桂林电子科技大学试卷

2021-2022	学年第	2	学期
-----------	-----	---	----

课号		

课程名称___高等数学 AII___(A 卷, 闭卷) 适用班级(或年级、专业)___

考试时间_	120	分钟	班级_		 学号		姓名	
			T .	-				Т

题 号		1 1	111	四	五	六	七	八	九	+	成绩
满分	15	15	24	21	14	7	4				100
得 分											
评卷人											

一、填空题(每小题 3 分,共 15 分)

2. 函数
$$z = xy + ye^x$$
 在点 (0,1) 处的全微分 $dz|_{(0,1)} =$ _____;

3. 交换二次积分的积分次序
$$\int_0^1 dx \int_0^{x^2} f(x,y) dy =$$
______;
4. 已知 L 是圆周 $x^2 + y^2 = 4$,则曲线积分 $\oint_L ds =$ ______;

5. 设
$$f(x) = x(-\pi \le x \le \pi)$$
 在 $[-\pi, \pi]$ 上的 Fourier 级数的和函数为 $S(x)$,则 $S(\pi) =$ _____.

二、单项选择(每小题3分,共15分)

1. 已知向量
$$\vec{a} = (1,0,2), \ \vec{b} = (0,1,1), \ 则 \lambda 与 \mu 满足 () 时 ($\lambda \vec{a} + \mu \vec{b}$) $\bot z$ 轴;$$

A.
$$\lambda + \mu = 0$$
;

A.
$$\lambda + \mu = 0$$
; B. $2\lambda + \mu = 0$; C. $\lambda + 2\mu = 0$; D. $\lambda - \mu = 0$;

C.
$$\lambda + 2\mu = 0$$

D.
$$\lambda - \mu = 0$$
;

2. 极限
$$\lim_{(x,y)\to(2,0)} \frac{\sin xy}{y} =$$
 ()

3. 设区域
$$D = \{(x, y) | 0 \le x \le 1, -\sqrt{x} \le y \le \sqrt{x}\}$$
,则下列积分式正确的是(

A.
$$\iint x^2 d\sigma = 0$$

B.
$$\iint y^2 d\sigma = 0;$$

C.
$$\iint x d\sigma = 0;$$

A.
$$\iint_D x^2 d\sigma = 0$$
; B. $\iint_D y^2 d\sigma = 0$; C. $\iint_D x d\sigma = 0$; D. $\iint_D y d\sigma = 0$;

4. 已知
$$L$$
是起点为原点 O 、终点为 $A(1,2)$ 的有向直线段,则 $\int_{I} 2x dx + y dy = ($

B.
$$\sum_{n=1}^{\infty} a_n b_n$$
 一定发散;

C.
$$\sum_{n=1}^{\infty} (|a_n| + |b_n|)$$
 一定发散; D. $\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$ 一定发散;

D.
$$\sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$
一定发散

三、计算题一(每小题8分,共24分)

- 1. 求过点 (1,2,3) 且与直线 $\begin{cases} x+2y=1 \\ 2x+z=2 \end{cases}$ 垂直的平面方程;
- 2. 设函数 z = z(x, y) 由方程 $e^z + xyz = y^2$ 确定,求 $\frac{\partial z}{\partial x}, \frac{\partial z}{\partial y};$
- 3. 求函数 $f(x, y) = 2x 4y + x^2 + y^2$ 的极值.

四、计算题二(每小题7分,共21分)

- 1. 计算二重积分 $\iint_D y d\sigma$, 其中 D 是由曲线 $y = \sqrt{x}$ 和 y = x 所围成的平面区域;
- 3. 将函数 $\frac{1}{5-x}$ 展开成 (x-2) 的幂级数,并写出收敛区间.

五、计算题三(每小题7分,共14分)

- 1. 计算曲面积分 $\iint_{\Sigma} z dS$, 其中 Σ 为锥面 $z = \sqrt{x^2 + y^2} (z \le 1)$;
- ②. 计算曲面积分 $\bigoplus_{\Sigma} ye^z dydz + 2yzdzdx + x\sin ydxdy$,其中 Σ 为上半球体 $0 \le z \le \sqrt{1-x^2-y^2}$ 的整个表面,取外侧;

六、解答题 (7 分): 设 f 在 \mathbb{R} 上连续可导,L 是从点 $A(3,\frac{2}{3})$ 到点 B(1,2) 的直线段. 证明曲 线积分

$$\int_{L} \frac{1 + y^{2} f(xy)}{y} dx + \frac{x}{y^{2}} [y^{2} f(xy) - 1] dy$$

在上半平面 $G = \{(x, y) | x, y \in \mathbb{R}, y > 0\}$ 上与路径无关,并求其值.

七、正明题 (4分): 证明级数 $\sum_{n=1}^{+\infty} \int_0^{\pi} \frac{\sin x}{1+x} dx$ 收敛.

