普通物理学实验 II 电子实验报告

头 验 名	称:	热	效应的	<u> </u>		
指导教	师:		<u>张建</u> 4	半		
班级:						
姓名:						
学号:						
实验日期:	年	月	_日	星期	上 / 下午	<u>.</u>

一、实验综述

【实验背景】

电热效应(把热能转化为电能)与温度梯度有关,其中重要的是温差电现象。半导体能得到比金属大得多的温差电动势,能进行更高效率的能量转换。

1821年,德国物理学家塞贝克发现了塞贝克效应:不同金属的接触点被加热时,产生电流 1834年,帕尔帖发现了塞贝克效应的逆效应:当电流流过不同金属的接点时,有吸热和放热现象,取决于电流流入接点的方向。现在,我们使用 Pn 结实现塞贝克效应。

【实验原理】

热机原理:利用热池和冷池之间的温差做功。 由能量守恒定律知:

$$Q_{\rm H} = W + Q_C \tag{1}$$

求导得:

$$P_{\rm H} = P_W + P_C \tag{2}$$

热机效率可写为:

$$\eta = \frac{P_W}{P_H} \tag{3}$$

研究表明热机的最大效率仅与热机工作的热池温度和冷池温度有关,而与热机的类型无关。该最大效率称为卡诺效应,表示如下: (T为开尔文温度)

$$\eta_{Carnot} = \frac{T_H - T_C}{T_H} \tag{4}$$

本实验仪中,热机通过电流流过负载电阻来做功,功转换为消耗在负载电阻上的热。我们 利用加热电阻来保持热端的温度,并通过向冷端加冰来保持冷端的温度。

冷池和热池的温度(T_H 和 T_C)通过温度传感器测量并数字显示。装置上的电压表和电流表分别测量加热器两端的电压 V_H 和流入电流 I_H ,并数字显示。在装置外单独测量负载电阻上的电压 V_W 。负载电阻为 R(容许电阻误差小于 1%)。

加热功率计算如下:

$$P_H = V_H \cdot I_H \tag{5}$$

负载电阻消耗的功率计算如下:

$$P_{w} = \frac{{V_{w}}^{2}}{R} \tag{6}$$

热效应实验仪间接测量有:帕尔帖元件的内阻、热传导和热幅射通过帕尔帖元件的热量、 从冷池泵取的热量。

假设热效应实验仪运行时负载电阻为 R, 根据电路回路定律可得:

$$V_{S} - IR - Ir = 0 \tag{7}$$

其中电流 $I = \frac{V_w}{R}$ 。若没有负载,这时没有电流流过帕尔帖元件内阻,即在内阻上的电压降为零,测量电压刚好为 V_s ,于是得到:

$$V_S - \left(\frac{V_w}{R}\right) r - V_w = 0 \tag{8}$$

综上,我们可以使用本次实验装置,进行热效率的测量、卡诺效率的测量、效率与温度及 负载电阻关系的探究等实验任务。

二、实验内容

实验一:卡诺效率和热效率测量

实验所用负载电阻为 2.0 Ω。

(一)实验数据与计算 实验数据记录如下表 1。

其中,P_H、P_w、实际效率、卡诺效率计算如下:

$$P_H = V_H \cdot I_H$$

$$P_W = \frac{{V_W}^2}{R}$$

$$\varepsilon = \frac{P_W}{P_H}$$

$$\eta_{Carnot} = \frac{T_H - T_C}{T_H}$$

实际效率-温差图像和卡诺效率-温差图像如下图 1、2。

	冷端	热端				负载		实际效率	卡诺效率
加热	$T_{\rm c}$	$T_{\scriptscriptstyle \mathrm{H}}$	$ m V_{\scriptscriptstyle H}$	$\mathrm{I}_{\scriptscriptstyle \mathrm{H}}$	P_{H}	$V_{\rm w}$	$P_{\rm w}$	(0/)	(%)
档位	(K)	(K)	(V)	(A)	(W)	(V)	(W)	(%)	(70)
1	293.05	303. 15	4.85	1.10	5. 34	0.169	0.0143	0.268	3.30
2	293. 25	313. 15	6.79	1.54	10.5	0.307	0.0471	0.450	6. 35
3	293.95	323. 15	8. 15	1.85	15. 1	0.547	0.150	0.995	9.28
4	294. 55	333. 15	9.37	2.14	20.1	0.651	0.212	1.06	11.59
5	294. 95	343. 15	10. 45	2.40	25. 1	0.728	0. 265	1.06	14.05

表 1 实验一数据记录(卡诺效率和热效率测量)

实际效率-温差图像

图1 实际效率-温差图像 卡诺效率-温差图像

可以看出,实际效率比卡诺效率低得多。

1.【卡诺效率】是描述任何热机理论上可能达到的最高效率的一个概念,这种效率仅在理想的、可逆的循环,即卡诺循环中才能实现。

【实际效率】是实际运行的热机的效率。

- 二者区别:卡诺效率是理论上的最大效率,定义了所有热机可能达到的最高效率极限,但在实际中是不可能达到的;实际效率是现实中的热机效率,受摩擦、热量损失等多种实际因素的限制。从大小上比较,实际效率通常远低于卡诺效率。
- 2. 卡诺效率随温度的变化关系:卡诺效率有且仅与热池和冷池的温度有关。在本次实验中,冷池温度在几次测量过程中变化较小,卡诺效率与热池冷池的温度差 Δ T 成正关系。
- 3. 实际效率随温度的变化关系: 实际效率也与热池冷池的温度差 △ T 成正关系。

实验二: 热机效率

实验所用负载电阻为 2.0 Ω, 温度选择为 "4" (设定温度约为 60℃)。

(一) 实验数据

实验数据记录如下表 2。

	低温端		高温端	有负载	无负载	
	T_{c} (K)	T _H (K)	V _H (V)	I _H (A)	$V_{w}(V)$	$V_{s}(V)$
有负载	294. 55	333. 15	9.37	2.14	0.651	
无负载	295. 15	333. 15	8. 42	1.92		1. 263

表 2 实验二数据记录(热机效率)

(二) 热机效率计算

实际功率计算如下:

$$P_W = \frac{{V_W}^2}{R} = \frac{(0.651V)^2}{2.00\Omega} = 0.212W$$

加热功率计算如下:

$$P_H = V_H \cdot I_H = 9.37 V \times 2.14 A = 20.1 W$$

实际效率计算如下:

$$\varepsilon = \frac{P_w}{P_u} = \frac{0.212W}{20.1W} = 1.06\%$$

最大效率即卡诺效率, 计算如下:

$$\eta_{\text{max}} = \frac{T_H - T_C}{T_H} = \frac{333.15K - 294.55K}{333.15K} = 11.59\%$$

内电阻 r 计算如下:

$$r = \left(\frac{V_S - V_W}{V_W}\right) R = \left(\frac{1.263V - 0.651V}{0.651V}\right) \times 2.00\Omega = 1.88\Omega$$

调整功率计算如下:

$$\varepsilon_{\text{iii}} = \frac{P_W'}{P_H'} = \frac{P_W + I_W^2 r}{P_H - P_{H + \text{iii}}} = \frac{P_W + \left(\frac{V_W}{R}\right)^2 r}{P_H - P_{H + \text{iii}}} = \frac{0.212W + \left(\frac{0.651}{2.00}\right)^2 \times 1.88\Omega}{20.1W - 16.2W} = 10.5\%$$

调整效率和卡诺效率之间的百分误差计算如下:

偏差 =
$$\frac{\eta_{\text{max}} - \varepsilon_{\text{调整}}}{\eta_{\text{max}}} \times 100\% = \frac{11.59\% - 10.5\%}{11.59\%} \times 100\% = 9.40\%$$

(三)分析和研究

- 1. 随着热端和冷端的温差减少,最大效率减少。由卡诺效率的表达式可以明显看出。
- 2. ①结合本实验的实验结果可知,我们可以通过升高热池温度或降低冷池温度来提高热机效率。 ②此外,我们还可以综合多种方法减少热机工作过程中的能量损失,例如加强装置的保温性

能,减少工作中的热量损耗,实际生活中表现为通过增强房屋的保温性能,能够提升家庭供暖装置的热机效率;再如减少热机工作中的摩擦,能够提升效率,实际生活中表现为使用更高效的轴承和润滑材料,能够减少能量损耗。等等。

3. 总的熵的变化率是正的。

$$\frac{S_{total}}{\Delta t} = \frac{\Delta S_C + \Delta S_H}{\Delta t} = \frac{Q_C / Q_H / Q_H}{\Delta t} = \frac{Q_C / Q_H / Q_H}{T_C} = \frac{Q_C / Q_H / Q_H}{T_C} = \frac{Q_C / Q_H}{T_C} = \frac{$$

在理想的可逆过程中,所有热量在无任何损失的情况下从热源传递到冷源,总熵变为零。但 实际的热机是非可逆过程,工作中存在摩擦和热量散失等情况,这些都会导致额外的热能损 失,从而增加系统的总熵。这也符合热力学第二定律:在任何自然过程中,孤立系统的熵总 是趋于增加。这反映了该能量转换过程的不可逆性。

实验三:负载最佳选择

实验所用温度选择为"3"(设定温度约为50℃)。

(一) 实验数据与计算

实验数据记录如下表 3。

其中,输入到热端的功率、消耗在负载电阻的功率、效率计算如下:

$$P_H = V_H \cdot I_H$$

$$P_W = \frac{{V_W}^2}{R}$$

$$e = \frac{P_W}{P_H}$$

输出功率-电阻图像和效率-电阻图像如下图 3、4。

$R(\Omega)$	T _C /K	T _H /K	V _H /V	I _H /A	V _w /V	P _H /W	P _w /W	e/%
0.5	295.85	323. 16	8.29	1.91	0.261	15.8	0.136	0.861
1.0	295.65	323. 15	8.21	1.89	0.358	15.5	0.135	0.871
1.5	295.75	323. 15	8.16	1.88	0.470	15.3	0. 147	0.963
2.0	295.65	323. 15	8. 12	1.86	0.548	15. 1	0.150	0.995
2.5	295.65	323. 15	8.03	1.86	0.596	14.9	0.142	0.953
3.0	295.75	323. 15	7.79	1.75	0.636	14.5	0.135	0.990
3.5	295.75	323. 15	7.71	1.69	0.669	13.5	0.128	0.982
4.0	295. 75	323. 15	7.62	1.61	0.703	12.3	0. 124	1.01
4. 5	295. 75	323. 15	7.48	1.56	0.729	12.2	0.118	1.01
5.0	295.75	323. 15	7.49	1.49	0.741	11.7	0.110	0.986
5.5	295. 75	323. 15	7.40	1.42	0.766	11.4	0.108	1.03

表 3 实验三数据记录(负载最佳选择)

输出功率-电阻图像

效率-电阻图像

图 4 效率-电阻图像

(二) 思考分析

1. 由测得的数据和所做的图像可以看出,当负载电阻约为 $1.8\,\Omega^2$ 2. $0\,\Omega$ 时,输出的功率最大。而我们由理论计算可知:

$$I = \frac{V_S}{R+r}$$

$$P = \left(\frac{V_S}{R+r}\right)^2 R$$

$$IR = \frac{V_S^2}{R+r} R$$

 $\frac{dP}{dR} = \frac{V_S^2(r-R)}{(R+r)} = 0 \Rightarrow R = r$

即当负载电阻等于帕尔帖的内部电阻时,热机具有最大的输出功率。 而在实验二中,我们测得内电阻 r 为 1.88 \(\Omega \) 。实验测得结果与理论结果相吻合。

2. 由测得的数据和所做的图像可以看出,效率与电阻总体来看成正关系。在我们测量的范围之内,当 R=5.5Ω时,效率最大。而从理论上分析,负载电阻越大,分得的电压就会越大,效

率也因而更大。由此我们可以猜测,负载电阻越大,效率越大。选择更大的负载电阻可以使效率更佳。

三、实验拓展

1. 叙述热效应概念。

热效应,指的是物质在受到热量变化时所产生的各种物理或化学现象。在热力学中,热效应 通常指物体因吸收或释放热量而发生的变化,包括温度变化、体积变化、化学反应等。热膨 胀、相变效应、化学反应热效应、热传导、热辐射等都属于热效应。

2. 查阅一个热效应在实际生活中应用的仪器,并解释仪器机理,说明仪器功能,分析仪器效率。 热效应在实际生活中应用的仪器有电热水壶。

【仪器机理】电热水壶的工作原理是利用电阻加热效应来加热水。其加热元件通常由电阻丝 (如镍铬合金)构成,当电流通过电阻丝时,电能转化为热能,电阻丝因电流通过而加热。 从而水壶中的水被加热,水温升高到沸点时,水沸腾,电热水壶自动停止加热。

【仪器功能】电热水壶的主要功能是将水加热到沸腾。并且它能够根据设置的温度或水的沸腾状态,在水烧开后自动停止加热,防止干烧。某些电热水壶还带有保温、过滤等功能。

【仪器效率】电热水壶通过电阻加热原理,将电能转化为热能,而热能则通过加热元件直接传递给水,其效率主要体现在热量的利用效率(电能转化为热能的效率)上,与以下因素密切相关:①电阻加热元件的材料:电阻丝材料的电阻值越大,越容易转化为热量,热量产生得越高;②热量损失:一些热量可能通过水壶的壁面或蒸汽逸出,导致能量浪费,现代水壶通常使用保温设计来减少热量损失。③加热元件的表面设计:加热元件的表面积越大,与水的接触面积越多,热量传递效率越高。

四、误差分析

【误差分析】

- 1. 实验仪器本身有一定的系统误差,且由于仪器老化,加大了误差。
- 2. 在测量电压、电流时,导线的电阻对测量有一定的影响。在实验三中,接入不同阻值的负载电阻时,导线的数量和接法有着很大的差异,从而导线的电阻会对实验结果产生影响。
- 3. 装置、导线、电压表之间接触不良的问题对测量结果有很大的影响。以电压表为例,红黑表笔插入接线孔的方向不同时,读数都会有差异。这导致每次改变接线等时,读数都可能发生浮动,这带来了很大的误差。
- 4. 实验过程中,环境温度在持续变化,这也给测量结果带来了一定的误差。

教师签字:

JAN S