Caixeiro Viajante com ACO

Vinícius Couto Tasso

19 de agosto de 2020

A atividade proposta traz uma instância do clássico *Travelling Salesman Problem* (TSP) utilizando *Ant Colony Optimization*. Os dados utilizados são constituídos por uma lista com as coordenadas geográficas de 5851 cidades diferentes, sendo a maioria delas cidades brasileiras.

Foi utilizado o software ACOTSP¹, específico para a aplicação de ACO para problemas TSP. Conforme sugerido pelo enunciado do problema, foram utilizadas variações dos valores de parâmetro default ($\alpha=1.0$, $\beta=2.0$ e $\rho=0.5$) de -50% até +100%. Cada parâmetro assumiu 4 valores diferentes dentro de seus respectivos intervalos, resultando em 64 combinações diferentes testadas.

Para cada combinação de parâmetros, foi realizada uma bateria de 10 experimentos, cada um com uma nova semente aleatória. Foram utilizadas a média entre o melhor resultado de cada rodada, bem como o melhor resultado entre todas. A relação de parâmetros utilizados e resultados obtidos pode ser vista na Tabela 1.

A Figura 1 apresenta a relação entre o melhor resultado obtido (eixo y), o valor do parâmetro α (eixo x) e o valor de β (cor dos pontos). Similarmente, a Figura 2 traz os mesmos valores nos eixos x e y, mas a cor dos pontos é definida pelo valor de ρ .

Figura 1: Tamanho do percurso mínimo por α e β

Podemos observar que os resultados tem uma tendência a melhorar (diminuir) conforme o valor de α (influência dos feromônios) aumenta. Isso pode ser um indicador de que, para valores muito baixos, os caminhos promissores (que continham feromônio) não eram bem explorados, dificultando um eventual ajuste fino em soluções encontradas. Entretanto, aumentar muito este valor fará com que a busca seja muito localizada, fazendo com que o algoritmo seja propício a convergir rapidamente para mínimos locais.

¹Disponível em http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/public-software.html

Para diferentes valores de β , a tendência é um pouco diferente: não parece haver uma separação muito clara entre os resultados para os diferentes valores do parâmetro, havendo uma variação aparentemente baixa. Isso sugere que a influência da busca aleatória, determinada por este parâmetro, já é alta o suficiente para explorar caminhos diferentes mesmo quando o parâmetro assuem o menor valor utilizado.

Figura 2: Tamanho do percurso mínimo por α e ρ

Por fim, existe a influência da evaporação das trilhas de feromônio, determinada pelo parâmetro ρ . Aqui podemos ver uma separação mais clara, principalmente para $\alpha=1$ e $\alpha=1.5$, entre valores baixos ($\rho\leq0.5$) e altos ($\rho\geq0.5$). Aparentemente, para valores mais baixos, o tempo de evaporação das trilhas é muito baixo, o que pode prejudicar a integridade de um caminho que já foi descoberto, impedindo que seja devidamente explorado.

Mais detalhes sobre os experimentos realizados podem ser encontrados na tabela a seguir.

Alpha (α)	Beta (β)	Rho (ρ)	Média	Melhor resultado
0.5	1	0.25	153268	152686
0.5	1	0.50	152944	152003
0.5	1	0.75	152565	151924
0.5	1	1.00	152226	151666
0.5	2	0.25	153137	152564
0.5	2	0.50	152671	151869
0.5	2	0.75	152296	151674
0.5	2	1.00	151915	151422
0.5	3	0.25	153019	152371
0.5	3	0.50	152489	151760
0.5	3	0.75	152074	151499
0.5	3	1.00	151758	151187
0.5	4	0.25	152848	152019
0.5	4	0.50	152302	151631
0.5	4	0.75	151981	151401
0.5	4	1.00	151589	150842
1.0	1	0.25	152931	152396
1.0	1	0.50	152076	151257

1.0	1	0.75	151350	150731
1.0	1	1.00	150858	150142
1.0	2	0.25	152577	151796
1.0	2	0.50	151850	150908
1.0	2	0.75	151186	150573
1.0	2	1.00	150888	150177
1.0	3	0.25	152348	151608
1.0	3	0.50	151679	150745
1.0	3	0.75	151154	150285
1.0	3	1.00	150905	150345
1.0	4	0.25	152217	151598
1.0	4	0.50	151647	151109
1.0	4	0.75	151111	150296
1.0	4	1.00	150882	150226
1.5	1	0.25	152225	151529
1.5	1	0.50	151454	150742
1.5	1	0.75	150877	150348
1.5	1	1.00	150749	150120
1.5	2	0.25	151940	151281
1.5	2	0.50	151310	150658
1.5	2	0.75	150796	150250
1.5	2	1.00	150761	150088
1.5	3	0.25	151828	151030
1.5	3	0.50	151222	150570
1.5	3	0.75	150748	150174
1.5	3	1.00	150859	150083
1.5	4	0.25	151722	151175
1.5	4	0.50	151214	150653
1.5	4	0.75	150715	150130
1.5	4	1.00	150912	150360
2.0	1	0.25	151528	150613
2.0	1	0.50	151000	150022
2.0	1	0.75	150663	150057
2.0	1	1.00	150603	149882
2.0	2	0.25	151391	150619
2.0	2	0.50	150898	150317
2.0	2	0.75	150620	149924
2.0	2	1.00	150731	150095
2.0	3	0.25	151309	150642
2.0	3	0.50	150885	150292
2.0	3	0.75	150612	150065
2.0	3	1.00	150798	149955
2.0	4	0.25	151306	150385
2.0	4	0.50	150858	150341
2.0	4	0.75	150583	149865
2.0	4	1.00	150787	150163
Tabala 1. I	D 1 ~ 1	^	:1:	magultadag abtidag

Tabela 1: Relação de parâmetros utilizados e resultados obtidos