Arranging Data with Layouts

Chris B. Behrens
SOFTWARE ARCHITECT

@chrisbbehrens www.chrisbehrens.rocks

Pie Charts

Don't Use Pie Charts

One-trick ponies

Show proportionality reasonably well...

And do NOTHING else well

The Aquaman of data visualization

They don't tessellate

Don't scale effectively

Too many wedges breaks a color scheme

And on, and on...

Force-directed Layouts

A simulation-based alternative to...

- Manual positioning
- Animation
- Easing

Represents hierarchies well

- Dynamic relationships

Force-directed Layouts

Positions and spacing are driven by forces

- The D3 engine figures it out for you

Forces like

- Gravity / charge
- Linking
- Collision-detection

Ticks

Ticks represent increments of the simulations

Correspond (roughly) to frames

The Tick function allows you to reposition your elements according to the effects of the simulation

REAL Graph Data

Nodes

- Name property
- Optional id

Links

- Optional
- Source and Target
- Links nodes to each other

Parting Thoughts on Force-directed Layouts

Summary

D3 Layouts

- What they are
- A pie chart
- You shouldn't use pie charts
- We made one anyway
- Annular visualization
 - With different inner radius values
- How this stuff is stored in the DOM

Force-directed Layouts

- With an astronaut graph
 - Yes, graph
- We broke down a handful of forces
- What their effects are on the layout
- Walked through the tick function
 - Two different ways to apply the results

