

Integrating Mobile IoT Devices into the Arrowhead Framework Using Web of Things

Chiara Bonsignori, <u>Carlo Puliafito</u>, Antonio Virdis, Enzo Mingozzi, Giuseppe Iannaccone

Outline

- Integration of legacy IoT devices within the Arrowhead Framework (AHF) through WoT
- Using WoT towards mobility/migration support
- Performance evaluation
- Conclusions and future work

Integration of legacy IoT devices within the AHF through WoT

- The **Arrowhead Framework** (AHF) is an open-source platform for IoT interoperability and is currently supported as a project of the Eclipse Foundation²
- Developed across several EU projects. We specifically worked in the Arrowhead Tools EU project³

- Main Objective: provide tools, platforms, engineering processes towards industrial automation
- 80+ Partners from 18 EU Countries
- 3 Years (May 2019 July 2022)

² https://projects.eclipse.org/projects/iot.arrowhead

³ https://www.arrowhead.eu/arrowheadtools

Integration of legacy IoT devices within the AHF3

ECG device⁴

Size: 6.5 cm x 3.4 cm

BOM cost: <10\$

Battery life: five days

Sampling rate: 320 Hz

<u>Transmission rate:</u> 5 kbps

Smart plug⁵

Size: 7.7 cm x 5.7 cm (without external case)

BOM cost: <15\$

Monitors: active and reactive power,

voltage, and current.

Remotely turn it on or off

³Work carried out within the scope of the **Arrowhead Tools** EU project: https://www.arrowhead.eu/arrowheadtools

⁴E. Spanò, S. Di Pascoli, and G. lannaccone, "Low-power wearable ECG monitoring system for multiple-patient remote monitoring," IEEE Sensors Journal, vol. 16, no. 13, pp. 5452–5462, 2016.

⁵E. Spanò, L. Niccolini, S. D. Pascoli, and G. Iannaccone, "Lastmeter smart grid embedded in an Internet-of-Things platform," IEEE Transactions on Smart Grid, vol. 6, no. 1, pp. 468–476, 2015.

Web of Things (WoT) – Main Components

Web Thing

- Abstracts a physical or virtual entity
- Has a JSON Thing Description (TD) associated

Servient

 A software environment that can expose and/or consume Web Things

Consumer

- Fetches and processes TD
- Instantiates a Consumed Thing

Exposer

- Advertises TD
- Instantiates an Exposed Thing

Thing Description

Interaction Affordances

The capabilities offered by the Thing

- Properties: state of the Thing
- Actions: functions provided to manipulate the state
- Events: to asynchronously notify Consumers

Protocol Bindings

 Mapping from Interaction Affordances to concrete messages of protocols (HTTP, CoAP, MQTT, ...)

Integration architecture

- AHF consumers in a local cloud can access legacy devices
- This architecture opens up opportunities towards edge computing

Mobility/migration of WoT servients in edge computing

Using WoT towards mobility/migration support

State management

- We consider stateful servients at the edge. How to handle the state?
- Managing (i.e., save, transfer, and restore) the state at the application-level is not transparent to the application itself
- We choose to host a servient inside a **container** and migrate it using container migration techniques, transparently to the application

Addressing

- Mobility/migration typically causes IP addresses to change
- It is possible to use auxiliary elements (e.g., DNS), which however introduce complexity and potential delays
- Our mechanisms to recover connectivity:
 - > Are designed as part of WoT itself
 - > Involve only the two endpoints
 - > Are **transparent** to the application logic

Mobility/Migration Support – Servient Migratability Configuration

Mobility/Migration Support - Exposer Migration

After migration:

- URIs of Interaction Affordances unreachable
- notifications still received by Consumer

Mobility/Migration Support - Consumer Migration

After migration:

- URIs of Interaction Affordances still reachable
- notifications no more received by Consumer

Additional data structure is required

Performance evaluation - Testbed configuration

Execution time of the consume () and produce () methods

Unavailability time due to Exposer and Consumer migration

Conclusions

- Integration of legacy devices (ECG and smart plug) into the AHF through WoT
- Using WoT to support mobility/migration of servients in edge computing scenarios
- Performance evaluation has shown a negligible overhead of our solution to baseline WoT and to the unavailability time perceived by endpoints

Future Work

• Investigate the orchestration of the migration of multiple WoT servients

Thank you!

carlo.puliafito@ing.unipi.it