Sahand Rezaei-Shoshtari

AI | Robotics Researcher

@ sahand.rezaei-shoshtari@mail.mcgill.ca

☑ sahandrez.github.io

github.com/sahandrez

in linkedin.com/in/sahand-rezaei

1 +1 438-979-1255

Montreal, Canada

EDUCATION

Sep. 2025	PhD, School of Computer Science, McGill University, Montreal, Car	nada
-----------	---	------

Sep. 2020 **Supervisors:** David Meger, Doina Precup

Thesis: Hierarchical Reinforcement Learning for Robots

Dec. 2019 Master of Engineering - Thesis, McGill University, Montreal, Canada

Sep. 2017 Supervisors: Inna Sharf, David Meger

Thesis: Learning Manipulator Dynamics for Control and Interaction Inference

Sep. 2016 Bachelor of Mechanical Engineering, UNIVERSITY OF TEHRAN, Tehran, Iran

Sep. 2012 Supervisor: Masoud Shariat Panahi

CGPA: 3.98/4.00

CGPA: 4.00/4.00

Thesis: Online Path Planning for a Mobile Robot in Dynamic Environments using Reinforcement Learning

M Work Experience

Present Research Intern, SAMSUNG AI CENTRE, Montreal, Canada

Mar. 2020 > Deep reinforcement learning for 5G networks

Mar. 2020 Al Programmer, UBISOFT LA FORGE, Montreal, Canada

Jan. 2020 > Deep reinforcement learning for automated video game testing

Aug. 2019 Research Intern, Samsung AI CENTRE, Montreal, Canada

> Worked on object detection neural networks for human hand-wave motions Mar. 2019

> Implemented the vision stack on-board of a mobile robot using Google Edge TPU

Apr. 2019 Teaching Assistant, McGill University, Montreal, Canada

> Courses: System Dynamics and Control, Numerical Methods, Machine Element Design Sep. 2017

PUBLICATIONS

Rezaei-Shoshtari, Sahand and Meger, David and Sharf, Inna. "Cascaded Gaussian Processes for Data-2019 efficient Robot Dynamics Learning". In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019.

1

CERTIFICATIONS

Deep Learning and Reinforcement Learning Summer School in Edmonton, Canada Aug. 2019

Programming Python, C++, C#, MATLAB, Simulink

Machine Learning Frameworks PyTorch, TensorFlow, GPyTorch, GPFlow

Platforms ROS, Docker

Robotic Software Gazebo, Movelt!, RViz, OpenCV, Bullet
Other Software Unity 3D, SolidWorks, 上下, Microsoft Project

■ SELECT PROJECTS

LEARNING THE LATENT SPACE OF THE DYNAMICS OF A ROBOTIC MANIPULATOR USING DEEP GENERATIVE MODELS

2019

- > Implemented Variational Autoencoders for learning the latent space of the dynamics of a robotic manipulator
- > Used the latent space to infer the interactions of the robot and draw predictions for its future states
- > Collected a dataset of real robotic cutting interactions and evaluated the framework in the context of robotic cutting

CASCADED GAUSSIAN PROCESSES FOR DATA-EFFICIENT ROBOT DYNAMICS LEARNING

2018-2019

☑ IROS 2019 Paper ☑ IROS 2019 Video

- > Developed cascaded Gaussian processes to learn the dynamics of a robotic manipulator in a fashion that respects our knowledge of the underlying topology of the system
- > Evaluated the proposed method for controlling a robotic manipulator using model-based torque controllers
- > Obtained better data and learning efficiency compared to standard methods

LEARNING QUADROTOR CONTROLS USING DATA-EFFICIENT MODEL-BASED REINFORCEMENT LEARNING

2017

- github.com/sahandrez/quad_pilco 🖸 Simulation Videos 🖸 Report
 - > Implemented PILCO (Probabilistic Inference for Learning Control) on a quadrotor to learn the control policies under the loss of an actuator
 - > Successfully learned to hover with only three actuators

MOTION PLANNING AND CONTROL UTILITIES FOR KINOVA JACO 2 ROBOT

2017-2018

- github.com/sahandrez/jaco control
 - > Worked on the full stack of Kinova Jaco 2 robot
 - > Implemented impedance control, feedforward torque control, and velocity control utilities
 - > Implemented motion planning utilities for joint space and Cartesian space planning

DESIGN, FABRICATION AND CONTROL OF A ROTARY STEWART PLATFORM

2016

2

- > Designed and modelled a fully-functional Stewart platform in a team of 4
- > Fabricated the robot with CNC Plastic machining
- > Solved the inverse kinematics and controlled the robot using LabView

Honors and Awards

Nov. 2019	IROS Student and Developing Countries (SDC) Travel Award (\$600), IEEE/RSJ IROS 2019
-----------	--

2017-2018 Grad Excellence Award (\$5000) in Mechanical Engineering, McGill University

2015-2016 Faculty of Engineering Award, Ranked **2**nd, University of Tehran

2014-2015 Faculty of Engineering Award, Ranked 3rd, University of Tehran

2012-2012 Nationwide University Entrance Exam, Ranked 19th, Iran

EXTRACURRICULAR ACTIVITIES

Sep. 2019 Volunteer, 2019 Montreal Al Symposium in Montreal, Canada

May 2019 Volunteer, 2019 IEEE International Conference on Robotics and Automation (ICRA) in Montreal, Canada

66 REFERENCES

References available upon request.