

GEOMETRÍA

Capítulo 11

2nd SECONDARY

CUADRILÁTEROS TRAPEZOIDES y TRAPECIOS

MOTIVATING | STRATEGY

CUADRILÁTEROS

<u>Definición</u>: Es aquella figura que resulta de la reunión de 4 segmentos de recta unidos en sus extremos de tal forma que cualquier par de ellas no es colineal.

- VÉRTICES: A; B; C y D
- LADOS: AB; BC; CD y DA

TEOREMAS

$$\alpha + \beta + \theta + \phi = 360^{\circ}$$

$$\omega + \gamma + \psi + \delta = 360^{\circ}$$

CLASIFICACIÓN DE LOS CUADRILÁTEROS

TRAPEZOIDE

Es aquel cuadrilátero convexo que no tiene lados opuestos paralelos.

TRAPECIO

Es aquel cuadrilátero convexo que solo tiene un par de lados opuestos paralelos, llamados bases.

Teorema

Teorema

$$y = \frac{\beta - \alpha}{2}$$

$$x = \frac{\alpha + \beta}{2}$$

Teoremas

△ ABCD: Trapecio

1. Las medidas de los ángulos internos de un terreno trapezoidal ABCD son 105°, 5x, 85° y 3x + 10°, como se muestra en la figura. ¿Cuánto mide el ángulo en la esquina C?.

Resolución:

- Piden: m∢C
- Aplicando teorema:

$$8x + 200^{\circ} = 360^{\circ}$$

$$8x = 160^{\circ}$$

$$x = 20^{\circ}$$

Calculando m∢C:

$$m \not< C = 5x$$

2. En el trapecio ABCD (BC // AD). Calcule la m∡BCD.

Resolución:

- Del gráfico:

$$m \angle C + m \angle D = 180^{\circ}$$

$$2x + x = 180^{\circ}$$

$$3x = 180^{\circ}$$

$$x = 60^{\circ}$$

Calculando m∢BCD

$$m \not\preceq BCD = 2(60^\circ)$$

3. En la figura, halle el valor de x.

Resolución:

- Piden: x
- En ABCD:

$$70^{\circ}+2\phi+110^{\circ}+2\omega = 360^{\circ}$$

 $2\phi+2\omega = 180^{\circ}$
 $\phi+\omega = 90^{\circ}$

• En ABMD:

$$x = 70^{\circ} + \phi + \omega$$

 $x = 70^{\circ} + 90^{\circ}$
 $x = 160^{\circ}$

4. Si BC // AD, calcule la longitud de la mediana del trapecio ABCD.

Resolución:

- Piden: MN
- Aplicando teorema:

$$7-x=\frac{x+4x}{2}$$

$$14 - 2x = 5x$$

$$14 = 7x$$

$$2 = x$$

Calculando: MN

$$MN = 7 - x$$

$$MN = 7 - 2$$

5. En el trapecio ABCD (\overline{BC} // \overline{AD}) $\overline{AP} = PC$ y $\overline{BQ} = \overline{QD}$. Calcule x.

Resolución:

- Piden: x
- Aplicando teorema:

$$6=\frac{4x-4}{2}$$

$$12 = 4x - 4$$

$$16 = 4x$$

$$4 = x$$

$$x = 4 u$$

6. Edwin a construido una mesa trapecial, tal como muestra en el gráfico. Calcule la longitud del lado mayor del tablero.

Resolución:

- Piden: AB
- △AHD: Notable de 37° y 53°
- △BTC: Notable de 45° y 45°
- Calculando AB

$$AB = 160 + 100 + 120$$

$$AB = 380 \text{ cm}$$

HELICO | PRACTICE

7. Alejandra tiene un Resolución: mueble de juguete en forma de un trapecio isósceles, tal como se muestra en el gráfico.
¿Cuál es la altura de dicho mueble?

- Piden: H
- ⊿CHD: Teorema de Pitágoras Trapecio isósceles

$$x^2 + 5^2 = 13^2$$

 $x^2 = 144$

$$x = 12$$

$$H = 12 + 3$$
 $H = 15 cm$

◎1