Esame di Ingegneria del software Appello del 26 giugno 2019

Nome e cognome: Matricola:

Il punteggio relativo a ciascuna domanda, indicato fra parentesi, è in trentesimi. I candidati devono consegnare entro un'ora dall'inizio della prova.

Figura 1: Domanda 4.

1	Con riferimento alla Fig. 1, rispondere alle domande.	(5)
	FireMonitor è un'istanza di una classe attiva.	$V \square F \square$
	L'operazione get_temp() viene eseguita una volta sola.	$V \square F \square$
	Le operazioni del frammento B vengono eseguite dopo il frammento A .	$V \square F \square$
	Il frammento A1 può essere interrotto.	$V \square F \square$
	Il frammento B1 può essere interrotto.	$V \square F \square$
2	Dimostrare con una tabella di verità l'equivalenza di $\neg(a \Rightarrow b)$ e $a \land \neg b$.	(5)

	$\begin{vmatrix} a & b \end{vmatrix}$	
	FF	
	F T	
	T F	
	TT	
3	Disegnare uno Statechart che descriva il seguente sistema:	(5)
	Un orologio ha due modi di funzionamento: Display , in cui mostra l'ora, e	(-)
	Setting , in cui si rimette l'ora. Questo modo di funzionamento comprende	
	tre sottostati: SettingHour , SettingMinute , SettingSecond . L'orologio ha	
	due tasti: mode e set. Il tasto mode serve a passare ciclicamente dallo stato	
	iniziale Display ai tre sottostati Setting (nell'ordine detto). Il tasto set serve	
	a incrementare di 1, ogni volta che viene premuto, il valore indicato nello stato	
	corrente. Nello stato Display non ha effetto. Le ore vanno da 0 a 23, i minuti	
	e i secondi da 0 a 59.	
4	Con riferimento alla Fig. 2, rispondere alle domande.	(5)
•	Display è una classe attiva.	$V \square F \square$
	Display può invocare Counter::increment().	$V \square F \square$
	Display può invocare Counter::get_min().	$V \square F \square$
	Clock può invocare Display::reset().	$V \square F \square$
	Counter eredita da Display.	$V \square F \square$
5	Una tautologia è	(1)
	vera in qualsiasi interpretazione.	
	falsa in qualsiasi interpretazione.	
	indecidibile in qualsiasi interpretazione.	
6	In UML, la relazione A realizza B significa:	(1)
	A eredita da B.	Ì
	A e B hanno la stessa interfaccia.	
	A implementa l'interfaccia di B.	
7	Nel calcolo proposizionale la funzione di valutazione	(1)
	assegna un valore ai simboli proposizionali.	
	assegna un valore ai connettivi.	
	assegna un valore alle formule.	
8	Nel modello orientato agli oggetti, un legame è	(1)
	un'istanza di un'associazione.	
	un'istanza di una generalizzazione.	
	uno stereotipo di associazione.	
9	In un sistema formale completo	(1)
	tutte le formule dimostrabili sono valide.	
	tutte le formule valide sono dimostrabili.	
	tutti gli assiomi sono validi.	
10	Disegnare un diagramma di classi che descriva quanto segue:	(5)

Un servizio ha un'interfaccia Interf costituita dall'operazione process(in d: Data): ResType, che è implementata nella classe Implem. La classe Adapter ha l'operazione compute(in d: Data, out r: ResType) che chiama l'operazione process(in d: Data): ResType di un oggetto di tipo Interf, un costruttore, e un membro privato di tipo IRef che può contenere un riferimento a oggetti di tipo Interf. Scrivere l'implementazione (e la dichiarazione) del costruttore di Adapter e dell'operazione compute(in d: Data, out r: ResType) oltre a disegnare il diagramma.

Figura 2: Domanda 4.