Introduction to Molecular Docking

Edelmiro Moman

Pharmaceutical and Medicinal Chemistry Saarland University

DEFINITION

Molecular docking tries to predict the structure of the intermolecular complex formed between two or more constituent molecules.

APPLICATIONS

- Virtual screening (hit identification)
- Drug Discovery (lead optimisation)
- Prediction of K_{Δ} (biological activity ?)
- Binding-site identification (blind docking)
- De-orphaning of a receptor
- Protein Protein (or Protein Nucleic Acid) interactions
- Structure-function studies
- Enzymatic reactions mechanisms
- Protein engineering

The Protein Data Bank (PDB)

Most typical case: Protein - Ligand docking

• The final goal uses to be to predict the biological activity of a given ligand

Two different problems:

POSING

The process of determining whether a given conformation and orientation of a ligand fits the active site. This is usually a fuzzy procedure that returns many alternative results.

SCORING

The pose score is a measure of the fit of a ligand into the active site. Scoring during the posing phase usually involves simple energy calculations (electrostatic, van der Waals, ligand strain). Further re-scoring might attempt to estimate more accurately the free energy of binding (ΔG , and therefore K_A) perhaps including properties such as entropy and solvation.

The free energy of binding (ΔG) is related to binding affinity by equations 2 and 3:

$$\Delta G = -RT \ln K_A$$
 $K_A = K_i^{-1} = \frac{[EI]}{[E][I]}$ (2,3)

Prediction of the correct structure (posing) of the [E+I] complex does not require information about K_A . However, prediction of biological activity (ranking) requires this information; scoring terms can therefore be divided in the following fashion. When considering the term [EI], the following factors are important: steric, electrostatic, hydrogen bonding, inhibitor strain (if flexible) and enzyme strain. When considering the equilibrium shown in equation 1, the following factors are also important: desolvation, rotational entropy and translational entropy.

$$\begin{split} \Delta G &= \Delta G_{\text{vdW}} \sum_{i, j} \left(\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}} \right) \\ &+ \Delta G_{\text{hbond}} \sum_{i, j} E(t) \left(\frac{C_{ij}}{r_{ij}^{12}} - \frac{D_{ij}}{r_{ij}^{10}} + E_{\text{hbond}} \right) \\ &+ \Delta G_{\text{elec}} \sum_{i, j} \frac{q_{i}q_{j}}{\varepsilon(r_{ij})r_{ij}} \\ &+ \Delta G_{\text{tor}} N_{\text{tor}} \\ &+ \Delta G_{\text{sol}} \sum_{i_{C}, j} S_{i}V_{j} \mathrm{e}^{(-r_{ij}^{2}/2\,\sigma^{2})} \end{split}$$

SCORING FUNCTION IN AUTODOCK

Molecular Mechanics Terms

Change in Torsional Free Energy when the Ligand goes from Unbound to Bound

Torsional
$$\Delta G_{tor} = W_{tor} N_{tor}$$

Posing and Scoring: Flexible docking algorithms

PSO@Autodock, SODOCK

Reconnected Ligand Pose:

MOLECULAR REPRESENTATIONS

Atomic

Surfaces

Grid

PROTEIN FLEXIBILITY

- Molecular Dynamics
- Energy Minimisation

Usually in combination with other methods

- Monte Carlo
- Normal Modes
- Rotamer Libraries
- Protein Ensembles (NMR, MD, NMA) / Protein Ensemble Grids
- Soft Potentials

LIMITATIONS OF CURRENT DOCKING METHODOLOGIES

- Flexible ligands → Rotatable bonds → Combinatorial explosion
- Entropic effects → Rotatable bonds
- Solvation / desolvation → Accurate computation is expensive
- Water molecules (and ions)
- Tautomers
- Protein flexibility → Induced fit
- Specificity of binding → Understanding important interactions (currently larger ligands are favoured by the scoring functions)
- Pharmacokinetic effects, allosteric effects, biomolecule-biomolecule interactions (molcecular context), etc.

DOCKING SOFTWARE

Proteins: Structure, Function and Bioinformatics 2006, 65, 15.

RESOURCES:

• Protein – Protein Interaction Website (docking software):

http://www.imb-jena.de/jcb/ppi/jcb_ppi_software.html

• Structural Biology Software Database:

http://www.ks.uiuc.edu/Development/biosoftdb/biosoft.cgi

Molecular Docking Web:

http://mgl.scripps.edu/people/gmm/

• Molecular Docking Servers:

http://www.dockingserver.com/web

http://bioinfo3d.cs.tau.ac.il/PatchDock/

• My Website:

http://www.edelmiromoman.eu/

AutoDock GUIs: AutoDockTools (ADT), BDT, DOVIS

CONCLUDING REMARKS

- Molecular modelling is about READING !!!
- Inspect all available structures of your protein: check for alternative conformations, R factors, ligands; become familiar with your binding site
- Carefully consider tautomerism, protonation, waters, X-ray resolution, etc.
- Also look to proteins of the same or related families / functions
- Collect all the relevant empirical data: site-directed mutagenesis, ligands, affinity / inhibition constants, etc.
- Critically analyse all this stuff in view of existing (and your own) hypotheses
- You are ready for modelling! (docking is just the beginning)
- Find the right balance between simulations and experiments

