CSCI 200: Foundational Programming Concepts & Design Lecture 00

Sea Plus Plus

Learning Outcomes For Today

Recite the expectations for this course

 Discuss the differences between programming languages, specifically Python & C++

Build your programming environment

On Tap For Today

Syllabus

Programming Languages

Python vs. C++

Practice

On Tap For Today

Syllabus

Programming Languages

Python vs. C++

Practice

Clark Scholten

 M/W 10:00a - 11:50a F 1p - 3p or by appointment CTLM 246B

cscholten@mines.edu

Tell Me About Yourself!

- Who are you?
- What do you like?

http://bit.ly/200Spring2024

What's Online

- Course Website
 - https://cs-courses.mines.edu/csci200/
 - Bookmark this page!
 - Descriptions for all labs & assignments
 - Links to all other sites
- Canvas
 - Submissions, quizzes, lecture files, etc
 - Integrates all other sites
- zyBooks
 - Interactive course eBook
- Ed Discussion
 - Out of class discussion & main source of communication

Syllabus

 Read the syllabus on course website under Files > Documents

https://cs-

courses.mines.edu/csci200/resources.html

zyBook Logistics

- Do the assigned sections BEFORE coming to class
 - Some Activities required
 - Optional sections are optional
- Purpose of activities: learning not testing
 - NO penalty for an initial wrong answer
 - Unlimited attempts at each activity
- Worth 5% of your final grade
 - (should be "free" points)

zyBook Grade

If you complete ___ then your grade is ___

How To Succeed In This Class

- Come to class
- Complete zyBook activities before class (due with HW Set)
- Complete worksheets and participation review exercises after class
- 2-3 Labs per set (due with HW Set) (14 total averages 1 a week)
- Come to class
- 1 HW assignment every 2-3 weeks (due with HW Set) (6 total)
- 6 quizzes (in class 01/29, 02/07, 03/01, 03/08, 04/15, 04/26)
- Come to class
- 3 written exams (2 midterms in class 02/09 & 03/15 and 1 final 05/06)
- 1 semester project (out 02/26 due 05/02)

HW Set Logistics

- Submit to canvas:
 - Labs: zip all files for each individually
 - Assignments: zip all files for each individually
- Rubric:
 - Submitted on time (accepted for 72 hrs beyond due)
 - Builds and runs without errors or warnings
 - Generates correct results
 - Style guidelines and best practices followed

Assignment Logistics

- Submissions MUST compile in the lab environment (Windows using g++)
- Submissions MUST include all necessary source code files (*.h *.cpp Makefile)

- Resubmission Policy
 - Once grades returned, may resubmit a corrected/updated version to earn up to half deducted points back

Learning Outcomes for the Course

- Design an algorithm to solve a problem by breaking the overarching problem into smaller modular components using abstraction and objectoriented design with inheritance.
- Translate the algorithm into a program using proper C++ syntax and fundamental programming constructs (e.g. control structures, I/O, classes).
- Recite & apply frequently used Linux command line commands and compile a program using a command line build system.
- Diagram memory usage, dynamically allocate & deallocate objects at runtime using "The Big Three," and trace the call stack of a program's run-time.
- Define recursion and construct common recursive data structures (e.g. linked list, stack, queue) & algorithms (e.g. search & sort).
- Diagram & construct dynamically allocated data structures (e.g. array, vector, string), recursive data structures, (e.g. linked list, stack, queue), and implement common list operations (e.g. traversal, insertion, removal)
- Define "Big-O" notation, list complexities in increasing order, and analyze an algorithm to compute its run-time performance & memory complexities

5.1

3.1

2.7

9.0

CSCI 200 19 **CS @ Mines**

LinkedList<double>

- size: unsigned int
- pHead: Node<double>*
- pTail: Node<double>*
- + size(): unsigned int
- + at(int): double
- + insert(int, double): void
- + remove(int): void

```
<<interface>>
List<T>
+ size(): unsigned int
+ at(int): T
+ insert(int, T): void
+ remove(int): void
```

Array<T>

- size: unsigned int
- pArray: T*
- + size(): unsigned int
- + at(int): T
- + insert(int, T): void
- + remove(int): void

LinkedList<T>

- size: unsigned int
- pHead: Node<T>*
- pTail: Node<T>*
- + size(): unsigned int
- + at(int): T
- + insert(int, T): void
- + remove(int): void

Node<T>

- + value: T
- + pNext: Node<T>*
- + pPrev: Node<T>*

On Tap For Today

Syllabus

Programming Languages

Python vs. C++

Practice

A Brief History

• In 2024, this is a computer

In 1623, this was a computer

René Descartes (1596 - 1650)

Mathematician – pioneered Cartesian geometry and standard notation of exponents

aka computer – a person that computes

Another computer

- Ada Lovelace
 - 1815-1852
- The FIRST computer programmer
- Developed an algorithm to compute Bernoulli numbers on Babbage's Analytical Machine

Babbage's Analytical Machine

Lovelace's Algorithm

Diagram for the computation by the Engine of the Numbers of Bernoulli. See Note G. (page 722 et seq.)															noulli.	See Note G. (page	722 et seg	<i>i.</i>)					
i	1						Data.			Working Variables.										Result Variables.			
Number of Operation	Nature of Operation.	Variables acted upon.	Variables receiving results.	Indication of change in the value on any Variable.	Statement of Results.	1V ₁ 0 0 0 1	1V ₂ O 0 0 2	1V ₃ O 0 0 4 n	°V ₄ O 0 0 0 0	°V₅ ○ 0 0 0	0V ₆ ○ 0 0 0 0	°v ₇ ○ 0 0 0 0 0	0 v ₈ ○ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	°V,	°V₁₀ ○ 0 0 0	°V ₁₁ ○ 0 0 0 0	6V ₁₂ O O O O	○ ▼13 ○ 0 0 0 0 0	B ₁ in a decimal O ₁₅ fraction.	gain a decimal Og fraction.	B ₅ in a decimal O ₁₈ fraction.	^θ V ₂₁ ○ 0 0 0 B ₇	
1 2 3 4 5 6 7	+ + +	$^{1}V_{4} - ^{1}V_{1}$ $^{1}V_{5} + ^{1}V_{1}$ $^{2}V_{5} \div ^{2}V_{4}$ $^{1}V_{11} \div ^{1}V_{2}$ $^{0}V_{13} - ^{2}V_{11}$	2V ₅	$ \begin{cases} 3 & 3 & 3 & 4 \\ 1V_1 & 3V_4 \\ 1V_1 & 1V_1 \end{cases} \\ \begin{cases} 1V_5 & 2V_5 \\ 1V_1 & 2V_5 \end{cases} \\ \begin{cases} 2V_6 & 9V_6 \\ 2V_4 & 9V_4 \end{cases} \\ \begin{cases} 2V_6 & 9V_6 \\ 2V_1 & 9V_1 \end{cases} \\ \begin{cases} 1V_1 & 2V_{11} \\ 1V_2 & 2V_2 \end{cases} \\ \begin{cases} 2V_{11} & 9V_{11} \\ 9V_{13} & 1V_{13} \end{cases} \\ \begin{cases} 1V_3 & 1V_3 \\ 1V_1 & 1V_1 \end{cases} \end{aligned} $	$= 2n$ $= 2n - 1$ $= 2n + 1$ $= \frac{2n - 1}{2n + 1}$ $= \frac{1}{2} \cdot \frac{2n - 1}{2n + 1}$ $= \frac{1}{2} \cdot \frac{2n - 1}{2n + 1}$ $= \frac{1}{2} \cdot \frac{2n - 1}{2n + 1} = A_0$ $= n - 1 (= 3)$	1	2	n n	2 n 2 n - 1 0	2 n + 1 0	2 n				 n - 1	$ \begin{array}{c} 2n-1 \\ 2n+1 \\ 1 \\ \hline 2 \\ 2n+1 \\ \end{array} $ 0		$-\frac{1}{2}\cdot\frac{2n-1}{2n+1}=\Lambda_0$					
8 9 10 11 12	÷ × +	$V_6 \div V_7$ $V_{21} \times V_{11}$ $V_{12} + V_{13}$	1V ₂ 3V ₁₁ 1V ₁₂ 2V ₁₃	$\begin{cases} {}^{1}V_{21} = {}^{1}V_{21} \\ {}^{3}V_{11} = {}^{3}V_{11} \end{cases} \\ \begin{cases} {}^{1}V_{12} = {}^{0}V_{12} \\ {}^{1}V_{13} = {}^{2}V_{13} \end{cases} \\ \begin{cases} {}^{1}V_{10} = {}^{2}V_{10} \\ {}^{1}V_{1} = {}^{1}V_{1} \end{cases} \end{cases}$	$ \begin{vmatrix} $		2				2n	2 2			 n - 2	$\frac{2n}{2} = A_1$ $\frac{2n}{2} = A_1$	$B_1 \cdot \frac{2n}{2} = B_1 A_1$	$\left\{-\frac{1}{2} \cdot \frac{2n-1}{2n+1} + B_1 \cdot \frac{2n}{2}\right\}$	В				
13 14 15 16 17 18 19 20 21 22 23	+ + + + + × + +	$^{1}V_{1} + ^{1}V_{7}$ $^{2}V_{6} + ^{2}V_{7}$ $^{1}V_{8} \times ^{2}V_{11}$ $^{2}V_{6} - ^{1}V_{1}$ $^{1}V_{1} + ^{2}V_{7}$ $^{3}V_{6} + ^{3}V_{7}$ $^{1}V_{9} \times ^{4}V_{11}$ $^{1}V_{12} \times ^{5}V_{12}$ $^{2}V_{12} + ^{2}V_{12}$ $^{2}V_{16} - ^{1}V_{1}$	2V ₇ 1V ₈ 1V ₈ 14V ₁₁ 13V ₆ 17 2V ₇ 11 10 10 11 10 11 10 11 10 11 11 10 11 11	$ \begin{cases} \begin{array}{c} V_1' = V_1' \\ V_7 = 2V_7 \\ V_7 = 2V_7 \\ \end{array} \end{cases} \\ \begin{cases} V_6 = V_6 \\ V_7 = 2V_7 \\ \end{aligned} \\ \begin{cases} V_8 = V_8 \\ V_1 = V_1 \\ \end{cases} \\ \begin{cases} V_8 = V_8 \\ V_1 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_9 \\ V_9 = V_9 \\ \end{cases} \\ \begin{cases} V_9 = V_9 \\ V_1 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_9 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ V_9 = V_1 \\ \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ \\ V_9 = V_1 \\ \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ \\ V_9 = V_1 \\ \\ V_9 = V_1 \\ \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ \\ V_9 = V_1 \\ \\ V_9 = V_1 \\ \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ \\ V_9 = V_1 \\ \\ V_9 = V_1 \\ \\ V_9 = V_1 \\ \end{cases} \\ \end{cases} \\ \begin{cases} V_9 = V_1 \\ \\ V_9 = V_1 \\ \\$	$ \begin{cases} = B_3 \cdot \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} = B_3 A_3 \\ = A_0 + B_1 A_1 + B_3 A_3 \dots \\ = n-3 (=1) \dots \end{cases} $			 			2 n - 1 2 n - 1 2 n - 2 2 n - 2	4 4		1		$\begin{cases} \frac{2n}{2} \cdot \frac{2n-1}{3} \\ \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} \\ = A_3 \end{cases}$ by-three.	B ₃ A ₃	$\left\{ A_3 + B_1 A_1 + B_3 A_3^{\prime} \right\}$		Ва			
24 25	144.5	+ 1V ₁₃ + 0V ₂	-	$ \begin{bmatrix} ^{4}V_{13} = ^{0}V_{13} \\ ^{0}V_{24} = ^{1}V_{24} \\ ^{1}V_{1} = ^{1}V_{1} \\ ^{1}V_{3} = ^{1}V_{3} \end{bmatrix} $ $ \begin{bmatrix} ^{1}V_{1} = ^{1}V_{1} \\ ^{1}V_{3} = ^{1}V_{3} \end{bmatrix} $ $ \begin{bmatrix} ^{5}V_{6} = ^{0}V_{6} \\ ^{5}V_{7} = ^{0}V_{7} \end{bmatrix} $	$= n + 1 = 4 + 1 = 5 \dots$			n+1			0	0	-					1				В,	

More recently

- Alan Turing
 - 1912 1954
- Father of modern computing
 - And star of

Turing's Bombe Machine

Software Languages Since Then

- Machine Language
 - Binary Instructions: 01101101 00110110
- Assembly Language
 - Specific to the CPU
 - Manipulates the internal component
- High-Level Languages
 - C, C++, Ada, Fortran, Python, Java,
 Kotlin, Swift, Ruby, Rust, and many
 others

```
x86 Assembler
       -0x28(\$ebp)
       -0x20(%ebp)
       -0x18(\$ebp)
       -0x10(\$ebp)
       $0x0,0x4(%esp)
       $0x0,(%esp)
call
       ba <main+0x48>
fldl
       -0x10(\$ebp)
fstpl
       0x4(%esp)
       %eax,(%esp)
       c9 <main+0x57>
call
       $0x10,0x4(%esp)
movl
movl
       $0x0,(%esp)
       dd <main+0x6b>
call
       $0x0, %eax
add
       $0x34, %esp
pop
       %ebp
       -0x4(%ecx),%esp
ret
```

On Tap For Today

Syllabus

Programming Languages

Python vs. C++

Practice

"Popular" Programming Languages

- 2. JavaScript
- 3. Java
- 4. C#
- 5. C/C++
- https://www.n ortheastern.e du/graduate/b log/mostpopularprogramminglanguages/

- 1. JavaScript
- 2. Python
- 3. Java
- 4. C/C++
- 5. PHP
- https://www.z
 dnet.com/artic
 le/top programming languages most-popular and-fastest growing choices-for developers/

- 1. Python
- 2. Java
- 3. JavaScript
- 4. C++
- 5. C#
- https://www.te chrepublic.co m/article/thebestprogramminglanguages-tolearn-in-2022/

- 1. Python
- 2. C
- 3. Java
- 4. C++
- 5. C#
- https://www.ti obe.com/tiobe -index/

Accessed Jan 2022

"Common" Language Usages

- Python: Data Science, Machine Learning
- C / C++: Embedded, OS
 - Windows/macOS/Linux kernels written in C & C++
- Java: Mobile, Desktop
- JavaScript: Web, Backend
- Kotlin: Mobile (Android), AR/VR
- Swift: Mobile (iOS), AR/VR

Brief Programming Language History

- C (1972 Bell Labs)
 - Successor to B to construct utilities on Unix
 - Used for operating systems, embedded systems, supercomputers
- C++ (1985 Bjarne Stroustrup)
 - Extension of C: "C with Classes"
 - Used for resource-constrained applications and low-level memory manipulation
- Python (1991 Guido von Rossum)
- Java (1995 Sun Microsystems)

Comparing Languages

- Python
 - Interpreted
 - Dynamically typed
 - Garbage-collected
 - White space matters

- C++
 - Compiled
 - Statically typed
 - Memory allocation
 - White space doesn't matter

Hello, Python!

```
print("Hello, World!")
```

C:\python.exe helloworld.py

Hello, World!

Hello, C++!

```
#include <iostream>
int main() {
  std::cout << "Hello, World!";</pre>
  return 0;
```

```
C:\g++.exe -o HelloWorld.exe helloworld.cpp
C:\HelloWorld.exe
Hello, World!
```

Python Max Function

```
def max(a, b):
    if(a >= b):
        return a
    else:
        return b
print(f'Max is {max(3,4)}')
```

```
#include <iostream>
int max(int a, int b)
  if(a >= b)
  return a;
  else
  return b;
int main()
  std::cout << "Max is " << max(3, 4) << std::endl;
  return 0;
```

```
#include <iostream>
int max(int a, int b) {
  if(a >= b) {
   return a;
  } else {
   return b;
int main() {
  std::cout << "Max is " << max(3, 4) << std::endl;
 return 0;
```

```
#include <iostream>
int max(int a, int b) {
  if(a >= b)
   return a;
 else
   return b;
int main() {
  std::cout << "Max is " << max(3, 4) << std::endl;
 return 0;
```

```
#include <iostream>
int max(int a, int b) {
  if(a >= b) return a;
  else return b;
}
int main() {
  std::cout << "Max is " << max(3, 4) << std::endl;
  return 0;
}</pre>
```

```
#include <iostream>
int max(int a, int b) { if(a >= b) return a; else
return b; }
int main() { std::cout << "Max is " << max(3, 4) <<
std::endl; return 0; }</pre>
```

```
#include <iostream>
int max(int a, int b) {
  return (a >= b ? a : b);
}
int main() {
  std::cout << "Max is " << max(3, 4) << std::endl;
  return 0;
}</pre>
```

```
#include <iostream>
using namespace std;
int max(int a, int b) {
  return (a >= b ? a : b);
int main() {
  cout << "Max is " << max(3, 4) << endl;
 return 0;
```

```
#include <iostream>
using namespace std;
const float EPS = 0.000001f;
float max(float a, float b) {
  return (a \geq b - EPS ? a : b);
int main() {
  cout << "Max is " << max(3.3333333f, 3.3333334f)</pre>
     << endl;
  return 0;
```

On Tap For Today

Syllabus

Programming Languages

Python vs. C++

Practice

To Do For Next Time

- Set 0 (due Thursday Jan 11)
 - Get your computer setup (if desired...recommended)
 - Questions: post to Ed Discussion for help
 - Purchase zyBooks (work on Chapter 1)
 - Complete surveys

- Next Time (Friday Jan 12)
 - Come in, have VS Code open & ready to go