Notes on Fourier Analysis

Jonathan Cui

Ver. 20240930

1 Notation and Preliminaries

Let $i = \sqrt{-1}$; the italicized variant i is reserved for indices. For $D \subseteq \mathbb{R}$ and $k \in \mathbb{Z}_{\geq 0}$, let $C^k(D)$ denote the set of functions from D to \mathbb{R} that are k times continuously differentiable.

Definition 1.1. The length of an interval I, denoted as $\mu(I)$, is the difference between its right endpoint and its left. We shall restrict the definition of intervals to those with positive length.

Definition 1.2. Let $D \subseteq \mathbb{R}$. A function from D to \mathbb{R} is said to be piecewise continuous if it is bounded and admits at most finitely many discontinuities.

Definition 1.3. A partition of [a, b] is a finite subset of [a, b] containing a and b. It is typically denoted as $a = x_0 < \cdots < x_n = b$.

Definition 1.4. A bounded function $f: [a, b] \to \mathbb{R}$ is said to be Riemann integrable if for any $\epsilon > 0$ there exists a partition $P = \{x_0, \dots, x_n\}$ of [a, b] such that

$$\mathcal{U}(P,f) - \mathcal{L}(P,f) < \epsilon$$

where $a = x_0 < \cdots < x_n = b$. Here, we define

$$\begin{cases} \mathcal{U}(P,f) = \sum_{i=1}^{n} \sup f[[x_{i-1},x_i]] \cdot (x_i - x_{i-1}) \\ \mathcal{L}(P,f) = \sum_{i=1}^{n} \inf f[[x_{i-1},x_i]] \cdot (x_i - x_{i-1}). \end{cases}$$

Definition 1.5. If a bounded function $f: [a,b] \to \mathbb{R}$ is Riemann integrable, then $\sup U(P,f)$ and $\inf U(P,f)$ coincide, where the supremum and the infimum are both taken over partitions of [a,b]. This common value is defined as the Riemann integral of f over [a,b], denoted as $\int_a^b f(x) \, dx$.

Definition 1.6. A bounded function $f: [a, b] \to \mathbb{C}$ is said to be Riemann integrable if $\Re \circ f$ and $\Im \circ f$ are Riemann integrable. The Riemann integrable of f over [a, b] is defined as $\int_a^b \Re f(x) \, \mathrm{d}x + \mathrm{i} \cdot \int_a^b \Im f(x) \, \mathrm{d}x$, denoted also as $\int_a^b f(x) \, \mathrm{d}x$. **Definition 1.7.** The set of all Riemann integrable functions from [a, b] to \mathbb{C} is denoted as $\mathcal{R}([a, b])$.

Theorem 1.8 (Weierstrass' M-Test). Let $\{f_n(x)\}_{n=1}^{\infty}$ be a sequence of functions from $A \subseteq \mathbb{R}$ to \mathbb{C} . Suppose there exists a sequence $\{M_n\}_{n=1}^{\infty}$ of non-negative numbers such that $\sum_{n=1}^{\infty} M_n$ converges and $|f_n(x)| \leq M_N$ for all $n \in \mathbb{Z}_{>0}$ and all $x \in A$. Then, $\sum_{n=1}^{\infty} f_n(x)$ converges absolutely and uniformly on A.

Proof. Let $T := \sum_{n=1}^{\infty} M_n \ge 0$ and define $S(x) := \sum_{n=1}^{\infty} f_n(x)$ formally. The latter converges pointwise absolutely. Denote $S_n(x) := f_1(x) + \cdots + f_n(x)$.

Let $\epsilon > 0$. Because $M_1 + \cdots + M_N$ converges to T as $N \to \infty$, the partial sums can be arbitrarily close to T. In particular, fix $N \in \mathbb{Z}_{>0}$ such that $|T - (M_1 + \cdots + M_N)| < \epsilon$. Then,

$$\left|\sum_{n=1}^{\infty} f_n(x) - \sum_{n=1}^{N} f_n(x)\right| \le \sum_{n=N+1}^{\infty} |f_n(x)| \le \sum_{n=N+1}^{\infty} M_n < \epsilon.$$

The proof is complete.

2 Definition

We first define the structure on Riemann integrable functions.

Proposition 2.1. Let $f: [a,b] \to [0,+\infty)$ be continuous. Then, $\int_a^b f(x) dx = 0$ implies f is identically zero.

Proof. Suppose for contradiction that $0 \in [a, b]$ and f(0) > 0 without loss of generality. Fix $\delta > 0$ such that f(x) > f(0)/2 for all $x \in (-\delta, \delta) \cap [a, b]$. Let $I := [-\delta, \delta] \cap [a, b]$, which is an interval via straightforward verification when 0 = a, a < 0 < b, and 0 = b. Then,

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \int_{I} f(x) \, \mathrm{d}x + \int_{[a,b] \setminus I} f(x) \, \mathrm{d}x \ge \int_{I} \frac{f(0)}{2} \, \mathrm{d}x \ge \frac{f(0)\mu(I)}{2} > 0,$$

a contradiction.

Corollary 2.2. The set $\mathcal{R}([a,b])$ of complex-valued, Riemann integrable functions on a segment [a,b] is made into an infinite-dimensional inner product space with the inner product

$$\langle f, g \rangle = \frac{1}{L} \int_{a}^{b} f(x) \cdot \overline{g(x)} \, \mathrm{d}x,$$

where L = b - a > 0.

Proof. We first show that the inner product is well-defined. Suppose $f, g \in \mathcal{R}([a,b])$. Firstly, $\langle f, f \rangle = \frac{1}{L} \int_a^b |f(x)|^2 dx$ is clearly non-negative. When it is equal to zero, $|f(x)|^2$ is identically zero, so f(x) is identically zero. (Sesqui)-linearity and conjugate symmetry are straightforward, which concludes this proof.

Definition 2.3. Let [a, b] be an interval. For $n \in \mathbb{Z}$, the n-th Fourier basis function on [a, b] is defined as $e_n := [a, b] \to \mathbb{C}$ via $e_n(x) := e^{2\pi i n x/L}$, where L = b - a > 0.

Lemma 2.4. $\{e_n\}_{n=-\infty}^{\infty}$ is an orthonormal set of vectors in $\mathcal{R}([a,b])$.

Proof. Suppose $m, n \in \mathbb{Z}$. Then,

$$\langle e_n, e_m \rangle = \frac{1}{L} \int_a^b e^{2\pi i (n-m)x/L} dx.$$

When n = m, the integrand is 1 and $\langle e_n, e_n \rangle = 1/L \cdot L = 1$. Otherwise, the integral is

$$\langle e_n, e_m \rangle = \frac{1}{L} \cdot \frac{1}{2\pi \mathrm{i}(n-m)/L} \cdot \mathrm{e}^{2\pi \mathrm{i}(n-m)x/L} \Big|_{x=a}^{b} = 0.$$

The proof is finished.

Definition 2.5. Let $f \in \mathcal{R}([a,b])$. The *n*-th Fourier coefficient of f, where $n \in \mathbb{Z}$, is defined as $\hat{f}(n) := \langle f, e_n \rangle$, where L := b - a.

Definition 2.6. Let $f \in \mathcal{R}([a,b])$. The Fourier series of f is the formal series

$$\sum_{n=-\infty}^{\infty} \hat{f}(n) \cdot e_n(x)$$

with an indeterminate $x \in \mathbb{R}$.

One typically writes

$$f(x) \sim \sum_{n=-\infty}^{\infty} \hat{f}(n) \cdot e_n(x)$$

to denote that f(x) has the Fourier series on the right-hand side of the \sim relation.

Definition 2.7. A function $f: \mathbb{R} \to \mathbb{C}$ is said to be a trigonometric series if it admits the form

$$f(x) = \sum_{n = -\infty}^{\infty} c_n \cdot e_n(x)$$
 for all $x \in \mathbb{R}$

for some complex-valued sequence $\{c_n\}_{n=-\infty}^{\infty}$.

Figure 1: The plot of $p(\theta)$ in the proof of Theorem 2.10

Definition 2.8. A trigonometric polynomial p is a trigonometric series whose associated sequence $\{c_n\}_{n=-\infty}^{\infty}$ has all but finitely many zero terms. The degree of the trigonometric polynomial, denoted as $\deg p$, is defined as $\max_{n\in\mathbb{Z}}|n|$ subject to $c_n\neq 0$.

Corollary 2.9. Trigonometric polynomials are closed under addition, negation, and multiplication.

Proof. That trigonometric polynomials are closed under addition and negation is immediate. Suppose

$$f(x) = \sum_{n=-N}^{N} a_n \cdot e_n(x)$$
 and $g(x) = \sum_{n=-N}^{N} b_n \cdot e_n(x)$

are trigonometric polynomials, where $N \in \mathbb{Z}_{\geq 0}$. Then,

$$f(x) \cdot g(x) = \sum_{n=-N}^{n} \sum_{m=-N}^{N} a_n b_m \cdot e_n(x) e_m(x) = \sum_{n=-N}^{n} \sum_{m=-N}^{N} a_n b_m \cdot e_{m+n}(x) = \sum_{k=-2N}^{2N} \left(\sum_{n=\max\{-N,k-N\}}^{\min\{N,k+N\}} a_n b_{k-n} \right) \cdot e_k(x).$$

The proof is complete.

Theorem 2.10. Let $f \in \mathcal{R}(\mathbb{R})$ be 2π -period with $\hat{f}(n) = 0$ for all $n \in \mathbb{Z}$. Then, $f(\theta_0) = 0$ if f is continuous at θ_0 .

Proof. First, suppose f is real-valued. Without loss of generality, suppose $\theta = 0$ and f(0) > 0. Fix $0 < \delta \le \pi/2$ such that f(x) > f(0)/2 whenever $|\theta| < \delta$. Let $p(\theta) = \epsilon + \cos \theta$, where $\epsilon > 0$ is chosen sufficiently small such that $|p(\theta)| < 1 - \epsilon/2$ whenever $\delta \le |\theta| \le \pi$. Fix $0 < \eta < \delta$ such that $p(\theta) \ge 1 + \epsilon/2$ whenever $|\theta| < \eta$. Define $p_k(\theta) = p(\theta)^k$ for $k \in \mathbb{Z}_{\ge 0}$ and fix B > 0 such that $|f(\theta)| \le B$ for all $\theta \in \mathbb{R}$.

We make three observations to estimate the integral $\int_a^b f(\theta) \cdot p_k(\theta) d\theta$ by splitting the domain into three parts, where θ is assumed to satisfy $|\theta| < \eta$, $\eta < |\theta| < \delta$, and $\delta < |\theta| < \pi$ respectively.¹

First, note that

$$\int_{|\theta| \le \eta} f(\theta) \cdot p_k(\theta) \ge \int_{|\theta| \le \eta} f(0)/2 \cdot (1+\epsilon)/2^k = \eta f(0) \cdot (1+\epsilon/2)^k,$$

where the right-hand side is unbounded as $k \in \mathbb{Z}_{>0}$ varies.

For the second piece, it's enough to conclude

$$\int_{n<|\theta|<\delta} f(\theta) \cdot p_k(\theta) \, \mathrm{d}\theta \ge 0.$$

¹We may modify the integrands of the three integrals so that the endpoints evaluate to 0; in this way, we do not change the value of each integral but can assume strict inequalities such as these in estimation.

Lastly, we have

$$\left| \int_{\delta \le |\theta|} f(\theta) \cdot p_k(\theta) \, \mathrm{d}\theta \right| \le \int_{\delta \le |\theta|} |f(\theta)| \cdot |p_k(\theta)| \, \mathrm{d}\theta \le (2\pi - 2\delta) B (1 - \epsilon/2)^k,$$

where the right-hand side is bounded.

Hence, $\int_{-\pi}^{\pi} f(\theta) \cdot p_k(\theta) d\theta$ is no less than an unbounded number minus a bounded number. This integral, therefore, cannot tend to 0 as $k \to \infty$. However, since $p_k(\theta)$ is a trigonometric polynomial by induction on Corollary 2.9, we may write $p_k(\theta) = \sum_{n=S}^{T} c_n \cdot e_n$, and

$$\int_{-\pi}^{\pi} f(\theta) \cdot p_k(\theta) d\theta = 2\pi \sum_{n=0}^{T} c_n \left(\frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) \cdot \overline{e_{-n}(\theta)} d\theta \right) = 0.$$

These integrals, then, must tend to 0. In particular, they cannot be unbounded, a contradiction.

Proposition 2.11. Suppose $f: \mathbb{R} \to \mathbb{R}$ is periodic and continuous with $\sum_{n=-\infty}^{\infty} |\hat{f}(n)| < \infty$. Then,

$$f(x) = \lim_{N \to \infty} \sum_{n=-N}^{N} \hat{f}(n) \cdot e_n(x)$$
 for all $x \in \mathbb{R}$,

and the convergence is uniform in x.

Before proving this foundational proposition, we remark that periodicity is preserved by uniform convergence.

Lemma 2.12. Suppose $\{f_n\}_{n=1}^{\infty}$ is a uniformly convergent sequence of *P*-periodic functions from \mathbb{R} to \mathbb{C} . Then, the limit is also *P*-periodic.

Proof. Let $\epsilon > 0$. Fix $N \in \mathbb{Z}_{>0}$ such that $|f_n(x) - f(x)| < \epsilon/2$ for all $n \in \mathbb{Z} > N$ and all $x \in \mathbb{R}$. Then, for all $x \in \mathbb{R}$,

$$|f(x+P)-f(x)| \leq |f(x+P)-f_n(x+P)| + |f_n(x)-f(x)| < \epsilon/2 + \epsilon/2 = \epsilon.$$

We now proceed to prove the proposition.

Proof. Without loss of generality, suppose f is 2π -periodic. Let $S_N(x) := \sum_{n=-N}^N \hat{f}(n) \cdot e_n(x)$ be the N-th partial sum of the Fourier series of f, where $N \in \mathbb{Z}_{\geq 0}$. By Weierstrass' M-test, $\{S_N(x)\}$ converges absolutely and uniformly. Denote the limit as g(x), the Fourier series of f which must be continuous. Hence,

$$\widehat{f-g}(n) = \langle f, e_n \rangle - \langle g, e_n \rangle$$

$$= \widehat{f}(n) - \sum_{m=-\infty}^{\infty} \widehat{f}(m) \cdot \langle e_m, e_n \rangle$$

$$= \widehat{f}(n) - \sum_{m=-\infty}^{\infty} \widehat{f}(m) \cdot \delta_{m,n}$$

$$= 0.$$
(Fubini)

The lemma implies that g is 2π -periodic as well. Then, f-g is continuous and 2π -periodic, with all zero Fourier coefficients. Therefore, by Theorem 2.10, f-g is identically zero. Therefore, f coincides with its Fourier series g.