6.002 CIRCUITS AND ELECTRONICS

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000 Lecture 13

Review

$$v_C = V_I + \left(V_O - V_I\right) e^{\frac{-t}{RC}} \quad - \quad \boxed{1}$$

Let's apply the result to an inverter.

First, rising delay t_r at ${\it B}$

First, rising delay t_r at B

First, rising delay t_r at B

Equivalent circuit for $0 \rightarrow 1$ at B

From (1)
$$v_B = V_S + (0 - V_S) e^{\frac{-t}{R_L C_{GS}}}$$

Now, we need to find t for which $v_B = V_{OH}$.

Or

$$v_{OH} = V_S - V_S e^{\frac{-t}{R_L C_{GS}}}$$

Find t_r :

$$V_S e^{\frac{-t_r}{R_L C_{GS}}} = V_S - V_{OH}$$

$$\frac{-t_r}{R_L C_{GS}} = \ln \frac{V_S - V_{OH}}{V_S}$$

$$t_r = -R_L C_{GS} \ln \frac{V_S - V_{OH}}{V_S}$$

Or

$$v_{OH} = V_S - V_S e^{\frac{-t}{R_L C_{GS}}}$$

Find t_r :

$$V_S e^{\frac{-t_r}{R_L C_{GS}}} = V_S - V_{OH}$$

$$\frac{-t_r}{R_L C_{GS}} = \ln \frac{V_S - V_{OH}}{V_S}$$

$$t_r = -R_L C_{GS} \ln \frac{V_S - V_{OH}}{V_S}$$

$$R_L = 1K$$

$$V_{\rm S} = 5V$$

$$C_{GS} = 0.1 \, pF$$

$$V_{OH} = 4V$$

$$t_r = -1 \times 10^3 \times 0.1 \times 10^{-12} \ln \frac{5 - 4}{5}$$
$$= 0.16 \, ns$$

$$RC = 0.1 ns!$$

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

Lecture

Falling Delay t_f

Falling delay t_f is the t for which v_B falls to V_{OL}

Equivalent circuit for $1 \rightarrow 0$ at B

Falling Delay t_f

Equivalent circuit for $1 \rightarrow 0$ at B

Thévenin replacement ...

Cite as: Anant Agarwal and Jeffrey Lang, course materials for 6.002 Circuits and Electronics, Spring 2007. MIT OpenCourseWare (http://ocw.mit.edu/), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

6.002 Fall 2000

From (1)

$$v_B = V_{TH} + \left(V_S - V_{TH}\right) e^{\frac{-\tau}{R_{TH}C_{GS}}}$$

Falling decay t_f is the t for which v_B falls to V_{OL}

$$V_{OL} = V_{TH} + \left(V_S - V_{TH}\right) e^{\frac{-t_f}{R_{TH}C_{GS}}}$$

or

$$t_f = -R_{TH}C_{GS} \ln \frac{V_{OL} - V_{TH}}{V_S - V_{TH}}$$

$$t_f = -R_{TH}C_{GS} \ln \frac{V_{OL} - V_{TH}}{V_S - V_{TH}}$$

e.g.
$$R_L=1K$$
 $V_S=5V$ $R_{ON}=10\Omega$ $C_{GS}=0.1~pF$ $V_{OL}=1V$ $R_{TH}\approx 10\Omega, \quad V_{TH}\approx 0V$
$$t_f=-10\cdot 0.1\cdot 10^{-12}~\ln\frac{1}{5}$$
 $=1.6~ps$ $RC=1~ps$!

For recitation: Slow may be better Problem

So the engineers decided to speed it up...

For recitation: Slow may be better Problem

••• but, disaster!

 $\begin{array}{c} v: \\ \text{expected} \\ \hline \\ V_{IL}^{--A--A} \\ \end{array}$

Why? Consider ...

crosstalk!

model for crosstalk: $\stackrel{R}{\stackrel{\downarrow}{=}} \stackrel{+}{\stackrel{\vee}{=}}$

Case (3)

••• 6.002 expert saw the solution

Detailed analysis in recitation.