Gun Violence Analysis Report

#solution 1

per_month <- gun_deaths%>%count(month). This produces the following output

>	per_month					
	month	n				
1	1	8273				
2	2	7093				
3	3	8289				
4	4	8455				
5	5	8669				
6	6	8677				
7	7	8989				
8	8	8783				
9	9	8508				
10	10	8406				
11	. 11	8243				
12	12	8413				
	1					

#solution 2

 $barplot(per_month\$n^per_month\$month, mainlab="Deaths per Month", xlab="Months", ylab=Deaths", names.arg=c("Jan", "Feb", March", "April", "May", "June", "July", "Aug", "Sept", "Oct", "Nov", "Dec"), width = c(6,6,6,6,6,6,6,6,6,6,6,6))$

The output for the above code is :

#solution 3

per_intent <- gun_deaths%>%count(intent)

```
df <- per_intent[order(per_intent$n,decreasing = TRUE),]</pre>
```

barplot(df\$n,names.arg = df\$intent)

PerIntent and barplot as follows:

```
> per_intent intent n

1 Accidental 1639

2 Homicide 35176

3 Suicide 63175

4 Undetermined 807

5 <NA> 1
```


#solution 4

boxplot(age ~ sex, data=gun_deaths, main="Age vs Sex", xlab="Age", ylab="Sex",col=c("orange", "lightblue4"))

age_sex <- na.omit(gun_deaths[,c("age","sex")])</pre>

age_sex %>% group_by(sex) %>% summarise(avg = mean(age))

The averages ages of each gender and boxplot as follows:

#solution 5

White1 <- gun_deaths[(gun_deaths\$race=='White' & gun_deaths\$year=='2012' & gun_deaths\$sex=='M'),]

subdf1 <- White1[!(White1\$education=='Less than HS'),]</pre>

count(subdf1) gives 15,485 white male who at least have a high school education got shot in 2012 #solution 6

gun_deaths\$month <- as.factor(gun_deaths\$month)</pre>

winter <- gun_deaths[(gun_deaths\$month==1 | gun_deaths\$month==2 | gun_deaths\$month==3),]
count(winter) #23,656</pre>

Spring <- gun_deaths[(gun_deaths\$month==4 | gun_deaths\$month==5 | gun_deaths\$month==6),] count(Spring) #25,801

Summer <- gun_deaths[(gun_deaths\$month==7 | gun_deaths\$month==8 | gun_deaths\$month==9),] count(Summer) #26,281

Fall <- gun_deaths[(gun_deaths\$month==10 | gun_deaths\$month==11 | gun_deaths\$month==12),] count(Fall) #25,063

Spring has the maximum number of deaths

#solution 7

compare_deaths <- table(gun_deaths\$race, gun_deaths\$intent)</pre>

This gives the following table:

> compare_deaths

	Accidental	Homicide	Suicide	Undetermined
Asian/Pacific Islander	12	559	745	10
Black	328	19510	3332	126
Hispanic	145	5634	3171	72
Native American/Native Alaskan	22	326	555	14
White	1132	9147	55372	585

From the table, its clear that whites who are killed by guns are more likely to die because of Suicide whereas Black and Hispanic die because of Homicide.