Сложность вычислений

Вероятностная проверка на простоту без ошибок

Чернис Константин, группа 694

Содержание

1	Введение в сложностные классы	2
2	Сертификаты	3
3	Алгоритм Миллера-Рабина	3
	3.1 Описание алгоритма	
	3.2 Доказательство оценки на число свидетелей	
	3.3 Сертификат	6
4		7
	4.1 Пример	7
	4.2 Алгоритм Гольдвассер-Килиана	8
	4.3 Алгоритм Эдельмана-Хуана	9
	4.4 Сертификат	10
5	Алгоритм ЕСРР	10
	5.1 Описание	10
	5.2 Сертификат	11
	5.3 Время работы	
6	Практика	11
7	Список литературы	11

В данном проекте доказываются избранные факты вероятностной проверки чисел на простоту, а также проводятся некоторые эксперименты.

1. Введение в сложностные классы

Для начала опишем сложностные классы, затрагиваемые данной задачей:

Определение 1.1. Вероятностной машиной Тьюринга называется детерминированная машина Тьюринга M с двумя аргументами x (аргумент вероятностной машины) и r (случайные биты), где длина r есть некоторая функция от длины x. Результатом работы M на входе x будет вероятностое распределение, индуцированное данным x и равномерным на всех значениях r. Временем работы M на данном x будем считать максимальное время работы M(x,r) для всех r указанной длины. Так же определяется и использованная память.

Определение 1.2. Классом **RP** называется класс языков A, для которых существует полиномиальный в худшем случае вероятностный алгоритм V, такой что:

- если $x \in A$, то $P_r[V(x,r) = 1] \geqslant \frac{1}{2}$;
- если $x \notin A$, то $P_r[V(x,r) = 1] = 0$.

Определение 1.3. Классом **coRP** называется класс языков A, для которых существует полиномиальный в худшем случае вероятностный алгоритм V, такой что:

- если $x \in A$, то $P_r[V(x,r)=1]=1$;
- если $x \notin A$, то $P_r[V(x,r)=1] \leqslant \frac{1}{2}$.

Определение 1.4. Классом **ZPP** называется класс языков A, для которых существует вероятностный алгоритм A, такой что

$$x \in A \iff \forall r \ V(x,r) = 1,$$

а для каждого x ожидаемое по r время работы полиномиально.

Обозначение ${\bf ZPP}$ расшифровывается как "zero-error probabistic polynomial".

Утверждение 1.1. $ZPP = RP \cap coPR$.

Таким образом, для вероятностной проверки чисел на простоту достаточно предоставить алгоритмы проверки чисел на простоту из **RP** и **coRP**, после чего запускать их по очереди до тех пор, пока один из алгоритмов не выдаст ответ, в котором он уверен. Вероятность отсутствия ответа будет уменьшаться минимум в 4 раза после каждой итерации цикла проверки, так что за полиномиальное число шагов вероятность станет экспоненциально малой и можно будет применить детерминированный экспоненциальный алгоритм.

2. Сертификаты

Утверждение 2.1. $RP \subset NP$

Доказательство. Действительно, любое значение r, при котором V(x,r)=1, будет доказательством того, что $x \in A$.

Следствие 2.1. $coRP \subset coNP$

Таким образом, в силу того, что язык простых чисел, как будет показано далее, лежит в \mathbf{ZPP} , для любого $n \in \mathbb{Z}$ существует либо сертификат простоты, либо сертификат того, что n составное, проверяемый за полиномиальное время. Таким образом, единожды проверив число на простоту за вероятностно полиномиальное время, в дальнейшем можно снова доказать корректность проверки уже за детерминированный полином. Эти сертификаты будут указаны для каждого описанного ниже алгоритма соответственно.

В следующей секции будет описан алгоритм из coRP, а в секции 4-из RP.

3. Алгоритм Миллера-Рабина

Большинство алгоритмов вероятностной проверки на простоту из \mathbf{coRP} опираются на какое-либо свойство простых чисел, то есть проверяют необходимое условие. Наиболее популярным среди них является алгоритм Миллера-Рабина, который гарантирует, что для нечётного составного минимум 75% чисел от 1 до n-1 позволяют определить его непростоту.

Говоря в терминах Определения 1.3, A — множество простых чисел, и для $x \notin A$ $P_r[V(x,r)=1]\leqslant \frac{1}{4}$, где $r\in \overline{1,n-1}$. Кроме того, как будет показано ниже, проверяемое условие действительно является необходимым, то есть для $x\in A$ $P_r[V(x,r)=1]=1$, то есть алгоритм Миллера-Рабина лежит в ${\bf coNP}$.

3.1 Описание алгоритма

Заданное нечётное целое число n>1 можно представить в виде $n-1=2^e k$, где $e\geqslant 1$ (т.к. n нечётно) и k нечётное. Применяя к $x^{n-1}-1=x^{2^e k}-1$ формулу разности квадратов, получаем:

$$x^{2^{e_k}} - 1 = \left(x^{2^{e-1}k}\right)^2 - 1$$

$$= \left(x^{2^{e-1}k} - 1\right) \left(x^{2^{e-1}k} + 1\right)$$

$$= \left(x^{2^{e-2}k} - 1\right) \left(x^{2^{e-2}k} + 1\right) \left(x^{2^{e-1}k} + 1\right)$$

$$\vdots$$

$$= \left(x^k - 1\right) \left(x^k + 1\right) \left(x^{2k} + 1\right) \left(x^{4k} + 1\right) \dots \left(x^{2^{e-1}k} + 1\right)$$

Если n простое и $a \in \overline{1, n-1}$, то по малой теореме Ферма $a^{n-1}-1 \equiv 0 \mod n$. Используя разложение, полученное выше, имеем

$$(x^k - 1)(x^k + 1)(x^{2k} + 1)(x^{4k} + 1)\dots(x^{2^{e-1}k} + 1) \equiv 0 \mod n$$

Таким образом, для простого n один из множителей должен делиться на n, то есть необходимым условием, нарушение которого означает, что число составное, является

$$a^k \equiv 1 \bmod n$$
 или $a^{2^i k} \equiv -1 \bmod n$ для некоторого $i \in \overline{0, e-1}$.

Определение 3.1. Представим нечётное n > 1 в виде $n - 1 = 2^e k$, где e нечётно и выберем $a \in \overline{1, n - 1}$. Тогда a называется свидетелем для числа n, если не выполнено необходимое условие, то есть

$$a^k \not\equiv 1 \mod n$$
 и $a^{2^i k} \not\equiv -1 \mod n \ \forall i \in \overline{0, e-1}$.

Если же необходимое условие выполнено, то есть

$$a^k \equiv 1 \mod n$$
 или $a^{2^i k} \equiv -1 \mod n$ для некоторого $i \in \overline{0, e-1}$,

то a не является свидетелем для n.

Отметим, что уже сейчас можно построить вероятностный алгоритм проверки на простоту со сколь угодно малой вероятностью ошибки:

3.2 Доказательство оценки на число свидетелей

Для начала покажем, что оценка 75% неулучшаема:

Утверждение 3.1. Доля свидетелей для n = 9 составляет 3/4.

Доказательство. $n-1=8=2^3$, так что e=3 и k=1, и для проверки необходимого условия надо перебрать (a,a^2,a^3) . Из приведённой ниже таблицы видно, что свидетелями среди $\overline{1,8}$ являются 2,3,4,5,6,7, что составляет 6/8=3/4, что и требовалось.

Существует также доказательство неулучшаемости оценки при $n \to \infty$, оно приведено в [3].

Теорема 3.1. Пусть n > 1 нечётное составное.

Доля целых чисел среди $\overline{1,n-1}$, являющихся свидетелями числа n, превышает 75%, за исключением n=9, для которого доля составляет 75%.

Другими словами, доля целых чисел среди $\overline{1, n-1}$, не являющихся свидетелями числа n, меньше 25%, за исключением n=9, для которого доля составляет 25%.

Докажем более слабое утверждение:

Теорема 3.2. Если n > 1 нечётное и составное, то доля свидетелей числа n превышает 50%. Другими словами, больше 50% из $a \in \overline{1, n-1}$ удовлетворяют $a^k \not\equiv 1 \bmod n$ и $a^{2^i k} \not\equiv -1 \bmod n \ \forall i \in \overline{0, e-1}$.

Доказательство. Докажем, что доля не свидетелей для n меньше 50%, показав, что они образуют собственную подгруппу группы обратимых чисел mod n. В силу того, что порядок собственной подгруппы составляет максимум половину от порядка группы, множество свидетелей числа n содержит минимум половину обратимых чисел mod n и все необратимые числа mod n среди $\overline{1,n-1}$ (множество необратимых непусто в силу того, что n составное). Таким образом, доля свидетелей для числа n первышает 50%.

Случай 1: n является степенью простого числа, то есть $n=p^{\alpha}$, где p — нечётное простое и $\alpha\geqslant 2$.

Утверждение 3.2. Если $n=p^{\alpha}$ для простого p и $\alpha\geqslant 1$, то не свидетели для n являются корнями уравнения $a^{p-1}\equiv 1 \mod p^{\alpha}$, которые образуют группу по умножению mod n.

Доказательство. Обоснование приведено в [2].

Согласно Утверждению 2.2 свидетели непростоты образуют группу по умножению mod n. Порядок числа a, являющегося решением уравнения $a^{p-1} \equiv 1 \mod n$, делит p-1, так что он не делится на p. В то же время существуют обратимые mod n числа, порядок которых делится на p: примером такого числа является 1+p, чей порядок mod p^{α} составляет $p^{\alpha-1}$ (этот факт можно показать индукцией по r: база $-1+kp\equiv 1 \mod p$, переход $-(1+kp^r)^p\equiv 1 \mod p^{r+1}$). Таким образом, не свидетели mod n образуют собственную подгруппу в группе обратимых чисел mod n, что заканчивает доказательство этого случая.

Случай 2: n не является степенью простого. Пусть $i_0 \in \overline{0, e-1}$ — максимальное число, такое что $\exists a_0 \in \mathbb{Z}$ такой что $a^{2^{i_0}} \equiv -1 \mod n$. (В силу того, что $(-1)^{2^0} = -1$, требуемый i_0 существует, причём a_0 взаимно прост с n).

Множество

$$G_n = \{ a \in \overline{1, n-1} \mid a^{2^{i_0}k} \equiv \pm 1 \bmod n \}$$

является группой по умножению mod n и содержит все a, удовлетворяющие одному из двух условий:

(1)
$$a^k \equiv 1 \mod n$$
,

(2) $a^{2^{ik}} \equiv 1 \mod n$ для одного из $i \in \overline{0, e-1}$.

Если $a^k \equiv 1 \mod n$, то $a^{2^{i_0}k} \equiv 1 \mod n$. Если же $a^{2^ik} \equiv 1 \mod n$ для некоторого $i \in \overline{0,e-1}$, то $\left(2^k\right)^{2^i} \equiv -1 \mod n$, причём $i \leqslant i_0$ в силу максимальности i_0 . Таким образом, $a^{2^{i_0}} \equiv -1 \mod n$, если $i=i_0$, и $a^{2^{i_0}} \equiv 1 \mod n$, если $i < i_0$. Отсюда все $a \in \overline{1,n-1}$, удовлетворяющие (1) или (2), лежат в G_n .

Покажем, что G_n является собственной подгруппой обратимых чисел mod n, для чего найдём обратимое число, не лежащее в G_n . Пусть p— простой делитель n, тогда представим n в виде $n = p^{\alpha}n'$, где $\alpha \geqslant 1$ и $p \nmid n'$. p^{α} и n' нечётные и не равны 1 (в силу того, что n не является степенью простого) $\implies p^{\alpha}, n' \geqslant 3$.

Согласно китайской теореме об остатках, $\exists \, a \in \overline{1,n-1}$, удовлетворяющий следующим двум уравнениям:

$$a \equiv a_0 \mod p^{\alpha}$$
, $a \equiv 1 \mod n'$.

Выше показали, что $(a_0, n) = 1 \implies (a, n) = 1$ (т.к. (a, n') = 1), то есть a является обратимым mod n. Тогда для доказательства того, что подгруппа G_n не является собственной, остаётся показать, что $a \notin G_n$.

$$a^{2^{i_0}k} \equiv a_0^{2^{i_0}k} \equiv (-1)^k \equiv -1 \mod p^\alpha \implies a^{2^{i_0}k} \not\equiv 1 \mod n$$

в силу того, что $-1 \not\equiv 1 \mod p^{\alpha}$ (т.к. $p^{\alpha} \geqslant 3$). Кроме того,

$$a^{2^{i_0}k} \equiv 1 \bmod n' \implies a^{2^{i_0}k} \not\equiv -1 \bmod n$$

в силу того, что $-1 \not\equiv 1 \mod n'$ (т.к. $n' \geqslant 3$). Таким образом, $a \not\in G_n$, что завершает доказательство данного случая, а с ним и всей теоремы.

Теорема 2.1 доказазывается аналогичным образом, оценка 1/4 на число не свидетелей достигается за счёт двукратного применения приёма с собственной подгруппой. Полное доказательство описано в [2].

3.3 Сертификат

Из алгоритма видно, что сертификатом является определённый выше свидетель— число a, для которого не выполнено необходимое условие простоты. Сложность проверки сертификата составляет $O(\log^3 n)$, если умножение производится за $O(\log^2 n)$, то есть проверка сертификата полиномиальна.

На самом деле, для большинства составных чисел доля свидетелей гораздо выше 75%. Для демонстрации этого факта построим гистограмму долей свидетелей для всех составных чисел до 10^4 :

В следующей секции будет описан алгоритм из \mathbf{RP} . В силу нетривиальности оного будет дано неформальное интуитивное описание. Полный алгоритм и доказательство корректности доступно в [4].

4. Алгоритм Эдельмана-Хуана

Для начала проиллюстрируем метод проверки на простоту, используемый в алгоритме Эдельмана-Хуана.

4.1 Пример

Рассмотрим следующее доказательство простоты числа 11:

- (1) (4-1,11) = 1
- (2) $4^5 = 1024 \equiv 1 \mod 11$
- (3) 5 простое число

Пусть 11 не является простым. Тогда существует простое $p\leqslant \sqrt{11}<4$, делящее 11. Из (1) получаем, что 4 mod $p\not\equiv 1$ в $Z/pZ^*\Longrightarrow ord(4\bmod p)\not\equiv 1$. Из (2) следует, что $ord(4\bmod p)\mid 5$. Наконец, из (3) получаем, что $ord(4\bmod p)\equiv 5$, что невозможно, так как p<4.

Заметим, что без (3) рассуждение выше дало бы сведение доказательства простоты числа 11 к простоте числа 5. Идея сведения доказательства простоты одного числа к простоте другого является ключевой в описываемом алгоритме.

Построим алгоритм на технике из примера:

Алгоритм: Для достаточно больших p за вероятностно полиномальное время можно свести доказательство простоты p к простоте $\frac{p-1}{2}$. Для этого надо лишь перебирать случайные $a \in Z_{>0}$, пока не будет выполнено

$$(1) (a-1,p) = 1$$

$$(2) \ a^{\frac{p-1}{2}} \equiv 1 \bmod p$$

Для p > 2 существует $\frac{p-3}{2}$ чисел a < p, удовлетворяющих этим требованиям, так что алгоритм будет работать за вероятностно полиномиальное время.

Возвращаясь к проверке на простоту числа 11, можно было свести простоту числа 5 к простоте числа 2, которую можно проверить явно. В то же время данный алгоритм не применим в общем случае, ибо сведение простоты числа 13 к простоте числа 6 бесполезно.

В следующем подпункте будет описан рабочий алгоритм, обеспечивающий сведение.

4.2 Алгоритм Гольдвассер-Килиана

Алгоритм Гольдвассер-Килиана обходит описанную выше проблему за счёт использования групп, отличных от Z/pZ^* . Для этого введем эллиптические кривые:

Определение 4.1. Эллиптической кривой называется кривая, задаваемая уравнением вида

$$y^2 = x^3 + Ax + b,$$

для которой выполнено $\Delta = 4A^3 + 27B^3 \neq 0$.

Алгоритм: Случайным образом ищем $a,b \in Z/pZ$, удовлетворяющие следующим условиям:

- (1) $f(x) = x^3 ax + b$ не имеет кратных корней
- (2) число рациональных точек на эллиптической кривой $y^2 = f(x)$ равно 2*m для некоторого $m \in \mathbb{Z}$

Далее ищем пару $s,t\in Z/pZ$, таку что

- (1) точка $v = \langle s, t \rangle$ лежит на кривой
- (2) m*v=1 в группе, ассоциированной с кривой

Можно показать, что что если найти v, удовлетворяющую условию, то доказательство простоты p сводится к доказательству простоты m (то есть получено утверждение m простое $\implies p$ простое). Кроме того, из гипотезы Римана для конечных полей $m \approx \frac{p}{2}$.

С другой стороны, для того, чтобы описанный выше алгоритм был вероятностно полиномиальным, требуется, чтобы на случайно сгенерированной эллиптической

кривой с высокой вероятностью было дважды простое число рациональных точек. Гипотеза Римана гарантирует, что число точек находится в интервале

$$[p+1-2\sqrt{p}, p+1+2\sqrt{p}]$$

В силу того, что этот интервал слишком мал, вероятностная полиномиальность описанного выше алгоритма до сих пор не доказана. Эта проблема решена в алгоритме Эдельмана-Хуана, описанном ниже.

4.3 Алгоритм Эдельмана-Хуана

Введём понятие гиперэллиптических кривых:

Определение 4.2. Гиперэллиптической кривой рода g > 1 называется алгебраическая кривая, задаваемая уравнением вида

$$y^2 + h(x)y = f(x),$$

где f(x) — многочлен степени n=2g+1>4 или с n=2g+2>4 различными корнями и h(x) — многочлен степени < g+2.

Для расширения множества чисел, для которых существует сведение, описанное в предыдущем пукте, в алгоритме Эдельмана-Хуана используется обобщённый алгоритм Гольдвассер-Килиана. Кроме того, вводится сведение нового типа: в нём эллиптические кривые заменяются на матрицы Якоби гиперэллиптических кривых второго рода. Тогда сведение нового типа вычисляется за вероятностно полиномиальное время следующим образом:

Алгоритм:

- 1) Случайным образом ищем многочлен $f \in Z/pZ[x]$ степени 6, который не имеет кратных корней.
- 2) Считаем число n рациональных точек на матрице Якоби кривой, задаваемой уравнением $y^2 = f(x)$
- 3) Находим такие $s,t\in Z/pZ,t\neq 0$, что точка $\langle s,t\rangle$ лежит на кривой и $v=\langle s,t\rangle-\langle s,-t\rangle$ (или, точнее, $v=\phi(\langle s,t\rangle)-\phi(\langle s,-t\rangle)$), где ϕ —вложение кривой в группу матриц Якоби) удовлетворяет равенству n*v=1 в группе, ассоциированной с матрицами Якоби.

Получаем сведение доказательства простоты p к доказательству простоты n, которое, как и раньше, работает только если n—простое. В силу того, что n простое с высокой вероятностью, новый алгоритм является вероятностно полиномиальным.

С другой стороны, в силу гипотезы Римана для конечных полей $n \approx p^2$. Таким образом, алгоритм Эдельмана-Хуана обходит числа, для которых не выходит получить сведение с помощью обобщённого алгоритма Гольдвассер-Килиана, производя несколько итераций нового сведения. В силу почти случайного выбора n данный способ позволяет избежать чисел из плохого множества.

Для завершения построения алгоритма остаётся научиться быстро считать число рациональных точек на эллиптических кривых, алгоритм Шуфа [5] справляется с этой задачей за полиномиальное время. Получаем

Теорема 4.1. Существует $c \in Z_{\geqslant 0}$ и полиномиально вычислимая всюду всюду определённая функция $F: Z_{\geqslant 0}^2 \to \{0,1\}$, такая что

1. $\forall n \in \mathbb{Z}_{\geqslant 0}$, где n составное, и $\forall r \in \mathbb{Z}_{\geqslant 0}$

$$F(n,r) = 0$$

2. $\forall p \in \mathbb{Z}_{\geq 0}$, где p простое,

$$\frac{\#\{r: |r| \leqslant |p|^e \text{ и } F(n,r) = 1\}}{\#\{r: |r| \leqslant |p|^e\}} \geqslant \frac{1}{2},$$

то есть проверка на простоту лежит в \mathbf{RP} . Учитывая, что в секции 3 было показано, что эта задача лежит в \mathbf{coRP} , получаем, что она лежит в $\mathbf{ZPP} = \mathbf{RP} \cap \mathbf{coPR}$.

4.4 Сертификат

В данном случае сертификатом является последовательность чисел, к которым производится сведение доказательства простоты в процессе работы алгоритма, а для его проверки требуется лишь проверить корректность сведений и проверить полученное небольшое число на простоту делением на все числа в интервале $[2, \sqrt{n}]$, что делается за полином.

Наконец, рассмотрим наиболее эффективный на данный момент **RP** алгоритм проверки на простоту, алгоритм Аткина-Морейна.

5. Алгоритм ЕСРР

5.1 Описание

Алгоритм ЕСРР построен на идее сведений, аналогичной алгоритму Гольдвассер-Килиана, но для ускорения отказывается от использования неэффективного алгоритма Шуфа для подсчёта числа рациональных точек на эллиптической кривой. Вместо этого с помощью комплексного умножения случайно генерируется кривая, число рациональных точек на которой легко подсчитать.

Сведения в алгоритме ЕСРР основаны на следующей теореме:

Теорема 5.1. Пусть $N \in \mathbb{N}_+$, и эллиптическая кривая E задаётся уравнением

$$y^2 = x^3 + ax + b \bmod N$$

Рассматрим E над $\mathbb{Z}/N\mathbb{Z}$, используя обычный закон сложения и считая 0 нейтральным элементом на E.

Пусть m целое. Если существует простое число q, делящее m большее, чем $\left(\sqrt[4]{N}+1\right)^2$ и на E существует точка P, для которой выполнено

- (1) mP = 0
- (2) (m/q)Р определено и не равно 0,

то N простое.

5.2 Сертификат

В силу того, что ЕСРР, также как и Гольдвассер-Килиан, производит цепочку сведений, он также создаёт сертификат, хоть и не является вероятностно полиномиальным

5.3 Время работы

Эвристическая (но не доказанная) асимптотика ECPP равна $O(\log^4 n)$. Продемонстрируем это, построив зависимость time от $\log\log n$:

6. Практика

На практике для проверки на простоту достаточно по очереди запускать алгоритм Миллера-Рабина и ЕСРР, пока один из них не выдаст ответ без ошибки. Чтобы получить вероятностно полиномиальный алгоритм, можно также параллельно запустить алгоритм Эдельмана-Хуана.

7. Список литературы

- [1] Д.В. Мусатов. "Сложность вычислений."
- [2] Conrad, Keith. (2017). "The Miller Rabin Test."
- [3] Monier, Louis. (1980). "Evaluation and comparison of two efficient probabilistic primality testing algorithms." Theoretical Computer Science. 12. 97–108.

- [4] M. Adleman, Leonard & A. Huang, Ming-Deh. (1992). "Primality Testing and Abelian Varieties Over Finite Fields." 10.1007/BFb0090185.
- [5] Schoof, René. "Counting points on elliptic curves over finite fields." Journal de théorie des nombres de Bordeaux 7.1 (1995): 219-254. http://eudml.org/doc/247664>.
- [6] Atkin, A. O. L., & Morain, F. (1993). "Elliptic curves and primality proving." Mathematics of Computation, 61(203), 29-29. doi:10.1090/s0025-5718-1993-1199989-x