MATH703: Martingales et Chaînes de Markov

Contrôle continu nº 2

Documents autorisés : notes de cours, table des lois usuelles

Jeudi 21 décembre 2017.

Exercice 1. Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans $\{0,1\}$ de matrice de transition

$$P = \begin{pmatrix} 1/2 & 1/2 \\ 3/4 & 1/4 \end{pmatrix}.$$

La loi de X_0 est donnée par $\mu = \begin{pmatrix} 1/3 & 2/3 \end{pmatrix}$.

- 1. Déterminer la loi de X_1 , puis celle de X_2 .
- 2. Préciser les valeurs de $\mathbb{P}_0(X_1=0)$ et de $\mathbb{P}_0(X_2=0)$.
- 3. La chaîne est-elle irréductible? apériodique?
- 4. Calculer $\mathbb{E}_1[X_1]$.

Exercice 2. Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans $E=\{1,2,3,4\}$ de matrice de transition

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/2 & 0 & 1/2 & 0 \\ 1/2 & 0 & 0 & 1/2 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

- 1. Montrer que la chaîne est irréductible récurrente positive.
- 2. Déterminer la probabilité invariante.
- 3. Quelles sont les limites presque sûres de

$$\frac{1}{n}\sum_{k=0}^{n-1}X_k, \qquad \frac{1}{n}\sum_{k=0}^{n-1}X_k^2$$
?

4. Que vaut $\mathbb{E}_3[S_3]$ où $S_3 = \inf\{n \ge 1 : S_n = 3\}$.

Exercice 3. Soient $p \in]0,1[$ et $(U_n)_{n\geq 0}$ des variables aléatoires indépendantes et identiquement distribuées suivant la loi $\mathbb{P}(U_0=1)=p, \ \mathbb{P}(U_0=-1)=1-p.$ On note, pour tout entier $n\geq 0$,

$$X_n = U_0 \times U_1 \times \ldots \times U_n$$
.

Montrer que $(X_n)_{n\geq 0}$ est une chaîne de Markov à valeurs dans $\{-1,1\}$ dont on précisera la matrice de transition.

Exercice 4 (Le collectionneur). Chaque paquet de céréales de marque TRUC contient en cadeau un autocollant pris au hasard parmi m autocollants différents. Le problème est de savoir combien de paquets de céréales N sont nécessaires en moyenne pour obtenir la collection complète des autocollants.

On note X_n le nombre d'autocollants distincts obtenus après l'achat de n paquets.

- 1. Montrer que $(X_n)_{n\geq 0}$ est une chaîne de Markov homogène dont on précisera la matrice de transition.
- 2. Calculer $\mathbb{E}[N]$. On pourra remarquer que $N=T_m=\inf\{n\geq 0: X_n=m\}$ et considérer, pour $x\in\{0,\ldots,m\}$, $u(x)=\mathbb{E}_x[T_m]$.