第12章 再论图论

2021年6月10日 11:38

12.1 色数

问题: 电视台, 距离近之间有干扰, 用不同的频道 图: G = (V, E), V: 顶点——电视台, E: 足够近

顶点分配颜色, 相邻顶点不同色

k 色: $x(G) = k \Leftrightarrow$ 存在 k 色着色,不存在 k-1 色着色

定理: 对于图 G, 有 $1 \le x(G) \le n$, 且 $x(G) = 1 \Leftrightarrow \mathcal{E}$ 边图, $x(G) = n \Leftrightarrow G = K_n$

定理: 设 H 是 G 的子图,则 $x(H) \le x(G)$,若 $H = K_p$,则 $x(G) \ge p$ (用于证明 x(G) = k)

设 x(G)=k,记 V_1,V_2,\dots,V_k 是 G 中染 1 号色,2 号色,...,k 号色的顶点子集合 \Rightarrow V_i 中顶点不相邻 \Rightarrow $G[V_i]$ 是零图(将没有任何边的图定义为零图)

推论: 设 G 是 n 阶图, G 含顶点最多导出子图为零图, 其顶点数为 q, 则 $x(G) \ge \frac{n}{a}$

证明: 设 G 中染 1, 2, ..., k 色的顶点集合为 $V_1, V_2, ..., V_k$ $\Rightarrow V = V_1 \cup V_2 \cup \cdots \cup V_k$ $\Rightarrow n = |V| = |V_1| + |V_2| + \cdots + |V_k| \le k \cdot q$ $\Rightarrow k \ge \frac{n}{q}$

定理: $x(G) = 2 \Leftrightarrow G$ 有边, 且为二分图

证明: $x(G) = 1 \Leftrightarrow 无边$

调度问题

多个任务:资源冲突,不能同时调度

贪心算法 (可能得到的是局部最优, 而不是全局最优):

(1) 将所有顶点编序号: x₁,x₂,...,x_n

(2) x₁ 染成 1 色

(3) 若已染 $x_1, x_2, ..., x_{i-1}$,染 x_i 用 x_i 相邻顶点未用的颜色,取颜色号最小

定理: 贪心算法产生 G 的顶点的一个着色 $x(G) \leq \Delta + 1$, 其中 $\Delta - -$ 顶点的最大度数

证明: x_1 用 1 染色,设 $x_1, x_2, ..., x_{i-1}$ 染色号在 1,2,..., Δ + 1 之间

因 $\deg(x_i) \leq \Delta \Rightarrow x_i$ 的相邻顶点用了 Δ 种颜色,从 1,2,..., $\Delta+1$ 色中有颜色可以染 x_i

定理: 若 G 不是完全图,也不是奇数阶循环图,则 $x(G) \leq \Delta$

12.2 平面图

平面图: 可画在平面上, 使得任意两条边除公共顶点外, 没有交点

平面图的面(区域):

面数 (区域数): r

定理: 设 G 是连通平面图,则 n-e+r=2,其中 n——顶点数,e——边数,r——面数

证明:设G是树,则n-e=1,r=1,满足n-e+r=2

若对 $n-e=k \ge 1$ 成立

若 $n-e=k+1\geq 2\Longrightarrow G$ 有圈C,取 $e\in E(C)$ 考虑G-e,G-e是连通图

由归纳假设: n(G-e)-e(G-e)+r(G-e)=2

其中, n(G-e) = n(G) e(G-e) = e(G) - 1 r(G-e) = r(G) - 1

则 n(G) - (e(G) - 1) + (r(G) - 1) = 2

定理:设G是 $n \ge 3$ 的平面图,则 $n \le 3e - 6$

证明: 先定义面的次数, $\deg(f_i)$: 该面边界上的边数

(从面的一个顶点开始,沿着边走,最后走回出发点,途中经过的边数为 $\deg(f_i)$,下图中的桥走了 2 遍)

$$\Rightarrow \sum_{i=1}^{r} \deg(f_i) = 2 \cdot e$$

$$\begin{split} &\Rightarrow \sum_{i=1} \deg(f_i) = 2 \cdot e \\ & \stackrel{\textstyle \star}{=} n \geq 3, \ \ \deg(f_i) \geq 3 \Rightarrow \sum_{i=1}^r \deg(f_i) \geq 3 \cdot r \end{split}$$

 $\Rightarrow 2e \ge 3r$ $\nabla : n - e + r = 2$ $\Rightarrow e \le 3 \cdot n - 6$

例: K₅ 不是平面图

解: $n(K_5) = 5$, $3 \cdot n - 6 = 9$

 $e(K_5) = 10 > 9 = 3 \cdot n - 6 \implies K_5$ 不是平面图

 K_n 是平面图 $\Leftrightarrow n \leq 4$

定理: 若 $n \ge 3$, 且G中无奇图, G是平面图, 则 $e \le 2n-4$

证明: $\sum_{i=1}^r \deg(f_i) = 2 \cdot e$ 每个面至少被 4条边所围

 $\Rightarrow \deg(f_i) \ge 4$ $\Rightarrow 2e \ge 4r$ $\because n - e + r = 2$ $\Rightarrow e \le 2n - 4$

例: K_{3,3} 不是平面图

解: $K_{3,3}$ 无奇图, 若 $K_{3,3}$ 是平面图, 则 $e \le 2n-4$

 $n(3,3) = 6, \quad 2n-4=8$ n(3,3) = 9 > 8 = 2n-4

矛盾,故 $K_{3,3}$ 不是平面图

一般: $K_{p,q}$ 是平面图 $\Leftrightarrow p \le 2$ 或 $q \le 2$

同胚图: G与H同胚

定理(kuralosky): G 是平面图 \Leftrightarrow G 中无与 $K_5, K_{3,3}$ 的同胚子图

12.3 万色定理

G 的色数 x(G): $x(K_6) = 6$ 定理: x(平面图 $) \le 5$

四色定理 (猜想): 给定世界地图, 每国一色, 相邻国不同色, 四色足够 地图染色 ⇔ 平面图的顶点染色

引理:设G有一个x(G)色的染色方案,r,b是其中的两种颜色, $G_{r,b}$ 是 G 中以 r, b 色顶点的导出子图,设 $H_{r,b}$ 是 $G_{r,b}$ 的一个连通分量, 将 $H_{r,b}$ 中颜色互换 \Rightarrow 仍是 G 的 x(G) 染色

证明: 反证: 若不是 G 的 x(G) 染色 \Rightarrow 某两个 r 色或某两个 b 色相邻, 不妨设为 x, y 为 r 色, x, y 相邻

- (1) $x, y \in \mathbb{R}_{(r,b)} \to x, y$ 原来是 b 色且相邻,原来染色不对,矛盾
- (2) $x,y \notin VH_{r,b} \rightarrow x,y$ 原来是 r 色且相邻,原来染色不对,矛盾
- (3) $x \in VH_{r,b}$ $\neq VH_{r,b}$ \Rightarrow x, y 相邻,在 $G_{r,b}$ 的同一个连通分量,矛盾

引理: $\delta(G) \leq 5$, G 是平面图 (δ ——图中顶点的最小度数)

证明: $n \le 2$, $\delta(G) < 5$

$$n \geq 3 \implies e \leq 3n-6$$

$$n \ge 3 \implies e \le 3n - 6$$

$$\delta(G) \cdot n \le \sum_{x \in V(G)} \deg(x) = 2e \le 6n - 12 \implies \delta(G) \le 6 - \frac{12}{n} \implies \delta(G) \le 5$$

五色定理: $x(G) \le 5$, G 是平面图

证明:对n作归纳

- (1) $n \le 5$, $x(G) \le 5$
- (2) 设n = k时, $x(G) \le 5$
- (3) 设 G, 满足顶点数为 n+1

 $\mathbb{X} x \in V(G), \deg(x) = \delta(G) \leq 5$

由归纳假设, $x(G-x) \le 5$, 取 G-x 的 5 染色, 颜色分别为 1,2,3,4,5

- (3.1) $deg(x) \le 4$, x 的相邻顶点至多用了 4 色, x 可染色
- (3.2) deg(x) = 5, x 的相邻顶点用的颜色数 ≤ 4 , x 可染色
- (3.3) deg(x) = 5, x 的相邻顶点用了 5 种颜色,将 G 画在平面上, 其邻顶点按顺时针方向为 a,b,c,d,e,其色依次为 1,2,3,4,5, 考虑 G_{1,3}
 - (A) a, c 不在 $G_{1,3}$ 的同一个连通分量,将 a 所在的连通分量中 1, 3 色互换,仍是染色,x 可染 1 色
 - (B) a 与 c 在同一个连通分量,存在 1,3 色顶点交替出现的路径 P,P 的终点和起点分别为 a,c下面考虑 G_{2,4}
 - (C) b, d 不在 $G_{2,4}$ 的同一个连通分量,同 (A)
 - (D) b, d 在 $G_{2,4}$ 的同一个连通分量 \Rightarrow 存在从 b 到 d 的路径 Q,Q 上 2, 4 色顶点交替出现

由假设可知 P 与 Q 有交点:

- (a) 不是顶点, 与平面图矛盾
- (b) 是公共顶点,在P上是1或3色,在Q上是2或4色,矛盾

显然, (B) 和 (D) 不能同时成立

12.4 独立数与团数

定义:独立集 I:

 $1.I \subseteq V(G)$;

极大独立集,最大独立集

独立数 a(G): 最大独立集的顶点数,在 G 的顶点着色下,有相同着色的顶点的最大个数

G 的一个 x(G)=k 的染色, $V_1,V_2,...,V_k$ 分别为染 1,2,...,k 色顶点集合 $\Rightarrow V_k$ 是独立集 $\Rightarrow |V_i| \leq a(G)$

推论: $x(G) \ge \frac{n}{a(G)}$

证明: $n = |V| = |V_1| + |V_2| + \dots + |V_k| \le k \cdot a(G)$ $\Rightarrow k \ge \frac{n}{a(G)}$

对于零图 N_n 、完全图 K_n 、完全二分图 $K_{m,n}$ 有:

 $a(N_n)=n, \qquad a(K_n)=1, \qquad \text{dM}_{m,n} \not = \max\{m,n\}$

控制集 D:

1.D⊆V(G); 2.任一顶点 v∈V(G),v∈D 或与D中某顶点相邻

极小控制集,最小控制集

控制数 dom(G): 最小控制集的顶点数

例: $dom(N_n) = n$, $dom(K_n) = 1$, $dom(N_n) \neq 2$, 如果 $m, n \geq 2$

定理: $dom(G) \leq \left\lfloor \frac{n}{2} \right\rfloor$, $n \geq 2$, G 是连通图

证明: 取 G 的生成树 T, $dom(G) \leq dom(T)$,

下证: $dom(T) \leq \left\lfloor \frac{n}{2} \right\rfloor$

对 n 作归纳:

 $n=2, \qquad dom(K_2)=1$

 $n \ge 3$, 取一个叶子 u, 设与 v 相邻,

设 T-v 的连通分支为 T_1,T_2,\ldots,T_k,u

由归纳假设可知, $dom(T_i) \leq \left\lfloor \frac{n_i}{2} \right\rfloor, n_i \to T_i$ 的顶点数

 $dom(T) \leq dom(T_1) + dom(T_2) + \dots + dom(T_i) + 1 \leq \left \lfloor \frac{n_1}{2} \right \rfloor + \left \lfloor \frac{n_2}{2} \right \rfloor + \dots + \left \lfloor \frac{n_k}{2} \right \rfloor + 1 \leq \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1}{2} \right \rfloor + 1 \leq \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1}{2} \right \rfloor + 1 \leq \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor = \left \lfloor \frac{n_1 + n_2 + \dots + n_k + 2}{2} \right \rfloor$

团 S:

 $1.S \subseteq V(G)$;

2.G[S] = 完全图,即 S 导出的子图是完全图

团数 w(G): 团中顶点的最大数目

例: $w(N_n) = 1$, $w(K_n) = n$, $w(m_n) \neq 2$

12.5 匹配数

例: 教员 A, B, C, D

四门课日,英,德,法

A: 英, 日

B: 英, 日

C: 英, 德, 法

D: 法

排课:每位老师教一门课,每门课有老师教

二分图

排课:无公共顶点的边子集

图论: G = (V, E)匹配: 1.E'⊆E

2.E'中任两条边无公共顶点

完美匹配 M: G 中每个顶点是 M 中某边端点

最大匹配: 边数最多

对于完全图 K_n , 当 n 为偶数时,存在完美匹配

例: $Y = \{1, 2, 3, 4, 5\}$

 $A_3 = \{1, 3, 5\}, \qquad A_4 = \{2, 3, 4\}$

 $y = \{1, 2, 3, 4, 5\}$

相异代表系: $e_1 \in A_1, e_2 \in A_2, e_3 \in A_3, e_4 \in A_4 \vdash e_1, e_2, e_3, e_4$ 不同

图中边子集合 E' , E' 是匹配 ,且 A_1,A_2,A_3,A_4 是 E' 中边端点

一个相异代表系就是一个匹配

定理:设 G 是二分图, x, y 是顶点划分, 由 G 构造子集族 A_G , 设 t 是正整数, 下面的子集族 $A_{i_1},A_{i_2},...,A_{i_t}$ 有相异代表系 $(e_1,e_2,...,e_t)$ 等价于 $E'=\left\{\{e_{i_1},A_{i_1}\},\{e_{i_2},A_{i_2}\},...,\{e_{i_t},A_{i_t}\}\right\}$ 是 G 的匹配

推论: $A = (A_1, A_2, ..., A_n)$ 有相异代表系的最大子集合个数为

 $\min_{\substack{1 \leq t \leq n \\ 1 \leq i_1 \leq i_2 < \dots < i_t \leq n}} \left\{ \left| A_{i_1} \cup A_{i_2} \cup \dots \cup A_{i_t} \right| + (n-t) \right\}$

2.任取 $a \in E$, a 至少有一个端点在 V'中

极小覆盖

最小覆盖: 顶点数最小 覆盖数 c(G): 覆盖的顶点数

定理: $C \neq G$ 的覆盖 $\Leftrightarrow V - C$ 是独立集

证明: $C \not\equiv G$ 的覆盖 $\Leftrightarrow G$ 中任意一条边至少有一个端点在 C 中 \Leftrightarrow G 中任意一条边,其两个端点,不会同时在 V-C 中

 \Leftrightarrow V - C 中任二顶点不相邻

 $\Leftrightarrow V-C$ 是独立集

定理: 设 G 是二分图,则 c(G) = p(G),其中匹配数 p(G):最大匹配中边数

证明: (1) $c(G) \ge p(G)$

设 $M = \{a_1, a_2, ..., a_l\}$ 是G的最大匹配

设C是G的覆盖

因为 C 是覆盖,每个 a_i 有一个端点 $v_i \in C$

 \Rightarrow C \supseteq { $v_1, v_2, ..., v_e$ }, 因为 M 是匹配

 $\Rightarrow v_1, v_2, ..., v_e$ 互不相同

 $\Rightarrow |C| \ge |\{v_1, v_2, \dots, v_e\}| = e = p(G)$ \Rightarrow c(G) \geq p(G)

(2) $p(G) \ge c(G)$

由相异代表系: 最大相异代表系数为

$$\min_{\substack{1 \le k \le n \\ 1 \le i_1 < i_2 < \dots < i_k \le n}} \left\{ \left| A_{i_1} \cup A_{i_2} \cup \dots \cup A_{i_k} \right| + (n-k) \right\}$$

假设 $i_1, i_2, ..., i_l$ 是满足上面最小值的下标

$$p(G) = \left|A_{i_1} \cup A_{i_2} \cup \cdots \cup A_{i_l}\right| + (n-l)$$

$$\diamondsuit \left\{ j_{1},j_{2},\ldots,j_{n-l} \right\} = \left\{ 1,2,\ldots,n \right\} - \left\{ i_{1},i_{2},\ldots,i_{l} \right\}$$

构造覆盖
$$C = \{A_{j_1}, A_{j_2}, \dots, A_{j_{n-l}}\} \cup A_{i_1} \cup A_{i_2} \cup \dots \cup A_{i_l}$$

$$|C| = (n-l) + |A_{i_1} \cup A_{i_2} \cup \dots \cup A_{i_l}| = p(G)$$

$$\Rightarrow c(G) \leq |C| = p(G)$$

综上可知, c(G) = p(G)成立

例: $c(K_n) = n - 1$, $p(G) = \lfloor \frac{n}{2} \rfloor$

完备匹配的充分必要条件:

 $G_{V\setminus U}=(V\setminus U,F)$ 2. $G_{V\setminus U}=(V\setminus U,F)$ $G_{V\setminus U}$ 存在多个连通分量,称有奇数个顶点的连通分量为奇分量

定理 (Tutte) : G有完美匹配 $\Leftrightarrow \forall U \subseteq V, oG_{V \setminus U} \not \models |U|$

Chap 12: 6

Chap 12: 19, 20, 27, 31, 33

Chap 12: 49