DEPARTMENT OF MATHEMATICS

MULTIPLE CHOICE QUESTIONS

Subject Code: MA1003

Subject Name: TRANSFORMS AND BOUNDARY VALUE PROBLEMS

UNIT - I PARTIAL DIFFERENTIAL EQUATIONS

7. The order and degree of a PDE
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
 is
a) 2,1 (b) 1,2 c) 2,2 d) 1,1

Ans (a)

2. The order degree of a PDE $\left(\frac{\partial z}{\partial x}\right)^3 + \frac{\partial^2 z}{\partial y^2} = \cos(x + y)$ is a) 1,2 b) 2,1 c) 1,3 d) 3,1

Ans (b)

3. While forming the PDE, if the number of arbitrary constants to be eliminated is equal to the number of independent variables, the resulting PDE will be of a) 1st b) 2nd c) 3rd d) >1 Ans (a)

4. The complete integral of F(p,q) = 0 is

b) px + qy + c c) Z = ax + by + c d) none

Ans (c)

5. The complete integral of $\sqrt{p} + \sqrt{q} = 1$ is

a) $z = ax + (1 - \sqrt{a})^2 y + c$ b) $z = px + (1 - \sqrt{a})^2 y + c$

c) 0

d) None

Ans (a)

6. The complete integral of $z = px + qy + p^2q^2$ is a) $z = ax + by + a^2b^2$ b) z = px + qy c) z = ax + by d) none

Ans (a)

The solution of $(D^2 - 3DD' + 2D^{-2})Z = 0$ is a) $z = \varphi_1(y + x) + \varphi_2(y + 2x)$ b) $z = Ae^x + Be^{2x}$

c) $z = \varphi_1(y + 2x) + \varphi_2(y - x)$ d) None.

Ans (a)

& The solution of r - 4s + t = 0 is

a) $z = (A + Bx)e^{2x}$

b) $z = \varphi_1(y + 2x) + x\varphi_2(y + 2x)$

c) $z = \varphi_1(y + x) + \varphi_2(y + 2x)$

d) none.

Ans (b)

9. The P.I of $(D^2 - 2DD' + D^2)Z = 8e^{x+2y}$ is

a) e^{x+2y} b) $8e^{x+2y}$ c) 8 d) 0

Ans (b)

10. The P.1 of $(D^2 - 3DD' + 2D^2)Z = 2\cosh(3x + 4y)$ is

a) $\frac{2}{5} \cosh(3x + 4y)$ b) $-\frac{2}{5} \cosh(3x + 4y)$ c) $\frac{3}{5} \cosh(3x + 4y)$ d) none

Ans (a)

```
11. The P.I of \frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = \cos(3x + 2y) is
     a) \frac{1}{9}\cos(3x+2y) b) -\frac{1}{9}\cos(3x+2y) c) 0 d) none.
                                                                                                   Ans (a)
12. The P.I of (D^3 - 2D^2D)z = 4\sin(x + y) is
                           b) -4\cos(x+y) c) 4\cos(x+y) d) 0
                                                                                                   Ans (b)
     a) 4\sin(x+y)
 13. The P.I of (D^2 + 4DD^2)z = e^x is
                 b) e^{-x} c) e^{2x} d) 0
     a) ex
                                                                                                  Ans (a)
14. The complementary function of (D^2 + 2DD' + D'^2)Z = xy is
     a) \varphi_1(y-x) + x\varphi_2(y-x) b) (A+Bx)e^{-x}
     c) \varphi_1(y-2x) + x\varphi_2(y-x)
                                             d) none
                                                                                                  Ans (a)
15. The P.I of (D^2 - 3DD' + 2D'^2)Z = \sin(x - 2y) is
      a) -\frac{1}{15}\sin(x-2y) b) \frac{1}{15}\sin(x-2y) c) 0 d) none
                                                                                                Ans (a)
 16. The solution of (D^3 - 3D^2D' + 2DD'^2)z = 0 is
       a) z = f_1(y) + f_2(y+x) + f_3(y+2x) b) z = f_1(y) + f_2(y-x) + f_3(y+2x)
       c) z = f_1(y) + f_2(y+x) + f_3(y-2x) d) none
                                                                                                  Ans (a)
 17. The solution of (D^3 + DD'^2 - D^2D' - D'^3)z = 0 is
       a) z = \varphi(y+x) + f(y+ix) + F(y-ix) b) z = f_1(y+ix) + f_2(y-ix) + f_3(y)
       c) z = \varphi(y-x) + f(y+ix) + F(y+ix) d) none
                                                                                                  Ans (a)
 18. The P.I of \frac{\partial^3 z}{\partial z^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = e^{x+2y} is
     a) \frac{1}{3}e^{x+2y} b) -\frac{1}{3}e^{x+2y} c) -e^{x+2y} d) none
                                                                                                  Ans (b)
  19. The P.I of (D^2 - 2DD')z = e^{2x} is
                 b) \frac{1}{4}e^{-2x} c) \frac{1}{4}e^{2x} d) 0
     a) e^{2x}
                                                                                                   Ans (c)
 20. The P.I of (D^2 - 2DD' + D^2)z = \cos(x - 3y) is
     a) -\frac{1}{16}\cos(x-3y) b) \frac{1}{16}\cos(x-3y) c) \cos(x-3y) d) 0
                                                                                                   Ans (a)
 21. If B^2 - 4AC < 0, then linear PDE is called
```

b) parabolic c) hyperbolic d) none

a) Elliptic

Ans (a)

22. If $B^2 = 4AC = 0$, then V	
22. If $B^2 - 4AC = 0$, then linear PDE is called a) Elliptic b) parabolic c) hyperbolic d)	
OI DATE A D.	
then linear PDR to 1	Ans (b)
o) parabolic (c) human is	
24. The PDE $xu_{xx} + u_{yy} = 0$, $x > 0$ is	Ans (c)
") Elliptic b) parabolic ->	
25. The PDE $xu_{xx} + u_{yy} = 0$, $x < 0$ is	Ans (a)
c) hyperbolic (d) none	Ans (c)
26. The Laplace equation in two dimensions $u_{xx} + u_{yy} = 0$ is classified as	
a) Elliptic type b) parabolic type c) hyperbolic type d) none	Ans (a)
27. The one dimensional heat equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ is classified as	i de la proposición de la compansión de la Compansión de la compansión
a) Elliptic type b) parabolic type c) hyperbolic type d) none	Ans (b)
28. The one dimensional wave equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{a^2} \frac{\partial^2 u}{\partial t^2}$ is classified as	
a) Elliptic type b) parabolic type c) hyperbolic type d) none	Ans (c)
29. Which one of the following is classified as Elliptic?	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
a) Poisson's equation b) 1-D heat equation c) 1-D Wave equation d) none	Ans (a)
30. The equation $u_{xx} + 2u_{xy} + u_{yy} = 0$ is parabolic	
a) At all points b) only at $x > 0$ c) only at $x < 0$ d) none	Ans (a)
31. The equation $x^2 f_{xx} + (1 - y^2) f_{yy} = 0$, $x \ne 0, -1 < y < 1$ is	
a) Elliptic type b) parabolic type c) hyperbolic type d) none	Ans (a)
UNIT - 11 FOURIER SERIES	,
1. Which of the following function is periodic in the interval $(0, \pi)$?	
a) $\sin x$ b) $\cos x$ c) $\tan x$ d) $\sec x$	Ans (c)
2. Which of the following function is periodic with period 2π ?	
a) sin x b) tan x c) cot x d) None	
3. The function $f(x) = \cot x$ is periodic with period	Ans (a)
a) 2π b) 4π c) π d) None	Ans (c)
	(6)
4. The smallest period of the following function is	4 , 4
a) $\sin x$ b) $\sin 2x$ c) $\cos 2x$ d) $\tan x$	Ans (a)

O

5. The Fourier series expansion of an odd function containsonly a) Sine terms b) cosine terms c) sine and cosine d) None		
of come terms by cosmic terms by sine and cosmic dy fronc	Ans (b)	The same of
6. The Fourier series expansion of an even function containsonlya) Sine terms b) cosine terms c) sine and cosine d) None	Ans (a)	· (
7. If $f(x)$ is an odd function in $(-\pi, \pi)$, then the value of a_0 is		
a) 1 b) 0 c) -1 d) None	Ans (b)	
8. If $f(x)$ is an even function in $(-\pi, \pi)$, then the value of b_n is		
a) 1 b) 0 c) -1 d) None		
9. If $f(x) = x \sin x$ in $(-\pi, \pi)$ then the value of b_n is	Ans (b)	
a) 1 b) 0 c) -1 d)None	Ans (b)	7
10. If $f(x) = x $ in $(-\pi, \pi)$ then the value for a_0 is		
a) π b) 2π c) $\frac{\pi^2}{3}$ d) $\frac{2\pi^2}{3}$		
(a) π (b) 2π (c) $\frac{\pi}{3}$ (d) $\frac{2\pi}{3}$	Ans (c)	(
11. If $f(x) = x^2$ in $(-\pi, \pi)$ then the value for b_a is		
a) 1 b) 0 c)-1 d)None	Ans (b)	
12. In the Fourier series expansion of $f(x) = \sin x $ in $(-\pi, \pi)$. What is the value of	7.0	
a) 1 b) 0 c) π d) None	*	
	Ans (b)	
13. The function $f(x) = x \cos x$ in $(-\pi, \pi)$ is Function		
a) Odd b) even c) neither even nor odd d) None	Ans (b)	
14. The function $f(x) = x^2 \sin x$ in $(-\pi, \pi)$ is Function		
b) Odd b) even c) neither even nor odd d) None	Ans (a)	
	Ans (a)	0
15. The constant term of the function $f(x) = x - x^3$ in $(-\pi, \pi)$ is	· · · · · · · · · · · · · · · · · · ·	C
a) 0 b) π c)-1 d) 1	Ans (a)	
6. If the expension of ((-)	(a)	
6. If the expansion of $f(x) = \sinh x$ in $(-\pi, \pi)$, then a_n is		
	Ans (a)	
7. The Root mean square value of a function $y = f(x)$ over a given interval (a,b) is .		
$\begin{bmatrix} b \\ u^2 dv \end{bmatrix}$		
a) $\overline{y} = \sqrt{\frac{\int_a^b y^2 dx}{b-a}}$ b) $\overline{y} = \sqrt{\frac{\int_a^b y dx}{a-b}}$ c) $\overline{y}^2 = \sqrt{\frac{\int_a^b y^2 dy}{b-a}}$ d) None		
$\sqrt{b-a}$ $\sqrt{a-b}$ $\sqrt{b-a}$ d) None	Ans (a)	

	a) 0.0 b) 1.1 c) 1.0 d)0.1	Ans (b)
	19. The right and left hand limit for the function $f(x) = \frac{1}{1-x}$ in the interval (0,1) is a) 0,0 b) 1,1 e) 1,0 d)0,1	Ans (c)
d	20. If $x = a$ is a point of discontinuity of $f(x)$, then the value of the Fourier series at $x = a$	≈ a is
	a) $\frac{1}{2}[f(a+)+f(a-)]$ b) $\frac{1}{2}[f(a+)-f(a-)]$ c) $[f(a+)+f(a-)]$ d) $2[f(a+)+f(a-)]$	
	21. If $f(x)$ has equally q spaced points then b_n is	Ans (a)
Zi, i	a) $2(\text{mean value of } f(x)\sin nx)$ b) $(\text{mean value of } f(x)\sin nx)$ c) q $(\text{mean value of } f(x)\sin nx)$ d) $\frac{2}{q}$ $(\text{mean value of } f(x)\sin nx)$	Ans (a)
)	 22. The process of finding the Fourier series for the function given by the numerical valknown as a) Complex Analysis b) Numerical Methods c)Harmonic Analysis d) None 	ues is Ans (c)
	UNIT – III ONE DIMENSIONAL WAVE AND HEAT EQUATION	
	 A boundary value problem is a differential equation together with a) Unknown variable b) known variable boundary condition d) none 	Ans (c)
	 2. The boundary conditions are the set of additional restraints along with a) Partial differential equation b) differential equation c) Any equation d) none 	Ans (b)
	3. The wave equation is a a) Hyperbolic b) elliptic e) parabolic d) none	Ans (a)
)	 4. The heat equation is a) Hyperbolic b) elliptic c) parabolic d) none 	Ans (c)
	5. The Laplace's equation is a) Hyperbolic b) elliptic c) parabolic d) none	Ans (b)
	6. The heat equation $u_i = k\nabla^2 u$ where u refers a) Temperature b) wave c) time d) none	Ans (a)
\$0.	7. In the wave equation $u_n - c^2 \nabla^2 u = 0$, u is the a) Temperature b)displacement from rest e)lnitial temperature d)none	Ans (b)
	8. In the Laplace's equation $\nabla^2 u = 0$, u is the a) Temperature b)displacement c) steady state temperature d) none	Ans (c)

transverse vibration	i is
The suitable solution of a finite string with fixed ends executing transverse vibration is $y(x,t) = (A\cos\lambda x + B\sin\lambda x)$ b) $y(x,t) = (A\cos\lambda x + B\sin\lambda x)$	
a) $y(x,t) = (A\cos \lambda x + B\sin \lambda x)(C\cos \lambda x + B\sin \lambda x)$	Ans (a)
c) $y(x,t) = (C\cos \lambda ct + D\sin \lambda ct)$	
10. The solution of wave equation is if the string is at rest	
a) $u(x,t) = \phi(x+ct) + \phi(x-ct)$ b) $u(x,t) = \frac{1}{2} [\phi(x+ct) + \phi(x-ct)]$	(1)
c) $u(x,t) = \phi(x+ct)$ d) none	Ans (b)
11. One of the initial conditions on vibrating strings due to initial displacement is a) $y(x,0) = f(x) \neq 0$ b) $y(x,t) = 0$ c) $y(x,0) = f(x) = 0$ d) none	Ans (b)
12. One of the initial conditions on vibrating strings due to initial displacement is	
a) $y(x,0) = 0$ b) $\frac{\partial y(x,0)}{\partial t} = 0$ c) $\frac{\partial y(x,0)}{\partial t} \neq 0$ d) none	Ans (b)
13. One of the initial conditions on vibrating strings due to initial velocity is	
a) $y(x,0) = 0$, $\frac{\partial y(x,0)}{\partial t} = f(x)$ b) $y(x,0) = f(x)$, $\frac{\partial y(x,0)}{\partial t} = 0$ c) $y(x,t) = 0$ d) none	Ans (b)
14. The one dimensional heat equation describes the flow of heat in a body of a) String b) homogeneous material c) wave d) none	Ans (b)
15. In the heat equation $u_i = c^2 u_{xx}$ where c^2 refers	
a) Thermal constant b) thermal conductivity c) thermal diffusivity d) none	Ans (c)
16. In $C^2 = \frac{K}{\sigma \rho}$, ρ represents	
a) Density of material b) specific heat capacity b) constant d) none	Ans (a)
17. In $C^2 = \frac{K}{r}$, σ represents	` ; -
a) Density b) specific heat capacity c) constant d) none	Ans (b)
18. The suitable solution of heat equation is	`.`
a) $u(x,t) = e^{-c^2 \lambda^2 t} (A\cos \lambda x + B\sin \lambda x)$ b) $u(x,t) = e^{c^2 \lambda^2 t} (A\cos \lambda x + B\sin \lambda x)$	
c) $u(x,t) = (A\cos \lambda x + B\sin \lambda x)$ d) none	Ans (a)
19. The initial condition on zero boundary condition is	
a) $u(x,0) = 0$ b) $u(x,t) = t$ c) $u(x,0) = f(x)$ d) none	Ans (c)
20. In steady state	
a) $\frac{\partial u}{\partial x} = 0$ b) $\frac{\partial u}{\partial t} = 0$ c) $\frac{\partial^2 u}{\partial t^2} = 0$ d) none	Ans (b)

UNIT-IV FOURIER TRANSFORMS

- 1. Fourier transform pair is represented by
 - (a) $F(s) \& F^{-1}[F(s)]$ (c) $f(x) \& F^{-1}[f(x)]$

(b) F(s) & F[F(s)](d) none

- Ans (a)
- 2. If F(s) is the Fourier transform of f(x) then F[f(x) cos ax] in terms of 'F' is
 - (a) F(s+a)+F(s-a)

- (b) $\frac{1}{2}$ [F(s+a)+F(s-a)]
- (b) (c) $\frac{1}{2}$ [F(s+a)-F(s-a)]
- (d) F(s+a)-F(s-a)

- Ans (b)
- 3. If F(s) is the Fourier transform of f(x) then Fourier transform of f(x-a) is

(a) $e^{iax} f(x)$ (b) $e^{ias} f(s)$ (c) $e^{-\frac{x}{2}}$ (d) $\frac{1}{a} f(\frac{x}{a})$

Ans (b)

4. If F(s) = F[f(x)] then $F[e^{iax} f(x)] =$

(a) $e^{iax} f(x)$ (b) $e^{ias} f(s)$ (c) F(s+a) (d) $\frac{1}{a} f(\frac{1}{a})$

Ans (c)

5. Parseval's identity for Fourier transform is

(a)
$$\int_{a}^{b} |F(s)|^{2} ds = \int_{a}^{b} |f(x)|^{2} ds$$

(a)
$$\int_{0}^{1} |F(s)|^{2} ds = \int_{0}^{1} |f(x)|^{2} dx$$
 (b) $\int_{0}^{1} (F(s))^{2} ds = \int_{0}^{1} (f(x))^{2} dx$ (c) $\int_{0}^{1} |F(s)|^{2} ds = \int_{0}^{1} (f(x))^{2} dx$ (d) $\int_{0}^{1} (F(s))^{2} ds = \int_{0}^{1} (f(x))^{2} dx$

$$\vec{J}(F(s))^2 ds = \vec{J}(f(x))^2 ds$$

Ans (c)

6. The self reciprocal for $F[e^{-x^2/2}]$ is given by

(a) $e^{-\frac{1}{2}}$ (b) $e^{\frac{1}{2}}$ (c) $e^{\frac{1}{2}}$ (d) none

Ans (a)

7. Find the Fourier cosine transform of e-x

(a)
$$\sqrt{\frac{2}{\pi}} (\frac{s}{1+s^2})$$
 (b) $\sqrt{\frac{2}{\pi}} (\frac{1}{1+s^2})$

(c)
$$\sqrt{\frac{2}{\pi}} (\frac{a}{a+s^2})$$
 (d) $\sqrt{\frac{2}{\pi}} (\frac{a}{1+s^2})$

(d)
$$\sqrt{\frac{2}{\pi}} (\frac{a}{1+s^2})$$

Ans (b)

- 7. If F[f(x)] = F(s) then $F[f(x) \cos ax] = \frac{1}{2} [F(s+a) + F(s-a)]$ is called
 - (a) Change of scale property
- (b) shifting property
- (c) Modulation property
- (d) none

Ans (c)

- 8. Fourier Transform is also known as
 - (a) Inverse Fourier transforms
- (b) Finite Fourier transforms
- (c) Complex Fourier transforms
- (d) Infinite Fourier transforms

Ans (c & d)

9. Find the Fourier sine transform of $\frac{1}{x}$ =	
(a) $\sqrt{\frac{\pi}{2}}$ (b) $\frac{\pi}{2}$ (c) $\sqrt{\frac{\pi}{3}}$ (d) none	Ans (a)
11. If $F(s) = F[f(x)]$ then $F[x^n f(x)]$ is	
(a) $(-i)^n \frac{d^n}{ds^n} F(s)$ (b) $(i)^n \frac{d^n}{ds^n} F(s)$ (c) $(i)^n \frac{d}{ds} F(s)$ (d) $(-i)^n \frac{d^n}{ds^n} F(s)$	Ans (a)
12. The Convolution theorem for Fourier Transform is $f * g = \dots$	
(a) $\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(t)g(x-t)dt$ (b) $\frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} f(t)g(t)dt$	1
(c) $\frac{1}{2\pi} \int_{-\infty}^{\infty} f(t)g(x-t)dt$ (d) $\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(t)g(x-t)dt$	Ans (d)
13. Fourier Transform must satisfy	Ans (d)
14. The Inverse Fourier sine transform $f(x) = \dots$	
(a) $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{s}(s) \sin x dx$ (b) $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_{s}(s) \sin sx ds$	
(c) $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F(s) \sin sx ds$. (d) $\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F_{s}(s) \sin x ds$	Ans (b)
15. The inverse Fourier cosine transforms f(x) =	
10.7 m worse Fourier cosmic transforms $I(x) =$	
(a) $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_c(s) \cos x dx$ (b) $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F(s) \cos sx ds$	
(c) $\sqrt{\frac{2}{\pi}} \int_{0}^{\infty} F_c(s) \cos sx ds$ (d) $\sqrt{\frac{2}{\pi}} \int_{-\infty}^{\infty} F_c(s) \cos sx ds$	Ans (c)
UNIT - V Z - TRANSFORMS	
1. Z[a ⁿ u(n)] exists only if	
(a) $ z < a $ (b) $ z \le a $ (c) $ z = a $ (d) $ z > a $	Ang (d)
2. $u(n) - u(n-1)$ is	Ans (d)
(a) $\delta(n)$ (b) $f(n)$ (c) $k(n)$ (d) $\delta(k)$	
3. Z transform of eat is	Ans (a)

(a) $z/z-e^a$ (b) $z/z-e^{-a}$ (c) $z/z-e2^a$ (d) $z/z-e^{-a}$

Ans(a)

(a)
$$\frac{z}{z+a}$$
 (b) $\frac{z}{z-a}$ (c) $\frac{z}{z\pm a}$ (d) $\frac{2z}{z+a}$

5. By shifting theorem if Z[f(t)] = F(z), then $Z[e^{-at} f(t)]$ is

(a)
$$F[ze^{aT}]$$
 (b)) $F[ze^{at}]$ (c)) $F[ze^{bT}]$ (d) $F[ze^{aT}]$

6. Two sided Z transform is defined as

(a)
$$\sum_{n \to -\infty}^{\infty} x(n+1)z^{-n}$$
 (b) $\sum_{n \to \infty}^{\infty} x(n)z^{-n}$ (c) $\sum_{n \to -\infty}^{\infty} x(n)z^{n}$ (d) $\sum_{n \to -\infty}^{\infty} x(n)z^{-n}$ Ans (d)

7. One side Z transform is defined as

(a)
$$\sum_{n=0}^{\infty} x(n+1)z^{-n}$$
 (b) $\sum_{n=0}^{\infty} x(n)z^{-n}$ (c) $\sum_{n=0}^{\infty} x(n)z^{n}$ (d) $\sum_{n=-\infty}^{\infty} x(n)z^{-n}$ Ans (b)

8. The series of one sided Z transform is

(a) divergent (b) convergent (c) obsolutely convergent (d) continues

Ans (b)

9. Radius of convergence of $\sum_{n=0}^{\infty} x(n)z^{-n}$ is

(a)
$$Lt \mid \frac{x(n+1)}{x(n)} \mid$$
 (b) $x(n+1)$ (c) $x(n)$ (d) $limit n \rightarrow 0$

10. Z-transform plays an important role in analysis of

(a) Continous time signals (b) discrete time signals (c) invariant time signals

11. By intial value theorem
$$Z[f(t)] = F(z)$$
 then $f(0)$ is

(a) $f(0) = \underset{z \to \infty}{Lt} F(z)$ (b) $f(0) = \underset{z \to \infty}{Lt} Z(z)$ (c) 1 (d) 0

Ans (a)

12. By final value theorem Z[f(t)] = F(z) then $L_{tot} f(t)$ is

(a)
$$F(z)$$
 (b) $(z-1)$ (c) $Lt(z-1)F(z)$ (d) $f(0)$

13. Convolution theorem states that if w(n) is the convolution of two sequences x(n) and y(n)

then Z[w(n)] is

(a)
$$Z[x(n)]$$
 (b) $Z[y(n)]$ (c) $W(z)$ (d) $Z[x(n)]$ $Z[y(n)]$ Ans (d)

14. Find Z{(-1)ⁿ}

(a)
$$z/z-1$$
 if $z < 1$ (b)) z if $z > 1$ (c)) $z/z+1$ if $z > 1$ (d)) $z/z+1$ if $z < 1$ Ans (c)

15. Inverse Z transform of $\frac{z}{z-a}$ is

(a)
$$a^n$$
 (b) b^n (c) a^m (d) a^{-n} Ans (a)

16. Inverse Z transform of $\frac{az}{(z-a)^2}$ is

(Ans (b)

17.Inverse Z transform of z is

(a)
$$\delta(k)$$
 (b) $\delta(n)$ (c) $\delta(n-k)$ (d) $\delta(n+k)$

Ans (c)

18. Inverse Z transform of $\frac{1}{z-a}$ is

(a) a^{n-1} (b) a^{n+1} (c) a^n (d)

Ans (a)

19. Solve: $y_{n+1} - 2y_n = 1$ given $y_0 = 0$.

(d)
$$2n+1$$

Ans (b)

20. Solve: y_{n+1} -3 y_n =1 given y_0 = 1.

Ans (c)