Lesson 43: Practice Problems Characteristic Equation Method

ODE 1 with Prof. Adi Ditkowski

Tel Aviv University

Part A: Characteristic Equation Setup (5 problems)

- 1. Write the characteristic equation for: y''' 6y'' + 11y' 6y = 0
- 2. Write the characteristic equation for: $2y^{(4)} + 3y'' y = 0$
- 3. Write the characteristic equation for: y'' + 4y' + 4y = 0
- 4. Write the characteristic equation for: y''' + y' = 0
- 5. Write the characteristic equation for: $y^{(4)} + 2y'' + y = 0$

Part B: Distinct Real Roots (5 problems)

- 6. Solve: y'' 7y' + 12y = 0
- 7. Solve: y''' 6y'' + 11y' 6y = 0
- 8. Solve the IVP: y'' y' 2y = 0, y(0) = 3, y'(0) = 1
- 9. Solve: $y^{(4)} 5y'' + 4y = 0$
- 10. Find the solution of y'' 9y = 0 that satisfies y(0) = 2 and remains bounded as $t \to -\infty$.

Part C: Repeated Roots (5 problems)

- 11. Solve: y'' 4y' + 4y = 0
- 12. Solve: y''' 3y'' + 3y' y = 0
- 13. Solve the IVP: y'' + 6y' + 9y = 0, y(0) = 1, y'(0) = -2
- 14. Solve: $y^{(4)} 4y''' + 6y'' 4y' + y = 0$
- 15. Find all solutions of y''' 6y'' + 12y' 8y = 0 that satisfy $\lim_{t\to\infty} e^{-2t}y(t) = Lforsome finite L \neq 0$.

Part D: Complex Roots (5 problems)

16. Solve:
$$y'' + y = 0$$

17. Solve:
$$y'' - 2y' + 2y = 0$$

18. Solve the IVP:
$$y'' + 4y' + 13y = 0$$
, $y(0) = 1$, $y'(0) = -2$

19. Solve:
$$y^{(4)} + 4y'' = 0$$

20. Find the solution of y'' + 2y' + 5y = 0 with y(0) = 0 that has maximum amplitude.

Part E: Mixed Cases (5 problems)

21. Solve:
$$y''' - y'' + y' - y = 0$$

22. Solve:
$$y^{(4)} + y''' - y' - y = 0$$

23. Solve:
$$y^{(4)} + 8y'' + 16y = 0$$

24. Find all solutions of
$$y''' + y'' - y' - y = 0$$
 that are periodic.

25. Solve the IVP:
$$y^{(4)} - y = 0$$
, $y(0) = 1$, $y'(0) = 0$, $y''(0) = 1$, $y'''(0) = 0$

Part F: Exam-Style Problems (5 problems)

- 26. (Prof. Ditkowski style) Consider the equation y'' + py' + qy = 0 where $p, q \in \mathbb{R}$.
 - (a) For what values of p and q are all solutions bounded as $t \to \infty$?
 - (b) For what values do all solutions oscillate?
 - (c) When do all non-zero solutions tend to infinity as $t \to \infty$?
- 27. Let y'' + ay' + by = 0 have solutions $y_1(t) = e^{2t} and y_2(t) = e^{-3t}$. Finda and b.
- 28. The characteristic equation of a third-order ODE has roots $r_1 = 2$, $r_2 = 3$, and $r_3 = -1$. If y(0) = 1, y'(0) = 5, and y''(0) = 7, find the solution.
- 29. A fourth-order equation has characteristic polynomial $(r^2+4)(r-1)^2=0$. Write the general real-valued solution.
- 30. Show that if y(t) is a solution of y'' + py' + qy = 0 with constant coefficients, then z(t) = y(at + b) is a solution of a similar equation. Find the new equation.

Solutions

Part A: Characteristic Equation Setup

1.
$$r^3 - 6r^2 + 11r - 6 = 0$$

2.
$$2r^4 + 3r^2 - 1 = 0$$

3.
$$r^2 + 4r + 4 = 0$$

4.
$$r^3 + r = 0$$

5.
$$r^4 + 2r^2 + 1 = 0$$

Part B: Distinct Real Roots

6. Characteristic equation: $r^2 - 7r + 12 = 0$

Factor:
$$(r-3)(r-4) = 0$$

Roots:
$$r_1 = 3, r_2 = 4$$

General solution:
$$y(t) = c_1 e^{3t} + c_2 e^{4t}$$

7. Characteristic equation: $r^3 - 6r^2 + 11r - 6 = 0$

Factor:
$$(r-1)(r-2)(r-3) = 0$$

Roots:
$$r_1 = 1, r_2 = 2, r_3 = 3$$

General solution:
$$y(t) = c_1 e^t + c_2 e^{2t} + c_3 e^{3t}$$

8. Characteristic equation: $r^2 - r - 2 = 0$

Factor:
$$(r-2)(r+1) = 0$$

Roots:
$$r_1 = 2, r_2 = -1$$

General solution:
$$y(t) = c_1 e^{2t} + c_2 e^{-t}$$

$$ApplyICs : c_1 + c_2 = 3, 2c_1 - c_2 = 1$$

Solving:
$$c_1 = 4/3$$
, $c_2 = 5/3$

Solving:
$$c_1 = 4/3$$
, $c_2 = 5/3$
Solution: $y(t) = \frac{4}{3}e^{2t} + 5\frac{1}{3}e^{-t}$

9. Characteristic equation: $r^4 - 5r^2 + 4 = 0$

Let
$$s = r^2$$
: $s^2 - 5s + 4 = 0$

Factor:
$$(s-1)(s-4) = 0$$
, so $s = 1$ or $s = 4$

Thus
$$r^2 = 1$$
 or $r^2 = 4$

Roots:
$$r = \pm 1, \pm 2$$

General solution:
$$y(t) = c_1 e^{-2t} + c_2 e^{-t} + c_3 e^t + c_4 e^{2t}$$

10. Characteristic equation: $r^2 - 9 = 0$

Roots:
$$r = \pm 3$$

General solution:
$$y(t) = c_1 e^{3t} + c_2 e^{-3t}$$

Forboundednessast
$$\to -\infty$$
, need $c_1 = 0$

Apply
$$y(0) = 2$$
: $c_2 = 2$

Solution:
$$y(t) = 2e^{-3t}$$

Part C: Repeated Roots

6. Characteristic equation: $r^2 - 4r + 4 = 0$

Factor: $(r-2)^2 = 0$

Root: r = 2 (multiplicity 2)

General solution: $y(t) = (c_1 + c_2 t)e^{2t}$

7. Characteristic equation: $r^3 - 3r^2 + 3r - 1 = 0$

Factor: $(r-1)^3 = 0$

Root: r = 1 (multiplicity 3)

General solution: $y(t) = (c_1 + c_2t + c_3t^2)e^t$

8. Characteristic equation: $r^2 + 6r + 9 = 0$

Factor: $(r+3)^2 = 0$

Root: r = -3 (multiplicity 2)

General solution: $y(t) = (c_1 + c_2 t)e^{-3t}$

 $ApplyICs : c_1 = 1, c_2 - 3c_1 = -2$

Thus $c_2 = 1$

Solution: $y(t) = (1+t)e^{-3t}$

9. Characteristic equation: $r^4 - 4r^3 + 6r^2 - 4r + 1 = 0$

This is $(r-1)^4 = 0$

Root: r = 1 (multiplicity 4)

General solution: $y(t) = (c_1 + c_2t + c_3t^2 + c_4t^3)e^t$

10. Characteristic equation: $r^3 - 6r^2 + 12r - 8 = 0$

Factor: $(r-2)^3 = 0$

Root: r = 2 (multiplicity 3)

General solution: $y(t) = (c_1 + c_2t + c_3t^2)e^{2t}$

For finite limit, $need c_3 = 0$ and $c_2 = 0$

Solution: $y(t) = c_1 e^{2t} for any c_1 \neq 0$

Part D: Complex Roots

11. Characteristic equation: $r^2 + 1 = 0$

Roots: $r = \pm i$

General solution: $y(t) = c_1 \cos(t) + c_2 \sin(t)$

12. Characteristic equation: $r^2 - 2r + 2 = 0$

Roots: $r = 1 \pm i$

General solution: $y(t) = e^t(c_1 \cos(t) + c_2 \sin(t))$

13. Characteristic equation: $r^2 + 4r + 13 = 0$

Roots: $r = -2 \pm 3i$

General solution: $y(t) = e^{-2t}(c_1\cos(3t) + c_2\sin(3t))$

Apply ICs: $c_1 = 1, -2c_1 + 3c_2 = -2$

Thus $c_2 = 0$

Solution: $y(t) = e^{-2t} \cos(3t)$

14. Characteristic equation: $r^4 + 4r^2 = 0$

Factor: $r^2(r^2 + 4) = 0$

Roots: r = 0 (multiplicity 2), $r = \pm 2i$

General solution: $y(t) = c_1 + c_2t + c_3\cos(2t) + c_4\sin(2t)$

15. Characteristic equation: $r^2 + 2r + 5 = 0$

Roots: $r = -1 \pm 2i$

General solution: $y(t) = e^{-t}(c_1 \cos(2t) + c_2 \sin(2t))$

Apply y(0) = 0: $c_1 = 0$

For maximum amplitude, choose c_2 as large as needed

Solution: $y(t) = Ae^{-t}\sin(2t)foranyA \neq 0$

Part E: Mixed Cases

16. Characteristic equation: $r^3 - r^2 + r - 1 = 0$

Factor: $r^2(r-1) + (r-1) = (r^2+1)(r-1) = 0$

Roots: $r = 1, r = \pm i$

General solution: $y(t) = c_1 e^t + c_2 \cos(t) + c_3 \sin(t)$

17. Characteristic equation: $r^4 + r^3 - r - 1 = 0$

Factor: $r^3(r+1) - (r+1) = (r^3-1)(r+1) = (r-1)(r^2+r+1)(r+1) = 0$

Roots: $r = 1, -1, \frac{-1 \pm i\sqrt{3}}{2}$

General solution: $y(t) = c_1 e^t + c_2 e^{-t} + e^{-t/2} (c_3 \cos(\frac{\sqrt{3}}{2}t) + c_4 \sin(\frac{\sqrt{3}}{2}t))$

18. Characteristic equation: $r^4 + 8r^2 + 16 = 0$

This is $(r^2 + 4)^2 = 0$

Roots: $r = \pm 2i$ (each with multiplicity 2)

General solution: $y(t) = (c_1 + c_2 t) \cos(2t) + (c_3 + c_4 t) \sin(2t)$

19. Characteristic equation: $r^3 + r^2 - r - 1 = 0$

Factor: $(r+1)^2(r-1) = 0$

Roots: r = -1 (multiplicity 2), r = 1

No periodic solutions (all involve exponentials)

20. Characteristic equation: $r^4 - 1 = 0$

Roots: $r = \pm 1, \pm i$

General solution: $y(t) = c_1 e^t + c_2 e^{-t} + c_3 \cos(t) + c_4 \sin(t)$

Apply ICs: System gives $c_1 = c_2 = c_3 = 1/2$, $c_4 = 0$

Solution: $y(t) = \frac{1}{2}(e^{t} + e^{-t} + \cos(t))$

Part F: Exam-Style Problems

- 21. (a) All solutions bounded: Need both roots to have negative real parts. This occurs when p > 0 and q > 0 (by Routh-Hurwitz).
 - (b) Solutions oscillate: Need complex roots, so discriminant $p^2-4q<0$, i.e., $q>p^2/4$.

- (c) Solutions tend to infinity: At least one root has positive real part. This occurs when either p < 0 or q < 0.
- 22. The characteristic equation must be $(r-2)(r+3) = r^2 + r 6 = 0$ Thus a = 1 and b = -6.
- 23. Characteristic equation: $(r-2)(r-3)(r+1) = r^3 4r^2 + r + 6 = 0$ General solution: $y(t) = c_1e^{2t} + c_2e^{3t} + c_3e^{-t}$ ApplyICstogetsystem:

$$c_1 + c_2 + c_3 = 1$$

 $2c_1 + 3c_2 - c_3 = 5$
 $4c_1 + 9c_2 + c_3 = 7$
Solving: $c_1 = 3/2$, $c_2 = 0$, $c_3 = -1$

- Solving: $c_1 = 3/2$, $c_2 = 0$, $c_3 = -1/2$ Solution: $y(t) = \frac{3}{2}e^{2t} - 1_{\overline{2}}e^{-t}$
- 24. Roots: $r = \pm 2i$, r = 1 (multiplicity 2) General solution: $y(t) = c_1 \cos(2t) + c_2 \sin(2t) + (c_3 + c_4 t)e^t$
- 25. Let s=at+b, so t=(s-b)/a. Then $\frac{dy}{dt}=a\frac{dy}{ds}$ and $\frac{d^2y}{dt^2}=a^2\frac{d^2y}{ds^2}$ Substituting: $a^2y''+apy'+qy=0$ Dividing by a^2 : $y''+\frac{p}{a}y'+\frac{q}{a^2}y=0$ New equation has coefficients p'=p/a and $q'=q/a^2$.