CSE 2105: DIGITAL LOGIC DESIGN Combinational Logic

• Logic Circuits:

- Logic circuits for digital systems may be combinational or sequential.

• Combinational Circuits:

- A combinational circuit consists of logic gates whose outputs at any time are determined directly from the <u>present combination of inputs</u> without regard to previous inputs.
- A combinational circuit consists of input variables, logic gates and output variables. The logic gates accept signals from the inputs and generate signals to the outputs.
- This process transforms binary information from the given input data to the required output data.
- Obviously both input and output data are represented by binary signals.

COMBINATIONAL CIRCUITS

Fig. 4-1 Block Diagram of Combinational Circuit

- For n input variables, there are 2ⁿ possible combinations of binary input values. For each possible input combination, there is one and only one possible output combination.
- A combinational circuit can be described by m Boolean functions, one for each output variable.
- Each output function is expressed in terms of the n input variables.

DESIGN PROCEDURE OF COMBINATIONAL LOGIC CIRCUIT

- Given a problem statement:
 - Determine the number of *input variables* and *output variables*. The input and output variables are assigned letter symbols.
 - Derive the truth table to define the required relationships between input and outputs.
 - Simplify the Boolean expression for each output.
 - Produce the required circuit and verify it.

Example: Design a circuit to convert a 4 bit "BCD" digit to "Excess 3" code converter.

DESIGN PROCEDURE BCD-TO-EXCESS 3 CONVERTER

A I	3	\boldsymbol{C}	D	w	x	y	z
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0
1	0	1	0	X	X	X	X
1	0	1	1	X	X	X	X
1	1	0	0	X	X	X	X
1	1	0	1	X	X	X	X
1	1	1	0	X	X	X	X
1	1	1	1	X	X	X	X

$$y = C'D' + CD$$

$$x = B'C+B'D+BC'D'$$

$$z = D'$$

DESIGN PROCEDURE BCD-TO-EXCESS 3 CONVERTER

A B C D	w x y z
0 0 0 0	0 0 1 1
0 0 0 1	0 1 0 0
0 0 1 0	0 1 0 1
0 0 1 1	0 1 1 0
0 1 0 0	0 1 1 1
0 1 0 1	1 0 0 0
0 1 1 0	1 0 0 1
0 1 1 1	1 0 1 0
1 0 0 0	1 0 1 1
1 0 0 1	1 1 0 0
1 0 1 0	X X X X
1 0 1 1	X X X X
1 1 0 0	X X X X
1 1 0 1	X X X X
1 1 1 0	X X X X
1111	X X X X

$$w = A + B(C+D)$$
 $y = (C+D)' + CD$ 6
 $x = B'(C+D) + B(C+D)'$ $z = D'$

VERIFICATION

Check the functional correctness of the logic circuit:

- Apply all possible input combinations
- And check if the circuit generates the correct outputs for each input combinations
- For large circuits with many input combinations, this may not be feasible.
- Statistical techniques may be used to verify the correctness of large circuits with many input combinations.

EXERCISE

- Design a combinational circuit that converts a four bit Gray code to a four bit Binary number.
- Design a code converter that converts a decimal digit from the 8,4,-2,-1 code to BCD.
- Design a four bit 2's complementer circuit.
- Design a three bit square circuit.