I Questions de cours

1 - Exercice 33 banque CCINP:

On considère la fonction f définie sur \mathbb{R}^2 par :

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{si } (x,y) \neq (0,0) \\ 0 & \text{sinon} \end{cases}$$

- a) Démontrer que f est continue sur \mathbb{R}^2 .
- b) Démontrer que f admet des dérivées partielle en tout point de \mathbb{R}^2 .
- c) f est-elle de classe C^1 sur \mathbb{R}^2 ?

2 - Exercice 52 banque CCINP :

Soient $\alpha \in \mathbb{R}$ et f la fonction définie sur \mathbb{R}^2 par :

$$f(x,y) = \begin{cases} \frac{y^4}{x^2 + y^2 - xy} & \text{si } (x,y) \neq (0,0) \\ \alpha & \text{sinon} \end{cases}$$

- a) Montrer que pour tout $(x,y) \in \mathbb{R}^2$, $x^2 + y^2 xy \ge \frac{1}{2}(x^2 + y^2)$.
- b) Justifier que le domaine de définition de f est bien \mathbb{R}^2 puis déterminer α pour que f soit continue sur \mathbb{R}^2 .
 - c) Dans cette question, on suppose que $\alpha = 0$.

Justifier l'existence de $\frac{\partial f}{\partial x}$ et $\frac{\partial f}{\partial y}$ sur $\mathbb{R}^2 \setminus \{(0,0)\}$ et déterminer leur valeur puis faire de même avec $\frac{\partial f}{\partial x}(0,0)$ et $\frac{\partial f}{\partial y}(0,0)$. f est-elle de classe \mathcal{C}^1 sur \mathbb{R}^2 ?

- 3 Exercice 58 banque CCINP:
- a) Soient E et F deux \mathbb{R} -espaces vectoriels normés de dimension finie, $a \in E$ et $f: E \longrightarrow F$ une application.

Donner la définition de "f est différentiable en a".

b) Soient $n \in \mathbb{N}^*$, E un \mathbb{R} -espace vectoriel normé de dimension n et $e = (e_1, ..., e_n)$ une base de E.

On pose : $\,$

$$\forall x \in E, \ \|x\|_{\infty} = \max_{i \in [\![1:n]\!]} |x_i| \ \text{où} \ x = \sum_{i=1}^n x_i e_i \ \text{et} \ \forall (x,y) \in E^2, \ \|(x,y)\| = \max(\|x\|_{\infty}; \|y\|_{\infty})$$

On admet que $\|\cdot\|_{\infty}$ et $\|\cdot\|$ sont respectivement une norme sur E et E^2 .

On considère $B: E \times E \longrightarrow \mathbb{R}$ une forme bilinéaire sur E.

Montrer que :

$$\exists C > 0 \mid \forall (x, y) \in E^2, \ |B(x, y)| \le C \|x\|_{\infty} \|y\|_{\infty}$$

En déduire que B est différentiable sur E^2 et déterminer sa différentielle en tout $(u_0, v_0) \in E^2$.

II Exercices

Exercice 1:

- 1 Montrer la différentiabilité de l'application det définie sur $\mathcal{M}_n(\mathbb{R})$.
- 2 Montrer que sa différentielle en $A \in \mathcal{M}_n(\mathbb{R})$ est $H \longmapsto \operatorname{Tr} ({}^t\operatorname{Com}(A)H)$.
- 3 Donner l'expression de la différentielle dans le cas particulier où A est inversible.

Exercice 2:

- 1 Rappeler pourquoi $GL_n(\mathbb{R})$ est un ouvert de $\mathcal{M}_n(\mathbb{R})$.
- 2 Montrer que l'application définie sur $\mathrm{GL}_n(\mathbb{R})$ par $M \longmapsto M^{-1}$ est de classe \mathcal{C}^1 et donner sa différentielle.

Exercice 3:

L'espace vectoriel \mathbb{R}^p est muni du produit scalaire usuel noté $\langle \cdot; \cdot \rangle$ et la norme euclidienne est notée $\| \cdot \|$.

Pour tout $x \in \mathbb{R}^p$, on pose $f(x) = ||x||^2$ et g(x) = ||x||.

- 1 Montrer que f est de classe \mathcal{C}^1 sur \mathbb{R}^p et donner sa différentielle de deux manières différentes : par les dérivées partielles puis par calcul direct de la différentielle.
- 2 Montrer que g est de classe \mathcal{C}^1 sur $\mathbb{R}^p \setminus \{0_{\mathbb{R}^p}\}$ et donner sa différentielle. Est-elle différentiable en $0_{\mathbb{R}^p}$?

Exercice 4:

Soient $U = \mathbb{R}_+^* \times \mathbb{R}$, $f : \mathbb{R} \longrightarrow \mathbb{R}$ de classe C^2 sur \mathbb{R} et F la fonction définie sur U par $F(x,y) = xf\left(\frac{y}{x}\right)$.

- 1 Exprimer $\Delta F = \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial u^2}$ en fonction de f''.
- 2 Déterminer les fonctions f telles que $\Delta F = 0$.
- 3 Déterminer les fonctions f telles que $\Delta F = \frac{1}{x}$.

Exercice 5 .

On dit qu'une partie C de \mathbb{R}^n est un cône positif lorsque pour tout $x \in C$ et t > 0 on a $tx \in C$.

Soit C un cône positif non vide de \mathbb{R}^n . On dit qu'une fonction $f:C\longrightarrow \mathbb{R}$ est homogène de degré α lorsque :

$$\forall (x,t) \in C \times \mathbb{R}_+^*, \ f(tx) = t^{\alpha} f(x)$$

On suppose dans la suite que C est également un ouvert de \mathbb{R}^n et on considère $f \in \mathcal{C}^1(C,\mathbb{R})$.

- 1 Démontrer que si la fonction f est homogène de degré α , alors les dérivées partielles de f sont homogènes de degré $\alpha-1$.
- 2 Démontrer que la fonction f est homogène de degré α si, et seulement si :

$$\forall x \in C, \ \sum_{i=1}^{n} x_i \frac{\partial f}{\partial x_i}(x) = \alpha f(x) \ \text{(Relation d'Euler)}$$

Exercice 6:

Soient $U = \{(x, y) \in \mathbb{R}^2 \mid xy \neq 1\}$ et f la fonction définie sur U par $f(x, y) = \operatorname{Arctan}(x) +$ Arctan(y) - Arctan $\left(\frac{x+y}{1-xy}\right)$. 1 - Justifier que U est un ouvert de \mathbb{R}^2 et que f est de classe \mathcal{C}^1 sur U. 2 - Montrer que pour tout $(x,y) \in U$ on a $\frac{\partial f}{\partial x}(x,y) = 0$. 3 - Préciser en tout point (x,y) de U la valeur de $\nabla f(x,y)$.

- 4 En déduire les valeurs de f(x, y).