Année : 2024/2025	DS 1——S1	2bac scmath
M.ouikrim	fkih ben salh	lafontaine

exercice 1

soit la fonction \boldsymbol{f} definie par :

$$\begin{cases} f(x) = \frac{x^3}{(1+x^2)\arctan(x)} \\ f(0) = 0 \end{cases}$$

on admet que la fonction f est strictement croissante sur \mathbb{R}^+

- 1. montrer que f est continue sur \mathbb{R}^+
- 2. soit la suite $(U_n)_{n\in\mathbb{N}}$ definie par :

$$egin{cases} U_0 = 1 \ U_{n+1} = f(U_n), n \in \mathbb{N} \end{cases}$$

a - montrer que $\forall n \in \mathbb{N}: 0 \leq U_n \leq 1$

b - montrer que $(U_n)_{n\in\mathbb{N}}$ est convergente

c - determiner $\lim_{n \to +\infty} U_n$

exercice 2

soit la fonction f_n definie par $f_n(x) = x^3 + nx - n$

- 1. montrer que $\forall n \in \mathbb{N}^* \exists ! \alpha_n \in]0,1[\ f_n(\alpha_n)=0$
- 2. montrer que (α_n) est croissante
- 3. montrer que $\alpha_n \succeq 1 \frac{1}{n}$
- 4. deduire $\lim_{n\to+\infty} \alpha_n$

