ScatterX user guide

NSRL, USTC

Fei Xie

xiefei2020@ustc.edu.cn

Environment

- Windows10、11
- MATLAB 2022B and later
- Recommend: 8-core CPU, 16GB RAM

Functions

- 2D image procerssing
- 1. Auto find beamcenter
- 2. Cake integration
- Background subtraction
- absolute intensity calibration

- Calculate the fractal dimension
- **■** Porod calibration, Guinier
- Calculate the Correlation function
- Calculate the PDDF
- Calculate the PSD

The software interface is divided into three modules:

- 1. Data preprocessing
- 2. Data analysis
- 3. Data output

1. Data preprocessing

- 2. When the display of two-dimensional scattering images is not good, the image contrast can be adjusted
- 1. Open the pop-up and click on the 2D scattering image. While displaying the image, the center of the light spot will be automatically calculated and displayed in the software.
 - 3. Input the actual parameters during the operation of the experimental station

1.1、数据预处理

Logic:

- 1. Extract the intensity values from the two-dimensional image radially outward from the center of the light spot.
- 2. Average the values taken from each angle to obtain a one-dimensional scattering curve, and transform the horizontal axis from Radial to q-space during the process.
- 3. Exclude abnormal values from the Beamstop region and outside the detection area at the minimum q.

1.2、数据预处理

When subtracting the scattering background, the ionization chamber count after passing through the sample and the thickness of the sample are usually used

2. Data analysis

Data Analysis:

- 1. Fractal dimension
- 2. Porod correction
- 3. Guinier calculation
- 4. One-dimensional electron density correlation function
- 5. Distance distribution function
- 6. Particle size distribution

2.1. Fractal dimension

2.2、Porod校正

2.3, Guinier

