

MTH 309T LINEAR ALGEBRA EXAM 1

October 3, 2019

	Name: Chenhao Zou														
L	UB	Pe	rsor	n Ni	umb					Instructions: • Teythooks, calculators and any other					
	5 0 ① ① ① ① ② ② ② ③ ③ ③ ④ ④ ④ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑥ ⑦ ⑦ ⑦ ⑧ ⑧ ⑨ ⑨ ⑨		1 (3 (4 (6 (6 (6 (6 (6 (6 (6 (6 (6	0 2 3 4 5 6 7 8 9	© 1 2 3 4 5 6 7 9	5 ① ① ② ④ ④ ⑤ ⑥ ⑦ ⑧ ⑨	8 0 1 2 3 4 5 6 7			 Textbooks, calculators and any other electronic devices are not permitted. You may use one sheet of notes. For full credit solve each problem fully, showing all relevant work. 					
	1		2		3		4	5		6	7	TOTAL	GRADE		

							0	nan
1	2	3	4	5	6	7	TOTAL	GRADE

1. (20 points) Consider the following vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \left[\begin{array}{c} 1 \\ 0 \\ 2 \end{array} \right], \quad \mathbf{v}_2 = \left[\begin{array}{c} -1 \\ 1 \\ -3 \end{array} \right], \quad \mathbf{v}_3 = \left[\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right], \quad \mathbf{w} = \left[\begin{array}{c} -2 \\ 2 \\ b \end{array} \right]$$

- a) Find all values of b such that $w \in \text{Span}(v_1, v_2, v_3)$.
- b) Is the set $\{v_1, v_2, v_3\}$ linearly independent? Justify your answer.
- Wespan (V1, V2, V3)

$$\begin{bmatrix} 0 & -1 & 1 & -2 \\ 0 & 1 & 2 & 2 \\ 2 & -3 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 2 & 2 \\ 2 & -3 & 0 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 0 & 3 & 0 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \end{bmatrix}$$

===== b=-6 so that the matrix is consistant and has solution that makes WESpanCV, 16,16)

so that there are other soft solutions other that $x_1=x_2=x_3=0$

- {V1, V2, V3} is linearly dependent.

2. (10 points) Consider the following matrix:

$$A = \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

Compute A^{-1} .

$$\begin{bmatrix}
1 & -| & 2 & | & 0 & 0 \\
1 & 0 & | & 0 & | & 0 \\
0 & 2 & -| & 0 & 0 & |
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix}
1 & 0 & | & 0 & | & 0 \\
0 & -| & | & | & | & -| & 0 \\
0 & 2 & -| & 0 & 0 & |
\end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & -1 & 1 \\ 0 & 0 & 1 & 2 & -2 & 1 \end{bmatrix}$$

$$\therefore A^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

3. (10 points) Let A be the same matrix as in Problem 2, and let

$$B = \left[\begin{array}{rrr} 1 & 2 & 3 \\ 4 & 5 & 4 \\ 3 & 2 & 1 \end{array} \right]$$

Find a matrix C such that $A^TC = B$ (where A^T is the transpose of A).

$$A^{2} \begin{bmatrix} 1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} -1 & 0 & 2 \\ -1 & 0 & -1 \end{bmatrix}$$

$$B^{2} \begin{bmatrix} 4 & 2 & 3 \\ 3 & 2 & 4 \end{bmatrix}$$

$$A^{T} = \begin{bmatrix} -1 & 0 & 2 \\ 2 & 1 & -1 \end{bmatrix}$$

$$A^{T}C = B$$

$$\Re t \quad C = \begin{bmatrix} C_{1} & C_{2} & C_{3} \\ C_{3} & C_{5} & C_{6} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 2 & 1 \\ -1 & 0 & 2 & 1 \\ 2 & 1 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 2 \\ -1 & 2 & 1 & -1 & 2 \\ 2 & 1 & -1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 2 \\ -1 & 2 & 1 & -1 & 2 \\ 0 & -1 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 7 & 2 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & -1 & -1 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 7 & 2 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 7 & 2 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 1 & 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 7 & 2 \\ 0 & 1 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 7 & 2 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 7 & 2 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 7 & 2 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 7 & 2 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 2 & 7 & 3 \\ 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2$$

4. (20 points) Let $T: \mathbb{R}^2 \to \mathbb{R}^3$ be a linear transformation given by

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} x_1 - 2x_2 \\ x_1 + x_2 \\ x_1 - 3x_2 \end{bmatrix}$$

- a) Find the standard matrix of T.
- b) Find all vectors u satisfying $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$.
- 0) the standard matrix of T

b)
$$T(u) = \begin{bmatrix} 1 & 1 \\ -2 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -2 \\ 1 & 1 \\ 1 & -3 \end{bmatrix} \mathcal{U} = \begin{bmatrix} 1 \\ 10 \\ -2 \end{bmatrix}$$

5. (20 points) For each matrix A given below determine if the matrix transformation $T_A \colon \mathbb{R}^3 \to \mathbb{R}^3$ given by $T_A(\mathbf{v}) = A\mathbf{v}$ is one-to one or not. If T_A is not one-to-one, find two vectors \mathbf{v}_1 and \mathbf{v}_2 such that $T_A(\mathbf{v}_1) = T_A(\mathbf{v}_2)$.

a)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 1 & 2 \end{bmatrix}$

The is not one-to-one.

 $A(V_1) = A(V_2)$
 $A(V_1) = A(V_2)$

There is no two vectors V_1 and V_2

Such that $A(V_1) = A(V_2)$.

b)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$$
 $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 4 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 0 & 2 & 4 \\ 0 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 4 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 2 & 2 \end{bmatrix}$
 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 &$

- 6. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If u, v, w are vectors in \mathbb{R}^3 such that $w + u \in \text{Span}(u, v)$ then $w \in \text{Span}(u, v)$.

True W+U & Span (U,V) then W & Span Nul(U,V)

b) If u, v, w are vectors in \mathbb{R}^3 such that the set $\{u,v,w\}$ is linearly independent then the set $\{u,v\}$ must be linearly independent.

Swassume V = [a], V = [b], V = [b].

White $\{U, V\}$ is linearly independent.

True.

If $\{U, V, w\}$ is linearly independent.

Then $\{U, V, w\}$ is linearly independent.

Then $\{U, V, w\}$ is linearly independent.

Then $\{U, V, w\}$ is linearly independent. $\{U, V, w\}$ is linearly independent.

- 7. (10 points) For each of the statements given below decide if it is true or false. If it is true explain why. If it is false give a counterexample.
- a) If A is a 2×2 matrix and u, v are vectors in \mathbb{R}^2 such that Au, Av are linearly dependent then u, v also must be linearly dependent.

b) If $T: \mathbb{R}^2 \to \mathbb{R}^2$ is a linear transformation and $u, v, w \in \mathbb{R}^2$ are vectors such that u is in Span(v, w) then T(u) must be in Span(T(v), T(w)).

True.

$$UG Span (V_1 W) \qquad U=C_1 V+C_2 W$$
 $T(u) = A N$
 $T(v) = A V$
 $T(W)=A W$
 $A U=C_1 A V+C_2 A W$.