Σπύρος Φρονιμός - Μαθηματικός

⊠ : spyrosfronimos@gmail.com | ☐ : 6932327283 - 6974532090

ΣΗΜΕΙΩΣΕΙΣ ΜΑΘΗΜΑΤΟΣ - ΟΡΙΣΜΟΙ ΚΑΙ ΘΕΩΡΗΜΑΤΑ ${\bf 10~\Delta εκεμβρίου~2015}$

ΑΛΓΕΒΡΑ Α΄ ΛΥΚΕΙΟΥ

Σύνολα - Πιθανότητες

Η ΕΝΝΟΙΑ ΤΟΥ ΣΥΝΟΛΟΥ

ΟΡΙΣΜΟΙ

ΟΡΙΣΜΟΣ 1: ΣΥΝΟΛΟ

Σύνολο ονομάζεται μια συλλογή όμοιων αντικειμένων, τα οποία είναι καλά ορισμένα και διακριτά μεταξύ τους.

- Τα αντικείμενα ενός συνόλου ονομάζονται στοιχεία.
- Τα σύνολα τα συμβολίζουμε με ένα κεφαλαίο γράμμα.

ΒΑΣΙΚΑ ΣΥΝΟΛΑ ΑΡΙΘΜΩΝ

- 1. Φυσικοί Αριθμοί : Το σύνολο των αριθμών από το 0 εως το άπειρο όπου κάθε αριθμός έχει διαφορά μιας μονάδας από τον προηγούμενο. Συμβολίζεται με $\mathbb N$ και είναι : $\mathbb N=\{0,1,2,\ldots\}$.
- **2.** Ακέραιοι Αριθμοί : Το σύνολο των φυσικών αριθμών μαζί με τους αντίθετους τους. Συμβολίζεται με \mathbb{Z} και είναι : $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$.
- 3. Ρητοί Αριθμοί : Όλοι οι αριθμοί που μπορούν να γραφτούν με τη μορφή κλάσματος με ακέραιους όρους. Συμβολίζεται με $\mathbb Q$ και είναι : $\mathbb Q = \left\{ \frac{a}{\beta} \middle| a, \beta \in \mathbb Z, \beta \neq 0 \right\}$.
- **4. Άρρητοι Αριθμοί**: Κάθε αριθμός ο οποίος δεν είναι ρητός. Κατά κύριο λόγο, άρρητοι αριθμοί είναι οι ρίζες που δεν έχουν ρητό αποτέλεσμα, ο αριθμός π κ.τ.λ.
- 5. Πραγματικοί Αριθμοί: Οι ρητοί μαζί με το σύνολο των άρρητων μας δίνουν τους πραγματικούς αριθμούς, όλους τους αριθμούς που γνωρίζουμε. Συμβολίζεται με \mathbb{R} και είναι : $\mathbb{R} = \{$ όλοι οι αριθμοί $\}$.

Τα παραπάνω σύνολα χωρίς το μηδενικό τους στοιχείο συμβολίζονται αντίστοιχα με \mathbb{N}^* , \mathbb{Z}^* , \mathbb{Q}^* , \mathbb{R}^* .

ΟΡΙΣΜΟΣ 2: ΙΣΑ ΣΥΝΟΛΑ

Ίσα ονομάζονται δύο σύνολα A,B τα οποία έχουν ακριβώς τα ίδια στοιχεία. Ισοδύναμα, τα σύνολα , λέγονται ίσα εαν ισχύουν οι σχέσεις :

- 1. Κάθε στοιχείο του A είναι και στοιχείο του B
- 2. Κάθε στοιχείο του B είναι και στοιχείο του A.

ΟΡΙΣΜΟΣ 3: ΥΠΟΣΥΝΟΛΟ

Ένα σύνολο A λέγεται υποσύνολο ενός συνόλου B όταν κάθε στοιχείο του A είναι και στοιχείο του B. Συμβολίζεται με τη χρήση του συμβόλου \subseteq ως εξής :

$$A \subseteq B$$

ΟΡΙΣΜΟΣ 4: ΚΕΝΟ ΣΥΝΟΛΟ

Κενό ονομάζεται το σύνολο που δεν έχει κανένα στοιχείο. Συμβολίζεται με \emptyset ή $\{\}$.

ΟΡΙΣΜΟΣ 5: ΒΑΣΙΚΟ ΣΥΝΟΛΟ

Βασικό ονομάζεται το σύνολο το οποίο περιέχει όλα τα στοιχεία που μπορούμε να επιλέξουμε, από τα οποία φτιάχνουμε άλλα σύνολα. Συμβολίζεται με Ω .

ΟΡΙΣΜΟΣ 6: ΠΡΑΞΕΙΣ ΜΕΤΑΞΥ ΣΥΝΟΛΩΝ

1. Ένωση

Ένωση δύο υποσυνόλων A,B ενός βασικού συνόλου Ω ονομάζεται το σύνολο των στοιχείων του Ω τα οποία ανήκουν σε τουλάχιστον ένα από τα σύνολα A και B. Συμβολίζεται με $A \cup B$.

$$A \cup B = \{x \in \Omega \mid x \in A \ \eta \ x \in B \}$$

Η ένωση των συνόλων A και B περιέχει τα κοινά και μή κοινά στοιχεία των δύο συνόλων. Τα κοινά στοιχεία αναγράφονται μια φορά.

2. Τομή

Τομή δύο υποσυνόλων A, B ενός βασικού συνόλου Ω ονομάζεται το σύνολο των στοιχείων του Ω τα οποία ανήκουν και στα δύο σύνολα A και B. Συμβολίζεται με $A\cap B$.

$$A \cap B = \{x \in \Omega \mid x \in A \text{ kal } x \in B\}$$

Η τομή των συνόλων Α και Β περιέχει μόνο τα κοινά στοιχεία των δύο συνόλων.

3. Συμπλήρωμα

Συμπλήρωμα ενός συνόλου A ονομάζεται το σύνολο των στοιχείων του βασικού συνόλου Ω τα οποία **δεν** ανήκουν στο σύνολο A. Συμβολίζεται με A'.

$$A' = \{ x \in \Omega \mid x \notin A \}$$

Ονομάζεται συμπλήρωμα του γιατί η ένωσή του με το σύνολο αυτό μας δίνει το βασικό σύνολο Ω .

4. Διαφορά

Διαφορά ενός συνόλου B από ένα σύνολο A ονομάζεται το σύνολο των στοιχείων του βασικού συνόλου Ω τα οποία ανήκουν μόνο στο σύνολο A, το πρώτο σύνολο της διαφοράς. Συμβολίζεται με A-B.

$$A - B = \{x \in \Omega \mid x \in A \text{ kal } x \notin B\}$$

ΘΕΩΡΗΜΑΤΑ

ΘΕΩΡΗΜΑ 1: ΙΔΙΟΤΗΤΕΣ ΥΠΟΣΥΝΟΛΟΥ

Για οποιαδήποτε σύνολα Α, Β, Γ ισχύουν οι ακόλουθες ιδιότητες που αφορούν τη σχέση του υποσυνόλου :

- i. Για κάθε σύνολο A ισχύει : $A \subseteq A$.
- ii. Αν $A \subseteq B$ και $B \subseteq \Gamma$ τότε $A \subseteq \Gamma$.
- iii. Αν $A \subseteq B$ και $B \subseteq A$ τότε A = B.