Title

1. Viscosity Solutions

1.1. Abstract Dynamic Programming Principle. Setup

- Σ be a closed subset of Banach space
- \mathcal{C} be family of functions on Σ that are closed under addition.
 - When $\Sigma \subset \mathbb{R}^n$, require \mathcal{C} contains $\mathcal{M}(\Sigma) \cap C_p(\Sigma)$.

Nonlinear operator semigroup

$$V(t,x) = \mathcal{T}_{t,r}V(r,\cdot)(x) \tag{1.1}$$

Assumption 1.1 (Semigroup).

Assumption 1.2. There exist

- $\Sigma' \subset \Sigma$
- family of test functions $\mathcal{D} \subset C([t_0, t_1), \Sigma')$
- family of nonlinear operators $\{\mathcal{G}_t\}$ called generators such that
 - (1) $\frac{\partial}{\partial t}w(t,x)$ and $\mathcal{G}_tw(t,\cdot)(x)$ continuous on $(t,x)\in Q$, and $w(t,\cdot)\in \mathcal{C}$ for all $t\in [t_0,t_1]$.
 - (2) $w, \tilde{w} \in \mathcal{D}, \lambda \geq 0$ implies that $w + \tilde{w}, \lambda w \in \mathcal{D}$
 - (3) $\lim_{h\to 0} \frac{1}{h} [\mathcal{T}_{t,t+h} w(t+h,\cdot)(x) w(t,x)] = \frac{\partial}{\partial t} w(t,x) \mathcal{G}_t w(t,\cdot)(x).$

The dynamic programming equation has the form:

$$-\frac{\partial}{\partial t}V(t,x) + \mathcal{G}_tV(t,\cdot)(x) = 0, \quad (t,x) \in Q.$$
 (1.2)

Definition 1.3 (Classical Solutions). $V \in \mathcal{D}$ is called classical solution to (1.2) if it satisfies (1.2) at all $(t, x) \in Q$.

1.2. On Definitions of Viscosity Solutions.

Definition 1.4 (Viscosity Solution for Abstract DPE). Let $W \in C([t_0, t_1] \times \Sigma)$. Then

• W is viscosity subsolution of (1.2) in Q if $\forall w \in \mathcal{D}$, and $(t^*, x^*) \in Q$ that maximizes W - w with $W(t^*, x^*) = w(t^*, x^*)$, we have

$$-\frac{\partial}{\partial t}w(t^*, x^*) + \mathcal{G}_{t^*}w(t^*, \cdot)(x^*) \le 0.$$

• W is viscosity supersolution of (1.2) in Q if $\forall w \in \mathcal{D}$, and $(t^*, x^*) \in Q$ that minimizes W - w with $W(t^*, x^*) = w(t^*, x^*)$, we have

$$-\frac{\partial}{\partial t}w(t^*, x^*) + \mathcal{G}_{t^*}w(t^*, \cdot)(x^*) \ge 0.$$

ullet W is viscosity solution if it is both viscosity sub and super solution.

Definition 1.5 (Maximum Principle For Operator). A general operator \mathcal{G}_t has the maximum principal if for all $t \in [t_0, t_1]$, ψ, ϕ in domain of \mathcal{G}_t , we have

$$\mathcal{G}_t \phi(\bar{x}) \ge \mathcal{G}_t \psi(\bar{x})$$

for all \bar{x} that satisfies

$$\bar{x} \in \arg\max\{(\phi - \psi)(x)|x \in \Sigma\} \text{ and } \phi(\bar{x}) = \psi(\bar{x})$$

Remark 1.6. The maximum principle for operator \mathcal{G}_t holds if

- \mathcal{G}_t is infinitesimal generator of $\mathcal{T}_{t,r}$
- $\mathcal{G}_t \phi(x) = H(t, x, D\phi(x))$, where H is continuous function.
- (and only if) $\mathcal{G}_t \phi(x) = F(t, x, D\phi(x), D^2\phi(x), \phi(x))$, where F is continuous and elliptic (see definition below). For a proof see [FS] II.4 p69.

Let O open subset of \mathbb{R}^n , $Q = [t_0, t_1) \times O$, $W = C(\bar{Q})$, F continuous and elliptic. Consider the PDE

$$-\frac{\partial}{\partial t}W(t,x) + F(t,x,D_xW(t,x),D_x^2W(t,x),W(t,x)) = 0.$$

Definition 1.7 (Viscosity Solution for 2nd order nonlinear PDE's).

1.3. DPP and Viscosity Solutions.

Theorem 1.8 (Continuous Values Functions are Viscosity Solutions). Let assumptions 1.1 and 1.2 hold. Consider the value function from the abstract DPP

$$V(t,x) = \mathcal{T}_{t,t_1} \psi(x).$$

If $V \in C(\bar{Q})$, then V is viscosity solution to the DPE (1.2) in Q.

Proof. Sub and supersolution are proved the same way. Use monotonicity assumptions for the semigroup. See [FS Thm 5.1].

Lemma 1.9 (Test Functions as Solutions). Suppose $W \in \mathcal{D}$. Then W is viscosity of DPE (1.2) in $Q \iff it$ is classical solution of DPE.

Proof. For necessity, take test function $w \equiv W$. For sufficiency, use the assumptions on the generator and monotonicity. See [FS Lemma 5.1].

1.4. Results for Partial Differential Operator.

Assumption 1.10 (On Space of Value Functions and Test Functions). Let $\Sigma' = O$ be open subset of \mathbb{R}^n and $\Sigma = \overline{O}$. Also assume

- (1) $C_p(\bar{O}) \cap \mathcal{M}(\bar{O}) \subset \mathcal{C}$.
- (2) $C_n^{\infty}(\bar{Q}) \cap \mathcal{M}(\bar{Q}) \subset \mathcal{D}$.

Consider the case when the generator is given by a partial differential operator

$$\mathcal{G}_t \phi(x) = F(t, x, D\phi(x), D^2\phi(x), \phi(x))$$

Definition 1.11 (Ellipticity).

Lemma 1.12 (Consider only strict extremums). Let Assumption 1.10 hold, In the definitions of viscosity solutions, it suffice to only consider strict extrema of W - w.

Proof. Consider test function $w^{\varepsilon} = w - \varepsilon \xi$, where

$$\xi(t,x) = e^{-|t-\bar{t}|^2 + |x-\bar{x}|^2} - 1, \quad (t,x) \in \bar{Q}.$$

See [FS Lemma 6.1].

Theorem 1.13. Let Assumption 1.10 hold. Let $W \in C_p(\bar{Q}) \cap \mathcal{M}(\bar{Q})$, $\mathcal{D} \subset C^{1,2}(Q)$, and

$$\mathcal{G}_t \phi(x) = F(t, x, D\phi(x), D^2 \phi(x), \phi(x))$$

Then W is a viscosity subsolution (or a supersolution) of

$$-\frac{\partial}{\partial t}V(t,x) + (\mathcal{G}_tV(t,\cdot))(x) = 0, \quad (t,x) \in Q.$$

in the sense of Definition 1.4, \iff W is a viscosity solution (or a supersolution, respectively) in the sense of Definition 1.7.

Proof. See [FS Theorem 6.1].

Remark 1.14. The main takeaway from previous theorem and its proof is that

- When showing viscosity property, we have the freedom to choose the test function w from \mathcal{D} or $C^{\infty}(Q)$ or any other dense subset of $C^{1,2}(Q)$ (for example $C^{1,2}(\bar{Q})$)
- The equivalence of definition also holds for first order partial differential operator

$$\mathcal{G}_t \phi(x) = H(t, x, D\phi(x)), \quad (t, x) \in \bar{Q}, \ \phi \in C^1(\bar{O}).$$

Similarly we can choose test function w from \mathcal{D} or $C^{\infty}(Q)$ or any other dense subset of $C^{1}(Q)$

2. Differential Games

2.1. Fleming & Soner.

APPENDIX A. NOTATIONS

Below are set of notations used in this note:

- Σ a Banach space
- $\mathcal{M}(\Sigma)$ = set of real-valued functions which are bounded below.
- $C_p(\Sigma)$ = set of all continuous, real-valued functions that are polynomially growing. re