Congratulations! You passed!

Grade received 100% Latest Submission Grade 100%

To pass 75% or higher

1. In a bag of marbles, there are two disjoint events: A represents selecting a red marble, and B represents 1/1 point selecting a blue marble. The probability of selecting a red marble is $P(A)=rac{1}{4}$, and the probability of selecting a

blue marble is $P(B) = \frac{1}{3}$. What is the probability of selecting either a red or a blue marble, $P(A \cup B)$, from the bag?

$$\bigcirc P(A \cup B) = \frac{1}{12}$$

$$\bigcirc P(A \cup B) = \frac{9}{2}$$

(a)
$$P(A \cup B) = \frac{7}{12}$$

$$\bigcirc \ P(A \cup B) = \frac{5}{12}$$

(Correct The probability of the union of disjoint events is the sum of their individual probabilities. $P(A \cup B) = P(A) + P(B) = \frac{1}{4} + \frac{1}{2} = \frac{7}{10}$

- $\frac{10^2-1}{10^2}$

210

- (910

By throwing 10 fair coins, there are 2^{10} possible outcomes and only one outcome results in

HHHHHHHHHH or all heads. This means the $P(\text{not all heads}) = 1 - P(\text{all heads}) = 1 - \frac{1}{2^{10}} = \frac{2^{10} - 1}{2^{10}}$

Go to next item

1/1 point

3. In a room, there are 200 people: 30 people only like soccer, 100 people only like basketball, and 70 people like

Hint: Find P(P|S) where P is the quart of liking haskethall and S is the quart of liking access

Hint: Find P(B | S) , where B is the event of liking basketball and S is the event of liking soccer.

- \bigcirc $\frac{3}{7}$
- \odot $\frac{7}{10}$

○ Correct
 Let S represent the number of people who like soccer and B represent the number of people who like

20

1

- basketball. Therefore, $P(B|S) = rac{P(B \cap S)}{P(S)}$.
- disease test positive 95% of the time. People who do not have the disease test negative 90% of the time. If an individual receives a positive test result for the disease, what is the probability that they truly have the disease or $P(\operatorname{sick}|\operatorname{test_{pos}})$?

 Hint: In the description above, you were given $P(\operatorname{sick})$, probability for true positive (or $P(\operatorname{test_{pos}}|\operatorname{sick})$), and

4. Imagine there is a disease that impacts 1% of the population. Researchers devised a test so that people with the

Remember that Bayes' Theorem is $P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)}$. Also, remember that you may write $P(B) = P(B|E) \cdot P(E) + P(B|\text{not }E) \cdot P(\text{not }E)$, where E is any event and not $E = P(B|E) \cdot P(E)$.

probability for true negative (or $P(\text{test}_{\text{neg}}|\text{sick})$). Use this information to find P(not sick) and

 $P(B) = P(B|E) \cdot P(E) + P(B|\text{not } E) \cdot P(\text{not } E), \text{ where } E \text{ is any event and not } E = E'.$

0 15.58%

P(testpos not sick).

- 8.76%
- O 42.76%
- 0 ----

Correct
 According to Bayes' Theorem,

P(test___sick) · P(sick)

1/1 point

O 42.76%	
O 90%	
$\bigcirc \text{ Correct } \\ \text{According to Bayes' Theorem,} \\ P(\text{sick} \text{test}_{\text{pos}}) = \frac{P(\text{test}_{\text{pos}} \text{sick}) \cdot P(\text{sick})}{P(\text{sick}) \cdot P(\text{test}_{\text{pos}} \text{sick})) + P(\text{not sick}) \cdot P(\text{test}_{\text{pos}} \text{not sick})}. \\ \\ \cdot \\ \text{From the problem description, you know that } P(\text{sick}) = 0.01, P(\text{test}_{\text{pos}} \text{sick}) = 0.95, \text{and } \\ P(\text{test}_{\text{neg}} \text{not sick}) = 0.9. \text{ You can use the complement rule to find} \\ P(\text{test}_{\text{pos}} \text{not sick}) = 1 - P(\text{test}_{\text{neg}} \text{not sick}) = 1 - 0.9 = 0.1. \\ \\ \text{Using these numbers, we get:} \\ \\ \frac{0.01 \cdot 0.95}{0.01 \cdot 0.95 + 0.99 \cdot 0.1} \approx 0.0876$	<u>)</u>
$\overline{0.01 \cdot 0.95 + 0.99 \cdot 0.1} \approx 0.0876$	
5. Which of the following are examples of continuous random variables? Select all that apply.	1
Number of goals scored in a soccer match.	
Number of cars passing through a toll booth in an hour.	
✓ Temperature in degrees Celsius.	
 Correct Temperature is a continuous variable with infinitely many values within a range. 	
✓ Weight of a package.	
○ Correct Weight is a continuous variable with infinitely many values within a range.	
✓ Time taken to run a 100-meter race.	
 Correct Time is a continuous variable with infinitely many values within a range. 	
 Number of students in a classroom. ✓ Height of students in a class. 	
 ✓ Correct Height is a continuous variable with infinitely many values within a range. 	

1/1 point

1/1 point

1/1 point

of the following equations correctly represents the probability distribution for this scenario?

O
$$P(X=7) = {20 \choose 7} \cdot \left(\frac{1}{6}\right)^7 \cdot \left(\frac{5}{6}\right)^7$$

$$P(X=7) = \binom{20}{7} \cdot \left(\frac{1}{6}\right)^7 \cdot \left(\frac{5}{6}\right)^{13}$$

$$P(X=4) = \binom{20}{4} \cdot \left(\frac{1}{6}\right)^4 \cdot \left(\frac{5}{6}\right)^{16}$$

$$P(X=7) = {20 \choose 7} \cdot \left(\frac{1}{6}\right)^{13} \cdot \left(\frac{5}{6}\right)^{7}$$

(Correct

In this case, let n = total number of tosses = 20, k = number times 4 is rolled = 7, $p = \text{probability of rolling } 4 = \frac{1}{5}$, and $q = \text{probability of not rolling } 4 = \frac{5}{5}$.

- 7. Imagine you are tasked with modeling the heights of individuals in a diverse country. Which probability distribution would be most suitable for capturing the patterns in the heights of the population?
 - Normal Distribution

Uniform Distribution

Binomial Distribution

(Correct

The normal distribution, often likened to a bell curve, is a fitting choice for modeling height variations in a country. It beautifully represents the natural diversity observed in the heights of individuals.

8. A taxi cab service analyzes the number of passengers in its daily rides. The table and graph below show the number of passengers. X. in a single taxi cab and the observed probabilities at a randomly selected time.

Number of passengers xi	0	1	2	3	4	5	6
Probability, pi	0.10	0.25	0.25	0.15	0.15	0.05	0.05

Probability distribution of number of passengers

 A taxi cab service analyzes the number of passengers in its daily rides. The table and graph below show the number of passengers, X, in a single taxi cab and the observed probabilities at a randomly selected time.

Number of passengers xi	0	1	2	3	4	5	6
Probability, pi	0.10	0.25	0.25	0.15	0.15	0.05	0.05

What is the probability that a randomly selected taxi ride will have less than or equal to 3 passengers?

- $\bigcap P(X \le 3) = 0$
- $P(X \le 3) = 0.25$
- O $P(X \le 3) = 0.40$
- $OP(X \le 3) = 0.60$
- $P(X \le 3) = 0.75$

✓ Correct

To find the probability that a randomly selected taxi ride will have less than 3 passengers means that you can add up the probabilities when P(X=3)+P(X=2)+P(X=1)+P(X=0).

 A taxi cab service analyzes the number of passengers in its daily rides. The table and graph below show the number of passengers, X, in a single taxi cab and the observed probabilities at a randomly selected time.

Number of passengers xi	0	1	2	3	4	5	6	
Probability ni	0.10	0.25	0.25	0.15	0.15	0.05	0.05	

1/1point

Number of passengers xi	0	1	2	3	4	5	6
Probability, pi	0.10	0.25	0.25	0.15	0.15	0.05	0.05

Select the correct Cumulative Distribution Function (CDF) based on the observed probabilities.

0	Number of passengers(x)	0	1	2	3	4	5	6	
	Cumulative probability (Fx)	0.5	0.5	0.5	0.5	0.5	0.5	0.5	

•	Number of passengers(x)	0	1	2	3	4	5	6
	Cumulative probability (Fx)	0.1	0.35	0.6	0.75	0.9	0.95	1

0	Number of passengers(x)	0	1	2	3	4	5	6
	Cumulative probability (Fx)	0.10	0.35	0.35	0.5	0.65	0.7	0.75

1.0

Select all statements that are true based on the provided graph.

 $\sigma_{\text{normal A}} > \sigma_{\text{normal B}}$

 $\mu_{\text{normal}} > \mu_{\text{normal}}$ B

V

 $\mu_{\text{normal D}} > \mu_{\text{normal C}}$

(Correct

The parameter μ , or mean, controls the center of the distribution. Therefore the higher the μ , the farther the center is from the origin.

~

 $\sigma_{\text{normal_C}} > \sigma_{\text{normal_B}}$

○ Correct

The parameter σ , or standard deviation, controls the spread of the distribution. Therefore, the higher the σ , the wider (more spread) the graph is around the center.

 \checkmark

 σ_{normal} D > σ_{normal} A

(Correct

The parameter σ , or standard deviation, controls the spread of the distribution. Therefore, the higher the σ , the wider (more spread) the graph is around the center.