CS 292C Computer-Aided Reasoning for Software

Lecture 7: Satisfiability Modulo Theories

Yu Feng Spring 2024

Summary of previous lecture

• Applications of SAT (Max SAT, Partial Max SAT, etc.)

Outline of this lecture

- Introduction to Satisfiability Modulo Theories (SMT)
- Syntax and semantics of first-order logic
- Overview of key theories

Satisfiability Modulo Theories

Theories:
$$x = g(y)$$
 $2x + y \le 5$ $a[i] = x$ $(b >> 2) = c$

First order logic

SMT solver

Core solver

Theory solver

Theory solver

Syntax of First-Order Logic (FOL)

Logical symbols

- Connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$
- Parentheses: ()
- Quantifiers: ∀,∃

quantifier-free fragment of FOL.

Non-logical symbols

- Constants: x,y,z
- N-ary functions: f, g
- N-ary predicates: p, q
- Variables: u,v,w

quantifier-free ground formulas.

Syntax of First-Order Logic (FOL)

Logical symbols

- Connectives: $\neg, \land, \lor, \rightarrow, \leftrightarrow$
- Parentheses: ()

Non-logical symbols

- Constants: x,y,z
- N-ary functions: f, g
- N-ary predicates: p, q

- A **term** is a constant or an n-ary function with n terms.
- An **atom** is \top , \bot , or an n-ary predicate applied to n terms.
- A **literal** is an atom or its negation.
- A (quantifier-free ground)
 formula is a literal or the application of logical connectives to formulas.

 $isPrime(x) \rightarrow \neg isInteger(sqrt(x))$

Semantics of FOL (U, I)

Universe

- A non-empty set of values
- Finite or (un)countably infinite

Interpretation

- Maps a constant symbol c to an element of U: I[c] in U
- Maps an n-ary function symbol f
 to a function f|: Uⁿ → U
- Maps an n-ary predicate symbol p to an n-ary relation $p \subseteq U^n$

$$U = \{ \cancel{*}, \clubsuit \}$$

$$I[x] = \cancel{*}$$

$$I[y] = \clubsuit$$

$$I[f] = \{ \cancel{*} \mapsto \spadesuit, \spadesuit \mapsto \cancel{*} \}$$

$$I[p] = \{ \langle \cancel{*}, \cancel{*} \rangle, \langle \cancel{*}, \clubsuit \rangle \}$$

$$\langle U, I \rangle \models p(f(y), f(f(x))) ?$$

Satisfiability and validity of FOL

F is **satisfiable** iff $M \models F$ for some structure $M = \langle U, I \rangle$.

F is **valid** iff $M \models F$ for all structures $M = \langle U, I \rangle$.

Duality of satisfiability and validity:

F is valid iff $\neg F$ is unsatisfiable.

First-order theories

Signature Σ_T

 Set of constant, predicate, and function symbols

Set of T-models

- One or more (possibly infinitely many) models that fix the interpretation of the symbols in Σ_T
- Can also view a theory as a set of axioms over Σ_T (and T-models are the models of the theory axioms)

.A formula F is **satisfiable** modulo T iff $M \models F$ for someT-model M.

A formula F is **valid modulo T** iff $M \models F$ for all T-models M.

Common theories

Equality (and uninterpreted functions)

• x = g(y)

Fixed-width bitvectors

• (b >> 1) = c

Linear arithmetic (over R and Z)

• $2x + y \leq 5$

Arrays

• a[i] = x

Theory of equality with uninterpreted functions

• Signature: {=, x, y, z, ..., f, g, ..., p, q, ...}

- The binary predicate = is interpreted.
- All constant, function, and predicate symbols are *uninterpreted*.

Axioms

- $\forall x. x = x$
- $\forall x,y. x=y \rightarrow y=x$
- $\forall x,y,z. \ x=y \land y=z \rightarrow x=z$
- $\forall x_1,...,x_n,y_1,...,y_n.(x_1 = y_1 \land ... \land x_n = y_n) \rightarrow (f(x_1,...,x_n) = f(y_1,...,y_n))$
- $\forall x_1,...,x_n,y_1,...,y_n.(x_1 = y_1 \land ... \land x_n = y_n) \rightarrow (p(x_1,...,x_n) \leftrightarrow p(y_1,...,y_n))$

Deciding T₌

• Conjunctions of literals modulo $T_{=}$ is decidable in polynomial time.

T= example: checking program equivalence

```
int fun1(int y) {
  int x, z;
  z = y;
  y = x;
  x = z;
  return x * x;
}

int fun2(int y) {
  return y * y
}
```

A formula that is unsatisfiable iff programs are equivalent:

```
(z_1 = y_0 \land y_1 = x_0 \land x_1 = z_1 \land r_1 = x_1 * x_1) \land (r_2 = y_0 * y_0) \land \neg (r_2 = r_1)
```

Using 32-bit integers, a SAT solver fails to return an answer in 5 min.

T= example: checking program equivalence

```
int fun1(int y) {
  int x, z;
  z = y;
  y = x;
  x = z;
  return x * x;
}

int fun2(int y) {
  return y * y
}
```

A formula that is unsatisfiable iff programs are equivalent:

```
(z_1 = y_0 \land y_1 = x_0 \land x_1 = z_1 \land r_1 = mul(x_1, x_1)) \land (r_2 = mul(y_0, y_0)) \land \neg (r_2 = r_1)
```

Using T=, an SMT solver proves unsatisfiability in a fraction of a second.

T= example: checking program equivalence

```
int fun1(int y) {
 int x, y;
 x = x ^ y;
 y = x ^ y;
x = x ^ y;
 return x * x;
int fun2(int y) {
 return y * y
```

Is the uninterpreted function abstraction going to work?

 No, we need the theory of fixed-width bitvectors to reason about ^ (xor).

Theory of fixed-width bitvector

Signature

- Fixed-width words modeling machine ints, longs, ...
- Arithmetic operations: bvadd, bvsub, bvmul, ...
- Bitwise operations: bvand, bvor, bvnot, ...
- Comparison predicates: bvlt, bvgt, ...
- Equality: =
- Expanded with all constant symbols: x, y, z, ...

Deciding T_{BV}

NP-complete.

Theory of linear integer and real

Signature

- Integers (or reals)
- Arithmetic operations: multiplication by an integer (or real) number, +, -.
- Predicates: =, \leq .
- Expanded with all constant symbols: x, y, z, ...

Deciding T_{LIA} and T_{LRA}

- NP-complete for linear integer arithmetic (LIA). Polynomial time for linear real arithmetic (LRA).
- Polynomial time for difference logic (conjunctions of the form $x y \le c$, where c is an integer or real number).

LIA example: compiler optimization

```
for (i=1; i<=10; i++) {
 a[j+i] = a[j];
int v = a[j];
for (i=1; i<=10; i++) {
 a[j+i] = v;
```

A LIA formula that is unsatisfiable iff this transformation is valid:

$$(i \ge 1) \land (i \le 10) \land$$

 $(j + i = j)$

Polyhedral model

Theory of arrays

Signature

- Array operations: read, write
- Equality: =
- Expanded with all constant symbols: x, y, z, ...

Axioms

- $\forall a, i, v. read(write(a, i, v), i) = v$
- $\forall a, i, j, v. \neg(i = j) \rightarrow (read(write(a, i, v), j) = read(a, j))$
- $\forall a, b. (\forall i. read(a, i) = read(b, i)) \rightarrow a = b$

Deciding T_A

- Satisfiability problem: NP-complete.
- Used in many software verification tools to model memory.

TODOs by next lecture

- The 3rd homework will be out
- Start to work on the proposal for your final project