Desafio do Bootcamp de Otimização ENACOM 2022

Fabricio Schiavon Kolberg

Agosto 2022

Educação:

 Bacharel em Ciência da Computação na Universidade Federal do Paraná (2008-2013).

Educação:

- Bacharel em Ciência da Computação na Universidade Federal do Paraná (2008-2013).
- Mestrado em Informática na Universidade Federal do Paraná (2014-2016).

Educação:

- Bacharel em Ciência da Computação na Universidade Federal do Paraná (2008-2013).
- Mestrado em Informática na Universidade Federal do Paraná (2014-2016).
- Doutor em Ciência da Computação na Universidade Federal do Paraná (2016-2021).

Educação:

- Bacharel em Ciência da Computação na Universidade Federal do Paraná (2008-2013).
- Mestrado em Informática na Universidade Federal do Paraná (2014-2016).
- Doutor em Ciência da Computação na Universidade Federal do Paraná (2016-2021).

Experiência acadêmica:

Teoria da computação.

Educação:

- Bacharel em Ciência da Computação na Universidade Federal do Paraná (2008-2013).
- Mestrado em Informática na Universidade Federal do Paraná (2014-2016).
- Doutor em Ciência da Computação na Universidade Federal do Paraná (2016-2021).

Experiência acadêmica:

- Teoria da computação.
- Teoria dos grafos.

Educação:

- Bacharel em Ciência da Computação na Universidade Federal do Paraná (2008-2013).
- Mestrado em Informática na Universidade Federal do Paraná (2014-2016).
- Doutor em Ciência da Computação na Universidade Federal do Paraná (2016-2021).

Experiência acadêmica:

- Teoria da computação.
- Teoria dos grafos.
- Métodos formais.

Educação:

- Bacharel em Ciência da Computação na Universidade Federal do Paraná (2008-2013).
- Mestrado em Informática na Universidade Federal do Paraná (2014-2016).
- Doutor em Ciência da Computação na Universidade Federal do Paraná (2016-2021).

Experiência acadêmica:

- Teoria da computação.
- Teoria dos grafos.
- Métodos formais.

Experiência profissional:

• Estágio: LABMET-UFPR (number crunching com Fortran, análise de dados atmosféricos) (2013-2014).

Lista de potenciais investimentos:

Lista de potenciais investimentos:

Opção	Descrição	Custo (R\$)	Retorno (R\$)
1	Ampliação da capacidade do armazém ZDP em 5%	470.000	410.000
2	Ampliação da capacidade do armazém MGL em 7%	400.000	330.000
3	Compra de empilhadeira	170.000	140.000
4	Projeto de P&D I	270.000	250.000
5	Projeto de P&D II	340.000	320.000
6	Aquisição de novos equipamentos	230.000	320.000
7	Capacitação de funcionários	50.000	90.000
8	Ampliação da estrutura de carga rodoviária	440.000	190.000

Lista de potenciais investimentos:

Opção	Descrição	Custo (R\$)	Retorno (R\$)
1	Ampliação da capacidade do armazém ZDP em 5%	470.000	410.000
2	Ampliação da capacidade do armazém MGL em 7%	400.000	330.000
3	Compra de empilhadeira	170.000	140.000
4	Projeto de P&D I	270.000	250.000
5	Projeto de P&D II	340.000	320.000
6	Aquisição de novos equipamentos	230.000	320.000
7	Capacitação de funcionários	50.000	90.000
8	Ampliação da estrutura de carga rodoviária	440.000	190.000

Orçamento de R\$ 1.000.000.

Lista de potenciais investimentos:

Opção	Descrição	Custo (R\$)	Retorno (R\$)
1	Ampliação da capacidade do armazém ZDP em 5%	470.000	410.000
2	Ampliação da capacidade do armazém MGL em 7%	400.000	330.000
3	Compra de empilhadeira	170.000	140.000
4	Projeto de P&D I	270.000	250.000
5	Projeto de P&D II	340.000	320.000
6	Aquisição de novos equipamentos	230.000	320.000
7	Capacitação de funcionários	50.000	90.000
8	Ampliação da estrutura de carga rodoviária	440.000	190.000

Orçamento de R\$ 1.000.000.

Restrições adicionais:

Lista de potenciais investimentos:

Opção	Descrição	Custo (R\$)	Retorno (R\$)
1	Ampliação da capacidade do armazém ZDP em 5%	470.000	410.000
2	Ampliação da capacidade do armazém MGL em 7%	400.000	330.000
3	Compra de empilhadeira	170.000	140.000
4	Projeto de P&D I	270.000	250.000
5	Projeto de P&D II	340.000	320.000
6	Aquisição de novos equipamentos	230.000	320.000
7	Capacitação de funcionários	50.000	90.000
8	Ampliação da estrutura de carga rodoviária	440.000	190.000

Orçamento de R\$ 1.000.000.

Restrições adicionais:

• Se a opção 1 for selecionada, a opção 5 *não* pode ser.

Lista de potenciais investimentos:

Opção	Descrição	Custo (R\$)	Retorno (R\$)
1	Ampliação da capacidade do armazém ZDP em 5%	470.000	410.000
2	Ampliação da capacidade do armazém MGL em 7%	400.000	330.000
3	Compra de empilhadeira	170.000	140.000
4	Projeto de P&D I	270.000	250.000
5	Projeto de P&D II	340.000	320.000
6	Aquisição de novos equipamentos	230.000	320.000
7	Capacitação de funcionários	50.000	90.000
8	Ampliação da estrutura de carga rodoviária	440.000	190.000

Orçamento de R\$ 1.000.000.

Restrições adicionais:

- Se a opção 1 for selecionada, a opção 5 *não* pode ser.
- Se a opção 2 for selecionada, a opção 4 também deve ser.

Lista de potenciais investimentos:

Opção	Descrição	Custo (R\$)	Retorno (R\$)
1	Ampliação da capacidade do armazém ZDP em 5%	470.000	410.000
2	Ampliação da capacidade do armazém MGL em 7%	400.000	330.000
3	Compra de empilhadeira	170.000	140.000
4	Projeto de P&D I	270.000	250.000
5	Projeto de P&D II	340.000	320.000
6	Aquisição de novos equipamentos	230.000	320.000
7	Capacitação de funcionários	50.000	90.000
8	Ampliação da estrutura de carga rodoviária	440.000	190.000

Orçamento de R\$ 1.000.000.

Restrições adicionais:

- Se a opção 1 for selecionada, a opção 5 *não* pode ser.
- Se a opção 2 for selecionada, a opção 4 também deve ser.

Desafio: maximizar o retorno de investimento sem quebrar o orçamento máximo, e respeitando as restrições adicionais.

Solução do Problema

• Ideia: resolver o problema usando um programa em Python.

Solução do Problema

- Ideia: resolver o problema usando um programa em *Python*.
- A empresa hipotética pode querer a solução de um problema similar com parâmetros diferentes no futuro.

Solução do Problema

- Ideia: resolver o problema usando um programa em *Python*.
- A empresa hipotética pode querer a solução de um problema similar com parâmetros diferentes no futuro.
- Vale a pena, então, generalizar o problema.

Temos os seguintes dados:

• n potenciais investimentos $I_1, I_2, ..., I_n$.

- n potenciais investimentos $I_1, I_2, ..., I_n$.
- Custos $c_1, c_2, ..., c_n$.

- n potenciais investimentos $I_1, I_2, ..., I_n$.
- Custos $c_1, c_2, ..., c_n$.
- Retornos $r_1, r_2, ..., r_n$.

- n potenciais investimentos $l_1, l_2, ..., l_n$.
- Custos $c_1, c_2, ..., c_n$.
- Retornos $r_1, r_2, ..., r_n$.
- Orçamento máximo disponível M.

Temos os seguintes dados:

- n potenciais investimentos $I_1, I_2, ..., I_n$.
- Custos $c_1, c_2, ..., c_n$.
- Retornos $r_1, r_2, ..., r_n$.
- Orçamento máximo disponível M.

Sejam $v_1, v_2, ..., v_n$ as *variáveis de decisão* do problema, onde, para todo $1 \le i \le n$, $v_i = 1$ se o investimento I_i for escolhido, e $v_i = 0$ caso contrário.

Temos os seguintes dados:

- n potenciais investimentos $I_1, I_2, ..., I_n$.
- Custos $c_1, c_2, ..., c_n$.
- Retornos $r_1, r_2, ..., r_n$.
- Orçamento máximo disponível M.

Sejam $v_1, v_2, ..., v_n$ as *variáveis de decisão* do problema, onde, para todo $1 \le i \le n$, $v_i = 1$ se o investimento I_i for escolhido, e $v_i = 0$ caso contrário.

Restrições adicionais:

Temos os seguintes dados:

- n potenciais investimentos $I_1, I_2, ..., I_n$.
- Custos $c_1, c_2, ..., c_n$.
- Retornos $r_1, r_2, ..., r_n$.
- Orçamento máximo disponível M.

Sejam $v_1, v_2, ..., v_n$ as *variáveis de decisão* do problema, onde, para todo $1 \le i \le n$, $v_i = 1$ se o investimento I_i for escolhido, e $v_i = 0$ caso contrário.

Restrições adicionais:

Restrições de conflito Se os investimentos I_a e I_b conflitam, v_a e v_b não podem ambos ser 1.

Temos os seguintes dados:

- n potenciais investimentos $I_1, I_2, ..., I_n$.
- Custos $c_1, c_2, ..., c_n$.
- Retornos $r_1, r_2, ..., r_n$.
- Orçamento máximo disponível M.

Sejam $v_1, v_2, ..., v_n$ as *variáveis de decisão* do problema, onde, para todo $1 \le i \le n$, $v_i = 1$ se o investimento I_i for escolhido, e $v_i = 0$ caso contrário.

Restrições adicionais:

Restrições de conflito Se os investimentos I_a e I_b conflitam, v_a e v_b não podem ambos ser 1.

Restrições de dependência Se o investimento I_a depende de I_b , então v_a só pode ser 1 se v_b também for.

Temos os seguintes dados:

- n potenciais investimentos $I_1, I_2, ..., I_n$.
- Custos $c_1, c_2, ..., c_n$.
- Retornos $r_1, r_2, ..., r_n$.
- Orçamento máximo disponível M.

Sejam $v_1, v_2, ..., v_n$ as *variáveis de decisão* do problema, onde, para todo $1 \le i \le n$, $v_i = 1$ se o investimento I_i for escolhido, e $v_i = 0$ caso contrário.

Restrições adicionais:

Restrições de conflito Se os investimentos I_a e I_b conflitam, v_a e v_b não podem ambos ser 1.

Restrições de dependência Se o investimento I_a depende de I_b , então v_a só pode ser 1 se v_b também for.

Função objetivo:

$$\max \sum_{i=1}^{n} v_i r_i$$

Função objetivo:

$$\max \sum_{i=1}^n v_i r_i$$

Restrição orçamentária:

$$\sum_{i=1}^n v_i c_i \leq M$$

Função objetivo:

$$\max \sum_{i=1}^n v_i r_i$$

Restrição orçamentária:

$$\sum_{i=1}^n v_i c_i \leq M$$

Restrições de conflito, para todo $1 \le a, b \le n$ tal que I_a, I_b conflitam:

$$v_a + v_b \leq 1$$

Função objetivo:

$$\max \sum_{i=1}^n v_i r_i$$

Restrição orçamentária:

$$\sum_{i=1}^n v_i c_i \leq M$$

Restrições de conflito, para todo $1 \le a, b \le n$ tal que I_a, I_b conflitam:

$$v_a + v_b \leq 1$$

Restrições de dependência, para todo $1 \le a, b \le n$ tal que I_a depende de I_b :

$$v_b + (1 - v_a) \ge 1$$

Domínio das variáveis de decisão:

$$\forall 1 \le i \le n, v_i \in \{0, 1\}.$$

Para o problema do desafio:

Para o problema do desafio:

• *n* = 8

- n = 8
- $c_1 = 470000$, $c_2 = 400000$, $c_3 = 170000$, $c_4 = 270000$, $c_5 = 340000$, $c_6 = 230000$, $c_7 = 50000$, $c_8 = 440000$

- n = 8
- $c_1 = 470000$, $c_2 = 400000$, $c_3 = 170000$, $c_4 = 270000$, $c_5 = 340000$, $c_6 = 230000$, $c_7 = 50000$, $c_8 = 440000$
- $r_1 = 410000, r_2 = 330000, r_3 = 140000, r_4 = 250000, r_5 = 320000, r_6 = 320000, r_7 = 90000, r_8 = 190000$

- n = 8
- $c_1 = 470000$, $c_2 = 400000$, $c_3 = 170000$, $c_4 = 270000$, $c_5 = 340000$, $c_6 = 230000$, $c_7 = 50000$, $c_8 = 440000$
- $r_1 = 410000, r_2 = 330000, r_3 = 140000, r_4 = 250000, r_5 = 320000, r_6 = 320000, r_7 = 90000, r_8 = 190000$
- M = 1000000

- n = 8
- $c_1 = 470000$, $c_2 = 400000$, $c_3 = 170000$, $c_4 = 270000$, $c_5 = 340000$, $c_6 = 230000$, $c_7 = 50000$, $c_8 = 440000$
- $r_1 = 410000, r_2 = 330000, r_3 = 140000, r_4 = 250000, r_5 = 320000, r_6 = 320000, r_7 = 90000, r_8 = 190000$
- M = 1000000
- $v_1 + v_5 \le 1$

- n = 8
- $c_1 = 470000$, $c_2 = 400000$, $c_3 = 170000$, $c_4 = 270000$, $c_5 = 340000$, $c_6 = 230000$, $c_7 = 50000$, $c_8 = 440000$
- $r_1 = 410000, r_2 = 330000, r_3 = 140000, r_4 = 250000, r_5 = 320000, r_6 = 320000, r_7 = 90000, r_8 = 190000$
- M = 1000000
- $v_1 + v_5 \le 1$
- $v_4 + (1 v_2) \ge 1$

• Utilizando o pacote science-optimization do Python.

- Utilizando o pacote science-optimization do Python.
- Representação de problemas de otimização do pacote:

- Utilizando o pacote science-optimization do Python.
- Representação de problemas de otimização do pacote: $\min f(x)$

Sujeito a:

$$g(x) \leq 0$$

h(x) = 0

Adaptando as expressões do problema para o science-optimization.

Adaptando as expressões do problema para o *science-optimization*. Função objetivo:

$$\min \sum_{i=1}^n v_i(-r_i)$$

Adaptando as expressões do problema para o *science-optimization*. Função objetivo:

$$\min \sum_{i=1}^n v_i(-r_i)$$

Restrição de orçamento:

$$\sum_{i=1}^n v_i c_i \le M \Rightarrow \sum_{i=1}^n v_i c_i - M \le 0.$$

Adaptando as expressões do problema para o *science-optimization*. Função objetivo:

$$\min \sum_{i=1}^n v_i(-r_i)$$

Restrição de orçamento:

$$\sum_{i=1}^n v_i c_i \le M \Rightarrow \sum_{i=1}^n v_i c_i - M \le 0.$$

Conflitos:

$$v_a + v_b \le 1 \Rightarrow v_a + v_b - 1 \le 0$$

Adaptando as expressões do problema para o *science-optimization*. Função objetivo:

$$\min \sum_{i=1}^n v_i(-r_i)$$

Restrição de orçamento:

$$\sum_{i=1}^{n} v_i c_i \leq M \Rightarrow \sum_{i=1}^{n} v_i c_i - M \leq 0.$$

Conflitos:

$$v_a + v_b \le 1 \Rightarrow v_a + v_b - 1 \le 0$$

Dependências:

$$v_b + (1 - v_a) \ge 1 \Rightarrow -v_b - 1 + v_a \le -1 \Rightarrow -v_b - 1 + v_a + 1 \le 0 \Rightarrow -v_b + v_a \le 0$$

Estruturas de dados básicas para entrada:

Estruturas de dados básicas para entrada:

Custos Lista de valores numéricos $[c_1, ..., c_n]$.

Estruturas de dados básicas para entrada:

Custos Lista de valores numéricos $[c_1, ..., c_n]$.

Retornos Lista de valores numéricos $[r_1, ..., r_n]$.

Estruturas de dados básicas para entrada:

Custos Lista de valores numéricos $[c_1, ..., c_n]$.

Retornos Lista de valores numéricos $[r_1, ..., r_n]$.

Orçamento Valor numérico.

Estruturas de dados básicas para entrada:

Custos Lista de valores numéricos $[c_1, ..., c_n]$.

Retornos Lista de valores numéricos $[r_1, ..., r_n]$.

Orçamento Valor numérico.

Conflitos Lista de pares de índices (onde índice i representa o investimento i+1) $[[a_1,b_1],...,[a_k,b_k]]$.

Estruturas de dados básicas para entrada:

Custos Lista de valores numéricos $[c_1, ..., c_n]$.

Retornos Lista de valores numéricos $[r_1, ..., r_n]$.

Orçamento Valor numérico.

Conflitos Lista de pares de índices (onde índice i representa o investimento i+1) $[[a_1,b_1],...,[a_k,b_k]]$.

Dependências Lista de pares de índices (onde índice i representa o investimento i+1) $[[a_1,b_1],...,[a_l,b_l]]$.

Código de entrada:

Código de entrada:

```
# INPUTS (prices, returns, budget, conflict, dependencies)
# All separated by a line break
# (it ties into the instance generator I made in Bash)
instance size = int(input()) # investment options number
prices = []
returns = []
names = []
budget = int(input())
for i in range(0,instance size):
    prices.append(int(input()))
for i in range(0.instance size):
    returns.append(int(input()))
# names array: only important for the console output
for i in range(0,instance size):
    names.append(input())
# conflict array: for every item [a,b] in the array, a and b cannot be
# chosen at the same time.
conflict size = int(input())
conflicts = []
for i in range(0,conflict size):
    arrayzinha = [-1,-1]
    arrayzinha[0] = int(input())
    arrayzinha[1] = int(input())
    conflicts.append(arrayzinha)
# dependency array: for every item [a,b] in the array, item a can only be
# picked if b also is.
depends size = int(input())
dependencies = []
for i in range(0.depends size):
    arrayzinha = [-1,-1]
    arrayzinha[0] = int(input())
    arrayzinha[1] = int(input())
    dependencies.append(arrayzinha)
```

Código de criação do objeto do problema:

Código de criação do objeto do problema:

Criação das variáveis:

• Temos *n* (__varnum) variáveis.

- Temos *n* (__varnum) variáveis.
- Mínimo 0, máximo 1.

- Temos *n* (__varnum) variáveis.
- Mínimo 0, máximo 1.
- Variáveis discretas.

- Temos n (__varnum) variáveis.
- Mínimo 0, máximo 1.
- Variáveis discretas.

```
# building variables: pretty much the same thing we saw in the
# second class.
def build variables(self):
    lower = numpy.cross((self.__varnum, 1))
    upper = numpy.ones((self._varnum, 1))
# all discrete, naturally
    types = ['d]*self._varnum
    variables = variable(lower, upper, types)
    return variables
```

Expressões de LinearFunction() em science-optimization:

Expressões de LinearFunction() em science-optimization:

$$a_1x_1+...+a_nx_n+d$$

Expressões de LinearFunction() em science-optimization:

$$a_1x_1 + ... + a_nx_n + d$$

Sintaxe da função de criação do objeto:

Expressões de LinearFunction() em science-optimization:

$$a_1x_1 + ... + a_nx_n + d$$

Sintaxe da função de criação do objeto:

$$LinearFunction(c = [[a_1], ..., [a_n]], d = d)$$

Função objetivo:

```
def build_objectives(self):
    fun = LinearFunction(c=-self.__returns.reshape(-1,1),d=0)
    funs = FunctionsComposite()
    funs.add(fun)
    obj = Objective(objective=funs)
    return obj
```

Função objetivo:

```
def build_objectives(self):
    fun = LinearFunction(c=-self.__returns.reshape(-1,1),d=0)
    funs = FunctionsComposite()
    funs.add(fun)
    obj = Objective(objective=funs)
    return obj
```

Restrição de orçamento:

```
# building constraints: making sure to add the conflicts and
# dependencies
def build constraints(self):
    cons set = FunctionsComposite()
    # first: budget constraint. Pretty much the same as the knapsack
    # example we saw in class
    budgetary = LinearFunction(c=self._prices.reshape(-1,1), d=-self._budget)
    cons_set.add(budgetary)
```

Restrições de conflito e dependência:

```
# "base" for the coefficients in the rest of the constraints:
# set all coefficients to 0 at first, and then change only the
# coefficients of the relevant variables.
base = numpy.zeros((self. varnum, 1))
# conflict constraints.
# basically, if a and b conflict, then
# a+b <= 1, that is, a+b-1 <= 0
for item in self. conflicts:
    a = item[0]
    b = item[1]
    base[a] = 1
    base[b] = 1
    newcons = LinearFunction(c=base.reshape(-1,1),d=-1)
    cons set.add(newcons)
    base = numpy.zeros((self. varnum, 1))
# dependency constraints.
# if a depends on b, then
# -h+a <= A
for item in self. dependencies:
    a = item[0]
    b = item[1]
    base[a] = 1
    base[b] = -1
    newcons = LinearFunction(c=base.reshape(-1,1),d=0)
    cons set.add(newcons)
    base = numpy.zeros((self. varnum, 1))
# ALRIGHT, WRAP IT UP, IT'S DONE.
constraints = Constraint(ineq cons=cons set)
return constraints
```

Execução do problema e impressão do resultado:

```
# Computation of the tests:
problem = InvestmentProblem(prices, returns, budget, conflicts, dependencies)
opt = OptimizationProblem(builder=problem)
optimizer = Optimizer(opt problem=opt, algorithm=Glop())
results = optimizer.optimize()
whichones = results.x.ravel()
totalcost = 0
print("Investmentos escolhidos:")
for i in range(0,len(prices)):
    if whichones[i] == 1:
        print(names[i])
        totalcost == prices[i]
    print("Returno total: ",-int(results.fx[0]))
print("Gusto total: ",-int(results.fx[0]))
```

Primeiramente, os resultados para o problema do desafio:

Primeiramente, os resultados para o problema do desafio:

Investmentos escolhidos:
Ampliar armazem MGL em 7%
Projeto de P&D I
Aquisição de novos equipamentos
Capacitação de funcionários
Retorno total: 990000
Custo total: 950000

Para estudar o desempenho do programa mais a fundo, foi criado um *gerador de instâncias*.

Para estudar o desempenho do programa mais a fundo, foi criado um gerador de instâncias.

Para cada número de investimentos entre 1 e 4078, dez instâncias foram geradas, e o tempo de execução médio do programa foi medido para cada uma.

Para estudar o desempenho do programa mais a fundo, foi criado um gerador de instâncias.

Para cada número de investimentos entre 1 e 4078, dez instâncias foram geradas, e o tempo de execução médio do programa foi medido para cada uma.

Máquina usada:

Para estudar o desempenho do programa mais a fundo, foi criado um gerador de instâncias.

Para cada número de investimentos entre 1 e 4078, dez instâncias foram geradas, e o tempo de execução médio do programa foi medido para cada uma.

Máquina usada:

Processador AMD FX-8350 Eight-core (4 GHz).

Para estudar o desempenho do programa mais a fundo, foi criado um gerador de instâncias.

Para cada número de investimentos entre 1 e 4078, dez instâncias foram geradas, e o tempo de execução médio do programa foi medido para cada uma.

Máquina usada:

- Processador AMD FX-8350 Eight-core (4 GHz).
- 8 GB de memória RAM DDR 3.

Para estudar o desempenho do programa mais a fundo, foi criado um gerador de instâncias.

Para cada número de investimentos entre 1 e 4078, dez instâncias foram geradas, e o tempo de execução médio do programa foi medido para cada uma.

Máquina usada:

- Processador AMD FX-8350 Eight-core (4 GHz).
- 8 GB de memória RAM DDR 3.
- Rodando uma máquina virtual de Linux Mint usando OracleVM VirtualBox em Windows 7 de 64 bits.

- Eixo x : tempo em milisegundos.
- Eixo y : número de opções.

 O aumento do tempo levado em função do tamanho da instância é acima de linear (como esperado, pois o problema é exponencial no pior caso).

- O aumento do tempo levado em função do tamanho da instância é acima de linear (como esperado, pois o problema é exponencial no pior caso).
- Além disso, quanto maiores os tamanhos de instância, mais "espalhados" os tempos de execução ficaram.

- O aumento do tempo levado em função do tamanho da instância é acima de linear (como esperado, pois o problema é exponencial no pior caso).
- Além disso, quanto maiores os tamanhos de instância, mais "espalhados" os tempos de execução ficaram.
 - ► Hipótese 1: quanto maior o número de opções, maior o impacto do número de restrições sobre o tempo de execução (isso pode ser testado fixando o número de restrições).

- O aumento do tempo levado em função do tamanho da instância é acima de linear (como esperado, pois o problema é exponencial no pior caso).
- Além disso, quanto maiores os tamanhos de instância, mais "espalhados" os tempos de execução ficaram.
 - ► Hipótese 1: quanto maior o número de opções, maior o impacto do número de restrições sobre o tempo de execução (isso pode ser testado fixando o número de restrições).
 - Hipótese 2: o número de testes por tamanho de instância (10) pode ter sido insuficiente para determinar uma média consistente para os tempos de execução (isso pode ser testado aumentando o número de instâncias para cada tamanho).

- O aumento do tempo levado em função do tamanho da instância é acima de linear (como esperado, pois o problema é exponencial no pior caso).
- Além disso, quanto maiores os tamanhos de instância, mais "espalhados" os tempos de execução ficaram.
 - Hipótese 1: quanto maior o número de opções, maior o impacto do número de restrições sobre o tempo de execução (isso pode ser testado fixando o número de restrições).
 - Hipótese 2: o número de testes por tamanho de instância (10) pode ter sido insuficiente para determinar uma média consistente para os tempos de execução (isso pode ser testado aumentando o número de instâncias para cada tamanho).
 - ▶ Hipótese 3: devido à forma como preços e retornos foram atribuídos de forma aleatória a cada opção no gerador de instâncias, existe a possibilidade de que certas instâncias tenham contido opções "super-poderosas" de baixo custo e alto retorno, que grandemente simplificaram o trabalho do algoritmo de otimização (isso pode ser testado calculando os retornos das opções em função de seus custos).

 De qualquer forma, mesmo nos casos com mais de 4000 opções, o programa demorou menos de 15 segundos, em média, para encontrar a solução ótima.

- De qualquer forma, mesmo nos casos com mais de 4000 opções, o programa demorou menos de 15 segundos, em média, para encontrar a solução ótima.
- Isso se deve, principalmente, às otimizações existentes no pacote science-optimization e no algoritmo Glop.