Fourth Year - Seventh Semester

Branch: Computer Science and Engineering

Course Code	CS 701
Course Title	DIGITAL IMAGE PROCESSING
Type of Course	Core
LT P	3 1 0
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Computer Graphics (CS 502)
Course Objectives (CO) Course Outcome	 To introduce the various image processing techniques and their applications in different domains. To get students acquainted with computer vision. Understand the basic terms related to
Course Outcome	 Understand the basic terms related to imaging, types of images, image conversions, matrix calculations, steps involved in image processing, its need in real time applications, state of art, color models and color image processing, various domains. Understand and develop various image enhancement filters both in spatial and frequency domain, restoration process after discussing degradation functions, role of image enhancement and restoration in any image processing application. The implementation of same is also required to be done practically. Discuss the role and need of image compression and its techniques, morphological operations, role and need of segmentation, types of segmentation, edge segmentation, various segmentation algorithms like region growing, region splitting and merging, watershed etc., calculations and practice of numerical related to segmentation. Discuss various boundary and regional descriptor methods, equation related to boundary detection, various types of image features and methods defined for object recognition.

SYLLABUS

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is

compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Introduction to Image Processing:

Digital Image representation, Sampling & Quantization, Steps in image Processing, Image acquisition, color image representation

(6 hours)

Image Transformation & Filtering:

Intensity transform functions, histogram processing, Spatial filtering, fourier transforms and its properties, frequency domain filters, , color models, Pseudo coloring, color transforms, Basics of Wavelet Transforms.

(12 hours)

Image Restoration:

Image degradation and restoration process, Noise Models, Noise Filters, degradation function, Inverse Filtering, Homomorphism Filtering

(7 hours)

SECTION-B

Image Compression:

Coding redundancy, Interpixel redundancy, Psychovisual redundancy, Huffman Coding, Arithmetic coding, Lossy compression techniques, JPEG Compression.

(8 hours)

Image Segmentation & Representation:

Point, Line and Edge Detection, Thresholding, Edge and Boundary linking, Hough transforms, region Based Segmentation, Boundary representation, Boundary Descriptors, Regional Descriptors.

(12 hours)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Digital Image Processing	Gonzalez and Woods	Addison Wesley, 1992
2	Computer Vision	Boyle and Thomas	2 nd edition, Blackwell Science, 1995
3	Digital Image Processing and Pattern Recogniation	Pakhira Malay K	PHI

Course Code	CS 751
Course Title	DIGITAL IMAGE PROCESSING
	(Practical)
Type of Course	Core
LT P	0 0 3
Credits	1
Course Assessment Methods	
End Semester Assessment	
Continuous Assessment	50

SYLLABUS

Practical should be covered based on the following directions:

- 1. Reading and displaying images in different formats using different color models.
- 2. Converting color images into monochrome images, Image color enhancements using pseudo coloring techniques.
- 3. Images enhancements using grey level transformations and spatial and frequency domain filters
- 4. Image Noise removal and inverse filtering of images
- 5. Point, Line, Edge and Boundary Detections in images
- 6. Histogram Matching and specification on images
- 7. Boundary Linking, Representation and Description techniques on images
- 8. Thresholding & Magnification of Images
- 9. Image Morphological Operations
- 10. Object Recognition Techniques

Course Code	CS 702
Course Title	ADVANCE DATABASE SYSTEMS
Type of Course	Core
LTP	3 1 0
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Database Systems (CS 302)
Course Objectives (CO)	 To review various Database concepts, Data models and their architectures. To introduce Advanced Strategies for implementation of Transaction processing, concurrency control and Recovery management. To learn how to optimize query processing. To familiarize with concepts of Distributed databases and their implementation concepts. To elaborate Significance of Data warehouses and their setup strategies. To understand role of Data mining, OLAP, OLTP in databases and their implementation strategies. To familiarize with Object oriented databases and their significance. To expose to various databases like oracle, Sql server, DB2, MySqletc through case studies
Course Outcome	through case studies. 1. Recall various Database concepts with discovery of advanced strategies for Transaction processing, Concurrency control, Recovery management and Query Processing.
	 Understand Object Oriented and Distributed databases. Learn significance of Data warehousing, Data mining, OLAP and OLTP. Examine various Case studies: Oracle, Sql server, DB2, MySql etc.

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Introduction to Database Systems:

Database System Concepts and Architecture, Data Models, Data Independence, SQL: DDL, DML, DCL, Normalization: 1NF, 2NF, 3NF, BCNF, 4NF, 5NF.

(6 hours)

Query Processing and Optimization:

Query Processing, Syntax Analyzer, Query Decomposition, Query Optimization, Heuristic Query Optimization, Cost Estimation, Cost Functions for Select, Join, Query Evaluation Plans.

(6 hours)

Transaction Processing and Concurrency Control:

Transaction Processing Concepts, Concurrency Control Techniques: Two-phase Locking, Timestamp Ordering, Multiversion, Validation, Multiple Granularity Locking.

(5 hours)

Object Oriented and Object Relational Databases:

Object Oriented Concepts, Object Oriented Data Model, Object Definition Language, Object Query Language, Object Relational Systems, SQL3, ORDBMS Design.

(5 hours)

SECTION-B

Distributed Databases:

Distributed Database Concepts, Advantages and Disadvantages, Types of Distributed Database Systems, Data Fragmentation, Replication and Allocation Techniques for Distributed Database Design, Five Level Schema Architecture, Query Processing, Concurrency Control and Recovery in Distributed Databases.

(6 hours)

Backup and Recovery:

Types of Database Failures, Types of Database Recovery, Recovery Techniques: Deferred Update, Immediate Update, Shadow Paging, Checkpoints, Buffer Management.

(5 hours)

Introduction to Data Warehousing and Data Mining:

Introduction to OLAP, OLTP, Data Warehouse, Data Marts, Data Mining, Data Mining Process.

(5 hours)

Commercial Databases:

Commercial Database Products, Familiarity with IBM DB2 Universal Database, Oracle, Microsoft SQL Server, MySql, their features.

(7 hours)

TEXT	TEXT BOOKS				
S. No.	NAME	AUTHOR(S)	PUBLISHER		
1	Fundamentals of Database	RamezElmasri,	5 th edition, Pearson		
	Systems	ShamkantNavathe	Education, 2007		
2	Database Management Systems,	Raghu Ramakrishnan,	Tata McGraw-Hill		
		Johannes Gehrke			
3	An Introduction to Database	C.J. Date	8 th edition, Pearson		
	Systems		Education		
4	Database Management Systems	Alexis Leon, Mathews	Leon Press		
		Leon			
5	Database System Concepts	Abraham Silberschatz,	Tata McGraw-Hill		
		Henry F. Korth, S.			
		Sudarshan			
6	Database Systems Concepts,	S. K. Singh	Pearson Education		
	Design and Applications				

Course Code	CS 703	
Course Title	CYBER LAWS AND IPR	
Type of Course	Core	
LTP	3 1 0	
Credits	4	
Course Assessment Methods		
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional, Assignments,	50	
Quiz)		
Course Prerequisites	None	
Course Objectives (CO)	1. To introduce the Cyber laws and	
	Intellectual property rights.	
Course Outcome	1. To understand the various cyber laws those	
	govern the cyber space.	
	2. To understand the legal aspects of e-	
	commerce.	
	3. To understand the Intellectual Property	
	Rights and the different components of	
	the IT Act.	

SYLLABUS

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Basics of Computer & Internet Technology

Internet, ISP & domain name; Network Security; Encryption Techniques and Algorithms; Digital Signatures.

(8 hours)

Introduction to Cyber World

Introduction to Cyberspace and Cyber Law; Different Components of cyber Laws; Cyber Law and Netizens.

(2 hours)

E-Commerce

Introduction to E-Commerce; Different E-Commerce Models; E-Commerce Trends and Prospects; E-Commerce and Taxation; Legal Aspects of E-Commerce.

(7 hours)

SECTION-B

Intellectual Property Rights

IPR Regime in the Digital Society; Copyright and Patents; International Treaties and Conventions; Business Software Patents; Domain Name Disputes and Resolution.

(12 hours)

IT Act, 2000

Aims and Objectives; Overview of the Act; Jurisdiction; Role of Certifying Authority; Regulators under IT Act; Cyber Crimes-Offences and Contraventions; Grey Areas of IT Act.

(12 hours)

Project Work

Candidates will be required to work on a project. At the end of the course students will make a presentation and submit the project report.

(4 hours)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	A Guide to	NandanKamath	Galgotia
	Cyber		Publications
	Laws & IT Act 2000		
	with Rules		
	&		
	Notification		
2	Cyber	Keith Merill&	(IK Inter.)
	Cops,	Deepti Chopra	
	Cyber		
	Criminals&		
	Internet		
3	Information	Diane Row	TATA
	Technology	Land	McGraw
	Laws		Hill
4	Handbook	Vakul Sharma	(McMillian)
	of Cyber		
	Law		

Course Code	CS 704A	
Course Title	SOFTWARE PROJECT MANAGEMENT	
Type of Course	Elective	
LTP	3 1 0	
Credits	4	
Course Assessment Methods		
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional, Assignments,	50	
Quiz)		
Course Prerequisites	Software Engineering (CS 404), Software	
	Testing and Quality Assurance (CS 605A)	
Course Objectives (CO)	1. To introduce the concepts of software	
	project management.	
	2. To make them understand the role and	
	importance of project planning, estimation	
	and scheduling activities and the relevant	
	techniques.	
	3. To make them understand the role and	
	usage of project and process metrics.	
	4. To make them aware about risk	
	management, maintenance and	
	reengineering issues.	
Course Outcome	1. Understand project management activities	
	like planning, estimation and scheduling.	
	2. Use techniques and tools relevant to	
	planning, estimation and scheduling.	
	3. Identify quality requirements, security	
	risks and the approaches to address them.	
	4. Apply risk management, configuration	
	management, quality management,	
	maintenance and reengineering concepts.	

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Project Management Concepts

The management spectrum, the people, the product, the process, the project, stakeholders, W⁵HH Principle, critical practices, the SPM plan, project planning steps. (4 hours)

Process and Project Metrics

Metrics in the Process and Project Domains, Software Measurement, Size-Oriented Metrics, Function-Oriented Metrics, Reconciling LOC and FP Metrics, Object-Oriented Metrics, Use Case-Oriented Metrics, WebApp Project Metrics, Metrics for Software Quality, Integrating Metrics within the Software Process, Establishing a Software Metrics Program.

Estimation for Software Projects

The Project Planning Process, Selection of an appropriate project approach, Software Project Estimation, Decomposition Techniques, Software Sizing, Problem-Based Estimation, An Example of LOC-Based Estimation, An Example of FP-Based Estimation, Process-Based Estimation, Estimation with Use Cases, Reconciling Estimates, Empirical Estimation Models, Estimation for Object-Oriented Projects, Specialized Estimation Techniques, The Make/Buy Decision.

(7 hours)

Project Scheduling

Basic Concepts of Project Scheduling, The Relationship between People and Effort, Effort Distribution, Defining a Task Set for the Software Project, Refinement of Major Tasks, Time-Line Charts, Tracking the Schedule, Tracking Progress for an OO Project, Scheduling for WebApp and Mobile Projects, Earned Value Analysis, Project Monitoring and Control.

(6 hours)

SECTION-B

Quality Planning

Quality Concepts, Quality control, Quality assurance, Formal Technical Reviews, Team Management, The SQA Plan, ISO and CMM standards.

(7 hours)

Risk Management

Reactive versus Proactive Risk Strategies, Software Risks, Risk Identification, Assessing Overall Project Risk, Risk Projection, Assessing Risk Impact, Risk Refinement, Risk Mitigation, Monitoring, and Management, The RMMM Plan.

(4 hours)

Configuration Management

Elements of a Configuration Management System, Baselines, Software Configuration Items, Management of Dependencies and Changes, The SCM Repository, The SCM Process, Version Control, Change Control, Configuration Audit, Status Reporting, Configuration Management for Web and MobileApps.

(4 hours)

Maintenance and Reengineering

Software Maintenance, Software Supportability, Reengineering, Business Process Reengineering, Software Reengineering Process Model, Reverse Engineering, Restructuring, Forward Engineering, The Economics of Reengineering.

(7 hours)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Software Project Management	Bob Hughes and Mike	Latest edition,
		Cotterell	McGraw Hill
2	Software Engineering	Roger S. Pressman, Bruce	8 th edition, McGraw
		R. Maxim	Hill
3	Software Project Management in	Pankaj Jalote	Latest edition,
	Practice		Addison Wesley
4	Software Project Management	Walker Royce	Latest edition,
			Addison Wesley
5	Software Project Management: A	S A Kelkar	Latest edition, PHI
	Concise Study		
6	Software Project Management: A	Joel Henry	Latest edition,
	Real-World Guide To Success	-	Pearson

Course Code	CS 754A
Course Title	SOFTWARE PROJECT MANAGEMENT
	(Practical)
Type of Course	Elective
LTP	0 0 3
Credits	1
Course Assessment Methods	
End Semester Assessment	
Continuous Assessment	50

SYLLABUS

Practical based on Software Project Management syllabus.

Course Code	CS 704B	
Course Title	NATURAL LANGUAGE PROCESSING	
Type of Course	Elective	
LTP	3 1 0	
Credits	4	
Course Assessment Methods		
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional, Assignments,	50	
Quiz)		
Course Prerequisites	Principle of Programming Languages (CS	
	504), Theory of Computation (CS 505)	
Course Objectives (CO)	1. This course is designed to introduce students to the fundamental concepts and	
	ideas in natural language processing	
	(NLP), and to get them up to speed with	
	current research in the area.	
Course Outcome	1. Gain understanding of linguistic	
	phenomena and will explore the linguistic	
	features relevant to each NLP task.	
	2. Develop understanding in syntactic and	
	semantic processing of text.	
	3. Be familiar with different NLP Concepts	
	and Resources for doing research in NLP.	

SYLLABUS

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Introduction to NLP:

Introduction and Survey of applications, Levels of linguistic processing: morphology, syntax, semantics, Tokenization, Stemming, N-grams Modeling (4 hours)

Language processors and Understanding: recognizers, transducers, parsers, generators, Language as a rule-based system, Language understanding as an inferential activity.

(10 hours)

Resources for NLP:

Introduction to lexicons and knowledge bases.

(2 hours)

Computational morphology

lemmatization, Part-of-Speech Tagging, Finite-State Analysis, noun phrase chunking.

(5 hours)

SECTION-B

Syntactic Processing:

Basic parsing: Top Down and Bottom Up parsing, Chart parsing, Deterministic parsing, Statistical parsing, Grammars with features, Unification Grammars, The Lexicon

(6 hours)

Semantic Interpretation:

Lexical semantics, Semantics and logical form, Resolving ambiguities: Word Sense Disambiguation, Linking syntax and semantics, Linking syntax and semantics in restricted domains

(6 hours)

Context and World Knowledge:

Discourse: linguistic context, Ellipsis; World knowledge, Discourse structure Conversation and cooperation, Implementing "co-operative responses", Information Retrieval and Information Extraction.

(6 hours)

NLP concepts: named entity recognition, coreference resolution, question answering, text classification, document clustering, text summarization, machine translation, Basics of Machine Learning.

(6 hours)

TEXT	TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER	
1	Natural language understanding	Allen, J	2 nd Edition, Redwood City, CA: 1994. Benjamin/Cumming s	
2	Natural Language Processing for Prolog. Programmers	Covington, M.A	Prentice Hall, 1994	
3	Speech and Language Processing	Jurafsky, D. and Martin	Prentice Hall, 2000	
4	Natural Language Processing in Prolog: An Introduction to Computational Linguistics	Gazdar, G. & Mellish, C.	Addison Wesley, 1989	

Course Code	CS 754B	
Course Title	NATURAL LANGUAGE PROCESSING	
	(Practical)	
Type of Course	Elective	
LTP	0 0 3	
Credits	1	
Course Assessment Methods		
End Semester Assessment		
Continuous Assessment	50	

SYLLABUS

Practical based on Natural Language Processing syllabus.

Course Code	CS 704C
Course Title	BUSINESS INTELLIGENCE
Type of Course	Elective
LTP	3 1 0
Credits	4
Course Assessment Methods End Semester Assessment (University Exam.) Continuous Assessment (Sessional, Assignments,	50 50
Quiz)	30
Course Prerequisites	Database Systems (CS 302)
Course Objectives (CO)	 To introduce the concepts of Business process their requirements, key performance indicators and their evaluation in a typical Business houses. To introduces the concept of data warehouses and use of multi dimensional databases and Online Analytical processing. To introduce the basic data mining concepts like Association Rule Analysis, classification, clustering and their use in different application domains.
Course Outcome	 Understand fundamental Business processes, their requirements, evaluation using key performance indicators, Demonstrate an understanding of BI framework and its implementation using open source tools. Demonstrate an understanding of various concepts related to data warehousing and OLAP. Use different data mining representation techniques used in different domains.

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Introduction to Business Intelligence:

Introduction to OLTP and OLAP, BI Definitions & Concepts, Business Applications of BI, BI Framework, Role of Data Warehousing in BI, BI Infrastructure Components – BI Process, BI Technology, BI Roles & Responsibilities (8 hours)

Basics of Data Integration (Extraction Transformation Loading)

Concepts of data integration need and advantages of using data integration, introduction to common data integration approaches, introduction to ETL, Introduction to data quality, data profiling concepts and applications.

(8 hours)

Introduction to Multi-Dimensional Data Modeling,

Introduction to data and dimension modeling, multidimensional data model, ER Modeling vs. multi dimensional modeling, concepts of dimensions, facts, cubes, attribute, hierarchies, star and snowflake schema, introduction to business metrics and KPIs, creating cubes using SSAS

(8 hours)

SECTION-B

Basics of Enterprise Reporting

Introduction to enterprise reporting, concepts of dashboards, balanced scorecards, and overall architecture

(6 hours)

Data Mining Functionalities:

Association rules mining, Mining Association rules from single level, multilevel transaction databases, Classification and prediction, Decision tree induction, Bayesian classification, k-nearest neighbor classification, Cluster analysis, Types of data in clustering, categorization of clustering methods

(15 hours)

TEXT BOOKS				
S. No.	NAME	AUTHOR(S)	PUBLISHER	
1	Fundamentals of Business	R N Prasad, Seema	1 st edition, Wiley	
	Analytics	Acharya	India, 2011	
2	Data Mining: Concepts and	Han and M. Kamber	Latest edition,	
	Techniques		Morgan Kaufman	
			publishers, Harcourt	
			India pvt. Ltd, 2010	
3	Business Intelligence: The Savvy	David Loshin	Latest edition,	
	Manager's Guide.		Knowledge	
			Enterprise, 2011	
4	Business Intelligence roadmap	Larissa Terpeluk Moss,	Latest edition,	
		ShakuAtre	Addison Wesley,	
			2012	
5	Successful Business Intelligence:	CindiHowson	Latest edition, Tata	
	Secrets to making Killer BI		McGraw Hill, 2012	
	Applications			
6	Business intelligence for the	Mike Biere	Latest edition,	
	enterprise		Addison Wesley,	
			2010	

Branch: Computer Science and Engineering

Course Code	CS 754C
Course Title	BUSINESS INTELLIGENCE (Practical)
Type of Course	Elective
LTP	003
Credits	1
Course Assessment Methods	
End Semester Assessment	
Continuous Assessment	50

Practical based on Business Intelligence syllabus.

Course Code	CS 704D	
Course Title	WIRELESS SENSOR NETWORKS	
Type of Course	Elective	
LT P	3 1 0	
Credits	4	
Course Assessment Methods		
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional, Assignments,	50	
Quiz)		
Course Prerequisites	Data Communication and Networks (CS 501)	
Course Objectives (CO)	 Understand the design issues in Adhoc and Wireless Sensor networks (WSN) Learn architecture and deployment 	
	features of WSN	
	3. Be familiar with different types of routing protocols	
	4. Knowledge of different sensors and Software platform	
Course Outcome	1. Understand the concepts, network architectures and applications of Adhoc and Wireless Sensor Networks	
	2. Analyze the protocol design issues of Adhoc and Sensor networks	
	3. Implement routing protocols for Adhoc and Wireless Sensor Networks with respect to some protocol design issues	
	4. Evaluate the QoS related performance measurements of Adhoc and Sensor networks and understanding of different kinds and types of sensor for deployment	

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Introduction

Fundamentals of Wireless Communication Technology – The Electromagnetic Spectrum, Radio propagation Mechanisms, Characteristics of the Wireless Channel, Mobile Adhoc Networks (MANETs) and Wireless Sensor Networks (WSNs):concepts and architectures. Applications of AdHoc and Sensor networks. Design Challenges in Adhoc and Sensor Networks. (8 hours)

Overview of Wireless Sensor Networks and its Architecture

Challenges for Wireless Sensor Networks, Enabling Technologies For Wireless Sensor Networks. Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture - Sensor Network Scenarios, Optimization Goals and Figures of Merit, Gateway

(9 hours)

Networking Sensors

Physical Layer and Transceiver Design Considerations, MAC Protocols for Wireless Sensor Networks, Low Duty Cycle Protocols And Wakeup Concepts - S-MAC , The Mediation Device Protocol, Wakeup Radio Concepts, Address and Name Management, Assignment of MAC Addresses

(9 hours)

SECTION-B

WSN Routing, Localization and QOS

Issues in WSN routing – OLSR- Localization – Indoor and Sensor Network Localization-absolute and relative localization, triangulation, Topology Control , Clustering, Time Synchronization, Localization and Positioning, Sensor Tasking and Control, QOS in WSN-Energy Efficient Design-Synchronization-Transport Layer issues.

(10 hours)

Sensor Network Platforms and Tools

Sensor Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms, Node-level Simulators, State-centric programming.

(9 hours)

TEXT BOOKS				
S. No.	NAME	AUTHOR(S)	PUBLISHER	
1	AdHoc Wireless Networks:	C. Siva Ram Murthy, and	6 th edition, Prentice	
	architectures and Protocols	B. S. Manoj	Hall Professional	
			Technical	
			Reference, 2008	
2	Protocols and Architectures for	Holger Karl and Andreas	Wiley, 2005	
	Wireless Sensor Networks	Willig		
RECO	RECOMMENDED BOOKS			
1	Ad Hoc & Sensor	Carlos De MoraisCordeiro,	World Scientific	
	Networks: Theory and	Dharma Prakash Agrawal	Publishing	
	Applications	_	Company, 2006	
2	Wireless Sensor Networks: - An	Feng Zhao and	Elsevier Publication,	
	Information	LeonidesGuibas	2007	
	Processing Approach			
3	Wireless Sensor Networks-	KazemSohraby, Daniel	John Wiley, 2007	
	Technology, Protocols, and	Minoli, &TaiebZnati		
	Applications			
4	Wireless Sensor Network Designs	.Anna Hac	John Wiley, 2003	

Course Code	CS 754D	
Course Title	WIRELESS SENSOR NETWORKS	
	(Practical)	
Type of Course	Elective	
LTP	0 0 3	
Credits	1	
Course Assessment Methods		
End Semester Assessment		
Continuous Assessment	50	

SYLLABUS

Practical based on Wireless Sensor Networks syllabus.

Course Code	CS 704E
Course Title	SENSOR SYSTEMS AND APPLICATIONS
Type of Course	Elective
LT P	3 1 0
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	None
Course Objectives (CO)	 Develop judgment of what sensors and modalities are appropriate for different applications Know how to electronically condition the sensor, hook it up to a microcomputer, and process the signal (at least basically) Have some idea of how/where these sensors were used before Have a reasonable idea of how different sensors work
Course Outcome	 Understand fundamental of different types of sensors, Demonstrate the use of different types of sensors available. Able to capture data from multiple sensors and analyze it. Design a simple application based on single sensor

SYLLABUS

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Basics Sensors:Examples and Definitions, Introduction to Sensor Electronics and terminology (Fraden Ch. 2) Sensors classifications from output point of view and quasi-digital sensors classification; Sensors architectures for integrated and smart sensors; Informative parameters (unified and frequency-time domain parameters of signal); Advantages of frequency as informative parameter including high noise immunity, high power of signal, wide dynamic range, high reference accuracy, simple interfacing, simple Integration and coding.

(12 hours)

Mobile Phone Sensors

Capacitive sensors: Fundamentals, Applications and Examples (Fraden Ch. 3.2, 6.3, 7.3, 10.6), Accelerometers (Fraden Ch. 8)

Piezoelectric Sensors (Fraden Ch. 3.6, 5.2.4, 8.4)

Pressure sensors: Principles and Examples (Fraden Ch. 10)

(9 hours)

SECTION-B

Application Sensors

Strain Gauges: Basics and Examples (FradenCh 3.5, 5.1, 5.2, 5.7, 9) ,Thermometers: Measurement Techniques and Examples, Flow Sensors (Fraden Ch. 16),Radiation Sensors: Overview of Types, Examples of Applications (Fraden Ch. 14)IR Sensors and Demo: IR Motion Active sounding: Methods for measurement, Examples

Chemical Sensors, Biosensors, RF sensors

(12 hours)

Data Acquisition Methods for Sensor Systems: Data acquisition (DAQ) systems, data-loggers, DAQ boards. Frequency-to-digital converter (FDC) - to - microcontroller interface. Different DAQ architectures and main errors of DAQ.

(12 hours)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Handbook of Modern Sensors:	Fraden, J.	4 th edition, Springer,
	Physics, Designs, and		India, 2010
	Applications.		
2	Understanding the Smart Sensors	Frank. R,	2 nd edition,
	-		ArtechHouse, 2010
3	Smart Sensor Systems by 2008	Meijer.M. C.G	Latest edition, John
			Willey & Sons Ltd,
			2008

Course Code	CS 754E
Course Title	SENSOR SYSTEMS AND
	APPLICATIONS (Practical)
Type of Course	Elective
LTP	0 0 3
Credits	1
Course Assessment Methods	
End Semester Assessment	
Continuous Assessment	50

SYLLABUS

Practical based on Sensor Systems And Applications syllabus.

Course Code	CS 705A	
Course Title	AGILE SOFTWARE DEVELOPMENT	
Type of Course	Elective	
LT P	3 1 0	
Credits	4	
Course Assessment Methods End Semester Assessment (University Exam.) Continuous Assessment (Sessional, Assignments, Quiz)	50 50	
Course Prerequisites	Software Engineering (CS 404), Software Testing and Quality Assurance (CS 605A)	
Course Objectives (CO)	 To introduce the concepts of agile software development. To make them understand agile process models and design practices. To make them understand and apply agile testing concepts and principles. To make them aware about agile project management and quality assurance related issues. 	
Course Outcome	 Understand the principles and practices of agile software development. Understand and apply agile design principles. Understand and apply agile testing techniques. Understand and conduct agile project management tasks like scheduling, estimation, monitoring and quality assurance activities. 	

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Basics of Agile Software Development

The Genesis of Agile, Introduction and background, Agile Manifesto and Principles, Differences between Agile and traditional plans, Stakeholders, Challenges. (6 hours)

Agile Approaches

Extreme Programming, Agile Process Models: Scrum, Project Phases, Dynamic Systems Development Method, Agile Modeling, Agile Unified Process. A Tool Set for the Agile Process, Feature Driven development, Lean Software Development, Agile Project management, Test Driven Development, Continuous Integration, Refactoring, Pair Programming.

Agile Design

Agile Design practices, The Single-Responsibility Principle, The Open-Closed Principle, The Liskov-Substitution Principle, The Dependency-Inversion Principle, The Interface-Segregation Principle (9 hours)

SECTION-B

Agile Testing

Planning and Managing Testing Cycle, Agile Lifecycle and its impact on testing, Principles of Agile Testing, Agile Testing Techniques, xUnit Framework, Test-Driven Development, User Acceptance Tests, Test Automation

(8 hours)

Agile Project Management

Scheduling in an agile project, scheduling challenges, estimating costs, monitoring project progress, burning down the product backlog, reporting, controlling the project

(7 hours)

Incorporating ISO 9001 into the Agile Transition

Quality Assurance in Agile World, Managing Scrum Teams, Agile Metrics, Incorporating ISO 9001 into the Agile Transition, Creating Policy and Process Documentation, Development processes, Focusing on customers, Resource management, Formal reviews.

(7 hours)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Agile Software Development,	Robert C. Martin	Latest edition,
	Principles, Patterns, and Practices		Pearson
2	Enterprise-Scale Agile Software	James Schiel	Latest edition, CRC
	Development		Press
3	Software Engineering	Roger S. Pressman, Bruce	8 th edition, McGraw
		R. Maxim	Hill
4	Agile software development	PekkaAbrahamsson,	VTT Publications
	Methods -	OutiSalo,	
	Review and analysis	JussiRonkainen&JuhaniWa	
		rsta	
5	Agile Testing	Lisa Crispin, Janet Gregory	Latest edition,
			Addison-Wesley
6	Succeeding with Agile: Software	Mike Cohn	Latest edition,
	Development Using Scrum		Addison-Wesley

Course Code	CS 755A
Course Title	AGILE SOFTWARE DEVELOPMENT
	(Practical)
Type of Course	Elective
LTP	0 0 3
Credits	1
Course Assessment Methods	
End Semester Assessment	
Continuous Assessment	50

SYLLABUS

Practical based on Agile Software Development syllabus.

Course Code	CS 705B	
Course Title	NEURAL NETWORKS	
Type of Course	Elective	
LTP	3 1 0	
Credits	4	
Course Assessment Methods		
End Semester Assessment (University Exam.)	50	
Continuous Assessment (Sessional, Assignments,	50	
Quiz)		
Course Prerequisites	Data Communication and Networks (CS 501),	
	Web Technologies (CS 402), Database	
	Systems (CS 302)	
Course Objectives (CO)	1. To introduce concepts of artificial neural	
	networks and principles of leaning and	
	regression.	
	2. To learn various types of neural networks	
	and their working principles	
	3. To understand role of neural network in	
	various applications and apply it to multi-	
	class classification etc.	
Course Outcome	1. Understand basic concepts of neural	
	networks.	
	2. Use neural networks to perform	
	classification for single class and	
	multiclass problems.	
	3. Learn and apply the concept of self	
	organizing maps.	

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Neural Network Basics

Classical AI and Neural Networks, characteristics of neural networks, Historical perspective, The biological inspiration, models of artificial neuron & activation functions, Artificial Neuron Model and Linear Regression, Nonlinear Activation Units and Training of artificial neural networks. (6 hours)

Learning Mechanisms: Gradient Descent Algorithm, Learning Mechanisms-Hebbian, Competitive, Boltzmann, Universal function approximation.

(6 hours)

Single Layer and Multi layerPerceptrons:

Representation of perceptron, Linear separability, Perceptron Learning, Single-Layer Perceptions, Unconstrained Optimization: Gauss-Newton's Method, Linear Least Squares Filters, Least Mean Squares Algorithm, Perceptron Convergence Theorem, Back Propagation Algorithm, Practical Consideration in Back Propagation Algorithm Training of single layer and multi-layer, back propagation training algorithm, Applications of back propagation,

Solution of Non-Linearly Separable Problems Using MLP, Heuristics For Back-Propagation, Multi-Class Classification Using Multi-layered Perceptrons

(12 hours)

SECTION-B

Associative Memory Networks:- Associative Memory Model, Conditions for perfect Recall in Associative memory.

Radial Basis Function Networks: Introduction ,Separability and Interpolation, Learning Mechanisms in RBF, Comparison Between MLP and RBF

(5 hours)

Introduction to Principal Components and Analysis, Dimensionality reduction Using PCA, Hebbian-Based Principal Component Analysis

(5 hours)

Self OrganizingMaps: Introduction to Self Organizing Maps, Cooperative and Adaptive Processes in SOM, Vector-Quantization Using SOM, Competitive learning, Maxican Hat networks

(6 hours)

TEXT BOOKS			
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Neural Networks, fuzzy Logic, and Genetic Algorithms	Rajasekaran&Vijayalakhm iPai	Pearson, 2011
2	Principles of Soft Computing	Sivanandam, Deepa	Wiley, 2014
3	Neural Networks – A Classroom Approach	Satish Kumar	Tata Mcgraw, 2010

Course Code	CS 755B
Course Title	NEURAL NETWORKS (Practical)
Type of Course	Elective
LTP	003
Credits	1
Course Assessment Methods	
End Semester Assessment	
Continuous Assessment	50

SYLLABUS

Practical based on Neural Networks syllabus.

Course Code	CS 705C
Course Title	CLOUD COMPUTING
Type of Course	Core
LT P	3 1 0
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Data Communication and Networks(CS 501), Web Technologies(CS 402), Database Systems (CS 302)
Course Objectives (CO)	 To introduce cloud computing, types of cloud services and enabling technologies. To make them understand the role and usage of virtualization technologies. To introduce cloud security issues and their resolution mechanisms. To make them understand the features and usage of cloud platforms by studying the existing systems.
Course Outcome	 Understand cloud based systems and enabling technologies. Use virtualization technologies for enabling cloud services. Identify security risks and their handling mechanisms in cloud environment. Use cloud platforms to configure and host cloud services.

SYLLABUS

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Cloud Computing Basics

Cloud Computing Overview; Characteristics; Applications; Internet and Cloud; Benefits; Limitations; Challenges; Cloud Computing Reference Architecture; Architectural Components; Cloud Computing Services and Deployment Models.

(7 hours)

Abstraction and Virtualization

Virtualization, Types of virtualization; Hardware Virtualization - full, partial, paravirtualization; Software Virtualization; Memory Virtualization; Storage Virtualization; Data Virtualization; Network Virtualization; Nested Virtualization; Hypervisor- Type-1, Type-2; Hyperjacking.

(7 hours)

Cloud Storage – managed, unmanaged; Storage as a Service; Cloud Storage issues and challenges; Creating cloud storage system; Virtual storage containers; SAN, NAS, SAN vs. NAS

(7 hours)

SECTION-B

SMAC

SMAC-Social Media, Mobility, Analytics and Cloud; Big Data, Introduction to Hadoop, MapReduce; MapReduce steps

(7 hours)

Cloud Security

Cloud security issues and challenges; cloud security controls, dimensions of cloud security, Security and privacy, identity management, physical security, confidentiality, access controllability, integrity, Migration to cloud-issues, approaches

(5 hours)

Mobile Cloud Computing

Overview of Mobile Cloud Computing, Advantages, Challenges, Using Smartphones with the Cloud, Offloading techniques - their pros and cons, Mobile Cloud Security

(5 hours)

Cloud Computing Platforms

Introduction to cloud platforms: Google Cloud Platform – Google Compute Engine, Google App Engine, BigTable, BigQuery, Amazon Web Services, Microsoft Azure, IBM Bluemix, features of important cloud platforms.

(7 hours)

TEXT	TEXT BOOKS		
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Cloud Computing: A Practical	Anthony T. Velte, Toby J.	McGraw Hill, 2010
	Approach	Velte, and Robert	
		Elsenpeter	
2	Cloud Computing: Principles and	RajkumarBuyys, James	Wiley, 2011
	Paradigms	Broberg, Andrzej	
		Goscinski (Editors)	
3	Cloud Computing Bible,	Barrie Sosinsky	Wiley, 2011
4	Cloud Computing for Dummies	Judith Hurwitz, Robin	Wiley, 2010
		Bloor, Marcia	
		Kaufman,Fern Halper	
5	Handbook of Cloud Computing	BorkoFurht, Armando	Springer, 2010
		Escalante (Editors)	

Course Code	CS 755C
Course Title	CLOUD COMPUTING (Practical)
Type of Course	Elective
LT P	0 0 3
Credits	1
Course Assessment Methods	
End Semester Assessment	
Continuous Assessment	50

SYLLABUS

Practical based on Cloud Computing syllabus.

Course Code	CS 705D
Course Title	MOBILE COMPUTING
Type of Course	Elective
LTP	3 1 0
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	Data Communication and Networks (CS 501)
Course Objectives (CO)	1. To understand advanced element of
	learning in the field of wireless communication, wireless devices and mobile computing. 2. Knowledge of communication and networking principles that support
	connectivity to cellular and telecommunication networks, Wireless Internet and Sensor devices. 3. To understand the use of transaction and e-commerce principles over such devices
	to support mobile business concepts
	4. Designing and Implementation of various applications related to mobile computing
Course Outcome	Knowledge of wireless communication and current telecommunication technologies
	2. Understanding of the characteristics and limitations of mobile hardware devices
	including their user-interface modalities3. Understanding of MANETs routing algorithms and its implementation
	4. Ability to develop applications that are mobile-device specific and demonstrate current practice in mobile computing contexts

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Mobile Devices and Systems

Cellular Networks and Frequency Resuse, Mobile Smartphones, Smart Mobiles and Systems, Handheld Devices, Smart Systems, Limitations of Mobile Devices and Automative Systems

(6 hours)

Modulation, Multiplexing, Controlling the Medium Access, GSM, Radio Interfaces, Protocols, Localization, Call Handling, Handover, Security, GPRS, Spread Spectrum, FHSS, CDMA, WCDMA, CDMA 2000, OFDM, HSPA, WiMAX, Broadband Wirless access, 4G Networks

(7 hours)

Mobile IP Network Layer

Mobile Network Layer Mobile IP Goals, Assumptions and Requirements, Entities, IP packet Delivery Agent Advertisement and Discovery, Registration. Tunneling and Encapsulation, Optimization Reverse Tunneling, IPv6, DHCP.

(7 hours)

SECTION-B

Mobile Transport Layer

Mobile Transport Layer & Wireless Application Protocol Traditional TCP, Indirect TCP, Snooping TCP, Mobile TCP, Transmission / Timeout Freezing Selective Retransmission, Transaction oriented TCP. Architecture, Datagram Protocol, Transport Layer Security, Transaction Protocol, Session Protocol, Application Environment, Wireless Telephony.

(8 hours)

Databases and Mobile Computing

Data Organization, Database Transaction Models, Query processing, Recovery process, Data Caching, Context Aware Mobile Computing

(5 hours)

Mobile Ad-Hoc and Wireless Sensor Networks

MANET-architecture, properties, Spectrum, Applications, Routing Algorithms- DSR, AODV, TORA, OLSR

(5 hours)

Mobile Application Languages and Mobile Application Development Platforms

Mobile Application Development, XML, JAVA, Java 2 Micro Edition, OS, Windows Phone, Android. (7 hours)

TEXT BOOKS S. No. **NAME AUTHOR(S) PUBLISHER** 2nd edition, Oxford, 1 **Mobile Computing** Raj Kamal 2012 2nd edition, Addison 2 Mobile Communication J Schiller Wesley, 2006 RECOMMENDED BOOKS Mobile Communication Design William C . Y Lee 2nd edition, John 1 Wiley, 1993 **Fundamentals** 2nd edition, Pearson William Stallings 2 Wireless Communication and Networks, Education, 2009 3 WAP-Wireless Sandeep Singhla, Thomas 2nd edition, Pearson Application Education, 2006 Protocol Bridgman, LalithaSuryanarayana

Course Code	CS 755D
Course Title	MOBILE COMPUTING (Practical)
Type of Course	Elective
LT P	0 0 3
Credits	1
Course Assessment Methods	
End Semester Assessment	
Continuous Assessment	50

SYLLABUS

Practical based on Mobile Computing syllabus.

Course Code	CS 705E
Course Title	SMART SYSTEM DESIGN
Type of Course	Elective
LTP	3 1 0
Credits	4
Course Assessment Methods	
End Semester Assessment (University Exam.)	50
Continuous Assessment (Sessional, Assignments,	50
Quiz)	
Course Prerequisites	None
Course Objectives (CO)	1. This course shall introduce various MEMS, NEMS based smart system technologies. This would help them to process the acquired data from real world so as to make the system smart
Course Outcome	 Understand basics of sensor based applications, Analyze the data acquired using sensor. Understand different ways to communicate with sensors. Design a simple application sensors and IoT

Note for Examiner- Examiner will set 7 questions of equal marks. First question will cover whole syllabus, having 10 conceptual questions of 1 mark each or 5 questions of 2 mark each and is compulsory. Rest of the paper will be divided into two parts having three questions each and the candidate is required to attempt at least two questions from each part.

SECTION-A

Introduction:Main definitions for smart sensors and its properties, quasi-digital sensors, MTS, MEMS and system-on-chip (SoC); Sensors classifications from output point of view and quasi-digital sensors classification; Sensors architectures for integrated and smart sensors; Informative parameters (unified and frequency-time domain parameters of signal); Advantages of frequency as informative parameter including high noise immunity, high power of signal, wide dynamic range, high reference accuracy, simple interfacing, simple Integration and coding.

(12 hours)

Digital Sensors and Smart Sensors System Design: Practical realizations of different smart sensors systems and digital sensors: optical sensors systems with color-to-digital and light-to-digital converters; a DAQ system for temperature sensors; accelerometers based systems; rotation speed digital sensors and systems; digital humidity sensors and data loggers; temperature and humidity multisensors system; pressure sensors systems and digital gauges; digital magnetic sensors and systems; multiparameters sensors systems.

(12 hours)

SECTION-B

IEEE 1451 Standard and Frequency Sensors: Brief introduction to IEEE 1451 standard and its extension for any sensors and transducers from frequency-time signal domain. Direct Sensor-to-Microcontroller Interface for resistive, capacitance, inductance, resistive bridges sensing elements. Future Trends - The future development of main systems' components as the Universal Frequency-to-Digital

Converter (UFDC-2) and Universal Sensors and Transducers Interface (USTI).Integration of all components of sensor system into a single system-on-chip (SoC) with advanced processing and conversion methods.

(13 hours)

Internet of Things:Basic Introduction and communication mechanism, various applications in different fields, Case Study

(8 hours)

TEXT	TEXT BOOKS		
S. No.	NAME	AUTHOR(S)	PUBLISHER
1	Handbook of Modern Sensors:	Fraden, J.	4 th edition, Springer,
	Physics, Designs, and		India, 2010
	Applications.		
2	Understanding the Smart Sensors	Frank. R,	2 nd edition, Artech
			House, 2010
3	Smart Sensor Systems by 2008	Meijer.M. C.G,	Latest edition, John
			Willey & Sons Ltd,
			2008
4	Introduction to Instrumentation,	Dunn. C. W	Latest edition,
	Sensors and Process Control		Artech House
RECO	MMENDED BOOKS		
1			

Course Code	CS 755E
Course Title	SMART SYSTEM DESIGN (Practical)
Type of Course	Elective
LT P	0 0 3
Credits	1
Course Assessment Methods	
End Semester Assessment	
Continuous Assessment	50

SYLLABUS

Practical based on Smart System Design syllabus.