CMPT 413 Computational Linguistics

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

Context-free Grammars

- Set of rules by which valid sentences can be constructed.
- Example:

```
Sentence → Noun Verb Object
```

Noun → trees | parsers

Verb \rightarrow are | grow

Object → on Noun | Adjective

Adjective → *slowly* | *interesting*

- What strings can Sentence *derive*?
- Syntax only no semantic checking

Derivations of a CFG

- parsers grow on trees
- parsers grow on Noun
- parsers grow Object
- parsers Verb Object
- Noun Verb Object
- Sentence

Derivations and parse trees

Ambiguity

- An input is ambiguous with respect to a CFG if it can be derived with two different parse trees
- A parser needs a mechanical definition of ambiguity as it parses the input string
- Is a parser choice really ambiguous, i.e. does it lead to ambiguous parse trees? or not?
- We can formally define ambiguity in terms of the derivations possible in a CFG

Arithmetic Expressions

- $E \rightarrow E + E$
- $E \rightarrow E * E$
- $E \rightarrow (E)$
- E → E
- $E \rightarrow id$

Leftmost derivations for id + id * id

$$E \rightarrow E + E$$
 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow -E$
 $E \rightarrow id$

Leftmost derivations for id + id * id

$$E \rightarrow E + E$$
 $E \rightarrow E * E$
 $E \rightarrow (E)$
 $E \rightarrow -E$
 $E \rightarrow id$

•
$$E \Rightarrow E * E$$

 $\Rightarrow E + E * E$
 $\Rightarrow id + E * E$
 $\Rightarrow id + id * E$
 $\Rightarrow id + id * id$

Rightmost derivation for id + id * id

$$E \rightarrow E + E$$
 $E \Rightarrow E + E$ $E \rightarrow E * E$ $E + E * E$ $E \rightarrow (E)$ $E + E * id$ $E \rightarrow -E$ $E + id * id$ $E \rightarrow id$ $\Rightarrow id + id * id$

Rightmost derivation for id + id * id

$$E \rightarrow E + E \qquad E \Rightarrow E * E$$

$$E \rightarrow E * E \Rightarrow E * id$$

$$E \rightarrow (E) \Rightarrow E + E * id$$

$$E \rightarrow -E \Rightarrow E + id * id$$

$$E \rightarrow id \Rightarrow id + id * id$$

$$id \qquad id$$

2013-03-14

E

id

Ambiguity

- We can now define *ambiguity* for a context-free parser
- If a parser has a choice of two different leftmost derivations,
- or if a parser has a choice of two different rightmost derivations,
- for a particular input then that input is ambiguous

Parsing - Roadmap

- Parser is a decision procedure: builds a parse tree
- Top-down vs. bottom-up
- Bottom-up parsing (CKY)
- Shift-reduce parsing
- Combining top-down and bottom-up: Earley parsing

Top-Down vs. Bottom Up

Grammar: $S \rightarrow A B$

Input String: ccbca

 $A \rightarrow c \mid \epsilon$

 $B \rightarrow cbB \mid ca$

Top-Down/leftmost		Bottom-Up/rightmost		
$S \Rightarrow AB$	S→AB	ccbca ← Acbca	A→c	
⇒cB	A→c	← AcbB	B→ca	
⇒ ccbB	B→cbB	←AB	B→cbB	
⇒ccbca	B→ca	\Leftarrow S	S→AB	

Ambiguity

- Grammar is ambiguous if more than one parse tree is possible for some sentences
- Examples in English:
 - Two sisters reunited after 18 years in checkout counter
- It is undecidable to check using an algorithm whether a grammar is ambiguous

Parsing CFGs

- Consider the problem of parsing with arbitrary CFGs
- For any input string, the parser has to produce a parse tree
- The simpler problem: print **yes** if the input string is generated by the grammar, print **no** otherwise
- This problem is called *recognition*

CKY Recognition Algorithm

- The Cocke-Kasami-Younger algorithm
- As we shall see it runs in time that is polynomial in the size of the input
- It takes space polynomial in the size of the input
- Remarkable fact: it can find all possible parse trees (exponentially many) in polynomial time

Chomsky Normal Form

- Before we can see how CKY works, we need to convert the input CFG into Chomsky Normal Form
- CNF is one of many grammar transformations that *preserve* the language
- CNF means that the input CFG G is converted to a new CFG G' in which all rules are of the form:

 $A \rightarrow B C$

 $A \rightarrow a$

Epsilon Removal

• First step, remove epsilon rules

$$A \rightarrow B C$$

 $C \rightarrow \varepsilon \mid C D \mid a$
 $D \rightarrow b \quad B \rightarrow b$

• After ε-removal:

Removal of Chain Rules

• Second step, remove chain rules

$$A \rightarrow B C \mid C D C$$

 $C \rightarrow D \mid a$
 $D \rightarrow d \quad B \rightarrow b$

• After removal of chain rules:

$$A \rightarrow B a | B D | a D a | a D D | D D a | D D D$$

 $D \rightarrow d \quad B \rightarrow b$

Eliminate terminals from RHS

• Third step, remove terminals from the rhs of rules

$$A \rightarrow B a C d$$

• After removal of terminals from the rhs:

$$A \rightarrow B N_1 C N_2$$

$$N_1 \rightarrow a$$

$$N_2 \rightarrow d$$

Binarize RHS with Nonterminals

• Fourth step, convert the rhs of each rule to have two non-terminals

$$A \rightarrow B N_1 C N_2$$

 $N_1 \rightarrow a$
 $N_2 \rightarrow d$

• After converting to binary form:

$$A \rightarrow B N_3$$
 $N_1 \rightarrow a$
 $N_3 \rightarrow N_1 N_4$ $N_2 \rightarrow d$
 $N_4 \rightarrow C N_2$

CKY algorithm

- We will consider the working of the algorithm on an example CFG and input string
- Example CFG:

$$S \rightarrow A X \mid Y B$$

$$X \rightarrow A B \mid B A \qquad Y \rightarrow B A$$

$$A \rightarrow a \quad B \rightarrow a$$

• Example input string: aaa

CKY Algorithm

	0	1	2	3
		A, B	X, Y	S
0		$A \rightarrow a$	$X \rightarrow AB \mid BA$	$S \to A_{(0,1)} X_{(1,3)}$
		$B \rightarrow a$	$Y \rightarrow B A$	$S \to A_{(0,1)} X_{(1,3)}$ $S \to Y_{(0,2)} B_{(2,3)}$
1			A, B	X, Y
1			$A \rightarrow a$	$X \rightarrow A B \mid B A$
			$B \rightarrow a$	$Y \rightarrow B A$
				A, B
2				$A \rightarrow a$
				$B \rightarrow a$

a

a

a

Parse trees

CKY Algorithm

```
Input string input of size n
Create a 2D table chart of size n^2
for i=0 to n-1
    chart[i][i+1] = A if there is a rule A \rightarrow a and input[i]=a
for j=2 to N
   for i=j-2 downto 0
       for k=i+1 to j-1
          chart[i][j] = A if there is a rule A \rightarrow B C and
            chart[i][k] = B and chart[k][j] = C
return yes if chart[0][n] has the start symbol
else return no
```

CKY algorithm summary

- Parsing arbitrary CFGs
- For the CKY algorithm, the time complexity is $O(l Gl^2 n^3)$
- The space requirement is $O(n^2)$
- The CKY algorithm handles arbitrary ambiguous CFGs
- All ambiguous choices are stored in the chart
- For compilers we consider parsing algorithms for CFGs that do not handle ambiguous grammars

Parsing - Summary

- Parsing arbitrary CFGs: $O(n^3)$ time complexity
- Top-down vs. bottom-up
 - Recursive-descent parsing
 - Shift-reduce parsing
- Earley parsing
- Ambiguous grammars result in parser output with multiple parse trees for a single input string

Parsing - Additional Results

- $O(n^2)$ time complexity for linear grammars
 - All rules are of the form $S \rightarrow aSb$ or $S \rightarrow a$
 - Reason for $O(n^2)$ bound is the linear grammar normal form: $A \rightarrow aB$, $A \rightarrow Ba$, $A \rightarrow B$, $A \rightarrow a$
- Left corner parsers
 - extension of top-down parsing to arbitrary CFGs
- Earley's parsing algorithm
 - $-O(n^3)$ worst case time for arbitrary CFGs just like CKY
 - $-O(n^2)$ worst case time for unambiguous CFGs
 - -O(n) for specific unambiguous grammars

Non-CF Languages

$$L_1 = \{wcw \mid w \in (a|b)*\}$$
 $L_2 = \{a^nb^mc^nd^m \mid n \ge 1, m \ge 1\}$
 $L_3 = \{a^nb^nc^n \mid n \ge 0\}$

CF Languages

$$L_4 = \{wcw^R \mid w \in (a|b)*\}$$
 $S \rightarrow aSa \mid bSb \mid c$
 $L_5 = \{a^nb^mc^md^n \mid n \geq 1, m \geq 1\}$
 $S \rightarrow aSd \mid aAd$
 $A \rightarrow bAc \mid bc$

Context-free languages and Pushdown Automata

- Recall that for each regular language there was an equivalent finite-state automaton
- The FSA was used as a recognizer of the regular language
- For each context-free language there is also an automaton that recognizes it: called a pushdown automaton (pda)

Pushdown Automata

- PDA has
 - an alphabet (terminals) and
 - stack symbols (like non-terminals),
 - a finite-state automaton, and
 - stack

e.g. PDA for language $L = \{ 0^n1^n : n >= 1 \}$

→ implies a push/pop of stack symbol(s)

Shift-reduce parser as a pda

Non-deterministic PDA that is a parser for grammar: $S := 0S1 \mid 2$ $L(S) = \{ 0^n 2 \mid 1^n : n >= 0 \}$

→ implies a push/pop of stack symbol(s)

Reduce action

2013-03-14

check that stack is empty

after reduce

and shift 1

Context-free languages and Pushdown Automata

- Similar to FSAs there are non-deterministic pda and deterministic pda
- Unlike in the case of FSAs we cannot always convert a npda to a dpda
- The construction of a pda will provide us with the algorithm for parsing (take in strings and provide the parse tree)

CKY algorithm for PCFGs

- We will consider the working of the algorithm on an example PCFG and input string
- Example PCFG:

```
S \to A X (0.3) \mid Y B (0.7)

X \to A B (0.1) \mid B A (0.9) Y \to B A (1.0)

A \to a (1.0) B \to a (1.0)
```

• Example input string: aaa

Parse trees

PCFG is consistent: 0.7 + 0.27 + 0.03 = 1.0

