N. Bousquet, F. Havet, N. Nisse, L. Picasarri-Arrieta, A. Reinald

Introduction to digraph redicolouring and degeneracy

• k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizing graph colouring and the chromatic number $\chi(G)$.

- k-dicolouring of D: partition of V(D) in k parts inducing an acyclic subdigraph.
- Dichromatic number $\overrightarrow{\chi}(D)$: minimum k s.t. D admits a k-dicolouring.
- Generalizing graph colouring and the chromatic number $\chi(G)$.

$\mathcal{D}_k(D)$: the k-dicolouring graph of D:

- $V(\mathcal{D}_k(D))$ are the k-dicolourings of D,
- $\gamma_i \gamma_j \in E(\mathcal{D}_k(D))$ if $\gamma_i = \gamma_j$ except on one vertex.


```
\mathcal{D}_k(D): the k-dicolouring graph of D:
```

- $V(\mathcal{D}_k(D))$ are the k-dicolourings of D,
- $\gamma_i \gamma_j \in E(\mathcal{D}_k(D))$ if $\gamma_i = \gamma_j$ except on one vertex.

 $\mathcal{G}_k(G)$: the k-colouring graph of G is similar.

• recolouring sequence : a path (or a walk) in $\mathcal{D}_k(D)$.

- recolouring sequence : a path (or a walk) in $\mathcal{D}_k(D)$.
- D is k-mixing : $\mathcal{D}_k(D)$ is connected.

- recolouring sequence : a path (or a walk) in $\mathcal{D}_k(D)$.
- D is k-mixing : $\mathcal{D}_k(D)$ is connected.

 \longrightarrow Is D k-mixing ?

- recolouring sequence : a path (or a walk) in $\mathcal{D}_k(D)$.
- D is k-mixing : $\mathcal{D}_k(D)$ is connected.

 \longrightarrow Is D k-mixing ?

 \longrightarrow Can we bound the diameter of $\mathcal{D}_k(D)$?

Theorem (Bonsma et al.; Dyer et al.)

If
$$k \ge \delta^*(G) + 2$$
, then G is k-mixing, and $diam(\mathcal{G}_k(G)) \le 2^n - 1$.

Theorem (Bonsma et al.; Dyer et al.)

If $k \ge \delta^*(G) + 2$, then G is k-mixing, and $diam(\mathcal{G}_k(G)) \le 2^n - 1$.

Conjecture (Cereceda, 2007)

If
$$k \ge \delta^*(G) + 2$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

Theorem (Bonsma et al.; Dyer et al.)

If $k \ge \delta^*(G) + 2$, then G is k-mixing, and $diam(\mathcal{G}_k(G)) \le 2^n - 1$.

Conjecture (Cereceda, 2007)

If
$$k \ge \delta^*(G) + 2$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

Theorem (Bousquet, Heinrich)

If
$$k \geq \frac{3}{2}(\delta^*(G) + 1)$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

Theorem (Bonsma et al.; Dyer et al.)

If $k \ge \delta^*(G) + 2$, then G is k-mixing, and $diam(\mathcal{G}_k(G)) \le 2^n - 1$.

Conjecture (Cereceda, 2007)

If $k \ge \delta^*(G) + 2$, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

Theorem (Bousquet, Heinrich)

If
$$k \geq \frac{3}{2}(\delta^*(G) + 1)$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

Directed graphs

Theorem

If $k \ge \delta_{\min}^*(D) + 2$, then D is k-mixing, and $\operatorname{diam}(\mathcal{D}_k(D)) \le 2^n - 1$.

Theorem (Bonsma et al.; Dyer et al.)

If $k \ge \delta^*(G) + 2$, then G is k-mixing, and $diam(\mathcal{G}_k(G)) \le 2^n - 1$.

Conjecture (Cereceda, 2007)

If
$$k \ge \delta^*(G) + 2$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

Theorem (Bousquet, Heinrich)

If
$$k \geq \frac{3}{2}(\delta^*(G) + 1)$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

Directed graphs

Theorem

If $k \ge \delta_{\min}^*(D) + 2$, then D is k-mixing, and $diam(\mathcal{D}_k(D)) \le 2^n - 1$.

Conjecture

If
$$k \geq \delta_{\min}^*(D) + 2$$
, then $diam(\mathcal{D}_k(D)) = O(n^2)$.

Theorem (Bonsma et al.; Dyer et al.)

If $k \ge \delta^*(G) + 2$, then G is k-mixing, and $diam(\mathcal{G}_k(G)) \le 2^n - 1$.

Conjecture (Cereceda, 2007)

If
$$k \ge \delta^*(G) + 2$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

Theorem (Bousquet, Heinrich)

If
$$k \geq \frac{3}{2}(\delta^*(G) + 1)$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

Directed graphs

Theorem

If $k \ge \delta_{\min}^*(D) + 2$, then D is k-mixing, and $diam(\mathcal{D}_k(D)) \le 2^n - 1$.

Conjecture

If
$$k \geq \delta_{\min}^*(D) + 2$$
, then $diam(\mathcal{D}_k(D)) = O(n^2)$.

Theorem

If
$$k \geq \frac{3}{2}(\delta_{\min}^*(D) + 1)$$
, then $diam(\mathcal{D}_k(D)) = O(n^2)$.

Degeneracy of a (di)graph

• Degeneracy $\delta^*(G)$: minimum d s.t. $\exists v_1, \ldots, v_n$, for which every v_i has at most d neighbours in $\{v_{i+1}, \ldots, v_n\}$.

Degeneracy of a (di)graph

- Degeneracy $\delta^*(G)$: minimum d s.t. $\exists v_1, \ldots, v_n$, for which every v_i has at most d neighbours in $\{v_{i+1}, \ldots, v_n\}$.
- Min-degeneracy $\delta_{\min}^*(D)$: minimum d s.t. $\exists v_1, \ldots, v_n$, for which every v_i has $\leq d$ in-neighbours or $\leq d$ out-neighbours in $\{v_{i+1}, \ldots, v_n\}$.

Degeneracy of a (di)graph

- Degeneracy $\delta^*(G)$: minimum d s.t. $\exists v_1, \ldots, v_n$, for which every v_i has at most d neighbours in $\{v_{i+1}, \ldots, v_n\}$.
- Min-degeneracy $\delta_{\min}^*(D)$: minimum d s.t. $\exists v_1, \ldots, v_n$, for which every v_i has $\leq d$ in-neighbours or $\leq d$ out-neighbours in $\{v_{i+1}, \ldots, v_n\}$.
- $\delta^*(G) = \delta^*_{\min}(\overrightarrow{G})$

A generalization of Cereceda's conjecture to digraphs

Every graph G satisfies $\chi(G) \leq \delta^*(G) + 1$.

This generalizes to the following:

Every digraph D satisfies $\overrightarrow{\chi}(D) \leq \delta_{\min}^*(D) + 1$.

A generalization of a result from Bonsma, Cereceda, Dyer, Flaxman, Frieze and Vigoda.

Theorem (Bonsma et al.; Dyer et al.)

If $k \geq \delta^*(G) + 2$, then G is k-mixing, and diam $(G_k(G)) \leq 2^n - 1$.

A generalization of a result from Bonsma, Cereceda, Dyer, Flaxman, Frieze and Vigoda.

Theorem (Bonsma et al.; Dyer et al.)

If $k \geq \delta^*(G) + 2$, then G is k-mixing, and $diam(\mathcal{G}_k(G)) \leq 2^n - 1$.

This generalizes to the following:

Theorem

If $k \geq \delta_{\min}^*(D) + 2$, then D is k-mixing, and $diam(\mathcal{D}_k(D)) \leq 2^n - 1$.

• n=1: Trivial.

- n=1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v.

- n = 1: Trivial.
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{|H} \stackrel{2^{n-1}-1}{\longrightarrow} \beta_{|H}$.

- $n = 1 \cdot \text{Trivial}$
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{\mid H} \stackrel{2^{n-1}-1}{\longrightarrow} \beta_{\mid H}$.

- $n = 1 \cdot \text{Trivial}$
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{\mid H} \stackrel{2^{n-1}-1}{\longrightarrow} \beta_{\mid H}$.

- $n = 1 \cdot \text{Trivial}$
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{\mid H} \stackrel{2^{n-1}-1}{\longrightarrow} \beta_{\mid H}$.

- $n = 1 \cdot \text{Trivial}$
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{\mid H} \stackrel{2^{n-1}-1}{\longrightarrow} \beta_{\mid H}$.

- $n = 1 \cdot \text{Trivial}$
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{\mid H} \stackrel{2^{n-1}-1}{\longrightarrow} \beta_{\mid H}$.

- $n = 1 \cdot \text{Trivial}$
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{\mid H} \stackrel{2^{n-1}-1}{\longrightarrow} \beta_{\mid H}$.

- $n = 1 \cdot \text{Trivial}$
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{\mid H} \stackrel{2^{n-1}-1}{\longrightarrow} \beta_{\mid H}$.

- $n = 1 \cdot \text{Trivial}$
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{\mid H} \stackrel{2^{n-1}-1}{\longrightarrow} \beta_{\mid H}$.

- $n = 1 \cdot Trivial$
- $n \ge 2$: choose $v \in V$ s.t. $d^+(v) \le k 2$ (or $d^-(v) \le k 2$), H = D v. By induction $\exists \alpha_{\mid H} \stackrel{2^{n-1}-1}{\longrightarrow} \beta_{\mid H}$.

When x is recoloured in H, either we can recolour it in D, or we can first recolour v and then recolour x:

At the end we find $\alpha \longrightarrow \beta$ of length $< 2(2^{n-1}-1)+1=2^n-1$

An analogue of Cereceda's conjecture.

Conjecture (Cereceda, 2007)

If
$$k \geq \delta^*(G) + 2$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

An analogue of Cereceda's conjecture.

Conjecture (Cereceda, 2007)

If
$$k \geq \delta^*(G) + 2$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

We posed the analogue for digraphs :

Conjecture

If
$$k \geq \delta_{\min}^*(D) + 2$$
, then $diam(\mathcal{D}_k(D)) = O(n^2)$.

A generalization of a result from Bousquet and Heinrich

A partial result for Cereceda's conjecture

Theorem (Bousquet, Heinrich)

If
$$k \geq \frac{3}{2}(\delta^*(G)+1)$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

A partial result for Cereceda's conjecture

Theorem (Bousquet, Heinrich)

If
$$k \geq \frac{3}{2}(\delta^*(G) + 1)$$
, then $diam(\mathcal{G}_k(G)) = O(n^2)$.

This generalizes to the following:

Theorem

If
$$k \geq \frac{3}{2}(\delta_{\min}^*(D) + 1)$$
, then $diam(\mathcal{D}_k(D)) = O(n^2)$.

Let $k \geq \frac{3}{2}(\delta_{\min}^*(D) + 1)$. We build G from D as follows:

• Choose v_1, \ldots, v_n s.t. $d^+(v_i) \leq \delta_{\min}^*$ (or $d^-(v_i) \leq \delta_{\min}^*$) in $\{v_{i+1}, \ldots, v_n\}$.

- Choose v_1, \ldots, v_n s.t. $d^+(v_i) \leq \delta_{\min}^*$ (or $d^-(v_i) \leq \delta_{\min}^*$) in $\{v_{i+1}, \ldots, v_n\}$.
- For each v_i , if $d^-(v_i) \leq \delta_{\min}^*$ in $\{v_{i+1}, \ldots, v_n\}$, remove $v_i v_j$ for j > i.
- Otherwise **remove** $v_i v_i$ for j > i.

- Choose v_1, \ldots, v_n s.t. $d^+(v_i) \leq \delta_{\min}^*$ (or $d^-(v_i) \leq \delta_{\min}^*$) in $\{v_{i+1}, \ldots, v_n\}$.
- For each v_i , if $d^-(v_i) \leq \delta_{\min}^*$ in $\{v_{i+1}, \ldots, v_n\}$, remove $v_i v_j$ for j > i.
- Otherwise **remove** $v_j v_i$ for j > i.
- Forget the orientations.

- Choose v_1, \ldots, v_n s.t. $d^+(v_i) \leq \delta_{\min}^*$ (or $d^-(v_i) \leq \delta_{\min}^*$) in $\{v_{i+1}, \ldots, v_n\}$.
- For each v_i , if $d^-(v_i) \leq \delta_{\min}^*$ in $\{v_{i+1}, \ldots, v_n\}$, remove $v_i v_j$ for j > i.
- Otherwise **remove** $v_j v_i$ for j > i.
- Forget the orientations.

- Choose v_1, \ldots, v_n s.t. $d^+(v_i) \leq \delta_{\min}^*$ (or $d^-(v_i) \leq \delta_{\min}^*$) in $\{v_{i+1}, \ldots, v_n\}$.
- For each v_i , if $d^-(v_i) \leq \delta_{\min}^*$ in $\{v_{i+1}, \ldots, v_n\}$, remove $v_i v_j$ for j > i.
- Otherwise **remove** $v_j v_i$ for j > i.
- Forget the orientations.

- Choose $v_1, ..., v_n$ s.t. $d^+(v_i) \le \delta_{\min}^*$ (or $d^-(v_i) \le \delta_{\min}^*$) in $\{v_{i+1}, ..., v_n\}$.
- For each v_i , if $d^-(v_i) \leq \delta_{\min}^*$ in $\{v_{i+1}, \ldots, v_n\}$, remove $v_i v_j$ for j > i.
- Otherwise **remove** $v_j v_i$ for j > i.
- Forget the orientations.

- Choose $v_1, ..., v_n$ s.t. $d^+(v_i) \le \delta_{\min}^*$ (or $d^-(v_i) \le \delta_{\min}^*$) in $\{v_{i+1}, ..., v_n\}$.
- For each v_i , if $d^-(v_i) \leq \delta_{\min}^*$ in $\{v_{i+1}, \ldots, v_n\}$, remove $v_i v_j$ for j > i.
- Otherwise **remove** $v_i v_i$ for j > i.
- Forget the orientations.

- Choose $v_1, ..., v_n$ s.t. $d^+(v_i) \le \delta_{\min}^*$ (or $d^-(v_i) \le \delta_{\min}^*$) in $\{v_{i+1}, ..., v_n\}$.
- For each v_i , if $d^-(v_i) \leq \delta_{\min}^*$ in $\{v_{i+1}, \ldots, v_n\}$, remove $v_i v_j$ for j > i.
- Otherwise **remove** $v_j v_i$ for j > i.
- Forget the orientations.

- Choose $v_1, ..., v_n$ s.t. $d^+(v_i) \le \delta_{\min}^*$ (or $d^-(v_i) \le \delta_{\min}^*$) in $\{v_{i+1}, ..., v_n\}$.
- For each v_i , if $d^-(v_i) \leq \delta_{\min}^*$ in $\{v_{i+1}, \ldots, v_n\}$, remove $v_i v_j$ for j > i.
- Otherwise **remove** $v_i v_i$ for j > i.
- Forget the orientations.

Some observations on G

•
$$\delta^*(G) \leq \delta^*_{\min}(D)$$
, thus $k \geq \frac{3}{2}(\delta^*(G) + 1)$.

- $\delta^*(G) \le \delta^*_{\min}(D)$, thus $k \ge \frac{3}{2}(\delta^*(G) + 1)$.
- $diam(\mathcal{G}_k(G)) \leq c_2 n^2$.

- $\delta^*(G) \le \delta^*_{\min}(D)$, thus $k \ge \frac{3}{2}(\delta^*(G) + 1)$.
- $diam(\mathcal{G}_k(G)) \leq c_2 n^2$.
- \bullet Every colouring of G is a dicolouring of D.

- $\delta^*(G) \leq \delta^*_{\min}(D)$, thus $k \geq \frac{3}{2}(\delta^*(G) + 1)$.
- $diam(\mathcal{G}_k(G)) \leq c_2 n^2$.
- Every colouring of G is a dicolouring of D.
- We only have to prove : $\forall \alpha \in V(\mathcal{D}_k(D))$, $\exists \alpha_G \in V(\mathcal{G}_k(G))$, s.t. $\alpha \xrightarrow{c_1 n^2} \alpha_G$.

- $\delta^*(G) \le \delta^*_{\min}(D)$, thus $k \ge \frac{3}{2}(\delta^*(G) + 1)$.
- $diam(\mathcal{G}_k(G)) \leq c_2 n^2$.
- Every colouring of G is a dicolouring of D.
- We only have to prove : $\forall \alpha \in V(\mathcal{D}_k(D)), \exists \alpha_G \in V(\mathcal{G}_k(G)), \text{ s.t. } \alpha \xrightarrow{c_1 n^2} \alpha_G.$

- $\delta^*(G) \leq \delta^*_{\min}(D)$, thus $k \geq \frac{3}{2}(\delta^*(G) + 1)$.
- $diam(\mathcal{G}_k(G)) \leq c_2 n^2$.
- Every colouring of G is a dicolouring of D.
- We only have to prove : $\forall \alpha \in V(\mathcal{D}_k(D)), \exists \alpha_G \in V(\mathcal{G}_k(G)), \text{ s.t. } \alpha \xrightarrow{c_1 n^2} \alpha_G.$

- $\delta^*(G) \leq \delta^*_{\min}(D)$, thus $k \geq \frac{3}{2}(\delta^*(G) + 1)$.
- $diam(\mathcal{G}_k(G)) \leq c_2 n^2$.
- Every colouring of G is a dicolouring of D.
- We only have to prove : $\forall \alpha \in V(\mathcal{D}_k(D)), \exists \alpha_G \in V(\mathcal{G}_k(G)), \text{ s.t. } \alpha \xrightarrow{c_1 n^2} \alpha_G.$

- $\delta^*(G) \leq \delta^*_{\min}(D)$, thus $k \geq \frac{3}{2}(\delta^*(G) + 1)$.
- $diam(\mathcal{G}_k(G)) \leq c_2 n^2$.
- Every colouring of G is a dicolouring of D.
- We only have to prove : $\forall \alpha \in V(\mathcal{D}_k(D)), \exists \alpha_G \in V(\mathcal{G}_k(G)), \text{ s.t. } \alpha \xrightarrow{c_1 n^2} \alpha_G.$

- $\delta^*(G) \leq \delta^*_{\min}(D)$, thus $k \geq \frac{3}{2}(\delta^*(G) + 1)$.
- $diam(\mathcal{G}_k(G)) \leq c_2 n^2$.
- Every colouring of G is a dicolouring of D.
- We only have to prove : $\forall \alpha \in V(\mathcal{D}_k(D)), \exists \alpha_G \in V(\mathcal{G}_k(G)), \text{ s.t. } \alpha \xrightarrow{c_1 n^2} \alpha_G.$

- $\delta^*(G) \leq \delta^*_{\min}(D)$, thus $k \geq \frac{3}{2}(\delta^*(G) + 1)$.
- $diam(\mathcal{G}_k(G)) \leq c_2 n^2$.
- Every colouring of G is a dicolouring of D.
- We only have to prove : $\forall \alpha \in V(\mathcal{D}_k(D)), \exists \alpha_G \in V(\mathcal{G}_k(G)), \text{ s.t. } \alpha \xrightarrow{c_1 n^2} \alpha_G.$

• A list-assignment L associates to every vertex of G a list of colours.

- A list-assignment L associates to every vertex of G a list of colours.
- An *L*-colouring of *G* : a colouring α of *G* s.t. $\alpha(v) \in L(v) \ \forall v$.

- A list-assignment L associates to every vertex of G a list of colours.
- An *L*-colouring of *G* : a colouring α of *G* s.t. $\alpha(v) \in L(v) \ \forall v$.
- A recolouring sequence $\gamma_1, \ldots, \gamma_r$ is valid for L if $\forall i, \gamma_i$ is an L-colouring.

- A list-assignment L associates to every vertex of G a list of colours.
- An *L*-colouring of *G* : a colouring α of *G* s.t. $\alpha(v) \in L(v) \ \forall v$.
- A recolouring sequence $\gamma_1, \ldots, \gamma_r$ is valid for L if $\forall i, \gamma_i$ is an L-colouring.
- *L* is *a*-feasible if $\exists v_1, ..., v_n$ s.t. $|L(v_i)| \ge d^*(v_i) + 1 + a$, where $d^*(v_i) = |N(v_i) \cap \{v_{i+1}, ..., v_n\}|$.

A useful lemma on list-recolouring (Bousquet, Heinrich)

• L a list-assignment $\frac{k}{3}$ -feasible of G with k colours.

A useful lemma on list-recolouring (Bousquet, Heinrich)

- L a list-assignment $\frac{k}{3}$ -feasible of G with k colours.
- α an *L*-colouring avoiding $\geq \frac{k}{3}$ colours.

A useful lemma on list-recolouring (Bousquet, Heinrich)

- L a list-assignment $\frac{k}{3}$ -feasible of G with k colours.
- α an *L*-colouring avoiding $\geq \frac{k}{3}$ colours.

$$\Longrightarrow \forall S' \subset \{1,\ldots,k\}, |S'| = \frac{k}{3}, \exists \beta \text{ avoiding } S', \text{ s.t. } \alpha \xrightarrow{c_3 kn} \beta \text{ is valid for } L.$$

 H_i : subgraph of G induced by $\{v_1, \ldots, v_i\}$.

 H_i : subgraph of G induced by $\{v_1, \ldots, v_i\}$. $V(H_i)$ is well-coloured by γ if:

- $\gamma_{|H_i}$ is a colouring of H_i .
- γ avoids $\geq \frac{k}{3}$ colours on $V(H_i)$.

 H_i : subgraph of G induced by $\{v_1, \ldots, v_i\}$. $V(H_i)$ is well-coloured by γ if:

- $\gamma_{|H_i}$ is a colouring of H_i .
- γ avoids $\geq \frac{k}{3}$ colours on $V(H_i)$.

First, $\alpha \xrightarrow{\frac{k}{3}} \gamma_{\frac{k}{3}}$ where $V(H_{\frac{k}{3}})$ is well-coloured by $\gamma_{\frac{k}{3}}$:

• Ignore $V(H_i)$, choose $S = c_1, \ldots, c_{\frac{k}{3}}$ for $v_{i+1}, \ldots, v_{i+\frac{k}{3}}$.

- Ignore $V(H_i)$, choose $S = c_1, \ldots, c_{\frac{k}{3}}$ for $v_{i+1}, \ldots, v_{i+\frac{k}{3}}$.
- Consider L the list-assignment of H_i where :

$$L(v_j) = \{1, \ldots, k\} \setminus \gamma_i(\{N_G(v_j) \cap \{v_{i+1}, \ldots, v_n\})\}$$

- Ignore $V(H_i)$, choose $S = c_1, \ldots, c_{\frac{k}{3}}$ for $v_{i+1}, \ldots, v_{i+\frac{k}{3}}$.
- Consider *L* the **list-assignment** of *H*_i where :

$$L(v_j) = \{1, \ldots, k\} \setminus \gamma_i(\{N_G(v_j) \cap \{v_{i+1}, \ldots, v_n\})\}$$

$$|L(v_j)| \ge |N(v_j) \cap \{v_{j+1}, \ldots, v_i\}| + 1 + \frac{k}{3}$$

L is $\frac{k}{3}$ -feasible: we can apply the Lemma.

- Ignore $V(H_i)$, choose $S = c_1, \ldots, c_{\frac{k}{3}}$ for $v_{i+1}, \ldots, v_{i+\frac{k}{3}}$.
- Consider *L* the **list-assignment** of *H_i* where :

$$L(v_j) = \{1, \ldots, k\} \setminus \gamma_i(\{N_G(v_j) \cap \{v_{i+1}, \ldots, v_n\})\}$$

• From the Lemma : $\gamma_i \xrightarrow{\leq c_3 kn} \gamma'_i$ valid for L s.t. γ'_i avoids S on $V(H_i)$.

- Ignore $V(H_i)$, choose $S = c_1, \ldots, c_{\frac{k}{3}}$ for $v_{i+1}, \ldots, v_{i+\frac{k}{3}}$.
- Consider L the list-assignment of H_i where :

$$L(v_j) = \{1, \ldots, k\} \setminus \gamma_i(\{N_G(v_j) \cap \{v_{i+1}, \ldots, v_n\})\}$$

- From the Lemma : $\gamma_i \xrightarrow{\leq c_3 kn} \gamma'_i$ valid for L s.t. γ'_i avoids S on $V(H_i)$.
- Recolour $v_{i+1}, \ldots, v_{i+\frac{k}{3}}$ with $S: \gamma_i' \xrightarrow{\leq \frac{k}{3}} \tilde{\gamma_i}$, where $\tilde{\gamma_i}$ induces a colouring of $H_{i+\frac{k}{3}}$.

- $\bullet \ \gamma_i \xrightarrow{\leq c_3 kn} \gamma_i'.$
- $\gamma_i' \xrightarrow{\leq \frac{k}{3}} \tilde{\gamma_i}$, where $\tilde{\gamma_i}$ induces a colouring of $H_{i+\frac{k}{3}}$.

- $\bullet \ \gamma_i \xrightarrow{\leq c_3 kn} \gamma_i'.$
- $\bullet \ \gamma_i' \xrightarrow{\leq \frac{k}{3}} \tilde{\gamma}_i, \ \text{where} \ \tilde{\gamma}_i \ \text{induces a colouring of} \ H_{i+\frac{k}{3}}.$
- Consider \tilde{L} the **list-assignment** of H_i where :

$$\tilde{L}(v_j) = \{1, \dots, k\} \setminus \tilde{\gamma_i}(\{N_G(v_j) \cap \{v_{i+1}, \dots, v_n\})$$

- $\bullet \ \gamma_i \xrightarrow{\leq c_3 kn} \gamma_i'.$
- $\gamma_i' \xrightarrow{\leq \frac{k}{3}} \tilde{\gamma}_i$, where $\tilde{\gamma}_i$ induces a colouring of $H_{i+\frac{k}{3}}$.
- Consider \tilde{L} the list-assignment of H_i where :

$$\tilde{L}(v_j) = \{1, \ldots, k\} \setminus \tilde{\gamma}_i(\{N_G(v_j) \cap \{v_{i+1}, \ldots, v_n\})\}$$

• From the Lemma : $\tilde{\gamma_i} \xrightarrow{\leq c_3 kn} \gamma_{i+\frac{k}{3}}$ where $\gamma_{i+\frac{k}{3}}$ avoids S' (disjoint from S) on $V(H_{i+\frac{k}{3}})$.

- $\bullet \ \gamma_i \xrightarrow{\leq c_3 kn} \gamma'_i.$
- $\bullet \ \gamma_i' \xrightarrow{\leq \frac{k}{3}} \tilde{\gamma}_i.$
- $\bullet \ \widetilde{\gamma}_i \xrightarrow{\leq c_3 kn} \gamma_{i+\frac{k}{3}}.$

Repeating this process at most $\frac{n}{\frac{k}{3}}$ times, we get a recolouring sequence from α to some α_G

with length at most:

$$\frac{n}{\frac{k}{3}}(2c_3kn+\frac{k}{3}) \le 6c_3n^2+n$$

Some open problems

Using the treewidth

Theorem (Bonamy, Bousquet, 2013)

If $k \ge tw(G) + 2$, then G is k-mixing and $\mathcal{G}_k(G)$ has diameter $O(n^2)$.

Problem

If $k \ge dtw(D) + 2$, is D k-mixing ? If it is, does $\mathcal{D}_k(D)$ have a quadratic diameter ?

Using the Maximum Average Degree

Theorem

If an oriented graph D satisfies $MAD(D) < \frac{7}{2}$ then it is 2-mixing.

Conjecture

It is also true when MAD(D) < 4.

Using the planarity

Conjecture (Neumann-Lara)

Every oriented planar graph D has dichromatic number at most 2.

It is known that $\overrightarrow{\chi}(D) \leq 3$.

Using the planarity

Conjecture (Neumann-Lara)

Every oriented planar graph D has dichromatic number at most 2.

It is known that $\overrightarrow{\chi}(D) \leq 3$.

Problem

Is every oriented planar graph D 3-mixing?

About complexity

Theorem

For every $k \ge 2$, given a digraph D together with two k-dicolourings α, β of D, deciding if there is a recolouring sequence (with k colours) between α and β is PSPACE-complete.

Problem

What is the complexity of deciding if D is k-mixing for any fixed $k \ge 2$?

Thanks for your attention.

