Collected Problems: Olympiad

William Dai

Started June 30, 2020

§ 1 Introduction

This is a collection of some of the olympiad problems that I have done. Because of my inexperience, the difficulty ratings are particularly subjective compared to the list of computational problems. Because of this, there's

§ 2 Combinatorics

[2] Problem 1 (Romania TST) How many polynomials P with coefficients 0, 1, 2, or3 satisfy P(2) = n, where n is a given positive integer?

Solution: Generating Functions: You get $\prod_{i=0} \frac{x^{4\cdot 2^n}-1}{x^{2^n}-1} = \prod_{i=0} \frac{x^{2^{n+2}}-1}{x^{2^n}-1} = \frac{1}{(x-1)(x^2-1)} = \frac{-\frac{1}{4}}{x-1} + \frac{\frac{1}{2}}{(x-1)^2} + \frac{\frac{1}{4}}{x+1}$.

§ 3 Number Theory

[1] Problem 1 (IMO 2005/4) Determine all positive integers relatively prime to all terms of the infinite sequence $a_n = 2^n + 3^n + 6^n - 1$ for $n \ge 1$.

Solution: Notice that for p > 3, $a_{p-2} = 2^{p-2} + 3^{p-2} + 6^{p-2} - 1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6} - 1 = 0 \pmod{p}$ using Fermat Little Theorem. Then, note that $a_2 = 4 + 9 + 36 - 1 = 48$ which has prime factors of 2, 3. So, if a number contains any prime factors, it is not relatively prime to all the terms of a_n . So, the only possible positive integer that can be relatively prime to all terms is $\boxed{1}$. Clearly, $\gcd(1, a_n) = 1$ and so it works.

[18] Problem 2 (1978 IMO) Let m and n be positive integers such that $1 \le m < n$. In their decimal representations, the last three digits of 1978^m are equal, respectively, to the last three digits of 1978^n . Find m and n such that m + n has its least value.

1

Solution: Notice that $1978^m \equiv 1978^n \pmod{1000} \iff (-22)^m \equiv (-22)^n \pmod{1000} \iff (-22)^m \equiv (-22)^n \pmod{125,8}$ by Chinese Remainder Theorem. If m < 3, then $(-22)^m \equiv (-22)^n \pmod{125,8}$ (mod 8) $\implies m = n$ which is a contradiction. Similarly, n < 3 is impossible. So, $m, n \ge 3$. Then, both are $0 \pmod{8}$. Now, consider $(-22)^m \equiv (-22)^n \pmod{125} \iff (-22)^{n-m} \equiv 1 \pmod{125}$. We seek to minimize n - m to minimize m + n = (n - m) + 2m. Now, this is equivalent to finding $\operatorname{ord}_{125} - 22$. Note that $\operatorname{ord}_{25} - 22 = \operatorname{ord}_{25} 3 = \operatorname{ord}_{25} 20$. So, $20 = \operatorname{ord}_{25} (-22) |\operatorname{ord}_{125} (-22)$ clearly. By Euler's, $\operatorname{ord}_{125} (-22) |100$. We can compute $(-22)^{20} \pmod{125}$ and find that it doesn't works. So, the order is 100 and $n - m = 0 \pmod{100} \implies n - m \ge 100$.

Our minimium m+n is $3+103=\boxed{106}$.

[2] Problem 3 (Folklore) Find all positive integers n such that n divides $2^n - 1$.

Solution: Assume $n \ge 2$. Note that n can't be even because $2^n - 1$ is odd and it is impossible for an even number to be a divisor of an odd number. Then, consider the minimal odd prime p such that p|n. Also, let $\operatorname{ord}_p 2 = d$. Then, $2^n - 1 = 0 \pmod{n} \implies 2^n = 1 \pmod{n} \implies d|n$. Also, by Fermat's Little Theorem, $2^{p-1} = 1 \pmod{p}$ so d|p-1. Then, $d|\gcd(n, p-1)$. If $\gcd(n, p-1) = k > 1$, then n has a prime divisor less than p-1 which contradicts the minimality of p. So, $\gcd(n, p-1) = 1$. Then, n = (p-1)q+1 for some q. So, $2^n - 1 \pmod{p} = (2^{p-1})^q \cdot 2 - 1 = 2 - 1 = 1$. Since $n = 0 \pmod{p}$, we have $1 = 0 \pmod{p}$ which is clearly impossible.

So, n=1 is the only possible solution. Checking, n=1 does work. So, our solutions are $\boxed{1}$.

[2] Problem 4 (Folklore) Let p be a prime that is relative prime to 10, and n be an integer, 0 < n < p. Let d be the order of 10 modulo p.

- 1. Show that if the length of the period of the decimal expansion of $\frac{n}{p}$ is d
- 2. Prove that if d is even, then the period of the decimal expansion of $\frac{n}{p}$ can be divided into two halves whose sum is $10^{\frac{d}{2}} 1$.

Solution 1: Let m be the period. Note that $\frac{n}{p} = 0.\overline{a_1a_2\cdots a_m} = \frac{a_1a_2\cdots a_m}{99\cdots 9} = \frac{M}{10^m-1} \implies n\cdot (10^m-1) = p\cdot M \implies p|10^m-1 \text{ as } \gcd(n,p)=1.$ So, $10^m=1\pmod{p} \implies d|m \implies m \ge d$.

We now want to show $m \le d$. Let M' such that $\frac{n}{p} = \frac{M'}{10^d - 1} = M'(\frac{1}{10^d} + \frac{10^{2d}}{...})$. Since $M' < 10^d - 1$, it clearly has a period of less than equal to d. So, $m \le d$.

Then, m = d.

Solution 2: Let d=2k. Then, let $\frac{n}{p}=0.\overline{a_1a_2\cdots a_ka_{k+1}\cdots a_{2k}}$. We want to show $\overline{a_1a_2\cdots a_k}+\overline{a_{k+1}a_{k+2}\cdots a_{2k}}=10^{\frac{d}{2}}-1$ Call $\overline{a_1\cdots a_k}=M_1$ and $\overline{a_{k+1}\cdots a_{2k}}=M_2$. We have $\frac{(10^{2k}-1)n}{p}=M_1\cdot 10^k+M_2$.

 $M_1 \cdot 10^k + M_2.$ So, $\frac{(10^k+1)n}{p} = 10^k \cdot \frac{n}{p} + \frac{n}{p} = a_1 \cdot \cdot \cdot_k \cdot a_{k+1} \cdot \cdot \cdot a_{2k} \overline{a_1 \cdot \cdot \cdot a_k} + 0 \cdot \overline{a_1 \cdot \cdot \cdot a_{2k}}.$ In order for it to come out as a integer, $\overline{a_{k+1} \cdot \cdot \cdot a_{2k} a_1 \cdot \cdot \cdot a_k} + 0 \cdot \overline{a_1 \cdot \cdot \cdot a_{2k}} = 0 \cdot \overline{9} = 1.$ Then, $\frac{(10^k+1)n}{p} = M_1 + 1.$ Then, $M_1 + M_2 = 10^k - 1$ which is what we wanted.

[3] Problem 5 (China TST 2006) Find all positive integers a and n such that $\frac{(a+1)^n - a^n}{n}$ is an integer.

Solution: Assume $n \ge 2$. Then, let p be the smallest prime factor of n. Then, $p|b|(a+1)^n - a^n$. So, $(a+1)^n - a^n = 0 \pmod{p}$. if $a = 0 \pmod{p}$, then $(a+1)^n - a^n = 1 \pmod{p} \ne 0$. If $a = -1 \pmod{p}$, $(a+1)^n - a^n = (-1)^{n+1} \pmod{p} \ne 0$.

If $a \neq 0, 1 \pmod p$, then $(a+1)^n - a^n = 0 \pmod p \implies (a+1)^n = a^n \pmod p \implies (a+1)^n \cdot (a^{-1})^n = -1 \pmod p$ where a^{-1} denotes the inverse of a. Note a^{-1} exists since a is relatively prime to p. Then, we get $((a+1)\cdot a^{-1})^n = 1 \pmod p$. Let m be the order of $(a+1)\cdot a^{-1}$ modulo n. Then, we have m|n. But, we also have m|p-1 as $((a+1)\cdot a^{-1})^{p-1}=1 \pmod p$ by Fermat's Little Theorem and both a+1 and a^{-1} are not equal to $0 \pmod p$. This means $m \leq p-1$ and m|n which is a contradiction of our assumption that p is the smallest prime factor. So, $n \geq 2$ is impossible.

This means our only solutions are when n = 1. Clearly, for all positive integer a, $\frac{(a+1)-a}{1}$ is a positive integer.

(1,a) for all positive integers a

[3] Problem 6 (IMO 1990/3) Determine all integers n > 1 such that

$$\frac{2^n+1}{n^2}$$

is an integer.

Solution: Note that n has to be odd as an even can't divide an odd. Let p be the smallest odd prime divisor of n. Then, $p|n^2|2^n+1$. So, $p|(2^n+1)(2^n-1)|2^{2n}-1$. By Fermat's Little Theorem, $p|2^{p-1}-1$. So, by GCD Lemma, $p|2^{\gcd(2n,p-1)}-1$. Note $\gcd(n,p-1)=1$ as p is the minimal prime divisor so there can't be any prime divisors of n less than or equal to p-1. Also, p-1 is even and n is even so $\gcd(2n,p-1)=2$. Then, $p|2^2-1|3 \implies p=3$. Let $\nu_3(n)=k$.

Then, $2^n + 1 = 2^{3 \cdot \frac{n}{3}} + 1 = 8^{\frac{n}{3}} - (-1)^{\frac{n}{3}}$ and 8 + 1 = 9 and by LTE, $\nu_3(2^n + 1) = \nu_3(9) + \nu_3(\frac{n}{3}) = 2 + k - 1 = k + 1$. However, $\nu_3(n^2) = 2k$. So, we have $2k \le k + 1 \implies k \le 1$. So, k = 1.

Let n=3m where $m \neq 0 \pmod 3$ and m>2. Let q|m such that q is the smallest odd prime. So, q>3. By Fermat's Little Theorem, $q|2^{q-1}-1$. Also, $q|n|n^2|2^n+1=2^{3m}+1|2^{6m}-1$. By GCD Lemma, $q|\gcd(2^{q-1}-1,2^{6m}-1)=2^{\gcd(q-1,6m)}-1$. Then, we have $\gcd(q-1,m)=1$ as p is the minimal prime divisor. Also, 2|q-1 as q is odd. Then $\gcd(6m,q-1)=2,6$. The first case gives q|3 which is impossible. The second case gives $q|63 \implies q=7$.

Now, if q = 7, $n^2 = 0 \pmod{49}$ and $2^n + 1 = 2^{3m} + 1 = 8^m + 1 = 2 \pmod{7}$. So, it is impossible. So, we m = 1 is the only possible m and n = 3.

[3] Problem 7 (IMO 1999) Find all the pairs of positive integers (x, p) such that p is a prime, $x \le 2p$ and x^{p-1} is a divisor of $(p-1)^x + 1$.

Solution: Assume $p \geq 3$. This then implies x is odd.

 $x^{p-1}|(p-1)^x+1$. Then, let q be the smallest prime divisor of x. Then, $q|x|x^{p-1}|(p-1)^x+1|(p-1)^{2x}-1$. Assume $\gcd(p-1,q)=1$. By Fermat's Little Theorem, $((p-1)^2)^{q-1}\equiv 1\pmod{q} \Longrightarrow q|(p-1)^{2q-2}$. By the GCD Lemma, $q|((p-1)^2)^{\gcd(x,q-1)}$. Note that $\gcd(x,q-1)=1$ because q is the minimal prime. So, $q|(p-1)^2-1=(p)(p-2)$. Since $\gcd(p,p-2)=\gcd(p,2)=1$, q|p or q|p-2. If q|p, then p=q. Then, $x=0\pmod{p}$ and x=p,2p. Then, $x\neq 2p$ because x can't have a prime factor less than p. Then, x=p gives p^{p-1} is a divisor of $(p-1)^p+1$ which implies

 $p^{p-1} \le (p-1)^p + 1$. Clearly, this fails for large enough p. The only possible solutions are p=3. This then gives $x^2|2^x+1$ where $x \le 6$. We can easily check and see x=1,3 are the only solutios.

If $p = 2 \pmod{q}$. Then, $q | (p-1)^x + 1 = 2 \pmod{q}$ which is a contradiction.

If $\gcd((p-1)^2,q)=q$, then $(p-1)^2=0\pmod{q} \implies p-1=0\pmod{q} \implies p=1\pmod{q}$. Then, $(p-1)^x+1=1\pmod{q}$. However, it is a multiple of $x^{p-1}=0\pmod{q}$ which is a contradiction. By LTE, for odd x, $\nu_p((p-1)^x+1)=\nu_p(p)+\nu_p(x)=1+\nu_p(x)$.

Now, the only remaining case is p=2. This gives x|2 which gives x=1,2.

Our solutions are (1,2),(2,2),(1,3),(3,3)

[4] Problem 8 (MOP 2011) Let p be a prime and n a positive integer. Suppose that p^1 fully divides $2^n - 1$ (meaning it is divisible by p but not p^2). Prove that p^1 fully divides $2^{p-1} - 1$.

Solution: Let $d = \operatorname{ord}_p(n)$. Then, since $2^n = 1 \pmod{p}$, we know d|n. Let n = dk. Then, by Lifting The Exponent, $1 = \nu_p(2^n - 1) = \nu_p((2^d)^k - 1^k) = \nu_p(2^d - 1) + \nu_k$ as $2^d - 1 = 0 \pmod{p}$ by the definition of order. This then implies $\nu_p(2^d - 1) \leq 1$. Since $2^d - 1 = 0 \pmod{p}$, we also have $\nu_p(2^d - 1) \geq 1$. Altogether, $\nu_p(2^d - 1) = 1(1)$.

Now, note that since $2^{p-1} = 1 \pmod p$, we have d|p-1. Let p-1 = dt. Then by Lifting The Exponent, $\nu_p(2^{p-1}-1) = \nu_p((2^d)^t - 1^t) = \nu_p(2^d-1) + \nu_p(t)$ as $2^d-1 = 0 \pmod p$. Then, this is equal to $1 + \nu_p(t)$ by (1). Note that since $t|p-1 \implies t < p$, $\nu_p(t) = 0$. So, it is exactly equal to 1. This what we wanted so we're done.

[4] Problem 9 (IMO SL 2006) Find all integer solutions of the equation

$$\frac{x^7 - 1}{x - 1} = y^5 - 1$$

Lemma 1 (Lemma 1) Let p be a prime, n a positive integer and a any integer. Suppose $\Phi_n(a) \equiv 0 \pmod{p}$. Then, either:

- 1. n|p-1
- 2. p|n

Consider $\Phi_7(x) = 1 + x \cdots + x^6 = \frac{x^7 - 1}{x - 1}$. By the Main Theorem/Lemma, $p|\Phi_n(x)$ implies p|n or n|p-1. As a corollary, $p|\Phi_q(x)$ we have p|q (which implies p=q) or $p=1 \pmod q$. So, if $p|\Phi_7(x)$, p=7 or $p=1 \pmod 7$. Then, the LHS is 0 (mod 7) or 1 (mod 7).

This then implies $y-1=0 \pmod 7$ or $y-1=1 \pmod 7$ as y-1 is a divisor of the RHS. These give $y=1,2 \pmod 7$. For the first case, $1+y\cdots+y^4=5 \pmod 7$ which is a contradiction as it's not equal to 1 or 0. If we plug in $y=2 \pmod 7$, we get $1+2+2^2+2^3+2^4=31=3 \pmod 7$.

Therefore, there are no solutions.

[4] Problem 10 (IMO 2000) Does there exist a positive integer n such that n has exactly 2000 prime divisors and n divides $2^n + 1$?

Solution: Clearly, 2000 is arbitary and we can replace by m. We do induction on m. For m=1, $p|2^p+1$ and p=3 works. Now, we do the induction step. By the inductive hypothesis, we have a $n=p_1^{a_1}\cdots p_m^{a_m}$ and $n|2^n+1$ where $p_1,\cdots p_m$ are distinct primes and $a_1\cdots a_m\geq 1$. Let $p_i^{a_i}|2^n+1$, suppose $p_i^{b_i}||2^n+1$ where || means it perfectly divides. Then, $p_1^{b_1}\cdots p_m^{b_m}||2^n+1$. By LTE, $p_1^{b_1+\ell}p_2^{b_2}\cdots p_m^{b_m}||2^{np_1^\ell}+1$. Consider the sequence of $2^{np_1^\ell}+1$ for $\ell=1,2\cdots$. By Kobayashi's, there is some ℓ such that $2^{np_1^\ell}+1$ has a prime factor p_{m+1} distinct from $p_1,p_2\cdots p_m$ because the sequence's terms contain an infinite number of prime factors. So, $p_1^{b_1+\ell}p_2^{b_2}\cdots p_m^{b_m}p_{m+1}|2^{np_1^\ell}+1$.

[5] Problem 11 (IMO 2003) Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^p - p$ is not divisible by q.

Lemma 2 (Lemma 1) Let p be a prime, n a positive integer and a any integer. Suppose $\Phi_n(a) \equiv 0 \pmod{p}$. Then, either:

- 1. n|p-1
- 2. p|n

Consider $q|\Phi_p(p)$ with $p^2\not|q-1$. It is clear such a prime q exists because $\Phi_p(p)$ is positive integer greater than 1 and that not all prime factors can be $\pm 1\pmod{p^2}$. This is because $\Phi_p(p)=1+p\pmod{p^2}\neq \pm 1$. By the Main Lemma, p|q-1 or q|p. Clearly, q|p is impossible as both are distinct primes. Otherwise, p=q which implies $p|p^p-1$. By way of contradiction, $n^p=p\pmod{q}\implies n=p^{\frac{1}{p}}\pmod{q}$. By Fermat's Little Theorem, $n^{q-1}=1\pmod{q}\implies p^{\frac{q-1}{p}}=1\pmod{q}$.

So, $q|\Phi_p(p)|p^p-1$ and $q|p^{\frac{q-1}{p}}-1$. By GCD Lemma, $q|\gcd(p^p-1,p^{\frac{q-1}{p}})=p^{\gcd(p,\frac{q-1}{p})}-1$. Note $\nu_p(q-1)=1$ because we established before, $\nu_p(q-1)\geq 1$ and by our assumption, $\nu_p(q-1)<2$. So, $\nu_p(q-1)=1$. Then, $q|p^{\gcd(p,\frac{q-1}{p})}-1\implies q|p-1$.

Then, as q|p-1 and p|q-1 which give $q \le p-1$ and $p \le q-1$ which are clearly impossible.

§ 4 Algebra

§ 4.1 Inequalities

[12] **Problem 1** (Canada MO 2017) For pairwise distinct nonnegative reals a, b, c, prove that

$$\frac{a^2}{(b-c)^2} + \frac{b^2}{(c-a)^2} + \frac{c^2}{(b-a)^2} > 2$$

Solution: WLOG a < b < c and let b = a + x and c = a + y. Then

$$\frac{a^2}{(b-c)^2} + \frac{b^2}{(c-a)^2} + \frac{c^2}{(b-a)^2}$$

$$= \frac{a^2}{(y-x)^2} + \frac{(a+x)^2}{y^2} + \frac{(b+y)^2}{x^2}$$
$$\ge \frac{x^2}{y^2} + \frac{y^2}{x^2} \ge 2$$

by AM-GM

[1] Problem 2 (Canada MO 2002) Let a, b, c be positive reals. Prove

$$\frac{a^3}{bc} + \frac{b^4}{ac} + \frac{c^4}{bc} \ge a + b + c.$$

Solution:

$$\frac{a^3}{bc} + \frac{b^4}{ac} + \frac{c^4}{bc} \ge a + b + c$$

$$\iff a^4 + b^4 + c^4 \ge a^2bc + b^2ac + c^2bc$$

after multiplying by abc on both sides. We will show this last inequality.

Then, note that by Weighted AM-GM, $2a^4 + b^4 + c^4 \ge 4a^2bc$. Similarly, $2b^4 + a^2 + c^2 \ge 4b^2ac$ and $2c^2 + a^2 + b^2 \ge 4c^2ab$. Then,

$$4a^{4} + 4b^{4} + c^{4} \ge 4a^{2}bc + 4b^{2}ac + 4c^{2}ab$$

$$\iff a^{4} + b^{4} + c^{4} \ge a^{2}bc + b^{2}ac + c^{2}ab$$

so it is true.

[2 \nearrow] **Problem 3** (How should n balls be put into k boxes to mimize the number of pairs of balls which are in the same box?)

Solution: Let the number of balls in the *i*th box be n_i . Then, $n_1 + n_2 \cdots + n_k = n$ and we want to minimize $\binom{n_1}{2} + \binom{n_2}{2} \cdots + \binom{n_k}{2}$. If $n_i - n_j \ge 2$ for some i, j, then we can replace n_i by $n_i - 1$ and $n_j + 1$ (which preserves n) and decrease the number of pairs as:

$$\binom{n_i}{2} + \binom{n_j}{2} \ge \binom{n_i - 1}{2} + \binom{n_j + 1}{2}$$

$$\iff n_i -_j - 1 \ge 0$$

$$\iff n_i - n_j \ge 1$$

which is true.

So, all n_i, n_j are a, a+1 for some n. Note that one of a, a+1 is $\lfloor \frac{k}{n} \rfloor$.

[3] Problem 4 (1974 USAMO) For a, b, c > 0, prove $a^a b^b c^c \ge (abc)^{\frac{a+b+c}{3}}$.

Solution:

$$a^a b^b c^c \ge (abc)^{\frac{a+b+c}{3}}$$

Taking the natural log of both sides,

$$\iff \ln(a^a b^b c^c) \ge \ln((abc)^{\frac{a+b+c}{3}})$$

$$\iff a \ln a + b \ln b + c \ln c \ge \frac{a+b+c}{3} \ln(abc)$$

$$\iff \frac{a \ln a + b \ln b + c \ln c}{3} \ge \frac{a+b+c}{3} \ln((abc)^{\frac{1}{3}})$$

We will show the last inequalty.

Let $f(x) = x \ln x$. Note that $f'(x) = x' \ln(x) + x \ln'(x) = \ln(x) + 1$ and $f''(x) = \ln'(x) = \frac{1}{x} \ge 0$ for positive x. So, f(x) is convex on positive numbers. By Jensens',

$$\frac{f(a) + f(b) + f(c)}{3} \ge f(\frac{a+b+c}{3})$$

$$\frac{a \ln a + b \ln b + c \ln c}{2} \ge \frac{a+b+c}{2} \ln(\frac{a+b+c}{2})$$

. Then, by AM-GM, $\frac{a+b+c}{3} \ge \sqrt[3]{abc} = (abc)^{\frac{1}{3}} \implies \ln(\frac{a+b+c}{3}) \ge \ln(abc)^{\frac{1}{3}}$. So, $\frac{a+b+c}{3}\ln(\frac{a+b+c}{3}) \ge \ln((abc)^{\frac{1}{3}})$. Combining the chain of inequalties, we get our desired

$$\iff \frac{a \ln a + b \ln b + c \ln c}{3} \ge \frac{a + b + c}{3} \ln((abc)^{\frac{1}{3}})$$

[3] Problem 5 (1995 India) Let $x_1, \dots x_n$ be positive numbers whose sum is 1. Prove

$$\frac{x_1}{\sqrt{1-x_1}} + \dots + \frac{x_n}{\sqrt{1-x_n}} \ge \sqrt{\frac{n}{n-1}}$$

Solution: Let $f(x) = \frac{x}{\sqrt{1-x}}$. Then, note that $f'(x) = \frac{x(\sqrt{1-x})' - x'(\sqrt{1-x})}{(\sqrt{1-x})^2} = \frac{x \cdot \frac{1}{2} \cdot (1-x)^{-\frac{1}{2}} - \sqrt{1-x}}{1-x} = \frac{\frac{1}{2} \cdot x \cdot (1-x)^{-\frac{3}{2}} - (1-x)^{\frac{1}{2}}}{1-x}$ and that $f''(x) = \frac{3x}{4}(1-x)^{-\frac{5}{2}} + \frac{1}{4}(1-x)^{-\frac{3}{2}}$. This is positive when $0 < x < 1 \iff 0 < 1 - x < 1$. So, f(x) is convex on (0,1).

Since $0 < x_i < 1$, we can apply Jensen's to get

$$\frac{f(x_1)\cdots+f(x_n)}{n} \ge f(\frac{x_1\cdots+x_n}{n}) = f(\frac{1}{n}) = \frac{\frac{1}{n}}{\sqrt{1-\frac{1}{n}}} = \frac{\frac{1}{\sqrt{n}}}{\sqrt{n-1}}$$

$$\implies f(x_1)\cdots+f(x_n) \ge \frac{\sqrt{n}}{\sqrt{n-1}}$$

$$\frac{x_1}{\sqrt{1-x_1}}+\cdots+\frac{x_n}{\sqrt{1-x_n}} \ge \sqrt{\frac{n}{n-1}}$$

[3] Problem 6 (1998 USAMO) Let $a_0, a_1 \cdots a_n$ be numbers from $(0, \frac{\pi}{2})$ such that

$$\tan(a_0 - \frac{\pi}{4}) + \tan(a_1 - \frac{\pi}{4}) \cdots + \tan(a_n - \frac{\pi}{4}) \ge n - 1$$

Prove that

$$\tan a_0 \tan a_1 \cdots \tan a_n > n^{n+1}$$

Solution: Let $x_i = \tan(a_i - \frac{\pi}{4})$. Note that $-1 \le x_i \le 1$. The condition translates to $x_0 \cdots + x_n \ge n - 1$.

Also, note that $tan(a_i) = \frac{1+x_i}{1-x_i}$ using Tangent Addition Formula. Then,

$$\tan(a_0 - \frac{\pi}{4}) + \tan(a_1 - \frac{\pi}{4}) \cdots + \tan(a_n - \frac{\pi}{4}) \ge n - 1$$

$$\iff \frac{x_0 + 1}{1 - x_0} \cdots \cdot (\frac{x_n + 1}{1 - x_n} \ge n^{n+1})$$

$$\iff \ln(\frac{x_0 + 1}{1 - x_0} \cdots + \frac{x_n + 1}{1 - x_n} \ge (n + 1) \ln n$$

$$\iff \frac{1}{n + 1} (\ln(\frac{x_0 + 1}{1 - x_0} \cdots + \ln \frac{x_n + 1}{1 - x_n}) \ge \ln n$$

We will prove this last inequalty.

Let $\hat{f}(x) = \ln(\frac{x+1}{1-x})$. Note that $f'(x) = \frac{-2(1-x)}{(1+x)}$ and

$$f''(x) = \frac{(1-x)(x+1)' - (1-x)'(x+1)}{(x+1)^2} = \frac{1-x - (x+1)}{(x+1)^2} = \frac{-2x}{(x+1)^2}$$

So, f(x) is convex on (0,1]. So, if all x_i are positive, it follows by Jensen's that

$$\frac{1}{n+1}(f(x_0)\cdots+f(x_n)\geq f(\frac{x_0\cdots+x_n}{n+1})$$

$$\frac{1}{n+1}(\ln(\frac{x_0+1}{1-x_0}\cdots+\ln\frac{x_n+1}{1-x_n})\geq \ln(\frac{\frac{x_0\cdots+x_n}{n+1}+1}{1-\frac{x_0+\cdots+x_n}{n+1}})\geq \ln(\frac{\frac{n-1}{n+1}+1}{1-\frac{n-1}{n+1}})=\ln n$$

Without loss of generality, $x_0 \le x_1 \dots \le x_n$. Note that at most one of x_i 's are negative. Otherwise, it is strictly less than 0 + 1(n-1) = n-1. If x_0 is negative, we can replace x_0, x_1 by $\frac{x_0 + x_1}{2}$ which is positive. Otherwise, since sum is preserved and is greater than n-1, it is impossible for there to be 2 or more negatives. Then, we can find that $\frac{1}{n+1}(\ln(\frac{x_0+1}{1-x_0}\dots+\ln\frac{x_n+1}{1-x_n}))$ decreases which implies that the minimium of the LHS is when all x_i 's are negative. We can apply the same reasoning as before.

§ 4.2 Misc

[3] Problem 7 (M&IQ 1992) Prove that there are no positive integers n, m such that

$$(3+5\sqrt{2})^n = (5+3\sqrt{2})^m$$

§ 5 Geometry

[5] **Problem 1** (IMO SL 2005) Let ABC be a triangle such that M is the midpoint of BC and γ is the incircle of ABC. AM intersects γ at points K and L. Let lines passing through K and L parallel to BC intersect γ again at the points K and K and K and K and K intersect K again at points K and K and K intersect K again at points K and K and K intersect K again at points K and K intersect K in K in

Solution: Note that $BQ = CP \iff QM = PM \iff YL = LZ$ We will show this.

First, note that $\triangle AKX \sim \triangle ALZ \implies \frac{KX}{LZ} = \frac{AK}{AL}(1)$. Also, AGKL is a harmonic bundle by a well-known property as AF, AE are tangents to γ and G, L pass through A and K is $GL \cap \gamma$. Then, $\frac{KA}{KG} = \frac{LA}{LG}(2)$. Using (1)+(2), we get $\frac{AL \cdot KX}{LZ} = \frac{LA}{LG} \implies \frac{KX}{LZ} = \frac{KG}{LG}(3)$. Also, let $H = GX \cap YZ$. Then, $\triangle KXG \sim LHG$ as LH||KX| and $\angle HGL = \angle KGX$. Then, $\frac{KG}{LG} = \frac{KX}{HL} \implies \frac{KX}{LZ} = \frac{KX}{HZ}$ by (3). Then, this implies LZ = HL. We will show Y = H. This is equivalent to showing X, G, Y are collinear.

We now prove a lemma: let ABC be a triangle with incircle ω and incenter I. Then, let the tangency points of ω with BC, AC, AB be D, E, F respectively. Also, let M be the midpoint of BC. Then, AM, EF, ID concur.

Proof. Let $X = EF \cap ID$. Then, we want to show A, X, M are collinear. Let U, V be the intersections of the line through X parallel to BC with AB and AC respectively. ¹ Then, $\angle IFX = \angle IUX = IUV$ as XUFI is cyclic since $IX \perp BC \implies IX \perp UV \implies IXU = 90$ and $IF \perp AB \implies \angle IFU = 90$ This then implies $\angle IFE = \angle IUV$. Also, IXEV is cyclic as $\angle IXV = 90$ and $\angle IEV = 90$ so $\angle IXV = \angle IEV$, then $\angle IEX = \angle IVX$. Then, this implies $\angle IEF = \angle IVU$. By AA similarity, $\triangle UIV \sim \triangle FIE$. As $\triangle FIE$ is isosceles, then $\triangle UIV$ is isoscles with UI = UV. As $IV \perp UV$, then UX = XV. So X is midpoint of UV and X is on the median AM. We are done.

By the lemma, ID goes through G. Now, we want to show $\angle GYL = \angle KXG$ which is equivalent to X, G, Y collinear by the converse of Alternate Interior Angles Theorem. Note that ID bisects YL as $ID \perp BC \implies ID \perp YL$ and YL is a chord of γ . So, YD = DL and $\triangle GYD \cong \triangle GLD \implies GY = GL$. Then, $\angle GYL = \angle GLY$. By Alternative Interior Angles Theorem and as K, G, L are collinear, $\angle GLX = \angle GKX$. Similarly, letting ID intersect KX at P, we have $KP = PX \implies \triangle KPG \cong XPG \implies GK = GX \implies \angle GKX = \angle KXG$. So, using the chain of equalities, we get $\angle GYL = \angle KXG$ which is what we want.

¹Note that by the converse of the Simpson Line Theorem, since E, X, F are collinear and $IF \perp AB = AU$, $IE \perp AC = AV$, and $IX \perp BC \implies IX \perp UV$ since BC||UV, that $I \in (AUV)$.