

Matrices

Notation

$$\begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix}$$

Order: 2×3

.....

Addition and Subtraction

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \pm \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a \pm e & b \pm f \\ c \pm g & d \pm h \end{bmatrix}$$

Scalar Multiplication

$$k \times \begin{bmatrix} a & b & c \\ d & e & f \end{bmatrix} = \begin{bmatrix} ka & kb & kc \\ kd & ke & kf \end{bmatrix}$$

Matrix Multiplication

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} aw + by & ax + bz \\ cw + dy & cx + dz \end{bmatrix}$$

Order:

 $n \times m \leftarrow \text{must match} \rightarrow m \times p$ Resultant matrix: $n \times p$

.....

Identity Matrix

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad AI = IA = A$$

Inverse of a Matrix

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$
$$\det A = |A| = ad - bc$$

- If $\det A \neq 0$, A is invertible
- If $\det A = 0$, A is singular

$$AA^{-1} = A^{-1}A = I$$

.....

Matrix Algebra

- A + O = O + A = A where O is zero/null matrix
- A + (-A) = (-A) + A = O
- A+B exists if both have same order
- A + B = B + A {commutative}
- $\bullet (A + B) + C = A + (B + C)$ {associative}

- In general, $AB \neq BA$ {non-commutative}
- (AB)C = A(BC) {associative}
- AO = OA = O
- AB may be O without A = O or B = O
- A(B+C) = AB + AC {distributive law}
- \bullet AI = IA = A
- A^n exists provided A is square and $n \in \mathbb{Z}^+$
- $AA^{-1} = A^{-1}A = I$
- $(A^{-1})^{-1} = A$
- $(kA)^{-1} = \frac{1}{k}A^{-1}$
- $(AB)^{-1} = B^{-1}A^{-1}$

Simultaneous Linear Equations

$$\begin{cases} 2x + 3y = 4 \\ 5x + 4y = 17 \end{cases}$$

$$\begin{bmatrix} 2 & 3 \\ 5 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 17 \end{bmatrix}$$

$$AX = B, \ X = A^{-1}B$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = -\frac{1}{7} \begin{bmatrix} 4 & -3 \\ -5 & 2 \end{bmatrix} \begin{bmatrix} 4 \\ 17 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \end{bmatrix}$$

$$\therefore x = 5, \ y = -2$$

Translations and Lines in 2D

$$A = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} \text{ translated through } b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$
$$A' = \begin{pmatrix} a_1 + b_1 \\ a_2 + b_2 \end{pmatrix}$$

Line:

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \end{pmatrix} + \lambda \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$$

Where λ is a parameter

Linear Transformations

Maps an object initial vector onto its image.

T is a linear transformation if:

- $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$
- $T(k\vec{u}) = kT(\vec{u})$
- $T(\vec{0}) = \vec{0}$

- $T(-\vec{u}) = -T(\vec{u})$
- $T(k_1\vec{u_1} + k_2\vec{u_2} + \dots + k_r\vec{u_r})$ = $k_1T(\vec{u_1}) + k_2T(\vec{u_2}) + \dots + k_rT(\vec{u_r})$

.....

Geometric Linear Transformations

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
$$v' = Av, \ v = A^{-1}v$$

To transform a function or relation, substitute in x and y from v.

......

Rotations About the Origin

For a rotation anticlockwise about O(0,0) through θ ,

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

with $\det A = 1$

.....

Reflections

For a reflection in the mirror line $y = (\tan \alpha)x$,

$$A = \begin{bmatrix} \cos 2\alpha & \sin 2\alpha \\ \sin 2\alpha & -\cos 2\alpha \end{bmatrix}$$

with det A = -1If $m = \tan \alpha$ then:

$$\cos 2\alpha = \frac{1 - m^2}{1 + m^2} \qquad \sin 2\alpha = \frac{2m}{1 + m^2}$$
$$\tan 2\alpha = \frac{2m}{1 - m^2}$$

Dilatations

For a dilation with scale factor m parallel to the x-axis and k parallel to the y-axis:

$$A = \begin{bmatrix} m & 0 \\ 0 & k \end{bmatrix}$$

Compositions of Transformations

If v is transformed under T_A followed by T_B ,

$$v' = BAv$$

The transformation is $T_B \circ T_A$

Real and Complex Numbers

Number Sets

$\mathbb{N} = \{1, 2, 3, 4, \dots\}$ natural numbers
$\mathbb{Z} = \{0, \pm 1, \pm 2, \pm 3, \dots\}$ all integers
$\mathbb{Z}^+ = \{1, 2, 3, \dots\}$ positive integers
$\mathbb{Z}^- = \{-1, -2, -3, \dots\}$ negative integers
© all rational numbers

Q all rational numbers

O' all irrational numbers

 \mathbb{Q}' all irrational numbers

 $\mathbb R$ all real numbers

 $\mathbb I$ all imaginary numbers

 $\mathbb C$ all complex numbers

Real Numbers

Numbers that can be placed on a number line.

Rational Numbers

A real number which can be written in the form $\frac{p}{q}$ where $p,q\in\mathbb{Z}$ and $q\neq 0$. Have a decimal expansion that either terminates or recurs.

Irrational Numbers

A real number which cannot be written in the form $\frac{p}{q}$ where $p,q\in\mathbb{Z}$ and $q\neq 0$. For example, surds, (\sqrt{a}) .

.....

Interval Notation

$$A = \{x \mid a \le x \le b, \ x \in \mathbb{R}\}\$$

"The set of real numbers x such that x is between a and b, including a and b."

- An interval is a connected subset of the number line \mathbb{R} .
- An interval is closed if both of its endpoints are included.
- An interval is open if both of its endpoints are not included.

$$[a,b]$$
 is $\{x \mid a \le x \le b, x \in \mathbb{R}\}$

$$[a, b)$$
 is $\{x \mid a \le x < b, x \in \mathbb{R}\}$

$$(a, b]$$
 is $\{x \mid a < x \le b, x \in \mathbb{R}\}$

$$(a,b)$$
 is $\{x \mid a < x < b, x \in \mathbb{R}\}$

Set Notation

union

\in	element of	∉	not element
\subset	subset	$\not\subset$	not subset
\subseteq	equal subset	Ø	empty set

 \cap intersection

.....

Imaginary Numbers

A number which cannot be placed on a number line in the form ai where $a \in \mathbb{R}$ and $i = \sqrt{-1}$.

.....

Complex Numbers

Any number in the form a+bi where $a,b\in\mathbb{R}$ and $i=\sqrt{-1}$.

If
$$z = a + bi$$

$$\Re \mathfrak{e}(z) = a \qquad \Im \mathfrak{m}(z) = b$$

Conjugates (Surds)

Rationalising the denominator.

$$\frac{a+\sqrt{b}}{c+\sqrt{d}} = \frac{a+\sqrt{b}}{c+\sqrt{d}} \times \frac{c-\sqrt{d}}{c-\sqrt{d}}$$

Complex Conjugates

$$z = a + bi$$
 and $z^* = a - bi$

are complex conjugates. To write a fraction of two complex numbers with a real denominator:

$$\frac{z}{w} = \frac{z}{w} \times \frac{w^*}{w^*} = \frac{zw^*}{ww^*}$$
$$\frac{a+bi}{c+di} = \frac{a+bi}{c+di} \times \frac{c-di}{c-di}$$

Properties:

•
$$(z^*)^* = z$$

•
$$(z_1 + z_2)^* = z_1^* + z_2^*$$

•
$$(z_1z_2)^* = z_1^* \times z_2^*$$

$$\bullet \left(\frac{z_1}{z_2}\right)^* = \frac{z_1^*}{z_2^*}$$

•
$$(z^n)^* = (z^*)^n, \ n \in \mathbb{Z}^+$$

•
$$z + z^*$$
 and zz^* are real

Complex Solutions of Quadratics

If a real quadratic equation has $\Delta < 0$, and root c + di, the other root is its conjugate c - di.

Then the equation is:

$$a(x^2 - 2cx + (c^2 + d^2)) = 0, \ a \neq 0$$

For the roots of $ax^2 + bx + c = 0$:

$$sum = -\frac{b}{a} \qquad product = \frac{c}{a}$$

Complex Numbers as 2D Vectors

Complex numbers can be represented on an Argand diagram where the x-axis is the real axis and the y-axis is the imaginary axis.

$$\overrightarrow{OP} = \begin{pmatrix} x \\ y \end{pmatrix}$$
 represents $x + yi$

Modulus

The modulus of the complex number z = a + bi is the length of the vector $\begin{pmatrix} a \\ b \end{pmatrix}$, which is the real number:

$$|z| = \sqrt{a^2 + b^2}$$

Properties:

- $\bullet |z^*| = |z|$
- $\bullet |z^*| = zz^*$
- $\bullet |z_1 z_2| = |z_1||z_2|$
- $\bullet \left| \frac{z_1}{z_2} \right|^* = \frac{|z_1|}{|z_2|}, \ z_2 \neq 0$
- $|z_1 z_2 z_3 \dots z_n| = |z_1||z_2||z_3|\dots|z_n|$

.....

• $|z^n| = |z|^n$, $n \in \mathbb{Z}^+$

Coordinate Geometry

If
$$z_1 \equiv \overrightarrow{OP_1}$$
 and $z_2 \equiv \overrightarrow{OP_2}$

Distance between P_1 and P_2 is:

$$|z_1 - z_2|$$

If M is the midpoint between P_1 and P_2 ,

$$\overrightarrow{OM} \equiv \frac{z_1 + z_2}{2}$$

Sequences and Series

Arithmetic Sequences

Sequence where each term differs from the previous by a fixed term, the common difference.

First term: t_1

Common difference: d

General Formula:

$$t_n = t_1 + (n-1)d$$

.....

Geometric Sequences

Sequence where each is the product of the previous term and a fixed common ratio.

First term: t_1 Common ratio: rGeneral Formula:

$$t_n = t_1 r^{n-1}$$

.....

Series

A series is the sum of the terms in a sequence.

Sigma Notation:

$$\sum_{k=1}^{n} t_k = t_1 + t_2 + t_3 + \dots + t_n$$

Properties:

$$\sum_{k=1}^{n} (a_k + b_k) = \sum_{k=1}^{n} a_k + \sum_{k=1}^{n} b_k$$

If c is a constant,

$$\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$$

$$\sum_{k=1}^{n} c = cn$$

Arithmetic Series

The sum of the terms of an arithmetic sequence.

$$S_n = \sum_{k=1}^{n} (t_1 + (k-1)d)$$

$$S_n = \frac{n}{2}(t_1 + t_n)$$
or
$$S_n = \frac{n}{2}(2t_1 + (n-1)d)$$

.....

Geometric Series

The sum of the terms of a geometric sequence.

$$S_n = \sum_{k=1}^{n} t_1 r^{k-1}$$

$$S_n = \frac{t_1(r^n - 1)}{r - 1}$$
or
$$S_n = \frac{t_1(1 - r^n)}{1 - r}$$

$$r \neq 1$$

Sum of Infinite Geometric Series:

If |r| < 1, an infinite series of the form

$$t_1 + t_1 r + t_1 r^2 + \dots = \sum_{k=1}^{\infty} t_1 r^{k-1}$$

will converge to the sum

$$S = \frac{t_1}{1 - r}$$