Assignment 5 - The Bootstrap

Conceptual

- 1 Explain how k-fold cross-validation is implemented.
- --- Your answer here ---
- 2 What are the advantages and disadvantages of k-fold crossvalidation relative to:
- i. The validation set approach?
- --- Your answer here ---

ii. LOOCV?

--- Your answer here ---

Practical

Overview of the steps

- 1. Loading the data and getting an overview of the data
- 2. Estimating the standard error of parameters of a Linear Regression Model
- 3. Estimating the standard error of parameters of a Quadratic Regression Model

Steps in detail

Loading the data and getting an overview of the data

Load the data file Auto.rda or Auto.csv.

```
In [27]: 1 load(file = "../ISLR/data/Auto.rda")
```

Display the number of predictors (including the response mpg) and their names:

```
In [28]: 1 dim(Auto)[2] names(Auto)
9
```

'mpg' 'cylinders' 'displacement' 'horsepower' 'weight' 'acceleration' 'year' 'origin' 'name'

Print a statistic summary of the predictors and the response medv:

In [29]:

mpg	cylinders	displacement	horsepower	
weight Min. : 9.00 n. :1613	Min. :3.000	Min. : 68.0	Min. : 46.0	Mi
1st Qu.:17.00 Qu.:2225	1st Qu.:4.000	1st Qu.:105.0	1st Qu.: 75.0	1st
Median :22.75 ian :2804	Median :4.000	Median :151.0	Median : 93.5	Med
Mean :23.45 n :2978	Mean :5.472	Mean :194.4	Mean :104.5	Mea
3rd Qu.:29.00 Qu.:3615	3rd Qu.:8.000	3rd Qu.:275.8	3rd Qu.:126.0	3rd
Max. :46.60 x. :5140	Max. :8.000	Max. :455.0	Max. :230.0	Ма
acceleration	year	origin		nam
e Min. : 8.00 5	Min. :70.00	Min. :1.000	amc matador	:
-	1st Qu.:73.00	1st Qu.:1.000	ford pinto	:

Median :1.000

3rd Qu.:2.000

:1.577

:3.000

Mean

Max.

toyota corolla

chevrolet chevette:

amc gremlin

amc hornet

(Other)

Display the number of data points:

summary(Auto)

In [30]:

1 dim(Auto)[1]

Median :15.50

3rd Qu.:17.02

:15.54

:24.80

392

5

4

365

Mean

Max.

Display the data in a table (subset of rows is sufficient):

Median :76.00

3rd Qu.:79.00

:75.98

:82.00

Mean

Max.

In [31]: 1 Auto

A data.frame: 392 × 9

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	na
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<f< th=""></f<>
1	18	8	307	130	3504	12.0	70	1	chevro chevo mal
2	15	8	350	165	3693	11.5	70	1	bı skylark (
3	18	8	318	150	3436	11.0	70	1	plymo sate
4	16	8	304	150	3433	12.0	70	1	amc re
5	17	8	302	140	3449	10.5	70	1	ford tor
6	15	8	429	198	4341	10.0	70	1	ford gala
7	14	8	454	220	4354	9.0	70	1	chevr imp
8	14	8	440	215	4312	8.5	70	1	plymo fur
9	14	8	455	225	4425	10.0	70	1	pont cata
10	15	8	390	190	3850	8.5	70	1	a ambassa
11	15	8	383	170	3563	10.0	70	1	doc challen
12	14	8	340	160	3609	8.0	70	1	plymo 'cuda (
13	15	8	400	150	3761	9.5	70	1	chevro monte ca
14	14	8	455	225	3086	10.0	70	1	buick est wagon (
15	24	4	113	95	2372	15.0	70	3	toy cord mai
16	22	6	198	95	2833	15.5	70	1	plymo dus
17	18	6	199	97	2774	15.5	70	1	amc hor
18	21	6	200	85	2587	16.0	70	1	f mavei
19	27	4	97	88	2130	14.5	70	3	date pl
20	26	4	97	46	1835	20.5	70	2	volkswaç 1131 deli sec
21	25	4	110	87	2672	17.5	70	2	peug ,
22	24	4	107	90	2430	14.5	70	2	audi 10
23	25	4	104	95	2375	17.5	70	2	saab (

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	na
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<f< th=""></f<>
24	26	4	121	113	2234	12.5	70	2	bmw 20
25	21	6	199	90	2648	15.0	70	1	amc gren
26	10	8	360	215	4615	14.0	70	1	ford f2
27	10	8	307	200	4376	15.0	70	1	chevy (
28	11	8	318	210	4382	13.5	70	1	dodge d2
29	9	8	304	193	4732	18.5	70	1	hi 12(
30	27	4	97	88	2130	14.5	71	3	dat: pl(
:	:	:	÷	:	:	:	:	:	
368	28	4	112	88	2605	19.6	82	1	chevr cava
369	27	4	112	88	2640	18.6	82	1	chevro cava waç
370	34	4	112	88	2395	18.0	82	1	chevro cavalie d
371	31	4	112	85	2575	16.2	82	1	pont j2000 hatchba
372	29	4	135	84	2525	16.0	82	1	dodge aı
373	27	4	151	90	2735	18.0	82	1	pont phoe
374	24	4	140	92	2865	16.4	82	1	f fairm fut
375	36	4	105	74	1980	15.3	82	2	volkswa(rabl
376	37	4	91	68	2025	18.2	82	3	mazda custo
377	31	4	91	68	1970	17.6	82	3	mazda cust
378	38	4	105	63	2125	14.7	82	1	plymo hori: mi
379	36	4	98	70	2125	17.3	82	1	merc lyı
380	36	4	120	88	2160	14.5	82	3	nis: stanza
381	36	4	107	75	2205	14.5	82	3	hor acc
382	34	4	108	70	2245	16.9	82	3	toy cor
383 384	38 32	4	91 91	67 67	1965 1965	15.0 15.7	82 82	3	honda c
									(aı

	mpg	cylinders	displacement	horsepower	weight	acceleration	year	origin	na
	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<f< th=""></f<>
385	38	4	91	67	1995	16.2	82	3	datsun (
386	25	6	181	110	2945	16.4	82	1	bı cent limi
387	38	6	262	85	3015	17.0	82	1	oldsmol cutli ci (die:
388	26	4	156	92	2585	14.5	82	1	chry: leba medall
389	22	6	232	112	2835	14.7	82	1	f grana(
390	32	4	144	96	2665	13.9	82	3	toy celica
391	36	4	135	84	2370	13.0	82	1	doc charger
392	27	4	151	90	2950	17.3	82	1	chevro cam
393	27	4	140	86	2790	15.6	82	1	f mustanç
394	44	4	97	52	2130	24.6	82	2	vw picł
395	32	4	135	84	2295	11.6	82	1	doc rampa
396	28	4	120	79	2625	18.6	82	1	ford ran
397	31	4	119	82	2720	19.4	82	1	chevy s

Compute the pairwise correlation of the predictors in the data set.

In R, we need to download and install a library first.

```
In [32]:
```

- 1 install.packages("corrplot")
- 2 source("http://www.sthda.com/upload/rquery_cormat.r")

The downloaded binary packages are in /var/folders/ct/4pcck8t94sdfc73rhymq4t140000gp/T//RtmpNHDrd X/downloaded_packages

In [33]: 1 rquery.cormat(Auto[,-9])

```
$r
              horsepower weight cylinders displacement origin acceler
ation mpg
horsepower
                       1
weight
                    0.86
                               1
cylinders
                             0.9
                    0.84
                                         1
displacement
                     0.9
                           0.93
                                      0.95
                                                       1
origin
                   -0.46
                          -0.59
                                     -0.57
                                                   -0.61
                                                               1
acceleration
                   -0.69
                                      -0.5
                                                   -0.54
                                                           0.21
                          -0.42
1
                   -0.78
                          -0.83
                                     -0.78
                                                   -0.81
                                                           0.57
mpg
0.42
        1
                   -0.42
                         -0.31
                                     -0.35
                                                   -0.37
                                                           0.18
year
0.29 0.58
              year
horsepower
weight
cylinders
displacement
origin
acceleration
mpg
                 1
year
$p
              horsepower
                           weight cylinders displacement origin acce
leration
horsepower
                       0
weight
                1.4e-118
cylinders
                4.6e-107 9.3e-141
                                           0
displacement
                1.5e-140 3.5e-175
                                    1.3e-200
                                                         0
origin
                          2.3e-37
                                     5.3e-35
                                                   4.5e-42
                 1.9e-21
                                                                  0
acceleration
                 1.6e-56 6.6e-18
                                                   1.5e-31 2.2e-05
                                       1e-26
                   7e-81
                           6e-102
                                     1.3e-80
                                                   1.7e-90 1.8e-34
mpg
1.8e-18
                 7.2e-18
                             4e-10
                                     1.9e-12
                                                   3.7e-14
vear
                                                             3e-04
4.7e-09
                  mpg year
horsepower
weight
cylinders
displacement
origin
acceleration
                    0
mpg
              1.1e-36
                         0
year
$sym
              horsepower weight cylinders displacement origin acceler
ation mpg
horsepower
              1
weight
                         1
              +
cylinders
                                 1
displacement +
                                 *
                                           1
                         *
origin
                                                         1
acceleration,
                                                                 1
mpg
1
year
```

```
horsepower
weight
cylinders
displacement
origin
acceleration
mpg
year     1
attr(,"legend")
[1] 0 ' ' 0.3 '.' 0.6 ',' 0.8 '+' 0.9 '*' 0.95 'B' 1
```


Estimating the Accuracy of a Linear Regression Model

We first create a simple function, boot.fn(), which takes in the Auto data set as well as a set of indices for the observations, and returns the intercept and slope estimates for the linear regression model. We then apply this function to the full set of 392 observations in order to compute the estimates of β_0 and β_1 on the entire data set using the usual linear regression coefficient estimate formulas.

(Intercept) 39.9358610211705 horsepower -0.157844733353654 The boot.fn() function can also be used in order to create bootstrap estimates for the intercept and slope terms by randomly sampling from among the observations with replacement. Here two examples where the sample() function creates different training data sets based on the original Auto data.

```
In [35]: 1 set.seed(1)
2 boot.fn(Auto, sample(392,392, replace=T))
```

(Intercept) 40.3404516830189 horsepower -0.163486837689938

```
In [36]: 1 boot.fn(Auto,sample(392,392,replace=T))
```

(Intercept) 40.1186906449022 horsepower -0.157706320543503

Next, we use the <code>boot()</code> function to compute the standard errors of 1,000 bootstrap estimates for the intercept and slope terms.

```
In [37]: 1 library(boot)
2 boot(Auto,boot.fn ,1000)
```

ORDINARY NONPARAMETRIC BOOTSTRAP

```
Call:
boot(data = Auto, statistic = boot.fn, R = 1000)
```

```
Bootstrap Statistics:
    original bias std.error
t1* 39.9358610 0.0544513229 0.841289790
t2* -0.1578447 -0.0006170901 0.007343073
```

This indicates that the bootstrap estimate for $SE(\hat{\beta}_0) = 0.84$, and that the bootstrap estimate for $SE(\hat{\beta}_1) = 0.0073$.

Statistic formulas can be used to compute the standard errors for the regression coefficients in a linear model. In R these can be obtained using the summary() function on the results of the fitted logistic regression model.

```
In [38]: 1 summary(lm(mpg~horsepower ,data=Auto))$coef
```

A matrix: 2 × 4 of type dbl

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	39.9358610	0.717498656	55.65984	1.220362e-187
horsepower	-0.1578447	0.006445501	-24.48914	7.031989e-81

This indicates that the standard error for $SE(\beta_0) = 0.72$, and that the bootstrap estimate for $SE(\beta_1) = 0.0064$.

Interprete the results!

Estimating the Accuracy of a Quadratic Regression Model

Below the bootstrap standard error estimates and the standard linear regression estimates that result from fitting the quadratic model to the data. Since this model provides a good fit to the data, there is now a better correspondence between the bootstrap estimates of $SE(\hat{\beta}_0)$, $SE(\hat{\beta}_1)$, and $SE(\hat{\beta}_2)$.

ORDINARY NONPARAMETRIC BOOTSTRAP

```
In [24]: 1 summary(lm(mpg~horsepower+I(horsepower^2),data=Auto))$coef
```

A matrix: 3 × 4 of type dbl

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	56.900099702	1.8004268063	31.60367	1.740911e-109
horsepower	-0.466189630	0.0311246171	-14.97816	2.289429e-40
I(horsepower^2)	0.001230536	0.0001220759	10.08009	2.196340e-21

Compare again differences in the standard errors between the bootstrap estimates and the statistic estimates of $SE(\beta_0)$, $SE(\beta_1)$, and $SE(\beta_2)$.

Summarize and then interpret the results!