

Uncertainty Analysis

Topic 1 -- Errors in Computation

13

What is Uncertainty?

How long is this object?

We write our measurement as $\chi \pm \sigma$

Since the measurement error is "blurred," we are not entirely certain about the error. The uncertainty σ is a statistically derived quantity.

Notes

- This is a more realistic way to treat error because we do not need to know the true value.
- This is used to predict errors in computations.

Topic 1 -- Errors in Computation

How to Interpret σ

 σ is one standard deviation.

There is a 68% chance that the error will be less than 1σ . There is a 32% chance that the error will be greater than 1σ .

ppic 1 -- Errors in Computation

Uncertainly Analysis

Suppose we have some number of parameters, each with an associated uncertainty.

$$x \pm \sigma_{x}$$

$$x \pm \sigma_x$$
 $y \pm \sigma_y$ $z \pm \sigma_z$

$$z \pm \sigma_z$$

Now suppose we calculate a new quantity from these.

What is the uncertainty σ_f of f(x,y,z)?

$$\sigma_f^2 = \left(\sigma_x \frac{\partial f}{\partial x}\right)^2 + \left(\sigma_y \frac{\partial f}{\partial y}\right)^2 + \left(\sigma_z \frac{\partial f}{\partial z}\right)^2$$

We call this propagating uncertainty through a calculation.

Topic 1 -- Errors in Computation

Table of Uncertainty Calculations

Function	Uncertainty
f = ax	$\sigma_f = a\sigma_x$
$f = ax \pm by$	$\sigma_f^2 = \left(a\sigma_x\right)^2 + \left(b\sigma_y\right)^2$
f = xy	$\left(\sigma_f/f\right)^2 = \left(\sigma_x/x\right)^2 + \left(\sigma_y/y\right)^2$
f = x/y	$\left(\sigma_f/f\right)^2 = \left(\sigma_x/x\right)^2 + \left(\sigma_y/y\right)^2$
$f = x^{\pm b}$	$\sigma_f/f = b \sigma_x/x$
$f = \ln(\pm bx)$	$\sigma_f = b \sigma_x / x$
$f = \log x$	$\sigma_f = b \sigma_x / (x \ln 10)$
$f = e^{\pm bx}$	$\sigma_f/f = b\sigma_x$
$f = a^{\pm bx}$	$\sigma_f/f = b\sigma_x \ln a$
$f = \sin x$	$\sigma_f = \sigma_x \cos x$
$f = \cos x$	$\sigma_f = \sigma_x \sin x$
$f = \tan x$	$\sigma_f = \sigma_x/\cos^2 x$
$f = \sin^{-1}(x)$	$\sigma_f^2 = \sigma_x^2 / (1 - x^2)$
$f = \cos^{-1}\left(x\right)$	$\sigma_f^2 = \sigma_x^2 / (1 - x^2)$
$f = \tan^{-1}(x)$	$\sigma_f = \sigma_x / (1 + x^2)$

Topic 1 -- Errors in Computation

1-

Uncertainty Through Multiple Calculations

Suppose we wish to find the uncertainty $\sigma_{\!f}$ when multiple calculations are involved.

$$f(a,b,c) = \ln(a+bc)$$
 Given σ_a , σ_b , and σ_c

1
$$\frac{\text{Value}}{bc}$$
 $\frac{\text{Uncertainty}}{\left(\frac{\sigma_{bc}}{bc}\right)^2} = \left(\frac{\sigma_b}{b}\right)^2 + \left(\frac{\sigma_c}{c}\right)^2$

$$a+bc \sigma_{a+bc} = \sigma_a^2 + \sigma_{bc}^2$$

$$\sigma_{\ln(a+bc)} = \frac{\sigma_{a+bc}}{a+bc}$$

Topic 3b -- Numerical Linear Algebra

Example 1

What is the uncertainty of a decibel quantity?

$$10\log_{10}(x\pm\sigma_x)$$

Solution

$$\sigma_f^2 = \left(\sigma_x \frac{\partial f}{\partial x}\right)^2 \qquad f(x) = 10 \log_{10}(x)$$

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \left[10 \log_{10}(x)\right] = 10 \left[\frac{\partial}{\partial x} \log_{10}(x)\right] = 10 \frac{1}{x} \frac{1}{\ln 10} = \frac{10}{x \ln 10}$$

$$\sigma_f^2 = \left(\sigma_x \frac{10}{x \ln 10}\right)^2$$

$$\sigma_f = 4.3429 \frac{\sigma_x}{x}$$

Topic 1 -- Errors in Computation

19

Example 2

The signal-to-noise ratio (SNR) of a system is 50±1.2. What is the SNR in decibels along with the uncertainty?

Solution

The SNR in decibels is

$$10\log_{10}(50) = 16.99 \text{ dB}$$

The uncertainty is calculated using the equation derived in the previous example.

$$\sigma_f = 4.3429 \frac{\sigma_x}{x} = 4.3429 \frac{1.2}{50} = 0.1$$

The final answer is

$$SNR = 16.99 \pm 0.1 \text{ dB}$$

Topic 1 -- Errors in Computation

Example 3

What is the uncertainty of the sum of two quantities?

$$x + y$$

Solution

$$\sigma_f^2 = \left(\sigma_x \frac{\partial f}{\partial x}\right)^2 + \left(\sigma_y \frac{\partial f}{\partial y}\right)^2$$
 $f = x + y$

$$\sigma_f^2 = \left[\sigma_x \frac{\partial}{\partial x} (x+y)\right]^2 + \left[\sigma_y \frac{\partial}{\partial y} (x+y)\right]^2 = \left[\sigma_x \cdot 1\right]^2 + \left[\sigma_y \cdot 1\right]^2$$

$$\sigma_f = \sqrt{\sigma_x^2 + \sigma_y^2}$$

Topic 1 -- Errors in Computation

21

Example 4

The height of person 1 was measured to be 6.0 ± 0.1 ft.

The height of person 2 was measured to be 5.5±0.1 ft.

If person 2 stands on the head of person 1, what is the total height and the uncertainty of the total height?

Topic 1 -- Errors in Computation

Computational Methods in EE

Solution

Total height

$$h = h_1 + h_2$$

= (6.0 ft) + (5.5 ft)
= 11.5 ft

Uncertainty

$$\sigma_h = \sqrt{\sigma_1^2 + \sigma_2^2}$$
= $\sqrt{(0.1 \text{ ft})^2 + (0.1 \text{ ft})^2}$
= 0.14 ft

Final Answer

 $h = 11.5 \pm 0.14$ ft

Description of the Problem

Very often we do not know quantities exactly because there is uncertainty in the measurements. For example, the height of a person might be written as

$$h = 2.8 \pm 0.02 \text{ m}$$

In this case, the uncertainty in the measurement is 0.02 m. We interpret this as the standard deviation σ of a normal distribution.

Propagating Uncertainty

Suppose we wish to calculate some quantity that is a function of multiple variables, each having its own uncertainty.

$$f(x_1, x_2, \cdots, x_M)$$

What is the overall uncertainty for σ_f ?

$$\sigma_f^2 = \left(\sigma_1 \frac{\partial f}{\partial x_1}\right)^2 + \left(\sigma_2 \frac{\partial f}{\partial x_2}\right)^2 + \dots + \left(\sigma_M \frac{\partial f}{\partial x_M}\right)^2$$

Table of Equations

Function	Uncertainty
f = ax	$\sigma_f = a\sigma_x$
$f = ax \pm by$	$\sigma_f^2 = \left(a\sigma_x\right)^2 + \left(b\sigma_y\right)^2$
f = xy	$\left(\sigma_f/f\right)^2 = \left(\sigma_x/x\right)^2 + \left(\sigma_y/y\right)^2$
f = x/y	$\left(\sigma_f/f\right)^2 = \left(\sigma_x/x\right)^2 + \left(\sigma_y/y\right)^2$
$f = x^{\pm b}$	$\sigma_f/f = b\sigma_x/x$
$f = \ln\left(\pm bx\right)$	$\sigma_f = b \sigma_x / x$
$f = \log x$	$\sigma_f = b \sigma_x / (x \ln 10)$
$f=e^{\pm bx}$	$\sigma_f/f = b\sigma_x$
$f = a^{\pm bx}$	$\sigma_f/f = b\sigma_x \ln a$
$f = \sin x$	$\sigma_f = \sigma_x \cos x$
$f = \cos x$	$\sigma_f = \sigma_x \sin x$
$f = \tan x$	$\sigma_f = \sigma_x/\cos^2 x$
$f = \sin^{-1}(x)$	$\sigma_f^2 = \sigma_x^2 / (1 - x^2)$
$f = \cos^{-1}(x)$	$\sigma_f^2 = \sigma_x^2 / (1 - x^2)$
$f = \tan^{-1}(x)$	$\sigma_f = \sigma_x / (1 + x^2)$