EPLORATORY DATA ANALYSIS ON GERMAN

CREDIT DATASET

Importing Relevant Labraries

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

IMPORTING AND INSPECTING OUR DATA

SET

In [4]: df=pd.read_csv("C:/Users/Sanayak/Desktop/german_credit_data.csv")
 df.head()

Out[4]:		Unnamed: 0	Age	Sex	Job	Housing	Saving accounts	Checking account		Duration	
	0	0	67	male	2	own	NaN	little	1169	6	
	1	1	22	female	2	own	little	moderate	5951	48	
	2	2	49	male	1	own	little	NaN	2096	12	
	3	3	45	male	2	free	little	little	7882	42	furnitur
	4	4	53	male	2	free	little	little	4870	24	
	4										>

In [5]: df.tail()

Out[5]:		Unnamed: 0	Age	Sex	Job	Housing	Saving accounts	Checking account		Duration	
	995	995	31	female	1	own	little	NaN	1736	12	furni
	996	996	40	male	3	own	little	little	3857	30	
	997	997	38	male	2	own	little	NaN	804	12	
	998	998	23	male	2	free	little	little	1845	45	
	999	999	27	male	2	own	moderate	moderate	4576	45	
	4										•
T. [7].	٦	t. ()									

In [7]: df.count()

```
Out[7]: Unnamed: 0
                              1000
         Age
                              1000
          Sex
                              1000
          Job
                              1000
         Housing
                              1000
         Saving accounts
                               817
         Checking account
                               606
         Credit amount
                              1000
         Duration
                              1000
         Purpose
                              1000
         dtype: int64
In [8]:
        df.nunique()
Out[8]: Unnamed: 0
                              1000
         Age
                                53
          Sex
                                 2
          Job
                                 4
         Housing
                                 3
         Saving accounts
                                 4
         Checking account
                                 3
         Credit amount
                               921
         Duration
                                33
         Purpose
                                 8
          dtype: int64
In [9]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 1000 entries, 0 to 999
        Data columns (total 10 columns):
                               Non-Null Count Dtype
             Column
            -----
                               -----
             Unnamed: 0
                               1000 non-null
                                               int64
         1
                               1000 non-null
                                               int64
             Age
         2
             Sex
                               1000 non-null
                                               object
         3
             Job
                               1000 non-null
                                               int64
                               1000 non-null
             Housing
                                               object
             Saving accounts
                               817 non-null
                                               object
                                               object
             Checking account 606 non-null
         7
             Credit amount
                               1000 non-null
                                               int64
         8
             Duration
                               1000 non-null
                                               int64
         9
             Purpose
                               1000 non-null
                                               object
        dtypes: int64(5), object(5)
        memory usage: 78.3+ KB
In [10]: df.describe()
```

Out[10]:

	Unnamed: 0	Age	Job	Credit amount	Duration
count	1000.000000	1000.000000	1000.000000	1000.000000	1000.000000
mean	499.500000	35.546000	1.904000	3271.258000	20.903000
std	288.819436	11.375469	0.653614	2822.736876	12.058814
min	0.000000	19.000000	0.000000	250.000000	4.000000
25%	249.750000	27.000000	2.000000	1365.500000	12.000000
50%	499.500000	33.000000	2.000000	2319.500000	18.000000
75%	749.250000	42.000000	2.000000	3972.250000	24.000000
max	999.000000	75.000000	3.000000	18424.000000	72.000000

In [12]: df.shape

Out[12]: (1000, 10)

DATA CLEANSING AND DATA

MANIPULATION

Our Data set has missing values(NaN), and it is best we drop the rows with missing string values

```
In [17]: df.dropna(axis=0,how="any",inplace=True)
    df.info()
```

<class 'pandas.core.frame.DataFrame'>

Index: 522 entries, 1 to 999
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	522 non-null	int64
1	Age	522 non-null	int64
2	Sex	522 non-null	object
3	Job	522 non-null	int64
4	Housing	522 non-null	object
5	Saving accounts	522 non-null	object
6	Checking account	522 non-null	object
7	Credit amount	522 non-null	int64
8	Duration	522 non-null	int64
9	Purpose	522 non-null	object

dtypes: int64(5), object(5)
memory usage: 44.9+ KB

```
In [18]: plt.hist(df.Age,color="green",bins=40)
    plt.xlabel("Ages(years)")
    plt.ylabel("Frequency")
    plt.title("Age Distribution(Years)")
    plt.style.use("fivethirtyeight")
    plt.show()
```



```
In [19]: house_type=pd.Categorical(df["Housing"])
    house_type.describe()
```

Out[19]: counts freqs

categories

free	65	0.124521
own	349	0.668582
rent	108	0.206897

```
In [20]: house_category=[65,349,108]
    types=["Free","Own","Rent"]
    plt.pie(house_category,labels=types,shadow=True,autopct="%1.f%%")
    plt.title("Sectorial Represention of House Type")
    plt.axis("equal")
    plt.show()
```


In [21]:	<pre>purpose=pd.Categorical(df["Purpose"])</pre>
	purpose.describe()

Out[21]:	counts	freqs
----------	--------	-------

categories		
business	53	0.101533
car	173	0.331418
domestic appliances	6	0.011494
education	28	0.053640
furniture/equipment	107	0.204981
radio/TV	132	0.252874
repairs	14	0.026820
vacation/others	9	0.017241

```
In [24]: purpose=[53,173,6,28,107,132,14,9]
    types=["Business","Car","Domestic Appliances","Education","Furniture/Equipment","R
    plt.pie(purpose,labels=types,shadow=True,autopct="%1.f%%")
    plt.title("Sectorial Represention of Reasons for Credit Loan")
    plt.axis("equal")
    plt.show()
```



```
In [40]: plt.bar(df.Sex, df.Age)
    plt.xlabel("Sex")
    plt.ylabel("Ages in Years")
    plt.title("Visualization of Data set")
    plt.style.use("ggplot")
    plt.show()
```

Visualization of Data set

PREPARED BY VICTOR INIOBONG ECONOMIST | DATA SCIENTIST | MATHEMATICS TUTOR