This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/31, C07K 14/22, A61K 39/095, G01N 33/53, C12Q 1/68, C07K 16/12

(11) International Publication Number:

WO 99/36544

(43) International Publication Date:

22 July 1999 (22.07.99)

(21) International Application Number:

PCT/IB99/00103

A2

(22) International Filing Date:

14 January 1999 (14.01.99)

(30) Priority Data:

9800760.2 14 January 1998 (14.01.98) GB 9819015.0 1 September 1998 (01.09.98) GB 9822143.5 9 October 1998 (09.10.98) GB

(71) Applicant (for all designated States except US): CHIRON S.P.A. [IT/IT]; Via Fiorentina, 1, I-53100 Siena (IT).

(72) Inventors; and

(75) Inventors/Applicants (for US only): MASIGNANI, Vega [IT/IT]; Via Pantaneto, 105, I-53100 Siena (IT). RAP-PUOLI, Rino [IT/IT]; Via delle Rocche, 1, Vagliagli, I-53019 Castelnuovo Berardenga (IT). PIZZA, Mariagrazia [IT/IT]; Strada di Montalbuccio, 160, I-53100 Siena (IT). SCARLATO, Vincenzo [IT/IT]; Via Firenze, 3/37, I-53134 Colle Val d'Elsa (IT). GRANDI, Guido [IT/IT]; 9° Strada, 4, I-20090 Segrate (IT).

(74) Agent: HALLYBONE, Huw, George; Carpmaels & Ransford, 43 Bloomsbury Square, London WC1A 2RA (GB).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: NEISSERIA MENINGITIDIS ANTIGENS

The invention provides proteins from Neisseria meningitidis (strains A and B), including amino acid sequences, the corresponding nucleotide sequences, expression data, and serological data. The proteins are useful antigens for vaccines, immunogenic compositions,

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulga ria	HU	Hungary	ML	Mali	ТТ	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore	,	

NEISSERIA MENINGITIDIS ANTIGENS

This invention relates to antigens from the bacterium Neisseria meningitidis.

BACKGROUND

5

10

15

20

25

Neisseria meningitidis is a non-motile, gram negative diplococcus human pathogen. It colonises the pharynx, causing meningitis and, occasionally, septicaemia in the absence of meningitis. It is closely related to N.gonorrhoeae, although one feature that clearly differentiates meningococcus from gonococcus is the presence of a polysaccharide capsule that is present in all pathogenic meningococci.

N.meningitidis causes both endemic and epidemic disease. In the United States the attack rate is 0.6-1 per 100,000 persons per year, and it can be much greater during outbreaks (see Lieberman et al. (1996) Safety and Immunogenicity of a Serogroups A/C Neisseria meningitidis Oligosaccharide-Protein Conjugate Vaccine in Young Children. JAMA 275(19):1499-1503; Schuchat et al (1997) Bacterial Meningitis in the United States in 1995. N Engl J Med 337(14):970-976). In developing countries, endemic disease rates are much higher and during epidemics incidence rates can reach 500 cases per 100,000 persons per year. Mortality is extremely high, at 10-20% in the United States, and much higher in developing countries. Following the introduction of the conjugate vaccine against Haemophilus influenzae, N. meningitidis is the major cause of bacterial meningitis at all ages in the United States (Schuchat et al (1997) supra).

Based on the organism's capsular polysaccharide, 12 serogroups of *N.meningitidis* have been identified. Group A is the pathogen most often implicated in epidemic disease in sub-Saharan Africa. Serogroups B and C are responsible for the vast majority of cases in the United States and in most developed countries. Serogroups W135 and Y are responsible for the rest of the cases in the United States and developed countries. The meningococcal vaccine currently in use is a tetravalent polysaccharide vaccine composed of serogroups A, C, Y and W135. Although efficacious in adolescents and adults, it induces a poor immune response and short duration of protection, and cannot be used in infants [eg. Morbidity and Mortality weekly report, Vol.46, No. RR-5 (1997)]. This is because polysaccharides are T-cell independent antigens that induce a weak immune response that cannot be boosted by repeated immunization. Following the success of the

vaccination against *H.influenzae*, conjugate vaccines against serogroups A and C have been developed and are at the final stage of clinical testing (Zollinger WD "New and Improved Vaccines Against Meningococcal Disease" in: *New Generation Vaccines*, *supra*, pp. 469-488; Lieberman *et al* (1996) *supra*; Costantino *et al* (1992) Development and phase I clinical testing of a conjugate vaccine against meningococcus A and C. *Vaccine* 10:691-698).

5

10

15

20

25

30

Meningococcus B remains a problem, however. This serotype currently is responsible for approximately 50% of total meningitis in the United States, Europe, and South America. The polysaccharide approach cannot be used because the menB capsular polysaccharide is a polymer of α(2-8)-linked N-acetyl neuraminic acid that is also present in mammalian tissue. This results in tolerance to the antigen; indeed, if an immune response were elicited, it would be anti-self, and therefore undesirable. In order to avoid induction of autoimmunity and to induce a protective immune response, the capsular polysaccharide has, for instance, been chemically modified substituting the N-acetyl groups with N-propionyl groups, leaving the specific antigenicity unaltered (Romero & Outschoom (1994) Current status of Meningococcal group B vaccine candidates: capsular or non-capsular? Clin Microbiol Rev 7(4):559-575).

Alternative approaches to menB vaccines have used complex mixtures of outer membrane proteins (OMPs), containing either the OMPs alone, or OMPs enriched in porins, or deleted of the class 4 OMPs that are believed to induce antibodies that block bactericidal activity. This approach produces vaccines that are not well characterized. They are able to protect against the homologous strain, but are not effective at large where there are many antigenic variants of the outer membrane proteins. To overcome the antigenic variability, multivalent vaccines containing up to nine different porins have been constructed (eg. Poolman JT (1992) Development of a meningococcal vaccine. Infect. Agents Dis. 4:13-28). Additional proteins to be used in outer membrane vaccines have been the opa and opc proteins, but none of these approaches have been able to overcome the antigenic variability (eg. Ala'Aldeen & Borriello (1996) The meningococcal transferrin-binding proteins 1 and 2 are both surface exposed and generate bactericidal antibodies capable of killing homologous and heterologous strains. Vaccine 14(1):49-53).

A certain amount of sequence data is available for meningococcal and gonococcal genes and proteins (eg. EP-A-0467714, WO96/29412), but this is by no means complete. The provision of further sequences could provide an opportunity to identify secreted or surface-exposed proteins that

are presumed targets for the immune system and which are not antigenically variable. For instance, some of the identified proteins could be components of efficacious vaccines against meningococcus B, some could be components of vaccines against all meningococcal serotypes, and others could be components of vaccines against all pathogenic *Neisseriae*.

5 THE INVENTION

10

15

20

The invention provides proteins comprising the *N.meningitidis* amino acid sequences disclosed in the examples.

It also provides proteins comprising sequences homologous (ie. having sequence identity) to the N.meningitidis amino acid sequences disclosed in the examples. Depending on the particular sequence, the degree of sequence identity is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more). These homologous proteins include mutants and allelic variants of the sequences disclosed in the examples. Typically, 50% identity or more between two proteins is considered to be an indication of functional equivalence. Identity between the proteins is preferably determined by the Smith-Waterman homology search algorithm as implemented in the MPSRCH program (Oxford Molecular), using an affine gap search with parameters gap open penalty=12 and gap extension penalty=1.

The invention further provides proteins comprising fragments of the N-meningitidis amino acid sequences disclosed in the examples. The fragments should comprise at least n consecutive amino acids from the sequences and, depending on the particular sequence, n is 7 or more (eg. 8, 10, 12, 14, 16, 18, 20 or more). Preferably the fragments comprise an epitope from the sequence.

The proteins of the invention can, of course, be prepared by various means (eg. recombinant expression, purification from cell culture, chemical synthesis etc.) and in various forms (eg. native, fusions etc.). They are preferably prepared in substantially pure form (ie. substantially free from other N.meningitidis or host cell proteins)

According to a further aspect, the invention provides antibodies which bind to these proteins. These may be polyclonal or monoclonal and may be produced by any suitable means.

According to a further aspect, the invention provides nucleic acid comprising the *N.meningitidis* nucleotide sequences disclosed in the examples. In addition, the invention provides nucleic acid comprising sequences homologous (*ie.* having sequence identity) to the *N.meningitidis* nucleotide sequences disclosed in the examples.

Furthermore, the invention provides nucleic acid which can hybridise to the *N.meningitidis* nucleic acid disclosed in the examples, preferably under "high stringency" conditions (eg. 65°C in a 0.1xSSC, 0.5% SDS solution).

Nucleic acid comprising fragments of these sequences are also provided. These should comprise at least n consecutive nucleotides from the N-meningitidis sequences and, depending on the particular sequence, n is 10 or more (eg 12, 14, 15, 18, 20, 25, 30, 35, 40 or more).

10

According to a further aspect, the invention provides nucleic acid encoding the proteins and protein fragments of the invention.

It should also be appreciated that the invention provides nucleic acid comprising sequences complementary to those described above (eg. for antisense or probing purposes).

- Nucleic acid according to the invention can, of course, be prepared in many ways (eg. by chemical synthesis, from genomic or cDNA libraries, from the organism itself etc.) and can take various forms (eg. single stranded, double stranded, vectors, probes etc.).
 - In addition, the term "nucleic acid" includes DNA and RNA, and also their analogues, such as those containing modified backbones, and also peptide nucleic acids (PNA) etc.
- According to a further aspect, the invention provides vectors comprising nucleotide sequences of the invention (eg. expression vectors) and host cells transformed with such vectors.

According to a further aspect, the invention provides compositions comprising protein, antibody, and/or nucleic acid according to the invention. These compositions may be suitable as vaccines, for instance, or as diagnostic reagents, or as immunogenic compositions.

The invention also provides nucleic acid, protein, or antibody according to the invention for use as medicaments (eg. as vaccines) or as diagnostic reagents. It also provides the use of nucleic acid, protein, or antibody according to the invention in the manufacture of: (i) a medicament for treating or preventing infection due to Neisserial bacteria; (ii) a diagnostic reagent for detecting the presence of Neisserial bacteria or of antibodies raised against Neisserial bacteria; and/or (iii) a reagent which can raise antibodies against Neisserial bacteria. Said Neisserial bacteria may be any species or strain (such as N. gonorrhoeae) but are preferably N. meningitidis, especially strain A, strain B or strain C.

The invention also provides a method of treating a patient, comprising administering to the patient a therapeutically effective amount of nucleic acid, protein, and/or antibody according to the invention.

According to further aspects, the invention provides various processes.

5

25

A process for producing proteins of the invention is provided, comprising the step of culturing a host cell according to the invention under conditions which induce protein expression.

A process for producing protein or nucleic acid of the invention is provided, wherein the protein or nucleic acid is synthesised in part or in whole using chemical means.

A process for detecting polynucleotides of the invention is provided, comprising the steps of: (a) contacting a nucleic probe according to the invention with a biological sample under hybridizing conditions to form duplexes; and (b) detecting said duplexes.

A process for detecting proteins of the invention is provided, comprising the steps of: (a) contacting an antibody according to the invention with a biological sample under conditions suitable for the formation of an antibody-antigen complexes; and (b) detecting said complexes.

Unlike the sequences disclosed in PCT/IB98/01665, the sequences disclosed in the present application are believed not to have any significant homologs in *N. gonorrhoeae*. Accordingly, the sequences of the present invention also find use in the preparation of reagents for distinguishing between *N. meningitidis* and *N. gonorrhoeae*

A summary of standard techniques and procedures which may be employed in order to perform the invention (eg. to utilise the disclosed sequences for vaccination or diagnostic purposes) follows. This summary is not a limitation on the invention but, rather, gives examples that may be used, but are not required.

5 General

10

15

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature eg. Sambrook Molecular Cloning; A Laboratory Manual, Second Edition (1989); DNA Cloning, Volumes I and ii (D.N Glover ed. 1985); Oligonucleotide Synthesis (M.J. Gait ed, 1984); Nucleic Acid Hybridization (B.D. Hames & S.J. Higgins eds. 1984); Transcription and Translation (B.D. Hames & S.J. Higgins eds. 1984); Animal Cell Culture (R.I. Freshney ed. 1986); Immobilized Cells and Enzymes (IRL Press, 1986); B. Perbal, A Practical Guide to Molecular Cloning (1984); the Methods in Enzymology series (Academic Press, Inc.), especially volumes 154 & 155; Gene Transfer Vectors for Mammalian Cells (J.H. Miller and M.P. Calos eds. 1987, Cold Spring Harbor Laboratory); Mayer and Walker, eds. (1987), Immunochemical Methods in Cell and Molecular Biology (Academic Press, London); Scopes, (1987) Protein Purification: Principles and Practice, Second Edition (Springer-Verlag, N.Y.), and Handbook of Experimental Immunology, Volumes 1-IV (D.M. Weir and C. C. Blackwell eds 1986).

20 Standard abbreviations for nucleotides and amino acids are used in this specification.

All publications, patents, and patent applications cited herein are incorporated in full by reference. In particular, the contents of UK patent applications 9800760.2, 9819015.0 and 9822143.5 are incorporated herein.

Definitions

A composition containing X is "substantially free of" Y when at least 85% by weight of the total X+Y in the composition is X. Preferably, X comprises at least about 90% by weight of the total of X+Y in the composition, more preferably at least about 95% or even 99% by weight.

The term "comprising" means "including" as well as "consisting" eg. a composition "comprising" X may consist exclusively of X or may include something additional to X, such as X+Y.

The term "heterologous" refers to two biological components that are not found together in nature. The components may be host cells, genes, or regulatory regions, such as promoters. Although the heterologous components are not found together in nature, they can function together, as when a promoter heterologous to a gene is operably linked to the gene. Another example is where a Neisserial sequence is heterologous to a mouse host cell. A further examples would be two epitopes from the same or different proteins which have been assembled in a single protein in an arrangement not found in nature.

5

10

15

20

25

An "origin of replication" is a polynucleotide sequence that initiates and regulates replication of polynucleotides, such as an expression vector. The origin of replication behaves as an autonomous unit of polynucleotide replication within a cell, capable of replication under its own control. An origin of replication may be needed for a vector to replicate in a particular host cell. With certain origins of replication, an expression vector can be reproduced at a high copy number in the presence of the appropriate proteins within the cell. Examples of origins are the autonomously replicating sequences, which are effective in yeast; and the viral T-antigen, effective in COS-7 cells.

A "mutant" sequence is defined as DNA, RNA or amino acid sequence differing from but having sequence identity with the native or disclosed sequence. Depending on the particular sequence, the degree of sequence identity between the native or disclosed sequence and the mutant sequence is preferably greater than 50% (eg. 60%, 70%, 80%, 90%, 95%, 99% or more, calculated using the Smith-Waterman algorithm as described above). As used herein, an "allelic variant" of a nucleic acid molecule, or region, for which nucleic acid sequence is provided herein is a nucleic acid molecule, or region, that occurs essentially at the same locus in the genome of another or second isolate, and that, due to natural variation caused by, for example, mutation or recombination, has a similar but not identical nucleic acid sequence. A coding region allelic variant typically encodes a protein having similar activity to that of the protein encoded by the gene to which it is being compared. An allelic variant can also comprise an alteration in the 5' or 3' untranslated regions of the gene, such as in regulatory control regions (eg. see US patent 5,753,235).

Expression systems

The Neisserial nucleotide sequences can be expressed in a variety of different expression systems; for example those used with mammalian cells, baculoviruses, plants, bacteria, and yeast.

i. Mammalian Systems

5

10

15

20

25

30

Mammalian expression systems are known in the art. A mammalian promoter is any DNA sequence capable of binding mammalian RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiating region, which is usually placed proximal to the 5' end of the coding sequence, and a TATA box, usually located 25-30 base pairs (bp) upstream of the transcription initiation site. The TATA box is thought to direct RNA polymerase II to begin RNA synthesis at the correct site. A mammalian promoter will also contain an upstream promoter element, usually located within 100 to 200 bp upstream of the TATA box. An upstream promoter element determines the rate at which transcription is initiated and can act in either orientation [Sambrook et al. (1989) "Expression of Cloned Genes in Mammalian Cells." In Molecular Cloning: A Laboratory Manual, 2nd ed.].

Mammalian viral genes are often highly expressed and have a broad host range; therefore sequences encoding mammalian viral genes provide particularly useful promoter sequences. Examples include the SV40 early promoter, mouse mammary tumor virus LTR promoter, adenovirus major late promoter (Ad MLP), and herpes simplex virus promoter. In addition, sequences derived from non-viral genes, such as the murine metallotheionein gene, also provide useful promoter sequences. Expression may be either constitutive or regulated (inducible), depending on the promoter can be induced with glucocorticoid in hormone-responsive cells.

The presence of an enhancer element (enhancer), combined with the promoter elements described above, will usually increase expression levels. An enhancer is a regulatory DNA sequence that can stimulate transcription up to 1000-fold when linked to homologous or heterologous promoters, with synthesis beginning at the normal RNA start site. Enhancers are also active when they are placed upstream or downstream from the transcription initiation site, in either normal or flipped orientation, or at a distance of more than 1000 nucleotides from the promoter [Maniatis et al. (1987) Science 236:1237; Alberts et al. (1989) Molecular Biology of the Cell, 2nd ed.]. Enhancer elements derived from viruses may be particularly useful, because they usually have a broader host range.

Examples include the SV40 early gene enhancer [Dijkema et al (1985) EMBO J. 4:761] and the enhancer/promoters derived from the long terminal repeat (LTR) of the Rous Sarcoma Virus [Gorman et al. (1982b) Proc. Natl. Acad. Sci. 79:6777] and from human cytomegalovirus [Boshart et al. (1985) Cell 41:521]. Additionally, some enhancers are regulatable and become active only in the presence of an inducer, such as a hormone or metal ion [Sassone-Corsi and Borelli (1986) Trends Genet. 2:215; Maniatis et al. (1987) Science 236:1237].

5

10

15

20

25

A DNA molecule may be expressed intracellularly in mammalian cells. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in mammalian cells. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The adenovirus triparite leader is an example of a leader sequence that provides for secretion of a foreign protein in mammalian cells.

Usually, transcription termination and polyadenylation sequences recognized by mammalian cells are regulatory regions located 3' to the translation stop codon and thus, together with the promoter elements, flank the coding sequence. The 3' terminus of the mature mRNA is formed by site-specific post-transcriptional cleavage and polyadenylation [Birnstiel et al. (1985) Cell 41:349; Proudfoot and Whitelaw (1988) "Termination and 3' end processing of eukaryotic RNA. In Transcription and splicing (ed. B.D. Hames and D.M. Glover); Proudfoot (1989) Trends Biochem. Sci. 14:105]. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminater/polyadenylation signals include those derived from SV40 [Sambrook et al (1989) "Expression of cloned genes in cultured mammalian cells." In Molecular Cloning: A Laboratory Manual].

Usually, the above described components, comprising a promoter, polyadenylation signal, and transcription termination sequence are put together into expression constructs. Enhancers, introns with functional splice donor and acceptor sites, and leader sequences may also be included in an expression construct, if desired. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as mammalian cells or bacteria. Mammalian replication systems include those derived from animal viruses, which require trans-acting factors to replicate. For example, plasmids containing the replication systems of papovaviruses, such as SV40 [Gluzman (1981) Cell 23:175] or polyomavirus, replicate to extremely high copy number in the presence of the appropriate viral T antigen. Additional examples of mammalian replicons include those derived from bovine papillomavirus and Epstein-Barr virus. Additionally, the replicon may have two replicaton systems, thus allowing it to be maintained, for example, in mammalian cells for expression and in a prokaryotic host for cloning and amplification. Examples of such mammalian-bacteria shuttle vectors include pMT2 [Kaufman et al. (1989) Mol. Cell. Biol. 9:946] and pHEBO [Shimizu et al. (1986) Mol. Cell. Biol. 6:1074].

The transformation procedure used depends upon the host to be transformed. Methods for introduction of heterologous polynucleotides into mammalian cells are known in the art and include dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei.

Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including but not limited to, Chinese hamster ovary (CHO) cells, HeLa cells, baby hamster kidney (BHK) cells, monkey kidney cells (COS), human hepatocellular carcinoma cells (eg. Hep G2), and a number of other cell lines.

ii. Baculovirus Systems

5

10

15

20

25

30

The polynucleotide encoding the protein can also be inserted into a suitable insect expression vector, and is operably linked to the control elements within that vector. Vector construction employs techniques which are known in the art. Generally, the components of the expression system include a transfer vector, usually a bacterial plasmid, which contains both a fragment of the baculovirus

genome, and a convenient restriction site for insertion of the heterologous gene or genes to be expressed; a wild type baculovirus with a sequence homologous to the baculovirus-specific fragment in the transfer vector (this allows for the homologous recombination of the heterologous gene in to the baculovirus genome); and appropriate insect host cells and growth media.

After inserting the DNA sequence encoding the protein into the transfer vector, the vector and the wild type viral genome are transfected into an insect host cell where the vector and viral genome are allowed to recombine. The packaged recombinant virus is expressed and recombinant plaques are identified and purified. Materials and methods for baculovirus/insect cell expression systems are commercially available in kit form from, *inter alia*, Invitrogen, San Diego CA ("MaxBac" kit).

These techniques are generally known to those skilled in the art and fully described in Summers and Smith, *Texas Agricultural Experiment Station Bulletin No. 1555* (1987) (hereinafter "Summers and Smith").

Prior to inserting the DNA sequence encoding the protein into the baculovirus genome, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are usually assembled into an intermediate transplacement construct (transfer vector). This construct may contain a single gene and operably linked regulatory elements; multiple genes, each with its owned set of operably linked regulatory elements; or multiple genes, regulated by the same set of regulatory elements. Intermediate transplacement constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as a bacterium. The replicon will have a replication system, thus allowing it to be maintained in a suitable host for cloning and amplification.

15

20

25

Currently, the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373. Many other vectors, known to those of skill in the art, have also been designed. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and which introduces a BamHI cloning site 32 basepairs downstream from the ATT; see Luckow and Summers, *Virology* (1989) 17:31.

The plasmid usually also contains the polyhedrin polyadenylation signal (Miller et al. (1988) Ann. Rev. Microbiol., 42:177) and a prokaryotic ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.

Baculovirus transfer vectors usually contain a baculovirus promoter. A baculovirus promoter is any DNA sequence capable of binding a baculovirus RNA polymerase and initiating the downstream (5' to 3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A baculovirus transfer vector may also have a second domain called an enhancer, which, if present, is usually distal to the structural gene. Expression may be either regulated or constitutive.

5

10

15

20

Structural genes, abundantly transcribed at late times in a viral infection cycle, provide particularly useful promoter sequences. Examples include sequences derived from the gene encoding the viral polyhedron protein, Friesen et al., (1986) "The Regulation of Baculovirus Gene Expression," in: *The Molecular Biology of Baculoviruses* (ed. Walter Doerfler); EPO Publ. Nos. 127 839 and 155 476; and the gene encoding the p10 protein, Vlak et al., (1988), *J. Gen. Virol.* 69:765.

DNA encoding suitable signal sequences can be derived from genes for secreted insect or baculovirus proteins, such as the baculovirus polyhedrin gene (Carbonell et al. (1988) *Gene*, 73:409). Alternatively, since the signals for mammalian cell posttranslational modifications (such as signal peptide cleavage, proteolytic cleavage, and phosphorylation) appear to be recognized by insect cells, and the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells, leaders of non-insect origin, such as those derived from genes encoding human α-interferon, Maeda et al., (1985), *Nature 315*:592; human gastrin-releasing peptide, Lebacq-Verheyden et al., (1988), *Molec. Cell. Biol. 8*:3129; human IL-2, Smith et al., (1985) *Proc. Nat'l Acad. Sci. USA*, 82:8404; mouse IL-3, (Miyajima et al., (1987) *Gene 58*:273; and human glucocerebrosidase, Martin et al. (1988) *DNA*, 7:99, can also be used to provide for secretion in insects.

A recombinant polypeptide or polyprotein may be expressed intracellularly or, if it is expressed with the proper regulatory sequences, it can be secreted. Good intracellular expression of nonfused foreign proteins usually requires heterologous genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. If desired, methionine at the N-terminus may be cleaved from the mature protein by *in vitro* incubation with cyanogen bromide.

5

10

15

20

25

30

Alternatively, recombinant polyproteins or proteins which are not naturally secreted can be secreted from the insect cell by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provides for secretion of the foreign protein in insects. The leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the translocation of the protein into the endoplasmic reticulum.

PCT/IB99/00103

After insertion of the DNA sequence and/or the gene encoding the expression product precursor of the protein, an insect cell host is co-transformed with the heterologous DNA of the transfer vector and the genomic DNA of wild type baculovirus — usually by co-transfection. The promoter and transcription termination sequence of the construct will usually comprise a 2-5kb section of the baculovirus genome. Methods for introducing heterologous DNA into the desired site in the baculovirus virus are known in the art. (See Summers and Smith *supra*; Ju et al. (1987); Smith et al., *Mol. Cell. Biol.* (1983) 3:2156; and Luckow and Summers (1989)). For example, the insertion can be into a gene such as the polyhedrin gene, by homologous double crossover recombination; insertion can also be into a restriction enzyme site engineered into the desired baculovirus gene. Miller et al., (1989), *Bioessays 4*:91. The DNA sequence, when cloned in place of the polyhedrin gene in the expression vector, is flanked both 5' and 3' by polyhedrin-specific sequences and is positioned downstream of the polyhedrin promoter.

The newly formed baculovirus expression vector is subsequently packaged into an infectious recombinant baculovirus. Homologous recombination occurs at low frequency (between about 1% and about 5%); thus, the majority of the virus produced after cotransfection is still wild-type virus. Therefore, a method is necessary to identify recombinant viruses. An advantage of the expression system is a visual screen allowing recombinant viruses to be distinguished. The polyhedrin protein, which is produced by the native virus, is produced at very high levels in the nuclei of infected cells at late times after viral infection. Accumulated polyhedrin protein forms occlusion bodies that also contain embedded particles. These occlusion bodies, up to 15 µm in size, are highly refractile, giving them a bright shiny appearance that is readily visualized under the light microscope. Cells infected with recombinant viruses lack occlusion bodies. To distinguish recombinant virus from wild-type virus, the transfection supernatant is plaqued onto a monolayer of insect cells by techniques known to those skilled in the art. Namely, the plaques are screened under the light microscope for the presence (indicative of wild-type virus) or absence (indicative of recombinant

virus) of occlusion bodies. "Current Protocols in Microbiology" Vol. 2 (Ausubel et al. eds) at 16.8 (Supp. 10, 1990); Summers and Smith, *supra*; Miller et al. (1989).

Recombinant baculovirus expression vectors have been developed for infection into several insect cells. For example, recombinant baculoviruses have been developed for, inter alia: Aedes aegypti, Autographa californica, Bombyx mori, Drosophila melanogaster, Spodoptera frugiperda, and Trichoplusia ni (WO 89/046699; Carbonell et al., (1985) J. Virol. 56:153; Wright (1986) Nature 321:718; Smith et al., (1983) Mol. Cell. Biol. 3:2156; and see generally, Fraser, et al. (1989) In Vitro Cell. Dev. Biol. 25:225).

Cells and cell culture media are commercially available for both direct and fusion expression of heterologous polypeptides in a baculovirus/expression system; cell culture technology is generally known to those skilled in the art. See, eg. Summers and Smith supra.

The modified insect cells may then be grown in an appropriate nutrient medium, which allows for stable maintenance of the plasmid(s) present in the modified insect host. Where the expression product gene is under inducible control, the host may be grown to high density, and expression induced. Alternatively, where expression is constitutive, the product will be continuously expressed into the medium and the nutrient medium must be continuously circulated, while removing the product of interest and augmenting depleted nutrients. The product may be purified by such techniques as chromatography, eg. HPLC, affinity chromatography, ion exchange chromatography, etc.; electrophoresis; density gradient centrifugation; solvent extraction, or the like. As appropriate, the product may be further purified, as required, so as to remove substantially any insect proteins which are also secreted in the medium or result from lysis of insect cells, so as to provide a product which is at least substantially free of host debris, eg. proteins, lipids and polysaccharides.

In order to obtain protein expression, recombinant host cells derived from the transformants are incubated under conditions which allow expression of the recombinant protein encoding sequence. These conditions will vary, dependent upon the host cell selected. However, the conditions are readily ascertainable to those of ordinary skill in the art, based upon what is known in the art.

iii. Plant Systems

5

10

15

20

25

There are many plant cell culture and whole plant genetic expression systems known in the art. Exemplary plant cellular genetic expression systems include those described in patents, such as: US 5,693,506; US 5,659,122; and US 5,608,143. Additional examples of genetic expression in plant cell culture has been described by Zenk, *Phytochemistry* 30:3861-3863 (1991). Descriptions of plant protein signal peptides may be found in addition to the references described above in Vaulcombe et al., *Mol. Gen. Genet.* 209:33-40 (1987); Chandler et al., *Plant Molecular Biology* 3:407-418 (1984); Rogers, *J. Biol. Chem.* 260:3731-3738 (1985); Rothstein et al., *Gene* 55:353-356 (1987); Whittier et al., Nucleic Acids Research 15:2515-2535 (1987); Wirsel et al., *Molecular Microbiology* 3:3-14 (1989); Yu et al., *Gene* 122:247-253 (1992). A description of the regulation of plant gene expression by the phytohormone, gibberellic acid and secreted enzymes induced by gibberellic acid can be found in R.L. Jones and J. MacMillin, Gibberellins: in: *Advanced Plant Physiology*, Malcolm B. Wilkins, ed., 1984 Pitman Publishing Limited, London, pp. 21-52. References that describe other metabolically-regulated genes: Sheen, *Plant Cell*, 2:1027-1038(1990); Maas et al., *EMBO J.* 9:3447-3452 (1990); Benkel and Hickey, *Proc. Natl. Acad. Sci.* 84:1337-1339 (1987)

5

10

15

20

25

30

Typically, using techniques known in the art, a desired polynucleotide sequence is inserted into an expression cassette comprising genetic regulatory elements designed for operation in plants. The expression cassette is inserted into a desired expression vector with companion sequences upstream and downstream from the expression cassette suitable for expression in a plant host. The companion sequences will be of plasmid or viral origin and provide necessary characteristics to the vector to permit the vectors to move DNA from an original cloning host, such as bacteria, to the desired plant host. The basic bacterial/plant vector construct will preferably provide a broad host range prokaryote replication origin; a prokaryote selectable marker; and, for Agrobacterium transformations, T DNA sequences for Agrobacterium-mediated transfer to plant chromosomes. Where the heterologous gene is not readily amenable to detection, the construct will preferably also have a selectable marker gene suitable for determining if a plant cell has been transformed. A general review of suitable markers, for example for the members of the grass family, is found in Wilmink and Dons, 1993, *Plant Mol. Biol. Reptr.*, 11(2):165-185.

Sequences suitable for permitting integration of the heterologous sequence into the plant genome are also recommended. These might include transposon sequences and the like for homologous recombination as well as Ti sequences which permit random insertion of a heterologous expression cassette into a plant genome. Suitable prokaryote selectable markers include resistance toward

antibiotics such as ampicillin or tetracycline. Other DNA sequences encoding additional functions may also be present in the vector, as is known in the art.

The nucleic acid molecules of the subject invention may be included into an expression cassette for expression of the protein(s) of interest. Usually, there will be only one expression cassette, although two or more are feasible. The recombinant expression cassette will contain in addition to the heterologous protein encoding sequence the following elements, a promoter region, plant 5' untranslated sequences, initiation codon depending upon whether or not the structural gene comes equipped with one, and a transcription and translation termination sequence. Unique restriction enzyme sites at the 5' and 3' ends of the cassette allow for easy insertion into a pre-existing vector.

5

10

15

20

25

A heterologous coding sequence may be for any protein relating to the present invention. The sequence encoding the protein of interest will encode a signal peptide which allows processing and translocation of the protein, as appropriate, and will usually lack any sequence which might result in the binding of the desired protein of the invention to a membrane. Since, for the most part, the transcriptional initiation region will be for a gene which is expressed and translocated during germination, by employing the signal peptide which provides for translocation, one may also provide for translocation of the protein of interest. In this way, the protein(s) of interest will be translocated from the cells in which they are expressed and may be efficiently harvested. Typically secretion in seeds are across the aleurone or scutellar epithelium layer into the endosperm of the seed. While it is not required that the protein be secreted from the cells in which the protein is produced, this facilitates the isolation and purification of the recombinant protein.

Since the ultimate expression of the desired gene product will be in a eucaryotic cell it is desirable to determine whether any portion of the cloned gene contains sequences which will be processed out as introns by the host's splicosome machinery. If so, site-directed mutagenesis of the "intron" region may be conducted to prevent losing a portion of the genetic message as a false intron code, Reed and Maniatis, *Cell* 41:95-105, 1985.

The vector can be microinjected directly into plant cells by use of micropipettes to mechanically transfer the recombinant DNA. Crossway, *Mol. Gen. Genet*, 202:179-185, 1985. The genetic material may also be transferred into the plant cell by using polyethylene glycol, Krens, et al., *Nature*, 296, 72-74, 1982. Another method of introduction of nucleic acid segments is high

velocity ballistic penetration by small particles with the nucleic acid either within the matrix of small beads or particles, or on the surface, Klein, et al., *Nature*, 327, 70-73, 1987 and Knudsen and Muller, 1991, *Planta*, 185:330-336 teaching particle bombardment of barley endosperm to create transgenic barley. Yet another method of introduction would be fusion of protoplasts with other entities, either minicells, cells, lysosomes or other fusible lipid-surfaced bodies, Fraley, et al., *Proc. Natl. Acad. Sci. USA*, 79, 1859-1863, 1982.

5

10

15

20

25

30

The vector may also be introduced into the plant cells by electroporation. (Fromm et al., *Proc. Natl Acad. Sci. USA* 82:5824, 1985). In this technique, plant protoplasts are electroporated in the presence of plasmids containing the gene construct. Electrical impulses of high field strength reversibly permeabilize biomembranes allowing the introduction of the plasmids. Electroporated plant protoplasts reform the cell wall, divide, and form plant callus.

All plants from which protoplasts can be isolated and cultured to give whole regenerated plants can be transformed by the present invention so that whole plants are recovered which contain the transferred gene. It is known that practically all plants can be regenerated from cultured cells or tissues, including but not limited to all major species of sugarcane, sugar beet, cotton, fruit and other trees, legumes and vegetables. Some suitable plants include, for example, species from the genera Fragaria, Lotus, Medicago, Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum, Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus, Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersion, Nicotiana, Solamum, Petunia, Digitalis, Majorana, Cichorium, Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum, Hererocallis, Nemesia, Pelargonium, Panicum, Pennisetum, Ramunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine, Lolium, Zea, Triticum, Sorghum, and Datura.

Means for regeneration vary from species to species of plants, but generally a suspension of transformed protoplasts containing copies of the heterologous gene is first provided. Callus tissue is formed and shoots may be induced from callus and subsequently rooted. Alternatively, embryo formation can be induced from the protoplast suspension. These embryos germinate as natural embryos to form plants. The culture media will generally contain various amino acids and hormones, such as auxin and cytokinins. It is also advantageous to add glutamic acid and proline to the medium, especially for such species as corn and alfalfa. Shoots and roots normally develop simultaneously. Efficient regeneration will depend on the medium, on the genotype, and on the

history of the culture. If these three variables are controlled, then regeneration is fully reproducible and repeatable.

In some plant cell culture systems, the desired protein of the invention may be excreted or alternatively, the protein may be extracted from the whole plant. Where the desired protein of the invention is secreted into the medium, it may be collected. Alternatively, the embryos and embryoless-half seeds or other plant tissue may be mechanically disrupted to release any secreted protein between cells and tissues. The mixture may be suspended in a buffer solution to retrieve soluble proteins. Conventional protein isolation and purification methods will be then used to purify the recombinant protein. Parameters of time, temperature pH, oxygen, and volumes will be adjusted through routine methods to optimize expression and recovery of heterologous protein.

iv. Bacterial Systems

5

10

15

20

25

30

Bacterial expression techniques are known in the art. A bacterial promoter is any DNA sequence capable of binding bacterial RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site and a transcription initiation site. A bacterial promoter may also have a second domain called an operator, that may overlap an adjacent RNA polymerase binding site at which RNA synthesis begins. The operator permits negative regulated (inducible) transcription, as a gene repressor protein may bind the operator and thereby inhibit transcription of a specific gene. Constitutive expression may occur in the absence of negative regulatory elements, such as the operator. In addition, positive regulation may be achieved by a gene activator protein binding sequence, which, if present is usually proximal (5') to the RNA polymerase binding sequence. An example of a gene activator protein is the catabolite activator protein (CAP), which helps initiate transcription of the lac operon in Escherichia coli (E. coli) [Raibaud et al. (1984) Annu. Rev. Genet. 18:173]. Regulated expression may therefore be either positive or negative, thereby either enhancing or reducing transcription.

Sequences encoding metabolic pathway enzymes provide particularly useful promoter sequences. Examples include promoter sequences derived from sugar metabolizing enzymes, such as galactose, lactose (lac) [Chang et al. (1977) Nature 198:1056], and maltose. Additional examples include promoter sequences derived from biosynthetic enzymes such as tryptophan (trp) [Goeddel et al.

(1980) Nuc. Acids Res. 8:4057; Yelverton et al. (1981) Nucl. Acids Res. 9:731; US patent 4,738,921; EP-A-0036776 and EP-A-0121775]. The g-laotamase (bla) promoter system [Weissmann (1981) "The cloning of interferon and other mistakes." In Interferon 3 (ed. I. Gresser)], bacteriophage lambda PL [Shimatake et al. (1981) Nature 292:128] and T5 [US patent 4,689,406] promoter systems also provide useful promoter sequences.

5

10

15

20

25

In addition, synthetic promoters which do not occur in nature also function as bacterial promoters. For example, transcription activation sequences of one bacterial or bacteriophage promoter may be joined with the operon sequences of another bacterial or bacteriophage promoter, creating a synthetic hybrid promoter [US patent 4,551,433]. For example, the *tac* promoter is a hybrid *trp-lac* promoter comprised of both *trp* promoter and *lac* operon sequences that is regulated by the *lac* repressor [Amann *et al.* (1983) *Gene 25*:167; de Boer *et al.* (1983) *Proc. Natl. Acad. Sci. 80*:21]. Furthermore, a bacterial promoter can include naturally occurring promoters of non-bacterial origin that have the ability to bind bacterial RNA polymerase and initiate transcription. A naturally occurring promoter of non-bacterial origin can also be coupled with a compatible RNA polymerase to produce high levels of expression of some genes in prokaryotes. The bacteriophage T7 RNA polymerase/promoter system is an example of a coupled promoter system [Studier *et al.* (1986) *J. Mol. Biol. 189*:113; Tabor *et al.* (1985) *Proc Natl. Acad. Sci. 82*:1074]. In addition, a hybrid promoter can also be comprised of a bacteriophage promoter and an *E. coli* operator region (EPO-A-0 267 851).

In addition to a functioning promoter sequence, an efficient ribosome binding site is also useful for the expression of foreign genes in prokaryotes. In *E. coli*, the ribosome binding site is called the Shine-Dalgarno (SD) sequence and includes an initiation codon (ATG) and a sequence 3-9 nucleotides in length located 3-11 nucleotides upstream of the initiation codon [Shine *et al.* (1975) *Nature 254*:34]. The SD sequence is thought to promote binding of mRNA to the ribosome by the pairing of bases between the SD sequence and the 3' and of *E. coli* 16S rRNA [Steitz *et al.* (1979) "Genetic signals and nucleotide sequences in messenger RNA." In *Biological Regulation and Development: Gene Expression* (ed. R.F. Goldberger)]. To express eukaryotic genes and prokaryotic genes with weak ribosome-binding site [Sambrook *et al.* (1989) "Expression of cloned genes in Escherichia coli." In *Molecular Cloning: A Laboratory Manual*].

A DNA molecule may be expressed intracellularly. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide or by either *in vivo* on *in vitro* incubation with a bacterial methionine N-terminal peptidase (EPO-A-0 219 237).

5

10

15

20

25

30

Fusion proteins provide an alternative to direct expression. Usually, a DNA sequence encoding the N-terminal portion of an endogenous bacterial protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the bacteriophage lambda cell gene can be linked at the 5' terminus of a foreign gene and expressed in bacteria. The resulting fusion protein preferably retains a site for a processing enzyme (factor Xa) to cleave the bacteriophage protein from the foreign gene [Nagai et al. (1984) Nature 309:810]. Fusion proteins can also be made with sequences from the lacZ [Jia et al. (1987) Gene 60:197], trpE [Allen et al. (1987) J. Biotechnol. 5:93; Makoff et al. (1989) J. Gen. Microbiol. 135:11], and Chey [EP-A-0 324 647] genes. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin specific processing-protease) to cleave the ubiquitin from the foreign protein. Through this method, native foreign protein can be isolated [Miller et al. (1989) Bio/Technology 7:698].

Alternatively, foreign proteins can also be secreted from the cell by creating chimeric DNA molecules that encode a fusion protein comprised of a signal peptide sequence fragment that provides for secretion of the foreign protein in bacteria [US patent 4,336,336]. The signal sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell. The protein is either secreted into the growth media (gram-positive bacteria) or into the periplasmic space, located between the inner and outer membrane of the cell (gram-negative bacteria). Preferably there are processing sites, which can be cleaved either *in vivo* or *in vitro* encoded between the signal peptide fragment and the foreign gene.

DNA encoding suitable signal sequences can be derived from genes for secreted bacterial proteins, such as the *E. coli* outer membrane protein gene (*ompA*) [Masui *et al.* (1983), in: *Experimental Manipulation of Gene Expression*; Ghrayeb *et al.* (1984) *EMBO J. 3*:2437] and the *E. coli* alkaline

phosphatase signal sequence (phoA) [Oka et al. (1985) Proc. Natl. Acad. Sci. 82:7212]. As an additional example, the signal sequence of the alpha-amylase gene from various Bacillus strains can be used to secrete heterologous proteins from B. subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 244 042].

Usually, transcription termination sequences recognized by bacteria are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Transcription termination sequences frequently include DNA sequences of about 50 nucleotides capable of forming stem loop structures that aid in terminating transcription.
Examples include transcription termination sequences derived from genes with strong promoters, such as the trp gene in E. coli as well as other biosynthetic genes.

Usually, the above described components, comprising a promoter, signal sequence (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as bacteria. The replicon will have a replication system, thus allowing it to be maintained in a prokaryotic host either for expression or for cloning and amplification. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and usually about 10 to about 150. A host containing a high copy number plasmid will preferably contain at least about 10, and more preferably at least about 20 plasmids. Either a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host.

15

20

25

Alternatively, the expression constructs can be integrated into the bacterial genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to the bacterial chromosome that allows the vector to integrate. Integrations appear to result from recombinations between homologous DNA in the vector and the bacterial chromosome. For example, integrating vectors constructed with DNA from various Bacillus strains integrate into the Bacillus chromosome (EP-A- 0 127 328). Integrating vectors may also be comprised of bacteriophage or transposon sequences.

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of bacterial strains that have been transformed. Selectable markers can be expressed in the bacterial host and may include genes which render bacteria resistant to drugs such as ampicillin, chloramphenicol, erythromycin, kanamycin (neomycin), and tetracycline [Davies et al. (1978) Annu. Rev. Microbiol. 32:469]. Selectable markers may also include biosynthetic genes, such as those in the histidine, tryptophan, and leucine biosynthetic pathways.

5

20

25

30

Alternatively, some of the above described components can be put together in transformation vectors. Transformation vectors are usually comprised of a selectable market that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extra-chromosomal replicons or integrating vectors, have been developed for transformation into many bacteria. For example, expression vectors have been developed for, inter alia, the following bacteria: Bacillus subtilis [Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541], Escherichia coli [Shimatake et al. (1981) Nature 292:128; Amann et al. (1985) Gene 40:183; Studier et al. (1986) J. Mol. Biol. 189:113; EP-A-0 036 776,EP-A-0 136 829 and EP-A-0 136 907], Streptococcus cremoris [Powell et al. (1988) Appl. Environ. Microbiol. 54:655]; Streptococcus lividans [Powell et al. (1988) Appl. Environ. Microbiol. 54:655], Streptomyces lividans [US patent 4,745,056].

Methods of introducing exogenous DNA into bacterial hosts are well-known in the art, and usually include either the transformation of bacteria treated with CaCl₂ or other agents, such as divalent cations and DMSO. DNA can also be introduced into bacterial cells by electroporation. Transformation procedures usually vary with the bacterial species to be transformed. See eg. [Masson et al. (1989) FEMS Microbiol. Lett. 60:273; Palva et al. (1982) Proc. Natl. Acad. Sci. USA 79:5582; EP-A-0 036 259 and EP-A-0 063 953; WO 84/04541, Bacillus], [Miller et al. (1988) Proc. Natl. Acad. Sci. 85:856; Wang et al. (1990) J. Bacteriol. 172:949, Campylobacter], [Cohen et al. (1973) Proc. Natl. Acad. Sci. 69:2110; Dower et al. (1988) Nucleic Acids Res. 16:6127; Kushner (1978) "An improved method for transformation of Escherichia coli with ColE1-derived plasmids. In Genetic Engineering: Proceedings of the International Symposium on Genetic Engineering (eds. H.W. Boyer and S. Nicosia); Mandel et al. (1970) J. Mol. Biol. 53:159; Taketo (1988) Biochim. Biophys. Acta 949:318; Escherichia], [Chassy et al. (1987) FEMS Microbiol. Lett.

44:173 Lactobacillus]; [Fiedler et al. (1988) Anal. Biochem 170:38, Pseudomonas]; [Augustin et al. (1990) FEMS Microbiol. Lett. 66:203, Staphylococcus], [Barany et al. (1980) J. Bacteriol. 144:698; Harlander (1987) "Transformation of Streptococcus lactis by electroporation, in: Streptococcal Genetics (ed. J. Ferretti and R. Curtiss III); Perry et al. (1981) Infect. Immun. 32:1295; Powell et al. (1988) Appl. Environ. Microbiol. 54:655; Somkuti et al. (1987) Proc. 4th Evr. Cong. Biotechnology 1:412, Streptococcus].

v. Yeast Expression

5

10

15

20

Yeast expression systems are also known to one of ordinary skill in the art. A yeast promoter is any DNA sequence capable of binding yeast RNA polymerase and initiating the downstream (3') transcription of a coding sequence (eg. structural gene) into mRNA. A promoter will have a transcription initiation region which is usually placed proximal to the 5' end of the coding sequence. This transcription initiation region usually includes an RNA polymerase binding site (the "TATA Box") and a transcription initiation site. A yeast promoter may also have a second domain called an upstream activator sequence (UAS), which, if present, is usually distal to the structural gene. The UAS permits regulated (inducible) expression. Constitutive expression occurs in the absence of a UAS. Regulated expression may be either positive or negative, thereby either enhancing or reducing transcription.

Yeast is a fermenting organism with an active metabolic pathway, therefore sequences encoding enzymes in the metabolic pathway provide particularly useful promoter sequences. Examples include alcohol dehydrogenase (ADH) (EP-A-0 284 044), enolase, glucokinase, glucose-6-phosphate isomerase, glyceraldehyde-3-phosphate-dehydrogenase (GAP or GAPDH), hexokinase, phosphofructokinase, 3-phosphoglycerate mutase, and pyruvate kinase (PyK) (EPO-A-0 329 203). The yeast *PHO5* gene, encoding acid phosphatase, also provides useful promoter sequences [Myanohara *et al.* (1983) *Proc. Natl. Acad. Sci. USA 80*:1].

In addition, synthetic promoters which do not occur in nature also function as yeast promoters. For example, UAS sequences of one yeast promoter may be joined with the transcription activation region of another yeast promoter, creating a synthetic hybrid promoter. Examples of such hybrid promoters include the ADH regulatory sequence linked to the GAP transcription activation region (US Patent Nos. 4,876,197 and 4,880,734). Other examples of hybrid promoters include promoters which consist of the regulatory sequences of either the ADH2, GAL4, GAL10, OR PHO5 genes.

combined with the transcriptional activation region of a glycolytic enzyme gene such as GAP or PyK (EP-A-0 164 556). Furthermore, a yeast promoter can include naturally occurring promoters of non-yeast origin that have the ability to bind yeast RNA polymerase and initiate transcription. Examples of such promoters include, inter alia, [Cohen et al. (1980) Proc. Natl. Acad. Sci. USA 77:1078; Henikoff et al. (1981) Nature 283:835; Hollenberg et al. (1981) Curr. Topics Microbiol. Immunol. 96:119; Hollenberg et al. (1979) "The Expression of Bacterial Antibiotic Resistance Genes in the Yeast Saccharomyces cerevisiae," in: Plasmids of Medical, Environmental and Commercial Importance (eds. K.N. Timmis and A. Puhler); Mercerau-Puigalon et al. (1980) Gene 11:163; Panthier et al. (1980) Curr. Genet. 2:109;].

5

- A DNA molecule may be expressed intracellularly in yeast. A promoter sequence may be directly linked with the DNA molecule, in which case the first amino acid at the N-terminus of the recombinant protein will always be a methionine, which is encoded by the ATG start codon. If desired, methionine at the N-terminus may be cleaved from the protein by *in vitro* incubation with cyanogen bromide.
- Fusion proteins provide an alternative for yeast expression systems, as well as in mammalian, baculovirus, and bacterial expression systems. Usually, a DNA sequence encoding the N-terminal portion of an endogenous yeast protein, or other stable protein, is fused to the 5' end of heterologous coding sequences. Upon expression, this construct will provide a fusion of the two amino acid sequences. For example, the yeast or human superoxide dismutase (SOD) gene, can be linked at the 5' terminus of a foreign gene and expressed in yeast. The DNA sequence at the junction of the two amino acid sequences may or may not encode a cleavable site. See eg. EP-A-0 196 056. Another example is a ubiquitin fusion protein. Such a fusion protein is made with the ubiquitin region that preferably retains a site for a processing enzyme (eg. ubiquitin-specific processing protease) to cleave the ubiquitin from the foreign protein. Through this method, therefore, native foreign protein can be isolated (eg. WO88/024066).

Alternatively, foreign proteins can also be secreted from the cell into the growth media by creating chimeric DNA molecules that encode a fusion protein comprised of a leader sequence fragment that provide for secretion in yeast of the foreign protein. Preferably, there are processing sites encoded between the leader fragment and the foreign gene that can be cleaved either *in vivo* or *in vitro*. The

leader sequence fragment usually encodes a signal peptide comprised of hydrophobic amino acids which direct the secretion of the protein from the cell.

DNA encoding suitable signal sequences can be derived from genes for secreted yeast proteins, such as the yeast invertase gene (EP-A-0 012 873; JPO. 62,096,086) and the A-factor gene (US patent 4,588,684). Alternatively, leaders of non-yeast origin, such as an interferon leader, exist that also provide for secretion in yeast (EP-A-0 060 057).

5

10

A preferred class of secretion leaders are those that employ a fragment of the yeast alpha-factor gene, which contains both a "pre" signal sequence, and a "pro" region. The types of alpha-factor fragments that can be employed include the full-length pre-pro alpha factor leader (about 83 amino acid residues) as well as truncated alpha-factor leaders (usually about 25 to about 50 amino acid residues) (US Patents 4,546,083 and 4,870,008; EP-A-0 324 274). Additional leaders employing an alpha-factor leader fragment that provides for secretion include hybrid alpha-factor leaders made with a presequence of a first yeast, but a pro-region from a second yeast alphafactor. (eg. see WO 89/02463.)

- Usually, transcription termination sequences recognized by yeast are regulatory regions located 3' to the translation stop codon, and thus together with the promoter flank the coding sequence. These sequences direct the transcription of an mRNA which can be translated into the polypeptide encoded by the DNA. Examples of transcription terminator sequence and other yeast-recognized termination sequences, such as those coding for glycolytic enzymes.
- Usually, the above described components, comprising a promoter, leader (if desired), coding sequence of interest, and transcription termination sequence, are put together into expression constructs. Expression constructs are often maintained in a replicon, such as an extrachromosomal element (eg. plasmids) capable of stable maintenance in a host, such as yeast or bacteria. The replicon may have two replication systems, thus allowing it to be maintained, for example, in yeast for expression and in a prokaryotic host for cloning and amplification. Examples of such yeast-bacteria shuttle vectors include YEp24 [Botstein et al. (1979) Gene 8:17-24], pCl/1 [Brake et al. (1984) Proc. Natl. Acad. Sci USA 81:4642-4646], and YRp17 [Stinchcomb et al. (1982) J. Mol. Biol. 158:157]. In addition, a replicon may be either a high or low copy number plasmid. A high copy number plasmid will generally have a copy number ranging from about 5 to about 200, and

usually about 10 to about 150. A host containing a high copy number plasmid will preferably have at least about 10, and more preferably at least about 20. Enter a high or low copy number vector may be selected, depending upon the effect of the vector and the foreign protein on the host. See eg. Brake et al., supra.

5 Alternatively, the expression constructs can be integrated into the yeast genome with an integrating vector. Integrating vectors usually contain at least one sequence homologous to a yeast chromosome that allows the vector to integrate, and preferably contain two homologous sequences flanking the expression construct. Integrations appear to result from recombinations between homologous DNA in the vector and the yeast chromosome [Orr-Weaver et al. (1983) Methods in 10 Enzymol. 101:228-245]. An integrating vector may be directed to a specific locus in yeast by selecting the appropriate homologous sequence for inclusion in the vector. See Orr-Weaver et al., supra. One or more expression construct may integrate, possibly affecting levels of recombinant protein produced [Rine et al. (1983) Proc. Natl. Acad. Sci. USA 80:6750]. The chromosomal sequences included in the vector can occur either as a single segment in the vector, which results in the integration of the entire vector, or two segments homologous to adjacent segments in the chromosome and flanking the expression construct in the vector, which can result in the stable integration of only the expression construct.

15

20

25

Usually, extrachromosomal and integrating expression constructs may contain selectable markers to allow for the selection of yeast strains that have been transformed. Selectable markers may include biosynthetic genes that can be expressed in the yeast host, such as ADE2, HIS4, LEU2, TRP1, and ALG7, and the G418 resistance gene, which confer resistance in yeast cells to tunicamycin and G418, respectively. In addition, a suitable selectable marker may also provide yeast with the ability to grow in the presence of toxic compounds, such as metal. For example, the presence of CUP1 allows yeast to grow in the presence of copper ions [Butt et al. (1987) Microbiol, Rev. 51:351].

Alternatively, some of the above described components can be put together into transformation vectors. Transformation vectors are usually comprised of a selectable marker that is either maintained in a replicon or developed into an integrating vector, as described above.

Expression and transformation vectors, either extrachromosomal replicons or integrating vectors, have been developed for transformation into many yeasts. For example, expression vectors have been developed for, inter alia, the following yeasts: Candida albicans [Kurtz, et al. (1986) Mol. Cell. Biol. 6:142], Candida maltosa [Kunze, et al. (1985) J. Basic Microbiol. 25:141]. Hansenula polymorpha [Gleeson, et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302], Kluyveromyces fragilis [Das, et al. (1984) J. Bacteriol. 158:1165], Kluyveromyces lactis [De Louvencourt et al. (1983) J. Bacteriol. 154:737; Van den Berg et al. (1990) Bio/Technology 8:135], Pichia guillerimondii [Kunze et al. (1985) J. Basic Microbiol. 25:1411, Pichia pastoris [Cregg, et al. (1985) Mol. Cell. Biol. 5:3376; US Patent Nos. 4,837,148 and 4,929,555], Saccharomyces cerevisiae [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163], Schizosaccharomyces pombe [Beach and Nurse (1981) Nature 300:706], and Yarrowia lipolytica [Davidow, et al. (1985) Curr. Genet. 10:38047] Gaillardin, et al. (1985) Curr. Genet. 10:49].

Methods of introducing exogenous DNA into yeast hosts are well-known in the art, and usually 15 include either the transformation of spheroplasts or of intact yeast cells treated with alkali cations. Transformation procedures usually vary with the yeast species to be transformed. See eg. [Kurtz et al. (1986) Mol. Cell. Biol. 6:142; Kunze et al. (1985) J. Basic Microbiol. 25:141; Candida]; [Gleeson et al. (1986) J. Gen. Microbiol. 132:3459; Roggenkamp et al. (1986) Mol. Gen. Genet. 202:302; Hansenula]; [Das et al. (1984) J. Bacteriol. 158:1165; De Louvencourt et al. (1983) J. Bacteriol. 154:1165; Van den Berg et al. (1990) Bio/Technology 8:135; Kluyveromycesl; [Cregg et al. (1985) Mol. Cell. Biol. 5:3376; Kunze et al. (1985) J. Basic Microbiol. 25:141; US Patent Nos. 4,837,148 and 4,929,555; Pichia]; [Hinnen et al. (1978) Proc. Natl. Acad. Sci. USA 75:1929; Ito et al. (1983) J. Bacteriol. 153:163 Saccharomyces]; [Beach and Nurse (1981) Nature 300:706; Schizosaccharomyces]; [Davidow et al. (1985) Curr. Genet. 10:39; Gaillardin et al. (1985) Curr. Genet. 10:49; Yarrowia].

Antibodies

5

10

20

25

30

As used herein, the term "antibody" refers to a polypeptide or group of polypeptides composed of at least one antibody combining site. An "antibody combining site" is the three-dimensional binding space with an internal surface shape and charge distribution complementary to the features of an epitope of an antigen, which allows a binding of the antibody with the antigen, "Antibody"

includes, for example, vertebrate antibodies, hybrid antibodies, chimeric antibodies, humanised antibodies, altered antibodies, univalent antibodies, Fab proteins, and single domain antibodies.

Antibodies against the proteins of the invention are useful for affinity chromatography, immunoassays, and distinguishing/identifying Neisserial proteins.

5

10

15

20

25

30

Antibodies to the proteins of the invention, both polyclonal and monoclonal, may be prepared by conventional methods. In general, the protein is first used to immunize a suitable animal, preferably a mouse, rat, rabbit or goat. Rabbits and goats are preferred for the preparation of polyclonal sera due to the volume of serum obtainable, and the availability of labeled anti-rabbit and anti-goat antibodies. Immunization is generally performed by mixing or emulsifying the protein in saline, preferably in an adjuvant such as Freund's complete adjuvant, and injecting the mixture or emulsion parenterally (generally subcutaneously or intramuscularly). A dose of 50-200 µg/injection is typically sufficient. Immunization is generally boosted 2-6 weeks later with one or more injections of the protein in saline, preferably using Freund's incomplete adjuvant. One may alternatively generate antibodies by in vitro immunization using methods known in the art, which for the purposes of this invention is considered equivalent to *in vivo* immunization. Polyclonal antisera is obtained by bleeding the immunized animal into a glass or plastic container, incubating the blood at 25°C for one hour, followed by incubating at 4°C for 2-18 hours. The serum is recovered by centrifugation (*eg.* 1,000g for 10 minutes). About 20-50 ml per bleed may be obtained from rabbits.

Monoclonal antibodies are prepared using the standard method of Kohler & Milstein [Nature (1975) 256:495-96], or a modification thereof. Typically, a mouse or rat is immunized as described above. However, rather than bleeding the animal to extract serum, the spleen (and optionally several large lymph nodes) is removed and dissociated into single cells. If desired, the spleen cells may be screened (after removal of nonspecifically adherent cells) by applying a cell suspension to a plate or well coated with the protein antigen. B-cells expressing membrane-bound immunoglobulin specific for the antigen bind to the plate, and are not rinsed away with the rest of the suspension. Resulting B-cells, or all dissociated spleen cells, are then induced to fuse with myeloma cells to form hybridomas, and are cultured in a selective medium (eg. hypoxanthine, aminopterin, thymidine medium, "HAT"). The resulting hybridomas are plated by limiting dilution, and are assayed for the production of antibodies which bind specifically to the immunizing antigen

(and which do not bind to unrelated antigens). The selected MAb-secreting hybridomas are then cultured either *in vitro* (eg. in tissue culture bottles or hollow fiber reactors), or *in vivo* (as ascites in mice).

If desired, the antibodies (whether polyclonal or monoclonal) may be labeled using conventional techniques. Suitable labels include fluorophores, chromophores, radioactive atoms (particularly ³²P and ¹²⁵I), electron-dense reagents, enzymes, and ligands having specific binding partners. Enzymes are typically detected by their activity. For example, horseradish peroxidase is usually detected by its ability to convert 3,3',5,5'-tetramethylbenzidine (TMB) to a blue pigment, quantifiable with a spectrophotometer. "Specific binding partner" refers to a protein capable of binding a ligand molecule with high specificity, as for example in the case of an antigen and a monoclonal antibody specific therefor. Other specific binding partners include biotin and avidin or streptavidin, IgG and protein A, and the numerous receptor-ligand couples known in the art. It should be understood that the above description is not meant to categorize the various labels into distinct classes, as the same label may serve in several different modes. For example, 125I may serve as a radioactive label or as an electron-dense reagent. HRP may serve as enzyme or as antigen for a MAb. Further, one may combine various labels for desired effect. For example, MAbs and avidin also require labels in the practice of this invention: thus, one might label a MAb with biotin, and detect its presence with avidin labeled with ¹²⁵I, or with an anti-biotin MAb labeled with HRP. Other permutations and possibilities will be readily apparent to those of ordinary skill in the art, and are considered as equivalents within the scope of the instant invention.

Pharmaceutical Compositions

5

10

15

20

Pharmaceutical compositions can comprise either polypeptides, antibodies, or nucleic acid of the invention. The pharmaceutical compositions will comprise a therapeutically effective amount of either polypeptides, antibodies, or polynucleotides of the claimed invention.

The term "therapeutically effective amount" as used herein refers to an amount of a therapeutic agent to treat, ameliorate, or prevent a desired disease or condition, or to exhibit a detectable therapeutic or preventative effect. The effect can be detected by, for example, chemical markers or antigen levels. Therapeutic effects also include reduction in physical symptoms, such as decreased body temperature. The precise effective amount for a subject will depend upon the subject's size and health, the nature and extent of the condition, and the therapeutics or combination of

therapeutics selected for administration. Thus, it is not useful to specify an exact effective amount in advance. However, the effective amount for a given situation can be determined by routine experimentation and is within the judgement of the clinician.

For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

A pharmaceutical composition can also contain a pharmaceutically acceptable carrier. The term "pharmaceutically acceptable carrier" refers to a carrier for administration of a therapeutic agent, such as antibodies or a polypeptide, genes, and other therapeutic agents. The term refers to any pharmaceutical carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition, and which may be administered without undue toxicity. Suitable carriers may be large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, and inactive virus particles. Such carriers are well known to those of ordinary skill in the art.

Pharmaceutically acceptable salts can be used therein, for example, mineral acid salts such as hydrochlorides, hydrobromides, phosphates, sulfates, and the like; and the salts of organic acids such as acetates, propionates, malonates, benzoates, and the like. A thorough discussion of pharmaceutically acceptable excipients is available in Remington's Pharmaceutical Sciences (Mack Pub. Co., N.J. 1991).

Pharmaceutically acceptable carriers in therapeutic compositions may contain liquids such as water, saline, glycerol and ethanol. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles. Typically, the therapeutic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. Liposomes are included within the definition of a pharmaceutically acceptable carrier.

25 <u>Delivery Methods</u>

5

10

15

20

Once formulated, the compositions of the invention can be administered directly to the subject. The subjects to be treated can be animals; in particular, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Vaccines

5

10

15

20

25

30

Vaccines according to the invention may either be prophylactic (ie. to prevent infection) or therapeutic (ie. to treat disease after infection).

Such vaccines comprise immunising antigen(s), immunogen(s), polypeptide(s), protein(s) or nucleic acid, usually in combination with "pharmaceutically acceptable carriers," which include any carrier that does not itself induce the production of antibodies harmful to the individual receiving the composition. Suitable carriers are typically large, slowly metabolized macromolecules such as proteins, polysaccharides, polylactic acids, polyglycolic acids, polymeric amino acids, amino acid copolymers, lipid aggregates (such as oil droplets or liposomes), and inactive virus particles. Such carriers are well known to those of ordinary skill in the art. Additionally, these carriers may function as immunostimulating agents ("adjuvants"). Furthermore, the antigen or immunogen may be conjugated to a bacterial toxoid, such as a toxoid from diphtheria, tetanus, cholera, *H. pylori*, etc. pathogens.

Preferred adjuvants to enhance effectiveness of the composition include, but are not limited to: (1) aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate, etc; (2) oil-in-water emulsion formulations (with or without other specific immunostimulating agents such as muramyl peptides (see below) or bacterial cell wall components), such as for example (a) MF59™ (WO 90/14837; Chapter 10 in *Vaccine design: the subunit and adjuvant approach*, eds. Powell & Newman, Plenum Press 1995), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE (see below), although not required) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton, MA), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% pluronic-blocked polymer L121, and thr-MDP (see below) either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) Ribi™ adjuvant system (RAS), (Ribi Immunochem, Hamilton, MT) containing 2% Squalene, 0.2% Tween 80, and one or more bacterial

cell wall components from the group consisting of monophosphorylipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton (CWS), preferably MPL + CWS (Detox[™]); (3) saponin adjuvants, such as Stimulon[™] (Cambridge Bioscience, Worcester, MA) may be used or particles generated therefrom such as ISCOMs (immunostimulating complexes); (4) Complete Freund's Adjuvant (CFA) and Incomplete Freund's Adjuvant (IFA); (5) cytokines, such as interleukins (eg. IL-1, IL-2, IL-4, IL-5, IL-6, IL-7, IL-12, etc.), interferons (eg. gamma interferon), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF), etc; and (6) other substances that act as immunostimulating agents to enhance the effectiveness of the composition. Alum and MF59[™] are preferred.

5

15

20

25

As mentioned above, muramyl peptides include, but are not limited to, N-acetyl-muramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-normuramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1'-2'-dipalmitoyl-sn-glycero-3-hydroxyphosphoryloxy)-ethylamine (MTP-PE), etc.

The immunogenic compositions (eg. the immunising antigen/immunogen/polypeptide/protein/nucleic acid, pharmaceutically acceptable carrier, and adjuvant) typically will contain diluents, such as water, saline, glycerol, ethanol, etc. Additionally, auxiliary substances, such as wetting or emulsifying agents, pH buffering substances, and the like, may be present in such vehicles.

Typically, the immunogenic compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid vehicles prior to injection may also be prepared. The preparation also may be emulsified or encapsulated in liposomes for enhanced adjuvant effect, as discussed above under pharmaceutically acceptable carriers.

Immunogenic compositions used as vaccines comprise an immunologically effective amount of the antigenic or immunogenic polypeptides, as well as any other of the above-mentioned components, as needed. By "immunologically effective amount", it is meant that the administration of that amount to an individual, either in a single dose or as part of a series, is effective for treatment or prevention. This amount varies depending upon the health and physical condition of the individual to be treated, the taxonomic group of individual to be treated (eg. nonhuman primate, primate, etc.), the capacity of the individual's immune system to synthesize antibodies, the degree of protection desired, the formulation of the vaccine, the treating doctor's assessment of the medical situation,

and other relevant factors. It is expected that the amount will fall in a relatively broad range that can be determined through routine trials.

The immunogenic compositions are conventionally administered parenterally, eg. by injection, either subcutaneously, intramuscularly, or transdermally/transcutaneously (eg. WO98/20734). Additional formulations suitable for other modes of administration include oral and pulmonary formulations, suppositories, and transdermal applications. Dosage treatment may be a single dose schedule or a multiple dose schedule. The vaccine may be administered in conjunction with other immunoregulatory agents.

As an alternative to protein-based vaccines, DNA vaccination may be employed [eg. Robinson & Torres (1997) Seminars in Immunology 9:271-283; Donnelly et al. (1997) Annu Rev Immunol 15:617-648; see later herein].

Gene Delivery Vehicles

5

15

20

25

Gene therapy vehicles for delivery of constructs including a coding sequence of a therapeutic of the invention, to be delivered to the mammal for expression in the mammal, can be administered either locally or systemically. These constructs can utilize viral or non-viral vector approaches in *in vivo* or *ex vivo* modality. Expression of such coding sequence can be induced using endogenous mammalian or heterologous promoters. Expression of the coding sequence in vivo can be either constitutive or regulated.

The invention includes gene delivery vehicles capable of expressing the contemplated nucleic acid sequences. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral (AAV), herpes viral, or alphavirus vector. The viral vector can also be an astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, or togavirus viral vector. See generally, Jolly (1994) Cancer Gene Therapy 1:51-64; Kimura (1994) Human Gene Therapy 5:845-852; Connelly (1995) Human Gene Therapy 6:185-193; and Kaplitt (1994) Nature Genetics 6:148-153.

Retroviral vectors are well known in the art and we contemplate that any retroviral gene therapy vector is employable in the invention, including B, C and D type retroviruses, xenotropic retroviruses (for example, NZB-X1, NZB-X2 and NZB9-1 (see O'Neill (1985) *J. Virol.* 53:160) polytropic retroviruses

eg. MCF and MCF-MLV (see Kelly (1983) *J. Virol.* 45:291), spumaviruses and lentiviruses. See RNA Tumor Viruses, Second Edition, Cold Spring Harbor Laboratory, 1985.

Portions of the retroviral gene therapy vector may be derived from different retroviruses. For example, retrovector LTRs may be derived from a Murine Sarcoma Virus, a tRNA binding site from a Rous Sarcoma Virus, a packaging signal from a Murine Leukemia Virus, and an origin of second strand synthesis from an Avian Leukosis Virus.

5

10

15

20

25

These recombinant retroviral vectors may be used to generate transduction competent retroviral vector particles by introducing them into appropriate packaging cell lines (see US patent 5,591,624). Retrovirus vectors can be constructed for site-specific integration into host cell DNA by incorporation of a chimeric integrase enzyme into the retroviral particle (see WO96/37626). It is preferable that the recombinant viral vector is a replication defective recombinant virus.

Packaging cell lines suitable for use with the above-described retrovirus vectors are well known in the art, are readily prepared (see WO95/30763 and WO92/05266), and can be used to create producer cell lines (also termed vector cell lines or "VCLs") for the production of recombinant vector particles. Preferably, the packaging cell lines are made from human parent cells (eg. HT1080 cells) or mink parent cell lines, which eliminates inactivation in human serum.

Preferred retroviruses for the construction of retroviral gene therapy vectors include Avian Leukosis Virus, Bovine Leukemia, Virus, Murine Leukemia Virus, Mink-Cell Focus-Inducing Virus, Murine Sarcoma Virus, Reticuloendotheliosis Virus and Rous Sarcoma Virus. Particularly preferred Murine Leukemia Viruses include 4070A and 1504A (Hartley and Rowe (1976) *J Virol* 19:19-25), Abelson (ATCC No. VR-999), Friend (ATCC No. VR-245), Graffi, Gross (ATCC Nol VR-590), Kirsten, Harvey Sarcoma Virus and Rauscher (ATCC No. VR-998) and Moloney Murine Leukemia Virus (ATCC No. VR-190). Such retroviruses may be obtained from depositories or collections such as the American Type Culture Collection ("ATCC") in Rockville, Maryland or isolated from known sources using commonly available techniques.

Exemplary known retroviral gene therapy vectors employable in this invention include those described in patent applications GB2200651, EP0415731, EP0345242, EP0334301, WO89/02468; WO89/05349, WO89/09271, WO90/02806, WO90/07936, WO94/03622, WO93/25698,

WO93/25234, WO93/11230, WO93/10218, WO91/02805, WO91/02825, WO95/07994, US 5,219,740, US 4,405,712, US 4,861,719, US 4,980,289, US 4,777,127, US 5,591,624. See also Vile (1993) Cancer Res 53:3860-3864; Vile (1993) Cancer Res 53:962-967; Ram (1993) Cancer Res 53 (1993) 83-88; Takamiya (1992) J Neurosci Res 33:493-503; Baba (1993) J Neurosurg 79:729-735; Mann (1983) Cell 33:153; Cane (1984) Proc Natl Acad Sci 81:6349; and Miller (1990) Human Gene Therapy 1.

5

10

15

20

25

30

Human adenoviral gene therapy vectors are also known in the art and employable in this invention. See. for example, Berkner (1988) Biotechniques 6:616 and Rosenfeld (1991) Science 252:431, and WO93/07283, WO93/06223, and WO93/07282. Exemplary known adenoviral gene therapy vectors employable in this invention include those described in the above referenced documents and in WO94/12649, WO93/03769, WO93/19191, WO94/28938, WO95/11984, WO95/00655, WO95/27071, WO95/29993, WO95/34671, WO96/05320, WO94/08026, WO94/11506, WO93/06223, WO94/24299, WO95/14102, WO95/24297, WO95/02697, WO94/28152, WO94/24299, WO95/09241, WO95/25807, WO95/05835, WO94/18922 and WO95/09654. Alternatively, administration of DNA linked to killed adenovirus as described in Curiel (1992) Hum. Gene Ther. 3:147-154 may be employed. The gene delivery vehicles of the invention also include adenovirus associated virus (AAV) vectors. Leading and preferred examples of such vectors for use in this invention are the AAV-2 based vectors disclosed in Srivastava, WO93/09239. Most preferred AAV vectors comprise the two AAV inverted terminal repeats in which the native D-sequences are modified by substitution of nucleotides, such that at least 5 native nucleotides and up to 18 native nucleotides, preferably at least 10 native nucleotides up to 18 native nucleotides, most preferably 10 native nucleotides are retained and the remaining nucleotides of the D-sequence are deleted or replaced with non-native nucleotides. The native D-sequences of the AAV inverted terminal repeats are sequences of 20 consecutive nucleotides in each AAV inverted terminal repeat (ie. there is one sequence at each end) which are not involved in HP formation. The non-native replacement nucleotide may be any nucleotide other than the nucleotide found in the native D-sequence in the same position. Other employable exemplary AAV vectors are pWP-19, pWN-1, both of which are disclosed in Nahreini (1993) Gene 124:257-262. Another example of such an AAV vector is psub201 (see Samulski (1987) J. Virol. 61:3096). Another exemplary AAV vector is the Double-D ITR vector. Construction of the Double-D ITR vector is disclosed in US Patent 5,478,745. Still other vectors are those disclosed in Carter US Patent 4,797,368 and

Muzyczka US Patent 5,139,941, Chartejee US Patent 5,474,935, and Kotin WO94/288157. Yet a further example of an AAV vector employable in this invention is SSV9AFABTKneo, which contains the AFP enhancer and albumin promoter and directs expression predominantly in the liver. Its structure and construction are disclosed in Su (1996) *Human Gene Therapy* 7:463-470. Additional AAV gene therapy vectors are described in US 5,354,678, US 5,173,414, US 5,139,941, and US 5,252,479.

5

10

15

20

25

The gene therapy vectors of the invention also include herpes vectors. Leading and preferred examples are herpes simplex virus vectors containing a sequence encoding a thymidine kinase polypeptide such as those disclosed in US 5,288,641 and EP0176170 (Roizman). Additional exemplary herpes simplex virus vectors include HFEM/ICP6-LacZ disclosed in WO95/04139 (Wistar Institute), pHSVlac described in Geller (1988) *Science* 241:1667-1669 and in WO90/09441 and WO92/07945, HSV Us3::pgC-lacZ described in Fink (1992) *Human Gene Therapy* 3:11-19 and HSV 7134, 2 RH 105 and GAL4 described in EP 0453242 (Breakefield), and those deposited with the ATCC as accession numbers ATCC VR-977 and ATCC VR-260.

Also contemplated are alpha virus gene therapy vectors that can be employed in this invention. Preferred alpha virus vectors are Sindbis viruses vectors. Togaviruses, Semliki Forest virus (ATCC VR-67; ATCC VR-1247), Middleberg virus (ATCC VR-370), Ross River virus (ATCC VR-373; ATCC VR-1246), Venezuelan equine encephalitis virus (ATCC VR923; ATCC VR-1250; ATCC VR-1249; ATCC VR-532), and those described in US patents 5,091,309, 5,217,879, and WO92/10578. More particularly, those alpha virus vectors described in US Serial No. 08/405,627, filed March 15, 1995, WO94/21792, WO92/10578, WO95/07994, US 5,091,309 and US 5,217,879 are employable. Such alpha viruses may be obtained from depositories or collections such as the ATCC in Rockville, Maryland or isolated from known sources using commonly available techniques. Preferably, alphavirus vectors with reduced cytotoxicity are used (see USSN 08/679640).

DNA vector systems such as eukaryotic layered expression systems are also useful for expressing the nucleic acids of the invention. See WO95/07994 for a detailed description of eukaryotic layered expression systems. Preferably, the eukaryotic layered expression systems of the invention are derived from alphavirus vectors and most preferably from Sindbis viral vectors.

5

10

15

20

25

30

Other viral vectors suitable for use in the present invention include those derived from poliovirus, for example ATCC VR-58 and those described in Evans, Nature 339 (1989) 385 and Sabin (1973) J. Biol. Standardization 1:115; rhinovirus, for example ATCC VR-1110 and those described in Arnold (1990) J Cell Biochem L401; pox viruses such as canary pox virus or vaccinia virus, for example ATCC VR-111 and ATCC VR-2010 and those described in Fisher-Hoch (1989) Proc Natl Acad Sci 86:317; Flexner (1989) Ann NY Acad Sci 569:86, Flexner (1990) Vaccine 8:17; in US 4,603,112 and US 4,769,330 and WO89/01973; SV40 virus, for example ATCC VR-305 and those described in Mulligan (1979) Nature 277:108 and Madzak (1992) J Gen Virol 73:1533; influenza virus, for example ATCC VR-797 and recombinant influenza viruses made employing reverse genetics techniques as described in US 5,166,057 and in Enami (1990) Proc Natl Acad Sci 87:3802-3805; Enami & Palese (1991) J Virol 65:2711-2713 and Luytjes (1989) Cell 59:110, (see also McMichael (1983) NEJ Med 309:13, and Yap (1978) Nature 273:238 and Nature (1979) 277:108); human immunodeficiency virus as described in EP-0386882 and in Buchschacher (1992) J. Virol. 66:2731; measles virus, for example ATCC VR-67 and VR-1247 and those described in EP-0440219; Aura virus, for example ATCC VR-368; Bebaru virus, for example ATCC VR-600 and ATCC VR-1240; Cabassou virus, for example ATCC VR-922; Chikungunya virus, for example ATCC VR-64 and ATCC VR-1241; Fort Morgan Virus, for example ATCC VR-924; Getah virus, for example ATCC VR-369 and ATCC VR-1243; Kyzylagach virus, for example ATCC VR-927; Mayaro virus, for example ATCC VR-66; Mucambo virus, for example ATCC VR-580 and ATCC VR-1244; Ndumu virus, for example ATCC VR-371; Pixuna virus, for example ATCC VR-372 and ATCC VR-1245; Tonate virus, for example ATCC VR-925; Triniti virus, for example ATCC VR-469; Una virus, for example ATCC VR-374; Whataroa virus, for example ATCC VR-926; Y-62-33 virus, for example ATCC VR-375; O'Nyong virus, Eastern encephalitis virus, for example ATCC VR-65 and ATCC VR-1242; Western encephalitis virus, for example ATCC VR-70, ATCC VR-1251, ATCC VR-622 and ATCC VR-1252; and coronavirus, for example ATCC VR-740 and those described in Hamre (1966) Proc Soc Exp Biol Med 121:190.

Delivery of the compositions of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods and media may be employed such as, for example, nucleic acid expression vectors, polycationic condensed DNA linked or unlinked to killed adenovirus alone, for example see US Serial No. 08/366,787, filed December 30, 1994 and Curiel (1992) *Hum Gene Ther* 3:147-154 ligand linked DNA, for example see Wu (1989) *J Biol Chem* 264:16985-16987, eucaryotic cell delivery vehicles cells, for example see US Serial No.08/240,030, filed May 9,

1994, and US Serial No. 08/404,796, deposition of photopolymerized hydrogel materials, hand-held gene transfer particle gun, as described in US Patent 5,149,655, ionizing radiation as described in US5,206,152 and in WO92/11033, nucleic charge neutralization or fusion with cell membranes. Additional approaches are described in Philip (1994) *Mol Cell Biol* 14:2411-2418 and in Woffendin (1994) *Proc Natl Acad Sci* 91:1581-1585.

5

10

15

20

25

30

Particle mediated gene transfer may be employed, for example see US Serial No. 60/023,867. Briefly, the sequence can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, as described in Wu & Wu (1987) *J. Biol. Chem.* 262:4429-4432, insulin as described in Hucked (1990) *Biochem Pharmacol* 40:253-263, galactose as described in Plank (1992) *Bioconjugate Chem* 3:533-539, lactose or transferrin.

Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in WO 90/11092 and US 5,580,859. Uptake efficiency may be improved using biodegradable latex beads. DNA coated latex beads are efficiently transported into cells after endocytosis initiation by the beads. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm.

Liposomes that can act as gene delivery vehicles are described in US 5,422,120, WO95/13796, WO94/23697, WO91/14445 and EP-524,968. As described in USSN. 60/023,867, on non-viral delivery, the nucleic acid sequences encoding a polypeptide can be inserted into conventional vectors that contain conventional control sequences for high level expression, and then be incubated with synthetic gene transfer molecules such as polymeric DNA-binding cations like polylysine, protamine, and albumin, linked to cell targeting ligands such as asialoorosomucoid, insulin, galactose, lactose, or transferrin. Other delivery systems include the use of liposomes to encapsulate DNA comprising the gene under the control of a variety of tissue-specific or ubiquitously-active promoters. Further non-viral delivery suitable for use includes mechanical delivery systems such as the approach described in Woffendin *et al* (1994) *Proc. Natl. Acad. Sci. USA* 91(24):11581-11585. Moreover, the coding sequence and the product of expression of such can be delivered through deposition of photopolymerized hydrogel materials. Other conventional methods for gene delivery that can be used for delivery of the coding sequence include, for example, use of

hand-held gene transfer particle gun, as described in US 5,149,655; use of ionizing radiation for activating transferred gene, as described in US 5,206,152 and WO92/11033

Exemplary liposome and polycationic gene delivery vehicles are those described in US 5,422,120 and 4,762,915; in WO 95/13796; WO94/23697; and WO91/14445; in EP-0524968; and in Stryer, Biochemistry, pages 236-240 (1975) W.H. Freeman, San Francisco; Szoka (1980) Biochem Biophys Acta 600:1; Bayer (1979) Biochem Biophys Acta 550:464; Rivnay (1987) Meth Enzymol 149:119; Wang (1987) Proc Natl Acad Sci 84:7851; Plant (1989) Anal Biochem 176:420.

A polynucleotide composition can comprises therapeutically effective amount of a gene therapy vehicle, as the term is defined above. For purposes of the present invention, an effective dose will be from about 0.01 mg/kg to 50 mg/kg or 0.05 mg/kg to about 10 mg/kg of the DNA constructs in the individual to which it is administered.

Delivery Methods

5

10

15

20

25

Once formulated, the polynucleotide compositions of the invention can be administered (1) directly to the subject; (2) delivered *ex vivo*, to cells derived from the subject; or (3) *in vitro* for expression of recombinant proteins. The subjects to be treated can be mammals or birds. Also, human subjects can be treated.

Direct delivery of the compositions will generally be accomplished by injection, either subcutaneously, intraperitoneally, intravenously or intramuscularly or delivered to the interstitial space of a tissue. The compositions can also be administered into a lesion. Other modes of administration include oral and pulmonary administration, suppositories, and transdermal or transcutaneous applications (eg. see WO98/20734), needles, and gene guns or hyposprays. Dosage treatment may be a single dose schedule or a multiple dose schedule.

Methods for the *ex vivo* delivery and reimplantation of transformed cells into a subject are known in the art and described in *eg.* WO93/14778. Examples of cells useful in ex vivo applications include, for example, stem cells, particularly hematopoetic, lymph cells, macrophages, dendritic cells, or tumor cells.

Generally, delivery of nucleic acids for both ex vivo and in vitro applications can be accomplished by the following procedures, for example, dextran-mediated transfection, calcium phosphate precipitation, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the DNA into nuclei, all well known in the art.

Polynucleotide and polypeptide pharmaceutical compositions

In addition to the pharmaceutically acceptable carriers and salts described above, the following additional agents can be used with polynucleotide and/or polypeptide compositions.

A.Polypeptides

5

One example are polypeptides which include, without limitation: asioloorosomucoid (ASOR); transferrin; asialoglycoproteins; antibodies; antibody fragments; ferritin; interleukins; interferons, granulocyte, macrophage colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-CSF), macrophage colony stimulating factor (M-CSF), stem cell factor and erythropoietin. Viral antigens, such as envelope proteins, can also be used. Also, proteins from other invasive organisms, such as the 17 amino acid peptide from the circumsporozoite protein of plasmodium falciparum known as RII.

B.Hormones, Vitamins, etc.

Other groups that can be included are, for example: hormones, steroids, androgens, estrogens, thyroid hormone, or vitamins, folic acid.

20 <u>C.Polyalkylenes, Polysaccharides, etc.</u>

Also, polyalkylene glycol can be included with the desired polynucleotides/polypeptides. In a preferred embodiment, the polyalkylene glycol is polyethlylene glycol. In addition, mono-, di-, or polysaccharides can be included. In a preferred embodiment of this aspect, the polysaccharide is dextran or DEAE-dextran. Also, chitosan and poly(lactide-co-glycolide)

25 D.Lipids, and Liposomes

The desired polynucleotide/polypeptide can also be encapsulated in lipids or packaged in liposomes prior to delivery to the subject or to cells derived therefrom.

5

10

15

20

25

Lipid encapsulation is generally accomplished using liposomes which are able to stably bind or entrap and retain nucleic acid. The ratio of condensed polynucleotide to lipid preparation can vary but will generally be around 1:1 (mg DNA:micromoles lipid), or more of lipid. For a review of the use of liposomes as carriers for delivery of nucleic acids, see, Hug and Sleight (1991) *Biochim. Biophys. Acta.* 1097:1-17; Straubinger (1983) *Meth. Enzymol.* 101:512-527.

Liposomal preparations for use in the present invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Felgner (1987) *Proc. Natl. Acad. Sci. USA* 84:7413-7416); mRNA (Malone (1989) *Proc. Natl. Acad. Sci. USA* 86:6077-6081); and purified transcription factors (Debs (1990) *J. Biol. Chem.* 265:10189-10192), in functional form.

Cationic liposomes are readily available. For example, N[1-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, NY. (See, also, Felgner *supra*). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boerhinger). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, *eg.* Szoka (1978) *Proc. Natl. Acad. Sci. USA* 75:4194-4198; WO90/11092 for a description of the synthesis of DOTAP (1,2-bis(oleoyloxy)-3-(trimethylammonio)propane) liposomes.

Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, AL), or can be easily prepared using readily available materials. Such materials include phosphatidyl choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.

The liposomes can comprise multilammelar vesicles (MLVs), small unilamellar vesicles (SUVs), or large unilamellar vesicles (LUVs). The various liposome-nucleic acid complexes are prepared using methods known in the art. See eg. Straubinger (1983) Meth. Immunol. 101:512-527; Szoka (1978) Proc. Natl. Acad. Sci. USA 75:4194-4198; Papahadjopoulos (1975) Biochim. Biophys. Acta 394:483; Wilson (1979) Cell 17:77); Deamer & Bangham (1976) Biochim. Biophys. Acta 443:629; Ostro (1977) Biochem. Biophys. Res. Commun. 76:836; Fraley (1979) Proc. Natl. Acad. Sci. USA

PCT/IB99/00103

76:3348); Enoch & Strittmatter (1979) Proc. Natl. Acad. Sci. USA 76:145; Fraley (1980) J. Biol. Chem. (1980) 255:10431; Szoka & Papahadjopoulos (1978) Proc. Natl. Acad. Sci. USA 75:145; and Schaefer-Ridder (1982) Science 215:166.

E.Lipoproteins

20

25

5 In addition, lipoproteins can be included with the polynucleotide/polypeptide to be delivered. Examples of lipoproteins to be utilized include: chylomicrons, HDL, IDL, LDL, and VLDL. Mutants, fragments, or fusions of these proteins can also be used. Also, modifications of naturally occurring lipoproteins can be used, such as acetylated LDL. These lipoproteins can target the delivery of polynucleotides to cells expressing lipoprotein receptors. Preferably, if lipoproteins are including with 10 the polynucleotide to be delivered, no other targeting ligand is included in the composition.

Naturally occurring lipoproteins comprise a lipid and a protein portion. The protein portion are known as apoproteins. At the present, apoproteins A, B, C, D, and E have been isolated and identified. At least two of these contain several proteins, designated by Roman numerals, AI, AII, AIV; CI, CII, CIII.

15 A lipoprotein can comprise more than one apoprotein. For example, naturally occurring chylomicrons comprises of A, B, C, and E, over time these lipoproteins lose A and acquire C and E apoproteins, VLDL comprises A, B, C, and E apoproteins, LDL comprises apoprotein B; and HDL comprises apoproteins A, C, and E.

The amino acid of these apoproteins are known and are described in, for example, Breslow (1985) Annu Rev. Biochem 54:699; Law (1986) Adv. Exp Med. Biol. 151:162; Chen (1986) J Biol Chem 261:12918; Kane (1980) Proc Natl Acad Sci USA 77:2465; and Utermann (1984) Hum Genet 65:232.

Lipoproteins contain a variety of lipids including, triglycerides, cholesterol (free and esters), and phospholipids. The composition of the lipids varies in naturally occurring lipoproteins. For example, chylomicrons comprise mainly triglycerides. A more detailed description of the lipid content of naturally occurring lipoproteins can be found, for example, in Meth. Enzymol. 128 (1986). The composition of the lipids are chosen to aid in conformation of the apoprotein for receptor binding activity. The composition of lipids can also be chosen to facilitate hydrophobic interaction and association with the polynucleotide binding molecule.

Naturally occurring lipoproteins can be isolated from serum by ultracentrifugation, for instance. Such methods are described in *Meth. Enzymol.* (supra); Pitas (1980) J. Biochem. 255:5454-5460 and Mahey (1979) J Clin. Invest 64:743-750. Lipoproteins can also be produced by in vitro or recombinant methods by expression of the apoprotein genes in a desired host cell. See, for example, Atkinson (1986) Annu Rev Biophys Chem 15:403 and Radding (1958) Biochim Biophys Acta 30: 443. Lipoproteins can also be purchased from commercial suppliers, such as Biomedical Techniologies, Inc., Stoughton, Massachusetts, USA. Further description of lipoproteins can be found in Zuckermann et al. PCT/US97/14465.

F.Polycationic Agents

5

15

20

Polycationic agents can be included, with or without lipoprotein, in a composition with the desired polynucleotide/polypeptide to be delivered.

Polycationic agents, typically, exhibit a net positive charge at physiological relevant pH and are capable of neutralizing the electrical charge of nucleic acids to facilitate delivery to a desired location. These agents have both in vitro, ex vivo, and in vivo applications. Polycationic agents can be used to deliver nucleic acids to a living subject either intramuscularly, subcutaneously, etc.

The following are examples of useful polypeptides as polycationic agents: polylysine, polyarginine, polyornithine, and protamine. Other examples include histones, protamines, human serum albumin, DNA binding proteins, non-histone chromosomal proteins, coat proteins from DNA viruses, such as (X174, transcriptional factors also contain domains that bind DNA and therefore may be useful as nucleic aid condensing agents. Briefly, transcriptional factors such as C/CEBP, c-jun, c-fos, AP-1, AP-2, AP-3, CPF, Prot-1, Sp-1, Oct-1, Oct-2, CREP, and TFIID contain basic domains that bind DNA sequences.

Organic polycationic agents include: spermine, spermidine, and purtrescine.

The dimensions and of the physical properties of a polycationic agent can be extrapolated from the list above, to construct other polypeptide polycationic agents or to produce synthetic polycationic agents.

Synthetic polycationic agents which are useful include, for example, DEAE-dextran, polybrene. LipofectinTM, and lipofectAMINETM are monomers that form polycationic complexes when combined with polynucleotides/polypeptides.

Immunodiagnostic Assays

5

10

15

20

25

30

Neisserial antigens of the invention can be used in immunoassays to detect antibody levels (or, conversely, anti-Neisserial antibodies can be used to detect antigen levels). Immunoassays based on well defined, recombinant antigens can be developed to replace invasive diagnostics methods. Antibodies to Neisserial proteins within biological samples, including for example, blood or serum samples, can be detected. Design of the immunoassays is subject to a great deal of variation, and a variety of these are known in the art. Protocols for the immunoassay may be based, for example, upon competition, or direct reaction, or sandwich type assays. Protocols may also, for example, use solid supports, or may be by immunoprecipitation. Most assays involve the use of labeled antibody or polypeptide; the labels may be, for example, fluorescent, chemiluminescent, radioactive, or dye molecules. Assays which amplify the signals from the probe are also known; examples of which are assays which utilize biotin and avidin, and enzyme-labeled and mediated immunoassays, such as ELISA assays.

Kits suitable for immunodiagnosis and containing the appropriate labeled reagents are constructed by packaging the appropriate materials, including the compositions of the invention, in suitable containers, along with the remaining reagents and materials (for example, suitable buffers, salt solutions, *etc.*) required for the conduct of the assay, as well as suitable set of assay instructions.

Nucleic Acid Hybridisation

"Hybridization" refers to the association of two nucleic acid sequences to one another by hydrogen bonding. Typically, one sequence will be fixed to a solid support and the other will be free in solution. Then, the two sequences will be placed in contact with one another under conditions that favor hydrogen bonding. Factors that affect this bonding include: the type and volume of solvent; reaction temperature; time of hybridization; agitation; agents to block the non-specific attachment of the liquid phase sequence to the solid support (Denhardt's reagent or BLOTTO); concentration of the sequences; use of compounds to increase the rate of association of sequences (dextran sulfate or polyethylene glycol); and the stringency of the washing conditions following hybridization. See Sambrook *et al.* [supra] Volume 2, chapter 9, pages 9.47 to 9.57.

"Stringency" refers to conditions in a hybridization reaction that favor association of very similar sequences over sequences that differ. For example, the combination of temperature and salt concentration should be chosen that is approximately 120 to 200°C below the calculated Tm of the hybrid under study. The temperature and salt conditions can often be determined empirically in preliminary experiments in which samples of genomic DNA immobilized on filters are hybridized to the sequence of interest and then washed under conditions of different stringencies. See Sambrook *et al.* at page 9.50.

5

10

15

20

Variables to consider when performing, for example, a Southern blot are (1) the complexity of the DNA being blotted and (2) the homology between the probe and the sequences being detected. The total amount of the fragment(s) to be studied can vary a magnitude of 10, from 0.1 to 1μg for a plasmid or phage digest to 10⁻⁹ to 10⁻⁸ g for a single copy gene in a highly complex eukaryotic genome. For lower complexity polynucleotides, substantially shorter blotting, hybridization, and exposure times, a smaller amount of starting polynucleotides, and lower specific activity of probes can be used. For example, a single-copy yeast gene can be detected with an exposure time of only 1 hour starting with 1 μg of yeast DNA, blotting for two hours, and hybridizing for 4-8 hours with a probe of 10⁸ cpm/μg. For a single-copy mammalian gene a conservative approach would start with 10 μg of DNA, blot overnight, and hybridize overnight in the presence of 10% dextran sulfate using a probe of greater than 10⁸ cpm/μg, resulting in an exposure time of ~24 hours.

Several factors can affect the melting temperature (Tm) of a DNA-DNA hybrid between the probe and the fragment of interest, and consequently, the appropriate conditions for hybridization and washing. In many cases the probe is not 100% homologous to the fragment. Other commonly encountered variables include the length and total G+C content of the hybridizing sequences and the ionic strength and formamide content of the hybridization buffer. The effects of all of these factors can be approximated by a single equation:

Tm=
$$81 + 16.6(\log_{10}Ci) + 0.4[\%(G + C)] - 0.6(\%formamide) - 600/n-1.5(\%mismatch)$$
.

where Ci is the salt concentration (monovalent ions) and n is the length of the hybrid in base pairs (slightly modified from Meinkoth & Wahl (1984) Anal. Biochem. 138: 267-284).

In designing a hybridization experiment, some factors affecting nucleic acid hybridization can be conveniently altered. The temperature of the hybridization and washes and the salt concentration during the washes are the simplest to adjust. As the temperature of the hybridization increases (*ie.* stringency), it becomes less likely for hybridization to occur between strands that are nonhomologous, and as a result, background decreases. If the radiolabeled probe is not completely homologous with the immobilized fragment (as is frequently the case in gene family and interspecies hybridization experiments), the hybridization temperature must be reduced, and background will increase. The temperature of the washes affects the intensity of the hybridizing band and the degree of background in a similar manner. The stringency of the washes is also increased with decreasing salt concentrations.

In general, convenient hybridization temperatures in the presence of 50% formamide are 42°C for a probe with is 95% to 100% homologous to the target fragment, 37°C for 90% to 95% homology, and 32°C for 85% to 90% homology. For lower homologies, formamide content should be lowered and temperature adjusted accordingly, using the equation above. If the homology between the probe and the target fragment are not known, the simplest approach is to start with both hybridization and wash conditions which are nonstringent. If non-specific bands or high background are observed after autoradiography, the filter can be washed at high stringency and reexposed. If the time required for exposure makes this approach impractical, several hybridization and/or washing stringencies should be tested in parallel.

20 Nucleic Acid Probe Assays

5

10

15

Methods such as PCR, branched DNA probe assays, or blotting techniques utilizing nucleic acid probes according to the invention can determine the presence of cDNA or mRNA. A probe is said to "hybridize" with a sequence of the invention if it can form a duplex or double stranded complex, which is stable enough to be detected.

The nucleic acid probes will hybridize to the Neisserial nucleotide sequences of the invention (including both sense and antisense strands). Though many different nucleotide sequences will encode the amino acid sequence, the native Neisserial sequence is preferred because it is the actual sequence present in cells. mRNA represents a coding sequence and so a probe should be complementary to the coding sequence; single-stranded cDNA is complementary to mRNA, and so a cDNA probe should be complementary to the non-coding sequence.

The probe sequence need not be identical to the Neisserial sequence (or its complement) — some variation in the sequence and length can lead to increased assay sensitivity if the nucleic acid probe can form a duplex with target nucleotides, which can be detected. Also, the nucleic acid probe can include additional nucleotides to stabilize the formed duplex. Additional Neisserial sequence may also be helpful as a label to detect the formed duplex. For example, a non-complementary nucleotide sequence may be attached to the 5' end of the probe, with the remainder of the probe sequence being complementary to a Neisserial sequence. Alternatively, non-complementary bases or longer sequences can be interspersed into the probe, provided that the probe sequence has sufficient complementarity with the a Neisserial sequence in order to hybridize therewith and thereby form a duplex which can be detected.

5

10

15

The exact length and sequence of the probe will depend on the hybridization conditions, such as temperature, salt condition and the like. For example, for diagnostic applications, depending on the complexity of the analyte sequence, the nucleic acid probe typically contains at least 10-20 nucleotides, preferably 15-25, and more preferably at least 30 nucleotides, although it may be shorter than this. Short primers generally require cooler temperatures to form sufficiently stable hybrid complexes with the template.

Probes may be produced by synthetic procedures, such as the triester method of Matteucci et al. [J. Am. Chem. Soc. (1981) 103:3185], or according to Urdea et al. [Proc. Natl. Acad. Sci. USA (1983) 80: 7461], or using commercially available automated oligonucleotide synthesizers.

The chemical nature of the probe can be selected according to preference. For certain applications, DNA or RNA are appropriate. For other applications, modifications may be incorporated eg. backbone modifications, such as phosphorothioates or methylphosphonates, can be used to increase in vivo half-life, alter RNA affinity, increase nuclease resistance etc. [eg. see Agrawal & Iyer (1995) Curr Opin Biotechnol 6:12-19; Agrawal (1996) TIBTECH 14:376-387]; analogues such as peptide nucleic acids may also be used [eg. see Corey (1997) TIBTECH 15:224-229; Buchardt et al. (1993) TIBTECH 11:384-386].

Alternatively, the polymerase chain reaction (PCR) is another well-known means for detecting small amounts of target nucleic acids. The assay is described in: Mullis *et al.* [Meth. Enzymol. (1987) 155: 335-350]; US patents 4,683,195 and 4,683,202. Two "primer" nucleotides hybridize

with the target nucleic acids and are used to prime the reaction. The primers can comprise sequence that does not hybridize to the sequence of the amplification target (or its complement) to aid with duplex stability or, for example, to incorporate a convenient restriction site. Typically, such sequence will flank the desired Neisserial sequence.

- A thermostable polymerase creates copies of target nucleic acids from the primers using the original target nucleic acids as a template. After a threshold amount of target nucleic acids are generated by the polymerase, they can be detected by more traditional methods, such as Southern blots. When using the Southern blot method, the labelled probe will hybridize to the Neisserial sequence (or its complement).
- Also, mRNA or cDNA can be detected by traditional blotting techniques described in Sambrook et al [supra]. mRNA, or cDNA generated from mRNA using a polymerase enzyme, can be purified and separated using gel electrophoresis. The nucleic acids on the gel are then blotted onto a solid support, such as nitrocellulose. The solid support is exposed to a labelled probe and then washed to remove any unhybridized probe. Next, the duplexes containing the labeled probe are detected.

 Typically, the probe is labelled with a radioactive moiety.

BRIEF DESCRIPTION OF THE DRAWINGS

20

25

Figures 1-7 show biochemical data and sequence analysis pertaining to Examples 1, 2, 3, 7, 13, 16 and 19, respectively, with ORFs 40, 38, 44, 52, 114, 41 and 124.. M1 and M2 are molecular weight markers. Arrows indicate the position of the main recombinant product or, in Western blots, the position of the main *N.meningitidis* immunoreactive band. TP indicates *N.meningitidis* total protein extract; OMV indicates *N.meningitidis* outer membrane vesicle preparation. In bactericidal assay results: a diamond (♠) shows preimmune data; a triangle (♠) shows GST control data; a circle (♠) shows data with recombinant *N.meningitidis* protein. Computer analyses show a hydrophilicity plot (upper), an antigenic index plot (middle), and an AMPHI analysis (lower). The AMPHI program has been used to predict T-cell epitopes [Gao *et al.* (1989) *J. Immunol.* 143:3007; Roberts *et al.* (1996) *AIDS Res Hum Retrovir* 12:593; Quakyi *et al.* (1992) *Scand J Immunol.* suppl.11:9) and is available in the Protean package of DNASTAR, Inc. (122° South Park Street, Madison, Wisconsin 53715 USA).

EXAMPLES

5

10

20

The examples describe nucleic acid sequences which have been identified in *N.meningitidis*, along with their putative translation products. Not all of the nucleic acid sequences are complete *ie.* they encode less than the full-length wild-type protein. It is believed at present that none of the DNA sequences described herein have significant homologs in *N.gonorrhoeae*.

The examples are generally in the following format:

- a nucleotide sequence which has been identified in N. meningitidis (strain B)
- the putative translation product of this sequence
- a computer analysis of the translation product based on database comparisons
- a corresponding gene and protein sequence identified in N. meningitidis (strain A)
 - a description of the characteristics of the proteins which indicates that they might be suitably antigenic
 - results of biochemical analysis (expression, purification, ELISA, FACS etc.)

The examples typically include details of sequence homology between species and strains. Proteins
that are similar in sequence are generally similar in both structure and function, and the homology
often indicates a common evolutionary origin. Comparison with sequences of proteins of known
function is widely used as a guide for the assignment of putative protein function to a new sequence
and has proved particularly useful in whole-genome analyses.

Sequence comparisons were performed at NCBI (http://www.ncbi.nlm.nih.gov) using the algorithms BLAST, BLAST2, BLAST1, BLAST2, tBLAST2, tBLAST2, & tBLAST2 [eg. see also Altschul et al. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25:2289-3402]. Searches were performed against the following databases: non-redundant GenBank+EMBL+DDBJ+PDB sequences and non-redundant GenBank CDS translations+PDB+SwissProt+SPupdate+PIR sequences.

Dots within nucleotide sequences (eg. position 288 in Example 12) represent nucleotides which have been arbitrarily introduced in order to maintain a reading frame. In the same way, double-underlined nucleotides were removed. Lower case letters (eg. position 589 in Example 12) represent ambiguities which arose during alignment of independent sequencing reactions (some of

the nucleotide sequences in the examples are derived from combining the results of two or more experiments).

Nucleotide sequences were scanned in all six reading frames to predict the presence of hydrophobic domains using an algorithm based on the statistical studies of Esposti et al. [Critical evaluation of the hydropathy of membrane proteins (1990) Eur J Biochem 190:207-219]. These domains represent potential transmembrane regions or hydrophobic leader sequences.

Open reading frames were predicted from fragmented nucleotide sequences using the program ORFFINDER (NCBI).

Underlined amino acid sequences indicate possible transmembrane domains or leader sequences in the ORFs, as predicted by the PSORT algorithm (http://www.psort.nibb.ac.jp). Functional domains were also predicted using the MOTIFS program (GCG Wisconsin & PROSITE).

Various tests can be used to assess the *in vivo* immunogenicity of the proteins identified in the examples. For example, the proteins can be expressed recombinantly and used to screen patient sera by immunoblot. A positive reaction between the protein and patient serum indicates that the patient has previously mounted an immune response to the protein in question *ie*. the protein is an immunogen. This method can also be used to identify immunodominant proteins.

The recombinant protein can also be conveniently used to prepare antibodies eg. in a mouse. These can be used for direct confirmation that a protein is located on the cell-surface. Labelled antibody (eg. fluorescent labelling for FACS) can be incubated with intact bacteria and the presence of label on the bacterial surface confirms the location of the protein.

In particular, the following methods (A) to (S) were used to express, purify and biochemically characterise the proteins of the invention:

A) Chromosomal DNA preparation

5

10

15

20

25

N.meningitidis strain 2996 was grown to exponential phase in 100ml of GC medium, harvested by centrifugation, and resuspended in 5ml buffer (20% Sucrose, 50mM Tris-HCl, 50mM EDTA, pH8). After 10 minutes incubation on ice, the bacteria were lysed by adding 10ml lysis solution (50mM NaCl, 1% Na-Sarkosyl, 50µg/ml Proteinase K), and the suspension was incubated at 37°C for 2

hours. Two phenol extractions (equilibrated to pH 8) and one ChCl₃/isoamylalcohol (24:1) extraction were performed. DNA was precipitated by addition of 0.3M sodium acetate and 2 volumes ethanol, and was collected by centrifugation. The pellet was washed once with 70% ethanol and redissolved in 4ml buffer (10mM Tris-HCl, 1mM EDTA, pH 8). The DNA concentration was measured by reading the OD at 260 nm.

PCT/IB99/00103

B) Oligonucleotide design

5

10

15

20

Synthetic oligonucleotide primers were designed on the basis of the coding sequence of each ORF, using (a) the meningococcus B sequence when available, or (b) the gonococcus/meningococcus A sequence, adapted to the codon preference usage of meningococcus as necessary. Any predicted signal peptides were omitted, by deducing the 5'-end amplification primer sequence immediately downstream from the predicted leader sequence.

The 5' primers included two restriction enzyme recognition sites (BamHI-NdeI, BamHI-NheI, or EcoRI-NheI, depending on the gene's own restriction pattern); the 3' primers included a XhoI restriction site. This procedure was established in order to direct the cloning of each amplification product (corresponding to each ORF) into two different expression systems: pGEX-KG (using either BamHI-XhoI or EcoRI-XhoI), and pET21b+ (using either NdeI-XhoI or NheI-XhoI).

As well as containing the restriction enzyme recognition sequences, the primers included nucleotides which hybridised to the sequence to be amplified. The number of hybridizing nucleotides depended on the melting temperature of the whole primer, and was determined for each primer using the formulae:

25
$$T_m = 4 (G+C)+2 (A+T)$$
 (tail excluded)
 $T_m = 64.9 + 0.41 (\% GC) - 600/N$ (whole primer)

The average melting temperature of the selected oligos were 65-70°C for the whole oligo and 50-55°C for the hybridising region alone.

PCT/IB99/00103

Table I shows the forward and reverse primers used for each amplification. Oligos were synthesized by a Perkin Elmer 394 DNA/RNA Synthesizer, eluted from the columns in 2ml NH₄OH, and deprotected by 5 hours incubation at 56°C. The oligos were precipitated by addition of 0.3M Na-Acetate and 2 volumes ethanol. The samples were then centrifuged and the pellets resuspended in either 100μl or 1ml of water. OD₂₆₀ was determined using a Perkin Elmer Lambda Bio spectrophotometer and the concentration was determined and adjusted to 2-10pmol/μl.

C) Amplification

5

10

15

The standard PCR protocol was as follows: 50-200ng of genomic DNA were used as a template in the presence of 20-40μM of each oligo, 400-800μM dNTPs solution, 1x PCR buffer (including 1.5mM MgCl₂), 2.5 units *TaqI* DNA polymerase (using Perkin-Elmer AmpliTaQ, GIBCO Platinum, Pwo DNA polymerase, or Tahara Shuzo Taq polymerase).

In some cases, PCR was optimised by the addition of 10µl DMSO or 50µl 2M betaine.

After a hot start (adding the polymerase during a preliminary 3 minute incubation of the whole mix at 95°C), each sample underwent a double-step amplification: the first 5 cycles were performed using as the hybridization temperature the one of the oligos excluding the restriction enzymes tail, followed by 30 cycles performed according to the hybridization temperature of the whole length oligos. The cycles were followed by a final 10 minute extension step at 72°C.

The standard cycles were as follows:

	Denaturation	Hybridisation	Elongation	
First 5 cycles	30 seconds	30 seconds	30-60 seconds	
That 5 cycles	95℃	50-55°C	72°C	
Last 30 cycles	30 seconds	30 seconds	30-60 seconds	
Last 50 tyolds	95℃	65-70°C	72°C	

The elongation time varied according to the length of the ORF to be amplified.

The amplifications were performed using either a 9600 or a 2400 Perkin Elmer GeneAmp PCR System. To check the results, 1/10 of the amplification volume was loaded onto a 1-1.5% agarose gel and the size of each amplified fragment compared with a DNA molecular weight marker.

The amplified DNA was either loaded directly on a 1% agarose gel or first precipitated with ethanol and resuspended in a suitable volume to be loaded on a 1% agarose gel. The DNA fragment corresponding to the right size band was then eluted and purified from gel, using the Qiagen Gel Extraction Kit, following the instructions of the manufacturer. The final volume of the DNA fragment was 30µl or 50µl of either water or 10mM Tris, pH 8.5.

D) Digestion of PCR fragments

5

15

20

- 10 The purified DNA corresponding to the amplified fragment was split into 2 aliquots and double-digested with:
 - NdeI/XhoI or NheI/XhoI for cloning into pET-21b+ and further expression of the protein as a C-terminus His-tag fusion
 - BamHI/XhoI or EcoRI/XhoI for cloning into pGEX-KG and further expression of the protein as N-terminus GST fusion.
 - EcoRI/PstI, EcoRI/SalI, SalI/PstI for cloning into pGex-His and further expression of the protein as N-terminus His-tag fusion

Each purified DNA fragment was incubated (37°C for 3 hours to overnight) with 20 units of each restriction enzyme (New England Biolabs) in a either 30 or 40µl final volume in the presence of the appropriate buffer. The digestion product was then purified using the QIAquick PCR purification kit, following the manufacturer's instructions, and eluted in a final volume of 30 or 50µl of either water or 10mM Tris-HCl, pH 8.5. The final DNA concentration was determined by 1% agarose gel electrophoresis in the presence of titrated molecular weight marker.

E) Digestion of the cloning vectors (pET22B, pGEX-KG, pTRC-His A, and pGex-His)

25 10μg plasmid was double-digested with 50 units of each restriction enzyme in 200μl reaction volume in the presence of appropriate buffer by overnight incubation at 37°C. After loading the

whole digestion on a 1% agarose gel, the band corresponding to the digested vector was purified from the gel using the Qiagen QIAquick Gel Extraction Kit and the DNA was eluted in $50\mu l$ of 10mM Tris-HCl, pH 8.5. The DNA concentration was evaluated by measuring OD_{260} of the sample, and adjusted to $50\mu g/\mu l$. $1\mu l$ of plasmid was used for each cloning procedure.

The vector pGEX-His is a modified pGEX-2T vector carrying a region encoding six histidine residues upstream to the thrombin cleavage site and containing the multiple cloning site of the vector pTRC99 (Pharmacia).

F) Cloning

10

15

20

25

The fragments corresponding to each ORF, previously digested and purified, were ligated in both pET22b and pGEX-KG. In a final volume of 20µl, a molar ratio of 3:1 fragment/vector was ligated using 0.5µl of NEB T4 DNA ligase (400 units/µl), in the presence of the buffer supplied by the manufacturer. The reaction was incubated at room temperature for 3 hours. In some experiments, ligation was performed using the Boehringer "Rapid Ligation Kit", following the manufacturer's instructions.

In order to introduce the recombinant plasmid in a suitable strain, 100µl E. coli DH5 competent cells were incubated with the ligase reaction solution for 40 minutes on ice, then at 37°C for 3 minutes, then, after adding 800µl LB broth, again at 37°C for 20 minutes. The cells were then centrifuged at maximum speed in an Eppendorf microfuge and resuspended in approximately 200µl of the supernatant. The suspension was then plated on LB ampicillin (100mg/ml).

The screening of the recombinant clones was performed by growing 5 randomly-chosen colonies overnight at 37°C in either 2ml (pGEX or pTC clones) or 5ml (pET clones) LB broth + 100µg/ml ampicillin. The cells were then pelletted and the DNA extracted using the Qiagen QIAprep Spin Miniprep Kit, following the manufacturer's instructions, to a final volume of 30µl. 5µl of each individual miniprep (approximately 1g) were digested with either NdeI/XhoI or BamHI/XhoI and the whole digestion loaded onto a 1-1.5% agarose gel (depending on the expected insert size), in parallel with the molecular weight marker (1Kb DNA Ladder, GIBCO). The screening of the positive clones was made on the base of the correct insert size.

G) Expressi n

5

10

15

20

25

30

Each ORF cloned into the expression vector was transformed into the strain suitable for expression of the recombinant protein product. 1µl of each construct was used to transform 30µl of *E.coli* BL21 (pGEX vector), *E.coli* TOP 10 (pTRC vector) or *E.coli* BL21-DE3 (pET vector), as described above. In the case of the pGEX-His vector, the same *E.coli* strain (W3110) was used for initial cloning and expression. Single recombinant colonies were inoculated into 2ml LB+Amp (100µg/ml), incubated at 37°C overnight, then diluted 1:30 in 20ml of LB+Amp (100µg/ml) in 100ml flasks, making sure that the OD₆₀₀ ranged between 0.1 and 0.15. The flasks were incubated at 30°C into gyratory water bath shakers until OD indicated exponential growth suitable for induction of expression (0.4-0.8 OD for pET and pTRC vectors; 0.8-1 OD for pGEX and pGEX-His vectors). For the pET, pTRC and pGEX-His vectors, the protein expression was induced by addition of 1mM IPTG, whereas in the case of pGEX system the final concentration of IPTG was 0.2mM. After 3 hours incubation at 30°C, the final concentration of the sample was checked by OD. In order to check expression, 1ml of each sample was removed, centrifuged in a microfuge, the pellet resuspended in PBS, and analysed by 12% SDS-PAGE with Coomassie Blue staining. The whole sample was centrifuged at 6000g and the pellet resuspended in PBS for further use.

H) GST-fusion proteins large-scale purification.

A single colony was grown overnight at 37°C on LB+Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture in a water bath shaker and grown overnight. Bacteria were diluted 1:30 into 600ml of fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.8-1. Protein expression was induced with 0.2mM IPTG followed by three hours incubation. The culture was centrifuged at 8000rpm at 4°C. The supernatant was discarded and the bacterial pellet was resuspended in 7.5ml cold PBS. The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and centrifuged again. The supernatant was collected and mixed with 150µl Glutatione-Sepharose 4B resin (Pharmacia) (previously washed with PBS) and incubated at room temperature for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10ml cold PBS for 10 minutes, resuspended in 1ml cold PBS, and loaded on a disposable column. The resin was washed twice with 2ml cold PBS until the flow-through reached OD₂₈₀ of 0.02-0.06. The GST-fusion protein was eluted by addition of 700µl cold Glutathione elution buffer (10mM reduced

glutathione, 50mM Tris-HCl) and fractions collected until the OD₂₈₀ was 0.1. 21µl of each fraction were loaded on a 12% SDS gel using either Biorad SDS-PAGE Molecular weight standard broad range (M1) (200, 116.25, 97.4, 66.2, 45, 31, 21.5, 14.4, 6.5 kDa) or Amersham Rainbow Marker (M2) (220, 66, 46, 30, 21.5, 14.3 kDa) as standards. As the MW of GST is 26kDa, this value must be added to the MW of each GST-fusion protein.

I) His-fusion solubility analysis

5

10

15

20

To analyse the solubility of the His-fusion expression products, pellets of 3ml cultures were resuspended in buffer M1 [500µl PBS pH 7.2]. 25µl lysozyme (10mg/ml) was added and the bacteria were incubated for 15 min at 4°C. The pellets were sonicated for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed twice and then separated again into pellet and supernatant by a centrifugation step. The supernatant was collected and the pellet was resuspended in buffer M2 [8M urea, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂ PO₄] and incubated for 3 to 4 hours at 4°C. After centrifugation, the supernatant was collected and the pellet was resuspended in buffer M3 [6M guanidinium-HCl, 0.5M NaCl, 20mM imidazole and 0.1M NaH₂PO₄] overnight at 4°C. The supernatants from all steps were analysed by SDS-PAGE.

J) His-fusion large-scale purification.

A single colony was grown overnight at 37°C on a LB + Amp agar plate. The bacteria were inoculated into 20ml of LB+Amp liquid culture and incubated overnight in a water bath shaker. Bacteria were diluted 1:30 into 600ml fresh medium and allowed to grow at the optimal temperature (20-37°C) to OD₅₅₀ 0.6-0.8. Protein expression was induced by addition of 1mM IPTG and the culture further incubated for three hours. The culture was centrifuged at 8000rpm at 4°C, the supernatant was discarded and the bacterial pellet was resuspended in 7.5ml of either (i) cold buffer A (300mM NaCl, 50mM phosphate buffer, 10mM imidazole, pH 8) for soluble proteins or (ii) buffer B (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 8.8) for insoluble proteins.

The cells were disrupted by sonication on ice for 30 sec at 40W using a Branson sonifier B-15, frozen and thawed two times and centrifuged again.

For insoluble proteins, the supernatant was stored at -20°C, while the pellets were resuspended in 2ml buffer C (6M guanidine hydrochloride, 100mM phosphate buffer, 10mM Tris-HCl, pH 7.5) and treated in a homogenizer for 10 cycles. The product was centrifuged at 13000rpm for 40 minutes.

Supernatants were collected and mixed with 150µl Ni²⁺-resin (Pharmacia) (previously washed with either buffer A or buffer B, as appropriate) and incubated at room temperature with gentle agitation for 30 minutes. The sample was centrifuged at 700g for 5 minutes at 4°C. The resin was washed twice with 10ml buffer A or B for 10 minutes, resuspended in 1ml buffer A or B and loaded on a disposable column. The resin was washed at either (i) 4°C with 2ml cold buffer A or (ii) room temperature with 2ml buffer B, until the flow-through reached OD₂₈₀ of 0.02-0.06.

The resin was washed with either (i) 2ml cold 20mM imidazole buffer (300mM NaCl, 50mM phosphate buffer, 20mM imidazole, pH 8) or (ii) buffer D (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 6.3) until the flow-through reached the O.D₂₈₀ of 0.02-0.06. The His-fusion protein was eluted by addition of 700μl of either (i) cold elution buffer A (300mM NaCl, 50mM phosphate buffer, 250mM imidazole, pH 8) or (ii) elution buffer B (urea 8M, 10mM Tris-HCl, 100mM phosphate buffer, pH 4.5) and fractions collected until the O.D₂₈₀ was 0.1. 21μl of each fraction were loaded on a 12% SDS gel.

K) His-fusion proteins renaturation

5

20

10% glycerol was added to the denatured proteins. The proteins were then diluted to 20µg/ml using dialysis buffer I (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, 2M urea, pH 8.8) and dialysed against the same buffer at 4°C for 12-14 hours. The protein was further dialysed against dialysis buffer II (10% glycerol, 0.5M arginine, 50mM phosphate buffer, 5mM reduced glutathione, 0.5mM oxidised glutathione, pH 8.8) for 12-14 hours at 4°C. Protein concentration was evaluated using the formula:

Protein (mg/ml) =
$$(1.55 \times OD_{280}) - (0.76 \times OD_{260})$$

25 L) His-fusion large-scale purification

500ml of bacterial cultures were induced and the fusion proteins were obtained soluble in buffer M1, M2 or M3 using the procedure described above. The crude extract of the bacteria was loaded

onto a Ni-NTA superflow column (Qiagen) equilibrated with buffer M1, M2 or M3 depending on the solubilization buffer of the fusion proteins. Unbound material was eluted by washing the column with the same buffer. The specific protein was eluted with the corresponding buffer containing 500mM imidazole and dialysed against the corresponding buffer without imidazole. After each run the columns were sanitized by washing with at least two column volumes of 0.5 M sodium hydroxide and reequilibrated before the next use.

M) Mice immunisations

5

10

15

20

25

20μg of each purified protein were used to immunise mice intraperitoneally. In the case of ORF 44, CD1 mice were immunised with Al(OH)₃ as adjuvant on days 1, 21 and 42, and immune response was monitored in samples taken on day 56. For ORF 40, CD1 mice were immunised using Freund's adjuvant, rather than Al(OH)₃, and the same immunisation protocol was used, except that the immune response was measured on day 42, rather than 56. Similarly, for ORF 38, CD1 mice were immunised with Freund's adjuvant, but the immune response was measured on day 49.

N) ELISA assay (sera analysis)

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 7ml of Mueller-Hinton Broth (Difco) containing 0.25% Glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.3-0.4. The culture was centrifuged for 10 minutes at 10000rpm. The supernatant was discarded and bacteria were washed once with PBS, resuspended in PBS containing 0.025% formaldehyde, and incubated for 2 hours at room temperature and then overnight at 4°C with stirring. 100μl bacterial cells were added to each well of a 96 well Greiner plate and incubated overnight at 4°C. The wells were then washed three times with PBT washing buffer (0.1% Tween-20 in PBS). 200μl of saturation buffer (2.7% Polyvinylpyrrolidone 10 in water) was added to each well and the plates incubated for 2 hours at 37°C. Wells were washed three times with PBT. 200μl of diluted sera (Dilution buffer: 1% BSA, 0.1% Tween-20, 0.1% NaN₃ in PBS) were added to each well and the plates incubated for 90 minutes at 37°C. Wells were washed three times with PBT. 100μl of HRP-conjugated rabbit anti-mouse (Dako) serum diluted 1:2000 in dilution buffer were added to each well and the plates were incubated for 90 minutes at

37°C. Wells were washed three times with PBT buffer. $100\mu l$ of substrate buffer for HRP (25ml of citrate buffer pH5, 10mg of O-phenildiamine and $10\mu l$ of H_2O) were added to each well and the plates were left at room temperature for 20 minutes. $100\mu l$ H_2SO_4 was added to each well and OD_{490} was followed. The ELISA was considered positive when OD_{490} was 2.5 times the respective pre-immune sera.

O) FACScan bacteria Binding Assay procedure.

5

10

15

20

The acapsulated MenB M7 strain was plated on chocolate agar plates and incubated overnight at 37°C. Bacterial colonies were collected from the agar plates using a sterile dracon swab and inoculated into 4 tubes containing 8ml each Mueller-Hinton Broth (Difco) containing 0.25% glucose. Bacterial growth was monitored every 30 minutes by following OD₆₂₀. The bacteria were let to grow until the OD reached the value of 0.35-0.5. The culture was centrifuged for 10 minutes at 4000rpm. The supernatant was discarded and the pellet was resuspended in blocking buffer (1% BSA, 0.4% NaN₃) and centrifuged for 5 minutes at 4000rpm. Cells were resuspended in blocking buffer to reach OD₆₂₀ of 0.07. 100µl bacterial cells were added to each well of a Costar 96 well plate. 100µl of diluted (1:200) sera (in blocking buffer) were added to each well and plates incubated for 2 hours at 4°C. Cells were centrifuged for 5 minutes at 4000rpm, the supernatant aspirated and cells washed by addition of 200µl/well of blocking buffer in each well. 100µl of R-Phicoerytrin conjugated F(ab), goat anti-mouse, diluted 1:100, was added to each well and plates incubated for 1 hour at 4°C. Cells were spun down by centrifugation at 4000rpm for 5 minutes and washed by addition of 200µl/well of blocking buffer. The supernatant was aspirated and cells resuspended in 200µl/well of PBS, 0.25% formaldehyde. Samples were transferred to FACScan tubes and read. The condition for FACScan setting were: FL1 on, FL2 and FL3 off: FSC-H threshold:92; FSC PMT Voltage: E 02; SSC PMT: 474; Amp. Gains 7.1; FL-2 PMT: 539; compensation values: 0.

25 P) OMV preparations

Bacteria were grown overnight on 5 GC plates, harvested with a loop and resuspended in 10 ml 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30 minutes and the bacteria disrupted by sonication for 10 minutes on ice (50% duty cycle, 50% output). Unbroken cells were removed by centrifugation at 5000g for 10 minutes and the total cell envelope fraction recovered by centrifugation

at 50000g at 4°C for 75 minutes. To extract cytoplasmic membrane proteins from the crude outer membranes, the whole fraction was resuspended in 2% sarkosyl (Sigma) and incubated at room temperature for 20 minutes. The suspension was centrifuged at 10000g for 10 minutes to remove aggregates, and the supernatant further ultracentrifuged at 50000g for 75 minutes to pellet the outer membranes. The outer membranes were resuspended in 10mM Tris-HCl, pH8 and the protein concentration measured by the Bio-Rad Protein assay, using BSA as a standard.

Q) Whole Extracts preparation

Bacteria were grown overnight on a GC plate, harvested with a loop and resuspended in 1ml of 20mM Tris-HCl. Heat inactivation was performed at 56°C for 30 minutes.

10 R) Western blotting

5

15

20

25

Purified proteins (500ng/lane), outer membrane vesicles (5μg) and total cell extracts (25μg) derived from MenB strain 2996 were loaded on 15% SDS-PAGE and transferred to a nitrocellulose membrane. The transfer was performed for 2 hours at 150mA at 4°C, in transferring buffer (0.3 % Tris base, 1.44 % glycine, 20% methanol). The membrane was saturated by overnight incubation at 4°C in saturation buffer (10% skimmed milk, 0.1% Triton X100 in PBS). The membrane was washed twice with washing buffer (3% skimmed milk, 0.1% Triton X100 in PBS) and incubated for 2 hours at 37°C with mice sera diluted 1:200 in washing buffer. The membrane was washed twice and incubated for 90 minutes with a 1:2000 dilution of horseradish peroxidase labelled antimouse Ig. The membrane was washed twice with 0.1% Triton X100 in PBS and developed with the Opti-4CN Substrate Kit (Bio-Rad). The reaction was stopped by adding water.

S) Bactericidal assay

MC58 strain was grown overnight at 37°C on chocolate agar plates. 5-7 colonies were collected and used to inoculate 7ml Mueller-Hinton broth. The suspension was incubated at 37°C on a nutator and let to grow until OD₆₂₀ was 0.5-0.8. The culture was aliquoted into sterile 1.5ml Eppendorf tubes and centrifuged for 20 minutes at maximum speed in a microfuge. The pellet was washed once in Gey's buffer (Gibco) and resuspended in the same buffer to an OD₆₂₀ of 0.5, diluted 1:20000 in Gey's buffer and stored at 25°C.

50µl of Gey's buffer/1% BSA was added to each well of a 96-well tissue culture plate. 25µl of diluted mice sera (1:100 in Gey's buffer/0.2% BSA) were added to each well and the plate incubated at 4°C. 25µl of the previously described bacterial suspension were added to each well. 25µl of either heat-inactivated (56°C waterbath for 30 minutes) or normal baby rabbit complement were added to each well. Immediately after the addition of the baby rabbit complement, 22µl of each sample/well were plated on Mueller-Hinton agar plates (time 0). The 96-well plate was incubated for 1 hour at 37°C with rotation and then 22µl of each sample/well were plated on Mueller-Hinton agar plates (time 1). After overnight incubation the colonies corresponding to time 0 and time 1 hour were counted.

10 Table II gives a summary of the cloning, expression and purification results.

Example 1

5

The following partial DNA sequence was identified in *N. meningitidis* <SEO ID 1>:

```
..ACACTGTTGT TTGCAACGGT TCAGGCAAGT GCTAACCAAT GAAGAGCAAG
                51
                       AAGAAGATTT ATATTTAGAC CCCGTACAAC GCACTGTTGC CGTGTTGATA
15
               101
                       GTCAATTCCG ATAAAGAAGG CACGGGAGAA AAAGAAAAAG TAGAAGAAAA
               151
                       TTCAGATTGG GCAGTATATT TCAACGAGAA AGGAGTACTA ACAGCCAGAG
               201
                      AAATCACCYT CAAAGCCGGC GACAACCTGA AAATCAAACA AAACGGCACA
               251
                      AACTTCACCT ACTCGCTGAA AAAAGACCTC ACAGATCTGA CCAGTGTTGG
               301
                      AACTGAAAAA TTATCGTTTA GCGCAAACGG CAATAAAGTC AACATCACAA
20
               351
                      GCGACACCAA AGGCTTGAAT TTTGCGAAAG AAACGGCTGG SACGAACGGC
               401
                      GACACCACGG TTCATCTGAA CGGTATTGGT TCGACTTTGA CCGATACGCT
               451
                      GCTGAATACC GGAGCGACCA CAAACGTAAC CAACGACAAC GTTACCGATG
               501
                      ACGAGAAAAA ACGTGCGGCA AGCGTTAAAG ACGTATTAAA CGCTGGCTGG
               551
                      AACATTAAAG GCGTTAAACC CGGTACAACA GCTTCCGATA ACGTTGATTT
25
                601
                      CGTCCGCACT TACGACACAG TCGAGTTCTT GAGCGCAGAT ACGAAAACAA
                651
                       CGACTGTTAA TGTGGAAAGC AAAGACAACG GCAAGAAAAC CGAAGTTAAA
                      ATCGGTGCGA AGACTTCTGT TATTAAAGAA AAAGAC...
```

This corresponds to the amino acid sequence <SEQ ID 2; ORF40>:

```
1 ..TLLFATVQAS ANQEEQEEDL YLDPVQRTVA VLIVNSDKEG TGEKEKVEEN
51 SDWAVYFNEK GVLTAREITX KAGDNLKIKQ NGTNFTYSLK KDLTDLTSVG
101 TEKLSFSANG NKVNITSDTK GLNFAKETAG TNGDTTVHLN GIGSTLTDTL
151 LNTGATTNVT NDNVTDDEKK RAASVKDVLN AGWNIKGVKP GTTASDNVDF
201 VRTYDTVEFL SADTKTTTVN VESKDNGKKT EVKIGAKTSV IKEKD...
```

Further work revealed the complete DNA sequence <SEQ ID 3>:

```
35
                    ATGAACAAA TATACCGCAT CATTTGGAAT AGTGCCCTCA ATGCCTGGGT
                51
                    CGTCGTATCC GAGCTCACAC GCAACCACAC CAAACGCGCC TCCGCAACCG
               101
                    TGAAGACCGC CGTATTGGCG ACACTGTTGT TTGCAACGGT
                                                                TCAGGCAAGT
               151
                    GCTAACAATG AAGAGCAAGA AGAAGATTTA TATTTAGACC CCGTACAACG
               201
                    CACTGTTGCC GTGTTGATAG TCAATTCCGA TAAAGAAGGC ACGGGAGAAA
40
               251
                    AAGAAAAGT AGAAGAAAAT TCAGATTGGG CAGTATATTT CAACGAGAAA
               301
                    GGAGTACTAA CAGCCAGAGA AATCACCCTC AAAGCCGGCG ACAACCTGAA
               351
                    AATCAAACAA AACGGCACAA ACTTCACCTA CTCGCTGAAA AAAGACCTCA
                    CAGATCTGAC CAGTGTTGGA ACTGAAAAAT TATCGTTTAG CGCAAACGGC
               401
               451
                    AATAAAGTCA ACATCACAAG CGACACCAAA GGCTTGAATT TTGCGAAAGA
45
                    AACGGCTGGG ACGAACGGCG ACACCACGGT TCATCTGAAC GGTATTGGTT
               501
               551
                    CGACTTTGAC CGATACGCTG CTGAATACCG GAGCGACCAC AAACGTAACC
                    AACGACAACG TTACCGATGA CGAGAAAAAA CGTGCGGCAA GCGTTAAAGA
```

	651	CGTATTAAAC	GCTGGCTGGA	ACATTAAAGG	CGTTAAACCC	GGTACAACAG
	701	CTTCCGATAA	CGTTGATTTC	GTCCGCACTT	ACGACACAGT	CGAGTTCTTG
	751	AGCGCAGATA	CGAAAACAAC	GACTGTTAAT	GTGGAAAGCA	AAGACAACGG
_	801	CAAGAAAACC	GAAGTTAAAA	TCGGTGCGAA	GACTTCTGTT	ATTAAAGAAA
5	851	AAGACGGTAA	GTTGGTTACT	GGTAAAGACA	AAGGCGAGAA	TGGTTCTTCT
	901		GCGAAGGCTT			
	951		GGTTGGAGAA			
	1001		CAAGTTTGAA			
10	1051		AAGGTACAAC			
10	1101		ATGTATGATG			
	1151		CAGCGGTTGG			
	1201		TCATCAGCGG			
	1251		AACATTAATG			
1.5	1301		CGACATCGCC			
15	1351		CGGGGGCGGA			
	1401		GGCAGCAAGA			
	1451		CGTTAAAGAG			
•	1501		AAAACTTGAA			
	1551		ATCGCCCAAG			
20	1601		CAAGAGTATG			
	1651		ACGCCATCGG			
	1701		GGCACGGCTT		GCGCGGCCAT	TTCGGTGCTT
	1751	CCGCATCTGT	CGGTTATCAG	TGGTAA		

This corresponds to the amino acid sequence <SEQ ID 4; ORF40-1>:

25	1	MNKIYRIIWN	SALNAWVVVS	ELTRNHTKRA	SATVKTAVLA	TLLFATVQAS
	51	ANNEEQEEDL	YLDPVQRTVA	VLIVNSDKEG	TGEKEKVEEN	SDWAVYFNEK
	101	GVLTAREITL	KAGDNLKIKQ	NGTNFTYSLK	KDLTDLTSVG	TEKLSFSANG
	151	NKVNITSDTK	GLNFAKETAG	TNGDTTVHLN	GIGSTLTDTL	LNTGATTNVT
	201	NDNVTDDEKK	RAASVKDVLN	AGWNIKGVKP	GTTASDNVDF	VRTYDTVEFL
30	251	SADTKTTTVN	VESKDNGKKT	EVKIGAKTSV	I KEKDGKLVT	GKDKGENGSS
	301	TDEGEGLVTA	KEVIDAVNKA	GWRMKTTTAN	GOTGOADKFE	TVTSGTNVTF
	351	ASGKGTTATV	SKDDQGNITV	MYDVNVGDAL	NVNQLONSGW	NLDSKAVAGS
	401	SGKVISGNVS	PSKGKMDETV	NINAGNNIEI	TRNGKNIDIA	TSMTPOFSSV
	451	SLGAGADAPT	LSVDGDALNV	GSKKDNKPVR	ITNVAPGVKE	GDVTNVAOLK
35	501	GVAQNLNNRI	DNVDGNARAG	IAOAIATAGL	VOAYLPGKSM	MAIGGGTYRG
	551	EAGYAIGYSS	ISDGGNWIIK	GTASGNSRGH	FGASASVGYO	W*

Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 5 >:

	1	ATGAACAAAA	TATACCGCAT	CATTTGGAAT	AGTGCCCTCA	ATGCCTGNGT
	51	CGCCGTATCC	GAGCTCACAC	GCAACCACAC	CAAACGCGCC	TCCGCAACCG
40	101	TGAAGACCGC	CGTATTGGCG	ACACTGTTGT	TTGCAACGGT	TCAGGCGAAT
	151	GCTACCGATG	AAGATGAAGA	AGAAGAGTTA	GAATCCGTAC	AACGCTCTGT
	201	CGTAGGGAGC	ATTCAAGCCA	GTATGGAAGG	CAGCGGCGAA	TTGGAAACGA
	251	TATCATTATC	AATGACTAAC	GACAGCAAGG	AATTTGTAGA	CCCATACATA
	301	GTAGTTACCC	TCAAAGCCGG	CGACAACCTG	AAAATCAAAC	AAAACACCAA
45	351	TGAAAACACC	AATGCCAGTA	GCTTCACCTA	CTCGCTGAAA	AAAGACCTCA
	401	CAGGCCTGAT	CAATGTTGAN	ACTGAAAAAT	TATCGTTTGG	CGCAAACGGC
	451	AAGAAAGTCA	ACATCATAAG	CGACACCAAA	GGCTTGAATT	TCGCGAAAGA
	501	AACGGCTGGG	ACGAACGGCG	ACACCACGGT	TCATCTGAAC	GGTATCGGTT
	551	CGACTTTGAC	CGATACGCTT	GCGGGTTCTT	CTGCTTCTCA	CGTTGATGCG
50	601	GGTAACCNAA	GTACACATTA	CACTCGTGCA	GCAAGTATTA	AGGATGTGTT
	651	GAATGCGGGT	TGGAATATTA	AGGGTGTTAA	ANNNGGCTCA	ACAACTGGTC
	701	AATCAGAAAA	TGTCGATTTC	GTCCGCACTT	ACGACACAGT	CGAGTTCTTG
	751	AGCGCAGATA	CGNAAACAAC	GACNGTTAAT	GTGGAAAGCA	AAGACAACGG
	801	CAAGAGAACC	GAAGTTAAAA	TCGGTGCGAA	GACTTCTGTT	ATTAAAGAAA
55	851	AAGACGGTAA	GTTGGTTACT	GGTAAAGGCA	AAGGCGAGAA	TGGTTCTTCT
	901	ACAGACGAAG	GCGAAGGCTT	AGTGACTGCA	AAAGAAGTGA	TTGATGCAGT
	951	AAACAAGGCT	GGTTGGAGAA	TGAAAACAAC	AACCGCTAAT	GGTCAAACAG
	1001	GTCAAGCTGA	CAAGTTTGAA	ACCGTTACAT	CAGGCACAAA	TGTAACCTTT
	1051	GCTAGTGGTA	AAGGTACAAC	TGCGACTGTA	AGTAAAGATG	ATCAAGGCAA
60	1101	CATCACTGTT	ATGTATGATG	TAAATGTCGG	CGATGCCCTA	AACGTCAATC
	1151	AGCTGCAAAA	CAGCGGTTGG	AATTTGGATT	CCAAAGCGGT	TGCAGGTTCT
	1201	TCGGGCAAAG	TCATCAGCGG	CAATGTTTCG	CCGAGCAAGG	GAAAGATGGA
	1251	TGAAACCGTC	AACATTAATG	CCGGCAACAA	CATCGAGATT	AGCCGCAACG
	1301	GTAAAAATAT	CGACATCGCC	ACTTCGATGG	CGCCGCAGTT	TTCCAGCGTT
65	1351	TCGCTCGGCG	CGGGGGCAGA	TGCGCCCACT	TTAAGCGTGG	ATGACGAGGG
	1401	CGCGTTGAAT	GTCGGCAGCA	AGGATGCCAA	CAAACCCGTC	CGCATTACCA

	1451	ATGTCGCCCC	GGGCGTTAAA	GANGGGGATG	TTACAAACGT	CNCACAACTT
	1501	AAAGGCGTGG	CGCAAAACTT	GAACAACCGC	ATCGACAATG	TGGACGGCAA
	1551	CGCGCGTGCN	GGCATCGCCC	AAGCGATTGC	AACCGCAGGT	CTGGTTCAGG
_	1601	CGTATCTGCC	CGGCAAGAGT	ATGATGGCGA	TCGGCGGCGG	CACTTATCGC
5	1651	GGCGAAGCCG	GTTACGCCAT	CGGCTACTCC	AGTATTTCCG	ACGGCGGAAA
	1701	TTGGATTATC	AAAGGCACGG	CTTCCGGCAA	TTCGCGCGGC	CATTTCGGTG
	1751	CTTCCGCATC	TGTCGGTTAT	CAGTGGTAA		

This encodes a protein having amino acid sequence <SEQ ID 6; ORF40a>:

	1	MNKIYRIIWN	SALNAXVAVS	ELTRNHTKRA	SATVKTAVLA	TLLFATVQAN
10	51	ATDEDEEEEL	ESVQRSVVGS	IQASMEGSGE	LETISLSMTN	DSKEFVDPYI
	101	VVTLKAGDNL	KIKQNTNENT	NASSFTYSLK	KDLTGLINVX	TEKLSFGANG
	151	KKVNIISDTK	GLNFAKETAG	TNGDTTVHLN	GIGSTLTDTL	AGSSASHVDA
	201	GNXSTHYTRA	ASIKDVLNAG	WNIKGVKXGS	TTGQSENVDF	VRTYDTVEFL
	251	SADTXTTTVN	VESKDNGKRT	EVKIGAKTSV	IKEKDGKLVT	GKGKGENGSS
15	301	TDEGEGLVTA	KEVIDAVNKA	GWRMKTTTAN	GQTGQADKFE	TVTSGTNVTF
	351	ASGKGTTATV	SKDDQGNITV	MYDVNVGDAL	NVNQLQNSGW	NLDSKAVAGS
	401	SGKVISGNVS	PSKGKMDETV	NINAGNNIEI	SRNGKNIDIA	TSMAPQFSSV
	451	SLGAGADAPT	LSVDDEGALN	VGSKDANKPV	RITNVAPGVK	XGDVTNVXQL
	501	KGVAQNLNNR	IDNVDGNARA	GIAQAIATAG	LVQAYLPGKS	MMAIGGGTYR
20	551	GEAGYAIGYS	SISDGGNWII	KGTASGNSRG	HFGASASVGY	QW *

The originally-identified partial strain B sequence (ORF40) shows 65.7% identity over a 254aa overlap with ORF40a:

						10	20	30
	orf40.pep				TLI	FATVQASAN	QEEQEEDLYL	DPVQRTVA
25					111	1111111111	:1::11:1	: 111:1
	orf40a	SALNAXVAV	SELTRNHT	KRASATVI	KTAVLATLI	FATVOANAT	DEDEEEEL	ESVORSV-
			0	30	40	50	60	
		_	. •					
		4	0	50	60	70	80	
30	orf40.pep				AVYFNEKGU	T.TARETTXK	AGDNLKIKON	СТ
50	011.0.60		1:11 1 :	: :: :				• • •
	orf40a	VGSIOASME			•		AGDNLKIKON	ב ממיימקעיד ממיימקעיד
	OLLYDA	70	80	90	100		110	120
		70	00	50	100	,	110	120
35		90	100	-	110	120	130	140
33	arfil non						KETAGTNGDT	
	orf40.pep	NELISERAL	PIOPISAG	111111:		IIIIIIIII	VETAGINODI	IAUTMGTG
		:	THETTMEN					MULLINGTO
	orf40a						KETAGTNGDT	
40		130	140	-	150	160	170	180
40				_				
	_	150	160	_	170	180	190	200
	orf40.pep	STLTDTLLN	TGATTNVT	NDNVTDDI		· · · · · ·	KGVKPGTTA-	
			:: : :	1: :				1:11111
4.00	orf40a						KGVKXGSTTG	
45		190	20	0	210	220	230	240
		210	2:	20	230	240		
	orf40.pep	RTYDTVEFL	SADTKTTT	VNVESKD	NGKKTEVK	GAKTSVIKE	KD	
		111111111	1111 111		111:111		11	
50	orf40a	RTYDTVEFL	SADTXTTT	VNVESKD	NGKRTEVKI	GAKTSVIKE	KDGKLVTGKG	KGENGSST
		250	2	60	270	280	290	300

The complete strain B sequence (ORF40-1) and ORF40a show 83.7% identity in 601 aa overlap:

		10	20	30	40	50	60
55	orf40-1.pep	MNKIYRIIWNSALNA				-	
•	orf40a	MNKIYRIIWNSALNA	XVAVSELT	RNHTKRASATV	KTAVLATLLF.	ATVQANATDE:	DEEEEL
		10	20	30	40	50	60
60		70	80	90	100	110	119
	orf40-1.pep	YLDPVQRTVAVLIV	ISDKEGTGE	KEKVEEN-SDW	AVYFNEKGVL	TAREITLKAG	DNLKIK
		: : ::	::: :	1::::	: : ::	:11111	111111

	orf40a	ESVQRSV-	VGSIQASMEG 70	SGELETISLSM 80	TNDSKEFVDPY 90 10		AGDNLKIK 110
5	orf40-1.pep	- 11 ::	:	1 :1 111	150 SFSANGNKVNI : : SFGANGKKVNI	111111111	1111111
	OIIIVa	120	130	140	150	160	170
10	orf40-1.pep	180 DTTVHLNGIG			210 TDDEKKRAASV : : :	220 KDVLNAGWNI 	
1.5	orf40a				ST-HYTRAASI 210	KDVLNAGWNI 220	KGVKXGST 230
15	orf40-1.pep	240 ASDNVDFVI	250 RTYDTVEFLS	260 ADTKTTTVNVE	270 SKDNGKKTEVK	280 IGAKTSVIKE	290 KDGKLVTG
20	orf40a	: 1:11111	111111111	111 1111111	: SKDNGKRTEVK 270	11111111111	ШШН
20		300	310	320	330	340	350
25	orf40-1.pep			111111111111111111111111111111111111111	RMKTTTANGQT(RMKTTTANGQT(1111111111	11111111
		300 360	310 370	320 380	330 390	340 400	350 410
30	orf40-1.pep	SGKGTTATVS	KDDQGNITVM:	YDVNVGDALNV	NQLQNSGWNLD: NOLQNSGWNLD:	SKAVAGSSGK	VISGNVSP
	022102	360 420	370	380	390	400	410
35	orf40-1.pep	SKGKMDETVN			450 MTPQFSSVSLGA :		
	orf40a	SKGKMDETVNI 420	INAGNNIEISE 430	RNGKNIDIATS 440	MAPQFSSVSLG 450	AGADAPTLSV 460	DDEGALNV 470
40	orf40-1.pep				510 VAQNLNNRIDN		
	orf40a						
45	orf40-1.pep	540	550	560	570 SDGGNWIIKGT	580	590
50	orf40a			HIIIIIIII EAGYAIGYSSI			 ASASVGYQ
50	orf40-1.pep	540 WX	550	560	570	580	590
	orf40a	II WX					

55 Computer analysis of these amino acid sequences gave the following results:

Homology with Hsf protein encoded by the type b surface fibrils locus of *H.influenzae* (accession number U41852)

ORF40 and Hsf protein show 54% aa identity in 251 aa overlap:

60	Orf40	1	TLLFATVQASANQEEQEEDLYLDPVQRTVAVLIVNSDXXXXXXXXXXXXNSDWAVYFNEK TLLFATVQA+A E++E LDPV RT VL +SD NS+W +YF+ K	60
	Hsf	41	TLLFATVQANATDEDEELDPVVRTAPVLSFHSDKEGTGEKEVTE-NSNWGIYFDNK	95
	Orf40	61	GVLTAREITXKAGDNLKIKONGTNFTYSLKKDLTDLTSVGTEKLSFSANGNKVN	114
65	Hsf	96	GVL A IT KAGDNLKIKQN ++FTYSLKKDLTDLTSV TEKLSF ANG+KV+ GVLKAGAITLKAGDNLKIKQNTDESTNASSFTYSLKKDLTDLTSVATEKLSFGANGDKVD	155

60

```
Orf40 115 ITSDTKGLNFAKETAGTNGDTTVHLNGIGSTLTDTLLNTGAXXXXXXXXXXXXXXKKRAAS 174
                      ITSD GL AK
                                       G+ VHLNG+ STL D + NTG
                  156 ITSDANGLKLAK----TGNGNVHLNGLDSTLPDAVTNTGVLSSSSFTPNDV-EKTRAAT 209
           Hsf
 5
           Orf40
                 175 VKDVLNAGWNIKGVKPGTTASDNVDFVRTYDTVEFLSADTKTTTVNVESKDNGKKTEVKI 234
                                           ++VD V Y+ VEF++ D T V + +K+NGK TEVK
                      VKDVLNAGWNIKG K
                  210 VKDVLNAGWNIKGAKTAGGNVESVDLVSAYNNVEFITGDKNTLDVVLTAKENGKTTEVKF 269
           Hsf
10
           Orf40
                  235 GAKTSVIKEKD 245
                        KTSVIKEKD
                  270 TPKTSVIKEKD 280
           Hsf
     ORF40a also shows homology to Hsf:
           gill666683 (U41852) hsf gene product [Haemophilus influenzae] Length = 2353
15
            Score = 153 (67.7 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116
            Identities = 33/36 (91%), Positives = 34/36 (94%)
                     16 VAVSELTRNHTKRASATVKTAVLATLLFATVQANAT 51
           Query:
                        V VSELTR HTKRASATV+TAVLATLLFATVQANAT
20
           Sbjct:
                     17 VVVSELTRTHTKRASATVETAVLATLLFATVQANAT 52
            Score = 161 (71.2 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116
            Identities = 32/38 (84%), Positives = 36/38 (94%)
25
                    101 VTLKAGDNLKIKONTNENTNASSFTYSLKKDLTGLINV 138
           Query:
                        +TLKAGDNLKIKQNT+E+TNASSFTYSLKKDLT L +V
           Sbjct:
                    103 ITLKAGDNLKIKQNTDESTNASSFTYSLKKDLTDLTSV 140
            Score = 110 (48.7 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116
30
            Identities = 21/29 (72%), Positives = 25/29 (86%)
                    138 VTEKLSFGANGKKVNIISDTKGLNFAKET 166
                        V++KLS G NG KVNI SDTKGLNFAK++
           Sbict:
                  1439 VSDKLSLGTNGNKVNITSDTKGLNFAKDS 1467
35
            Score = 85 (37.6 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116
            Identities = 18/32 (56%), Positives = 20/32 (62%)
                    169 TNGDTTVHLNGIGSTLTDTLAGSSASHVDAGN 200
40
                        T D +HLNGI STLTDTL S A+
                  1469 TGDDANIHLNGIASTLTDTLLNSGATTNLGGN 1500
           Score = 92 (40.7 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116
           Identities = 16/19 (84%), Positives = 19/19 (100%)
45
                    206 RAASIKDVLNAGWNIKGVK 224
          Ouerv:
                        RAAS+KDVLNAGWN++GVK
                  1509 RAASVKDVLNAGWNVRGVK 1527
50
           Score = 90 (39.8 bits), Expect = 1.5e-116, Sum P(11) = 1.5e-116
           Identities = 17/28 (60%), Positives = 20/28 (71%)
                   226 STTGOSENVDFVRTYDTVEFLSADTTTT 253
          Query:
                           Q EN+DFV TYDTV+F+S D TT
55
                  1530 SANNOVENIDFVATYDTVDFVSGDKDTT 1557
```

Based on homology with Hsf, it was predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

ORF40-1 (61kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 1A shows the results of affinity purification of the His-fusion protein, and Figure 1B shows the

-

results of expression of the GST-fusion in *E.coli*. Purified His-fusion protein was used to immunise mice, whose sera were used for FACS analysis (Figure 1C), a bactericidal assay (Figure 1D), and ELISA (positive result). These experiments confirm that ORF40-1 is a surface-exposed protein, and that it is a useful immunogen.

5 Figure 1E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF40-1.

Example 2

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 7>

```
ATGTTACGTE TGACTGCETT AGCCGTATGC ACCGCCCTCG CTTTGGGCGC
                51
                    GTGTTCGCCG CAAAATTCCG ACTCTGCCCC ACAAGCCAAA GaACAGGCGG
10
               101
                    TTTCCGCCGC ACAAACCGAA GgCGCGTCCG TTACCGTCAA AACCGCGCGC
                    GGCGACGTTC AAATACCGCA AAACCCCGAA CGCATCGCCG TTTACGATTT
               201
                    GGGTATGCTC GACACCTTGA GCAAACTGGG CGTGAAAACC GGTTTGTCCG
               251
                    TCGATAAAA CCGCCTGCCG TATTTAGAGG AATATTTCAA AACGACAAAA
               301
                    CCTGCCGGCA CTTTGTTCGA GCCGGATTAC GAAACGCTCA ACGCTTACAA
15
                    ACCGCAGCTC ATCATCATCG GCAGCCGCGC CGCCAAGGCG TTTGACAAAT
               351
                    TGAACGAAAT CGCGCCGACC ATCGITTWTGA CCGCCGATAC CGCCAACCTC
               401
               451 AAAGAAAGTG CCAArGAGGC ATCGACGCTG GCGCAAATCT TC..
```

This corresponds to the amino acid sequence <SEQ ID 8; ORF38>:

```
20 MLRLTALAVC TALALGACSP QNSDSAPQAK EQAVSAAQTE GASVTVKTAR
51 GDVQIPQNPE RIAVYDLGML DTLSKLGVKT GLSVDKNRLP YLEEYFKTTK
101 PAGTLFEPDY ETLNAYKPQL IIIGSRAAKA FDKLNEIAPT IXXTADTANL
151 KESAKEASTL AOIF..
```

Further work revealed the complete nucleotide sequence <SEQ ID 9>:

```
1
                    ATGTTACGTT TGACTGCTTT AGCCGTATGC ACCGCCCTCG CTTTGGGCGC
25
                51
                    GTGTTCGCCG CAAAATTCCG ACTCTGCCCC ACAAGCCAAA GAACAGGCGG
               101
                    TTTCCGCCGC ACAAACCGAA GGCGCGTCCG TTACCGTCAA AACCGCGCGC
                    GGCGACGTTC AAATACCGCA AAACCCCGAA CGCATCGCCG TTTACGATTT
               151
               201
                    GGGTATGCTC GACACCTTGA GCAAACTGGG CGTGAAAACC GGTTTGTCCG
               251
                    TCGATAAAAA CCGCCTGCCG TATTTAGAGG AATATTTCAA AACGACAAAA
30
               301
                    CCTGCCGGCA CTTTGTTCGA GCCGGATTAC GAAACGCTCA ACGCTTACAA
               351
                    ACCGCAGCTC ATCATCATCG GCAGCCGCGC CGCCAAGGCG TTTGACAAAT
               401
                    TGAACGAAAT CGCGCCGACC ATCGAAATGA CCGCCGATAC CGCCAACCTC
               451
                    AAAGAAAGTG CCAAAGAGCG CATCGACGCG CTGGCGCAAA TCTTCGGCAA
               501
                    ACAGGCGGAA GCCGACAAGC TGAAGGCGGA AATCGACGCG TCTTTTGAAG
35
                    CCGCGAAAAC TGCCGCACAA GGTAAGGGCA AAGGTTTGGT GATTTTGGTC
               551
                    AACGGCGGCA AGATGTCGGC TTTCGGCCCG TCTTCACGCT TGGGCGGCTG
               601
               651
                    GCTGCACAAA GACATCGGCG TTCCCGCTGT CGATGAATCA ATTAAAGAAG
               701
                    GCAGCCACGG TCAGCCTATC AGCTTTGAAT ACCTGAAAGA GAAAAATCCC
                    GACTGGCTGT TTGTCCTTGA CCGAAGCGCG GCCATCGGCG AAGAGGGTCA
               751
40
               801
                    GGCGGCGAAA GACGTGTTGG ATAATCCGCT GGTTGCCGAA ACAACCGCTT
                    GGAAAAAGG ACAGGTCGTG TACCTCGTTC CTGAAACTTA TTTGGCAGCC
               851
                    GGTGGCGCC AAGAGCTGCT GAATGCAAGC AAACAGGTTG CCGACGCTTT
                901
                    TAACGCGGCA AAATAA
```

This corresponds to the amino acid sequence <SEQ ID 10; ORF38-1>:

```
45

1 MLRLTALAVC TALALGACSP QNSDSAPQAK EQAVSAAQTE GASVTVKTAR
51 GDVQIPQNPE RIAVYDLGML DTLSKLGVKT GLSVDKNRLP YLEEYFKTTK
101 PAGTLFEPDY ETLNAYKPQL IIIGSRAAKA FDKLNEIAPT IEMTADTANL
151 KESAKERIDA LAQIFGKQAE ADKLKAEIDA SFEAAKTAAQ GKGKGLVILV
201 NGGKMSAFGP SSRLGGWLHK DIGVPAVDES IKEGSHGQPI SFEYLKEKNP
50 251 DWLFVLDRSA AIGEEGQAAK DVLDNPLVAE TTAWKKGQVV YLVPETYLAA
```

301 GGAQELLNAS KQVADAFNAA K*

Computer analysis of this amino acid sequence reveals a putative prokaryotic membrane lipoprotein lipid attachment site (underlined).

Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 11>:

```
5
                    ATGTTACGTT TGACTGCTTT AGCCGTATGC ACCGCCCTCG CTTTGGGCGC
                51
                    GTGTTCGCCG CAAAATTCCG ACTCTGCCCC ACAAGCCAAA GAACAGGCGG
               101
                    TTTCCGCCGC ACAATCCGAA GGCGTGTCCG TTACCGTCAA AACGGCGCGC
                    GGCGATGTTC AAATACCGCA AAACCCCGAA CGTATCGCCG TTTACGATTT
                    GGGTATGCTC GACACCTTGA GCAAACTGGG CGTGAAAACC GGTTTGTCCG
               201
10
                    TCGATAAAAA CCGCCTGCCG TATTTAGAGG AATATTTCAA AACGACAAAA
               251
               301
                    CCTGCCGGAA CTTTGTTCGA GCCGGATTAC GAAACGCTCA ACGCTTACAA
                    ACCGCAGCTC ATCATCATCG GCAGCCGCGC AGCCAAAGCG TTTGACAAAT
               351
               401
                    TGAACGAAAT CGCGCCGACC ATCGAAATGA CCGCCGATAC CGCCAACCTC
                    AAAGAAAGTG CCAAAGAGCG TATCGACGCG CTGGCGCAAA TCTTCGGCAA
               451
15
               501
                    AAAGGCGGAA GCCGACAAGC TGAAGGCGGA AATCGACGCG TCTTTTGAAG
               551
                    CCGCGAAAAC TGCCGCGCAA GGCAAAGGCA AGGGTTTGGT GATTTTGGTC
                    AACGGCGGCA AGATGTCCGC CTTCGGCCCG TCTTCACGAC TGGGCGGCTG
               601
               651
                    GCTGCACAAA GACATCGGCG TTCCCGCTGT TGACGAAGCC ATCAAAGAAG
                    GCAGCCACGG TCAGCCTATC AGCTTTGAAT ACCTGAAAGA GAAAAATCCC
               701
20
               751
                    GACTGGCTGT TTGTCCTTGA CCGCAGCGCG GCCATCGGCG AAGAGGGTCA
               801
                    GGCGGCGAAA GACGTGTTGA ACAATCCGCT GGTTGCCGAA ACAACCGCTT
                    GGAAAAAGG ACAAGTCGTT TACCTTGTTC CTGAAACTTA TTTGGCAGCC
               851
                    GGTGGCGCG AAGAGCTACT GAATGCAAGC AAACAGGTTG CCGACGCTTT
                    TAACGCGGCA AAATAA
               951
```

25 This encodes a protein having amino acid sequence <SEQ ID 12; ORF38a>:

```
1 MLRLTALAVC TALALGACSP QNSDSAPQAK EQAVSAAQSE GVSVTVKTAR
51 GDVQIPQNPE RIAVYDLGML DTLSKLGVKT GLSVDKNRLP YLEEYFKTTK
101 PAGTLFEPDY ETLNAYKPQL IIIGSRAAKA FDKLNEIAPT IEMTADTANL
151 KESAKERIDA LAQIFGKKAE ADKLKAEIDA SFEAKTAAQ GKGKGLVLV
30 201 NGGKMSAFGP SSRLGGWLHK DIGVPAVDEA IKEGSHGQPI SFEYLKEKNP
251 DWLFVLDRSA AIGEEGQAAK DVLNNPLVAE TTAWKKGQVV YLVPETYLAA
301 GGAQELINAS KQVADAFNAA K*
```

The originally-identified partial strain B sequence (ORF38) shows 95.2% identity over a 165aa overlap with ORF38a:

35		10	20	30	40	50	60
	orf38.pep	MLRLTALAVCTAI	<u>LALGA</u> CSPQNS	DSAPQAKEQAV	SAAQTEGAS	VTVKTARGDV	QIPQNPE
				11111111111			111111
	orf38a	MLRLTALAVCTAI		DSAPQAKEQAV		VTVKTARGDV	QIPQNPE
		10	20	30	40	50	60
40							
		70	80	90	100	110	120
	orf38.pep	RIAVYDLGMLDTI	LSKLGVKTGLS	VDKNRLPYLEE	YFKTTKPAG:		NAYKPQL
				1111111111		111111111	111111
	orf38a	RIAVYDLGMLDTI					NAYKPQL
45		70	80	90	100	110	120
		130	140	150	160		
	orf38.pep	IIIGSRAAKAFDE	CLNEIAPTIXX	TADTANLKESA	KE-ASTLAQ:	IF	
			11111111	11111111111	11 ::111	11	
50	orf38a	IIIGSRAAKAFDE		TADTANLKESA	_		LKAEIDA
		130	140	150	160	170	180
	orf38a	SFEAAKTAAQGKO					
		190	200	210	220	230	240

55 The complete strain B sequence (ORF38-1) and ORF38a show 98.4% identity in 321 aa overlap:

		-

	orf38a.pep	MLRLTALAVCTALALGACSPQNSDSAPQAKEQAVSAAQSEGVSVTVKTARGDVQIPQNPE
5		
	orf38a.pep	RIAVYDLGMLDTLSKLGVKTGLSVDKNRLPYLEEYFKTTKPAGTLFEPDYETLNAYKPQL
	orf38-1	RIAVYDLGMLDTLSKLGVKTGLSVDKNRLPYLEEYFKTTKPAGTLFEPDYETLNAYKPQL
10	orf38a.pep	IIIGSRAAKAFDKLNEIAPTIEMTADTANLKESAKERIDALAQIFGKKAEADKLKAEIDA
	orf38-1	IIIGSRAAKAFDKLNEIAPTIEMTADTANLKESAKERIDALAQIFGKQAEADKLKAEIDA
	orf38a.pep	SFEAAKTAAQGKGKGLVILVNGGKMSAFGPSSRLGGWLHKDIGVPAVDEAIKEGSHGQPI
15	orf38-1	SFEAAKTAAQGKGKGLVILVNGGKMSAFGPSSRLGGWLHKDIGVPAVDESIKEGSHGQPI
	orf38a.pep	SFEYLKEKNPDWLFVLDRSAAIGEEGQAAKDVLNNPLVAETTAWKKGQVVYLVPETYLAA
20	orf38-1	SFEYLKEKNPDWLFVLDRSAAIGEEGQAAKDVLDNPLVAETTAWKKGQVVYLVPETYLAA
	orf38a.pep	GGAQELLNASKQVADAFNAAK
	orf38-1	GGAQELLNASKQVADAFNAAK

Computer analysis of these sequences revealed the following:

25 Homology with a lipoprotein (lipo) of C. jejuni (accession number X82427)

ORF38 and lipo show 38% aa identity in 96 aa overlap:

```
Orf38: 40 EGASVTVKTARGDVQIPQNPERIAVYDLGMLDTLSKLGVKTGLS-VDKNRLPYLEEYFKT 98
                    EG S VK + G+ + P+NP ++ + DLG+LDT L + ++ V
                                                                   LP + FK
          Lipo: 51 EGDSFLVKDSLGENKTPKNPSKVVILDLGILDTFDALKLNDKVAGVPAKNLPKYLQQFKN 110
30
          Orf38: 99 TKPAGTLFEPDYETLNAYKPQLIIIGSRAAKAFDKL 134
                        G + + D+E +NA KP LIII R +K +DKL
          Lipo: 111 KPSVGGVQQVDFEAINALKPDLIIISGRQSKFYDKL 146
```

Based on this analysis, it was predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics. 35

ORF38-1 (32kDa) was cloned in pET and pGex vectors and expressed in E.coli, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 2A shows the results of affinity purification of the His-fusion protein, and Figure 2B shows the results of expression of the GST-fusion in E.coli. Purified His-fusion protein was used to immunise mice, whose sera were used for Western blot analysis (Figure 2C) and FACS analysis (Figure 2D). These experiments confirm that ORF38-1 is a surface-exposed protein, and that it is a useful immunogen.

Figure 2E shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF38-1.

Example 3

40

45 The following *N.meningitidis* DNA sequence was identified <SEQ ID 13>:

```
1 ATGAAACTTC TGACCACGC AATCCTGTCT TCCGCAATCG CGCTCAGCAG
51 TATGGCTGCC GCCGCTGGCA CGGACAACCC CACTGTTGCA AAAAAAACCG
101 TCAGCTACGT CTGCCAGCAA GGTAAAAAG TCAAAGTAAC CTACGGCTTC
151 AACAAACAGG GTCTGACCAC ATACGCTTCC GCCGTCATCA ACGGCAAACG
5 201 CGTGCAAATG CCTGTCAATT TGGACAAATC CGACAATGTG GAAACATTCT
251 ACGGCAAAGA AGGCGGTTAT GTTTTTGGGTA CCGGCGTGAT GGATGGCAAA
301 TCCTACCGCA AACAGCCCAT TATGATTACC GCACCTGACA ACCAAATCGT
351 CTTCAAAGAC TGTTCCCCAC GTTAA
```

This corresponds to the amino acid sequence <SEQ ID 14; ORF44>:

```
10 1 MKLLTTAILS SAIALSSMAA AAGTDNPTVA KKTVSYVCQQ GKKVKVTYGF
51 NKQGLTTYAS AVINGKRVQM PVNLDKSDNV ETFYGKEGGY VLGTGVMDGK
101 SYRKQPIMIT APDNQIVFKD CSPR*
```

Computer analysis of this amino acid sequence predicted the leader peptide shown underlined.

Further work identified the corresponding gene in strain A of N. meningitidis <SEQ ID 15>:

```
15
1 ATGAAACTTC TGACCACCGC AATCCTGTCT TCCGCAATCG CGCTCAGCAG
51 TATGGCTGCT GCTGCCGGCA CGAACAACCC CACCGTTGCC AAAAAAAACCG
101 TCAGCTACGT CTGCCAGCAA GGTAAAAAAG TCAAAGTAAC CTACGGCTTT
151 AACAAACAGG GCCTGACCAC ATACGCTTCC GCCGTCATCA ACGGCAAACG
201 TGTGCAAATG CCTGTCAATT TGGACAAATC CGACAATGTG GAAACATTCT
20
251 ACGGCAAAGA AGGCCGTTAT GTTTTGGGTA CCGCCTGACA GGATGGCAAA
301 TCCTATCGCA AACAGCCTAT TATGATTACC GCACCTGACA ACCAAATCGT
351 CTTCAAAGAC TGTTCCCCAC GTTAA
```

This encodes a protein having amino acid sequence <SEQ ID 16; ORF44a>:

```
25 MKLLTTAILS SAIALSSMAA AAGTNNPTVA KKTVSYVCQQ GKKVKVTYGF
NKQGLTTYAS AVINGKRVQM PVNLDKSDNV ETFYGKEGGY VLGTGVMDGK
101 SYRKOPIMIT APDNOIVFKD CSPR*
```

The strain B sequence (ORF44) shows 99.2% identity over a 124aa overlap with ORF44a:

```
30
                                                         50
                         10
                                 20
                                                 40
                                                                 60
        orf44.pep
                  MKLLTTAILSSAIALSSMAAAAGTDNPTVAKKTVSYVCQQGKKVKVTYGFNKQGLTTYAS
30
                   orf44a
                  MKLLTTAILSSAIALSSMAAAAGTNNPTVAKKTVSYVCQQGKKVKVTYGFNKQGLTTYAS
                                 20
                                         30
                                                 40
                                                         50
                                 80
                                         90
                                                100
35
                  AVINGKRVQMPVNLDKSDNVETFYGKEGGYVLGTGVMDGKSYRKQPIMITAPDNQIVFKD
        orf44.pep
                   orf44a
                  AVINGKRVOMPVNLDKSDNVETFYGKEGGYVLGTGVMDGKSYRKQPIMITAPDNQIVFKD
                         70
                                 80
                                         90
                                                100
                                                        110
40
                  CSPRX
        orf44.pep
                   \Pi\Pi\Pi
                   CSPRX
        orf44a
```

Computer analysis gave the following results:

Homology with the LecA adhesin of Eikenella corrodens (accession number D78153)

45 ORF44 and LecA protein show 45% as identity in 91 as overlap:

```
Orf44 33 TVSYVCQQGKKVKVTYGFNKQGLTTYASAVINGKRVQMPVNLDKSDNVETFYGKEGGYVL 92
+V+YVCQQG+++ V Y FN G+ T A +N + +++P NL SDNV+T + GY L
Leca 135 SVAYVCQQGRRLNVNYRFNSAGVPTSAELRVNNRNLRLPYNLSASDNVDTVF-SANGYRL 193

Orf44 93 GTGVMDGKSYRKQPIMITAPDNQIVFKDCSP 123
T MD +YR Q I+++AP+ Q+++KDCSP
```

Leca 194 TTNAMDSANYRSQDIIVSAPNGQMLYKDCSP 224

Based on homology with the adhesin, it was predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

ORF44-1 (11.2kDa) was cloned in pET and pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 3A shows the results of affinity purification of the His-fusion protein, and Figure 3B shows the results of expression of the GST-fusion in *E.coli*. Purified His-fusion protein was used to immunise mice, whose sera were used for ELISA, which gave positive results, and for a bactericidal assay (Figure 3C). These experiments confirm that ORF44-1 is a surface-exposed protein, and that it is a useful immunogen.

Figure 3D shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF44-1.

Example 4

5

10

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 17>

```
..GGCACCGAAT TCAAAACCAC CCTTTCCGGA GCCGACATAC AGGCAGGGGT
15
                51
                       GGGTGAAAAA GCCCGAGCCG ATGCGAAAAT TATCCTAAAA GGCATCGTTA
               101
                       ACCGCATCCA AACCGAAGAA AAGCTGGAAT CCAACTCGAC CGTATGGCAA
               151
                       AAGCAGGCCG GAAGCGGCAG CACGGTTGAA ACGCTGAAGC TACCGAGCTT
               201
                       TGAAGGCCG GCACTGCCTA AGCTGACCGC TCCCGGCGGC TATATCGCCG
               251
                       ACATCCCCAA AGGCAACCTC AAAACCGAAA TCGAAAAGCT GGCCAAACAG
20
                301
                       CCCGAATATG CCTATCTGAA ACAGCTTCAG ACGGTCAAGG ACGTGAACTG
                       GAACCAAGTA CAGCTCGCTT ACGACAAATG GGACTATAAA CAGGAAGGCC
                351
                401
                       TAACCGGAGC CGGAGCCGCA ATTANCGCAC TGGCCGTTAC CGTGGTCACC
                       TCAGGCGCAG GAACCGGAGC CGTATTGGGA TTAANACGNG TGGCCGCCGC
               451
               501
                       CGCAACCGAT GCAGCATTT...
```

25 This corresponds to the amino acid sequence <SEQ ID 18; ORF49>:

```
1 ..GTEFKTTLSG ADIQAGVGEK ARADAKIILK GIVNRIQTEE KLESNSTVWQ
51 KQAGSGSTVE TLKLPSFEGP ALPKLTAPGG YIADIPKGNL KTEIEKLAKQ
101 PEYAYLKQLQ TVKDVNWNQV QLAYDKWDYK QEGLTGAGAA IXALAVTVVT
151 SGAGTGAVLG LXRVAAAATD AAF..
```

30 Further work revealed the complete nucleotide sequence <SEQ ID 19>:

```
ATGCAACTGC TGGCAGCCGA AGGCATTCAC CAACACCAAT TGAATGTTCA
                51
                    GAAAAGTACC CGTTTCATCG GCATCAAAGT GGGTAAAAGC AATTACAGCA
                    AAAACGAGCT GAACGAAACC AAACTGCCCG TACGCGTTAT CGCCCAAACA
               101
               151
                    GCCAAAACCC GTTCCGGCTG GGATACCGTA CTCGAAGGCA CCGAATTCAA
35
                    AACCACCCTT TCCGGAGCCG ACATACAGGC AGGGGTGGGT GAAAAAGCCC
               201
                    GAGCCGATGC GAAAATTATC CTAAAAGGCA TCGTTAACCG CATCCAAACC
               251
                    GAAGAAAAGC TGGAATCCAA CTCGACCGTA TGGCAAAAGC AGGCCGGAAG
               301
               351
                    CGGCAGCACG GTTGAAACGC TGAAGCTACC GAGCTTTGAA GGGCCGGCAC
                    TGCCTAAGCT GACCGCTCCC GGCGGCTATA TCGCCGACAT CCCCAAAGGC
               401
40
               451
                    AACCTCAAAA CCGAAATCGA AAAGCTGGCC AAACAGCCCG AATATGCCTA
               501
                    TCTGAAACAG CTTCAGACGG TCAAGGACGT GAACTGGAAC CAAGTACAGC
                    TCGCTTACGA CAAATGGGAC TATAAACAGG AAGGCCTAAC CGGAGCCGGA
               551
                    GCCGCAATTA TCGCACTGGC CGTTACCGTG GTCACCTCAG GCGCAGGAAC
               601
                    CGGAGCCGTA TTGGGATTAA ACGGTGCGGC CGCCGCCGCA ACCGATGCAG
               651
```

	701	CATTTGCCTC	TTTGGCCAGC	CAGGCTTCCG	TATCGTTCAT	CAACAACAAA
	751	GGCAATATCG	GTAACACCCT	GAAAGAGCTG	GGCAGAAGCA	GCACGGTGAA
	801	AAATCTGATG	GTTGCCGTCG	CTACCGCAGG	CGTAGCCGAC	AAAATCGGTG
	851	CTTCGGCACT	GAACAATGTC	AGCGATAAGC	AGTGGATCAA	CAACCTGACC
5	901	GTCAACCTGG	CCAATGCGGG	CAGTGCCGCA	CTGATTAATA	CCGCTGTCAA
	951	CGGCGGCAGC	CTGAAAGACA	ATCTGGAAGC	GAATATCCTT	GCGGCTTTGG
	1001	TGAATACTGC	GCATGGAGAG	GCAGCAAGTA	AAATCAAACA	GTTGGATCAG
	1051	CACTACATTG	CCCATAAGAT	TGCCCATGCC	ATAGCGGGCT	GTGCGGCAGC
	1101	GGCGGCGAAT	AAGGGCAAGT	GTCAAGATGG	TGCGATCGGT	GCGGCGGTCG
10	1151	GTGAAATCCT	TGGCGAAACC	CTACTGGACG	GCAGAGACCC	TGGCAGCCTG
	1201	AATGTGAAGG	ACAGGGCAAA	AATCATTGCT	AAGGCGAAGC	TGGCAGCAGG
	1251	GGCGGTTGCG	GCGTTGAGTA	AGGGGGATGT	GAGTACGGCG	GCGAATGCGG
	1301	CTGCTGTGGC	GGTAGAGAAT	AATTCTTTAA	ATGATATACA	GGATCGTTTG
	1351	TTGAGTGGAA	ATTATGCTTT	ATGTATGAGT	GCAGGAGGAG	CAGAAAGCTT
15	1401	TTGTGAGTCT	TATCGACCAC	TGGGCTTGCC	ACACTTTGTA	AGTGTTTCAG
	1451	GAGAAATGAA	ATTACCTAAT	AAATTCGGGA	ATCGTATGGT	TAATGGAAAA
	1501	TTAATTATTA	ACACTAGAAA	TGGCAATGTA	TATTTCTCTG	TAGGTAAAAT
	1551	ATGGAGTACT	GTAAAATCAA	CAAAATCAAA	TATAAGTGGG	GTATCTGTCG
	1601	GTTGGGTTTT	AAATGTTTCC	CCTAATGATT	ATTTAAAAGA	AGCATCTATG
20	1651	AATGATTTCA	GAAATAGTAA	TCAAAATAAA	GCCTATGCAG	AAATGATTTC
	1701	CCAGACTTTG	GTAGGTGAGA	GTGTTGGTGG	TAGTCTTTGT	CTGACAAGAG
	1751	CCTGCTTTTC	GGTAAGTTCA	ACAATATCTA	AATCTAAATC	TCCTTTTAAA
	1801	GATTCAAAAA	TTATTGGGGA	AATCGGTTTG	GGAAGTGGTG	TTGCTGCAGG
	1851	AGTAGAAAAA	ACAATATACA	TAGGTAACAT	AAAAGATATT	GATAAATTTA
25	1901	TTAGTGCAAA	САТАЛАЛАЛА	TAG		

This corresponds to the amino acid sequence <SEQ ID 20; ORF49-1>:

	1	MQLLAAEGIH	QHQLNVQKST	RFIGIKVGKS	NYSKNELNET	KLPVRVIAQT
	51	AKTRSGWDTV	LE <i>GTE</i> FKTTL	SGADIQAGVG	EKARADAKII	LKGIVNRIQT
	101	EEKLESNSTV	WQKQAGSGST	VETLKLPSFE	GPALPKLTAP	GGYIADIPKG
30	151	NLKTEIEKLA	KQPEYAYLKQ	LQTVKDVNWN	QVQLAYDKWD	YKQEGLTGAG
	201	AAIIALAVTV	VTSGAGTGAV	LGLNGAAAAA	TDAAFASLAS	QASVSFINNK
	251	GNIGNTLKEL	GRSSTVKNLM	VAVATAGVAD	KIGASALNNV	SDKQWINNLT
	301	VNLANAGSAA	LINTAVNGGS	LKDNLEANIL	AALVNTAHGE	AASKIKQLDQ
	351	HYIAHKIAHA	IAGCAAAAAN	KGKCQDGAIG	AAVGEILGET	LLDGRDPGSL
35	401	NVKDRAKIIA	KAKLAAGAVA	ALSKGDVSTA	ANAAAVAVEN	NSLNDIQDRL
	451	LSGNYALCMS	AGGAESFCES	YRPLGLPHFV	SVSGEMKLPN	KFGNRMVNGK
	501	LIINTRNGNV	YFSVGKIWST	VKSTKSNISG	VSVGWVLNVS	PNDYLKEASM
	551	NDFRNSNQNK	AYAEMISQTL	VGESVGGSLC	LTRACFSVSS	TISKSKSPFK
	601	DSKIIGEIGL	GSGVAAGVEK	TIYIGNIKDI	DKFISANIKK	*

40 Computer analysis predicts a transmembrane domain and also indicates that ORF49 has no significant amino acid homology with known proteins. A corresponding ORF from *N.meningitidis* strain A was, however, identified:

ORF49 shows 86.1% identity over a 173aa overlap with an ORF (ORF49a) from strain A of N. meningitidis:

45					10	20	30
	orf49.pep			GTE	FKTTLSGADI	QAGVGEKAR	ADAKIILK
				111	11111:1111		:
	orf49a	SKNELNETKLPV	RVVAQXAATRS	GWDTVLEGTE	FKTTLAGADI	.QAGVXEKAR	VDAKIILK
		40	50	60	70	80	90
50							
		40	50	60	70	80	90
	orf49.pep	GIVNRIQTEEKL	esnstvwqkq <i>f</i>				
			1:11111111				
	orf49a	GIVNRIQSEEKL	etnstvwqkq <i>i</i>	AGRGSTIETLE	KLPSFESPTPE	'KLSAPGGYI'	VDIPKGNL
55		100	110	120	130	140	150
		100	110	120	130	140	150
	orf49.pep	KTEIEKLAKQPE				LTGAGAAIX	ALAVTVVT
		1111111111111	111111111::1	::	:	11 1111	HHHIL

	orf49a	KTEIEKLSKQPEY	YAYLKQLQVAI 170	KNINWNQVQLA 180	YDRWDYKQE 190	GLTEAGAAIIALAVTVVT 200 210	<u>.</u>
5	orf49.pep orf49a		: !!!!!!!		FINNKGDVG 250	KTLKELGRSSTVKNLVVA 260 270	¥
	ORF49-1 and ORF	49a show 83.2%	% identity is	457 aa ove	rlap:		
10	orf49a.pep		1:1111 111			PVRVVAQXAATRSGWDTV	
	orf49-1		-			PVRVIAQTAKTRSGWDTV	
15	orf49a.pep					KLETNSTVWQKQAGRGST :	
	orf49-1	LEGTEFKTTLSGA	DIQAGVGEK	RADAKIILKG	IVNRIQTEE	KLESNSTVWQKQAGSGST	,
	orf49a.pep	IETLKLPSFESPT	PPKLSAPGGY	'IVDIPKGNLK	TEIEKLSKO	PEYAYLKQLQVAKNINWN 	i
20	orf49-1	VETLKLPSFEGPA	LPKLTAPGGY	'IADIPKGNLK'	TEIEKLAKQ	PEYAYLKQLQTVKDVNWN	ŗ
	orf49a.pep					LNGAXAAATDAAFASLAS	
25	orf49-1					LNGAAAAATDAAFASLAS	
23	orf49a.pep	QASVSFINNKGDV	GKTLKELGRS	STVKNLVVAA	ATAGVADKI	GASALXNVSDKQWINNLT	
	orf49-1						
30	orf49a.pep					SKIKQLDQHYIVHKIAHA	
	orf49-1			 NLEANILAAL	 VNTAHGEAA:		
	orf49a.pep	IAGCAAAAANKGK	CODGAIGAAV	GEIVGEALTN	GKNPDTLTA	KEREQILAYSKLVAGTVS	;
35	orf49-1	1111111111111	111111111	111:11:1:	:: : ::	: : : : : : : KDRAKIIAKAKLAAGAVA	
	orf49a.pep			SDXEGREFDNI		KPQLCRKNTVKKYQNVAD	1
40	orf49-1			•	•	GAESFCESYRPLGLPHFV	
	orf49a.pep	KRLAASIAICTDI	SRSTECRTIF	KQHLIDSRSLI	HSSWEAGLI	GKDDEWYKLFSKSYTQAD	
	orf49-1	SVSGEMKLPNKFG	NRMVNGKLII	NTRNGNVYFS	/GKIWSTVK	STKSNISGVSVGWVLNVS	
45	The complete lengt	h ORF49a nucle	eotide sequ	ence <seq< th=""><th>ID 21> is:</th><th></th><th></th></seq<>	ID 21> is:		
		GCAACTGC TGGCA AAAGCCGC CGCTT					
		AACGAACT GAACG AGCCACCC GTTCA					
50	201 AA	CCACGCTG GCCGG	TGCCG ACAT	TCAGGC AGG	TGTANGC G	AAAAAGCCC	
		GTCGATGC GAAAA AGAAAAAT TAGAA					
		GCAGCACT ATCGA					
55		TCTGAAAA CCGAA					
		TGAAACAG CTCCA GCTTACGA CAGAT					
	601 GC	GGCGATTA TCGCA	CTGGC CGTI	ACCGTG GTC	ACCTCAG G	CGCAGGAAC	
60		GAGCCGTA TTGGG TTCGCCTC TTTGG					
-	751 GG	CGATGTCG GCAAA	ACCCT GAAA	GAGCTG GGC	AGAAGCA G	CACGGTGAA	
		ATCTGGTG GTTGC TCGGCACT GANCA					
65		CAACCTAG CCAAT GCGGCAGC CTGAA					
05	•	AATACCGC GCATG					

```
CACTACATAG TCCACAAGAT TGCCCATGCC ATAGCGGGCT GTGCGGCAGC
                     GGCGGCGAAT AAGGGCAAGT GTCAGGATGG TGCGATAGGT GCGGCTGTGG
               1101
                     GCGAGATAGT CGGGGAGGCT TTGACAAACG GCAAAAATCC TGACACTTTG
               1151
                     ACAGCTAAAG AACGCGAACA GATTTTGGCA TACAGCAAAC TGGTTGCCGG
               1201
 5
               1251
                     TACGGTAAGC GGTGTGGTCG GCGGCGATGT AAATGCGGCG GCGAATGCGG
                     CTGAGGTAGC GGTGAAAAAT AATCAGCTTA GCGACNAAGA GGGTAGAGAA
               1301
                     TTTGATAACG AAATGACTGC ATGCGCCAAA CAGAATANTC CTCAACTGTG
               1351
               1401
                     CAGAAAAAT ACTGTAAAAA AGTATCAAAA TGTTGCTGAT AAAAGACTTG
               1451
                     CTGCTTCGAT TGCAATATGT ACGGATATAT CCCGTAGTAC TGAATGTAGA
10
                     ACAATCAGAA AACAACATTT GATCGATAGT AGAAGCCTTC ATTCATCTTG
               1501
                     GGAAGCAGGT CTAATTGGTA AAGATGATGA ATGGTATAAA TTATTCAGCA
               1601
                     AATCTTACAC CCAAGCAGAT TTGGCTTTAC AGTCTTATCA TTTGAATACT
                     GCTGCTAAAT CTTGGCTTCA ATCGGGCAAT ACAAAGCCTT TATCCGAATG
               1651
                     GATGTCCGAC CAAGGTTATA CACTTATTTC AGGAGTTAAT CCTAGATTCA
               1701
15
                     TTCCAATACC AAGAGGGTTT GTAAAACAAA ATACACCTAT TACTAATGTC
               1751
                     AAATACCCGG AAGGCATCAG TTTCGATACA AACCTANAAA GACATCTGGC
               1801
                     AAATGCTGAT GGTTTTAGTC AAGAACAGGG CATTAAAGGA GCCCATAACC
               1851
               1901
                     GCACCAATNT TATGGCAGAA CTAAATTCAC GAGGAGGANG NGTAAAATCT
                     GAAACCCANA CTGATATTGA AGGCATTACC CGAATTAÄAT ATGAGATTCC
               1951
20
                     TACACTAGAC AGGACAGGTA AACCTGATGG TGGATTTAAG GAAATTTCAA
               2001
                     GTATAAAAAC TGTTTATAAT CCTAAAAANT TTTNNGATGA TAAAATACTT
CAAATGGCTC AANATGCTGN TTCACAAGGA TATTCAAAAG CCTCTAAAAT
               2051
               2101
                     TGCTCAAAAT GAAAGAACTA AATCAATATC GGAAAGAAAA AATGTCATTC
               2151
                     AATTCTCAGA AACCTTTGAC GGAATCAAAT TTAGANNNTA TNTNGATGTA
               2201
25
                     AATACAGGAA GAATTACAAA CATTCACCCA GAATAATTTA A
               2251
```

This encodes a protein having amino acid sequence <SEQ ID 22>:

```
XQLLAEEGIH KHELDVQKSR RFIGIKVGXS NYSKNELNET KLPVRVVAQX
                    AATRSGWDTV LEGTEFKTTL AGADIQAGVX EKARVDAKII LKGIVNRIQS
                    EEKLETNSTV WOKOAGRGST IETLKLPSFE SPTPPKLSAP GGYIVDIPKG
               101
30
                    NLKTEIEKLS KQPEYAYLKQ LQVAKNINWN QVQLAYDRWD YKQEGLTEAG
                    AAIIALAVTV VTSGAGTGAV LGLNGAXAAA TDAAFASLAS QASVSFINNK
               201
                    GDVGKTLKEL GRSSTVKNLV VAAATAGVAD KIGASALXNV SDKQWINNLT
               251
                    VNLANAGSAA LINTAVNGGS LKDXLEANIL AALVNTAHGE AASKIKQLDQ
               301
                    HYIVHKIAHA IAGCAAAAAN KGKCQDGAIG AAVGEIVGEA LTNGKNPDTL
               351
35
                    TAKEREQILA YSKLVAGTVS GVVGGDVNAA ANAAEVAVKN NQLSDXEGRE
               401
                    FDNEMTACAK QNXPQLCRKN TVKKYQNVAD KRLAASIAIC TDISRSTECR
               451
                    TIRKOHLIDS RSLHSSWEAG LIGKDDEWYK LFSKSYTOAD LALOSYHLNT
               501
                    AAKSWLOSGN TKPLSEWMSD OGYTLISGVN PRFIPIPRGF VKQNTPITNV
               551
                    KYPEGISFDT NLXRHLANAD GFSQEQGIKG AHNRTNXMAE LNSRGGXVKS
               601
40
                    ETXTDIEGIT RIKYEIPTLD RTGKPDGGFK EISSIKTVYN PKXFXDDKIL
               651
               701
                    QMAQXAXSQG YSKASKIAQN ERTKSISERK NVIQFSETFD GIKFRXYXDV
               751
                    NTGRITNIHP E*
```

Based on the presence of a putative transmembrane domain, it is predicted that these proteins from *N.meningitidis*, and their epitopes, could be useful antigens for vaccines or diagnostics.

45 Example 5

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 23>

```
1 ...CGGATCGTTG TAGGTTTGCG GATTTCTTGC GCCGTAGTCA CCGTAGTCCC
51 AAGTATAACC CAAGGCTTTG TCTTCGCCTT TCATTCCGAT AAGGGATATG
101 ACGCTTTGGT CGGTATAGCC GTCTTGGGAA CCTTTGTCCA CCCAACGCAT
50 151 ATCTGCCTGC GGATTCTCAT TGCCGCTTCT TGGCTGCTGA TTTTTCTGCC
201 TTCGCGTTTT TCAACTTCGC GCTTGAGGGC TTCGGCATAT TTGTCGGCCA
251 ACGCCATTTC TTTCGGATGC AGCTGCCTAT TGTTCCAATC TACATTCGCA
301 CCCACCACAG CACCACCACT ACCACCAGTT GCATAG
```

This corresponds to the amino acid sequence <SEQ ID 24; ORF50>:

```
55 1 ..RIVVGLRISC AVVTVVPSIT QGFVFAFHSD KGYDALVGIA VLGTFVHPTH
51 ICLRILIAAS WLLIFLPSRF STSRLRASAY LSANAISFGC SCLLFQSTFA
101 PTTAPPLPPV A*
```

Computer analysis predicts two transmembrane domains and also indicates that ORF50 has no significant amino acid homology with known proteins.

Based on the presence of a putative transmembrane domain, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

5 Example 6

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 25>

```
.. AAGTTTGACT TTACCTGGTT TATTCCGGCG GTAATCAAAT ACCGCCGGTT
               51
                     GTTTTTTGAA GTATTGGTGG TGTCGGTGGT GTTGCAGCTG TTTGCGCTGA
                     TTACGCCTCT GTTTTTCCAA GTGGTGATGG ACAAGGTGCT GGTACATCGG
               101
10
               151
                     GGATTCTCTA CTTTGGATGT GGTGTCGGTG GCTTTGTTGG TGGTGTCGCT
                     GTTTGAGATT GTGTTGGGCG GTTTGCGGAC GTATCTGTTT GCACATACGA
               201
                     CTTCACGTAT TGATGTGGAA TTGGGCGCGC GTTTGTTCCG GCATCTGCTT
               251
              301
                     TCCCTGCCTT TATCCTATTT CGAGCACAGA CGAGTGGGTG ATACGGTGGC
                     TCGGGTGCGG GAATTGGAGC AGATTCGCAA TTTCTTGACC GGTCAGGCGC
               351
15
               401
                     TGACTTCGGT GTTGGATTTG GCGTTTTCGT TTATCTTTCT GGCGGTGATG
                     TGGTATTACA GCTCCACTCT GACTTGGGTG GTATTGGCTT CGTTG.....
               451
                                               //
              1451
                     ......
                                                     1501
20
                     CAACCGGACG GTGCTGATTA TCGCCCACCG TCTGTCCACT GTTAAAACGG
              1551
                     CACACCGGAT CATTGCCATG GATAAAGGCA GGATTGTGGA AGCGGGAACA
              1601
              1651
                     CAGCAGGAAT TGCTGGCGAA CG..AACGGA TATTACCGCT ATCTGTATGA
              1701
                     TTTACAGAAC GGGTAG
```

This corresponds to the amino acid sequence <SEQ ID 26; ORF39>:

```
25 1 ...KFDFTWFIPA VIKYRRLFFE VLVVSVVLQL FALITPLFFQ VVMDKVLVHR
51 GFSTLDVVSV ALLVVSLFEI VLGGLRTYLF AHTTSRIDVE LGARLFRHLL
101 SLPLSYFEHR RVGDTVARVR ELEQIRNFLT GQALTSVLDL AFSFIFLAVM
151 WYYSSTLTWV VLASL.....//

30 501 .....CANRT VLIIAHRLST VKTAHRIIAM DKGRIVEAGT
551 QQELLANXNG YYRYLYDLQN G*
```

Further work revealed the complete nucleotide sequence <SEQ ID 27>:

	1	ATGTCTATCG	TATCCGCACC	GCTCCCCGCC	CTTTCCGCCC	TCATCATCCT
	51	CGCCCATTAC	CACGGCATTG	CCGCCAATCC	TGCCGATATA	CAGCATGAAT
35	101	TTTGTACTTC	CGCACAGAGC	GATTTAAATG	AAACGCAATG	GCTGTTAGCC
	151	GCCAAATCTT	TGGGATTGAA	GGCAAAGGTA	GTCCGCCAGC	CTATTAAACG
	201	TTTGGCTATG	GCGACTTTAC	CCGCATTGGT	ATGGTGTGAT	GACGGCAACC
	251	ATTTCATTTT	GGCCAAAACA	GACGGTGAGG	GTGAGCATGC	CCAATTTTTG
	301	ATACAGGATT	TGGTTACGAA	TAAGTCTGCG	GTATTGTCTT	TTGCCGAATT
40	351	TTCTAACAGA	TATTCGGGCA	AACTGATATT	GGTTGCTTCC	CGCGCTTCGG
	401	TATTGGGCAG	TTTGGCAAAG	TTTGACTTTA	CCTGGTTTAT	TCCGGCGGTA
	451	ATCAAATACC	GCCGGTTGTT	TTTTGAAGTA	TTGGTGGTGT	CGGTGGTGTT
	501	GCAGCTGTTT	GCGCTGATTA	CGCCTCTGTT	TTTCCAAGTG	GTGATGGACA
	551	AGGTGCTGGT	ACATCGGGGA	TTCTCTACTT	TGGATGTGGT	GTCGGTGGCT
45	601	TTGTTGGTGG	TGTCGCTGTT	TGAGATTGTG	TTGGGCGGTT	TGCGGACGTA
	651	TCTGTTTGCA	CATACGACTT	CACGTATTGA	TGTGGAATTG	GGCGCGCGTT
	701	TGTTCCGGCA	TCTGCTTTCC	CTGCCTTTAT	CCTATTTCGA	GCACAGACGA
	751	GTGGGTGATA	CGGTGGCTCG	GGTGCGGGAA	TTGGAGCAGA	TTCGCAATTT
	801	CTTGACCGGT	CAGGCGCTGA	CTTCGGTGTT	GGATTTGGCG	TTTTCGTTTA
50	851	TCTTTCTGGC	GGTGATGTGG	TATTACAGCT	CCACTCTGAC	TTGGGTGGTA
	901	TTGGCTTCGT	TGCCTGCCTA	TGCGTTTTGG	TCGGCATTTA	TCAGTCCGAT
	951	ACTGCGGACG	CGTCTGAACG	ATAAGTTCGC	GCGCAATGCA	GACAACCAGT
	1001	CGTTTTTAGT	AGAAAGCATC	ACTGCGGTGG	GTACGGTAAA	GGCGATGGCG
	1051	GTGGAGCCGC	AGATGACGCA	GCGTTGGGAC	AATCAGTTGG	CGGCTTATGT

	1101	GGCTTCGGGA	TTTCGGGTAA	CGAAGTTGGC	GGTGGTCGGC	CAGCAGGGGG
	1151	TGCAGCTGAT	TCAGAAGCTG	GTGACGGTGG	CGACGTTGTG	GATTGGCGCA
	1201	CGGCTGGTAA	TTGAGAGCAA	GCTGACGGTG	GGGCAGCTGA	TTGCGTTTAA
	1251	TATGCTCTCG	GGACAGGTGG	CGGCGCCTGT	TATCCGTTTG	GCGCAGTTGT
5	1301	GGCAGGATTT	CCAGCAGGTG	GGGATTTCGG	TGGCGCGTTT	GGGGGATATT
	1351	CTGAATGCGC	CGACCGAGAA	TGCGTCTTCG	CATTTGGCTT	TGCCCGATAT
	1401	CCGGGGGGAG	ATTACGTTCG	AACATGTCGA	TTTCCGCTAT	AAGGCGGACG
	1451	GCAGGCTGAT	TTTGCAGGAT	TTGAACCTGC	GGATTCGGGC	GGGGGAAGTG
	1501	CTGGGGATTG	TGGGACGTTC	GGGGTCGGGC	AAATCCACAC	TCACCAAATT
10	1551	GGTGCAGCGT	CTGTATGTAC	CGGAGCAGGG	ACGGGTGTTG	GTGGACGCCA
	1601	ACGATTTGGC	TTTGGCCGCT	CCTGCCTGGC	TGCGGCGGCA	GGTCGGCGTG
	1651	GTCTTGCAGG	AGAATGTGCT	GCTCAACCGC	AGCATACGCG	ACAATATCGC
	1701	GCTGACGGAT	ACGGGTATGC	CGCTGGAACG	CATTATCGAA	GCAGCCAAAC
	1751	TGGCGGGCGC	ACACGAGTTT	ATTATGGAGC	TGCCGGAAGG	CTACGGCACC
15	1801	GTGGTGGGCG	AACAAGGGGC	CGGCTTGTCG	GGCGGACAGC	GGCAGCGTAT
	1851	TGCGATTGCC	CGCGCGTTAA	TCACCAATCC	GCGCATTCTG	ATTTTTGATG
	1901	AAGCCACCAG	CGCGCTGGAT*	TATGAAAGTG	AACGAGCGAT	TATGCAGAAC
	1951	ATGCAGGCCA	TTTGCGCCAA	CCGGACGGTG	CTGATTATCG	CCCACCGTCT
	2001	GTCCACTGTT	AAAACGGCAC	ACCGGATCAT	TGCCATGGAT	AAAGGCAGGA
20	2051	TTGTGGAAGC	GGGAACACAG	CAGGAATTGC	TGGCGAAGCC	GAACGGATAT
	2101	TACCGCTATC	TGTATGATTT	ACAGAACGGG	TAG	·

This corresponds to the amino acid sequence <SEQ ID 28; ORF39-1>:

	1	MSIVSAPLPA	LSALIILAHY	HGIAANPADI	QHEFCTSAQS	DLNETQWLLA
	51	AKSLGLKAKV	VRQPIKRLAM	ATLPALVWCD	DGNHFILAKT	DGEGEHAQFL
25	101	IQDLVTNKSA	VLSFAEFSNR	YSGKLILVAS	RASVLGSLAK	FDFTWFIPAV
	151	IKYRRLFFEV	LVVSVVLQLF	ALITPLFFQV	VMDKVLVHRG	FSTLDVVSVA
	201	LLVVSLFEIV	LGGLRTYLFA	HTTSRIDVEL	GARLFRHLLS	LPLSYFEHRR
	251	VGDTVARVRE	LEQIRNFLTG	QALTSVLDLA	FSFIFLAVMW	YYSSTLTWVV
	301	LASLPAYAFW	SAFIS PILRT	RLNDKFARNA	DNQSFLVESI	TAVGTVKAMA
30	351	VEPQMTQRWD	NQLAAYVASG	FRVTKLAVVG	QQGVQLIQKL	VTVATLWIGA
	401	RLVIESKLTV	GQLIAFNMLS	GQVAAPVIRL	AQLWQDFQQV	GISVARLGDI
	451	LNAPTENASS	HLALPDIRGE	ITFEHVDFRY	KADGRLILQD	LNLRIRAGEV
	501	LGIVGRSGSG	KSTLTKLVQR	LYVPEQGRVL	VDGNDLALAA	PAWLRRQVGV
	551	VLQENVLLNR	SIRDNIALTD	TGMPLERIIE	AAKLAGAHEF	IMELPEGYGT
35	601	VVGEQGAGLS	GGQRQRIAIA	RALITNPRIL	IFDEATSALD	YESERAIMQN
	651	MQA ICANRTV	LIIAHRLSTV	KTAHRIIAMD	KGRIVEAGTQ	QELLAKPNGY
	701	YRYLYDLQNG	*			

Computer analysis of this amino acid sequence gave the following results:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF39 shows 100% identity over a 165aa overlap with an ORF (ORF39a) from strain A of N. meningitidis:

						10	20	30
	orf39.pep				KFDFTWI	TIPAVIKYRRI	LFFEVLVVSV	VLQL
					1111111	1111111111	1111111111	1111
45	orf39a	AVLSFAE	FSNRYSGKLI	LVASRASVLO	SLAKFDFTWI	TPAVIKYRRI	LFFEVLVVSV	VLQL
		110	120	130	140	150	160	
			40	50	60	70	80	90
•	orf39.pep	FALITPL	FFOVVMDKVI	VHRGFSTLDV	/VSVALLVVSI	FEIVLGGLRI	YLFAHTTSR	
50	• •	TITT	нілин	пинний	11111111	111111111111		
	orf39a	FALITPL:	FFOVVMDKVI	VHRGFSTLDV	VSVALLVVSI	FEIVLGGLR	YLFAHTTSR	IDVE
		170	180	190	200	210	220	
		:	100	110	120	130	140	150
55	orf39.pep	LGARLFR	HLLSLPLSYE	EHRRVGDTVA	ARVRELEGIRM	FLTGOALTS	LDLAFSFIF	
		1111111	111111111	1111111111		$\Pi \Pi $		
	orf39a	LGARLFR	HLLSLPLSY	EHRRVGDTVA	RVRELEQIR	FLTGQALTS	/LDLAFSFIF	LAVM
		230	240	250	260	270	280	
60		:	160	170	180	190	200	210
	orf39.pep	WYYSSTL	rw <u>vvlasl</u> xx	XXXXXXXXX	XXXXXXXXX	XXXXXXICAN	RTVLIIAHR	LSTV

orf39a			LPAYAFWSAF]	(SPILRTRLNI	KFARNADNO:	SFLVESITAV	GTVKAM
	290	300	310	320	330	340	

ORF39-1 and ORF39a show 99.4% identity in 710 aa overlap:

5	orf39-1.pep	MSIVSAPLPALSALIILAHYHGIAANPADIQHEFCTSAQSDLNETOWLLAAKSLGLKAKV
,	orf39a	
	orf39-1.pep	VROPIKRLAMATLPALVWCDDGNHFILAKTDGEGEHAQFLIQDLVTNKSAVLSFAEFSNR
10	orf39a	
	orf39-1.pep	YSGKLILVASRASVLGSLAKFDFTWFIPAVIKYRRLFFEVLVVSVVLQLFALITPLFFQV
15	orf39a	
	orf39-1.pep	VMDKVLVHRGFSTLDVVSVALLVVSLFEIVLGGLRTYLFAHTTSRIDVELGARLFRHLLS
	orf39a	
20	orf39-1.pep	LPLSYFEHRRVGDTVARVRELEQIRNFLTGQALTSVLDLAFSFIFLAVMWYYSSTLTWVV
	orf39a	
25	orf39-1.pep	LASLPAYAFWSAFISPILRTRLNDKFARNADNQSFLVESITAVGTVKAMAVEPQMTQRWD
	orf39a	
30	orf39-1.pep	NQLAAYVASGFRVTKLAVVGQQGVQLIQKLVTVATLWIGARLVIESKLTVGQLIAFNMLS
30	orf39a	NQLAAYVASGFRVTKLAVVGQQGVQLIQKLVTVATLWIGARLVIESKLTVGQLIAFNMLS
	orf39-1.pep	GQVAAPVIRLAQLWQDFQQVGISVARLGDILNAPTENASSHLALPDIRGEITFEHVDFRY
35	orf39a	GQVAAPVIRLAQLWQDFQQVGISVARLGDILNAPTENASSHLALPDIRGEITFEHVDFRY
	orf39-1.pep	KADGRLILQDLNLRIRAGEVLGIVGRSGSGKSTLTKLVQRLYVPEQGRVLVDGNDLALAA
40	orf39a	KADGRLILQDLNLRIRAGEVLGIVGRSGSGKSTLTKLVQRLYVPAQGRVLVDGNDLALAA
	orf39-1.pep	PAWLRRQVGVVLQENVLLNRSIRDNIALTDTGMPLERIIEAAKLAGAHEFIMELPEGYGT
4.5	orf39a	PAWLRRQVGVVLQENVLLNRSIRDNIALTDTGMPLERIIEAAKLAGAHEFIMELPEGYGT
45	orf39-1.pep	VVGEQGAGLSGGQRQRIAIARALITNPRILIFDEATSALDYESERAIMQNMQAICANRTV
	orf39a	VVGEQGAGLSGGQRQRIAIARALITNPRILIFDEATSALDYESERAIMQNMQAICANRTV
50	orf39-1.pep	LIIAHRLSTVKTAHRIIAMDKGRIVEAGTQQELLAKPNGYYRYLYDLQNGX
	orf39a The complete length (ORF39a nucleotide sequence <seq 29="" id=""> is:</seq>
	51 CGCC	CTATCG TATCCGCACC GCTCCCCGCC CTTTCCGCCC TCATCATCCT CATTAC CACGGCATTG CCGCCAATCC TGCCGATATA CAGCATGAAT
55	151 GCCA	TACTTC CGCACAGAGC GATTTAAATG AAACGCAATG GCTGTTAGCC AATCTT TGGGATTGAA GGCAAAGGTA GTCCGCCAGC CTATTAAACG
	251 ATTT	GCTATG GCGACTTTAC CCGCATTGGT ATGGTGTGAT GACGGCAACC TATTTT GGCTAAAACA GACGGTGGGG GTGAGCATGC CCAATATCTA
60	351 TTCT	AGGATT TAACTACGAA TAAGTCTGCG GTATTGTCTT TTGCCGAATT AACAGA TATTCGGGCA AACTGATATT GGTTGCTTCC CGCGCTTCGG
	451 ATCA	GGGCAG TTTGGCAAAG TTTGACTTTA CCTGGTTTAT TCCGGCGGTA AATACC GCCGGTTGTT TTTTGAAGTA TTGGTGGTGT CGGTGGTGTT
<i>(5</i>	551 AGGT	CTGTTT GCGCTGATTA CGCCTCTGTT TTTCCAAGTG GTGATGGACA GCTGGT ACATCGGGGA TTCTCTACTT TGGATGTGGT GTCGGTGGCT
65		TGGTGG TGTCGCTGTT TGAGATTGTG TTGGGCGGTT TGCGGACGTA TTTGCA CATACGACTT CACGTATTGA TGTGGAATTG GGCGCGCGTT

WO 99/36544 PCT/IB99/00103

```
701 TGTTCCGCA TCTGCTTTCC CTGCCTTTAT CCTATTTCGA GCACAGACGA
                      GTGGGTGATA CGGTGGCTCG GGTGCGGGAA TTGGAGCAGA TTCGCAATTT
                      CTTGACCGGT CAGGCGCTGA CTTCGGTGTT GGATTTGGCG TTTTCGTTTA
                 851
                      TCTTTCTGGC GGTGATGTGG TATTACAGCT CCACTCTGAC TTGGGTGGTA
 5
                      TTGGCTTCGT TGCCTGCCTA TGCGTTTTGG TCGGCATTTA TCAGTCCGAT ACTGCGGACG CGTCTGAACG ATAAGTTCGC GCGCAATGCA GACAACCAGT
                 901
                 951
                      CGTTTTTAGT AGAAAGCATC ACTGCGGTGG GTACGGTAAA GGCGATGGCG
                1001
                      GTGGAGCCGC AGATGACGCA GCGTTGGGAC AATCAGTTGG CGGCTTATGT
                1051
                1101
                      GGCTTCGGGA TTTCGGGTAA CGAAGTTGGC GGTGGTCGGC CAGCAGGGGG
10
                      TGCAGCTGAT TCAGAAGCTG GTGACGGTGG CGACGTTGTG GATTGGCGCA
                1151
                1201
                      CGGCTGGTAA TTGAGAGCAA GCTGACGGTG GGGCAGCTGA TTGCGTTTAA
                      TATGCTCTCG GGACAGGTGG CGGCGCCTGT TATCCGTTTG GCGCAGTTGT
                1251
                1301
                      GGCAGGATTT CCAGCAGGTG GGGATTTCGG TGGCGCGTTT GGGGGATATT
                      CTGAATGCGC CGACCGAGAA TGCGTCTTCG CATTTGGCTT TGCCCGATAT
                1351
15
                      CCGGGGGAG ATTACGTTCG AACATGTCGA TTTCCGCTAT AAGGCGGACG
                1401
                      GCAGGCTGAT TTTGCAGGAT TTGAACCTGC GGATTCGGGC GGGGGAAGTG
CTGGGGATTG TGGGACGTTC GGGGTCGGCC AAATCCACAC TCACCAAATT
                1451
                1501
                1551
                      GGTGCAGCGT CTGTATGTAC CGGCGCAGGG ACGGGTGTTG GTGGACGGCA
                      ACGATTTGGC TTTGGCCGCT CCTGCTTGGC TGCGGCGGCA GGTCGGCGTG
                1601
20
                1651
                      GTCTTGCAGG AGAATGTGCT GCTCAACCGC AGCATACGCG ACAATATCGC
                      GCTGACGGAT ACGGGTATGC CGCTGGAACG CATTATCGAA GCAGCCAAAC
                1701
                1751
                      TGGCGGCGC ACACGAGTTT ATTATGGAGC TGCCGGAAGG CTACGGCACC
                1801
                      GTGGTGGCG AACAAGGGC CGGCTTGTCG GGCGGACAGC GGCAGCGTAT
                      TGCGATTGCC CGCGCGTTAA TCACCAATCC GCGCATTCTG ATTTTTGATG
                1851
25
                1901
                      AAGCCACCAG CGCGCTGGAT TATGAAAGTG AACGAGCGAT TATGCAGAAC
                      ATGCAGGCCA TTTGCGCCAA CCGGACGGTG CTGATTATCG CCCACCGTCT
                1951
                      GTCCACTGTT AAAACGGCAC ACCGGATCAT TGCCATGGAT AAAGGCAGGA
TTGTGGAAGC GGGAACACAG CAGGAATTGC TGGCGAAGCC GAACGGATAT
                2001
                2051
                2101
                      TACCGCTATC TGTATGATTT ACAGAACGGG TAG
30
```

This encodes a protein having amino acid sequence <SEQ ID 30>:

```
MSIVSAPLPA LSALIILAHY HGIAANPADI QHEFCTSAQS DLNETQWLLA
                    AKSLGLKAKV VRQPIKRLAM ATLPALVWCD DGNHFILAKT DGGGEHAQYL
                    IQDLTTNKSA VLSFAEFSNR YSGKLILVAS RASVLGSLAK FDFTWFIPAV
               101
                    IKYRRLFFEV LVVSVVLQLF ALITPLFFQV VMDKVLVHRG FSTLDVVSVA
35
               201
                    LLVVSLFEIV LGGLRTYLFA HTTSRIDVEL GARLFRHLLS LPLSYFEHRR
                    VGDTVARVRE LEQIRNFLTG QALTSVLDLA FSFIFLAVMW YYSSTLTWVV
               251
                    LASLPAYAFW SAFISPILRT RLNDKFARNA DNQSFLVESI TAVGTVKAMA
               301
                    VEPOMTORWD NOLAAYVASG FRVTKLAVVG QQGVQLIQKL VTVATLWIGA
               351
               401
                    RLVIESKLTV GQLIAFNMLS GQVAAPVIRL AQLWQDFQQV GISVARLGDI
40
               451
                    LNAPTENASS HLALPDIRGE ITFEHVDFRY KADGRLILQD LNLRIRAGEV
                    LGIVGRSGSG KSTLTKLVQR LYVPAQGRVL VDGNDLALAA PAWLRRQVGV
               501
                    VLQENVLLNR SIRDNIALTD TGMPLERIIE AAKLAGAHEF IMELPEGYGT
               551
                    VVGEQGAGLS GGQRQRIAIA RALITNPRIL IFDEATSALD YESERAIMQN
               601
                    MQAICANRTV LIIAHRLSTV KTAHRIIAMD KGRIVEAGTQ QELLAKPNGY
               651
45
               701
                    YRYLYDLQNG *
```

ORF39a is homologous to a cytolysin from A. pleuropneumoniae:

```
sp|P26760|RT1B ACTPL RTX-I TOXIN DETERMINANT B (TOXIN RTX-I SECRETION ATP-
          BINDING PROTEIN) (APX-IB) (HLY-IB) (CYTOLYSIN IB) (CLY-IB)
          >qi|97137(pir||D43599 cytolysin IB - Actinobacillus pleuropneumoniae (serotype 9)
50
          >gi|38944 (X61112) ClyI-B protein [Actinobacillus pleuropneumoniae] Length = 707
           Score = 931 bits (2379), Expect = 0.0
           Identities = 472/690 (68%), Positives = 540/690 (77%), Gaps = 3/690 (0%)
          Query: 20
                     YHGIAANPADIOHEFCTSAOSDLNETOWXXXXXXXXXXXVVROPIKRLAMATLPALVWC 79
55
                     YH IA NP +++H+F
                                      + L+ T W
                                                              V++ I RLA
                                                                         LPALVW
                     YHNIAVNPEELKHKFDLEGKG-LDLTAWLLAAKSLELKAKOVKKAIDRLAFIALPALVWR 78
          Sbict: 20
                     DDGNHFILAKTDGGGEHAQYLIQDLTTNKSAVLSFAEFSNRYSGKLILVASRASVLGSLA 139
          Query: 80
                     +DG HFIL K D
                                   E +YLI DL T+
                                                   +L AEF + Y GKLILVASRAS++G LA
60
          Sbjct: 79 EDGKHFILTKIDN--EAKKYLIFDLETHNPRILEQAEFESLYQGKLILVASRASIVGKLA 136
          Query: 140 KFDFTWFIPAVIKYRRXXXXXXXXXXXXXXITPLFFQVVMDKVLVHRGFXXXXXXXX 199
                                                      ITPLFFQVVMDKVLVHRGF
                     KFDFTWFIPAVIKYR+
          Sbjct: 137 KFDFTWFIPAVIKYRKIFIETLIVSIFLQIFALITPLFFQVVMDKVLVHRGFSTLNVITV 196
65
          Query: 200 XXXXXXXFEIVLGGLRTYLFAHTTSRIDVELGARLFRHLLSLPLSYFEHRRVGDTVARVR 259
```

	Sbjct: 1	FEIVL GLRTY+FAH+TSRIDVELGARLFRHLL+LP+SYFE+RRVGDTVARVR 37 ALAIVVLFEIVLNGLRTYIFAHSTSRIDVELGARLFRHLLALPISYFENRRVGDTVARVR 256
5		60 ELEQIRNFLTGQALTSVLDLAFSFIFLAVMWYYSSTLTWVVLASLPAYAFWSAFISPILR 319 EL+QIRNFLTGQALTSVLDL FSFIF AVMWYYS LT V+L SLP Y WS FISPILR
	Sbjct: 25	57 ELDQIRNFLTGQALTSVLDLMFSFIFFAVMWYYSPKLTLVILGSLPFYMGWSIFISPILR 316
	Query: 32	20 TRLNDKFARNADNQSFLVESITAVGTVKAMAVEPOMTQRWDNQLAAYVASGFRVTKLAVV 379 RL++KFAR ADNOSFLVES+TA+ T+KA+AV POMT WD OLA+YV++GFRVT LA +
10	Sbjct: 31	RETTRIAR ADMOSFERESTIAT ITAATAV FOMI WD QUATIVTTGERVI LA T 17 RRLDEKFARGADNQSFLVESVTAINTIKALAVTPQMTNTWDKQLASYVSAGFRVTTLATI 376
	Query: 38	30 GQQGVQLIQKI.VTVATLWIGARLVIESKLTVGQLIAFNMLSGQVAAPVIRLAQLWQDFQQ 439 GQQGVQ IQK+V V TLW+GA LVI L++GQLIAFNMLSGQV APVIRLAQLWQDFQQ
15	Sbjct: 37	77 GQQGVQFIQKVVMVITLWLGAHLVISGDLSIGQLIAFNMLSGQVIAPVIRLAQLWQDFQQ 436
15	Query: 44	0 VGISVARLGDILNAPTENASSHLALPDIRGEITFEHVDFRYKADGRLILQDLNLRIRAGE 499 VGISV RLGD+LN+PTE+ LALP+I+G+ITF ++ FRYK D +IL D+NL I+ GE
	Sbjct: 43	37 VGISVTRLGDVLNSPTESYQGKLALPEIKGDITFRNIRFRYKPDAPVILNDVNLSIQQGE 496
20	Query: 50	00 VLGIVGRSGSGKSTLTKLVQRLYVPAQGRVLVDGNDLALAAPAWLRRQVGVVLQENVLLN 559 V+GIVGRSGSGKSTLTKL+OR Y+P G+VL+DG+DLALA P WLRROVGVVLO+NVLLN
	Sbjct: 49	7 VIGIVGRSGSGKSTLTKLIQRFYIPENGQVLIDGHDLALADPNWLRRQVGVVLQDNVLLN 556
25	Query: 56	0 RSIRDNIALTDTGMPLERIIEAAKLAGAHEFIMELPEGYGTVVGEQGAGLSGGQRQRIAI 619 RSIRDNIAL D GMP+E+I+ AAKLAGAHEFI EL EGY T+VGEOGAGLSGGORORIAI
23	Sbjct: 55	7 RSIRDNIALADPGMPMEKIVHAAKLAGAHEFISELREGYNTIVGEQGAGLSGGQRQRIAI 616
	Query: 62	O ARALITNPRILIFDEATSALDYESERAIMQNMQAICANRTVLIIAHRLSTVKTAHRIIAM 679 ARAL+ NP+ILIFDEATSALDYESE IM+NM IC RTV+IIAHRLSTVK A RII M
30	Sbjct: 61	7 ARALVNNPKILIFDEATSALDYESEHIIMRNMHQICKGRTVIIIAHRLSTVKNADRIIVM 676
	Query: 68	0 DKGRIVEAGTQQELLAKPNGYYRYLYDLQN 709
25	Sbjct: 67	+KG+IVE G +ELLA PNG Y YL+ LQ+ 7 EKGQIVEQGKHKELLADPNGLYHYLHQLQS 706
35		

Homology with the HlyB leucotoxin secretion ATP-binding protein of Haemophilus actinomycetemcomitans (accession number X53955)

ORF39 and HlyB protein show 71% and 69% amino acid identity in 167 and 55 overlap at the N-and C-terminal regions, respectively:

40	Orf39	KFDFTWFIPAVIKYRRXXXXXXXXXXXXXXXXXXITPLFFQVVMDKVLVHRGFXXXXXXXXX 60
	HlyB	KFDFTWFIPAVIKYR+ ITPLFFQVVMDKVLVHRGF 37 KFDFTWFIPAVIKYRKIFIETLIVSIFLQIFALITPLFFQVVMDKVLVHRGFSTLNVITV 196
45	Orf39	1 XXXXXXXFEIVLGGLRTYLFAHTTSRIDVELGARLFRHLLSLPLSYFEHRRVGDTVARVR 120 FEI+LGGLRTY+FAH+TSRIDVELGARLFRHLL+LP+SYFE RRVGDTVARVR
	HlyB	97 ALAIVVLFEIILGGLRTYVFAHSTSRIDVELGARLFRHLLALPISYFEARRVGDTVARVR 256
	Orf39	21 ELEQIRNFLTGQALTSVLDLAFSFIFLAVMYYSSTLTWVVLASLIC 167
50	HlyB	EL+QIRNFLTGQALTS+LDL FSFIF AVMWYYS LT VVL SL C 57 ELDQIRNFLTGQALTSILDLLFSFIFFAVMWYYSPKLTLVVLGSLPC 303
		//
55	Orf39	66 ICANRTVLIIAHRLSTVKTAHRIIAMDKGRIVEAGTQQELLANXNGYYRYLYDLQ 220 IC NRTVLIIAHRLSTVK A RII MDKG I+E G OELL + G Y YL+ LO
JJ	HlyB	51 ICQNRTVLIIAHRLSTVKNADRIIVMDKGEIIEQGKHQELLKDEKGLYSYLHQLQ 705

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 7

60 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 31>

```
1 ATGAAATACT TGATCCGCAC CGCCTTACTC GCAGTCGCAG CCGCCGGCAT CTACGCCTGC CAACCGCAAT CCGAAGCCGC AGTGCAAGTC AAGGCTGAAA
```

- 101 ACAGCCTGAC CGCTATGCGC TTAGCCGTCG CCGACAAACA GGCAGAGATT
- 151 GACGGGTTGA ACGCCCAAAk sGACGCCGAA ATCAGA...
- 5 This corresponds to the amino acid sequence <SEQ ID 32; ORF52>:
 - 1 MKYLIRTALL AVAAAGIYAC QPQSEAAVQV KAENSLTAMR LAVADKQAEI

51 DGLNAQXDAE IR..

Further work revealed the complete nucleotide sequence <SEQ ID 33>:

```
1 ATGAAATACT TGATCCGCAC CGCCTTACTC GCAGTCGCAG CCGCCGCAT
10 51 CTACGCCTGC CAACCGCAAT CCGAAGCCGC AGTGCAAGTC AAGGCTGAAA
101 ACAGCCTGAC CGCTATGCGC TTAGCCGTCG CCGACAAACA GGCAGAGATT
151 GACGGGTTGA ACGCCCAAAT CGACGCCGAA ATCAGACAAC GCGAAGCCGA
201 AGAATTGAAA GACTACCGAT GGATACACGG CGACGCGGAA GTGCCGGAGC
251 TGGAAAAATG A
```

- 15 This corresponds to the amino acid sequence <SEQ ID 34; ORF52-1>:
 - 1 MKYLIRTALL AVAAAGIYAC QPQSEAAVQV KAENSLTAMR LAVADKQAEI 51 DGLNAOIDAE IROREAEELK DYRWIHGDAE VPELEK*

Computer analysis of this amino acid sequence predicts a prokaryotic membrane lipoprotein lipid attachment site (underlined).

ORF52-1 (7kDa) was cloned in the pGex vectors and expressed in *E.coli*, as described above. The products of protein expression and purification were analyzed by SDS-PAGE. Figure 4A shows the results of affinity purification of the GST-fusion. Figure 4B shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF52-1.

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 8

25

The following DNA sequence was identified in N.meningitidis <SEQ ID 35>

```
1 ATGGTTATCG GAATATTACT CGCATCAAGC AAGCATGCTC TTGTCATTAC
51 TCTATTGTTA AATCCCGTCT TCCATGCATC CAGTTGCGTA TCGCGTTSGG
30 101 CAATACGGAA TAAAALCTGC TGTTCTGCTT TGGCTAAATT TGCCAAATTG
151 TTTATTGTTT CTTTAGGAGC AGCTTGCTTA GCCGCCTTCG CTTTCGACAA
201 CGCCCCCACA GGCGCTTCCC AAGCGTTGCC TACCGTTACC GCACCCGTGG
251 CGATTCCCGC GCCCGCTTCG GCAGCCTGA
```

This corresponds to the amino acid sequence <SEQ ID 36; ORF56>:

35 1 MVIGILLASS KHALVITLLL NPVFHASSCV SRXAIRNKIC CSALAKFAKL
51 FIVSLGAACL AAFAFDNAPT GASQALPTVT APVAIPAPAS AA*

Further work revealed the complete nucleotide sequence <SEQ ID 37>:

1 ATGGCTTGTA CAGGTTTGAT GGTTTTTCCG TTAATGGTTA TCGGAATATT

ACTTGCATCA AGCAAGCCTG CTCCTTTCCT TACTCTATTG TTAAATCCCG 51 TCTTCCATGC ATCCAGTTGC GTATCGCGTT GGGCAATACG GAATAAAATC 101 TGCTGTTCTG CTTTGGCTAA ATTTGCCAAA TTGTTTATTG TTTCTTTAGG AGCAGCTTGC TTAGCCGCCT TCGCTTTCGA CAACGCCCCC ACAGGCGCTT 251 CCCAAGCGTT GCCTACCGTT ACCGCACCCG TGGCGATTCC CGCGCCCGCT 301 TCGGCAGCCT GA

This corresponds to the amino acid sequence <SEQ ID 38; ORF56-1>:

- MACTGLMVFP LMVIGILLAS SKPAPFLTLL LNPVFHASSC VSRWAIRNKI 51 CCSALAKFAK LFIVSLGAAC LAAFAFDNAP TGASQALPTV TAPVAIPAPA 101 SAA*
- Computer analysis of this amino acid sequence predicts a leader peptide (underlined) and suggests that ORF56 might be a membrane or periplasmic protein.

Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

15 Example 9

5

10

20

25

35

The following partial DNA sequence was identified in N.meningitidis <SEO ID 39>

```
1 ATGTTCAGTA TTTTAAATGT GTTTCTTCAT TGTATTCTGG CTTGTGTAGT
    CTCTGGTGAG ACGCCTACTA TATTTGGTAT CCTTGCTCTT TTTTACTTAT
101
    TGTATCTTC TTATCTTGCT GTTTTTAAGA TTTTCTTTC TTTTTCTTA
    GACAGAGTTT CACTCCGGTC TCCCAGGCTG GAGTGCAAAT GGCATGACCC
    TTTGGCTCAC TGGCTCACGG CCACTTCTGC TATTCTGCCG CCTCAGCCTC
    CAGGG...
```

This corresponds to the amino acid sequence <SEQ ID 40; ORF63>:

 ${\tt MFSI_LNVFLH\ CILACVVSGE\ \underline{TPTIFGILAL\ FYLLYLSYLA\ }VFKIFFSFFL}$ 51 DRVSLRSPRL ECKWHDPLAH WLTATSAILP PQPPG...

Computer analysis of this amino acid sequence predicts a transmembrane region.

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 10

30 The following partial DNA sequence was identified in N. meningitidis <SEQ ID 41>

```
..GTGCGGACGT GGTTGGTTTT TTGGTTGCAG CGTTTGAAAT ACCCGTTGTT
51
      GCTTTGGATT GCGGATATGT TGCTGTACCG GTTGTTGGGC GGCGCGGAAA
101
      TCGAATGCGG CCGTTGCCCT GTGCCGCCGA TGACGGATTG GCAGCATTTT
      TTGCCGGCGA TGGGAACGGT GTCGGCTTGG GTGGCGGTGA TTTGGGCATA
151
      CCTGATGATT GAAAGTGAAA AAAACGGAAG ATATTGA
```

This corresponds to the amino acid sequence <SEQ ID 42; ORF69>:

- ..VRTWLVFWLQ RLKYPLLLWI ADMLLYRLLG GAEIECGRCP VPPMTDWQHF
- 51 LPAMGTVSAW VAVIWAYLMI ESEKNGRY*

Computer analysis of this amino acid sequence predicts a transmembrane region.

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF69 shows 96.2% identity over a 78aa overlap with an ORF (ORF69a) from strain A of N.

5 meningitidis:

```
10
                                20
                                       30
                                               40
                                                       50
                  VRTWLVFWLQRLKYPLLLWIADMLLYRLLGGAEIECGRCPVPPMTDWQHFLPAMGTVSAW
        orf69.pep
                  orf69a
                  VRTWLVFWLQRLKYPLLLCIADMLLYRLLGGAEIECGRCPVPPMTDWQHFLPTMGTVAAW
10
                        10
                                               40
                                                       50
                        70
                               79
        orf69.pep
                  VAVIWAYLMIESEKNGRYX
                  15
                  VAVIWAYLMIESEKNGRYX
        orf69a
```

The ORF69a nucleotide sequence <SEQ ID 43> is:

```
20 GTGCGGACGT GGTTGGTTTT TTGGTTGCAG CGTTTGAAAT ACCCGTTGTT
51 GCTTTGTATT GCGGATATGC TGCTGTACCG GTTGTTGGGC GGCGCGGAAA
101 TCGAATGCGG CCGTTGCCCT GTACCGCCGA TGACGGATTG GCAGCATTTT
151 TTGCCGACGA TGGGAACGGT GGCGGCTTGG GTGGCGGTGA TTTGGGCATA
201 CCTGATGATT GAAAGTGAAA AAAACGGAAG ATATTGA
```

This encodes a protein having amino acid sequence <SEQ ID 44>:

```
1 VRTWLVFWLQ RLKYPLLLCI ADMLLYRLLG GAEIECGRCP VPPMTDWQHF
51 LPTMGTVAAW VAVIWAYLMI ESEKNGRY*
```

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 11

25

30 The following DNA sequence was identified in N. meningitidis <SEO ID 45>

```
ATGTTTCAAA ATTTTGATTT GGGCGTGTTC CTGCTTGCCG TCCTCCCCGT
                    GCTGCCCTCC ATTACCGTCT CGCACGTGGC GCGCGGCTAT ACGGCGCGCT
                51
               101
                    ACTGGGGAGA CAACACTGCC GAACAATACG GCAGGCTGAC ACTGAACCCC
               151
                    CTGCCCCATA TCGATTTGGT CGGCACAATC ATCGTACCGC TGCTTACTTT
35
               201
                    GATGTTCACG CCCTTCCTGT TCGGCTGGGC GCGTCCGATT CCTATCGATT
               251
                    CGCGCAACTT CCGCAACCCG cGCCTTGCCT GGCGTTGCGT TGCCGCGTCC
               301
                    GGCCCGCTGT CGAATCTAGC GATGGCTGTw CTGTGGGGCG TGGTTTTGGT
                    GCTGACTCCG TATGTCGGCG GGGCGTATCA GATGCCGTTG GCTCAAATGG
               351
               401
                    CAAACTACGG TATTCTGATC AATGCGATTC TGTTCGCGCT CAACATCATC
40
                    CCCATCCTGC CTTGGGACGG CGGCATTTTC ATCGACACCT TCCTGTCGGC
               451
               501
                    GAAATATTCG CAAGCGTTCC GCAAAATCGA ACCTTATGGG ACGTGGATTA
               551
                    TCCTACTGCT GATGCTGACC sGGGTTTTGG GTGCGTTTAT wGCACCGATT
                    STGCGGmTGc GTGATTGCTT TTGTGCAGAT GTwCGTCTGA CTGGCTTTCA
               601
                    GACGGCATAA
               651
```

This corresponds to the amino acid sequence <SEQ ID 46; ORF77>:

5

25

1	MFQNFDLGVF	LLAVLPVLPS	ITVSHVARGY	TARYWGDNTA	EQYGRLTLNP
51	LPHIDLVGTI	IVPLLTLMFT	PFLFGWARPI	PIDSRNFRNP	RLAWRCVAAS
101	GPLSNLAMAV	LWGVVLVLTP	YVGGAYQMPL	AQMANYGILI	NAILFALNII
151	PILPWDGGIF	IDTFLSAKYS	QAFRKIEPYG	TWIILLLMLT	XVLGAFIAPI
	XXXXDCXCAD		. —		-

Further work revealed the complete nucleotide sequence <SEQ ID 47>:

```
ATGTTTCAAA ATTTTGATTT GGGCGTGTTT CTGCTTGCCG TCCTGCCCGT
                51
                    GCTGCTCTCC ATTACCGTCA GGGAGGTGGC GCGCGGCTAT ACGGCGCGCT
                101
                    ACTGGGGAGA CAACACTGCC GAACAATACG GCAGGCTGAC ACTGAACCCC
10
                    CTGCCCCATA TCGATTTGGT CGGCACAATC ATCGTACCGC TGCTTACTTT
               201
                    GATGTTCACG CCCTTCCTGT TCGGCTGGGC GCGTCCGATT CCTATCGATT
                    CGCGCAACTT CCGCAACCCG CGCCTTGCCT GGCGTTGCGT TGCCGCGTCC
                251
                    GGCCCGCTGT CGAATCTAGC GATGGCTGTT CTGTGGGGCG TGGTTTTGGT
               301
               351
                    GCTGACTCCG TATGTCGGCG GGGCGTATCA GATGCCGTTG GCTCAAATGG
15
                    CAAACTACGG TATTCTGATC AATGCGATTC TGTTCGCGCT CAACATCATC
               401
                451
                    CCCATCCTGC CTTGGGACGG CGGCATTTTC ATCGACACCT TCCTGTCGGC
                    GAAATATTCG CAAGCGTTCC GCAAAATCGA ACCTTATGGG ACGTGGATTA
               501
               551
                    TCCTACTGCT GATGCTGACC GGGGTTTTGG GTGCGTTTAT TGCACCGATT
                    GTGCGGCTGG TGATTGCGTT TGTGCAGATG TTCGTCTGA
```

20 This corresponds to the amino acid sequence <SEQ ID 48; ORF77-1>:

```
1 MFQNFDLGVF LLAVLPVLLS ITVREVARGY TARYWGDNTA EQYGRLTLNP
51 LPHIDLVGTI IVPLLTLMFT PFLFGWARPI PIDSRNFRNP RLAWRCVAAS
101 GPLSNLAMAV LWGVVLVLTP YVGGAYQMPL AQMANYGILI NAILFALNII
151 PILPWDGGIF IDTFLSAKYS QAFRKIEPYG TWIILLIMLT GVLGAFIAPI
201 VRLVIAFVQM FV*
```

Computer analysis of this amino acid sequence reveals a putative leader sequence and several transmembrane domains.

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF77 shows 96.5% identity over a 173aa overlap with an ORF (ORF77a) from strain A of N. meningitidis:

		10	20	30	40	50	60
	orf77.pep	MFQNFDLGVFL	LAVLPVLPSI	TVSHVARGYTA	RYWGDNTAEQ	YGRLTLNPLPI	HIDLVGTI
35				11111	11111111111		
33	orf77a			RGYTA		YGRLTLNPLPI	
					10	20	30
		70	80	90	100	110	120
	orf77.pep	IVPLLTLMFTP					
40		TIME				III IIIIII	1111111
	orf77a	IVPLLTLMFTP	FLFGWARPIP	IDSRNFRNPRL	AWRCVAASGP	LSNLAMAVLWO	TVVI.VI.TP
		— 40	50	60	70	80	90
		130	140	150	160	170	180
45	orf77.pep	YVGGAYQMPLA	QMANYGILIN/	AILFALNIIPI	LPWDGGIFID	TFLSAKYSQAI	FRKIEPYG
		Пинин	11111 <u>1111</u>		Ī1111111111	111111 1111	$\Pi \Pi \Pi \Pi \Pi \overline{\Pi}$
	orf77a	YVGGAYQMPLA	QMANYXILINZ	AILXALNIIPI	LPWDGGIFID	TFLSAKXSQAI	FRKIEPYG
		100	110	120	130	140	150
50							
50		190	200	210	220		
	orf77.pep	TWIILLLMLTX		RXRDCXCADVR	LTGFQTAX		
		THE TAX TAX					
	orf77a	TWIIXLLMLTG			Х		
		100	170	180			

WO 99/36544 PCT//

ORF77-1 and ORF77a show 96.8% identity in 185 aa overlap:

```
10
                                   20
                                           30
                                                    40
         orf77-1.pep MFQNFDLGVFLLAVLPVLLSITVREVARGYTARYWGDNTAEQYGRLTLNPLPHIDLVGTI
                                           1111111111111111111111111111111111111
 5
                                          RGYTARYWGDNTAEQYGRLTLNPLPHIDLVGTI
         orf77a
                                                 10
                                                          20
                          70
                                   80
                                           90
                                                   100
                                                           110
         orf77-1.pep
                    IVPLLTLMFTPFLFGWARPIPIDSRNFRNPRLAWRCVAASGPLSNLAMAVLWGVVLVLTP
10
                    orf77a
                    IVPLLTLMFTPFLFGWARPIPIDSRNFRNPRLAWRCVAASGPLSNLAMAVLWGVVLVLTP
                                50
                        40
                                         60
                                                 70
                                                         80
                         130
                                  140
                                          150
                                                   160
                                                           170
15
         orf77-1.pep
                   YVGGAYQMPLAQMANYGILINAILFALNIIPILPWDGGIFIDTFLSAKYSQAFRKIEPYG
                    orf77a
                    {\tt YVGGAYQMPLAQMANYXILINAILXALNIIPILPWDGGIFIDTFLSAKXSQAFRKIEPYG
                       100
                               110
                                        120
20
                         190
                                  200
                                          210
         orf77-1.pep
                   TWIILLLMLTGVLGAFIAPIVRLVIAFVQMFVX
                    orf77a
                   TWIIXLLMLTGVLGAXIAPIVQLVIAFVQMFVX
                       160
                               170
                                       180
25
```

A partial ORF77a nucleotide sequence <SEQ ID 49> was identified:

	_					
	1	CGCGGCTATA	CAGCGCGCTA	CTGGGGTGAC	AACACTGCCG	AACAATACGG
	51	CAGGCTGACA	CTGAACCCCC	TGCCCCATAT	CGATTTGGTC	GGCACAATCA
	101	TCGTACCGCT	GCTTACTTTG	ATGTTTACGC	CCTTCCTGTT	CGGCTGGGCG
30	151	CGTCCGATTC	CTATCGATTC	GCGCAACTTC	CGCAACCCGC	GCCTTGCCTG
	201	GCGTTGCGTT	GCCGCGTCCG	GCCCGCTGTC	GAATCTGGCG	ATGGCTGTTC
	251	TGTGGGGCGT	GGTTTTGGTG	CTGACTCCGT	ATGTCGGTGG	GGCGTATCAG
	301	ATGCCGTTGG	CNCAAATGGC	AAACTACNNN	ATTCTGATCA	ATGCGATTCT
	351	GTNCGCGCTC	AACATCATCC	CCATCCTGCC	TTGGGACGGC	GGCATTTTCA
35	401	TCGACACCTT	CCTGTCGGCN	AAATANTCGC	AAGCGTTCCG	CAAAATCGAA
	451	CCTTATGGGA	CGTGGATTAT	CCNGCTGCTT	ATGCTGACCG	GGGTTTTGGG
	501	TGCGTNTATT	GCACCGATTG	TGCAGCTGGT	GATTGCGTTT	GTGCAGATGT
	551	TCGTCTGA				

This encodes a protein having amino acid sequence <SEQ ID 50>:

```
40 1 ..RGYTARYWGD NTAEQYGRLT LNPLPHIDLV GTIIVPLLTL MFTPFLFGWA
51 RPIPIDSRNF RNPRLAWRCV AASGPLSNLA MAVLWGVVLV LTPYVGGAYQ
101 MPLAQMANYX ILINAILXAL NIIPILPWDG GIFIDTFLSA KXSQAFRKIE
151 PYGTWIIXLL MLTGVLGAXI APIVOLVIAF VQMFV*
```

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 12

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 51>

	1	ATGAACCTGA	TTTCACGTTA	CATCATCCGT	CAAATGGCGG	TTATGGCGGT
	51	TTACGCGCTC	CTTGCCTTCC	TCGCTTTGTA	CAGCTTTTTT	GAAATCCTGT
50	101	ACGAAACCGG	CAACCTCGGC	AAAGGCAGTT	ACGGCATATG	GGAAATGCTG
	151	GGCTACACCG	CCCTCAAAAT	GCCCGCCCGC	GCCTACGAAC	TGATTCCCCT
	201	CGCCGTCCTT	ATCGGCGGAC	TGGTCTCCCT	CAGCCAGCTT	GCCGCCGGCA
	251	GCGAACTGAC	CGTCATCAAA	GCCAGCGGCA	TGAGCACCAA	AAAGCTGCTG
	301	TTGATTCTGT	CGCAGTTCGG	TTTTATTTT	GCTATTGCCA	CCGTCGCGCT
55	351	CGGCGAATGG	GTTGCGCCCA	CACTGAGCCA	AAAAGCCGAA	AACATCAAAG

WO 99/36544 -84-

401 CCGCCGCCAT CAACGGCAAA ATCAGCACCG GCAATACCGG CCTTTGGCTG 451 AAAGAAAAA ACAGCGTGAT CAATGTGCGC GAAATGTTGC CCGACCAT..

This corresponds to the amino acid sequence <SEQ ID 52; ORF112>:

```
5 MNLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGNLG KGSYGIWEML
51 GYTALKMPAR AYELIPLAVL IGGLVSLSQL AAGSELTVIK ASGMSTKKLL
101 LILSOFGFIF AIATVALGEW VAPTLSQKAE NIKAAAINGK ISTGNTGLWL
151 KEKNSVINVR EMLPDH...
```

Further work revealed further partial nucleotide sequence <SEQ ID 53>:

```
ATGAACCTGA TTTCACGTTA CATCATCCGT CAAATGGCGG TTATGGCGGT
10
                 51
                    TTACGCGCTC CTTGCCTTCC TCGCTTTGTA CAGCTTTTTT GAAATCCTGT
                101
                    ACGAAACCGG CAACCTCGGC AAAGGCAGTT ACGGCATATG GGAAATGCTG
               151
                    gGCTACACCG CCCTCAAAAT GCCCGCCCGC GCCTACGAAC TGATTCCCCT
                201
                     CGCCGTCCTT ATCGGCGGAC TGGTCTCCCT CAGCCAGCTT GCCGCCGGCA
                    GCGAACTGAC CGTCATCAAA GCCAGCGGCA TGAGCACCAA AAAGCTGCTG
                251
15
                301
                    TTGATTCTGT CGCAGTTCGG TTTTATTTTT GCTATTGCCA CCGTCGCGCT
                351
                    CGGCGAATGG GTTGCGCCCA CACTGAGCCA AAAAGCCGAA AACATCAAAG
                401
                    CCGCCGCCAT CAACGGCAAA ATCAGCACCG GCAATACCGG CCTTTGGCTG
                451
                    AAAGAAAAA ACAGCITKAT CAATGTGCGC GAAATGTTGC CCGACCATAC
                501
                    GCTTTTGGGC ATCAAAATTT GGGCGCGCAA CGATAAAAAC GAATTGGCAG
20
                551
                    AGGCAGTGGA AGCCGATTCC GCCGTTTTGA ACAGCGACGG CAGTTGGCAG
                    TTGAAAAACA TCCGCCGCAG CACGCTTGGC GAAGACAAAG TCGAGGTCTC
                601
                651
                    TATTGCGGCT GAAGAAAACT GGCCGATTTC CGTCAAACGC AACCTGATGG
                701
                    ACGTATTGCT CGTCAAACCC GACCAAATGT CCGTCGGCGA ACTGACCACC
                    TACATCCGCC ACCTCCAAAA CAACAGCCAA AACACCCGAA TCTACGCCAT
                751
25
                801
                    CGCATGGTGG CGCAAATTGG TTTACCCCGC CGCAGCCTGG GTGATGGCGC
                851
                    TCGTCGCCTT TGCCTTTACC CCGCAAACCA CCCGCCACGG CAATATGGGC
                    TTAAAACTCT TCGGCGGCAT CTGTsTCGGA TTGCTGTTCC ACCTTGCCGG
                901
                    ACGGCTCTTT GGGTTTACCA GCCAACTCGG...
```

This corresponds to the amino acid sequence <SEQ ID 54; ORF112-1>:

```
30 1 MINLISRYIIR QMAVMAVYAL LAFLALYSFF EILYETGILG KGSYGIWEML
51 GYTALKMPAR AYELIPLAVL IGGLVSLSQL AAGSELTVIK ASGMSTKKLL
101 LILSQFGFIF ALATVALGEW VAPTLSQKAE NIKAAAINGK ISTGNTGLWL
151 KEKNSXINVR EMLPDHTLLG IKIWARNDKN ELAEAVEADS AVLNSDGSWQ
201 LKNIRRSTLG EDKVEVSIAA EENWPISVKR NLMDVLLVKP DQMSVGELTT
35 251 YIRHLQNNSQ NTRIYALAWW RKLVYPAAAW VMALVAFAFT PQTTRHGNMG
301 LKLFGGICXG LLFHLAGRLF GFTSQL...
```

Computer analysis of this amino acid sequence predicts two transmembrane domains.

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF112 shows 96.4% identity over a 166aa overlap with an ORF (ORF112a) from strain A of N. meningitidis:

	orf112.pep	10 MNLISRYIIROMAV	20 MAVVALLAFI	30	40	50	60 T KM DAD
	OTTITE: pep		•				
45	orf112a	MNLISRYIIRQMAV					
		10	20	30	40	50	60
		70	80	90	100	110	120
50	orf112.pep	AYELIPLAVLIGGI	VSLSQLAAGS	ELTVIKASGN	ISTKKLLLILS	QFGFIFAIAT	VALGEW
						1111111111	
	orf112a	AYELMPLAVLIGGI	VSXSQLAAGS	ELXVIKASGN	ISTKKLLLILS	QFGFIFAIAT	'VALGEW
		70	80	90	100	110	120

	orf112.pe		KAENIKAAAIN	.40 15 GKISTGNTGLW	LKEKNSVINVR		
5	orf112a	VAPTLSQ	KAENIKAAAIN		LKEKNSIINVR		KIWARNDKN 180
	orf112a			WQLKNIRRSTL		EEXWPISVKRN 230	LMDVLLVKP 240
	A partial ORF11	2a nucleotic	le sequence	<seq 55<="" id="" th=""><th>> was identif</th><th>fied:</th><th></th></seq>	> was identif	fied:	
10	1 51	TTACGCGCTC	CTTGCCTTCC	CATCATCCGT	CAGCTTTTTT	GAAATCCTGT	
16	101 151 201	GGNTACACCG CGCCGTCCTT	CCCTCAAAAT ATCGGCGGAC	AAAGGCAGTT GNCCGCCCGC TGGTCTCTNT	GCCTACGAAC CAGCCAGCTT	TGATGCCCCT GCCGCCGGCA	
15	251 301 351	TTGATTCTGT CGGCGAATGG	CGCAGTTCGC GTTGCGCCCA	GCCAGCGGCA TTTTATTTTT CACTGAGCCA	GCTATTGCCA AAAAGCCGAA	CCGTCGCGCT	
20	401 451 501	AAAGAAAAA CCTGCTGGGC	ACAGCATTAT ATTAAAATCT	ATCAGTACCG CAATGTGCGC GGGCCCGCAA	GAAATGTTGC CGATAAAAAC	CCGACCATAC GAACTGGCAG	
	551 601 651	TTGAAAAACA TATTGCGGCT	TCCGCCGCAG GAAGAAAANT	GCCGTTTTGA CACGCTTGGC GGCCGATTTC	GAAGACAAAG CGTCAAACGC	TCGAGGTCTC AACCTGATGG	
25	701 751 801	TACATCCGCC CGCATGGTGG	ACCTCCAAAN CGCAAATTGG	GACCAAATGT NNACAGCCAA TTTACCCCGC	AACACCCGAA CGCAGCCTGG	TCTACGCCAT GTGATGGCGC	
20	851 901 951	TTAAAANTCT NCGGCTCTTC	TCGGCGGCAT NGGTTTACCA	CCGCAAACCA CTGTCTCGGA GCCAACTCTA	TTGCTGTTCC CGGCATCCCG	ACCTTGCCGG CCCTTCCTCG	
30	1001 1051	CGCAAACAGG	AAAAACGCTA				
	This encodes a p			-	-		
35	1 51 101 151 201	GYTALKMXAR LILSQFGFIF KEKNSIINVR	AYELMPLAVI AIATVALGEW EMLPDHTLLG	LAFLALYSFF IGGLVSXSQL VAPTLSQKAE IKIWARNDKN EEXWPISVKR	AAGSELXVIK NIKAAAINGK ELAEAVEADS	ASGMSTKKLL ISTGNTGLWL AVLNSDGSWQ	
40	251 301 351	YIRHLQXXSQ	NTRIYAIAWW	RKLVYPAAAW XFTSQLYGIP	VMALVAFAFT	POTTRHGNMG	
	ORF112a and O	RF112-1 sho	ow 96.3% id	entity in 326	aa overlap:		
	orfl12a.pe			VYALLAFLALY:			
45	orf112-1 orf112a.pe	MNLIS	RYIIRQMAVMA	VYALLAFLALY: XSQLAAGSELX	SFFEILYETGNI	LGKGSYGIWEMI	LGYTALKMPAR
	orf112-1	1111:	111111111111111111111111111111111111111		пинни	11111111111	
50	orf112a.pe	- HH	шинн	INGKISTGNTG INGKISTGNTG			
55	orf112a.pe			GSWQLKNIRRS			
	orf112-1 orf112a.pe			GSWQLKNIRRS' XXSQNTRIYAI			
60	orf112-1	- IIIII	111111111			111111111111	нінши
	orf112a.pe		GICLGLLFHLA	GRLFXFTSQLY	GIPPFLXGALP:	riafallavwl	RKQEKRX

-86-

orf112-1 LKLFGGICXGLLFHLAGRLFGFTSQL

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

5 Example 13

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 57>

```
..GCAGTAGCCG AAACTGCCAA CAGCCAGGGC AAAGGTAAAC AGGCAGGCAG
                      TTCGGTTTCT GTTTCACTGA AAACTTCAGG CGACCTTTGC GGCAAACTCA
                51
               101
                      AAACCACCCT TAAAACTTTG GTCTGCTCTT TGGTTTCCCT GAGTATGGTA
10
                      TTGCCTGCCC ATGCCCAAAT TACCACCGAC AAATCAGCAC CTAAAAACCA
               151
               201
                      GCAGGTCGTT ATCCTTAAAA CCAACACTGG TGCCCCCTTG GTGAATATCC
               251
                      AAACTCCGAA TGGACGCGGA TTGAGCCACA ACCGCTA.TA CGCATTTGAT
               301
                      GTTGACAACA AAGGGGCAGT GTTAAACAAC GACCGTAACA ATAATCCGTT
                      TGTGGTCAAA GGCAGTGCGC AATTGATTTT GAACGAGGTA CGCGGTACGG
               351
15
               401
                      CTAGCAAACT CAACGGCATC GTTACCGTAG GCGGTCAAAA GGCCGACGTG
               451
                      ATTATTGCCA ACCCCAACGG CATTACCGTT AATGGCGGCG GCTTTAAAAA
               501
                      TGTCGGTCGG GGCATCTTAA CTACCGGTGC GCCCCAAATC GGCAAAGACG
               551
                      GTGCACTGAC AGGATTTGAT GTGCGTCAAG GCACATTGGA CCGTAGrAGC
               601
                      AGCAGGTTGG AATGATAAAG GCGGAGCmrm YTACACCGGG GTACTTGCTC
20
               651
                      GTGCAGTTGC TTTGCAGGGG AAATTwmmGG GTAAA.AACT GGCGGTTTCT
               701
                      ACCGGTCCTC AGAAAGTAGA TTACGCCAGC GGCGAAATCA GTGCAGGTAC
               751
                      GGCAGCGGGT ACGAAACCGA CTATTGCCCT TGATACTGCC GCACTGGGCG
               801
                      GTATGTACGC CGACAGCATC ACACTGATTG CCAATGAAAA AGGCGTAGGC
               851
                      GTCTAA
```

25 This corresponds to the amino acid sequence <SEQ ID 58; ORF114>:

```
1 ..AVAETANSQG KGKQAGSSVS VSLKTSGDLC GKLKTTLKTL VCSLVSLSMV
51 LPAHAQITTD KSAPKNQQVV ILKTNTGAPL VNIQTPNGRG LSHNRXYAFD
101 VDNKGAVLNN DRNNNPFVVK GSAQLILNEV RGTASKLNGI VTVGGQKADV
151 IIANPNGITV NGGGFKNVGR GILTTGAPQI GKDGALTGFD VVKAHWTVXA
30 201 AGWNDKGGAX YTGVLARAVA LQGKXXGKXL AVSTGPQKVD YASGEISAGT
251 AAGTKPTIAL DTAALGGMYA DSITLIANEK GVGV*
```

Further work revealed the complete nucleotide sequence <SEQ ID 59>:

1	ATGAATAAAG	GTTTACATCG	CATTATCTTT	AGTAAAAAGC	ACAGCACCAT
51	GGTTGCAGTA	GCCGAAACTG	CCAACAGCCA	GGGCAAAGGT	AAACAGGCAG
101	GCAGTTCGGT	TTCTGTTTCA	CTGAAAACTT	CAGGCGACCT	TTGCGGCAAA
151	CTCAAAACCA	CCCTTAAAAC	TTTGGTCTGC	TCTTTGGTTT	CCCTGAGTAT
201	GGTATTGCCT	GCCCATGCCC	AAATTACCAC	CGACAAATCA	GCACCTAAAA
251	ACCAGCAGGT	CGTTATCCTT	AAAACCAACA	CTGGTGCCCC	CTTGGTGAAT
301	ATCCAAACTC	CGAATGGACG	CGGATTGAGC	CACAACCGCT	ATACGCAGTT
351	TGATGTTGAC	AACAAAGGGG	CAGTGTTAAA	CAACGACCGT	AACAATAATC
401	CGTTTGTGGT	CAAAGGCAGT	GCGCAATTGA	TTTTGAACGA	GGTACGCGGT
451	ACGGCTAGCA	AACTCAACGG	CATCGTTACC	GTAGGCGGTC	AAAAGGCCGA
501	CGTGATTATT	GCCAACCCCA	ACGGCATTAC	CGTTAATGGC	GGCGGCTTTA
551	AAAATGTCGG	TCGGGGCATC	TTAACTACCG	GTGCGCCCCA	AATCGGCAAA
601	GACGGTGCAC	TGACAGGATT	TGATGTGCGT	CAAGGCACAT	TGACCGTAGG
651	AGCAGCAGGT	TGGAATGATA	AAGGCGGAGC	CGACTACACC	GGGGTACTTG
701	CTCGTGCAGT	TGCTTTGCAG	GGGAAATTAC	AGGGTAAAAA	CCTGGCGGTT
751	TCTACCGGTC	CTCAGAAAGT	AGATTACGCC	AGCGGCGAAA	TCAGTGCAGG
-	TACGGCAGCG	GGTACGAAAC	CGACTATTGC	CCTTGATACT	GCCGCACTGG
851	GCGGTATGTA	CGCCGACAGC	ATCACACTGA	TTGCCAATGA	AAAAGGCGTA
901	GGCGTCAAAA	ATGCCGGCAC	ACTCGAAGCG	GCCAAGCAAT	TGATTGTGAC
951	TTCGTCAGGC	CGCATTGAAA	ACAGCGGCCG	CATCGCCACC	ACTGCCGACG
1001	GCACCGAAGC	TTCACCGACT	TATCTCTCCA	TCGAAACCAC	CGAAAAAGGA
1051					
	ATTGGTTATT	GAGACGGGAG	AAGATATCAG	CTTGCGTAAC	GGAGCCGTGG
1201	AATTTGGTGA	TTGAGAGCAA	AACTAATGTG	AACAATGCCA	AAGGCCCGGC
	51 101 151 201 251 301 351 401 451 501 551 601 651 701 751 801 951 1001 1051 1101	51 GGTTGCAGTA 101 GCAGTTCGGT 151 CTCAAAACCA 201 GGTATTGCCT 251 ACCAGCAGGT 301 ATCCAAACTC 351 TGATGTTGAC 401 CGTTTGTGGT 451 ACGGCTAGCA 501 CGTGATTATT 551 AAAATGTCGG 601 GACGGTGCAC 651 AGCAGCAGGT 701 CTCGTGCAGT 751 TCTACCGGTC 801 TACGGCAGCG 851 GCGGTATGTA 901 GGCGTCAAAA 951 TTCGTCAGGC 1001 GCACCGAAGC 1001 GCACCGAAGC 1011 ATTGGTTATT 1151 TGCAGAATAA	51 GGTTGCAGTA GCCGAAACTG 101 GCAGTTCGGT TTCTGTTTCA 151 CTCAAAACCA CCCTTAAAAC 201 GGTATTGCCT GCCCATGCCC 251 ACCAGCAGGT CGTTATCCTT 301 ATCCAAACTC CGAATGGACG 351 TGATGTTGAC AACAAAGGGG 401 CGTTTGTGGT CAAAGGCAGT 451 ACGGCTAGCA AACTCAACGG 501 CGTGATTATT GCCAACCCCA 551 AAAATGTCGG TCGGGGCATC 601 GACGGTGCAC TGACAGGATT 651 AGCAGCAGGT TGGAATGATA 701 CTCGTGCAGT TGGTTTGCAG 751 TCTACCGGTC CTCAGAAAGT 801 TACGGCAGCG GGTACGAAAC 851 GCGGTATGTA CGCCGACAGC 901 GGCGTCAAAA ATGCCGGCAC 901 GCGCTCAAAA ATGCCGGCAC 1001 GCACCGAAGC CGCATTGAAA 1001 GCACCGAAGC TTCACCGACT 101 ATTGGTTATT GAGACGGGAG 1151 TGCAGAATAA CGGCAGTCGC	51 GGTTGCAGTA GCCGAAACTG CCAACAGCCA 101 GCAGTTCGGT TTCTGTTTCA CTGAAAACTT 151 CTCAAAACCA CCCTTAAAAC TTTGGTCTGC 201 GGTATTGCCT GCCCATGCCC AAATTACCAC 251 ACCAGCAGGT CGTTATCCTT AAAACCAACA 301 ATCCAAACTC CGAATGGACG CGGATTGAGC 351 TGATGTTGAC AACAAAGGGG CAGTGTTAAA 401 CGTTTGTGGT CAAAGGCAGT GCGCAATTGA 451 ACGGCTAGCA AACTCAACGG CATCGTTACC 501 CGTGATTATT GCCAACCCCA ACGGCATTAC 551 AAAATGTCGG TCGGGGCATC TTAACTACCG 601 GACGGTGCAC TGACAGGATT TGATGTGCGT 651 AGCAGCAGGT TGGAATGATA AAGGCGGAGC 701 CTCGTGCAGT TGCTTTGCAG GGGAAATTAC 751 TCTACCGGTC CTCAGAAAGT AGATTACGCC 801 TACCGCAGC GGTACGAAAC CGACTATTGC 801 TACCGCAGC GGTACGAAAC CGACTATTGC 901 GCGCTCAAAA ATGCCGCACA ACTCGAAGCC 951 TTCGTCAGGC CGCCATGAAA ACACACCGCCG 1001 GCACCGAAGC TTCACCACTT TATCTCCCA 1051 GCGGCAGGCA CATTTATCTC CAATGGTGGT 1101 ATTGGTTATT GAGACGGAGA AAGATATCAG 1151 TGCAGAATAA CGGCAGTCGC CCAGCTACCA	51 GGTTGCAGTA GCCGAAACTG CCAACAGCCA GGGCAAAGGT 101 GCAGTTCGGT TTCTGTTTCA CTGAAAACTT CAGGCGACCT 151 CTCAAAACCA CCCTTAAAAC TTTGGTCTGC TCTTTGGTTT 201 GGTATTGCCT GCCCATGCCC AAATTACCAC CGACAAATCA 251 ACCAGCAGGT CGTTATCCTT AAAACCAACA CTGGTGCCCC 301 ATCCAAACTC CGAATGGACG CGGATTGAGC CACAACCGCT 351 TGATGTTGAC AACAAAGGGG CAGTGTTAAA CAACGACCGT 401 CGTTTGTGGT CAAAGGCAGT GCGCAATTGA TTTTGAACGA 451 ACGGCTAGCA AACTCAACGG CATCGTTACC GTAGGCGGTC 501 CGTGATTATT GCCAACCCCA ACGGCATTAC CGTTAATGGC 551 AAAATGTCGG TCGGGGCATC TTAACTACCG GTGCGCCCCA 601 GACGGTGCAC TGACAGGATT TGATGTGCGT CAAGGCACAT 651 AGCAGCAGGT TGGAATGATA AAGGCGGAGC CGACTACACC 701 CTCGTGCAGT TGCTTTGCAG GGGAAATTAC AGGGGAAA 751 TCTACCGGTC CTCAGAAAGT AGATTACGCC AGCGGCGAAA 801 TACGGCAGCG GGTACGAAAC CGACTATTGC CCTTGATACT 851 GCGGTATGTA CGCCGACAGC ATCACACTGA TTGCCAATGA 901 GCGCTCAAAA ATGCCGGCAC ATCACACTGA TTGCCAATGA 901 GCACCGAAGC TTCACCGACT TATCTCTCCA TCGCAACCAC 1001 GCACCGAAGC TTCACCGACT TATCTCTCCA TCGCAACCAC 1051 GCGCCAGGCA CATTTATCTC CAATGGTGGT CGGATCGCAC 1051 GCGCCAGGCA CATTTATCTC CAATGGTGGT CGGATCGAAC 1051 GCGCAAGAAAA CGGCGGGAG AAGATATCAG CTTGCCTAAC 1051 GCGCAAGAAAAA CGGCAGGCA CATTTATCTC CAATGGTGGT CGGATCGAAC 1051 GCGCAAGAAAAA CGGCAGGAG AAGATATCAG CTTGCCTAAC 1051 GCGCAAAAAAAA CGGCAGGCAC CACGCTACCA CCGACTATCACC CACCGAATAAAA 1051 GCGCAAAAAAA CGGCAGGCAC CACCGACCACC CACCGAACCACC CACCGAAAAAAAA

-87-

	WO 33/30344	•		-87-		- `
	1251	TACTCTGTCG	GCCGACGGCC	GTACCGTCAT	CAAGGAGGCC	AGTATTCAGA
	1301				GCAACGCCGA	
	1351 1401	CACCACGCA	TTACCGGGGC	AGATGTTACC	GTATTATCCA	ACGGCACCAT
5	1451	GCAAACCGCT	TTCTTTCCAA	CCTTCAACAC	CACCGCACAC TTACCTCCGA	TATCGAAGCAG
	1501	AACGGAGGCA	GTATCAAGGG	CCCCAACAG	CTTGCTTTAC	TEGERACEA
	1551	TAACATTACT	GCCAAAACTA	CCAATCTGAA	TACTCCCGGC	AATCTGTATG
	1601	TTCATACAGG	TAAAGATCTG	AATTTGAATG	TTGATAAAGA	TTTGTCTGCC
	1651	GCCAGCATCC	ATTTGAAATC	GGATAACGCT	GCCCATATTA	CCGGCACCAG
10	1701	TAAAACCCTC	ACTGCCTCAA	AAGACATGGG	TGTGGAGGCA	GGCTCGCTGA
	1751	ATGTTACCAA	TACCAATCTG	CGTACCAACT	CGGGTAATCT	GCACATTCAG
	1801	GCAGCCAAAG	GCAATATTCA	GCTTCGCAAT	ACCAAGCTGA	ACGCAGCCAA
	1851 1901	ATCCTCGAA	TCCACACCCCAT	TGCAGGGCAA	TATCGTTTCA	GACGGCCTTC
15	1951	CACTTTACCC	CTCACAACGGT	COTCACACCC	TATTGGCCAA AAGGCCGATG	CGGTAATGCC
13	2001	ATCGGTTGGT	AAAGGCCGTC	TCDACAGCC	CAATACCAAT	TCAATGCAGG ATCACTTCAT
	2051	CTTCAGGAGA	TATTACGTTG	GTTGCCGGCA	ACGGTATTCA	GCTTGGTGAC
	2101	GGAAAACAAC	GCAATTCAAT	CAACGGAAAA	CACATCAGCA	TCAAAAACAA
	2151	CGGTGGTAAT	GCCGACTTAA	AAAACCTTAA	CGTCCATGCC	AAAAGCGGGG
20	2201	CATTGAACAT	TCATTCCGAC	CGGGCATTGA	GCATAGAAAA	TACCAAGCTG
	2251	GAGTCTACCC	ATAATACGCA	TCTTAATGCA	CAACACGAGC	GGGTAACGCT
	2301	CAACCAAGTA	GATGCCTACG	CACACCGTCA	TCTAAGCATT	ACCGGCAGCC
	2351	AGATTTGGCA	AAACGACAAA	CTGCCTTCTG	CCAACAAGCT	GGTGGCTAAC
25	2401 2451	CCTCACACCC	CACTCAATGC	ACCUMACUCC	CAAATTGCCG CGGTACCGCC	ACAACACCAC
23	2501	GCGGCAACAT	CAATTGGAGT	ACCUTACTEC	CCAAAACTTT	CCAACATAAGC
	2551	GCCGAATTAA	AACCATTGGC	CGGACGGCTG	AATATTGAAG	CAGGTAGCGG
	2601	CACATTAACC	ATCGAACCTG	CCAACCGCAT	CAGTGCGCAT	ACCGACCTGA
	2651	GCATCAAAAC	AGGCGGAAAA	TTGCTGTTGT	CTGCAAAAGG	AGGAAATGCA
30	2701	GGTGCGCCTA	GTGCTCAAGT	TTCCTCATTG	GAAGCAAAAG	GCAATATCCG
	2751	TCTGGTTACA	GGAGAAACAG	ATTTAAGAGG	TTCTAAAATT	ACAGCCGGTA
	2801 2851	AAAACTTGGT	TGTCGCCACC	ACCAAAGGCA	AGTTGAATAT	CGAAGCCGTA
	2901	CCDDDDDTCC	AAACAATTA	AACACCACAT	CAAAAAGCGG TGCGCAGTTG	CTGAACTCAA
35	2951	CGCCTAAAAG	CAAGCTGATT	CCAACCCTGC	AAGAAGAACG	CCACCCTCTC
	3001	GCTTTCTATA	TTCAAGCCAT	CAACAAGGAA	GTTAAAGGTA	AAAAACCCAA
	3051	AGGCAAAGAA	TACCTGCAAG	CCAAGCTTTC	TGCACAAAAT	ATTGACTTGA
	3101	TTTCCGCACA	AGGCATCGAA	ATCAGCGGTT	CCGATATTAC	CGCTTCCAAA
40	3151	AAACTGAACC	TTCACGCCGC	AGGCGTATTG	CCAAAGGCAG	CAGATTCAGA
40	3201 3251	GGCGGCTGCT	ATTCTGATTG	ACGGCATAAC	CGACCAATAT	GAAATTGGCA
	3301	CCTTTCACCC	CAAGAGTCAC	CCTAACTATT	CTGCTCTGAA CATGCAGCTG	CAAGCCTTCA
	3351	TGATGCACGT	ATTATTATCA	GTGCATCCGA	AATCAAAGCT	CCCTCACCCA
	3401	GCATAGACAT	CAAAGCCCAT	AGTGATATTG	TACTGGAGGC	TGGACAAAAC
45	3451	GATGCCTATA	CCTTCTTAAA	AACCAAAGGT	AAAAGCGGCA	AAATCATCAG
	3501	AAAAACCAAG	TTTACCAGCA	CCCGCGACCA	CCTGATTATG	CCAGCCCCCG
	3551	TCGAGCTGAC	CGCCAACGGC	ATAACGCTTC	AGGCAGGCGG	CAACATCGAA
	3601	GCTAATACCA	CCCGCTTCAA	TGCCCCTGCA	GGTAAAGTTA	CCCTGGTTGC
50	3651	GGGTGAAGAG	CTGCAACTGC	TGGCAGAAGA	AGGCATCCAC	AAGCACGAGT
50	3701 3751	TGGATGTCCA	AAAAAGCCGC	CGCTTTATCG	GCATCAAGGT	AGGCAAGAGC
	3801	CCCCCDAACT	CCACCCACCC	CTTCACCCTC	AAATTGCCTG GGATACCGTG	CTCCAACCTA
	3851	CCGAATTCAA	AACCACGCTG	GCCGGTGCGG	ACATTCAGGC	DECLEARGEIN
	3901	GAAAAAGCCC	GTGCCGATGC	GAAAATTATC	CTCAAAGGCA	TTGTGAACCG
55	3951	TATCCAGTCG	GAAGAAAAAT	TAGAAACCAA	CTCAACCGTA	TGGCAGAAAC
	4001	AGGCCGGACG	CGGCAGCACT	ATCGAAACGC	TGAAACTGCC	CAGCTTCGAA
	4051				GGTGGCTATA	
	4101				AAAGCTGGCC	
60	4151	AGTATGCCTA	TCTGAAACAG	CTCCAAGTAG	CGAAAAACGT	CAACTGGAAC
00	4201 4251	CAGGTGCAAC	CCACCCARROC	TAAATGGGAC	TATAAGCAGG	AAGGCTTAAC
	4301	CAGAGCCGGT	AACCCCACCC	CCCCCTCTAC	CGTAACCGCA CCGCTTCAGG	CTGACTTATG
	4351	GCCGCAGCTG	CCGGAACAGC	CCCCACAACC	ACAGCAGCAG	CTACTACTACA
	4401	TTCTACAGCG	ACTGCCATGC	AAACCGCTGC	TTTAGCCTCC	TTGTATAGCC
65	4451	AAGCAGCTGT	ATCCATCATC	AATAATAAAG	GTGATGTCGG	CAAAGCGTTG
	4501	AAAGATCTCG	GCACCAGTGA	TACGGTCAAG	CAGATTGTCA	CTTCTGCCCT
	4551	GACGGCGGGT	GCATTAAATC	AGATGGGCGC	AGATATTGCC	CAATTGAACA
	4601	GCAAGGTAAG	AACCGAACTG	TTCAGCAGTA	CGGGCAATCA	AACTATTGCC
70	4651	AACCTTGGAG	GCAGACTGGC	TACCAATCTC	AGTAATGCAG	GTATCTCAGC
70	4701	TGGTATCAAT	ACCIGCCGTCA	ACGGCGGCAG	CCTGAAAGAC	AACTTAGGCA
	4751 4801	MIGCCGCATT	CARCOTTCAC	GTTAATAGCT	TCCAAGGAGA GTTGCCAAAC	AGUUGUCAGU
	4001	AAAA CAAAA	WHICE I CHO	COMCOMI FAT	GIIGCCAAAC	MULLICUCCCA

	4851	CGCTTTGGCT	GGGTGTGTTA	GCGGATTGGT	ACAAGGAAAA	TGTAAAGACG
	4901	GGGCAATTGG	CGCAGCAGTT	GGGGAAATCG	TAGCCGACTC	CATGCTTGGC
	4951	GGCAGAAACC	CTGCTACACT	CAGCGATGCG	GAAAAGCATA	AGGTTATCAG
_	5001	TTACTCGAAG	ATTATTGCCG	GCAGCGTGGC	GGCACTCAAC	GGCGGCGATG
5	5051	TGAATACTGC	GGCGAATGCG	GCTGAGGTGG	CGGTAGTGAA	TAATGCTTTG
	5101	AATTTTGACA	GTACCCCTAC	CAATGCGAAA	AAGCATCAAC	CGCAGAAGCC
	5151	CGACAAAACC	GCACTGGAAA	AAATTATCCA	AGGTATTATG	CCTGCACATG
	5201	CAGCAGGTGC	GATGACTAAT	CCGCAGGATA	AGGATGCTGC	CATTTGGATA
	5251	AGCAATATCC	GTAATGGCAT	CACAGGCCCG	ATTGTGATTA	CCAGCTATGG
10	5301	GGTTTATGCT	GCAGGTTGGA	CAGCTCCGCT	GATCGGTACA	GCGGGTAAAT
	5351	TAGCTATCAG	CACCTGCATG	GCTAATCCTT	CTGGTTGTAC	TGTCATGGTC
	5401	ACTCAGGCTG	CCGAAGCGGG	CGCGGGAATC	GCCACGGGTG	CGGTAACGGT
	5451	AGGCAACGCT	TGGGAAGCGC	CTGTGGGGGC	GTTGTCGAAA	GCGAAGGCGG
	5501	CCAAGCAGGC	TATACCAACC	CAGACAGTTA	AAGAACTTGA	TGGCTTACTA
15	5551	CAAGAATCAA	AAAATATAGG	TGCTGTAAAT	ACACGAATTA	ATATAGCGAA
	5601	TAGTACTACT	CGATATACAC	CAATGAGACA	AACGGGACAA	CCGGTATCTG
	5 6 51	CTGGCTTTGA	GCATGTTCTT	GAGGGGCACT	TCCATAGGCC	TATTGCGAAT
	5701	AACCGTTCAG	TTTTTACCAT	CTCCCCAAAT	GAATTGAAGG	TTATACTTCA
	5751	AAGTAATAAA	GTAGTTTCTT	CTCCCGTATC	GATGACTCCT	GATGGCCAAT
20	5801	ATATGCGGAC	TGTCGATGTA	GGAAAAGTTA	TTGGTACTAC	TTCTATTAAA
	5851	GAAGGTGGAC	AACCCACAAC	TACAATTAAA	GTATTTACAG	ATAAGTCAGG
	5901	AAATTTGATT	ACTACATACC	CAGTAAAAGG	AAACTAA	
	This compared	n to the own:	a aaid aas	<ceo ii<="" th=""><th>) (0. ODE11</th><th>4.15.</th></ceo>) (0. ODE11	4.15.
	5901 This corresponds	AAATTTGATT	ACTACATACC	CAGTAAAAGG	AAACTAA	

This corresponds to the amino acid sequence <SEQ ID 60; ORF 114-1>:

```
1 MNKGLHRIIF SKKHSTMVAV AETANSQGKG KQAGSSVSVS LKTSGDLCGK
25
                    LKTTLKTLVC SLVSLSMVLP AHAQITTDKS APKNQQVVIL KTNTGAPLVN
               101
                    IQTPNGRGLS HNRYTQFDVD NKGAVLNNDR NNNPFVVKGS AQLILNEVRG
                    TASKLNGIVT VGGQKADVII ANPNGITVNG GGFKNVGRGI LTTGAPQIGK
                151
                    DGALTGFDVR QGTLTVGAAG WNDKGGADYT GVLARAVALQ GKLQGKNLAV
               201
                251
                    STGPQKVDYA SGEISAGTAA GTKPTIALDT AALGGMYADS ITLIANEKGV
30
               301
                    GVKNAGTLEA AKQLIVTSSG RIENSGRIAT TADGTEASPT YLSIETTEKG
                    AAGTFISNGG RIESKGLLVI ETGEDISLRN GAVVQNNGSR PATTVLNAGH
               351
               401
                    NLVIESKTNV NNAKGPATLS ADGRTVIKEA SIQTGTTVYS SSKGNAELGN
                    NTRITGADVT VLSNGTISSS AVIDAKDTAH IEAGKPLSLE ASTVTSDIRL
               451
               501
                    NGGSIKGGKQ LALLADDNIT AKTTNLNTPG NLYVHTGKDL NLNVDKDLSA
35
               551
                    ASIHLKSDNA AHITGTSKTL TASKDMGVEA GSLNVTNTNL RTNSGNLHIO
                    AAKGNIQLRN TKLNAAKALE TTALQGNIVS DGLHAVSADG HVSLLANGNA
               601
                    DFTGHNTLTA KADVNAGSVG KGRLKADNTN ITSSSGDITL VAGNGIOLGD
               651
                    GKQRNSINGK HISIKNNGGN ADLKNLNVHA KSGALNIHSD RALSIENTKL
               701
                    ESTHNTHLNA QHERVTLNQV DAYAHRHLSI TGSQIWQNDK LPSANKLVAN
40
               801
                    GVLALNARYS QIADNTTLRA GAINLTAGTA LVKRGNINWS TVSTKTLEDN
                    AELKPLAGRL NIEAGSGTLT IEPANRISAH TDLSIKTGGK LLLSAKGGNA
               851
                    GAPSAQVSSL EAKGNIRLVT GETDLRGSKI TAGKNLVVAT TKGKLNIEAV
               901
               951
                    NNSFSNYFPT QKAAELNQKS KELEQQIAQL KKSSPKSKLI PTLQEERDRL
              1001
                    AFYIQAINKE VKGKKPKGKE YLQAKLSAQN IDLISAQGIE ISGSDITASK
45
              1051
                    KLNLHAAGVL PKAADSEAAA ILIDGITDQY EIGKPTYKSH YDKAALNKPS
              1101
                    RLTGRTGVSI HAAAALDDAR IIIGASEIKA PSGSIDIKAH SDIVLEAGQN
              1151
                    DAYTFLKTKG KSGKIIRKTK FTSTRDHLIM PAPVELTANG ITLQAGGNIE
              1201
                    ANTTRFNAPA GKVTLVAGEE LQLLAEEGIH KHELDVQKSR RFIGIKVGKS
              1251
                    NYSKNELNET KLPVRVVAQT AATRSGWDTV LEGTEFKTTL AGADIQAGVG
50
              1301
                    EKARADAKII LKGIVNRIQS EEKLETNSTV WQKQAGRGST IETLKLPSFE
                    SPTPPKLTAP GGYIVDIPKG NLKTEIEKLA KQPEYAYLKQ LQVAKNVNWN
              1351
                    QVQLAYDKWD YKQEGLTRAG AAIVTIIVTA LTYGYGATAA GGVAASGSST
              1401
              1451
                    AAAAGTAATT TAAATTVSTA TAMQTAALAS LYSQAAVSII NNKGDVGKAL
                    KDLGTSDTVK QIVTSALTAG ALNQMGADIA QLNSKVRTEL FSSTGNQTIA
              1501
55
                    NLGGRLATNL SNAGISAGIN TAVNGGSLKD NLGNAALGAL VNSFQGEAAS
              1551
              1601
                    KIKTTFSDDY VAKQFAHALA GCVSGLVQGK CKDGAIGAAV GEIVADSMLG
                    GRNPATLSDA EKHKVISYSK IIAGSVAALN GGDVNTAANA AEVAVVNNAL
              1651
              1701
                    NFDSTPTNAK KHOPOKPDKT ALEKIIOGIM PAHAAGAMTN PODKDAAIWI
              1751
                    SNIRNGITGP IVITSYGVYA AGWTAPLIGT AGKLAISTCM ANPSGCTVMV
60
              1801
                    TQAAEAGAGI ATGAVTVGNA WEAPVGALSK AKAAKQAIPT QTVKELDGLL
                    QESKNIGAVN TRINIANSTT RYTPMRQTGQ PVSAGFEHVL EGHFHRPIAN
              1851
              1901
                    NRSVFTISPN ELKVILQSNK VVSSPVSMTP DGQYMRTVDV GKVIGTTSIK
              1951
                    EGGOPTTTIK VFTDKSGNLI TTYPVKGN*
```

Computer analysis of this amino acid sequence predicts a transmembrane region and also gives the

65 following results: WO 99/36544 PCT

Homology with a predicted ORF from N. meningitidis (strain A)

ORF114 shows 91.9% identity over a 284aa overlap with an ORF (ORF114a) from strain A of N. meningitidis:

				10	20	30	40
5	orfll4.pep					rsgdlcgklkt	
	orf114a	MNKGLHRIIFSK	KHSTMVAVAET 20	'ANSQGKGKQA 30	1655V5V5LK	rsgdlegklki 50	TLKTLVC 60
		10	20	30	40	30	80
10		50	60	70	80	90	100
	orfl14.pep	SLVSLSMVLPAH	aqittdksapk	NQQVVILKTN	TGAPLVNIQT	PNGRGLSHNF	CXYAFDVD
		1111111	-1111111111				
	orfl14a	SLVSLSMXXXXXX					
1.5		70	80	90	100	110	120
15		110	120	130	140	150	160
	orf114.pep	NKGAVLNNDRNN					
	OIIII4.pep						
	orf114a	NKGAVLNNDRNN					
20		130	140	150	160	170	180
		170	180	190	200	210	220
	orf114.pep	GGFKNVGRGILT					-
25	orf114a					 	
23	OLLIIIa	· 190	200	210	220	230	240
		250	200				
		230	240	250	260	270	280
	orf114.pep	GKXXGKXLAVST					
30			11111111111				
	orfll4a	GKLQGKNLAVST 250	GPQKVDYASGE 260	ISAGTAAGTE 270	(PTIALDTAA) 280	LGGMYADSITI 290	JAXEKGV 300
		250	260	270	200	230	300
35	orf114.pep	GVX					
	• •	11					
	orf114a	GVKNAGTLEAAK					
		310	320	330	340	350	360

The complete length ORF114a nucleotide sequence <SEQ ID 61> is:

40	1	ATGAATAAAG	GTTTACATCG	CATTATCTTT	AGTAAAAAGC	ACAGCACCAT
	51	GGTTGCAGTA	GCCGAAACTG	CCAACAGCCA	GGGCAAAGGT	AAACAGGCAG
	101	GCAGTTCGGT	TTCTGTTTCA	CTGAAAACTT	CAGGCGACCT	TTGCGGCAAA
	151	CTCAAAACCA	CCCTTAAAAC	CTTGGTCTGC	TCTTTGGTTT	CCCTGAGTAT
	201	GGNATTNCNN	NNCNNTNCCC	AAATTACCAC	CGACAAATCA	GCACCTAAAA
45	251	ACCANCAGGT	CGTTATCCTT	AAAACCAACA	CTGGTGCCCC	CTTGGTGAAT
	301	ATCCAAACTC	CGAATGGACG	CGGATTGAGC	CACAACCGCT	ATACGCAGTT
	351	TGATGTTGAC	AACAAAGGGG	CAGTGTTAAA	CAACGACCGT	AACAATAATC
	401	CGTTTCTGGT	CAAAGGCAGT	GCGCAATTGA	TTTTGAACGA	GGTACGCGGT
	451	ACGGCTAGCA	AACTCAACGG	CATCGTTACC	GTAGGCGGTC	AAAAGGCCGA
50	501	CGTGATTATT	GCCAACCCCA	ACGGCATTAC	CGTTAATGGC	GGCGGCTTTA
	551	AAAATGTCGG	TCGGGGCATC	TTAACTATCG	GTGCGCCCCA	AATCGGCAAA
	601	GACGGTGCAC	TGACAGGATT	TGATGTGCGT	CAAGGCACAT	TGACCGTAGG
	651	AGCAGCAGGT	TGGAATGATA	AAGGCGGAGC	CGACTACACC	GGGGTACTTG
	701	CTCGTGCAGT	TGCTTTGCAG	GGGAAATTAC	AGGGTAAAAA	CCTGGCGGTT
55	751	TCTACCGGTC	CTCAGAAAGT	AGATTACGCC	AGCGGCGAAA	TCAGTGCAGG
	801	TACGGCAGCG	GGTACGAAAC	CGACTATTGC	CCTTGATACT	GCCGCACTGG
	851		CGCCGACAGC			
	901		ATGCCGGCAC			
_	951		CGCATTGAAA			
60	1001		TTCACCGACT			
	1051	GCNNCAGGCA	CATTTATCTC			
	1101	ATTGGTTATT			CTTGCGTAAC	
	1151		CGGCAGTCGC			
	1201	AATTTGGTGA	TTGAGAGTAA	AACTAATGTG	AACAATGCCA	AAGGCTCGNC

	1251	таатстстсс	GCCGGCGGTC	GTACTACGAT	СУУДСУДСТ	ስ ርምስጥጥር አልር
	1301			TCCACCAAAG		_
	1351			AAACGTAACC		
	1401			AGGCTAAAGA		
5	1451			ACCTCGACCG		
	1501	AACAACGGTA	ACATTAAAGG	CGGAAAGCAG	CTTGCTTTAC	TGGCAGACGA
	1551			CCAATCTGAA		
	1601		'	AATTTGAATG		
10	1651			GGATAACGCT		
10	1701			AAGACATGGG		
	1751			CGTACCAACT		
	1801 1851			GCTTCGCAAT TGCAGGGCAA		
	1901			CATGTATCCT		
15	1951			CCTGACAGCC		
13	2001			TGAAAGCAGA		
	2051			GTTGCCGNNN		
	2101			CAACGGAAAA		
	2151	CGGTGGTAAT	GCCGACTTAA	AAAACCTTAA	CGTCCATGCC	AAAAGCGGGG
20	2201			CGGGCATTGA		
	2251			TCTTAATGCA		
	2301			CACACCGTCA		
	2351			CTGCCTTCTG		
25	2401			GCGCTATTCC ACCTTACTGC		
23	2451 2501			ACCITACIGC		
	2551	GCCGAATTAA	AACCATTGGC	CGGACGGCTG	ΔΑΤΑΤΤΈΔΑΩ	CACCTACCGG
	2601			CCAACCGCAT		
	2651			TTGCTGTTGT		
30	2701			TTCCTCATTG		
	2751	TCTGGTTACA	GGAGNAACAG	ATTTAAGAGG	TTCTAAAATT	ACAGCCGGTA
	2801			ACCAAAGGCA		
	2851			TTTTCNTACA		
25	2901			AACAGCAGAT		
35	2951			CCAACCCTGC CAACAAGGAA		
	3001 3051			CCAAGCTTTC		
	3101			ATCAGCGGTT		
	3151			AGGCGTATTG		
40	3201			ACGGCATAAC		
	3251	AGCCCACCTA	CAAGAGTCAC	TACGACAAAG	CTGCTCTGAA	CAAGCCTTCA
	3301			GGTAAGTATT		
	3351			GTGCATCCGA		
45	3401			AGTGATATTG		
45	3451			AACCAAAGGT		
	3501 3551			CCNGCGANCA ATCACGCTTC		
	3601			TGCCCCTGCA		
	3651			TGGCAGAAGA		
50	3701			CGCTTTATCG		
	3751	AATTACAGTA	AAAACGAACT	GAACGAAACC	AAATTGCCTG	TCCGCGTCGT
	3801	CGCCCAAANT	GCAGCCACCC	GTTCAGGCTG	GGATACCGTG	CTCGAAGGTA
	3851			GCCGGTGCCG		
	3901			GAAAATTATC		
55	3951			TAGAAACCAA		
	4001			ATCGAAACGC		
•	4051			GTCCGCACCC CCGAAATCGA		
	4101 4151			CTCCAAGTAG		
60	4201			CAGATGGGAC		
00	4251			TCGCACTGGC		
	4301			TTGGGATTAA		
	4351		•	TTTGGCCAGC		
	4401			GCAAAACCCT		
65	4451			GTTGCCGCCG		
	4501			GANCAATGTC		
	4551	CAACCTGACC	GTCAACCTAG	CCAATGNCGG	GCAGTGCCGC	ACTGAttaa

This encodes a protein having amino acid sequence <SEQ ID 62>:

¹ MNKGLHRIIF SKKHSTMVAV AETANSQGKG KQAGSSVSVS LKTSGDLCGK

			~~			
	51	LKTTLKTLVC	SLVSLSMXXX	XXXQITTDKS	APKNXQVVIL	KTNTGAPLVN
	101	IQTPNGRGLS	HNRYTQFDVD	NKGAVLNNDR	NNNPFLVKGS	AQLILNEVRG
	151	TASKLNGIVT	VGGQKADVII	ANPNGITVNG	GGFKNVGRGI	LTIGAPQIGK
_	201	DGALTGFDVR	QGTLTVGAAG	WNDKGGADYT	GVLARAVALQ	GKLQGKNLAV
5	251		SGEISAGTAA			
	301	GVKNAGTLEA	AKQLIVTSSG	RIENSGRIAT	TADGTEASPT	YLXIETTEKG
	351	AXGTFISNGG	RIESKGLLVI	ETGEDIXLRN	GAVVQNNGSR	PATTVLNAGH
	401		NNAKGSXNLS			
10	451		VLSNGSIGSA			
10	501		LALLADDNIT			
	551	ASIHLKSDNA	AHITGTSKTL	TASKDMGVEA	GLLNVTNTNL	RTNSGNLHIQ
	601	AAKGNIQLRN	TKLNAAKALE	TTALQGNIVS	DGLHAVSADG	HVSLLANGNA
	651	DFTGHNTLTA	KADVXAGSVG	KGRLKADNTN	ITSSSGDITL	VAXXGIQLGD
	701	GKQRNSINGK	HISIKNNGGN	ADLKNLNVHA	KSGALNIHSD	RALSIENTKL
15	751	ESTHNTHLNA	QHERVTLNQV	DAYAHRHLSI	XGSQIWQNDK	LPSANKLVAN
	801	GVLAXNARYS	QIADNTTLRA	GAINLTAGTA	LVKRGNINWS	TVSTKTLEDN
	851		NIEAGSGTLT			
	901	GAXSAQVSSL	EAKGNIRLVT	GXTDLRGSKI	TAGKNLVVAT	TKGKLNIEAV
	951	NNSFSNYFXT	QKXXXLNQKS	KELEQQIAQL	KKSSXKSKLI	PTLQEERDRL
20	1001	AFYIQAINKE	VKGKKPKGKE	YLQAKLSAQN	IDLISAQGIE	ISGSDITASK
	1051	KLNLHAAGVL	PKAADSEAAA	ILIDGITDQY	EIGKPTYKSH	YDKAALNKPS
	1101	RLTGRTGVSI	HAAAALDDAR	IIIGASEIKA	PSGSIDIKAH	SDIVLEAGON
	1151	DAYTFLXTKG	KSGXXIRKTK	FTSTXXHLIM	PAPVELTANG	ITLQAGGNIE
	1201		GKVTLVAGEX			
25	1251		KLPVRVVAQX			
	1301	EKARVDAKII	LKGIVNRIQS	EEKLETNSTV	WQKQAGRGST	IETLKLPSFE
	1351	SPTPPKLSAP	GGYIVDIPKG	NLKTEIEKLS	KQPEYAYLKQ	LQVAKNINWN
	1401	QVQLAYDRWD	YKQEGLTEAG	AAIIALAVTV	VTSGAGTGAV	LGLNGAXAAA
	1451		QASVSFINNK			
30	1501	KIGASALXNV	SDKQWINNLT	VNLANXGQCR	TD*	

ORF114-1 and ORF114a show 89.8% identity in 1564 aa overlap

	orf114a.pep	MNKGLHRIIFSKKHSTMVAVAETANSQGKGKQAGSSVSVSLKTSGDLCGKLKTTLKTLVC
35	orf114-1	MNKGLHRIIFSKKHSTMVAVAETANSQGKGKQAGSSVSVSLKTSGDLCGKLKTTLKTLVC
	orfl14a.pep	SLVSLSMXXXXXQITTDKSAPKNXQVVILKTNTGAPLVNIQTPNGRGLSHNRYTQFDVD
	orf114-1	SLVSLSMVLPAHAQITTDKSAPKNQQVVILKTNTGAPLVNIQTPNGRGLSHNRYTQFDVD
40	orf114a.pep	NKGAVLNNDRNNNPFLVKGSAQLILNEVRGTASKLNGIVTVGGQKADVIIANPNGITVNG
	orf114-1	NKGAVLNNDRNNNPFVVKGSAQLILNEVRGTASKLNGIVTVGGQKADVIIANPNGITVNG
45	orfll4a.pep	GGFKNVGRGILTIGAPQIGKDGALTGFDVRQGTLTVGAAGWNDKGGADYTGVLARAVALQ
.5	orf114-1	GGFKNVGRGILTTGAPQIGKDGALTGFDVRQGTLTVGAAGWNDKGGADYTGVLARAVALQ
	orfll4a.pep	GKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEKGV
50	orf114-1	GKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIANEKGV
	orf114a.pep	GVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLXIETTEKGAXGTFISNGG
55	orf114-1	GVKNAGTLEAAKQLIVTSSGRIENSGRIATTADGTEASPTYLSIETTEKGAAGTFISNGG
<i>JJ</i>	orf114a.pep	RIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESKTNVNNAKGSXNLS
	orf114-1	RIESKGLLVIETGEDISLRNGAVVQNNGSRPATTVLNAGHNLVIESKTNVNNAKGPATLS
60	orf114a.pep	${\tt AGGRTTINDATIOAGSSVYSSTKGDTXLGENTRIIAENVTVLSNGSIGSAAVIEAKDTAH}$
	orf114-1	: :: : : : :
65	orf114a.pep	${\tt IESGKPLSLETSTVASNIRLNNGNIKGGKQLALLADDNITAKTTNLNTPGNLYVHTGKDL}$
03	orf114-1	: : : : :
	orf114a.pep	NLNVDKDLSAASIHLKSDNAAHITGTSKTLTASKDMGVEAGLLNVTNTNLRTNSGNLHIQ

orf114-1 NLNVDKDLSAASIHLKSDNAAHITGTSKTLTASKDMGVEAGSLNVTNTNLRTNSGNLHIO orf114a.pep AAKGNIQLRNTKLNAAKALETTALQGNIVSDGLHAVSADGHVSLLANGNADFTGHNTLTA 5 orf114-1 AAKGNIQLRNTKLNAAKALETTALQGNIVSDGLHAVSADGHVSLLANGNADFTGHNTLTA ${\tt KADVXAGSVGKGRLKADNTNITSSSGDITLVAXXGIQLGDGKQRNSINGKHISIKNNGGN}$ orfl14a.pep KADVNAGSVGKGRLKADNTNITSSSGDITLVAGNGIQLGDGKQRNSINGKHISIKNNGGN orf114-1 10 orfll4a.pep ADLKNLNVHAKSGALNIHSDRALSIENTKLESTHNTHLNAQHERVTLNQVDAYAHRHLSI ADLKNLNVHAKSGALNIHSDRALSIENTKLESTHNTHLNAQHERVTLNQVDAYAHRHLSI orf114-1 15 XGSQIWQNDKLPSANKLVANGVLAXNARYSQIADNTTLRAGAINLTAGTALVKRGNINWS orf114a.pep TGSQIWQNDKLPSANKLVANGVLALNARYSQIADNTTLRAGAINLTAGTALVKRGNINWS orf114-1 orfll4a.pep TVSTKTLEDNAELKPLAGRLNIEAGSGTLTIEPANRISAHTDLSIKTGGKLLLSAKGGNA 20 TVSTKTLEDNAELKPLAGRLNIEAGSGTLTIEPANRISAHTDLSIKTGGKLLLSAKGGNA orf114-1 orfll4a.pep GAXSAQVSSLEAKGNIRLVTGXTDLRGSKITAGKNLVVATTKGKLNIEAVNNSFSNYFXT 25 GAPSAQVSSLEAKGNIRLVTGETDLRGSKITAGKNLVVATTKGKLNIEAVNNSFSNYFPT orf114-1 QKXXXLNQKSKELEQQIAQLKKSSXKSKLIPTLQEERDRLAFYIQAINKEVKGKKPKGKE orfl14a.pep QKAAELNQKSKELEQQIAQLKKSSPKSKLIPTLQEERDRLAFYIQAINKEVKGKKPKGKE orf114-1 30 orf114a.pep YLQAKLSAQNIDLISAQGIEISGSDITASKKLNLHAAGVLPKAADSEAAAILIDGITDOY orf114-1 YLQAKLSAQNIDLISAQGIEISGSDITASKKLNLHAAGVLPKAADSEAAAILIDGITDQY 35 EIGKPTYKSHYDKAALNKPSRLTGRTGVSIHAAAALDDARIIIGASEIKAPSGSIDIKAH orf114a.pep EIGKPTYKSHYDKAALNKPSRLTGRTGVSIHAAAALDDARIIIGASEIKAPSGSIDIKAH orf114-1 orfl14a.pep SDIVLEAGONDAYTFLXTKGKSGXXIRKTKFTSTXXHLIMPAPVELTANGITLOAGGNIE 40 orf114-1 SDIVLEAGQNDAYTFLKTKGKSGKIIRKTKFTSTRDHLIMPAPVELTANGITLOAGGNIE ANTTRFNAPAGKVTLVAGEXXQLLAEEGIHKHELDVQKSRRFIGIKVGXSNYSKNELNET orf114a.pep 45 orf114-1 KLPVRVVAQXAATRSGWDTVLEGTEFKTTLAGADIQAGVXEKARVDAKIILKGIVNRIQS orfll4a.pep KLPVRVVAQTAATRSGWDTVLEGTEFKTTLAGADIQAGVGEKARADAKIILKGIVNRIOS orf114-1 50 EEKLETNSTVWQKQAGRGSTIETLKLPSFESPTPPKLSAPGGYIVDIPKGNLKTEIEKLS orf114a.pep EEKLETNSTVWOKOAGRGSTIETLKLPSFESPTPPKLTAPGGYIVDIPKGNLKTEIEKLA orf114-1 55 KQPEYAYLKQLQVAKNINWNQVQLAYDRWDYKQEGLTEAGAAIIALAVTVVTSGAGTGAV orf114a.pep orf114-1 KQPEYAYLKQLQVAKNVNWNQVQLAYDKWDYKQEGLTRAGAAIVTIIVTALTYGYGATAA orf114a.pep LGLNGA-----XAAATD-----AAFASLASQASVSFINNKGDVGKTL 1477 60 11:111 111:11:111111111:1 : 1111 orf114-1 GGVAASGSSTAAAAGTAATTTAAATTVSTATAMQTAALASLYSQAAVSIINNKGDVGKAL 1500 orfll4a.pep KELGRSSTVKNLVVAAATAGVADKIGA-----SALXNVSDKQWINNL---TVNL 1523 1:11 1:111::1::1 111: :::11 : 1 : : : | | | | | ::11 65 KDLGTSDTVKQIVTSALTAGALNQMGADIAQLNSKVRTELFSSTGNQTIANLGGRLATNL 1560 orf114-1 ANXGQCRTDX orfll4a.pep :1 1 SNAGISAGINTAVN... orf114-1 70

WO 99/36544 PCT/IB99/00103

Homology with pspA putative secreted protein of N. meningitidis (accession number AF030941)

ORF114 and pspA protein show 36% aa identity in 302aa overlap:

```
AVAETANSQGKGKQAGSSVSVSL----KTSGDXXXXXXXXXXXXXXXXXXXXXXXXAAAQ 56
                      AVAE + GK O + SV + S
 5
                  19 AVAENVHRDGKSMQDSEAASVRVTGAASVSSARAAFGFRMAAFSVMLALGVAAFSPAPAS 78
          pspA:
          Orf114: 57 -ITTDKSAPKNQQVVILKTNTGAPLVNIQTPNGRGLSHNRXYAFDVDNKGAVLNNDRNN- 114
                      I DKSAPKNQQ VIL+T G P VNIQTP+ +G+S NR FDVD KG +LNN R+N
                    GIIADKSAPKNQQAVILQTANGLPQVNIQTPSSQGVSVNRFKQFDVDEKGVILNNSRSNT 138
          pspA:
10
          Orf114: 115 -----NPFVVKGSAQLILNEV-RGTASKLNGIVTVGGQKADVIIANPNGITVNGG 163
                               NP + +G A++I+N++ S LNG + VGG++A+V++ANP+GI VNGG
                  139 QTQLGGWIQGNPHLARGEARVIVNQIDSSNPSLLNGYIEVGGKRAEVVVANPSGIRVNGG 198
          pspA:
15
          Orf114: 164 GFKNVGRGILTTGAPQIGKDGALTGFDVVKAHWTVXAAGWNDKGGAXYTGVLARAVALQG 223
                              LT+G P + +G LTGFDV + G D A YT +L+RA +
                  199 GLINAASVTLTSGVPVL-NNGNLTGFDVSSGKVVIGGKGL-DTSDADYTRILSRAAEINA 256
          pspA:
          Orf114: 224 KXXGKXLAVSTGPQKVDYASGEISAGTAAGTK----PTIALDTAALGGMYADSITLIANE 279
20
                        GK + V +G K+D+
                                                        PT+A+DTA LGGMYAD ITLI+ +
                                              +A +
                  257 GVWGKDVKVVSGKNKLDFDGSLAKTASAPSSSDSVTPTVAIDTATLGGMYADKITLISTD 316
          pspA:
          Orf114: 280 KG 281
25
                  317 NG 318
          pspA:
```

ORF114a is also homologous to pspA:

```
gi|2623258 (AF030941) putative secreted protein [Neisseria meningitidis] Length
           Score = 261 \text{ bits } (659), Expect = 3e-68
30
           Identities = 203/663 (30%), Positives = 314/663 (46%), Gaps = 76/663 (11%)
                     MNKGLHRIIFSKKHSTMVAVAETANSQGKGKQAGSSVSVSLK----TSGDXXXXXXXXX 55
          Query: 1
                     MNK +++IF+KK S M+AVAE + GK Q
                                                      + SV +
                     MNKRCYKVIFNKKRSCMMAVAENVHRDGKSMQDSEAASVRVTGAASVSSARAAFGFRMAA 60
          Sbjct: 1
35
          Ouery: 56 XXXXXXXXXXXXXXXXXQITTDKSAPKNXQVVILKTNTGAPLVNIQTPNGRGLSHNRYT 115
                                        I DKSAPKN Q VIL+T G P VNIQTP+ +G+S NR+
          Sbjct: 61 FSVMLALGVAAFSPAPASGIIADKSAPKNQQAVILQTANGLPQVNIQTPSSQGVSVNRFK 120
40
          Query: 116 QFDVDNKGAVLNNDRNN-------NPFLVKGSAQLILNEV-RGTASKLNGIVTVGG 163
QFDVD KG +LNN R+N NP L +G A++I+N++ S LNG + VGG
          Sbjct: 121 QFDVDEKGVILNNSRSNTQTQLGGWIQGNPHLARGEARVIVNQIDSSNPSLLNGYIEVGG 180
          Query: 164 QKADVIIANPNGITVNGGGFKNVGRGILTIGAPQIGKDGALTGFDVRQGTLTVGAAGWND 223
45
                     ++A+V++ANP+GI VNGGG N LT G P + +G LTGFDV G + +G G D
          Sbjct: 181 KRAEVVVANPSGIRVNGGGLINAASVTLTSGVPVL-NNGNLTGFDVSSGKVVIGGKGL-D 238
          Query: 224 KGGADYTGVLARAVALQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTK----PTIALD 279
                        ADYT +L+RA + + GK++ V +G K+D+
                                                                +A +
50
          Sbjct: 239 TSDADYTRILSRAAEINAGVWGKDVKVVSGKNKLDFDGSLAKTASAPSSSDSVTPTVAID 298
          Ouery: 280 TAALGGMYADSITLIAXEKGVGVKNAGTLEAAK-QLIVTSSGRIENSGRIATTADGTEAS 338
                     TA LGGMYAD ITLI+ + G ++N G + AA + +++ G++ NSG I
          Sbict: 299 TATLGGMYADKITLISTDNGAVIRNKGRIFAATGGVTLSADGKLSNSGSI------DAA 351
55
          Query: 339 PTYLXIETTEKGAXGTFISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNA 398
                        + +T + + G I S V++ + I + G + GS
          Sbjct: 352 EITISAQTVD-----NRQGFIRSGKGSVLKVSDGINNQAGLI----GSAGLLDIRDT 399
60
          Query: 399 GHNLVIESKTNVNNAKGS----XNLSAGGRTTINDATIQAGSSVYSSTKGDTXLGENTRI 454
                     G +S ++NN G+ ++S ++ ND + A
                                                               V S + D
          Sbjct: 400 G----KSSLHINNTDGTIIAGKDVSLQAKSLDNDGILTAARDV-SVSLHDDFAGKRDIE 453
          Query: 455 IAENVTVLSNGSIGSAAVIEAKDTAHIESGKPLSLETSTVASNIRLNNGNIKGGKQLALL 514
65
                         +T + G + + +I+A DT + + + + + + S R
```

```
Sbjct: 454 AGRTLTFSTQGRLKNTRIIQAGDTVSLTAAQIDNTVSGKIQSGNRTGLNGKNGITNRGLI 513
          Query: 515 ADDNIT----AKTTNLNTPGNLYVHTGKDLNLNVDKDLSAASIHLKSDNAAHITGTSKT 569
                               AK+ N T G +Y
                                              G + + D L+
                      + IT
 5
          Sbjct: 514 NSNGITLLQTEAKSDNAGT-GRIY---GSRVAVEADTLLNREETVNGETKAA------ 562
          Query: 570 LTASKDMGVEAGXXXXXXXXXXXXSGNLHIQAA---KGNIQLRNTKL-NAAKALETTALQ 625
                                           SG+LHI +A
                                                          +Q NT L N + A+E++
                     + A + + + A
          Sbict: 563 IAARERLDIGAREIENREAALLSSSGDLHIGSALNGSRQVQGANTSLHNRSAAIESS--- 619
10
          Query: 626 GNI 628
                    GNI
          Sbjct: 620 GNI 622
15
           Score = 37.5 bits (85), Expect = 0.53
           Identities = 87/432 (20%), Positives = 159/432 (36%), Gaps = 62/432 (14%)
          Query: 239 LQGKLQGKNLAVSTGPQKVDYASGEISAGTAAGTKPTIALDTAALGGMYADSITLIAXEK 298
20
                     LQG LQGKN+ + G
                                      + +GIAAK
          Sbjct: 1023 LQGDLQGKNIFAAAGSDITN--TGSIGAENALLLK-----ASNNIESRSETRSNQNE 1072
          Query: 299 GVGVKNAGTLEAAKQLIVTSSGRI--ENSGRIATTADGTEASPTYLXIETTEKGAXG-TF 355
                                                   I TA
                        V+NG+AL
                                        +G + +
          Sbjct: 1073 QGSVRNIGRV-AGIYLTGRQNGSVLLDAGNNIVLTAS-----ELTNQSEDGQTV 1120
25
                     ISNGGRIESKGLLVIETGEDIXLRNGAVVQNNGSRPATTVLNAGHNLVIESK------ 408
          Query: 356
                      ++ GG I S
                                        I + V++
                                                        +T+
                                                              G NL + +K
          Sbjct: 1121 LNAGGDIRSDTTGISRNQNTIFDSDNYVIRKEQNEVGSTIRTRG-NLSLNAKGDIRIRAA 1179
30
          Query: 409 NVNNAKGSXNLSAGGRTTINDATIQAGSS------VYSSTKGDTXLGENTRIIAENVT 460
                               L+AG
                                        D ++AG +
                                                          Y+
                                                                     + TR +
          Sbjct: 1180 EVGSEQGRLKLAAG----RDIKVEAGKAHTETEDALKYTGRSGGGIKQKMTRHLKNQNG 1234
          Query: 461 VLSNGSIGSAAVIEAKDTAHIESGKPLSLETSTVASNIRLNNGNIKGGKQLALLADDNIT 520
35
                                          +G + + T+ S
                                                           NN +K + + A+ N
                               +I
          Sbjct: 1235 QAVSGTLDGKEIILVSGRDITVTGSNIIADNHTILS--AKNNIVLKAAETRSRSAEMNKK 1292
          Query: 521 AKTTNLNTPG-NLYVHTGKDLNLNVDKDLSAASIHLKSDN-----AAHITGTSKTLTA 572
40
                      K+ + + G
                                    + KD
                                           N + +S
                                                       + S N
          Sbjct: 1293 EKSGLMGSGGIGFTAGSKKDTQTNRSETVSHTESVVGSLNGNTLISAGKHYTQTGSTISS 1352
          Query: 573 SK-DMGVEAGXXXXXXXXXXXXXSGNLHIQAAKG----NIQLRNTKLNAAKALETTALQG 626
                                                   KG
                                                          ++ + NT + A A++
45
          Sbict: 1353 PQGDVGISSGKISIDAAQNRYSQESKQVYEQKGVTVAISVPVVNTVMGAVDAVKAVQTVG 1412
          Query: 627 NIVSDGLHAVSA 638
                        + ++A++A
          Sbjct: 1413 KSKNSRVNAMAA 1424
```

Amino acids 1-1423 of ORF114-1 were cloned in the pGex vector and expressed in *E.coli*, as described above. GST-fusion expression was visible using SDS-PAGE, and Figure 5 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF114-1.

Based on these results, including the homology with the putative secreted protein of *N.meningitidis* and on the presence of a transmembrane domain, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 14

50

55

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 63>

```
..CGCTTCATTC ATGATGAAGC AGTCGGCAGC AACATCGGCG GCGGCAAAAT
                       GATTGTTGCA GCCGGCAGG ATATCAATGT ACGCGGCANA AGCCTTATTT
                 51
                101
                       CTGATAAGGG CATTGTTTTA AAAGCAGGAC ACGACATCGA TATTTCTACT
                151
                       GCCCATAATC GCTATACCGG CAATGAATAC CACGAGAGCA WAAAWTCAGG
 5
                201
                       CGTCATGGGT ACTGGCGGAT TGGGCTTTAC TATCGGTAAC CGGAAAACTA
                251
                       CCGATGACAC TGATCGTACC AATATTGTsC ATACAGGCAG CATTATAGGC
                       AGCCTGAATG GAGACACCGT TACAGTTGCA GGAAACCGCT ACCGACAAAC
                301
                351
                       CGGCAGTACC GTCTCCAGCC CCGAGGGGCG CAATACCGTC ACAGCCAAAw
                401
                       GCATAGATGT AGAGTTCGCA AACAACCGGT ATGCCACTGA CTACGCCCAT
10
                451
                       ACCCAGGGAA CAAAAAGGCC TTACCGTCGC CCTCAATGTC CCGGTTGTCC
                501
                       AAGCTGCACA AAACTTCATA CAAGCAGCCC AAAATGTGGG CAAAAGTAAA
                551
                       AATAAACGCG TTAATGCCAT GGCTGCAGCC AATGCTGCAT GGCAGAGTTA
                       TCAAGCAACC CAACAATGC AACAATTTGC TCCAAGCAGC AGTGCGGGAC
                601
                651
                       AAGGTCAAAA CTACAATCAA AGCCCCAGTA TCAGTGTGTC CATTAC.TAC
15
                701
                       GGCGAACAGA AAAGTCGTAA CGAGCAAAAA AGACATTACA CCGAAGCGGC
                751
                       AGCAAGTCAA ATTATCGGCA AAGGGCAAAC CACACTTGCG GCAACAGGAA
                801
                       GTGGGGAGCA GTCCAATATC AATATTACAG GTTCCGATGT CATCGGCCAT
                851
                       GCAGGTACTC C.CTCATTGC CGACAACCAT ATCAGACTCC AATCTGCCAA
                901
                       ACAGGACGGC AGCGAGCAAA GCAAAAACAA AAGCAGTGGT TGGAATGCAG
20
                951
                       GCGTACGTnn CAAAATAGGC AACGGCATCA GGTTTGGAAT TACCGCCGGA
               1001
                       GGAAATATCG GTAAAGGTAA AGAGCAAGGG GGAAGTACTA CCCACCGCCA
                       CACCCATGTC GGCAGCACAA CCGGCAAAAC TACCATCCGA AGCGGCGGGG
               1051
                       GATACCACCC TCAAAGGTGT GCAGCTCATC GGCAAAGGCA TACAGGCAGA
               1101
                       TACGCGCAAC CTGCATATAG AAAGTGTTCA AGATACTGAA ACCTATCAGA
               1151
25
               1201
                       GCAAACAGCA AAACGGCAAT GTCCAAGTT<u>L</u> ACTGTCGGTT ACGGATTCAG
                       TGCAAGCGGC AGTTACCGCC AAAGCAAAGT CAAAGCAGAC CATGCCTCCG
               1251
               1301
                       TAACCGGGCA AAGCGGTATT TATGCCGGAG AAGACGGCTA TCAAATYAAA
                       GTYAGAGACA ACACAGACCT YAAGGGCGGT ATCATCACGT CTAGCCAAAG
               1351
               1401
                       CGCAGAAGAT AAGGGCAAAA ACCTTTTTCA GACGGCCACC CTTACTGCCA
30
                       GCGACATTCA AAACCACAGC CGCTACGAAG GCAGAAGCTT CGGCATAGGC
               1451
               1501
                       GGCAGTTTCG ACCTGAACGG CGGCTGGGAC GGCACGGTTA CCGACAAACA
               1551
                       AGGCAGGCCT ACCGACAGGA TAAGCCCGGC AGCCGGCTAC GGCAGCGACG
                       GAGACAGCAA AAACAGCACC ACCCGCAGCG GCGTCAACAC CCACAACATA
               1601
               1651
                       CACATCACCG ACGAAGCGGG ACAACTTGCC CGAACAGGCA GGACTGCAAA
35
                       AGAAACCGAA GCGCGTATCT ACACCGGCAT CGACACCGAA ACTGCGGATC
               1701
               1751
                       AACACTCAGG CCATCTGAAA AACAGCTTCG AC...
```

This corresponds to the amino acid sequence <SEQ ID 64; ORF116>:

```
..RFIHDEAVGS NIGGGKMIVA AGQDINVRGX SLISDKGIVL KAGHDIDIST
                51
                       AHNRYTGNEY HESXXSGVMG TGGLGFTIGN RKTTDDTDRT NIVHTGSIIG
40
                       SLNGDTVTVA GNRYRQTGST VSSPEGRNTV TAKXIDVEFA NNRYATDYAH
               101
               151
                       TQEQKGLTVA LNVPVVQAAQ NFIQAAQNVG KSKNKRVNAM AAANAAWQSY
                       QATQQMQQFA PSSSAGQGQN YNQSPSISVS IXYGEQKSRN EQKRHYTEAA
                201
                       ASQIIGKGQT TLAATGSGEQ SNINITGSDV IGHAGTXLIA DNHIRLQSAK
                251
                301
                       ODGSEOSKNK SSGWNAGVRX KIGNGIRFGI TAGGNIGKGK EQGGSTTHRH
45
                       THVGSTTGKT TIRSGGDTTL KGVQLIGKGI QADTRNLHIE SVQDTETYQS
                351
                401
                       KQQNGNVQVT VGYGFSASGS YRQSKVKADH ASVTGQSGIY AGEDGYQIKV
                       RDNTDLKGGI ITSSQSAEDK GKNLFQTATL TASDIQNHSR YEGRSFGIGG
                451
                       SFDLNGGWDG TVTDKQGRPT DRISPAAGYG SDGDSKNSTT RSGVNTHNIH
                501
                       ITDEAGOLAR TGRTAKETEA RIYTGIDTET ADOHSGHLKN SFD...
                551
```

50 Computer analysis of this amino acid sequence gave the following results:

Homology with pspA putative secreted protein of *N.meningitidis* (accession number AF030941) ORF116 and pspA protein show 38% as identity in 502as overlap:

	Orf116:	126	GRNTVTAKXIDVEFANNRYATDYAHTQEQKGLTVALNVPXXXXXXXXXXXXXXXXKGKS G +++ I ++ A NRY+ + EQKG+TVA++VP GKS	182
	PspA:	1355	GDVGISSGKISIDAAQNRYSQESKQVYEQKGVTVAISVPVVNTVMGAVDAVKAVQTVGKS	1414
5	Orf116:	183	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	240
	PspA:	1415	KNSRVNAMAAANALNKGVDSGVALYNAARNPKKAAGQGISVSVTYGEQKNTS	1466
10	Orf116:	241	EQKRHYTEAAASQIIGKGQTTLAATGSGEQSNINITGSDVIGHAGTXLIADNHIRLQSAK E + T+ +I G G+ +L A+G+G+ S I ITGSDV G GT L A+N +++++A+	300
10	PspA:	1467	ESRIKGTQVQEGKITGGGKVSLTASGAGKDSRITITGSDVYGGKGTRLKAENAVQIEAAR	1526
	Orf116:	301	QDGSEQSKNKSSGWNAGVRXKIGNGIRFGITAXXXXXXXXXXXXTTHRHTHVGSTTGKT O E+S+NKS+G+NAGV I GI FG TA T +R++H+GS +T	360
15	PspA:	1527	QTHQERSENKSAGFNAGVAIAINKGISFGFTAGANYGKGYGNGDETAYRNSHIGSKDSQT	1586
	Orf116:	361	TIRSGGDTTLKGVQLIGKGIQADTRNLHIESVQDTETYQSKQQNGNVQVTVGYGFSASGS I SGGDT +KG QL GKG+ +LHIES+QDT ++ KQ+N + QVTVGYGFS GS	420
20	PspA:	1587	AIESGGDTVIKGGQLKGKGVGVTAESLHIESLQDTAVFKGKQENVSAQVTVGYGFSVGGS	1646
20	Orf116:	421	YRQSKVKADHASVTGQSGIYAGEDGYQIKVRDNTDLKGGIITSSQSAEDKGKNLFQTATL Y +SK +D+ASV OSGI+AG DGY+I+V T L G + S DK KNL +T+ +	480
	PspA:	1647	YNRSKSSSDYASVNEQSGIFAGGDGYRIRVNGKTGLVGAAVVSDADKSKNLLKTSEI	1703
25	Orf116:	481	TASDIQNHSRYEGRSFGIGGSF 502 DIONH+ + G+ G F	
	PspA:	1704	WHKDIQNHASAAASALGLSGGF 1725	

Based on homology with pspA, it is predicted that this protein from N.meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

30 Example 15

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 65>

	1	ACGACCGGCA	GCCTCGGCGG	CATACTGGCC	GGCGGCGGCA	CTTCCCTTGC
	51	CGCACCGTAT	TTGGACAAAG	CGGCGGAAAA	CCTCGGTCCG	GCGGGCAAAG
	101	CGGCGGTCAA	CGCACTGGGC	GGTGCGGCCA	TCGGCTATGC	AACTGGTGGT
35	151	AGTGGTGGTG	CTGTGGTGGG	TGCGAATGTA	GATTGGAACA	ATAGGCAGCT
	201	GCATCCGAAA	GAAATGGCGT	TGGCCGACAA	ATATGCCGAA	GCCCTCAAGC
	251	GCGAAGTTGA	AAAACGCGAA	GGCAGAAAAA	TCAGCAGCCA	AGAAGCGGCA
	301	ATGAGAATCC	GCAGGCAGAT	ATGCGTTGGG	TGGACAAAGG	TTCCCAAGAC
	351	GGCTATACCG	ACCAAAGCGT	CATATCCCTT	ATCGGAATGA	

This corresponds to the amino acid sequence <SEQ ID 66; ORF118>: 40

```
..TTGSLGGILA GGGTSLAAPY LDKAAENLGP AGKAAVNALG GAAIGYATGG
       SGGAVVGANV DWNNRQLHPK EMALADKYAE ALKREVEKRE GRKISSQEAA
MRIRRQICVG WTKVPKTAIP TKASYPLSE*
51
```

Computer analysis of this amino acid sequence reveals two putative transmembrane domains.

45 Based on this analysis, it is predicted that this protein from N. meningitidis, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 16

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 67>

1 ...CAATGCCGTC TGAAAAGCTC ACAATTTTAC AGACGGCATT TGTTATGCAA

AATGCGGCGG CGAATGCGGC TGAGGTAGCG GTGAAAAATA ATCAGCTTAG

GTACATATAC AGATTCCCTA TATACTGCCC AGrkGCGTGC GTgGCTGAAG 51 ACACCCCCTA CGCTTGCTAT TTGTAACAGC TCCAAGTCAC CAAAGACGTC 101 AACTGGAACC AGGTACWACT GGCGTACGAC AAATGGGACT ATAAACAGGA 151 201 AGGCTTAACC GGAGCCGGAG CAGCGATTAT TGCGCTGGCT GTTACCGTGG 5 TTACTGCGGG CGCGGGAGCC GGAGCCGCAC TGGGCTTAAA CGGCGCGGCc 251 301 GCAGCGGCAA CCGATGCCGC ATTCGCCTCG CTGGCCAGCC AGGCTTCCGT ATCGCTCATC AACAACAAAG GCAATATCGG TAACACCCTG AAAGAGCTGG 351 401 GCAGAAGCAG CACGGTGAAA AATCTGATGG TTGCCGTCGc tACCGCAGGC GTagCcgaCA AAATCGGTGC TTCGGCACTG AACAATGTCA GCGATAAGCA 451 10 GTGGATCAAC AACCTGACCG TCAACCTGGC CAATGCGGGC AGTGCCGCAC 501 TGATTAATAC CGCTGTCAAC GGCGGCAGCc tgAAAGACAA TCTGGAAGCG 551 AATATCCTTG CGGCTTTGGT GAATACTGCG CATGGAGAAG CAGCCAGTAA 601 651 AATCAAACAG TTGGATCAGC ACTACATTAC CCACAAGATT GCCCATGCCA TAGCGGGCTG TGCGGCTGCG GCGGCGAATA AGGGCAAGTG TCAGGATGGT 701 15 751 GCGATAGGTG CGGCTGTGGG CGAGATAGTC GGGGAGGCTT TGACAAACGG CAAAAATCCT GACACTTTGA CAGCTAAAGA ACGCGAACAG ATTTTGGCAT 801 851 ACAGCAAACT GGTTGCCGGT ACGGTAAGCG GTGTGGTCGG CGGCGATGTA

20 This corresponds to the amino acid sequence <SEQ ID 68; ORF41>:

CGACAAAtGA

901 951

1 ..QCRLKSSQFY RRHLLCKYIY RFPIYCPXAC VAEDTPYACY LXQLQVTKDV
51 NWNQVXLAYD KWDYKQEGLT GAGAAIIALA VTVVTAGAGA GAALGLNGAA
101 AAATDAAFAS LASQASVSLI NNKGNIGNTL KELGRSSTVK NLMVAVATAG
151 VADKIGASAL NNVSDKQWIN NLTVNLANAG SAALINTAVN GGSLKDNLEA
252 VALALIVATAH HGEAASKIKQ LDQHYITHKI AHAIAGCAAA AANKGKCQDG
253 AIGAAVGEIV GEALTNGKNP DTLTAKEREQ ILAYSKLVAG TVSGVVGGDV
301 NAAANAAEVA VKNNQLSDK*

Further work revealed the complete nucleotide sequence <SEQ ID 69>:

	1	ATGCAAGTAA	ATATTCAGAT	TCCCTATATA	CTGCCCAGAT	GCGTGCGTGC
30	51	TGAAGACACC	CCCTACGCTT	GCTATTTGAA	ACAGCTCCAA	GTCACCAAAG
	101	ACGTCAACTG	GAACCAGGTA	CAACTGGCGT	ACGACAAATG	GGACTATAAA
	151	CAGGAAGGCT	TAACCGGAGC	CGGAGCAGCG	ATTATTGCGC	TGGCTGTTAC
	201	CGTGGTTACT	GCGGGCGCGG	GAGCCGGAGC	CGCACTGGGC	TTAAACGGCG
	251	CGGCCGCAGC	GGCAACCGAT	GCCGCATTCG	CCTCGCTGGC	CAGCCAGGCT
35	301	TCCGTATCGC	TCATCAACAA	CAAAGGCAAT	ATCGGTAACA	CCCTGAAAGA
	351	GCTGGGCAGA	AGCAGCACGG	TGAAAAATCT	GATGGTTGCC	GTCGCTACCG
	401		CGACAAAATC			
	451		TCAACAACCT			
	501		AATACCGCTG			
40	551		CCTTGCGGCT			
	601		AACAGTTGGA			
	651		GGCTGTGCGG			
	701		AGGTGCGGCT			
	751		ATCCTGACAC			
45	801		AAACTGGTTG			
	851		GGCGGCGAAT			
	901		AAGAGGGTAG			
	951		AATCCTCAAC			
	1001		TGATAAAAGA			
50	1051	ATATCCCGTA	GTACTGAATG	TAGAACAATC	AGAAAACAAC	ATTTGATCGA
	1101		CTTCATTCAT			
	1151		TAAATTATTC			
	1201	TTACAGTCTT	ATCATTTGAA	TACTGCTGCT	AAATCTTGGC	TTCAATCGGG
	1251	CAATACAAAG	CCTTTATCCG	AATGGATGTC	CGACCAAGGT	TATACACTTA
55	1301	TTTCAGGAGT	TAATCCTAGA	TTCATTCCAA	TACCAAGAGG	GTTTGTAAAA
	1351	CAAAATACAC	CTATTACTAA	TGTCAAATAC	CCGGAAGGCA	TCAGTTTCGA
	1401		AAAAGACATC			-
	1451	AGGGCATTAA	AGGAGCCCAT	AACCGCACCA	ATTTTATGGC	AGAACTAAAT
	1501		GACGCGTAAA			
60	1551	TACCCGAATT	AAATATGAGA	TTCCTACACT	AGACAGGACA	GGTAAACCTG
	1601	ATGGTGGATT	TAAGGAAATT	TCAAGTATAA	AAACTGTTTA	TAATCCTAAA
	1651	AAATTTTCTG	ATGATAAAAT	ACTTCAAATG	GCTCAAAATG	CTGCTTCACA
	1701		AAAGCCTCTA			
	1751	TATCGGAAAG	AAAAAATGTC	ATTCAATTCT	CAGAAACCTT	TGACGGAATC
65	1801	AAATTTAGAT	CATATTTTGA	TGTAAATACA	GGAAGAATTA	CAAACATTCA
	1851	CCCAGAATAA				

This corresponds to the amino acid sequence <SEQ ID 70; ORF41-1>:

```
1 MQVNIQIPYI LPRCVRAEDT PYACYLKQLQ VTKDVNWNQV QLAYDKWDYK
                    QEGLTGAGAA IIALAVTVVT AGAGAGAALG LNGAAAAATD AAFASLASQA
                    SVSLINNKGN IGNTLKELGR SSTVKNLMVA VATAGVADKI GASALNNVSD
 5
               151
                    KQWINNLTVN LANAGSAALI NTAVNGGSLK DNLEANILAA LVNTAHGEAA
                    SKIKQLDQHY ITHKIAHAIA GCAAAAANKG KCQDGAIGAA VGEIVGEALT
               251
                    NGKNPDTLTA KEREQILAYS KLVAGTVSGV VGGDVNAAAN AAEVAVKNNO
                    LSDKEGREFD NEMTACAKON NPOLCRKNTV KKYONVADKR LAASIAICTD
               351
                    ISRSTECRTI RKQHLIDSRS LHSSWEAGLI GKDDEWYKLF SKSYTQADLA
10
               401
                    LQSYHLNTAA KSWLQSGNTK PLSEWMSDQG YTLISGVNPR FIPIPRGFVK
               451
                    ONTPITNVKY PEGISFDTNL KRHLANADGF SQKQGIKGAH NRTNFMAELN
               501
                    SRGGRVKSET QTDIEGITRI KYEIPTLDRT GKPDGGFKEI SSIKTVYNPK
                    KFSDDKILQM AQNAASQGYS KASKIAQNER TKSISERKNV IQFSETFDGI
               551
                    KFRSYFDVNT GRITNIHPE*
```

15 Computer analysis of this amino acid sequence predicts a transmembrane domain, and homology with an ORF from *N.meningitidis* (strain A) was also found.

ORF41 shows 92.8% identity over a 279aa overlap with an ORF (ORF41a) from strain A of N. meningitidis:

		10	20	30	40	50	60	69
20	orf41.pep	YRRHLI	CKYIYRFPI	YCPXACVAE		LOVTKDVNWNC	-	-
	orf41a					: :: LOVAKNINWN(
	011419				ILKQ		20 20	30
						10	20	30
25		70	80	90	100	110	120	129
	orf41.pep					rdaafaslas(
	orf41a	TEAGAA				rdaafaslas(•	
30			40	50	60	70	80	90
30		130	140	150	160	170	180	189
	orf41.pep					SDKQWINNLTV		
				1:111111				
	orf41a	LKELGR	SSTVKNLVV	AAATAGVAD	KIGASALXNV	DKQWINNLT	/NLANAGSAA	LINTAV
35			100	110	120	130	140	150
		100		212	200			
		190	200	210	220	230	240	249
	orf41.pep					HYITHKIAHA] :		
40	orf4la					HYIVHKIAHA]		
40	OLITIA	МЭЭДК	160	170	180	190	200	210
			200	2.0	200	230	200	
		250	260	270	280	290	300	309
	orf41.pep				-	YSKL VAGTV SC		
45								
	orf4la	GAIGAA			-	YSKLVAGTVS		
			220	230	240	250	260	270
		310	320					
50	orf41.pep	AVKNNO						
50	Offit, bob	111111	•					
	orf41a			DNEMTACAK	QNXPQLCRKN'	rvkkyqnvadi	CRLAASIAIC	TDISRS
		_	280	290	300	310	320	330

A partial ORF41a nucleotide sequence <SEQ ID 71> is:

55	LTA	TCTGAAAC	AGCTCCAAGT	AGCGAAAAAC	ATCAACTGGA	ATCAGGTGCA
5:	L GC	TTGCTTAC	GACAGATGGG	ACTACAAACA	GGAGGGCTTA	ACCGAAGCAG
10:	GT	GCGGCGAT	TATCGCACTG	GCCGTTACCG	TGGTCACCTC	AGGCGCAGGA
15	AC.	CGGAGCCG	TATTGGGATT	AAACGGTGCG	NCCGCCGCCG	CAACCGATGC

	201	AGCATTCGCC	TCTTTGGCCA	GCCAGGCTTC	CGTATCGTTC	ATCAACAACA
	251	AAGGCGATGT	CGGCAAAACC	CTGAAAGAGC	TGGGCAGAAG	CAGCACGGTG
	301	AAAAATCTGG	TGGTTGCCGC	CGCTACCGCA	GGCGTAGCCG	ACAAAATCGG
	351	CGCTTCGGCA	CTGANCAATG	TCAGCGATAA	GCAGTGGATC	AACAACCTGA
5	401	CCGTCAACCT	AGCCAATGCG	GGCAGTGCCG	CACTGATTAA	TACCGCTGTC
	451	AACGGCGGCA	GCCTGAAAGA	CANTCTGGAA	GCGAATATCC	TTGCGGCTTT
	501	GGTCAATACC	GCGCATGGAG	AAGCAGCCAG	TAAAATCAAA	CAGTTGGATC
	551	AGCACTACAT	AGTCCACAAG	ATTGCCCATG	CCATAGCGGG	CTGTGCGGCA
	601	GCGGCGGCGA	ATAAGGGCAA	GTGTCAGGAT	GGTGCGATAG	GTGCGGCTGT
10 .	651	GGGCGAGATA	GTCGGGGAGG	CTTTGACAAA	CGGCAAAAAT	CCTGACACTT
	701	TGACAGCTAA	AGAACGCGAA	CAGATTTTGG	CATACAGCAA	ACTGGTTGCC
	751	GGTACGGTAA	GCGGTGTGGT	CGGCGGCGAT	GTAAATGCGG	CGGCGAATGC
	801	GGCTGAGGTA	GCGGTGAAAA	ATAATCAGCT	TAGCGACNAA	GAGGGTAGAG
	851	AATTTGATAA	CGAAATGACT	GCATGCGCCA	AACAGAATAN	TCCTCAACTG
15	901	TGCAGAAAAA	ATACTGTAAA	AAAGTATCAA	AATGTTGCTG	ATAAAAGACT
	951	TGCTGCTTCG	ATTGCAATAT	GTACGGATAT	ATCCCGTAGT	ACTGAATGTA
	1001	GAACAATCAG	AAAACAACAT	TTGATCGATA	GTAGAAGCCT	TCATTCATCT
	1051	TGGGAAGCAG	GTCTAATTGG	TAAAGATGAT	GAATGGTATA	AATTATTCAG
	1101	CAAATCTTAC	ACCCAAGCAG	ATTTGGCTTT	ACAGTCTTAT	CATTTGAATA
20	1151	CTGCTGCTAA	ATCTTGGCTT	CAATCGGGCA	ATACAAAGCC	TTTATCCGAA
	1201	TGGATGTCCG	ACCAAGGTTA	TACACTTATT	TCAGGAGTTA	ATCCTAGATT
	1251	CATTCCAATA	CCAAGAGGGT	TTGTAAAACA	AAATACACCT	ATTACTAATG
	1301	TCAAATACCC	GGAAGGCATC	AGTTTCGATA	CAAACCTANA	AAGACATCTG
	1351	· · · · · · · · · · · · · · · · · · ·			GGCATTAAAG	
25	1401				ACGAGGAGGA	
	1451				CCCGAATTAA	
	1501	• • • • • • • • • • • • • • • • • • • •			GGTGGATTTA	
	1551				NTTTTNNGAT	
20	1601				GATATTCAAA	
30	1651				TCGGAAAGAA	
	1701				ATTTAGANNN	TATNTNGATG
	1751	TAAATACAGG	AAGAATTACA	AACATTCACC	CAGAATAA	

This encodes a protein having the partial amino acid sequence <SEQ ID 72>:

	1	YLKQLQVAKN	INWNQVQLAY	DRWDYKQEGL	TEAGAAIIAL	AVTVVTSGAG
35	51	TGAVLGLNGA	XAAATDAAFA	SLASQASVSF	INNKGDVGKT	LKELGRSSTV
	101	KNLVVAAATA	GVADKIGASA	LXNVSDKQWI	NNLTVNLANA	GSAALINTAV
	151	NGGSLKDXLE	ANILAALVNT	AHGEAASKIK	QLDQHYIVHK	IAHAIAGCAA
	201	AAANKGKCQD	GAIGAAVGEI	VGEALTNGKN	PDTLTAKERE	QILAYSKLVA
	251	GTVSGVVGGD	VNAAANAAEV	AVKNNQLSDX	EGREFDNEMT	ACAKQNXPQL
40	301	CRKNTVKKYQ	NVADKRLAAS	IAICTDISRS	TECRTIRKQH	LIDSRSLHSS
	351	WEAGLIGKDD	EWYKLFSKSY	TQADLALQSY	HLNTAAKSWL	QSGNTKPLSE
	401	WMSDQGYTLI	SGVNPRFIPI	PRGFVKQNTP	ITNVKYPEGI	SFDTNLXRHL
	451	ANADGFSQEQ	GIKGAHNRTN	XMAELNSRGG	XVKSETXTDI	EGITRIKYEI
	501	PTLDRTGKPD	GGFKEISSIK	TVYNPKXFXD	DKILQMAQXA	XSQGYSKASK
45	551	IAONERTKSI	SERKNVIQFS	ETFDGIKFRX	YXDVNTGRIT	NIHPE*

ORF41a and ORF41-1 show 94.8% identity in 595 aa overlap:

					10	20	30	
	orf41a.pep			YL	KQLQVAKNIN	WNQVQLAYDR	WDYKQEGLTE.	AGAA
				- 11	11111:1::1	1111111111:		1111
50	orf41-1	MQVNIQII			KQLQVTKDVN		-	
			10	20	30	40	50	60
		40	50	60	70	80	90	
	orf4la.pep	IIALAVTV	/VTSGAGTG	AVLGLNGAXA	AATDAAFASL	ASQASVSFIN	NKGDVGKTLK	ELGR
55	• •	11111111	111:111:1	1:111111	11111111111	1111111:11	111::1:111	1111
	orf41-1	IIALAVT	/VTAGAGAG	AALGLNGAAA	AATDAAFASL	ASQASVSLIN	NKGNIGNTLK	ELGR
			70	80	90	100	110	120
		100	110	120	130	140	150	
60	orf4la.pep				NVSDKOWINN			GSLK
•	O111111POP		:11:1111				111111111	
	orf41-1			ADKIGASALN	NVSDKOWINN	LTVNLANAGS.	AALINTAVNG	GSLK
		:	130	140	150	160	170	180
65		160	170	180	190	200	210	
4 5	orf4la.pep				DOHAIAHKIY			IGAA

	orf41-1	
5	orf4la.pep	220 230 240 250 260 270 VGEIVGEALTNGKNPDTLTAKEREQILAYSKLVAGTVSGVVGGDVNAAANAAEVAVKNNQ
10	orf41-1	VGEIVGEALTNGKNPDTLTAKEREQILAYSKLVAGTVSGVVGGDVNAAANAAEVAVKNNQ 250 260 270 280 290 300
	orf41a.pep	280 290 300 310 320 330 LSDXEGREFDNEMTACAKQNXPQLCRKNTVKKYQNVADKRLAASIAICTDISRSTECRTI
15	orf41-1	LSDKEGREFDNEMTACAKONNPOLCRKNTVKKYONVADKRLAASIAICTDISRSTECRTI 310 320 330 340 350 360
	orf41a.pep	340 350 360 370 380 390 RKQHLIDSRSLHSSWEAGLIGKDDEWYKLFSKSYTQADLALQSYHLNTAAKSWLQSGNTK
20	orf41-1	RKQHLIDSRSLHSSWEAGLIGKDDEWYKLFSKSYTQADLALQSYHLNTAAKSWLQSGNTK 370 380 390 400 410 420
25	orf4la.pep	400 410 420 430 440 450 PLSEWMSDQGYTLISGVNPRFIPIPRGFVKQNTPITNVKYPEGISFDTNLXRHLANADGF
30	orf41a.pep	460 470 480 490 500 510 SQEQGIKGAHNRTNXMAELNSRGGXVKSETXTDIEGITRIKYEIPTLDRTGKPDGGFKEI !!:!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
35	orf4la.pep	520 530 540 550 560 570 SSIKTVYNPKXFXDDKILQMAQXAXSQGYSKASKIAQNERTKSISERKNVIQFSETFDGI
40	orf41-1	550 560 570 580 590 600
	orf41a.pep	580 590 KFRXYXDVNTGRITNIHPEX
45	orf41-1	KFRSYFDVNTGRITNIHPEX 610 620

Amino acids 25-619 of ORF41-1 were amplified as described above. Figure 6 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF41-1.

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

50 Example 17

The following DNA sequence was identified in N.meningitidis <SEQ ID 73>

	1	ATGGCAATCA	TTACATTGTA	TTATTCTGTC	AATGGTATTT	TAAATGTATG
	51	TGCAAAAGCA	AAAAATATTC	AAGTAGTTGC	CAATAATAAG	AATATGGTTC
	101	TTTTTGGGTT	TTTGGsmrGC	ATCATCGGCG	GTTCAACCAA	TGCCATGTCT
55	151	CCCATATTGT	TAATATTTTT	GCTTAGCGAA	ACAGAAAATA	AAAATcgTAT
	201	CGTAAAATCA	AGCAATCTAT	GCTATCTTTT	GGCGAAAATT	GTTCAAATAT
	251	ATATGCTAAG	AGACCAGTAT	TGGTTATTAA	ATAAGAGTGA	ATACGGTTTA
	301	ATATTTTTAC	TGTCCGTATT	GTCTGTTATT	GGATTGTATG	TTGGAATTCG
	351	GTTAAGGACT	AAGATTAGCC	CAAATTTTTT	TAAAATGTTA	ATTTTTATTG

30

401 tTTTATTGGT ATTGGCtCTG AAAATCGGGC AttCGGGTTT AAtCAAACTT 451 TAA

This corresponds to the amino acid sequence <SEQ ID 74; ORF51>:

```
5 MAIITLYYSV NGILNVCAKA KNIQVVANNK NMVLFGFLXX IIGGSTNAMS
51 PILLIFLLSE TENKNRIVKS SNLCYLLAKI VQIYMLRDQY WLLNKSEYXL
101 IFLLSVLSVI GLYVGIRLRT KISPNFFKML IFIVLLVLAL KIGHSGLIKL
151 *
```

Further work revealed the complete nucleotide sequence <SEQ ID 75>:

	1	ATGCAAGAAA	TAATGCAATC	TATCGTTTTT	GTTGCTGCCG	CAATACTGCA
10	51	CGGAATTACA	GGCATGGGAT	TTCCGATGCT	CGGTACAACC	GCATTGGCTT
	101	TTATCATGCC	ATTGTCTAAG	GTTGTTGCCT	TGGTGGCATT	ACCAAGCCTG
	1 51	TTAATGAGCT	TGTTGGTTCT	ATGCAGCAAT	AACAAAAAGG	GTTTTTGGCA
	201	AGAGATTGTT	TATTATTTAA	AAACCTATAA	ATTGCTTGCT	ATCGGCAGCG
	251	TCGTTGGCAG	CATTTTGGGG	GTGAAGTTGC	TTTTGATACT	TCCAGTGTCT
15	301	TGGCTGCTTT	TACTGATGGC	AATCATTACA	TTGTATTATT	CTGTCAATGG
	351	TATTTTAAAT	GTATGTGCAA	AAGCAAAAA	TATTCAAGTA	GTTGCCAATA
	401	ATAAGAATAT	GGTTCTTTTT	GGGTTTTTGG	CAGGCATCAT	CGGCGGTTCA
	451	ACCAATGCCA	TGTCTCCCAT	ATTGTTAATA	TTTTTGCTTA	GCGAAACAGA
	501	AAATAAAAT	CGTATCGTAA	AATCAAGCAA	TCTATGCTAT	CTTTTGGCGA
20	551	AAATTGTTCA	AATATATATG	CTAAGAGACC	AGTATTGGTT	ATTAAATAAG
	601	AGTGAATACG	GTTTAATATT	TTTACTGTCC	GTATTGTCTG	TTATTGGATT
	651	GTATGTTGGA	ATTCGGTTAA	GGACTAAGAT	TAGCCCAAAT	TTTTTTAAAA
	701	TGTTAATTTT	TATTGTTTTA	TTGGTATTGG	CTCTGAAAAT	CGGGCATTCG
	751	GGTTTAATCA	AACTTTAA			

25 This corresponds to the amino acid sequence <SEQ ID 76; ORF51-1>:

```
1 MQEIMQSIVF VAAAILHGIT GMGFPMLGTT ALAFIMPLSK VVALVALPSL
51 LMSLLVLCSN NKKGFWQEIV YYLKTYKLLA IGSVVGSILG VKLLLILPVS
101 WLLLLMAIIT LYYSVNGILN VCAKAKNIQV VANNKNMVLF GFLAGIIGGS
151 TNAMSPILLI FLLSETENKN RIVKSSNLCY LLAKIVQIYM LRDQYWLLNK
201 SEYGLIFLLS VLSVIGLYVG IRLRTKISPN FFKMLIFIVL LVLALKIGHS
251 GLIKL*
```

Computer analysis of this amino acid sequence reveals three putative transmembrane domains. A corresponding ORF from strain A of *N.meningitidis* was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF51 shows 96.7% identity over a 150aa overlap with an ORF (ORF51a) from strain A of N. meningitidis:

						10	20	30
	orf51.pep				MAIITL	YYSVNGILNV	CAKAKNIQV	VANNK
40					11111	1311111111	111111111	
40	orf5la	YKLLAIGSV		LLILPVSWI	<u>LLLMAII</u> TL	YYSVNGILNV	CAKAKNIQV	VANNK
		80	90	100	110	120	130)
		_	_					
		4	_	50	60	70	80	90
4.5	orf51.pep	NMVLFGFLX	X <u>IIGGSTNA</u>	MSPILLIF1	LSETENKNR	IVKSSNLCYL	LAKIVQIYN	ILRDQY
45		1111111		11111111	$\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}\mathbf{H}$	1:1111111	111111111	$\Pi\Pi\Pi$
	orf51a	NMVLFGFLA	G <u>IIGGSTNA</u>	MSPILLIFI	LSETENKNR	IAKSSNLCYL	LAKIVQIYN	ILRDQY
		140	150	160	170	180	190)
		10		10	120	130	140	150
50	orf51.pep	WLLNKSEYX	<u>LIFLLSVLS</u>	<u>VIGLYVGI</u> R	LRTKISPN <u>F</u>	FKMLIFIVLL	VLALKIGHS	GLIKL
			11111111	111111111	HILLIET		1111111111111	11111
	orf51a	WLLNKSEYG	LIFLLSVLS	<u>VIGLYVGI</u> R	LRTKISPNF	FKMLIFIVLL	VLALKIGYS	GLIKL
		200	210	220	230	240	250)

ORF51-1 and ORF51a show 99.2% identity in 255 aa overlap:

	orf5la.pep	MQEIMQSIVFVAAAILHGITGMGFPMLGTTALAFIMPLSKVVALVALPSLLMSLLVLCSN
5	orf51-1	
•	orf5la.pep	NKKGFWQEIVYYLKTYKLLAIGSVVGSILGVKLLLILPVSWLLLLMAIITLYYSVNGILN
	orf51-1	NKKGFWQEIVYYLKTYKLLAIGSVVGSILGVKLLLILPVSWLLLLMAIITLYYSVNGILN
10	orf51a.pep	VCAKAKNIQVVANNKNMVLFGFLAGIIGGSTNAMSPILLIFLLSETENKNRIAKSSNLCY
	orf51-1	
15	orf51a.pep	LLAKIVQIYMLRDQYWLLNKSEYGLIFLLSVLSVIGLYVGIRLRTKISPNFFKMLIFIVL
15	orf51-1	
	orf51a.pep	LVLALKIGYSGLIKLX
20	orf51-1	

The complete length ORF51a nucleotide sequence <SEQ ID 77> is:

```
ATGCAAGAAA TAATGCAATC TATCGTTTTT GTTGCTGCCG CAATACTGCA
                     CGGAATTACA GGCATGGGAT TTCCGATGCT CGGTACAACC GCATTGGCTT
                101
                     TTATCATGCC ATTGTCTAAG GTTGTTGCCT TGGTGGCATT ACCAAGCCTG
25
                     TTAATGAGCT TGTTGGTTCT ATGCAGCAAT AACAAAAAGG GTTTTTGGCA
                151
                201
                     AGAGATTGTT TATTATTTAA AAACCTATAA ATTGCTTGCT ATCGGCAGCG
                251
                     TCGTTGGCAG CATTTTGGGG GTGAAGTTGC TTTTGATACT TCCAGTGTCT
                301
                     TGGCTGCTTT TACTGATGGC AATCATTACA TTGTATTATT CTGTCAATGG
                     TATTTTAAAT GTATGTGCAA AAGCAAAAAA TATTCAAGTA GTTGCCAATA
                351
30
                401
                     ATAAGAATAT GGTTCTTTTT GGGTTTTTTGG CAGGCATCAT CGGCGGTTCA
                     ACCAATGCCA TGTCTCCCAT ATTGTTAATA TTTTTGCTTA GCGAAACAGA
                451
                     GAATAAAAAT CGTATCGCAA AATCAAGCAA TCTATGCTAT CTTTTGGCAA
AAATTGTTCA AATATATATG CTAAGAGACC AGTATTGGTT ATTAAATAAG
                501
                551
                601
                     AGTGAATACG GTTTAATATT TTTACTGTCC GTATTGTCTG TTATTGGATT
35
                     GTATGTTGGA ATTCGGTTAA GGACTAAGAT TAGCCCAAAT TTTTTTAAAA
                651
                701
                     TGTTAATTTT TATTGTTTTA TTGGTATTGG CTCTGAAAAT CGGGTATTCA
                     GGTTTAATCA AACTTTAA
```

This encodes a protein having amino acid sequence <SEQ ID 78>:

```
40 MQEIMQSIVF VAAAILHGIT GMGFPMLGTT ALAFIMPLSK VVALVALPSL
LMSLLVLCSN NKKGFWQEIV YYLKTYKLLA IGSVVGSILG VKLLLILPVS
101 WLLLLMAIIT LYYSVNGILN VCAKAKNIQV VANNKNMVLF GFLAGIIGGS
151 TNAMSPILLI FLLSETENKN RIAKSSNLCY LLAKIVQIYM LRDQYWLLNK
201 SEYGLIFLLS VLSVIGLYVG IRLRTKISPN FFKMLIFIVL LVLALKIGYS
251 GLIKL*
```

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

AMCACACATA MCAAAAMACA AAAMMAMMAA CMACMAMMAA MACMMMMAA

Example 18

The following partial DNA sequence was identified in N. meningitidis <SEO ID 79>

	1	AIGAGACATA	TGAAAATACA	AAATTATTTA	CTAGTATTTA	TAGTTTTACA
50	51	TATAGCCTTG	ATAGTAATTA	ATATAGTGTT	TGGTTATTTT	GTTTTTCTAT
	101	TTGATTTTTT	TGCGTTTTTG	TTTTTTGCAA	ACGTCTTTCT	TGCTGTAAAT
	151	TTTTTATTTT	TAGAAAAAA	CATAAAAAAC	AAATTATTGT	TTTTATTGCC
	201	GATTTCTATT	ATTATATGGA	TGGTAATTCA	TATTAGTATG	ATAAATATAA
	251	AATTTTATAA	ATTTGAGCAT	CAAATAAAGG	AACAAAATAT	ATCCTCGATT
55	301	ACTGGGGTGA	TAAAACCACA	TGATAGTTAT	AATTATGTTT	ATGACTCAAA

24

351	TGGATATGCT	AAATTAAAAG	ATAATCATAG	ATATGGTAGG	GTAATTAGAG
401	AAACACCTTA	TATTGATGTA	GTTGCATCTG	ATGTTAAAAA	TAAATCCATA
451	AGATTAAGCT	TGGTTTGTGG	TATTCATTCA	TATGCTCCAT	GTGCCAATTT

501 TATAAAATTT GTCAGG..

5 This corresponds to the amino acid sequence <SEQ ID 80; ORF82>:

```
1 MRHMKIQNYL LVFIVLHIAL IVINIVFGYF VFLFDFFAFL FFANVFLAVN
51 LLFLEKNIKN KLLFLLPISI IIWMVIHISM INIKFYKFEH QIKEQNISSI
101 TGVIKPHDSY NYVYDSNGYA KLKDNHRYGR VIRETPYIDV VASDVKNKSI
```

151 RLSLVCGIHS YAPCANFIKF VR..

10 Further work revealed the complete nucleotide sequence <SEQ ID 81>:

	1	ATGAGACATA	TGAAAAATAA	AAATTATTTA	CTAGTATTTA	TAGTTTTACA
	51	TATAGCCTTG	ATAGTAATTA	ATATAGTGTT	TGGTTATTTT	GTTTTTCTAT
	101	TTGATTTTT	TGCGTTTTTG	TTTTTTGCAA	ACGTCTTTCT	TGCTGTAAAT
	151	TTATTATTTT	TÁGAAAAAA	CATAAAAAAC	AAATTATTGT	TTTTATTGCC
15	201	GATTTCTATT	ATTATATGGA	TGGTAATTCA	TATTAGTATG	ATAAATATAA
	251	AATTTTATAA	ATTTGAGCAT	CAAATAAAGG	AACAAAATAT	ATCCTCGATT
	301	ACTGGGGTGA	TAAAACCACA	TGATAGTTAT	AATTATGTTT	ATGACTCAAA
	351	TGGATATGCT	AAATTAAAAG	ATAATCATAG	ATATGGTAGG	GTAATTAGAG
	401	AAACACCTTA	TATTGATGTA	GTTGCATCTG	ATGTTAAAAA	TAAATCCATA
20	451	AGATTAAGCT	TGGTTTGTGG	TATTCATTCA	TATGCTCCAT	GTGCCAATTT
	501	TATAAAATTT	GCAAAAAAAC	CTGTTAAAAT	TTATTTTTAT	AATCAACCTC
	551	AAGGAGATTT	TATAGATAAT	GTAATATTTG	AAATTAATGA	TGGAAACAAA
	601	AGTTTGTACT	TGTTAGATAA	GTATAAAACA	TTTTTTCTTA	TTGAAAACAG
	651	TGTTTGTATC	GTATTAATTA	TTTTATATTT	AAAATTTAAT	TTGCTTTTAT
25	701	ATAGGACTTA	CTTCAATGAG	TTGGAATAG		

This corresponds to the amino acid sequence <SEQ ID 82; ORF82-1>:

```
1 MRHMKNKNYL LVFIVLHIAL IVINIVFGYF VFLFDFFAFL FFANVFLAVN
51 LLFLEKNIKN KLLFLLPISI IIWMVIHISM INIKFYKFEH QIKEQNISSI
101 TGVIKPHDSY NYVYDSNGYA KLKDNHRYGR VIRETPYIDV VASDVKNKSI
30 151 RLSLVCGIHS YAPCANFIKF AKKPVKIYFY NQPQGDFIDN VIFEINDGNK
201 SLYLLDKYKT FFLIENSVCI VLIILYLKFN LLLYRTYFNE LE*
```

Computer analysis of this amino acid sequence reveals a predicted leader peptide.

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF82 shows 97.1% identity over a 172aa overlap with an ORF (ORF82a) from strain A of N. meningitidis:

		10	20	30	40	50	60
	orf82.pep	MRHMKIQNYLLVFIV	LHIALIVI	NIVFGYFVFLF	'DFFAFLFFAI	NVFLAVNLLFL	EKNIKN
40			111:111	1111111111	11111111		
40	orf82a	MRHMKNKNYLLVFIV	LHITLIVI	NIVFGYFVFLE	'DFFAFLFFAI		
		10	20	30	40	50	60 -
		70	80	90	100	110	120
	orf82.pep	KLLFLLPISIIIWMV	'IHISMINI	KFYKFEHQIKE	QNISSITGV:	IKPHDSYNYVY	DSNGYA
45		11111111111111	ПППП	11111111111	111111111	нини	111111
	orf82a	KLLFLLPISIIIWMV		KFYKFEHQIKE	QNISSITGV:	IKPHDSYNYVY	DSNGYA
		70	80	90	100	110	120
		130	140	150	160	170	
50	orf82.pep	KLKDNHRYGRVIRET	PYIDVVAS	DVKNKSIRLSL	VCGIHSYAP	CANFIKFVR	
		111111111111111	1111111	11111111111	11111111		
	orf82a	KLKDNHRYGRVIRET	PYIDVVAS	DVKNKSIRLSL	VCGIHSYAP		VKIYFY
		130	140	150	160	170	180

ORF82a and ORF82-1 show 99.2% identity in 242 aa overlap:

	orf82a.pep	MRHMKNKNYLLVFIVLHITLIVINIVFGYFVFLFDFFAFLFFANVFLAVNLLFLEKNIKN
5	orf82-1	
3	orf82a.pep	KLLFLLPISIIIWMVIHISMINIKFYKFEHQIKEQNISSITGVIKPHDSYNYVYDSNGYA
	orf82-1	KLLFLLPISIIIWMVIHISMINIKFYKFEHQIKEQNISSITGVIKPHDSYNYVYDSNGYA
10	orf82a.pep	KLKDNHRYGRVIRETPYIDVVASDVKNKSIRLSLVCGIHSYAPCANFIKFAKKPVKIYFY
	orf82-1	KLKDNHRYGRVIRETPYIDVVASDVKNKSIRLSLVCGIHSYAPCANFIKFAKKPVKIYFY
15	orf82a.pep	NQPQGDFIDNVIFEINDGKKSLYLLDKYKTFFLIENSVCIVLIILYLKFNLLLYRTYFNE
	orf82-1	NQPQGDFIDNVIFEINDGNKSLYLLDKYKTFFLIENSVCIVLIILYLKFNLLLYRTYFNE
	orf82a.pep	LEX
20	orf82-1	LEX

The complete length ORF82a nucleotide sequence <SEQ ID 83> is:

	1	ATGAGACATA	TGAAAAATAA	AAATTATTTA	CTAGTATTTA	TAGTTTTACA
	51	TATAACCTTG	ATAGTAATTA	ATATAGTGTT	TGGTTATTTT	GTTTTTCTAT
25	101	TTGATTTTTT	TGCGTTTTTG	TTTTTTGCAA	ACGTCTTTCT	TGCTGTAAAT
	151	TTATTATTTT	TAGAAAAAAA	CATAAAAAAAC	AAATTATTGT	TTTTATTGCC
	201	GATTTCTATT	ATTATATGGA	TGGTAATTCA	TATTAGTATG	ATAAATATAA
	251	AATTTTATAA	ATTTGAGCAT	CAAATAAAGG	AACAAAATAT	ATCCTCGATT
	301	ACTGGGGTGA	TAAAACCACA	TGATAGTTAT	AATTATGTTT	ATGACTCAAA
30	351	TGGATATGCT	AAATTAAAAG	ATAATCATAG	ATATGGTAGG	GTAATTAGAG
	401	AAACACCTTA	TATTGATGTA	GTTGCATCTG	ATGTTAAAAA	TAAATCCATA
	451	AGATTAAGCT	TGGTTTGTGG	TATTCATTCA	TATGCTCCAT	GTGCCAATTT
	501	TATAAAATTT	GCAAAAAAAAC	CTGTTAAAAT	TTATTTTTAT	AATCAACCTC
	551	AAGGAGATTT	TATAGATAAT	GTAATATTTG	AAATTAATGA	TGGAAAAAAA
35	601	AGTTTGTACT	TGTTAGATAA	GTATAAAACA	TTTTTTCTTA	TTGAAAACAG
	651	TGTTTGTATC	GTATTAATTA	TTTTATATTT	AAAATTTAAT	TTGCTTTTAT
	701	ATAGGACTTA	CTTCAATGAG	TTGGAATAG		

This encodes a protein having amino acid sequence <SEQ ID 84>:

Based on this analysis, it is predicted that this protein from *N. meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

Example 19

45

The following partial DNA sequence was identified in N. meningitidis <SEQ ID 85>

	1	ACCCCCAACA	GCGTGACCGT	CTTGCCGTCT	TTCGGCGGAT	TCGGGCGTAC
	51	CGGCGCGACC	ATCAATGCAG	CAGGCGGGGT	CGGCATGACT	GCCTTTTCGA
50	101	CAACCTTAAT	TTCCGTAGCC	GAGGGCGCGG	TTGTAGAGCT	GCAGGCCGTG
	151	AGAGCCAAAG	CCGTCAATGC	AACCGCCGCT	TGCATTTTTA	CGGTCTTGAG
	201	TAAGGACATT	TTCGATTTCC	TTTTTTTTT	CCGTTTTCAG	ACGGCTGACT
	251	TCCGCCTGTA	TTTTCGCCAA	AGCCATGCCG	ACAGCGTGCG	CCTTGACTTC
	301	ATATTTAAAA	GCTTCCGCGC	GTGCCAGTTC	CAGTTCGCGC	GCATAGTTTT
55	351	GAGCCGACAA	CAGCAGGGCT	TGCGCCTTGT	CGCGCTCCAT	CTTGTCGATG

4	01	ACCGCCTGCA	GCTTCGCAAA	TGCCGACTTG	TAGCCTTGAT	GGTGCGACAC
4	51	AGCCAAGCCC	GTGCCGACAA	GCGCGATAAT	GGCAATCGGT	TGCCAGTAAT
5	01	TCGCCAGCAG	TTTCACGAGA	TTCATTCTCG	ACCTCCTGAC	GCTTCACGCT
5	51	GA				

5 This corresponds to the amino acid sequence <SEQ ID 86; ORF124>:

```
1 ..TPNSVTVLPS FGGFGRTGAT INAAGGVGMT AFSTTLISVA EGAVVELQAV
51 RAKAVNATAA <u>CIFTVLSKDI FDFLFIF</u>TFQ TADFRLYFRQ SHADSVRLDF
101 IFKSFRACQF <u>QFARIVLSRQ</u> <u>QQGLRLVALH</u> LVDDRLQLRK CRLVALMVRH
151 SQARADKRDN GNRLPVIRQQ FHEIHSRPPD ASR*
```

10 Computer analysis of this amino acid sequence predicts a transmembrane domain.

Further work revealed the complete nucleotide sequence <SEQ ID 87>:

	1	ATGACTGCCT	TTTCGACAAC	CTTAATTTCC	GTAGCCGAGG	GCGCGGTTGT
	51	AGAGCTGCAG	GCCGTGAGAG	CCAAAGCCGT	CAATGCAACC	GCCGCTTGCA
	101	TTTTTACGGT	CTTGAGTAAG	GACATTTTCG	ATTTCCTTTT	TATTTTCCGT
15	151	TTTCAGACGG	CTGACTTCCG	CCTGTTTTTT	CGCCAAAGCC	ATGCCGACAG
	201	CGTGCGCCTT	GACTTCATAT	TTTTTAGCTT	CCGCGCGTGC	CAGTTCCAGT
	251	TCGCGCGCAT	AGTTTTGAGC	CGACAACAGC	AGGGCTTGCG	CCTTGTCGCG
	301	CTCCATCTTG	TCGATGACCG	CCTGCTGCTT	CGCAAATGCC	GACTTGTAGC
	351	CTTGATGGTG	CGACACAGCC	AAGCCCGTGC	CGACAAGCGC	GATAATGGCA
20	401	ATCGGTTGCC	AGTTATTCGC	CAGCAGTTTC	ACGAGATTCA	TTCTCGACCT
	451	CCTGACGCTT	CACGCTGA			

This corresponds to the amino acid sequence <SEQ ID 88; ORF124-1>:

```
1 MTAFSTTLIS VAEGAVVELQ AVRAKAVNAT AACIFTVLSK DIFDFLFIFR
51 FQTADFRLFF RQSHADSVRL DFIFFSFRAC QFQFARIVLS RQQQGLRLVA
25 101 LHLVDDRLLL RKCRLVALMV RHSQARADKR DNGNRLPVIR QQFHEIHSRP
151 PDASR*
```

A corresponding ORF from strain A of N. meningitidis was also identified:

Homology with a predicted ORF from N. meningitidis (strain A)

ORF124 shows 87.5% identity over a 152aa overlap with an ORF (ORF124a) from strain A of N.

30 meningitidis:

		10	20	30	40	50	60
	orf124.pep	TPNSVTVLPSFGGF	GRTGATINAA			_	
	C1 0 4				11111111		:
35	orf124a			MTAFST	TLISVAEGA. 10	LVELQAVMAK 20	AVNTTAA 30
55					10	20	30
		70	80	90	100	110	120
	orf124.pep	CIFTVLSKDIFDFL	FIFRFQTADE	FRLYFRQSHAD	SVRLDFIFK	SFRACQFQFA	RIVLSRQ
40				:		111: 1111	:
	orf124a	CIFTVLSKDIFDFL	-	_		-	
		40	50	60	70	80	90
		130	140	150	160	170	180
45	orf124.pep	QQGLRLVALHLVDD	RLQLRKCRLV	/ALMVRHSQAR	ADKRONGNR	LPVIRQQFHE	IHSRPPD
		11111111111:::1			111111111		
	orf124a	QQGLRLVALHFLND		_			
		100	110	120	130	140	150
50	orf124.pep	ASRX					
	orrir pop	:					
	orf124a	VX					

ORF124a and ORF124-1 show 89.5% identity in 152 aa overlap:

-106-

	orf124-1.pep	MTAFSTTLISVAEGAVVELQAVRAKAVNATAACIFTVLSKDIFDFLFIFRFQTADFRLFF
-		-
5	orf124-1.pep	RQSHADSVRLDFIFFSFRACQFQFARIVLSRQQQGLRLVALHLVDDRLLLRKCRLVALMV
	orf124a	${\tt RQSHADGVRLDFIFFSFRTRLFQFAGVVLSRQQQGLRLVALHFLNDRLLLRKSRLVALMV}$
	orf124-1.pep	RHSQARADKRDNGNRLPVIRQQFHEIHSRPPDASRX
10	54.0.4	11 1:11111:1111111111111111111111111111
	orf124a	RHRQTRADKRDDGNRLPVIRQQFHEIHSRPPDVX

The complete length ORF124a nucleotide sequence <SEQ ID 89> is:

	1	ATGACCGCCT	TTTCGACAAC	CTTAATTTCC	GTAGCCGAGG	GCGCGCTTGT
	51	AGAGCTGCAA	GCCGTGATGG	CCAAAGCCGT	CAATACAACC	GCCGCCTGCA
15	101	TTTTTACGGT	CTTGAGTAAG	GACATTTTCG	ATTTCCTTTT	TATTTTCCGT
	151	TTTCAGACGG	CTGACTTCCG	CCTGTTTTTT	CGCCAAAGCC	ATGCCGACGG
	201	CGTGCGCCTT	GACTTCATAT	TTTTTAGCTT	CCGCACGCGC	CTGTTCCAGT
	251	TCGCGGGCGT	AGTTTTGAGC	CGACAACAGC	AGGGCTTGCG	CCTTGTCGCG
	301	CTTCATTTTC	TCAATGACCG	CCTGCTGCTT	CGCAAAAGCC	GACTTGTAGC
20	351	CTTGATGGTG	CGACACCGCC	AAACCCGTGC	CGACAAGCGC	GATGATGGCA
	401	ATCGGTTGCC	AGTTATTCGC	CAGCAGTTTC	ACGAGATTCA	TTCTCGACCT
	451	CCTGACGTTT	GA			

This encodes a protein having amino acid sequence <SEQ ID 90>:

30

35

```
25 51 FQTADFRLFF RQSHADGVRL DF1FFSFRTR LFQFAGVVLS RQQQGLRLVA
101 LHFLNDRLLL RKSRLVALMV RHRQTRADKR DDGNRLPV1R QQFHE1HSRP
151 PDV*
```

ORF124-1 was amplified as described above. Figure 7 shows plots of hydrophilicity, antigenic index, and AMPHI regions for ORF124-1.

Based on this analysis, it is predicted that this protein from *N.meningitidis*, and its epitopes, could be useful antigens for vaccines or diagnostics.

It will be appreciated that the invention has been described by means of example only, and that modifications may be made whilst remaining within the spirit and scope of the invention.

TABLE I – PCR primers

ORF	Primer	Sequence	Restriction sites
ORF 38	Forward	CGCGGATCCCATATG-TCGCCGCAAAATTCCGA	BamHI-Ndel
	Reverse	CCCGCTCGAG-TTTTGCCGCGTTAAAAGC	Xhol
ORF 40	Forward	CGC <u>GGATCCCATATG</u> -ACCGTGAAGACCGCC	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -CCACTGATAACCGACAGA	XhoI
ORF 41	Forward	CGC <u>GGATCCCATATG</u> -TATTTGAAACAGCTCCAAG	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -TTCTGGGTGAATGTTA	XhoI
ORF 44	Forward	GCGGATCCCATATG-GGCACGGACAACCCC	BamHI-NdeI
	Reverse	CCCGCTCGAG-ACGTGGGGAACAGTCT	XhoI
ORF 51	Forward	GC <u>GGATCCCATATG</u> -AAAAATATTCAAGTAGTTGC	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -AAGTTTGATTAAACCCG	Xhol
ORF 52	Forward	CGC <u>GGATCCCATATG</u> -TGCCAACCGCAATCCG	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -TTTTTCCAGCTCCGGCA	Xhol
ORF 56	Forward	GC <u>GGATCCCATATG</u> -GTTATCGGAATATTACTCG	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -GGCTGCAGAAGCTGG	XhoI
ORF 69	Forward	CGC <u>GGATCCCATATG</u> -CGGACGTGGTTGGTTTT	BamHI-Ndel
	Reverse	CCCG <u>CTCGAG</u> -ATATCTTCCGTTTTTTCAC	XhoI
ORF 82	Forward	CGC <u>GGATCCGCTAGC</u> -GTAAATTTATTATTTTTAGAA	BamHI-NheI
	Reverse	CCCG <u>CTCGAG</u> -TTCCAACTCATTGAAGTA	XhoI
ORF 114	Forward	CGC <u>GGATCCCATATG</u> -AATAAAGGTTTACATCGCAT	BamHI-NheI
	Reverse	CCCG <u>CTCGAG</u> -AATCGCTGCACCGGCT	XhoI
ORF 124	Forward	CGC <u>GGATCCCATATG</u> -ACTGCCTTTTCGACA	BamHI-NheI
	Reverse	CCCG <u>CTCGAG</u> -GCGTGAAGCGTCAGGA	XhoI

TABLE II - Cloning, expression and purification

ORF	PCR/cloning	His-fusion expression	GST-fusion expression	Purification
orf 38	+	+	+	His-fusion
orf 40	+	+	+	His-fusion
orf 41	+	n.d.	n.d.	
orf 44	+	+	+	His-fusion
orf 51	+	n.d.	n.d.	
orf 52	+	n.d.	+	GST-fusion
orf 56	+	n.d.	n.d.	
orf 69	+	n.d.	n.d.	
orf 82	+	n.d.	n.d.	
orf 114	+	n.d.	+	GST-fusion
orf 124	+	n.d.	n.d.	

CLAIMS

- 1. A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, and 6.
- 2. A nucleic acid molecule which encodes a protein according to claim 1.
- 5 3. A nucleic acid molecule according to claim 2, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, and 5.
 - 4. A protein comprising an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, and 90.
- 10 5. A protein having 50% or greater sequence identity to a protein according to claim 4.
 - 6. A protein comprising a fragment of an amino acid sequence selected from the group consisting of SEQ IDs 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, and 90.
 - 7. An antibody which binds to a protein according to any one of claims 4 to 6.
- 15 8. A nucleic acid molecule which encodes a protein according to any one of claims 4 to 6.
 - 9. A nucleic acid molecule according to claim 8, comprising a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, and 89.
- 20 10. A nucleic acid molecule comprising a fragment of a nucleotide sequence selected from the group consisting of SEQ IDs 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, and 89.
 - 11. A nucleic acid molecule comprising a nucleotide sequence complementary to a nucleic acid molecule according to any one of claims 8 to 10.

- 12. A nucleic acid molecule comprising a nucleotide sequences having 50% or greater sequence identity to a nucleic acid molecule according to any one of claims 8 to 11.
- 13. A nucleic acid molecule which can hybridise to a nucleic acid molecule according to any one of claims 8 to 12 under high stringency conditions.
- 5 14. A composition comprising a protein, a nucleic acid molecule, or an antibody according to any preceding claim.
 - 15. A composition according to claim 14 being a vaccine composition or a diagnostic composition.
 - 16. A composition according to claim 14 or claim 15 for use as a pharmaceutical.
- 10 17. The use of a composition according to claim 14 in the manufacture of a medicament for the treatment or prevention of infection due to Neisserial bacteria, particularly *Neisseria meningitidis*.

FIG. 4A

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 2D

ORF38

ORF38

ORF38

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

FIG. 3A

ORF44
M1

M2

I

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

SUBSTITUTE SHEET (RULE 26)

