WO 2005/014566 PCT/US2004/025480

What is claimed is:

1. A compound of formula (I)

5 wherein

10

15

20

25

30

Ar¹ is selected from benzodioxolyl, pyrrolidinyl,

pyridyl or pyridyl N-oxide, each optionally mono-substituted with $C(O)NH_2$, halo, (C_1-C_3) alkoxy, amino, hydroxy (C_1-C_3) alkyl, or (C_1-C_3) alkyl optionally substituted with aminocarbonyl or (C_1-C_3) alkylcarbonylamino,

a five-membered aromatic heterocycle optionally substituted with 1 or 2 substituents each independently selected from (C₁-C₃)alkyl, C(O)H, C(O)(C₁-C₃)alkyl, and halo, and

phenyl optionally substituted with 1 or 2 substituents each selected independently from OH, $-OCF_3$, CF_3 , CN, halo, NO_2 , NR^5R^5 , $NHC(O)R^6$, $NHS(O)_2R^5$, $NHS(O)_2NR^5R^5$, $S(O)_nR^8$, $C(O)R^{10}$, $C(O)NH(C_1-C_3)$ alkoxy- (C_1-C_3) alkyl, $C(O)NH(C_3-C_6)$ cycloalkyl, pyrrolidinonyl, imidazolinyl, imidazolidinonyl, (C_1-C_3) alkoxy optionally substituted with 1 or 2 OH groups, and (C_1-C_3) alkyl optionally mono-substituted with CN, OH, NR^5R^5 , $NHC(O)R^6$, $NHS(O)_2(C_1-C_3)$ alkyl, $C(O)NR^5R^5$, oxazolidinonyl,

imidazolidinonyl optionally mono-substituted with (C₁-C₃)alkyl, pyrrolidinonyl optionally mono-substituted with (C₁-C₃)alkyl, a five-membered N containing heterocycle optionally mono-substituted with (C₁-C₃)alkyl,

piperazinyl optionally mono-substituted with (C_1-C_3) alkyl, pyridyl optionally mono-substituted with CF_3 , or (C_1-C_3) alkoxy, thienyl optionally mono-substituted with $C(O)(C_1-C_3)$ alkyl, or pyrimidinyl optionally mono-substituted with $N[(C_1-C_3)$ alkyl]₂;

Ar² is selected from benzodioxolyl,

phenyl optionally substituted with 1 or 2 substituents each selected independently from (C₁-C₃)alkyl, (C₁-C₃)alkoxy, OH, NO₂, CN, halo, and CF₃, and

pyridyl mono-substituted with (C_1 - C_3)alkyl, or CF_3 ; R¹ is selected from H, (C_1 - C_3)alkyl, OH, and halo; 118

WO 2005/014566 PCT/US2004/025480

R² is selected from H, (C₁-C₃)alkyl, (C₁-C₃)alkoxy, OH, halo, CF₃, and -OCF₃;

R³ is selected from H, (C₁-C₃)alkoxy, OH, halo, and CF₃:

 R^4 is selected from hydrogen, (C_1-C_3) alkyl, (C_1-C_3) alkoxy, CN, and C(O)NHR⁵, wherein (C_1-C_3) alkyl can optionally be substituted with halo, (C_1-C_3) alkoxy, hydroxyalkylamino, alkoxyalkylamino;

R⁵ is selected from H, (C₃-C₆)cycloalkyl, and

 (C_1-C_3) alkyl optionally substituted with 1 or 2 OH groups or mono-substituted with (C_1-C_3) alkoxy, (C_1-C_3) alkylamino, $S(O)_2(C_1-C_3)$ alkyl, or $C(O)R^7$;

R⁶ is selected from H, (C₃-C₆)cycloalkyl, (C₁-C₃)alkoxy, (C₂-C₆)alkenyl, CHF₂, CF₃, NHR⁵, and (C₁-C₃)alkyl optionally substituted with one or more substituents selected from Cl and F, or optionally mono-substituted with NH₂ or NHC(O)(C₁-C₃)alkyl;

R⁷ is selected from (C₁-C₃)alkoxy, (C₂-C₆)alkenyl, CHF₂, CF₃, (C₃-C₆)cycloalkyl, NR⁷⁻¹R⁷⁻¹, and (C₁-C₃)alkyl optionally substituted with one or more substituents selected from Cl and F, or mono-substituted with NHC(O)(C₁-C₃)alkyl or NH₂, wherein R⁷⁻¹ is hydrogen or (C₁-C₃)alkyl;

R⁸ is selected from (C₁-C₃)alkyl and NR⁹R⁹;

 $\ensuremath{\mathsf{R}}^9$ is selected from H, and (C1-C3)alkyl optionally mono-substituted with

(C₁-C₃)alkoxy, or aminocarbonyl, or substituted with 1 or 2 OH groups;

R¹⁰ is selected from H, (C₁-C₃)alkoxy, NHR⁹, and

(C₁-C₃)alkyl optionally mono-substituted with pyrrolidinyl, morpholinyl, pyridinyl, piperazinyl optionally substituted with (C₁-C₃)alkyl, or piperidinyl optionally substituted with (C₁-C₃)alkyl;

n is 0, 1 or 2;

5

15

20

or a pharmaceutically acceptable salt thereof.

2. The compound of claim 1, wherein Ar¹ is

phenyl optionally substituted with 1 or 2 substituents each selected independently from OH, -OCF₃, CF₃, CN, halo, NO₂, NR⁵R⁵, NHC(O)R⁶, NHS(O)₂R⁵, NHS(O)₂R⁵R⁵, S(O)_nR⁸, C(O)R¹⁰, C(O)NH(C₁-C₃)alkoxy-(C₁-C₃)alkyl, C(O)NH(C₃-C₆)cycloalkyl, pyrrolidinonyl, imidazolinyl, imidazolidinonyl, (C₁-C₃)alkoxy optionally substituted with 1 or 2 OH groups, and (C₁-C₃)alkyl optionally mono-substituted with CN, OH, NR⁵R⁵, NHC(O)R⁶, NHS(O)₂(C₁-C₃)alkyl, C(O)NR⁵R⁵, oxazolidinonyl,

5

15

20

25

35

imidazolidinonyl optionally mono-substituted with (C₁-C₃)alkyl, pyrrolidinonyl optionally mono-substituted with (C₁-C₃)alkyl, a five-membered N containing heterocycle optionally mono-substituted with (C₁-C₃)alkyl, piperazinyl optionally mono-substituted with (C₁-C₃)alkyl, pyridyl optionally mono-substituted with CF₃, or (C₁-C₃)alkoxy, thienyl optionally mono-substituted with C(O)(C₁-C₃)alkyl, or pyrimidinyl optionally mono-substituted with N[(C₁-C₃)alkyl]₂,

10 R⁵ is selected from H, (C₃-C₆)cycloalkyl, and

(C₁-C₃)alkyl optionally substituted with 1 or 2 OH groups or mono-substituted with (C₁-C₃)alkoxy, (C₁-C₃)alkylamino, S(O)₂(C₁-C₃)alkyl, or C(O)R⁷;

R⁶ is selected from H, (C₃-C₆)cycloalkyl, (C₁-C₃)alkoxy, (C₂-C₆)alkenyl, CHF₂, CF₃, NHR⁵, and (C₁-C₃)alkyl optionally substituted with one or more substituents selected from Cl and F, or optionally mono-substituted with NH₂ or NHC(O)(C₁-C₃)alkyl;

R⁷ is selected from (C₁-C₃)alkoxy, (C₂-C₆)alkenyl, CHF₂, CF₃, (C₃-C₆)cycloalkyl, NR⁷⁻¹R⁷⁻¹, and (C₁-C₃)alkyl optionally substituted with one or more substituents selected from Cl and F, or mono-substituted with NHC(O)(C₁-C₃)alkyl or NH₂, wherein R⁷⁻¹ is hydrogen, methyl or ethyl;

R⁸ is selected from (C₁-C₃)alkyl and NR⁹R⁹;

R⁹ is selected from H, and (C₁-C₃)alkyl optionally mono-substituted with (C₁-C₃)alkoxy, or aminocarbonyl, or substituted with 1 or 2 OH groups; R¹⁰ is selected from H, (C₁-C₃)alkoxy, NHR⁹, and

(C₁-C₃)alkyl optionally mono-substituted with pyrrolidinyl, morpholinyl, pyridinyl, piperazinyl optionally substituted with (C₁-C₃)alkyl, or piperidinyl optionally substituted with (C₁-C₃)alkyl;

- 30 3. The compound of claim 1, wherein Ar² is 2,4-dihalosubstituted phenyl.
 - 4. The compound of claim 1, wherein Ar² is 2,4-dichlorophenyl.
 - 5. The compound of claim 1, wherein R¹, R² and R³ are hydrogen.
 - A process for preparing a compound of Claim 1, wherein a compound of formula
 (X)

$$R^2$$
 R^3
 R^4
 R^2
 R^2
 R^3
 R^4
 R^2
 R^2
 R^3
 R^4

wherein R^1 to R^4 and Ar^2 have the meaning indicated in claim 1, is reacted with a compound (IV)

5

$$Ar^1$$
-B(OR')₂ (IV),

wherein Ar^1 has the meaning indicated in claim 1, and where R' is selected in each instance independently from H and (C_1-C_3) alkyl, or (IV) represents

10

20

25

in the presence of a palladium catalyst and base.

- 15 7. The compound of claim 1 for the treatment and/or prophylaxis of disorders.
 - 8. A pharmaceutical composition comprising a compound according to claim 1.
 - A pharmaceutical composition comprising a compound according to claim 1 in combination with at least one pharmaceutically acceptable excipient.
 - 10. A process for preparing the pharmaceutical composition of claim 9, comprising combining at least one compound of claim 1 with at least one pharmaceutically acceptable excipient, mixing the combination and bringing the combination into a suitable administration form.

WO 2005/014566 PCT/US2004/025480

11. The pharmaceutical composition of claim 8 for the treatment or prophylaxis of hyperproliferative disorders.

- 12. The use of a compound according to claim 1 for manufacturing a medicament for the treatment or prophylaxis of hyperproliferative disorders.
- 13. A method of treating a disease or condition in a mammal, comprising administering to a mammal in need thereof an effective amount of a compound according to the formula (I).

10

5

14. The method of claim 13, wherein the disease or condition is a hyperproliferative disorder.