DS 4400

Machine Learning and Data Mining I Spring 2024

David Liu
Khoury College of Computer Science
Northeastern University

Outline

- Decision trees
 - Information gain / entropy measures
 - Training algorithm
 - Example
- Ensemble models
 - Bagging
 - Boosting

Decision Tree

A possible decision tree for the data:

- Each internal node: test one attribute X_i
- Each branch from a node: selects one value for X_i
- Each leaf node: predict Y (or $p(Y \mid x \in \text{leaf})$)

Learning Decision Trees

- Learning the simplest (smallest) decision tree is an NP-complete problem [Hyafil & Rivest '76]
- Resort to a greedy heuristic:
 - Start from empty decision tree
 - Split on next best attribute (feature)
 - Recurse

Key Idea: Use Recursion Greedily

Splitting

Would we prefer to split on X_1 or X_2 ?

X ₁	X ₂	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Splitting

Would we prefer to split on X_1 or X_2 ?

Idea: use counts at leaves to define probability distributions, so we can measure uncertainty!

X_1	X_2	Υ
Т	Т	Т
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Use entropy-based measure (Information Gain)

Entropy

Suppose X can have one of m values... V_{1} , V_{2} , ... V_{m}

$$P(X=V_1) = p_1$$
 $P(X=V_2) = p_2$ $P(X=V_m) = p_m$

What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution? It's

$$H(X) = -p_1 \log_2 p_1 - p_2 \log_2 p_2 - \dots - p_m \log_2 p_m$$
$$= -\sum_{j=1}^m p_j \log_2 p_j$$

H(X) = The entropy of X

- "High Entropy" means X is from a uniform (boring) distribution
- "Low Entropy" means X is from varied (peaks and valleys) distribution

High/Low Entropy

Which distribution has high entropy?

Suppose I'm trying to predict output Y and I have input X

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Let's assume this reflects the true probabilities

Suppose I'm trying to predict output Y and I have input X

X = College Major

Y = Likes "Gladiator"

X	Υ	
Math	Yes	
History	No	
CS	Yes	
Math	No	
Math	No	
CS	Yes	
History	No	
Math	Yes	

Let's assume this reflects the true probabilities

E.G. From this data we estimate

•
$$P(LikeG = Yes) = 0.5$$

•
$$P(Major = Math) = 0.5$$

Note:

•
$$H(X) = 1.5$$

$$\bullet H(Y) = 1$$

X = College Major

Y = Likes "Gladiator"

Х	Y
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y|X=v) = The entropy of Yamong only those records in which X has value V

- H(Y|X=Math) =
- H(Y|X=History) =
- H(Y/X=CS) =

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Specific Conditional Entropy:

H(Y|X=v) = The entropy of Yamong only those records in which X has value V

- H(Y|X=Math) = 1
- H(Y|X=History) = 0
- $\bullet \ H(Y|X=CS)=0$

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average specific conditional entropy of Y

- = if you choose a record at random what will be the conditional entropy of Y, conditioned on that row's value of X
- = Expected number of bits to transmit Y if both sides will know the value of X

$$= \Sigma_{j} Prob(X=v_{j}) H(Y \mid X=v_{j})$$

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average conditional entropy of Y

$$= \sum_{j} Prob(X=v_j) H(Y \mid X=v_j)$$

V_j	$Prob(X=v_j)$	$H(Y \mid X = v_j)$
Math		
History		
CS		

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Conditional Entropy:

H(Y|X) = The average conditional entropy of Y

$$= \sum_{i} Prob(X=v_i) H(Y \mid X=v_i)$$

V_j	$Prob(X=v_j)$	$H(Y \mid X = v_j)$
Math	0.5	1
History	0.25	0
CS	0.25	0

$$H(Y|X) = 0.5 * 1 + 0.25 * 0 + 0.25 * 0 = 0.5$$

Information Gain

X = College Major

Y = Likes "Gladiator"

X	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Information Gain:

IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

- H(Y) =
- H(Y|X) =
- Thus IG(Y|X) =

Information Gain

X = College Major

Y = Likes "Gladiator"

Х	Υ
Math	Yes
History	No
CS	Yes
Math	No
Math	No
CS	Yes
History	No
Math	Yes

Definition of Information Gain:

IG(Y|X) = I must transmit Y. How many bits on average would it save me if both ends of the line knew X?

$$IG(Y|X) = H(Y) - H(Y|X)$$

- H(Y) = 1
- H(Y|X) = 0.5
- Thus IG(Y|X) = 1 0.5 = 0.5

Relevance for decision trees

- Multiple features $X_1, ..., X_d$
- Label Y: Initial entropy H(Y)
- How much each feature X_i helps explain uncertainty in Y
 - Compute Information gain

$$IG(Y|X_i) = H(Y) - H(Y|X_i)$$

Learning Decision Trees

- Start from empty decision tree
- Split on next best attribute (feature)
 - Use, for example, information gain to select attribute:

$$\arg\max_{i} IG(X_{i}) = \arg\max_{i} H(Y) - H(Y \mid X_{i})$$

Recurse

ID3 algorithm uses Information Gain Information Gain reduces uncertainty on Y

Impurity Metrics

Split a node according to max reduction of impurity

1. Entropy

2. Gini Index

– For binary case with prob p_0 , p_1 :

$$I(p_0, p_1) = 2p_0p_1 = 2p_0(1 - p_0)$$

– For multi-class with prob p_1, \dots, p_K :

$$I(p_1, ... p_K) = \sum_{i=1}^{K} p_i (1 - p_i)$$

- Properties
 - Impurity metrics have value 0 for pure nodes
 - Impurity metrics are maximized for uniform distribution (nodes with most uncertainty)

Overfitting

Solutions against Overfitting

- Standard decision trees have no learning bias
 - Training set error is always zero!
 - (If there is no label noise)
 - Lots of variance
 - Must introduce some bias towards simpler trees
- Many strategies for picking simpler trees
 - Fixed depth
 - Minimum number of samples per leaf
- Pruning
 - Remove branches of the tree that increase error using cross-validation

Real-valued Features

- Change to binary splits by choosing a threshold
- One method:
 - Sort instances by value, identify adjacencies with different classes

Choose among splits by InfoGain()

Decision Boundary

- Decision trees divide the feature space into axisparallel (hyper-)rectangles
- Each rectangular region is labeled with one label

Decision Trees vs Linear Models

Regression Trees

Summary Decision Trees

- Greedy method for training
 - Not based on optimization or probabilities
- Uses impurity metric (e.g., information gain or Gini index) for splitting
- Advantages
 - Interpretability of decisions
- Limitations
 - Decision trees are prone to overfitting
 - Can be addressed by pruning or using ensembles of decision trees

Bias/Variance Tradeoff

Hastie, Tibshirani, Friedman "Elements of Statistical Learning" 2001

How to reduce variance of single decision tree?

Ensemble Learning

Consider a set of classifiers h_1 , ..., h_L

Idea: construct a classifier $H(\mathbf{x})$ that combines the individual decisions of $h_1, ..., h_L$

- e.g., could have the member classifiers vote, or
- e.g., could use different members for different regions of the instance space

Successful ensembles require diversity

- Classifiers should make different mistakes
- Can have different types of base learners

Combining Classifiers: Averaging

Final hypothesis is a simple vote of the members

Practical Applications

Goal: predict how a user will rate a movie

- Based on the user's ratings for other movies
- and other peoples' ratings
- with no other information about the movies

This application is called "collaborative filtering"

Netflix Prize: \$1M to the first team to do 10% better then Netflix' system (2007-2009)

Winner: BellKor's Pragmatic Chaos – an ensemble of more than 800 rating systems

Netflix Prize

Machine learning competition with a \$1 million prize

Reduce error

- Suppose there are 25 base classifiers
- Each classifier has error rate, $\varepsilon = 0.35$
- Assume independence among classifiers
- Probability that the ensemble classifier makes a wrong prediction:

Reduce Variance

Averaging reduces variance:

$$Var(\overline{X}) = \frac{Var(X)}{N}$$
 (when predictions are independent)

Average models to reduce model variance One problem:

only one training set

where do multiple models come from?

How to Achieve Diversity

How to Achieve Diversity

- Avoid overfitting
 - Vary the training data
- Features are noisy
 - Vary the set of features

Two main ensemble learning methods

- Bagging (e.g., Random Forests)
- Boosting (e.g., AdaBoost)

Bagging

- Leo Breiman (1994)
- Take repeated bootstrap samples from training set D
- Bootstrap sampling: Given set D containing N training examples, create D' by drawing N examples at random with replacement from D.

Bagging:

- Create k bootstrap samples $D_1 \dots D_k$.
- Train distinct classifier on each D_i .
- Classify new instance by majority vote / average.

General Idea

Example of Bagging

Sampling with replacement

Data ID	Training Data									
Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- Sample each training point with probability 1/n
- Out-Of-Bag (OOB) observation: point not in sample

Bootstrap Samples

Bagging

- Can be applied to multiple classification models
- Very successful for decision trees
 - Decision trees have high variance
 - Don't prune the individual trees, but grow trees to full extent
 - Precision accuracy of decision trees improved substantially
- OOB average error used instead of Cross Validation

Example Distribution

Decision Tree Decision Boundary

100 Bagged Trees

shades of blue/red indicate strength of vote for particular classification

Random Forests

- Ensemble method specifically designed for decision tree classifiers
- Introduce two sources of randomness: "Bagging" and "Random input vectors"
 - Bagging method: each tree is grown using a bootstrap sample of training data
 - Random vector method: At each node, best split is chosen from a random sample of m attributes instead of all attributes

Random Forests

- Construct decision trees on bootstrap replicas
 - Restrict the node decisions to a small subset of features picked randomly for each node
- Do not prune the trees
 - Estimate tree performance on out-of-bootstrap data
- Average the output of all trees (or choose mode decision)

Trees are de-correlated by choice of random subset of features

Random Forest Algorithm

- 1. For b = 1 to B:
 - (a) Draw a bootstrap sample \mathbf{Z}^* of size N from the training data.
 - (b) Grow a random-forest tree T_b to the bootstrapped data, by recursively repeating the following steps for each terminal node of the tree, until the minimum node size n_{min} is reached.
 - i. Select m variables at random from the p variables.
 - ii. Pick the best variable/split-point among the m.
 - iii. Split the node into two daughter nodes.
- 2. Output the ensemble of trees $\{T_b\}_1^B$.

To make a prediction at a new point x:

Regression:
$$\hat{f}_{rf}^B(x) = \frac{1}{B} \sum_{b=1}^B T_b(x)$$
.

Classification: Let $\hat{C}_b(x)$ be the class prediction of the bth random-forest tree. Then $\hat{C}_{\rm rf}^B(x) = majority\ vote\ \{\hat{C}_b(x)\}_1^B$.

If m=p, this is equivalent to Bagging with Decision Trees as base learner

Effect of Number of Predictors

- p = total number of predictors; m = predictors chosen in each split
- Random Forests uses $m = \sqrt{p}$

Variable Importance

- Ensemble of trees looses somewhat interpretability of decision trees
- Which variables contribute mostly to prediction?
- Random Forests computes a Variable Importance metric per feature
 - For each tree in the ensemble, consider the split by the particular feature
 - How much information gain / Gini index decreases after the split
 - Average over all trees

Variable Importance Plots

FIGURE 8.9. A variable importance plot for the Heart data. Variable importance is computed using the mean decrease in Gini index, and expressed relative to the maximum.

Variable Importance

- Ensembles of trees loose in interpretability
 - Variable importance helps with determining important features
- Can be used as a filter method for feature selection
 - Train Random Forest model
 - Compute variable importance
 - Select top k features by highest important
 - Train other models with the k features