Dirac Equation

Bryan Martinez, Sebastían Rodriguez, Serigio Miranda

Programa Académico de Física Facultad de Ciencias Matemáticas y Naturales Universidad Distrital Francisco José de Caldas

20 de octubre de 2025

Índice general

1.	Intr	oducción y Contexto Astrofísico	11		
	1.1.	Contexto de Plasmas Relativistas y Astrofísicos	11		
		1.1.1. Relevancia de la RRMHD en Chorros y AGN	11		
		1.1.2. La Inestabilidad de Kelvin-Helmholtz (KHI)	11		
	1.2.	Transición de RMHD a RRMHD	11		
	1.3.	Objetivos y Estructura de la Monografía	11		
2.	Mai	rco Teórico: Fundamentos de RRMHD	13		
		2.0.1. Sistema de Leyes de Conservación	13		
		2.0.2. El Sistema Aumentado de Maxwell	13		
		2.0.3. Ley de Ohm Relativista y Corriente Conductiva	13		
	2.1.	Análisis de la KHI en el Límite Lineal	13		
		2.1.1. Efecto de la Relatividad y la Magnetización	13		
		2.1.2. Impacto de la Resistividad en la Estabilidad	14		
3.	Metodología Numérica y Configuración del Experimento				
υ.	ME	odologia Numerica y Configuración del Experimento	15		
υ.	3.1.		15 15		
υ.		-			
σ.	3.1.	Métodos de Captura de Choques de Alta Resolución (HRSC)	15		
.	3.1.	Métodos de Captura de Choques de Alta Resolución (HRSC) 3.1.1. Discretización de Volumen Finito (FV)	15 15		
.	3.1.	Métodos de Captura de Choques de Alta Resolución (HRSC) 3.1.1. Discretización de Volumen Finito (FV) Tratamiento de la Rigidez del Sistema RRMHD	15 15 15		
.	3.1. 3.2.	Métodos de Captura de Choques de Alta Resolución (HRSC) 3.1.1. Discretización de Volumen Finito (FV) Tratamiento de la Rigidez del Sistema RRMHD 3.2.1. Esquemas IMEX Runge-Kutta	15 15 15 15		
.	3.1. 3.2.	Métodos de Captura de Choques de Alta Resolución (HRSC) 3.1.1. Discretización de Volumen Finito (FV) Tratamiento de la Rigidez del Sistema RRMHD	15 15 15 15 15		
	3.1. 3.2.	Métodos de Captura de Choques de Alta Resolución (HRSC) 3.1.1. Discretización de Volumen Finito (FV) Tratamiento de la Rigidez del Sistema RRMHD 3.2.1. Esquemas IMEX Runge-Kutta 3.2.2. Estrategias de Limpieza de Divergencia Construcción del Esquema de Flujo	15 15 15 15 15 16		
	3.1. 3.2.	Métodos de Captura de Choques de Alta Resolución (HRSC) 3.1.1. Discretización de Volumen Finito (FV) Tratamiento de la Rigidez del Sistema RRMHD 3.2.1. Esquemas IMEX Runge-Kutta 3.2.2. Estrategias de Limpieza de Divergencia Construcción del Esquema de Flujo	15 15 15 15 15 16 16		
	3.1.3.2.3.3.3.4.	Métodos de Captura de Choques de Alta Resolución (HRSC) 3.1.1. Discretización de Volumen Finito (FV) Tratamiento de la Rigidez del Sistema RRMHD 3.2.1. Esquemas IMEX Runge-Kutta 3.2.2. Estrategias de Limpieza de Divergencia Construcción del Esquema de Flujo 3.3.1. Técnicas de Reconstrucción de Alta Orden 3.3.2. Solucionadores de Riemann	15 15 15 15 15 16 16		
	3.1.3.2.3.3.3.4.Res	Métodos de Captura de Choques de Alta Resolución (HRSC) 3.1.1. Discretización de Volumen Finito (FV) Tratamiento de la Rigidez del Sistema RRMHD 3.2.1. Esquemas IMEX Runge-Kutta	15 15 15 15 16 16 16 16		

		4.1.2. Prueba de Lámina de Corriente (Current Sheet)	17
	4.2.	Evolución No Lineal de la KHI en RRMHD	17
		4.2.1. Morfología de la Inestabilidad: Vórtices y Cizalla	17
		4.2.2. Efecto Cuantitativo de la Resistividad	17
	4.3.	Implicaciones Físicas	18
5.	Con	clusiones y Perspectivas Futuras	19
	5.1.	Resumen de Contribuciones	19
	5.2.	Limitaciones del Modelo y la Simulación	19
	5.3.	Trabajo Futuro	19
Α.	Apé	ndices	21
	A.1.	Detalles Vectoriales en Coordenadas Cartesianas	21
	A.2.	Construcción de Flujos Numéricos y Solvers	21
	A.3.	Parámetros de Simulación Detallados	21

Agradecimientos

Resumen

Breve descripción del problema (KHI) y el marco (RRMHD), el método (FV, HRSC, IMEX-RK) y resultados principales (efecto de la resistividad).

Lista de Figuras

Lista de Tablas

Glosario de Símbolos y Acrónimos

RRMHD (Magnetohidrodinámica Resistiva Relativista), KHI (Inestabilidad de Kelvin-Helmholtz), GLM (Multiplicadores de Lagrange Generalizados), EoS (Ecuación de Estado), IMEX-RK, etc.

Introducción y Contexto Astrofísico

1.1. Contexto de Plasmas Relativistas y Astrofísicos

1.1.1. Relevancia de la RRMHD en Chorros y AGN

La dinámica de fluidos magnetizados en astrofísica es crucial [1]. La RRMHD es necesaria para modelar fenómenos de plasma en entornos altamente energéticos [2, 3].

1.1.2. La Inestabilidad de Kelvin-Helmholtz (KHI)

La KHI surge de la diferencia de velocidad (shear) entre capas de fluidos o plasmas [4]. Su estudio es fundamental en la dinámica de fluidos elementales [5].

1.2. Transición de RMHD a RRMHD

Justificación para incluir la resistividad (η o $1/\sigma$) para modelar plasmas no ideales y efectos de difusión [6].

1.3. Objetivos y Estructura de la Monografía

Marco Teórico: Fundamentos de RRMHD

sectionLas Ecuaciones del Sistema RRMHD

2.0.1. Sistema de Leyes de Conservación

Presentación de las ecuaciones de conservación de masa $\partial_{\mu}(\rho u^{\mu}) = 0$ y energía-momento $\partial_{\mu}T^{\mu\nu} = 0$ [7].

2.0.2. El Sistema Aumentado de Maxwell

Se presenta el sistema que incluye los pseudo-potenciales ψ y ϕ (Multiplicadores de Lagrange Generalizados, GLM) para forzar $\nabla \cdot \mathbf{B} = 0$ y la conservación de carga q [8, 9]. Las ecuaciones de evolución incluyen $\partial_t \psi = -\nabla \cdot E + q - \kappa \psi$ y $\partial_t \phi = -\nabla \cdot B - \kappa \phi$ [8, 10].

2.0.3. Ley de Ohm Relativista y Corriente Conductiva

Definición de la corriente conductiva j^c [11], donde la resistividad η (o conductividad σ) juega un papel clave en los términos rígidos (stiff terms) del sistema [12].

2.1. Análisis de la KHI en el Límite Lineal

2.1.1. Efecto de la Relatividad y la Magnetización

Discusión de cómo el campo magnético, especialmente un componente paralelo, tiende a estabilizar la inestabilidad [4].

14 CAPÍTULO 2. MARCO TEÓRICO: FUNDAMENTOS DE RRMHD

2.1.2. Impacto de la Resistividad en la Estabilidad

La resistividad introduce difusión magnética, afectando el crecimiento de la inestabilidad $[13,\ 14].$

Metodología Numérica y Configuración del Experimento

3.1. Métodos de Captura de Choques de Alta Resolución (HRSC)

3.1.1. Discretización de Volumen Finito (FV)

Uso de esquemas basados en la forma integral de las leyes de conservación para garantizar la conservación de las cantidades del modelo [15, 16].

3.2. Tratamiento de la Rigidez del Sistema RRMHD

3.2.1. Esquemas IMEX Runge-Kutta

El sistema RRMHD es rígido (stiff) debido a la alta conductividad, requiriendo un tratamiento especial para los términos de relajación [10, 12, 17]. Los métodos **IMEX-RK** (Implícitos-Explícitos) se utilizan para aplicar discretización implícita a los términos rígidos (como la evolución de **E**) y explícita a los no rígidos [18, 19].

3.2.2. Estrategias de Limpieza de Divergencia

Uso de la técnica de **limpieza de divergencia hiperbólica (GLM)**, donde los pseudo-potenciales se integran analíticamente para la parte rígida [20, 21].

3.3. Construcción del Esquema de Flujo

3.3.1. Técnicas de Reconstrucción de Alta Orden

Mención a métodos de reconstrucción (e.g., PPM, WENO) para lograr alta precisión espacial y evitar oscilaciones espurias cerca de discontinuidades [20, 22, 23].

3.3.2. Solucionadores de Riemann

Uso de solucionadores aproximados como **HLL, Rusanov o HLLC** [24, 25]. El solucionador HLLC es muy robusto y se utiliza para capturar la discontinuidad de contacto [25, 26].

3.4. Configuración Inicial (Set-up) de la KHI

Especificación de la Ecuación de Estado (EoS) (e.g., gas ideal con $\Gamma = 4/3$) y las condiciones iniciales de velocidad v_x y campo magnético \mathbf{B} [8].

Resultados de la Simulación y Análisis de la KHI

4.1. Pruebas de Verificación Numérica

4.1.1. Validación de Choques (Shock Tubes)

Resultados de pruebas estándar como el problema de tubo de choque **ST1 o ST2** [27, 28] o la **onda de Alfvén** [29, 30] para demostrar la robustez del código.

4.1.2. Prueba de Lámina de Corriente (Current Sheet)

Comparación de la solución numérica con la solución analítica para una lámina de corriente auto-similar, validando el tratamiento de la difusión resistiva [14, 31, 32].

4.2. Evolución No Lineal de la KHI en RRMHD

4.2.1. Morfología de la Inestabilidad: Vórtices y Cizalla

Descripción de la formación de estructuras vorticales (vórtices de Kelvin-Helmholtz) impulsadas por la cizalla [4].

4.2.2. Efecto Cuantitativo de la Resistividad

Análisis de la evolución de variables (densidad ρ , velocidad u_y , campo magnético B_x) para diferentes valores de conductividad, comparando con el

18CAPÍTULO 4. RESULTADOS DE LA SIMULACIÓN Y ANÁLISIS DE LA KHI

límite ideal ($\eta = 0$) [33-36].

4.3. Implicaciones Físicas

Discusión sobre cómo los resultados obtenidos (disipación magnética o formación de turbulencia) se relacionan con fenómenos astrofísicos como los jets relativistas [37].

Conclusiones y Perspectivas Futuras

5.1. Resumen de Contribuciones

Recapitulación de la implementación robusta del esquema numérico (IMEX-RK, FV, HRSC) y los hallazgos sobre la amortiguación/estabilización de la KHI por la resistividad.

5.2. Limitaciones del Modelo y la Simulación

Mencionar la simplicidad de la EoS ($\Gamma=4/3$) o la restricción a 2D (si aplica).

5.3. Trabajo Futuro

Sugerencias para futuras investigaciones, como la extensión a geometrías más complejas (3D), la inclusión de la gravedad (GRMHD), o el uso de esquemas de reconstrucción de orden aún mayor (WENO7) [20].

Apéndice A

Apéndices

A.1. Detalles Vectoriales en Coordenadas Cartesianas

Listado de identidades vectoriales clave [38, 39].

A.2. Construcción de Flujos Numéricos y Solvers

Detalles sobre la estructura de la discretización semi-discreta [40]. Mención a los "bloques numéricosçomo los limitadores de pendiente (slope limiters) utilizados en la reconstrucción (e.g., minmod) [41, 42].

A.3. Parámetros de Simulación Detallados

Tabla de constantes físicas (Γ), parámetros de régimen (e.g., Mach number, μ_p, μ_t [8]), y parámetros numéricos (CCFL, resolución, σ).

Bibliografía

- [1] V. Kornilov et al. «Combined MASS-DIMM instruments for atmospheric turbulence studies». En: Monthly Notices of the Royal Astronomical Society 382.3 (nov. de 2007), págs. 1268-1278. DOI: 10.1111/j.1365-2966.2007.12467.x. URL: https://doi.org/10.1111/j.1365-2966.2007.12467.x.
- [2] Carlos Palenzuela et al. «Beyond ideal MHD: towards a more realistic modelling of relativistic astrophysical plasmas». En: Monthly Notices of the Royal Astronomical Society 394.4 (mar. de 2009), págs. 1727-1740. DOI: 10.1111/j.1365-2966.2009.14454.x. URL: https://doi.org/10.1111/j.1365-2966.2009.14454.x.
- [3] Li Wang y Dimitri J. Mavriplis. «Adjoint-based h-p adaptive discontinuous Galerkin methods for the 2D compressible Euler equations». En: *Journal of Computational Physics* 228.20 (jul. de 2009), págs. 7643-7661. DOI: 10.1016/j.jcp.2009.07.012. URL: https://doi.org/10.1016/j.jcp.2009.07.012.
- [4] P. Vignolo et al. «Explicit Finite-Difference and Particle Method for the Dynamics of Mixed Bose-Condensate and Cold-Atom Clouds». En: Journal of Computational Physics 182.2 (nov. de 2002), págs. 368-391. DOI: 10.1006/jcph.2002.7171. URL: https://doi.org/10.1006/jcph.2002.7171.
- [5] Makoto Takamoto y Tsuyoshi Inoue. «A NEW NUMERICAL SCHEME FOR RESISTIVE RELATIVISTIC MAGNETOHYDRODYNAMICS USING METHOD OF CHARACTERISTICS». En: The Astrophysical Journal 735.2 (jun. de 2011), pág. 113. DOI: 10.1088/0004-637x/735/ 2/113. URL: https://doi.org/10.1088/0004-637x/735/2/113.
- [6] Amiram Harten, Peter D. Lax y Bram Van Leer. «On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation

24 BIBLIOGRAFÍA

- Laws». En: *SIAM Review* 25.1 (ene. de 1983), págs. 35-61. DOI: 10. 1137/1025002. URL: https://doi.org/10.1137/1025002.
- [7] M. C. Werner y N. W. Evans. «A simple model for lensing by black holes in galactic nuclei». En: Monthly Notices of the Royal Astronomical Society 368.3 (abr. de 2006), págs. 1362-1368. DOI: 10.1111/j.1365-2966.2006.10230.x. URL: https://doi.org/10.1111/j.1365-2966.2006.10230.x.
- [8] S Miranda-Aranguren, M A Aloy y T Rembiasz. «An HLLC Riemann solver for resistive relativistic magnetohydrodynamics». En: Monthly Notices of the Royal Astronomical Society 476.3 (feb. de 2018), págs. 3837-3860. DOI: 10.1093/mnras/sty419. URL: https://doi.org/10.1093/mnras/sty419.
- [9] W. Macke. «A. Ramakrishnan, Elementary Particles and Cosmic Rays. XIV + 567 S. m. 75 Abb. Oxford/London/New York/Paris 1962. Pergamon Press. Preis geb. £ 5 net». En: ZAMM Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 43.6 (ene. de 1963), pág. 291. DOI: 10.1002/zamm. 19630430623. URL: https://doi.org/10.1002/zamm.19630430623.
- [10] Z. Osmanov et al. «On the linear theory of Kelvin-Helmholtz instabilities of relativistic magnetohydrodynamic planar flows». En: Astronomy and Astrophysics 490.2 (sep. de 2008), págs. 493-500. DOI: 10.1051/0004-6361:200809605. URL: https://doi.org/10.1051/0004-6361:200809605.
- [11] Oscar M Pimentel y Fabio D Lora-Clavijo. «On the linear and non-linear evolution of the relativistic MHD Kelvin-Helmholtz instability in a magnetically polarized fluid». En: *Monthly Notices of the Royal Astronomical Society* 490.3 (oct. de 2019), págs. 4183-4193. DOI: 10.1093/mnras/stz2750. URL: https://doi.org/10.1093/mnras/stz2750.
- [12] M. S. Strickman et al. «OSSE Observations of the VELA and Geminga Pulsars». En: *The Astrophysical Journal* 460 (abr. de 1996), pág. 735.
 DOI: 10.1086/177006. URL: https://doi.org/10.1086/177006.
- [13] S. A. Grebenev et al. «Deep hard X-ray survey of the Large Magellanic Cloud». En: *Monthly Notices of the Royal Astronomical Society* 428.1 (oct. de 2012), págs. 50-57. DOI: 10.1093/mnras/sts008. URL: https://doi.org/10.1093/mnras/sts008.

BIBLIOGRAFÍA 25

[14] Luciano Rezzolla y Olindo Zanotti. *Relativistic hydrodynamics*. Oxford University Press, USA, sep. de 2013.

- [15] J. P. Hans Goedbloed y Stefaan Poedts. *Principles of Magnetohydrody-namics*. Cambridge University Press, ago. de 2004.
- [16] J. P. Hans Goedbloed y Stefaan Poedts. *Principles of Magnetohydrody-namics*. Cambridge University Press, ago. de 2004.
- [17] D. J. Acheson. *Elementary fluid dynamics*. Oxford University Press, mar. de 1990.