Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2 r_1 + t_1)}{(t_1 + 2k^2 t_1)^2}$	0	$\frac{2 k^2 (2 k^2 r_1 + t_1)}{(t_1 + 2 k^2 t_1)^2}$	
$\tau_{1^-}^{\#1}\alpha$	0	0	0	0	0	0	0	
$\sigma_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{2k^2r_1+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2r_1+t_1)}{(t_1+2k^2t_1)^2}$	
$\sigma_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$	
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0	
$\sigma_1^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{1}{(1+k^2)^2 t_1}$	$-\frac{ik}{(1+k^2)^2t_1}$	0	0	0	0	
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0	
	$r_1^{#1} + \alpha \beta$	$r_1^{\#2} + \alpha \beta$	$\left[r_{1}^{\#1} + \alpha \beta \right]$	$\sigma_{1}^{\#1} +^{\alpha}$	$\sigma_1^{\#2} +^{lpha}$	$\tau_{1}^{\#_{1}} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$	

Quadratic (free) action $S = \int \partial u^{\alpha l} u^{\beta l} u^{\beta l} d^{\beta l} d^{\alpha l} d^{\alpha l} d^{\beta l} d^{\beta l} $	$\omega_{1}^{\#1}$ $\omega_{1}^{\#2}$	$-\frac{t_1}{2} - \frac{t_1}{\sqrt{2}} - \frac{t_1}{\sqrt{2}} = 0$ 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$f_{1+}^{\#1} + \alpha \beta \frac{ikt_1}{\sqrt{2}}$ 0 0 0 0 0 0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{t_1}{t_1}$ (0 0 0 0 $\frac{t_1}{\sqrt{2}}$ 0 0 $\frac{t_1}{\sqrt{2}}$ 0 0 $\frac{t_1}{\sqrt{2}}$)
dratic ($f^{\alpha\beta} t_{\zeta}$ $f^{\theta}_{\theta} \partial' f^{\alpha}$ $\alpha_{\theta} \partial^{\theta} f^{\alpha i}$ $(3 \partial_{\beta} \omega_{i})$ $\omega^{\alpha\beta}_{\alpha i\theta} \partial^{\theta}$ $\beta_{\alpha i\theta} \partial^{\theta}$	$\omega_{1}^{\#1}$		$r\beta - \frac{t_1}{\sqrt{2}}$				

Source constraints/gauge generators					
SO(3) irreps	Multiplicities				
$\tau_{0^{+}}^{#2} == 0$	1				
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1				
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	3				
$\tau_1^{\#1\alpha} == 0$	3				
$\tau_{1+}^{\#1\alpha\beta} + ik\sigma_{1+}^{\#2\alpha\beta} == 0$	3				
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} == 0$	5				
Total constraints:	16				

 $\sigma_{2^{+}\alpha\beta}^{\#1}$

 $\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

-t₁

 $-i \sqrt{2} kt_1$

0

^t1

 $\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$

 $\omega_{2}^{\#1}$

0

0

0

 $\tau_{2}^{\#1}{}_{\alpha\beta}$

 $\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\frac{4k^2}{(1+2k^2)^2t_1}$

0

 $\sigma_{2-\alpha\beta\chi}^{\#1}$

 $\frac{2}{2 k^2 r_1 + t_1}$

 $f_{0+}^{#2} \omega_{0-}^{#1}$

0

0

0

 $-t_1$

 $i \sqrt{2} kt_1$

 $-2k^2t_1$

0

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$