99	0,00	0,00	0,00	0,00	0,00	0,00	5,14	0,09
Erneuerbare Sekundärbrennstoffe	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nicht erneuerbare Sekundärbrennstoffe	MJ	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Einsatz von Süßwasserressourcen	m ³	0,12	4,90E-05	1,21E-04	2,73E-04	4,83E-05	0,025	0,032	-0,085	-0,039
Abfallkategorien und Output-Stoffflüsse	Einheit	A1-A3	A4	A5	C2/1	C2/2	C3/1	C3/2	D/1	D/2
Deponierter gefährlicher Abfall	kg	8,77E-07	3,97E-08	5,79E-12	2,21E-07	3,91E-08	2,29E-08	1,21E-09	-4,22E-07	-5,47E-08
Deponierter nicht gefährlicher Abfall	kg	0,45	4,88E-05	1,65E-04	2,72E-04	4,81E-05	0,056	0,037	-0,43	-0,27
Radioaktiver Abfall	kg	1,13E-02	9,82E-07	4,85E-07	5,47E-06	9,67E-07	8,13E-03	2,00E-04	-1,01E-02	-9,76E-03
Komponenten für die Weiterverwendung	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Stoffe zum Recycling	kg	0,00	0,00	0,00	0,00	0,00	6,01	0,21	0,00	0,00
Stoffe für die Energierückgewinnung	kg	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
exportierte Energie elektrisch	MJ	0,00	0,00	0,11	0,00	0,00	0,15	26,1	0,00	0,00
exportierte Energie thermisch	MJ	0,00	0,00	0,2	0,00	0,00	0,31	46,6	0,00	0,00

Produktgruppe: Transparente Bauelemente

6.4 Auswertung, Darstellung der Bilanzen und kritische Prüfung

Auswertung

Die folgenden Dominanzanalysen zeigen, dass in allen vier Ökobilanzen, vor allem die Module A1-A3, die dominierenden Lebenswegabschnitte sind. Zudem hat die Abfallbehandlung (C3) vor allem Einfluss auf das Abbaupotential der stratosphärischen Ozonschicht sowie auf das Treibhauspotential. Die Distributionstransporte (A4) sowie Transporte zu (C2) aering den Abfallbehandlungsanlagen sind relativ Die möglichen Potentiale vermiedener Lasten vernachlässigbar. nachfolgender Systeme (Modul D) liegen außerhalb der betrachteten Systemgrenzen.

Beispielhaft sollen nun einige Wirkungskategorien näher erläutert werden. Da sich die beiden Szenarien lediglich im End-of-Life (Modul C3) unterscheiden, ist auch das Treibauspotential für die anderen Module identisch. In Modul A1-A3 steuert hauptsächlich das verwendete Polycarbonat zum Treibhauspotential bei. In Modul C3 erfolgt in Szenario 1 eine Gutschrift für die Wiederaufbereitung des Polycarbonats. In Szenario 2 hingegen führt die Verbrennung der Polycarbonat-Bestandteile zu einer deutlich höheren Last im Modul C3. Gutschriften aus der Verbrennung erfolgen in Form von Strom und Wärme.

Anteilig gesehen dominieren das Produktionsstadium (Modul A1-A3) sowie die Lasten in der Entsorgung (C3). Haupttreiber für die Lasten in Modul A1-A3 ist Polycarbonat Granulat. Der höhere Anteil der GWP Last im Modul C3/2 im Vergleich zu C3/1 ist mit der Verbrennung des Polycarbonats in Szenario 2 zu begründen. Im Modul C3 ist Aluminiumrecycling der Treiber für die ODP Last. Transporte spielen eine untergeordnete Rolle.

Die aus der Ökobilanz errechneten Werte können ggf. für eine Gebäudezertifizierung verwendet werden.

Diagramme

Abbildung 1: CML-Ergebnisse für 1 m2 LBE 40 mm (Szenario 1)

Produktgruppe: Transparente Bauelemente

Abbildung 2: CML-Ergebnisse für 1 m2 LBE 40 mm (Szenario 2)

Bericht

Der dieser EPD zugrunde liegende Ökobilanzbericht wurde gemäß den Anforderungen der DIN EN ISO 14040 und DIN EN ISO 14044, sowie der EN 15804 und EN ISO 14025 durchgeführt und richtet sich nicht an Dritte, da er vertrauliche Daten enthält. Er ist beim ift Rosenheim hinterlegt. Ergebnisse und Schlussfolgerungen werden der Zielgruppe darin vollständig, korrekt, unvoreingenommen und verständlich mitgeteilt. Die Ergebnisse der Studie sind nicht für die Verwendung in zur Veröffentlichung vorgesehenen vergleichenden Aussagen bestimmt.

Kritische Prüfung

Die kritische Prüfung des Ökobilanzberichts erfolgte im Rahmen der EPD-Prüfung durch die externe Prüferin Susanne Volz, M. Sc. Umweltwissenschaften.

7 Allgemeine Informationen zur EPD

Vergleichbarkeit

Diese EPD wurde nach EN 15804 erstellt und ist daher nur mit anderen EPDs, die den Anforderungen der EN 15804 entsprechen, vergleichbar. Grundlegend für einen Vergleich sind der Bezug zum Gebäudekontext und dass die gleichen Randbedingungen in den Lebenszyklusphasen betrachtet werden.

Für einen Vergleich von EPDs für Bauprodukte gelten die Regeln in Kapitel 5.3 der EN 15804.

Die Einzelergebnisse der Produkte wurden anhand konservativen Annahmen zusammengefasst und unterscheiden sich von den durchschnittlichen Ergebnissen. Die Ermittlung der Produktgruppen und die sich hieraus ergebenden Variation wird im Hintergrundbericht belegt.

Kommunikation

Das Kommunikationsformat dieser EPD genügt den Anforderungen der EN 15942:2011 und dient damit auch als Grundlage zur B2B Kommunikation; allerdings wurde die Nomenklatur entsprechend der EN 15804 gewählt.

Produktgruppe: Transparente Bauelemente

Verifizierung

Die Überprüfung der Umweltproduktdeklaration ist entsprechend der ift Richtlinie zur Erstellung von Typ III Umweltproduktdeklarationen in Übereinstimmung mit den Anforderungen von EN ISO 14025 dokumentiert.

Diese Deklaration beruht auf dem PCR-Dokumenten "PCR Teil A" PCR-A-0.1:2018 und "Fassaden und Dächer aus Glas und Kunststoff" PCR-FA-3.1:2018.

Die Europäische Norm EN 15804 dient als Kern-PCR a)
Unabhängige Verifizierung der Deklaration und Angaben nach
EN ISO 14025:2010
□ intern 図 extern
Unabhängige, dritte(r) Prüfer(in): b)
Susanne Volz, M. Sc. Umweltwissenschaften
Dipl. Wirtschaftsjuristin (FH)
^{a)} Produktkategorieregeln
b) Freiwillig für den Informationsaustausch innerhalb der
Wirtschaft, verpflichtend für den Informationsaustausch
zwischen Wirtschaft und Verbrauchern (siehe EN ISO
14025:2010, 9.4).

Überarbeitungen des Dokumentes

Nr.	Datum	Kommentar	Bearbeiter	Prüfer		
1	22.02.2019	Externe Prüfung	F. Stich	S. Volz		

ift

Produktgruppe: Transparente Bauelemente

8 Literaturverzeichnis

- 1. **Forschungsvorhaben.** *EPDs für transparente Bauelemente Abschlussbericht.* Rosenheim : ift Rosenheim GmbH, 2011. SF-10.08.18.7-09.21/II 3-F20-09-1-067.
- 2. **Klöpffer, W und Grahl, B.** Ökobilanzen (LCA). Weinheim: Wiley-VCH-Verlag, 2009.
- 3. **Hütter**, **A.** *Verkehr auf einen Blick*. Wiesbaden: Statistisches Bundesamt, 2013.
- 4. **Eyerer, P. und Reinhardt, H.-W.** Ökologische Bilanzierung von Baustoffen und Gebäuden Wege zu einer ganzheitlichen Bilanzierung. Basel : Birkhäuser Verlag, 2000.
- 5. **Gefahrstoffverordnung GefStoffV.** *Verordnung zum Schutz vor Gefahrstoffen.* Berlin : BGBl. I S. 3758, 2017.
- 6. Chemikalien-Verbotsverordnung ChemVerbotsV. Verordnung über Verbote und Beschränkungen des Inverkehrbringens gefährlicher Stoffe, Zubereitungen und Erzeugnisse nach Chemikaliengesetz. Berlin: BGBI. I S. 1328, 2017.
- 7. **DIN EN ISO 14040:2018-05.** *Umweltmanagement Ökobilanz Grundsätze und Rahmenbedingungen.* Berlin : Beuth Verlag GmbH, 2018.
- 8. **DIN EN ISO 14044:2006-10.** *Umweltmanagement Ökobilanz Anforderungen und Anleitungen.* Berlin : Beuth Verlag GmbH, 2006.
- 9. EN ISO 14025:2011-10. Umweltkennzeichnungen und deklarationen Typ III Umweltdecklarationen Grundsätze und Verfahren. Berlin: Beuth Verlag GmbH, 2011.
- 10. **OENORM S 5200:2009-04-01.** Radioaktivität in Baumaterialien. Berlin: Beuth Verlag GmbH, 2009.
- 11. PCR Teil B Fassaden und Dächer aus Glas und Kunststoff. Produktkategorieregeln für Umweltprodukdeklarationen nach EN ISO 14025 und EN 15804. Rosenheim: ift Rosenheim, 2018.
- 12. **EN 15942:2012-01.** *Nachhaltigkeit von Bauwerken Umweltproduktdeklarationen Kommunikationsformate zwischen Unternehmen.* Berlin: Beuth Verlag GmbH, 2012.
- 13. **EN 15804:2012+A1:2013.** *Nachhaltigkeit von Bauwerken Umweltdeklarationen für Produkte Regeln für Produktkategorien.* Berlin : Beuth Verlag GmbH, 2013.
- 14. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit. Leitfaden Nachhaltiges Bauen. Berlin: s.n., 2016.
- 15. **DIN EN 13501-1:2010-01.** Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten Teil 1: Klassifizierung mit den Ergebnissen aus den Prüfungen zum Brandverhalten von Bauprodukten. Berlin: Beuth Verlag GmbH, 2010.
- 16. **ISO 21930:2017-07.** Hochbau Nachhaltiges Bauen Umweltproduktdeklarationen von Bauprodukten. Berlin: Beuth Verlag, 2017.
- 17. Bundesimmissionsschutzgesetz BlmSchG. Gesetz zum Schutz vor schädlichen Umwelteinwirkungen durch Luftverunreinigungen, Geräusche, Erschütterungen und ähnlichen Vorgängen. Berlin: BGBI. I S. 3830, 2017.
- 18. Chemikaliengesetz ChemG. Gesetz zum Schutz vor gefährlichen Stoffen Unterteilt sich in Chemikaliensetz und eine Reihe von Verordnungen; hier relevant: Gesetz zum Schutz vor gefährlichen Stoffen. Berlin: BGBI. I S. 1146, 2017.

- 19. **IKP Universität Stuttgart und PE Europe GmbH.** *GaBi 8: Software und Datenbank zur Ganzheitlichen Bilanzierung.* Leinfelden-Echterdingen: s.n., 2017.
- 20. **ift-Richtlinie NA-01/3.** Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen. Rosenheim: ift Rosenheim GmbH, 2015.
- 21. **PCR Teil A.** Allgemeine Produktkategorieregeln für Umweltprodukdeklarationen nach EN ISO 14025 und EN 15804. Rosenheim: ift Rosenheim, 2018.
- 22. DIN EN ISO 16000 Teil 6, 9 11. Innenraumluftverunreinigungen: Bestimmung der Emissionen von flüchtigen organischen Verbindungen aus Bauprodukten und Einrichtungsgegenständen. Berlin: Beuth Verlag GmbH, 2012, 2008, 2006.
- 23. **DIN EN ISO 12457 Teil 1-4.** Charakterisierung von Abfällen Auslaugung; Übereinstimmungsuntersuchung für die Auslaugung von körnigen Abfällen und Schlämmen Teil 1-4. Berlin: Beuth Verlag GmbH, 2003.
- 24. **ETAG 010:2002.** European Technical Approval Guidelines (ETAG) Self supporting translucent Roofkits. Brüssel: EOTA, 2004.

Produktgruppe: Transparente Bauelemente

9 Anhang

Beschreibung der Lebenszyklusszenarien für Lichtbauelemente

	stellur phase		tun	ich- gs- ase	Nutzungsphase Entsorgungsphase									Vorteile und Belastungen außerhalb der System- grenzen			
A 1	A2	А3	A4	A5	B1	B2	В3	В4	В5	В6	В7		C1	C2	C3	C4	D
Rohstoffbereitstellung	Transport	Herstellung	Transport	Bau/Einbau	Nutzung	Inspektion, Wartung, Reinigung	Reparatur	Austausch / Ersatz	Verbesserung / Modernisierung	betrieblicher Energieeinsatz	betrieblicher Wassereinsatz		Abbruch	Transport	Abfallbewirtschaftung	Deponierung	Wiederverwendungs- Rückgewinnungs- Recyclingpotenzial
✓	✓	✓	✓	✓	_	_	_	_	_	_	_		_	✓	✓		✓

Die Berechnung der Szenarien wurde unter Berücksichtigung einer Gebäude-Nutzungsdauer von 30 Jahren (gemäß RSL unter 4 Nutzungsstadium) vorgenommen.

Für die Szenarien wurden Herstellerangaben verwendet, außerdem wurde als Grundlage der Szenarien das Forschungsvorhaben "EPDs für transparente Bauelemente" herangezogen (1).

Hinweis: Die jeweilig gewählten und üblichen Szenarien sind fett markiert. Diese wurden zur Berechnung der Indikatoren in der Gesamttabelle herangezogen.

- ✓ Teil der Betrachtung
- Nicht Teil der Betrachtung

Deklarationsnummer: EPD-RLE-33.0 Veröffentlichungsdatum: 22.02.2019

Produktgruppe: Transparente Bauelemente

A4 Tran	A4 Transport zur Baustelle				
Nr.	Nutzungsszenario	Beschreibung			
A4	Direktanlieferung auf Baustelle/Niederlassung	Transportmedium: LKW (EURO 6.) Transportdistanz: Entfernung von 100 km bei einer Auslastung von 50%. Gewicht, inkl Verpackung: LBE 30 mm 40 mm 50 mm 60 mm Masse in kg 3,746 4,646 5,346 6,146			

A5 Bau/Einbau		
Nr.	Nutzungsszenario	Beschreibung
A5	händisch	Lichtbauelemente werden ohne zusätzliche Hebemittel installiert!

Das Anbringen der Lichtbauelemente erfordert keine zusätzlich umweltrelevanten Materia-lien, lediglich die Entsorgung und Verwertung der Verpackungen. Hier wurde eine Sammelquote für die baustellenseitigen Verpackungsabfälle von 100% angenommen.

Für die Transporte zur Abfallbehandlung gelten die gleichen Annahmen wie in Modul A4.

Bei abweichenden Aufwendungen während des Einbaus bzw. der Installation der Produkte als Bestandteil der Baustellenabwicklung werden diese auf Gebäudeebene erfasst.

Gutschriften aus A5 werden nicht in A5 ausgewiesen.

Deklarationsnummer: EPD-RLE-33.0 Veröffentlichungsdatum: 22.02.2019

Produktgruppe: Transparente Bauelemente

C – Entsorgungsphase

Die Lichtbauelemente werden am Ende der Nutzungsphase in Polycarbonat, Aluminium sowie Nylon, Polypropylen und Thermoplastische Elastomere aufgeteilt. Das Aluminium wird entsprechend der gängigen Praxis recycelt. Nylon, Polypropylen und Thermoplastische Elastomere werden getrennt in einer Müllverbrennungsanlage (MVA) entsorgt. Dabei rückgewonnene Energiemengen sind als Nebenprodukt des Entsorgungsprozesses zu verstehen. Das Ende der Abfalleigenschaft ist mit der Deponierung der Schlacke und Asche als Restabfall erreicht (die Trennung der Aschdeponierung ist in den Datensätzen nicht möglich, daher werden sämtliche Emissionen aus dem Datensatz in C3 modelliert, obwohl Deponierung eigentlich Modul C4 wäre). Für die Entsorgung des Polycarbonats werden zwei Szenarien betrachtet. In Szenario 1 werden die Polycarbonat-Anteile der Lichtbauelemente am Ende ihres Lebensweges zu Polycarbonat Regranulat aufbereitet. In Szenario 2 wird das Polycar-bonat in einer MVA verbrannt.

C2 Transport

Nr.	Nutzungsszenario	Beschreibung
C2	Transport	LKW mit 24,7 t Nettozuladung und EURO 6 Entfernung von 100 km bei einer Auslastung von 50%.

C3 Abfallbewirtschaftung

Nr.	Nutzungsszenario	Beschreibung		
C3.1	Szenario 1	Das Aluminium wird entsprechend der gängigen Pra- xis recycelt. Nylon, Polypropylen und Thermoplasti- sche Elastomere werden getrennt in einer Müllver- brennungsanlage (MVA) entsorgt. In Szenario 1 werden die Polycarbonat-Anteile am Ende ihres Lebensweges zu Polycarbonat Regranulat		
C3.2	Szenario 2	aufbereitet Das Aluminium wird entsprechend der gängigen Pra- xis recycelt. Nylon, Polypropylen und Thermoplasti- sche Elastomere werden getrennt in einer Müllver- brennungsanlage (MVA) entsorgt. In Szenario 2 wird das Polycarbonat in einer MVA verbrannt.		

In unten stehender Tabelle werden die Entsorgungsprozesse beschrieben und massenanteilig dargestellt. Die Berechnung erfolgt aus den oben prozentual aufgeführten Anteilen bezogen auf die deklarierte Einheit des Produktsystems. Zur Berechnung 100%-Szenarien können die Massenanteile der Materialgruppen wie in Abschnitt 6.2 beschrieben.

Deklarationsnummer: EPD-RLE-33.0 Veröffentlichungsdatum: 22.02.2019

Produktgruppe: Transparente Bauelemente

C3-1 Entsorgung		30 mm	40 mm	50 mm	60 mm
Szenario 1	Einheit				
Sammelverfahren, getrennt gesammelt	kg	3,64	4,54	5,24	6,04
Sammelverfahren, als gemischter Bauabfall gesammelt	kg	-	-	-	-
Rückholverfahren, zur Wiederverwendung	kg	-	-	-	-
Rückholverfahren, zum Recycling	kg	3,61	4,51	5,21	6,01
Rückholverfahren, zur Energierückgewinnung	kg	0,03	0,03	0,03	0,03
Beseitigung	kg	-	-	-	-
Annahmen für die Szenarienentwicklung, z.B. für den Transport	sinnvolle Einheiten	-	-	-	-

C3-2 Entsorgung		30 mm	40 mm	50 mm	60 mm
Szenario 2	Einheit				
Sammelverfahren, getrennt gesammelt	kg	3,64	4,54	5,24	6,04
Sammelverfahren, als gemischter Bauabfall gesammelt	kg	-	-	-	-
Rückholverfahren, zur Wiederverwendung	kg	-	-	-	-
Rückholverfahren, zum Recycling	kg	0,21	0,21	0,21	0,21
Rückholverfahren, zur Energierückgewinnung	kg	3,43	4,33	5,03	5,83
Beseitigung	kg	-	-	-	-
Annahmen für die Szenarienentwicklung, z.B. für den Transport	sinnvolle Einheiten	-	-	-	-

D Vorte	D Vorteile und Belastungen außerhalb der Systemgrenzen				
Nr.	Nutzungsszenario	Beschreibung			
D	Recyclingpotenzial	Modul D zeigt mögliche Potentiale für vermiedenen Lasten in nachfolgenden Systemen resultierend aus den werkstoffabhängigen Entsorgungsprozessen der Module A5 und C3. Nach heutigem Stand der Technik dient eine MVA in Europa der Abfallvernichtung und nicht der Energierückgewinnung. Deswegen werden die Emissionen, die beim Abfallverbrennungsprozess anfallen dem jeweiligen Modul (bspw. A5 oder C3) zugeordnet und nicht D.			

Impressum

Ökobilanzierer

brands & values GmbH Vagtstr. 48/49 28203 Bremen

Programmbetreiber

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim Telefon: 0 80 31/261-0 Telefax: 0 80 31/261 290 E-Mail: info@ift-rosenheim.de

www.ift-rosenheim.de

Deklarationsinhaber

Rodeca GmbH Freiherr-vom-Stein-Straße 165 45473 Mülheim an der Ruhr

Hinweise

Grundlage dieser EPD sind in der Hauptsache Arbeiten und Erkenntnisse des Instituts für Fenstertechnik e.V., Rosenheim (ift Rosenheim) sowie im Speziellen die ift-Richtlinie NA-01/3 Allgemeiner Leitfaden zur Erstellung von Typ III Umweltproduktdeklarationen.

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Layout

ift Rosenheim GmbH - 2018

Fotos (Titelseite)

Rodeca GmbH

© ift Rosenheim, 2019

ift Rosenheim GmbH Theodor-Gietl-Str. 7-9 83026 Rosenheim

Telefon: +49 (0) 80 31/261-0
Telefax: +49 (0) 80 31/261-290
E-Mail: info@ift-rosenheim.de
www.ift-rosenheim.de