AArch64 Registers

AArch32 **Instructions**

AArch64 Instructions

Index by Encoding

External Registers

GICC CTLR, CPU Interface Control Register

The GICC CTLR characteristics are:

Purpose

Controls the CPU interface, including enabling of interrupt groups, interrupt signal bypass, binary point registers used, and separation of priority drop and interrupt deactivation.

Note

If the GIC implementation supports two Security states, independent EOI controls are provided for accesses from each Security state. Secure accesses handle both Group 0 and Group 1 interrupts, and Non-secure accesses handle Group 1 interrupts only.

Configuration

This register is present only when FEAT GICv3 LEGACY is implemented. Otherwise, direct accesses to GICC CTLR are res0.

In a GIC implementation that supports two Security states:

- This register is Banked.
- The register bit assignments are different in the Secure and Nonsecure copies.

Attributes

GICC CTLR is a 32-bit register.

Field descriptions

When GICD CTLR.DS==0, Non-secure access:

31302928272625242322212019181716151413121110 RES0

EOImodeNSRES0IRQBypDisGrp1FIQBypDisGrp1RES0

Bits [31:10]

Reserved, res0.

EOImodeNS, bit [9]

Controls the behavior of Non-secure accesses to <u>GICC_EOIR</u>, <u>GICC_AEOIR</u>, and <u>GICC_DIR</u>.

EOImodeNS	Meaning
0b0	GICC_EOIR and
	GICC_AEOIR provide
	both priority drop and
	interrupt deactivation
	functionality. Accesses to
	<u>GICC_DIR</u> are
	unpredictable.
0b1	GICC_EOIR and
	GICC AEOIR provide
	priority drop functionality
	only. <u>GICC_DIR</u> provides
	interrupt deactivation
	functionality.

Note

An implementation is permitted to make this bit RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [8:7]

Reserved, res0.

IRQBypDisGrp1, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is signaled to the PE for Group 1:

IRQBypDisGrp1	Meaning
0b0	The bypass IRQ
	signal is signaled to
	the PE.
0b1	The bypass IRQ
	signal is not signaled
	to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

For more information, see 'Interrupt bypass support' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

FIQBypDisGrp1, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is signaled to the PE for Group 1:

FIQBypDisGrp1	Meaning
000	The bypass FIQ signal is signaled to the PE.
0b1	The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DFB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

For more information, see 'Interrupt bypass support' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bits [4:1]

Reserved, res0.

EnableGrp1, bit [0]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target PE:

_EnableGrp1	Meaning
0d0	Group 1 interrupt signaling is disabled.

0b1	Group 1 interrupt	
	signaling is enabled.	

• On a Warm reset, this field resets to 0.

When GICD CTLR.DS==0, Secure access:

313029282726252423222120191817161514131211	. 10	9	8	7
RES0	EOImodeNS	EOImodeS	IRQBypDisGrp1	FIQBypDisGrp1

Bits [31:11]

Reserved, res0.

EOImodeNS, bit [10]

Controls the behavior of Non-secure accesses to <u>GICC_EOIR</u>, <u>GICC_AEOIR</u>, and <u>GICC_DIR</u>.

EOImodeNS	Meaning
0b0	GICC_EOIR and
	GICC_AEOIR provide
	both priority drop and
	interrupt deactivation
	functionality. Accesses to
	<u>GICC_DIR</u> are
	unpredictable.
0b1	GICC_EOIR and
	GICC_AEOIR provide
	priority drop functionality
	only. <u>GICC_DIR</u> provides
	interrupt deactivation
	functionality.

Note

An implementation is permitted to make this bit RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

EOImodeS, bit [9]

Controls the behavior of Secure accesses to <u>GICC_EOIR</u>, <u>GICC_AEOIR</u>, and <u>GICC_DIR</u>.

LOIModes Meaning	EOImodeS Mean	ning
------------------	---------------	------

0d0	GICC_EOIR and GICC_AEOIR provide both priority drop and interrupt deactivation functionality. Accesses to GICC_DIR are unpredictable.
0b1	GICC_EOIR and GICC_AEOIR provide priority drop functionality only. GICC_DIR provides interrupt deactivation functionality.

Note

An implementation is permitted to make this bit RAO/WI.

This field shares state with GICC CTLR.EOImode.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

IRQBypDisGrp1, bit [8]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is signaled to the PE for Group 1:

IRQBypDisGrp1	Meaning
0b0	The bypass IRQ
	signal is signaled to
	the PE.
0b1	The bypass IRQ
	signal is not signaled
	to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

For more information, see 'Interrupt bypass support' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

• On a Warm reset, this field resets to 0.

FIQBypDisGrp1, bit [7]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is signaled to the PE for Group 1:

FIQBypDisGrp1	Meaning
000	The bypass FIQ signal is signaled to the PE.
0b1	The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and <u>ICC_SRE_EL3</u>.DFB == 1. this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

For more information, see 'Interrupt bypass support' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

IRQBypDisGrp0, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is signaled to the PE for Group 0:

IRQBypDisGrp0	Meaning
0b0	The bypass IRQ
	signal is signaled to
	the PE.
0b1	The bypass IRQ
	signal is not signaled
	to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

For more information, see 'Interrupt bypass support' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

FIQBypDisGrp0, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is signaled to the PE for Group 0:

FIQBypDisGrp0	Meaning
0d0	The bypass FIQ signal is signaled to the PE.
0b1	The bypass FIQ signal is not signaled to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

For more information, see 'Interrupt bypass support' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

CBPR, bit [4]

Controls whether <u>GICC_BPR</u> provides common control of preemption to Group 0 and Group 1 interrupts:

CBPR	Meaning
0b0	GICC_BPR determines
	preemption for Group 0
	interrupts only.
	GICC ABPR determines
	preemption for Group 1
	interrupts.

0b1	GICC BPR determines
	preemption for both Group 0
	and Group 1 interrupts.

This field is an alias of ICC_CTLR_EL3.CBPR_EL1NS.

In a GIC that supports two Security states, when CBPR == 1:

- A Non-secure read of <u>GICC_BPR</u> returns the value of Secure <u>GICC_BPR</u>.Binary_Point, incremented by 1, and saturated to 0b111.
- Non-secure writes of <u>GICC BPR</u> are ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

FIQEn, bit [3]

Controls whether the CPU interface signals Group 0 interrupts to a target PE using the FIQ or IRQ signal:

FIQEn	Meaning
0b0	Group 0 interrupts are signaled using the IRQ signal.
0b1	Group 0 interrupts are signaled using the FIQ signal.

Group 1 interrupts are signaled using the IRQ signal only.

If an implementation supports two Security states, this bit is permitted to be RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [2]

Reserved, res0.

EnableGrp1, bit [1]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target PE:

EnableGrp1	Meaning
0b0	Group 1 interrupt signaling is disabled.
0b1	Group 1 interrupt signaling is enabled.

• On a Warm reset, this field resets to 0.

EnableGrp0, bit [0]

EnableGrp0	Meaning
0b0	Group 0 interrupt
	signaling is disabled.
0b1	Group 0 interrupt
	signaling is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

When GICD_CTLR.DS == 1:

31302928272625242322212019181716151413121110	9	8	7	6
RES0	EOImode	IRQBypDisGrp1	FIQBypDisGrp1	RQBypDisGr

Bits [31:10]

Reserved, res0.

EOImode, bit [9]

Controls the behavior of accesses to <u>GICC_EOIR</u>, <u>GICC_AEOIR</u>, and <u>GICC_DIR</u>.

EOImode	Meaning
0b0	GICC_EOIR and
	GICC_AEOIR provide both
	priority drop and interrupt
	deactivation functionality.
	Accesses to <u>GICC_DIR</u> are
	unpredictable.
0b1	<u>GICC_EOIR</u> and
	<u>GICC_AEOIR</u> provide
	priority drop functionality
	only. <u>GICC_DIR</u> provides
	interrupt deactivation
	functionality.

Note

An implementation is permitted to make this bit RAO/WI.

This field shares state with <u>GICC CTLR</u>.EOImodeS.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

IRQBypDisGrp1, bit [8]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is signaled to the PE for Group 1:

IRQBypDisGrp1	Meaning
0b0	The bypass IRQ
	signal is signaled to
	the PE.
0b1	The bypass IRQ
	signal is not signaled
	to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

For more information, see 'Interrupt bypass support' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

FIQBypDisGrp1, bit [7]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is signaled to the PE for Group 1:

FIQBypDisGrp1	Meaning
0b0	The bypass FIQ signal
	is signaled to the PE.

0b1	The bypass FIQ signal
	is not signaled to the
	PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DFB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

For more information, see 'Interrupt bypass support' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

IRQBypDisGrp0, bit [6]

When the signaling of IRQs by the CPU interface is disabled, this field partly controls whether the bypass IRQ signal is signaled to the PE for Group 0:

IRQBypDisGrp0	Meaning
0b0	The bypass IRQ
	signal is signaled to
	the PE.
0b1	The bypass IRQ
	signal is not signaled
	to the PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

For more information, see 'Interrupt bypass support' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

FIQBypDisGrp0, bit [5]

When the signaling of FIQs by the CPU interface is disabled, this field partly controls whether the bypass FIQ signal is signaled to the PE for Group 0:

FIQBypDisGrp0	Meaning
0b0	The bypass FIQ signal
	is signaled to the PE.
0b1	The bypass FIQ signal
	is not signaled to the
	PE.

If System register access is enabled for EL3 and ICC_SRE_EL3.DIB == 1, this field is RAO/WI.

If System register access is enabled for EL1, this field is ignored.

If an implementation does not support legacy interrupts, this bit is permitted to be RAO/WI.

For more information, see 'Interrupt bypass support' in ARM® Generic Interrupt Controller Architecture Specification, GIC architecture version 3.0 and version 4.0 (ARM IHI 0069).

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

CBPR, bit [4]

Controls whether <u>GICC_BPR</u> provides common control of preemption to Group 0 and Group 1 interrupts:

CBPR	Meaning
0b0	GICC_BPR determines
	preemption for Group 0
	interrupts only.
	GICC ABPR determines
	preemption for Group 1
	interrupts.
0b1	GICC BPR determines
	preemption for both Group 0
	and Group 1 interrupts.

This field is an alias of ICC CTLR EL3.CBPR EL1NS.

In a GIC that supports two Security states, when CBPR == 1:

 A Non-secure read of <u>GICC_BPR</u> returns the value of Secure <u>GICC_BPR</u>.Binary_Point, incremented by 1, and saturated to 0b111. • Non-secure writes of GICC BPR are ignored.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

FIQEn, bit [3]

Controls whether the CPU interface signals Group 0 interrupts to a target PE using the FIQ or IRQ signal:

FIQEn	Meaning
0b0	Group 0 interrupts are signaled using the IRQ signal.
0b1	Group 0 interrupts are signaled using the FIQ signal.

Group 1 interrupts are signaled using the IRQ signal only.

If an implementation supports two Security states, this bit is permitted to be RAO/WI.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

Bit [2]

Reserved, res0.

EnableGrp1, bit [1]

This Non-secure field enables the signaling of Group 1 interrupts by the CPU interface to a target PE:

EnableGrp1	Meaning
0b0	Group 1 interrupt
	signaling is disabled.
0b1	Group 1 interrupt
	signaling is enabled.

The reset behavior of this field is:

• On a Warm reset, this field resets to 0.

EnableGrp0, bit [0]

Enables the signaling of Group 0 interrupts by the CPU interface to a target PE:

0b0	Group 0 interrupt
	signaling is disabled.
0b1	Group 0 interrupt
	signaling is enabled.

• On a Warm reset, this field resets to 0.

Accessing GICC_CTLR

This register is used only when System register access is not enabled. When System register access is enabled:

- For AArch32 implementations, <u>ICC_CTLR</u> and <u>ICC_MCTLR</u> provide equivalent functionality.
- For AArch64 implementations, <u>ICC_CTLR_EL1</u> and <u>ICC_CTLR_EL3</u> provide equivalent functionality.

GICC_CTLR can be accessed through the memory-mapped interfaces:

Component	Offset	Instance	
GIC CPU interface	0x0000	GICC_CTLR	

This interface is accessible as follows:

- When GICD CTLR.DS == 0, accesses to this register are **RW**.
- When an access is Secure, accesses to this register are **RW**.
- When an access is Non-secure, accesses to this register are **RW**.

AArch32	AArch64	AArch32	AArch64	Index by	<u>External</u>
<u>Registers</u>	<u>Registers</u>	<u>Instructions</u>	<u>Instructions</u>	Encoding	Registers

28/03/2023 16:02; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.