Unifala Unifala Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Univer

Matemática atuarial

Seguros Aula 9

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

https://atuaria.github.io/portalhalley/

SEGUROS DIFERIDOS

- Produtos atuariais.
 - > Seguros de vida vitalício, seguro de vida temporário, seguro dotal puro e seguro dotal.
- Em alguns casos o segurado pode querer que a vigência se inicie alguns anos após a assinatura do contrato de seguro.
- > O valor que a seguradora deverá gastar, em média, com o segurado cujo produto começará a vigorar daqui a "m" anos.

- Pensemos, inicialmente, no seguro de vida vitalício que paga $1\ u.m.$ Ao final do momento de morte do segurado.
- \triangleright Porém, esse seguro de vida começará a vigorar daqui a "m" anos.

$$b = \begin{cases} 0 \; ; \; t = 0, 1, 2, \dots, m \\ 1 \; ; \; t = m, m + 1, m + 2, \dots \end{cases}$$

$$Z_T = \begin{cases} v^{T+1}; \ t = m, m+1, m+2, \dots \\ 0 \ c.c. \end{cases}$$

 \triangleright Caso em que T é discreto:

$$b = \begin{cases} 0 ; & t < m \\ 1; & t \ge m \end{cases}$$

$$Z_T = \begin{cases} v^{T+1} & ; T \ge m \\ 0 & c.c. \end{cases}$$

$$a_{m|A_{x}} = E(Z_{T}) = \sum_{j=m}^{\omega-x-m} v^{j+1} {}_{j} p_{x} q_{x+j}$$

 \triangleright Fazendo j = m + t, tem-se:

$${}_{m|A_{x}} = \sum_{j=m}^{\omega-x-m} v^{j+1} {}_{j} p_{x} q_{x+j} = \sum_{t=0}^{\omega-x-m} v^{m+t+1} \underbrace{\sum_{m+t} p_{x} q_{x+m+t}}_{t=0}$$

Lembrando que
$$\underbrace{m+tp_x} = m p_x \times_t p_{x+m}$$
, então

$$_{m|A_x} = \sum_{t=0}^{\omega-x-m} v^{m+t+1} \, _{m} p_{x} \, _{t} p_{x+m} \, q_{x+m+t}$$

$$_{m|A_x} = v^m \,_{m} p_x \sum_{t=0}^{\omega - x - m} v^{t+1} \,_{t} p_{(x+m)} q_{(x+m)+t}$$

$$_{m|}A_{x}=A_{x:\overline{m}|^{1}}A_{x+m}$$

Seguro de vida **vitalício** para uma pessoa de idade x + m

É, na verdade, o seguro de vida vitalício trazido a valor presente atuarial a data de hoje.

$$_{m|}A_{x} = _{m}E_{x}A_{x+m}$$

Outra forma de cálculo do mesmo seguro seria:

uma pessoa de idade x.

Demonstração:

$$A_x = \sum_{t=0}^{\omega - x} v^{t+1} \,_t p_x q_{x+t}$$

$$A_{x} = \sum_{t=0}^{m-1} v^{t+1} {}_{t} p_{x} q_{x+t} + \sum_{t=m}^{\omega-x-m} v^{t+1} {}_{t} p_{x} q_{x+t}$$

$$A_{x} = A_{x^{1}:\overline{m|}} + {}_{m|}A_{x}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}:\overline{m|}}$$

> EXEMPLO 1

Pensemos no caso de uma pessoa (mulher) de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Ou seja, caso esse segurado faleça após 28 anos, o beneficiário receberá uma quantia de 1.u.m. Considere a taxa de juros de 4% ao ano e as seguintes probabilidade de morte e então calcule o prêmio puro:

Pic	illo pulo.		
Idade 	q_X	p_{x}	l_{x}
25	0,00037	0,99963	100000
26	0,00039	0,99961	99963
27	0,00040	0,99960	99924,01
28	0,00042	0,99958	99884,04
29	0,00044	0,99956	99842,09
30	0,00045	0,99955	99798,16
31	0,00046	0,99954	99753,25
32	0,00048	0,99952	99707,37
33	0,00049	0,99951	99659,51
34	0,00050	0,99950	99610,67
35	0,00052	0,99948	99560,87

> EXEMPLO 1

Pensemos no caso de uma pessoa (mulher) de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Ou seja, caso esse segurado faleça após 28 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

puro:			
Idade	q_X	p_x	l_{x}
25	0,00037	0,99963	100000
26	0,00039	0,99961	99963
27	0,00040	0,99960	99924,01
28	0,00042	0,99958	99884,04
29	0,00044	0,99956	99842,09
30	0,00045	0,99955	99798,16
31	0,00046	0,99954	99753,25
32	0,00048	0,99952	99707,37
33	0,00049	0,99951	99659,51
34	0,00050	0,99950	99610,67
35	0,00052	0,99948	99560,87

 \triangleright Para o caso em que T é discreto:

$$b = \begin{cases} 0 & ; t < m \\ 1 & ; t \ge m \end{cases}$$

$$Z_T = \begin{cases} v^{T+1} & ; T \ge m \\ 0 & c.c. \end{cases}$$

$$_{m|A_{\mathcal{X}}} = \sum_{t=m}^{\omega-x-m} v^{t+1} \,_{t} p_{x} q_{x+t}$$

$$_{m|}A_{x}=v^{m}_{m}p_{x}A_{x+m}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}}\overline{m|}$$

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

- a) Temporário por "n" anos.
- b) Seguro dotal puro.

Dado que b = 1 e T_x discreto.

Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade Federal d

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

a) Temporário por "n" anos.

Dado que b = 1 e T discreto.

Resp.:

O seguro temporário por n para uma pessoa de x anos (caso discreto)

$$A_{x^{1}:\overline{n|}} = \sum_{t=0}^{n-1} v^{t+1} \,_{t} p_{x} q_{x+t}$$

Então:

> Temporário

$$_{m|}A_{x^{1}:\overline{n|}} = \sum_{t=m}^{(m+n)-1} v^{t+1} {}_{t}p_{x}q_{x+t}$$

Fazendo t = m + l, então:

$$m|A_{x^{1}:\overline{n|}} = \sum_{l=0}^{n-1} v^{m+l+1} {}_{(m+l)} p_{x} q_{x+(m+l)} = v^{m} \sum_{l=0}^{n-1} v^{l+1} {}_{(m+l)} p_{x} q_{x+(m+l)}$$

$$m|A_{x^1:\overline{n|}} = v^m \sum_{l=0}^{n-1} v^{l+1} m p_x p_x q_{x+m+l}$$

$$m_l A_{x^1:\overline{n_l}} = v^m \, {}_{m} p_x \sum_{l=0}^{n-1} v^{l+1} \, {}_{l} p_{(x+m)} \, q_{(x+m)+l}$$

$$m|A_{x^1:\overline{n|}} = v^m m p_x A_{(x+m)^1:\overline{n|}}$$

$$_{m|A_{\mathcal{X}^1:\overline{n}|}} = A_{\mathcal{X}^1:\overline{m+n}|} - A_{\mathcal{X}^1:\overline{m}|}$$

Para um seguro de uma pessoa de x anos, seja diferido por "m" anos como será o valor presente atuarial caso o seguro também seja:

b) Seguro dotal puro.

Dado que b = 1 e T discreto.

Resp.:

O dotal puro por n para uma pessoa de x anos (caso discreto).

$$A_{x:\overline{n}|^1} = v^n {}_n p_x$$

> Dotal Puro

SEGUROS Vida temporários DIFERIDOS

$$Z_T = \begin{cases} v^{T+1} & ; T \ge m \\ 0 & c.c. \end{cases}$$

$$Z_T = \begin{cases} v^{T+1} ; & m \le T < (m+n) \\ 0 & c.c. \end{cases}$$

$$_{m|}A_{x} = \sum_{t=m}^{\omega-x-m} v^{t+1} {}_{t}p_{x}q_{x+t}$$

$$_{m|}A_{x}=v^{m}\,_{m}p_{x}A_{x+m}$$

$$_{m|}A_{x}=A_{x}-A_{x^{1}:\overline{m|}}$$

$$_{m|A_{x^{1}:\overline{n}|}} = \sum_{t=m}^{m+n-1} v^{t+1} _{t} p_{x} q_{x+t}$$

$$m|A_{x^1:\overline{n}|} = v^m m p_x A_{(x+m)^1:\overline{n}|}$$

$$_{m|A_{\mathcal{X}^{1}}:\overline{n|}}=A_{\mathcal{X}^{1}:\overline{m+n|}}-A_{\mathcal{X}^{1}:\overline{m|}}$$

SEGUROS Vida DIFERIDOS

> EXEMPLO 2

Uma pessoa de 25 anos deseja fazer um seguro com benefício unitário que tenha cobertura de 5 anos, com 3 anos de carência. Considere a taxa de juros de 4% ao ano e a Tábua AT-49 e então calcule o prêmio puro único.

•	Idade	q_X
	25	0,00077
	26	0,00081
	27	0,00085
	28	0,00090
	29	0,00095
	30	0,00100
	31	0,00107
	32	0,00114
	33	0,00121
	34	0,00130
	35	0,00139

Logo queremos calcular $_{3|}A_{25^{1}:\overline{5|}}$

$$Z_T = \begin{cases} \left(\frac{1}{1+0.04}\right)^{T+1} & 3 \le T < 8\\ 0 & c.c. \end{cases}$$

Idade	$q_X =_1 q_X$	$_1p_x=11q_x$	$_{1}l_{x}=\frac{l_{x+1}}{p_{x}}$	(m+n)-1
25	0,00077	0,99923	100000	
26	0,00081	0,99919	99923	
27	0,00085	0,99915	99842	$_{3 }A_{25^{1}:\overline{5} } = \sum_{t=3}^{(3+5)-1} \left(\frac{1}{1,04}\right)^{t+1} {}_{t}p_{25}q_{25+t}$
28	0,00090	0,99910	99757	$\overline{t=3}$
29	0,00095	0,99905	99667	
30	0,00100	0,99900	99572	$m A_{x^1:\overline{n} } = v^m m p_x A_{x^1+m:\overline{n} }$
31	0,00107	0,99893	99472	$m_1 \times m_1 \longrightarrow m_1 \times \times + m_1 = m_1 \times \times + m_2 = m_1 \times \times \times + m_2 = m_1 \times \times$
32	0,00114	0,99886	99365	$(1)^3$ $\frac{5-1}{4}$ $(1)^{t+1}$
33	0,00121	0,99879	99251	$_{3 A_{25^{1}:\overline{5} }} = \left(\frac{1}{1,04}\right)^{3} _{3}p_{25} \sum_{t=0}^{5-1} \left(\frac{1}{1,04}\right)^{t+1} _{t}p_{28}q_{28+t}$
34	0,00130	0,99870	99131	(1,04) $t=0$ $(1,04)$
35	0,00139	0,99861	99002	Iniversidade Federal de Alfenas Universidade Federal de Alfenas Unive

$$Z_{T} = v^{T+1}; T \ge 0$$

$$A_{X} = \sum_{t=0}^{\infty} Z_{T} t p_{X} q_{X+t}$$

$$Z_{T} = \begin{cases} v^{T+1}; T = 0,1,2,...,n-1\\ 0; T = n,n+1,...\\ A_{X^{1},\overline{n}|} = \sum_{t=0}^{n-1} Z_{T} t p_{X} q_{X+t} \end{cases}$$

$$Z_{T} = \begin{cases} v^{T+1}; T = 0,1,2,...,n-1\\ 0; T = 0,1,2,...,n-1\\ A_{X,\overline{n}|} = Z_{T} \cdot p_{X} q_{X+t} \end{cases}$$

$$Z_{T} = \begin{cases} v^{T+1}; T = 0,1,...,n-1\\ v^{n}; T = n,n+1,...\\ A_{X,\overline{n}|} = A_{X^{1},\overline{n}|} + A_{X,\overline{n}|} \end{cases}$$

$$Z_{T} = \begin{cases} v^{T+1}; T \ge n\\ 0; T = n,n+1,...\\ \end{cases}$$

$$Z_{T} = \begin{cases} v^{T+1}; T \ge n\\ 0; T = n,n+1,...\\ \end{cases}$$

$$Z_{T} = v^{T+1}; T \ge m$$

$$m|A_{X} = \sum_{t=m}^{\infty} Z_{T} t p_{X} q_{X+t}$$

$$m|A_{X} = A_{X} - A_{X^{1},\overline{n}|} = \sum_{t=m}^{\infty} Z_{T} t p_{X} q_{X+t}$$

$$m|A_{X} = A_{X} - A_{X^{1},\overline{n}|} = \sum_{t=m}^{\infty} Z_{T} t p_{X} q_{X+t}$$

$$m|A_{X^{1},\overline{n}|} = \sum_{t=m}^{\infty} Z_{T} t p_{X} q_{X+t}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & m \le T < (m+n) \\ 0; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & c.c. \\ v^{T+1}; & c.c. \\ v^{T+1}; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & c.c. \\ v^{T+1}; & c.c. \\ v^{T+1}; & c.c. \end{cases}$$

$$T_{X} = \begin{cases} v^{T+1}; & c.c. \\ v^{T+1}; & c.c. \\$$

SEGUROS VIDA DIFERIDOS – pago no momento da morte

> O valor presente atuarial vitalício diferido é:

$$b = \begin{cases} 0 ; & t < m \\ 1; & t \ge m \end{cases} \qquad Z_T = e^{-\delta T}; & T \ge m$$
$$m|\bar{A}_x = \int_m^\infty e^{-\delta t} f_{T_x}(t) dt$$

> O valor presente atuarial temporário diferido é

$$b = \begin{cases} 0; & t < m \\ 1; & m \le t \le m+n \end{cases} \quad Z_T = e^{-\delta T}; m \le T \le m+n$$

$$m|\bar{A}_{x^1:\bar{n}|} = \int_m^{m+n} e^{-\delta t} f_{T_x}(t) dt$$

SEGURO DE VIDA INTEIRO

> Exemplo 3

Determine o valor do prêmio puro único a ser cobrado por um segurado que deseja contratar um seguro que pague $1\,u.m.$ no momento da morte, após 10 anos de carência. Considere que o tempo de vida adicional desse segurado tenha a seguinte função de densidade.

$$f_T(t) = 0.04e^{-0.04t}, t > 0$$

Considere também $\delta = 0.06$.

> Exemplo 3

$$_{10|}\bar{A}_{x}=\int_{10}^{\infty}e^{-0.06t}0.04e^{-0.04T}dt$$

$$_{10|}\bar{A}_{x} = \int_{10}^{\infty} e^{-0.06t} 0.04e^{-0.04t} dt = \int_{10}^{\infty} 0.04e^{-0.1t} dt$$

$$_{10|}\bar{A}_{x} = \lim_{t \to \infty} \left(-\frac{0.04}{0.1} e^{-0.1t} \right) + \frac{0.04}{0.1} e^{-0.1(10)}$$

$$_{10}|\bar{A}_{x}=0,147$$

Unifala Unifala Unifala Unifala Unifala Unifala Universidade Federal de Alfenas Universidade F

Matemática atuarial

Seguros Aula 10

Danilo Machado Pires danilo.pires@unifal-mg.edu.br

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro temporário por 5 anos, com 3 anos de carência. Ou seja, caso esse segurado faleça entre seus 28 e 33 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

		(5+3)-1
Idade	q_X	$-\frac{1}{3 A_{25^1:\overline{5} }} = \sum_{j} v^{j+1} {}_{j} p_{25} q_{25+j}$
25	0,00077	
26	0,00081	j=3
27	0,00085	$_{3 }A_{25^{1}:\overline{5} } = v^{3} _{3}p_{25}A_{28^{1}:\overline{5} }$
28	0,00090	3 11251:5 3P2511281:5
29	0,00095	$_{3 }A_{25^{1}:\overline{5} } = A_{25^{1}:\overline{5+3} } - A_{25^{1}:\overline{3} }$
30	0,00100	
31	0,00107	
32	0,00114	
33	0,00121	
34	0,00130	
35	0,00139	

า-1)]))

Idade

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro temporário por 5 anos, com 3 anos de carência. Ou seja, caso esse segurado faleça entre seus 28 e 33 anos, o beneficiário receberá uma quantia de 1.u.m. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

Idade	a.	$_{3 }A_{25^{1}:\overline{5} } = v^{3} _{3}p_{25}A_{28^{1}:\overline{5} }$	
25	$\frac{q_x}{0,00077}$		
26	0,00081	$dotal(0.04,25,3,1) \times premio(0.04,28,5,1)$	
27	0,00085		
28	0,00090	$_{3 }A_{25^{1}:\overline{5} } = A_{25^{1}:\overline{5+3} } - A_{25^{1}:\overline{3} }$	
29	0,00095		
30	0,00100	premio(0.04,25,8,1) –premio(0.04,25,3,1)	
31	0,00107	premio(0.04,23,0,1) premio(0.04,23,3,1)	
32	0,00114		
33	0,00121		
34	0,00130		
35	0,00139		

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

	24_101	1-12-10	$_{3 }A_{25} = v^3 _{3}p_{25}A_{28}$
Idade	q_X		31 23 31 23 20
25	0,00077	????	
26	0,00081		
27	0,00085		
28	0,00090		$_{3 }A_{25} = A_{25} - A_{25^1:\overline{3 }}$
29	0,00095		unitaiž unitaiž un
30	0,00100	????	
31	0,00107		
32	0,00114		
33	0,00121		
34	0,00130		
35	0,00139		

Pensemos no caso de uma pessoa de 25 anos que deseja fazer um seguro vitalício, com 3 anos de carência. Considere uma taxa de juros de 4% ao ano e as seguintes probabilidade de morte e calcule o prêmio puro:

$$_{3|}A_{25} = v^3 \,_{3}p_{25}A_{28}$$

 $dotal(0.04,25,3,1) \times premio(0.04,28,max(Idade)-28,1)$

$$_{3|}A_{25} = A_{25} - A_{25^1:\overline{3|}}$$

premio(0.04,25,max(Idade)-25,1)-premio(0.04,25,3,1)

$$Z_{T} = v^{T+1}; T \ge 0$$

$$A_{x} = \sum_{t=0}^{\infty} Z_{T} t p_{x} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{T+1}; T = 0,1,2,...,n-1 \\ 0; T = n,n+1,... \\ A_{x^{1}:n} = \sum_{t=0}^{n-1} Z_{T} t p_{x} q_{x+t} \end{cases}$$

$$Z_{T} = \begin{cases} v^{n}; T = n,n+1 ... \\ 0; T = 0,1,2,...,n-1 \\ A_{x^{n}:n} = Z_{T} \cdot p_{x} q_{x+t} \end{cases}$$

$$Z_{T} = \begin{cases} v^{n}; T = 0,1,2,...,n-1 \\ 0; T = 0,1,2,...,n-1 \end{cases}$$

$$A_{x^{n}:n} = \sum_{t=0}^{n-1} Z_{T} t p_{x} q_{x+t}$$

$$Z_{T} = \begin{cases} v^{n}; T = 0,1,...,n-1 \\ v^{n}; T = n,n+1,... \end{cases}$$

$$Z_{T} = v^{n}; T = 0,1,...,n-1 \end{cases}$$

$$Z_{T} = v^{n}; T = 0,1,2,...,n-1 \end{cases}$$

$$Z_{T} = v^{n}; T = n,n+1,... \end{cases}$$

$$Z_{T} = v^{n};$$

Suposição

$$T = (K + 1) - (1 - S)$$

- \succ Assumindo que T é independente de S e que $S \sim U_c(0,1)$.
- Considere o seguro de vida inteira pago no momento de morte:

$$\bar{A}_{x} = \int_{0}^{\infty} e^{-\delta t} t p_{x} \mu(x+t) dt = E(e^{-\delta T})$$

$$\bar{A}_{x} = E\{e^{-\delta[(K+1)-(1-S)]}\} = E[e^{-\delta(K+1)}e^{\delta(1-S)}]$$

$$\bar{A}_{x} = E[v^{(K+1)}]E[e^{\delta(1-S)}]$$

$$\bar{A}_{x} = A_{x} \int_{0}^{1} e^{\delta(1-s)} ds$$

$$\bar{A}_{x} = A_{x} \frac{e^{\delta} - 1}{\delta}$$

Substituindo $e^{\delta} = 1 + i$,

$$\bar{A}_x = A_x \frac{(1+i)-1}{\delta}$$

$$\bar{A}_{x} = A_{x} \frac{i}{\delta}$$

i: Taxa de juros discreta

 δ : Taxa de juros constante

Uma pessoa de 25 anos deseja fazer um seguro de **vida inteiro** que paga 1 u.m. no momento da morte. Calcule o valor aproximado desse prêmio considerando que o prêmio pago para esse mesmo seguro com benefício pago ao final do ano de morte é de $A_{25} = 0,11242$.

Considere que o tempo de sobrevida desse segurado pode ser modelado pela tábua AT-49 e a seguradora promete remunerar o capital em 5% ao ano.

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Ur

Seguro de vida Inteiro

$$A_{25} = \sum_{t=0}^{90} \left(\frac{1}{1,05}\right)^{t+1} t p_{25} q_{25+t} \approx 0,11242$$

$$\bar{A}_{25} = A_{25} \frac{i}{\delta} = 0.11242 \left[\frac{0.05}{ln(1.05)} \right] \approx 0.1152076$$

Considerar uma pessoa de idade de 30 anos que decide fazer um seguro de vida vitalício pague um benefício de 1 u.m. ao final do ano de morte. Admita $\bar{A}_{30}=0,28317$ e que i=5%.

Unifal[®] Unifal[®] Unifal[®] Unifal[®] U

Unifal[®] Unifal[®] Unifal[®] Unifal[®] Unifal[®] Unifal[®] Urbanidal[®] Urbanidal

Considerar uma pessoa de idade de 30 anos que decide fazer um seguro de vida vitalício pague um benefício de 1 u.m. ao final do ano de morte. Admita $\bar{A}_{30}=0.28317$ e que i=5%.

UNITAIE UNITAIE UNITAIE UNITAIE UNIVERSIDADE FEDERAL DE L'INVERSIDADE F

$$A_{30} = \frac{\delta}{i}\bar{A}_{30} = \frac{ln(1,05)}{0,05}0,28317 \approx 0,2763182$$

> Vitalício

$$\bar{A}_{x} = A_{x} \frac{i}{\delta}$$

> Temporário

$$\bar{A}_{x^1:\bar{n}|} = A_{x^1:\bar{n}|} \frac{i}{\delta}$$

> Misto

$$\bar{A}_{x:\bar{n}|} = A_{x^1:\bar{n}|} \frac{i}{\delta} + A_{x:\bar{n}|^1}$$

> Fracionado

$$A_{\chi}^{(m)} = \frac{iA_{\chi}}{i^{(m)}}$$

$$i^{(m)} = m \left[1 - (1+i)^{-\frac{1}{m}} \right] v^{-\frac{1}{m}}$$