Ótica Geométrica

- Raios geométricos
- Propagação no espaço livre
- Lentes e espelhos esféricos
- Matrizes ABCD
- Traçado dos raios
- Números f

Hecht: Cap 5

"Geometrical optics is either very simple, or else it is very complicated"

Richard P. Feynman

Ótica geométrica (ótica dos raios)

Ótica geométrica é uma aproximação que ignora a natureza ondulatória da luz.

È muito mais simples do que a teoria ondulatória mas não descreve os efeitos de difração nem da interferência

Prevê um foco com tamanho nulo i.e. resolução espacial perfeita e intensidade infinita

Efeitos de difração façam que (em situações normais) a resolução espacial é de ordem de λ /2

Aproximação paraxial

Definir raios da luz como vetores que indicam a direção da propagação da luz Efetivamente os raios correspondem aos vetores de propagação **k**

Aproximação paraxial

Vamos assumir que cada sistema ótica tem um eixo ótico (eixo da simetria do sistema) e que os raios se propagam com inclinações pequenas relativo ao eixo ótico

Exemplo

Espelhos podem redirecionar o eixo ótico do sistema Todos os raios são definidos em relação ao eixo ótico local.

A ray propagating through this system

Um traço dos raios pode ser bastante complexo

Raios

Podemos caracterizar um raio ótico em função a altura, \mathbf{x} , e o ângulo, θ , relativo ao eixo ótico

Descrição dos elementos óticos

Sistema ótico ↔ sistema de matrizes 2x2 (Matrizes de ABCD)

Propagação livre

A matriz ABCD mais simples corresponde a propagação livre do feixe num meio uniforme

A inclinação do raio é constante

$$x_{out} = x_{in} + z_0 \; \theta_{in}$$

$$\lambda$$

$$\theta_{out} = \theta_{in}$$
 Aproximação paraxial
$$\tan(\theta) \approx \theta$$

$$\begin{bmatrix} x_{out} \\ \theta_{out} \end{bmatrix} = \begin{bmatrix} 1 & z_0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{in} \\ \theta_{in} \end{bmatrix}$$

Interface plana

$$x_{out} = x_{in}$$

Lei de Snell-Descartes

$$n_1 \sin \theta_{in} = n_2 \sin \theta_{out}$$
$$n_1 \theta_{in} \approx n_2 \theta_{out}$$

$$M_{interface} = \begin{bmatrix} 1 & 0 \\ 0 & n_1 / n_2 \end{bmatrix}$$

Interface esférica

$$x_{out} = x_{in}$$

 $\theta_{\rm s} \approx x_{\rm in} / R$ Normal a interface

$$\theta_1 = \theta_{in} + \theta_{s}$$

$$\theta_2 = \theta_{out} + \theta_s$$

Snell Descartes
$$n_1\theta_1 \approx n_2\theta_2$$

Snell Descartes
$$n_1 \theta_1 \approx n_2 \theta_2$$
 ... $\theta_{out} \approx \left(\frac{n_1}{n_2} - 1\right) \frac{x_{in}}{R} + \frac{n_1}{n_2} \theta_{in}$

$$M_{\text{interface esférica}} = \begin{bmatrix} 1 & 0 \\ \frac{1}{R} \left(\frac{n_1}{n_2} - 1 \right) & \frac{n_1}{n_2} \end{bmatrix} \quad \begin{array}{c} \text{O ângulo do feixe transmitido depende agora na altura do raio incidente} \\ \end{array}$$

Aproximação paraxial (ótica da primeira ordem)

A posição da superfície é dado pela interceção da superfície com o eixo ótico

$$\tan \theta_1 = \frac{x}{D}$$

$$\sin \theta_1 = \frac{x}{R}$$

$$D \approx R$$

Matrizes ABCD como operações diferenciais

Na aproximação paraxial é assumido que as deslocações, x, e ângulos, θ , relativo ao eixo ótico são pequenos:

Ampliação lateral

$$x_{out} = \frac{\partial x_{out}}{\partial x_{in}} x_{in} + \frac{\partial x_{out}}{\partial \theta_{in}} \theta_{in}$$

$$\theta_{out} = \frac{\partial \theta_{out}}{\partial x_{in}} x_{in} + \frac{\partial \theta_{out}}{\partial \theta_{in}} \theta_{in}$$

$$\begin{bmatrix} x_{out} \\ \theta_{out} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} x_{in} \\ \theta_{in} \end{bmatrix}$$

Ampliação angular

Elementos em cascata

Tal como as matrizes de Jones, a ordem das matrizes é inversa a sequência

Lentes

Tipicamente lentes são pedaços de vidros (idealmente transparentes) com pelo menos uma superfície esférica.

Devido a refração a lente altera a direção dos raios.

Podem assumir varias formas

E podem ser simples

Ou uma combinação de vários vidros

Lente ideal

Na aproximação de ótica geométrica uma lente ideal foca um onda plana num ponto

na lente
$$\begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix} \begin{bmatrix} x_{in} \\ \theta_{in} = 0 \end{bmatrix} = \begin{bmatrix} x_{in} \\ -x_{in}/f \end{bmatrix}$$

depois propagar uma distância f
$$\begin{bmatrix} 1 & f \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{in} \\ -x_{in} / f \end{bmatrix} = \begin{bmatrix} 0 \\ -x_{in} / f \end{bmatrix}$$
 É possível inverter a direção da propagação, i.e. todos os raios

Todos os raios, independente da sua altura inicial, são encaminhados para o eixo ótico no mesmo ponto (o ponto focal "posterior").

emitidos do ponto focal (anterior) saem paralelos ao eixo ótico

Aproximação da lente fina

No limite em que a lente é mesmo muita fina, o efeito é devido as duas superfícies curvadas

$$M_{\text{interface esférica}} = \begin{bmatrix} 1 & 0 \\ \frac{1}{R} \left(\frac{n_1}{n_2} - 1 \right) & \frac{n_1}{n_2} \end{bmatrix}$$

$$M_{\text{lente}} = \begin{bmatrix} 1 & 0 \\ \frac{1}{R_2}(n-1) & n \end{bmatrix} \begin{bmatrix} 1 & 0 \\ \frac{1}{R_1}(\frac{1}{n}-1) & \frac{1}{n} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ (n-1)(\frac{1}{R_2}-\frac{1}{R_1}) & 1 \end{bmatrix}$$

Expressão "de fabricante das lentes"

$$\frac{1}{f} = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$$

Convenção dos sinais

Lente fina
$$\frac{1}{f} = (n-1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$$

O comprimento focal é o parâmetro mais importante duma lente

Lentes com f positivo dobram os raios na direção do eixo ótico

Lentes com f negativo dobram os raios fora da direção do eixo ótico

R > 0 se o centro da curvatura se situa a direita da superfície

R < 0 se o centro da curvatura se situa a esquerda da superfície

Aplicação – um espetrómetro

$$\begin{bmatrix} x_{out} \\ \theta_{out} \end{bmatrix} = \begin{bmatrix} 1 & f \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix} \begin{bmatrix} 1 & f \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_{in} \\ \theta_{in} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & f \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & f \\ -1/f & 0 \end{bmatrix} \begin{bmatrix} x_{in} \\ \theta_{in} \end{bmatrix}$$

$$= \begin{bmatrix} 0 & f \\ -1/f & 0 \end{bmatrix} \begin{bmatrix} x_{in} \\ \theta_{in} \end{bmatrix} = \begin{bmatrix} f\theta_{in} \\ -x_{in}/f \end{bmatrix}$$

Uma lente pode:

- Mapear ângulos incidentes em posições (independente da posição incidente)
- Mapear posições incidentes em ângulos (independente do ângulo da incidência)

Um espelho esférica

$$\theta_1 = \theta_{in} - \theta_s$$
 $\theta_{out} = \theta_1 - \theta_s = (\theta_{in} - \theta_s) - \theta_s$
 $\approx \theta_{in} - 2x_{in} / R$

$$M_{espelho} = \begin{bmatrix} 1 & 0 \\ -2/R & 1 \end{bmatrix}$$

Espelho com um raio de curvatura R tem um comprimento focal f = R/2

Note: um espelho plano tem $R = \infty$, $M \rightarrow I$

Duas lentes consecutivas

$$M_{conjunto} = \begin{bmatrix} 1 & 0 \\ -1/f_2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/f_1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ -1/f_1 - 1/f_2 & 1 \end{bmatrix}$$

Potência duma lente

$$P_{lente} = 1/f$$

Unidades que os optometristas usam 1 Dioptro = m⁻¹

As potências de duas lentes (sem intervalo entre alas) somam

$$1/f_{tot} = 1/f_1 + 1/f_2$$

Condição de formar imagens e planos conjugados

Os planos do Objeto e da Imagem são "conjugados"

O fator de ampliação lateral da imagem é A

$$x_{out} = Ax_{in}$$

Quando B = 0 todos os raios emitidos dum dado ponto convergem no mesmo ponto da imagem, independente do ângulo inicial θ_{in}

$$\begin{bmatrix} x_{out} \\ \theta_{out} \end{bmatrix} = \begin{bmatrix} A & 0 \\ C & D \end{bmatrix} \begin{bmatrix} x_{in} \\ \theta_{in} \end{bmatrix}$$
$$= \begin{bmatrix} Ax_{in} \\ Cx_{in} + D\theta_{in} \end{bmatrix}$$

Equação de Imagem formada por uma lente

$$M = \begin{bmatrix} 1 & d_i \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix} \begin{bmatrix} 1 & d_o \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 - d_i / f & d_o + d_i - d_o d_i / f \\ -1/f & 1 - d_o / f \end{bmatrix}$$

$$B = d_o + d_i - d_o d_i / f = d_o d_i [1/d_o + 1/d_i - 1/f]$$

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

Uma das equações mais importantes na ótica

Ampliação da Imagem

$$M = \begin{bmatrix} 1 - d_{i} / f & d_{o} + d_{i} - d_{o} d_{i} / f \\ -1 / f & 1 - d_{o} / f \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 - d_{i} / f & 0 \\ -1 / f & 1 - d_{o} / f \end{bmatrix}$$

$$\boxed{\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}}$$

Ampliação lateral

$$\frac{x_{out}}{x_{in}} = A = 1 - \frac{d_i}{f} = -\frac{d_i}{d_o}$$

Ampliação angular

$$D = 1 - \frac{d_o}{f} = -\frac{d_o}{d_i} = \frac{1}{A}$$

Ampliação lateral reduz a gama dos ângulos numa imagem

$$M_{imagen} = \begin{bmatrix} A & 0 \\ -1/f & 1/A \end{bmatrix}$$

Traçado dos raios: Lentes delgadas

Igual á uma única superfície esférica $P_{lente} = P_1 + P_2$

$$\begin{bmatrix} 1 & f \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix} \begin{bmatrix} x_{in} \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -x_{in}/f \end{bmatrix}$$

Raios paralelos ao eixo ótico são focados independente da sua altura inicial

$$\begin{bmatrix} 1 & 0 \\ -1/f & 1 \end{bmatrix} \begin{bmatrix} 1 & f \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ \theta_{in} \end{bmatrix} = \begin{bmatrix} f\theta_{in} \\ 0 \end{bmatrix}$$

Raios que vem do foco saem paralelo ao eixo ótico independente do ângulo inicial

Usando as condições do foco

Outro raio útil

Projetar os raio até uma intersecção

Um raio que passa pelo centro duma lente delgada não é desviado

Objeto "real" Imagem "virtual"

Lentes delgadas

Planos conjugados

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

Traçar um raio arbitrário (lente positiva)

- Raio arbitrário incide na lente
- 2. Parar no meio da lente
- 3. Notar a intersecção do raio como plano focal
- Da intersecção desenho um raio "ajudante" (helper ray) que passa pelo meio da lente (assim não é refratada)
- O raio de interesse sai da lente paralelo ao raio ajudante
 Porque? Raios paralelos num lado da lente intersetam no plano focal da outra lado da lente.

Traçar um raio arbitrário (lente negativa)

- 1. Raio arbitrário incide na lente
- 2. Parar no meio da lente
- 3. Desenhar um raio ajudante que passa pelo centro (assim não é refratada) e paralelo ao raio de interesse.
- 4. Notar a intersecção do raio ajudante com o plano focal.
- 5. O raio emergente parece ter origem neste ponto focal virtual.
 - Porque? Quando raios paralelos incidem numa lente negativa os raios transmitidas parece ter origem num focal virtual do lado da incidência.

Instrumento óticos - o olho

Fig. 3.34 Optical equivalent of the human eye. An image must be formed on the retina.

Potência da córnea ≈ 40m⁻¹

Potência da lente cristalina ≈ 60 -70 m⁻¹

Comprimento focal efetivo ≈ (20.9 ↔ 22.7)mm

Ponto próximo ≈ 25 cm

Correção

32

Ponto próximo

Figure 5.101 Images in relation to the near point.

O ponto próximo é a menor distância para qual é possível formar uma imagem nítida.

Aumenta com idade (a lente cristalina fica menos flexível). Tipicamente é tomada ser igual á 25 cm.

Lupa simples

Permite colocar o objeto mais perto do que a distância mínima (~25 cm) Produz um ampliação angular.

telescópio

Objeto "no infinito" imagem intermédio no focal da primeira lente Ocular serve com uma lupa para cria ampliação angular

Duas versões o de Kepler e o de Galileu

Imagem invertida

Telescópios astronómicos

Quanto maior a lente objetiva mais luz será captada. Sendo difícil fabricar lentes grandes e as apoiar uma opção atrativa são espelhos.

Telescópio "Hale" usado pelo Edwin Hubble Espelho primário com um diâmetro de 5 metros

Porque não existe um buraco na imagem?

Outros sabores de telescópios astronómicos

James Webb

Microscópios

Agora o problema é de ampliar algo que esteja perto. (Também em geral não há dificuldade e coletar a luz)

- A objetiva forma uma imagem real com ampliação $-\frac{{S_o}'}{} \approx -\frac{f_o + L}{}$
- A lente ocular serve como uma lupa

$$-\frac{s_o'}{s_o} \approx -\frac{f_o + L}{f_o}$$

Tipicamente entre 5-100x

Microscópio confocal

