24-12-05

December 22, 2024

```
[1]: dir_tex <- "/Users/gianlucamastrantonio/Dropbox (Politecnico di Torino Staff)/
      {\scriptstyle \hookrightarrow Didattica/statistica~computazionale/dispense/mod3/"}
     setwd("/Users/gianlucamastrantonio/Dropbox (Politecnico di Torino Staff)/
      →Didattica/statistica computazionale/codice R/mixture wind")
     library(ggplot2)
     library(rstan)
     library(nimble)
     load("/Users/gianlucamastrantonio/Dropbox (Politecnico di Torino Staff)/
      ⇔Didattica/statistica computazionale/datasets/wind.RData")
     gg_theme <- theme(
         legend.title = element_text(size = 25),
         axis.title = element_text(size = 28), # Increase axis title size
         axis.text = element_text(size = 24),
         legend.position = "bottom",
         legend.key.size = unit(1., "cm"),
         legend.text = element_text(size = 24)
     )
     1s()
```

Caricamento del pacchetto richiesto: StanHeaders

```
rstan version 2.32.6 (Stan version 2.32.2)
```

```
For execution on a local, multicore CPU with excess RAM we recommend calling options(mc.cores = parallel::detectCores()).

To avoid recompilation of unchanged Stan programs, we recommend calling rstan_options(auto_write = TRUE)

For within-chain threading using `reduce_sum()` or `map_rect()` Stan functions, change `threads_per_chain` option:
rstan_options(threads_per_chain = 1)
```

nimble version 1.2.1 is loaded. For more information on NIMBLE and a User Manual, please visit https://R-nimble.org.

Note for advanced users who have written their own MCMC samplers:
As of version 0.13.0, NIMBLE's protocol for handling posterior
predictive nodes has changed in a way that could affect user-defined
samplers in some situations. Please see Section 15.5.1 of the User Manual.

Caricamento pacchetto: 'nimble'

Il seguente oggetto `e mascherato da 'package:stats':

simulate

Il seguente oggetto `e mascherato da 'package:base':

declare

1. 'dir_tex' 2. 'gg_theme' 3. 'wind'

[2]: summary(wind)

plot		lat		lon			
Length:81663		Min.	:43.34	Min.	:-113.1		
Class	:character	1st Qu	.:43.40	1st Qu	1.:-113.0		
Mode	:character	Median	:43.40	Mediar	ı:-113.0		
		Mean	:43.40	Mean	:-113.0		
		3rd Qu	.:43.41	3rd Qu	1.:-113.0		
		Max.	:43.43	Max.	:-113.0		
datetime				obs_speed		obs_dir	
dat	etime			obs_sp	eed	obs_	dir
	etime :2010-06-13	08:00:0	00.00		eed 0.000	obs_ Min.	
Min.				Min. :			: 0.0
Min. 1st Qu	:2010-06-13	00:00:0	00.00	Min. :	0.000	Min.	: 0.0 :111.0
Min. 1st Qu Mediar	:2010-06-13 1.:2010-07-03	00:00:0 14:00:0	00.00	Min. :	0.000 1.900 3.100	Min. 1st Qu.	: 0.0 :111.0 :196.0
Min. 1st Qu Mediar Mean	:2010-06-13 1.:2010-07-03 1:2010-07-24	00:00:0 14:00:0 09:51:2	00.00 00.00 26.65	Min. : 1st Qu.: Median :	0.000 1.900 3.100 3.844	Min. 1st Qu. Median	: 0.0 :111.0 :196.0 :183.8

Simuliamo da un modello mistura del tipo

$$y_i|z_i \sim N(\mu_{z_i}, \sigma_{z_i}^2)$$

$$z_i \sim Discr(\pi_1, \pi_2)$$

1 esempio 1

$$\pi = (0.3, 0.7)$$

$$\sigma_1^2 = \sigma_2^2 = 2$$

$$\mu_1 = -10 \quad \mu_2 = 5$$

```
[24]: pi_vec = c(0.3, 0.7)
    mu_vec = c(-10,5)
    sigma2_vec = c(2,2)
    n = 300

[ ]: z = matrix(NA, ncol=1, nrow=n)
    y <- matrix(NA, ncol = 1, nrow = n)
    for(i in 1:n)
    {
        z[i] = sample(1:2, 1, prob = pi_vec)
        y[i] = rnorm(1, mu_vec[z[i]], sigma2_vec[z[i]]^0.5)
    }

    plot(y)
    plot(density(y))</pre>
```

[]:

density(x = y)

$$\mu_1 = +2 \quad \mu_2 = 5$$

```
[30]: mu_vec <- c(2, 5)
z <- matrix(NA, ncol = 1, nrow = n)
y <- matrix(NA, ncol = 1, nrow = n)
for (i in 1:n)
{
    z[i] <- sample(1:2, 1, prob = pi_vec)
    y[i] <- rnorm(1, mu_vec[z[i]], sigma2_vec[z[i]]^0.5)
}
plot(y)</pre>
```


density(x = y)

[]: