5 Trigonometry and Euclid

5.1 Representative triangles

In calc we turn from degree measure to radian measure... as we learned from deriving π , there are 6.28 radius lengths in a circle and so we have the formula:

$$s = 2\pi r \tag{41}$$

So $\frac{2\pi}{2}$ is a half revolution, or 180 degrees. It's also useful to know that $\frac{\pi}{6}=30^{\circ}$, $\frac{\pi}{4}=45^{\circ}$, $\frac{\pi}{2}=90^{\circ}$. We can convert from degrees to radians easily by observing:

$$360^{\circ} = 2\pi \,\mathrm{rad} \tag{42}$$

 $\frac{\pi}{180^{\circ}}$ is the conversion you most often want to multiply by.

The trig functions and functions for their reciprocals are:

$$\begin{array}{ll} \sin(\theta) = \frac{opposite}{hypotenuse} & \csc(\theta) = \frac{h}{o} \\ \sin(\theta) = \frac{adjacent}{hypotenuse} & \sec(\theta) = \frac{h}{a} \\ \sin(\theta) = \frac{opposite}{adjacent} & \cot(\theta) = \frac{a}{o} \end{array}$$

Exercise 114. Find the sides and all six trig ratios for the representative triangles 45-45-90 and 30-60-90 in each quadrant, i.e. when $\theta = \frac{3\pi}{4}$, $\theta = \frac{5\pi}{6}$, etc. (See the last page of this section for all the trig ratios... all you'll have to do is figure out how the signs change.)

Exercise 115. Compute $\sin(\theta)$ for three θ you choose... then compute $\cos(\theta - 90^{\circ})$ for the same three θ values. What is their relationship? Why?

Exercise 116. Find $\sin(30^{\circ})$.

Exercise 117. $Find \sin(45^{\circ})$.

Exercise 118. $Find \cos(270^{\circ})$.

Exercise 119. $Find \tan(13^{\circ})$.

Exercise 120. $Find \sin(180^\circ)$.

Exercise 121. $Find \sin(330^\circ)$.

Exercise 122. $Find \cos(30^{\circ})$.

Exercise 123. $Find \cos(\pi)$.

Exercise 124. Find $\sin(\frac{\pi}{6})$.

Exercise 125. Find $\cos(\frac{\pi}{2})$.

Exercise 126. Find $\tan(\frac{5\pi}{6})$.

Exercise 127. Find $\cos(\frac{\pi}{3})$.

There are functions that invert the regular trig functions. Instead of taking in an angle and returning a ratio of sides, they take in a ratio of sides and return an angle:

$$\arcsin(\frac{opposite}{hypotenuse}) = \theta
\arccos(\frac{adjacent}{hypotenuse}) = \theta
\arctan(\frac{opposite}{adjacent}) = \theta$$

Exercise 128. $Find \arccos(\frac{1}{2})$

Exercise 129. $Find \arccos(\frac{2\sqrt{2}}{2})$

Exercise 130. $Find \arcsin(\frac{\sqrt{3}}{2})$

Exercise 131. $Find \arctan(1)$

Exercise 132. $Find \arcsin(-1)$

5.2 Plots of trig functions

The plot of y = sin(x) is:

The plot of y = cos(x) is:

Exercise 133. What is the plot of y = tan(x)? (Hint: use simple 'choose x, find y' but choose points strategically. You can use a calculator to evaluate the trig functions but don't use a graphing calculator.)

Exercise 134. I've given the plot of y = csc(x) below. Based on what we know about these two functions, without doing any computation, what is the plot of y = sec(x)?

Now your turn!

5.3 Dilation and shifting of the trig functions!

Exercise 135. What is the plot of $y = \sin(\frac{x}{3})$?

Exercise 136. What is the plot of y = 3sin(x)?

Exercise 137. What is the plot of y = sin(x) + 2?

Here are the values for several common trig functions as a reference:

