期中复习

(上)

基于深度学习的自然语言处理课程内容

《自然语言处理》课程知识结构

各类任务

每类任务是人类认知过程中对语言处理的真实需求

每类任务相对独立。根据处理方法不同可以分解为不同的子任务

基于深度学习的自然语言处理课程内容

语言处 理方法

中国科学院大学网络空间安全学院专业核心课

自然语言处理 Natural Language Processing

第 4-7 章 深度学习基础

授课教师: 胡玥

授课时间: 2020.9

基于深度学习的自然语言处理课程内容

语言处 理方法

第 4-7 章 深度学习基础

要求:

基本概念

- 神经网调参方法?
- 梯度下降法有几种? 各自特点?
- DNN 学习算法?
- RNN 学习算法?
- · CNN 各层的作用?
- 图卷积的步骤?

中国科学院大学网络空间安全学院专业核心课

自然语言处理 Natural Language Processing

第3章 统计语言模型

授课教师: 胡玥

授课时间: 2020.9

基于深度学习的自然语言处理课程内容

语言处 理方法

重点:

- 1. 语言模型的定义
- 2. 概率语言模型的学习方法
- 3. 概率语言模型存在问题
 - 由于参数数量问题需要对词 i 的历史简化 n-gram
 - 需要数据平滑

语言模型思想

用句子 $S=w_1, w_2, ..., w_n$ 的概率 p(S) 刻画句子的合理性。 (用数学的方法描述语言规律)

句子概率 p(S)定义:

语句 $s = W_1 W_2 ... W_n$ 的 概率p(S)定义为:

$$p(S)=p(w_1)p(w_2|w_1)...p(w_n|w_1,...,w_{n-1})$$

其中: 当 i=1 时, $p(w_1|w_0) = p(w_1)$

1. 语言模型

$$p(S) = \prod_{i=1}^{n} p(w_i \mid w_1 \dots w_{i-1})$$

输入: 句子 S

输出: 句子概率p(S)

参数: p(w_i|w₁,...,w_{i-1})

· 由于参数数量问题需要对词 i 的历史简化 n-gram

n 元文法(n-gram)

n-gram 模型假设一个词的出现概率只与它前面的n-1个词相关,距离大于等于n的上文词会被忽略

$$p(w_i|w_1,...,w_{i-1}) \approx p(w_i|w_{i-(n-1)},w_{i-1})$$

- ❖ 1元文法模型 (unigram): $p(w_1,...,w_m) = \prod_{i=1}^m p(w_i)$ w_i 独立于历史
- ❖ 2元文法模型 (bigram): $p(w_1,...,w_m) = \prod_{i=1}^m p(w_i|w_{i-1}) w_i 保留前1个词序$
- ❖ 3元文法模型(trigram): $p(w_1,...,w_m) = \prod_{i=1}^{m} p(wi|w_{i-2}, w_{i-1}) w_i 保留前2个词序$
- **.....**
- ❖ n 元文法模型 (n-gram) :p($w_1,...,w_m$)= $\prod_{i=1}^{m} p(wi|w_{i-(n-1)} w_{i-1}) w_i$ 保留前n个词序

n-gram 就是对 $p(w_i|w_1,...,w_{i-1})$ 的简化程度而定义

3.2.1 参数估计

2. 参数学习的方法

对于 n-gram, 参数 $p(w_i | w_{i-n+1}^{i-1})$ 可由最大似然估计求得:

$$p(w_i \mid w_{i-n+1}^{j-1}) = f(w_i \mid w_{i-n+1}^{j-1}) = \frac{\sum_{w_i} c(w_{i-n+1}^j)}{\sum_{w_i} c(w_{i-n+1}^{j-1})}$$

其中:

$$\sum_{w_i} c(w_{i-n+1}^{i-1})$$
 是历史串 w_{i-n+1}^{i-1} 在给定语料中出现的次数

$$\sum_{w_i} c(w_{i-n+1}^i)$$
, 为 w_{i-n+1}^{i-1} 与 w_i 同现的次数。

最大似然估计(maximum likelihood Evaluation, MLE)

3.2.1 参数估计

需要数据平滑

数据匮乏(稀疏) (Sparse Data) 引起零概率问题

如求,
$$p(Cher read \ a \ book) = ?$$

=
$$p(Cher/) \times p(read/Cher) \times p(a/read) \times p(book/a) \times p(/book)$$

$$p(Cher \mid < BOS >) = \frac{c(< BOS > Cher)}{\sum_{w} c(< BOS > w)} = \frac{0}{3}$$

$$p(read \mid Cher) = \frac{c(Cher \quad read)}{\sum_{w} c(Cher \quad w)} = \frac{0}{1}$$

于是, $p(Cher read \ a \ book) = 0$

<BOS>John read Moby Dick<EOS>

<BOS>Mary read a different book<EOS>

<BOS>She read a book by Cher<EOS>

中国科学院大学网络空间安全学院专业核心课

自然语言处理 Natural Language Processing

第8章 神经网络语言模型

授课教师: 胡玥

授课时间: 2020.9

第8章 神经网络语言模型

重点:

- 1. 神经网络语言模型结构
- 2. 神经网络语言模型的学习方法 👨
- 3. RNN为什么能解决神经网络语言模型的"需历史简化"问题

基于深度学习的自然语言处理课程内容

语言处 理方法

8.1 概述

神经网络语言模型概念

语言模型:用句子 $S=W_1,W_2,...,W_n$ 的概率 p(S)来定量的刻画句子。

$$p(S) = \prod_{i=1}^{n} p(w_i \mid w_1 \dots w_{i-1})$$
 输出: 句子概率p(S)

输入: 句子 S

参数: $p(w_i|w_1,...,w_{i-1})$

统计语言模型:

用概率统计法学习参数

神经网络语言模型: 用神经网络学习参数

根据所用神经网络不同,分为:

- NNLM 模型 (使用DNN)
- RNNLM 模型 (使用RNN)

内容提要

- 8.1 概述
- 8.2 NNLM 模型
- 8.3 RNNLM 模型

输出层有|V|个元素,V是有限词表包括未登录词标识UNK和句子开始和结束补齐符号,一般在10000≈1000000左右,常见规模70000左右

(2) NNLM模型学习 (2-gram)

● 目标函数:

采用log损失函数

$$\sum_{w_{i\to 1} \ i\in D} \log P(w_i \mid w_{i-1})$$

参数: $\theta = \{ H, U, b^1, b^2 \}$

● 语料: ("无监督")

文本: $S=w_1, w_2, \dots, w_n$, …

实例: X: w_{i-1}

 $\widehat{Y}: \mathbf{w}_{i}$

● 参数训练:

(BP) 随机梯度下降法优化训练目标: 每次迭代,随机从语料D中选取一段文本 w_{i-(n-1)},…,w_i作为训练样本进行一次梯度迭代

$$\theta \leftarrow \theta + \alpha \frac{\partial \log P(w_i \mid w_{i-1})}{\partial \theta}$$

其中, α学习率, $\theta = \{H, U, b^1, b^2\}$

(1) NNLM模型结构

 $p(w_1,...,w_m) = \prod_{i=1}^m p(w_i|w_{i-(n-1)} w_{i-1})$ n-gram:

softmax(y)

输出层:
$$p(w_i|w_{i-(n-1)}, w_{i-1}) = \frac{\exp(y(w_i))}{\sum_{k=1}^{|V|} \exp(y(v_k))}$$

 $y(w_i) = b^2 + U \text{ (tanh (XH+b^1))}$

隐藏层: h=tanh(XH+b¹)

输入层: X: n-1个词 w _{i-(n-1)} ,...,w_{i-1}

参数: $\theta = \{ H, U, b^1, b^2 \}$ 神经网络参数

词以什么形式输入网络 → 词向量问题

 $W_{i-(n-1)}$

 W_{i-2} W_{i-1}

(2) NNLM模型学习 (2-gram)

● 目标函数:

采用log损失函数

$$\sum_{w_{i-(n-1)}: i \in D} \log P(w_i \mid w_{i-(n-1)}, ..., w_{i-1})$$

参数: $\theta = \{ H, U, b^1, b^2 \}$

● 语料: ("无监督")

文本: $S=w_1, w_2, \dots, w_n$, …

实例: $X: w_1, w_2, \dots, w_{i-1}$

 $\widehat{Y}: \mathbf{w}_{i}$

● 参数训练:

(BP) 随机梯度下降法优化训练目标: 每次迭代,随机从语料D中选取一段文本

w_{i-(n-1)},…,w_i作为训练样本进行一次梯度迭代

$$\theta \leftarrow \theta + \alpha \, \frac{\partial \log P(w_i \mid w_{i-(n-1)}, \dots, w_{i-1})}{\partial \theta}$$

其中, α学习率, $\theta = \{H, U, b^1, b^2\}$

内容提要

- 8.1 概述
- 8.2 NNLM 模型
- 8.3 RNNLM 模型

8.3 RNNLM 模型

■ 2 元文法模型 (bigram): $p(w_1,...,w_m) = \prod_{i=1}^m p(w_i|w_{i-1}) w_i$ 保留前1个词序

语句 $s = w_1 w_2 ... w_n$ 的 概率p(S)定义为:

随着模型逐个读入语料中的词 $w_1; w_2 \cdots$.隐藏层不断地更新为 $h(1), h(2) \cdots$...,通过这种迭代推进方式,每个隐藏层实际上包含了此前所有上文的信息,相比NNLM只能采用上文n元短语作为近似,RNNLM包含了更丰富的上文信息,也有潜力达到更好的效果。

8.3 RNNLM 模型

输出层: $p(w_i|w_{i-1}) = \frac{\exp(y(w_i))}{\sum_{k=1}^{|V|} \exp(y(v_k))}$

隐藏层: h(t)=tanh(XH+Mh(t-1)+b¹)

参数: $\theta = \{H, U, M, b^1, b^2\}$

8.3 RNNLM 模型

(2) RNNLM模型学习

● 目标函数:

对于整个语料,语言模型需要最大化

$$\sum_{w_{i \rightarrow 1} \ i \in D} \ \log P(w_i \mid w_{i-1})$$

RNN网络

参数: $\theta = \{H, U, M, b^1, b^2\}$

● 语料: ("无监督")

文本: $S=W_1, W_2, ..., W_n$,

• • • • •

实例: X: START, W₁, W₂,..., W_{n-1}

 $\hat{Y}: W_1, W_2, ..., W_{n-1} W_n$

● 参数训练:

中国科学院大学网络空间安全学院专业核心课

自然语言处理 Natural Language Processing

第9章 词向量

(浅层模型)

授课教师: 胡玥

授课时间: 2020.9

基于深度学习的自然语言处理课程内容

语言处 理方法

重点:

1. 掌握以下4典型词向量的基本概念

- NNLM模型词向量
- RNNLM模型词向量
- CBOW 模型词向量
- Skip-gram模型词向量
- 2. 词向量特征? 为什么有这种特征?
- 3. 为何神经网络 "RNN 语言模型 + 词向量" 可以解决统计语言模型存在的问题

9.2.1 经典词(向量)表示模型

- 1. NNLM模型词向量
- 2. RNNLM模型词向量
- 3. C&W 模型词向量
- 4. CBOW 模型词向量
- 5. Skip-gram模型词向量

NNLM模型-输入表示

(1) NNLM模型结构(词向量)

softmax(y)

输出层:
$$p(w_i|w_{i-(n-1)}...w_{i-1}) = \frac{\exp(y(w_i))}{\sum_{k=1}^{|V|} \exp(y(v_k))}$$

 $y(w_i) = b^2 + W_X + U_h$

隐藏层: h=tanh(XH+b¹)

输入层: X: n-1个词 w _{i-(n-1)} ,...,w_{i-1} 的词向量拼接 X=[e(w_{i-(n-1)}).... e(w_{i-1})]

参数: $\theta = \{ H, U, b^1, b^2, 词向量 \}$

训练结束→训练好的词向量

(2) NNLM模型学习 (2-gram)

● 目标函数:

采用log损失函数

$$\sum_{w_{i-(n-1)}: i \in D} \log P(w_i \mid w_{i-(n-1)}, ..., w_{i-1})$$

参数: $\theta = \{ H, U, W, b^1, b^2, 词 向 \pm \}$

● 语料: ("无监督")

文本: $S=w_1, w_2, \dots, w_n$, …

实例: X: w_1, w_2, \dots, w_{i-1}

 $\widehat{Y}: \mathbf{w}_{i}$

● 参数训练:

(BP) 随机梯度下降法优化训练目标: 每次迭代,随机从语料D中选取一段文本 w_{i-(n-1)},…,w_i作为训练样本进行一次梯度迭代

$$\theta \leftarrow \theta + \alpha \frac{\partial \log P(w_i \mid w_{i-(n-1)}, ..., w_{i-1})}{\partial \theta}$$

其中, α 学习率, $\theta = \{H, U, W, b^1, b^2, 词向量\}$

(3) NNLM模型作用

(1) RNNLM模型结构(词向量)

softmax(y)

输出层:p(w_i|w_{i-1}) =
$$\frac{\exp(y(w_i))}{\sum_{k=1}^{|V|} \exp(y(v_k))}$$

y(w_i)=b²+U h(t)

隐藏层: h(t)=tanh(X+Mh(t-1)+b¹)

输入层: X: 词 w_{i-1}的词向量 X= e(w_{i-1})

输入: $X = e(w_{i-1})$ (词向量初值),h(t-1)

输出: $p(w_i|w_{i-1})$, h(t):(内部隐层)

参数: $\theta = \{U, M, b^1, b^2, 词 向量 \}$

训练结束→训 练好的词向量

- Tomas Mikolov, et.al.Statistical language models based on neural networks.2012
- Tomas Mikolov, et.al.Recurrent neural network based language model.2010

2. RNNLM模型(词向量)

(BPTT) 随机梯度下降法优化训练目标:

3. C&W 模型

(1) C&W模型结构

为从语料中选出的一个n元短语 $w_{i-(n-1)/2}$, ..., $w_{i,}$..., $w_{i+(n-1)/2}$ 一般n为奇数,以保证上文和下文的词数一致; w_{i} 为目标词(序列中间的词) $x = [e(w_{i-(n-1)}),..., e(w_{i}), ..., e(w_{i+(n-1)})]$

Ronan Collobert: A unified architecture for natural language processing: Deep neural networks with multitask learning, 2008

4. CBOW 模型

■ CBOW 模型

模型结构

为从语料中选出的一个n元短语 $\mathbf{w}_{i-(n-1)/2}$, …, \mathbf{w}_{i} , …, $\mathbf{w}_{i+(n-1)/2}$ 一般n为奇数,以保证上文和下文的词数一致; \mathbf{w}_{i} 为目标词, \mathbf{w}_{i} 上下文C 为不包括 \mathbf{w}_{i} 的n-1元短语

Tomas Mikolov: Efficient estimation of word representations in vector space, 2013

4. CBOW 模型

模型训练

Wi

Y: 0 0 10 0 0

Y: 所有词的概率

X: Wi上下文

• 优化目标: 最大化 $: \sum_{(w,c)\in D} \log P(w \mid c)$ • 参数训练: 梯度下降法

5. Skip-gram模型

■ Skip-gram模型

模型结构

将目标词 w_i 的词向量作为输入,每次从 w_i 的上下文C 中选一个词作为预测词进行预测。目标词 w_i 及上下文C 定义同CBOW 模型

Tomas Mikolov: Efficient estimation of word representations in vector space, 2013

5. Skip-gram模型

Skip-gram模型

模型训练

Wi上下文

Y: 0 1.. 1.... 10 1 0

Y: 所有词的概率

X:Wi

 $\sum \log P(w_j|w)$ • 参数训练:梯度下降法 ● 优化目标: 最大化 $(w,c)\in D$ $w_i\in c$

词向量具有如下语言学特性

■ 语义相似的词,其词向量空间距离更相近 (分布假说)

1-of-N Encoding

apple =
$$[1 \ 0 \ 0 \ 0]$$

bag = $[0 \ 1 \ 0 \ 0]$
cat = $[0 \ 0 \ 1 \ 0]$
dog = $[0 \ 0 \ 0 \ 1 \ 0]$
elephant = $[0 \ 0 \ 0 \ 0 \ 1]$

word Embedding

dog rabbit

run

jump

cat

tree

flower

Word Class

class 1

dog

cat bird

Class 2

jumped

ran

walk

Class 3

tree apple

flower

优点: 降维, 消除词汇鸿沟

其语言模型自带平滑功能

应用: 同义词检测、单词类比等

词向量具有如下语言学特性

■ 相似关系词对的词向量之差也相似

$$V(king) - V(queen) \approx V(uncle) - V(aunt)$$

$$V(hotter) - V(hot) \approx V(bigger) - V(big)$$

第3章: 概率语言模型存在问题

- 由于参数数量问题需要对词 i 的历史简化 n-gram
- 需要数据平滑

神经网络 "RNN 语言模型 + 词向量" 可以解决以上问题

问题1. 由于参数数量问题需要对词 i 的历史简化 n-gram

解决: RNNLM模型

$$P(w_1, w_2, w_3, \dots, w_n)$$

=
$$P(w_1)P(w_1|w_2)P(w_3|w_1,w_2) \cdot \cdot \cdot \cdot P(w_n|w_1,w_2 \cdot \cdot \cdot w_{n-1})$$

RNNLM模型可以保留每个词的所有历史信息

问题2:需要数据平滑

平滑问题: $p(Cher\ read\ a\ book) = ?$ $= p(Cher | < BOS >) \times p(read | Cher) \times p(a | read) \times p(book | a) \times p(< EOS > | book)$

统计语言模型:

$$p(Cher | < BOS >) = \frac{c(< BOS > Cher)}{\sum_{w} c(< BOS > w)} = \frac{0}{3}$$

$$= \frac{c(Cher read)}{\sum_{w} c(Cher w)} = \frac{0}{1}$$

<BOS>Mary read a different book<EOS> <BOS>She read a book by Cher<EOS>

 $p(Cher\ read\ a\ book) = 0$ **⇒** 需要数据平滑

神经网络语言模型:

当语言模型训练好后,模型网络参数固定, 这时给任意的W_{i-1} P(W_i) 不会为 0

词向量特征:

P(Cher)
P(read|Cher)
P(a|Cher,read)
P(book|Cher,read,a)
P(book|Che

Cher 和 Join 的词向量比较接近

所以,采用预训练的词向量做输入,不需要数据平滑且效果好

中国科学院大学网络空间安全学院专业核心课

自然语言处理 Natural Language Processing

第 10 章 NLP中的注意力机制

授课教师: 胡玥

授课时间: 2020.9

基于深度学习的自然语言处理课程内容

语言处 理方法

内容提要

- 10.1 传统注意力机制
- 10.2 注意力编码机制

10. 注意力机制

重点:

- 1. 注意力机制的基本概念
- 2. 注意力机制的模块定义
- 3. 何为软/硬/局部/全局注意力
- 4. 运用注意力机制的好处有哪些?

注意力机制概念

结果 Att-Vi

各个数的"权重"是针对某个元素而言的。 我们将这个元素定义为 Q (Q也可以是参数),将需要计算权重的各元素集合定义为 K ,将最后的加权求和结果定义为 Att-V

输入: Q, K

输出: Att-V

(1) 模块结构:运算关系

输入→输出 函数关系:

步骤1: 计算对于Q 各个 Ki 的权重

步骤2: 计算输出 Att-V值(各 Ki 乘以自己的权重, 然后求和)

步骤1: 计算对于Q 各个 Ki 的权重

设注意力打分函数 S= f(Q,K)

$$S=f\left(Q,K\right)=\begin{cases}Q^{T}K_{i} & \text{点积模型}\\ \frac{Q^{T}K_{i}}{\sqrt{d}} & \text{缩放点积模型}\\ W_{a}[Q,K_{i}] & \text{连接模型}\\ Q^{T}W_{a}K_{i} & \text{双线性模型}\\ V^{T}_{a}\tanh(W_{a}Q+U_{a}K_{i}) & \text{加性模型}\end{cases}$$

$$a_i = soft \max(f(Q, K_i)) = \frac{\exp(f(Q, K_i))}{\sum_j \exp(f(Q, K_j))}$$

K1 K2 K3 K4 K5

步骤2: 计算输出 Att-V值(各 Ki 乘以自己的权重, 然后求和)

Att-V值

普通模式

Att-V = $a1 \times K1 + a2 \times K2 + a3 \times K3 + a4 \times K4 + a5 \times K5$

键值对模式

Attention模型表示:

功能: 对于集合 K , 求相对 Q 各个元素的权重, 然后按权重相加 形成 Q 要的结果

问题引入: 机器翻译例

Encoder-Decoder RNN

$$X = \langle x_{1}, x_{2} ... x_{m} \rangle$$

$$Y = \langle y_{1}, y_{2} ... y_{n} \rangle$$

$$C = \mathcal{F}(x_{1}, x_{2} ... x_{m})$$

$$y_{1} = f(C)$$

$$y_{2} = f(C, y_{1})$$

$$y_{3} = f(C, y_{1}, y_{2})$$

$$y_{i} = \mathcal{G}(C, y_{1}, y_{2} ... y_{i-1})$$

问题: 对不同的输出 Y_i 中间语义表示C 相同

实际应该:在翻译"杰瑞"的时候,体现出英文单词对于翻译当前中文单词不同的影响程度,比如 (Tom,0.3) (Chase,0.2) (Jerry,0.5)

问题:对每个输出的词,如何生成针对它的更准确的中间语义单元?

注意力机制:神经网络中的一个组件,可以单独使用,但更多地用作网络中的一部分。

作用: 让任务处理系统找到与当前任务相关显著的输入信息,并按重要性进行处理,从而提高输出的质量。

优势:不需要监督信号,<mark>可推理多种不同模态数据之间的难以解释、隐蔽性强、复杂映射关系,</mark>对于先验认知少的问题,极为有效。

ロ 软注意力 Hard Attention

Soft AM:在求注意力分配概率分布的时候,对于输入句子X中任意一个单词都给出个概率,是个概率分布。

ロ 硬注意力 Hard Attention

Hard AM: 直接从输入句子里面找到某个特定的单词,然后把目标句子单词和这个单词对齐,而其它输入句子中的单词硬性地认为对齐概率为0

□ 全局注意力 Global Attention

Decode端Attention计算时要考虑输Ecoder端序列中所有的词

Global Attention Model 是Soft Attention Model

□ 局部注意力 Local Attention

Local Attention Model本质上是Soft AM和 Hard AM的一个混合或折衷。一般首先预估一个对齐位置Pt,然后在Pt左右大小为D的窗口范围来取类似于Soft AM的概率分布。

内容提要

10.1 传统注意力机制

10.2 注意力编码机制

10. 注意力机制

重点:

1. 运注意力机制编码的好处有哪些?

Attention用作编码机制

◆ 不同序列间编码:可以将2个序列编码成二者的融合表示, 匹配任务,阅读理解任务常用

◆ 同一序列自编码:利用多头Self-Attention编码对一个句子编码可以 起到句法分析器的作用

A-V_i 序列元素个数等于 Q序列元素个数

◆ 同一序列自编码:

自注意力 Self-Attention

其实就是 Attention(X,X,X), X为输入序, 其含义为在序列内部做 Attention, 寻找序列内部的联系

Attention(Q,K,V) = softmax(
$$\frac{QK^{T}}{\sqrt{d_{k}}}$$
)V
其中, Q=K=V

self-attention的特点在于无视词之间的距离直接计算依赖关系,能够学习一个句子的内部结构,实现也较为简单并行可以并行计算(self-attention可以当成一个层和RNN,CNN,FNN等配合使用,应用于其他NLP任务)

例:对同一序列自注意力编码

Self-Attention可视化的效果

可以看到self-attention在这里可以学习到句子内部长距离依赖 "making......more difficult"这个短语

多头注意力Multi-Head Attention

多头 (Multi-Head) 就是做多次同样的事情(参数不共享), 然后把结果拼接 多头attention通过计算多次来捕获不同子空间上的相关信息。

Head_i = Attention(QW_{i}^{Q} , KW_{i}^{K} , VW_{i}^{V})

其中, $W^{Q}_{i} \in R^{dk \times \sim dk}, W^{K}_{i} \in R^{dk \times \sim dk}, W^{V}_{i} \in R^{dv \times \sim dv}$

 $Multi-Head(Q,K,V)=Concat(head_1,...,head_h)$ 最后得到一个 $n\times(h^*d_v)$ 的序列

多头自注意力 Multi-Head Self Attention (Transformer)

多头自注意力 (Multi-Head Self Attention) 就是多头attention中,每头均为自注意力 Attention(X,X,X)

MultiHead
$$(H) = W_O[\mathbf{head}_1; \dots; \mathbf{head}_M]$$
 self-att $(Q, K, V) = \operatorname{softmax} \left(\frac{K^{\mathrm{T}}Q}{\sqrt{d_h}}V\right)$
head_m = self-att (Q_m, K_m, V_m)
 $Q_m = W_O^m H, K = W_K^m X, V = W_V^m X$

例:对同一序列多头自注意力编码

Y=MultiHead(X,X,X)

♦ Head¹ Self Attention

输出: A₁(我) A₁ (弟弟) A₁ (准备) A₁(一切) A₁ (用品) 输入: ^我 弟弟 准备 一切 用品

Head2 Self Attention

输出: A₂(我) A₂ (弟弟) A₂ (准备) A₂(一切) A₂ (用品) 输入: ^我 弟弟 准备 一切 用品

Multi-Head Self Attention

多头自注意力的可视化的效果

在两个头和单头的比较中,可以看到单头"its"这个词只能学习到"law"的依赖 关系,而两个头"its"不仅学习到了"law"还学习到了"application"依赖关系。 多头能够从不同的表示子空间里学习相关信息

期中复习

(上)

完