

(11)Publication number:

2001-187390

(43) Date of publication of application: 10.07.2001

(51)Int.CI.

CO2F 1/72 B01J 19/08 B01J 21/06 B01J 35/02 C01B 13/11 CO2F

(21)Application number: 11-373649

(71)Applicant : DAIDO STEEL CO LTD

JAPAN FINE CERAMICS CENTER

YAMAUCHI GORO

(22)Date of filing:

28.12.1999

(72)Inventor: HAYASHI YUJI

YANAGIDA HIROAKI

YAMAUCHI GORO

IRIE KANJI

(54) PROCESS AND DEVICE FOR PURIFYING LIQUID

(57)Abstract:

PROBLEM TO BE SOLVED: To provide liquid purification device which is capable of further enhancing purification efficiency of a liquid by a synergistic effect of a plasma effect and a photocatalytic effect. SOLUTION: This purification device is provided with: one electrode 13 having a photocatalyst layer 13C formed on the surface; another electrode 12 placed opposite to the electrode 13; and a purifying gaseous raw material supply flow passage 15 for generating a plasma P between these opposite electrodes 12 and 13 and concurrently, supplying a purifying gaseous raw material into the plasma P to form the purifying gaseous raw material into another plasma. This process comprises: supplying the purifying gaseous raw material to the plasma P to allow the gaseous raw material to flow into the plasma P; thereby forming the purifying gaseous raw material containing oxygen and/or water into a plasma, to form ozone and OH radical by chemical excitation due to this plasma formation, concurrently, to allow a photocatalytic

reaction to efficiently proceed by light due to light emission from this plasma and accordingly, to promote the formation of ozone and OH radical from oxygen and/or water in the purifying gaseous raw material; and then, allowing the formed ozone and OH radical to flow into a contaminated liquid through a purifying gas supply flow passage 16 to efficiently perform purification of the contaminated liquid.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examer's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(51) Int.Cl.7

(12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-187390 (P2001-187390A)

テーマコート*(参考)

最終頁に続く

(43)公開日 平成13年7月10日(2001.7.10)

東京都八王子市みつい台1-10-13

東京都稲城市向陽台4-3-2-1106

東京都調布市佐須町1-3-19

(72) 発明者 林 佑 二

(72) 発明者 柳 田 博 明

C 0 2 F	1/72		C 0 2 F	1/72			Z	4D050	
B01J	19/08		B01J	19/08			Н	4G042	
	21/06			21/06			M	4G069	
	35/02			35/02			J	4G075	
C 0 1 B	13/11		C 0 1 B	13/11			J		
		審查請	求 未請求 請求	ママス マスタイプ マスティス マスティス アイス アイス アイス アイス アイス アイス アイス アイス アイス アイ	OL	(全	6 頁)	最終頁に続く	
(21)出願番号		特顧平11-373649	(71)出顧	(71)出顧人 000003713 大同特殊網株式会社					
(22)出顧日		平成11年12月28日 (1999. 12. 28)	(71)出顧	愛知県名古屋市中区錦一丁目11番18号 (71)出顧人 000173522 財団法人ファインセラミックスセンター 愛知県名古屋市熱田区六野2丁目4番1号					
			(71) 出願		581 五郎				

FΙ

(54) 【発明の名称】 液体の浄化方法および液体の浄化装置

識別記号

(57)【要約】

【課題】 プラズマ作用と光触媒作用との相乗的作用により、液体の浄化効率をより一層高めることが可能である液体の浄化装置を提供する。

【解決手段】 光触媒層13Cが形成された一方の電極13と、これに対向する他方の電極12を有し、これら対向電極12,13の間でプラズマPを生じさせると共にプラズマP中に浄化原料ガスを送給してプラズマ化する浄化原料ガス送給流路15を備え、プラズマP中に浄化原料ガスを送給して流し、酸素や水を含む浄化原料ガスのプラズマ化により化学励起させてオゾンやOHラジカルを生成すると共にプラズマの発光に起因する光により光触媒反応を効率良く進行させて浄化原料ガス中の酸素や水からのオゾン生成やOHラジカル生成を促進し、オゾンやOHラジカルを浄化用ガス送給流路16を介し汚染液体中に流してその浄化を効率良く行う液体の浄化装置1。

【特許請求の範囲】

【請求項1】 少なくとも一方を光触媒処理した電極の間でプラズマを生じさせ、前記プラズマ中に酸素や水を含む浄化原料ガスを流し、前記酸素や水を前記浄化原料ガスのプラズマ化により化学励起させてオゾンやOHラジカルを生成すると共に、前記プラズマの発光に起因する光により光触媒反応を効率良く進行させて前記浄化原料ガス中の酸素や水からのオゾン生成やOHラジカル生成を促進し、前記オゾンやOHラジカルを汚染液体中に流してその浄化を行うことを特徴とする液体の浄化方法。

【請求項2】 浄化原料ガスは水分を含む空気であり、 液体は汚染された水であることを特徴とする請求項1に 記載の液体の浄化方法。

【請求項3】 少なくとも一方が光触媒処理された電極と、前記電極の間でプラズマを生じさせる電源と、前記プラズマ中に酸素や水を含む浄化原料ガスを流してプラズマ化する浄化原料ガス送給流路と、浄化原料ガスのプラズマ化により生成したオゾンやOHラジカルを汚染液体中に流出するバルブを備えたことを特徴とする液体の浄化装置。

【請求項4】 浄化原料ガスは水分を含む空気であり、 液体は汚染された水であることを特徴とする請求項3に 記載の液体の浄化装置。

【請求項5】 光触媒処理された電極は、光触媒として TiO2を有していることを特徴とする請求項3または 4に記載の液体の浄化装置。

【請求項6】 光触媒処理した電極は、Tiと前記Tiよりも酸化傾向の小さい金属とを合金化させて合金中のTiのみを選択酸化することによりその一部に光触媒性TiO2を形成したものである請求項5に記載の液体の浄化装置。

【請求項7】 電極は、対向配置した中心電極と外部電極と光触媒処理したリング電極をそなえ、対向電極間の少なくとも一部でプラズマを生じさせることを特徴とする請求項3ないし6のいずれかに記載の液体の浄化装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、水分を含む空気などを原料としてオゾンやOHラジカルを生成させ、このオゾンやOHラジカルによって水などの液体の浄化を効率良く行うのに適した液体の浄化方法および液体の浄化装置に関するものである。

[0002]

【従来の技術】従来、水などの液体の浄化を行うに際しては、オゾン(O3)を使用するのが一般的である。

【0003】このオゾンは、図5に示すように、空気中で無声放電することによって製造されており、空気の代わりに酸素を原料とした場合には設備費および電力費と

も40~50%節減することができる。

【0004】このようにして得られたオゾンは、上水道の殺菌、廃水処理、香料の合成、脱臭などの用途に適用される。

[0005]

【発明が解決しようとする課題】このようなオゾンは、酸化力が強く、殺菌ないしは滅菌作用にすぐれているものの、非常に分解しやすいため、貯蔵が困難であり、安定した作業がむつかしいという問題点があった。

10 [0006]

【発明の目的】本発明は、このような従来の課題にかんがみてなされたものであって、汚染された水などの液体を浄化するにあたり、オゾンやOHラジカルを用いてより一層効率良く行えるようにすることを目的としている。

[0007]

20

30

【課題を解決するための手段】本発明に係わる液体の浄化方法は、請求項1に記載しているように、少なくとも一方を光触媒処理した電極の間でプラズマを生じさせ、前記プラズマ中に酸素や水を含む浄化原料ガスを流し、前記酸素や水を前記浄化原料ガスのプラズマ化により化学励起させてオゾンやOHラジカルを生成すると共に、前記プラズマの発光に起因する光により光触媒反応を効率良く進行させて前記浄化原料ガス中の酸素や水からのオゾン生成やOHラジカル生成を促進し、前記オゾンやOHラジカルを汚染液体中に流してその浄化を行うようにしたことを特徴としている。

【0008】そして、本発明に係わる液体の浄化方法に おいては、請求項2に記載しているように、浄化原料ガ スは水分を含む空気であり、液体は汚染された水である ものとすることができる。

【0009】本発明に係わる液体の浄化装置は、請求項3に記載しているように、少なくとも一方が光触媒処理された電極と、前記電極の間でプラズマを生じさせる電源と、前記プラズマ中に酸素や水を含む浄化原料ガスを流してプラズマ化する浄化原料ガス送給流路と、浄化原料ガスのプラズマ化により生成したオゾンやOHラジカルを汚染液体中に流出するバルブを備えた構成としたことを特徴としている。

10 【0010】そして、本発明に係わる液体の浄化装置においては、請求項4に記載しているように、浄化原料ガスは水分を含む空気であり、液体は汚染された水であるものとすることができる。

【0011】同じく、本発明に係わる液体の浄化装置においては、請求項5に記載しているように、光触媒処理された電極は、光触媒としてTiO2を有しているものとすることができ、この場合に、請求項6に記載しているように、光触媒処理した電極は、Tiと前記Tiよりも酸化傾向の小さい(酸素との親和力が弱い)金属とを50 合金化させて合金中のTiのみを選択酸化することによ

りその一部に光触媒性TiO2を形成したものとするこ とができる。

【0012】同じく、本発明に係わる液体の浄化装置に おいては、請求項7に記載しているように、電極は、対 向配置した中心電極と外部電極と光触媒処理したリング 電極をそなえ、対向電極間の少なくとも一部でプラズマ を生じさせるものとすることができる。

[0013]

【発明の実施の形態】本発明に係わる液体の浄化方法 は、少なくとも一方を光触媒処理した電極の間でプラズ マを生じさせ、前記プラズマ中に酸素や水を含む浄化原 料ガスを流し、前記酸素や水を前記浄化原料ガスのプラ ズマ化により化学励起させてオゾンやOHラジカルを生 成すると共に、前記プラズマの発光に起因する光により 光触媒反応を効率良く進行させて前記浄化原料ガス中の 酸素や水からのオゾン生成やOHラジカル生成を促進 し、前記生成されたオゾンやOHラジカルを汚染液体中 に流してその浄化を行うようにしたものであり、このよ うな液体の浄化方法を実施するための液体の浄化装置と しては、少なくとも一方が光触媒処理された電極と、前 記電極の間でプラズマを生じさせる電源と、前記プラズ マ中に酸素や水を含む浄化原料ガスを流してプラズマ化 する浄化原料ガス送給流路と、浄化原料ガスのプラズマ 化により生成したオゾンやOHラジカルを汚染液体中に 流出するバルブを備えたものとすることができ、プラズ マと光触媒を時空間的に共存させ、常温・常圧下でプラ ズマの作用と光触媒の作用との相乗的作用によって高効 率での処理が可能である液体の浄化装置とすることがで きる。

【0014】そして、本発明の実施態様においては、例 えば、図1に示すように、上部のみを示す外壁W内にお いて、少なくとも一方を光触媒処理した対向電極(中心 有孔電極Eoと、外部電極Eiと、電極本体E上に光触 媒層Cをそなえた有孔リング電極E2) のうち少なく とも一部の間でプラズマPを生じさせ、前記プラズマP 中に酸素や水を含む浄化原料ガスを導入弁Vュを介して 流入させ、前記酸素や水を前記浄化原料ガスのプラズマ 化により化学励起させてオゾンやOHラジカルを生成す ると共に、前記プラズマの発光に起因する光により光触 媒層Cによる光触媒反応を効率良く進行させて前記浄化 原料ガス中の酸素や水からのオゾン生成やOHラジカル 生成を促進し、前記生成したオゾンやOHラジカルを排 出弁V2を介して例えば間欠的に排出するようにし、液 体中でOH-を生成させて水質の浄化を行うものとする ことができる。

【0015】本発明に係わる液体の浄化方法および液体 の浄化装置において、浄化原料ガスはオゾンやOHラジ カルの生成源となる水分を含む空気であるものとし、汚 染液体は汚染された水であるものとすることができる。

してTiO2を有しているものとすることができ、この 場合に、光触媒処理した電極は、Tiと前記Tiよりも 酸化傾向の小さい金属(例えばNi)とを合金化させて 合金中のTiのみを酸化させることにより光触媒性Ti O2、例えばアナターゼ型TiO2を形成したものとす ることができる。このとき、Ti量は0.01~30a t%が好適であり、図2に示すように光触媒性TiO2 をNi-Ti系合金の表面または内部に層状ないしは粒 子状に形成したものであるようになすことが可能であっ て、このような光触媒は波長が400mm以下の紫外線 の光励起で触媒活性を発揮するものとなり、プラズマか らの発光により励起された光触媒によるオゾンやOHラ ジカルの生成が促進されるものとなる。

【0017】そしてまた、電極は、対向配置した内筒電 極と外筒電極をそなえ、内筒電極の外周と外筒電極の内 周との間でプラズマを生じさせると共に、相互に固定な いしは相対回転可能としたものであるようにしたり、あ るいはまた、対向電極は、対向配置したディスク電極を そなえ、対向配置したディスク電極の対向面間でプラズ マを生じさせると共に、相互に固定ないしは相対回転可 能としたものであるようにしたり、さらにまた、電極 は、対向配置した中心電極と外部電極と光触媒処理した リング電極をそなえ、対向電極間の少なくとも一部でプ ラズマを生じさせるものとしたりすることができる。

[0018]

【実施例】以下、本発明の実施例について説明するが、 本発明はこのような実施例のみに限定されないことはい うまでもない。

【0019】 (実施例1) 図3は本発明による液体の浄 化装置の第1実施例を示すものであって、この図3に示 30 す液体の浄化装置11は、対向配置した一方の電極であ る内筒電極12と他方の電極である外筒電極13をそな え、内筒電極12および外筒電極13が共に固定設置し たものとなっている。

【0020】そして、外筒電極13は電極本体部の内側 に光触媒層としてアナターゼ型TiO2層13Cを有し ているものとなっている。

【0021】さらに、内筒電極12と外筒電極13との 間には高圧電源が接続してあると共に外筒電極13を支 持しているガラス管14の両端にそれぞれ浄化原料ガス 送給流路15と浄化用ガス送給流路16とをそなえたも のとなっている。

【0022】このような構成をもつ液体の浄化装置11 において、内筒電極12と外筒電極13との間に高圧電 源により高電圧を印加すると、この内筒電極12の外周 と外筒電極13の内周との間でかつガラス管24の内部 でプラズマPが発生する。

【0023】この状態において、浄化原料ガス送給流路 15より浄化原料ガスとして水分を含む空気を送給する 【0016】また、光触媒処理された電極は、光触媒と 50 と、プラズマPにおいて浄化原料ガスである空気がプラ

ズマ化することにより、オゾンやOHラジカルが生成される。このとき、プラズマの発光に起因する光によって外筒電極13の内周面(TiO_2 層13C)上で光触媒反応が効率良く進行することにより浄化原料ガス中の酸素や水からのオゾン生成やOHラジカル生成が促進されることとなる。

【0024】そして、ここで生成されたオゾンやOHラジカルは、浄化用ガス送給流路16を介して適宜(例えば、バルブ16V等により間欠的に)汚染液体中に送給され、水などの汚染液体の浄化に供されることとなる。【0025】(実施例2)図4は本発明の第2実施例を示すものであって、この図4に示す液体の浄化装置21は、水道管21Pの内部でガラス管21Gが同心状態で設けてあり、このガラス管21Gの内側の一部には一方の電極である中心電極22が設けてあると共に、ガラス管21Gの外側の一部には他方の電極である有孔外部電極23が設けてあり、さらには水道管21Pの内側の一部には同じく他方の電極である光触媒分散リング電極24が設けてあって、中心電極22と有孔外部電極23との間には高圧電源が接続してある。

【0026】また、ガラス管21Gの図示右側部分には分岐した二つの空気導入部(浄化原料ガス送給流路)25A,25Bが設けてあると共に、ガラス管21Gの図示左側部分には浄化用ガス送給流路26およびガス放出用電磁弁26Vが設けてあり、このガス放出用電磁弁26Vの近傍にある水道管21Pの外周部分には電磁弁駆動コイル27が設けてある。

【0027】このような構成をもつ液体の浄化装置21において、中心電極22と有孔外部電極23との間に高圧電源により高電圧を印加すると、この中心電極22と有孔外部電極23との間でかつガラス管21Gの内部においてプラズマPが発生する。

【0028】この状態において、空気導入部である浄化原料ガス送給流路25A,25Bから水分を含む空気が導入されると、前記プラズマ中において水分を含む空気がプラズマ化することにより化学励起されてオゾンやOHラジカルが発生する。

【0029】そして、このオゾンやOHラジカルは浄化 用ガス送給流路26に流れ、ガス放出用電磁弁駆動コイル27の駆動によりガス放出用電磁弁26Vが開くこと により水中に間欠的に放出され、汚染された水の浄化に 作用するものとなる。

【0030】また、上記プラズマの発光に起因する光に よって光触媒分散リング電極24の内周面(TiO_2 層 24Cの表面)上で光触媒反応が効率良く進行すること により水質の浄化がより効果的に行えるようになる。

[0031]

【発明の効果】本発明による液体の浄化方法では、請求項1に記載しているように、少なくとも一方を光触媒処理した電極の間でプラズマを生じさせ、前記プラズマ中

に酸素や水を含む浄化原料ガスを流し、前記酸素や水を前記浄化原料ガスのプラズマ化により化学励起させてオゾンやOHラジカルを生成すると共に、前記プラズマの発光に起因する光により光触媒反応を効率良く進行させて前記浄化原料ガス中の酸素や水からのオゾン生成やOHラジカル生成を促進し、前記オゾンやOHラジカルを汚染液体中に流してその浄化を行うようにしたから、プラズマ作用と光触媒作用との相乗的作用により水道水等の汚染液体の液質浄化(水質浄化)をより一層高効率で10行うことが可能になるという著しく優れた効果がもたらされる。

【0032】そして、請求項2に記載しているように、 浄化原料ガスは水分を含む空気であり、液体は汚染され た水であるものとすることによって、プールなどにおけ る水の大量浄化に適したものになるという著しく優れた 効果がもたらされる。

【0033】本発明による液体の浄化装置によれば、請求項3に記載しているように、少なくとも一方が光触媒処理された電極と、前記電極の間でプラズマを生じさせる電源と、前記プラズマ中に酸素や水を含む浄化原料ガスを流してプラズマ化する浄化原料ガス送給流路と、浄化原料ガスのプラズマ化により生成したオゾンやOHラジカルを汚染液体中に流出するバルブを備えたものとしたから、プラズマ作用と光触媒作用との相乗的作用により液体の浄化反応のさらなる高効率化が可能になるという著しく優れた効果がもたらされる。

【0034】そして、請求項4に記載しているように、 浄化原料ガスは水分を含む空気であり、液体は汚染され た水であるものとなすことによって、プールなどにおけ る水の大量浄化に適したものになるという著しく優れた 効果がもたらされる。

【0035】さらにまた、請求項5に記載しているように、光触媒処理された電極は、光触媒としてTiO2を有しているものとなすことによって、光触媒機能をより一層有効に発揮させることが可能になるという著しく優れた効果がもたらされる。

【0036】さらにまた、請求項6に記載しているように、光触媒処理した電極は、Tiと前記Tiよりも酸化傾向の小さい金属とを合金化させて合金中のTiのみを選択酸化することによりその一部に光触媒性TiO2を形成したものであるようになすことによって、光触媒性能に優れた電極の活用が可能となり、さらにまた、材質の選択によっては光触媒性能と化学触媒性能をあわせもつ電極の活用が可能になるという著しく優れた効果がもたらされる。

【0037】さらにまた、請求項7に記載しているように、電極は、対向配置した中心電極と外部電極と光触媒処理したリング電極をそなえ、対向電極間の少なくとも一部でプラズマを生じさせるものとするこによって、プラズマ作用と光触媒作用との相乗的作用による反応効率

30

特開2001-187390

の高い液体の浄化装置を提供することが可能であるとい う著しく優れた効果がもたらされる。

【図面の簡単な説明】

【図1】本発明による液体の浄化装置の実施の形態を示す基本的説明図である。

【図2】光触媒処理した電極の構造例を示す説明図である.

【図3】本発明による液体の浄化装置の第1実施例を示す概略断面説明図である。

【図4】本発明による液体の浄化装置の第2実施例を示 10 す概略断面説明図である。 【図5】オゾン (O3) の製造工程を例示する説明図である。

【符号の説明】

11,21 液体の浄化装置

12,22 一方の電極

13, 23, 24 他方の電極

13C, 24C アナターゼ型TiO2層(光触媒層)

15, 25A, 25B 浄化原料ガス送給流路

16,26 浄化用ガス送給流路

16V, 26V バルブ

【図4】

フロントページの続き

(51) Int. CI. 7

識別記号

FΙ

テーマコード(参考)

C 0 1 B 13/11

C01B 13/11

G D

CO2F 1/78

C 0 2 F 1/78

(72) 発明者 山 内 五 郎

東京都八王子市みつい台1丁目10番13号

(72) 発明者 入 江 寛 治

愛知県春日井市高森台1-12-15

Fターム(参考) 4D050 AA04 AA10 AB04 AB06 BB02

BD04

4G042 CA01 CB01 CC03 CC20 CC21

CE01

4G069 AA03 BA04A BA04B BA48A

CA05 CA10 CA11 DA06 EA06

4G075 AA13 AA37 BA04 BA05 BA06

CA32 CA47 CA54 DA01 EB21

EB41