Assignments (Week 3)

- **2.4**
- **2.6**
- **2.19**
- 2.21 (c) (d)

Tutorial Problems (Week 3)

- Basic Problems with Answers 2.3, 2.7, 2.13
- Basic Problems 2.24, 2.26

Ch 1 Review (1)

Time-shift and flip

What is the plot for h[n-k]?? n is a constant

$$h[k] \xrightarrow{\text{Flip}} h[-k] \xrightarrow{\text{Slide}} h[n-k]$$

Ch 1 Review (2)

Unit impulse function (unit sample function)

Discrete-time

$$\delta[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases}$$

 We can use unit impulse function to represent any other different signals, or it is a building function (or basic signal) --- it will be explained soon.

Ch 1 Review (3)

System properties:

1. With memory or memoryless

$$y[n]=f(x[n])$$

2. Invertible

for a system $x \rightarrow y$, if $x_1 \neq x_2$, then $y_1 \neq y_2$

3. Causal

... up to that time n ...

4. Stable

either prove the system is stable, or find a specific counterexample

Ch 1 Review (4)

5. Time-invariant

If
$$x[n] \rightarrow y[n]$$

then $x[n - n_0] \rightarrow y[n - n_0]$.

6. Linear

A (CT) system is linear if it has the superposition property:

If
$$x_1(t) \rightarrow y_1(t)$$
 and $x_2(t) \rightarrow y_2(t)$
then $ax_1(t) + bx_2(t) \rightarrow ay_1(t) + by_2(t)$

Chapter 2: Linear Time-invariant (LTI) Systems

Representation of DT Signals Using Unit Samples

That is ...

$$x[n] = \dots + x[-2]\delta[n+2] + x[-1]\delta[n+1] + x[0]\delta[n] + x[1]\delta[n-1] + \dots$$

Arbitrary DT signal can be written as a linear combination of impulse functions with different time shifting, i.e., linear combination of signals $\{\delta[n-k]|k=\cdots,-2,-1,0,1,2,...\}$.

Unit Impulse Response (Unit Sample Response)

• Define the output for a unit impulse input as the unit impulse response

Example: y[n]=x[n]+2x[n-1]+4x[n-2]What is unit impulse response?

Figure 2.3 (a) The impulse response h[n] of an LTI system and an input x[n] to the system; (b) the responses or "echoes," 0.5h[n] and 2h[n-1], to the nonzero values of the input, namely, x[0] = 0.5 and x[1] = 2; (c) the overall response y[n], which is the sum of the echos in (b).

Response of DT LTI Systems

• Now suppose the system is **LTI**, and define the *unit impulse* $response h[n]: \delta[n] \longrightarrow h[n]$

From Time-Invariance:

$$\delta[n-k] \longrightarrow h[n-k]$$

From Linearity:

$$x[n] = \sum_{k=-\infty}^{+\infty} x[k] \, \delta[n-k] \longrightarrow y[n] = \sum_{k=-\infty}^{+\infty} x[k] \, h[n-k] = x[n] * h[n]$$

$$convolution sum$$

The output for an arbitrary input signal is the superposition of a series of "shifted, scaled unit impulse response"

Hence a Very Important Property of LTI Systems:

The output of any DT LTI system is a convolution of the input signal with the unit impulse response.

Any DT LTI system are completely characterized by its unit impulse response.

Example: Convolution Calculation

Calculating Successive Values: Shift, Multiply, Sum

$$y[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

$$y[n] = 0$$
 for $n < y[-1] = y[0] = y[1] = y[2] = y[3] = y[4] = y[n] = 0$ for $n > y[n] = 0$

Signals and Systems

Calculating Successive Values: Shift, Multiply, Sum

Non-zero Region

$$X[\Lambda]: \{6, 1, 2\} = 3$$
 $hin]: \{-1, 0, 1, 2\} = 4$
 $X[\Lambda]: \{-1, 0, 1, 2\} = 4$
 $X[\Lambda]: \{A, -1, 0, ..., 4\} = 3+4-1=6$
 $X[\Lambda]: \{A, -1, B\} = M=B-A+1$
 $X[\Lambda]: \{C, ..., D\} = N=D-C+1$
 $X[\Lambda]: \{A+C, ..., B+D\} = (B+D)-(A+C)+1=M+N-1$

Convolution operation procedure:

$$h[k] \xrightarrow{\text{Flip}} h[-k] \xrightarrow{\text{Slide}} h[n-k] \xrightarrow{\text{Multiply}} x[k]h[n-k]$$

F-S-M-S for every fixed n

Figure 1. Fixed $h[n-k] \xrightarrow{\text{Sum}} \sum_{k=-\infty}^{\infty} x[k]h[n-k]$

Observations:

- Convolution of two finite signals leads to another finite signal
- What's the relation on their non-zero duration?

Examples of Convolution and DT LTI Systems

Ex. #1:
$$h[n] = \delta[n]$$

$$y[n] = x[n] * \delta[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$
$$= x[n] - \text{An Identity system}$$

Ex. #2:
$$h[n] = \delta[n - n_0]$$

$$y[n] = x[n] * \delta[n - n_o] = \sum_{k = -\infty}^{\infty} x[k] \delta[n - n_o - k]$$
$$= x[n - n_o] - A \text{ Shift}$$

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

An accumulator

u[n]

Unit Sample response

$$x[n] * u[n] = \sum_{k=-\infty}^{n} x[k]$$

$$h[n] = u[n] \longrightarrow \sum_{k=-\infty}^{n} x[k]$$

Ex. #4 (Example 2.3)

Figure 2.5 The signals x[n] and h[n] in Example 2.3.

Figure 2.6 Graphical interpretation of the calculation of the convolution sum for Example 2.3.

Figure 2.7 Output for Example 2.3.

Characteristics of an LTI system are completely determined by its impulse response.

What if the system is nonlinear?

Consider a discrete-time system with unit impulse response

$$h[n] = \begin{cases} 1 & n = 0,1 \\ 0 & \text{otherwise} \end{cases}$$

If the system is LTI, the input/output relationship is

$$y[n] = x[n] + x[n-1].$$

On the other hand, there are **many** nonlinear systems with the same response to the input $\delta[n]$.

$$y[n] = (x[n] + x[n-1])^2,$$

 $y[n] = \max(x[n], x[n-1]).$

The Commutative Property of Convolution

$$y[n] = x[n] * h[n] = h[n] * x[n]$$

$$x[n] \rightarrow h[n] \Rightarrow x[n] \Rightarrow x[n]$$

The Distributive Property of Convolution

$$x[n] * \{h_1[n] + h_2[n]\} = x[n] * h_1[n] + x[n] * h_2[n]$$

Interpretation

The Associative Property of Convolution

$$x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n]$$
(Commutativity)
$$x[n] * (h_2[n] * h_1[n]) = (x[n] * h_2[n]) * h_1[n]$$

Implication (Very special to LTI Systems)

Properties of Convolution

Combining the Commutative property,

$$y[n] = x[n] * h[n] = h[n] * x[n]$$

Distributive property,

$$x[n] * \{h_1[n] + h_2[n]\} = x[n] * h_1[n] + x[n] * h_2[n]$$

and Associative property,

$$x[n]*(h_1[n]*h_2[n]) = (x[n]*h_1[n])*h_2[n]$$

symbolically, we can treat "*" as a "x". Easy, piece of cake!

Some Useful Properties of LTI Systems

- 1) Causality \Leftrightarrow h[n] = 0 for all n < 0
- 2) Stability $\Leftrightarrow \sum_{k=-\infty}^{+\infty} |h[k]| < \infty$ BIBO Bounded Input \Rightarrow Bounded Output
 - → Sufficient condition: For $|x[n]| \le x_{\text{max}} < \infty$.

$$|y[n]| = \left|\sum_{k=-\infty}^{\infty} x[k]h[n-k]\right| \le x_{\max} \left|\sum_{k=-\infty}^{\infty} h[n-k]\right| < \infty.$$

→ Necessary condition: If $\sum_{k=0}^{\infty} |h[k]| = \infty$

Let x[n] = h * [-n]/|h[-n]|, then |x[n]| = 1 bounded

But
$$y[0] = \sum_{k=0}^{\infty} x[k]h[-k] = \sum_{k=0}^{\infty} h^*[-k]h[-k]/|h[-k]| = \sum_{k=0}^{\infty} |h[-k]| = \infty$$

- Memoryless / with Memory
 - A linear, time-invariant, causal system is memoryless only

if
$$h[n] = K\delta[n]$$
 $h(t) = K\delta(t)$
 $y[n] = Kx[n]$ $y(t) = Kx(t)$

if k=1 further, they are identity systems

$$y[n] = x[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-k] = x[n] * \delta[n]$$

$$y(t) = x(t) = \int_{-\infty}^{\infty} x(\tau) \delta(t - \tau) d\tau = x(t) * \delta(t)$$

Summary

Understand the following new concepts:

- 1. Use unit impulse function to represent any function
- 2. Unit impulse response h[n]
 - Given the system input/output equation, how to decide the unit impulse response?
- Convolution, its properties, and calculation steps (FSMS)
 - Understand the meaning of index 'k' and index 'n'
- Decide LTI system property by using unit impulse response h[n]