5.6) Processamento de sinais aleatórios

5.6.1) Sistemas lineares e invariantes no tempo

· Um sistema é linear se

$$T\{a_1x_1(t) + a_2x_2(t)\} = a_1T\{x_1(t)\} + a_2T\{x_2(t)\}$$

• Um sistema é invariante no tempo se

$$T\{x(t-t_0)\}=y(t-t_0)$$

· Resposta impulsiva

$$h(t) = T\{\delta(t)\}$$

5 ISTEMA

h(+)

1) Milt)

Saide , 2) as youts + azyz(t)

3) y (t-6)

4) h(+)

5) y(+) - x(+) *h(+)

· Resposta de um sistema LIT

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(v)h(t-v)dv = \int_{-\infty}^{\infty} h(v)x(t-v)dv$$

Causalidade

$$h(t) = 0 \quad \forall t < 0$$

5.6.2) Filtragem linear de um processo estocástico

· Transformada de Fourier

$$G(f) = \int_{-\infty}^{\infty} g(t)e^{-j2\pi i}dt \qquad g(t) = \int_{-\infty}^{\infty} G(f)e^{j2\pi i}df$$

$$g(t) \overset{\Im}{\longleftrightarrow} G(f)$$

$$h(t) \overset{\Im}{\longleftrightarrow} H(f) \qquad \mathcal{H}(\mathcal{W})$$

• H(f): resposta em frequência.

$$y(t) = x(t) * h(t)$$
 $Y(f) = X(f) \times H(f)$

$$G(w) = \int_{-\infty}^{\infty} g(t) e^{jwt} dt$$

$$G(w) = \int_{-\infty}^{\infty} g(t) e^{jwt} dt$$

$$W = 2\Pi f \frac{dw}{df} = 2\Pi \frac{dl}{dl} = \frac{dw}{2\Pi}$$

• Se um sinal g(t) real existe no intervalo $(-\infty,+\infty)$, sua energia E_q é dada por

$$E_g = \int_{-\infty}^{\infty} g^2(t)dt$$

e a sua potência P_g definida por

$$P_{g} = \lim_{T \to \infty} \frac{1}{T} \int_{-T/2}^{T/2} g^{2}(t) dt$$

- · De forma geral:
- Sinais periódicos e sinais aleatórios são sinais de potência,
- Sinais determinísticos e sinais não periódicos são sinais de energia.

5.6.3) Densidade espectral de potência

 Caracteriza a distribuição do sinal de potência no domínio da frequência.

Densidade espectral de potência de um processo estocástico

- · Processos estocásticos são sinais de potência.
- Dificuldades para encontrar a densidade espectral de potência para processos estocásticos:
- Podemos não ser capazes de descrever uma função amostra analiticamente.
- 2) Para um dado processo, cada função amostra pode ser diferente de outra (mesmo que exista a densidade espectral e potência para cada função amostra, ela pode ser diferente para funções amostras diferentes).
 - Para um processo estocástico estacionário no sentido amplo X(t), temos:

$$R_X(\tau) \stackrel{\mathfrak{I}}{\longleftrightarrow} S_X(f)$$

• Se

$$m = 2\pi i$$

$$S_X(f) = \int_{-\infty}^{\infty} R_X(\tau) e^{-j2\pi f \tau} d\tau$$

$$R_{X}(\tau) = \int_{-\infty}^{\infty} S_{X}(f) e^{j2\pi f \tau} df$$

- Sinais para os quais E_g é finita são conhecidos como sinais de energia é sinas com P_g finita e não nula são conhecidos como sinais de potência.
- Em resumo:
- 1) Sinal de energia : E finita e $P_M = 0$.
- 2) Sinal de Potência: $E \rightarrow \infty$ e P_M finita.
- Exemplo 07: O sinal a seguir é de energia ou de potência?

$$g(t) = e^{-a.t}, -\infty < t < \infty, \quad a > 0$$

CD CASA

E >00 P >00

- Mesmo assim, existe a densidade espectral de potência para processos estocásticos estacionários.
- Para processos não estacionários, a densidade espectral de potência não existe.

 A unidade da densidade espectral de potências é W/Hz.

Sx(w)

W/red(s

 A densidade espectral de potência de uma sinal g(t) representa a potência relativa de cada uma das várias componentes de freqüência.

• Relembrando: $R_X(\tau)$ é uma função real e par de \mathcal{T} . · Propriedades da densidade espectral de potências: P1) A densidade espectral de potências $S_x(f)$ é uma função real, par e não negativa de f. $S_X(-f) = S_X(f)$ $S_{\mathbf{v}}(f) \geq 0$ P2) O valor médio quadrático de um processo estacionário é igual a área total abaixo do gráfico da densidade espectral de potência. Rx(5) = X(t) X(t+6) · O valor quadrático médio de um processo estacionário no sentido amplo X(t) é a potência P_X (potência média) de X(t). Vimos que $R_X(0) = \overline{X(t)}.\overline{X(t+0)} = \overline{X^2(t)} = 0$ $R_X(\tau) = \int_{-\infty}^{\infty} S_X(f) e^{j2\pi f \tau} df = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_X(w) e^{jw\tau} dw$ · Portanto. $P_X = \overline{X^2} = R_X(0) = \int_{0}^{\infty} S_X(f).df = \frac{1}{2\pi} \int_{0}^{\infty} S_X(w).dw$ · Exemplo 08: Determine a densidade espectral de potências e a potência média de um processo estocástico $X(t) = A.\cos(\omega_c t + \theta)$, em que θ é uma v.a. uniformemente distribuída no intervalo Do exemple 03, $R_{x}(6) = \frac{A^{2}}{2} \cos(\omega c 6)$ $P_{x} = \frac{A^{2}}{2}$ \times (4) \times (4) \times (5) \times (6) \times (6) \times (7) \times (8) \times (9) \times (1) \times (2) \times (1) \times (1) \times (1) \times (1) \times (2) \times (3) \times (1) \times (Sx(1) = A S(1+ fe) + A S(1-fe) Sx(w) = AZT S(w+wc) + AZT S(w-wc)

