WHAT IS CLAIMED IS:

1	1. A method for inhibiting a soluble epoxide hydrolase, comprising
2	contacting said soluble epoxide hydrolase with an inhibiting amount of a compound having a
3	formula selected from the group consisting of:
4	R^{1} — P^{1} — L^{1} — $\left(P^{2}\right)_{n}$ L^{2} — $\left(P^{3}\right)_{m}$ and R^{1} — P^{1} — L^{1} — P^{2a} — A^{1}
5	$(I) \qquad \qquad (II)$
6	and their pharmaceutically acceptable salts, wherein
7	R ¹ is a member selected from the group consisting of C ₅ -C ₁₂ cycloalkyl, aryl,
8	heteroaryl and combinations thereof, wherein said cycloalkyl portions are
9	monocyclic or polycyclic;
10	P ¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-,
l 1	-OC(O)NH-, -NHC(O)O-, -CH ₂ C(O)NH-, -C(O)NH- and -NHC(O)-;
12	P ² is a secondary pharmacophore selected from the group consisting of -C(O)-,
13	-CH(OH)-, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-, -NHC(O)O-,
14	-C(O)NH- and -NHC(O)-;
15	P ^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-;
16	P ³ is a tertiary pharmacophore selected from the group consisting of C ₂ -C ₆ alkynyl,
17 -	C_1 - C_6 haloalkyl, aryl, heteroaryl, -C(O)NHR ² , -C(O)NHS(O) ₂ R ² ,
18	-NHS(O) ₂ R ² , -C(O)OR ² and carboxylic acid analogs, wherein R ² is a member
19	selected from the group consisting of hydrogen, substituted or unsubstituted
20	C ₁ -C ₄ alkyl, substituted or unsubstituted C ₃ -C ₈ cycloalkyl, substituted or
21	unsubstituted aryl and substituted or unsubstituted aryl C ₁ -C ₄ alkyl;
22	the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1;
23	L1 is a first linker selected from the group consisting of substituted and unsubstituted
24	C ₂ -C ₆ alkylene, substituted or unsubstituted arylene and substituted or
25	unsubstituted heteroarylene;
26	L ² is a second linker selected from the group consisting of substituted and
27	unsubstituted C ₂ -C ₁₂ alkylene, substituted and unsubstituted arylene, and
28	combinations thereof; and
29	A ¹ is a member selected from the group consisting of an amino acid, a dipeptide and a
30	dipeptide analog.

- 2. A method for inhibiting a soluble epoxide hydrolase, comprising contacting said soluble epoxide hydrolase with an inhibiting amount of a compound having a formula selected from the group consisting of:
- 4 R^{1} — P^{1} — L^{1} — $\left(P^{2}\right)_{n}$ L^{2} — $\left(P^{3}\right)_{m}$ and R^{1} — P^{1} — L^{1} — P^{2a} — A^{1} 5 (I) (II)
- 6 and their pharmaceutically acceptable salts, wherein

2

3

27

- R¹ is a member selected from the group consisting of C₅-C₁₂ cycloalkyl, aryl,
 heteroaryl and combinations thereof, wherein said cycloalkyl portions are
 monocyclic or polycyclic;
- 10 P¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-, -OC(O)NH-, -NHC(O)O-, -CH₂C(O)NH-, -C(O)NH- and -NHC(O)-;
- 12 P² is a secondary pharmacophore selected from the group consisting of -C(O)-,
- -CH(OH)-, $-O(CH_2CH_2O)_{q}$ -, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-,
- -NHC(O)O-, -C(O)NH- and -NHC(O)-;
- 15 P^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-;
- 16 P³ is a tertiary pharmacophore selected from the group consisting of C₂-C₆ alkynyl,
- 17 C_1 - C_6 haloalkyl, aryl, heteroaryl, -C(O)NHR², -C(O)NHS(O)₂R²,
- -NHS(O)₂R², -C(O)OR² and carboxylic acid analogs, wherein R² is a member
- selected from the group consisting of hydrogen, substituted or unsubstituted
- 20 C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or
- 21 unsubstituted aryl and substituted or unsubstituted aryl C₁-C₄ alkyl;
- the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1, and the subscript q is 0 to 3;
- L¹ is a first linker selected from the group consisting of substituted and unsubstituted

 C₂-C₆ alkylene, substituted and unsubstituted C₃-C₆ cycloalkylene, substituted

 or unsubstituted arylene and substituted or unsubstituted heteroarylene;
 - L² is a second linker selected from the group consisting of substituted and unsubstituted C₂-C₁₂ alkylene, substituted and unsubstituted arylene, and combinations thereof; and
- A¹ is a member selected from the group consisting of an amino acid, a dipeptide and a dipeptide analog.

- The method in accordance with claim 1, wherein R¹ is selected from the group consisting of C₅-C₁₂ cycloalkyl, phenyl and naphthyl.
- 1 4. The method in accordance with claim 1, wherein P¹ is selected from 2 the group consisting of -NHC(O)NH-, -OC(O)NH- and -NHC(O)O-.
- 5. The method in accordance with claim 1, wherein the compound has formula (I), wherein P¹ is selected from the group consisting of -NHC(O)NH-, -OC(O)NH- and -NHC(O)O-; P² is selected from the group consisting of -C(O)O-, -CH(OH)-, -OC(O)-, -C(O)NH- and -NHC(O)-; m is 0 and L¹ is selected from the group consisting of
- 5 unsubstituted C₂-C₆ alkylene.

The method in accordance with claim 1, wherein the compound has 1 formula (I), wherein P1 is selected from the group consisting of -NHC(O)NH-, -OC(O)NH-2 and -NHC(O)O-; P2 is selected from the group consisting of -C(O)O-, -OC(O)-, -C(O)NH-3 and -NHC(O)-; n and m are each 1; L¹ is selected from the group consisting of unsubstituted 4 C₂-C₆ alkylene; L² is selected from the group consisting of substituted or unsubstituted C₂-C₆ 5 alkylene; and P³ is selected from the group consisting of -C(O)NHR², -C(O)NHS(O)₂R², 6 -NHS(O)₂R², and -C(O)OR², wherein R² is a member selected from the group consisting of 7 hydrogen, substituted or unsubstituted C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ 8

cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted aryl C₁-C₄ alkyl.

- The method in accordance with claim 1, wherein the compound has 1 formula (I), wherein P1 is selected from the group consisting of -NHC(O)NH-, -OC(O)NH-2 and -NHC(O)O-; n is 0; m is 1; L¹ is selected from the group consisting of unsubstituted C₂-3 C₆ alkylene; L² is selected from the group consisting of substituted or unsubstituted C₂-C₆ 4 alkylene; and P³ is selected from the group consisting of -C(O)NHR², -C(O)NHS(O)₂R², 5 -NHS(O)₂R², and -C(O)OR², wherein R² is a member selected from the group consisting of 6 7 hydrogen, substituted or unsubstituted C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted aryl C₁-C₄ alkyl. 8
- 1 8. The method in accordance with claim 1, wherein said compound has 2 formula (II) wherein A¹ is a dipeptide or dipeptide analog.

- 1 9. The method in accordance with claim 8, wherein A¹ is a dipeptide
- 2 having an N-terminal residue selected from the group consisting of Tyr, His, Lys, Phe and
- 3 Trp, and a C-terminal residue selected from the group consisting of Ala, Arg, Asp, Gly, Ile,
- 4 Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and Val.
- 1 10. The method in accordance with claim 1, wherein m is 1 and P³ is
- 2 selected from those groups that reduce metabolism by esterase dependent inactivation, beta-
- 3 oxidation, P450-dependent omega hydroxylation or by inhibiting P450 omega hydroxylase.
- 1 The method in accordance with claim 2, wherein R¹ is selected from
- 2 the group consisting of C_5 - C_{12} cycloalkyl, phenyl and naphthyl.
- 1 12. The method in accordance with claim 2, wherein P¹ is selected from
- 2 the group consisting of -NHC(O)NH-, -OC(O)NH- and -NHC(O)O-.
- 1 13. The method in accordance with claim 2, wherein the compound has
- 2 formula (I), wherein P¹ is selected from the group consisting of -NHC(O)NH-, -OC(O)NH-
- and -NHC(O)O-; P² is selected from the group consisting of -C(O)O-, -CH(OH)-,
- 4 -O(CH₂CH₂O)_q-, -OC(O)-, -C(O)NH- and -NHC(O)-; m is 0 and L¹ is selected from the
- 5 group consisting of unsubstituted C₂-C₆ alkylene, substituted and unsubstituted C₃-C₆
- 6 cycloalkylene, and substituted or unsubstituted arylene.
- 1 14. The method in accordance with claim 2, wherein the compound has
- 2 formula (I), wherein P¹ is selected from the group consisting of -NHC(O)NH-, -OC(O)NH-
- and -NHC(O)O-; P² is selected from the group consisting of -C(O)O-, -O(CH₂CH₂O)_q-,
- 4 -OC(O)-, -C(O)NH- and -NHC(O)-; n and m are each 1; L¹ is selected from the group
- 5 consisting of unsubstituted C₂-C₆ alkylene, substituted and unsubstituted C₃-C₆
- 6 cycloalkylene, and substituted or unsubstituted arylene; L² is selected from the group
- 7 consisting of substituted or unsubstituted C₂-C₆ alkylene; and P³ is selected from the group
- 8 consisting of C₂-C₆ alkynyl, C₁-C₆ haloalkyl, aryl, heteroaryl, -NHS(O)₂R², -C(O)OR² and
- 9 carboxylic acid analogs, wherein R² is a member selected from the group consisting of
- hydrogen, substituted or unsubstituted C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈
- cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted aryl C₁-C₄ alkyl.

- 1 15. The method in accordance with claim 2, wherein the compound has
- 2 formula (I), wherein P¹ is selected from the group consisting of -NHC(O)NH-, -OC(O)NH-
- and -NHC(O)O-; n is 0; m is 1; L¹ is selected from the group consisting of unsubstituted C₂-
- 4 C₆ alkylene, substituted and unsubstituted C₃-C₆ cycloalkylene, and substituted or
- 5 unsubstituted arylene; L² is selected from the group consisting of substituted or unsubstituted
- 6 C₂-C₆ alkylene; and P³ is selected from the group consisting of C₂-C₆ alkynyl, C₁-C₆
- 7 haloalkyl, aryl, heteroaryl, -NHS(O)₂R², -C(O)OR² and carboxylic acid analogs, wherein R²
- 8 is a member selected from the group consisting of hydrogen, substituted or unsubstituted C₁-
- 9 C₄ alkyl, substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or unsubstituted aryl and
- substituted or unsubstituted aryl C₁-C₄ alkyl.
- 1 16. The method in accordance with claim 2, wherein m is 1 and P³ is
- 2 selected from those groups that reduce metabolism by esterase dependent inactivation, beta-
- 3 oxidation, P450-dependent omega hydroxylation or by inhibiting P450 omega hydroxylase.
- 1 17. A method for inhibiting a soluble epoxide hydrolase, comprising
- 2 contacting said soluble epoxide hydrolase with an inhibiting amount of a compound having
- 3 the formula described in Tables 1-18 and their pharmaceutically acceptable salts.
- 1 18. A method of treating diseases modulated by soluble epoxide
- 2 hydrolases, said method comprising administering to a subject in need of such treatment an
- 3 effective amount of a compound having a formula selected from the group consisting of:

4
$$R^{1}$$
— P^{1} — L^{1} — $\left(P^{2}\right)_{n}$ — L^{2} — $\left(P^{3}\right)_{m}$ and R^{1} — P^{1} — L^{1} — P^{2a} — A^{1}
5 (I)

- 6 and their pharmaceutically acceptable salts, wherein
- R¹ is a member selected from the group consisting of C_5 - C_{12} cycloalkyl, aryl,
- 8 heteroaryl and combinations thereof, wherein said cycloalkyl portions are
- 9 monocyclic or polycyclic;
- 10 P¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-,
- -OC(O)NH-, -NHC(O)O-, -CH₂C(O)NH-, -C(O)NH- and -NHC(O)-;
- 12 P² is a secondary pharmacophore selected from the group consisting of -C(O)-,
- -CH(OH)-, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-, -NHC(O)O-,
- -C(O)NH- and -NHC(O)-;

P^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-; 15 P³ is a tertiary pharmacophore selected from the group consisting of C₂-C₆ alkynyl, 16 C_1 - C_6 haloalkyl, aryl, heteroaryl, -C(O)NHR², -C(O)NHS(O)₂R², 17 -NHS(O)₂R², -C(O)OR² and carboxylic acid analogs, wherein R² is a member 18 selected from the group consisting of hydrogen, substituted or unsubstituted 19 C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or 20 unsubstituted aryl and substituted or unsubstituted aryl C₁-C₄ alkyl; 21 the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1; 22 L¹ is a first linker selected from the group consisting of substituted and unsubstituted 23 C₂-C₆ alkylene, substituted or unsubstituted arylene and substituted or 24 unsubstituted heteroarylene; 25 L² is a second linker selected from the group consisting of substituted and 26 unsubstituted C2-C12 alkylene, substituted and unsubstituted arylene, and 27 combinations thereof; and 28 A1 is a member selected from the group consisting of an amino acid, a dipeptide and a 29 30 dipeptide analog.

19. The method in accordance with claim 18, wherein said disease is selected from the group consisting of hypertension, inflammation, adult respiratory distress syndrome; diabetic complications; end stage renal disease; Raynaud syndrome and arthritis.

1

2

3

1

2

3

1

2

3

1

2

- 20. The method in accordance with claim 19, wherein said hypertension is selected from the group consisting of renal hypertension, pulmonary hypertension and hepatic hypertension.
- 21. The method in accordance with claim 19, wherein said inflammation is selected from the group consisting of renal inflammation, vascular inflammation, and lung inflammation.
- 22. A method of treating diseases modulated by soluble epoxide hydrolases, said method comprising administering to a subject in need of such treatment an effective amount of a compound having a formula selected from the group consisting of:

4
$$R^1 - P^1 - L^1 - \left(P^2\right)_n L^2 - \left(P^3\right)_m$$
 and $R^1 - P^1 - L^1 - P^{2a} - A^1$
5 (I) (II)

6	and their pharmaceutically acceptable salts, wherein
7	R ¹ is a member selected from the group consisting of C ₅ -C ₁₂ cycloalkyl, aryl,
8	heteroaryl and combinations thereof, wherein said cycloalkyl portions are
9	monocyclic or polycyclic;
10	P ¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-,
11	-OC(O)NH-, -NHC(O)O-, -CH ₂ C(O)NH- , -C(O)NH- and -NHC(O)-;
12	P^2 is a secondary pharmacophore selected from the group consisting of -C(O)-,
13	-CH(OH)-, -O(CH ₂ CH ₂ O) _q -, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-
14	-NHC(O)O-, -C(O)NH- and -NHC(O)-;
15	P ^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-;
16	P ³ is a tertiary pharmacophore selected from the group consisting of C ₂ -C ₆ alkynyl,
17	C_1 - C_6 haloalkyl, aryl, heteroaryl, -C(O)NHR ² , -C(O)NHS(O) ₂ R ² ,
18	-NHS(O) ₂ R^2 , -C(O)OR ² and carboxylic acid analogs, wherein R^2 is a member
19	selected from the group consisting of hydrogen, substituted or unsubstituted
20	C ₁ -C ₄ alkyl, substituted or unsubstituted C ₃ -C ₈ cycloalkyl, substituted or
21	unsubstituted aryl and substituted or unsubstituted aryl C ₁ -C ₄ alkyl;
22	the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1,
23	and the subscript q is 0 to 3;
24	L1 is a first linker selected from the group consisting of substituted and unsubstituted
25	C_2 - C_6 alkylene, substituted and unsubstituted C_3 - C_6 cycloalkylene, substituted
26	or unsubstituted arylene and substituted or unsubstituted heteroarylene;
27	L ² is a second linker selected from the group consisting of substituted and
28	unsubstituted C2-C12 alkylene, substituted and unsubstituted arylene, and
29	combinations thereof; and
30	A is a member selected from the group consisting of an amino acid, a dipeptide and a
31	dipeptide analog.
1	The mosthed in accordance with alaine 22 valencin axid discuss in
1	23. The method in accordance with claim 22, wherein said disease is
2	selected from the group consisting of hypertension, inflammation, adult respiratory distress
3	syndrome; diabetic complications; end stage renal disease; Raynaud syndrome and arthritis.
1	24. The method in accordance with claim 23, wherein said hypertension is
2	selected from the group consisting of renal hypertension, pulmonary hypertension and hepatic

hypertension.

- The method in accordance with claim 23, wherein said inflammation is selected from the group consisting of renal inflammation, vascular inflammation, and lung inflammation.
- 1 26. A method of treating diseases modulated by soluble epoxide 2 hydrolases, said method comprising administering to a subject in need of such treatment an 3 effective amount of a compound having the formula described in Tables 1-18 and their 4 pharmaceutically acceptable salts.
- The method in accordance with claim 26, wherein said disease is selected from the group consisting of hypertension, inflammation, adult respiratory distress syndrome; diabetic complications; end stage renal disease; Raynaud syndrome and arthritis.
- The method in accordance with claim 27, wherein said hypertension is selected from the group consisting of renal hypertension, pulmonary hypertension and hepatic hypertension.
- The method in accordance with claim 27, wherein said inflammation is selected from the group consisting of renal inflammation, vascular inflammation, and lung inflammation.
- 1 30. A method for reducing renal deterioration in a subject, said method comprising administering to said subject an effective amount of a compound having a formula selected from the group consisting of:

$$R^{1} - P^{1} - L^{1} - \left(P^{2}\right)_{n} L^{2} - \left(P^{3}\right)_{m \text{ and } R^{1} - P^{1} - L^{1} - P^{2a} - A^{1}}$$

$$(I) \qquad (II)$$

- 6 and their pharmaceutically acceptable salts, wherein
- R¹ is a member selected from the group consisting of C₅-C₁₂ cycloalkyl, aryl,
 heteroaryl and combinations thereof, wherein said cycloalkyl portions are
 monocyclic or polycyclic;
- 10 P¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-, 11 -OC(O)NH-, -NHC(O)O-, -CH₂C(O)NH-, -C(O)NH- and -NHC(O)-;

P² is a secondary pharmacophore selected from the group consisting of -C(O)-, 12 -CH(OH)-, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-, -NHC(O)O-, 13 -C(O)NH- and -NHC(O)-; 14 P^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-; 15 P³ is a tertiary pharmacophore selected from the group consisting of C₂-C₆ alkynyl, 16 C_1 - C_6 haloalkyl, aryl, heteroaryl, - $C(O)NHR^2$, - $C(O)NHS(O)_2R^2$, 17 -NHS(O)₂R², -C(O)OR² and carboxylic acid analogs, wherein R² is a member 18 selected from the group consisting of hydrogen, substituted or unsubstituted 19 C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or 20 unsubstituted aryl and substituted or unsubstituted aryl C₁-C₄ alkyl; 21 the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1; 22 L¹ is a first linker selected from the group consisting of substituted and unsubstituted 23 C2-C6 alkylene, substituted or unsubstituted arylene and substituted or 24 unsubstituted heteroarylene;

- L² is a second linker selected from the group consisting of substituted and unsubstituted C2-C12 alkylene, substituted and unsubstituted arylene, and , combinations thereof; and
- A¹ is a member selected from the group consisting of an amino acid, a dipeptide and a 29 30 dipeptide analog.
- 1 31. The method in accordance with claim 30, wherein said renal 2 deterioration is present in said subject afflicted with diabetes, hypertension or an inflammatory disorder. 3
- 1 A method for reducing renal deterioration in a subject, said method 32. 2 comprising administering to said subject an effective amount of a compound having a 3 formula selected from the group consisting of:

4
$$R^1 - P^1 - L^1 - \left(P^2\right)_n L^2 - \left(P^3\right)_{m \text{ and } R^1 - P^1 - L^1 - P^{2a} - A^1}$$
5 (I) (II)

and their pharmaceutically acceptable salts, wherein 6

25

26

27

28

7 8

9

R¹ is a member selected from the group consisting of C₅-C₁₂ cycloalkyl, aryl, heteroaryl and combinations thereof, wherein said cycloalkyl portions are monocyclic or polycyclic;

10	P ¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-,
11	-OC(O)NH-, -NHC(O)O-, -CH ₂ C(O)NH-, -C(O)NH- and -NHC(O)-;
12	P ² is a secondary pharmacophore selected from the group consisting of -C(O)-,
13	-CH(OH)-, -O(CH ₂ CH ₂ O) _q -, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-,
14	-NHC(O)O-, -C(O)NH- and -NHC(O)-;
15	P ^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-;
16	P ³ is a tertiary pharmacophore selected from the group consisting of C ₂ -C ₆ alkynyl,
17	C_1 - C_6 haloalkyl, aryl, heteroaryl, $-C(O)NHR^2$, $-C(O)NHS(O)_2R^2$,
18	-NHS(O) ₂ R ² , -C(O)OR ² and carboxylic acid analogs, wherein R ² is a member
19	selected from the group consisting of hydrogen, substituted or unsubstituted
20	C ₁ -C ₄ alkyl, substituted or unsubstituted C ₃ -C ₈ cycloalkyl, substituted or
21	unsubstituted aryl and substituted or unsubstituted aryl C1-C4 alkyl;
22	the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1,
23	and the subscript q is 0 to 3;
24	L1 is a first linker selected from the group consisting of substituted and unsubstituted
25	C2-C6 alkylene, substituted and unsubstituted C3-C6 cycloalkylene, substituted
26	or unsubstituted arylene and substituted or unsubstituted heteroarylene;
27	L2 is a second linker selected from the group consisting of substituted and
28	unsubstituted C2-C12 alkylene, substituted and unsubstituted arylene, and
29	combinations thereof; and
30	A1 is a member selected from the group consisting of an amino acid, a dipeptide and a
31	dipeptide analog.
1	33. The method in accordance with claim 32, wherein said renal
2	deterioration is present in said subject afflicted with diabetes, hypertension or an
3	inflammatory disorder.
1	34. A method for reducing renal deterioration in a subject, said method
2	comprising administering to said subject an effective amount of a compound having the
3	formula described in Tables 1-18 and their pharmaceutically acceptable salts.
1	The method in asserdance with alaim 24 wherein said renel
1	35. The method in accordance with claim 34, wherein said renal
2	deterioration is present in said subject afflicted with diabetes, hypertension or an

inflammatory disorder.

- 36. A method for inhibiting progression of nephropathy in a subject, said method comprising administering to said subject an effective amount of a compound having a formula selected from the group consisting of:
- 4 $R^1 P^1 L^1 \left(P^2\right)_n L^2 \left(P^3\right)_m \text{ and } R^1 P^1 L^1 P^{2a} A^1$ 5 (I) (II)
- 6 and their pharmaceutically acceptable salts, wherein

2

- R¹ is a member selected from the group consisting of C₅-C₁₂ cycloalkyl, aryl,
 heteroaryl and combinations thereof, wherein said cycloalkyl portions are
 monocyclic or polycyclic;
- 10 P¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-, 11 -OC(O)NH-, -NHC(O)O-, -CH₂C(O)NH-, -C(O)NH- and -NHC(O)-;
- P² is a secondary pharmacophore selected from the group consisting of -C(O)-,
 -CH(OH)-, -O(CH₂CH₂O)_q-, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-,
 -NHC(O)O-, -C(O)NH- and -NHC(O)-;
- 15 P^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-;
- P³ is a tertiary pharmacophore selected from the group consisting of C₂-C₆ alkynyl, C₁-C₆ haloalkyl, aryl, heteroaryl, -C(O)NHR², -C(O)NHS(O)₂R²,
- -NHS(O)₂R², -C(O)OR² and carboxylic acid analogs, wherein R² is a member selected from the group consisting of hydrogen, substituted or unsubstituted C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or
- 21 unsubstituted aryl and substituted or unsubstituted aryl C₁-C₄ alkyl;
- the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1, and the subscript q is 0 to 3;
- L¹ is a first linker selected from the group consisting of substituted and unsubstituted

 C₂-C₆ alkylene, substituted and unsubstituted C₃-C₆ cycloalkylene, substituted

 or unsubstituted arylene and substituted or unsubstituted heteroarylene;
- L² is a second linker selected from the group consisting of substituted and
 unsubstituted C₂-C₁₂ alkylene, substituted and unsubstituted arylene, and
 combinations thereof; and
- A¹ is a member selected from the group consisting of an amino acid, a
 dipeptide and a dipeptide analog.

- The method in accordance with claim 36 wherein the subject is (a) a person with diabetes mellitus whose blood pressure is 130/85 or less, (b) a person with metabolic syndrome whose blood pressure is 130/85 or less, (c) a person with a triglyceride level over 215 mg/dL, or (d) a person with a cholesterol level over 200 mg/dL.
 - 38. A method for inhibiting progression of nephropathy in a subject, said method comprising administering to said subject an effective amount of a compound having the formula described in Tables 1-18 and their pharmaceutically acceptable salts.
- The method in accordance with claim 38 wherein the subject is (a) a person with diabetes mellitus whose blood pressure is 130/85 or less, (b) a person with metabolic syndrome whose blood pressure is 130/85 or less, (c) a person with a triglyceride level over 215 mg/dL, or (d) a person with a cholesterol level over 200 mg/dL.
- 1 40. A method for reducing blood pressure in a subject, said method 2 comprising administering to said subject an effective amount of a compound having a 3 formula selected from the group consisting of:

$$R^{1} - P^{1} - L^{1} - \left(P^{2}\right)_{n} L^{2} - \left(P^{3}\right)_{m \text{ and } R^{1} - P^{1} - L^{1} - P^{2a} - A^{1}}$$
5 (I) (II)

and their pharmaceutically acceptable salts, wherein

1

2

- R¹ is a member selected from the group consisting of C₅-C₁₂ cycloalkyl, aryl,
 heteroaryl and combinations thereof, wherein said cycloalkyl portions are
 monocyclic or polycyclic;
- 10 P¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-,
- -OC(O)NH-, -NHC(O)O-, -CH₂C(O)NH-, -C(O)NH- and -NHC(O)-;
- 12 P² is a secondary pharmacophore selected from the group consisting of -C(O)-,
- 13 -CH(OH)-, $-O(CH_2CH_2O)_{q}$ -, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-,
- -NHC(O)O-, -C(O)NH- and -NHC(O)-;
- 15 P^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-;
- 16 P³ is a tertiary pharmacophore selected from the group consisting of C₂-C₆ alkynyl,
- 17 C_1 - C_6 haloalkyl, aryl, heteroaryl, -C(O)NHR², -C(O)NHS(O)₂R²,
- -NHS(O)₂R², -C(O)OR² and carboxylic acid analogs, wherein R² is a member
- selected from the group consisting of hydrogen, substituted or unsubstituted

20	C_1 - C_4 arkyl, substituted of unsubstituted C_3 - C_8 cycloarkyl, substituted of
21	unsubstituted aryl and substituted or unsubstituted aryl C1-C4 alkyl;
22	the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1,
23	and the subscript q is 0 to 3;
24	L1 is a first linker selected from the group consisting of substituted and unsubstituted
25	C ₂ -C ₆ alkylene, substituted and unsubstituted C ₃ -C ₆ cycloalkylene, substituted
26	or unsubstituted arylene and substituted or unsubstituted heteroarylene;
27	L ² is a second linker selected from the group consisting of substituted and
28	unsubstituted C2-C12 alkylene, substituted and unsubstituted arylene, and
29	combinations thereof; and
30	A ¹ is a member selected from the group consisting of an amino acid, a dipeptide and a
31	dipeptide analog.
1	41. The method in accordance with claim 40, said method further
2	comprising administering to said subject an effective amount of a cis-epoxyeicosantrienoic
3	acid.
J	aciu.
1	42. The method in accordance with claim 41, wherein said cis-
2	epoxyeicosantrienoic acid is administered with said compound having formula (I) or (II).
1	43. A method for reducing blood pressure in a subject, said method
2	comprising administering to said subject an effective amount of a compound having the
3	
3	formula described in Tables 1-18 and their pharmaceutically acceptable salts.
1	44. The method in accordance with claim 43, said method further
2	comprising administering to said subject an effective amount of a cis-epoxyeicosantrienoic
3	acid.
1	45. The method in accordance with claim 44, wherein said cis-
	,
2	epoxyeicosantrienoic acid is administered with said compound having formula (I) or (II).

1 46. A method of inhibiting the proliferation of vascular smooth muscle 2 cells in a subject, said method comprising administering to said subject an effective amount 3 of a compound having a formula selected from the group consisting of:

4
$$R^{1}-P^{1}-L^{1}-\left(P^{2}\right)_{n}L^{2}-\left(P^{3}\right)_{m \text{ and } R^{1}-P^{1}-L^{1}-P^{2a}-A^{1}}$$
5 (I) (II)

- 6 and their pharmaceutically acceptable salts, wherein
- R¹ is a member selected from the group consisting of C₅-C₁₂ cycloalkyl, aryl,
 heteroaryl and combinations thereof, wherein said cycloalkyl portions are
 monocyclic or polycyclic;
- 10 P¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-,
 -OC(O)NH-, -NHC(O)O-, -CH₂C(O)NH-, -C(O)NH- and -NHC(O)-;
- 12 P² is a secondary pharmacophore selected from the group consisting of -C(O)-,
- -CH(OH)-, -O(CH₂CH₂O)_q-, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-, -NHC(O)O-, -C(O)NH- and -NHC(O)-;
- 15 P^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-;
- 16 P³ is a tertiary pharmacophore selected from the group consisting of C₂-C₆ alkynyl,
- 17 C_1 - C_6 haloalkyl, aryl, heteroaryl, - $C(O)NHR^2$, - $C(O)NHS(O)_2R^2$,
- -NHS(O)₂ R^2 , -C(O)O R^2 and carboxylic acid analogs, wherein R^2 is a member
- selected from the group consisting of hydrogen, substituted or unsubstituted
- 20 C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or unsubstituted aryl C₁-C₄ alkyl;
- 22 the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1,
- 23 and the subscript q is 0 to 3;
- L¹ is a first linker selected from the group consisting of substituted and unsubstituted

 C₂-C₆ alkylene, substituted and unsubstituted C₃-C₆ cycloalkylene, substituted

 or unsubstituted arylene and substituted or unsubstituted heteroarylene;
- L² is a second linker selected from the group consisting of substituted and unsubstituted C₂-C₁₂ alkylene, substituted and unsubstituted arylene, and combinations thereof; and

- 30 A¹ is a member selected from the group consisting of an amino acid, a dipeptide and a dipeptide analog.
- 1 47. A method of inhibiting the proliferation of vascular smooth muscle 2 cells in a subject, said method comprising administering to said subject an effective amount 3 of a compound having the formula described in Tables 1-18 and their pharmaceutically 4 acceptable salts.
- 48. A method of inhibiting the progression of obstructive pulmonary disease, an interstitial lung disease, or asthma in a subject, said method comprising administering to said subject an effective amount of a compound having a formula selected from the group consisting of:

$$R^{1} - P^{1} - L^{1} - \left(P^{2}\right)_{n} L^{2} - \left(P^{3}\right)_{m \text{ and } R^{1} - P^{1} - L^{1} - P^{2a} - A^{1}}$$

$$(I) \qquad (II)$$

and their pharmaceutically acceptable salts, wherein

- R¹ is a member selected from the group consisting of C₅-C₁₂ cycloalkyl, aryl,
 heteroaryl and combinations thereof, wherein said cycloalkyl portions are
 monocyclic or polycyclic;
- 11 P¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-,
- -OC(O)NH-, -NHC(O)O-, -CH₂C(O)NH-, -C(O)NH- and -NHC(O)-;
- 13 P² is a secondary pharmacophore selected from the group consisting of -C(O)-,
- -CH(OH)-, -O(CH₂CH₂O)_q-, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-,
- 15 -NHC(O)O-, -C(O)NH- and -NHC(O)-;
- 16 P^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-;
- 17 P^3 is a tertiary pharmacophore selected from the group consisting of C_2 - C_6 alkynyl,
- 18 C_1 - C_6 haloalkyl, aryl, heteroaryl, -C(O)NHR², -C(O)NHS(O)₂R²,
- 19 -NHS(O)₂R², -C(O)OR² and carboxylic acid analogs, wherein R² is a member
- selected from the group consisting of hydrogen, substituted or unsubstituted
- 21 C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or
- 22 unsubstituted aryl and substituted or unsubstituted aryl C₁-C₄ alkyl;
- 23 the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1,
- 24 and the subscript q is 0 to 3;

25	L ¹ is a first linker selected from the group consisting of substituted and unsubstituted
26	C2-C6 alkylene, substituted and unsubstituted C3-C6 cycloalkylene, substituted
27	or unsubstituted arylene and substituted or unsubstituted heteroarylene;
28	L ² is a second linker selected from the group consisting of substituted and
29	unsubstituted C2-C12 alkylene, substituted and unsubstituted arylene, and
30	combinations thereof; and
31	A1 is a member selected from the group consisting of an amino acid, a dipeptide and a
32	dipeptide analog.
1	49. The method in accordance with claim 48, wherein said obstructive
2	pulmonary disease is selected from the group consisting of chronic obstructive pulmonary
3	disease, emphysema, and chronic bronchitis.
1	50. The method in accordance with claim 48, wherein said interstitial lung
2	disease is idiopathic pulmonary fibrosis or is one associated with exposure to dust.
1	51. The method in accordance with claim 48, said method further
2	comprising administering to said subject an effective amount of a cis-epoxyeicosantrienoic
3	acid.
1	52. The method in accordance with claim 51, wherein said cis-
2	epoxyeicosantrienoic acid is administered with said compound having formula (I) or (II).
1	53. A method of inhibiting the progression of obstructive pulmonary
2	disease, an interstitial lung disease, or asthma in a subject, said method comprising
3	administering to said subject an effective amount of a compound having the formula
4	described in Tables 1-18 and their pharmaceutically acceptable salts.
1	54. The method in accordance with claim 53, wherein said obstructive
2	pulmonary disease is selected from the group consisting of chronic obstructive pulmonary
3	disease, emphysema, and chronic bronchitis.
1	55. The method in accordance with claim 53, wherein said interstitial lung

disease is idiopathic pulmonary fibrosis or is one associated with exposure to dust.

- 1 56. The method in accordance with claim 53, said method further comprising administering to said subject an effective amount of a cis-epoxyeicosantrienoic 2 3 acid.
- 1 57. The method in accordance with claim 56, wherein said cisepoxyeicosantrienoic acid is administered with said compound having formula (I) or (II). 2
- A compound having a formula selected from the group consisting of: 1

2
$$R^{1} - P^{1} - L^{1} - \left(P^{2}\right)_{n} L^{2} - \left(P^{3}\right)_{m \text{ and } R^{1} - P^{1} - L^{1} - P^{2a} - A^{1}}$$
3
(I)
(II)

and their pharmaceutically acceptable salts, wherein 4

- R¹ is a member selected from the group consisting of C₅-C₁₂ cycloalkyl, aryl, 5 heteroaryl and combinations thereof, wherein said cycloalkyl portions are 6 monocyclic or polycyclic; 7
- P¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-, 8 -OC(O)NH-, -NHC(O)O-, -CH₂C(O)NH-, -C(O)NH- and -NHC(O)-; 9
- P² is a secondary pharmacophore selected from the group consisting of -C(O)-, 10 -CH(OH)-, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-, -NHC(O)O-,
- 11
- -C(O)NH- and -NHC(O)-; 12
- P^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-; 13
- P³ is a tertiary pharmacophore selected from the group consisting of C₂-C₆ alkynyl, 14
- C₁-C₆ haloalkyl, aryl, heteroaryl, -C(O)NHR², -C(O)NHS(O)₂R², 15
- -NHS(O)₂R², -C(O)OR² and carboxylic acid analogs, wherein R² is a member 16
- selected from the group consisting of hydrogen, substituted or unsubstituted 17
- C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or 18
- unsubstituted aryl and substituted or unsubstituted aryl C₁-C₄ alkyl; 19
- 20 the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1;
- L¹ is a first linker selected from the group consisting of substituted and unsubstituted 21
- C2-C6 alkylene, substituted or unsubstituted arylene and substituted or 22 unsubstituted heteroarylene; 23
- L² is a second linker selected from the group consisting of substituted and 24
- unsubstituted C2-C12 alkylene, substituted and unsubstituted arylene, and 25
- 26 combinations thereof; and

A¹ is a member selected from the group consisting of an amino acid, a dipeptide and a 27 28 dipeptide analog. A compound having a formula selected from the group consisting of: 1 R^{1} — P^{1} — L^{1} — $\left(P^{2}\right)_{n}$ L^{2} — $\left(P^{3}\right)_{m}$ and R^{1} — P^{1} — L^{1} — P^{2a} — A^{1} 2 3 and their pharmaceutically acceptable salts, wherein 4 R¹ is a member selected from the group consisting of C₅-C₁₂ cycloalkyl, aryl, 5 heteroaryl and combinations thereof, wherein said cycloalkyl portions are 6 monocyclic or polycyclic; 7 P¹ is a primary pharmacophore selected from the group consisting of -NHC(O)NH-, 8 -OC(O)NH-, -NHC(O)O-, -CH₂C(O)NH-, -C(O)NH- and -NHC(O)-; 9 P² is a secondary pharmacophore selected from the group consisting of -C(O)-, 10 -CH(OH)-, -O(CH₂CH₂O)_q-, -C(O)O-, -OC(O)-, -NHC(O)NH-, -OC(O)NH-, 11 -NHC(O)O-, -C(O)NH- and -NHC(O)-; 12 P^{2a} is selected from the group consisting of -C(O)- and -NHC(O)-; 13 P³ is a tertiary pharmacophore selected from the group consisting of C₂-C₆ alkynyl, 14 C_1 - C_6 haloalkyl, aryl, heteroaryl, - $C(O)NHR^2$, - $C(O)NHS(O)_2R^2$, 15 -NHS(O)₂R², -C(O)OR² and carboxylic acid analogs, wherein R² is a member 16 selected from the group consisting of hydrogen, substituted or unsubstituted 17 C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or 18 unsubstituted aryl and substituted or unsubstituted aryl C₁-C₄ alkyl; 19 the subscripts n and m are each independently 0 or 1, and at least one of n or m is 1, 20 21 and the subscript q is 0 to 3; L¹ is a first linker selected from the group consisting of substituted and unsubstituted 22 C2-C6 alkylene, substituted and unsubstituted C3-C6 cycloalkylene, substituted 23 or unsubstituted arylene and substituted or unsubstituted heteroarylene; 24 L² is a second linker selected from the group consisting of substituted and 25 unsubstituted C2-C12 alkylene, substituted and unsubstituted arylene, and 26 27 combinations thereof; and A¹ is a member selected from the group consisting of an amino acid, a dipeptide and a 28 dipeptide analog. 29

- 1 60. The compound in accordance with claim 58, wherein R¹ is selected 2 from the group consisting of C₅-C₁₂ cycloalkyl, phenyl and naphthyl.
- 1 61. The compound in accordance with claim 58, wherein the compound
- 2 has formula (I), wherein P¹ is selected from the group consisting of -NHC(O)NH-,
- 3 -OC(O)NH- and -NHC(O)O-; P² is selected from the group consisting of -C(O)O-,
- 4 -CH(OH)-, -OC(O)-, -C(O)NH- and -NHC(O)-; n and m are each 1; L¹ is selected from the
- 5 group consisting of unsubstituted C₂-C₆ alkylene; L² is selected from the group consisting of
- 6 substituted or unsubstituted C₂-C₆ alkylene; and P³ is selected from the group consisting of
- 7 -C(O)NHR², -C(O)NHS(O)₂R², -NHS(O)₂R², and -C(O)OR², wherein R² is a member
- 8 selected from the group consisting of hydrogen, substituted or unsubstituted C₁-C₄ alkyl,
- 9 substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or unsubstituted aryl and substituted
- or unsubstituted aryl C₁-C₄ alkyl.
- 1 62. The compound in accordance with claim 58, wherein the compound
- 2 has formula (I), wherein P¹ is selected from the group consisting of -NHC(O)NH-,
- 3 -OC(O)NH- and -NHC(O)O-; n is 0; m is 1; L¹ is selected from the group consisting of
- 4 unsubstituted C₂-C₆ alkylene; L² is selected from the group consisting of substituted or
- 5 unsubstituted C₂-C₆ alkylene; and P³ is selected from the group consisting of -C(O)NHR²,
- 6 -C(O)NHS(O)₂R², -NHS(O)₂R², and -C(O)OR², wherein R² is a member selected from the
- 7 group consisting of hydrogen, substituted or unsubstituted C₁-C₄ alkyl, substituted or
- 8 unsubstituted C₃-C₈ cycloalkyl, substituted or unsubstituted aryl and substituted or
- 9 unsubstituted aryl C₁-C₄ alkyl.
- 1 63. The compound in accordance with claim 58, wherein said compound
- 2 has formula (II) wherein A¹ is a dipeptide or dipeptide analog.
- 1 64. The compound in accordance with claim 58, wherein said compound
- 2 has formula (II) wherein A¹ is a dipeptide having an N-terminal residue selected from the
- 3 group consisting of Tyr, His, Lys, Phe and Trp, and a C-terminal residue selected from the
- 4 group consisting of Ala, Arg, Asp, Gly, Ile, Leu, Lys, Met, Phe, Pro, Ser, Thr, Trp, Tyr and
- 5 Val.
- 1 65. The compound in accordance with claim 59, wherein R¹ is selected
- 2 from the group consisting of C_5 - C_{12} cycloalkyl, phenyl and naphthyl.

```
1
                          66.
                                   The compound in accordance with claim 59, wherein the compound
       has formula (I), wherein P<sup>1</sup> is selected from the group consisting of -NHC(O)NH-,
 2
       -OC(O)NH- and -NHC(O)O-; P<sup>2</sup> is selected from the group consisting of -C(O)O-,
 3
       -CH(OH)-, -O(CH<sub>2</sub>CH<sub>2</sub>O)<sub>q</sub>-, -OC(O)-, -C(O)NH- and -NHC(O)-; n and m are each 1; L^1 is
 4
       selected from the group consisting of unsubstituted C2-C6 alkylene, substituted or
 5
       unsubstituted C<sub>3</sub>-C<sub>6</sub>cycloalkylene, and substituted or unsubstituted arylene; L<sup>2</sup> is selected
 6
       from the group consisting of substituted or unsubstituted C<sub>2</sub>-C<sub>6</sub> alkylene; and P<sup>3</sup> is selected
 7
       from the group consisting of -C(O)NHR<sup>2</sup>, -C(O)NHS(O)<sub>2</sub>R<sup>2</sup>, -NHS(O)<sub>2</sub>R<sup>2</sup>, and -C(O)OR<sup>2</sup>,
 8
       wherein R<sup>2</sup> is a member selected from the group consisting of hydrogen, substituted or
 9
       unsubstituted C<sub>1</sub>-C<sub>4</sub> alkyl, substituted or unsubstituted C<sub>3</sub>-C<sub>8</sub> cycloalkyl, substituted or
10
11
       unsubstituted aryl and substituted or unsubstituted aryl C<sub>1</sub>-C<sub>4</sub> alkyl.
```

- The compound in accordance with claim 59, wherein the compound 1 **67**. has formula (I), wherein P¹ is selected from the group consisting of -NHC(O)NH-, 2 -OC(O)NH- and -NHC(O)O-; n is 0; m is 1; L¹ is selected from the group consisting of 3 unsubstituted C2-C6 alkylene, substituted or unsubstituted C3-C6cycloalkylene, and 4 substituted or unsubstituted arylene; L² is selected from the group consisting of substituted or 5 unsubstituted C₂-C₆ alkylene; and P³ is selected from the group consisting of C₂-C₆ alkynyl, 6 C_1 - C_6 haloalkyl, aryl, heteroaryl, - $C(O)NHR^2$, - $C(O)NHS(O)_2R^2$, - $NHS(O)_2R^2$, - $C(O)OR^2$ 7 and carboxylic acid analogs, wherein R² is a member selected from the group consisting of 8 hydrogen, substituted or unsubstituted C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ 9 cycloalkyl, substituted or unsubstituted aryl and substituted or unsubstituted aryl C₁-C₄ alkyl. 10
- has formula (I) wherein R¹ is a member selected from the group consisting of C₅-C₁₂ 2 cycloalkyl, wherein said cycloalkyl portions are monocyclic or polycyclic; P1 is selected from 3 the group consisting of -NHC(O)NH-; P2 is selected from the group consisting of 4 -O(CH₂CH₂O)₀- and -C(O)O-; P³ is selected from the group consisting of C₂-C₆ alkynyl, C₁-5 C₆ haloalkyl, aryl, heteroaryl, -NHS(O)₂R², -C(O)OR² and carboxylic acid analogs, wherein 6 R² is a member selected from the group consisting of hydrogen, substituted or unsubstituted 7 C₁-C₄ alkyl, substituted or unsubstituted C₃-C₈ cycloalkyl, substituted or unsubstituted aryl 8 and substituted or unsubstituted aryl C₁-C₄ alkyl; m is 1 and q is 0 to 3; L¹ is selected from 9 the group consisting of substituted and unsubstituted C2-C6 alkylene, substituted and 10

The compound in accordance with claim 59, wherein the compound

1

68.

- unsubstituted C_3 - C_6 cycloalkylene, and substituted or unsubstituted arylene; and L^2 is 11 selected from the group consisting of substituted and unsubstituted C₂-C₁₂ alkylene. 12 **69**. A compound having the formula described in Tables 1-18 and their 1 2 pharmaceutically acceptable salts. **70**. A pharmaceutical composition comprising a pharmaceutically 1 acceptable excipient and a compound of claim 58. 2 1 **71**. A pharmaceutical composition comprising a pharmaceutically 2 acceptable excipient and a compound of claim 59. A pharmaceutical composition comprising a pharmaceutically 72. 1 2 acceptable excipient and a compound of claim 69. **73**. A method for stabilizing biologically active epoxides in the presence of 1 a soluble epoxide hydrolase, said method comprising contacting said soluble epoxide 2 hydrolase with an amount of a compound of claim 58, sufficient to inhibit the activity of said 3 soluble epoxide hydrolase and stabilize said biologically active epoxide. 4 A method for stabilizing biologically active epoxides in the presence of 1 74. 2 a soluble epoxide hydrolase, said method comprising contacting said soluble epoxide 3 hydrolase with an amount of a compound of claim 59, sufficient to inhibit the activity of said 4 soluble epoxide hydrolase and stabilize said biologically active epoxide. A method for stabilizing biologically active epoxides in the presence of 1 75. 2 a soluble epoxide hydrolase, said method comprising contacting said soluble epoxide hydrolase with an amount of a compound having the formula described in Tables 1-18 and 3 4 their pharmaceutically acceptable salts. **76**. The method in accordance with claim 73, wherein said contacting is 1 2 conducted in an in vitro assay. 1 *7*7. The method in accordance with claim 73, wherein said contacting is
 - The method in accordance with claim 74, wherein said contacting is conducted in an *in vitro* assay.

conducted in vivo.

- The method in accordance with claim 74, wherein said contacting is conducted in vivo.
- 1 80. The method in accordance with claim 75, wherein said contacting is conducted in an *in vitro* assay.
- 1 81. The method in accordance with claim 75, wherein said contacting is 2 conducted *in vivo*.
- 1 82. The method for reducing the formation of a biologically active diol 2 produced by the action of a soluble epoxide hydrolase, said method comprising contacting 3 said soluble epoxide hydrolase with an amount of a compound of claim 58, sufficient to 4 inhibit the activity of said soluble epoxide hydrolase and reduce the formation of said 5 biologically active diol.
- 1 83. The method for reducing the formation of a biologically active diol 2 produced by the action of a soluble epoxide hydrolase, said method comprising contacting 3 said soluble epoxide hydrolase with an amount of a compound of claim 59, sufficient to 4 inhibit the activity of said soluble epoxide hydrolase and reduce the formation of said 5 biologically active diol.

2

3

- 84. A method for reducing the formation of a biologically active diol produced by the action of a soluble epoxide hydrolase, said method comprising contacting said soluble epoxide hydrolase with an amount of a compound having the formula described in Tables 1-18 and their pharmaceutically acceptable salts.
- 1 85. The method in accordance with claim 82, wherein said contacting is conducted in an *in vitro* assay.
- 1 86. The method in accordance with claim 82, wherein said contacting is conducted in vivo.
- 1 87. The method in accordance with claim 83, wherein said contacting is conducted in an *in vitro* assay.
- 1 88. The method in accordance with claim 83, wherein said contacting is 2 conducted *in vivo*.

- 1 89. The method in accordance with claim 84, wherein said contacting is conducted in an *in vitro* assay.
- 1 90. The method in accordance with claim 84, wherein said contacting is conducted *in vivo*.
- 91. A method for monitoring the activity of a soluble epoxide hydrolase, said method comprising contacting said soluble epoxide hydrolase with an amount of a compound of claim 58 sufficient to produce a detectable change in fluorescence of said soluble epoxide hydrolase by interacting with one or more tryptophan residues present in the catalytic site of said sEH.
 - 92. A method for monitoring the activity of a soluble epoxide hydrolase, said method comprising contacting said soluble epoxide hydrolase with an amount of a compound of claim 59 sufficient to produce a detectable change in fluorescence of said soluble epoxide hydrolase by interacting with one or more tryptophan residues present in the catalytic site of said sEH.

2

3

4

5

1

2

- 93. A method for monitoring the activity of a soluble epoxide hydrolase, said method comprising contacting said soluble epoxide hydrolase with an amount of a compound having the formula described in Tables 1-18 and their pharmaceutically acceptable salts.
- 1 94. The method in accordance with claim 92, wherein said compound has 2 an aryl group present one or more components selected from the group consisting of R¹, L², 3 P³ and A¹.