Name: Skylar Furey

Link to shared Colab Notebook: TODO

General directions for coding assignments are as follows. *Please avoid any unnecessary loops*. Use <u>broadcasting</u>, and write <u>vectorized</u>, efficient code. *Unless otherwise instructed*, please only use low-level mathematical operations (for example, math and linear algebra operators in numpy and tensorflow), and avoid using high-level implementations (for example, high-level implementations of methods from scikit-learn and keras). If you are unsure about the usage of any library/function, please contact the instructor.

Neural Networks (100 Points)

In this notebook we shall explore estimating neural networks for various tasks and in various frameworks.

Data and Setup

First, it may help to enable GPUs for the notebook:

- Navigate to Edit→Notebook Settings
- · select GPU from the Hardware Accelerator drop-down

Next, confirm that we can connect to the GPU with tensorflow.

(Note, it is fine if you can not connect to GPU, it just might take a little longer to run.)

```
import tensorflow as tf
device_name = tf.test.gpu_device_name()
if device_name != '/device:GPU:0':
   print('GPU device not found')
else:
   print('Found GPU at: {}'.format(device_name))
```

Let's import additional packages of use.

```
%matplotlib inline
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats
import pandas as pd
```

[40 Points] Neural Networks, the Easy Way!

First, we are going to explore training neural networks with keras, which provides a very simple interface to training models.

[20 points] 2d Classification

Reading data

4

Let's use some helper functions to read in pregenerated 2d data for classification. X and Y will be N \times 2 input features and N \times 1 binary output labels, respectively.

```
def read_dataset(url):
    data = pd.read_csv(url).to_numpy()
    X = data[:, :-1]
    Y = data[:, -1, None]
    return X.astype(np.float32), Y.astype(np.float32)

url2 = 'https://raw.githubusercontent.com/lupalab/comp755_f21/main/hw3_2.csv'
X, Y = read_dataset(url2)
```

[8 points] Setting up the model Use tf.keras. Sequential to set up a one hidden layer network, with 128 ReLU hidden units, for Binary classification. Hint: the output activation depends on the loss that you'll use below.

```
seqmodel = tf.keras.Sequential([
    tf.keras.layers.Dense(128, activation='relu', input_shape=(X.shape[1],)),
    tf.keras.layers.Dense(1, activation='sigmoid')
])

// usr/local/lib/python3.10/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shap super().__init__(activity_regularizer=activity_regularizer, **kwargs)
```

[8 points] "Compiling" the Model Next we will use the model's . compile() to specify the optimizer, loss, and accuracy metric to use with our classification problem.

```
from tensorflow.keras.metrics import BinaryAccuracy
from tensorflow.keras.losses import BinaryCrossentropy
seqmodel.compile(
   optimizer=tf.keras.optimizers.Adam(learning_rate=1e-2),
   loss=BinaryCrossentropy(), # TODO: hint tf.keras.losses, be careful about whether or not you are working in logit
   metrics=[BinaryAccuracy()]) # TODO: hint tf.keras.metrics
```

[4 points] Train and Plot Let's train the model and plot results.

```
def plot_grid(pred_func):
  # Reduce the number of grid points if there is a memory issue
  gridx = np.float32(np.linspace(-6.0, 6.0, 100))
  gridx1, gridx2 = np.meshgrid(gridx, gridx)
  g1 = np.reshape(gridx1, [-1, 1])
  g2 = np.reshape(gridx2, [-1, 1])
  func_vals = pred_func(np.concatenate((g1, g2), -1))
  plt.contourf(gridx1, gridx2, np.reshape(func_vals, gridx1.shape), 64)
  plt.xlabel('x1')
  plt.ylabel('x2')
  cbar = plt.colorbar()
  cbar.solids.set_edgecolor('face')
  plt.draw()
  return func_vals, g1, g2
# TODO fit the model on loaded data for 100 epochs
history = seqmodel.fit(X, Y, epochs=100, verbose=0)
plot_grid(seqmodel) # TODO: use an appriate lambda function
plt.scatter(X[np.equal(Y[:,-1], 0), 0], X[np.equal(Y[:,-1], 0), 1])
plt.scatter(X[np.equal(Y[:,-1], 1), 0], X[np.equal(Y[:,-1], 1), 1], marker='+')
```

0.12

0.00

[20 points] MNIST Digit Classification

-2

0

x1

2

Now we will similarly use keras to train a neural network to classify MNIST digits. That is the input is a vector of pixel values and we are classifying digits ('0', '1', ..., '9').

```
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.datasets import mnist
# load mnist dataset
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# convert to one-hot vector
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
# resize and normalize
x_train = np.reshape(x_train, [-1, 784])
x_train = x_train.astype('float32') / 255
x_{\text{test}} = \text{np.reshape}(x_{\text{test}}, [-1, 784])
x_test = x_test.astype('float32') / 255
     Downloading data from <a href="https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz">https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz</a>
      11490434/11490434 -
x train.shape
     (60000, 784)
```

[8 points] Setting up the model Use tf.keras.Sequential to set up a two hidden layer network, with 512 and 256 ReLU hidden units, respectively, for digit classification. Hint: the output activation depends on the loss that you'll use below.

```
seqmodel = tf.keras.Sequential([
    tf.keras.layers.Dense(512, activation='relu', input_shape=(784,)),
    tf.keras.layers.Dense(256, activation='relu'),
```

```
tf.keras.layers.Dense(10, activation='softmax')
]) # TODO
```

[8 points] "Compiling" the Model Next we will use the model's . compile() to specify the optimizer, loss, and accuracy metric to use with our classification problem.

[4 points] Train and Plot Let's train the model and plot results.

seqmodel.fit(x_train, y_train, batch_size=64, epochs=20)

```
Epoch 1/20
938/938
                            - 11s 11ms/step - accuracy: 0.7965 - loss: 0.8123
Epoch 2/20
938/938 -
                            - 13s 14ms/step - accuracy: 0.9437 - loss: 0.1969
Epoch 3/20
938/938 -
                           - 12s 13ms/step - accuracy: 0.9611 - loss: 0.1359
Epoch 4/20
938/938 -
                            - 20s 12ms/step - accuracy: 0.9704 - loss: 0.1058
Epoch 5/20
938/938 -
                            - 20s 11ms/step - accuracy: 0.9762 - loss: 0.0845
Epoch 6/20
938/938 -
                            - 22s 13ms/step - accuracy: 0.9812 - loss: 0.0677
Epoch 7/20
938/938 -
                            - 18s 10ms/step - accuracy: 0.9850 - loss: 0.0540
Epoch 8/20
938/938 -
                            - 11s 11ms/step - accuracy: 0.9884 - loss: 0.0446
Epoch 9/20
938/938 -
                            - 11s 11ms/step - accuracy: 0.9900 - loss: 0.0373
Epoch 10/20
938/938 -
                            - 19s 10ms/step - accuracy: 0.9913 - loss: 0.0330
Epoch 11/20
938/938
                            - 11s 11ms/step - accuracy: 0.9931 - loss: 0.0268
Epoch 12/20
938/938
                            - 20s 11ms/step - accuracy: 0.9949 - loss: 0.0229
Epoch 13/20
938/938 -
                             - 20s 11ms/step - accuracy: 0.9962 - loss: 0.0188
Epoch 14/20
938/938 -
                            - 20s 11ms/step - accuracy: 0.9973 - loss: 0.0144
Epoch 15/20
938/938 -
                            - 20s 10ms/step - accuracy: 0.9981 - loss: 0.0123
Epoch 16/20
938/938 -
                            - 11s 11ms/step - accuracy: 0.9979 - loss: 0.0113
Epoch 17/20
938/938 -
                            - 19s 10ms/step - accuracy: 0.9989 - loss: 0.0085
Epoch 18/20
938/938
                            - 11s 12ms/step - accuracy: 0.9990 - loss: 0.0075
Epoch 19/20
938/938
                            - 21s 12ms/step - accuracy: 0.9993 - loss: 0.0059
Epoch 20/20
938/938 -
                            - 19s 10ms/step - accuracy: 0.9995 - loss: 0.0047
<keras.src.callbacks.history.History at 0x7c5602cc6c80>
```

Test accuracy: 98.2%

√ [60 Points] Neural Networks, a Trickier Scenerio!

We've talked about custom losses with neural networks. Here, we are going to build a network that taskes in a subset of pixels (flattened as a vector) and predicts both: 1) the remaining pixels (regression); 2) the label for the image (classification). (See the plots below.) again, avoid any unnecessary loops, using broadcasting, and writing vectorized code.

```
import tensorflow_datasets as tfds
(ds_train_org, ds_test_org), ds_info = tfds.load(
    'mnist',
    split=['train', 'test'],
    shuffle_files=True,
    as_supervised=True,
    with_info=True,
)
```

Downloading and preparing dataset 11.06 MiB (download: 11.06 MiB, generated: 21.00 MiB, total: 32.06 MiB) to /root DI Completed...: 100%

5/5 [00:00<00:00, 10.12 file/s]

Dataset mnist downloaded and prepared to /root/tensorflow_datasets/mnist/3.0.1. Subsequent calls will reuse this d

See what pixels were have as inputs/outputs.

```
mask_indices = (np.mod(np.arange(28), 2)[:, None]>0)*(np.mod(np.arange(28), 2)[None, :]>0)
plt.imshow(mask_indices)
plt.title('Predict White Pixel Given Black Pixels')
```

Text(0.5, 1.0, 'Predict White Pixel Given Black Pixels')

Making the datasets with inputs/outputs.

```
def normalize_img(image, label):
    """Normalizes images: `uint8` -> `float32`."""
    image_flat = tf.reshape(image, (-1,))
    return (
        tf.cast(image_flat[mask_indices.flatten()], tf.float32) / 255.,
        tf.cast(image_flat[~mask_indices.flatten()], tf.float32) / 255.,
```

```
10/29/24, 1:01 PM
```

```
label
)

ds_train = ds_train_org.map(
    normalize_img, num_parallel_calls=tf.data.AUTOTUNE)

ds_test = ds_test_org.map(
    normalize_img, num_parallel_calls=tf.data.AUTOTUNE)

plt.imshow(ds_train_org.as_numpy_iterator().next()[0])

plt.title('Original 28x28 Image')

plt.figure()

plt.imshow(np.reshape(ds_train_org.as_numpy_iterator().next()[0][mask_indices, 0], (14, 14)))

plt.title('14x14 Downsampled Input to Network')

plt.figure()

plt.title('Remaining (Nonshaded) Pixels are\nRegression Targets')

plt.imshow(ds_train_org.as_numpy_iterator().next()[0]*(~mask_indices[:, :, None]))

plt.imshow(mask_indices[:, :, None], alpha=0.25, cmap='Reds')
```


14x14 Downsampled Input to Network

Remaining (Nonshaded) Pixels are Regression Targets

[14 points] Let's define the neural network.

```
N_batch = 64 # batch size
tf.keras.backend.clear_session()
# nnet should be keras model that has 2 hidden layers with 256 hidden units
# and *linear* output layer (YOU NEED TO FIGURE OUT THE SIZE FOR OUTPUT).
# Hint: the last 10 outputs are used as logits for classification, the first
#
        outputs corresponed to the regression target plotted above
# Hint: use keras.models.Sequential([...])
nnet = keras.models.Sequential([
    tf.keras.layers.Dense(256, activation='linear'),
    tf.keras.layers.Dense(256, activation='linear'),
    tf.keras.layers.Dense(598, activation='linear')
])
nnet.build([N_batch, 14*14])
[22 points] Let's implement the loss for batches.
def loss(X, Ypix, Ylbls, nnet):
  Args:
    X: N_batch x 14*14 matrix of downsampled inputs
    Ypix: N_batch x ?? matrix of upsampling target pixels
    Ylbls: N_batch length array of integers indicating class labels
  Returns:
    loss: scalar of mse_regression_loss + classification_loss for batch
  nnet_output = nnet(X)
  pix_output = nnet_output[:, :-10]
  logit_output = nnet_output[:, -10:]
  # mse_loss should be a mean of the squared error of the upsample estimates,
  # averaged over all instances (and outputs) in the batch
  mse loss = tf.reduce mean(tf.square(Ypix - pix output)) # TODO
  # class loss should be a mean of the cross entropy loss of the
  # averaged over all instances in the batch
  # hint: use (sparse_softmax_cross_entropy_with_logits)
  class loss = tf.reduce mean(tf.nn.sparse softmax cross entropy with logits(labels=Ylbls, logits=logit output)) # TO
  return mse_loss + class_loss
def grad(X, Ypix, Ylbls, nnet):
  with tf.GradientTape() as tape:
    loss value = loss(X, Ypix, Ylbls, nnet)
  return tape.gradient(loss_value, nnet.weights)
We will now train this network with stochastic mini-batches 'by hand'.
optimizer = tf.keras.optimizers.Adam(learning_rate=0.0001)
nepochs = 25 # Could probably do better with more epochs, but should suffice
```

```
for i in range(nepochs):
  for B_X, B_Ypix, B_Ylbls in ds_train.batch(N_batch, drop_remainder=True):
   grads = grad(B_X, B_Ypix, B_Ylbls, nnet)
   optimizer.apply_gradients(zip(grads, nnet.weights))
  print("Loss at Epoch {:03d}: {:.3f}".format(
      i, loss(B_X, B_Ypix, B_Ylbls, nnet)))
→ Loss at Epoch 000: 0.330
     Loss at Epoch 001: 0.270
     Loss at Epoch 002: 0.248
     Loss at Epoch 003: 0.235
     Loss at Epoch 004: 0.226
     Loss at Epoch 005: 0.218
    Loss at Epoch 006: 0.213
     Loss at Epoch 007: 0.208
     Loss at Epoch 008: 0.205
     Loss at Epoch 009: 0.202
     Loss at Epoch 010: 0.200
     Loss at Epoch 011: 0.198
     Loss at Epoch 012: 0.197
    Loss at Epoch 013: 0.196
     Loss at Epoch 014: 0.195
     Loss at Epoch 015: 0.194
     Loss at Epoch 016: 0.193
     Loss at Epoch 017: 0.193
     Loss at Epoch 018: 0.192
     Loss at Epoch 019: 0.192
     Loss at Epoch 020: 0.191
     Loss at Epoch 021: 0.191
     Loss at Epoch 022: 0.191
     Loss at Epoch 023: 0.191
     Loss at Epoch 024: 0.191
```

[12 points] Let's visualize the output for an instance in the batch.

```
rind = np.random.randint(0, B_X.shape[0])
nnet_output = nnet(B_X)
pix_output = nnet_output[:, :-10]
logit_output = nnet_output[:, -10:]
plt.figure()
plt.title('Input, Predicted {}'.format(np.argmax(logit output[rind])))
plt.imshow(np.reshape(B X[rind], (14, 14)))
plt.figure()
plt.title('Reconstructed Upsampled Output')
x_recon = np.zeros((28*28), dtype=np.float32)
# TODO: fill x_recon so that it contains the 14*14 true pixel values
        and the remaining corresponding output predicted pixels
x_recon[mask_indices.flatten()] = B_X[rind]
x_recon[~mask_indices.flatten()] = pix_output[rind]
x_recon[x_recon<0.0] = 0.0 # clean up predicted pixels lower than 0
x_recon[x_recon>1.0] = 1.0 # clean up predicted pixels high than 1
plt.imshow(np.reshape(x recon, (28, 28)))
plt.figure()
plt.title('Reconstructed Upsampled Output')
x_{true} = np.zeros((28*28), dtype=np.float32)
# TODO: fill x_true so that it contains the 786 true pixel values
x_true[mask_indices.flatten()] = B_X[rind]
x_true[~mask_indices.flatten()] = B_Ypix[rind]
plt.imshow(np.reshape(x_true, (28, 28)))
```

<matplotlib.image.AxesImage at 0x7c5600c58610>

