

Latent Growth Curve Modeling

Gregory Hancock, Ph.D.

Upcoming Seminar:

June 1-2, 2017, Philadelphia, Pennsylvania

GREGORY R. HANCOCK

University of Maryland

LATENT GROWTH CURVE MODELING

TOPICS

Review of SEM and Software Basics
Mean Structure Models
Linear Model Foundations
Nonlinear Models
Other Cool Stuff
Sample Size Planning

May 20-21, 2016 Philadelphia, PA

Data-Model Fit Assessment: Interpretation

Poor data-model fit?

Reject the hypothesized model. Entertain modifications *only* if they make theoretical and statistical sense.

Satisfactory data-model fit?

Tentatively retain the proposed model as *one* viable representation of the true relations underlying the data

SEM stuff you should already know

- Measured variable path models
- Confirmatory factor models
- Latent variable path models (general SEM)
- Multisample covariance structure models
- Model / parameter identification
- Estimation
- Data-model fit assessment
- Model modification/respecification
- SEM software (e.g., AMOS, EQS, LISREL, Mplus, lavaan)

Select Introductory SEM Texts

- Beaujean, A. A. (2014). *Latent variable modeling using R*. New York: Taylor & Francis.
- Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley.
- Byrne, B. M. (2012). Structural equation modeling with Mplus. New York: Taylor & Francis.
- Finch, W. H., & French, B. F. (2015). *Latent variable modeling with R*. New York: Routledge.
- Hayduk, L. A. (1987). Structural equation modeling with LISREL. Baltimore, MD: The Johns Hopkins University Press.
- Kelloway, E. K. (2015). Using Mplus for structural equation modeling (2nd ed.). Thousand Oaks, CA: Sage.
- Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). New York: The Guilford Press.
- Loehlin, J. C. (2004). *Latent variable models* (4th Ed.). Hillsdale, NJ: Erlbaum.
- Raykov, T., & Marcoulides, G. A. (2006). *A first course in structural equation modeling* (2nd ed.). Mahwah, NJ: Lawrence Erlbaum.
- Schumacker, R. E., & Lomax, R. G. (2016). A beginner's guide to structural equation modeling (4th ed.). New York: Routledge.

Measured Mean Structure: Repeated Measure Designs, Measured

The χ^2 for the above model, with intercept constraints, corresponds to an omnibus repeated measures test, but without requiring the assumption of sphericity.

Data from n=86 Korean adults learning to read English across 3 months.

Measured Mean Structure: Mplus Syntax

DATA:

FILE IS repeated_data.txt;
VARIABLE:

NAMES ARE read1-read3; MODEL:

read1 WITH read2-read3;
read2 WITH read3;

read1-read3;

[read1] (a);

[read2] (a);

[read3] (a);

OUTPUT:

SAMPSTAT STANDARDIZED;

Data from n=86 Korean adults learning to read English across 3 months.

1			Measured Mean Structure:			
					Mplus Outp	uí
Thi-Squar	e Test o	f Model Fit				
	Value			13.679		
	Degrees of Freedom			2		
	P-Value			0.0011		
					Two-Tailed	
		Estimate	S.E.	Est./S.E.	P-Value	
READ1	WITH					
READ2		31.859	5.228	6.094	0.000	
READ3		29.457	4.946	5.956	0.000	
READ2	WITH					
READ3		28.917	4.627	6.249	0.000	
Means						
READ1		20.419	0.617	33.113	0.000	
READ2		20.419	0.617	33.113	0.000	
READ3		20.419	0.617	33.113	0.000	
Variance	s					
READ1		42.900	6.372	6.732	0.000	
READ2		36.110	5.213	6.928	0.000	
READ3		33.723	4.878	6.913	0.000	

Latent Mean Structure: Introduction

Structural equations

$$V1 = a_{V1}(1) + b_{V1F1}F1 + E1$$

$$V2 = a_{V2}(1) + b_{V2F1}F1 + E2$$

$$V3 = a_{V3}(1) + 1 F1 + E3$$

 $\mathbf{a}_{V1},\,\mathbf{a}_{V2},\,\mathbf{a}_{V3}$ are intercept terms $\mathbf{a}_{F1} \text{ is a latent mean}$

Latent Mean Structure: Introduction

Model-Implied Covariance Matrix with Six Unknowns

$$\begin{bmatrix} \underline{b_{\text{V1F}}^2 c_{\text{F1}} + c_{\text{E1}}} \\ \underline{b_{\text{V1F1}} \underline{b_{\text{V2F}} c_{\text{F1}}}} & b_{\text{V2FI}}^2 c_{\text{F1}} + \underline{c_{\text{E2}}} \\ b_{\text{V1F}} c_{\text{F1}} & b_{\text{V2FI}} \underline{c_{\text{F1}}} & c_{\text{F1}} + \underline{c_{\text{E3}}} \end{bmatrix}$$

Model-Implied Mean Vector with Four Additional Unknowns

$$[\underline{a_{\text{V1}}} + b_{\text{V1F1}} \underline{a_{\text{F1}}} \quad \underline{a_{\text{V2}}} + b_{\text{V2F1}} a_{\text{F1}} \quad \underline{a_{\text{V3}}} + a_{\text{F1}}]$$

The mean structure is currently under-identified.