Linguagens Formais

.)

EDUARDO FREIRE NAKAMURA

Instituto de Computação Universidade Federal do Amazonas nakamura@icomp.ufam.edu.br

¹Este material utiliza conteúdo das aulas fornecidas pelo Prof. Vilar da Câmara Neto (disponível em http://prof.vilarneto.com). ²Permissão de uso fornecida pelos autores.

 $^{^3}$ As figuras utilizadas neste material são de domínio público, disponíveis na Internet sem informações de direitos autorais.

Conceitos Básicos

2

OBJETIVO

CONHECER OS CONCEITOS BÁSICOS USADOS NA DEFINIÇÃO DE LINGUAGENS FORMAIS

Linguagens formais

3

 O conteúdo de Linguagens Formais envolve três principais termos:

Linguagens

Gramáticas

Autômatos

- Esses termos possuem conceitos próprios, porém, estão relacionados entre si.
- É importante compreender o significado de cada termo.

Hierarquia de Chomsky

Avram Noam Chomsky

- Nasceu em dezembro de 1928 na Philadelphia
- Linguísta, filósofo, cientista cognitivo

 considerado o pai da linguística moderna
- Professor Emérito no MIT

https://chomsky.info/

Linguagens formais

- Linguagens construídas respeitando duas restrições
 - Sintaxe bem definida: sempre possível verificar se uma sentença pertence ou não à linguagem
 - 2. Semântica precisa: toda sentença da linguagem possui um significado único

www.opendocs.org

6

Definição

Toda linguagem formal possui um alfabeto

 Conjunto finito e não vazio de símbolos

 O alfabeto de uma linguagem será representado por ∑ (sigma)

- $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$
- Permite representar
 números naturais na base decimal
 - 0 1
 - 0 20
 - 0 131
 - 1235562

7

Definição

Toda linguagem formal possui um alfabeto

 Conjunto finito e não vazio de símbolos

 O alfabeto de uma linguagem será representado por ∑ (sigma)

Exemplo 02

- $\Sigma = \{0,1,2,3,4,5,6,7,8,9,",",-\}$
- Permite representar todos os números reais na base decimal
 - 9,80665
 - -0,05
 - 0 1,13
 - 0 902

*não é necessário usar todos os símbolos

8

Definição

Toda linguagem formal possui um alfabeto

 Conjunto finito e não vazio de símbolos

 O alfabeto de uma linguagem será representado por ∑ (sigma)

- $\sum = \{0,1\}$
- Permite representar sequências de 0s e 1s
 - 0 0
 - 0 10
 - 0 101
 - 110010

9

Definição

Toda linguagem formal possui um alfabeto

 Conjunto finito e não vazio de símbolos

 O alfabeto de uma linguagem será representado por ∑ (sigma)

- $\sum = \{0\}$
- Permite representar sequências de 0s
 - \circ C
 - 000
 - 0000

Definição

Toda linguagem formal possui um alfabeto

 Conjunto finito e não vazio de símbolos

 O alfabeto de uma linguagem será representado por ∑ (sigma)

- $\sum = \{a,b,c,s\}$
- Permite representar algumas palavras
 - casa
 - o assa
 - babaca
 - abacaba
 - o agagagagagagaga

Palavra

11

Definição

 Uma palavra sobre o alfabeto ∑ é uma sequência finita de símbolos de ∑

Exemplo

•
$$\sum = \{0, 1\}$$

- 0 011
- 10010
- 01001
- 101010 _

Palavras sobre \sum

Palavra

12

- Tamanho de uma palavra p, representado por |p|
 - Número de símbolos usados na palavra
- Exemplo

o
$$p = 0$$
, então $|p| = 1$

$$p = 100$$
, então $|p| = 3$

$$p = 1011$$
, então $|p| = 4$

- Existe uma palavra vazia, ou seja, sem símbolos
 - Representada por λ
 - $|\lambda| = 0$

Linguagem

Uma linguagem sobre um alfabeto \sum é um subconjunto (possivelmente infinito) de todas as possíveis palavras sobre \sum

Uma linguagem define quais palavras sobre \sum são "válidas" segundo algum critério preestabelecido

Tamanho da Linguagem

O tamanho de uma linguagem L, representado por |L|, é o número de palavras da linguagem (possivelmente infinito)

14

Exemplo

Dada a linguagem L_1 definida como "todas as palavras sobre o alfabeto $\sum = \{0,1\}$ com no máximo 3 símbolos"

$$L_1 = \{\lambda, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110, 111\}$$

Tamanho de L_1 é dado por $|L_1| = 15$

15

Exemplo

Dada a linguagem L_2 definida como "todas as palavras sobre o alfabeto $\sum = \{a,b,c\}$ com dois símbolos e que não começam com a"

$$L_2 = \{ ba, bb, bc, ca, cb, cc \}$$

Tamanho de L_2 é dado por $|L_2| = 6$

16

Exemplo

Dada a linguagem L_3 definida como "todos os números binários com um dígito que começam com 0 e terminam com 1"

$$L_3 = \emptyset$$

Tamanho de L_3 é dado por $|L_3| = 0$

17

• O alfabeto $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$ pode representar números naturais (na base decimal)

Todas as palavras sobre \sum representam um número?

Todas as palavras sobre \sum são válidas?

 λ é uma palavra sobre \sum , mas não é um número natural!

18

• "A linguagem dos números naturais é constituída por todas as palavras sobre o alfabeto $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$ que possuem pelo menos um dígito"

• "Uma palavra p sobre o alfabeto $\sum = \{0,1,2,3,4,5,6,7,8,9\}$ representa um número natural se, e somente se, |p| > 0"

19

A linguagem dos números naturais é definida por

$$L_N = \{ p \text{ \'e uma palavra sobre } \sum ||p| > 0 \}$$

20

A linguagem dos números naturais é definida por

$$L_N = \{ p \text{ \'e uma palavra sobre } \sum | |p| > 0 \}$$

"Conjunto das palavras p sobre o alfabeto \sum tal que o tamanho de p é maior do que zero"

21

A linguagem dos números naturais é definida por

$$L_N = \{ p \text{ \'e uma palavra sobre } \sum ||p| > 0 \}$$

"Conjunto das palavras p sobre o alfabeto \sum tal que o tamanho de p é maior do que zero"

22

A linguagem dos números naturais é definida por

$$L_N = \{ p \text{ \'e uma palavra sobre } \sum | |p| > 0 \}$$

"Conjunto das palavras p sobre o alfabeto \sum tal que o tamanho de p é maior do que zero"

23

A linguagem dos números naturais é definida por

$$L_N = \{ p \text{ \'e uma palavra sobre } \sum ||p| > 0 \}$$

"Conjunto das palavras p sobre o alfabeto \sum tal que o tamanho de p é maior do que zero"

Qual o valor de $|L_N|$?

O alfabeto
 ∑={0,1,2,3,4,5,6,7,8,9,,,-}
 pode representar números
 reais

• Algumas palavras sobre \sum são "válidas", outras não

24

- Válidas
 - 0 1958
 - -55
 - 0 2,1
 - -9,44
- Inválidas
 - 0 -
 - 0 1,2,3
 - \circ λ
 - 0 20-7
 - o ,-2

Formalização de linguagens

- A linguagem dos números reais é constituída por todas as palavras sobre o alfabeto $\sum = \{0,1,2,3,4,5,6,7,8,9,,,-\}$ que obedeçam às seguintes regras
 - 1. Possuem pelo menos um dígito (0 a 9)
 - 2. Podem possuir um único hífen (-), desde que seja o primeiro símbolo
 - Possuem no máximo uma vírgula (,), desde que seja precedida e seguida por pelo menos um dígito
- ★ Difícil de entender
- ★ Difícil de verificar se está correta
- ★ Difícil de escrever um algoritmo para verificar se uma palavra representa ou não um número válido

Operações

OBJETIVO

COMPREENDER E SABER APLICAR OPERAÇÕES BÁSICAS DEFINIDAS PARA LINGUAGENS FORMAIS

- Certas operações permitem representação conveniente de linguagens
 - Repetição
 - o Fecho de Kleene e Fecho Positivo de Kleene
 - Agrupamento
 - Concatenação
 - O União
 - Interseção
 - Subtração
 - Complemento

- O operador de repetição aparece como um "expoente" após um símbolo e indica o número de repetições desse símbolo
 - 0² é uma sequência de dois "0"s: 00
 - o 1⁵ é uma sequência de cinco "1"s: 11111
 - z³ é uma sequência de três "z"s: zzz
 - o k^0 é uma sequência de zero "k"s: λ

*Qualquer símbolo repetido zero vezes gera λ

29

O operador de repetição é muito útil na definição de linguagens

$$L = \{a^k \mid k < 5\}$$

30

O operador de repetição é muito útil na definição de linguagens

$$L = \{a^k \mid k < 5\}$$

"Conjunto de sequências de a's dado que tenham menos de 5 letras"

31

O operador de repetição é muito útil na definição de linguagens

$$L = \{ a^k \mid k < 5 \}$$

"Conjunto de sequências de a's dado que tenham menos de 5 letras"

32

O operador de repetição é muito útil na definição de linguagens

$$L = \{a^k \mid k < 5\}$$

"Conjunto de sequências de a's <mark>dado que</mark> tenham menos de 5 letras"

33

O operador de repetição é muito útil na definição de linguagens

$$L = \{a^k \mid k < 5\}$$

"Conjunto de sequências de a's dado que tenham menos de 5 letras"

34

O operador de repetição é muito útil na definição de linguagens

$$L = \{a^k \mid k < 5\}$$

"Conjunto de sequências de a's dado que tenham menos de 5 letras"

Ou ainda

"Conjunto de sequências de a's com menos de 5 letras"

$$L = {\lambda, a, aa, aaa, aaaa}$$

- O operador de repetição também pode ser aplicado sobre conjuntos (neste caso, gera-se conjuntos de palavras)
 - o $L = \{0,1\}^2$ é o conjunto de todas as palavras sobre $\{0,1\}$ que possuem tamanho 2
 - \star *L* = {00, 01, 10, 11}
 - $L = \{a,b\}^3$ é o conjunto de todas as palavras sobre $\{a,b\}$ que possuem tamanho 3
 - \star L = {aaa,aab,aba,abb,baa,bab,bba,bbb}
 - \circ L = {0,1}⁰ é o conjunto de todas as palavras sobre {0,1} que possuem tamanho 0
 - $\mathbf{L} = \{\lambda\}$

Só existe uma palavra de tamanho $0 (\lambda)$, independentemente do alfabeto!

36

• Exemplo 1

$$L = \{ p \in \{0,1\}^n \mid n \le 2 \}$$

37

Exemplo 1

$$L = \{ p \in \{0,1\}^n \mid n \le 2 \}$$

"Conjunto das palavras sobre o alfabeto {0,1} dado que o número de símbolos de {0,1} é no máximo 2"

38

Exemplo 1

$$L = \{ p \in \{0,1\}^n \mid n \le 2 \}$$

"Conjunto das palavras sobre o alfabeto $\{0,1\}$ dado que o número de símbolos de $\{0,1\}$ é no máximo 2"

39

Exemplo 1

$$L = \{ p \in \{0,1\}^n \mid n \leq 2 \}$$

"Conjunto das palavras sobre o alfabeto {0,1} dado que o número de símbolos de {0,1} é no máximo 2"

40

Exemplo 1

$$L = \{ p \in \{0,1\}^n \mid n \le 2 \}$$

"Conjunto das palavras sobre o alfabeto {0,1} dado que o número de símbolos de {0,1} é no máximo 2"

Ou

"Conjunto de palavras sobre {0,1} com no máximo dois dígitos"

$$L = {\lambda, 0, 1, 00, 01, 10, 11}$$

41

Exemplo 2

$$L = \{ p \in \{0,1\}^n \mid n > 0 \}$$

"Conjunto das palavras sobre o alfabeto {0,1} com pelo menos um símbolo"

- Pode ser lido como "Conjunto de números binários"
- Note que esta linguagem possui infinitas palavras, i.e., $|L| = \infty$

- As repetições "zero ou mais vezes" e "uma ou mais vezes" são tão comuns que há operadores específicos para elas:
 - O Fecho de Kleene, representado por "elevado a asterisco", aplicado a um conjunto e significa "repetido zero ou mais vezes"
 - o Exemplo 1
 - $L = \{s\}^*$
 - \checkmark Ou seja, $L = \{\lambda, s, ss, sss, ssss, sssss, ...\}$

Fecho de Kleene

43

Exemplo 2

$$L = \{a,b,c\}^*$$

Ou seja

$$L = \{ p \in \{a,b,c\}^n \mid n \ge 0 \}$$

Ou seja

 $L = \{\lambda, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, aab, \ldots\}$

Fecho de Kleene

(44)

Exemplo 3

$$L = \{0,11\}^*$$

As seguintes palavras fazem parte de L

$$L = {\lambda, 0, 11, 00, 011, 110, 1111, 000, 0011, ...}$$

- Ou seja, sequências arbitrárias de 0 e 11
- Neste caso, 1 nunca aparece sozinho!

Fecho de Kleene

45

• É comum o Fecho de Kleene aplicado diretamente ao alfabeto

$$\circ$$
 $L = \sum^*$

• Significa "a linguagem contendo todas as palavras sobre o alfabeto \sum "

46

Fecho Positivo de Kleene

- "elevado a mais"
- Se aplica a um conjunto
- Repetido uma ou mais vezes

Exemplo 1

$$L = \{0\}^+$$

 \circ L = {0, 00, 000, 0000, 00000, ...}

47

Fecho Positivo de Kleene

- "elevado a mais"
- Se aplica a um conjunto
- Repetido uma ou mais vezes

Exemplo 2

$$L = \{0,1\}^+$$

○
$$L = \{ p \in \{0,1\}^n \mid n \ge 1 \}$$

$$L = \{ p \in \{0,1\}^n \mid n > 0 \}$$

 L = {0,1}+ é uma representação concisa do conjunto de números binários!

48

Fecho Positivo de Kleene

- "elevado a mais"
- Se aplica a um conjunto
- Repetido uma ou mais vezes

- $L = \{0,11\}^+$
- O L = {0, 11, 00, 011, 110, 1111,
 000, 0011, ...}
- o λ não faz parte de *L*

49

Fecho Positivo de Kleene

- "elevado a mais"
- Se aplica a um conjunto
- Repetido uma ou mais vezes

- Exemplo 4 (e se?)
 - $L = {\lambda, 0, 11}^+$
 - $L = {\lambda, 0, 11, 00, 011, 110, 1111, 000, 0011, ...}$

50

Casos interessantes

- $L = \emptyset$, então $L^* = \{\lambda\}$
- $L = \emptyset$, então $L^+ = \emptyset$
- \circ $L = {\lambda}, \text{ então } L^* = {\lambda}$
- $L = \{\lambda\}$, então $L^+ = \{\lambda\}$

Em geral

ο λ∈ L, então λ∈ L⁺, caso contrário λ não pertence a L⁺

 A concatenação de duas palavras é a palavra formada pelos símbolos da primeira palavra seguidos dos símbolos da segunda palavra

 A concatenação de duas palavras p e q é escrita pq

$$p = 1 e q = 0$$

$$\times pq = 10$$

$$r = 1101 e s = 01$$

$$\times$$
 rs = 110101

$$om=$$
 pala $en=$ vra

$$\times mn = palavra$$

$$o$$
 $a = aaba e b = \lambda$

$$\times ab = aaba$$

$$\circ$$
 $c = \lambda e d = \lambda$

$$\times$$
 cd = λ

 Concatenação de duas linguagens L₁ e L₂ é a linguagem contendo todas as concatenações de cada palavra de L₁ com cada palavra de L₂

• $L_1L_2 = \{p_1p_2\}$ para cada $p_1 \in L_1$ e $p_2 \in L_2$

$$C_1 = \{a,b,c\} e L_2 = \{x,y\}$$

$$\times$$
 $L_1L_2 = \{ax, ay, bx, by, cx, cy\}$

$$L_1 = \{0,00\} \text{ e } L_2 = \{\lambda,1\}$$

$$\times$$
 $L_1L_2 = \{0, 01, 00, 001\}$

$$L_1 = {\lambda,0} e L_2 = {\lambda,0}$$

$$\times L_1L_2 = {\lambda, 0, 00}$$

$$L_1 = \{0\}^* e L_2 = \{\lambda, 1\}$$

$$\times$$
 $L_1L_2 = {\lambda, 1, 0, 01, 00, 001, ...}$

$$L_1 = \{0\}^* e L_2 = \{1\}^*$$

$$\times L_1L_2 = ?$$

Concatenação

- Se uma das linguagens concatenadas for vazia
- O resultado também é um conjunto vazio!

53

Exemplos

○
$$L_1 = \{a,b,c\} \ e \ L_2 = \emptyset, \ L_1L_2 = \emptyset$$

$$\circ$$
 $L_1 = \emptyset$ e $L_2 = \{\lambda\}$, $L_1L_2 = \emptyset$

o
$$L_1 = \emptyset$$
 e $L_2 = \{0,1\}, L_1L_2 = \emptyset$

$$\circ$$
 $L_1 = \emptyset$ e $L_2 = \emptyset$, $L_1L_2 = \emptyset$

Cuidado! A linguagem \emptyset é diferente da linguagem $\{\lambda\}$!

Agrupamento

54

 O agrupamento é uma forma conveniente de especificar que uma operação de repetição se aplica sobre uma sequência de outras operações

 O agrupamento é representado por um par de parênteses em torno da sequência de símbolos: (sequência)

$$\cup$$
 $L_1 = (\{a\}\{a,b\})^2$

- ▼ Linguagem formada por duas vezes a concatenação {a}{a,b}
- $L_2 = \{aaaa, aaab, abaa, abab\}$

$$C_2 = (\{a\}\{b\})^0$$

- ▼ Linguagem formada por zero vezes a concatenação {a}{b}
- \times $L_2 = {\lambda}$

Agrupamento

56

Exemplos

```
\cup L_4 = (\{a,b\}\{c,d\})^*

▼ Linguagem formada pelo fecho de Kleene sobre a concatenação {a,b}{c,d}
    L_{\Delta} = \{\lambda, ac, ad, bc, bd, acac, acad, acbc, acbd, adac, ...\}
    \perp L_4 = \{ac, ad, bc, bd\}^*
\cup L_5 = (\{a,b\}\{c,d\}^+)^*
    \perp L_5 = {
               \lambda, ac, ad, acc, acd, ...,
                bc, bd, bcc, bcd, ...,
                acac, acacc, acacd, acaccc, ...,
                accac, accad, accacc, ...
```

Sempre há uma sequência de c's e/ou d's após cada a e cada b!

União

- 57
- União de duas linguagens L₁
 e L₂
- Linguagem que contém todas as palavras de L₁ e L₂
- A união é representada pelo operador ∪

$$L_1$$
 = {0,1,01} e L_2 = {λ,0,11}

$$\times$$
 $L_1 \cup L_2 = {\lambda, 0, 1, 01, 11}$

$$L_1 = \{a\}^+ e L_2 = \{\lambda\}$$

$$\times$$
 $L_1 \cup L_2 = \{a\}^*$

$$L_1 = \{0,1\}^*\{0\} \in L_2 = \{0,1\}^*\{1\}$$

$$\times$$
 $L_1 \cup L_2 = \{0, 1\}^+$

- Interseção de duas linguagens L₁ e L₂
- Linguagem que contém todas as palavras comuns a L₁ e L₂
- A interseção é representada pelo operador ∩

ο
$$L_1 = {\lambda,0,1,01}$$
 e $L_2 = {\lambda,1,111}$

$$\times L_1 \cap L_2 = \{\lambda, 1\}$$

○
$$L_1 = \{aa\}^+ e L_2 = \{a^n \mid n \le 5\}$$

$$\times$$
 $L_1 \cap L_2 = \{aa, aaaa\}$

$$L_1 = \{01\}^* e L_2 = \{0\}^* \{1\}^*$$

$$\times$$
 $L_1 \cap L_2 = \{\lambda, 01\}$

- Diferença entre duas linguagens L₁ e L₂
- Linguagem que contém as palavras de L₁ que não pertencem a L₂
- A diferença é representada pelo operador –

ο
$$L_1 = {\lambda,0,1,01}$$
 e $L_2 = {\lambda,1,111}$

$$\times L_1 - L_2 = \{0, 01\}$$

$$L_1 = \{a\}^+ e L_2 = \{a^n \mid n \le 5\}$$

$$\times$$
 $L_1 - L_2 = \{a^n \mid n > 5\}$

$$L_1 = \{10\}^* e L_2 = \{01\}^*$$

$$\times$$
 $L_1 - L_2 = \{10\}^+$

Complemento

- Complemento de uma linguagem L
- Linguagem que contém as palavras que não pertencem a L
- $\sum^* L$
- O complemento é representado por uma barra sobre a linguagem
- $\overline{L} = \sum^* -L$

60

$$\sum = \{a,b\} \in L = \{a\}^* \rightarrow \overline{L} = \{a,b\}^* \{b\} \{a,b\}^*$$

$$\sum = \{a,b\} \ \text{e } L = \{a\}^+ \to \overline{L} = \{a,b\}^* \{b\} \{a,b\}^* \cup \{\lambda\}$$

$$\Sigma = \{0,1\} \text{ e } L = \{0,1\}^* \{1\} \rightarrow \overline{L} = \{0,1\}^* \{0\} \cup \{\lambda\}$$

Exercícios

61

- Formalize as linguagens abaixo
 - 1. Conjunto de todos os números binários com tamanho par e cujos dígitos nas posições pares (20 dígito, 40 dígito, etc.) são obrigatoriamente 0.
 - 2. Conjunto de todos os números binários que contenham a sequência 0000.
 - 3. Conjunto de todos os números binários que contenham a sequência 0000 pelo menos três vezes.