Geometría y Álgebra Lineal 2

Mauro Polenta Mora

Ejercicio 6

Consigna

Hallar $_{\mathcal{B}}(T)_{\mathcal{B}}$ y $_{\mathcal{B}}(T^*)_{\mathcal{B}}$ en una base \mathcal{B} ortonormal conveniente, para las siguientes transformaciones:

- 1. $T:\mathbb{C}^3\to\mathbb{C}^3$ definida por
: $T(x,y,z)=(2x+iy,\ y-5iz,\ x+(1-i)y+3z)$
- 2. $T: \mathbb{R}^3 \to \mathbb{R}^2$ definida por
: $T(x,y,z) = (2x+y-z,\ x+y+z)$
- 3. $T:M_2(\mathbb{R})\to M_2(\mathbb{R})$ definida por
: $T(A)=\begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}\cdot A$

Resolución

Recordatorio

Para este ejercicio usaremos el siguiente teorema enunciado en la clase 18 del teórico:

Sean V, W dos espacios vectoriales con producto interno.

Sea
$$T:V\to W,\,T^*:W\to V$$
y dos bases ORTONORMALES: - $\mathcal{A}=\{v_1,\dots,v_n\}\to V$ - $\mathcal{B}=\{w_1,\dots,w_m\}\to W$

Entonces:

$$_{\mathcal{A}}(T^*)_{\mathcal{B}} = \overline{(_{\mathcal{B}}(T)_{\mathcal{A}})^t}$$

Parte 1

Consideremos la base canónica de \mathbb{C}^3 : - $\mathcal{E} = \{(1,0,0), (0,1,0), (0,0,1)\}$

Observemos que la misma es ortonormal considerando el producto interno estándar.

Entonces podemos representar T de la siguiente forma:

- T(1,0,0) = (2,0,1)
- T(0,1,0) = (i,1,1-i)
- T(0,0,1) = (0,-5i,3)

$$_{\mathcal{E}}(T)_{\mathcal{E}} = \begin{pmatrix} 2 & i & 0\\ 0 & 1 & -5i\\ 1 & 1-i & 3 \end{pmatrix}$$

Como estamos trabajando en una base ortonormal, entonces se cumple la propiedad enunciada en el recordatorio, entonces:

$$_{\mathcal{E}}(T^*)_{\mathcal{E}} = \begin{pmatrix} 2 & 0 & 1\\ -i & 1 & 1+i\\ 0 & 5i & 3 \end{pmatrix}$$

Parte 2

Recordemos la transformación lineal con la que estamos trabajando:

$$T:\mathbb{R}^3 \to \mathbb{R}^2$$
 definida por
: $T(x,y,z) = (2x+y-z,\ x+y+z)$

Consideremos las bases canónicas de \mathbb{R}^3 y \mathbb{R}^2 (ambas ortonormales para el PI estándar): - $\mathcal{E}_1 = \{(1,0),(0,1)\}$ - $\mathcal{E}_2 = \{(1,0,0),(0,1,0),(0,0,1)\}$

Entonces:

- T(1,0,0) = (2,1)
- T(0,1,0) = (1,1)
- T(0,0,1) = (-1,1)

Con esto, podemos construir la matriz de la siguiente forma:

$$_{\mathcal{E}_2}(T)_{\mathcal{E}_1} = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix}$$

Como estamos trabajando en bases ortonormales, entonces se cumple la propiedad enunciada en el recordatorio, entonces:

$$_{\mathcal{E}_1}(T^*)_{\mathcal{E}_2} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \\ -1 & 1 \end{pmatrix}$$

Parte 3

Análoga a las anteriores.