МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра	теоретических	основ	
компьютерной	безопасности	И	
криптографии			

УНИВЕРСАЛЬНЫЕ АЛГЕБРЫ И АЛГЕБРА ОТНОШЕНИЙ

ОТЧЁТ ПО ДИСЦИПЛИНЕ «ПРИКЛАДНАЯ УНИВЕРСАЛЬНАЯ АЛГЕБРА»

студента 3 курса 331 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Бородина Артёма Горовича

Преподаватель		
профессор, д.фм.н.		В. А. Молчанов
	полпись, лата	

СОДЕРЖАНИЕ

1	Цель работы и порядок выполнения				
2	Teop	етические сведения по рассмотренным темам с их обоснованием	4		
3	Резул	льтаты работы	7		
	3.1	Алгоритм проверки свойства ассоциативности операции	7		
	3.2	Алгоритм проверки свойства коммутативности операции	9		
	3.3	Алгоритм проверки свойства идемпотентности операции	11		
	3.4	Алгоритм проверки свойства дистрибутивности операции	13		
	3.5	Алгоритм объединения бинарных отношений	17		
	3.6	Алгоритм пересечения бинарных отношений	19		
	3.7	Алгоритм построения дополнения бинарного отношения	21		
	3.8	Алгоритм построения композиции бинарных отношений	23		
	3.9	Алгоритм обращения бинарного отношения	26		
	3.10	Алгоритм сложения матриц в конечном поле	28		
	3.11	Алгоритм умножения матриц в конечном поле	30		
	3.12	Алгоритм транспонирования матрицы в конечном поле	33		
	3.13	Алгоритм обращения матрицы над конечным полем	35		

1 Цель работы и порядок выполнения

Цель работы — изучение основных понятий универсальной алгебры и операций над бинарными отношениями.

Порядок выполнения работы

- 1. Рассмотреть понятие алгебраической операции и классификацию свойств операций. Разработать алгоритмы проверки свойств операций: ассоциативность, коммутативность, идемпотентность, обратимость, дистрибутивность.
- 2. Рассмотреть основные операции над бинарными отношениями. Разработать алгоритмы выполнения операции над бинарными отношениями.
- 3. Рассмотреть основные операции над матрицами. Разработать алгоритмы выполнения операций над матрицами.

2 Теоретические сведения по рассмотренным темам с их обоснованием

Определение. Алгебраической n**-арной операцией** называется отображение $f:A^n\to A$ на множестве A. При этом n называется порядком или арностью алгебраической операции f.

Классификация свойств операций.

Бинарная операция \cdot на множестве A называется:

- 1. **Ассоциативной**, если $\forall x, y, z \in A$ выполняется равенство $x \cdot (y \cdot z) = (x \cdot y) \cdot z;$
- 2. **Коммутативной**, если $\forall x, y \in A$ выполняется равенство $x \cdot y = y \cdot x$;
- 3. **Идемпотентной**, если $\forall x \in A$ выполняется равенство $x \cdot x = x$;
- 4. **Обратимой**, если $\forall x,y \in A$ уравнения $x \cdot a = y$ и $b \cdot x = y$ имеют решение, причём единственное;
- 5. Дистрибутивной относительно операции +, если $\forall x, y, z \in A$ выполняются равенства $x \cdot (y+z) = (x \cdot y) + (x \cdot z)$ и $(y+z) \cdot x = (y \cdot x) + (z \cdot x)$.

Действия над бинарными отношениями.

Определим следующие действия над бинарными отношениями:

- 1. **Пересечением** $P \cap Q$ отношений $P \subset A \times B$ и $Q \subset A \times B$ называется отношение, которое содержит только общие для P и Q пары: $P \cap Q = \{(x,y): (x,y) \in P$ и $(x,y) \in Q\}$;
- 2. Объединением $P \cup Q$ отношений $P \subset A \times B$ и $Q \subset A \times B$ называется отношение, которое включает все пары, содержащиеся или в подмножестве P или в подмножестве $Q: P \cup Q = \{(x,y): (x,y) \in P \text{ или } (x,y) \in Q\}$. Когда объединение $P \cup Q$ содержит все возможные пары из $A \times B$, а пересечение P и Q пусто, то говорят, что отношения P и Q образуют разбиение $A \times B$, а их объединение есть полное отношение;
- 3. Дополнением $\overline{P} \subset A \times B$ отношения $P \subset A \times B$ называется отношение, состоящее из тех пар $(x,y) \in A \times B$, которые не входят в $P: \{(x,y): (x,y) \in A \times B \text{ и } (x,y) \notin P\}$. Отношения P и \overline{P} образуют разбиение $A \times B$, т.е. $P \cup \overline{P} = A \times B$ и $P \cap \overline{P} = \emptyset$.
- 4. Обратным отношением $P^{-1} \subset B \times A$ к отношению $P \subset A \times B$ называется отношение, которое содержит пару (x,y) тогда и только тогда, когда $(y,x) \in P$, т.е. $P^{-1} = \{(x,y) : (y,x) \in P\}$;

5. Композицией (произведением) $P \circ Q$ отношений $P \subset A \times B$ и $Q \subset B \times C$ называется отношение, которое содержит пару (x,y) тогда и только тогда, когда существует $z \in B$ такое, что $(x,z) \in P$ и $(z,y) \in Q$, т.е. $P \circ Q = \{(x,y):$ найдётся z такое, что $(x,z) \in P$ и $(z,y) \in Q\}$. К частным случаям композиции относится квадрат отношения $P: P^2 = \{(x,y):$ найдётся z такое, что $(x,z) \in P$ и $(z,y) \in P\}$. По индукции определяется n-ая степень отношения $P: P^n = P^{n-1} \circ P$.

Проверка ассоциативности операции по тесту Лайта.

В случае конечного n-элементного множества $S = \{s_1, s_2, \ldots, s_n\}$ операция умножения на S задаётся mаблицей Kэли размерности $n \times n$, строки и столбцы которой помечены элементами множества S и в которой на пересечении i-ой строки и j-го столбца стоит произведение $s_i \cdot s_j$ элементов s_i, s_j .

	s_1	s_2	 S_n
s_1	$s_1 \cdot s_1$	s_1 · s_2	 $s_1 \cdot s_n$
<i>s</i> ₂	s_2 · s_1	s_2 · s_2	 s_2 · s_n
S_n	$s_n \cdot s_1$	$s_n \cdot s_2$	 $s_n \cdot s_n$

Ассоциативность такой операции определяется по *тесту Лайта*: для доказательства тождества ассоциативности последовательно фиксируем элементы $a \in S$ и проверяем выполнимость равенства: $(x \cdot a) \cdot z = x \cdot (a \cdot z)$ для любых $x,z \in S$ путём сравнения следующих двух таблиц, составленных для произведений соответственно левой и правой частей этого равенства.

Таблица произведений $(x \cdot a) \cdot z$ левой части равенства:

столбец исходной таблицы с меткой а

Таблица произведений $x\cdot(a\cdot z)$ правой части равенства:

столоец исходной таблицы с меткой $a \cdot s_1$, столбец исходной таблицы с меткой $a \cdot s_2$, ..., столбец исходной таблицы с меткой $a \cdot s_n$.

3 Результаты работы

3.1 Алгоритм проверки свойства ассоциативности операции

Описание алгоритма проверки свойства ассоциативности операции.

Вход: множество объектов S и таблица Кэли рассматриваемой операции \cdot над множеством объектов.

Выход: сообщение 'Операция является ассоциативной.' или 'Операция не является ассоциативной.'

Метод: Ассоциативность операции определяется по *тесту Лайта*: для доказательства тождества ассоциативности последовательно фиксируем элементы $a \in S$ (S – конечное n-элементное множество объектов) и проверяем выполнимость равенства: $(x \cdot a) \cdot z = x \cdot (a \cdot z)$ для любых $x, z \in S$ путем сравнения таблиц произведений $(x \cdot a) \cdot z$ левой части равенства и $x \cdot (a \cdot z)$ правой части равенства.

Псевдокод алгоритма проверки свойства ассоциативности операции.

```
check_associativity(<N\matrix N> CayleyTable, objectSet[])
2
  {
    pair << matrix >, < matrix >> tables;
3
     for object in objectSet:
4
       tables = construct_tables(CayleyTable, object);
6
       if (tables.left != tables.right)
7
         return (false);
8
     }
9
     return (true);
10
11 }
```

Листинг 1: Псевдокод алгоритма.

Код программы проверки свойства ассоциативности операции.

```
pair < vector < vector < int >> , vector < vector < int >> > construct Tables (
    vector < vector < int >> CayleyTable, int object)
2
  {
3
    int i, j;
4
    vector < vector < int >> leftTable (
5
      matrixDimension, vector<int>(matrixDimension, 0)),
6
                           rightTable (
7
     matrixDimension, vector<int>(matrixDimension, 0));
8
9
```

```
for (i = 0; i < matrixDimension; ++i)</pre>
10
       for (j = 0; j < matrixDimension; ++j)</pre>
11
12
           leftTable[i][j] =
13
             CayleyTable[CayleyTable[i][object - 1] - 1][j];
14
           rightTable[i][j] =
15
             CayleyTable[i][CayleyTable[object - 1][j] - 1];
16
17
        }
    return (make_pair (leftTable, rightTable));
18
  }
19
20
21
  bool checkAssociativity (vector<vector<int>> CayleyTable)
  {
22
    int i;
23
    24
25
    for (i = 0; i < objectSet.size (); ++i)</pre>
26
27
      {
        tables = constructTables (CayleyTable, objectSet[i]);
28
        if (tables.first != tables.second)
29
           return (false);
30
31
    return (true);
32
33 }
```

Листинг 2: Код программы.

Оценка временной сложности алгоритма проверки свойства ассоциативности операции.

Алгоритм был реализован наивно — он заключается в проверке всех возможных троек аргументов путём построения и сравнения элементов левой и правой таблиц произведений. Такая реализация требует $O(n^3)$ времени, где n — размер множества объектов, над которым определена операция.

3.2 Алгоритм проверки свойства коммутативности операции

Описание алгоритма проверки свойства коммутативности операции.

Вход: множество объектов S и таблица Кэли CayleyTable рассматриваемой операции \cdot над множеством объектов.

Выход: сообщение 'Операция является коммутативной.' или 'Операция не является коммутативной.'

Метод: проверяются только элементы, для которых $j \geq i$ ($i = 1, \ldots, N, \ j = 1, \ldots, N, \ N$ – размер множества объектов) – элементы, расположенные над главной диагональю в таблице Кэли. Между собой проверяются значения элементов CayleyTable[i][j] и CayleyTable[j][i]. Если все пары рассмотренных элементов равны между собой, то операция коммутативна, иначе некоммутативна.

Псевдокод алгоритма проверки свойства коммутативности операции.

```
check_commutativity (<N\timesN matrix> CayleyTable)

for (i = 0; i < N; ++i)

for (j = i; j < N; ++j)

if (CayleyTable[i][j] != CayleyTable[j][i])

return false;

return true;

}</pre>
```

Листинг 3: Псевдокод алгоритма.

Код программы проверки свойства коммутативности операции.

```
bool checkCommutativity (vector<vector<int>> CayleyTable)
1
2
     int i, j;
3
4
     for (i = 0; i < CayleyTable.size(); ++i)</pre>
5
       for (j = i; j < CayleyTable.size(); ++j)</pre>
6
         if (CayleyTable[i][j] != CayleyTable[j][i])
7
           return (false);
8
     return (true);
9
10 }
```

Листинг 4: Код программы.

Оценка временной сложности алгоритма проверки свойства коммутативности операции.

Рассмотрим таблицу Кэли CayleyTable операции \cdot над множеством объектов S размера n. В первой строке таблице Кэли осуществляется n проверок, во второй n-1 и т.д. вплоть до последней строки таблицы, где осуществляется одна проверка. Но $1+2+\cdots+n=(n^2+n)/2$. Таким образом, оценка временной сложности алгоритма проверки коммутативности операции \cdot принимает вид: $O((n^2+n)/2)=O(n^2)$.

3.3 Алгоритм проверки свойства идемпотентности операции

Описание алгоритма проверки свойства идемпотентности операции.

Вход: множество объектов S и таблица Кэли CayleyTable рассматриваемой операции \cdot над множеством объектов.

Выход: множество идемпотентов операции · и сообщение 'Операция является идемпотентой.' или 'Операция не является идемпотентной.'

Метод: проверка на идемпотентность осуществляется проходом по главной диагонали таблицы Кэли. Элемент $x \in S$ называется идемпотентом операции \cdot , если $x \cdot x = x$. Операция называется идемпотентной, если все объекты, над которой она определена – идемпотенты этой операции. В случае идемпотентности элемента $x \in S$ он заносится в множество идемпотентов этой операции, которое затем выводится.

Псевдокод алгоритма проверки свойства идемпотентности операции.

```
check_idempotency(<N\times N matrix> CayleyTable, objectSet[])
 {
2
3
    idempotents[];
    for i in range(N):
4
      if (CayleyTable[i][i] == objectSet[i])
5
        idempotents.push_back(objectSet[i]);
6
    print(idempotents);
7
    return (N == idempotents.size());
8
9
 }
```

Листинг 5: Псевдокод алгоритма.

Код программы проверки свойства идемпотентности операции.

```
bool checkIdempotency (vector < vector < int >> CayleyTable)
  {
2
3
     int i;
     vector < int > idempotents;
4
5
6
     for (i = 0; i < matrixDimension; ++i)</pre>
       if (CayleyTable[i][i] == objectSet[i])
7
          idempotents.push_back (objectSet[i]);
8
9
     int idSize = idempotents.size ();
10
     cout << "IDEMPOTENTS OF THIS OPERATION ";</pre>
11
     if (idSize == 0)
12
       cout << "IS: EMPTY SET.\n";</pre>
13
```

```
else if (idSize == 1)
14
       cout << "IS: " << idempotents[0] << ".\n";</pre>
15
     else if (idSize == objectSet.size ())
16
       cout << "IS: OBJECT SET. ";</pre>
17
     else
18
       {
19
          cout << "ARE: ";
20
          for (i = 0; i < idSize; ++i)</pre>
21
            cout << idempotents[i] <<</pre>
22
               (i == idSize - 1 ? ". " : ", ");
23
24
25
     return (idSize == objectSet.size ());
26 }
```

Листинг 6: Код программы.

Оценка временной сложности алгоритма проверки свойства идемпотентности операции.

Рассмотрим таблицу Кэли размерности $N \times N$ операции · . Временная сложность алгоритма проверки свойства идемпотентности операции: O(N), т.к. проход осуществляется только по элементам главной диагонали таблицы Кэли.

Результат тестирования программы проверки свойств заданной операции.

Рассмотрим операцию \cdot со своей таблицей Кэли размерности $N \times N$. Проверим свойства ассоциативности, коммутативности и идемпотентности заданной операции \cdot .

```
INPUT MATRIX DIMENSION:
4
INPUT AN OBJECT SET:
1 2 3 4
INPUT MATRIX ELEMENTS:
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3
OPERATION IS ASSOCIATIVE.
OPERATION IS COMMUTATIVE.
IDEMPOTENTS OF THIS OPERATION IS: 1.
OPERATION IS NOT IDEMPOTENT.
```

Рисунок 1 – Результат проверки свойств заданной операции ..

Как видно, рассматриваемая нами операция · является коммутативной и ассоциативной, но не является идемпотентной.

3.4 Алгоритм проверки свойства дистрибутивности операции

Описание алгоритма проверки свойства дистрибутивности операции.

Вход: множество объектов S и таблицы Кэли операций + и \cdot над этим множеством объектов.

Выход: сообщение о том, является ли операция \cdot право-, лево- или просто дистрибутивной относительно операции +.

Метод: сначала операция · проверяется на коммутативность. Если операция коммутативна и дистрибутивна, то она и леводистрибутивна, и праводистрибутивна. Если же операция не будет коммутативна, то она может оказаться как только леводистрибутивной, так и только праводистрибутивной. Для каждого элемента x из множества объектов S строятся таблицы вида $(b+c) \cdot x$ и $(b \cdot x) + (c \cdot x) -$ для проверки правой дистрибутивности и $x \cdot (b+c)$ и $(x \cdot b) + (x \cdot c) -$ для проверки левой дистрибутивности. Если операция коммутативна, то неважно, какую из таблиц строить.

Псевдокод алгоритма проверки свойства дистрибутивности операции.

```
check_distributivity(<N×N matrix> multCayTab,
     <N×N matrix > addCayTab, objectSet[])
2
  {
3
     bool leftDistributive = rightDistributive = true;
4
5
     if (check_commutativity(multCayTab))
6
7
     {
       for object in objectSet:
8
         if construct_left_tables(
9
               multCayTab, addCayTab, object) are not equal:
10
           print('Distributive.');
11
       print('Not distributive.');
12
     }
13
14
     else
     {
15
       for object in objectSet:
16
         if construct_left_tables(
17
              multCayTab, addCayTab, object) are not equal
18
         {
19
           leftDistributive = false;
20
           print('Not left-distributive.');
21
```

```
22
           break;
23
       if (leftDistributive)
24
         print('Left-distributive.');
25
26
       for object in objectSet:
27
         if construct_right_tables(
28
               multCayTab, addCayTab, object) are not equal
29
         {
30
           rightDistributive = false;
31
           print('Not right-distributive.');
32
           break:
33
         }
34
       if (rightDistributive)
35
         print('Right-distributive');
36
       if (leftDistributive and rightDistributive)
37
         print('Distributive.');
38
39
     }
  }
40
```

Листинг 7: Псевдокод алгоритма.

Код программы проверки свойства дистрибутивности операции.

```
bool constructLeftTables (vector < vector < int >> mCT,
                                vector < vector < int >> aCT, int curEl)
  {
3
     int j, k;
4
     vector < vector < int >>
5
       lTable (matrixDimension, vector<int> (matrixDimension, 0)),
6
7
       rTable (matrixDimension, vector<int> (matrixDimension, 0));
     for (j = 0; j < matrixDimension; ++j)</pre>
8
       for (k = 0; k < matrixDimension; ++k)</pre>
9
10
            lTable[j][k] = mCT[curEl][aCT[j][k]];
11
            rTable[j][k] = aCT[mCT[curEl][j]][mCT[curEl][k]];
12
         }
13
     return (lTable == rTable);
14
  }
15
16
  bool constructRightTables (vector < vector < int >> mCT,
17
                                 vector < vector < int >> aCT, int curEl)
18
19
  {
```

```
20
     int j, k;
     vector < vector < int >>
21
       1Table (matrixDimension, vector<int> (matrixDimension, 0)),
22
       rTable (matrixDimension, vector<int> (matrixDimension, 0));
23
     for (j = 0; j < matrixDimension; ++j)</pre>
24
       for (k = 0; k < matrixDimension; ++k)</pre>
25
          {
26
            lTable[j][k] = mCT[aCT[j][k]][curEl];
27
            rTable[j][k] = aCT[mCT[j][curEl]][mCT[k][curEl]];
28
          }
29
     return (lTable == rTable);
30
31 }
32
33 void checkDistributivityMachinerie (
34
     vector < vector < int >> mCT, vector < vector < int >> aCT)
35
     int i, j, k;
36
     bool flagL = true, flagR = true;
37
     if (checkCommutativity (mCT))
38
39
40
          for (i = 0; i < matrixDimension; ++i)</pre>
            if (!constructLeftTables (mCT, aCT, i))
41
              {
42
                 cout << "OPERATION IS NOT DISTRIBUTIVE.\n";</pre>
43
44
                return;
              }
45
          cout << "OPERATION IS DISTRIBUTIVE.\n";</pre>
46
       }
47
     else
48
       {
49
          for (i = 0; i < matrixDimension; ++i)</pre>
50
            if (!constructLeftTables (mCT, aCT, i))
51
              {
52
                 cout << "OPERATION IS NOT LEFT-DISTRIBUTIVE.\n";</pre>
53
                flagL = false;
54
                break;
55
              }
56
          if (flagL)
57
            cout << "OPERATION IS LEFT-DISTRIBUTIVE.\n";</pre>
58
59
          for (i = 0; i < matrixDimension; ++i)</pre>
60
```

```
if (!constructRightTables (mCT, aCT, i))
61
62
                 cout << "OPERATION IS NOT RIGHT-DISTRIBUTIVE.\n";</pre>
63
                 flagR = false;
64
                 break;
65
              }
66
          if (flagR)
67
            cout << "OPERATION IS RIGHT-DISTRIBUTIVE.\n";</pre>
68
          if (flagL && flagR)
69
            cout << "OPERATION IS DISTRIBUTIVE.\n";</pre>
70
       }
71
72
  }
```

Листинг 8: Код программы.

Результат тестирования программы проверки свойства дистрибутивности операции.

Рассмотрим таблицы Кэли операций + и \cdot . Проверим дистрибутивность операции \cdot относительно операции +.

```
INPUT MATRIX DIMENSION:
4
INPUT THE CAYLEY TABLE OF THE MULTIPLICATION (*) OPERATION:
0 0 0 0
0 1 2 3
0 2 0 2
0 3 2 1
INPUT THE CAYLEY TABLE OF THE ADDITION (+) OPERATION:
0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2
OPERATION IS DISTRIBUTIVE.
```

Рисунок 2 — Результат проверки свойства дистрибутивности операции \cdot относительно операции +.

Как видно, операция \cdot является дистрибутивной относительно операции +.

Оценка сложности алгоритма проверки свойства дистрибутивности операции.

Аналогично алгоритму проверки ассоциативности, в этом алгоритме происходит сравнение всех троек аргументов и сравнение элементов правых и левых таблиц дистрибутивности. Временная сложность алгоритма: $O(n^3)$, где n – размер множества объектов, над которым определены операции \cdot и +.

3.5 Алгоритм объединения бинарных отношений

Описание алгоритма объединения бинарных отношений.

Вход: матрицы A и B (одинаковой размерности $N \times M$) бинарных отношений ρ и δ .

Выход: матрица $A \cup B$ размерности $N \times M$ бинарного отношения $\rho \cup \delta$.

Метод: вычисляется результат применения операции «логическое ИЛИ» к элементам матриц A и B, расположенным на пересечении i-ой строки и j-го столбца $(i=1,\ldots,N,\ j=1,\ldots,M)$. Результат применения операции заносится в соответствующую ячейку матрицы $A\cup B$.

Псевдокод алгоритма объединения бинарных отношений.

```
binary_relation_union(<N×M matrix> fBinRelMat,
                          <N×M matrix > sBinRelMat)
2
  {
3
    <N×M matrix > binRelUnion;
4
    for i in range(N):
5
      for j in range(M):
6
         if (fBinRelMat[i][j] == 1) || (sBinRelMat[i][j] == 1):
7
           then binRelUnion[i][j] = 1; else binRelUnion[i][j] = 0;
8
    return (binRelUnion);
9
10 }
```

Листинг 9: Псевдокод алгоритма.

Код программы объединения бинарных отношений.

```
vector < vector < int >> getBinaryRelationUnion (
     vector < vector < int >> fM, vector < vector < int >> sM)
  {
3
       int i, j, rowsNum = fM.size (), colsNum = fM[0].size ();
4
       vector < vector < int >> unionMatrix (
5
         rowsNum, vector<int> (colsNum, 0));
6
7
       for (i = 0; i < rowsNum; ++i)</pre>
8
            for (j = 0; j < colsNum; ++j)
9
                unionMatrix[i][j] = ((fM[i][j] == 1) ||
10
                                        (sM[i][j] == 1) ? 1 : 0);
11
       return (unionMatrix);
12
13
```

Листинг 10: Код программы.

Результат тестирования программы объединения бинарных отношений.

Рассмотрим пару бинарных отношений ρ и δ , заданных матрицами размерности 4×3 . Применим операцию объединения к бинарным отношениям ρ и δ .

```
INPUT THE FIRST DIMENSION OF YOUR BINARY RELATION MATRIX:

INPUT THE SECOND DIMENSION OF YOUR BINARY RELATION MATRIX:

INPUT THE FIRST BINARY RELATION MATRIX:

1 0 0

0 1 0

1 0 1

INPUT THE SECOND BINARY RELATION MATRIX:

0 1 1

1 0 0

THE RESULT OF UNION OF YOUR BINARY RELATIONS IS:

1 1 1

1 1 1

1 1 1
```

Рисунок 3 – Результат построения объединения бинарных отношений ρ и δ .

В результате работы программы была сформирована матрица бинарного отношения $\rho \cup \delta$.

Оценка сложности алгоритма объединения бинарных отношений.

Для формирования матрицы $A \cup B$ бинарного отношения $\rho \cup \delta$ требуется произвести операции над каждым элементом матриц A и B. Общее число элементов в каждой матрице $-N \times M$, откуда и следует оценка временной сложности алгоритма: $T(get_binary_relation_union) = O(N \cdot M)$.

3.6 Алгоритм пересечения бинарных отношений

Описание алгоритма пересечения бинарных отношений.

Вход: матрицы A и B (одинаковой размерности $N \times M$) бинарных отношений ρ и δ .

Выход: матрица $A \cap B$ размерности $N \times M$ бинарного отношения $\rho \cap \delta$.

Метод: вычисляется результат применения операции «логическое И» к элементам матриц A и B, расположенным на пересечении i-ой строки и j-го столбца $(i=1,\ldots,N,\ j=1,\ldots,M)$. Результат применения операции заносится в соответствующую ячейку матрицы $A\cap B$.

Псевдокод алгоритма объединения бинарных отношений.

```
binary_relation_intersection(<N×M matrix> fBinRelMat,
                                 <N×M matrix > sBinRelMat)
2
  {
3
    <N×M matrix> binRelIntersection;
4
    for i in range(N):
5
       for j in range(M):
6
         if (fBinRelMat[i][j] == 1) && (sBinRelMat[i][j] == 1):
7
           then binRelIntersection[i][j] = 1;
8
           else binRelIntersection[i][j] = 0;
9
    return (binRelIntersection);
10
  }
11
```

Листинг 11: Псевдокод алгоритма.

Код программы объединения бинарных отношений.

```
vector < vector < int >> getBinaryRelationIntersection (
     vector < vector < int >> fM, vector < vector < int >> sM)
2
3
     int i, j, rowsNum = fM.size (), colsNum = fM[0].size ();
4
     vector < vector < int >> intersectionMatrix (
5
       rowsNum, vector<int> (colsNum, 0));
6
     for (i = 0; i < rowsNum; ++i)
7
       for (j = 0; j < colsNum; ++j)
8
         intersectionMatrix[i][j] = ((fM[i][j] == 1) &&
9
                                        (sM[i][j] == 1) ? 1 : 0);
10
     return (intersectionMatrix);
11
12
```

Листинг 12: Код программы.

Результат тестирования программы пересечения бинарных отношений.

Рассмотрим пару бинарных отношений ρ и δ , заданных матрицами размерности 3×4 . Применим операцию пересечения к бинарным отношениям ρ и δ .

```
INPUT THE FIRST DIMENSION OF YOUR BINARY RELATION MATRIX:

INPUT THE SECOND DIMENSION OF YOUR BINARY RELATION MATRIX:

INPUT THE FIRST BINARY RELATION MATRIX:

1 0 1 0

1 0 1

1 0 1 0

INPUT THE SECOND BINARY RELATION MATRIX:

0 1 0 1

1 0 1 0

0 1 0 1

THE RESULT OF INTERSECTION OF YOUR BINARY RELATIONS IS:

0 0 0 0

0 0 0 0
```

Рисунок 4 — Результат построения пересечения бинарных отношений ρ и δ .

В результате работы программы была сформирована матрица бинарного отношения $\rho \cap \delta$.

Оценка сложности алгоритма пересечения бинарных отношений.

Для формирования матрицы $A\cap B$ бинарного отношения $\rho\cap\delta$ требуется произвести операции над каждым элементом матриц A и B. Общее число элементов в каждой матрице $-N\times M$, откуда и следует оценка временной сложности алгоритма: $T(get_binary_relation_intersection) = O(N\cdot M)$.

3.7 Алгоритм построения дополнения бинарного отношения

Описание алгоритма построения дополнения бинарного отношения.

Вход: матрица A размерности $N \times M$ бинарного отношения ρ .

Выход: матрица \overline{A} размерности $N \times M$ бинарного отношения $\overline{\rho}$.

Выход: к каждому элементу матрицы A, стоящему на пересечении i-й строки и j-го столбца ($i=1,\ldots,N,\ j=1,\ldots,M$), применяется операция «логическое НЕ» (единица заменяется на ноль и наоборот). Результат применения операции заносится в соответствующую ячейку матрицы \overline{A} .

Псевдокод алгоритма построения дополнения бинарного отношения.

Листинг 13: Псевдокод алгоритма.

Код программы построения дополнения бинарного отношения.

```
vector < vector < int >> getBinaryRelationComplement (
     vector < vector < int >> binRelMat)
2
3
     int i, j, rowsNum = binRelMat.size (),
4
5
                colsNum = binRelMat[0].size ();
     vector < vector < int >> complementMatrix (
6
       rowsNum, vector<int> (colsNum, 0));
7
8
     for (i = 0; i < rowsNum; ++i)</pre>
9
       for (j = 0; j < colsNum; ++j)
10
         complementMatrix[i][j] = 1 - binRelMat[i][j];
11
     return (complementMatrix);
12
13 }
```

Листинг 14: Код программы.

Результат тестирования программы построения дополнения бинарного отношения.

Рассмотрим бинарное отношение ρ , заданное матрицей A размерности 3 \times 4. Построим дополнение $\overline{\rho}$ заданного бинарного отношения ρ .

```
INPUT THE FIRST DIMENSION OF YOUR BINARY RELATION MATRIX:

INPUT THE SECOND DIMENSION OF YOUR BINARY RELATION MATRIX:

INPUT THE BINARY RELATION MATRIX:

1 0 1 0

1 0 1 0

THE COMPLEMENT OF YOUR BINARY RELATIONS IS:

0 1 0 1

1 0 1 0

0 1 0 1
```

Рисунок 5 — Результат построения дополнения бинарного отношения ρ .

В результате работы программы было построено бинарное отношение $\overline{\rho}$ с получившейся матрицей \overline{A} размерности 3×4 .

Оценка временной сложности алгоритма построения дополнения бинарного отношения.

Поскольку в ходе работы программы обрабатывается каждый элемент некоторой матрицы A размерности $N \times M$, то из этого получаем временную оценку сложности алгоритма: $T(get_binary_relation_complement) = O(N \cdot M)$.

3.8 Алгоритм построения композиции бинарных отношений

Описание алгоритма построения композиции бинарных отношений.

Вход: матрица A размерности $N \times M$ и матрица B размерности $L \times K$ бинарных отношений ρ и δ .

Выход: сообщение об ошибке, в случае если M не равно L, или матрица $A\circ B$ размерности $N\times K$ бинарного отношения $\rho\circ\delta.$

Метод: будем считать, что M и L совпали. Тогда строим матрицу $A \circ B$ путём обычного перемножения матриц A и B: $A \cdot B$, а затем проверяем каждый элемент получившейся матрицы, стоящий на пересечении i-ой строки и j-го столбца $(i=1,\ldots,N,\ j=1,\ldots,K)$ на то, больше ли он единицы. Если да, то заменяем этот элемент на единицу, если нет, то оставляем без изменения.

Псевдокод алгоритма построения композиции бинарных отношений.

```
binary_relation_composition(<N×M matrix> fBinRelMat,
                                 <L×K matrix > sBinRelMat)
2
  {
3
     if M != L:
4
       return <<Wrong Input>>;
5
6
     <N × K matrix> boolMultiplicationMatrix, int product;
7
     for i in range(N):
8
       for j in range(K):
9
10
         product = 0;
11
         for k in range(M):
12
           product += fBinRelMat[i][k] * sBinRelMat[k][j];
13
         if (product > 0):
14
         then boolMultiplicationMatrix[i][j] = 1;
15
         else boolMultiplicationMatrix[i][j] = 0;
16
       }
17
     return (boolMultiplicationMatrix);
18
  }
19
```

Листинг 15: Псевдокод алгоритма.

Код программы построения композиции бинарных отношений.

```
vector < vector < int >> getBinaryRelationMultiplication (
vector < vector < int >> fBinRel, vector < vector < int >> sBinRel)

{
  int i, j, k, product, rowsNum = fBinRel.size (),
```

```
colsNum = sBinRel[0].size ();
5
     vector < vector < int >> boolMultiplicationMatrix (
6
       rowsNum, vector<int> (colsNum, 0));
7
8
     for (i = 0; i < rowsNum; ++i)</pre>
9
       for (j = 0; j < colsNum; ++j)
10
11
           product = 0;
12
           for (k = 0; k < fBinRel[0].size (); ++k)</pre>
13
              product += fBinRel[i][k] * sBinRel[k][j];
14
           boolMultiplicationMatrix[i][j] = (product > 0 ? 1 : 0);
15
16
         }
     return (boolMultiplicationMatrix);
17
18 }
```

Листинг 16: Код программы.

Результат тестирования программы построения композиции бинарных отношений.

Рассмотрим бинарные отношения ρ и δ , заданные матрицами A и B размерности 3×4 и 4×5 . Построим композицию этих бинарных отношений.

```
INPUT THE FIRST DIMENSION OF YOUR FIRST BINARY RELATION MATRIX:

INPUT THE SECOND DIMENSION OF YOUR SECOND BINARY RELATION MATRIX:

INPUT THE FIRST DIMENSION OF YOUR SECOND BINARY RELATION MATRIX:

INPUT THE SECOND DIMENSION OF YOUR SECOND BINARY RELATION MATRIX:

INPUT THE FIRST BINARY RELATION MATRIX:

I 1 0 1 1

I 0 0

INPUT THE SECOND BINARY RELATION MATRIX:

I 1 0 0

INPUT THE SECOND BINARY RELATION MATRIX:

I 1 0 0

I 1 1 0

I 1 1 1

I 1 1 0 0
```

Рисунок 6 – Результат построения композиции бинарных отношений.

В ходе выполнения программы была построена матрица $A\circ B$ размерности 3×5 , соответствующая бинарному отношению $\rho\circ\delta$.

Оценка временной сложности алгоритма построения композиции бинарных отношений.

Рассмотрим матрицы A размерности $N \times M$ и B размерности $M \times K$ бинарных отношений ρ и δ . В матрице $A \circ B$ композиции бинарных отношений будет содержаться $N \times K$ элементов. Для вычисления значения каждого элемента матрицы $A \circ B$, находящегося на пересечении i-ой строки и j-го столбща $(i=1,\ldots,N,\ j=1,\ldots,K)$, необходимо поэлементно перемножить i-ую строку первой матрицы с j-ым столбцом второй матрицы. Для нахождения значения такого произведения требуется осуществить M операций. Из этого следует временная оценка сложности: $T(get_binary_relation_multiplication) = O(N \cdot M \cdot K)$.

3.9 Алгоритм обращения бинарного отношения

Описание алгоритма обращения бинарного отношения.

Вход: матрица A размерности $N \times M$ бинарного отношения ρ .

Выход: матрица A^T размерности $M \times N$ бинарного отношения ρ^{-1} .

Метод: необходимо осуществить транспонирование исходной матрицы A бинарного отношения ρ .

Псевдокод алгоритма обращения бинарного отношения.

```
binary_relation_inversion(<N×M matrix> binRelMat)
{
   return (transpose(binRelMat));
}
```

Листинг 17: Псевдокод алгоритма.

Код программы обращения бинарного отношения.

```
vector < vector < int >> transposeBinaryRelationMatrix (
     vector < vector < int >> binRelMat)
2
3
  {
     int i, j;
4
     vector < vector < int >> transposedMatrix;
5
6
     for (i = 0; i < binRelMat[0].size (); ++i)</pre>
7
       {
8
         vector < int > column;
9
         for (j = 0; j < binRelMat.size (); ++j)
10
            column.push_back (binRelMat[j][i]);
11
12
         transposedMatrix.push_back (column);
13
     return (transposedMatrix);
14
15
  }
```

Листинг 18: Псевдокод алгоритма.

Результат тестирования программы обращения бинарного отношения.

Рассмотрим бинарное отношение ρ , заданное матрицей A размерности 3 \times 4. Найдём обратное к этому отношение.

Рисунок 7 – Результат обращения бинарного отношения.

В результате работы программы была построена матрица A^T размерности 4×3 бинарного отношения $\rho^{-1}.$

Оценка временной сложности алгоритма обращения бинарного отношения.

Оценим временную сложность алгоритма на примере матрицы A размерности $N \times M$ бинарного отношения ρ . После обращения бинарного отношения ρ и построения бинарного отношения ρ^{-1} число элементов в матрице A^T будет соответствовать числу элементов в матрице A. Поскольку меняется только размерность матрицы, а сами элементы лишь меняют своё расположение, то получаем оценку временной сложности алгоритма: $T(get_binary_relation_inversion) = O(N \cdot M)$.

3.10 Алгоритм сложения матриц в конечном поле

Описание алгоритма сложения двух матриц в конечном поле.

Вход: матрицы A и B размерности $N \times M$ над множеством натуральных чисел и натуральное число ord – порядок поля.

Выход: матрица A+B размерности $N\times M$ в конечном поле порядка ord.

Метод: сложение матриц A и B осуществляется по обычному закону сложения матриц. Затем в каждую ячейку, стоящую на пересечении i-ой строки и j-го столбца ($i=1,\ldots,N,\ j=1,\ldots,M$) получившейся матрицы, записывается число – результат взятия остатка от деления рассматриваемого элемента на порядок поля.

Псевдокод алгоритма сложения матриц в конечном поле.

```
matrix_field_addition(<N×M matrix> fMat,
                           < N \times M matrix > sMat,
2
3
                           unsigned int fieldOrder)
  {
4
5
     <N×M matrix> resMat;
     for i in range(N):
6
       for j in range(M):
7
         resMat[i][j] = (fMat[i][j] + sMat[i][j]) % fieldOrder;
8
     return (resMat);
9
10 }
```

Листинг 19: Псевдокод алгоритма.

Код программы сложения матриц в конечном поле.

```
vector < vector < int >> addMatricesMachinerie (
     vector < vector < int >> 1M,
2
     vector < vector < int >> rM, int fieldOrder)
3
  {
4
     int i, j;
5
     vector < vector < int >> resM (
7
       1M.size (), vector<int> (1M[0].size (), 0));
8
9
     for (i = 0; i < lM.size (); ++i)</pre>
       for (j = 0; j < lM[i].size (); ++j)
10
         resM[i][j] = (lM[i][j] + rM[i][j]) % fieldOrder;
     return (resM);
12
  }
13
```

Листинг 20: Код программы.

Результат тестирования программы сложения матриц в конечном поле.

Рассмотрим матрицы A и B размерности 3×4 и порядок поля ord, равный 8.

```
INPUT MATRIX FIRST DIMENSION:

INPUT MATRIX SECOND DIMENSION:

INPUT THE ORDER OF A FINITE FIELD:

INPUT THE ELEMENTS OF THE FIRST MATRIX:

1 2 3 4

5 6 7 8

9 0 1 2

INPUT THE ELEMENTS OF THE SECOND MATRIX:

5 4 3 6

2 1 0 7

9 8 7 8

THE RESULT OF MATRIX ADDITION IS:

6 6 6 2

7 7 7 7

2 0 0 2
```

Рисунок 8 – Результат сложения матриц в конечном поле порядка 8

Результатом работы программы является матрица A+B в конечном поле порядка 8.

Оценка временной сложности алгоритма сложения двух матриц в конечном поле.

Для формирования матрицы A+B в конечном поле порядка ord требуется произвести операции над каждым элементом матриц A и B. Общее число элементов в каждой матрице $-N\times M$, откуда и следует оценка временной сложности алгоритма: $T(get_matrix_field_addition) = O(N\cdot M)$.

3.11 Алгоритм умножения матриц в конечном поле

Описание алгоритма умножения матриц в конечном поле.

Вход: матрицы A размерности $N \times M$ и B размерности $L \times K$ над множеством натуральных чисел и натуральное число – порядок поля ord.

Выход: сообщение об ошибке в случае, если размерность M не совпадает с L или матрица $A \cdot B$ над конечным полем порядка ord.

Метод: в случае совпадения размерностей M и L умножение матриц A и B осуществляется по обычному закону умножения матриц. Затем в каждую ячейку, стоящую на пересечении i-ой строки и j-го столбца ($i=1,\ldots,N,\ j=1,\ldots,K$) получившейся матрицы, записывается число – результат взятия остатка от деления рассматриваемого элемента на порядок поля.

Псевдокод алгоритма умножения матриц в конечном поле.

```
matrix_field_multiplication(<N×M matrix> fMat,
                                 <L×K matrix > sMat)
2
3
  {
     if M != L:
4
       return <<Wrong Input>>;
5
6
     <N × K matrix> multiplicationMat, int fieldOrder;
7
     for i in range(N):
8
       for j in range(K):
9
10
         product = 0;
11
         for k in range(M):
12
           product += fMat[i][k] * sMat[k][j];
13
         multiplicationMat[i][j] = (product % fieldOrder);
14
15
     return (multiplicationMat);
16
  }
17
```

Листинг 21: Псевдокод алгоритма.

Код программы умножения матриц в конечном поле.

```
7
     for (i = 0; i < lM.size (); ++i)</pre>
8
       for (j = 0; j < rM[0].size(); ++j)
9
         {
10
            int product = 0;
11
            for (k = 0; k < 1M[0].size (); ++k)
12
              product += (lM[i][k] * rM[k][j]);
13
            resM[i][j] = (product % fieldOrder);
14
         }
15
     return (resM);
16
17
  }
```

Листинг 22: Код программы.

Результат тестирования программы умножения матриц в конечном поле.

Рассмотрим матрицы A размерности 3×4 и B размерности 4×3 и порядок поля ord, равный 13.

```
INPUT THE FIRST DIMENSION OF THE FIRST MATRIX:

INPUT THE SECOND DIMENSION OF THE FIRST MATRIX:

INPUT THE FIRST DIMENSION OF THE SECOND MATRIX:

INPUT THE SECOND DIMENSION OF THE SECOND MATRIX:

INPUT THE ORDER OF A FINITE FIELD:

INPUT THE ELEMENTS OF THE FIRST MATRIX:

0 1 2 3

4 5 6 7

8 9 5 6

INPUT THE ELEMENTS OF THE SECOND MATRIX:

7 5 3 2

9 7 6 8

5 6 9 2

THE RESULT OF MATRIX MULTIPLICATION IS:

6 0 10

12 7 0

10 7 7
```

Рисунок 9 – Результат умножения двух матриц в конечном поле порядка 13.

Результатом работы программы является матрица $A \cdot B$ размерности 3×3 в конечном поле порядка 13.

Оценка временной сложности алгоритма умножения матриц в конечном поле.

Рассмотрим матрицы A размерности $N \times M$ и B размерности $M \times K$ и порядок поля ord. В матрице $A \cdot B$ в конечном поле порядка ord будет содержаться $N \times K$ элементов. Для вычисления значения каждого элемента матрицы $A \cdot B$, находящегося на пересечении i-ой строки и j-го столбца $(i=1,\ldots,N,\ j=1,\ldots,K)$, необходимо поэлементно перемножить i-ую строку первой матрицы с j-ым столбцом второй матрицы, после чего взять остаток от деления полученного значения на порядок поля. Для нахождения значения произведения требуется осуществить M операций. Из этого следует временная оценка сложности: $T(get_matrix_field_multiplication) = O(N \cdot M \cdot K)$.

3.12 Алгоритм транспонирования матрицы в конечном поле

Описание алгоритма транспонирования матрицы в конечном поле.

Вход: матрица A над множеством натуральных чисел размерности $N \times M$ и натуральное число – порядок поля ord.

Выход: матрица A^T размерности $N \times M$ в конечном поле порядка ord.

Метод: каждый столбец исходной матрицы A становится строкой, а строка – наоборот, столбцом матрицы A^T . Значение каждой ячейки матрицы A^T заменяется на результат взятия остатка от деления соответствующего элемента на порядок поля.

Псевдокод алгоритма транспонирования матрицы в конечном поле.

Листинг 23: Псевдокод алгоритма.

Код программы транспонирования матрицы в конечном поле.

```
vector < vector < int >> transposeMatrixMachinerie (
     vector < vector < int >> matrix, int fieldOrder)
2
3
     int i, j;
4
     vector < vector < int >> tM (matrix[0].size (),
                                 vector < int > (matrix.size (), 0));
6
7
     for (i = 0; i < matrix[0].size (); ++i)</pre>
8
       {
9
10
         vector < int > column;
         for (j = 0; j < matrix.size (); ++j)
11
            column.push_back (matrix[j][i] % fieldOrder);
12
         tM[i] = column;
13
       }
14
     return (tM);
15
16
```

Листинг 24: Код программы.

Результат тестирования программы транспонирования матрицы в конечном поле.

Рассмотрим матрицу A над множеством натуральных чисел размерности 5×3 и порядок поля ord, равный 7.

```
INPUT THE FIRST DIMENSION OF THE MATRIX:

INPUT THE SECOND DIMENSION OF THE MATRIX:

INPUT THE ORDER OF A FINITE FIELD:

INPUT THE ELEMENTS OF THE MATRIX:

1 2

4 5

6 7 8

8 8 7

6 5 4

THE RESULT OF MATRIX TRANSPOSITION IS:

3 6 2 6

1 4 0 1 5

2 5 1 0 4
```

Рисунок 10 – Результат транспонирования матрицы в конечном поля порядка 7.

Результатом транспонирования матрицы A размерности 5×3 является матрица A^T над конечным полем порядка 7 размерности 3×5 .

Оценка временной сложности алгоритма транспонирования матрицы в конечном поле.

Оценим временную сложность алгоритма на примере матрицы A размерности $N \times M$ и порядка поля ord. После транспонирования матрицы A и построения матрицы A^T над конечным полем порядка ord число элементов в матрице A^T будет соответствовать числу элементов в матрице A. Поскольку меняется только размерность матрицы, а сами элементы лишь меняют своё расположение, то получаем оценку временной сложности алгоритма: $T(get_matrix_field_transposition) = O(N \cdot M)$.

3.13 Алгоритм обращения матрицы над конечным полем

Описание алгоритма обращения матрицы над конечным полем.

Вход: квадратная матрица A размерности $N \times N$ над множеством натуральных чисел и натуральное число — порядок поля ord.

Выход: квадратная матрица A^{-1} размерности $N \times N$ над конечным полем порядка ord – обратная к A матрица или сообщение о том, что матрица A является вырожденной.

Метод: сначала вычисляется определитель $\det A$ исходной матрицы A. Если он кратен порядку поля, то матрица A является вырожденной, и выполнение программы прекращается. Иначе формируется сопряжённая к A матрица A^* — матрица алгебраических дополнений. По расширенному алгоритму Евклида для $\det A$ в поле заданного порядка ищется обратный элемент, который умножается на A^* . Если какой-то элемент в получившейся матрице отрицательный, то обновляем его значение по следующей формуле: matInverse[i][j] = (matInverse % fieldOrder) + fieldOrder.

Псевдокод алгоритма обращения матрицы над конечным полем.

```
matrix_field_inversion(<N×M matrix> mat, unsigned int fieldOrder)
  {
2
    det = (compute_det(mat) % fieldOrder) + fieldOrder;
3
    if (det % fieldOrder == 0):
4
      return;
5
    detFieldInverse = get_field_inverse(det, fieldOrder);
6
    <N×N matrix> conjugateMatrix = get_conjugate_matrix(mat);
7
    return (remove_negatives(detFieldInverse * conjugateMatrix,
8
                              fieldOrder));
9
10 }
```

Листинг 25: Псевдокод алгоритма.

В программной реализации алгоритма в качестве вспомогательных используются следующие функции: getMinor, извлекающая необходимый минор при вычислении определителя, gcdExtended, реализующая расширенный алгоритм Евклида нахождения обратного к вычисленному определителю элемента в конечном поле заданного порядка, getMinorExtended, извлекающая необходимый минор при построении матрицы алгебраических дополнений

Код программы обращения матрицы над конечным полем.

```
vector < vector < int >> getMinor (int columnIdx,
                                     vector < vector < int >> matrix)
2
3
  {
     int i, j;
4
     vector < vector < int >> minor;
5
     for (i = 1; i < matrix.size(); ++i)</pre>
7
         vector < int > row;
8
         for (j = 0; j < matrix.size(); ++j)</pre>
9
            if (j != columnIdx)
10
              row.push_back (matrix[i][j]);
11
         minor.push_back (row);
12
       }
13
     return (minor);
14
15 }
16
  int computeDet (vector < vector < int >> matrix)
17
  {
18
     if (matrix.size() == 1)
19
       return (matrix[0][0]);
20
     int det = 0, multiplier = 1, i;
21
     for (i = 0; i < matrix.size(); ++i)</pre>
22
       {
23
         int elt = matrix[0][i];
24
         if (elt != 0)
25
            det += multiplier * elt *
26
                                  computeDet (getMinor (i, matrix));
27
         multiplier *= -1;
28
       }
29
     return (det);
30
31 }
32
  void gcdExtended (int a, int b, int& x, int& y)
33
34
     if (a == 0) { x = 0; y = 1; return; }
35
     int x_1, y_1;
36
37
     gcdExtended (b % a, a, x_1, y_1);
     x = y_1 - (b / a) * x_1;
38
     y = x_1;
39
40
```

```
return;
42 }
43
   vector < vector < int >> getMinorExtended (vector < vector < int >> matrix,
44
                                              int rowIdx, int colIdx)
45
46
   {
47
     int i, j, matrixSize = matrix.size ();
     vector < vector < int >> minor;
48
49
     for (i = 0; i < matrixSize; ++i)</pre>
50
51
52
          if (i == rowIdx) continue;
          vector < int > row;
53
          for (j = 0; j < matrixSize; ++j)</pre>
54
55
              if (j == colIdx) continue;
56
              row.push_back (matrix[i][j]);
57
            }
58
          minor.push_back (row);
59
       }
60
     return (minor);
61
   }
62
63
   vector < vector < int >> getConjugateMatrix (
     vector < vector < int >> matrix)
65
   {
66
     int i, j;
67
     short sign = 1;
68
     bool evenDimensionFlag = (matrix.size () % 2 == 0);
69
     vector < vector < int >> conjugateMatrix (
70
       matrixDimension, vector<int> (matrixDimension, 0));
71
72
     for (i = 0; i < matrixDimension; ++i)</pre>
73
74
          for (j = 0; j < matrixDimension; ++j)</pre>
75
            {
76
              conjugateMatrix[i][j] =
77
                 sign * computeDet (getMinorExtended (matrix, i, j));
78
              sign *= -1;
79
80
          sign *= (evenDimensionFlag ? -1 : 1);
81
```

```
82
      return (transposeMatrixMachinerie (conjugateMatrix));
83
84 }
85
   void reduceMatrix (
      vector < vector < int >>& matrix, int fieldOrder, int detInverse)
87
88
     int i, j;
89
90
      for (i = 0; i < matrix.size (); ++i)</pre>
91
        for (j = 0; j < matrix.size (); ++j)
92
93
          {
            matrix[i][j] *= detInverse;
94
            matrix[i][j] %= fieldOrder;
95
            if (matrix[i][j] < 0)</pre>
96
              matrix[i][j] += fieldOrder;
97
          }
98
99 }
100
101 void invertMatrix ()
102 {
     unsigned int fieldOrder;
103
      int det, detInverse = 0, dummyVariable = 0;
104
     vector < vector < int >> inputMatrix, conjugateMatrix;
105
106
107
     cout << "INPUT THE DIMENSION OF YOUR MATRIX:\n";</pre>
108
     cin >> matrixDimension;
     cout << "INPUT THE FIELD ORDER:\n";</pre>
109
     cin >> fieldOrder;
110
      cout << "INPUT YOUR MATRIX:\n";</pre>
111
     getMatrix (inputMatrix);
112
113
      det = computeDet (inputMatrix);
114
      if (det % fieldOrder == 0)
115
        {
116
          cout << "MATRIX HAS ZERO DETERMINANT.
117
            INVERSE MATRIX CANNOT BE FOUND.\n";
118
119
          return;
        }
120
121
      det = (det % fieldOrder) + fieldOrder;
122
      gcdExtended (det, fieldOrder, detInverse, dummyVariable);
```

```
conjugateMatrix = getConjugateMatrix (inputMatrix);
reduceMatrix (conjugateMatrix, fieldOrder, detInverse);
cout << "INVERSE MATRIX IS:\n";
displayMatrix (conjugateMatrix);
}</pre>
```

Листинг 26: Код программы.

Результат тестирования программы обращения матрицы над конечным полем.

Рассмотрим невырожденную квадратную матрицу A размерности $N \times N$ в конечном поле порядка 37. Найдём обратную к A матрицу.

```
INPUT THE DIMENSION OF YOUR MATRIX:

3
INPUT THE FIELD ORDER:

37
INPUT YOUR MATRIX:

11 15 12
15 2 15
17 15 19
INVERSE MATRIX IS:
5 22 34
1 6 18
22 34 8
```

Рисунок 11 – Результат обращения матрицы в конечном поле порядка 37.

Проверим, что полученная матрица действительно является обратной к A. При умножении исходной матрицы и полученной должна получиться единичная матрица.

```
INPUT THE FIRST DIMENSION OF THE FIRST MATRIX:

3
INPUT THE SECOND DIMENSION OF THE FIRST MATRIX:

3
INPUT THE FIRST DIMENSION OF THE SECOND MATRIX:

3
INPUT THE SECOND DIMENSION OF THE SECOND MATRIX:

3
INPUT THE ORDER OF A FINITE FIELD:

37
INPUT THE ELEMENTS OF THE FIRST MATRIX:

11 15 12
15 2 15
17 15 19
INPUT THE ELEMENTS OF THE SECOND MATRIX:

5 22 34
1 6 18
22 34 8
21 HE RESULT OF MATRIX MULTIPLICATION IS:
1 0 0
0 1 0
0 1 0
```

Рисунок 12 – Проверка корректности нахождения обратной матрицы.

Оценка временной сложности алгоритма обращения матрицы в конечном поле.

Будем рассматривать невырожденную квадратную матрицу A размерности $N \times N$ с порядком поля ord.

Будем оценивать сложность алгоритма в соответствии с операциями, упомянутыми в псевдокоде.

Первая операция — нахождение определителя матрицы A. Для нахождения определителя матрицы порядка $N \times N$ методом Лапласа (разложением по строке или столбцу) необходимо вычислить значения N миноров N-1 порядка. Вычисление будет продолжаться, пока миноры не станут 1-го порядка (одно-элементные матрицы). Следовательно, временная сложность операции вычисления определителя матрицы порядка $N \times N$ составляет: $T(compute_det, N) = O(N!)$.

Вторая операция — нахождение обратного к определителю элемента в конечном поле заданного порядка. Обратный элемент ищется по расширенному алгоритму Евклида. Временная сложность выполнения этой операции составляет: $T(gcdExtended) = O(\log b)$, где b — наименьшее из двух входящих значений (оценка сложности получена в книге: Knuth, Donald. The Art of Computer Programming. Addison-Wesley. Volume 2, Chapter 4).

Третья операция — построение сопряжённой матрицы. Аналогично вычислению определителя матрицы, только теперь дополнительный минор должен быть вычислен для каждого элемента исходной матрицы. Таким образом, временная сложность операции построения сопряжённой матрицы составляет: $T(get_conjugate_matrix) = O((N!)^2)$, где N — размерность исходной квадратной матрицы.

Заключительная операция — проход по получившейся матрице с целью замены отрицательных элементов на элементы поля заданного порядка. Временная сложность: $O(N^2)$.

Таким образом, сложность алгоритма обращения невырожденной квадратной матрицы размерности $N \times N$ в конечном поле: $T(get_inverse_field_matrix) = O((N!)^2)$.

ЗАКЛЮЧЕНИЕ

В ходе лабораторной работы мною были изучены основные понятия универсальной алгебры и операции над бинарными отношениями. В качестве практического задания мною были описаны и реализованы алгоритмы проверки основных свойств операций по их таблице Кэли, алгоритмы построения объединения, пересечения, дополнения, композиции и обращения бинарных отношений, а также алгоритмы сложения, умножения, транспонирования и обращения матриц в полях конечного порядка. Для этих алгоритмов были представлены псевдокоды, осуществлена их программная реализация, а также проведена оценка временной сложности.