Modulo 2 Adition (XOR)

+	0	1	
0	0	1	
1	1	0	

Modulo 2 Multiplication (XOR)

*	0	. 1
0	0	0
1	0	1

Figure 3

C _i Polynomial Coefficients N × M GF Multiplies (*) (N-1) × M GF Additions (^)	Result Term Vector
, , c,	
6, Coo 6, Cor 6, Coz 6, Cos 6, Cos 6, Cos 6, Cos 6, Cos	2 2
0 , 1	-
°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°	- Lo
ب دی	-
Feedback Term Vector (Length N)	

Incoming RS Partity Vector (Length M)		C _{ii} Polynomial Coefficients N × M GF Multiplies (*) (N-1) × M GF Additions (^)	Modified RS Partity Vector (Length M)
c	<	1, C ₁₃	m³
i	<	f, * C ₁₂	m ²
	<	f, * C ₁₁	m,
o _i .	<	6 * Coo	E
		f 1	

Feedback Term Vector (Length N)

Figure 5

Incoming RS Syndrome Vector (Length M)	C _{ii} Polynomial Coefficients N x M GF Multiplies (*) (N-1) x M GF Additions (^)			Modified RS Syndrome Vector (Length M)
		•		
	i, * C _{0,3}	<	d d	E
	i ₂ * C ₀₂ d ₀ * C ₁₂	<	۵ ا	E 2
	1, * C ₀₁	<	δ ₁	Ę
.0	i ₀ * C ₀₀	<	ď	E C
	o o		٩	

Data Term Vector (Length N)

Gated 2 Input XOR Logic

Gated 2 Input XOR Symbol

Α	В	A_EN	B_EN	X	Y	0	Notes
-	-	0	0	0	. 0	0	Block
0 0 1 1	0 1 0 1	1 1 1	0 0	0 0 1 1	0 0 0	0 0 1 1	Pass A
0 0 1 1	0 1 0 1	0 0 0 0	1 1 1	0 0 0	0 1 0 1	0 1 0 1	Pass B
0 0 1 1	0 1 0	1 1 1 1	1 1 1	0 0 1 0	0 1 0	0 1 1 0	A^B

Gated 2 Input XOR Truth Table

Figure 6

Figure 7

Figure 8

Scalar instruction: crc = crc ^ gf_mult (a, b)

As used in the example software, a is the feedback term and b is the polynomial term

Figure 10

term and b is a set of four polynomial terms

Figure 11

GF Kernel instruction: crc[3:0] = crc[3:0] ^ gf_mult (a[3:0], b[15:0])

As used in the example software, a is a set of four byte feedback term and b is a set of sixteen polynomial terms

The set of sixteen polynomial terms could be referenced from a ROM as part of the GF Kernel instruction processor as only a small number of terms are necessary for each Reed Solomon coder type

Note: Byte indicies shown on instruction and bit indicies shown on hardware

Figure 12a

Figure 12b

GF Kernel instruction: c[3:0] = c[3:0] ^ gf_mult (a[3:0], b[15:0])

As used in the example software, a is a set of four byte feedback term and b is a set of sixteen polynomial terms

The set of sixteen polynomial terms should be referenced from a ROM as part of the GF Kernel instruction processor as only a small number of terms are necessary for each Reed Solomon coder type

Note: Byte indicies shown on instruction and bit indicies shown on hardware

Figure 13a

Figure 13b

GF Kernel instruction: c[3:0] = c[3:0] ^ gf_mult (a[3:0], b[15:0])

As used in the example software, a is a set of four byte feedback term and b is a set of sixteen polynomial terms

The set of sixteen polynomial terms should be referenced from a ROM as part of the GF Kernel instruction processor as only a small number of terms are necessary for each Reed Solomon coder type

Note: Byte indicies shown on instruction and bit indicies shown on hardware

Figure 14a

Figure 14b