Тема лекції 1:

Системи баз даних. Основні поняття, архітектура, моделі даних.

- □ Основні визначення
- Розподіл обов'язків в системах з базами даних
- Функції СУБД
- Трирівнева архітектура організації бази даних
- Архітектура програмно-технічних засобів
- □ Класифікації моделей даних

Інформаційні системи

Інформаційна система – це програмний продукт

Функції ІС:

- підтримка надійного зберігання інформації;
- виконання певних перетворень інформації або обчислень;
- надання користувачам зручного інтерфейсу.

Інформаційна система

Визначення бази даних

База даних – це сукупність логічно зв'язаних даних (і опис цих даних), яка відображає стан об'єктів та їх зв'язків в певній предметній області, динамічно змінюється у процесі свого функціонування і є доступна багатьом користувачам [Дейт].

База даних – це єдине велике сховище даних, яке один раз визначається, а потім функціонує у багатокористувацькому режимі [Ульман].

Бази даних та інформаційні системи

Інші визначення

- **Схема (зміст) бази даних** це опис бази даних
- Стан (деталізація) бази даних це сукупність інформації, що зберігається в базі даних в будьякий певний момент часу

Прикладні програми, застосування, додатки баз даних

- можуть працювати паралельно і незалежно одна від одної
- структура даних відділена від додатків
- □ незалежність від даних

Система управління базами даних

СУБД – це програне забезпечення підтримки інтегрованої сукупності даних, призначене для створення, зберігання, ведення і використання бази даних багатьма користувачами (застосуваннями).

Система управління базами даних

Система баз даних

 це певна прикладна система, яка використовує базу даних і СУБД, що підтримує цю БД, призначена для вирішення конкретних завдань зберігання та опрацювання даних

Система баз даних

Розподіл обов'язків в системах з базами даних

- 1. Адміністратори даних та адміністратори баз даних
- 2. Розробники баз даних
- 3. Розробники додатків
- 4. Користувачі-клієнти
 - Пересічні користувачі
 - Досвідчені користувачі

Розподіл обов'язків в системах з базами даних

Розподіл обов'язків в системах з базами даних

Функції СУБД

- Зберігання, вибір та оновлення даних
- Визначення структури бази даних, її ініціалізація і проведення початкового завантаження даних
- Наявність каталогу (бази метаданих)
- □ Служба підтримки цілісності даних
- Підтримка транзакцій

Функції СУБД (продовж.)

- Сервіс контролю за доступом до даних
- Служба підтримки незалежності програм від даних
- □ Підтримка обміну даними
- □ Сервіс відновлення бази даних
- Сервіс керування паралельністю

Функції СУБД

Функції СУБД. Додаткові служби, утиліти

- утиліти імпортування та утиліти експортування бази даних;
- засоби моніторингу, які слідкують за функціонуванням та використанням бази даних;
- програми статистичного аналізу, які дозволяють оцінити продуктивність системи;
- інструменти збору сміття та перерозподілу пам'яті.

Популярні реляційні СУБД

Популярні NoSQL СУБД

SQL vs. NoSQL популярність

SQL & NoSQL Multiple Database Combinations Trends

Популярні комерційні РСУБД

Популярні Open Source СУБД

Популярні СУБД

Популярні СУБД в розробці IC

Most Popular Database Platforms 💙					Love	•	Dread	*	Want
	2019	2018	%Change	2019	2018	2019	2018	2019	2018
MySQL	52%	59%	-7%	54%	49%	46%	51%	8%	8%
PostgreSQL	36%	33%	3%	70%	62%	30%	38%	14%	11%
MS SQL Server	34%	42%	-8%	58%	52%	43%	48%	3%	4%
SQLite	30%	20%	10%	56%	48%	45%	52%	7%	53%
MongoDB	26%	26%	0%	60%	55%	41%	45%	18%	45%
Redis	20%	19%	1%	71%	65%	29%	36%	11%	35%
MariaDB	17%	14%	3%	59%	53%	41%	47%	4%	47%
Oracle	16%	11%	5%	38%	37%	62%	63%	3%	63%
Elasticsearch	16%	14%	2%	63%	60%	67%	40%	11%	40%
Firebase	12%			61%		39%		8%	
DynamoDB	7%			55%		45%		4%	
Cassandra	4%			47%		53%		6%	
Couchbase	2%			37%		63%		2%	

Gartner's Magic Quadrant for Operational Database Management Systems

СУБД за типами зберігання та опрацювання даних

Трирівнева архітектура організації бази даних

- Вперше специфікована в 1975 році дослідницькою групою ANSI/X3/SPARC
- ANSI (American National Standard Institute) – Національний Інститут Стандартизації США,
- X3 його комітет обчислювальної техніки та обробки інформації,
- □ SPARC (Standards Planning and Requirements Committee) – підкомітет ANSI/X3 з планування стандартів

Трирівнева архітектура ANSI-SPARC

Трирівнева архітектура ANSI-SPARC

Зовнішній рівень (external level)

- описує ту частину бази даних, яка відноситься до кожного користувача
- □ складається з декількох різних зовнішніх схем (представлень) бази даних
- □ зовнішні схеми можуть по-різному відображати одні і ті ж дані

Концептуальний рівень (conceptual level)

- здійснюється інтегрований опис предметної області
- містить логічну структуру всієї бази даних
 - опис усіх сутностей, їх атрибутів і зв'язків;
 - підтримку цілісності даних;
 - обмеження, які накладаються на дані;
 - семантичну інформація про дані;
- підтримує кожну зовнішню схему
- об'єднує дані, які використовуються усіма додатками, що працюють з базою даних
- не містить ніяких відомостей про методи зберігання даних

Внутрішній рівень (internal level)

- описує фізичну реалізацію бази даних з урахуванням способів зберігання даних і методів доступу до них
- □ містить наступну інформацію:
 - розподіл дискового простору для зберігання даних та індексів;
 - відомості про розміщення записів;
 - інформація про міри безпеки даних;
 - відомості про стиснення даних та методи їх шифрування.

Відображення

«концептуальний – зовнішній» і «концептуальний – внутрішній» дають змогу вирішувати проблему логічної та фізичної незалежності даних:

будь-які зміни на одному з рівнів не повинні спричиняти зміни на інших рівнях, а лише має змінитися відповідне відображення

Незалежність даних

Логічна незалежність даних

- повна захищеність зовнішніх схем від змін, що вносяться в концептуальну схему
- можливість змінювати логічне представлення бази даних без необхідності змінювати фізичні структури зберігання даних

Фізична незалежність

- захищеність концептуальної схеми від змін, що вносяться у внутрішню схему
- зміни помітні лише в загальній продуктивності системи

Сучасна трирівнева архітектура бази даних

- 1. Рівень представлення інформації забезпечує інтерфейс з користувачем (людиною або програмою)
- 2. Рівень обробки даних (рівень **бізнес- логіки**) визначає функціональність і працездатність системи в цілому
- 3. Рівень зберігання даних забезпечує фізичне зберігання, додавання, модифікацію і вибірку даних; перевіряється цілісність і узгодженість даних; реалізація транзакцій

Сучасна трирівнева архітектура бази даних

Архітектури програмно-технічних засобів

- □ файл-сервер
- клієнт-сервер з бізнес-логікою на клієнті
- клієнт-сервер з бізнес-логікою на сервері
- □ N-рівнева архітектура

Архітектури програмно-технічних засобів

- клієнт-сервер з бізнес-логікою на клієнті
- клієнт-сервер з бізнес-логікою на сервері

Архітектури програмно-технічних засобів

□ N-рівнева архітектура

Відповідність логічної архітектури БД і програмно-технічної архітектури

Тип архітектури Рівень	Файл-сервер	Клієнт-сервер (бізнес-логіка на клієнті)	Клієнт-сервер (бізнес-логіка на сервері)	N- рівнева архітектура
Представлення інформації	Клієнт	Клієнт	Клієнт	Клієнт
Бізнес-логіки	Клієнт	Клієнт	Сервер БД	Сервер прикладних програм (комп. кластер)
Зберігання даних	Файл-сервер (або клієнт)	Сервер БД	Сервер БД	Сервер БД
Реалізація	Усі три рівні утворюють єдиний програмний модуль	Інтерфейс користувача і бізнес логіка утворюють єдиний модуль. Дані зберігаються на сервері	Усі бізнес- логіка реалізована у вигляді збережених процедур, які виконуються на сервері БД	Усі рівні реалізовані на різних машинах

Архітектура файл-сервер

- усі рівні системи представляють єдине і неподільне ціле
- □ БД зберігається у вигляді файлу або набору файлів на файл-сервері
- уся логіка вибірки, зберігання і забезпечення узгодженості даних покладається на клієнтську частину
- обробка інформації ведеться на рівні окремих кортежів (записів)

Архітектура файл-сервер

Переваги:

- простота логіки;
- низькі вимоги до апаратного забезпеченню і малий об'єм необхідної пам'яті;
- не вимагає надійних багатозадачних і багатокористувацьких ОС;
- невисока ціна СУБД.

□ Недоліки

- обмеженість мови і негнучкість середовища розробки додатків;
- слабка масштабованість;
- не забезпечує багатокористувацький режим роботи;
- важко підтримувати цілісність і узгодженість даних;
- необхідно вручну блокувати записи або таблиці;
- низький рівень захищеності як зовнішньої (від зламу), так і внутрішньої (від програмних помилок), наприклад, індекси окремо від таблиць;
- не має засобів шифрації мережевого трафіку;
- створює велике навантаження на мережу.

Архітектура клієнт-сервер з бізнес-логікою на клієнті

- Зберігання, вибірка та підтримка узгодженості даних покладається на сервер БД
- уся бізнес-логіка і логіка представлення інформації виконуються на клієнтських машинах
- продуктивність і збереженість даних залежить від сервера БД
- клієнтська частина обмінюється даними з сервером за допомогою запитів SQL
- опрацювання інформації ведеться на рівні множини кортежів (записів)
- процес розробки розділяється на створення БД і написання клієнтської частини з бізнес-логікою

Архітектура клієнт-сервер з бізнес-логікою на клієнті

Переваги:

- висока продуктивність, стабільність і надійність при багатокористувацькому режимі роботи;
- легко організовується захист даних (шифрування мережевого трафіку SSH, SSL);
- універсальність мови визначення та маніпулювання даними.

□ Недоліки

- більша ціна СУБД (сервер БД продається окремо);
- достатньо високі вимоги до кваліфікації розробників;
- необхідні навички адміністрування сервера БД;
- підвищені вимоги до пропускної здатності мережі;
- підвищені вимоги до клієнтських місць (на них виконується рівень бізнес-логіки).

Архітектура клієнт-сервер з бізнес-логікою на сервері

- на сервер переноситься максимально можлива частина бізнес-логіки
- можливість сучасних серверів БД виконувати збережені процедури на сервері

Архітектура клієнт-сервер з бізнес-логікою на сервері

Переваги:

- знижені, порівняно з попереднім класом систем, вимоги до пропускної здатності мережі та до клієнтських машин;
- простіший процес створення бізнес-логіки.

Недоліки

- підвищені вимоги до сервера БД, оскільки кожний сеанс «з'їдає» пам'ять з розрахунком граничного навантаження;
- невисока мобільність системи на інші сервери БД.

N- рівнева архітектура

- □ основними елементами є сервери БД, сервер (кластер) прикладних програм і клієнтська частина
- □ максимальне спрощення клієнта і сервера БД
- тонкий клієнт являє собою деякий термінал типу браузера
- уся бізнес-логіка оформляється у вигляді набору прикладних програм, які запускаються на серверікластері
- сервери БД займаються лише задачами зберігання, додавання, модифікації та підтримки узгодженості даних
- сервер програм з'єднаний з сервером БД окремим високошвидкісним сегментом мережі

N- рівнева архітектура

Переваги:

- підвищена захищеність;
- висока продуктивність;
- гнучкість розвитку та модифікації;
- простота адміністрування;
- можливість створення системи з масовим паралелізмом, оскільки серверів БД може бути декілька, а сервером програм можуть служити декілька з'єднаних в кластер комп'ютерів.

□ Недоліки

- велика складність архітектури;
- висока ціна рішення;
- у деяких випадках поступається в продуктивності клієнтсерверним системам з бізнес-логікою на сервері.

Визначення даних і моделей даних

- «Дані» в концепції баз даних це набір конкретних значень, параметрів, які характеризують об'єкт, умову, ситуацію або інші фактори.
- Модель даних це представлення «реальних» об'єктів, подій та існуючих між ними зв'язків. Це деяка абстракція, яка застосовується до певних даних, і в якій акцент робиться на найважливіших аспектах, а всі другорядні властивості ігноруються.
- «Модель даних» в концепції баз даних це інтегрований набір понять для опису даних, зв'язків між ними та обмежень, які накладаються на дані, в деякій інформаційній системі.

Модель даних в архітектурі БД

Класифікація 1 моделей даних

- об'єктні (object-based) моделі даних - опис даних на концептуальному та зовнішньому рівнях
- моделі даних на основі записів (record-based) - опис даних на концептуальному та зовнішньому рівнях
- фізичні моделі даних опис даних на внутрішньому рівні

Класифікація 1 моделей даних

Класифікація 1 моделей даних. Об'єктні (object-based) моделі даних

 використовуються такі поняття як сутності, атрибути і зв'язки.

Загальні типи об'єктних моделей даних:

- □ модель типу "сутність-зв'язок", або ER– модель (Entity-Relationship model);
- □ семантична модель;
- функціональна модель;
- об'єктно-орієнтована модель.

Об'єктні (object-based) моделі даних. Entity-Relationship model

Об'єктні (object-based) моделі даних. Об'єктно-орієнтована модель

Класифікація 1 моделей даних. Моделі даних на основі записів (record-based)

- База даних складається з декількох записів фіксованого формату, які можуть мати різні типи. Кожен тип запису визначає фіксовану кількість полів, кожне з яких має фіксовану довжину.
- Загальні типи логічних моделей даних на основі записів:
- реляційна модель даних (relational data model);
- мережева модель даних (network data model);
- ієрархічна модель даних (hierarchical data model).

Класифікація 1 моделей даних. Моделі даних на основі записів (recordbased)

- Реляційна модель даних базується на понятті математичних відношень. Єдина вимога в реляційній моделі даних це щоб база даних з точки зору користувача виглядала як набір таблиць, зв'язаних відношеннями. Однак це відноситься тільки до логічної структури бази даних, тобто до зовнішнього та концептуального рівня архітектури ANSI-SPARC. Дана вимога не відноситься до фізичної структури бази даних, яка може бути реалізована за допомогою різних структур зберігання.
- В *ієрархічній моделі* дані представляються у вигляді деревовидної (ієрархічної) структури. Подібна організація даних є зручною для роботи з ієрархічно впорядкованою інформацією. Однак, при оперуванні складними логічними зв'язками ієрархічна модель стає дуже громіздкою.
- В мережевій моделі дані організовуються у вигляді довільного графа. На відміну від реляційної моделі, зв'язки тут моделюються наборами, які реалізуються за допомогою вказівників. Недоліком мережевої моделі є жорсткість структури і складність її організації

Класифікація 1 моделей даних. Моделі даних на основі записів (record-based). Ієрархічна модель

Класифікація 1 моделей даних. Моделі даних на основі записів (record-based). Мережева модель

Класифікація 1 моделей даних. Моделі даних на основі записів (record-based). Реляційна модель

EMPLOYEE					
EMP_ID	EMP_NAME	ADDRESS	DEPT_ID	PROJ_ID	
100	Joseph	Clinton Town	10	206	
101	Rose	Fraser Town	20	205	
102	Mathew	Lakeside Village	10	206	
103	Stewart	Troy	30	204	4
104	William	Holland	30	202	

DEPARTMENT	
DEPT_ID	DEPT_NAME
10	Accounting
20	Quality
30	Design

PROJECT	
PROJ_ID	PROJ_NAME
201	C Programming
202	Web development
204	Database Design
205	Testing
206	Pay Slip Generation

Класифікація 1 моделей даних. Фізична модель даних

- □ оперує категоріями, які відносяться до організації зовнішньої пам'яті та структур зберігання даних
- використовуються різні методи розміщення даних, що базуються на файлових структурах:
 - організація файлів прямого та послідовного доступу;
 - індексні файли;
 - інвертовані файли;
 - файли, які використовують різні методи хешування;
 - взаємозв'язані файли
- сторінкова організація даних (сучасні СУБД).
 Фізичні моделі, що базуються на сторінковій організації є найбільш перспективними.

Класифікація 1 моделей даних. Фізична модель даних

- Sequential File Organization
- ☐ Heap File Organization
- □ Hash/Direct File Organization
- Indexed Sequential Access Method
- □ B+ Tree File Organization
- Cluster File Organization

Класифікація 2 моделей даних

- □ інфологічні (семантичні) моделі
- даталогічні моделі
- фізичні моделі

Класифікація 2 моделей даних. Інфологічні (семантичні) моделі

- виражають інформацію про предметну область у вигляді, який не залежить від вибраної СУБД
- □ відображають інформаційно-логічний рівень абстрагування, який пов'язаний з фіксацією та описом об'єктів ПО, їх властивостей і зв'язків у зручній для розробників та інших користувачів формі
- використовуються на ранніх стадіях проектування БД

Найпоширеніші типи інфологічної моделі:

- діаграми Бахмана
- модель "сутність-зв'язок" (ЕR-модель)

Класифікація 2 моделей даних. Інфологічні (семантичні) моделі

Класифікація 2 моделей даних. Даталогічні моделі

- підтримуються конкретною СУБД

Типи даталогічних моделей:

- документальні моделі
- фактографічні моделі

Класифікація 2 моделей даних. Даталогічні — Документальні моделі

відповідають відображенню слабоструктурованої інформації, орієнтованої на вільні формати документів та тексти на первинній мові

Типи документальних моделей:

- дескрипторні моделі
- моделі, орієнтовані на формат документу
- 🗖 тезаурусні моделі

Класифікація 2 моделей даних. Даталогічні → Документальні → **Дескрипторні** моделі

- Найпростіші з документальних моделей, використовувались на ранніх стадіях використання документальних баз даних.
- □ Кожному документу відповідає дескриптор. Він має жорстку структуру і описує документ у відповідності з тими характеристиками, які потрібні для роботи з документальною БД.

Класифікація 2 моделей даних. Даталогічні → Документальні → **Дескрипторні** моделі

 Descriptive model of information processing to generate ideas

Класифікація 2 моделей даних. Даталогічні → Документальні → Моделі, **орієнтовані на формат документу**

- □ пов'язані зі стандартними мовами розмітки:
 - HTML: у якості елементу гіпертекстової бази даних, яка описується HTML, використовується текстовий файл, який може легко передаватись по мережі з використанням протоколу HTTP.
 - XML описує цілий клас об'єктів даних, що називаються XML-документами. Вони використовуються у якості засобу для контролю за правильністю складання документів.
- □ реалізовані за допомогою підходу NoSQL:
 - спеціально призначені для зберігання ієрархічних структур даних (документів), в основі яких лежать документні сховища (document store), що мають структуру дерева.
 - використовуються у системах керування вмістом, видавничій справі, документальному пошуку

Класифікація 2 моделей даних. Даталогічні → Документальні → **Тезаурусні** моделі

- основані на принципі організації словників
- містять певні мовні конструкції і принципи їх взаємодії у заданій граматиці
- ефективно використовуються в системах-перекладачах, в яких за тезаурусними моделями реалізовано принцип зберігання інформації

Класифікація 2 моделей даних. Даталогічні \rightarrow Документальні \rightarrow **Тезаурусні** моделі

Класифікація 2 моделей даних. Даталогічні → Фактографічні моделі

- графові моделі
- □ теоретико-множинні моделі
- □ об'єктно-орієнтована модель

Класифікація 2 моделей даних. Даталогічні → Фактографічні → *Графові* моделі

- відображають сукупність об'єктів реального світу у вигляді графа взаємозв'язаних інформаційних об'єктів.
- В залежності від типу графа виділяють:
- □ ієрархічну модель
- □ мережеву модель

Класифікація 2 моделей даних. Даталогічні → Фактографічні → *Графові* моделі

Класифікація 2 моделей даних. Даталогічні → Фактографічні → *Графові* моделі

Класифікація 2 моделей даних. Даталогічні → Фактографічні → **Теоретико-множинні** моделі

- перехід від роботи з елементами даних (графові моделі) до роботи з макрооб'єктами

Основні моделі:

- реляційна модель
- модель бінарних асоціацій

Класифікація 2 моделей даних. Даталогічні \rightarrow Фактографічні \rightarrow **Об'єктно-орієнтована** модель

Розширяє визначення сутності з метою включення в нього не тільки атрибутів, які описують стан об'єкта, а й дій, які з ним пов'язані, тобто його поведінку. В такому випадку говорять, що об'єкт інкапсулює стан та поведінку .

Поєднання моделей даних.

Поєднання моделей даних.

The "NOSQL" Technology Landscape

Поєднання моделей даних.

Так виглядає модель Twitter

Дякую за увагу