Determination of Zeta Potential by Microelectrophoresis

Teng-Jui Lin

Department of Chemical Engineering, University of Washington

Surface and Colloid Science

Zeta potential is the electrical potential at the slip plane of the electric double layer

- ψ electrical potential difference between dispersing medium and ...
 - $\circ \; \psi_{\infty} \equiv 0$ the dispersing medium
 - \circ ψ_0 the surface of colloidal particle
 - True surface potential
 - $\circ \; \psi_\delta$ the outer first layer of counterions
 - Effective (Stern) surface potential
 - $\circ \zeta$ the slip plane (medium velocity = 0)
 - Zeta potential, electrokinetic potential
- The slip plane may be slightly further out into the solution than Stern layer
 - \circ $\psi_\deltapprox\zeta$,

Electro-osmosis and electrophoresis give the same zeta potential

- Electro-osmosis diffuse layer of ions beside a charged immobile surface move under E field, which sets the liquid into motion by the action of viscosity
 - Liquid moves, solid at rest

- Electrophoresis diffuse layer of ions beside a charged particle surface move under E field, which sets the particle into motion
 - Solid moves, liquid at rest

Electro-osmosis

Electrophoresis

Electrophoretic mobility allows determination of zeta potential

• Electrophoretic mobility - $u_E[(\mu m/s)/(V/cm)]$

$$\circ \ u_E = \frac{V_p}{E_x} = \begin{cases} \frac{\varepsilon \varepsilon_0 \zeta}{\mu} & (\kappa a > 200) & \text{Helmholtz-Smoluchowski limit} \\ \frac{2}{3} \frac{\varepsilon \varepsilon_0 \zeta}{\mu} & (\kappa a < 0.1) & \text{Huckel limit} \end{cases}$$
 measure

- ullet u_E Electrophoretic mobility
- V_p Particle velocity Me asure
- E_x Electric field strength Known
- ε Dielectric constant of the medium Κρονη Ηεο
- ε_0 Permittivity of free space Known
- μ Viscosity of the medium Knwh 420
- κ^{-1} Debye length
- a Particle radius

Point of zero charge and isoelectric point define pH at which potentials are zero

- Potential determining ions ions whose concentration determines surface potential
 - Crystalline solid lattice ions
 - \circ Oxides $\mathrm{H_3O^+}$, $\mathrm{OH^-}$ (pH)
- Point of zero charge (PZC) pH at which $\psi_0=0$
 - pH < PZC: $\psi_0 > 0$
 - ∘ pH > PZC: $\psi_0 < 0$
- Isoelectric point (IEP, pI) pH at which $\zeta pprox \psi_\delta = 0$
 - $\circ \ u_E = 0 \Rightarrow V_p = 0$

Darkfield illumination microscopy visualizes colloidal particles under *E* field

• Electrophoresis has solid particles moving when liquid is at rest $(v_x=0)$

top view (on edge)

w y stationary planes

Laser Doppler electrophoresis determines zeta potential with more sensitivity

