UTSCHLAND

BEST AVAILABLE COPY

23 61 551

21)

(B)

® BUNDESREPUBLIK

DEUTSCHES

Aktenzeichen:

P 23 61 551.2

22

Anmeldetag:

11. 12. 73

43)

Offenlegungstag:

19. 6.75

30

Unionspriorität:

@ 33 3

(34)

Bezeichnung:

Wasserlösliche Azofarbstoffe

7

Anmelder:

BASF AG, 6700 Ludwigshafen

1

Erfinder:

Dehnert, Johannes, Dipl.-Chem. Dr.; Juenemann, Werner, Dipl.-Chem. Dr.;

6700 Ludwigshafen

Unser Zeichen: 0.2. 30 263 Bg

6700 Ludwigshafen, 8.12.1973

Wasserlösliche Azofarbstoffe

Die Erfindung betrifft Farbstoffe, die in Form der freien Säuren und in einer der möglichen tautomeren Formen der Formel I

$$\begin{array}{c}
\text{NHR}^{1} \\
\text{NHR}^{1} \\
\text{H}_{2}^{N} \\
\text{R}^{1} \\
\text{N-R}^{2}
\end{array}$$

$$\left(\text{SO}_{3}^{H}\right)_{n}$$

entsprechen, in der

- D den Rest einer Diazokomponente,
- X Cyan oder Carbamoyl,
- n die Zahlen 1 bis 4,
- gegebenenfalls substituiertes Alkyl, Cycloalkyl oder Aralkyl und
- R² Wasserstoff oder gegebenenfalls substituiertes Alkyl, Cycloalkyl, Aralkyl oder Aryl bedeuten.

-2-

690/73

ORIGINAL INSPECTED .

Die Reste D der Diazokomponenten leiten sich insbesondere von Anilin-, Aminophthalimid- und Aminoazobenzolderivaten ab, die Hydroxy, z. B. durch Hydroxysulfonyl, Halogen, Alkyl, Alkoxy, Acylamino, Cyan, Alkylsulfon, Phenylsulfon, Nitro, Carboxyl, Carbalkoxy, Carbonamid, N-substituiertes Carbonamid, Sulfonamid, N-substituiertes Sulfonamid oder Benzthiazolyl substituiert sein können.

Einzelne Substituenten sind außer den bereits genannten beispielsweise: Chlor, Brom, Methyl, Ähyl, Trifluormethyl, Methoxy, Äthoxy, Methylsulfonyl, Äthylsulfonyl, Carbomethoxy, -äthoxy,
-β-äthoxy-äthoxy, -β-methoxyäthoxy, -butoxy, -β-butoxyäthoxy,
N-Methyl-, N-Äthyl-, N-Propyl-, N-Butyl-, N-Hexyl-, N-β-Äthylhexyl-, N-β-Hydroxyäthyl-, N-β-Methoxyäthyl-, N-γ-Methoxypropylcarbonamid, N,N-Dimethyl-, N,N-Diäthyl-, N-Methyl-N-β-hydroxyäthyl-, N-Phenylcarbonamid, Carbonsäure-piperidid, -morpholid
oder -pyrrolidid sowie die entsprechenden Sulfonamide, Acetylamino,
Propionylamino, Butyrylamino, Methansulfonylamino, Benzolsulfonylamino, Hydroxyacetylamino, Benzoylamino, p-Chlorbenzoylamino,
Phenacetylamino sowie die Reste der Formeln -N-CO-CH₃, -N-CO-CH₂Cl,
-N-CO-CH₃, -N-CHO oder -N
-CH₃
-N-CO-CH₃, -N-CHO oder -N
-CH₃
-N-CO-CH₃, -N-CHO oder -N
-CH₃
-N-CO-CH₃
-N-CHO oder -N
-CH₃
-N-CHO ode

-3-

Reste R¹ der Kupplungskomponenten sind z. B. Alkyl mit 1 bis 8 C-Atomen, das noch durch Chlor, Brom oder Alkoxy mit 1 bis 4 C-Atomen substituiert sein kann, Cyclohexyl, Norbornyl, Benzyl, Phenyläthyl oder Phenylpropyl.

Bevorzugte Reste R¹ sind Alkylgruppen mit 1 bis 4 C-Atomen und insbesondere Äthyl, Propyl, Methoxyäthyl oder Methoxypropyl.

Reste R² sind neben Wasserstoff z. B. Alkyl mit 1 bis 8 C-Atomen, das durch Sauerstoffatome unterbrochen und durch Hydroxy, Acyloxy, Alkoxy, Cyan, Cycloalkoxy, Aralkoxy oder Aroxy substituiert sein kann, gegebenenfalls durch Hydroxy, Chlor, Hydroxyalkyl, Chloralkyl oder Alkyl substituierte Cycloalkyl- oder Polycycloalkylreste mit 5 bis 15 C-Atomen, Aralkylreste mit 7 bis 15 C-Atomen oder gegebenenfalls durch Chlor, Hydroxy, Alkoxy, Alkyl, Hydroxyalkyl oder Hydroxyalkoxy substituierte Phenylreste sowie Alkenyl-, Pyrrolidonylalkyl- und Carboxyalkylreste.

Als Reste R² kommen im einzelnen außer den schon genannten z. B. in Betracht:

1) gegebenenfalls substituierte Alkylreste:

$$cH_2cH_2OH$$
, $(cH_2)_3OH$, cH_2cHOH , cH_2CHOH , cH_2OH , cH_3

$$(cH_2)_6$$
 OH, $cH_2(cH_2)_3$ $c(cH_3)_2$, $(cH_2)_2$ O($cH_2)_2$ OH, $(cH_2)_3$ O($cH_2)_4$ OH,

die entsprechenden Reste bei denen die Gruppierungen

zwei-, drei- oder viermal vorhanden sind,

$$(\text{CH}_2)_3^{\text{OCH}_2}$$
 $(\text{CH}_2)_4^{\text{H}_9}$, $(\text{CH}_2)_3^{\text{OC}_6}$ $(\text{CH}_2)_3^{\text{OC}_8}$ $(\text{CH}_2)_3^{\text{OC}_8}$ $(\text{CH}_2)_3^{\text{OC}_8}$,

$$(cH_2)_3^{0CH_2}c_6^{H_5}$$
, $(cH_2)_3^{0C_2}H_4^{C_6}H_5$, $(cH_2)_3^{0C_6}H_5$, $-cH_2^{0CH_3}$, $cH_3^{0C_5}$

0.2. 30 263 2361551

2) gegebenenfalls substituierte Cyclo- und Polycycloalkylreste:

3) Aralkylreste

4) gegebenenfalls substituierte Phenylreste:

$$c_{6}^{H_{5}}$$
, $c_{6}^{H_{4}^{CH_{3}}}$, $c_{6}^{H_{3}^{CCH_{3}}}$, $c_{6}^{H_{4}^{OCH_{3}}}$, $c_{6}^{H_{4}^{OC}}$, $c_{6}^{H_{4$

5) $CH_2CH=CH_2$, $(CH_2)_2COOH$, $(CH_2)_5COOH$ und $(CH_2)_n-N$, wobei

 $\begin{array}{l} {\rm n = 2, 3, 4 \ oder \ 6 \ ist, \ C_2H_4OCOCH_3, \ C_2H_4OCHO, \ C_2H_4OCOCH_2COCH_3,} \\ {\rm (C_2H_4O)_2COCH_3, \quad (C_2H_4O)_2CHO, \quad (CH_2)_3OCOCH_3, \quad (CH_2)_3OCHO,} \\ {\rm C_2H_4OCOC_2H_4COOH.} \end{array}$

 $(cH_2)_4$ oso₃H, $(cH_2)_6$ oso₃H, cH_2 oso₃H, cH_2 oso₃H, cH_2 oso₃H, cH_2 oso₃H,

$$- \bigcirc \bigcirc \circ \circ_3 \mathsf{H} \quad , \quad - \bigcirc \bigcirc \circ \circ_3 \mathsf{H} \quad , \quad - \bigcirc \bigcirc \circ \circ_3 \mathsf{H} \quad , \quad - \bigcirc \bigcirc \circ \circ_3 \mathsf{H} \quad , \quad - \bigcirc \bigcirc \circ \circ_3 \mathsf{H} \quad , \quad - \bigcirc \circ \circ_3 \mathsf{H} \quad ,$$

$$= \sum_{\text{SO}_3^{\text{H}}}^{\text{OC}_2^{\text{H}_5}}, \quad = \sum_{\text{SO}_3^{\text{H}}}^{\text{OH}}, \quad \text{$^{\text{C}_6^{\text{H}}_4^{\text{OCH}_2^{\text{CH}_2^{\text{OSO}}_3^{\text{H}}}}$}, \quad = \sum_{\text{SO}_3^{\text{H}}}^{\text{OCH}_2^{\text{CH}_2^{\text{OH}}}}$$

oder $<\sim$ SO₃H

2361551 Als Substituenten R sind bevorzugt beispielsweise: Wasserstoff, c_{H_3} , $c_{2^{H_5}}$, n- oder i- $c_{3^{H_7}}$, n- oder i- $c_{4^{H_9}}$, $c_{6^{H_{13}}}$, c_{12} $(cH_2)_4$ oH, $(cH_2)_6$ oH, $cH(cH_2)_3$ $c(cH_3)_2$, (сн₂)₃он, сн₂снон, $(CH_2)_2$ $O(CH_2)_2$ OH, $(CH_2)_3$ $O(CH_2)_2$ OH, $(CH_2)_3$ $O(CH_2)_4$ OH, $(CH_2)_3$ $O(CH_2)_6$ OH,

СH(СH₂)₃ (т) ОН ,

 $\text{CH}_{2}\text{CH}_{2}\text{OCH}_{3}$, $\text{CH}_{2}\text{CH}_{2}\text{OC}_{2}\text{H}_{5}$, $\text{CH}_{2}\text{CH}_{2}\text{OC}_{4}\text{H}_{9}$, $\text{(CH}_{2})_{3}\text{OCH}_{3}$, $\text{(CH}_{2})_{3}\text{OC}_{2}\text{H}_{5}$, $(CH_2)_3 OC_3 H_7$, $(CH_2)_3 OC_4 H_9$, $(CH_2)_3 OC_6 H_{13}$, $(CH_2)_3 OC_8 H_{17}$, $(CH_2)_3 - 0 - H$, $(CH_2)_3 OCH_2 - C$, $(CH_2)_3 OC_2 H_4 - C$, $(CH_2)_3 O - C$, $(cH_2)_2 \circ - (cH_2)_3 \circ c_2 H_4 \circ cH_3, \quad (cH_2)_3 \circ c_2 H_4 \circ c_4 H_9, \quad (cH_2)_3 \circ c_2 H_4 \circ c_6 H_5,$

-H), -CH $_2$ C $_6$ H $_5$, -C $_2$ H $_4$ C $_6$ H $_5$,

 $c_{12}^{c_{11}c_$

 $c_{6}H_{4}oc_{2}H_{5}$, $c_{6}H_{4}oc_{2}H_{4}oH$, $c_{6}H_{4}c1$, $cH_{2}cH_{2}so_{3}H$, $cH_{2}cH_{2}oso_{3}H$, $(cH_2)_3^{0SO_3H}$, $cH_2^{cHOSO_3H}$, $(cH_2)_4^{0SO_3H}$, $(cH_2)_6^{0SO_3H}$,

 $(cH_2)_2 o(cH_2)_2 oso_3 H$, $(cH_2)_3 o(cH_2)_2 oso_3 H$, $(cH_2)_3 o(cH_2)_4 oso_3 H$,

 $(cH_2)_3^{0}(cH_2)_6^{0}S0_3^{H}, (cH_2)_3^{0}c_6^{H}_4^{S0}_3^{H}, (cH_2)_3^{0}c_6^{H}_4^{S0}_3^{H}.$

 $(cH_2)_3^{OC_2H_4C_6H_4SO_3H}$, $cH_2^{C_6H_4SO_3H}$, $c_2H_4^{C_6H_4SO_3H}$, $cH_2^{CHC_6H_4SO_3H}$,

 $c_{6^{\mathrm{H}}_{4}\mathrm{SO}_{3^{\mathrm{H}}}}$, $c_{1}^{\mathrm{CH}_{3}}$, $c_{3^{\mathrm{H}}}^{\mathrm{CH}_{3}}$, $c_{3^{\mathrm{H}}}^{\mathrm{CH}_{3}}$ oder $c_{3^{\mathrm{H}}}^{\mathrm{CH}_{3}}$.

509825/0994

Die Farbstoffe der Formel I können in Form der freien Säuren oder auch zweckmäßigerweise als wasserlösliche Salze, z. B. als Alkali-, Ammonium- oder substituierte Ammoniumsalze, hergestellt oder verwendet werden. Substituierte Ammoniumkationen in den Salzen sind beispielsweise Trimethylammonium, Methoxyäthyl-ammonium, Hexoxypropyl-ammonium oder. Dimethyl-phenyl-benzyl-ammonium, Monor, Di- oder Triäthanol-ammonium.

Zur Herstellung der Farbstoffe der Formel I kann man Diazoverbindungen von Aminen der Formel II

mit Kupplungskomponenten der Formel III

umsetzen, wobei normalerweise entweder D und/oder die Reste R¹ und vorzugsweise R² mindestens eine Sulfonsäuregruppe enthalten. Diazotierung und Kupplung erfolgen nach an sich bekannten Methoden. Man kann die neuen Farbstoffe, insbesondere solche mit Schwefelsäurehalbestergruppen, auch dadurch erhalten, daß man zunächst die SO₃H-Gruppen-freien Verbindungen durch Diazotierung und Kupplung herstellt und diese dann mit Sulfonienmitteln wie konzentrierter Schwefelsäure, Schwefelsäuremonohydrat oder Oleum in die Farbstoffe der Formel I überführt. Bezüglich der Einzelheiten wird

auf die Beispiele verweisen. Kupplungskomponenten der Formel III und ihre Herstellung sind aus dem Patent (Patentanmeldung P 23 49 373.4) sowie aus der Angew. Chemie 84, 1184-1185 (1972) bekannt.

Verbindungen der Formel II sind beispielsweise: Anilin, 2-, 3- und 4-Chlor-anilin, 2-, 3- und 4-Bromanilin, 2-, 3- und 4-Nitroanilin, 2-, 3- und 4-Toluidin, 2-, 3- und 4-Cyananilin, 2,4-Dicyan-anilin, 3,4- oder 2,5-Dichlor-anilin, 2,4,5-Trichloranilin, 2,4,6-Trichloranilin, 2-Chlor-4-nitroanilin, 2-Brom-4-nitroanilin, 2-Cyan-4-nitroanilin, 2-Methylsulfonyl-4-nitroanilin, 4-Chlor-2-nitroanilin, 4-Methyl-2-nitroanilin, 2-Methoxy-4-nitroanilin, 1-Amino-2-trifluormethyl-4-chlorbenzol, 2-Chlor-5-amino-benzonitril, 2-Amino-5-chlorbenzonitril, 1-Amino-2-nitrobenzol-4-sulfonsäure-(n)-butylamid oder -B-methoxy-athylamid, 1-Aminobenzol-4-methylsulfon, 1-Amino-2,6-dibrombenzol-4-methylsulfon, 1-Amino-2,6-dichlorbenzol-4-methylsulfon, 3,5-Dichloranthranilsäure-methylester, -propylester, -B-methoxyäthylester, -butylester, 3,5-Dibromanthranilsäure-methylester, -äthylester, -(n)- oder -(i)-propylester, -(n)- oder (i)-butylester, -B-methoxy-athylester, N-Acetyl-p-phenylendiamin, N-Acetyl-m-phenylendiamin, N-Benzolsulfonyl-p-phenylendiamin, 4-Amino-acetophenon, 4oder 2-Aminobenzophenon, 2- und 4-Amino-diphenylsulfon, 2-, 3- oder 4-Aminobenzoesäure-methylester, -äthylester, -propylester, -butylester, -isobutylester, -ß-methoxyäthylester, -ß-äthoxyäthylester,

-methyldiglykolester, -äthyldiglykolester, -methyl-triglykolester, 3- oder 4-Aminophthalsäure, 5-Amino-isophthalsäure- oder Aminoterephthalsäuredimethylester, -diäthylester, -dipropylester, -dibutylester, 3- oder 4-Aminobenzoesäureamid, -methylamid, -propylamid, -butylamid, -isobutylamid, -cyclohexylamid, B-äthyl-hexylamid, -y-methoxy-propylamid, 2-, 3- oder 4-Aminobenzoesäure-dimethylamid, -diathylamid, -pyrrolidid, -morpholid, 5-Amino-isophthalsäurediamid, 3- oder 4-Amino-phthalsäure-imid, -B-hydroxyäthylimid, -methylimid, -äthylimid, -tolylimid, 4-Aminobenzolsulfonsäure-dimethylamid, -diäthylamid, -pyrrolidid, -morpholid, 3- oder 4-Aminophthalsäure-hydrazid, 4-Amino-naphthalsäure-äthylimid, -butylimid, -methoxyäthylimid, 1-Amino-anthrachinon, 4-Aminodiphenylenoxid, 2-Amino-benzthiazol, 4- und 5-Nitronaphthylamin, 4-Amino-azobenzol, 2',3-Dimethyl-4-amino-azobenzol, 3',2-Dimethyl-4-amino-azobenzol, 2,5-Dimethyl-4-amino-azobenzol, 2-Methyl-5methoxy-4-amino-azobenzol, 2-Methyl-4',5-dimethoxy-4-amino-azobenzol, 4'-Chlor-2-methyl-5-methoxy-4-amino-azobenzol, 4'-Nitro-2-methyl-5-methoxy-4-aminoazobenzol, 4'-Chlor-2-methyl-4-amino-azobenzol, 2,5-Dimethoxy-4-amino-azobenzol, 4'-Chlor-2,5-dimethoxy-4-amino-azobenzol, 4'-Nitro-2,5-dimethoxy-4-aminoazobenzol, 4'-Chlor-2,5-dimethyl-4-amino-azobenzol, 4'-Methoxy-2,5-dimethyl-4-aminoazobenzol, 4'-Nitro-4-amino-azobenzol, 3,5-Dibrom-4-amino-azobenzol, 2,3'-Dichlor-4-amino-azobenzol, 3-Methoxy-4-amino-azobenzol, 1-Aminobenzol-2-, -3- oder -4-sulfonsäure, 1-Aminobenzol-2,4- oder -2,5disulfonsäure, 1-Amino-2-methylbenzol-4-sulfonsäure, 1-Amino-3-methylbenzol-4-sulfonsäure, 1-Amino-4-methylbenzol-2- oder -3-sulfonsäure, 2-Nitranilin-4-sulfonsäure, 4-Nitranilin-2-sulfonsäure, 2-Chloranilin-4- oder -5-sulfonsäure, 3-Chloranilin-6-sulfon-4-Chloranilin-2-sulfonsäure, 1-Amino-3,4-dichlorbenzol-6-sulfonsäure, säure, 1-Amino-2,5-dichlorbenzol-4-sulfonsäure, 1-Amino-4-methyl-5-chlorbenzol-2-sulfonsäure, 1-Amino-3-methyl-4-chlorbenzol-6-sulfonsäure, 2-Amino-4-sulfobenzoesäure, 1-Amino-4-acetaminobenzol-2-sulfonsäure, 1-Amino-5-acetaminobenzol-2-sulfonsäure, 1-Amino-2-sulfonsäure, 1-Amino-3-methyl-4-chlorbenzol-5-sulfonsäure, 1-Amino-4-acetaminobenzol-2-sulfonsäure, 1-Amino-4-acetaminobenzol-2-sulfonsäure, 1-Amino-4-acetaminobenzol-2-sulfonsäure, 2-Aminonaphthalin-2-oder -4-sulfonsäure, 2-Aminonaphthalin-1-sulfonsäure, sowie die Diazokomponenten der Formeln

$$_{\text{HO}_3}$$
S $_{\text{NH}_2}$, $_{\text{NH}_2}$, $_{\text{NH}_2}$, $_{\text{NH}_2}$, $_{\text{NH}_2}$, $_{\text{NH}_2}$

$$HO_3S$$
 $-N=N$ $N=N$ N

$$H_5^{C_2^{O}} \leftarrow N=N \leftarrow NH_2$$
, $H_3^{CO} \leftarrow N=N \leftarrow NH_2$, $H_2^{O} \leftarrow N=N \leftarrow NH_2$, $H_2^{O} \leftarrow NH_2$, $H_3^{O} \leftarrow NH_2$, H_3

$$H_5C_2O - N=N - NH_2$$
, $HO - N=N - NH_2$, $H_3CO - NH_2$, H_3CO

$$n-H_7C_3O$$
 \sim $N=N-C_3NH_2$, H_3CO \sim $N=N-C_3NH_2$, $N=N-C_$

$$H_3^{CO} \sim N=N \sim NH_2$$
, $H_3^{CO} \sim N=N \sim NH_2$, $H_3^{CO} \sim N=N \sim NH$

$$H_3C-OC-N-C-N=N-C-N=N-C-N+2$$
, $H_3C-OC-N-C-N=N-N=N-N+2$, SO_3H

$$H_3^{C-OC-N} \xrightarrow{OCH_3} H_3^{CO} = H_3^{C-OC-N} \xrightarrow{N=N} NH_2$$

C1 OCH₃ C1
$$N=N-CH_3$$
 C1 $N=N-CH_3$ NH_2 , NH_3

$$CH_3$$
 $C1$ $HO_3S-O-H_4C_2-O$ $N=N-C$ NH_2 , $HO_3S-O-H_4C_2-O$ $N=N-C$ NH_2 ,

$$_{\text{CH}_{3}}^{\text{CH}_{3}}$$
 $_{\text{CH}_{3}}^{\text{CH}_{3}}$ $_{\text{CH}_{3}}^{\text{CH}_{3}}$ $_{\text{OCH}_{3}}^{\text{CH}_{3}}$ $_{\text{OCH}_{3}}^{\text{CH}_{3}}$

oder
$$H0_3$$
S-0- H_4 C₂-0- $N=N-N=1$ - NH_2 .

Von besonderer technischer Bedeutung sind Farbstoffe der Formel I a

in der D¹ einen Rest der Formel

- X⁴ Wasserstoff oder SO₃H,
- X Cyan oder Carbamoyl,
- Y Wasserstoff, Cyan, Chlor, Brom, Methylsulfon, Äthylsulfon, Phenylsulfon, Carbalkoxy oder SO₃H,
- Y Wasserstoff, Chlor, Brom oder SO3H,
- Y² Wasserstoff, Chlor, Brom, Methyl, Carbalkoxy, 2-Benzthiazolyl oder SO₃H,
- X3 Wasserstoff, Methyl, Hydroxy, Methoxy oder S03H,
- X¹ Wasserstoff, Methyl, Methoxy oder SO₃H,
- x2 Wasserstoff, Methyl oder Methoxy und
- T Wasserstoff oder einen Substituenten bedeuten und
- R¹ und R² die angegebene Bedeutung haben.

Bevorzugte Reste für T sind Alkylreste mit 2 bis 8 C-Atomen, die durch Sauerstoff unterbrochen und durch Hydroxy, Phenoxy oder OSO₃H substituiert sein können, Benzyl, durch SO₃H substituiertes Benzyl, Phenyläthyl, durch SO₃H substituiertes Phenyläthyl oder gegebenenfalls durch SO₃H und/oder andere Reste substituiertes Phenyl.

Reste T sind beispielsweise: CH_3 , C_2H_5 , C_3H_7 , C_4H_9 , C_6H_{13} , $CH_2CH_2CH_2$, CH_2CH_2 , CH_2 ,

Bevorzugte Reste für R² sind Alkylreste mit 1 bis 8 C-Atomen, die durch Sauerstoff unterbrochen und durch Hydroxy, Phenoxy, Benzoyloxy oder OSO₃H substituiert sein können, Benzyl, Phenäthyl, durch SO₃H substituiertes Benzyl oder Phenäthyl, gegebenenfalls substituierte Phenyloder Hydroxysulfonylreste oder Wasserstoff. Die neuen Farbstoffe enthalten vorzugsweise 1 oder 2 Sulfonsäuregruppen, X ist vorzugsweise Cyan.

Bevorzugte Diazokomponenten sind beispielsweise:

2-, 3- und 4-Amino-benzoesäure-methylester, -äthylester, -(n) und

-(i)-propylester, -ß-methoxyäthylester, 2-Amino-3,5-dichlor-benzoesäure-methylester, -äthylester, -(i)-propylester, 2-Amino-3,5-dibrombenzoesäure-methylester, -äthylester, -ß-methoxy-äthylester, 3-Brom4-amino-benzoesäure-äthylester, Aminoterephthalsäurediäthylester,

2-Amino-benzonitril, 2,4-Dicyan-anilin, 2-Amino-5-chlor-benzonitril, 2-Amino-5-brom-benzonitril, 2-Amino-3-brom-5-chlor-benzonitril, 2-Amino-3,5-dibrom-benzonitril, 2-Amino-3,5-diculor-benzonitril, 2-Amino-1-trifluormethyl-benzol, 2-Amino-5-chlor-trifluormethylbenzol, 4-Aminobenzol-1-methylsulfon, 3-Chlor-4-aminobenzol-1-methylsulfon, 2-Amino-diphenylsulfon, 4-Amino-diphenylsulfon, 3- und 4-Aminophthalsäure-B-hydroxyäthylimid, 3- und 4-Aminophthalsäure-B-methoxyäthylimid, 3- und 4-Aminophthalsäure-butylimid, -tolylimid, 1-Amino-4-nitrobenzol, 1-Amino-4-acetylamino-benzol, 1-Amino-3-acetylaminobenzol, 4-Amino-benzoesäure-amid, 4-Amino-benzoesäure-N-methylamid, -M-butylamid, -M-S-äthylhexylamid, 4-Amino-benzoesäure-K,M-diäthylanid, 3- und 4-Amino-benzolsulfons reamid, 3- und 4-Aminobenzolsulfonsäure-N-butylamid, 3- und -4-Amino-benzolsulfonsäure-morpholid, 2-Chlor-anilin-4- oder -5-sulfonsäure, 3-Chlor-anilin-6-sulfonsäure, 4-Chlor-anilin-2-sulfonsaure, 1-Amino-3,4-dichlorbenzol-6-sulfonsäure, 1-Amino-2,5-dichlorbenzol-4-sulfonsäure, 1-Amino-2,5-dibrombenzol-4-sulfonsäure, 1-Amino-4-methyl-5-chlorbenzol-2-sulfonsäure, 1-Amino-3-methyl-4-chlorbenzol-6-sulfonsäure und die Amine der Formeln

$$CH_3$$
 CH_3 CH_3

$$HO_3S \longrightarrow N=N \longrightarrow NH_2$$
, $HO_3S \longrightarrow N=N \longrightarrow NH_2$,

$$_{\text{HO}_{3}}^{\text{S}}$$
 $\stackrel{\text{H}_{3}}{\sim}$ $_{\text{N=N}}$ $\stackrel{\text{CH}_{3}}{\sim}$ $_{\text{NH}_{2}}^{\text{CH}_{3}}$ $\stackrel{\text{CH}_{3}}{\sim}$ $_{\text{CH}_{3}}^{\text{CH}_{3}}$

$$_{3}^{S}$$
 $_{N=N}$ $_{N=N}^{CH_{3}}$ $_{N=N}^{HO_{3}S}$ $_{N=N}^{CH_{3}}$ $_{N=N}^{SO_{3}H}$ $_{NH_{2}}$, $_{NH_{2}}$

$$H_3^{C}$$
 SO_3^{H} SO_3^{H}

$$0 = \sum_{\substack{N \\ R}}^{NH} 0$$

$$R' = -\frac{\text{CH}_3}{\text{CH}_3}$$

$$= -\text{CH}_2 - \text{CH}_2 - 0 - \text{SO}_3^{\text{H}}$$

$$R' = -CH_{2} - CH_{2} - O - SO_{3}H$$

$$+ O_{3}S - - N - N - N - CH_{3} - HN_{2}$$

$$= -CH_{2} - CH_{2} - O - SO_{3}H$$

EO-
$$\sim$$
-N=N- \sim -NH₂
SO₃H
E = H, CH₃, C₂H₅

Die neuen Farbstoffe sind gelb bis violett und eignen sich zum Färben von natürlichen und synthetischen Polyamiden, wie Wolle, Seide, Nylon 6 oder Nylon 6,6. Man erhält damit brillante Färbungen mit vorzüglichen Echtheiten.

In den folgenden Beispielen beziehen sich Angaben über Teile und Prozente, sofern nicht anders vermerkt, auf das Gewicht.

Beispiel 1

40 Teile der Diazokomponente der Formel

$$^{\mathrm{H}_{3}^{\mathrm{C}}} \underbrace{\stackrel{\mathrm{SO}_{3}^{\mathrm{H}}}{\overset{\mathrm{SO}_{3}^{\mathrm{H}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{N}}}{\overset{\mathrm{NH}_{2}}}}{\overset{\mathrm{NH}_{2}}}{\overset{\mathrm{NH}_{2}}}}}{\overset{\mathrm{N$$

werden in 750 Teilen Wasser heiß gelöst, filtriert, mit 30 Teilen einer 23 %igen Natriumnitritlösung, 500 Teilen Eis und anschließend mit 40 Teilen konzentrierter Salzsäure versetzt. Man rührt 2 Stunden bei 0 - 5 °C nach und gibt dann bei der gleichen Temperatur eine Lösung von ungefähr 38 Teilen 6-Amino-3-cyan-4-äthylamino-2-(2-phenyl)-äthylamino-1-äthylpyridiniumchlorid (50 %ig) in 300 Teilen N-Methylpyrrolidon-(2) und 75 Teilen Salzsäure zu. Das Kupplungsgemisch wird mit 50 %iger Natriumacetatlösung auf einen pH-Wert von 4 abgestumpft und der ausgefallene Farbstoff der Formel

abgesaugt. Das getrocknete rote Pulver färbt Polycaprolactamgewebe orangefarben mit sehr guten Echtheiten.

2361551

Beispiel 2

36,9 Teile 6-Amino-2-chlor-3-cyan-4-cyclohexylamino-1-cyclohexyl-pyridiniumchlorid werden mit 50 Teilen 2-Hydroxyäthylamin 5 Stunden auf 130 °C erhitzt. Man läßt abkühlen und rührt in 200 Teile Eiswasser ein. Das halbkristallin anfallende Produkt wird abgetrennt und getrocknet. Man erhält ungefähr 40 Teile einer klebrigen Substanz der Formel

43,1 Teile des so gewonnenen Produktes werden in 300 Teilen N-Methylpyrrolidon-(2), 60 Teilen Salzsäure und 150 Teilen Wasser gelöst und bei 0 - 5 °C zu einer auf übliche Weise in salzsaurer, wäßriger Lösung dargestellte Diazoniumsalzlösung ausgehend von 24,2 Teilen 4-Amino-2,5-dichlorbenzolsulfonsäure gegeben. Nach beendeter Kupplung stellt man mit 50 %iger Natriumacetatlösung den pH-Wert auf etwa 4 ein und saugt den ausgefallenen Farbstoff der Formel

ab. Nach dem Trocknen erhält man etwa 66 Teile eines orangefarbenen Pulvers, das Polycaprolactamgewebe gelb mit vorzüglichen Echtheiten anfärbt.

Beispiel 3

32,1 Teile 6-Amino-2-chlor-3-cyan-4-(2-methoxy)-äthylamino-1-(2-methoxy)äthyl-pyridiniumchlorid werden in 400 Teilen mit

Ammoniak bei etwa 20 °C gesättigtem Alkohol 10 Stunden bei 160 170 °C im Autoklaven erhitzt. Man läßt abkühlen und evaporiert
die Suspension. Der Rückstand wird aus Xylol umkristallisiert.

Man erhält ungefähr 15 Teile einer farbosen Substanz vom Schmelzpunkt 130 °C mit der Formel

35,7 Teile der Diazokomponente der Formel

509825/0994

werden in 100 Teilen Wasser gelöst, filtriert, mit 30 Teilen einer 23 %igen Natriumnitritlösung versetzt und bei 0 - 5 °C auf ein Gemisch von 30 Teilen konzentrierter Salzsäure und 150 Teilen Eis gegeben. Man rührt 2 Stunden nach bei 0 - 5 °C und zerstört anschließend einen etwa vorhandenen Überschuß an salpetriger Säure auf übliche Weise. Dann setzt man bei 0 - 5 °C eine Lösung von 33,2 Teilen der oben angebenen Kupplungskomponente in 300 Teilen N,N-Dimethylformamid zu. Das Kupplungsgemisch wird mit 50 %iger Natriumacetatlösung auf einen pH-Wert von etwa 4 abgestumpft. Nach beendeter Kupplung wird der entstandene Farbstoff der Formel

$$NaO_{3}S \longrightarrow NH-C2H_{4}OCH_{3}$$

$$NaO_{3}S \longrightarrow N=N-C2H_{4}OCH_{3}$$

$$NaO_{3}S \longrightarrow N=N-C2H_{4}OCH_{3}$$

abfiltriert. Nach dem Trocknen erhält man ungefähr 65 Teile eines dunklen Pulvers, das sich in Wasser mit rotvioletter Farbe löst und bei der Ausfärbung auf Polycaprolactamgewebe rote Färbungen mit sehr guten Echtheiten liefert.

Beispiel 4

11,2 Teile Cyanessigsäureäthylamid werden in 16,8 Teilen Chloroform mit 15,3 Teilen Phosphoroxytrichlorid 2 Stunden zum Sieden erhitzt. Danach destilliert man unter vermindertem Druck ungefähr 11,2 Teile Chloroform ab und versetzt das zurückgebliebene Gemisch mit 8 Teilen Methanol. Das ausgefallene Produkt der Formel

wird abgesaugt, mit wenig Methanol gewaschen und bei 60 °C getrocknet. Ausbeute ungefähr 7,7 Teile. Die farblosen Kristalle schmelzen bei 207 °C (Zers.). Eine Reinigung ist durch Umkristallisieren aus n-Butanol möglich; Fp. 228 bis 230 °C (Zers.)

26,1 Teile 6-Amino-2-chlor-3-cyan-1-äthyl-4-äthylaminopyridinium-chlorid und 36,5 Teile ß-Phenyläthylamin werden 5 Stunden auf 150 °C erhitzt. Nach dem Abkühlen wird das Gemisch in 100 Teile Methanol gegeben und das überschüssige Amin durch Einleiten von Chlorwasserstoff als Hydrochlorid gefällt. Der Niederschlag wird

abgesaugt und die Mutterlauge evaporiert. Es bleibt ein zäher Brei zurück, der beim Trocknen erstarrt (32 Teile). Das Produkt hat die wahrscheinliche Formel

$$\begin{array}{c|c} H_5^{C_2-HN} & CN \\ & & \\ &$$

und besitzt keinen scharfen Schmelzpunkt (100 - 157 °C).

34,6 Teile 6-Amino-3-cyan-1-äthyl-4-äthylamino-2-(2-phenyl)-äthyl-aminopyridiniumchlorid werden mit wenig Chloroform angepastet und bei 30 °C in 90 g 23 %iges Oleum eingerührt. Man rührt 3 - 4 Stunden bei 30 - 40 °C, gießt dann das Reaktionsgemisch auf ca. 500 Teile Eis und saugt das überwiegend entstandene Produkt der Formel

ab. Zu der auf 0 - 5 °C abgekühlten Lösung oder Suspension der beschriebenen sulfierten Kupplungskomponente in etwa 400 Teilen Wasser und 10 Teilen 30 %iger Salzsäure gibt man unter Rühren das Diazoniumsalzgemisch zu, welches man auf übliche Weise aus

13,6 Teilen Anthranilsäuremethylester in 270 Teilen Wasser und
23 Teilen konzentrierter Salzsäure durch Zugabe von 27 Teilen
einer 23 %igen Natriumnitritlösung bei 0 - 5 °C gewinnt. Man
läßt das Gemisch 30 Minuten bei 0 - 5 °C rühren und setzt dann
at
Natriumacetlösung zu, bis der pH-Wert des Kupplungsgemisches
etwa 3 beträgt. Nach beendeter Kupplung setzt man noch etwa
100 Teile Kochsalz zu, rührt das Gemisch 2 Stunden und filtriert
den ausgefallenen Farbstoff der Formel

$$H_3^{CO_2C} H_2^{C_2HN} CN$$
 $N=N$
 $N=N$
 $N=N-C_2H_4$
 SO_3^{Na}

ab.

Man erhält nach dem Trocknen ein orangerotes Pulver, das sich in Wasser mit gelber Farbe löst und auf Polycaprolactamfasern klare und echte Gelbtöne ergibt.

Beispiel 5

26,1 Teile 6-Amino-2-chlor-3-cyan-1-äthyl-4-äthylaminopyridinium-chlorid und 47,4 Teile β-Phenyläthylamin werden 5 Stunden auf 150 °C erhitzt. Man gießt das Gemisch dann heiß in eine Schale, wo es beim Abkühlen erstarrt. Das Gemisch enthält zu etwa 50 % das Produkt der Formel

und wird in dieser Form als Kupplungskomponente verwendet.

Die aus 19,7 Teilen p-Aminoazobenzol auf übliche Weise erhaltene Lösung des Diazoniumsalzes gibt man bei 0 - 5 °C zu einer Lösung oder Suspension von etwa 80 Teilen des obigen Rohproduktes in 300 Teilen N-Methylpyrrolidon-(2), 300 Teilen Eis und 25 Teilen konzentrierter Salzsäure. Nach dem Abpuffern des Kupplungsgemisches auf pH = 3 - 4 rührt man noch einige Stunden nach und isoliert dann den erhaltenen Farbstoff der Formel

der nach dem Trocknen als rotes Pulver anfällt (etwa 50 Teile).

51,7 Teile des getrockneten Farbstoffes werden bei Raumtemperatur in 240 Teile 23 %igen Oleums eingetragen. Es wird 3 - 4 Stunden bei 30 - 40 °C gerührt, dann auf 500 Teile Eiswasser gegossen und

die Fällung abgesaugt. Diese wird in etwa 800 Teile Eiswasser gegeben, und mit halbkonzentrierter Kaliumacetatlösung wird auf einen pH-Wert von 4 - 5 eingestellt. Nach Filtration wird der Farbstoff der wahrscheinlichen Formel

durch Zugabe von festem Kaliumchlorid gefällt. Das getrocknete rotbraune Pulver färbt Polycaprolactamgewebe und Wolle in roten Tönen mit sehr guten Echtheiten.

Beispiel 6

20,7 Teile 6-Amino-2-chlor-3-cyan-1-(2-phenyl-)äthyl-4-(2-phenyl)äthylaminopyridiniumchlorid werden in 20 Teilen 3-Methoxypropylamin 15 Stunden auf 116 °C erhitzt. Man läßt abkühlen und rührt
in 100 Teile Eiswasser ein. Dabei scheidet sich ein Öl ab, das
man in etwa 10 Teilen Methanol löst. Es kristallisiert das Reaktionsprodukt der wahrscheinlichen Formel

aus. Durch Absaugen und Trocknen erhält man etwa 10 Teile eines nahezu farblosen Pulvers vom Schmelzpunkt 78 $^{\rm o}$ C.

23,3 Teile des obigen Reaktionsproduktes werden bei Raumtemperatur in 65 Teile 23 %igen Oleums eingerührt. Man rührt 3 - 4 Stunden bei 30 - 40 °C, gibt dann die Lösung in 500 Teile Eiswasser und stellt unter Kühlung durch Eintropfen von etwa 85 Teilen 50 %iger Natronlauge den pH-Wert auf etwa 3 ein. Die Lösung enthält als Hauptprodukt das Anion der Disulfosäure.

Nach Zurückstellen des pH-Wertes der erhaltenen Lösung auf etwa 1 durch Zugabe von konzentrierter Salzsäure gibt man bei 0 - 5 °C eine aus 7,9 Teilen p-Aminoazobenzol auf übliche Weise erhaltene Lösung des Diazoniumsalzes hinzu. Das Diazotierungsgemisch wird mit 120 Teilen Alkohol versetzt, sein pH-Wert mit 50 %iger Natriumacetatlösung auf 3 - 4 eingestellt und nach dem Filtrieren eingedampft und getrocknet. Es fallen ungefähr 150 Teile eines etwa 17 %igen Farbstoffes der Formel

an. Auf Polycaprolactamgewebe erhält man mit dem getrockneten braunroten Pulver rote Färbungen mit ausgezeichneten Echtheiten.

Beispiel 7

26,1 Teile 6-Amino-2-chlor-3-cyan-1-äthyl-4-äthylaminopyridinium-chlorid und 105 Teile 2-Hydroxyäthylamin werden 5 Stunden auf 120 - 130 °C erhitzt. Das Gemisch wird dann abgekühlt und in 500 Teile Eiswasser eingerührt. Man erhält 13,2 Teile eines kristallinen farblosen Pulvers der wahrscheinlichen Formel

das bei 93 - 100 oc schmilzt und ohne Reinigung als Kupplungskomponente verwendet wird. -

2361551

31,5 Teile der angegebenen Kupplungskomponente werden in 100 Teilen N,N-Dimethylformamid gelöst und bei 0 - 5 °C zu einer auf übliche Weise ausgehend von 19,7 Teilen p-Aminoazobenzol hergestellten salzsauren, wäßrigen Diazoniumsalzlösung getropft. Das Lösungsgemisch wird mit 50 %iger Natriumacetatlösung auf einen pH-Wert von 3 - 4 abgestumpft, und nach beendeter Kupplung wird der ausgefallene Farbstoff der Formel

$$\begin{array}{c|c}
 & \text{H}_5^{\text{C}_2-\text{HN}} & \text{CN} \\
 & \text{N=N} & \text{N=N} & \text{N=C}_2^{\text{H}_4^{\text{OH}}} \\
 & \text{H}_2^{\text{N}} & \text{C}_2^{\text{H}_5}
\end{array}$$

abgesaugt und getrocknet. Es fallen 40 Teile eines roten Pulvers an.

Etwa 46 Teile des gewonnenen Farbstoffes werden bei 20 - 30 °C unter Rühren in 260 Te100 %ige Schwefelsäure eingetragen, und das Gemisch wird 14 Stunden bei Raumtemperatur gerührt. Danach gießt man auf 1000 Teile Eis und 300 Teile 50 %ige Natronlauge und stellt durch Zufügen von gesättigter Natriumacetatlösung einen pH-Wert von 4 - 5 ein. Der ausgefallene Säurefarbstoff der Formel

wird abgesaugt und getrocknet. Es fallen 51,4 Teile eines braunroten Pulvers an, das sich in Wasser mit roter Farbe löst und Polycaprolactamgewebe in rotem Ton mit sehr guten Echtheiten färbt.

Beispiel 8

27,7 Teile der Diazokomponente der Formel

$$\mathtt{HO_{3}S} - \hspace{-1.5cm} \longleftarrow \mathtt{N=N} - \hspace{-1.5cm} \longleftarrow \mathtt{NH_{2}}$$

werden auf übliche Weise in wäßriger, salzsaurer Lösung diazotiert.

Zu der entstandenen Suspension des Diazoniumsalzes gibt man bei 0 5 °C eine Lösung von 31,5 Teilen 6-Amino-3-cyan-4-äthylamino-2(2-hydroxy)-äthylamino-1-äthylpyridiniumchlorid in 100 Teilen

N,N-Dimethylformamid zu, stumpft mit 50 %iger Natriumacetatlösung
auf pH 2 - 3 ab und saugt nach beendeter Kupplung den ausgefallenen

Farbstoff der Formel

$$NaO_3S - N=N - N=N - N=N - N=N - CN$$
 $H_5C_2-HN CN$
 $H_2N C_2H_4OH$

ab.

Nach dem Trocknen bei 70 °C erhält man ein braunrotes Pulver. Dieses löst sich in Wasser mit roter Farbe und färbt Polycaprolactamfasern mit ausgezeichneten Echtheiten rot an.

Beispiel 9

55,9 Teile des nach Beispiel 8 dargestellten Farbstoffes werden bei 20 - 30 °C in etwa 260 Teile 100 %ige Schwefelsäure eingetragen und 14 Stunden bei Raumtemperatur gerührt. Dann gießt man auf 1000 Teile Eis und etwa 300 Teile 50 %iger Natronlauge, stellt mit gesättigter Natriumacetatlösung auf pH= 4 - 5 ein und saugt den ausgefallenen Farbstoff der Formel

$$NaO_3$$
S — $N=N$ — $N=N$ — $N=N$ — $N-C_2$ H₄OSO₃Na

ab. Das getrocknete braunrote Pulver löst sich in Wasser mit roter Farbe. Mit sehr guten Echtheiten färbt es Polycaprolactamgewebe in klaren, roten Tönen.

Analog den in den Beispielen 1 bis 9 angegebenen Methoden erhält man auch die im folgenden durch Angabe der Substituenten gekennzeichneten Farbstoffe.

 R^1 -HN CN D-N=N $N-R^2$ H_2N R^1

2361551

Bsp.	D-NH ₂	R ¹	R ²	Farbton der Fär- bung auf Polycapro- lactam
10	NaO ₃ S——N=N——NH ₂	с ₂ н ₅	H	rot
11	11	n	^с 2 ^н 5	blaustichig rot
12	n .	71	C ₃ H ₇ (n)	n
13	n	tt	^C 4 ^H 9(n)	11
14	ŧŧ	11	(сн ₂) ₂ он	
15	- 11	11	(сн ₂) ₂ осн ₃	11
16	n	n	(сн ₂) ₂ о(сн ₂) ₂ он	n
17	· u	11	(сн ₂) ₂ -с ₆ н ₅	п
18	n	łł	- ^C 6 ^H 5	er er
19	п	. 11	(сн ₂) ₂ ососн ₃	11
20	. 11	11	(сн ₂) ₃ он	ti

Bsp.	D-NH ₂	R ¹	R ²	Farbton der Fär- bung auf Poly- caprolactam
21	NaO ₃ S - N=N - NH ₂	^С 2 ^Н 5	-€3	blaustichig rot
22	11	11	C ₆ H ₁₃ (n)	n
23	11	11	C ₈ H ₁₇ (i)	11
24	: · ·	11	-(H)	ti
25		11	-(CH ₂) ₅ -CN	11
26	11.	11	сн ₂ сн(с ₂ н ₅)с ₄ н ₉	tı
27	tl	Ħ	-{	11
28 .	11	с ₂ н ₄ ссн ₃	^С 2 ^Н 5	n
29	n	11	(сн ₂) ₂ он	1 1
30		11	(сн ₂) ₃ осн ₃	· n
31	It	11	(CH ₂) ₂ -	tt
	10. 1	1	I	

Bsp.	D-NH ₂	R ¹	R ²	Farbton
32	NaO ₃ S — N=N — NH ₂	с ₂ н ₄ осн ₃	-{_> осн ₃	blaustichig rot
33	n		-(сн ₂) ₃ осн ₂ -(н	 -сн ₂ он ".
34	Ħ	11	H	i
35	tt	11	\bigcirc	H ×
36	NaO ₃ S - N=N - NH ₂	^с 2 ^н 5	^с 2 ^н 5	rot
37	11	11	(сн ₂) ₂ он	11
38	11	Ħ	(сн ₂) ₃ он	11
39	11	11	(сн ₂) ₂ осн ₂) ₂ он	11
40	te .	. 11	(сн ₂) ₃ о(сн ₂) ₄ он	n
 41	11	. 11	(сн ₂) ₂ осн ₃	บ้
42	· · · · · · · · · · · · · · · · · · ·	·. H	(сн ₂) ₃ ососн ₃	n
43	· n	Ħ	CH ₂ -GHOH-GH ₃ C ₄ H ₉ (n) ³	н

Bsp.	D-NH ₂	R ¹	R ²	Farbton
44	NaO ₃ S-\leftarrow N=N-\leftarrow NH ₂	^с 2 ^н 5	сн ₂ -снон-сн ₃	rot
45	11	11	(сн ₂) ₃ о(сн ₂) ₂ о	rot rot
46	11	11	н	scharlach
47	11	11	-сн ₂ -сн=сн ₂	rot
48	· n	11	-€_>-ос ₂ н ₄ он	rot
49	11	С2H40СH3	н	scharlach
50		11	C ₃ H ₇ (n)	rot
51	ti .	n	(сн ₂) ₂ он	11
52	· 11	11	(сн ₂) ₃ он	11
53	11	11	сн(сн ₃)-сн ₂ он	n
54	ıı .	tl	c ₃ H ₇ (i)	
				1

Bap.	D-NH ₂	R ¹	R ²	Farbton
55	NaO ₃ S-\(\sum_{2}\) N=N-\(\sum_{3}\) NH ₂ CH ₃	^с 2 ^н 5	с ₂ н ₅	rot
56	11	п	(сн ₂) ₂ он	11
57	n	n .	(сн ₂) ₂ о(сн ₂) ₂ он	11
58	n	n	(сн ₂) ₃ осн ₃	11
59	tt	11	(сн ₂) ₂ ососн ₃	
60	11	11	(сн ₂) ₃ он	 11 _.
61	11	11	сн ₂ снон-сн ₃	11 ··
62	11	11	н	scharlach
63	tt	n _.	(сн ₂) ₄ он	rot
64	n	с ₂ н ₄ осн ₃	н	scharlach
65	H	# .	(сн ₂) ₂ он	rot
66 ·	11	11	(сн ₂) ₃ осн ₃	11

Bsp.	D-NH ₂	R ¹	R ²	Farbton	
67	NaO ₃ S -\(\bigce\)-N=N-\(\bigce\)-NH ₂ CH ₃	с ₂ н ₄ осн ₃	сн(сн ₃)(сн ₂) ₃ с(он	^{CH} 3)2 rot	
68	н	#	(сн ₂) ₃ 0(сн ₂) ₂ он	rot	
69	SO ₃ Na CH ₃ CH ₃ CH ₃	^с 2 ^н 5	H	scharlach	
70	 11	11	C3H7(n)	rot	
71	51	11	(сн ₂) ₂ он	11	
72	. 11	11	(сн ₂) ₂ о(сн ₂) ₂ он		
73	II .	II.	(сн ₂) ₂ осн ₃	IT .	
74	11	n .	(сн ₂) ₃ он	. #	
75	II .	· u ,	(CH ₂) ₃ OC ₂ H ₄ OCH	3	
74	11	II .	(CH ₂) ₃ OC ₂ H ₄ OC ₂	 ^E 5	
75	ti	C2H4OCH3	н	scharlach	
76	tt .	n .	C ₂ H ₅	rot	
EDD03E (DD0)					

Bap.	D-NH ₂	R ¹	R ²	Farbton
77	SO ₃ Na CH ₃ N=N-V-NH ₂ CH ₃	с ₂ н ₄ осн ₃	(сн ₂) ₂ он	rot
7 8	tt	11	(сн ₂) ₂ осн ₃	
79	n	 11	(сн ₂) ₃ ос ₂ н ₄ осн(CH ₃) ₂ rot
80	$ \begin{array}{c} \text{OCH}_{3} \\ \text{NaO}_{3}\text{S} & \begin{array}{c} \text{OCH}_{2} \\ \text{OCH}_{3} \end{array} $	с ₂ н ₅	. A	rotviolett
81	11	с ₂ н ₅	с ₂ н ₅	violett
82	11	11	(сн ₂) ₂ он	. "
83	n	11	(сн ₂) ₃ он	11 .
84	11	**	(сн ₂) ₂ о(сн ₂) ₂ он	п
85	11	tt .	-(CH ₂) ₂	n
86 .	tt	n	(сн ₂) ³ ососн ³	et
87	H	n	(CH ₂) ₂ OCH ₃	n .

Bsp.	D-NH ₂	R ¹	R ²	Farbton
88	NaO ₃ S - N=N - NH ₂	^с 2 ^н 5	(сн ₂) ₃ ос ₂ н ₄ ос ₄ н ₉	violett
89	II.	II	н	n
90	11	с2н4осн3	н	rotviolett
91	rt	с ₂ н ₄ осн ₃	с ₂ н ₅	violett
92	11	11	(сн ₂) ₂ он	11
93	11	t t	(сн ₂) ₂ осн ₃	11
94	11	it :	(сн ₂) ₃ ос ₂ н ₄ осн ₂ с ₆ н ₅	11
95	11	^с 2 ^н 5	Н	rotviolett
96	11	11	с ₂ н ₅	violett
97		1 1	(сн ₂) ₂ он	"
98	· n	и .	(сн ₂) ₃ он	11

Bsp.	D-NH ₂	R ¹	R ²	Farbton
99	SO ₃ Na OCH ₃ N=N-V-NH ₂ OCH ₃	. ^С 2 ^Н 5	(сн ²) ² (сн ²) ² он	v iolett
100	rr	IT .	(CH ₂) ₂ -(_)	· n
101	tt .	11	(сн ₂) ₂ ососн ₃	11
102	tf		(сн ₂) ₃ осн ₃	11
103	!	11	(сн ₂) ₃ ос ₂ н ₄ ос ₂ н ₄ с ₆ н	5 "
104	n		-(H)	11
105	ti .	11	- <u>(н</u>)-ос ₂ н ₄ он	11
106	, H	с2н4осн3	н .	rotviolett
107		п	c ₃ H ₇ (n)	violett
108		.	(сн ₂) ₂ он	u
109	ti	и .	(сн ₂) ₃ осн ₃	n

Bsp.	D-NH ₂	R ¹	R ²	Farbton
110	SO ₃ Na OCH ₃ OCH ₃	с ₂ н ₄ осн ₃	(сн ₂) ₃ ос ₂ н ₄ о-(н)	violett
. 111	11	11	(CH ₂) ₇ CN	n
112	NaO ₃ S - N=N - NH ₂ SO ₃ Na	с ₂ н ₅	E	bordo
113	n	n .	с ₂ н ₅	ctviolett colett
114	11	1f	(CH ₂) ₂ OH	11 .
115	n	"	(CH ₂) ₂ OCH ₃	u
116	n .	11	C ₄ H ₉ (n)	. "
117	11		₹	ıı .
118	n	"	C ₆ H ₁₃ (n)	18
119	и	11	(сн ₂) ₂ о(сн ₂) ₂ он	11
120	11	u	(CH ₂) ₃ OC ₂ H ₄ OC ₆ H ₅	11

Bap.	D-NH ₂	R ¹	R ²	Farbton
121	NaO3S- N=N-NH2	^С 2 ^Н 5	н он	rotviolett
	SO ₃ Na			
122	17	ti	-ch-ch-ch	п
123	11	11	CH ₃	11
			_ 2	
124		с ₂ н ₄ осн ₃	H	bordo
125	11	11	с ₈ н ₁₇ (і)	rotviolett
126	11	11	(сн ₂) ₂ он	. 11
127		11	(сн ₂) ₂ осн ₃	11
128	11	11	(сн ₂) ₃ о-сн(сн ₃)сн ₂ с	/сн_3 "
129	NaO ₃ S — N=N — NH ₂	с ₂ н ₅	н	bordo
	SO ₃ Na			
130	. "	с ₂ н ₄ осн ₃	H	
131	. "	n	(сн ₂) ₂ осн ₃	rotviolett

132 NaO ₃ S - N=N - NH ₂ C ₂ H ₄ OCH ₃ - H rotviolett 133 " (CH ₂) ₃ OCOCH ₃ " 134 " (CH ₂) ₂ OH " 135 " (CH ₂) ₂ OH (CH ₃)CH ₂ OC ₄ H ₉ " 136 " (CH ₂) ₆ CH " 137 " C ₂ H ₅ C ₂ H ₅ " 138 " " (CH ₂) ₂ OH " 140 " " (CH ₂) ₂ OCH ₃ " 141 " " (CH ₂) ₂ OCH ₃ " 141 " " (CH ₂) ₂ OCH ₃ " 142 " " (CH ₂) ₂ OCH ₃ "	Bsp.	d-nH ₂	R ¹	R ²	Farbton
134 " " $(CH_2)_2OH$ " " $(CH_2)_2OH$ " " $(CH_2)_3OCH(CH_3)CH_2OC_4H_9$ " " $(CH_2)_6CH$	132	NaO ₃ S -{N=N -{}NH ₂	с ₂ н ₄ осн ₃	- (H)	rotviolett
135 " " $(CH_2)_3OCH(CH_3)CH_2OC_4H_9$ " 136 " " $(CH_2)_6CN$ " 137 " C_2H_5 C_2H_5 " 138 " " $C_4H_9(n)$ " 140 " " $(CH_2)_2OCH_3$ " 141 " " $(CH_2)_2OCH_3$ "	133	11	ti :	(сн ₂) ₃ ососн ₃	11
136 " " $(CH_2)_6CN$ " " C_2H_5 C_2H_5 " " $C_4H_9(n)$ " " $(CH_2)_2OH$ " " $(CH_2)_2OCH_3$ " " $(CH_2)_2OCH_3$ " " $(CH_2)_2OCH_3$ " " $(CH_2)_2O(CH_2)_2OH$ " " " " $(CH_2)_2O(CH_2)_2OH$ " " " " " $(CH_2)_2O(CH_2)_2OH$ " " " " " " " " " " " " " " " " " " "	134	11	11	(сн ₂) ₂ он	: 11
137 " C_2H_5 C_2H_5 " " $C_4H_9(n)$ " "	135	11	11	(сн ₂) ₃ осн(сн ₃)сн ₂ ос	 5 ₄ ^H 9 "
137 " $C_2^{\text{H}}_5$ $C_4^{\text{H}}_9(n)$ " C_4	136	п	n ·	(сн ⁵) ^е си	н
139 " (CH ₂) ₂ OH " 140 " (CH ₂) ₂ OCH ₃ " 141 " (CH ₂) ₂ O(CH ₂) ₂ OH "	137	n	с ₂ н ₅	с ₂ н ₅	11
140 " (CH ₂) ₂ OCH ₃ " (CH ₂) ₂ O(CH ₂) ₂ OH "	138	n n	Ħ	C ₄ H ₉ (n)	u
141 " (СН ₂) ₂ 0(СН ₂) ₂ 0Н "	.139	11		(сн ₂) ₂ он	. 11
141 " (012/20(012/201	140	ıı	11	(сн ₂) ₂ осн ₃	ti
142 " " (CH ₂) ₂ -C ₆ H ₅ "	141	n	. 11	(сн ₂) ₂ о(сн ₂) ₂ он	n
	142	11	u	(CH ₂) ₂ -C ₆ H ₅	n

Bsp.	D-NH ₂	R ¹	R ²	Farbton
143	NaO ₃ S — N=N — NH ₂ SO ₃ Na	с ₂ н ₅	c ₆ H ₁₃ (n)	rot- violett
144	u _{ja}	it	(сн ₂) ₃ осн ₂ сн(сн ₃)ос	 ^H 3
145	tt	11	СH(СH ₃)(СH ₂) ₃ -(_)-	 OH "
146	H ₃ C NH ₂ NH ₂ SO ₃ Na	с ₂ н ₄ осн ₃	H	gelhstichig orange
147	11	^с 2 ^н 5	н	n
148	11	11	с ₂ н ₄ он	orange .
149	11	11	(сн ₂) ₂ о(сн ₂) ₂ он	11
150	11	tt	(сн ₂) ₃ о(сн ₂) ₄ он	II ~
151	1f	u	с ₂ н ₅	. 17
152	. 11	11	C ₈ H ₁₇ (i)	"" "I
153		11	-	п
		1		

Bsp.	D-NH ₂	R ¹	R ²	Farbton
154	H ₃ C SO ₃ Na SO ₃ Na	с ₂ н ₅	CH ₃	orange
155	11	11	сн ₂ -снон-сп ₃	11
156	ti .	11 :	-(H)	11
157		11	(сн ₂) ₃ осн(сн ₃)сн ₂ ос	2 ^H 5 "
158	£1	C ₂ H ₄ OCH ₃	с ₂ н ₅	n
159	11	11	(CH ₂) ₂	н
160	11	"	(сн ₂) ₂ он	. 11
161	(CH ₂) ₂ 0S0 ₃ Na		(CH ₂) ₂ OC ₃ H ₇	tt.
162	$0 = 0$ NH_2	11	H	gelb
163	n .	с ₂ н ₅	H	н
164	ıı	n	C ₄ H ₉ (n)	n
165		9825/09	(сн ₂) ₂ он	u

Bsp.	D-NH ₂	R ¹	.R ²	Farbton
166	$ \begin{array}{c} (CH_2)_2OSO_3Na\\ 0 \longrightarrow 0\\ NH_2 \end{array} $	^С 2 ^Н 5	сн ₂ -сн(сн ₃)-	gelb
167	п	11	(сн ⁵) ⁵ осн ³	11
168		 11	(CH ₂) ₃ -0-CH ₂	u
169		"	(сн ₂) ₂ ос ₄ н ₉	11
170	, 11	11	(сн ₂) ₃ ос ₂ н ₅	
171	. 11	11		H
172		с ₂ н ₄ осн ₃	C ₃ H ₇ (n)	11
173	n	с ₂ н ₄ осн ₃	(сн ₂) ₂ он	'n
174	11	11	(сн ₂) ₂ осн ₃	11
175		11	(сн ₂) ₃ ос ₃ н ₇	
1				

Bsp.	D-NH ₂	R ¹	R ²	Farbton
176	0 = 0 $0 = 0$ $0 = 0$ $0 = 0$	с ₂ н ₄ осн ₃	H	gelb
177	11	С ₂ Н ₅ .	H	tt
178	n		c ₆ H ₁₃ (n)	orange
179	11	11	(сн ₂) ₂ он	11
180	ti	11	(сн ₂) ₃ ососн ₃	11
181		11	(сн ₂) ₂ осн ₃	u
182 [.]	11	n.	(CH ₂) ₃ OC ₄ H ₉	п
183	nt .	11	000	. "
184		C2H4OCH	(сн ₂) ₂ он	11
185	u	u u	(сн ₂) ₂ осн ₃	n
186		11	(сн ₂) ₃ осн ₂ сн(с ₂ н ₅)°4 ^H 9 "
187	11	11	сн ₂ -с ₆ н ₅	11

Bap.	D-NH ₂	R ¹	R ²	Farbton
188	NaO ₃ S — NH ₂	с ₂ н ₄ осн ₃	H	gelb
189		^С 2 ^Н 5	н	11
190	11	11	(CH ₂) ₂ -	u .
191	11	tt	(CH ₂) ₃ OCH ₂	11
192	11	11	C ₄ H ₉ -(n) (OH ₂) ₃ OOH ₂ -(2)	. 11
193		11	сн ₂ -сн(сн ₃)-	11
194	II .	18	^C 6 ^H 13 ⁽ⁿ⁾	11
195	. 11	11	(сн ₂) ₂ он	"
196	11	1t	с ₃ н ₇ (n)	rı
197	11	tt	(сн ₂) ₃ осн ₃	"
198	11	11	(сн ₂) ₃ ососн ₃	tt .
199	. 11	17		. 11

Bsp.	D-NH ₂	R ¹	R ²	Farbton
200	NaO ₃ S V NH ₂	^С 2 ^Н 5	(сн ₂) ₃ ос _б н ₁₃	gelb
201	17	с ₂ н ₄ осн ₃	(CH ₂) ₂ -{_\}	11
202	11	12	(сн ₂) ₂ он	11
203	11	11	C ₆ H ₁₃ (n)	"
204	n	u	(сн ₂) ₃ ос ₈ н ₁₇	11
205	NH-CO-VID-NH ₂	с2н4осн3	H	п
206	11	с ₂ н ₅	H	"
207	n	11	^C 2 ^E 5	11
208	n.	"	(сн ₂) ₂ он	11
209	п	11	(сн ₂) ₃ осн ₃	n
210	If	"	(CH ₂) ₃ 0(CH ₂) ₂ 0-(-	> "
	1	•	1	٠.

Bsp.	D-NH ₂	R ¹	R ²	Farbton
211	SO Na	^С 2 ^Н 5	(сн ₂) ₂ о(сн ₂) ₂ он	gelb
212	"	n	(CH ₂) ₃ OC ₈ H ₁₇	11
213		c ₂ H ₄ ocH ₃	(сн ₂) ₂ он	"
214	11	t1	(сн ₂) ₃ осн ₃	tt
215	SO ₃ Na C1-() NH ₂	11	Н	11
216	1 1	^с 2 ^н 5	н	11
217	11	11	(CH ₂) ₂ -	n
218	11	11	c ₆ H ₁₃ -(n)	2†
219	11	n ·	-⟨H⟩	n
220	17	"	(сн ₂) ₃ осн ₃	n
221	ti	11	(CH ₂) ₃ 0 (H	11
(' .	•		

Bsp.	D-NH ₂	R ¹	R ²	Farbton
222	SO ₃ Na Cl-()- NH ₂	^С 2 ^Н 5	(сн ₂) ₃ осн ₂ с ₆ н ₅	gelb
223	II .	11	(CH ₂) ₃ OC ₂ H ₄ C ₆ H ₅	11
224	11	c ₂ H ₄ ocH ₃	сн ₂ -сн(сн ₃)-	п .
225	п		(сн ₂) ₃ осн ₃	tt
226	tt	ti .	(сн ₂) ₃ ос ₆ н ₅	и
227	rı .	11 .	-сн(сн ₃)сн ₂ осн ₃	11
228	. 11	11	-сн(сн ₃)сн ₂ ос ₄ н ₉	11.
229	n	ti	-сн(сн ₂)сн ₂ ос ₆ н ₅	tt
230	tt .	11	-сн(сн ₃)сн ₂ осн ₂ с ₆ н	5 "
231	C1 SO ₃ Na	11	H	11
232	tt	^C 2 ^H 5	H	11
233	11	11	(CH ₂) ₂	. 11

Bsp.	D-NH ₂	R ¹	R ²	Farbton
234	C1 S03Na	с ₂ н ₅	(сн ₂) ₂ он	gelb
235	er .	n :-	(сн ₂) ₃ он	11
236	11	H	(сн ₂) ₃ осн ₃	n ,
237	ti	n	-{}-сн ₃	11
238	11	!!	(сн ₂) ₃ ососн ₃	TI .
239	u	11	c ₆ H ₁₃ (n)	tt
240	u	11	-сн ₂ сн(сн ₃)осн ₃	11
241	n	11	-сн ₂ сн(сн ₃)ос ₂ н ₅	87
242	ti .	11	-сн ₂ сн(сн ₃)ос ₄ н ₉	81
243	11	с2н4осн3	(CH ₂) ₂ -	tt
244	11	11	(сн ₂) ₂ он	н
245	11	11	сн ₂ сн(сн ₃)ос ₂ н ₄ с ₆ н ₅	. 11
246	"	n	-(сн ₂) ₅ си	11

Ввр.	D-NH ₂	R ¹	R ²	Farbton
247	SO ₃ Na C1—NH ₂	с ₂ н ₄ осн ₃	H	gelb -
248 ·	tt	с ₂ н ₅	H	11
249	11	11	с ₂ н ₅	11
250	11	11	(сн ₂) ₂ он	
251	n	11	сн ₂ -сн(сн ₃)-()	н
252	et	n n	₹	u .
253	n	81	(сн ₂) ₃ ососн ₃	n
254	n	11	сн ₂ сн(сн ₃)ос ₆ н ₅	"
255	11	C2H4OCH3	(CH ₂) ₂	11
256	H H	11	-(H)	11
257	12 ·	lt .	(сн ₂) ₂ осн ₃	· ·
258	11	11	-сн ₂ -Сн ₂ он	ti

Bap.	D-NH ₂	R ¹	R ²	Farbton
259	NaO ₃ S N=N NH ₂	с ₂ н ₅	(сн ₂) ₂ он	rotstichig blau
	S0 ₃ Na			
260	H .	11	(сн ₂) ₂ си	11
261	NaO ₃ S-()- N=N -()- NH ₂		ti	blau
262	C1 NaO ₃ S — NH ₂ C1	^C 4 ^H 9 ⁻ⁿ	(сн ₂) ₂ он	gelb
263	11	^C 2 ^H 4 ^{-C} 6 ^H 5		11
264	If	(сн ₂) ₃ осн	3 "	n
265	C1 NH ₂	-(H)	(сн ₂) ₂ он	**
	so ₃ k			
266	11	^c ₂ ^H ₄ - ^c 6 ^H ₅		tt
267	H ₃ C SO ₃ Na NH ₂ SO ₃ Na	c ₃ H ₇ -(n)	(сн ₂) ₃ он	orange
268	` u	-(H)	(сн ₂) ₂ он	

Bsp.	D-NH ₂	R ¹	R ²	Farbton
269	NaO3S-()- N=N-()- NH2	- (Ħ)	(сн ₂) ₂ он	rot
270	n	с ₂ н ₄ с ₆ н ₅	n	17
271	NaO ₃ S-(_) N=N-(_) NH ₂	с ₂ н ₄ с ₆ н ₅	(CH ₂) OH	blaustichig rot
272	11	(CH ₂) ₃ 0CI	 н ₃ (сн ₂) ₃ он 	. 11
273	KO ₃ S - N=N - NH ₂	с ₂ н ₅	(сн ₂) ₂ он	rot
274	NaO ₃ S -\(\bigcap_{\currentant\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\currentan}\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\bigcap_{\currentan\bigcap_{\bigcap_{\bigcap_{\currentan\bigcap_{\bigcap_{\bigcap_{\currentan\bigcap_{\bigcap_{\currentan\bigcap_{\bigcap_{\currentan\bigcap_{\bigcap_{\bigcap_{\currentan\bigcap_{\bigcap_{\currentan\bigcap_{\bigcap_{\currentan\bigcap_{\currentan\bigcap_{\bigcap_{\currentan\bigcap_{\currentan\bigcap_{\currentan\bigcap_{\currentan\bigcap_{\currentan\bigcap_{\currentan\bigcap_{\currentan\bigcap_{\bigcap_{\currentan\biclint\bigcap_{\currentan\bigcap_{\currentan\biclint\bigcap_{\currentan\bigcap_{\currentan\biclint\bigcap_{\circin}\cintan\biclint	11	11	n
275	SO ₃ Na N=N-(_)-NH ₂	11	-(CH ₂) ₂ OCH ₃	et .
276	SO ₃ Na CH ₃	11	-(CH ₂) ₂ OH	11
277	SO ₃ Na CH ₃ N=N-N-N-N-NH ₂	11	11	"
278	SO _z Na CH ₃ N=N - NH ₂	n n	a a	11
279	SO ₃ Na OCH ₃ N=N-\(\sum_2\) CH	n	(сн ₂) ₃ осн ₃	tr
280	HO - N=N - NH ₂	n	(CH ₂) ₂ OH	н

Bsp.	D-NH ₂	.R1	R ²	Farbton
281	N=N-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	^с 2 ^н 5	(CH ₂) ₃ 0(CH ₂) ₂ 0S0 ₃ Na	scharlach
282	11	"	(CH ₂) ₃ 0(CH ₂) ₄ 0SO ₃ Na	· 11
283	" C ₂ H ₅ 12.5	11	(CH ₂) ₃ 0(CH ₂) ₆ 0SO ₃ Na	11
284	0=C-NH-CH ₂ -CH-C ₄ H ₉ (n)	11	-c ₂ H ₄ -() ^{SO₃Na}	gelb
285	O=C-N-C ₂ H ₄	II .	11	tt
286	CN C1 — NH ₂ C1	C3H7(n)	II	orange
287	C ₁ 2H ₄ OCH ₃ 0 NH ₂	11	11	gelb
288	0 = 0	11	n	t i
289	$0 = \frac{\frac{\text{NH}_2}{\text{C}_4 \text{H}_9(n)}}{\text{NH}_2}$	^с 2 ^н 5	11	21

			•	i	
Bsp.	D-NH ₂	R ¹	R ²		Farbton
290	C ₄ H ₉ (n) 0=NH ₂	с ₂ н ₅	-C2H4-(gelb
291	CH ₃ CH ₃ CH ₃ N=N-\(\sigma\) NH ₂	СН ₂) 2 (Na (CH ₂) ₂ OCH ₃	8	scharlach
292	CH ₃ CH ₃ NH ₂	ıı .	n		11
293	$CI - N=N - NH^{5}$	n	11		ri .
294	Br N=N - NH ₂ Br		11		11
-	CN		. X	-1)	
295	C1—NH ₂	—(H)	(CH ₂) ₂ OSO ₃ Na		goldgelb
296	SO ₃ K NH ₂	.c ₂ H ₅	(CH ₂) ₂ OSO ₃ K		orange
297	NaO ₃ S — N=N — N	a H ₂ "	(CH ₂) ₂ -N		blaustichig

Bsp.	D-NH ₂	R ¹	R ²	Farbton
29ō	CO ₂ CH ₃	с ₂ н ₅	(сн ₂) ₃ оѕо ₃ иа	gelb
299	n	et .	сн ₂ сн(сн ₃)оѕо ₃ на	н
300	NaO ₃ S-\(\sum_\) N=N-\(\sum_\) NH ₂	, n	сн ₂ сн(сн ₃)оѕо ₃ иа	rot
301	NaO3S-CD-N=N-CD-NH2	11	(CH ₂)60SO3Næ	11
302	N=N-NH ₂		(cH ₂) ₄ oso ₃ k	scharlach
303	. 11	11	(CH ₂) ₂ 0(CH ₂) ₂ 0S0 ₃ Na	11
304	C1 — NH ₂	ri	^C 2 ^H 4 ^{-SO} 3 ^{Na}	goldgelo
305	N=W-C-NH2	с ₂ н ₄ оск ₃	(CH ₂) ₂ OSO ₃ K	scharlach
30 6	CI—ZY WH2	^с 2 ^П 5	SO ₃ Na	orange
• 307	н ~	11	-(CH ₂) ₂ -(SO ₃ Na	goldgelb
308	CO ₂ CH ₃	11	(сн ₂) ₃ 0s0 ₃ к	gelb

Pan	n_₩₽	R ¹	R ²	Faibton
Bsv.	D-NE ₂			
309	CH CH	с ₂ н ₄ осн ₃	-CH ₂ -CH(CH ₃)-SO ₃ Na	.gelb
310	11	с ₂ н ₅	CH ₃	goldgelb
311	Br—NH ₂ Br	с ₂ н ₅	(CH ₂) ₂ 0 - SO ₃ Na	orange
312	CI—CN NH2	11	SO ₃ Na OCH ₃	scharlach
313	CN Br-\(\sum_{\text{NH}_2}\) Br	н	(сн ₂) ₂ 0s0 ₃ Na	orange
314	CO ₂ C ₂ H ₅	H	(CH ₂) ₃ OSO ₃ Na	gelb
315	NaO ₃ S - N=N - NH ₂	с ₂ н ₅	(CH ₂) ₂ -(rot
316	CH Br-NH ₂	11	(сн ₂) ₂ оѕо ₃ к	goldgelb
317	C1—CF ₃ WH ₂	u	tt	11
	1			- 63 -

Bsņ.	D-11H ₂	R ¹	R ²	Farbton
318	(CH ₂) ₂ -OH 0	^C 2 ^E 5	(сн ₂) ₂ oso ₃ к	goldgelb
3 19	SO ₂	tt	(CH ₂) ₂ SO ₃ Na	11
320	"	H H	-(CH ₂ -(Na	u
321	CO ₂ C ₂ H ₅ NH ₂ CO ₂ C ₂ H ₅	н	SO ₃ Na	rotstichig gelb
322	11	11	(CH ₂) ₂ -(-) SO ₃ Na	. 11
323	17	n	(CH ₂) ₃ 0-(2) SO ₃ Na	ıı
324	CH ₃ -CO-NH-(NH ₂	1 1	: ************************************	gelb
325	O2N-()-NH ²	с ₂ н ₄ осн ₃	(сн ₂) ₂ оѕо ₃ к	scharlach
	1.		1	

Bsp.	D-NH ₂	R ¹	R ²	Farbton
326	CH ₃ -NH-S NH ₂	^С 2 ^Н 5	SO ₃ Na C1	gelb
327	n	II	SO ₃ Na (CH ₂) ₃ OCH ₂ ()	. 11
328	(n)C ₄ H ₉ -CHCH ₂ NHCO-\(\frac{1}{2}\)-NH ₂	11	(CH ₂) ₂	. "
329	(n)C ₄ H ₉ -NH-S	11	n	ч
330	11	11	(сн ₂) ₃ ос ₂ н ₄ Су ^{SO₃Nа}	H
331	(n)C ₄ H ₉ -NH-CO	11	CH2CH(CH3)-SO3Na	n.
332	(C ₂ H ₅) ₂ N-C - NH ₂	tt	(CH ₂) ₂ -(_) SO ₃ Na	11
333	CH ₃ -CO-NH NH ₂	"	n	tt
334	C1 NH ₂ CO-NH-C ₈ H ₁₇ (i)		n n	",

Bsp.	D-NE ₂	R ¹	R ²	Farbton
335	CH ₃ N 0 N 0	с ₂ н ₅	-c ₂ H ₄ -() SO ₃ Na	gelb
336	$ \begin{array}{ccc} & \text{NH}_2 \\ & \text{CH}_3 \\ & \text{N} \\ & \text{O} & \text{N} \\ & \text{N} $	t1	11	

$$\begin{array}{cccc}
R^{1}-HN & CONH_{2} \\
D-N=N & -N & N-R^{2} \\
H_{2}N & R^{1}
\end{array}$$

Bsp:	D-NH ₂	R ¹	R ²	Farbton
337	NaO ₃ S-{N=N-{NH ₂ }	с ₂ н ₅	(сн ₂) ₂ осн ₃	violett
338	11	11	(CH ₂) ₂	n
339	CI—NH ₂	с ₂ н ₅	(CH ₂) ₂ SO ₃ Na	orange
340	CO ₂ CH ₃	11	SO ₃ Na	11
341	CN CN	11	11	11
342	KO3S - N=N - NH ²	C ₃ H ₇ (n)	-c ₂ H ₄ -oso ₃ K	rot
	·			

	R ¹ -NH av	-66
	CN	H-R ²
z - <->	<i>),</i> ii	H-R
Y¹	H ₂ N _R 1	

			_Y 1	R ¹	R ²	Farbton
Nr.	Z	Y	, <u>1</u>	ĸ	R	raroton
343	H	SO ₃ Na	инсосн ₃	^С 2 ^Н 5	н	gelb
344	n .	11	11	11	(сн ₂) ₂ -он	11
345	11 \	11	. 11	11	(сн ₂) ₃ он	11
346	II	11:	11	11	(сн ₂) ₂ о(сн ₂) ₂ он	11
347	19	11	11	с ₂ н ₄ осн ₃	H	11
348	11	1 1	. 11	rt	(сн ₂) ₂ он	н
349	SO ₃ Na	H	11	с ₂ н ₅	(сн ₂) ₂ он	11
350	CH ₃ O-()- N=N-	11	SO ₃ Na	tt	II	rot
351	II GO Y-	SO ₃ Na	н	11	n .	11
352	NaO ₃ S-\(\subseteq\) N=N-	CH ₃	сн ₃	с ₂ н ₅	(сн ₂) ₃ он	: :
353	SO ₃ Na N=N SO ₃ Na	 H	"	II	u	
354	a1	" 509	 " 8 2 5 / 0	994	(сн ₂) ₂ он	-6 8-

1		_				
Bsp.	Z .	Y .	Y ¹	R ¹	R ²	Farbton
355	SO ₃ Na N=N- SO ₃ Na	сн ₃ :	CH ₃	^с 2 ^н 5	^С 2 ^Н 5	rot
356		осн	11	11	п .	
357	SO ₃ Na N=N- SO ₃ Na	сн ₃	11	с ₂ н ₅	(сн ₂) ₂ он	11
358	NaO ₃ s(CH ₂) ₂ NHS-	Cl	Cl	с ₂ н ₅	(сн ₂) ₂ он	gelb
359	ti	11	11	н	(сн ₂);он	n
360 [.]	HO - N=N-	SO ₃ Na	H	' 11	(сн ₂) ₂ он	rot
361	NaO ₃ S - N=N-	.сн ₃	сн ₃		11	n
362	CH ₃ O - N=N-	SO ₃ Na	Ħ	11	11	н
363	н	co ₂ c ₃ H ₇	 (n) " 	n .	C2H4 SO3Na	gelb
364	н .	**	(i) "	tt .	ii	11
365	11	CO2C2H4	осн ₃ "	11	CH2CH(CH3)	03 ^{Na} "

Bsp.	Z	Y	y ¹	R ¹	R ²	Farbton
366	H	н	со ₂ сн ₃	с ₂ н ₅	сн ₂ сн(сн ₃)	3 ^{Na} gelb
367	tı	11	со ₂ с ₂ н ₅		C2H4 SO3Na	u u
368	n .	11	со ₂ с ₃ н ₇ ((n) "	n	11
369	11	11	" ((i) " 	ıı ·	11
370	II .	11	со ₂ с ₂ н ₄ с	осн ₃ "	SO ₃ Na	11
371	со ₂ сн ₃	· "	н	^с 2 ^н 5	-c ₂ H ₄ SO ₃ Na	н
372	со ₂ с ₂ н ₅	\$1	Ħ	11	11	n
373	CO ₂ C ₃ H ₇ (i)	17	11	11	1f	11
374	CO ₂ C ₃ H ₇ (n)	11	11	11	и .	n
375	CO_C2H4OCH3	"	11	11	11	11
376	CO ₂ C ₂ H ₅	Br	H.	C3H7(n)	п	goldgelb
377	н	CF ₃	H	C ₄ H ₉ (n)	"	gelb
1	'		1	'		-70-

Bsp.	z	Y .	у 1	R ¹	R ² .	Farbton
378	сн ₃ so ₂ -	H	н	с ₂ н ₅	-C2H4-503Na	gelb
379	11	Cl	11	11	. 11	goldgelb
380	H ₂ N-SO ₂ -	н	н	C3H7(n)	SO ₃ Na -CH ₃	gelb
381	0_N-s0 ₂ -	11	11	-c ₂ H ₅	-c ₂ H ₄ SO ₃ Na	u,
382	н	Н	H ₂ NSO ₂ -	11	. 11	. 11
383	п	H	n-c ₄ H ₉ sc)2 "	-сн ₂ сн(сн ₃)	O ₃ Na
384	11	11	o_y-so	2 "	. 11	п
385	-co-NH ₂	11	H	п	-c ₂ H ₄ -(_) SO ₃ Na	11
386	-co-nh-ch ₃	11	71	n		11
387	-co-NH-C ₄ H ₉ (n)	. 11	n	11	SO ₃ Na	н
388	н	11	-co-NH ₂	н	-c ₂ H ₄ SO ₃ Na	11
389	n	n	-co-nh-	сн ₃ "	"	-71-

Bsp.	Z	Y	y 1	R ¹	R ²	Farbton
390	н	^{co} 2 ^c 3 ^H 7	(n) H	с ₂ н ₅	c ₂ H ₄ SO ₃ Na	gelb
391	-CN	-CN	H	11	II.	orange
392	-so ₃ k	Cl	11	. 11	C2H4-SO3K	gelb
· 393	H	so ₃ k	Cl	"	tt -	gelb
394	-SO ₃ Na	Br	Br	с ₃ н ₇ (n)	c ₂ H ₄ -	goldgelb
395	-CH ₃	SO ₃ Na	Cl	с ₂ н ₅	п	gelb
396	C1 ·	SO ₃ Na	CH ₃	11	11	u u

nsprüche 2361551

Patentansprüche

1. Wasserlösliche Azofarbstoffe, die in Form der freien Säuren und in einer der möglichen tautomeren Formen der Formel I

entsprechen, in der

- D den Rest einer Diazokomponente,
- X Cyan oder Carbamoyl,
- n die Zahlen 1 bis 4,
- \mathbb{R}^1 gegebenenfalls substituiertes Alkyl, Cycloalkyl oder Aralkyl und
- R^2 Wasserstoff oder gegebenenfalls substituiertes Alkyl, Cyclo-alkyl, Aralkyl oder Aryl bedeuten.
- 2. Farbstoffe gemäß Anspruch 1 der Formel

$$D^{1}-N=N$$

$$H_{2}N$$

$$\frac{1}{R}$$

$$N-R^{2}$$

in der D¹ einen Rest der Formel

$$Y$$

$$Y^{2}$$

- X Cyan oder Carbamoyl,
- Y Wasserstoff, Cyan, Chlor, Brom, Methylsulfon, Athylsulfon, Phenylsulfon, Carbalkoxy oder SO3H,
- y^1 Wasserstoff, Chlor, Brom oder SO₃H,
- Y² Wasserstoff, Chlor, Brom, Methyl, Carbalkoxy, 2-Benzthiazolyl oder SO₃H,
- X³ Wasserstoff, Methyl, Hydroxy, Methoxy oder SO₃H,
- X¹ Wasserstoff, Methyl, Methoxy oder SO₃H,
- x² Wasserstoff, Methyl oder Methoxy und
- T Wasserstoff oder einen Substituenten bedeuten und
- ${ t R}^1$ und ${ t R}^2$ die angegebene Bedeutung haben.
- 3. Verfahren zur Herstellung von Farbstoffen gemäß Anspruch 1 oder
 - 2, dadurch gekennzeichnet, daß man
 - a) eine Diazoverbindung von Aminen der Formel

DNH

mit einer Kupplungskomponente der Formel

umsetzt, oder

b) Farbstoffe der Formel

$$D-N=N \longrightarrow NHR^{1}$$

$$H_{2}N \longrightarrow N-R^{2}$$

sulfiert, D, R¹ und R² haben dabei die angegebenen Bedeutungen.

4. Farbstoffzubereitungen zum Färben stickstoffhaltiger Fasern, enthaltend neben üblichen Bestandteilen Farbstoffe gemäß Anspruch 1 oder 2.

BASF Aktiengesellschaft

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.