CLAIMS:

5

20

25

- 1. An optical data storage medium for at least read out using a focused radiation beam with a wavelength λ and a Numerical Aperture (NA), entering through an entrance face of the medium during read out, comprising at least:
 - -a substrate with present on a side thereof:
 - -a first stack of layers named L0 comprising a first information layer,
 - -a radiation beam transparent cover layer adjacent the entrance face,
- -a transmission stack named TS0 with a thickness d_{TS0} and containing all layers between L0 and the entrance face, characterized in that
- the maximum deviation of d_{TS0} from respectively the average values of d_{TS0} of a predetermined area of the medium does not exceed a predetermined value DEV d_{TS0} , measured over the information area of the medium and DEV d_{TS0} is set in dependency of λ and NA.
- 15 2. An optical data storage medium according to claim 1, wherein DEVd_{TS0} = ± 3 μ m.
 - An optical data storage medium according to claim 1, with at least

 one further stack of layers named Ln and n an integer ≥1, Ln comprising a

 further information layer and being present at a position closer to the entrance face than L0,
 - -a radiation beam transparent spacer layer between each of L0 to Ln, and -a transmission stack named TSn with a thickness d_{TSn} and containing all

layers between Ln and the entrance face, wherein the maximum deviation of d_{TSn} does not exceed a predetermined value DEV d_{TSn} , measured over the information area of the medium and DEV d_{TSn} is set in dependency of λ and NA.

4. An optical data storage medium according to claim 3, wherein DEVd_{TSn} = ± 3 μ m.

WO 03/107339 PCT/IB03/02572

)

5. An optical data storage medium according to claim 1, wherein DEVd_{TS0} = ± 2 μ m.

9

- 6. An optical data storage medium according to claim 3, wherein only one further stack of layers named L1 is present, comprising a further information layer, DEVd_{TS0} = ± 2 μ m and DEVd_{TS1} = ± 2 μ m, λ is in the range 400 nm 410 nm and NA is in the range 0.84 0.86.
- 7. Use of an optical data storage medium as claimed in any one of the preceding claims for reliable data read out from at least one information layer.