

MET-576-4

Modelagem Numérica da Atmosfera

Dr. Paulo Yoshio Kubota

Os métodos numéricos, formulação e parametrizações utilizados nos modelos atmosféricos serão descritos em detalhe.

3 Meses 24 Aulas (2 horas cada)

Superfície de água:

Métodos numéricos utilizados para resolução de problemas relacionados a parametrização de superfície.

- √ 1 Conceito Básico para modelos de Superfície .
- ✓ 2 Modelo de Dossel Urbana.
- √ 3 Modelo de Corpos de Água.
- √ 4 Modelo de áreas Verdes.

Conceito Básico de um modelo LSM

A energia radiativa absorvida pelo solo e pela atmosfera é dividida em fluxos de:

calor sensível,

calor latente,

calor no solo.

Essa partição (redistribuição da energia absorvida) depende fortemente das características:

Cobertura da terra

Regime hidrológico.

3 Conceito Básico para Modelo de Corpos de Água:

- 3.1 Balaço de Energia em superfície de água
- 3.2 Albedo e Balanço de Radiação
- 3.3 Transferência Turbulenta e fluxos de superfície
- 3.4 Variáveis prognosticas e suas equações governantes
- 3.5 Solução Numérica das Equações Prognosticas

3- Modelo de corpo de agua

Neste tópico, <u>o modelo de massa de água a ser usado como submodelo do esquema da superfície terrestre</u> é formulado com base no modelo de restauração de força.

Um conjunto de dados do sistema de medição de fluxo do Projeto Lake Biwa () é usado para o desenvolvimento e validação do modelo de massa de água.

3- Modelo de corpo de agua

Apesar de muita energia radiativa líquida, o calor latente (evaporação) não é tão grande do início da primavera ao final do verão.

Por outro lado, o calor latente (evaporação) <u>é grande</u> (ainda maior que a radiação líquida) durante o outono e o inverno.

3- Modelo de corpo de agua

O que quero dizer aqui é que existe um atraso de fase entre o ciclo sazonal de radiação líquida (Rn), o calor latente

 (λE) e o calor sensível (H).

Isso significa que parte significativa da energia não é usada (ou liberada) em um ciclo diurno de balanço de energia sendo entregue em um ciclo sazonal.

Esse tipo de dinâmica sazonal do balanço energético é peculiar ao corpo d'água, especialmente em lago profundo.

3- Modelo de corpo de agua

Figure 3.1: Seasonal variation of energy budget at the north part of the Lake Biwa (1999/7/25-

3.2 Albedo e Balnaço de Radiação

A Figura 3.2 mostra a variação sazonal do albedo da superfície do lago de 25 de julho de 1999 a 24 de julho de 2000 pela média móvel de 15 dias.

Figure 3.3: Dependency of albedo (α) on cosine of zenith angle of incident beam (μ)

Albedo torna-se grande no inverno e pequeno no verão.

Isso está profundamente relacionado à mudança no ângulo do zênite solar.

A Figura 3.3 mostra <u>a relação</u> entre o albedo (α) e o cosseno do ângulo do zênite da radiação solar incidente (μ).

Nesta figura, os dados são selecionados de acordo com os seguintes critérios para ver claramente essa dependência.

3.2 Albedo e Balnaço de Radiação

Nesta figura, os dados são selecionados de acordo com os seguintes critérios para ver claramente essa dependência.

$$S^{\downarrow} \ge 0.75 \times S_{top}$$
 $S^{\downarrow} \ge 50 \text{ (Wm}^{-2})$ $\mu \ge 0.1$

onde

 S^{\downarrow} = downward short-wave radiation observed at the surface S_{top} = downward short-wave radiation at the top of atmosphere (theoretical value)

3.2 Albedo e Balnaço de Radiação

A Figura 3.3 mostra a relação entre o albedo (α) e o cosseno do ângulo do zênite da radiação solar incidente (μ).

$$S^{\downarrow} \geq 0.75 \times S_{top}$$
 $S^{\downarrow} \geq 50$ (Wm⁻²) $\mu \geq 0.1$ $\alpha_b = a\mu^b$

Figure 3.2: Albedo of the Lake Biwa (moving average of 15 days, 1999/7/25-2000/7/24)

Figure 3.3: Dependency of albedo (α) on cosine of zenith angle of incident beam (μ)

3.2 Albedo e Balnaço de Radiação

A Figura 3.3 mostra a relação entre o albedo (α) e o cosseno do ângulo do zênite da radiação solar incidente (μ).

Figure 3.2: Albedo of the Lake Biwa (moving average of 15 days, 1999/7/25-2000/7/24)

Figure 3.3: Dependency of albedo (α) on cosine of zenith angle of incident beam (μ)

Quando o **céu está nublado** ou **parcialmente nublado**, a proporção da componente do feixe de radiação direto se torna menor que a do componente difuso.

Nesse caso, albedo mostra a fraca dependência do ângulo do zênite solar.

De qualquer forma, a refletância da superfície da água depende fortemente de μ para o componente de feixe direto.

3.2 Albedo e Balnaço de Radiação

A Figura 3.3 mostra a relação entre o albedo (α) e o cosseno do ângulo do zênite da radiação solar incidente (μ).

No modelo, seguindo Goudriaan (1971), a radiação de ondas curtas descendente é dividida em quatro componentes:

```
F_{vb} (feixe visível),

F_{vd} (difuso visível),

F_{nb} (feixe infravermelho próximo)

F_{nd} (difuso infravermelho próximo)
```

Então, podemos tratar o componente de feixe direto e o componente difuso separadamente.

3.2 Albedo e Balnaço de Radiação

O Balanço de radiação para a superfície da água pode ser escrito da seguinte maneira.

$$\alpha_b = a\mu^b$$

$$Rn_{wb} = (F_{vb} + F_{nb})(1 - \alpha_b) + (F_{vd} + F_{nd})(1 - \alpha_d) + F_{td} - \varepsilon_w \sigma T_{wb}^4$$
(3.1)

Onde, α_b e α_d são refletâncias para componente de feixe direto e componente difuso, respetivamente.

Infelizmente, o componente de feixe direto e o componente difusa não são observados separadamente, não foi possível corrigir diretamente a relação da eq. (3.1).

Na verdade, é impossível medir a proporção do feixe direto refletido e da radiação difusa refletida.

Portanto, supõe-se que α_b e α_d sejam iguais, e os parâmetros na relação entre refletância e μ (eq. (3.3)) são decididos através da comparação de valores simulados e observados.

3.2 Albedo e Balnaço de Radiação

O Balanço de radiação para a superfície da água pode ser escrito da seguinte maneira.

$$\alpha_b = a\mu^b$$

$$Rn_{wb} = (F_{vb} + F_{nb})(1 - \alpha_b) + (F_{vd} + F_{nd})(1 - \alpha_d) + F_{td} - \varepsilon_w \sigma T_{wb}^4$$
(3.1)

Portanto, supõe-se que α_b e α_d sejam iguais, e os parâmetros na relação entre refletância e μ (eq. (3.3)) são decididos através da comparação de valores simulados e observados.

$$\alpha_b = \alpha_d = \alpha_1 \mu^{\alpha_2} \tag{3.3}$$

3.3 Transferência Turbulenta e Fluxos de Superfície

O processo de transferência turbulenta é muito simples para o caso de corpos d'água.

Basicamente, <u>o perfil</u> de <u>vento</u>, <u>temperatura</u> do ar e <u>pressão de vapor</u> são expressos pela <u>lei log-linear</u> em uma atmosfera está em condição neutra.

De acordo com a similaridade de Monin-Obukov, a resistência aerodinâmica é calculada considerando a estabilidade atmosférica.

3.3 Transferência Turbulenta e Fluxos de Superfície

Seguindo Kondo (1999), a rugosidade é expressa por uma função da velocidade de atrito (eq. (3.4)). A velocidade de atrito é uma função da estabilidade atmosférica.

A estabilidade é definida como uma função da velocidade de atrito e do fluxo superficial (eq. (3.7)).

E o próprio fluxo de superfície é uma função da estabilidade.

3.3 Transferência Turbulenta e Fluxos de Superfície

Portanto, esses valores são determinados pelo procedimento de iteração a partir de uma estimativa inicial.

Imposição inicial

$$u_* = 0.001 \text{ (m s}^{-1}),$$

rugosidade e velocidade de atrito (1º)

$$u_{*c} = 100 \times u_{*}$$

$$z_{0c} = a \times u_{*c}^{b} \qquad (3.4)$$

$$z_{0} = 0.01 \times z_{0c}$$

$$u_{*} = \kappa u_{m} / \ln(z_{m}/z_{0}) \qquad (3.5)$$
when $u_{*c} \leq 6.89(cm)$

$$a = 1.69 \times 10^{-2} \quad b = -1.0$$
when $u_{*c} > 6.89(cm)$

$$a = 1.65 \times 10^{-4} \quad b = 1.4$$

$u_* = 0.001 \text{ (m s}^{-1}), \quad \text{neutral condition } (\zeta = 0)$

Figure 3.4: Relationship between friction velocity and roughness

3.3 Transferência Turbulenta e Fluxos de Superfície

Onde z_{0c} e u_{*c} são expressos em um unidade de (cm) e z_0 e u_* estão em (m).

estabilidade (1°)

$$H = \rho C_p (T_{wb} - T_m) \kappa u_* / \ln(z_m/z_{0h}), \quad E = \rho C_p (q_{wb} - q_m) \kappa u_* / \ln(z_m/z_{0h})$$
(3.6)

$$L = -\rho C_p T_m u_*^3 / (\kappa g H_v), \quad H_v = H + 0.61(1 + 0.61q_m) T_m C_p E$$
(3.7)

$$\zeta = z_m / L, \quad \zeta_0 = z_0 / L$$
(3.8)

Em geral, a rugosidade da temperatura e umidade é maior que a do momento no caso da superfície da água. Neste modelo, assume-se que seja igual a $z_{0h} = 3z_0$.

3.3 Transferência Turbulenta e Fluxos de Superfície

• função universal integrada

when $\zeta < 0$

$$\Psi_M = \ln\left(\frac{z_m}{z_0}\right) + \ln\frac{(x_0^2 + 1)(x_0 + 1)^2}{(x^2 + 1)(x + 1)^2} + 2(\tan^{-1}x - \tan^{-1}x_0)$$
(3.9)

$$\Psi_H = \ln\left(\frac{z_m}{z_{0h}}\right) + 2\ln\left(\frac{y_0 + 1}{y + 1}\right) \tag{3.10}$$

$$x = (1 - 16\zeta)^{1/4}, \ x_0 = (1 - 16\zeta_0)^{1/4}, \ y = (1 - 16\zeta)^{1/2}, \ y_0 = (1 - 16\zeta_0)^{1/2} \ (3.11)$$

Figure 3.5: Relationship between stability and universal function (unstable)

3.3 Transferência Turbulenta e Fluxos de Superfície

• função universal integrada

when $\zeta \geq 0$

$$\Psi_M = \ln\left(\frac{z_m}{z_0}\right) + \frac{7}{3}\ln\frac{1+3\zeta+10\zeta^3}{1+3\zeta_0+10\zeta_0^3}$$
(3.12)

$$\Psi_H = \ln\left(\frac{z_m}{z_{0h}}\right) + 400 \ln\frac{1 + 7/400\zeta + 0.005\zeta^2}{1 + 7/400\zeta_0 + 0.005\zeta_0^2}$$
(3.13)

Figure 3.6: Relationship between stability and universal function (stable)

3.3 Transferência Turbulenta e Fluxos de Superfície

velocidade de atrito e estabilidade (2°)

$$u_{*,2} = \frac{\kappa u_m}{\Psi_M}$$

$$H = \rho C_p (T_{wb} - T_m) \kappa u_{*,2} / \Psi_H, \quad E = \rho C_p (q_{wb} - q_m) \kappa u_{*,2} / \Psi_H$$

$$L = -\rho C_p T_m u_{*,2}^3 / (\kappa g H_v), \quad H_v = H + 0.61 (1 + 0.61 q_m) T_m C_p E$$

$$\zeta_2 = z_m / L$$
(3.14)

3.3 Transferência Turbulenta e Fluxos de Superfície

• condição de convergência

$$|\zeta - \zeta_2| < 0.01$$
 $|(u_* - u_{*,2})/u_{*,2}| < 0.01$

O conjunto de equações acima é calculado iterativamente até que a condição de convergência seja obtida

3.3 Transferência Turbulenta e Fluxos de Superfície

Finalmente, o fluxo de momento (τ_{wb}) e a resistência aerodinâmica (r_{aw}) entre a superfície da água e a altura de referência (z_m) são calculados a partir do resultado da velocidade de atrito e da função universal integrada.

$$\tau_{wb} = \rho u_*^2$$

$$r_{aw} = \frac{\Psi_H}{2} = \frac{\Psi_M \Psi_H}{2}$$
(3.15)

3.3 Transferência Turbulenta e Fluxos de Superfície

No caso da massa de água, o calor sensível e os fluxos de calor latentes vêm apenas da superfície da água.

Embora os **fluxos de superfície** já tenham sido calculados no processo de iteração acima:

Os fluxos são reescritos em uma formulação de resistência.

Observe que esses fluxos e radiação líquida (eq. (3.2)) dependem apenas de T_{wh} .

$$H_{wb} = \rho C_p \frac{T_{wb} - T_m}{r_{cm}} = A(T_{wb} - T_m)$$
 (3.17)

$$H_{wb} = \rho C_p \frac{T_{wb} - T_m}{r_{aw}} = A(T_{wb} - T_m)$$

$$\lambda E_{wb} = \frac{\rho C_p}{\gamma} \frac{e_*(T_{wb}) - e_m}{r_{aw}} = D[e_*(T_{wb}) - e_m]$$
(3.17)

$$Rn_{wb} = (F_{vb} + F_{nb})(1 - \alpha_b) + (F_{vd} + F_{nd})(1 - \alpha_d) + F_{td} - \varepsilon_w \sigma T_{wb}^4$$
 (3.2)

3.4 Variáveis Prognósticas e suas equações governantes

O modelo de massa de água é expresso pelo modelo de força-restauração, e as variáveis prognósticas do estado físico são de apenas duas temperaturas.

Uma é a temperatura da superfície da água (T_{wb}) , outra é a temperatura da água profunda (T_{dw}) , que é definida como o valor médio diário de Twb.

A T_{wb} mostra ciclo diurno e T_{dw} mostra ciclo sazonal.

$$\begin{split} C_{wb} \frac{\partial T_{wb}}{\partial t} &= Rn_{wb} - \beta F_{s,wb} - H_{wb} - \lambda E_{wb} - \omega C_{wb} (T_{wb} - T_{dw}) \\ C_{dw} \frac{\partial T_{dw}}{\partial t} &= Rn_{wb} - H_{wb} - \lambda E_{wb} \end{split}$$

Fig. 1. Schematic depiction of (bottom) temporal ranges and (top) sources of predictability for weather and climate prediction. The subseasonal

3.4 Variáveis Prognósticas e suas equações governantes

A maior parte da radiação de ondas curtas absorvida pelo corpo de água penetra no interior, e apenas uma

pequena parte é absorvida e usada pela camada superficial da pele.

Então, a <u>amplitude da variação diurna da temperatura</u> da superfície da água é muito menor do que a de <u>outras superfícies.</u>

Embora toda a radiação de ondas longas possa ser trocada com a superfície da água.

3.4 Prognostic variables and their governing equations

A energia de ondas curtas absorvidas é armazenada e usada sazonalmente.

O corpo de água absorve muita energia na primavera e no verão, e essa energia é liberada como calor latente (evaporação) na temporada de outono e inverno.

Fig. 1. Schematic depiction of (bottom) temporal ranges and (top) sources of predictability for weather and climate prediction. The subseasonal

Annual to

Climate projection

3.4 Prognostic variables and their governing equations

Então, as equações que regem as temperaturas no corpo d'água <u>são ligeiramente diferentes</u> das da área verde.

Neste modelo, introduzimos um parâmetro β. É definida como a proporção da energia radiativa de ondas curtas que é absorvida pelo corpo d'água e penetra na camada profunda.

Na equação prognóstica da temperatura da superfície (eq. (3.19)), essa proporção de energia de ondas curtas absorvida é subtraída da radiação líquida (Rn_{wb}).

3.4 Variáveis Prognósticas e suas equações governantes

As equações que regem as temperaturas são expressas da seguinte forma.

$$C_{wb}\frac{\partial T_{wb}}{\partial t} = Rn_{wb} - \beta F_{s,wb} - H_{wb} - \lambda E_{wb} - \omega C_{wb}(T_{wb} - T_{dw})$$
(3.19)

$$C_{dw} \frac{\partial T_{dw}}{\partial t} = Rn_{wb} - H_{wb} - \lambda E_{wb} \tag{3.20}$$

Além das propriedades térmicas, como calor específico (c_w) e condutividade térmica (k_w): Quatro parâmetros são preparados para reproduzir adequadamente as características do balanço de energia e radiação.

- effective depth (Z_s)
- short-wave radiation penetration factor (β)
- minimum albedo (α_1)
- factor of albedo and μ relationship (α₂)

3.4 Variáveis Prognósticas e suas equações governantes

A amplitude e a fase do ciclo sazonal de temperatura são altamente dependentes da profundidade do corpo d'água.

Para levar em conta o efeito da profundidade da água, a profundidade efetiva (Z_s) é introduzida no cálculo da capacidade térmica efetiva (eq. (3.21)) Z_S não significa a profundidade real da massa de água.

Se olharmos para a eq. (3.22), Z_S deve ser igual ou menor que $\frac{1}{\sqrt{365}}$ da profundidade média da água.

$$C_{wb} = c_w Z_s + \sqrt{k_w c_w/2\omega}$$

$$C_{dw} = \sqrt{365} C_{wb}$$

$$(3.21)$$

$$C_{dw} = \sqrt{365}C_{wb} \tag{3.22}$$

k_w	thermal conductivity $(=0.6)$	$W m^{-1} K^{-1}$
c_w	specific heat of water (= 4.18×10^6)	${ m J} \ { m m}^{-3} { m K}^{-1}$
ω	angular frequency of diurnal cycle $(2\pi/86400)$	s^{-1}

3.4 Variáveis Prognósticas e suas equações governantes

Os fluxos de energia são funções explícitas das condições de contorno atmosférico, variável prognóstica e

resistência aerodinâmica.

As equações prognósticas são resolvidas por um método implícito backward, usando derivadas parciais de cada termo.

3.4 Variáveis Prognósticas e suas equações governantes

Primeiro, considerando que os fluxos de energia nas equações prognósticas são funções da temperatura.

$$C_{wb} \frac{\partial T_{wb}}{\partial t} = Rn_{wb} - \beta F_{s,wb} - H_{wb} - \lambda E_{wb} - \omega C_{wb} (T_{wb} - T_{dw})$$

$$C_{dw} \frac{\partial T_{dw}}{\partial t} = Rn_{wb} - H_{wb} - \lambda E_{wb}$$

$$(3.19)$$

$$C_{dw} \frac{\partial T_{dw}}{\partial t} = Rn_{wb} - H_{wb} - \lambda E_{wb} \tag{3.20}$$

Em seguida, as equações prognósticas são expressas na forma de diferenciação explícita backward e um conjunto de equações lineares simultâneas relacionadas às mudanças de temperatura ao longo de um intervalo de tempo (Δt) é obtido.

3.4 Variáveis Prognósticas e suas equações governantes

Não apenas os fluxos de energia, mas também o termo de troca de calor (termo de restauração) dependem das temperaturas.

Agora, as equações prognósticas podem ser escritas em forma de tempo discreto.

$$C_{wb} \frac{\partial T_{wb}}{\partial t} = Rn_{wb} - \beta F_{s,wb} - H_{wb} - \lambda E_{wb} - \omega C_{wb} (T_{wb} - T_{dw})$$

$$C_{dw} \frac{\partial T_{dw}}{\partial t} = Rn_{wb} - H_{wb} - \lambda E_{wb}$$

$$(3.19)$$

$$C_{dw} \frac{\partial T_{dw}}{\partial t} = R n_{wb} - H_{wb} - \lambda E_{wb} \tag{3.20}$$

$$C_{wb} \frac{\Delta T_{wb}}{\Delta t} = Rn_{wb} - \beta F_{s,wb} - H_{wb} - \lambda E_{wb} - \omega C_{wb} (T_{wb} - T_{dw})$$

$$+ \frac{\partial Rn_{wb}}{\partial T_{wb}} \Delta T_{wb} - \frac{\partial H_{wb}}{\partial T_{wb}} \Delta T_{wb} - \frac{\partial \lambda E_{wb}}{\partial T_{wb}} \Delta T_{wb} - \omega C_{wb} (\Delta T_{wb} - \Delta T_{dw}) \quad (3.23)$$

$$C_{dw} \frac{\Delta T_{dw}}{\Delta t} = Rn_{wb} - H_{wb} - \lambda E_{wb} + \frac{\partial Rn_{wb}}{\partial T_{wb}} \Delta T_{wb} - \frac{\partial H_{wb}}{\partial T_{wb}} \Delta T_{wb} - \frac{\partial \lambda E_{wb}}{\partial T_{wb}} \Delta T_{wb} \quad (3.24)$$

3.4 Variáveis Prognósticas e suas equações governantes

Se estiver escrito em forma de matriz,

$$C_{wb} \frac{\Delta T_{wb}}{\Delta t} = Rn_{wb} - \beta F_{s,wb} - H_{wb} - \lambda E_{wb} - \omega C_{wb} (T_{wb} - T_{dw})$$

$$+ \frac{\partial Rn_{wb}}{\partial T_{wb}} \Delta T_{wb} - \frac{\partial H_{wb}}{\partial T_{wb}} \Delta T_{wb} - \frac{\partial \lambda E_{wb}}{\partial T_{wb}} \Delta T_{wb} - \omega C_{wb} (\Delta T_{wb} - \Delta T_{dw}) \quad (3.23)$$

$$C_{dw} \frac{\Delta T_{dw}}{\Delta t} = Rn_{wb} - H_{wb} - \lambda E_{wb} + \frac{\partial Rn_{wb}}{\partial T_{wb}} \Delta T_{wb} - \frac{\partial H_{wb}}{\partial T_{wb}} \Delta T_{wb} - \frac{\partial \lambda E_{wb}}{\partial T_{wb}} \Delta T_{wb} \quad (3.24)$$

$$KX = Y \longrightarrow X = K^{-1}Y$$

$$K = \begin{bmatrix} \frac{C_{wb}}{\Delta t} - \frac{\partial Rn_{wb}}{\partial T_{wb}} + \frac{\partial H_{wb}}{\partial T_{wb}} + \frac{\partial \lambda E_{wb}}{\partial T_{wb}} + \omega C_{wb} & \omega C_{wb} \\ -\frac{\partial Rn_{wb}}{\partial T_{wb}} + \frac{\partial H_{wb}}{\partial T_{wb}} + \frac{\partial \lambda E_{wb}}{\partial T_{wb}} & \frac{C_{dw}}{\Delta t} \end{bmatrix} \qquad X = \begin{bmatrix} \Delta T_{wb} \\ \Delta T_{dw} \end{bmatrix}$$

$$Y = \begin{bmatrix} Rn_{wb} - \beta F_{s,wb} - H_{wb} - \lambda E_{wb} - \omega C_{wb} (T_{wb} - T_{dw}) \\ Rn_{wb} - H_{wb} - \lambda E_{wb} \end{bmatrix}$$

3.4 Variáveis Prognósticas e suas equações governantes

As equações acima podem ser resolvidas em termos de mudanças de temperatura (ΔT_{wb} , ΔT_{dw}).

Cada temperatura é atualizada para o valor no tempo $t_0 + \Delta t$ adicionando alterações de temperatura ao valor inicial no tempo t_0 .

Além disso, os fluxos de energia são modificados para mostrar os valores médios ao longo de um intervalo de tempo (entre o tempo t_0 e o tempo $t_0 + \Delta t$).

$$Rn'_{wb} = Rn_{wb} + \frac{1}{2} \frac{\partial Rn_{wb}}{\partial T_{wb}} \Delta T_{wb}$$
 (3.25)

$$H'_{wb} = H_{wb} + \frac{1}{2} \frac{\partial H_{wb}}{\partial T_{wb}} \Delta T_{wb}$$
(3.26)

$$\lambda E'_{wb} = \lambda E_{wb} + \frac{1}{2} \frac{\partial \lambda E_{wb}}{\partial T_{wb}} \Delta T_{wb}$$
 (3.27)

3.4 Variáveis Prognósticas e suas equações governantes

De acordo com a eq. (3.2), (3.17), (3.18), derivadas parciais dos fluxos de energia são expressas da seguinte forma.

$$H_{wb} = \rho C_p \frac{T_{wb} - T_m}{r_{aw}} = A(T_{wb} - T_m)$$

$$\lambda E_{wb} = \frac{\rho C_p}{\gamma} \frac{e_*(T_{wb}) - e_m}{r_{aw}} = D[e_*(T_{wb}) - e_m]$$

$$Rn_{wb} = (F_{vb} + F_{nb})(1 - \alpha_b) + (F_{vd} + F_{nd})(1 - \alpha_d) + F_{td} - \varepsilon_w \sigma T_{wb}^4$$
(3.22)

$$\frac{\partial R n_{wb}}{\partial T_{wb}} = -4\sigma \varepsilon_w T_{wb}^3 \qquad (3.28)$$

$$\frac{\partial H_{wb}}{\partial T_{wb}} = \frac{\rho_a C_p}{r_{aw}} \qquad (3.29)$$

$$\frac{\partial \lambda E_{wb}}{\partial T_{wb}} = \frac{\rho C_p}{\gamma} \frac{e'_*(T_{wb})}{r_{aw}} \qquad (3.30)$$

3.4 Variáveis Prognósticas e suas equações governantes

Tabelas de constantes

Table A.1: List of physical constants

symbol	definition	unit
λ	latent heat of vaporization	$ m J~kg^{-1}$
c_w	specific heat of water (= 4.18×10^6)	${ m J} \ { m m}^{-3} { m K}^{-1}$
k_w	thermal conductivity $(=0.6)$	$W m^{-1}K^{-1}$
ε_w	emissivity of water $(=0.97)$	
σ	Stephan-Boltsman constant (= 5.6698×10^{-8})	${ m Wm^{-2}K^{-4}}$
ρ	density of air $(= 1.2)$	$ m kg~m^{-3}$
$ ho_w$	density of water (=1000)	$ m kg~m^{-3}$
C_p	specific heat of air $(= 1010)$	$\rm J \ kg^{-1}K^{-1}$
γ	psychrometric constant $(= 0.662)$	$\mathrm{mb}~\mathrm{K}^{-1}$
ω	angular frequency of diurnal cycle $(2\pi/86400)$	s^{-1}
κ	von Karman's constant $(=0.4)$	
g	gravity accerelation $(= 9.8)$	${ m m~s^{-2}}$

4 Green area model 35	
4.1 Brief description of SiB model	. 37
4.1.1 Model philosophy	
4.1.2 Structure of the SiB	
4.1.3 Atmospheric boundary conditions for SiB	38
4.1.4 Prognostic physical-state variables of SiB	39
4.2 Structure of the green area model	39
4.3 Prognostic equations of the green area model	4
4.3.1 Governing equations for temperatures	41
4.3.2 Governing equations for intercepted water	42
4.3.3 Governing equations for soil moisture stores	43
4.4 Radiative transfer (two-stream approximation)	44
4.5 Turbulent transfer and aerodynamic resistances	47
4.5.1 Above the transition layer $(zt \le z \le zm)$	47
4.5.2 Within the transition layer $(z2 \le z \le zt)$	48
4.5.3 Within the canopy air space (CAS) $(z1 \le z \le z2) \dots$	48
4.5.4 Below the canopy $(zs \le z \le z1)$	
4.5.5 Solution of momentum transfer equation set	
4.5.6 Aerodynamic resistances	
4.6 Surface resistances	-
4.7 Sensible and latent heat fluxes	52
4.8 Numerical solution of prognostic equations	54