Programme de colle : Semaine 19 Lundi 3 mars

1 Cours

1. Probabilité:

- Univers, événements, système complet d'événements.
- Probabilité définition et exemple proba uniforme.
- Formule des proba totales.
- Probabilité conditionnelle.
- Formule des proba composées.
- Formule des proba totales version proba conditionnelle.
- Formule de Bayes (+ démo)
- Evenements indépendants, mutuellement indépendants, expériences indépendantes.

2. Polynôme:

- Définition d'un polynôme (comme fonction polynomiale)
- Degré, coefficient dominant.
- Racines, multiplicités.

3. Python:

- Tableau numpy, dictionnaires
- Représentation informatique d'un polynome par une liste (évaluation, racine, dérivation, somme)

2 Exercices Types

- 1. Soient trois personnes choisies une à une et sans remise dans une population. On note R_i l'événement « la i-ième personne a un rhésus + ». Ecrire à l'aide des R_i les événements suivants
 - A: « au moins une personne a un rhésus + »;
 - B: « au moins deux personnes ont un rhésus + »;
 - \bullet C : « une personne exactement a un rhésus + » ;
 - D: « au moins une des deux premières personnes a un rhésus + ».
- 2. On répartit 4 boules numérotées de 1 à 4 dans 4 tiroirs également numérotés de 1 à 4, chaque tiroir pouvant recevoir toutes les boules. On pourra considérer qu'un résultat est une 4-liste (n_1, n_2, n_3, n_4) où n_i est le numéro du tiroir contenant la boule de numéro i.
 - Quelle est la probabilité pour que les 4 tiroirs soient occupés? Pour qu'un seul tiroir soit occupé? Pour que les boules 1 et 2 se trouvent dans les 2 premiers tiroirs? (+ modélisation informatique)
- 3. On considère n urnes U_1, U_2, \ldots, U_n . L'urne U_1 contient b boules blanches et n noires, les autres contiennent initialement b boules blanches et b boules noires. On tire une boule de U_1 que l'on met dans U_2 puis une boule de U_2 que l'on met dans U_3 et ainsi de suite. On note p_i la probabilité d'obtenir une boule blanche au i-ième tirage. Calculer p_1 puis p_{i+1} en fonction de p_i pour $i \geq 2$. Déterminer p_i en fonction de p_i puis p_i .
- 4. On possède un jeu de 32 cartes et un jeu de 52 cartes. On choisit au hasard l'un de ces jeux et on y tire une carte. On constate que c'est une dame. Quelle est la probabilité qu'elle vienne du jeu de 32 cartes?
- 5. Dans les deux cas suivants, déterminer tous les polynômes P vérifiant les conditions indiquées
 - (a) deg(P) = 3 et P(1) = 4, P(-1) = 0, P(-2) = -5, P(2) = 15.
 - (b) $deg(P) \le 2$ et $P^2 = X^4 + 2X^3 3X^2 4X + 4$.
- 6. Déterminer le nombre a de manière à ce que le polynôme $P = X^5 aX^2 aX + 1$ ait -1 comme racine au moins double.
- 7. On cherche ici à déterminer tous les polynômes $P \in \mathbb{R}$ tels que $P(X^2) = (X^2 + 1)P$.

- (a) Soit $P \in \mathbb{R}$ vérifiant $P(X^2) = (X^2 + 1)P$. Quel est son degré?
- (b) Déterminer P à l'aide d'une identification des coefficients.
- (c) Retrouver l'expression de P en déterminant ses racines.
- 8. Soit $n \ge 2$, on pose $P = (X+1)^n 1$.
 - (a) Déterminer toutes les racines de P dans $\mathbb C$ et en déduire la factorisation de P dans $\mathbb C$.
 - (b) On note Q le polynôme de $\mathbb C$ tel que : P=XQ. À l'aide des racines de Q, déterminer la valeur de :

$$A = \prod_{k=1}^{n-1} \sin\left(\frac{k\pi}{n}\right).$$

9. Ecrire une fonction Python qui prend en argument un entier n et retourne la valeur de u_n où $(u_n)_{n\in\mathbb{N}}$ est définie par

$$u_0 = 1$$
 et $\forall n \in \mathbb{N}, u_{n+1} = 3sin(u_n) + 2$

10. Représenter informatiquement un polynome (liste) et donner une fonction qui permet de faire la somme de deux polynomes.