Lista de Exercícios:

Gramáticas

Teoria da Computação Prof^a. Jerusa Marchi

- 1. Para $\Sigma = \{a, b\}$ construa Gramáticas que gerem as seguintes Linguagens:
 - (a) $L = \{w \mid w \in \Sigma^* \text{ e o último símbolo da cadeia seja igual ao primeiro}\}.$
 - (b) $L = \{ w \mid w \in \Sigma^* \text{ e a subcadeia "}bb" \not\in w \}.$
 - (c) $L = \{ w \mid w \in \Sigma^{\star} \text{ e o número de ocorrências do símbolo } b \text{ seja par} \}.$
 - (d) $L=\{w\mid w\in \Sigma^{\star} \text{ e o número de ocorrências do símbolo }a \text{ seja divisível por }3\}.$
 - (e) $L = \{w \mid w \in \Sigma^* \text{ e não possua } a\text{'s consecutivos}\}.$
 - (f) $L=\{w\mid w\in \Sigma^{\star} \text{ e o número de ocorrências do símbolo }a$ seja igual ao número de ocorrências do símbolo $b\}.$
- 2. Para $\Sigma = \{a, b, c\}$ construa Gramáticas que gerem as seguintes Linguagens:
 - (a) $L = \{ w \mid w \in \Sigma^* \text{ e } w = a^n b^m c^n, \text{ com } n > 0 \text{ e } m \ge 0 \}.$
 - (b) $L = \{ w \mid w \in \Sigma^* \text{ e } w = a^n b^n c^n, \text{ com } n > 0 \}.$
 - $\text{(c)} \ \ L=\{w\mid w\in \Sigma^{\star} \text{ e } w=a^ib^jc^jd^i, \text{ com } i,j\geq 0\}.$