Introducción a los sistemas embebidos

SISTEMAS EMBEBIDOS - GRADO EN INGENIERÍA ROBÓTICA

Contenidos

- 1. Introducción
- 2. Que son los sistemas embebidos
- 3. Características
- 4. Flujo de diseño
- 5. Tendencias
- 6. Como trabajar con los sistemas embebidos

Que son los sistemas embebidos

Características

Flujo de diseño

Tendencias

Como trabajar con los sistemas embebidos

Introducción

• Un **sistema embebido** es un sistema de computación especialmente diseñado para funciones específicas.

- El sistema embebido está formado por los elementos estrictamente necesarios para cumplir con su función y, generalmente, por una colección de sensores y actuadores.
- Normalmente este dispositivo específico forma parte de un sistema anfitrión más amplio.
- La función de los sistemas embebidos dota al sistema anfitrión de "inteligencia" para realizar mejor su función.

Que son los sistemas embebidos

Características

Flujo de diseño

Tendencias

Como trabajar con los sistemas embebidos

Que son los sistemas embebidos

Definición

Sistema o subsistema que contenga un microprocesador o microcontrolador que no sea de propósito general

Sistema o subsistema que es parte de un sistema más grande en el cual cumple un propósito definido

Sistema o subsistema que integra la computación con procesos físicos para alcanzar un propósito definido

<u>Ejemplos</u>

Sistemas Embebidos en un turismo

Anti-lock Braking Systems (ABS).
Electronic Stability Control (ESP).
Bloqueo Diferencial Electrónico. (EDS)
Sistema de Control de Tracción (ASR)
Cerraduras centralizadas
Alarmas de seguridad
Sensores de presión de ruedas

<u>Ejemplos</u>

Sistemas Embebidos en un avión

Automatic Dependent Surveillance – Broadcast (ADS-B): sistemas de control de posición.

Flight Management Systems (FMS): sistemas de control de vuelo: flags,

Electronic **C**entralized **A**ircraft **M**onitor (ECAM):

Sistemas de información al piloto.

Ejemplos

Sistemas Embebidos para la logistica

Sistemas de localización de objetos con tecnologías inalámbricas como RFID: automatización de almacenes Trazabilidad y seguimiento de paquetes con tecnologías móviles

<u>Ejemplos</u>

Smart City: entono urbano orientado a mejorar la calidad de vida de los ciudadanos y la gestión óptima de los recursos mediante los usos de la tecnología.

Aplicaciones

- Sistemas de iluminación inteligente
- Movilidad y tráfico
- Gestión de residuos
- Seguridad
- Etc.

Que son los sistemas embebidos

Características

Flujo de diseño

Tendencias

Como trabajar con los sistemas embebidos

Características

Tamaño

 Compactos y ligeros para ser integrados en sistemas mas complejos

 Incluso los microcontroladores de uso domestico son de tamaño reducido

Bajo consumo

- Bajo consumo energético debido a los costes, económicos y espaciales, que supone añadir una fuente de alimentación o debido al color que genera un alto consumo.
- Muchos de los dispositivos IoT funcionan con baterías por lo que este apartado es critico para ellos.

Coste

- Bajo coste económico
- Sistemas optimizados para reducir su coste debido a su alta producción
- Bajos costes de mantenimiento

Conectividad

- Necesidad de conectividad
- Conexión externa vía Bluetooth, Wifi, LoRa
- Conexiones internas vía I2C, UART, PWM, Serial...

Tiempo Real

- No siempre, pero muchos aplicaciones requieren de computación en tiempo real
- Altos niveles de precisión en poco tiempo

Larga vida útil

• Altos niveles de vida útil, aun que depende de la aplicación.

Tolerancia a fallos

Tolerancia a fallos

Funcionamiento en entornos hostiles

Seguridad y Confiabilidad

Seguridad

- Evitar daños a otros sistemas integrados.
 Autocontención de errores
- Evitar daños a otras personas

Confiabilidad

 Los información del sistema es fiable y no se ha visto alterada por influencias externas

Que son los sistemas embebidos

Características

Flujo de diseño

Tendencias

Como trabajar con los sistemas embebidos

Flujo de diseño

Flujo de diseño

- •Se produce una fuerte interrelación entre hardware y software.
- Co-diseño de sistemas.
 - Consisten en esquemas de diseño cooperativos entre hardware y software.
 - Cualquier parte del sistema puede realizarse tanto en hardware como en software.
 - El criterio de implementación dependerá esencialmente de los condicionantes de funcionamiento.

Algunas consideraciones a realizar

- ¿Necesidades de calculo?
- ¿Necesidades de memoria?
- ¿Interfaces de comunicación?
- ¿Precisión del conversor ADC?
- ¿Consumo? ¿Alimentación?
- ¿Actualizable?

Flujo de diseño

- 1. Especificación: Descripción del sistema en un lenguaje de abstracción de alto nivel.
 - Definición de un modelo del problema.
 - Determinación de las condiciones de funcionamiento.
 - Especificación de requisitos.
 - 2. **Definir Partición hw/sw:** Determinar qué partes del sistema se implementarán en hw y en sw.
 - 3. Síntesis: implementación.
 - 4. **Integración**: combinación de las partes hw y sw y de sus interfaces.

Estándares

Estándares de diseño:

La mayoría de estándares sectoriales han sido diseñados para su empleo con sistemas embebidos

Que son los sistemas embebidos

Características

Flujo de diseño

Tendencias

Como trabajar con los sistemas embebidos

Tendencias

Tendencias

- 1. Internet de las cosas (IoT)
- 1. Seguridad
 - Alarmas inteligentes
 - Sensores de personas
 - Bio-identificación
- 2. Sistemas autónomos
 - Coche autónomo
- 3. Dispositivos médicos o e-health
 - Telediagnostico
 - Teleasistencia
- 4. Control de energía

Estimación de mercado

THE IOT PLATFORM OPPORTUNITY

https://www.forbes.com/sites/louiscolumbus/2016/11/27/roundup-of-internet-of-things-forecasts-and-market-estimates-2016/#1a82237f292d

Que son los sistemas embebidos

Características

Flujo de diseño

Tendencias

Como trabajar con los sistemas embebidos

Como trabajar con los sistemas embebidos

Desarrollar sistemas embebidos requiere de habilidades de diferentes disciplinas.

- En la fase de conceptualización se necesita de conceptos de modelado de sistemas
- Se necesita de conocimientos hardware para el diseño de la PCB, la elección de los componentes y para realizar el proceso de manufacturación.
- Por ultimo, se necesitan los conocimientos de **programación** necesarios para programar el firmware del sistema o las aplicación necesarias para el sistema global.

Algunas herramientas que utilizaremos son:

- Visual Studio Code; Arduino IDE; PlatformIO
- EasyEDA
- RaspberryPI; Arduino nano;
- C++; NodeRED; MQTT

Fin tema 1