\(C01-02\) Intervalles

1. Intervalles de nombres réels

E Définition

Soient (a) et (b) deux nombres réels tels que $(a \leq b)$.

• On appelle intervalle fermé \([a;b]\) l'ensemble des nombres réels \(x\) tels que \(a\leqslant x\leqslant b\).

• On appelle intervalle ouvert \([]a;b[\) l'ensemble des nombres réels \(x\) tels que \(a<x<b\).

- On définit de même les intervalles \([a;b[\) et \([a;b]\).
- On note \([a;+\infty[\) l'ensemble des nombres réels \(x\) tels que \(x\geqslant a\).

• On note $\([a;+\inf y]\)$ l'ensemble des nombres réels $\(x\)$ tels que $\(x>a\)$.

• On définit de même \(]- \infty;a]\) et \(]-\infty;a[\).

Remarques

- Le symbole \(+\infty\) se lit " Plus l'infini ".
- Le symbole \(-\infty\) se lit " Moins l'infini ".

- Solution
- 1. \(]-\infty; 5]\)

4. \(-4\leqslant x \leqslant -3\)

5. \(-3\leqslant x < 8\) 6. \(-2< x \leqslant 0\)

- 2. \(]-3; +\infty[\)
- 3. \(]2;5[\)
- 4. \([-4;-3]\)
- 5. \([-3;8[\)
- 6. \(]-2;0]\)

Appartient ou pas ?

Enoncé

Compléter avec un symbole \(\in\) ou \(\notin\):

- \(-2 \dots [-2; 1[\)
- \(-3 \dots [-5; -1[\)
- \(-\dfrac{26}{5} \dots]-5; -4[\)
- \(4 \dots [-3; 4[\)
- \(2\pi \dots [7;8]\)
- \(0 \dots \mathbb{R}\)
- \(0 \dots \mathbb{R}^*\)

Solution

- \(-2 \in [-2; 1[\)
- \(-3 \in [-5; -1[\)
- \(-\dfrac{26}{5} \notin]-5; -4[\)
- \(4 \notin [-3; 4[\)
- \(2\pi \notin [7;8]\)
- \(0 \in \mathbb{R}\)
- \(0 \notin \mathbb{R}^*\)

Enoncé

Recopier et compléter :

Inégalité	Intervalle	Représentation graphique		
0 < <i>x</i> ≤ 5	<i>x</i> ∈]0;5]			
	$x \in]-3;7[$			
	$x \in]-\infty;4]$			
3 ≤ <i>x</i>				
		$\begin{bmatrix} -1 & 1 \\ -3 & -2 \end{bmatrix}$ 0 2 3 4 5 6 7 8		
		2 -1 0 1 3 4 5 6 7 8 9 10		

Solution

A venir....

2. Unions et intersections d'intervalles

E Définition

Soient (I) et (J) deux intervalles.

- L'intersection de \(I\) et \(J\) est l'ensemble des réels qui appartiennent à la fois à \(I\) \textbf{ET} à \(J\). On note cet ensemble \(I\) cap J\).
- La réunion de \(I\) et \(J\) est l'ensemble des réels qui appartiennent à \(I\) \textbf{OU} à \(J\). On note cet ensemble \(I \cup J\).

Remarques

- La notation \(\cap\) se lit \og inter \fg. D'où \(I \cap J\) se lit \og \(I\) inter \(J\) \fg.
- Parfois, il n'y a aucun élément qui appartiennent à la fois à \(I\) et \(J\). L'intersection est donc \textbf{vide}, et on note \(\text{emptyset}\) l'ensemble vide. Dans ce cas \(I\) \(\text{cap J} = \text{emptyset}\).

Exemple

09/01/2023

On considère les intervalles (I=[3;7]) et (J=]2; 5[).

• L'ensemble \(I\cap J\) est \([3;5[\).

• L'ensemble \(I\cup J\) est \(]2;7]\).

? Utiliser les notations \(\cap\) et \(\cup\)

Enoncé

R\'eduire sous la forme d'un seul intervalle si possible et représenter sur la droite des réels :

- \(]-3;7] \cap]-2;8[\)
- \(]-4;3] \cap [-2;3,5[\)
- \([-7;4[\cup]-3;5]\)
- \(]-3;5] \cup [-1;2]\)
- \([-6;6]\cup[-2;2]\)
- \(]-\infty;2[\cap]1;+\infty[\)
- \(]-\infty;-1] \cup]2;6]\)
- \([-5;3] \cap [6;8]\)

Solution

- \(]-3;7] \cap]-2;8[=]-2;7]\)
- \(]-4;3] \cap [-2;3,5[= [-2;3]\)
- \([-7;4[\cup]-3;5] = [-7;5]\)
- \(]-3;5] \cup [-1;2] =]-3;5]\)
- \([-6;6]\cup[-2;2] = [-6;6]\)
- \(]-\infty;2[\cap]1;+\infty[=]1;2[\)
- \(]-\infty;-1] \cup]2;6] =]-\infty;-1] \cup]2;6]\)
- \([-5;3] \cap [6;8] = \emptyset\)

Ensemble vide

L'ensemble vide est noté \(\emptyset\).

09/01/2023

Travailler les inéquations et les intervalles

Enoncé

Compléter en s'aidant de la méthode donnée dans l'exemple ci-dessous.

Exemple

On a les équivalences :

\(x \in [1;2]\)	\ (\Longleftrightarrow\)	\(1 \leqslant x \leqslant 2\)	par définition
	\ (\Longleftrightarrow\)	\(3 \leqslant 3x \leqslant 6\)	en multipliant chaque membre de l'inégalité par \ (3\)
	\ (\Longleftrightarrow\)	\(3x \in [3;6]\)	par définition

d'où $(x \in [1;2])$ si et seulement si $(3x \in [3;6])$

- 1. $(x \in [7;20])$ si et seulement si $(7x \in dots)$
- 2. $(x \in]-1;3]$ si et seulement si $(x+4 \in]$
- 3. $(x \in [2;6])$ si et seuelemnt si $(8-x \in [4-x])$
- 4. $(x \in \text{seulement si }(x+6 \in]3 ; +\inf\{y[\)$
- 5. $(x \in (-2x \in [4; +\infty])$
- 6. $(x \in \text{dots})$ si et seulement si $(4x+3 \in [-6;5])$

Solution

- 1. $(x \in [7;20])$ si et seulement si $(7x \in [49;140])$
- 2. $(x \in]-1;3]$ si et seulement si $(x+4 \in]3;7]$
- 3. $(x \in [2;6])$ si et seuelemnt si $(8-x \in [2;6])$
- 4. $(x \in]-3$; + $\inf [\cdot]$ si et seulement si $(x+6 \in]3$; + $\inf [\cdot]$
- 5. $(x \in]-\infty; -2]$ si et seulement si $(-2x \in [4; +\infty])$
- 6. $(x \in [-dfrac{9}{4};2])$ si et seulement si $(4x+3 \in [-6;5])$

Représenter sous la forme d'intervalles

Enoncé

- \(y>-3\) et \(y<4\)
- \(y>-3\) ou \(y<4\)
- \(y \leqslant \dfrac{1}{3}\) et \(y \leqslant \dfrac{1}{2}\)
- $(y \leq 1){3}$) ou $(y \leq 1){2}$)

Solution

A venir

Résolutions d'équations du premier degré

Enoncé

- 1. Résoudre dans \(\mathbb{R}\\) chacune des équations suivantes :
- 2. \(3x -6 =0\)
- 3. \(3x -4 = 0\)
- 4. \(-3x +64 = 19\)
- 5. \(-2(x+5)=-8\)
- 6. \(3x -\pi=0\)
- 7. \(\dfrac{x-8}{3}=-4\)
- 8. Lesquelles de ces 4 équations sont résolubles dans $\(\arrowvert (\mathbb{Z}) \) ? Dans \(\arrowvert (\mathbb{Z}) \) ?$

Solution

A venir

? Résolutions d'inéquations du premier degré

Enoncé

Résoudre les inéquations suivantes et présenter le résultat sous la forme d'un intervalle :

- \(3x -6 >0\)
- \(3x -4 \leqslant 0\)
- \(-3x +64 < 19\)