ESP32-PICO-MINI-02

Datasheet

Stand-Alone Module with Antenna
Containing Ultra-Low-Power SoC with dual-core CPU
Supporting 2.4 GHz Wi-Fi, Bluetooth®, and Bluetooth® LE

About This Document

This document provides an introduction to the specifications of the ESP32-PICO-MINI-02 module.

Document Updates

Please always refer to the latest version on https://www.espressif.com/en/support/download/documents.

Revision History

For revision history of this document, please refer to the last page.

Documentation Change Notification

Espressif provides email notifications to keep customers updated on changes to technical documentation. Please subscribe at www.espressif.com/en/subscribe. Note that you need to update your subscription to receive notifications of new products you are not currently subscribed to.

Certification

Download certificates for Espressif products from www.espressif.com/en/certificates.

1 Module Overview

1.1 Features

MCU

- ESP32 embedded, Xtensa® dual-core 32-bit LX6 microprocessor, up to 240 MHz
- 448 KB ROM for booting and core functions
- 520 KB SRAM for data and instructions
- 16 KB SRAM in RTC

Wi-Fi

- 802.11b/g/n
- Bit rate: 802.11n up to 150 Mbps
- A-MPDU and A-MSDU aggregation
- 0.4 μs guard interval support
- Center frequency range of operating channel: 2412 ~ 2484 MHz

Bluetooth®

- Bluetooth V4.2 BR/EDR and Bluetooth LE specification
- Class-1, class-2 and class-3 transmitter
- AFH

CVSD and SBC

Hardware

- Module interfaces: SD card, UART, SPI, SDIO, I²C, LED PWM, Motor PWM, I²S, IR, pulse counter, GPIO, capacitive touch sensor, ADC, DAC, Two-Wire Automotive Interface (TWAI[®], compatible with ISO11898-1), Ethernet MAC
- 40 MHz crystal oscillator
- 8 MB SPI flash
- 2 MB PSRAM
- Operating voltage/Power supply: 3.0 ~ 3.6 V
- Operating temperature range: -40 ~ 85 °C
- Dimensions: Table 1

Certification

• RF certification: SRRC

Test

• Reliablity: HTOL/HTSL/uHAST/TCT/ESD

1.2 Description

ESP32-PICO-MINI-02 is a small-sized powerful Wi-Fi+Bluetooth®+Bluetooth® LE MCU module. It is based on ESP32-PICO-V3-02, a System-in-Package (SiP) device, which itegrates an 8 MB SPI flash, 2 MB SPI Pseudo static RAM (PSRAM) and 40 MHz crystal oscillator. This module targets a wide variety of IoT applications, ranging from home automation, smart building, consumer electronics to industrial control, and it is suitable for intelligent speakers, speech recognition toys, intelligent gateway and Ethernet, etc.

The ordering information of the module is listed as follows:

Table 1: Ordering Information

Module	Chip embedded	Flash	PSRAM	Module dimensions (mm)			
ESP32-PICO-MINI-02 (PCB)	ESP32-PICO-V3-02	8 MB	2 MB	13.2 × 16.6 × 2.4			
Note:							
For detailed ordering information, please see Espressif Product Ordering Information.							

At the core of the module is the ESP32-PICO-V3-02 sip*. The chip embedded is designed to be scalable and adaptive. There are two CPU cores that can be individually controlled, and the CPU clock frequency is adjustable from 80 MHz to 240 MHz. The chip also has a low-power co-processor that can be used instead of the CPU to

save power while performing tasks that do not require much computing power, such as monitoring of peripherals. ESP32 integrates a rich set of peripherals, ranging from SD card interface, capacitive touch sensors, ADC, DAC, Two-Wire Automotive Interface, to Ethernet, high-speed SPI, UART, I²S, I²C, etc.

Note:

* For details on the part numbers of the ESP32 family of chips, please refer to the document ESP32 Datasheet.

The integration of Bluetooth[®], Bluetooth LE and Wi-Fi ensures that a wide range of applications can be targeted, and that the module is all-around: using Wi-Fi allows a large physical range and direct connection to the Internet through a Wi-Fi router, while using Bluetooth allows the user to conveniently connect to the phone or broadcast low energy beacons for its detection. The sleep current of the ESP32 chip is less than 5 μ A, making it suitable for battery powered and wearable electronics applications. The module supports a data rate of up to 150 Mbps, and 20 dBm output power at the antenna to ensure the widest physical range. As such the module does offer industry-leading specifications and the best performance for electronic integration, range, power consumption, and connectivity.

The operating system chosen for ESP32 is freeRTOS with LwIP; TLS 1.2 with hardware acceleration is built in as well. Secure (encrypted) over the air (OTA) upgrade is also supported, so that users can upgrade their products even after their release, at minimum cost and effort.

1.3 Applications

- Generic Low-power IoT Sensor Hub
- Generic Low-power IoT Data Loggers
- Cameras for Video Streaming
- Over-the-top (OTT) Devices
- Speech Recognition
- Image Recognition
- Mesh Network
- Home Automation

- Smart Building
- Industrial Automation
- Smart Agriculture
- Audio Applications
- Health Care Applications
- Wi-Fi-enabled Toys
- Wearable Electronics
- Retail & Catering Applications

Contents

1	Module Overview	3
1.1	Features	3
1.2	Description	3
1.3	Applications	4
2	Block Diagram	g
3	Pin Definitions	10
3.1	Pin Layout	10
3.2	Pin Description	10
3.3	Strapping Pins	12
4	Electrical Characteristics	14
4.1	Absolute Maximum Ratings	14
4.2	Recommended Operating Conditions	14
4.3	DC Characteristics (3.3 V, 25 °C)	14
4.4	Current Consumption Characteristics	15
	4.4.1 Current Consumption Depending on RF Modes	15
4.5	Wi-Fi RF Characteristics	16
	4.5.1 Wi-Fi RF Standards	16
	4.5.2 Transmitter Characteristics	16
	4.5.3 Receiver Characteristics	16
4.6	Bluetooth Radio	18
	4.6.1 Receiver – Basic Data Rate	18
	4.6.2 Transmitter – Basic Data Rate	18
	4.6.3 Receiver – Enhanced Data Rate	19
17	4.6.4 Transmitter – Enhanced Data Rate	19
4.7	Bluetooth LE Radio 4.7.1 Receiver	20 20
	4.7.2 Transmitter	20
		20
5	Schematics	21
6	Peripheral Schematics	22
7	Physical Dimensions and PCB Layout	23
7.1	Physical Dimensions	23
7.2	PCB Layout	24
	7.2.1 Recommended PCB Land Pattern	24
	7.2.2 PCB Layout Guide	24
8	Product Handling	26
8.1	Storage Condition	26

8.2	ESD	26
8.3	Reflow Profile	26
9	MAC Addresses and eFuse	27
10	Learning Resources	28
10.1	Must-Read Documents	28
10.2	Must-Have Resources	28
Ray	vision History	00
110	VISION INSTOLY	30

List of Tables

1	Ordering Information	3
2	Pin Definitions	10
3	Strapping Pins	12
4	Absolute Maximum Ratings	14
5	Recommended Operating Conditions	14
6	DC Characteristics (3.3 V, 25 °C)	14
7	Current Consumption Depending on RF Modes	15
8	Wi-Fi RF Standards	16
9	Transmitter Characteristics	16
10	Receiver Characteristics	17
11	Receiver Characteristics – Basic Data Rate	18
12	Transmitter Characteristics – Basic Data Rate	18
13	Receiver Characteristics - Enhanced Data Rate	19
14	Transmitter Characteristics – Enhanced Data Rate	19
15	Receiver Characteristics – BLE	20
16	Transmitter Characteristics – BLE	20

List of Figures

1	ESP32-PICO-MINI-02 Block Diagram	9
2	Pin Layout (Top View)	10
3	Schematics of ESP32-PICO-MINI-02	21
4	Peripheral Schematics	22
5	Physical Dimensions	23
6	Recommended PCB Land Pattern	24
7	Module Placement on a Base Board	25
8	Keepout Zone for Module's Antenna on the Base Board	25
9	Reflow Profile	26

Block Diagram

Figure 1: ESP32-PICO-MINI-02 Block Diagram

Pin Definitions

Pin Layout 3.1

Figure 2: Pin Layout (Top View)

3.2 **Pin Description**

The module has 53 pins. See pin definitions in Table 2.

Table 2: Pin Definitions

Name	Pin Number	Type	Function
GND	1, 2, 11, 14, 36-53	Р	Ground
3V3	3	Р	Power supply
136	4	I	GPIO36, ADC1_CH0, RTC_GPIO0
137	5	I	GPIO37, ADC1_CH1, RTC_GPIO1
138	6	I	GPIO38, ADC1_CH2, RTC_GPIO2
139	7	ı	GPIO39, ADC1_CH3, RTC_GPIO3

Name	Pin Number	Type	Function
EN	8	_	High: On; enables the chip
	O	'	Low: Off; the chip powers off
			Note: Do not leave EN pin floating.
134	9	I	GPIO34, ADC1_CH6, RTC_GPIO4
135	10	I	GPIO35, ADC1_CH7, RTC_GPIO5
IO32	12	I/O	GPIO32, XTAL_32K_P (32.768 kHz crystal oscillator input), ADC1_CH4, TOUCH9, RTC_GPIO9
IO33	13	I/O	GPIO33, XTAL_32K_N (32.768 kHz crystal oscillator output), ADC1_CH5, TOUCH8, RTC_GPIO8
1025	15	I/O	GPIO25, DAC_1, ADC2_CH8, RTC_GPIO6, EMAC_RXD0
1026	16	I/O	GPIO26, DAC_2, ADC2_CH9, RTC_GPIO7, EMAC_RXD1
1027	17	I/O	GPIO27, ADC2_CH7, TOUCH7, RTC_GPIO17, EMAC_RX_DV
IO14	18	I/O	GPIO14, ADC2_CH6, TOUCH6, RTC_GPIO16, MTMS, HSPICLK, HS2_CLK, SD_CLK, EMAC_TXD2
10.10	40	1.0	GPIO12, ADC2_CH5, TOUCH5, RTC_GPIO15, MTDI, HSPIQ,
IO12	19	I/O	HS2_DATA2, SD_DATA2, EMAC_TXD3
IO13	20	I/O	GPIO13, ADC2_CH4, TOUCH4, RTC_GPIO14, MTCK, HSPID, HS2_DATA3, SD_DATA3, EMAC_RX_ER
IO15	21	I/O	GPIO15, ADC2_CH3, TOUCH3, RTC_GPIO13, MTDO, HSPICS0, HS2_CMD, SD_CMD, EMAC_RXD3
102	22	I/O	GPIO2, ADC2_CH2, TOUCH2, RTC_GPIO12, HSPIWP, HS2_DATA0, SD_DATA0
100	23	I/O	GPIO0, ADC2_CH1, TOUCH1, RTC_GPIO11, CLK_OUT1, EMAC_TX_CLK
IO4	24	I/O	GPIO4, ADC2_CH0, TOUCH0, RTC_GPIO10, HSPIHD, HS2_DATA1, SD_DATA1, EMAC_TX_ER
NC	25	-	-
1020	26	I/O	GPIO20
107	27	I/O	GPIO7, HS1_DATA0, U2RTS, SD_DATA0
108	28	I/O	GPIO8, HS1_DATA1, U2CTS, SD_DATA1
105	29	I/O	GPIO5, VSPICSO, HS1_DATA6, EMAC_RX_CLK
RXD0	30	I/O	GPIO3, U0RXD, CLK_OUT2
TXD0	31	I/O	GPIO1, U0TXD, CLK_OUT3, EMAC_RXD2
NC	32	-	-
IO19	33	I/O	GPIO19, VSPIQ, U0CTS, EMAC_TXD0
IO22	34	I/O	GPIO22, VSPIWP, U0RTS, EMAC_TXD1
IO21	35	I/O	GPIO21, VSPIHD, EMAC_TX_EN

Notice: * Pins CMD/IO11 and CLK/IO6 are used for connecting the embedded flash, and pins SD2/IO9 and SD3/IO10 are used for connecting embeded PSRAM. These pins are not led out.

3.3 Strapping Pins

ESP32 has five strapping pins, which can be seen in Chapter 5 Schematics:

- MTDI
- GPI00
- GPIO2
- MTDO
- GPI05

Software can read the values of these five bits from register "GPIO_STRAPPING".

During the chip's system reset release (power-on-reset, RTC watchdog reset and brownout reset), the latches of the strapping pins sample the voltage level as strapping bits of "0" or "1", and hold these bits until the chip is powered down or shut down. The strapping bits configure the device's boot mode, the operating voltage of VDD_SDIO and other initial system settings.

Each strapping pin is connected to its internal pull-up/pull-down during the chip reset. Consequently, if a strapping pin is unconnected or the connected external circuit is high-impedance, the internal weak pull-up/pull-down will determine the default input level of the strapping pins.

To change the strapping bit values, users can apply the external pull-down/pull-up resistances, or use the host MCU's GPIOs to control the voltage level of these pins when powering on ESP32.

After reset release, the strapping pins work as normal-function pins.

Refer to Table 3 for a detailed boot-mode configuration by strapping pins.

Table 3: Strapping Pins

	Voltage of Internal LDO (VDD_SDIO)							
Pin	Default	3.3	3 V	1.8 V				
MTDI	Pull-down	()	-	1			
	Booting Mode							
Pin	Default	SPL	Boot	Downlo	ad Boot			
GPI00	Pull-up	-	1	()			
GPIO2	Pull-down	Don't	t-care	0				
Е	nabling/Disa	bling Debugging	g Log Print over	U0TXD During I	Booting			
Pin	Default	UOTXD) Active	U0TXD Silent				
MTDO	Pull-up	-	1	()			
		Timinç	g of SDIO Slave					
		FE Sampling	FE Sampling	RE Sampling	RE Sampling			
Pin	Default	FE Output RE Output		FE Output	RE Output			
MTDO	Pull-up	0 0		1	1			
GPIO5	Pull-up	0	1	0	1			

Note:

- FE: falling-edge, RE: rising-edge.
- Firmware can configure register bits to change the settings of "Voltage of Internal LDO (VDD_SDIO)" and "Timing of SDIO Slave" after booting.
- The built-in flash and PSRAM can only support a power voltage of 3.3 V (output by VDD_SDIO). MTDI should be kept low when the module is powered on.

Electrical Characteristics

Absolute Maximum Ratings 4.1

Stresses beyond the absolute maximum ratings listed in the table below may cause permanent damage to the device. These are stress ratings only, and do not refer to the functional operation of the device that should follow the recommended operating conditions.

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Min	Max	Unit
VDD33	Power supply voltage	-0.3	3.6	V
T_{store}	Storage temperature	-40	85	°C

Note:

• Please see Appendix IO_MUX in ESP32 Datasheet for IO's power domain.

Recommended Operating Conditions

Table 5: Recommended Operating Conditions

Symbol	Parameter	Min	Typical	Max	Unit
VDD33	Power supply voltage	3.0	3.3	3.6	V
I_{VDD}	Current delivered by external power supply	0.5	-	-	Α
Т	Operating temperature	-40	-	85	°C
Humidity	Humidity condition	-	-	85	%RH

4.3 DC Characteristics (3.3 V, 25 °C)

Table 6: DC Characteristics (3.3 V, 25 °C)

Symbol	Parameter	Min	Тур	Max	Unit
C_{IN}	Pin capacitance	-	2	-	рF
V_{IH}	High-level input voltage	0.75×VDD ¹	-	VDD1+0.3	V
V_{IL}	Low-level input voltage	-0.3	-	0.25×VDD ¹	V
$ I_{IH} $	High-level input current	-	-	50	nA
$ I_{IL} $	Low-level input current	-	-	50	nA
V_{OH}	High-level output voltage	0.8×VDD ¹	-	-	V
V_{OL}	Low-level output voltage	-	-	0.1×VDD ¹	V

Symbol	Paramete	er	Min	Тур	Max	Unit
Іон	High-level source current (VDD 1 = 3.3 V, V _{OH} >= 2.64 V, output drive strength set to the maximum)	VDD3P3_CPU power domain ^{1, 2}	-	40	-	mA
		VDD3P3_RTC power domain ^{1, 2}	-	40	-	mA
		VDD_SDIO power domain ^{1, 3}	-	20	-	mA
I_{OL}	Low-level sink current (VDD $^1 = 3.3 \text{ V}$, $\text{V}_{OL} = 0.495$ output drive strength set to	-	28	-	mA	
R_{PU}	Resistance of internal pull-u	-	45	-	kΩ	
R_{PD}	Resistance of internal pull-d	-	45	-	kΩ	
V_{IL_nRST}	Low-level input voltage of C to power off the chip	HIP_PU	-	-	0.6	V

Note:

- 1. Please see Appendix IO_MUX in <u>ESP32 Datasheet</u> for IO's power domain. VDD is the I/O voltage for a particular power domain of pins.
- 2. For VDD3P3_CPU and VDD3P3_RTC power domain, per-pin current sourced in the same domain is gradually reduced from around 40 mA to around 29 mA, $V_{OH}>=2.64$ V, as the number of current-source pins increases.
- 3. Pins occupied by flash and/or PSRAM in the VDD_SDIO power domain were excluded from the test.

4.4 Current Consumption Characteristics

With the use of advanced power-management technologies, ESP32 can switch between different power modes.

For details on different power modes, please refer to Section RTC and Low-Power Management in ESP32 Datasheet.

4.4.1 Current Consumption Depending on RF Modes

Table 7: Current Consumption Depending on RF Modes

Work mode	Description		Peak (mA)
	802.11b, 20 MHz, 1 Mb		368
	TX	802.11g, 20 MHz, 54 Mbps, @14 dBm	258
Active (RF working)		802.11n, 20 MHz, MCS7, @13 dBm	248
Active (hi working)		802.11n, 40 MHz, MCS7, @13 dBm	250
	802.11b/g/n, 20 MHz		111
		802.11n, 40 MHz	117

Note:

- The current consumption measurements are taken with a 3.3 V supply at 25 °C of ambient temperature at the RF port. All transmitter measurements are based on a 100% duty cycle.
- The current consumption figures for in RX mode are for cases when the peripherals are disabled and the CPU idle.

4.5 Wi-Fi RF Characteristics

4.5.1 Wi-Fi RF Standards

Table 8: Wi-Fi RF Standards

Name		Description		
Center frequency range of operating channel note1		2412 ~ 2484 MHz		
Wi-Fi wireless standard		IEEE 802.11b/g/n		
		11b: 1, 2, 5.5 and 11 Mbps		
Data rate	20 MHz	11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps		
Data rate		11n: MCS0-7, 72.2 Mbps (Max)		
40 MHz		11n: MCS0-7, 150 Mbps (Max)		
Antenna type		PCB antenna		

Note:

1. Device should operate in the center frequency range allocated by regional regulatory authorities. Target center frequency range is configurable by software.

4.5.2 Transmitter Characteristics

Table 9: Transmitter Characteristics

Parameter	Rate	Тур	Unit
	11b, 1 Mbps	19.5	
	11b, 11 Mbps	19.5	
	11g, 6 Mbps	18	
TX Power note	11g, 54 Mbps	14	dBm
IV LOME!	11n, HT20, MCS0	18	GDIII
	11n, HT20, MCS7	13	
	11n, HT40, MCS0	18	
	11n, HT40, MCS7	13	

Note:

Target TX power is configurable based on device or certification requirements.

4.5.3 Receiver Characteristics

Table 10: Receiver Characteristics

Parameter	Rate	Тур	Unit
	1 Mbps	-97	
	2 Mbps	-94	
	5.5 Mbps	-92	
	11 Mbps	-88	
	6 Mbps	-93	
	9 Mbps	-91	
	12 Mbps	-89	
	18 Mbps	-87	
	24 Mbps	-84	
	36 Mbps	-80	
	48 Mbps	– 77	
	54 Mbps	-75	
	11n, HT20, MCS0	-92	
DV 0	11n, HT20, MCS1	-88	10
RX Sensitivity	11n, HT20, MCS2	-86	dBm
	11n, HT20, MCS3	-83	
	11n, HT20, MCS4	-80	
	11n, HT20, MCS5	-76	
	11n, HT20, MCS6	-74	
	11n, HT20, MCS7	-72	
	11n, HT40, MCS0	-89	
	11n, HT40, MCS1	-85	
	11n, HT40, MCS2	-83	
	11n, HT40, MCS3	-80	
	11n, HT40, MCS4	-76	
	11n, HT40, MCS5	-72	
	11n, HT40, MCS6	- 71	
	11n, HT40, MCS7	-69	
	11b, 1 Mbps	5	
	11b, 11 Mbps	5	
	11g, 6 Mbps	0	
	11g, 54 Mbps	-8	
RX Maximum Input Level	11n, HT20, MCS0	0	dBm
	11n, HT20, MCS7	-8	
	11n, HT40, MCS0	0	
	11n, HT40, MCS7	-8	
	11b, 11 Mbps	35	
	11g, 6 Mbps	27	
	11g, 54 Mbps	13	
Adjacent Channel Rejection	11n, HT20, MCS0	27	dB
•	11n, HT20, MCS7	12	
	11n, HT40, MCS0	16	
	11n, HT40, MCS7	7	

4.6 **Bluetooth Radio**

4.6.1 Receiver - Basic Data Rate

Table 11: Receiver Characteristics - Basic Data Rate

Parameter	Conditions	Min	Тур	Max	Unit
Sensitivity @0.1% BER	-	-90	-89	-88	dBm
Maximum received signal @0.1% BER	-	0	-	-	dBm
Co-channel C/I	-	-	+7	-	dB
	F = F0 + 1 MHz	-	-	-6	dB
	F = F0 – 1 MHz	-	-	-6	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	-	-	-25	dB
	F = F0 - 2 MHz	-	-	-33	dB
	F = F0 + 3 MHz	-	-	-25	dB
	F = F0 - 3 MHz	-	-	-45	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
Out-of-band blocking performance	2000 MHz ~ 2400 MHz	-27	-	-	dBm
	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	-	-	dBm
Intermodulation	-	-36	-	-	dBm

4.6.2 Transmitter - Basic Data Rate

Table 12: Transmitter Characteristics - Basic Data Rate

Parameter	Conditions	Min	Тур	Max	Unit
RF transmit power (see note under Table 12)	-	-	0	-	dBm
Gain control step	-	-	3	-	dB
RF power control range	-	-12	I	+9	dBm
+20 dB bandwidth	-	-	0.9	-	MHz
	$F = F0 \pm 2 MHz$	-	-55	-	dBm
Adjacent channel transmit power	$F = F0 \pm 3 \text{ MHz}$	-	-55	-	dBm
	$F = F0 \pm > 3 MHz$	-	-59	-	dBm
$\Delta f1_{ ext{avg}}$	-	-	ı	155	kHz
$\Delta~f2_{\sf max}$	-	127	ı	-	kHz
$\Delta f 2_{\text{avg}}/\Delta f 1_{\text{avg}}$	-	-	0.92	-	-
ICFT	-	-	-7	-	kHz
Drift rate	-	-	0.7	-	kHz/50 μ s
Drift (DH1)	-	-	6	-	kHz
Drift (DH5)	-	-	6	-	kHz

There are a total of eight power levels from 0 to 7, and the transmit power ranges from -12 dBm to 9 dBm. When the power level rises by 1, the transmit power increases by 3 dB. Power level 4 is used by default and the corresponding transmit power is 0 dBm.

4.6.3 Receiver - Enhanced Data Rate

Table 13: Receiver Characteristics - Enhanced Data Rate

Parameter	Conditions	Min	Тур	Max	Unit
$\pi/4$	DQPSK				
Sensitivity @0.01% BER	-	-90	-89	-88	dBm
Maximum received signal @0.01% BER	-	-	0	-	dBm
Co-channel C/I	-	-	11	-	dB
	F = F0 + 1 MHz	-	-7	-	dB
	F = F0 - 1 MHz	-	-7	-	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	-	-25	-	dB
Adjacent channel selectivity C/1	F = F0 - 2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-45	-	dB
8	DPSK				
Sensitivity @0.01% BER	-	-84	-83	-82	dBm
Maximum received signal @0.01% BER	-	-	-5	-	dBm
C/I c-channel	-	-	18	-	dB
	F = F0 + 1 MHz	-	2	-	dB
	F = F0 - 1 MHz	-	2	-	dB
Adjacent channel selectivity C/I	F = F0 + 2 MHz	-	-25	-	dB
	F = F0 - 2 MHz	-	-25	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-38	-	dB

4.6.4 Transmitter - Enhanced Data Rate

Table 14: Transmitter Characteristics - Enhanced Data Rate

Parameter	Conditions	Min	Тур	Max	Unit
RF transmit power (see note under Table 12)	-	-	0	-	dBm
Gain control step	-	-	3	-	dB
RF power control range	-	-12	-	+9	dBm
$\pi/4$ DQPSK max w0	-	-	-0.72	-	kHz
$\pi/4$ DQPSK max wi	-	-	-6	-	kHz
$\pi/4$ DQPSK max lwi + w0l	-	-	-7.42	-	kHz
8DPSK max w0	-	-	0.7	-	kHz
8DPSK max wi	-	-	-9.6	-	kHz
8DPSK max lwi + w0l	-	-	-10	-	kHz
	RMS DEVM	-	4.28	-	%
$\pi/4$ DQPSK modulation accuracy	99% DEVM	-	100	-	%
	Peak DEVM	-	13.3	-	%
	RMS DEVM	-	5.8	-	%
8 DPSK modulation accuracy	99% DEVM	-	100	-	%
	Peak DEVM	-	14	-	%

Parameter	Conditions	Min	Тур	Max	Unit
In-band spurious emissions	$F = F0 \pm 1 MHz$	-	-46	-	dBm
	$F = F0 \pm 2 MHz$	-	-44	-	dBm
	$F = F0 \pm 3 \text{ MHz}$	-	-49	-	dBm
	F = F0 +/- > 3 MHz	-	-	-53	dBm
EDR differential phase coding	-	-	100	-	%

4.7 Bluetooth LE Radio

4.7.1 Receiver

Table 15: Receiver Characteristics - BLE

Parameter	Conditions	Min	Тур	Max	Unit
Sensitivity @30.8% PER	-	-94	-93	-92	dBm
Maximum received signal @30.8% PER	-	0	-	-	dBm
Co-channel C/I	-	-	+10	-	dB
Adjacent channel selectivity C/I	F = F0 + 1 MHz	-	-5	-	dB
	F = F0 - 1 MHz	-	-5	-	dB
	F = F0 + 2 MHz	-	-25	-	dB
	F = F0 - 2 MHz	-	-35	-	dB
	F = F0 + 3 MHz	-	-25	-	dB
	F = F0 - 3 MHz	-	-45	-	dB
	30 MHz ~ 2000 MHz	-10	-	-	dBm
Out-of-band blocking performance	2000 MHz ~ 2400 MHz	-27	-	-	dBm
	2500 MHz ~ 3000 MHz	-27	-	-	dBm
	3000 MHz ~ 12.5 GHz	-10	_	-	dBm
Intermodulation	-	-36	-	-	dBm

4.7.2 Transmitter

Table 16: Transmitter Characteristics - BLE

Parameter	Conditions	Min	Тур	Max	Unit
RF transmit power	-	-	0	-	dBm
Gain control step	-	-	3	-	dBm
RF power control range	-	-12	-	+9	dBm
	$F = F0 \pm 2 MHz$	-	-52	-	dBm
Adjacent channel transmit power	$F = F0 \pm 3 MHz$	-	-58	-	dBm
	$F = F0 \pm > 3 MHz$	-	-60	-	dBm
$\Delta f1_{avg}$	-	-	-	265	kHz
$\Delta~f2_{\sf max}$	-	247	-	-	kHz
$\Delta f 2_{\text{avg}}/\Delta f 1_{\text{avg}}$	-	-	+0.92	-	-
ICFT	-	-	-10	-	kHz
Drift rate	-	-	0.7	-	kHz/50 μs
Drift	-	-	2	-	kHz

5 Schematics

This is the schematics of the module.

S

Schematics

Figure 3: Schematics of ESP32-PICO-MINI-02

6 Peripheral Schematics

This is the typical application circuit of the module connected with peripheral components (for example, power supply, antenna, reset button, JTAG interface, and UART interface).

Figure 4: Peripheral Schematics

Note:

- Soldering EPAD to the Ground of the base board is not necessary for a satisfactory thermal performance. If users do want to solder it, they need to ensure that the correct quantity of soldering paste is applied.
- To ensure the power supply to the ESP32 chip during power-up, it is advised to add an RC delay circuit at the EN pin. The recommended setting for the RC delay circuit is usually R = 10 k Ω and C = 1 μ F. However, specific parameters should be adjusted based on the power-up timing of the module and the power-up and reset sequence timing of the chip. For ESP32's power-up and reset sequence timing diagram, please refer to Section *Power Scheme* in *ESP32 Datasheet*.

7 Physical Dimensions and PCB Layout

7.1 Physical Dimensions

Figure 5: Physical Dimensions

7.2 PCB Layout

7.2.1 Recommended PCB Land Pattern

Figure 6: Recommended PCB Land Pattern

7.2.2 PCB Layout Guide

To achieve the optimum RF performance on a device with on-board antenna, please follow the guidelines below.

The module uses an inverted-F antenna design, and the antenna area of the module should have specific placement against the base board. The feed point of the antenna should be as close to the board edge as possible. The PCB antenna area should be placed outside the base board whenever possible while the module be put as close as possible to the edge of the base board.

As is shown in Figure 7, examples 1 and 5 of the module position on the base board are highly recommended, while examples 2, 3, and 4 are not recommended.

Figure 7: Module Placement on a Base Board

If the positions recommended above are not possible, then please make sure that the module is not covered by any metal shell and that a clearance area (without copper, routing, or components) outside the antenna is large enough, as shown in Figure 8. In addition, if there is base board under the antenna area, it is recommended to cut it off to minimize its impact on the antenna.

Figure 8: Keepout Zone for Module's Antenna on the Base Board

If the PCB layout does not follow the above rules, then RF throughput and RF range testing should be performed to ensure that the end product performance is satisfactory. When designing an end product, pay attention to the impact of enclosure on the antenna and verify the device performance by making RF verification.

8 Product Handling

8.1 Storage Condition

The products sealed in Moisture Barrier Bag (MBB) should be stored in a noncondensing atmospheric environment of $< 40 \,^{\circ}\text{C}/90\%$ RH.

The module is rated at moisture sensitivity level (MSL) 3.

After unpacking, the module must be soldered within 168 hours with factory conditions 25±5 °C and 60% RH. The module needs to be baked if the above conditions are not met.

8.2 ESD

• Human body model (HBM): 2000 V

• Charged-device model (CDM): 500 V

• Air discharge: 6000 V

• Contact discharge: 4000 V

8.3 Reflow Profile

Figure 9: Reflow Profile

Note:

Solder the module in a single reflow.

MAC Addresses and eFuse

The eFuse in ESP32 has been burnt into 48-bit mac_address. The actual addresses the chip uses in station, AP, BLE, and Ethernet modes correspond to mac_address in the following way:

• Station mode: mac_address

• AP mode: mac_address + 1

• BLE mode: mac_address + 2

• Ethernet mode: mac_address + 3

In the 1 Kbit eFuse, 256 bits are used for the system (MAC address and chip configuration) and the remaining 768 bits are reserved for customer applications, including flash-encryption and chip-ID.

Learning Resources

10.1 **Must-Read Documents**

The following link provides documents related to ESP32.

• ESP32 Datasheet

This document provides an introduction to the specifications of the ESP32 hardware, including overview, pin definitions, functional description, peripheral interface, electrical characteristics, etc.

• ESP32 ECO V3 User Guide

This document describes differences between V3 and previous ESP32 silicon wafer revisions.

• ECO and Workarounds for Bugs in ESP32

This document details hardware errata and workarounds in the ESP32.

• ESP-IDF Programming Guide

It hosts extensive documentation for ESP-IDF ranging from hardware guides to API reference.

• ESP32 Technical Reference Manual

The manual provides detailed information on how to use the ESP32 memory and peripherals.

• ESP32 Hardware Resources

The zip files include the schematics, PCB layout, Gerber and BOM list of ESP32 modules and development boards.

• ESP32 Hardware Design Guidelines

The guidelines outline recommended design practices when developing standalone or add-on systems based on the ESP32 series of products, including the ESP32 chip, the ESP32 modules and development boards.

ESP32 AT Instruction Set and Examples

This document introduces the ESP32 AT commands, explains how to use them, and provides examples of several common AT commands.

• Espressif Products Ordering Information

10.2 **Must-Have Resources**

Here are the ESP32-related must-have resources.

• ESP32 BBS

This is an Engineer-to-Engineer (E2E) Community for ESP32 where you can post questions, share knowledge, explore ideas, and help solve problems with fellow engineers.

• ESP32 GitHub

ESP32 development projects are freely distributed under Espressif's MIT license on GitHub. It is established to help developers get started with ESP32 and foster innovation and the growth of general knowledge about the hardware and software surrounding ESP32 devices.

• ESP32 Tools

This is a webpage where users can download ESP32 Flash Download Tools and the zip file "ESP32 Certification and Test".

• ESP-IDF

This webpage links users to the official IoT development framework for ESP32.

• ESP32 Resources

This webpage provides the links to all available ESP32 documents, SDK and tools.

Revision History

Date	Version	Release notes
2021-01-12	V0.5	Updated 4.4 to "All transmitter measurements are based on 100% duty cycle";
2021-01-12	V0.5	Added "Two-Wire Automotive Interface" to hardware in 1.1;
2020-11-18	V0.4	updated C from 0.1 μ F to C = 1 μ F in the section 4
2020-11-12	V0.3	Updated the module description in section 1.2
		Updated the Pin Layout in section 2
2020-09-27	V0.2	Updated Physical Dimensions in section 5
		Updated the Recommended PCB Land Pattern in section 7.2.1
2020-08-20	V0.1	Preliminary release

Disclaimer and Copyright Notice

Information in this document, including URL references, is subject to change without notice.

ALL THIRD PARTY'S INFORMATION IN THIS DOCUMENT IS PROVIDED AS IS WITH NO WARRANTIES TO ITS AUTHENTICITY AND ACCURACY.

NO WARRANTY IS PROVIDED TO THIS DOCUMENT FOR ITS MERCHANTABILITY, NON-INFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, NOR DOES ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

All liability, including liability for infringement of any proprietary rights, relating to use of information in this document is disclaimed. No licenses express or implied, by estoppel or otherwise, to any intellectual property rights are granted herein.

The Wi-Fi Alliance Member logo is a trademark of the Wi-Fi Alliance. The Bluetooth logo is a registered trademark of Bluetooth SIG.

All trade names, trademarks and registered trademarks mentioned in this document are property of their respective owners, and are hereby acknowledged.

Copyright © 2021 Espressif Systems (Shanghai) Co., Ltd. All rights reserved.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Espressif:

ESP32-PICO-MINI-02-N8R2