《大学物理 AI》作业 No.02 动量 动量守恒定律

	班级	·	学号		姓名	成绩	
	******	*****	 ·*****本章都	 炎学 勇	 E求******	*******	
2, 3, 4, 5, 6,	理解力的冲量概 掌握质点、质点 掌握动量守恒系 理解质心的概念	E律及其适用条 既念,会计算变 点系动量定理的 条件,并熟练应 会和质心运动定	件,熟练计算惯力的冲量; 微分形式与积分 用动量守恒定律	形式, 求解7	并熟练求解相 有关问题;	下的质点动力学问题; 关问题;	
一、	选择题						
			气车的动量变化- 的量			动量将:	
		(C) 变化小一	点的量	(D)	答案取决于两	者之间的相互作用	
	机枪每分钟可身 大小为	寸出质量为 20 g	的子弹 900 颗,	子弹	射出的速率为8	$00\mathrm{m}\cdot\mathrm{s}^{-1}$,则射击时的平均	反冲
	[]	(A) 0.267 N			(B) 16 N		
		(C) 240 N			(D) 14400 N		
	子剪断的瞬间, $(A) a_1 = g,$	球 1 和球 2 的 $a_2 = g$. (B)	簧相连接,再用一 中速度分别为 [$a_1=0, a_2=1$ $a_1=2g, a_2$	S .	·悬挂于天花板_]	上,处于静止状态,如图所示 球 1 球 2	·. 将
4	西人氏昙妇笙的	加休儿司一声	守白山下游 上,	卜亚州	1面相碰 一个5	5.端同李 - 昱一个却贴左轴3	51 L

4. 两个质量相等的物体从同一高度自由下落,与水平地面相碰,一个反弹回来,另一个却贴在地面上, 哪一个给地面的冲量大? (下落过程中阻力不计)

- [] (A) 反弹回来的 (B) 贴在地面上的

 - (C) 两个一样大 (D) 条件不足,不能判定.

5. 质量为 m 的质点,以不变速率 v 沿图中正三角形 ABC 的 x 平光滑轨道运动。质点越过 A 角时,轨						
道作用于质点的冲量的大小为: p_1						
[] (A) mv (B) $\sqrt{2}mv$						
(C) $\sqrt{3}mv$ (D) 2 mv						
6. 一质量为 M 的斜面原来静止于水平光滑平面上,将一质量为 m 的木块轻轻放于斜面上,如图. 如						
果此后木块能静止于斜面上,则斜面将:						
[] (A) 保持静止. (B) 向右加速运动.						
(C) 向右匀速运动. (D) 向左加速运动.						
二、填空题						
1. 质心的位矢是质点系内各质点位矢的加权平均值,其权重由决定;一般情况下质点						
系的质心与几何中心,质心						
一定、不一定)。质心的运动代表了质点系的运动规律。						
2. 惯性力是一种力,在非惯性系中惯性力有效果(选填:真实、非真						
实); 惯性离心力与向心力牛顿第三定律。(选填:满足、不满足)						
3. 一质量为 1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系数 μ_0 =0.20,滑动摩擦系数 μ						
=0.16,现对物体施一水平拉力 $F=t+0.96$ (SI),则 2 秒末物体的速度大小 $v=$ 。						
4. 有两艘停在湖上的船,它们之间用一根很轻的绳子连接。设第一艘船和人的总质量为 250 kg,第二						
艘船的总质量为 500 kg ,水的阻力不计。现在站在第一艘船上的人用 $F = 50 \text{ N}$ 的水平力来拉绳子,则						
5 s 后第一艘船的速度大小为。						
5. 质量为 1500 kg 的一辆吉普车静止在一艘驳船上。驳船在缆绳拉力(方向不变)的作用下沿缆绳方向						
起动,在5秒内速率增加至5m/s,则该吉普车作用于驳船的水平方向的平均力大小为。						
6. 一吊车底板上放一质量为 10 kg 的物体,若吊车底板加速上升,加速度大小为 $a=3+5t$ (SI),则 2 秒 内 吊 车 底 板 给 物 体 的 冲 量 大 小 $I=$						
°						
7. 一质量为 5 kg 的物体,其所受的作用力 F 随时间的变化关系如图所示。设 $5 20$						
物体从静止开始沿直线运动,则 20 秒末物体的速率 $v =$ 。 $_{-5}$ $_{-5}$ $_{-5}$						

三、简答题

1. 一人躺在地上,身上压一块重石板,另一人用重锤猛击石板,但见石板碎裂,而石板下面的人毫无损伤,这是为什么?

2. 试比较螺旋桨飞机、喷气式飞机和火箭飞行原理的主要差别。

四、计算题:

- 1. 质量为 M=1.5 kg 的物体,用一根长为 l=1.25 m 的细绳悬挂在天花板上。今有一质量为 m=10 g 的子弹以 $v_0=500$ m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v=30 m/s ,设穿透时间极短。求:
 - (1) 子弹刚穿出时绳中张力的大小;
 - (2) 子弹在穿透过程中所受的冲量。

2. 如图所示,质量为 M 的滑块正沿着光滑水平地面向右滑动,一质量为 m 的小球水平向右飞行,以速度 \vec{v}_1 (对地)与滑块斜面相碰,碰后竖直向上弹起,速率为 \vec{v}_2 (对地)。若碰撞时间为 Δt ,试计算此过程中滑块对地的平均作用力和滑块速度增量的大小。

- 3. 有一水平运动的皮带将砂子从一处运到另一处,砂子经一垂直的静止漏斗落到皮带上,皮带以恒定的速率v水平地运动。忽略机件各部位的摩擦及皮带另一端的其它影响,试问:
 - (1) 若每秒有质量为 $\Delta M = \frac{\mathrm{d}\,M}{\mathrm{d}\,t}$ 的砂子落到皮带上,要维持皮带以恒定速率 v 运动,需要多大的功率?
 - (2) 若 $\Delta M = 20 \,\mathrm{kg \cdot s^{-1}}, v = 1.5 \,\mathrm{m \cdot s^{-1}},$ 水平牵引力多大? 所需功率多大?