m12-julihocc

March 31, 2024

1 Módulo 12

Juliho Castillo

1.1 Instrucciones

- 1. Descargar el archivo "Height of Male and Female by Country 2022.csv" desde aqui.
- 2. Cambiar directorio a un directorio de su preferencia
- 3. Leer el archivo CSV mencionado
- 4. Imprimir las primeras 50 líneas
- 5. Calcular la media, mínima y máxima altura de hombres y mujeres del data set completo
- 6. Obtener la data de alturas de su país de origen

1.1.1 Tarea 1

Imprimir las primeras 50 líneas

```
[]:

Primero, obtendremos los resultados utilizando `Pandas`

"""

import pandas as pd

# Cargando el archivo de datos
data = pd.read_csv('./data.csv')

# Verificando las primeras filas para entender la estructura de los datos
data.head(50)
```

[]:		Rank	Country Name	Male Height in Cm \
	0	1	Netherlands	183.78
	1	2	Montenegro	183.30
	2	3	Estonia	182.79
	3	4	Bosnia and Herzegovina	182.47
	4	5	Iceland	182.10
	5	6	Denmark	181.89
	6	7	Czech Republic	181.19
	7	8	Latvia	181.17
	8	9	Slovakia	181.02
	9	10	Slovenia	180.98

10	11	Ukraine	180.98
11	12	Croatia	180.76
12	13	Serbia	180.74
13	14	Lithuania	180.72
14	15	Poland	180.69
15	16	Finland	180.57
16	17	Norway	180.48
17	18	Sweden	180.46
18	19	Germany	180.28
19	20	Dominica	180.15
20	21	Bermuda	179.72
21	22	Puerto Rico	179.48
22	23	Greece	179.26
23	24	Belgium	179.09
24	25	Ireland	179.04
25	26	Lebanon	178.96
26	27	Andorra	178.84
27	28	Antigua and Barbuda	178.84
28	29	Australia	178.77
29	30	Canada	178.75
30	31	Switzerland	178.73
31	32	Grenada	178.70
32	33	Belarus	178.69
33	34	France	178.60
34	35	Austria	178.52
35	36	Luxembourg	178.46
36	37	Cook Islands	178.32
37	38	French Polynesia	178.32
38	39	United Kingdom	178.21
39	40	Romania	177.82
40	41	New Zealand	177.72
41	42	Saint Vincent and the Grenadines	177.49
42	43	Niue	177.19
43	44	American Samoa	177.09
44	45	Barbados	177.03
45	46	Jamaica	176.97
46	47	United States	176.94
47	48	Tunisia	176.85
48	49	Russia	176.65
49	50	Hungary	176.59
	Femal	e Height in Cm Male Height in Ft	Female Height in Ft
0		170.36 6.03	5.59
1		169.96 6.01	5.58
2		168.66 6.00	5.53
3		167.47 5.99	5.49
4		168.91 5.97	5.54
_		100.01	0.04

5	169.47	5.97	5.56
6	167.96	5.94	5.51
7	168.81	5.94	5.54
8	167.12	5.94	5.48
9	167.20	5.94	5.49
10	166.62	5.94	5.47
11	166.80	5.93	5.47
12	168.29	5.93	5.52
13	167.63	5.93	5.50
14	165.78	5.93	5.44
15	166.48	5.92	5.46
16	166.45	5.92	5.46
17	166.67	5.92	5.47
18	166.18	5.91	5.45
19	166.89	5.91	5.48
20	166.11	5.90	5.45
21	163.06	5.89	5.35
22	165.81	5.88	5.44
23	163.40	5.88	5.36
24	164.50	5.87	5.40
25	163.67	5.87	5.37
26	165.53	5.87	5.43
27	165.72	5.87	5.44
28	164.67	5.87	5.40
29	164.73	5.86	5.40
30	164.33	5.86	5.39
31	165.99	5.86	5.45
32	166.93	5.86	5.48
33	164.49	5.86	5.40
34	166.93	5.86	5.48
35	165.07	5.86	5.42
36	167.31	5.85	5.49
37	166.52	5.85	5.46
38	163.94	5.85	5.38
39	164.73	5.83	5.40
40	164.66	5.83	5.40
41	165.30	5.82	5.42
42	167.03	5.81	5.48
43	167.55	5.81	5.50
44	165.66	5.81	5.44
45	164.32	5.81	5.39
46	163.31	5.81	5.36
47	161.69	5.80	5.30
48	164.52	5.80	5.40
49	162.55	5.79	5.33
==		· · ·	2.30

```
[]: # Calculando media, mínima y máxima altura para hombres y mujeres en centímetros
resultados = {
    "Media Altura Hombres (cm)": data["Male Height in Cm"].mean(),
    "Mínima Altura Hombres (cm)": data["Male Height in Cm"].min(),
    "Máxima Altura Hombres (cm)": data["Female Height in Cm"].max(),
    "Media Altura Mujeres (cm)": data["Female Height in Cm"].mean(),
    "Mínima Altura Mujeres (cm)": data["Female Height in Cm"].min(),
    "Máxima Altura Mujeres (cm)": data["Female Height in Cm"].max()
}
resultados
```

```
[]: {'Media Altura Hombres (cm)': 173.08904522613065,
    'Mínima Altura Hombres (cm)': 160.13,
    'Máxima Altura Hombres (cm)': 183.78,
    'Media Altura Mujeres (cm)': 160.9429145728643,
    'Mínima Altura Mujeres (cm)': 150.91,
    'Máxima Altura Mujeres (cm)': 170.36}
```

1.1.2 Tarea 2

Calcular la media, mínima y máxima altura de hombres y mujeres del data set completo

```
[]: '''
     Ahora realizaremos el mismo cálculo utilizando los módulos básicos de Python
     # Usando los paquetes básicos de Python para leer el archivo CSV y calcular las_{f \sqcup}
      ⇔estadísticas solicitadas
     import csv
     # Rutas al archivo CSV
     file_path = './data.csv'
     # Inicializando listas para almacenar las alturas de hombres y mujeres
     male_heights = []
     female_heights = []
     # Leyendo el archivo CSV
     with open(file_path, mode='r') as csv_file:
         csv_reader = csv.DictReader(csv_file)
         for row in csv reader:
             male_heights.append(float(row['Male Height in Cm']))
             female_heights.append(float(row['Female Height in Cm']))
     # Calculando media, mínima y máxima altura para hombres y mujeres
     male_heights_mean = sum(male_heights) / len(male_heights)
```

```
male_heights_min = min(male_heights)
male_heights_max = max(male_heights)

female_heights_mean = sum(female_heights) / len(female_heights)
female_heights_min = min(female_heights)
female_heights_max = max(female_heights)

male_heights_mean, male_heights_min, male_heights_max, female_heights_mean,
ofemale_heights_min, female_heights_max
```

[]: (173.08904522613054, 160.13, 183.78, 160.9429145728643, 150.91, 170.36)

```
[]: '''
     Finalmente, realizamos los mismos cálculos pero utilizando herramientas de l
      ⇔programación funcional
     ,,,
     # Utilizando herramientas de programación funcional para procesar la_{\sqcup}
      ⇒información y calcular las estadísticas
     # Reabriendo el archivo CSV
     with open(file_path, mode='r') as csv_file:
         csv reader = csv.DictReader(csv file)
         # Usando map para convertir las alturas a flotantes
         male_heights = list(map(lambda x: float(x['Male Height in Cm']),__
      ⇔csv reader))
         csv_file.seek(0) # Reiniciando el lector CSV para leer nuevamente para lasu
      →mujeres
         next(csv_reader) # Saltando el encabezado
         female_heights = list(map(lambda x: float(x['Female Height in Cm']), u
      ⇔csv_reader))
     # Utilizando funciones de programación funcional para calcular estadísticas
     from functools import reduce
     # Calculando media, mínima y máxima para hombres
     male_heights_mean = reduce(lambda x, y: x + y, male_heights) / len(male_heights)
     male heights min = reduce(lambda x, y: x if x < y else y, male heights)
     male_heights_max = reduce(lambda x, y: x if x > y else y, male_heights)
     # Calculando media, mínima y máxima para mujeres
     female_heights_mean = reduce(lambda x, y: x + y, female_heights) / _ u
      →len(female_heights)
     female heights min = reduce(lambda x, y: x if x < y else y, female heights)
     female_heights_max = reduce(lambda x, y: x if x > y else y, female_heights)
```

```
male_heights_mean, male_heights_min, male_heights_max, female_heights_mean, ⊔

ofemale_heights_min, female_heights_max
```

[]: (173.08904522613054, 160.13, 183.78, 160.9429145728643, 150.91, 170.36)

1.1.3 Tarea 3

Obtener la data de alturas de su país de origen

```
[]: import csv
     # Ruta al archivo CSV
     file_path = './data.csv'
     # Inicializar variables para almacenar datos
     male_heights_cm = []
     female_heights_cm = []
     # Abrir y leer el archivo CSV
     with open(file_path, mode='r', encoding='utf-8') as file:
         csv_reader = csv.DictReader(file)
         for row in csv_reader:
             if row['Country Name'] == 'Mexico':
                 male_heights_cm.append(float(row['Male Height in Cm']))
                 female_heights_cm.append(float(row['Female Height in Cm']))
     # Calcular estadísticas para la altura de hombres en CM
     male_mean = sum(male_heights_cm) / len(male_heights_cm) if male_heights_cm else_
      ⇔0
     male_min = min(male_heights_cm) if male_heights_cm else 0
     male_max = max(male_heights_cm) if male_heights_cm else 0
     # Calcular estadísticas para la altura de mujeres en CM
     female_mean = sum(female_heights_cm) / len(female_heights_cm) if_

¬female_heights_cm else 0

     female_min = min(female_heights_cm) if female_heights_cm else 0
     female_max = max(female_heights_cm) if female_heights_cm else 0
     (male_mean, male_min, male_max), (female_mean, female_min, female_max)
```

```
[]: ((170.29, 170.29, 170.29), (157.9, 157.9, 157.9))
```

[]: