11
$$A = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 5 & 0 & 0 \end{bmatrix} V^{T}$$
 and $A^{+} = V \begin{bmatrix} .2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} .12 \\ .16 \\ 0 \end{bmatrix}$; $A^{+}A = \begin{bmatrix} .36 & .48 & 0 \\ .48 & .64 & 0 \\ 0 & 0 & 0 \end{bmatrix}$; $AA^{+} = \begin{bmatrix} 1 \end{bmatrix}$

- 12 The zero matrix has no pivots or singular values. Then $\Sigma = \text{same 2 by 3 zero matrix}$ and the pseudoinverse is the 3 by 2 zero matrix.
- **13** If det A = 0 then rank(A) < n; thus rank $(A^+) < n$ and det $A^+ = 0$.
- **14** A must be symmetric and positive definite, if $\Sigma = \Lambda$ and U = V = eigenvector matrix Q is orthogonal.
- **15** (a) $A^{T}A$ is singular (b) This x^{+} in the row space does give $A^{T}Ax^{+} = A^{T}b$ (c) If (1,-1) in the nullspace of A is added to x^{+} , we get another solution to $A^{T}A\widehat{x} = A^{T}b$. But this \widehat{x} is longer than x^{+} because the added part is orthogonal to x^{+} in the row space.
- **16** x^+ in the row space of A is perpendicular to $\hat{x} x^+$ in the nullspace of $A^T A =$ nullspace of A. The right triangle has $c^2 = a^2 + b^2$.
- 17 $AA^+p = p$, $AA^+e = 0$, $A^+Ax_r = x_r$, $A^+Ax_n = 0$.
- **18** $A^+ = V\Sigma^+U^{\mathrm{T}}$ is $\frac{1}{5}[.6 \ .8] = [.12 \ .16]$ and $A^+A = [1]$ and $AA^+ = \begin{bmatrix} .36 \ .48 \end{bmatrix}$ = projection.
- **19** L is determined by ℓ_{21} . Each eigenvector in S is determined by one number. The counts are 1+3 for LU, 1+2+1 for LDU, 1+3 for QR, 1+2+1 for $U\Sigma V^{\mathrm{T}}$, 2+2+0 for $S\Lambda S^{-1}$.
- **20** LDL^{T} and $Q\Lambda Q^{T}$ are determined by 1 + 2 + 0 numbers because A is symmetric.
- 21 Column times row multiplication gives $A = U \Sigma V^{\mathrm{T}} = \sum \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\mathrm{T}}$ and also $A^+ = V \Sigma^+ U^{\mathrm{T}} = \sum \sigma_i^{-1} \boldsymbol{v}_i \boldsymbol{u}_i^{\mathrm{T}}$. Multiplying $A^+ A$ and using orthogonality of each \boldsymbol{u}_i to all other \boldsymbol{u}_j leaves the projection matrix $A^+ A$: $A^+ A = \sum 1 \boldsymbol{v}_i \boldsymbol{v}_i^{\mathrm{T}}$. Similarly $AA^+ = \sum 1 \boldsymbol{u}_i \boldsymbol{u}_i^{\mathrm{T}}$ from $VV^{\mathrm{T}} = I$.
- **22** Keep only the r by r corner Σ_r of Σ (the rest is all zero). Then $A = U \Sigma V^T$ has the required form $A = \widehat{U} M_1 \Sigma_r M_2^T \widehat{V}^T$ with an invertible $M = M_1 \Sigma_r M_2^T$ in the middle.
- **23** $\begin{bmatrix} 0 & A \\ A^{\mathsf{T}} & 0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} A\mathbf{v} \\ A^{\mathsf{T}}\mathbf{u} \end{bmatrix} = \sigma \begin{bmatrix} \mathbf{u} \\ \mathbf{v} \end{bmatrix}$. The singular values of A are eigenvalues of this block matrix.

Problem Set 8.1, page 418

- **1** Det $A_0^{\mathrm{T}}C_0A_0 = \begin{bmatrix} c_1+c_2 & -c_2 & 0 \\ -c_2 & c_2+c_3 & -c_3 \\ 0 & -c_3 & c_3+c_4 \end{bmatrix}$ is by direct calculation. Set $c_4=0$ to find det $A_1^{\mathrm{T}}C_1A_1 = c_1c_2c_3$.
- $2 (A_1^{\mathsf{T}} C_1 A_1)^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} c_1^{-1} & & \\ & c_2^{-1} & \\ & & c_3^{-1} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} c_1^{-1} & c_1^{-1} & c_1^{-1} & c_1^{-1} \\ c_1^{-1} & c_1^{-1} + c_2^{-1} & c_1^{-1} + c_2^{-1} \\ c_1^{-1} & c_1^{-1} + c_2^{-1} & c_1^{-1} + c_2^{-1} + c_3^{-1} \end{bmatrix}.$

3 The rows of the free-free matrix in equation (9) add to $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ so the right side needs $f_1 + f_2 + f_3 = 0$. $\mathbf{f} = (-1, 0, 1)$ gives $c_2 u_1 - c_2 u_2 = -1$, $c_3 u_2 - c_3 u_3 = -1$, 0 = 0. Then $\mathbf{u}_{\text{particular}} = (-c_2^{-1} - c_3^{-1}, -c_3^{-1}, 0)$. Add any multiple of $\mathbf{u}_{\text{nullspace}} = (1, 1, 1)$.

4
$$\int -\frac{d}{dx} \left(c(x) \frac{du}{dx} \right) dx = -\left[c(x) \frac{du}{dx} \right]_0^1 = 0$$
 (bdry cond) so we need $\int f(x) dx = 0$.

- 5 $-\frac{dy}{dx} = f(x)$ gives $y(x) = C \int_0^x f(t)dt$. Then y(1) = 0 gives $C = \int_0^1 f(t)dt$ and $y(x) = \int_x^1 f(t)dt$. If the load is f(x) = 1 then the displacement is y(x) = 1 x.
- **6** Multiply $A_1^T C_1 A_1$ as columns of A_1^T times c's times rows of A_1 . The first 3 by 3 "element matrix" $c_1 E_1 = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T c_1 \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$ has c_1 in the top left corner.
- 7 For 5 springs and 4 masses, the 5 by 4 A has two nonzero diagonals: all $a_{ii}=1$ and $a_{i+1,i}=-1$. With $C=\operatorname{diag}(c_1,c_2,c_3,c_4,c_5)$ we get $K=A^{\mathrm{T}}CA$, symmetric tridiagonal with diagonal entries $K_{ii}=c_i+c_{i+1}$ and off-diagonals $K_{i+1,i}=-c_{i+1}$. With C=I this K is the -1,2,-1 matrix and K(2,3,3,2)=(1,1,1,1) solves $K\mathbf{u}=\operatorname{ones}(4,1)$. (K^{-1} will solve $K\mathbf{u}=\operatorname{ones}(4)$.)
- **8** The solution to -u'' = 1 with u(0) = u(1) = 0 is $u(x) = \frac{1}{2}(x x^2)$. At $x = \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}$ this gives u = 2, 3, 3, 2 (discrete solution in Problem 7) times $(\Delta x)^2 = 1/25$.
- **9** -u'' = mg has complete solution $u(x) = A + Bx \frac{1}{2}mgx^2$. From u(0) = 0 we get A = 0. From u'(1) = 0 we get B = mg. Then $u(x) = \frac{1}{2}mg(2x x^2)$ at $x = \frac{1}{3}, \frac{2}{3}, \frac{3}{3}$ equals mg/6, 4mg/9, mg/2. This u(x) is *not* proportional to the discrete u = (3mg, 5mg, 6mg) at the meshpoints. This imperfection is because the discrete problem uses a 1-sided difference, less accurate at the free end. Perfect accuracy is recovered by a centered difference (discussed on page 21 of my CSE textbook).
- 10 (added in later printing, changing 10-11 below into 11-12). The solution in this fixed-fixed case is (2.25, 2.50, 1.75) so the second mass moves furthest.
- 11 The two graphs of 100 points are "discrete parabolas" starting at (0,0): symmetric around 50 in the fixed-fixed case, ending with slope zero in the fixed-free case.
- 12 Forward/backward/centered for du/dx has a big effect because that term has the large coefficient. MATLAB: E = diag(ones(6,1),1); K = 64*(2*eye(7) E E'); D = 80*(E-eye(7)); $(K+D)\setminus\text{ones}(7,1)$; % forward; $(K-D')\setminus\text{ones}(7,1)$; % backward; $(K+D/2-D'/2)\setminus\text{ones}(7,1)$; % centered is usually the best: more accurate

Problem Set 8.2, page 428

- **1** $A = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$; nullspace contains $\begin{bmatrix} c \\ c \\ c \end{bmatrix}$; $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ is not orthogonal to that nullspace.
- **2** $A^{T}y = \mathbf{0}$ for y = (1, -1, 1); current along edge 1, edge 3, back on edge 2 (full loop).

3 Elimination on $b_1[A \ b] = \begin{bmatrix} -1 & 1 & 0 & b_1 \\ -1 & 0 & 1 & b_2 \\ 0 & -1 & 1 & b_3 \end{bmatrix}$ leads to $[U \ c] =$

83

 $\begin{bmatrix} -1 & 1 & 0 & b_1 \\ 0 & -1 & 1 & b_2 - b_1 \\ 0 & 0 & 0 & b_3 - b_2 + b_1 \end{bmatrix}.$ The nonzero rows of U come from edges 1 and 3

in a tree. The zero row comes from the loop (all 3 edges).

- **4** For the matrix in Problem 3, Ax = b is solvable for b = (1, 1, 0) and not solvable for b = (1, 0, 0). For solvable b (in the column space), b must be orthogonal to y = (1, -1, 1); that combination of rows is the zero row, and $b_1 b_2 + b_3 = 0$ is the third equation after elimination.
- **5** Kirchhoff's Current Law $A^T y = f$ is solvable for f = (1, -1, 0) and not solvable for f = (1, 0, 0); f must be orthogonal to (1, 1, 1) in the nullspace: $f_1 + f_2 + f_3 = 0$.
- **6** $A^{T}Ax = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}x = \begin{bmatrix} 3 \\ -3 \\ 0 \end{bmatrix} = f$ produces $x = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix} + \begin{bmatrix} c \\ c \\ c \end{bmatrix}$; potentials x = 1, -1, 0 and currents -Ax = 2, 1, -1; f sends 3 units from node 2 into node 1.
- **8** $A = \begin{bmatrix} -1 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -1 & 1 \end{bmatrix}$ leads to $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$ and $\mathbf{y} = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 0 \\ 1 \\ -1 \\ 1 \end{bmatrix}$ solving $A^{\mathrm{T}}\mathbf{y} = \mathbf{0}$.
- **9** Elimination on Ax = b always leads to $y^Tb = 0$ in the zero rows of U and R: $-b_1 + b_2 b_3 = 0$ and $b_3 b_4 + b_5 = 0$ (those y's are from Problem 8 in the left nullspace). This is Kirchhoff's *Voltage* Law around the two *loops*.
- **10** The echelon form of A is $U = \begin{bmatrix} -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ The nonzero rows of U keep edges 1, 2, 4. Other spanning trees from edges, 1, 2, 5; 1, 3, 4; 1, 3, 5; 1, 4, 5; 2, 3, 4; 2, 3, 5; 2, 4, 5.
- 11 $A^{T}A = \begin{bmatrix} 2 & -1 & -1 & 0 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 3 & -1 \\ 0 & -1 & -1 & 2 \end{bmatrix}$ diagonal entry = number of edges into the node the trace is 2 times the number of nodes off-diagonal entry = -1 if nodes are connected $A^{T}A$ is the **graph Laplacian**, $A^{T}CA$ is **weighted** by C
- **12** (a) The nullspace and rank of A^TA and A are always the same (b) A^TA is always positive semidefinite because $x^TA^TAx = \|Ax\|^2 \ge 0$. Not positive definite because rank is only 3 and (1, 1, 1, 1) is in the nullspace (c) Real eigenvalues all ≥ 0 because positive semidefinite.

13
$$A^{T}CAx = \begin{bmatrix} 4 & -2 & -2 & 0 \\ -2 & 8 & -3 & -3 \\ -2 & -3 & 8 & -3 \\ 0 & -3 & -3 & 6 \end{bmatrix} x = \begin{bmatrix} 1 \\ 0 \\ 0 \\ -1 \end{bmatrix}$$
 gives four potentials $x = (\frac{5}{12}, \frac{1}{6}, \frac{1}{6}, 0)$ I grounded $x_4 = 0$ and solved for x currents $y = -CAx = (\frac{2}{3}, \frac{2}{3}, 0, \frac{1}{2}, \frac{1}{2})$

- **14** $A^{T}CAx = \mathbf{0}$ for x = c(1, 1, 1, 1) = (c, c, c, c). If $A^{T}CAx = f$ is solvable, then f in the column space (= row space by symmetry) must be orthogonal to x in the nullspace: $f_1 + f_2 + f_3 + f_4 = 0$.
- 15 The number of loops in this connected graph is n m + 1 = 7 7 + 1 = 1. What answer if the graph has two separate components (no edges between)?
- **16** Start from (4 nodes) (6 edges) + (3 loops) = 1. If a new node connects to 1 old node, 5 7 + 3 = 1. If the new node connects to 2 old nodes, a new loop is formed: 5 8 + 4 = 1.
- 17 (a) 8 independent columns (b) f must be orthogonal to the nullspace so f's add to zero (c) Each edge goes into 2 nodes, 12 edges make diagonal entries sum to 24.
- **18** A complete graph has 5+4+3+2+1=15 edges. With n nodes that count is $1+\cdots+(n-1)=n(n-1)/2$. Tree has 5 edges.

Problem Set 8.3, page 437

- **1** Eigenvalues $\lambda = 1$ and .75; (A I)x = 0 gives the steady state x = (.6, .4) with Ax = x.
- **2** $A = \begin{bmatrix} .6 & -1 \\ .4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -.4 & .6 \end{bmatrix}; A^{\infty} = \begin{bmatrix} .6 & -1 \\ .4 & -1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -.4 & .6 \end{bmatrix} = \begin{bmatrix} .6 & .6 \\ .4 & .4 \end{bmatrix}.$
- **3** $\lambda = 1$ and .8, x = (1,0); 1 and -.8, $x = (\frac{5}{9}, \frac{4}{9})$; $1, \frac{1}{4}$, and $\frac{1}{4}$, $x = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$.
- **4** A^{T} always has the eigenvector (1, 1, ..., 1) for $\lambda = 1$, because each row of A^{T} adds to 1. (Note again that many authors use row vectors multiplying Markov matrices. So they transpose our form of A.)
- **5** The steady state eigenvector for $\lambda = 1$ is (0, 0, 1) = everyone is dead.
- **6** Add the components of $Ax = \lambda x$ to find sum $s = \lambda s$. If $\lambda \neq 1$ the sum must be s = 0.
- **7** $(.5)^k \to 0$ gives $A^k \to A^\infty$; any $A = \begin{bmatrix} .6 + .4a & .6 .6a \\ .4 .4a & .4 + .6a \end{bmatrix}$ with $a \le 1$ $.4 + .6a \ge 0$
- 8 If P = cyclic permutation and $u_0 = (1, 0, 0, 0)$ then $u_1 = (0, 0, 1, 0)$; $u_2 = (0, 1, 0, 0)$; $u_3 = (1, 0, 0, 0)$; $u_4 = u_0$. The eigenvalues 1, i, -1, -i are all on the unit circle. This Markov matrix contains zeros; a positive matrix has one largest eigenvalue $\lambda = 1$.
- **9** M^2 is still nonnegative; $[1 \cdots 1]M = [1 \cdots 1]$ so multiply on the right by M to find $[1 \cdots 1]M^2 = [1 \cdots 1] \Rightarrow$ columns of M^2 add to 1.
- **10** $\lambda = 1$ and a + d 1 from the trace; steady state is a multiple of $x_1 = (b, 1 a)$.
- **11** Last row .2, .3, .5 makes $A = A^{T}$; rows also add to 1 so (1, ..., 1) is also an eigenvector of A.
- **12** B has $\lambda = 0$ and -.5 with $x_1 = (.3, .2)$ and $x_2 = (-1, 1)$; A has $\lambda = 1$ so A I has $\lambda = 0$. $e^{-.5t}$ approaches zero and the solution approaches $c_1 e^{0t} x_1 = c_1 x_1$.
- **13** x = (1, 1, 1) is an eigenvector when the row sums are equal; Ax = (.9, .9, .9)

14 $(I-A)(I+A+A^2+\cdots) = (I+A+A^2+\cdots)-(A+A^2+A^3+\cdots) = I$. This says that $I+A+A^2+\cdots$ is $(I-A)^{-1}$. When $A=\begin{bmatrix} 0 & .5 \\ 1 & 0 \end{bmatrix}$, $A^2=\frac{1}{2}I$, $A^3=\frac{1}{2}A$, $A^4=\frac{1}{4}I$ and the series adds to $\begin{bmatrix} 1+\frac{1}{2}+\cdots & \frac{1}{2}+\frac{1}{4}+\cdots \\ 1+\frac{1}{2}+\cdots & 1+\frac{1}{2}+\cdots \end{bmatrix}=\begin{bmatrix} 2 & 1 \\ 2 & 2 \end{bmatrix}=(I-A)^{-1}$.

- **15** The first two *A*'s have $\lambda_{\text{max}} < 1$; $p = \begin{bmatrix} 8 \\ 6 \end{bmatrix}$ and $\begin{bmatrix} 130 \\ 32 \end{bmatrix}$; $I = \begin{bmatrix} .5 & 1 \\ .5 & 0 \end{bmatrix}$ has no inverse.
- **16** $\lambda = 1$ (Markov), 0 (singular), .2 (from trace). Steady state (.3, .3, .4) and (30, 30, 40).
- 17 No, A has an eigenvalue $\lambda = 1$ and $(I A)^{-1}$ does not exist.
- 18 The Leslie matrix on page 435 has $\det(A \lambda I) = \det\begin{bmatrix} F_1 \lambda & F_2 & F_3 \\ P_1 & -\lambda & 0 \\ 0 & P_2 & -\lambda \end{bmatrix} = -\lambda^3 + F_1\lambda^2 + F_2P_1\lambda + F_3P_1P_2$. This is negative for large λ . It is positive at $\lambda = 1$ provided that $F_1 + F_2P_1 + F_3P_1P_2 > 1$. Under this key condition, $\det(A \lambda I)$ must be zero at some λ between 1 and ∞ . That eigenvalue means that the population grows (under this condition connecting F's and P's reproduction and survival rates).
- **19** Λ times $S^{-1}\Delta S$ has the same diagonal as $S^{-1}\Delta S$ times Λ because Λ is diagonal.
- **20** If B > A > 0 and $Ax = \lambda_{\max}(A)x > 0$ then $Bx > \lambda_{\max}(A)x$ and $\lambda_{\max}(B) > \lambda_{\max}(A)$.

Problem Set 8.4, page 446

- **1** Feasible set = line segment (6,0) to (0,3); minimum cost at (6,0), maximum at (0,3).
- **2** Feasible set has corners (0,0), (6,0), (2,2), (0,6). Minimum cost 2x y at (6,0).
- **3** Only two corners (4,0,0) and (0,2,0); let $x_i \to -\infty$, $x_2 = 0$, and $x_3 = x_1 4$.
- **4** From (0,0,2) move to $\mathbf{x}=(0,1,1.5)$ with the constraint $x_1+x_2+2x_3=4$. The new cost is 3(1)+8(1.5)=\$15 so r=-1 is the reduced cost. The simplex method also checks $\mathbf{x}=(1,0,1.5)$ with cost 5(1)+8(1.5)=\$17; r=1 means more expensive.
- 5 Cost = 20 at start (4, 0, 0); keeping $x_1 + x_2 + 2x_3 = 4$ move to (3, 1, 0) with cost 18 and r = -2; or move to (2, 0, 1) with cost 17 and r = -3. Choose x_3 as entering variable and move to (0, 0, 2) with cost 14. Another step will reach (0, 4, 0) with minimum cost 12.
- **6** If we reduce the Ph.D. cost to \$1 or \$2 (below the student cost of \$3), the job will go to the Ph.D. with cost vector c = (2, 3, 8) the Ph.D. takes 4 hours $(x_1 + x_2 + 2x_3 = 4)$ and charges \$8.

The teacher in the dual problem now has $y \le 2$, $y \le 3$, $2y \le 8$ as constraints $A^Ty \le c$ on the charge of y per problem. So the dual has maximum at y = 2. The dual cost is also \$8 for 4 problems and maximum = minimum.

7 x = (2, 2, 0) is a corner of the feasible set with $x_1 + x_2 + 2x_3 = 4$ and the new constraint $2x_1 + x_2 + x_3 = 6$. The cost of this corner is $c^T x = (5, 3, 8) \cdot (2, 2, 0) = 16$. Is this the minimum cost?

Compute the reduced cost r if $x_3 = 1$ enters (x_3 was previously zero). The two constraint equations now require $x_1 = 3$ and $x_2 = -1$. With x = (3, -1, 1) the new

cost is 3.5 - 1.3 + 1.8 = 20. This is higher than 16, so the original x = (2, 2, 0) was optimal.

Note that $x_3 = 1$ led to $x_2 = -1$ and a negative x_2 is not allowed. If x_3 reduced the cost (it didn't) we would not have used as much as $x_3 = 1$.

8 $y^T b \le y^T A x = (A^T y)^T x \le c^T x$. The first inequality needed $y \ge 0$ and $Ax - b \ge 0$.

Problem Set 8.5, page 451

- 1 $\int_0^{2\pi} \cos((j+k)x) dx = \left[\frac{\sin((j+k)x)}{j+k}\right]_0^{2\pi} = 0$ and similarly $\int_0^{2\pi} \cos((j-k)x) dx = 0$ Notice $j-k \neq 0$ in the denominator. If j=k then $\int_0^{2\pi} \cos^2 jx \, dx = \pi$.
- **2** Three integral tests show that $1, x, x^2 \frac{1}{3}$ are orthogonal on the interval [-1, 1]: $\int_{-1}^{1}(1)(x) dx = 0, \int_{-1}^{1}(1)(x^2 \frac{1}{3}) dx = 0, \int_{-1}^{1}(x)(x^2 \frac{1}{3}) dx = 0$. Then $2x^2 = 2(x^2 \frac{1}{3}) + 0(x) + \frac{2}{3}(1)$. Those coefficients $2, 0, \frac{2}{3}$ can come from integrating $f(x) = 2x^2$ times the 3 basis functions and dividing by their lengths squared—in other words using a^Tb/a^Ta for functions (where b is f(x) and a is 1 or x or $x^2 \frac{1}{3}$) exactly as for vectors.
- **3** One example orthogonal to $\mathbf{v} = (1, \frac{1}{2}, \ldots)$ is $\mathbf{w} = (2, -1, 0, 0, \ldots)$ with $\|\mathbf{w}\| = \sqrt{5}$.
- **4** $\int_{-1}^{1} (1)(x^3 cx) dx = 0$ and $\int_{-1}^{1} (x^2 \frac{1}{3})(x^3 cx) dx = 0$ for all c (odd functions). Choose c so that $\int_{-1}^{1} x(x^3 cx) dx = \left[\frac{1}{5}x^5 \frac{c}{3}x^3\right]_{-1}^{1} = \frac{2}{5} c\frac{2}{3} = 0$. Then $c = \frac{3}{5}$.
- **5** The integrals lead to the Fourier coefficients $a_1 = 0$, $b_1 = 4/\pi$, $b_2 = 0$.
- **6** From eqn. (3) $a_k = 0$ and $b_k = 4/\pi k$ (odd k). The square wave has $||f||^2 = 2\pi$. Then eqn. (6) is $2\pi = \pi (16/\pi^2)(\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \cdots)$. That infinite series equals $\pi^2/8$.
- 7 The -1, 1 odd square wave is f(x) = x/|x| for $0 < |x| < \pi$. Its Fourier series in equation (8) is $4/\pi$ times $[\sin x + (\sin 3x)/3 + (\sin 5x/5) + \cdots]$. The sum of the first N terms has an interesting shape, close to the square wave except where the wave jumps between -1 and 1. At those jumps, the Fourier sum spikes the wrong way to ± 1.09 (the *Gibbs phenomenon*) before it takes the jump with the true f(x).

This happens for the Fourier sums of all functions with jumps. It makes shock waves hard to compute. You can see it clearly in a graph of the sum of 10 terms.

- **8** $\|\mathbf{v}\|^2 = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2 \text{ so } \|\mathbf{v}\| = \sqrt{2}; \ \|\mathbf{v}\|^2 = 1 + a^2 + a^4 + \dots = 1/(1 a^2)$ so $\|\mathbf{v}\| = 1/\sqrt{1 a^2}; \ \int_0^{2\pi} (1 + 2\sin x + \sin^2 x) \, dx = 2\pi + 0 + \pi \text{ so } \|f\| = \sqrt{3\pi}.$
- **9** (a) f(x) = (1 + square wave)/2 so the *a*'s are $\frac{1}{2}$, 0, 0, ... and the *b*'s are $2/\pi$, 0, $-2/3\pi$, 0, $2/5\pi$, ... (b) $a_0 = \int_0^{2\pi} x \, dx/2\pi = \pi$, all other $a_k = 0$, $b_k = -2/k$.
- **10** The integral from $-\pi$ to π or from 0 to 2π (or from any a to $a+2\pi$) is over one complete period of the function. If f(x) is periodic this changes $\int_0^{2\pi} f(x) dx$ to $\int_0^{\pi} f(x) dx + \int_{-\pi}^0 f(x) dx$. If f(x) is **odd**, those integrals cancel to give $\int f(x) dx = 0$ over one period.
- **11** $\cos^2 x = \frac{1}{2} + \frac{1}{2}\cos 2x$; $\cos(x + \frac{\pi}{3}) = \cos x \cos \frac{\pi}{3} \sin x \sin \frac{\pi}{3} = \frac{1}{2}\cos x \frac{\sqrt{3}}{2}\sin x$.

13 The square pulse with F(x) = 1/h for $-x \le h/2 \le x$ is an even function, so all sine coefficients b_k are zero. The average a_0 and the cosine coefficients a_k are

$$a_0 = \frac{1}{2\pi} \int_{-h/2}^{h/2} (1/h) dx = \frac{1}{2\pi}$$

$$a_k = \frac{1}{\pi} \int_{-h/2}^{h/2} (1/h) \cos kx dx = \frac{2}{\pi kh} \left(\sin \frac{kh}{2} \right) \text{ which is } \frac{1}{\pi} \operatorname{sinc} \left(\frac{kh}{2} \right)$$

(introducing the sinc function $(\sin x)/x$). As h approaches zero, the number x = kh/2 approaches zero, and $(\sin x)/x$ approaches 1. So all those a_k approach $1/\pi$.

The limiting "delta function" contains an equal amount of all cosines: a very irregular function.

Problem Set 8.6, page 458

1 The diagonal matrix $C = W^T W$ is $\Sigma^{-1} = \begin{bmatrix} 1 \\ 1 \\ 1/2 \end{bmatrix}$ with no covariances (independent trials). Then solve $A^T C A \hat{x} = A^T C b$ for this weighted least squares problem (notice Ct + D instead of C + Dt):

$$A\mathbf{x} = \widehat{\mathbf{b}} \quad \text{is} \quad {1C + D = 1 \atop 1C + D = 2 \atop 2C + D = 4} \quad \text{or} \quad \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}.$$
$$A^{\mathsf{T}}CA = \begin{bmatrix} 3 & 2 \\ 2 & 2.5 \end{bmatrix} \qquad A^{\mathsf{T}}C\mathbf{b} = \begin{bmatrix} 6 \\ 5 \end{bmatrix} \quad \widehat{\mathbf{x}} = \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 10/7 \\ 6/7 \end{bmatrix}.$$

2 If the measurement b_3 is totally unreliable and $\sigma_3^2 = \infty$, then the best line will not use b_3 . In this example, the system Ax = b becomes square (first two equations from Problem 1):

$$\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \text{ gives } \begin{bmatrix} C \\ D \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}. \text{ The line } b = t + 1 \text{ fits exactly.}$$

3 If $\sigma_3 = 0$ the third equation is exact. Then the best line has $Ct + D = b_3$ which is 2C + D = 4. The errors Ct + D - b in the measurements at t = 0 and 1 are D - 1 and C + D - 2. Since D = 4 - 2C from the exact $b_3 = 4$, those two errors are D - 1 = 3 - 2C and C + D - 2 = 2 - C. The sum of squares $(3 - 2C)^2 + (2 - C)^2$ is a minimum at 8 = 5C (calculus or linear algebra in 1D). Then C = 8/5 and D = 4 - 2C = 4/5.

- **4** 0, 1, 2 have probabilities $\frac{1}{4}$, $\frac{1}{2}$, $\frac{1}{4}$ and $\sigma^2 = (0-1)^2 \frac{1}{4} + (1-1)^2 \frac{1}{2} + (2-1)^2 \frac{1}{4} = \frac{1}{2}$.
- **5** Mean $(\frac{1}{2}, \frac{1}{2})$. Independent flips lead to $\Sigma = \operatorname{diag}(\frac{1}{4}, \frac{1}{4})$. Trace $= \sigma_{\text{total}}^2 = \frac{1}{2}$.
- **6** Mean $m = p_0$ and variance $\sigma^2 = (1 p_0)^2 p_0 + (0 p_0)^2 (1 p_0) = p_0 (1 p_0)$. **7** Minimize $P = a^2 \sigma_1^2 + (1 a)^2 \sigma_2^2$ at $P' = 2a\sigma_1^2 2(1 a)\sigma_2^2 = 0$; $a = \sigma_2^2/(\sigma_1^2 + \sigma_2^2)$ recovers equation (2) for the statistically correct choice with minimum variance.
- 8 Multiply $L\Sigma L^{T} = (A^{T}\Sigma^{-1}A)^{-1}A^{T}\Sigma^{-1}\Sigma\Sigma^{-1}A(A^{T}\Sigma^{-1}A)^{-1} = P = (A^{T}\Sigma^{-1}A)^{-1}$
- **9** The new grade matrix A has row 3 = row 1 and row 4 = row 2, so the rank is 7. The nullspace of A now includes (1, -1, -1, 1) as well as (1, 1, 1, 1). Compare to the grade matrix in Example 6 (not Example 5). The other two singular vectors v_1 and v_2 for Example 6 are still correct for this new $A(Av_1)$ is still orthogonal to Av_2 :

$$A\begin{bmatrix} 2v_1 & 2v_2 \end{bmatrix} = \begin{bmatrix} 3 & -1 & 1 & -3 \\ -1 & 3 & -3 & 1 \\ -3 & 1 & -1 & -3 \\ 1 & -3 & 3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & -1 \\ 1 & 1 \\ -1 & -1 \end{bmatrix} = \begin{bmatrix} 8 & -4 \\ -8 & -4 \\ -8 & 4 \\ 8 & 4 \end{bmatrix}.$$

Those last orthogonal columns are multiples of the orthonormal u_1 and u_2 . This matrix A has $\sigma_1 = 8$ and $\sigma_2 = 4$ (only two singular values since the rank is 2). If you compute $A^{T}A$ to find those singular vectors v_1 and v_2 from scratch, notice that its trace is $\sigma_1^2 + \sigma_2^2 = 64 + 16 = 80$:

$$A^{\mathsf{T}}A = \begin{bmatrix} 20 & -12 & -20 & 12 \\ -12 & 20 & 12 & -20 \\ -20 & 12 & 20 & -12 \\ 12 & -20 & -12 & 20 \end{bmatrix}.$$

Problem Set 8.7, page 463

- **1** (x, y, z) has homogeneous coordinates (cx, cy, cz, c) for c = 1 and all $c \neq 0$.
- **2** For an affine transformation we also need T (origin), because $T(\mathbf{0})$ need not be $\mathbf{0}$ for affine T. Including this translation by $T(\mathbf{0})$, (x, y, z, 1) is transformed to $xT(\mathbf{i})$ +

3
$$TT_1 = \begin{bmatrix} 1 & & & & \\ & 1 & & & \\ & & 1 & & \\ 1 & 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & & & & \\ & 1 & & \\ & & 1 & \\ 0 & 2 & 5 & 1 \end{bmatrix} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ 1 & 6 & 8 & 1 \end{bmatrix}$$
 is translation along $(1, 6, 8)$.

- **4** S = diag(c, c, c, 1); row 4 of ST and TS is 1, 4, 3, 1 and c, 4c, 3c, 1; use vTS!
- **5** $S = \begin{bmatrix} 1/8.5 \\ 1/11 \end{bmatrix}$ for a 1 by 1 square, starting from an 8.5 by 11 page.

The first matrix translates by (-1, -1, -2). The second matrix rescales by

7 The three parts of Q in equation (1) are $(\cos \theta)I$ and $(1 - \cos \theta)aa^{T}$ and $-\sin \theta(ax)$. Then Qa = a because $aa^{T}a = a$ (unit vector) and ax = a.

8 If $\mathbf{a}^{\mathrm{T}}\mathbf{b} = 0$ and those three parts of Q (Problem 7) multiply \mathbf{b} , the results in $Q\mathbf{b}$ are $(\cos \theta)\mathbf{b}$ and $\mathbf{a}\mathbf{a}^{\mathrm{T}}\mathbf{b} = \mathbf{0}$ and $(-\sin \theta)\mathbf{a} \times \mathbf{b}$. The component along \mathbf{b} is $(\cos \theta)\mathbf{b}$.

9
$$n = \left(\frac{2}{3}, \frac{2}{3}, \frac{1}{3}\right)$$
 has $P = I - nn^{T} = \frac{1}{9} \begin{bmatrix} 5 & -4 & -2 \\ -4 & 5 & -2 \\ -2 & -2 & 8 \end{bmatrix}$. Notice $||n|| = 1$.

- **10** We can choose (0,0,3) on the plane and multiply $T_{-}PT_{+} = \frac{1}{9} \begin{bmatrix} 5 & -4 & -2 & 0 \\ -4 & 5 & -2 & 0 \\ -2 & -2 & 8 & 0 \\ 6 & 6 & 3 & 9 \end{bmatrix}$.
- **11** (3,3,3) projects to $\frac{1}{3}(-1,-1,4)$ and (3,3,3,1) projects to $(\frac{1}{3},\frac{1}{3},\frac{5}{3},1)$. Row vectors!
- **12** The projection of a square onto a plane is a parallelogram (or a line segment). The sides of the square are perpendicular, but their projections may not be $(x^Ty = 0)$ but $(Px)^T(Py) = x^TP^TPy = x^TPy$ may be nonzero).
- 13 That projection of a cube onto a plane produces a hexagon.

14
$$(3,3,3)(I-2nn^{T}) = \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right) \begin{bmatrix} 1 & -8 & -4 \\ -8 & 1 & -4 \\ -4 & -4 & 7 \end{bmatrix} = \left(-\frac{11}{3}, -\frac{11}{3}, -\frac{1}{3}\right).$$

15
$$(3,3,3,1) \rightarrow (3,3,0,1) \rightarrow \left(-\frac{7}{3},-\frac{7}{3},-\frac{8}{3},1\right) \rightarrow \left(-\frac{7}{3},-\frac{7}{3},\frac{1}{3},1\right).$$

- **16** Just subtracting vectors would give $\mathbf{v} = (x, y, z, 0)$ ending in 0 (not 1). In homogeneous coordinates, add a **vector** to a point.
- 17 Space is rescaled by 1/c because (x, y, z, c) is the same point as (x/c, y/c, z/c, 1).

Problem Set 9.1, page 472

- **1** Without exchange, pivots .001 and 1000; with exchange, 1 and -1. When the pivot is larger than the entries below it, all $|\ell_{ij}| = |\text{entry/pivot}| \le 1$. $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ -1 & 1 & 1 \end{bmatrix}$.
- **2** The exact inverse of hilb(3) is $A^{-1} = \begin{bmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{bmatrix}$.
- **3** $A \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 11/6 \\ 13/12 \\ 47/60 \end{bmatrix} = \begin{bmatrix} 1.833 \\ 1.083 \\ 0.783 \end{bmatrix}$ compares with $A \begin{bmatrix} 0 \\ 6 \\ -3.6 \end{bmatrix} = \begin{bmatrix} 1.80 \\ 1.10 \\ 0.78 \end{bmatrix}$. $\|\Delta \boldsymbol{b}\| < .04$ but The difference (1, 1, 1) (0, 6, -3.6) is in a direction $\Delta \boldsymbol{x}$ that has $A\Delta \boldsymbol{x}$ near zero.
- **4** The largest $||x|| = ||A^{-1}b||$ is $||A^{-1}|| = 1/\lambda_{\min}$ since $A^{T} = A$; largest error $10^{-16}/\lambda_{\min}$.
- **5** Each row of U has at most w entries. Then w multiplications to substitute components of x (already known from below) and divide by the pivot. Total for n rows < wn.
- **6** The triangular L^{-1} , U^{-1} , R^{-1} need $\frac{1}{2}n^2$ multiplications. Q needs n^2 to multiply the right side by $Q^{-1} = Q^T$. So QRx = b takes 1.5 times longer than LUx = b.

7 $UU^{-1}=I$: Back substitution needs $\frac{1}{2}j^2$ multiplications on column j, using the j by j upper left block. Then $\frac{1}{2}(1^2+2^2+\cdots+n^2)\approx \frac{1}{2}(\frac{1}{3}n^3)=$ total to find U^{-1} .

9
$$A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
 has cofactors $C_{13} = C_{31} = C_{24} = C_{42} = 1$ and $C_{14} = C_{41} = -1$. A^{-1} is a full matrix!

- **10** With 16-digit floating point arithmetic the errors $\|x x_{\text{computed}}\|$ for $\varepsilon = 10^{-3}$, 10^{-6} , 10^{-9} , 10^{-12} , 10^{-15} are of order 10^{-16} , 10^{-11} , 10^{-7} , 10^{-4} , 10^{-3} .
- **11** (a) $\cos \theta = 1/\sqrt{10}$, $\sin \theta = -3/\sqrt{10}$, $R = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 3 & 5 \end{bmatrix} = \frac{1}{\sqrt{10}} \begin{bmatrix} 10 & 14 \\ 0 & 8 \end{bmatrix}$. (b) A has eigenvalues 4 and 2. Put one of the unit eigenvectors in row 1 of Q: either $Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ and $QAQ^{-1} = \begin{bmatrix} 2 & -4 \\ 0 & 4 \end{bmatrix}$ or $Q = \frac{1}{\sqrt{10}} \begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix}$ and $QAQ^{-1} = \begin{bmatrix} 4 & -4 \\ 0 & 2 \end{bmatrix}$.
- **12** When A is multiplied by a plane rotation Q_{ij} , this changes the 2n (not n^2) entries in rows i and j. Then multiplying on the right by $(Q_{ij})^{-1} = (Q_{ij})^{T}$ changes the 2n entries in columns i and j.
- **13** $Q_{ij}A$ uses 4n multiplications (2 for each entry in rows i and j). By factoring out $\cos \theta$, the entries 1 and $\pm \tan \theta$ need only 2n multiplications, which leads to $\frac{2}{3}n^3$ for QR.
- **14** The (2,1) entry of $Q_{21}A$ is $\frac{1}{3}(-\sin\theta + 2\cos\theta)$. This is zero if $\sin\theta = 2\cos\theta$ or $\tan\theta = 2$. Then the $2, 1, \sqrt{5}$ right triangle has $\sin\theta = 2/\sqrt{5}$ and $\cos\theta = 1/\sqrt{5}$.

Every 3 by 3 rotation with det Q = +1 is the product of 3 plane rotations.

15 This problem shows how elimination is more expensive (the nonzero multipliers are counted by $\mathbf{nnz}(L)$ and $\mathbf{nnz}(LL)$) when we spoil the tridiagonal K by a random permutation.

If on the other hand we start with a poorly ordered matrix K, an improved ordering is found by the code **symamd** discussed in this section.

16 The "red-black ordering" puts rows and columns 1 to 10 in the odd-even order 1, 3, 5, 7, 9, 2, 4, 6, 8, 10. When K is the -1, 2, -1 tridiagonal matrix, odd points are connected

only to even points (and 2 stays on the diagonal, connecting every point to itself):

$$K = \begin{bmatrix} 2 & -1 & & & \\ -1 & 2 & -1 & & \\ & \cdot & \cdot & \cdot & \\ & & -1 & 2 \end{bmatrix} \text{ and } PKP^{T} = \begin{bmatrix} 2I & D \\ D^{T} & 2I \end{bmatrix} \text{ with}$$

$$D = \begin{bmatrix} -1 & & & \\ -1 & -1 & & \\ 0 & -1 & -1 & \\ & & -1 & -1 \end{bmatrix} \text{ and } PKP^{T} = \begin{bmatrix} 2I & D \\ D^{T} & 2I \end{bmatrix} \text{ with}$$

$$V = \begin{bmatrix} -1 & & & \\ -1 & -1 & & \\ 0 & -1 & -1 & \\ & & -1 & -1 \end{bmatrix} \text{ and } PKP^{T} = \begin{bmatrix} 2I & D \\ D^{T} & 2I \end{bmatrix} \text{ with}$$

17 Jeff Stuart's **Shake a Stick** activity has long sticks representing the graphs of two linear equations in the x-y plane. The matrix is nearly singular and Section 9.2 shows how to compute its condition number $c = ||A|| ||A^{-1}|| = \sigma_{\text{max}}/\sigma_{\text{min}} \approx 80,000$:

$$A = \begin{bmatrix} 1 & 1.0001 \\ 1 & 1.0000 \end{bmatrix} ||A|| \approx 2 \quad A^{-1} = 10000 \begin{bmatrix} -1 & 1.0001 \\ 1 & -1 \end{bmatrix} \qquad \begin{aligned} ||A^{-1}|| \approx 20000 \\ c \approx 40000. \end{aligned}$$

Problem Set 9.2, page 478

- **1** ||A|| = 2, $||A^{-1}|| = 2$, c = 4; ||A|| = 3, $||A^{-1}|| = 1$, c = 3; $||A|| = 2 + \sqrt{2} = \lambda_{\text{max}}$ for positive definite A, $||A^{-1}|| = 1/\lambda_{\text{min}}$, $c = (2 + \sqrt{2})/(2 \sqrt{2}) = 5.83$.
- **2** ||A|| = 2, c = 1; $||A|| = \sqrt{2}$, c = infinite (singular matrix); $A^{T}A = 2I$, $||A|| = \sqrt{2}$, c = 1.
- **3** For the first inequality replace x by Bx in $||Ax|| \le ||A|| ||x||$; the second inequality is just $||Bx|| \le ||B|| ||x||$. Then $||AB|| = \max(||ABx||/||x||) \le ||A|| ||B||$.
- **4** $1 = ||I|| = ||AA^{-1}|| \le ||A|| ||A^{-1}|| = c(A).$
- **5** If $\Lambda_{\text{max}} = \Lambda_{\text{min}} = 1$ then all $\Lambda_i = 1$ and $A = SIS^{-1} = I$. The only matrices with $||A|| = ||A^{-1}|| = 1$ are orthogonal matrices.
- **6** All orthogonal matrices have norm 1, so $||A|| \le ||Q|| ||R|| = ||R||$ and in reverse $||R|| \le ||Q^{-1}|| ||A|| = ||A||$, then ||A|| = ||R||. Inequality is usual in ||A|| < ||L|| ||U|| when $A^{\mathrm{T}}A \ne AA^{\mathrm{T}}$. Use **norm** on a random A.
- 7 The triangle inequality gives $||Ax + Bx|| \le ||Ax|| + ||Bx||$. Divide by ||x|| and take the maximum over all nonzero vectors to find $||A + B|| \le ||A|| + ||B||$.
- 8 If $Ax = \lambda x$ then $||Ax||/||x|| = |\lambda|$ for that particular vector x. When we maximize the ratio over all vectors we get $||A|| \ge |\lambda|$.
- **9** $A + B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ has $\rho(A) = 0$ and $\rho(B) = 0$ but $\rho(A + B) = 1$.

The triangle inequality $||A + B|| \le ||A|| + ||B||$ fails for $\rho(A)$. $AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ also has $\rho(AB) = 1$; thus $\rho(A) = \max |\lambda(A)| = \text{spectral radius is not a norm.}$

- 10 (a) The condition number of A⁻¹ is ||A⁻¹|| ||(A⁻¹)⁻¹|| which is ||A⁻¹|| ||A|| = c(A).
 (b) Since A^T A and AA^T have the same nonzero eigenvalues, A and A^T have the same norm.
- **11** Use the quadratic formula for $\lambda_{\text{max}}/\lambda_{\text{min}}$, which is $c = \sigma_{\text{max}}/\sigma_{\text{min}}$ since this $A = A^{\text{T}}$ is positive definite:

$$c(A) = \left(1.00005 + \sqrt{(1.00005)^2 - .0001}\right) / \left(1.00005 - \sqrt{1.00005}\right) \approx 40,000.$$

- **12** $\det(2A)$ is not $2 \det A$; $\det(A+B)$ is not always less than $\det A + \det B$; taking $|\det A|$ does not help. The only reasonable property is $\det AB = (\det A)(\det B)$. The condition number should not change when A is multiplied by 10.
- **13** The residual $b Ay = (10^{-7}, 0)$ is much smaller than b Az = (.0013, .0016). But z is much closer to the solution than y.
- **14** det $A = 10^{-6}$ so $A^{-1} = 10^3 \begin{bmatrix} 659 & -563 \\ -913 & 780 \end{bmatrix}$: ||A|| > 1, $||A^{-1}|| > 10^6$, then $c > 10^6$.
- **15** x = (1, 1, 1, 1, 1) has $||x|| = \sqrt{5}$, $||x||_1 = 5$, $||x||_{\infty} = 1$. x = (.1, .7, .3, .4, .5) has ||x|| = 1, $||x||_1 = 2$ (sum) $||x||_{\infty} = .7$ (largest).
- **16** $x_1^2 + \dots + x_n^2$ is not smaller than $\max(x_i^2)$ and not larger than $(|x_1| + \dots + |x_n|)^2 = ||x||_1^2$. $x_1^2 + \dots + x_n^2 \le n \, \max(x_i^2)$ so $||x|| \le \sqrt{n} ||x||_{\infty}$. Choose $y_i = \text{sign } x_i = \pm 1$ to get $||x||_1 = x \cdot y \le ||x|| ||y|| = \sqrt{n} ||x||$. $x = (1, \dots, 1)$ has $||x||_1 = \sqrt{n} ||x||$.
- 17 For the ℓ^{∞} norm, the largest component of x plus the largest component of y is not less than $||x + y||_{\infty} = \text{largest component of } x + y$.

For the ℓ^1 norm, each component has $|x_i + y_i| \le |x_i| + |y_i|$. Sum on i = 1 to n: $||x + y||_1 \le ||x||_1 + ||y||_1$.

- **18** $|x_1| + 2|x_2|$ is a norm but min($|x_1|, |x_2|$) is not a norm. $||x|| + ||x||_{\infty}$ is a norm; ||Ax|| is a norm provided A is invertible (otherwise a nonzero vector has norm zero; for rectangular A we require independent columns to avoid ||Ax|| = 0).
- **19** $x^T y = x_1 y_1 + x_2 y_2 + \dots \le (\max |y_i|)(|x_1| + |x_2| + \dots) = ||x||_1 ||y||_{\infty}.$
- **20** With $\lambda_j = 2 2\cos(j\pi/n + 1)$, the largest eigenvalue is $\lambda_n \approx 2 + 2 = 4$. The smallest is $\lambda_1 = 2 2\cos(\pi/n + 1) \approx \left(\frac{\pi}{n+1}\right)^2$, using $2\cos\theta \approx 2 \theta^2$. So the condition number is $c = \lambda_{\text{max}}/\lambda_{\text{min}} \approx (4/\pi^2) n^2$, growing with n.
- **21** $A = \begin{bmatrix} 1 & 1 \\ 0 & 1.1 \end{bmatrix}$ has $A^n = \begin{bmatrix} 1 & q \\ 0 & (1.1)^n \end{bmatrix}$ with $q = 1 + 1.1 + \dots + (1.1)^{n-1} = (1.1^n 1)/(1.1 1) \approx 1.1^n/.1$. So the growing part of A^n is $1.1^n \begin{bmatrix} 0 & 10 \\ 0 & 1 \end{bmatrix}$ with $||A^n|| \approx \sqrt{101}$ times 1.1^n for larger n.

Problem Set 9.3, page 489

1 The iteration $x_{k+1} = (I - A)x_k + b$ has S = I and T = I - A and $S^{-1}T = I - A$.

2 If $Ax = \lambda x$ then $(I - A)x = (1 - \lambda)x$. Real eigenvalues of B = I - A have $|1 - \lambda| < 1$ provided λ is between 0 and 2.

- **3** This matrix A has $I A = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ which has $|\lambda| = 2$. The iteration diverges.
- **4** Always $||AB|| \le ||A|| ||B||$. Choose A = B to find $||B^2|| \le ||B||^2$. Then choose $A = B^2$ to find $||B^3|| \le ||B^2|| ||B|| \le ||B||^3$. Continue (or use induction) to find $||B^k|| \le ||B||^k$. Since $||B|| \ge \max |\lambda(B)|$ it is no surprise that ||B|| < 1 gives convergence.
- **5** $Ax = \mathbf{0}$ gives $(S T)x = \mathbf{0}$. Then Sx = Tx and $S^{-1}Tx = x$. Then $\lambda = 1$ means that the errors do not approach zero. We can't expect convergence when A is singular and Ax = b is unsolvable!
- **6** Jacobi has $S^{-1}T = \frac{1}{3} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ with $|\lambda|_{\text{max}} = \frac{1}{3}$. Small problem, fast convergence.
- 7 Gauss-Seidel has $S^{-1}T = \begin{bmatrix} 0 & \frac{1}{3} \\ 0 & \frac{1}{9} \end{bmatrix}$ with $|\lambda|_{\text{max}} = \frac{1}{9}$ which is $(|\lambda|_{\text{max}} \text{ for Jacobi})^2$.
- 8 Jacobi has $S^{-1}T = \begin{bmatrix} a \\ d \end{bmatrix}^{-1} \begin{bmatrix} 0 & -b \\ -c & 0 \end{bmatrix} = \begin{bmatrix} 0 & -b/a \\ -c/d & 0 \end{bmatrix}$ with $|\lambda| = |bc/ad|^{1/2}$.

 Gauss-Seidel has $S^{-1}T = \begin{bmatrix} a & 0 \\ c & d \end{bmatrix}^{-1} \begin{bmatrix} 0 & -b \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -b/a \\ 0 & -bc/ad \end{bmatrix}$ with $|\lambda| = |bc/ad|$.

 So Gauss-Seidel is twice as fast to converge (or to explode if |bc| > |ad|).
- **9** Set the trace $2-2\omega+\frac{1}{4}\omega^2$ equal to $(\omega-1)+(\omega-1)$ to find $\omega_{\rm opt}=4(2-\sqrt{3})\approx 1.07$. The eigenvalues $\omega-1$ are about .07, a big improvement.
- **10** Gauss-Seidel will converge for the -1, 2, -1 matrix. $|\lambda|_{\text{max}} = \cos^2(\pi/n + 1)$ is given on page 485, with the improvement from successive over relaxation.
- **11** If the iteration gives all $x_i^{\text{new}} = x_i^{\text{old}}$ then the quantity in parentheses is zero, which means Ax = b. For Jacobi change x^{new} on the right side to x^{old} .
- **12** A lot of energy went into SOR in the 1950's! Now incomplete LU is simpler and preferred.
- **13** $u_k/\lambda_1^k = c_1x_1 + c_2x_2(\lambda_2/\lambda_1)^k + \dots + c_nx_n(\lambda_n/\lambda_1)^k \to c_1x_1$ if all ratios $|\lambda_i/\lambda_1| < 1$. The largest ratio controls the rate of convergence (when k is large). $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ has $|\lambda_2| = |\lambda_1|$ and no convergence.
- 14 The eigenvectors of A and also A^{-1} are $x_1 = (.75, .25)$ and $x_2 = (1, -1)$. The inverse power method converges to a multiple of x_2 , since $|1/\lambda_2| > |1/\lambda_1|$.
- **15** In the *j*th component of Ax_1 , $\lambda_1 \sin \frac{j\pi}{n+1} = 2\sin \frac{j\pi}{n+1} \sin \frac{(j-1)\pi}{n+1} \sin \frac{(j+1)\pi}{n+1}$. The last two terms combine into $-2\sin \frac{j\pi}{n+1}\cos \frac{\pi}{n+1}$. Then $\lambda_1 = 2 2\cos \frac{\pi}{n+1}$.
- **16** $A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ produces $\mathbf{u}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} 5 \\ -4 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 14 \\ -13 \end{bmatrix}$. This is converging to the eigenvector direction $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ with largest eigenvalue $\lambda = 3$. Divide \mathbf{u}_k by $\|\mathbf{u}_k\|$.

17
$$A^{-1} = \frac{1}{3} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$$
 gives $\mathbf{u}_1 = \frac{1}{3} \begin{bmatrix} 2 \\ 1 \end{bmatrix}$, $\mathbf{u}_2 = \frac{1}{9} \begin{bmatrix} 5 \\ 4 \end{bmatrix}$, $\mathbf{u}_3 = \frac{1}{27} \begin{bmatrix} 14 \\ 13 \end{bmatrix} \rightarrow \mathbf{u}_{\infty} = \begin{bmatrix} 1/2 \\ 1/2 \end{bmatrix}$.

18
$$R = Q^{\mathrm{T}} A = \begin{bmatrix} 1 & \cos\theta\sin\theta \\ 0 & -\sin^2\theta \end{bmatrix}$$
 and $A_1 = RQ = \begin{bmatrix} \cos\theta(1+\sin^2\theta) & -\sin^3\theta \\ -\sin^3\theta & -\cos\theta\sin^2\theta \end{bmatrix}$.

- **19** If A is orthogonal then Q = A and R = I. Therefore $A_1 = RQ = A$ again, and the "QR method" doesn't move from A. But shift A slightly and the method goes quickly to Λ .
- **20** If A cI = QR then $A_1 = RQ + cI = Q^{-1}(QR + cI)Q = Q^{-1}AQ$. No change in eigenvalues because A_1 is similar to A.
- **21** Multiply $Aq_j = b_{j-1}q_{j-1} + a_jq_j + b_jq_{j+1}$ by q_j^T to find $q_j^TAq_j = a_j$ (because the q's are orthonormal). The matrix form (multiplying by columns) is AQ = QT where T is *tridiagonal*. The entries down the diagonals of T are the a's and b's.
- 22 Theoretically the q's are orthonormal. In reality this important algorithm is not very stable. We must stop every few steps to reorthogonalize—or find another more stable way to orthogonalize q, Aq, A^2q ,...
- **23** If A is symmetric then $A_1 = Q^{-1}AQ = Q^{T}AQ$ is also symmetric. $A_1 = RQ = R(QR)R^{-1} = RAR^{-1}$ has R and R^{-1} upper triangular, so A_1 cannot have nonzeros on a lower diagonal than A. If A is tridiagonal and symmetric then (by using symmetry for the upper part of A_1) the matrix $A_1 = RAR^{-1}$ is also tridiagonal.
- 24 The proof of $|\lambda| < 1$ when every absolute row sum < 1 uses $|\sum a_{ij}x_j| \le \sum |a_{ij}||x_i| < |x_i|$. (Here x_i is the largest component.) The application to the Gershgorin circle theorem (very useful) is printed after its statement in this problem.
- **25** For A and K, the maximum row sums give all $|\lambda| \le 1$ and all $|\lambda| \le 4$. The circles $|\lambda .5| \le .5$ and $|\lambda .4| \le .6$ around diagonal entries of A give tighter bounds. The circle $|\lambda 2| \le 2$ for K contains the circle $|\lambda 2| \le 1$ and all three eigenvalues $2 + \sqrt{2}$, 2, and $2 \sqrt{2}$.
- **26** With diagonal dominance $a_{ii} > r_i$, the circles $|\lambda a_{ii}| \le r_i$ don't include $\lambda = 0$ (so A is invertible!). Notice that the -1, 2, -1 matrix is also invertible even though its diagonals are only weakly dominant. They equal the off-diagonal row sums, 2 = 2 except in the first and last rows, and more care is needed to prove invertibility.
- 27 From the last line of code, q_2 is in the direction of $v = Aq_1 h_{11}q_1 = Aq_1 (q_1^T Aq_1)q_1$. The dot product with q_1 is zero. This is Gram-Schmidt with Aq_1 as the second input vector.
- **28** Note The five lines in Solutions to Selected Exercises prove two key properties of conjugate gradients—the residuals $\mathbf{r}_k = \mathbf{b} A\mathbf{x}_k$ are orthogonal and the search directions are A-orthogonal ($\mathbf{p}_i^T A \mathbf{p}_i = 0$). Then each new guess \mathbf{x}_{k+1} is the **closest vector** to \mathbf{x} among all combinations of \mathbf{b} , $A\mathbf{b}$, $A^k\mathbf{b}$. Ordinary iteration $S\mathbf{x}_{k+1} = T\mathbf{x}_k + \mathbf{b}$ does not find this best possible combination \mathbf{x}_{k+1} .

The solution to Problem 28 in this Fourth Edition is straightforward and important. Since $H = Q^{-1}AQ = Q^{T}AQ$ is symmetric if $A = A^{T}$, and since H has only one lower diagonal by construction, then H has only one upper diagonal: H is tridiagonal and all the recursions in Arnoldi's method have only 3 terms (Problem 29).

29 $H = Q^{-1}AQ$ is *similar* to A, so H has the same eigenvalues as A (at the end of Arnoldi). When Arnoldi stops sooner because the matrix size is large, the eigenvalues of H_k (called *Ritz values*) are close to eigenvalues of A. This is an important way to compute approximations to λ for large matrices.

30 In principle the conjugate gradient method converges in 100 (or 99) steps to the exact solution x. But it is slower than elimination and its all-important property is to give good approximations to x much sooner. (Stopping elimination part way leaves you nothing.) The problem asks how close x_{10} and x_{20} are to x_{100} , which equals x except for roundoff errors.

Problem Set 10.1, page 498

- **1** (a)(b)(c) have sums $4, -2 + 2i, 2\cos\theta$ and products 5, -2i, 1. Note $(e^{i\theta})(e^{-i\theta}) = 1$.
- **2** In polar form these are $\sqrt{5}e^{i\theta}$, $5e^{2i\theta}$, $\frac{1}{\sqrt{5}}e^{-i\theta}$, $\sqrt{5}$.
- **3** The absolute values are r = 10, 100, $\frac{1}{10}$, and 100. The angles are θ , 2θ , $-\theta$ and -2θ .
- **4** $|z \times w| = 6$, $|z + w| \le 5$, $|z/w| = \frac{2}{3}$, $|z w| \le 5$.
- **5** $a+ib=\frac{\sqrt{3}}{2}+\frac{1}{2}i, \frac{1}{2}+\frac{\sqrt{3}}{2}i, i, -\frac{1}{2}+\frac{\sqrt{3}}{2}i; \ w^{12}=1.$
- **6** 1/z has absolute value 1/r and angle $-\theta$; $(1/r)e^{-i\theta}$ times $re^{i\theta}$ equals 1.
- 7 $\begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c \\ d \end{bmatrix} \begin{bmatrix} ac bd \\ bc + ad \end{bmatrix}$ real part $\begin{bmatrix} 1 & -3 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ -3 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix}$ is the matrix form of (1+3i)(1-3i) = 10.
- **8** $\begin{bmatrix} A_1 & -A_2 \\ A_2 & A_1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$ gives complex matrix = vector multiplication $(A_1 + iA_2)(x_1 + ix_2) = b_1 + ib_2$.
- **9** 2+i; (2+i)(1+i)=1+3i; $e^{-i\pi/2}=-i$; $e^{-i\pi}=-1$; $\frac{1-i}{1+i}=-i$; $(-i)^{103}=i$.
- **10** $z + \overline{z}$ is real; $z \overline{z}$ is pure imaginary; $z\overline{z}$ is positive; z/\overline{z} has absolute value 1.
- 11 $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ includes aI (which just adds a to the eigenvalues and $b \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$. So the eigenvectors are $x_1 = (1, i)$ and $x_2 = (1, -i)$. The eigenvalues are $\lambda_1 = a + bi$ and $\lambda_2 = a bi$. We see $\overline{x}_1 = x_2$ and $\overline{\lambda}_1 = \lambda_2$ as expected for real matrices with complex eigenvalues.
- **12** (a) When a=b=d=1 the square root becomes $\sqrt{4c}$; λ is complex if c<0 (b) $\lambda=0$ and $\lambda=a+d$ when ad=bc (c) the λ 's can be real and different.
- 13 Complex λ 's when $(a+d)^2 < 4(ad-bc)$; write $(a+d)^2 4(ad-bc)$ as $(a-d)^2 + 4bc$ which is positive when bc > 0.
- **14** $\det(P \lambda I) = \lambda^4 1 = 0$ has $\lambda = 1, -1, i, -i$ with eigenvectors (1, 1, 1, 1) and (1, -1, 1, -1) and (1, i, -1, -i) and (1, -i, -1, i) = columns of Fourier matrix.
- **15** The 6 by 6 cyclic shift P has $\det(P_6 \lambda I) = \lambda^6 1 = 0$. Then $\lambda = 1$, w, w^2 , w^3 , w^4 , w^5 with $w = e^{2\pi i/6}$. These are the six solutions to $\lambda^b = 1$ as in Figure 10.3 (The sixth roots of 1).

16 The symmetric block matrix has real eigenvalues; so $i\lambda$ is real and λ is pure imaginary.

- 17 (a) $2e^{i\pi/3}$, $4e^{2i\pi/3}$ (b) $e^{2i\theta}$, $e^{4i\theta}$ (c) $7e^{3\pi i/2}$, $49e^{3\pi i}$ (= -49) (d) $\sqrt{50}e^{-\pi i/4}$, $50e^{-\pi i/2}$.
- **18** r=1, angle $\frac{\pi}{2}-\theta$; multiply by $e^{i\theta}$ to get $e^{i\pi/2}=i$.
- **19** $a+ib=1, i, -1, -i, \pm \frac{1}{\sqrt{2}} \pm \frac{i}{\sqrt{2}}$. The root $\overline{w}=w^{-1}=e^{-2\pi i/8}$ is $1/\sqrt{2}-i/\sqrt{2}$.
- **20** 1, $e^{2\pi i/3}$, $e^{4\pi i/3}$ are cube roots of 1. The cube roots of -1 are -1, $e^{\pi i/3}$, $e^{-\pi i/3}$. Altogether six roots of $z^6 = 1$.
- 21 $\cos 3\theta = \text{Re}[(\cos \theta + i \sin \theta)^3] = \cos^3 \theta 3\cos \theta \sin^2 \theta$; $\sin 3\theta = 3\cos^2 \theta \sin \theta \sin^3 \theta$.
- **22** If the conjugate $\overline{z} = 1/z$ then $|z|^2 = 1$ and z is any point $e^{i\theta}$ on the unit circle.
- **23** e^i is at angle $\theta = 1$ on the unit circle; $|i^e| = 1^e$; Infinitely many $i^e = e^{i(\pi/2 + 2\pi n)e}$.
- **24** (a) Unit circle (b) Spiral in to $e^{-2\pi}$ (c) Circle continuing around to angle $\theta = 2\pi^2$.

Problem Set 10.2, page 506

- **1** $\|\mathbf{u}\| = \sqrt{9} = 3$, $\|\mathbf{v}\| = \sqrt{3}$, $\mathbf{u}^{H}\mathbf{v} = 3i + 2$, $\mathbf{v}^{H}\mathbf{u} = -3i + 2$ (this is the conjugate of $\mathbf{u}^{H}\mathbf{v}$).
- **2** $A^{\mathrm{H}}A = \begin{bmatrix} 2 & 0 & 1+i \\ 0 & 2 & 1+i \\ 1-i & 1-i & 2 \end{bmatrix}$ and $AA^{\mathrm{H}} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ are Hermitian matrices. They
- **3** $z = \text{multiple of } (1+i, 1+i, -2); Az = \mathbf{0} \text{ gives } z^{H}A^{H} = \mathbf{0}^{H} \text{ so } z \text{ (not } \overline{z}!) \text{ is orthogonal to all columns of } A^{H} \text{ (using complex inner product } z^{H} \text{ times columns of } A^{H}).$
- **4** The four fundamental subspaces are now C(A), N(A), $C(A^{H})$, $N(A^{H})$. A^{H} and not A^{T} .
- **5** (a) $(A^{\rm H}A)^{\rm H}=A^{\rm H}A^{\rm HH}=A^{\rm H}A$ again (b) If $A^{\rm H}Az=0$ then $(z^{\rm H}A^{\rm H})(Az)=0$. This is $\|Az\|^2=0$ so Az=0. The nullspaces of A and $A^{\rm H}A$ are always the *same*.
- (a) False (c) False $A = U = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ (b) True: -i is not an eigenvalue when $A = A^{H}$.
- **7** cA is still Hermitian for real c; $(iA)^{H} = -iA^{H} = -iA$ is skew-Hermitian.
- **8** This *P* is invertible and unitary. $P^2 = \begin{bmatrix} 0 & 0 & -1 \\ -1 & 0 & 0 \\ 0 & -1 & 0 \end{bmatrix}$, $P^3 = \begin{bmatrix} -i & & \\ & -i & \\ & -i \end{bmatrix} = \begin{bmatrix} -i & & \\ & & -i \end{bmatrix}$ -iI. Then $P^{100} = (-i)^{33}P = -iP$. The eigenvalues of P are the roots of $\lambda^3 = -i$, which are i and $ie^{2\pi i/3}$ and $ie^{4\pi i/3}$.
- **9** One unit eigenvector is certainly $x_1 = (1, 1, 1)$ with $\lambda_1 = i$. The other eigenvectors are $x_2 = (1, w, w^2)$ and $x_3 = (1, w^2, w^4)$ with $w = e^{2\pi i/3}$. The eigenvector matrix is the Fourier matrix F_3 . The eigenvectors of any unitary matrix like P are orthogonal (using the correct complex form $x^{H}y$ of the inner product).
- **10** $(1, 1, 1), (1, e^{2\pi i/3}, e^{4\pi i/3}), (1, e^{4\pi i/3}, e^{2\pi i/3})$ are orthogonal (complex inner product!) because *P* is an orthogonal matrix—and therefore its eigenvector matrix is unitary.

- **11** If $U^{\rm H}U=I$ then $U^{-1}(U^{\rm H})^{-1}=U^{-1}(U^{-1})^{\rm H}=I$ so U^{-1} is also unitary. Also $(UV)^{\rm H}(UV)=V^{\rm H}U^{\rm H}UV=V^{\rm H}V=I$ so UV is unitary.
- **12** Determinant = product of the eigenvalues (all real). And $A = A^{H}$ gives det $A = \overline{\det A}$.
- **13** $(z^{H}A^{H})(Az) = ||Az||^{2}$ is positive unless Az = 0. When A has independent columns this means z = 0; so $A^{H}A$ is positive definite.

14
$$A = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1+i \\ 1+i & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix} \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1-i \\ -1-i & 1 \end{bmatrix}.$$

- **15** $K = (iA^{\mathrm{T}} \text{ in Problem 14}) = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & -1-i \\ 1-i & 1 \end{bmatrix} \begin{bmatrix} 2i & 0 \\ 0 & -i \end{bmatrix} \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1+i \\ -1+i & 1 \end{bmatrix};$ λ 's are imaginary.
- **16** $Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -i \\ -i & 1 \end{bmatrix} \begin{bmatrix} \cos \theta + i \sin \theta & 0 \\ 0 & \cos \theta i \sin \theta \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & i \\ i & 1 \end{bmatrix} \text{has } |\lambda| = 1.$
- 17 $V = \frac{1}{L}\begin{bmatrix} 1+\sqrt{3} & -1+i \\ 1+i & 1+\sqrt{3} \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}\frac{1}{L}\begin{bmatrix} 1+\sqrt{3} & 1-i \\ -1-i & 1+\sqrt{3} \end{bmatrix}$ with $L^2 = 6+2\sqrt{3}$. Unitary means $|\lambda| = 1$. $V = V^{\rm H}$ gives real λ . Then trace zero gives $\lambda = 1$ and -1.
- **18** The v's are columns of a unitary matrix U, so $U^{\rm H}$ is U^{-1} . Then $z = UU^{\rm H}z =$ (multiply by columns) = $v_1(v_1^{\rm H}z) + \cdots + v_n(v_n^{\rm H}z)$: a typical orthonormal expansion.
- **19** Don't multiply $(e^{-ix})(e^{ix})$. Conjugate the first, then $\int_0^{2\pi} e^{2ix} dx = [e^{2ix}/2i]_0^{2\pi} = 0$.
- **20** z = (1, i, -2) completes an orthogonal basis for \mathbb{C}^3 . So does any $e^{i\theta}z$.
- **21** $R + iS = (R + iS)^{H} = R^{T} iS^{T}$; R is symmetric but S is skew-symmetric.
- **22** \mathbb{C}^n has dimension n; the columns of any unitary matrix are a basis. For example use the columns of iI: $(i,0,\ldots,0),\ldots,(0,\ldots,0,i)$
- **23** [1] and [-1]; any $[e^{i\theta}]$; $\begin{bmatrix} a & b+ic \\ b-ic & d \end{bmatrix}$; $\begin{bmatrix} w & e^{i\phi}\overline{z} \\ -z & e^{i\phi}\overline{w} \end{bmatrix}$ with $|w|^2 + |z|^2 = 1$ and any angle ϕ
- **24** The eigenvalues of A^{H} are *complex conjugates* of the eigenvalues of A: $\det(A \lambda I) = 0$ gives $\det(A^{H} \overline{\lambda}I) = 0$.
- **25** $(I 2uu^{\rm H})^{\rm H} = I 2uu^{\rm H}$ and also $(I 2uu^{\rm H})^2 = I 4uu^{\rm H} + 4u(u^{\rm H}u)u^{\rm H} = I$. The rank-1 matrix $uu^{\rm H}$ projects onto the line through u.
- **26** Unitary $U^{H}U = I$ means $(A^{T} iB^{T})(A + iB) = (A^{T}A + B^{T}B) + i(A^{T}B B^{T}A) = I$. $A^{T}A + B^{T}B = I$ and $A^{T}B B^{T}A = 0$ which makes the block matrix orthogonal.
- **27** We are given $A + iB = (A + iB)^{H} = A^{T} iB^{T}$. Then $A = A^{T}$ and $B = -B^{T}$. So that $\begin{bmatrix} A & -B \\ B & A \end{bmatrix}$ is symmetric.
- **28** $AA^{-1} = I$ gives $(A^{-1})^H A^H = I$. Therefore $(A^{-1})^H$ is $(A^H)^{-1} = A^{-1}$ and A^{-1} is Hermitian.
- **29** $A = \begin{bmatrix} 1-i & 1-i \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix} \frac{1}{6} \begin{bmatrix} 2+2i & -2 \\ 1+i & 2 \end{bmatrix} = S\Lambda S^{-1}$. Note real $\lambda = 1$ and 4.

30 If U has (complex) orthonormal columns, then $U^{\rm H}U=I$ and U is *unitary*. If those columns are eigenvectors of A, then $A=U\Lambda U^{-1}=U\Lambda U^{\rm H}$ is *normal*. The direct test for a normal matrix (which is $AA^{\rm H}=A^{\rm H}A$ because diagonals could be real!) and $\Lambda^{\rm H}$ surely commute:

$$AA^{\mathrm{H}} = (U\Lambda U^{\mathrm{H}})(U\Lambda^{\mathrm{H}}U^{\mathrm{H}}) = U(\Lambda\Lambda^{\mathrm{H}})U^{\mathrm{H}} = U(\Lambda^{\mathrm{H}}\Lambda)U^{\mathrm{H}} = (U\Lambda^{\mathrm{H}}U^{\mathrm{H}})(U\Lambda U^{\mathrm{H}}) = A^{\mathrm{H}}A.$$

An easy way to construct a normal matrix is 1 + i times a symmetric matrix. Or take A = S + iT where the real symmetric S and T commute (Then $A^{H} = S - iT$ and $AA^{H} = A^{H}A$).

Problem Set 10.3, page 514

1 Equation (3) (the FFT) is correct using $i^2 = -1$ in the last two rows and three columns.

$$\mathbf{2} \ F^{-1} = \begin{bmatrix} 1 & & & & \\ & & 1 & \\ & & & 1 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & 1 & & & \\ 1 & i^2 & & & \\ & & 1 & 1 \\ & & & 1 & i^2 \end{bmatrix} \frac{1}{2} \begin{bmatrix} 1 & & & 1 & \\ & 1 & & & 1 \\ 1 & & & -1 & \\ & -i & & i \end{bmatrix} = \frac{1}{4} F^{\mathrm{H}}.$$

3
$$F = \begin{bmatrix} 1 & & & & \\ & & 1 & \\ & 1 & & \\ & & & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & & \\ 1 & i^2 & & \\ & & 1 & 1 \\ & & & 1 & i^2 \end{bmatrix} \begin{bmatrix} 1 & & & 1 & \\ & 1 & & & 1 \\ 1 & & & -1 & \\ & -i & & & i \end{bmatrix}$$
 permutation last.

4
$$D = \begin{bmatrix} 1 & & & \\ & e^{2\pi i/6} & & \\ & & e^{4\pi i/6} \end{bmatrix}$$
 (note 6 not 3) and $F_3 \begin{bmatrix} 1 & 1 & 1 \\ 1 & e^{2\pi i/3} & e^{4\pi i/3} \\ 1 & e^{4\pi i/3} & e^{2\pi i/3} \end{bmatrix}$.

5 $F^{-1}w = v$ and $F^{-1}v = w/4$. Delta vector \leftrightarrow all-ones vector.

6
$$(F_4)^2 = \begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 4 \\ 0 & 0 & 4 & 0 \\ 0 & 4 & 0 & 0 \end{bmatrix}$$
 and $(F_4)^4 = 16I$. Four transforms recover the signal!

7
$$c = \begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ 0 \\ 2 \\ 0 \end{bmatrix} = Fc$$
. Also $C = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 2 \\ 0 \\ -2 \\ 0 \end{bmatrix} = FC$. Adding $c + C$ gives $(1, 1, 1, 1)$ to $(4, 0, 0, 0) = 4$ (delta vector).

8 $c \to (1, 1, 1, 1, 0, 0, 0, 0) \to (4, 0, 0, 0, 0, 0, 0, 0) \to (4, 0, 0, 0, 4, 0, 0, 0) = F_8 c.$ $C \to (0, 0, 0, 0, 1, 1, 1, 1) \to (0, 0, 0, 0, 4, 0, 0, 0) \to (4, 0, 0, 0, -4, 0, 0, 0) = F_8 C.$

9 If $w^{64} = 1$ then w^2 is a 32nd root of 1 and \sqrt{w} is a 128th root of 1: Key to FFT.

- **10** For every integer n, the nth roots of 1 add to zero. For even n, they cancel in pairs. For any n, use the geometric series formula $1 + w + \cdots + w^{n-1} = (w^n 1)/(w 1) = 0$. In particular for n = 3, $1 + (-1 + i\sqrt{3})/2 + (-1 i\sqrt{3})/2 = 0$.
- **11** The eigenvalues of P are $1, i, i^2 = -1$, and $i^3 = -i$. Problem 11 displays the eigenvectors. And also $\det(P \lambda I) = \lambda^4 1$.

12
$$\Lambda = \text{diag}(1, i, i^2, i^3); P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} \text{ and } P^{\mathsf{T}} \text{ lead to } \lambda^3 - 1 = 0.$$

- **13** $e_1 = c_0 + c_1 + c_2 + c_3$ and $e_2 = c_0 + c_1 i + c_2 i^2 + c_3 i^3$; E contains the four eigenvalues of $C = FEF^{-1}$ because F contains the eigenvectors.
- **14** Eigenvalues $e_1 = 2 1 1 = 0$, $e_2 = 2 i i^3 = 2$, $e_3 = 2 (-1) (-1) = 4$, $e_4 = 2 i^3 i^9 = 2$. Just transform column 0 of C. Check trace 0 + 2 + 4 + 2 = 8.
- **15** Diagonal E needs n multiplications, Fourier matrix F and F^{-1} need $\frac{1}{2}n \log_2 n$ multiplications each by the **FFT**. The total is much less than the ordinary n^2 for C times x.
- 16 The row 1, \overline{w}^k , \overline{w}^{2k} , ... in \overline{F} is the same as the row 1, w^{N-k} , w^{N-2k} , ... in F because $w^{N-k} = e^{(2\pi i/N)(N-k)}$ is $e^{2\pi i}e^{-(2\pi i/N)k} = 1$ times \overline{w}^k . So F and \overline{F} have the same rows in reversed order (except for row 0 which is all ones).