Матлог 6.5в

Докажем по индукции по р.

- База. p = 0, тогда $p = 0 \lor (\exists q.q' = p)$.
- Переход. Пусть $p = 0 \lor (\exists q. q' = p)$. Тогда для $p' \ q = p$ и q' = p' (A2).

Доказательство в формальной арифметике: $P=p=0 \lor \exists q.q'=p$

- 1. 0 = 0 (теорема)
- 2. $0 = 0 \implies 0 = 0 \lor \exists q.q' = 0$ (добавление "или" к 1)
- 3. $0 = 0 \lor \exists q.q' = 0 P[p = 0] \text{ (MP1,2)}$
- 4. p' = p' (теорема) (q' = p')[q = p]
- 5. $(q' = p')[q = p] \implies \exists q.q' = p'$ (аксиома 12)
- 6. $\exists q. q' = p' \text{ (MP 4,5)}$
- 7. $\exists q.q' = p' \implies (\exists q.q' = p') \lor p' = 0$ (добавление "или" к 6)
- 8. $(\exists q.q' = p') \lor p' = 0 P[p = p'] \text{ (MP 6,7)}$
- 9. $P[p=p'] \implies 0=0 \implies P[p=p']$ (аксиома 1)
- 10. $0 = 0 \implies P[p = p'] \text{ (MP)}$
- 11. $(0=0 \implies P[p=p']) \implies 0=0 \implies \forall p.P[p=p']$ (правило для \forall)
- 12. $\forall p. P[p = p'] \text{ (MP)}$
- 13. $P[p=0] \implies \forall p. P[p=p'] \implies (P[p=0] \land \forall p. P[p=p'])$ (введение "и")
- 14. $P[p=0] \wedge \forall p. P[p=p']$ (МР дважды)
- 15. $P[p=0] \land \forall p. P[p=p'] \implies P$ (правило индукции)
- 16. P
- 17. $0 = 0 \implies P$
- 18. $(0 = 0 \implies P) \implies (0 = 0 \implies \forall p.P)$
- 19. $0 = 0 \implies \forall p.P$
- 20. $\forall p.P$