

Practical Machine Learning

Day 5: Mar22 DBDA

Kiran Waghmare

Agenda

- Regression
- Types of Regression

The Model

The model has a deterministic and a probabilistic components

However, house cost vary even among same size houses!

Estimating the Coefficients

Cost function

Best fit line for Regression

The estimates are determined by

drawing a sample from the population of interest,

calculating sample statistics.

MSE:Mean Squared Error

producing a straight line that cuts into the data.

The Estimated Coefficients

To calculate the estimates of the line coefficients, that minimize the differences between the data points and the line, use the formulas:

$$b_{1} = \frac{\operatorname{cov}(X,Y)}{s_{X}^{2}} \left(= \frac{s_{XY}}{s_{X}^{2}} \right)$$
$$b_{0} = \overline{Y} - b_{1}\overline{X}$$

The regression equation that estimates the equation of the first order linear model is:

$$\hat{Y} = b_0 + b_1 X$$

The Least Squares (Regression) Line

A good line is one that **minimizes the sum of squared** differences between the points and the line.

Sum of Squares for Errors

- This is the sum of differences between the points and the regression line.
- It can serve as a measure of how well the line fits the data.
 SSE is defined by

SSE =
$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2$$
.

A shortcut formula

SSE =
$$(n-1)s_Y^2 - \frac{[cov(X,Y)]^2}{s_X^2}$$

Out[30]:

OLS Regression Results Dep. Variable: R-squared: 0.938 У Model: OLS Adj. R-squared: 0.935 Method: Least Squares F-statistic: 273.2 Mon, 18 Jul 2022 Prob (F-statistic): 2.51e-12 Time: 15:32:03 Log-Likelihood: -202.60 409.2 No. Observations: 20 AIC: Of Residuals: 18 BIC: 111.2 Df Model: Covariance Type: nonrobust [0.025 0.975] coef std err t P>|t| const 2.682e+04 3033.148 8.841 0.000 2.04e+04 3.32e+04 x1 9345.9424 565.420 16.529 0.000 8158.040 1.05e+04 Durbin-Watson: 2.684 Omnibus: 2.688 Prob(Omnibus): 0.261 Jarque-Bera (JB): 1.386 Skew: 0.305 Prob(JB): 0.500 Kurtosis: 1.864 Cond. No. 11.7

Types of Linear Regression

- Linear regression can be further divided into two types of the algorithm:
- Simple Linear Regression:

If a single independent variable is used to predict the value of a numerical dependent variable, then such a Linear Regression algorithm is called Simple Linear Regression.

Multiple Linear regression:

If more than one independent variable is used to predict the value of a numerical dependent variable, then such a Linear Regression algorithm is called Multiple Linear Regression.

Simple Linear Regression

$$y=b_0+b_1x_1$$

Multiple Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_2 + ... + b_n x_n$$

Polynomial Linear Regression

$$y = b_0 + b_1 x_1 + b_2 x_1^2 + ... + b_n x_1^n$$

