চল তড়িৎ

প্রয়োজনীয় সূত্রাবলী ঃ

- ightharpoonup পরিবাহীর তড়িৎ প্রবাহমাত্রা, $I=rac{\mathrm{d}}{\mathrm{d}t}=rac{\mathrm{d}\mathrm{d}\mathrm{d}t}{\mathrm{d}t}$
- ightarrow ইলেকট্রনের তাড়নবেগ, $V=rac{I}{nAe}$
- ightharpoonup ওহমের সূত্র: (i) $V=IR \Rightarrow I=rac{V}{R}$ (ii) $E=I(R+r) \Rightarrow I=rac{E}{R+r}$
- ightarrow পরিবাহীর আপেক্ষিক রোধ, $ho=rac{RA}{I}$
- ি রোধের উপর তাপমাত্রায় প্রভাব, $R_t=R_o(1+lpha t)$
- ightharpoonup রোধের শ্রেনী সমবায় ঃ $R_s=R_1+R_2+R_3+----+R_n$

শ্রেণী সমবায়ে প্রত্যেক রোধের মধ্যে প্রবাহ একই থাকে x রোধের নং হলে, Voltage divider rule:

সাধারণ Rule: $V_x = \frac{R_x}{$ সবগুলো রোধের যোগফলimesমোট ভোল্টেজ

[x = 1, 2, 3-----]

রোধের সমান্তরাল সমবায় ঃ

$$ightharpoonup rac{1}{R_p} = rac{1}{R_1} + rac{1}{R_2} + rac{1}{R_3} + \cdots + rac{1}{R_n}$$

Current divider rule:

সাধারণ সূত্র :
$$Ix = \frac{IR_p}{R_x} \quad [x =$$
 রোধের নং]

কোষের সমবায় ঃ

$$ightharpoonup$$
 শ্রেনী সমবায়, $I_s=rac{nE}{R+nr}$

$$ightarrow$$
 সমান্তরাল সমবায়, $I_P=rac{mE}{mR+r}$

$$ightharpoonup$$
 মিশ্র সমবায়, $I_M = rac{mnE}{mR + nr}$

যেখানে, n = সারিতে কোষ সংখ্যা

M = মোট সারির সংখ্যা

কার্শফের সূত্র ঃ

প্রথম সূত্র ঃ
$$\Sigma~I=0 \Rightarrow I_1+I_3+I_5=I_2+I_4$$

হুইটস্টোন ব্রীজনীতি ঃ

সাম্যাবস্থায় ៖ (i)
$$I_g=0$$
 ; ii) $\frac{p}{Q}=\frac{R}{S}$

মিটার ব্রীজ ঃ
$$\frac{P}{Q} = \frac{1}{100\text{-}1}$$

পটেনশিওমিটার ঃ
$$E=Ir=Il\sigma=rac{IlR}{L}\;;\;r=igg(rac{l_1}{l_2}-1igg)\!R$$

নিচে কয়েকটি পদার্থের আপেক্ষিকরোধ এবং তাপমাত্রা গুণাংকের একটি তালিকা দেওয়া হল ঃ

ক্র/নং	পদার্থ	আপেক্ষিক রোধ $oldsymbol{ ho}oldsymbol{m}\Omega$	তাপমাত্রা গুণাংক α
		(20 ⁰ C বা, 293 K তাপমাত্রা)	⁰ C ⁻¹ / K ⁻¹
1.	অ্যালুমিনিয়াম	2.82×10^{-8}	4.4×10^{-3}
2.	কঙ্গটান্টান (বা ইউরোকা)	49×10^{-8}	-
3.	তামা	1.72×10^{-8}	4.3×10^{-3}
4.	লোহা	9.8×10^{-8}	6.5×10^{-3}
5.	ম্যাঙ্গানিজ	44×10^{-8}	0.002×10^{-3}
6.	পারদ	95.77×10^{-8}	0.91×10^{-3}
7.	নাইক্রোম	100×10^{-8}	0.4×10^{-3}
8.	রপা	1.62×10^{-8}	4.1×10^{-3}

9.	ট্যাংস্টেন	5.5×10^{-8}	4.5×10^{-3}		
10.	ইস্পাত	$(19.9 - 25) \times 10^{-8}$	-		
11.	পিতল	$(6-9) \times 10^{-8}$	-		
12.	নিকেল	6.2×10^{-8}	-		
13.	সোনা	2×10^{-8}	-		
14.	প্লাটিনাম	9.8×10^{-8}	-		
15.	জার্মান সিলভার	$(15-40) \times 10^{-8}$	-		
16.	মাইকা	9×10^{-8}	-		
17.	ফসফর ব্রোঞ্জ	$(5-10) \times 10^{-8}$	-		
18.	কাৰ্বন (গ্ৰাফাইট)	$(33-185)\times 10^{-8}$	-0.0006 to -0.0012		
19.	জার্মেনিয়াম	$(1-500) \times 10^{-8}$	-0.05		
20.	সিলিকন	(0.1 - 60)	-0.07		
21.	কাঁচ	$10^9 - 10^{12}$	-		
22.	শক্তি রাবার	$10^{13} - 10^{15}$	-		
23.	পিউজ্ড কোয়ার্টার	10 ¹⁶	-		

বিভিন্ন পদার্থের পরিবাহিতা (Different materials conductance)

বিভিন্ন পদার্থের পরিবাহিতা বিভিন্ন। ধাতব পদার্থ যেমন- তামার আপেক্ষিক রোধ এত কম $(2 \times 10^{-8} \Omega m)$ যে এর ভিতর দিয়ে বিদ্যুৎ অতি সহজেই প্রাবহিত হতে পারে। এ ধরণের পদার্থ যেমন- রূপা, সোনা, প্লাটিনাম এর ভিতর ইত্যাদি পদার্থকে পরিবাহী (conductor) বলা হয়। আবার কিছু কিছু পদার্থ যেমন কাঁচের আপেক্ষিক রোধ এত বেশি

 $(10^{10}-10^{11}\Omega m)$ যে এর ভিতর বিদ্যুৎ প্রবাহ খুবই নগণ্য হয় যা পরিমাপ করা যায় না। এ ধরনের পদার্থকে **অপরিবাহী (Insulator)** বলা হয়। আবার কিছু কিছু পদার্থ আছে যেমন: সিলিকন, জার্মেনিয়াম, যাপদের আপেক্ষিক রোধ $(\sim 10^3\Omega m)$ পরিবাহী এবং অপরিবাহী পদার্থের আপেক্ষিক রোধের মাঝামাঝি। নিম্ন তাপমাত্রায় এরা প্রায় অপরিবাহী তবে তাপমাত্রা বৃদ্ধির সাথে অথবা এদের সাথে কোন অপর বস্তু (Impurity) মেশালে এদের আপেক্ষিক রোধ বেশ হাস

পায়। তখন এদের ভিতর দিয়ে বিদ্যুৎ প্রবাহিত হতে পারে । এধরনের পদার্থকে অর্ধ-পরিবাহী (Semi-conductor) বলা হয়।

রোধের কালার কোড (Colour code of resistance)

অনেক ইলেকট্রনিক বর্তনীতে ব্যবহৃত রোধের মান একটি আন্তর্জাতিক পদ্ধতি অনুসারে কালার কোডে সূচিত করা হয়। নিচের সারণিতে কালার কোডের পদ্ধতি বর্ণনা করা হল ঃ

ক্র/নং	কালার	গুরুত্বপূর্ণ বা	ডেসিমোল গুণিতক	সহনশীলতা
		কোড নাম্বার		(শতকরা হিসাবে)
1.	ব্যাণ্ডহীন	-	-	20
2.	রূপালী ব্যাণ্ড	-	0.01	10
3.	সোনালী ব্যাণ্ড	-	0.1	5
4.	কালো	0	1	-
5.	তামাটে বা বাদামী	1	10	-
6.	লাল	2	10^{2}	-
7.	ক্মলা	3	10^{3}	-
8.	হলুদ	4	104	-
9.	সবুজ	5	10 ⁵	-
10.	नील	6	10^{6}	-
11.	বেগুনি	7	10^{7}	-
12.	ধূসর	8	108	-
13.	সাদা	9	10 ⁹	-

TYPE _ 01 রোধের কালার কোড

EXAMPLE - 01: একটি কার্বন রোধের প্রান্ত হতে বাদামী, হলুদ, লাল ও সোনালী রঙের পটি দেওয়া আছে। রোধের সর্বোচ্চ ও সর্বনিম্ন মান কত ?

SOLVE : রোধের মান =
$$14 \times 10^2 (\pm 5\%) = 1400 \pm 1400$$
 এর $\frac{5}{100}$ = $1400 \pm 70 = 1470$ বা 1330Ω

TYPE – 02 তাড়ন বেগ, V_d

তাড়ন বেগ, v_d ঃ বিদ্যুৎ প্রবাহ মাত্রা $i=rac{dq}{dt}=rac{nAv_dedt}{dt}=nAv_de$. প্রবাহ ঘণতু, $J=rac{I}{A}=nvde$

যেখানে. n→ একক আয়তনে মুক্ত ইলেক্ট্রন সংখ্যা.A→পরিবাহকের প্রস্তুচ্ছেদের ক্ষেত্রফল.l→ পরিবাহকের দৈর্ঘ্য N(nal) → dt সময়ে A প্রস্তুছেদের ক্ষেত্রফলের মধ্যদিয়ে অতিক্রমকারী ইলেক্ট্রন সংখ্যা $dq = Ne = nAv_dedt \rightarrow$ প্রবাহতি চার্জ v_d \rightarrow ইলেকট্রনের তাড়ন বেগ , e \rightarrow প্রতিটি ইলেকট্রনের চার্জ $=1.6 \times 10^{19}c$

EXAMPLE - 01: একটি তারের মধ্য দিয়ে 45min এ 0.6mole ইলেকট্রন প্রবাহিত হল।

(i) তারের মধ্য দিকে কি পরিমান চার্জ প্রবাহিত হল ? (ii) বিদ্যুৎ প্রবাহমাত্রা কত?

0.6mole এ ইলেকট্রন সংখ্যা $= 0.6 \times 6.02 \times 10^{23}$ $= 3.61 \times 10^{23}$ টি ∴ চার্জ $q = 3.61 \times 10^{23} \times (-1.6 \times 10^{-19}) = -5.78 \times 10^{4} \text{C}$

(ii) $I = \frac{q}{t} = \frac{5.78 \times 10^4}{45 \times 60} = 21.4A$

EXAMPLE - 02: 5mm² সুষম প্রস্তুচ্ছেদের ক্ষেত্রফল বিশিষ্ট একটি পরিবাহকের মধ্য দিয়ে 20A তড়িৎ প্রবাহ চলছে। পরিবাহকের প্রতি ঘনমিটারে মুক্ত ইলেক্ট্রন সংখ্যা 2×10^{18} হলে ইলেক্ট্রনের তড়িৎ বেগ কত ?

SOLVE: আমরা জানি, $V = \frac{I}{nAe} = \frac{20}{2 \times 10^{18} \times 5 \times 10^{-6} \times 1.6 \times 10^{-19}} = 1.25 \times 10^{-3} \text{m/s}$

 $EXAMPLE - 03: 1 \times 10^{-3} m$ ব্যাসার্ধের একটি পরিবাহী তারের ভিতর দিয়ে 5Aবিদ্যুৎ প্রবাহিত হচ্ছে। তারের প্রতি ঘণিমিটারে 4×10^{28} সংখ্যক মুক্ত ইলেকট্রন থাকলে ইলক্ট্রনের তাড়ন বেগ বের কর। প্রবাহ ঘনত্ব কত? $i = nAV_de = \Rightarrow 5 = 4 \times 10^{28} \times \pi \times (1 \times 10^{-3})^2 \times V_d \times 1.6 \times 10^{-19} \Rightarrow V_d = 2.49 \times 10^{-19}$

$$i = nAV_de = \Rightarrow 5 = 4 \times 10^{28} \times \pi \times (1 \times 10^{-3})^2 \times V_d \times 1.6 \times 10^{-19} \Rightarrow V_d = 2.49 \times 10^{-19} \text{ ms}^{-1}$$

প্রবাহ ঘনত্ব,
$$J = \frac{I}{A} = \frac{5}{\pi (1 \times 10^{-3})^2} = 1.6 \times 106 \text{ Am}^{-2}$$

EXAMPLE-04: একটি 20Ω রোধের তারের মধ্যে দিয়ে q পরিমনি আধান প্রবাহিত হচ্ছে। এবং তারের. 10s-এ তারের মধ্যদিয়ে 60×10^{19} টি ইলেক্ট্রন প্রবাহিত হলে। তারের দু প্রান্তের বিভব পার্থক্য কত? তারের পরিবাহিতা কত?

$$i = \frac{q}{t} = \frac{60 \times 10^{19} \times 1.6 \times 10^{-19}}{10} = 96A$$
; $V = iR = 9.6 \times 20 = 192V$, $G = \frac{1}{R} = 5 \times 10^{-2} \Omega$

TYPE – **03**

রোধ

রোধের উপর তাপমাত্রার প্রভাবঃ i=GV এখানে G সমানুপাতিক ধ্রুবক থাকে পরিবাহিকতা বলে

$$\mathrm{V}=iR$$
 ; $G=rac{1}{R}arOmega^{-1},$ (সিমেন্স, পরিবাহিতা)

$$\mathbf{i}=rac{q}{t}$$
 ; $\mathbf{q}=\mathbf{i}\mathbf{t}$; $rac{V}{R}=rac{q}{t}$; $\mathbf{V}\mathbf{G}=\mathbf{q}/\mathbf{t}$, $\mathbf{\sigma}=rac{1}{
ho}$, $R=
ho.rac{l}{A}$ এখানে, ho ,আপেক্ষিক রোধ, $(\Omega$ -m) ;

রোধের উপর তাপমাত্রার প্রভাব ঃ $R_t=R_o$ ($1+\alpha t+\beta t^2$) , $\beta<<\alpha$ হলে, $R_t=R_o$ ($1+\alpha t$) যেখানে σ আপেক্ষিক পরিবাহিতা বা পরিবাহিতাংক (conductivity)

Ampere= $V\Omega^{-1} = cs^{-1}$

প্রতি সেকেন্ডে কি পরিমান আধান তারে মধ্যদিয়ে প্রবাহিত হবে তা নির্দেশ করে।

 ${
m EXAMPLE-01:}~25^{0}{
m C}$ তামপাত্রায় ট্যাংস্টেন তারের রোধ কত হবে? ট্যাংস্টেন তারের রোধের উষ্ণতাগুনাংক $lpha=4.5 imes10^{-3}$ $^{\circ}{
m C}$

$$R_{t1} = \text{Ro} (1 + \alpha t_1) \qquad \frac{R_{t2}}{R_{t1}} = \frac{1 + \alpha t_2}{1 + \alpha t_1} = \frac{1 + 4.5 \times 10^{-3} \times 200}{1 + 4.5 \times 10^{-3} \times 25} \Rightarrow R_{t2} = 111.01 \Omega = 111 \Omega$$

 $R_{t2} = Ro (+ \alpha t_2)$

EXAMPLE – 02: 1mm ব্যাসের একটি তারের উপাদানের আপেক্ষিক রোধ $48 \times 10^{-8} \Omega - m$. 100Ω এর কুন্ডলী তৈরী করতে হলে কত দৈর্ঘ্যের তারের প্রয়োজন হবে?

$$R = \rho \frac{l}{A} \Rightarrow \Rightarrow 1 = \frac{RA}{\rho} = \frac{100 \times \pi r^2}{48 \times 10^{-6}} = \frac{100 \times 3.1416 \times 0.5 \times 10^{-3})^2}{48 \times 10^{-8}} = 163.6 \text{ m}$$

EXAMPLE – 03: 20°C তাপমাত্রায় 0.22m দৈর্ঘ্য এবং 1.4×10⁻⁴m ব্যাসের একটি তারের রোধ 7 Ω. তারটির আপেক্ষিক রোধ কত ?

SOLVE: আমরা জানি,
$$\rho=\frac{RA}{L}=\frac{R\times\pi r^2}{L}$$

$$=\frac{7\times3.1416\times(0.7\times10^{-4})^2}{0.22}=49\times10^{-8}\Omega m$$

$$=\frac{1.4\times10^{-4}m}{0.22}, \quad r=\frac{d}{2}$$

EXAMPLE - 04: 10Ω রোধবিশিষ্ট তারকে টেনে 3 গুন লম্বা করা হল। তারটির বর্তমান রোধ কত ?

SOLVE: আমরা জানি,
$$\frac{R_2}{R_1}=\frac{L_2}{L_1}\times\frac{A_1}{A_2}=3\times 3=9$$
 এখানে, $L_2=3L_1,\ A_2=\frac{1}{3}$.: $R_2=9R_1=9\times 10=90\Omega$ A1 Short cut: $R=n^2R_1=3^2\times 10=90\Omega$

EXAMPLE - 05: 1m দীর্ঘ ও $2mm^2$ প্রস্থাচ্ছেদের একটি তারের দুই প্রান্তের মধ্যে $2 \times 10^{-3} V$ বিভব পার্থক্য প্রয়োগ করায় তারের মধ্যে 0.2A প্রবাহ চলে। ঐ তারের উপাদানের আপেক্ষিক রোধ কত ?

SOLVE : আমরা জানি,
$$R=rac{V}{I}=rac{2 imes 10^{-3}}{0.2}=0.01\Omega$$

আবার,
$$\rho=rac{RA}{L}$$
 $=rac{0.01 imes2 imes10^{-6}}{1}$ $=2 imes10^{-8}\Omega m$

 ${f EXAMPLE-06:}\ 6 {
m gm/c.c}\ {
m var}$ য ${
m cas}\ 12 {
m gm}\ {
m var}$ পদার্থকে $10 {
m m}$ লম্বা তার বানানো হল । যদি পদার্থের আপেক্ষিক রোধ $2{ imes}10^{-8}\Omega{
m m}$ হয় তবে তারের রোধ কত ?

SOLVE: আমরা জানি,
$$V = \frac{m}{\rho} = \frac{12gm}{6gm/c.c} = 2c.c \Rightarrow Al = 2c.c$$

$$\Rightarrow$$
 A = $\frac{2 \times 10^{-6}}{1} = \frac{2 \times 10^{-6}}{10} = 2 \times 10^{-7} \text{m}^2$

জাবার,
$$\rho = \frac{RA}{L}$$
 \Rightarrow $R = \frac{2 \times 10^{-8} \times 10}{2 \times 10^{-7}} = 1\Omega$

EXAMPLE – 07: 20° C এবং 35° C তাপমাত্রায় একটি তার কুডুলীর রোধ যথাক্রমে 25Ω এবং 25.17Ω .

20°C তাপমাত্রায় কুন্ডুলীর তাপমাত্রা গুনাঙ্ক কত ?

$$\textbf{SOLVE:} \quad \text{with similar of } R_t = R_o \{1 + \alpha(t_2 - t_1)\} \ \ \therefore \ \ \alpha = \frac{R_t - R_o}{R_o(t_2 - t_1)} \ = \frac{25.17 - 25}{25 \times (35 - 20)} = 4.5 \times 10^{-4} \, \text{C}$$

TYPE - 04

কোষের অভ্যান্তরীণ রোধ ও তড়িচ্চালিক বল

কোষের অভ্যান্তরীণ রোধ ও তড়িচ্চালিক বলঃ $\mathrm{i}=rac{E}{R+r},$

 $E=v+ir\;\;;\;$ এখানে, $R\longrightarrow$ পরিবাহকের রোধ,

 $E=rac{dW}{dO}$ ্চ ভড়িচ্চালক বল (EMF) , V
ightarrow কোষের দু প্রান্তের বিভব পতন,

r→ কোষের অভ্যান্তরীণ রোধ

বিদ্যুৎ কোষের সমবায়ঃ

শ্রেণি সমবায়ঃ
$$\mathbf{i}=rac{nE}{nr+R}$$

শর্ত ঃ (i) R>>nr হলে, nr=0, $i=rac{nE}{R}=rac{E}{R} imes n$ একটি কোষের জন্য সৃষ্ট প্রবাহ মাত্রা imes n

(ii) nr>>R হলে, $i=rac{nE}{nr}=rac{E}{r}$ ightarrow বহিঃবর্তনীয় প্রবাহ মাত্রা একটি কোষের প্রবাহ মাত্রার সমান।

সমান্তরাল সমবায়ঃ $i=rac{nE}{nR+r}$

শর্ত : (i) nR>>r হলে r=0 , $i=rac{nE}{nR}=rac{E}{R}$ ightarrowমনে হয় যেন বর্তনীতে একটি মাত্র কোষ আছে।

(ii) যখন r>>nR তখন nr=0 , $i=\frac{nE}{r}=\frac{E}{r}\times n \to$ বহিঃবর্তনীয় প্রবাহমাত্রা একটি কোষের প্রবাহমাত্রার n গুণ। এ অবস্থায় বর্তনীতে প্রবাহ অধিক কার্যকরী।

মিশ্র সমবায় ঃ $i=rac{mnE}{mR+nr}=rac{NE}{mR+nr}$ যেখানে , N=mn সোট কোষ সংখ্যা

সর্বোচ্চ প্রবাহমাত্রা পাওয়ার শর্ত ঃ $= \frac{mnE}{mR+nr} = \frac{mnE}{\left(\sqrt{mR}-\sqrt{nr}\right)^2+2\sqrt{mR}.\sqrt{nr}}$, প্রবাহমাত্রা সর্বোচ্চ পাওয়া যাবে যদি $\sqrt{mR}-\sqrt{nr}=0$ হয় অর্থাৎ mR=nr $\therefore i_{max}=\frac{mE}{2r}$

EXAMPLE-01: খোলা বর্তনীতে একটি বিদ্যুৎ কোষের বিদ্যুৎ চালক বল 1.5V অভ্যন্তরীন রোধ 2.5Ω কোষের প্রান্তদ্বয় 5.5Ω রোধের একটি তারের সাথে যুক্ত। কোষের প্রান্তীয় বিভব কত?

SOLVE : আমরা জানি,
$$I = \frac{E}{R+r} = \frac{1.5}{5.5+2.5} = \frac{3}{16} \, A$$
 ; $V = IR = \frac{3}{16} \times 5.5 = \frac{33}{32} V$

EXAMPLE-02: দুইটি তারের প্রত্যেকটির রোধ 20Ω তাদের সমান্তরাল সমবায়ে যুক্ত করা হল। পরে একে 6V তড়িৎ চালক বল এবং 5Ω অভ্যন্তরীন রোধের একটি বিদ্যুৎ কোষের দুই প্রান্তে যোগ করা হল। কোষের প্রান্তীয় বিভব এবং প্রত্যেক তারে প্রবাহ কত ?

$${f SOLVE}$$
 : তুল্যরোধ ${1\over R_P} = {1\over 20} + {1\over 20}$ $\therefore \ R_P = 10\Omega$

প্রবাহ,
$$I = \frac{E}{R_P + r} = \frac{6}{10 + 5} = 0.4A$$
,

প্রান্তীয় বিভব $V = IR_P = 0.4 \times 10 = 4V$

$$I_1 = \frac{IR_P}{R_1} \, = \frac{0.4 \times 10}{20} \, = 0.2 A \; , \; I_2 = \frac{IR_P}{R_2} \, = \frac{0.4 \times 10}{20} \, = 0.2 A \; . \label{eq:I1}$$

EXAMPLE – 03: 1.5V এবং 0.2Ω অভ্যন্তরীন রোধের 5টি বিদ্যুৎ কোষকে একটি 20Ω রোধের সাথে শ্রেণীতে যুক্ত করা হল। বর্তনীর প্রবাহমাত্রা কত ?

SOLVE:
$$I = \frac{nE}{R+nr} = \frac{5 \times 1.5}{20 + 5 \times 0.2} = 0.357A$$

EXAMPLE – 04: প্রতিটি 2V এবং 2Ω অভ্যন্তরীন রোধের 24টি বিদ্যুৎকোষ আছে। এদের কিভাবে সাজালে 3Ω রোধের একটি বর্তনীতে সর্বাপেক্ষা বেশি বিদ্যুৎ পাওয়া যাবে?

SOLVE: মনেকরি, সারির সংখ্যা = m; প্রত্যেক সারিতে কোষের সংখ্যা = n

$$\therefore m \times n = 24 - - - - (i)$$

সর্বাধিক বিদ্যুৎ প্রবাহের জন্য, mR=nr $\Rightarrow n=rac{mR}{r}=rac{3}{2}m$ -----(ii)

$$(i)$$
 ও (ii) হতে পাই, $m = 4, n = 6$

সর্বাধিক প্রবাহ,
$$I = \frac{mnE}{mR + nr} = \frac{6 \times 4 \times 2}{4 \times 3 + 6 \times 2} = 2A$$

EXAMPLE - 05: একটি কোষের তড়িচ্চালক শক্তি 2.5V। এতে যখন 5A তড়িৎ প্রবাহিত হয় তখন এর বিভব পার্থক্য 1.5V হয়। কোষের অভ্যান্তরীণ রোধ কত?

$$i = \frac{E}{R+r} \Rightarrow E = V + ir \Rightarrow i = \frac{E-V}{r} = \frac{2.5-1.5}{5} = 0.2\Omega$$

EXAMPLE - 06: প্রতিটি 1.5V এবং 0.1Ω অভ্যান্তরীণ রোধ যুক্ত তিনটি বিদ্যুৎ কোষকে শ্রেণি সমবায়ে যুক্ত করে 100Ω রোধের পরিবাহী দ্বারা যুক্ত, করলে কত মাত্রার বিদ্যুৎ প্রবাহিত হবে?

$$i = \frac{nE}{R+nr} = \frac{3 \times 1.5}{100 + 3 \times 0.1} = 0.045A$$

EXAMPLE - 07: 1.5v তড়িচ্চালক শক্তি বিশিষ্ট পাচঁটি কোষের প্রত্যেকটির অভ্যান্তরীণ রোধ 0.5Ω । কোষ পাচটিকে সমান্তরালে যুক্ত করে 150Ω এর পরিবাহকের সাথে যুক্ত করলে বর্তনী দিয়ে কি পরিমাণ তড়িৎ প্রবাহিত হবে?

$$i = \frac{nE}{nR+r} = \frac{5 \times 1.5}{5 \times 150 + 0.5} = 9.99 \times 10^{-3} A = 0.01 A.$$

EXAMPLE - 08: 31.5V তড়িৎ চালক বল বিশিষ্ট 5 টি কোষকে শ্রেণিতে যুক্ত করে একটি সমবায় গঠন করা হল। এরুপ তিনটি সমবায়কে সমান্তরালে যুক্ত করে এর দু প্রান্তের সাথে 100Ω রোধের পরিবাহক দ্বারা বর্তনী গঠন করলে বর্তনীতে মোট প্রবাহ কত পাওয়া যাবে? সর্বোচ্চ প্রবাহমাত্রা কত হবে? [কোষগুলোর অভ্যান্তরীণ রোধ 0.5Ω]

$$i = \frac{mnE}{mR + nr} = \frac{5 \times 3 \times 1.5}{3 \times 100 + 5 \times 0.5} = 0.0743A$$
; $i_{max} = \frac{mE}{2r} = \frac{3 \times 1.5}{2 \times 0.5} = 4.5A$

TYPE – 05

কার্শফের সুত্র

কার্শফের সুত্রঃ $\sum i = 0$, $\sum E_k = \sum i_K R_k$.

 $\mathbf{EXAMPLE} - \mathbf{01}$: কার্শফের সুত্র ব্যবহার করে নিচের বর্তনী হতে প্রবাহমাত্রা $L_1, L_2,$ ও i নির্ণয় কর।

$$\sum i$$
হতে $i = i_1 + i_2$

$$\sum E_k$$
 হতে

$$E_1ABE_1$$
বর্তনীতে, $3-5i-2i_1=0$

$$7i_1 + 5i_1 = 3$$

 E_2ABE_2 বর্তনীতে $5i + 2i_2 = 3.5$

$$\Rightarrow$$
 5i₁ + 7i₂ = 3.5

$$i_1 = 0.14A$$
, $i_2 = 0.4A$

$$i = 0.54A$$

EXAMPLE-02: নিম্নে চিত্রে প্রতিটি রোধকে মধ্য তড়িৎ প্রবাহ এবং $a \circ b$ বিন্দুর মধ্যেকার বিভব পার্থক্য নির্ণয় কর ।

সমাধানঃ লুপতত্ত্ব মতে, *(i) নং লুপের

$$E_2 - i_2 R_1 = 0$$

$$\Rightarrow i_1 = \frac{5}{100} = 0.05A$$

(2) লুপের মতে,
$$E_3 + E_2 - iR_2 = 0$$

$$i = \frac{4 + -5}{50} = 0.06A.$$

EXAMPLE-03: একটি ব্যাটারীর তড়িৎচালক বল 12V অভ্যন্তরীণ রোধ 6Ω . একে 8V বিদ্যুৎচালক ও 6Ω অভ্যন্তরীন রোধ বিশিষ্ট অপর একটি ব্যাটারীর সাথে সমান্তরালে যুক্ত করা হল। পরে সংযোজনীটিকে 12Ω রোধের তার দ্বারা যুক্ত করা হল। বর্তনীর প্রতিটি অংশের প্রবাহমাত্রা নির্ণয় কর।

SOLVE: কার্শফের দ্বিতীয় সুত্র হতে পাই,

$$iR + i_1r_1 = E_1 \Rightarrow i \times 12 + i_1 \times 6 = 12 : .6i_1 + 12i = 12$$
 -----(i)

আবার, $iR + i_2r_2 = E_2$: $6i_2+12i = 8$ -----(ii)

(i) + (ii)
$$6(i_1+i_2)+24i = 20$$

আবার, কার্শফের প্রথম সুত্র ঃ

$$i=i_1\!+\!i_2\!-\!-\!-\!-\!(iii)$$

$$\therefore 6i + 24i = 20 \Rightarrow i = \frac{2}{3} A$$

i এর মান (i)নং এ বসিয়ে পাই, $i_1 = \frac{2}{3}A$

(iii) নং এ মান বসিয়ে পাই, $i_2=\frac{2}{3}-\frac{2}{3}=0A$; $Ans:\frac{2}{3}A$, $\frac{2}{3}$ A , 0A

TYPE - 06

হুইটস্টোন ব্রিজ : $\frac{P}{Q} = \frac{R}{S}$

হুইটস্টোন ব্রিজ ও মিটার ব্রিজ এর মধ্যে সম্পর্ক ঃ $\frac{P}{Q} = \frac{R}{S} = \frac{l}{100-l}$

:পোটেনসিত্তমিটার : $\frac{E}{iR}=\frac{l}{L}$; $E=\mathrm{il}\sigma$; $\sigma=\frac{R}{L}$; $\frac{E_1}{E_2}=\frac{l_1}{l_2}$

পোস্ট অফিস বক্স : $\frac{P}{Q} = \frac{R}{S}$

EXAMPLE – 01: একটি হুইটস্টোন ব্রীজের চার বাহুর রোধ যথাক্রমে 4, 8, 8, 10 Ω. চতুর্থ বাহুর সাথে কত রোধ কিভাবে যুক্ত করলে ব্রীজটি সাম্যাবস্থায় থাকবে ?

$${f SOLVE}$$
 : আমরা জানি, ${P\over Q}={R\over S}\Rightarrow {4\over 6}={8\over x}$ $\therefore x=12\Omega$

:: 12 > 10 তাই তুল্যরোধ 12Ω করার জন্য শ্রেনীতে যুক্ত করতে হবে। $10 + P = 12, :: P = 2\Omega$

EXAMPLE – 02: একটি হুইটস্টোন ব্রীজের চার বাহুর রোধ যথাক্রমে 9, 12, 6, 12 Ω. চতুর্থ বাহুতে কত মানের রোধ কিভাবে যুক্ত করলে ব্রীজটি সাম্যাবস্থায় থাকবে?

$${f SOLVE}$$
 : আমরা জানি, ${P\over Q}={R\over S}\Rightarrow {9\over 12}={6\over x}$ $\therefore x=8\Omega$

:: 8 < 12 তাই তুল্যরোধ 8Ω করতে সমান্তরালে যুক্ত করতে হবে,

$$\frac{1}{8} = \frac{1}{12} + \frac{1}{y} : y = 24\Omega$$

EXAMPLE-03: একটি মিটার ব্রীজের বামফাঁকে 8Ω এর একটি রোধ এবং ডানফাঁকে 20Ω রোধের সাথে অপর একটি অজ্ঞাত রোধ শ্রেনীতে যুক্ত। বামপ্রান্ত হতে $25 {
m cm}$ দূরে ভারসাম্য বিন্দু পাওয়া গেলে অজ্ঞাত রোধের মান কত?

SOLVE : আমরা জানি,
$$\frac{P}{O} = \frac{1}{100-1} \Rightarrow Q = P \times \frac{100-1}{1} = 8 \times \frac{100-25}{25} = 24\Omega$$

$$\therefore 24 > 20 \ \therefore 24 = 20 + x \ \therefore x = 4\Omega$$

EXAMPLE - 04: একটি পটেনশিওমিটারে বর্তনী প্রবাহ $80 \times 10^{-3} A$. পটেনশিওমিটারের তারের রোধ 20Ω তারের মোট দৈর্ঘ্য 15 m. সাম্যবিন্দুর দূরত্ব 9.5 m. পটেনশিওমিটারে তড়িৎচালক বল কত ?

SOLVE:
$$E = \frac{IIR}{L} = \frac{80 \times 10^{-3} \times 9.5 \times 20}{15} = 1.0133V$$

EXAMPLE - 05: একটি পটেনশিওমিটারে একটি বিদ্যুৎ কোষের জন্য 6m দূরে নিস্পন্দ বিন্দু পাওয়া গেল। কোষের দুই প্রান্তের সাথে 10Ω রোধ যুক্ত করলে $5\mathrm{m}$ দূরে নিস্পন্দ বিন্দু পাওয়া যায়। কোষের অভ্যন্তরীন রোধ কত ?

SOLVE:
$$r = \left(\frac{l_1}{l_2} - 1\right) R = \left(\frac{6}{5} - 1\right) \times 10 = 2\Omega$$

EXAMPLE - 06: একটি পটেনশিওমিটারে দুইটি ভিন্ন বিদ্যুৎ কোষের জন্য সাম্যবিন্দুর দূরত্ব যথাক্রমে 5m, 4m. দিতীয় কোষের বিদ্যুৎ চালকশক্তি 1.2V হলে প্রথম কোষের বিদ্যুৎ চালকশক্তি কত?

$${f SOLVE:}$$
 আমরা জানি, ${E_1\over E_2}={l_1\over l_2}$ ${}_{\perp}{E_1}={5\over 4}{ imes}1.2=1.5V$

TYPE – 07 জুলের ক্রিয়ার সুত্র

জুলের মাপার ক্রিয়ার সুত্রঃ $W = vit = i^2Rt; W = JH; H = \frac{i^2Rt}{I} = \frac{Vit}{I} = 0.24 i^2Rtcal$

জুল এককে W = H, $H = i^2Rt$

বিদ্যুৎ শক্তি ও ক্ষমতা ঃ ব্যায়িত বিদ্যুৎ শক্তি , $W=qv=vit=iRt=rac{v^2}{R}t$,ক্ষমতা, $P=rac{W}{t}=Vi=i^2R=rac{V^2}{R}$

জুলের ক্যালরিটার হতে তাপের যান্ত্রিক সমতা নির্ণয় এর সুত্র: $J=rac{Vit}{(m_1s_1+m_2s_2) heta}\,Jcal^{-1}$

EXAMPLE - 01: একটি 100W এর নিমজ্জক উত্তাপক 7 মিনিটে 1 লিটার পানির তাপমাত্রা 30°C থেকে 40°C পর্যন্ত বৃদ্ধি করে |J-এর মান নির্ণয় কর।

$$J = \frac{W}{H} = \frac{P \times t}{ms\Delta\theta} = \frac{100 \times 7 \times 60}{1000gm \times (1calgm^{-1} \circ C^{-1}) \times 10^{0}c} = 4. \text{ 2Jcal}^{-1}$$

TYPE - 08

শান্ট, গ্যালভানোমিটার, আমিটার

শান্ট, গ্যালভানোমিটার, আমিটারঃ

গ্যালভালোমিটারের মধ্য দিয়ে তড়িৎ প্রবাহ *

$$I_G=rac{S}{G+S}i$$
 , $i_S=rac{G}{G+S}i$, $S=rac{I_GG}{i-I_G}$; $G=rac{I_S-S}{i-I_S}$; যদি $S{<<}G$ হয় তবে $I_S=i$

অ্যামিটারের পাল্লা বৃদ্ধি , $S = \frac{r}{r-1}$

EXAMPLE - 01: 20Ω রোধ এর একটি গ্যালভালোমিটারের সাথে কত রোধের একটি শান্ট জুড়ে দিলে মোট তড়িৎ প্রবাহের 10% গ্যালভালোমিটারের মধ্যদিয়ে প্রবাহিত হবে? শান্টের মধ্য দিয়ে প্রবাহমাত্রা নির্ণয় কর।

$$i_G = \frac{s}{G+s}i \Rightarrow 0.1 = \frac{s}{20+s} \Rightarrow 2 + 0.15 = 5 \Rightarrow S = 2.22 \Omega n$$

$$\text{T}, S = \frac{r}{n-1} = \frac{20}{10-1} = 2.22\Omega$$

$$I_s = \frac{G}{G+s}i = \frac{20}{20+2.22}i = 0.9i$$

শান্টের মধ্যে দিয়ে প্রবাহমাত্রা মূলপ্রবাহের 90% হবে।

MCQ:

 $(1)~0.48 \mathrm{m}$ দীর্ঘ ও $0.12 \mathrm{mm}$ ব্যাসের একটি তারের পরিবাহিতা $5 imes 10^{-3} \Omega^{-1}$ হলে তারটির উপাদানের আপেক্ষিক পরিবাহিতা কত?

$$\sigma = G \cdot \frac{l}{A} = 5 \times 10^{-3} \times \frac{0.48}{\pi (0.06 \times 10^{-3})^{-2}} = 212206.59 \ \Omega^{-1} \text{m}^{-1}$$

- (A) $2.12 \times 10^5 \,\Omega^{-1} \text{m}^{-1}$ (B) $3.53 \times 10^5 \,\Omega^{-1} \text{m}^{-1}$
- (C) $5.22 \times 10^5 \,\Omega^{-1} \text{m}^{-1}$ (D) $4.32 \,2. \times 10^5 \,\Omega^{-1} \text{m}^{-1}$

(2) একই উপাদানের দুটি রোধকের রোধ সমান। রোধক দুটির দৈর্ঘ্যের অনুপাত 5: 9 হলে রোধ দুটির ব্যাসের অনুপাত কত?

$$R = \rho \frac{l}{A} : A \propto 1 : \frac{A_1}{A_2} = \frac{l_1}{l_2} \Rightarrow \frac{\pi \cdot (\frac{d_1}{2})^2}{\pi \cdot (\frac{d_2}{2})^2} = \frac{4}{9} = 1; \frac{d_1}{d_2} = \frac{2}{3}$$

(A) 3:2

(B) 2:3

(C) 4:9

(D) 9:4

(3) 200° C ও 300° C তাপমাত্রায় একটি তারের কুন্ডুলীর রোধ যথাক্রমে 28Ω ও 32Ω কুন্ডলীর তাপমাত্রা গুণাংক কত?

$$\begin{array}{l} R_t = \ R_o(1+\alpha t) \ \ \overline{\text{R}_{20}} = \ \frac{R_0(1+\alpha(20+273)]}{R_{30}} = \ \frac{28}{32} = \frac{7}{8} \\ \Rightarrow \frac{1+293\alpha}{1+303\alpha} = \frac{7}{8} \Rightarrow 8 + \ 2344\alpha = 7 + 2121\alpha \ \Rightarrow \alpha = -4.5 \times \ 10^{-3} \end{array}$$

(A)
$$4.5 \times 10^{-3}$$
 °C $^{-1}$ (B) 4.5×10^{-3} K $^{-1}$ (C) 4.5×10^{-4} K $^{-1}$ (D) 4.5×10^{-4} °C $^{-1}$

(4) একটি চোখের তড়িৎচ্চালক শক্তি 2V এবং অভ্যান্তরীণ রোধ 0.5Ω একে 1.5Ω . 2Ω ও 4Ω রোধের তিনটি তারের সাথে শ্রেণিতে যুক্ত করা হল । মধ্যবর্তী তারের দুই প্রান্তের বিভব পার্থক্য নির্ণয় কর ।

$$R_s = R_1 + R_2 + R_3 = 1.5 + 2 + 4 = 7.5\Omega$$

 $i = \frac{E}{R_S + r} = \frac{2}{7.5 + 0.5} = 0.25 \text{A} ; V_2 = 0.25 \times 2 = 0.5 \text{V}$
(a) 0.375V (B) 0.5V (C) 1.0V (D) 0.125V

(5) 5 volt, 4volt, এবং 1.0volt তড়িচ্চালক বলযুক্ত তিনটি কোষকে প্রায় রোধ বিহীণ তার দিয়ে সমান্তরাল সমবায়ে যুক্ত করা আছে। কোষগুলো অভ্যান্তরীণ রোধ যথাক্রমে $4\Omega,\,3\Omega,\,$ এবং 2Ω হলে 3Ω রোধের মধ্যদিয়ে প্রবাহমাত্রা নির্ণয় কর।

E₂ =
$$i_2R_2$$
 : $i_2 = \frac{4}{3} = 1.33A$.
(A) 1. 25A (B) 1.22A (C) 1.33 A (D) 1.0A

(6) তামার প্রবাহ ঘনত্ব $468 {
m Acm}^{-2}$ হলে এর তাড়ন বেগ কত? [তামার ঘনত্ব $9 {
m gm/cm}^3$]

$$J = \frac{I}{A} = neV_d : V_d = \frac{468}{ne} = \frac{468}{\frac{9 \times 6.023 \times 10^{23}}{63.546} \times 1.6 \times 10^{-19}} = 0.0343 \text{ cms}^{-1} = 3.43 \times 10^{-2} \text{ cms}^{-1}$$
(A) $3.43 \times 10^{-2} \text{ms}^{-1}$ (B) $3.43 \times 10^{-2} \text{cms}^{-1}$ (C) $6.88 \times 10^{-4} \text{ cms}^{-1}$ (D) None

(7) 1mm ব্যাসের একটি তামার তারের মধ্যদিয়ে 20Amp তড়িৎ প্রবাহিত হচ্ছে। পরিবাহীতে প্রতি ঘণমিটার আয়তনে মুক্ত ইলেকট্রন সংখ্যা 8.5×10^{26} হলে তামার তারের মধ্যে ইলেকট্রনের তাড়নবেগ কত?

$$V_d = \frac{i}{neA} = \frac{20}{8.5 \times 10^{26} \times \pi \times (0.5 \times 10^{-3})^2} = 0.187 ms^{-1}$$

- (A) 50V
- (B) 50.125V
- (C) 0.125V (D) কোনটিই নয়

(৪) তোমার ঘরের মিইন মিটারে 5 amp -220 Vলেখা আছে কতগুলো 25 Wএর বাতি নিরাপত্তার সাথে ব্যবহার করতে পারবে ?

$$P=Vi=200 imes 5=100~{
m watt}$$
 , বাতির সংখ্যা n হলে , $n imes 50=1100~{
m cm}=22$ টি

- (A) 22 b
- (B) 23 টি
- (C) 24 টি
- (D) 25 ि

10. 100watt এর একটি টিভি 7 hr যাবৎ চলছে এবং 25 W এর 3টি বাল্প 12 hr যাবৎ চলছে । উভয় ক্ষেত্রে ব্যায়িত শক্তি পরিমাণ

$$W_1 = 100 \times 7 \times 3600 = 2.52 \times 10^6 J$$

 $W_2 = 25 \times 3 \times 12 \times 3600 = 3.24 \times 10^6 J$

11. একটি হুইটেস্টোন ব্রীজের তিনটি বাহুতে যথাক্রমে 6, 24, 3 মানে রোধ লাগানো আছে। চতুর্থ বাহুতে কত মানের লাগলে ব্রীজটি সাম্যবস্থায় থাকবে?

$$\frac{P}{Q} = \frac{R}{S} \Rightarrow \frac{6}{24} = \frac{3}{5} \Rightarrow S = 12\Omega$$

- (A) 4Ω (B) 8Ω (C) 12Ω (D) 48Ω

12. একটি হুইটস্টোন ব্রীজের চারটি বাহুতে 8Ω , 12Ω , 16Ω ও $20~\Omega$ রোধ কিভাবে যুক্ত করতে হবে।

 $\frac{8}{12} = \frac{16}{20}$ অনুপাতটি সমান নয়, 20 এর স্থানে 24 হলে সমান হবে, সুতরাং 3Ω রোধ শ্রেণিতে যুক্ত করলে শর্ত

(A) 3Ω শ্রেণিতে (B) 3Ω সমান্তরালে (C) 12Ω শ্রেণিতে (D) 12Ω সমান্তরালে

13. উক্ত প্রশ্নে চতুর্থ বাহুতে রোধ 28Ω হলে সাম্যবস্থ্যার জন্য কিভাবে কত মানের রোধ যুক্ত করতে হবে। রোধকে কমাতে হবে । সেক্ষেত্রে সমান্তরাল সমবায় প্রয়োজন।

$$28^{-1} + s^{-1} = 24^{-1} \Rightarrow S = 168\Omega$$

(A) 3Ω শ্রেণিতে (B) 168Ω সমান্তরালে (C) 168Ω শ্রেণিতে (D)3 Ω সমান্তরালে

14. একটি মিটার ব্রীজের তারের দৈর্ঘ্য $100 {
m cm}$ । এর বাম ফাঁকে 24Ω এর একটি প্রমান রোধ ও ডান ফাঁকে একটি আঘাত রোধ স্থাপন করায় বাম প্রান্ত হতে $30 {
m cm}$ দুরে নিরপেক্ষ বিন্দু পাওয়া গেল । অজ্ঞাত রোধটি কত?

$$\frac{P}{Q} = \frac{l}{100 - l} \Rightarrow \frac{24}{Q} = \frac{30}{70} : Q = 56\Omega$$
(A) 56Ω (B) 10.29Ω (C) 46.67Ω (D) 50Ω

15. একটি পোষ্ট অফিস বক্সের অনুপাত বাহুদ্বয়ে 100Ω ও 25Ω রোধ যুক্ত । তৃতীয় বাহুতে 200Ω রোধ করলে গ্যালভালোমিটার শূন্য বিক্ষেপ দেয় । চতুর্থ বাহুর রোধ কত?

$$\frac{100}{25} = \frac{200}{s}$$
 S= 50 Ω (A) 50 Ω (B) 25 Ω (C) 30 Ω (D) 60 Ω

 $16.~20^{0}\mathrm{C}$ ও $30^{0}\mathrm{C}$ তাপমাত্রায় একটি তারের কুন্ডলীর রোধ যথাক্রমে 28Ω ও 28.5Ω । কুন্ডলীর তাপমাত্রা গুণাংক নির্ণয় কর ।

$$\frac{R_{20}}{R_{30}} = \frac{R_0[1+\alpha\times20+273]}{R_{0[1+\alpha\times30+273]}} = \frac{28}{28} \Rightarrow 28.5 + 8350.5 \ \alpha = 28 + 8484\alpha \ \therefore \alpha = 3.74 \times 10^{-3} \text{K}^{-1}$$

 $17.\ 100\Omega$ রোধের একটি গ্যালভালোমিটার সর্বোচ্চ 10 mA তড়িৎ নিরাপদে গ্রহণ করতে পারে। কী ব্যবস্থা গ্রহণ করলে এর দ্বারা 10A প্রবাহ মাপা যাবে?

$$I_G = \frac{s}{G+S}I \Rightarrow 10 \times 10^{-3} = \frac{s}{100+s} \times 10 \Rightarrow 0.1 + 0.001S = 5 \Rightarrow 0.95S = 0.1 : S = 0.11\Omega$$
(A) 0.1Ω শ্রেণিতে (B) 0.1Ω সমান্তরালে (C) 0.9Ω শ্রেণিতে (D) 0.9Ω সমান্তরালে

Practice Problems

EXAMPLE-01: শ্রেণী সমাবায়ে সজ্জি ত দুটি পরিবাহীর রোধ 40Ω যা সমান্তরাল সমাবায়ে 7.5Ω হয়। প্রতিটি পরিবাহীর রোধ নির্ণয় কর।

সমাধান ঃ

ধরাযাক, রোধ দুটি যথাক্রমে , R_1 ও R_2 \therefore আমরা পাই, $R_S=R_1+R_2$

বা,
$$40 = R_1 + R_2$$
 $\therefore R_1 + R_2 = 40$, আবার , $\frac{1}{R_P} = \frac{1}{R_1} + \frac{1}{R_2}$ বা, $R_P = \frac{R_1 + R_2}{R_1 R_2}$

বা,
$$R_P=rac{R_1R_2}{R_1+R_2}$$
 বা, $7.5=rac{R_1R_2}{40}$ [(i) নং সমীকরন ব্যবহার করে]

(i) নং সমীকরন R_2 মান বসিয়ে ,

$$R_1 + \frac{300}{R_1} = 40$$
 at, $R_1^2 + 3000 = 40R_1$ at, $R_1^2 - 30R_1 - 100R_1 + 300 = 0$

বা,
$$(R_1 - 30)(R_1 - 10) = 0$$
 : $R_1 = 30\Omega$ অথবা, 10Ω

∴ (ii) নং সমীকরন হতে পাই,

$$R_2=rac{300}{10}$$
; $[R_1=30],\,R_2=10\Omega$ আবার, $R_2=rac{300}{10}$ \therefore $R_2=30\Omega$

 ${f Ans}$: পরিববাহীদ্বয়ের রোধ যথাক্রমে 30Ω এবং 10Ω .

EXAMPLE-02:3mm ব্যাসের একটি তামার তারের মধ্য দিয়ে 5A তড়িং প্রবাহ হলে (i) তড়িং প্রবাহ ঘনতৃ এবং (ii) ইলেকট্রনের তাড়ন বেগ কত ? (তামার মধ্যে প্রতি একক আয়তনে মক্ত ইলেকট্রনের সংখ্যা 8.43×10^{28})

সমাধান
$$\hat{s}$$
 (i) $j = \frac{I}{A} = \frac{5A}{7.069 \times 10^{-6} \mathrm{m}^2} = 7.073136229 \times 10^5 \mathrm{Am}^{-2}$ বা, $j \cong 7.07 \times 10^5 \mathrm{Am}^{-2}$

(ii)
$$V_d = \frac{j}{ne} = \frac{7.07 \times 10^5 Am^{-2}}{(8.43 \times 10^{28} m^{-3})(1.6 \times 10^{-19} C)} = 5.24169632 \times 10^{-5} ms^{-1}$$

বা,
$$V_d \cong 5.24 \times 10^{-5} \text{ms}^{-1}$$

EXAMPLE - 03: নিচের চিত্রে 2000Ω রোধের একটি বৈদ্যুতিক যন্ত্র 4000Ω এর একটি স্লাইডিং বিভব বিভাজকেরে মাধ্যমে 10V এর একটি উৎসের সাথে সংযুক্ত । B বিন্দু C বিন্দু থেকে বিভাজকের মোট দৈর্ঘ্যের

- (i) এক-চুতর্থাংশ দুরে অবস্থিত হলে B এবং C বিন্দু মধ্যে প্রাম্ভ বিভব পার্থক্যের মান কত হবে ?
- (ii) অর্ধকে দূরে অবস্থিত হলে B এবং C বিন্দু মধ্যে প্রাম্ভ বিভব পার্থক্যের মান কত হবে ?
- $(iii) \ 2000\Omega$ একটি বৈদ্যুতিক যন্ত্র না থাকলে উপরিউক্ত দুই ক্ষেত্রে বিভব পার্থক্য কত হবে $\,$?

সমাধান ঃ

(i) B বিন্দু যখন C বিন্দু AC এর চতুর্থাংশ দূরে অবস্থিত তখন AC এর এক-চুতর্থাংশ দূরে অবস্থিত তখন BC এর মধ্যবর্তী অংশের রোধ হবে $\frac{4000\Omega}{4}=1000\Omega$ । এই রোধটি 2000Ω রোধের সাথে সমান্তরাল সমবায়ে সজ্জিত। অতএব এদের সমতুল্য রোধ -

$$rac{1}{R_{BC}}=rac{1}{2000}+rac{1}{1000}$$
 বা, $R_{BC}=rac{2000 imes1000}{2000+1000}=rac{2000}{3}\Omega$

 \therefore A এবং C বিন্দুর ম্যধকার মোট রোধ হবে স্লাইডিং ঝ 300Ω

বিভবের A এবং B বিন্দু মধ্যেকার রোধ

$$(4000\Omega-1000=3000\Omega)+B$$
 ও C ম্যধকার রোধ R_{BC}

$$\therefore R_{AC} = 3000\Omega + \frac{2000}{3}\Omega = \frac{11000}{3}\Omega$$

বর্তনীতে বিদ্যুৎ প্রবাহমাত্রা হবে , $I=rac{V_{AC}}{R_{AC}}$

B ও C বিন্দুর বিভব পার্থক্য হবে,
$$V_{BC}=IR_{BC}\div V_{BC}=\frac{2000/3}{11000/3}\times 10=1.8V$$

(ii) B বিন্দু যখন স্লাডিং রোধের মাধ্যবিন্দুতে অবস্থিত, তখন

$$rac{1}{R_{BC}}=rac{1}{2000}+rac{1}{2000}$$
; $R_{BC}=1000\Omega$ এবং $R_{AC}=2000+1000=3000\Omega$

$$\therefore V_{BC} = \frac{1000}{4000} \times 10 = 2.5 V$$
 এবং দ্বিতীয় ক্ষেত্রে, $V_{BC} = \frac{2000}{4000} \times 10 = 50. V$

EXAMPLE - 04: নিচের চিত্রের বর্তনীয় প্রতি শাখায় বিদ্যুৎ প্রবাহ নির্ণয় কর।

সমাধান ঃ প্রথমে আরা তিনটি শাখার বিদ্যুৎ প্রবাহকে, I_1 ও I_2 এবং I_3 দ্বারা সূচিত করি। এই তিনটি বিদ্যুৎ প্রবাহের সংযোগ বিন্দু C । প্রথম সূত্র অনুসারে- $I_1+I_2+I_3\dots (i)$

বদ্ধ বর্তনী ABCFA বিবেচনা করে কার্সফের দ্বিতীয় সূত্র অনুসারে আমরা পাই,

$$5-5I_1-20I_3=0$$

বা, $5-5I_1-20(I_1+I_2)=0$
বা, $5=25I_1+20I_2....(ii)$

বদ্ধ বর্তনী ABCDEFA বিবেচনা করে কার্সফের দ্বিতীয় সূত্র অনুসারে আমরা পাই,

$$5 - 5I_1 + 10I_2 - 20 = 0$$
 $\forall i, -15 = 5I_1 - 10I_2 \dots \dots (iii)$

(iii) নং সমীকরণকে 2 দিয়ে গুণ করে (ii) নং সমীকরনের সাথে যোগ করে পাই,

$$-25=35 {\rm I}_1$$
 বা, ${\rm I}_1=\frac{25}{35}=-0.714285714$ A বা, ${\rm I}_1=-0.71$ A

এখানে ঋণাত্বক চিহ্ন নির্দেশ করে প্রকৃত বিদ্যুৎ প্রবাহ চিত্রে প্রদর্শিত দিকের বিপরীত দিকে হবে।

(ii) নং সমীকরনে I_1 এর মান বসিয়ে পাই,

$$5 = [25 \times (-0.71)] + 20I_2$$
 বা, $I_2 = 1.1375$ A বা, $I_2 = 1.14$ A

অতএব, (i) নং সমীকরণ থেকে পাই, $\rm I_3=I_1+I_2=(-0.71)+1.14~A$ বা, $\rm I_3=0.43~A$

 $\mathbf{EXAMPLE} - \mathbf{05}$: চিত্রে একটি হুইটস্টোন ব্রীজ দেখানো হল। ব্রীজের সাম্যাবস্থায় \mathbf{I} , \mathbf{I}_1 এবং \mathbf{I}_2 নির্ণয় কর।

সমাধান ঃ

$$\frac{P}{O} = \frac{R}{S}$$
 $\therefore Q = \frac{S}{R} \times P = \frac{18}{6} \times 3 = 9\Omega$

ব্রীজে P এবং Q শ্রেণী সমবায়ে যুক্ত এদর তুল্য রোধ $3+9=12\Omega$

তবে একই ভাবে শ্রেণী সমাবেয় যুক্ত R এবং S এর তুল্য রোধ $6+18=24\Omega$

আবার, 12Ω এবং 24Ω রোধ দুটি সমান্তরাল সজ্জায় যুক্ত । এদর তুল্য রোধ হবে,

$$\frac{1}{R_P} = \frac{1}{12} + \frac{1}{24} = \frac{2+1}{24} = \frac{1}{8} \quad \therefore R_P = 8\Omega$$

অতএব, হুইটস্টোন বর্তনীর মোট রোধ হবে, $R_P=R^{'}+r=8+5.5+1.5=15\Omega$

ওহমের সূত্র অনুসারে বর্তণীতে প্রবাহতি বিদ্যুৎ প্রবাহ হবে, $I=rac{E}{R}=rac{18V}{15\Omega}=1.2A$

অতএব, সমতুল্য রোধ R_P এর দু' প্রান্ত অর্থাৎ A এবং C বিন্দু মধ্যেকার বিভব-প্রভেদ $=E\times R_P$ আবার, A এবং C বিন্দু মধ্যেকার বিভব- পার্থক্য হবে,

$$I_1(P+Q) = I_2(R+S) : I_1(P+Q) = I \times R_P \text{ at, } I_1 = \frac{R_P}{P+O} \times 1.2 \text{ at, } I_1 = 0.8 \text{ A}$$

একইভাবে,
$$I_2 = \frac{R_P}{P+O} \times I = \frac{8}{24} \times 1.2 = 0.8 \text{ A}$$
 $\therefore I = 1.2 \text{ A}$, $I_1 = 0.8 \text{ A}$, $I_2 = 0.4 \text{ A}$

EXERCISES

১। $10~{
m m}$ দীর্ঘ এবং 25Ω রোধের একটি পোটেনসিওমিটার তারের দু' প্রান্তের সাথে $4.8{
m V}$ বিদ্যুচ্চালক বলের একটি ব্যাটারী ও 35Ω রোধ শ্রেণীতে যুক্ত আছে। তারের $8~{
m m}$ ব্যবধানে নগণ্য অভ্যন্তরীণ রোধের একটি বিদ্যুৎ কোষের দু' প্রান্ত যুক্ত করলে কোষের ভিতর দিয়ে কোন বিদ্যুৎ প্রবাহিত হয় না । কোষটির বিদ্যুচ্চালক বল নির্ণয় কর

[Ans: 1.6 V]

- ২। সমান্তরাল যক্তি একই পদার্থের এবং সমান প্রস্থচ্ছেদের দৈরি তিনটি তারের দৈর্ঘ্যর অনুপাত 1: 3: 5 । 23 amp বিদ্যুৎ প্রবাহ তার তিনটিতে কিভাবে বিভক্ত হয়ে প্রবাহিত হবে নির্ণয় কর। [Ans: 15 amp; 5 amp; 3 amp]
- ৩। পোটেনমিওমিটারে সাহায্যে দুটি কোষকে সমান্তরালে যক্তি করে মুক্ত প্রান্তদ্বয় 10Ω রোধের একটি তার দায়ে যুক্ত করা হলেঅ যদি প্রতিটি কোষের বিদ্যুৎচ্চালক বল $2 ext{ volt}$ হয়, তবে ঐ তারে প্রবাহমাত্রা নির্ণয় কর।[$\mathbf{Ans: 3:1}$]
- 8। 95Ω রোধ বিশিষ্ট একটি গ্যালভানোমিটারে ভিতর দিয়ে মূল তড়িৎ প্রবাহের 5% চালনা করতে চাইলোগ্যালভানোমিটারের প্রান্তম্বয়ের সাথে কত মানের সান্ট ব্যবহার কতে হবে? [Ans: 5Ω]
- ৫। r রোধের একটি তারকে টেনের তিনগুন লম্বা করলে, লম্বা করা তারটির রোধ কত হবে? [Ans: 9r]
- **৬।** 5A তড়িৎ প্রবাহ তিনটি ভাগে বিভক্ত হয়ে তিনটি তারে মধ্য দিয়ে চলে গিয়ে আবার মিলিত হল। তারগুলো একই উপাদানে তৈরি এবং এদের প্রস্থচ্ছেদ একই। তারগুলোর দৈর্ঘ্যের অনুপাত 1:2:3 হলে প্রত্যেক তারের মধ্য দিয়ে বিদ্যুৎ প্রবাহ নির্ণয় কর। $\left[\mathbf{Ans} \colon \frac{30}{11} \mathbf{A}, \, \frac{15}{11} \mathbf{A}, \, \frac{10}{11} \mathbf{A} \right]$
- ৭। প্রত্যেকটি 5Ω রোধের 30 টি বিদ্যুৎ কোষকে কীভাবে সাজালে 6Ω রোধের একটি বহিঃ রোধের মধ্য দিয়ে সর্বাধিক বিদ্যুৎ প্রাবহিত হবে। প্রত্যেকটি কোষের বিদ্যুচ্চালক বল 2V হলে, ঐ বিদ্যুৎ প্রবাহমাত্রার মান কত ?[Ans:সমান্তরাল সারির সংখ্যা = 5, প্রতক্যে সারিতে কোষের সংখ্যা = 6, 1A
- ৮। $G\Omega$ রোধের একটি গ্যালভামোমিটারের সাথে একটি সান্ট যুক্ত করার গ্যালভোনোমিটারের বিদ্যুৎ প্রবাহের মান মূল প্রবাহের $\frac{1}{n}$ অংশ হয়। দেখাও যে, সান্ট রোধ, $S=\frac{G}{n-1}\Omega$ ।
- ৯। নিম্ন লিখিত বর্তনী থেকে 3Ω রোধের মধ্য দিয়ে প্রবাহতি তড়িৎ প্রবাহমাত্রা নির্ণয় কর। $[{f Ans: 0.4~A}]$
- ১০। $1.2~{
 m A}~$ তড়িৎ প্রবাহ ধারণ ক্ষমতার একটি বৈদ্যুতিক হিটারের রোধ 140Ω । একে $210{
 m V}$ এর একমুখী বিদ্যুৎ সরবরাহ লাইনে চবালাতে হলে বর্তনীর ভিতর নূন্যপক্ষে আরও কত রোধ দিতে হবে ? ${
 m [Ans: 35\Omega]}$
- ১১। একটি হুইটস্টোন ব্রীজের প্রথম ও দ্বিতীয় রোধ যথাক্রমে 10Ω ও 12Ω । এর তৃতীয় বাহুতে একটি অজানা রোধ লাগানো আছে। যখন ব্রীজের চতুর্থ বাহুতে দুইটি সমান্তরাল রোধ। যাদের প্রত্যেকের মান 20Ω লাগনো হয়, তথা ব্রীজটি নিস্পন্দ অবস্থায় থাকে । অজানা রোধটির মান কত ? $[{
 m Ans: 8.33}\Omega]$