Neural Activity and Behavior Prediction using RNN

By: Amirreza Farbakhsh, Amirreza Bahramani, Keyvan Ghasemi, Narjes Soltani, Amir Khani, Ali Shamsnia

Cepelinai / LiveWired

Who we are?

Sushrut Thorat

Mina Rezaei

Yara Bahram

Introduction

- Low dimensional latent representation → Making sense of data
- What we did?
 - Seq-to-seq RNN model to predict neural activity
 - Get latent states
 - Verify latents are actually relevant!
 - Analyze the latents

Introduction

Steinmetz et al dataset

- Recorded with Neuropixel
- 29134 neurons
 across 39 sessions in

 10 mice

Left NoGo Right

Steinmetz, N. A., Zatka-Haas, P., Carandini, M. & Harris, K. D. Distributed coding of choice, action and engagement across the mouse brain. *Nature* **576**, 266–273 (2019).

Neural activity prediction

Predicted Neural activity

Secondary Motor Cortex
Training set

Predicted mean FR
True mean FR

281 neuron 237 trials

1000 iterations

237 trials

250 time bin

Mouse decision prediction (SVM)

Kernel: RBF

• Total accuracy: 96.6%

Rotation	Precision		Recall		F1-score		Support	
	Train	Test	Train	Test	Train	Test	Train	Test
Left	93%	100%	100%	93%	96%	97%	53%	15%
No-Go	98%	93%	100%	100%	99%	96%	49%	13%
Right	100%	90%	90%	90%	95%	90%	49%	10%

The timing of movement information flow

- SVM on latents in 250 time bins
- Increase in flow of movement information after around 80 bins (300 ms after visual stimulus)
- Before the stimulus the accuracy of the model is higher than chance level
- Failed MLP model

THANK YOU FOR YOUR CONSIDERATION

