

Planning with Temporal Logic

April 25, 2016

Motivation

Consider a self-driving car...

 Regardless of our destination, we also want to make sure we always follow the rules of the road.

Motivation

Motivation

Key Takeaways

 Modeling temporally-extended goals with linear temporal logic (LTL)

 Modeling preferences between alternative plans

Outline

- Introduction to Linear Temporal Logic
 - –Why use Linear Temporal Logic?
 - Linear Temporal Logic Operators
 - -Example LTL Problems
 - Applications to Planning
 - Planning with Preferences
 - Expressing Preferences
 - —Planning in LPP

Linear Temporal Logic

 Formalism for specifying properties of systems that vary with time

Systems proceed through a sequence of discrete states

Why Temporal Logic?

 Previously our planning algorithms have used propositional logic to specify goals dealing with a single state at a single point in time

 Temporal logic allows these goals to be specified over a sequence of states

Why Temporal Logic?

- What if the problem requires a condition to:
 - -Be met until another condition is met...
 - For example: red implies (stop until green)

Why Temporal Logic?

- What if the problem requires a condition to:
 - -Always eventually be met
 - •For example, always have some point in the future when you visit a gas station

Branching vs linear time

- Linear time
 - Models physical time
 - At each time instant, <u>only one</u> of the future behaviors is considered
 - We can reason about always

Branching vs linear time

- Branching time
 - At each time instant, <u>all possible</u> future behaviors are considered
 - Time may split into alternate courses
 - We can reason about possibilities

Branching vs linear time

Linear time

Branching time

Linear Temporal Logic

- Linear Temporal Logic (LTL) involves:
 - Linear time model
 - Infinite sequences of states

Forward-looking conditions

Cannot express properties over a set of different paths

Applications of Temporal Logic

- Temporal logic is used in:
 - -Verification and Model Checking
 - Safety and Maintenance
 - -Planning

LTL Syntax

LTL formula $f := true \mid p_i \mid f_i \land f_j \mid \neg f_i \mid X f_i \mid f_i \cup f_j$

An LTL formula is built from:

- 1. Propositional variables: p, ρ, φ, ω etc.
 - Can be True or False
- 2. Logical Operators: \neg , \lor , \land , \rightarrow , \leftrightarrow , True, False

```
-\neg = not
```

$$-v = or$$

$$-\Lambda$$
 = and

$$\longrightarrow$$
 = implies

$$-\leftarrow$$
 = if and only if

-True, False

Logical Operator Examples

Logical Operators

Example

true

true

Logical Operators

Example

$$p = true$$
 $R = red light$

Logical Operator Examples

Logical Operators

not, ¬

Example

Logical Operators

Logical operator

and, A

Example

$$R \wedge B = gas station$$

Logical Operator Examples

Logical Operators

Example

or, v

R v **G**

Or (\lor) can be rewritten with and (\land) and not (\lnot)

$$R \vee G = \neg(\neg R \wedge \neg G)$$

Similar process can be done for implies and iff, but we won't be explaining them due to time constraints

LTL Syntax

LTL formula $f := true \mid p_i \mid f_i \land f_j \mid \neg f_i \mid X f_i \mid f_i \cup f_j$

An LTL formula is built from:

- 1. Propositional variables: p, ρ, φ, ω etc.
 - Can be True or False
- 2. Logical Operators: \neg , \lor , \land , \rightarrow , \leftrightarrow , True, False

```
-\neg = not
```

$$-v = or$$

$$-\Lambda$$
 = and

$$\longrightarrow$$
 = implies

$$\rightarrow \rightarrow$$
 = if and only if

- -True, False
- 3. Temporal Operators

Temporal Operators

What are some useful operators we may want to describe our car?

Temporal Operators

The next light to be green

• The light will be red until it is green

• The like: wike ver is ally some point in the future, turn green

Temporal Operators

The light will always be red

 The light will be red until the car gets gas and the state after it's released, the light can be whatever

Next

Operator	Textual Operator
ne X t	Χρ

Definition: Variable p must be true in the next state

Until

Operator	Textual Operator
Until	ρ U ω

Definition: Variable ρ must remain true up until the state where variable ω becomes true, at which point ρ becomes unconstrained

Note that ω is required to become true in some future state

Future

Operator

Textual Operator

Future/Eventually

Fρ

Definition: Variable ρ must become true in some future state

$$\mathsf{Fp} \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \cdots$$

Global

Operator	Textual Operator
Globally	G ρ

Definition: Variable ρ must be true in all future states

$$Gp \longrightarrow p \longrightarrow p \longrightarrow p \longrightarrow p \longrightarrow \cdots$$

Release

Operator	Textual Operator
Release	ρ R ω

Definition: Variable ρ must be true up until and including the state where ω becomes true, after which ω is unconstrained. If ρ is not true in any future state, then ω is true in all future states

$$p R w \longrightarrow p \longrightarrow p, w \longrightarrow \cdots$$

Different from \mathbf{U} in that both ρ and ω are true in one state

Which describe the other?

Future/Eventually

Release

Globally

?

?

?
$$\equiv \text{True U } \rho$$

 $\equiv \neg F \neg \rho$
 $\equiv \neg (\neg \rho \ U \ \neg \omega)$

Which describe the other?

Temporal Operators (Recap)

Operator	Textual Operator		
ne X t	Χ ρ		
Until	ρ U ω		
Future/Eventually	F ρ	≡ True U ρ	
Globally	G ρ	≡¬F¬ρ	
Release	ρ R ω	≣ ¬(¬ρ U ¬ω)	

Combination of Operators

Infinitely Often

$$\mathsf{GFp} \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \cdots \bigcirc \longrightarrow \cdots \bigcirc \longrightarrow \cdots$$

Eventually Forever

$$\mathsf{FGp} \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \bigcirc \longrightarrow \cdots$$

Example Problem

What are some true statements about this LTL formation?

- XR
- FG
- RUG
- (RUG)∧(FG)∧(XR)

Expressing Temporal Logic in PDDL

PDDL3 Goal Description

Temporal Operators

Operator		PDDL3
ne X t	Χ ρ	(within 1 ρ)
Until	ρ U ω	(always-until $\rho \omega$)
Future	ρ F ω	(sometime-after $\rho \omega$)
G lobally	G ρ	(always ρ)
Release	$ ho \mathbf{R} \omega$	(or
		(always ω)
		(always-until $\omega \rho$))

Expressing Temporal Logic in PDDL

The traffic light will turn red in the next state

Command Syntax

```
(within <num> <GD>)
(within <num> φ) would mean that φ must hold within
<num> happenings
```


Expressing Temporal Logic in PDDL

 The traffic light will be green until it turns red at which point it will be red forever

$$(g U r) \wedge (r \rightarrow Gr)$$

Application to Planning

Büchi Automata

Büchi Automata - extension of finite automaton to infinite inputs (words)

A Büchi automaton is 5-tuple $\langle S, s_0, T, F, \Sigma \rangle$

- S is a finite set of states
- $s_0 \in S$ is an initial state
- $T \subseteq S \times \Sigma \rightarrow S$ is a transition relation
- $F \subseteq S$ is a set of accepting states
- Σ is a finite set of symbols ('alphabet')

An infinite sequence of states is accepted iff it visits the accepting state(s) infinitely often

Example Büchi Automata

Example: Model a clock

Accepted words:

TickTockTockTickTockTickTickTock...

TockTickTockTickTockTockTickTock...

Example Büchi Automata

Example: Model a clock

Accepted words:

TockTickTickTickTickTickTick...

Example Büchi Automata

Example: Model a clock

Accepted words:

TockTickTockTickTockTick...

LTL to Büchi Automata

neXt?

Future/Eventually?

Globally?

LTL to Büchi Automata

Accepted word: ¬p¬p¬ppp¬m...

Sequence of states: $s_0 s_0 s_0 s_1 s_1 s_1 ...$

Accepted word: pppp....

Sequence of states: $s_0 s_0 s_0 s_0 s_0 \dots$

LTL to Büchi Algorithm

```
N - Node object
       N.curr - LTL formulas to be processed
       N.old - LTL formulas already processed
       N.next - LTL formulas to be processed in next node
       N.incoming – Incoming transitions from predecessor nodes
N<sub>s</sub> - List of processed Nodes
N: - Arbitrary node from N.
expand (N,N<sub>c</sub>)
             if N.curr is empty
                           if N.curr = N<sub>i</sub>.curr
                                         Append N.curr to N<sub>i</sub>.curr
                           else
                                         Append N to N.
                                         Create new node N<sub>new</sub> with N<sub>new</sub>-curr = N.next
                                         expand (Nnew Ns)
             else
                           Remove an LTL formula f from N.curr and append to N.old
                           Perform Progression on f
                           Call expand on result of Progression
```

The result of this algorithm is a generalized Buchi automata which is then transformed into a simple Buchi automata.

Progression Algorithm

```
progress(f,N, \Delta t = 1) #\Delta t is time between successive states
                                if f contains no temporal qualities:
                                                                   if N.curr entails f:
                                                                                                                                     f' = True
                                                                  else
                                                                                                                                    f' = False
                                if f = f_1 \wedge f_2:
                                                                  progress(f_1, N, \Delta t) \wedge progress(f_2, N, \Delta t)
                                if f = Xf_1:
                                                                  N.next.append(f_1)
                                if f = f_1 U_{[a,b]} f_2:
                                                                                                                                                                                                                                                                           #[a,b] is a time interval that could be infinite
                                                                   if b < a:
                                                                                                   f' = False
                                                                  else if 0 \in [a,b]:
                                                                                                                                     progress(f_2, N, \Delta t) \vee (progress(f_1, N, \Delta t) \wedge N.next.append(f_1 \cup_{fa.bl-\Delta t} (f_2) \cup_{fa.bl-\Delta t} (f_3) \cup_{fa.bl-\Delta t} (f_4) \cup_{fa.bl-\Delta t} (f_5) \cup_{fa.bl-\Delta t} (f_6) \cup_{fa.bl-\Delta t} (f_7) \cup_{fa.bl-\Delta t} (f_8) \cup_{fa.bl-\Delta t} (
                                                                  f))
                                                                   else
                                                                                                                                      progress(f_1, N, \Delta t) \Lambda N.next.append(f_1 \cup_{fa,bl-\Delta t} f)
```


Büchi Automata to PDDL2

Büchi states are not equivalent to PDDL2 states. Consider:

Two ways to transform temporally extended goals to PDDL2:

- Create new actions that encapsulate the allowable transitions in each state
- Introduce derived predicates
 - Do not depend on the actions
 - Used to determine which state the planner is in
 - Goal of the planner is to move from initial state to any accepting state

Planning with Preferences

Preference Based Planning

Classical Planning Problem

problem := (S, s_0, A, G)

S - set of states s_0 - initial state A - set of operators G - set of goal states

Preference-based Planning Problem

problem := (S, s_0, A, G, R)

R is a partial or total relation expressing preferences (\leq) between plans

Preferences express properties of the plan that are desired but not required

Preference Expression Languages

- Quantitative assign numeric values to plans to compare them
 - Markov Decision Processes (MDP's)
 - Find preferred policy using a reward function over conditional plans
 - PDDL3
 - Preferences expressed through reward function based on satisfying/violating logical formulas on the plan
- Qualitative relations compare plans based on properties of the plans that need not be numeric
 - Ranked Knowledge Bases
 - Plan properties are ranked with preferred formulas ranked higher
 - Temporally Extended Preferences
 - Use LTL to express plan properties that are then ranked

Quantitative languages imply total comparibility while qualitative languages may allow incomparability

Expressing Preferences in PDDL3

Syntax for modeling preferences:

```
(preference [name] <GD>) - label for fluents that
  represent preferences
```

is-violated - function that returns the number of times the preference was not satisfied in the plan

Example:

```
Traffic light is green until it turns red
```

(metric minimize (is-violated gUr))

LPP Language Overview

- LPP is a quantitative language to express temporal preferences for planning
 - Preferences between different temporal goals can be expressed along with the strength of preference
 - i.e. Goal A is preferred twice as much as Goal B
- LPP is an extension of an older language PP
- Preference formulas in LPP are constructed hierarchically

See Bienvenu, Meghyn, Christian Fritz, and Sheila A. McIlraith. "Planning with Qualitative Temporal Preferences." KR 6 (2006): 134-144.

Basic Desire Formula (BDFs)

express temporally extended propositions

- At some point, will cook
 - $-b_1=F(cook)$
- At some point, will order takeout
 - b₂=F(orderTakeout)
- At some point, will eat spaghetti
 - b₃=**F**(eatSpaghetti)
- At some point, will eat pizza
 - $-b_4=\mathbf{F}(eatPizza)$

Atomic Preference Formulas (APFs) express preferences between BDFs

- In this example, weights associated with each BDF define preferences
 - Lower weight is preferred
- Prefer to cook over ordering takeout
 - $a_1 = b_1[0.2] \gg b_2[0.4]$
- Prefer eating spaghetti over eating pizza
 - $a_2 = b_3[0.3] \gg b_4[0.9]$

General Preference Formulas (GPFs)

allow conjunctions or disjunctions of APFs or qualification of BDFs with conditionals

 Satisfy the most preferred option among the APFs (satisfy APF with lowest weight)

$$-g_1=a_1 \mid a_2$$

 Choose the most preferred option that satisfies both APFs (minimize the maximum weight across both APFs)

$$-g_2=a_1 \& a_2$$

Aggregated Preferences Formulas (APFs)

define the order in which preferences should be relaxed

 Prefer that if both g₁ and g₂ from previous slide can't be met, that g₂ from previous slide is met

$$-g_1 \wedge g_2 \leqslant g_2 \leqslant g_1$$

 Situations that aren't distinguished any other way can be sorted lexicographically (alphabetically)

LPP Formula Hierarchy Review

- Basic Desire Formula (BDF)
 - -Express temporally extended propositions
- Atomic Preference Formula (APF)
 - -Express preferences between BDFs
- General Preference Formula (GPF)
 - Allow conjunctions or disjunctions of APFs or qualification of BDFs with conditionals
- Aggregated Preference Formula (APF)
 - Define the order in which preferences should be relaxed

References

- Gerevini, A., and D. Long. *Plan constraints and preferences in PDDL3: The language of the fifth international planning competition. University of Brescia*. Italy, Tech. Rep, 2005.
- Patrizini, Fabio, et al. "Computing infinite plans for LTL goals using a classical planner." *Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence; july 16-22, 2011; Barcelona. Menlo Park, California: AAAI Press; 2011. p. 2003-2008.*. Association for the Advancement of Artificial Intelligence (AAAI), 2011.
- Baier, Jorge A., and Sheila A. McIlraith. "Planning with Temporally Extended Goals Using Heuristic Search." *ICAPS*. 2006.
- Bacchus, Fahiem, and Froduald Kabanza. "Planning for temporally extended goals." *Annals of Mathematics and Artificial Intelligence* 22.1-2 (1998): 5-27.
- Baier, Jorge A., and Sheila A. McIlraith. "Planning with first-order temporally extended goals using heuristic search." *Proceedings of the National Conference on Artificial Intelligence*. Vol. 21. No. 1. Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2006.
- Baier, Jorge A., and Sheila A. McIlraith. "Planning with preferences." AI Magazine 29.4 (2009): 25.
- Bienvenu, Meghyn, Christian Fritz, and Sheila A. McIlraith. "Planning with Qualitative Temporal Preferences." *KR* 6 (2006): 134-144.
- Gerth, Rob, et al. "Simple on-the-fly automatic verification of linear temporal logic." *Protocol Specification, Testing and Verification XV*. Springer US, 1996. 3-18.

Appendix

Solving Planning Problems with Preferences

PPLAN

- implemented by Meghyn Bienvenu, Christian Fritz, and Sheila A. McIlraith
- Solves planning problems with preferences expressed in LPP via bounded best-first search forward chaining planner
 - use of progression efficiently evaluates how well partial plans satisfy Φ (a general preference formula)
 - use of admissible evaluation function ensures best-first search is optimal