



# UD01.Information Representation Computer Systems

Desarrollo de Aplicaciones Web

1er Curso

Curso 2020-2021

Autor: Vicent Bosch

vicent.bosch@ceedcv.es



Reconocimiento - NoComercial - Compartirlgual (by-nc-sa): No se permite un uso comercial de la obra original ni de las posibles obras derivadas, la distribución de las cuales se debe hacer con una licencia igual a la que regula la obra original.

Esta obra esta sujeta a la Licencia Reconocimiento-NoComercial-Compartirlgual 4.0 Internacional de Creative Commons. Para ver una copia de esta licencia, visite <a href="http://creativecommons.org/licenses/by-nc-sa/4.0/">http://creativecommons.org/licenses/by-nc-sa/4.0/</a> o envíe una carta Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.





To bit or Not to bit







## The binary system



#### Read from right to left:

- the leftmost bit MSB
- the rightmost bit LSB
- In the number 1100 → 1<sub>msb</sub>100<sub>lsb</sub>

Assign each bit a position number (from zero to N-1)  $\rightarrow N$  is the number of bits used in the representation:

```
1\rightarrow position 3 \rightarrow 2<sup>3</sup> \rightarrow 8 \rightarrow x 1 \rightarrow 8
1\rightarrow position 2 \rightarrow 2<sup>2</sup> \rightarrow 4 \rightarrow x 1 \rightarrow 4
0\rightarrow position 1 \rightarrow 2<sup>1</sup> \rightarrow 2 \rightarrow x 0 \rightarrow 0
0\rightarrow position 0 \rightarrow 2<sup>0</sup> \rightarrow 1 \rightarrow x 0 \rightarrow 0
```

 $1100_{(2} \rightarrow 12$ 







## Let's start playing

Which is .....?







# Let's start playing How many .....?







N= 6 bits











## **Using MSB**

| Signed Magnitude       | Decimal<br>Value     | Signed<br>Magnitude | Decimal<br>Value        |  |  |  |  |
|------------------------|----------------------|---------------------|-------------------------|--|--|--|--|
| <b>0 (MSB)</b> 000 000 | +0                   | 1 (MSB)000000       | -0                      |  |  |  |  |
| 0 000 001              | +1                   | 1 000 001           | -1                      |  |  |  |  |
| •••                    |                      | •••                 | •••                     |  |  |  |  |
| 0 111 110              | 2 <sup>n-1</sup> – 2 | 1 111 110           | -(2 <sup>n-1</sup> - 2) |  |  |  |  |
| 0 111 111              | 2 <sup>0</sup> -1    | 1 111 111           | -(2 <sup>n-1</sup> – 1) |  |  |  |  |







## Represent signed numbers (2)

#### One's Complement of a Signed Binary Number

| Binary    | Decimal<br>Value     | Ca1       | Decimal Value     |
|-----------|----------------------|-----------|-------------------|
| 0 000 000 | +0                   | 1 000 000 | -2 <sup>n-1</sup> |
| 0 000 001 | +1                   |           | Negative numb     |
|           | Positive numb        | 1 111110  | -1                |
| 0 111111  | 2 <sup>n-1</sup> - 1 | 1 111111  | -0                |







## Represent signed numbers (3)

## **Two's Complement** of a **Signed** Binary Number

| Binary Value | Decimal Value        | Ca2       | Decimal Value     |
|--------------|----------------------|-----------|-------------------|
| 0 000 000    | +0                   | 1 000 000 | -2 <sup>n-1</sup> |
| 0 000 001    | +1                   |           | Negative numb     |
|              | Positive numb.       | 1 111110  | -2                |
| 0 111111     | 2 <sup>n-1</sup> - 1 | 1 111111  | -1                |

Example: -23, with n=8

23 in binary → 00010111

23 in Cal → 11101000

 $Add(1) \rightarrow 1$ 

23 in Ca2 → 11101001

Advantages: The ALU (will see in Unit 2) will use an adder to perform substractions. It will "add" negative binary numbers.





## Represent signed numbers (4)

Excess-K

Add K value to the number ( $K=2^{n-1}$ , n bits used to represent).

Negative numbers are turned to positive → no bit to specify the sign → Just binary representation

For example, using 8 bits (n=8)

|     | Excess 2 <sup>8-1</sup> =128 | 1                      |
|-----|------------------------------|------------------------|
| +45 | +45+128=173 <sub>(10</sub>   | 10101101 <sub>(2</sub> |
| -45 | -45+128=83 <sub>(10</sub>    | 01010011 <sub>(2</sub> |



## Represent decimal numbers IEEE754 Simple precision

**Example: 23,75** 

First, convert to binary both parts: 23 and ,75. And the sign: 0 positive, 1 negative

10111 ,11

Secondly, normalize by moving the decimal separator to the MSB to get the mantissa part

10111,11  $\rightarrow$  1,011111 Exponent is 4 (4 movements)

Finally, calculate the exponent using the Excess K

Exp= 4 Excess 
$$K = 2^{8-1} - 1 = 127$$
 Exp=  $127 + 4 = 131$   $N = 8$ 

| S EXPONENT |   |   |   |   |   |   |   |   | MANTISSA |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
|------------|---|---|---|---|---|---|---|---|----------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0          | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0        | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |



## Represent decimal numbers



**IEEE754 Simple precision** 

**Example: 23,75** 

First, convert to binary both parts: 23 and ,75. And the sign: 0 positive, 1 negative

10111,11

Secondly, normalize by moving the decimal separator to the MSB to get the mantissa part

10111,11 → 1,011111 Exponent is 4 (4 movements)

### Example: 10,7









### **Exercises:**







### **Exercises:**





