a mini session on

DATA TRANSMISSION

DATA TRANSMISSION

Layer	Application/Example	Central Device/ Protocols	
Application (7) Serves as the window for users and application processes to access the network services.	End User layer Program that opens what was sent or creates what is to be sent Resource sharing • Remote file access • Remote printer access • Directory services • Network management	User Applications SMTP JPEG/ASCII EBDIC/TIFF/GIF PICT Logical Ports RPC/SQL/NFS NetBIOS names	
Presentation (6) Formats the data to be presented to the Application layer. It can be viewed as the "Translator" for the network.	Syntax layer encrypt & decrypt (if needed) Character code translation • Data conversion • Data compression • Data encryption • Character Set Translation		
Session (5) Allows session establishment between	Synch & send to ports (logical ports) Session establishment, maintenance and termination • Session support - perform security, name recognition, logging, etc.		
Transport (4) Ensures that messages are delivered error-free, in sequence, and with no losses or duplications.	TCP Host to Host, Flow Control Message segmentation • Message acknowledgement • Message traffic control • Session multiplexing	TCP/SPX/UDP	
Controls the operations of the subnet, deciding which physical path the data takes.	Packets ("letter", contains IP address) Routing • Subnet traffic control • Frame fragmentation • Logical-physical address mapping • Subnet usage accounting	Routers IP/IPX/ICMP Ca	
Data Link (2) Provides error-free transfer of data frames from one node to another over the Physical layer.	Frames ("envelopes", contains MAC address) [NIC card — Switch — NIC card] (end to end) Establishes & terminates the logical link between nodes • Frame traffic control • Frame sequencing • Frame acknowledgment • Frame delimiting • Frame error checking • Media access control	I I I /OLII	on layer
Physical (1) Concerned with the transmission and reception of the unstructured raw bit stream over the physical medium.	Physical structure Cables, hubs, etc. Data Encoding • Physical medium attachment • Transmission technique - Baseband or Broadband • Physical medium transmission Bits & Volts	100	ayers

Error Detection

- 1-D Parity Check
- 2-D Parity Check
- Checksum Scheme

1-D Parity Check

- A parity bit is added to the data to detect for error.
- We can either implement Odd-Parity or Even-Parity Check

Consider a 7 bit data: 1110 011

If we want to implement Odd-Parity Check, then a '0' will be added as the Parity bit, so that the data transmitted will be 1110 0110

If we want to implement Even-Parity Check, then a '1' will be added as the Parity bit, so that the data transmitted will be 1110 0111

Do you know which of the following data(s) contain error?

```
(A) 1010 1100(B) 0110 1110(C) 1011 0011(D) 1001 0101
```

2-D Parity Check

- A parity bit is added to each data to detect for error.
- A byte is added to a group of data to help 'locate' the error.
- Consider we have a Odd-Parity Check :

```
(data 1): 1010 1101
(data 2): 0110 1110
(data 3): 1011 0011
(data 4): 1001 0100
0001 1011
```

2-D (Odd) Parity Check

Can you locate a 1 bit error?

```
(data 1) : 1010 1101
(data 2) : 0100 1110
(data 3) : 1011 0011
(data 4) : 1001 0100
           0001 1011
```

2-D (Odd) Parity Check

Can you locate a 2 bit error?

```
(data 1) : 1010 1101
(data 2) : 0100 1110
(data 3) : 1011 0111
(data 4) : 1001 0100
           0001 1011
```

Checksum Scheme

a) Assign a weightage to each digit:

$$_x3 + _x5 + _x7 + _x9 + _x11 = Sum$$

b) Apply mod to the Sum:

Sum
$$\% 10 = n$$

c) Transmitted data: _ _ _ n

Checksum Scheme

Example: Let the data be 12345

Compute for the Checksum:

a) Assign a weightage to each digit:

$$1x^3 + 2x^5 + 3x^7 + 4x^9 + 5x^{11} = 125$$

b) Apply mod to the sum:

c) Transmitted data: 123455

Can you tell whether is there any error?

Transmitted Data: 739428

Compute for the Checksum:

a) Assign a weightage to each digit:

$$7x^3 + 3x^5 + 9x^7 + 4x^9 + 2x^{11} = 157$$

b) Apply mod to the sum:

Hence, the transmitted data contains error!

Examples of Checksum:

- NRIC number
- Car Plate number
- Credit Card number