Named-entity recognition for Russian using BiLSTM

https://github.com/lilaspourpre/ner_svm

Irina Nikishina 31 March 2018

MCL171

Table of contents

- 1. Introduction
- 2. Methodology
- 3. Implementation
- 4. Evaluation Results
- 5. Conclusion

Introduction

Issue relevance

The Language itself

- issue is mostly solved for English
- · no open and efficient tools for Russian

Dialog Evaluation

· FactRuEval 2016

Subtask of other NLP tasks

- · Information Extraction
- · Co-reference resolution
- ...

Dialog 2016

FactRuFval

- devset (122 texts, \approx 30940 tokens)
- testset(132 texts, \approx 59382 tokens)
- · files structure:

Сегментация на токены и предложения (*.tokens)

Каждая строка - один токен. Предложения разделены пустой строкой.

Описание одного токена состоит из следующих полей:

- id токена
- позиция начала токена (от начала текста)
- ллина токена
- TEKCT TOKEHA

Разделитель полей - пробел. В токене пробела быть не может.

Спаны (*.spans)

Каждая строка - один спан. Разделитель полей - пробел.

id cnaua

- тип спана
- позиция первого символа спана от начала текста
- длина спана в символах
- первый токен спана
- длина спана в токенах

Справочно (после решётки):

- все іd входящих токенов
- все тексты входящих в спан токенов

Упоминания объектов (*.objects)

Каждая строка - одно упоминание объекта. Разедлитель полей - пробел.

Повя

- id упоминания
- виньнимопу пит •
- список идентификаторов входящих в упоминание спанов

Справочно (после решётки):

текст всех входящих в упоминание объекта спанов

BILOU tagging

	В	1	L	0	U	
ı	beginning	g''inside'	'last'	'outside'	'unit'	,
	•	приехал О	в О	Москву ULoc		визитом О
О	ПАО Borg	« 0	Газпром LOrg	0 O		

Output format

 \cdot Three types of entities: Person, Location, Org

start_index	length	type
0	12	Person
44	7	Location
69	20	Org

Methodology

Feature creation

Word Level	Text level	Global context level
word case word length special characters letters type part of speech morphological case affixes	position case concordance document frequency lowercase in context case (window=2) part-of-speech (window=2) morphological case (window=2) punctuation (window=2) letters type (window=2)	word embeddings

Previous approaches

Supervised learning

· SVM

Neural networks

• biLSTM

Hypothesis

 CNN outperforms biLSTM and SVM in Named Entity recognition task.

Project goal

Develop an CNN algorithm using Tensorflow of the automatic NE recognition for the Russian language on FactRuEval2016 data

Implementation

Pipeline

Model Trainer UML Diagram

Convolutional Neural Network

Convolutional Neural Network

- 100 epochs
- batch_size = 8
- max_len for each batch
- fasttext_size = 100
- output_size = 13
- hidden_size = 512
- · conv1
 - filter size=5
 - num_filters = fasttext_size
 - · padding = SAME
- · conv2
 - filter_sizes=[3,4,5]
 - num_filters = hidden_size
 - (activation_function = relu)?
 - · padding = SAME
 - max_pool_ksize=[1, filter_size, 1, 1]
- dense layer (activation_fn = tanh)

Evaluation Results

CNN for NERC

type	precision	recall	F1
Person	0.4272	0.6146	0.5040
Location	0.5257	0.2804	0.3657
Organization	0.3933	0.6057	0.4769
Overall	0.4487	0.5121	0.4783

SVM for NERC

type	precision	recall	F1
Person	0.7280	0.7493	0.7385
Location	0.6824	0.7997	0.7346
Organization	0.6231	0.5163	0.5647
Overall	0.6789	0.6756	0.6772

biLSTM for NERC

type	precision	recall	F1
Person	0.7843	0.7215	0.7516
Location	0.6941	0.8268	0.7547
Organization	0.6494	0.6098	0.6289
Overall	0.7050	0.7104	0.7077

Comparison

type	precision	recall	F1
CNN	0.4487	0.5121	0.4783
SVM	0.6789	0.6756	0.6772
BiLSTM	0.7050	0.7104	0.7077

Conclusion

Errors

Марин Ле Пен стала кандидатом на пост главы Франции Дочь основателя Национального фронта имеет все шансы на победу в выборах.
О французском национальном самосознании читайте в статье Частного корреспондента «Французы по носу и по паспорту»

- · Loc = Org
- quotes
- entity overlaping
 - памятник Пушкину -> Loc
 - · Пушкину -> Person
- CNN problems

Summary

- BiLSTM outperform CNN
- Feature problems?
- · Architecture problems (layers, learning rate, optimizer)?
- · > 3 hours of training
- Use LSTM+CRF

Thank you for your attention!

Questions