4 Punkte

Funktionalanalysis - Übungsblatt 6

Wintersemester 2023

Dr. Jan Fuhrmann, Christian Düll

Abgabe: 1. Dezember 2023, in die Zettelkästen 55/56 oder online über Mampf

Aufgabe 6.1

[1+1.5+1+0.5 Punkte]

In dieser Aufgabe konstruieren Sie einen isometrischen Isomorphismus $\Phi: \ell_1 \to c_0'$ (hier ist $\ell_1 = \ell_1^{\mathbb{R}}$). Gehen Sie dafür wie folgt vor:

(a) Für $a \in \ell_1$ sei

$$\phi_a: c_0 \to \mathbb{K}, \quad \phi_a(b) = \sum_{n \in \mathbb{N}} a_n b_n.$$

Zeigen Sie, dass ϕ_a wohldefiniert ist und $\phi_a \in c'_0$.

(b) Für $i \in \mathbb{N}$ sei $e_i = (\delta_{in})_{n \in \mathbb{N}} \in c_0$ die Standardeinheitsfolge. Zu einem beliebigen $\phi \in c'_0$ definieren wir $a = (a_n)_{n \in \mathbb{N}}$ durch

$$a_n = \phi(e_n).$$

Zeigen Sie, dass $a \in \ell_1$.

- (c) Zu $\phi \in c'_0$ sei $a \in \ell_1$ die konstruierte Folge aus b). Zeigen Sie, dass ϕ auf c_0 mit dem Operator ϕ_a aus Teil a) übereinstimmt. Hinweis: Betrachten Sie zunächst beide Operatoren auf c_{00} .
- (d) Wir definieren nun die Abbildung

$$\Phi: \ell_1 \to c_0', \qquad a \mapsto \phi_a.$$

Zeigen Sie, dass Φ ein isometrischer Isomorphismus ist.

Aufgabe 6.2 4 Punkte

[1+0.5+0.5+0.5+1.5 Punkte]

(a) Es seien X, Y, Z normierte \mathbb{K} -Vektorräume und $S \in \mathcal{L}(X, Y), T \in \mathcal{L}(Y, Z)$. Zeigen Sie, dass $||T \circ S|| \leq ||T|| ||S||$ gilt.

Berechnen nun Sie die Operatornorm der folgenden linearen Abbildungen:

b) Die Einbettungsabbildung $\phi: (C^1([0,1]), \|\cdot\|_{C^1([0,1])}) \to (C^0([0,1]), \|\cdot\|_{\infty})$ mit der C^1 Norm

$$||f||_{C^1([0,1])} := \max\{||f||_{\infty}, ||f'||_{\infty}\}.$$

- c) Die Einschränkung ϕ_0 von ϕ auf den Unterraum $U := \{ f \in C^1([0,1]) \mid f(0) = 0 \}.$
- d) Die Einbettung $\psi: (C^0([0,1], \|\cdot\|_{\infty}) \to L_1([0,1])$ (ausgestattet mit dem Lebesgue Maßes auf [0,1]).
- e) Die Verkettung $\psi \circ \phi_0$ der Abbildungen aus c) und d).

Bitte wenden!

Aufgabe 6.3 4 Punkte

[3+1 Punkte]

Seien $X = C([0,1]), Y = C^1([0,1])$ reellwertige Funktionenräume, jeweils ausgestattet mit $\|\cdot\|_{\infty}$. Für $f \in X$ definieren wir den Operator

$$(Sf)(x) := \int_0^x f(y) \, \mathrm{d}y \qquad \forall \ x \in [0, 1].$$

(a) Zeigen Sie, dass $S \in \mathcal{L}(X,Y)$ und bestimmen Sie den Kern $\ker(S)$ und das Bild $\operatorname{im}(S)$ von S, wobei

$$\ker(S) = \{ x \in X \mid Sx = 0 \}, \quad \operatorname{im}(S) = \{ Sx \mid x \in X \}.$$

Folgern Sie, dass $\operatorname{im}(S) \subset Y$ abgeschlossen ist.

(b) Wir fassen nun S als Operator $S \in \mathcal{L}(X,X)$ auf. Zeigen Sie, dass $\operatorname{ran}(S)$ nicht abgeschlossen in X ist.

Sie können zum Beispiel die folgende Familie von Funktionen betrachten

$$f_k(x) = \sqrt{x + \frac{1}{k}} - \sqrt{\frac{1}{k}}, \quad \forall x \in [0, 1].$$

Aufgabe 6.4 4 Punkte

[0.5 + 3.5 Punkte]

Seien X ein Banachraum, Y ein Hilbertraum und $T \in \mathcal{L}(X,Y)$. Zeigen Sie die Äquivalenz der Aussagen

- (i) Es gibt ein $S \in \mathcal{L}(Y, X)$ mit $S \circ T = I$.
- (ii) Es gibt ein c > 0 mit $c||x|| \le ||Tx||$ für alle $x \in X$.

Hinweis: Zeigen Sie zunächst, dass $\operatorname{im}(T) \subset Y$ abgeschlossen ist und verwenden Sie den 1.Satz von Riesz.