Tuesday, October 19

1. Suppose F is a differentiable function from [0,1] into [0,1], $x_* = F(x_*)$, and $|F'(x_*)| < 1$. We saw in class: If $x^{(0)}$ is chosen close enough to x_* , then the results of fixed point iteration, $x^{(1)}$, $x^{(2)}$, etc., will converge to x_* . Explain: If $x^{(k)} \neq x_*$ for all k, but $\lim_{k\to\infty} x^{(k)} = x_*$, then

$$\lim_{k \to \infty} \frac{x_* - x^{(k+1)}}{x_* - x^{(k)}} = F'(x_*).$$

Explain why this means that the size of $|F'(x_*)|$ determines how fast the $x^{(k)}$ approach the fixed point x_* .

2. Nonlinear equations, or systems of equations, in science and engineering are very often solved by a method called *Newton's method*, or variations on it. We'll study it in the simplest case here. Suppose that f = f(x) is a differentiable function, and you would like to solve

$$f(x) = 0$$
.

Make a guess, call it $x^{(0)}$. It's probably not going to be a solution. But compute now the *x*-intercept of the *tangent* to the graph of f at the point $(x^{(0)}, f(x^{(0)}))$, and call that $x^{(1)}$. Then obtain $x^{(2)}$ from $x^{(1)}$ the same way, then $x^{(3)}$ from $x^{(2)}$, and so on.

- (a) Draw a picture illustrating how $x^{(k+1)}$ is computed from $x^{(k)}$.
- (b) Derive a formula for $x^{(k+1)}$, given $x^{(k)}$. This formula will have the form

$$x^{(k+1)} = F(x^{(k)}).$$

(F is not f.)

- (c) Show that f(x) = 0 if and only if x = F(x).
- (d) Show: If f(x) = 0 and $f'(x) \neq 0$, then F'(x) = 0.
- (e) In light of problem 1, do you expect the convergence of Newton's method to be fast or slow? Why?
- (f) Use Newton's method to solve $x^2 2 = 0$, starting with $x^{(0)} = 1$. What are $x^{(1)}$, $x^{(2)}$, $x^{(3)}$, $x^{(4)}$?
- (g) Watch this to see the most amazing things about Newton's method.