Binomialkoeffizient: $\left(\begin{array}{c} n \\ k \end{array} \right) := \frac{n!}{k!(n-k)!}$

Bernoullische Ungleichung: Ist $x \ge -1$, so gilt $(1+x)^n \ge 1 + nx \ \forall \ n \in \mathbb{N}$

Der binomische Satz: $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k \ \forall \ n \in \mathbb{N}$

Monotoniekriterium für Folgen:

- (a_n) sei monoton wachsend und nach oben beschränkt. Dann ist (a_n) konvergent und $\lim_{n\to\infty}a_n=\sup_{n=1}^\infty a_n$
- (a_n) sei monoton fallend und nach unten beschränkt. Dann ist (a_n) konvergent und $\lim_{n\to\infty}a_n=\inf_{n=1}^\infty a_n$

Wichtige Folgen:

- $\sqrt[n]{n} \to 1 \ (n \to \infty), \ \sqrt[n]{c} \to 1 \ (n \to \infty)$
- $(1+\frac{x}{n})^n \to e^x \ (n\to\infty)$

Satz von Bolzano-Weierstraß: (a_n) sei eine beschränkte Folge. Dann: $H(a_n) \neq \emptyset$

Cauchyfolge (CF): $\forall \varepsilon > 0 \exists n_0 \in \mathbb{N} : |a_n - a_m| < \varepsilon \forall n > m \ge n_0$

Cauchy-Kriterium: (a_n) ist konvergent $\Leftrightarrow (a_n)$ ist eine CF.

Unendliche Reihen:

- Harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ ist divergent
- Geometrische Reihe $\sum_{n=0}^{\infty} x^n \ (x \in \mathbb{R})$ konvergiert für |x| < 1. Dann: $\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$
- $\sum_{n=0}^{\infty} \frac{1}{n!}$ konvergiert gegen e
- $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ konvergiert gegen 1
- $\sum_{n=0}^{\infty} \frac{x^n}{n!}$ konvergiert absolut $\forall x \in \mathbb{R}$

Cauchy-Kriterium: $\sum_{n=1}^{\infty} a_n$ konvergiert : $\Leftrightarrow \forall \varepsilon > 0 \exists n_0 = n_0(\varepsilon) \in \mathbb{N} : |\underbrace{\sum_{k=m+1}^{n} a_k}| < \varepsilon \forall n > m \ge n_0$

Monotonie-Kriterium: Sind alle $a_n \geq 0$ und ist (s_n) beschränkt $\Rightarrow \sum_{n=1}^{\infty} a_n$ konvergiert.

Notwendige Bedingung für Konvergenz: $\sum_{n=1}^{\infty} a_n$ sei konvergent. Dann: $a_n \to 0 \ (n \to \infty)$

Leibnitzkriterium: Sei (b_n) eine monoton fallende Nullfolge und $a_n = (-1)^{n+1}b_n$. Dann ist $\sum_{n=1}^{\infty} a_n$ konvergent.

Majorantenkriterium: Gilt $|a_n| \leq b_n$ ffa $n \in \mathbb{N}$ und ist $\sum_{n=1}^{\infty} b_n$ konv. $\Rightarrow \sum_{n=1}^{\infty} a_n$ konvergiert absolut.

Minorantenkriterium: Gilt $a_n \ge b_n \ge 0$ ffa $n \in \mathbb{N}$ und ist $\sum_{n=1}^{\infty} b_n$ divergent $\Rightarrow \sum_{n=1}^{\infty} a_n$ ist divergent.

Wurzelkriterium: Sei (a_n) eine Folge und $\alpha = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$ $(\alpha = \infty \text{ ist zugelassen})$.

- (1) Ist $\alpha < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ konvergiert absolut
- (2) Ist $\alpha > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ divergient
- (3) Ist $\alpha = 1$, so ist keine allgemeine Aussage möglich

Quotientenkriterium: Sei (a_n) eine Folge in \mathbb{R} und $a_n \neq 0$ ffa $n \in \mathbb{N}$. $\alpha_n = \frac{a_{n+1}}{a_n}$ ffa $n \in \mathbb{N}$. Es sei α_n beschränkt, $\beta := \liminf(\alpha_n)$ und $\alpha := \limsup |\alpha_n|$

- (1) Ist $\beta > 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ divergient
- (2) Ist $\alpha < 1 \Rightarrow \sum_{n=1}^{\infty} a_n$ konvergiert absolut
- (3) Ist $\alpha = \beta = 1$, so ist keine allgemeine Aussage möglich.

Produktreihen: Sind $\sum a_n$ und $\sum b_n$ absolut konvergent, so ist die Produktreihe $\sum p_n$ von beiden absolut konvergent.

Cauchyprodukt: Setze $c_n := \sum_{k=0}^n a_k b_{n-k} = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0 (n \in \mathbb{N}_0)$. $\sum_{n=0}^{\infty} c_n$ heißt Cauchyprodukt

Sind $\sum a_n$ und $\sum b_n$ absolut konvergent, so konvergiert ihr Cauchyprodukt $\sum_{n=0}^{\infty} c_n$ gegen $\sum_{n=0}^{\infty} a_n \cdot \sum_{n=0}^{\infty} b_n$.

Sinus und Cosinus: $\cos x := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$ $\sin x := \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$

Potenzreihe: $\sum_{n=0}^{\infty} a_n x^n = a_0 + a_1 x + a_2 x^2 + ...$

 $\sum_{n=0}^{\infty} a_n x^n$ sei eine PR, $\varrho := \limsup_{n \to \infty} \sqrt[n]{|a_n|}$ und $r := \frac{1}{\varrho}$ (also r = 0, falls $\varrho = \infty$ und $r = \infty$, falls $\varrho = 0$)

- (1) Ist r = 0, so konvergiert die PR <u>nur</u> für x=0
- (2) Ist $r = \infty$, so konvergiert die PR absolut $\forall x \in \mathbb{R}$
- (3) Ist $0 < r < \infty$, so konvergiert die PR absolut für |x| < r und sie divergiert für |x| > r (im Falle |x| = r, also für x = r und x = -r, ist keine Aussage möglich.

Sinus- und Cosinushyperbolicus:

- $\cosh x := \frac{1}{2} (e^x + e^{-x}) \ (x \in \mathbb{R}), \ \cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$
- $\sinh x := \frac{1}{2}(e^x e^{-x}) \ (x \in \mathbb{R}), \ \sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} \ (x \in \mathbb{R})$

Grenzwerte bei Funktionen: $\lim_{x\to x_0} f(x)$ existiert : $\Leftrightarrow \exists a \in \mathbb{R}$ mit: für jede Folge (x_n) in $D\setminus \{x_0\}$ mit $x_n\to x_0$ gilt: $f(x)\to a$.

Cauchykriterium: $\lim_{x\to x_0} f(x)$ existiert : $\Leftrightarrow \forall \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0 : |f(x) - f(x')| < \varepsilon \ \forall \ x, x' \in \dot{D}_{\delta}(x_0)$

Exponential function: $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \ (x \in \mathbb{R})$

Stetigkeit: f heißt stetig in $x_0 : \Leftrightarrow$ für jede Folge (x_n) in D mit $x_n \to x_0$ gilt: $f(x_n) \to f(x_0)$

Beispiele:

- (1) e^x , $\sin(x)$, $\cos(x)$ sind auf \mathbb{R} stetig
- $(2) \lim_{x \to 0} \frac{\sin x}{x} = 1$
- (3) $\lim_{x\to 0} \frac{e^x-1}{x} = 1$
- (4) $\lim_{h\to 0} \frac{e^{x_0+h}-e^{x_0}}{h} = e^{x_0} \ \forall \ x_0 \in \mathbb{R}$

Zwischenwertsatz: Sei a < b und $f \in C[a,b] := C([a,b])$. Weiter sei $y_0 \in \mathbb{R}$ und $f(a) \le y_0 \le f(b)$ oder $f(b) \le y_0 \le f(a)$. Dann existiert ein $x_0 \in [a,b] : f(x_0) = y_0$

Nullstellensatz von Bolzano: Sei $f \in C[a,b]$ und f(a)f(b) < 0. Dann existiert ein $x_0 \in [a,b]: f(x_0) = 0$

Offene / abgeschlossene Mengen:

- (1) $A \subseteq \mathbb{R}$ heißt abgeschlossen : \Leftrightarrow für jede konvergente Folge (x_n) in A gilt: $\lim x_n \in A$
- (2) $B \subseteq \mathbb{R}$ heißt offen : $\Leftrightarrow \forall x \in B \exists \delta = \delta(x) > 0 : U_{\delta}(x) \subseteq B$

Funktionenfolgen und -Reihen:

- (f_n) heißt auf D punktweise konvergent : \Leftrightarrow für jedes $x \in D$ ist $(f_n(x))_{n=1}^{\infty}$ konvergent.
- $\sum_{n=1}^{\infty} f_n$ heißt auf D punktweise konvergent : \Leftrightarrow für jedes $x \in D$ ist $(s_n(x))_{n=1}^{\infty}$ konvergent.
- (f_n) heißt auf D gleichmäßig (glm) konvergent : $\Leftrightarrow \exists$ Funktion $f:D\to\mathbb{R}$ mit: $\forall \ \varepsilon>0 \ \exists \ n_0(\varepsilon)\in\mathbb{N}: |f_n(x)-f(x)|<\varepsilon \ \forall \ n\geq n_0 \ \forall \ x\in D$

• Kriterium nach Weierstraß: Sei (c_n) eine Folge in \mathbb{R} , sei $\sum_{n=1}^{\infty} c_n$ konvergent, sei $m \in \mathbb{N}$ und es gelte $|f_n(x)| \le c_n \ \forall \ n \ge m \ \forall \ x \in D$. Dann konvergiert $\sum_{n=1}^{\infty} f_n$ auf D glm.

Gleichmäßige Stetigkeit: $\forall \ \varepsilon > 0 \ \exists \ \delta = \delta(\varepsilon) > 0 : |f(x) - f(z)| < \varepsilon \ \forall \ x, z \in D \ \mathrm{und} \ |x - z| < \delta$

• Ist D beschränkt und abgeschlossen, und f auf D stetig, dann ist f auf D glm. stetig.

Libschitzstetigkeit: $\exists L \ge 0 : |f(x) - f(z)| \le L|x - z| \ \forall \ x, z \in D$

Ableitung / Differenzierbarkeit in x_0 : $\exists \lim_{x\to x_0} \frac{f(x)-f(x_0)}{x-x_0} = f'(x_0)$ und ist $\in \mathbb{R}$

Produktregel: $(fg)'(x_0) = f'(x_0)g(x_0) + f(x_0)g'(x_0)$

Quotientenregel: $\left(\frac{f}{g}\right)'(x_0) = \frac{f'(x_0)g(x_0) - f(x_0)g'(x_0)}{g(x_0)^2}$

Kettenregel: $(f \circ g)'(x_0) = f'(g(x_0)) g'(x_0)$

Ableitung der Umkehrfunktion: $f \in C(I)$ sei streng monoton, f sei db in $x_0 \in I$ und $f'(x_0) \neq 0$. Dann ist $f^{-1}: f(I) \to \mathbb{R}$ db in $y_0 := f(x_0)$ und $(f^{-1})'(y_0) = \frac{1}{f'(x_0)}$

Satz von Rolle: es sei f(a) = f(b), f stetig und db. Dann existiert $\xi \in (a,b) : f'(\xi) = 0$

Mittelwertsatz (MWS) der Differentialrechnung: f stetig und db $\Rightarrow \exists \xi \in (a,b) : \frac{f(b)-f(a)}{b-a} = f'(\xi)$

Erweiterter Mittelwertsatz: f, g stetig und db und $g(b) \neq g(a) \Rightarrow \exists \xi \in (a,b) : \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\xi)}{g'(\xi)}$

Die Regeln von de l'Hospital:

 $f,g:(a,b)\to\mathbb{R}$ seien auf (a,b) db und es sei $g'(x)\neq 0\ \forall\ x\in(a,b)\ (a=-\infty\ \text{oder}\ b=\infty\ \text{zugelassen}).$ Weiter existiere $L:=\lim_{x\to a}\frac{f'(x)}{g'(x)}\ (L=\pm\infty\ \text{zugelassen})$ und es gelte

(I)
$$\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$$
 oder

(II)
$$\lim_{x\to a} f(x) = \pm \infty$$
.

Dann $\lim_{x\to a} \frac{f(x)}{g(x)} = L$ (gilt auch für $x\to b$)

Additionstheoreme: $\sin(x+y) = \sin x \cos y + \cos x \sin y$ $\cos(x+y) = \cos x \cos y - \sin x \sin y$

Wichtige Ableitungen:

- $\bullet \ (\tan x)' = 1 + \tan^2 x$
- $(\arctan x)' = \frac{1}{1+x^2}$
- $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}} \quad |x| < 1$
- $(\arccos x)' = -\frac{1}{\sqrt{1-x^2}} |x| < 1$
- $(\ln|x|)' = \frac{1}{x}$

Abelscher Grenzwertsatz: $\log(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1}$ für $x \in [-1,1]$

Höhere Ableitungen: Sei $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ eine PR mit KR $r>0, I:=(x_0-r,x_0+r)$

- $f \in C^{\infty}(I)$
- $\forall x \in I \ \forall k \in \mathbb{N} : f^{(k)}(x) = \sum_{n=k}^{\infty} n(n-1)...(n-k+1)a_n(x-x_0)^{n-k}$

Taylorreihe: $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$

Taylorpolynom: $T_n(x, x_0) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$

Satz von Taylor: Sei $f \in C^n \Rightarrow \exists \xi \in [x, x_0] : f(x) = T_n(x, x_0) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$

1. Hauptsatz der Differential- und Integralrechnung:

Es sei $f \in R[a, b]$ und f besitze auf [a, b] die SF F.

Dann
$$\int_a^b f(x)dx = F(b) - F(a) =: F(x)|_a^b =: [F(x)]_a^b$$

MWS der Integralrechnung:

Es seien $f, g \in R[a, b], g \ge 0$ auf $[a, b], m := \inf f([a, b]), M := \sup f([a, b])$

- (1) $\exists \mu \in [m, M] : \int_a^b fg dx = \mu \int_a^b g dx$
- (2) Ist $f \in C[a,b] \Rightarrow \exists \xi \in [a,b] : \int_a^b f dx = f(\xi)(b-a)$

2. Hauptsatz der Differential- und Integralrechung:

Sei $f \in R[a,b]$ und $F:[a,b] \to \mathbb{R}$ sei definiert durch $F(x) := \int_a^x f(t)dt$

- (1) F ist auf [a,b] Lipschitzstetig, insbesondere $F \in C[a,b]$
- (2) Ist f in x_0 stetig \Rightarrow F ist in x_0 db und $F'(x_0) = f(x_0)$
- (3) Ist $f \in C[a,b] \Rightarrow F \in C^1[a,b]$ und F' = f auf [a,b]

Partielle Integration: $\int_a^b f'gdx = f(x)g(x)|_a^b - \int_a^b fg'dx$

Substitutionsregel: $\int f(g(t))g'(t)dt = \int f(x)dx|_{x=g(t)}$

Integrale:

- $\bullet \int \frac{1}{x-x_0} dx = \log|x-x_0|$
- $\bullet \int \log x \ dx = x \log x x$
- $\int \frac{1}{\sqrt{1+x^2}} dx = \operatorname{arcsinh} x$
- $\int \frac{1}{1-x^2} dx = \operatorname{arctanh} x$

 $\textbf{Cauchy-Kriterium:} \ \int_a^\beta f dx \ \text{konv.} :\Leftrightarrow \ \forall \ \varepsilon > 0 \ \exists \ c = c(\varepsilon) \in (a,\beta) : |\int_u^v f dx| < \varepsilon \ \forall \ u,v \in (c,\beta)$

Majorantenkriterium: Ist $|f| \leq g$ auf $[a, \beta)$ und $\int_a^\beta g dx$ konv. $\Rightarrow \int_a^\beta f dx$ konvergiert absolut

Minorantenkriterium: Ist $|f| \ge g \ge 0$ auf [a,b) und $\int_a^\beta gfx$ div. $\Rightarrow \int_a^\beta fdx$ div.

Funktionen von beschränkter Variation:

- Ist f auf [a, b] Lipschitzstetig $\Rightarrow f \in BV[a, b]$
- Ist f db auf [a,b] und f' beschränkt auf $[a,b] \Rightarrow f \in BV[a,b]$
- Ist f monoton auf $[a,b] \Rightarrow f \in BV[a,b]$ und $v_f[a,b] = |f(b) f(a)|$
- Ist $f \in C^1[a,b] \Rightarrow v_f[a,b] = \int_a^b |f'| dx$

Partielle RS-Integration: Ist $f \in R_g[a,b] \Rightarrow g \in R_f[a,b]$ und $\int_a^b f dg = f(x)g(x)|_a^b - \int_a^b g df$ Riemann-Stieltjes-Integral:

- Sei $f \in R[a,b]$, g sei db auf [a,b] und $g' \in R[a,b]$. Dann $f \in R_g[a,b]$ und $\int_a^b f dg = \int_a^b f g' dx$
- Ist $f \in C[a,b]$ und $g \in BV[a,b] \Rightarrow f \in R_g[a,b]$