Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ Информатика и системы управления

КАФЕДРА Программное обеспечение ЭВМ и информационные технологии (ИУ7)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.04 Программная инженерия

Методические указания к лабораторным работам по курсу

ПРОЕКТИРОВАНИЕ РЕКОМЕНДАТЕЛЬНЫХ СИСТЕМ

Оглавление

1	JIat	оораторная работа 1.1. Сборка и запуск учебного веб-сайта
	1.1	Задание
	1.2	Учебный веб-сайт
		1.2.1 Набор данных
		1.2.2 Серверная часть
		1.2.3 Клиентская часть
	1.3	Настройка окружения
	1.4	Запуск и проверка работоспособности
2	Лаб	бораторная работа 1.2. Неперсонализированные рекомендации
	2.1	Задание
	2.2	Неперсонализированные рекомендации
	2.3	Доработка серверной части
		2.3.1 Отображение новых фильмов
		2.3.2 Отображение самых популярных фильмов
	2.4	Доработка клиентской части
_		
3	JIa	бораторная работа 1.3. Алгоритм Apriori для поиска ассоциативных пра-
	вил	
	3.1	Задание
	3.2	Задача поиска ассоциативных правил
	3 3	A DEODREM A Driori

Введение

Глава 1

Лабораторная работа 1.1. Сборка и запуск учебного веб-сайта

Цель: Подготовка рабочего места для лабораторных работ 1.2-1.14.

1.1 Задание

Скачать исходный код учебного веб-сайта из репозитория курса, изучить его, выполнить настройку окружения в соответствии с инструкцией, запустить учебный веб-сайт и проверить работоспособность.

1.2 Учебный веб-сайт

1.2.1 Набор данных

В лабораторных работах будут использованы общедоступные данные веб-сайта MovieLens (https://movielens.org), собранные и опубликованные компанией GroupLens Research: https://grouplens.org/datasets/movielens. Компания предоставила несколько наборов данных, для учебного веб-сайта выбран набор ml-latest-small.zip (https://files.grouplens.org/datasets/movielens/ml-latest-small.zip от 9/2018, содержащий 100 000 оценок и 3 600 тегов, примененных к 9 000 фильмам 600 пользователями.

Набор состоит из следующих файлов:

- movies.csv фильмы, для каждого указаны идентификатор (movieId), название и год выхода (title), список жанров (genres);
- ratings.csv оценки, для каждой указаны идентификатор пользователя (userId), идентификатор фильма (movieId), значение от 0.5 до 5 (rating), отметка времени добавления (timestamp);
- tags.csv теги, для каждого указан идентификатор пользователя (userId), идентификатор фильма (movieId), значение (tag), отметка времени добавления (timestamp);
- links.csv соответствие идентификаторов фильмов на веб-сайте MovieLens идентификаторам на других ресурсах (http://www.imdb.com, https://www.themoviedb.org), в лабораторных работах использоваться не будет.

1.2.2 Серверная часть

Серверная часть написана на языке Python с использованием фреймворка Flask и состоит из следующих файлов:

- model.py логика запросов к базе данных (чтение и запись);
- model_helpers.py вспомогательные функции для файла model.py, такие как установка и закрытие соединения с базой данных, преобразование объектов sqllite3. Row в словари;
- арі.ру API, каждая функция API вызывает соответствующую функцию из файла model.py для чтения или записи данных в базу данных.

В качестве СУБД используется SQLite, реализованная встроенным в Python модулем.

1.2.3 Клиентская часть

Про реакт (?)

1.3 Настройка окружения

- 1. Установить Python 3 с официального сайта: https://www.python.org/downloads/
- 2. Установить IDE (опционально), например, PyCharm: https://www.jetbrains.com/pycharm/download/
- 3. Установить ???
- 4. Установить HTTP-клиент для тестирования API, например, Postman: https://www.postman.com/downloads/
- 5. Перейти в директорию с исходным кодом.
- 6. Установить необходимые пакеты Python (Flask, Flask_Cors), из IDE или выполнив команду

```
pip install -r requirements.txt
```

7. Запустить скрипт инициализации базы данных db_init_script.py, из IDE или выполнив команду

```
python3 db_init_script.py
```

1.4 Запуск и проверка работоспособности

1. Запустить серверную часть арі.ру, из IDE или выполнив команду

```
python3 api.py
```

- 2. Запустить клиентскую часть ???
- 3. Открыть стартовую страницу в браузере, если всё настроено верно, её вид должен соответствовать рис. 1.1.
- 4. В поле "идентификатор пользователя" ввести 1, в открывшейся странице должен отобразиться список фильмов (рис. 1.2)

Глава 2

Лабораторная работа 1.2. Неперсонализированные рекомендации

Цель: Изучение методов формирования неперсонализированных рекомендаций.

2.1 Задание

Доработать серверную и клиентскую часть учебного веб-сайта для отображения неперсонализированных рекомендаций: новых и самых популярных фильмов.

2.2 Неперсонализированные рекомендации

Простейшим видом рекомендаций являются неперсонализированные. Их особенность заключается в том, что, в отличие от персонализированных, они одинаковы для любого пользователя, взаимодействующего с рекомендательной системой. Примерами рекомендацией такого типа являются список наиболее популярных объектов (предположительно, пользователю понравятся те же объекты, которые понравились большинству других) и список новых (последних по дате появления) объектов.

2.3 Доработка серверной части

2.3.1 Отображение новых фильмов

Для отображения новых фильмов требуется:

- 1. В файле api.py создать функцию get_new_movies, связанную с URI /api/movies/new, для HTTP-метода GET, которая будет вызывать функцию get_new_movies из модуля model.py
- 2. В файле model.py создать функцию get_new_movies, которая будет получать из базы данных топ-20 новых фильмов с помощью SQL-запроса

SELECT * FROM movies ORDER BY year DESC LIMIT 20;

2.3.2 Отображение самых популярных фильмов

Для отображения самых популярных фильмов требуется:

1. Дополнить таблицу movies столбцом rating, для этого в файле db_update_script peaлизовать функцию add_rating_column, которая будет выполнять следующий SQL-запрос

ALTER TABLE movies ADD rating REAL;

2. Заполнить столбец rating значениями среднего рейтинга фильмов, для этого в файле db_update_script реализовать функцию load_rating, которая будет выполнять следующий SQL-запрос

```
UPDATE movies SET rating =
(SELECT AVG(rating) FROM ratings
WHERE ratings.movieId = movies.movieId);
```

- 3. Модифицировать функцию row_to_movie в файле model_helpers.py, добавив новое поле rating.
- 4. Модифицировать функцию get_all_movies в файле model.py, чтобы она возвращала фильмы, упорядоченные по рейтингу, для этого изменить SQL-запрос на следующий

SELECT * FROM movies ORDER BY raiting DESC;

2.4 Доработка клиентской части

Глава 3

Лабораторная работа 1.3. Алгоритм Аргіогі для поиска ассоциативных правил

Цель: Изучение алгоритмов поиска ассоциативных правил.

3.1 Задание

Реализовать алгоритм Apriori, применить его к данным из базы данных учебного веб-сайта, сохранить полученные ассоциативные правила в файл.

3.2 Задача поиска ассоциативных правил

Впервые задача поиска ассоциативных правил (association rule mining) была решена для нахождения типичных шаблонов покупок, совершаемых в супермаркетах, поэтому иногда её еще называют анализом рыночной корзины (market basket analysis).

Рыночная корзина - это набор товаров, приобретенных покупателем в рамках одной отдельно взятой транзакции (одной покупки).

Ассоциативным правилом называют зависимость следующего вида: если в транзакции присутствует набор X, то вероятно в нём также присутствует набор Y. Например, если покупатель приобрел макаронные изделия, то, скорее всего, он захочет приобрести также кетчуп. Эта информация может быть использована для размещения товара на прилавках.

3.3 Алгоритм Apriori

Алгоритм Apriori – это алгоритм поиска ассоциативных правил.