Повторение

Кривые второго

плоскости

Общий вид уравнения

Классификация кривых второго порядка

Семинар: кривые второго порядка

Абдуллин Рустам Фаритович

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ, НГУ

3 ноября 2020 г.

Повторение

Кривые второго порядка н

порядка н

Общий вид уравнения

Классификация кривых второго порядка Повторение

Екривые второго порядка на плоскости Общий вид уравнения Классификация кривых второго порядка

Повторение

Кривые второго порядка на

Общий вид уравнения

Классификация кривых второго порядка

Тригонометрическая запись комплексного числа

$$z = a + bi$$
 $r = \sqrt{a^2 + b^2}$ $z = r(\cos \varphi + i \sin \varphi)$ $\varphi = \arg(z)$

Уравнения для нахождения аргумента:

$$\begin{cases} \sin \varphi = \frac{b}{r} = \frac{b}{\sqrt{a^2 + b^2}} & \sin \varphi = \sin(\pi - \varphi), \\ \cos \varphi = \frac{a}{r} = \frac{a}{\sqrt{a^2 + b^2}} & \cos \varphi = \cos(-\varphi), \\ \tan \varphi = \tan(\pi + \varphi). \end{cases}$$

Тангенс угла

Повторение

Кривые второго

Общий вид

уравнения

Классификация кривых второго порядка

Общий вид уравнения

Outline

Повторение

Кривые второго порядка на

Общий вид уравнения

Классификация кривых второго порядка **Кривая второго порядка** – это фигура, точки которой удовлетворяют уравнению

$$a_{11}x^2 + 2a_{12}xy + a_{22}y^2 + 2a_{13}x + 2a_{23}y + a_{33} = 0,$$
 (1)

где по крайней мере один из коэффициентов a_{11} , a_{12} , a_{22} не равен нулю.

Характеристическая квадратичная форма кривой второго порядка

$$F(x,y) = a_{11}x^2 + 2a_{12}xy + a_{22}y^2$$
 (2)

Повторение

Кривые второго порядка на

Общий вид уравнения

Классификация кривых второго порядка

$$2x^2 + 3xy - x - 2y^2 + y - 3 = 0$$

WolframAlpha

 $\textbf{ContourPlot}[2x^2+3x\ y-2y^2-x+y-3==0,\{x,-10,10\},\{y,-10,10\}]$

Повторение

Кривые второго

плоскости

Общий вид уравнения

Классификация кривых второго порядка

Классификация кривых второго порядка

Эллипс	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
Гипербола	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
Парабола	$y^2 = 2px$
Мнимый эллипс (нет решения)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = -1$
Пара пересекающихся прямых	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$
Пара параллельных прямых	$x^2 - d^2 = 0$

Повторение

Кривые второго порядка на

Общий вид уравнения

Классификация кривых второго порядка

$$\begin{array}{l} \textbf{ContourPlot}[\{2x^2+3x\ y-2y^2==0,2x^2+3x\ y-2y^2-7==0\}, \{x-10,10\}, \{y,-10,10\}, PlotLegends->"Expressions"] \end{array}$$

Определение типа кривой

Outline

Повторение

Кривые второго порядка на

Общий вид уравнения

Классификация кривых второго порядка Пусть $a_{11} \neq 0$, тогда получим:

$$F(x,y) = a_{11}x^{2} + 2a_{12}xy + a_{22}y^{2} =$$

$$= a_{11}\left(x + \frac{a_{12}}{a_{11}}y\right)^{2} + \left(a_{22} - \frac{a_{12}^{2}}{a_{11}}\right)y^{2},$$
(3)

далее делаем замену координат

$$\begin{cases} x' = x + \frac{a_{12}}{a_{11}}y \\ y' = y \end{cases} F(x', y') = a_{11}x'^2 + \left(a_{22} - \frac{a_{12}^2}{a_{11}}\right)y'^2$$
 (4)

Общий вид

уравнения

Классификация кривых второго порядка

$$2x^2 + 3xy - 2y^2 - x + y - 3 = 0$$

$$F(x,y) = 2x^2 + 3xy - 2y^2 = 2\left(x + \frac{3}{2}y\right)^2 - \left(2 + \frac{9}{2}\right)y^2$$

$$= 2x'^2 - \frac{13}{2}y'^2,$$
(5)

$$x' = x + \frac{3}{2}y$$
 $x = x' - \frac{3}{2}y'$ $y' = y$ $y = y'$ (6)

Классификация кривых второго порядка

$$2x'^{2} - \frac{13}{2}y'^{2} - \left(x' - \frac{3}{2}y'\right) + y' - 3 = 2\left(x' - \frac{1}{2}\right)^{2} - \frac{13}{2}\left(y' - \frac{5}{26}\right)^{2} - \frac{339}{104}.$$

отсюда видно, что заданная кривая, это гипербола. В случае, если $a_{11}=a_{22}=0$, то сначала можно сделать замену $y=x+y^{\prime}$

$$xy = 1$$
 $x = x'$
 $y = x' + y' \Longrightarrow x'(x' + y') = x'^2 + x'y' = 1$