Quiz 4: Markov Models - Hidden Markov Models

Introduction to Supervised Learning

*Required

1.	Email address *
2.	Please enter your name: *

Generative Classifier

(parameterized by theta_0) on the samples associated to the target o and Model I (parameterized by theta_I) on the samples associated to the target I. Calculate the probability of getting a positive target for the sequence X_I ... X_T using the following probabilities:

$$p_{\theta_0}(X^1, \dots, X^T | Y = 0) = 10^{-1}$$

$$p_{\theta_1}(X^1, \dots, X^T | Y = 1) = 10^{-2}$$

$$p(Y = 1) = 0.7$$

Markov Models

After fitting a Markov Model on sequences of discrete data (with 3 possible states for each sample). We end up with the following graph.

4. What is the number of parameters of a Markov Model with 3 states?

Mark only one oval.

 \bigcirc 6

9

<u>12</u>

1 point

5.	What is the probability of transitioning from state 2 to state o?	1 point
	Mark only one oval.	
	0.3	
	0.4	
ó.	If we are at state 1, what is the most likely next state?	1 point
	Mark only one oval.	
	State 0	
	State 1	
	State 2	
7.	Explain why it is impossible to have this sequence of states in the training data: 1 2 0 0 2.	1 point

We want to use an HMM model to fit discrete observations taking values in {0, 1, 2}.

8.	What would be the number of parameters of the HMM model if we use M hidden states? (as a function of M)	1 point

After fitting an HMM with 3 hidden states on the previous observations, we end up with the following parameters.

$$\pi = \begin{pmatrix} 0.7 \\ 0.2 \\ 0.1 \end{pmatrix} \qquad Q = \begin{pmatrix} 0.7 & 0.1 & 0.2 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.2 & 0.7 \end{pmatrix} \qquad O = \begin{pmatrix} 0.2 & 0.3 & 0.5 \\ 0.8 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.2 \end{pmatrix}$$

Mark only one oval.

0.7

0.1

0.2

10. What is the distribution of the discrete observations conditioned on the hidden state o?

1 point

Mark only one oval.

[0.2, 0.3, 0.5]

[0.2, 0.8, 0.1]

[0.7, 0.2, 0.1]

We want to predict the next observation X(t+1) based on the observations X(t) .. X(t)

11. Using the following filtering probabilities and the previous fitted parameters, what is the most likely	y next observation X(t+1) ? Justify you
---	---

$$[p(H_t = h | X_1 = x_1, \dots, X_t = x_t)]_{h \in \{0, 1, 2\}} = \begin{pmatrix} 0.7 \\ 0.2 \\ 0.1 \end{pmatrix}$$

Programming Session

answer.

12. Did you understand the problem?

Mark only one oval.

Yes

No

If you have any question about the use of the hmmlearn library, feel free to send us a message.

3.	Any comment?

This content is neither created nor endorsed by Google.

Google Forms