MAPA DE KARNAUGH

• O Mapa de Karnaugh é uma ferramenta de auxílio à minimização de funções booleanas.

• O próprio nome mapa vem do fato dele ser um mapeamento biunívoco a partir de uma tabela-verdade.

MAPA DE KARNAUGH

Veja para função de <u>duas varáveis</u> (por exemplo, a função AND),

MAPA DE KARNAUGH

Mapa para 3 variáveis

Α	В	С	mintermos
0	0	0	Ā·B·C
0	0	1	Ā·B·C
0	Υ_	0	Ā·B·C
0	Ψ.	1	Ā·B·C
1	0	0	A·B·C
1	0	1	A·B·C
1	1	0	A⋅B⋅C
1	1	1	A·B·C

A·B·C	A-B-C	Ā·B·C	Ā·B·C
A·B·C	A·B·C	A·B·C	A·B·C

Considere uma tabela-verdade para funções de 4 entradas

A fim de garantir a adjacência de mintermos que se diferenciam de somente uma variável, teremos que

- re-ordenar os mintermos
- criar uma tabela bidimensional

Α	В	С	D	mintermos
0	0	0	0	A·B·C·D
0	0	0	1	A·B·C·D
0	0	1	0	A·B·C·D
0	0	1	1	A·B·C·D
0	1	0	0	A-B-C-D
0	1	0	1	A·B·C·D
0	1	1	0	A·B·C·D
0	1	1	1	A-B-C-D
1	0	0	0	A·B·C·D
1	0	0	1	A-B-C-D
1	0	1	0	A·B·C·D
1	0	1	1	A·B·C·D
1	1	0	0	A·B·C·D
1	1	0	1	A·B·C·D
1	1	1	0	A·B·C·D
1	1	1	1	A-B-C-D

Dispondo os mintermos em duas dimensões

	CD								
AB 👆	A·B·C·D	A·B·C·D	Ā·B·C·D	A·B·C·D			ı -		
	Ā·B·C·D	Ā·B·C·D	Ā·B·C·D	Ā·B·C·D	,	ĀB	CD	CD	CD
	$A \cdot B \cdot \overline{C} \cdot \overline{D}$	A·B·C·D	A·B·C·D	A·B·C·D		ĀB			
	A·B·C·D	A·B·C·D	A·B·C·D	A·B·C·D	, , , , , , , , , , , , , , , , , , ,	AB			
	W.D.C.D	A.D.C.D	W.D.C.D	W.D.C.D		AB			

Colocando as variáveis de entrada para fora da tabela...

AGRUPAMENTO DE VARIÁVEIS

- O agrupamento de "1s" ou "0s" é realizado em potências de 2.
 - Dois termos (pares).
 - Quatro termos (quartetos).
 - Oito termos (octetos).
 - Em geral é possível agrupar até 2ⁿ termos.
- O agrupamento de "1s" ou "0s" se faz nas células adjacentes.
- Deve-se agrupar o maior número de "1s" ou "0s" possível.

AGRUPAMENTO DE VARIÁVEIS

- Se um grupo de 2ⁿ "1s" ou "0s" são adjacentes, **n** variáveis são alteradas (mudam do nível "1" para o nível "0" ou o contrário). Estas variáveis são eliminadas no processo de simplificação. Ex:
 - O agrupamento de 4 "1s" ou "0s" elimina 2 variáveis.
 - O agrupamento de 8 "1s" ou "0s" elimina 3 variáveis.
- Cada variável possui uma região dentro do mapa na qual seu valor não muda.

Como usar, considerando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

Como usar, considerando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

F19	CD	CD	CD	СD	
AB	0	0	0	0	
ĀB	1	1	1		
AB	0	0	0	0	Ā·B
ΑB	0	0	0	0	

F = A' B C' D' + A' B C' D + A' B C D + A' B C D'

Como usar, considerando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

Os grupos devem ter 2, 4, 8 ou 16 elementos

(2ⁿ elementos, onde n é o número de variáveis de entrada)

F20	CD	CD	CD	CD	
AB	0	0	1	0	C·D
AB	0	0	1	0	
AB	0	0	1	0	
ΑB	0	0	1	0	

Como usar, considerando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

Os grupos só podem ter formato retangular ou quadrado

F21	CD	C D	CD	CD	
AB	0	0	0	0	B·D
AB	0	1	1	0	
AB	0	1	1	0	
ΑB	0	0	0	0	

Como usar, considerando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

Os elementos de um grupo podem estar separados, devido às limitações da representação do mapa

F22	CD	CD	CD	CD	
AB	0	0	0	0	₽·D
AB	1	0	0	1	
AB	1	0	0	1	_
ΑB	0	0	0	0	

Como usar, considerando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

F23	CD	CD	CD	CD	
AB	7	0	0	لَ	
AB	0	0	0	0	B·D
AB	0	0	0	0	
AB	1	0	0	1	

Cconsiderando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

(Usar o maior grupo, ao invés dos grupos que o compõem)

Considerando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

F24	ĊĎ	СD	CD	CD	
AB	1	0	0	1	
AB	1	0	0	1	\ <u>\</u>
AB	1	0	0	1	
AB.	_1	0	0	1	-

Considerando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

- Usar somente os grupos essenciais (em vermelho)
- O grupo não-essencial não deve ser usado (neste caso)

Considerando soma de produtos

- Identificar grupos de "1s" adjacentes
- Para cada grupo, escrever a equação de produto (já simplificada)
- Montar a equação em soma de produtos

FIGURA 4-11 Mapas de Karnaugh e tabelas-verdade para (a) duas, três e (c) quatro variáveis.

	_C	С	
ĀB	0	0	
AB	1	1)	X = ABC + ABC
AB	0	0	= AB
\bar{AB}	0	0	
	(1	b)	Į.

(d)

(e)

	CD	CD	CD	СD
ĀB	0	1	0	0
AB	0	1	1	1
AB	0	0	0	1
ĀΒ	1	1	0	1

$$X = \overline{ACD} + \overline{ABC} + \overline{ABC} + \overline{ACD}$$
(a)

	CD	CD	CD	CD	
ĀB	1	1	0	1	
$\bar{A}B$	1	1	0	1	
АВ	1	1	0	1	
$A \overline{B}$	1	1	1	1	
$y = A\overline{B} + \overline{C} + \overline{D}$					

FIGURA 4-18 Condições don't-care devem ser auteradas para 0 ou para 1 de forma a gerar agrupamentos no mapa k que produzam a expressão mais simples.

						С	С			С	C	
Α	В	С	Z		- <u>-</u> _	_	_	25	 AB	_	^	
0	0	0	0		AB	0	0		AB	0	0	
0	0	1	0						_			
0	1	0	0		AB	0	Х	N	AB	0	0	
0	1	1	X	∖ "don't			<u> </u>	>				
1	0	0	X	care"	АВ	1	1	\neg	AB	1	1	→ z = A
1	0	1	1			e			18118- 1-1 10			
1	1	0	1		_		8		_	8		
1	1	1	1		AB	Х	1		AB	1	1)	
	,	-1				//	-\	le .		1-		la
	(a)				(1	၁)			(0	;)	

(a)

	F2 F3	 F2 F3	F2 F3	F2 F3
M F1	0	1	X	1
F1	1	Х	Х	Х
M F1	0	Х	Х	Х
M F1	0	0	Х	0

(c)

М	F1	F2	F3	OPEN
0	0	0	0	0
0	0	0	1	1
0	0	1	0	1
0	0	1	1	Χ
0	1	0	0	1
0	1	0	1	Х
0	1	1	0	1 X X X
0	1	1	1	Х
1	0	0	0	0 0 0 X
1	0	0	1	0
1	0	1	0	0
1	0	1	1	X
1	1	0	0	0
1	1	0	1	Х
1	1	1	0	0 X X X
1	1	1	1	X
		(b)		

	F2 F3	F2 F3	F2 F3	F2 F3		
M F1	0	1	1	1		
M F1	(1	1	1	1)		
M F1	0	0	0	0		
M F1	0	0	0	0		
OPEN = M (F1 + F2 + F3)						

(d)

Sistemas Digitais: Princípios e Aplicações Ronald J. Tocci e Neal S. Widmer

Exercício

Hara a função dada pela equação abaixo:

- Encontre a equação mínima em soma de produtos
- · Desenhe o circuito resultante

$$S7(A,B,C,D) = \sum (0, 1, 2, 5, 6, 7, 13, 15)$$

S7	CD	CD	CD	CD
AB	1	1	0	1
AB	0	1	1	1
AB	0	1	1	0
ΑB	0	0	0	0

Exercício 2:

Para a função dada pela equação abaixo:

- Encontre a equação mínima em soma de produtos
- · Desenhe o circuito resultante

$$S9(W,X,Y,Z) = \sum (0, 1, 2, 5, 8, 9,10)$$

S9	Ϋ́Z	- YZ	ΥZ	ΥZ
WX	1	1	0	1
WX	0	1	0	0
WX	0	0	0	0
wx	1	1	0	1

Funções Incompletamente Especificadas

- São funções nas quais uma ou mais posições não estão especificadas
- Tais posições são denominadas don't cares, e são representadas por X ou DC ou 2 ou * ...

F29	CD	CD	CD	CD
AB	1	1	Χ	1
ĀB	0	0	Χ	0
AB	1	1	Χ	Χ
ΑB	0	0	0	0

Como fazer a cobertura em Soma de Produtos

- O objetivo é cobrir os "1s" da função
- Posições com don't care podem ser usadas para ajudar a melhorar a cobertura dos "1s"
- Cada posição com don't care é totalmente independente das demais

Considerando soma de produtos

- Cobrir os "ls"
- Utilizar as posições com don't care para encontrar a melhor cobertura.
- Cada posição com don't care é totalmente independente das demais

Exemplo 1:

F29	CD	CD	CD	CD
AB	Ψ-	1	Χ	1
AB	0	0	Χ	0
AB	1	1	Χ	Χ
ΑB	0	0	0	0

Considerando soma de produtos

- Cobrir os "ls"
- Utilizar as posições com don't care para encontrar a melhor cobertura
- Cada posição com don't care é totalmente independente das demais

Exemplo 1:

Exercício 1:

- Encontre a equação mínima em soma de produtos para a função abaixo
- Desenhe o circuito resultante

$$S13(A,B,C,D) = \sum (0, 3, 5, 6, 7) + DC (10, 11, 12, 13, 14, 15)$$

S1 3	CD	CD	CD	CD
AB	-	0	1	0
AB	0	1	1	1
AB	Χ	Χ	Χ	Χ
ΑB	0	0	Χ	Χ

mintermos

0	1	3	2
4	5	7	6
12	13	15	14
8	9	11	10

Exercício 1:

- Encontre a equação mínima em soma de produtos para a função abaixo
- Desenhe o circuito resultante

$$S13(A,B,C,D) = \sum (0, 3, 5, 6, 7) + DC(10, 11, 12, 13, 14, 15)$$

Exercício 2:

Deseja-se projetar um circuito que acenda uma lâmpada a partir das entradas decimais 1, 2, 3, 9, 12 e apague a mesma a partir das entradas 13 e 15:

