Cellular Automata Simulation for Microstructural Estimation during Wire-Arc Additive Manufacturing

Harrison Williams^{a,c}, Matthew Priddy^{b,c}

^aDepartment of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762; ^bDepartment of Mechanical Engineering, Mississippi State University, Mississippi State, MS, 39762; ^cCenter for Advanced Vehicular Systems, Starkville, MS, 39759

Motivation

Controlling the microstructure of material requires developing a multi-scale framework that allows multiple deformation and damage processes to occur over discrete-time and length scales.

Introduction

Scientific modeling using the cellular automata method is wellestablished and holds great amplitude in research, but most applications are in two dimensions. Since there are processes that two-dimensional models can not represent, a three-dimensional CA estimation of the microstructure is instrumental to making better microstructural analyses. This work aims to simulate the microstructural behavior and mechanical response of metallic components with a three-dimensional multi-scale framework using the cellular automata method.

Cellular Automata

Fig. 2. 2D and 3D Moore's Neighborhood

Fig 1. The state of a cell is determined upon the state of the surrounding cells through each iteration

• Inefficient parallelization

Method Characteristics **CA Comparison** • Physical parameter negation Discrete method Monte • Arbitrary units results in irregular RX front Carlo • CA tracks RX front and has • Single phase grain real time interaction with growth • Unable to track RX front analytical equations Complex calculation of RX depends on grain growth Vertex • Grain growth's complexity driving force results in simulation time Computationally intensive consumption • Tracks RX front

 Computationally Phase Field intensive

compared to MC and CA • Less applicable in studies of • No need for RX front texture evolution tracking

*Recrystallization (RX)

Cellular Automata for Super Computers (CASUP)

- Cellular automata library for high-performance computing systems [1]
- Microstructure evolution, solidification, recrystallization, ductile damage and brittle fracture, and magnetization.
- Fortran 2018, Fortran coarrays, Intel Fortran Compiler and MPI Library

Fig. 3. Simulation of formation and cleavage fracture of polycrystalline microstructure [1]

References

- Shterenlikht, A., & Cebamanos, L. (2011). Cellular automata library for supercomputers.
- 2. Li, H., Sun, X., & Yang, H. (2016). A three-dimensional cellular automata-crystal plasticity finite element model for predicting the multiscale interaction among heterogeneous deformation, DRX microstructural evolution and mechanical responses in titanium alloys.

Future Work

The computationally efficient cellular automata structured grid works well for parallelization making the method scalable for a multi-scale framework. Using the cellular automata library, CASUP, developed with Fortran coarrays, a framework will be assembled and integrated with the macro-scale finite element and crystal plasticity finite element solvers ParaFEM and Abaqus.

- Assemble the existing library, which includes a coupled CAFE method integrated with ParaFEM to create a Multi-scale Framework for fracture and deformation
- Development of CACPFEM to simulate deformation, mechanical response, and microstructural evolution

Cellular Automata Finite Element (CAFE)

- 3D CA and FE to predict deformation & fracture
- Miniapps
 - Represent multiscale fracture models of polycrystalline solids
 - Allow user customization
- FE (ParaFEM)
 - Solves macro-scale continuum mechanics problem
 - Communicate stress, strain variables to CA
- CA (CASUP)
 - Simulates micro-scale damage and fracture
 - Communicates damage variables to FE

Fig. 4. Processing elements transfer data between CA and FE

CA Crystal Plasticity Finite Element Method (CACPFEM)

- 3D CA and CPFEM coupled to predict deformation, mechanical response, and microstructural evolution
- DRX interacts with deformation
- CASUP linked with ABAQUS
- CA algorithm assigned to DRX evolution
- CPFEM assigned to multiscale heterogeneous deformation

Fig. 5. CACPFEM simulation outline [2]