Real Analysis

Assignment №1

Instructor: Dr. Eric Westlund.

David Oniani
Luther College
oniada01@luther.edu

November 30, 2020

- 5. (a) Suppose $A, B \subseteq \mathbb{R}$ and $x \in (A \cap B)^c$. Then $x \notin A \cap B$. Hence, $x \in A^c$ or $x \in B^c$. Therefore, $x \in A^c \cup B^c$. Finally, we get that $(A \cap B)^c \subseteq A^c \cup B^c$.
 - (b) Suppose $A, B \subseteq \mathbb{R}$ and $x \in A^c \cup B^c$. Then $x \in A^c$ or $x \in B^c$, which is equivalent to $x \notin A$ or $x \notin B$. Hence, $x \notin A \cap B$. Therefore, $x \in (A \cap B)^c$ and it follows that $(A \cap B)^c \supseteq A^c \cup B^c$. Finally, since we have already proven that $(A \cap B)^c \subseteq A^c \cup B^c$, we get that $(A \cap B)^c = A^c \cup B^c$.

(c) Let us first prove that $A^c \cap B^c \subseteq (A \cup B)^c$.

Suppose $A, B \subseteq \mathbb{R}$ and $x \in A^c \cap B^c$. Then $x \in A^c$ and $x \in B^c$. Thus, $x \notin A$ and $x \notin B$. It follows that $x \notin (A \cup B)$. Hence, $x \in (A \cup B)^c$ and $A^c \cap B^c \subseteq (A \cup B)^c$.

Let us now prove that $(A \cup B)^c \subseteq A^c \cap B^c$.

Suppose $A, B \subseteq \mathbb{R}$ and $x \in (A \cup B)^c$. Then $x \notin A \cup B$. Therefore, $x \notin A$ and $x \notin B$. It follows that $x \in A^c$ and $x \in B^c$. Thus, $x \in A^c \cap B^c$ and $(A \cup B)^c \subseteq A^c \cap B^c$.

Finally, since $A^c \cap B^c \subseteq (A \cup B)^c$ and $(A \cup B)^c \subseteq A^c \cap B^c$, we get that $(A \cup B)^c = A^c \cap B^c$.

- 8. (a) Let us define $f: \mathbb{N} \to \mathbb{N}: x \mapsto 2x + 1$. We can now prove that f is 1 1. Suppose, for the sake of contradiction, that $x_1, x_2 \in \mathbb{N}$ with $x_1 \neq x_2$ and $f(x_1) = f(x_2)$. Then $f(x_1) = f(x_2) \implies 2x_1 + 1 = 2x_2 + 1 \implies x_1 = x_2$. Hence, we face the contradiction and f is 1 1. However, f is not onto since for f(x) = 2, the solution is 0.5 which is not in \mathbb{N} . Thus, f is a function that is 1 1, but not onto.
 - (b) Let us define $f: \mathbb{N} \to \mathbb{N}: x \mapsto \lfloor \frac{x}{4} \rfloor$. Then f is onto since since $\forall x \in \mathbb{N}, \exists k = 4x$ with f(k) = x. However, f is not 1 1 since f(2) = f(3). Thus, f if a function that is onto, but not 1 1.
 - (c) Let us define

$$f: \mathbb{N} \to \mathbb{Z}: x \mapsto \begin{cases} \frac{x-1}{2}, & \text{if } n \text{ is odd} \\ -\frac{x}{2}, & \text{if } n \text{ is even} \end{cases}$$
 (1)

Then f is both 1-1 and onto. Let us first prove that f is 1-1.

Suppose, for the sake of contradiction, that $x_1, x_2 \in \mathbb{N}$ with $x_1 \neq x_2$ and $f(x_1) = f(x_2)$. Then $f(x_1)$ and $f(x_2)$ must be of the same sign or both be zero. Thus, we have three cases:

- 1. $f(x_1) = \frac{x_1 1}{2}$ and $f(x_2) = \frac{x_2 1}{2}$ $f(x_1) = f(x_2) \implies \frac{x_1 - 1}{2} = \frac{x_2 - 1}{2} \implies x_1 = x_2.$
- 2. $f(x_1) = -\frac{x_1}{2}$ and $f(x_2) = -\frac{x_2}{2}$ $f(x_1) = f(x_2) \implies -\frac{x_1}{2} = -\frac{x_2}{2} \implies x_1 = x_2$
- 3. $f(x_1) = 0$ and $f(x_2) = 0$ The only way for this to happen is if $f(x_1) = -\frac{x_1}{2}$ and $f(x_2) = -\frac{x_2}{2}$ and we get $f(x_1) = f(x_2) \implies -\frac{x_1}{2} = -\frac{x_2}{2} \implies x_1 = x_2$

Now let us prove that f is onto. For $y \in \mathbb{Z}$, we have three cases:

1. y is positive.

If y > 0, we can find k = 2y + 1 with f(k) = y.

2. y is negative.

If y < 0, we can find k = -2y with f(k) = y.

3. y is zero.

If y = 0, we can find k = 1 with f(k) = y = 0.

Finally, we have proven that f is both 1-1 and onto.

- 9. (a)
 - (b)

•