

VISIÓN ARTIFICIAL

CARLOS ANDRÉS MERA BANGUERO, PHD

carlosmera@itm.edu.co

Programa de Ingeniería de Sistemas

www.itm.edu.co

FILTRADO ESPACIAL

El Ruido en las Imágenes

- Ruido Gaussiano
- Ruido Uniforme
- Ruido Impulsivo

La Convolución

- Introducción
- Tratamiento de los bordes
- Propiedades de la convolución

Filtros Lineales de Suavizado

- Filtro Media (o Promedio)
- Filtro Gaussiano

Filtros Lineales de Realzado

- Mascara Unsharp
- Derivadas de una Imagen
- Filtro Laplaciano
- Laplaciano de un Gaussiano
- Filtro High Boost

Hacia una era de Universidad y Humanio ao

SISTEMA DE VISIÓN ARTIFICIAL

EL PREPROCESAMIENTO

© El objetivo del Preprocesamiento es mejorar la calidad y/o la apariencia de la imagen original para su análisis e interpretación.

EL RUIDO EN LAS IMÁGENES.

- El ruido digital es algún tipo de información no deseada que contamina una imagen y/o degrada su calidad.
- Existen diferentes Tipos de Ruido cuyas características probabilísticas permiten clasificarlos en dos:
 - El Ruido Local Determinístico
 - Presenta una forma y apariencia constante para cada sistema en particular
 - Se manifiesta como una distribución constante y determinada dentro de la imagen
 - El Ruido Aleatorio que es producido por fuentes imprevistas y su distribución es aleatoria y cambiante con el tiempo
- El ruido se puede producir tanto en el proceso de adquisición de la imagen (por error en los sensores), así cómo por la transmisión (debido a interferencias en el canal de transmisión).

EL RUIDO EN LAS IMÁGENES

El Ruido Gausiano (o normal): Modela el ruido producido por los circuitos electrónicos o ruido de los sensores por falta de iluminación y/o altas temperaturas.

Un ejemplo de este tipo de ruido es el provocado en el revelado de las películas.

EL RUIDO EN LAS IMÁGENES

El Ruido Gausiano (o normal):

Ejemplo de Ruido producido con un ISO100 y un ISO1600

EL RUIDO EN LAS IMÁGENES

© El Ruido Uniforme toma valores en un determinado intervalo de forma equiprobable. Se da en un menor número de situaciones reales.

EL RUIDO EN LAS IMÁGENES

El Ruido Impulsivo (o Sal y Pimienta) se produce normalmente en la cuantificación que se realiza en el proceso de digitalización y es muy común en la transmisión.

Defectos que contribuyen a este tipo incluyen un CCD defectuoso, que realizará una captura errónea.

EL RUIDO EN LAS IMÁGENES

¿Cómo se puede suprimir el Ruido en las imágenes?

Las técnicas de supresión del ruido están estrechamente relacionadas con los algoritmos de suavizado y perfilado.

Aunque todas las técnicas suprimen el ruido satisfactoriamente, se prefieren los filtros espaciales ya que en general, tienen un mejor rendimiento con un menor costo en memoria y en tiempo de ejecución.

> OJO: no existe un único FILTRO Lineal o NO Lineal que sea óptimo para todas las imágenes.

Convolución

La Convolución es la operación elemental usada para aplicar las operaciones de vecindad.

Su propósito es resaltar o atenuar los detalles espaciales de la imagen para mejorar su interpretación visual o facilitar su procesamiento posterior. Para ello se usan diferentes mascaras de convolución.

Convolución

Matemáticamente ...

K determina el número de vecinos que se tienen en cuenta y H es el kernel (o máscara de convolución)

CONVOLUCIÓN

$$I'(x, y) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(x+u, y+v) \cdot H(u, v)$$

90	67	68	75	78
92	87	73	78	82
63	102	89	76	98
45	83	109	80	130
39	69	92	115	154

	F	Gernel iltro Máscara		
	0	1	0	
	2	1	-2	
	0	-1	0	
'				I

$$l'(2, 1) = (67*0) + (68*1) + (75*0) + (87*2) + (73*1) + (78*-2) + (102*0) + (89*-1) + (76*0)$$

= ???

Convolución

$$I'(x,y) = \sum_{k=0}^{k} \sum_{k=0}^{k} I(x+u,y+v) \cdot H(u,v)$$

90	67	68	75	78
92	87	73	78	82
63	102	89	76	98
45	83	109	80	130
39	69	92	115	154

Imagen	de	Entrada
	(1)	

	1	2	1
$\frac{1}{15}$ ×	2	3	2
	1	2	1

Kernel de Convolución (H)

Imagen de Salida (l')

$$I'(1,1) = \sum_{u=-1}^{1} \sum_{v=-1}^{1} I(1+u,1+v) \cdot H(u,v) = \frac{\left[(90\times1) + (67\times2) + (68\times1) + (92\times2) + (87\times3) + (73\times2) + (63\times1) + (102\times2) + (89\times1) \right]}{15}$$

$$= 104$$

Convolución

$$I'(x, y) = \sum_{k=0}^{k} \sum_{i=0}^{k} I(x+u, y+v) \cdot H(u, v)$$

90	67	68	75	78
92	87	73	78	82
63	102	89	76	98
45	83	109	80	130
39	69	92	115	154

Imagen de Entrada (I)

$\frac{1}{15}$ ×	1	2	1
	2	3	2
	1	2	1

Kernel de Convolución (H)

Imagen de Salida (l')

$$I'(1,2) = \sum_{u=-1}^{1} \sum_{v=-1}^{1} I(1+u,2+v) \cdot H(u,v) = \frac{\left[(67\times1) + (68\times2) + (75\times1) + (87\times2) + (73\times3) + (78\times2) + (102\times1) + (89\times2) + (76\times1) \right]}{15}$$

$$= 79$$

CONVOLUCIÓN - EJERCICIO

$$I'(x, y) = \sum_{u=-k}^{k} \sum_{v=-k}^{k} I(x+u, y+v) \cdot H(u, v)$$

128	125	124	45	48
125	124	45	48	123
124	45	48	123	120
45	48	123	121	118
48	123	120	115	114

1	2	1
0	0	0
-1	-2	-1

Mascara de Convolución

Imagen de Salida

CONVOLUCIÓN – TRATAMIENTO DE BORDES

- Un problema que se debe considerar cuando se realiza la convolución de una imagen es ...
- ¿Qué pasa con los bordes de la imagen?

Ş	?	?		
?	90	67	68	75
?	92	87	73	78
	63	102	89	76
	45	83	109	80

Convolución – Tratamiento de Bordes

Solución: se tratan los borde la imagen con valor cero (zero-padding). No es conveniente si los bordes de la imagen son importantes.

0	0	0		
0	90	67	68	75
0	92	87	73	78
	63	102	89	76
	45	83	109	80

CONVOLUCIÓN – TRATAMIENTO DE BORDES

Solución: duplicar (extend) los bordes de la imagen tantos píxeles como vecinos se consideren en la máscara de convolución.

90	90	67	68	75
90	90	67	68	75
92	92	87	73	78
63	63	102	89	76
45	45	83	109	80

✗ CONVOLUCIÓN − TRATAMIENTO DE BORDES

Solución: envolver la imagen (wrap), es decir, considerar como píxel contiguo al del borde izquierdo, el píxel del borde derecho y viceversa, así como con los del borde superior e inferior.

80	45	83	109	80	45
75	90	67	68	75	90
78	92	87	73	78	92
76	63	102	89	76	63
80	45	83	109	80	45
			68	75	90

CONVOLUCIÓN — TRATAMIENTO DE BORDES

Solución: se puede empezar la convolución en la primera posición donde la ventana no sobresalga de la imagen (crop). En este caso, la imagen resultante será más pequeña que la original.

90	67	68	75
92	87	73	78
63	102	89	76
45	83	109	80

CONVOLUCIÓN - PROPIEDADES

Propiedad Conmutatividad de la Convolución:

$$I*H=H*I$$

- 2 Esta propiedad indica que podemos pensar en la imagen como un kernel y en el kernel como la imagen y obtener el mismo resultado. En otras palabras, se puede dejar la imagen fija y deslizar el kernel o dejar el kernel fijo y deslizar la imagen.
- Propiedad Asociativa de la Convolución:

$$(I * H_1) * H_2 = I * (H_1 * H_2)$$

Esto significa que podemos aplicar H₁ a I seguido de H₂, o podemos convolucionar los kernels H₂ * H₁ y luego aplicar la convolución resultante a I

CONVOLUCIÓN - PROPIEDADES

Propiedad de Linealidad de la Convolución:

$$(a \cdot I) * H = a \cdot (I * H)$$

$$(I_1 + I_2) * H = (I_1 * H) + (I_2 * H)$$

2 Esta propiedad permite que podemos multiplicar la imagen por una constante antes o después de convolución, y también que podemos sumar dos imágenes antes o después de la convolución y obtener los mismos resultados.

FILTRADO ESPACIAL

FILTRADO ESPACIAL

- © El Filtrado Espacial se emplea para resaltar o atenuar los detalles espaciales de una imagen. Existen diferentes tipos de filtros espaciales y existen diferentes clasificaciones para los mismos:
- Filtros Lineales (filtros basados en máscaras de convolución):
 - Filtros de Suavizado o Paso Bajo que permite el paso de frecuencias bajas
 - Filtros de Realzado o Paso Alto que permite el paso de frecuencias altas
 - Filtros Paso Banda que permite el paso de un rango intermedio de frecuencias
- Filtros NO Lineales (Filtros estadísticos)

FILTROS LINEALES PARA SUAVIZADO

FILTRADO ESPACIAL - SUAVIZADO

- Los Filtros de Suavizado (o Paso Bajo) se usan para suavizar los detalles de la imagen, reducir el ruido y atenuar otros detalles irrelevantes de la imagen.
- ② El filtro de suavizado más simple, intuitivo y fácil de implementar es el Filtro de la Media. Este filtro permite reducir las variaciones de intensidad entre píxeles vecinos, calculando el promedio de los mismos.
- ¿Cómo funciona? Se visita cada píxel de la imagen y se reemplaza por el promedio de los píxeles vecinos.

Ejemplo de máscara de convolución de 3x3 para el filtro de la media

$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$
$\frac{1}{9}$	$\frac{1}{9}$	1 9

FILTRADO ESPACIAL - SUAVIZADO

El Filtro Media (o Promedio) promedia los valores de intensidad de los píxeles en el vecindario.

¿Cómo será la máscara de filtro de media de tamaño 5x5?

FILTRADO ESPACIAL - SUAVIZADO

- El Filtro de la Media tiene algunas desventajas, entre ellas:
- Dado que la media, como medida estadística, es sensible a los valores extremos, este filtro tiene a ser muy sensible a los cambios de intensidad en la vecindad.
- ② Como se promedian los valores de intensidad de píxeles vecinos, existe la posibilidad de que se generen valores de grises que originalmente no se encontraban en la imagen.
- El efecto de suavizado (o difuminado) se acentúa más conforme crece el tamaño de la mascara de convolución.

FILTRADO ESPACIAL - SUAVIZADO

Original

 7×7

 15×15

$$41 \times 41$$

FILTRADO ESPACIAL - SUAVIZADO

Imagen de entrada

11x11

Media de

Media de 5x5

Media de 21x21

FILTRADO ESPACIAL - SUAVIZADO

Existen otras máscaras para el Filtro de la Media que son "ponderadas", es decir, le dan más importancia a ciertos píxeles:

	1	2	1
/16*	2	4	2
	1	2	1

En algunos casos puede resultar útil aplicar este filtro de forma direccional:

1
1
1

0	0	1
0	1	0
1	0	0

FILTRADO ESPACIAL - SUAVIZADO

Ejemplo de aplicación del Filtro de la Media en una sola dirección:

Media horiz. 31p

Media vert. 31p

FILTRADO ESPACIAL - SUAVIZADO

Otro de suavizado es el Filtro Gaussiano el cual se usa para suavizar imágenes y eliminar ruido. Es similar al filtro de media pero se usa una máscara diferente que se crea con base en una función gaussiana.

 ${
m @Por}$ Por ejemplo, una máscara de 5x5 con una ${
m o}$ = 1.0 es: $\,G(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$

	1	4	7	4	1
	4	16	26	16	4
$\frac{1}{2}$ ×	7	26	41	26	7
273 ×	4	16	26	16	4
	1	4	7	4	1

FILTRADO ESPACIAL - SUAVIZADO

Al utilizarse una campana de Gauss el suavizado toma la forma de la campana. La varianza determina la amplitud de campana ... mayor varianza, mayor amplitud y viceversa.

0	0	1	1	1	0	0
0	1	1	1	1	1	0
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
0	1	1	1	1	1	0
0	0	1	1	1	0	0

Esta no es una mascara Gaussiana, y solo busca ilustrar su forma

FILTRADO ESPACIAL - SUAVIZADO

- Algunas de las propiedades del Filtro Gaussiano son:
- Su simetría rotacional lo que permite que el filtro tenga el mismo efecto en todas las direcciones
- El peso de los píxeles vecinos decrece con la distancia al centro, por lo que cuanto más alejado está un píxel, menos significativo es
- Preserva las bajas frecuencias y tiende a eliminar las altas (por ser un paso bajo)
- @ El grado de filtrado es controlado por σ , tal que a mayor σ mayor suavizado
- ② El filtro Gaussiano, en general, da mejores resultados que un simple promedio o media y se argumenta que la vista humana hace un filtrado de este tipo.

FILTRADO ESPACIAL - SUAVIZADO

Una de las ventajas del Filtro Gaussiano es que no produce los resultados "rectangulares" que suelen obtenerse con el Filtro de la Media cuando las máscaras son grandes:

Suavizado usando un Filtro Gaussiano

FILTRADO ESPACIAL - SUAVIZADO

(a) The Lenna image; (b) (c) (d) filtered images using mean filtering with mask size 3, 7, 11; (e) (f) (g) filtered images using Gaussian filtering with different variances at 1, 5, 9.

FILTRADO ESPACIAL — SUAVIZADO

Media de 11x11

Media de 21x21

Gaussiana 21x21

Gaussiana 41x41

FILTRADO ESPACIAL - SUAVIZADO

Creación del efecto de niebla usando un Filtro Gaussiano:

A. Imagen original

B. Suaviz. gauss. 40x40

Suma: 0,3**A**+0,7**B**

FILTRADO ESPACIAL - SUAVIZADO

El Filtro Gaussiano también es usado para dar resaltar ciertos objetos en la escena:

FILTRADO ESPACIAL - PERFILADO

- Los Filtros de Realzado (o Paso Alto) se usan para resaltar los detalles "finos" de la imagen y/o para recuperar cierto detalle perdido durante su captura. Es por esta razón que estos filtros están asociados, con la detección de bordes.
- ¿Qué se obtiene si a una imagen f(x,y) se le resta una imagen f'(x,y) que corresponde a la imagen f(x,y) filtrada con un filtro media?
- Considere la siguiente imagen:

10	10	10	10	50
10	10	10	50	40
10	10	50	40	10
10	50	40	10	10
50	40	10	10	10

Entonces, ¿Cómo se puede realzar el contenido de una imagen?

FILTRADO ESPACIAL - PERFILADO

Uno proceso que se ha utilizado durante muchos años en la industria de la publicidad es realzar una imagen restando a la imagen original una versión borrosa de la misma y luego sumando el resultado de esta operación a la imagen original. A este proceso se le denomina Máscara Unsharp y se expresa como así:

$$g(x,y) = f(x,y) + \left(f(x,y) - \overline{f(x,y)}\right)$$

Imagen Original

 $f(x,y) - \overline{f(x,y)}$

+ 128

Imagen Realzada

FILTRADO ESPACIAL - PERFILADO

FILTRADO ESPACIAL - PERFILADO

© Ejemplo Máscara Unsharp: $g(x,y) = f(x,y) + (f(x,y) - \overline{f(x,y)})$

FILTRADO ESPACIAL - PERFILADO

✓ En el realzado nos interesa encontrar los bordes de una imagen, es decir, las zonas de la imagen donde hay cambio ... ¿Cómo podemos hacerlo?

FILTRADO ESPACIAL - PERFILADO

✓ Uso de la derivada para la detección de bordes ...

FILTRADO ESPACIAL - PERFILADO

FILTRADO ESPACIAL - PERFILADO

- La variación de una función diferenciable f(x) viene dada por su Primera Derivada:
 - \Im Si f'(x) > 0, entonces la función es creciente en x
 - \Im Si f'(x) < 0, entonces la función es decreciente en x
 - \Im Si f'(x) = 0, entonces la función es estacionaria en x
- Dado que en nuestro caso tenemos "funciones discretas", la "derivada discreta" se obtiene calculando diferencias:

$$f'(x) = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$$

② En nuestro caso discreto tenemos que $\Delta x = 1$, así que la función se resume a:

$$f'(x) = \frac{df}{dx} \cong f(x+1) - f(x)$$

FILTRADO ESPACIAL - PERFILADO

- En el dominio de las imágenes la Primera Derivada nos indica donde hay cambios en la imagen, así:
 - 2 La derivada es cero en las zonas que la imagen tienen un nivel de gris constante
 - 2 La derivada es distinta de cero en toda la zona que tiene cambios de tipo rampa o tipo escalón;

FILTRADO ESPACIAL - PERFILADO

La Primera Derivada en el dominio de las imágenes

Original

Derivada en X

Derivada en Y

FILTRADO ESPACIAL — PERFILADO

- Así mismo, los mínimos y máximos de una función diferenciable f(x) están definidos por su Segunda Derivada:
 - Si f"(x) > 0, entonces la función tiene un mínimo relativo en X
 - ⇒ Si f''(x) < 0, entonces la función tiene un máximo relativo en X
 </p>
 - \Im Si f''(x) = 0, entonces hay cambio de concavidad

En nuestro caso discreto, la segunda derivada se puede aproximar por:

$$f''(x) = \frac{\partial^2 f}{\partial^2 x} \cong f(x+1) + f(x-1) - 2f(x)$$

FILTRADO ESPACIAL - PERFILADO

- En el dominio de las imágenes la Segunda Derivada nos indica donde hay cambios en la imagen, así:
 - Es distinta de cero al principio o al final de un cambio tipo escalón o rampa
 - Es cero en la zona que tiene un cambio tipo rampa con pendiente constante
 - Es cero en zonas con nivel de gris constante

FILTRADO ESPACIAL - PERFILADO

La Segunda Derivada en el dominio de las imágenes

Original

Derivada en X

Derivada en Y

FILTRADO ESPACIAL - PERFILADO

- Observaciones sobre las derivadas:
 - Las derivadas de primer orden, generalmente producen bordes gruesos en una imagen.
 - Las derivadas de segundo orden tienen una respuesta mayor a detalles finos, como líneas delgadas y puntos aislados.
 - Las derivadas de primer orden tienen una respuesta mayos a funciones escalón de nivel de gris.
 - 2 Las derivadas de segundo orden producen una doble respuesta en cambios de tipo escalón.
- ¿Cuál sería la mejor opción para realzar los detalles de una imagen?
- ¿Usamos primera o segunda derivada?

FILTRADO ESPACIAL - PERFILADO

- En algunas aplicaciones de realzado la segunda derivada es más utilizada que la primera, esto debido a su habilidad de realzar detalles finos. Por esta razón y por su simplicidad iniciamos con la segunda derivada.
- Para la implementación de la segunda derivada se suele usar la función de Laplace, que no es más que una derivada de segundo orden definida por:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Puesto que el Laplaciano es un operador de derivación de segundo orden, *la suma de los coeficientes debe ser cero*. Además, el coeficiente asociado con el píxel central debe ser positivo y todos los demás coeficientes negativos o cero, o viceversa.

FILTRADO ESPACIAL — PERFILADO

May diferentes máscaras que implementan el Operador Laplaciano, las más comunes son:

0	1	0
1	-4	1
0	1	0

0	-1	0
-1	4	-1
0	-1	0

Filtro isotrópico para rotaciones de 90°

1	1	1
1	-8	1
1	1	1

-1	-1	-1
-1	8	-1
-1	-1	-1

Filtro isotrópico para rotaciones de 45°

② El filtro Laplaciano es un filtro isotrópico eso quiere decir que es invariante a la rotación, en el sentido que rotar la imagen y luego aplicar el filtro da el mismo resultado que si primero aplicamos el filtro y luego rotamos la imagen.

FILTRADO ESPACIAL — PERFILADO

Ejemplo del Operador Laplaciano:

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

FILTRADO ESPACIAL — PERFILADO

Ejemplo del Operador Laplaciano:

0	1	0
1	-4	1
0	1	0

1	1	1
1	-8	1
1	1	1

FILTRADO ESPACIAL — PERFILADO

- Algunas consideraciones sobre el Operador Laplaciano:
- ② Aunque este responde a transiciones en la intensidad de la imagen, se emplea en pocas ocasiones en la práctica ya que al ser un operador de segunda derivada es *excesivamente* sensible a la presencia de ruido.
- El Laplaciano da lugar a bordes dobles y no permite determinar las direcciones de los mismo.
- En general, juega un papel secundario en la detección de bordes para determinar si un píxel está en la zona clara o en la zona oscura del borde y esto se hace a través del signo del Laplaciano.

FILTRADO ESPACIAL — PERFILADO

Existe una variación del Laplaciano llamado Laplaciano Gaussiano (o LoG) que es menos sensible al ruido de las imágenes.

0	0	3	2	2	2	3	0	0
0	2	3	5	5	5	3	2	0
3	3	5	3	0	3	5	3	3
2	5	3	-12	-23	-12	3	5	2
2	5	0	-23	-40	-23	0	5	2
2	5	3	-12	-23	-12	3	5	2
3	3	5	3	0	3	5	3	3
0	2	3	5	5	5	3	2	0
0	0	3	2	2	2	3	0	0

h(x,y)
$$-\frac{1}{\pi\sigma^4} \left[1 - \frac{x^2 + y^2}{2\sigma^2} \right] e^{-(x^2 + y^2)/2\sigma^2}$$

$$\sigma = 1.4$$

Esta variación coincide con primero aplicar un filtro Gaussiano y luego emplear el Laplaciano, para detectar los bordes

FILTRADO ESPACIAL — PERFILADO

Ejemplo del Operador Laplaciano Gaussiano (LoG):

Laplaciano

Laplaciano Gaussiano (LoG)

FILTRADO ESPACIAL — PERFILADO

Ejemplo del Operador Laplaciano Gaussiano (LoG):

Laplaciano

Laplaciano Gaussiano (LoG)

FILTRADO ESPACIAL - PERFILADO

Ya encontramos los bordes, entonces ... ¿Cómo se perfila la imagen?

R/= Se suma a la imagen original la imagen después de aplicar el *Laplaciano*

$$g(x,y) = \begin{cases} f(x,y) - \nabla^2 f(x,y) & \text{si el coeficiente central de la máscara es negativo} \\ f(x,y) + \nabla^2 f(x,y) & \text{si el coeficiente central de la máscara es positivo} \end{cases}$$

FILTRADO ESPACIAL — PERFILADO

Realce usando el Operador Laplaciano

Imagen

Original

Aplicando

Laplaciano -8

Aplicando Laplaciano -4

Aplicando LoG

FILTRADO ESPACIAL — PERFILADO

Realce usando el Operador Laplaciano

Imagen Original

Aplicando Laplaciano -4

Aplicando LoG

FILTRADO ESPACIAL — PERFILADO

Realce usando el Operador Laplaciano

Resultado del Filtro

FILTRADO ESPACIAL — PERFILADO

© El Filtro High Boost es una generalización del la Mascara Unsharp aplicada a un Filtro Laplaciano.

Este filtro está definido como $g(x,y) = (A)f(x,y) - \overline{f(x,y)}$. Si se usa un Laplaciano, entonces las máscaras que usan son:

0	-1	0
-1	A+4	-1
0	-1	0

-1	-1	-1
-1	A+8	-1
-1	-1	-1

Si A es muy grande es como si se multiplicara la imagen por una constante. El filtro high-boost enriquece el ruido al igual que las transiciones fuertes de intensidad presentes en la imagen.

FILTRADO ESPACIAL — PERFILADO

El Filtro High Boost

Imagen original pero mas oscura

Laplaciano mejorado de la Imagen original con la siguiente mascara con A=0

A=1

A=1.7

-1	-1	-1
-1	A+8	-1
-1	-1	-1

FILTROS NO LINEALES

FILTRADO ESPACIAL - FILTROS NO LINEALES

© Cuando se usan los Filtros NO Lineales se sustituye cada píxel de la imagen por el resultado de aplicar una función NO Lineal a su vecindad. Se usa para suprimir ruido, haciendo que los puntos con niveles de gris distintos sean más parecidos a su vecindario.

Estos filtros funcionan ordenando los valores en la vecindad de partir de la lista ordenada, por ejemplo:

cada punto de menor a mayor, y obteniendo algún valor a

- La Mediana
- El Máximo
- El Mínimo
- La Moda

FILTRADO ESPACIAL - FILTROS NO LINEALES

© En los filtros NO Lineales se usan diferentes Tipos de Ventanas, sin embargo las más usadas son aquellas que tienen en cuenta 8 vecinos ...

Х	Х	Х
Х	X	X
Х	Х	Х

Х		Х
	X	
Х		Х

	Х	
X	X	X
	Х	

Ventana comúnmente usada

Preserva bordes verticales y horizontales

Preserva bordes inclinados

FILTRADO ESPACIAL - FILTROS NO LINEALES

El Filtro de la Mediana sustituye el valor del píxel estudiado por la mediana de los valores que engloba la ventana de selección dada.

Ventajas

- Atenúa el ruido impulsional (Sal y pimienta)
- Elimina efectos engañosos
- Preserva bordes de la imagen

Inconvenientes

- Pierde detalles (Puntos, líneas finas).
- Redondea las esquinas de los objetos
- Desplazamiento de los bordes

- Procedimiento para calcular el Filtro de la Mediana:
 - Ordenar los NxN vecinos por nivel de gris ascendente
 - Asignar la mediana (valor de la mitad en la lista ordenada)

90	67	68	75
92	87	73	78
63	102	89	76
45	83	109	80

FILTRADO ESPACIAL - FILTROS NO LINEALES

Ejemplo del Filtro de la Mediana:

FILTRADO ESPACIAL - FILTROS NO LINEALES

Ejemplo del Filtro de la Mediana:

FILTRADO ESPACIAL - FILTROS NO LINEALES

Ejemplo del Filtro de la Mediana:

original image

3px median filter

10px median filter

FILTRADO ESPACIAL - FILTROS NO LINEALES

Ejemplo del Filtro de la Mediana: este ejemplo muestra como el filtro mediana suaviza la imagen, aunque preserva los bordes de la misma.

Imagen Original

Filtro Mediana

Filrtro Gausiano

FILTRADO ESPACIAL - FILTROS NO LINEALES

© Ejercicio del Filtro de la Mediana aplique el filtro mediana a la siguiente imagen y escriba el pseudocodigo del mismo

90	67	68	75
92	87	73	78
63	102	89	76
45	83	109	80

Recuerde ¿Cuál es el algoritmo más rápido de ordenamiento y cuál es su complejidad?

- El Filtro del Máximo selecciona el mayor valor dentro de una ventana ordenada de valores de nivel de gris.
- Ventajas
 - Elimina el ruido pimienta (píxeles negros).
- Inconvenientes
 - Sólo funciona cuando el ruido es exclusivamente tipo pimienta
 - Tiende a aclarar la imagen

- Procedimiento para calcular el Filtro del Máximo
 - Ordenar los NxN vecinos por nivel de gris
 - Asignar el máximo de los niveles de gris al píxel central

90	67	68	75
92	87	73	78
63	102	89	76
45	83	109	80

73	76	78	80	83	87	89	102	109
						Valo	r máx	kimo

FILTRADO ESPACIAL - FILTROS NO LINEALES

Ejemplos del Filtro del Máximo

Imagen de entrada

Máximo, tamaño 3

Máx., tamaño 6

Máx., tamaño 12

- Consideraciones sobre el Filtro del Máximo: el resultado es un cierto efecto de difuminación y aclaramiento de la imagen. Desaparecen los detalles más oscuros.
- Si el tamaño es grande, pueden ocurrir dos efectos:
 - Efecto de cuadriculado. Como el máximo se aplica en una zona cuadrada, los píxeles muy claros generan un cuadrado uniforme alrededor.
 - Aparición de colores falsos. Al aplicarlo en los tres canales (R,G,B) independientemente, el máximo en los 3 puede no corresponder a un color presente en la imagen original.

- El Filtro del Mínimo selecciona el menor valor dentro de una ventana ordenada de valores de nivel de gris.
- Ventajas
 - Elimina el ruido sal (píxeles blancos).
- Inconvenientes
 - Sólo funciona cuando el ruido es exclusivamente tipo sal
 - Tiende a oscurecer la imagen

- Procedimiento para calcular el Filtro del Mínimo
 - Ordenar los NxN vecinos por nivel de gris
 - Asignar el mínimo de los niveles de gris al píxel central

90	67	68	75
92	87	73	78
63	102	89	76
45	83	109	80

FILTRADO ESPACIAL - FILTROS NO LINEALES

Ejemplos del Filtro del Mínimo

Imagen de

Máx., tamaño

Máximo, tamaño 3

