Application of Information Theory, Lecture 11

Pseudo-Entropy and Pseudorandom Generators

Iftach Haitner

Tel Aviv University.

June 07, 201

Part I

Motivation

Definition 1

Definition 1

A pair of algorithms (E, D) is (perfectly correct) encryption scheme, if for any $k \in \{0,1\}^n$ and $m \in \{0,1\}^\ell$, it holds that D(k, E(k,m)) = m

What security should we ask from such scheme?

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_K(m) \equiv \mathsf{E}_K(m')$, for any $m, m' \in \{0, 1\}^\ell$ and $K \sim \{0, 1\}^n$, letting $\mathsf{E}_k(x) := \mathsf{E}(k, x)$.

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{K}(m) \equiv \mathsf{E}_{K}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $K \sim \{0, 1\}^{n}$, letting $\mathsf{E}_{k}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^{n}$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- ▶ Is it bad?

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^{n}$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- ▶ Is it bad?

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^n$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- Is it bad? Is it optimal?

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^{n}$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- Is it bad? Is it optimal?
- ► Proof:

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^{n}$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- Is it bad? Is it optimal?
- ► Proof:

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^{n}$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- Is it bad? Is it optimal?
- ▶ Proof: Let $M \sim \{0, 1\}^{\ell}$.

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^{n}$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- ▶ Is it bad? Is it optimal?
- ▶ Proof: Let $M \sim \{0, 1\}^{\ell}$.
- ▶ Perfect secrecy \implies $H(M, E_K(M)) = H(M, E_K(0^{\ell}))$

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^n$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- ▶ Is it bad? Is it optimal?
- ▶ Proof: Let $M \sim \{0, 1\}^{\ell}$.
- ▶ Perfect secrecy \implies $H(M, E_K(M)) = H(M, E_K(0^{\ell}))$

$$\implies H(M|\mathsf{E}_{\mathcal{K}}(M)) = H(M,\mathsf{E}_{\mathcal{K}}(M)) - H(\mathsf{E}_{\mathcal{K}}(M)) = H(M|\mathsf{E}_{\mathcal{K}}(0^{\ell})) = \ell$$

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^n$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- ▶ Is it bad? Is it optimal?
- ▶ Proof: Let $M \sim \{0, 1\}^{\ell}$.
- ▶ Perfect secrecy $\implies H(M, \mathsf{E}_K(M)) = H(M, \mathsf{E}_K(0^\ell))$ $\implies H(M|\mathsf{E}_K(M)) = H(M, \mathsf{E}_K(M)) - H(\mathsf{E}_K(M)) = H(M|\mathsf{E}_K(0^\ell)) = \ell$
- ▶ Perfect correctness $\implies H(M|E_K(M), K) = 0$

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^{n}$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- ▶ Is it bad? Is it optimal?
- ▶ Proof: Let $M \sim \{0, 1\}^{\ell}$.
- ▶ Perfect secrecy $\implies H(M, \mathsf{E}_K(M)) = H(M, \mathsf{E}_K(0^\ell))$ $\implies H(M|\mathsf{E}_K(M)) = H(M, \mathsf{E}_K(M)) - H(\mathsf{E}_K(M)) = H(M|\mathsf{E}_K(0^\ell)) = \ell$
- ▶ Perfect correctness $\implies H(M|E_K(M), K) = 0$
 - $\implies H(M|\mathsf{E}_K(M)) \leq H(M,K|\mathsf{E}_K(M)) \leq H(K|\mathsf{E}_K(M)) + 0 \leq H(K) = n$

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^n$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- ▶ Is it bad? Is it optimal?
- ▶ Proof: Let $M \sim \{0, 1\}^{\ell}$.
- ▶ Perfect secrecy $\implies H(M, \mathsf{E}_K(M)) = H(M, \mathsf{E}_K(0^\ell))$ $\implies H(M|\mathsf{E}_K(M)) = H(M, \mathsf{E}_K(M)) - H(\mathsf{E}_K(M)) = H(M|\mathsf{E}_K(0^\ell)) = \ell$
- ▶ Perfect correctness $\implies H(M|E_K(M), K) = 0$

$$\Rightarrow H(M|E_K(M)) \le H(M,K|E_K(M)) \le H(K|E_K(M)) + 0 \le H(K) = n$$
$$\Rightarrow \ell < n.\square$$

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^{n}$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- Is it bad? Is it optimal?
- ▶ Proof: Let $M \sim \{0,1\}^{\ell}$.
- ▶ Perfect secrecy $\implies H(M, \mathsf{E}_K(M)) = H(M, \mathsf{E}_K(0^\ell))$ $\implies H(M|\mathsf{E}_K(M)) = H(M, \mathsf{E}_K(M)) - H(\mathsf{E}_K(M)) = H(M|\mathsf{E}_K(0^\ell)) = \ell$
- ▶ Perfect correctness $\implies H(M|E_K(M), K) = 0$ $\implies H(M|E_K(M)) \le H(M, K|E_K(M)) \le H(K|E_K(M)) + 0 \le H(K) = n$ $\implies \ell \le n.\Box$
- Statistical secrecy?

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^n$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- Is it bad? Is it optimal?
- ▶ Proof: Let $M \sim \{0,1\}^{\ell}$.
- ▶ Perfect secrecy $\implies H(M, \mathsf{E}_K(M)) = H(M, \mathsf{E}_K(0^\ell))$ $\implies H(M|\mathsf{E}_K(M)) = H(M, \mathsf{E}_K(M)) - H(\mathsf{E}_K(M)) = H(M|\mathsf{E}_K(0^\ell)) = \ell$
- ▶ Perfect correctness $\implies H(M|E_K(M), K) = 0$ $\implies H(M|E_K(M)) \le H(M, K|E_K(M)) \le H(K|E_K(M)) + 0 \le H(K) = n$ $\implies \ell \le n.\Box$
- Statistical secrecy?

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_{\mathcal{K}}(m) \equiv \mathsf{E}_{\mathcal{K}}(m')$, for any $m, m' \in \{0, 1\}^{\ell}$ and $\mathcal{K} \sim \{0, 1\}^n$, letting $\mathsf{E}_{\mathcal{K}}(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- Is it bad? Is it optimal?
- ▶ Proof: Let $M \sim \{0, 1\}^{\ell}$.
- ▶ Perfect secrecy $\implies H(M, \mathsf{E}_K(M)) = H(M, \mathsf{E}_K(0^\ell))$ $\implies H(M|\mathsf{E}_K(M)) = H(M, \mathsf{E}_K(M)) - H(\mathsf{E}_K(M)) = H(M|\mathsf{E}_K(0^\ell)) = \ell$
- ▶ Perfect correctness $\implies H(M|E_K(M), K) = 0$ $\implies H(M|E_K(M)) \le H(M, K|E_K(M)) \le H(K|E_K(M)) + 0 \le H(K) = n$ $\implies \ell \le n.\square$
- Statistical secrecy? HW.

Definition 1

- What security should we ask from such scheme?
- ▶ Perfect secrecy: $\mathsf{E}_K(m) \equiv \mathsf{E}_K(m')$, for any $m, m' \in \{0, 1\}^\ell$ and $K \sim \{0, 1\}^n$, letting $\mathsf{E}_k(x) := \mathsf{E}(k, x)$.
- ▶ Theorem (Shannon): Perfect secrecy implies $n \ge \ell$.
- Is it bad? Is it optimal?
- ▶ Proof: Let $M \sim \{0, 1\}^{\ell}$.
- ▶ Perfect secrecy $\implies H(M, \mathsf{E}_K(M)) = H(M, \mathsf{E}_K(0^\ell))$ $\implies H(M|\mathsf{E}_K(M)) = H(M, \mathsf{E}_K(M)) - H(\mathsf{E}_K(M)) = H(M|\mathsf{E}_K(0^\ell)) = \ell$
- ▶ Perfect correctness $\implies H(M|E_K(M), K) = 0$ $\implies H(M|E_K(M)) \le H(M, K|E_K(M)) \le H(K|E_K(M)) + 0 \le H(K) = n$ $\implies \ell \le n.\square$
- Statistical secrecy? HW. Computational secrecy?

Part II

Statistical Vs. Computational distance

Distributions and statistical distance

Let $\mathcal P$ and $\mathcal Q$ be two distributions over a finite set $\mathcal U$. Their statistical distance (also known as, variation distance) is defined as

$$SD(\mathcal{P}, \mathcal{Q}) := \frac{1}{2} \sum_{x \in \mathcal{U}} |\mathcal{P}(x) - \mathcal{Q}(x)| = \max_{S \subseteq \mathcal{U}} (\mathcal{P}(S) - \mathcal{Q}(S))$$

We will only consider finite distributions.

Distributions and statistical distance

Let $\mathcal P$ and $\mathcal Q$ be two distributions over a finite set $\mathcal U$. Their statistical distance (also known as, variation distance) is defined as

$$SD(\mathcal{P}, \mathcal{Q}) := \frac{1}{2} \sum_{x \in \mathcal{U}} |\mathcal{P}(x) - \mathcal{Q}(x)| = \max_{S \subseteq \mathcal{U}} (\mathcal{P}(S) - \mathcal{Q}(S))$$

We will only consider finite distributions.

Claim 2

For any pair of (finite) distributions \mathcal{P} and \mathcal{Q} , it holds that

$$\mathsf{SD}(\mathcal{P},\mathcal{Q}) = \max_{\mathsf{D}} \{\Delta^{\mathsf{D}}(\mathcal{P},\mathcal{Q}) := \Pr_{x \leftarrow \mathcal{P}} \left[\mathsf{D}(x) = 1 \right] - \Pr_{x \leftarrow \mathcal{Q}} \left[\mathsf{D}(x) = 1 \right] \},$$

where D is any algorithm.

Distributions and statistical distance

Let $\mathcal P$ and $\mathcal Q$ be two distributions over a finite set $\mathcal U$. Their statistical distance (also known as, variation distance) is defined as

$$SD(\mathcal{P}, \mathcal{Q}) := \frac{1}{2} \sum_{x \in \mathcal{U}} |\mathcal{P}(x) - \mathcal{Q}(x)| = \max_{S \subseteq \mathcal{U}} (\mathcal{P}(S) - \mathcal{Q}(S))$$

We will only consider finite distributions.

Claim 2

For any pair of (finite) distributions \mathcal{P} and \mathcal{Q} , it holds that

$$\mathsf{SD}(\mathcal{P},\mathcal{Q}) = \max_{\mathsf{D}} \{\Delta^{\mathsf{D}}(\mathcal{P},\mathcal{Q}) := \Pr_{x \leftarrow \mathcal{P}} \left[\mathsf{D}(x) = 1 \right] - \Pr_{x \leftarrow \mathcal{Q}} \left[\mathsf{D}(x) = 1 \right] \},$$

where D is any algorithm.

Let $\mathcal{P}, \mathcal{Q}, R$ be finite distributions, then

Triangle inequality: $SD(P, R) \leq SD(P, Q) + SD(Q, R)$

Repeated sampling: $SD(\mathcal{P}^2 = (\mathcal{P}, \mathcal{P}), \mathcal{Q}^2 = (\mathcal{Q}, \mathcal{Q})) \leq 2 \cdot SD(\mathcal{P}, \mathcal{Q})$

Section 1

Computational Indistinguishability

Definition 3 (computational indistinguishability)

 \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, if $\Delta_{\mathcal{P}, \mathcal{Q}}^{\mathsf{D}} \leq \varepsilon$, for any s-size D.

Definition 3 (computational indistinguishability)

 \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, if $\Delta_{\mathcal{P}, \mathcal{Q}}^{\mathsf{D}} \leq \varepsilon$, for any s-size D.

Adversaries are circuits (possibly randomized)

Definition 3 (computational indistinguishability)

 \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, if $\Delta_{\mathcal{P}, \mathcal{Q}}^{\mathsf{D}} \leq \varepsilon$, for any s-size D.

- Adversaries are circuits (possibly randomized)
- (∞, ε) -indistinguishable is equivalent to statistical distance ε

Definition 3 (computational indistinguishability)

 \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, if $\Delta_{\mathcal{P}, \mathcal{Q}}^{\mathsf{D}} \leq \varepsilon$, for any s-size D.

- Adversaries are circuits (possibly randomized)
- (∞, ε) -indistinguishable is equivalent to statistical distance ε
- Can it be different from the statistical case?

Definition 3 (computational indistinguishability)

 $\mathcal P$ and $\mathcal Q$ are (s,ε) -indistinguishable, if $\Delta^{\mathsf D}_{\mathcal P,\mathcal Q}\leq \varepsilon$, for any s-size $\mathsf D.$

- Adversaries are circuits (possibly randomized)
- $lackbox(\infty,arepsilon)$ -indistinguishable is equivalent to statistical distance arepsilon
- Can it be different from the statistical case?
- ▶ Unless said otherwise, distributions are over $\{0,1\}^n$

Question 4

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, what about \mathcal{P}^2 and \mathcal{Q}^2 ?

Question 4

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, what about \mathcal{P}^2 and \mathcal{Q}^2 ?

Question 4

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, what about \mathcal{P}^2 and \mathcal{Q}^2 ?

Question 4

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, what about \mathcal{P}^2 and \mathcal{Q}^2 ?

$$\varepsilon' = \Pr_{x \leftarrow \mathcal{P}^2} [D(x) = 1] - \Pr_{x \leftarrow \mathcal{Q}^2} [D(x) = 1]$$

$$= (\Pr_{x \leftarrow \mathcal{P}^2} [D(x) = 1] - \Pr_{x \leftarrow (\mathcal{P}, \mathcal{Q})} [D(x) = 1])$$

$$+ (\Pr_{x \leftarrow (\mathcal{P}, \mathcal{Q})} [D(x) = 1] - \Pr_{x \leftarrow \mathcal{Q}^2} [D(x) = 1])$$

Question 4

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, what about \mathcal{P}^2 and \mathcal{Q}^2 ?

$$\varepsilon' = \Pr_{x \leftarrow \mathcal{P}^2} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow \mathcal{Q}^2} [\mathsf{D}(x) = 1]$$

$$= (\Pr_{x \leftarrow \mathcal{P}^2} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow (\mathcal{P}, \mathcal{Q})} [\mathsf{D}(x) = 1])$$

$$+ (\Pr_{x \leftarrow (\mathcal{P}, \mathcal{Q})} [\mathsf{D}(x) = 1] - \Pr_{x \leftarrow \mathcal{Q}^2} [\mathsf{D}(x) = 1])$$

$$= \Delta^{\mathsf{D}}(\mathcal{P}^2, (\mathcal{P}, \mathcal{Q})) + \Delta^{\mathsf{D}}((\mathcal{P}, \mathcal{Q}), \mathcal{Q}^2)$$

Repeated sampling

Question 4

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, what about \mathcal{P}^2 and \mathcal{Q}^2 ?

▶ Let D be an s'-size algorithm with $\Delta^{D}(\mathcal{P}^{2}, \mathcal{Q}^{2}) = \varepsilon'$

$$\varepsilon' = \Pr_{x \leftarrow \mathcal{P}^2} [D(x) = 1] - \Pr_{x \leftarrow \mathcal{Q}^2} [D(x) = 1]$$

$$= (\Pr_{x \leftarrow \mathcal{P}^2} [D(x) = 1] - \Pr_{x \leftarrow (\mathcal{P}, \mathcal{Q})} [D(x) = 1])$$

$$+ (\Pr_{x \leftarrow (\mathcal{P}, \mathcal{Q})} [D(x) = 1] - \Pr_{x \leftarrow \mathcal{Q}^2} [D(x) = 1])$$

$$= \Delta^D(\mathcal{P}^2, (\mathcal{P}, \mathcal{Q})) + \Delta^D((\mathcal{P}, \mathcal{Q}), \mathcal{Q}^2)$$

▶ So either $\Delta^{D}(\mathcal{P}^{2},(\mathcal{P},\mathcal{Q})) \geq \varepsilon'/2$, or $\Delta^{D}((\mathcal{P},\mathcal{Q}),\mathcal{Q}^{2}) \geq \varepsilon'/2$

Repeated sampling

Question 4

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, what about \mathcal{P}^2 and \mathcal{Q}^2 ?

▶ Let D be an s'-size algorithm with $\Delta^{D}(\mathcal{P}^{2}, \mathcal{Q}^{2}) = \varepsilon'$

$$\varepsilon' = \Pr_{x \leftarrow \mathcal{P}^2} [D(x) = 1] - \Pr_{x \leftarrow \mathcal{Q}^2} [D(x) = 1]$$

$$= (\Pr_{x \leftarrow \mathcal{P}^2} [D(x) = 1] - \Pr_{x \leftarrow (\mathcal{P}, \mathcal{Q})} [D(x) = 1])$$

$$+ (\Pr_{x \leftarrow (\mathcal{P}, \mathcal{Q})} [D(x) = 1] - \Pr_{x \leftarrow \mathcal{Q}^2} [D(x) = 1])$$

$$= \Delta^D(\mathcal{P}^2, (\mathcal{P}, \mathcal{Q})) + \Delta^D((\mathcal{P}, \mathcal{Q}), \mathcal{Q}^2)$$

- ► So either $\Delta^{\mathbb{D}}(\mathcal{P}^2, (\mathcal{P}, \mathcal{Q})) \ge \varepsilon'/2$, or $\Delta^{\mathbb{D}}((\mathcal{P}, \mathcal{Q}), \mathcal{Q}^2) \ge \varepsilon'/2$
- ▶ Hence, $\varepsilon' < 2\varepsilon$ implies $s' \geq s n$. (?)

What about \mathcal{P}^k and \mathcal{Q}^k ?

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, then \mathcal{P}^k and \mathcal{Q}^k are $(s - kn, k\varepsilon)$ -indistinguishable.

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume $\mathcal P$ and $\mathcal Q$ are (s,ε) -indistinguishable, then $\mathcal P^k$ and $\mathcal Q^k$ are $(s-kn,k\varepsilon)$ -indistinguishable.

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, then \mathcal{P}^k and \mathcal{Q}^k are $(s - kn, k\varepsilon)$ -indistinguishable.

Proof: ?

▶ For $i \in \{0, ..., k\}$, let $H^i = (P_1, ..., P_i, Q_{i+1}, ..., Q_k)$, where the P_i 's are iid $\sim \mathcal{P}$ and the Q_i 's are iid $\sim \mathcal{Q}$. (hybrids)

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, then \mathcal{P}^k and \mathcal{Q}^k are $(s - kn, k\varepsilon)$ -indistinguishable.

- ► For $i \in \{0, ..., k\}$, let $H^i = (P_1, ..., P_i, Q_{i+1}, ..., Q_k)$, where the P_i 's are iid $\sim \mathcal{P}$ and the Q_i 's are iid $\sim \mathcal{Q}$. (hybrids)
- ▶ Let D be a s'-size algorithm with $\Delta^{D}(\mathcal{P}^{k}, \mathcal{Q}^{k}) = \varepsilon'$

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, then \mathcal{P}^k and \mathcal{Q}^k are $(s - kn, k\varepsilon)$ -indistinguishable.

- ▶ For $i \in \{0, ..., k\}$, let $H^i = (P_1, ..., P_i, Q_{i+1}, ..., Q_k)$, where the P_i 's are iid $\sim \mathcal{P}$ and the Q_i 's are iid $\sim \mathcal{Q}$. (hybrids)
- ▶ Let D be a s'-size algorithm with $\Delta^{D}(\mathcal{P}^{k}, \mathcal{Q}^{k}) = \varepsilon'$

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, then \mathcal{P}^k and \mathcal{Q}^k are $(s - kn, k\varepsilon)$ -indistinguishable.

- ▶ For $i \in \{0, ..., k\}$, let $H^i = (P_1, ..., P_i, Q_{i+1}, ..., Q_k)$, where the P_i 's are iid $\sim \mathcal{P}$ and the Q_i 's are iid $\sim \mathcal{Q}$. (hybrids)
- ▶ Let D be a s'-size algorithm with $\Delta^{D}(\mathcal{P}^{k}, \mathcal{Q}^{k}) = \varepsilon'$
- $ightharpoonup arepsilon' = \sum_{i \in [k]} \Pr \left[\mathsf{D}(H^i) = 1 \right] \Pr \left[\mathsf{D}(H^{i-1}) = 1 \right]$

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, then \mathcal{P}^k and \mathcal{Q}^k are $(s - kn, k\varepsilon)$ -indistinguishable.

- ▶ For $i \in \{0, ..., k\}$, let $H^i = (P_1, ..., P_i, Q_{i+1}, ..., Q_k)$, where the P_i 's are iid $\sim \mathcal{P}$ and the Q_i 's are iid $\sim \mathcal{Q}$. (hybrids)
- ▶ Let D be a s'-size algorithm with $\Delta^{D}(\mathcal{P}^{k}, \mathcal{Q}^{k}) = \varepsilon'$
- $ightharpoonup arepsilon' = \sum_{i \in [k]} \Pr \left[\mathsf{D}(H^i) = 1 \right] \Pr \left[\mathsf{D}(H^{i-1}) = 1 \right]$

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, then \mathcal{P}^k and \mathcal{Q}^k are $(s - kn, k\varepsilon)$ -indistinguishable.

- ▶ For $i \in \{0, ..., k\}$, let $H^i = (P_1, ..., P_i, Q_{i+1}, ..., Q_k)$, where the P_i 's are iid $\sim \mathcal{P}$ and the Q_i 's are iid $\sim \mathcal{Q}$. (hybrids)
- ▶ Let D be a s'-size algorithm with $\Delta^{D}(\mathcal{P}^{k}, \mathcal{Q}^{k}) = \varepsilon'$
- $\blacktriangleright \ \varepsilon' = \sum_{i \in [k]} \Pr \left[\mathsf{D}(H^i) = 1 \right] \Pr \left[\mathsf{D}(H^{i-1}) = 1 \right] = \sum_{i \in [k]} \Delta^{\mathsf{D}}(H^i, H^{i-1})$

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, then \mathcal{P}^k and \mathcal{Q}^k are $(s - kn, k\varepsilon)$ -indistinguishable.

- ▶ For $i \in \{0, ..., k\}$, let $H^i = (P_1, ..., P_i, Q_{i+1}, ..., Q_k)$, where the P_i 's are iid $\sim \mathcal{P}$ and the Q_i 's are iid $\sim \mathcal{Q}$. (hybrids)
- ▶ Let D be a s'-size algorithm with $\Delta^{D}(\mathcal{P}^{k}, \mathcal{Q}^{k}) = \varepsilon'$
- $\blacktriangleright \ \varepsilon' = \textstyle \sum_{i \in [k]} \Pr \left[\mathsf{D}(H^i) = 1 \right] \Pr \left[\mathsf{D}(H^{i-1}) = 1 \right] = \textstyle \sum_{i \in [k]} \Delta^{\mathsf{D}}(H^i, H^{i-1})$
- ▶ $\implies \exists i \in [k] \text{ with } \Delta^{\mathsf{D}}(H^i, H^{i-1}) \geq \varepsilon'/k.$

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, then \mathcal{P}^k and \mathcal{Q}^k are $(s - kn, k\varepsilon)$ -indistinguishable.

- ▶ For $i \in \{0, ..., k\}$, let $H^i = (P_1, ..., P_i, Q_{i+1}, ..., Q_k)$, where the P_i 's are iid $\sim \mathcal{P}$ and the Q_i 's are iid $\sim \mathcal{Q}$. (hybrids)
- ▶ Let D be a s'-size algorithm with $\Delta^{D}(\mathcal{P}^{k}, \mathcal{Q}^{k}) = \varepsilon'$
- $\blacktriangleright \ \varepsilon' = \textstyle \sum_{i \in [k]} \Pr \left[\mathsf{D}(H^i) = 1 \right] \Pr \left[\mathsf{D}(H^{i-1}) = 1 \right] = \textstyle \sum_{i \in [k]} \Delta^{\mathsf{D}}(H^i, H^{i-1})$
- ▶ $\implies \exists i \in [k] \text{ with } \Delta^{\mathsf{D}}(H^i, H^{i-1}) \geq \varepsilon'/k.$
- ▶ Thus, $\varepsilon' \le k\varepsilon$ implies s' > s kn

What about \mathcal{P}^k and \mathcal{Q}^k ?

Claim 5

Assume \mathcal{P} and \mathcal{Q} are (s, ε) -indistinguishable, then \mathcal{P}^k and \mathcal{Q}^k are $(s - kn, k\varepsilon)$ -indistinguishable.

- ▶ For $i \in \{0, ..., k\}$, let $H^i = (P_1, ..., P_i, Q_{i+1}, ..., Q_k)$, where the P_i 's are iid $\sim \mathcal{P}$ and the Q_i 's are iid $\sim \mathcal{Q}$. (hybrids)
- ▶ Let D be a s'-size algorithm with $\Delta^{D}(\mathcal{P}^{k}, \mathcal{Q}^{k}) = \varepsilon'$

- ▶ $\implies \exists i \in [k] \text{ with } \Delta^{\mathsf{D}}(H^i, H^{i-1}) \geq \varepsilon'/k.$
- ▶ Thus, $\varepsilon' \le k\varepsilon$ implies s' > s kn
- When considering bounded time algorithms, things behaves very differently!

Part III

Pseudorandom Generators

Definition 6 (pseudorandom distributions)

A distribution \mathcal{P} over $\{0,1\}^n$ is (s,ε) -pseudorandom, if it is (s,ε) -indistinguishable from U_n .

Definition 6 (pseudorandom distributions)

A distribution \mathcal{P} over $\{0,1\}^n$ is (s,ε) -pseudorandom, if it is (s,ε) -indistinguishable from U_n .

▶ Do such distributions exit for interesting (s, ε)

Definition 6 (pseudorandom distributions)

A distribution \mathcal{P} over $\{0,1\}^n$ is (s,ε) -pseudorandom, if it is (s,ε) -indistinguishable from U_n .

▶ Do such distributions exit for interesting (s, ε)

Definition 6 (pseudorandom distributions)

A distribution \mathcal{P} over $\{0,1\}^n$ is (s,ε) -pseudorandom, if it is (s,ε) -indistinguishable from U_n .

▶ Do such distributions exit for interesting (s, ε)

Definition 7 (pseudorandom generators (PRGs))

Definition 6 (pseudorandom distributions)

A distribution \mathcal{P} over $\{0,1\}^n$ is (s,ε) -pseudorandom, if it is (s,ε) -indistinguishable from U_n .

▶ Do such distributions exit for interesting (s, ε)

Definition 7 (pseudorandom generators (PRGs))

A poly-time computable function $g: \{0,1\}^n \mapsto \{0,1\}^{\ell(n)}$ is a (s,ε) -pseudorandom generator, if for any $n \in \mathbb{N}$

• g is length extending (i.e., $\ell(n) > n$)

Definition 6 (pseudorandom distributions)

A distribution \mathcal{P} over $\{0,1\}^n$ is (s,ε) -pseudorandom, if it is (s,ε) -indistinguishable from U_n .

▶ Do such distributions exit for interesting (s, ε)

Definition 7 (pseudorandom generators (PRGs))

- g is length extending (i.e., $\ell(n) > n$)
- ▶ $g(U_n)$ is $(s(n), \varepsilon(n))$ -pseudorandom

Definition 6 (pseudorandom distributions)

A distribution \mathcal{P} over $\{0,1\}^n$ is (s,ε) -pseudorandom, if it is (s,ε) -indistinguishable from U_n .

▶ Do such distributions exit for interesting (s, ε)

Definition 7 (pseudorandom generators (PRGs))

- g is length extending (i.e., $\ell(n) > n$)
- ▶ $g(U_n)$ is $(s(n), \varepsilon(n))$ -pseudorandom

Definition 6 (pseudorandom distributions)

A distribution \mathcal{P} over $\{0,1\}^n$ is (s,ε) -pseudorandom, if it is (s,ε) -indistinguishable from U_n .

▶ Do such distributions exit for interesting (s, ε)

Definition 7 (pseudorandom generators (PRGs))

- g is length extending (i.e., $\ell(n) > n$)
- ▶ $g(U_n)$ is $(s(n), \varepsilon(n))$ -pseudorandom
- ▶ We omit the "security parameter", i.e., n, when its value is clear from the context

Definition 6 (pseudorandom distributions)

A distribution \mathcal{P} over $\{0,1\}^n$ is (s,ε) -pseudorandom, if it is (s,ε) -indistinguishable from U_n .

▶ Do such distributions exit for interesting (s, ε)

Definition 7 (pseudorandom generators (PRGs))

- g is length extending (i.e., $\ell(n) > n$)
- $g(U_n)$ is $(s(n), \varepsilon(n))$ -pseudorandom
- ▶ We omit the "security parameter", i.e., *n*, when its value is clear from the context
- Do such generators exist?

Definition 6 (pseudorandom distributions)

A distribution \mathcal{P} over $\{0,1\}^n$ is (s,ε) -pseudorandom, if it is (s,ε) -indistinguishable from U_n .

▶ Do such distributions exit for interesting (s, ε)

Definition 7 (pseudorandom generators (PRGs))

- g is length extending (i.e., $\ell(n) > n$)
- ▶ $g(U_n)$ is $(s(n), \varepsilon(n))$ -pseudorandom
- ▶ We omit the "security parameter", i.e., *n*, when its value is clear from the context
- Do such generators exist?
- Applications?

Section 2

Pseudorandom generators (PRGs) from One-Way Permutations (OWPs)

Claim 8

Claim 8

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a poly-time permutation and let $b: \{0,1\}^n \mapsto \{0,1\}$ be a poly-time (s,ε) -hardcore predicate of f, then g(x) = (f(x),b(x)) is a $(s-O(n),\varepsilon)$ -PRG.

▶ Hence, OWP ⇒ PRG

Claim 8

- ▶ Hence, OWP ⇒ PRG
- ▶ Proof: Let D be an s'-size algorithm with $\Delta^{D}(g(U_n), U_{n+1}) = \varepsilon'$, we will show $\exists (s' + O(n))$ -size P with $\Pr[P(f(U_n)) = b(U_n)] = \frac{1}{2} + \varepsilon'$.

Claim 8

- ▶ Hence, OWP ⇒ PRG
- ▶ Proof: Let D be an s'-size algorithm with $\Delta^{D}(g(U_n), U_{n+1}) = \varepsilon'$, we will show $\exists (s' + O(n))$ -size P with $\Pr[P(f(U_n)) = b(U_n)] = \frac{1}{2} + \varepsilon'$.
- ▶ Let $\delta = \Pr[D(U_{n+1}) = 1]$ (hence, $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon'$)

Claim 8

- ▶ Hence, OWP ⇒ PRG
- ▶ Proof: Let D be an s'-size algorithm with $\Delta^{D}(g(U_n), U_{n+1}) = \varepsilon'$, we will show $\exists (s' + O(n))$ -size P with $\Pr[P(f(U_n)) = b(U_n)] = \frac{1}{2} + \varepsilon'$.
- ▶ Let $\delta = \Pr[D(U_{n+1}) = 1]$ (hence, $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon'$)
- Compute

$$\delta = \Pr[\mathsf{D}(f(U_n), U_1) = 1]$$

Claim 8

- ▶ Hence, OWP ⇒ PRG
- ▶ Proof: Let D be an s'-size algorithm with $\Delta^{D}(g(U_n), U_{n+1}) = \varepsilon'$, we will show $\exists (s' + O(n))$ -size P with $\Pr[P(f(U_n)) = b(U_n)] = \frac{1}{2} + \varepsilon'$.
- ▶ Let $\delta = \Pr[D(U_{n+1}) = 1]$ (hence, $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon'$)
- Compute

$$\delta = \Pr[\mathsf{D}(f(U_n), U_1) = 1]$$

Claim 8

- ▶ Hence, OWP ⇒ PRG
- ▶ Proof: Let D be an s'-size algorithm with $\Delta^{D}(g(U_n), U_{n+1}) = \varepsilon'$, we will show $\exists (s' + O(n))$ -size P with $\Pr[P(f(U_n)) = b(U_n)] = \frac{1}{2} + \varepsilon'$.
- ▶ Let $\delta = \Pr[D(U_{n+1}) = 1]$ (hence, $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon'$)
- Compute

$$\delta = \Pr[\mathsf{D}(f(U_n), U_1) = 1]$$
 (f is a permuation)

Claim 8

- ▶ Hence, OWP ⇒ PRG
- ▶ Proof: Let D be an s'-size algorithm with $\Delta^{D}(g(U_n), U_{n+1}) = \varepsilon'$, we will show $\exists (s' + O(n))$ -size P with $\Pr[P(f(U_n)) = b(U_n)] = \frac{1}{2} + \varepsilon'$.
- ▶ Let $\delta = \Pr[D(U_{n+1}) = 1]$ (hence, $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon'$)
- Compute

$$\begin{split} \delta &= \Pr[\mathsf{D}(f(U_n), U_1) = 1] \quad (f \text{ is a permuation}) \\ &= \Pr[U_1 = b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n), U_1) = 1 \mid U_1 = b(U_n)] \\ &+ \Pr[U_1 = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n), U_1) = 1 \mid U_1 = \overline{b(U_n)}] \end{split}$$

Claim 8

- ▶ Hence, OWP ⇒ PRG
- ▶ Proof: Let D be an s'-size algorithm with $\Delta^{D}(g(U_n), U_{n+1}) = \varepsilon'$, we will show $\exists (s' + O(n))$ -size P with $\Pr[P(f(U_n)) = b(U_n)] = \frac{1}{2} + \varepsilon'$.
- ▶ Let $\delta = \Pr[D(U_{n+1}) = 1]$ (hence, $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon'$)
- Compute

$$\begin{split} \delta &= \Pr[\mathsf{D}(f(U_n),\,U_1) = 1] \quad (f \text{ is a permuation}) \\ &= \Pr[U_1 = b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n),\,U_1) = 1 \mid U_1 = b(U_n)] \\ &+ \Pr[U_1 = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n),\,U_1) = 1 \mid U_1 = \overline{b(U_n)}] \\ &= \frac{1}{2}(\delta + \varepsilon') + \frac{1}{2} \cdot \Pr[\mathsf{D}(f(U_n),\,U_1) = 1 \mid U_1 = \overline{b(U_n)}]. \end{split}$$

Claim 8

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a poly-time permutation and let $b: \{0,1\}^n \mapsto \{0,1\}$ be a poly-time (s,ε) -hardcore predicate of f, then g(x) = (f(x),b(x)) is a $(s-O(n),\varepsilon)$ -PRG.

- ▶ Hence, OWP ⇒ PRG
- ▶ Proof: Let D be an s'-size algorithm with $\Delta^{D}(g(U_n), U_{n+1}) = \varepsilon'$, we will show $\exists (s' + O(n))$ -size P with $\Pr[P(f(U_n)) = b(U_n)] = \frac{1}{2} + \varepsilon'$.
- ▶ Let $\delta = \Pr[D(U_{n+1}) = 1]$ (hence, $\Pr[D(g(U_n)) = 1] = \delta + \varepsilon'$)
- Compute

$$\begin{split} \delta &= \Pr[\mathsf{D}(f(U_n),\,U_1) = 1] \quad (f \text{ is a permuation}) \\ &= \Pr[U_1 = b(U_n)] \cdot \Pr[\mathsf{D}(f(U_n),\,U_1) = 1 \mid U_1 = b(U_n)] \\ &+ \Pr[U_1 = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n),\,U_1) = 1 \mid U_1 = \overline{b(U_n)}] \\ &= \frac{1}{2}(\delta + \varepsilon') + \frac{1}{2} \cdot \Pr[\mathsf{D}(f(U_n),\,U_1) = 1 \mid U_1 = \overline{b(U_n)}]. \end{split}$$

▶ Hence, $\Pr\left[D(f(U_n), \overline{b(U_n)}) = 1\right] = \delta - \varepsilon'$

- ▶ $Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon'$
- ▶ $Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon'$

- ▶ $Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon'$
- ▶ $Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon'$

Algorithm 9 (P)

Input: $y \in \{0, 1\}^n$

- 1. Flip a random coin $c \leftarrow \{0, 1\}$.
- **2.** If D(y, c) = 1 output c, otherwise, output \overline{c} .

- ▶ $Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon'$
- ▶ $Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon'$

Algorithm 9 (P)

Input: $y \in \{0, 1\}^n$

- 1. Flip a random coin $c \leftarrow \{0, 1\}$.
- **2.** If D(y, c) = 1 output c, otherwise, output \overline{c} .
 - It follows that

$$\Pr\left[\mathsf{Pr}\left[\mathsf{P}(f(U_n)) = b(U_n)\right] = \Pr[c = b(U_n)] \cdot \Pr\left[\mathsf{D}(f(U_n), c) = 1 \mid c = b(U_n)\right] \\ + \Pr[c = \overline{b(U_n)}] \cdot \Pr\left[\mathsf{D}(f(U_n), c) = 0 \mid c = \overline{b(U_n)}\right]$$

- ▶ $Pr[D(f(U_n), b(U_n)) = 1] = \delta + \varepsilon'$
- ▶ $Pr[D(f(U_n), \overline{b(U_n)}) = 1] = \delta \varepsilon'$

Algorithm 9 (P)

Input: $y \in \{0, 1\}^n$

- 1. Flip a random coin $c \leftarrow \{0, 1\}$.
- **2.** If D(y, c) = 1 output c, otherwise, output \overline{c} .
- It follows that

$$\begin{aligned} \Pr\left[\mathsf{P}(f(U_n)) = b(U_n)\right] &= \Pr[c = b(U_n)] \cdot \Pr\left[\mathsf{D}(f(U_n), c) = 1 \mid c = b(U_n)\right] \\ &+ \Pr[c = \overline{b(U_n)}] \cdot \Pr[\mathsf{D}(f(U_n), c) = 0 \mid c = \overline{b(U_n)}] \\ &= \frac{1}{2} \cdot (\delta + \varepsilon') + \frac{1}{2}(1 - \delta + \varepsilon') = \frac{1}{2} + \varepsilon'. \end{aligned}$$

Part IV

PRG from Regular OWF

Definition 10

Definition 10

X has (s, ε) -pseudoentropy at least k, if \exists rv Y with $H(Y) \ge k$ and X, Y are (s, ε) -indistinguishable. (s, ε) -pseudo min/Reiny -entropy are analogously defined.

Example

Definition 10

- Example
- Repeated sampling

Definition 10

- Example
- Repeated sampling
- Non-monotonicity

Definition 10

- Example
- Repeated sampling
- Non-monotonicity
- Ensembles

Definition 10

- Example
- Repeated sampling
- Non-monotonicity
- Ensembles
- ▶ In the following we will simply write (s, ε) -entropy, etc

High entropy OWF from regular OWF

Claim 11

Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a 2^k -regular (s,ε) -one-way, let $\mathcal{H} = \{h: \{0,1\}^n \mapsto \{0,1\}^{k+2}\}$ be 2-universal family, and let g(h,x) = (f(x),h,h(x)). Then

- **1.** $H_2(g(U_n, H)) \ge 2n \frac{1}{2}$, for $H \leftarrow \mathcal{H}$.
- **2.** g is $(\Theta(s\varepsilon^2), 2\varepsilon)$ -one-way.
- ▶ k and m and H are parameterized by n
- ▶ We assume $\log |\mathcal{H}| = n$ and $s \ge n$

$$\mathsf{CP}(g(U_n, H)) := \Pr_{\substack{w, w' \leftarrow \{0,1\}^n \times \mathcal{H} \\ h, h' \leftarrow \mathcal{H}}} [g(w) = g(w')] \\
= \Pr_{\substack{h, h' \leftarrow \mathcal{H} \\ h \leftarrow \mathcal{H}; (x, x') \leftarrow (\{0,1\}^n)^2}} [f(x) = f(x')] \\
\cdot \Pr_{\substack{h \leftarrow \mathcal{H}; (x, x') \leftarrow (\{0,1\}^n)^2 \\ h \leftarrow \mathcal{H}; (x, x') \leftarrow (\{0,1\}^n)^2}} [h(x) = h(x') \mid f(x) = f(x')]$$

$$CP(g(U_n, H)) := \Pr_{w, w' \leftarrow \{0,1\}^n \times \mathcal{H}} [g(w) = g(w')]$$

$$= \Pr_{h, h' \leftarrow \mathcal{H}} [h = h'] \cdot \Pr_{(x, x') \leftarrow (\{0,1\}^n)^2} [f(x) = f(x')]$$

$$\cdot \Pr_{h \leftarrow \mathcal{H}; (x, x') \leftarrow (\{0,1\}^n)^2} [h(x) = h(x') \mid f(x) = f(x')]$$

$$= CP(H) \cdot CP(f(U_n)) \cdot (2^{-k} + (1 - 2^{-k}) \cdot 2^{-k-2})$$

$$\mathsf{CP}(g(U_n, H)) := \Pr_{w, w' \leftarrow \{0,1\}^n \times \mathcal{H}} [g(w) = g(w')] \\
= \Pr_{h, h' \leftarrow \mathcal{H}} [h = h'] \cdot \Pr_{(x, x') \leftarrow (\{0,1\}^n)^2} [f(x) = f(x')] \\
\cdot \Pr_{h \leftarrow \mathcal{H}; (x, x') \leftarrow (\{0,1\}^n)^2} [h(x) = h(x') \mid f(x) = f(x')] \\
= \mathsf{CP}(H) \cdot \mathsf{CP}(f(U_n)) \cdot (2^{-k} + (1 - 2^{-k}) \cdot 2^{-k-2}) \\
\leq \mathsf{CP}(H) \cdot \mathsf{CP}(f(U_n)) \cdot 2^{-k} \cdot \frac{5}{4}$$

$$\mathsf{CP}(g(U_n, H)) := \Pr_{w, w' \leftarrow \{0,1\}^n \times \mathcal{H}} [g(w) = g(w')] \\
= \Pr_{h, h' \leftarrow \mathcal{H}} [h = h'] \cdot \Pr_{(x, x') \leftarrow (\{0,1\}^n)^2} [f(x) = f(x')] \\
\cdot \Pr_{h \leftarrow \mathcal{H}; (x, x') \leftarrow (\{0,1\}^n)^2} [h(x) = h(x') \mid f(x) = f(x')] \\
= \mathsf{CP}(H) \cdot \mathsf{CP}(f(U_n)) \cdot (2^{-k} + (1 - 2^{-k}) \cdot 2^{-k-2}) \\
\leq \mathsf{CP}(H) \cdot \mathsf{CP}(f(U_n)) \cdot 2^{-k} \cdot \frac{5}{4} = 2^{-n} \cdot 2^{-n} \cdot \frac{5}{4}.$$

$$\mathsf{CP}(g(U_n, H)) := \Pr_{w, w' \leftarrow \{0,1\}^n \times \mathcal{H}} [g(w) = g(w')] \\
= \Pr_{h, h' \leftarrow \mathcal{H}} [h = h'] \cdot \Pr_{(x, x') \leftarrow (\{0,1\}^n)^2} [f(x) = f(x')] \\
\cdot \Pr_{h \leftarrow \mathcal{H}; (x, x') \leftarrow (\{0,1\}^n)^2} [h(x) = h(x') \mid f(x) = f(x')] \\
= \mathsf{CP}(H) \cdot \mathsf{CP}(f(U_n)) \cdot (2^{-k} + (1 - 2^{-k}) \cdot 2^{-k-2}) \\
\leq \mathsf{CP}(H) \cdot \mathsf{CP}(f(U_n)) \cdot 2^{-k} \cdot \frac{5}{4} = 2^{-n} \cdot 2^{-n} \cdot \frac{5}{4}.$$

$$\begin{aligned} \mathsf{CP}(g(U_n, H)) &:= \Pr_{w, w' \leftarrow \{0,1\}^n \times \mathcal{H}} [g(w) = g(w')] \\ &= \Pr_{h, h' \leftarrow \mathcal{H}} [h = h'] \cdot \Pr_{(x, x') \leftarrow (\{0,1\}^n)^2} [f(x) = f(x')] \\ &\cdot \Pr_{h \leftarrow \mathcal{H}; (x, x') \leftarrow (\{0,1\}^n)^2} [h(x) = h(x') \mid f(x) = f(x')] \\ &= \mathsf{CP}(H) \cdot \mathsf{CP}(f(U_n)) \cdot (2^{-k} + (1 - 2^{-k}) \cdot 2^{-k-2}) \\ &\leq \mathsf{CP}(H) \cdot \mathsf{CP}(f(U_n)) \cdot 2^{-k} \cdot \frac{5}{4} = 2^{-n} \cdot 2^{-n} \cdot \frac{5}{4}. \end{aligned}$$

Hence, $H_2(g(U_n, H)) \ge 2n + \log \frac{4}{5} \ge 2n - \frac{1}{2}$.

Let A be an s'-size algorithm that inverts g w.p ε' and let $\ell = k - \lceil 2 \log \frac{1}{\varepsilon'} \rceil$.

Let A be an s'-size algorithm that inverts g w.p ε' and let $\ell = k - \lceil 2 \log \frac{1}{\varepsilon'} \rceil$.

Consider the following inverter for f

Algorithm 12 (B)

Input: $y \in \{0, 1\}^n$.

Return D(y, h, z), for $h \leftarrow \mathcal{H}$ and $z \leftarrow \{0, 1\}^{\ell}$.

Algorithm 13 (D)

Input: $y \in \{0,1\}^n$, $h \in \mathcal{H}$ and $z_1 \in \{0,1\}^{\ell}$.

For all $z_2 \in \{0, 1\}^{k+2-\ell}$:

- **1.** Let $(x, h) = A(y, h, z_1 \circ z_2)$.
- 2. If f(x) = y, return x.

Let A be an s'-size algorithm that inverts g w.p ε' and let $\ell = k - \lceil 2 \log \frac{1}{\varepsilon'} \rceil$.

Consider the following inverter for f

Algorithm 12 (B)

Input: $y \in \{0, 1\}^n$.

Return D(y, h, z), for $h \leftarrow \mathcal{H}$ and $z \leftarrow \{0, 1\}^{\ell}$.

Algorithm 13 (D)

Input: $y \in \{0, 1\}^n$, $h \in \mathcal{H}$ and $z_1 \in \{0, 1\}^{\ell}$.

For all $z_2 \in \{0, 1\}^{k+2-\ell}$:

- **1.** Let $(x, h) = A(y, h, z_1 \circ z_2)$.
- **2.** If f(x) = y, return x.
- ▶ B's size is $((s' + O(n)) \cdot 2^{2 \log \frac{1}{\varepsilon'} + 2} = \Theta(s'/\varepsilon^2)$

Let A be an s'-size algorithm that inverts g w.p ε' and let $\ell = k - \left\lceil 2\log\frac{1}{\varepsilon'} \right\rceil$.

Consider the following inverter for f

Algorithm 12 (B)

Input: $y \in \{0, 1\}^n$.

Return D(y, h, z), for $h \leftarrow \mathcal{H}$ and $z \leftarrow \{0, 1\}^{\ell}$.

Algorithm 13 (D)

Input: $y \in \{0,1\}^n$, $h \in \mathcal{H}$ and $z_1 \in \{0,1\}^{\ell}$.

For all $z_2 \in \{0, 1\}^{k+2-\ell}$:

- **1.** Let $(x, h) = A(y, h, z_1 \circ z_2)$.
- **2.** If f(x) = y, return x.
- ▶ B's size is $((s' + O(n)) \cdot 2^{2 \log \frac{1}{\varepsilon'} + 2} = \Theta(s'/\varepsilon^2)$
- ▶ $\Pr_{x \leftarrow \{0,1\}^n; h \leftarrow \mathcal{H}} \left[\mathsf{D}(f(x), h, h(x)_{1,...,\ell}) \in f^{-1}(f(x)) \right] = \varepsilon'$

g is one-way, cont.

We saw that

$$\Pr_{\mathbf{x} \leftarrow \{0,1\}^n; h \leftarrow \mathcal{H}} \left[\mathsf{D}(f(\mathbf{x}), h, h(\mathbf{x})_{1,\dots,\ell}) \in f^{-1}(f(\mathbf{x})) \right] = \varepsilon' \tag{1}$$

g is one-way, cont.

We saw that

$$\Pr_{x \leftarrow \{0,1\}^n; h \leftarrow \mathcal{H}} \left[\mathsf{D}(f(x), h, h(x)_{1,\dots,\ell}) \in f^{-1}(f(x)) \right] = \varepsilon' \tag{1}$$

By the leftover hash lemma

$$SD((f(x), h, h(x)_{1,\dots,\ell})_{x \leftarrow \{0,1\}, h \leftarrow \mathcal{H}}, (f(x), h, U_{\ell})_{x \leftarrow \{0,1\}, h \leftarrow \mathcal{H}}) \leq \varepsilon'/2$$
 (2)

g is one-way, cont.

We saw that

$$\Pr_{x \leftarrow \{0,1\}^n; h \leftarrow \mathcal{H}} \left[\mathsf{D}(f(x), h, h(x)_{1,\dots,\ell}) \in f^{-1}(f(x)) \right] = \varepsilon' \tag{1}$$

By the leftover hash lemma

$$SD((f(x), h, h(x)_{1,\dots,\ell})_{x \leftarrow \{0,1\}, h \leftarrow \mathcal{H}}, (f(x), h, U_{\ell})_{x \leftarrow \{0,1\}, h \leftarrow \mathcal{H}}) \leq \varepsilon'/2$$
 (2)

Hence,

$$\Pr_{\mathbf{x} \leftarrow \{0,1\}^n} \left[\mathsf{B}(f(\mathbf{x})) \in f^{-1}(f(\mathbf{x})) \right] \ge \varepsilon' - \varepsilon'/2 = \varepsilon'/2.$$

Claim 14

Let $g: \{0,1\}^n \mapsto \{0,1\}^m$ be a function with $H_2(g(U_n)) \ge n - \frac{1}{2}$, and let b be (s,ε) -hardcore predicate for g. Then $v(U_n) = (g(U_n),b(U_n))$ has (s,ε) -Renyi-entropy $n+\frac{1}{2}$.

Claim 14

Let $g: \{0,1\}^n \mapsto \{0,1\}^m$ be a function with $H_2(g(U_n)) \ge n - \frac{1}{2}$, and let b be (s,ε) -hardcore predicate for g. Then $v(U_n) = (g(U_n),b(U_n))$ has (s,ε) -Renyi-entropy $n+\frac{1}{2}$.

Proof: ?

Claim 14

Let $g: \{0,1\}^n \mapsto \{0,1\}^m$ be a function with $H_2(g(U_n)) \ge n - \frac{1}{2}$, and let b be (s,ε) -hardcore predicate for g. Then $v(U_n) = (g(U_n),b(U_n))$ has (s,ε) -Renyi-entropy $n+\frac{1}{2}$.

Proof: ?

We call such v a pseudo Renyi-entropy generator.

Claim 14

Let $g: \{0,1\}^n \mapsto \{0,1\}^m$ be a function with $H_2(g(U_n)) \ge n - \frac{1}{2}$, and let b be (s,ε) -hardcore predicate for g. Then $v(U_n) = (g(U_n),b(U_n))$ has (s,ε) -Renyi-entropy $n+\frac{1}{2}$.

Proof: ?

We call such *v* a pseudo Renyi-entropy generator.

Claim 15

The function $v^n(x_1, \ldots, x_n) = (v(x_1), \ldots, v(x_n))$ has $(s - n^2, n\varepsilon)$ -Renyi-entropy $n^2 + \frac{n}{2}$.

Claim 14

Let $g: \{0,1\}^n \mapsto \{0,1\}^m$ be a function with $H_2(g(U_n)) \ge n - \frac{1}{2}$, and let b be (s,ε) -hardcore predicate for g. Then $v(U_n) = (g(U_n),b(U_n))$ has (s,ε) -Renyi-entropy $n+\frac{1}{2}$.

Proof: ?

We call such *v* a pseudo Renyi-entropy generator.

Claim 15

The function $v^n(x_1, \ldots, x_n) = (v(x_1), \ldots, v(x_n))$ has $(s - n^2, n\varepsilon)$ -Renyi-entropy $n^2 + \frac{n}{2}$.

Claim 14

Let $g: \{0,1\}^n \mapsto \{0,1\}^m$ be a function with $H_2(g(U_n)) \ge n - \frac{1}{2}$, and let b be (s,ε) -hardcore predicate for g. Then $v(U_n) = (g(U_n),b(U_n))$ has (s,ε) -Renyi-entropy $n+\frac{1}{2}$.

Proof: ?

We call such *v* a pseudo Renyi-entropy generator.

Claim 15

The function
$$v^n(x_1, \ldots, x_n) = (v(x_1), \ldots, v(x_n))$$
 has $(s - n^2, n\varepsilon)$ -Renyi-entropy $n^2 + \frac{n}{2}$.

Proof:

▶ Let Z be a rv with $H_2(Z) \ge n + \frac{1}{2}$ such that Z and $v(U_n)$ are (s, ε) indistinguishable.

Claim 14

Let $g: \{0,1\}^n \mapsto \{0,1\}^m$ be a function with $H_2(g(U_n)) \ge n - \frac{1}{2}$, and let b be (s,ε) -hardcore predicate for g. Then $v(U_n) = (g(U_n),b(U_n))$ has (s,ε) -Renyi-entropy $n+\frac{1}{2}$.

Proof: ?

We call such *v* a pseudo Renyi-entropy generator.

Claim 15

The function $v^n(x_1, \ldots, x_n) = (v(x_1), \ldots, v(x_n))$ has $(s - n^2, n\varepsilon)$ -Renyi-entropy $n^2 + \frac{n}{2}$.

- Let Z be a rv with $H_2(Z) \ge n + \frac{1}{2}$ such that Z and $v(U_n)$ are (s, ε) indistinguishable.
- $H_2(Z^n) \ge n^2 + \frac{n}{2}$

Claim 14

Let $g: \{0,1\}^n \mapsto \{0,1\}^m$ be a function with $H_2(g(U_n)) \ge n - \frac{1}{2}$, and let b be (s,ε) -hardcore predicate for g. Then $v(U_n) = (g(U_n),b(U_n))$ has (s,ε) -Renyi-entropy $n+\frac{1}{2}$.

Proof: ?

We call such *v* a pseudo Renyi-entropy generator.

Claim 15

The function $v^n(x_1, \ldots, x_n) = (v(x_1), \ldots, v(x_n))$ has $(s - n^2, n\varepsilon)$ -Renyi-entropy $n^2 + \frac{n}{2}$.

- Let Z be a rv with $H_2(Z) \ge n + \frac{1}{2}$ such that Z and $v(U_n)$ are (s, ε) indistinguishable.
- ► $H_2(Z^n) \ge n^2 + \frac{n}{2}$
- ▶ Z^n and $v^n(U_n^n)$ are $(s-n^2, n\varepsilon)$ indistinguishable

Claim 14

Let $g: \{0,1\}^n \mapsto \{0,1\}^m$ be a function with $H_2(g(U_n)) \ge n - \frac{1}{2}$, and let b be (s,ε) -hardcore predicate for g. Then $v(U_n) = (g(U_n),b(U_n))$ has (s,ε) -Renyi-entropy $n+\frac{1}{2}$.

Proof: ?

We call such *v* a pseudo Renyi-entropy generator.

Claim 15

The function $v^n(x_1, \ldots, x_n) = (v(x_1), \ldots, v(x_n))$ has $(s - n^2, n\varepsilon)$ -Renyi-entropy $n^2 + \frac{n}{2}$.

- Let Z be a rv with $H_2(Z) \ge n + \frac{1}{2}$ such that Z and $v(U_n)$ are (s, ε) indistinguishable.
- ► $H_2(Z^n) \ge n^2 + \frac{n}{2}$
- ▶ Z^n and $v^n(U_n^n)$ are $(s-n^2, n\varepsilon)$ indistinguishable

The generator

Claim 14

Let $g: \{0,1\}^n \mapsto \{0,1\}^m$ be a function with $H_2(g(U_n)) \ge n - \frac{1}{2}$, and let b be (s,ε) -hardcore predicate for g. Then $v(U_n) = (g(U_n),b(U_n))$ has (s,ε) -Renyi-entropy $n+\frac{1}{2}$.

Proof: ?

We call such *v* a pseudo Renyi-entropy generator.

Claim 15

The function $v^n(x_1, \ldots, x_n) = (v(x_1), \ldots, v(x_n))$ has $(s - n^2, n\varepsilon)$ -Renyi-entropy $n^2 + \frac{n}{2}$.

Proof:

- Let Z be a rv with $H_2(Z) \ge n + \frac{1}{2}$ such that Z and $v(U_n)$ are (s, ε) indistinguishable.
- ► $H_2(Z^n) \ge n^2 + \frac{n}{2}$
- ▶ Z^n and $v^n(U_n^n)$ are $(s n^2, n\varepsilon)$ indistinguishable

Claim 16

Let $\mathcal{H}: \{0,1\}^{n^2+n} \mapsto \{0,1\}^{n^2+n/4}$ be an 2-universal family and let $G: \{0,1\}^n \times \mathcal{H}$ defined by $G(x_1,\ldots,x_n,h) = (h,h(v^n(x_1,\ldots,x_n)))$. Then $G(H,U_n^n)$ is $(s-n^2-s_{\mathcal{H}},n\varepsilon+2^{-n/4})$ indistinguishable from $(H,U_{n^2+n/4})$, for $H \leftarrow \mathcal{H}$ and $s_{\mathcal{H}}$ being the size of sampling and evaluating algorithm for \mathcal{H} .

Claim 16

Let $\mathcal{H}\colon\{0,1\}^{n^2+n}\mapsto\{0,1\}^{n^2+n/4}$ be an 2-universal family and let $G\colon\{0,1\}^n\times\mathcal{H}$ defined by $G(x_1,\ldots,x_n,h)=(h,h(v^n(x_1,\ldots,x_n)))$. Then $G(H,U_n^n)$ is $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ indistinguishable from $(H,U_{n^2+n/4})$, for $H\leftarrow\mathcal{H}$ and $s_{\mathcal{H}}$ being the size of sampling and evaluating algorithm for \mathcal{H} .

Corollary 17

If f and b and \mathcal{H} (?) are poly-time computable, then G is a $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ -PRG.

Claim 16

```
Let \mathcal{H}\colon\{0,1\}^{n^2+n}\mapsto\{0,1\}^{n^2+n/4} be an 2-universal family and let G\colon\{0,1\}^n\times\mathcal{H} defined by G(x_1,\ldots,x_n,h)=(h,h(v^n(x_1,\ldots,x_n))). Then G(H,U_n^n) is (s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4}) indistinguishable from (H,U_{n^2+n/4}), for H\leftarrow\mathcal{H} and s_{\mathcal{H}} being the size of sampling and evaluating algorithm for \mathcal{H}.
```

Corollary 17

If f and b and \mathcal{H} (?) are poly-time computable, then G is a $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ -PRG.

Proof: (of claim)

Claim 16

Let $\mathcal{H}\colon\{0,1\}^{n^2+n}\mapsto\{0,1\}^{n^2+n/4}$ be an 2-universal family and let $G\colon\{0,1\}^n\times\mathcal{H}$ defined by $G(x_1,\ldots,x_n,h)=(h,h(v^n(x_1,\ldots,x_n)))$. Then $G(H,U_n^n)$ is $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ indistinguishable from $(H,U_{n^2+n/4})$, for $H\leftarrow\mathcal{H}$ and $s_{\mathcal{H}}$ being the size of sampling and evaluating algorithm for \mathcal{H} .

Corollary 17

If f and b and \mathcal{H} (?) are poly-time computable, then G is a $(s - n^2 - s_{\mathcal{H}}, n\varepsilon + 2^{-n/4})$ -PRG.

Claim 16

Let $\mathcal{H}\colon\{0,1\}^{n^2+n}\mapsto\{0,1\}^{n^2+n/4}$ be an 2-universal family and let $G\colon\{0,1\}^n\times\mathcal{H}$ defined by $G(x_1,\ldots,x_n,h)=(h,h(v^n(x_1,\ldots,x_n)))$. Then $G(H,U_n^n)$ is $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ indistinguishable from $(H,U_{n^2+n/4})$, for $H\leftarrow\mathcal{H}$ and $s_{\mathcal{H}}$ being the size of sampling and evaluating algorithm for \mathcal{H} .

Corollary 17

If f and b and \mathcal{H} (?) are poly-time computable, then G is a $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ -PRG.

Proof: (of claim) Let Z with $H_2(Z) \ge n + \frac{1}{2}$ and Z, $v(U_n)$ are (s, ε) -indist.

▶ By the leftover hash lemma $SD((H, H(Z^n)), (H, U_{n^2+n/4})) \le 2^{-n/4}$

Claim 16

Let $\mathcal{H}\colon\{0,1\}^{n^2+n}\mapsto\{0,1\}^{n^2+n/4}$ be an 2-universal family and let $G\colon\{0,1\}^n\times\mathcal{H}$ defined by $G(x_1,\ldots,x_n,h)=(h,h(v^n(x_1,\ldots,x_n)))$. Then $G(H,U_n^n)$ is $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ indistinguishable from $(H,U_{n^2+n/4})$, for $H\leftarrow\mathcal{H}$ and $s_{\mathcal{H}}$ being the size of sampling and evaluating algorithm for \mathcal{H} .

Corollary 17

If f and b and \mathcal{H} (?) are poly-time computable, then G is a $(s - n^2 - s_{\mathcal{H}}, n\varepsilon + 2^{-n/4})$ -PRG.

- ▶ By the leftover hash lemma $SD((H, H(Z^n)), (H, U_{n^2+n/4})) \le 2^{-n/4}$
- Let D be an s'-size algorithm that distinguishes $G(U_n^n, H)$ from $(H, U_{n^2+n/4})$ with advantage $\varepsilon' + 2^{-n/4}$

Claim 16

Let $\mathcal{H}\colon\{0,1\}^{n^2+n}\mapsto\{0,1\}^{n^2+n/4}$ be an 2-universal family and let $G\colon\{0,1\}^n\times\mathcal{H}$ defined by $G(x_1,\ldots,x_n,h)=(h,h(v^n(x_1,\ldots,x_n)))$. Then $G(H,U_n^n)$ is $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ indistinguishable from $(H,U_{n^2+n/4})$, for $H\leftarrow\mathcal{H}$ and $s_{\mathcal{H}}$ being the size of sampling and evaluating algorithm for \mathcal{H} .

Corollary 17

If f and b and \mathcal{H} (?) are poly-time computable, then G is a $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ -PRG.

- ▶ By the leftover hash lemma $SD((H, H(Z^n)), (H, U_{n^2+n/4})) \le 2^{-n/4}$
- Let D be an s'-size algorithm that distinguishes $G(U_n^n, H)$ from $(H, U_{n^2+n/4})$ with advantage $\varepsilon' + 2^{-n/4}$
- ▶ Hence, \exists $(s' + s_H)$ -size algorithm that distinguishes $v^n(U_n^n)$ from Z^n with advantage ε'

Claim 16

Let $\mathcal{H}\colon\{0,1\}^{n^2+n}\mapsto\{0,1\}^{n^2+n/4}$ be an 2-universal family and let $G\colon\{0,1\}^n\times\mathcal{H}$ defined by $G(x_1,\ldots,x_n,h)=(h,h(v^n(x_1,\ldots,x_n)))$. Then $G(H,U_n^n)$ is $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ indistinguishable from $(H,U_{n^2+n/4})$, for $H\leftarrow\mathcal{H}$ and $s_{\mathcal{H}}$ being the size of sampling and evaluating algorithm for \mathcal{H} .

Corollary 17

If f and b and \mathcal{H} (?) are poly-time computable, then G is a $(s-n^2-s_{\mathcal{H}},n_{\mathcal{E}}+2^{-n/4})$ -PRG.

- ▶ By the leftover hash lemma $SD((H, H(Z^n)), (H, U_{n^2+n/4})) \le 2^{-n/4}$
- Let D be an s'-size algorithm that distinguishes $G(U_n^n, H)$ from $(H, U_{n^2+n/4})$ with advantage $\varepsilon' + 2^{-n/4}$
- ▶ Hence, $\exists (s' + s_H)$ -size algorithm that distinguishes $v^n(U_n^n)$ from Z^n with advantage ε'
- ▶ Hence $s' \le s n^2 s_{\mathcal{H}} \implies \varepsilon' \le n\varepsilon$.

Remarks

► PRG "length extension"

Remarks

- ► PRG "length extension"
- PRG from any OWF