Sprawozdanie Projekt 1 Patryk Choiński nr Albumu 270740 Projekt wylosowany to 01104536 -> ((3+6) mod 3 +1) = 1

Całość kodu źródłowego można znaleźć jako publiczne repozytorium tutaj: https://github.com/PChoinskiIndu/TTS-EXT

- 1. Wykorzystanie systemu SCADA DiaView w projekcie W ramach realizacji projektu zdecydowano się na zastosowanie systemu SCADA DiaView ze względu na jego liczne zalety oraz moje osobiste doświadczenie z tym oprogramowaniem.
 - a. Producent i dystrybucja: System SCADA DiaView jest produkowany przez firmę Delta Electronics, a na rynku polskim jest dystrybuowany i sprzedawany przez firmę InduProgress, w której mam przyjemność pracować. Dzięki temu mam bezpośredni dostęp do wsparcia technicznego oraz bieżących aktualizacji oprogramowania.
 - b. Moje doświadczenie i rozwój kompetencji: Posiadam już pewne doświadczenie w pracy z DiaView, jednak realizacja tego projektu jest doskonałą okazją do pogłębienia mojej wiedzy oraz zdobycia nowych umiejętności w zakresie zaawansowanych funkcji systemu. Wykorzystanie DiaView umożliwi mi rozwinięcie kompetencji w zakresie tworzenia wizualizacji procesów przemysłowych, konfiguracji alarmów oraz integracji z urządzeniami automatyki przemysłowej.
 - c. Zalety systemu DiaView:
 - Intuicyjna konfiguracja i obsługa: System oferuje przyjazne środowisko pracy, co znacznie przyspiesza proces tworzenia aplikacji.
 - Szeroka integracja: Obsługuje różnorodne protokoły komunikacyjne, co pozwala na elastyczną integrację z urządzeniami w zakładzie.
 - Zaawansowane funkcje monitoringu: DiaView umożliwia monitorowanie danych w czasie rzeczywistym, co jest kluczowe dla skutecznego zarządzania procesami.
 - Możliwość rozbudowy: System charakteryzuje się modułową budową, dzięki czemu można go łatwo dostosować do rosnących potrzeb zakładu.
 - d. Podsumowując, wybór systemu DiaView wynika z jego wszechstronnych możliwości, intuicyjności oraz mojego doświadczenia z tym oprogramowaniem. Realizacja projektu w tym środowisku umożliwi mi zarówno skuteczne wdrożenie systemu, jak i rozwój kompetencji w zakresie automatyki przemysłowej i systemów SCADA.

- e. System SCADA DiaView został wykorzystany w projekcie ze względu na jego wszechstronność oraz dostępność darmowej licencji na 2 godziny pracy. Oprogramowanie to oferuje możliwość komunikacji OPC zarówno jako klient, jak i serwer, co zapewnia elastyczną integrację z innymi systemami automatyki.
- f. DiaView umożliwia monitorowanie procesów w czasie rzeczywistym, zarządzanie alarmami oraz tworzenie wykresów, tabel i raportów, co w pełni pokrywa potrzeby projektu i pozwala na skuteczne zarządzanie danymi procesowymi.

2. Założenia

- a. Uruchomienie symulatora oraz połączenia z OPC Serverem
- b. Przygotowanie ekranu procesu
- c. Przygotowanie obsługi alarmów
- d. Prezentacja wykresów
- e. Przygotowanie obsługi użytkowników wraz z uprawnieniami
- f. Przygotowanie ekranu synoptycznego

3. Wykonanie

a. Uruchomienie symulatora oraz połączenia z OPC Serverem

Następnie chcemy połączyć naszą SCADE z OPC serwerem:

Oprogramowanie samo znajduje nam serwery

Po dodaniu serwera mamy dostęp do wszystkich elementów zawartych na nim:

A	Name	Address	Associated Variables	Value	Data Conversion	Read or Write	Scan Time
1	L11	Bucket Brigade.L11	Var.L11	0.741954233439421	No Conversion	Read and Write	500
2	L12	Bucket Brigade.L12	Var.L12	0.740075894058457	No Conversion	Read and Write	500
3	L22	Bucket Brigade.L22	Var.L22	0.0536530901206851	No Conversion	Read and Write	500
4	L21	Bucket Brigade.L21	Var.L21	0.0536970837662821	No Conversion	Read and Write	500
5	L31	Bucket Brigade.L31	Var.L31	0.0525882399419166	No Conversion	Read and Write	500
6	L32	Bucket Brigade.L32	Var.L32	0.0538907839996905	No Conversion	Read and Write	500
7	F1	Bucket Brigade.F1	Var.F1	0.141174693278016	No Conversion	Read and Write	500
8	F2	Bucket Brigade.F2	Var.F2	0.019637220304858	No Conversion	Read and Write	500
9	F3	Bucket Brigade.F3	Var.F3	9.97370758887837	No Conversion	Read and Write	500
10	G1	Bucket Brigade.G1	Var.G1	-0.100301595036208	No Conversion	Read and Write	500
11	G12	Bucket Brigade.G12	Var.G12	0	No Conversion	Read and Write	500
12	G2	Bucket Brigade.G2	Var.G2	0.0593960525045427	No Conversion	Read and Write	500
13	OPERmode	Bucket Brigade.OPERmod	Var.OPERmode	True	No Conversion	Read and Write	500
14	P1	Bucket Brigade.P1	Var.P1	253.660950906877	No Conversion	Read and Write	500
15	PIDMode	Bucket Brigade.PIDmode			No Conversion	Read and Write	500
16	SP	Bucket Brigade.SP	Var.SP	0.0336	No Conversion	Read and Write	500
17	SPman	Bucket Brigade.SPman	Var.SPman		No Conversion	Read and Write	500
18	SPmode	Bucket Brigade.SPmode	Var.SPmode		No Conversion	Read and Write	500
19	dP2	Bucket Brigade.dP2	Var.dP2	252.788409013608	No Conversion	Read and Write	500
20	CV	Bucket Brigade.CV	Var.CV	0	No Conversion	Read and Write	500
21	CVG1	Bucket Brigade.CVG1	Var.CVG1	0	No Conversion	Read and Write	500
22	CVG12	Bucket Brigade.CVG12	Var.CVG12	0	No Conversion	Read and Write	500
23	CVG1man	Bucket Brigade.CVG1man	Var.CVG1man		No Conversion	Read and Write	500
24	CVG2	Bucket Brigade,CVG2	Var.CVG2	0	No Conversion	Read and Write	500
25	CVG2man	Bucket Brigade.CVG2man	Var.CVG2man		No Conversion	Read and Write	500

Przygotowanie wizualizacji na ekranie i połączenie ze zmiennymi
 Ekran głowny

Dodatkowe ukryte informacje

Na ekranie głownym mamy przygotowany przepływ cieczy zgodnie z układem rzeczyistym w którym znajduja się 3 zbiorniki wody + zbiornik podstawowy. Dodatkowo mamy pompe z aktualnym ciśnieniem, przepływy wody w danych punktach oraz aktualny poziom otwarcia zaworów. W dodatkowych informacjach mamy także opis wszystkich elementów oraz sterowania.

Każdy zbiornik możemy podejrzeć w wykresie poziomu wody(jako ekran dodatkowy):

Jeżeli mamy załączony tryb operacyjny manualny, możemy też ustawić wartości ustawienia zaworów w trybie ręcznym


```
HMICmd.OpenDialogWindow("ValveControl")
END IF
```

Oba ekrany wykres/zadawanie wartości są ekranami ogólnymi w którym jest przepisywana zmienna tymczasowa do wartości która chcemy zmienić G1/G2 L11/L21/L31. Tworzenie kilku takich samych ekranów jest źlym podejściem dlatego zawsze w programowaniu używam obiektów ogólnych a nie przypadków szczególnych

Kolorystycznie całość jest w kolorach szaro czarno białych zgodnie z ASM, oraz monochromatyczne. Kolory czerwony i zółty zostały zarezerwowane dla sytuacji nadzwyczajnych zgodnie z SA.

Domyślnie obiekty wyglądały tak, lecz dzięki dostępowi do edycji grafik

gradnienty itd zostały usunięte

c. Ekran synoptyczny

Na ekranie synoptycznym mamy pokazany cały układ razem z czujnikami. Poszczególne elementy są wypełnione w zależności od poziomu 0-100% danego czujnika przy elemencie.

d. Menu boczne

W menu mamy opis Aktualnego wybranego ekranu, zalogowanego użytkownika, wybór ekranu oraz statusu alarmów.

e. Alarmy

Konfiguracja alarmów:

Podświetlenie czy jest jakikolwiek alarm od zabudowanego parametry obiektu alarmow

Ekran alarmowy, z podziałem na alarmy aktywne, zatwierdzone oraz historie alarmow

f. Użytkownicy

Konfiguracja grup użytkowników i samych użytkowników

Logowanie:

Obsługa obiektów w zależności od poziomu dostępu, np. w elemencie ustawienia manualnego zaworu G1man/G2man dodatkowu należy być zalogowanym z

poziomem dostępu minimum Operator:

61

378

0.5

4. Podsumowanie

Projekt został zrealizowany z uwzględnieniem zasad Situational Awareness (SA) – szczególny nacisk położono na przejrzystość wizualizacji oraz czytelność alarmów. Zastosowanie systemu SCADA DiaView pozwoliło także na wdrożenie koncepcji ASM (Alarm State Management) poprzez logiczne zarządzanie stanami alarmowymi oraz ich prezentację użytkownikowi w sposób wspierający szybkie podejmowanie decyzji. Dokumentacja i implementacja potwierdzają zgodność projektu z najlepszymi praktykami inżynierii systemowej.