Groups and Subgroups

Sanjyot Shenoy

2021

Table of Contents:

1	\mathbf{Intr}	$\operatorname{oduction}$	1																	1
	1.1	Group .			 			 												1

1 Introduction

Definition 1.1 (Binary Operation):

A binary operation * on a set G is a function $*: G \times G \to G$. We shall write *(a,b) as a*b.

Definition 1.2 (Associative Binary Operation):

A binary operation * on a set G is said to be associative if $\forall a, b, c \in G$ we have that a*(b*c) = (a*b)*c.

Definition 1.3 (Commutative Binary Operation):

A binary operation * on a set G is said to be commutative if $\forall a, b \in G$ we have a * b = b * a.

Example 1.1:

- 1. + (usual addition) is a commutative binary operation on \mathbb{Z} (or on \mathbb{Q} , \mathbb{R} , or \mathbb{C} respectively).
- 2. \times (usual multiplication) is a commutative binary operation on \mathbb{Z} (or on \mathbb{Q} , \mathbb{R} , or \mathbb{C} respectively).
- 3. (usual subtraction) is a non-commutative binary operation on \mathbb{Z} , where -(a,b)=a-b. The map $a\mapsto -a$ is not a binary operation.
- 4. Taking the vector cross-product of two vectors in 3-space \mathbb{R}^3 is a binary operation which is not associative and not commutative.

Remark(s):

- 1. Suppose that * is a binary operation on a set G and $H \subset G$. If the restriction of * to H is a binary operation on H, i.e, $\forall a, b \in H$, $a*b \in H$, then H is said to be **closed** under *.
- 2. Observe that is * is associative (respectively, commutative) binary operation on G and * restricted to some subset H of G is a binary operation on H, then * is automatically associative (respectively, commutative) on H as well.

1.1 Group

Definition 1.4 (Group):

A **Group** is an ordered pair (G, *) where G is a set and * is a binary operation on G satisfying the following axioms:

- 1. (Associative) $(a*b)*c = a*(b*c), \forall a,b,c \in G$, i.e.,* is associative.
- 2. (Existence of Identity) There exists an element e, called an identity of G, such that $\forall a \in G$, we have a*e=e*a=a.

3. (Existence of Inverses) $\forall a \in G, \exists a^{-1} \in G, \text{ called an inverse of } a, \text{ such that } a * a^{-1} = a^{-1} * a = e.$

Definition 1.5 (Abelian Group):

A Group (G, *) is said to be an Abelian group if the binary operation * on G is commutative for all elements of G.

Remark(s):

- 1. We shall immediately become less formal and say G is a group under * if (G, *) is a group (or just G is a group when the operation * is clear from the context).
- 2. (Finite Group) If the set G is a finite set, then the group G is called a finite group.
- 3. (Non-emptiness of set): By axiom on existence of identity, the set G is non-empty.

Direct Product of Groups

If (A, *) and (B, \diamond) are groups, we can form a new group $A \times B$ called their **direct product**, whose elements are those in the Cartesian product.

$$A \times B = \{(a, b) | a \in A, b \in B\}.$$

and whose operation is defined componentwise:

$$(a_1, b_1)(a_2, b_2) = (a_1 * a_2, b_1 \diamond b_2).$$

It is easy to check that this is a group.