Sommes de termes d'une suite arithmétique ou géométrique Exercice 5.

Exercice 1.

Calculer les sommes suivantes.

$$1. S_n = \sum_{k=2}^{n-1} 3k - 2$$

3.
$$U_n = \sum_{k=n-2}^{n+5} 2 - k$$

$$2. \ \, \mathbf{T}_n = \sum_{k=-1}^{n+1} 2k - 1$$

4.
$$V_n = \sum_{k=n}^{2n} k - 1$$

EXERCICE 2.

Calculer les sommes suivantes.

$$1. S_n = \sum_{k=2}^{n-1} 3^{k-2}$$

3.
$$U_n = \sum_{k=n-2}^{n+5} \frac{4}{2^k}$$

2.
$$T_n = \sum_{k=-1}^{n+1} 2^{k-1}$$

4.
$$V_n = \sum_{k=n}^{2n} \frac{2^{k-1}}{3^{k+2}}$$

Techniques de calcul

EXERCICE 3.

Calculer, pour tout entier non nul n,

$$S_n = \sum_{k=1}^n \ln(1 + 1/k)$$

au moyen d'un telescopage.

Exercice 4.

Simplifier les sommes suivantes,

1.
$$\sum_{k=p}^{q} (u_{k+1} - u_k);$$

2.
$$\sum_{k=p-3}^{q-1} (u_{k+1} - u_{k-1}).$$

Calculer les sommes suivantes :

1.
$$\sum_{k=1}^{n} \frac{1}{k(k+1)}$$

4.
$$\sum_{k=0}^{n} (k+2)2^k$$

2.
$$\sum_{k=1}^{n} \frac{1}{k(k+1)(k+2)}$$

5.
$$\sum_{k=1}^{n} \ln(1+1/k)$$

3.
$$\sum_{k=1}^{n} k \cdot k!$$

$$6. \sum_{k=0}^{n} 2\sin\left(\frac{x}{2}\right)\cos(kx)$$

Exercice 6.

Simplifier la somme

$$\sum_{k=1}^{2n} (-1)^k k$$

en sommant par paquets.

Exercice 7.

Calculer la somme $\sum_{k=1}^{n} \left(\frac{1}{k} - \frac{1}{n+1-k} \right)$.

EXERCICE 8.

Vérifier que

$$\sum_{k=1}^{n} k 2^k = \sum_{1 \le j \le k \le n} 2^k$$

et calculer une expression simple de cette somme en permutant l'ordre des sommations dans la somme double.

EXERCICE 9.

Simplifier la somme

$$\sum_{k=2}^{n} \ln \left(\frac{k^2 - 1}{k^2} \right).$$

Exercice 10.★

© Laurent Garcin

On utilise une décomposition de la fraction en éléments simples.

1. Montrer qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que

$$\forall t > 1, \quad \frac{1}{t^2 - 1} = \frac{\alpha}{t - 1} + \frac{\beta}{t + 1}.$$

2. En déduire une simplification de la somme

$$v_n = \sum_{k=2}^n \frac{1}{k^2 - 1}.$$

Exercice 11.

Soient $(a_n)_{n\in\mathbb{N}}$ et $(B_n)_{n\in\mathbb{N}}$ deux suites complexes. On définit deux suites $(A_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ de la manière suivante :

$$\forall n \in \mathbb{N}, \mathbf{A}_n = \sum_{k=0}^n a_k, b_n = \mathbf{B}_{n+1} - \mathbf{B}_n$$

- **1.** Montrer que $\sum_{k=0}^{n} a_k B_k = A_n B_n \sum_{k=0}^{n-1} A_k b_k$.
- 2. Application : calcul de $\sum_{k=0}^{n} 2^k k$.

Exercice 12.

Soit $x \in \mathbb{R}$. On pose $S_n(x) = \sum_{k=0}^n k x^k$. On cherche à calculer $S_n(x)$ de deux manières :

- 1. en introduisant $T_n(x) = \sum_{k=0}^n x^k$;
- 2. en calculant dans un premier temps $(x-1)S_n(x)$.

Formule du binôme

EXERCICE 13.

Simplifier, pour tout n dans \mathbb{N} , la somme

$$S_n = \sum_{k=1}^n 2^{k-1} 3^{n-k+1} \binom{n}{k}.$$

Exercice 14.

Pour tous n et p dans \mathbb{N} , établir que l'on a

$$\sum_{k=0}^{p} {n+k \choose n} = {n+p+1 \choose n+1}.$$

EXERCICE 15.

Calculer les sommes suivantes

$$1. \sum_{k=0}^{n} k^2 \binom{n}{k}.$$

2.
$$\sum_{k=0}^{n} k^2 \binom{2n}{2k}$$
.

Exercice 16.

Soit *n* un entier naturel non nul.

1. Calculer
$$S_1 = \sum_{k=0}^{2n} {2n \choose k}$$
 et $S_2 = \sum_{k=0}^{2n} {2n \choose k} (-1)^k$.

2. En déduire
$$T_1 = \sum_{k=0}^{n} {2n \choose 2k}$$
 et $T_2 = \sum_{k=0}^{n-1} {2n \choose 2k+1}$.

- 3. Calculer $U_1 = \sum_{k=0}^{n-1} \binom{2n-1}{2k}$ et $U_2 = \sum_{k=0}^{n-1} \binom{2n-1}{2k+1}$. On pourra, si on le souhaite, s'inspirer des questions précédentes.
- **4.** A l'aide des changements d'indices $\ell = n k$ et $\ell = n 1 k$, calculer $V_1 = \sum_{k=0}^{n} k \binom{2n}{2k}$ et $V_2 = \sum_{k=0}^{n-1} k \binom{2n}{2k+1}$.
- 5. Calculer enfin $W_1 = \sum_{k=0}^{n-1} k \binom{2n-1}{2k}$ et $W_2 = \sum_{k=0}^{n-1} k \binom{2n-1}{2k+1}$.

Sommes doubles

Exercice 17.

Calculer les sommes suivantes :

$$\mathbf{1.} \ \mathbf{U}_n = \sum_{1 \leq i, j \leq n} \max(i, j).$$

$$\mathbf{4.} \ \mathbf{X}_n = \sum_{1 \leq i < j \leq n} i.$$

$$2. \ \mathbf{V}_n = \sum_{1 \leq i, j \leq n} i \, j.$$

$$5. Y_n = \sum_{1 \le i < j \le n} ij$$

3.
$$W_n = \sum_{1 \le i \le j \le n} |i - j|$$
.

Exercice 18.

En permutant l'ordre des sommations, démontrer l'égalité

$$\sum_{n=0}^{N-1} \sum_{k=n+1}^{N} \frac{(-1)^k}{k^2} = \sum_{k=1}^{N} \frac{(-1)^k}{k}.$$

EXERCICE 19.

Sommes doubles.

1. Calculer la somme double

$$\sum_{1 \le i < j \le n} (i+j).$$

2. Calculer la somme double

$$\sum_{1 \le i < j \le n} ij.$$

Exercice 20.

Soit $n \in \mathbb{N}^*$. Simplifier

$$S_n = \sum_{i=1}^n \sum_{j=i}^n \frac{i}{j}.$$

Exercice 21.

Posons, pour tout $n \in \mathbb{N}^*$,

$$S_n = \sum_{k=1}^n \frac{1}{k}$$
 et $u_n = \sum_{k=1}^n S_k$.

Établir que

$$\forall n \ge 1$$
, $u_n = (n+1)S_n - n$.

EXERCICE 22.

Vérifier que

$$\sum_{k=1}^{n} k 2^k = \sum_{1 \le j \le k \le n} 2^k$$

et calculer une expression simple de cette somme en permutant l'ordre des sommations dans la somme double.

EXERCICE 23.

On pose pour $(n, p) \in \mathbb{N}^2$, $S_p(n) = \sum_{k=0}^n k^p$.

$$\sum_{j=0}^{p} {p+1 \choose j} S_j(n) = (n+1)^{p+1}$$

Produits

Exercice 24.

Simplifier le produit suivant :

$$P = \prod_{k=2}^{n} \left(1 - \frac{1}{k^2}\right)$$

EXERCICE 25.

Soient

$$\mathbf{V} = \prod_{1 \le i, j \le n} ij \qquad , \quad \mathbf{W} = \prod_{1 \le i \ne j \le n} ij \; , \quad \mathbf{X} = \prod_{1 \le i \le j \le n} ij$$

$$\mathbf{Y} = \prod_{1 \le j \le i \le n} ij \; , \quad \mathbf{Z} = \prod_{1 \le i < j \le n} ij \; .$$

Calculer V. En déduire W. Exprimer W en fonction de X et Y. Montrer, sans calcul, que X = Y. En déduire X puis Z.

Exercice 26.

Simplifier le produit

$$\prod_{k=1}^{n} 2^{1/k(k+1)}.$$

Exercice 27.

Pour tout $n \ge 2$, on pose

$$u_n = \prod_{k=2}^n \frac{k^3 - 1}{k^3 + 1}.$$

1. Déterminer une suite d'entiers relatifs $(v_k)_{k \ge 1}$ telle que

$$\forall k \ge 2, \ \frac{k^3 - 1}{k^3 + 1} = \frac{k - 1}{k + 1} \times \frac{\nu_k}{\nu_{k-1}}.$$

- **2.** En déduire une simplification de u_n .
- 3. En déduire la limite de u_n lorsque n tend vers l'infini.

Exercice 28.

Soit $\alpha \in]0, \pi[$. Simplifier le produit $P_n = \prod_{k=0}^n \cos \frac{\alpha}{2^k}$. En déduire la limite de P_n .

Systèmes linéaires

Exercice 29.

Résoudre

$$\begin{cases} x - y + z + t = 0 \\ x - 2y + z - t = 1 \\ x + y + 2z + t = -1 \end{cases}$$

EXERCICE 30.

Résoudre

$$\begin{cases}
-3x_1 + 9x_2 - 2x_3 + 3x_4 + 5x_5 = 4 \\
x_1 - 3x_2 + x_3 - x_4 - 2x_5 = 0 \\
8x_1 - 24x_2 + 4x_3 - 12x_4 - 4x_5 = -8 \\
-x_1 + 3x_2 - 2x_4 + 7x_5 = 10
\end{cases}$$

EXERCICE 31.

Résoudre selon les valeurs des paramètres $a, b, c \in \mathbb{R}$.

$$\begin{cases} x + 2y - z = a \\ -2x - 3y + 3z = b \\ x + y - 2z = c \end{cases}$$

Exercice 32.

Pour tout $a \in \mathbb{R}$ on note E_a l'ensemble de solutions du système suivant.

$$\begin{cases}
-x + 2y - z = 2 \\
ax + 3y - z = 3 \\
5x - 8y + z = -9
\end{cases}$$

Pour quels $a \in \mathbb{R}$ est-ce que \mathbf{E}_a est vide ? contient un unique élément ? contient une infinité d'éléments ?

EXERCICE 33.

Résoudre le système

$$\begin{cases} x - y & = 2 \\ 2x + 2y - z & = -2 \\ -x - y + 2z & = 4 \end{cases}$$

EXERCICE 34.

Résoudre le système

$$\begin{cases} x - y & = 2 \\ 2x + 2y - z & = -2 \\ -x - y + \frac{1}{2}z & = 4 \end{cases}$$

EXERCICE 35.

Déterminer les valeurs de a pour lesqelles le système

$$\begin{cases} x + y - z = 1 \\ x + 2y + az = 2 \\ 2x + ay + 2z = 3. \end{cases}$$

- **1.** possède une seule solution,
- 2. ne possède pas de solution,
- 3. possède une infinité de solutions.

Exercice 36.

Résoudre les systèmes

$$\begin{cases} 2x - y + 4z = -4 \\ 3x + 2y - 3z = 17 \\ 5x - 3y + 8z = -10 \end{cases} \begin{cases} x - y + 2z = 1 \\ 3x + 2y - 3z = 2 \\ -x + 6y - 11z = -3 \end{cases}$$

$$\begin{cases} 2y - z = -2 \\ x + y + z = 2 \\ -2x + 4y - 5z = -10. \end{cases} \begin{cases} 2x + y - 5z = 3 \\ 3x + 2y - 3z = 0 \\ x + y - 7z = 2 \\ 2x - 3y + 8z = 5. \end{cases}$$

Trigonométrie

Exercice 37.

Simplifier le produit $p = \sin\left(\frac{\pi}{14}\right) \sin\left(\frac{3}{14}\pi\right) \sin\left(\frac{5}{14}\pi\right)$ en le multipliant par $\cos\left(\frac{\pi}{14}\right)$.

Exercice 38.★

On cherche à calculer $\cos(\pi/5)$ et $\sin(\pi/5)$.

- **1.** Résoudre dans \mathbb{R} l'équation $\cos(3x) = \sin(2x)$.
- **2.** En déduire les valeurs de sin(x) et cos(x) pour $x = \pi/5$.

Exercice 39.

Calculer

$$\alpha = \frac{1}{\sin(\pi/18)} - \frac{\sqrt{3}}{\cos(\pi/18)}$$

Exercice 40.

On pose

$$p = \cos(\pi/7)\cos(2\pi/7)\cos(4\pi/7)$$
,

et

$$s = \cos(2\pi/7) + \cos(4\pi/7) + \cos(6\pi/7)$$
.

- 1. Simplifier $p \sin(\pi/7)$. En déduire la valeur de p.
- **2.** Calculer *s* à l'aide de la première question.

Exercice 41.

Démontrer les identités suivantes, en précisant à chaque fois leur domaine de validité :

1.
$$\frac{1-\cos(x)}{\sin(x)} = \tan(x/2)$$
;

- 2. $\sin(x-2\pi/3) + \sin(x) + \sin(x+2\pi/3) = 0$;
- 3. $\tan(\pi/4 + x) + \tan(\pi/4 x) = \frac{2}{\cos(2x)}$;
- 4. $\frac{1}{\tan(x)} \tan(x) = \frac{2}{\tan(2x)}$.

Exercice 42.

Résoudre dans \mathbb{R} les équations suivantes :

1.
$$\sin(x) + \sin(5x) = \sqrt{3}\cos(2x)$$
;

4.
$$\cos(x) + \cos(2x) + \cos(3x) = 0$$
;

2.
$$\cos(x) - \cos(2x) = \sin(3x)$$
;

5.
$$\sin(2x) + \sin(x) = 0$$
;

3.
$$2\sin^2(x) + \sin^2(2x) = 2$$
;

6.
$$12\cos^2(x) - 8\sin^2(x) = 2$$
.

Exercice 43.

Résoudre sur \mathbb{R} l'inéquation $\sin 5x \le \sin x$.