1.9.4

EE25BTECH11015 - Bhoomika V

Ouestion:-

If $\|\mathbf{a}\| = 4$ and $-3 \le \lambda \le 2$, then $\|\lambda \mathbf{a}\|$ lies in

- 1) [0, 12]
- 2) [2, 3]
- 3) [8, 12]
- 4) [-12, 8]

Solution:

Using matrix definition of the norm:

$$\|\mathbf{a}\| = \sqrt{\mathbf{a}^T \mathbf{a}}, \quad \text{hence} \quad \mathbf{a}^T \mathbf{a} = \|\mathbf{a}\|^2 = 4^2 = 16.$$
 (4.1)

The squared norm of $\lambda \mathbf{a}$ using matrix notation is:

$$\|\lambda \mathbf{a}\|^2 = (\lambda \mathbf{a})^T (\lambda \mathbf{a}) = \lambda^2 (\mathbf{a}^T \mathbf{a}).$$

Substituting from Equation (4.1):

$$||\lambda \mathbf{a}||^2 = 16\lambda^2.$$

Taking square roots (norms are nonnegative) gives

$$\|\lambda \mathbf{a}\| = \sqrt{16\lambda^2} = 4|\lambda|.$$

The range of $|\lambda|$ given $-3 \le \lambda \le 2$.

$$0 \le |\lambda| \le \max\{|-3|, |2|\} = 3.$$

Multiplying by 4 yields

$$0 \le 4|\lambda| \le 12$$
.

Therefore

$$||\lambda \mathbf{a}|| = 4|\lambda| \in [0, 12].$$

$$||\lambda \mathbf{a}|| \in [0, 12]$$

$$\implies k = 2$$

Fig. 4.1