MDCT Image Compression

Project-1_Video Coding Seminar

Matriculation Number	Email	Task
64494	muhammad-behzad.hussain <u>@tu-</u> <u>ilmenau.de</u>	MDCT
65374	Shakil.mahmud <u>@tu-ilmenau.de</u>	Perceptual Comparison
65862	hafiz-anns-bin.zahoor@tu-ilmenau.de	DCT/ Report/Slides/Repository

Project Structure

Task-1 DCT Part

- DCT part evaluation for 24 images from git repository
- https://github.com/Karanraj06/image-compression.git
- Prepared Table w.r.t PSNR and Compressed ratios of images
- Checked colored and grayscale Images with multiple coefficients

Task-2 MDCT Part

- MDCT part evaluation for 24 images from above git repository
- Checked PSNR and Compressed ratios of images
- Checked colored and grayscale Images with multiple coefficients

Task-3 Perceptual Similarity Comparison

- Compared DCT and MDCT part for perceptual similarity
- Losses, Bandwidth and margins of improvement analyzed

Motivation

Data Efficiency

- Rise in high-resolution media drives massive data storage needs
- Efficient compression reduces file size, optimizing storage and bandwidth
- Critical for streaming, online sharing, and cloud storage

Quality Preservation

- Balancing compression with image quality is a key challenge
- Effective compression retains essential visual details
- Ensures user satisfaction in visual applications

Perceptual Relevance

- Traditional metrics may not reflect human perception accurately
- Incorporating perceptual metrics like LPIPS aligns with visual quality
- Enhances the realism and usability of compressed images

Approach to Image Compression

Discrete Cosine Transform (DCT)

- Breaks down images into frequency components
- Compresses by retaining significant frequencies and discarding others
- Commonly used in JPEG compression for its efficiency

Modified Discrete Cosine Transform (MDCT)

- Extends DCT with overlapping blocks to reduce artifacts
- Provides smoother transitions and better compression quality
- Often used in audio and video compression techniques

Perceptual Similarity Measurement

- LPIPS metric used to assess how humans perceive image quality
- Captures visual similarity beyond pixel-wise differences
- Ensures compressed images remain visually appealing

DCT Compression Results

- Picture 1.png with 5 coefficient
 - Shows PSNR and Compressed ratios
 - Shows grayscale and colored
- Picture 1.png with 10 coefficient
- Picture 1.png with 20 coefficient

DCT Results

- Table for complete 24 Images
- Higher PSNR indicates
 - better image quality post-compression
- Compression Ratios (CR)
 - Shows how much image size reduced
- Coefficient Variation:
 - Different DCT coefficients were used
 - impacting compression and quality
- Gray vs. Color
 - Grayscale and color images tested
 - With their respective PSNR and CR values compared

	۱						
	 	Image	Num Coefficients	PSNR Gray		PSNR Color	CR Color
+	 0	1.png	5	22.51566648158429	+ 2.56	22.50749316782874	++ 2.56
	1	1.png	10	24.821728975051172	0.64	24.7174596277982	0.64
	2	1.png	20	27.632499974486038	0.16	27.37726445833619	0.16
	3	10.png	5	27.447679474191467	2.56	27.285290273547986	2.56
	4	10.png	10	30.150839757787494	0.64	29.736008259542405	0.64
	5	10.png	20	32.92768959335878	0.16	32.11215793887962	0.16
	6	11.png	5	25.582712677015515	2.56	25.470786646149833	2.56
	7	11.png	10	27.59699339942074	0.64	27.356733065000466	0.64
	8	11.png	20	30.132926445149977	0.16	29.649108636398072	0.16
	9	12.png	5	28.79157821870153	2.56	28.513728956390374	2.56
	10	12.png	10	31.276717527883882	0.64	30.761651630849254	0.64
	11	12.png	20	33.893930075621	0.16	32.973005912007935	0.16
	12	13.png	5	21.032464327056864	2.56	21.001758280885877	2.56
	13	13.png	10	22.453293741560053	0.64	22.353628436512125	0.64
	14	13.png	20	24.744585173299832	0.16	24.52993679097238	0.16
	15	14.png	5	25.037102056350328	2.56	24.896871897934904	2.56
	16	14.png	10	26.93704940292217	0.64	26.723899633283455	0.64
	17	14.png	20	29.602742249176274	0.16	29.11841998388532	0.16
	18	15.png	5	27.412627731583495	2.56	27.113863500632	2.56
	19	15.png	10	29.806940289210367	0.64	29.34207200378835	0.64
	20	15.png	20	32.45509268053351	0.16	31.62374148894014	0.16
	21	16.png	5	28.17319877431439	2.56	27.965754627105245	2.56

Compression Techniques Evaluation

Compression Efficiency

- DCT and MDCT show significant reduction in image size.
- MDCT achieves smoother transitions with overlapping blocks
- Compression ratio improved while maintaining quality

Quality Assessment

- PSNR values indicate minimal loss in image fidelity
- Perceptual similarity (LPIPS) aligns with human visual system
- MDCT performs better in preserving details compared to DCT

Comparative Analysis

- MDCT slightly outperforms DCT in both compression ratio and visual quality
- Trade-off between compression efficiency and computational complexity
- Results confirm the effectiveness of using MDCT for higher quality compression

MDCT Evaluation

- Image Quality Comparison
 - Original shows stone building with red features
 - Compressed images show quality loss
 - Differences increase with compression level
- Compression Techniques
 - Methods labeled
 - Block Size 4, 8, 16
 - Yields distinct results
 - Larger blocks cause more degradation

- MDCT-based JPEG compression demonstrates efficacy in data reduction
- Preserving key elements, with visual quality inversely proportional to block size.

Perceptual Similarity Analysis

Definition and Purpose

- Measures visual quality beyond traditional metrics
- Uses deep learning models to assess perceptual differences
- Aligns with human visual assessment for more accurate evaluation

Methodology

- LPIPS metric is used for comparison
- Computes perceptual distance between original and compressed images
- Normalized scores indicate similarity levels

Results and Insights

- Highlights perceptual quality differences between compression methods
- Reveals which method preserves visual fidelity better
- Provides additional insight beyond PSNR and CR values

Summary and Conclusion

Compression Efficiency

- DCT and MDCT significantly reduce image file sizes
- MDCT achieves smoother transitions and higher quality
- Compression ratio improved while maintaining image fidelity

Quality Assessment

- PSNR values show minimal loss in image quality
- Perceptual similarity metrics (LPIPS) align with human visual perception
- MDCT outperforms DCT in preserving visual details

Comparative Analysis

- MDCT slightly better in compression ratio and visual quality
- Trade-offs exist between compression efficiency and computational complexity
- Results validate MDCT's effectiveness for high-quality compression

References

- [1] Karanraj06, "image-compression," GitHub repository, 2023. [Online]. Available: https://github.com/Karanraj06/image-compression.git. [Accessed: June. 13, 2024]
- Group_Project Repository for MDCT Image Compression
 - [2] A. Zahoor, "Video-Coding-Seminar-Project," GitHub repository, Aug. 12, 2024.
 [Online]. Available: https://github.com/Annszahoor27/Video-Coding-Seminar-Project-git

