IOHNS HOPKINS

Logic variables have values of 1 and 0, or "high" and "low"

Voltages or currents can represent logic variables

Values above a given threshold represent one state ("on" or "off")

Values below the threshold represent the opposite state

Due to small random variations in the level (noise)

Digital systems use transistors as switches

 $V_{out} = V_{supply}$ (1) when the switch is open

 $V_{out} = 0$ when the switch is closed

Transistor act as an open switch when $V_{in} = 0$

Transistor act as a closed switch when $V_{in} = 1$

NOR Gate

Acts as NOR Gate

V _a	V_b	V_{out}
0	0	1
0	1	0
1	0	0
1	1	0

 $V_{out} = 0$ when either switch is closed

 V_{out} = 1 when both switches are open

Transistor act as an open switch when $V_{in} = 0$

Transistor act as a closed switch when $V_{in} = 1$

NAND Gate

Acts as NAND Gate

V _a	V _b	V _{out}
0	0	1
0	1	1
1	0	1
1	1	0

 V_{out} = 1 when either switch is open

 V_{out} = 0 when both switches are closed

AND and OR can be implemented from NAND and NOR gates

Just use NOT gate to invert output of NAND or NOR gates

So more transistors are required for AND and OR gates

NMOS & PMOS Circuits

NMOS Transistor PMOS Transistor

Two types of metal-oxide semiconductor (MOS) are available NMOS-type behave as closed switch when the gate voltage is high PMOS-type behave as closed switch when the gate voltage is low Inversion bubble on input denotes PMOS

Source for NMOS transistor is connected to ground (0) Source for PMOS transistor is connected to V_{supply} (1)

CMOS Circuits

- When the switches are closed, current flows

 Power is consumed by current flowing through the resistor

 More heat results when more power is dissipated
- CMOS circuits combine NMOS and PMOS transistors
 CMOS means complementary metal-oxide semiconductor
 CMOS circuits consume less power
- MOS transistors occupy a very small area on IC chips
 Billions can fit on a single integrated circuit (IC) chip
 Smaller transistors can switch at extremely high rates (GHz range)

UNIVERSITY

CMOS NOT Gate

$$(V_f = NOT V_x)$$

x	V_x	T_1 T_2	V_f	f
0	low	on off	high	1
	high	off on	low	0

Truth table and transistor states

 V_x =0 closes T_1 and opens T_2 , pulling V_f up to V_{supply} $V_{\nu}=1$ closes T_{2} and opens T_{1} , pulling V_{f} down to 0 So V_f is the complement of V_x T₁ and T₂ operate in a complementary fashion

CMOS NAND Gate

$(V_f = V_1)$	NAND V_2)
---------------	------------	---

Truth table and transistor states

If T₁ or T₂ is closed V_f is pulled up to V_{supply}

 $V_1 = 0$ closes T_1 ; $V_2 = 0$ closes T_2

If T₃ and T₄ are closed V_f is pulled down to 0

 $V_1 = 1$ closes T_1 ; $V_2 = 1$ closes T_2

Dissipates power only when switching