2022年度(令和4年度)大学院入試

数学問題A

実施日時

2021年(令和3年)8月25日(水)

9:00~12:00

- 監督者の合図があるまで問題冊子を開いてはならない.
- 問題冊子は表紙も入れて5枚、 問題は全部で4間である.
- 解答は、問題ごとに別々の答案用紙1枚に記入すること、 答案用紙の裏面に記入してもよい。
- それぞれの答案用紙に受験番号、氏名、問題番号を記入すること.
- 答案用紙, 下書き用紙は終了後すべて提出し, 持ち帰ってはならない.

[1]以下の問いに答えよ.

- (1) 広義積分 $\int_0^\infty \frac{\sin x}{x^\alpha} dx$ が収束するような正の実数 α の範囲を求めよ.
- (2) 広義積分 $\int_0^\infty \frac{|\sin x|}{\dot{x}^\beta} dx$ が収束するような正の実数 β の範囲を求めよ.

- [2] n 次実正方行列 A が歪対称である,すなわち $A + A^T = O$ が成立すると仮定する. ただし A^T は行列 A の転置を表す.n 行 1 列の実行列全体のなす実ベクトル空間を \mathbb{R}^n で表し, $x,y \in \mathbb{R}^n$ に対し, $b(x,y) \in \mathbb{R}$ を x^TAy の唯一の成分とする.
 - (1) 任意の $x, y \in \mathbb{R}^n$ に対し、b(x,y) = -b(y,x) が成り立つことを示せ.

線型写像 $f: \mathbb{R}^n \to \mathbb{R}^n$ を f(x) = Ax と定める.

(2) x, y の少なくとも一方が $\ker f$ の元ならば b(x, y) = 0 となることを示せ.

線型部分空間 $V \subset \mathbb{R}^n$ を $\mathbb{R}^n = V \oplus \ker f$ となるようにとる. これに対し、写像 $B: V \times V \to \mathbb{R}$ を B(x,y) = b(x,y) と定める.

- (3) $x \in V$ が零ベクトルでないならば、 $B(x,y) \neq 0$ をみたす $y \in V$ が存在することを示せ.
- (4) 歪対称な奇数次実正方行列の行列式は 0 であることを示せ.
- (5) rank A は偶数であることを示せ.

- - (1) 任意の $y \in Y$ をとる. このとき, $X \times \{y\}$ を含む任意の開集合 $U \subset X \times Y$ に対して, $X \times V \subset U$ をみたす y の近傍 V が存在することを示せ.
 - (2) 射影 $p_Y: X \times Y \to Y$ は閉写像であることを示せ.

[4] 正の実数 x をパラメータに持つ複素関数

$$f(z) = \frac{e^{xz}}{z^2 + 1} \quad (z \in \mathbb{C})$$

を考える. 以下の問いに答えよ.

- (1) f(z) のすべての極と、それぞれの極での留数を求めよ.
- (2) 任意の R>1 に対して、領域

. $D = \{z \in \mathbb{C} \mid |z| < R, \operatorname{Re} z \le 0\} \cup \{z \in \mathbb{C} \mid 0 < \operatorname{Re} z < 1, |\operatorname{Im} z| < R\}$

の境界をCとする. Cに正の向き (領域Dを左に見る向き) を与えるとき、複素積分

$$\int_C f(z)\,dz$$

を求めよ.

(3) 次の複素積分の極限値を求めよ.

$$\lim_{R\to\infty}\frac{1}{2\pi i}\int_{L_R}f(z)\,dz$$

ただし, i は虚数単位, 積分の経路 L_R は 1-iR を始点とし 1+iR を終点と する線分である.