Задания к лабораторным работам для группы №117382

дата генерации документа 25 января 2021 г.

Содержание

Лабораторная работа $\ ^{1}$ 2 «Регрессионный анализ, методы аппроксимации» $\ ^{3}$

Лабораторная работа \mathbb{N} 2 «Регрессионный анализ, методы аппроксимации»

Вариант 1

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

$$y(x) = ax + b$$

•
$$y(x) = a_2 x^2 + a_1 x + a_0$$

•
$$y(x) = ae^{bx} + c$$

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 x + a_1 x^{1.2} + a_2 \frac{x}{1+x}$$

•
$$y(x) = B + 10^{A+Cx}$$

• кубический сплайн

X	У
8.50	103.57
8.80	100.55
9.10	113.00
9.40	76.37
9.70	77.18
10.00	161.11
10.30	113.39
10.60	129.72
10.90	126.36
11.20	113.07

Вариант 2

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

•
$$y(x) = ax + b$$

$$y(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

$$y(x) = ae^{bx} + c$$

$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 x^{3.7} + a_1 x^{0.3} + a_2 \frac{1}{x}$$

•
$$y(x) = \frac{Ax^2 + Bx + C}{\sqrt{x} + D}$$

• параболический сплайн

X	У
5.00	40.80
5.20	51.82
5.40	44.06
5.60	47.38
5.80	54.88
6.00	58.01
6.20	44.61
6.40	74.44
6.60	61.08
6.80	56.18

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 \frac{1}{x} + a_1 x^{0.3} + a_2 x^{1.2}$
- $y(x) = B + 10^{A+Cx}$
- кубический сплайн

X	у
1.90	3.60
4.20	10.93
6.50	44.84
8.80	44.06
11.10	102.43
13.40	168.38
15.70	159.68
18.00	226.47
20.30	294.57
22.60	423.01

Вариант 4

- y(x) = ax + b
- $y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$

- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0\sqrt{x} + a_1x^{3.7} + a_2\sqrt{x}$
- $y(x) = A \cdot e^{-\frac{B}{x} + C}$
- кубический сплайн

X	у
9.80	9.32
12.80	33.41
15.80	119.46
18.80	229.07
21.80	801.66
24.80	1623.66
27.80	1909.16
30.80	3354.41
33.80	6609.58
36.80	9730.81

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 \frac{x}{1+x} + a_1 \frac{x^{2.4}}{1+x^2} + a_2 \frac{x}{1+x}$
- $y(x) = \frac{Ax^2 + Bx + C}{\sqrt{x} + D}$
- параболический сплайн

Вариант 6

- y(x) = ax + b
- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$

X	у
1.30	0.94
7.80	52.81
14.30	183.39
20.80	379.79
27.30	895.30
33.80	1222.53
40.30	2081.04
46.80	2403.36
53.30	2901.17
59.80	5008.08

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 x^{1.2} + a_1 x + a_2 \frac{x^{2.4}}{1 + x^2}$$

•
$$y(x) = \frac{Ax^2 + Bx + C}{\sqrt{x} + D}$$

X	у
7.30	41.10
13.00	17.37
18.70	-69.66
24.40	-304.82
30.10	-512.90
35.80	-1307.28
41.50	-2140.81
47.20	-4197.98
52.90	-3216.28
58.60	-9163.44

Вариант 7

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

•
$$y(x) = ax + b$$

•
$$y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$$

$$y(x) = ae^{bx} + c$$

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 x^{3.7} + a_1 \frac{1}{x} + a_2 x^{0.3}$$

$$y(x) = B + 10^{A+Cx}$$

• параболический сплайн

X	У
7.30	-1.15
16.30	25.65
25.30	213.22
34.30	600.00
43.30	805.85
52.30	1398.14
61.30	2990.35
70.30	4785.68
79.30	8239.86
88.30	7751.17

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$

•
$$y(x) = a_0 \frac{x^{2.4}}{1+x^2} + a_1 x^{0.3} + a_2 \sqrt{x}$$

$$y(x) = \frac{Ax^B}{C+x}$$

• кубический сплайн

X	у
3.50	-20.53
5.90	-31.26
8.30	-63.40
10.70	-174.72
13.10	-230.61
15.50	-304.52
17.90	-245.38
20.30	-374.47
22.70	-410.47
25.10	-581.02

Вариант 9

$$y(x) = ax + b$$

- $y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{3.7} + a_1 \sqrt{x} + a_2 \frac{1}{x}$
- $y(x) = A \cdot e^{-\frac{B}{x} + C}$
- кубический сплайн

X	у
3.30	14.89
10.00	44.92
16.70	66.24
23.40	125.80
30.10	296.82
36.80	434.03
43.50	758.40
50.20	731.02
56.90	2339.47
63.60	3406.40

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- \bullet y(x) = ax + b
- $y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{0.3} + a_1 x^{3.7} + a_2 x^{3.7}$
- $y(x) = \frac{B + x^C}{A + x}$
- параболический сплайн

Вариант 11

- y(x) = ax + b
- $y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$

X	У
9.60	-93.00
11.90	-197.53
14.20	-221.76
16.50	-334.50
18.80	-430.74
21.10	-406.02
23.40	-739.31
25.70	-580.69
28.00	-769.23
30.30	-1043.00

- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{0.3} + a_1 x^{1.2} + a_2 x^{1.2}$
- $y(x) = \frac{Ax^2 + Bx + C}{\sqrt{x} + D}$
- кубический сплайн

у
3.61
6.46
4.93
5.13
3.16
1.84
1.43
-0.38
-1.10
-3.34

- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x + a_1 x^{3.7} + a_2 \frac{1}{x}$
- $y(x) = A \cdot e^{-\frac{B}{x} + C}$

X	у
4.20	-24.93
14.00	-0.07
23.80	-0.01
33.60	-0.00
43.40	-0.00
53.20	-0.00
63.00	-0.00
72.80	-0.00
82.60	-0.00
92.40	-0.00

Вариант 13

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

$$\bullet$$
 $y(x) = ax + b$

•
$$y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$$

•
$$y(x) = ae^{bx} + c$$

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 x^{0.3} + a_1 \sqrt{x} + a_2 x^{0.3}$$

•
$$y(x) = \frac{Ax^2 + Bx + C}{\sqrt{x} + D}$$

• параболический сплайн

X	у
5.10	-11.95
11.50	-85.57
17.90	-240.51
24.30	-890.44
30.70	-1160.16
37.10	-2456.94
43.50	-2675.39
49.90	-5304.17
56.30	-6491.41
62.70	-11952.92

Вариант 14

•
$$y(x) = ax + b$$

- $y(x) = a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{3.7} + a_1 x + a_2 x^{0.3}$
- $y(x) = \frac{B + x^C}{A + x}$
- параболический сплайн

у
-2804.78
-255.41
-334.12
-181.39
-185.81
-85.81
-122.61
-43.68
-66.66
-87.38

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 \frac{x}{1+x} + a_1 \frac{x^{2.4}}{1+x^2} + a_2 \frac{x}{1+x}$
- $y(x) = B + 10^{A+Cx}$
- параболический сплайн

Вариант 16

- y(x) = ax + b
- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$

У
-1196.60
-460.23
-361.68
-240.58
-239.57
-270.74
-109.93
-136.13
-116.34
-131.54

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 x^{3.7} + a_1 \frac{x^{2.4}}{1 + x^2} + a_2 \sqrt{x}$$

•
$$y(x) = B + 10^{A+Cx}$$

• кубический сплайн

у
-5.34
-7.58
-5.92
-7.22
-5.49
-5.52
-3.17
-1.09
0.87
3.99

Вариант 17

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

•
$$y(x) = ax + b$$

•
$$y(x) = a_2 x^2 + a_1 x + a_0$$

$$y(x) = ae^{bx} + c$$

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 x^{0.3} + a_1 \sqrt{x} + a_2 \frac{1}{x}$$

•
$$y(x) = A \cdot e^{-\frac{B}{x} + C}$$

• параболический сплайн

X	У
8.40	-41.74
17.30	-175.69
26.20	-289.93
35.10	-536.43
44.00	-546.89
52.90	-930.61
61.80	-954.30
70.70	-1467.02
79.60	-1802.43
88.50	-1421.74

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{0.3} + a_1 \frac{x}{1+x} + a_2 x$
- $y(x) = \frac{Ax^B}{C+x}$
- параболический сплайн

У
15.33
0.60
-35.89
-109.57
-256.18
-409.38
-757.86
-1061.82
-678.23
-1316.24

Вариант 19

- y(x) = ax + b
- $y(x) = a_2x^2 + a_1x + a_0$

- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{1.2} + a_1 x^{0.3} + a_2 x$
- $y(x) = \frac{B + x^C}{A + x}$
- кубический сплайн

X	у
2.80	4.61
10.70	-6.70
18.60	-135.65
26.50	-494.19
34.40	-836.68
42.30	-1539.52
50.20	-3365.95
58.10	-5954.44
66.00	-7325.96
73.90	-10805.06

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0\sqrt{x} + a_1\frac{x}{1+x} + a_2x^{3.7}$
- $y(x) = \frac{B + x^C}{A + x}$
- параболический сплайн

Вариант 21

- y(x) = ax + b
- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$

X	У
3.10	4.27
4.30	33.67
5.50	88.99
6.70	271.12
7.90	555.07
9.10	1349.55
10.30	2691.21
11.50	3032.11
12.70	6194.71
13.90	10373.76

•
$$y(x) = a_0 x^{1.2} + a_1 \frac{x^{2.4}}{1 + x^2} + a_2 \sqrt{x}$$

$$y(x) = \frac{B + x^C}{A + x}$$

• кубический сплайн

у
-17.64
-234.31
-766.12
-1258.16
-2227.59
-3053.87
-2727.99
-3635.55
-5029.22
-7030.30

Вариант 22

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

$$y(x) = ax + b$$

•
$$y(x) = a_2 x^2 + a_1 x + a_0$$

$$y(x) = ae^{bx} + c$$

$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 \frac{1}{x} + a_1 \frac{x}{1+x} + a_2 x^{0.3}$$

•
$$y(x) = A \cdot e^{-\frac{B}{x} + C}$$

• кубический сплайн

X	у
2.20	2149.80
4.20	7040.50
6.20	6389.02
8.20	13313.76
10.20	14025.67
12.20	17070.54
14.20	19121.74
16.20	14930.86
18.20	22849.50
20.20	16030.56

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

•
$$y(x) = ax + b$$

•
$$y(x) = a_2 x^2 + a_1 x + a_0$$

$$y(x) = ae^{bx} + c$$

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 \frac{x^{2.4}}{1+x^2} + a_1 \frac{1}{x} + a_2 x^{0.3}$$

$$y(x) = \frac{Ax^B}{C+x}$$

• параболический сплайн

X	у
2.20	-13.44
8.70	-76.91
15.20	-348.43
21.70	-520.92
28.20	-665.52
34.70	-1093.19
41.20	-1296.05
47.70	-1693.26
54.20	-2152.03
60.70	-3004.48

Вариант 24

•
$$y(x) = ax + b$$

- $y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{3.7} + a_1 \frac{x^{2.4}}{1 + x^2} + a_2 \sqrt{x}$
- $y(x) = \frac{Ax^2 + Bx + C}{\sqrt{x} + D}$
- кубический сплайн

X	у
2.10	-1540.88
3.90	-600.29
5.70	-1030.86
7.50	-546.99
9.30	-503.58
11.10	-632.45
12.90	-758.62
14.70	-469.73
16.50	-546.12
18.30	-390.16

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- \bullet y(x) = ax + b
- $y(x) = a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{3.7} + a_1 \frac{x}{1+x} + a_2 x^{3.7}$
- $y(x) = B + 10^{A+Cx}$
- параболический сплайн

Вариант 26

- y(x) = ax + b
- $y(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$

X	У
5.00	-1.95
6.70	-0.22
8.40	-0.07
10.10	-0.02
11.80	-0.01
13.50	-0.00
15.20	-0.00
16.90	-0.00
18.60	-0.00
20.30	-0.00

- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0\sqrt{x} + a_1\frac{1}{x} + a_2\frac{x}{1+x}$
- $y(x) = B + 10^{A+Cx}$
- кубический сплайн

X	У
9.60	67.31
13.90	114.84
18.20	236.57
22.50	384.64
26.80	344.94
31.10	520.81
35.40	507.20
39.70	972.24
44.00	1313.44
48.30	1300.76

- (x) = ax + b
- $y(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 \frac{x}{1+x} + a_1 x^{1.2} + a_2 \frac{x^{2.4}}{1+x^2}$
- $y(x) = A \cdot e^{-\frac{B}{x} + C}$

X	у
0.50	-6.83
3.40	0.37
6.30	9.80
9.20	57.68
12.10	244.60
15.00	659.70
17.90	1735.00
20.80	3315.76
23.70	6068.84
26.60	10759.37

Вариант 28

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 \frac{1}{x} + a_1 \frac{x^{2.4}}{1 + x^2} + a_2 x$
- $y(x) = \frac{B + x^C}{A + x}$
- кубический сплайн

X	у
4.60	-26.62
13.50	-0.16
22.40	-0.02
31.30	-0.00
40.20	-0.00
49.10	-0.00
58.00	-0.00
66.90	-0.00
75.80	-0.00
84.70	-0.00

Вариант 29

- y(x) = ax + b
- $y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{3.7} + a_1 \frac{x}{1+x} + a_2 \sqrt{x}$
- $y(x) = A \cdot e^{-\frac{B}{x} + C}$
- параболический сплайн

X	У
9.00	-35.56
12.20	-27.36
15.40	-9.14
18.60	43.00
21.80	115.65
25.00	243.14
28.20	484.24
31.40	574.53
34.60	911.50
37.80	1529.41

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- \bullet y(x) = ax + b
- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 \frac{x^{2.4}}{1+x^2} + a_1 \sqrt{x} + a_2 x^{0.3}$
- $y(x) = \frac{Ax^2 + Bx + C}{\sqrt{x} + D}$
- параболический сплайн

Вариант 31

•
$$y(x) = ax + b$$

X	у
4.60	-588.35
6.10	-195.59
7.60	-164.95
9.10	-91.35
10.60	-36.37
12.10	-49.77
13.60	-30.55
15.10	-24.20
16.60	-25.94
18.10	-16.33

•
$$y(x) = a_2 x^2 + a_1 x + a_0$$

$$y(x) = ae^{bx} + c$$

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0\sqrt{x} + a_1x^{0.3} + a_2x$$

$$y(x) = \frac{Ax^B}{C+x}$$

X	у
0.40	-2693.99
1.00	-7.77
1.60	-0.54
2.20	-0.56
2.80	-0.15
3.40	-0.22
4.00	-0.27
4.60	-0.20
5.20	-0.15
5.80	-0.14

Вариант 32

$$y(x) = ax + b$$

•
$$y(x) = a_2 x^2 + a_1 x + a_0$$

$$y(x) = ae^{bx} + c$$

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 \frac{x^{2.4}}{1+x^2} + a_1 x + a_2 \frac{x}{1+x}$$

•
$$y(x) = \frac{B + x^C}{A + x}$$

У
51.56
28.78
-127.24
-278.51
-543.67
-1521.48
-1877.78
-3793.36
-7270.11
-5711.06

Вариант 33

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

•
$$y(x) = ax + b$$

•
$$y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$$

$$y(x) = ae^{bx} + c$$

$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0\sqrt{x} + a_1x + a_2x^{3.7}$$

•
$$y(x) = \frac{Ax^2 + Bx + C}{\sqrt{x} + D}$$

• параболический сплайн

X	У
9.90	-81.43
12.40	-79.67
14.90	-90.60
17.40	-90.41
19.90	-48.47
22.40	3.40
24.90	80.06
27.40	249.41
29.90	292.46
32.40	481.43

Вариант 34

- y(x) = ax + b
- $y(x) = a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0x + a_1x^{1.2} + a_2x$
- $y(x) = \frac{Ax^2 + Bx + C}{\sqrt{x} + D}$
- кубический сплайн

X	у
8.30	-16.16
10.10	-6.46
11.90	-5.40
13.70	-3.99
15.50	-2.32
17.30	-1.68
19.10	-0.86
20.90	-0.35
22.70	-0.57
24.50	-0.46

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

- y(x) = ax + b
- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a_0 \frac{1}{x} + a_1 x^{0.3} + a_2 \frac{x^{2.4}}{1+x^2}$
- $y(x) = \frac{Ax^B}{C+x}$
- параболический сплайн

Вариант 36

$$y(x) = ax + b$$

У
-9.34
-9.11
-14.54
-12.85
-13.55
-16.44
-15.49
-18.21
-23.79
-23.95

- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$

•
$$y(x) = a_0 \frac{x}{1+x} + a_1 x^{3.7} + a_2 \frac{x^{2.4}}{1+x^2}$$

$$y(x) = \frac{B + x^C}{A + x}$$

X	У
1.60	10.46
1.70	11.72
1.80	15.78
1.90	11.61
2.00	14.22
2.10	17.83
2.20	13.36
2.30	17.43
2.40	18.07
2.50	20.22

Вариант 37

- y(x) = ax + b
- $y(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 \sqrt{x} + a_1 x + a_2 \sqrt{x}$

•
$$y(x) = \frac{Ax^2 + Bx + C}{\sqrt{x} + D}$$

У
36.43
77.62
95.89
206.28
318.12
299.65
430.40
481.47
502.87
421.17

Вариант 38

Задание 1 В результате измерения зависимости переменной состояния y от входного фактора x были получены значения, представленные в таблице. Описать табличные данные следующими функциональными зависимостями:

•
$$y(x) = ax + b$$

•
$$y(x) = a_3x^3 + a_2x^2 + a_1x + a_0$$

•
$$y(x) = ae^{bx} + c$$

•
$$y(x) = a \cdot x^b + c$$

•
$$y(x) = a_0 \frac{x^{2.4}}{1+x^2} + a_1 x + a_2 x^{0.3}$$

$$y(x) = \frac{B + x^C}{A + x}$$

• кубический сплайн

X	У
8.10	-551.48
10.00	-545.99
11.90	-337.19
13.80	-769.97
15.70	-460.70
17.60	-615.96
19.50	-388.51
21.40	-533.96
23.30	-584.01
25.20	-645.97

Вариант 39

- y(x) = ax + b
- $y(x) = a_2x^2 + a_1x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0\sqrt{x} + a_1x^{3.7} + a_2x^{3.7}$
- $y(x) = B + 10^{A+Cx}$
- параболический сплайн

X	у
3.90	-993.73
12.30	-126.17
20.70	-65.37
29.10	-40.40
37.50	-14.17
45.90	-17.19
54.30	-12.33
62.70	-5.96
71.10	-8.04
79.50	-7.68

- y(x) = ax + b
- $y(x) = a_2 x^2 + a_1 x + a_0$
- $y(x) = ae^{bx} + c$
- $y(x) = a \cdot x^b + c$
- $y(x) = a_0 x^{0.3} + a_1 \frac{x^{2.4}}{1+x^2} + a_2 x^{0.3}$
- $y(x) = \frac{B + x^C}{A + x}$
- параболический сплайн

X	у
9.00	-63.90
17.00	-233.58
25.00	-213.49
33.00	-548.49
41.00	-749.14
49.00	-688.49
57.00	-1107.74
65.00	-1654.12
73.00	-1475.68
81.00	-1230.50