Тестовое задание

Игнат Сонец, ИБГ РАН

https://github.com/ISonets/ChIP-Seq_results_v2

Задание

- 1. Скачать chip-seq для транскрипционного фактора YY1 в виде bed file формата broad или narrow peaks из базы ENCODE.
- 2. Отобрать Тор1000 лучших пиков на основе -log pvalue.
- 3. Для отобранных top1000 пиков выполнить de novo motif discovery используя Homer.
- 4. Представить визуально полученные результаты для найденных мотивов на основе Homer (можно использовать графические материалы, полученные в результате работы софта Homer). Написать аналитический комментарий с биологической интерпретацией, опираясь на данные литературы и веб сайта Factorbook.
- 5. Выполнить GO enrichment для генов, полученных посредством ассигнования пик-ген, используя тулу GREAT (http://great.stanford.edu/public/html/) и посредством ассигнования пика к ближайшему гену с учетом +- цепи (например с помощью bedtools)

Необходимо выслать код и графические материалы по задачам в виде jupyther notebook или в виде презентации.

1. Скачивание файлов

Я выбрал YY1 *Homo sapiens* для дальнейшей работы.

Всего в ENCODE выложено 18 экспериментов (https://www.encodeproject.org/genes/7528/)

1. Скачивание файлов

Я выбрал 1 из экспериментов (sample GM12892):

Для дальнейшей работы я взял bed narrowPeak file:

- ENCODE4 v1.6.1 GRCh38 (ENCAN010QYV) processed data (22 Files) ■ released □ 2										
Accession	\$ D	efault 📤	File type	Output type	Isogenic replicate \$	Mapped read length	Genome assembly	Date added	File size \$	File status 💠
ENCFF329MHR 🐧 📥		*	bed narrowPeak	IDR thresholded peaks	1, 2		GRCh38	2020-12-28	336 kB	• released
ENCFF993VSK 🛈 🕹		*	bigWig	signal p-value	1, 2		GRCh38	2020-12-28	683 MB	• released
ENCFF802MHJ 🐧 🕹		*	bigBed narrowPeak	IDR thresholded peaks	1, 2		GRCh38	2020-12-28	622 kB	• released

Что за ҮҮ1?

- повсеместно распространенный ТФ, принадлежит к семейству zinc finger proteins;

- способен к активации и репрессии различных промоторов(имя происходит от инь-ян);
- взаимодействует с гистонтрансферазами и гистондеацетилазами;
- Гетерозиготные делеции YY1, нонсенс- и миссенс-мутации вызывают синдром GADEVS (АД заболевание)

Более подробно здесь: https://en.wikipedia.org/wiki/YY1

и здесь: https://www.uniprot.org/uniprot/P25490.

2. Подготовка данных

Структура данных (https://genome.ucsc.edu/FAQ/FAQformat.html#format1):

ENCODE narrowPeak: Narrow (or Point-Source) Peaks format

This format is used to provide called peaks of signal enrichment based on pooled, normalized (interpreted) data, It is a BED6+4 format.

- chrom Name of the chromosome (or contig, scaffold, etc.).
- 2. chromStart The starting position of the feature in the chromosome or scaffold. The first base in a chromosome is numbered 0.
- 3. **chromEnd** The ending position of the feature in the chromosome or scaffold. The *chromEnd* base is not included in the display of the feature. For example, the first 100 bases of a chromosome are defined as *chromStart=0*, *chromEnd=100*, and span the bases numbered 0-99.
- 4. name Name given to a region (preferably unique). Use "." if no name is assigned.
- 5. score Indicates how dark the peak will be displayed in the browser (0-1000). If all scores were ""0" when the data were submitted to the DCC, the DCC assigned scores 1-1000 based on signal value. Ideally the average signal Value per base spread is between 100-1000.
- 6. strand +/- to denote strand or orientation (whenever applicable). Use "." if no orientation is assigned.
- 7. signalValue Measurement of overall (usually, average) enrichment for the region.
- 8. pValue Measurement of statistical significance (-log10), Use -1 if no pValue is assigned.
- 9. qValue Measurement of statistical significance using false discovery rate (-log10). Use -1 if no qValue is assigned.
- 10. peak Point-source called for this peak; 0-based offset from chromStart, Use -1 if no point-source called.

Here is an example of narrowPeak format:

```
track type=narrowPeak visibility=3 db=hg19 name="nPk" description="ENCODE narrowPeak Example"
browser position chr1:9356000-9365000
chr1 9356548 9356648 . 0 182 5.0945 -1 50
chr1 9358722 9358822 . 0 91 4.6052 -1 40
chr1 9361082 9361182 . 0 182 9.2103 -1 75
```

2. Подготовка данных

!Есть 2 сложности:

- 1. pValue не указано (-1), что делает невозможным выбор топ 1000 пиков. Выход: использовать qValue
- 2. strand не указан(в силу предыдущей обработки данных), что делает невозможным peak assigning с учетом направления цепи. Выход: обойтись без этого параметра.

Среди всех 18 экспериментов отсутствует pValue и strand. Может быть это правила обработки данных перед загрузкой на ENCODE? Или стоило повторить анализ целиком, от сырых .fasta?

					•					
Open ▼ 🕦						58UEW_GM12878.bed ads/chip_seq_test/unpack		Save	-	. x
1 chr12 93677147	93677505 .	1000 .	361.51779	-1.00000	3.01578	186				
2 chr3 14651491	14651815 .	1000 .	346.18553	-1.00000	3.01578	148				
3 chr11 119101936	119102259 .	1000 .	336.42275	-1.00000	3.01578	181				
4 chr18 50287932	50288168 .	1000 .	257.75381	-1.00000	3.01578	87				
5 chrX 1447192	1447539 .	1000 .	229.19186	-1.00000	3.01578	300				
6 chr2 44361506	44361749 .	1000 .	216.59946	-1.00000	3.01578	108				
7 chr14 21511343	21511602 .	1000 .	215.41513	-1.00000	3.01578	139				
8 chr12 14385144	14385407 .	1000 .	208.43599	-1.00000	3.01578	153				
9 chr14 23035019	23035334 .	1000 .	207.80193	-1.00000	3.01578	147				
10 chr20 32109399	32109651 .	1000 .	204.57996	-1.00000	3.01578	120				

2. Подготовка данных

В Jupyter Notebook, используя pandas, я отобрал топ 1000 пиков на основе qValue.

!Чем больше значение qValue, тем более значим этот пик (в .bed qValue в -log(10) форме). Также отбирал пики на основе signalValue и score (при условии равенства qValue).

Ö

3. De novo motif discovery (HOMER)

http://homer.ucsd.edu/homer/

Workflow:

- 1. HOMER был установлен в conda;
- configureHomer.pl -install hg38;
- 3. findMotifsGenome.pl top1000_peaks.bed hg38 de_novo_motifs_top/

Homer de novo Motif Results (de novo motifs top/)

If Homer is having trouble matching a motif to a known motif, try copy/pasting the matrix file into STAMP

More information on motif finding results: HOMER | Description of Results | Tips Total target sequences = 1000

Total background sequences = 43231
*- possible false positive

- po:	samie idise positive							
Rank	Motif	P-value	log P-pvalue	% of Targets	% of Background	STD(Bg STD)	Best Match/Details	Motif File
1	<u> </u>	1e-876	-2.018e+03	71.20%	2.57%	32.5bp (68.0bp)	YY1/MA0095.2/Jaspar(0.976) More Information Similar Motifs Found	motif file (mati
2	LACTTCCG	1e-61	-1.413e+02	37.60%	15.86%	55.9bp (75.0bp)	ETV6/MA0645.1/Jaspar(0.940) More Information Similar Motifs Found	motif file (matı
3	TCACGTGASS	1e-44	-1.023e+02	11.50%	2.26%	50.2bp (69.0bp)	TFE3(bHLH)/MEF-TFE3-ChIP-Seq(GSE75757)/Homer(0.960) More Information Similar Motifs Found	motif file (mat
4	ACACTCAASATG	1e-33	-7.805e+01	1.40%	0.00%	46.3bp (9.3bp)	NKX2-5/MA0063.2/Jaspar(0.809) More Information Similar Motifs Found	motif file (mata
5	Z&C CGTA	1e-29	-6.724e+01	25.90%	12.61%	55.2bp (82.3bp)	BMYB(HTH)/Hela-BMYB-ChIP-Seq(GSE27030)/Homer(0.751) More Information Similar Motifs Found	motif file (mat
6	CCCTATAG	1e-24	-5.552e+01	38.20%	23.64%	56.5bp (78.9bp)	YY2/MA0748.2/Jaspar(0.635) More Information Similar Motifs Found	motif file (mat
7	IGCCCITA&C	1e-22	-5.282e+01	8.70%	2.44%	48.4bp (73.2bp)	THAP1/MA0597.1/Jaspar(0.827) More Information Similar Motifs Found	motif file (mat
8	<u>IGCGTAAC</u>	1e-22	-5.131e+01	26.90%	14.84%	56.3bp (81.8bp)	CEBPB/MA0466.2/Jaspar(0.760) More Information Similar Motifs Found	motif file (mat
9	CTACAATTCCCA	1e-19	-4.564e+01	4.90%	0.92%	50.7bp (79.1bp)	GFY(?)/Promoter/Homer(0.912) More Information Similar Motifs Found	motif file (mat
10	GAZTCCGTACAG	1e-14	-3.286e+01	1.10%	0.03%	40.0bp (84.0bp)	PB0203.1_Zfp691_2/Jaspar(0.617) More Information Similar Motifs Found	motif file (mat
11	TCCCCETTTC	1e-14	-3.249e+01	3.60%	0.71%	49.4bp (68.3bp)	SPIC/MA0687.1/Jaspar(0.632) More Information Similar Motifs Found	motif file (mat
12	CCGSTGACGTCA	1e-14	-3.225e+01	3.40%	0.64%	50.6bp (81.0bp)	PB0004.1_Atfl_1/Jaspar(0.881) More Information Similar Motifs Found	motif file (mat
13	CCCATCCGS	1e-13	-3.215e+01	12.90%	6.24%	61.4bp (76.8bp)	NRF1(NRF)/MCF7-NRF1-ChIP-Seq(Unpublished)/Homer(0.861) More Information Similar Motifs Found	motif file (mat
14	FCGTACAGAAGG	1e-13	-3.104e+01	1.00%	0.02%	61.8bp (108.7bp)	OSR2/MA1646.1/Jaspar(0.654) More Information Similar Motifs Found	motif file (mat
15	<u> </u>	1e-12	-2.866e+01	4.00%	0.99%	61.5bp (73.9bp)	GFX(?)/Promoter/Homer(0.889) More Information Similar Motifs Found	motif file (mat
16*	<u>AGTGGTTAAGCG</u>	1e-11	-2.729e+01	0.70%	0.01%	46.8bp (32.7bp)	ZNF652/HepG2-ZNF652.Flag-ChIP-Seq(Encode)/Homer(0.678) <u>More Information Similar Motifs Found</u>	motif file (mat
17 *	CACTGCTAGE	1e-11	-2.630e+01	3.00%	0.62%	55.9bp (66.4bp)	ZBTB7C/MA0695.1/Jaspar(0.771) More Information Similar Motifs Found	motif file (mat
18*	CACTCGGCTIGC	1e-9	-2.144e+01	0.70%	0.02%	53.9bp (62.7bp)	Bapx1(Homeobox)/VertebralCol-Bapx1-ChIP-Seq(GSE36672)/Homer(0.571) More Information Similar Motifs Found	motif file (mat
19*	ATEGGATE	1e-9	-2.131e+01	13.90%	8.12%	62.1bp (83.8bp)	NFIA/MA0670.1/Jaspar(0.761) More Information Similar Motifs Found	motif file (mat
20 *	GGEGCGIGGCTI	1e-8	-1.925e+01	2.60%	0.64%	63.5bp (83.9bp)	SP1/MA0079.4/Jaspar(0.852) More Information Similar Motifs Found	motif file (mat
21 *	GGAAGGTAGCCT	1e-7	-1.764e+01	0.90%	0.06%	48.8bp (59.7bp)	TEAD1(TEAD)/HepG2-TEAD1-ChIP-Seq(Encode)/Homer(0.618) More Information Similar Motifs Found	motif file (mat
22 *	TTAGCCGCGG	1e-7	-1.699e+01	1.90%	0.40%	60.0bp (64.4bp)	RHOXF1/MA0719.1/Jaspar(0.605) More Information Similar Motifs Found	motif file (mat
23 *	GECLATTCLG	1e-6	-1.413e+01	4.00%	1.67%	53.7bp (80.8bp)	Mef2a(MADS)/HL1-Mef2a.biotin-ChIP-Seq(GSE21529)/Homer(0.604) More Information Similar Motifs Found	motif file (mat
24 *	CGAC I A GACA	1e-4	-1.144e+01	0.50%	0.03%	51.0bp (40.2bp)	SMAD5/MA1557.1/Jaspar(0.759) More Information Similar Motifs Found	motif file (mat
25 *	CCCGGCAGGAAC	1e-4	-1.105e+01	0.30%	0.01%	65.4bp (26.2bp)	E2F1(E2F)/Hela-E2F1-ChIP-Seq(GSE22478)/Homer(0.666) More Information Similar Motifs Found	motif file (mat
_			•					

3. De novo motif discovery (HOMER)

Всего найдено 25 мотивов, из них 10 HOMER считает возможно ложноположительными (может ли быть дело в стандартных параметрах запуска?). Motifs logo и последовательности доступны на Github.

3. De novo motif discovery – сравним с Factorbook

Среди de novo мотивов найден YY1/MA0095.2 => совпадение с опубликованными данными.

3. Known motifs discovery (HOMER)

HOMER также предоставил известные ему мотивы (79 штук):

Homer Known Motif Enrichment Results (de novo motifs top) Homer de novo Motif Results Gene Ontology Enrichment Results Known Motif Enrichment Results (txt file) Total Target Sequences = 1000, Total Background Sequences = 43206 # Background % of Background # Target 6 of Targets r-value P-value P-pvalue Motif File SVG Rank Motif Sequences with Sequences with Name Sequences Sequences (Benjamini) with Motif with Motif Motif notif file YY1(Zf)/Promoter/Homer 1e-748 -1.724e+03 0.0000 627.0 62.70% 985.1 2.28% matrix) Elk4(ETS)/Hela-Elk4-ChIPnotif file 1e-56 -1.294e+02 0.0000 327.0 32.70% 5696.0 13.16% vg Seg(GSE31477)/Homer matrix) Elk1(ETS)/Hela-Elk1-ChIP-1e-54 -1.259e+02 0.0000 320.0 32.00% 5576.3 12.88% Seg(GSE31477)/Homer matrix) Fli1(ETS)/CD8-FLI-ChIPnotif file -1.215e+02 0.0000 377.0 37.70% 7455.3 17.22% Seg(GSE20898)/Homer matrix) ELF1(ETS)/Jurkat-ELF1-ChIPnotif file -1.167e+02 0.0000 292.0 29.20% 4992.6 11.53% Seg(SRA014231)/Homer matrix) notif file 215.0 ETS(ETS)/Promoter/Homer -1.095e+02 0.0000 21.50% 3067.0 7.09% matrix) ETV4(ETS)/HepG2-ETV4-ChIPnotif file 1e-46 -1.059e+02 0.0000 378.0 37.80% 7983.3 18.44% Seg(ENCODE)/Homer matrix) ETV1(ETS)/GIST48-ETV1-ChIP--8.388e+01 0.0000 341.0 34.10% 7525.3 17.38% Seg(GSE22441)/Homer matrix) GABPA(ETS)/Jurkat-GABPa-ChIP--8.373e+01 0.0000 276.0 27.60% 5437.4 12.56% Seg(GSE17954)/Homer matrix) ETS1(ETS)/Jurkat-ETS1-ChIP--7.417e+01 0.0000 273.0 27.30% 5658.4 13.07% Seg(GSE17954)/Homer matrix) TFE3(bHLH)/MEF-TFE3-ChIPnotif file -6.916e+01 0.0000 67.0 6.70% 479.6 1.11% vg Seg(GSE75757)/Homer matrix) Etv2(ETS)/ES-ER71-ChIP-1e-28 -6.456e+01 0.0000 217.0 21.70% 4247.8 9.81% svg Seg(GSE59402)/Homer matrix)

http://great.stanford.edu/public/html/index.php

Была произведена доп. обработка файла топ-1000 пиков:

- cut -f 1-6 top_1000_peaks.bed > top_1000_GREAT.bed
 (.bed и .narrowPeak имеют 6 одинаковых колонок, но остальные различны; чтобы избежать ошибок, сохранил 1-6 колонки отдельно)
- 2. cat top_1000_GREAT.bed | sed 1d > top_1000_GREAT_noheader.bed (GREAT выдает ошибку при наличи заголовка)

Параметры запуска:

- геном Human: GRCh38 (UCSC hg38, Dec. 2013)
- Background regions: whole genome
- Associating genomic regions with genes: Proximal: 5 kb upstream, 1kb downstream; Distal: up to 1000 kb (стандарт)

Job ID: 20210916-public-4.0.4-hhNuLg Display name: top 1000 peaks GREAT noheader.bed

GO Cellular Component

4. GO enrichment – bedtools

https://bedtools.readthedocs.io/en/latest/index.html

Т.к. в .bed не указан strand, назначение пика к гену м.б. затруднительным в плане интерпретации(нет смысла указывать флаг -s(учитывать цепь в процессе).

Workflow:

- 1. bedtools установлен в conda;
- 2. С GENCODE был загружен.gff3 файлы для сборки hg38 (https://www.gencodegenes.org/human/);
- 3. bedtools sort top_1000_GREAT_noheader.bed/bedtools sort hg38_full.gff3;
- bedtools closest -a top_1000_GREAT_sorted.bed -b hg38_full_sorted.gff3 > top_1000_closest.txt (находим ближайшие гены);
- 5. grep "ID=exon" top_1000_closest.txt > top1000_exons_only.txt (извлекаем экзоны);
- 6. cut -f 15 top1000_exons_only.txt | cut -d';' -f6 | sort | uniq | cut -d'=' -f2 > top1000_GO_ready.txt (достаем имена генов)

4. GO enrichment – bedtools

Для GO enrichment был использован веб-сервис http://geneontology.org/ и http://pantherdb.org/.

Параметры:

- референс Homo sapiens (all genes in database);
- датасет GO biological process complete;
- тест Fisher exact;
- коррекция FDR.

Всего обнаружено обогащение по 327 биологическим процессам.

4. GO enrichment – HOMER

Для верификации результатов я решил попробовать сделать GO enrichment с помощью аннотации пиков HOMER.

Workflow:

- annotatePeaks.pl top_1000_peaks.bed hg38> HOMER_annotated_peaks.txt
- 2. cut -f 16 HOMER_annotated_peaks.txt | sort | uniq| wc -l (862 аннотированных гена)
- 3. cut -f 16 HOMER_annotated_peaks.txt | sort | uniq > HOMER_gene_names.txt(получить гены списком)
- 4. Воспользоваться http://geneontology.org/ и http://geneontology.org/ и http://geneontology.org/ и http://pantherdb.org/ для GO enrichment. Параметры аналогичны использованным для GO enrichment с bedtools.

Всего обнаружено обогащение по 326 процессам. Множество совпадений с результатами анализа генов, обнаруженных bedtools, а также с результатами работы GREAT.

GO enrichment – интересные находки

- + регулирует трансляцию в митохондриях;
- + регулирует транскрипцию мРНК и ее сплайсинг;
- способствует сборке большой субъединицы рибосомы;
- участвует в встраивании белков в мембрану митохондрий;
- + регулирует инициацию транскрипции РНК-полимеразой 2;
- участвует в катаболизме мРНК;
- участвует в дифференцировке нейронов, клеточной миграции и морфогенезе;
- участвует в регуляции врожденного иммунного ответа;
- участвует в регуляции В-клеточного иммунитета.

Итого

- 1. Выделено топ-1000 пиков для образца GM12892 *Homo sapiens* из исходных файлов, несмотря на выбор другой метрики.
- Выполнен de novo motif search с HOMER.
- 3. Выполнен GO enrichment c GREAT и bedtools.

Код и результаты доступны на Github.

Тестовое задание

Игнат Сонец, ИБГ РАН

https://github.com/ISonets/ChIP-Seq_results_v2