Lecture 2 Measurement I Economic Aggregates

Hui-Jun Chen

The Ohio State University

December 26, 2022

Inflation

Source: National Income and Product Accounts (NIPA)

- Product (value-added) approach: sum of value added to all goods and services across all productive units in the economy
- Expenditure approach: sum of spending on all final goods and services produced in the economy
- **3 Income approach**: sum of all income received by economic agents contributing to production

If no measurement error, all should give the same answer!

Lecture 2

3 Approach to Measure GDP: Example

Variable	Quantity (\$M)					
	Coconut Producer	Restaurant	Government			
Revenue*	20	30	5.5			
sales for consumption	8	30	-			
sales as intermediate	12	0	-			
Costs	7	19	5.5			
wages	5	4	5.5			
interest on loan	0.5	-	-			
cost of intermediates	-	12	-			
taxes*	1.5	3	-			
After-Tax Profits**	13	11	-			

^{*} government gets revenue from taxes on producers and consumers, spends wages to provide defense services ** profits are revenues minus costs

Question: how to calculate GDP?

profits are revenues minus cost

Question: What is the value added by each agent?

- Coconut Producer: Final good \$20M, no intermediate input
- **Restaurant**: Final goods \$30M, with intermediate input \$12M from Coconut Producer
 - value added: 30 12 = 18M
- **Government**: Defence services, valued at cost \$5.5M
- **GDP**: 20 + 18 + 5.5 = 43.5M

The Expenditure Approach

Question: What is the total spending?

- Formula: Y = C + I + G + NX
- **Consumption** (C): "sale for consumption" row
 - To Coconut Producer: 8M
 - To Restaurant: 30M
- No investment (I) and net export (NX).
- **Government** (G): defense service 5.5M
- **GDP** (*Y*): 38 + 5.5 = 43.5M

Income Approach

Question: how much does agent earn?

■ Workers: wages 5M from Coconut Producer, 4M from Restaurant and 5.5M from Government

■ Firms:

- After-tax Profits: 13M to Coconut Producer and 11M to Restaurant
- Interest on loan: 0.5M for Coconut Producer
- Government: Taxes 1.5M from Coconut Producer and 3M from Restaurant
 - Expenditure is $5.5M \Rightarrow \text{budget deficit}$
- **GDP**: 5 + 4 + 5.5 + 13 + 11 + 0.5 + 1.5 + 3 = 43.5M

Income-Expenditure Identity: Income earned goes to expenditure

Inflation

Prices in GDP measurement

The revenue row is calculated by 10M coconuts \times \$2 each

■ What if coconut price increases to \$3 next year?

Solution: common price index across different time

Two ways to build common price index:

GDP deflator: common GDP standard

2 Consumer Price Index (CPI): common consumption basket (Q)

Hui-Jun Chen (OSU)

Prices in GDP measurement (Cont.)

- GDP deflator: ratio between nominal and real GDP
 - Calculate real GDP relative to base year by base year price level
 - E.g. $RealGDP_{2020} = \text{Cost of } Q_{2020}$ at P_{2000} , use 2000 as base year
 - While $NominalGDP_{2020} = \mathsf{Cost}$ of Q_{2020} at P_{2020}
 - Problem: choose which year? \Rightarrow "chain-weighting" (rolling base)
 - 2 Calculate ratio: $\frac{NominalGDP_{2020}}{RealGDP_{2020}} \times 100$
- CPI: normalize consumption basket of base year as 100, relative to other year
 - E.g. $CPI_{2020} = \frac{\text{Cost of } Q_{2000}}{\text{Cost of } Q_{2000}} \frac{\text{at } P_{2020}}{\text{t} P_{2000}} \times 100$, use 2000 as base year
 - Problem:
 - $oldsymbol{1} \Delta P$ outside of consumption basket & not accounted
 - 2 new goods & services introduced, old goods & services obsolete

Example: Nominal v.s. Real GDP

- Nominal GDP: value of goods & services at current price
- **Real GDP**: value of goods & services at base year price

	Apples		Oranges		GDP Measure		
Year	Quantity	Price	Quantity	Price	Nominal	Real (base year =1)	Real (base year = 2)
1	50	\$1.00	100	\$0.80	\$130	\$130	\$222.5
2	80	\$1.25	120	\$1.60	\$292	\$176	\$292

Choice of base year affects the GDP measure!

alternative: chain-weighting

Data: Nominal v.s. Real GDP

- inflation growth
 economics
 growth =
 nominal grows
 faster than real
- Question: What year is the base year on this graph?
- Ans: 2009, when Nominal = Real

Figure 2.1 Nominal GDP and Chain-Weighted Real GDP

- lacksquare participation rate $=\frac{LF}{N}$
- lacksquare unemployment rate $= \frac{U}{LF}$
- lacksquare employment rate $=\frac{E}{N}$

Hui-Jun Chen (OSU)

Appendix

Chain-weighting

Chain

