COSC2473

Data Error Handling

Intro and Gray Codes
Parity and Hamming Codes
SECDED and Templates

Data Errors

- Digital data comes in a variety of forms:
 - Numerical data
 - eg. Numbers collected from some sampling device
 - Easily read by programs
 - Data errors generally related to instrument uncertainties
 - Categorical data
 - eg Classifications, Groupings, etc
 - Easily read and categorised by programs
 - Wrong-category Error is more problematic (how to correct?)

- Descriptive / formatted / structured data
 - eg free text, XML, JSON, special file formats
 - Requires syntax (structure) & semantic (meaning) checking

Binary Data Errors

- All the data errors in the previous slide rely on the bits themselves being correctly transmitted.
- What if they are not?
 - Firstly can we **tolerate** bit errors?
 - eg Video streams have built in error tolerance and recovery
 - Secondly can we <u>detect</u> bit errors?
 - This may be sufficient, as we can ask to retransmit the data
 - Thirdly, can we *correct* bit errors?
 - If retransmission is not possible or practical (eg Big Data), then can we at least correct some of it?

Data Error Tolerance

- Most binary data is structural
 - Data structures include field lengths, data sizes, formatting rules
 - Having bit errors in structured streaming usually means the downstream system gets confused as to where it is up to and so may need to resynchronise
 - So error tolerance can mean
 - wrong pixel values in images video (only visible to data consumers, not actually a system error.
 - discovery that the system is confused and needs to recover
 - In the case of MPEG video, all stream data headers start with 12 1 bits in a row, which never happens in the data itself.
 - so if a video client gets confused, it simply waits for the next set of 12 1 bits, and restarts from there.
- In images, salt and pepper noise is where individual pixels get set to white or black instead or their colour.
 - In binary data, this is a bit flip.
- For purely numerical binary data, we can use <u>Gray Codes</u> for the case where random bits flip.

- When numeric data is digitally sampled from an instrument, you cannot be sure if any error is due to but errors in transmission. But you can limit its effects.
 - One way we can limit the effect of such errors is for the device to use Gray codes instead of binary.
- Consider the following:

SourceBin \rightarrow <u>0</u>111 \rightarrow 1-bit error \rightarrow <u>1</u>111 \rightarrow Dest SourceGray \rightarrow <u>0</u>100 \rightarrow 1-bit error \rightarrow <u>1</u>100 \rightarrow Dest

- In the first case the 1 bit error has caused the reading to be almost double the correct value, from 7 to 15..
- In Gray Code, the value for 7 is 0100 and that for 8 is 1100
 - So in the second case, the same value (7) as Gray code suffer the same bit error, but the new value is 8 in Gray Code, and so the damage is reduced.

- Gray codes are designed so that each value differs from its neighbour by only a single bit, so that single bit errors will only change the value by +/- 1.
- Consider the following truth table (b₂-b₀ are bits of Val)

<u>Val</u>	Bin	Gray	b ₂	b ₁	
0	000	000	<u>-</u>	-	-
1	001	001	-	-	-
2	010	011	-	1	flip if b ₁ =1
3	011	010	-	1	flip if b ₁ =1
4	100	110	1	flip if $b_2=1$	flip if $b_2=1$, flip if $b_1=1$
5	101	111	1	flip if $b_2=1$	flip if $b_2=1$, flip if $b_1=1$
6	110	101	1	flip	flip if b ₁ =1
7	111	100	1	flip	flip if b ₁ =1

- Now extend the pattern to b₃ of Val.
 - Does the same pattern hold?

<u>Val</u>	Bin	Gray	Val	Bin	Gray
0	0000	0000	8	1000	1100
1	0001	0001	9	1001	1101
2	0010	0011	10	1010	1111
3	0011	0010	11	1011	1110
4	0100	0110	12	1100	1010
5	0101	0111	13	1101	1011
6	0110	0101	14	1110	1001
7	0111	0100	15	1111	1000

 Shown below are the logic gates for conversion from Binary to Gray code. The circuit shows each bit XORed with next higher bit.

Python Code

```
def BinToGray(num):
    return num ^ (num >> 1)
```

Java Code

```
int function BinToGray(int num) {
    return num ^(num >> 1);
}
```


	Val	b ₃	b ₂	b ₁	b ₀
num	6	0	1	1	0
N = num >> 1	3	0	0	1	1
num ^ N	5	0	1	0	1

 Shown below are the logic gates for conversion from Gray Code to Binary. The circuit shows each bit right-propagated with XOR with next lower bit.

Python Code

```
def GrayToBin(num):
    prop = num >> 1
    while prop != 0:
        num ^= prop
        prop >>= 1
        return num
```

Java Code

```
int function GrayToBin(int num) {
    // Simulate right propagation
    int prop = num >> 1;
    while prop != 0
        num = num ^ prop;
        prop = prop >> 1;
    }
    return num;
}
```


	Val	b ₃	b ₂	b ₁	b ₀
Num. Prop = 2	5	0	1	0	1
num ^= prop, prop = 1	7	0	1	1	1
num ^= prop, prop = 0	6	0	1	1	0

Vernier Caliper

A vernier caliper is used to measure the width of small objects to 0.1 mm accuracy.
 ①②③ outside/inside/depth measure. ④⑥ cm measure and vernier. 2.48 cm shown.

Vernier Scale

- See how the marks line up as the lower part moves.
- This works because the width between the lower mark is 90% of the widths between the upper marks.
- Thus each movement of 10% pf the mark spacing causes a different pair of marks to line up.

Example of Gray Code for Position

- the lower part of the chart shows a binary counting sequence. You can see how a vertical line traveling from left to right will hit multiple transitions at some places.
- The Gray code is above it and you can see the pattern

Example of Gray Code for Angle

- At left is a 3-bit Gray Angle encoder. As the circle rotates, different bit patterns are seen in the window. They vary by 1 bit from their neighbours, so the accuracy is $45^{\circ} \pm 45^{\circ}$
- The Gray code is above it and you can see the pattern

Gray Code – Summary

- Some interesting properties of Gray codes
 - The <u>Numerical difference</u> between adjacent values is 1
 - The <u>Hamming distance</u> (see later) between adjacent values is 1
 - A <u>permutation</u> of the columns of a Gray code is still a Gray code, where neighbours differ by 1 bit :

```
0,1,2,3,4,5,6,7 \rightarrow 000,001,011,010,110,111,101,100 swap columns 1,2 000,001,101,100,110,111,011,010 \rightarrow 0,1,5,4,6,7,3,2
```

You could use Gray codes for bit-error tolerant encryption