Category 1: Irrational Numbers and Radicals

CALCULATORS NOT ALLOWED

1. (2 pts) Simplify:
$$\sqrt[3]{\sqrt[4]{1 \times 10^{48}}}$$

(A)
$$\sqrt[3]{216}$$

(A)
$$\sqrt[3]{216}$$
 (B) $\sqrt[5]{1,000,000}$ (C) $\sqrt{400}$ (D) $\sqrt{8} \times \sqrt{32}$

(C)
$$\sqrt{400}$$

(D)
$$\sqrt{8} \times \sqrt{32}$$

(E)
$$\sqrt[7]{2187}$$

$$\sqrt{8} + \sqrt{48} - \sqrt{125} + \sqrt{144} + \sqrt{200} - \sqrt{243} + \sqrt{320} - \sqrt{196}$$

Category 2: Algebraic Fractions

1. (2pts) Find the difference:

$$\frac{3x+7}{5x-1} - \frac{2x+3}{3x+1}$$

1. _____

2. (3 pts) Give an expression for "?" that would make the expression below simplify to 2.

$$\frac{\left(3x^2y^3\right)^4\left(6xy^2\right)^3}{\left(324x^2y^3\right)\left(?\right)^3}$$

2.

3. (5pts) Decompose into a sum with two linear denominators:

$$\frac{-3x-15}{x^2+x-2}$$

3. _____

Category 3: Sequences, Series and Progressions

1. (2pts) Find the sum of $\sum_{n=0}^{6} 6(-2)^n + 3$

1. _____

2. (3pts) Find the missing terms in the geometric sequence:

8,	,	,	19.53125
			,

3. (5 pts) Find the sum of the following series. If it is diverging, write "diverging". If it is converging, find the sum.

$$\sum_{i=0}^{\infty} 20 \left(\frac{1}{2}\right)^{i-1}$$

Names		

Calcal	
School	

Category 4: Quadratics in One Variable (Pass in only one paper)

1. (2 pts) Find the exact value of the discriminant for the quadratic equation:

$$-9x^2 - \sqrt{5}x = \frac{3}{2}$$

The solution(s) to this quadratic equation will be:

Rational Irrational Complex/Imaginary (circle one)

2. (3pts) Solve for x. Give only exact answers.

$$\frac{x+3}{x-6} = \frac{2x+3}{8}$$

3. (5pts) Give the smallest positive value for "?" so that the given equation meets the criteria.

3a. One solution

3a. _____

3b. A positive rational value for $\sqrt{b^2 - 4ac}$

3b. ____

3c. Two complex solutions where the coefficient of the imaginary term is rational

3c. _____