Exercise 3. Let X be the two-elements set $\{0,1\}$. Find a bijective correspondence between X^{ω} and a proper subset of itself.

Proof. Let A be the subset of X^{ω} of all ω -tuples of elements of X that start with 0. Then A is a strict subset of X^{ω} . Let

$$f: X^{\omega} \to A$$
$$(x_1, x_2, \dots) \mapsto (0, x_1, x_2, \dots)$$

Let $y'=(0,y_1,y_2,\dots)\in A$, we have $y'=f(y_1,y_2,\dots)$ so that f is surjective. Now let $z=(z_1,z_2,\dots)$ and $y=(y_1,y_2,\dots)$ be elements of X^ω , and suppose that f(y)=f(z). Then $(0,y_1,y_2,\dots)=(0,z_1,z_2,\dots)$, so that $\forall i\in\mathbb{Z}_+,y_i=z_i$ and finally y=z. Therefore f is also injective, and is thus a bijection between X^ω and its proper subset A. This shows that X^ω is infinite.