Exersise 3.7

Given $x_0 \in \mathbb{R}^n$ and any $\epsilon > 0$, let $\delta = \epsilon$. For any $x \in B(x_0, \delta)$ we have $||x - x_0|| < \delta = \epsilon$. We also have $||f(x) - f(x_0)|| = |||x|| - ||x_0|||$.

We know that we have $||x|| - ||x_0||| = ||x|| - ||x_0||$ or $-(||x|| - ||x_0||) = ||x_0|| - ||x||$. By the triangle inequality we know both $||x|| - ||x_0|| \le ||x - x_0||$ and $||x_0|| - ||x|| \le ||x_0 - x|| = ||x - x_0||$. And so $|f(x) - f(x_0)| = |||x|| - ||x_0||| \le ||x - x_0|| < \epsilon$ Thus f is continuous

Exersise 3.9

- a. If there exists some N such that $x_j = x_k$ for all j, k > N then $\delta(x_j, x_k) = 0 < \epsilon$ for all $\epsilon > 0$, and so by definition x_n converges. Conversly if x_n converges, let $\epsilon = 1/2$. We have that for some N, $\delta(x_j, x_k) < 1/2$ for all j, k > N. Since $\delta(x_j, x_k) > \epsilon$ if and only if $x_j \neq x_k$, we have that $x_j = x_k$ for all j, k > N
- b. For any $x_0 \in X$ and any $\epsilon > 0$, let $\delta = 1/2$. We have that $\delta(x, x_0) < \delta$ if and only if $x = x_0$, by definition of the discrete metric. Therefore $B(x_0, \delta) = \{x_0\}$ and as one of the properties of the metric, we have $d(f(x_0), f(x_0)) = 0 < \epsilon$. Therefore by definition f is continuous

Exersise 3.11

For a given $\epsilon > 0$, f continuous means for that given $\epsilon > 0$ there exists a $\delta > 0$ such that $d(x, x_i) < \delta$ implies $\rho(f(x), f(x_i)) < \epsilon$. $x_n \to x$ means there is a N > 0 such that for k > N, $d(x_k, x) < \delta$ and therefore for k > N, $\rho(f(x), f(x_k)) < \epsilon$. Thus $f(x_n) \to f(x)$

Exersise 3.14

For any $\theta_0 \in [0, 2\pi)$, given $\epsilon > 0$ let $\delta =$. For any $\theta \in [0, 2\pi)$ with $|\theta - \theta_0| < \delta$ we have

$$||f(\theta) - f(\theta_0)|| = \sqrt{(\cos(\theta) - \cos(\theta_0))^2 + (\sin(\theta) - \sin(\theta_0)^2}$$

$$= \sqrt{\cos^2(\theta) - 2\cos(\theta_0)\cos(\theta) + \cos^2(\theta_0) + \sin^2(\theta) - 2\sin(\theta_0)\sin(\theta) + \sin^2(\theta_0)}$$

$$= \sqrt{2(1 - (\cos(\theta_0)\cos(\theta) + \sin(\theta_0)\sin(\theta)))}$$

Using the sum formula $(\cos(a-b) = \cos a \cos b + \sin a \sin b)$ we have:

$$= \sqrt{2(1 - \cos(\theta - \theta_0))}$$

A common property of sin is that $|\sin x| < |x|$ since |x| is the arc length while sin is the vertical length of point on the unit circle. Therefore $\sin^2(\theta - \theta_0) = 1 - \cos^2(\theta - \theta_0) < (\theta - \theta_0)^2 < \delta^2$. And so we have

$$||f(\theta) - f(\theta_0)|| <$$

Exersise 3.17

Exersise §13, 3

Exersise $\S13,\,4$