```
DIALOG(R) File 351: Derwent WPI
(c) 2003 Thomson Derwent. All rts. reserv.
014285524
             **Image available**
WPI Acc No: 2002-106225/200214
XRAM Acc No: C02-032620
XRPX Acc No: N02-079023
  Organic electroluminescent device for flat panel displays or backlights,
 has light-emitting layer containing two or more organic compounds
Patent Assignee: SHOWA DENKO KK (SHOW ); AKIYAMA K (AKIY-I); SHIRANE K
  (SHIR-I)
Inventor: AKIYAMA K; SHIRANE K
Number of Countries: 096 Number of Patents: 007
Patent Family:
Patent No
             Kind
                    Date
                            Applicat No
                                           Kind
                                                  Date '
                                                           Week
             A2 20011129 WO 2001JP4202
                                                20010521
                                                          200214 B
WO 200191203
                                            Α
JP 2002050483 A
                  20020215 JP 2001144199
                                            Α
                                                20010515
                                                          200215
AU 200156781
              Α
                  20011203 AU 200156781
                                            Α
                                                20010521
                                                          200221
EP 1214746
              A2 20020619 EP 2001930222
                                            Α
                                                20010521 200240
                            WO 2001JP4202
                                            A
                                                20010521
KR 2002019534 A
                  20020312
                            KR 2002700642
                                            A 20020116 200262
<u>US 20020146589 A1 20021010 WO 2001JP4202</u>
                                                20010521 200269
                                            Α
                            US 200231454
                                                20020122
                                            Α
                  20030121 TW 2001111751
TW 518768
              Α
                                            Α
                                                20010516 200356
Priority Applications (No Type Date): US 2000211486 P 20000614; JP
  2000149299 A 20000522
Patent Details:
Patent No Kind Lan Pg
                        Main IPC
                                    Filing Notes
WO 200191203 A2 E 37 H01L-051/20
   Designated States (National): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA
   CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS
   KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO
   RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW
   Designated States (Regional): AT BE CH CY DE DK EA ES FI FR GB GH GM GR
   IE IT KE LS LU MC MW MZ NL OA PT SD SE SL SZ TR TZ UG ZW
JP 2002050483 A
                   10 H05B-033/14
AU 200156781 A
                      H01L-051/20
                                    Based on patent WO 200191203
                                    Based on patent WO 200191203
EP 1214746
                      H01L-051/20
             A2 E
   Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT
   LI LT LU LV MC MK NL PT RO SE SI TR
KR 2002019534 A
                      H05B-033/14
                      H05B-033/14
US 20020146589 A1
TW 518768
             Α
                      H01L-033/00
```

Abstract (Basic): WO 200191203 A2

contigt the life

NOVELTY - An organic electroluminescent device comprises a light-emitting layer (4) containing two or more organic compounds. Two organic compounds are conditioned such that an energy level of a first organic compound in a lowest excited triplet state is higher than that of a second organic compound in a lowest excited singlet state.

DETAILED DESCRIPTION - An organic electroluminescent (EL) device comprises a light-emitting layer containing two or more organic compounds. Two organic compounds are conditioned such that an energy level ElT1 of a first organic compound in a lowest excited triplet state is higher than an energy level E2S1 of a second organic compound in a lowest excited singlet state. At least one energy level of the

second organic compound in an excited triplet state is present between E1T1 and E2S1. Light is emitted from the second organic compound.

An INDEPENDENT CLAIM is also included for a light-emitting material, comprising the light-emitting layer containing two or more organic compounds.

USE - The device is used for flat panel displays or backlights. ADVANTAGE - The organic EL device and the light-emitting material have high emitting efficiency, high luminance and durability. The light emitting material can surpass the marginal value of 25% in the internal quantum efficiency conventionally acknowledged for the light-emitting materials used in the organic EL devices. It can be applicable to all emission colors considered necessary for a display.

DESCRIPTION OF DRAWING(S) - The figure shows a cross-sectional view of an organic electroluminescent device.

Transparent substrate (1)
Anode (2)
Hole transport layer (3)
Light emitting layer (4)
Electron transport layer (5)
Cathode (6)
pp; 37 DwgNo 1/3

Technology Focus:

TECHNOLOGY FOCUS - ORGANIC CHEMISTRY - Preferred Material: The first organic compound is a transition metal complex, or a rare earth metal complex.

ELECTRONICS - Preferred Component: The device includes anode (2), cathode (6), hole transport layer (3), and electron transport layer (5). The light emission from the second organic compound is fluorescence. The light-emitting layer further contains a third organic compound.

Preferred Property: An energy level E1S1 in the lowest excited singlet state and the energy level E1T1 in the lowest triplet state of the first organic compound have the following relationship with an energy level E3S1 in a lowest excited singlet state and an energy level E3T1 in a lowest excited triplet state of the third organic compound:

E3S1 more than E1S1, and

E3T1 more than E1T1.

Title Terms: ORGANIC; ELECTROLUMINESCENT; DEVICE; FLAT; PANEL; DISPLAY; LIGHT; EMIT; LAYER; CONTAIN; TWO; MORE; ORGANIC; COMPOUND

Derwent Class: L03; U11; U14

International Patent Class (Main): H01L-033/00; H01L-051/20; H05B-033/14

International Patent Class (Additional): C09K-011/06; H05B-033/22

File Segment: CPI; EPI

Manual Codes (CPI/A-N): L03-G05F

Manual Codes (EPI/S-X): U11-A15B; U14-J02D2

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-50483 (P2002-50483A)

(43)公開日 平成14年2月15日(2002.2.15)

識別記号	FΙ	テーマコード(参考)
	H 0 5 B 33/14	B 3K007
6 3 5	C 0 9 K 11/06	6 3 5
6 6 0		660
	H 0 5 B 33/22	D
	6 3 5	H 0 5 B 33/14 6 3 5 C 0 9 K 11/06 6 6 0

審査請求 未請求 請求項の数12 OL (全 10 頁)

(21)出願番号	特願2001-144199(P2001-144199)	(71)出願人	000002004
			昭和電工株式会社
(22)出顧日	平成13年5月15日(2001.5.15)		東京都港区芝大門1丁目13番9号
, , , , , , , , , , , , , , , , , , , ,		(72)発明者	**************************************
		(12/75714)	WIII ASS
(31)優先権主張番号	特願2000-149299 (P2000-149299)		宮城県仙台市青葉区上杉一丁目13番10号
(32)優先日	平成12年5月22日(2000.5.22)	(72)発明者	白根 浩朗
(33)優先権主張国	日本 (JP)		千葉県千葉市緑区大野台一丁目1番1号
			昭和電工株式会社総合研究所内
		(74)代理人	100118740
			弁理士 柿沼 伸司
		Fターム(参	考) 3K007 AB02 AB03 AB04 AB11 BA06
			CA01 CB01 DA01 DB03 EB00
		1	

(54) 【発明の名称】 有機エレクトロルミネッセンス索子および発光材料

(57)【要約】

【課題】有機EL(エレクトロルミネッセンス)素子に 用いられる発光材料として、従来から言われている内部 量子効率の限界値である25%を越え、更にディスプレ イとして必要とされるすべての発光色に対応可能な高発 光効率、高輝度で耐久性のある有機EL素子、および発 光材料を提供すること。

【解決手段】発光に寄与する2種の有機化合物として、これら化合物の一方の励起三重項状態から他方の励起三重項状態へエネルギー移動が行われるような励起状態のエネルギー準位の関係を有する2種の有機化合物を用いることにより、高発光効率の発光材料、有機EL素子を得る。

【特許請求の範囲】

【請求項1】発光層に2種以上の有機化合物を含有し、そのうちの2種の有機化合物について、第1の有機化合物の最低励起三重項状態のエネルギー準位 $E1_{T1}$ が第2の有機化合物の最低励起一重項状態のエネルギー準位E2 $_{S1}$ より高く、かつ $E1_{T1}$ と $E2_{S1}$ の間に前記第2の有機化合物の励起三重項状態のエネルギー準位が少なくとも1つ存在し、第2の有機化合物から発光することを特徴とする有機エレクトロルミネッセンス素子。

【請求項2】発光層に3種以上の有機化合物を含有し、そのうちの3種の有機化合物について、第1の有機化合物の最低励起三重項状態のエネルギー準位E1_{T1}が第2の有機化合物の最低励起一重項状態のエネルギー準位E2₅₁の間に前記第2の有機化合物の励起三重項状態のエネルギー準位が少なくとも1つ存在し、さらに、前記第1の有機化合物の最低励起一重項状態のエネルギー準位E1₅₁および最低励起三重項状態のエネルギー準位E1_{T1}と第3の有機化合物の最低励起一重項状態のエネルギー準位E3₅₁および最低励起三重項状態のエネルギー準位E3₅₁および最低励起三重項状態のエネルギー準位E3₅₁との間に、

 $E3_{s_1}>E1_{s_1}$

E3₁₁>E1₁₁

の関係を有し、第2の有機化合物から発光することを特徴とする有機エレクトロルミネッセンス素子。

【請求項3】陽極、請求項1または2に記載の発光層、 陰極の順で構成される有機エレクトロルミネッセンス素 子。

【請求項4】陽極、ホール輸送層、請求項1または2に 記載の発光層、電子輸送層、陰極の順で構成される有機 エレクトロルミネッセンス素子。

【請求項5】前記第2の有機化合物の発光が蛍光である 請求項1~4のいずれかに記載の有機エレクトロルミネ ッセンス素子。

【請求項6】前記第1の有機化合物が遷移金属錯体である請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。

【請求項7】前記第1の有機化合物が希土類金属錯体である請求項1~5のいずれかに記載の有機エレクトロルミネッセンス素子。

【請求項8】発光層に2種以上の有機化合物を含有し、そのうちの2種の有機化合物について、第1の有機化合物の最低励起三重項状態のエネルギー準位 $E1_{T1}$ が第2の有機化合物の最低励起一重項状態のエネルギー準位 $E2_{S1}$ より高く、かつ $E1_{T1}$ と $E2_{S1}$ の間に前記第2の有機化合物の励起三重項状態のエネルギー準位が少なくとも1つ存在し、第2の有機化合物から発光することを特徴とする発光材料。

【請求項9】発光層に3種以上の有機化合物を含有し、そのうちの3種の有機化合物について、第1の有機化合物の最低励起三重項状態のエネルギー準位E1_{T1}が第2

の有機化合物の最低励起一重項状態のエネルギー準位E 2_{s1} より高く、かつE 1_{T1} とE 2_{s1} の間に前記第2の有機化合物の励起三重項状態のエネルギー準位が少なくとも1つ存在し、さらに、前記第1の有機化合物の最低励起一重項状態のエネルギー準位E 1_{s1} および最低励起三重項状態のエネルギー準位E 1_{T1} と第3の有機化合物の最低励起一重項状態のエネルギー準位E 3_{T1} との間に、励起三重項状態のエネルギー準位E 3_{T1} との間に、

 $E3_{s_1}>E1_{s_1}$

 $E 3_{T1} > E 1_{T1}$

の関係を有し、第2の有機化合物から発光することを特 徴とする発光材料。

【請求項10】前記第2の有機化合物の発光が蛍光である請求項8~9のいずれかに記載の発光材料。

【請求項11】前記第1の有機化合物が遷移金属錯体であることを特徴とする請求項8~10のいずれかに記載の発光材料。

【請求項12】前記第1の有機化合物が希土類金属錯体であることを特徴とする請求項8~10のいずれかに記載の発光材料。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、平面表示パネルやこれに用いられるバックライト用の有機エレクトロルミネッセンス素子(以下、単に「有機EL素子」と呼ぶ) に関するものである。

[0002]

【従来の技術】有機EL素子は、1987年にコダック 社のC.W.Tangらにより高輝度の発光が示されて (Appl. Phys. Let., 51卷, 913頁, 1987年) 以来、材料開発、素子構造の改良が急速に 進み、最近になってカーオーディオや携帯電話用のディ スプレイなどから実用化が始まった。この有機ELの用 途を更に拡大するために、発光効率向上、耐久性向上の ための材料開発、フルカラー表示の開発などが現在活発 に行われている。特に、中型パネルや大型パネル、ある いは照明用途への展開を考える上では発光効率の向上に よる更なる高輝度化が必要である。しかし、現在の発光 材料で利用されているのは励起一重項状態からの発光、 すなわち蛍光であり、月刊ディスプレイ、1988年1 0月号別冊「有機ELディスプレイ」、58頁によれ ば、電気的励起における励起一重項状態と励起三重項状 態の生成比が1:3であることから、蛍光発光における 内部量子効率は25%が上限とされてきた。

【0003】これに対し、M. A. Baldoらは励起 三重項状態から燐光発光するイリジウム錯体を用いるこ とにより外部量子効率7.5%(外部取り出し効率を2 0%と仮定すると内部量子効率は37.5%)を得、従 来上限値とされてきた25%という値を上回ることが可 能なことを示した(Appl. Phys. Lett., 75巻、4頁、1999年)。しかし、ここで用いられているイリジウム錯体のように常温で安定に燐光を発する材料は極めて稀であり、また電気的に励起するためには特定のホスト化合物にドープして使用する必要があり、ディスプレイとして必要な発光波長を実現するための材料選定が極めて困難であるという欠点を有していた。

【0004】これに対し、同じくM. A. Baldoらはイリジウム錯体を増感剤として使用し、この励起三重項状態から蛍光色素の励起一重項状態へエネルギーを移動させ、最終的には蛍光色素の励起一重項状態から蛍光を発光させることにより比較的良好な発光効率が得られることを示した(Nature, 403巻, 750頁, 2000年)。この方法は発光材料として数多い蛍光色素から目的に合うものを選定して使用できるという利点を有している。しかし、この方法においては、増感剤の励起三重項状態から蛍光色素の励起一重項状態へのエネルギー移動というスピン禁制の過程が含まれているため、原理的に発光量子効率が低いという大きな欠点があった。

[0005]

【発明が解決しようとする課題】上記のように、有機E L素子に用いられる発光材料として、従来から言われている内部量子効率の限界値である25%を越え、更にディスプレイとして必要とされるすべての発光色に対応可能なものは未だ存在しない。また、高発光効率材料は、エネルギー損失が少なく、素子の発熱が抑えられるため、素子の耐久性向上の観点からも要望されている。本発明は、このような従来技術の問題点を解決し、高輝度で耐久性のある有機E L素子、およびこれに用いられる発光材料を提供することを課題とする。

[0006]

【課題を解決するための手段】本発明者らは、上記の課題を解決すべく種々検討した結果、発光に寄与する2種の有機化合物として、これら化合物の一方の励起三重項状態から他方の励起三重項状態へエネルギー移動が行われるような励起状態のエネルギー準位の関係を有する2種の有機化合物を用いることによって高効率発光が得られることを見出し、本発明を完成するに至った。

【0007】すなわち、本発明は、以下の有機エレクトロルミネッセンス素子およびこれに用いられる発光材料に関する。

【0008】[1]発光層に2種以上の有機化合物を含有し、そのうちの2種の有機化合物について、第1の有機化合物の最低励起三重項状態のエネルギー準位 $E1_{T1}$ が第2の有機化合物の最低励起一重項状態のエネルギー準位 $E2_{S1}$ より高く、かつ $E1_{T1}$ と $E2_{S1}$ の間に前記第2の有機化合物の励起三重項状態のエネルギー準位が少なくとも1つ存在し、第2の有機化合物から発光することを特徴とする有機エレクトロルミネッセンス素子。

【0009】[2] 発光層に3種以上の有機化合物を含有し、そのうちの3種の有機化合物について、第1の有機化合物の最低励起三重項状態のエネルギー準位E 1_{T1} が第2の有機化合物の最低励起一重項状態のエネルギー準位E 2_{S1} の間に前記第2の有機化合物の励起三重項状態のエネルギー準位が少なくとも1つ存在し、さらに、前記第1の有機化合物の最低励起一重項状態のエネルギー準位E 1_{S1} および最低励起三重項状態のエネルギー準位E 1_{S1} および最低励起三重項状態のエネルギー準位E 1_{S1} および最低 の起三重項状態のエネルギー準位E 1_{S1} と第 1_{S1} の有機化合物の最低励起一重項状態のエネルギー準位E 1_{S1} と第 1_{S1} の有機化合物の最低励起一重項状態のエネルギー準位E 1_{S1} との間に、

 $E3_{s1}>E1_{s1}$

 $E3_{T1}>E1_{T1}$

の関係を有し、第2の有機化合物から発光することを特 徴とする有機エレクトロルミネッセンス素子。

【0010】[3] 陽極、請求項1または2に記載の発光層、陰極の順で構成される有機エレクトロルミネッセンス素子。

【0011】[4]陽極、ホール輸送層、請求項1または2に記載の発光層、電子輸送層、陰極の順で構成される有機エレクトロルミネッセンス素子。

【0012】[5]前記第2の有機化合物の発光が蛍光である請求項1~4のいずれかに記載の有機エレクトロルミネッセンス素子。

【0013】[6]前記第1の有機化合物が遷移金属錯。 体である請求項1~5のいずれかに記載の有機エレクト ロルミネッセンス素子。

【0014】[7]前記第1の有機化合物が希土類金属 錯体である請求項1~5のいずれかに記載の有機エレク トロルミネッセンス素子。

【0015】[8] 発光層に2種以上の有機化合物を含有し、そのうちの2種の有機化合物について、第1の有機化合物の最低励起三重項状態のエネルギー準位 $E1_{11}$ が第2の有機化合物の最低励起一重項状態のエネルギー準位 $E2_{S1}$ より高く、かつ $E1_{11}$ と $E2_{S1}$ の間に前記第2の有機化合物の励起三重項状態のエネルギー準位が少なくとも1つ存在し、第2の有機化合物から発光することを特徴とする発光材料。

【0016】[9]発光層に3種以上の有機化合物を含有し、そのうちの3種の有機化合物について、第1の有機化合物の最低励起三重項状態のエネルギー準位 $E1_{T1}$ が第2の有機化合物の最低励起一重項状態のエネルギー準位 $E2_{S1}$ より高く、かつ $E1_{T1}$ と $E2_{S1}$ の間に前記第2の有機化合物の励起三重項状態のエネルギー準位が少なくとも1つ存在し、さらに、前記第1の有機化合物の最低励起一重項状態のエネルギー準位 $E1_{S1}$ および最低励起三重項状態のエネルギー準位 $E1_{S1}$ および最低分物の最低励起一重項状態のエネルギー準位 $E1_{S1}$ および最低分物の最低励起一重項状態のエネルギー準位 $E3_{S1}$ および最低励起三重項状態のエネルギー準位 $E3_{S1}$ および最低励起三重項状態のエネルギー準位 $E3_{T1}$ との間

に、

 $E3_{S1}>E1_{S1}$

 $E3_{T1}>E1_{T1}$

の関係を有し、第2の有機化合物から発光することを特 徴とする発光材料。

【0017】[10]前記第2の有機化合物の発光が蛍光である請求項8~9のいずれかに記載の発光材料。

【0018】[11]前記第1の有機化合物が遷移金属 錯体であることを特徴とする請求項8~10のいずれか に記載の発光材料。

【0019】[12]前記第1の有機化合物が希土類金 属錯体であることを特徴とする請求項8~10のいずれ かに記載の発光材料。

[0020]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照して具体的に説明する。

【0021】図1は本発明の有機EL素子構成の一例を示す断面図であり、透明基板上に設けた陽極と陰極の間にホール輸送層、発光層、電子輸送層を順次設けたものである。また、本発明の有機EL素子構成は図1の例のみに限定されず、陽極と陰極の間に順次、1)ホール輸送層/発光層、2)発光層/電子輸送層、のいずれかを設けたものでもよく、更には3)ホール輸送材料、発光材料、電子輸送材料を含む層、4)ホール輸送材料、発光材料を含む層、5)発光材料、電子輸送材料を含む層、6)発光材料の単独層、のいずれかの層を一層設けるだけでもよい。また、図1に示した発光層は1層であるが、2つ以上の層が積層されていてもよい。

【0022】図2に、本発明の第1の実施形態に係る有 機EL素子の発光層を構成する有機化合物のエネルギー 準位の関係を示す。図2に示す有機EL素子の発光層の 発光層は少なくとも2種以上の有機化合物、すなわち発 光しない第1の有機化合物と発光する第2の有機化合物 を含有し、第1の有機化合物の最低励起三重項状態のエ ネルギー準位E1元が第2の有機化合物の最低励起一重 項状態のエネルギー準位 $E 2_{s1}$ より高く、かつ $E 1_{11}$ と E 2s1の間に第2の有機化合物の励起三重項状態のエネ ルギー準位が少なくとも1つ存在するという関係を有し ている。ここで図2には、 $E1_{71}$ と $E2_{51}$ の間に第2の 有機化合物における低い方から2番目の励起三重項状態 のエネルギー準位Ε2π2が存在する場合を示してある が、 $E1_{T1}$ と $E2_{S1}$ の間には、第2の有機化合物におけ る低い方から3番目あるいはそれ以上の励起三重項状態 のエネルギー準位が1つまたは複数存在してもよい。

【0023】第1の有機化合物としては、励起一重項状態から励起三重項状態への項間交差が起こりやすいものが望ましく、発光について言えば燐光を発光しやすい材料が好ましい。上記項間交差の量子効率の値としては0.1以上が好ましく、更に好ましくは0.3以上であり、より一層好ましくは0.5以上である。

【0024】具体的な化合物としては遷移金属錯体や希 土類金属錯体を例示することができるが、何らこれらに 限定されるものではない。

【0025】上記の遷移金属錯体に使用される遷移金属としては、Cr、Mn、Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Ptなどを例示することができるが、何らこれらに限定されるものではない。尚、ここで遷移金属としては元素のイオン状態まで考慮して第1遷移系列はCu(II)までを、第2遷移系列はAg(II)までを、第3遷移系列はAu(II)までを含める。

【0026】上記の希土類金属錯体に使用される希土類金属としては、La、Nd、Sm、Eu、Gd、Tb、Dy、Er、Luなどを例示することができるが、何らこれらに限定されるものではない。

【0027】また、これら遷移金属または希土類金属錯体に使用される配位子としては、アセチルアセトナート、2,2'ービピリジン、4,4'ージメチルー2,2'ービピリジン、1,10ーフェナントロリン、2ーフェニルピリジン、ポルフィリン、フタロシアニンなどを例示することができるが、何らこれらに限定されるものではない。これらの配位子は、1つの錯体について1種類または複数種類が配位される。

【0028】さらに、上記の錯体化合物として複核錯体 や2種類以上の錯体の複錯体を使用することもできる。 【0029】第2の有機化合物としては従来から知られ ている各種色素を始めとする、蛍光を発する化合物を使 用することができる。特に励起三重項状態から励起一重 項状態への逆項間交差が起こりやすいものが望ましい。 上記逆項間交差の量子効率の値としては0.1以上が好 ましく、更に好ましくは0.3以上であり、より一層好 ましくは0.5以上である。このようなものとしては、 逆項間交差の量子効率が0.19である9,10一ジブ ロモアントラセン (H. Fukumura et a 1., J. Photochem. Photobio 1., A:Chemistry, 42巻, 283頁, 1 988年)や、逆項間交差の量子効率が約0.7のロー ダミン101および類似のシアニン色素(R.W.Re dmond et al., J. Phys. Chem. A, 101巻, 2773頁, 1997年) などを例示す ることができるが、何らこれらに限定されるものではな

【0030】第1の実施形態の有機EL素子の発光層は上記の第1の有機化合物と第2の有機化合物を含有する。この場合、第1の有機化合物と第2の有機化合物が1つの層に含まれていてもよく、それぞれが別々の層に含まれていて、これらの2層またはそれ以上の層が積層されて一つの発光層を形成してもよい。また、上記の各層には第1の有機化合物および第2の有機化合物以外の化合物が含まれていてもよい。発光層の厚さは10nm~1μmが好ましく、10~100nmが更に好まし

11

【0031】第1の実施形態において、エネルギー準位が図2に示される関係にある場合の発光のメカニズムは次のようになる。すなわち、電気的励起により第1の有機化合物には最終的に最低励起一重項状態(エネルギー準位 $E1_{51}$)と最低励起三重項状態(エネルギー準位 1_{71})が25%:75%の割合で生成する。ここで、最低励起一重項状態から項間交差11により最低励起三重項状態に遷移し、最低励起三重項状態の比率が75%以上に増加する。

【0032】次に、第1の有機化合物の最低励起三重項状態(エネルギー準位 $E1_{11}$)から第2の有機化合物の低い方から2番目の励起三重項状態(エネルギー準位 $E2_{12}$)、または低い方から3番目以降の励起三重項状態(図示せず)へエネルギー移動12が起こる。ここで、第1の有機化合物の最低励起一重項状態(エネルギー準位 $E1_{51}$)から第2の有機化合物の励起一重項状態(エネルギー準位 $E2_{51}$)へのエネルギー移動も起こり得るが、第1の有機化合物の最低励起一重項状態(エネルギー準位 $E1_{51}$)の比率が項間交差により25%より低くなっているため全体から見ればその寄与は小さい。

【0033】次に、第2の有機化合物の低い方から 2番目の励起三重項状態(エネルギー準位 $E_{2_{12}}$)、または低い方から 3番目以降の励起三重項状態(図示せず)は、逆項間交差 1 3により第2の有機化合物の最低励起一重項状態(エネルギー準位 $E_{2_{80}}$)へ遷移する過程 1 4 で蛍光を放射する。

【0034】図3に、本発明の第2の実施形態に係る有機EL素子の発光層を構成する有機化合物のエネルギー準位の関係を示す。図3に示すエネルギー準位の関係は、図2に示す第1の有機化合物と第2の有機化合物のエネルギー準位の関係に、更に発光層に含まれる第3の有機化合物のエネルギー準位との関係を付け加えたものである。すなわち、第3の有機化合物の最低励起一重項状態のエネルギー準位E3、が第1の有機化合物の最低励起一重項状態のエネルギー準位E1、1より高く、且つ第3の有機化合物の最低励起三重項状態のエネルギー準位E3、1が第1の有機化合物の最低励起三重項状態のエネルギー準位E3、1が第1の有機化合物の最低励起三重項状態のエネルギー準位を1、1より高いという関係を有している。【0035】第3の有機化合物は上記のエネルギー準位の関係を満たすものであれば特に限定されるものではな

【0036】第2の実施形態の有機EL素子の発光層は上記の第1の有機化合物、第2の有機化合物および第3の有機化合物を含有する。第1の有機化合物、第2の有機化合物および第3の有機化合物が1つの層に含まれていてもよく、またこれら3つの化合物のうちの1つまたは2つの化合物が1つの層に含まれていて、これらの2層またはそれ以上の層が積層されて発光層を形成しても

110

よい。上記の各層には第1の有機化合物、第2の有機化合物および第3の有機化合物以外の化合物が含まれていてもよい。発光層の厚さは $10 \text{ nm} \sim 1 \mu \text{m}$ が好ましく、 $10 \sim 100 \text{ nm}$ が更に好ましい。

【0037】第2の実施形態において、エネルギー準位が図3に示される関係にある場合の発光のメカニズムは次のようになる。すなわち、電気的励起により第3の有機化合物には最終的に最低励起一重項状態(エネルギー準位E 3_{51})が25%:75%の割合で生成する。

【0038】次に、第3の有機化合物の最低励起一重項 状態(エネルギー準位E3s1)から第1の有機化合物の 最低励起一重項状態(エネルギー準位E1s1)へエネル ギー移動15が起こる。または、第3の有機化合物の最 低励起一重項状態(エネルギー準位E3s1)から第1の 有機化合物の低い方から2番目以降の励起一重項状態 (図示せず) ヘエネルギー移動が起こり、更に内部変換 により最低励起一重項状態(エネルギー準位E 1s1)へ 遷移する。一方、第3の有機化合物の最低励起三重項状 態(エネルギー準位E311)からは第1の有機化合物の 最低励起三重項状態(エネルギー準位E1₁₁)へエネル ギー移動16が起こる。または、第3の有機化合物の最 低励起三重項状態 (エネルギー準位E3₁₁) から第1の 有機化合物の低い方から2番目以降の励起三重項状態. (図示せず) ヘエネルギー移動が起こり、更に内部変換 により最低励起三重項状態 (エネルギー準位E 171) へ 遷移する。

【0039】その後は、上記の第1の実施形態と同じメカニズムによって、第1の有機化合物の最低励起一重項状態(エネルギー準位 $E1_{S1}$)から項間交差11により最低励起三重項状態(エネルギー準位 $E1_{T1}$)へ遷移し、ここから第2の有機化合物の低い方から2番目の励起三重項状態(エネルギー準位 $E2_{T2}$)、または、低い方から3番目以降の励起三重項状態(図示せず)へエネルギー移動12が起こり、更に最低励起一重項状態への逆項間交差13を経て、基底状態へ戻る過程14で蛍光を放射する。

【0040】本発明に係る有機E L素子のホール輸送層を形成するホール輸送材料としてはTPD (N, N'- i)フェニルーN, N'- (3- i) メチルフェニル) -1 、1'- i でフェニルー4 、4'- i デミン)、 $\alpha-NPD$ (N, N'- i) フェニルーN, N'- (1- i) 、m-MTDATA(4, 4', 4''- i) トリスー [N- (3- i) オチルフェニル) -N- i フェニルアミン) などのトリフェニルアミン おり などのトリフェニルアミン が はこれ かいバゾール、ポリエチレンジオキシチオフェンなどの既知のホール輸送材料が使用できるが、特にこれらに限定されることはない。これらのホール輸送材料は 単独でも用いられるが、異なるホール輸送材料と混合ま

たは積層して用いてもよい。ホール輸送層の厚さは、ホール輸送層の導電率にもよるので一概に限定はできないが、 $10 \text{ nm} \sim 10 \text{ μm}$ が好ましく、 $10 \text{ nm} \sim 1 \text{ μm}$ が更に好ましい。

【0041】本発明に係る有機EL素子の電子輸送層を形成する電子輸送材料としては、Alq。(トリス(8ーキノリノール)アルミニウム)などのキノリノール誘導体金属錯体、オキサジアゾール誘導体、トリアゾール誘導体などの既知の電子輸送材料が使用できるが、特にこれらに限定されることはない。これらの電子輸送材料は単独でも用いられるが、異なる電子輸送材料と混合または積層して用いてもよい。電子輸送層の厚さは、電子輸送層の導電率にもよるので一概に限定はできないが、10nm~10μmが好ましく、10nm~1μmが更に好ましい。

【0042】上記の発光層に用いられる有機化合物、ホール輸送材料および電子輸送材料はそれぞれ単独で各層を形成するほかに、高分子材料をバインダとして各層を形成することもできる。これに使用される高分子材料としては、ボリメチルメタクリレート、ボリカーボネート、ポリエステル、ボリスルホン、ポリフェニレンオキサイドなどを例示できるが、特にこれらに限定されるものではない。

【0043】上記の発光層に用いられる有機化合物、ホール輸送材料および電子輸送材料の成膜方法は、抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法、コーティング法などを用いることが可能で、これらに特に限定されることはない。低分子化合物の場合は主として抵抗加熱蒸着および電子ビーム蒸着が用いられ、高分子材料の場合には主にコーティング法が用いられる。

【0044】本発明に係る有機EL素子の陽極材料としては、ITO(酸化インジウムスズ)、酸化錫、酸化亜鉛、ボリチオフェン、ボリビロール、ボリアニリンなどの導電性高分子などの既知の透明導電材料が使用できるが、特にこれらに限定されることはない。この透明導電材料による電極の表面抵抗は1~50Ω/□(オーム/スクエアー)であることが好ましい。これらの陽極材料の成膜方法としては、電子ビーム蒸着法、スパッタリング法、化学反応法、コーティング法などを用いることができるが、これらに特に限定されることはない。陽極の厚さは50~300nmが好ましい。

【0045】また、陽極とホール輸送層または陽極に隣接して積層される有機層の間に、ホール注入に対する注入障壁を緩和する目的でバッファ層が挿入されていてもよい。これには銅フタロシアニンなどの既知の材料が用いられるが、特にこれに限定されることはない。

【0046】本発明に係る有機EL素子の陰極材料としては、A1、MgAg合金、Caなどのアルカリ金属、A1CaなどのA1とアルカリ金属の合金などの既知の陰極材料が使用できるが、特にこれらに限定されること

はない。これらの陰極材料の成膜方法としては、抵抗加熱素着法、電子ビーム蒸着法、スパッタリング法、イオンプレーティング法などを用いることができるが、これらに特に限定されることはない。陰極の厚さは10nm~1μmが好ましく、50~500nmが更に好ましい

【0047】また、陰極と、電子輸送層または陰極に隣接して積層される有機層との間に、電子注入効率を向上させる目的で、厚さ0.1~10nmの絶縁層が挿入されていてもよい。この絶縁層としては、フッ化リチウム、フッ化マグネシウム、酸化マグネシウム、アルミナなどの既知の材料が使用できるが、特にこれらに限定されることはない。

【0048】また、発光層の陰極側に隣接して、ホールが発光層を通過することを抑え、発光層内で電子と効率よく再結合させる目的で、ホール・ブロック層が設けられていてもよい。これにはトリアゾール誘導体やオキサジアゾール誘導体などの既知の材料が用いられるが、特にこれに限定されることはない。

【0049】本発明に係る有機EL素子の基板としては、発光材料の発光波長に対して透明な絶縁性基板が使用でき、ガラスのほか、PET(ポリエチレンテレフタレート)やポリカーボネートを始めとする透明プラスチックなどの既知の材料が使用できるが、特にこれらに限定されることはない。

【0050】本発明の有機EL素子は、既知の方法でマトリックス方式またはセグメント方式による画素を構成することができる。また、画素を形成せずにバックライトとして用いることも可能である。

[0051]

【実施例】以下、実施例および比較例により本発明を更に詳しく説明するが、本発明は以下の実施例のみに限定されるものではない。

【0052】本実施例および比較例における測定項目および測定方法について説明する。

< 関厚>有機層の膜厚は、SLOAN社製 DEKTA K 3030 (触針式膜厚測定装置)を用いて測定した。

【0053】<溶液の発光スペクトル>発光材料の溶液 での発光スペクトルは、日本分光(株)製 分光蛍光光 度計FP-6500を用いて測定した。

【0054】<蛍光強度>レーザ照射により発せられる 蛍光強度の測定は以下のようにして行った。試料からの 出射光を分光器(McPherson社製、270型) に入射させて蛍光を分光し、これを光電子増倍管(浜松 ホトニクス社製、R636)により検出し、この出力を デジタル・オシロスコープ(Lecroy社製、945 0型)で観察し、パーソナル・コンピュータでデータ解 析を行った。

【0055】<励起三重項状態のエネルギー準位>測定

の対象となる化合物(以下、化合物Aとする)と消光剤を溶媒に溶かし、化合物Aが吸収を有する波長で、パルス幅が化合物Aの励起三重項状態の寿命より十分に短い第1のパルスレーザを照射する。これにより、化合物Aには最低励起一重項状態(エネルギー準位Ea₅₁)を経て最低励起三重項状態(エネルギー準位Ea₇₁)が生じ、パルスレーザ照射後にも最低励起三重項状態が持続する。

【0056】次に、化合物Aに最低励起三重項状態が持続している間に(蛍光は消光した後に)、最低励起三重項状態にある化合物Aが吸収を有する波長の第2のパルスレーザを照射する。これにより、化合物Aは更にエネルギー準位の高い三重項状態(Ea_{In})に励起される。ここで、化合物Aが逆項間交差を起こし、かつ消光剤がないと仮定すると、化合物Aはこの高いエネルギー準位(Ea_{In})から逆項間交差により最低励起一重項状態(Ea_{S1})に遷移し、蛍光を発することになる。

【0057】消光剤が存在し、化合物Aの励起三重項状態の中に、そのエネルギー準位が化合物Aの最低励起一重項状態のエネルギー準位Eas1より高く、かつ消光剤の最低励起三重項状態のエネルギー準位EqT1より低いものが存在する場合(Eas1<EaTn < EqT1)には、この励起三重項状態は消光剤による失活を受けず、化合物Aはこの高い励起三重項状態(EaTn)から逆項間交差により最低励起一重項状態(Eas1)に遷移し、ここから蛍光を発する。

【0058】これに対し、化合物Aの励起三重項状態の中に、そのエネルギー準位が化合物Aの最低励起一重項状態のエネルギー準位E a_{51} より高く、かつ消光剤の最低励起三重項状態のエネルギー準位E q_{11} より低いものが存在しない場合には、化合物Aは第2のパルスレーザー照射によって消光剤の最低励起三重項状態のエネルギー準位E q_{71} より高い励起三重項状態(Ea_{7n} >E q_{71})に励起されるが、この励起三重項状態は消光剤による失活を受けるため、化合物Aがこの高い励起三重項状態から発光する蛍光は弱められるかあるいは消光する。

【0059】従って、第2のパルスレーザを照射したときに観察される化合物A(消光剤なしの場合)からの蛍光強度に較べ、消光剤がある場合にも同等の強度レベルの蛍光が観察される場合は、化合物Aには、化合物Aの最低励起一重項状態のエネルギー準位Easiと消光剤の最低励起三重項状態のエネルギー準位Easi<Ea_{II}との間にエネルギー準位を有する励起三重項状態(Ea_{Si}<Ea_{II}<厂をでは、第2のパルスレーザを照射したときに観察される化合物A(消光剤なし)からの蛍光強度に較べ、消光剤がある場合の蛍光が弱いかあるいは観察されないかる場合は、化合物Aには、化合物Aの最低励起一重項状態のエネルギー準位Ea_{Si}と消光剤の最低励起三重項状態のエネルギー準位E

q₁₁との間にエネルギー準位を有する励起三重項状態は 存在しないことが判る。

【0060】以上のような消光剤を用いた測定により化合物Aの最低励起三重項状態よりエネルギー準位の高い励起三重項状態のエネルギー準位(Ea_{In≥2})の範囲が定まる。より精度を上げるには異なる最低励起三重項状態のエネルギー準位を有する消光剤を用いて同様の測定を繰り返すことが望ましい。

【0061】<発光輝度>電源として、(株)アドバンテスト社製 プログラマブル直流電圧/電流源TR6143を用い、実施例、比較例において得られた有機発光素子に電圧を印加し、発光輝度を(株)トプコン社製輝度計 BM-8を用いて測定した。

【0062】(実施例1)

(1) fac-トリス(2-フェニルピリジン)イリジウムの最低励起三重項状態のエネルギー準位E 1_{T1} の測定fac-トリス(2-フェニルピリジン)イリジウムは、 $K.Dedeian\ et\ al.,\ Inorganic\ Chemistry,\ Vol.30,\ No. 8, p.1685 (1991) に記載された合成方法に基づいて合成した。$

【0063】facートリス(2-フェニルピリジン)イリジウムの 10^{-5} M クロロホルム溶液を作製し、分光 蛍光光度計により発光スペクトルを測定した。この結果、燐光スペクトルのピーク波長が510nmであり、これより最低励起三重項状態のエネルギー準位 $E1_{T1}$ を 19.600cm $^{-1}$ (1/510× 10^{-7})と求めた。【0064】(2)ローダミン101(Rhodamine101)の最低励起一重項状態のエネルギー準位 $E2_{51}$ の測定

ローダミン101はF1uka社から購入したものを精製せずそのまま用いた。ローダミン101の10 $^{-5}$ M 、メタノール溶液を作製し、分光蛍光光度計により発光スペクトルを測定した。この結果、励起ビーク波長が570 nmであり、蛍光ピーク波長は590nmであった。これより、両者の波長のエネルギーの平均を採ることにより、最低励起一重項状態のエネルギー準位E $_{81}$ を17、100cm $^{-1}$ ((1/570×10 $^{-7}$ +1/590×10 $^{-7}$)÷2)と求めた。

【0065】(3)ローダミン101のT-T吸収スペクトルの測定

第2のパルスレーザによる照射はローダミン101の最低励起三重項状態が吸収を有する波長においてなされるが、これを決めるために最低励起三重項状態の吸収スペクトル、すなわちT-T吸収スペクトルの測定を、通常行われている過渡吸収測定法(例えば、第4版 実験化学講座、第7巻、分光 I 275頁、1992、丸善を参照)によって行った。

【0066】ローダミン101の10-5M メタノール 溶液を作製し、これに、Nd:YAGレーザ(Spec tra Physics社製、GCR14)の第二高調 波(波長:532nm、出力:15mJ/パルス、パルス幅:5nsec)を照射して最低励起三重項状態を生成させ、この状態のT-T吸収スペクトルを測定したところ、600nm付近にブロードなピークを示した。これより、第2のパルスレーザの波長は690nmと定めた。

【0067】(4)ローダミン101の2番目以降の励起三重項状態のエネルギー準位E2_{π≥2}の測定

ローダミン $101010^{10^{-5}}$ M メタノール溶液を作製した。これに、Nd:YAGVーザ(SpectraP hysics社製、GCR14)の第二高調液(波長:532nm、出力:15mJ/パルス、パルス幅:5nsec)を照射し、 $15\mu sec$ 後にエキシマレーザ励起色素レーザ(Lumonics社製、HyperDYE300、波長:690nm、出力:5mJ/パルス、パルス幅:20nsec)を照射したところ、蛍光が観察された。また、第10パルスレーザを照射しない場合には蛍光は観察されなかった。このことより、ローダミン1010エネルギー準位の高い励起三重項状態から最低励起一重項状態への逆項間交差により蛍光が発光したことが判った。

【0068】次に、ローダミン101と消光剤としての β -ヨノンをメタノールに溶解した。濃度はローダミン101が 10^{-5} M、 β -ヨノンが 10^{-2} Mとなるように調整した。尚、 β -ヨノンの最低励起三重項状態のエネルギー準位E q_{T1} は、"Handbook of Photochemistry, Second Edition (Steven L. Murovはか著、Marcel DekkerInc., 1993)により19,200cm⁻¹であることが判っている。

【0069】この溶液に、Nd:YAGV-ザ(SpectraPhysics社製、GCR14)の第二高調波(波長:532nm、出力:15mJ/パルス、パルス幅:5nsec)を照射し、 $15\mu sec$ 後にエキシマレーザ励起色素レーザ(Lumonics社製、HyperDYE300、波長:690nm、出力:5mJ/パルス、パルス幅:20nsec)を照射したところ、 $\beta-$ 3ノンがない場合と同レベルの強度の蛍光が観察された。また、 $\beta-$ 3ノンの濃度を1Mにまで増加させても消光は起こらず、同様に $\beta-$ 3ノンがない場合と同レベルの強度の蛍光が観察された。

【0070】以上のことより、ローダミン101は、逆項間交差により蛍光発光することから、最低励起一重項状態のエネルギー準位E 2_{S1} 、17,100cm⁻¹より高いエネルギー準位に励起三重項状態をもつことが判った。また、 β -ヨノンが存在する場合でも蛍光が消光しないことから、 β -ヨノンの最低励起三重項状態のエネルギー準位19,200cm⁻¹より低いエネルギー準位に励起三重項状態(E 2_{In})をもつことが判った。したがって、ローダミン101は17,100cm⁻¹から1

9,200cm⁻¹の間のエネルギー準位に励起三重項状態を有することが判った。

【0071】(5)EL素子の作製

25mm角のガラス基板の一方の面に、陽極となる幅4mmの2本のITO電極がストライプ状に形成されたITO付き基板(ニッポ電機、Nippo Electric Co., LTD.)を用いて有機EL素子を作製した。

【0072】はじめに、ITO付き基板のITO(陽極)上に、ポリ(3,4-エチレンジオキシチオフェン)・ポリスチレンスルホン酸(バイエル社製、商品名「バイトロンP」)をスピンコート法により、回転数3500rpm、塗布時間40秒の条件で塗布した後、真空乾燥器で減圧下、60℃で2時間乾燥を行い、陽極バッファ層を形成した。得られた陽極バッファ層の膜厚は約50nmであった。

【0073】次に、ホール輸送材料、発光材料、電子輸送材料を含む層を形成するための塗布溶液を調製した。表1に示す発光材料、ホール輸送材料、電子輸送材料、溶剤を用い、これらを表1に示す配合比で混合した後、得られた溶液を孔径0.2μmのフィルターで沪過して塗布溶液とした。各材料は以下に示す発明者合成品および購入品を精製することなく、そのまま使用した。発光材料:fac-トリス(2-フェニルピリジン)イリジウム(上記合成品)

:ローダミン101 (Fulka社製)

ホール輸送材料:ポリ(N-ビニルカルバゾール)(東京化成製)

電子輸送材料: 2-(4-ビフェニル)-5-(4-tert-ブチルフェニル)-1, 3, 4-オキサジアゾ-ル(PBD)(東京化成製)

溶剤 : クロロホルム (和光純薬工業製、特級) 【0074】次に、陽極バッファ層上に、調製した塗布溶液をスピンコート法により、回転数3000rpm、塗布時間30秒の条件で塗布し、室温(25℃)にて30分間乾燥することにより、ホール輸送材料、発光材料、電子輸送材料を含む層を形成した。得られたホール輸送材料、発光材料、電子輸送材料を含む層の膜厚は約120nmであった。

【0075】次に、ホール輸送材料、発光材料、電子輸送材料を含む層を形成した基板を蒸着装置内に載置し、銀、マグネシウムを重量比1:10の割合で共蒸着し、ストライプ状に配列された幅3mmの2本の陰極を形成した。尚、陽極の延在方向に対して直交する方向に陰極を形成した。得られた陰極の膜厚は約50nmであった。

【0076】最後に、アルゴン雰囲気中において、陽極と陰極とにリード線(配線)を取り付けて、縦4mm×横3mmの有機EL素子を4個作製した。

【0077】(6)発光特性の評価

上記の有機EL素子に電圧を印加して、発光輝度を測定

したところ、電圧を20 V 印加したときの発光輝度が2 2 c d / m² であった。

【0078】(比較例1)ホール輸送材料、発光材料、電子輸送材料を含む層を形成する際の塗布溶液を表1に示す配合とした以外は実施例と同様にして有機EL素子を得た。尚、比較例では、表1に示すように、facートリス(2-フェニルビリジン)イリジウムを用いなかっ

た。

【0079】上記の有機EL素子に電圧を印加して、発光輝度を測定したところ、電圧を20V印加したときの発光輝度が $3cd/m^2$ であった。

. [0080]

【表1】

		配合量(mg)	
		実施例1	比較例1
発光材料	fac-トリス (2-フェニルピ リジ ン) イリシ ウム	0. 02	_
	ローダミン101	0. 10	0.10
ホール輸送材料	本。 リ(N-ド。 ニルカルハ、ソ、ール)	15. 88	15. 88
電子輸送材料	PBD	4.00	4. 00
溶剤	クロロホルム	1980	1980
	発光輝度(cd/m²)	22	3

【0081】 (実施例2) ローダミン101の代わりにナイルレッド (Nile Red、Across社製) を用い、素子作製の際の塗布溶液を表2に示す配合とした以外は実施例1と同様にして有機EL素子を得た。尚、ナイルレッドの励起ピーク波長は560nmであり、蛍光ピーク波長は590nmであった。これより、最低励起一重項状態のエネルギー準位E 2_{s1} を17, 400cm $^{-1}$ ((1/560× 10^{-7} +1/590× 10^{-7}) $\div 2$) と求めた。

【0082】また、第1のパルスレーザ(YAGレーザの第2高調波)と第2のパルスレーザを照射したところ、逆項間交差による蛍光が観察された。

【0083】2番目以降の励起三重項状態の存在については、消光剤として β -ヨノンが存在する場合でも蛍光が消光しないことから、17,400c m^{-1} から19,

200cm⁻¹の間のエネルギー準位に励起三重項状態を有することが判った。

【0084】上記の有機EL素子に電圧を印加して発光 輝度を測定したところ、電圧を24V印加したときの発 光輝度が52cd/m²であった。

【0085】(比較例2)素子作製の際の塗布溶液を表2に示す配合とした以外は実施例2と同様にして有機EL素子を得た。尚、比較例では、表2に示すように、facートリス(2-フェニルピリジン)イリジウムを用いなかった。上記の有機EL素子に電圧を印加して発光輝度を測定したところ、電圧を24 V印加したときの発光輝度が33cd/m²であった。

[0086]

【表2】

		配合量(mg)	
		実施例2	比較例 2
発光材料	fac-トリス (2-フェニルピ リジ ン) イリジ ウム	0. 02	-
	ナイルレッド	0.10	· 0. 10
ホール輸送材料	木'り(N-ヒ゜ニルカルハ'ソ'ール)	15. 88	15. 88
電子輸送材料	PBD	4. 00	4.00
溶剤	クロロホルム	1980	1980
	発光輝度(c d/m²)	52	33

【0087】以上の結果から、発光層に含有される2種の有機化合物について、第1の有機化合物の最低励起三重項状態のエネルギー準位 $E1_{T1}$ が第2の有機化合物の最低励起一重項状態のエネルギー準位 $E2_{S1}$ より高く、かつ $E1_{T1}$ と $E2_{S1}$ の間に前記第2の有機化合物の励起三重項状態のエネルギー準位が少なくとも1つ存在し、第2の有機化合物から発光するという関係を満たすことにより、発光輝度を向上させることができることが判明した。

[0088]

【発明の効果】本発明の発光材料を用いることにより、 励起三重項状態のエネルギーを効率よく発光に変換する ことが可能となり、高輝度で耐久性のある有機EL素子を提供することが可能となる。

[0089]

【図面の簡単な説明】

【図1】本発明の有機EL素子の断面図の例である。

【図2】本発明の第1の実施形態に係る有機EL素子の 発光層を構成する有機化合物のエネルギー準位の関係を 示す説明図である。

【図3】本発明の第2の実施形態に係る有機EL素子の 発光層を構成する有機化合物のエネルギー準位の関係を 示す説明図である。

[0090]

(10) \$2002-50483 (P2002-504JL

【符号の説明】

- 1 ガラス基板
- 2 陽極
- 3 ホール輸送層
- 4 発光層
- 5 電子輸送層
- 6 陰極
- 11 第1の有機化合物における項間交差
- 12 第1の有機化合物の励起三重項状態から第2の有

機化合物の励起三重項状態へのエネルギー移動

- 13 第2の有機化合物における逆項間交差
- 14 第2の有機化合物における励起一重項状態からの放射遷移
- 15 第3の有機化合物の励起一重項状態から第1の有機化合物の励起一重項状態へのエネルギー移動
- 16 第3の有機化合物の励起三重項状態から第1の有機化合物の励起三重項状態へのエネルギー移動

【図1】

【図2】

【図3】

