Álgebra Linear Lista 1 — Matrizes e sistemas lineares

Prof. Adriano Barbosa

1. Sejam

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & -1 \end{bmatrix}, B = \begin{bmatrix} -2 & 0 & 1 \\ 3 & 0 & 1 \end{bmatrix}, C = \begin{bmatrix} -1 \\ 2 \\ 4 \end{bmatrix} e D = \begin{bmatrix} 2 & 1 \end{bmatrix}$$

Encontre:

a.
$$A+B$$
 b. AC c. BC d. CD e. DA f. DB g. $-A$ h. $-D$

2. Seja
$$A = \begin{bmatrix} 2 & x^2 \\ 2x - 1 & 0 \end{bmatrix}$$
. Se $A^T = A$, qual o valor de x ?

3. Verdadeiro ou falso?

a.
$$(-A)^T = -(A)^T$$

b.
$$(A+B)^T = B^T + A^T$$

c. Se
$$AB = 0$$
, então $A = 0$ ou $B = 0$.

d.
$$(k_1A)(k_2B) = (k_1k_2)AB$$

e.
$$(-A)(-B) = -(AB)$$

f. Se A e B são matrizes simétricas, então AB = BA.

g. Se
$$AB = 0$$
, então $BA = 0$.

h. Se podemos efetuar o produto AA, então A é uma matriz quadrada.

4. Ache
$$x, y, z$$
 e w se $\begin{bmatrix} x & y \\ z & w \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

5. Suponha que $A \neq 0$ e AB = AC onde A, B e C são matrizes tais que a multiplicação seja possível.

a.
$$B = C$$
?

b. Se existir uma matriz Y, tal que YA=I, onde I é a matriz identidade, então B=C?

6. Resolva o sistema de equações, escrevendo as matrizes aumentadas, associadas aos novos sistemas

1

$$\begin{cases} 2x - y + 3z = 11 \\ 4x - 3y + 2z = 0 \\ x + y + z = 6 \\ 3x + y + z = 4 \end{cases}$$

7. Reduza as matrizes à forma escalonada

a.
$$\begin{bmatrix} 1 & -2 & 3 & -1 \\ 2 & -1 & 2 & 3 \\ 3 & 1 & 2 & 3 \end{bmatrix}$$
 b.
$$\begin{bmatrix} 0 & 2 & 2 \\ 1 & 1 & 3 \\ 3 & -4 & 2 \\ 2 & -3 & 1 \end{bmatrix}$$
 c.
$$\begin{bmatrix} 0 & 1 & 3 & -2 \\ 2 & 1 & -4 & 3 \\ 2 & 3 & 2 & -1 \end{bmatrix}$$

- 8. Calcule o posto das matrizes da questão anterior.
- 9. Determine k, para que o sistema admita solução

$$\begin{cases}
-4x + 3y = 2 \\
5x - 4y = 0 \\
2x - y = k
\end{cases}$$

10. Determinar os valores de a e b de modo que o sistema

$$\begin{cases} 3x - 7y = a \\ x + y = b \\ 5x + 3y = 5a + 2b \\ x + 2y = a + b - 1 \end{cases}$$

possua uma única solução. Em seguida resolver o sistema.

- 11. Foram estudados três tipos de alimentos. Fixada a mesma quantidade (1g) determinou-se que:
 - i. O alimento I tem 1 unidade de vitamina A, 3 unidades de vitamina B e 4 unidades de vitamina C.
 - ii. O alimento II tem 2, 3 e 5 unidades respectivamente, das vitaminas A, B e C.
 - iii. O alimento III tem 3 unidades de vitaminas A e C, e não contém vitamina B.

Se são necessárias 11 unidades de vitamina A, 9 de vitamina B e 20 de vitamina C,

- a. Encontre todas as possíveis quantidades dos alimentos I, II e III, que fornecem a quantidade de vitaminas desejada.
- b. Se o alimento I custa R\$ 0,60 por grama e os outros dois custam R\$ 0,10, existe uma solução custando exatamente R\$ 1,00?
- 12. Sendo $A=\left[\begin{array}{cc} 1 & 0 \\ 0 & 2 \end{array}\right]$ e $B=\left[\begin{array}{cc} 4 & 0 \\ 0 & 2 \end{array}\right]$, determine as matrizes $X_{2\times 2}$ e $Y_{2\times 2}$ tais que

$$\left\{ \begin{array}{cccc} 2X & - & Y & = & A+B \\ X & + & Y & = & A-B \end{array} \right.$$

13. Dada
$$A = \begin{bmatrix} 2 & 3 & 1 & -2 \\ 5 & 3 & 1 & 4 \\ 0 & 1 & 2 & 2 \\ 3 & -1 & -2 & 4 \end{bmatrix}$$
 calcule

a.
$$A_{23}$$
 b. $det(A_{23})$ c. Δ_{23} d. $det(A)$

- 14. Dadas as matrizes $A = \begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ e $B = \begin{bmatrix} 3 & -1 \\ 0 & 1 \end{bmatrix}$
 - a. det(A) + det(B)
 - b. det(A+B)
- 15. Sejam Ae Bmatrizes $n\times n.$ Verifique se as colocações abaixo são verdadeiras ou falsas
 - a. det(AB) = det(BA)
 - b. $det(A^T) = det(A)$
 - c. det(2A) = 2 det(A)
 - d. $det(A^2) = (det(A))^2$
 - e. $det(A_{ij}) < det(A)$
 - f. Se Aé uma matriz $3\times 3,$ então

$$a_{11}\Delta_{11} + a_{12}\Delta_{12} + a_{13}\Delta_{13} = a_{21}\Delta_{21} + a_{22}\Delta_{22} + a_{23}\Delta_{23}$$