Implicit Regularization

A Statistical View

Jingfeng Wu

Machine learning

test error
$$\leq$$
 training error $+\sqrt{\frac{\text{complexity}}{n}}$

- optimization
 <= gradient methods
- generalization
 complexity control

Machine learning

test error
$$\leq$$
 training error $+\sqrt{\frac{\text{complexity}}{n}}$

optimization

<= gradient methods

past work: large stepsize accelerates GD for logistic regression

Machine learning

test error
$$\leq$$
 training error $+\sqrt{\frac{\text{complexity}}{n}}$

- optimization<= gradient methods
- generalization
 complexity control

this talk: generalization, done together with optimization

Complexity control

classical answer: **explicit control**

- model family
- norm regularization

•

deep learning: implicit controls via opt algo

- early stopping
- stochastic averaging

•

how good is implicit regularization?

Bartlett. "For valid generalization the size of the weights is more important than the size of the network." NeurIPS 1996

One of our results

For all Gaussian linear regression problems:

early stopping is

- always no worse
- sometimes much better

than ℓ_2 -regularization.

Our approach

Instance-wise risk comparison

GD vs ridge regression

high dimension

• GD vs (online) SGD

Peter Bartlett

Jason Lee

Sham Kakade

Bin Yu

Wu, Bartlett*, Lee*, Kakade*, Yu*. "Risk comparisons in linear regression: implicit regularization dominates explicit regularization." arXiv 2025

Linear regression

finite signal-to-noise ratio

$$x \sim N(0, \Sigma), y = x^{T}w^{*} + N(0, 1) \text{ for } ||w^{*}||_{\Sigma} \lesssim 1$$

problem determined by (Σ, w^*)

excess risk / prediction error

$$R(w) = \mathbb{E}(y - x^{\mathsf{T}}w)^2 - \mathbb{E}(y - x^{\mathsf{T}}w^*)^2$$
$$= \|w - w^*\|_{\Sigma}^2$$

$$n \text{ iid samples } (x_1, y_1), \dots, (x_n, y_n)$$

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n^\top \end{bmatrix} \quad Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$

Explicit / implicit regularization

ridge regression

hyperparameter: $\lambda \geq 0$

$$w_{\lambda}^{\text{ridge}} = \arg\min \frac{1}{n} \sum_{i=1}^{n} ||x_i^{\top} w - y_i||^2 + \lambda ||w||^2$$
$$= (X^{\top} X + n\lambda I)^{-1} X^{\top} Y$$

gradient descent

hyperparameter: $t \ge 0$

- $w_0 = 0$
- for s = 1, ..., t,

$$w_s = w_{s-1} - \frac{\eta}{n} X^{\mathsf{T}} (X w_{s-1} - Y)$$

•
$$w_t^{\text{gd}} = w_t$$

Notation

• SVD

$$\Sigma = \sum_{i \ge 1} \lambda_i u_i u_i^{\top} \qquad \lambda_1 \ge \lambda_2 \ge \dots$$

head and tail divided by k

$$\Sigma_{0:k} = \sum_{i \le k} \lambda_i u_i u_i^{\mathsf{T}} \qquad \Sigma_{k:\infty} = \sum_{i > k} \lambda_i u_i u_i^{\mathsf{T}}$$

• matrix M, vector v

$$M^{-1}$$
 = pseudoinverse of M $||v||_M^2 = v^T M v$

Bounds for ridge

*possible to pin down constants via RMT

same upper bound holds w.h.p.

Theorem. For all $\lambda \geq 0$, in expectation

$$\mathbb{E} R\left(w_{\lambda}^{\mathsf{ridge}}\right) \gtrsim \tilde{\lambda}^2 \|w^*\|_{\Sigma_{0:k^*}^{-1}}^2 + \|w^*\|_{\Sigma_{k^*:\infty}}^2 + \min\left\{\frac{D}{n}, 1\right\}$$
 "E" can be

made "w.h.p."

critical index

$$k^* = \min \left\{ k : \lambda + \frac{\sum_{i>k} \lambda_i}{n} \ge c\lambda_{k+1} \right\}$$

effective regularization

$$\tilde{\lambda} = \lambda + \frac{\sum_{i>k^*} \lambda_i}{n}$$

effective dimension

$$D = k^* + \frac{1}{\tilde{\lambda}^2} \sum_{i > k^*} \lambda_i^2$$

Tsigler & Bartlett. "Benign overfitting in ridge regression." JMLR 2023

A ridge-type bound for GD

Theorem [WBKLY'25]. For all $0 < \eta \lesssim 1/\text{tr}(\Sigma)$ and $t \geq 0$, w.h.p.

$$R(w_t^{\text{gd}}) \lesssim \tilde{\lambda}^2 \|w^*\|_{\Sigma_{0:k^*}^{-1}}^2 + \|w^*\|_{\Sigma_{k^*:\infty}}^2 + \frac{D}{n}$$

$$\text{was min } \left\{ \frac{D}{n}, 1 \right\}$$

critical index

$$k^* = \min \left\{ k : \frac{1}{\eta t} + \frac{\sum_{i > k} \lambda_i}{n} \ge c \lambda_{k+1} \right\}$$

effective regularization

$$\tilde{\lambda} = \frac{1}{\eta t} + \frac{\sum_{i>k^*} \lambda_i}{n}$$
 was λ

effective dimension

$$D = k^* + \frac{1}{\tilde{\lambda}^2} \sum_{i > k^*} \lambda_i^2$$

GD is no worse than ridge.

Proof. If D > n, set t = 0; otherwise, set $t = 1/(\eta \lambda)$.

GD dominates ridge

$$x \sim N(0, \Sigma), y = x^{T}w^{*} + N(0, 1) \text{ for } ||w^{*}||_{\Sigma} \lesssim 1$$

Theorem [WBKLY'25]. For **every** Gaussian linear regression, $n \ge 1$, and $\lambda \ge 0$, there is t such that: w.h.p.

$$R(w_t^{\mathsf{gd}}) \lesssim \mathbb{E}R(w_{\lambda}^{\mathsf{ridge}})$$

Prior work. Assume an isotropic prior, $\mathbb{E} w^{*\otimes 2} \propto I$

$$\inf_{\lambda} \mathbb{E}R\left(w_{\lambda}^{\mathsf{ridge}}\right) \leq \mathbb{E}R\left(w_{t}^{\mathsf{gd}}\right) \leq 1.69 \mathbb{E}R\left(w_{\lambda}^{\mathsf{ridge}}\right)$$

next: GD can be much better than ridge

Ali, Kolter, Tibshirani. "A continuous-time view of early stopping for least squares regression." AISTATS 2019

Power law class

$$\lambda_i \approx i^{-a}$$
 $\lambda_i (u_i^{\mathsf{T}} w^*)^2 \approx i^{-b}$ for $a, b > 1$

	1 <b<a< th=""><th>a<b<1+2a< th=""><th>b>1+2a</th></b<1+2a<></th></b<a<>	a <b<1+2a< th=""><th>b>1+2a</th></b<1+2a<>	b>1+2a
ridge	$O(n^{-\frac{b-1}{b}})$		$\Omega(n^{-\frac{2a}{1+2a}})$
SGD	$\tilde{\Omega}(n^{-\frac{b-1}{a}})$	$\tilde{O}(n^{-}$	$\left(\frac{b-1}{b}\right)$
GD	$O(n^{-\frac{b-1}{b}})$		
minimax	$\Omega(n^{-\frac{b-1}{b}})$		

GD is always optimal ridge/SGD is only partially optimal

Power law class

(best of ridge and SGD is also optimal)

Results so far

GD dominates ridge

- always no worse
- sometimes much better

remark (computation)

multi-pass SGD (sample with replacement)

- multi-pass SGD is no better than GD
- with correct stepsizes, multi-pass SGD pprox GD

Why not known earlier?

fixed design is easy [DFKU'13, 6 pages]

but random design is hard

- instance-wise, not worst-case
- high-dim is surprising [BLLT'20, 44 pages]
- right tools 2019+

more surprise: GD vs (online) SGD

Dhillon, Foster, Kakade, Unga. "A risk comparison of ordinary least squares vs ridge regression." *JMLR 2013*

Bartlett, Long, Lugosi, Tsigler. "Benign overfitting in linear regression." PNAS 2020

Batch / online

gradient descent

•
$$w_0 = 0$$

• for
$$s = 1, ..., t$$
,

$$w_s = w_{s-1} - \frac{\eta}{n} X^{\mathsf{T}} (X w_{s-1} - Y)$$

•
$$w_t^{\text{gd}} = w_t$$

stochastic gradient descent

•
$$w_0 = 0$$
, $\eta_0 = \eta$, $N = n/\log n$

• for
$$i = 1, ..., n$$
,

$$\eta_i = \begin{cases} 0.1 \eta_{i-1} & \text{if } i \% N = 0 \\ \eta_{i-1} & \text{else} \end{cases}$$

$$w_i = w_{i-1} - \eta_i (x_i^{\mathsf{T}} w_{i-1} - y_i) x_i$$

•
$$w_{\eta}^{\text{sgd}} = w_n$$

hyperparameter: $t \ge 0$

hyperparameter: $0 < \eta \lesssim 1/\text{tr}(\Sigma)$

compare implicit regularization: batch vs online

Bounds for SGD

Theorem. For all $0 < \eta \lesssim 1/\text{tr}(\Sigma)$, in expectation

$$\mathbb{E}R\left(w_{\eta}^{\mathrm{sgd}}\right) \approx \left\|\prod_{i=1}^{n} (I - \eta_{i}\Sigma)w^{*}\right\|_{\Sigma}^{2} + \frac{D}{N}$$
matching upper / lower bounds

effective steps

$$N = n/\log n$$

"N" can be made "n"

critical index

$$k^* := \min \left\{ \frac{1}{\eta N} \ge c\lambda_{k+1} \right\}$$

effective dimension

$$D = k^* + \eta^2 N^2 \sum_{i > k^*} \lambda_i^2$$
 effective regularization

Zou*, Wu*, Braverman, Gu, Kakade. "Benign overfitting of constant-stepsize SGD for linear regression." COLT 2021

Wu*, Zou*, Braverman, Gu, Kakade. "Last iterate risk bounds of SGD with decaying stepsize for overparameterized linear regression." ICML 2022

SGD vs ridge

excess risk = bias + D/N

	SGD	ridge
bias	$\ e^{-\Theta(\eta N)\Sigma_{0:k}^*}w^*\ _{\Sigma_{0:k}^*}^2 + \ w^*\ _{\Sigma_{k^*:\infty}}^2$ bias decays faster	$\tilde{\lambda}^2 \ w^*\ _{\Sigma_{0:k^*}^{-1}}^2 + \ w^*\ _{\Sigma_{k^*:\infty}}^2$
effective steps	$N = n/\log n$	N = n
critical index	$\lambda_{k^*} \gtrsim \frac{1}{\eta N} \gtrsim \lambda_{k^*+1}$	$\lambda_{k^*} \gtrsim \lambda + \frac{\sum_{i>k^*} \lambda_i}{n} \gtrsim \lambda_{k^*+1}$
effective regularization	$\tilde{\lambda} = \frac{1}{\eta N}$ constraint	$\tilde{\lambda} = \lambda + \frac{\sum_{i>k^*} \lambda_i}{n_{\text{constraint}}}$
effective dimension	$\eta \lesssim 1/\text{tr}(\Sigma)$ $D = k^* + \frac{1}{\tilde{\lambda}^2}$	

GD dominates ridge; would GD dominate SGD?

GD does not dominate SGD

Theorem [WBKLY'25]. $n \ge 1$. For a sequence of d-dim problems

$$d \ge n^2 \qquad w^* = \begin{bmatrix} n^{0.45} \\ 0 \\ \vdots \\ 0 \end{bmatrix} \qquad \Sigma = \begin{bmatrix} n^{-0.9} \\ 1/d \\ \ddots \\ 1/d \end{bmatrix}$$

we have $||w^*||_{\Sigma}^2 \le 1$, moreover

• for all
$$0<\eta\lesssim 1$$
 and $t\geq 0$, $\mathbb{E}R\big(w_t^{\mathrm{gd}}\big)=\Omega\big(n^{-0.2}\big)$

$$\text{ for } \eta \eqsim 1, \\ \mathbb{E} R \big(w_{\eta}^{\mathrm{sgd}} \big) = O \big(\log(n)/n \big)$$

in high-dimensional online learning could be poly better than batch!

A lower bound for GD

Theorem [WBKLY'25]. For all $0 < \eta \lesssim 1/\text{tr}(\Sigma)$ and $t \geq 0$

$$\mathbb{E}R(w_t^{\mathsf{gd}}) \gtrsim \left(\frac{\sum_{i>\ell^*} \lambda_i}{n}\right)^2 \|w^*\|_{\Sigma_{0:\ell^*}^{-1}}^2 + \|w^*\|_{\Sigma_{\ell^*:\infty}}^2 + \min\left\{\frac{D}{n}, 1\right\}$$

effective dimension

$$D = k^* + \frac{1}{\tilde{\lambda}^2} \sum_{i > k^*} \lambda_i^2 \quad as \ before...$$

benign overfitting index

$$\mathscr{C}^* = \min \left\{ k : \frac{\sum_{i>k} \lambda_i}{n} \ge c\lambda_{k+1} \right\}$$

GD bias ≥ OLS bias

GD variance = ridge variance OLS bias can be large in high-dimensional

when would GD dominate SGD?

A SGD-type bound for GD

Theorem [WBKLY'25]. For all $0 < \eta \lesssim 1/\text{tr}(\Sigma)$ and $0 \le t \lesssim n$, w.h.p.

$$R\left(w_t^{\mathsf{gd}}\right) \lesssim \left\| (I - \eta \Sigma)^{t/2} w^* \right\|_{\Sigma}^2 + \frac{D}{n} + \left(\frac{D_1}{n}\right)^2$$

critical index

$$k^* := \min\left\{\frac{1}{\eta t} \ge c\lambda_{k+1}\right\}$$
 same as SGD

effective dimension

$$D = k^* + \eta^2 t^2 \sum_{i > k^*} \lambda_i^2 \qquad \text{when } t = \Theta(N)$$

order-1 effective dim

$$D_1 = k^* + \eta t \sum_{i > k^*} \lambda_i$$

• $D \leq D_1$, always

when would $D_1 \lesssim D$?

• in the hard example, $D \ll D_1$

Spectrum condition

Assumption. Spectrum decays fast and continuously

for all
$$\tau > 1$$
, $\qquad \tau \sum_{\lambda_i < 1/\tau} \lambda_i \lesssim \#\{\lambda_i \geq 1/\tau\}$

satisfied by

- $\lambda_i \approx a^{-i}$ for a > 1
- $\lambda_i \approx i^{-a}$ for a > 1

violated by

- $\lambda_i \approx i^{-1} \log^{-a}(i)$ for a > 1
- $(\lambda_i)_{i>1}$ in the hard example

 $(n^{-0.9}, 1/d, ..., 1/d)$ for $d \ge n^2$

- rules out benign overfitting
- implies $D_1 \lesssim k^* \leq D$

GD dominates SGD in a subclass

Assumption. Spectrum decays fast and continuously

for all
$$\tau > 1$$
, $\qquad \tau \sum_{\lambda_i < 1/\tau} \lambda_i \lesssim \#\{\lambda_i \geq 1/\tau\}$

$$x \sim N(0, \Sigma), y = x^{\mathsf{T}} w^* + N(0, 1) \text{ for } ||w^*||_{\Sigma} \lesssim 1$$

Theorem [WBKLY'25]. For every Gaussian linear regression satisfying the above, $n \ge 1$, and $0 \le \eta \lesssim 1$, there is t such that

$$\mathbb{E}R(w_t^{\mathsf{gd}}) \lesssim \mathbb{E}R(w_\eta^{\mathsf{sgd}})$$

Proof. Assumption implies $D_1 \lesssim k^* \leq D$.

no constraint on w*

Contributions

"dominance": always no worse, sometimes much better