

AUTOMATISMES INDUSTRIELS

Programmation des automates

Cours 2

3h30 - v0.1 (P)

IUT de Cachan - 9 Avenue de la division Leclerc - 94230 Cachan

LA PROGRAMMATION D'UN AUTOMATE INDUSTRIEL

Table des matières

1	Le langage LADDER				
	1.1	Résea	ux LADDER simples	2	
		1.1.1	Les contacts	2	
		1.1.2	Les bobines	2	
		113	Réseaux de base	2	

Introduction

Le logiciel de développement d'un API (Automate Programmable Industriel) est un logiciel permettant de configurer et de programmer l'API associé. Chaque constructeur d'API impose son propre logiciel de développement.

Schneider	Siemens	Wago	Tend
Unity Pro	Tia Portal	CodeSys	Niagara
EcoStructure		eCockpit	

Table 1: Logiciel de développement pour chaque constructeur.

1 Le langage LADDER

Le langage LADDER fut conçu dans les années 1970 pour faire passer les électrotechniciens de la saisie de schémas électriques de systèmes à relais à la programmation. Il est donc simple et proche de la description de schémas électriques. On le réserve à la description de fonctions combinatoires ou à des calculs simples.

Une ligne d'un programme LADDER est appelée réseau.

Un réseau est composé de contacts, de bobine et/ou de blocs.

© (1) (S) (D)

1.1 Réseaux LADDER simples

1.1.1 Les contacts

Les contacts représentent des entrées logiques (TOR).

À retenir

Il existe deux types de contacts:

- ${\bf Contact\ normalement\ ouvert}: {\it actif\ lorsque\ la\ variable\ associée\ est\ {\it à\ l'état\ 1}}.$
 - \Rightarrow Il représente donc la variable a
- Contact normalement fermé actif lorsque la variable associée est à l'état 0.
 - \Rightarrow Il représente donc la variable \overline{a}

1.1.2Les bobines

Les bobines représentent les sorties logiques (TOR) de l'API.

À retenir

Une sortie S de l'automate est active lorsque la bobine associée \xrightarrow{S} est active.

Réseaux de base 1.1.3

La traduction en réseau LADDER de l'équation S = a est donc représentée sur la figure 1a. L'équation en réseau LADDER de l'équation $S = \overline{a}$ est représentée sur la figure 1b

a Sortie
(a)
$$S = a$$
(b) $S = \overline{a}$

FIGURE 1: Réseaux LADDER de base

Comme dans un circuit électrique, il est possible de programmer des équation combinatoires en langage LADDER. Les fonctions ET et OU sont représentée sur la figure 2

Activité 1

Dessinez le réseau LADDER de l'équation $S = a + \bar{b}$ Question 1

www.iut-cachan.u-psud.fr

a Sortie

a b Sortie

b

(a)
$$S = a \text{ ET } b$$

(b) $S = a \text{ OU } b$

Figure 2: Equations logiques simples

Dessinez le réseau LADDER de l'équation $S = \bar{a} \cdot \bar{b}$ Question 2

Dessinez le réseau LADDER de l'équation $S = (a+b) \cdot \overline{b} \cdot c$ Question 3

