LINEAR ALGEBRA (MA20105)

Problems Sheet-1

Notation: In the following $\mathbb{F} = \mathbb{R}$.

- 1. Prove that $(\mathbb{F}^n, +)$ is a vector space over \mathbb{F} , where + is coordinate wise addition and $c(a_1, \ldots, a_n) := (ca_1, \ldots, ca_n), (a_1, \ldots, a_n) \in \mathbb{F}^n, c \in \mathbb{F}$.
- 2. Let $M_{m \times n}(\mathbb{F})$ be the set of all $m \times n$ matrices over \mathbb{F} . Prove that $M_{m \times n}(\mathbb{F})$ forms a vector space under matrix addition and scalar multiplication.
- 3. On \mathbb{R}^n , define two operations

$$\alpha \oplus \beta = \alpha - \beta$$

$$c * \alpha = -c\alpha$$
.

The operations on the right are the usual ones. Which of the axioms for a vector space are satisfied by $(\mathbb{R}^n, \oplus, *)$?

4. On \mathbb{R}^2 , define

$$(x,y) + (x_1,y_1) = (x+x_1,0)$$

$$c(x,y) = (cx,0).$$

Is \mathbb{R}^2 , with these operations, a vector space over \mathbb{R} ? Provide reasons.

5. Let $P[x]_{\leq n} := \{a_0 + a_1x + \dots + a_nx^n : a_i \in \mathbb{F}, 1 \leq i \leq n\}$ (set of all polynomials of degree $\leq n$). Let $p(x) = a_0 + a_1x + \dots + a_nx^n$, $q(x) = b_0 + b_1x + \dots + b_nx^n \in P[x]_{\leq n}$. Define

$$p(x) + q(x) := (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n$$

$$cp(x) := ca_0 + ca_1x + \dots + ca_nx^n.$$

Prove that $P[x]_{\leq n}$ is a vector space over $\mathbb F$ with the above operations.

Subspace related problems

- 1. Which of the following sets of vectors $\alpha = (a_1, \dots, a_n)$ in \mathbb{R}^n are subspaces of $\mathbb{R}^n (n \geq 3)$?
 - (i) all α such that $a_1 \geq 0$;
 - (ii) all α such that $a_1 + 3a_2 = a_3$;
 - (iii) all α such that $a_2 = a_1^2$;
 - (iv) all α such that $a_1a_2=0$;
 - (v) all α such that $a_1 \in \mathbb{Q}$?

- 2. Let V be the real vector space of all functions from $\mathbb{R} \to \mathbb{R}$. Which of the following sets of functions are subspaces of V?
 - (i) all f such that $f(x^2) = f(x)^2$;
 - (ii) all f such that f(0) = f(1);
 - (iii) all f such that f(3) = 1 + f(-5);
 - (iv) all f such that f(-1) = 0;
 - (v) all f which are continuous.
- 3. If $S_1, S_2, \ldots S_k$ are subsets of a vector space V, the set of all sums $\alpha_1 + \alpha_2 + \cdots + \alpha_k$ of vectors $\alpha_i \in S_i$ is called the sum of the subsets $S_1, \ldots S_k$ and is denoted by $S_1 + \cdots S_k$ or by $\sum_{i=1}^k S_i$. If $W_1, \ldots W_k$ are subspaces of V, then check that the sum $\sum_{i=1}^k W_i$ is a subspace of V which contains each of the subspaces W_i , $1 \le i \le k$.
- 4. Prove that the union of two subspaces W_1, W_2 of a vector space V is not a subspace in general but the intersection is. If $W_1 \cup W_2$ is a subspace of V, then prove that $W_1 \subset W_2$ or $W_2 \subset W_1$.
- 5. Let W_1 and W_2 be two subspaces of a vector space V such that $W_1+W_2=V$ and $W_1\cap W_2=\{0\}$. Prove that for each vector $\alpha\in V$ there are unique vectors $\alpha_1\in W_1, \alpha_2\in W_2$ such that $\alpha=\alpha_1+\alpha_2$.