Introduction to AR Tags

Requirements

This practical requires the library opencv-contrib-python, which has additional modules that are not included in opencv-python. Install with the following command:

```
pip3 install opency-contrib-python
```

Generating AR Tags

You can generate and print your own AR tags for any use case. ArUco contains a number of AR Tag Libraires: * DICT_4X4_100 * DICT_4X4_1000 * DICT_4X4_250 * DICT_4X4_50 * DICT_5X5_100 * DICT_5X5_1000 * DICT_5X5_250 * DICT_5X5_50 * DICT_6X6_1000 * DICT_6X6_1000 * DICT_6X6_250 * DICT_6X6_50 * DICT_7X7_1000 * DICT_7X7_1000 * DICT_7X7_250 * DICT_7X7_50 * DICT_APRILTAG_16H5 * DICT_APRILTAG_16H5 * DICT_APRILTAG_25H9 * DICT_APRILTAG_36H10 * DICT_APRILTAG_36H10 * DICT_APRILTAG_36H11 * DICT_APRILTAG_36H10 * DICT_APRILTAG_36H11 * DICT

The tags of format DICT_{SIZE}x{SIZE}_COUNT are ArUco based tags that use SIZExSIZE bits for tag information and have COUNT distinct tags. We will be using the ArUco original librariy to create two tags:

CHALLENGE 1: Generating AR Tags

Generate AR tags for the dictionary DICT_APRILTAG_16H5 for ids 7, 18, and 23. * These should be of size 500 pixels by 500 pixels.

```
In [ ]: dictionary = cv2.aruco.getPredefinedDictionary(cv2.aruco.DICT_APRILTAG_16H5)
    tag_size = 500 # pixels

# Generate and save tags for IDs 7, 18, and 23
for tag_id in [7, 18, 23]:
    # Create the tag
```

```
tag = np.zeros((tag_size, tag_size, 1), dtype=np.uint8)
cv2.aruco.generateImageMarker(dictionary, tag_id, tag_size, tag, 1)

# Save the tag
filename = f"apriltag_16h5_id{tag_id}.png"
cv2.imwrite(filename, tag)
```

Detecting AR Tags

The ArUco library has built-in functionality for detecting AR tags within images:

CHALLENGE 2: Calculating Distance Between Tags

Calculate the distance between the AR tags in the file data/two_tags_APRILTAG_16H5.png in centimeters. Some notes to keep in mind: * The real-world width of each tag is 3. * The dictionary being used is APRILTAG_16H5. * The image view is exactly perpendicular to the camera. * Both cv2 and numpy are useful packages here.

6.383471842992266