CSCI368 Network Security

Subject Revision

Main Topics

- Network Basics
- Cryptography Basics
- PKI
- Authentication & Key Establishment
- Email Security
- Centralised authentication Kerberos
- IPSec, SSL/TLS, SSH & VPN
- Wireless Security
- Mobile Security

Network Basics

- ☐ 7-layer OSI Reference Model
- ☐ 5-layer TCP/IP Internet model

Cryptography and Security Assurance

PKI

- Public key certificates
- CA
- Revocation
- X.509
- PKI trust models

Authentication and Key Establishment Protocols

- Common network attacks
- Assumptions on attacker capability
- Remote identification/authentication
- Key establishment protocols: Key freshness, Key authentication, Forward secrecy
- Key transport VS Key Agreement
- Diffie-Hellman protocol & MITM
- Unknown key share attack, DH with Authentication
- Password-based protocols

Email Security

- PGP
 - Operation: authentication, confidentiality, both
 - Radix-64 conversion
 - Key rings
 - Public key management
- S/MIME
 - Operation
 - Public key management

Centralised Authentication and Kerberos

- Motivation
- NTLM
- Needham-Schroeder protocol
- Kerberos Architecture
- Kerberos V4
 - Basic protocol
 - Inter-realm authentication
 - Limitations
- Kerberos V5
 - Improvements on V4

IPSec

- Security goals
- Security protocols
 - AH vs ESP
- Operation modes
 - Transport vs Tunnel
- Security association
- Internet Key Exchange (IKE)
 - Two Phases
 - Phase 1: Aggressive vs Main mode
- IKEv2

SSL/TLS

- Architecture
 - Record protocol
 - Change Cipher Spec protocol
 - Alert protocol
 - Handshake protocol
- SSL/TLS connection vs session
- SSL/TLS Handshake Key Exchange Methods
- SSL/TLS key derivation
 - Premaster secret, master secret, connection keys
- TLS 1.3

SSH

- SSH Architecture
 - Transport layer protocol
 - User authentication protocol
 - Connection protocol
- Port forwarding
- VPN

Wireless LAN Security

- WEP
 - Encryption process
 - Weaknesses of WEP
- WPA
 - 802.1x authentication
 - Port-based access control
 - EAP
 - TKIP
 - Improvements on WEP
 - CCMP

Mobile Security

- GSM AKE
 - Weakness
- 3GPP AKA
 - > SQN-based server authentication

Final Exam

- Date & Time: September 4th (check with SIM)
- Duration: 3 hours
- Closed book exam

Final Exam

- Total: 60 marks
- You must score at least 40% (i.e., 24 marks) to avoid a TF.
- Question types:
 - Multiple choice: 12 questions (2 marks each)
 - Short-answer & protocol-analysis: 11 questions

 Which ones would be the most suitable protocols/tools for securing e- mail?

- A. PGP
- B. IPSec and IKE
- C. S/MIME
- D. SSL/TLS
- E. SSH

 Which ones would be the most suitable protocols/tools for securing e- mail?

```
A. PGP (+50%)
```

- B. IPSec and IKE (-33.3333%)
- C. S/MIME (+50%)
- D. SSL/TLS (-33.3333%)
- E. SSH (-33.3333%)

- PGP uses which of the following algorithms to encrypt the content of an email?
 - A. A public-key encryption algorithm
 - B. A symmetric-key encryption algorithm
 - C. Both PKE and SKE algorithms
 - D. ZIP
 - E. Radix-64

- PGP uses which of the following algorithms to encrypt the content of an email?
 - A. A public-key encryption algorithm (-25%)
 - B. A symmetric-key encryption algorithm (+100%)
 - C. Both PKE and SKE algorithms (-25%)
 - D. ZIP (-25%)
 - E. Radix-64 (-25%)

- Which of the following cryptographic algorithms provide message confidentiality?
 - A. RSA signature
 - B. SHA-1
 - C. Diffie-Hellman key exchange
 - D. HMAC
 - E. None of the listed options

 Which of the following cryptographic algorithms provide message confidentiality?

- A. RSA signature (-100%)
- B. SHA-1 (-100%)
- C. Diffie-Hellman key exchange (-100%)
- D. HMAC (-100%)
- E. None of the listed options (+100%)

- Which of the following cryptographic algorithms provide message confidentiality?
 - A. RSA encryption
 - B. SHA-1
 - C. AES
 - D. HMAC
 - E. None of the listed options

 Which of the following cryptographic algorithms provide message confidentiality?

```
A. RSA encryption (+50%)
```

- B. SHA-1 (-50%)
- C. AES (+50%)
- D. HMAC (-50%)
- E. None of the listed options (-100%)